Non-linear optical susceptibilities, Raman efficiencies and electrooptic tensors from first-principles density functional perturbation theory

M. Veithen,1 X. Gonze,2 and Ph.Ghosez1

1Département de Physique, Université de Liège, B-5, B-4000 Sart-Tilman, Belgium
2Unité de Physico-Chimie et de Physique des Matériaux (PCPM), place Croix du Sud, 1, B-1348 Louvain-la-Neuve, Belgium

(Dated: September 2, 2018)

Abstract

The non-linear response of infinite periodic solids to homogenous electric fields and collective atomic displacements is discussed in the framework of density functional perturbation theory. The approach is based on the 2n+1 theorem applied to an electric-field-dependent energy functional. We report the expressions for the calculation of the non-linear optical susceptibilities, Raman scattering efficiencies and electrooptic coefficients. Different formulations of third-order energy derivatives are examined and their convergence with respect to the k-point sampling is discussed. We apply our method to a few simple cases and compare our results to those obtained with distinct techniques. Finally, we discuss the effect of a scissors correction on the EO coefficients and non-linear optical susceptibilities.

PACS numbers: 78.20.-e,71.15.Mb,78.20.Jq
I. INTRODUCTION

Nowadays, density functional theory1,2 (DFT) is considered as a standard method in condensed matter physics, to study electronic, structural and macroscopic properties of solids from first principles. Combined with adiabatic perturbation theory, it allows \textit{a priori} the computation of derivatives of the energy and related thermodynamic potentials up to any order. At the second order, this approach has been applied to compute linear response functions such as phonon frequencies or Born effective charges with an accuracy of a few percents. The third-order derivatives are related to non-linear properties such as phonon lifetimes, Raman tensors or non-linear optical susceptibilities.

The linear-response formalism has been implemented in various first-principles codes and is routinely applied to an increasing number of systems [see for example Ref. 3 and references therein]. By contrast, the non-linear response formalism has been mostly restricted to quantum chemistry problems. Although the hyperpolarizabilities of a huge number of molecules have been computed, taking into account both electronic and vibrational (ionic) contributions4,5, applications in condensed matter physics have focused on rather simple cases6–13.

Here, we present a methodology for the computation of nonlinear response functions and related physical quantities of periodic solids from density functional perturbation theory (DFPT). We focus on perturbations characterized by a zero wavevector and involving either three electric fields, or two electric fields and one atomic displacement. Following Nunes and Gonze14, our approach makes use of the $2n+1$ theorem applied to an electric-field-dependent energy functional15. We report the local density approximation (LDA) expressions, as implemented within the \textsc{abinit} package16.

Our paper is organized as follows. In Sec. II, we describe the theoretical background related to the $2n+1$ theorem and the electric field perturbation. In Sec. III, we describe the computation of the non-linear optical susceptibilities, the non-resonant Raman scattering efficiencies of both transverse (TO) and longitudinal (LO) zone-center optical phonons and the linear electrooptic (EO) tensor. In Sec. IV, we illustrate the validity of the formalism by applying our methodology to some semiconductors and ferroelectric oxides and we briefly discuss the effect of a scissors correction on the EO coefficients and non-linear optical susceptibilities.
Some of the tensors we consider in this work depend on static electric fields: they include contributions of both the electrons and the ions. Other quantities imply only the response of the valence electrons: they are defined for frequencies of the electric field high enough to get rid of the ionic contributions but sufficiently low to avoid electronic excitations. For clarity, we adopt the following convention. Static fields will be labeled by greek indices \((\alpha, \beta, \ldots)\) while we will refer to optical fields with roman symbols \((i, j, \ldots)\). To simplify the notations, we will also drop labels such as "\(\infty\)" for quantities that do not involve the response of the ions. Using this convention, we can write \(\varepsilon_{ij}\) and \(\varepsilon_{\alpha\beta}\), respectively, for the optical and static dielectric tensor, respectively, and \(r_{ij\gamma}\) for the linear EO (Pockels) tensor that involves two optical and one static electric field.

II. FORMALISM

A. Mixed third-order energy derivatives

In this section, we present the general framework of the computation of third order energy derivatives based on the \(2n+1\) theorem\(^{17-19}\). Using the notations of Refs. \([20,21]\), we consider three Hermitian perturbations labeled \(\lambda_1, \lambda_2\) and \(\lambda_3\). The mixed third-order derivatives

\[
E_{\lambda_1\lambda_2\lambda_3} = \frac{1}{6} \left. \frac{\partial^3 E}{\partial \lambda_1 \partial \lambda_2 \partial \lambda_3} \right|_{\lambda_1=0, \lambda_2=0, \lambda_3=0}
\]

(1)

can be computed from the ground-state and first-order wavefunctions

\[
E_{\lambda_1\lambda_2\lambda_3} = \frac{1}{6} \left(\tilde{E}_{\lambda_1\lambda_2\lambda_3} + \tilde{E}_{\lambda_1\lambda_3\lambda_2} + \tilde{E}_{\lambda_2\lambda_1\lambda_3} + \tilde{E}_{\lambda_2\lambda_3\lambda_1} + \tilde{E}_{\lambda_3\lambda_2\lambda_1} + \tilde{E}_{\lambda_3\lambda_1\lambda_2} \right)
\]

(2)

with

\[
\tilde{E}_{\lambda_1\lambda_2\lambda_3} = \sum_\alpha \left[\langle \psi^{(0)}_\alpha | (T + v_{ext})^{\lambda_2\lambda_3} | \psi^{(0)}_\alpha \rangle + \langle \psi^{(0)}_\alpha | (T + v_{ext} + v_{Hxc})^{\lambda_1\lambda_3} | \psi^{(0)}_\alpha \rangle \right] - \sum_{\alpha,\beta} \Lambda^{\lambda_2}_\alpha \Lambda^{\lambda_1\lambda_3}_\beta \langle \psi^{(0)}_\alpha | \psi^{(0)}_\beta \rangle
\]

\[
+ \frac{1}{6} \int dr dr' dr'' \frac{\delta^3 E_{Hxc}[n^{(0)}]}{\delta n(r) \delta n(r') \delta n(r'')} n^{\lambda_1}(r)n^{\lambda_2}(r')n^{\lambda_3}(r'')
\]

\[
+ \frac{1}{2} \int dr dr' \frac{d}{d\lambda_2} \frac{\delta^2 E_{Hxc}[n^{(0)}]}{\delta n(r) \delta n(r')} n^{\lambda_1}(r)n^{\lambda_3}(r')
\]

\[
+ \frac{1}{2} \int dr \frac{d^2}{d\lambda_1 d\lambda_3} \frac{\delta^2 E_{Hxc}[n^{(0)}]}{\delta n(r)} n^{\lambda_2}(r) + \frac{1}{6} \frac{d^3 E_{Hxc}[n^{(0)}]}{d\lambda_1 d\lambda_2 d\lambda_3} \Big|_{\lambda=0}.
\]

(3)
T is the kinetic energy and E_{Hxc} (resp. v_{Hxc}) is the sum of the Hartree and exchange-correlation energy (resp. potential). The first-order potential $v_{\text{Hxc}}^{\lambda_2}$ can be computed as a second-order functional derivative of E_{Hxc} \(^{19}\)

$$v_{\text{Hxc}}^{\lambda_2} = \int \frac{\delta^2 E_{\text{Hxc}}[\eta^{(0)}]}{\delta n(r) \delta n(r')} n^{\lambda_2}(r') \, dr' + \frac{d}{d\lambda_2} \frac{\delta E_{\text{Hxc}}[\eta^{(0)}]}{\delta n(r)} \bigg|_{\lambda=0}. \quad (4)$$

Within the parallel gauge, the first-order Lagrange multipliers are given by

$$\Lambda_{\beta\alpha}^{\lambda_2} = \langle \psi_{\beta}^{(0)} | (T + v_{\text{ext}} + v_{\text{Hxc}})^{\lambda_2} | \psi_{\alpha}^{(0)} \rangle. \quad (5)$$

As a consequence of the ”2n + 1” theorem, the evaluation of Eq. (3) requires no higher order derivative of the wavefunctions than the first one. These first-order wavefunctions are nowadays available in several first-principles codes. They can be computed from linear response by minimizing a stationary expression of the second-order energy \(^{20}\) or equivalently by solving the corresponding Sternheimer equation \(^{22}\). It follows that the computation of third-order energies does not require additional quantities than the calculation of second-order energy derivatives.

Eq. (3) is the general expression of the third-order energy derivatives. In case at least one of the perturbations does not affect the explicit form of the kinetic energy or the Hartree and exchange-correlation energy, it can be simplified: some of the terms may be zero. This is the case for the electric field perturbations treated in this work as well as for phonon type perturbations. Further simplifications can be made in case pseudopotentials without non-linear exchange-correlation core-correction are used.

B. The electric field perturbation

As mentioned in the introduction, special care is required in case one of the perturbations λ_j is a macroscopic electric field \mathbf{E}. In fact, as discussed in the literature, for infinite periodic solids, usually treated with Born-von Karman boundary conditions, the scalar potential $\mathbf{E} \cdot \mathbf{r}$ breaks the periodicity of the crystal lattice. Moreover, it is unbound from below: it is always possible to lower the energy by transferring electrons from the valence states to the conduction states in a distant region (Zener breakdown). However, for sufficiently small fields, the tunneling current through the band gap can be neglected and the system is well described by a set of electric field dependent Wannier functions $W_n(\mathbf{r})$. As shown by Nunes
and Vanderbilt15, these Wannier functions minimize the energy functional

$$E [W_n; \mathcal{E}] = E_0 [W_n] - \Omega \mathbf{E} \cdot \mathcal{P}$$

(6)

where E_0 is the Kohn-Sham energy under zero field and \mathcal{P} the macroscopic polarization that can be computed from the Wannier function centers. It is important to note that these Wannier functions do not correspond to the true ground-state of the system but rather to a long lived metastable state.

In practical applications, it is not mandatory to evaluate the functional Eq. (6) in a Wannier basis. It can equivalently be expressed using Bloch functions u_{nk} related to W_n by a unitary transform. In this case, the polarization can be computed as a Berry phase of the occupied bands23

$$\mathcal{P} = -\frac{2ie}{(2\pi)^3} \sum_{occ} \int_{BZ} dk \langle u_{nk} | \nabla_k | u_{nk} \rangle$$

(7)

where BZ is the Brillouin zone, e the absolute value of the electronic charge and the factor of 2 accounts for spin degeneracy. The Bloch functions are chosen to satisfy the periodic gauge condition

$$e^{iG \cdot R} u_{nk+G} = u_{nk}.$$ \hspace{1cm} (8)

In order to use Eq. (7) in practical calculations, the integration over the BZ, as well as the differentiation with respect to k, have to be performed on a discrete mesh of N_k k-points. In case of the ground-state polarization, the standard approach is to build strings of k-points parallel to a vector of the reciprocal space G_\parallel. The polarization can then be computed as a string-averaged Berry phase. Unfortunately, the adaptation of this method to the computation of the energy derivatives is plagued with several difficulties, like the following. The general form of the non-linear optical susceptibility tensor of a compound is imposed by its symmetry. For example, in zinc-blende semiconductors, this tensor, expressed in cartesian coordinates reduces to $\chi^{(2)}_{ijl} = \chi^{(2)} | \epsilon_{ijl} |$ where ϵ is the Levi-Civita tensor. It follows that the reduced coordinates formulation of $\chi^{(2)}_{ijl}$ satisfy the relation

$$\frac{\chi^{(2)}_{ijl}}{\chi^{(2)}_{iii}} = \frac{1}{3}$$

(9)

where at least one of the three indices i, j and l are different from the two others. When we tried to use strings of k-points to compute $\chi^{(2)}_{ijl}$, Eq. (9) was not satisfied. However,
we were able to avoid these problems, by using the finite difference formula of Marzari and
Vanderbilt24 on a regular grid of special \(k \)-points (instead of strings)
\[
\nabla f(k) = \sum_{b} w_b b [f(k + b) - f(k)]
\]
(10)
where \(b \) is a vector connecting a \(k \)-point to one of its nearest neighbours and \(w_b \) is a weight factor. The sum in Eq. (10) includes as many shells of first neighbours as necessary to satisfy the condition
\[
\sum_{b} w_b b_{\alpha} b_{\beta} = \frac{g_{\alpha\beta}}{(2\pi)^2}
\]
(11)
where \(b_{\alpha} \) are the reduced coordinates of \(b \) and \(g_{\alpha\beta} \) is the metric tensor associated to the real space crystal lattice.

In case of the ground-state polarization, we cannot apply the discretization Eq. (10) directly to Eq. (7). As shown by Marzari and Vanderbilt, the discretization of Eq. (7) does not transform correctly under the gauge transformation
\[
u_{n,k}(r) \rightarrow e^{-ikR}u_{n,k}(r).
\]
(12)
Since Eq. (12) is equivalent to a shift of the origin by one lattice vector \(R \), \(\mathcal{P} \) must change accordingly by one polarization quantum. In order to obtain a discrete expression that matches this requirement, we must combine Eq. (10) with the King-Smith and Vanderbilt formula23,25
\[
\mathcal{P} = \frac{2e}{N_k \Omega} \sum_{k} \sum_{b} w_b b \Im \ln \det [S(k, k + b)]
\]
(13)
where \(S \) is the overlap matrix between Bloch functions at \(k \) and \(k + b \):
\[
S_{n,m}(k, k + b) = \langle u_{n,k} | u_{m,k+b} \rangle.
\]
(14)
As discussed by Nunes and Gonze14, when we apply the perturbation expansion of the preceding section to the energy functional Eq. (6), we can adopt two equivalent approaches. The first possibility is the use of Eq. (7) for the polarization and a discretization after having performed the perturbation expansion. The second possibility is to apply the \(2n + 1 \) theorem directly to Eq. (13) in which case no additional discretization is needed. Using the notations of Nunes and Gonze, we will refer to the first case as the DAPE (discretization after perturbation expansion) formulation and to the second one as the PEAD (perturbation expansion after discretization) formulation of the third-order energy. In the following...
sections, we will discuss both expressions. In addition, in Sec. IV B, we will compare their convergence with respect to the k-point sampling on a realistic example. The perturbation expansion of the first term (E_0) of Eq. (6) can easily be performed as it is described in the Sec. II A. At the opposite, the expansion of the second term ($-\Omega \mathbf{E} \cdot \mathbf{P}$) is more tricky since it explicitly depends on the polarization. In the two sections that follow, we will focus on the $-\Omega \mathbf{E} \cdot \mathbf{P}$ term of Eq. (6). It will be referred to as E_{pol}.

C. DAPE expression

According to the formalism of the preceding section, the $\mathbf{E} \cdot \mathbf{P}$ term acts as an additional external potential that has to be added to the ionic one. The $\mathbf{E} \cdot \mathbf{P}$ perturbation is linear in the electric field and does not depend explicitly on other variables such as the atomic positions. It just enters the terms of Eq. (3) that involve the first derivative of v_{ext} with respect to \mathbf{E}. In other words, the only terms in Eq. (2) that involve the expansion of \mathbf{P} are of the form $\tilde{E}^{\lambda_1 \mathbf{E}, \lambda_3}$ where λ_1 and λ_3 represent an arbitrary perturbation such as an electric field or an atomic displacement.

The DAPE expression of the third-order derivative of E_{pol} writes as follows

$$
\tilde{E}_{pol}^{\lambda_1 \mathbf{E}, \lambda_3} = \frac{2ie\Omega}{(2\pi)^3} \int_{BZ} d\mathbf{k} \sum_{occ} \sum_{n} \langle u_{nk}^{\lambda_1} | \frac{\partial}{\partial k_i} \sum_{m} \langle u_{nk}^{\lambda_3} | u_{mk}^{(0)} \rangle | u_{nk}^{(0)} \rangle \rangle ^{\mathbf{k}, \mathbf{occ}} \sum_{n,m} w_{\mathbf{b}} (\mathbf{b} \cdot \mathbf{G}_i) \times \left\{ \langle u_{nk}^{\lambda_1} | u_{m+(\mathbf{k}+\mathbf{b})}^{\lambda_3} | u_{mk+b}^{(0)} \rangle \langle u_{mk+b}^{(0)} | u_{nk}^{(0)} \rangle - \langle u_{nk}^{\lambda_1} | u_{nk}^{\lambda_3} \rangle \delta_{n,m} \right\} \tag{15}
$$

where $u_{nk}^{\lambda_j}$ are the projection of the first-order wavefunctions on the conduction bands. The complete expression of various third-order energy derivatives, taking into account the expansion of both E_0 and E_{pol}, are reported in Sec. III. Eq. (15) was derived first by Dal Corso and Mauri in a slightly different context: they performed the perturbation expansion of the energy functional Eq. (6) using a Wannier basis. The resulting expression of the third-order energy was expressed in terms of Bloch functions by applying a unitary transform to the Wannier orbitals.

Using the finite difference expression of Marzari and Vanderbilt Eq. (10), Eq. (15) becomes

$$
\tilde{E}_{pol}^{\lambda_1 \mathbf{E}, \lambda_3} = \frac{2ie}{N_k} \sum_{k} \sum_{b} \sum_{occ} w_{\mathbf{b}} (\mathbf{b} \cdot \mathbf{G}_i) \times \left\{ \langle u_{nk}^{\lambda_1} | u_{m+(\mathbf{k}+\mathbf{b})}^{\lambda_3} | u_{mk+b}^{(0)} \rangle \langle u_{mk+b}^{(0)} | u_{nk}^{(0)} \rangle - \langle u_{nk}^{\lambda_1} | u_{nk}^{\lambda_3} \rangle \delta_{n,m} \right\} \tag{16}
$$
where G_i is a basis vector of the reciprocal lattice.

D. PEAD expression

Applying directly the $2n + 1$ theorem to Eq. (13) we obtain the alternative PEAD formulation of the third-order energy:

$$E_{\text{pol}}^{\lambda_1 \lambda_3} = \frac{-e}{N_k} 3 \sum_k \sum_b w_b (b \cdot G_i) \times \left[2 \sum_{n,m}^{\text{occ}} \langle u_{n\lambda_1}^k | u_{m\lambda_3}^{k+b} \rangle Q_{mn} (k, k + b)
- \sum_{n,m,l,l'}^{\text{occ}} S_{nn}^{\lambda_1} (k, k + b) Q_{nl} (k, k + b) \times S_{ll'}^{\lambda_3} (k, k + b) Q_{l'm} (k, k + b) \right]$$

(17)

where Q is the inverse of the overlap matrix S and $S_{nm}^{\lambda_1}$ its first-order perturbation expansion

$$S_{nm}^{\lambda_1} (k, k + b) = \langle u_{n\lambda_1}^k | u_{m\lambda_1}^{k+b} \rangle + \langle u_{n\lambda_1}^0 | u_{m\lambda_1}^{k+b} \rangle.$$

(18)

III. NON-LINEAR OPTICAL PROPERTIES

In the previous section we have discussed the general expressions of third energy derivatives. We now particularize them to the computation of selected non-linear properties.

A. Non-linear optical susceptibilities

In an insulator the polarization can be expressed as a Taylor expansion of the macroscopic electric field

$$P_i = P_i^s + \sum_{j=1}^3 \chi_{ij}^{(1)} \mathcal{E}_j + \sum_{j,k=1}^3 \chi_{ijl}^{(2)} \mathcal{E}_j \mathcal{E}_l + \cdots$$

(19)

where P_i^s is the zero-field (spontaneous) polarization, $\chi_{ij}^{(1)}$ the linear dielectric susceptibility (second rank tensor) and $\chi_{ijl}^{(2)}$ the second-order non-linear optical susceptibility (third rank tensor). In the litterature on non-linear optics, one often finds another definition of the non-linear optical susceptibility : instead of $\chi_{ijl}^{(2)}$, it is more convenient to rely on the d-tensor
defined as
\[
d_{ijl} = \frac{1}{2} \chi^{(2)}_{ijl}. \tag{20}
\]

In general, the polarization depends on valence electrons as well as ions. In the present section, we deal only with the electronic contribution: we will consider the ionic cores as clamped to their equilibrium positions. This constraint will be relaxed in the following sections where we allow for ionic displacements.

Experimentally, the electronic contribution to the linear and non-linear susceptibilities corresponds to measurements for electric fields at frequencies high enough to get rid of the ionic relaxation but low enough to avoid electronic excitations. In case of the second-order susceptibilities, this constraint implies that both the frequency of \(E \), and its second harmonic, are lower than the fundamental absorption gap.

The general expression of the electronic non-linear optical susceptibility depends on the frequencies of the optical electric fields [see for example Ref. [27]]. In the present context of the \(2n + 1 \) theorem applied within the LDA to (static) DFT, we neglect the dispersion of \(\chi^{(2)}_{ijl} \). As a consequence, \(\chi^{(2)}_{ijl} \) satisfies Kleinman’s\(^{28}\) symmetry condition which means that it is symmetric under a permutation of \(i, j \) and \(l \). In order to be able to investigate its frequency dependence, one would need either to apply the formalism of time-dependent DFT\(^9\) or to use expressions that involve sums over excited states\(^{29–33}\). Following the work of Dal Corso and co-workers\(^9,26\) we can relate the non-linear optical susceptibilities to a third-order derivative of the energy with respect to an electric field
\[
\chi^{(2)}_{ijl} = -\frac{3}{\Omega} E^{E_i E_j E_l} \tag{21}
\]
where \(E^{E_i E_j E_l} \) is defined as the sum over the permutations of the three perturbations \(\tilde{E}^{E_i E_j E_l} \) of (2). Using the PEAD formulation of Sec. II B we can express these terms as follows
\[
\tilde{E}^{E_i E_j E_l} = -\frac{e}{N_k} \sum_\mathbf{k} \sum_b w_b (b \cdot G_j) \left[2 \sum_{n,m, \text{occ}} \langle u^{E_i}_{nk} | u^{E_l}_{nk+b} \rangle Q_{mn}(\mathbf{k}, \mathbf{k}+\mathbf{b}) \right.
\]
\[\left. - \sum_{n_m, n_{m'}, \text{occ}} S_{mn}^{E_i}(\mathbf{k}, \mathbf{k}+\mathbf{b}) Q_{mn'}(\mathbf{k}, \mathbf{k}+\mathbf{b}) S_{n'm'}^{E_l}(\mathbf{k}, \mathbf{k}+\mathbf{b}) Q_{m'm}(\mathbf{k}, \mathbf{k}+\mathbf{b}) \right]
\]
\[+ \frac{2}{N_k} \sum_\mathbf{k} \sum_{n,m} \left[\delta_{m,n} \langle u^{E_i}_{nk} | v^{E_j}_{hxc} | u^{E_l}_{mk} \rangle - \langle u^{(0)}_{mk} | v^{E_j}_{hxc} | u^{(0)}_{nk} \rangle \langle u^{E_i}_{nk} | u^{E_l}_{mk} \rangle \right]
\]
\[+ \frac{1}{6} \int d\mathbf{r} d\mathbf{r}' d\mathbf{r}'' \frac{\delta^n E_{e x} [n^0]}{\delta n(\mathbf{r}) \delta n(\mathbf{r}') \delta n(\mathbf{r}'')} n^{E_i}(\mathbf{r}) n^{E_j}(\mathbf{r}') n^{E_l}(\mathbf{r}''). \tag{22}\]
B. Raman susceptibilities of zone-center optical phonons

We now consider the computation of Raman scattering efficiencies of zone-center optical phonons. In the limit \(q \to 0 \), the matrix of interatomic force constants \(\tilde{C} \) can be expressed as the sum of an analytical part and a non-analytical term\(^{21} \)

\[
\tilde{C}_{\kappa\alpha,\kappa'\beta}(q \to 0) = \tilde{C}_{\kappa\alpha,\kappa'\beta}^{AN}(q = 0) + \tilde{C}_{\kappa\alpha,\kappa'\beta}^{NA}(q \to 0). \tag{23}
\]

The analytical part corresponds to the second-order derivative of the energy with respect to an atomic displacement at \(q = 0 \) under the condition of vanishing macroscopic electric field. The second term is due to the long-range electrostatic interactions in polar crystals. It is at the origin of the so-called LO-TO splitting and can be computed from the knowledge of the Born effective charges \(Z_{\kappa\alpha}^* \) and the electronic dielectric tensor\(^{21} \) \(\varepsilon_{ij} \). The phonon frequencies \(\omega_m \) and eigendisplacements \(u_m(\kappa\alpha) \) are solution of the following generalized eigenvalue problem

\[
\sum_{\kappa',\beta} \tilde{C}_{\kappa\alpha,\kappa'\beta} u_m(\kappa'\beta) = M_{\kappa} \omega_m^2 u_m(\kappa\alpha) \tag{24}
\]

where \(M_{\kappa} \) is the mass of atom \(\kappa \). As a convention, we choose the eigendisplacements to be normalized as

\[
\sum_{\kappa,\alpha} M_{\kappa} u_m(\kappa\alpha) u_n(\kappa\alpha) = \delta_{m,n}. \tag{25}
\]

In what follows we consider non-resonant Raman scattering where an incoming photon of frequency \(\omega_0 \) and polarization \(e_0 \) is scattered to an outgoing photon of frequency \((\omega_0 - \omega_m) \) and polarization \(e_S \) by creating a phonon of frequency \(\omega_m \) (Stokes process). The scattering efficiency\(^{34,35} \) (cgs units) corresponds to

\[
\frac{dS}{d\Omega} = |e_S \cdot R_m \cdot e_0|^2 \]

\[
= \frac{(\omega_0 - \omega_m)^4}{c^4} |e_S \cdot \alpha^m \cdot e_0|^2 \frac{\hbar}{2\omega_m} (n_m + 1) \tag{26}
\]

where \(c \) is the speed of light in vacuum and \(n_m \) the Boson factor

\[
n_m = \frac{1}{\exp(\hbar \omega_m / k_B T) - 1}. \tag{27}
\]

The Raman susceptibility \(\alpha^m \) is defined as

\[
\alpha_{ij}^m = \sqrt{\Omega} \sum_{\kappa,\beta} \frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa\beta}} u_m(\kappa\beta) \tag{28}
\]
where $\chi_{ij}^{(1)}$ is the electronic linear dielectric susceptibility tensor. Ω is the angle of collection in which the outgoing photon is scattered. Due to Snell’s law, Ω is modified at the interface between the sample and the surrounding medium. Experimentally, the scattering efficiencies are measured with respect to the solid angle of the medium while Eq. (26) refers to the solid angle inside the sample. In order to relate theory and experiment, one has to take into account the different refractive indices of the sample and medium. For example, in the isotropic case, Eq. (26) has to be multiplied by $(n'/n)^2$ where n and n' are respectively the refractive indices of the sample and the medium.

For pure transverse optical phonons, $\frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa\lambda}}$ can be computed as a mixed third-order derivative of the energy with respect to an electric field, twice, and to an atomic displacement under the condition of zero electric field

$$\frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa\lambda}} \bigg|_{\varepsilon=0} = -\frac{6}{\Omega} E^{\tau_{\kappa\lambda}} \varepsilon_i \varepsilon_j. \tag{29}$$

In case of longitudinal optical phonons with wavevector $q \to 0$ in a polar crystal, Eq. (28) must take into account the effect of the macroscopic electric field generated by the lattice polar vibration. This field enters the computation of the Raman susceptibilities at two levels. On one hand, it gives rise to the non-analytical part of the matrix of interatomic force constants Eq. (23) that modifies the frequencies and eigenvectors with respect to pure transverse phonons. On the other hand, the electric field induces an additional change in the dielectric susceptibility tensor related to the non-linear optical coefficients $\chi_{ijk}^{(2)}$. For longitudinal optical phonons, Eq. (29) has to be modified as follows:

$$\frac{\partial \chi_{ij}}{\partial \tau_{\kappa\lambda}} = \frac{\partial \chi_{ij}}{\partial \tau_{\kappa\lambda}} \bigg|_{\varepsilon=0} - \frac{8\pi}{\Omega} \sum_{\alpha'\beta'} X_{\alpha\beta}' q_{\alpha'} q_{\beta'} \sum_{\tau} \chi_{ijk}^{(2)} q_{\tau}. \tag{30}$$

The mixed third-order derivatives (29) can be computed from various techniques including finite differences of the dielectric tensor or the second derivative of the electronic density matrix. Here, we follow an approach similar to Deinzer and Strauch based on the $2n+1$ theorem. The third-order energy can be computed as the sum over the 6 permutations Eq. (2) of $\tau_{\kappa\lambda}, \varepsilon_i$ and ε_j. According to the discussion of Sec. II B, we have to distinguish between the terms that involve the discretization of the polarization such as $\tilde{E}^{\tau_{\kappa\lambda}} \varepsilon_i \varepsilon_j$ or $\tilde{E}^{\varepsilon_i \varepsilon_j \tau_{\kappa\lambda}}$ and those that can be computed from a straightforward application of the $2n+1$ theorem such as $\tilde{E}^{\varepsilon_i \tau_{\kappa\lambda}} \varepsilon_j$. The former ones show an electric field as second perturbation. They can be computed from an expression analogous to Eq. (22).
\[
\tilde{E}_{\tau,\lambda}^{\xi,\epsilon_j} = \frac{-e^2}{N_k} \sum_{k} \sum_{b} w_b (b \cdot G_i) \left[2 \sum_{n,m}^{occ} \langle u_{nk}^{\tau,\lambda} | u_{mk+b}^{\xi_j} \rangle Q_{mn}(k,k+b) \right.
\]
\[
- \sum_{n,m,l,l'}^{occ} S_{mn}^{\tau,\lambda}(k,k+b)Q_{nl}(k,k+b)S_{nl'}^{\xi_j}(k,k+b)Q_{l'm}(k,k+b) \right]
\]
\[
\left. + \frac{2}{N_k} \sum_{k} \sum_{n,m}^{occ} \left[\delta_{n,m} \langle u_{nk}^{\tau,\lambda} | v_{hxc}^{\xi_j} | u_{mk}^{\xi_j} \rangle - \langle u_{mk}^{\xi_j} | v_{hxc}^{\xi_j} | u_{nk}^{\xi_j} \rangle \right] \right]
\]
\[
\left. + \frac{1}{6} \int dr dr' dr'' \delta^3 E_{xc}[n^0] \frac{\delta}{\delta n(r)} \frac{\delta}{\delta n(r')} \frac{\delta}{\delta n(r'')} \tilde{E}_{\tau,\lambda}^{\xi,\epsilon_j} \right]. \quad (31)
\]

We obtain a similar expression for \(\tilde{E}_{\tau,\lambda}^{\xi,\epsilon_j}\). The remaining terms do not require any differentiation with respect to \(k\). They can be computed from the first-order change of the ionic (pseudo) potential with respect to an atomic displacement \(v_{ext}^{\tau,\lambda}\)

\[
\tilde{E}_{\tau,\lambda}^{\xi,\epsilon_j} = \frac{2}{N_k} \sum_{k} \sum_{n,m}^{occ} \left[\langle u_{nk}^{\xi_j} | v_{ext}^{\tau,\lambda} + v_{hxc}^{\tau,\lambda} | u_{mk}^{\xi_j} \rangle \delta_{n,m} - \langle u_{mk}^{\xi_j} | v_{ext}^{\tau,\lambda} + v_{hxc}^{\tau,\lambda} | u_{nk}^{\xi_j} \rangle \langle u_{mk}^{\xi_j} | u_{nk}^{\xi_j} \rangle \right]
\]
\[
\left. + \frac{1}{2} \int dr dr' \frac{d E_{Hxc}}{d r_{\tau,\lambda}} \bigg|_{n^0} n^{\xi_i}(r) n^{\xi_j}(r') \right]
\]
\[
\left. + \frac{1}{6} \int dr dr' dr'' \delta^3 E_{xc}[n^0] \frac{\delta}{\delta n(r)} \frac{\delta}{\delta n(r')} \frac{\delta}{\delta n(r'')} \tilde{E}_{\tau,\lambda}^{\xi,\epsilon_j} \right]. \quad (32)
\]

In pseudopotential calculations, the computation of the first-order ionic potential \(v_{ext}^{\tau,\lambda}\) requires the derivative of local and non-local (usually separable) operators. These operations can be performed easily without any additional workload as described in Ref. [20].

In spite of the similarities between Eqs. (31) and (32) and the expression proposed by Deinzer and Strauch we can quote few differences. First, our expression of the third-order energy makes use of the PEAD formulation for the expansion of the polarization. Moreover, Eq. (32) is more general since it allows the use of pseudopotentials with non-linear core correction through the derivative of the second-order exchange-correlation energy with respect to \(\tau_{\kappa,\lambda}\) (third term).
C. Sum rule

As in the cases of the Born effective charges and of the dynamical matrix\(^{42}\), the coefficients \(\partial \chi_{ij}^{(1)} / \partial \tau_{\kappa \alpha} \) must vanish when they are summed over all atoms in the unit cell.

\[
\sum_{\kappa} \frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa \alpha}} = 0 \tag{33}
\]

Physically, this sum rule guarantees the fact that the macroscopic dielectric susceptibility remains invariant under a rigid translation of the crystal. In practical calculations, it is not always satisfied although the violation is generally less severe than in case of \(\tilde{C}\) or \(Z^*\). Even in calculations that present a low degree of convergence, the deviations from this law can be quite weak. They can be corrected using similar techniques as in case of the Born effective charges\(^{21}\). For example, we can define the mean excess of \(\partial \chi_{ij}^{(1)} / \partial \tau_{\kappa \alpha} \) per atom

\[
\overline{\frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\alpha}}} = \frac{1}{N_{\text{at}}} \sum_{\kappa} \frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa \alpha}} \tag{34}
\]

and redistribute it equally between the atoms

\[
\frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa \alpha}} \to \frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\kappa \alpha}} - \overline{\frac{\partial \chi_{ij}^{(1)}}{\partial \tau_{\alpha}}}. \tag{35}
\]

D. Electrooptic tensor

The optical properties of a compound usually depend on external parameters such as the temperature, electric fields or mechanical constraints (stress, strain). In the present section we consider the variations of the refractive index induced by a static or low-frequency electric field \(E_{\gamma} \). At the linear order, these variations are described by the linear EO coefficients (Pockels effect)

\[
\Delta (\varepsilon^{-1})_{ij} = \sum_{\gamma=1}^{3} r_{ij\gamma} E_{\gamma} \tag{36}
\]

where \((\varepsilon^{-1})_{ij}\) is the inverse of the electronic dielectric tensor and \(r_{ij\gamma}\) the EO tensor.

Within the Born and Oppenheimer approximation, the EO tensor can be expressed as the sum of three contributions: a bare electronic part \(r_{ij\gamma}^{el}\), an ionic contribution \(r_{ij\gamma}^{ion}\) and a piezoelectric contribution \(r_{ij\gamma}^{piezo}\).
The electronic part is due to an interaction of \mathcal{E}_γ with the valence electrons when considering the ions artificially as clamped at their equilibrium positions. It can be computed from the non-linear optical coefficients. As can be be seen from Eq. (19), $\chi^{(2)}_{ijl}$ defines the second-order change of the induced polarization with respect to \mathcal{E}_γ. Taking the derivative of Eq. (19), we also see that $\chi^{(2)}_{ijl}$ defines the first-order change of the linear dielectric susceptibility, which is equal to $\frac{1}{4\pi}\Delta\varepsilon_{ij}$. Since the EO tensor depends on $\Delta(\varepsilon^{-1})_{ij}$ rather than $\Delta\varepsilon_{ij}$, we have to transform $\Delta\varepsilon_{ij}$ by the inverse of the zero field electronic dielectric tensor\(^{43}\)

$$
\Delta(\varepsilon^{-1})_{ij} = -\sum_{m,n=1}^{3} \varepsilon_{im}^{-1}\Delta(\varepsilon)_{mn}\varepsilon_{nj}^{-1}.
$$

(37)

Using Eq. (37) we obtain the following expression for the electronic EO tensor

$$
r_{ij\gamma}^{el} = -8\pi \sum_{l,l'=1}^{3} \varepsilon^{-1}_{l} \chi^{(2)}_{ll'l}(\varepsilon^{-1})_{lj} \bigg|_{k=\gamma}.
$$

(38)

Eq. (38) takes a simpler form when expressed in the principal axes of the crystal under investigation\(^{44}\)

$$
r_{ij\gamma}^{el} = \frac{-8\pi}{n_i^2 n_j^2} \chi^{(2)}_{ijk} \bigg|_{k=\gamma}
$$

(39)

where the n_i coefficients are the principal refractive indices.

The origin of the ionic contribution to the EO tensor is the relaxation of the atomic positions due to the applied electric field \mathcal{E}_γ and the variations of ε_{ij} induced by these displacements. It can be computed from the Born effective charges $Z_{*,\kappa,\alpha,\beta}$ and the $\frac{\partial \chi_{ij}}{\partial \tau_{\kappa,\alpha}}$ coefficients introduced in Sec. III B. As shown in appendix A [see also Refs. 36,45], the ionic EO tensor can be computed as a sum over the transverse optic phonon modes at $\mathbf{q} = 0$

$$
r_{ij\gamma}^{ion} = -\frac{4\pi}{\sqrt{\Omega n_i^2 n_j^2}} \sum_{m} \frac{\alpha_{ij}^m}{\omega_m^2} p_{m,\gamma}
$$

(40)

where α^m is the Raman susceptibility of mode m [Eq. (28)] and $p_{m,\beta}$ the mode polarity

$$
p_{m,\gamma} = \sum_{\kappa,\beta} Z^*_{*,\kappa,\gamma,\beta} u_m(\kappa\beta).
$$

(41)

that is directly linked to the modes oscillator strength

$$
S_{m,\alpha,\beta} = p_{m,\alpha} \cdot p_{m,\beta}.
$$

(42)

For simplicity, we have expressed Eq. (40) in the principal axes while a more general expression can be derived from Eq. (37).
Finally, the piezoelectric contribution is due to a relaxation of the unit cell shape due to the converse piezoelectric effect46,47. As it is discussed in appendix A, it can be computed from the elasto-optic coefficients $p_{ij\mu\nu}$ and the piezoelectric strain coefficients $d_{\gamma\mu\nu}$

$$r_{ij\gamma}^{\text{piezo}} = \sum_{\mu,\nu=1}^{3} p_{ij\mu\nu} d_{\gamma\mu\nu}.$$ \hspace{1cm} (43)

In the discussion of the EO effect, we have to specify whether we are dealing with strain-free (clamped) or stress-free (unclamped) mechanical boundary conditions. The clamped EO tensor $r_{ij\gamma}^\eta$ takes into account the electronic and ionic contributions but neglects any modification of the unit cell shape due to the converse piezoelectric effect46,47

$$r_{ij\gamma}^\eta = r_{ij\gamma}^{el} + r_{ij\gamma}^{ion}.$$ \hspace{1cm} (44)

Experimentally, it can be measured for frequencies of E_{γ} high enough to eliminate the relaxations of the crystal lattice but low enough to avoid excitations of optical phonon modes (usually above ~ 100 MHz). To compute the unclamped EO tensor $r_{ij\gamma}^\sigma$, we have to add the piezoelectric contribution to $r_{ij\gamma}^\eta$

$$r_{ij\gamma}^\sigma = r_{ij\gamma}^\eta + r_{ij\gamma}^{\text{piezo}}.$$ \hspace{1cm} (45)

Experimentally, $r_{ij\gamma}^\sigma$ can be measured for frequencies of E_{γ} below the (geometry dependent) mechanical body resonances of the sample47 (usually below ~ 1 MHz).

IV. RESULTS

A. Technical details

Our calculations have been performed within the local density approximation (LDA) to the density functional theory1,2 (DFT). We used the **ABINIT16** package, a planewave, pseudopotential DFT code48 in which we have implemented the formalism presented above. For reasons that will become obvious below, we chose the PEAD formulation Eq. (17) to perform the differentiation with respect to k. For the exchange-correlation energy E_{xc} we relied on the parametrization of Perdew and Wang49 as well as the parametrization of Goedecker, Teter and Hutter50. These expressions have the advantage to avoid any discontinuities in the functional derivative of E_{xc}.

15
In case of the semiconductors Si, AlAs and AlP, we used at $16 \times 16 \times 16$ grid of special k-points, a plane-wave kinetic energy cutoff of 10 hartree and Troullier-Martins51 norm-conserving pseudopotentials. These calculations have been performed at the theoretical lattice constant. To perform the finite difference calculations of the Raman polarizabilities, changes of the electronic dielectric tensor were computed for atoms displaced by $\pm 1\%$ of the unit cell parameter along the cartesian directions.

In case of rhombohedral BaTiO$_3$, we used a $10 \times 10 \times 10$ grid of special k-points, a plane-wave kinetic energy cutoff of 45 hartree and extended norm-conserving pseudopotentials52. Since the ferroelectric instability is quite sensitive to the volume of the unit cell and tends to disappear due to the volume underestimation of the LDA53, we chose to work at the experimental lattice constants. At the opposite to the lattice parameters, the atomic positions have been relaxed: the residual forces on the atoms were smaller than $5 \cdot 10^{-5}$ hartree/bohr.

It was shown by Gonze, Ghosez and Godby54 that an accurate functional for the exchange-correlation energy in extended systems should depend on both the density and the polarization. The LDA used here neglects this polarization dependence and may consequently introduce significant relative errors when studying the response of a solid to an electric field. In case of the second-order derivatives, the LDA usually yields an overestimate of the dielectric tensor (as large as 20 $\%$ in BaTiO$_3$)55. At the opposite, no clear trends have been reported yet concerning non-linear optical properties such as $\chi^{(2)}_{ijl}$9,29.

In LDA calculations, it is common practice to apply a scissors correction56 to compensate the lack of polarization dependence of the exchange-correlation functional. In case of non-linear optical properties, such a correction can be applied at different levels. On the one hand, we can compute the non-linear optical susceptibilities (Eq. (22)) using a scissors operator for the first-order wavefunctions21. On the other hand, in the computation of the EO coefficients, we can use a scissors corrected refractive index in Eqs (39) and (40). The influence of these corrections will be discussed below.

B. Non-linear optical susceptibilities and Raman polarizabilities of semiconductors

In order to illustrate the computation of third-order energy derivatives, we performed a series of calculations on various cubic semiconductors. In these compounds, the non-linear
optical susceptibility tensor d_{ijk} and the Raman susceptibility tensor α_{ij} only have one independent element d_{123} and α_{12}. Also, instead of α_{12} it is customary to report the Raman polarizability 34 defined as

$$ a = \sqrt{\mu \Omega \alpha_{12}} $$

(46)

where μ is the reduced mass of the two atoms in the unit cell.

The formalism of Sec. II involves an integration over the BZ and a differentiation with respect to k. In practical calculations, these operations must be performed on a discrete mesh of special k-points. As we explained in Sec. II, the discretization can either be performed before (PEAD) or after (DAPE) the perturbation expansion of the energy functional Eq. (6). Up to know, the applications of the present formalism to real materials9,10 made use of the DAPE formula of the third-order energy. The only application of the PEAD formula has been reported by Nunes and Gonze14 on a one-dimensional model system. These authors observed that the PEAD formula converges better with respect to the k-point sampling than the DAPE formula. In order to compare the performance of these two approaches on a realistic case, we applied both of them to compute the non-linear optical susceptibility d_{123} of AlAs. We performed a series of calculations on a $n \times n \times n$ grid of special k-points. As can be seen on Figure 1 the PEAD formula converges much faster than the DAPE formula. Therefore, the PEAD formulation has been applied to obtain the results presented below. It is the one that is actually available in the ABINIT code.

![Graph showing the comparison between PEAD and DAPE for the non-linear optical susceptibility d_{123} of AlAs](image)

FIG. 1: Non-linear optical susceptibility d_{123} (pm/V) of AlAs for various grids of $n \times n \times n$ special k-points.

In Table I, we report the non-linear optical susceptibilities of the cubic semiconductors
AlAs and AlP. Our results are in close agreement with the values obtained by Dal Corso and co-workers9 who applied the $2n + 1$ theorem within the DAPE formalism, the results of Levine and co-workers29 who used a “sum over excited states” technique and the values obtained by Souza and co-workers57 who followed a finite electric field approach. The values in the lower part of Table I have been obtained using a scissors correction. Our methodology provides a correction similar to what is reported by Levine and Allan30.

The scissors correction decreases the value of the non-linear optical susceptibilities in agreement with the discussion of Ref. 58. To the authors knowledge, no experimental data are available for AlAs and AlP. For other cubic semiconductors, it is however not clear that the use of a scissors correction improves the agreement with the experiment29 and will even have a negative effect when the LDA underestimates the experimental value. In addition, it is not straightforward to isolate the error of the LDA on the non-linear response functions from other sources of errors. Other factors have a similar strong influence on $\chi^{(2)}_{ijl}$ as the scissors correction. For example, the values of the non-linear optical susceptibilities strongly depend on the pseudopotential9 or on the error on the unit cell volume29,58 that is usually underestimated in LDA calculations.

TABLE I: Non-linear optical susceptibilities d_{123} (pm/V) of some semiconductors. The values in the lower part of the table have been obtained using a scissors (SCI) correction.

Method	AlAs	AlP
$2n + 1$ theorem (present)	35	21
$2n + 1$ theorem a	32	19
Finite fields b	32	19
Sum over states c	34	21
$2n + 1$ theorem + SCI (present)	21	13
Sum over states + SCI c	21	13

aRef. 9
bRef. 57
cRef. 30

We also computed the Raman polarizabilities of the transverse (TO) and longitudinal optical (LO) phonons of various semiconductors. In addition, we performed finite difference
calculations of the dielectric tensor with respect to atomic displacements. Our results are summarized in Table II where we also report the results of Deinzer and Strauch10 (DS), Baroni and Resta37 (BR) as well as the experimental result of Wagner and Cardona59 for Si. The agreement between our results and those obtained in previous works is quite good. In addition, the results we obtained from the $2n + 1$ theorem closely agree with the finite difference calculations giving us some indication of the numerical accuracy of the implementation.

The Raman polarizabilities of the TO and LO modes are different. As it is discussed in Sec. III B, this difference is attributed to the macroscopic electric field associated to a longitudinal polar lattice vibration. On the one hand, this field modifies the dynamical matrix at $q \to 0$. The eventual related modification of the eigenvectors of the LO modes may imply a first change of the Raman susceptibility. On the other hand, the macroscopic electric field itself may induce an additional change of α related to the non-linear optical coefficients $\chi^{(2)}_{ijkl}$. In the cubic semiconductors, the eigenvectors of the TO and LO modes are identical. The difference between the polarizabilities of the TO and LO modes comes therefore exclusively from the second term of Eq. (30).

C. EO tensor in ferroelectric oxides

In the rombohedral phase of BaTiO$_3$, the EO tensor has four independent elements: r_{13}, r_{33}, r_{22} and r_{51}. At the opposite to the dielectric tensor, the EO coefficients can either be positive or negative. The sign of these coefficients is often difficult to measure experimentally. Moreover, it depends on the choice of the cartesian axes. Experimentally, these axes are chosen according to the Standards on Piezoelectric crystals. The z-axis is along the direction of the spontaneous polarization and the y-axis lies in a mirror plane. The z and y axis are both piezoelectric. Their positive ends are chosen in the direction that becomes negative under compression. The orientation of these axes can easily be found from pure geometrical arguments. Unfortunately, these arguments do not allow to determine the direction of the y-axis. Therefore, we applied the methodology of Ref. [60] to compute the piezoelectric tensor from finite differences of the Berry phase polarization. Our results are reported in the frame where the piezoelectric coefficient e_{22} and e_{33} are positive.

These coefficients, as well as their decomposition on the individual phonon modes and
TABLE II: Raman polarizabilities of the transverse (TO) and longitudinal (LO) optical modes (Å²) of some semiconductors.

	Si	AlAs (TO)	AlAs (LO)	AlP (TO)	AlP (LO)
2n + 1 Theorem					
Present	20.02	8.48	12.48	4.30	7.46
DS a	23.56	7.39	5.13		
Finite differences					
Present	20.17	8.59	4.25		
DS a	20.44	5.64	4.44		
BR b	26.16				
Experiment			23 ± 4 c		

aRef. 10
bRef. 37
cRef. 59
dRef. 63
eRef. 64

their electronic part, are reported in table III. All EO coefficients are positive. As it is the case for the tetragonal phase\(^{46}\), the modes that have the strongest overlap with the soft mode of the paraelectric phase dominate the amplitude to the EO coefficients. Moreover, the electronic contribution is found to be quite small.

As we discussed in the previous sections, linear and non-linear optical susceptibilities are sometimes relatively inaccurate within the LDA. In this context, it is interesting to investigate the error due to the use of the LDA optical dielectric constants in the transformation Eq. (37). Unfortunately, we could not find any experimental data on the EO coefficients in the rhombohedral phase of BaTiO\(_3\). In Ref. 46, we studied the EO coefficients of ferroelectric LiNbO\(_3\) and tetragonal BaTiO\(_3\) and PbTiO\(_3\) and found an overall good agreement between theory and experiment. In Table IV, we report the EO coefficients of these compounds as well as the values obtained using a scissors corrected optical dielectric constant. No scissors correction has been applied for the non-linear optical susceptibilities of these compounds that are required to compute the electronic contributions.

The effect of this correction is more important for the perovskite compounds than for
TABLE III: Decomposition of the clamped EO tensor (pm/V) in the rhombohedral phase of BaTiO$_3$. Reported are the contributions of individual zone-center phonon modes and the electronic contribution. The phonon frequencies are reported in cm$^{-1}$.

\(\omega \)	\(r_{13}^\eta \)	\(r_{33}^\eta \)	\(\omega \)	\(r_{22}^\eta \)	\(r_{51}^\eta \)
168	0.65	2.16	163	0.79	5.15
253	13.82	27.32	202	5.40	19.16
509	1.31	2.05	293	0.01	-0.02
469	0.24	0.65			
Elect.	1.15	2.95	0.12	1.24	
Tot.	16.93	34.48	6.56	26.18	

LiNbO$_3$, for which the LDA bandgap and optical dielectric constants are in reasonable agreement with the experiment61. For BaTiO$_3$, we tested the optical dielectric tensor obtained from the scissors correction that modifies the LDA bandgap to its experimental value21: we obtain \(r_{13}^\eta = 12.68 \) pm/V and \(r_{33}^\eta = 30.84 \) pm/V in closer agreement with experimental data. However, such an improvement is not a general rule. In PbTiO$_3$, a scissors shift that corrects the LDA bandgap fails to correct the LDA optical dielectric constant (we obtain \(\varepsilon_{11} = 5.81 \) and \(\varepsilon_{33} = 5.51 \) while the experimental values are 6.63 and 6.6462) and yields \(r_{13}^\eta = 14.24 \) pm/V and \(r_{33}^\eta = 8.94 \) pm/V. Using the experimental dielectric constants, we obtain \(r_{13}^\eta = 10.92 \) pm/V and \(r_{33}^\eta = 6.16 \) pm/V in better agreement with the experiment.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented the general framework for the computation of third-order energy derivatives within DFT. Our formalism makes use of the \(2n + 1 \) theorem and the modern theory of polarization. Focusing on derivatives that are characterized by a zero wavevector and that involve either three electric fields or two electric fields and one atomic displacement, we described the computation of non-linear optical susceptibilities, of Raman scattering efficiencies of TO and LO phonons and of the EO tensor.

The computation of the Berry phase polarization involves a derivative of the wavefunc-
TABLE IV: Effect of a scissors correction on the EO coefficients of LiNbO$_3$ (clamped and unclamped cases), and the tetragonal phases of PbTiO$_3$ and BaTiO$_3$ (clamped cases only). The dielectric tensor required to perform the transformation Eq. (37) has been computed within the LDA (ε_{LDA}) and using the LDA with a scissors correction (ε_{SCI}). No scissors correction has been used to compute the non-linear optical susceptibilities that determine the electronic contribution to the EO coefficients. In case of PbTiO$_3$, we also use the experimental dielectric tensor (ε_{exp}) to compute the EO coefficients. The values are compared to the experimental results.

	r_{13}	r_{33}	r_{22}	r_{51}	
LiNbO$_3$ (clamped)	ε_{LDA}	9.67	26.93	4.55	14.93
	ε_{SCI}	10.37	28.89	4.88	16.02
	Exp.	8.6	30.8	3.4	28
LiNbO$_3$ (unclamped)	ε_{LDA}	10.47	27.08	7.53	28.61
	ε_{SCI}	11.23	29.06	8.08	30.69
	Exp.	10	32.2	6.8	32.6
PbTiO$_3$ (clamped)	ε_{LDA}	8.98	5.88	30.53	
	ε_{SCI}	14.24	8.94	47.39	
	ε_{exp}	10.92	6.16	34.45	
	Exp.	13.8	6.9	28	
BaTiO$_3$ (clamped)	ε_{LDA}	8.91	22.27		
	ε_{SCI}	12.68	30.84		
	Exp.	10.2	40.6		
	Exp.	8	28		

In practice, this differentiation is computed on a grid of special k-points. The perturbation expansion can either be performed before (DAPE) or after (PEAD) the discretization, leading to two mathematically distinct expression of the third-order energies. We used both of them to compute the non-linear optical susceptibility of AlAs and we have shown that the PEAD formulation converges faster with respect to the k-point sampling.
We have computed the non-linear optical susceptibilities and Raman polarizabilities of some cubic semiconductors as well as the EO tensor in the rhombohedral phase of BaTiO$_3$.

Finally, we have studied the effect of a scissors correction on the EO coefficients and the non-linear optical susceptibilities. At the opposite to the dielectric tensor, we did not find a systematic improvement of the results by using this correction.

We can figure out several applications of the methodology presented in this work. Combined with the calculation of phonon frequencies and infrared intensities, the computation of Raman efficiencies can be a useful complementary tool for the interpretation of experimental spectra. Furthermore, the computation of the EO tensor from first-principles can guide the tuning of the EO properties and help designing new efficient EO materials. This could reveal particularly helpful since accurate optical measurements require high quality single crystals not always directly accessible.

VI. ACKNOWLEDGMENTS

The authors are grateful to M. D. Fontana, P. Bourson, B. Kirtman and B. Champagne for helpful discussions. M. V. and X. G. acknowledge financial support from the FNRS Belgium. This work was supported by the Volkswagen-Stiftung within the project “Nano-sized ferroelectric Hybrids” (I/77 737), the Region Wallonne (Nomade, project 115012), the Communauté Française de Belgique - Actions de Recherche Concertées, the PAI/UIAP Phase 5 "Quantum size effects in nanostructured materials”, FNRS-Belgium through grants 9.4539.00 and 2.4562.03, the European Union through the Research and Training Network "EXCITING" (HPRM-CT-2002-00317).

APPENDIX A: EXPRESSIONS OF THE CLAMPED AND UNCLAMPED EO TENSORS

1. Macroscopic approach

As it is discussed in Sec. IIID, the optical properties of a compound are modified by an electric field \mathcal{E}_γ or a mechanical constraint (a stress $\sigma_{\mu\nu}$ or a homogeneous strain $\eta_{\mu\nu}$). At the linear order, the variations of ε_{ij}^{-1} can be described using either the variables $(\mathcal{E}_\gamma, \eta_{\mu\nu})$ or
where \(r_{ij\gamma}^\eta \) and \(r_{ij\gamma}^\sigma \) are resp. the clamped (strain free) and unclamped (stress free) EO coefficients, \(p_{ij\mu\nu} \) are the elasto-optic (strain-optic) coefficients and \(\pi_{ij\mu\nu} \) are the piezo-optical (stress-optical) coefficients. In order to relate Eqs. (A1a) and (A1b), we can express the strain as being induced by the stress or by the electric field (converse piezoelectric effect)

\[
\eta_{\mu\nu} = \sum_{\mu',\nu'=1}^3 S_{\mu\nu\mu'\nu'} \sigma_{\mu'\nu'} + \sum_{\gamma=1}^3 d_{\gamma\mu\nu} E_{\gamma} \quad (A2)
\]

where \(S_{\mu\nu\mu'\nu'} \) are the elastic compliances and \(d_{\gamma\mu\nu} \) the piezoelectric strain coefficients.

If we assume for example that the unit cell is free to relax within the electric field (stress-free mechanical boundary conditions) we can either use Eq. (A1b) (in which case the second term of the right-hand-side is zero) or Eq. (A1a) to compute \(\Delta(\varepsilon^{-1})_{ij} \). In the latter case, the strain induced by the electric field can be obtained from the second term of the right-hand-side of Eq. (A2)

\[
\Delta(\varepsilon^{-1})_{ij} = \sum_{\gamma=1}^3 r_{ij\gamma}^\eta E_{\gamma} = \sum_{\gamma=1}^3 r_{ij\gamma}^\sigma E_{\gamma} + \sum_{\mu,\nu=1}^3 p_{ij\mu\nu} d_{\gamma\mu\nu} E_{\gamma} \quad (A3)
\]

Using this identity, we obtain the following relation between the unclamped and the clamped EO coefficients

\[
r_{ij\gamma}^\sigma = r_{ij\gamma}^\eta + \sum_{\mu,\nu=1}^3 p_{ij\mu\nu} d_{\gamma\mu\nu} \quad (A4)
\]

2. Microscopic approach

In order to derive the expressions of the clamped and unclamped EO tensor of Sec. III D, we use a Taylor expansion of the electric enthalpy \(F \). Similar developments have already been applied to determine the lattice contribution of the static dielectric tensor and of the
piezoelectric tensor68,69. They are based on an expansion of F up to the second order in the atomic coordinates $R_{\kappa \alpha}$, the homogeneous strain $\eta_{\mu \nu}$ and the macroscopic electric field \mathcal{E}_γ. In this section, we extend these developments to the third order.

The electric enthalpy of a solid in an electric field is obtained by the minimization

$$F(\mathcal{E}) = \min_{\mathbf{R}, \eta} F(\mathbf{R}, \eta, \mathcal{E}).$$ \hspace{1cm} (A5)

We denote $\mathbf{R}(\mathcal{E})$, $\eta(\mathcal{E})$ the atomic positions and the strain that minimize F at constant \mathcal{E} and \mathbf{R}_0, η_0 ($= 0$) their values at $\mathcal{E} = 0$. For small fields, we can expand the function $F(\mathbf{R}, \eta, \mathcal{E})$ in powers of \mathcal{E} around $\mathcal{E} = 0$:

$$F(\mathbf{R}, \eta, \mathcal{E}) = F(\mathbf{R}, \eta, 0) - \frac{\Omega}{8\pi} \sum_{i,j=1}^{3} \varepsilon_{ij}(\mathbf{R}, \eta) \mathcal{E}_i \mathcal{E}_j - \frac{\Omega}{3} \sum_{i,j,k=1}^{3} \chi_{ijk}^{(2)}(\mathbf{R}, \eta) \mathcal{E}_i \mathcal{E}_j \mathcal{E}_k + \cdots$$ \hspace{1cm} (A6)

where Ω is the volume of the primitive unit cell in real space and $P(\mathbf{R}, \eta)$, $\varepsilon_{ij}(\mathbf{R}, \eta)$ and $\chi_{ijk}^{(2)}(\mathbf{R}, \eta)$ are the macroscopic polarization, electronic dielectric tensor and non-linear optical coefficients at zero macroscopic electric field and for a given configuration (\mathbf{R}, η). At non-zero field, these quantities are defined as partial derivatives of F with respect to \mathcal{E}. For example, the electric field dependent electronic dielectric tensor can be computed from the expression

$$\varepsilon_{ij}(\mathbf{R}(\mathcal{E}), \eta(\mathcal{E}), \mathcal{E}) = - \frac{4\pi}{\Omega} \left. \frac{\partial^2 F}{\partial \mathcal{E}_i \partial \mathcal{E}_j} \right|_{\mathbf{R}(\mathcal{E}), \eta(\mathcal{E}), \mathcal{E}}.$$ \hspace{1cm} (A7)

Let $\tau_{\kappa \alpha} = \mathbf{R}_{\kappa \alpha} - \mathbf{R}_{0,\kappa \alpha}$ be the displacement of atom κ along direction α and $\tau^\lambda_{\kappa \alpha}$ (resp. $\eta^\lambda_{\mu \nu}$) the first-order modification of the atomic position (resp. strain) induced by a perturbation λ

$$\tau^\lambda_{\kappa \alpha} = \left. \frac{\partial \tau_{\kappa \alpha}}{\partial \lambda} \right|_{\lambda=0}, \quad \eta^\lambda_{\mu \nu} = \left. \frac{\partial \eta_{\mu \nu}}{\partial \lambda} \right|_{\lambda=0}.$$ \hspace{1cm} (A8)

In the discussion that follows, we will study the effect of an electric field perturbation and a strain perturbation on the electric enthalpy F in order to obtain the formulas to compute the elasto-optic coefficients as well as the clamped and the unclamped EO tensors.
a. Elasto-optic coefficients ($\mathcal{E} = 0$)

The elasto-optic tensor can be computed from the total derivative of the dielectric tensor with respect to $\eta_{\mu\nu}$ at zero electric field

$$\frac{d\varepsilon_{ij}(\mathbf{R}, \eta, 0)}{d\eta_{\mu\nu}} \bigg|_{\mathbf{R}_0, \eta_0} = \frac{\partial\varepsilon_{ij}(\mathbf{R}, \eta)}{\partial\eta_{\mu\nu}} \bigg|_{\mathbf{R}_0, \eta_0} + 4\pi \sum_{\kappa\alpha} \frac{\partial\chi^{(1)}_{ij}(\mathbf{R}, \eta)}{\partial\tau_{\kappa\alpha}} \bigg|_{\mathbf{R}_0, \eta_0} \tau_{\kappa\alpha}^{\eta_{\mu\nu}}. \quad (A9)$$

The derivative in the first term of the right hand side is computed considering the ionic cores as artificially clamped at their equilibrium positions. The remaining terms represent the ionic contribution to the elasto-optic tensor. They involve derivatives of the linear dielectric susceptibility $\chi^{(1)}_{ij}$ with respect to the atomic positions that have to be multiplied by the first-order strain induced atomic displacements $\tau_{\kappa\alpha}^{\eta_{\mu\nu}}$ [Eq. (A8)]. To compute these quantities we use the fact that F is minimum at the equilibrium for an imposed strain η. This condition implies

$$\frac{\partial F(\mathbf{R}, \eta)}{\partial \tau_{\kappa\alpha}} \bigg|_{\mathbf{R}(\eta), \eta} = 0. \quad (A10)$$

Since we are interested in first-order atomic displacements we can write $\tau_{\kappa\alpha}(\eta) = \sum_{\mu,\nu=1}^{3} \tau_{\kappa\alpha}^{\eta_{\mu\nu}} \eta_{\mu\nu} + \mathcal{O}(\eta^2)$. Solving the extremum equation (A10) to the linear order in η, we obtain

$$\sum_{\kappa',\alpha'} \frac{\partial^2 F(\mathbf{R}, \eta)}{\partial \tau_{\kappa\alpha} \partial \tau_{\kappa'\alpha'}} \bigg|_{\mathbf{R}_0, \eta_0} \tau_{\kappa'\alpha'}^{\eta_{\mu\nu}} = - \frac{\partial^2 F(\mathbf{R}, \eta)}{\partial \eta_{\mu\nu} \partial \tau_{\kappa\alpha}} \bigg|_{\mathbf{R}_0, \eta_0}. \quad (A11)$$

The second derivatives on the left side of Eq. (A11) define the matrix of interatomic force constants at zero macroscopic electric field which enables the computation of the transverse phonon frequencies ω_m and eigendisplacements $u_m(\kappa\alpha)$. By decomposing $\tau_{\kappa\alpha}^{\eta_{\mu\nu}}$ in the basis of the zone-center phonon-mode eigendisplacements

$$\tau_{\kappa\alpha}^{\eta_{\mu\nu}} = \sum_m \tau_{\kappa\alpha}^{\eta_{\mu\nu}} u_m(\kappa\alpha) \quad (A12)$$

and using Eqs. (24), (25) we derive the following expression for the first-order strain induced atomic displacements

$$\tau_{\kappa\alpha}^{\eta_{\mu\nu}} = - \frac{1}{\omega_m^2} \frac{\partial^2 F(\mathbf{R}, \eta)}{\partial \eta_{\mu\nu} \partial \tau_m} \bigg|_{\mathbf{R}_0, \eta_0} \quad (A13)$$

where

$$\frac{\partial^2 F(\mathbf{R}, \eta)}{\partial \eta_{\mu\nu} \partial \tau_m} \bigg|_{\mathbf{R}_0, \eta_0} = \sum_{\kappa,\alpha} \frac{\partial^2 F(\mathbf{R}, \eta)}{\partial \eta_{\mu\nu} \partial \tau_{\kappa\alpha}} \bigg|_{\mathbf{R}_0, \eta_0} u_m(\kappa\alpha). \quad (A14)$$
If we introduce Eqs. (A12) and (A13) into Eq. (A9) and use the definition of the Raman susceptibility Eq. (28) and the transformation Eq. (37), we finally obtain the formula to compute the elastooptic tensor

\[p_{ij\mu\nu} = \left. -\frac{1}{n_i^2 n_j^2} \frac{\partial \varepsilon_{ij} (R, \eta)}{\partial \eta_{\mu\nu}} \right|_{R_0, \eta_0} + \left. \frac{4\pi}{n_i^2 n_j^2 \sqrt{\Omega}} \sum_m \frac{\alpha_{ij}^m}{\omega_m^2} \frac{\partial^2 F (R, \eta)}{\partial \eta_{\mu\nu} \partial \tau_m} \right|_{R_0, \eta_0}. \]

(A15)

To simplify, we write Eq. (A15) in the principal axes of the crystal under investigation. A more general expression can be obtained from Eq. (37).

Eq. (A15) is different from the approach used previously by Detraux and Gonze to study the elasto-optic tensor in \(\alpha \)-quartz\(^70\). The authors of Ref. 70 used finite differences with respect to strains to compute the total derivative of \(\varepsilon_{ij} \). In their approach, the atoms where relaxed to their equilibrium positions in the strained configurations. In case of Eq. (A15), the first term of the right-hand-side is computed at clamped atomic positions while the effect of the strain-induced atomic relaxations is taken into account by the second term.

\(b. \) Clamped EO coefficients (\(\eta = 0 \))

The clamped EO tensor can be computed from the total derivative of the electric field dependent dielectric tensor Eq. (A7) with respect to \(\mathcal{E} \)

\[
\left. \frac{d \varepsilon_{ij} (R, \eta_0, \mathcal{E})}{d \mathcal{E}_\gamma} \right|_{\mathcal{E} = 0} = \left. \frac{\partial \varepsilon_{ij} (R_0, \eta_0, \mathcal{E})}{\partial \mathcal{E}_\gamma} \right|_{\mathcal{E} = 0} + 4\pi \sum_{\kappa\alpha} \left. \frac{\partial \chi_{ij}^{(1)} (R, \eta)}{\partial \tau_{\kappa\alpha}} \right|_{\mathcal{E} = 0} \tau_{\kappa\alpha}. \]

(A16)

The derivative in the first term is computed considering the ionic cores as artificially clamped at their equilibrium positions. This term represents the bare electronic contribution to the EO tensor that can be computed from the non-linear optical coefficients

\[
\left. \frac{\partial \varepsilon_{ij} (R_0, \eta_0, \mathcal{E})}{\partial \mathcal{E}_\gamma} \right|_{\mathcal{E} = 0} = 8\pi \chi_{ijk}^{(2)} \bigg|_{k = \gamma}. \]

(A17)

related to a third-order partial derivative of \(F \)

\[
\chi_{ijk}^{(2)} = \chi_{ijk}^{(2)} (R_0, \eta_0) = \left. -\frac{1}{2\Omega} \frac{\partial^3 F (R_0, \eta_0, \mathcal{E})}{\partial \mathcal{E}_i \partial \mathcal{E}_j \partial \mathcal{E}_k} \right|_{\mathcal{E} = 0}. \]

(A18)

The remaining terms in Eq. (A16) represent the ionic contribution to the EO tensor. They involve derivatives of the linear dielectric susceptibility \(\chi_{ij}^{(1)} \) with respect to the atomic positions that have to be multiplied by the first-order electric field induced atomic displacements...
To obtain these quantities, we proceed the same way as in case of the elasto-optic tensor. Using the equilibrium condition

\[
\frac{\partial F}{\partial \tau_{\kappa \alpha}} = 0 = \frac{\partial F}{\partial \tau_{\kappa \alpha}} \bigg|_{R(\mathcal{E})} \Omega \sum_{i=1}^{3} \frac{\partial P_i (R, \eta_0)}{\partial \tau_{\kappa \alpha}} \bigg|_{R(\mathcal{E})} \mathcal{E}_i - \frac{\Omega}{8\pi} \sum_{i,j=1}^{3} \frac{\partial \varepsilon_{ij} (R, \eta_0)}{\partial \tau_{\kappa \alpha}} \bigg|_{R(\mathcal{E})} \mathcal{E}_i \mathcal{E}_j + \cdots
\]

(A19)

and expanding \(\tau_{\kappa \alpha}\) to the first-order in the electric field, we obtain

\[
\sum_{\kappa', \alpha'} \frac{\partial^2 F (R, \eta_0, 0)}{\partial \tau_{\kappa \alpha} \partial \tau_{\kappa' \alpha'}} \bigg|_{R_0} \tau_{\kappa' \alpha'}^{\mathcal{E}_i} = \Omega \frac{\partial P_i (R, \eta_0)}{\partial \tau_{\kappa \alpha}} \bigg|_{R_0}.
\]

(A20)

This expression is similar to Eq. (A11). The second-order derivatives of \(F\) on the left side are the interatomic force constants and the derivative of the zero field polarization with respect to \(\tau_{\kappa \alpha}\) on the right side is the Born effective charge tensor \(Z^*_{\kappa, \gamma \alpha}\) of atom \(\kappa\). Decomposing \(\tau_{\kappa \alpha}^{\mathcal{E}_i}\) in the basis of the zone-center phonon-mode eigendisplacements [Eq. (A12)] and using the orthonormality constraint Eq. (25) we derive the following expression for the first-order electric field induced atomic displacements

\[
\tau_{m}^{\mathcal{E}_i} = \frac{1}{\omega_m^2} \sum_{\kappa, \alpha} Z^*_{\kappa, \gamma \alpha} u_m (\kappa \alpha).
\]

(A21)

If we introduce Eqs. (A17) and (A21) into Eq. (A16) we finally obtain the formula to compute the total derivative of the dielectric tensor

\[
\frac{d\varepsilon_{ij} (R, \mathcal{E})}{d\mathcal{E}_\gamma} \bigg|_{R_0, \mathcal{E}=0} = 8\pi \chi^{(2)}_{ij k} \bigg|_{k=\gamma} + 4\pi \sum_{m} \frac{1}{\omega_m^2} \left(\sum_{\kappa, \alpha} \frac{\partial \chi^{(1)}_{ij k} (R)}{\partial \tau_{\kappa \alpha}} u_m (\kappa \alpha) \right) \left(\sum_{\kappa', \beta} Z^*_{\kappa', \gamma \beta} u_m (\kappa' \beta) \right).
\]

(A22)

Using the definition of the Raman susceptibility [Eq. (28)], the mode polarity [Eq. (41)] and the transformation [Eq. (37)] we obtain the expression of the clamped EO tensor

\[
r_{ij}^{\eta \gamma} = \frac{-8\pi}{n_i^2 n_j^2} \chi^{(2)}_{ij l} \bigg|_{l=\gamma} - \frac{4\pi}{n_i^2 n_j^2 \sqrt{\Omega}} \sum_{m} \frac{\alpha_{ij m}^l \eta_{m \gamma}}{\omega_m^2}.
\]

(A23)

As in case of the elasto-optic tensor [Eq. (A15)], we have written Eq. (A23) in the principal axes of the crystal under investigation.

\[\text{c. Unclamped EO tensor (}\sigma = 0\text{)}\]

In order to compute the unclamped EO tensor, we have to take into account both the electric field induced atomic displacements \(\tau_{\kappa \alpha}^{\mathcal{E}_i}\) and the electric field induced strain \(\eta_{ij}^{\mathcal{E}_i}\) when
computing the total derivative of ε_{ij}

$$
\frac{d\varepsilon_{ij}(R, \eta, \mathcal{E})}{d\mathcal{E}_\gamma}_{R_0, \eta_0, \mathcal{E}=0} = \left. \frac{\partial\varepsilon_{ij}(R_0, \eta_0, \mathcal{E})}{\partial\mathcal{E}_\gamma} \right|_{\mathcal{E}=0} + 4\pi \sum_{\kappa\alpha} \left. \frac{\partial\chi_{ij}^{(1)}(R, \eta)}{\partial\tau_{\kappa\alpha}} \right|_{R_0} \kappa^{\varepsilon_{ij}}_{\gamma} + 4\pi \sum_{\mu,\nu=1}^3 \left. \frac{\partial\chi_{ij}^{(1)}(R_0, \eta)}{\partial\eta_{\mu\nu}} \right|_{\eta_0} \eta^{\varepsilon_{ij}}_{\mu\nu}. \tag{A24}
$$

The electronic contribution [first term of Eq. (A24)] is the same as for the clamped EO tensor. It can be computed from the non-linear optical coefficients [Eq. (A17)]. To compute $\tau^{\varepsilon_{ij}}_{\kappa\alpha}$ and $\eta^{\varepsilon_{ij}}_{\mu\nu}$, we can use an equilibrium condition similar to Eq. (A19) where we require that the first-order derivatives of F with respect to $\tau_{\kappa\alpha}$ and $\eta_{\mu\nu}$ vanish. Expanding $\tau_{\kappa\alpha}$ and $\eta_{\mu\nu}$ to the first-order in the electric field, we obtain the system of coupled equations [see also Ref. 71]

$$
\sum_{\kappa',\alpha'} \frac{\partial^2 F(R, \eta, 0)}{\partial\tau_{\kappa\alpha} \partial\tau_{\kappa'\alpha'}} \kappa^{\varepsilon_{ij}}_{\kappa'\alpha'} + \sum_{\mu,\nu} \frac{\partial^2 F(R, \eta, 0)}{\partial\tau_{\kappa\alpha} \partial\eta_{\mu\nu}} \eta^{\varepsilon_{ij}}_{\mu\nu} = \Omega \frac{\partial P_{\gamma}(R, \eta)}{\partial\tau_{\kappa\alpha}} \tag{A25a}
$$

$$
\sum_{\mu',\nu'} \frac{\partial^2 F(R, \eta, 0)}{\partial\eta_{\mu\nu} \partial\eta_{\mu'\nu'}} \eta^{\varepsilon_{ij}}_{\mu'\nu'} + \sum_{\kappa',\alpha'} \frac{\partial^2 F(R, \eta, 0)}{\partial\tau_{\kappa'\alpha'} \partial\eta_{\mu\nu}} \tau^{\varepsilon_{ij}}_{\kappa'\alpha'} = \Omega \frac{\partial P_{\gamma}(R, \eta)}{\partial\eta_{\mu\nu}} \tag{A25b}
$$

Because of the coupling between $\tau^{\varepsilon_{ij}}_{\kappa\alpha}$ and $\eta^{\varepsilon_{ij}}_{\mu\nu}$, defined by the mixed second-order derivatives $\frac{\partial^2 F}{\partial\tau_{\kappa\alpha} \partial\eta_{\mu\nu}}$, the second term of the right hand side of Eq. (A24) is different from that of Eq. (A16). That means that the sum of the first and second term of Eq. (A24) is not identical to the clamped EO coefficients $r^{\varepsilon_{ij}}_{\kappa\alpha\gamma}$. Moreover, the third term of Eq. (A24) is different from the piezoelectric contribution of Sec. A.1.

In order to obtain the decomposition of $r^{\varepsilon_{ij}}_{\kappa\alpha\gamma}$ into electronic, ionic and piezoelectric contributions defined previously, we can solve Eq. (A25a) for $\tau^{\varepsilon_{ij}}_{\kappa\alpha}$. In the basis of the zone-center phonon mode eigendisplacements we can write

$$
\tau^{\varepsilon_{ij}}_{\kappa\alpha} = \frac{p_{\kappa,\alpha}}{\omega^2_{\kappa}} - \frac{1}{\omega^2_{\kappa}} \sum_{\mu,\nu} \frac{\partial^2 F(R, \eta, 0)}{\partial\tau_{\kappa\alpha} \partial\eta_{\mu\nu}} \eta^{\varepsilon_{ij}}_{\mu\nu}. \tag{A26}
$$

If we insert this relation into Eq. (A24) and use the transformation Eq. (37) we obtain the following expression of the unclamped EO tensor in the principal axes

$$
r^{\varepsilon_{ij}}_{\kappa\alpha\gamma} = \frac{-8\pi}{n_i n_j} \chi^{(2)}_{ijl} \left. \frac{\partial\chi_{ijl}(R, \eta)}{\partial\tau_{\kappa\alpha}} \right|_{\mathcal{E}=0} - \frac{4\pi}{n_i n_j \sqrt{\Omega}} \sum_m c_{ijm} \frac{p_{m,\gamma}}{\omega^2_m} - \frac{4\pi}{n_i n_j \sqrt{\Omega}} \sum_{\mu,\nu} \left. \frac{\partial\chi_{ijl}^{(1)}(R, \eta, \mathcal{E})}{\partial\eta_{\mu\nu}} \right|_{R_0, \eta_0, \mathcal{E}=0} - \frac{1}{\sqrt{\Omega}} \sum_m \frac{c_{ijm}}{\omega^2_m} \frac{\partial^2 F(R, \eta, 0)}{\partial\tau_{\kappa\alpha} \partial\eta_{\mu\nu}} \right|_{R_0, \eta_0, \mathcal{E}=0} \tag{A27}
$$
The sum of the first and second term of the right-hand side of Eq. (A27) is equal to the clamped EO coefficient $r^\eta_{ij\gamma}$. The product of the conversion factor times the bracket in the third term of Eq. (A27) is equal to the elasto-optic coefficient $p_{ij\mu\nu}$ [Eq. (A15)]. Finally, by definition of the converse piezoelectric effect, $\eta^E_{ij\gamma}$ is equal to the piezoelectric strain coefficient $d_{\gamma\mu\nu}$. We obtain thus the following expression of the unclamped EO coefficients that is equal to the one derived in Sec. A1 from pure macroscopic arguments

$$
 r^\sigma_{ij\gamma} = r^\eta_{ij\gamma} + \sum_{\mu,\nu=1}^{3} p_{ij\mu\nu} d_{\gamma\mu\nu}.
$$

(A28)

It is worth noticing that the so-called piezoelectric contribution does not only take into account the change of the linear optical susceptibility with strain (third term of the right hand side of Eq. (A24)) but also includes the modification of the ionic contribution, with respect to the clamped case, that is associated to the modification of the ionic relaxation induced by the strain.

1 P. Hohenberg et W. Kohn, Phys. Rev. 136, B864 (1964).
2 W. Kohn et L. J. Sham, Phys. Rev. 140, A1133 (1965).
3 S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
4 B. Kirtman and B. Champagne, International Reviews in Physical Chemistry 16, 389 (1997).
5 B. Champagne and B. Kirtman, Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H. S. Nalwa, (Academic Press, 2001), Vol. 9, p. 63.
6 A. Debernardi and S. Baroni, Solid State Communications 91, 813 (1994).
7 A. Debernardi, S. Baroni and E. Molinari, Phys. Rev. Lett. 75, 1819 (1995).
8 A. Debernardi, Phys. Rev. B 57, 12847 (1998).
9 A. Dal Corso, F. Mauri and A. Rubio, Phys. Rev. B 53, 15638 (1996).
10 G. Deinzer and D. Strauch, Phys. Rev. B 66, 100301 (2002).
11 G. Deinzer, G. Birner and D. Strauch, Phys. Rev. B 67, 144304 (2003).
12 G. Deinzer, M. Schmitt, A. P. Mayer, and D. Strauch, Phys. Rev. B 69, 14304 (2004).
13 G. Deinzer and D. Strauch, Phys. Rev. B 69, 45205 (2004).
14 R. W. Nunes and X. Gonze, Phys. Rev. B 63, 155107 (2001).
15 R. W. Nunes and D. Vanderbilt, Phys. Rev. Lett. 73, 712 (1994).
16 X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty and D.C. Allan, *Computational Materials Science* **25**, 478 (2002). [URL www.abinit.org]

17 X. Gonze and J.-P. Vigneron, *Phys. Rev. B* **39**, 13120 (1989).

18 X. Gonze, *Phys. Rev. A* **52**, 1086 (1995).

19 X. Gonze, *Phys. Rev. A* **52**, 1096 (1995).

20 X. Gonze, *Phys. Rev. B* **55**, 10337 (1997).

21 X. Gonze and C. Lee, *Phys. Rev. B* **55**, 10355 (1997).

22 P. Giannozzi, S. de Gironcoli, P. Pavone and S. Baroni, *Phys. Rev. B* **43**, 7231 (1991).

23 R. D. King-Smith and D. Vanderbilt, *Phys. Rev. B* **47**, 1651 (1993).

24 N. Marzari and D. Vanderbilt, *Phys. Rev. B* **56**, 12847 (1997).

25 D. Vanderbilt and R. D. King-Smith, *Phys. Rev. B* **48**, 4442 (1993).

26 A. Dal Corso and F. Mauri, *Phys. Rev. B* **50**, 5756 (1994).

27 J. L. P. Hughes and J. E. Sipe, *Phys. Rev. B* **53**, 10751 (1996).

28 D. A. Kleinman, *Phys. Rev.* **126**, 1977 (1962).

29 Z. H. Levine and D. C. Allan, *Phys. Rev. Lett.* **66**, 41 (1991).

30 Z. H. Levine and D. C. Allan, *Phys. Rev. B* **44**, 12781 (1991).

31 Z. H. Levine, *Phys. Rev. B* **49**, 4532 (1994).

32 M.Z. Huang, W.Y. Ching *Phys. Rev. B* **47**, 9464 (1993).

33 S. Sharma, J. K. Dewhurst, C. Ambrosch-Draxl *Phys. Rev. B* **67**, 165332 (2003).

34 *Light Scattering in Solids II*, edited by M. Cardona and G. Güntherodt (Springer-Verlag, Berlin, 1982).

35 *Dynamics of Perfect Crystals*, G. Venkataraman, L. A. Feldkamp and V. C. Sahni (MIT Press, 1975).

36 W. D. Johnston Jr., *Phys. Rev. B* **1**, 3494 (1970).

37 S. Baroni and R. Resta, *Phys. Rev. B* **33**, 5969 (1986).

38 P. Umari, A. Pasquarello and A. Dal Corso, *Phys. Rev. B* **63**, 94305 (2001).

39 P. Umari, X. Gonze and A. Pasquarello, *Phys. Rev. Lett.* **90**, 27401 (2003).

40 M. Lazzeri and F. Mauri, *Phys. Rev. Lett.* **90**, 36401 (2003).

41 M. Lazzeri and F. Mauri, *Phys. Rev. B* **68**, 161101 (2003).

42 R. M. Pick, M. H. Cohen and R. M. Martin, *Phys. Rev. B* **1**, 910 (1970).
In some cases, the electric field can induce a rotation of the principal axes. Eq. 39 is expressed in the principal axes of the crystal at zero field.

I. P. Kaminow and W. D. Johnston Jr., Phys. Rev. 160, 519 (1967); 178 1528(E) (1969).

M. Veithen, X. Gonze and Ph. Ghosez, unpublished.

S. H. Wemple and D. DiDomenico Jr., in Applied Solid State Science, ed. R. Wolfe (Academic, N.Y., 1972).

M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias et J. D. Joannopoulos, Rev. Mod. Phys 64, 1045 (1992).

J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B 54, 1703 (1996).

N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

M. P. Teter, Phys. Rev. B 48, 5031 (1993).

R. E. Cohen, Nature 358, 137 (1992).

X. Gonze, Ph. Ghosez and R. W. Godby, Phys. Rev. Lett. 74, 4035 (1995).

Ph. Ghosez, X. Gonze and J. -P. Michenaud, Europhysics Letters 33, 713 (1996).

Z. H. Levine and D. C. Allan, Phys. Rev. Lett. 63, 1719 (1989).

I. Souza, J. Íñiguez and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002).

W. G. Aulbur, Lars Jónsson and J. W. Wilkins, Phys. Rev. B 54, 8540 (1996).

J. Wagner and M. Cardona, Solid State Communications 48, 301 (1983).

D. Vanderbilt, J. Phys. Chem. Solids 61, 147 (2000).

M. Veithen and Ph. Ghosez, Phys. Rev. B 65, 214302 (2002).

C. M. Foster, Z. Li, M. Grimsditch, S. -K. Chan, and D. J. Lam, Phys. Rev. B 48, 10160 (1993).

W. D. Johnston Jr. and I. P. Kaminow, Phys. Rev. 188, 1209 (1969).

J. M. Calleja, H. Vogt and M. Cardona, Philosophical Magazine A 45, 239 (1982).

P. Bernasconi, M. Zvonik and P. Günter, J. Appl. Phys. 78, 2651 (1995).

J. F. Nye, Physical properties of crystals, (Oxford University Press, 1985).

L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media, Volume 8 of Course of Theoretical Physics (Pergamon Press, 1960).

U. V. Waghmare, unpublished.
69 A. Dal Corso, *Density-functional theory beyond the pseudopotential local density approach: a few cases studies*, PhD thesis, SISSA (1993).

70 F. Detraux and X. Gonze, Phys. Rev. B 63, 115118 (2001).

71 K. M. Rabe, Materials Research Society Symposium Proceedings 718, 323 (2002).

72 A. Räuber, Current Topics in Materials Science, vol. 1, ed. E. Kaldis (North-Holland, 1978), p. 481.

73 F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana and K. Polgar, J. Appl. Phys. 84, 2251 (1998).

74 *Handbook of Laser Science and Technology*, Optical Materials: Part 2 Vol. IV, ed. M. J. Weber (CRC, Boca Raton, FL, 1986).

75 M. Zgonik *et al.*, Phys. Rev. B 50, 5941 (1994).