WELL-POSEDNESS FOR ONE-DIMENSIONAL DERIVATIVE NONLINEAR SCHröDINGER EQUATIONS

CHENGCUN HAO
Institute of Mathematics
Academy of Mathematics & Systems Science, CAS
Beijing 100080, P. R. China
(Communicated by Gigliola Staffilani)

Abstract. In this paper, we investigate the one-dimensional derivative nonlinear Schrödinger equations of the form

\[iu_t - u_{xx} + i\lambda |u|^k u_x = 0 \]

with non-zero \(\lambda \in \mathbb{R} \) and any real number \(k \geq 5 \). We establish the local well-posedness of the Cauchy problem with any initial data in \(H^{1/2} \) by using the gauge transformation and the Littlewood-Paley decomposition.

1. Introduction. In the present paper, we consider the following Cauchy problem for the derivative nonlinear Schrödinger equation

\[\begin{aligned}
 iu_t - u_{xx} + i\lambda |u|^k u_x &= 0, \\
 u(0, x) &= u_0(x),
\end{aligned} \tag{1.1, 1.2} \]

where \(u = u(t, x) : \mathbb{R}^2 \rightarrow \mathbb{C} \) is a complex-valued wave function, both \(\lambda \neq 0 \) and \(k \geq 5 \) are real numbers.

A great deal of interesting research has been devoted to the mathematical analysis for the derivative nonlinear Schrödinger equations \([3, 4, 6, 7, 8, 9, 10, 11, 13, 18, 21]\). In \([13]\), C. E. Kenig, G. Ponce and L. Vega studied the local existence theory for the Cauchy problem of the derivative nonlinear Schrödinger equations

\[\begin{aligned}
 iu_t + u_{xx} + f(u, \bar{u}, u_x, \bar{u}_x) &= 0, \\
 u(0, x) &= u_0(x),
\end{aligned} \]

with small data \(u(0, x) = u_0(x) \) in \(H^{7/2} \) where \(f \) is a polynomial having no constant or linear terms with the lowest order term of degree being greater than or equal to 3. Subsequently, it was improved to \(H^3 \) by N. Hayashi and T. Ozawa \([11]\).

If the nonlinearity consists mostly of the conjugate wave \(\bar{u} \), then it can be done much better. In the case \(f = (\bar{u}_x)^k \), A. Grünrock, in \([8]\), obtained local well-posedness when \(s > s_c = 3/2 - 1/(k - 1) \), \(s \geq 1 \), and \(k \geq 2 \) was an integer. In particular, the global well-posedness in \(H^1 \) is obtained when \(f = i(\bar{u}_x)^2 \) with the help of the Bourgain spaces (cf. \([2, 23]\)).

2000 Mathematics Subject Classification. 35Q55, 35A07.
Key words and phrases. Derivative nonlinear Schrödinger equations, Cauchy problem, local well-posedness.

The author is supported in part by the Scientific Research Startup Special Foundation on Excellent PhD Thesis and Presidential Award of Chinese Academy of Sciences, NSFC (Grant No. 10601061), and the Innovation Funds of AMSS, CAS of China.
In [21], H. Takaoka discussed the derivative nonlinear Schrödinger equation of the form
\[u_t - iu_{xx} + |u|^2u_x = 0, \quad (t, x) \in \mathbb{R}^2, \]
and obtained the local well-posedness in \(H^s \) for \(s \geq 1/2 \) by performing a fixed point argument in an adapted Bourgain space \(X_{s,b} \), which yields a \(C^\infty \)-solution map.

A very similar equation to (1.1) is the generalized Benjamin-Ono equation
\[u_t + \mathcal{H}u_{xx} \pm u^k u_x = 0, \quad (t, x) \in \mathbb{R}^2, \quad (1.3) \]
where \(u \) is a real-valued function, \(\mathcal{H} \) is the Hilbert transform defined by
\[\mathcal{H}f(x) = -i \int_{\mathbb{R}} e^{ix\xi} \text{sgn}(\xi) \hat{f}(\xi) d\xi, \]
and \(k \geq 2 \) is an integer, the symbol \(: \) (or \(\mathcal{F} \)) denotes the spatial Fourier transform. For this equation, L. Molinet and F. Ribaud [16, 17] obtained the local preservation of the Hamiltonian and the following compactness argument with a priori estimates with the help of the by combining the gauge transformation with a Littlewood-Paley decomposition and

For any \(C > 0 \), we have to reconstruct new and complicated estimates for the case \(k \gg 1 \) and obtained the local well-posedness in \(X \) later the function space \(N \) and obtained the local well-posedness in \(X \) later the function space \(N \).

Throughout this paper, we often use the Littlewood-Paley theorem (cf. [20, 23])
\[\left\| \left(\sum_N |P_N \phi|^2 \right)^{1/2} \right\|_{L_p} \sim \| \phi \|_{L_p}, \]

In the present paper, we shall generalize the above results to the derivative nonlinear Schrödinger equation with \(k \geq 5 \) by using some ideas in [14]. However, we have to reconstruct new and complicated estimates for the case \(k \geq 5 \) which is quite different from the case \(k = 2 \).

We first state the main result of this paper as follows, though we shall define later the function space \(X_T \) at the end of this section.

Theorem 1.1. For any \(u_0 \in H^{1/2} \), there exist a \(T = T(\|u_0\|_{H^{1/2}}) \) and a unique solution \(u \) of (1.1)-(1.2) satisfying
\[u \in C([-T, T]; H^{1/2}) \cap X_T. \]

For convenience, we now introduce some notations. For nonnegative real numbers \(A, B \), we use \(A \lesssim B \) to denote \(A \leq CB \) for some \(C > 0 \) which is independent of \(A \) and \(B \). \(A \sim B \) means \(A \lesssim B \lesssim A \), and \(A \ll B \) denotes \(A \ll CB \) for some small \(C > 0 \) which is also independent of \(A \) and \(B \).

To give the Littlewood-Paley decomposition, let \(\psi \) be a fixed even \(C^\infty \) function with a compact support, \(\text{supp} \psi \subset \{ |\xi| < 2 \} \), and \(\psi(\xi) = 1 \) for \(|\xi| \leq 1 \). Define \(\varphi(\xi) = \psi(\xi) - \psi(2\xi) \). Let \(N \) be a dyadic number of the form \(N = 2^j, j \in \mathbb{N} \cup \{ 0 \} \) or \(N = 0 \). Writing \(\varphi_N(\xi) = \varphi(\xi/N) \) for \(N \geq 1 \), we define the convolution operator \(P_N \) by \(P_N u = \varphi_N * u \), where the symbol \(: \) (or \(\mathcal{F}^{-1} \)) denotes the spatial Fourier inverse transform. We define the function \(\varphi_0 \) by \(\varphi_0(\xi) = 1 - \sum_N \varphi_N(\xi) \) and denote \(P_0 u = \varphi_0 * u \). Then we introduce a spatial Littlewood-Paley decomposition [20]
for $1 < p < \infty$. We also use more general operators $P_{\leq N}$ and $P_{\geq N}$ which are defined by

$$P_{\leq N} = \sum_{M \leq N} P_M, \quad P_{\geq N} = \sum_{M \geq N} P_M,$$

and $P_{\geq N}, P_{\leq N}$ and $P_{\sim N}$ which can be defined in a similar way. The Littlewood-Paley operators commute with derivative operators (including $|\nabla|^s$ and $i\partial_t - \partial_{xx}$), the propagator $S(t) = e^{-i\partial_x^2 t}$, and conjugation operations, are self-adjoint, and are bounded on every Lebesgue space L^p and homogeneous Sobolev space H^s if $1 \leq p \leq \infty$. Furthermore, they obey the following Sobolev and Bernstein estimates for \mathbb{R} with $s \geq 0$ and $1 \leq p \leq \infty$ (which is similar to those of three dimensions [5]):

$$\|P_{\geq N} f\|_{L^p} \lesssim N^{-s} \|\nabla|^s P_{\geq N} f\|_{L^p},$$

$$\|P_{\leq N} \nabla|^s f\|_{L^p} \lesssim N^s \|P_{\leq N} f\|_{L^p},$$

$$\|P_N \nabla|^{\pm s} f\|_{L^p} \lesssim N^{\pm s} \|P_N f\|_{L^p},$$

which can be verified by combining the Bernstein multiplier theorem [1] and the interpolation theorem of Sobolev spaces.

We define the Lebesgue spaces $L^q_T L^p_x$ and $L^q_T L^p_T$ by the norms

$$\|f\|_{L^q_T L^p_x} = \left\|\left\|f\right\|_{L^p_x(\mathbb{R})}\right\|_{L^q_T(\mathbb{R})},\quad \|f\|_{L^q_T L^p_T} = \left\|\left\|f\right\|_{L^p_T(\mathbb{R})}\right\|_{L^q_T(\mathbb{R})}.$$

In particular, we abbreviate $L^q_T L^p_x$ or $L^q_T L^p_T$ as $L^p_{x,T}$ in the case $p = q$.

We also use the elementary inequality [5]

$$\left\|\left(\sum_N |f_N|^2\right)^{1/2}\right\|_{L^q_T L^p_x} \leq \left(\sum_N \|f_N\|_{L^q_T L^p_x}^2\right)^{1/2},$$

for all $2 \leq q, p \leq \infty$ and arbitrary functions f_N, and the dual version

$$\left(\sum_N \|N\|_{L^{p'}_{x,T}}^2\right)^{1/2} \leq \left\|\left\|f_N\right\|_{L^{p'}_{x,T}}^2\right\|_{L^q_T L^{p'}_x},$$

where p' is the conjugate number of p given by $1/p + 1/p' = 1$. It is easy to verify that they also hold if we replace the norm $L^q_T L^p_x$ by the norm $L^p_T L^q_x$ in both side of the above inequalities.

Let $\langle \cdot \rangle = (1 + |\cdot|^2)^{1/2}$. We use the fractional differential operators D_x^s and $\langle D_x \rangle^s$ defined by

$$D_x^s f = \mathcal{F}^{-1}(\xi^s \mathcal{F} f), \quad \langle D_x \rangle^s f = \mathcal{F}^{-1}(\xi^s \mathcal{F} f).$$

Thus, we can introduce the resolution space. For $T > 0$, we define the function space X_T in a similar way as in [13] by

$$X_T := \{u \in \mathcal{D}'((\mathbb{R} \times (-T,T)) \times \mathbb{R}) : \|u\|_{X_T} < \infty\},$$

where

$$\|u\|_{X_T} = \|u\|_{L_T^{p,H^{1/2}}} + \left(\sum_N \|\partial_x P_N u\|_{L_T^{p,H^1}}^2\right)^{1/2},$$

for $1 < p < \infty$. We also use more general operators $P_{\leq N}$ and $P_{\geq N}$ which are defined by

$$P_{\leq N} = \sum_{M \leq N} P_M, \quad P_{\geq N} = \sum_{M \geq N} P_M,$$
By computation, we have the following complex-valued function for a dyadic number N given by

$$v_N(t, x) = e^{-\frac{i}{4} \int_{-\infty}^{\infty} |P_{\leq N} u(t, y)|^4 dy} P_N u.$$ \hfill (2.1)

By computation, we have

$$i \partial_t v_N - \partial_x^2 v_N = -i \lambda e^{-\frac{i}{4} \int_{-\infty}^{\infty} |P_{\leq N} u(t, y)|^4 dy} \left[P_N (|u|^k u_x) - |P_{\leq N} u|^k P_N u_x \right]$$

$$- \frac{i \lambda}{2} e^{-\frac{i}{4} \int_{-\infty}^{\infty} |P_{\leq N} u|^4 dy} P_N u (i \partial_t - \partial_x^2) \int_{-\infty}^{\infty} |P_{\leq N} u(t, y)|^k dy$$

$$+ \frac{\lambda^2}{4} e^{-\frac{i}{4} \int_{-\infty}^{\infty} |P_{\leq N} u|^4 dy} |P_{\leq N} u|^{2k} P_N u.$$ \hfill (2.2)

For the second term, we integrate by parts and have

$$\int_{-\infty}^{\infty} |P_{\leq N} u(t, y)|^k dy$$

$$= \int_{-\infty}^{\infty} \frac{k}{2} |P_{\leq N} u|^k \left(\partial_t P_{\leq N} u \overline{P_{\leq N} u} + P_{\leq N} u \partial_t \overline{P_{\leq N} u} \right) dy$$

$$- \frac{k}{2} |P_{\leq N} u|^k \left(\partial_x P_{\leq N} u \overline{P_{\leq N} u} + P_{\leq N} u \partial_x \overline{P_{\leq N} u} \right)$$

$$= \int_{-\infty}^{\infty} \frac{k(k-2)}{4} |P_{\leq N} u|^k \left[(|P_{\leq N} u|^2 - (P_{\leq N} u \overline{P_{\leq N} u})^2 \right] dy$$

$$- \int_{-\infty}^{\infty} \frac{i \lambda k}{2} |P_{\leq N} u|^k \left(P_{\leq N} u \partial_x \overline{P_{\leq N} u} + P_{\leq N} u \partial_x \overline{P_{\leq N} u} \right) dy$$

Thus, v_N obeys the following differential-integral equation

$$i \partial_t v_N - \partial_x^2 v_N (t, x)$$

$$= -i \lambda e^{-\frac{i}{4} \int_{-\infty}^{\infty} |P_{\leq N} u|^4 dy} \left[P_N (|u|^k u_x) - |P_{\leq N} u|^k P_N u_x \right]$$

$$- \frac{i \lambda k(k-2)}{8} e^{-\frac{i}{4} \int_{-\infty}^{\infty} |P_{\leq N} u|^4 dy} P_N u \int_{-\infty}^{\infty} |P_{\leq N} u|^{k-4}$$

$$\left[(|P_{\leq N} u|^2 - (P_{\leq N} u \overline{P_{\leq N} u})^2 \right] dy$$

$$- \frac{\lambda^2 k}{4} e^{-\frac{i}{4} \int_{-\infty}^{\infty} |P_{\leq N} u|^4 dy} P_N u \int_{-\infty}^{\infty} |P_{\leq N} u|^{k-2} P_{\leq N} u \partial_x \overline{P_{\leq N} u}$$

$$+ \frac{i \lambda k}{2} e^{-\frac{i}{4} \int_{-\infty}^{\infty} |P_{\leq N} u|^4 dy} |P_{\leq N} u|^{k-2} P_{\leq N} u \overline{P_{\leq N} u}$$

$$+ \frac{\lambda^2}{4} e^{-\frac{i}{4} \int_{-\infty}^{\infty} |P_{\leq N} u|^4 dy} |P_{\leq N} u|^{2k} P_N u.$$
The equivalent integral equation reads
\[
\begin{align*}
\int_0^t S(t-\tau)|I_{N,1} + I_{N,2} + I_{N,3} + I_{N,4} + I_{N,5}|(\tau)d\tau.
\end{align*}
\] (2.4)

3. Preliminaries. In order to prove the a priori estimate for the equation of \(v_N\), we need the linear estimates associated with the one-dimensional Schrödinger equation. We first recall the Strichartz estimates, smoothing effects and maximal function estimates. For the proofs, one can see [13, 14].

Lemma 3.1. For all \(\phi \in \mathcal{S}(\mathbb{R}) \), \(\theta \in [0, 1] \) and \(T \in (0, 1) \),
\[
\begin{align*}
\|S(t)\phi\|_{L_T^\theta L_x^\infty} &\lesssim \|\phi\|_{L^\theta}, \\
\|S(t)P_N\phi\|_{L_T^{\theta/2} L_x^\infty} &\lesssim \langle N \rangle^{\frac{\theta}{2}} \|\phi\|_{L^\theta}, \\
\|S(t)\phi\|_{L_T^1 L_x^\infty} &\lesssim \|\phi\|_{H^\theta}.
\end{align*}
\] (3.1)

We also need the \(L_T^q L_x^p \) and \(L_T^p L_x^q \) estimates for the linear operator \(f \mapsto \int_0^t S(t-\tau)f(\tau)d\tau \). For the proofs, one can see [14].

Lemma 3.2. For \(f \in \mathcal{S}(\mathbb{R}^2) \), \(\theta \in [0, 1] \) and \(T \in (0, 1) \),
\[
\begin{align*}
\left\| \int_0^t S(t-\tau)f(\tau)d\tau \right\|_{L_T^\frac{2}{\theta} L_x^{2\theta}} &\lesssim \|f\|_{L_T^\frac{2}{\theta} L_x^{2\theta}}, \\
\left\| (D_x)^{\frac{\theta}{4}} \int_0^t S(t-\tau)f(\tau)d\tau \right\|_{L_T^\theta L_x^2} &\lesssim \|f\|_{L_T^\theta L_x^2}, \\
\left\| (D_x)^{\frac{\theta}{2}} \int_0^t S(t-\tau)P_Nf(\tau)d\tau \right\|_{L_T^\theta L_x^2} &\lesssim \langle N \rangle^{\frac{\theta}{2}} \|f\|_{L_T^\theta L_x^2}, \\
\left\| (D_x)^{\frac{\theta}{2} - \frac{1}{4}} \int_0^t S(t-\tau)P_Nf(\tau)d\tau \right\|_{L_T^\theta L_x^2} &\lesssim \|f\|_{L_T^\theta L_x^2}, \\
\left\| \int_0^t S(t-\tau)P_Nf(\tau)d\tau \right\|_{L_T^\theta L_x^2} &\lesssim \langle N \rangle^{\frac{\theta}{2} - \theta} \|f\|_{L_T^\theta L_x^2}, \\
\left\| \int_0^t S(t-\tau)f(\tau)d\tau \right\|_{L_T^\theta L_x^2} &\lesssim \|f\|_{L_T^\theta H_x^\theta}, \\
\left\| \int_0^t S(t-\tau)f(\tau)d\tau \right\|_{L_T^\theta L_x^2} &\lesssim \|f\|_{L_T^\theta L_x^2}, \\
\left\| \partial_x \int_0^t S(t-\tau)f(\tau)d\tau \right\|_{L_T^\frac{2}{\theta} L_x^{2\theta}} &\lesssim \|f\|_{L_T^\frac{2}{\theta} L_x^{2\theta}},
\end{align*}
\] (3.4)

where \(p' \) is the conjugate number of \(p \in [1, \infty] \), i.e. \(1/p + 1/p' = 1 \), and
\[
\begin{align*}
\frac{1}{p(\theta)} &\equiv \frac{3 + \theta}{4}, \\
\frac{1}{q(\theta)} &\equiv \frac{3 - \theta}{4}.
\end{align*}
\] (3.10)

Next, we recall the Leibniz’ rule for a product of the form \(e^{itF}g \) where \(F \) is the spatial primitive of some function \(f \). For the proof, we refer to [13, 17].
Lemma 3.3 ([9] Lemma 3.5). Let $\alpha \in (0, 1)$, p, p_1, p_2, q, $q_1 \in (1, \infty)$, $q_2 \in (0, \infty]$ with $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$, $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2}$, and let $F(t, x) = \int_{-\infty}^{x} f(t, y)dy$, with real-valued function f. Then

$$
\|D_x^\alpha e^{iF} g\|_{L_T^p L_x^q} \lesssim \|F\|_{L_T^{p_1} L_x^{q_1}} \|g\|_{L_T^{p_2} L_x^{q_2}} + \|(D_x)^\alpha g\|_{L_T^p L_x^q}.
$$

4. Bilinear estimates. In this section, we prove the following space-time estimate which is crucial to the proof of the nonlinear estimates.

Proposition 4.1. Let $u \in H^\infty$ and $p \geq 4$ be a real number. Then we have

$$
\|u \tilde{u}_x\|_{L_T^p L_x^q} \lesssim T^{\frac{1}{2}} \|u\|_{X_T}^2 + (1 + T^{\frac{1}{2}} \|u\|_{X_T}) \|u\|_{X_T} \|P_{\gg 1} u\|_{X_T}.
$$

Proof. By the Littlewood-Paley decomposition, we can write

$$
\|u \tilde{u}_x\|_{L_T^p L_x^q} = \sum_{N_1 \sim N_2} \|P_{N_1} u P_{N_2} \tilde{u}_x\|_{L_T^p L_x^q}.
$$

Now, we derive the estimates for I_1, I_2 and I_3, respectively.

From the Hölder inequality, the Bernstein type inequalities and the real interpolation theorem, we have

$$
I_1 \lesssim \sum_{N_1 \sim N_2} \|P_{N_1} u\|_{L_T^{2p} L_x^4} \|P_{N_2} \tilde{u}_x\|_{L_T^{2p} L_x^4} \lesssim \sum_{N_1 \sim N_2} \|P_{N_1} u\|_{L_T^{2p} L_x^4} N_2 \|P_{N_2} \tilde{u}_x\|_{L_T^{2p} L_x^4}.
$$

Applying the Sobolev embedding theorem and the Hölder inequality to the first term, and Bernstein estimates to the second term, we can see that it is bounded by

$$
\lesssim T^{1/2} \|u\|_{X_T}^2 + \sum_{N} \|P_{N} P_{\gg 1} u\|_{L_T^{2p} L_x^4} \|\partial_x P_{N} P_{\gg 1} u\|_{L_T^{2p} L_x^4}.
$$
By the Cauchy-Schwartz inequality and the Sobolev embedding theorem (i.e. \(H^{1/4}_4 \subset H^{1/4-1/p}_4 \subset L^p \) for the real number \(p \geq 4 \)), we can bound it by

\[
\lesssim T^{1/2} \| u \|^2_{L^T} + \| P_{\gg 1} u \|^2_{L^T}.
\]

For \(I_2 \) or \(I_3 \), it is suffice to consider one of them, e.g. \(I_2 \), in view of symmetry. For \(N_1 \ll N_2 \), we have

\[
P_{N_1} u P_{N_2} \tilde{u}_x = \hat{P}_N (P_{N_1} u P_{N_2} \tilde{u}_x),
\]

where \(\hat{P}_N = \sum_{j=-2}^2 P_{2^j N} \). We split these into three cases, i.e. \(N_1 \ll 1 \ll N_2 \), \(N_1 \ll N_2 \ll 1 \) and \(1 \ll N_1 \ll N_2 \). For the case \(N_1 \ll 1 \ll N_2 \), from the Hölder inequality and the Littlewood-Paley theorem, we can get

\[
\left\| \sum_{N_1 \ll 1 \ll N_2} P_{N_1} u P_{N_2} \tilde{u}_x \right\|_{L^p_x L^2_t} \lesssim \left\| P_{\lesssim 1} u P_{\gg 1} \tilde{u}_x \right\|_{L^p_x L^2_t} \lesssim \left\| P_{\leq 1} u \right\|_{L^p_x L^\infty_t} \left\| P_{\gg 1} u \right\|_{L^\infty_x L^2_t}
\]

\[
\lesssim \left(\sum_M \| P_M P_{\leq 1} u \|^2_{L^p_x L^\infty_t} \right)^{1/2} \left(\sum_M \| P_M P_{\gg 1} u \|^2_{L^\infty_x L^2_t} \right)^{1/2}
\]

\[
\lesssim \left(\sum_{M \leq 1} \| P_M u \|^2_{L^p_x L^\infty_t} \right)^{1/2} \left(\sum_{M \geq 1} \| P_M P_{\gg 1} u \|^2_{L^\infty_x L^2_t} \right)^{1/2} \| u \|_{L^p_x L^\infty_t}.
\]

For the case \(N_1 \ll N_2 \ll 1 \), we have, by the Hölder inequality and the Littlewood-Paley theorem, that

\[
\left\| \sum_{N_1 \ll N_2 \ll 1} P_{N_1} u P_{N_2} \tilde{u}_x \right\|_{L^p_x L^2_t} = \left\| \sum_{N_2 \ll 1} P_{\ll N_2} u P_{N_2} \tilde{u}_x \right\|_{L^p_x L^2_t}
\]

\[
\lesssim T^{1/2} \left(\sum_{N_2 \ll 1} \| P_{\ll N_2} u \|^2_{L^p_x L^\infty_t} \right)^{1/2} \| u \|_{L^p_x L^\infty_t}.
\]

For \(N_2 \ll 1 \), we have, by the Sobolev embedding theorem, that

\[
\| P_{\ll N_2} u \|_{L^p_x L^\infty_t} \sim \left(\sum_M \| P_M P_{\ll N_2} u \|^2_{L^p_x L^\infty_t} \right)^{1/2} \lesssim \left(\sum_M \| P_M u \|^2_{L^p_x L^\infty_t} \right)^{1/2}
\]

\[
\lesssim \left(\sum_{M \ll N_2} N_2^2 M^{-2\epsilon} \| D_x^\epsilon P_M u \|^2_{L^p_x L^\infty_t} \right)^{1/2} \lesssim \left(\sum_{M \ll N_2} N_2^{2\epsilon} \| D_x^\epsilon P_M u \|^2_{L^p_x L^\infty_t} \right)^{1/2}
\]
where \(\varepsilon = (p - 1)/2p \). Thus, (4.5) can be bounded by

\[
\lesssim T^{1/2} \left(\sum_{N_2 \leq 1} N_2^{2\varepsilon} \right)^{1/2} \| u \|_{X_T}^{1/2} \lesssim T^{1/2} \| u \|_{X_T}^{1/2}.
\]

Now, we turn to the case \(1 \ll N_1 \ll N_2 \). From the Littlewood-Paley theorem, we have for \(p \geq 4 \)

\[
\left\| \sum_{1 < N_1 < N_2} P_{N_1} u P_{N_2} \bar{u} \right\|_{L_x^p L_t^q} \approx \left\| \sum_{N_1 \gg 1} P_{N_1} u P_{N_1} \bar{u} \right\|_{L_x^p L_t^q}
\]

\[
\lesssim \sum_{N_1 \gg 1} \| P_{N_1} u P_{N_1} \bar{u} \|_{L_x^p L_t^q} \lesssim \sum_{N_1 \gg 1} \| P_{N_1} u \|_{L_x^p L_t^q} \| P_{N_1} \bar{u} \|_{L_x^p L_t^q}.
\] \quad (4.6)

Noticing that

\[
\| P_{N_1} \bar{u} \|_{L_x^1 L_t^{p^*}} \sim \left(\sum_M |P_M P_{N_1} \bar{u}|^2 \right)^{1/2} \lesssim \left(\sum_{M \gg N_1} \| P_M u \|_{L_x^p L_t^{p^*}}^2 \right)^{1/2}
\]

and for \(N_1 \gg 1 \), \(\varepsilon = 1/p \) and \(p \geq 4 \)

\[
\| P_{N_1} u \|_{L_x^p L_t^{p^*}} = \| P_{N_1} (P_{N_1} u + P_{N_1} \bar{u}) \|_{L_x^p L_t^{p^*}} = \| P_{N_1} P_{N_1} u \|_{L_x^p L_t^{p^*}} \sim N_1^{-\varepsilon} \| D_x^\varepsilon P_{N_1} P_{N_1} u \|_{L_x^p L_t^{p^*}}
\]

\[
\lesssim N_1^{-\varepsilon} \| D_x^\varepsilon P_{N_1} P_{N_1} u \|_{L_x^1 L_t^{p^*}},
\] \quad (4.7)

we can bound (4.6) by

\[
\lesssim \| u \|_{X_T} \sum_{N_1 \gg 1} N_1^{-\varepsilon} \| D_x^\varepsilon P_{N_1} P_{N_1} u \|_{L_x^1 L_t^{p^*}}
\]

\[
\lesssim \| u \|_{X_T} \sum_{N_1 \gg 1} N_1^{-2\varepsilon} \left(\sum_{N_1 \gg 1} \| D_x^\varepsilon P_{N_1} P_{N_1} u \|_{L_x^1 L_t^{p^*}}^2 \right)^{1/2}
\]

\[
\lesssim \| u \|_{X_T} \int_{X_T} \| P_{N_1} u \|_{X_T}, \quad \forall p \geq 4.
\] \quad (4.8)

in view of the Hölder inequality. Thus, we have obtained

\[
\| u \|_{Y_T} = \| u \|_{L_x^p H^{1/2}_T} + \| \partial_x u \|_{L_x^p L_t^2} + \| u \|_{L_x^p L_t^\infty} + \| (D_x)_{1/2} u \|_{L_x^p L_t^\infty}.
\]

Therefore, we have the desired result (4.1) for any real number \(p \geq 4 \). \(\square \)

5. Nonlinear estimates. To state the estimates for the nonlinearities \(I_{N,j} \), we define the function space \(Y_T \) equipped with the following norm:

\[
\| u \|_{Y_T} = \| u \|_{L_x^p H^{1/2}_T} + \| \partial_x u \|_{L_x^p L_t^2} + \| u \|_{L_x^p L_t^\infty} + \| (D_x)_{1/2} u \|_{L_x^p L_t^\infty}.
\]

We have the following proposition for the nonlinearities.
Proposition 5.1. Let \(u \) be a \(H^\infty \)-solution to (1.1)–(1.2). Then,

\[
\left(\sum_{N \geq 1} \left(\int_0^t S(t - \tau) \sum_{j=1}^5 I_{N,j}(\tau) d\tau \right)^2 \right)^{1/2}
\lesssim (1 + \|u\|_{L^\infty_x}^k) \left[T^{\frac{1}{2}} \|u\|_{L^2_x}^{k+1} \|P_{>1}u\|_{L^2_x}^{k-k} + (1 + T^{\frac{1}{2}} \|u\|_{L^2_x}) \|u\|_{L^2_x}^k \|P_{>1}u\|_{L^2_x}^{k+1-k} \right]
\]

\[
+ T^{\frac{1}{2}} \left(\|u\|_{L^2_x}^{2k-1} + \|u\|_{L^2_x}^{(5k-2)/2} \right) \|P_{>1}u\|_{L^2_x}
\]

\[
+ T^{\frac{1}{2}} (1 + T^{\frac{1}{2}} \|u\|_{L^2_x}) \frac{1}{2} \|u\|_{L^2_x}^{2k-1} \|P_{>1}u\|_{L^2_x}^{\frac{3}{2}}
\]

\[
+ (1 + \|u\|_{L^2_x}^k) \left[T^{\frac{1}{2}} \|u\|_{L^2_x}^k \|P_{>1}u\|_{L^2_x} + (1 + T^{\frac{1}{2}} \|u\|_{L^2_x})^2 \|u\|_{L^2_x}^{k-1} \|P_{>1}u\|_{L^2_x}^2 \right]
\]

\[
+ T^{\frac{1}{2}} \|u\|_{L^2_x}^{3k} \|P_{>1}u\|_{L^2_x},
\]

where \(\tilde{k} \) denotes the maximal integer that is less than \(k \) (i.e. \(\tilde{k} = [k] \) if \(k \) is not an integer and \(\tilde{k} = k - 1 \) if \(k \) is an integer where \([k]\) denotes the maximal integer that is less than or equal to \(k \)).

We consider each nonlinearity separately.

5.1. Nonlinear estimates of \(I_{N,1} \)

Noting that the term \(P_N(|P_{<N}u|^k u_x) \) has Fourier support in \(|\xi| \sim N \), we have

\[
P_N(|u|^k u_x) - |P_{<N}u|^k P_N u_x
\]

\[
= P_N((|u|^k - |P_{<N}u|^k) u_x) + P_N(|P_{<N}u|^k u_x) - |P_{<N}u|^k P_N u_x
\]

\[
= P_N((|u|^k - |P_{<N}u|^k) u_x) + P_N(|P_{<N}u|^k \tilde{P}_N u_x) - |P_{<N}u|^k P_N \tilde{P}_N u_x, \quad (5.1)
\]

where \(\tilde{P}_N = P_{N/2} + P_N + P_{2N} \).

For the second term in (5.1), we have the following estimate.

Lemma 5.1

Let \(u \) be a solution of (1.1)–(1.2). Then, we have for any \(k \geq 4 \)

\[
\left(\sum_{N \geq 1} \left(\left\| P_N(|P_{<N}u|^k \tilde{P}_N u_x) - |P_{<N}u|^k P_N \tilde{P}_N u_x \right\|_{L^2_t L^2_x} \right)^2 \right)^{1/2}
\]

\[
\lesssim T^{\frac{1}{2}} \|u\|_{L^2_x}^k \|P_{>1}u\|_{L^2_x} + (1 + T^{\frac{1}{2}} \|u\|_{L^2_x}) \|u\|_{L^2_x}^{k-1} \|P_{>1}u\|_{L^2_x}^2.
\]

Proof. To shift a derivative from the high-frequency function \(P_N u_x \) to the low-frequency function \(|P_{<N}u|^k \), we require the following Leibniz rule for \(P_N \) from [11]:

\[
(P_N(f)g - f P_N g)(x) = \int_0^1 \left(\int \varphi_N(y) y f_x(x - \eta y) g(x - y) dy \right) d\eta.
\]

Thus, we have

\[
\left\| P_N(|P_{<N}u|^k \tilde{P}_N u_x) - |P_{<N}u|^k P_N \tilde{P}_N u_x \right\|_{L^1_t L^2_x}
\]

\[
\lesssim \left\| \varphi_N(y) \right\|_{L^\infty_y} \left\| (|P_{<N}u|^k)_x \right\|_{L^2_y L^\infty_t} \| \tilde{P}_N u_x \|_{L^2_x L^\infty_t}
\]

\[
\lesssim \left\| \varphi_1(y) \right\|_{L^\infty_y} \left\| (|P_{<N}u|^k)_x \right\|_{L^2_y L^\infty_t} \| \tilde{P}_N u_x \|_{L^2_x L^\infty_t}
\]

\[
\lesssim \left\| (|P_{<N}u|^k)_x \right\|_{L^2_y L^\infty_t} \| \tilde{P}_N u_x \|_{L^2_x L^\infty_t}
\]
Thus,

\[\lesssim \| P_{\ll N} u \|^{k-2}_{L^2_x L^\infty_t} \| P_{\ll N} u \|_{L^2_x L^\infty_t} \| \tilde{P}_N u \|_{L^2_x L^\infty_t}. \] \tag{5.4} \]

Decomposing \(P_{\ll N} u = P_{\ll 1} u + P_{1<\ll N} u \) for \(N \gg 1 \), we have

\[P_{\ll N} u = P_{\ll 1} u + P_{1<\ll N} u \]

for \(N \gg 1 \), we have

\[P_{\ll N} u = P_{\ll 1} u + P_{1<\ll N} u \]

By the Littlewood-Paley theorem, we can obtain

\[\| P_{\ll N} u \|_{L^2_x L^\infty_t} \lesssim \left(\sum_{M} \| P_M P_{\ll N} u \|^{2}_{L^2_x L^\infty_t} \right)^{1/2} \lesssim \left(\sum_{M} \| P_M u \|^{2}_{L^2_x L^\infty_t} \right)^{1/2} \]

\[\lesssim \left(\sum_{M>1} \| P_M u \|^{2}_{L^2_x L^\infty_t} \right)^{1/2} \lesssim \| P_{1<} u \|_{X_T}. \] \tag{5.5} \]

For the first term in \(\text{(5.5)} \), we have

\[\| P_{\ll 1} u \|_{L^2_x L^\infty_t} \lesssim \| u \|_{X_T}. \] \tag{5.6} \]

In the similar way, we have

\[\| P_{\ll N} u \|_{L^2_x L^\infty_t} \lesssim \| u \|_{X_T}. \] \tag{5.7} \]

For the last two term in \(\text{(5.5)} \), in a similar way as in the proof of Proposition \ref{prop:control}, we can obtain the following bound:

\[\| P_{1<} u \|_{L^2_x L^\infty_t} \lesssim T^{1/2} \| u \|_{X_T} \| P_{1>} u \|_{X_T}. \] \tag{5.8} \]

\[\| P_{1<} u \|_{L^2_x L^\infty_t} \lesssim T^{1/2} \| u \|_{X_T} + (1 + T^{1/2} \| u \|_{X_T}) \| P_{1>} u \|_{X_T}. \] \tag{5.9} \]

From the Sobolev embedding theorem and \(\text{(5.7)} \), \(\text{(5.9)} \), we obtain that \(\text{(5.4)} \) can be bounded by

\[\lesssim \left(T^{1/2} \| u \|_{X_T} + (1 + T^{1/2} \| u \|_{X_T}) \| u \|_{X_T} \| P_{\gg 1} u \|_{X_T} \right) \| \tilde{P}_N u \|_{L^2_x L^\infty_t}. \]

Thus, we can bound \(\text{(5.2)} \) by

\[\lesssim \left(T^{1/2} \| u \|_{X_T} + (1 + T^{1/2} \| u \|_{X_T}) \| u \|_{X_T} \| P_{\gg 1} u \|_{X_T} \right) \left(\sum_{N \gg 1} \| P_N u \|^{2}_{L^2_x L^\infty_t} \right)^{1/2} \]

\[\lesssim T^{1/2} \| u \|_{X_T} \| P_{\gg 1} u \|_{X_T} + (1 + T^{1/2} \| u \|_{X_T}) \| u \|_{X_T} \| P_{\gg 1} u \|_{X_T}^{2}, \]

which yields the desired result. \qed

For the first term in \(\text{(5.1)} \), we have the following estimate:
Lemma 5.2. Let \(u \) be a solution of (1.1)-(1.2). Then, we have for any \(k \geq 4 \)
\[
\left(\sum_{N \gg 1} \| P_N (|u|^k - |P_{\leq N} u|^k) u_x \|^2_{L^1_T L^2_x} \right)^{1/2} \lesssim T^\frac{1}{4} \| u \|^k_{X^k_T} \| P_{\gg 1} u \|_{X^k_T} + (1 + T^\frac{1}{4} \| u \|_{X^k_T}) \| u \|^k_{X^k_T} \| P_{\gg 1} u \|_{X_T^k}.
\]
(5.10)

Proof. We split (5.11) into several terms for \(N \gg 1 \) and \(k \geq 4 \)
\[
P_N (|u|^k - |P_{\leq N} u|^k) u_x
= P_N (|u|^{k-2} \bar{u} u x P_{\geq N} u)
+ P_N (|u|^k - |P_{\leq N} u|^k) \bar{u} u x P_{\leq N} u)
+ P_N (|P_{\leq N} u|^{k-2} u_x P_{\leq N} u P_{\geq N} \bar{u}).
\]
(5.12)
(5.13)
(5.14)

Notice that
\[
\| P_{\geq N} u \|_{L^1_T L^2_x} \lesssim \left(\sum_{M \geq N} \| P_M u \|^2_{L^1_T L^2_x} \right)^{1/2} \lesssim \left(\sum_{M \geq N} N^{-2\varepsilon_k} M^{2\varepsilon_k} \| P_M u \|^2_{L^1_T L^2_x} \right)^{1/2}
\lesssim \left(\sum_{M \geq N} N^{-2\varepsilon_k} \| D_x^{\varepsilon_k} P_M u \|^2_{L^1_T L^2_x} \right)^{1/2}
\lesssim N^{-\varepsilon_k} \left(\sum_{M \geq N} \| D_x \| \| P_M u \|^2_{L^1_T L^2_x} \right)^{1/2}
\lesssim N^{-\varepsilon_k} \| P_{\gg 1} u \|_{X_T^k}, \quad \forall k \geq 4,
\]
where \(\varepsilon_k > 0 \) is defined by \(\varepsilon_k = 1/k \).

Thus, for the first term (5.12), from the fact \(\| \tilde{\varphi}_N \|_{L^1_T} \lesssim 1 \) and Proposition 4.1 we have for \(k \geq 4 \)
\[
\| P_N (|u|^{k-2} \bar{u} u_x P_{\geq N} u) \|_{L^1_T L^2_x} \lesssim \| |u|^{k-2} \bar{u} u_x P_{\geq N} u \|_{L^1_T L^2_x}
\lesssim \| |u|^{k-2} \bar{u} u_x \|_{L^1_T L^2_x} \| P_{\geq N} u \|_{L^1_T L^2_x}
\lesssim N^{-\varepsilon_k} \left[T^\frac{1}{4} \| u \|^k_{X^k_T} \| P_{\gg 1} u \|_{X^k_T} + (1 + T^\frac{1}{4} \| u \|_{X^k_T}) \| u \|^k_{X^k_T} \| P_{\gg 1} u \|^2_{X^k_T} \right].
\]

Therefore, we obtain, for any \(k \geq 4 \), that
\[
\left(\sum_{N \gg 1} \| P_N (|u|^{k-2} \bar{u} u_x P_{\geq N} u) \|^2_{L^1_T L^2_x} \right)^{1/2} \lesssim T^\frac{1}{4} \| u \|^k_{X^k_T} \| P_{\gg 1} u \|_{X^k_T} + (1 + T^\frac{1}{4} \| u \|_{X^k_T}) \| u \|^k_{X^k_T} \| P_{\gg 1} u \|^2_{X^k_T}.
\]

For (5.13), in the same way as the case (5.12), we have
\[
\left(\sum_{N \gg 1} \| P_N (|P_{\leq N} u|^{k-2} u_x P_{\leq N} u P_{\geq N} \bar{u}) \|^2_{L^1_T L^2_x} \right)^{1/2} \lesssim T^\frac{1}{4} \| u \|^k_{X^k_T} \| P_{\gg 1} u \|_{X^k_T} + (1 + T^\frac{1}{4} \| u \|_{X^k_T}) \| u \|^k_{X^k_T} \| P_{\gg 1} u \|^2_{X^k_T}.
\]

Now, we derive the estimate for (5.14) by using the induction argument in \(k \).
For $k = 4$, we have
\[|u|^{-2} - |P_{<N}u|^{-2} \lesssim |P_{>N}u|^2 + |P_{<N}uP_{<N}u|. \]

From the Young inequality, the Hölder inequality, (5.6) and Proposition 4.1, we can get for $k = 4$
\[\left\| P_N((|u|^{-2} - |P_{<N}u|^{-2})\bar{u}u_xP_{<N}u) \right\|_{L^1_t L^2_x} \]
\[\lesssim \left\| |u|^{-2} - |P_{<N}u|^{-2} \right\|_{L^{5/4}(L^2_x)} \left\| \bar{u}u_x \right\|_{L^5_t L^2_x} \left\| P_{<N}u \right\|_{L^5_t L^5_x} \]
\[\lesssim \left\| |u|^{-2} - |P_{<N}u|^{-2} \right\|_{L^{5/4}(L^2_x)} \left\| \bar{u}u_x \right\|_{L^5_t L^2_x} \left\| P_{<N}u \right\|_{L^5_t L^5_x} \]
\[\lesssim N^{-1/8} \left\| P_{>1}u \right\|_{X^T}^2 \left\| \bar{u}u_x \right\|_{L^5_t L^2_x} \left\| P_{<N}u \right\|_{L^5_t L^5_x} \]
\[\lesssim N^{-1/8} \left[T_{\frac{k}{2}} \left\| \bar{u}u_x \right\|_{X^T}^2 \left\| P_{>1}u \right\|_{X^T} + (1 + T_{\frac{k}{2}} \left\| u \right\|_{X^T}) \left\| \bar{u}u_x \right\|_{X^T} \left\| P_{>1}u \right\|_{X^T} \right]. \]

From the triangle inequality for complex number, i.e. $|z_1| - |z_2| \lesssim |z_1 - z_2|$ for $z_1, z_2 \in \mathbb{C}$, we can get $|z_1| - |z_2|$ for any $\theta \in (0, 1)$.

For $k \in (4, 5)$, we have
\[\left\| |u|^{-2} - |P_{<N}u|^{-2} \right\|_{L^1_t L^2_x} \]
\[\lesssim \left\| |u|^{-2} - |P_{<N}u|^{-2} \right\|_{L^{5/4}(L^2_x)} \left\| \bar{u}u_x \right\|_{L^5_t L^2_x} \left\| P_{<N}u \right\|_{L^5_t L^5_x} \]
\[\lesssim N^{-\varepsilon_k} \left[T_{\frac{k}{2}} \left\| \bar{u}u_x \right\|_{X^T}^2 \left\| P_{>1}u \right\|_{X^T} + (1 + T_{\frac{k}{2}} \left\| u \right\|_{X^T}) \left\| \bar{u}u_x \right\|_{X^T} \left\| P_{>1}u \right\|_{X^T} \right]. \]

where $\varepsilon_k = (k - 4)/2k$ for $k \in (4, 5)$. By the same procedure, we can obtain for any $k \geq 4$
\[\left\| P_N((|u|^{-2} - |P_{<N}u|^{-2})\bar{u}u_xP_{<N}u) \right\|_{L^1_t L^2_x} \]
\[\lesssim N^{-\varepsilon_k} \left[T_{\frac{k}{2}} \left\| \bar{u}u_x \right\|_{X^T}^2 \left\| P_{>1}u \right\|_{X^T} + (1 + T_{\frac{k}{2}} \left\| u \right\|_{X^T}) \left\| \bar{u}u_x \right\|_{X^T} \left\| P_{>1}u \right\|_{X^T} \right]. \]

where $\varepsilon_k = (k - \hat{k})/2k > 0$. Therefore, we have for any $k \geq 4$
\[\left(\sum_{N \geq 1} \left\| P_N((|u|^{-2} - |P_{<N}u|^{-2})\bar{u}u_xP_{<N}u) \right\|_{L^1_t L^2_x} \right)^{1/2} \]
\[\lesssim T_{\frac{k}{2}} \left\| \bar{u}u_x \right\|_{X^T}^2 \left\| P_{>1}u \right\|_{X^T} + (1 + T_{\frac{k}{2}} \left\| u \right\|_{X^T}) \left\| \bar{u}u_x \right\|_{X^T} \left\| P_{>1}u \right\|_{X^T}. \]

Thus, we have proved the desired result. \square

Remark 5.1. From the proof of Lemma 5.2, we can see that
\[\left(\sum_{N \geq 1} \left\| P_N((|u|^{-2} - |P_{<N}u|^{-2})\bar{u}u_xP_{<N}u) \right\|_{L^1_t L^2_x} \right)^{1/2} \]
holds for any \(\varepsilon \in (0, 1) \) in view of Proposition 4.1.

We turn to the proof of Proposition 5.4 for the nonlinearity \(I_{N, 1} \). We also consider the decomposition in (5.1). For convenience, we denote \(B_N = P_N((P_{\ll N} u)^k \tilde{P}_N u_x) - |P_{\ll N} u|^k P_N \tilde{P}_N u_x). \) From (3.3), (3.11), (3.6) and (3.7), we have

\[
\left(\sum_{N \gg 1} \left\| \int_0^t S(t - \tau) e^{-\frac{\partial}{\partial \tau}} f_{-\infty}^\tau |P_{\ll N} u|^k dy B_N d\tau \right\|_{Y_T}^2 \right)^{1/2} \\
\lesssim \left(\sum_{N \gg 1} \| B_N \|_{L_t^1 L_x^\infty}^2 + \left(\sum_{N \gg 1} \left(\sum_M \| P_M(e^{-\frac{\partial}{\partial x}} f_{-\infty}^\tau |P_{\ll N} u|^k dy B_N) \right)_{L_t^1 L_x^\infty}^2 \right)^{1/2} \right).
\]

(5.17)

By Lemma 5.1, the first term can be bounded by

\[
\lesssim T^{\frac{1}{2}} \| u \|_{X_T}^k \| P_{\gg 1} u \|_{X_T} + (1 + T^{\frac{1}{2}} \| u \|_{X_T}) \| u \|_{X_T}^{k-1} \| P_{\gg 1} u \|_{X_T}^2.
\]

For the second term, we split the sum \(\sum_M \) into three parts \(\sum_{M \sim N} + \sum_{M \ll N} + \sum_{M \gg N} \) as in (14). For the part of \(M \sim N \), it is the same as Lemma 5.1 by summing in \(M \) such that \(M \sim N \). For the part \(M \ll N \), we can add the projection operator \(P_{\ll N} \) to \(e^{-\frac{\partial}{\partial x}} f_{-\infty}^\tau |P_{\ll N} u|^k dy \) since \(B_N \) has Fourier support in \(|\xi| \sim N \). Thus, by the Hölder inequality, we have

\[
\left(\sum_{N \gg 1} \left(\sum_{M \ll N} \| P_M(e^{-\frac{\partial}{\partial x}} f_{-\infty}^\tau |P_{\ll N} u|^k dy B_N) \right)_{L_t^1 L_x^\infty}^2 \right)^{1/2} \\
\lesssim \left(\sum_{N \gg 1} \left(\sum_{M \ll N} \| P_{\ll N} e^{-\frac{\partial}{\partial x}} f_{-\infty}^\tau |P_{\ll N} u|^k dy B_N \right)_{L_t^1 L_x^\infty}^2 \right)^{1/2} \\
\lesssim \left(\sum_{N \gg 1} (\ln N)^2 \| P_{\ll N} e^{-\frac{\partial}{\partial x}} f_{-\infty}^\tau |P_{\ll N} u|^k dy \|_{L_t^{1/(1-\varepsilon)} L_x^\infty}^2 \| B_N \|_{L_t^{1/(1-\varepsilon)} L_x^\infty}^2 \right)^{1/2},
\]

(5.18)

where \(\varepsilon \in (0, 1/k) \).

By the Bernstein inequality, we have

\[
N \| P_{\ll N} e^{-\frac{\partial}{\partial x}} f_{-\infty}^\tau |P_{\ll N} u|^k dy \|_{L_t^{1/k} L_x^\infty} \lesssim \| \partial_x P_{\ll N} e^{-\frac{\partial}{\partial x}} f_{-\infty}^\tau |P_{\ll N} u|^k dy \|_{L_t^{1/k} L_x^\infty} \\
\lesssim \| P_{\ll N} u \|_{L_t^{1/k} L_x^\infty}^k \lesssim \| u \|_{X_T}^k,
\]

and from (5.3) and the Hölder inequality, we can get, as a similar way as in (5.4), that

\[
\| B_N \|_{L_t^{1/(1-\varepsilon)} L_x^\infty} = \|(P_{\ll N} u)^k \|_{L_t^{2/(1-2\varepsilon)} L_x^\infty} \| \tilde{P}_N u \|_{L_t^2 L_x^\infty} \\
\lesssim \| P_{\ll N} u \|_{L_t^{2/(1-2\varepsilon)} L_x^\infty} \| P_{\ll N} u_x \|_{L_t^1 L_x^\infty} \| \tilde{P}_N u \|_{L_t^1 L_x^\infty} \\
\lesssim \left(T^{\frac{1}{2}} \| u \|_{X_T}^k + (1 + T^{\frac{1}{2}} \| u \|_{X_T}) \| u \|_{X_T}^{k-1} \| P_{\gg 1} u \|_{X_T} \| P_N u \|_{L_t^2 L_x^\infty}.
\]

Similarly, from (3.5), (3.11), (3.6) and (3.7), we can get

\[A \]

For the part in (5.1), we denote it by

\[B \]

Thus, (5.18) can be bounded by

\[C. C. HAO \]

\[M \]

In a similar way with the part

\[F \]

Therefore, we have obtained

\[G \]

Noticing that (5.16), and in the same way as in dealing with the second term of

\[H \]

For the part

\[I \]

For the part

\[J \]

In a similar way with the part

\[K \]

Therefore, we have obtained

\[L \]

From Lemma [5.2], the first term is bounded by

\[M \]

Noticing that (5.19), and in the same way as in dealing with the second term of

\[N \]

Therefore, we have obtained

\[O \]
5.2. Nonlinear estimates of $I_{N,2}$. From (3.4), (3.8), (3.9) and (3.10), we have

$$
\left(\sum_{N \geq 1} \left\| \int_0^t S(t-\tau) I_{N,2}(\tau) d\tau \right\|_{L_T^2} \right)^{1/2}
$$

$$
\lesssim \left(\sum_{N \geq 1} \left\| e^{-i \frac{\partial}{\partial x} \int_{-\infty}^{x} |P_{\leq N} u|^4 dy} P_{\leq N} u B_{N,2} \right\|_{L_T^2 H_x^{1/2}} \right)^{1/2}
$$

$$
+ \left(\sum_{N \geq 1} \left(\sum_M \left\| P_M(e^{-i \frac{\partial}{\partial x} \int_{-\infty}^{x} |P_{\leq N} u|^4 dy} P_{\leq N} u B_{N,2}) \right\|_{L_T^2 H_x^{1/2}} \right)^2 \right)^{1/2},
$$

(5.20)

where $B_{N,2} = \int_{-\infty}^{x} |P_{\leq N} u|^{k-4} \left[(\overline{P_{\leq N} u_x} P_{\leq N} u)^2 - (P_{\leq N} u_x \overline{P_{\leq N} u})^2 \right] dy$. For the first term (5.20), from Lemma 5.3 and the Hölder inequality, it can be bounded by

$$
\lesssim \sum_{N \geq 1} \left\| P_{\leq N} u B_{N,2} \right\|_{L_T^2 L_x^2}^2
$$

$$
+ \left\| P_{\leq N} u B_{N,2} \right\|_{L_T^2 L_x^2} \left\| \partial_x(e^{-i \frac{\partial}{\partial x} \int_{-\infty}^{x} |P_{\leq N} u|^4 dy} P_{\leq N} u B_{N,2}) \right\|_{L_T^2 L_x^2}^{1/2}
$$

$$
\lesssim \left(\sum_{N \geq 1} \left\| P_{\leq N} u \right\|_{L_T^\infty L_x^2}^2 \| B_{N,2} \|_{L_T^2 L_x^\infty}^2 + \left\| P_{\leq N} u \right\|_{L_T^2 H_x^{1/2}} \| B_{N,2} \|_{L_T^2 L_x^\infty}^2
$$

$$
+ \left\| P_{\leq N} u \right\|_{L_T^\infty L_x^2} \| B_{N,2} \|_{L_T^2 L_x^\infty} \left\| P_{\leq N} u \right\|_{L_T^2 L_x^\infty}^{k-4} \left\| P_{\leq N} u \right\|_{L_T^2 L_x^\infty}^{2(k-1)} \left\| P_{\leq N} u \right\|_{L_T^2 L_x^\infty}^{2(k-1)}
$$

$$
+ \left\| P_{\leq N} u \right\|_{L_T^\infty L_x^2} \| B_{N,2} \|_{L_T^2 L_x^\infty} \left\| P_{\leq N} u \right\|_{L_T^2 L_x^\infty} \left\| \partial_x B_{N,2} \right\|_{L_T^2 L_x^\infty} \right)^{1/2}.
$$

(5.22)

By the Hölder inequality, we have for $k \geq 5$

$$
\| B_{N,2} \|_{L_T^\infty L_x^\infty} \lesssim \left\| (\overline{P_{\leq N} u_x} P_{\leq N} u)^2 - (P_{\leq N} u_x \overline{P_{\leq N} u})^2 \right\|_{L_T^1} \lesssim \left\| P_{\leq N} u \right\|_{L_T^\infty L_x^2}^{k-4} \left\| P_{\leq N} u \right\|_{L_T^\infty L_x^\infty}^{2(k-1)}
$$

$$
\lesssim \left(T \left\| u \right\|_{X_T}^k \right) \left(1 + T^{\frac{k}{4}} \left\| u \right\|_{X_T} \right)^2 \left\| u \right\|_{X_T}^{k-2} \left\| P_{\geq 1} u \right\|_{X_T}^2,
$$

(5.23)

and from Proposition 4.1 and the proof of Lemma 5.1

$$
\left\| P_{\leq N} u \right\|_{L_T^\infty L_x^2} \left\| \partial_x B_{N,2} \right\|_{L_T^2 L_x^\infty}
$$

$$
= \left\| P_{\leq N} u \right\|_{L_T^\infty L_x^2} \left\| (\overline{P_{\leq N} u_x} P_{\leq N} u)^2 - (P_{\leq N} u_x \overline{P_{\leq N} u})^2 \right\|_{L_T^2 L_x^\infty}
$$

$$
\lesssim \left\| P_{\leq N} u_x \right\|_{L_T^\infty L_x^2} \left\| P_{\leq N} u_x \right\|_{L_T^2 L_x^\infty} \left\| P_{\leq N} u \right\|_{L_T^2 L_x^\infty}^{k-2} \left\| P_{\leq N} u \right\|_{L_T^2 L_x^\infty}^{2(k-1)}
$$

$$
\lesssim \left\| P_{\leq N} u_x \right\|_{L_T^\infty L_x^2} \left[T^{\frac{k}{4}} \left\| u \right\|_{X_T}^k \right] \left(1 + T^{\frac{k}{4}} \left\| u \right\|_{X_T} \right) \left\| u \right\|_{X_T}^{k-1} \left\| P_{\geq 1} u \right\|_{X_T}.
$$

Thus, we can bound (5.20) by

$$
\lesssim (1 + \left\| u \right\|_{X_T}^k) \left(T^{1/2} \left\| u \right\|_{X_T} \left\| P_{\geq 1} u \right\|_{X_T} \right) + \left(1 + T^{\frac{k}{4}} \left\| u \right\|_{X_T} \right)^2 \left\| u \right\|_{X_T}^{k-2} \left\| P_{\geq 1} u \right\|_{X_T}.
$$
For \((5.21)\), we split the sum \(\sum_{M} \) into two parts \(\sum_{M \leq N} + \sum_{M \gg N}\); which gives the bound by

\[
\lesssim \left(\sum_{N \gg 1} \left(\sum_{M \leq N} \langle M \rangle^{k} \|P_{N}uB_{N,2}\|_{L_{t}^{1}L_{x}^{2}} \right)^{2} \right)^{1/2} \tag{5.24}
\]

\[
+ \left(\sum_{N \gg 1} \left(\sum_{M \gg N} \|P_{M}(D_{x})^{1}e^{-\frac{i}{4} \int_{-\infty}^{x} P_{\leq N}|u|^k dy}P_{N}uB_{N,2}\|_{L_{t}^{1}L_{x}^{2}} \right)^{2} \right)^{1/2} \tag{5.25}
\]

For the first term \((5.24)\), noticing that \(\sum_{M \leq N} \langle M \rangle^{k} \lesssim N^{1/2}\) and \((5.23)\), we can bound it by

\[
\lesssim \left(\sum_{N \gg 1} \left(\left\|D_{x}^{1}P_{N}u\right\|_{L_{t}^{\infty}L_{x}^{\infty}} \left\|B_{N,2}\|_{L_{t}^{1}L_{x}^{2}} \right) \right)^{2} \right)^{1/2}
\]

\[
\lesssim \|u\|_{X_{T}}^{k} \|P_{\gg 1}u\|_{X_{T}}. \]

For the second term \((5.25)\), in a similar way with \((5.22)\), we bound it by

\[
\lesssim \left(\sum_{N \gg 1} \left(\sum_{M \gg N} M^{-\frac{k}{2}} \|P_{M}(D_{x})e^{-\frac{i}{4} \int_{-\infty}^{x} P_{\leq N}|u|^k dy}P_{N}uB_{N,2}\|_{L_{t}^{1}L_{x}^{2}} \right)^{2} \right)^{1/2}
\]

\[
\lesssim \left(\sum_{N \gg 1} \|P_{N}uB_{N,2}\|_{L_{t}^{1}L_{x}^{2}}^{2} + \left\|\partial_{x}e^{-\frac{i}{4} \int_{-\infty}^{x} P_{\leq N}|u|^k dy}P_{N}uB_{N,2}\|_{L_{t}^{1}L_{x}^{2}} \right)^{2} \right)^{1/2}
\]

\[
\lesssim (1 + \|u\|_{X_{T}}^{k}) \left(T^{1/2} \|u\|_{X_{T}}^{k} \|P_{\gg 1}u\|_{X_{T}} + (1 + T^{\frac{k}{4}} \|u\|_{X_{T}} \right)^{2} \|u\|_{X_{T}}^{k-2} \|P_{\gg 1}u\|_{X_{T}}^{3}. \]

Therefore, we obtain

\[
\left(\sum_{N \gg 1} \int_{0}^{T} S(t-\tau)I_{N,2}(\tau) d\tau \right)^{2} \lesssim (1 + \|u\|_{X_{T}}^{k}) \left(T^{1/2} \|u\|_{X_{T}}^{k} \|P_{\gg 1}u\|_{X_{T}} + (1 + T^{\frac{k}{4}} \|u\|_{X_{T}} \right)^{2} \|u\|_{X_{T}}^{k-2} \|P_{\gg 1}u\|_{X_{T}}^{3}. \]

5.3. Nonlinear estimates of \(I_{N,3}\). From \((3.21)\), \((8.8)\), \((3.9)\) and \((3.10)\), we have

\[
\left(\sum_{N \gg 1} \int_{0}^{T} S(t-\tau)I_{N,3}(\tau) d\tau \right)^{2} \lesssim \left(\sum_{N \gg 1} \left\|e^{-\frac{i}{4} \int_{-\infty}^{x} P_{\leq N}|u|^k dy}P_{N}uB_{N,3}\|_{L_{t}^{1}H_{x}^{1/2}} \right)^{2} \right)^{1/2} \tag{5.26}
\]

\[
\lesssim \left(\sum_{N \gg 1} \left\|P_{N}(e^{-\frac{i}{4} \int_{-\infty}^{x} P_{\leq N}|u|^k dy}P_{N}uB_{N,3})\|_{L_{t}^{1}H_{x}^{1/2}} \right)^{2} \right)^{1/2}, \tag{5.27}
\]

where \(B_{N,3} = \int_{-\infty}^{x} P_{\leq N}|u|^{k-2} P_{\leq N}|u|^{k}(u_{x} + \bar{u}) dy\). By Hölder inequality, we get

\[
\|B_{N,3}\|_{L_{t}^{1}L_{x}^{2}} \lesssim \|P_{\leq N}|u|^{k-2} P_{\leq N}|u|^{k}(u_{x} + \bar{u})\|_{L_{t}^{1}L_{x}^{2}}.
\]
\[\lesssim T^{\frac{1}{2}} \| P_{\leq N} u \|_{L_x^{k-2} L_t^{\infty}}^{k-2} \| P_{\leq N} u | u|^k (u_x + \bar{u}_x) \|_{L_x^{(k-2)/k} L_t^1}. \]

\[\lesssim T^{\frac{1}{2}} \| P_{\leq N} u \|_{L_x^{k-2} L_t^{\infty}}^{k-2} \| u \|_{L_x^{(k-2)/k} L_t^\infty} \| u_x \|_{L_x^\infty L_t^1}. \]

\[\lesssim T^{\frac{1}{2}} \| u \|_{L_x^{2k-1} L_t^\infty}. \]

From the Hölder inequality and Proposition \[\text{[4.4]}\], we have
\[\| \partial_x B_{N, 3} \|_{L_x^2 L_t^2} = \| P_{\leq N} u \|_{L_x^{k-2} L_t^{\infty}}^{k-2} \| P_{\leq N} u | u|^k (u_x + \bar{u}_x) \|_{L_x^2 L_t^2}. \]

\[\lesssim \| P_{\leq N} u \|_{L_x^{k-2} L_t^{\infty}}^{k-2} \| u \|_{L_x^{(k-2)/k} L_t^\infty} \| \bar{u}_x \|_{L_x^{(k-2)/k} L_t^\infty} \]

\[\lesssim T^{\frac{1}{2}} \| u \|_{L_x^{2k-1} L_t^\infty}^{2k-1} + (1 + T^{\frac{1}{2}} \| u \|_{L_t^\infty}) \| P_{\geq 1} u \|_{L_t^\infty}^{2}. \]

In addition, for \(N \gg 1 \), we have \(\| P_N u \|_{L_x^2 L_t^2} \lesssim \| P_N u_x \|_{L_x^2 L_t^2} \). Thus, in the same way as in the case \(I_{N, 2} \), we can bound \[\text{(5.20)}\] by
\[\lesssim T^{\frac{1}{2}} \| u \|_{L_x^{2k-1} L_t^\infty}^{2k-1} \| P_{\geq 1} u \|_{L_t^\infty}^{2}. \]

5.4. Nonlinear estimates of \(I_{N, 4} \). From \[\text{(3.5)}, \text{(8.11)}, \text{(5.6)} \text{ and } \text{(3.7)}, \] we have
\[\left(\sum_{N \gg 1} \left\| \int_0^T S(t - \tau) e^{-it \Delta} f_x \infty | P_{\leq N} u |^4 \, dy B_{N, 4} d\tau \right\|_{L_t^{\infty}} \right)^{1/2} \]
\[\leq \left(\sum_{N \gg 1} \| B_{N, 4} \|_{L_x^2 L_t^2} \right)^{1/2}
\]
\[+ \left(\sum_{N \gg 1} \left(\sum_M \| P_M (e^{-it \Delta} f_x \infty | P_{\leq N} u |^4 \, dy B_{N, 4}) \|_{L_t^{\infty}} \right)^{1/2} \right)^{1/2}, \quad (5.29) \]

where \(B_{N, 4} = | P_{\leq N} u |^{k-2} P_N u P_{\leq N} u \mathcal{F} \). By the Hölder inequality, we have
\[\| B_{N, 4} \|_{L_x^2 L_t^2} \lesssim \| P_{\leq N} u \|_{L_x^{k-2} L_t^{\infty}}^{k-2} \| P_N u \|_{L_x^k L_t^\infty} \| P_{\leq N} u \mathcal{F} \|_{L_x^2 L_t^\infty}. \]

\[\lesssim \left[T^{\frac{1}{2}} \| u \|_{L_x^k} + (1 + T^{\frac{1}{2}} \| u \|_{L_t^\infty}) \| u \|_{L_x^k} \right] \| P_{\geq 1} u \|_{L_t^\infty}. \]

Thus, the first term in \[\text{(5.20)}\] can be bounded by
\[\lesssim T^{\frac{1}{2}} \| u \|_{L_x^k} \| P_{\geq 1} u \|_{L_t^\infty} + (1 + T^{\frac{1}{2}} \| u \|_{L_t^\infty}) \| u \|_{L_x^k} \| P_{\geq 1} u \|_{L_t^\infty}. \]

By the Hölder inequality, we get
\[\| B_{N, 4} \|_{L_x^2 L_t^2} \lesssim \| P_{\leq N} u \|_{L_x^{k-2} L_t^\infty} \| P_N u \|_{L_x^k L_t^\infty} \| P_{\leq N} u \mathcal{F} \|_{L_x^2 L_t^\infty}. \]

\[\lesssim \left[T^{\frac{1}{2}} \| u \|_{L_x^k} + (1 + T^{\frac{1}{2}} \| u \|_{L_t^\infty}) \| u \|_{L_x^k} \right] \| P_{\geq 1} u \|_{L_t^\infty}. \]

Noticing that \(B_{N, 4} \) has Fourier support in \(|\xi| \sim N\), we can repeat the procedure which we use to deal with the second term in \[\text{(5.17)}, \] and obtain that the second term in \[\text{(5.20)}\] can be bounded by
\[\lesssim T^{\frac{1}{2}} \| u \|_{L_x^2} \| P_{\geq 1} u \|_{L_t^\infty} + (1 + T^{\frac{1}{2}} \| u \|_{L_t^\infty}) \| u \|_{L_x^2} \| P_{\geq 1} u \|_{L_t^\infty}. \]
Therefore, we obtain
\[
\left(\sum_{N \gg 1} \left\| \int_0^t S(t-\tau)I_{N,4}(\tau) d\tau \right\|^2_{Y_T} \right)^{1/2} \lesssim (1 + \|u\|_{X_T}^k) \left[T^k \|u\|_{X_T}^k \|P_{\geq 1}u\|_{X_T} + (1 + T^k \|u\|_{X_T}) \|u\|_{X_T}^{k-1} \|P_{\geq 1}u\|_{X_T}^2 \right].
\]

5.5. **Nonlinear estimates of** $I_{N,5}$. From (3.5), (3.11), (3.6) and (3.7), we have
\[
\left(\sum_{N \gg 1} \left\| \int_0^t S(t-\tau)e^{-\frac{\tau}{T}} \int_0^\infty |P_{\leq N}u|^4 dy B_{N,5} d\tau \right\|^2_{Y_T} \right)^{1/2} \lesssim \left(\sum_{N \gg 1} \|B_{N,5}\|_{L^1_tL^2_x}^2 \right)^{1/2} + \left(\sum_{N \gg 1} \left(\sum_M \|P_M(e^{-\frac{T}{N}} \int_0^\infty |P_{\leq N}u|^4 dy B_{N,5})\|_{L^1_tL^2_x} \right)^2 \right)^{1/2},
\]
where $B_{N,5} = |P_{\leq N}u|^{2k} P_Nu$. By the Hölder inequality, we have
\[
\|B_{N,5}\|_{L^1_tL^2_x} \lesssim T^{k} \|P_{\leq N}u\|_{L^4_tL^\infty_x}^{2k} \|P_Nu\|_{L^2_tL^\infty_x}
\lesssim T^{k} \|u\|_{L^2_tL^\infty_x}^{2k} \|P_Nu\|_{L^2_tL^\infty_x},
\]
and
\[
\|B_{N,5}\|_{L^1_tL^2_x} \lesssim T^{k} \|P_{\leq N}u\|_{L^4_tL^\infty_x}^{2k} \|P_Nu\|_{L^2_tL^\infty_x}
\lesssim T^{k} \|u\|_{L^2_tL^\infty_x}^{2k} \|P_Nu\|_{L^2_tL^\infty_x}.
\]
Thus, in a similar way as dealing with $I_{N,1}$ and $I_{N,4}$, and noticing that $B_{N,5}$ has Fourier support in $|\xi| \sim N$, we can bound (5.30) by
\[
\lesssim T^{k} \|u\|_{X_T}^{3k} \|P_{\geq 1}u\|_{X_T}.
\]

6. **A priori estimates for solutions.** By the scaling argument
\[
u(t, x) \mapsto u_\gamma(t, x) = \frac{1}{\gamma^{1/k}} u \left(\frac{t}{\gamma}, \frac{x}{\gamma} \right),
\]
we have
\[
\|u_{0,\gamma}\|_{L^2} = \gamma^{\frac{1}{2} - \frac{1}{k}} \|u_0\|_{L^2},
\]
\[
\|u_{0,\gamma}\|_{H^{\frac{1}{2}}} = \frac{1}{\gamma^{1/k}} \|u_0\|_{H^{\frac{1}{2}}}.
\]
Thus, we may rescale
\[
\|P_{\leq 1}u_{0,\gamma}\|_{L^2} \lesssim \gamma^{\frac{1}{2} - \frac{1}{k}} \|u_0\|_{L^2} = \mathcal{C}_{low},
\]
\[
\|P_{\geq 1}u_{0,\gamma}\|_{H^{\frac{1}{2}}} \lesssim \frac{1}{\gamma^{1/k}} \|u_0\|_{H^{\frac{1}{2}}} < \mathcal{C}_{high} \ll 1,
\]
where we choose $\gamma = \gamma(\|u_0\|_{H^{1/2}}) \gg 1$, and take the time interval T depending on γ later. We now drop the writing of the scaling parameter γ and assume
\[
\|P_{\leq 1}u_0\|_{L^2} \leq \mathcal{C}_{low}.
\]
We now apply this to the norms X_T and $H^{1/2}$, and define new version of the norms of X_T and $H^{1/2}$, given by with the decomposition $I = P_{\leq 1} + P_{\gg 1}$,

$$||u||_{X_T} = \frac{1}{C_{low}} ||P_{\leq 1}u||_{X_T} + \frac{1}{C_{high}} ||P_{\gg 1}u||_{X_T},$$

and

$$||\phi||_{H^{1/2}} = \frac{1}{C_{low}} ||P_{\leq 1}\phi||_{L^2} + \frac{1}{C_{high}} ||P_{\gg 1}\phi||_{H^{1/2}},$$

which implies that $||u_0||_{H^{1/2}} \leq 2$.

For the low frequency part, we have the following estimates.

Lemma 6.1. Let u be a solution of (1.1)–(1.2). Then

$$||P_{\leq 1}u||_{X_T} \lesssim C_{low} + T^{1/2} ||u||^{k+1}_{X_T}.$$

Proof. Using the integral equation of (1.1)

$$u(t) = S(t)u_0 - \chi \int_0^t S(t - \tau)|u(\tau)|^k u_x(\tau)d\tau,$$

and by (3.1), (3.2), (3.3), (3.8), (3.9), (3.10) and the Hölder inequality, we have

$$||P_{\leq 1}u||_{X_T} \lesssim ||S(t)P_{\leq 1}u_0||_{X_T} + \int_0^t S(t - \tau)P_{\leq 1}(|u|^k u_x)(\tau)d\tau_{X_T}$$

$$\lesssim ||P_{\leq 1}u_0||_{L^2} + ||P_{\leq 1}(|u|^k u_x)||_{L^1_T H^{1/2}} \lesssim C_{low} + ||u||^k ||u_x||_{L^2_T H^{1/2}}$$

$$\lesssim C_{low} + T^{1/2} ||u||^{k} ||u_x||_{L^2_T H^{1/2}}$$

$$\lesssim C_{low} + T^{1/2} ||u||^{k+1}_{X_T},$$

which is the desired result.

For the high frequency part, we have

Lemma 6.2. Let u and v_N be given in (2.1). Then

$$||P_{\gg 1}u||_{X_T} \lesssim (1 + ||u||^{2k}_{L_T^2 H^{1/2}}) \left(\sum_{N \gg 1} ||v_N||^2_{Y_T} \right)^{1/2}.$$

Proof. By (2.1), we have

$$P_N u = e^{i t \phi} \int_0^t \sum_{|\xi| \leq N} |p_{\xi} u|^{k} d\eta_{\xi} v_N.$$

For $L_T^2 H^{1/2}_x$-norm, by the interpolation theorem, we obtain for $N \gg 1$,

$$||P_N u||_{H^{1/2}} \lesssim ||P_N u||^{1/2}_{L^2_T} ||P_N u||^{1/2}_{H^1} \lesssim ||v_N||^{1/2}_{L^2_T} (||P_N u||_{L^2_T} + ||\partial_x P_N u||_{L^2_T})^{1/2}$$

$$\lesssim ||v_N||^{1/2}_{L^2_T} \left(||v_N||_{L^2_T} + ||P_{\leq N} u_k v_N||_{L^2_T} + ||\partial_x v_N||_{L^2_T} \right)^{1/2}$$

$$\lesssim ||v_N||^{1/2}_{L^2_T} \left(||P_{\leq N} u||_{L^2_T} ||v_N||_{H^1_T} + ||v_N||_{H^1_T} \right)^{1/2}$$

$$\lesssim \left(1 + ||P_{\leq N} u||_{H^{1/2}} \right)^{1/2} ||v_N||_{H^{1/2}} \lesssim \left(1 + ||P_{\leq N} u||_{H^{1/2}} \right) ||v_N||_{H^{1/2}},$$

which yields the desired estimate by summing on l_N^2.

For the $L^\infty_x L^2_T$-norm, noticing that

$$\partial_x P_N u = e^{\frac{i}{2} \int_{-\infty}^{\infty} [P_{\ll N} u]^k dy} (\partial_x v_N + \frac{i\lambda}{2} [P_{\ll N} u]^k v_N),$$

we have

$$\|\partial_x P_N u\|_{L^\infty_x L^2_T} \lesssim \|\partial_x v_N\|_{L^\infty_x L^2_T}$$

$$+ \left\| P^1_N \left(\sum_{N_1} P_{N_1} \left(e^{\frac{i}{2} \int_{-\infty}^{\infty} [P_{\ll N} u]^k dy} [P_{\ll N} u]^k \sum_{N_2} P_{N_2} v_N \right) \right) \right\|_{L^\infty_x L^2_T}. \quad (6.1)$$

To estimate the second term $\|(6.1)\|_\infty$, we split the sum $\sum_{N_2} = \sum_{N_2 \sim N} + \sum_{N_2 \gg N}$. For $N_2 \sim N$, from the Bernstein inequality, we bound $\|(6.1)\|_\infty$ by

$$\lesssim \left\| \sum_{N_2 \sim N} [P_{\ll N} u]^k \sum_{N_2} P_{N_2} v_N \right\|_{L^\infty_x L^2_T} \lesssim \left\| P_{\ll N} u \right\|_{L^\infty_x L^2_T} \sum_{N_2 \sim N} \|P_{N_2} v_N\|_{L^\infty_x L^2_T}$$

$$\lesssim N \left\| D_x^{-1/k} P_{\ll N} u \right\|_{L^\infty_x L^2_T} \sum_{N_2 \sim N} \|P_{N_2} v_N\|_{L^\infty_x L^2_T}$$

$$\lesssim \left\| P_{\ll N} u \right\|_{L^\infty_x H^{1/2}_T} \sum_{N_2 \sim N} \|P_{N_2} \partial_x v_N\|_{L^\infty_x L^2_T}$$

$$\lesssim \|u\|_{L^\infty_x H^{1/2}_T} \sum_{N_2 \sim N} \|P_{N_2} \partial_x v_N\|_{L^\infty_x L^2_T}.$$
Therefore, summing on \(l \), we complete the proof for the \(L^\infty L^2_T \)-norm.

For the \(L^2_T L^\infty_x \)-norm, it is easy to obtain the desired result since \(|P_N u| = |v_N|\).

We turn to estimate the \(L^4_T L^\infty_x \)-norm. It is similar with the proof for the \(L^\infty_T L^2_x \)-norm, since \(\| (D_x)^{1/4} P_N u \|_{L^1_T L^4_x} \sim N^{1/4} \| P_N u \|_{L^4_T L^2_x} \) for \(N \gg 1 \). In fact, we have

\[
\left\| (D_x)^{1/4} P_N u \right\|_{L^1_T L^4_x} \sim N^{1/4} \left\| \sum_{N_1} P_{N_1} \left(e^{\frac{i\lambda}{2} \int_{-\infty}^x \langle |P_{\leq N} u| \rangle^4 dy} \right) \sum_{N_2} P_{N_2} v_N \right\|.
\]

We also split \(\sum_{N_2} = \sum_{N_2 \sim N} + \sum_{N_2 \gg N} \). For \(N_2 \sim N \), we bound (6.3) by

\[
\lesssim N^{1/4} \sum_{N_2 \sim N} \| P_{N_2} v_N \|_{L^1_T L^4_x} \lesssim \left\| (D_x)^{1/4} v_N \right\|_{L^1_T L^4_x}.
\]

For the part \(N_2 \sim N \), we split it as \(\sum_{N_2 \sim N} = \sum_{N_2 \lesssim N} + \sum_{N_2 \gg N} \). Noticing that for \(N_2 \ll N \),

\[
\tilde{P}_N \left(\sum_{N_1} P_{N_1} \left(e^{\frac{i\lambda}{2} \int_{-\infty}^x \langle |P_{\leq N} u| \rangle^4 dy} \right) \sum_{N_2} P_{N_2} v_N \right)
\]

and for \(N_2 \gg N \),

\[
= \tilde{P}_N \left(\sum_{N_1 \sim N_2 \gg N} P_{N_1} \left(e^{\frac{i\lambda}{2} \int_{-\infty}^x \langle |P_{\leq N} u| \rangle^4 dy} \right) P_{N_2} v_N \right),
\]

we can bound (6.3), in view of the Bernstein inequality and the Hölder inequality, by

\[
\lesssim \left\| (D_x)^{1/4} v_N \right\|_{L^1_T L^4_x} + N^{1/4} \left\| P_{\leq N} \left(e^{\frac{i\lambda}{2} \int_{-\infty}^x \langle |P_{\leq N} u| \rangle^4 dy} \right) P_{\leq N} v_N \right\|_{L^\infty_T L^4_x} + \sum_{N_1 \sim N_2 \gg N} \left\| P_{N_1} \left(e^{\frac{i\lambda}{2} \int_{-\infty}^x \langle |P_{\leq N} u| \rangle^4 dy} \right) P_{N_2} v_N \right\|_{L^1_T L^4_x}
\]

\[
\lesssim \left\| (D_x)^{1/4} v_N \right\|_{L^1_T L^4_x} + N^{-3/4} \left\| P_{\leq N} u \right\|_{L^\infty_T L^4_x} \left\| (D_x)^{1/4} P_{\leq N} v_N \right\|_{L^4_T L^\infty_x} + \sum_{N_1 \sim N_2 \gg N} N_1^{-1/3} N_2^{-1/3} N^{-1/3} \left\| P_{\leq N} u \right\|_{L^\infty_T L^4_x} \left\| (D_x)^{1/4} P_{N_2} v_N \right\|_{L^4_T L^\infty_x}
\]

\[
\lesssim (1 + \| u \|_{L^\infty_T H^{1/2}_x}) \left\| (D_x)^{1/4} v_N \right\|_{L^4_T L^\infty_x},
\]

which yields the desired estimate by applying \(I_N^2 \)-sum.

Thus, we complete the proof of this Lemma.

Of course, we need the following estimate of the data.
Lemma 6.3. For any $u_0 \in H^{1/2}$, we have

$$\left(\sum_{N \geq 1} \left\| \left(e^{-\frac{i}{N} \int_{-\infty}^{x} |P_{\leq N} u_0|^4 dy} P_N u_0 \right)^2 \|_{L^2_{x, t}} \right\|^{1/2}_{L^2_{x, t}} \right)^2 \lesssim (1 + \|u_0\|_{H^{1/2}}^2) \|P_{\geq 1} u_0\|_{H^{1/2}}. \quad (6.5)$$

Proof. From (3.1), (3.2) and (3.3), we bound the left hand side of (6.5) by

$$\left(\sum_{N \geq 1} \left\| e^{-\frac{i}{N} \int_{-\infty}^{x} |P_{\leq N} u_0|^4 dy} P_N u_0 \right\|_{H^{1/2}}^2 \right)^{1/2} \quad (6.6)$$

and

$$+ \left(\sum_{N \geq 1} \left(\sum_{M} \left\| P_M \left(e^{-\frac{i}{N} \int_{-\infty}^{x} |P_{\leq N} u_0|^4 dy} P_N u_0 \right) \right\|_{H^{1/2}}^2 \right)^{1/2} \right. \quad (6.7)$$

From Lemma 3.3, we have

$$\lesssim \left(\sum_{N \geq 1} \left\| P_{\leq N} u_0 \right\|_{L^2_{x, t}}^{2} \left\| P_N u_0 \right\|_{L^4_{x}}^2 + \left\| P_N u_0 \right\|_{H^{1/2}}^2 \right)^{1/2} \lesssim (1 + \|u_0\|_{H^{1/2}}^2) \|P_{\geq 1} u_0\|_{H^{1/2}}. \quad (6.8)$$

For the second term (6.7), it is similar with (6.4). We split the sum $\sum_{M} = \sum_{M \leq N} + \sum_{M \geq N}$. By the Bernstein inequality, the Hölder inequality and the Sobolev embedding theorem, we bound (6.7) by

$$\lesssim \left(\sum_{N \geq 1} \left(\sum_{M \leq N} \left\| \sum_{M \leq N} \frac{1}{M} \left\| P_N u_0 \|_{L^2_{x, t}}^2 \right\|^{1/2} \right) \right)^2$$

$$+ \left(\sum_{N \geq 1} \left(\sum_{M \geq N} \left\| \sum_{M \geq N} \frac{1}{M} \left\| P_N u_0 \|_{L^2_{x, t}}^2 \right\|^{1/2} \right) \right)^2$$

$$\lesssim \left(\sum_{N \geq 1} \left(N^{1/2} \left\| P_N u_0 \|_{L^2_{x, t}}^2 \right\|^{1/2} \right) \right)^2$$

$$+ \left(\sum_{N \geq 1} \left(\sum_{M \geq N} \left\| P_{M} \left(e^{-\frac{i}{N} \int_{-\infty}^{x} |P_{\leq N} u_0|^4 dy} P_N u_0 \right) \right\|_{L^2_{x, t}}^2 \right)^{1/2} \right)$$

$$\lesssim \left(\sum_{M \geq 1} \left(\sum_{M \geq N} \left\| \sum_{M \geq N} \frac{1}{M} \left\| P_N u_0 \|_{L^2_{x, t}}^2 \right\|^{1/2} \right) \right)^2$$

$$+ \left(\sum_{N \geq 1} \left(\sum_{M \geq N} \left\| P_{M} \left(e^{-\frac{i}{N} \int_{-\infty}^{x} |P_{\leq N} u_0|^4 dy} P_N u_0 \right) \right\|_{L^2_{x, t}}^2 \right)^{1/2} \right)$$

$$\lesssim \|P_{\geq 1} u_0\|_{H^{1/2}}$$

$$+ \left(\sum_{N \geq 1} \left(\sum_{M \geq N} \left\| \sum_{M \geq N} \frac{1}{M} \left\| P_{M} \partial_x e^{-\frac{i}{N} \int_{-\infty}^{x} |P_{\leq N} u_0|^4 dy} P_N u_0 \right\|_{L^4_{x}} \right\|_{L^4_{x}}^{2} \right)^{1/2} \right)$$

$$\lesssim \|P_{\geq 1} u_0\|_{H^{1/2}}$$

$$+ \left(\sum_{N \geq 1} \left(\sum_{M \geq N} \left\| \sum_{M \geq N} \frac{1}{M} \left\| P_{M} \partial_x e^{-\frac{i}{N} \int_{-\infty}^{x} |P_{\leq N} u_0|^4 dy} P_N u_0 \right\|_{L^4_{x}} \right\|_{L^4_{x}}^{2} \right)^{1/2} \right)$$

$$\lesssim \|P_{\geq 1} u_0\|_{H^{1/2}}.$$
\[\lesssim \|P_{\geq 1} u_0\|_{H^{1/2}} + \left(\sum_{N \geq 1} \left(\|P_{\leq N} u_0\|_{L^k}^k \|P_N u_0\|_{L^c}^c \right)^2 \right)^{1/2} \]

which yields the desired result. \[\square \]

With the help of the above lemmas, we can prove the following proposition which yields the a priori estimate.

Proposition 6.1. Let \(u \) be a smooth solution to (1.1)-(1.2) and \(0 < T \leq C_{\text{high}}^4 \). Then we have

\[\|u\|_{\bar{X}_T} \lesssim C(C_{\text{low}} + C(C_{\text{low}} + \|u\|_{\bar{X}_T})^{3k}(T^{1/4} + C_{\text{high}}) \|u\|_{\bar{X}_T}. \]

Proof. Noticing that

\[\|P_{\leq 1} u\|_{X_T} \lesssim C_{\text{low}} \|u\|_{\bar{X}_T}, \quad \|P_{> 1} u\|_{X_T} \lesssim C_{\text{high}} \|u\|_{\bar{X}_T}, \]

and from Lemmas 6.1, 6.2, 6.3 and Proposition 5.1 we obtain through a complicated computation

\[\|u\|_{\bar{X}_T} = \frac{1}{C_{\text{low}}} \|P_{\leq 1} u\|_{X_T} + \frac{1}{C_{\text{high}}} \|P_{> 1} u\|_{X_T} \]

\[\lesssim 1 + \frac{1}{C_{\text{low}}} T^{\frac{1}{2}} \|u\|_{X_T}^{k+1} + \frac{1}{C_{\text{high}}} (1 + \|u\|_{L^k T^{1/2}}^{2k} \left(\sum_{N \geq 1} \|u_N\|_{Y_T}^2 \right)^{1/2} \]

\[\lesssim 1 + \frac{1}{C_{\text{low}}} T^{\frac{1}{2}} \|u\|_{X_T}^{k+1} + \frac{1}{C_{\text{high}}} (1 + \|u\|_{L^k T^{1/2}}^{2k} \|P_{> 1} u\|_{X_T} (1 + \|u\|_{X_T}^{k}) \|P_{> 1} u\|_{X_T}^{k+1}) \]

\[+ (1 + \|u\|_{X_T}^k) \left(T^{\frac{1}{2}} \|u\|_{X_T}^{k+1} \|P_{> 1} u\|_{X_T} + (1 + T^{\frac{1}{2}} \|u\|_{X_T}) \|u\|_{X_T} \right) \]

\[+ T^{\frac{1}{2}} (1 + T^{\frac{1}{2}} \|u\|_{X_T}) \|u\|_{X_T}^{2k-1} \|P_{> 1} u\|_{X_T} \]

\[+ (1 + \|u\|_{X_T}^k) \left(T^{\frac{1}{2}} \|u\|_{X_T} \|P_{> 1} u\|_{X_T} + (1 + T^{\frac{1}{2}} \|u\|_{X_T})^2 \|u\|_{X_T} \right) \]

\[\lesssim C + C(C_{\text{low}}) T^{\frac{1}{2}} \|u\|_{X_T}^{k+1} + (1 + \|u\|_{L^k T^{1/2}}^{2k} \|P_{> 1} u\|_{X_T}^{k+1}) \]

\[+ (1 + \|u\|_{X_T}^k) \left(T^{\frac{1}{2}} \|u\|_{X_T} \|P_{> 1} u\|_{X_T} + (1 + T^{\frac{1}{2}} \|u\|_{X_T})^2 \|u\|_{X_T} \right) \]

Notice that

\[\|u(t)\|_{H^{1/2}} \lesssim \|P_{\leq 1} u(t)\|_{L^2} + C_{\text{high}} \|P_{> 1} u\|_{H^{1/2}}. \]

The high frequency part \(C_{\text{high}} \|P_{> 1} u\|_{H^{1/2}} \) can be absorbed into the \(\bar{X}_T \)-norm. Then substituting Lemma 6.1 again in estimating the low frequency part of the norm \(\|P_{\leq 1} u\|_{L^\infty T^{1/2}} \), we complete the proof of Proposition 6.1. \[\square \]
From Proposition 6.1, we have the following a priori estimate for the solution of (1.1)-(1.2) if we take \(T \) and \(C_{\text{high}} \) small enough.

Corollary 6.1. Let \(u \) be a smooth solution to (1.1)-(1.2), we have

\[
\|u\|_{\bar{X}_T} \lesssim C_{\text{low}} + C_{\text{high}},
\]

for \(T \) and \(C_{\text{high}} \) small enough.

For the proof of Theorem 1.1, we can follow the compactness argument with the a priori estimate. Since the proof is standard, we omit the details and refer to the papers [14, 15, 16, 17, 19, 22].

Acknowledgements. The author would like to thank the referees for valuable comments and suggestions on the original manuscript and Prof. L. Hsiao for her frequent encouragement.

REFERENCES

[1] J. Bergh, J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin Heidelberg (1976).

[2] J. Bourgain, *Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Parts I, II*, Geom. Funct. Anal. 3 (1993), 107–156, 209–262.

[3] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, *Global well-posedness for the Schrödinger equations with derivative*, SIAM J. Math. Anal. 33 (2001), 649–669.

[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, *A refined global well-posedness for the Schrödinger equations with derivative*, SIAM J. Math. Anal. 34 (2002), 64–86.

[5] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, *Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \(\mathbb{R}^3 \)*, to appear in Annals Math., arXiv:math.AP/0402129.

[6] I. Fukuda, Y. Tsutsumi, *On solutions of the derivative nonlinear Schrödinger equation: existence and uniqueness theorem*, Funkcial. Ekvac. 23 (1980), 259–277.

[7] I. Fukuda, Y. Tsutsumi, *On solutions of the derivative nonlinear Schrödinger equation II*, Funkcial. Ekvac. 234 (1981), 85–94.

[8] A. Grünrock, *On the Cauchy and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations*, preprint.

[9] N. Hayashi, *The initial value problem for the derivative nonlinear Schrödinger equation in the energy space*, Nonlinear Anal. 20 (1993), 823–833.

[10] N. Hayashi, T. Ozawa, *On the derivative nonlinear Schrödinger equation*, Phys D 55 (1992), 14–36.

[11] N. Hayashi, T. Ozawa, *Remarks on nonlinear Schrödinger equations in one space dimension*, Diff. Integ. Eq. 7 (1994), 453–461.

[12] C. Kenig, G. Ponce, L. Vega, *Oscillatory integrals and regularity of dispersive equations*, Indiana Univ. Math. J. 40 (1991), 33–69.

[13] C. E. Kenig, G. Ponce, L. Vega, *Small solutions to nonlinear Schrödinger equations*, Ann. Inst. H. Poincaré Anal. Non Lineaire, 10 (1993), 255–288.

[14] C. E. Kenig, H. Takaoka, *Global wellposedness of the modified Benjamin-Ono equation with initial data in \(H^{1/2} \)*, Int. Math. Res. Not., (2006), Art. ID 95702, 44 pages.

[15] H. Koch, N. Tzvetkov, *On the local well-posedness of the Benjamin-Ono equation in \(H^s(\mathbb{R}) \)*, Int. Math. Res. Not., 26 (2003), 1449–1464.

[16] L. Molinet, F. Ribaud, *Well-posedness results for the generalized Benjamin-Ono equation with small initial data*, J. Math. Pures Appl., 83 (2004), 277–311.

[17] L. Molinet, F. Ribaud, *Well-posedness results for the generalized Benjamin-Ono equation with arbitrary large initial data*, Int. Math. Res. Not., 70 (2004), 3757–3795.

[18] T. Ozawa, *On the nonlinear Schrödinger equations of derivative type*, Indiana Univ. Math. J. 45 (1996), 137–163.

[19] G. Ponce, *On the global well-posedness of the Benjamin-Ono equation*, Diff. Int. Equas., 4 (1991), 527–542.
[20] E. M. Stein, Harmonic analysis, Real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton (1993).
[21] H. Takaoka, Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Diff. Eqns., 4 (1999), 561-580.
[22] T. Tao, Global well-posedness of the Benjamin-Ono equation in $H^1(\mathbb{R})$, J. Hyperbolic Diff. Eqns., 1 (2004), 27–49.
[23] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106, American Mathematical Society, Providence, RI, (2006).

Received July 25, 2006; revised November 2006.

E-mail address: hcc@amss.ac.cn