Inelastic scattering studied with microscopic coupled-channels method

M. Takashina,1 Y. Kanada-En'yo,2 and Y. Sakuragi1,3

1RIKEN, Wako 351-0198, Japan
2Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization, Japan
3Department of Physics, Osaka City University, Japan

(Dated: 11 March 2005)

In order to test the internal wave function, we perform microscopic coupled-channels (MCC) calculations of the inelastic scattering by 208Pb target at \(E/A = 52.7 \text{ MeV} \) using the antisymmetric molecular dynamics (AMD) wave functions of 16C, and compare the calculated differential cross sections with the measured ones. The MCC calculations with AMD wave functions reproduce the experimental data fairly well, although they slightly underestimate the magnitude of the cross sections. The absolute magnitude of calculated differential cross sections is found to be sensitive to the neutron excitation strength. We prove that the MCC method is a useful tool to connect the inelastic scattering data with the internal wave functions.

PACS numbers: 24.10.Eq, 25.60.-t

I. INTRODUCTION

Recently, the opposite deformations between proton and neutron densities in C isotopes were theoretically suggested \(^1\)\(^2\) by the method of antisymmetrized molecular dynamics (AMD): The proton density has an oblate deformation, while the neutron density has a prolate deformation, and the symmetry axis of proton is perpendicular to that of neutron in 16C and 18C. Based on this picture, the author also gave a qualitative explanation \(^3\) for unusually small electric transition strength \(B(E2; 2_1^+ \rightarrow 0_1^+) = 0.63 \pm 0.19 \text{ e}^2\text{fm}^4 \) in 16C, which is derived from lifetime measurement \(^4\). According to Ref. \(^5\), the 2_1^+ state is a rotational excited state, and the rotational axis is perpendicular to the neutron symmetry axis. In this excitation mechanism, the proton transition strength is reduced due to the difference of deformation between the proton and neutron distributions mentioned above, and therefore, the 0_1^+ \rightarrow 2_1^+ transition is dominated by the neutron excitation.

In order to search for the possible difference of proton and neutron contributions to excitation of the 2_1^+ state in 16C, inelastic scattering experiment of 16C on 208Pb target was performed \(^6\) applying the Coulomb-nuclear interference method. The analysis was carried out by using the deformed potential model, and the proton and neutron transition matrix elements, \(M_p \) and \(M_n \), were extracted. In Ref. \(^7\), it is mentioned that the experimental transition probability is inconsistent with theoretical ones (the AMD, extended AMD and shell-model calculations are cited). However, the phenomenological analysis done in Ref. \(^8\) contains some assumptions, and hence, it seems inappropriate to compare the \(M_p \) and \(M_n \) values evaluated in Ref. \(^8\) with those calculated theoretically.

To test the 16C internal wave function, we should directly link the cross section with the wave function by calculating the differential cross sections of the inelastic scattering of 16C on 208Pb target with the microscopic coupled-channels (MCC) method, and compare the calculated result with the experimental reaction data measured in Ref. \(^9\).

The MCC method has been applied for studying reactions of stable nuclei, such as the \(^6\)\(^7\)Li and \(^9\)Be elastic and inelastic scattering \(^8\)\(^9\), the resonance reactions of the \(^12\)C+\(^12\)C system leading to inelastic \(^8\)\(^9\)Be and \(^8\)Be+\(^16\)O \(\alpha \)-transferred channels \(^10\), the rainbow scattering of \(^16\)O+\(^16\)O system \(^11\), etc., adopting the microscopic cluster model wave functions of \(^6\)\(^7\)Li \(^8\)\(^9\), \(^9\)Be \(^12\)C \(^12\)C and \(^16\)O \(^14\). Because the microscopic cluster model wave functions well reproduce the measured charge form factors not only of the elastic electron-scattering but also the inelastic one, the wave functions are reliable and adopted for studying nuclear reaction mechanisms. The MCC calculations successfully reproduce the experimental reaction data. The reliability of the method has already been established. Hence, we think it is possible to examine inversely the validity of calculated internal wave functions by comparing the result of MCC with experimental reaction data.

In this paper, we adopt the AMD internal wave function of 16C. The reason why we think it is worthy to test the validity of the AMD wave function in the present study is as follows. (1) Because no inert cores and no clusters are assumed, the AMD wave function is flexible. Therefore, AMD is suited for structure study of general unstable nuclei. The applicability has been proved in many works \(^2\). (2) Deformations of proton and neutron densities are obtained dynamically. In other words, electromagnetic transition probability can be calculated without introducing effective charge. (3) In AMD, it is easy to carry out the spin-parity projection, which is necessary for microscopic calculation of transition density.

It should be noted that any nuclear structure models are applicable to MCC, if the diagonal density and transition ones to excited states can be calculated from a model wave function that gives no spurious center-of-

\(^*\)Electronic address: takasina@rtrfaxp.riken.jp
mass component. In the next section, we briefly describe the MCC method. More detailed description is made in Refs. 3,11.

II. FORMALISM

A. Coupled-channels formalism

The coupled-channels equation describing the collision of two nuclei for a total angular momentum of the system \(J \) is written as

\[
T_R + U^{(J)}_{\alpha L,\alpha' L'}(R) - E_\alpha \chi^{(J)}_{\alpha L}(R) = - \sum_{(\alpha' L') \neq (\alpha L)} U^{(J)}_{\alpha L,\alpha' L'}(R) \chi^{(J)}_{\alpha' L'}(R),
\]

where \(T_R \) denotes the kinetic-energy operator, and \(\alpha \) and \(L \) denote a channel and the orbital angular momentum associated to the relative coordinate \(R \). In the present study, we take into account the elastic and \(^{16}\text{C} \) excitation channels, while only the ground state \((0^+)\) is considered for the target \(^{208}\text{Pb} \) nucleus. Thus, the channel \(\alpha \) is designated by the spin \(I \) and the excitation energy \(E_\alpha \) of \(^{16}\text{C} \). \(E_\alpha \) represents the center-of-mass energy for the projectile-target relative motion in channel \(\alpha \) \((E_\alpha = E_{\text{c.m.}} - \epsilon_\alpha)\). \(\chi^{(J)}_{\alpha L}(R) \) is the relative wave function and is obtained by solving Eq. (1) numerically.

In Eq. (1), \(U^{(J)}_{\alpha L,\alpha' L'}(R) \) represents the diagonal \((\alpha, L) = (\alpha', L')\) or the coupling \((\alpha, L) \neq (\alpha', L')\) potential, which is composed of the nuclear part \(V^{(J)}_{\alpha L,\alpha' L'}(R) \) and the Coulomb part \(V_{\alpha L,\alpha' L'}^{C}(R) \). The nuclear part is given by the double-folding model and defined as

\[
V^{N(J)}_{\alpha L,\alpha' L'}(R) = \frac{1}{4\pi} \sum_{\lambda} \hat{L} \hat{I}' L' (-1)^{J-I} W(II'I';J\lambda)(000|000) \times \int d\mathbf{r}_1 d\mathbf{r}_2 \left[v_{00}(\mathbf{x}) \left(\rho^{(\lambda)}_{I' I}(r_1) + \rho^{(\bar{\lambda})}_{I' I}(r_1) \right) \left(\rho^{(0)}_{00}(r_2) + \rho^{(0)}_{00}(r_2) \right) \right] Y_\lambda(\hat{r}_1) \otimes Y_\lambda(\hat{R}) \left[00 \right],
\]

where \(W(II'I';J\lambda) \) represents the ordinary Racah coefficient and \(I \) is \(\sqrt{2I'+1} \). \(\rho^{(\lambda)}_{I' I}(r_1) \) and \(\rho^{(\bar{\lambda})}_{I' I}(r_1) \) \((\rho^{(0)}_{00}(r_2)\) and \(\rho^{(0)}_{00}(r_2)\)) are the radial components of proton and neutron transition densities of \(^{16}\text{C} \) \((^{208}\text{Pb}) \), respectively, which will be mentioned in the next subsection in detail. \(v_{00}(\mathbf{x}) \) represents the spin- and isospin-scalar \((S = T = 0)\) component of an effective nucleon-nucleon interaction, while \(v_{01}(\mathbf{x}) \) represents the spin-scalar, isospin-vector \((S = 0, T = 1)\) component. For this effective interaction, we adopt the DDM3Y \((\) density-dependent Michigan three-range Yukawa) \(\) 13,14, which is defined by

\[
v_{00}(01)(E, \rho; \mathbf{r}) = g_{00}(01)(E, \mathbf{r}) f(E, \rho),
\]

where \(\mathbf{r} \) is the internucleon separation, and \(f(E, \rho) \) is a density dependent factor

\[
f(E, \rho) = C(E) \left[1 + \alpha(E) e^{-\beta(E)\rho} \right].
\]

Here, \(E \) denotes an incident energy per nucleon in the laboratory system. The coefficients \(C(E), \alpha(E), \) and \(\beta(E) \) in the density-dependent factor \(f(E, \rho) \) were determined at each energy by fitting a volume integral of the \(v_{00}(E, \rho; \mathbf{r}) \) to the real part of the optical potential felt by a nucleon in the nuclear matter \(\) 17, \(g_{00}(01)(E, \mathbf{r}) \) in Eq. (3) is the original M3Y interaction \(\) 13,19:

\[
g_{00}(E, \mathbf{r}) = 7999 \frac{e^{-4r}}{4r} - 2134 \frac{e^{-2.5r}}{2.5r} + \tilde{J}_{00}(E) \delta(\mathbf{r}) \text{ MeV},
\]

with

\[
\tilde{J}_{00}(E) = -276 (1 - 0.005E) \text{ MeV fm}^3,
\]

and

\[
g_{01}(E, \mathbf{r}) = -4886 \frac{e^{-4r}}{4r} + 1176 \frac{e^{-2.5r}}{2.5r} + \tilde{J}_{01}(E) \delta(\mathbf{r}) \text{ MeV},
\]

with

\[
\tilde{J}_{01}(E) = 228.4 (1 - 0.005E) \text{ MeV fm}^3.
\]

The units for \(E \) and \(r \) are MeV/nucleon and fm, respectively.

The Coulomb part \(V_{\alpha L,\alpha' L'}^{C}(R) \) is also given by the double-folding model. The double-folded Coulomb potential is written in the same form as Eq. (4), by replacing
TABLE I: $B(E2)$, $M_p^{(2)}$ and $M_n^{(2)}$ values of ^{16}C calculated by AMD, in which the strength of the spin-orbit force is set to (i) $u_\text{s}=900$ MeV, (ii) $u_\text{s}=1500$ MeV, and (iii) $u_\text{s}=2000$ MeV. The experimental data of $B(E2)$ is taken from Ref.[1].

\begin{align}
B(E2; 2_1^+ \rightarrow 0_1^+) (e^2\text{fm}^4) & = 1.9 \pm 0.0.19 \\
M_p^{(2)} (2_1^+ \rightarrow 0_1^+) (\text{fm}^2) & = 3.1 \pm 0.0.2 \\
M_n^{(2)} (2_1^+ \rightarrow 0_1^+) (\text{fm}^2) & = 13.0 \pm 0.0.9
\end{align}

where τ represents p or n. The proton matrix element is related with the electric transition strength $B(E\lambda)$ as

$$B(E\lambda; I' \rightarrow I) = \frac{|M_p^{(\lambda)}(I' \rightarrow I)|^2}{I'!^2} e^2.$$

Here, we use the AMD wave function for $\psi_{p,\nu}^{\lambda}(r)$ and $\psi_{n,\nu}^{\lambda}(r)$ to calculate the transition densities defined in Eq.[11]. We consider the ground state (0_1^+) and first excited 2_1^+ state. In Ref.[3], two versions of ^{16}C internal wave function are obtained in the variation before projection (VBP) formalism changing the strength of the spin-orbit force, (i) $u_\text{s}=900$ MeV and (ii) $u_\text{s}=1500$ MeV. The $B(E2)$ value as well as the $M_p^{(2)}$ and $M_n^{(2)}$ ones obtained with AMD wave functions (i) and (ii) are summarized in Table I with the experimental data of $B(E2)$. With the spin-orbit forces (i) and (ii), the AMD calculation reproduces well the systematic behavior of the $B(E2)$ value and root-mean-square radius of the C isotopes as shown in Ref.[3]. In particular, the systematic feature that the $B(E2)$ value of ^{16}C is abnormally small compared with other C isotopes ($^{10}\text{C}, ^{12}\text{C}$ and ^{14}C) is well reproduced by AMD with the spin-orbit (i) and (ii), although the $B(E2)$ value of ^{16}C is slightly overestimated. In addition to above two, we also use the AMD wave function for which the strength of the spin-orbit force is set to (iii) $u_\text{s}=2000$ MeV so as to reduce the $B(E2)$ value and to be close to the experimental value. The $B(E2)$ value as well as the $M_p^{(2)}$ and $M_n^{(2)}$ ones of the case (iii) is also shown in Table III. One might think that the case (iii) gives the best wave function. However, increasing the strength of the spin-orbit force to reduce the $B(E2)$ value of only ^{16}C as done in the case (iii) may lead to an unrealistic situation, because the systematic behavior of the other C isotopes is not reproduced with such strong spin-orbit force. Hereafter, we refer the three versions of AMD wave function as AMD(i), AMD(ii) and AMD(iii).

Figure III shows the radial components of the diagonal and transition densities obtained with AMD(i). In the upper panel (A), the $\lambda=0$ components of the diagonal density are shown. The solid curves represent the proton and neutron densities of the ground state (0_1^+), and the dashed curves represent those of the 2_1^+ state. It is found that the shape of the 2_1^+ diagonal densities are almost the same as those of 0_1^+, except for the region around the origin. The proton density of the 2_1^+ state is almost identical to that of the 0_1^+ state and the difference cannot be seen in the figure. In the lower panel (B), the $\lambda=2$ components of the diagonal and transition density are shown. The dotted and solid curves represent the proton and neutron transition densities, respectively, for the $2_1^+ \rightarrow 0_1^+$ transition. The transition is found to be dominated by the neutron component especially in the surface region. The double-dot-dashed and dashed curves are the $\lambda=2$ components of the 2_1^+ diagonal density for the proton and neutron. These two curves are displayed with opposite sign in the figure. The shapes of the double-dot-dashed and dashed curves are similar.
FIG. 1: The radial components of the diagonal and transition densities obtained with AMD(i) for 16C. (A) $\lambda=0$ component. The solid curves represent the proton and neutron diagonal density of the ground state (0^+_1), while the dashed curves represent the those of the 2^+_1 state. The proton density of the 2^+_1 state is almost identical to that of the 0^+_1 state and the difference cannot be seen in the figure. (B) $\lambda=2$ component. The dotted and solid curves represent the proton and neutron transition densities from 2^+_1 to 0^+_1. The double-dot-dashed and dashed curves represent the $\lambda=2$ components of the proton and neutron diagonal densities for the 2^+_1 state. These two curves are displayed with opposite sign.

FIG. 2: Comparison of the proton (A) and neutron (B) transition densities for $2^+_1 \rightarrow 0^+_1$. The solid, dotted and dashed curves represent the transition densities of AMD(i), AMD(ii) and AMD(iii), respectively. The solid curves in (A) and (B) are the same as the dotted and solid curves in Fig. 1(B), respectively.

to the dotted and solid curves, respectively. It should be noted that the proton part of $\lambda=2$ component of the diagonal density is proportional to the electric quadrupole moment of the 2^+_1 state. We neglect the $\lambda=4$ component of the 2^+_1 diagonal density, because this component is very small and is expected to have a small contribution to the inelastic scattering.

In Fig. 2(A), the proton transition density of AMD(i) (solid curve) is compared with those of AMD(ii) and AMD(iii), which are represented by the dotted and dashed curves, respectively. The transition densities of AMD(ii) and AMD(iii) are smaller than that of AMD(i), and the transition density of AMD(iii) is slightly shifted to small r side. The difference of the proton transition density causes the difference of the electric transition strength, as shown in Table 1. In Fig. 2(B), the neutron transition densities of AMD(i), (ii) and (iii) are shown by the solid, dotted and dashed curves, respectively. Although the overall shapes of transition densities of (i) and (ii) are almost the same, the magnitudes are found to be slightly different. The magnitude of transition density of AMD(iii) is suppressed when it is compared with those of (i) and (ii), especially in inner region.

The proton density distribution of the 208Pb nucleus is obtained by unfolding the charge density [20], which was obtained by a model-independent analysis of electron-scattering experiment, with the realistic proton charge form factor [21]. The neutron density distribution is obtained by assuming that the shape of the neutron density is the same as that of proton one, namely $\rho_n(r) = (N/Z)\rho_p(r)$. This assumption is known to be valid for stable nuclei.

In the next section, we show the results of the MCC calculation using the AMD transition densities described above.

III. RESULTS

In Fig. 3 we show the double-folding model potential using the densities obtained by AMD(i) described in subsection II.B. The solid curve represents the nuclear po-
FIG. 3: The diagonal (A) and coupling (B) potentials of the 16C+208Pb system calculated with AMD(i) are represented by the solid curves. The dotted and dashed curves are the contributions of the proton and neutron components of 16C, respectively, where both the proton and neutron components of 208Pb(0^+_1) are included.

potential $\text{Eq.}(2)$. The dotted and dashed curves are the contributions of proton and neutron components of 16C, respectively, where both the proton and neutron components of 208Pb(0^+_1) are included. In Fig.3A, the diagonal potential of 16C(0^+_1) + 208Pb elastic channel is shown. Since the diagonal density of the 2^+_1 state in 16C resembles closely that of 0^+_1 state as shown in Fig.1A, the diagonal potential of 16C(2^+_1) + 208Pb is almost the same as that of 16C(0^+_1) + 208Pb, and therefore, not shown here. In Fig.3B, the coupling potential of 16C($0^+_1 \rightarrow 2^+_1$) + 208Pb is shown. It is found that the neutron component has a dominant contribution to the total potential, especially in vicinity of the strong absorption radius $r_{SA} \sim 11$ fm.

In order to see the effect of the isovector component, we also decompose the diagonal and coupling potentials into the isoscalar and isovector components. The result is shown in Fig.4. The solid curves are the same as the solid ones in Fig.3 and the dotted and dashed curves are the isoscalar (IS) and isovector (IV) components, respectively. Compared with the isoscalar component, the magnitude of the isovector component is about 5%, and the sign is opposite. The 5% reduction of the coupling potential leads to about 10% reduction of the inelastic scattering cross sections and is not negligible in the present case. Therefore, we include the isovector component throughout the present calculations.

We perform a coupled-channels calculation using the diagonal and coupling potentials shown in Fig.3. Because of the high incident energy, the coupled-channels equations are solved numerically with the relativistic kinematics, which has a non-negligible effect at forward-angle cross sections. The parameter for the imaginary potential N_I is set to 1.2. Following the procedure of Ref.5, the calculated cross sections are smoothed by Gaussian functions according to the experimental angular uncertainty of 0.28°. The result is shown in Fig.5. The differential cross sections are shown as a function of scattering angle θ in the laboratory system. The crosses are the experimental data \Re and the solid curve represents the result of the coupled-channels calculation. It is found that the MCC calculation with AMD(i) reproduces the experimental data fairly well, although it slightly underestimates the magnitude of the cross sections at large angles. While the oscillatory shape of angular distribution is formed by interference between the nuclear and Coulomb components, which are represented by the dotted and dashed curves, respectively, in Fig.5, the average strength of the calculated cross section is determined by
FIG. 5: Angular distribution of $^{16}\text{C}(0^+_1 \rightarrow 2^+_1)$ inelastic scattering on ^{208}Pb target at $E/A=52.7$ MeV. The crosses are the experimental data and the solid curve is the result of our calculation. The dotted and dashed curves are the nuclear and Coulomb components, respectively.

FIG. 6: N_I dependence of the calculated differential cross sections. The dotted, dashed, solid, dot-dashed and double-dot-dashed curves are the results of the MCC calculations with $N_I=1.0$, 1.1, 1.2, 1.3 and 1.4, respectively.

FIG. 7: (A) The coupling potentials calculated with AMD(i), (ii) and (iii) are shown by the solid, dotted and dashed curves, respectively. (B) The results of the MCC calculations with AMD(i), (ii) and (iii) are shown by the solid, dotted and dashed curves, respectively. The crosses are the experimental data.

the nuclear excitation. Particularly, the neutron component dominates the nuclear excitation as understood from Fig. 5B. Therefore, present result indicates that AMD(i) slightly underestimates the neutron excitation strength by about 10 %, while it overestimates the proton excitation one as shown in Table II.

The parameter N_I cannot be determined theoretically in the present MCC framework. In order to see the N_I dependence of the calculated result, we perform the same calculation with different N_I values. The results are shown in Fig. 6. The dotted, dashed, solid, dot-dashed and double-dot-dashed curves are the results of the MCC calculations with $N_I=1.0$, 1.1, 1.2, 1.3 and 1.4, respectively. It is seen that N_I-dependence is very weak, although the cross sections at very forward angles slightly changes with N_I. The angular distribution around $\theta_{lab}=3-4$ degrees is seen to be independent of the N_I value. Because the calculation with $N_I=1.2$ reproduces the shape of the data a little better than others, we choose $N_I=1.2$ in the present calculation.

Next, we perform the MCC calculations using AMD(ii) and (iii). In Fig. 7A, the coupling potential with AMD(i) represented by the solid curve is compared with those with (ii) and (iii), which are represented by the dotted and dashed curves, respectively. It is noticed that the strength of the coupling potential is almost proportional to the $M^{(2)}_n$ value; 16.1 fm2 for (i), 14.8 fm2 for (ii) and 11.1 fm2 for (iii). The results of the MCC calculations with AMD(ii) and (iii) are shown in Fig. 7B by the dotted and dashed curves, compared with the result of AMD(i) shown by the solid curve which is the same as that in Fig. 5 and the experimental data.
As expected from the strength of the coupling potential, the differential cross sections with AMD(ii) are slightly smaller than those calculated with AMD(i), and those with AMD(iii) severely underestimate the magnitude of the measured cross sections. The magnitude of differential cross section of inelastic scattering directly reflects the electric and hadronic transition strength of the ^{16}C nucleus. For AMD(iii), the proton transition seems good because it gives the $B(E2)$ value being close to the measured one. However, the nuclear excitation strength of (iii) is too small as shown in Fig.7(B). Since the nuclear excitation is dominated by the neutron component, this result indicates that AMD(iii) fails to describe the neutron excitation correctly. This fact cannot be known by the experimental data of electromagnetic probe. Therefore, we think it is very important that the internal wave function of a nucleus obtained theoretically is tested by the experimental data of hadronic probe to investigate the behavior of neutron component.

For further investigation, it is very interesting to analyze the experimental data of the ^{16}C inelastic scattering on proton measured at RIKEN, which is more sensitive to the neutron excitation.

Finally, we see how the angular distribution changes if the symmetry axis of proton is aligned to that of neutron. In the original AMD wave function, the symmetry axis of proton is perpendicular to that of neutron. We artificially make the aligned proton density from the AMD wave function (ii) by rotating the proton wave function to set its symmetry axis to be parallel to the neutron one. The aligned proton density is shown in Fig.8(A) by the dotted curve. The solid curve is the neutron transition density which is the same as the dotted curve in Fig.2(B). The proton transition density has the opposite sign to the neutron one in the surface region. The result of the MCC calculation using this aligned proton transition density is shown in Fig.8(B). It is found that the calculated angular distribution is out-of-phase compared with the experimental data. This result indicates that the proton transition density should have the same sign as the neutron transition density in the surface region.

IV. SUMMARY AND CONCLUSION

In order to test the ^{16}C internal wave function, we studied the $^{16}\text{C}(0_1^+ \rightarrow 2_1^+)$ inelastic scattering on ^{208}Pb target at $E/A=52.7$ MeV by the microscopic coupled-channels (MCC) method using the internal wave function of the ^{16}C nucleus obtained by the antisymmetrized molecular dynamics (AMD). In Ref.3, two versions of wave function are obtained with the strength of spin-orbit force (i) $u_{ts}=900$ MeV and (ii) $u_{ts}=1500$ MeV. It was shown in Ref.3 that these AMD calculations reproduced the systematic behavior of $B(E2)$ value and root-mean-square (RMS) radius of C isotopes. The MCC calculations using these wave functions of ^{16}C reproduce well the measured differential cross sections, although they slightly underestimate the magnitude of the cross sections at large angles. Especially, the shape is rather well reproduced around $\theta_{\text{lab}}=3 - 4$ degrees, where the angular distribution is independent of the strength parameter N_I of the imaginary potential. While the shape of differential cross section due to the interference between the nuclear and Coulomb excitation components is sensitive to the strength of the proton excitation, the magnitude of the cross section is sensitive to the strength of neutron excitation, because the nuclear excitation is dominated by the neutron one in the present case. Therefore, we can conclude that the AMD wave function of (i) predicts the neutron excitation strength of ^{16}C reasonably well, although the strength may be slightly underestimated by about 10 %.

We also performed a coupled-channels calculation using AMD wave function, for which the strength of the spin-orbit force is set to (iii) $u_{ts}=2000$ MeV. Although this wave function gives $B(E2)$ value of ^{16}C close to the measured one, the systematic behavior of $B(E2)$ and
RMS radius of the other C isotopes are failed to be reproduced due to the unrealistic strength of the spin-orbit force. The MCC calculation using AMD(iii) severely underestimates the differential cross sections, which indicates that the neutron excitation is not properly described when the spin-orbit force (iii) is used. It can be said that testing the validity of calculated wave function only with the electromagnetic experimental data, such as $B(E2)$ value, may be insufficient. Especially for neutron-rich nuclei, it is expected that the proton density is largely different from the neutron one. Therefore, we think it is very important that the internal wave functions of a nucleus obtained by any nuclear structure theory should be tested not only by the experimental data of electromagnetic probe but also those of hadronic probe, particularly to investigate the behavior of the neutron component, as done in the present paper.

We showed that the MCC calculation is a useful tool to link the inelastic scattering data with the internal wave functions obtained theoretically. Note that since the diagonal density is also reflected by the behavior of the calculated differential cross section through the diagonal potential as the distorting effect, the overall feature of diagonal and transition densities of nucleus can be tested in the consistent procedure. Nuclear reaction data themselves are available for the nuclear structure study similarly to the RMS radius, electromagnetic transition strength, charge form factor, etc., by applying the MCC method.

Acknowledgment

The authors would like to thank Prof. T. Motobayashi for valuable comments. They are also thankful to Dr. Z. Elekes for providing us the experimental data. One of the authors (M.T.) is grateful for the financial assistance from the Special Postdoctoral Researchers Program of RIKEN. This work is partially performed in the "Research Project for Study of Unstable Nuclei from Nuclear Cluster Aspects” sponsored by RIKEN.

[1] Y. Kanada-En’yo and H. Horiuchi, Phys. Rev. C 55, 2860 (1997).
[2] Y. Kanada-En’yo and H. Horiuchi, Prog. Theor. Phys. Suppl. 142, 205 (2001).
[3] Y. Kanada-En’yo, Phys. Rev. C 71, 014310 (2005).
[4] N. Imai et al., Phys. Rev. Lett. 92, 062501 (2004).
[5] Z. Elekes et al., Phys. Lett. B 586, 34 (2004).
[6] Y. Sakuragi, M. Yahiro, and M. Kamimura, Prog. Theor. Phys. Suppl. 89, 136 (1986).
[7] Y. Hirabayashi, S. Okabe, and Y. Sakuragi, Phys. Lett. B 221, 227 (1989).
[8] Y. Hirabayashi, Y. Sakuragi, and Y. Abe, Phys. Rev. Lett. 74, 4141 (1995).
[9] M. Ito, Y. Sakuragi, and Y. Hirabayashi, Phys. Rev. C 63, 064303 (2001); M. Ito, Y. Hirabayashi, and Y. Sakuragi, Phys. Rev. C 66, 034307 (2002).
[10] M. Takashina, M. Ito, Y. Kudo, S. Okabe, and Y. Sakuragi, Phys. Rev. C 67, 014609 (2003).
[11] M. Katsuma, Y. Sakuragi, S. Okabe, and Y. Kondō, Prog. Theor. Phys. 107, 377 (2002).
[12] S. Okabe and Y. Abe, Prog. Theor. Phys. 61, 1049 (1979).
[13] Y. Fukushima and M. Kamimura, in Proceedings of the International Conference on Nuclear Structure, edited by T. Marumori [J. Phys. Soc. Japan Suppl. 44, (1978)] p. 225.
[14] S. Okabe, in Tours Symposium on Nuclear Physics II, edited by H. Utsunomiya et al. p. 112 (World Scientific, 1995).
[15] A.M. Kobos et al., Nucl. Phys. A 384, 65 (1982); A.M. Kobos et al., Nucl. Phys. A 425, 205 (1984).
[16] M. El-Azab Farid and G.R. Satchler, Nucl. Phys. A 438, 525 (1985).
[17] J.P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 16, 80 (1977).
[18] G. Bertsch, J. Borysowicz, H. McManus, and W.G. Love, Nucl. Phys. A 284, 390 (1977).
[19] G.R. Satchler and W.G. Love, Phys. Rep. 55, 183 (1979).
[20] H. de Vries, C.W. de Jager, and C. de Vries, Atomic Data and Nuclear Data Tables 36, 495 (1987).
[21] T. Janssens et al., Phys. Rev. C 142, 922 (1966).
[22] H.J. Ong et al., submitted to Phys. Rev. C.