ATG13 restricts viral replication by induction of type I interferon

Dear Editor,

Autophagy is an intracellular degradation pathway regulated by the orchestrated action of the autophagy-related (ATG) proteins. ATG proteins traditionally have been studied for their roles in autophagy, but they have increasingly demonstrated functions other than cellular self-eating. The non-autophagic functions of autophagy proteins include cell survival and apoptosis, modulation of cellular traffic, protein secretion, cell signalling, transcription, translation and membrane reorganization. The ATG12-ATG5 conjugate negatively modulated immunostimulatory RNA (isRNA)-generated type I IFN production by sequestration of CARD proteins. The direct antiviral activity of IFNγ against murine norovirus in macrophages required nondegradative role of ATG5-ATG12, ATG7 and ATG16L1. Intriguingly, ATG5-ATG12 positively regulated antiviral NF-κB and IRF3 signalling during foot-and-mouth disease virus infection. Moreover, Mauthe et al conduct an unbiased RNA interference screen approach to explore unconventional functions of ATG proteins during viral infections. They revealed that ATG13 and FIP200 act independently of the ULK complex to modify picornaviral replication outside the context of autophagy. Previous study suggest that ATG13 had both autophagic and nonautophagic functions and that the latter were essential for cardiac development. Targeting the ATG101-ATG13 interaction showed the strongest autophagy-inhibitory effect. However, the role of ATG13 in innate antiviral immune signalling remains to be elucidated.

In order to identify possible roles for ATG13 in antiviral immunity, we transfected human embryonic kidney cells HEK293T (293T cells) with an IFN-sensitive response element (ISRE) luciferase reporter, which was an interferon regulatory factor 3 (IRF3)-dependent promoter, and the internal control renilla luciferase, as well as expression vectors containing ATG13. Then we treated the cells intracellularly with the synthetic nucleic acid duplex poly(I:C)/poly(dA:dT) or infected with vesicular stomatitis virus (VSV) for 12 hours to trigger type I interferon signalling. The ISRE-Luc activity induced by intracellular poly(I:C)/poly(dA:dT) or VSV infection was greatly enhanced by HA-ATG13 overexpression (Figure 1A). These results indicated that ATG13 may be a positive regulator of the type I interferon response. Next, we co-transfected ATG13 with signalling proteins involved in innate antiviral response and determined the activation of ISRE or nuclear factor kappa B (NF-κB) promoters. The overexpression of ATG13 with the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) signalling proteins, including RIG-I, melanoma differentiation-associated antigen 5 (MDA5), mitochondrial antiviral signalling (MAVS), tumor necrosis factor (TNF) receptor associated factor (TRAF) family member associated NF-κB activator (TANK) binding kinase 1 (TBK1), inhibitor of NF-κB kinase subunit epsilon (IKKi), IRF3 and stimulator of interferon genes, additively activated ISRE luciferase activity (Figure 1B). However, overexpression of ATG13 with RIG-I and MDA5, but not TRAF6 and MAVS, additively activated NF-κB luciferase activity (Figure 1C). Intriguingly, ATG13 itself can activate ISRE and NF-κB luciferase activity in a dose-dependent manner (Figure 1D). To demonstrate a link between the enhanced type I interferon response and antiviral immunity of ATG13 gene, we overexpressed ATG13 in 293T cells and then infected the cells with VSV tagged with enhanced green fluorescent protein (VSV-eGFP) at a multiplicity of infection of 0.1. Overexpression of ATG13 rendered the cells resistant to viral infection and resulted in considerably fewer GFP+ (virus-infected) cells than among cells transfected with empty vector (Figure 1E). Besides, we performed RT-qPCR to quantify VSV replication over a time course manner (Figure S1).

Then we determined whether specific knockdown of endogenous ATG13 would decrease IFN-β expression under physiological conditions. We used three ATG13-specific short hairpin RNA (shRNA) constructs to knock down the expression of ATG13. All three efficiently inhibited the expression of endogenous ATG13 in mRNA level and transfected ATG13 in protein level in 293T cells (Figure 1F). With the ISRE luciferase reporter assay, we found that knockdown of ATG13 resulted in much less activity of the ISRE luciferase reporter triggered by intracellular poly(I:C), poly(dA:dT) or VSV-eGFP in 293T cells (Figure 1G). Consistent with that, knockdown of ATG13 also resulted in lower expression of IFN-β and IFN-α mRNA with intracellular poly(I:C) or poly(dA:dT) treatment (Figure 1H). Several interferon-stimulated genes (ISG), including ISG54 and ISG56, were down-regulated by ATG13 knockdown with the same treatment (Figure 1I). For rescue experiment, ISRE luciferase activity recovered to some extent with ATG13 re-expression after knockdown under intracellular poly(I:C) or poly(dA:dT) treatment (Figure 1J). For 293T-TLR3 cells (293T cells that express TLR3) treated with poly(I:C), no significant difference was observed in ISRE activity with ATG13 knockdown (Figure 1K). It suggest that...
ATG13 may not get involved in TLR3 signalling pathway. Finally, we identified that ATG13 could interact with TRAF3 and TRAF6 by co-immunoprecipitation assay (Figure 1L). It’s well documented that TRAF3 and TRAF6 are key adaptors in ISRE and NF-κB signalling pathway respectively.

Altogether, our results suggest that ATG13 may regulate viral replication by potentiation type I interferon signalling. TARF3 and TRAF6 may be the important target of ATG13 to regulated type I interferon production. Further studies are needed to investigate the detailed mechanisms of ATG13 in the regulation of type I interferon.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of the People’s Republic of China (grant No. 81760287, 31700763), Longyuan Youth Fund for Innovation and Entrepreneurship, Major Cultivation Projects in Central Colleges and Universities (31920190045), Cultivation Project of Innovation Team in Central Colleges and Universities (31920190027) and Graduate Research (Practice) Innovation Project (Yxm2018136, Yxm2018144) of Northwest Minzu University.

CONFLICT OF INTEREST

The authors confirm that there is no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Jiang-long Du1
Peng Ma1
Chen Wang1
Yan Zeng2
Yu-jia Xue1
Xue-cai Yang1
Xue-mei Wan1
Fan-fan Chang1
Tian-yu Zhao1
Xiao-ye Jia1
Hai-zhen Wang3
Jing Liu4
Zhong-ren Ma1
Xin Cao1,2
Kui-zheng Cai1

1College of Life Science and Engineering, Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
2State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
3Hebi Precision Medical Research Institute People’s Hospital of Hebi, China
Hebi, China

4Department of Medical Oncology, People’s Hospital of Hebi, Hebi, China

Correspondence
Xin Cao and Kui‐zheng Cai, College of Life Science and Engineering, Center for Biomedical Research, Northwest Minzu University, Lanzhou 730030, China.

Email: caoxin@xbmu.edu.cn and ckz000@126.com

Du and Ma contributed equally to this work

ORCID
Xin Cao https://orcid.org/0000-0003-3459-7207

REFERENCES

1. Bestebroer J, V’kovski P, Mauthe M, Reggiori F. Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic. 2013;14(10):1029-1041.

2. Subramani S, Malhotra V. Non‐autophagic roles of autophagy‐related proteins. EMBO Rep. 2013;14(2):143-151.

3. Jounai N, Takeshita F, Kobiyama K, et al. The Atg5‐Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA. 2007;104(35):14050-14055.

4. Hwang S, Maloney NS, Bruinsma MW, et al. Nondegradative role of Atg5‐Atg12/Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe. 2012;11(4):397-409.

5. Fan X, Han S, Yan D, et al. Foot-and-mouth disease virus infection suppresses autophagy and NF-κB antiviral responses via degradation of ATG5-ATG12 by 3Cpro. Cell Death Dis. 2017;8(1):e2561.

6. Mauthe M, Langereis M, Jung J, et al. An siRNA screen for ATG protein depletion reveals the extent of the unconventional functions of the autophagy proteome in virus replication. J Cell Biol. 2016;214(5):619-635.

7. Solvik T, Debnath J. At the crossroads of autophagy and infection: noncanonical roles for ATG proteins in viral replication. J Cell Biol. 2016;214(5):503-505.

8. Mauthe M, Reggiori F. ATG proteins: are we always looking at autophagy? Autophagy. 2016;12(12):2502-2503.

9. Kaizuka T, Mizushima N. Atg13 is essential for autophagy and cardiac development in mice. Mol Cell Biol. 2015;35(4):585-595.

10. Wallot‐Hieke N, Verma N, Schlütermann D, et al. Systematic analysis of ATG13 domain requirements for autophagy induction. Autophagy. 2018;14(5):743-763.