Stable room temperature ferroelectricity in hydrogen-bonded supramolecular assemblies of ambipolar \(\pi \)-systems†

Anurag Mukherjee,‡a Shubhankar Barman,‡a Anupam Ghosh,b Saptarshi Chakraborty,a Ayan Datta,‡b Anuja Datta,c and Suhrit Ghosh,a,*

This article reports H-bonding driven supramolecular polymerization of naphthalimide (A)–thiophene (D)–naphthalimide (A) \((A_D^3A, n = 1–4) \) conjugated ambipolar \(\pi \)-systems and its remarkable impact on room temperature ferroelectricity. Electrochemical studies confirm the ambipolar nature of these \(A_D^3A \) molecules with the HOMO–LUMO gap varying between 2.05 and 2.29 eV. Electron density mapping from ESP calculations reveals intra-molecular charge separation as typically observed in ambipolar systems. In the aggregated state, \(A_D^3A \) and \(A_D^4A \) exhibit bathochromically shifted absorption bands while \(A_D^2A \) and \(A_D^3A \) show typical H-aggregation with a hypsochromic shift. Polarization vs. electric field \((P–E) \) measurements reveal stable room temperature ferroelectricity for these supramolecular assemblies, most prominent for the \(A_D^3A \) system, with a Curie temperature \((T_c) \approx 361 \) K and saturation polarization \((P_s) \) of \(\sim 2 \mu \text{C} \text{cm}^{-2} \) at a rather low coercive field of \(\sim 2 \text{ kV cm}^{-1} \). Control molecules, lacking either the ambipolar chromophore or the amide functionality, do not show any ferroelectricity, vindicating the present molecular and supramolecular design. Computational studies enable structural optimization of the stacked oligomer(s) of \(A_D^3A \) molecules and reveal a significant increase in the macro-dipole moment (in the range of 10–12 Debye) going from the monomer to the oligomer(s), which provides the rationale for the origin of ferroelectricity in these supramolecular polymers.

Introduction

Ferroelectric (FE)-materials possess spontaneously generated reversible electric polarization with diverse applications in electronics, electro-optics and electromechanics.1 Although the first FE-organic crystal2 was discovered long ago, to date, purely organic FE-systems are limited to a handful of examples,3 including crystals,4 fluorinated polymers,5 liquid crystals6 and supramolecular assemblies.7 Soft-ferroelectrics are emerging as an essential component for sustainable microelectronics in medical industries or biomechano-interactive information, as they promise to offer distinct advantages for environmentally benign, solution-processed, flexible device fabrication. Organic FE-systems,1 in most cases, exhibit low to moderate polarization at sub-room temperatures and are not yet comparable with the benchmark inorganic perovskites8–10 or organic–inorganic hybrid compounds.11 Charge-transfer (CT) complexes12 of donor (D) and acceptor (A) chromophores were identified for FE-polarization11 only at sub-ambient temperatures (\(< 71 \) K), until a recent breakthrough, when H-bonded D–A supramolecular assemblies were recognized for displacive-type FE-polarization at room temperature \((rt) \),13 owing to the alignment of the CT-dipoles. However, it remains a non-trivial task to regulate the stacking sequence in two-component H-bonded CT-complexes,13 which plays a decisive role in the FE-response. Such uncertainty may be circumvented if a similar FE-mechanism can be realized in supramolecular polymers14 of single-component D–A conjugated systems. In fact, such attempts had been made with dipolar molecules,15 which did not yield much success because they seldom crystallize to polar solids due to an anti-parallel orientation.15 Similar issues may not arise in the assembly of ambipolar \(\pi \)-systems,16 which have been known for charge-transport and in other contexts,17 but never reported before for ferroelectricity. We envisaged that the intrinsic polarizability of ambipolar chromophores may just be sufficient to provide the required instability in the non-centrosymmetric assembled state for spontaneous deformation under the influence of an external electric field, leading to FE-switching. With this postulate, we have studied a series of
Supramolecular assembly

Synthesis of an AD₄A (Fig. 1a) has been reported by us recently.¹⁴ The other molecules shown in Fig. 1a were prepared following a similar procedure which is described in the ESI.† The cyclic voltammogram (CV) (Fig. S1†) of monomeric AD₄A molecules in THF (1.0 mM) showed peaks in the oxidation and reduction halves, suggesting their ambipolar nature. The quasi-reversible peaks in the reduction half and irreversible peaks in the oxidation half are assigned to the reduction of the naphthalimide and oxidation of the oligothiophene, respectively. The electrochemical bandgap (ΔEᵥ)ᵥ, calculated from the onset of the first oxidation and reduction potentials, showed (Table 1) a gradual decrease from 2.49 eV to 2.31 eV with increasing oligothiophene length. Optical properties were investigated using the UV/Vis spectra (Fig. 1b) of the monomeric dye in THF and drop-cast thin films, obtained from the preformed aggregates in methyl-cyclohexane (MCH).¹⁴ For the monomeric state, prominent absorption bands were noticed in the range of 300–500 nm with a gradual bathochromic shift going from AD₁A to AD₄A (Table 1), due to the increase in the conjugation length. For AD₁A and AD₄A, a significant bathochromic shift (23 nm and 20 nm, respectively) was noticed in the film-state compared to the corresponding spectrum in the THF solution, indicating an offset π-stacking, typically observed for naphthalimide derivatives.¹⁴d

In contrast, the hypsochromically shifted (~9 nm) absorption bands for the AD₂A and AD₃A systems with concomitant tailing at longer wavelengths indicate H-aggregation, generally observed for different oligothiophene-derivatives.¹⁸,²⁰ UV/Vis spectra in MCH (Fig. S2†) mostly resembled those in the film state, suggesting similar internal-order in the dried films. Photoluminescence spectra of the molecules were recorded in the monomeric (THF) and aggregated (MCH) states, which showed quenching of emission intensity in MCH (Fig. S3†), as typically reported for aggregation of different π-systems. The optical band gaps (ΔEᵥ) of the AD₄A molecules were calculated from the onset of the absorption bands in the THF solution or in the solid film, respectively (Fig. 1b). In THF, the values match quite well with those estimated from the CV, while the reduced values in the aggregated state (Table 1) can be attributed to the π-stacking. The CD spectra (Fig. 1c) in MCH showed intense bands with a bi-signate Cotton effect, while no such band was noticed for the monomeric dye in THF, indicating chiral supramolecular assembly.²¹

The overlap of the zero cross-over point of the CD spectra (λ = 380–420 nm) with the absorption spectra of the corresponding dye in MCH (Fig. S2†) indicates exciton coupling. Temperature dependent CD experiments in MCH revealed (Fig. S5 and S6†) a gradual reduction of the CD band with increasing temperature. In case of all four molecules, an inflection point was noticed in the temperature range of 345–360 K, but in none of the samples did the CD band disappear completely even at the highest tested temperature suggesting only partial disassembly at elevated temperature.²² Solvent-dependent FT-IR experiments revealed (Fig. S7†) a significant shift (200–

Fig. 1 (a) Structure of the bis-amide functionalized AD₄A molecules; UV/Vis spectra of (b) AD₁A, (c) AD₂A, (d) AD₃A and (e) AD₄A in 0.1 mM THF solution (broken lines) and in the film state (solid lines). (f) CD spectra of the AD₄A molecules in THF (broken lines) and MCH (solid lines). c = 1.0 mM, l = 0.1 cm. Black, red, blue and green lines represent AD₁A, AD₂A, AD₃A and AD₄A, respectively.

ambipolar systems (Fig. 1a)¹⁴ in which naphthalimide and oligothiophene moieties serve as the A and D type chromophores, respectively. They are attached with two enantiopure trialkoxybenzamide wedges for the H-bonding driven chiral supramolecular polymerization,¹⁴ as chirality too may influence the FE-polarization.²⁹ Herein we report H-bonding driven supramolecular polymerization of such AD₄A type ambipolar building blocks and its strong impact on stable ferroelectricity at ambient temperature with the highest saturation polarization (Pₛ) of ~2 μC cm⁻² at a coercive field of about 2 kV cm⁻¹, which is the first observation of prominent ferroelectricity in any ambipolar chromophores. Further, we report the results of computational studies which provide the rationale for the origin of such prominent ferroelectricity in this unorthodox system (in the context of FEIs).
for the amide N–H stretching peaks toward lower wavenumber in MCH as compared to THF, suggesting a strong H-bonding in the aggregated state. FT-IR spectra of the samples in the solid state showed almost identical patterns compared to those observed in MCH, suggesting similar extent of H-bonding among the amide groups prevailing in MCH and in the solid state (Fig. S7†). Atomic force microscopy (AFM) images show (Fig. 2) a fibrillar morphology for the H-bonded supramolecular polymers of all four ADₙA molecules. Height and width of the small fibrils were estimated to be 3–4 nm and 100 nm, respectively, while the length extends over a few micrometers, revealing a long-range order. The presence of the thicker fibres can be attributed to the lateral clustering of the supramolecular polymer chains. An enlarged view of the selected region (insets, Fig. 2a and b) showed the existence of right-handed helical structures with helical pitch in the range of ~50–80 nm. The TEM image of a representative ADₐA sample showed a similar morphology (Fig. S8a†). SAED analysis was performed on the TEM image (inset, Fig. S8a†) and showed an amorphous nature as also indicated from the powder XRD (Fig. S8b†).

Entry	Optical properties	HOMO–LUMO energy gap [ΔE (eV)]		
	λₘₐₓ (nm, abs)	THF (UV)	THF (CV)	Solid (UV)
AD₁A	THF: 388 Solid: 411	2.7	2.49	2.29
AD₂A	THF: 415 Solid: 435	2.45	2.47	2.13
AD₃A	THF: 425 Solid: 416	2.38	2.44	2.08
AD₄A	THF: 436 Solid: 427	2.35	2.31	2.05

230 cm⁻¹) for the amide N–H stretching peaks toward lower wavenumber in MCH as compared to THF, suggesting a strong H-bonding in the aggregated state. FT-IR spectra of the samples in the solid state showed almost identical patterns compared to those observed in MCH, suggesting similar extent of H-bonding among the amide groups prevailing in MCH and in the solid state (Fig. S7†). Atomic force microscopy (AFM) images show (Fig. 2) a fibrillar morphology for the H-bonded supramolecular polymers of all four ADₙA molecules. Height and width of the small fibrils were estimated to be 3–4 nm and 100 nm, respectively, while the length extends over a few micrometers, revealing a long-range order. The presence of the thicker fibres can be attributed to the lateral clustering of the supramolecular polymer chains. An enlarged view of the selected region (insets, Fig. 2a and b) showed the existence of right-handed helical structures with helical pitch in the range of ~50–80 nm. The TEM image of a representative ADₐA sample showed a similar morphology (Fig. S8a†). SAED analysis was performed on the TEM image (inset, Fig. S8a†) and showed an amorphous nature as also indicated from the powder XRD (Fig. S8b†).

Ferroelectricity

To examine the presence and switchability of dipoles in the ADₙA supramolecular polymers, measurement of the dielectric constant (εᵣ) was carried out between 300 K and 380 K with thick films (thickness ~ 0.1 mm) prepared on highly conductive ITO glass (Fig. S9†). Amongst the four molecules, AD₂A shows the highest εᵣ value of ~44 at rt, and a clear ferroelectric–paraelectric phase transition at ~361 K can be noticed, where the εᵣ value increases by about two-fold (Fig. 3a). The phase transition peak in this case can be typically correlated with the Curie temperature (Tᵥ), which is typically observed in other organic and supramolecular ferroelectrics.³,⁴,⁹,¹² The permittivity of AD₂A near Tᵥ could be linearly fitted to the Curie–Weiss law²³ (Fig. 3b), which confirms the true ferroelectric nature of the sample and the presence of switchable domains. The frequency independence of εᵣ in the measured temperature range signifies that the orientations of the dipole moments follow the oscillating electric field.

That the prominent peak at Tᵥ does not shift with varying frequency for AD₂A (Fig. 3c) is strong evidence of a transition
from an order–disorder type ferroelectric to a paraelectric state in this system. This also rules out the presence of any relaxor behaviour in the molecule. Variants such as AD1A show a similar nature of dielectric behaviour as a function of increasing temperature with \(T_c/C24 \approx 361 \) K, but with a much lower \(\epsilon_r \) value than that of AD2A. Meanwhile, for AD3A and AD4A, the transition peaks shift to \(\approx 375 \) K (Fig. 3d), which may be attributed to the relatively higher temperature order–disorder change or partial disassembly in these molecules. Such a phase transition was further supported by micro-DSC experiments, which revealed a single endothermic peak at around 355–360 K for all four samples during the heating scan (Fig. S11†). For a representative sample (AD2A), variable temperature UV/Vis studies in the film state revealed a partial disassembly at \(T > 350 \) K (Fig. S12†), suggesting that the observed phase transition in DSC is related to this partial disassembly of the supramolecular polymers. It is noteworthy that even in MCH solution, a similar change was noticed in the UV/Vis spectra at a slightly lower temperature (Fig. S12 and S13†) compared to that in the solid state, suggesting not much difference in the self-assembly features in MCH or in the solid state which is also evident from their FT-IR spectra (Fig. S7†). As the change in \(\epsilon_r \) was noticed at around the same temperature (Fig. 2), such partial disassembly of H-bonded supramolecular polymers near the \(T_c \) is proposed as a possible reason for the observed ferroelectric to paraelectric phase transition.

Direct and unambiguous evidence of the ferroelectricity was obtained through polarization versus electric field (\(P–E \)) hysteresis loops (Fig. 4), as polarization switching is the most common characteristic of ferroelectrics. \(P–E \) measurements at different temperatures were carried out from a capacitor configuration, with the AD2A films sandwiched between top Ag electrode and bottom Ag/ITO electrodes (please see Fig. S10† for SEM images). At 298 K, stable hysteresis loops with the highest saturation polarization (\(P_s \)) of \(\approx 1.9 \) \(\mu \)C \(\text{cm}^{-2} \), \(P_t \approx 0.5 \) \(\mu \)C \(\text{cm}^{-2} \) and a maximum coercive field (\(E_c \)) of \(\approx 1.6 \) kV cm\(^{-1} \) were obtained in the AD2A film at 30 V applied voltage and at 50 Hz (Fig. 4a). The loops however show some contribution from dielectric loss and hence we also examined the switching current in the AD2A systems (inset, Fig. 4a) to confirm the presence of ferroelectricity. The clear switching peaks visible in the \(I–V \) curve measured near the coercive field prove that the molecule is truly ferroelectric in nature.\(^{1,2,4} \)

We have also run PUND (Positive Up and Negative Down) sequences to measure
the switching charge density \(Q_{\text{SW}}\), and a \(Q_{\text{SW}}\) value of \(\sim 0.5 \mu\text{C cm}^{-2}\) was measured from the AD2A sample (Fig. S14†), further confirming a good ferroelectric response, matching with the remnant polarization value recorded from the sample (Fig. 4). The range of frequency dependence of polarization in the AD2A film (Fig. 4b) reveals that \(P_s\) has almost no change up to 70 Hz as the slope remains unchanged. At 100 Hz, the value of \(P_s\) however increases to \(\sim 2.4 \mu\text{C cm}^{-2}\) even though the slope remains almost unchanged and the \(E_c\) increases within the measured frequency range from 70 Hz to 100 Hz. The inset of Fig. 4b shows the leakage current density vs. field of the AD2A film, revealing a symmetric \(I-V\) behavior and a leakage current in the order of \(0.8 \text{ A cm}^{-2}\). This implies that the ensuing polarization properties of the prepared capacitor film are not significantly affected by the leakage effects (Fig. S15†), again attributed to the similar intrinsic properties of the top and bottom electrodes, thereby proving the efficacy of the ferroelectric device structure. Comparing the \(P-E\) hysteresis loops measured at 350 K, a decrease in both the \(P_s\) and \(E_c\) can be found at the higher temperature and finally the ferroelectricity is lost beyond \(T_c\) at 365 K, showing thereafter a linear paraelectric behaviour (Fig. 4c and S16†). This phenomenon could be related to the disrupted long-range order of the polarization and the weakened coupling stabilizing effect between the charged defects and domains due to space-charge effects,† as well as the increased thermal fluctuations in the molecules at higher temperature. To examine the effect of conjugation length, \(P-E\) measurements of the other AD\(A\) variants (AD\(A\), AD\(A\) and AD\(A\)) were carried out (Fig. S17 and Table S1†). AD\(A\) was found to be the next best system with \(P_s\) \(\sim 1.1 \mu\text{C cm}^{-2}\) at 50 Hz. In contrast, AD\(A\) and AD\(A\) exhibited signatures of unstable ferroelectricity and ill-developed hysteresis loops with lower values of polarization (\(\sim 0.7 \mu\text{C cm}^{-2}\) in AD\(A\) and \(\sim 0.07 \mu\text{C cm}^{-2}\) in AD\(A\) at 50 Hz) as compared to AD\(A\) at an extremely low electric field (\(< 1 \text{ kV cm}^{-1}\)) (Fig. S17†). On further increasing the electric field, polarization was destroyed in these samples except in AD\(A\) (but it became lossy at higher field). While the difference between AD\(A\) and AD\(A\) may be attributed to their intrinsic difference in molecular structure, the sharp decline in the FE-properties of AD\(A\) and AD\(A\) may be related to the difference in the internal order as in these two cases the spectral shift suggested H-type aggregation, in contrast to the other two molecules which showed bathochromically shifted absorption bands in the film state compared to those of the monomeric dye in THF solution (Fig. 1b and Table 1).

While the comparison between different AD\(A\) molecules highlights the importance of the intrinsic molecular structure, to examine the importance of the supramolecular organization and the presence of the amorphous \(\pi\)-system itself to the ferroelectricity, two control molecules (C1 and C2, Fig. 5a) were studied. C1 contains the same conjugated chromophore as in the best performing AD\(A\) system (Fig. 1a), but not the amide groups for H-bonding driven supramolecular assembly. On the other hand, C2 with the same amide-functionalized chiral wedge lacks any AD\(A\)-chromophore. Solvent dependent UV/Vis and CD spectra (Fig. S18†) of C1 confirmed no specific supramolecular assembly in MCH, in sharp contrast to AD\(A\), as expected in the absence of H-bonding. On the other hand, H-bonding between the amide groups in C2 was evident from the FT-IR spectra (Fig. S19†), but it has no ambipolar chromophore. AFM images (Fig. 5b and c) showed a spherical morphology (Fig. 2) for both samples in contrast to the fibrillar structures of the amide containing AD\(A\) molecules. Fig. 5d reveals C1 to be a non-ferroelectric compound, in which a rather tight dielectric signal is measured at rt. Likewise, C2 also does not exhibit any FE-polarization; rather, it shows a typical dielectric \(P-E\) response, which underscores the essential role of the molecular structure as well as the H-bonded supramolecular assembly in the observed outstanding FE-polarization of the present AD\(A\) system.

Discussion and computational studies

Overall, the present example of the supramolecular polymer of AD\(A\) shows a significant improvement in terms of ferroelectric parameters \(P_s\), coercive field \(E_c\) compared to some of the best examples of organic FE systems reported to date. The low \(E_c\) value in the AD\(A\) system as compared to those of other reported FE organic perovskites (\(< 10 \text{ kV cm}^{-1}\)) or polymers such as PVDF (500 \text{ kV cm}^{-1}) makes this newly introduced ambipolar \(\pi\)-system attractive for future low power applications. It is proposed that the polarizability of the AD\(A\)-chromophores creates a partial charge-separation while the extended H-bonding enables the long-range order, which together contribute to the observed exceptional FE-polarization at rt. The
ferroelectricity might stem from the displacive motion of the central donor moiety (δ^-) between the two terminal acceptors (δ^+) accompanied by an order–disorder structural change. To better understand the origin of the ferroelectricity, computational studies were performed with the representative AD$_2$A system. Fig. 6a shows the optimized geometry of the representative tetrameric stack of the best performing AD$_2$A system (without the peripheral chains) which reveals an average stacking distance of \sim4 Å. The N–H···O=C H-bonds formed between two adjacent layers play a major role in stabilizing the stacked structures. It is seen that the C=O of the amide group of one molecule interacts with the N–H of the amide group of the adjacent molecule via H-bonds with bond distances of 1.95 Å, 1.83 Å and 1.93 Å along one edge while the corresponding distances are 2.22 Å, 2.63 Å and 2.62 Å towards another edge. Similar optimized structures were obtained for the dimer and the octamer as well (Fig. S20†), through semi-empirical PM6 calculations. Electron density mapping for the tetramer is shown in Fig. 6b from ESP calculations. The isosurface colour coded with the electrostatic potential shows a red region which indicates an electron dense domain while the electron deficient domain is indicated in blue. With increasing stacking, electron transfer occurs towards the edges from the electron-rich region containing corner-sharing thiophene units, making it relatively positive. Such charge separation should result in a significant dipole moment and polarization for the aggregates. The dipole moment (in Debye) has been computed for each of the AD$_2$A oligomers (see the ESI† for details). Fig. S21† shows the change in the average dipole moment (μ) with an increase in the number of stacked molecules (n). Going from the dimer to the tetramer, a significant increase in the μ can be noticed (from about 4 to 11 Debye) which is further increased in the octameric stack, which provides an important clue to the origin of the ferroelectricity specifically in the supramolecular assembly of AD$_2$A but not for the monomeric dye (C1, Fig. 5) in the absence of H-bonding. Additionally, the structural changes in AD$_2$A on heating were studied using ReaxFF simulations (see the Computational section, ESI†). The interlayer sulphur···sulphur distances in bithiophene and stacking side-chain distances are plotted with increasing temperature (Fig. S22†).

As the temperature is progressively increased, the average S···S distance increases from \sim4.4 Å to \sim5.2 Å at 350 K. Similarly, the interlayer stacking distance between the side-chains also increases from \sim4.3 Å (at 300 K) to \sim5.5 Å at 350 K. Clearly, the AD$_2$A aggregate becomes more disordered as the temperature increases (Fig. 6c). These results are consistent with the experimental results from DSC and variable temperature UV/Vis experiments and therefore further support the hypothesis regarding partial disassembly of the supramolecular polymers at elevated temperature which has been proposed as a possible reason for the ferroelectric to paraelectric phase transition in these systems.

Conclusions

We have demonstrated highly promising and stable ferroelectricity up to 350 K ($T_c \sim$ 361 K) in the H-bonded supramolecular polymers of ambipolar π-systems with a saturation polarization of \sim2.0 μC cm$^{-2}$ at a low coercive field of \sim2 kV cm$^{-1}$. This is a significant value reported for any supramolecular system and is comparable to those of existing low-cost organic ferroelectrics. Although two-component CT-complexes have been known for moderate FE-polarization at rt, the scope for further improving their utility by exploring wider structural variants may be limited due to the difficulty in achieving precise spatial control in complex multi-component supramolecular assemblies. In this context the outstanding FE-polarization, reported herein for a single-component ambipolar π-system, is a significant step forward and may inspire the exploration of already familiar wide-ranging ambipolar scaffolds for soft-ferroelectrics.
Author contributions

Suhrit Ghosh and Anuja Datta jointly conceptualized and supervised the work and raised external funding support. Ayan Datta supervised the computational studies. AM and SC carried out the synthesis, characterization and supramolecular assembly studies of the molecules. SB performed the dielectric, ferroelectric and leakage current measurements. AG performed the computational analysis. All co-authors contributed to the manuscript preparation.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

AM, SB, AG and SC thank CSIR-India for a research fellowship. AD acknowledges the SERB Ramanujan Fellowship (SB/S2/RJN-0057/2017) for financial support. SG and AD thank SERB for funding (Grant No.: CRG/2020/002395). Authors thank Dr Devajyoti Mukherjee, SPS, IACS for providing access to the funding (Grant No.: CRG/2020/002395). Authors thank Dr Devajyoti Mukherjee, SPS, IACS for providing access to the dielectric measurement facilities and Professor Priyadarsini De, IISER Kolkata, for assistance with the DSC measurements.

Notes and references

1 L. W. Martin and A. M. Rappe, Nat. Rev. Mater., 2016, 2, 16087.
2 J. Valasek, Phys. Rev., 1921, 17, 475.
3 (a) C. Park, K. Lee, M. Koo and C. Park, Adv. Mater., 2020, e2004999; (b) A. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida and S. I. Stupp, Nat. Chem., 2015, 7, 281; (c) S. Horiuchi and Y. Tokura, Nat. Commun., 2008, 7, 357; (d) S. Horiuchi, R. Kumai and Y. Tokura, Chem. Commun., 2007, 2321.
4 (a) J. Harada, Y. Kawamura, Y. Takahashi, Y. Uemura, T. Hasegawa, H. Taniguchi and K. Maruyama, J. Am. Chem. Soc., 2019, 141, 9349; (b) Y. Ai, D.-J. Wu, M.-J. Yang, P. Wang, W.-H. He and W.-Q. Liao, Chem. Commun., 2020, 56, 7033.
5 B. Stadlober, M. Zirkl and M. Irimia-Vladu, Chem. Soc. Rev., 2019, 48, 1787.
6 (a) K. Kishikawa, S. Nakahara, Y. Nishikawa, S. Kohmoto and M. Yamamoto, J. Am. Chem. Soc., 2005, 127, 17962; (b) C. F. C. Fitié, W. S. C. Roelofs, M. Kemerink and R. P. Sijbesma, J. Am. Chem. Soc., 2010, 132, 6892; (c) D. Miyajima, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata and T. Aida, Science, 2012, 336, 209; (d) I. Urbanaviciute, X. Meng, T. D. Cornelissen, A. V. Gorbunov, S. Bhattacharjee, R. P. Sijbesma and M. Kemerink, Adv. Electron. Mater., 2017, 3, 1600530; (e) H. Anetai, T. Takeda, N. Hoshino, H. Kobayashi, N. Saito, M. Shigeno, M. Yamaguchi and T. Atakagawa, J. Am. Chem. Soc., 2019, 141, 2391.
7 (a) M. Dawber, K. M. Rabe and J. F. Scott, Rev. Mod. Phys., 2005, 77, 1083; (b) J. F. Scott, Science, 2007, 315, 954; (c) A. Datta, D. Mukherjee and S. Kar-Narayan, in Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena, ed. N. Pryds and V. Esposito, Elsevier, 2018, pp. 465–488; (d) Z. Fan, K. Sun and J. Wang, J. Mater. Chem. A, 2015, 3, 18809.
8 (a) A. Datta, P. E. Sanchez-Jimenez, R. A. R. Al Orabi, Y. Calahorra, C. Ou, S.-L. Sahonta, M. Fornari and S. Karna-Rayan, Adv. Funct. Mater., 2017, 27, 1701169; (b) A. Datta, D. Mukherjee, C. Kons, S. Witanachchi and P. Mukherjee, Small, 2014, 10, 4093; (c) A. Datta, D. Mukherjee, S. Witanachchi and P. Mukherjee, Adv. Funct. Mater., 2014, 24, 2638; (d) D. J. Singh, M. Ghita, M. Fornari and S. V. Halilov, Ferroelectrics, 2006, 338, 73.
9 (a) Y.-Y. Tang, P.-F. Li, W.-Y. Zhang, H.-Y. Ye, Y.-M. You and R.-G. Xiong, J. Am. Chem. Soc., 2017, 139, 13903; (b) W.-J. Xu, K. Romanyuk, J. M. G. Martinho, Y. Zeng, X.-W. Zhang, A. Ushakov, V. Shur, W.-X. Zhang, X.-M. Chen, A. Kholkin and J. Rocha, J. Am. Chem. Soc., 2020, 142, 16990.
10 (a) A. Das and S. Ghosh, Angew. Chem., Int. Ed., 2014, 53, 2038; (b) M. Kumar, K. Venkata Rao and S. J. George, Phys. Chem. Chem. Phys., 2014, 16, 1300.
11 (a) S. Horiiuchi, R. Kumai and Y. Tokura, J. Am. Chem. Soc., 1998, 120, 7379; (b) F. Kagawa, S. Horiiuchi, M. Tomunaga, J. Fujioka and Y. Tokura, Nat. Phys., 2010, 6, 169; (c) K. Kobayashi, S. Horiiuchi, R. Kumai, F. Kagawa, Y. Murakami and Y. Tokura, Phys. Rev. Lett., 2012, 108, 237601.
12 (a) A. S. Tayi, A. K. Shveyd, A. C.-H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart and S. I. Stupp, Nature, 2012, 488, 485; (b) A. Narayanan, D. Cao, L. Frazer, A. S. Tayi, A. K. Blackburn, A. C.-H. Sue, J. B. Ketterson, J. F. Stoddart and S. I. Stupp, J. Am. Chem. Soc., 2017, 139, 9186; (c) M. Pandeeswar, S. P. Senanayak, K. S. Narayan and T. Govindaraju, J. Am. Chem. Soc., 2016, 138, 8259.
13 H. Kar and S. Ghosh, Isr. J. Chem., 2019, 59, 881.
14 (a) T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma and E. W. Meijer, Chem. Rev., 2009, 109, 5687; (b) F. Würthner, C. R. Sahamöller, B. Fimmel, S. Ogi, P. Leowanaat and D. Schmidt, Chem. Rev., 2016, 116, 962; (c) S. S. Babu, V. K. Praveen and A. Ajayaghosh, Chem. Rev., 2014, 114, 1973; (d) C. Rest, R. Kandanelli and G. Fernández, Chem. Soc. Rev., 2015, 44, 2543–2572; (e) A. Das and S. Ghosh, Chem. Commun., 2016, 52, 6860.
15 F. Würthner, Acc. Chem. Res., 2016, 49, 868.
16 H. Jiang, Macromol. Rapid Commun., 2010, 31, 2007.
17 (a) A. Saeki, Y. Koizumi, T. Aida and S. Seki, Acc. Chem. Res., 2012, 45, 1193; (b) J. Zhao, C. Yao, M. U. Ali, J. Miao and H. Meng, Mater. Chem. Front., 2020, 4, 3487; (c) R. Stalder, S. R. Puniredd, M. R. Hansen, U. Koldemir, C. Grand, W. Zajaczkowski, K. Müller, W. Psula and J. R. Reynolds, Chem. Mater., 2016, 28, 1286; (d) T. Duan, H. Tang, R.-Z. Liang, J. Lv, Z. Kan, R. Singh, M. Kumar, Z. Xiao, S. Lu and F. Laquai, J. Mater. Chem. A, 2019, 7, 2541; (e) X. Liu, Y. Sun, L. A. Perez, W. Wen, M. F. Toney, A. J. Heeger and G. C. Bazan, J. Am. Chem. Soc., 2012, 134,
20609; (f) S. Prasanthkumar, A. Gopal and A. Ajayaghosh, *J. Am. Chem. Soc.*, 2010, 132, 13206.

18 S. Chakraborty, S. Varghese and S. Ghosh, *Chem.–Eur. J.*, 2019, 25, 16725.

19 (a) A. Seki, M. Yoshi, Y. Mori and M. Funahashi, *ACS Appl. Mater. Interfaces*, 2020, 12, 53029; (b) P.-F. Li, W.-Q. Liao, Y.-Y. Tang, W. Qiao, D. Zhao, Y. Ai, Y.-F. Yao and R.-G. Xiong, *Proc. Natl. Acad. Sci.*, 2019, 116, 5878.

20 A. Mishra, C.-Q. Ma and P. Bäuerle, *Chem. Rev.*, 2009, 109, 1141.

21 (a) A. R. A. Palmans and E. W. Meijer, *Angew. Chem., Int. Ed.*, 2007, 46, 8948; (b) P. Duan, H. Cao, L. Zhang and M. Liu, *Soft Matter*, 2014, 10, 5428.

22 G. Pescitelli, D. Padula and F. Santoro, *Phys. Chem. Chem. Phys.*, 2013, 15, 795.

23 B. Jaffe, W. Cook and H. Jaffe, in *Non-Metallic Solids, Piezoelectric Ceramics*, ed. J. P. Roberts and P. Popper, Academic Press, London, 1971.

24 (a) K. M. Rabe, C. H. Ahn and J.-M. Triscone, *Physics of Ferroelectrics: a Modern Perspective*, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007; (b) M. Dawber, K. M. Rabe and J. F. Scott, *Rev. Mod. Phys.*, 2005, 77, 1083–1130.

25 (a) D. Damjanovic, Hysteresis in Piezoelectric and Ferroelectric Materials, in *The Science of Hysteresis*, ed. G. Bertotti and I. Mayergoyz, Academic Press, Oxford, 2006, pp. 337–465; (b) L. Jin, F. Li and S. Zhang, *J. Am. Ceram. Soc.*, 2014, 97, 1.

26 H.-Y. Ye, Y.-Y. Tang, P.-F. Li, W.-Q. Liao, J.-X. Gao, X.-N. Hua, H. Cai, P.-P. Shi, Y.-M. You and R.-G. Xiong, *Science*, 2018, 361, 151.

27 Y. Wang, P. Verma, X. Jin, D. G. Truhlar and X. He, *Proc. Natl. Acad. Sci.*, 2018, 115, 10257.

28 S. Chen and X. C. Zeng, *J. Am. Chem. Soc.*, 2014, 136, 6428.