The Effect of Single High-dose Buprenorphine on Opioid Craving and Relapse

CURRENT STATUS: POSTED

Jamshid Ahmadi jamshid_ahmadi@yahoo.com
Substance Abuse Research Center, Shiraz University of Medical Sciences
Corresponding Author
ORCiD: 0000-0002-7060-469X

Mina SefidfardJahromi
Shiraz University of Medical Sciences

Dara Gahremani
University of California Los Angeles

Edythe D. London
University of California Los Angeles

DOI: 10.21203/rs.2.214/v2

SUBJECT AREAS
General Medicine

KEYWORDS
Buprenorphine; opioid dependence; opioid withdrawal; craving
Abstract

Background: Buprenorphine, a treatment for Opioid Use Disorder, has liability for diversion and abuse. Use of single high doses of buprenorphine that are supervised avoid issues with diversion that occur with unsupervised or take home doses. Such doses have the potential to act as an initial opioid detox, facilitate transition to opioid antagonists or drug free treatments, as well as to maintenance treatment. Objective: To assess effects of a single, physician-administered high dose of buprenorphine on craving and on early relapse. Method: Sixty men who used heroin, opium or prescription opioids and met DSM-5 criteria for Opioid Use Disorder received a single, sublingual dose of buprenorphine (32 mg, 64 mg or 96 mg; n’s = 20, 21, and 19) as inpatients on a psychiatric unit. Buprenorphine was administered when patients were in moderate opioid withdrawal (4-5 symptoms). Self-reports of craving were taken at baseline and daily for the next 13 days, and relapse was assessed 1 and 2 months. Findings: Craving was reduced from baseline in each of the three groups (p < 0.0005), but the doseXtime interaction did not reach statistical significance (p = 0.069). Follow-up assessments at 1- and 2-months indicated significantly lower relapse rates for the higher-dose groups than for the low-dose group (p < 0.05). Conclusions: A single high dose of buprenorphine provides rapid relief of opioid craving and positively impacts relapse rate in the initial 1- and 2-months of outpatient treatment. Further investigation of single high-dose buprenorphine for early treatment of patients with Opioid Use Disorder is warranted as an alternative when buprenorphine/naloxone or long-acting buprenorphine dosage forms are not available.

Background

Buprenorphine is safer (low chance of overdose) with respect to other opiates (1-3). First, withdrawal from buprenorphine has less withdrawal symptoms, due to its longer half-life
and slower elimination. Second, incidental overdosing is self-limiting, due to an early ceiling-effect, such that tolerant subjects do not have that risk (1). Buprenorphine a semisynthetic partial agonist at mu-opioid receptors and antagonist at delta- and kappa-opioid receptors, has been assessed largely for the management of Opioid Use Disorder (2-13). It is regarded safer than methadone (5, 6, and 7), with 8 mg of buprenorphine being as effective as 60 mg of methadone (8). Buprenorphine is very well absorbed after sublingual administration (4, 9, and 10). In animals, buprenorphine demonstrates a flattened or inverted U-shaped curve, with dose-correlated rises in antinociceptive influence at lower doses and either no greater anti nociception or a reduction in effect at higher doses (14, 15). Buprenorphine has not only typical mu-opioid agonist effects, such as analgesia, sedation, and euphoria, but also its partial agonist action at mu-opioid receptors has favored the administration of buprenorphine over methadone and especially, the minimal respiratory depressant effects of buprenorphine produce greater safety (14-26).

The primary purpose of this research was to determine the influences of single, high doses of buprenorphine (32 mg, 64 mg and 96 mg buprenorphine) in the treatment of craving during and after opioid withdrawal, because based on the previous studies, decrease of craving is a function of buprenorphine (3, 18, and 20). Craving persists after detoxification is ended and can increase relapse rate (3, 18, and 20). The secondary purpose of this research study was to determine the effects of single dose buprenorphine on the relapse rates after 1- and 2- month follow ups. Doses of buprenorphine higher than those that are commonly administered clinically (i.e., 16-24 mg) were used to raise the effective half-life of the medication (plasma elimination half-life of buprenorphine is 36-72 h after sublingual administration). A single, high dose was tried because repeated buprenorphine administration raises the possibility of dependence, diversion and abuse (3, 18, and 22). It
should be mentioned In Iran, buprenorphine is not available in a formulation that contains naloxone to decrease this possibility.

Furthermore, buprenorphine was used rather than methadone because of the risk of overdose with a single, high dose of methadone.

In short, use of single high buprenorphine doses would be useful clinically. Such doses have the potential to act as an initial opioid detox, facilitate transition to opioid antagonists or drug free treatments, as well as to maintenance treatment.

Methods And Materials

Subjects: This study was approved and monitored by the Ethic Committee of Shiraz University of Medical Sciences which adhered to the Declaration of Helsinki Ethical Principles for Medical Research involving human subjects. The subjects were 60 inpatients at this referral psychiatric ward, where only men were hospitalized recruited from outpatient addiction clinic. Although the subjects did not receive any compensation, however, they were hoping to detox from use of the single dose.

Prior to referring to this hospital, they had been abusing heroin, opium, illegal or prescribed opioids. Those patients who had initial eligibility requirements on screening, were administered the Structured Clinical Interview for DSM-5, Clinical Version (SCID-I), by a board-certified psychiatrist, to be sure that they had the criteria for Opioid Use Disorder (Diagnostic and Statistical Manual of Mental Disorders, Five Edition).

Inclusion and Exclusion criteria: Patients with opioid use disorders who used opioids daily for at least one year were recruited. Participants were excluded if they had substance use disorders other than opioids (excluding tobacco), major medical diseases (pulmonary, cardiovascular, renal, gastrointestinal or hepatic), organic mental disorders, or any type of psychosis.

Sixty patients were randomly assigned to three groups (32 mg, 64 mg or 96 mg; n’s = 20,
21, and 19). All 60 patients received only a single high dose of buprenorphine and were observed for 13 days. Sublingual buprenorphine (one dose only) was administered while the patients were in moderate withdrawal from opioids (having four or five symptoms of withdrawal from opioids, based on the DSM-5 criteria), (3). The presence of fewer than four symptoms of opioid withdrawal symptoms was considered as constituting mild withdrawal, and the presence of 6 symptoms or more was regarded as severe withdrawal (3). Buprenorphine was administered at a dose of 32 mg, which is the maximum dosage presently administered clinically, as well as 64 and 96 mg. No other treatments were used while in the inpatient setting for withdrawal and craving.

We described the goals of the study, and guaranteed confidentiality. All the patients gave written informed consent prior to entering into the study. The questioning, interview and examination were conducted on at the treatment hospital.

Randomization: In a double blind manner the participants were randomly allocated in one of the three treatment groups. We used a standard randomization procedure produced by computer to have random sample set.

Procedure: The pills (both the active and placebo pills) had the same color and shape. It was given sequentially in 8 mg increments. Placebo pills were given, so that patients on each dose did not know whether they were receiving 4, 8 or 12 dose units of 8 mg.

A visual analogue scale (The Opioid Craving Scale) was used to measure the opioid craving, ranging from 0 to 10 (0 means no craving at all and 10 means severe craving), (19). The Opioid Craving Scale, a modification of the Cocaine Craving Scale, is a short, 3-item scale used to measure opioid craving. The measure consists of 3 items rated on a visual analogue scale from 0-10. 1- How much do you currently crave opiates? (rated from not at all to extremely). 2- In the past day, please rate how strong your desire to use opiates has been when something in the environment has reminded you of opiates (rated
from no desire to extremely strong). 3- Please imagine yourself in the environment in which you previously used opiates. If you were in this environment today and if it were the time of day that you typically used opiates, what is the likelihood that you would use opiates today? (rated from not at all to I'm sure I would use opiates), (19). The primary endpoint was the mean score on the Opioid Scale.

A placebo group was not included because of the high possibility of severe withdrawal without active pharmacological treatment. Outcome was monitored and measured by daily scoring of craving.

Although our ward was a controlled environment, however, for more observation, urine (TLC) was carried out before administration of the single dose, twice a week and at the end of the trial. To ensure safety, adverse effects, vital signs, gastrointestinal, respiratory and cardiovascular effects were monitored every hour for the first day, and then every 6-hour. For this research study withdrawal and detoxification were done in hospital because we administered “high doses” instead of standard dose. We advocate administering a single large dose on an inpatient basis and then have the patients released drug-free without medication assistance and with appointment for psychosocial follow up. In the follow-ups, if a patient requires medication we would begin appropriate treatment such as buprenorphine maintenance treatment.

Determination of relapse status as a secondary outcome at the end of 1- and 2-month outpatient follow-up done through patient report, interview and collateral information (Urine Drug Test - TLC).

Statistical analysis:

Data analyses had both inferential and descriptive statistical methods. Data analysis was carried out by using SPSS version-21. We performed a repeated-measures two-way ANOVA with day and group as the two factors (each day compared to day 1) and Greenhouse-
Geisser correction for violation of sphericity. Post-hoc t-tests of differences in means were achieved, and Chi-square was used to test for differences in frequencies among the groups. All tests were two-sided with significance set at $P = < 0.05$.

Results

Data were obtained from 60 men whose mean age was 32.98 ± 7.42 years. All the patients whom were screened, entered the trial and all of them who entered, completed the study (Appendixes 1 and 2). During the period of the research, no illicit opioid consumption was found (regarding interview and urine drug screening tests). Three groups did not differ on education, job and marital status; $p > 0.05$). Based on table 1 they did not differ on age and duration of opioid abuse.

Figure 1 illustrates craving scores of the three groups during the 14-day treatment course. A significant main effect of day ($F(2, 2.08) = 147.90, p < 0.0005$) and group ($F(2, 57) = 4.09, p = 0.022$) and a non-significant group-by-day interaction ($F(2, 4.17) = 2.21, p = 0.069$) were detected.

Figure 2 demonstrates abstinence from opioids. Determination of relapse status at the end of 1- and 2-month outpatient follow-up done through patient report, interview and collateral information (Urine Drug Test - TLC) indicated a significant difference across the groups ($p = < 0.05$).

Chi-square tests for 1-month out-patient follow up indicated that the 32-mg group differed significantly from both the 64 mg and 96 mg groups (DF=2, Chi square=9.414, $p=0.009$), with less relapse rate seen for the higher dose groups. No significant differences were seen between the 64-mg and 96-mg groups (DF= 1, Chi square = 0.005, p- value= 0.942), suggesting that the maximal effect on relapse rate was achieved with the 64-mg dose.

Chi-square tests for 2-month out-patient follow up showed that the 32-mg group differed significantly from 96 mg group (DF= 1, Chi square= 5.757, p- value = 0.016), with less
relapse rate observed for the higher dose group. No significant differences were seen between other groups (p-value > 0.05), suggesting that the maximal effect on relapse rate was achieved with the 96-mg dose.

Adverse effects:
Some nausea did occur, which did not lead to vomiting. Five patients reported significant vomiting or hypotension; and they were treated administering antiemetic medications or hydration. No severe cardiovascular, respiratory, or gastrointestinal adverse effects were observed.

Discussion
For the craving decrease, the data indicated significant craving reduction for all 3 groups. The outcomes demonstrate that a single large dose of buprenorphine can provide an effective and rapid means of treatment of opioid craving over 13 days during opioid withdrawal. Craving is associated to symptoms of withdrawal and is a core and essential feature of substance use disorders, as evidenced by its recent addition to the diagnostic criteria for these disorders in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5; American Psychiatric Association), (3). Notably, doses higher than 16-24 mg are thought to raise the effective half-life of buprenorphine. Use of buprenorphine as a single large dose decreases concerns about compliance as well as the possibility of diversion of the drug for abuse. Further, cost considerations are favorable, particularly when considering administration to outpatients without hospital admission.

It should be mention that the idea of having an addict withdraw in the hospital under supervision and then returning him to the supportive family often occur in this center. The advantage of a single high-dose treatment that we have employed is particularly suited to either referral to antagonist treatment, which could likely be started at an earlier point than it might be with traditional detoxification protocols lasting many days or even
weeks. This would be a distinct advantage. However, it could also result in a more appropriate titration of agonist treatment, potentially with lower maintenance doses being required, or even use of depot forms of buprenorphine. In patients who are inappropriate for or disagree with either agonist or antagonist treatment, it would allow more rapid referral to either a residential or intensive outpatient treatment program.

Strengths of this research included the randomized clinical trial design and a reasonable number of patients, carefully diagnosed using DSM-5 criteria and urine drug screening test.

However, the research had some limitations. They included lack of a placebo group, and restriction of recruitment to men only. It would be important to know if the findings are generalizable to both sexes and the course of the effect of single-dose buprenorphine on opioid craving. The use of a single high dose of buprenorphine may be far more likely to result in respiratory or cardiovascular complications in older patients with underlying occult disorders, particularly sleep apnea.

Conclusions

The single high dose buprenorphine treatment provided relatively safe and rapid treatment of opioid craving and positively impacted relapse in the initial 1- and 2-month outpatient treatment duration for opioid dependence. Our results need further investigation of the administration of a single high dose of buprenorphine as an efficient and safe approach to early treatment of these patients. In addition, the findings require further studies to support decrease of opioid craving and relapse over more extended time frames.

Abbreviations

RCT: Randomized Clinical Trial; DSM-5: Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition; VAS: Visual Analogue Scale

Declarations

Conflict of interests: None to be declared.

Authors’ disclosure document

•Authors' contributions: JA proposed the idea, wrote the proposal and drafted the manuscript, MS collected the data and assisted writing the manuscript, DG and EL contributed to data analysis and interpretation and finalizing the manuscript.

Acknowledgement: This proposal was approved by Ethic Committee of Shiraz University of Medical Sciences and was a section of grant # IR.SUMS.REC.1395.102, 2016 by Vice Chancellery for Research, Shiraz University of Medical Sciences, Shiraz, Iran. Funding for the efforts of Drs. London and Ghahremani was provided by the Thomas P. and Katherine K. Chair of Addiction Studies and the Margaret Greene Family Trust.

•Ethics approval and consent to participate: Yes

• Consent for publication: Yes

• Availability of data and material: Yes

• Competing interests: None to be declared

References

1- Walsh SL, Preston KL, Maxine L. Stitzer ML, and Cone EJ, Bigelow GE, and Clinical pharmacology of buprenorphine: Ceiling effects at high doses. Clinical Pharmacology & Therapeutics. 1994; 55:569-80. DOI: 10.

2-Jonnes, J. The rise of the modern addict, American Journal of public Health, 1995; 85, 1157-1162.

3-Sadock, B., Sadock, V., Ruiz. P. (Editors) Kaplan & Shaddock's Synopsis of Psychiatry: Lippincott Williams and Wilkins, Philadelphia (USA), 2015.
4- Jasinski, D. R., Pevnick, J. S., & Griffith, J. D... Human pharmacology and abuse potential of the analgesic buprenorphine: a potential agent for treating narcotic addiction. Archives of General Psychiatry, 1978; 35, 501-516.

5- Ling, W., Charuvastra, C., Collins, J. F., Batki, S., Brown, L. S. Jr., Kintaudi, P., Wesson, D. R., McNicholas, L., Tusel, D. J., Malkerneker, U., Renner, J. A. Jr., Santos, E., Casadonte, P., Fye, C., Stine, S., Wang, R. I., & Segal, D.. Buprenorphine maintenance treatment of opiate dependence: a multicenter randomized clinical trial. Addiction, 1998; 93, 475-486.

6- Ling, W., Rawson, R. A., & Compton, M. A. Substitution pharmacotherapies for opioid addiction: from methadone to LAAM and buprenorphine. Journal of Psychoactive Drugs, 1994; 26, 119-128.

7- Strain, E. C., Stitzer, M. L., Liebson, I. A., & Bigelow, G. E. Comparison of buprenorphine and methadone in the treatment of opioid dependence. American Journal of Psychiatry, 1994); 151, 1025-1030.

8- Johnson, R. E., Jaffe, J. H., & Fudala, P. J. A controlled trial of buprenorphine treatment for opioid dependence. Journal of the American Medical Association, 1992; 267, 2750-2755.

9- Lewis, J. W. Buprenorphine. Drug and Alcohol Dependence, 1985; 14, 363-372.

10- Jasinski, D. R., Fudala, P. J., & Johnson, R. E. Sublingual versus subcutaneous buprenorphine in opiate abusers. Clinical Pharmacology and Therapeutics, 1989; 45, 513-519.

11- Martin WR, Evades CG, Thompson JA, Suppler RE, Gilbert PE. The effects of morphine- and nalorphinelike drugs in the non-dependent and morphine dependent chronic spinal dog. J Pharmacol Exp Ther 1976; 197:517-32.

12- Cowan A, Lewis JW, MacFarlane IR. Agonist and antagonist properties of buprenorphine: a new antinociceptive agent. Br J Pharmacol 1977; 60:537-45.
13- Negus SS, Dykstra LA. K-Antagonist properties of buprenorphine in the shock titration procedure. Eur J Pharmacol 1988; 156:77-86.

14- Leander JD. Buprenorphine is a potent K-opioid receptor antagonist in pigeons and mice. Eur J Pharmacol 1988; 151:457-61.

15- Ariens EJ. Intrinsic activity: partial agonists and partial antagonists. J Cardiovasc Pharmacol 1983; 5:S8-15.

16- Stitzer M., Walsh S., Preston K., Cone E., Bigelow G. Clinical pharmacology of buprenorphine: ceiling effects at high doses Clinical Pharmacology and Therapeutics. 1994; 55 569-580.

17- Ahmadi J, Razeghian Jahromi L. Comparing the effect of buprenorphine and methadone in the reduction of methamphetamine craving: a randomized clinical trial. Trials, 2017; 18(1):259. doi: 10.1186/s13063-017-2007-3. 1038/clpt.1994.71

18- Ahmadi J, Sefidfard Jahromi M, Ghahremani D, London ED. Single high-dose buprenorphine for opioid craving during withdrawal. Trials. 2018 Dec 10;19(1):675. doi: 10.1186/s13063-018-3055-z.

19-McHugh RK, Fitzmaurice GM, Carroll KM, Griffin ML, Hill KP, Wasan AD, Weiss RD. Assessing craving and its relationship to subsequent prescription opioid use among treatment-seeking prescription opioid dependent patients. Drug Alcohol Depend. 2014 December 1; 0: 121-126. doi:10.1016/j.drugalcdep.2014.10.002.

20- Ahmadi J, Moghimi Sarani E, Sefidfard Jahromi, M. Rapid effects of a single-dose buprenorphine on reduction of opioid craving and suicidal ideation: A randomized, double
blind, placebo-controlled study. Tzu Chi Med J [Epub ahead of print, cited 2019 May 10]

21- Gerra, G., Leonardi, C., D'Amore, A., Strepparola, G., Fagetti, R., Assi, C., & Lucchini, A. Buprenorphine treatment outcome in dually diagnosed heroin dependent patients: A retrospective study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2006; 30(2), 265-272.

22-Maremmani, A. G. I., Rovai, L., Pani, P. P., Pacini, M., Lamanna, F., Rugani, F., & Maremmani, I. Do methadone and buprenorphine have the same impact on psychopathological symptoms of heroin addicts? Annals of general psychiatry, 2011; 10(1), 1.

23- Manglik A., Kruse A.C., Kobilka T.S., Thian F.S., Mathiesen J.M., Sunahara R.K., Pardo L., Weis W.I., Kobilka B.K., Granier S., Crystal structure of the micro-opioid receptor bound to a morphinan antagonist, Nature, 2012; 485, 321-326.

24- Huang W., Manglik A., Venkatakrishtnan A.J., Laeremans T., Feinberg E.N., Sanborn A.L., Kato H.E., Livingston K.E., Thorsen T.S., Kling R.C., Granier S., Gmeiner P., Husbands S.M., Traynor J.R., Weis W.I., Steyaert J., Dror R.O., Kobilka B.K., Structural insights into micro-opioid receptor activation, Nature, 2015; 524, 315-321.

25- Ahmadi J. Sefidfard, M. Anxiety treatment of opioid dependent patients with buprenorphine: A randomized, double-blind, clinical trial. Indian J Psychol Med 2017; 39, 445- 9.

26- Ahmadi J, Sefidfard Jahromi M. Ultrarapid Influence of Buprenorphine on Major Depression in Opioid-Dependent Patients: A Double Blind, Randomized Clinical Trial. Subst Use Misuse. 2017; Nov 17:1-4. doi: 10.1080/10826084.2017.1400063. [Epub ahead of print]
Table 1

Table 1. Characteristics of Research Participants

p value	96 mg	64 mg	32 mg	Buprenorphine dose
	(n = 19)	(n = 21)	(n = 20)	
0.284	31.4 ± 4.70	32.5 ± 9.14	35.0 ± 7.38	Age (years)b
0.908	9.94 ± 5.91	10.4 ± 7.37	10.8 ± 5.70	Opioid misuse b
 duration (years) |

aThe three groups were compared by ANOVA.

bNumbers shown are means SD.

Figures

Figure 1
Mean of craving scores and standard deviation (SD) of the three groups during the 13-days following buprenorphine administration.

Figure 2
Abstinence from opioids at 1 and 2 months following discharge from hospital.

All the 60 patients referred for 1 and 2 months follow ups. Data shown are for 20, 21, and 19 participants who received buprenorphine (32, 64, and 96 mg, respectively)
Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Consort 27Dec.docx
Appendix.docx