Evaluation of the performance of an ionization chamber cylindrical (PTW) by the ELEKTA linear accelerator: Case of pulsed radiation

A. EL HAJAMI1*, A. DADOUCH1 and J. TAJMOUATI1, A. MAGHNOUJ1, M. Ali YOUSSOUFI23, M. EL BARAKA23 and A. BARDANE1, H. EL BEKOURI1, F. MOUSSAHIM1, A MRIBAH1
1. Nuclear Engineering Group, LISTA Laboratory, Department of Physics, Faculty of Science Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, City Fez, Morocco
2. Radiotherapy Department, University Hospital Center Hassan II, Fez, Morocco
3. LPHE-M-S Laboratory, Department of Physics, Faculty of Science, University Mohamed V, Rabat, Morocco
* Corresponding author : abdelhamidelhajami@gmail.com

Abstract. The performance evaluation of cavity cylindrical ionization chamber dosimeters is the basis for the evolution of radiotherapy treatment processes. Studies focused on the statistical and physical performances of the ionization chamber dosimeter used in the radiotherapy department at the hospital oncology CHU-Fez-Morocco. This allowed having a qualitative and quantitative critical view, which is based on previous studies and works. The diagnostic of the dispersion results was calculated between measurements that were taken by the same dosimeter under different test conditions. These tests were then rechecked against two different operators. The general purpose of our study is to optimize measurement and treatment processes, with the desired level of quality according to international standards and protocols. The evaluation of this dosimeter is made by a source of pulsed radiation. This evaluation is carried out using an ELEKTA linear accelerator, using photon beams (6, 10 and 18 Mev). Experimental Results confirmed that the response of the cylindrical ionization chamber depends on several parameters, which influence the performance of the device/machine. The study reveals a total dosimeter uncertainty of the order 3.25 %, which is in the international standards. Even, this can cause an effect on the performance of the ionization chamber detector.

Keywords: Dosimeter, Cylindrical Ionization Chamber, ELEKTA Linear Accelerator, Performance evaluation, Dosimetry, Radiotherapy.

1. Introduction

The use of ionizing radiation in various applications such as radiotherapy and brachytherapy, is currently the subject of several very important studies. This studies focus on related tools that lead to optimal use of ionizing radiation, such as linear accelerators, computer tools, or measuring instruments.

The Cavity theory allows the measurements of the environments absorbed dose from the dose in the sensitive volume of the cavity ionization chamber detector [12, 13, 14, 17, 31, and 42]. The most used dosimeters in radiotherapy and brachytherapy are the ionization chambers [5]. These dosimeters are mainly recommended for the dosimetry of high energy electrons and photons [21, 38]. It is therefore necessary to know the essential characteristics and performance of each ionization chamber. For an optimal operation of the cylindrical ionization chamber in the clinic, it is strongly recommended to evaluate the performance parameters. These parameters are characterized by dose
response, dose rate, beam energy, radiation quality, radiation beam direction, and dosimeter stability at high temperature and humidity.

The objective of this work is to quantitatively and qualitatively evaluate the physical and statistical performance of the PTW-type cylindrical ionization chamber which is used in the radiotherapy department at the oncology hospital CHU -Fez-Morocco. The diagnostic of the dispersion results was calculated between measurements that were taken by the same dosimeter under different test conditions.

2. Material and Methods

2.1. Material

The evaluation of ionization chamber dosimeter (ICD) is performed by a pulsed source of radiation. This is done using an ELEKTA linear accelerator. Ionizing radiation pulses are used in the treatment by radiotherapy. The ELEKTA Linear Accelerator has two irradiation beam paths, namely photons and electrons. We carried out the irradiations using clinical beams of photons (6, 10 and 18 MV) at the oncology hospital radiotherapy Center CHU-Fez [39, 40].

We used a T41014 water phantom, which is used in absolute dosimetry (www.ptw.de). Water is recommended in the International Atomic Energy Agency as a reference medium for measuring the absorbed dose of photon beams [1, 2, 12, and 42]. The T41014 phantom is sized about 20 cm x 20 cm x 10 cm, which is covered by the (PMMA) plates. This phantom is filled with approximately 4 litters of water by a sealed filler cap (Fig.1). The wall thickness of the phantom is of the order of three millimetres. For its depth of measurement, it is constant is about 50 millimetres.

![Figure 1. Phantom 20 cm x20 cm x 10 cm in PMMA at the oncology hospital radiotherapy Center CHU-Fez.](image)

A cylindrical ionization chamber used in radiotherapy of CHU-Fez. Its characteristics are detailed in Table 1.

Detector Characteristics	Characteristics
Type	Cylindrical ionization chamber PTW
Particular design	type 30010 : not waterproof
characteristics	Guard ring
Measuring quantities	Air kerma and Air kerma rate
Radiation quality	Absorbed dose to water and absorbed dose
Nominal sensitive volume	0,6 mm3
Nominal response	20 Nc/Gry
The collected charge produced in the ICD is very small. Measuring the dose requires a very sensitive machine called the electrometer [42]. This electrometer must have sufficient sensitivity for the measured responses. The stability of the associated electrometer must ensure that the leakage current is negligible.

The use of the thermometer and the barometer were used for the determination of air density correction factors [42]. For this, these devices must be calibrated to neglect their assignment on the ICD measurements (Fig. 2).

2.2. Experimental method
For a good handling, it is necessary to refer to the international protocols quoted by the IAEA, specific to calibrated ICDs. This is to determine the dose absorbed by the photon beams in any medium [1, 2, and 42].

The characteristics and performances corresponding to the ionization chamber are classified according to the international standards IEC [3]. Measurements are made by placing the sensitive volume ICD at the beam axis of the linear accelerator ELEKTA in a water phantom under reference conditions [1, 2, 20, and 42].

The irradiation field is ten centimetres long, ten centimetre’s wide and five centimetres deep. The dose rate is 100 UM. The photon beam is 6 Mev.

2.3. Purpose of study
In this study, several types of tests were performed. We calculated the uncertainty of variation for repeatability and reproducibility. The dispersion of an ICD can be estimated from a repeatability and reproducibility test [5, 7]. We have also performed the dependence of the response as a function of the applied voltage, the direction and the energy of the beam. We studied the linearity and sensitivity of the response as a function of dose rate. Before carrying out ICD dosimeter test, it must be ensured that

Property	Value
Polarizing Voltage	± (100…400) V
	Nominal : 400 V
	Maximal : ± 500 V
Temperature	+10° C … +40° C
Humidity	10 % ... 80 % , max : 20g/m3
Wall material	0.335 mm, PMMA
	0.09 mm, graphite
Central electrode	Ray, Al = 1.1 mm
the ionization chamber is energized for at least 20 minutes [5]. No radioactive elements are required near the ionization chamber. This is to avoid the uncertainties generated during practical work.

3. Results and Discussion

3.1. Results

The results obtained have been verified according to international recommendations and protocols [1, 2, and 3].

3.1.1 The stability of the ionization chamber according to the voltage

The purpose of this test is to verify the polarization voltage of the ionization chamber in positive and negative voltages [6, 28]. The stability test was performed using a linear accelerator (6 Mev). This is done one minute per each measurement.

![Saturation curve of the ionization chamber using a linear accelerator (6MeV).](image)

Figure 3. Saturation curve of the ionization chamber using a linear accelerator (6Mev). Response represents the collected charge in 60 seconds. The maximum deviation was 0.52 %.

The response of the chamber depends on the voltage applied between the electrodes; it varies slightly depending on the voltage (Fig. 3). We found a relative asymmetry along the voltage axis and the response axis. The operating region (or the level of use) of the ICD is between the voltages of 50 V and 400 V [6, 16, 21, 28].

The response reaches a saturation regime in which almost all the charges produced are collected by an efficiency of 99, 98 %. The recombination effect of the charges is low about 0.2 %. This present result is small than the value of 1 %, recommended by IEC (2011).

3.1.2. Response Linearity as a function of dose rate

The linearity of the ICD response was evaluated by measuring the charge produced by the dosimeter for different dose rates in UM [6]. From a clinical point of view, it is important that the response of a dosimeter is independent of the dose rate.
Figure 4. The linearity of the response of an ionization chamber as function of dose rate. The correlation coefficient obtained was 1.00.

The response of the ICD varies linearly with the dose rate (Fig. 4). The linear correlation coefficient R^2 was approach really 1.00. From the linearity, it is possible to determine the sensitivity of the ICD. It is present of order of 15 nC / Gy for the dose rate between 1 UM and 5 UM. For the dose rate between 10 and 600 MU, it is of order 15,375 Nc/Gy [15,16,17,18,25,29,30,31,32,33].

3.1.3. Dependence of the response of an ionization chamber according to the direction

Several measurements have been made on ICD at the different angle that varies from 0° to 360°, whose field size is 10x10 cm² [24,27,30]. Knowing that, the detector geometry is symmetrical with respect to the beam axis.

Figure 5. Dependence of the response of an ionization chamber according to the direction.
The maximum deviation was 0.66 %.

The uncertainty difference at the reference point (100% normalized response at 0 °) is 0 % for the measurement made from 0 ° to 45 °. This difference is from 0.33 % to 0.66 % for angulations of 90 ° to 360 ° (Fig.5), [12, 24, 25, 29, 33, and 43].

3.1.4. Dependence of the response as function of photon energy
we measured the dependence of the response as a function of the energy of the beam of photons (6, 10 and 18 Mev) of the cylindrical ICD by the accelerator ELEKTA CHU-Fez.

![Figure 6. Dependence of the response as a function of the energy of the beam of photons (6, 10 and 18 Mev) of the cylindrical ICD by the accelerator ELEKTA. The maximum deviation was 3.2 %.

The result shows that the ICD response is affected by a large energy dependence of an average variation factor of 3.20 % (Fig.6) [24, 30].

3.1.5. Repeatability and reproducibility
The repeatability studied the deviation of the Farmer PTW cylindrical ICD response according to several repeated manipulations under the same test conditions.
With respect to reproducibility, we checked the variation gap of handling conditions. These tests were then rechecked against two different manipulators, using the full method described by Maurice Pillet (The Method Six Sigma) [7, 8, 9, 10, 30, 44, 45, 46, 47].
We conducted two sets of different measurements, each of which has 13 photons beam of energy 6 Mev. These measurements are performed under the reference irradiation conditions of the ICD response.
Figure 7. Repeatability & Reproducibility of the response of an ionization chamber type Farmer. The maximum deviation was 0.054 %.

The result of this test gives a coefficient of variation, which is below the fixed limits of 1 % compared to international standards on 13 measures (Fig. 7). That is, the uncertainty of evolution of all these measurements is very low with a coefficient of variation of the order of ± 0.054 % [7,29,32,41].

3.2. Discussion
The evaluation of these dosimeters already carried out using a continuous energy source [6]. In this work, we used a source of pulsed radiation. This was done to minimize the dispersion of the results, and to know the sources of measurement disturbance using the ionization chamber dosimeters. These disrupters take the origin of the effect of temperature and the effect of recombination, material, methodology, labor. These agitators are fixed according to international standards and protocols [1,2]. Table 2 summarizes the results obtained by the cylindrical ionization chamber dosimeter type Farmer PTW.

Table 2 summarizes the results obtained by the cylindrical ionization chamber dosimeter type Farmer PTW.

Characteristics and performances	Results
Radiation quality	Photons
Chamber voltage	± (50…400) V
	The maximum uncertainty was 0.52 %
The ion collection efficiency	99.98 %
The recombination effect of the charges	0.2 %
Repeatability	Low dispersion 0.031 %
Reproducibility	Very low dispersion 0.0055 %
Linearity of response as function of dose rate	The correlation coefficient was 1.00
Sensitivity	15 (nC/Gy) to 15.375 (nC/Gy)
Directional response in water	0.33 % < 1 % for rotation up to an angle
In this study, the experiments carried out made it possible to specify that the response of the cylindrical ionization chamber used in the oncology hospital-radiotherapy department CHU-Fez Morocco depends on several parameters. These parameters influence the performance of the ionization chamber.

These ionization chambers are detectors which statistically capable in terms of repeatability and reproducibility [44, 45, 46]. The temperature and humidity have remarkable effects. The response of the ionization chamber varies linearly with the absorbed dose and its rate. The response of the cylindrical ionization chamber is affected by a large energy dependence with an uncertainty of 3.2 %. The response is almost constant in the different angles. The comparison between our results and that of calibration certificate shows that our results are following the international standards. Hence the interest of this study which reveals a total uncertainty of dosimeter of 3.25 %, which is in the standards, however, has an effect on the performances [29, 32].

4. Conclusion
The ICD is of great importance in radiotherapy treatment in humans. Our study evaluated the performance of ICD cylindrical type Farmer PTW. Using a physical and statistical study, we focused on calculating the disturbing effects on the measurement with a total uncertainty of the dispersion of the results. Our results show that the difference in uncertainties obtained can be due to the variation of certain manipulative conditions, or to the enclosure of the device. These uncertainties will have negative effects on radiotherapy treatment processes. In order to minimize this dispersion uncertainty, the device must optimize measurement processes to a desired level of quality according to international standards and protocols. Generally, there are several technology of detection and measurement of ionizing radiation in the medical field for dosimetry. Each technology has its advantages and disadvantages. This must take into consideration the following selection criteria: the cost of manufacture, calibration frequency compared to primary laboratories, range of use, irradiation conditions, the effect of environmental conditions and dosimeter dimensions [41, 48, and 49]. So, there is not an ideal system, but the only guarantee of the measures is the optimization of the use of the systems according to the norms and the international protocols.

5. Acknowledgments
The authors of the paper are thankful to University Hospital Center Hassan II-FES for Advanced Materials & testing, Nuclear Engineering Group and Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University. The principal author want to thank all the professors Jaouad Tajmouati, Ahmed Dadouch, Abdelmajid Maghnouj, Mohamed El Mharzi, Ottman El Hajjaji, Tarek El Bardouni, Chakir El Mahjoub, Najib Guessous, and Abdelhafid Chatwiti for his guidance and for their help in nuclear engineering formations MGN and encouragement.

6. References
1. IAEA, (2009a). Absorbed dose determination in external beam radiotherapy: An international code of practice for dosimetry based on standards of absorbed dose to water. V.12. IAEA (International Atomic Energy Agency), Vienna (Technical Report Series No. 398).
2. IAEA, (November 2017). Calibration of reference dosimeters for external beam radiotherapy. IAEA (International Atomic Energy Agency), Vienna (Technical Report Series No.483).
3. IEC (International Electrotechnical Commission). 2011. Medical electrical equipment- Dosimeters with ionization chambers as used in radiotherapy. IEC, Geneva (Standard IEC 60731).

4. A. Gopiraj, Ramesh S. Billimagga, Velayudham Ramasubramanian, Performance characteristics and commissioning of MOSFET as an in-vivo dosimeter for high-energy photon external beam radiation therapy, Reports of Pratical oncologie & Radiotherapy, Volume 13, Issue 3, May–June 2008, Pages 114-125.

5. Philippe BLANCHIS, Marie-Noelle AMIOT, Muriel MOUNE. Guide d'utilisation et de Contrôle qualité des activimètres. Laboratoire National Henri Becquerel. (NT 2006/033-June 2006 LNHB).

6. Fernanda B.C. Nonato, Roberto K. Sakuraba, José Carlos da Cruz, Linda V.E. Caldas, Characterization tests of a new parallel plate ionization chamber for use in electron beams, Radiation Physics and Chemistry 104 (2014) 244–247, Accepted 12 June 2014.

7. Roge’rio Santana Peruchi, Pedro Paulo Balestrassi , Anderson Paulo de Paiva, Joao Roberto Ferreira, Michele de Santana Carmelossi, A new multivariate gage R&R method for correlated characteristics, Int. J. Production Economics 144 (2013) 301–315, Accepted 22 February 2013.

8. N. Villani, K. Gérard, V. Marchesi, S. Huger, P. François, A. Noël, Maîtrise statistique des processus appliquée aux contrôles avant traitement par dosimétrie portale en radiothérapie conformationnelle avec modulation d’intensité - (Statistical process control applied to intensity modulated radiotherapy pretreatment controls with portal dosimetry), Cancer/Radiothérapie 14 (2010) 189–197, Accepted 5 March 2010.

9. N.Villani, K.Gerard, V.Marchesi, S.Huger, A.Noel, Utilisation de la maîtrise statistique des processus dans le cadre des contrôles avant traitement réalisés avec la chambre d’ionisation et par système d’imagerie portale électronique (EPID) en radiothérapie conformationnelle avec modulation d’intensité (RCMI), Cancer/Radiothérapie, Volume 13, Issues 6–7, October 2009, Page 644.

10. Andrea Zanobini, Bianca Sereni, Marcantonio Catelani, Lorenzo Ciani, Reproducibility and Reproducibility techniques for the analysis of measurement systems, Measurement, Volume 86, May 2016, Pages 125-132, Accepted 19 February 2016.

11. Lucio P. Neves, Ana P. Perini, Linda V.E. Caldas, A new standard cylindrical graphite-walled ionization chamber for dosimetry in 60Co beams at calibration laboratories, Radiation Physics and Chemistry 104 (2014) 235–239, Accepted 4 April 2014.

12. Frank Herbert Attix, Cavity Theory, Introduction to Radiological Physics and Radiation Dosimetry, 29 December 2007.

13. Jacob Abraham Haider, Lloyd D Skarsgard and Gabriel K Y Lam, A general cavity theory, Physics in Medicine & Biology, Volume 42, Number 3, 1996.

14. Paul Mobit, George Sandison, Microdosimetric Response of Physical and Biological Systems to Low- and High-LET Radiations, Theory and Applications to Dosimetry, 2006, Pages 331–366.

15. Marinelli M, Prestopino G, Verona C, Verona-Rinati G, Ciocca M, Mirandola A, Mairani A, Raffaele L, Magro G à, Med Phys. 2015 Apr; 42(4):2085-93.

16. Fernanda B.C. Nonato, Roberto K. Sakuraba, José Carlos da Cruz, Linda V.E. Caldas, Characterization tests of a new parallel plate ionization chamber for use in electron beams, Radiation Physics and Chemistry 104 (2014) 244–247, Accepted 12 June 2014.

17. F Marsolat, L De Marzi, A Patriarca, C Nauraye, C Moignier, M Pomorski, F Moignau, S Heinrich, D Tromson and A Mazal, Dosimetric characteristics of four PTW microdiamond detectors in high-energy proton beams, Physics in Medicine & Biology, Volume 61, Number 17, 8 August 2016.

18. Cyril Moignier, Dominique Tromson, Ludovic de Marzi, Fanny Marsolat, Juan Carlos García Hernández, Mathieu Agelou, Michał Pomorski, Romuald Woo, Jean-Michel Bourbotte, Fabien Moignau, Delphine Lazaro, Alejandro Mazal, Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams, Physics in Medicine and Biology 62(13):5417-5439, June 2017.

19. M. Le Roy, L. de Carlan, F. Delaunay, M. Donois, P. Fournier, A. Ostrowsky, A. Vouillaume and JM Bordy. Assessment of small volume ionization chambers as reference dosimeters in highenergy photon beams. Physics in Medicine and Biology, 56 (2011), 5637-5650.

20. M. Le Roy, J. Daures, L. de Carlan, F. Delaunay, T. Garcia, J. Gouriou, V. Lourenço,
A. Ostrowsky, L. Sommier, S. Sorel, D. Vermesse, J.-M. Bordy, S. Hachem, Establishment of references in terms of absorbed dose to water in MV X-ray beams for small radiation fields.

21. M. Le Roy, L. de Carlan, F. Delaunay, J. Gouriou, V. Lourenço, A. Ostrowsky, S. Sorel, J.M. Bordy, S. Hachem. Establishment of references in terms of absorbed dose to water in small MV X-ray beams, In: Radiotherapy and Oncology, Volume 96, Supplement 1, Page S515 (résumés de la conference ESTRO 29, Barcelone, Espagne, 12-16 septembre 2010).

22. M. Le Roy, L. de Carlan, M. Donois, A. Ostrowsky, A. Vouillaume et S. Hachem, Étude de la réponse de chambres d’ionisation de petit volume pour la dosimétrie en radiothérapie par modulation d’intensité. In : 49èmes Journées Scientifiques de la SFPM ; Bordeaux, 19-21 mai 2010

23. M. Le Roy, L. de Carlan, F. Delaunay, J. Gouriou, V. Lourenço, A. Ostrowsky, S. Sorel, J.M. Bordy, S. Hachem. Establishment of references in terms of absorbed dose to water in small MV X-ray beams, Radiotherapy and Oncology, Volume 96, Supplement 1, Page S515 (résumés de la conference ESTRO 29, Barcelone, Espagne, 12-16 septembre 2010).

24. Surendra N. Rustgi, Evaluation of the dosimetric characteristics of a diamond detector for photon beam measurements, American Association of Physicists in Medicine, Medical Physics 22, 567(1995).

25. A. Fidanzi, L. Azario, R. Kalish and Y. Avigal, G. Conte, P. Ascarelli and A. Pierratte, A preliminary dosimetric characterization of chemical vapor deposition diamond detector prototypes in photon and electron radiotherapy beams, American Association of Physicists in Medicine, Med. Phys. 32, 2, February 2005.

26. J. H. D. Wong, I. Fuduli, M. Carolan, M. Petasecca, M. L. F. Lerch, V. L. Perevertaylo, P. Metcalfe, and A. B. Rosenfeld, Characterization of a novel two dimensional diode array the “magic plate” as a radiation detector for radiation therapy treatment, Medical Physics 39, 2544 (2012).

27. José Manuel Lárraga, Paola Ballesteros-Zebadúa, Miguel Rodríguez-Ponce, Olivia Amanda García-Garduño and Olga Olinca Galván de la Cruz, Properties of a commercial PTW-60019 synthetic diamond detector for the dosimetry of small radiotherapy beams, Phys. Med. Biol. 60 (2015) 905–924.

28. Malwenn LE ROY. (2012). Study of national dosimetric references in external radiotherapy: application to conformational irradiations. Nice Sophia-Antipolis University.

29. Aurélie SORS, Evaluation de la dosimétrie in vivo en radiochirurgie stéréotaxique intracrânienne par détecteur MOSFET et microMOSFET, Université Toulouse 3-Paul Sabatier (UT2 Paul Sabatier), INSERM U825 – Imagerie cérébrale et handicaps neurologiques.

30. A. Gopiraj, Ramesh S. Billimagga, Velayudham Ramasubramanian, Performance characteristics and commissioning of MOSFET as an in vivo dosimeter for high energy photon external beam radiation therapy, REP PRACT ONCOL RADIOTHER • 2008 • 13/3/: 114–125,Accepted:30.06.2008.

31. David Benoit. (26 septembre 2008). Mise au point et évaluation d’un système fibré de dosimétrie en ligne utilisant des matériaux phosphorescents stimulables optiquement - Application à la mesure de dose en radiothérapie et au monitoring de faisceaux. (Doctorat). Université Toulouse III – Paul Sabatier.

32. Sors A., Cassol E., Hallil A., Latorzef I., Duthil P., Lotterie JA., Redon A., Berry I. et Franceries X. An optimized calibration method for surface measurements with MOSFET in shaped-beam radiosurgery, Physica Medica 30 (2014) 10-17, Accepted 14 March 2013.

33. Marie- Claude Lavallée, Luc Gingras, Luc Beaulieu, Energy and integrated dose dependence of MOSFET dosimeter sensitivity for irradiation energies between 30 KV and 60Co, Physica Medica. Volume33, Issue10, October 2006.

34. K. Chida, M. Kato, Y. Inaba1, T. Moritake; Sendai/JP, Akita/JP,Tsukuba/JP, M. Evaluating the performance of a MOSFET dosimeter at diagnostic X-ray energies for interventional radiology, Radiological Physics and Technology 2(1): 58-61.

35. DJ Peet and MD Pryor, Evaluation of a MOSFET radiation sensor for the measurement of entrance surface dose in diagnostic radiology. BJR 72, 562-568, 1999.

36. M. Bower and D.E. Hintenlang, “The Characterization of a Commercial MOSFET Dosimeter system of use in Diagnostic X-Ray,” Health Physics, 75, 2, 197-204, 1998.

37. R Ramaseshan, K S Kohli, T J Zhang, T Lam, B Norlinger, A Halliland M Islam, Performance characteristics of a microMOSFET as an in vivo dosimeter in radiation therapy, Phys. Med. Biol. 49
403, 2004.

38. P. Andreo, D. Burns, K. Hohlfeld, M. Huq, T. Kanai, F. Laitano, V. Smyth et S. Vynckier (2006) IAEA Technical Report Series n°398: Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water, Vienna, International Atomic Energy Agency.

39. F. Deblois, C. Zankowski et E. Podgorsak (2000) Saturation current and collection efficiency for ionization chambers in pulsed beams. Medical Physics, 27, 1146-1155.

40. C. Zankowski et E. Podgorsak (1998) Determination of saturation charge and collection efficiency for ionization chambers in continuous beams. Medical Physics, 25, 908-915.

41. J. Izewska, G. Rajan, Radiation Dosimeters, Radiation oncology physics: A handbook for teachers and students, IAEA (International Atomic Energy Agency), Vienna, 2005.

42. P. Andreo, J.P. Seuntjens, E.B. Podgorsak, calibration of photon and electron beams, Radiation oncology physics: A handbook for teachers and students, IAEA (International Atomic Energy Agency), Vienna, 2005.

43. Esther J. Bloemen-Van Gurp, Lars H. P. Murrer, BJO˚ RK K. C. Haanstra, Francis C. J. M. Van Gils, Andre L. A. J. Dekker, Ben J. Mijnheer, and Philippe Lambin. In vivo dosimetry using a linear mosfet-array dosimeter to determine the urethra dose in 125i permanent prostate implants. Int. J. Radiation Oncology Biol. Phys., Vol. 73, No. 1, pp. 314–321, 2009.

44. Rogério Santana Peruchi, Pedro Paulo Bailestrassi n, Anderson Paulo de Paiva, Joao Roberto Ferreira, Michele de Santana Carmelossi, A new multivariate gage R&R method for correlated characteristics, Int. J. Production Economics 144 (2013) 301–315, Accepted 22 February 2013.

45. Doraid Dalalah , Dania Bani Han i , A precision-to-tolerance ratio model for the assessment of measurements uncertainty, Precision Engineering 44 (2016) 143–151, Accepted 7 November 2015.

46. Johan W. Joubert, Sumarie Meintjes, Repeatability & reproducibility: Implications of using GPS data for freight activity chains, Transportation Research Part B 76 (2015) 81–92, Accepted 11 March 2015.

47. Wytze P. Oosterhuis, Michel J. Severens, Performance specifications and six-sigma theory: Clinical chemistry and industry compared, Clinical Biochemistry 57 (2018) 12–17, Accepted 3 April 2018.

48. M.K. Murphy, A. Kovacs, S.D. Miller, W.L. McLaughlin, Dose response and post-irradiation characteristics of the Sunna 535-nm photo-fluorescent film dosimeter, Radiation Physics and Chemistry 68 (2003) 981–994, accepted. June 2003.

49. Asha ML., Ingita Chatterjee, Preeti Patil, Naveen S, Dosimetry in dentistry, Indian Journal of Dental Research, 26(2), 2015.