A Genome-Wide Association Study of Total Serum and Mite-Specific IgEs in Asthma Patients

Jeong-Hyun Kim1,9, Hyun Sub Cheong2, Jong Sook Park3, An-Soo Jang3, Soo-Taek Uh3, Yong-Hoon Kim4, Mi-Kyeong Kim5, Inseon S. Choi6, Sang Heon Cho7, Byoung Whui Choi8, Joon Seol Bae1, Choon-Sik Park3,4, Hyoung Doo Shin1,2,9*

1 Department of Life Science, Sogang University, Seoul, Republic of Korea, 2 Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, Republic of Korea, 3 Division of Allergy and Respiratory Medicine, Soochunhyang University Bucheon Hospital, Bucheon, Republic of Korea, 4 Division of Allergy and Respiratory Disease, Soochunhyang University Cheonan Hospital, Cheonan, Republic of Korea, 5 Division of Internal Medicine, Chungbuk National University, Cheongju, Republic of Korea, 6 Department of Allergy, Chonnam National University, Gwangju, Republic of Korea, 7 Department of Internal Medicine and Institute of Allergy and Clinical Immunology, Seoul National University, Seoul, Republic of Korea, 8 Department of Internal Medicine, Chung-Ang University Yongsan Hospital, Seoul, Republic of Korea, 9 Research Institute for Basic Science, Sogang University, Seoul, Republic of Korea

Abstract

Immunoglobulin E (IgE) is one of the central players in asthma and allergic diseases. Although the serum IgE level, a useful endophenotype, is generally increased in patients with asthma, genetic factors influencing IgE regulation in asthma are still not fully understood. To identify the genetic variations associated with total serum and mite-specific IgEs in asthmatics, a genome-wide association study (GWAS) of 657,366 single nucleotide polymorphisms (SNPs) was performed in 877 Korean asthmatics. This study found that several new genes might be associated with total IgE in asthmatics, such as CRIM1 (rs848512, P = 1.18 × 10-10; rs711254, P = 6.73 × 10-10), ZNF71 (rs10404342, P = 7.60 × 10-10), TN1 (rs4879926, P = 7.74 × 10-9), and SYNPO2 (rs1472066, P = 8.36 × 10-10; rs1038770, P = 8.66 × 10-10). Regarding the association of specific IgE to house dust mites, it was observed that intergenic SNPs nearby to OPRK1 and LOC730217 might be associated with Dermatophagoides pteronyssinus (D.p.) and Dermatophagoides farinae (D.f.) in asthmatics, respectively. In further pathway analysis, the phosphatidylinositol signaling system and adherens junction pathways were estimated to play a role in the regulation of total IgE levels in asthma. Although functional evaluations and replications of these results in other populations are needed, this GWAS of serum IgE in asthmatics could facilitate improved understanding of the role of the newly identified genetic variants in asthma and its related phenotypes.

Introduction

Asthma, a chronic inflammatory respiratory disease, is characterized by bronchial hyperresponsiveness. Asthma and its related illnesses are complex diseases resulting from interactions among multiple genetic factors as well as environmental components [1]. Despite recent advancements in our knowledge of asthma genetics, the need for a comprehensive etiology of asthma and its related phenotypes still remains. At the same time, it is generally known that patients with asthma show an increase in levels of serum immunoglobulin E (IgE), a closely related endophenotype of asthma [2,3]. Furthermore, several loci, such as the CTLA4 and C11orf30-LRRC32 regions, have been shown to be associated with total serum IgE levels in patients with asthma [2,4]. Two genome-wide association studies (GWASs) on total IgE in four population-based cohorts [5] and in subjects combined with asthmatics and controls [6] have identified FCER1A as a novel susceptibility locus. Furthermore, two other recent GWASs have found additional genes (such as IL13 and HLA-DQBI) that are associated with the total serum IgE [7,8]. However, given that asthma is a complex disease and that the nature of the associations between genetic variations and levels of IgE in asthmatics is not yet fully understood, this study aims to identify additional risk loci for the elevation of total serum IgE in asthmatics.

IgE is a class of antibody that plays an essential role in immediate hypersensitivity response, which is the hallmark of allergic diseases including asthma [9,10]. Omalizumab, a humanized antibody drug against IgE, is clinically effective in patients with moderate to severe, persistent allergic asthma [11], indicating that IgE has an important role in the development of allergies and allergic responses. Several IgE-influencing genes that are significantly associated with asthma have been reported [4,5,12,13]. In the case of interleukin 4 (IL4) and IL13, which stimulate B cells to produce IgE, genetic variants have been determined to be significantly associated with serum IgE in childhood asthma and atopy [12,14]. However, more recent studies have suggested that
new candidate genes, such as DPP10 and the C11orf30-LRRC32 region, may affect IgE levels in asthmatics [2,15]. Therefore, considering that asthma is a heterogeneous and very complex disease, a more specific investigation using a GWAS of IgE in asthma cohorts could increase understanding of the pathogenesis of the disease, and may provide a new strategy for its control.

It has been reported that asthma severity is positively correlated with serum concentration of both total IgE and specific IgE to Dermatophagoides pteronyssinus (D.p.) [16]. In addition, house dust mites (HDMs), D.p. and Dermatophagoides farinae (D.f.), are generally considered among the most implicated asthma triggers associated with blood allergen-specific IgEs [17]. Furthermore, levels of allergen-specific IgE against D.p. and D.f. in serum have been found to be significantly increased in the bronchial allergen challenge with HD with allergens. [19]. The presence of specific IgE antibodies to one or more of the allergens, coupled to UniCAP allergens [19], may show higher total IgE levels compared to those of specific IgE-negative patients (P<0.001). SNPs in chromosome X of males were excluded from HWE analysis. Although there were significantly deviated SNPs from HWE (as measured by an asymptotic test) in asthmatics, these SNPs were included in the association analysis in order not to miss any SNPs underlying both asthma and total or specific IgEs (i.e., pleiotropy). X-chromosomal markers were also included in the association study. For the additive genetic model among males, genotypes of X chromosome were coded as “0” (homozygous for the major allele) or “2” (homozygous for the minor allele). A total of 70,601 SNPs were excluded, and 442,098 SNP markers were examined for further association analysis.

Statistics

All subjects were of Korean ethnicity. Using the principal component analysis (PCA) for population stratification [20], the genomic control inflation factor (λ, calculated by dividing median \(r^2 \) statistics by 0.456) was computed as 1.003, indicating no significant deviation of the population stratification. For genome-wide evaluation, associations of genotype distributions were calculated using linear regression analysis for total IgE (IU/ml, log_{10}-transformed) association and logistic analysis for specific IgE association, adjusted for age (continuous value), sex (male = 0, female = 1), and smoking status (non-smoker = 0, ex-smoker = 1, current smoker = 2) as covariates, using HelixTree® software (Golden Helix, Bozeman, MT, USA). Statistical power analysis of linear regression for total IgE was obtained from a two-tailed t-test; case-control analysis for specific IgE was obtained from the CaTS power calculator [21], using heritability estimates for total IgE (0.49), specific IgE against D.p. (0.24), and specific IgE against D.f. (0.25) [22].

Statistical test used in the Pathway Express (http://vortex.cs.wayne.edu/projects.htm) is represented by the corrected gamma P-value, as the P-value provided by an impact analysis calculated as the sum of the statistically significant number of genes showing biological meanings in the given pathway [23]. In our pathway analysis, the list of gene symbols, which include top SNPs, has been inputted as instructed in the pathway analysis program.

Results

Demographic characteristics of study subjects are summarized in Table 1. A total of 877 Korean asthmatics were involved in the GWAS, including two subgroups for specific IgEs (D.p. and D.f.): 329 (37.5%) D.p.-positive vs. 548 (62.5%) D.p.-negative and 404 (46.1%) D.f.-positive vs. 473 (53.9%) D.f.-negative. Female-male ratio was 1.8:1 for asthmatics, as was expected in light of general gender differences in adult asthma according to the Global Allergy and Asthma European Network (GA2LEN). Also as expected, atopy was more prevalent in specific IgE-positive groups compared to the negative groups. Specific IgE-positive asthmatics showed higher total IgE levels compared to those of specific IgE-negative patients (P<0.001, Table 1).

Total IgE Association in Asthmatics

A total of 442,117 SNPs were passed through strict quality-control measures (call rate ≥98%, MAF ≥0.05). First, we tested association with total serum IgE levels in asthmatics using linear regression analysis corrected for age, gender, and smoking status as covariates. In the case of genetic homogeneity of the study subjects, the measured genomic control inflation factor was \(\lambda = 1.003 \), indicating no inflation of the type I error. The quantitative-qualitative (Q-Q) plot for the association test with total IgE showed that distributions between observed and expected P-values were deviated in the extreme tail (Figure S1A).
Although no individual SNPs reached a genome-wide significant level (Bonferroni-corrected significance), top signals ($P < 1.0 \times 10^{-5}$, Table 2 and Table S2) identified several new loci in the intronic region of genes, such as CRIM1 (rs848512, $P = 1.18 \times 10^{-6}$; rs711254, $P = 6.73 \times 10^{-6}$), ZNF71 (rs10404342, $P = 7.60 \times 10^{-6}$), TLN1 (rs4879926, $P = 7.74 \times 10^{-6}$) and SYNPO2 (rs1472066, $P = 8.36 \times 10^{-6}$; rs1038770, $P = 8.66 \times 10^{-6}$), as susceptibility markers for total IgE levels in asthmatics (Figure 1). In further regional association of each new locus associated with IgE, six SNPs of SYNPO2 in the chromosome 4q26 (Figure 2) showed relatively strong association signals ($P = 8.36 \times 10^{-6}$ for rs1472066 to $P = 0.0056$ for rs1021377) when compared to other top signals (Figure S2, S3, S4). In the case of linkage disequilibrium (LD) analysis, it was revealed that SYNPO2 or its SNPs that showed significant associations with total IgE were likely to not be in LD with nearby genes ($r^2 = 0.243$, Figure 2).

Specific IgE (D.p. and D.f.) Associations in Asthmatics

In further association analyses with specific IgE to house dust mites (Figure S5), along with Q-Q plots for the association test with specific IgE against D.p. and D.f. (Figure S1B and S1C), intergenic SNPs nearby to OPRK1 (rs1425902, $P = 1.44 \times 10^{-6}$, Table S3) and LOC730217 (rs10142119, $P = 1.86 \times 10^{-7}$; rs1456983, $P = 1.11 \times 10^{-6}$; rs12590389, $P = 2.47 \times 10^{-6}$, Table S4), coefficient r^2 among these three SNPs (0.315–0.757) were detected as the most significant polymorphisms associated with the specific IgEs of D.p. and D.f. in asthmatics, respectively.

Table 1. Clinical profiles of study subjects.

Clinical profile	Asthmatics	Asthmatics for specific IgE (D.p.)	Asthmatics for specific IgE (D.f.)		
Number of subjects (n)	877	329	548	404	473
Age [year, mean (range)]	45.3 (10.8–77.5)	39.0 (10.8–77.1)	49.1 (14.1–77.5)	41.1 (10.8–77.1)	49.0 (16.1–77.5)
Sex (n, male/female)	320/557	147/182	173/375	190/214	130/343
Smoking (n, No/Yes/Ex)	619/118/140	217/59/53	402/59/87	254/77/73	365/41/67
Atopy (n, No/Yes)	397/480	23/306	374/174	48/356	349/124
Log$_{10}$[Total IgE (IU/ml)]	2.18±0.65	2.50±0.51*	1.98±0.64*	2.47±0.56*	1.93±0.61*

Ex indicates ex-smoker.
D.p., Dermatophagoides pteronyssinus; D.f., Dermatophagoides farinae.
*P<0.001.

Figure 1. Graphical summary (Manhattan plot) presenting P-values for the association with total serum IgE in asthma patients. The y-axis represents -log$_{10}$P (linear regression analysis) from 442,117 SNPs in 877 patients with asthma, correcting for age, gender, and smoking status as covariates; the x-axis indicates its physical position on successive chromosomes.

doi:10.1371/journal.pone.0071958.g001
Pathway Analysis

To better understand the biological process and molecular function involved in total serum IgE in asthma, the signaling pathways were estimated using Pathway Express (http://vortex.cs.wayne.edu/projects.htm). Among the significantly associated SNPs with total IgE \((P < 0.001)\), only the SNPs in the gene regions were analyzed. The phosphatidylinositol signaling system \((P = 2.89 \times 10^{-10})\) and adherens junction \((P = 1.57 \times 10^{-13})\) pathways were estimated to play a role in the regulation of total IgE levels in asthmatics (Table S5).

Figure 2. Regional association plot and LD of SYNPO2 for the total IgE in asthmatics. GWAS associations \((-\log_{10}(P))\) of SNPs across approximately 768 kb region around SYNPO4 in the chromosome 4q26 are shown. Relatively strong associations are shown as large black circles; relatively less significances as small gray diamonds.

doi:10.1371/journal.pone.0071958.g002
Table 2. Top 6 SNPs ($P<1.0 \times 10^{-5}$) associated with total IgE of asthmatics in the GWAS.

SNP ID	Chr	Gene	Location	Variation	MAF	LD (coefficient r^2)	HWE*	M/M	M/m	m/m	P-value
rs848512	2	CRIM1	Intron	C>T	0.078	0.925 (rs848512−rs711254)	0.283	744 (2.22)	130 (1.93)	3 (1.89)	1.18×10^{-4}
rs711254	2	CRIM1	Intron	C>T	0.083	0.373 (2.22)	137 (1.97)	4 (1.76)	6.73×10^{-4}		
rs10400342	19	ZNF71	Intron	A>C	0.399	0.748 (2.05)	425 (2.23)	137 (2.33)	7.80×10^{-4}		
rs4879926	9	TLN1	Intron	T>C	0.072	0.070 (2.22)	125 (1.96)	1 (2.3)	7.74×10^{-4}		
rs1472066	4	SYNPO2	Intron	A>G	0.107	0.581 (rs1472066−rs1038770)	0.744	700 (2.23)	166 (1.99)	11 (1.81)	8.36×10^{-4}
rs1038770	4	SYNPO2	Intron	G>A	0.116	0.805 (2.23)	181 (2.02)	11 (1.6)	8.66×10^{-4}		

Association analyses were adjusted by age, sex, and smoking status as covariates.
*P-value of Hardy-Weinberg equilibrium (HWE).
**Genotype represents number of subjects (mean of log[Total IgE (IU/ml)]).

Discussion

IgE is considered an important target in the treatment of asthma. Furthermore, anti-IgE therapy, i.e., using a humanized antibody drug of Omalizumab against IgE, has been demonstrated to be efficacious for the management of asthma as well as allergic diseases [11,24]. Asthma susceptibility is generally classified into four main mechanisms as follows: (1) innate immunity and immunoregulation, (2) TH2-cell differentiation and effector function, (3) epithelial cells, and (4) lung function. Although IgE and its binding to FceR1 (high-affinity Fc receptor for IgE) regulates the activation of mast cells and basophils mainly in the first and second mechanisms, IgE is associated with a more complicated network of proteins [10,25]. Therefore, together with the identification of new potential risk factors, our GWAS of total serum IgE and mite-specific IgE in asthmatics may provide additional supporting information about genetic associations related to IgE function in asthma and related diseases.

In this study, no individual SNPs reached a genome-wide significance level (Bonferroni-corrected significance), which is a limitation of this study. According to the power calculation, this failure to reach a genome-wide signal might be due to an underpowered study (in particular, statistical powers of 44.5% in total IgE analysis and 62.0% in specific IgE against D.f., Table S6), because of insufficient sample size and lack of replication. In order to address this limitation, further replications in larger cohorts are needed. On the other hand, being that asthma is a complex disease, we also cannot rule out the possibility that confounders with small to modest effects may contribute to the regulation of total IgE in asthma [26]. Our results identified new potential genes associated with total IgE in asthmatics, such as CRIM1, ZNF71, TLN1, and SYNPO2. Recently, SYNPO2 has been reported to be significantly associated with airway hyperresponsiveness in patients with asthma [27]. In addition, in our further in silico analysis using the Human Splicing Finder [http://www.umd.be/HSF/] [28], rs4879926 of TLN1, rs1472066 and rs1038770 of SYNPO2 were predicted as potential branch point (BP) sites for alternative splicing (Figure S6), revealing that these variations might have a possibility to produce an isoform of the gene. These results suggest that genetic variants of the newly discovered genes, in particular SYNPO2, could play a role in IgE regulation.

Recent results from GWASs on total serum IgE levels have identified associated genes, including RAD50, STAT6, FCERA, IL13, and HLA-DQBI [5–8]. When genetic associations of the identified SNPs from previous GWASs were compared with those from this GWAS, most were not replicated in our Korean asthmatic subjects (Table S7). Instead, this study identified additional candidate genes (CRIM1, ZNF71, TLN1, SYNPO2, etc.) for total serum IgE levels in asthma patients. Among the several well-known IgE-influencing genes (IL4, IL13, CD28, C11orf30-LRRC32 region, etc.), this study confirmed a significant association between CD28 SNPs and total IgE in asthmatics (minimum $P=0.001$, data not shown). Serum total IgE levels have been elucidated to be correlated with CD28, an important regulator of T-cell activation and subsequent IgE production [30,31]. In this study, differences in the results between present and previous GWASs might be attributed to population and/or ethnic differences, limitation and mismatch of the tested SNP markers (albeit only SNPs in the C11orf30-LRRC32 region were matched with those of this GWAS), and a diversity of clinical phenotypes among asthma patients.

As other potential genes that are not as well-known but that potentially affect IgE levels, SNPs of NPSR1 and IRAK3 were also observed to be associated with total IgE among asthmatics in this study (Table S8). SNP-tagged haplotypes of neuropeptide S receptor 1 (NPSR1), also known as G-protein-coupled receptor for asthma susceptibility, GPA3 or GPRA154, have been found to be associated with increased serum IgE levels or asthma, and have been functionally evaluated to be distinctively distributed between protein isoforms in bronchial biopsies from healthy and asthmatic subjects [32]. However, since conflicting results in associations of NPSR1 and its genetic variations with total IgE level and/or asthma have also been reported [33,34], further studies are required to determine their effect on the disease trait. In addition, IRAK3 rs1821777, which showed a nominal signal (Table S8) in the present study, has also been reported to be related to asthma in North Americans ($P=0.03$) and in Sardinians ($P=0.001$) of Italy [35,36]. Two IRAK3 SNPs (rs2701653 and rs1821777, Table S8) were also observed to be related to atopic asthma in a Spanish population ($P=0.034$) and in a meta-analysis of Spanish and Sardinian populations ($P=0.013$) [37]. In light of the potential association of the nonsynonymous variant rs11528885 of IRAK3 with total IgE in asthmatics ($P=0.003$, Table S8), further functional evaluations will be valuable in identifying whether IRAK3 can serve as a new therapeutic target.
Given that a previous study showed the association between total serum IgE and asthma independently of specific IgE levels to mites [30], we performed further analyses to discover factors associated with specific IgE against two major house dust mites (D.p. and D.f.) in asthmatics. Similar to the previous study, totally different profiles of genetic variants between total IgE and mite-specific IgEs (possibly even between specific IgEs against D.p. and D.f.) in asthmatics were observed in the further analyses. These observations suggest that patients with asthma may have allergies to different environmental allergens such as cockroaches and pet allergens [39,40], as well as house dust mites.

To better understand the biological process and molecular function involved in total serum IgE in asthma, the signaling pathways were estimated using Pathway Express (http://vortex.cs.wayne.edu/projects.htm). The result showed that the phosphatidylinositol signaling system ($P = 2.89 \times 10^{-18}$) as supported by previous strong evidence [41,42], and adherens junction ($P = 1.57 \times 10^{-13}$) pathways might play a role in the regulation of total IgE levels in asthmatics (Table S5). In addition, in the Gene Relationships Across Implicated Loci (GRAIL) analysis based on PubMed articles published before December 2006, several genes (KALRN, CNTN5, INPP4B, etc.; $P = 0.01$) were shown to have functional connectivity (Table S9). Thus, despite study limitations (lacks of genome-wide significance, replication, and functional evaluation), our GWAS of IgE in asthmatics may provide an outline of the genetic implication for total serum and mite-specific IgEs in asthma and its related phenotypes.

Supporting Information

Figure S1 Q-Q plots of total IgE, specific IgE (D.p.), and specific IgE (D.f.). The observed P-value (y-axis) is compared with the expected P-value (x-axis, under null distribution) for (A) total IgE, (B) specific IgE (D.p.), and (C) specific IgE (D.f.). (DOC)

Figure S2 Regional association plot and LD of CRIM1 for the total IgE in asthmatics. GWAS associations ($-\log_{10}P$) of SNPs across approximately 310 kb region around CRIM1 in the chromosome 2p21 are shown. Relatively strong associations are shown as large black circles; relatively less significances as small gray diamonds. (DOC)

Figure S3 Regional association plot and LD of ZNF71 for the total IgE in asthmatics. GWAS associations ($-\log_{10}P$) of SNPs across approximately 245 kb region around ZNF71 in the chromosome 19q13.4 are shown. Relatively strong associations are shown as large black circles; relatively less significances as small gray diamonds. (DOC)

Figure S4 Regional association plot and LD of TLN1 for the total IgE in asthmatics. GWAS associations ($-\log_{10}P$) of SNPs across approximately 126 kb region around TLN1 in the chromosome 9p13 are shown. Relatively strong associations are shown as large black circles; relatively less significances as small gray diamonds. (DOC)

References

1. Sengler C, Lau S, Wahm U, Nickel R (2002) Interactions between genes and environmental factors in asthma and atop new developments. Respir Res 3: 7.
2. Li X, Ampleford EJ, Howard TD, Moore WC, Li H, et al. (2012) The C11orf30-LRRC32 region is associated with total serum IgE levels in asthmatic patients. J Allergy Clin Immunol 129: 573–78.
3. Sears MR, Burrows B, Flannery EM, Herbison GP, Hewitt CJ, et al. (1991) Relation between airway responsiveness and serum IgE in children with asthma and in apparently normal children. N Engl J Med 325: 1067–71.
4. Howard TD, Postma DS, Hawkins GA, Koppelman GH, Zheng SL, et al. (2002) Fine mapping of an IgE-controlling gene on chromosome 2q: Analysis of CTLA4 and CD28. J Allergy Clin Immunol 110: 743–51.

5. Weidinger S, Gieger C, Rodriguez E, Baurecht H, Mempel M, et al. (2008) Genome-specific single nucleotide polymorphism identifies FCER1A as a novel susceptibility locus. PLoS Genet 4: e1000166.

6. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, et al. (2010) A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 363: 1221–28.

7. Granada M, Wilk JB, Tuzova M, Strachan DP, Weidinger S, et al. (2012) A genomewide association study of plasma total IgE concentrations in the Framingham Heart Study. J Allergy Clin Immunol 129: 860–865 e21.

8. Levin AM, Mathias RA, Huang L, Roth LA, Daley D, et al. (2013) A meta-analysis of genomewide association studies for serum total IgE in diverse study populations. J Allergy Clin Immunol. In press.

9. Burrows B, Martinez FD, Halonen M, Barbee RA, Cline MG (1989) Association of asthma with serum IgE levels and skin-test reactivity to allergens. N Engl J Med 217: 7–14.

10. Gould HJ, Sutton BJ (2008) IgE in allergy and asthma today. Nat Rev Immunol 8: 205–14.

11. Avila PC (2007) Does anti-IgE therapy help in asthma? Efficacy and controversies. Ann Rev Med 58: 183–203.

12. Kabesch M, Schedel M, Carr D, Woitsch B, Fritzsch C, et al. (2006) IL-4/IL-13 gene variation is associated with asthma in children. J Allergy Clin Immunol 117: 269–74.

13. Xu J, Postma DS, Howard TD, Koppelman GH, Zheng SL, et al. (2000) Major genes regulating total serum immunoglobulin E levels in families with asthma. Am J Hum Genet 67: 1163–73.

14. Liu X, Beatty TH, DeoNL P, Huang SK, Lau S, et al. (2004) Associations between serum IgE and total IgE are found in distinct regions within the genes IL4, IL13, and IL4RA in German children: the German Multicenter Atopy Study. J Allergy Clin Immunol 113: 489–95.

15. Gao J, Li W, Willis-Owen SA, Jiang L, Ma Y, et al. (2010) Polymorphisms of PHF11 and DPP10 are associated with asthma and related traits in a Chinese population. Respiration 79: 17–24.

16. Kovar K, Dodig S, Tjesic-Drinkovic D, Raos M (2007) Correlation between asthma severity and serum IgE in asthmatic children sensitized to Dermatophagoides pteronyssinus. Arch Med Res 38: 99–105.

17. Gaffin JM, Phipatanakul W (2009) The role of indoor allergens in the development of asthma. Curr Opin Allergy Clin Immunol 9: 128–35.

18. van de Poel MA, Lutter R, van Ree R, van der Zee JS (2012) Increase in allergen-specific IgE and ex vivo Th2 responses after a single bronchial challenge with house dust mite in allergic asthmatics. Allergy 67: 67–73.

19. Pastorollo EA, Incorvaia C, Pravettoni V, Bonini S, Canonica GW, et al. (1991) A multicentric study on sensitivity and specificity of a new in vitro test for measurement of IgE antibodies. Ann Allergy 67: 67–73.

20. Pino-Yanes M, Sanchez-Machin I, Cumplido J, Figueroa J, Torres-Galvan MJ, et al. (2012) IL-1 receptor-associated kinase 3 gene (IRAK3) variants associate with asthma independently of specific IgE levels. The Spanish Group of the European Study of Asthma. J Allergy Clin Immunol 129: 573–5, 575 e1–10.

21. Balaci L, Spada MC, Olla N, Sole G, Loddo L, et al. (2007) IRAK-M is involved in the pathogenesis of early-onset persistent asthma. Am J Hum Genet 80: 1103–14.

22. Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genomewide association studies. Nat Genet 38: 904–9.

23. Drujacic S, Khatri P, Tarca AL, Amin K, Done A, et al. (2007) A systems biology approach for pathway level analysis. Genome Res 17: 1537–45.

24. Holgate ST, Polska R (2008) Treatment strategies for allergy and asthma. Nat Rev Immunol 8: 218–30.

25. Lee SH, Park JS, Park CS (2011) The search for genetic variants and epigenetics related to asthma. Allergy Asthma Immunol Res 3: 236–44.

26. Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10: 241–51.

27. Yick CV, Zoumard AH, Kinum PW, Grumbach K, Mauad T, et al. (2013) Glucocorticoid-Induced Changes in Gene Expression of Airway Smooth Muscle in Patients with Asthma. Am J Respir Crit Care Med. In press.

28. Deumert FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, et al. (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37: e67.

29. King KL, Gallin JJ, Malech HL, Abramson SL, Ntammad PB (1989) Regulation of immunoglobulin production in hyperimmunoglobulin E recurrent-infection syndrome by interferon gamma. Proc Nail Acad Sci U S A 86: 10805–9.

30. Bottema RW, Postma DS, Reijmensnik NE, Thijs C, Stelma FF, et al. (2010) Interaction of T-cell and antigen presenting cell co-stimulatory genes in childhood IgE. Eur Respir J 35: 54–63.

31. Wong CK, Lun SW, Kei WK, Ip WK, Hui DS, et al. (2005) Increased expression of plasma and cell surface co-stimulatory molecules CTLA-4, CD28 and CD86 in adult patients with allergic asthma. C lin Exp Immunol 141: 122–9.

32. Latinen T, Polvi A, Rydman P, Vehanlin J, Pulkkinen V, et al. (2004) Characterization of a common susceptibility locus for asthma-related traits. Science 304: 300–4.

33. Vergara C, Jimenez S, Acevedo N, Martinez B, Mercado D, et al. (2009) Association of G-protein-coupled receptor 134 with asthma and total IgE in a population of the Caribbean coast of Colombia. Clin Exp Allergy 39: 1538–48.

34. Wu H, Romanow J, Sierina-Monge JF, del Rio-Navarro BE, Burdett L, et al. (2008) Lack of association between genetic variation in G-protein coupled receptor for asthma susceptibility and childhood asthma and atopy. Genes Immun 9: 224–30.

35. Balaci L, Spada MC, Olla N, Sole G, Loddo L, et al. (2007) IRAK-M is involved in the pathogenesis of early-onset persistent asthma. Am J Hum Genet 80: 1103–14.

36. Rogers AJ, Rayh BA, Lasky-Su JA, Murphy A, Lazarus R, et al. (2009) Assessing the reproducibility of asthma candidate gene associations, using genome-wide data. Am J Respir Crit Care Med 179: 1081–90.

37. Pino-Yanes M, Sanchez-Machin I, Cumplido J, Figueroa J, Torres-Galvan MJ, et al. (2012) IL-1 receptor-associated kinase 3 gene (IRAK3) variants associate with asthma in a replication study in the Spanish population. J Allergy Clin Immunol 129: 573–5, 575 e1–10.

38. Sunyer J, Cockerell G, Stanley JS, Bremner RJ, Burks W, et al. (1996) Isolation and characterization of a clone encoding a major allergen (Bla g Bd90K) associated with asthma independently of specific IgE levels. The Spanish Group of the European Study of Asthma. J Allergy Clin Immunol 8: 218–30.

39. Helm R, Cockrell G, Stanley JS, Bremner RJ, Burks W, et al. (1996) Association of G-protein-coupled receptor for asthma susceptibility and childhood asthma and atopy. Genes Immun 9: 224–30.

40. Bottema RW, Postma DS, Reijmenink NE, Thijs C, Stelma FF, et al. (2010) Interaction of T-cell and antigen presenting cell co-stimulatory genes in childhood IgE. Eur Respir J 35: 54–63.