KÄHLER SPACES WITH ZERO FIRST CHERN CLASS:
BOCHNER PRINCIPLE, ALBANESE MAP AND
FUNDAMENTAL GROUPS

BENOÎT CLAUDON, PATRICK GRAF, HENRI GUENANCIA, AND PHILIPP NAUMANN

Abstract. Let X be a compact Kähler space with klt singularities and vanishing first Chern class. We prove the Bochner principle for holomorphic tensors on the smooth locus of X: any such tensor is parallel with respect to the singular Ricci-flat metrics. As a consequence, after a finite quasi-étale cover X splits off a complex torus of the maximum possible dimension. We then proceed to decompose the tangent sheaf of X according to its holonomy representation. In particular, we classify those X which have strongly stable tangent sheaf: up to quasi-étale covers, these are either irreducible Calabi–Yau or irreducible holomorphic symplectic. As an application of these results, we show that if X has dimension four, then it satisfies Campana’s Abelianity Conjecture.

Contents

1. Introduction 1
2. Preliminaries 5
3. Bochner principle for reflexive tensors 9
4. Structure of the Albanese map 13
5. Spaces with flat tangent sheaf on the smooth locus 16
6. Holonomy of singular Ricci-flat metrics 20
7. Fundamental groups 25
References 26

1. Introduction

Let X be a compact Kähler manifold such that $c_1(X) = 0 \in H^2(X, \mathbb{R})$. The celebrated Beauville–Bogomolov Decomposition Theorem states that X admits an étale cover that splits as a product of a complex torus, Calabi–Yau manifolds and irreducible holomorphic symplectic manifolds, cf. [Bea83]. The proof relies in a crucial way on Yau’s solution of the Calabi conjecture [Yau78] that enables one to equip X with a Kähler, Ricci-flat metric ω. From there, one can use the powerful tools of differential geometry (de Rham’s splitting theorem, Cheeger–Gromoll core theorem, Berger–Simons holonomy classification and Bieberbach theorem) to exhibit the sought cover.

Date: July 22, 2022

2010 Mathematics Subject Classification. 32J27, 14E30, 14J32.

Key words and phrases. Kähler spaces, klt singularities, vanishing first Chern class, holonomy, Albanese map, fundamental groups, Kodaira problem, decomposition theorem.

H.G. was partially supported by the ANR project GRACK. B.C. was partially supported by the ANR projects Foliage ANR–16–CE40–0008 and Hodgefun ANR–16–CE40–0011.
Over the last few decades, the tremendous advances of the (algebraic) Minimal Model Program in birational geometry have highlighted the importance to understand and classify varieties with mild singularities. By variety, we mean here either a complex projective variety or a compact Kähler space.

It is in this context that a lot of attention has been drawn in recent years towards generalizing the Beauville–Bogomolov Decomposition Theorem to compact Kähler spaces X with klt singularities and trivial first Chern class. A first important step in that direction was made by [EGZ09] who generalized Yau’s theorem and constructed singular Kähler–Einstein metrics ω on such varieties X. Unfortunately, these metrics viewed on X_{reg} are geodesically incomplete, preventing most of the classical results in differential geometry from applying. However, breakthroughs relying on the algebraic MMP (e.g. [GKKP11, Xu14, GKP16a]) and the theory of algebraic foliations [Dru18] allowed for a better understanding of projective varieties with klt singularities and trivial first Chern class. Down the line, this enabled [GGK19] to compute the holonomy of the singular Ricci-flat metrics ω and shortly after, Höring and Peternell gave a proof of the decomposition theorem in the projective setting, based on an algebraic integrability result for vector bundles [HP19].

Unfortunately, these spectacular results leave the Kähler case of the decomposition theorem largely open, which may sound odd in light of the fact that the proof in the smooth case relies entirely on transcendental methods! In this paper, we prove the Kähler version of several building blocks that underly the proof of the decomposition theorem in the projective case.

Bochner principle and Albanese map. As a first step towards the above goal, we prove the so-called Bochner principle.

Theorem A (Bochner principle, Theorem 3.4). Let (X, ω_X) be a normal compact Kähler space with klt singularities such that $c_1(X) = 0 \in H^2(X, \mathbb{R})$ and let $\omega \in \{\omega_X\}$ be the singular Ricci-flat metric. Let $p, q \geq 0$ be non-negative integers. Then any holomorphic tensor $\tau \in H^0(X_{\text{reg}}, \mathcal{F}_X^p \otimes \Omega_X^q)$ is parallel with respect to ω on X_{reg}.

Quite generally, a sacrilegious bottleneck of the theory in its current state is that if X is klt, we have no way of comparing the fundamental group of the smooth locus $\pi_1(X_{\text{reg}})$ to the whole $\pi_1(X)$. This is important because differential-geometric methods only control the former group. The issue is that the algebraic results of [GKP16a] about maximally quasi-étale covers are not yet available for complex spaces. See Remark 6.10 for an in-depth discussion.

In fact, a large part of the present work is devoted to finding ways to bypass the above-mentioned lamentable limitation of the literature. This can already be seen in **Theorem A**: even though its statement is a straightforward generalization of [GGK19, Theorem A], the proof is quite different because it needs to avoid the use of maximally quasi-étale covers. We refer to Remark 3.5 for a more thorough comparison of the two results.

Our next theorem is about the Albanese map of Kähler spaces X as above: alb$_X$ is surjective and after a finite étale base change, it becomes globally trivial (Theorem 4.1). This generalizes [Kaw85, Theorem 8.3] from the projective case, but the proof relies on the Bochner principle. An important consequence is the existence of so-called torus covers.

Theorem B (Torus covers, Corollary 4.2). Let X be a normal compact Kähler space with klt singularities such that $c_1(X) = 0 \in H^2(X, \mathbb{R})$. Then there exist normal compact Kähler spaces T and Z with canonical singularities together with a quasi-étale cover $\gamma: T \times Z \rightarrow X$ such that:
KÄHLER SPACES WITH ZERO FIRST CHERN CLASS

Kähler spaces with zero first Chern class

T is a complex torus of dimension $\tilde{q}(X)$.

The canonical sheaf of Z is trivial, $\omega_Z \cong \mathcal{O}_Z$.

The augmented irregularity of Z vanishes, $\tilde{q}(Z) = 0$.

For the definition of the augmented irregularity $\tilde{q}(X)$, see Definition 2.1. Also, we remark that the torus cover is essentially unique by Proposition 4.4.

Direct applications of Theorem B include an alternative proof of the Abundance Conjecture in the setting of compact Kähler spaces with canonical singularities and trivial first Chern class (Corollary 4.5) and a characterization of torus quotients in terms of the augmented irregularity (Corollary 4.6). Concerning the further study of klt Kähler spaces with trivial first Chern class, Theorem B enables us to reduce most questions to the case of canonical singularities, trivial canonical bundle and, most importantly, vanishing augmented irregularity.

Holonomy and the flat factor. The natural next step is to understand the holonomy of the Ricci-flat metrics on X_{reg}. This leads to a decomposition of the tangent sheaf of X that already reflects the conjectural Beauville–Bogomolov decomposition on an infinitesimal level. The missing last steps are the algebraic integrability of the summands and a splitting theorem for such foliations.

Theorem C (Holonomy covers, p. 22). Let (X, ω_X) be as in Theorem A. Then after replacing X by a finite quasi-étale cover, there exists a direct sum decomposition of the tangent sheaf of X,

$$\mathcal{T}_X = \mathcal{F} \oplus \bigoplus_{k \in K} \mathcal{E}_k,$$

where the reflexive sheaves \mathcal{F} and \mathcal{E}_k satisfy the following:

- The sheaves \mathcal{F} and \mathcal{E}_k are foliations with trivial determinant.
- Each factor $\mathcal{E}_k|_{X_{\text{reg}}}$ is flat. More precisely, it is given by a special unitary representation of $\pi_1(X_{\text{reg}})$.
- Each factor $\mathcal{E}_k|_{X_{\text{reg}}}$ is parallel and has full holonomy group either $\text{SU}(n_k)$ or $\text{Sp}(n_k/2)$, with respect to the pullback of the singular Ricci-flat metric ω. Here, $n_k = \text{rk}(\mathcal{E}_k)$. Moreover, \mathcal{E}_k is strongly stable with respect to any Kähler class.
- After passing to a torus cover $\gamma: T \times Z \to X$ as in Theorem B, the tangent sheaf of T becomes a direct summand of $\gamma[1]\mathcal{F}$.

As far as the flat factor \mathcal{F} is concerned, Theorem C only provides partial information. We do however have a complete understanding of X in the case where the other summands \mathcal{E}_k vanish. In particular, in this case we know that $\text{pr}_T^*\mathcal{T}_T = \gamma[1]\mathcal{F}$, without making any algebraicity assumptions:

Theorem D (Characterization of torus quotients, Theorem 5.2 and Proposition 6.8). Let X be a normal complex space with klt singularities. If $\mathcal{T}_{X_{\text{reg}}}$ is flat, then X has only finite quotient singularities. Moreover, if X is compact and Kähler, then it is a quotient of a complex torus by a finite group acting freely in codimension one.

Theorem D would follow directly from Theorem C as soon as the maximally quasi-étale covers of $[\text{GKP}16a]$ are available. In our non-algebraic setting, we cannot rely on that result, but capitalizing on the classical fact that isolated singularities are algebraic, we are able to prove a “generic” version of $[\text{GKP}16a]$, cf. Proposition 5.9. Coupling this with the resolution of the (log canonical) Lipman–Zariski conjecture due to Kovács and the second author $[\text{GK}14]$ and Druel $[\text{Dru14}]$ independently, this weaker statement turns out to be sufficient to obtain Theorem D.
Varieties with strongly stable tangent sheaf. Theorems A–D, together with some standard representation theory, imply Corollary E below. This result characterizes the conjectural building blocks of compact Kähler spaces with klt singularities and trivial first Chern class via stability properties of their tangent sheaf. We refer to Section 6.D for the relevant definitions.

Corollary E (Spaces with strongly stable tangent sheaf, Corollary 6.13). Let X be as in Theorem B. If \mathcal{T}_X is strongly stable, then X admits a quasi-étale cover that is either an irreducible Calabi–Yau variety or an irreducible holomorphic symplectic variety.

Corollary E is the Kähler version of [GGK19, Theorem E]. Its proof bypasses the use of Druel’s splitting result for flat summands [Dru18] as well as the existence of maximally quasi-étale covers.

Fundamental groups. According to Campana’s Abelianity Conjecture [Cam04, Conjecture 7.3], the fundamental group of the regular locus X_{reg} of a compact Kähler space with klt singularities such that $c_1(X) = 0$ should be virtually abelian, and finite if the augmented irregularity of X vanishes. Unfortunately, this result seems out of reach for the moment, even in the projective case. It is yet crucial to control $\pi_1(X_{\text{reg}})$, for instance by relating it to $\pi_1(X)$, in order to trivialize flat subsheaves of the tangent sheaf or to clear the difference between restricted holonomy groups (which are classified by Berger–Simons) and holonomy groups (which govern the geometry of X via the Bochner principle).

The fundamental group of the whole space $\pi_1(X)$ is in general easier to understand but it might be much smaller that $\pi_1(X_{\text{reg}})$, as the standard Example 6.2 shows. Our results can be combined to techniques borrowed from e.g. [GGK19, § 13] to derive finiteness properties of $\pi_1(X)$ in any dimension, cf. Theorem 7.2.

If we restrict our attention to low dimensions, we arrive at much stronger statements.

Theorem F (Fundamental groups in dimension four, Theorem 7.3). Let X be as in Theorem B and of dimension ≤ 4. Then:
\begin{itemize}
 \item $\pi_1(X)$ is virtually abelian.
 \item If $\tilde{\eta}(X) = 0$, then $\pi_1(X)$ is finite.
\end{itemize}

Comparison with other works. All our results have previously been established in [GGK19] under the assumption that X is projective. In loc. cit. the projectivity assumption is used in a crucial way to obtain the existence of maximally quasi-étale covers [GKP16a] and to rely on Druel’s splitting result [Dru18]. These results are currently unavailable in the analytic setting and, as a result, our proofs of e.g. Theorem A and Theorem C follow a quite different path and are in the end somewhat more natural, if not simpler.

A few months after the present article had been uploaded to the arXiv, B. Bakker, C. Lehn and the third-named author posted the preprint [BGL20] where they prove the Decomposition Theorem in full generality, i.e. for any compact Kähler space with klt singularities and trivial first Chern class. Of course, the present paper was largely motivated by the Decomposition Theorem in the Kähler setting, but we would like to point out that several of the arguments in [BGL20] crucially rely on the existence of holonomy and torus covers (Theorems B and C of the present article). Furthermore, some of the results proven here are logically independent of the splitting theorem of [BGL20] (e.g. Theorem A or Theorem D). For these reasons, we think that the two papers nicely complement each other.
Acknowledgements. H.G. and B.C. would like to thank Stéphane Druel and Matei Toma for several enlightening discussions. P.G. and P.N. would like to thank Mihai Păun and Thomas Peternell for sharing their insight with them. The authors would like to thank an anonymous referee for his/her careful reading and for valuable comments.

2. Preliminaries

In this section we gather some basic material to be used in the rest of the article.

2.A. Global conventions. Unless otherwise stated, complex spaces are assumed to be countable at infinity, separated, reduced and connected. Algebraic varieties and schemes are always assumed to be defined over the complex numbers.

2.B. General definitions. As a courtesy to the reader, we recall the following standard definitions.

Definition 2.1 (Irregularity). The irregularity of a compact complex space X is $q(X) := h^1(Y, \mathcal{O}_Y)$, where $Y \to X$ is any resolution of singularities. The augmented irregularity of X is $\tilde{q}(X) := \max \{ q(\tilde{X}) \mid \tilde{X} \to X \text{ quasi-étale cover} \} \in \mathbb{N}_0 \cup \{\infty\}$.

Remark 2.2. If X has rational (e.g. klt) singularities, one has $q(X) = h^1(X, \mathcal{O}_X)$. If additionally X is Kähler, then it follows from [KS21, Corollary 1.8] that

$$q(X) = h^0(Y, \Omega^1_Y) = h^0 \left(X, \Omega^{(1)}_X \right).$$

Definition 2.3 (Flat sheaves). Let X be an irreducible and reduced complex space and let $\tilde{X} \to X$ be its universal cover. We say that a rank r vector bundle $E \to X$ is flat if there exists a linear representation $\rho: \pi_1(X) \to \text{GL}(r, \mathbb{C})$ such that E is isomorphic to the bundle $\tilde{X} \times \mathbb{C}^r / \pi_1(X) \to X$, where $\pi_1(X)$ acts diagonally.

Definition 2.4. Let X be a complex space. We say that X is locally algebraic, or that X has algebraic singularities, if there exists a euclidean open cover $\{U_i\}_{i \in I}$ of X such that for every $i \in I$, there is a quasi-projective scheme Y_i, an open subset $V_i \subset Y_i^{\text{an}}$ and a biholomorphic map $\varphi_i: U_i \hookrightarrow V_i$.

Example 2.5. Here are some (non-)examples of algebraic singularities.

(2.5.1) Every complex manifold, and more generally every complex space with quotient singularities, is locally algebraic [Car57].

(2.5.2) Every complex space with only isolated singularities is locally algebraic by [Art69, Theorem 3.8] or [Tou68, corollaire 1, §3, chapitre II].

(2.5.3) If the complex space X admits a locally trivial algebraic approximation, then it is locally algebraic (see [Gra18, §2.4] for the notion involved).

(2.5.4) Take a non-isotrivial family of elliptic curves over the unit disc Δ. Restrict it to the punctured disc Δ^* and pull it back along the universal cover $\Delta \to \Delta^*$. Now take a cone over this family fibrewise. We obtain a log canonical threefold with one-dimensional singular locus which is not locally algebraic, because the j-function associated to the exceptional divisor is not algebraic.
2.C. Coverings of complex spaces. We consistently use the following notation.

Definition 2.6 (Covering maps). A cover or covering map is a finite, surjective morphism $\gamma: Y \to X$ of normal, connected complex spaces. The covering map γ is called Galois if there exists a finite group $G \subset \text{Aut}(Y)$ such that $Y \to X$ is isomorphic to the quotient map $Y \to \hat{Y}/G$.

Definition 2.7 (Quasi-étale maps). A morphism $\gamma: Y \to X$ between normal complex spaces is called quasi-étale if γ is of relative dimension zero and étale in codimension one. In other words, γ is quasi-étale if $\dim Y = \dim X$ and if there exists a closed subset $Z \subset Y$ of codimension $\dim_Y(Z) \geq 2$ such that $\gamma|_{Y\setminus Z}: Y \setminus Z \to X$ is étale.

By purity of branch locus and the extension theorem of [DG94, Theorem 3.4], we get an equivalence of categories between the quasi-étale covers of X and the étale covers of X_{reg}. We emphasize that with our definitions, an étale or quasi-étale cover is automatically finite.

We will use several times the fact that taking Galois closure also works in the analytic context. Compare [DG94, Lemma 7.4].

Lemma 2.8 (Galois closure). Let $\gamma: Y \to X$ be a covering map between normal complex spaces. Then there exists a Galois cover $g: \hat{Y} \to Y$ (with \hat{Y} normal) such that the composed map $f = \gamma \circ g: \hat{Y} \to X$ is also Galois and we have an equality of branch loci $\text{Br}(f) = \text{Br}(\gamma)$. In particular, if γ is quasi-étale, then so is f.

Proof. The morphism γ is étale over a Zariski open set $X^\circ \subset X$ and then it corresponds to a finite index subgroup $H \subset \pi_1(X^\circ)$. This subgroup has a finite number of conjugates in $\pi_1(X^\circ)$ and the intersection of these conjugates is a normal finite index subgroup H° in $\pi_1(X^\circ)$. This subgroup H° gives rise to a Galois cover $\hat{Y}^\circ \to Y^\circ := \gamma^{-1}(X^\circ) \to X^\circ$.

The finite morphisms $\hat{Y}^\circ \to X^\circ$ and $\hat{Y}^\circ \to Y^\circ$ can be extended over the whole of X and Y to finite morphisms $f: \hat{Y} \to X$ and $g: \hat{Y} \to Y$ [DG94, Theorem 3.4]. The factorization $f = \gamma \circ g$ exists (by construction) over X° and it extends naturally. The equality of the branch loci is obvious. \(\square\)

As a consequence, quotient singularities can be characterized in terms of smoothness of quasi-étale covers.

Lemma 2.9 (Quotient singularities). A germ of normal singularity (X, x) is a quotient singularity if and only if it admits a smooth quasi-étale cover.

Proof. If (X, x) is isomorphic to $(\mathbb{C}^n/G, 0)$, we may assume that G contains no quasi-reflections [ST54, Che55] and then the quotient map $\mathbb{C}^n \to \mathbb{C}^n/G$ is quasi-étale.

Conversely, if $\gamma: Y \to X$ is quasi-étale with Y smooth, then we can take a Galois closure as in Lemma 2.8, i.e. a map $g: \hat{Y} \to Y$ with $f = \gamma \circ g: \hat{Y} \to X$ Galois. Since $f = \gamma \circ g$ is quasi-étale, the map g does not branch over any divisor in Y and since Y is smooth we deduce that the map g is étale by purity of the branch locus. This implies that \hat{Y} is smooth as well and hence (X, x) is a quotient singularity [Cat57]. \(\square\)

1 The reference [Car57] is also available at http://www.numdam.org/article/SHC_1953-1954__6__A12_0.pdf.
2.D. **Slope stability.** Let \(X \) be a compact, normal Kähler space of dimension \(n \) and let \(\alpha \in H^2(X, \mathbb{R}) \) be a Kähler class. We fix a resolution \(\pi : \hat{X} \to X \) which is isomorphic over \(X_{\text{reg}} \). Finally, let \(\mathcal{E} \) be a torsion-free sheaf of rank \(r \) on \(X \), and let
\[
\mathcal{E} := \pi^* \mathcal{E}/\text{tor}.
\]
The slope of \(\mathcal{E} \) with respect to \(\alpha \), denoted by \(\mu_\alpha(\mathcal{E}) \) is defined by
\[
\mu_\alpha(\mathcal{E}) := \frac{1}{r} c_1(\mathcal{E}) \cdot (\pi^* \alpha)^{n-1}.
\]
It is easy to check that the slope is independent of the chosen resolution.

Definition 2.10 (Stability). Let \(\mathcal{E} \) be a reflexive sheaf on \(X \). We say that
\begin{align*}
(2.10.1) & \text{ \(\mathcal{E} \) is stable with respect to } \alpha \text{ if for any non-zero subsheaf } \mathcal{F} \subset \mathcal{E} \text{ of rank less than } r, \text{ we have } \mu_\alpha(\mathcal{F}) < \mu_\alpha(\mathcal{E}). \\
(2.10.2) & \text{ \(\mathcal{E} \) is polystable with respect to } \alpha \text{ if it is a direct sum of stable sheaves with identical slope.} \\
(2.10.3) & \text{ \(\mathcal{E} \) is strongly stable with respect to } \alpha \text{ if for any quasi-étale cover } f : Y \to X, \text{ the sheaf } f^! \mathcal{E} := (f^* \mathcal{E})^{**} \text{ is stable with respect to } f^* \alpha.
\end{align*}

2.E. **Stratifications of complex spaces.** Here we just set up some notation to be used when dealing with stratifications of singular spaces. We first recall that a **Whitney stratification** of a closed subspace \(X \) of a smooth real manifold \(M \) is a locally finite partition \(\mathscr{S} \) of \(X \) into smooth, connected, locally closed subsets \((X_\lambda)_{\lambda \in \Lambda}\):
\[
(\mathscr{S}) : \quad X = \bigsqcup_{\lambda \in \Lambda} X_\lambda
\]
satisfying certain incidence conditions. The pair \((X, \mathscr{S})\) is called a **stratified space** and the \(X_\lambda \) are called the **strata** of \((X, \mathscr{S})\). We refer to [GM88, Part I, § 1.2 and 1.3] or to [Mat12] for more background on this classical topic, in particular the existence of Whitney stratifications.

We will mostly be interested in the situation where \(X \) is an irreducible and reduced complex space. In this case, the strata are asked to be smooth and connected locally closed **analytic** subsets. In particular, by dimension we will always mean the dimension as a complex space.

A stratification can alternatively be encapsulated in a filtration of \(X \) by closed analytic subsets:
\[
S_k := \bigsqcup_{\{\lambda \mid \dim(X_\lambda) \leq k\}} X_\lambda.
\]
So defined, \(S_k \) has dimension at most \(k \) and if \(n := \dim X \) we have:
\[
S_0 \subset S_1 \subset \cdots \subset S_n = X.
\]
We will be mainly interested in what we call **maximal strata**.

Definition 2.11 (Maximal strata). Let \(\mathscr{S} := (X_\lambda)_{\lambda \in \Lambda} \) be a Whitney stratification of \(X \) and \((S_k)_{0 \leq k \leq n}\) be the corresponding filtration. We let \(d < n \) be the maximum index such that \(S_d \subseteq X \). The strata indexed by
\[
\Lambda_{\text{max}} := \{\lambda \in \Lambda \mid \dim(X_\lambda) = d\}
\]
are called the **maximal (dimensional) strata**.

This definition is meaningful in particular when the stratification \(\mathscr{S} \) satisfies \(S_d = X_{\text{reg}} \).

Definition 2.12 (Refining stratifications). Let \(\mathscr{S} \) and \(\mathscr{S}' \) be two Whitney stratifications of \(X \). We say that \(\mathscr{S}' \) is a **refinement** of \(\mathscr{S} \) if the strata of \(\mathscr{S}' \) are unions of strata of \(\mathscr{S} \). In this case we write \(\mathscr{S}' < \mathscr{S} \).
Since strata are irreducible by definition, in the above situation each \mathcal{S}-stratum contains exactly one \mathcal{S}'-stratum as an open subset.

Definition 2.13 (Stratified maps). A continuous map $f: X \to Y$ is called stratified (with respect to Whitney stratifications \mathcal{S}_X and \mathcal{S}_Y of X and Y, respectively) if for each \mathcal{S}'-stratum $A \subset Y$, the preimage $f^{-1}(A)$ is a union of \mathcal{S}_X-strata and f takes each of these strata smoothly and submersively to A.

Theorem 2.14 (Stratifications of maps, cf. [GM88, Part I, §1.7]). Let $f: X \to Y$ be a holomorphic map, X and Y being endowed with Whitney stratifications as above. Then there exist refinements $\mathcal{S}_X' < \mathcal{S}_X$ and $\mathcal{S}_Y' < \mathcal{S}_Y$ such that $f: (X, \mathcal{S}_X') \to (Y, \mathcal{S}_Y')$ is a stratified map. \qed

We finally recall that the transverse structure of a given stratum is topologically locally trivial in a rather strong sense. In the following statement, a normal (or transverse) slice N_X to a stratum X_λ is a smooth submanifold of the ambient space M which is transverse to each stratum of X, intersects X_λ in a single point and satisfies $\dim(N_\lambda) = \text{codim}_M(X_\lambda)$. We denote by S^k the euclidean unit sphere in \mathbb{R}^{k+1}.

Theorem 2.15 (cf. Part I. §1.4 in [GM88]). Let X_λ be any stratum of (X, \mathcal{S}). Then there exists a stratified set $L \subset S^k$ for some integer k such that any point $x_0 \in X_\lambda$ has a neighborhood U in X endowed with a homeomorphism $h: U \to (U \cap X_\lambda) \times c(L)$ where $c(L)$ is the cone over L. The space L is called the link of the stratum X_λ and is denoted $\text{Link}(X_\lambda)$. The space $c(L)$ is endowed with a natural stratification whose strata are the vertex of the cone and subspaces of the form $A \times [0, 1]$, with A a stratum of L. The homeomorphism h sends the strata of U into those of $(U \cap X_\lambda) \times c(L)$. In particular, if N is any transverse slice to X_λ at x_0 then $(U \cap N) \setminus \{x_0\}$ has the homotopy type of the link $\text{Link}(X_\lambda)$. \qed

This local picture can be turned into a global one.

Theorem 2.16 (Existence of tubular neighborhoods, [Mat12]). Let X_λ be any stratum of (X, \mathcal{S}). Then there exists a closed neighborhood U_λ of X_λ in X and a continuous retraction $f_{\lambda}: U_\lambda \to X_\lambda$ that is locally topologically trivial with fibre $c(\text{Link}(X, X_\lambda))$. The natural inclusion $X_\lambda \hookrightarrow U_\lambda$ being a section of f_{λ}, the punctured open neighborhood $U_\lambda^\circ \setminus X_\lambda$ is also locally topologically trivial over X_λ with fibre homotopy equivalent to $\text{Link}(X, X_\lambda)$.

This topological stability will be used through the following corollary.

Corollary 2.17. Let $\gamma: Y \to X$ be a quasi-étale cover between normal complex spaces, and let \mathcal{S} be a Whitney stratification of X such that X_{reg} is a union of strata. Then for any maximal stratum X_λ, the following dichotomy holds: either $X_{\lambda} \subset \text{Br}(\gamma)$ or $X_{\lambda} \cap \text{Br}(\gamma) = \emptyset$.

Proof. This is a direct application of [GKP16a, Corollary 3.12], where $A = X_{\text{reg}}$. Let $\lambda \in \Lambda_{\text{max}}$ be any index. If $X_\lambda \subset A$, then X_λ equals an irreducible component of A by maximality. Hence we may apply said result. Otherwise, X_λ must be disjoint from A, i.e. contained in X_{reg}. So we are in the second case of the dichotomy. \qed

Remark 2.18. The notion of stratum and thus of its normal topological type depends on a given stratification. We will not need it in the sequel, but it has to be noted that any irreducible reduced complex space X has a canonical Whitney stratification.
\(\mathcal{J}_{\text{can}} \). This means that if \(\mathcal{J} \) is any other Whitney stratification of \(X \), the strata of \(\mathcal{J}_{\text{can}} \) are unions of strata of \(\mathcal{J} \). The construction of \(\mathcal{J}_{\text{can}} \) is explained in [Mat73, Theorem 4.9] (see also [TT81, corollaire 6.1.7] where the canonical stratification is defined in terms of polar varieties).

3. Bochner principle for reflexive tensors

In this section, we prove the Bochner principle, Theorem A. For generalities about Kähler metrics or currents on normal complex spaces, we refer to [Dem85, A.1], [EGZ09, § 5.2], [BEG13, § 4.6.1] or [GK20, § 3]. We work in the following setting.

Setup 3.1. Let \(X \) be an \(n \)-dimensional complex, compact Kähler space with klt singularities such that \(K_X \) is numerically trivial.

We choose a Kähler resolution \(\pi: Y \to X \) such that \(\text{Exc}(\pi) \) is an snc divisor \(F = \sum_j F_j \), and we fix holomorphic sections \(s_j \in H^0(Y, \mathcal{O}_Y(F_j)) \) cutting out the smooth component \(F_j \). We set \(s_F := \oplus_j s_j \) and \(Y^0 := Y \setminus F \).

Fix two integers \(p, q \geq 0 \). We set \(\delta_X := (\mathcal{J}^{\mathbb{C}P^p} \otimes \mathcal{O}_X^{\mathbb{C}P^q})^\ast \), where \((-)^\ast\) denotes the double dual, and \(\delta_Y := \mathcal{J}^{\mathbb{C}P^p} \otimes \mathcal{O}_Y^{\mathbb{C}P^q} \). One has a natural inclusion of coherent sheaves \(\pi_\ast \delta_Y \subset \delta_X \) and the quotient sheaf \(\delta_X/\pi_\ast \delta_Y \) is torsion, being supported on \(X_{\text{sg}} \).

Thanks to Rückert’s Nullstellensatz [GR84, Ch. 3, §2], there exists an integer \(k \geq 1 \) such that for any reflexive tensor \(\tau \in H^0(X, \mathcal{E}_X) \), the section \(\tau \big|_{X_\text{reg}} \in \mathcal{E}_X \big|_{X_\text{reg}} \) extends to an element \(\tau \in H^0(Y, \mathcal{E}_Y \otimes \mathcal{O}_Y(kF)) \).

Thanks to the combination of [EGZ09, Theorem 7.5] and [Pâu08, Corollary 1.1], there exists in each Kähler class \(\alpha \in H^2(X, \mathbb{R}) \) a unique closed, positive current \(\omega_\alpha \in \alpha \) with bounded potentials, smooth on \(X_{\text{reg}} \) and satisfying \(\text{Ric} \omega_\alpha = 0 \) on this locus, cf. Remark 3.2 below.

The Kähler metric \(\omega_\alpha \) on \(X_{\text{reg}} \) induces a smooth, hermitian metric on \(\mathcal{J}_{X_{\text{reg}}} \) and in turn on \(\delta_X \big|_{X_{\text{reg}}} \), with Chern connection \(D_{\delta_X} \).

Remark 3.2. Given a Kähler metric \(\omega_X \) on \(X \), it follows from [EGZ09, Theorem 7.5] that there exists a unique Kähler–Einstein current \(\omega_\alpha \) in the cohomology class \(\{\omega_X\} \in H^4(X, \mathcal{L}^\infty/\mathcal{P}H_X) \) under the connecting map \(H^0(X, \mathcal{L}^\infty/\mathcal{P}H_X) \to H^4(X, \mathcal{P}H_X) \). This cohomology group identifies two (1, 1)-currents with local (bounded) \(dd^c \)-potentials if and only if they differ by the \(dd^c \) of a global (bounded) function. It is however more convenient to view \(\omega_\alpha \) in the more familiar cohomology space \(H^2(X, \mathbb{R}) \) using the connecting map arising from the natural exact sequence

\[
0 \to \mathbb{R} \to \mathcal{E}_X \xrightarrow{\text{Im}} \mathcal{P}H_X \to 0.
\]

It was recently proved in [GK20, Proposition 3.5] that the map \(H^1(X, \mathcal{P}H_X) \to H^2(X, \mathbb{R}) \) is injective whenever \(X \) has rational singularities. Therefore, a Kähler class \(\alpha \in H^2(X, \mathbb{R}) \) is associated to a unique class of a Kähler metric \(\{\omega_X\} \in H^2(X, \mathcal{P}H_X) \). This allows us to consider without any ambiguity the *unique* singular Ricci-flat metric \(\omega_\alpha \) in \(\alpha \in H^2(X, \mathbb{R}) \) as stated a few lines above.

Remark 3.3. In Setup 3.1 above, the Abundance Conjecture has been proved in [CGP19, Corollary 1.18] as an application of results of B. Wang [Wan16]. So there exists a quasi-étale cover \(X' \to X \) such that \(K_{X'} \) is trivial and, in particular, \(X' \) has canonical singularities. We do not rely on this fact to prove the Bochner principle.

Quite the opposite is true: one may use the Bochner principle to prove Abundance in Setup 3.1, at least under the slightly stronger assumption that \(X \) has canonical (as opposed to klt) singularities. The details of the argument can be found in Corollary 4.5.
Theorem 3.4 (Bochner principle). Let X be a compact Kähler space with klt singularities such that K_X is numerically trivial and let α be a Kähler class. With the notation of Setup 3.1 above, any holomorphic tensor $\tau \in H^0(X_{\text{reg}}, \mathcal{E}_X)$ is parallel with respect to ω_n, i.e. $D\tau = 0$ on X_{reg}.

Remark 3.5 (Comparison with earlier results). In [GGK19], the Bochner principle is proved under the assumption that X is projective. The proof goes as follows: along the lines of [Gue16], one can prove the Bochner principle for bundles [GGK19, Theorem 8.1], stating that a saturated subsheaf of slope zero of a tensor bundle $\mathcal{F} \subset \mathcal{E}_X$ is automatically parallel with respect to the Kähler–Einstein metric on the smooth locus. This does not rely on the projectivity assumption.

To go from bundles to tensors, one considers the line bundle generated by a given tensor τ on X_{reg}. As it is parallel, the holonomy group G acts on it, yielding a character of G. The classification of the holonomy [GGK19, Theorem B] shows that up to passing to a quasi-étale cover, G is semi-simple, hence the character is trivial and τ itself is parallel. The above classification result relies on the projectivity assumption through the existence of a maximally quasi-étale cover [GKP16a, Theorem 1.5] and Druel’s integrability result [Dru18, Theorem 1.4].

Proof of Theorem 3.4. We first need to set up some notation.

Hermitian metrics. We choose some smooth hermitian metrics h_j on $\mathcal{E}_Y(F_j)$. We denote by $\vartheta_{j, \varepsilon}$ the curvature form of that metric, i.e. $\vartheta_{j, \varepsilon} := i\Theta_{h_j}(F_j)$.

Finally, we set

$$ h_F := \prod_j h_j \quad \text{and} \quad h_{F, \varepsilon} := \prod_j h_{j, \varepsilon} = \frac{1}{\prod_j (|s_j|^2 + \varepsilon^2)} \cdot h_F; $$

they define smooth metrics on $\mathcal{E}_Y(F)$.

Approximate Kähler-Einstein metrics. We introduce the rational coefficients $a_i > -1$ such that $K_X = \pi^* K_X + \sum a_i F_i$. We fix a Kähler reference metric ω_Y on Y, and consider, for each $\varepsilon, t > 0$, the unique Kähler metric $\omega_{t, \varepsilon} \in \pi^* \alpha + t\{\omega_Y\}$ solution of

$$ \text{Ric} \omega_{t, \varepsilon} = -\sum_j a_j \vartheta_{j, \varepsilon} $$

Its existence is guaranteed by Yau’s solution of the Calabi conjecture [Yau78]. In terms of Monge-Ampère equations, if ω_X is a smooth representative of α, then $\omega_{t, \varepsilon} = \pi^* \omega_X + t\omega_Y + d\varphi_{t, \varepsilon}$ is solution of

$$ (\pi^* \omega_X + t\omega_Y + d\varphi_{t, \varepsilon})^n = e^{-\epsilon t, \varepsilon} dV $$

where dV is a fixed smooth volume form such that $\text{Ric} dV = \sum a_j \vartheta_j$ and $\alpha_{t, \varepsilon} \in \mathbb{R}$ is a normalizing constant defined by $e^{\epsilon t, \varepsilon} = \int_Y \frac{1}{(\pi^* \alpha + \epsilon \omega_Y)^t} dV$.

Curvature formula. We set $\delta_Y(kF) := \delta_Y \otimes \sigma_f(kF)$ and we choose $\sigma \in H^0(Y, \delta_Y(kF))$ some meromorphic tensor on Y. The Kähler metric $\omega_{\epsilon, \epsilon}$ induces a smooth hermitian metric $h_{\epsilon, \epsilon}$ on δ_Y. We consider the metric
\[
h_{\epsilon, \epsilon} := h_{\omega_{\epsilon, \epsilon}} \otimes h_{p, \epsilon}^k \text{ on } \delta_Y(kF)
\]
with Chern connection D and set $|\sigma| := |\sigma|_{h_{\epsilon, \epsilon}}$. We have the following Poincaré-Lelong type formula

\[(3.5.1) \quad \log(|\sigma|^2 + 1) = \frac{1}{2|\sigma|^2 + 1} \left(|D\sigma|^2 - \frac{|\langle D\sigma, \sigma \rangle|^2}{|\sigma|^2 + 1} - \langle i\Theta_{h_{\epsilon, \epsilon}}(\delta_Y(kF))\sigma, \sigma \rangle \right)
\]

Wedging this last inequality with $\omega_{\epsilon, \epsilon}^{n-1}$ and integrating it on X yields:

\[
\int_Y \frac{|\langle i\Theta_{h_{\epsilon, \epsilon}}(\delta_Y(kF))\sigma, \sigma \rangle|}{|\sigma|^2 + 1} \wedge \omega_{\epsilon, \epsilon}^{n-1} = \int_Y \frac{|D\sigma|^2}{|\sigma|^2 + 1} \wedge \omega_{\epsilon, \epsilon}^{n-1}
\]

As $|D\sigma| \leq |D| \cdot |\sigma|$, we obtain

\[(3.5.2) \quad \int_Y \frac{|\langle i\Theta_{h_{\epsilon, \epsilon}}(\delta_Y(kF))\sigma, \sigma \rangle|}{|\sigma|^2 + 1} \wedge \omega_{\epsilon, \epsilon}^{n-1} \geq \int_Y \frac{|D\sigma|^2}{|\sigma|^2 + 1} \wedge \omega_{\epsilon, \epsilon}^{n-1}
\]

Now, one has

\[i\Theta_{h_{\epsilon, \epsilon}}(\delta_Y(kF)) = i\Theta_{h_{\omega_{\epsilon, \epsilon}}} \otimes \Id_{\delta_Y(kF)} + \Id_{\delta_Y} \otimes i\Theta_{h_{p, \epsilon}^k}(\delta_Y(kF)).\]

First let us introduce a notation: let V be a complex vector space of dimension n, let $p \geq 1$ be an integer, and let $f \in \text{End}(V)$. We denote by $f^{(p)}$ the endomorphism of $V^{(p)}$ defined by

\[f^{(p)}(v_1 \otimes \cdots \otimes v_p) := \sum_{i=1}^p v_1 \otimes \cdots \otimes v_{i-1} \otimes f(v_i) \otimes v_{i+1} \otimes \cdots \otimes v_p
\]

Let us add that if V has an hermitian structure and if f is hermitian semipositive, then so is $f^{(p)}$ with the induced metric, and we have $\text{tr}(f^{(p)}) = pm^{p-1}\text{tr}(f)$. Now we can easily check the following identity:

\[m\text{tr}(T_Y^{(p)}, h_{\omega_{\epsilon, \epsilon}}) \wedge \omega_{\epsilon, \epsilon}^{n-1} = (\sharp \text{Ric} \omega_{\epsilon, \epsilon})^{(p)} \omega_{\epsilon, \epsilon}^{n-1}
\]

where $\sharp \text{Ric} \omega$ is the endomorphism of T_Y induced by $\text{Ric} \omega_{\epsilon, \epsilon}$ via $\omega_{\epsilon, \epsilon}$. As $\text{Ric} \omega = -\sum a_j \partial_{j, \epsilon}$, we deduce that

\[\text{tr}_{h_{\omega_{\epsilon, \epsilon}}} i\Theta_{h_{\omega_{\epsilon, \epsilon}}}(\delta_Y) = -\sum a_j \left[(\sharp \partial_{j, \epsilon})^{(p)} \otimes \Id_{T_Y^{(p)}} - \Id_{T_Y^{(p)}} \otimes (\sharp \partial_{j, \epsilon})^{(p)} \right]
\]

while

\[i\Theta_{h_{p, \epsilon}^k}(\delta_Y(kF)) \wedge \omega_{\epsilon, \epsilon}^{n-1} = k \sum_{j} \partial_{j, \epsilon} \wedge \omega_{\epsilon, \epsilon}^{n-1}.
\]

Locally, one can choose a trivialization e of $\delta_Y(kF)$ and write $\sigma = u \otimes e$ where u is a local section of δ_Y. Then

\[(3.5.3) \quad \langle i\Theta_{h_{\epsilon, \epsilon}}(\delta_Y(kF))\sigma, \sigma \rangle = \langle i\Theta_{h_{\omega_{\epsilon, \epsilon}}}(\delta_Y)u, u \rangle |\epsilon|^2 + (k \sum_{j} \partial_{j, \epsilon} \cdot |\sigma|^2
\]

\[\text{(I)} \quad \text{(II)}
\]

Computation of Term (I).

This part is entirely similar to [GGK19, §9]. We have the decomposition

\[\langle \sharp \partial_{j, \epsilon} \rangle^{(p)} = (\sharp \beta_{j, \epsilon})^{(p)} + (\sharp \gamma_{j, \epsilon})^{(p)}
\]

along with the inequalities

\[(3.5.4) \quad 0 \leq (\sharp \beta_{j, \epsilon})^{(p)} \leq (\text{tr}_{\text{End}}(\sharp \beta_{j, \epsilon})^{(p)}) \Id_{T_Y^{(p)}} \leq pm^{p-1}\text{tr}_{h_{\omega_{\epsilon, \epsilon}}} \beta_{j, \epsilon} \cdot \Id_{T_Y^{(p)}}
\]
and

\[(3.5.5) \quad \pm (\varepsilon_{j,\varepsilon})_{\varepsilon p} \leq \frac{C \varepsilon^2}{|s_j|^2 + \varepsilon^2} \cdot (\omega_{Y})_{\varepsilon p} \leq C p \varepsilon^{p-1} , \quad \frac{\varepsilon^2}{|s_j|^2 + \varepsilon^2} \cdot \text{tr} \omega_{t,\varepsilon} \omega_{Y} \cdot \text{Id}_{\varepsilon_{j,\varepsilon}} \]

as soon as \(C > 0 \) is large enough so that \(\pm \beta_j \leq C \omega_Y \) for any \(j \).

From (3.5.4), one deduces

\[0 \leq \langle (\| \beta_{j,\varepsilon} \|_{\varepsilon p} \otimes \text{Id}_{\varepsilon_{j,\varepsilon}} \cdot u, u \rangle \|_{\varepsilon_{j,\varepsilon}} \rangle_{\varepsilon_{j,\varepsilon}}^2 \frac{1}{|\sigma|^2 + 1} \leq p \varepsilon^{p-1} \text{tr} \omega_{t,\varepsilon} \beta_{j,\varepsilon} \frac{|\sigma|^2}{|\sigma|^2 + 1} \]

\[\leq p \varepsilon^{p-1} \text{tr} \omega_{t,\varepsilon} \beta_{j,\varepsilon} \]

while from (3.5.5), one deduces

\[\pm \langle (\| \beta_{j,\varepsilon} \|_{\varepsilon p} \otimes \text{Id}_{\varepsilon_{j,\varepsilon}} \cdot u, u \rangle \|_{\varepsilon_{j,\varepsilon}} \rangle_{\varepsilon_{j,\varepsilon}}^2 \frac{1}{|\sigma|^2 + 1} \leq C p \varepsilon^{p-1} , \quad \frac{\varepsilon^2}{|s_j|^2 + \varepsilon^2} \cdot \text{tr} \omega_{t,\varepsilon} \omega_{Y} \frac{|\sigma|^2}{|\sigma|^2 + 1} \]

\[\leq C p \varepsilon^{p-1} , \quad \frac{\varepsilon^2}{|s_j|^2 + \varepsilon^2} \cdot \text{tr} \omega_{t,\varepsilon} \omega_{Y} \]

so in conclusion, one gets

\[\pm \langle (\| \beta_{j,\varepsilon} \|_{\varepsilon p} \otimes \text{Id}_{\varepsilon_{j,\varepsilon}} \cdot u, u \rangle \|_{\varepsilon_{j,\varepsilon}} \rangle_{\varepsilon_{j,\varepsilon}}^2 \frac{1}{|\sigma|^2 + 1} \leq C \left[\text{tr} \omega_{t,\varepsilon} \beta_{j,\varepsilon} + \frac{\varepsilon^2}{|s_j|^2 + \varepsilon^2} \cdot \text{tr} \omega_{t,\varepsilon} \omega_{Y} \right] \]

for some \(C \) large enough. Performing the same computations with \(\text{Id}_{\varepsilon_{j,\varepsilon}} \otimes (\| \beta_{j,\varepsilon} \|_{\varepsilon p} \otimes \| \beta_{j,\varepsilon} \|_{\varepsilon p} \otimes u, u \rangle \|_{\varepsilon_{j,\varepsilon}} \rangle_{\varepsilon_{j,\varepsilon}}^2 \frac{1}{|\sigma|^2 + 1} \), one eventually obtains

\[(3.5.6) \quad \pm \langle i \Theta_{h_{j,\varepsilon}} (\mathcal{F}_Y) \cdot u, u \rangle_{\varepsilon_{j,\varepsilon}}^2 \frac{1}{|\sigma|^2 + 1} \leq C \left[\beta_{j,\varepsilon} + \frac{\varepsilon^2}{|s_j|^2 + \varepsilon^2} \cdot \omega_{Y} \right] \]

\[\wedge \omega_{t,\varepsilon}^{n-1} \]

Computation of Term (II).

By the same token as before, one can decompose

\[\vartheta_{j,\varepsilon} \cdot \frac{|\sigma|^2}{|\sigma|^2 + 1} \wedge \omega_{t,\varepsilon}^{n-1} = \frac{|\sigma|^2}{|\sigma|^2 + 1} \cdot \beta_{j,\varepsilon} \wedge \omega_{t,\varepsilon}^{n-1} + \frac{|\sigma|^2}{|\sigma|^2 + 1} \cdot \gamma_{j,\varepsilon} \wedge \omega_{t,\varepsilon}^{n-1} \]

\[\text{(III)} \quad \text{(IV)} \]

and write \(0 \leq (\text{III}) \leq \beta_{j,\varepsilon} \wedge \omega_{t,\varepsilon}^{n-1} \) and \(\pm (\text{IV}) \leq \frac{C \varepsilon^2}{|s_j|^2 + \varepsilon^2} \cdot \omega_{Y} \wedge \omega_{t,\varepsilon}^{n-1} \) to obtain

\[(3.5.7) \quad \vartheta_{j,\varepsilon} \cdot \frac{|\sigma|^2}{|\sigma|^2 + 1} \wedge \omega_{t,\varepsilon}^{n-1} \leq C \left[\beta_{j,\varepsilon} + \frac{\varepsilon^2}{|s_j|^2 + \varepsilon^2} \cdot \omega_{Y} \right] \wedge \omega_{t,\varepsilon}^{n-1} \]

Putting (3.5.6) and (3.5.7) together, one sees from (3.5.3) that

\[(3.5.8) \quad \pm \langle i \Theta_{h_{j,\varepsilon}} (\mathcal{F}_Y (kF)) \sigma, \sigma \rangle_{\varepsilon_{j,\varepsilon}}^2 \frac{1}{|\sigma|^2 + 1} \wedge \omega_{t,\varepsilon}^{n-1} \leq C \left[\sum \left(\beta_{j,\varepsilon} + \frac{\varepsilon^2}{|s_j|^2 + \varepsilon^2} \cdot \omega_{Y} \right) \wedge \omega_{t,\varepsilon}^{n-1} \right] \]

Finally, one has

\[\int_Y \beta_{j,\varepsilon} \wedge \omega_{t,\varepsilon}^{n-1} = \int_Y \vartheta_{j,\varepsilon} \wedge \omega_{t,\varepsilon}^{n-1} - \int_Y \gamma_{j,\varepsilon} \wedge \omega_{t,\varepsilon}^{n-1} \leq F_j \cdot (\pi^* \alpha + t \omega_Y)^{n-1} + C \int_Y \frac{\varepsilon^2}{|s_j|^2 + \varepsilon^2} \omega_{Y} \wedge \omega_{t,\varepsilon}^{n-1} \]

so that (3.5.8) combined with [GGK19, Claim 9.5] show that

\[(3.5.9) \quad \lim_{\varepsilon \to 0} \lim_{t \to 0} \int_Y \langle i \Theta_{h_{j,\varepsilon}} (\mathcal{F}_Y (kF)) \sigma, \sigma \rangle_{\varepsilon_{j,\varepsilon}}^2 \frac{1}{|\sigma|^2 + 1} \wedge \omega_{t,\varepsilon}^{n-1} = 0. \]
Conclusion.
When e, t go to zero, $\omega_{t,e}$ converge weakly to $\pi^* \omega$, and the convergence is smooth on Y^o. Inequality (3.5.2) combined with Fatou lemma ensure that σ has zero covariant derivative on Y^o with respect to the smooth hermitian metric $h_{\pi^* \omega} \otimes h_{F,0}$ on $\delta_Y(kF)|_{Y^o}$. Now, it follows from the definition of $h_{F,0}$ that $|s_F|_{h,F,0} \equiv 1$ on Y so that s_F is parallel with respect to $h_{F,0}$ on Y^o. This implies that $\sigma/s_F^{\otimes k}$ is parallel with respect to $h_{\pi^* \omega}$ on Y^o, hence τ is parallel with respect to h_{ω} on X_{reg}. \hfill \Box

Remark 3.6. In Theorem 3.4 above, if $\delta_X = \mathcal{S}_X$ or $\delta_X = \Omega_X^{|p|}$ for some $1 \leq p \leq n$, then one can choose the resolution π such that the tensor τ pulls back to a holomorphic tensor on the resolution (i.e. it does not acquire any poles along F). This follows from the existence of a functorial resolution of singularities in the first case (see e.g. [Kol07, Proposition 3.9.1]) and from [KS21] in the second one. In such a case, the term (II) in the proof above disappears and the proof reduces to the computations of [Gue16]. We do, however, need the Bochner principle also for more general tensors.

4. Structure of the Albanese map

For generalities on the Albanese map for singular spaces, see [Gra18, §3]. We prove here the exact analogue of [Kaw85, Theorem 8.3] in the Kähler setting. See also [Gra18, Theorem 1.10] for the three-dimensional case. We then proceed to prove the existence of torus covers (Theorem B) and some immediate corollaries.

Theorem 4.1 (Albanese splits after base change). Let X be a normal compact Kähler space with canonical singularities such that $c_1(X) = 0$. Let

$$\alpha: X \rightarrow A := \text{Alb}(X)$$

be the Albanese map of X. Then there exists a finite étale cover $A_1 \rightarrow A$ such that $X \times_A A_1$ is isomorphic to $F \times A_1$ over A_1, where F is connected. In particular, α is a surjective analytic fibre bundle with connected fibres, and $q(X) \leq \dim X$.

Remark: Under the stronger assumption that K_X is torsion, the fact that α is surjective with connected fibres has already been shown in [Kaw81, Theorem 24] and [Cam04, Theorem 5.1 and Proposition 5.3]. Since these results are stated for manifolds, one needs to apply them to a smooth model $Y \rightarrow X$. This is possible since K_Y is a \mathbb{Q}-effective exceptional divisor and so Y has vanishing Kodaira dimension.

On the other hand, we can use Theorem 4.1 to prove that K_X is torsion under the assumptions of that theorem. See Corollary 4.5.

Proof of Theorem 4.1. By the universal property of the Albanese torus, for every $g \in \text{Aut}(X)$ there exists a unique $\varphi_g: A \rightarrow A$ such that $\varphi_g \circ \alpha = \alpha \circ g$. If $g \in \text{Aut}^e(X)$, the identity component, then g acts trivially on $H^1(X, \mathbb{C})$ and in particular on $H^0\left(X, \Omega_X^{[1]} \right)$. Consequently, the linear part of φ_g is the identity. That is, φ_g is a translation by some element $\varphi(g) \in A$. We have thus defined a homomorphism of complex Lie groups $\varphi: \text{Aut}^e(X) \rightarrow A$, which we will now show to be the desired cover $A_1 \rightarrow A$. First of all, since X has canonical singularities, it is not uniruled. Hence $\text{Aut}^e(X)$ is a complex torus by [Fuj78, Proposition 5.10]. It is thus sufficient to show that the induced Lie algebra map $d\varphi: H^0(X, \mathcal{S}_X) \rightarrow H^0\left(X, \Omega_X^{[1]} \right)$ is an isomorphism. One checks easily that $d\varphi$ is given by the natural contraction pairing

$$(4.1.1) \quad H^0(X, \mathcal{S}_X) \times H^0\left(X, \Omega_X^{[1]} \right) \rightarrow H^0(X, \mathcal{O}_X) = \mathbb{C}.$$
Fix a Kähler class $\alpha \in H^2(X, \mathbb{R})$ and consider the associated Ricci-flat metric ω_α as in Section 3. Let $0 \neq \tilde{v} \in H^0(X, \mathcal{T}_X)$ be a nonzero holomorphic vector field. Due to the Bochner principle, Theorem 3.4, \tilde{v} is parallel with respect to the Chern connection ∇ induced by ω_α. Dualizing using this metric, \tilde{v} gives rise to a parallel (hence holomorphic, as $D^{0,1} = \partial$) 1-form α on X. Clearly the contraction $i_\alpha \tilde{v} \neq 0$.

The argument can also be read backwards, hence (4.1.1) is a perfect pairing and η is an isomorphism.

Next, we show that the family $f_1 : X \times_A A_1 \to A_1$ is trivial. To this end, set $F := \alpha^{-1}(0)$. Recalling that $A_1 = \text{Aut}^\alpha(X)$, we define a map $\gamma : F \times A \to X \times A_1$ by sending $(x, g) \mapsto (g(x), g)$. Since $\alpha(g(x)) = \varphi_g(\alpha(x)) = \varphi_g(0) = \varphi(g)$, the map γ factors through the fibre product as $\eta : F \times A \to X \times_A A_1$. The latter map has an inverse given by $\eta^{-1}(x, g) = (g^{-1}(x), g)$. By construction, η is a morphism over A_1, i.e. it preserves the fibres of the projections to A_1. It follows that $X \times_A A_1$ is isomorphic to $F \times A_1$ over A_1, as claimed.

What we have observed so far already implies that $X \to A$ is a surjective analytic fibre bundle, because the base change to A_1 has these properties. It remains to see that the fibre F is connected. For this, consider the Stein factorization $X \xrightarrow{\beta} B \xrightarrow{\gamma} A$ of α. We claim that γ is étale. The question is local on A, so we may pass to a small open subset $U \subset A$ such that $\alpha^{-1}(U) \cong U \times F$ over U. Then there is an isomorphism $\alpha_* \mathcal{O}_{\alpha^{-1}(U)} \cong \mathcal{O}^{\oplus N}_U$ in the category of finitely presented \mathcal{O}_U-algebras, where N is the number of connected components of F. By construction of the Stein factorization, it follows that $\gamma^{-1}(U)$ is a disjoint union of N copies of U. In particular, γ is étale.

Consequently, B is a complex torus too. By the universal property of A, the map $X \xrightarrow{\beta} B$ factors via A and we get a section $A \to B$ of γ. This means that γ is an isomorphism, i.e. $B = A$. By the definition of Stein factorization, $X \to A = B$ has connected fibres.

The last statement, $q(X) \leq \dim X$, follows from the surjectivity of α as follows:

$$q(X) = h^1(Y, \mathcal{O}_Y) = h^0(Y, \Omega^1_Y) = \dim \text{Alb}(Y) = \dim A \leq \dim X,$$

where $Y \to X$ is a resolution of singularities. \hfill \Box

Corollary 4.2 (Torus covers). Let X be a normal compact Kähler space with klt singularities such that $c_1(X) = 0$. Then:

(4.2.1) The augmented irregularity $\overline{q}(X) \leq \dim X$. In particular, it is finite.

Furthermore, there exist normal compact Kähler spaces T and Z with canonical singularities together with a quasi-étale cover $\gamma : T \times Z \to X$ such that:

(4.2.2) T is a complex torus of dimension $\overline{q}(X)$.

(4.2.3) The canonical sheaf of Z is trivial, $\omega_Z \cong \mathcal{O}_Z$.

(4.2.4) The augmented irregularity of Z vanishes, $\overline{q}(Z) = 0$.

Any cover γ as above will be called a torus cover of X.

Proof. The proof closely follows along the lines of [GGK19, Proposition 7.5], but with different references. For later reference, and also as a courtesy to the reader, we give the argument here.

To begin with, note that by [CGP19, Corollary 1.18], the canonical divisor K_X is torsion. We may thus consider an index one cover $X_1 \to X$. This has the additional property that K_{X_1} is trivial (in particular, Cartier) and hence X_1 has canonical singularities. That is, X_1 satisfies the assumptions of Theorem 4.1.

For (4.2.1), note that $\overline{q}(X) = \overline{q}(X_1)$ by Lemma 4.3. It is therefore sufficient to prove $\overline{q}(X_1) \leq \dim X_1 = \dim X$. But any quasi-étale cover $X' \to X_1$ reproduces
the assumptions of Theorem 4.1, hence \(q(X') \leq \dim X' = \dim X_1 \) by that result. The claim follows by taking the supremum over all quasi-étale covers of \(X_1 \).

Next, we construct a torus cover \(\gamma \) as a sequence of quasi-étale covers as follows:

\[
T \times Z = X_3 \hookrightarrow X_2 \hookrightarrow X_1 \hookrightarrow X.
\]

The first map, \(X_1 \to X \), is still the index one cover. We have already seen that \(\tilde{q}(X_1) \) is finite. Choose now a quasi-étale cover \(X_2 \to X_1 \) that realizes this augmented irregularity, \(q(X_2) = \tilde{q}(X_1) \). Finally, apply Theorem 4.1 to \(X_2 \) in order to obtain a further cover \(X_3 \to X_2 \) that splits off a torus as \(X_3 = T \times Z \). We need to show that (4.2.2)–(4.2.4) hold.

By construction, \(\dim(T) = q(X_3) = q(X_2) = \tilde{q}(X_1) = \tilde{q}(X) \), which proves (4.2.2). For (4.2.3), since \(\omega_{X_1} \) is already trivial, the same is true of \(\omega_{T \times Z} \) and hence also of \(\omega_Z \). Finally, if there was a cover \(Z' \to Z \) with \(q(Z') > 0 \), then \(T \times Z' \to X \) would be a cover with irregularity \(\dim T + q(Z') > \tilde{q}(X) \), which contradicts the definition of \(\tilde{q}(X) \). This shows (4.2.4).

Lemma 4.3 (Invariance of \(\tilde{q} \)). Let \(Y \to X \) be a quasi-étale cover of normal compact complex spaces. Then \(\tilde{q}(Y) = \tilde{q}(X) \).

Proof. Every quasi-étale cover \(Y' \to Y \) is, by composition, also a quasi-étale cover of \(X \). The inequality \(\tilde{q}(Y) \leq \tilde{q}(X) \) is therefore obvious. For the other direction, let \(X' \to X \) be any quasi-étale cover of \(X \), and consider the normalized fibre product diagram

\[
\begin{array}{ccc}
Z & \to & Y \\
\downarrow & & \downarrow \\
X' & \to & X.
\end{array}
\]

Since all the maps in this diagram are quasi-étale covers, we obtain

\[\tilde{q}(Y) \geq q(Z) \geq q(X'). \]

The claim follows by taking the supremum over all quasi-étale \(X' \to X \). \(\square \)

Proposition 4.4 (Uniqueness of torus cover). In the setting of Corollary 4.2, the spaces \(T \) and \(Z \) are unique up to quasi-étale cover, in the following sense: Suppose that \(\gamma': T' \times Z' \to X \) is another torus cover of \(X \). Then:

(4.4.1) The complex tori \(T \) and \(T' \) are isogeneous.

(4.4.2) There is a common quasi-étale cover \(Z \leftarrow Z'' \to Z' \), where \(Z'' \) is likewise compact, connected and has canonical singularities.

Proof. Consider the normalized fibre product diagram

\[
\begin{array}{ccc}
Y & \to & T' \times Z' \\
\downarrow & & \downarrow \\
T \times Z & \to & X.
\end{array}
\]

Since \(q(T \times Z) \) is already maximal, \(q(Y) = q(T \times Z) \) and hence

\[
alb(p) : \ Alb(Y) \to \ Alb(T \times Z) = T
\]

is finite, i.e. an isogeny. The same argument applies to \(T' \times Z' \). So both \(T \) and \(T' \) are isogeneous to \(\Alb(Y) \). This implies (4.4.1) because isogeny is an equivalence relation.

We turn to (4.4.2). Consider an arbitrary \(s \in \Alb(Y) \). Set \(t := \alb(p)(s) \in T \) and \(Z_t := \{ t \} \times Z \subset T \times Z \). We claim that we can take \(Z'' := \alb_{\gamma'}^{-1}(s) \). By Theorem 4.1, \(Z'' \) is connected and has canonical singularities. It is clear that \(p(Z'') \subset Z_t \). Then
they are equal, because they have the same dimension and Z_1 is irreducible. Hence
the restriction of p is a quasi-étale cover $Z'' \to Z_1 \cong Z$. The same argument also shows
that p' restricts to a quasi-étale cover $Z'' \to Z'$. This proves the claim. □

The Abundance conjecture for compact Kähler spaces with canonical (or klt)
singularities and vanishing first Chern class has been established recently (cf. e.g.
[CGP19, Corollary 1.18] and references therein) building upon delicate results on
jump loci for cohomology. Below, we explain how to recover the result based solely
on the Albanese splitting, i.e. Theorem 4.1.

Corollary 4.5 (Special case of Abundance). Let X be a normal compact Kähler
space with canonical singularities and $c_1(X) = 0$. Then ω_X is torsion, i.e. $\omega_X^{[m]} \cong \mathcal{O}_X$ for some $m > 0$.

Proof. It follows from Theorem 4.1 that $\tilde{q}(X) \leq \dim X$ is finite (cf. the proof of
Corollary 4.2). Choose a quasi-étale cover $X_1 \to X$ such that $q(X_1) = \tilde{q}(X)$,
and apply Theorem 4.1 to X_1. This yields an étale cover $X_2 \to X_1$ that splits as
$X_2 = T \times Z$, where T is a complex torus of dimension $q(X_1)$. As $q(T) + q(Z) =
q(X_2) = q(X_1) = q(T)$, we see that $q(Z) = 0$.

Now note that $h^1(Z, \mathcal{O}_Z) \leq q(Z)$ by the Leray spectral sequence. (In fact,
equality holds because Z has rational singularities.) Thus $q(Z) = 0$ implies, via
the exponential sequence, that any line bundle on Z with vanishing integral first
Chern class is trivial. Consequently, for any \mathbb{Q}-Cartier reflexive rank one sheaf \mathcal{A}
on Z with vanishing real first Chern class, there is $m > 0$ such that $\mathcal{A}^{[m]} \cong \mathcal{O}_Z$.
We may apply this observation to $\mathcal{A} = \omega_Z$ and combine it with the fact that ω_T
is trivial. The conclusion is that $\omega_{X_2} = \omega_{T \times Z}$ is torsion as well. Then the same is
true of ω_X. □

Corollary 4.6 (Characterization of torus quotients via \tilde{q}). Let X be a normal
compact Kähler space with klt singularities such that $c_1(X) = 0$. Then the following
conditions are equivalent:

(4.6.1) The augmented irregularity attains its maximum possible value, namely
$\tilde{q}(X) = \dim X$.

(4.6.2) There exists a complex torus T and a holomorphic action of a finite group
$G \acts T$, free in codimension one, such that $X \cong T/G$.

Proof. “(4.6.1) \Rightarrow (4.6.2)”: Consider a torus cover $\gamma: T \times Z \to X$. The dimension
of Z equals $\dim X - \dim T = \dim X - \tilde{q}(X) = 0$, so Z is a point. This means that
γ is a finite quasi-étale cover of X by the complex torus T. The claim follows by
taking Galois closure, cf. Lemma 2.8 and [GK20, Lemma 7.4].

“(4.6.2) \Rightarrow (4.6.1)”: Obvious, as $\tilde{q}(X) \geq q(T) = \dim T = \dim X$. □

5. Spaces with flat tangent sheaf on the smooth locus

The aim of this section is to prove the following result, which comes in a local
as well as a global version. This is an important step towards Theorem D.

Theorem 5.1 (Compact spaces with flat tangent sheaf). Let X be a normal compact
complex space with klt singularities. Assume that the tangent sheaf of the
smooth locus $\mathcal{T}_{X,\text{reg}}$ is flat in the sense of Definition 2.3. Then X admits a quasi-
étale Galois cover $\tilde{X} \to X$ with \tilde{X} smooth.

Theorem 5.2 (Germs with flat tangent sheaf). Let (X, x) be a germ of a klt
singularity such that $\mathcal{T}_{X,\text{reg}}$ is flat. Then (X, x) is a quotient singularity.

The notion of maximally quasi-étale covers, defined next, is central to the proof.
Definition 5.3. Let X be a normal complex space. A **maximally quasi-étale cover** of X is a quasi-étale Galois cover $\gamma : \tilde{X} \to X$ satisfying the following equivalent conditions:

1. Any étale cover of \tilde{X}_{reg} extends to an étale cover of \tilde{X}.
2. Any quasi-étale cover of \tilde{X} is étale.
3. The natural map of étale fundamental groups $\hat{\pi}_1(\tilde{X}_{\text{reg}}) \to \hat{\pi}_1(\tilde{X})$ induced by the inclusion $\tilde{X}_{\text{reg}} \hookrightarrow \tilde{X}$ is an isomorphism.

The equivalence of conditions (5.3.1)–(5.3.3) is discussed in [GKP16a, Theorem 1.5] and its proof.

Remark 5.4. If $\tilde{X} \to X$ is a maximally quasi-étale cover, then it follows from Malcev’s theorem that any linear representation of $\pi_1(\tilde{X}_{\text{reg}})$ factors through $\pi_1(\tilde{X})$, or equivalently, any flat bundle over \tilde{X}_{reg} extends to a flat bundle on \tilde{X}, cf. [GKP16a, § 8.1].

In general, a normal space X will not admit a maximally quasi-étale cover (for an easy example, take a cone over an elliptic curve). It was shown in [GKP16a, Theorem 1.1] that such a cover exists if X is an algebraic variety with klt singularities. Also, it is relatively easy to see that existence of the cover would imply Theorem 5.1, cf. Proposition 5.5 below. Our Proposition 5.9 is a weaker version of [GKP16a] for complex spaces: we construct a maximally quasi-étale cover “generically”, i.e. only over general points of the singular locus X_{reg}. This, however, is sufficient to prove the main result.

5.A. Technical preparations. As mentioned above, Theorem 5.1 is easy to prove if a maximally quasi-étale cover is already known to exist.

Proposition 5.5. Let X be a normal complex space with log canonical singularities, and assume that the tangent sheaf of the smooth locus $\mathcal{T}_{X_{\text{reg}}}$ is flat. Then any maximally quasi-étale cover of X is smooth (if it exists).

Proof. Let $\gamma : \tilde{X} \to X$ be a maximally quasi-étale cover. The pullback $\gamma^* \mathcal{T}_{X_{\text{reg}}}$ is a flat sheaf on $\gamma^{-1}(X_{\text{reg}})$, which satisfies $\gamma^{-1}(X_{\text{reg}}) \subset \tilde{X}_{\text{reg}}$ and the complement has codimension at least two. Hence $\gamma^* \mathcal{T}_{X_{\text{reg}}}$ extends to a flat sheaf on \tilde{X}_{reg} and we can extend this sheaf further, to a flat sheaf \mathcal{F} on all of \tilde{X}, cf. Remark 5.4. By reflexivity, $\mathcal{F} \cong \mathcal{F}_{\tilde{X}}$ and in particular $\mathcal{F}_{\tilde{X}}$ is locally free. The solution of the Lipman–Zariski conjecture for log canonical spaces ([GK14, Corollary 1.3], [Dru14, Theorem 1.1]) then shows that \tilde{X} is smooth. \hfill \square

The following lemma describes the étale fundamental group of the link of maximal dimensional strata of a klt space.

Lemma 5.6. Let X be a klt complex space and let us choose a Whitney stratification \mathcal{S} of X. The maximum dimensional strata are denoted by X_λ, $\lambda \in \Lambda_{\text{max}}$, as in Definition 2.11. For any $\lambda \in \Lambda_{\text{max}}$, the group $\hat{\pi}_1(\text{Link}(X, X_\lambda))$ is finite.

Proof. Pick a normal slice N of X_λ cutting the stratum in the unique point p. Set $N_X := N \cap X$ and $N^* := N_X \setminus \{p\}$. From Theorem 2.15 we know that N^* has the homotopy type of $\text{Link}(X, X_\lambda)$ and in particular $\hat{\pi}_1(\text{Link}(X, X_\lambda)) \cong \hat{\pi}_1(N^*)$. But now according to [KM98, Lemma 5.12], (N_X, p) is an isolated klt singularity, hence algebraic (2.5.2). We can now appeal to [Xu14, Theorem 1] and conclude that the algebraic local fundamental group $\hat{\pi}_1(N_X \setminus \{p\})$ is finite. \hfill \square
Remark 5.7. The lemma above should apply to any stratum, not only to the maximal dimensional ones. Unfortunately, Xu’s result is only available in the algebraic setting, see also Remark 6.10. This is why we stick to maximal dimensional strata: they are the ones whose slices have only isolated singularities.

We now observe that quasi-étale covers are well understood over the maximal dimensional strata.

Lemma 5.8. Let $\gamma: Y \to X$ be a quasi-étale Galois cover between klt complex spaces, X being endowed with a Whitney stratification \mathcal{S}. Fix an index $\lambda \in \Lambda_{\max}$ with respect to \mathcal{S}. Then:

(5.8.1) The cover γ naturally induces a subgroup $G_\lambda(\gamma) \subset \pi_1(\text{Link}(X, X_\lambda))$, well-defined up to conjugation.

(5.8.2) If $g: Z \to Y$ is any further quasi-étale cover such that the composition $\gamma \circ g: Z \to X$ is also Galois, then $G_\lambda(\gamma \circ g) \subset G_\lambda(\gamma)$.

Furthermore, there is a dense Zariski open subset $U_\lambda \subset X_\lambda$, which depends on γ but not on g, such that $X_\lambda \setminus U_\lambda$ is analytic and the following holds:

(5.8.3) We have equality $G_\lambda(\gamma \circ g) = G_\lambda(\gamma)$ if and only if g is étale over $\gamma^{-1}(U_\lambda)$.

Proof. By Theorem 2.14, we can choose Whitney stratifications $\mathcal{S}' \subset \mathcal{S}$ and \mathcal{S}'_Y of X and Y, respectively, such that $\gamma: (Y, \mathcal{S}'_Y) \to (X, \mathcal{S}')$ is a stratified map. We denote by $X'_{\lambda} \subset X_{\lambda}$ the unique stratum of \mathcal{S}' contained in X_{λ} as an open subset.

The map γ being stratified, $\gamma^{-1}(X'_{\lambda})$ is a union of strata of \mathcal{S}'_Y that are of maximum dimension. Let us fix a normal slice N of X'_{λ} such that $\gamma^{-1}(N)$ is still a union of normal slices. We pick a component T of $\gamma^{-1}(X'_{\lambda})$ and denote by N_T the corresponding slice. The map induced on the punctured slices (cut with X and Y, respectively) $N_T^* \to N^*$ is finite étale and thus corresponds to a finite index subgroup

$$G_\lambda(\gamma) \subset \pi_1(N^*) = \pi_1(\text{Link}(X, X_{\lambda})) = \pi_1(\text{Link}(X, X_\lambda)).$$

The morphism γ being Galois, this subgroup is independent of the choice of the component T. It does however depend on the choice of a basepoint in N_T^*, which as usual we have suppressed. This is why $G_\lambda(\gamma)$ is only well-defined up to conjugation. This proves the first assertion, and the second one is then clear by construction.

Concerning the third assertion, we claim that we can take $U_\lambda = X'_{\lambda}$. Indeed, it is clear that the groups in question are equal if g is étale over $\gamma^{-1}(U_\lambda)$. For the other direction, pick stratifications \mathcal{S}_Z of Z and \mathcal{S}'_Y of Y such that \mathcal{S}_Z' is a refinement of \mathcal{S}_Y and g becomes stratified, as above. Write $\gamma^{-1}(U_\lambda)$ as a union of \mathcal{S}_Y-strata,

$$\gamma^{-1}(U_\lambda) = \bigcup_{\mu \in M} Y^*_\mu,$$

and let Y^*_μ be the unique \mathcal{S}'_Y-stratum that is open in Y^*_μ. It follows from Corollary 3.16 in the preprint version of [GKP16a] that g is étale over Y^*_μ, for each $\mu \in M$. But then g is étale over all of Y^*_μ, by Corollary 2.17 applied to the original stratification \mathcal{S}_Y. In other words, g is étale over $\gamma^{-1}(U_\lambda)$, as desired. \square

With the previous results at hand, we can prove the existence of maximally quasi-étale covers, at least after discarding a sufficiently small analytic subset.

Proposition 5.9. Let X be a klt complex space. Assume that X is either compact or a germ. Then there exists an analytic subset $Z \subset X_{\text{sg}}$ with $\dim Z \leq \dim X_{\text{sg}} - 1$ such that $X^o := X \setminus Z$ admits a maximally quasi-étale cover.

If X is compact with only isolated klt singularities, then we have $\dim Z = -1$ in the above statement, which means $Z = \emptyset$. Hence X itself admits a maximally quasi-étale cover.
Proof of Proposition 5.9. Fix a Whitney stratification \mathcal{S} of X such that $S_d = X_{\text{sg}}$. If X is compact, then Λ and in particular Λ_{max} are finite sets. If X is a germ, we may assume Λ to be finite after shrinking X, by the local finiteness of \mathcal{S}. First we show the following.

Claim 5.10. There exists a quasi-étale Galois cover $\gamma: Y \to X$ such that for every further cover $g: Z \to X$ with $\gamma \circ g$ Galois and any $\lambda \in \Lambda_{\text{max}}$, we have $G_\lambda(\gamma \circ g) = G_\lambda(\gamma)$.

Proof. Assuming that the claim is false, we can construct an infinite tower of quasi-étale covers

$$X = Y_0 \xleftarrow{\gamma_1} Y_1 \xleftarrow{\gamma_2} Y_2 \xleftarrow{\gamma_3} \cdots$$

such that for each $i \geq 1$, the map $\gamma_i = \gamma_1 \circ \cdots \circ \gamma_i: Y_i \to X$ is Galois and for some index $\lambda(i) \in \Lambda_{\text{max}}$, the inclusion $G_{\lambda(i)}(\gamma_{i+1}) \subset G_{\lambda(i)}(\gamma_i)$ is strict. Because Λ_{max} is finite, some $\lambda_0 \in \Lambda_{\text{max}}$ has to appear as $\lambda(i)$ for infinitely many values of i. This yields a contradiction to the finiteness of $\pi_1(\text{Link}(X, X_{\text{sg}}))$ given by Lemma 5.5. □

Applying (5.8.3) to the cover γ given by Claim 5.10 and to all $\lambda \in \Lambda_{\text{max}}$, we obtain dense open subsets $U_\lambda \subset X_\lambda$ with the following property: any quasi-étale cover $W \to Y$ such that $W \to X$ is Galois is étale over each $\gamma^{-1}(U_\lambda)$. If $W \to X$ is not Galois, the conclusion still holds because we may replace W by its Galois closure, cf. Lemma 2.8. We now consider $X^\circ = X \setminus Z$, with

$$Z := S_{d-1} \cup \bigcup_{\lambda \in \Lambda_{\text{max}}} (X_{\lambda} \setminus U_\lambda),$$

and claim that $Y^\circ := \gamma^{-1}(X^\circ) \to X^\circ$ is a maximally quasi-étale cover. Noting that $Z \subset X_{\text{sg}}$ has dimension less than $\dim X_{\text{sg}}$, this will finish the proof.

We aim to verify condition (5.3.2) for Y°. That is, we need to show that any quasi-étale cover $g^\circ: W^\circ \to Y^\circ$ is in fact étale. Given such a cover, we may extend it to a quasi-étale cover $g: W \to Y$. As we have seen above, g is étale over each $\gamma^{-1}(U_\lambda)$. But we can write Y as a disjoint union

$$Y = \gamma^{-1}(Z) \cup \bigcup_{\lambda \in \Lambda_{\text{max}}} \gamma^{-1}(U_\lambda) \cup \gamma^{-1}(X_{\text{reg}})$$

and hence also $Y^\circ = \bigcup \gamma^{-1}(U_\lambda) \cup \gamma^{-1}(X_{\text{reg}})$. Recalling from purity of branch locus that $\gamma^{-1}(X_{\text{reg}}) \subset Y_{\text{reg}}$ and that g is étale over Y_{reg}, we conclude that g is étale over all of Y°. In other words, g° is étale. This ends the proof. □

5.B. Proof of Theorem 5.1. We proceed by induction on the dimension of the singular locus X_{sg}. If $\dim X_{\text{sg}} = -1$, i.e. X_{sg} is empty, then we may simply take $\tilde{X} = X$. Otherwise we apply Proposition 5.9 to obtain an open subset $X_{\text{reg}} \subset X^\circ \subset X$ which has a maximally quasi-étale cover $\gamma^\circ: \tilde{X} \to X^\circ$ and satisfies $\dim(X \setminus X^\circ) \leq \dim X_{\text{sg}} - 1$. We may restrict γ° to an étale cover γ' of X_{reg}, and then in turn extend γ' to a quasi-étale cover of X, say $\gamma: \tilde{X} \to X$. By the uniqueness part of [DG94, Theorem 3.4], the map γ will be an extension of γ°.

The space \tilde{X}° is smooth thanks to Proposition 5.5. Thus we see that $\dim \tilde{X}_{\text{sg}} \leq \dim X_{\text{sg}} - 1$. Since \tilde{X}_{reg} is still flat, the induction hypothesis applied to \tilde{X} yields
a quasi-étale cover $\tilde{X} \to X$ with \tilde{X} smooth. We arrive at the desired smooth cover of X by taking the Galois closure of the composed map $\tilde{X} \to X$. \hfill \Box

5.C. **Proof of Theorem 5.2.** We still argue by induction on $\dim((X, x)_{\text{sg}})$ as above. If (X, x) is smooth, there is nothing to show. We just have to check that we can apply the induction hypothesis: to start with, we choose X as a small neighborhood of x with a finite Whitney stratification. We can then find a quasi-étale cover $f: \tilde{X} \to X$ with $\dim(\tilde{X}_{\text{sg}}) < \dim(X_{\text{sg}})$. It is enough to pick a point $\tilde{x} \in f^{-1}(x) \subset \tilde{X}$: this \tilde{x} has a neighborhood \tilde{U} that is a quotient singularity. The open neighborhood $U := f(\tilde{U})$ of x has a smooth quasi-étale cover and (X, x) is then a quotient singularity according to Lemma 2.9. \hfill \Box

6. **Holonomy of singular Ricci-flat metrics**

The goal of this section is to prove Theorem C, which combined with the Bochner principle leads to Corollary E.

6.A. **A vanishing lemma.** The following lemma will be used repeatedly. The upshot is that a vanishing assumption on X implies a certain vanishing result on X_{reg}.

Lemma 6.1 (Vanishing lemma). Let X be a compact Kähler space with klt singularities such that $q(X) = 0$. Then one has

$$H^1(X_{\text{reg}}, \mathbb{C}) = 0.$$

If X additionally satisfies $\tilde{q}(X) = 0$, then any representation $\rho: \pi_1(X_{\text{reg}}) \to G$ with virtually abelian image actually has finite image.

Example 6.2. The example of the (simply connected) singular Kummer surface $X = T/\pm 1$ where T is a complex 2-torus shows that one can have $q(X) = 0$ while $\pi_1(X_{\text{reg}})$ is virtually abelian, yet infinite. Indeed, there is a short exact sequence

$$0 \longrightarrow \mathbb{Z}^4 \longrightarrow \pi_1(X_{\text{reg}}) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

Of course, in this example $\tilde{q}(X) = 2 > 0$.

Remark 6.3. The proof of the Lemma combined with [KS21] shows more generally that if X is compact Kähler with klt singularities and $\tilde{X} \to X$ is a resolution, then one has a (non-canonical) isomorphism

$$H^1(X_{\text{reg}}, \mathbb{C}) = H^1(\tilde{X} \setminus E, \mathbb{C}) \cong H^0(X, \Omega^1_X) \oplus H^1(X, \mathcal{O}_X).$$

On the other hand, since X has only rational singularities, one also has

$$H^1(X, \mathbb{C}) \cong H^1(\tilde{X}, \mathbb{C}) = H^0(\tilde{X}, \Omega^1_{\tilde{X}}) \oplus H^1(\tilde{X}, \mathcal{O}_{\tilde{X}})$$

canonically. Hence the restriction map $H^1(X, \mathbb{C}) \to H^1(X_{\text{reg}}, \mathbb{C})$ is an isomorphism. Equivalently, the abelianization of the natural surjection $\pi_1(X_{\text{reg}}) \to \pi_1(X)$ has finite kernel. Cf. Example 6.2 above.

Proof of Lemma 6.1. Let $\tilde{X} \to X$ be a projective log resolution of X, isomorphic over X_{reg}, and let $E = \sum_i E_i$ be the exceptional divisor. In what follows, one will identify X_{reg} with $\tilde{X} \setminus E$. One has

$$H^1(\tilde{X}, \mathcal{O}_{\tilde{X}}) = 0$$

(6.3.1)
since $q(X) = 0$, cf. Definition 2.1. Since \tilde{X} is a compact Kähler manifold, one also has $H^0(\tilde{X},\Omega^1_{\tilde{X}}) = 0$. By [KS21], this implies that $H^0\big(X,\Omega^1_X\big) = H^0\big(\tilde{X} \setminus E,\Omega^1_{\tilde{X}}\big) = 0$ and, in particular, one gets

\begin{equation}
H^0\big(\tilde{X},\Omega^1_{\tilde{X}}(\log E)\big) = 0.
\end{equation}

By Deligne’s theorem [Voï02, Theorem 8.35(b)], there is a short exact sequence

\[0 \longrightarrow H^0\big(\tilde{X},\Omega^1_{\tilde{X}}(\log E)\big) \longrightarrow H^1\big(\tilde{X} \setminus E,\mathcal{C}\big) \longrightarrow H^1\big(\tilde{X},\mathcal{O}_{\tilde{X}}\big) \longrightarrow 0,\]

so that (6.3.1) and (6.3.2) yield the requested vanishing

\begin{equation}
H^1(X_{\text{reg}},\mathbb{C}) = H^1\big(\tilde{X} \setminus E,\mathbb{C}\big) = 0.
\end{equation}

Using the universal coefficient theorem, this implies that the finitely generated abelian group $H_1(X_{\text{reg}},\mathbb{Z})$ has rank zero, hence is finite.

Let us now move on to the second part of the lemma. Without loss of generality, one can assume that ρ is surjective, i.e., $\rho(\pi_1(X_{\text{reg}})) = G$. Under the assumptions, there exists a finite index normal subgroup $H \leq \pi_1(X_{\text{reg}})$ such that $\rho(H) \subset G$ is abelian. The group H is realized as the fundamental group of a Kähler manifold Y° equipped with an étale cover $f^\circ: Y^\circ \rightarrow X_{\text{reg}}$, i.e., $f^\circ_*(\pi_1(Y^\circ)) = H$. One can extend f° to a quasi-étale cover $f: Y \rightarrow X$ with Y a compact Kähler space with klt singularities. The inclusion $Y^\circ \subset Y_{\text{reg}}$ induces an isomorphism $\pi_1(Y^\circ) \cong \pi_1(Y_{\text{reg}})$ since $Y_{\text{reg}} \setminus Y^\circ \subset f^{-1}(X_{\text{reg}})$ has codimension at least two in Y_{reg}.

Now, one has $q(Y) = \overline{q}(X) = 0$, hence $H^1(Y_{\text{reg}},\mathbb{Z})$ is finite by the first part of the lemma. Since the image of the representation $\tau := \rho \circ f^\circ$ of $\pi_1(Y^\circ) \cong \pi_1(Y_{\text{reg}})$ is abelian, it factors through $H^1(Y_{\text{reg}},\mathbb{Z})$ and is therefore finite. The following diagram visualizes the argument.

\[
\begin{array}{ccc}
\pi_1(Y^\circ) & \xrightarrow{\tau} & G \\
\downarrow{f^\circ} & & \\
\pi_1(X_{\text{reg}}) & \xrightarrow{\rho} & G
\end{array}
\]

The lemma follows since $f^\circ_*(\pi_1(Y^\circ)) \leq \pi_1(X_{\text{reg}})$ has finite index. \hfill \qed

6.B. Holonomy of the non-flat factors. We fix the following setup.

Setup 6.4. Let X be a n-dimensional complex, compact Kähler space with canonical singularities and trivial canonical sheaf, $K_X \sim 0$. Next, we fix a Kähler class $\alpha \in H^2(X,\mathbb{R})$ and consider the unique singular Ricci-flat metric $\omega_0 \in \alpha$ as in Setup 3.1.

It follows from [Gue16, Theorem A] (see also [GGK19, Theorem 8.1]), where the assumption on the projectivity of X is not used, cf. Remark 3.5) that one can decompose the tangent sheaf as

\begin{equation}
\mathcal{F}_X = \bigoplus_{i \in I} \mathcal{E}_i
\end{equation}

where the \mathcal{E}_i are stable bundles with slope zero (with respect to α) and are such that $\mathcal{E}_i|_{X_{\text{reg}}}$ is a parallel subbundle of $\mathcal{F}_{X_{\text{reg}}}$ with respect to ω_0. We set $n_i := \text{rk}(\mathcal{E}_i)$. The holonomy group $G := \text{Hol}(\mathcal{F}_{X_{\text{reg}}},\omega_0)$ can be decomposed as a product $G = \prod_i G_i$ where $G_i = \text{Hol}(\mathcal{E}_i|_{X_{\text{reg}}},\omega_0)$ is irreducible.

By [GGK19, Proposition 7.3], there exists a quasi-étale cover $f: Y \rightarrow X$ such that the decomposition induced by the standard representation of the holonomy
group $G_i := \text{Hol}(\mathcal{F}_{\text{reg}}, f^*\omega_\alpha)$ is a refinement of the one of the identity component G_i^0. Note that the construction of this so-called weak holonomy cover above is independent of the projectivity assumption in [GGK19]. From now on, we will replace X by Y and work with the following

Additional Assumption 6.5. The restricted holonomy G_i^0 of each factor \mathcal{E}_i in (6.4.1) is either trivial or irreducible.

By [GGK19, Proposition 5.3], there are only three possibilities for G_i^0: one has

$$G_i^0 = \begin{cases} \{1\} & \text{or} \\ \text{SU}(n_i), & n_i \geq 3, \\ \text{Sp}(n_i/2), & n_i \geq 2 \text{ even}. \end{cases}$$

We set $J := \{i \in I \mid G_i^0 = \{1\}\}$, $K := I \setminus J$ and $\mathcal{F} := \bigoplus_{j \in J} \mathcal{E}_j$. In other words, one has

$$\mathcal{F}_X = \mathcal{F} \oplus \bigoplus_{k \in K} \mathcal{E}_k$$

with $\text{Hol}^0(\mathcal{F}|_{\text{reg}}, \omega_\alpha) = \{1\}$ while the full holonomy group $G_k = \text{Hol}(\mathcal{E}_k|_{\text{reg}}, \omega_\alpha)$ satisfies $G_k^0 = \text{SU}(n_k)$ or $G_k^0 = \text{Sp}(n_k/2)$. In either case, one has

$$G_k/G_k^0 \subset \text{U}(1)$$

by the proof of [GGK19, Lemma 7.8]. Consider a torus cover $\gamma: T \times Z \to X$; then $\text{pr}_T^*\mathcal{F}_T$ is a direct summand of $\gamma|\mathcal{F}$, so that $\gamma|\mathcal{E}_k$ is canonically identified with a direct summand of $\text{pr}_Z^*\mathcal{F}_Z$. Hence one can realize G_k as an irreducible factor of the holonomy group of Z_{reg}. Since $\tilde{q}(Z) = 0$, the canonical surjection

$$p: \pi_1(Z_{\text{reg}}) \to G_k/G_k^0$$

combined with Lemma 6.1 leads to the following

Proposition 6.6. For any $k \in K$, the group G_k/G_k^0 is finite. \qed

Corollary 7. In Setup 6.4 and up to performing a quasi-étale cover, the full holonomy group of a non-flat, irreducible factor \mathcal{E}_k in the decomposition (6.5.1) is either SU(n_k) or Sp($n_k/2$). \qed

We can now move on to the

Proof of Theorem C. Starting from Setup 6.4, we pass to an additional cover of X so that the conclusion of Corollary 6.7 holds.

First item. Recall that the sheaves \mathcal{E}_i from (6.4.1) are such that $\mathcal{E}_i|_{\text{reg}}$ are parallel with respect to ω. Since the Chern connection D is torsion-free, we have $[u, v] = D_u v - D_v u$ for any local smooth vector fields u, v on X_{reg}. Applying this formula to local sections of $\mathcal{E}_i|_{\text{reg}}$ and keeping in mind that the latter subbundle is parallel, we see that $\mathcal{E}_i|_{\text{reg}}$ is preserved under Lie bracket. Moreover, \mathcal{E}_i is saturated in \mathcal{F}_X, being a direct summand of \mathcal{F}_X. Combining those two facts, we get that the image of the Lie bracket $[-,-]: \bigwedge^2 \mathcal{E}_i \to \mathcal{F}_X/\mathcal{E}_i$ is a torsion-free sheaf supported on X_{reg}, hence it vanishes. This shows that \mathcal{E}_i defines indeed a foliation on X. Although a direct sum of foliations needs not be integrable in general, the argument above still applies and shows that $\mathcal{F} = \bigoplus_{j \in J} \mathcal{E}_j$ is a foliation as well. Next, we know that K_X is a trivial line bundle and that for any $k \in K$, one has $\det \mathcal{E}_k \cong \mathcal{E}_X$ since the holonomy of \mathcal{E}_k lies in SU(n_k) by Corollary 6.7. This implies that $\det \mathcal{F} \cong \mathcal{E}_X$.

Corollary 6.7. Therefore, the group $GKP16a$ of (6.5.1) below.

Proposition 6.9. Theorem 5.1 $Dru18$. $Var89$. The sheaves \mathcal{E}_k are foliations, we could have used the last result (i.e. det $\mathcal{E}_k \cong \mathcal{O}_X$) and reproduced the arguments of $[GKP16b$, Theorem 7.11] instead of appealing to the Bochner principle.

Second item. This is clear from the definition of \mathcal{F} and the first item.

Third item. The statement on the holonomy groups is contained in Corollary 6.7. Now, we claim that \mathcal{E}_k is strongly stable with respect to α. Since restricted holonomy does not change after passing to a quasi-étale cover, it is enough to show that \mathcal{E}_k is stable with respect to α. But if it were not the case, any saturated destabilizing subsheaf would be parallel with respect to ω_n on X_{reg} by Bochner’s principle for bundles, cf. Remark 3.5. Therefore, the group $Hol(\mathcal{E}_k|_{X_{reg}}, \omega_n)$ would not act irreducibly on \mathbb{C}^{n_k}, which is a contradiction. Note that if one only wants to show weak stability of \mathcal{E}_k (and not compute its holonomy), then the argument becomes quite simpler and relies only on the polystability of \mathcal{F}_X, cf. $[GKP16b$, Corollary 7.3].

Now, let $\beta \in H^2(X, \mathbb{R})$ be a Kähler class and let us show that \mathcal{E}_k is strongly stable with respect to β. As before, it is enough to show stability. Let $\omega_{\beta} \in \beta$ be the singular Ricci-flat metric. Since $c_1(\mathcal{E}_k) = 0$, a (saturated) β-destabilizing subsheaf $0 \neq \mathcal{G} \subset \mathcal{E}_k$ satisfies $c_1(\mathcal{G}) \cdot \beta^{n-1} = 0$. By polystability of \mathcal{F}_X with respect to β, we have a holomorphic splitting $\mathcal{F}_X = \mathcal{G} \oplus \mathcal{G}^\perp$ over X_{reg} which extends over X by reflexivity, cf. proof of $[Gue16$, Theorem A] or $[GGK19$, Claim 9.16]. Here, \perp is meant with respect to ω_{β}. Since \mathcal{F}_X is semistable with respect to α, we have necessarily $c_1(\mathcal{G}) \cdot \alpha^{n-1} = 0$. This contradicts the α-stability of \mathcal{E}_k established earlier.

Fourth item. Assume that $X = T \times Z$, where T is a complex torus and $\tilde{q}(Z) = 0$. We need to show that the decomposition $\mathcal{F}_X = pr_T^* \mathcal{F}_T \oplus pr_Z^* \mathcal{F}_Z$ is such that $pr_T^* \mathcal{F}_T$ is a direct summand of \mathcal{F}. The Bochner principle for bundles (cf. Remark 3.5) shows that over $X_{reg} = T \times Z_{reg}$, both summands are parallel subbundles and, in particular, ω can be decomposed as $\omega = pr_T^* \omega_T \oplus pr_Z^* \omega_Z$ where ω_T (resp. ω_Z) is a Kähler-Ricci-flat metric on T (resp. Z_{reg}). Since a Ricci-flat Kähler metric on a torus is necessarily flat, we have $Hol^0(pr_T^* \mathcal{F}_T|_{X_{reg}}, \omega_T) = Hol^0(T, \omega_T) = \{1\}$. The first part of the statement now follows easily. The second part follows from Proposition 6.9 below.

6.C. On the flat factor. Since \mathcal{F}_T is a direct summand of \mathcal{F}, it is clear that $\tilde{q}(X) \leq \text{rk} \mathcal{F}$. We conjecture that equality always holds. In particular, if $\tilde{q}(X) = 0$ then the flat factor \mathcal{F} in the decomposition (6.5.1) should be zero. In the projective case, the conjecture was established by $[GGK19$, Corollary 7.2] as a consequence of Druel’s algebraic integrability result for flat sheaves $[Dru18]$. We are able to prove two partial results in this direction:

(6.7.1) If $\text{rk} \mathcal{F} = n := \text{dim} X$, then also $\tilde{q}(X) = n$. This is a direct consequence of Proposition 6.8 below, since $\text{rk} \mathcal{F} = n$ means that $\mathcal{F}_{X_{reg}}$ is flat and torus quotients obviously have $\tilde{q}(X) = n$.

(6.7.2) The conjecture can be derived from the complex space version of $[GKP16a]$, cf. Proposition 6.9 and Remark 6.10.

Proposition 6.8. Let X be a normal compact Kähler space that has only klt singularities. If $\mathcal{F}_{X_{reg}}$ is flat, then X is a torus quotient.

Proof. According to Theorem 5.1, X has a smooth quasi-étale cover \tilde{X}. This compact space \tilde{X} is still Kähler $[Var89$, Corollary 3.2.2] and, by construction, the
tangent bundle of \(\hat{X} \) is flat. We can then apply the classical characterization of torus quotients derived from Yau’s theorem [Yau78] and the uniformization theorem, cf. e.g. [Tia00, Theorem 2.13], to conclude that \(\hat{X} \) is a torus quotient. Hence, so is \(X \) by combining Lemma 2.8 with the fact that an étale cover of a torus is again a torus.

\[\square \]

Proposition 6.9. In Setup 6.4, assume that \(X \) admits a maximally quasi-étale cover. Then the equality \(\text{rk} \mathcal{F} = \tilde{q}(X) \) holds.

Proof. After replacing \(X \) with a maximally quasi-étale cover, we can assume that \(\hat{\pi}_1(X_{\text{reg}}) \cong \hat{\pi}_1(X) \). We may furthermore replace \(X \) by a torus cover \(T \times Z \to X \). It is then sufficient to show that \(\mathcal{F}_Z \) has no flat factor. In other words, we may replace \(X \) by \(Z \) and we need to show that \(\tilde{q}(X) = 0 \) implies \(\text{rk} \mathcal{F} = 0 \).

The flat factor \(\mathcal{F} \) is given by a finite dimensional representation \(\rho: \pi_1(X_{\text{reg}}) \to \text{SU}(r) \), with \(r := \text{rk} \mathcal{F} \). This representation factors thus through the fundamental group of \(X \) (see Remark 5.4) and it yields \(\rho_X: \pi_1(X) \to \text{SU}(r) \). Let us consider \(\hat{X} \to X \) a desingularization of \(X \): this compact Kähler manifold has vanishing Kodaira dimension and is thus special (in the sense of Campana, cf. [Cam04, Theorem 5.1]). Since \(X \) has canonical singularities, we know that its fundamental group is unchanged\(^2\) when passing to a smooth model by [Tak03, Theorem 1.1] hence we can interpret the representation \(\rho_X \) as a representation \(\rho_{\hat{X}}: \pi_1(\hat{X}) \to \text{SU}(r) \). The manifold \(\hat{X} \) being special, we know that none of its étale covers dominate a variety of general type and [CCE15, Theorem 6.5] implies that the image of \(\rho_{\hat{X}} \) is virtually abelian and, in particular, \(\text{im} \rho \) is virtually abelian as well. By Lemma 6.1, \(\rho \) has finite image. This means that one can construct a quasi-étale cover \(f: Y \to X \) such that the direct summand \(f^* \mathcal{F} \) of \(\mathcal{F}_Y \) satisfies \(f^* \mathcal{F} \cong \mathcal{O}_Y^{dr} \). As \(q(Y) = 0 \), this can only occur if \(r = 0 \).

\[\square \]

Remark 6.10. The existence of maximally quasi-étale covers should be true for any compact complex space with klt singularities (or even for Zariski open subsets of such spaces). In [GKP16a], the algebraicity assumption is mainly used when appealing to [Xu14] where it is shown that \(\hat{\pi}_1(\text{Link}(X, x)) \) is finite for \((X, x) \) klt. In that article, it is proven that it is possible to extract a \textit{Kollár component}, i.e. a birational morphism \(\mu: Y \to X \) such that the fiber \(\mu^{-1}(x) \) has a natural structure of \(\mathbb{Q} \)-Fano variety. This is achieved by considering a (projective) desingularization \(\hat{\mu}: \hat{X} \to X \) and running a well-chosen MMP \(\hat{X} \to \cdots \to Y \) over \(X \). It is thus an urgent task to generalize the known results [BCHM10] to obtain a relative MMP for projective morphisms between normal complex spaces.

6.D. Varieties with strongly stable tangent sheaf. The following definition originates in the projective setting from [GKP16b].

Definition 6.11 (ICY and IHS varieties). Let \(X \) be a compact Kähler space of dimension \(n \geq 2 \) with canonical singularities and \(\omega_X \cong \mathcal{O}_X \).

(6.11.1) We call \(X \) irreducible Calabi–Yau (ICY) if \(H^0(Y, \Omega_Y^p) = 0 \) for all integers \(0 < p < n \) and all quasi-étale covers \(Y \to X \), in particular for \(X \) itself.

(6.11.2) We call \(X \) irreducible holomorphic symplectic (IHS) if there exists a holomorphic symplectic two-form \(\sigma \in H^0(X, \Omega_X^{2\dim}) \) such that for all quasi-étale\(^2\) [Tak03, Theorem 1.1] is only stated for projective varieties but it holds in the complex analytic setting, its proof being completely local (in the Euclidean topology). It can also be noted that the corresponding result for the étale fundamental group is [Kol93, Theorem 7.5] and that this result is explicitly stated for normal analytic spaces.
covers $\gamma: Y \to X$, the exterior algebra of global reflexive differential forms is generated by $\gamma^*\sigma$.

Definition 6.12 (Strong stability). Let X be a compact Kähler space of dimension $n \geq 2$ with klt singularities and trivial first Chern class. We say that \mathcal{T}_X is **strongly stable** if for any quasi-étale cover $f: Y \to X$, the tangent sheaf \mathcal{T}_Y is stable with respect to any Kähler class $a \in H^2(Y, \mathbb{R})$.

Using Definition 2.10, one can rephrase the above definition by saying that \mathcal{T}_X is strongly stable with respect to any Kähler class. One can show along the same lines as the proof of the third item of Theorem C that \mathcal{T}_X is strongly stable if and only if it is strongly stable with respect to a single Kähler class.

Putting together Theorem 3.4, Corollary 6.7 and Proposition 6.8, we get the following result.

Corollary 6.13 (Spaces with strongly stable tangent sheaf). Let X be a compact Kähler space with klt singularities and trivial first Chern class of dimension $n \geq 2$. If \mathcal{T}_X is strongly stable, then X admits a quasi-étale cover that is either a ICY or an IHS variety.

Proof. By Remark 3.3 one can assume that X has trivial canonical bundle and canonical singularities. Given that \mathcal{T}_X is strongly stable, the decomposition (6.5.1) on a cover $Y \to X$ reduces to a single factor. If that factor is the flat factor \mathcal{F}, then X is a torus quotient by Proposition 6.8, which is impossible since \mathcal{T}_X is strongly stable and $\dim X \geq 2$. Therefore, we can apply Corollary 6.7 to see that the holonomy of Y_{reg} is either $\text{SU}(n)$ or $\text{Sp}(n/2)$. By standard results of representation theory of the latter groups, the statement follows from the Bochner principle, i.e. Theorem 3.4. \square

Remark 6.14. For the proof of Corollary 6.13 above, we do not need the full Bochner principle since we only need to understand reflexive differential forms, cf. Remark 3.6. The Bochner principle for more general tensors will however be applied in the proof of Proposition 7.1.

7. Fundamental groups

This section is devoted to obtaining consequences about the fundamental groups of X and of X_{reg}, where X has vanishing first Chern class. In a first step, we provide a sufficient criterion for $\pi_1(X)$ to be finite. This is the analogue of [GKP16b, Proposition 8.23] for Kähler spaces, and as in the projective case the proof is an application of [Cam95, Corollary 5.3]. However, instead of using Miyaoka’s Generic Semipositivity Theorem, we rely on the Bochner principle, Theorem 3.4.

Proposition 7.1 (Finiteness criterion for π_1). Let X be a compact Kähler space of dimension $n \geq 1$ with klt singularities and $c_1(X) = 0$. Assume moreover that $\chi(X, \mathcal{O}_X) \neq 0$. Then $\pi_1(X)$ is finite, of cardinality

$$|\pi_1(X)| \leq \frac{2^{n-1}}{|\chi(X, \mathcal{O}_X)|}.$$

The proof is completely parallel to the one of [Cam21, Theorem 3.5] (for X projective) once we have Bochner’s principle at our disposal, and we do not include it here for sake of brevity.

In terms of spaces with strongly stable tangent sheaf (Corollary 6.13), this criterion already applies to all even-dimensional spaces (see below). For odd-dimensional
ICYs, we have no results about $\pi_1(X)$ itself, but only about its representation theory (and the one of $\pi_1(X_{\text{reg}})$). These results are actually valid for all spaces with vanishing augmented irregularity.

Theorem 7.2 (Fundamental groups of Ricci flat spaces). Let X be a compact Kähler space with klt singularities and $c_1(X) = 0$.

(7.2.1) If $\dim X$ is even and \mathcal{F}_X is strongly stable, then $\pi_1(X)$ is finite. If X is IHS or an even-dimensional ICY, then X is even simply connected.

(7.2.2) If $\widetilde{q}(X) = 0$, any complex linear representation $\pi_1(X) \to \text{GL}(r, \mathbb{C})$ has finite image, regardless of the parity of $\dim X$.

This first two items in the statement above is a straightforward consequence of [GGK19, Theorem I] and Bochner’s principle.

Restricting ourselves to dimension four, we have a completely unconditional result:

Theorem 7.3 (Fundamental groups in dimension four). Let X be a compact Kähler space of dimension ≤ 4 with klt singularities and $c_1(X) = 0$. Then:

(7.3.1) $\pi_1(X)$ is virtually abelian, i.e. it contains an abelian (normal) subgroup $\Gamma \leq \pi_1(X)$ of finite index.

(7.3.2) All finite index abelian subgroups of $\pi_1(X)$ have even rank at most $2 \widetilde{q}(X) \leq 8$. In particular, if $\widetilde{q}(X) = 0$ then $\pi_1(X)$ is finite.

Proof of Theorem 7.3. Recall from [Gra18, Corollary 1.8] that all statements are well-known if $\dim X \leq 3$. We can therefore assume for the remainder that X is of dimension four. Let $\gamma : T \times Z \to X$ be a torus cover (Corollary 4.2). By e.g. [Cam91, Proposition 1.3], the image of $\pi_1(T \times Z) = \pi_1(T) \times \pi_1(Z)$ in $\pi_1(X)$ has finite index, and $\pi_1(T)$ is free abelian of rank $2 \widetilde{q}(X)$. It is therefore sufficient to show that $\pi_1(Z)$ is finite.

If $\dim Z \leq 3$, this holds by [Gra18, Corollary 1.8] again. It remains to consider the case where $\dim Z = 4$, i.e. where $X = Z$ and $\omega_X \cong \mathcal{O}_X$ and $\widetilde{q}(X) = 0$. By Remark 2.2, the last property implies $H^1(X, \mathcal{O}_X) = 0$ and then also $H^3(X, \mathcal{O}_X) \cong H^3(X, \omega_X) = H^1(X, \mathcal{O}_X) = 0$ by Serre duality [BS76, Chapter VII, Theorem 3.10]. So

$$\chi(X, \mathcal{O}_X) = 1 + h^2(X, \mathcal{O}_X) + h^4(X, \mathcal{O}_X) = 2.$$

By Proposition 7.1, $\pi_1(X)$ is finite (of cardinality at most 4). This settles (7.3.1).

We have already exhibited a finite index abelian subgroup of $\pi_1(X)$ of rank at most $2 \widetilde{q}(X)$, namely the image of $\pi_1(T) \to \pi_1(X)$. It is well-known that all such subgroups have the same rank. Claim (7.3.2) follows easily. \Box

References

[Art69] M. Artin. Algebraic approximation of structures over complete local rings. *Inst. Hautes Études Sci. Publ. Math.*, (36):23–58, 1969. ▲ 5

[BBCM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan. Existence of minimal models for varieties of log general type. *J. Amer. Math. Soc.*, 23:405–468, 2010. ▲ 24

[Bea83] Arnaud Beauville. Variétés Kähleriennes dont la première classe de Chern est nulle. *J. Differential Geom.*, 18(4):755–782 (1984), 1983. ▲ 1

[BEG13] Sébastien Boucksom, Philippe Eyssidieux, and Vincent Guedj. Introduction. In *An introduction to the Kähler-Ricci flow*; volume 2086 of *Lecture Notes in Math.*, pages 1–6. Springer, Cham, 2013. ▲ 9

[BGL20] Benjamin Bakker, Henri Guenancia, and Christian Lehmann. Algebraic approximation and the decomposition theorem for Kähler Calabi-Yau varieties. *arXiv:2012.00441 [math.AG]*, 2020. ▲ 4
Andreas Höring and Thomas Peternell. Algebraic integrability of foliations with numerically trivial canonical bundle. *Invent. Math.*, 216(2):395–419, 2019.

Yuujiro Kawamata. Characterization of abelian varieties. *Compos. Math.*, 43(2):253–276, 1981.

Yuujiro Kawamata. Minimal models and the Kodaira dimension of algebraic fiber spaces. *J. reine angew. Math.*, 363:1–46, 1985.

János Kollár and Shigefumi Mori. *Birational Geometry of Algebraic Varieties*, volume 134 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge, 1998.

János Kollár. Shafarevich maps and plurigenera of algebraic varieties. *Invent. Math.*, 113:177–215, 1993.

János Kollár. Lectures on resolution of singularities, volume 166 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 2007.

Stefan Kebekus and Christian Schnell. Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities. *J. Amer. Math. Soc.*, 34(2):315–368, 2021.

John N. Mather. Stratifications and mappings. In *Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971)*, pages 195–232, 1973.

John Mather. Notes on topological stability. *Bull. Amer. Math. Soc. (N.S.)*, 49(4):475–506, 2012.

Mihai Păun. Regularity properties of the degenerate Monge-Ampère equations on compact Kähler manifolds. *Chin. Ann. Math.*, Ser. B, 29(6):623–630, 2008.

G. C. Shephard and J. A. Todd. Finite unitary reflection groups. *Canad. J. Math.*, 6:274–304, 1954.

Shigeharu Takayama. Local simple connectedness of resolutions of log-terminal singularities. *Internat. J. Math.*, 14(8):825–836, 2003.

Gang Tian. *Canonical metrics in Kähler geometry*. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2000. Notes taken by Meike Akveld.

Jean-Claude Tougeron. Idéaux de fonctions différentiables. I. *Ann. Inst. Fourier (Grenoble)*, 18(fasc., fasc. 1):177–240, 1968.

Lê Dũng Tráng and Bernard Teissier. Variétés polaires locales et classes de Chern des variétés singulières. *Ann. of Math. (2)*, 114(3):457–491, 1981.

Jean Varouchas. Kähler spaces and proper open morphisms. *Math. Ann.*, 283(1):13–52, 1989.

Claire Voisin. *Hodge Theory and Complex Algebraic Geometry I*, volume 76 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, 2002.

Chenyang Xu. Finiteness of algebraic fundamental groups. *Compos. Math.*, 150(3):409–414, 2014.

Shing-Tung Yau. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. *Comm. Pure Appl. Math.*, 31(3):339–411, 1978.