A distance formula related to a family of projections orthogonal to their symmetries

Ilya M. Spitkovsky
Division of Science, New York University Abu Dhabi (NYUAD)
Saadiyat Island, P.O. Box 129188 Abu Dhabi, UAE

Abstract
Let \(u \) be a hermitian involution, and \(e \) an orthogonal projection, acting on the same Hilbert space \(H \). We establish the exact formula, in terms of \(\|eue\| \), for the distance from \(e \) to the set of all orthogonal projections \(q \) from the algebra generated by \(e, u \), and such that \(quq = 0 \).

Keywords: orthogonal projection, involution, \(C^* \)-algebra, \(W^* \)-algebra
2010 MSC: 47A05, 47A30

1. Introduction
Let \(H \) be a Hilbert space and let \(B(H) \) stand for the \(C^* \)-algebra of all bounded linear operators acting on \(H \). Given a hermitian involution \(u \in B(H) \), denote by \(Q_u \) the set of all orthogonal projections \(q \in B(H) \) for which \(quq = 0 \).

Theorem 1.2 of [1] can be stated as follows:

Theorem 1. Let \(e \in B(H) \) be an orthogonal projection such that
\[
\|eue\| < \xi (\approx 0.455).
\]
Then there exists \(q \in Q_u \) for which
\[
\|e - q\| \leq \frac{1}{2} \|eue\| + 4 \|eue\|^2.
\]
Further, \(q \) is in the \(C^* \)-subalgebra of \(B(H) \) generated by \(e, ueu^* \).

Note that the distance between any two orthogonal projections does not exceed one. So, estimate [1] is useful only when \(\|eue\| \) is smaller than the positive root of \(8x^2 + x - 2 \), that is, approximately 0.441.

We will provide an explicit formula for the distance from \(e \) to the intersection of \(Q_u \) with the \(W^* \)-algebra \(W(e, u) \) generated by \(e, u \), as well as for the element on which this distance is attained. No a priori restriction on \(\|eue\| \) is needed, and the respective \(q \) indeed lies in the \(C^* \)-algebra \(C(e, ueu^*) \) generated by \(e, ueu^* \) whenever \(\|eue\| < 1 \).
Theorem 2. Let \(e, u \in \mathcal{B}(\mathcal{H}) \) be, respectively, an orthogonal projection and a hermitian involution. Denote by \(\mathcal{H}_\pm \) the eigenspace of \(u \) corresponding to its eigenvalue \(\pm 1 \). Then the distance \(d \) from \(e \) to \(Q_u \cap \mathcal{W}(e, u) \) is one if the range of \(e \) has a non-trivial intersection with \(\mathcal{H}_+ \) or \(\mathcal{H}_- \), and is given by the formula

\[
d = \sqrt{\frac{1}{2} \left(1 - \sqrt{1 - \|ueu\|^2} \right)}
\]

otherwise.

For small values of \(\|ueu\| \), it is instructive to compare (1) with the Taylor expansion of (2):

\[
d = \frac{1}{2} \|ueu\| + \frac{1}{16} \|ueu\|^3 + \cdots
\]

Figure 1: Estimate (1) versus formula (2) as functions of \(\|ueu\| \)

2. Proof of the main result

Using the canonical representation [2] (see also [3] or a more recent survey [4]) of the pair \(e, (u + I)/2 \) of orthogonal projections, we can find an orthogonal decomposition of \(\mathcal{H} \) into six summands,

\[
\mathcal{H} = \mathcal{M}_{00} \oplus \mathcal{M}_{01} \oplus \mathcal{M}_{10} \oplus \mathcal{M}_{11} \oplus \mathcal{M} \oplus \mathcal{M},
\]

(3)
with respect to which
\[u = I \oplus I \oplus (-I) \oplus (-I) \oplus \text{diag}[I, -I], \]
\[e = I \oplus 0 \oplus 0 \oplus I \oplus \begin{bmatrix} H & \sqrt{H(I-H)} \\ \sqrt{H(I-H)} & I - H \end{bmatrix}. \] \hspace{1cm} (4)

(Here and in what follows we use the notation \(\text{diag}[X_1, \ldots, X_k]\) for block diagonal matrices with \(X_1, \ldots, X_k\) as their diagonal blocks.) Note that in (3) the subspaces \(\mathcal{M}_{00}\) and \(\mathcal{M}_{11}\) (resp, \(\mathcal{M}_{01}\) and \(\mathcal{M}_{10}\)) are the intersections of the range (resp, the kernel) of \(e\) with \(\mathcal{H}_+\) and \(\mathcal{H}_-\). The (hermitian) operator \(H\) is the compression of \(e\) onto \(\mathcal{M} := \mathcal{H}_+ \oplus (\mathcal{M}_{00} \oplus \mathcal{M}_{01})\). By construction, \(H\) has its spectrum \(\Delta\) lying in \([0, 1]\) and \(0, 1\) are not its eigenvalues.

Elements of \(\mathcal{W}(e, u)\) with respect to the same decomposition \(3\) look as
\[q = a_{00}I \oplus a_{01}I \oplus a_{10}I \oplus a_{11}I \oplus \Phi(H), \] \hspace{1cm} (5)
where \(\Phi = \begin{bmatrix} \phi_{00} & \phi_{01} \\ \phi_{10} & \phi_{11} \end{bmatrix}\), \(a_{ij} \in \mathbb{C}\), and the functions \(\phi_{ij}\) are Borel-measurable and essentially bounded on \(\Delta\), in the sense of the spectral measure of \(H\) (\[5\], see also \([3, 4]\)). Consequently, \(q \in \mathcal{W}(e, u)\) is an orthogonal projection if and only if \(a_{ij} \in \{0, 1\}\), the functions \(\phi_{00}, \phi_{11}\) are real-valued, while \(\phi_{01}, \phi_{10}\) are complex conjugate, and
\[\phi_{00} - \phi_{00}^2 = \phi_{11} - \phi_{11}^2 = |\phi_{01}|^2, \quad (\phi_{00} + \phi_{11} - 1)\phi_{01} = 0. \] \hspace{1cm} (6)

On the other hand, direct computations immediately reveal that condition \(quq = 0\) is equivalent to
\[\phi_{00}^2 = \phi_{11}^2 = \phi_{01}\phi_{10}, \quad (\phi_{00} - \phi_{11})\phi_{01} = (\phi_{00} - \phi_{11})\phi_{10} = 0. \] \hspace{1cm} (7)
Solving the system of equations (6)–(7) yields
\[\phi_{00} = \phi_{01} = \frac{1}{2}\chi, \quad \phi_{01} = \frac{1}{2}\chi\omega, \quad \phi_{10} = \frac{1}{2}\chi\overline{\omega} \]
with \(\chi\) being a characteristic function of some subset of \(\Delta\) and unimodular \(\omega\).

So, elements of \(\mathcal{Q}_u \cap \mathcal{W}(e, u)\) have the form
\[q = 0 \oplus 0 \oplus 0 \oplus 0 \oplus \begin{bmatrix} \chi & \chi\omega \\ \chi\overline{\omega} & \chi \end{bmatrix}(H). \] \hspace{1cm} (8)

The rest of the reasoning depends on whether or not the subspaces \(\mathcal{M}_{00}, \mathcal{M}_{11}\) are actually present in the decomposition \(3\).

Case 1. At least one of the subspaces \(\mathcal{M}_{00}, \mathcal{M}_{11}\) is different from zero, that is, the range of \(e\) contains some eigenvectors of \(u\).

Since for any \(q\) of the form (5) the restriction of \(e - q\) on \(\mathcal{M}_{00} \oplus \mathcal{M}_{11}\) is the identity, we then have \(\|e - q\| = 1\). Consequently, \(d = 1\). Note that in this case also \(\|eue\| = 1\).
Case 2. \(M_{00} = M_{11} = \{0\}\). Since both \(e\) given by (4) and \(q\) given by (8) have zero restrictions onto \(M_{01} \oplus M_{11}\), we may without loss of generality suppose that in place of (3) simply \(H = M \oplus M\), and respectively
\[
e = \begin{bmatrix} H & \sqrt{H(1-H)} \\ \sqrt{H(1-H)} & I - H \end{bmatrix}, \quad q = \frac{1}{2} \begin{bmatrix} \chi & \chi \omega \\ \chi \omega & \chi \end{bmatrix} (H).
\] (9)

So, \(e - q = \Phi_{\chi,\omega}(H)\), where
\[
\Phi_{\chi,\omega}(t) = \begin{bmatrix} t - \frac{1}{2} \chi(t) & \sqrt{t(1-t)} - \frac{1}{2} \chi(t) \omega(t) \\ \sqrt{t(1-t)} - \frac{1}{2} \chi(t) \omega(t) & 1 - t - \frac{1}{2} \chi(t) \end{bmatrix}.
\]

Consequently,
\[
\|e - q\| = \text{ess sup}_{t \in \Delta} \lambda_{\chi,\omega}(t),
\]
where \(\lambda_{\chi,\omega}(t)\) is the positive eigenvalue of \(\Phi_{\chi,\omega}(t)\), and \(\text{ess}\) is understood in the sense of the spectral measure of \(H\).

If \(\chi(t) = 0\) for some \(t \in \Delta\), then the respective \(\lambda_{\chi,\omega}(t)\) equals one, guaranteeing \(\|e - q\| = 1\). We should concentrate therefore on elements \(q\) with \(\chi(t) \equiv 1\). Then we have
\[
\Phi_{1,\omega}(t) = \begin{bmatrix} t - \frac{1}{2} & \sqrt{t(1-t)} - \frac{1}{2} \omega(t) \\ \sqrt{t(1-t)} - \frac{1}{2} \omega(t) & 1 - t - \frac{1}{2} \end{bmatrix},
\]
and
\[
\lambda_{1,\omega}(t) = \sqrt{\frac{1}{2} - \sqrt{t(1-t)}} \text{ Re } \omega(t).
\]

Since \(\omega\) is unimodular, to minimize \(\lambda_{1,\omega}(t)\) for any given \(t\) we should take \(\omega(t) = 1\). The respective element \(q\) is simply
\[
q_0 = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix},
\] (10)
\[
\lambda_{1,1}(t) = \sqrt{\frac{1}{2} - \sqrt{t(1-t)}}, \quad \text{and}
\]
\[
\|e - q_0\| = \sqrt{\frac{1}{2} - \min_{t \in \Delta} \sqrt{t(1-t)}} = \sqrt{\frac{1}{2} \left(1 - \sqrt{1 - \max_{t \in \Delta} |2t - 1|^2} \right)}.
\]

In order to justify (2), it remains only to observe that
\[
\max_{t \in \Delta} |2t - 1| = \|eue\|.
\] (11)

But this is indeed the case, since \(eue = \Phi(H)\) with the matrix
\[
\Phi(t) = (2t - 1) \begin{bmatrix} t & \sqrt{t(1-t)} \\ \sqrt{t(1-t)} & 1 - t \end{bmatrix},
\]
the eigenvalues of which are zero and \(2t - 1\).
3. Additional comments

1. Recall \([6]\) that elements of \(C^*\)-algebra \(C(e, u)\) generated by \(e\) and \(u\) are those of the form \([6]\) for which the functions \(\phi_{ij}\) are continuous on \(\Delta\) and such that \(\phi_{01}(j) = \phi_{10}(j) = 0, a_{ij} = \phi_{ii}(j)\) if \(j \in \Delta\). From \([10]\) we therefore conclude that the element \(q_0 \in W(e, u)\) on which the distance from \(e\) to \(Q_u\) is attained does not lie in \(C(e, u)\) if the spectrum of \(H\) contains 0 or 1.

On the other hand, due to \([11]\) condition \(\|eue\| < 1\) guarantees that \(0, 1 \notin \Delta\), and thus the invertibility of the operator \(H(I - H)\). Moreover, \(M_{00} = M_{11} = \{0\}\), as was observed in Section 2. So, without loss of generality \(e\) is given by the first formula in \([9]\), while \(u = \text{diag}[I, -I]\). From here:

\[
z := \frac{1}{2}(e - ueu^*) = \begin{bmatrix} 0 & \sqrt{H(I - H)} \\ \sqrt{H(I - H)} & 0 \end{bmatrix} \in C(e, ueu^*),
\]

\[
z^2 = \text{diag}[H(I - H), H(I - H)]\]

is positive definite and also lies in \(C(e, ueu^*)\), and therefore so does \((z^2)^{-1/2} = \text{diag}[(H(I - H))^{-1/2}, (H(I - H))^{-1/2}]\). Along with \(z\) and \((z^2)^{-1/2}\), the algebra \(C(e, ueu^*)\) contains their product

\[
z(z^2)^{-1/2} = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}.
\]

We conclude from \([10]\) that \(q_0 = \frac{1}{2}(I + z(z^2)^{-1/2}) \in C(e, ueu^*)\).

2. The distances from \(e\) to the sets \(Q_u\) and \(Q_u \cap W(e, u)\) may not coincide. To illustrate, consider \(H = \mathbb{C}^3\), \(u = \text{diag}[1, 1, -1]\) and \(e = \text{diag}[1, 0, 0]\). Then \(Q_u\) consists of zero and all matrices of the form

\[
q_{x,y} = \frac{1}{2} \begin{bmatrix} |x|^2 & x\bar{y} & x \\ x\bar{y} & |y|^2 & y \\ x & y & 1 \end{bmatrix},
\]

with the parameters \(x, y \in \mathbb{C}\) satisfying \(|x|^2 + |y|^2 = 1\). An easy computation shows that

\[
\|e - q_{x,y}\| = \sqrt{(1 + |y|^2)/2}.
\]

So, the distance from \(e\) to \(Q_u\) equals \(1/\sqrt{2}\) and is attained on all the matrices \(q_{\omega,0}\) with \(|\omega| = 1\), that is, having the form

\[
\frac{1}{2} \begin{bmatrix} 1 & 0 & \omega \\ 0 & 0 & 0 \\ \bar{\omega} & 0 & 1 \end{bmatrix}.
\]

On the other hand, the algebra generated by \(e\) and \(u\) consists simply of all 3-by-3 diagonal matrices. The only diagonal matrix lying in \(Q_u\) is 0, and \(d = 1\) in full agreement with Theorem \(2\).
4. Acknowledgments

The author was supported in part by Faculty Research funding from the Division of Science and Mathematics, New York University Abu Dhabi.

References

[1] S. Walters, Projection operators nearly orthogonal to their symmetries, J. Math. Anal. Appl. 446 (2) (2017) 1356–1361.

[2] P. L. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969) 381–389.

[3] I. M. Spitkovsky, Once more on algebras generated by two projections, Linear Algebra Appl. 208/209 (1994) 377–395.

[4] A. Böttcher, I. M. Spitkovsky, A gentle guide to the basics of two projections theory, Linear Algebra Appl. 432 (6) (2010) 1412–1459.

[5] R. Giles, H. Kummer, A matrix representation of a pair of projections in a Hilbert space, Canad. Math. Bull. 14 (1) (1971) 35–44.

[6] N. Vasilevsky, I. Spitkovsky, On the algebra generated by two projections, Doklady Akad. Nauk Ukrain. SSR, Ser. A 8 (1981) 10–13.