RANDOM DATA CAUCHY PROBLEM FOR THE NONLINEAR
SCHRÖDINGER EQUATION WITH
DERIVATIVE NONLINEARITY

HIROYUKI HIRAYAMA
Organization for Promotion of Tenure Track
University of Miyazaki, 1-1, Gakuenkibanadai-nishi
Miyazaki, 889-2192, Japan

MAMORU OKAMOTO*
Division of Mathematics and Physics
Faculty of Engineering, Shinshu University
4-17-1 Wakasato, Nagano City, 380-8553, Japan

(Communicated by Nikolay Tzvetkov)

Abstract. We consider the Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity
\[(\imath \partial_t + \Delta)u = \pm \partial^{m}(\nabla u),\]
on \mathbb{R}^d, $d \geq 1$, with random initial data, where ∂ is a first order derivative with respect to the
spatial variable, for example a linear combination of $\partial_{x_1}, \ldots, \partial_{x_d}$ or $|\nabla| = F^{-1}|\xi|F$. We prove that almost sure local in time well-posedness, small
data global in time well-posedness and scattering hold in $H^s(\mathbb{R}^d)$ with $s > \max\left(\frac{d-1}{2}, \frac{s}{2}, s - \frac{d}{2(d+1)}\right)$ for $d + m \geq 5$, where s is below the scaling
critical regularity $s_c := \frac{d}{2} - \frac{1}{m+1}$.

1. Introduction. We consider the Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity:
\[
\left\{
\begin{aligned}
(i\partial_t + \Delta)u &= \pm \partial^{m}(\nabla u), \\
u(0, \cdot) &= \phi.
\end{aligned}
\right.
\] (1)
Here, m is a positive integer, $u : \mathbb{R} \times \mathbb{R}^d \to \mathbb{C}$ is an unknown function, $\phi : \mathbb{R}^d \to \mathbb{C}$
is a given function, ∂ is a first order derivative with respect to the spatial variable, for example a linear combination of $\partial_{x_1}, \ldots, \partial_{x_d}$ or $|\nabla| = F^{-1}|\xi|F$.

The nonlinear Schrödinger equation in (1) is invariant under the following transformation:
\[u(t, x) \mapsto u_{\mu}(t, x) := \mu^{-\frac{1}{m+1}}u\left(\frac{t}{\mu^\frac{m}{2}}, \frac{x}{\mu}\right)\]
for $\mu > 0$. A simple calculation shows
\[
\|u_{\mu}(0, \cdot)\|_{H^s} = \mu^{-s+\frac{d}{2}-\frac{1}{m+1}}\|u(0, \cdot)\|_{H^s}.
\]

2010 Mathematics Subject Classification. Primary: 35Q55.

Key words and phrases. Random data Cauchy problem, Schrödinger equation.

The work of the first author was financially supported by Program to Disseminate Tenure Tracking System from the Ministry of Education, Culture, Sports, Science and Technology. The work of the second author was supported by JSPS KAKENHI Grant numbers JP26887017 and JP16K17624.
which implies that \(s_c := \frac{d}{2} - \frac{1}{m-1} \) is the scaling critical regularity.

We mention the previous and related results for \((1)\). Grünrock \cite{18} proved local in time well-posedness of \((1)\) in \(H^s(\mathbb{R}) \) for \(s \geq 0 \) (for \(s = 0 \), the solution extends globally in time) when \(m = 2 \) and in \(H^s(\mathbb{R}^d) \) for \(s > s_c \) when \(d \geq 1, d + m \geq 4 \). The first author \cite{23, 24} proved that \((1)\) is small data global well-posed and scattering for \(s \geq s_c \) if \(m + d \geq 4 \). Well-posedness of the Cauchy problem for \((1)\) in \(\mathbb{R}^d \) whose \(\partial u(m) \) is replaced by \(\partial_x(|u|^2u) \) is intensively studied by many authors (see, for example, \cite{20, 21, 31, 32, 13, 3, 14, 22, 34, 29} references therein). Presence of derivative causes some difficulties. In the present paper, we impose that the nonlinear part of \((1)\) has special structure which cancels out the worst interaction. Owing to this property, we can recover one derivative.

The above results are deterministic results. We consider well-posedness of \((1)\) with randomized initial data. The randomized Cauchy problem was considered by Bourgain \cite{4, 5}, which applied to construct the Gibbs measure. Burq and Tzvetkov \cite{9, 10, 11} showed that almost sure well-posedness of the Cauchy problem for a nonlinear wave equation while it is ill-posed in the deterministic setting. Almost sure well-posedness on a compact domain (i.e., a torus, a ball, and so on) is widely studied (see \cite{17, 16, 36, 7, 8, 30}). For example, since \(\{e^{in\cdot x}\} \) are eigenfunctions of \(-\Delta\) which forms a basis of \(L^2(\mathbb{T}^d) \), the Fourier series expansion holds and fits for studying. Hence, by randomizing Fourier coefficients, we can consider a randomization (see also \cite{33}). On the other hand, it is unclear what is a natural way to introduce a randomization on \(\mathbb{R}^d \).

Following the papers \cite{35, 28, 1, 2}, we define the randomization. Let \(\psi \in \mathcal{S}(\mathbb{R}^d) \) satisfy

\[
\text{supp } \psi \subset [-1, 1]^d, \quad \sum_{n \in \mathbb{Z}^d} \psi(\xi - n) = 1 \quad \text{for any } \xi \in \mathbb{R}^d.
\]

Let \(\{g_n\} \) be a sequence of independent mean zero complex valued random variables on a probability space \((\Omega, \mathcal{F}, P)\), where the real and imaginary parts of \(g_n \) are independent and endowed with probability distributions \(\mu_n^{(1)} \) and \(\mu_n^{(2)} \). Throughout this paper, we assume that there exists \(c > 0 \) such that

\[
\left| \int_{\mathbb{R}} e^{ix} d\mu_n^{(j)}(x) \right| \leq e^{cx^2}
\]

for all \(\kappa \in \mathbb{R}, n \in \mathbb{Z}^d, j = 1, 2 \). This condition is satisfied by the standard complex valued Gaussian random variables and the standard Bernoulli random variables. We then define the Wiener randomization of \(\phi \) by

\[
\phi^\omega := \sum_{n \in \mathbb{Z}^d} g_n(\omega) \psi(D - n)\phi.
\] \hspace{1cm} (2)

The randomization has no smoothing in terms of differentiability (\cite[Appendix B]{9}). However, it improves the integrability (see for example Lemma 2.3 in \cite{1}). From this point of view, the randomization makes the problem subcritical in some sense. In the present paper, we focus on the case where the regularity is less than \(s_c = \frac{d}{2} - \frac{1}{m-1} \) because well-posedness in \(H^s(\mathbb{R}^d) \) with \(s \geq s_c \) holds in the deterministic setting.

Theorem 1.1. Assume \(d \geq 1, m \geq 2, \) and \(d + m \geq 5 \). Let

\[
\max \left(\frac{d - 1}{d} s_c, \frac{s_c}{2}, s_c - \frac{d}{2(d + 1)} \right) < s < s_c.
\]
Given $\phi \in H^s(\mathbb{R}^d)$, let ϕ^ω be its randomization defined by (2). Then, for almost all $\omega \in \Omega$, there exist $T_\omega > 0$ and a unique solution u to (1) with $u(0, x) = \phi^\omega(x)$ in a space continuously embedded in

$$S(t)\phi^\omega + C((R^d; H^s(\mathbb{R}))) \subset C((R^d; H^s(\mathbb{R}))).$$

More precisely, there exist $C, c > 0$, $\gamma > 0$ such that for each $0 < T < 1$, there exists $\Omega_T \subset \Omega$ with $P(\Omega_T) > 1 - C \exp\left(-\frac{c}{\|\phi\|_{H^s}}\right)$, for each $\omega \in \Omega_T$, there exists a solution $u = u(\omega) \in C((-T, T); H^s(\mathbb{R}))$ to (1) with $u(0, x) = \phi^\omega(x)$.

Theorem 1.1 says almost sure local in time well-posedness for (1). Namely, (1) possesses local strong solutions for a large class of functions in $H^s(\mathbb{R}^d)$ with $s < s_c$.

We find a solution u which is a perturbation of $e^{it\Delta}\phi^\omega$. The linear evolution for the randomized initial data has better integrability than that for the initial data (see Lemma 2.2 below), but it remains $C((-\infty, T); H^s(\mathbb{R}))$. On the other hand, from the smoothing effect of the linear evolution and the linear evolution and absence of resonance interaction, the difference $u - e^{it\Delta}\phi^\omega$ belongs to $C((-\infty, T); H^s(\mathbb{R}))$ even if $\phi \in H^s(\mathbb{R})$ with $s < s_c$.

Remark 1. The lower bound is equivalent to

$$\max\left(\frac{d-1}{d}s_c, s_c - \frac{d}{2(d+1)}\right) = \begin{cases} \frac{d-1}{d}s_c, & \text{if } d = 1, \\ \frac{d-1}{d}s_c, & \text{if } d \geq 2 \text{ and } m = 2,3, \\ s_c - \frac{d}{2(d+1)}, & \text{if } d \geq 2 \text{ and } m \geq 4. \end{cases}$$

Next, we focus on global existence of the solution with small initial data.

Theorem 1.2. Assume $d \geq 1$, $m \geq 2$, and $d + m \geq 5$. Let

$$\max\left(\frac{d-1}{d}s_c, s_c - \frac{d}{2(d+1)}\right) < s < s_c.$$

Given $\phi \in H^s(\mathbb{R}^d)$, let ϕ^ω be its randomization defined by (2). Then, for almost all $\omega \in \Omega$, there exists $\varepsilon(\omega) > 0$ such that for every $\varepsilon \in (0, \varepsilon(\omega))$, there exists a global in time solution u to (1) with $u(0, x) = \varepsilon\phi^\omega(x)$ in a space continuously embedded in $C(\mathbb{R}; H^s(\mathbb{R}))$. Moreover, the solution is scattering in the following sense: there exists $v^\omega_+ \in H^s(\mathbb{R})$ such that

$$\|u(t) - S(t)(\varepsilon\phi^\omega + v^\omega_+)\|_{H^s} \to 0$$
as $t \to \pm \infty$.

The uniqueness holds in the space $\varepsilon S(t)\phi^\omega + Z^s$ defined by Definition 3.7 below, which is a subspace continuously embedded in $\varepsilon S(t)\phi^\omega + C(\mathbb{R}; H^s(\mathbb{R}))$.

Remark 2. Theorem 1.2 is a consequence of the following: there exist $C, c > 0$ and $\Omega_c \subset \Omega$ such that with the following properties:

(a) $P(\Omega_c) \geq 1 - C \exp\left(-\frac{c}{\|\phi\|_{H^s}}\right)$.

(b) For each $\omega \in \Omega_c$, there exists a (unique) global in time solution u to (1) with $u(0, x) = \varepsilon\phi^\omega(x)$ in the class $\varepsilon S(t)\phi^\omega + C(\mathbb{R}; H^s(\mathbb{R})) \subset C(\mathbb{R}; H^s(\mathbb{R}))$.

(c) For each $\omega \in \Omega_c$, there exists $v^\omega_+ \in H^s(\mathbb{R})$ such that

$$\|u(t) - S(t)(\varepsilon\phi^\omega + v^\omega_+)\|_{H^s} \to 0$$
as $t \to \pm \infty$.

The nonlinear part of (1) excludes the resonance, which is the worst interaction. In other words, if an output of the nonlinear interaction is on the characteristic curve, then the at least one of the inputs is off its curve (see (13) below). Therefore, by using the modulation estimate and the Fourier restriction norm, we can recover one derivative. These are also useful in the randomized initial data setting.

The number \(\alpha(d, m) := \max \left(\frac{d-1}{d} s_c, \frac{d}{d+1}, s_c - \frac{d}{2(d+1)} \right) \) satisfies

\[
\frac{1}{s_c} \times \alpha(d, m) = \max \left(1 - \frac{1}{d}, \frac{1}{d} \frac{(m-1)d}{d+1} \right) \to 1,
\]

\[
s_c - \alpha(d, m) = \min \left(\frac{(m-1)d}{2(m-1)d^2}, \frac{(m-1)d-2}{4(m-1)}, \frac{d}{2(d+1)} \right) \to \frac{1}{2}
\]
as \(d \to \infty \). On the other hand, Bényi, Oh, and Pocovnicu [2] showed that the cubic nonlinear Schrödinger equation without derivative is almost sure well-posed in \(H^s(\mathbb{R}^d) \) with \(s > \frac{d-1}{d+1} \cdot \frac{d}{2} \) and \(d \geq 3 \), where \(\frac{d}{2} \) is the scaling critical regularity. Here, we note that

\[
\frac{2}{d-2} \times \frac{d-1}{d+1} \cdot \frac{d-2}{2} = \frac{d-1}{d+1} \to 1, \quad \frac{d-2}{2} - \frac{d-1}{d+1} \cdot \frac{d-2}{2} = \frac{d-2}{d+1} \to 1.
\]

This difference comes from the fact that we rely on not only the bilinear refinement of the Strichartz estimates but also the modulation bound.

We obtain the almost sure well-posedness in \(d \geq 2 \) if \(m \geq 3 \), although the result of Bényi et. al. is required \(d \geq 3 \). One reason for this is that the scaling critical regularity of (1) is bigger than that of the cubic nonlinear Schrödinger equation without derivative. More precisely, the scaling critical regularity is zero if \(d = 1 \), \(m = 3 \) in our case, while the scaling critical regularity is zero if \(d = 2 \) in the cubic nonlinear Schrödinger equation without derivative. Indeed, since the randomization does not improve regularity, we can not expect that almost sure well-posedness holds in the Sobolev space with negative regularity. From the same reason, we need the condition \(d + m \geq 5 \) in Theorems 1.1 and 1.2.

Put \(N_m(u) = \partial(\pi^m) \). Let \(z(t) = z^\omega(t) := S(t)\phi^\omega \) and \(v(t) = u(t) - z(t) \) be the linear and nonlinear parts of \(u \) respectively. As in [2], we consider the following perturbed equation:

\[
\begin{cases}
(i\partial_t + \Delta)v = \pm N_m(v + z), \\
v(0, x) = 0.
\end{cases}
\]

In the previous results of Bényi et. al. [2] and the authors [25], the lower bound of \(s \) comes from a nonlinearity part which only consists of the linear evolution of the probabilistic initial data. However, the lower bound in Theorems 1.1 and 1.2 appears in different nonlinear parts when \(m \geq 3 \). More precisely, \(\frac{d-1}{d} s_c \) and \(s_c - \frac{d}{2(d+1)} \) are need to estimate \(\partial(\pi \cdot \pi) \) and \(\partial(\pi \cdot \pi) \), respectively. Hence, \(v \), which has more regularity than \(z \), behaves like a bad part for \(d \geq 2 \) and \(m \geq 4 \).

We now give a brief outline of this article. In Section 2, we collect lemmas which are used in the proof of our main results. In Section 3, we define the function spaces and show these properties. In Section 4, we show that the nonlinear estimates, which play a crucial role in the proof of our main results. In Section 5, we give a proof of almost sure well-posedness results, Theorems 1.1 and 1.2.

2. The probabilistic lemmas. Firstly, we recall the probabilistic estimate. The randomization keeps differentiability of the function.
Lemma 2.1 ([1]). Given \(\phi \in H^s(\mathbb{R}^d) \), let \(\phi^\omega \) be its randomization defined by (2). Then, there exist \(C, c > 0 \) such that
\[
P(\| \phi^\omega \|_{H^s} > \lambda) < C \exp\left(-c \frac{\lambda^2}{\| \phi \|_{H^s}^2}\right)
\]
for all \(\lambda > 0 \).

Let \(S(t) := e^{it\Delta} \) be the linear propagator of the Schrödinger group, Namely, \(v(t) = S(t)\phi \) solves
\[
(i\partial_t + \Delta)v = 0, \quad v(0) = \phi.
\]
We say that a pair \((q, r)\) is admissible if \(2 \leq q, r \leq \infty \), \((q, r, d) \neq (2, \infty, 2)\), and
\[
\frac{2}{q} + \frac{d}{r} = \frac{d}{2}.
\]
The following Strichartz estimates hold.

Proposition 1. Let \((q, r)\) be admissible. Then, we have
\[
\| S(t)\phi \|_{L^q_t L^r_x} \lesssim \| \phi \|_{L^2_x}.
\]

By the randomization, improved Strichartz type estimates hold.

Lemma 2.2 ([1]). Given \(\phi \in L^2(\mathbb{R}^d) \), let \(\phi^\omega \) be its randomization defined by (2). Let \((q, r)\) be admissible with \(q, r < \infty \) and \(r \leq \bar{r} < \infty \). Then, there exist \(C, c > 0 \) such that
\[
P(\| S(t)\phi^\omega \|_{L^q_t L^r_x} > \lambda) \leq C \exp\left(-c \frac{\lambda^2}{\| \phi \|_{L^2_x}^2}\right)
\]
for all \(\lambda > 0 \).

3. Function spaces and their properties.

3.1. Definition of \(U^p \), \(V^p \) spaces. In this section, we define the \(U^p \)- and \(V^p \)-type function spaces. We refer the reader to §2 in [19] for proofs of the basic properties (see also [26, 30]).

Let \(\mathcal{Z} \) be the set of finite partitions \(-\infty < t_0 < t_1 < \cdots < t_K \leq \infty\) of the real line and we put \(v(t_K) := 0 \) for all functions \(v: \mathbb{R} \to L^2 \) if \(t_K = \infty \).

Definition 3.1. Let \(1 \leq p < \infty \). For \(\{t_k\}_{k=0}^K \in \mathcal{Z} \) and \(\{\phi_k\}_{k=0}^{K-1} \subset L^2(\mathbb{R}^d) \) with \(\sum_{k=0}^{K-1} \| \phi_k \|_{L^2}^p = 1 \), we call the function \(a: \mathbb{R} \to L^2(\mathbb{R}^d) \) given by
\[
a = \sum_{k=1}^K \chi_{[t_{k-1}, t_k)} \phi_{k-1}
\]
a \(U^p \)-atom. Furthermore, we define the atomic space
\[
U^p := \left\{ u: \mathbb{R} \to L^2(\mathbb{R}^d) : u = \sum_{j=1}^{\infty} \lambda_j a_j \text{ for } U^p \text{-atoms } a_j, \{\lambda_j\} \subset \mathbb{C} \right\}
\]
such that \(\sum_{j=1}^{\infty} |\lambda_j| < \infty \).
with the norm
\[\|u\|_{U^p} := \inf \left\{ \sum_{j=1}^{\infty} |\lambda_j| : u = \sum_{j=1}^{\infty} \lambda_j a_j \text{ for } U^p\text{-atoms } a_j, \{\lambda_j\} \subset \mathbb{C} \right. \]
\[\left. \text{such that } \sum_{j=1}^{\infty} |\lambda_j| < \infty \right\}. \]

Definition 3.2. (i) Let \(1 \leq p < \infty\). We define \(V^p\) as the space of all functions \(v : \mathbb{R} \to L^2(\mathbb{R}^d)\) such that the limits \(\lim_{t \to \pm \infty} v(t)\) exist in \(L^2(\mathbb{R}^d)\) and the norm
\[\|v\|_{V^p} := \sup_{\{t_i\} \in \mathbb{Z}} \left(\sum_{k=1}^{K} \|v(t_k) - v(t_{k-1})\|_{L^2}^p \right)^{1/p} \]
is finite.

(ii) Let \(V^p_{rc}\) be the closed subspace of all \(v \in V^p\) such that \(v\) is right continuous and \(\lim_{t \to -\infty} v(t) = 0\), endowed with the norm (3).

For \(1 \leq p < q < \infty\), \(U^p \hookrightarrow V^p_{rc} \hookrightarrow U^q \hookrightarrow L^\infty(\mathbb{R}; L^2(\mathbb{R}^d))\) is valid.

Using the \(U^2\) and \(V^2\) spaces instead of \(H^1/2+\varepsilon(\mathbb{R}; L^2(\mathbb{R}^d))\left(\to C(\mathbb{R}; L^2(\mathbb{R}^d))\right)\), we define the Fourier restriction norm spaces.

Definition 3.3. (i) Let \(1 \leq p < \infty\). We define the function spaces \(U^p_\Delta := S(t)U^p\) (resp., \(V^p_\Delta := S(t)V^p\)) as the spaces of all functions \(u : \mathbb{R} \to L^2(\mathbb{R}^d)\) such that \(t \to S(-t)u(t)\) is in \(U^p\) (resp., \(V^p\)), with the norms
\[\|u\|_{U^p_\Delta} := \|S(\cdot)u\|_{U^p}, \quad \|v\|_{V^p_\Delta} = \|S(\cdot)v\|_{V^p}. \]

(ii) The closed subspace \(V^p_{rc,\Delta}\) is defined similarly.

The Strichartz estimates imply the following.

Lemma 3.4. Let \(d \geq 1\) and let \((q,r)\) be admissible with \(q > 2\). Then, we have
\[\|u\|_{L_t^q L_x^r} \lesssim \|u\|_{V^2_\Delta}. \]

We use the convention that capital letters denote dyadic numbers, e.g., \(N = 2^n\) for \(n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}\). We fix a nonnegative even function \(\varphi \in C^\infty_0((-2, 2))\) with \(\varphi(r) = 1\) for \(|r| \leq 1\) and \(\varphi(r) \leq 1\) for \(1 \leq |r| \leq 2\). Set \(\varphi_N(r) := \varphi(r/N) - \varphi(2r/N)\) for \(N \geq 2\) and \(\varphi_1(r) := \varphi(r)\). For \(N \in 2^{\mathbb{N}_0}\), \(P_N\) denotes the Fourier multiplier with the symbol \(\varphi_N(|\xi|)\), i.e., \((P_Nf)(x) := \mathcal{F}^{-1}[\varphi_N(|\xi|)\hat{f}(\xi)](x)\). Define \(P_{<N} := \sum_{M>N} P_M\) and \(P_{\leq N} := \text{Id} - P_{>N}\). Moreover, for \(M \in 2^{\mathbb{N}_0}\), we define \(\hat{Q}_M f(\tau, \xi) := \varphi_M(\tau + |\xi|^2) \hat{f}(\tau, \xi)\). We also use \(Q_{>M} := \sum_{N>M} Q_N\) and \(Q_{\leq M} := \text{Id} - Q_{>M}\).

We state the boundedness of the operators \(Q_{>M}\) and \(Q_{\leq M}\).

Lemma 3.5. Let \(d \geq 1, 2 \leq p \leq \infty,\) and \(M \in 2^{\mathbb{N}_0}\). Then the following estimates
\[\|Q_{>M}f\|_{L_t^p L_x^q} \lesssim M^{-1/p}\|f\|_{V^2_\Delta}, \quad \|Q_{\leq M}f\|_{V^2_\Delta} + \|Q_{>M}f\|_{V^2_\Delta} \lesssim \|f\|_{V^2_\Delta}, \]
hold for any \(f \in V^2_\Delta\), where the implicit constants are dependent only on \(d\).

The bilinear refinement of the Strichartz estimate holds ([6, 12, 15]).

Lemma 3.6. Let \(d \geq 1\) and let \(N_1, N_2, N_3 \in 2^{\mathbb{N}_0}\). Assume \(N_{\min} = \min(N_1, N_2, N_3) \ll N_{\max} = \max(N_1, N_2, N_3)\). Then, we have
\[\|P_{N_3} (S(t)P_{N_1}\phi_1 S(t)P_{N_2}\phi_2)\|_{L_{t,x}^2} \lesssim N_{\min}^{d-1} \left(\frac{N_{\min}}{N_{\max}}\right)^{d/2} \|\phi_1\|_{L^2} \|\phi_2\|_{L^2}. \]
for any \(\phi_1, \phi_2 \in L^2(\mathbb{R}^d) \).

Combining the interpolation (see Proposition 2.20 in [19]) with it, we obtain the bilinear refinement of the Strichartz estimate in the \(V^2 \) space settings.

Corollary 1. Let \(d \geq 1 \). For any \((v, w) \in V^2_{-rc, \Delta} \times V^2_{-rc, \Delta}\), \(N_1, N_2, N_3 \in 2^{\mathbb{R}_0} \) with \(N_{\min} \ll N_{\max} \), and sufficiently small \(\delta > 0 \), we have the estimate

\[
\| P_{N_1} (P_{N_1} v P_{N_2} w) \|_{L^2_{t,x}} \lesssim N_{\min}^{\frac{d}{2} - \delta} \| v \|_{V^2_{\Delta}} \| w \|_{V^2_{\Delta}}
\]

where the implicit constants depending only on \(d \).

Remark 3. By the Strichartz estimate, the same estimate holds in the case \(N_{\min} \sim N_{\max} \) except for \(d = 1 \). Hence, we neglect the condition \(N_{\min} \ll N_{\max} \) if \(d \geq 2 \).

Definition 3.7. For \(s \in \mathbb{R} \), we define \(Y^s \) and \(Z^s \) as the closure of \(C(\mathbb{R}; S(\mathbb{R}^d)) \cap V^2_{-rc, \Delta} \) and \(C(\mathbb{R}; S(\mathbb{R}^d)) \cap U^2_{\Delta} \) with respect to the norm

\[
\| f \|_{Y^s} := \left(\sum_{N \in 2^\mathbb{Z}_0} N^{2s} \| P_N f \|_{V^2_{\Delta}}^2 \right)^{1/2}, \quad \| f \|_{Z^s} := \left(\sum_{N \in 2^\mathbb{Z}_0} N^{2s} \| P_N f \|_{U^2_{\Delta}}^2 \right)^{1/2},
\]

respectively.

We also use the time restricted space.

Definition 3.8. Let \(E \) be a Banach space of continuous functions \(f : \mathbb{R} \to H \) for some Hilbert space \(H \). We define the corresponding restriction space to the interval \([0, T) \subset \mathbb{R}\) as

\[
E_T := \{ f \in C([0, T); H) : \exists g^* \in E, \ g^*(t) = f(t), t \in [0, T) \}
\]

endowed with the norm \(\| f \|_{E_T} := \inf \{ \| g^* \|_E : g^*(t) = f(t), t \in [0, T) \} \).

The space \(E_T \) is a Banach space. For any \(T \in (0, \infty) \), we have the embeddings

\[
Z^s_T \hookrightarrow Y^s_T \hookrightarrow (\nabla)^{-s} V^2_{\Delta, T} \cap C([0, T); H^s).
\]

Let \(f \in L^1_{loc}([0, \infty); L^2_{x}(\mathbb{R}^d)) \). We define the integral operator

\[
\Gamma[f](t) := \int_0^t S(t - t') f(t') dt',
\]

for \(t \geq 0 \) and \(\Gamma[f](t) = 0 \) otherwise. For the integral operator, we have the following.

Proposition 2. Let \(d \geq 1, s \in \mathbb{R}, \) and \(T \in (0, \infty] \). Then the estimate

\[
\| \Gamma[f] \|_{Z^s_T} \leq \left\{ \sum_{N \in 2^\mathbb{Z}_0} N^{2s} \left(\sup_{\| g \|_{V^2_{\Delta}} = 1} \left| \int_0^T \langle f(t), P_N g(t) \rangle_{L^2_{x}} dt \right| \right)^2 \right\}^{1/2}
\]

holds for any \(f \in L^1_t([0, T); H^s(\mathbb{R}^d)) \), where the implicit constant is dependent only on \(d, s \).

This estimate follows from Proposition 2.10, Remark 2.11 in [19].
4. **Probabilistic nonlinear estimates.** First of all, we recall the notations which are introduced in §1. Put $N_m(u) = \partial (\bar{v}^m)$. Let $z(t) = z^\omega(t) := S(t)\phi^\omega$ and $v(t) = u(t) - z(t)$ be the linear and nonlinear parts of u respectively. We consider the following perturbed equation:

\[
\begin{cases}
(i\partial_t + \Delta)v = \pm N_m(v + z), \\
v(0, x) = 0.
\end{cases}
\]

To state probabilistic nonlinear estimates, we define the following sets:

\[
\mathcal{S}^2_m := \{(4, 4), (4, 2d)\},
\]
\[
\mathcal{S}^m_m := \left\{(4, 4), (4(m - 1), \frac{2(m-1)^2 d}{(m-1)d + m-3}), (\frac{2(m-2)(2+\delta)}{d}, \frac{2(m-1)(m-2)d}{(m-1)d - 2d}), (4, \frac{2d}{d-1})\right\}
\]

\[
\bigcup_{l=1}^{m-1} \left\{(\frac{2(m-l)(2+\delta)}{d}, \frac{2(m-l)(2+\delta)}{d}), (\frac{2(m-l)(4+\delta)}{d}, \frac{2(m-l)(m-l)(4+\delta)d}{(m-1)(8+\delta) - 2(4+\delta)(l-1)}), (\frac{2(m-l)(2+\delta)}{d}, \frac{m-l}{d})(4, \frac{2d}{d-1})\right\}.
\]

The set \mathcal{S}^2_m does not depend on δ. But for convenience, we use this notation. For an interval $I \subset \mathbb{R}$ and $\delta > 0$,

\[
\|u\|_{\mathcal{S}^m_m(I)} := \max\{\|u\|_{L^1_tL^\infty_y(I \times \mathbb{R}^d)} : (q, r) \in \mathcal{S}_m^m\}.
\]

The followings are the main results in this section.

Lemma 4.1. Assume $d \geq 1$, $m \geq 2$, and $d + m \geq 5$. Let

\[
\max\left(\frac{d-1}{d}, \frac{2}{s_c}, s_c - \frac{d}{2(d+1)}\right) < s < s_c
\]

and $\delta > 0$ be sufficiently small depending only on d, m, and s. Given $\phi \in H^s(\mathbb{R}^d)$, let ϕ^ω be its randomization defined by (2). For $R > 0$, we put

\[
\mathcal{E}^m_R := \{\omega \in \Omega : \|\phi^\omega\|_{H^s} + \|\langle \nabla \rangle^s S(t)\phi^\omega\|_{\mathcal{S}^m_m(\mathbb{R})} \leq R\}.
\]

Then, we have

\[
\|\Gamma[N_m(v + z)]\|_{\mathcal{Z}^c_T} \leq C_1 \left(\|v\|_{Y^m_T} + R^m\right),
\]

\[
\|\Gamma[N_m(v_1 + z)] - \Gamma[N_m(v_2 + z)]\|_{\mathcal{Z}^c_T} \leq C_2 \left(\|v_1\|_{Y^{m-1}_T} + \|v_2\|_{Y^{m-1}_T} + R^{m-1}\right) \times \|v_1 - v_2\|_{Y^{m-1}_T}
\]

for any $T \in (0, \infty)$, $v, v_1, v_2 \in Y^{m-1}_T$, and $\omega \in \mathcal{E}^m_R$. Here, the constants C_1 and C_2 are depending only on d and m.

Remark 4. In the quadratic case, the condition $s > \frac{d-1}{2}s_c$ comes from the estimate for z.

In the cubic case, the condition $s > \frac{d-1}{2}s_c$ needs to treat the zzv case (see §4.2 below), while the other cases are less restricted. On the other hand, the lower bound of the regularity in [2] appears in the zzz case.

Remark 5. Note that the pairs

\[
\left(\frac{2(m-l)(2+\delta)}{d}, \frac{2d(m-l)(2+\delta)}{d(m-l)(2+\delta) - 2l}\right), \left(\frac{2(m-l)(4+\delta)}{d}, \frac{2d(m-l)(4+\delta)}{d(m-l)(4+\delta) - 3l}\right), \left(4(m-1), \frac{2d(m-1)}{(m-1)d-1}\right), \left(4, \frac{2d}{d-1}\right)
\]

are admissible. Accordingly, Lemmas 2.1 and 2.2 imply that E^m_R in Lemma 4.1 satisfies the bound

$$P(\Omega \setminus E^m_R) \leq C \exp\left(-c \frac{R^2}{\|\phi\|^2_{H^s}}\right).$$

To show the local in time nonlinear estimates, we define the norm

$$\|u\|_{S^{m,L}_x(t)} := \max\left\{\|u\|_{L^{q}_{x,t}(t \times \mathbb{R}^d)} : \begin{cases} \frac{q}{1-\delta q}, r \in \mathcal{S}^m_{\delta} \setminus \{(4, 4), (4, \frac{2d}{d-1})\} \\ \text{or} \ (q, r) = (4, 4), (4, \frac{2d}{d-1}) \end{cases}\right\}$$

(7)

Since Hölder’s inequality yields

$$\|f\|_{L^q_{x,t}X} \lesssim T^\delta \|f\|_{L^{\frac{q}{1-\delta q}}_{x,t}X}$$

for any Banach space X, we obtain the following (see the proof of Lemma 4.1 and Remark 6 below).

Lemma 4.2. Assume $d \geq 1$, $m \geq 2$, and $d + m \geq 5$. Let

$$\max\left(\frac{d-1}{d-s_c}, s_c - \frac{d}{2(d+1)}\right) < s < s_c$$

and $\delta > 0$ be sufficiently small depending only on d, m, and s. Given $\phi \in H^s(\mathbb{R}^d)$, let ϕ^ω be its randomization defined by (2). For $R > 0$, we put

$$E^{m,L}_R := \{\omega \in \Omega : \|\phi^\omega\|_{H^s} + \|S(t)\phi^\omega\|_{S^{m,L}_x(\mathbb{R})} \leq R\}.$$

Then, we have

$$\|\Gamma[\mathcal{N}_m(v + z)]\|_{Z^m_T} \leq C_1' \left(\|v\|^m_{Y^s_{T^c}} + T^\delta R^m\right),$$

(9)

$$\|\Gamma[\mathcal{N}_m(v_1 + z)] - \Gamma[\mathcal{N}_m(v_2 + z)]\|_{Z^m_T} \leq C_2' \left(\|v_1\|^{m-1}_{Y^s_{T^c}} + \|v_2\|^{m-1}_{Y^s_{T^c}} + T^\delta R^{m-1}\right) \times \|v_1 - v_2\|_{Y^s_{T^c}}$$

(10)

for $0 < T \leq 1$, all $v, v_1, v_2 \in Y^s_{T^c}$, and $\omega \in E^{m,L}_R$.

Lemmas 2.1 and 2.2 imply the bound (see Remark 5)

$$P(\Omega \setminus E^{m,L}_R) \leq C \exp\left(-c \frac{R^2}{\|\phi\|^2_{H^s}}\right).$$

(11)

Proof of Lemma 4.1. We only prove (5) because (6) follows from a similar manner. Thanks to Proposition 2, it suffices to show

$$\left\{\sum_{N_0 \in 2^m} N_0^{2s_c+2} \int_{\mathbb{R}^{1+d}} P_{N_0} \|v\|_{Y^{s_c}}^2 \|w_j\|dxdt\right\}^{\frac{1}{2}} \lesssim \|v\|_{Y^{s_c}}^m + R^m,$$

(12)

where $w_j = v$ or z ($j = 1, \ldots, m$) and $v_0 \in V_\Delta^s$ with $\|v_0\|_{V_\Delta^s} = 1$.

We use the dyadic decomposition as follows.

$$\int_{\mathbb{R}^{1+d}} P_{N_0} \prod_{j=1}^m w_j dxdt = \sum_{N_1, \ldots, N_m \in 2^m} \int_{\mathbb{R}^{1+d}} P_{N_0} \prod_{j=1}^m P_{N_j} w_j dxdt$$
Here, we divide the integration on the right hand side into \(2^{m+1}\) parts of the form

\[
\int_{\mathbb{R}^{1+d}} Q_0 P_{N_0} v_0 \prod_{j=1}^{m} Q_j P_{N_j} w_j dx dt
\]

with \(Q_j \in \{Q_{\leq M}, Q_{>M}\}\) \((j = 0, 1, \ldots, m)\). This decomposition is only meaningful if \(w_j = v\) because \(Q_{\leq M} z = Q_{\leq M} e^{it \Delta} \phi_\omega = e^{it \Delta} \phi_\omega = z\) and \(Q_{>M} z = Q_{>M} e^{it \Delta} \phi_\omega = 0\).

Here, we note that at least one of the modulations is bounded below. More precisely, for \((\tau_j, \xi_j) \in \mathbb{R}^{1+d}\) \((j = 0, 1, \ldots, m)\) with \(\sum_{j=0}^{m} \tau_j = 0\) and \(\sum_{j=0}^{m} \xi_j = 0\), by the triangle inequality, we have

\[
\max_{0 \leq j \leq m} |\tau_j + |\xi_j|^2| \geq \frac{1}{m + 1} \max_{0 \leq j \leq m} |\xi_j|^2.
\]

(13)

Thus, let us assume that one of \(Q_j\) is \(Q_{>\max_{0 \leq j \leq m} N_j}\) otherwise the integration becomes zero. Putting \(\mathcal{N}_j := Q_j P_{N_j}\), we mainly focus on the estimate of

\[
I := \sum_{N_0, N_1, \ldots, N_m \in \mathbb{Z}^d_0} N_0^{s_c+1} \left| \int_{\mathbb{R}^{1+d}} \mathcal{N}_0 v_0 \prod_{j=1}^{m} \mathcal{N}_j w_j dx dt \right|
\]

which is bigger than the left hand side of (12) because of \(l^1 \hookrightarrow l^2\). For a set \(\mathcal{N} \subset (2^{\mathbb{N}_0})^{m+1}\) (for example, \(\mathcal{N}\) is defined by \(\{N_2, \ldots, N_m \leq N_0 \sim N_1\}\)), we use the notation \(I_{\mathcal{N}}\) as

\[
I_{\mathcal{N}} := \sum_{N_0, N_1, \ldots, N_m \in \mathbb{Z}^d_0} N_0^{s_c+1} \left| \int_{\mathbb{R}^{1+d}} \mathcal{N}_0 v_0 \prod_{j=1}^{m} \mathcal{N}_j w_j dx dt \right|
\]

We separately treat the cases \(m = 2\) and \(m \geq 3\).

4.1. The case \(m = 2\). In this subsection, we consider the case \(m = 2\), where we have \(s_c = \frac{d-2}{2}\).

Proof of (5) with \(m = 2\). Case 1. uv case.

Although this case is essentially treated in \([23]\), we give a proof for completeness. Put \(v_1 = v_2 = v\), \(N_{\min} = \min(N_0, N_1, N_2)\), \(N_{\med} = \med(N_0, N_1, N_2)\), and \(N_{\max} = \max(N_0, N_1, N_2)\) for convenience. There exists a permutation \(\{i, j, k\}\) of \(\{0, 1, 2\}\) such that \(Q_i = Q_{>N_{\max}}\). By Lemma 3.5, Corollary 1, and \(\|v_0\|_{V_{\Delta}^2} = 1\), we have

\[
\left| \int_{\mathbb{R}^{1+d}} \mathcal{N}_0 v_0 \mathcal{R}_1 v \mathcal{R}_2 v dx dt \right| \lesssim \|Q_{\leq N_{\max}}^2 P_{N_0} v_0 \|_{L^2_{t,x}} \|P_{N_0} (\mathcal{R}_1 v_j \mathcal{R}_k v_k)\|_{L^2_{t,x}}
\]

\[
\lesssim N_{\max}^{-\frac{d}{2} + \delta} N_{\min}^{-\frac{d}{2} + \delta} \prod_{l=0}^{2} \|P_{N_l} v_l\|_{V_{\Delta}^2}.
\]

Thanks to \(N_{\min} \lesssim N_{\min} \sim N_{\max}\), we obtain

\[
\sum_{N_0, N_2 \in \mathbb{Z}^d_0} \left\{ \sum_{N_1, N_3 \in \mathbb{Z}^d_0} \left[\int_{\mathbb{R}^{1+d}} \mathcal{N}_0 v_0 \mathcal{R}_1 v \mathcal{R}_2 v dx dt \right]^2 \right\}^{\frac{1}{2}}
\]
Case 2. \(\omega \) in this case.

Subcase 2-1. \(N_1 \ll N_2 \sim N_0, N_1 \lesssim N_2^{\frac{1}{d-1}} \).

By Hölder’s inequality, and Lemmas 3.5, 3.6, we get

\[
I_{N_1 < N_2 \sim N_0, N_1 \lesssim N_2^{\frac{1}{d-1}}} \lesssim \sum_{N_1 < N_2 \sim N_0, N_1 \lesssim N_2^{\frac{1}{d-1}}} N_0^d \| Q_{> N_0}^d P_{N_0} v_0 \|_{L^2_y} \| P_{N_1} z P_{N_2} z \|_{L^2_y}
\]

\[
\lesssim \sum_{N_1 < N_2 \sim N_0, N_1 \lesssim N_2^{\frac{1}{d-1}}} N_0^d N_1^{d-1} \left(\frac{N_1}{N_2} \right)^{\frac{1}{2}} \left\| P_{N_1} v_0 \right\| \left\| P_{N_1} \phi_0 \right\|_{L^2_y} \left\| P_{N_2} \phi_0 \right\|_{L^2_y}
\]

\[
\lesssim \sum_{N_1 < N_2 \sim N_0, N_1 \lesssim N_2^{\frac{1}{d-1}}} N_1^{d-1} N_2^{-3} N_1^{-s} N_2^{-s} R^2 \left\| P_{N_0} v_0 \right\|_{V^2_y}
\]

\[
\lesssim \sum_{N_1 < N_2 \sim N_0, N_1 \lesssim N_2^{\frac{1}{d-1}}} N_1^{-s + \frac{(d-1)(d-2)}{2d}} N_2^{-s + \frac{(d-1)(d-2)}{2d}} R^2 \left\| P_{N_0} v_0 \right\|_{V^2_y}
\]

\[
\lesssim R^2
\]

for \(\omega \in E^2_R \). Here, we have used \(\frac{(d-1)(d-2)}{2d} < s < \frac{d-2}{2} \) and \(\| v_0 \|_{V^2_y} = 1 \) in the last inequality.

Subcase 2-2. \(N_1 \ll N_2 \sim N_0, N_1 \gtrsim N_2^{\frac{1}{d-1}} \).

By Hölder’s inequality and Lemma 3.5, we get

\[
I_{N_1 \ll N_2 \sim N_0, N_1 \gtrsim N_2^{\frac{1}{d-1}}} \lesssim \sum_{N_1 \ll N_2 \sim N_0, N_1 \gtrsim N_2^{\frac{1}{d-1}}} \| Q_{> N_0}^d P_{N_0} v_0 \|_{L^2_y} N_0^d N_2^d \left\| P_{N_1} z P_{N_2} z \right\|_{L^2_y}
\]

\[
\lesssim \sum_{N_1 \ll N_2 \sim N_0, N_1 \gtrsim N_2^{\frac{1}{d-1}}} N_0^d N_1^{d-1} N_2^{-s} R^2 \left\| P_{N_0} v_0 \right\|_{V^2_y}
\]

\[
\lesssim \sum_{N_1 \ll N_2 \sim N_0, N_1 \gtrsim N_2^{\frac{1}{d-1}}} N_1^{-s + \frac{(d-1)(d-2)}{2d}} N_2^{-s + \frac{(d-1)(d-2)}{2d}} R^2 \left\| P_{N_0} v_0 \right\|_{V^2_y}
\]

\[
\lesssim R^2
\]

for \(\omega \in E^2_R \). Here, we have used \(\frac{(d-1)(d-2)}{2d} < s < \frac{d-2}{2} \) and \(\| v_0 \|_{V^2_y} = 1 \) in the last inequality.
Subcase 2-3. \(N_0 \lesssim N_1 \sim N_2 \).

By Hölder’s inequality and Lemma 3.5, we get

\[
I_{N_0 \lesssim N_1 \sim N_2} \lesssim \sum_{N_0 \lesssim N_1 \sim N_2} N_0^d \|Q_{N_0} P_{N_0} v_0\|_{L^2_t L^2_x} \|P_{N_1} z\|_{L^4_{t,x}} \|P_{N_2} \bar{z}\|_{L^4_{t,x}}
\]

\[
\lesssim \sum_{N_0 \lesssim N_1 \sim N_2} N_0^d N_0^{-1} N_1^{-s} N_2^{-s} R^2 \|P_{N_0} v_0\|_{V^2_A}
\]

\[
\lesssim \sum_{N_0} N_0^{-2s + \frac{d-2}{4}} R^2 \|P_{N_0} v_0\|_{V^2_A}
\]

\[
\lesssim R^2
\]

for \(\omega \in E^2_P \). Here, we have used \(\frac{d-2}{4} \leq \frac{(d-1)(d-2)}{2d} < s < \frac{d-2}{2} \) and \(\|v_0\|_{V^2_A} = 1 \) in the last inequality.

Case 3. \(\omega \) case.

We consider only \(N_2 \lesssim N_0 \) since the case \(N_0 \lesssim N_2 \) is simpler. (In fact, if \(N_0 \lesssim N_2 \), then \(N_0^{d-2} N_2^{-s} \lesssim N_2^d N_0^{-2s} \) for \(s \geq 0 \).) In this case, \(Q_2 = Q_{N_0} \) or \(Q_0 = Q_{N_0} \) holds in this case. We deal with only \(Q_2 = Q_{N_0} \) because the case \(Q_0 = Q_{N_0} \) follows from the same manner.

Subcase 3-1. \(N_2 \ll N_0 \), \(N_2 \lesssim N_0^{\frac{d-1}{d}} \).

By Hölder’s inequality, Lemma 3.5, and Corollary 1, we have

\[
I_{N_2 \ll N_1 \sim N_0, N_2 \lesssim N_0^{\frac{d-1}{d}}}
\]

\[
\lesssim \sum_{N_2 \ll N_1 \sim N_0} N_0^d \|P_{N_2} (P_{N_1} \imath R_0 v_0)\|_{L^2_t L^2_x} \|Q_{N_0} P_{N_2} v\|_{L^2_t L^2_x}
\]

\[
\lesssim \sum_{N_2 \ll N_1 \sim N_0} N_0^d N_0^{-1} N_2^{-\frac{d-1}{d}} \left(\frac{N_2}{N_1} \right)^{\frac{d-2}{2}} \|P_{N_1} \phi_w\|_{L^2_x} \|P_{N_2} v\|_{V^2_A} \|P_{N_0} v_0\|_{V^2_A}
\]

\[
\lesssim \sum_{N_2 \ll N_1 \sim N_0} N_1^{d-3} + \frac{d-2}{2} N_2^{-s + \frac{d-2}{2}} R \|v\|_{Y^{\frac{d-2}{2}}} \|P_{N_0} v_0\|_{V^2_A}
\]

\[
\lesssim \|v\|_{Y^{\frac{d-2}{2}}} \|P_{N_0} v_0\|_{V^2_A} \frac{d-2}{2}
\]

for \(\omega \in E^2_P \). Here, we have used \(\frac{(d-2)^2}{2(d-1)} \leq \frac{(d-1)(d-2)}{2d} < s < \frac{d-2}{2} \), \(\|v_0\|_{V^2_A} = 1 \) and \(\delta > 0 \) is sufficiently small in the last inequality.

Subcase 3-2. \(N_2 \ll N_1 \sim N_0 \), \(N_2 \gtrsim N_0^{\frac{d-1}{d}} \).

By Hölder’s inequality, Lemmas 3.4 and 3.5, we have

\[
I_{N_2 \ll N_1 \sim N_0, N_2 \gtrsim N_0^{\frac{d-1}{d}}}
\]
\[\sum_{N_2 \leq N_1 \sim N_0} N_2^d \| \mathcal{R}_0 v_0 \|_{L_1^4 L_2^4} \| P_{N_1} z \|_{L_1^4 L_2^4} \| Q_{> N_0^2} P_{N_0} v \|_{L_1^4} \leq \sum_{N_2 \leq N_1 \sim N_0} N_2^d N_0^{-1} \| P_{N_0} v_0 \|_{V_2^2} \| P_{N_1} z \|_{L_1^4 L_2^4} \| P_{N_0} v \|_{V_2^2} \leq \sum_{N_1 \sim N_0} N_1^{-s+\frac{(d-2)^2}{2(d-1)}} R \| v \|_{V_2^2} \leq \| v \|_{V_2^2} R \]

for \(\omega \in E_R^2 \). Here, we have used \(\frac{(d-2)^2}{2(d-1)} \leq \frac{(d-1)(d-2)}{2d} < s < \frac{d-2}{2} \) and \(\| v_0 \|_{V_2^2} = 1 \) in the last inequality.

Subcase 3-3. \(N_1 \lesssim N_2 \sim N_0 \).

By Hölder’s inequality, Lemmas 3.4 and 3.5, we have

\[\left\| \int_{\mathbb{R}^{1+d}} P_{\leq N_0^2} Q_{> N_0^2} P_{N_0} v \mathcal{R}_0 v_0 dx dt \right\| \lesssim \| \mathcal{R}_0 v_0 \|_{L_1^4 L_2^4} \| P_{\leq N_0} z \|_{L_1^4 L_2^4} \| Q_{> N_0^2} P_{N_0} v \|_{L_1^4} \lesssim N_0^{-1} \| P_{N_0} v_0 \|_{V_2^2} \| z \|_{L_1^4 L_2^4} \| P_{N_0} v \|_{V_2^2} \lesssim N_0^{-1} \| z \|_{L_1^4 L_2^4} \| P_{N_0} v \|_{V_2^2} . \]

Hence, we obtain

\[\left\{ \sum_{N_0 \in \mathcal{D}_0} N_0^d \int_{\mathbb{R}^{1+d}} \mathcal{R}_0 v_0 P_{\leq N_0} z Q_{> N_0^2} P_{N_0} v dx dt \right\}^{\frac{1}{2}} \leq R \left\{ \sum_{N_0 \in \mathcal{D}_0} N_0^{d-2} \| P_{N_0} v \|_{V_2^2}^2 \right\}^{\frac{1}{2}} \leq \| v \|_{V_2^2} R \]

for \(\omega \in E_R^2 \).

Remark. From (8), we get the factor \(T^\delta \) in the case 3-3 if \(\omega \in E_R^{m,L} \). In the other cases, from \(\| Q_{> N_0^2} P_{N_0} v_0 \|_{L_1^4} \lesssim T^\delta \| Q_{> N_0^2} P_{N_0} v_0 \|_{L_1^4} \), we get the factor \(T^\delta \).

4.2. **The case** \(m \geq 3 \). In this subsection, we consider the case \(m \geq 3 \).

Proof of (5) with \(m \geq 3 \). **Case 1.** \(w_j = v \) \((j = 1, \ldots, m) \) case.

This is the deterministic case and the estimate is the same as in [24]. But, we repeat it for completeness. From the symmetry, we may assume that \(N_1 \leq \cdots \leq N_m \).

Subcase 1-1. \(N_0 \sim N_m \gtrsim N_{m-1} \).

Firstly, we assume \(Q_1 = Q_{> N_0^2} \). The embedding \(H^s(\mathbb{R}^d) \rightarrow L^{(m-1)d}(\mathbb{R}^d) \), the \(L^2 \)-orthogonality, and Lemma 3.5 yield that
\[
\| Q_{> N_0^2} P_{< N_0} v \|_{L_t^1 L_x^{(m-1)d}} \lesssim \left(\sum_{N \in 2^{N_0}, N \leq N_0} N^{sc} \| Q_{> N_0^2} P N v \|_{L_t^2 L_x^2}^2 \right)^{\frac{1}{2}} \lesssim N_0^{-1} \| v \|_{Y^{sc}}. \tag{14}
\]

Similarly, we get
\[
\| Q_{\leq N_0^2} P_{< N_0} v \|_{L_t^\infty L_x^{(m-1)d}} \lesssim \| v \|_{Y^{sc}}. \tag{15}
\]

Accordingly, from Hölder’s inequality, Lemmas 3.4, 3.5, and above estimates, we have
\[
\left\{ \sum_{N_0 \in 2^{N_0}} N_0^{2sc+2} \left| \int_{\mathbb{R}^{1+d}} Q_0 P_{N_0} v_0 Q_{> N_0^2} P_{< N_0} v \left(\prod_{j=2}^{m-1} Q_j P_{< N_0} v \right) Q_m P_{N_0} v dxdt \right|^2 \right\}^{\frac{1}{2}} \lesssim \left\{ \sum_{N_0 \in 2^{N_0}} N_0^{2sc+2} \| Q_0 P_{N_0} v_0 \|_{L_t^1 L_x^2}^2 \| Q_{> N_0^2} P_{< N_0} v \|_{L_t^\infty L_x^{(m-1)d}}^2 \right. \left. \times \left(\prod_{j=2}^{m-1} \| Q_j P_{< N_0} v \|_{L_t^\infty L_x^{(m-1)d}}^2 \right) \| Q_m P_{N_0} v \|_{L_t^1 L_x^2}^2 \right\}^{\frac{1}{2}} \lesssim \left\{ \sum_{N_0 \in 2^{N_0}} N_0^{2sc} \| P_{N_0} v \|_{V_2^2}^2 \right\}^{\frac{1}{2}} \| v \|_{Y^{sc}}^{m-1} \| v_0 \|_{V_2^3} \lesssim \| v \|_{Y^{sc}}^{m-1}.
\]

Since the case \(Q_j = Q_{> N_0^2} \) (\(j = 2, \ldots, m-1 \)) follows from a similar argument as above, we omit the details.

Secondly, we consider the case where \(Q_m = Q_{> N_0^2} \). By Hölder’s inequality, Bernstein’s inequality, Lemma 3.5, and Corollary 1, we have
\[
\sum_{N_1, \ldots, N_{m-1} \in 2^{N_0}} \left| \int_{\mathbb{R}^{1+d}} \mathfrak{R}_0 v_0 \left(\prod_{j=1}^{m-1} \mathfrak{R}_j v \right) Q_{> N_0^2} P_{N_0} v dxdt \right| \lesssim \sum_{N_1, \ldots, N_{m-1} \in 2^{N_0}} \| \mathfrak{R}_0 v_0 \mathfrak{R}_{m-1} v \|_{L_t^1 L_x^2} \left(\prod_{j=1}^{m-2} \| \mathfrak{R}_j v \|_{L_t^\infty L_x^2} \right) \| Q_{> N_0^2} P_{N_0} v \|_{L_t^1 L_x^2} \lesssim \sum_{N_1, \ldots, N_{m-1} \in 2^{N_0}} N_0^{\frac{d}{m-1}} \left(\frac{N_{m-1}}{N_0} \right)^{\frac{1}{2}-\delta} \left(\prod_{j=1}^{m-2} \frac{N_j^2}{N_0} \right) N_0^{-1} \| P_{N_0} v \|_{V_2^3} \| P_{N_0} v \|_{V_2^3} \times \left(\prod_{j=1}^{m-1} \| P_{N_j} v \|_{V_2^3} \right) \lesssim N_0^{-1} \| P_{N_0} v \|_{V_2^3} \| v \|_{Y^{sc}}^{m-1},
\]

Hence, we obtain
\[
\left\{ \sum_{N_0 \in 2^{2^0}} N_0^{2s_c+2} \left| \int_{\mathbb{R}^{1+d}} Q_0 P_{N_0} v_0 \left(\prod_{j=1}^{m-1} Q_j P_{\leq N_{j+1}} v \right) Q_{>N_0^2} P_{N_0} v dx dt \right| \right\}^{2 \over 2} \leq \sum_{N_0 \in 2^{2^0}} N_0^{d-1} \| P_{N_0} v \|_{V_2^d}^2 \| v \|_{Y_{sc}}^{m-1}.
\]
We skip the proof of the case \(Q_0 = Q_{>N_0^2} \) because it is the same as above.

Subcase 1-2. \(N_{m-1} \sim N_m \gtrsim N_0. \)

Firstly, we assume \(Q_1 = Q_{>N_m^2}. \) From Hölder’s inequality, the embedding \(H^{s_c}(\mathbb{R}^d) \hookrightarrow L^{(m-1)d}(\mathbb{R}^d), \) Lemmas 3.4, 3.5, (14), and (15), we have
\[
\left| \sum_{N_m \in 2^{0^0}, N_m \gtrsim N_0} \int_{\mathbb{R}^{1+d}} Q_0 P_{N_0} v_0 Q_{>N_m^2} P_{\leq N_m} v \left(\prod_{j=2}^{m-2} Q_j P_{\leq N_m} v \right) \right| \times Q_{m-1} P_{N_m} v Q_m P_{N_m} v dx dt \leq \sum_{N_m \in 2^{0^0}, N_m \gtrsim N_0} \| Q_0 P_{N_0} v_0 \|_{L^{\infty} L^{(m-1)d}} \| Q_{>N_m^2} P_{\leq N_m} v \|_{L_1^1 L^{(m-1)d}} \times \left(\prod_{j=2}^{m-2} \| Q_j P_{\leq N_m} v \|_{L_1^1 L^{(m-1)d}} \right) \| Q_{m-1} P_{N_m} v \|_{L_1^1 L^{(m-1)d}} \| Q_m P_{N_m} v \|_{L_1^1 L^{(m-1)d}} \leq \sum_{N_m \in 2^{0^0}, N_m \gtrsim N_0} N_m^{s_c} N_m^{-1} \| P_{N_0} v_0 \|_{V_2^d} \| P_{N_m} v \|_{V_2^d}^2 \| v \|_{Y_{sc}}^{m-2}.
\]
Here, the part \(\prod_{j=2}^{m-2} Q_j P_{\leq N_m} \) disappears if \(m = 3. \) Hence,
\[
\left\{ \sum_{N_0 \in 2^{2^0}} N_0^{2s_c+2} \left| \sum_{N_m \in 2^{0^0}, N_m \gtrsim N_0} \int_{\mathbb{R}^{1+d}} Q_0 P_{N_0} v_0 Q_{>N_m^2} P_{\leq N_m} v \left(\prod_{j=2}^{m-2} Q_j P_{\leq N_m} v \right) \right| \right\}^{2 \over 2} \leq \sum_{N_m \in 2^{0^0}} \left\{ \sum_{N_0 \in 2^{2^0}, N_0 \leq N_m} N_0^{4s_c+2} \| P_{N_0} v_0 \|_{V_2^d}^2 \right\}^{1 \over 2} N_m^{-1} \| P_{N_m} v \|_{V_2^d} \| v \|_{Y_{sc}}^{m-2} \leq \sum_{N_m \in 2^{0^0}} N_m^{2s_c} \| P_{N_m} v \|_{V_2^d} \| v \|_{Y_{sc}}^{m-2} \leq \| v \|_{Y_{sc}}^{m}.
\]
Since the case \(Q_j = Q_{>N_m^2} (j = 0, 2, \ldots, m-2) \) follows from a similar argument as above, we omit the details.
Secondly, we consider the case where \(Q_m = Q_{> N_m^2} \). From Hölder’s inequality, Corollary 1, and Lemma 3.5, we have

\[
I_{N_{m-1} \sim N_m \geq N_0} \lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{N}_0}} N_0^{s_c + 1} \left\| Q_{> N_0^2} \right\|_{L^{2,1}_t} \left(\prod_{j=1}^{m-2} \| P_{N_j} \|_{L^{2,1}_t} \right) \left\| Q_{> N_m^2} \right\|_{L^{2,1}_t}
\]

\[
\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{N}_0}} N_0^{s_c + 1} N_0^\frac{d-1}{2} \left(\frac{N_0}{N_m-1} \right)^{\frac{1}{2} - \delta} \left(\prod_{j=1}^{m-2} N_j^d \right) N_m^{m-1} \prod_{k=1}^m \| P_{N_k} \|_{L^{2,1}_t}
\]

\[
\lesssim \sum_{N_m \in 2^{\mathbb{N}_0}} N_m^{2s_c} \| P_{N_m} \|_{L^{2,1}_t}^2 \| v \|_{Y^{s_c}}^{m-2}
\]

\[
\lesssim \| v \|_{Y^{s_c}}^m.
\]

Similarly, the case \(Q_{m-1} = Q_{> N_m^2} \) follows from the same manner.

Case 2. \(w_i = z (j = 1, \ldots, m) \) case.

Without loss of generality, we may assume \(N_1 \leq \cdots \leq N_m \). Moreover, \(Q_0 = Q_{\max(N_m^2, N_m^2)} \) holds in this case.

Subcase 2-1. \(N_0 \sim N_m \).

By Hölder’s inequality, the Sobolev embedding \(H^{\frac{d}{2}+\delta}(\mathbb{R}^d) \hookrightarrow L^{2+\delta}(\mathbb{R}^d) \), Lemmas 3.5 and 3.6, we get

\[
I_{N_0 \sim N_m} \lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{N}_0}} N_0^{s_c + 1} \left\| Q_{> N_0^2} P_{N_0} v_0 \right\|_{L^{2,1}_t} \left\| P_{N_1} z P_{N_m} z \right\|_{L^{2,1}_t}
\]

\[
\times \prod_{j=2}^{m-1} \| P_{N_j} \|_{L^{2,1}_t}^{2(m-2)(2+\delta)}
\]

\[
\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{N}_0}} N_0^{s_c + 1} N_0^{-\frac{2s_c}{d+\delta} + \frac{d}{2} + \frac{d-1}{m-1}} N_1^{\frac{d}{2}} \left(\frac{N_1}{N_m} \right)^{\frac{1}{2}}
\]

\[
\times \| P_{N_0} v_0 \|_{L^{2,1}_t} \| P_{N_1} \phi v \|_{L^{2,1}_t} \| P_{N_m} \phi v \|_{L^{2,1}_t} \prod_{j=2}^{m-1} \| P_{N_j} \|_{L^{2,1}_t}^{2(m-2)(2+\delta)}
\]

\[
\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{N}_0}} N_0^{-s + s_c + \frac{d+1}{2} + \frac{(d+2)\delta}{2+\delta}} N_1^{-s + \frac{d-1}{m-1}} \left(\prod_{j=2}^{m-1} N_j^{-s} \right) R^m
\]

\[
\lesssim \sum_{N_0, N_1 \in 2^{\mathbb{N}_0}} N_0^{-s + s_c + \frac{d+1}{2} + \frac{(d+2)\delta}{2+\delta}} N_1^{-s + \frac{d-1}{m-1}} R^m
\]

\[
\lesssim R^m
\]
for $\omega \in E^m_R$. Here, we have used the fact that $s > 0$ in the forth inequality and $s > \max\left(s_c - \frac{1}{2}, \frac{d}{m} - \frac{1}{m-1}\right)$ and $\delta > 0$ is sufficiently small in the last inequality. We note that this lower bound of s is less than $\frac{d-1}{d}s_c$.

Subcase 2-2. $N_{m-1} \sim N_m \gtrsim N_0$.

By Hölder’s inequality, the embedding $H^{\frac{d\ell}{2(m-\ell)}}(\mathbb{R}^d) \hookrightarrow L^{2+\delta}(\mathbb{R}^d)$, and Lemma 3.5, we get

$$I_{N_{m-1} \sim N_m \gtrsim N_0} \lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{y_0}} N_{m}^{s-\frac{1}{d}} \|Q > N_0^2 N_{m-1} \|_{L^{2+\delta}_{t,x}} \left(\prod_{j=1}^{m-2} \|P_{N_j} z\|_{L^{2(2+\delta)}_{t,x}} \right) \frac{1}{2(2+\delta)}$$

$$\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{y_0}} N_{m-1}^{s-\frac{1}{d}} N_m^{2-\frac{d}{m+2}} \|P_{N_0} v_0\|_{L^{1+\delta}_{t,x}} \left(\prod_{j=1}^{m-2} \|P_{N_j} z\|_{L^{2(2+\delta)}_{t,x}} \right) \frac{1}{2(2+\delta)}$$

$$\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{y_0}} N_{m-1}^{s-\frac{1}{d}} N_m^{2-\frac{d}{m+2}} \left(\prod_{j=1}^{m-2} N_{N_j}^{-\frac{1}{m-2}} \right) R^m$$

for $\omega \in E^m_R$. Here, we have used the fact that $s > \frac{1}{2}$, and $\delta > 0$ is sufficiently small in the last inequality.

Case 3. The case where there exists $l \in \{1, \ldots, m-1\}$ such that $w_j = v$ for $1 \leq j \leq l$ and $w_k = z$ for $l+1 \leq k \leq m$.

Without loss of generality, we assume $N_1 \leq \cdots \leq N_l$ and $N_{l+1} \leq \cdots \leq N_m$. We further split the proof into five subcases.

Subcase 3-1. $N_0 \sim N_l \gtrsim N_m$.

Firstly, we assume $Q_0 = Q > N_0^2$ and $l = 1$. By Hölder’s inequality, the Sobolev embedding $H^{\frac{d\ell}{2(m-\ell)}}(\mathbb{R}^d) \hookrightarrow L^{2+\delta}(\mathbb{R}^d)$, Lemma 3.5, and Corollary 1, we get

$$I_{N_1 \sim N_0 \gtrsim N_m} \lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{y_0}} N_{N_0}^{s-\frac{1}{d}} \|Q > N_0^2 P_{N_0} v_0\|_{L^{2+\delta}_{t,x}} \left(\prod_{k=2}^{m-1} \|R_k z\|_{L^{2(2+\delta)}_{t,x}} \right)$$

$$\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{y_0}} N_0^{s-\frac{1}{d}} N_m^{d} \left(\frac{N_m}{N_1} \right)^{\frac{1}{2}-\delta}$$
\[
\sum_{N_0, N_m \in 2^{\mathbb{N}_0} \atop N_m \leq N_0} N_0^{-\frac{1}{2} + \frac{(4+2)\delta}{2 + 3\delta}} N_m^{s + \frac{d - 1}{2} - \delta} \|v\|_{Y^s, R^{m-1}} \leq \sum_{N_0, N_m \in 2^{\mathbb{N}_0} \atop N_m \leq N_0} N_0^{-\frac{1}{2} + \frac{(4+2)\delta}{2 + 3\delta}} N_m^{s + \frac{d - 1}{2} - \delta} \|v\|_{Y^s, R^{m-1}} \leq \|v\|_{Y^s, R^{m-1}}
\]}

for \(\omega \in E_{\mathbb{R}^d}^m\). Here, we have used the fact that \(s > \frac{d}{2} - 1\) and \(\delta > 0\) is sufficiently small in the last inequality. We note that \(\frac{d - 1}{d} s_c > \frac{d}{2} - 1\) if \(m \geq 3\). Since the case \(Q_1 = Q_{>N_0^2}\) and \(l = 1\) is similarly handled, we omit the details.

Secondly, we consider the case \(Q_0 = Q_{>N_0^2}\) and \(l \geq 2\). By Hölder’s inequality, the Sobolev embedding \(H^{\frac{2 + \delta}{2}}(\mathbb{R}^d) \hookrightarrow L^{2+\delta}(\mathbb{R}^d)\), Lemma 3.5, and Corollary 1, we get

\[
I_{N_1 \sim N_0 \geq N_m} \leq \sum_{N_0, N_m \in 2^{\mathbb{N}_0} \atop N_1 \leq \cdots \leq N_m} N_0^{s+1} \|Q_{>N_0^2} P_{N_0} v_0\|_{L^{2+\delta}_{t,x}} \left(\prod_{j=1}^{l-2} \|\mathcal{R}_j v\|_{L^{2+\delta}_{t,x}} \right)
\]

\[
\times \|\mathcal{R}_{l-1} v\|_{L^{2+\delta}_{t,x}} \prod_{k=l+1}^{m} \|\mathcal{R}_k z\|_{L^{2+\delta}_{t,x}} \leq \sum_{N_0, N_m \in 2^{\mathbb{N}_0} \atop N_1 \leq \cdots \leq N_m} N_0^{s+1} \left(\prod_{j=1}^{l-2} N_j + \frac{d}{2 + \delta} \right) \left(\prod_{j=1}^{l-2} \frac{N_j^{d}}{N_l^{d-1}} \right) \frac{1}{N_l^{\frac{1}{2} - \delta}}
\]

\[
\times \|P_{N_0} v_0\|_{V^2_t} \left(\prod_{j=1}^{l} \|P_{N_j} v\|_{V^2_t} \right) \prod_{k=l+1}^{m} \|\mathcal{R}_k z\|_{L^{2+\delta}_{t,x}} \leq \sum_{N_0, N_m \in 2^{\mathbb{N}_0} \atop N_1 \leq \cdots \leq N_m} N_0^{s+1} \left(\prod_{j=1}^{l-2} N_j + \frac{d}{2 + \delta} \right) \left(\prod_{j=1}^{l-2} \frac{N_j^{d}}{N_l^{d-1}} \right) \frac{1}{N_l^{\frac{1}{2} - \delta}}
\]

\[
\times \left(\prod_{k=l+1}^{m} N_k^{d-s} \right) \|v\|_{Y^s, R^{m-1}} \leq \sum_{N_0, N_m \in 2^{\mathbb{N}_0} \atop N_1 \leq \cdots \leq N_m} N_0^{s+1} \left(\prod_{j=1}^{l-2} N_j + \frac{d}{2 + \delta} \right) \left(\prod_{j=1}^{l-2} \frac{N_j^{d}}{N_l^{d-1}} \right) \frac{1}{N_l^{\frac{1}{2} - \delta}} \|v\|_{Y^s, R^{m-1}} \leq \|v\|_{Y^s, R^{m-1}}
\]

for \(\omega \in E_{\mathbb{R}^d}^m\). The part \(\prod_{j=1}^{l-2} \|\mathcal{R}_j v\|_{L^{2+\delta}_{t,x}}\) disappears when \(m = 2\). If \(Q_l = Q_{> N_0^2}\), applying a similar argument as above, we obtain the desired bound.
Thirdly, we consider the case \(Q_1 = Q_{> N_0^2} \) and \(l \geq 2 \). For \(\omega \in E_R^m \) and \(s > 0 \),
\[
\| P_{< N_0} z \|_{L_t^{4(m-1)/(4+\delta)} L_x^{2(m-1)/(m-1)}} \lesssim \sum_{N \in 2^{\mathbb{N}}} \| P_{N} z \|_{L_t^{4(m-1)/(4+\delta)} L_x^{2(m-1)/(m-1)}}
\]
\[
\lesssim \sum_{N \in 2^{\mathbb{N}}} N^{-s} R \lesssim R.
\]

From Hölder’s inequality, the embedding \(H^{s_c}(\mathbb{R}^d) \hookrightarrow L^{(m-1)d}(\mathbb{R}^d) \), Lemmas 3.4, 3.5, (14), (15), and (16), we have
\[
\left\{ \sum_{N_0 \in 2^{\mathbb{N}}} N_0^{2s_c+2} \left| \int_{\mathbb{R}^{l+1}} Q_0 P_{N_0} v_0 Q_{> N_0^2} P_{< N_0} v \left(\prod_{j=2}^{l-1} Q_j P_{< N_0} v \right) Q_l P_{N_0} v \right| \right\}^{\frac{1}{2}}
\]
\[
\lesssim \left\{ \sum_{N_0 \in 2^{\mathbb{N}}} N_0^{2s_c+2} \| P_{N_0} v_0 \|_{L_t^{4/(4+\delta)} L_x^{2(m-1)}}^2 \| Q_{> N_0^2} P_{< N_0} v \|_{L_t^{4/(4+\delta)} L_x^{2(m-1)}}^2 \right\}^{\frac{1}{2}}
\]
\[
\times \left\{ \left\| \prod_{j=2}^{l-1} Q_j P_{< N_0} v \right\|_{L_t^{4/(4+\delta)} L_x^{2(m-1)}}^2 \right\}^{\frac{1}{2}}
\]
\[
\lesssim \left\{ \sum_{N_0 \in 2^{\mathbb{N}}} N_0^{2s_c} \| P_{N_0} v \|_{Y_{s_c}}^2 \right\}^{\frac{1}{2}} \| v \|_{Y_{s_c}}^{l-1} R^{m-l}
\]
\[
\lesssim \| v \|_{Y_{s_c}}^{l-1} R^{m-l}
\]
for \(\omega \in E_R^m \). The proof of the remaining cases \(Q_j = Q_{> N_0^2} \) \((j = 2, \ldots, l-1) \) follows from the same manner.

Subcase 3-2. \(N_0 \sim N_m \gtrsim N_l. \)

The lower bound \(\max \left\{ \frac{d-1}{d} s_c, s_c - \frac{d}{2(d+1)} \right\} \) of Lemma 4.1 appears in this case. We further divide the proof into two subcases.

Subsubcase 3-2-1. \(N_0 \sim N_m \gtrsim N_l \) and \(Q_0 = Q_{> N_0^2} \).

When \(l \leq m - 2 \), from Hölder’s inequality, the embedding \(H^\frac{4+\delta}{4+\delta} \hookrightarrow L^{2+\delta}(\mathbb{R}^d) \), Lemma 3.5, Corollary 1, and \(m \geq 3 \), we have
\[
I_{N_0 \sim N_m \gtrsim N_l}
\]
\[
N_0 \leq \cdots \leq N_l
\]
\[
N_{l+1} \leq \cdots \leq N_m
\]
\[\lesssim \sum_{N_0, N_1, \ldots, N_m \in \mathbb{Z}^0} N_0^{s_s + 1} \left\| Q_{> N_0^2} P_{N_0} v_0 \right\|_{L^{2+\delta}_{t,x}} \left(\prod_{j=1}^{l-1} \left\| \mathcal{R}_j v \right\|_{L^\infty_{t,x}} \right) \left\| \mathcal{R}_v \mathcal{R}_m z \right\|_{L^2_{t,x}} \times \prod_{k=l+1}^{m-1} \left\| \mathcal{R}_k z \right\|_{L^2_{t,x}}^{2(m-l-1)(2+\delta)} \]

\[\lesssim \sum_{N_0, N_1, \ldots, N_m \in \mathbb{Z}^0} N_0^{s_s + 1} N_0^{-\frac{q}{2} + \frac{d + 2}{2m} + \delta} \left(\prod_{j=1}^{l-1} \left(\frac{N_j}{N_m} \right)^{\frac{1}{2} - \delta} \right) \left\| \mathcal{R}_v \mathcal{R}_m z \right\|_{L^2_{t,x}} \]

\[\lesssim \sum_{N_0, N_1, \ldots, N_l \in \mathbb{Z}^0} N_0^{-s + s_c - \frac{1}{2} + \frac{(d+2)\delta}{2m} + \delta} \left(\prod_{j=1}^{l-1} \left(\frac{N_j}{N_l} \right) \right) \left\| \mathcal{R}_v \mathcal{R}_m z \right\|_{L^2_{t,x}} \]

\[\lesssim \sum_{N_0, N_1, \ldots, N_l \in \mathbb{Z}^0} N_0^{-s + s_c - \frac{1}{2} + \frac{(d+2)\delta}{2m} + \delta} N_l^{-\frac{1}{2} - \frac{1}{2} - \delta} \left\| v \right\|_{Y_{x,c} R^{m-l}} \]

\[\lesssim \sum_{N_0, N_1, \ldots, N_l \in \mathbb{Z}^0} N_0^{-s + s_c - \frac{1}{2} + \frac{(d+2)\delta}{2m} + \delta} N_l^{-\frac{1}{2} - \frac{1}{2} - \delta} \left\| v \right\|_{Y_{x,c} R^{m-l}} \]

for \(\omega \in E_R^m \). When \(l = 1 \), the part \(\prod_{j=1}^{l-1} \left\| \mathcal{R}_j v \right\|_{L^\infty_{t,x}} \) disappears. If \(l = m - 1 \), replacing \(\left\| Q_{> N_0^2} P_{N_0} v_0 \right\|_{L^{2+\delta}_{t,x}} \) with \(\left\| Q_{> N_0^2} P_{N_0} v_0 \right\|_{L^2_{t,x}} \), we get the same bound as above. We note that \(\prod_{k=l+1}^{m-1} \left\| \mathcal{R}_k z \right\|_{L^2_{t,x}}^{2(m-l-1)(2+\delta)} \) disappears in this case.

The sum is bounded by \(\left\| v \right\|_{Y_{x,c} R^{m-l}} \) if \(l = 1, m \geq 3, s > s_c - \frac{1}{2}, \) and \(\delta > 0 \) is sufficiently small. Moreover, if \(l \geq 2, N_{l-1} \lesssim N_0^{\frac{d}{2m}} \) and \(s > \max \left(s_c - \frac{1}{2}, s_c - \frac{d}{2(d+1)} \right) \), we get the same bound.

We consider the case \(l \geq 2 \) and \(N_{l-1} \lesssim N_0^{\frac{d}{2m}} \). From Hölder’s inequality, the embeddings \(\mathcal{W}^{2-1 + \frac{d}{2m}}(\mathbb{R}^d) \hookrightarrow L^{2d}(\mathbb{R}^d), \mathcal{W}^{2+\delta + \frac{d}{2m}}(\mathbb{R}^d) \hookrightarrow L^{2+\delta}(\mathbb{R}^d) \), Lemmas 3.4, and 3.5, we have
for \(\omega \in E^m_R \). Here, we have used the fact that \(s > s_c - \frac{d}{2(\delta+1)} \) and \(\delta > 0 \) is sufficiently small in the last inequality.

Subsubcase 3-2-2. \(N_0 \sim N_m \gtrsim N_l \) and \(Q_0 = Q \leq N_l^2 \).

We only consider the case \(Q_0 = Q > N_l^2 \) because the remaining cases are similarly handled. Firstly, we consider the case \(I \geq 3 \). From Hölder’s inequality, the embeddings \(H^{s_c} (\mathbb{R}^d) \hookrightarrow L^{(m-1)d} (\mathbb{R}^d) \), \(H^d \hookrightarrow L^{\frac{2(d+1)}{(1-2d)(m-1)d-2}} (\mathbb{R}^d) \hookrightarrow L^{2(d-1)(m-1)d-2} (\mathbb{R}^d) \), Lemma 3.5, and Corollary 1 we have

\[
\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^\mathbb{Z}} N_0^{s_c+1} \left\| Q_0 N_0 P_{N_0} v_0 \right\|_{L_t^2 L_x^d} \left(\prod_{j=1}^{l-2} \left\| R_j v \right\|_{L_x^\infty} \right) \left\| R_{l-1} v \right\|_{L_t^4 L_x^2} \left(\prod_{k=l+1}^{m} \left\| \mathcal{R}_k z \right\|_{L_t^{2(m-1)(2+\delta)} L_x^2} \right)
\]

\[
\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^\mathbb{Z}} N_0^{s_c+1} N_0^{-\frac{2}{d+2} + \frac{d}{2(d+1)}} \left(\prod_{j=1}^{l-2} N_j^{-\frac{1}{m-1}} \right) N_{l-1}^{-s_c} N_l^{-m-1} \left\| v \right\|_{Y_{s_c} R^{m-l}} \left(\prod_{k=l+1}^{m} \left\| \mathcal{R}_k z \right\|_{L_t^{2(m-1)(2+\delta)} L_x^2} \right)
\]

\[
\lesssim \sum_{N_0, N_1 \in 2^\mathbb{Z}} N_0^{-s + s_c + \frac{d+2}{2(d+1)}} N_l^{-s_c - \frac{m-1}{m-1} \left\| v \right\|_{Y_{s_c} R^{m-l}}}
\]

for \(\omega \in E^m_R \). Here, we have used the fact that \(s > s_c - \frac{d}{2(\delta+1)} \) and \(\delta > 0 \) is sufficiently small in the last inequality.
\begin{align*}
&\times \left(\prod_{j=2}^{l-2} \| \mathcal{R}_j v \|_{L^\infty_{t,x}} \right) \| P_{N_{l-1}} v \|_{L^2_{t,x}} \left(\prod_{k=l+1}^{m} \| \mathcal{R}_k z \|_{L^2_{t,x}} \right) \left(\prod_{j=2}^{l-1} \| \mathcal{R}_j v \|_{L^2_{t,x}} \right) \left(\prod_{k=l+1}^{m} \| \mathcal{R}_k z \|_{L^2_{t,x}} \right) \left(\prod_{j=2}^{l-1} \| \mathcal{R}_j v \|_{L^2_{t,x}} \right) \\
\leq & \sum_{N_0, N_1, \ldots, N_n \in \mathbb{Z}^d_0} N_0^{s_0 + 1} N_1^{d-1} \left(\frac{N_i}{N_0} \right)^{\frac{1}{2} - \delta} N_0^{-\frac{d}{2} + \frac{d}{2} + 2\delta} N_1^{s_{c_{1}} - \frac{1}{2} + \frac{d}{2} + (d-1)\delta} N_1^{s_{c_{1}} - \frac{1}{2} + \frac{d}{2} + (d-1)\delta} \| P_{N_0} v_0 \|_{V^3_{x,t}} \\
\leq & \sum_{N_0, N_1, \ldots, N_n \in \mathbb{Z}^d_0} N_0^{-s + s_{c_{1}} - \frac{1}{2} + \frac{d}{2} + 2\delta} N_1^{s_{c_{1}} - \frac{1}{2} + \frac{d}{2} + (d-1)\delta} \| v \|_{V^3_{x,t}} R^{m-l} \\
\lesssim & \| v \|_{Y^3_{x,t}} R^{m-l}
\end{align*}

for $\omega \in E^m_R$. Here, we have used the fact that $s > s_{c_{1}} - \frac{1}{2}$ and $\delta > 0$ is sufficiently small in the last inequality.

Secondly, we consider the case $l = 2$. From Hölder's inequality, the embedding $H^{\frac{d}{2\alpha + \beta}}(\mathbb{R}^d) \rightarrow L^{2\alpha + \beta}(\mathbb{R}^d)$, Lemma 3.5, and Corollary 1 we have

\begin{align*}
I_{N_0, N_1, \ldots, N_n} & \leq \sum_{N_0, N_1, \ldots, N_n \in \mathbb{Z}^d_0} N_0^{s_0 + 1} \| \mathcal{R}_0 v \|_{L^2_{t,x}} \| Q_{N_0} P_{N_1} v \|_{L^2_{t,x}} \prod_{k=3}^{m} \| \mathcal{R}_k z \|_{L^2_{t,x}} \\
& \leq \sum_{N_0, N_1, \ldots, N_n \in \mathbb{Z}^d_0} N_0^{s_0 + 1} N_0^{d-1} \left(\frac{N_2}{N_0} \right)^{\frac{1}{2} - \delta} N_0^{-\frac{d}{2} + \frac{d}{2} + 2\delta} N_1^{s_{c_{1}} - \frac{1}{2} + \frac{d}{2} + (d-1)\delta} \| P_{N_0} v_0 \|_{V^3_{x,t}} \\
& \times \left(\prod_{j=1}^{2} \| P_{N_j} v \|_{V^3_{x,t}} \right) \prod_{k=3}^{m} \| \mathcal{R}_k z \|_{L^2_{t,x}} \| v \|_{Y^3_{x,t}} R^{m-2} \\
\lesssim & \| v \|_{Y^3_{x,t}} R^{m-2}
\end{align*}
for \(\omega \in E_R^m \). Here, we have used the fact that \(m \geq 3, s > s_c - \frac{1}{2} \), and \(\delta > 0 \) is sufficiently small in the last inequality.

Thirdly, we assume \(l = 1 \) and \(N_{m-1} \gtrsim N_0^{\frac{1}{d+4}} \). From Hölder’s inequality, the embeddings \(H^{s_c}(\mathbb{R}^d) \hookrightarrow L^{(m-1)d}(\mathbb{R}^d), H^{\frac{d}{d+m}}(\mathbb{R}^d) \hookrightarrow L^{2+\delta}(\mathbb{R}^d) \), Lemmas 3.4, and 3.5, we have

\[
I_{N_0 \sim N_m \gtrsim N_1} \lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^0} N_0^{s_c+1} \| \mathcal{R}_0 v_0 \|_{L_t^4 L_x^{\frac{2d}{d+4}}} \| Q \mathcal{R}_N P_N v \|_{L_t^2 L_x^{2d}(m-1)d}} \times \prod_{k=2}^{m} \| | \mathcal{R}_k z | \|_{L_t^4 L_x^{2(m-1)d+2\delta}} \lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^0} N_0^{s_c+1} N_0^{-1} N_1^s \| P_{N_0} v_0 \|_{L_t^2} \| P_{N_1} v \|_{L_t^2} \lesssim \sum_{N_0, N_1 \in 2^0} N_0^{-s+s_c+\delta} \| v \|_{Y^{s_c}} R^{m-1}
\]

for \(\omega \in E_R^m \). Here, we have used the fact that \(s > \frac{d-1}{d} s_c \) and \(\delta > 0 \) is sufficiently small in the last inequality.

Fourthly, we consider the case \(l = 1 \) and \(N_{m-1} \lesssim N_0^{\frac{1}{d+4}} \). From Hölder’s inequality, the embedding \(H^{s_c}(\mathbb{R}^d) \hookrightarrow L^{(m-1)d}(\mathbb{R}^d) \), Lemma 3.5, and Corollary 1 we have

\[
I_{N_0 \sim N_m \gtrsim N_1} \lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^0} N_0^{s_c+1} \| \mathcal{R}_0 v_0 \|_{L_t^2} \| Q \mathcal{R}_N P_N v \|_{L_t^{2+d} L_x^{2d(m-1)d}}} \times \left(\prod_{k=2}^{m-2} \| | \mathcal{R}_k z | \|_{L_t^{\frac{2d}{d+4}} L_x^{2(m-1)(m-2)d}}} \right) \| \mathcal{R}_m z \|_{L_t^{\frac{2m-10}{d+4}} L_x^{2(m-1)(m-2)d}}
\]
for $\omega \in E^n_{IR}$. When $m = 3$, the part $\prod_{k=2}^{m-2} \|\mathcal{R}_{k-2}\|_{L^2_{x,t}} 2^{\frac{m-2}{2}(2+m)-2} \|\mathcal{R}_{m-2}\|_{L^2_{x,t}}$ disappears. Here, we have used the fact that $s > \max \left(s_c - \frac{1}{2}, \frac{d-1}{2} s_c \right)$ and $\delta > 0$ is sufficiently small in the last inequality.

Subcase 3-3. $N_{l-1} \sim N_1 \succ N_0, N_m$

We assume $l \geq 2$ because this is reduced the subcase 3-1 when $l = 1$.

Firstly, we consider the case $Q_0 = Q_{N_1}$. From Hölder’s inequality, the embedding $H^{s_c}(\mathbb{R}^d) \hookrightarrow L^{(m-1)d}(\mathbb{R}^d)$, Lemmas 3.4, 3.5, (14), (15), and (16), we have

$$
\left| \int_{\mathbb{R}^{1+d}} Q_{N_1} \mathcal{P}_{N_1} v \left(\prod_{j=1}^{l-2} \mathcal{Q}_j \mathcal{P}_{N_1} v \right) Q_{l-1} \mathcal{P}_{N_1} v \mathcal{Q}_{l} \mathcal{P}_{N_1} z \right| dx dt
\lesssim \|Q_{N_1} \mathcal{P}_{N_1} v\|_{L^{2}_{x,t}} \left(\prod_{j=1}^{l-2} \|\mathcal{Q}_j \mathcal{P}_{N_1} v\|_{L^\infty_{x,t} L^{(m-1)d}} \right) \|Q_{l-1} \mathcal{P}_{N_1} v\|_{L^{2}_{x,t}} ^{\frac{2d}{2}}
\times \|Q_{l} \mathcal{P}_{N_1} v\|_{L^{4,\frac{d}{2}}_{x,t} L^{2(4+d)}_{x,t}} \prod_{k=1}^{m} \|Q_k \mathcal{P}_{N_1} z\|_{L^{4(4+m)}_{x,t} L^{2(4+m)(m-1)+4d}_{x,t}}
\lesssim N_0^{s_c-N_1} \|\mathcal{P}_{N_1} v\|_{V_2} \|Q_{N_1} v\|_{V_2} \|Q_{N_1} v\|_{Y_{s_c} R^{m-l}}^{\frac{2d}{2}}
$$

for $\omega \in E^n_{IR}$. Accordingly, we obtain

$$
\left\{ \sum_{N_0 \in 2^n} N_0^{2s_c+2} \sum_{N_1 \in 2^n} \int_{\mathbb{R}^{1+d}} Q_0 \mathcal{P}_{N_0} v \mathcal{Q}_{N_1} \mathcal{P}_{N_1} v \left(\prod_{j=2}^{l} \mathcal{Q}_j \mathcal{P}_{N_1} v \right) \right\} \left(\prod_{k=1}^{m} \|Q_k \mathcal{P}_{N_1} z\|_{L^{2}_{x,t}} \right) ^{\frac{1}{2}} dx dt
\lesssim \sum_{N_0 \in 2^n} \left\{ \sum_{N_1 \in 2^n} N_0^{4s_c+2} \right\} \|Q_{N_1} v\|_{V_2} \|\mathcal{P}_{N_1} v\|_{V_2} \|Q_{N_1} v\|_{Y_{s_c} R^{m-l}}^{\frac{2d}{2}}
\lesssim \sum_{N_0 \in 2^n} N_0^{2s} \|Q_{N_1} v\|_{V_2} \|Q_{N_1} v\|_{Y_{s_c} R^{m-l}}^{\frac{2d}{2}}
\lesssim \|Q_{N_1} v\|_{Y_{s_c} R^{m-l}}^{\frac{2d}{2}}
$$
for $\omega \in E_R^m$. Since the case where $Q_j = Q_{> N_j^2}$ for some $j = 1, \ldots, l - 2$ is similarly handled, we omit the detail.

Secondly, we consider the case $Q_l = Q_{> N_l^2}$. By Hölder’s inequality, the Sobolev embedding $\mathcal{H}^{2+\delta} (\mathbb{R}^d) \hookrightarrow L^{2+\delta} (\mathbb{R}^d)$, Lemma 3.5, and Corollary 1, we get

$$I_{N_{l-1} \sim N_l} \lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{Z}}} \left(\mathcal{R}_{N_l} v \right) \left(\prod_{j=1}^{l-2} \mathcal{R}_{N_j} v \right) \left\| Q_{> N_l^2} P_{N_l} v \right\|_{L^{2+\delta}_{t,x}}$$

$$\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{Z}}} N_0^{s_0+1} \left\| Q_{> N_l^2} P_{N_l} v \right\|_{L^{2+\delta}_{t,x}} \leq \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{Z}}} N_0^{s_0+1} \left(\prod_{j=1}^{l-2} \mathcal{R}_{N_j} v \right) \left\| Q_{> N_l^2} P_{N_l} v \right\|_{L^{2+\delta}_{t,x}}$$

$$\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{Z}}} N_0^{s_0+1} \left(\prod_{j=1}^{l-2} \mathcal{R}_{N_j} v \right) \left\| Q_{> N_l^2} P_{N_l} v \right\|_{L^{2+\delta}_{t,x}} \leq \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{Z}}} N_0^{s_0+1} \left(\prod_{j=1}^{l-2} \mathcal{R}_{N_j} v \right) \left\| Q_{> N_l^2} P_{N_l} v \right\|_{L^{2+\delta}_{t,x}}$$

for $\omega \in E_R^m$. Here, we have used the fact that $1 \leq l \leq m - 1$ and $\delta > 0$ is sufficiently small in the last inequality.

Subcase 3-4. $N_l \sim N_m \gtrsim N_0$

We further divide the proof into two subcases.

Subsubcase 3-4-1. $l = 1$

Firstly, we consider the case $Q_0 = Q_{> N_0^2}$. By Hölder’s inequality, the Sobolev embedding $\mathcal{H}^{2+\delta} (\mathbb{R}^d) \hookrightarrow L^{2+\delta} (\mathbb{R}^d)$, Lemma 3.5, and Corollary 1, we get

$$I_{N_{l-1} \sim N_l} \lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{Z}}} N_0^{s_0+1} \left(\prod_{j=1}^{l-2} \mathcal{R}_{N_j} v \right) \left\| Q_{> N_l^2} P_{N_l} v \right\|_{L^{2+\delta}_{t,x}} \left\| Q_{> N_l^2} P_{N_l} v \right\|_{L^{2+\delta}_{t,x}}$$

$$\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{Z}}} N_0^{s_0+1} \left(\prod_{j=1}^{l-2} \mathcal{R}_{N_j} v \right) \left\| Q_{> N_l^2} P_{N_l} v \right\|_{L^{2+\delta}_{t,x}} \left\| Q_{> N_l^2} P_{N_l} v \right\|_{L^{2+\delta}_{t,x}}$$

$$\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{Z}}} N_0^{s_0+1} \left(\prod_{j=1}^{l-2} \mathcal{R}_{N_j} v \right) \left\| Q_{> N_l^2} P_{N_l} v \right\|_{L^{2+\delta}_{t,x}} \left\| Q_{> N_l^2} P_{N_l} v \right\|_{L^{2+\delta}_{t,x}}$$

for $\omega \in E_R^m$. Here, we have used the fact that $1 \leq l \leq m - 1$ and $\delta > 0$ is sufficiently small in the last inequality.
\begin{align*}
\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{10}} & N_0^{s_0+1} N_1^{-\frac{2}{s+s_c}} N_0^d \frac{d\delta}{2+s} N_2^{-\frac{4}{s+s_c}} \left(\frac{N_2}{N_1} \right)^{\frac{1}{2}-\delta} \|P_N v_0\|_{V^s_N} \|P_N v\|_{V^s_N} \\
\times \|\phi^\omega\|_{L^2} \prod_{k=3}^m \|\mathfrak{R}_k z\|_{L^{\frac{2(m-2)(2+\delta)}{2}}}
\end{align*}

\begin{align*}
\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{10}} & N_0^{s_0+1} d\delta \frac{d\delta}{2+s} N_1^{-\frac{2}{s+s_c}} + \delta N_2^{-\frac{4}{s+s_c} + \frac{1}{2} - \frac{d\delta}{2+s} - \delta} \|v\|_{Y^s, R^{m-1}}
\end{align*}

for \(\omega \in E^m_R \). Here, we have used the fact that \(s > \frac{1}{2}(\frac{d}{2} - 1) \) and \(\delta > 0 \) is sufficiently small in the last inequality.

Secondly, we consider the case \(Q_1 = Q > N_0^2 \). By Hölder’s inequality, the Sobolev embedding \(H^{\frac{s_0+1}{2+s}}(\mathbb{R}^d) \hookrightarrow L^{2+\delta}(\mathbb{R}^d) \), Lemma 3.5, and Corollary 1, we get

\begin{align*}
I_{N_1 \sim N_m \gtrsim N_0} & \lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{10}} \sum_{N_0, N_1, \ldots, N_m \gtrsim N_0} N_0^{s_0+1} \|\mathfrak{R}_0 v_0 \mathfrak{R}_m z\|_{L^2_{t,x}} \|Q^{\gtrsim N_1^2} P_N v\|_{L^{2+\delta}_{t,x}} \prod_{k=2}^{m-1} \|\mathfrak{R}_k z\|_{L^{\frac{2(m-2)(2+\delta)}{2}}_{t,x}}
\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{10}} N_0^{s_0+1} N_0^{-\frac{4}{s+s_c}} \left(\frac{N_0}{N_m} \right)^{\frac{1}{2}-\delta} \frac{d\delta}{2+s} \|P_N v_0\|_{V^s_N} \|P_N v\|_{V^s_N} \\
\times \|\phi^\omega\|_{L^2} \prod_{k=2}^m \|\mathfrak{R}_k z\|_{L^{\frac{2(m-2)(2+\delta)}{2}}_{t,x}}
\end{align*}

\begin{align*}
\lesssim \sum_{N_0, N_1 \in 2^{10}} & N_0^{-\frac{2}{s+s_c} + \frac{1}{2} - \delta - \frac{d\delta}{2+s} + \delta} \|v\|_{Y^s, R^{m-1}}
\end{align*}

for \(\omega \in E^m_R \). Here, we have used the fact that \(s > \frac{d}{2} - 1 \) and \(\delta > 0 \) is sufficiently small in the last inequality.

Subsubcase 3-4-2. \(l \geq 2 \)

Firstly, we consider the case \(Q_0 = Q > N_0^2 \). By Hölder’s inequality, the Sobolev embedding \(H^{\frac{s_0+1}{2+s}}(\mathbb{R}^d) \hookrightarrow L^{2+\delta}(\mathbb{R}^d) \), Lemma 3.5, and Corollary 1, we get

\begin{align*}
I_{N_1 \sim N_m \gtrsim N_0} & \lesssim \sum_{N_0, N_1 \in 2^{10}} \sum_{N_0, N_1 \gtrsim N_0} N_0^{s_0+1} \frac{d\delta}{2+s} N_1^{-\frac{2}{s+s_c}} + \delta N_2^{-\frac{4}{s+s_c} + \frac{1}{2} - \frac{d\delta}{2+s} - \delta} \|v\|_{Y^s, R^{m-1}}
\end{align*}
for $\omega \in E_{p}^{\infty}$. Here, we have used the fact that $s > \max(-\frac{1}{2}, \frac{1}{m-1})$ and $\delta > 0$ is sufficiently small in the last inequality.

Secondly, we consider the case $Q_{1} = Q_{>N_{0}^{2}}$. From Hölder’s inequality, the embeddings $H^{s}((\mathbb{R}^{d}) \hookrightarrow L^{(m-1)d}(\mathbb{R}^{d})$, $H^{\frac{d\delta}{2+m\delta}}(\mathbb{R}^{d}) \hookrightarrow L^{2+\delta}(\mathbb{R}^{d})$, Lemmas 3.4, and 3.5, we have

\[
\sum N_{0}^{s+1}N_{0}^{\frac{d\delta}{2+m\delta}} \left(\prod_{j=1}^{l-1} \|Q_{>N_{j}^{2}}v_{t}\|_{L_{x}^{2+m\delta}} \right) \left(\prod_{j=1}^{m} \|Q_{<N_{j}^{2}}v_{t}\|_{L_{x}^{2+\delta}} \right) \left(\prod_{k=1}^{m} \|Q_{<N_{k}^{2}}v_{t}\|_{L_{x}^{2+\delta}} \right)
\]
for \(\omega \in E_R^m \). Here, we have used the fact that \(s > \max(d_2 - 1, -\frac{1}{m-1}) \) and \(\delta > 0 \) is sufficiently small in the last inequality.

Subcase 3-5. \(N_{m-1} \sim N_m \geq N_0, N_l \)

We assume \(l \leq m - 2 \) otherwise it is reduced to the subcase 3-4. Firstly, we consider the case \(Q_0 = Q_{N_m^2} \). From Hölder’s inequality, the embedding
\[H^{\frac{d+2}{d+2}}(\mathbb{R}^d) \hookrightarrow L^{2+\delta}(\mathbb{R}^d), \text{ Lemma 3.5, and Corollary 1, we have} \]

\[I_{N_{m-1} \sim N_m \gtrsim N_0, N_1 \lesssim \cdots \lesssim N_m} \]

\[\lesssim \sum_{N_0, N_{1}, \ldots, N_m \in 2^l \mathbb{N}} N_{0}^{s+1} ||Q_{> N_{m}^2} P_{N_{0}} v_0||_{L_{t,x}^{2+\delta}} \left(\prod_{j=1}^{l-1} ||\mathcal{R}_j v||_{L_{t,x}^{\infty}} \right) ||\mathcal{R}_l v \mathcal{R}_{m} z||_{L_{t,x}^{2+\delta}} \]

\[\times \prod_{k=l+1}^{m-1} ||\mathcal{R}_k z||_{L_{t,x}^{2(m-1-l)(2+\delta)}} \]

\[\lesssim \sum_{N_0, N_{1}, \ldots, N_m \in 2^l \mathbb{N}} N_{0}^{s+1} N_{m}^{\frac{d+2}{d+2}} N_{0}^{\frac{d}{d+2}} \left(\prod_{j=1}^{l-1} N_j^{-\frac{d}{d+2}} \right) N_l^{l-1} \left(\frac{N_l}{N_m} \right)^{1-\frac{d}{d+2}} ||P_{N_{0}} v_0||_{V_2^\omega} \]

\[\times \left(\prod_{j=1}^{l} ||P_{N_j} v||_{V_2^\omega} \right) \left(\prod_{k=l+1}^{m-1} ||\mathcal{R}_k z||_{L_{t,x}^{2(m-1-l)(2+\delta)}} \right) \]

\[\lesssim \sum_{N_0, N_{1}, \ldots, N_m \in 2^l \mathbb{N}} N_{0}^{s+1} \left(\prod_{j=1}^{l-1} N_j^{-\frac{d}{d+2}} \right) N_l^{\frac{l}{d+2}-\delta N_m^{-2s+\frac{d}{2}+\frac{d+2}{d+2}\delta}} \]

\[\lesssim \sum_{N_1, N_m \in 2^l \mathbb{N}} \left(\frac{N_l}{N_m} \right)^{\frac{l}{d+2}-\delta} \frac{N_m^{-2s+\frac{d}{2}+\frac{d+2}{d+2}\delta}}{N_m^{l-\frac{l}{d+2}}} ||v||_{Y_{\omega}} \lesssim \frac{R^{m-l}}{R^d} \]

for \(\omega \in E_{R}^m \). Here, we have used the fact that \(s > \frac{d+2}{2} \) and \(\delta > 0 \) is sufficiently small in the last inequality.

Secondly, we consider the case \(Q_1 = Q_{> N_{m}^2} \). From Hölder’s inequality, the embeddings \(H^{s_c}(\mathbb{R}^d) \hookrightarrow L^{(m-1)d}(\mathbb{R}^d) \), \(H^{\frac{d+2}{d+2}}(\mathbb{R}^d) \hookrightarrow L^{2+\delta}(\mathbb{R}^d) \), Lemmas 3.4, and 3.5, we have

\[I_{N_{m-1} \sim N_m \gtrsim N_0, N_1 \lesssim \cdots \lesssim N_m} \]

\[\lesssim \sum_{N_0, N_{1}, \ldots, N_m \in 2^l \mathbb{N}} N_{0}^{s+1} ||Q_{> N_{m}^2} P_{N_{0}} v||_{L_{t,x}^{2+\delta}} \left(\prod_{j=2}^{l} ||\mathcal{R}_j v||_{L_{t,x}^{\infty}} \right) \left(\prod_{k=l+1}^{m-1} ||\mathcal{R}_k z||_{L_{t,x}^{2(m-1-l)(2+\delta)}} \right) ||\mathcal{R}_{N_{m}} z||_{L_{t,x}^{2d}} \]
\[\lesssim \sum_{N_0, N_1, \ldots, N_m \in 2^{\mathbb{N}}} N_0^{s_c+1} N_m^{-\frac{2}{p-1}} \left(\prod_{j=1}^{l} N_j^{s_c} \right) \| P_{N_0} v_0 \|_{V_2} \left(\prod_{j=1}^{l} \| P_{N_j} v \|_{V_2} \right) \times \left(\prod_{k=1}^{m-1} \| \mathcal{R}_k z \|_{L_t^2 L_x^{2(m-1)\frac{2}{1+\delta}} E^{(m-1)\delta \frac{2}{1+\delta}}}_{t_1, t_2} \right) \| \mathcal{R}_{N_m} z \|_{E^{1,1}}^{2d} \]
obtain that $\|u(t) - S(t)(\varepsilon \varphi^2 + \varphi_0^2)\|_{H^{s_c}}$ goes to zero as $t \to \infty$. The case $t \to -\infty$ is similarly handled.

REFERENCES

[1] Á. Bányi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, *Excursion in Harmonic Analysis*, Applied and Numerical Harmonic Analysis, 4 (2015), 3–25.

[2] Á. Bányi, T. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \mathbb{R}^d, $d \geq 3$, *Trans. Amer. Math. Soc. Ser. B.*, 2 (2015), 1–50.

[3] H. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, *Trans. Amer. Math. Soc.*, 353 (2001), 3649–3659.

[4] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, *Comm. Math. Phys.*, 166 (1994), 1–26.

[5] J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, *Comm. Math. Phys.*, 176 (1996), 421–445.

[6] J. Bourgain, Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity, *Internat. Math. Res. Notices* (1998), 253–283.

[7] J. Bourgain and A. Bulut, Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball I: The 2D case, *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 31 (2014), 1267–1288.

[8] J. Bourgain and A. Bulut, Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: The 3d case, *J. Eur. Math. Soc. (JEMS)*, 16 (2014), 1289–1325.

[9] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I: local theory, *Invent. Math.*, 173 (2008), 449–475.

[10] N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations II: a global existence result, *Invent. Math.*, 173 (2008), 477–496.

[11] N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation, *J. Eur. Math. Soc. (JEMS)*, 16 (2014), 1–30.

[12] J. Colliander, J. Delort, C. Kenig and G. Staffilani, Bilinear estimates and applications to 2D NLS, *Trans. Amer. Math. Soc.*, 353 (2001), 3307–3325.

[13] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness result for Schrödinger equations with derivative, *SIAM J. Math. Anal.*, 33 (2001), 649–669.

[14] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivative, *SIAM J. Math. Anal.*, 34 (2002), 64–86.

[15] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \mathbb{R}^3, *Ann. of Math.*, 167 (2008), 767–865.

[16] J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(T)$, *Duke Math. J.*, 161 (2012), 367–414.

[17] C. Deng and S. Cui, Random-data Cauchy problem for the Navier-Stokes equations on T^3, *J. Differential Equations*, 251 (2011), 902–917.

[18] A. Grünrock, On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations, *arXiv:math/0006195*.

[19] M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, *Ann. Inst. H. Poincaré*, 26 (2009), 917–941.

[20] N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, *Phys. D.*, 55 (1992), 14–36.

[21] N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, *Nonlinear Anal.*, 20 (1993), 823–833.

[22] S. Herr, *On the Cauchy Problem for the Derivative Nonlinear Schrödinger Equation with Periodic Boundary Condition*, Int. Math. Res. Not., 2006.

[23] H. Hirayama, Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data, *Comm. Pure Appl. Anal.*, 13 (2014), 1563–1591.

[24] H. Hirayama, Well-posedness and scattering for nonlinear Schrödinger equations with a derivative nonlinearity at the scaling critical regularity, *Funkcialaj Ekvacioj*, 58 (2015), 431–450.
[25] H. Hirayama and M. Okamoto, Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity, arXiv:1505.06497.

[26] S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(T^3)$, Duke Math. J., 159 (2011), 329–349.

[27] M. Ikeda, N. Kishimoto and M. Okamoto, Well-posedness for a quadratic derivative nonlinear Schrödinger system at the critical regularity, Journal of Functional Analysis, 271 (2016), 747–798.

[28] J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on \mathbb{R}^3, Comm. Partial Differential Equations, 39 (2014), 2262–2283.

[29] R. Mosincat and T. Oh, A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle, C. R. Math. Acad. Sci. Paris, 353 (2015), 837–841, arXiv:1502.02261v3.

[30] A. S. Nahmod and G. Staffilani, Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space, J. Eur. Math. Soc. (JEMS), 17 (2015), 1687–1759.

[31] H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Diff. Eqns., 4 (1999), 561–580.

[32] H. Takaoka, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Diff. Eqns., 42 (2001), 1–23.

[33] L. Thomann, Random data Cauchy problem for supercritical Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2385–2402.

[34] Y. Wu, Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space, Anal. PDE, 6 (2013), 1989–2002.

[35] T. Zhang and D. Fang, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations, J. Math. Fluid Mech., 14 (2012), 311–324.

[36] S. Zhong, The Cauchy problem of null form wave equation on T^d with random initial data, Funkcial. Ekvac., 55 (2012), 367–403.

Received February 2016; revised March 2016.

E-mail address: h.hirayama@cc.miyazaki-u.ac.jp
E-mail address: m.okamoto@shinshu-u.ac.jp