INTRAMOLECULAR BASIS SET SUPERPOSITION ERROR EFFECTS ON THE
PLANARITY OF BENZENE AND OTHER AROMATIC MOLECULES: A SOLUTION
TO THE PROBLEM.

David Asturiol[a], Miquel Duran[b] and Pedro Salvador[b]*

a Institut de Química Computacional, Parc Científic i Tecnològic de la Universitat de Girona,
Edifici Jaume Casademont, Pic de Peguera 15 (la Creueta), 17003 Girona, Spain
b Institut de Química Computacional and Departament de Química Universitat de Girona,
Campus de Montilivi, 17071 Girona, Spain

SUPPLEMENTARY INFORMATION
Software:

CP-opt driver

The CP-opt program automatically calls a slightly modified version (for higher accuracy of print out reasons) Gaussian98 in order to perform either energy, gradient optimizations or frequency corrected for Basis Set Superposition Error using counterpoise-type methods. Moreover, the user can define which fragment calculations are necessary in each case in terms of the fragment symmetry of the supermolecule and build any counterpoise-type function. The package includes several UNIX scripts (drive files) and FORTRAN 77 programs. From a conventional GAUSSIAN input file, 2N+1 input files for each calculation are generated and computed sequentially. Then CP-corrected, energy, gradient or hessian, depending on the calculation requested, is determined by the corresponding linear combination, either automatically or as defined by the user. In case of geometry optimisations, the new point in the CP-corrected PES is calculated externally using a generalized DIIS combined with variable metric optimizer and the next set of 2N+1 calculations are carried out again until the desired convergence.

One of us (P. S.) implemented automatic counterpoise correction to energy, gradients, second and third derivatives for up to 10 fragments into Gaussian, being readily available since versions Gaussian 98 rev A11. However, no handling of the fragment’s symmetry was implemented and generally NOSYMM keyword is necessary.

References to program packages used in this study:

Gaussian 98, Revision A.7:
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.

Gaussian 03 Revision B.02:
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople; Gaussian, Inc., Wallingford CT, 2004.
Table S1. Uncorrected and Counterpoise-corrected optimized geometries of benzene (D_{6h}) at the Hartree-Fock level of theory and several basis sets. All data in the table were computed with Gaussian 03.

Uncorrected	CP-corrected						
Basis set: 6-31+G							
C	0.000000	1.389201	0.000000	C	0.000000	1.39236	0.000000
C	1.202217	0.694100	0.000000	C	1.203113	0.694618	0.000000
C	1.202217	-0.694100	0.000000	C	1.203113	-0.694618	0.000000
C	0.000000	-1.388201	0.000000	C	0.000000	-1.389236	0.000000
C	-1.202217	-0.694100	0.000000	C	-1.203113	-0.694618	0.000000
C	-1.202217	0.694100	0.000000	C	-1.203113	0.694618	0.000000
H	2.133621	1.231846	0.000000	H	2.133481	1.231766	0.000000
H	2.133621	-1.231846	0.000000	H	2.133481	-1.231766	0.000000
H	0.000000	-2.463693	0.000000	H	0.000000	-2.463532	0.000000
H	-2.133621	-1.231846	0.000000	H	-2.133481	-1.231766	0.000000
H	-2.133621	1.231846	0.000000	H	-2.133481	1.231766	0.000000
H	0.000000	2.463693	0.000000	H	0.000000	2.463532	0.000000
Basis set: 6-311G							
C	0.000000	1.387908	0.000000	C	0.000000	1.390868	0.000000
C	1.201964	0.693954	0.000000	C	1.204527	0.695434	0.000000
C	1.201964	-0.693954	0.000000	C	1.204527	-0.695434	0.000000
C	0.000000	-1.387908	0.000000	C	0.000000	-1.390868	0.000000
C	-1.201964	-0.693954	0.000000	C	-1.204527	-0.695434	0.000000
C	-1.201964	0.693954	0.000000	C	-1.204527	0.695434	0.000000
H	2.129169	1.229276	0.000000	H	2.133143	1.231571	0.000000
H	2.129169	-1.229276	0.000000	H	2.133143	-1.231571	0.000000
H	0.000000	-2.458552	0.000000	H	0.000000	-2.463141	0.000000
H	-2.129169	-1.229276	0.000000	H	-2.133143	-1.231571	0.000000
H	-2.129169	1.229276	0.000000	H	-2.133143	1.231571	0.000000
H	0.000000	2.458552	0.000000	H	0.000000	2.463141	0.000000
Basis set: 6-311++G							
C	0.000000	1.388674	0.000000	C	0.000000	1.391103	0.000000
C	1.202627	0.694337	0.000000	C	1.204730	0.695551	0.000000
C	1.202627	-0.694337	0.000000	C	1.204730	-0.695551	0.000000
C	0.000000	-1.388674	0.000000	C	0.000000	-1.391103	0.000000
C	-1.202627	-0.694337	0.000000	C	-1.204730	-0.695551	0.000000
C	-1.202627	0.694337	0.000000	C	-1.204730	0.695551	0.000000
H	2.130302	1.229331	0.000000	H	2.131206	1.230452	0.000000
H	2.130302	-1.229331	0.000000	H	2.131206	-1.230452	0.000000
H	0.000000	-2.459861	0.000000	H	0.000000	-2.460905	0.000000
H	-2.130302	-1.229331	0.000000	H	-2.131206	-1.230452	0.000000
H	-2.130302	1.229331	0.000000	H	-2.131206	1.230452	0.000000
Table S2. Uncorrected and Counterpoise-corrected optimized geometries of benzene \((D_6h)\) at the B3LYP level of theory and several basis sets. All data in the table were computed with Gaussian03.

Basis set:	Uncorrected	CP-corrected			
6-31+G*					
C	0.000000	1.398539	C 1.399810	0.000000	0.000000
C	1.211171	0.699270	C 0.699905	1.212271	0.000000
C	-0.699270	0.000000	C -0.699905	1.212271	0.000000
C	0.000000	-1.398539	C -1.399810	0.000000	0.000000
C	-1.211171	-0.699270	C -0.699905	-1.212271	0.000000
C	-1.211171	0.699270	C 0.699905	-1.212271	0.000000
H	2.152803	1.242922	H 2.487691	0.000000	0.000000
H	2.152803	-1.242922	H 1.243846	2.154404	0.000000
H	0.000000	-2.485843	H -1.243846	2.154404	0.000000
H	-2.152803	-1.242922	H -2.487691	0.000000	0.000000
H	-2.152803	1.242922	H -1.243846	-2.154404	0.000000
H	0.000000	2.485843	H 1.243846	-2.154404	0.000000
6-311G					
C	0.000000	1.398212	C 1.400325	0.000000	0.000000
C	1.210887	0.699106	C 0.700162	1.212717	0.000000
C	-0.699106	0.000000	C -0.700162	1.212717	0.000000
C	0.000000	-1.398212	C -1.400325	0.000000	0.000000
C	-1.210887	-0.699106	C -0.700162	-1.212717	0.000000
C	-1.210887	0.699106	C 0.700162	-1.212717	0.000000
H	2.148028	1.240164	H 2.485687	0.000000	0.000000
H	2.148028	-1.240164	H 1.242843	2.152668	0.000000
H	0.000000	-2.480329	H -1.242843	2.152668	0.000000
H	-2.148028	-1.240164	H -2.485687	0.000000	0.000000
H	-2.148028	1.240164	H -1.242843	-2.152668	0.000000
H	0.000000	2.480329	H 1.242843	-2.152668	0.000000
6-311++G					
C	0.000000	1.398932	C 1.400683	0.000000	0.000000
C	1.211511	0.699466	C 0.700341	1.213027	0.000000
C	-0.699466	0.000000	C -0.700341	1.213027	0.000000
C	0.000000	-1.398932	C -1.400683	0.000000	0.000000
C	-1.211511	-0.699466	C -0.700341	-1.213027	0.000000
C	-1.211511	0.699466	C 0.700341	-1.213027	0.000000
H	2.148891	1.240663	H 2.483916	0.000000	0.000000
H	2.148891	-1.240663	H 1.241908	2.151047	0.000000
H	0.000000	-2.481325	H -1.241908	2.151047	0.000000
H	-2.148891	-1.240663	H -2.483916	0.000000	0.000000
H	-2.148891	1.240663	H -1.241908	-2.151047	0.000000
H	0.000000	2.481325	H 1.241908	-2.151047	0.000000
Table S3. Uncorrected and Counterpoise-corrected optimized geometries of benzene at the MP2 (frozen-core) level of theory and several basis sets. All data in the table were computed with Gaussian03.

	Uncorrected	CP-corrected
Basis set: 6-31+G*		
C	0.000000	1.399190
C	1.211734	0.699595
C	-1.211734	-0.699595
C	0.000000	-1.399190
H	2.154073	1.243655
H	-2.154073	-1.243655
Basis set: 6-311G		
C	0.000000	1.408187
C	1.219526	0.704093
C	-1.219526	-0.704093
C	0.000000	-1.408187
H	2.160815	1.247547
H	-2.160815	-1.247547
Basis set: 6-311++G		
C	0.000000	1.409358
C	1.220540	0.704679
C	-1.220540	-0.704679
C	0.000000	-1.409358
H	2.162738	1.248657
H	-2.162738	-1.248657
Basis set: 6-311++G		
C	0.000000	2.497315
Table S4. Uncorrected and Counterpoise-corrected optimized geometries of benzene (D_{6h}) at the CISD (frozen-core) level of theory and several basis sets. All data in the table were computed with Gaussian 03 and with the CP-opt driver and Gaussian 98.

Uncorrected	CP-corrected
Basis set: 6-31+G*	
C 0.000000 1.390170 0.000000	C 0.000000 1.396273 0.000000
C 1.203922 0.695085 0.000000	C 1.209207 0.698136 0.000000
C 1.203922 -0.695085 0.000000	C 1.209207 -0.698136 0.000000
C 0.000000 -1.390170 0.000000	C 0.000000 -1.396273 0.000000
C -1.203922 -0.695085 0.000000	C -1.209207 -0.698136 0.000000
C -1.203922 0.695085 0.000000	C -1.209207 0.698136 0.000000
H 2.140015 1.235538 0.000000	H 0.000000 2.475974 0.000000
H 2.140015 -1.235538 0.000000	H 2.144256 -1.237987 0.000000
H 0.000000 -2.471077 0.000000	H 0.000000 -2.475974 0.000000
H -2.140015 -1.235538 0.000000	H -2.144256 -1.237987 0.000000
H -2.140015 1.235538 0.000000	H -2.144256 1.237987 0.000000
Basis set: 6-311G	
C 0.000000 1.397548 0.000000	C 0.000000 1.410922 0.000000
C 1.210312 0.698774 0.000000	C 1.221894 0.705461 0.000000
C 1.210312 -0.698774 0.000000	C 1.221894 -0.705461 0.000000
C 0.000000 -1.397548 0.000000	C 0.000000 -1.410922 0.000000
C -1.210312 -0.698774 0.000000	C -1.221894 -0.705461 0.000000
C -1.210312 0.698774 0.000000	C -1.221894 0.705461 0.000000
H 2.146080 1.239040 0.000000	H 0.000000 2.492507 0.000000
H 2.146080 -1.239040 0.000000	H 2.144256 -1.237987 0.000000
H 0.000000 -2.478080 0.000000	H 0.000000 -2.492507 0.000000
H -2.146080 -1.239040 0.000000	H -2.144256 -1.237987 0.000000
H -2.146080 1.239040 0.000000	H -2.144256 1.237987 0.000000
H 0.000000 2.478080 0.000000	H 0.000000 2.478080 0.000000
Basis set: 6-311++G	
C 0.000000 1.398342 0.000000	C 0.000000 1.410047 0.000000
C 1.210999 0.699171 0.000000	C -1.221137 0.705023 0.000000
C 1.210999 -0.699171 0.000000	C -1.221137 -0.705023 0.000000
C 0.000000 -1.398342 0.000000	C 0.000000 -1.410047 0.000000
C -1.210999 -0.699171 0.000000	C 1.221137 -0.705023 0.000000
C -1.210999 0.699171 0.000000	C 1.221137 0.705023 0.000000
H 2.147405 1.239805 0.000000	H 0.000000 2.469684 0.000000
H 2.147405 -1.239805 0.000000	H -2.156130 1.244842 0.000000
H 0.000000 -2.479610 0.000000	H -2.156130 -1.244842 0.000000
H -2.147405 -1.239805 0.000000	H -2.156130 -2.469684 0.000000
H -2.147405 1.239805 0.000000	H 2.156130 -1.244842 0.000000
H 0.000000 2.479610 0.000000	H 2.156130 1.244842 0.000000
Table S5. Uncorrected and Counterpoise-corrected optimized geometries of naphtalene (D$_{2h}$) using the 6-31G basis set at the Hartree-Fock, B3LYP and MP2(frozen-core) levels of theory. All data in the table were computed with Gaussian 03 and with the CP-opt driver and Gaussian 98.

	Uncorrected	Hartree-Fock	CP-corrected				
	X	Y	Z	X	Y	Z	
C	0.000000	1.242708	1.394089	C	0.000000	1.246488	-1.395625
C	0.000000	2.419453	0.707861	C	0.000000	2.426369	-0.709638
C	0.000000	1.242708	-1.394089	C	0.000000	1.246488	1.395625
C	0.000000	0.000000	-0.706396	C	0.000000	0.000000	0.706215
H	0.000000	1.239297	2.468031	H	0.000000	1.239576	-2.469718
H	3.353703	1.235401		H	0.000000	3.360597	-1.239072
B3LYP							
	X	Y	Z	X	Y	Z	
C	0.000000	1.247555	1.406165	C	-0.017220	-0.000001	-0.000858
C	2.439495	0.709951		C	-0.018096	-0.000022	1.382228
C	2.439495	-0.709951		C	1.211572	0.000001	2.099200
C	1.247555	1.406165		C	2.415154	0.000027	1.417433
C	0.000000	-0.718906		C	2.450101	0.000022	-0.00947
H	0.000000	1.244499	2.492649	H	-0.956264	0.000003	-0.556193
H	3.383950	2.492649		H	-0.960470	0.000079	1.930471
MP2							
	X	Y	Z	X	Y	Z	
C	0.000000	1.256377	1.419077	C	0.000000	1.266069	-1.427266
C	2.459294	0.716303		C	0.000000	2.480244	-0.722826
C	2.459294	-0.716303		C	0.000000	2.480244	0.722826
C	1.256377	-1.419077		C	0.000000	1.266069	1.427266
C	0.000000	-0.722744		C	0.000000	0.000000	0.719434
H	1.255500	2.512632		H	0.000000	1.255610	-2.520806
H	3.408476	1.254684		H	0.000000	3.429509	-1.263465
H	3.408476	-1.254684		H	0.000000	3.429509	1.263465
H	1.255500	2.512632		H	0.000000	1.255610	2.520806
C	-1.256377	-1.419077		C	0.000000	-1.266069	1.427266
C	-1.256377	1.419077		C	0.000000	-1.266069	-1.427266
C	-2.459294	0.716303		C	0.000000	-2.480244	-0.722826
C	-2.459294	-0.716303		C	0.000000	-2.480244	0.722826
Table S5: (cont.)

	X	Y	Z		X	Y	Z
H	0.000000	-1.255500	2.512632	H	0.000000	-1.255610	-2.520806
H	0.000000	-1.255500	-2.512632	H	0.000000	-1.255610	2.520806
H	0.000000	-3.408476	1.254684	H	0.000000	-3.429509	-1.263465
H	0.000000	-3.408476	-1.254684	H	0.000000	-3.429509	1.263465

Table S6. Uncorrected and Counterpoise-corrected optimized geometries of cyclipentadienil anion (D_{5h}) at the MP2/ 6-311G level of theory. All data in the table were computed with the CP-opt driver and Gaussian 98.

	Uncorrected	CP-corrected					
	X	Y	Z	X	Y	Z	
C	0.000000	1.215696	0.000000	C	0.000000	1.227571	0.000000
C	1.156195	0.375671	0.000000	C	1.167489	0.379340	0.000000
C	0.714568	-0.983518	0.000000	C	0.721548	-0.993126	0.000000
C	-0.714568	-0.983518	0.000000	C	-0.721548	-0.993126	0.000000
C	-1.156195	0.375671	0.000000	C	-1.167489	0.379340	0.000000
H	1.355696	-1.865956	0.000000	H	1.364151	-1.877592	0.000000
H	2.193562	0.712732	0.000000	H	2.207242	0.717176	0.000000
H	-2.193562	0.712732	0.000000	H	-2.207242	0.717176	0.000000
H	0.000000	2.306448	0.000000	H	0.000000	2.320832	0.000000
H	-1.355696	-1.865956	0.000000	H	-1.364151	-1.877592	0.000000
Table S7. Uncorrected and Counterpoise-corrected harmonic vibrational frequencies (cm\(^{-1}\)) for benzene (\(\text{D}_6\)) at the Hartree-Fock level of theory. The average difference between uncorrected and CP-corrected frequencies is 1.6% and 1.3% for Hartree-Fock and B3LYP, respectively. All data in the table were computed with Gaussian 03.

Hartree-Fock

6-31+G(d)	Uncorr. % diff	6-311G	Uncorr. % diff	6-311++G	Uncorr. % diff						
CP-corrected		CP-corrected		CP-corrected							
E2U	448	451	0.7	E2U	459	463	0.9	E2U	449	462	3.1
E2G	663	663	0.0	E2G	688	683	0.7	E2G	680	682	1.3
A2U	745	760	2.0	A2U	747	771	3.2	A2U	723	772	1.0
B2G	765	775	1.3	B2G	784	794	1.3	B2G	788	803	9.9
E1G	940	960	2.1	E1G	949	978	3.1	E1G	939	983	2.0
A1G	1073	1076	0.3	A1G	1067	1070	0.3	A1G	1091	1140	5.2
E2U	1073	1108	3.3	E2U	1081	1126	4.2	E2U	1064	1185	19.4
B2G	1092	1141	4.5	B2G	1097	1152	5.0	B1U	1129	1067	0.2
B1U	1101	1097	0.4	E1U	1135	1134	0.1	E2U	1130	1123	2.3
E1U	1133	1137	0.4	B1U	1147	1124	2.0	B2U	1122	1132	0.3
B2U	1195	1201	0.5	B2U	1237	1242	0.4	B2G	1230	1243	0.2
E2G	1288	1291	0.2	E2G	1312	1304	0.6	B2U	1285	1302	1.3
B2U	1349	1353	0.3	B2U	1372	1362	0.7	B2G	1337	1361	1.4
A2G	1505	1506	0.1	A2G	1551	1524	1.7	A2G	1506	1521	2.2
E1U	1642	1644	0.1	E1U	1662	1644	1.1	E1U	1627	1640	1.6
E2G	1782	1786	0.2	E2G	1775	1772	0.2	E2G	1755	1766	0.3
B1U	3365	3351	0.4	E2U	3314	3323	0.3	E2U	3341	3313	1.1
E2G	3376	3362	0.4	E2G	3324	3334	0.3	E2G	3351	3326	1.0
E1U	3393	3380	0.4	E1U	3343	3355	0.4	E1U	3396	3347	0.8
A1G	3403	3391	0.4	A1G	3358	3371	0.4	A1G	3383	3361	0.7

B3LYP

6-31+G(d)	Uncorr. % diff	6-311G	Uncorr. % diff	6-311++G	Uncorr. % diff						
CP-corrected		CP-corrected		CP-corrected							
E2U	408	412	1.0	E2U	419	421	0.5	E2U	409	418	2.2
E2G	619	621	0.3	E2G	644	640	0.5	E2G	642	639	0.5
A2U	678	689	1.6	A2U	683	704	3.1	A2U	671	703	4.8
E1G	851	863	1.4	E1G	860	884	2.9	B2G	687	740	7.7
B2G	708	712	0.6	B2G	727	736	1.2	E1G	843	887	5.2
E2U	964	981	1.8	E2U	971	1006	3.7	E2U	932	1006	7.9
B2G	994	1014	2.0	B2G	1001	1009	0.8	B2G	940	1046	11.3
A1G	1014	1014	0.0	A1G	1006	1044	3.8	A1G	1004	1006	0.2
B1U	1022	1019	0.3	B1U	1061	1048	1.2	B1U	1058	1054	0.4
E1U	1062	1064	0.2	E1U	1064	1064	0.0	E1U	1062	1062	0.0
B2U	1177	1184	0.6	B2U	1204	1207	0.2	B2U	1208	1206	0.2
E2G	1199	1205	0.5	E2G	1219	1221	0.2	E2G	1220	1219	0.1
B2U	1354	1355	0.1	B2U	1337	1338	0.1	B2U	1337	1337	0.0
A2G	1385	1386	0.1	A2G	1432	1418	1.0	A2G	1428	1415	0.9
E1U	1520	1523	0.2	E1U	1538	1530	0.5	E1U	1534	1526	0.5
E2G	1644	1646	0.1	E2G	1636	1634	0.1	E2G	1631	1630	0.1
B1U	3179	3174	0.2	B1U	3116	3155	1.3	B1U	3148	3149	0.0
E2G	3188	3183	0.2	E2G	3134	3166	1.0	E2G	3159	3161	0.1
E1U	3203	3199	0.1	E1U	3153	3185	1.0	E1U	3177	3180	0.1
A1G	3213	3209	0.1	A1G	3168	3200	1.0	A1G	3190	3194	0.1
Table S8. Uncorrected and Counterpoise-corrected harmonic vibrational frequencies (cm⁻¹) for benzene (D₆h) at the MP2 and CISD levels of theory. The average difference between uncorrected and CP-corrected frequencies is 17.8% and 9.8% for MP2 and CISD, respectively. Excluding the problematic out-of-plane vibrational modes the differences are 4.4% and 4.2%, respectively. All data in the table were computed with Gaussian 03 and Gaussian98.											

MP2											
6-31+G(d)	CP-corrected	Uncorr. % diff	6-311G	CP-corrected	Uncorr. % diff	6-311++G	CP-corrected	Uncorr. % diff			
E2U	384	379	1.3	E2U	382	333	12.8	E2U	409	470	53.4
B2G	473	182	61.5	B2G	442	722i	263.3	E2G	631	627	0.7
E2G	613	618	0.8	E2G	625	630	0.8	A2U	703	573	18.4
A2U	659	672	2.0	A2U	650	620	4.6	B2G	730	721	1.3
E1G	824	829	0.6	E1G	812	736	9.4	E1G	890	620	30.4
E2U	894	877	1.9	E2U	861	648	24.7	A1G	961	984	2.3
B2G	896	859	4.1	B2G	877	779	11.2	A1G	1015	468i	146.1
A1G	1004	1020	1.6	A1G	966	988	2.3	E1U	1031	1050	1.9
B1U	1026	1018	0.8	E1U	1034	1055	2.0	B2U	1054	1208	14.6
E1U	1061	1077	1.5	B1U	1050	1029	2.0	B2G	1093	1852i	269.4
B2U	1181	1206	2.1	B2U	1183	1210	2.3	B1U	1192	1021	14.3
E2G	1204	1225	1.7	E2G	1203	1225	1.8	E2G	1209	1223	1.1
A2G	1388	1389	0.1	A2G	1423	1410	0.9	A2G	1426	1402	1.7
B2U	1439	1464	1.7	B2U	1330	1362	2.4	B2U	1342	1364	1.6
E1U	1516	1530	1.4	E2G	1593	1615	1.4	E2G	1594	1609	0.9
B2G	1640	1660	1.2	B2G	1593	1615	1.4	B2G	1594	1609	0.9
E2G	3226	3208	0.6	E2G	3139	3145	2.0	A1G	3171	3150	0.6
B1U	3226	3208	0.6	B2G	3139	3145	2.0	B1U	3226	3183	1.7
E1U	3249	3232	0.5	E2G	3139	3145	2.0	E1U	3249	3183	1.7
A1G	3257	3242	0.5	E2G	3242	3249	0.5	A1G	3257	3242	0.5
CISD											
6-31+G(d)	CP-corrected	Uncorr. % diff	6-311G	CP-corrected	Uncorr. % diff	6-311++G	CP-corrected	Uncorr. % diff			
E2U	426	418	1.9	E2U	382	339	3.9	E2U	455	281	38.2
E2G	639	643	0.6	B2G	442	189i	142.8	E2G	653	650	0.5
A2U	713	720	1.0	E2G	625	652	4.3	A2U	761	652	14.3
B2G	716	591	17.5	A2U	650	678	4.3	B2G	875	801	8.5
E1G	904	899	0.6	E2G	812	830	2.2	E2G	991	666	32.8
E2U	1028	999	3.8	B2G	861	839	2.6	B2U	1060	1057	0.3
A1G	1047	1061	1.4	B2G	877	847	3.4	A1G	1011	1031	2.0
B2G	1049	977	7.1	B2G	877	847	3.4	E1U	1089	768	29.5
B1U	1063	1055	0.8	E1U	1034	1093	5.7	B2U	1176	1215	3.3
E1U	1099	1115	1.5	E1U	1034	1093	5.7	E1U	1216	1090	10.4
B2U	1190	1218	2.4	B2U	1183	1215	2.7	E2G	1250	1255	0.4
E2G	1241	1261	1.6	E2G	1203	1257	4.5	B2G	1320	1321	0.1
B2G	1335	1358	1.7	B2G	1330	1320	0.8	A2G	1465	1448	1.2
A2G	1446	1445	0.1	A2G	1423	1454	2.2	E1U	1583	1570	0.8
E1U	1582	1594	0.8	E1U	1515	1574	3.9	B2G	1591	1384i	187.0
E2G	1724	1743	1.1	E2G	1593	1697	6.5	E2G	1678	1691	0.8
B1U	3302	3288	0.4	B1U	3129	3205	2.4	B1U	3206	3187	0.6
E2G	3311	3299	0.4	E2G	3139	3216	2.5	E2G	3224	3202	0.7
E1U	3327	3316	0.3	E1U	3156	3237	2.6	E1U	3252	3225	0.8
A1G	3337	3327	0.3	A1G	3170	3254	2.6	A1G	3270	3243	0.8
HF	CP-corrected	HF	% diff	B3LYP CP-corrected	B3LYP % diff	MP2 CP-corrected	MP2 % diff
B3U	188	193	2.9	176	180	159	159
AU	209	209	0.1	192	192	181	177
B1U	397	400	0.7	373	373	363	369
B1G	436	441	1.0	401	403	368	359
B2G	533	538	1.0	490	490	464	419
B3U	542	551	1.5	495	500	450	426
AG	564	566	0.2	531	531	516	523
B3G	572	573	0.1	530	531	522	523
B2U	700	700	0.0	647	649	655	450
AU	701	709	1.1	654	654	570	-402
B1G	795	831	4.5	734	748	638	642
AG	837	839	0.2	782	782	691	680
B3U	873	915	4.8	793	800	744	716
B2G	879	891	1.4	806	821	764	769
B1U	888	885	0.4	828	826	804	776
AU	927	976	5.2	852	873	814	819
B2G	970	1039	7.2	892	922	816	783
B1G	1055	1122	6.4	977	973	883	838
B3G	1062	1054	0.7	950	977	886	839
B3U	1071	1148	7.1	966	997	897	821
AU	1081	1172	8.4	990	1021	916	855
B2G	1086	1183	8.9	1002	1030	967	958
B2U	1091	1099	0.7	1046	1052	1011	1034
AG	1122	1127	0.4	1058	1062	1028	1048
B2U	1236	1242	0.5	1172	1175	1154	1168
B1U	1266	1265	0.1	1194	1200	1172	1195
B3G	1290	1292	0.1	1206	1216	1187	1220
AG	1313	1313	0.0	1211	1218	1197	1224
B2U	1330	1333	0.2	1255	1260	1227	1257
B3G	1409	1403	0.5	1306	1303	1285	1292
B1U	1414	1415	0.0	1316	1320	1295	1315
B2U	1501	1497	0.3	1421	1419	1409	1429
AG	1513	1519	0.4	1430	1431	1415	1425
B1U	1582	1565	1.1	1464	1453	1447	1441
B3G	1645	1636	0.5	1525	1520	1495	1501
AG	1652	1638	0.9	1527	1521	1502	1505
B2U	1694	1689	0.3	1574	1572	1537	1550
AG	1781	1781	0.0	1632	1631	1593	1603
B1U	1806	1804	0.1	1661	1660	1608	1625
B3G	1845	1846	0.1	1690	1690	1644	1669
B3G	3349	3347	0.1	3154	3185	3164	3158
B1U	3351	3349	0.1	3156	3186	3167	3159
B2U	3353	3352	0.0	3158	3189	3167	3160
AG	3358	3357	0.1	3161	3192	3170	3163
B3G	3368	3370	0.1	3172	3205	3184	3184
B1U	3370	3372	0.1	3174	3206	3184	3184
B2U	3380	3386	0.2	3186	3221	3196	3202
AG	3382	3388	0.2	3188	3222	3198	3203
Table S10. Uncorrected and Counterpoise-corrected harmonic vibrational frequencies (cm\(^{-1}\)) for indenyl anion (C\(_{2v}\)) at the MP2/6-311G level of theory. All data in the table were computed with the CP-opt driver and Gaussian 98.

	MP2 CP-corrected	MP2	% diff
B1	197	199	1.0
A2	221	305	38.2
A2	331	-1072	424.3
B1	363	444	22.3
B2	390	391	0.3
A1	550	544	1.2
B2	604	594	1.6
A2	604	-458	175.8
B1	620	609	1.7
B1	660	570	13.6
A2	705	523	25.9
A1	733	730	0.4
B1	781	504	35.5
B1	823	-200	124.3
A2	848	-125	114.7
A2	869	677	22.1
A1	874	874	0.0
B2	891	875	1.8
A1	986	979	0.8
A1	1034	1029	0.4
B2	1046	1049	0.3
B1	1058	-555	152.4
B2	1111	1104	0.6
A1	1167	1169	0.1
B2	1208	1195	1.1
B2	1250	1228	1.7
A1	1259	1242	1.3
A1	1349	1337	0.9
B2	1383	1350	2.4
B2	1424	1405	1.3
A1	1451	1422	2.0
B2	1484	1463	1.4
A1	1493	1468	1.7
A1	1543	1518	1.6
B2	1590	1561	1.9
B2	3064	3061	0.1
A1	3072	3069	0.1
A1	3072	3076	0.1
B2	3089	3088	0.0
B2	3108	3110	0.1
A1	3109	3110	0.0
A1	3123	3124	0.0
Table S11. Uncorrected and Counterpoise-corrected harmonic vibrational frequencies (cm⁻¹) for cyclopentadienyl anion (D_{5h}) at the MP2/6-311G level of theory. All data in the table were computed with the CP-opt driver and Gaussian 98.

Mode	Uncorrected	MP2 CP-corrected	MP2	% diff
E2"	614	-401	640	165.3
E1"	640	284	680	55.7
A2"	680	523	848	23.0
E2"	848	632	854	25.4
E2'	854	860	995	0.6
E1'	995	1020	1065	2.5
E2'	1065	1089	1089	2.3
A1'	1089	1115	1311	2.4
A2'	1311	1298	1383	1.0
E2'	1383	1402	1449	1.4
E1'	1449	1454	3060	0.4
E2'	3060	3081	3087	0.7
E1'	3087	3111	3119	0.8
A1'	3119	3145		0.8