Patient specific selection of lateral wall cochlear implant electrodes based on anatomical indication ranges

Max Eike Timm*, Omid Majdani, Tobias Weller, Mayra Windeler, Thomas Lenarz, Andreas Büchner, Rolf Benedikt Salcher

Cluster of Excellence Hearing4all, Department of Otorhinolaryngology, Hannover Medical School, Hannover, Lower Saxony, Germany

* timm.max@mh-hannover.de

Abstract

Objectives
The aim of this study was to identify anatomical indication ranges for different lateral wall cochlear implant electrodes to support surgeons in the preoperative preparation.

Methods
272 patients who were implanted with a FLEX20, FLEX24, FLEX28, or a custom-made device (CMD) were included in this study. The cochlear duct length (CDL) and basal cochlear diameter (length A) were measured within preoperative imaging data. The parameter A was then employed to additionally compute CDL estimates using literature approaches. Moreover, the inserted electrode length (IEL) and insertion angle (IA) were measured in postoperative CT data. By combining the preoperative measurements with the IA data, the covered cochlea length (CCL) and relative cochlear coverage (CC) were determined for each cochlea.

Results
The measurements of the CDL show comparable results to previous studies. While CDL measurements and estimations cover similar ranges overall, severe deviations occur in individual cases. The electrode specific IEL and CCL are fairly consistent and increase with longer electrodes, but relatively wide ranges of electrode specific CC values were found due to the additional dependence on the respective CDL. Using the correlation of IEL and CCL across electrode arrays, CDL ranges for selected arrays were developed (FLEX24: 31.3–34.4, FLEX28: 36.2–40.1, FLEXSoft: 40.6–44.9).

Conclusions
Our analysis shows that electrode specific CC varies due to the CDL variation. Preoperative measurement of the CDL allows for an individualized implant length selection yielding optimized stimulation and a reduced risk of intraoperative trauma. The CDL, as derived from
preoperative CT imaging studies, can help the implant surgeon select the appropriate electrode array to maximize the patient's outcomes.

Introduction

Cochlear implantation is a technology for patients with total, severe or frequency specific hearing loss which can restore the patient’s ability to understand speech [1,2]. The cochlear implant (CI) works by directly stimulating the auditory nerve. This is accomplished by inserting a cochlear implant electrode array into the patient’s cochlea. An electric field stimulus is then applied by a number of contacts distributed along the electrode array, targeting the spiral ganglion cells and auditory nerve fibers.

For cochlear implantation, various types of electrode arrays from different manufacturers are available. These electrode arrays differ in size, length, number of electrode contacts and material characteristics [3]. Prior to surgery, a decision must be made by the patient and physician on which electrode to implant. To do so, multiple factors must be taken into account including the residual hearing and medical history of the patient, which may include otosclerosis, patient preference as well as the length and shape of the cochlea. The cochlear length is known to have large variations [4–22]. Previous studies have shown that for patients who only hear with their CI, improved outcomes after CI surgery can be expected with longer electrode arrays and accordingly deeper insertion angles [23–25]. Other studies have shown that the insertion angle not only depends on the electrode array type but also on the length of the cochlea [26,27]. Furthermore, dysplasia and other syndromes exist which have an effect on cochlear geometry, especially regarding the length, shape and number of turns (e.g. Mondini dysplasia) [28].

Different methods are available for the evaluation of the cochlea duct length (CDL) and the depth of insertion within clinical imaging data of cochlea without malformation: one option is to manually trace the contour of the cochlea or electrode array and subsequently use spline interpolation to determine the corresponding length [15,29]. Other methods, which are based on mathematical correlations, use the basal diameter A (within a logarithmic equation) to estimate the cochlea or array length [30–32]. The benefit of the latter is that these types of estimates do not require special software tools but can be employed using common DICOM viewers. However, if these estimations are used for patient specific considerations on which CI array to use, the corresponding CDL values must be accurate and reliable. In order to address both the impact of cochlear length variations onto cochlear implant surgery as well as the reliability of popular literature approaches to assess this variability, the proposed study was conducted.

Based on a large dataset of imaging data of CI patients, evaluations were performed on the distribution of CDL values, the correlation of electrode array length and the length of the cochlea covered by the respective array and suitability of specific CI arrays for certain ranges of CDL values. Following up on the study of Rivas et al. [33] who addressed the impact of A-value assessment deviations onto the electrode choice, it was further evaluated to which extent inaccuracies of the A-value method itself [30] would have led to a different choice of CI array than the respective contour tracings.

Materials and methods

Ethics statement

The ethics committee of the Hannover Medical School, Germany, approved this retrospective study. Due to the retrospective design, no written information was given to the patients of the study group. All patient data were anonymized and de-identified prior the retrospective analysis.
Subjects

At the Hannover Medical School, pre- and postoperative imaging of all CI patients is obtained by either Cone Beam CT (CBCT) or standard CT scans. We performed a retrospective study of 272 preoperative imaging datasets of patients who were implanted with a MED-EL FLEX20, FLEX24 or FLEX28 electrode between 2006 and 2017. Postoperative scans were available in 259 of these cases. Furthermore, patients who received custom-made devices (CMD) of 16mm length as well as 16 mm partial insertions of FLEX24 and 20 mm insertions with the FLEX28 were evaluated. Partial insertions were performed in an attempt to preserve residual hearing which were all considered CMD for the purpose of data analysis. Within the overall study group, most patients were implanted with a MED-EL FLEX28 (165 patients), 46 patients with a FLEX24, 52 patients with a FLEX20 and 12 patients with a MED-EL Flex CMD (see Fig 1). In our practice, pre- and postoperative imaging are a routine part of clinical care analyses.

Imaging data analysis

All datasets were evaluated using the DICOM-Viewer OsiriX MD (version 2.5.1 64bit, Pixmeo SARL, Switzerland). The corresponding analysis included the following steps:

- Tracings of the cochlear lateral wall from the center of the round window to the apex yield the corresponding CDL (see Figs 2 and 3)[15]. This is an automated feature within OsiriX MD. Performing one of these measurements takes approximately 2 minutes. An example is given in the supplementary material of this manuscript (see S1 Video).

- Measurements of the basal turn diameter A as well as the cochlear angle (CA) (see Fig 4).

- Measurement of the insertion angle (IA), defined as the angle from the center of the round window to the most apical contact (see Fig 5).

- Tracings of the cochlear lateral wall in the preoperative scan (in order to avoid inaccuracies due to artifacts of the implanted array, see Fig 5) from the center of the round window to the insertion angle, yielding the covered cochlea length (CCL).

- Measurement of the inserted electrode length (IEL) by placing marker points in the centers of all 12 electrode contacts as well as the entrance point of the electrode array in the round window (see Fig 5).

- Computation of the individual cochlear coverage (CC) in percent by dividing the corresponding CCL by the respective CDL.

Measurement data analysis

After measurement data was acquired according to the methodology stated above, data analysis regarding the CDL and its estimation was performed in the following manner:

- Estimation of the cochlea length using the estimation method of Escudé et al. [30] by using A and the average CA value of 900 deg (or 2.5 turns):

\[
CDL = 2.62 \cdot A \cdot \ln \left(1 + \frac{CA}{235}\right)
\]

- Comparison of the measured CDL values derived by the lateral wall tracings and the ones estimated using the above equation.
Results regarding the coverage of the cochlea with specific electrode arrays, corresponding anatomical indication ranges for each electrode array and clinically relevant evaluation errors were derived as follows:

- Correlation of IEL and CCL in order to derive the relation between the length of the inserted electrode and the covered length of the cochlea.
- Determining the CDL indication ranges for the different electrode arrays was based on (a) the previous correlation and (b) the manufacturer’s recommendation of 80% cochlear coverage (CC) [34].
• Evaluating the accuracy of Escude’s method in terms of estimated CDL values suggesting the same CI array indication as the corresponding lateral wall measurements.

Fig 2. Spline measurement with OsiriX MD. Visualization of lateral wall tracing in OsiriX MD in top (A) and side views (B, C).

https://doi.org/10.1371/journal.pone.0206435.g002

Fig 3. Complete segmentation of the lateral wall. Visualization of a completed lateral wall tracing in OsiriX MD (A, B) with the additional display of the enrolled path (C) for which the length is computed automatically.

https://doi.org/10.1371/journal.pone.0206435.g003
Statistical analysis

The data was statistically analyzed using IBM SPSS Statistics (Version 24.0.0.0). To test whether a normal distribution exists we used the Kolmogorov-Smirnov test.

Results

All measurement data can be found in S1 Table. Fig 6A and 6B show histograms of both measured and estimated CDLs of the 272 cochleae: in both cases a normal distribution was found with a mean length of 37.9mm and standard deviations of 2.4mm and 2.3mm respectively. The actual deviations of measurements and estimations are shown in Fig 6C: while the general

![Fig 4. Measurement of global cochlea dimensions. Visualization of measurements of A (defined as the distance from the round window through the modiolus to the opposite wall of the cochlea) and B (maximal distance orthogonal to A).](https://doi.org/10.1371/journal.pone.0206435.g004)

![Fig 5. Inclusion of postoperative imaging analysis. (A) Postoperatively, marker points were placed in the center of the round window and along the inserted electrode array in the middle of the respective contact artefacts, and the corresponding insertion angle was measured. (B) The latter value was then used within the corresponding preoperative imaging data to determine the length along the lateral wall up to the insertion angle.](https://doi.org/10.1371/journal.pone.0206435.g005)
trend of estimations and measurements is in agreement ($R^2 = 0.37$), the mean absolute deviation was found to be at 1.4mm +/-1.1mm with a maximal deviation of 6.8mm.

In order to evaluate the clinical relevance of these deviations, the postoperative measurement data was included into the analysis. Note that no tip fold over could be observed in any of the reviewed cases. Fig 7A shows the derived IEL and CCL values in a boxplot, grouped by the respective electrode array type. Means and the standard deviations of the IEL for the different arrays are 15.4mm +/- 2.7mm for the CMD group, 18.7mm +/- 1.1 mm for the FLEX20, 23.5mm +/- 0.9 mm for the FLEX24 and 26.6mm +/- 1.1mm for the FLEX28. Mean values and standard deviations of the CCL are slightly larger (about 2 mm on average) than the respective
IEL values with 20.8 mm +/- 1.1 mm for the FLEX20, 25.2 mm +/- 1.2 mm for the FLEX24 and 29.2 mm +/- 1.4 mm for the FLEX28. The mean CCL of the CMD group was found to be 17 mm +/- 2.9 mm. Taking the preoperatively measured CDL into account, the individual cochlear coverage (CC) of the lateral wall can be calculated as the ratio of CCL and CDL, which is shown in Fig 7B. The achieved mean CC is 56% +/- 3.5% for the FLEX20, 67.9% +/- 6.1% for the FLEX24 and 76.4% +/- 5.3% for the FLEX28. For the CMD devices a coverage of 46% +/- 7.6% was achieved. The CC variation for the longest electrode (FLEX28) ranged between 57.8% and 95.2% while it ranged from 58–85.3% for the FLEX24 and from 32.6–43.2% for the FLEX20.

In order to correlate IEL and CCL, a scatter plot of the two is given in Fig 8A. Linear regression of these data points yielded the following correlation function:

$$CCL = 1.06 + 1.05 \times IEL$$

The red area within the graph indicates (based on the example of a FLEX28 electrode array) the CCL range which can be expected for a successfully implanted array, if successful insertion is assumed to lie within +/- 5% of the array length that is supposed to be implanted (i.e. 28 mm for a FLEX28 electrode array), the correlation function above can be employed to derive the corresponding CCL range. Table 1 shows the corresponding IEL and CCL ranges for different MED-EL electrode arrays suitable for patients without residual hearing. As mentioned before, the manufacturer recommends 80% CC (Mistrik & Jolly, 2016). Thus, translating the CCL to a clinical indicated range can be accomplished by dividing the derived CCL ranges by 0.8. The corresponding indicated ranges for the different arrays are listed in Table 1 and depicted in Fig 8B. Note that the indicated range for the FLEX28 array matches the peak of the derived CDL distribution.

Several publications refer to the CDL as the length of the organ of Corti (OC) and not the lateral wall. That is why the data of Hardy and Lee [5,31,35] was used to project the lateral wall indication ranges onto the organ of Corti (see Fig 9A). Linearly relating the CDL mean values +/- one standard deviation for lateral wall (37.9 mm +/- 2.4 mm) and organ of Corti (31.5 mm...
+/-2.3 mm) yielded the following equation:

\[CDL_{OC} = 0.76 \times CDL_{Lw} + 1.46 \]

This equation was used to translate the lateral wall indication ranges into the ones for organ of Corti, which are displayed in Fig 9B and stated within the last two rows of Table 1.

Finally, we evaluated if CDL estimations using the \(A \) value and \(CA \) [30] could be used instead of actual measurements to derive an accurate anatomical indication for a specific array. Note that only the length of the cochlea and not the length of the implanted array were taken into account for this analysis. Using the FLEX\(^{28}\) implanted group we then analyzed to what extent the \(CDL \) estimation method would predict cochlear anatomies as too short, applicable or too long for this array. Within Fig 10A, the x-axis represents the measured \(CDL \) whereas the y-axis shows the corresponding estimations. The shaded areas within this graph represent the FLEX\(^{28}\) indication ranges for measured and estimated CDL values respectively (3rd column of Table 1). Correct identification, i.e. a match of measured and estimated indication (highlighted in the table), of short cochleae could be achieved in 67.8%, of long cochleae in 17.1% and of matching cochleae in 77.2% of the cases (see Table 2 and Fig 10B).

![Fig 9. Organ of Corti length.](https://doi.org/10.1371/journal.pone.0206435.g009)

Table 1. Indication range for the FLEX electrodes.

Array	FLEX 24	FLEX 28	FLEX Soft
Array-length in mm	24	28	31.5
\(CCL \) in mm	26.3 (25–27.5)	30.5 (29–32)	34.2 (32.5–35.9)
Recommended \(CDL \) (lateral wall) in mm	32.9	38.2	42.7
Indicated \(CDL \) (lateral wall) ranges (mm)	31.3–34.4	36.2–40.1	40.6–44.9
Recommended organ of Corti length (mm)	26.5	30.5	34
Indicated organ of Corti range (mm)	25.3–27.7	29.1–32	32.4–35.7

https://doi.org/10.1371/journal.pone.0206435.t001
Discussion

In our study, we analyzed the anatomy of the cochlea in 272 clinical imaging datasets. The postoperative location of different lateral wall electrode arrays could be assessed in 259 of these 272 cases. The derived variability of the cochlea length is in agreement with previous studies [4,5,15–17] and highlights again the importance of considering the patient specific anatomy in the field of cochlear implantation (see Fig 6A).

The projection of the wide portfolio of available electrode arrays [3] onto this range of cochlear length values then allows for optimal coverage of the intracochlear neural structures: achieving 80% CC with lateral wall electrodes in case of an average or long cochlea, for instance, would currently only be achievable with MED-EL devices who also offer electrode array lengths of more than 26mm. However, it was not yet clearly proven if electrode arrays stimulate the neural fiber endings at the organ of Corti or the spiral ganglion cells directly, i.e. what cochlear coverage achieves the best possible speech perception. Nevertheless, recent publications show superior speech understanding for the FLEX28 array (which typically achieves insertion angles of 540–720 degrees) in comparison to shorter electrode arrays [24]. The derived indication ranges yield a possible explanation for this finding, i.e. the sufficient coverage of neural structures for most cochleae with the FLEX28 array.

The comparison of measured and estimated [30] CDLs showed normal distributions in either case with no significant differences, but quite severe deviations were found for

Table 2. Correct identification of cochlea length.

	Reference small	Reference match	Reference large	Correct Identification
Estimation large	0	11	7	7
Estimation match	19	132	33	132
Estimation small	40	28	1	40
total number	59	171	41	271
correct identification in percentage	67.8	77.2	17.1	66.1

https://doi.org/10.1371/journal.pone.0206435.t002
individual cases (see Fig 6C) with deviations of up to 6.8mm. Hence, the CDL estimation method described by Escudé et al. [30] may be applicable for retrospective analysis but is not suitable for clinical use where accuracy matters for each and every individual case. This was further highlighted in Fig 10B where the estimation deviations were evaluated in terms of anatomical indications for specific CI electrode array lengths: the results show that in total, correct indications could only be derived in 66% of the analyzed cochleae. Especially concerning are the 11% of the cochleae whose CDL values were overestimated: in a clinical setting, overestimations could result in implantations of electrode arrays too long for a specific cochlea such that the array cannot be fully inserted and/or possibly cause intracochlear damage. Underestimations, on the other hand, were found to occur in 22% of the cases and could entail insufficient coverage of the cochlear neurons and hence result in poor speech understanding, since studies show that longer electrodes result in a better speech understanding for electric stimulation only [23,24].

The IEL and corresponding CCL values for the analyzed electrode arrays are shown in Fig 7A. CCL values are larger than the according IEL values for each electrode array due to the latter being located in closer proximity to the modiolus than the lateral wall and thus representing a shorter distance. The projection of the array from the modiolus out onto the lateral wall hence creates a larger spiral profile and an accordingly larger CCL value. The group of CMDs shows the highest deviation regarding the IEL to CCL correlation. This fact is owed to the CMD group containing FLEX24 and FLEX28 arrays which were only partially inserted (covering only the individual frequency region with severe to profound hearing loss) as well as custom made devices of 16mm length.

While CC increases for longer electrodes overall (see Fig 7B), it can be seen that the CC distributions overlap especially regarding the FLEX24 and FLEX28 arrays. This can be explained by the fact that the CC is not only dependent on the length of the electrode array but also on the length of the cochlea [27]. In some cases, a FLEX24 in a short cochlea may therefore cover a larger fraction of the cochlea than a FLEX28 in a large cochlea. It should further be noted that the smallest CC values can be found within the FLEX20 group because this electrode was developed to not cover the full frequency range of the cochlea in order for patients to benefit from acoustic stimulation in the low frequencies using an EAS system.

Variations in CC values generated with the same array can also be seen in Fig 8A. Although the overall cochlea length does not directly influence CCL values, it can be assumed that the same kind of array will be situated differently in a small cochlea than in a large one. Variations in cochlear anatomy are therefore likely to also influence the length of the cochlea covered by an electrode array.

Regarding the anatomical indication ranges it was found based on the measured CDL that most cochleae are covered by the FLEX28 with a target CDL range of 36.2mm to 40.1mm (11 +132+28 of the 271 cases corresponding to 63% of the analyzed cases). Without knowing the anatomy, a FLEX28 electrode also seems to be the best choice since it could be implanted in 76.8% (see Fig 11) of the cases with a reduced risk of harming any intracochlear structures.

Conclusion

Following previous investigations, we showed that due to the variation of cochlear size, preoperative cochlea length assessment should be included into the routine preoperative care. Furthermore, individual implant selection based on the patient specific cochlea length is feasible and likely to improve implantation outcomes. However, length estimations exclusively based on mathematical correlations may result in false recommendations and could potentially injure the cochlea and lead to poorer outcomes. Furthermore, the presented results
demonstrate that most cochleae are sufficiently covered by a FLEX28 electrode array while the FLEX24 and FLEX$^{\text{Soft}}$ should be employed for short and long cochleae respectively.

Supporting information

S1 Video. Video of CDL measurement in preoperative data. Preoperative measurement of a cochlear duct length (CDL) in a Cone Beam CT scan (CBCT).

(MOV)

S1 Table. Measurement data of the study.

(XLSX)

Acknowledgments

We are thankful to Daniel Schurzig, Ph.D., MED-EL, for his scientific support in this study.

Author Contributions

Data curation: Max Eike Timm.

Investigation: Max Eike Timm, Tobias Weller, Mayra Windeler.

Methodology: Max Eike Timm.

Resources: Thomas Lenarz, Andreas Büchner.

Supervision: Omid Majdani, Thomas Lenarz, Andreas Büchner, Rolf Benedikt Salcher.

Visualization: Max Eike Timm.

Writing – original draft: Max Eike Timm, Omid Majdani, Rolf Benedikt Salcher.
References

1. Clark G. Cochlear Implants: Fundamental and Applications. Springer-Verlag; 2003.
2. Rubinstein JT. How cochlear implants encode speech. 44–8.
3. Dhanasingh A, Jolly C. An overview of cochlear implant electrode array designs. Hear Res [Internet]. 2017; 356:93–103. Available from: https://doi.org/10.1016/j.heares.2017.10.005 PMID: 29102129
4. Van Der Marel KS, Briaire JJ, Wolterbeek R, Snel-Bongers J, Verbist BM, Frijs JHM. Diversity in cochlear morphology and its influence on cochlear implant electrode position. Ear Hear. 2014; 35(1):9–20.
5. Hardy M. The length of the organ of Corti in man. Am J Anat [Internet]. 1938 Jan; 62(2):291–311. Available from: http://doi.wiley.com/10.1002/aja.1000620204
6. Erixon E, Högstorp H, Wadin K, Rask-Andersen H. Variational Anatomy of the Human Cochlea. Otol Neurotol [Internet]. 2009; 30(1):14–22. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00129492-200901000-00003 https://doi.org/10.1097/MAO.0b013e31818a08e8 PMID: 18833017
7. Ketten DR, Skinner MW, Wang G, Vannier MW, Gates GA, Neely JG. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol Suppl [Internet]. 1998 Nov; 175:1–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9826942 PMID: 9826942
8. Lee J, Nadol JB, Eddington DK. Depth of electrode insertion and postoperative performance in humans with cochlear implants: A histopathologic study. Audiol Neurotol. 2010; 15(5):323–31.
9. Meng Å, Li ÅS, Zhang ÅF, Li Q, Qin ÅZ. Cochlear Size and Shape Variability and Implications in Cochlear Implantation Surgery. 2016; 1307–13.
10. Miller JD. Sex differences in the length of the organ of Corti in humans. J Acoust Soc Am [Internet]. 2007 Apr; 121(4):EL151–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17471760 PMID: 17471760
11. Verbist BM, Ferrarini L, Briaire JJ, Zarowski A, Admiraal-behloul F, Olofsen H, et al. Anatomic Considerations of Cochlear Morphology and Its Implications for Insertion Trauma in Cochlear Implant Surgery. 2009;
12. Walby AP. Scala tympani measurement. Ann Otol Rhinol Laryngol [Internet]. 94(4 Pt 1):393–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3896104
13. Wright A, Davis A, Bredberg G, Űlehlova L, Spencer H, Davis A, et al. Hair Cell Distributions in the Normal Human Cochlea: A Report of a European Working Group a i r Cell Distributions in the Normal Human Cochlea. 2009;6489.
14. Wysocki J. Dimensions of the human vestibular and tympanic scalae. Hear Res. 1999; 135(1–2):39–46. PMID: 10491952
15. Wörfel W, Lanfermann H, Lenarz T, Majdani O. Cochlear length determination using Cone Beam Computed Tomography in a clinical setting. Hear Res [Internet]. 2014 Oct; 316:65–72. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378595514001312 https://doi.org/10.1016/j.heares.2014.07.013 PMID: 25124151
16. Úlehlová L, Voldrich L, Janisch R. Correlative study of sensory cell density and cochlear length in humans. Hear Res [Internet]. 1987; 28(2–3):149–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3654386 PMID: 3654386
17. Pelliccia P, Venail F, Bonafé A, Makeièff M, Iannetti G, Bartolomeo M, et al. Cochlea size variability and implications in clinical practice Varibilità delle dimensioni cocleari e sue implicazioni nella pratica clinica. ACTA Otorhinolaryngol Ital. 2014; 34:42–9. PMID: 24711682
18. Avci E, Nauwelaers T, Lenarz T, Hamacher V, Kral A. Variations in Microanatomy of the Human Cochlea. 2014; 3261:3245–61.
19. Adunka O, Unkelbach MH, Mack MG, Radloff A, Gstoettner W. Predicting basal cochlear length for electric-acoustic stimulation. Arch Otolaryngol—Head Neck Surg. 2005; 131(6):488–92. https://doi.org/10.1001/archotol.131.6.488 PMID: 15967880
20. Biedron S, Prescher A, Ilgner J, Westhofen M. The Internal Dimensions of the Cochlear Scalea With Special Reference to Cochlear Electrode Insertion Trauma. 2010;731–7.
21. Bredberg G, Telt J, Zambonin Zalone A, Lundeveil E, Iurato S, Ultrastructural evaluation of the micro-slicing method for the study of temporal bone pathology. Acta Otolaryngol Suppl [Internet]. 1987; 436:7–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3314328 PMID: 3314328
22. Cakir A, Labadie RF, Zuniga MG, Dawant BM, Noble JH. Evaluation of Rigid Cochlear Models for Measuring Cochlear Implant Electrode Position. Otol Neurotol [Internet]. 2016 Dec; 37(10):1560–4.
23. O’Connell BP, Hunter JB, Haynes DS, Holder JT, Dedmon MM, Noble JH, et al. Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes. Laryngoscope [Internet]. 2017;1–6. Available from: http://doi.wiley.com/10.1002/lary.26467

24. Büchner A, Illg A, Majdani O, Lenarz T. Investigation of the effect of cochlear implant electrode length on speech comprehension in quiet and noise compared with the results with users of electro-acoustic-stimulation, a retrospective analysis. PLoS One. 2017; 12(5):1–16.

25. O’Connell BP, Cakir A, Hunter JB, Francis DO, Noble JH, Labadie RF, et al. Electrode Location and Angular Insertion Depth Are Predictors of Audiologic Outcomes in Cochlear Implantation. Otol Neurotol [Internet]. 2016 Sep; 37(8):1016–23. Available from: https://insights.ovid.com/crossref?an=00129492-201609000-00004 https://doi.org/10.1097/MAO.0000000000001125 PMID: 27348391

26. De Seta D, Nguyen Y, Bonnard D, Ferry E, Godey B, Bakhos D, et al. The Role of Electrode Placement in Bilateral Simultaneously Cochlear-Implanted Adult Patients. Otolaryngol Neck Surg [Internet]. 2016 Sep 22; 155(3):485–93. Available from: http://journals.sagepub.com/doi/10.1177/0194599816645774

27. Franke-Trieger A, Jolly C, Darbinian A, Zahner T, Mürbe D. Insertion Depth Angles of Cochlear Implant Arrays With Varying Length. Otol Neurotol. 2014;

28. Liu Y-K, Qi C-L, Tang J, Jiang M-L, Du L, Li Z-H, et al. The diagnostic value of measurement of cochlear length and height in temporal bone CT multiplanar reconstruction of inner ear malformation. Acta Otolaryngol [Internet]. 2017 Feb; 137(2):119–26. Available from: https://www.tandfonline.com/doi/full/10.1080/00016489.2016.1221132 PMID: 27577263

29. Lexow GJ, Schurzig D, Gelbich N-C, Lenarz T, Majdani O, Rau TS. Visualization, measurement and modelling of the cochlea using rotating midmodiolar slice planes. Int J Comput Assist Radiol Surg [Internet]. 2016 Oct 19; 11(10):1855–69. Available from: http://link.springer.com/10.1007/s11548-016-1374-7 PMID: 26995596

30. Escudé B, James C, Deguine O, Cochard N, Eter E, Fraysse B. The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurotol. 2006; 11(SUPPL. 1):27–33.

31. Alexiades G, Dhanasingh A, Jolly C. Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol. 2015; 36(5):904–7. https://doi.org/10.1097/MAO.0000000000000620 PMID: 25299827

32. Koch RW, Ladak HM, Elfamawany M, Agrawal SK. Measuring Cochlear Duct Length—A historical analysis of methods and results. J Otolaryngol—Head Neck Surg. 2017; 46(1):1–11. https://doi.org/10.1186/s40463-016-0180-0

33. Rivas A, Cakir A, Hunter JB, Labadie RF, Zuniga MG, Wanna GB, et al. Automatic Cochlear Duct Length Estimation for Selection of Cochlear Implant Electrode Arrays. Otol Neurotol [Internet]. 2017; 38 (3):339–46. Available from: http://insights.ovid.com/crossref?an=00129492-201703000-00005 https://doi.org/10.1097/MAO.000000000001329 PMID: 28146009

34. Mistrik P, Jolly C. Optimal electrode length to match patient specific cochlear anatomy. Eur Ann Otorhinolaryngol Head Neck Dis. 2016; 133:S68–71. https://doi.org/10.1016/j.anorl.2016.05.001 PMID: 27246743

35. Lee J, Nadol JB Jr., Eddington DK. Depth of Electrode Insertion and Postoperative Performance in Humans with Cochlear Implants: A Histopathologic Study. Audiol Neurol [Internet]. 2010; 15(5):323–31. Available from: https://www.karger.com/Article/FullText/289571