A Systematic Review for the Design of In Vitro Flow Studies of the Carotid Artery Bifurcation

A. M. Hoving, E. E. De Vries, J. Mikhal, G. J. De Borst, and C. H. Slump

1University of Twente, 7500 AE Enschede, The Netherlands; and 2University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands

(Received 13 June 2019; accepted 2 December 2019; published online 10 December 2019)

Keywords—Model, Design, Imaging techniques, MRI, Optical PIV, Ultrasound.

INTRODUCTION

Atherosclerotic plaque formation in the carotid artery bifurcation causes narrowing of the artery (stenosis) and the plaque may rupture, which can cause stroke or transient ischemic attack (TIA). Several parameters are known to influence risk of stroke in patients with significant carotid artery stenosis, e.g. plaque vulnerability, volume and stenosis degree. Also, there is an association between low and oscillating wall shear stresses (WSS) and formation and/or progression of atherosclerotic plaque. Surgical treatment is indicated in severe symptomatic carotid artery stenosis. An alternative approach is stenting of the lesion. However, this approach is not optimized yet, since it results in higher short-term stroke risk compared to surgery. There is a need for a better understanding of the factors that influence plaque characteristics and for analysis of flow changes caused by intervention, to eventually improve treatment and stroke prevention.

Blood flow studies are excellent approaches to enhance knowledge on the relationship between blood flow dynamics and plaque formation/progression and treatment outcome. General technological development leads to improvements in imaging and postprocessing techniques, which enable quantitative and detailed blood flow studies, such as image velocimetry. These techniques are superior to flow measurement techniques that only enable qualitative investigations, such as the way ultrasound Doppler is generally used in the clinic, namely only the measurement of flow in the center of the artery.
There are three methods to perform hemodynamic flow studies: in vivo, in vitro and in silico. The benefit of in vitro and in silico over in vivo is that certain parameters can be altered in a controlled environment. Compared to in silico, in vitro studies are sometimes preferred, due to the possibility to test and validate potential use of flow imaging techniques in patient studies. Furthermore, in vitro studies can be performed in situations where it is difficult to experiment on patients, for example in cases with radiation exposure or in case of rare diseases. Therefore, this review focuses on in vitro flow studies.

Starting in vitro flow studies brings along many steps and choices. For example, which imaging technique to choose from the wide range of (clinical) imaging modalities, to measure WSS or other flow parameters, and which phantom material to use. The choices for the flow setup also have to match the clinical research question. Review articles about in vitro flow study techniques often focus on one specific technique. Therefore, the aim of this review article is to give an overview of the possibilities of the various approaches for the design of in vitro flow studies. It will serve as guidance by best practice for researchers with less experience in flow studies to get familiar with the options and opportunities in flow study design.

MATERIALS AND METHODS

Search Strategy

A systematic literature search was performed in January 2017 and repeated in June 2018. The key words are combinations of ‘carotid’, ‘flow’, ‘modeling’, ‘in vitro’, and synonyms of these terms, such as ‘setup’/’setup’, ‘blood flow velocity’, ‘rheology’, ‘wall shear stress’, ‘hemodynamics’, ‘simulation’, ‘phantom’. We have modified the search query to match each specific database (Scopus, Medline, Embase, and Cochrane).

Study Selection

Two authors—A.H. and E.V.—independently screened the query results on the basis of titles and abstracts. Both authors independently checked full-text eligibility. All discrepancies regarding inclusion or exclusion were discussed until consensus was reached. The inclusion criteria were: (1) in vitro flow study; (2) carotid bifurcation models; and (3) quantitative flow imaging. The inclusion was limited to carotid bifurcation models, since the design of an in vitro flow study strongly depends on specific flow rates and vessel wall properties. Studies aiming at flow quantification in other arteries, for example abdominal aorta, might use other methods and characteristics, and are therefore not included. Thus, studies regarding intracranial carotid artery were excluded, as well as in vivo and animal studies. Also, studies using ultrasound Doppler measurement without further post processing and studies describing flow velocities only were excluded. Other exclusion criteria were: only in silico/computational fluid dynamics, full-text not in English, review articles and conference proceedings.

Data Processing

The included full-text articles were organized into four categories of imaging techniques used to visualize flow: magnetic resonance imaging (MRI), laser particle image velocimetry (PIV), ultrasound, and miscellaneous techniques. Data extraction parameters for all imaging techniques are: resolution, study type (technique development/validation, flow exploration), working fluid, fluid scatters, flow type (steady, sinusoidal, physiologic), Reynolds number, viscosity, flow rate, velocity, model materials, model design: pathology (healthy, stenosed or aneurysmatic), geometry (average or patient-specific), wall (thin-walled or wall-less), origin (commercial or home-made); and flow visualization parameters. Technique-specific data extraction parameters were:

- for MRI: sequence;
- for optical PIV: light source;
- for ultrasound: protocol/postprocessing, system type (clinical or research);
- for miscellaneous techniques: methods.

RESULTS

The systematic search yields 1877 unique articles. Most articles are excluded on the basis of title and abstract screening. Full-text review includes 144 articles, of which 42 articles are selected for this review (Fig.1).

The oldest techniques to quantify blood flow patterns in vitro in carotid artery bifurcation that are included in this review, use laser doppler anemometry and digital subtraction angiography. The first articles that reported the use of MRI date from 1992. Studies using ultrasound or optical PIV techniques are mostly from 2008 and later. A timeline of included articles per imaging technique is shown in Fig.2.
Characteristics of Imaging Techniques and Methods

MRI

MRI is used in 14/42 articles (33%) to scan the in vitro carotid bifurcation model to visualize the flow (Table 1). One of these articles describes the use of both MRI and ultrasound. Among the several imaging sequences (MRI protocols) that are used, phase contrast sequences are applied in most articles. A distinction is made between two-dimensional and three-dimensional phase contrast sequences. Phase contrast MRI makes use of the phase shift of moving spinning protons. Velocity data can be computed by comparing the phase shifts between moving and stationary protons. Three articles use other MRI-sequences to visualise flow. The first article proposes an extension of the single-bolus multi-zone adiabatic passage technique. This extended version uses flow velocity profiles from several directions other than the main flow direction. The second article describes the feasibility of spiral Fourier velocity encoded MRI for measuring carotid wall shear rate. Compared to standard Fourier velocity encoding, spiral Fourier velocity encoding is faster due to a higher temporal resolution, so wall shear rate can be measured not only in vitro, but also in vivo. The third article describes disordered flow, which can be visualised using temporal variations in magnetization by applying a two-dimensional Fourier Transform Gradient Echo sequence. The resulting images only show disordered flow.

Optical Particle Image Velocimetry

An alternative imaging technique to visualize flow is optical PIV. It is a technique that uses one or more lasers to illuminate contrast material flowing through a transparent phantom and captures the motion using a high-frame-rate digital camera. Each image frame is divided into small, so-called interrogation areas. Subsequently, each area is compared to the corresponding area of the following frame by applying correlation techniques. Finally, a velocity field is calculated, and localized velocity vectors can be visualized. 11/42 articles (26%) report on the use of optical PIV to study flow patterns in the carotid bifurcation in an in vitro model (Table 2). Two articles also use ultrasound. The flow setups are equipped with a continuous wave laser, a pulsed laser, or a LED light source. Where most of the studies uses one or two (stereo-PIV) cameras, one article describes the construction of a tomographic setup, using four digital cameras arranged at various angles.
TABLE 1. Characteristics of MRI for *in vitro* flow studies.

Author	Sequence	Resolution	Study type	Working fluid	Flow type	Re number	Viscosity	Flow rate (mL/s)	Velocity (cm/s)
Napel 1992	PC 3D	Th: 0.7	T	-	St	-	-	7.1	0–40*
Wolf 1992	FT GRE 2D	Th: 5	T	Paramagnetically doped methylcellulose solution	Pu	0.006 Pa.s	10	-3 to 39	
Frayne 1993	PC 3D	S: 0.5 × 0.5 × 0.5	T–P	Machine tool cutting fluid, water	St	400	0.04 Pa.s	9	-
Vu 1993	AFP	Th: 20	T	-	St	2219 (Ms)	10.07 × 10⁻⁶ m²/s	-	14.9
Botnar 2000	PC	S: 0.5 × 0.5	T	Glycerin, water	Ph	488	37 × 10⁻⁶ m²/s	M: 9.4, P: 28	-
Kohler 2001	PC 3D	-	T	-	St	-	0.003 Pa.s	10	-
Long 2002	PC 3D	S: 0.63 × 0.63 × 0.8	T	BMF	St	330	0.0038 Pa.s	10	-
Papathana-sopoulou 2003	PC 3D	S: 0.51 × 0.51 × 1.4	F	-	Ph	-	3.7 × 10⁻⁶ m²/s	M: 7.2, P: 23.6	-
Zhao 2003	PC 3D	S: 0.51 × 0.51 × 1.05	T	BMF-S	Ph	374	0.0034 Pa.s	M: 7.2, P: 19.7	-
Marshall 2004	PC 3D	S: 0.5 × 0.5 × 1.4	T	BMF-S	Ph	-	0.005 Pa.s	2-21*	
Carvalho 2010	CINE spiral FVE	Te: 23.2	T	-	-	-	-	-	
Rispoli 2015	PC 3D	S: 0.5 × 0.5 × 1.0	T	-	-	-	0.005 Pa.s	-	0-45*
Seong 2015	PC	S: 0.247 × 0.247 × 1	F	Glycerin, water	Ph	666	3.6 × 10⁻³ Pa.s	M: 6, P: 12	-
Cibis 2016	PC 2D	Several	T	-	Ph	-	0.001 Pa.s	0–9*	-

2D 2 dimensional, 3D 3 dimensional, BMF blood-mimicking fluid, BMF-S blood-mimicking fluid (Shelley), CINE spiral FVE Cine(ma) spiral Fourier velocity encoding, F flow exploration, FT GRE Fourier transform Gradient Recalled Echo, M mean, P peak, PC phase contrast, Ph Physiologic, Pu pulsatile, S Spatial resolution in mm, St Steady/constant, T Technique development/validation, T–P Technique development/validation–Phantom, Te Temporal resolution in ms, Th (slice) thickness in mm, *extracted from figure, “—” NA.
TABLE 2. Characteristics of optical PIV for *in vitro* flow studies.

Author	Laser type	Resolution	Study type	Working fluid	Fluid scatterers	Flow type	Re number	Viscosity	Flow rate (mL/s)	Velocity (cm/s)
Bale – Glickman 2003	C&Pu	Te: 30	F	Isopropyl alcohol, glycerin	Silver coated hollow glass spheres	St	13, 185, 410	0.15 x 10^-6 m^2/s	–	P: 40 & 49, D: 14 & 12
Cheung 2010	–	S:			Glycerin, water				485	6.2 x 10^-6 m^2/s
Cheung 2010	–				Rhodamine B fluorescent particles					
Cheung 2010	–									
Cheung 2010	–									
Cheung 2010	–									
Cheung 2010	–									
Zhang 2017	Pu	S: 0.5	T	Glycerin, water	Hollow glass spheres			12.7 x 10^-3 Pa.s	–	Max: 37
Kabinjedjarian 2013	Pu	Te: 1428	T	Glycerin, water	Hollow glass spheres					
Kefayati 2013	C	Te: 1000	F	Water, glycerin, sodium iodide	Rhodamine B-encapsulated microspheres	Ph	289	4.31 x 10^-3 Pa.s	M: 6.3	–
Kefayati 2014	C	S: 0.3 x 0.3		Glycerin, water	Polymer fluorescent microspheres	Ph	312, 473, 789	4.31 x 10^-3 Pa.s	M: 6.29	–
Nemati 2015	Pu	S: 0.3 x 0.3		Glycerin, water	Hollow glass balls	Ph	512	1.587 x 10^-6 m^2/s	–	6
Mokhtar 2017	LED	Te: 120	F	Glycerin, water	Polymer particles					
Shimizu 2017	–	–	T	Polyethylene glycol	Glass particles	St&Si	0.006 Pa.s	–	0–25^*	
Hewlin 2018	C	–	T-P	Water	Spherical hollow glass particulates	Ph	–	6.986 x 10^-7**	Max: 17.10^3	Max: 45

BMF blood-mimicking fluid, **C** continuous laser, **D** diastole, **F** flow exploration, **M** mean, **Ms** measured, **P** peak, **Pu** pulsed laser, **Ph** Physiologic, **S** spatial resolution in mm, **Si** sinusoidal, **St** Steady/constant, **T** Technique development/validation, **T-P** Technique development/validation–Phantom, **Te** Temporal resolution in Hz, **Th (slice)** thickness in mm, “Extracted from figure,” **Kinematic, no units mentioned,” “–” **NA.**
Author	Group	Protocol/postprocessing	System type	Resolution	Study type	Working fluid	Additional Fluid scatterers	Flow type	Re number	Viscosity	Flow rate (mL/s)	Velocity (cm/s)
Lai	HK	PD	R	–	T-P	BMF-S	–	Ph	242	3.95 × 10⁻⁶ m²/s	4.5	–
Yiu	HK	CESI	R	Te: 2000, S: 0.15 × 0.15	T	BMF-S	–	Ph	80	3.95 × 10⁻⁶ m²/s	14	1.5
Yiu	HK	SPW	R	Te: 416	T	BMF-S	–	Ph	–	3.95 × 10⁻⁶ m²/s	5	5
Chee	HK	DCF PWI	C&R	–	T-P	BMF-S	–	Ph	–	–	–	–
Leow		LO PW-PI IV	R	Te: 1000	T		Glycerin, water MB⁵⁸	Ph	–	–	–	–
Poepping	RRI	D	C	Te: 83	T	BMF-R	–	Ph	104	4.1 × 10⁻³ Pa.s	9	–
Poepping	RRI	D	C	–	T-P	BMF-R	–	St	–	–	–	–
Poepping	RRI	PD	C	Te: 43	F	BMF-R	–	Ph	–	–	–	–
Wong	UWO	D	C	S: 1	F	BMF-R	–	Ph	238	–	–	–
Wong	UWO	D	C	Te: 83	F	BMF-R	–	Ph	–	4.01 × 10⁻⁶ m²/s	–	–
Frayne			C	S:	T-P	Machine tool cutting fluid, water	Cellulose particles St	400	0.04 Pa.s	9	–	–
Zhang	E-PIV	–	R	Te: 1428, S: 0.5	T	Water	MB	Ph	1700	1.0 × 10⁻⁶ m²/s	15.5	70
Shimizu	D	–	C	–	T	Polyethylene glycol Glass particles	St&Si	–	0.006 Pa.s	–	–	

TABLE 3. Characteristics of ultrasound for *in vitro* flow studies.
Ultrasound

In 16/42 articles (38%), ultrasound is applied as imaging technique (Table 3). Three research groups contribute to this review by two or more included articles. The applied equipment is almost similar within these groups. Both clinical and research-based ultrasound systems are used.

Seven out of 16 articles within the ultrasound category perform image velocimetry. Different acquisition protocols and post-processing techniques are used: echo particle image velocimetry using contrast agent (echoPIV),\(^7\) high-frame-rate ultrasound imaging velocimetry using speckle patterns,\(^36,37\) Vector Projectile Imaging using multi-angle Doppler analysis,\(^72\) transverse oscillation and directional beamforming for vector velocity estimation,\(^26\) a biomechanical method that produces a map of displacement vectors,\(^{45}\) and vector flow mapping using color Doppler images from a clinical system.\(^{59}\)

Doppler protocols are applied in seven articles. One article uses a Doppler protocol to measure volume flow.\(^{18}\) Some articles describe the use of a semiautomatic Doppler ultrasound acquisition system to obtain small sample volumes at desired spatial intervals to perform velocity measurements over time.\(^{48-50,67,68}\) In another article, pulsed Doppler and color flow imaging are applied on a research system to investigate velocities in home-made phantoms.\(^{35}\)

A combination of clinical Doppler flow measurements and an advance plane wave protocol on a research-based system is also described.\(^9\) Another technique applied in Ref. 73 called color-encoded speckle imaging, uses high-frame-rate steered plane wave imaging on a system that includes a pre-beamformed RF data acquisition tool (a channel-domain imaging research platform).

Miscellaneous Techniques

4/42 articles (10%) report miscellaneous techniques for flow visualization (Table 4). One article describes the use of digital photographic imaging in combination with photochromic dye.\(^{12}\) A novel grid reconstruction technique has resulted in development of quantitative measurements. The use of Laser Doppler Anemometry (LDA) is described in two articles.\(^{14,34}\) This technique is based on the Doppler shift induced by scattering of a laser beam when it hits moving fluid. Flow rate is measured using Digital Subtraction Angiography in the fourth article.\(^{74}\) Time density curves are created and blood flow among the regions of interest is calculated using the obtained velocity and known radius of the vessel.
Model Characteristics

A full overview of the characteristics of the bifurcation models is presented in Table 5. Most of the MRI articles make use of a commercial model, in contrast to the majority of the optical PIV and ultrasound articles, where home-made models are used. Casting is a technique that is frequently used to obtain certain geometries in home-made models. For example, rapid prototyping or 3D printing techniques are used to retrieve molds and one article even describes a fabrication method for separate plaque inclusion in the model. Between groups of imaging techniques and within the groups, different materials are used for the fabrication of the home-made models. Most optical PIV models are made of silicone. In the ultrasound articles, polyvinylalcohol (PVA) is a frequently used material, especially in the last decade.

Both healthy and diseased carotid artery bifurcations are studied. One of the models with diseased geometry is an aneurysmatic bifurcation, all other diseased models are stenotic, sometimes with ulceration. The geometries are based on either patientspecific geometries or averaged bifurcation dimensions. The home-made models are either ‘thin-walled’, meaning that the model has a certain (thin) wall thickness, or ‘wall-less’, that means that the fluid space is frequently surrounded by a block of material, instead of a thin wall. Thin-walled models surrounded by a tissue mimicking material (TMM) are also reported. The optical PIV articles mainly use wall-less models. One article describes the fabrication of a model that was compatible with x-ray, ultrasound and MRI. The article illustrated a polyester resin thin-walled model with a layer of agar as tissue-mimicking-material to be compatible with the different imaging techniques.

Working Fluid, Scatter Particles and Contrast Agents

Flow studies in the human body can be performed without addition of scatter particles or contrast materials, in which case blood functions as natural contrast agent. However, for some techniques it is necessary to add contrast agents to the blood circulation, for example in some ultrasound protocols to enhance the scattering properties of blood. In case of in vitro studies, scatter particles or contrast material is regularly used, since the natural contrast enhancing properties of blood are not present.

No contrast agents or scatter particles are used in the MRI studies. The working fluid in MRI varies from commercially available blood mimicking fluid to an aqueous mixture of machine tool cutting fluid (Table 1). Optical PIV requires the addition of scatter

Table 4. Characteristics of miscellaneous techniques for in vitro flow studies.

Author	Study type	Resolution	Method	Fluid contrast	Flow type	Test fluid	Fluid contrast	Viscosity	Flow rate (mL/s)	Velocity (cm/s)	Temporal resolution in Hz
Ku 1985	F	Te: 30	LDA	Glycerin, water	St	Water	Decelerated kerosene	1200	2.875 \times 10^{-6} m^2/s	3-26*	-
Yoshida 1996	T	Te: 30	DSA	Water, glycerin, sodium thiosulfate	F	Ph 300	Black ink	300	2.875 \times 10^{-6} m^2/s	3-26*	-
Ding 2008	T	Te: 30	LDA	-	F	Ph 300	-	-	-	-	-
TABLE 5. Model characteristics of all included papers.

Author	Fabrication material	Pathology	Geometry	Wall	Origin
Napel 1992	Polyester resin + TMM (agar-based)	H	AG	TW	HM
Wolf 1992	Silicone	H & S	–	–	–
Frayne 1993	Glass	–	AG	–	–
Botnar 2000	Silicone	H	PS	WL	HM
Kohler 2001	Plexiglass (Perspex)	(1) H	(2) AG	–	(1) HM
Long 2002	-	–	–	–	CM
Papanastasopoulou 2003	Acrylic	H	–	–	CM
Marshall 2004	Silicone	H & S	–	–	CM
Botnar 2000	Silicone	S	PS	WL	HM
Kohler 2001	Silicone (PDMS)	H	PS	WL	HM
Kabinejad 2013	Silicone (Sylgard 184)	S	PS	WL	HM
Kefayati 2013	Silicone (Sylgard 184)	H	S	AG	WL
Kefayati 2014	Silicone (Sylgard 184)	H	S	AG	WL
Nemati 2015	Silicone (PDMS)	S	PS	WL	HM
Mokhtar 2017	Perspex	A	AG	WL	HM
Shimizu 2017	Permeable urethane	–	PS	TW	HM
Cibis 2016	Glass	–	PS	TW	HM
Optical PIV	Silicone	S	PS	WL	HM
Bail – Glickman 2003	Silicone (Sylgard 184)	S	PS	WL	HM
Cheung 2010	Silicone (Sylgard 184)	S	PS	WL	HM
Buchmann 2011	Silicone (Sylgard 184)	S	PS	WL	HM
Zhang 2011	Silicone	H	PS	WL	HM
Kabinejad 2013	Silicone (PDMS)	H	PS	WL	HM
Kefayati 2013	Silicone (Sylgard 184)	H	S	AG	WL
Kefayati 2014	Silicone (Sylgard 184)	H	S	AG	WL
Nemati 2015	Silicone (PDMS)	S	PS	WL	HM
Mokhtar 2017	Perspex	A	AG	WL	HM
Shimizu 2017	Permeable urethane	–	PS	TW	HM
Hewlin 2018	Glass	–	PS	TW	HM
Ultrasound	Silicone	S	PS	WL	HM
Frayne 1993	Polyester resin + TMM (agar-based)	H	AG	TW	HM
Poepping 2002	Agar	S	AG	WL	HM
Poepping 2004	Silicone (Sylgard 184)	S	AG	(1) TW HM	
Wong 2006	Agar	S	AG	(2) WL HM	
Poepping 2010	Silicone (Sylgard 184)	S	AG	TW	HM
Zhang 2011	Silicone	H	PS	TW	HM
Lai 2013	Compliant photopolymer + TMM (Agar-based)	H	S & U	AG	TW
Wong 2013	PTFE (Teflon)	S	U	AG	–
Yiu 2013	PVA	S	AG	WL	HM
Yiu 2014	–	H	S & U	AG	–
Leow 2015	Compliant photopolymer + TMM (Agar-based)	–	AG	TW	HM
Chee 2016	PVA + TMM (Agar-based)	H	S	AG	TW
Shimizu 2017	Permeable urethane	–	PS	TW	HM
Jensen 2018	PVA	H	S	PS	WL
Leow 2018	PVA	H	S	–	WL
Niu 2018	(1) –	H	AG	TW	(1) CM HM
Miscellaneous	Glass and plexiglass	H	AG	–	HM
Ku 1985 (LDA)	Glass and plexiglass	H	AG	–	HM
Yoshida 1986 (DSA)	Vinyl	H	AG	TW	HM
Couch 1996 (Photochromic grid)	Plexiglass	H	AG	WL	HM
Ding 2008 (LDA)	Glass	H	AG	TW	HM

LDA laser doppler anemometry, DSA digital subtraction angiography, PDMS polydimethylsiloxane, PVA polyvinyl alcohol, PTFE polytetrafluoroethylene, H healthy, S stenosed, A aneurysmatic, U ulceration, PS patient-specific, AG average geometry, TW thin-walled, WL wall-less, HM home-made, CM commercial model, “—” NA.
Flow Visualization Parameters

Flow characteristics can be presented and visualized using many quantitative parameters, each accentuating different aspects of the blood flow. Some quantities need to be measured to estimate or calculate other, more relevant parameters. This review only includes articles that quantified and visualized flow characteristics.

Summary of Results

We distinguished four categories of imaging techniques used to visualize and quantify blood flow dynamics: MRI, optical PIV, ultrasound, and miscellaneous techniques. A trend towards the use of optical PIV and ultrasound is seen in the last decade (Fig. 2).

Considerations for In Vitro Flow Study Design

The starting point of flow studies in general strongly depends on the goal of the study. Since there is a large variety of goals and aims in flow studies, the authors of this review article are not in the position to select one favourite flow parameter, imaging technique, model material or design for future use. This section illustrates a simplified three-step design process, combining and discussing the information from the results section.

The first step in flow study design is selection of parameters for flow visualization. This is strongly related to the goal of the study. Clinical relevance can
Parameter	Description/application	MRI	Opt PIV	US	Miscellaneous
Velocity (mean/peak) velocity	Often expressed in cm/s and can indicate pathologies, for example velocity increases in narrowed vessels	4, 8, 54, 65	2, 30, 77	1, 19, 28, 35, 48, 50, 67, 68, 72, 73, 77	1, 34
Velocity vectors/velocity field	Indicate both magnitude and direction	3, 30, 54, 56, 10, 2, 7, 10, 24, 29, 31, 40, 44, 49, 59, 77	2, 7, 10, 24, 29, 31, 40, 44, 49, 59, 77	4, 17, 59, 72, 77	1, 12
Secondary/circumferential/in plane velocity	Component of velocity orthogonal to largest velocity vector. Compare measurement and CFD results; indicate complex flow; indicate small flow disturbances	4, 3, 38, 56, 78	3, 7, 10, 31	–	1, 34
Stream/streak lines	Show pattern of velocity or flow in phantom either in 2D or 3D. Provide information about blood flow disturbances	1, 43	2, 7, 29, 31, 77, 72, 73, 77	2, 7, 10, 24, 29, 31, 40, 44, 49, 59, 77	1, 12
Velocity profile	Velocity magnitude over one axis through the model. Show differences in measurement and expectation; show differences in flow pattern on several positions; calculate shear stresses	3, 39, 66, 78	5, 2, 7, 10, 59, 77	5, 2, 8, 49, 59, 77	1, 14
Velocity waveform	Development of blood flow velocity over time. Show differences in measurement and expectation; define measurement accuracy; compare healthy and diseased models	–	1, 77	5, 5, 6, 37, 48, 50, 77	–
Velocity contour	Velocity values in one cross-section of the model. Compare between different measurements	1, 78	3, 7, 30, 44	–	–
Velocity gradient	Compare measurement and CFD results, especially at the walls	–	1, 59	–	1, 59
Flow					
Flow					
Flow vectors/patterns	Indicate both magnitude and direction of flow. Show complex flow or recirculation zones at specific timepoint or over a cardiac cycle	2, 11	–	–	1, 74
Flow waveform	Show flow value in time at a specific position in the phantom. Indicate variations over time and compare measurements with golden standard	4, 11, 39, 46, 56	2, 31, 77	–	–
Shear parameters					
Wall shear rate (WSR)	Defined as flow velocity gradient near the vessel wall, used to calculate WSS; presented as: magnitude overlay on image; graph (magnitude over time, magnitude per position on wall)	1, 8	1, 77	3, 37, 45, 77	–
WSS magnitude	Show distribution of WSS in cross-sections or in graphs to show changes over time. In Pa or N/m².	3, 11, 39, 46	4, 27, 30, 59	1, 59	–
WSS vectors/fields	Indicate both magnitude and direction. Show distribution of WSS in specific part of phantom in both 2D and 3D	3, 39, 46	–	–	1, 14
Oscillatory shear index	Show wall shear stress fluctuations over time	2, 8, 11	–	–	–
Reynolds shear stress	When shear stress is based on the fluctuating part of the velocity field (derived by Reynolds decomposition). Indicates vortices, areas of turbulent flow	2, 8, 11	–	1, 30	–
Stress phase angle	Temporal phase angle between WSS and circumferential strain. Plays an important role in arterial disorders	–	–	–	1, 45
Turbulent/disordered flow					
Turbulence (intensity)	Shows flow fluctuations over time. Quantifies fluctuations in flow not related to physiologic pulsatile flow	–	2, 30, 31	4, 18, 50, 67, 68, 69	–
also be considered while selecting flow visualization parameters. However, it does not restrict the imaging modality choice. Velocity and flow-based parameters give a global impression on flow dynamics and are presented in many ways: over time, spatial, mean or peak, as contour, etc. (see Table 6). Shear-based parameters are frequently studied, however their clinical relevance has yet to be determined. It is generally accepted that regions of low WSS and oscillating WSS correlate to formation and growth of atherosclerotic plaque. Shear-based parameters are frequently studied, however their clinical relevance has yet to be determined. It is generally accepted that regions of low WSS and oscillating WSS correlate to formation and growth of atherosclerotic plaque. However, a review on this topic shows that there are novel studies that find an inverse relationship. Moreover, there is no clear conclusion about the relation between low and high WSS in plaque vulnerability. Turbulent/disordered flow-based parameters are mostly reported by ultrasound and optical PIV studies. Some of these parameters clearly show and quantify regions of disordered flow, however some other quantitative parameters are hard to interpret.

The second step in flow study design is selection of an imaging technique. Generally, the choice of visualization parameters does not lead to restrictions in imaging techniques, thus the three main imaging techniques (MRI, optical PIV, ultrasound) are all available after flow parameter selection. The benefits and limitations shown in Table 7 are discussed next. It is necessary to realize that some imaging techniques require the use of (clinical) contrast agents or scatter particles when using it in vitro. In this respect, MRI is beneficial, since retrieving flow information is not dependent on scatter material. However, MRI is generally only available in a hospital. Also, the flow setup needs to be adjusted so that there are no metallic parts near the MRI-equipment, the help of a laboratory technician is preferred during measurements, and development and adjustment of a protocol or sequence has a large learning curve. The benefit of MRI is the possibility of conversion to a clinical study. This translation to a clinical study is not possible in optical PIV, because laser will not pass through the human body and the region of interest inside the patient cannot be captured using digital cameras. Optical PIV is ultimately suitable for accurate and precise quantification of flow patterns in vitro. In some situations, another benefit of optical PIV is that a hospital setting is not required to perform the in vitro flow studies. Optical PIV models need to be transparent and flat laser-entry surfaces are required for preventing distortion or refraction of the laser beam. Considering the third option, ultrasound, there is a division into studies using clinical systems and studies using research-based systems. To perform detailed flow analysis using image velocimetry techniques, fast imaging is prescribed and therefore the use of a research-based ultrasound system.
is necessary. However, a research-based ultrasound system has a larger learning curve. Also, research-based systems are not marketed for direct clinical use, so translation to a clinical study is more complicated compared to a clinical system.

In short, MRI and ultrasound are appropriate imaging modalities if translation to a patient study is desired. MRI requires a learning curve or specific knowledge and a metal-free setup. For in vitro flow studies, ultrasound requires contrast agents or scatter material in the working fluid. Optical PIV is preferred if there is no aim to translate it to a patient study, if no clinical equipment is available and if restrictions to transparent models are not an issue.

The third step is selection of model materials and model design. This depends on the imaging technique that will be used. For example, poly(vinyl alcohol) gel-based models are ultimately suitable for ultrasound studies. If optical PIV is considered, silicone models are preferred, such as polydimethylsiloxane (PDMS). As stated before, the models for optical PIV need to be transparent and require flat surfaces. Ultrasound models often have a tissue mimicking layer, while MRI-models frequently are thin-walled without TMM. Remarkably, the included studies barely reported on choices made in model selection. For example, only a few studies indicated that the model is elastic or rigid and moreover, elasticity was quantified in only four articles. These are certainly parameters that need to be considered, since rigidity or elasticity has a large influence on the similarity of the simulation with the real situation.

Strengths and Limitations of this Review

This review summarizes in vitro carotid artery flow studies according to used imaging techniques, model materials and designs. Compared to other review articles which usually focus on one specific imaging technique, this review has a wide scope as it provides an overview of multiple imaging techniques. For the design of an in vitro flow study, this wide scope is beneficial, because model materials and model designs depend on the chosen imaging techniques.

In the ultrasound category, multiple articles of the same research group are found. This is a bias to the results which we took into consideration by noting the research groups (Table 3). Furthermore, we marked the flow parameters that we found in multiple articles from the same research group (Table 6). Since our analysis does not strongly depend on the number of parameters and it only happens in the ultrasound category, this bias does not influence our conclusions.

The notations and units of several parameters, such as accuracy, resolution, viscosity, vary widely among the included articles. Therefore, interpretation of these parameters was difficult.

To the authors knowledge, imaging techniques and model parameters might have been missed in our search by restricting it to carotid artery bifurcations. Moreover, newest techniques might be tested first on ‘simple’ straight models, so we might have missed these novel techniques by restricting the search. Techniques and methods might have been missed as well by restricting the search to carotid arteries, since in vitro flow studies are also widely performed in intracranial, abdominal or other peripheral artery models. On the other hand, carotid artery specific flow rates, types of diseases, and vessel wall characteristics, lead to specific choices of materials and methods in the design of the flow study.

The imaging techniques reported in this review are not only used to study carotid arteries. Other parts of the cardiovascular system are studied as well. The ascending aorta, aortic arch and also aortic coarctation are studied using three- and four-dimensional flow MRI. In addition, this technique is applied intracranially to study aneurysms, also in...
Combination with optical PIV flow studies. Furthermore, ventricular filling is studied using four-dimensional flow MRI. Ultrasound-based vector flow imaging and echoPIV are used to study flow in the ascending aorta, the abdominal aorta, and to study ventricular blood flow. The latter is also reported in combination with optical PIV flow studies. Moreover, optical PIV is applied in enlarged coronary artery flow phantoms. Thus, despite the restriction of the systematic search to carotid artery bifurcation, the reported imaging techniques and considerations for the design of an in vitro flow study can generally be applied.

Fabrication methods of the models for in vitro flow studies fall out of the scope of this review article. Only a small amount of the included articles reported about the fabrication method of the models. A specific search to articles concerning the process of constructing models is necessary to write a review article on that topic. Two literature reviews for ultrasound and PIV models specifically have been published already.

CONCLUSION

This systematic review on in vitro flow studies aiming at quantifying and visualizing flow parameters in carotid bifurcation models shows important factors to consider when designing a flow study. In contrast to most other review articles on flow studies, this review is not restricted to one imaging modality. Therefore, it gives a complete overview of techniques for in vitro flow studies.

Since the design of flow studies strongly depends on the pertinent research question at hand, there is no preferred imaging technique or design that can be selected based on the information in this review. Three important steps need to be considered while designing in vitro flow studies: (1) selection of flow visualization parameters, (2) selection of an imaging technique, (3) model materials and design.

The selection of flow visualization parameters is completely dependent on the aim and goal of the study and independent of the selected imaging modality. Flow parameters are classified into velocity, flow, shear-related and turbulent/disordered flow-based parameters. The selection of an imaging technique can roughly be categorized in MRI, optical PIV and ultrasound. Conclusions on accuracy and resolution of the imaging systems cannot be made, since these parameters are not consistently reported throughout the literature. The selection of model materials and design of the model depends on the imaging technique and it strongly depends on the goal of the study.

FUNDING

Funding was provided by Stichting TWIN.

CONFLICT OF INTEREST

The authors affirm that there are no financial and personal relationships or involvement with any commercial organization that could inappropriately influence or bias the present manuscript.

OPEN ACCESS

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

REFERENCES

1. Asami, R., T. Tanaka, K. I. Kawabata, K. Hashiba, T. Okada, and T. Nishiyama. Accuracy and limitations of vector flow mapping: left ventricular phantom validation using stereo particle image velocimetry. J. Echocardiogr. 15(2):57–66, 2017. https://doi.org/10.1007/s12574-016-0321-5.
2. Bale-Glickman, J., K. Selby, D. Saloner, and O. Savas. Experimental flow studies in exact-replica phantoms of atherosclerotic carotid bifurcations under steady input conditions. J. Biomech. Eng. 125(1):38–48, 2003.
3. Binter, C., A. Gotschy, S. H. Sündermann, M. Frank, F. C. Tanner, T. F. Lüscher, et al. Turbulent kinetic energy assessed by multipoint 4-dimensional flow magnetic resonance imaging provides additional information relative to echocardiography for the determination of aortic stenosis severity. Circ. Cardiovasc. Imaging 10(6):e005486, 2017. https://doi.org/10.1161/CIRCIMAGING.116.005486.
4. Botnar, R., G. Rapitsch, M. B. Scheidegger, D. Liesch, K. Perkold, and P. Boesiger. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J. Biomech. 33(2):137–144, 2000.
5. Boussel, L., V. Rayz, A. Martin, G. Acevedo-Bolton, M. T. Lawton, R. Higashida, et al. Phase-contrast magnetic
carotid artery bifurcation. *Ann. Biomed. Eng.* 41(9):1990–2002, 2013. https://doi.org/10.1007/s10439-013-0863-x.

35Kefayat, S., J. S. Milner, D. W. Holdsworth, and T. L. Poepking. In vitro shear stress measurements using particle image velocimetry in a family of carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration. *PLoS ONE.* 9(7):e98209, 2014. https://doi.org/10.1371/journal.pone.0098209.

36Kefayat, S., and T. L. Poepking. Transitional flow analysis in the carotid artery bifurcation by proper orthogonal decomposition and particle image velocimetry. *Med. Eng. Phys.* 35(7):898–909, 2013. https://doi.org/10.1016/j.medengphy.2012.08.020.

37Kheradvar, A., H. Houle, G. Pedrizzetti, G. Tonti, T. Belcik, M. Ashraf, et al. Echoangiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. *J. Am. Soc. Echocardiogr.* 23(1):86–94, 2010. https://doi.org/10.1016/j.echo.2009.09.007.

38Kohler, U., I. Marshall, M. B. Robertson, Q. Long, X. Y. Xu, and P. R. Hoskins. MRI measurement of wall shear stress vectors in bifurcation models and comparison with CFD predictions. *J. Magn. Reson Imaging* 14(5):563–573, 2001.

39Ku, D. N., D. P. Giddens, D. J. Phillips, and D. E. Strandness, Jr. Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies. *Ultrasonic Med. Biol.* 11(1):13–26, 1985.

40Lai, S. S., B. Y. Yu, A. K. Poon, and A. C. Yu. Design of anthropomorphic flow phantoms based on rapid prototyping of compliant vessel geometries. *Ultrasonic Med. Biol.* 39(9):1654–1664, 2013. https://doi.org/10.1016/j.ultramed.2013.03.015.

41Leow, C. H., E. Bazigu, R. J. Eckersley, A. C. Yu, P. D. Weinberg, and M. X. Tang. Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: methods and initial in vitro and in vivo evaluation. *Ultrasonic Med. Biol.* 41(11):2913–2925, 2015. https://doi.org/10.1016/j.ultrasmedbio.2015.06.012.

42Leow, C. H., and M. X. Tang. Spatio-temporal flow and wall shear stress mapping based on incoherent ensemble-correlation of ultrafast contrast enhanced ultrasound images. *Ultrasonic Med. Biol.* 44(1):134–152, 2018. https://doi.org/10.1016/j.ultrason.2017.08.930.

43Long, Q., X. Y. Xu, U. Kohler, M. B. Robertson, I. Marshall, and P. Hoskins. Quantitative comparison of CFD predicted and MRI measured velocity fields in a carotid bifurcation phantom. *Bioimath.* 39(3–4):467–474, 2002.

44Marshall, I., S. Zhao, P. Papathasopoulos, P. Hoskins, and Y. Xu. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. *J. Biomech.* 37(5):679–687, 2004. https://doi.org/10.1016/j.jbiomech.2003.09.032.

45Mokhtar, N. H., A. Abas, N. A. Razak, M. N. A. Hamid, and S. L. Teong. Effect of different stent configurations using Lattice Boltzmann method and particles image velocimetry on artery bifurcation aneurysm problem. *J Theor. Biol.* 433:73–84, 2017. https://doi.org/10.1016/j.jtbi.2017.08.016.

46Moore, Jr, J. E., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. *Atherosclerosis* 110(2):225–240, 1994. https://doi.org/10.1016/0021-9150(94)90207-0.

47Muzzarelli, S., A. K. Meadows, K. G. Ordovas, C. B. Higgins, and J. J. Meadows. Usefulness of cardiovascular magnetic resonance imaging to predict the need for intervention in patients with coarctation of the aorta. *Am. J. Cardiol.* 109(6):861–865, 2012. https://doi.org/10.1016/j.amjcard.2011.10.048.

48Napel, S., D. H. Lee, R. Frayne, and B. K. Rutt. Visualizing three-dimensional flow with simulated streamlines and three-dimensional phase-contrast MR imaging. *J. Magn. Reson. Imaging* 2(2):143–153, 1992.

49Nemati, M., G. B. Loozen, N. van der Wekken, G. van de Belt, H. P. Urbach, N. Bhattacharya, et al. Application of full field optical studies for pulsatile flow in a carotid artery phantom. *Biomed. Opt. Express.* 6(10):4037–4050, 2015. https://doi.org/10.1364/BOE.6.004037.

50Niu, L., X. Zhu, M. Pan, A. Derek, L. Xu, L. Meng, et al. Influence of vascular geometry on local hemodynamic parameters: phantom and small rodent study. *Biomed. Eng. Online.* 17(1):30, 2018. https://doi.org/10.1186/s12938-018-0458-8.

51Papathasopoulos, P., S. Zhao, U. Kohler, M. B. Robertson, Q. Long, P. Hoskins, et al. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. *J. Magn. Reson. Imaging.* 17(2):153–162, 2003. https://doi.org/10.1002/jmri.10243.

52Peiffer, V., S. J. Sherwin, and P. D. Weinberg. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. *Cardiovasc. Res.* 99(2):242–250, 2013. https://doi.org/10.1093/cvr/cvo44.

53Poepking, T. L., H. N. Nikolov, R. N. Rankin, M. Lee, and D. W. Holdsworth. An in vitro system for Doppler ultrasound flow studies in the stenosed carotid artery bifurcation. *Ultrasonic Med. Biol.* 28(4):495–506, 2002.

54Poepking, T. L., H. N. Nikolov, M. L. Thorne, and D. W. Holdsworth. A thin-walled carotid vessel phantom for Doppler ultrasound flow studies. *Ultrasonic Med. Biol.* 30(8):1067–1078, 2004. https://doi.org/10.1016/j.ultrasmedbio.2004.06.003.

55Poepking, T. L., R. N. Rankin, and D. W. Holdsworth. Flow patterns in carotid bifurcation models using pulsed Doppler ultrasound: effect of concentric vs. eccentric stenosis on turbulence and recirculation. *Ultrasonic Med. Biol.* 36(7):1125–1134, 2010. https://doi.org/10.1016/j.ultrason.2010.02.005.

56Ramnarine, K. V., D. K. Nassiri, P. R. Hoskins, and J. Lubbers. Validation of a new blood-mimicking fluid for use in Doppler flow test objects. *Ultrasonic Med. Biol.* 24(3):451–459, 1998. https://doi.org/10.1016/s0301-5699(97)00277-9.

57Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). *Lancet.* 351(9113):1379–1387, 1998. https://doi.org/10.1016/S0140-6736(97)02922-1.

58Reneman, R. S., T. Arts, and A. P. G. Hoeks. Wall shear stress—an important determinant of endothelial cell function and structure—in the arterial system in vivo: discrepancies with theory. *J. Vasc. Res.* 43(3):251–269, 2006. https://doi.org/10.1159/000091648.

59Rispoli, V. C., J. F. Nielsen, K. S. Nayak, and J. L. A. Carvalho. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI. *BioMedical Eng. Online.* 14(1):110, 2015.
55Rolf, C., D. Stucht, O. Beuing, and P. Berg. Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD. J. NeuroInterv. Surg., 11(3):275–282, 2019. https://doi.org/10.1136/neurintsurg-2018-013921.

56Seong, J., W. Jeong, N. Smith, and R. A. Towner. Hemodynamic effects of long-term morphological changes in the human carotid sinus. J. Biomech. 48(6):956–962, 2015. https://doi.org/10.1016/j.jbiomech.2015.02.009.

57Shaaban, A. M., and A. J. Duerinckx. Wall shear stress and early atherosclerosis: a review. Am. J. Roentgenol. 174(6):1657–1665, 2000. https://doi.org/10.2214/ajr.174.6.741657.

58Sheeran, P. S., S. Luois, P. A. Dayton, and T. O. Matsumaga. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir: ACS J. Surf. Colloids 27(17):10412–10420, 2011. https://doi.org/10.1021/la2013705.

59Shinmizu, M., T. Tanaka, T. Okada, Y. Seki, and T. Nishiyama. Wall shear stress measurement method based on parallel flow model near vascular wall in echography. Jpn. J. Applied Phys. 56(7):07JF08, 2017. https://doi.org/10.7567/JJAP.56.07JF08.

60Shintani, Y., K. Iino, Y. Yamamoto, H. Kato, H. Take-mura, and T. Kiwata. Analysis of computational fluid dynamics and particle image velocimetry models of distal end side-to-side and end-to-side anastomoses for coronary artery bypass grafting in a pulsatile flow. Circ. J. 82(11):110–117, 2018. https://doi.org/10.1253/circj.CJ-17-0381.

61van Ooij, P., A. Guedon, C. Poelma, J. Schneiders, M. C. M. Rutten, H. A. Marquering, et al. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR Biomed. 25(1):14–26, 2012. https://doi.org/10.1002/nbm.1706.

62Von Knobelsdorff-Brenkenhoff, F. Advanced assessment of aortic stenosis reflecting the complex interplay of valve, ventricle, vessel, and flow. Circ. Cardiovasc. Imaging 10(6):e006594, 2017. https://doi.org/10.1161/CIRCIMAGING.117.006594.

63Voorneveld, J., S. Engelhard, H. J. VoS, M. M. P. J. Reijnen, F. Gijsen, M. Versluis, et al. High-frame-rate contrast-enhanced ultrasound for velocimetry in the human abdominal aorta. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 65(12):2245–2254, 2018. https://doi.org/10.1109/TUFFC.2018.2846416.

64Voorneveld, J., A. Muralidharan, T. Hope, H. J. VoS, P. Kruizinga, A. F. W. Van Der Steen, et al. High frame rate ultrasound particle image velocimetry for estimating high velocity flow patterns in the left ventricle. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 65(12):2222–2232, 2018. https://doi.org/10.1109/TUFFC.2017.2786340.

65Vu, A. T., H. K. Lee, P. R. Moran, and O. Nalciodaglu. Flow field mapping by multi-zone adiabatic passage excitation. Magn. Reson. Imaging. 11(8):1129–1137, 1993.

66Wolf, R. L., D. B. Richardson, C. C. LaPlante, J. Huston, 3rd, S. J. Riederer, and R. L. Ehman. Blood flow imaging through detection of temporal variations in magnetization. Radiology. 185(2):559–567, 1992. https://doi.org/10.1148/radiology.185.2.1410373.

67Wong, E. Y., H. N. Nikolov, R. N. Rankin, D. W. Holdsworth, and T. L. Poeppeing. Evaluation of distal turbulence intensity for the detection of both plaque ulceration and stenosis grade in the carotid bifurcation using clinical Doppler ultrasound. Eur. Radiol. 23(6):1720–1728, 2013. https://doi.org/10.1007/s00330-012-2741-6.

68Wong, E. Y., H. N. Nikolov, T. L. Poeppeing, R. N. Rankin, and D. W. Holdsworth. Clinical Doppler ultrasound for the assessment of plaque ulceration in the stenosed carotid bifurcation by detection of distal turbulence intensity: a matched model study. Eur. Radiol. 19(11):2739–2749, 2009. https://doi.org/10.1007/s00330-009-1457-8.

69Yousif, M. Y., D. W. Holdsworth, and T. L. Poeppeing. Doppler ultrasound compatible plastic material for use in rigid flow models. Ultrasound Med. Biol. 34(11):1846–1856, 2008. https://doi.org/10.1016/j.ultrasmedbio.2008.01.002.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.