Estimation of the 10-Year Atherosclerotic Cardiovascular Disease and The Framingham Risk Score Among Adults Living with HIV/AIDS in Addis Ababa, Ethiopia: A Hospital-Based, Observational Study.

Minyahil Woldu (minyahil.alebachew@aau.edu.et)
Muhimbili University of Health and Allied Sciences

Omary Minzi
Muhimbili University of Health and Allied Sciences

Workineh Shibeshi
Addis Ababa University

Aster Shewaamare
Zewditu Memorial Hospital

Ephrem Engidawork
Addis Ababa University

Research Article

Keywords: Antiretroviral Therapy, Combination Antiretroviral Therapy, Framingham Risk Score, Human Immunodeficiency Virus, Zewditu Memorial Hospital, Predictors

DOI: https://doi.org/10.21203/rs.3.rs-382799/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

With a much improved ART of the present day, most morbidities and mortalities in people living with HIV/AIDS (PLWHA) are associated with factors such as non-infectious diseases (NIDs) in the form of coronary heart disease (CHD). This study aimed at determining the prevalence and predictors of coronary heart disease (CHD) using the 10-year atherosclerotic cardiovascular disease (ASCVD) and Framingham risk score (FRS) tools among PLWHA.

Methods

A hospital-based, observational study was carried out from January 2019 to February 2020 in HIV infected adults. Prevalence of FRS (age 20 to 79) was determined using the National, Heart, Lung and Blood Institute (NHLBI) and prevalence of ASCVD (age 40 to 79) was determined using the peer-reviewed online (ClinCalc.com) tool.

Results

Using the 10-years ASCVD risk estimation 27.3% of the study participants had an elevated risk > 7.5 % CHD. Similarly using the 10-year FRS, 1.4 % had high-risk score of developing CHD. Using multiple linear regression analysis age (β = .061, p < .001), gender (β = .816, p < .001), systolic blood pressure (β = .21, p < .001), total cholesterol (β = .002, p = .001), high density lipoprotein (β = − .02, p < .001), and Tobacco use (β = .559, p < .001) had significant contribution to the risk of CHD using the ASCVD tool, while using binary logistic regression for the FRS tool, gender (OR = 26.105, 95% C.I. [6.110, 111,543], p < 0.001), age (OR = 1.293, 95% C.I. [1.181, 1.415], P < .001), and low HDL-C (OR = 0.887, 95% C.I. [.786, .979], P = 0.19) had significant contribution.

Conclusions

The prevalence of high-risk CHD among PLWHA using the FRS and ASCVD tools were 1.4 & 27.3 percent respectively. In both the tools advanced age, male gender, and low level HDL were significant contributor for the risk of CHD in PLWHA.

Introduction

The Human Immunodeficiency Virus (HIV) - associated morbidity and mortality has declined significantly since the introduction of Antiretroviral Therapy (ART) \(^1\) and the consequent ART use extended the life expectancy of People Living with HIV/AIDS (PLWHA). However, related Cardiovascular Diseases (CVDs) and other non-infectious diseases (NIDs) remain an increasing concern among PLWHA \([1, 2]\). PLWHA showed a number of reported risk factors (RFs) for CVDs \([3–5]\), including age, dyslipidemia, diabetes mellitus (DM); hypertension, family history (FH), sedentary life, cigarette smoking, and cocaine use \([6]\). Heart attacks, strokes and other forms of CVDs are almost doubled in PLWHA compared to people who do not have the retrovirus, even though HIV infection ha been well-managed with combination ART (cART) \([7–9]\).

Estimation of the 10-year Atherosclerotic Cardiovascular Disease (ASCVD) and the Framingham Risk Score (FRS) help to determine the risk of developing stroke and Coronary Heart Disease (CHD) over the period of 10 years \([10]\) and has been considered a reliable, accurate benchmark for assessing cardiovascular risks in the general population \([11]\). Both the ASCVD and the FRS tools make utilization of age, sex, blood pressure (BP), total cholesterol (TC), high density lipoprotein cholesterol (HDLC), diabetes mellitus (DM), and smoking status to determine risks \([2]\). The risks can be classified as low-risk (< 10%), moderate risk (10–20 %), and high-risk (> 20%) in case of FRS \([12]\), while ≥ 7.5% will be considered as an elevated risk in case of ASCVD \([13]\). In most of the body of literatures, the prevalence of FRS has been reported between (b/n) 70–90% for low-risk, b/n 20–30 % for moderate and swings b/n 0–20% for high-risk \([14–17]\), while the overall prevalence of atherosclerosis has been reported as high as 60% among PLWHA \([18]\).

At the moment, when the main guidelines of HIV therapy are predating the point what ART regimen to start; related NIDs have been causing more morbidities and mortalities among PLWHA \([19]\). The present study is aimed at determining the prevalence and predictors of CHD using the 10-year FRS and ASCVD tools among PLWHA.
Methods

Study design, period and setting

This was a hospital-based, observational study conducted during the period of January 2019 to February 2020 among the PLWHA on follow-up care at Zewditu Memorial Hospital (ZMH), Addis Ababa, Ethiopia. ZMH was the first hospital to commence and initiate the subsidized-fee-based scheme ART service in Ethiopia, in July 2003. Currently, there are about 7,674 active adults and around 2,558 children in its follow–up nest [20].

Study population and sample size

All newly registered plus the already existed PLWHA on follow-up care in ZMH formed the study population. Adult PLWHA, age > 18 years, and those who are willing to participate in the study were the target population. Severely ill patients, pregnant, and breastfeeding mothers were excluded from the study.

The following equation was used to calculate the sample size: - Sample size n = [DEFF*Np (1-p)] / [(d2/z21-α/2*(N-1) + p*(1-p) = 286. Where, N (7674) is the total HIV infected population registered for follow-up care and P (≅25%± 5%) is the prevalence for CHD in HIV-infected population obtained from published articles [15]. Considering 10% contingency (lost to follow-up and defaulters), the final sample size of the study became 314.

Research Questions

1. Do HIV infected persons in Ethiopia have a higher prevalence of the estimated 10-year risk of ASCVD and FRS?
2. What are the predictors associated with ASCVD and FRS in this population?
3. What are the risk factors that predispose HIV-infected individuals for predicated stroke and CAD?

Hypothesis

The prevalence, predictors, and risk factors of ASCVD and FRS among HIV infected persons in Ethiopia are not different from other similar studies done globally.

Sampling and enrollment

A systematic random sampling technique was used to recruit study participants. The sample interval (K) was calculated using the formula N/n (7674/314≅24). The first participant was selected using a lottery method from the available patients having an appointment during the first day. Since the numbers of adult ART clinics in the hospital were four; then every six (24/4) volunteer participant was enrolled from each clinic. In cases of negative response, and refusal automatically the next patient was enrolled.

Data collection

Detail Information about the participants was obtained through laboratory tests, clinical examinations/measurements, patient interview, and chart review processes. The questionnaire for a face-to-face interview was adapted from the structured questionnaire used by the WHO stepwise approach to non-communicable disease risk factor surveillance (STEPS-2014) [21]. The questionnaire included information related to socio-demographic characteristics (Age, Gender, Religion, Civil Status, Address, Educational Level, Occupation, Monthly Income), clinical characteristics (Family History of CHD, Viral Load (VL), CD4 Count, Time Since ART Initiated, The WHO Staging, ART Medication Regimen, and Frequency of ART Medication Switch), tobacco use (active, passive and smoking history), alcohol consumption (active, alcohol use history), coffee and khat use.

Data analysis

The data was coded, double-entered, and analyzed using IBM SPSS Statistics 25. All categorical variables were coded as 0 (for female and no responses) and 1 for male and yes responses). The dependent variables for ASCVD was treated as scale measurement and the FRS was treated as a dichotomous coded as 0 for ‘low-risk (< 10%)’ and 1 for ‘high-risk (≥ 10%). A 95% C.I was used and the level of significance for statistical analysis was set at less than 0.05.

Descriptive statistic was used to present and inferential statistics was used to analyze data. A peer-reviewed online tool (ClinCalc.com; ASCVD Risk Calculator: 10-Year Risk of First Cardiovascular Event Using Pooled Cohort Equations - ClinCalc.com) calculator was used to estimate the 10 year risk of ASCVD with granting a prior permission from the company. The tool uses the Pooled Cohort Equations
among patients without pre-existing cardiovascular disease among people aged b/n 40 and 79 years [13]. The National, Heart, Lung, and Blood Institute formula was used to calculate the 10-year FRS.

Multiple linear regression was employed to estimate odds ratio (OR) and the corresponding 95% confidence interval (CI) in case of ASCVD (age 40 to 79 years) and binary logistic regression was used to determine the association of the predictors with the outcome variable in case of FRS (age 20 to 79 years). The following variables were considered to calculate ASCVD: age, gender, race, TC, HDL, systolic BP (SBP), smoking status, and BP medications [13]. Age, gender, lipid profiles, SBP, smoking status, and BP medication were used by the FRS [22].

Results

Enrollment

Initially 314 patients were enrolled, 26 participants were missing from the analysis for various reasons: 2 were discontinued the follow-up due to change of addresses, 4 due to critical illnesses (one due to high blood sugar, three due to high BP), and 10 were defaulter for unknown reasons. Hence, the final sample size for FRS was 288, and for the ASCVD group was 184 (Fig. 1).

Sociodemographic data

Considering the FRS group, female gender was slightly higher 162 (56.2%), and nearly 50% were married, and about a quarter of the sample 62 (21.5%) were divorced. A third of the sample was completed secondary high school (grade 9-12th) and almost 1/6th of them (12.2%) had no formal education (Table 1). With respect to occupational status, a quarter of the participants were involved in small self-employed business, 10% were jobless, and 4.5 % were students. Regarding addresses of the participants, 94.1% were from Addis Ababa, and majority (2/3rd) of the participants were from three sub-cities of Addis Ababa; Kirkos 109 (37.8%), Akaki-Kality 58 (20.1%), and Nefas Silk Lafto 38 (13.2%), (Table 1).
Table 1
Sociodemography of the study participants: counts, per cent of a total and cumulative per cent; Zewditu Memorial Hospital, June 2020, Addis Ababa, Ethiopia.

Socio-demographic	FRS group (N = 288)	ASCVD group (N = 184)		
	Counts	% of Total	Counts	% of Total
Gender (n = 288)				
Female	162	56.3	84	45.3
Male	126	43.8	100	54.7
Age (n = 288)				
20–34	52	18.1		
35–39	47	16.3		
40–44	55	19.1	98	53.3
45–49	43	14.9		
50–54	35	12.2	57	31
55–59	23	8.0		
60–64	21	7.3	26	14.1
65–69	5	1.7		
70–74	3	1.0	3	1.6
75–79	1	.3		
Civil status (n = 288)				
Never married	53	18.4	23	12.5
Married	130	45.1	91	49.5
Divorced	62	21.5	37	20.1
Widowed/r	43	14.9	33	17.9
Educational status				
No formal education	35	12.2	28	15.2
Primary (1-6th grade)	65	22.6	40	21.7
Secondary Junior (7-8th grades)	27	9.4	16	8.7
Secondary High school (9-12th grades)	96	33.3	65	35.3
College/university diploma	47	16.3	23	12.5
College/ University Degree/master or above	18	6.3	12	6.5
Occupational status#				
Higher-level professional	1	0.3	0	0
Higher-level manager and entrepreneur	1	0.3	1	.5
Lower level professional	27	9.4	17	9.2
Lower level manager	3	1.0	2	1.1
Clerical routine non-manual worker	11	3.8	6	3.3

Classification is based on ISEC (International Socio-Economic Classes). **LDL = Low Detection Level. Age category for n = 184 (40–49, 50–59, 60–69, 70–79)
Socio-demographic	FRS group (N = 288)	ASCVD group (N = 184)		
	Counts	% of Total	Counts	% of Total
Sales and service routine non-manual worker	1	0.3	1	.5
Small self-employed with employee	11	3.8	0	0
Small self-employed without employer	71	24.7	8	4.3
Skilled manual worker	21	7.3	46	25.0
Semi- and unskilled manual worker	84	29.2	15	8.2
Agricultural laborer	2	0.7	55	29.9
Retired	13	4.5	2	1.1
Student	13	4.5	0	0
Jobless	29	10.1	19	10.3
Monthly income				
\(\leq 100 \text{USD} \)	215	74.7	138	75
\(>100 \text{USD} \)	73	25.3	46	25
Address				
Addis Ababa	271	94.1	3	1.6
Gullele	4	1.4	7	3.8
Arada	11	3.8	2	1.1
Kolfe	7	2.4	2	1.1
Addis Ketema	4	1.4	19	10.3
Nefas Silk Lafto (NSL)	38	13.2	77	41.8
Kirkos	109	37.8	5	2.7
Lideta	8	2.8	7	3.8
Yeka	16	5.6	10	5.4
Bole	16	5.6	39	21.2
Akaki-Kality	58	20.1	13	7.1
Out of Addis Ababa	17	5.9	3	1.6

Classification is based on ISEC (International Socio-Economic Classes) **54. ***LDL = Low Detection Level. Age category for n = 184 (40–49, 50–59, 60–69, 70–79)

Considering the ASCVD group, males were predominant 100 (54.7%), and almost 50% were married 91 (49.5%), and about 1/5th (20.1%) were divorced. About 50% were age b/n 40 and 49 years and a third of them were completed secondary high school (grade 9-12th) while 28 (15.2%) had no formal education. With respect to occupational status, a quarter of the participants were involved in skilled manual work, 11.4% were either jobless, or retired. With respect to address, 98.4% were from Addis Ababa and majority of the participants were from NSL 77 (41.8%), Bole 39 (21.2%), and Kolfe 19 (10.3%), (Table 1).

Considering the total study participants (N = 288), the mean age of females was 40.7 ± 10.5 and was 47.1 ± 11.4 for males with an overall mean age of 43.51 ± SD 11.27, and the overall mean age at the time of HIV confirmation was 32.7 ± 11.1, with a mean age of 30.2 ± 10.4 for women and 35.9 ± 11.4 for men. The mean age at the time of ART initiation for women was 31.1 ± 10.6 and 36.8 ± 11.2 for men, with an overall mean age of 33.6 ± 11.2. The mean duration of stay on ART for women was 9.5 ± 4.66 and for men 10.2 ± 4.68, with an overall mean of 9.81 ± 4.67. The overall mean BMI was 23.6 ± 4.26 and mean CD4 count was 468 ± 266. The corresponding value of VL was 11964 ± 56320. Details of the participants’ characteristics are shown in Table 2.
Characteristics	Minimum	Maximum	Median	Mean ± Std. Deviation							
Gender	F	M	F + M	F	M	F + M					
Age (year)	20.0	20.0	69.0	77.0	40.0	47.0	43.0	40.7 ± 10.5	47.1 ± 11.4	43.5 ± 11.3	
Monthly income (in birr)	0.00	0.00	10000	40000	2000	3000	2000	2177 ± 2029	4009 ± 5597	2979 ± 4097	
Age start (year)	7.00	7.00	63.0	65.0	30.0	37.0	33.0	30.2 ± 10.4	35.9 ± 11.2	32.7 ± 11.1	
Total years on ART	0.460	0.633	0.460	22.2	22.2	9.55	12.0	11.2	9.51 ± 4.66	10.2 ± 4.68	9.81 ± 4.67
Current weight (Kg)	33.0	39.0	93.0	120	57.0	67.5	60.0	58.5 ± 11.1	68.0 ± 13.0	62.7 ± 12.8	
Current height (in meter)	1.44	1.50	1.44	1.71	1.91	1.57	1.70	1.63	1.58 ± 0.0594	1.70 ± 0.0700	1.63 ± 0.0871
BMI (kg²/m²)	14.5	15.1	14.5	39.2	35.1	23.1	23.2	23.1	23.6 ± 4.26	23.6 ± 4.09	23.6 ± 4.18
Abd. Circ. (inch)	24.0	25.0	24.0	49	49	32.0	35.0	33.5	33.4 ± 4.36	35.6 ± 4.47	34.3 ± 4.53
CD4 (cells/mm³)	74.0	6.00	6.00	1294	1406	431	402	410	468 ± 266	427 ± 244	450 ± 257
VL (copies/mL)	0.00	0.00	0.00	466201	466900	0.00	0.00	0.00	11964 ± 56320	1301 ± 55092	12422 ± 55692
PR (heart-beat/minute)	47.7	60.7	47.7	123	116	123	82.7	79.7	82.0 ± 11.5	79.9 ± 10.1	82.1 ± 11.1
SBP (mmHg)	89.3	91.3	89.3	193	213	121	128	125	126 ± 21.3	131 ± 22.2	128 ± 21.9
DBP (mmHg)	54.7	61.7	54.7	117	118	80.3	83.0	81.3	81.7 ± 12.5	84.5 ± 12.5	82.9 ± 11.8
TC (mg/dL)	78.0	100	78.0	354	492	184	185	184	185 ± 48.5	191 ± 55.2	187 ± 51.6
LDL-C (mg/dL)	21.0	33.0	21.0	306	615	117	110	117	117 ± 49.0	121 ± 67.4	118 ± 57.7
TGs (mg/dL)	49.0	30.0	30.0	466	491	114	153	133	139 ± 74.2	177 ± 98.0	155 ± 87.3
HDL-C (mg/dL)	21.0	21.0	21.0	69.8	67.0	46.0	46.0	46.0	46.5 ± 7.39	46.2 ± 8.33	46.4 ± 7.80
VLDL-C (mg/dL)	14.0	7.00	7.00	229	197	22.0	26.0	24.0	26.6 ± 19.4	30.2 ± 19.1	28.2 ± 19.3
Non-HDL-C (mg/dL)	40.0	39.0	39.0	313	451	140	140	140	138 ± 49.8	144 ± 57.4	141 ± 53.2
Fasting Blood glucose (mg/dL)	60.0	45.0	45	140	319	90.0	98.0	94.0	94.6 ± 15.8	101 ± 30.5	97.3 ± 23.6
Clinical characteristics

About 45% of the total study participants were on the WHO staging III, whereas 95.5% were on treatment stage one (T1). About 82% were on first line ART regimen, and 45% were changed their initial first line regimen. About 37% of the participants had CD4 count of ≥ 500 copies/mL, whereas about 76% had CD4 count of LDL ** (< 150), (Table 3). **low detection level.
Table 3
Clinical information of the study participants: counts, percent of total and cumulative percent; Zewditu Memorial Hospital, June 2020, Addis Ababa, Ethiopia.

Clinical information (n = 288)	Counts	% of Total
The WHO clinical staging		
I	40	13.9
II	68	23.6
III	131	45.5
IV	49	17.0
Treatment staging		
T1	276	95.8
T2	1	.3
T3	7	2.4
T4	4	1.4
ART regimen		
First line	235	81.6
Second line	51	17.7
Third line	2	.7
Frequency of ART regimen change		
No change from the baseline	59	20.5
changed once	129	44.8
changed twice	80	27.8
changed thrice	17	5.9
changed four times	3	1.0
ART regimen		
2NRTIs + 1INSTI	140	48.6
2NNRTIs + 1NNRTI	96	33.3
2NRTIs + 1PI	50	17.4
1NRTI + 1NNRTI + 1INSTI + 1PI	2	0.7
CD4 count (cells/mm3)		
<50	5	1.7
51–200	36	12.5
201–500	142	49.3
>500	105	36.5
VL (copies/mL)		
LDL ** (< 150)	219	76.0
Low viral load (151–1000)	11	3.8

**LDL = Low Detection Level
Outcome variable

The 10 years ASCVD was calculated and an elevated risk (≥ 7.5 % ASCVD) seen in 27.3%. Similarly, high-risk CHD by using the FRS (> 20 % of FRS) was seen 1.4 % of the participants (Table 4).

Table 4

CHD risk estimation tool	Severity category (%)	Frequency	Percent
FRS	< 10	255	88.5
	10–20	29	10.1
	> 20	4	1.4
ASCVD	< 7.49	133	72.3
	>/= 7.5	51	27.7

Considering the total study population, individuals with age 40 years and above were at a high-risk of developing CHD even though majority of the study participants were aged below 40 years (Fig. 2). Analysis of the pattern of the ART medication among the study participant revealed that almost half (139, 48.3%) of them were on 1j (TDF + 3TC + DTG) followed by 20.5% on 1e (TDF + 3TC + EFV), 9% on 2i (ABC + 3TC + LPV/r), 5.6% on 1c (AZT + 3TC + NVP), and 5.2% on 2h (TDF + 3TC + ATV/r) (Fig. 3).

Determinants of the outcome variable

A multiple linear regression was used to determine the impact of independent variables on the outcome of the estimated 10-year risk of ASCVD. Fourteen independent variables were entered: Current_Khat_use, TG, Family history of cardiovascular disease, FBG, Current_Alcohol_use, Waist circumference, HDL_C, Age, SBP, Gender, Total cholestrol, and Current_Alcohol_use. The result showed that six of the variables were significant predictors of ASCVD, explaining 86.5% of the variance with F (13, 170) = 84.02, p < .001. When the variables were examined to evaluate their individual contribution to the model, it was found that age (β = .061, p < .001), gender (β = .816, p < .001), SBP (β = .21, p < .001), TC (β = .002, p = .001), HDL (β = − .02, p < .001), and Tobacco use (β = .559, p < .001) made a significant contribution to the model. However, the other eight predictors did not make a significant contribution to the model and were considered non-significant. Details are shown in Table 5.

In the other way, a binary logistic regression was utilized to analyze the impact of predictors of FRS and nine independent variables were entered that include Age, Waist-grid, PR, SBP, DBP, TC, TGs, LDL-C, and HDL-C. The score was coded as 0 for ‘< 10 %’ and 1 for ‘≥ 10 %’ risk scores. The full model containing all the predictors had a statistically significant association, X^2 (8; 288) = 46,706, indicating that the model was able to distinguish b/n those with and without the risk of developing CHD using the FRS. The total model explained b/n 42.3 % (Cox and Snell R squared) and 83 % (Nagelkereke R Square) of the variance in the FRS and correctly classified 97.6 % of the cases. Only three of the variables (Age, Gender and HDL-C) made a statistically significant contribution to the model (see Table 6). The strongest predictor for the 10-year FRS was male gender with an OR of 26.1. Male participants had 96.3 % more chance to develop CHD compared to females. The second predictor was Age, with an odds ratio of 1.3, indicating that for every year increment in age, there was a 27% more chance of getting CHD independent of other factors. The third statistically significant predictor for the FRS model was HDL-C, with an odds ratio of 0.877 (less than one), indicating that it has a protective role in CHD. Hence, for every 1-unit decrease of HDL-C in mg/dL, the chance of having CHD was increased by 13%.
Table 6
Effect of predictor variables on the outcome variable of the coronary heart disease using the 10-year Framingham risk score, Zewditu Meomorial Hospital, Addis Ababa Ethiopia, 2020.

Predictors	OR	SE	AOR	t	p	95.0% Confidence Interval for OR	
						Lower Bound	Upper Bound
Constant	-5.033	.378	-13.324	.000	.000	-5.778	-4.287
Age	.061	.004	.441	14.503	.000	.053	.070
Gender	.816	.067	.378	12.188	.000	.684	.948
Family history of CVD	-.019	.089	-.007	-.217	.829	-.195	.156
Waist circumference in inch	.011	.007	.047	1.525	.129	-.003	.026
SBP	.021	.001	.444	14.604	.000	.018	.024
Total cholestrol	.002	.001	.102	3.251	.001	.001	.003
TG	.000	.000	.035	1.041	.299	.000	.001
HDL_C	-.020	.004	-.155	-5.192	.000	-.027	-.012
FBG	.000	.001	.004	.129	.898	-.002	.003
Current_Tobacco_use	.559	.155	.128	3.597	.000	.252	.865
Current_Alcohol_use	-.082	.124	-.022	-.663	.508	-.328	.163
Current_Alcohol_use	.060	.064	.028	.934	.351	-.067	.187
Current_Khat_use	-.042	.185	-.008	-.226	.822	-.406	.323

Note. $R^2 = .865$ (adjusted $R^2 = .855$).

Results of Binary Logistic Regression Analysis using the 10-year Framingham Risk Score as an Outcome Variable.

Discussion
With a much improved ART of the present day, most morbidities and mortalities in PLWHA has been associated with a number of factors such as NIDs (in most of the cases), especially in the form of CHD [23].

The CHD has become the major factor, limiting life expectancy, and causing death in individuals’ age 45 and above [24]. The etiology of CHD in PLWHA is multifactorial and can be caused with HIV itself but cART and predisposing genetic and environmental RFs can also be the reasons [25].

PLWHA confront high challenges to CHD due to the fact that HIV management by itself is complex and requires lifetime intervention [26]. Since, ASCVD & FRS are the most widely used tools for the CHD risk evaluation, both tools have overlaps of variables to determine the risks of CHD, even though there are some peculiar variations [2, 13, 26].

A number of studies have investigated that the CHD risk in PLWHA using the FRS tool and reported that the extrapolated tool was equally as important to the general population. Some recently published articles favors the use of ASCVD over FRS as a better predictive tool of CHD [2, 13, 27].

The proportion of females was higher using the FRS (56.2%) with overall mean of 43.5 ± 11.3. Whereas, using ASCVD male were predominant (54.3%). Considering the total participants, most participants were age below 40 years while using the ASCVD 50% were in the age range b/n 40 to 49 years.

The intensity of efforts to prevent cardiovascular disease depends on the absolute risk of CHD, which is calculated using either the FRS or the ASCVD equation [28, 29]. Majority 89 (88%) of the participants in the FRS were categorized under low CHD risk, while 29 (10.1%) had moderate and 4 (1.4%) had high-risk for developing CHD. Our study was comparable to the rates reported by some previously conducted studies [14, 15] but it was lower than the studies conducted in Slovenia [15], Uganda [17], and Spain [15]; and our result is
higher than the Norwegian [16] and the Brazilian [30] studies. This variation in the estimation of prevalence could be due to differences in standard care, management, and level of medical care services.

In our study, nearly all women were included in the 10% or less of the 10-year FRS category, but 20% of men had 10% or more long-term risk of CHD. This was in agreement with other studies [15, 24, 26]. To give more emphasis on management, one study reported that even though the CHD was less prevalent among female gender would be more devastating and fatal if it occurs [2].

About 28% of the participants enrolled in the ASCVD group had ≥ 7.5% risks of CHD, which is considered as a more severe form of the disease. This figure was a bit higher than the study conducted in Botswana [31] and Taiwan [32] but lower than the study conducted in Italy [33] & the U.S. [18].

A number of predictors were significantly associated with the estimation of ASCVD in our study. Advanced age was associated with high risk of CHD (β = .061, p < .001). This result was comparable with a number of other studies done globally [34–36].

It is also widely accepted that male gender was prone to develop CHD than females due to a number of inherited (genetics, sex hormones) and environmental (CHD predisposing risk practices like cigarette smoking and working industrial zones) factors [37]. This evidence was in agreement with our findings that the risk was more pronounced in male gender (β = .816, p < .001). Similar findings were obtained from studies supporting our result [36, 38]. One study reported that the lifetime risk of CHD at age 40 years is 50% for men and 33.3 % for women [36].

A number of research outputs reported that hypertension is an important RF for cardiac, cerebrovascular and other form of vascular diseases [39, 40] and the occurrence of hypertension and CHD has been common [41]. In our study an increase in SBP was associated with increased risk of CHD (β = .21, p < .001), which was also comparable with other similar studies [42–44].

Dyslipidemia is considered as the most frequent RF for CHD as reported in many resources [44, 45]. In our study an increased in TC was associated with CHD (β = .002, p = .001), while a decrease in the level of HDL was also associated with increased risk of CHD (β = −.02, p < .001). This result was well balanced with other reports [46–48]. The reports further stressed that a raised TC has been a strong risk predictor for CHD, with evidence of a small, but stronger effect in men compared to women. Increased in HDL level has been reported as a protective for CHD in many studies [46, 49].

The association of tobacco consumption with CHD have been reported in a number of scientific literatures [50, 51]. Our study revealed that cigarette smoking irrespective of duration and amount of cigarettes used, was significantly associated with the risk of CHD (β = .559, p < .001). The result was in agreement with multiple studies resources [51–53].

With respect to the FRS group, the strongest predictor was gender (OR = 26.1). Male participants had 96.3% more chance of developing CHD unlike of females. This was in line with various studies done elsewhere [24, 26, 54]. Age was also a strong predictor of CHD (OR = 1.3), indicating that for every year increment in age, the risk of acquiring CHD increased by 27%. Our study further revealed that, the overall risk of developing CHD was higher among individuals age 40 and above. This was in agreement with a number of scientific sources that stated an increased in age was associated with increased risk for CHD [24, 55–57].

Low level HDL-C was also associated with increased CHD using the FRS tool (OR = 0.877), demonstrating that for every unit of increase in the plasma HDL-C level, the chance of acquiring CHD was decreased by 13%. This was in harmony with other similar studies [58–60]. Decreased levels of HDL has been recognized as an independent risk factor for adverse cardiovascular outcomes in general population and it was also shown to be true in HIV-infected individuals, irrespective of other risk factors [61]. The protective role of HDL-C was publicized with its inverse relationship with the FRS, which once again was well-matched with the study done in Spain and in Uganda [14, 24].

Limitations Of The Study

These findings may not be representative of the entire population but can serve as a baseline to initiate further large-scale studies in PLWHA.

Conclusions
The prevalence of high-risk CHD among PLWHA using the FRS (age 20 and above) was 1.4 % and using ASCVD (age 40 to 79 years) tool, it was 28%. Using both ASCVD and FRS tools advanced age, male gender, and low level HDL were associated with an increased risk of CHD in HIV infected population. Additionally, in individuals age 40 and above, SBP and TC were associated with the risk of CHD.

Recommendations

Life style modification to settle down the risk of CHD with advanced age, risk factors, and therapeutic conditions should be considered as part of the routine clinical care practice. Healthy diet, medical check-ups, exercise, and proper adherence to medical advices are highly recommended. A multinational, multicentre study with larger sample size and follow-up period is recommended.

Declarations

Ethical statement

The study was approved by - 1) the Muhimbili University of Health and Allied Sciences, Office of the Director of Research and Publications (Ref. No. 2018-04-23/AEC//Vol. XII/88), Dar el Saalam, Tanzania. 2) Addis Ababa University, School of Pharmacy, Ethical Review Board (ERB/SOP/41/11/2018), Addis Ababa, Ethiopia. 3) Addis Ababa University, College of Health Sciences, Institutional Review Board (IRB, Meeting number 08/2018), Addis Ababa, Ethiopia. 4) City Government of Addis Ababa Health Bureau, Ethical Clearance Committee (Ref no. A/A/HB/344438/227), Addis Ababa, Ethiopia; was carried out in accordance with the tenets of the Declaration of Helsinki. Patients provided written informed consent prior to their participation in the study.

Consent of publication

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding information

The original funding source for conducting the research was sponsored by DAAD. Part of the research was also sponsored by the EDCTP.

Authors contribution

MA: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data Curation, Writing - Original Draft, Writing - Review & Editing, Project administration, Funding acquisition; OM: Supervision, Conceptualization, Methodology, Formal analysis, Investigation, Writing - Review & Editing; WS: Supervision, Funding acquisition; AS: Data Curation, Writing - Review & Editing; EE: Supervision, Conceptualization, Methodology, Formal analysis, Investigation, Writing - Review & Editing

Acknowledgement

We would like to thank the Muhimbili University of Health and Allied Sciences (MUHAS), Addis Ababa University (AAU), the German Academic Exchanges Services (DAAD), Zewditu memorial Hospital (ZMH), and the European & Developing Countries Clinical Trials Partnership (EDCTP).
We would like to thank all the research participants in the study. We would also like to forward our appreciation for our research assistants Sr. Tizita Woldeyesus Tadesse, BSc, and Mr Chalachew Teshome Tiruneh, MPH. We are also grateful for statistical resources support from Dr Todd Grande, Dr Jacob Mays, Dr Brandon Foltz, and Dr Mike Crowson.

Authors' information

MAW: Assistant professor of clinical pharmacy, Addis Ababa University (www.aau.edu.et), Addis Ababa, Ethiopia.

OM: Professor of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences (www.muhas.ac.tz), Dar es Salaam, Tanzania.

AS: Senior MD, ART coordinator, Zewditu memorial Hospital, Addis Ababa, Ethiopia.

WS: Associate Professor of Pharmacology, Addis Ababa University (www.aau.edu.et), Addis Ababa, Ethiopia.

EE: Professor of Pharmacology, Addis Ababa University (www.aau.edu.et), Addis Ababa, Ethiopia.

References

1. Dominick L, Midgley N, Swart L-M, Sprake D, Deshpande G, Laher I, et al. HIV-related cardiovascular diseases: the search for a unifying hypothesis. American Journal of Physiology-Heart and Circulatory Physiology. 2020;318(4):H731-H46.

2. Grinspoon SK, Grunfeld C, Kotler DP, Currier JS, Lundgren JD, Dubé MP, et al. State of the science conference: Initiative to decrease cardiovascular risk and increase quality of care for patients living with HIV/AIDS: executive summary. Circulation. 2008;118(2):198–210.

3. Chris NK. EFFECTS OF HIGHLY ACTIVE ANTIRETROVIRAL THERAPY ON THE LIVER AND KIDNEY FUNCTIONS IN HIV PATIENTS AT COAST PROVINCE GENERAL HOSPITAL, KENYA. Kenya (Doctoral dissertation, Kenyatta University). 2013.

4. Friis-Møller N WR, Reiss P, Thiébaut R, Kirk O, d'Arminio Monforte A, Pradier C, Morfeldt L, Mateu S, Law M, El-Sadr W, De Wit S, Sabin CA, Phillips AN, Lundgren JD; DAD study group. Cardiovascular disease risk factors in HIV patients—association with antiretroviral therapy. AIDS. 2003 17(8):1179–93.

5. Cockerham L SR, Zolopa A, Rimland D, Lewis CE, Bacchetti P, Grunfeld C, Shlipak M, Tien PC. Association of HIV infection, demographic and cardiovascular risk factors with all-cause mortality in the recent HAART era. J Acquir Immune Defic Syndr. 2010;53:102–6.

6. Woldu M, Minzi O, Engidawork E. Prevalence of cardiometabolic syndrome in HIV-infected persons: a systematic review.

7. Barbaro G, Di Lorenzo G, Grisorio B, Barbarini G, Baum M, Shor-Posner G, et al. Dilated cardiomyopathy in HIV-infected patients. N Engl J Med. 1999;1999(340):732–5.

8. Steven G Deeks, Sharon R Lewin, Diane V Havlir. The end of AIDS: HIV infection as a chronic disease. The Lancet. 2013;382(9903):1525–33.

9. Feinstein MJ, Bogorodskaya M, Bloomfield GS, Vedanthan R, Siedner MJ, Kwan GF, et al. Cardiovascular complications of HIV in endemic countries. Current cardiology reports. 2016;18(11):113.

10. YOUSEFZADEH G, SHOKOHO M, NAJAFIPOUR H, SHADKAMFAROKHI M. Applying the Framingham risk score for prediction of metabolic syndrome: the Kerman Coronary Artery Disease Risk Study, Iran. ARYA atherosclerosis. 2015;11(3):179.

11. NIX LM, Tien PC. Metabolic syndrome, diabetes, and cardiovascular risk in HIV. Current HIV/aids Reports. 2014;11(3):271–8.

12. Michos ED, Nasir K, Braunstein JB, Rumberger JA, Budoff MJ, Post WS, et al. Framingham risk equation underestimates subclinical atherosclerosis risk in asymptomatic women. Atherosclerosis. 2006;184(1):201–6.

13. ClinCalc.com: ASCVD Risk Calculator. https://clincalc.com/Cardiology/ASCVD/PooledCohort.aspx (2021). Accessed 24-March 2021.

14. Parra S, Coll B, Aragones G, Marsillach J, Beltran R, Rull A, et al. Nonconcordance between subclinical atherosclerosis and the calculated Framingham risk score in HIV-infected patients: relationships with serum markers of oxidation and inflammation. HIV medicine. 2010;11(4):225–31.
15. Knobel H, Jerico C, Montero M, Sorli ML, Velat M, Guelar A, et al. Global cardiovascular risk in patients with HIV infection: concordance and differences in estimates according to three risk equations (Framingham, SCORE, and PROCAM). AIDS patient care and STDs. 2007;21(7):452–7.

16. Bergersen B, Sandvik L, Bruun J, Tonstad S. Elevated Framingham risk score in HIV-positive patients on highly active antiretroviral therapy: results from a Norwegian study of 721 subjects. European Journal of Clinical Microbiology and Infectious Diseases. 2004;23(8):625–30.

17. Pirš M, Jug B, Eržen B, Šabović M, Kamer P, Poljak M, et al. Cardiovascular risk assessment in HIV-infected male patients: a comparison of Framingham, SCORE, PROCAM and DAD risk equations. Acta Dermatovenerol Alp Pannonica Adriat. 2014;23(3):43–7.

18. Lo J, Abbara S, Shturman L, Soni A, Wei J, Rocha-Filho JA, et al. Increased prevalence of subclinical coronary atherosclerosis detected by coronary computed tomography angiography in HIV-infected men. AIDS (London, England). 2010;24(2):243.

19. Melzi S, Carenzi L, Cossu MV, Passerini S, Capetti A, Rizzardini G. Lipid Metabolism and Cardiovascular Risk in HIV-1 Infection and HAART: Present and Future Problems. Cholesterol. 2010;2010:271504. doi: 10.1155/2010/271504 [doi].

20. Mengistu N, Azale T, Yimer S, Fikreyesus M, Melaku E, Shumye S. Quality of sleep and associated factors among people living with HIV/AIDS on follow up at Ethiopian Zewditu Memorial Hospital, 2018.

21. WHO. Non-communicable diseases and their risk factors The WHO STEPwise approach to noncommunicable disease risk factor surveillance (STEPS) Geneva, Switzerland WHO; 2014.

22. National Heart LaB: Risk assessment tool for estimating your 10-year risk of having a heart attack. http://cvdrisk.nhlbi.nih.gov/calculator (2013). Accessed Oct 18 2017.

23. Shah AS, Stelzlde L, Lee KK, Beck EJ, Alam S, Clifford S, et al. Global burden of atherosclerotic cardiovascular disease in people living with HIV: systematic review and meta-analysis. Circulation. 2018;138(11):1100–12.

24. Mateen FJ, Kanters S, Kalyesubula R, Mukas B, Kawuma E, Engel AP, et al. Hypertension prevalence and Framingham risk score stratification in a large HIV-positive cohort in Uganda. Journal of Hypertension. 2013;31(7):1372–8. doi: 10.1097/HJH.0b013e328360de1c.

25. Lang S, Barcara F, Mary-Krause M, Cohen A. Epidemiology of coronary heart disease in HIV-infected versus uninfected individuals in developed countries. Archives of cardiovascular diseases. 2015;108(3):206–15.

26. D’Agostino Sr RB. Cardiovascular risk estimation in 2012: lessons learned and applicability to the HIV population. Journal of Infectious Diseases. 2012;205(suppl_3):S362-S7.

27. Chew KW, Bhattacharya D, McGinnis KA, Horwich TB, Tseng C-h, Currier JS, et al. coronary heart disease risk by Framingham risk score in hepatitis C and HIV/hepatitis C-coinfected persons. AIDS research and human retroviruses. 2015;31(7):718–22.

28. Lundgren JD, Battegay M, Behrens G, De Wit S, Guaraldi G, Katlama C, et al. European AIDS Clinical Society (EACS) guidelines on the prevention and management of metabolic diseases in HIV. HIV medicine. 2008;9(2):72–81.

29. Muntner P, Safford MM, Cushman M, Howard G. Comment on the reports of over-estimation of ASCVD risk using the 2013 AHA/ACC risk equation. Circulation. 2014;129(2):266–7.

30. Cahn P, Leite O, Rosales A, Cabello R, Alvarez C, Seas C, et al. Metabolic profile and cardiovascular risk factors among Latin American HIV-infected patients receiving HAART. Brazilian Journal of Infectious Diseases. 2010;14(2):158–66.

31. Mosepele M, Hemphill LC, Palai T, Nkele I, Bennett K, Lockman S, et al. Cardiovascular disease risk prediction by the American College of Cardiology (ACC)/American Heart Association (AHA) Atherosclerotic Cardiovascular Disease (ASCVD) risk score among HIV-infected patients in sub-Saharan Africa. PloS one. 2017;12(2):e0172897.

32. Wu P-Y, Chen M-Y, Sheng W-H, Hsieh S-M, Chuang Y-C, Cheng A, et al. Estimated risk of cardiovascular disease among the HIV-positive patients aged 40 years or older in Taiwan. Journal of Microbiology, Immunology and Infection. 2019;52(4):549–55.

33. Guaraldi G, Milic J, Prandini N, Ligabue G, Esposito F, Ciusa G, et al. 18Fluoride-based molecular imaging of coronary atherosclerosis in HIV infected patients. Atherosclerosis. 2020;297:127–35.

34. Triant VA. Epidemiology of coronary heart disease in HIV patients. Reviews in cardiovascular medicine. 2014;15(0 1):S1.

35. Bocca F, Lang S, Meuleman C, Edery S, Mary-Krause M, Costagliola D, et al. HIV and coronary heart disease: time for a better understanding. Journal of the American College of Cardiology. 2013;61(5):511–23.

36. Lloyd-Jones DM, Larson MG, Beiser A, Levy D. Lifetime risk of developing coronary heart disease. The Lancet. 1999;353(9147):89–92. doi: https://doi.org/10.1016/S0140-6736(98)10279-9.
37. Barrett-Connor E. Sex differences in coronary heart disease: why are women so superior? The 1995 Ancel Keys Lecture. Circulation. 1997;95(1):252–64.
38. Kolovou GD, Anagnostopoulou KK. Apolipoprotein E polymorphism, age and coronary heart disease. Ageing research reviews. 2007;6(2):94–108.
39. Wilkins K, Campbell NR, Joffres MR, McAlister FA, Nichol M, Quach S, et al. Blood pressure in Canadian adults. Health reports. 2010;21(1):37.
40. Chiasson J-L, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. Jama. 2003;290(4):486–94.
41. Escobar E. Hypertension and coronary heart disease. Journal of human hypertension. 2002;16(1):S61-S3.
42. Stamler J, Neaton JD, Wentworth DN. Blood pressure (systolic and diastolic) and risk of fatal coronary heart disease. Hypertension. 1989;13(S supplement):I2.
43. Gosmanova EO, Mikkelsen MK, Molnar MZ, Lu JL, Yessayan LT, Kalantar-Zadeh K, et al. Association of systolic blood pressure variability with mortality, coronary heart disease, stroke, and renal disease. Journal of the American College of Cardiology. 2016;68(13):1375–86.
44. Antikainen R, Jousilahti P, Tuomilehto J. Systolic blood pressure, isolated systolic hypertension and risk of coronary heart disease, strokes, cardiovascular disease and all-cause mortality in the middle-aged population. Journal of hypertension. 1998;16(5):577–83.
45. Husnah H. Association of Central Obesity and Waist/Hip Circumference With Dislipidemia. World Nutrition Journal. 2018;1(2):18–22.
46. Peters SA, Singhateh Y, Mackay D, Huxley RR, Woodward M. Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: A systematic review and meta-analysis. Atherosclerosis. 2016;248:123–31.
47. Verschuren WM, Jacobs DR, Bloemberg BP, Kromhout D, Menotti A, Aravanis C, et al. Serum total cholesterol and long-term coronary heart disease mortality in different cultures: Twenty-five—year follow-up of the seven countries study. Jama. 1995;274(2):131–6.
48. Yaari S, Even-Zohar S, Goldbourt U, Neufeld H. ASSOCIATIONS OF SERUM HIGH DENSITY LIPOPROTEIN AND TOTAL CHOLESTEROL WITH TOTAL, CARDIOVASCULAR, AND CANCER MORTALITY IN A 7-YEAR PROSPECTIVE STUDY OF 10 000 MEN. The Lancet. 1981;317(8228):1011–5. doi: https://doi.org/10.1016/S0140-6736(81)92184-X.
49. Vitali C, Khetarpal SA, Rader DJ. HDL cholesterol metabolism and the risk of CHD: new insights from human genetics. Current cardiology reports. 2017;19(12):1–13.
50. Rahman MA, Zaman MM. Smoking and smokeless tobacco consumption: Possible risk factors for coronary heart disease among young patients attending a tertiary care cardiac hospital in Bangladesh. Public Health. 2008;122(12):1331–8. doi: https://doi.org/10.1016/j.puhe.2008.05.015.
51. Gupta R, Gupta S, Sharma S, Sinha DN, Mehrotra R. Risk of Coronary Heart Disease Among Smokeless Tobacco Users: Results of Systematic Review and Meta-Analysis of Global Data. Nicotine & Tobacco Research. 2018;21(1):25–31. doi: 10.1093/ntr/nty002.
52. Doyle JT, Dawber TR, Kannel WB, Heslin AS, Kahn HA. Cigarette smoking and coronary heart disease: combined experience of the Albany and Framingham studies. New England Journal of Medicine. 1962;266(16):796–801.
53. Rigotti NA, Pasternak RC. Cigarette smoking and coronary heart disease: risks and management. Cardiology clinics. 1996;14(1):51–68.
54. Muyanja D, Muzoora C, Muyingo A, Muyindike W, Siedner MJ. High prevalence of metabolic syndrome and cardiovascular disease risk among people with HIV on stable ART in southwestern Uganda. AIDS patient care and STDs. 2016;30(1):4–10.
55. Ssinabulya I, Kayima J, Longenecker C, Luwedde M, Semitala F, Kambugu A, et al. Subclinical atherosclerosis among HIV-infected adults attending HIV/AIDS care at two large ambulatory HIV clinics in Uganda. PloS one. 2014;9(2):e89537.
56. Stein JH, Brown TT, Ribaudo HJ, Chen Y, Yan M, Lauer-Brodell E, et al. Ultrasonographic measures of cardiovascular disease risk in antiretroviral treatment-naive individuals with HIV infection. AIDS (London, England). 2013;27(6):929.
57. Monroe AK, Haberlen SA, Post WS, Palella Jr FJ, Kinsgley LA, D WITT M, et al. Cardiovascular disease risk scores’ relationship to subclinical cardiovascular disease among HIV-infected and−uninfected men. AIDS (London, England). 2016;30(13):2075.
58. Cahn P, Leite O, Rosales A, Cabello R, Alvarez CA, Seas C, et al. Metabolic profile and cardiovascular risk factors among Latin American HIV-infected patients receiving HAART. Braz J Infect Dis. 2010;14(2):158–66.
59. Reinsch N, Neuhaus K, Esser S, Potthoff A, Hower M, Mostardt S, et al. Are HIV patients undertreated? Cardiovascular risk factors in HIV: results of the HIV-HEART study. European Journal of Preventive Cardiology. 2012;19(2):267–74.
60. Bergersen BM, Sandvik L, Bruun JN, Tonstad S. Elevated Framingham risk score in HIV-positive patients on highly active antiretroviral therapy: results from a Norwegian study of 721 subjects. European Journal of Clinical Microbiology and Infectious Diseases. 2004;23(8):625–30. doi: 10.1007/s10096-004-1177-6.

61. Nsagha DS, Assob JCN, Njunda AL, Tanue EA, Kibu OD, Ayima CW, et al. Risk factors of cardiovascular diseases in HIV/AIDS patients on HAART. The open AIDS journal. 2015;9:51.

Figures

Figure 1

Enrollment, Screening, and Follow-up.

![Figure 1: Enrollment, Screening, and Follow-up.](image)

Figure 2

![Figure 2](image)
The 10-year Framingham risk score classification based on age among participants enrolled in the study, Zewditu Memorial Hospital, June 2020, Addis Ababa, Ethiopia.

Figure 3

Pattern of current ART regimen among participants enrolled in the study, Zewditu Memorial Hospital, June 2020, Addis Ababa, Ethiopia.

*Others: 2f (1.7%), 2g (1%), 2e (0.7%), 3b (0.7%), 1h (0.3%)