This article can be cited before page numbers have been issued, to do this please use: M. Bartkowski and S. Giordani, Nanoscale, 2020, DOI: 10.1039/D0NR01713B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Journal Name

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxxx

Received Date
Accepted Date
DOI: 00.0000/xxxxxxxxxx

Supramolecular chemistry of carbon nano-onions

Michał Bartkowski and Silvia Giordani

Carbon nano-onions (CNOs) are concentric multi-layered fullerenes. Their shape, size and layer count depends on the method of preparation. Their low cytotoxicity allows for high applicability in the biomedical field, in particular, nanomedicine. However, an adequate dispersion of particles in aqueous media is required for the most effective use in this application. Given the hydrophobic nature of pristine CNOs, as is the case with most carbon nanomaterials, they show poor water solubility. Non-covalent functionalisation can be utilised to alter their dispersibility properties, without affecting the intrinsic properties of the sp² nanomaterial. The use of CNOs in the field of nanomedicine also requires consideration of drug release at the target site. As covalent bonds are inadequate for this purpose, attention is brought towards non-covalent interactions as a viable option for targeted release. This minireview outlines the different methods and approaches for non-covalent modifications of CNOs reported in the literature.

1 Introduction

Nanomaterials are structures where at least 50% of the material has one of their dimensions in the 1 to 100 nm range; as defined under the 2011/696/EU directive 1. Carbon nanomaterials (CNMs) are one of the most researched types of nanomaterials, given their wide range of applications in biology, chemistry, physics and engineering. One of the more widely researched CNMs is graphene; a 2-dimensional monolayer of carbon atoms in a hexagonal honeycomb-like arrangement, where all carbon atoms are sp² hybridized 2. It has long been theorised to exist, but experimentally isolated and characterised by Novoselov et al. only in 2004 3. There are many other types of CNMs, including carbon nanotubes 4, carbon nano-horns 5, fullerenes 6, carbon dots 7, and nanodiamonds 8. Although this list is non-exhaustive, all of these materials have unique properties and applications. Carbon nano-onions (CNOs) are another type of CNM that have amassed considerable academic and industrial interest, given their versatility and a high potential for different applications.

CNOs are zero-dimensional carbonaceous nanoparticles characterised by their multi-layered closed shells enveloping one-another (Fig. 1) – a structure like that of an onion. The diameter of CNOs typically lies in the range of 1.4 and 50 nm, they have an interlayer distance of approximately 3.4 Å, and usually have a C₆₀ or C₈₀ fullerene at their core 10. However, the specific dimensions and structure of CNOs can vary severely, and largely depends on the method of preparation 11. Many issues and challenges exist in regards to reproducibly preparing CNOs of well-defined size and structure. Presently, there are a vast number of preparation methods for CNOs of various shapes and sizes (Fig. 1). DC arc-discharge deposition of graphitic particles on negative electrode results in non-spherical, faceted, concentric graphitic particles of varying size with a 3-10 nm central hollow-space 12. Curling and closure of graphitic networks by electron beam irradiation results in CNOs that are 47 nm (70 shells) to several micrometres in diameter, where the sphericity decreases with size 13. Underwater arc discharge between two graphite electrodes results in CNOs 4-36 nm in diameter; other CNMs are side-products of this method 14. Thermal annealing of DNDs at 1500°C under high vacuum in quasi-spherical and polyhedral CNOs 3-10 nm in diameter 15. Thermal annealing of DNDs at 1650°C under a He atmosphere results in CNOs 5-6 nm (6-8 shells) in diameter 16. Catalyst-free synthesis through thermolysis of NaN₃-C₆₀Cl₆ under Ar or air results in CNOs 50-100 nm in diameter with large 20-25 nm hallow-cores 17. Thermal reduction of glycerin with magnesium powder at 650°C over 12 h results in a high yield of CNOs 60-90 nm in diameter connected through their outermost shells 18. Fe/NaCl catalysed decomposition of acetylene at 420°C and heated to 1100°C results in CNOs 15-50 nm in diameter (mainly 15-35 nm) with metallic (Fe/C) cores 19. KrF laser vapourisation of carbon targets (40 wt% fullerene C₆₀ with 60 wt% of carbon black or carbon nanofibres or carbon nanofibres with LaNi₅ catalyst) under a low-pressure (0.1 to 200 Torr) He atmosphere results CNOs as small as 1.4-2 nm (2-3 shells) in diameter 20,21. Currently, thermal annealing of DNDs is arguably the best method for CNO preparation; it shows the highest potential for industrial mass-production, as this relatively inexpensive method results in a narrow-distribution of highly pure CNOs 22.
Like many other CNMs, pristine CNOs (p-CNOs) produced through these methods are hydrophobic. This causes them to aggregate in aqueous and organic solvents, even after sonication. 

Fig. 1 A - P HRTEM micrographs of CNOs as synthesised through various methods. This figure is reprinted from ref. 9 with permission from the Royal Society of Chemistry.

Non-covalent surface modification is also of particular interest to biomedical applications. In general, CNOs show low-cytotoxicity and great biocompatibility across many biological systems. In vitro assays of various functionalised CNOs (f-CNOs) have been carried out on various cell lines, showing good results – these included cytotoxicity assays of MCF-7 cells, HeLa cells, HeLa Kyoto cells, 4T1 cells, and KB cells. Moreover, f-CNOs have also shown good biocompatibility with fresh-water polyps (Hydra vulgaris), common fruit flies (Drosophila melanogaster), and zebrafish (Danio rerio). This biocompatibility and low-cytotoxicity gives rise to a high potential for CNOs to be engineered for the use in nanomedicine as drug carriers. The development of non-covalent surface modification of CNOs to create multifunctionalised hybrids would allow for many applications in the nanomedicine field. Some possible applications include the coupling with targeting peptides & fluorophores for bioimaging applications, coupling with targeting peptides & drug molecules for drug delivery applications, and coupling with targeting peptides & nano-robots for cell repair applications. However, if CNOs are to be used for targeted drug delivery, the mode of drug attachment to the CNOs needs consideration. It is not enough for the system to reach the target-site if the drug does not release. As such, non-covalent interactions are preferred, as they are weak and reversible.

A plethora of non-covalent interactions have been observed, measured and defined; ranging from weak interactions such as the Casimir force, to those more moderate in strength, such as interactions of ionic character. To quote Hans-Jörg Schneider:

With courageous simplification, one might assert that the chemistry of the last century was largely the chemistry of covalent bonding, whereas that of the present century is more likely to be the chemistry of noncovalent binding.

Non-covalent interactions that can be utilised in the creation of CNO-based supramolecular systems include electrostatic interactions, van der Waal forces, and π interactions (Fig. 2). More specifically, these can be divided into the following: the charge-charge interaction (Fig. 2A); also called an ionic interaction, it is a repulsion/attraction between two formal charges. Hydrogen bonding (Fig. 2C); a type of σ-hole interaction that allows covalently bonded halogens to bind nucleophiles and electrophiles alike. Halogen bonding (Fig. 2B); a type of σ-hole interaction that allows covalently bonded halogens to bind nucleophiles and electrophiles alike. Hydrogen bonding (Fig. 2C); a proton transfer reaction between a proton donor (Fig. 2C R−H) and a proton acceptor (Fig. 2C A) The charge-dipole interaction (Fig. 2D); an attraction/repulsion of a formal charge and the point dipole charge of a dipole moment. The dipole-dipole interaction (Fig. 2E); an attraction/repulsion of two point dipole charges. The dipole-induced dipole interaction (Fig. 2F); an interaction that occurs when a polar molecule induces a dipole moment in a polarisable molecule through electric field induced separation of HOMO-LUMO energies. An attractive interaction then occurs between the permanent dipole moment of the first molecule, and the dipole moment of the polarised molecule. The π–π interactions (Fig. 2G); often referred to as π-π stacking, these are interactions occurring between two π-electron rich systems. The charge-π interaction (Fig. 2H); an interaction between the formal charge of a molecule and π-orbitals. The
lone pair-π interaction (Fig. 2I); also called a $n \rightarrow \pi^*$ interaction, this is an interaction between an electron lone pair and a π* orbital. The hydrophobic interaction; an entropy driven tendency of non-polar solutes to aggregate in polar solvents.

2 Non-covalent surface modification of CNOs

The first supramolecular complexes of CNOs have been reported by Echegoyen et al. in 2008. Their approach involved the attachment of pyridyl ligands to the CNO surface. This was achieved through a multistep method; the CNOs were first oxidised by reaction with a 3:1 ratio of H$_2$SO$_4$/HNO$_3$ for 10 minutes. The resulting oxi-CNOs were then reacted with 4-aminopyridine at 170°C for 24 hours. This resulting pyridyl functionalised CNOs (py-CNOs) could then undergo a complexation reaction with transition metals. They demonstrated such a complexation with the use of zinc tetra-phenyl porphorin (ZnTPP). When reacted with the py-CNOs, the Zn underwent axial ligation, binding to the pyridyl groups. This resulted in the formation of a py-CNO/ZnTPP supramolecular system (Fig. 3), with possible applications in catalysis and hydrogen storage. The results suggest that similar nanohybrids can also be synthesised with the use of platinum and palladium porphyrins.

In 2012, Plonska-Brzezinska, Echegoyen et al. investigated a strategy for improving the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS); a highly-conjugated electrode material. Their approach involved the incorporation of CNOs into the polymers through non-covalent interactions. The group created the supramolecular composites by wrapping p-CNOs and oxi-CNOs with PEDOT:PSS at various mass ratios relative to the CNOs. This was achieved by dispersing PEDOT:PSS and CNOs in water and sonicating for 2 hours, followed by a filtration, washing and drying process. The CNO/PEDOT:PSS composites were then used to prepare films for electrode purposes. These were prepared by dispersing the composites in ethanol through sonication, followed by the drop-casting methods. Electrochemical studies of these materials suggested that the non-covalent incorporation of CNOs into PEDOT:PSS is a viable approach for creating materials suitable for electrode and supercapacitor applications.

The same year, Plonska-Brzezinska, Echegoyen et al. decorated oxi-CNOs and p-CNOs with p-phenylenediamine (p-PDA) and 4-aminobenzoic acid (4-ABAc) respectively. The group found that this modification considerably increased the solubility of the nanomaterials in protic solvents and increased dispersibility in aqueous solutions with no agglomeration being observed. The surface residues of the two nanomaterials were then polymerised in situ with aniline, resulting in CNO/poly-p-PDA/PANI and CNO/4-ABAc/PANI. These final polymer-wrapped systems showed good solubility in water, methanol and THF. Although this example does not involve a non-covalent surface modification, the polymer wrapping which envelops the CNOs contains hydrogen bond acceptors (HBA), which can be utilised to non-covalently bind molecules of interest. Further cases where CNOs have been covalently polymer-wrapped exist, though, the concept that molecules of interest can be non-covalently incorporated into these polymer networks remains largely the same.

Also in 2012, Overbury et al. studied the microscopic diffusivity dynamics of phenanthrenequinone (PQ) on the surface of CNOs using quasielastic neutron scattering (QENS) as a function of PQ surface coverage and temperature. They prepared two PQ-modified CNO supramolecular complexes, one of high PQ surface coverage (0.60 PQ/nm$^2$) and one of low PQ surface coverage (0.23 PQ/nm$^2$). They achieved this by dispersing
various concentrations of PQ in methanol and mixing with CNOs for 20 minutes. They then vacuum-filtered the samples and oven-dried the material, thereby obtaining supramolecular complexes where PQ was π-π stacked onto the CNO surface. Their QENS study unexpectedly revealed that PQ molecules on CNO surface exhibit similar dynamic behaviour to that of water on oxide surfaces\textsuperscript{53}.

In 2013, Plonska-Brzezinska, Echegoyen et al.\ explored non-covalent polymer-wrapping of CNOs with poly(ethylene glycol)/polysorbate 20 (PEG/P20) and poly(4-vinylpyridine-co-styrene) (PVPS). For this purpose, oxi-CNOs and p-CNOs were polymer-wrapped with PEG/P20 and PVPS respectively. PVPS-wrapped CNOs (CNO/PVPS) were also further functionalised with two thiol derivatives; 3-mercaptopropionic acid (MPA) and 2-mercaptop-4-methyl-5-thiazoleacetic acid (MMTA). Overall, the resulting CNO/PVPS, CNO/PVPS-MPA & CNO/PVPS-MMTA supramolecular systems showed enhanced water solubility and dispersibility. The specific use of the PVPS & PEG/P20 polymers also allowed for further functionalisation through thiol chemistry. These supramolecular systems revealed that non-covalent polymer-wrapping is a viable approach to increasing solubility and dispersibility of CNOs. The flavonoid biomolecule, quercetin, was then hydrogen bonded onto the polymers in CNO/PVPS, CNO/PVPS-MPA & CNO/PVPS-MMTA through sonication of the aqueous dispersions. The successful incorporation of quercetin indicated the promising potential of applying these supramolecular CNO-based systems in the fields of biosensing and targeted drug delivery\textsuperscript{54}.

In 2014, Echegoyen, Fragoso et al.\ created CNO-based supramolecular structures which involved host-guest non-covalent interactions. They prepared and oxidised small CNOs (6-12 shells), and covalently functionalised the surface with β-cyclodextrin (βCDs). The βCDs would then act as a host to ferrocene grafted dextran polymers (Fc-Dex). The resulting Fc-Dex wrapped CNOs-βCDs (Fig. 4) were highly soluble as a result of inclusion complexes between Fc and βCDs moieties\textsuperscript{55}.

In 2015, our group reported a non-covalent functionalisation of p-CNOs through π-π interactions. The aim of our research was cellular imaging and cell internalisation pathway elucidation. For this purpose, we prepared a soluble CNO-based supramolecular system with fluorescent properties – we reacted p-CNOs with a pyrene-BODIPY dyad, forming a non-covalent assembly, whereby the aromatic part of the dyad was π-π stacked onto the p-CNO surface (Fig. 5); a similar approach to that carried out by Erbas et al on CNTs\textsuperscript{56}. The resulting system showed good cellular uptake by HeLa cells through an endocytosis pathway, and low cytotoxicity\textsuperscript{29}, opening up the possibility of using non-covalently functionalised CNOs as efficient shuttles for targeted hydrophobic drug delivery.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{Schematic representation of the host-guest attachment of Fc-Dex to CNOs-βCDs, resulting in a water soluble supramolecular system. This figure is adapted from ref. 55 with permission from ACS.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Schematic diagram for the non-covalent π-π stacking interaction of the aromatic rings on the pyrene-BODIPY dyad with the p-CNO surface. This figure is adapted from ref. 29 with permission from the Royal Society of Chemistry.}
\end{figure}

In 2016, Tripathi et al.\ researched the use of CNOs as selective tunable photoluminescent sensors for glucose. In their approach, carbon nanoparticles were prepared through pyrolysis of vegetable ghee, and then oxidised through the standard method\textsuperscript{11,24}. The most fluorescent fraction was isolated through high-speed centrifugation, followed by gel filtration. When excited from 400 to 660 nm, the oxidised nanoparticle exhibited photoluminescence across the 550 to 800 nm range. When coupled with methylene blue, the compound enveloped the negatively-charged surface of the nanomaterial through non-covalent surficial charge transfer and hydrophilic interactions, resulting in the quenching of photoluminescence. When glucose was introduced into the system, glucose molecules abstracted methylene blue from the nanoparticle surface through hydrogen-bonding, turning the photoluminescence back on (Fig. 6). The selective detection limit of glucose for this system was measured at $1.3 \times 10^{-2} \text{ M}$\textsuperscript{57}.

Also in 2016, Plonska-Brzezinska, Echegoyen et al.\ explored the use of surfactants to disperse CNOs for biomedical applications. They investigated surfactants of cationic, anionic and non-ionic character to non-covalently modify the surface of CNOs. These included: sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), hexadecyltrimethylammonium bromide (CTAB), 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100), and polyethylene glycol sorbitan mono-laurate (Tween 20). Their study revealed that these surfactants adsorb onto the CNO surface, resulting in stable and well dispersed CNO/surfactant composites. Moreover, in vitro antimicrobial assays of these CNO/surfactant composites on a strain of Escherichia coli revealed that only the CNO/CTAB composite decreased cell viability, as an effect of composite dissociation in...
hydrogen-bonding interactions as a polymer-wrapping of the ssDNA around oxi-CNOs through flower assortments (Fig. 7). Sarkar interpreted the aggregation of ssDNA with oxi-CNOs (depicted as black-balls). The aggregation progressed over a 16 h period, resulting in the formation of various shapes of increasing complexity; rod → triangle → hexagon → 6-petal flower → flower assortments (Fig. 7). Sarkar interpreted the aggregation as a polymer-wrapping of the ssDNA around oxi-CNOs through hydrogen-bonding interactions.

In 2017, Sarkar et al. oxidised CNOs through the standard method \(^{11,24}\), and reacted the resulting oxi-CNOs with double-strand calf-thymus DNA (dsDNA) in water. They observed that oxi-CNOs facilitate the unzipping of dsDNA into single-strand DNA (ssDNA), followed by the macromolecular aggregation of ssDNA with oxi-CNOs. The aggregation progressed over a 16 h period, resulting in the formation of various shapes of increasing complexity; rod → triangle → hexagon → 6-petal flower → flower assortments (Fig. 7). Sarkar interpreted the aggregation as a polymer-wrapping of the ssDNA around oxi-CNOs through hydrogen-bonding interactions.\(^{59}\)

In 2020, our group reported the use of hydrophobic interactions to non-covalently functionalise p-CNOs with a conjugate consisting of hyaluronic acid (HA) covalently linked to a 1,2-dimyristoyl-sn-glycerol-3-phosphoethanolamine (DMPE) phospholipid. When p-CNOs were reacted with the conjugate HA-DMPE, a hybrid material was formed. In this material, the hydrophobic chains of the phospholipid non-covalently interacted with the p-CNO surface, while the hydrophilic chains of HA increased water solubility (Fig. 10). This approach worked well, as the hybrid nanomaterial remained well-dispersed in water after 30 days. HA-DMPE with a fluoresceinamine tag (Fl-HA-DMPE) was also reacted with p-CNOs. This reaction yielded fluorescent properties, which allowed for in vitro cellular uptake and in vivo biodistribution studies on zebrafish. Our results indicated that the use of HA provided the supramolecular system with hyaluronate (CD44\(^+\)) receptor targetability. Moreover, the nanoconjugates showed no toxic effects in zebrafish during development from embryo to larvae.\(^{61}\)

In 2018, Revuri et al. created a white-light emitting CNO-based supramolecular system for the detection of glutathione (GSH); a cancer biomarker. They used sodium deoxycholate (DOCA) to prepare WCNOs (white-light emitting CNOs) through the pyrolysis method (heated at 400°C for 90 min). These WCNOs had a broad distribution of hydroxyl and carboxyl groups on their surface, which were responsible for the emission properties of the nanomaterial. They then coated the WCNOs in a MnO\(_2\) nanosheet through the addition of KMnO\(_4\). The resulting MnO\(_2\) nanosheet-coated WCNO supramolecular system showed good water-solubility and no fluorescence; an effect of the FRET-mediated fluorescence quenching of MnO\(_2\). The material was then evaluated as a possible biosensor for the detection of GSH in vitro (on 4T1 metastatic breast cancer cells) and in vivo (in Balb/C mice). When the system was exposed to cancer-cells, the MnO\(_2\) nanosheet coating of the WCNOs has been shown to be selectively abstracted by GSH. This etching of the metallic coating thus restored the WCNOs fluorescence properties. The results of this study indicated that WCNOs non-covalently coated in metallic nanosheets have the potential for use in biosensing and nanomedicine.\(^{32}\)

Also in 2018, Fragoso et al. explored the use of crown ethers and aminated, biocompatible polymers to create a dispersible supramolecular, CNO-based system. Onto the surface of p-CNOs, the group covalently functionalised 4-aminobenzo-18-crown-6 with a reaction with diazonium salts. The nanoconstructs were then dispersed in a 2% w/v aminated carboxymethyl cellulose solution. The amine groups in the resulting supramolecular system coordinated to the crown ethers through a non-covalent interaction between the positively charged ammonium groups and the crown ether oxygen atoms (Fig. 9), resulting in a stable aqueous dispersion. It was also discovered that the system is sensitive to pH increase and potassium competition for crown ether coordination.\(^{60}\)

In 2020, our group reported the use of hydrophobic interactions to non-covalently functionalise p-CNOs with a conjugate consisting of hyaluronic acid (HA) covalently linked to a 1,2-dimyristoyl-sn-glycerol-3-phosphoethanolamine (DMPE) phospholipid. When p-CNOs were reacted with the conjugate HA-DMPE, a hybrid material was formed. In this material, the hydrophobic chains of the phospholipid non-covalently interacted with the p-CNO surface, while the hydrophilic chains of HA increased water solubility (Fig. 10). This approach worked well, as the hybrid nanomaterial remained well-dispersed in water after 30 days. HA-DMPE with a fluoresceinamine tag (Fl-HA-DMPE) was also reacted with p-CNOs. This reaction yielded similar results, as well as fluorescent properties, which allowed for in vitro cellular uptake and in vivo biodistribution studies on zebrafish. Our results indicated that the use of HA provided the supramolecular system with hyaluronate (CD44\(^+\)) receptor targetability. Moreover, the nanoconjugates showed no toxic effects in zebrafish during development from embryo to larvae.
Fig. 9 Supramolecular dispersion of CNOs via the capturing of ammonium cations on an aminated carboxymethyl cellulose polymer by the oxygen atoms of crown ethers covalently functionalised onto the CNO surface. This figure is adapted in part from ref. 60 with permission from Elsevier.

Fig. 10 Schematic for the non-covalent hydrophobic interaction between the HA-DMPE chains and the p-CNO surface (left), and the receptor targetability of the supramolecular nanoconstruct demonstrated on cells overexpressing the HA receptor (CD44+; green fluorescence, vs. CD44−; negligible green fluorescence). Scale bars are equal to 10 µm. This figure is adapted from ref. 61 with permission from Elsevier.

3 Conclusions

Discovered by Ugarte in 1992, carbon nano-onions (CNOs) are concentric multi-layer fullerenes with a regular sp² hybridised surface. Their mechanical, chemical and biological properties contribute to many applicabilities, particularly in the nanomedical field. However, CNOs share an unfavourable property with many other carbon nanomaterials (CNMs); they have a very hydrophobic nature. This lends to the difficulty in dispersibility and solubilisation of the material, and so the surface needs to be altered prior to the application of CNOs to biological systems. Conventionally, this has been achieved through covalent chemistry, which comes with a disadvantage – covalent modification of CNOs disrupts the regular sp² structure, altering the nanomaterials intrinsic properties. As such, attention is slowly shifting to non-covalent surface modification approaches as an alternative. As of writing, examples of these approaches are sparse in literature. These include complexation with metal ligands, various polymer-wrapping approaches, charge-charge interactions with oxi-CNOs, and π-π stacking interactions with pristine CNOs. It can be speculated that non-covalent functionalisation reported for other sp² CNMs can be drawn at to similarly functionalise CNOs, given their similar chemistry.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Financial assistance in the form of a Government of Ireland Postgraduate Scholarship (GOIPG) from the Irish Research Council (IRC) is gratefully acknowledged.

Notes and references

1 EU-Commission et al., Commission E.(Ed.) Brussels BE, 2011, 2.
2 K. S. Novoselov, A. K. Geim, S. Morozov et al., Nature, 2005, 438, 197.
3 K. S. Novoselov, A. K. Geim, S. V. Morozov et al., Science, 2004, 306, 666–669.
4 Z. Xu, Z. Liang and F. Ding, WIREs Comput. Mol. Sci., 2017, 7, e1283.
5 B. F-Cala, Á. I. L-Lorente and S. Cárdenas, Nanomaterials, 2018, 8, 370.
6 B. C. Yadav and R. Kumar, Int. J. Nanotechnol. Appl., 2008, 2, 15–24.
7 M. Tuerhong, X. Yang and Y. Xue-Bo, Chinese Journal of Analytical Chemistry, 2017, 45, 139–150.
8 V. N. Mochalin, O. Shenderova, D. Ho et al., Nat. Nanotechnol., 2012, 7, 11.
9 M. Zeiger, N. Jäckel, V. N. Mochalin et al., J. Mater. Chem. A, 2016, 4, 3172–3196.
10 J. P. Bartolome and A. Fragoso, Fuller. Nanotub. Car. N., 2017, 25, 327–334.
11 A. Palkar, F. Melin, C. M. Cardona et al., Chem-Asian. J., 2007, 2, 625–633.
12 D. Ugarte, Carbon, 1995, 33, 989–993.
13 D. Ugarte, Nature, 1992, 359, 707.
14 N. Sano, H. Wang, I. Alexandrou et al., J. Appl. Phys., 2002, 92, 2783–2788.
15 V. L. Kuznetsov, A. L. Chuvilin, Y. V. Butenko et al., Chem. Phys. Lett., 1994, 222, 343–348.
16 O. Mykhailiv, A. Lapinski, A. M-ontoria et al., ChemPhysChem, 2015, 16, 2182–2191.
17 M. Bystrzejewski, M. H. Rummeli, T. Gemming et al., New Carbon Mater., 2010, 25, 1–8.
18 Z. Du, Jand Liu, Z. Li et al., Mater. Chem. Phys., 2005, 93, 178–180.
19 Y. Yang, X. Liu, X. Guo et al., J. Nanopart. Res., 2011, 13, 1979–1986.
20 V. Z. Mordkovich and Y. Takeuchi, Chem. Phys. Lett., 2002, 355, 133–138.
21 V. Z. Mordkovich, Chem. Mater., 2000, 12, 2813–2818.
22 S. Giordani, Methods for the preparation of carbon nano-onions, 2018, Patent no. WO/2018/116240.
23 J. Bartelmess and S. Giordani, Beilstein J. Nanotech., 2014, 5, 1980.
24 A. S. Rettenbacher, B. Elliott, J. S. Hudson, A. Amirkhanian and L. Echegoyen, Chemistry–A European Journal, 2006, 12, 376–387.
25 T. Fujigaya and N. Nakashima, Sci. Technol. Adv. Mat., 2015, 16, 024802.
26 S. Lettieri, A. Camisasca, S. Giordani et al., RSC Adv., 2017, 7, 45676–45681.
27 M. Frasconi, R. Marotta, S. Giordani et al., Chem-Eur. J., 2015, 21, 19071–19080.
28 M. Frasconi, V. Maffeis, S. Giordani et al., Methods Appl. Fluores., 2015, 3, 044005.
29 J. Bartelmess, M. Frasconi, P. B. Balakrishnan et al., RSC Adv., 2015, 5, 50253–50258.
30 S. Lettieri, M. d’Amora, S. Giordani et al., Beilstein J. Nanotechnol., 2017, 8, 1878.
31 S. Giordani, J. Bartelmess, M. Frasconi et al., J. Mater. Chem. B, 2014, 2, 7459–7463.
32 V. Revuri, K. Cherukula, M. Nafiuajjaman et al., ACS Appl. Nano Mater., 2018, 1, 662–674.
33 V. Marchesano, A. Ambrosone, S. Giordani et al., Nanomaterials, 2015, 5, 1331–1350.
34 M. Gosh, S. K. Sonkar, M. Saxena et al., Small, 2011, 7, 3170–3177.
35 M. d’Amora, J. Bartelmess, S. Giordani et al., Sci. Rep., 2016, 6, 33923.
36 M. d’Amora, A. Camisasca, S. Giordani et al., Nanomaterials, 2017, 7, 414.
37 G. Bisker, N. M. Iverson, J. Ahn and M. S. Strano, Adv. Healthc. Mater., 2015, 4, 87–97.
38 R. Freitas Jr, J. Evol. Technol., 2007, 16, 1–97.
39 S. K. Lamoreaux, Annu. Rev. Nucl. Part. Sci., 2012, 62, 37–56.
40 H. Schneider, Angew. Chem. Int. Edit., 2009, 48, 3924–3977.
41 L. Pauling, The Nature of the Chemical Bond..., Cornell university press Ithaca, NY, 1960, vol. 260.
42 P. Politzer, J. S. Murray and T. Clark, Phys. Chem. Chem. Phys., 2013, 15, 11178–11189.
43 T. Steiner, Angew. Chem. Int. Edit., 2002, 41, 48–76.
44 P. Atkins, J. De Paula and J. Keeler, Atkins’ physical chemistry, Oxford university press, 2018.
45 C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525–5534.
46 S. K. Singh and A. Das, Phys. Chem. Chem. Phys., 2015, 17, 9596–9612.
47 A. Palkar, A. Kumbhar, A. J. Athans et al., Chem. Mater., 2008, 20, 1685–1687.
48 M. E. Plonska-Brzezinska, M. Lewandowski, M. Blaszyk, A. Molina-Ontoria, T. Lucinski and L. Echegoyen, ChemPhysChem, 2012, 13, 4134–4141.
49 M. E. P-Brzezinska, J. Mazurczyk, B. Palys et al., Chem-Eur. J., 2012, 18, 2600–2608.
50 L. Zhou, C. Gao, D. Zhu et al., Chem-Eur. J., 2009, 15, 1389–1396.
51 A. S. Rettenbacher, M. W. Perpall, L. Echegoyen et al., Chem. Mater., 2007, 19, 1411–1417.
52 O. Shenderova, T. Tyler, G. Cunningham et al., Diam. Relat. Mater., 2007, 16, 1213–1217.
53 S. M. Chathoth, D. M. Anjos, E. Mamontov, G. M. Brown and S. H. Overbury, The Journal of Physical Chemistry B, 2012, 116, 7291–7295.
54 M. E. P-Brzezinska, D. M. Brus, J. Breczko et al., Chem-Eur. J., 2013, 19, 5019–5024.
55 E. Wajs, A. Molina-Ontoria, T. T. Nielsen, L. Echegoyen and A. Fragoso, Langmuir, 2015, 31, 535–541.
56 S. Erbas, A. Gorgulu, M. Kocakusakogullari and E. U. Akkaya, Chem. Commun., 2009, 4956–4958.
57 K. M. Tripathi, A. Bhati, A. Singh et al., RSC Adv., 2016, 6, 37319–37329.
58 D. M. Bobrowska, J. Czyrko, K. Brzezinski, L. Echegoyen and M. E. Plonska-Brzezinska, Fullerenes, Nanotubes and Carbon Nanostructures, 2017, 25, 185–192.
59 D. G. Babar, P. Bakhira and S. Sarkar, Appl. Nanosci., 2017, 7, 291–297.
60 J. P. Bartolome and A. Fragoso, Journal of Molecular Liquids, 2018, 269, 905–911.
61 M. d’Amora, A. Camisasca, A. Boarino, S. Arpicco and S. Giordani, Colloids and Surfaces B: Biointerfaces, 2020, 110779.
An exhaustive and succinct minireview of the various reported approaches to the non-covalent surface modification of carbon nano-onions (CNOs).
covalent

non-covalent

80x39mm (300 x 300 DPI)