Proposed diagnostic criteria for classical chronic myelomonocytic leukemia (CMML), CMML variants and pre-CMML conditions

Peter Valent, Attilio Orazi, Michael R. Savona, Mrinal M. Patnaik, Francesco Onida, Arjan A. van de Loosdrecht, Detlef Haase, Torsten Haerlach, Chiara Elena, Lisa Pleyer, Wolfgang Kern, Tea Pemovska, Gregory I. Vladimer, Julie Schanz, Alexandra Keller, Michael Lübbert, Karl Sotlar, Andreas Reiter, Theo De Witte, Michael Pfleifstöcker, Klaus Geissler, Eric Padron, Michael Deinger, Alberto Orfao, Hans-Peter Horny, Peter L. Greenberg, Daniel A. Arber, Luca Malcovati and John M. Bennett

1Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; 2Ludwig Boltzmann Institute for Hematology & Oncology, Vienna, Austria; 3Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA; 4Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; 5Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA; 6Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy; 7Department of Hematology, Amsterdam UMC, location VU University Medical Center, Amsterdam, the Netherlands; 8Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany; 9MLL Munich Leukemia Laboratory, Munich, Germany; 10Department of Molecular Medicine, University of Pavia, Pavia, Italy; 113rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Paracelsus Medical University Salzburg, Austria; 12CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; 13Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; 14Children’s Cancer Research Institute and Department of Pediatrics, Medical University of Vienna, Vienna, Austria; 15Institute of Pathology, Paracelsus Medical University, Salzburg, Austria; 16Department of Hematology and Oncology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany; 17Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; 183rd Medical Department, Hanusch Hospital, Vienna, Vienna, Austria; 19Sigmund Freud University, Vienna, Austria; 20Malignant Hematology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; 21Huntsman Cancer Institute & Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA; 22Servicio Central de Citometría, Centro de Investigación del Cáncer (IBMCC, CSIC-USAL), CIBERONC and IBSAL, Universidad de Salamanca, Salamanca, Spain; 23Institute of Pathology, Ludwig-Maximilians University, Munich, Germany; 24Stanford University Cancer Institute, Stanford, CA, USA; 25Department of Pathology, University of Chicago, Chicago, IL, USA and 26Department of Pathology, Hematopathology Unit and James P Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA

ABSTRACT

Chronic myelomonocytic leukemia (CMML) is a myeloid neoplasm characterized by dysplasia, abnormal production and accumulation of monocyte cells and an elevated risk of transforming into acute leukemia. Over the past two decades, our knowledge about the pathogenesis and molecular mechanisms in CMML has increased substantially. In parallel, better diagnostic criteria and therapeutic strategies have been developed. However, many questions remain regarding prognostication and optimal therapy. In addition, there is a need to define potential pre-phases of CMML and special CMML variants, and to separate these entities from each other and from conditions mimicking CMML. To address these unmet needs, an international consensus group met in a Working Conference in August 2018 and discussed open questions and issues around CMML, its variants, and pre-CMML conditions. The outcomes of this meeting are summarized herein and include diag-
diagnostic criteria and a proposed classification of pre-CMML conditions as well as refined minimal diagnostic criteria for classical CMML and special CMML variants, including oligomonocytic CMML and CMML associated with systemic mastocytosis. Moreover, we propose diagnostic standards and tools to distinguish between ‘normal’, pre-CMML and CMML entities. These criteria and standards should facilitate diagnostic and prognostic evaluations in daily practice and clinical studies in applied hematology.

Introduction

Chronic myelomonocytic leukemia (CMML) is a myeloid stem cell disease characterized by an abnormal production and accumulation of monocytic cells, often in association with other signs of myeloproliferation, substantial dysplasia in one or more hematopoietic cell lineages, and an increased risk of transformation into secondary acute myeloid leukemia (AML). As per definition, the Philadelphia chromosome and its related BCR-ABL1 fusion gene are absent in CMML. Other disease-related drivers, such as the JAK2 mutation V617F or the KIT mutation D816V, may be detected and may indicate a special variant of CMML, such as CMML associated with systemic mastocytosis (SM-CMML). However, most somatic mutations identified in CMML patients, such as mutations in SRSF2, TET2, or RAS, are not disease-specific, but are also detected in myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), or AML.

For many years, CMML was listed as a separate variant among the MDS in the classification of the French-American-British (FAB) working group. However, in 2001, the World Health Organization (WHO) reclassified CMML into a newly created MDS/MPN overlap group, defined by the presence of both MDS-related and MPN-related morphological and clinical features. Depending on the leukocyte count, CMML can be divided into a ‘dysplastic’ variant (leukocyte count ≤15×10^9/L) and a ‘proliferative’ variant (leukocyte count >15×10^9/L). In 2001 and 2008, the WHO also proposed a split into CMML-1 and CMML-2, based on the percentage of blast cells in the blood and bone marrow (BM). In the most recent updates of the WHO 2016 classification, CMML is again listed amongst the MDS/MPN overlap disorders. Based on the percentage of blasts, CMML is now divided into CMML-0, CMML-1, and CMML-2. Moreover, contrasting the 2008 WHO classification, the diagnosis of CMML now requires both an absolute monocytosis (≥1×10^9/L) and relative monocytosis (≥10% of leukocytes) in the peripheral blood (PB). In the 2008 and 2016 update of the WHO classification, CMML can only be diagnosed per definition when rearrangements in PDGFRα, PDGFRβ or FGFR1 genes have been excluded, and in the 2016 update, the PGM1-JAK2 fusion gene was added as an excluding criterion. These molecular aberrations are commonly found in eosinophilia-associated neoplasms such as chronic eosinophilic leukemia. However, CMML is also listed as an underlying variant in these molecular ‘entities’ in the WHO classification system.

Over the past two decades, our knowledge about the molecular features and mechanisms in CMML has increased substantially. Nevertheless, a number of questions remain concerning basic diagnostic standards, prognostication, optimal management and therapeutic options. Furthermore, there is a need to define clinically relevant pre-phases of CMML and distinct CMML variants by clinical variables, histomorphological features, flow cytometric phenotypes, molecular markers and cytogenetic findings. It is also important to separate CMML and pre-CMML conditions from diverse mimickers. To address these unmet needs, an international consensus group discussed open questions and issues around CMML, its variants and pre-CMML entities in a Working Conference held in August 2018. The outcomes of this meeting are summarized in this article and include proposed diagnostic criteria and a classification of pre-CMML conditions as well as updated minimal diagnostic criteria for CMML and its variants. In addition, diagnostic standards and diagnostic algorithms are proposed. Details concerning the conference format, pre- and post-conference discussion and consensus-finding are described in the Online Supplement.

Definition of CMML and minimal diagnostic criteria

The diagnostic criteria of CMML, as defined by the WHO, are depicted in Online Supplementary Table S1. Our faculty is of the opinion that these criteria are valid in general for the classical form of CMML, but need adjustments for special variants of CMML. Based on consensus discussion, the following concept is proposed.

The classical form of CMML is defined by the following pre-requisite criteria: (i) persistent (at least 3 months) absolute PB monocytosis (≥1×10^9/L) and relative monocytosis (≥10% of PB leukocytes); (ii) exclusion of BCR-ABL1 leukemia, classical MPN and all other hematologic neoplasms that may serve as a primary source of monocytosis; and (iii) a blast cell count of 0–19% in PB and/or BM smears and exclusion of all (other) histopathological, morphological, phenotypic, molecular and cytogenetic signs that qualify as evidence of AML. In addition, morphological and/or histopathological evidence for diagnostic dysplasia in one or more of the three major BM cell lineages (≥10% of megakaryocytes and/or erythroid precursor cells and/or neutrophilic cells) must be present. If dysplasia is absent or not diagnostic (<10%), the presence of cytogenetic or molecular lesions (mutations) typically found in CMML and/or the presence of CMML-related flow cytometry abnormalities may be employed as co-criteria and may lead to the diagnosis of CMML, provided that the pre-requisite criteria listed above are fulfilled. Pre-requisite criteria and co-criteria of the classical form of CMML are presented in Table 1.

The exclusion of various reactive states producing monocytosis (and sometimes even dysplasia) was also discussed and regarded as being of great importance. However, these mimickers cannot a priori exclude the presence of a concomitant CMML, but may indeed occur...
in CMML patients in the context of certain infections. Furthermore, most of these mimickers do not produce persistent monocytes. Proof of clonality by molecular and cytogenetic studies, and other disease-specific parameters, together with global and specific laboratory (e.g., microbial screen) tests should easily lead to the conclusion that the patient is suffering from reactive monocytosis but not from (or from) CMML.

The a priori exclusion of AML as a criterion should apply to both the classical and the special variants of CMML, whereas the a priori exclusion of other indolent hematopoietic neoplasms should only apply to the classical variant of CMML and oligomonocytic CMML but not to other special CMML variants. This is because several previous and more recent studies have shown that CMML may be accompanied by (or may accompany) another myeloid or lymphoid neoplasms, such as systemic mastocytosis. In several of these patients, the CMML clone is dominant and the additional sub-clone is smaller in size and usually not relevant clinically, even if these smaller clones express certain driver mutations, such as KIT D816V or a rearranged PDGFRα or PDGFRβ. Rarely, a Philadelphia chromosome-positive chronic myeloid leukemia may develop as an additional small-sized (sub)clone in a patient with CMML. Our faculty is of the opinion that the presence of additional (chronic) myeloid, mast cell, or lymphoid neoplasms does not exclude a diagnosis of CMML, provided that diagnostic WHO criteria for CMML are fulfilled. Moreover, these concomitant neoplasms should not exclude a diagnosis of CMML even when the driver of the concomitant disease (e.g., KIT D816V) is detectable in CMML monocytes. Thus, whereas the occurrence of AML is always regarded as transformation of CMML, the occurrence of indolent myeloid, mast cell, or lymphoid neoplasms should be regarded as concomitant disorders. Co-existing myeloid neoplasms and CMML may be derived from the same original founder clone.

There are also patients in whom a certain driver of another BM neoplasm is present, such as a mutated JAK2, PDGFRα/B, or FGFR1, but only the diagnostic criteria for CMML (not those of the other BM neoplasm) are fulfilled. Our faculty concludes that these cases should also be regarded and diagnosed as special variants of CMML. This strategy is in line with the current WHO classification. In fact, whereas the primary molecular diagnosis is often based on a mutated form of JAK2, PDGFRα/B or other classical driver, the underlying or additional diagnosis may well be CMML.

Grading of CMML

The grading system of CMML proposed by the WHO is regarded as standard in clinical hematology. Our faculty recommends the use of this grading system as the initial prognostic tool in classical CMML. In fact, classical CMML should be split into CMML-0, CMML-1 and CMML-2 based on the blast cell count (Online Supplementary Table S2). In addition, CMML can be divided into a dysplastic variant and a proliferative variant based on leukocyte counts (threshold: 13x10⁹/L) (Online Supplementary Table S2). The resulting grading system defines six distinct CMML variants with variable clinical outcome. However, grading may sometimes be challenging. For example, blast cell counts obtained from BM smears may differ from those obtained in the PB so that the grade is questionable. Our faculty recommends that in patients in whom results from BM and PB smears would not fit into one distinct grade of CMML (e.g., BM blasts 4% and PB blasts 6%) grading should be based on the higher blast cell percentage (Online Supplementary Table S2). It is worth noting that initial prognostication by grading does not include all essential prognostic parameters.
We therefore recommend that in each case, deeper (full) prognostication should follow using multiparametric scoring systems (see later). It should be noted, however, that grading of CMML has only been validated in the classical form of CMML, not in special CMML variants. Therefore, although grading is also recommended for special CMML entities, it is not regarded standard and the result must be interpreted with caution in these patients.

Special variants of CMML: overview

As mentioned before, the classical form of CMML meets all pre-requisite criteria, and no signs (including molecular features) of an additional, concomitant BM neoplasm are detected. The special variants of CMML form a heterogeneous group of neoplasms comprising distinct clinical and biological entities. In one group of patients, the relative monocyte count (≥10%) is fulfilled without resulting in an absolute count ≥1×10^9/L, precluding the diagnosis of ‘classical CMML’. Most of these patients are diagnosed as having MDS or MPN/MDS-unclassified by WHO criteria. In another group of patients, a molecular signature suggestive of a different type of myeloid neoplasm is detected but only the criteria for CMML (not those for the other neoplasm) are met. Such an example is CMML with JAK2 V617F (without definitive evidence of a concomitant MPN). In a third group, CMML co-exists with another BM neoplasm, such as MPN or mastocytosis. In these patients, additional blood count abnormalities (e.g., eosinophilia), an elevated serum tryptase level and/or BM fibrosis, may be detected.

All variants of CMML (classical and special) can occur as a primary CMML or as a secondary CMML following a ‘mutagenic’ event, such as chemotherapy (therapy-related CMML). In addition, our faculty is of the opinion, that the term secondary CMML may also be appropriate for those patients who develop CMML (months or years) after another indolent myeloid neoplasm, such as a MDS or systemic (indolent or aggressive) mastocytosis, had been diagnosed. In the following paragraphs, the clinical features and diagnostic criteria of special (atypical) variants of CMML are proposed and discussed. An overview of the special variants of CMML is provided in Table 2.

Oligomonocytic CMML

Over the past few years, more and more cases of cytopenic patients exhibiting relative monocytosis (≥10%) and moderately increased absolute blood monocytes not reaching the required threshold to diagnose classical CMML (1.0×10^9/L) have been described. These cases have recently been referred to as oligomonocytic CMML. According to the WHO classification most of these patients would be classified as having MDS (with monocytosis) or perhaps MPN/MDS-unclassifiable. However, most of these patients exhibit typical features of CMML, including a typical morphology of PB and BM cells, splenomegaly, and CMML-related molecular features (e.g. mutations in TET2 and SRSF2). Some of these patients have prominent BM monocytosis without diagnostic PB monocytosis at diagnosis.

Whereas several of these cases remain stable without progression, the majority will develop ‘overt’ CMML or, eventually, secondary AML during follow-up. Therefore, oligomonocytic CMML may also be regarded as a potential pre-phase of classical CMML. Our faculty is of the opinion that the term oligomonocytic CMML should be used in clinical practice. Diagnostic pre-requisite criteria for oligomonocytic CMML are: (i) persistent (lasting at least 3 months) absolute peripheral monocytosis of 0.5-0.9×10^9/L and relative blood monocytosis (≥10% of blood leucocytes); (ii) exclusion of BCR-ABL1 leukemia, classical MPN and all other myeloid neoplasms that can explain monocytosis; and (iii) a blast cell count of 0-19% in PB and/or BM smears and exclusion of all histopathological, morphological, phenotypic, molecular and cytogenetic signs that count as proof of AML. Diagnostic dysplasia in one or more of the three major BM lineages (≥10%) must also be documented. If dysplasia is lacking or ‘sub-diagnostic’ (<10%), the presence of cytogenetic or molecular lesions (mutations) typically found in CMML and/or the presence of CMML-related flow cytometry abnormalities, may also lead to the conclusion that the patient has oligomonocytic CMML provided that the other diagnostic criteria described above are fulfilled and all other myeloid neoplasms have been excluded. The proposed criteria for oligomonocytic CMML are listed in

Table 2. Overview of special variants of chronic myelomonocytic leukemia.

Special variant	Key diagnostic features that discriminate the variant from classical CMML
Oligomonocytic CMML	Absolute PB monocyte count <1×10^9/L
SM with concomitant CMML = SM-CMML	WHO criteria for SM fulfilled; in most patients CMML monocytes exhibit \(\text{KIT}^{D816V} \)
CMML with a concomitant myeloid neoplasm* expressing a classical MPN-driver, such as JAK2 V617F, BCR-ABL1 or rearranged PDGFRα/β*** or FGFR1.	WHO criteria for a classical MPN, such as CML**, PMF, or a myeloid neoplasm with rearranged PDGFRα/β are fulfilled in addition to the criteria for CMML.
CMML with expression of a molecular MPN-driver – examples: CMML with JAK2 V617F or CMML with a rearranged PDGFRα/β or CMML with rearranged FGFR1.	Molecular drivers of classical MPN, such as JAK2 V617F**** or rearranged PDGFRα/β*** are found but diagnostic criteria for such classical MPN are not fulfilled (only criteria for CMML are met)
CMML with a concomitant lymphoid/lymphoproliferative neoplasm	WHO criteria for a lymphoid neoplasm are fulfilled

*These conditions must be separated from MPN with concomitant monocytosis that do not fulfill the diagnostic criteria for CMML. **Unlike in SM-CMML, in which monocytes display \(\text{KIT}^{D816V} \) or CMML with rearranged PDGFRα, the CMML monocytes must not express BCR-ABL1 in patients with CML plus CMML. ***Several different transllocations and fusion genes involving PDGFRα or PDGFRβ may be detected, such as the t(5;12) associated with the TEL-PDGFRα fusion gene. ****JAK2 V617F itself counts as a feature of MPN; therefore, detection of JAK2 V617F can confirm the diagnosis of CMML (as MPN/MDS overlap disease) when other signs of myeloproliferation are absent (e.g., no splenomegaly and no leukocytosis). CMML, chronic myelomonocytic leukemia; PB, peripheral blood; SM, systemic mastocytosis; WHO, World Health Organization; MPN, myeloproliferative neoplasm; CML, chronic myeloid leukemia; PMF, primary myelofibrosis.
Table 3. Proposed minimal diagnostic criteria for oligomonocytic chronic myelomonocytic leukemia.*

A. Prerequisite criteria (all must be fulfilled)
- Persistent (3 months) peripheral blood monocytosis 0.5-0.9x10^9/L and relative monocytosis of ≥10% of circulating peripheral blood leukocytes
- Exclusion of BCR-ABL1 leukemia, classical MPN and all other bone marrow neoplasms that could serve as a primary source of chronic persistent monocytosis
- Blast cell count <20% in peripheral blood and bone marrow smears and exclusion of all other histopathological, morphological, molecular and cytogenetic features that count as evidence of the presence of acute myeloid leukemia**

B. Morphological criterion = Dysplasia
Dysplasia in at least 10% of all cells in one of the following lineages in the bone marrow smear: erythroid; neutrophilic; megakaryocytic

C. Co-criteria (for patients fulfilling A but not B, and otherwise showing typical clinical features of CMML such as splenomegaly)
- Typical chromosome abnormalities by conventional karyotyping or FISH***
- Abnormal findings in histological and/or immunohistochemical studies of bone marrow biopsy sections supporting the diagnosis of CMML.****
- Abnormal immunophenotype of bone marrow and blood cells by flow cytometry, with multiple CMML-associated phenotypic aberrancies indicating the presence of an abnormal/dysplastic population of monocytic (and other myeloid) cells******
- Evidence of a clonal population of myeloid cells determined by molecular (sequencing) studies revealing CMML-related mutation<*******

*The diagnosis of classical CMML can be established when all prerequisite criteria (A) and either morphological dysplasia (B) or one or more of the co-criteria (C) are fulfilled.

Examples: Aeuer rods, overt acute myeloid leukemia (AML) by histology and immunohistochemistry; presence of AML-specific diagnostic cytogenetic and/or molecular markers (e.g., −MPL), **Typical cytogenetic abnormalities found in CMML (Online Supplementary Table S6). *Leukemic infiltration of CD14+ monocytes and exclusion of AML.

****Utilizing a cutoff value of >94% CD14+ monocytes, phenotyping can identify CMML cases with a sensitivity of >90% and a specificity of >95%, and a decrease in MO3 monocytic (M2) monocytes.

*****Genes that are often mutated in the CMML/MDS context include, among other genes, TET2, SRSF2, ASXL1, and SETBP1. Minimal allele burden proposed to count as a co-criterion ≥10%. CMML: chronic myelomonocytic leukemia; MPN: myeloproliferative neoplasm(s); MDS: myelodysplastic syndrome(s); FISH: fluorescence in situ hybridization.

Table 3. Patients with oligomonocytic CMML should be managed and followed clinically in the same way as patients with classical CMML.

CMML associated with KIT D816V systemic mastocytosis

According to WHO criteria, systemic mastocytosis (SM) can be divided into: (i) indolent SM (ISM), which is associated with a normal life expectancy; (ii) smoldering SM (SSM), in which signs of BM dysplasia, myeloproliferation and/or splenomegaly are found but survival and prognosis are still favorable; and (iii) advanced SM, defined by a poor prognosis. SM is further divided into aggressive SM (ASM), SM with an associated hemato logic neoplasm (SM-AHN) and mast cell leukemia (MCL) 33-38. The most frequent AHN detected in patients with SM-AHN is CMML 45,36. In these patients the SM component of the diseases may present as ISM, ASM or, rarely, as MCL. Our faculty concludes that diagnostic WHO criteria for SM and diagnostic criteria for classical CMML (except exclusion of SM) must be fulfilled to diagnose SM-CMML.

Patients with SM may present with monocytosis resembling oligomonocytic CMML. However, the clinical features of SSM and advanced SM overlap largely with those found in patients with oligomonocytic CMML. Especially in SSM, myeloproliferation, dysplasia and splenomegaly are diagnostic criteria. Therefore, our faculty is of the opinion that such patients should be classified as having ISM, SSM or ASM with monocytosis rather than SM with oligomonocytic CMML.

In patients with CMML, a concomitant SM is often overlooked, especially when the disease does not present with cutaneous lesions. In other patients, CMML is diagnosed long before SM is detected by chance or after KIT D816V is identified: even though it is tempting to call these conditions SM-CMML, our faculty agreed that the classical terminology should be SM-CMML which is also in line with the WHO classification 34,35 and that the subtype of SM and of CMML should be defined in the final diagnosis (e.g., ISM-CMML-1 or ASM-CMML-2) with recognition that in the SM-context, CMML is always regarded as a secondary neoplasm. Furthermore our faculty is of the opinion that it should be standard practice to examine BM and blood leukocytes for the presence of KIT D816V in all patients with (suspected) CMML. In almost all patients with SM-CMML, neoplastic monocytes display KIT D816V. In these monocytes, mutated KIT is not expressed on the cell surface but acts as a cytoplasmic driver. In line with this hypothesis drugs targeting KIT D816V can sometimes induce a major decrease in monocyte counts in patients with SM-CMML.

Therapy of SM-CMML should be based on a bi-directional strategy: in fact the SM component of the disease should be treated as if no CMML was diagnosed and CMML should be treated as if no SM had been found, with recognition of drug-drug interactions and the possibility of drug-induced anaphylaxis. In many cases (ISM-CMML) the SM component of the disease is only treated symptomatically.

CMML associated with mutated JAK2, rearranged PDGFRα/B or other drivers

Patients with CMML may present with the JAK2 mutation V617F, a rearranged PDGFRα or PDGFRB, often in the context of hypereosinophilia, or other drivers related to distinct hematopoietic neoplasms as defined by the WHO.39-41
CMML with rearranged PDGFRα, PDGFRβ, FGFR1 or PCM1-JAK2

In these patients, persistent substantial monocytosis \((≥1.0×10^9/L)\) is detected and all other consensus criteria for classical CMML (see previous paragraphs) are also met, except the following specific exclusion criteria: CMML to be excluded in the presence of a well-characterized diagnosis of myeloid/lymphoid neoplasm with rearranged PDGFRα, PDGFRβ, FGFR1 or PCM1-JAK2 (Table 2). Except for neglecting the above-mentioned criteria, our proposal is otherwise fully in agreement with all of the other tenets postulated by the WHO classification.\(^{14,15}\) In relation to neoplasms with rearranged PDGFRα/B, FGFR1 or PCM1-JAK2, the WHO’s definition of ‘myeloid/lymphoid neoplasms’ is too generic and there is a clinical need to know whether the underlying myeloid neoplasm is an aggressive disease, like AML, or a chronic neoplasm such as CMML or chronic eosinophilic leukemia.\(^{20,21}\) Our faculty is of the opinion that (unlike in previous times) the presence of one criterion-confirmed myeloid neoplasm should not be considered a priori exclude the presence of another (second concomitant) myeloid or lymphoid neoplasm. Hence, when CMML is encountered in the context of another molecularly defined myeloid/lymphoid neoplasm (as a final diagnosis), it should be delineated as a specific subtype of the myeloid/lymphoid neoplasm with eosinophilia along with the specific associated gene rearrangement (PDGFRα/B or FGFR1 or PCM1-JAK2).

CMML with JAK2 V617F

In these patients the situation is different. First, JAK2 V617F itself may be considered as a criterion of myeloproliferation in MDS/MPN, e.g. in cases with MDS/MPN with ring sideroblasts and thrombocytosis. In the context of CMML, the JAK2 mutation is also typically associated with other signs of myeloproliferation (including BM fibrosis) and with the ‘myeloproliferative variant’ of CMML.\(^{39,40}\) Therefore, our faculty concludes that JAK2 V617F should also count as a molecular co-criterion of MDS/MPN and thus for CMML. Second, the presence of a JAK2-mutated MPN does not exclude the presence of a concomitant CMML if diagnostic criteria for both neoplasms are fulfilled. If this is not the case because the size of the MPN-like clone carrying JAK2 V617F is too small and/or other MPN features are clearly missing, the final diagnosis will be CMML with JAK2 V617F. On the other hand, in patients in whom the JAK2 allele burden is high and clinical and laboratory features argue for an overt MPN rather than CMML (e.g., polycythemia and/or BM fibrosis without dysplasia and without molecular or flow cytometry-based signs of CMML) the final diagnosis will be JAK2 V617F MPN with monocytosis.\(^{41}\) In a third group of patients, diagnostic criteria for both a distinct MPN and CMML are fulfilled and the mutation status confirms the presence of an overt JAK2-mutated MPN (usually with high allele burden). These patients are suffering from both MPN and CMML or from a gray zone disease displaying hybrid features between MPN and CMML.\(^{39,40}\) Our faculty concludes that it is therefore important to measure the JAK2 V617F allele burden in all patients with CMML.\(^{39,40}\) Other drivers, such as BCR-ABL1, are rarely found in patients with CMML. However, although in classical CMML, the presence of BCR-ABL1 must be excluded, it may be detected in rare patients, suggesting the existence of a special variant of CMML (defined by a co-exist-

CMML associated with lymphoid neoplasms

In a small group of patients with CMML, a co-existing lymphoproliferative neoplasm is diagnosed, such as a lymphocytic leukemia, non-Hodgkin lymphoma or multiple myeloma.\(^{51-56}\) In most patients, the lymphoid neoplasm is detected first, and CMML is considered to develop as treatment-induced, secondary, leukemia.\(^{57}\) In other patients, CMML is diagnosed first and later a lymphoid neoplasm is detected during follow-up.\(^{58,59}\) It is worth noting that in patients with CMML, polyclonal hypergammaglobulinemia is often recorded: this must be distinguished from the monoclonal gammapathy of concomitant myeloma, monoclonal gammopathies of undetermined significance and both low-count and high-count monoclonal B lymphocytoses which represent pre-malignant conditions.

The management and treatment of lymphoid neoplasms presenting with concomitant (secondary) CMML is a clinical challenge. In non-transplantable cases, both diseases require separate treatment plans. Because of the high risk of transformation to AML, allogeneic hematopoietic stem cell transplantation should be considered in young, fit patients, especially when it can be expected that the lymphoid neoplasm will also be eradicated by this approach.

Treatment-related CMML and other secondary forms of CMML

Our faculty concluded that both the classical form of CMML and the special variants of CMML should be divided into primary (de novo) CMML and secondary CMML. The latter group includes patients who (i) received chemotherapy and/or radiation therapy in the past (therapy-related CMML) or (ii) have a history of a preceding MDS, MPN or another indolent myeloid or mast cell neoplasm prior to their diagnosis of CMML.\(^{54,55,56,60-63}\) Recent data suggest that patients with therapy-related secondary CMML may have shorter overall survival compared to that of patients with primary (de...
Potential pre-phases of CMML

During the past few years evidence has accumulated suggesting that hematopoietic neoplasms, including MDS, MPN and MDS/MPN, develop in a step-wise manner. In the earliest phases of clonal development, patients present without overt signs or symptoms of a hematopoietic neoplasm but their leukocytes carry one or more somatic mutations, usually (early, passenger-type) mutations otherwise also found in overt myeloid neoplasms (for example TET2 mutations).65-70 In the context of MDS and other myeloid neoplasms, these cases have been referred to as clonal hematopoiesis of indeterminate potential (CHIP), or, when accompanied by cytopenia, as clonal cytopenia of unknown significance (CCUS).65-70 Since these mutations are frequently detected in older individuals, the condition is also called age-related clonal hematopoiesis (ARCH).70,71 In a few healthy individuals, bona fide oncogenic drivers (such as BCR-ABL1) are detected in a small subset of leukocytes. Because of the oncogenic potential of these drivers, these conditions are termed clonal hematopoiesis with oncogenic potential (CHOP).71,73 CHIP, CCUS and CHOP may also be the earliest clonal conditions preceding CMML. For these cases, the definitions recently proposed for CHIP, CCUS and CHOP should apply.69,71,73

Apart from somatic mutations, other factors, such as epigenetic modifications, chronic inflammation or aging-related processes, may also trigger the selection and expansion of pre-malignant neoplastic clones in myeloid neoplasms including CMML.74,75 Some of these conditions may present with persistent monocytosis without signs of an overt myeloid neoplasm and may represent pre-phases of overt CMML. In other patients, however, no or another hematopoietic neoplasm develops during follow-up. Therefore, our faculty concluded that this pre-phase should be termed idiopathic monocytosis of unknown significance, provided that the following criteria are met: (i) persistent (at least 3 months) relative (≥10%) and absolute (>0.5x10^9/L) monocytosis; (ii) no diagnostic dysplasia and no signs of myeloproliferation; (iii) no signs and criteria of a myeloid or other hematopoietic neoplasm fulfilled; (iv) no flow cytometric abnormalities or somatic mutations related to a myeloid, mast cell or lymphoid neoplasm detected in leukocytes; and (v) no reactive condition that would explain reactive monocytosis is detected (Table 4 and Online Supplementary Table S1). If CHIP-like mutations are found in such patients, but no hematopoietic neoplasm can be diagnosed using the WHO criteria, the final diagnosis changes to clonal monocytosis of unknown significance (Online Supplementary Table S1). It is also worth noting that idiopathic cytopenias of unknown significance can precede CMML.65,73,76 Especially in patients with idiopathic thrombocytopenia of unknown significance, a CMML may be detected upon deeper investigations or during follow-up.73,79 Finally, as mentioned before, oligomonocytic CMML, although proposed as a special variant of CMML, must also be regarded as a potential pre-phase of classical CMML. In this regard it is important to note that these patients should have a regular follow-up.

Table 4. Overview of non-clonal and clonal conditions that may precede chronic myelomonocytic leukemia.

Feature	IMUS	ICUS	CCUS	CHIP/CHOP	CMUS	O-CMML	CMML
Absolute monocytosis (≥0.5x10^9/L)	+	+/-	+/-	+/-	+	+	+
Substantial monocytosis (≥1x10^9/L)	+/-	-	-	+/-	-	+	-
Relative monocytosis (>10% of leukocytes)	+	-	-	+	+	+	+
Dysplasia*	-	-	-	-	-	+	+
Cytopenia(s)**	-	+	+	-	-	+/-	+/-
BM blasts <5%	<5%	<5%	<5%	<5%	<5%	<20%	<20%
Flow abnormalities	-	-	+/-	+/-	-	++	++
Cytogenetic abnormality (≥1)	***	***	***	***	++	++	++
Molecular aberration(s)****	-	+	+	+****	++	++	++

*At least 10% of all cells in a given lineage (erythroid, neutrophilic, or megakaryocytic) are dysplastic. **Persistent cytopenia(s) recorded over a time-period of at least 4 months. ***In a subset of cases, a small clone is detectable by FISH. ****A molecular aberration is defined by CMML/MDS-related mutations and an allele burden of ≥2%. The working definition for pre-CMML conditions is also ≥2% allele burden, whereas the minimal allele burden to count as a co-criterion for CMML is 10%. In most patients with overt CMML, multiple gene mutations/aberrations are found. ***Here a CHIP-like mutation is detected – if more than one CHIP-like mutations are found the question is whether the final diagnoses changes to OCMML: CMML chronic myelomonocytic leukemia; IMUS idiopathic monocytosis of unknown (undetermined) significance; ICUS idiopathic cytopenia of undetermined significance; CCUS clonal cytopenia of undetermined significance; CHIP: clonal hematopoiesis of indeterminate potential; CCUS clonal cytopenia of undetermined significance; CMUS clonal monocytosis of unknown (undetermined) significance; OCMML oligomonocytic CMML; MDS: myelodysplastic syndrome; BM: bone marrow; FISH: fluorescence in situ hybridization.
with repeated investigations of all disease-related parameters. A summary of non-clonal and clonal conditions potentially preceding CMMML is shown in Table 4. With regard to criteria delineating non-clonal pre-diagnostic conditions, like idiopathic cytopenia of undetermined significance from the clonal conditions described above (CHIP, CCUS, CHOP), we refer the reader to the pertinent literature.

Peripheral blood and bone marrow smears: proposed standards and recommendations

As in other myeloid neoplasms, a thorough examination of appropriately prepared and stained BM and PB smears is a crucial diagnostic approach in suspected CMMML. It is standard to examine and count at least 100 leukocytes in the PB film and 200-500 nucleated cells in well-prepared thin BM films. BM cellularity, the erythroid-to-myeloid (E:M) ratio, and the percentage of blast cells (including monoblasts and promonocytes), monocytes, mast cells, and other myeloid cells must be recorded (reported) in each case. As in patients with MDS, at least 10% of cells in one of the major BM lineages (erythroid and/or neutrophilic and/or megakaryocytic) must be dysplastic to meet the dysplasia criterion for CMMML.

It is also standard to study well-prepared and appropriately stained PB smears in CMMML and to report the percentage of circulating monocytes, including normal (mature) and abnormal (immature) monocytes, blast cells, other immature myeloid cells, dysplastic (hypogranulated) neutrophils and other cell types in the PB. Overall, the same standards and recommendations that count for the evaluation of MDS by morphology (BM and PB stains) also apply in cases of suspected CMMML or a suspected pre-CMMML condition.

Bone marrow histology and immunohistochemistry in CMMML

A thorough investigation of an appropriately processed and stained BM biopsy section by histology and immunohistochemistry is standard in all cases with known or suspected CMMML or a suspected pre-CMMML condition. Additionally, BM histology and immunohistochemistry are essential approaches to confirm the diagnosis of CMMML and to exclude AML and other CMMML-mimickers. Moreover, BM histology and immunohistochemistry may provide important additional information, including that on BM fibrosis, focal accumulations of blast cells, increased angiogenesis, atypical (dysplastic) megakaryocytes, a hypocellular BM or concomitant mastocytosis (Online Supplementary Table S4). The evaluation and enumeration of CD14+ monocytes, CD34+ progenitor cells and CD117+/KIT+ cells (progenitors and mast cells) by immunohistochemistry in BM biopsy sections represent an integral part of the diagnostic assessment. These approaches can also prevent diagnostic errors. For example, when the smear is of suboptimal quality, a preliminary diagnosis of CMMML may change to AML based on BM histology and CD34 immunohistochemistry.

BM biopsy specimens are usually taken from the iliac crest and should be of adequate length (≥2 cm). The specimen should be fixed in neutral formalin (or alternative standard fixation), decalcified in EDTA (for at least 8 h) or by alternative standard decalcification, and embedded in paraffin-wax. Ideally 2-3 μm thin sections should be prepared. Routine stains include hematoxylin-eosin, Giemsa, Prussian blue, AS-D chloroacetate esterase, toluidine blue and silver impregnation (Gomori’s stain). BM cellularity should be measured and reported according to published standards. For routine purposes, the pathologist should determine the cellularity as ‘normocellular’, ‘hypocellular’, or ‘hypercellular’, based on an age-adapted estimate. The presence of variable degrees of BM fibrosis

Table 5. Classification of blast cells and monocytes in patients with chronic myelomonocytic leukemia.

Cell type	Nuclear shape	Chromatin	Cytoplasm	Size relative to mature monocytes
Blast cells:				
Myeloblast	Round/oval	Fine with nucleoli	Basophilic, rare or no granules	Smaller
Monoblast	Round/oval	Delicate/ace-like, nucleoli	Basophilic, rare azurophilic granules	Large (20-30 μM)
Promonocyte	Convoluted/indented*	Delicate/ace-like, nucleoli	Variously basophilic, variably azurophilic granules	Large
Monocytes:				
Abnormal/immature	Convoluted/indented	More condensed, rare nucleoli	Intermediate basophilic**	Smaller
Mature monocyte	Lobulated/indented	Condensed, no nucleoli	Gray or pinkish with occasional azurophilic granules and vacuoles	=

*The most important feature discriminating promonocytes from monoblasts. **Less basophilic than promonocytes and more basophilic than mature monocytes.
(usually mild to moderate) has been reported in CMML cases, with several recent studies attempting to determine the prognostic value of this finding. Indeed, although the data are not yet conclusive, the presence of marrow fibrosis in CMML seems to be of prognostic importance.

The application of immunohistochemical markers is recommended in all patients with (suspected) CMML. The minimal immunohistochemistry panel includes CD14 (monocytes), CD34 (progenitors), CD117/KIT (progenitors and mast cells), tryptase (mast cells), and a megakaryocyte marker (CD41, CD42 or CD61) (Online Supplementary Table S5). In unclear cases or when a co-existing (second) BM neoplasm is suspected, additional lineage-specific antibodies such as CD5, CD20, or CD25 (suspected mastocytosis) should be applied (Online Supplementary Table S4). When employing CD34 as a progenitor-related immunohistochemical marker, it is important to know that endothelial cells also express this antigen. Another important point is that blasts may sometimes be CD34-negative. In such cases, KIT/CD117 is applied as an alternative marker (Online Supplementary Table S4).

Karyotyping in CMML: current recommendations and standards

Clonal cytogenetic abnormalities are detected in 20-30% of all patients with CMML. The most frequently identified aberrations are trisomy 8, abnormalities of chromosome 7 (especially monosomy 7 and deletion of 7q), and loss of the Y chromosome (−Y) (Online Supplementary Table S6). Compared to MDS, isolated del(5q) and complex abnormal karyotypes are rarely detected in CMML. Our faculty is of the opinion that conventional karyotyping of BM cells should be performed in all patients with known or suspected CMML or a suspected pre-CMML condition. At least 20 metaphases should be examined. In the case of a clear-cut result, even 10-20 metaphases may be sufficient to define the karyogram. Reporting of karyotypes should be performed using the International System for Human Cytogenetic Nomenclature (ISCN) guidelines.

Clonal evolution is found in at least two of three cases (CD117 status and FISH results). The FISH probe should cover all relevant regions, including 5q31, cep7, 7q31, 20q, cep8, and Y. Special consideration should be directed to cryptic deletions of TET2 (in 4q24), NFI (17q11), and ETV6 (12p13) which can occur in up to 10% of CMML patients and are only detectable by interphase FISH (Online Supplementary Table S6). It is worth noting that NFI deletions may occur during progression/karyotype evolution in CMML. The limitation of FISH is that it is not detect all karyotypic abnormalities. In some patients with CMML, clonal evolution is found. Subclones are defined by additional chromosomal defects (apart from the primary chromosomal defect) in at least two cells (or 3 cells for monosomies) and the absence of these additional chromosomal defects in the other clonal cells.

Criteria and standards in CMML

Table 6. Commonly mutated genes detectable in patients with chronic myelomonocytic leukemia.

Gene name abbreviation	Gene class and function	Relative frequency in CMML	Clinical impact
ASXL1	Epigenetic regulation	40%*	Poor prognosis**
EZH2	Epigenetic regulation	5%	CHIP/ARCH***
TET2	Epigenetic regulation	60%*	CHIP/ARCH***
DNMT3A	Epigenetic regulation	5%	Poor prognosis**
IDH1	Epigenetic regulation	1%	Drug target
IDH2	Epigenetic regulation	5-10%	Drug target
CBL	Signaling	15%	RAS pathway
NRAS	Signaling	15%	Poor prognosis**
KRAS	Signaling	10%	RAS pathway
PTPN1	Signaling	5%	RAS pathway
FLT3	Signaling	<5%	AML-related Drug target
SRSF2	Pre-mRNA splicing	50%*	
SF3B1	Pre-mRNA splicing	5-10%	
U2AF1	Pre-mRNA splicing	5-10%	
ZRS2	Pre-mRNA splicing	5%	
RUNX1	Gene transcription	15%	Poor prognosis**
SETBP1	Gene transcription	15%	AML-related
TPS3	DNA damage	1%	Poor prognosis**
PHF5	Chromatin adaptor	5%	

*These mutations can be regarded as CMML-related mutations, but only SRSF2 mutations do not, in addition, also count as classical CHIP/ARCH mutations. **Mutations in these genes are independent adverse prognostic factors regarding survival in CMML. ***These genes are frequently detected in individuals with chronic hematopoietic of indeterminate potential (CHIP) also known as age-related chronic hematopoietic (ARCH). Therefore, the diagnostic impact of these mutations may be regarded as somehow lower compared to that of other (CMML-related and other) mutations. CMML: chronic myelomonocytic leukemia; AML: acute myeloid leukemia.
Mutation profiles in CMML: current standards and limitations

Somatic mutations are detectable in the vast majority of patients with CMML. The clonal architecture, clone sizes and clonal evolution patterns vary from patient to patient. In some cases, initially small clones expand over time. It is, therefore, standard to apply next-generation sequencing assays with sufficient sensitivity to identify bona fide somatic mutations associated with CMML. The most frequently detected somatic mutations in CMML are mutations in TET2 (60%), SRSF2 (50%), and ASXL1 (40%) (Table 6). The presence of a SRSF2 mutation, particularly in combination with mutated TET2, correlates strongly with a CMML phenotype. It is also worth noting that two of these mutations (TET2, ASXL1) are also known as CHIP/ARCH-related mutations. However, only mutated ASXL1 has been associated with a poor prognosis in CMML. An overview of somatic mutations recurrently detected in CMML is provided in Table 6. Somatic mutations with independent prognostic impact include several RAS-pathway mutations as well as mutations in ASXL1, RUNX1 and SETBP1 (Table 6). RAS-pathway mutations trigger cell signaling and proliferation and have been associated with cytokine-independent growth of CMML progenitor cells, the proliferative variant of CMML, AML transformation and proliferation and have been associated with cytogenetic features, such as somatic mutations associated with CMML. AML transformation and proliferation and have been associated with cytogenetic features, such as somatic mutations associated with CMML.

Flow cytometry in CMML: standards and limitations

Flow cytometry studies are an essential diagnostic tool in patients with (suspected) classical CMML, pre-CMML conditions and special CMML variants. Therefore, our faculty is of the opinion that it is standard practice to perform multi-color flow cytometry (MFC) in the PB and BM in all cases with suspected or known CMML or a suspected pre-CMML condition. MFC studies are helpful to confirm the monocyte and blast cell counts in these patients and to exclude AML. In addition, MFC is useful to confirm the presence of distinct monocyte populations. Monocytes are defined as CD14+ cells in these analyses. Based on the expression of CD14 and CD16, monocytes are further divided into classical (MO1) monocytes (CD14+CD16-), intermediate (MO2) monocytes (CD14+CD16+) and non-classical (MO3) monocytes (CD14+CD16-) (Table 7). Compared to age-matched healthy donors and patients with reactive monocyteosis, but also myeloid neoplasms other than CMML, the percentages of MO1 monocytes in the PB are higher and the percentage of MO3 monocytes is lower in patients with CMML. When the absolute monocyte count is increased in the PB, a cutoff value of >94% MO1 monocytes, based on their

Table 7. Phenotypic classification of monocytes and distribution of monocyte subsets in patients with chronic myelomonocytic leukemia and in controls.*

Monocyte-subset	Defining phenotype	CMML Typical relative frequency in:	MDS or MPN Reactive BM	
Classical (MO1)	CD14+CD16-	≥94%	70-97%	<94%
Intermediate (MO2)	CD14+CD16+	<20%	5-20%	5-15%
Non-classical (MO3)	CD14+CD16+	<5%	5-10%	5-20%

*Data refer to published results presented in references #125 through #132. CMML: chronic myelomonocytic leukemia; MDS: myelodysplastic syndrome; MPN: myeloproliferative neoplasm; BM: bone marrow.
immunophenotype, can identify CMML with a sensitivity of >90% and a specificity of >95%. Moreover, during successful therapy, the distribution of MO1, MO2, and MO3 monocytes changes back to near normal or normal. Therefore, our faculty recommends that the percentages of MO1 monocytes are quantified in the PB by MFC in all cases with suspected or known CMML at diagnosis and during follow-up. In many cases with CMML, neoplastic monocytes aberrantly display CD2, CD5, CD10, CD23, and/or CD56. Of all aberrantly expressed surface markers, CD56 is most commonly detected on CMML monocytes. CD5 is only (very) weakly expressed on neoplastic monocytes in most cases with CMML. The most frequently underexpressed antigens may be CD14 and CD15. Overall, however, the use of decreased expression of these markers as a diagnostic test in CMML is limited by a relatively low sensitivity. An abnormal monocyte immunophenotype is also seen in other myeloid neoplasms, including MDS. On the other hand, phenotypically aberrant monocytes (as described above) are typically neoplastic cells (unless the patient has been treated with growth factors). Therefore, our faculty recommends that MFC studies in patients with (suspected) CMML employ antibodies directed against aberrantly expressed surface markers, including CD2 and CD56. Additionally, as mentioned before, several surface markers are ‘under-expressed’ on CMML monocytes compared to their levels on normal blood monocytes. These antigens include, among others, CD13, CD14, CD15, CD33, CD38, CD45, and CD64.

Other cell types may also express aberrant markers detectable by MFC in CMML. For example, myeloid progenitors may express CD56 in CMML and often exhibit the same phenotypic abnormalities as in MDS; this also holds true for neutrophils and erythroid cells (Online Supplementary Table S8). Other cell types that may show aberrant phenotypes are dendritic cells and mast cells. Mast cells are of particular importance as these cells are typically neoplastic cells in (suspected) CMML. An overview of immunophenotypic aberrancies detectable in CMML is given in Online Supplementary Table S8.

Differential diagnoses of CMML: reactive and clonal mimickers

A number of conditions can mimic CMML and must be taken into account when patients with unexplained monocytosis are evaluated. Reactive disorders mimicking CMML include certain chronic bacterial infections (examples: tuberculosis or subacute endomyocarditis), fungal infections, chronic auto-immune processes and non-hematologic neoplasms. There are also hematologic malignancies that may present as a CMML-like disease. For example, Philadelphia chromosome-positive chronic myeloid leukemia usually presents with (absolute) monocytosis and can also show signs of dysplasia. Particularly high monocyte counts are recorded in chronic myeloid leukemia cases expressing BCR-ABL1. When cryptic variants of BCR-ABL1 are expressed by leukemic cells, it can be difficult to exclude CMML. Myeloid neoplasms (MDS or MPN) in progression and myelomonocytic or monocytic AML may also resemble CMML. The reactive and clonal mimickers of CMML are listed in Online Supplementary Table S9.

Scoring systems in CMML: recommended standards

Although several prognostic variables have been identified in CMML regarding survival and AML evolution, accurate prediction of the clinical course and survival remains a clinical challenge. A first step in prognostication is grading into CMML-0, CMML-1 and CMML-2. To delineate the prognosis in CMML more accurately, a number of scoring systems have been developed in the past. Until 2012, the International Prognostic Scoring System (IPSS) served as the gold standard for prognostication in MDS and (dysplastic) CMML. However, a number of more specific scoring systemic taking CMML-related features into account have also been proposed. During the past few years, researchers have successfully started to integrate cytogenetic and molecular variables into these scoring models. Our faculty concludes that these novel approaches should be followed and developed into clinical application.

Management strategies and therapeutic options in CMML

Several new treatment strategies for CMML have been developed during the past 15 years. A detailed description of therapeutic options is beyond the scope of this article. The reader is referred to a series of excellent published review articles. A disappointing fact is that all drug therapies are still non-curative. The only curative therapy in CMML remains allogeneic hematopoietic stem cell transplantation. For most young and eligible patients with acceptable transplant-related risk, allogeneic hematopoietic stem cell transplantation is therefore recommended. All other forms of treatment are cytoreductive, experimental or palliative in nature. Some of these drugs, such as the hypomethylation agents (5-azacytidine, decitabine) may induce long-term disease control in a subset of patients with classical CMML. In general, cytoreductive and palliative drugs should be used according to available recommendations provided by major societies. Similarly, treatment response assessment should be performed in line with available (accepted) guidelines.

Specific therapy may work in those patients who suffer from a special variant of CMML. For example, in CMML patients with a transforming PDGFR/A mutation, treatment with imatinib or other similar tyrosine kinase inhibitor usually induces major responses or even long-lasting remissions. In patients with SM-CMML, midostaurin may result in disease control, especially when the CMML portion of the disease exhibits KIT D816V. However, in many cases, relapses occur. Treatment options in CMML and its variants are summarized in Online Supplementary Table S10.

Concluding remarks and future perspectives

CMML is a unique and rare hematopoietic neoplasm with a complex biology and pathology. In the past 10
years, several different pre-CMML conditions and subvariants of CMML have been defined. In the current article, we propose minimal diagnostic criteria for classical CMML and for special CMML variants. These criteria should help in the diagnosis of pre-CMML conditions, classical CMML, special CMML variants, and conditions that mimic CMML. In addition, we propose standards and tools for the diagnosis, prognostication and management of CMML. Contemporary assays define all major histopathological, molecular, cytogenetic and flow cytometry-based features of neoplastic cells, and thereby cover all CMML variants, including oligomycenic CMML and CMML associated with certain drivers or a concomitant myeloid neoplasm, such as mastocytosis. Different aberration profiles may also be found, resulting in a quite heterogeneous clinical picture and a variable clinical course. Although the course is unpredictable, initial grading and consecutive application of CMML-directed prognostic scores are standard tools that support the prognostication of patients with CMML concerning survival and AML evolution. The application of criteria, tools and standards proposed herein should assist in the diagnosis, prognostication and management of patients with CMML.

Acknowledgments
We thank Sabine Sonnleitner, Sophia Rammler, Susanne Camper, Emir Hadzijusovic and all other members of Peter Valent’s research group involved for their excellent support in the organization of the Working Conference. This study was supported by Austrian Science Fund (FWF) grants F4704-B20 and F4704-B20, the Ludwig Boltzmann Institute for Hematology and Oncology (LBI HO) and a Stem Cell Research grant from the Medical University of Vienna.

References

1. Storniolo AA, Moloney WC, Rosenthal DS, Cox C, Bennett JM. Chronic myelomonoerythroid leukemia. Leukemia. 1996;11(4):766-770.
2. Bennett JM, Catovsky D, Daniel MT, et al. The chronic myeloid leukemia: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukemia. Proposals by the French-American-British Cooperative Leukaemia Group. Br J Haematol. 1994;87(4):746-754.
3. Bennett JM. Chronic myelomonocytic leukemia. Curr Treat Options Oncol. 2002;3(3):221-223.
4. Patnaik MM, Parikh SA, Hanson CA, Tefferi A. Chronic myelomonocytic leukemia: a concise clinical and pathophysiological review. Br J Haematol. 2014;165(2):272-286.
5. Itzykson R, Duchman M, Lucas N, Solary E. CML: clinical and molecular aspects. Int J Hematol. 2017;105(6):711-719.
6. Sperr WR, Homy HF, Lechner K, Valent P. Clinical and biologic diversity of leukemias occurring in patients with mastocytosis. Leuk Lymphoma. 2000;37(5-6):473-486.
7. Soliar K, Friedrich C, Mall A, et al. Detection of c-kit point mutation Asp-816 -> Val in microdissected pooled single mast cells and leukemic cells in a patient with systemic mastocytosis and concomitant chronic myelomonocytic leukemia. Leuk Res. 2002; 26(11):979-984.
8. Patnaik MM, Rangit Vallapureddy, Lasho TL, et al. A comparison of clinical and molecular characteristics of patients with systemic mastocytosis with chronic myelomonocytic leukemia. Leukemia. 2018;32(8):1850-1856.
9. McCullough KB, Patnaik MM. Chronic myelomonocytic leukemia: a genetic and clinical update. Curr Hematol Malig Rep. 2015;10(3):292-302.
10. Kohlmann A, Grossmann V, Klein HU, et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CEB, RAS, and RUNX1. J Clin Oncol. 2010;28(24):3858-3865.
11. Patnaik MM, Tefferi A. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e395.
12. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51(2):159-199.
13. Vardiman JW, Corp M, Pierre R, et al. Chronic myelomonocytic leukemia. In: World Health Organization Classification of Tumors – Pathology & Genetics: Tumours of the Haematopoietic and Lymphoid Tissues: Eds. Jaffe ES, Harris NL, Stein H, Vardiman JW. IARC Press Lyon 2001, pp 49-52.
14. Orazi A, Bennett JM, Geras M, Bruning RD, Bain B, Thiele I. Chronic myelomonocytic leukemia. In: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues: Eds. Swerdlow SH, Campo E, Harris NL, et al. International Agency for Research on Cancer - IARC Press Lyon 2008, pp 76-79.
15. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the WHO classification of acute myeloid leukemia: a dynamic and evolving project. Blood. 2016;127(20):2491-2495.
16. Orazi A, Bain B, Bennett JM, et al. Chronic myelomonocytic leukemia. In: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues: Eds. Swerdlow SH, Campo E, Harris NL, et al. International Agency for Research on Cancer – IARC Press Lyon 2017, pp 72-79.
17. Patniki C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CML- and AML-like diseases in mice. Blood. 2006;108(7):2549-2557.
18. Gelsi-Boyer V, Trouplin V, Adelaïde J, et al. Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes. BMC Cancer. 2008; 8:299.
19. Reinig E, Yang F, Traer E, et al. Targeted next-generation sequencing in myelodysplastic syndrome and chronic myelomonocytic leukemia aids diagnosis in challenging cases and identifies frequent spliceosom mutations in transformed acute myeloid leukemia. Am J Clin Pathol. 2016;145(4):497-506.
20. Benton CB, Nazha A, Pemmaraju N, Garcia-Manero G. Chronic myelomonocytic leukemia: forefront of the field in 2015. Crit Rev Oncol Hematol. 2015;92(2):222-242.
21. Sallman DA, Padron E. Transformation of the clinical management of CMML patients through in-depth molecular characterization. Curr Lymphoma Myeloma Leuk. 2015;155:S50-S55.
22. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2016 update on diagnosis, risk stratification, and management. Am J Hematol. 2016;91(6):631-642.
23. Onda F. Models of prognostication in chronic myelomonocytic leukemia. Curr Hematol Malig Rep. 2017;12(6):513-521.
24. Nazha A, Patnaik MM. Making sense of prognostic models in chronic myelomonocytic leukemia. Curr Hematol Malig Rep. 2018;13(9):341-347.
30. Geyer JT, Tam W, Liu YC, et al. Oligomycytic chronic myelomonocytic leukemia (chronic myelomonocytic leukemia without absolute monocytosis) displays a similar clinicopathologic and mutational profile to classical chronic myelomonocytic leukemia. Mod Pathol. 2017;30(9):1213-1222.

31. Malcovati L, Papaemmanuil E, Ambaglio I, et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodyplasia. Blood. 2014;124(9):1519-1521.

32. Schuler E, Frank F, Hildebrandt B, et al. Myelodysplastic syndromes without peripheral mononcytosis but with evidence of marrow monocytoysis share clinical and molecular characteristics with CMMML. Leuk Res. 2018;65.

33. Valenti E, Horny HP, Escriva L, et al. Diagnostic criteria and classification of monocytosis: a consensus proposal. Leuk Res. 2001;25(7):603-625.

34. Vanet P, Akin C, Metcalfe DD. Mastsocytosis. 2016 updated WHO classification and novel emerging treatment concepts. Blood. 2017;129(1):1420-1427.

35. Valenti E, Akin C, Hartmann K, et al. Advanced neoplastic classification and treatment of mastocytosis: current status and outlook toward the future. Cancer Res. 2017;77(6):1261-1270.

36. Speer WA, Horny HP, Valentin P. Spectrum of associated clonal hematologic non-mast cell lineage disorders occurring in patients with systemic mastocytosis. Int Arch Allergy Immunol. 2002;127(2):140-142.

37. Gotlib J, Kluin-Nelemans HC, George TJ, et al. Efficacy and safety of midostaurin in advanced systemic mastocytosis. N Engl J Med. 2016;374(26):2590-2596.

38. Tefferi A, Bennett JM. Transformation of chronic myelomonocytic leukemia to acute lymphoblastic leukemia: case report and review of the literature of lymphoblastic transformation of myelodysplastic syndrome. Am J Hematol. 1995;49(2):157-162.

39. Yamamoto M, Nakagawa M, Ichimura N, et al. Lymphoblastic transformation of chronic myelomonocytic leukemia in an infant. Am J Hematol. 1996;52(3):212-214.

40. Gauthier A, Jary-Bourguignat L, Serna R, Pulik S, Danis P, Davi F, Raphael M. Occurrence of angioimmunoblastic T cell lymphoma in a patient with chronic myelomonocytic leukemia. Leuk Lymphoma. 2000;40(1-2):197-204.

41. Rebak T, Urbas-Rys H, Smolęwski F, et al. Chronic myelomonocytic leukemia coexisting with B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2003;44(11):2001-2008.

42. Menter T, Schlaeger M, Bastian L, Haberthur K, Rätz Bravo AE, Tzankov A. Development of an Epstein-Barr virus-associated lymphoproliferative disorder in a patient treated with azacitidine for chronic myelomonocytic leukemia. Hematol Oncol. 2014;52(1):47-51.

43. Pummaraju N, Shah D, Kantarjian H, et al. Chronic myelomonocytic leukemia: a case of chronic myelomonocytic leukemia associated with B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2016;57(14):3036-3039.

44. Gibson CJ, Lindsley RC, Tchekmedyian V, et al. Chronic myelomonocytic leukemia associated with adverse outcomes after autologous stem cell transplantation for lymphoma. J Clin Oncol. 2017;35(14):1596-1605.

45. Valenti E, Akin C, Arock M, et al. Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential pre-MDS conditions. Oncotarget. 2017;8(15):7483-7500.

46. Khorashad JS, Tantravahi SK, Yan D, et al. Rapid conversion of myelomonocytic leukemia to chronic myelomonocytic leukemia in a patient on imatinib therapy. Leukemia. 2016;30(11):2275-2279.

47. Magnusson MK, Meade KE, Nakamura R, Barrett J, Dispenzieri A. Analysis of STSET in chronic myelomonocytic leukemia with a platelet-derived growth factor beta receptor fusion oncogene. Blood. 2002;100(5):1068-1071.

48. Appelt JY, Gardembas M, Melo JV, et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor beta receptor. N Engl J Med. 2002;347(7):481-487.

49. Shah S, Loghavi S, Garcia-Manero G, Khoury JD. Discovery of imatinib-responsive FIP1L1-PDGFRα mutation during refractory acute myeloid leukemia transformation of chronic myelomonocytic leukemia. J Hematol Oncol. 2014;7(26).

50. Ueki K, Sato S, Tamura J, et al. Three cases of multiple myeloma transforming into melanoma-related chronic myelomonocytic leukemia. J Hematol Oncol. 1991;22(3):157-161.

51. Koudses PA, Bennett JM. Transformation of chronic myelomonocytic leukemia to acute lymphoblastic leukemia: case report and review of the literature of lymphoblastic transformation of myelodysplastic syndrome. Am J Hematol. 1995;49(2):157-162.

52. Yamamoto M, Nakagawa M, Ichimura N, et al. Lymphoblastic transformation of chronic myelomonocytic leukemia in an infant. Am J Hematol. 1996;52(3):212-214.

53. Gauthier A, Jary-Bourguignat L, Serna R, Pulik S, Danis P, Davi F, Raphael M. Occurrence of angioimmunoblastic T cell lymphoma in a patient with chronic myelomonocytic leukemia features. Leuk Lymphoma. 2000;40(1-2):197-204.

54. Reba B, Hultsch T, Schnittger S, Kreipe H, Köger N. Recent advances in diagnosis, molecular pathology and therapy of chronic myelomonocytic leukemia. Br J Haematol. 2011;153(1):149-163.

55. Boccacci P, Fadlon E. Detection of a PDGFRα fusion in refractory CMMML without eosinophilia: a case for a broad spectrum tumor profiling. Leuk Res Rep. 2015;4(2):70-71.

56. Hur HD, Loghavi S, Garcia-Manero G, et al. Chronic myelomonocytic leukemia with fibrosis is a distinct disease subset with myeloproliferative features and frequent JAK2 p.V617F mutations. Am J Surg Pathol. 2018;42(6):799-806.

57. Hu Z, Ramos CB, Medeiros LJ, et al. Utility of JAK2 V617F allelic burden in distinguishing chronic myelomonocytic leukemia from primary myelofibrosis with monocytosis. Hum Pathol. 2019;85:209-298.

58. Chapman J, Geyer JT, Khaniari M, et al. Myeloid neoplasms with features intermediate between primary myelofibrosis and chronic myelomonocytic leukemia. Mod Pathol. 2018;31(3):429-441.

59. Pataki MM, Pophali PA, Lasbo TL, et al. Clinical correlates, prognostic impact and survival outcomes in chronic myelomonocytic leukemia patients with the JAK2V617F mutation. Haematologica. 2019;104(6):e236-239.
proliferative neoplasms. Nat Rev Cancer. 2017;17(7):425-440.
77. Mainwaring CJ, Shutt J, James CM. Not all cases of idiopathic thrombocytopenic purpura (correction of purpura) are what they might be. Semin Clin Lab Haematol. 2002;24(4):261-262.
78. Cai Y, Teng R, Lin Z, Zhang Y, Liu H. Chronic myelomonocytic leukemia presenting as relapsing thrombocytopenic purpura. Ann Clin Exp Res. 2013;25(3):349-350.
79. Hadjaj M, Michel M, Chauveheid MP, Godeau B, Fapo T, Sacre K. Immune thrombocytopenia: 2014 update. Leuk Res. 2015;39(1):27-34.
80. Valenti P, Horny HP, Bennett JM, et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: consensus statements and report from a working conference. Leuk Res. 2007;31(4):727-736.
81. Mufti GJ, Jenni R, Goaguen J, et al. Diagnosis and classification of myelodysplastic syndrome: International Working Group on Morphology of Myelodysplastic Syndromes (IWGM-MDS) consensus proposals for the definition and enumeration of myeloblasts and ring sideroblasts. Haematologica. 2008;93(11):1712-1717.
82. Horny HP, Steidl C, Stiller N, Hansel T, et al. Cellular and molecular changes in myelodysplastic syndrome: a basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leuk Res. 2015;39(2):66-75.
83. Goaguen J, Bennett JM, Bain BJ, Vallespi T, Bruning R, Mufti GJ. International Working Group on Morphology of Myelodysplastic Syndromes. Morphological evaluation of monocytes and their precursors. Haematologica. 2009;94(7):994-997.
84. Sperr WR, Escribano L, Jordan JH, et al. Morphological properties of myeloproliferative neoplasms: delineation of stages of maturation and implication for cytological grading of mastocytosis. Leuk Res. 2001;25(7):529-536.
85. Chiu A, O’Malley DP, et al. Chronic myelomonocytic leukemia: the role of bone marrow biopsy immunohistology. Mod Pathol. 2006;19(12):1536-1545.
86. Tuzunner N, Bennett JM. Reference standards for bone marrow cellularity. Leuk Res. 1994;18(8):645-647.
87. Tuzunner N, Cox C, Rowe JM, Bennett JM. Bone marrow cellularity in myeloid stem cell disorders: impact of age correction. Leuk Res. 1994;18(8):559-564.
88. Schemenu J, Baldus S, Anlauf M, et al. Cellularity, characteristics of hematopoietic parameters and prognosis in myelodysplastic syndromes. Eur J Haematol. 2015;95(3):181-189.
89. Petrova-Drus K, Chiu A, Margolese E, et al. Bone marrow fibrosis in chronic myelomonocytic leukemia is associated with increased megakaryopoiesis, splenomegaly and with a shorter median time to disease progression. Oncotarget. 2016;7(50):85274-85283.
90. Khan M, Muzzafar T, Kantarjian H, et al. Association of bone marrow fibrosis with inferior survival outcomes in chronic myeloid and chronic myelomonocytic leukemia. Ann Hematol. 2018;97(7):1183-1191.
91. Horny HP, Sotlar K, Valent P. Diagnostic value of histology and immunohistochemistry in myelodysplastic syndromes. Leuk Res. 2007;31(12):1609-1616.
92. Horny HP, Sotlar K, Sperr WR, Valent P. Systemic mastocytosis with associated clonal hematological and/or cutaneous disease: a histopathological challenge. J Clin Pathol. 2004;57(7):604-608.
93. Fugazza G, Brusone R, Dejana AM, et al. Cytogenetic clonality in chronic myelomonocytic leukemia studied with Fluorescence in situ hybridization. Leukemia. 1995;9(1):110-114.
94. Haase D, Germing U, Schanz J, et al. New insights into the cytogenetic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110(13):4385-4395.
95. Wassie EA, Izyrykson R, Lado TI, et al. Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic-French Consortium Study. Am J Hematol. 2014;89(12):1111-1115.
96. Wassie EA, Izyrykson R, Lado TI, et al. Molecular and prognostic correlates of cytogenetic abnormalities in chronic myelomonocytic leukemia: a Mayo Clinic-French Consortium Study. Am J Hematol. 2014;89(12):1111-1115.
97. Bally C, Adès L, Renneville A, et al. Prognostic value of TET5 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk Res. 2014;38(7):751-755.
98. Paludan RA, Guinn BA, Al-Sabah AI, et al. RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasia: a 10-year follow-up. Leukemia. 2013;27(12):2466-2472.
99. Wang J, Liu Y, Li Z, et al. Endogenous onco- genic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood. 2010;116(25):6091-6099.
100. Padrón E, Painter JS, Kungal S, et al. GM-CSF-dependent pSTAT3 sensitivity is a feature with therapeutic potential in chronic myeloid leukemia. Blood. 2013;121(25):5068-5077.
101. Grasser F, Jasper E, Barna A, et al. Chronic myelomonocytic leukemia patients with PAS pathway mutations show high in vitro myeloid colony formation in the absence of exogenous growth factors. Leukemia. 2016;30(11):2281-2285.
102. Izyrykson R, Kosmider O, Rennenville A, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Lab Anal. 2017;31(9):1408-1417.
103. Elena C, Galli A, Such E, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128(10):1408-1417.
104. Palomo L, Garcia O, Arnan M, et al. Targeted deep sequencing improves outcome stratification in chronic myelomonocytic leukemia with low cytogenic features. Oncotarget. 2016;7(55):57021-57035.
105. Onuf O. Models of Prognostication in chronic myelomonocytic leukemia. Curr Hematol Malig Rep. 2017;12(6):513-521.
106. Xu X, McKenna RW, Karandikar NJ, Fildain AJ, Kroft SH. Flow cytometric analysis of monocytoses as a tool for distinguishing chronic myelomonocytic leukemia from reactive monocytosis. Am J Clin Pathol. 2005;124(5):799-806.
107. Lacrouque-Gaillarde C, Chaury MB, Le Guyader A, Bauchet JL, Bordessoule D, Feuillard J. A simple method for detection of major phenotypic abnormalities in myelodysplastic syndromes: expression of CD38 in GM-MLMA. Haematologica. 2007;92(6):859-860.
108. Kern W, Bacher U, Haferlach C, Schnittger S, Haferlach T. Acute monoblastic/monocytic leukemia and chronic myelomonocytic leukemia share common immunophenotypic features but differ in the extent of aber-
rarily expressed antigens and amount of granulocytic cells. Leuk Lymphoma. 2011;52(3):92-100.
124. Shen Q, Ouyang J, Tang G, et al. Flow cytometry immunophenotypic findings in chronic myelomonocytic leukemia and its utility in monitoring treatment response. Eur J Haematol. 2015;95(2):168-176.
125. Selimoglu-Buet D, Wagner-Ballon O, Saada V, et al. Francophone Myelodysplasia Group. Characteristic repartition of monocytic subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood. 2015;125(23):3818-3826.
126. Harrington AM, Schelling LA, Ordobazari A, et al. An international data set for CMML validation: CMML-1 vs CMML-2, myeloproliferative vs dysplastic, de novo vs therapy-related, and CMML-specific cytogenetic risk subtypes. Am J Clin Pathol. 2016;146(2):170-181.
127. Selimoglu-Buet D, Badoua B, Benayoun E, et al. Groupe Francophone des Myelodysplasies. Accumulation of classical monocytes defines a subgroup of MDS that frequently evolves into CMML. Blood. 2017;130(6):832-835.
128. Picot T, Aanei CM, Flandrin G, et al. Flow cytometry of mature monocyte subpopulations for the diagnosis and follow-up of chronic myelomonocytic leukemia. Front Oncol. 2018;8:109.
129. Hudson CA, Burack WR, Leary PC, Bennett JM. Clinical utility of classical and nonclassical monocyte percentage in the diagnosis of chronic myelomonocytic leukemia. Am J Clin Pathol. 2018;150(4):293-302.
130. Feng R, Bhattacharyya A, Wu K, Pirrussello S, Yuan J. Application of immunophenotypic analysis in distinguishing chronic myelomonocytic leukemia from reactive monocytosis. Cytometry B Clin Cytom. 2018;94(6):901-909.
131. Hudson CA, Burack WR, Bennett JM. Emerging utility of flow cytometry in the diagnosis of chronic myelomonocytic leukemia. Leuk Res. 2018;78:12-15.
132. Talati C, Zhang L, Shahseen G, et al. Monocyte subset analysis accurately distinguishes CMML from MDS and is associated with a favorable MDS prognosis. Blood. 2017;129(13):1881-1885.
133. Damasceno D, Teodoro C, van den Bossche WBL, et al. Identification of the TiMaScan Study Group. Distribution of subsets of blood monocytic cells throughout life. J Allergy Clin Immunol. 2019;144(1):320-323.e5.
134. Escribano L, García Montero AC, Núñez R, Orfao A; Red Española de Mastocitosis. Flow cytometric analysis of normal and neoplastic mast cells: role in diagnosis and follow-up of mast cell disease. Allergy Clin North Am. 2006;26(3):557-547.
135. Greenberg E, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;90(6):2079-2088.
136. Onida F, Kantarjian HM, Smith TL, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99(5):840-850.
137. Such E, Germing U, Malcovati L, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121(15):3005-3015.
138. Padron E, Garcia-Manero G, Patnaik MM, et al. An international consortium proposal of uniform nomenclature and classification of myeloid neoplasms (MDS/MPN) in adults. Blood. 2013;121(15):3005-3015.
139. Padron E, García-Manero G, Patnaik MM, et al. An international data set for CMML validation: dates prognostic scoring systems and demonstrates a need for novel prognostic strategies. Blood Cancer J. 2015;5:e333.
140. Pleyer L, Gérming U, Sperr WR, et al. The clinical management of chronic myelomonocytic leukemia. Clin Adv Hematol Oncol. 2014;12(9):172-178.
141. Pleyer L, Gérming U, Sperr WR, et al. Application of immunophenotypic analysis in distinguishing chronic myelomonocytic leukemia from reactive monocytosis. Cytometry B Clin Cytom. 2018;94(6):901-909.
142. Hudson CA, Burack WR, Bennett JM. Emerging utility of flow cytometry in the diagnosis of chronic myelomonocytic leukemia. Leuk Res. 2018;78:12-15.
143. Talati C, Zhang L, Shahseen G, et al. Monocyte subset analysis accurately distinguishes CMML from MDS and is associated with a favorable MDS prognosis. Blood. 2017;129(13):1881-1885.
144. Damasceno D, Teodoro C, van den Bossche WBL, et al. Identification of the TiMaScan Study Group. Distribution of subsets of blood monocytic cells throughout life. J Allergy Clin Immunol. 2019;144(1):320-323.e5.
145. Escribano L, García Montero AC, Núñez R, Orfao A; Red Española de Mastocitosis. Flow cytometric analysis of normal and neoplastic mast cells: role in diagnosis and follow-up of mast cell disease. Allergy Clin North Am. 2006;26(3):557-547.
146. Greenberg E, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;90(6):2079-2088.
147. Onida F, Kantarjian HM, Smith TL, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99(5):840-850.
148. Such E, Germing U, Malcovati L, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121(15):3005-3015.
149. Padron E, Garcia-Manero G, Patnaik MM, et al. An international consortium proposal of uniform nomenclature and classification of myeloid neoplasms (MDS/MPN) in adults. Blood. 2013;121(15):3005-3015.
150. Pleyer L, Gérming U, Sperr WR, et al. The clinical management of chronic myelomonocytic leukemia. Clin Adv Hematol Oncol. 2014;12(9):172-178.
151. Pleyer L, Gérming U, Sperr WR, et al. Application of immunophenotypic analysis in distinguishing chronic myelomonocytic leukemia from reactive monocytosis. Cytometry B Clin Cytom. 2018;94(6):901-909.
152. Hudson CA, Burack WR, Bennett JM. Emerging utility of flow cytometry in the diagnosis of chronic myelomonocytic leukemia. Leuk Res. 2018;78:12-15.
153. Talati C, Zhang L, Shahseen G, et al. Monocyte subset analysis accurately distinguishes CMML from MDS and is associated with a favorable MDS prognosis. Blood. 2017;129(13):1881-1885.