Beta-blockers for the prevention of headache in adults, a systematic review and meta-analysis

Jeffrey L. Jackson, Akira Kuriyama, Yachiyo Kuwatsuka, Sarah Nickoloff, Derek Storch, Wilkins Jackson, Zhi-Jiang Zhang, Yasuaki Hayashino

1 Department of Medicine, Zablocki VA Medical Center, Milwaukee, WI, United States of America, 2 Department of General Medicine, Kurashiki Central Hospital, Okayama, Japan, 3 Department of Medicine, Nagoya University Hospital, Nagoya, Japan, 4 Department of Biology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America, 5 Department of Epidemiology and Biostatistics, School of Health Sciences, Wuhan University, Wuhan, China, 6 Department of Endocrinology, Tenri Hospital, Nara, Japan

These authors contributed equally to this work.

* jjackso@mcw.edu

Abstract

Background

Headaches are a common source of pain and suffering. The study’s purpose was to assess beta-blockers efficacy in preventing migraine and tension-type headache.

Methods

Cochrane Register of Controlled Trials; MEDLINE; EMBASE; ISI Web of Science, clinical trial registries, CNKI, Wanfang and CQVIP were searched through 21 August 2018, for randomized trials in which at least one comparison was a beta-blocker for the prevention of migraine or tension-type headache in adults. The primary outcome, headache frequency per month, was extracted in duplicate and pooled using random effects models.

Data synthesis

This study included 108 randomized controlled trials, 50 placebo-controlled and 58 comparative effectiveness trials. Compared to placebo, propranolol reduced episodic migraine headaches by 1.5 headaches/month at 8 weeks (95% CI: -2.3 to -0.65) and was more likely to reduce headaches by 50% (RR: 1.4, 95% CI: 1.1–1.7). Trial Sequential Analysis (TSA) found that these outcomes were unlikely to be due to a Type I error. A network analysis suggested that beta-blocker’s benefit for episodic migraines may be a class effect. Trials comparing beta-blockers to other interventions were largely single, underpowered trials. Propranolol was comparable to other medications known to be effective including flunarizine, topiramate and valproate. For chronic migraine, propranolol was more likely to reduce headaches by at least 50% (RR: 2.0, 95% CI: 1.0–4.3). There was only one trial of beta-blockers for tension-type headache.
Conclusions
There is high quality evidence that propranolol is better than placebo for episodic migraine headache. Other comparisons were underpowered, rated as low-quality based on only including single trials, making definitive conclusions about comparative effectiveness impossible. There were few trials examining beta-blocker effectiveness for chronic migraine or tension-type headache though there was limited evidence of benefit.

Registration
Prospero (ID: CRD42017050335).

Introduction
Headaches are a common problem, world-wide. The two most common types of headaches are migraine and tension-type. Migraines have a prevalence of 6–8% [1–9], and cause significant disability [10–13], even during periods between attacks [14]. Migraines are responsible for $1 billion in medical costs and $16 billion in lost productivity per year [15;16] in the US alone. While episodic migraine is more common than chronic migraine, chronic migraine has greater disability as well as financial and occupational consequences [8;9] and has received much greater research attention [17].

Tension-type headache is more common than migraine; up to 90% of adults experience one at some time in their life [18–22]. In any given month, a tension-type headache occurs in 46% of adults [22]. Most tension-type headaches are managed with over the counter medications, consequently most do not seek medical attention. However, tension-type headache reduces the quality of life [23], results in up to a fifth of all missed work days [24], and costs EUR 21 billion annually in Europe [25].

There are several options available for preventing migraines including alpha antagonists, antiepileptics [26], beta-blockers [27], botulinum toxin-A [28], calcium channel blockers [29], flunarizine [17], pizotifen [17], serotonin agonists [30], serotonin reuptake inhibitors (SSRIs) [31] and tricyclic antidepressants (TCAs) [32]. Nearly half of males and a third of females who are candidates for prophylactic therapy do not receive it [33]. Selection of prophylactic treatment is tailored on individual patient characteristics, costs, perceived efficacy of the intervention and side effects of the available options.

The 2012 American Academy of Neurology guideline recommends beta-blockers, specifically propranolol and metoprolol, as first line therapy for preventing migraines [34]. Specific medications commonly used in prophylaxis has not been well described. In Europe, commonly prescribed prophylactic agents include antiepileptics, beta-blockers, flunarizine, pizotifen and TCAs [35]. Other studies found that specialists are twice as likely to prescribe antiepileptics than primary care providers [36], that treatment persistence is low [37] and that use of prophylactic medications has increased [38], though none of these three characterized the specific medications used.

The purpose of this study is to assess the efficacy of beta-blockers in the prophylaxis of migraine and tension-type headache. Two previous systematic reviews focused on the use of beta-blockers in migraine headaches, both are more than 15 years old [39;40], and included limited outcomes, though both suggest benefit of beta-blockers compared to placebo. There are two more recent comparative effectiveness analyses of headache management that included beta-blockers. Shamliyan reviewed pharmacologic treatment for episodic migraine...
and reported that beta-blockers were effective; their outcome was 50% reduction in headaches, an outcome recommended by the International Headache Society (IHS) as a secondary outcome. They also excluded beta-blockers not approved for headaches in the U.S [41]. In the other meta-analysis, we found that beta-blockers were beneficial for migraine headaches, but did not differentiate between episodic and chronic migraine headaches, did not include all possible outcomes and did not examine beta-blockers for management of tension-type headache [17].

Methods

This study was conducted in accordance with PRISMA guidelines (S1 Table. Prisma Checklist) [42] and was registered in PROSPERO (ID: CRD42017050335). Databases searched (without language restriction) included the Cochrane Central Register of Controlled Clinical Trials, MEDLINE, EMBASE, ISI Web of Science (SCI, SSCI, CPCI-S & CPCI-SSH), and three Chinese databases (CNKI, Wanfang and CQVIP) through 21 August 2018 using the search strategies in supporting information (S2 Table. Search Strategy). Randomized controlled studies of adults that were at least four weeks in duration and used a beta-blocker in at least one study arm were included. Articles were assessed for inclusion in duplicate (JLJ, AK). Because the definition of headache has changed over time, articles were reviewed by at least two authors to determine if the headache could be reasonably classified as migraine or tension-type headache and as either frequent episodic or chronic according to the most recent IHS criteria [43]. IHS recommendations were followed by including only patient-reported outcomes [44] and including the monthly headache frequency as the primary outcome. Additional outcomes included headache index, headache days, severity, duration, quality of life, the use of acute analgesic medications, the proportion with at least 50% improvement in headaches, study withdrawal and the occurrence of adverse events. Data were abstracted in duplicate. Because of the large volume of articles, after training on a separate set of pediatric headache articles, the articles were divided among the authors with all authors serving as the primary abstractor for some articles and as the secondary reviewer, assessing for data accuracy in other articles. Disagreements resolved through consensus between the two and if consensus could not be reached, the entire group discussed and made consensual decisions.

Bias was assessed using the Cochrane risk of bias instrument [45] as well as the JADAD scale [46]. Study size was also included as a risk of bias based on sample size calculations. It was estimated that 60 subjects were required for continuous outcomes and 200 for dichotomous ones (S3 Table. Quality Ratings of Included Trials) based on results from our previous review of treatment of migraine headaches [17]. Studies with more than one arm were pooled into a single arm (if the study reported no differences between arms). For crossover trials, several approaches were used, depending on how the data was reported. For trials that provided only pooled data from both time-periods, the sample size was reduced by 50%, to avoid over-weighting the study [45]. For trials that provided data from both time periods separately, if there was no difference between the two-time periods, the average point estimates and variance was used, with reduction of the sample size by 50%.

The preference was to pool study outcomes in their original unit of analysis. Headache frequency was pooled as headache days per month, headache duration as hours per month, and analgesic use as number of doses per month. Since headache severity and headache index metrics varied, these outcomes were pooled using standardized mean differences [47]. Missing outcome variances were imputed from the reported mean, sample size, and P values [48]. Heterogeneity was assessed using χ^2 (Cochrane Q), Galbraith plots [49] and the I^2 statistic [50]. Data were pooled at each reported time point using a random-effects model [51] using Stata.
A priori, the analytic plan was to pool data at 4, 8, 12, 16, 20 and 24 weeks. Studies that reported outcomes at different time points were combined at the closest time point available (for example, 9-week outcomes were pooled with the 8-week group). For comparative effectiveness trials with 2 or fewer studies, outcomes were reported at the last point reported. Small study effects (publication bias) was assessed using the methods of Peters [52] for dichotomous outcomes and Egger [53] for continuous outcomes if there were a sufficient number of studies. Trial sequential analysis was performed for the comparisons of propranolol to placebo for headache frequency (at 8 weeks), using the O’Brien-Fleming method of alpha-spending function to robustness of the pooled estimates against type 1 and type 2 error [54], using TSA software (Copenhagen, Denmark).

A network meta-analysis was performed for beta-blockers that were compared with placebo at 8 and 12 weeks using the residual maximum likelihood with a modification to the coefficients’ estimated variance using the Kapp and Hartung approach [55] that had a minimum of 2 studies. Both 8- and 12-week results were pooled including all beta-blockers using multivariate random-effects meta-analysis using the network package in STATA [56].

Finally, the quality of evidence was assessed using the GRADE (Grades of Recommendation, Assessment, Development and Evaluation) system to rate the quality of the evidence (GRADEPro GDT 2015) following Cochrane guidelines [45]. Grade assesses quality in four levels: High (further research is unlikely to change estimate of effect); Moderate (further research may impact effect estimate); Low (further research is likely to have important impact on estimate); Very low (any estimate of effect is very uncertain).

Results

The literature search yielded 3513 unique studies after excluding duplicates. Application of inclusion and exclusion criteria (Fig 1) resulted in 108 randomized controlled trials [57–164], of which 50 had a placebo arm [57–59;62;68;69;71;72;75;77–79;81–83;88;94–97;99;107;108;113;115;116;118;121–124;126;130;133–138;141;142;144;145;147;149;151;152;154;156;157;162]. Because some placebo-controlled trials included non-placebo comparisons, there were a total of 86 comparative effectiveness arms. Nearly all trials (n = 106) focused on migraine headaches, most (n = 83) could be classified as episodic. Only 4 trials studied chronic migraines [76;105;129;151] and there was only 1 trial of beta-blockers for chronic tension-type headache [57].

The 108 included studies ranged from 4 to 64 weeks in duration (average: 12.9). Fifty-one were parallel in design and 57 had a crossover design. Among crossover trials, 43 were randomized, with washout periods ranging from zero to four weeks. Twenty-five different countries (Table 1) and four languages (Chinese (n = 15), English (n = 86), German (n = 6), Polish (n = 1) were represented. The average age was 38.6 years and 77% of participants were women.

Ten different beta-blockers were studied. Propranolol (n = 74) and metoprolol (n = 21) were the most commonly evaluated beta-blockers. Atenolol, nadolol, pindolol and timolol had two studies each. Several beta-blockers were evaluated in only a single trial (acebutolol, alprenolol, bisoprolol and oxprenolol). Study characteristics for included trials are provided in Table 1 and quality ratings are given in S2 Table.

Studies had a number of common quality problems (S3 Table) including high drop-out rates (16.1%, range 0–51%), lack of intention to treat analysis (76%), inadequate sequence generation (83%), lack of evidence of concealed allocation (90%) and inadequate blinding (60%). Twenty-three studies assessed compliance (21%). Fifty-one (47%) studies reported all collected outcomes. Sixteen trials (15%) were sponsored by industry. All comparisons that had only a single study were graded as low-quality evidence.
of records identified through database searching (n=3580)
- Central (CRSO): 412
- Medline: 1046
- EMBASE: 1347
- Web of Science: 652
- CNKI, Wanfang, CQVIP: 123

of additional records identified through other sources (n=11)

of records after duplicates removed (n=3513)

Number of records screened
n=3513

Number of records excluded
n=2790

Full text assessed for eligibility
n=732

Number of full-text articles excluded
- Abstract only: 4
- Acute migraine: 1
- Not Beta-blocker: 18
- No placebo arm: 47
- Not RCT: 336
- Intervention < 4 weeks: 1
- Unclear headache type: 5
- Review: 186
- Pediatric: 24
- Animal Study: 7

of studies included in qualitative synthesis
n=103

of studies included in quantitative synthesis
n=103

Fig 1. PRISMA flow chart.
https://doi.org/10.1371/journal.pone.0212785.g001
Study, Year, Country	Comparison (mg)	Headache Type	Classification	Design	Duration (weeks)	Sample Size (dropout %)	Age (years)	Women (%)	Dose titrated	Rescue Medication Allowed
Acebutolol	Nanda, 1978, Scotland	Acebutolol (800) v. Placebo	Migraine-episodic	NS Crossover	12	43 (23%)	NS	74%	Yes	Yes
Alprenolol	Ekbom, 1975, Sweden	Alprenolol (200) v. Placebo	Migraine-episodic	Ad-hoc 1962 Crossover	6	33 (15)	41.5	82%	No	Yes
Atenolol	Forssman, 1983, Sweden	Atenolol (100) v. Placebo	Migraine-unspecified	Ad-hoc 1962 Crossover	13	24 (17)	40	80%	No	Yes
	Johannsson, 1987, Sweden	Atenolol (100) v. Placebo	Migraine-episodic	Ad-hoc 1962 Crossover	12	72 (13)	43	70%	No	Yes
	Stensrud, 1980, Norway	Propranolol (160) v. Atenolol (100)	Migraine-episodic	Ad-hoc 1962 Crossover	6	35 (20)	NS	69%	No	Yes
Bisoprolol	van de Ven, 1997, Europe	Bisoprolol (5) v. Bisoprolol (10) v. Placebo	Migraine-episodic	IHS1988 Parallel	12	226 (14)	38.7	82%	No	Yes
Metoprolol	Andersson, 1983, Denmark	Metoprolol (200) v. Placebo	Migraine-episodic	WFNRG 1969 Parallel	8	71 (13)	39.7	85%	No	Yes
	Diener, 2001, Europe	Metoprolol (200) v. Aspirin (300)	Migraine-episodic	IHS 1988 Parallel	16	270 (15)	39.4	81%	Yes	Yes
	Gong, 2016, China	Metoprolol (25) + Flunarizine (5) v. Flunarizine (5)	Migraine-unspecified	Parallel	12	80 (0)	47.5	40%	No	Yes
	Grottemeyer, 1988, Germany	Metoprolol (200) v. Flunarizine (10)	Migraine-episodic	Ad hoc 1962 Crossover	7	29 (17)	39	79%	No	Yes
	Grottemeyer, 1990, Germany	Metoprolol (200) v. Acetylsalicylic Acid (1500)	Migraine-episodic	IHS 1988 Crossover	12	28 (NS)	31	82%	No	Yes
	Hesse, 1994, Denmark	Metoprolol (100) v. Acupuncture	Migraine-episodic	IHS 1988 Parallel	17	85 (10)	44.7	84%	No	Yes
	Kangasniemi, 1987, Scandinavia	Metoprolol (200) v. Placebo	Migraine-episodic	Ad-hoc 1962 Crossover	8	77 (11)	37.5	80%	No	Yes
	Langohr, 1985, Germany	Metoprolol (100) v. Clomipramine (100) v. Placebo	Migraine-episodic	Ad-hoc 1962 Crossover	4	63 (43)	44.4	67%	No	Yes
	Li, 2006, China	Metoprolol (125) v. Placebo	Migraine-unspecified	IHS 1988 Parallel	12	60 (0)	48.5	100%	No	Yes
	Louis 1985, Europe	Metoprolol (100) v. Clonidine (0.1)	Migraine-episodic	WFNRG 1969 Crossover	8	31 (26)	35.5	81%	Yes	Yes
	Ma, 2011, China	Metoprolol (50) + Flunarizine (5) v. Flunarizine (5)	Migraine-episodic	HIS 2004 Parallel	48	56 (0)	36.3	65%	No	Yes
	Schellenberg, 2008, Germany	Metoprolol (142.5) v. Nebivolol (5)	Migraine-episodic	IHS 2004 Parallel	18	30 (7)	39	87%	Yes	Yes
	Siniaitchkin, 2007, Germany	Metoprolol (200) v. Placebo	Migraine-unspecified	IHS2004 Parallel	12	20 (0%)	37	85%	Yes	Yes
	Sorensen 1991, Denmark	Metoprolol (200) v. Flunarizine (10)	Migraine	IHS 1988 Parallel	20	149 (1)	42	79%	No	Yes
	Steiner, 1988, UK	Metoprolol Cr (100) v. Placebo	Migraine-episodic	Vahlquist 1955 Parallel	8	59 (NS)	37.4	76%	No	Yes
	Streng, 2005, Germany	Metoprolol (200) v. Acupuncture	Migraine-episodic	IHS 1997 Parallel	12	114 (17)	36.6	88%	Yes	Yes

(Continued)
Study, Year, Country	Comparison (mg)	Headache Type	Classification	Design	Duration (weeks)	Sample Size	Age	Women	Dose titrated	Rescue Medication Allowed
Vilming, 1985, Sweden	Metoprolol (100) v. Pizotifen (1.5)	Migraine-episodic	WFNRG 1969 Crossover	8	35 (14)	37.6	83%	Yes	Yes	
Worz, 1992, Germany	Metoprolol (200) v. Bisoprolol (10)	Migraine-episodic	IHS1988 Crossover	12	125 (38)	38.5	71%	Yes	Yes	
Yang, 2006, China	Metoprolol (90) v. Placebo	Migraine-episodic	IHS 1988 Parallel	12	60 (0)	48.5	100%	No	Yes	
Yang, 2016, China	Metoprolol (95) v. Metoprolol (95) + Fluoxetine	Migraine-episodic	NS Parallel	6	120 (0)	38.4	64%	No	Yes	
Zhou, 2015, China	Metoprolol (95) v. Metoprolol (95) + Fluoxetine	Migraine-episodic	NS Parallel	6	112 (0)	37.0	63%	No	Yes	
Nadolol Freitag, 1984, USA	Nadolol (80) v. Nadolol (160) v. Placebo	Migraine-episodic	Ad-hoc 1962 Parallel	12	32 (20)	36.7	81%	No	Yes	
Ryan, 1982, USA	Nadolol (80) v. Nadolol (160) v. Nadolol (240) v Placebo	Migraine-episodic	NS Parallel	12	80 (1%)	NS 78%	No	Yes		
Oxprenolol	Ekbom, 1977, Sweden	Oxprenolol (240) v. Placebo	Migraine-episodic	Ad-hoc 1962 Crossover	12	34 (12)	41.8	76%	No	Yes
Pindolol	Ekbom, 1972, Sweden	Pindolol (7.5) v. Pindolol (15) v. Placebo	Migraine-episodic	Ad-hoc 1962 Parallel	4	30 (NS)	33.7	87%	No	Yes
Pindolol + Amitriptyline	Agius, 2013, Italy	Pindolol (10)+ Amitriptyline (10) v. Amitriptyline (10) v. Placebo	Tension-chronic	IHS 2004 Parallel	8	64 (3)	35.6	74%	No	Yes
Streng, 2005, Germany	Metoprolol (200) v. Acupuncture	Migraine-episodic	IHS 1997 Parallel	12	114 (17)	36.6	88%	Yes	Yes	
Propranolol Aluja, 1985, India	Propranolol (120) v. Placebo	Migraine-episodic	Ad-hoc 1962 Crossover	8	26 (NS)	NS 46%	No	NS		
al-Qassab, 1993, UK	Propranolol (80) v. Propranolol (160) v. Placebo	Migraine-episodic	Ad-hoc 1962 Crossover	8	45 (33)	36	80%	No	Yes	
Albers, 1989, USA	Propranolol (180) v. Nifedipine (60)	Migraine-episodic	Ad hoc 1962 Parallel	24	40 (37)	35.2	89%	Yes	Yes	
Andersson, 1981, Denmark	Propranolol (160) v. Femoxetine (400)	Migraine	NS Parallel	24	49 (24)	38	69%	Yes	Yes	
Ashtari, 2008, Iran	Propranolol (80) vs. Topiramate (50)	Migraine-episodic	IHS 2005 Parallel	8	62 (3)	30.8	82%	Yes	Yes	
Baldrati, 1983, Italy	Propranolol (80) v. Aspirin (1.9 mg/kg)	Migraine-not specified	Ad hoc 1962 Crossover	12	18 (33)	33.3	89%	No	NS	
Behan, 1980, Scotland	Propranolol (120) v. Methysergide (3)	Migraine-not specified	NS Crossover	12	56 (36)	NS 66%	No	No		
Bonuso, 1998, Italy	Propranolol (80) v. Flunarizine (10)	Migraine-not specified	IHS 1988 Parallel	8	50 (16)	32	68%	No	NS	
Bordini, 1997, Brazil	Propranolol (60) v. Flunarizine (10) v. Combo.	Migraine-episodic	IHS 1988 Parallel	17	52 (13)	31.2	91%	No	Yes	
Borgesen, 1974, Denmark	Propranolol (120) v. Placebo	Migraine-episodic	Ad-hoc 1962 Crossover	12	12 (33)	37.6	83%	Yes	Yes	
Carroll, 1990, UK	Propranolol (80) v. Propranolol (160)	Migraine-episodic	Ad hoc 1962 Crossover	12	51 (27)	39	69%	No	Yes	

(Continued)
Table 1. (Continued)

Study, Year, Country	Comparison (mg)	Headache Type	Classification	Design	Duration (weeks)	Sample Size	Age	Women	Dose titrated	Rescue Medication Allowed
Chen, 2009, China	Propranolol (60) + Flunarizine (10) v. Topiramate (100)	Migraine-episodic	IHS 1988	Parallel	12	82 (0)	38.2	60%	Yes	Yes
Dahlöf, 1987, Sweden	Propranolol (120) v. Placebo	Migraine-episodic	WFNRG 1969	Crossover	4	28 (0)	NS	93%	No	Yes
Diener, 1996, Germany	Propranolol (120) v. Cykendolate (1200) v. Placebo	Migraine-episodic	IHS 1988	Parallel	12	214 (17)	39	78%	Yes	Yes
Diener, 2002, Germany	Propranolol (160) v. Flunarizine (5) v. Flunarizine (10)	Migraine-episodic	IHS 1988	Parallel	16	808 (18)	38.8	63%	Yes	Yes
Diener, 2004, Europe	Propranolol (160) v. Topiramate (100) v. Topiramate (200) v. Placebo	Migraine-episodic	IHS 1988	Parallel	26	575 (37)	41	80%	Yes	Yes
Domingues, 2009, Brazil	Propranolol (80) v. Nortriptyline (40) v. Combo.	Migraine-chronic	IHS 2004	Parallel	12	76 (42)	NS	NS	Yes	Yes
DongXiang, 2010, China	Propranolol (90) v. Amitriptyline (100) v. Amitriptyline (100)	Migraine-episodic	H1S 1988	Parallel	12	310 (0)	32.5	80%	Yes	Yes
Formisano, 1991, Italy	Propranolol (120) v. Nimodipine (120)	Migraine-episodic	IHS 1988	Parallel	16	22 (14)	39.2	55%	No	Yes
Forssman, 1976, Sweden	Propranolol (240) v. Placebo	Migraine-unspecified	NS	Crossover	10	40 (20)	37.4	88%	No	Yes
Gawel, 1992, Canada	Propranolol (120) v. Flunarizine (10)	Migraine-episodic	WFNRG 1970	Parallel	16	94 (19)	35.9	89%	Yes	Yes
Gerber, 1991, Germany	Propranolol (120) v. Metoprolol (150) v. Nifedipine (30)	Migraine-episodic	IHS 1988	Parallel	12	58 (NS)	42.4	73%	Yes	Yes
Gerber, 1995, Germany	Propranolol (120/160) v. Cykendolate (1200/1600)	Migraine-episodic	IHS 1988	Parallel	8	84 (26)	40.9	90%	No	Yes
Ghobadi, 2013, Iran	Propranolol (120) v. Nimodipine (30)	Migraine	IHS 2004	Parallel	24	102 (2)	47	83%	No	Yes
Grotemeyer, 1987, Germany	Propranolol (120) v. Placebo	Migraine-episodic	Ad-hoc 1962	Crossover	12	30 (20)	36	73%	No	Yes
Havanka-Kanninen, 1988, Finland	Propranolol (80) v. Propranolol (160)	Migraine-episodic	Ad-hoc 1962	Crossover	12	48 (13)	37.7	81%	No	Yes
Hedman, 1986, Denmark	Propranolol (80) v. Metoprolol (100)	Migraine-episodic	WFNRG 1970	Crossover	4	12 (0)	40	67%	NS	Yes
Holdorff, 1977, Germany	Propranolol (120) v. Placebo	Migraine-episodic	Ad-hoc 1962	Parallel	12	53 (30)	NS	NS	No	Yes
Holroyd, 2010, USA	Propranolol/Nadolol v. Propranolol/Nadolol + Behavior Therapy v. Behavior therapy v. Placebo	Migraine-episodic	IHS 1988	Parallel	64	232 (51)	38.2	79%	Yes	Yes
Jin, 2001, China	Propranolol (30) + Flunarizine (10) v. Diazepam (30) + Nimodipine (60)	Migraine	NS	Parallel	24	84 (0)	NS	75%	No	Yes
Johnson, 1986, New Zealand	Propranolol (240) Mafenamic Acid (1500) v. Placebo	Migraine-episodic	NS	Crossover	12	29 (41)	42	69%	No	Yes
Kangasniemi, 1983, Finland	Propranolol (160) v. Femoxetine (400)	Migraine-episodic	NS	Crossover	12	29 (11)	37	86%	No	Yes
Kangasniemi, 1984, Finland	Propranolol (240) v. Metoprolol (200)	Migraine-episodic	WFNRG 1970	Crossover	8	36 (6)	33.8	89%	No	Yes
Kaniecki, 1997, USA	Propranolol (240) v. Divalproex (1500)	Migraine-episodic	IHS 1988	Crossover	12	37 (14)	NS	81%	Yes	Yes

(Continued)
Study, Year, Country	Comparison (mg)	Headache Type	Classification	Design	Duration (weeks)	Sample Size (dropout %)	Age	Women	Dose titrated	Rescue Medication Allowed
Kass, 1980, Norway	Propranolol (160) v. Clonidine (0.1)	Migraine-unspecified	WFNRG 1970 Crossover	16	23 (9)	39.7	30%	No	Yes	
Kaushik, 2005, India	Propranolol (80) v. Biofeedback	Migraine-episodic	IHS 1988 Parallel	24	192 (13)	NS	69%	No	Yes	
Ke, 2003, China	Propranolol (30) v. Propranolol (30) + Flunarizine (5) v. Flunarizine (5)	Migraine-chronic	IHS 1988 Parallel	8	121 (0)	31	74%	No	Yes	
Kjaersgard 1994, Denmark	Propranolol (120) v. Tolfenamic Acid (300)	Migraine-unspecified	IHS 1988 Crossover	12	76 (26)	43.3	79%	No	Yes	
Klapper, 1994, USA	Propranolol (140) v. Divalproex (1100)	Migraine-unspecified	IHS 1988 Crossover	8	24 (50)	NS	NS	Yes	Unclear	
Kozubski, 1995, Poland	Propranolol (160) Valproic Acid (1500)	Migraine-unspecified	IHS 1988 Crossover	10	35 (NS)	NS	100%	Yes	NS	
Kuritzky, 1987, Israel	Propranolol (160) v. Placebo	Migraine-episodic	NS Crossover	8	38 (18)	NS	NS	No	Yes	
Li, 2002, China	Propranolol (30) v. Flunarizine (5)	Migraine-Episodic	IHS, 1988 Parallel	4	126 (0)	38.7	60%	No	Yes	
Li, 2004, China	Propranolol (60) v. Valproate (45 mg/kg)	Migraine-Episodic	NS Parallel	36	40 (0)	NS	NS	No	NS	
Lucking, 1988, Germany	Propranolol (120) v. Flunarizine (10)	Migraine-Episodic	NS Parallel	16	521 (NS)	42	80%	No	Yes	
Maissen, 1991, Germany	Propranolol (120) v. 5-Hydroxytryptophan (300)	Migraine-Episodic	NS Parallel	16	39 (18)	39.4	67%	Yes	Yes	
Malvea, 1973, USA	Propranolol (NS) v. Placebo	Migraine-Episodic	NS Crossover	6	31 (6)	NS	87%	Yes	Yes	
Mathew, 1980, USA	Propranolol (160) v. Placebo v. Amitriptyline (75) v. Biofeedback	Mixed-headaches	NS Parallel	24	340 (20)	35.5	94%	Yes	Yes	
Mikkelsen, 1986, Denmark	Propranolol (120) v. Tolfenamic Acid (300) v. Placebo	Migraine-unspecified	Ad-hoc 1962 Crossover	12	31 (21)	39.4	84%	No	Yes	
Nadelmann, 1986, USA	Propranolol (320) v. Placebo	Migraine-unspecified	Ad-hoc 1962 Crossover	12	57 (39)	NS	86%	No	Yes	
Nair, 1975, India	Propranolol (80) v. Placebo	Migraine-Episodic	NS Crossover	8	20 (0)	27.3	50%	No	No	
Namniar, 2011, India	Propranolol (80) v. Riboflavin (100)	Migraine-Episodic	IHS 1988 Parallel	24	100 (NS)	31	55%	Yes	Yes	
Palferman, 1983, UK	Propranolol (120) v. Placebo	Migraine-unspecified	NS Crossover	8	10 (38)	41.4	80%	No	Yes	
Olerud, 1986, Sweden	Propranolol (80) v. Nadolol (80)	Migraine-episodic	NS Parallel	24	28(NS)	NS	79%	No	Yes	
Pita, 1977, Spain	Propranolol (160) v. Placebo	Migraine-Episodic	Ad-hoc 1962 Crossover	8	9 (0)	32	78%	No	Yes	
Pradalier, 1989, Norway	Propranolol (160) v. Placebo	Migraine-Episodic	IHS 1988 Parallel	12	74 (26)	37.4	76%	No	NS	
Ryan, 1984, USA	Propranolol (160) v. Nadolol (80) v. Nadolol (160)	Migraine-episodic	NS Parallel	12	48 (6)	NS	73%	No	Yes	
Sargent, 1985, USA	Propranolol (120) v. Naproxen (1100) v. Placebo	Migraine-episodic	NS Parallel	14	149 (16)	30	79%	Yes	Yes	
Shimell, 1990, South Africa	Propranolol (180) v. Flunarizine (10)	Migraine-episodic	Ad hoc 1962 Parallel	16	58 (2)	34	70%	Yes	NS	
Silberstein, 2012, USA	Propranolol (240) + Topiramate (100) v. Topiramate (100)	Migraine-chronic	IHS 2006 Parallel	24	191 (39)	42	90%	Yes	Yes	

(Continued)
Episodic migraines

The primary outcome was headaches per month. Outcomes from placebo-controlled trials for all beta-blockers and time-points are provided in Tables 2–3. Outcomes at 8 weeks was the most commonly reported time point. Among patients with episodic migraines (Table 2), the average number of headaches at baseline was 4.9 headaches/month (95% CI: 4.4–5.4). The best studied beta-blocker was propranolol, which was more effective than placebo at 8 and 12 weeks (8 weeks: -1.5 ha/month, 95% CI: -2.3 to -0.65); 12 weeks: -1.2 ha/month, 95% CI: -1.8 to -0.60, Fig 2). Propranolol outcomes at 8 and 12 weeks were both graded as high-quality evidence. TSA analysis of propranolol vs. placebo for headache frequency demonstrated that it is unlikely that these results are due to a Type 1 error (Fig 3). Other beta-blockers that were more effective than placebo at 8 weeks (Fig 4) included bisoprolol (-0.70 ha/month, 95% CI: -1.4 to -0.05, low quality), metoprolol (-0.86 ha/month, 95% CI: -1.4 to -0.34, moderate quality) and

Table 1. (Continued)

Study, Year, Country	Comparison (mg)	Headache Type	Classification	Design	Duration (weeks)	Sample Size (dropout %)	Age	Women	Dose titrated	Rescue Medication Allowed
Sjøastad, 1972, Norway	Pindolol (15) v. Placebo	Migraine-episodic	NS	Crossover	4	28 (14)	35.3	79%	Yes	Yes
Soyka, 1990, Germany	Propranolol (120) v. Flunarizine (10)	Migraine-episodic	NS	Parallel	16	434	42	82%	Yes	Yes
Standnes, 1982, Norway	Propranolol (80) v. Timolol (10) v. Placebo	Migraine-episodic	Ad-hoc 1962	Crossover	12	25 (28)	41.4	80%	Yes	Yes
Stensrud, 1976, Norway	Propranolol (160) v. Placebo	Migraine-episodic	Ad-hoc 1962	Crossover	4	20 (5)	43.5	70%	No	Yes
Stensrud, 1980, Norway	Propranolol (80) v. Atenolol (50) v. Placebo	Migraine-episodic	Ad-hoc 1962	Crossover	6	35 (20)	NS	69%	No	Yes
Stovner, 2014, Norway	Propranolol (160) v. Candesartan (16) v. Placebo	Migraine-episodic	NS	Crossover	12	72 (15)	37	82%	Yes	Yes
Sudilovsky, 1987, USA	Propranolol (160) v. Nadolol (80) v. Nadolol (160)	Migraine-episodic	Ad hoc 1962	Parallel	12	140 (30)	39.3	76%	Yes	Yes
Tfelt-Hansen, 1984, Scandinavia	Propranolol (160) v. Timolol (20) v. Placebo	Migraine-episodic	Ad-hoc 1962	Crossover	12	96 (28)	39.5	74%	No	Yes
Weber, 1971, USA	Propranolol (20) v. Placebo	Migraine-unspecified	Ad-hoc 1962	Crossover	12	25 (24)	40.6	52%	No	Yes
Wideroe, 1974, Norway	Propranolol (160) v. Placebo	Migraine-episodic	Ad-hoc 1962	Crossover	12	30 (13)	40	90%	No	Yes
Wen, 2016, China	Propranolol (30) v. Flunarizine (10)	Migraine-episodic	NS	Parallel	8	100 (0)	25.6	65%	No	Yes
Yuan, 2005, China	Propranolol (120) v. Topiramate (150)	Migraine-unspecified	IHS 1988	Parallel	12	67 (0)	29.9	64%	Yes	No
Zhu, 2005, China	Propranolol (30) v. Flunarizine (10)	Migraine-unspecified	IHS 1988	Parallel	8	90 (0)	28.1	73%	No	No
Ziegler, 1993, USA	Propranolol (240) v. Amitriptyline (150) v. Placebo	Migraine-episodic	NS	Crossover	10	54 (44)	38	73%	Yes	Yes

Timolol

Study, Year, Country	Comparison (mg)	Headache Type	Classification	Design	Duration (weeks)	Sample Size (dropout %)	Age	Women	Dose titrated	Rescue Medication Allowed
Briggs, 1979, UK	Timolol (20) v. Placebo	Migraine-episodic	Ad-hoc 1962	Crossover	6	14 (7)	NS	71%	No	Yes
Stellar, 1984, USA	Timolol (30) v. Placebo	Migraine-episodic	Ad-hoc 1962	Crossover	8	107 (12)	43	72%	No	Yes

NS: Not Stated

https://doi.org/10.1371/journal.pone.0212785.t001

Episodic migraines

The primary outcome was headaches per month. Outcomes from placebo-controlled trials for all beta-blockers and time-points are provided in Tables 2–3. Outcomes at 8 weeks was the most commonly reported time point. Among patients with episodic migraines (Table 2), the average number of headaches at baseline was 4.9 headaches/month (95% CI: 4.4–5.4). The best studied beta-blocker was propranolol, which was more effective than placebo at 8 and 12 weeks (8 weeks: -1.5 ha/month, 95% CI: -2.3 to -0.65); 12 weeks: -1.2 ha/month, 95% CI: -1.8 to -0.60, Fig 2). Propranolol outcomes at 8 and 12 weeks were both graded as high-quality evidence. TSA analysis of propranolol vs. placebo for headache frequency demonstrated that it is unlikely that these results are due to a Type 1 error (Fig 3). Other beta-blockers that were more effective than placebo at 8 weeks (Fig 4) included bisoprolol (-0.70 ha/month, 95% CI: -1.4 to -0.05, low quality), metoprolol (-0.86 ha/month, 95% CI: -1.4 to -0.34, moderate quality) and
Table 2. Placebo controlled primary outcome (headache frequency per month).

Episodic Migraines	Time point	Weighted Mean Difference (95% CI)	Heterogeneity	Quality of Evidence (GRADE)
Acebutolol (HA frequency at baseline: 4.8 headaches/month (95% CI: -0.64 to 8.9))	Baseline Frequency	0.00 (-0.14 to 0.14)	—	Low
	4 weeks	-0.20 (-0.38 to -0.02)	—	—
	8 weeks	-0.50 (-1.6 to 0.63)	—	—
	12 weeks	-0.6 (-1.7 to 0.53)	—	—
Alprenolol	8 weeks	-0.80 (-1.9 to 0.31)	—	Low
Atenolol	12 weeks	-1.7 (-3.0 to -0.32)	—	Low
Bisoprolol (HA frequency at baseline: 5.5 headaches/month (95% CI: 2.7 to 8.3))	Baseline	-0.04 (-0.49 to 0.41) Q = 3.68, df = 3, $I^2 = 18.5\%$	Low	
	4 weeks	-0.40 (-1.1 to 0.29)	—	—
	8 weeks	-0.40 (-1.1 to 0.34)	—	—
	12 weeks	-0.50 (-1.2 to 0.25)	—	—
	5 mg	-0.50 (-1.2 to 0.25)	—	—
	10 mg	-0.70 (-1.4 to -0.05)	—	—
Metoprolol (HA frequency at baseline: 3.9 headaches/month (3.1 to 4.7))	Baseline	-0.04 (-0.49 to 0.41) Q = 3.68, df = 3, $I^2 = 18.5\%$	Low	
	4 weeks	-0.91 (-2.6 to 0.82)	—	—
	8 weeks	-0.86 (-1.4 to -0.34) Q = 3.07, df = 2, $I^2 = 34.8\%$	Moderate	
	12 weeks	-0.90 (-2.2 to 0.41)	—	Low
Nadolol (HA frequency at baseline: 6.7 headaches/month (3.4 to 9.9)	Baseline	0.22 (-1.8 to 2.3)	—	Low
	4 weeks	1.1 (-0.98 to 3.2)	—	—
	8 weeks	-0.86 (-2.9 to 1.3)	—	—
	12 weeks	-0.96 (-3.1 to 1.2)	—	—
Oxprenolol	8 weeks	-0.80 (-3.9 to 2.3)	—	Low
Propranolol (HA frequency at baseline: 4.8 headaches/month (4.3 to 5.3))	Baseline	-0.04 (-0.28 to 0.20) Q = 0.83, df = 10, $I^2 = 0.0\%$	High	
	4 weeks	-1.1 (-1.8 to -0.43) Q = 0.0, df = 1, $I^2 = 0.0\%$	Moderate	
	8 weeks	-1.5 (-2.3 to -0.65) Q = 11.37, df = 7, $I^2 = 38.4\%$	High	
	12 weeks	-1.2 (-1.8 to -0.60) Q = 35.29, df = 8, $I^2 = 77.3\%$	High	
	16 weeks	-1.2 (-2.4 to -0.01)	—	Low
	20 weeks	-0.9 (-1.8 to -0.02)	—	Low
	24 weeks	-0.9 (-1.5 to -0.32)	—	Low
	40 weeks	-0.3 (-0.9 to 0.34)	—	Low
	64 weeks	-0.3 (-0.98 to 0.38)	—	Low

Timolol (HA frequency at baseline: 4.8 headaches/month (95% CI: -0.64 to 8.9))

(Continued)
timolol (-0.77 ha/month, 95% CI: -1.4 to -0.12, moderate quality). The remaining beta-blockers, in single trials did not significantly reduce headache frequency (Fig 3). There was a similar pattern at twelve weeks.

Among secondary outcomes, the majority of trials studied subjects with episodic migraine headaches (Table 3). Propranolol was the most commonly studied beta-blocker. Propranolol was more likely to reduce headaches by 50% than placebo at 12 weeks (RR: 1.4, 95% CI: 1.1–1.8, NNT: 4.5, 95% CI: 2.8–12.9). Other effective beta-blockers included atenolol (RR: 1.9, 95% CI: 1.3–2.8, NNT: 4.7, 95% CI:3.0–10.4) and timolol (RR: 1.8, 95% CI: 1.4–2.3, NNT: 4.2, 95% CI: 2.7–8.8.). At 8 weeks, metoprolol reduced analgesic medication use (-4.0 doses/month, 95% CI: -7.5 to -0.48) as did propranolol at 12 weeks (-2.1 doses/month, 95% CI: -3.2 to -0.95). The headache index was modestly reduced by a number of different beta-blockers including atenolol (SMD: -0.62, 95% CI: -1.2 to -0.004), metoprolol (SMD: -0.42, 95% CI: -0.77 to -0.07), propranolol (SMD: -0.48, 95% CI: -0.75 to -0.22) and timolol (SMD: -0.53, 95% CI: -0.84 to -0.21). At 8 weeks, headache severity was modestly reduced by both metoprolol (SMD: -0.53, 95% CI: -0.71 to -0.14) and propranolol (SMD: -0.51, 95% CI: -0.76 to -0.26). Headache duration was reduced by metoprolol (-2.0 hours, 95% CI: -3.7 to -0.26) and propranolol (-6.1 hours, 95% CI: -16.2 to -0.39).

Network meta-analysis. For the primary outcome, headache frequency, the network meta-analysis found no difference at 8 weeks (p = 0.27) in effectiveness in comparisons between propranolol (n = 9) compared to bisoprolol (n = 2), metoprolol (n = 3) and nadolol (n = 3). Similarly, at 12 weeks, there was no difference (p = 0.84) in effectiveness in comparisons between propranolol (n = 9) compared to bisoprolol (n = 2), nadolol (n = 3) and timolol (n = 2). The 8- and 12-week analysis confirmed this lack of difference between all beta-blockers (Fig 5), including those with single trials (Fig 6)

Comparative effectiveness trials. There were 83 randomized trials that included at least one comparison to a non-placebo treatment. Propranolol was the most commonly compared beta-blocker (n = 72, 87%). Propranolol was compared to pharmacologic interventions in 50 trials. Eleven comparisons that were from single trials (5-hydroxytryptophan, aspirin, atenolol, candesartan, clonidine, cyclandelate, mefenamic acid, naproxen, nifedipine, nimodipine,

Table 2. (Continued)

Episodic Migraines	Weighted Mean Difference (95% CI)	Heterogeneity	Quality of Evidence (GRADE)
Migraine-Chronic			
Propranolol			
8 weeks	-2.1 (-5.5 to 1.3)	—	Low
Chronic Tension-type HA			
Pindolol+ Amitriptyline			
Baseline	1.4 (-2.2 to 5.0)	—	Low
4 weeks	-7.8 (-13.9 to -1.5)	—	
8 weeks	-11.2 (-16.7 to -5.5)	—	
Propranolol			
Baseline	(-8.1 to 8.1)	—	Low
8 weeks	-4.5 (-8.2 to -0.82)	—	

https://doi.org/10.1371/journal.pone.0212785.t002
Table 3. Secondary outcomes of placebo controlled trials.

Episodic Migraines

Beta-blocker	RR (95% CI)/NNT	Heterogeneity	Quality of Evidence
Atenolol	1.8 (1.0 to 3.2)/6.3 (3.2–33.3)	—	Low
Metoprolol	1.7 (1.0 to 2.9)/5 (3.5–8.8)	Q = 8.85, df = 3, I² = 66.1%	Moderate
Nadolol	5.1 (0.32 to 81.3)/3.7 (1.9–90.9)	—	Low
Propranolol	1.4 (1.1 to 1.8)/5.3 (3.4–11.4)	Q = 26.1, df = 10, I² = 59.5%	High
Timolol	1.8 (1.4 to 2.3)/4.5 (3.1–7.7)	Q = 0.86, df = 2, 12 = 0.0%	Moderate

Analgesic Medication Consumption

Beta-blocker	Time point	Weighted Mean Difference (95% CI)	Heterogeneity	
Metoprolol	Baseline	-0.17 (-1.4 to 1.1)	Q = 0.5, df = 3, I² = 0.0%	High
	4 weeks	-2.4 (-4.9 to 0.08)	—	Low
	8 weeks	-4.0 (-7.5 to -0.48)	Q = 3.49, df = 2, I² = 42.8%	Moderate
Propranolol	Baseline	0.0 (-1.9 to 1.9)	Q = 0.26, df = 7, I² = 0.00	High
	4 weeks	-6.0 (-11.8 to -0.12)	—	Low
	8 weeks	-2.9 (-25.9 to 20.2)	—	Low
	12 weeks	-2.1 (-3.2 to -0.95)	Q = 33.82, df = 5, I² = 85.2%	High

Headache Index

Beta-blocker	Time point	Standardized Mean Difference (95% CI)	Heterogeneity	
Alprenolol	8 weeks	0.05 (-0.47 to 0.58)	—	Low
Atenolol	8 weeks	-0.62 (-1.2 to -0.004)	—	Low
	12 weeks	-0.65 (-1.3 to -0.01)	—	—
Metoprolol	Baseline	0.12 (-0.22 to 0.47)	Q = 0.07, df = 1, I² = 0.0%	Moderate
	8 weeks	-0.42 (-0.77 to -0.07)	Q = 0.98, df = 1, I² = 0.0%	—
Nadolol	Baseline	0.12 (-0.24 to 0.48)	—	Low
	4 weeks	0.16 (-0.20 to 0.52)	—	—
	8 weeks	-0.14 (-0.50 to 0.23)	—	—
	12 weeks	-0.27 (-0.64 to 0.10)	—	—
Oxprenolol	4 weeks	-1.7 (-2.3 to -1.1)	—	—
	8 weeks	-0.42 (-0.09 to 0.93)	—	—
Pindolol	Baseline	0.14 (-0.52 to 0.80)	—	Low
	4 weeks	0.27 (-0.40 to 0.93)	—	—
Propranolol	0 weeks	-0.03 (-0.23 to 0.16)	Q = 6.24, df = 6, I² = 19.9%	High
	4 weeks	-0.66 (-1.3 to -0.01)	—	Low
	8 weeks	-0.48 (-0.75 to -0.22)	Q = 2.54, df = 4, I² = 0.0%	High
	12 weeks	-0.41 (-0.65 to -0.17)	Q = 2.56, df = 3, I² = 0.0%	High
Timolol	Baseline	0.0 (-0.31 to 0.31)	—	Low
	12 weeks	-0.53 (-0.84 to -0.21)	—	—
nortriptyline, pindolol, riboflavin). Comparisons with more than one study included: amitriptyline (n = 2), femoxetine (n = 2), flunarizine (n = 11), metoprolol (n = 4), nadolol (n = 3), nimodipine (n = 2), timolol (n = 2) tofenamic acid (n = 2), topiramate (n = 3) and valproate (n = 3). Several combinations were tested including propranolol + amitriptyline vs.
amitriptyline (n = 1), and propranolol + flunarizine was compared to flunarizine. Propranolol combined with topiramate was compared with topiramate alone. Nonpharmacologic interventions were compared to propranolol in three trials (acupuncture, behavioral management, biofeedback). Metoprolol was assessed in 14 trials, 8 were comparisons with pharmacologic interventions compared to propranolol in three trials (acupuncture, behavioral management, biofeedback). Metoprolol was assessed in 14 trials, 8 were comparisons with pharmacologic interventions (aspirin, bisoprolol, clomipramine, clonidine, flunarizine, nebivolol, pizotifen) and one with nonpharmacologic (acupuncture). Metoprolol was compared to a combination of metoprolol and fluoxetine in 2 trials and the combination of metoprolol and flunarizine was compared to flunarizine alone in 2 trials.

The primary outcome comparison (headache frequency) is provided in Table 4, and secondary outcomes are in Table 5. The majority of comparisons were single trials, making definitive conclusions difficult. Metoprolol, but not propranolol, was more effective than aspirin. Metoprolol was more effective than clomipramine, though comparable to acupuncture, bisoprolol, clonidine, flunarizine, nebivolol and pizotifen. Adding fluoxetine to metoprolol or flunarizine to either propranolol or metoprolol did not improve headache frequency. All comparisons were graded as low-quality. Propranolol was more effective than femoxetine.
mefenamic acid, naproxen, nifedipine and very low-dose (40mg) nortriptyline, but comparable to 5-hydroxytryptophan, acupuncture, atenolol, behavioral management, biofeedback, candesartan, clonidine, cyclandelate, flunarizine, metoprolol, nadolol, naproxen, nimodipine, riboflavin, timolol, tolfenamic acid, topiramate and valproic acid. All comparisons were single trials and were rated as low-quality evidence with the exception of the comparisons to flunarizine and metoprolol at 8 weeks that were graded as moderate or high-quality. The network meta-analysis confirmed these findings, but suggested that metoprolol was also superior to naproxen (SMD: -1.2, 95% CI: -1.6 to -0.78).

Chronic migraine

There were four trials that evaluated beta-blockers for chronic migraine headaches, none were placebo controlled. (Table 6). Propranolol was compared to flunarizine [151], nortriptyline [76], valproic acid [105] and to the combination of propranolol and flunarizine [151]. In addition, a combination of propranolol and topiramate was compared to topiramate alone [129]. Propranolol was no better than valproic acid or flunarizine and the combinations (propranolol
+ topiramate and propranolol + flunarizine) was no better than topiramate and flunarizine alone (Table 6).

Tension-type headache

There was only one trial evaluating tension-type headache, comparing the combination of pindolol and amitriptyline to placebo and to amitriptyline alone [57]. The combination of pindolol and amitriptyline was more effective than placebo at reducing headache frequency at 4 and 8 weeks (Table 6) and in reducing headaches by at least 50% (RR: 3.8, 95% CI: 1.5–9.3), but equally effective with amitriptyline.

Adverse events

Participants on beta-blockers were more likely to experience side effects than those on placebo (RR: 1.2, 95% CI: 1.0–1.4), though they were not more likely to withdraw (RR: 0.99, 95% CI: 0.83 to 1.2). Specific side effects more common with beta-blockers included dizziness (RR: 1.5,
95% CI: 1.0–2.3) and fatigue (RR: 1.5, 95% CI: 1.2–2.0). Depression, gastrointestinal problems, paresthesia’s and weight gain were not significantly different than placebo.

Propranolol was the only beta-blocker with sufficient numbers of studies to perform sensitivity analysis. There was no evidence of publication bias for propranolol’s reduction of headache frequency at 8 weeks (Egger’s p = 0.77) or at 12 weeks (p = 0.62). There was no evidence of an effect of quality (p = 0.97), age (p = 0.71), percent women (p = 0.28), percentage of dropouts (p = 0.55), dose (p = 0.61), intention to treat analysis (p = 0.35), concealed allocation (p = 0.38) or appropriateness of blinding (p = 0.98).

Discussion

This review included one hundred and eight randomized controlled trials. Nearly all evaluated the efficacy of beta-blockers for episodic migraine headaches. Compared to placebo,
propranolol was effective in reducing episodic migraine frequency. The effect began as early as four weeks. Migraine headache sufferers experienced an average reduction of 1.3 headaches/month; this translates to a reduction from 4.8 to 3.5 headaches a month. Subjects given propranolol were more likely to report at least 50% reduction in headaches and to reduce their consumption of analgesic medications. In addition to reducing the number of headaches, the residual headaches were less severe and shorter in duration compared to those receiving placebo. Outcomes from the propranolol comparisons to placebo were rated as high-quality evidence. In three trials, metoprolol also reduced headache frequency, though the reduction was less than 1 headache a month. Conclusions regarding the efficacy of other beta-blockers is less certain, as most were studied in just one trial each. Atenolol, bisoprolol and timolol had weak evidence of benefit. Acebutolol, alprenolol and nadolol appeared to be ineffective in migraine prophylaxis. This is unlikely to be due to properties of the beta-blockers. Propranolol is nonselective as is alprenolol and nadolol. Metoprolol, also effective is a β-1 selective drug as is atenolol, bisoprolol and acebutolol. Given that acebutolol, alprenolol and nadolol were only studied in one trial each, it is possible that this may be either random variation in outcomes or a
Table 4. Primary outcome (headache frequency) of comparative effectiveness trials.

Comparison, Time point	Weighted Mean Difference (95% CI)	Heterogeneity	Quality of Evidence
Bisoprolol (5mg)			
Baseline	0.20 (-0.43 to 0.83)	—	Low
4 Weeks	0.0 (-0.74 to 0.74)	—	
8 weeks	0.20 (-0.47 to -0.87)	—	
12 weeks	0.0 (-0.67 to -0.67)	—	
Metoprolol			
Acupuncture	17 weeks -0.7 (-2.7 to 1.3)	—	Low
Aspirin	8 weeks -1.6 (-2.8 to -0.46)	—	Low
Bisoprolol			
Baseline	0.0 (-0.31 to 0.31)	—	Low
12 weeks	-0.09 (-0.62 to 0.44)	—	
Clomipramine			
4 weeks	-2.0 (-3.9 to -0.16)	—	Low
Clonidine			
Baseline	0.00 (-0.51 to 0.51)	—	Low
8 weeks	-1.40 (-3.3 to 0.44)	—	
Flunarizine			
Baseline	-0.60 (-1.4 to 0.19)	—	Low
4 weeks	-0.3 (-1.1 to 0.53)	—	
8 weeks	-0.9 (-1.7 to -0.10)	—	
12 weeks	-0.5 (-1.3 to 0.33)	—	
16 weeks	-0.1 (-0.93 to 0.73)	—	
20 weeks	-0.36 (-1.5 to 0.75)	—	
Metoprolol + Fluoxetine	Baseline -0.03 (-0.40 to 0.33)	—	Low
8 weeks	0.30 (0.19 to 0.40)	—	
Nebivolol			
Baseline	0.10 (-0.62 to 0.82)	—	Low
16 weeks	-0.30 (-1.2 to 0.60)	—	
Pizotifen			
Baseline	0.00 (-0.47 to 0.47)	—	Low
8 weeks	0.90 (-0.01 to 1.8)	—	
Metoprolol + Flunarizine	12 weeks -0.9 (-1.6 to -0.22)	—	Low
24 weeks	-0.8 (-1.6 to -0.04)	—	
36 weeks	-0.6 (-2.4 to 1.2)	—	
48 weeks	-0.3 (-1.2 to 0.57)	—	
Nadolol (80mg)			
Nadolol (160mg)	Baseline 0.57 (-2.1 to 3.3)	—	Low
4 weeks	-0.25 (-2.9 to 2.4)	—	
8 weeks	0.11 (-2.6 to 2.8)	—	
12 weeks	-0.34 (-3.1 to 2.4)	—	
Pindolol			
Pindolol (15mg)	Baseline 4.0 (-0.6 to 8.1)	—	Low
4 weeks	4.0 (-0.05 to 8.1)	—	
Comparison	Weighted Mean Difference (95% CI)	Heterogeneity	Quality of Evidence
-----------------------------	----------------------------------	---------------	---------------------
Propranolol			
5-Hydroxy-triptophan			
Baseline	-2.3 (-5.9 to 1.3)	—	Low
16 weeks	-2.9 (-6.6 to 0.81)	—	
Acupuncture			
Baseline	-0.10 (-0.59 to 0.40)	—	Low
12 weeks	0.30 (-0.25 to 0.85)	—	
Behavioral Management			
Baseline	-0.40 (-1.1 to 0.34)	—	Low
40 weeks	-0.30 (-0.94 to 0.34)	—	
64 weeks	-0.20 (-0.89 to 0.49)	—	
Propranolol + Behavioral Management			
Baseline	-0.50 (-1.2 to 0.18)	—	Low
40 weeks	0.70 (-1.6 to 1.2)	—	
64 weeks	0.80 (0.19 to 1.4)	—	
Biofeedback			
24 weeks	0.53 (0.08 to 0.97)	—	Low
Candesartan			
12 weeks	-0.04 (-0.59 to 0.51)	—	Low
Cyclandelate (HA days/mo)			
Baseline	-0.16 (-0.66 to 0.35)	—	Low
4 weeks	-0.32 (-0.83 to 0.18)	—	
8 weeks	0.13 (-0.37 to 0.63)	—	
Femoxetine			
Baseline	0.0 (-2.2 to 2.2)	—	Low
8 weeks	-0.70 (-1.5 to 0.13)	—	
12 weeks	-1.5 (-3.6 to 0.55)	—	
Flunarizine			
Baseline	-0.005 (-0.11 to 0.10)	Q = 0.83, df = 5, I² = 0.0%	High
4 weeks	0.40 (-0.34 to 1.1)	Q = 3.1, df = 3, I² = 3.7%	High
8 weeks	0.42 (-0.55 to 1.4)	Q = 1.48, df = 1, I² = 32.6%	Moderate
12 weeks	0.68 (-0.06 to 1.4)	Q = 0.55, df = 2, I² = 0.0%	High
16 weeks	-0.04 (-0.19 to 0.12)	Q = 5.44, df = 6, I² = 7.0%	High
Mefenamic Acid			
12 weeks	-2.1 (-5.3 to 1.3)	—	Low
Metoprolol			
Baseline	0.00 (-0.38 to 0.38)	—	Low
4 weeks	-0.70 (-2.0 to 0.62)	—	
8 weeks	0.00 (-0.54 to 0.56)	Q = 0.0, df = 1, I² = 0.0%	
Nadolol			
Baseline	0.27 (-2.6 to 3.2)	—	Low
4 weeks	1.6 (-0.28 to 3.4)	—	
8 weeks	1.7 (-0.23 to 3.6)	—	
12 weeks	1.8 (-0.16 to 3.7)	—	
24 weeks	-4.8 (-8.9 to -0.77)	—	
Naproxen			
12 weeks	-1.4 (-1.9 to -0.95)	—	Low
problem with the trials (such as dose or duration). The network analysis suggests that the benefit of beta-blocker may be a class effect.

The literature comparing beta-blockers to other modalities consisted mostly of single-trials with the exception of the comparison of propranolol to metoprolol (moderate quality, no difference) and to flunarizine (high quality, no difference). Flunarizine, not available in the
Table 5. Secondary outcomes of comparative effectiveness trials.

Drug	Comparison, Time Point	Weighted Mean Difference (95% CI)	Heterogeneity	Quality of Evidence
Headache Days	**Weighted Mean Difference (95% CI)**			
Metoprolol	Baseline	0.0 (-3.7 to 3.7)	—	Low
	8 Weeks	-1.4 (-5.7 to 2.1)	—	
Metoprolol + Fluoxetine	Baseline	2.3 (-3.4 to 7.9)	—	Low
Nadolol (80mg)	Baseline	-0.22 (-3.9 to 3.4)	—	
	8 weeks	-0.05 (-3.9 to 3.8)	—	
	12 weeks	2.2 (-7.8 to 3.6)	—	
Propranolol	Baseline	0.05 (-0.94 to 1.0)	—	Low
	4 weeks	0.28 (-0.72 to 1.3)	—	
Acupuncture	Baseline	0.0 (-1.8 to 1.8)	—	Low
Atenolol	Baseline	0.50 (-0.88 to 1.9)	—	Low
	40 weeks	-0.10 (-1.3 to 1.1)	—	
	64 weeks	0.10 (-1.1 to 1.3)	—	
Candesartan	Baseline	0.45 (-1.2 to 2.1)	—	Low
Clonidine	Baseline	0.0 (-1.0 to 1.0)	—	Low
	4 weeks	0.28 (-0.72 to 1.3)	—	
	8 weeks	0.70 (-0.43 to 1.8)	—	
Cyclandelate	Baseline	-0.60 (-2.5 to 1.3)	—	Low
	4 weeks	-1.1 (-2.8 to 0.64)	—	
	8 weeks	0.47 (-1.2 to 2.0)	—	
Fenoterol	Baseline	-1.6 (-4.5 to 1.5)	—	Low
Flunarizine	Baseline	-0.80 (-2.2 to 0.59)	—	Low
	4 weeks	1.4 (0.02 to 2.8)	—	
	8 weeks	0.50 (-0.91 to 1.9)	—	
	12 weeks	-0.5 (-1.9 to 0.96)	—	
	16 weeks	0.61 (-0.91 to 2.3)	—	
Metoprolol	Baseline	-0.51 (-1.5 to 0.59)	—	Low
	4 weeks	-0.45 (-0.83 to 0.39)	—	
	8 weeks	-0.17 (-0.96 to 0.61)	—	
	16 weeks	0.06 (-1.2 to 2.0)	—	
	24 weeks	-2.2 (-4.2 to -0.24)	—	
Naproxen	Baseline	-2.8 (-3.6 to -1.9)	—	Low
Nifedipine	Baseline	-0.80 (-3.3 to 1.7)	—	Low
	4 weeks	-3.6 (-7.0 to -0.08)	—	
	16 weeks	-2.2 (-4.5 to -0.32)	—	
	28 weeks	-0.80 (-2.0 to 0.40)	—	
Propranolol (80mg x 160mg)	Baseline	0.0 (-1.7 to 1.7)	—	Low
Tolmetinamic Acid	Baseline	0.0 (-1.8 to 1.8)	—	Low
	12 weeks	-0.2 (-2.1 to 1.6)	—	
Topiramate	Baseline	0.12 (-0.5 to 0.55)	—	Low
	24 weeks	-0.25 (-0.33 to 0.03)	—	

Headache Index, Standardized Mean Difference (95% CI) (Continued)
Drug	Comparison, Time Point	Weighted Mean Difference (95% CI)	Heterogeneity	Quality of Evidence
Metoprolol	Clonidine	Baseline 0.01 (-0.49 to 0.49)	—	Low
		8 Weeks -0.24 (-0.76 to 0.29)	—	—
Pindolol (7.5mg)	Pindolol (15 mg)	Baseline 0.03 (-0.94 to 1.04)	—	Low
		4 weeks 0.27 (-0.72 to 1.3)	—	—
Propranolol	Amitriptyline	Baseline 0.05 (-0.94 to 1.04)	—	Low
		4 weeks 0.29 (-0.69 to 0.21)	—	—
	Amitriptyline + Biofeedback	Baseline 0.08 (-0.57 to 0.55)	—	Low
		6 weeks 0.25 (-0.23 to 0.74)	—	—
	Amitriptyline + Propranolol	Baseline 0.01 (-0.44 to 0.46)	—	Low
		6 weeks 0.08 (-0.29 to 0.51)	—	—
	Amitriptyline + Propranolol + Biofeedback	Baseline -0.04 (-0.52 to 0.48)	—	Low
		6 weeks 0.23 (-0.23 to 0.74)	—	—
	Biofeedback	Baseline 0.17 (-0.31 to 0.64)	—	Low
		6 weeks -0.35 (-0.83 to 0.13)	—	—
	Biofeedback + Propranolol	Baseline -0.03 (-0.50 to 0.44)	—	Low
		6 weeks 0.39 (-0.09 to 0.88)	—	—
	Aspirin	Baseline 0.00 (-0.05 to 0.65)	—	Low
		6 weeks 0.23 (-0.06 to 1.05)	—	—
	Atenolol	6 weeks 0.01 (-0.59 to 0.62)	—	Low
	Fenretidine	Baseline 0.00 (-0.37 to 0.57)	—	Low
		8 weeks -0.24 (-0.70 to 0.21)	—	—
		12 weeks -0.35 (-0.92 to 0.22)	—	—
	Flunarizine	Baseline 0.12 (-0.17 to 0.42)	Q = 1.58, I² = 0%	Moderate
		6 weeks -0.18 (-0.42 to 0.10)	Q = 2.45, I² = 15.9%	—
		8 weeks -0.13 (-0.75 to 0.48)	Q = 2.27, I² = 35.5%	—
		12 weeks 0.16 (-1.1 to 1.4)	Q = 8.7, I² = 85.5%	—
		16 weeks -0.08 (-0.48 to 0.32)	Q = 3.13, I² = 49.3%	—
	Flunarizine + Propranolol	Baseline 0.42 (0.10 to 1.1)	—	Low
		4 weeks 0.29 (0.43 to 1.0)	—	—
		8 weeks 0.17 (-0.04 to 0.90)	—	—
		12 weeks 0.47 (0.26 to 1.2)	—	—
		16 weeks 0.67 (0.07 to 1.4)	—	—
Metoprolol	Baseline 0.00 (-0.29 to 0.29)	Q = 0.08, I² = 0%	—	—
		8 weeks 0.08 (-0.24 to 0.35)	Q = 0.23, I² = 0%	—
Nadolol	Baseline 0.41 (-0.09 to 0.90)	—	Low	—
		4 weeks 0.34 (0.16 to 0.53)	—	—
		8 weeks 0.44 (-0.08 to 0.96)	—	—
		12 weeks 0.29 (-0.22 to 0.65)	—	—
Timolol	Baseline 0.00 (-0.31 to 0.31)	—	Low	—
		12 weeks 0.17 (-0.14 to 0.48)	—	—
Valproic Acid	Baseline -0.09 (-1.56 to 0.38)	—	Low	—
		10 weeks -0.03 (-0.60 to 0.44)	—	—
Propranolol + Flunarizine	Topiramate	Baseline 0.07 (-0.36 to 0.57)	—	Low
		12 weeks 0.59 (0.35 to 1.4)	—	—
Drug	Comparison, Time Point Weighted Mean Difference (95% CI)	Heterogeneity	Quality of Evidence	
------	--	---------------	---------------------	
Metoprolol	ASA	2.4 (0.88 to 6.7)	—	Low
	Clonidine	1.5 (0.82 to 2.9)	—	Low
	Flunarizine	1.1 (0.98 to 1.3)	—	Low
	Nebivolol	1.1 (0.56 to 2.2)	—	Low
	Pizotifen	0.89 (0.56 to 1.3)	—	Low
Metoprolol + Flunarizine	Flunarizine	1.3 (1.0 to 1.6)	—	Low
Propranolol	ASA	1.3 (0.88 to 1.9)	Q = 2.44, df = 1, I² = 59.1%	Moderate
	Acupuncture	0.98 (0.87 to 1.1)	—	Low
	Candesartan	0.93 (0.81 to 1.4)	—	Low
	Clonidine	1.6 (0.86 to 3.1)	—	Low
	Cyclandelate	1.0 (0.71 to 1.3)	Q = 4.38, I² = 54.4%	Moderate
	Fenacetine	3.5 (0.73 to 29.4)	—	Low
	Flunarizine	1.0 (0.89 to 1.2)	Q = 3.30, I² = 0.0%	High
	Flunarizine + Propranolol	0.86 (0.56 to 1.2)	—	Low
	Metoprolol	0.88 (0.60 to 1.2)	Q = 0.11, I² = 0.0%	High
	Nebivolol	0.66 (0.27 to 1.0)	Q = 2.0, I² = 67.8%	Moderate
	Nifedipine	2.2 (1.3 to 3.8)	—	Low
	Pizotifen	0.89 (0.56 to 1.3)	—	Low
	Flunarizine	1.0 (0.89 to 1.2)	Q = 3.30, I² = 0.0%	High
	Flunarizine + Propranolol	0.86 (0.56 to 1.2)	—	Low
	Metoprolol	0.88 (0.60 to 1.2)	Q = 0.11, I² = 0.0%	Moderate
	Nebivolol	0.66 (0.27 to 1.0)	Q = 2.0, I² = 67.8%	Moderate
	Nifedipine	2.2 (1.3 to 3.8)	—	Low
	Pizotifen	0.89 (0.56 to 1.3)	—	Low
	Flunarizine	1.0 (0.89 to 1.2)	Q = 3.30, I² = 0.0%	High
	Flunarizine + Propranolol	0.86 (0.56 to 1.2)	—	Low
	Metoprolol	0.88 (0.60 to 1.2)	Q = 0.11, I² = 0.0%	Moderate
	Nebivolol	0.66 (0.27 to 1.0)	Q = 2.0, I² = 67.8%	Moderate
	Nifedipine	2.2 (1.3 to 3.8)	—	Low
	Pizotifen	0.89 (0.56 to 1.3)	—	Low
	Flunarizine	1.0 (0.89 to 1.2)	Q = 3.30, I² = 0.0%	High
	Flunarizine + Propranolol	0.86 (0.56 to 1.2)	—	Low
	Metoprolol	0.88 (0.60 to 1.2)	Q = 0.11, I² = 0.0%	Moderate
	Nebivolol	0.66 (0.27 to 1.0)	Q = 2.0, I² = 67.8%	Moderate
	Nifedipine	2.2 (1.3 to 3.8)	—	Low
	Pizotifen	0.89 (0.56 to 1.3)	—	Low
	Flunarizine	1.0 (0.89 to 1.2)	Q = 3.30, I² = 0.0%	High
	Flunarizine + Propranolol	0.86 (0.56 to 1.2)	—	Low
	Metoprolol	0.88 (0.60 to 1.2)	Q = 0.11, I² = 0.0%	Moderate
	Nebivolol	0.66 (0.27 to 1.0)	Q = 2.0, I² = 67.8%	Moderate
	Nifedipine	2.2 (1.3 to 3.8)	—	Low
	Pizotifen	0.89 (0.56 to 1.3)	—	Low
	Flunarizine	1.0 (0.89 to 1.2)	Q = 3.30, I² = 0.0%	High
	Flunarizine + Propranolol	0.86 (0.56 to 1.2)	—	Low
	Metoprolol	0.88 (0.60 to 1.2)	Q = 0.11, I² = 0.0%	Moderate
	Nebivolol	0.66 (0.27 to 1.0)	Q = 2.0, I² = 67.8%	Moderate
	Nifedipine	2.2 (1.3 to 3.8)	—	Low
	Pizotifen	0.89 (0.56 to 1.3)	—	Low
	Flunarizine	1.0 (0.89 to 1.2)	Q = 3.30, I² = 0.0%	High
	Flunarizine + Propranolol	0.86 (0.56 to 1.2)	—	Low
	Metoprolol	0.88 (0.60 to 1.2)	Q = 0.11, I² = 0.0%	Moderate
	Nebivolol	0.66 (0.27 to 1.0)	Q = 2.0, I² = 67.8%	Moderate
	Nifedipine	2.2 (1.3 to 3.8)	—	Low
	Pizotifen	0.89 (0.56 to 1.3)	—	Low
	Flunarizine	1.0 (0.89 to 1.2)	Q = 3.30, I² = 0.0%	High

Medicine Use (doses/month)

Drug	Comparison	Weighted Mean Difference (95% CI)	Heterogeneity	Quality of evidence
Metoprolol	Bisoprolol	0.0 (0.1 to 0.3)	—	Low
	12 weeks	0.11 (0.5 to 0.52)	—	Low
Clonipramine	4 weeks	-0.05 (-0.06 to 0.08)	—	Low
Clonidine	Baseline	0.0 (0.05 to 0.05)	—	Low
	8 weeks	-0.32 (-0.32 to 0.02)	—	Low
Propranolol	Nortriptyline	1.1 (0.48 to 2.7)	—	Low
	12 weeks	0.94 (0.72 to 1.0)	—	Low
Timodol	1.1 (0.04 to 1.0)	—	Low	
Topiramate	Baseline	1.0 (0.08 to 1.4)	Q = 0.01, I² = 0.0%	Moderate
Valproic Acid	0.98 (0.72 to 1.2)	Q = 0.16, I² = 0.0%	Moderate	

Health Related Quality of Life

(Continued)
Table 5. (Continued)

Drug1	Comparison, Time Point	Weighted Mean Difference (95% CI)	Heterogeneity	Quality of Evidence	
		Standardized Mean Difference (95% CI)			
Metoprolol	Nebivolol (MOS SF36)	Baseline	-0.21 (-0.93 to 0.51)	—	Low
		16 Weeks	-0.46 (-1.2 to 0.27)	—	
Propranolol	Acupuncture (MOS SF36)	Baseline	-0.19 (-0.56 to 0.19)	—	Low
		12 weeks	-0.47 (-0.84 to -0.10)	—	
Behavioral Management	Baseline	0.14 (-0.24 to 0.52)	—	Low	
		40 weeks	0.48 (0.10 to 0.86)	—	
		64 weeks	0.23 (-0.15 to 0.60)	—	
Behavioral Management + Propranolol	Baseline	0.07 (-0.28 to 0.43)	—	Low	
		40 weeks	0.68 (0.31 to 1.0)	—	
		64 weeks	0.61 (-.24 to 0.87)	—	
Candesartan	Baseline	-0.18 (-0.54 to 0.19)	—	Low	
Riboflavin (MIDAS)	Baseline	-0.06 (-0.48 to 0.33)	—	Low	
		4 weeks	0.09 (-0.39 to 0.39)	—	
Propranolol + Topiramate	Topiramate (MIDAS)	24 weeks	0.01 (-0.39 to 0.41)	—	Low
Headache Severity	Comparison	Standardized Mean Difference (95% CI)	Heterogeneity	Quality of evidence	
Metoprolol	Aspirin	8 weeks	0.03 (-0.20 to 0.86)	—	Low
	Acupuncture	17 weeks	-0.46 (-0.81 to -0.002)	—	Low
Bisoprolol	Baseline	0.00 (-0.31 to 0.31)	—	Low	
	12 weeks	0.19 (-0.13 to 0.5)	—		
Flunarizine	Baseline	0.48 (0.14 to 0.79)	—	Low	
	4 weeks	0.13 (-0.22 to 0.48)	—		
	8 weeks	0.38 (0.02 to 0.73)	—		
	12 weeks	0.13 (-0.22 to 0.48)	—		
	16 weeks	0.75 (0.39 to 1.1)	—		
	20 weeks	0.42 (0.07 to 0.77)	—		
Nebivolol	16 weeks	0.18 (-0.55 to 0.91)	—	Low	
Pizotifen	Baseline	0.00 (-0.47 to 0.47)	—	Low	
	8 weeks	-0.91 (-1.4 to 0.40)	—		
Metoprolol + Flunarizine	Flunarizine	12 weeks	-0.25 (-0.79 to 0.26)	—	Low
	24 weeks	-0.55 (-1.1 to -0.02)	—		
	36 weeks	-0.48 (-1.0 to 0.047)	—		
	48 weeks	-0.54 (-0.72 to -0.34)	—		
Propranolol	Acupuncture	Baseline	0.26 (-0.13 to 0.65)	—	Low
	12 weeks	0.63 (0.25 to 1.03)	—		
5-hydroxytryptophan	Baseline	0.16 (-0.45 to 0.71)	—	Low	
	16 weeks	0.08 (-0.63 to 0.79)	—		
Biofeedback	Baseline	-0.07 (-0.36 to 0.21)	—	Low	
	24 weeks	0.13 (-0.15 to 0.42)	—		
Cyclandelate	Baseline	-0.07 (-0.58 to 0.45)	—	Low	
	4 weeks	-0.27 (-0.68 to 0.13)	—		
	8 weeks	-0.05 (-0.51 to 0.40)	—		

(Continued)
Table 5. (Continued)

Drug	Comparison, Time Point	Weighted Mean Difference (95% CI)	Heterogeneity	Quality of Evidence
Flunarizine	Baseline	0.00 (-0.32 to 0.32)	Q = 0.0, df = 1, I2 = 0.0%	Moderate
	4 weeks	-0.24 (-0.66 to 0.17)	—	Low
	8 weeks	-0.57 (-1.16 to -0.13)	—	Low
	12 weeks	-0.25 (-0.69 to 0.19)	—	Low
	16 weeks	0.17 (-0.52 to 0.85)	Q = 79.7, df = 1, I2 = 92.8%	High
Metoprolol	Baseline	0.0 (-0.37 to 0.57)	—	Low
	8 weeks	0.01 (-0.38 to 0.38)	—	—
Nadolol	Baseline	0.00 (-0.67 to 0.64)	—	Low
	4 weeks	0.00 (0.07 to 1.7)	—	—
Naproxen	12 weeks	0.14 (-0.29 to 0.56)	—	Low
Nimesidine	24 weeks	-0.50 (-0.89 to -0.11)	—	Low
Propranolol (80 v 160mg doses)	Baseline	0.00 (-0.40 to 0.40)	—	Low
	8 weeks	0.00 (-0.51 to 0.51)	—	—
	12 weeks	0.00 (-0.43 to 0.43)	—	—
Riboflavin	Baseline	0.32 (-0.08 to 0.71)	—	Low
	4 weeks	0.33 (-0.07 to 0.72)	—	—
	8 weeks	0.21 (-0.18 to 0.60)	—	—
	12 weeks	0.42 (0.02 to 0.82)	—	—
	24 weeks	0.11 (-0.29 to 0.50)	—	—
Timolol	Baseline	0.00 (-0.31 to 0.31)	—	Low
	12 weeks	0.14 (-0.17 to 0.45)	—	—
Toflennamic Acid	Baseline	0.28 (-0.37 to 0.66)	—	Low
	12 weeks	0.15 (-0.63 to 0.93)	Q = 4.53, df = 1, I2 = 77.8%	Moderate
Topiramate	Baseline	-0.44 (-0.95 to 0.07)	—	Low
	4 weeks	-0.18 (-0.69 to 0.32)	—	—
	8 weeks	0.23 (-0.28 to 0.74)	—	—

Headache Duration

Comparison	Weighted Mean Difference (95% CI)	Heterogeneity	Quality of evidence	
Bisoprolol (5mg)				
Baseline	2.4 (-4.5 to 9.3)	—	Low	
12 weeks	-4.8 (-9.9 to 0.31)	—	—	
Metoprolol				
Acupuncture	12 weeks	-2.4 (-6.5 to 1.7)	—	Low
Bisoprolol	Baseline	0.01 (-0.8 to 0.8)	—	Low
	12 weeks	0.30 (-4.2 to 4.8)	—	—
Clomipramine	4 weeks	-2.8 (-4.4 to -1.2)	—	Low
Flunarizine	Baseline	-1.5 (-3.7 to 1.1)	—	Low
	4 weeks	-3.2 (-5.7 to -0.69)	—	—
	8 weeks	-2.3 (-5.9 to -0.66)	—	—
	12 weeks	-2.4 (-4.9 to -0.11)	—	—
	16 weeks	-0.40 (-3.2 to 2.4)	—	—
	20 weeks	-1.3 (-4.1 to 1.5)	—	—
Metoprolol + Flunarizine	Baseline	0.10 (-0.15 to 0.35)	—	Low
	12 weeks	-0.53 (-0.75 to -0.31)	—	—
Nebivolol	16 weeks	11 (-18.6 to 40.6)	—	Low
Nimesidine	Baseline	1.8 (-1.3 to 6.5)	—	Low
	4 weeks	15.8 (0.89 to 31.1)	—	—
	28 weeks	12.2 (10.06 to 23.7)	—	—

(Continued)
Table 5. (Continued)

Drug	Comparison, Time Point	Weighted Mean Difference (95% CI)	Heterogeneity	Quality of Evidence
Pindolol (7.5 mg)				
Baseline	-0.70 (-7.9 to 6.6)	—	Low	
4 weeks	-0.80 (-6.2 to 6.5)	—	Low	
Propranolol	5-hydroxytryptophan			
Baseline	6.1 (-1.1 to 13.3)	—	Low	
16 weeks	3.6 (-3.7 to 10.9)	—	Low	
Biofeedback				
Baseline	0.04 (-2.5 to 2.6)	—	Low	
24 weeks	0.35 (-1.3 to 2.0)	—	Low	
Candesartan	12 weeks	6.3 (-5.9 to 14.5)	—	Low
Cycloclavate				
Baseline	6.7 (-22.5 to 9.1)	—	Low	
4 weeks	-12.8 (-37.4 to 12.2)	—	Low	
8 weeks	6.6 (-18.2 to 31.4)	—	Low	
12 weeks	-4.5 (-20.6 to 17.6)	—	Low	
Flunitazine				
Baseline	2.7 (-1.2 to 6.6)	—	Low	
4 weeks	-0.55 (-4.8 to 3.7)	Q = 0.06, df = 1, I^2 = 0.0%	Moderate	
8 weeks	0.29 (-3.3 to 3.9)	Q = 0.08, df = 1, I^2 = 0.0%	Moderate	
12 weeks	-0.21 (-3.3 to 2.9)	Q = 0.09, df = 1, I^2 = 0.0%	Moderate	
16 weeks	1.4 (0.25 to 2.6)	Q = 4.33, df = 4, I^2 = 7.6%	High	
Mefenamic Acid	12 weeks	7.0 (-27.3 to 41.3)	—	Low
Metoprolol	Baseline	-24.0 (-40.5 to -7.7)	—	Low
4 weeks	4.2 (-23.2 to 20.5)	—	Low	
16 weeks	0.0 (-12.3 to 12.3)	—	Low	
28 weeks	33.0 (-0.3 to 69.7)	—	Low	
Nadolol	Baseline	-8.1 (-31.4 to 4.8)	—	Low
24 weeks	-19.5 (-51.8 to -7.1)	—	Low	
Nifedipine	Baseline	-1.1 (-1.6 to 0.4)	—	Low
4 weeks	-15.8 (-31.1 to -0.49)	—	Low	
16 weeks	-12.7 (-27.7 to 2.3)	—	Low	
28 weeks	20.0 (0.97 to 39.0)	—	Low	
Nimodipine	24 weeks	-4.0 (-7.9 to -0.08)	—	Low
Propranolol (80 mg vs 160mg)				
Baseline	0.0 (-1.2 to 1.2)	—	Low	
8 weeks	-0.30 (-6.9 to 6.3)	—	Low	
12 weeks	0.20 (-1.8 to 2.2)	—	Low	
Riboflavin	Baseline	0.10 (-0.29 to 0.48)	—	Low
4 weeks	0.18 (-0.31 to 0.55)	—	Low	
8 weeks	0.08 (-0.26 to 0.26)	—	Low	
12 weeks	-0.10 (-0.39 to 0.19)	—	Low	
24 weeks	0.50 (0.06 to 6.6)	—	Low	
Timolol	Baseline	0.0 (-2.6 to 2.6)	—	Low
12 weeks	-0.3 (-2.3 to 2.3)	—	Low	
Toltenamic Acid	Baseline	6.4 (-21.9 to 34.7)	—	Low
12 weeks	1.7 (-6.8 to 7.0)	Q = 0.01, df = 1, I^2 = 0.0%	Moderate	
Topiramate	Baseline	-1.3 (-4.8 to 2.3)	—	Low
4 weeks	-1.2 (-4.6 to 2.3)	—	Low	
8 weeks	1.0 (-1.9 to 4.0)	—	Low	
Valproic Acid	Baseline	-1.4 (-9.9 to 7.2)	—	Low
10 weeks	-0.70 (-6.0 to 4.6)	—	Low	

https://doi.org/10.1371/journal.pone.0212785.t005
United States, is well-established as effective in treating migraine headache. Universally, beta-blockers were associated with bradycardia and with lower average pulse rates than placebo trials. This is not surprising given their impact on chronotropy. Other side effects more common among participants taking beta-blockers included dizziness and fatigue, though subjects on beta-blockers were not more likely to withdraw from the studies.

While these conclusions are similar to previous reviews, this analysis is a unique contribution in many ways, first it included many more trials than previously reported, including Chinese trials that had previously not been included. Secondly, all beta-blockers were carefully parsed by type of headache (tension v. migraine, episodic v. chronic). Third, this study examined outcomes at the specific times reported, it is common for meta-analyses to pool trials at the last time point, regardless of whether there were significant differences in that time-point. Fourth, trial sequential analysis that demonstrated the adequacy of the current database for propranolol, suggesting that there is low likelihood of type 1 error in the conclusions. Fifth, the

Table 6. Non-episodic trials.

Chronic Migraine

Comparison	Outcome	Time point	Effect	Heterogeneity	Quality of Evidence
Propranolol v. Placebo	50% reduction in headache (RR)	42 weeks	2.0 (0.94 to 4.3)	—	Low
Propranolol v. Flunarizine	Headache Frequency (headaches/month)	Baseline	3.0 (0.79 to 5.2)	—	Low
		8 weeks	1.0 (-1.5 to 3.5)	—	—
Propranolol + Flunarizine vs. Flunarizine	Headache Frequency (headaches/month)	Baseline	2.0 (-0.19 to 4.2)	—	Low
		8 weeks	3.0 (0.56 to 5.4)	—	—
	50% reduction in headache (RR)	8 weeks	1.3 (0.97 to 1.6)	—	Low
Propranolol v. Nortriptyline	Headache Frequency (Headaches/month)	Baseline	-1.0 (-4.7 to 2.7)	—	Low
		8 weeks	-9.0 (-12.7 to -5.3)	—	—
Propranolol v. Propranolol + Nortriptyline	Headache Frequency (Headaches/month)	Baseline	-4.0 (-7.8 to -0.24)	—	Low
		8 weeks	-7.0 (-10.8 to -3.3)	—	—
Propranolol + Topiramate v. Topiramate	Headache Frequency (headaches/month)	Baseline	0.0 (-0.28 to 0.28)	—	Low
		12 weeks	-0.80 (-2.3 to 0.67)	—	—
	Health Related Quality of Life (MIDAS)	Baseline	0.00 (-0.28 to 0.28)	—	Low
		12 weeks	0.09 (-0.26 to 0.44)	—	—
	50% reduction in headache (RR)	12 weeks	1.05 (0.63 to 1.7)	—	Low
		24 weeks	1.1 (0.79 to 1.8)	—	—
Propranolol v. Valproic Acid	Headache Frequency (headaches/month)	8 weeks	4.8 (0.27 to 9.2)	—	Low

Chronic Tension-Type Headache

Comparison	Outcome	Time point	Effect	Heterogeneity	Quality of Evidence
Pindolol + Amitriptyline v. Placebo	Headache Frequency (headaches/month)	Baseline	1.4 (-2.3 to 5.0)	—	Low
		4 weeks	7.8 (-13.9 to -1.5)	—	—
		8 weeks	-11.6 (-16.8 to -5.5)	—	—
	50% reduction in headache (RR)	8 weeks	3.8 (1.5 to 9.3)	—	Low
	Headache Severity (SMD)	Baseline	0.29 (-0.34 to 0.91)	—	Low
		8 weeks	-0.68 (-1.9 to -0.04)	—	—
Pindolol + Amitriptyline v. Amitriptyline	Headache Frequency (headaches/month)	Baseline	1.6 (-2.2 to 5.3)	—	Low
		4 weeks	0.64 (-5.2 to 6.4)	—	—
		8 weeks	-1.2 (-6.4 to 4.1)	—	—
	50% reduction in headache (RR)	8 weeks	1.4 (0.87 to 2.2)	—	Low
	Headache Severity (SMD)	Baseline	3.7 (2.7 to 4.7)	—	Low
		8 weeks	-0.05 (-0.65 to 0.56)	—	—

https://doi.org/10.1371/journal.pone.0212785.t006
network meta-analysis didn’t show clear benefit of one beta-blocker over another, suggesting a class effect, though other beta-blockers have weaker evidence for benefit.

An important question, unanswered in this review, is how effective beta-blockers are compared to other commonly used prophylactic regimens. Propranolol, metoprolol and flunarizine appear to have similar efficacy. The other comparisons were all single-trial comparisons, making definitive conclusions impossible. In a previous review, tricyclic antidepressants resulted in a reduction in headache frequency for patients experiencing chronic migraines of 1.3 SMD, compared to placebo, a large effect [17]. In this study, there was only had one trial on chronic migraines, and the calculated SMD was 0.58, about half of the effect previously reported for TCAs. In a network meta-analysis of chronic migraines, tricyclic antidepressants were more effective than propranolol but propranolol was similar in efficacy to antiepileptics and flunarizine, similar to findings in this study, though it is important to note that the majority of trials for beta-blockers are for episodic rather than chronic migraines. Definitive answer to this comparative effectiveness question requires additional studies that directly compare the different prophylactic modalities.

This review has several important limitations. First, while the quality of evidence for the comparison between propranolol and placebo was high, in general, the remaining comparisons were of low quality, consisting mostly of underpowered single randomized trials. While all the included trials were randomized, there were significant methodologic problems; combining poorly designed studies can lead to questionable results. It is important to note that most of the comparisons were graded as being of low-quality evidence because of the paucity of studies and concern about study problems. Secondly, studies were inconsistent in reporting outcomes, so even when there were more than one trial available, specific outcomes may only be provided by a single study. Moreover, there were significant problems with selective reporting of outcomes and many studies did not collect information on headache frequency, the measure preferred by the International Headache Society. Third, the number of studies available precluded sensitivity analyses, such as assessing for publication bias or exploring sources of heterogeneity. Fourth, beta-blockers have been studied almost exclusively in the management of episodic migraine headaches. Their benefit for chronic episodic or tension-type headaches is uncertain. Fifth, because of the paucity of trials for most beta-blockers the network analysis was underpowered to show differences between beta-blockers. Sixth, the average age of participants was 38, and mostly female. While this reflects the demographics of headache, it limits applicability to older adults.

Conclusions
Propranolol is effective in reducing the burden of patients with episodic migraine headaches, reducing headaches from 5 to 3 headaches a month. This means that migraine sufferers given propranolol will have substantial residual headache burden. Propranolol reduces headaches by more than 50% as well as reducing the number of analgesic medication doses required. It also reduces the severity or duration of the headaches experienced. Propranolol and metoprolol exert similar effects and propranolol is as effective as flunarizine. The data for other beta-blockers and other comparisons are less clear.

Supporting information
S1 Table. Prisma checklist.
(DOC)
Acknowledgments

The views reflected in this manuscript are those of the authors and should not be construed, in any way, to be those of the Department of Veterans Affairs.

Author Contributions

Conceptualization: Jeffrey L. Jackson.

Data curation: Jeffrey L. Jackson, Akira Kuriyama, Yachiyo Kuwatsuka, Sarah Nickoloff, Derek Storch, Wilkins Jackson, Zhi-Jiang Zhang, Yasuaki Hayashino.

Formal analysis: Jeffrey L. Jackson, Akira Kuriyama.

Investigation: Yachiyo Kuwatsuka.

Methodology: Jeffrey L. Jackson, Yachiyo Kuwatsuka.

Project administration: Jeffrey L. Jackson.

Supervision: Jeffrey L. Jackson.

Validation: Akira Kuriyama.

Writing – original draft: Jeffrey L. Jackson.

Writing – review & editing: Jeffrey L. Jackson, Akira Kuriyama, Yachiyo Kuwatsuka, Sarah Nickoloff, Derek Storch, Wilkins Jackson, Zhi-Jiang Zhang, Yasuaki Hayashino.

References

1. Rasmussen BK. Epidemiology of headache. Cephalalgia 2001; 21(7):774–777. https://doi.org/10.1177/033310240102100708 PMID: 11595011

2. Wang SJ. Epidemiology of migraine and other types of headache in Asia. Current Neurology & Neuroscience Reports 2003; 3(2):104–108.

3. Radtke A, Neuhauser H. Prevalence and burden of headache and migraine in Germany. Headache 2009; 49(1):79–89. https://doi.org/10.1111/j.1526-4610.2008.01263.x PMID: 19125877

4. Karl N, Zarifoglu M, Ertas F, Saip S, Ozturk V, Bicakci S et al. Economic impact of primary headaches in Turkey: a university hospital based study: part II. J Headache Pain 2006; 7(2):75–82. https://doi.org/10.1007/s10194-006-0273-7 PMID: 16538424

5. Falavigna A, Teles AR, Velho MC, Vedana VM, Silva RC, Mazzocchin T et al. Prevalence and impact of headache in undergraduate students in Southern Brazil. Arq Neuropsiquiatr 2010; 68(6):873–877. PMID: 21243244

6. Lipton RB, Bigal ME, Kolodner K, Stewart WF, Liberman JN, Steiner TJ. The family impact of migraine: population-based studies in the USA and UK. Cephalalgia 2003; 23(6):429–440. https://doi.org/10.1046/j.1468-2982.2003.00543.x PMID: 12807522

7. Lipton RB, Liberman JN, Kolodner KB, Bigal ME, Dowson A, Stewart WF. Migraine headache disability and health-related quality-of-life: a population-based case-control study from England. Cephalalgia 2003; 23(6):441–450. https://doi.org/10.1046/j.1468-2982.2003.00546.x PMID: 12807523

8. Adams AM, Serrano D, Buse DC, Reed ML, Marske V, Fanning KM et al. The impact of chronic migraine: The Chronic Migraine Epidemiology and Outcomes (CaMEO) Study methods and baseline results. Cephalalgia 2015; 35(7):563–578. https://doi.org/10.1177/0333102414552532 PMID: 25304766
9. Buse DC, Manack AN, Fanning KM, Serrano D, Reed ML, Turkel CC et al. Chronic migraine prevalence, disability, and sociodemographic factors: results from the American Migraine Prevalence and Prevention Study. Headache 2012; 52(10):1456–1470. https://doi.org/10.1111/j.1526-4610.2012.02223.x PMID: 22830411

10. Blumenfeld AM, Varon SF, Wilcox TK, Buse DC, Kawata AK, Manack A et al. Disability, HRQoL and resource use among chronic and episodic migraineurs: results from the International Burden of Migraine Study (IBMS). Cephalalgia 2011; 31(3):301–315. https://doi.org/10.1177/0333102410381145 PMID: 20813784

11. Leonardi M, Raggi A, Bussone G, D’Amico D. Health-related quality of life, disability and severity of disease in patients with migraine attending to a specialty headache center. Headache 2010; 50(10):1576–1586. https://doi.org/10.1111/j.1526-4610.2010.01770.x PMID: 21029083

12. Raggi A, Leonardi M, Bussone G, D’Amico D. Value and utility of disease-specific and generic instruments for assessing disability in patients with migraine, and their relationships with health-related quality of life. Neurol Sci 2010.

13. Tepper SJ. A pivotal moment in 50 years of headache history: the first American Migraine Study. Headache 2008; 48(5):730–731. https://doi.org/10.1111/j.1526-4610.2008.01117_1.x PMID: 18471125

14. Freitag FG. The cycle of migraine: patients’ quality of life during and between migraine attacks. Clin Ther 2007; 29(5):939–949. https://doi.org/10.1016/j.clinthera.2007.05.008 PMID: 17697913

15. Hu XH, Markson LE, Lipton RB, Stewart WF, Berger ML. Burden of migraine in the United States: disability and economic costs. Archives of Internal Medicine 1999; 159(8):813–818. PMID: 10219926

16. Goldberg LD. The cost of migraine and its treatment. Am J Manag Care 2005; 11(2 Suppl):S62–S67.

17. Jackson JL, Cogbill E, Santana-Davila R, Eldredge C, Collier W, Gradall A et al. A Comparative Effectiveness Meta-Analysis of Drugs for the Prophylaxis of Migraine Headache. Plos One 2015; 10(7):e0130733. https://doi.org/10.1371/journal.pone.0130733 PMID: 26172390

18. Ferrante T, Manzoni GC, Russo M, Camarda C, Taga A, Veronesi L et al. Prevalence of tension-type headache in adult general population: the PACE study and review of the literature. Neurological Sciences 2013; 34 Suppl 1:S137–S138.

19. Lyngberg AC, Rasmussen BK, Jorgensen T, Jensen R. Has the prevalence of migraine and tension-type headache changed over a 12-year period? European Journal of Epidemiology 2005; 20(3):243–249. PMID: 15921042

20. Rasmussen BK, Jensen R, Schroll M, Olesen J. Epidemiology of headache in a general population—A prevalence study. Journal of Clinical Epidemiology 1991; 44(11):1147–1157. PMID: 1941010

21. Schwartz BS, Stewart WF, Simon D, Lipton RB. Epidemiology of tension-type headache. JAMA 1998; 279(5):381–383. PMID: 9459472

22. Stovner LJ, Hagen K, Jensen J, Katsarava Z, Lipton RB, Scher AI et al. The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia 2007; 27(3):193–210. https://doi.org/10.1111/j.1468-2982.2007.01288.x PMID: 17381554

23. Abu Bakar N, Tanprawate S, Lambru G, Torkamani M, Jahanshahi M, Matharu M. Quality of life in primary headache disorders: A review. Cephalalgia 2016; 36(1):67–91. https://doi.org/10.1177/0333102415580099 PMID: 25888584

24. Latovnic R, Gulliford M, Ridsdale L. Headache and migraine in primary care: consultation, prescription, and referral rates in a large population. J Neurol Neurosurg Psychiatry 2006; 77(3):385–387. https://doi.org/10.1136/jnnp.2005.073221 PMID: 16484650

25. Linde M, Gustavsson A, Stovner LJ, Steiner TJ, Barr AJ, Katsarava Z et al. The cost of headache disorders in Europe: the Eurolight project. European Journal of Neurology 2012; 19(5):703–711. https://doi.org/10.1111/j.1468-1331.2011.03612.x PMID: 22136117

26. Chronicle E, Mulleners W. Anticonvulsant drugs for migraine prophylaxis. Cochrane Library 2004;(3).

27. Linde K, Rossnagel K. Propranolol for migraine prophylaxis. Cochrane Database Syst Rev 2004;(2):CD003225. https://doi.org/10.1002/14651858.CD003225.pub2 PMID: 15106196

28. Jackson JL, Kuriyama A, Hayashino Y. Botulinum toxin A for prophylactic treatment of migraine and tension headaches in adults: a meta-analysis. JAMA 2012; 307(16):1736–1745. https://doi.org/10.1001/jama.2012.506 PMID: 22535658

29. Pringsheim T, Davenport WJ, Becker WJ. Prophylaxis of migraine headache. CMAJ 2010; 182(7):E269–E276. https://doi.org/10.1503/cmaj.081657 PMID: 20598999

30. Lance JW, Anthony M. Clinical trial of a new serotonin antagonist, BC105, in the prevention of migraine. Med J Aust 1968; 1(2):54–55. PMID: 4867512
31. Moja PL, Cusi C, Sterzi RR, Canepari C. Selective serotonin re-uptake inhibitors (SSRIs) for preventing migraine and tension-type headaches. Cochrane Database Syst Rev 2005;(3):CD002919. https://doi.org/10.1002/14651858.CD002919.pub2 PMID: 16034880

32. Jackson JL, Shimeall W, Sessums L, Dezee KJ, Becher D, Diemer M et al. Tricyclic antidepressants and headaches: systematic review and meta-analysis. BMJ 2010; 341:c5222. https://doi.org/10.1136/bmj.c5222 PMID: 20961988

33. Rapaport AM. Recurrent migraine: cost-effective care. Neurology 1994; 44(5 Suppl 3):S25–S28.

34. Silberstein SD, Holland S, Freitag F, Dodick DW, Argoff C, Ashman E. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 2012; 78(17):1337–1345. https://doi.org/10.1212/WNL.0b013e3182535d20 PMID: 22529202

35. Ferrari A, Pasciullo G, Savino G, Cicero AF, Ottani A, Bertolini A et al. Headache treatment before and after the consultation of a specialized centre: a pharmacoepidemiology study. Cephalalgia 2004; 24(5):356–362. https://doi.org/10.1111/j.1468-2982.2004.00678.x PMID: 15096224

36. Takaki H, Onzuka D, Hagihara A. Migraine-preventive prescription patterns by specialty in ambulatory care settings in the United States. Prev Med 2017; 9:62–67.

37. Hepp Z, Dodick D. Persistence and switching patterns of oral migraine prophylactic medications among patients with chronic migraine: a retrospective claims analysis. Cephalalgia 2017; 37(5):470–485.

38. Mafi JN, Edwards ST, Pedersen NP, Davis RB, McCarthy EP, Landon BE. Trends in the ambulatory management of headache: analysis of NAMCS and NHAMCS data 1999–2010. J Gen Intern Med 2015; 30(5):548–555. https://doi.org/10.1007/s11606-014-3107-3 PMID: 25567755

39. Holroyd KA, Penzien DB, Cordingly GE. Propranolol in the management of recurrent migraine: a meta-analytic review. Headache 1991; 31(5):333–340. PMID: 1830666

40. Linde K, Rossnagel K. Propranolol for migraine prophylaxis. Cochrane Database Syst Rev 2004;(2):CD003225. https://doi.org/10.1002/14651858.CD003225.pub2 PMID: 15106196

41. Shamliyan TA, Choi JY, Ramakrishnan R, Miller JB, Wang SY, Taylor FR et al. Preventive pharmacologic treatments for episodic migraine in adults. J Gen Intern Med 2012; 28(9):1225–1237. https://doi.org/10.1007/s11606-013-2433-1 PMID: 23592242

42. Moher D, Liverato A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLOS Medicine 2009; 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMID: 19621072

43. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018; 38(1):1–211. https://doi.org/10.1177/0333102417738202 PMID: 29368949

44. Bendtsen L, Bigal ME. Cephalalgia 2010; 30(1):1–16. https://doi.org/10.1177/033310241037738202 PMID: 19614696

45. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.2. www.cochrane-handbook.org. 2011. Ref Type: Generic

46. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17(1):1–12. PMID: 8721797

47. Kazis LE, Anderson JJ, Meenan RF. Effect sizes for interpreting changes in health status. Medical Care 1989; 27 Suppl 3:S178–S189.

48. Follmann D, Elliott P, Suh I, Cutler J. Variance imputation for overviews of clinical trials with continuous response. Journal of Clinical Epidemiology 1992; 45(7):769–773. PMID: 1619456

49. Galbraith RF. A note on graphical presentation of estimated odds ratios from several clinical trials. Statistics in Medicine 1988; 7(8):889–894. PMID: 3413968

50. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557 PMID: 12958120

51. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986; 7(3):177–188. PMID: 3802833

52. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA 2006; 295(6):676–680. https://doi.org/10.1001/jama.295.6.676 PMID: 16467296
53. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315(7109):629–634. PMID: 9310563
54. Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol 2008; 61(1):64–75. https://doi.org/10.1016/j.jclinepi.2007.03.013 PMID: 18083463
55. Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med 2003; 22(17):2693–2710. https://doi.org/10.1002/sim.1482 PMID: 12939780
56. White I. Multivariate random-effects meta-analysis. Statista Journal 2009; 9:40–56.
57. Agius AM, Jones NS, Muscat R. A Randomized Controlled Trial comparing the efficacy of low-dose amitriptyline, amitriptyline with pindolol and surrogate placebo in the treatment of chronic tension-type facial pain. 2013; 51(2):143–153.
58. Ahuja GK, Verma AK. Propranolol in prophylaxis of migraine. Indian J Med Res 1985; 82:263–265. PMID: 3908306
59. al-Qassab HK, Findley LJ. Comparison of propranolol LA 80 mg and propranolol LA 160 mg in migraine prophylaxis: a placebo controlled study. Cephalalgia 1993; 13(2):128–131. https://doi.org/10.1046/j.1468-2982.1993.1302128.x PMID: 8495455
60. Albers GW, Simon LT, Hamik A, Peroutka SJ. Nifedipine versus propranolol for the initial prophylaxis of migraine. Headache 1989; 29(4):215–218. PMID: 2654067
61. Andersson PG, Petersen EN. Propranolol and fenofibrate, a HT-uptake inhibitor, in migraine prophylaxis. A double-blind crossover study. Acta Neurol Scand 1981; 64(4):280–288. PMID: 7032183
62. Andersson PG, Dahl S, Hansen JH, Hansen PE, Hedman C, Kristensen TN et al. Prophylactic treatment of classical and non-classical migraine with metoprolol—a comparison with placebo. Cephalalgia 1983; 3(4):207–212. https://doi.org/10.1046/j.1468-2982.1982.0304207.x PMID: 6640652
63. Ashrati F, Shagyannejad V, Akbari M. A double-blind, randomized trial of low-dose topiramate vs propranolol in migraine prophylaxis. 2008; 118(5):301–305.
64. Baldrati A, Cortelli P, Roccaforte V, Gambini G, D’Alessandro R, Baruzzi A et al. Propranolol and acetylsalicylic acid in migraine prophylaxis. Double-blind crossover study. Acta Neurol Scand 1983; 67(3):181–186. PMID: 6868956
65. Behan PO, Reid M. Propranolol in the treatment of migraine. Practitioner 1980; 224(1340):201–203. PMID: 6988225
66. Bordini CA, Arruda MA, Ciaciarni MC, Speciali JG. Propranolol vs flunarizine vs flunarizine plus propranolol in migraine without aura prophylaxis. A double-blind trial. Arq Neuropsiquiatr 1997; 55(3B):536–541. PMID: 9629401
67. Borgesen SE, Nielsen JL, Moller CE. Prophylactic treatment of migraine with propranolol. A clinical trial. Acta Neurol Scand 1974; 50(5):651–656. PMID: 4611129
68. Briggs RS, Millarc PA. Timolol in migraine prophylaxis. Headache 1979; 19:379–381. PMID: 5115400
69. Carroll JD, Reidy M, Savundra PA, Cleave N, McAinsh J. Long-acting propranolol in the prophylaxis of migraine: a comparative study of two doses. Cephalalgia 1990; 10(2):101–105. https://doi.org/10.1046/j.1468-2982.1990.0102101.x PMID: 2193712
70. Dahlof C. No clearcut longterm prophylactic effect of one month of treatment with propranolol in migraineurs. Cephalalgia 1987; 7:459–460.
71. Diener HC, Foh M, Jaccardino C, Wessely P, Isler H, Stenger H et al. Cyclandelate in the prophylaxis of migraine: a randomized, parallel, double-blind study in comparison with placebo and propranolol. The Study group. Cephalalgia 1996; 16(6):441–447. https://doi.org/10.1046/j.1468-2982.1996.1606441.x PMID: 8902255
72. Diener HC, Hartung E, Chrubasik J, Evers S, Schoenen J, Eikermann A et al. A comparative study of oral acetylsalicylic acid and metoprolol for the prophylactic treatment of migraine. A randomized, controlled, double-blind, parallel group phase III study. Cephalalgia 2001; 21(2):120–128. https://doi.org/10.1046/j.1468-2982.2001.00168.x PMID: 11422094
73. Diener HC, Matias-Guiu J, Hartung E, Pfaffenrath V, Ludin HP, Nappi G et al. Efficacy and tolerability in migraine prophylaxis of flunarizine in reduced doses: a comparison with propranolol 160 mg daily. Cephalalgia 2002; 22(3):209–221. https://doi.org/10.1046/j.1468-2982.2002.t01-1-00309.x PMID: 12047461
75. Diener HC, Tfelt-Hansen P, Dahlöf C, Lainez MJ, Sandrini G, Wang SJ et al. Topiramate in migraine prophylaxis—results from a placebo-controlled trial with propranolol as an active control. J Neurol 2004; 251(8):943–950. https://doi.org/10.1007/s00415-004-0464-6 PMID: 15316798

76. Domingues RB, Piraíses Da Silva AL, Domingues SA, Aquino CCH, Kuster GW. A double-blind randomized controlled trial of low doses of propranolol, nortriptyline, and the combination of propranolol and nortriptyline for the preventive treatment of migraine. 2009; 67(4):973–977.

77. Ekbom K, Lundberg PO. Clinical trial of LB-46 (d, 1-4-(2-hydroxy-3-isopropylaminopropoxy)indol. An adrenergic beta-receptor blocking agent in migraine prophylaxis. Headache 1972; 12(1):15–17. PMID: 4402287

78. Ekbom K. Alprenolol for migraine prophylaxis. Headache 1975; 15(2):129–132. PMID: 1097368

79. Ekbom K, Zetterman M. Oxprenolol in the treatment of migraine. Acta Neurol Scand 1977; 56(2):181–184. PMID: 331835

80. Formisano R, Falaschi P, Cerbo R, Proietti A, Catarci T, D'Urso R et al. Nimodipine in migraine: clinical efficacy and endocrinological effects. Eur J Clin Pharmacol 1991; 41(1):69–71. https://doi.org/10.1007/BF00280110 PMID: 1782981

81. Forssman B, Henriksson KG, Johansson V. Propranolol for migraine prophylaxis. Headache 1976; 16:238–245. PMID: 977330

82. Forssman B, Lindblad C, Zbornikova V. Atenolol for migraine prophylaxis. Headache 1983; 23(4):188–190. PMID: 6350226

83. Forssman B, Lindblad CJ, Zbornikova V. Atenolol for migraine prophylaxis. Headache 1983; 23(4):188–190. PMID: 6350226

84. Freitag FG, Diamond S. Nadolol and placebo comparison study in the prophylactic treatment of migraine. J Am Osteopath Assoc 1984; 84(4):343–347. PMID: 6150909

85. Gawel MJ, Kreeft J, Nelson RF, Simard D, Arnott WS. Comparison of the efficacy and safety of flunarizine to propranolol in the prophylaxis of migraine. Can J Neurol Sci 1992; 19(3):340–345. PMID: 1393843

86. Gerber WD, Diener HC, Scholz E, Niederberger U. Responders and non-responders to metoprolol, propranolol and nifedipine treatment in migraine prophylaxis: a dose-range study based on time-series analysis. Cephalalgia 1991; 11(1):37–45. https://doi.org/10.1046/j.1468-2982.1991.1101037.x PMID: 2036669

87. Gerber WD, Schellenberg R, Thom M, Haufe C, Bolsche F, Wedekind W et al. Cyclandelate versus propranolol in the prophylaxis of migraine—a double-blind placebo-controlled study. Funct Neurol 1995; 10(1):27–35. PMID: 7649498

88. Gobadi SH, Jivad N. The prophylactic activity of propranolol and nimodipine on migraine headache. 2013; 8(2):144–146.

89. Grotemeyer KH, Husstedt IW, Schlake HP. [Betablocker vs placebo in vasomotor headache. A double-blind crossover study]. Dtsch Med Wochenschr 1987; 112(45):1740–1743. https://doi.org/10.1055/s-2008-1068322 PMID: 2890509

90. Grotemeyer KH, Schlake HP, Husstedt IW. [Prevention of migraine with metoprolol and flunarizine. A double-blind crossover study]. Nervenarzt 1988; 59(9):549–552. PMID: 3054595

91. Grotemeyer KH, Scharafinski HW, Schlake HP, Husstedt IW. Acetylsalicylic acid vs. metoprolol in migraine prophylaxis—a double-blind cross-over study. Headache 1990; 30(10):639–641. PMID: 2272812

92. Havanka-Kanniainen H, Hokkanen E, Myllyla VV. Long acting propranolol in the prophylaxis of migraine. Comparison of the daily doses of 80 mg and 160 mg. Headache 1988; 28(9):607–611. PMID: 3248938

93. Hedman C, Winther K, Knudsen JB. The difference between non-selective and beta 1-selective beta-blockers in their effect on platelet function in migraine patients. Acta Neurol Scand 1986; 74(6):475–478. PMID: 3030399

94. Hesse J, Mogelvang B, Simonsen H. Acupuncture versus metoprolol in migraine prophylaxis: a randomized trial of trigger point inactivation. J Intern Med 1994; 235(5):451–456. PMID: 8182401

95. Holdorf B, Sinn M, Roth G. Propranolol for prophylaxis of migraine. Medizinische Klinik 1977; 72(25):1115–1118. PMID: 329085

96. Johannsson V, Nilsson LR, Widellus T, Javerfalk T, Hellman P, Akesson JA et al. Atenolol in migraine prophylaxis a double-blind cross-over multicentre study. Headache 1987; 27(7):372–374. PMID: 3308768
97. Johnson RH, Homabrook RW, Lambie DG. Comparison of mefenamic acid and propranolol with placebo in migraine prophylaxis. Acta Neurol Scand 1986; 73(5):490–492. PMID: 3524092

98. Kangasniemi P, Hedman C. Metoprolol and propranolol in the prophylactic treatment of classical and common migraine. A double-blind study. Cephalalgia 1984; 4(2):91–96. https://doi.org/10.1046/j.1468-2982.1984.0402091.x PMID: 6428749

99. Kangasniemi P, Andersson AR, Andersson PG, Gilhus NE, Hedman C, Hultgren M et al. Classic migraine: effective prophylaxis with metoprolol. Cephalalgia 1987; 7(4):231–238. https://doi.org/10.1046/j.1468-2982.1987.0704231.x PMID: 3322569

100. Kangasniemi PJ, Nyrke T, Lang AH, Petersen E. Fenofibrate—a new 5-HT uptake inhibitor— and propranolol in the prophylactic treatment of migraine. Acta neurologica Scandinavica 1983; 68:262–267. PMID: 6606930

101. Kaniecki RG. A comparison of divalproex with propranolol and placebo for the prophylaxis of migraine without aura. Arch Neurol 1997; 54(9):1141–1145. PMID: 9311358

102. Kass B, Nestvold K. Propranolol (Inderal) and clonidine (Catapresan) in the prophylactic treatment of migraine. A comparative trial. Acta Neurol Scand 1980; 61(6):351–356. PMID: 6998250

103. Kaushik R, Kaushik RM, Mahajan SK, Rajesh V. Biofeedback assisted diaphragmatic breathing and systematic relaxation versus propranolol in long term prophylaxis of migraine. Complement Ther Med 2005; 13(3):165–174. https://doi.org/10.1016/j.ctim.2005.04.004 PMID: 16150370

104. Kjaersgard Rasmussen MJ, Holt LB, Borg L, Solberg SP, Hansen PE. Tolfenamic acid versus propranolol in the prophylactic treatment of migraine. Acta Neurol Scand 1994; 89(6):446–450. PMID: 7976233

105. Klapper JA. An open label cross-over comparison of divalproex sodium and propranolol HCl in the prevention of migraine headaches. HEADACHE Q 1994; 5:50–53.

106. Kozubski W, Prusinski A. [Sodium valproate versus propranolol in the prophylactic treatment of migraine]. Neurol Neurochir Pol 1995; 29(6):937–947. PMID: 8714737

107. Kuritzky A, Hering R. Prophylactic treatment of migraine with long acting propranolol—a comparison with placebo. Cephalalgia 1987; 7:457–458.

108. Langohr HD, Gerber WD, Koletzki E, Mayer K, Schroth G. Clomipramine and metoprolol in migraine prophylaxis—a double-blind crossover study. Headache 1985; 25(2):107–113. PMID: 3865999

109. Louis P, Schoenen J, Hedman C. Metoprolol v. clonidine in the prophylactic treatment of migraine. Cephalalgia 1985; 5(3):159–165. https://doi.org/10.1046/j.1468-2982.1985.0503159.x PMID: 3899370

110. Lucking CH, Oestreich W, Schmidt R, Sojka D. Flunarizine vs. propranolol in the prophylaxis of migraine: two double-blind comparative studies in more than 400 patients. Cephalalgia 1988; 8 Suppl 8:21–26.

111. Ludin HP. Flunarizine and propranolol in the treatment of migraine. Headache 1989; 29(4):219–224. PMID: 2654068

112. Maissen CP, Ludin HP. [Comparison of the effect of 5-hydroxytryptophan and propranolol in the interventional treatment of migraine]. Schweiz Med Wochenschr 1991; 121(43):1585–1590. PMID: 1947955

113. Malvea BP, Gwon N, Graham JR. Propranolol prophylaxis of migraine. Headache 1973; 12(4):163–167. PMID: 4566216

114. Mathew NT. Prophylaxis of migraine and mixed headache. A randomized controlled study. Headache 1981; 21(3):105–109. PMID: 7021472

115. Mikkelsen B, Pedersen KK, Christiansen LV. Prophylactic treatment of migraine with tolfenamic acid, propranolol and placebo. Acta Neurol Scand 1986; 73(4):423–427. PMID: 3727918

116. Nadelmann JW, Phil M, Stevens J, Saper JR. Propranolol in the prophylaxis of migraine. Headache 1986; 26(4):175–182. PMID: 3519529

117. Nambiar NJ, Ayappa C, Srinivasra R. Oral riboflavin versus oral propranolol in migraine prophylaxis: An open label randomized controlled trial. 2011; 16(3):223–229.

118. Nanda RN, Johnson RH, Gray J, Keogh HJ, Melville ID. A double blind trial of acebutolol for migraine prophylaxis. Headache 1978; 18(1):20–22. PMID: 348644

119. Nerud B, Gustavsson CL, Fureberg B. Nadolol and propranolol in migraine management. Headache 1986; 26(10):490–493. PMID: 3546194

120. Olsson JE, Behring HC, Forssman B, Hedman C, Hedman G, Johansson F et al. Metoprolol and propranolol in migraine prophylaxis: a double-blind multicentre study. Acta Neurol Scand 1984; 70(3):160–168. PMID: 6391066

121. Pallerman TG, Gibberd FB, Simmonds JP. Prophylactic propranolol in the treatment of headache. Br J Clin Pract 1983; 37(1):28–29. PMID: 6340710
122. Pita E, Higuera A, Bolanos J, Perez N, Mundo A. Propranolol and migraine. A clinical trial. Arch Farmacol Toxicol 1977; 3(3):273–278. PMID: 350168

123. Pradalier A, Serratrice G, Collard M, Hirsch E, Feve J, Masson M et al. Long-acting propranolol in migraine prophylaxis: results of a double-blind, placebo-controlled study. Cephalalgia 1989; 9(4):247–253. https://doi.org/10.1046/j.1468-2982.1989.0904247.x PMID: 2692838

124. Ryan RE Sr., Ryan RE Jr., Sudilovsky A. Nadolol and placebo comparison study in the prophylactic treatment of migraine. Panminerva Med 1982; 24(2):89–94. PMID: 6128710

125. Ryan RE Sr. Comparative study of nadolol and propranolol in prophylactic treatment of migraine. Am Heart J 1984; 108(4 Pt 2):1156–1159.

126. Ryan RE Sr., Ryan RE Jnr., Sudilovsky A. Nadolol and placebo comparison study in the prophylactic treatment of migraine. Panminerva Med 1982; 24(2):89–94. PMID: 6128710

127. Sargent J, Solbach P, Damasio H, Baumel B, Corbett J, Eisner L et al. A comparison of naproxen sodium to propranolol hydrochloride and a placebo control for the prophylaxis of migraine headache. Headache 1985; 25(6):320–324. PMID: 3902723

128. Schellenberg R, Lichtenthal A, Wohling H, Graf C, Brixius K. Nebivolol and metoprolol for treating migraine: an advance on beta-blocker treatment? Headache 2008; 48(1):118–125. https://doi.org/10.1111/j.1526-4610.2007.00785.x PMID: 17680819

129. Shimell CJ, Fritz VU, Levien SL. A comparative trial of flunarizine and propranolol in the prevention of migraine. S Afr Med J 1990; 77(2):75–77. PMID: 2404346

130. Sorensen PS, Larsen BH, Rasmussen MJ, Kinge E, Iversen H, Alslev T et al. Flunarizine versus metoprolol in migraine prophylaxis: a double-blind, placebo-controlled parallel group study of efficacy and tolerability. Headache 1991; 31(10):650–657. PMID: 1769820

131. Siniatchkin M, Andrasik F, Kropp P, Niederberger U, Strenge H, Averkina N et al. Central mechanisms of controlled-release metoprolol in migraine: a double-blind, placebo-controlled study. Cephalalgia 2007; 27(9):1024–1032. https://doi.org/10.1111/j.1468-2982.2007.01377.x PMID: 17680819

132. Soyka D, Oestreicher W. Flunarizine versus propranolol in interval treatment of migraine. Nervenheilkunde 1990; 9:45–51.

133. Standnes B. The prophylactic effect of timolol versus propranolol and placebo in common migraine: beta-blockers in migraine. Cephalalgia 1982; 2(3):165–170. https://doi.org/10.1046/j.1468-2982.1982.0203165.x PMID: 6758949

134. Steiner TJ, Joseph R, Hedman C, Rose FC. Metoprolol in the prophylaxis of migraine: parallel-groups comparison with placebo and dose-ranging follow-up. Headache 1988; 28(1):15–23. PMID: 3277926

135. Stellar S, Ahrens SP, Meibohm AR, Reines SA. Migraine prevention with timolol. A double-blind crossover study. JAMA 1984; 252(16):2576–2580. PMID: 6367197

136. Stensrud P, Sjaastad O. Short-term clinical trial of propranolol in racemic form (Inderal), D-propranolol and placebo in migraine. Acta Neurol Scand 1986; 53(3):229–232. PMID: 773081

137. Stensrud P, Sjaastad O. Comparative trial of Tenormin (atenolol) and Inderal (propranolol) in migraine. Acta Neurol Scand 1976; 53(3):229–232. PMID: 773081

138. Stovner LJ, Linde M, Gravdahl GB, Tronvik E, Aamodt AH, Sand T et al. A comparative study of candesartan versus propranolol for migraine prophylaxis: A randomised, triple-blind, placebo-controlled, double cross-over study. Cephalalgia 2013; 34(7):523–532. https://doi.org/10.1177/0333102413515348 PMID: 24335648

139. Streng A, Linde K, Hoppe A, Pfaffenrath V, Hammes M, Wagenfeil S et al. Effectiveness and tolerability of acupuncture compared with metoprolol in migraine prophylaxis. Headache 2006; 46(10):1492–1502. https://doi.org/10.1111/j.1526-4610.2006.00598.x PMID: 17115982

140. Sudilovsky A, Elkind AH, Ryan RE Sr., Saper JR, Stern MA, Meyer JH. Comparative efficacy of nadolol and propranolol in the management of migraine. Headache 1987; 27(8):421–426. PMID: 3312113

141. Tfelt-Hansen P, Standnes B, Kangasneimi P, Haikkarainen H, Olesen J. Timolol vs propranolol vs placebo in common migraine prophylaxis: a double-blind multicenter trial. Acta Neurol Scand 1984; 69(1):1–8. PMID: 6367336

142. van de Ven LL, Franke CL, Koehler PJ. Prophylactic treatment of migraine with bisoprolol: a placebo-controlled study. Cephalalgia 1997; 17(5):596–599. https://doi.org/10.1046/j.1468-2982.1997.1705596.x PMID: 9251876

143. Vilming S, Standnes B, Hedman C. Metoprolol and pizotifen in the prophylactic treatment of classical and common migraine. A double-blind investigation. Cephalalgia 1985; 5(1):17–23. https://doi.org/10.1046/j.1468-2982.1985.0501017.x PMID: 3986895

144. Weber RB, Reinmuth OM. The treatment of migraine with propranolol. Neurology 1971; 21:404–405.
145. Wideroe TE, Vigander T. Propranolol in the treatment of migraine. Br Med J 1974; 2(5921):699–701. PMID: 4604977

146. Worz R, Reinhardt-Benmalek B, Foh M, Grotemeyer KH, Scharafinski HW. [Prevention of migraine using bisoprolol. Results of a double-blind study versus metoprolol]. Fortschr Med 1992; 110(14):268–272. PMID: 1351025

147. Nair KG. A pilot study of the value of propranolol in migraine. J Postgrad Med 1975; 21(3):111–113. PMID: 1107526

148. Chen J. Clinical study of topiramate in preventing migraine attacks. Sichuan Medical Journal 2009; 30(1):1.9.

149. Ziegler DK, Hurwitz A, Preskorn S, Hassanein R, Seim J. Propranolol and amitriptyline in prophylaxis of migraine. Pharmacokinetic and therapeutic effects. Arch Neurol 1993; 50(8):825–830. PMID: 8352668

150. Gong X, Zhang J. Therapeutic effect of metoprolol tartrate combined with flunarizine on migraine in the treatment of migraine. Journ of Integrative Medicine, Cardiovascular and Cerebrovascular Diseases 2016; 25(14):24–2957.

151. Ke D. Sibiling combined with propranolol to treat migraine. Modern Practical Medicine 2003; 15(12):760.

152. Li P. Double-blind therapeutic effect of -blockers on menopausal migraine. Chinese Journal of Practical Nervous Diseases 2006; 9(5):120–121.

153. Li S. Therapeutic effect of sodium valproate on prevention of migraine recurrence. Sichuan Medical Journal 2004; 25(4):416.

154. Ma W. Therapeutic effect of metoprolol tartrate combined with flunarizine on migraine in the treatment of migraine. Modern Practical Medicine 2011; 23(11):1275–1276.

155. Wen JB. Clinical effect analysis of sibelium prophylactic treatment of migraine. Contemporary Medicine 2016; 22(6):141.

156. Yang Y, Wang G. Observation on the efficacy of propranolol in preventing menopausal migraine. Chinese Journal of Misdiagnosis 2006; 6(24):4760–4761.

157. Yang Y. The effect of metoprolol combined with fluoxetine on preventing migraine and its effect on serotonin. Chinese Journal of Modern Drug Application 2016; 10(6):109–110.

158. Yuan Q, Lu X. Preliminary randomized controlled trial of topiramate and propranolol to prevent migraine attacks. Huaxi Pharmaceutical Journal 2005; 20(2):182–183.

159. Zhou J, Zhu Y, Zheng W, Chen Y, Lin L, Tian X. The efficacy of metoprolol combined with fluoxetine in preventing migraine. Journal of Clinical and Experimental Medicine 2015; 14(10):836–839.

160. Zhu J, Wei Q, Yan T. Therapeutic effect of sibelium on migraine. Journal of Medical Forum 2005; 26(1):51–52.

161. Li Z, Li X, Xiong X. A clinical study of Sibelium combining Topiramate in prophylactic treatment of migraine. Chinese Journal of Primary Medicine and Pharmacy 2002; 19(5):419–420.

162. Sjaastad O, Stensrud P. Clinical trial of a beta-receptor blocking agent (LB 46) in migraine prophylaxis. Acta Neurol Scand 1972; 48(1):124–128. PMID: 4401692

163. Dongxiang H. Clinical trial of propranolol and amitriptyline in the treatment of migraine. Yunnan Medicine 2010; 31(5):523–525.

164. Li Z, Li X, Xiong X. A clinical study of sibelium combining topiramate in prophylactic treatment of migraine. Chinese JMAP 2002; 19(5):419–421.