Construction process of a Virtual Learning Environment in Adult Cardiopulmonary Resuscitation

Ingrid Nery Mendes¹, Filipe Valente Mendes², Maicon de Araújo Nogueira³, Glauber Marcelo Dantas Seixas⁴, Marta Cleonice Cordeiro de Assunção⁵, Eimar Neri de Oliveira Junior⁵, Milene Cortinhas da Silva⁵, Marcio Almeida Lins⁵, Elieni Santana de Abreu⁵, Joyce da Silva Pantoja⁵, Elielson Varlindo Reis Filho⁵, Paula Beatriz Viana Carvalho⁵, Thamyris Abreu Marinho⁶, Lilianne de Lima Souza Moraes⁷, Bruna Carolina da Trindade Monteiro da Silva⁷, Ailton Silva da Silva⁷, Karen Cristina dos Santos Oliveira⁷, Dermison Leão Pereira⁷, Vera Lúcia Queiroz Corrêa Vieira⁷, Mauro Sávio Sarmento Pinheiro⁷, Maria Janaína de Souza Maciel⁷, Lucilene Lima Sousa⁷, Diélig Teixeira⁸, Denise Moraes Rodrigues⁸, Hermana Rayanne Lucas de Andrade Bender⁸, Niceane dos Santos Figueiredo Teixeira⁸, Dandarah Silva de Sousa⁸, Érica Lisboa de Souza⁸, Dâwilla Ruanny de Almeida Palheta dos Santos⁸, Fabrício Gabriel Freitas Lima⁸, Sheila do Socorro dos Santos Miranda⁹, Dhyrlee Dennara Magalhães Silva¹⁰, Elias Costa Monteiro¹⁰, Larissa Pereira de Barros Borges¹¹, Wendrel Gonçalves Furtado¹², Taynnara de Oliveira do Espírito Santo Cunha¹², Simone Aguiar da Silva Figueira¹³, Everson Vando Melo Matos¹⁴, Gleyce Pinto Girard¹⁵, Rafaela Martins Dourado Gonçalves¹⁶, Mirlene Pereira de Souza¹⁷, Shirley Iara Martins Dourado¹⁸, Emilly Gabriele Ribeiro Dias¹⁹, Márcia Soraya Quaresma Vera Cruz²⁰, Rute Helena Santos Dias²⁰, Luciane Caroline Ferreira de Azevedo Emim²⁰, Elisa Xavier Simões²⁰, Mayco Tadeu Vaz Silva²⁰, Eliclime Gomes Silva²¹, Naiade Moreira de Oliveira²², Viviane Costa Matos²², Alessandro Pena Matos²², Jonatas Crispim Magalhães de Oliveira²², Gisela Pereira Xavier Albukquerque²³, Samoel de Barros Alves²⁴, Gilvana Rodrigues de Oliveira²⁴, Bruna Luiza de Souza Costa²⁴, Leudilane Reis da Silva²⁴, Jaciara da Silva Barroso Martins²⁴, Luziana Barros Correia²⁵, Darlene Lucas de Andrade²⁶, Adrielle Santana Marques Bahiano²⁷, Maria Fernanda Silveira Scarcella²⁸, Maguida Patricia Lacerda Cordeiro Oliveira²⁹, Wanda Carla Conde Rodrigues³⁰, Deltiane Coelho Ferreira³¹, Enderson Vasconcelos de Lima³², Nathália Menezes Dias³³, Marcelo Williams Oliveira de Souza³⁴, Thalia Otta Ferreira Milanni³⁵, Jonas Silva Costa³⁶, Luana da Silva Rodrigues³⁷, Eluiza Monteiro Costa³⁸, Thalita Mariana Gonçalves da Silva³⁹, Lilian Maria Santos Silva⁴⁰, Iranete Pereira Ribeiro⁴¹, Maria Alessandra Valente Oliveira⁴²,
Alexandre Felipe Rodrigues Maia, Rafaela Lima Bentes, Araceli Calliari Bentes, Otávio Noura Teixeira, Jofre Jacob da Silva Freitas, Lizomar de Jesus Maues Pereira Móia, Antonia Margareth Moita Sá

1Bachelor of Computer Science from Centro Universitário do Pará (CESUPA), Master's student in Applied Computing from Universidade Federal do Pará (UFPA), Tucuruí, Pará, Brazil.
2Bachelor and Degree in Visual Arts, Federal University of Para (UFPA), Belem, Para, Brazil.
3Nurse, Master in Health Education in the Amazon, PhD student, Stricto Sensu Postgraduate Program, Professional Doctorate in Health Education in the Amazon (ESA), State University of Para (UEPA), Professor at Escola Superior da Amazônia (ESAMAZ), Belem, Para, Brazil. *E-mail: profmaiconnogueira@gmail.com
4Nurse, State University of Para (UEPA), Master's student of the Stricto Sensu Graduate Program, Professional Master's in Health Management and Services at the Santa Casa de Misericórdia do Para Foundation (FSCMP), Belem, Para, Brazil.
5Nurse, Metropolitan University Center of the Amazon (UniFAMAZ), Belem, Para, Brazil.
6Nurse, Post graduate. Stricto Sensu Graduate Program in Nursing, Federal University of Para (UFPA), Belem, Para, Brazil.
7Nursing student, Escola Superior da Amazônia (ESAMAZ), Belem, Para, Brazil.
8Nurse, University of Amazon (UNAMA), Belem, Para, Brazil.
9Nurse. Hospital Universitario João de Barros Barreto (HUJBB), Federal University of Para (UFPA), Belem, Para, Brazil.
10Nurse, Faculdade Pan Amazônica (FAPAN), Belem, Para, Brazil.
11Nursing student, Faculdade Cosmopolita, Belem, Pará, Brazil.
12Nurse, State University of Para (UEPA), Belem, Para, Brazil.
13Nurse, Master in Health Education in the Amazon, PhD student, Stricto Sensu Graduate Program, Professional Doctor degree in Health Education in the Amazon (ESA), State University of Para (UEPA), Professor at the State University of Para (UEPA), Campus Santarem, Para, Brazil.
14Nurse, Master in Public Health, Federal University of Para (UFPA). Nurse at the General Hospital of the Army of Curitiba (HGECC), Doctoral student in Nursing at Universidade Federal do Parana (UFPR), Curitiba, Brazil.
15Nurse, Master in Health Education in the Amazon (ESA), Stricto Sensu Postgraduate Program, Professional Master in Health Education in the Amazon, State University of Pará (UEPA), Belem, Para, Brazil.
16Academic of the Bachelor of Medicine Course, State University of Para (UEPA), Belem, Para, Brazil.
17Nurse, assistant nurse at the Hospital de Clínicas, Federal University of Minas Gerais (UFMG), Minas Gerais, Brazil.
18Nurse, PHD, Federal University of Rio de Janeiro (UFRJ), Nurse at João de Barros Barreto University Hospital (HUJBB), Federal University of Pará (UFPA), Belém, Pará, Brazil.
19Biomedicine Student, University of Amazon (UNAMA), Belem, Para, Brazil.
20Nursing student, University of Amazon (UNAMA), Belem, Para, Brazil.
21Doctor, PhD student, Stricto Sensu Graduate Program, Professional Doctorate in Health Education in the Amazon (ESA),
22Doctor, Federal University of Pará (UFPA), Belem, Para, Brazil.
23Nurse, João Barros Barreto University Hospital (HUJBB), Federal University of Para (UFPA), Belem, Para, Brazil.
24Nursing student, Faculty of Theology, Philosophy and Human Sciences Gamaliel - FATEFIG, Tucuruí, Para, Brazil.
25Nurse, Betina Ferro University Hospital, Federal University of Para (UFPA), Belem, Para, Brazil.
26Nursing student, Integrated Faculty of Brazil Amazon (FIBRA), Belem, Para, Brazil.
27Nurse, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.
28Nurse, Master of Nursing, School of Nursing, Federal University of Minas Gerais (UFMG). PhD student in Health Sciences at UNIMONTES, Minas Gerais, Brazil.
29Nurse, Higher Education Association of Piauí (AESPI), Teresina, Piauí, Brazil.
30Physiotherapist. Master. Metropolitan University Center of the Amazon (UniFAMAZ), Belem, Para, Brazil.
31Nurse at Maria Aparecida Pedrossian University Hospital (HUMAP), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.
32Nursing student, Faculty Estacio Castanhal, Castanhal, Para, Brazil.
33Nurse, Faculty of Theology, Philosophy and Human Sciences Gamaliel - FATEFIG, Tucuruí, Para, Brazil.
34Nurse. Doctoral student of the Stricto Sensu Graduate Program, Doctorate in Biology of Infectious and Parasitic Agents (BAIP), Federal University of Pará (UFPA), Belem, Para, Brazil.
35Medicine student. Para University Center (CESUPA), Belem, Para, Brazil.
36Nursing student, Universidade Paulista (UNIP), Paragominas, Para, Brazil.
37Nursing student, Institute of Higher Education of Rondônia (IESUR), Ariquemes, Rondônia, Brazil.
38Occupational Therapist, University of the Amazon (UNAMA), Belem, Para, Brazil.
39Nurse, Federal University of Pará (UFPA), Belem, Para, Brazil.
40Nurse at Maria Aparecida Pedrossian University Hospital (HUMAP), Federal University of Mato Grosso do Sul (UFMS), Campo
Grande, Mato Grosso do Sul, Brazil.

41 Nurse, Master's student in Health Education in the Amazon (ESA), Stricto Sensu Postgraduate Program, Professional Master in Health Education in the Amazon, State University of Pará (UEPA), Belem, Para, Brazil.

42 Nurse, Escola Superior da Amazônia (ESAMAZ), Belem, Para, Brazil.

43 Nurse, Integrated Faculty of Brazil Amazon (FIBRA), Belem, Para, Brazil.

44 Physiotherapy Student, University of Amazon (UNAMA), Belem, Para, Brazil.

45 Nurse, Escola Superior Madre Celeste (ESMAC), Belem, Para, Brazil.

46 Graduation in Computer Science and Technology in Data Processing, PhD in Electrical Engineering, Professor at Federal University of Pará (UFPA), Tucuruí, Para, Brazil.

47 Biomedic, PhD in Cellular and Tissue Biology in the University of Sao Paulo. Full professor in undergraduate course in medicine and professional master's and doctorate courses in health education in the University of Para State (UEPA), Belem, Para, Brazil.

48 MD of Federal University State of Para, PhD in Morphology and Cellular Function, Kagawa Medical School (Japan). Permanent member of the Stricto Sensu Postgraduate Program, Master and Professional Doctorate in Education and Health in the Amazon (ESA), State University of Para (UEPA), Belem, Para, Brazil.

49 Nurse, PhD in Nursing, Federal University of Rio de Janeiro (UFRJ), Permanent member of the faculty in the Stricto Sensu Postgraduate Program, Master and Professional Doctorate in Education and Health in the Amazon (ESA), State University of Para (UEPA), Belem, Para, Brazil.

Received: 16 Feb 2021;
Received in revised form: 09 Apr 2021;
Accepted: 21 Apr 2021;
Available online: 15 May 2021
©2021 The Author(s). Published by AI Publication. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Keywords — Cardiopulmonary Resuscitation. Computer Simulation. Educational Technology. Education Nursing. JavaScript.

Abstract— There are still considerable variability in survival rates regarding Cardiopulmonary Arrest (CA) that cannot be attributed exclusively to the patient characteristics. The lack of knowledge about the theme by professionals and academics is a graduation consequence. This way, graduating professionals able to operate front CA situations is believed to be a primordial attitude to increase patients’ survival chances. To do so, there are digital strategies that can be used, one of them is the Virtual Learning Environment. Thus, this paper’s objective is to develop a virtual interactive educational proposal about cardiopulmonary resuscitation care on adults. This is an applied research, which led to the development of a technological product – the elaboration of an educational proposal applied to Virtual Learning Environment. Then, it took place the cyclic phases of conception and planning, development and implementation, according to procedures and evidence reported on previous studies. The Virtual Learning Environment was called “Training in Basic Life Support (BLS)”, and has seven modules: “Historical Aspects”, “Basic Life Support”, “Epidemiology”, “Concepts”, “Anatomy and Physiology”, “Algorithms”, “Simulation and Questions”. The illustrations, formatting and layout were built by integrating both language programming technologies: PHP and JavaScript. The results of the evaluation, made by the academics, about the VLE usage pointed that opportunities to self-learning were created and the available resources in the environment were useful to support learning. It’s necessary to comprehend and incorporate the Virtual Learning Environment as an efficient educational tool, and get aware of this knowledge as a strategy to add up new experiences and values to teachers’ practice.

I. INTRODUCTION

 Despite significant advances in care for victims of cardiorespiratory arrest (CA), there is still considerable variability in survival rates that cannot be attributed exclusively to the patient characteristics. In order to increase the chances of survival of CA victims, allowing these individuals to receive high quality care, training in Cardiopulmonary Resuscitation (CPR) must use educational principles supported by researches that turn scientific knowledge into practice 1.

 It is reported that professionals and academics from the health area do not possess satisfactory scientific knowledge, either theoretical or practical, regarding CA/CPR. This lack of knowledge, partially, is a
consequence of the graduation, in which the approaches of that theme, when occurred, are just a few and superficial, so, insufficient to provide the solid knowledge acquirement to the action in front of a CA victim2. This way, thinking about the graduation of professionals able to operate front CA situations is believed to be a primordial attitude to improve the quality of assistance, increasing patients’ survival chances2,3.

For that, there are Digital Information and Communication Technologies (DICT) strategies that turn possible innovations on the educational process, articulation between theory, practice and research. These technologies can be applied from the starting teaching of the student until one’s insertion at the profession, as well as at the continuous professional development, determining a new pedagogical practice4.

Some studies have shown that technological resources applications, such as Moodle, apps, social networks, forums and Virtual Learning Environments (VLE), provide the acquirement of information and cognitive skills to carry out Nursing procedures, increasing safety and self-confidence about the acting.

Considering the exposed, it was intended to develop an educational proposal about CA assistance in adults, applied at a VLE, which will become available to public and private Higher Education Institutions and to the whole society. This theme was chosen considering the scarcity of didactical material about the subject on this perspective, and the necessity of nurses to be trained, through specific knowledge, safety, abilities and skills, to act in emergency situations that offer life risk. It’s believed that, through VLE, it’s possible to add meaning to undergraduate nurses’ daily practice, stimulate autonomy, such as promote professional actualization.

Due to the existence of numerous possibilities and potentialities of different technological resources, planning and analysis of new ways to teach and learn are important, from the establishment of clear educational goals and the abilities and competence on cognitive, psychomotor and attitudinal spheres, suiting the use of computer to objectives proposed to teaching. Therefore, the objective of this study was to develop an interactive virtual educational proposal about cardiopulmonary resuscitation in adults.

II. METHOD

Applied research, which led to the development of a technological product, regarding the elaboration of an educational proposal applied to Virtual Learning Environment. To reach it, it took place the cyclic and interactive phases of conception and planning, development and implementation, suggested by various researches5,6,7.

This paper is part of the dissertation “Teaching of Basic Life Support to Students of Nursing Graduation Course”, linked to the Post-Graduation Program Stricto Sensu, Professional Master Degree in Health on Amazon Teaching, from the University of Para State (UEPA). The project was submitted to the Research Ethics Committee from the Nursing Graduation Course of UEPA, Certificate of Presentation to Ethics Appreciation: 62000616.2.0000.5170, with approval number 1.897.505, on 01/25/2017.

III. RESULTS

Conception and planning

Construction of the educational technology: website/VLE – The elaboration of educational technologies, by own comprehension, demands scientific evidences; definition of the educational technology objective, goals, selection of the target-public to whom the technology’s destined, type of material (guideline, folder, flyer, manual, app, blog, website etc.), themes, illustrations and language; demands action planning(8). From this, it was built a Virtual Learning Environment named “Training in Basic Life Support (BLS)”, highlighting the track among texts and pictures and the outcome (final version). It is found hosted on the link: https://profmaiconnogueira.wixsite.com/capacitacaosbv

Concerning the scientific evidences to the VLE construction, the search arose from the studies of Bellan (2006)11 and Gonçalves et. al (2010)2, as the state of art about Teaching of Basic Life Support in Nursing Graduation, allowing the target-public to be decided. To define the type of technology, a search and reading of scientific articles related to the theme was made, listing some papers that were close to the studied subject5,6,7,9,10. This result was crucial to define the type of tech technology and its production.

Development

Track among texts – the scenario provided by the DICT, through the transformation of various communication ways into digital information, offers the pedagogic option by the virtual environment, optimizing, that way, the relation between Nursing professors and their students, in the means that this new setting turns possible a reflection about educational practices5.

By this sight, the investigation of content to be inserted in the technology started with the diagram construction of themes chosen by the author to VLE.
elaboration, what is meaningful to be presented (Figure 01).

Fig.1: Diagram – themes on author’s experience to the VLE elaboration

Source: Personal Collection, Belem, Para, 2021.

Such reasoning, based on professional experience and sustained by current scientific literature, subsidized the construction of “VLE – Training in Basic Life Support (BLS)”, according to the recommendations of the International Liaison Committee On Resuscitation (ILCOR) and the scientific consensus of American Heart Association (AHA, 2020). The contents approached in the educational technology were selected by relevance to guide BLS Teaching, in accordance to the educational principles of Resuscitation Science Consensus proposed by AHA (2020)1.

Track among images – VLE’s illustration is a thought-provoking stage, considering that the interpretations are diverse. The track about the images occurred from the main themes definition, getting started by the cover pictures (Homepage/ Figure 02).

Fig.2: Representative figure of Teaching Environment in BLS Image selected to represent the Teaching Environment of CA maneuvers – cover (Homepage).

Source: https://profmaiconnogueira.wixsite.com/capacitacaosbv

Fig.3: Algorithm of assistance on BLS, responsiveness evaluation.

Source: Personal Collection, Belem, Para, 2021.

Fig.4: Algorithm of assistance on BLS, pulse verification and chest compressions

Source: Personal Collection, Belem, Para, 2021.

Fig.5: Algorithm of assistance on BLS, breathing evaluation and permeabilization of airways

Source: Personal Collection, Belem, Para, 2021.
Within the VLE, some images were inserted, which represent teaching/training environment, algorithms, survival chain, chest compression techniques, permeabilization of airways, ventilation, use of AED, airways devices and safety position.

Implementation

The educational technology/VLE – final version – The educational technology has seven modules: “Historical Aspects”, “Basic Life Support”, “Epidemiology”, “Concepts”, “Anatomy and Physiology”, “Algorithms”, “Simulation and Questions” – in what the student will be able to obtain individualized learning, being possible to access each module in independent manner, forwarding and going back whenever needed.

The images of VLE are photographs taken by the authors themselves, at the Nursing School Magalhães Barata, University of Para State, during classes of the curricular component “Nursing at Urgency and Emergency” and courses ministered about BLS, after authorization of image usage from the involved people. Other images were chosen from the internet (sources identified under each illustration).

The illustrations, formatting and layout were the result of an effort from a computer engineer, who did the website construction. The VLE was developed by integrating technologies as web programming languages PHP: Hypertext Preprocessor (PHP) and JavaScript.

IV. DISCUSSION

In Brazil, Nursing has used VLE in its courses, as it is shown by the literature review in thematic areas of medicine administration, wounds treatments, Basic and Advanced Life Support and material sterilization. At the international scenario, VLE is used by this profession too and, recently, Blackboard supported Nursing students learning in a module of Human Anatomy and Physiology. From that, it was decided to create a free easy to use VLE, which would satisfy the needs of Nursing undergraduates.

The results of the evaluation made by the academics about this intervention pointed that opportunities to self-learning were created and the available resources in the environment were useful to support learning, ensuring bigger knowledge and ability to the students. These results are similar to other health areas, which have used VLE and its resources too – to reduce the number of formal classes’ hours, increase students’ enthusiasm by the use of multimedia materials and provide interactive learning.

To assure the quality of educational technological information put in this VLE, the recommendations evidenced in the literature were followed, in which is highlighted the need to make researches in formal reliable sources, such as: books, technic articles and interviews with professionals of the area, besides photographic registers, recordings and direct observations of the reality wanted to intervene.

Moreover, PHP is one of the most used languages on the Web. The main difference, compared to other languages, is the capacity that it has to interact with the Web world, transforming totally the websites that have static pages. Another important PHP characteristic is that, besides being free, is an open source code software. Also it is a server-side scripting language, which can be embedded in HyperText Markup Language (HTML) or used as standalone binary (although the former use is much more common).

Otherwise, the programming language JavaScript (JS) is part of the triad of technologies that all web
developers must know: HTML to specify the content, Cascading Style Sheets (CSS) to specify the presentation, and JS to specify the behavior of web pages. All three languages working together to make the implementation more interactive and responsive. Also, the overwhelming majority of modern websites use JavaScript, and all modern web browsers (on desktops, game consoles, tablets and smartphones) include JS interpreters, making it the most ubiquitous programming language in history. These easies were fundamental to the VLE creation and application success, demonstrating, this way, the importance of seeking new non-formal learning methods.

Other interesting functionality to mention here is a responsive web design, built with HTML and CSS allows a website to “just work” across multiple devices and screens. It enables the layout and capabilities of a website to respond to their environment (screen size, input type, and device / browser capabilities). The VLE supports this modern solution that has been used since 2012 over the internet.

In this context, to improve the product quality, it’s suggested the hiring of professionals from: informatics, data processing, publicity and advertising areas. These are recommended to layouts’ adequacy, diagram creation and publishing. The knowledge about specific softwares will contribute to improve the final quality and give a professional aspect to the intellectual production.

Thus, we observed that in the technological development scope, the good quality material, correct usage of tools and students’ interest reveal the efficacy. It’s believed that this initiative has the potential to bring even more satisfactory new results to Nursing undergraduates, also to contribute to the scientific community in development of new studies of comparison between the conventional and non-conventional methods of learning about Basic Life Support.

V. CONCLUSION

Making part of the construction of a Virtual Learning Environment, organizing, planning and proposing activities, opens up new possibilities of professional growth. Otherwise, it presents challenges to the development of thought and written abilities expressions, and to the insertion of new technologies at Nursing teaching, inciting new experiences search to such teaching modality.

In reference to teaching and researching, it arises from this study as a valid educational technology, based on the international consensus of Science of Resuscitation from AHA 2020, innovative and ready to be used. The expectation, at this scope, is that the VLE – “Training in Basic Life Support (BLS)”, awakes higher education managers, professors and students to a more rigorous look regarding the importance of BLS inclusion in the curricular components within Nursing Graduation Courses – in a more consistent way, caring about the current epidemiologic reality, in an innovative methodological perspective.

It’s considered that, in the present educational context, there is a demand of opinion builder professionals. This way, needs of new practices of teaching-learning are emerged, by the use of didactic and technological resources, stimulating and favoring betterment and training of nurses, yet making possible the autonomous learning.

At this perspective, it’s evidenced the necessity of comprehending and incorporating a virtual learning environment as an efficient educational device, and to get aware of this knowledge as a strategy to add up new experiences and values to professor’s practice. The present paper is believed to be able to contribute with the innovation of nursing teaching, from the virtual educational proposal about a matter of great academic, scientific and social relevance.

REFERENCES

[1] American Heart Association (AHA), 2020. Destaques das Diretrizes da American Heart Association. Atualização das diretrizes de RCP e ACE. Retrieved from: https://cpr.heart.org/-/media/cpr-files/cpr-guidelines-files/highlights/highlights_20toccguidelines_portuguese.pdf on 04th April 2020.
[2] Nogueira, M.A., Maciel, D.O., Bernardes, K.S., Peres, P.V.G., Oliveira, V.L.G. and Sá A.M.M., 2017. Teaching of basic life support in undergraduate nursing: an integrative review. International Journal of Current Research. 9(8): 56660-56665. Retrieved from://www.journalcra.com/sites/default/files/25330.pdf on 04th April 2020.
[3] Silva, D.V., Jesus, A.P.S., Lima, A.A., Santo, M.S.A. and Alves, S.L., 2015. Conhecimento de graduandos em Enfermagem sobre suporte básico de vida. Revista Baiana de Enfermagem, 29(2): 125-134. Retrieved from: http://www.portalseer.ufba.br/index.php/enfermagem/articl e/view/12648/pdf_126 on 04th April 2020.
[4] Gonçalves, G.R., Peres, H.H.C., Rodrigues, R.C., Tronchin, D.M.R. and Pereira, I.M., 2010. Proposta educacional virtual sobre atendimento da ressuscitação cardiopulmonar no recém-nascido. Rev Esc Enferm USP, 44(2): 413-420. Retrieved from: http://www.scielo.br/pdf/reusp/v44n2/25.pdf on 04th April 2020.
[5] Prado, C., Santiago, L.C., Silva, J.A.M., Pereira, I.M., Leonel, V.M., Otenti, E. and Peres, H.H.C., 2012.
Ambiente virtual de aprendizagem no ensino de Enfermagem: relato de experiência. Revista Brasileira Enfermagem, 65(5): 862-866. Retrieved from: http://www.scielo.br/pdf/reben/v65n5/22 on 04th April 2020.

Rodrigues, R.C.V. and Peres, H.H.C., 2013. Desenvolvimento de Ambiente Virtual de Aprendizagem em Enfermagem sobre ressuscitação cardiorespiratória em neonatologia. Revista Esc Enfermagem USP, 47(1): 235-241. Retrieved from:: http://www.scielo.br/pdf/reusp/v47n1/a30v47n1.pdf on 04th April 2020.

Rodrigues, R.C.V. and Peres, H.H.C., 2013. Desenvolvimento de Ambiente Virtual de Aprendizagem em Enfermagem sobre ressuscitação cardiorespiratória em neonatologia. Revista Esc Enfermagem USP, 47(1): 235-241. Retrieved from:: http://www.scielo.br/pdf/reusp/v47n1/a30v47n1.pdf on 04th April 2020.

Rios, G.A. and Mendes, E.G., 2014. Uso de blogs na educação: Breve panorama da produção científica brasileira na última década. Revista Eletrônica de Educação, 8(2): 160-174. Retrieved from: http://www.reveduc.ufscar.br/index.php/reveduc/article/view/746/331 on 04th April 2020.

Nascimento, M.H.M., 2012. Tecnologia para mediar o cuidar-educando no acolhimento de “famílias cangurus” em unidade neonatal: Estudo de Validação. MSc thesis, University of Para State/ University of Amazonas, Belem, Para. Retrieved from: https://paginas.uepa.br/ppgenf/files/pdfs/DISSERTAO_MARCIA_NASCIMENTO.pdf on 04th April 2020.

Rangel, E.M.L., Mendes, I.A.C., Cárnio, E.C., Alves, L.M.M., Crispim, J.A. and Mazzo, A., 2011. Avaliação, por graduandos de enfermagem, de ambiente virtual de aprendizagem para ensino de fisiologia endócrina. Acta Paul Enfermagem 24(3): 327-333. Retrieved from: http://www.scielo.br/pdf/ape/v24n3/04.pdf on 04th April 2020.

Cavalcante, R.B., Ferreira, M.N., Maia, L.L.Q.G.N., Araújo, A. and Silveira, R.C.P., 2012. Uso de Tecnologias da Informação e Comunicação na educação em saúde de adolescentes escolares. J. Health Inform., 4(4): 182-6. Retrieved from: http://www.jhi-sbis.saude.ws/ojs-jhi/index.php/jhi-sbis/article/view/197/142 on 04th April 2020.

Bellan, M.C., 2006. Capacitação do enfermeiro para o atendimento da parada cardiorespiratória. MSc thesis, Medical Sciences College, Campinas State University, Campinas, São Paulo. Retrieved from: http://www.bibliotecadigital.unicamp.br/document/?view=vtls000385945 on 04th April 2020.

Gonzalez, M.M. et al., 2013. I diretriz de ressuscitação cardiopulmonar e cuidados cardiovasculares de emergência da Sociedade Brasileira de Cardiologia: resumo executivo. Arquivos Brasileiros de Cardiologia, 100(2): 105-113. Retrieved from: http://dx.doi.org/10.5935/abc.20130022 on 04th April 2020.

PHP official website. Retrieved from https://www.php.net/ on 05th April 2020.

Silva, M.S., 2010. JavaScript: guia do programador. Novatec.

Niederauer, J., 2011. Desenvolvendo Websites com PHP. Novatec.