METHOD ARTICLE

Saccharomyces cerevisiae single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities [version 1; referees: 2 approved]

Michael Mülleder1,2*, Kate Campbell1,3*, Olga Matsarskaia1, Florian Eckerstorfer1, Markus Ralser1,2

1Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
2Mill Hill Laboratory, The Francis Crick Institute, London, UK
3Chalmers University of Technology, Gothenburg, Sweden

*Equal contributors

Abstract

Auxotrophic markers are useful tools in cloning and genome editing, enable a large spectrum of genetic techniques, as well as facilitate the study of metabolite exchange interactions in microbial communities. If unused background auxotrophies are left uncomplemented however, yeast cells need to be grown in nutrient supplemented or rich growth media compositions, which precludes the analysis of biosynthetic metabolism, and which leads to a profound impact on physiology and gene expression. Here we present a series of 23 centromeric plasmids designed to restore prototrophy in typical laboratory strains. The 23 single-copy plasmids complement for deficiencies in _HIS3, LEU2, URA3, MET17_ or _LYS2_ genes and in their combinations, to match the auxotrophic background of the popular functional-genomic yeast libraries that are based on the _S288c_ strain. The plasmids are further suitable for designing self-establishing metabolically cooperating (SeMeCo) communities, and possess a uniform multiple cloning site to exploit multiple parallel selection markers in protein expression experiments.
Corresponding author: Markus Ralser (mr559@cam.ac.uk)

How to cite this article: Mülleder M, Campbell K, Matsarskaia O et al. *Saccharomyces cerevisiae* single-copy plasmids for auxotrophy compensation, multiple marker selection, and for designing metabolically cooperating communities [version 1; referees: 2 approved]
F1000Research 2016, 5:2351 (doi: 10.12688/f1000research.9606.1)

Copyright: © 2016 Mülleder M et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: This work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001134), the UK Medical Research Council (FC001134), and the Wellcome Trust (FC001134), as well as grant funding from the Wellcome Trust (RG 093735/Z/10/Z, 200829/Z/16/Z) and the ERC (Starting Grant 260809) to MR.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: No competing interests were disclosed.

First published: 20 Sep 2016, 5:2351 (doi: 10.12688/f1000research.9606.1)
Introduction

Auxotrophic markers are single gene perturbations of essential metabolic pathways, that are exploited in the efficient selection of strains, plasmids and genome editing. Further, they are used in a diverse spectrum of genetic technologies, as their selection is efficient, their use economic, and in contrast to antibiotic selection markers, they do not revert by mutation. In budding yeast, auxotrophic marker alleles important for histidine, leucine, uracil, methionine, lysine, adenine and tryptophan metabolism have been crossed or cloned into the popular S. cerevisiae laboratory strains. Harbouring 5 auxotrophic marker mutations, his3Δ1, leu2Δ0, ura3Δ0, lys2Δ0 or met17Δ0-Δ9, strains derived from the S288c background served as the parents of the yeast gene-deletion collection, and subsequent genetic libraries that are based on this principle. These libraries include gene deletion mutants, genetically introduced GFP, GST, and TAP fusions, transposon insertion mutants, decreased abundance by mRNA perturbation (DAmP) mutants, Tet-promoter controlled expression and the ts-alleles for essential genes. Furthermore, systematic strain collections of other fungal species including Schizosaccharomyces pombe and the pathogens Candida glabrata, Candida albicans or Neurospora crassa, all involve use of auxotrophic markers as well. As a result, auxotrophic backgrounds are omnipresent in a large number of functional genomic experiments, and have been used in a countless number of small-scale experiments, resulting in their ubiquity across yeast molecular biology literature.

In order for a metabolic gene to function as an auxotrophic marker, it needs to be part of a metabolic pathway for which the cells possess an extracellular uptake and a sensing mechanism for the product of the interrupted pathway. Auxotrophic marker mutations are hence associated with metabolites that are readily taken up from the environment. This includes the metabolites exchanged between cells in communal growth, in particular amino acids. The biosynthesis of amino acids accounts for up to half of the metabolic flux towards biomass, with amino acids making up to 2/3rds of the total mass of polar metabolites. As a consequence, a shift from self-synthesis to uptake, as enforced by auxotrophy, is not without biological consequence. In fact, most of the genome-wide expression is sensitive to epistatic interaction within the Saccharomyces metabolic-genetic background. The physiological effects arising from auxotrophy and complemented marker genes have been highlighted by several yeast labs for more than a decade. Most importantly, to grow auxotrophic strains, amino acids and nucleotides need to be added to the growth medium. Nutrient supplementation affects not only the interrupted pathway itself, but the biosynthesis of other essential compounds, in particular the enzymatic cofactors, due to the metabolic network responding to perturbation at the systems levels, and hence, affecting multiple metabolic pathways in parallel. Cell growth has consistently shown to be affected by nutrient supplementation, reflecting the variation in energy costs between biosynthesis and uptake/incorporation of the provided nutrients. In batch cultures, supplements are also consumed at different rates. As a consequence, nutrient availability changes during batch culture growth, rendering cells physiologically different between growth phases. In classic molecular biology, the use of a matched auxotrophic background as a wild-type control has been considered sufficient to account for the effects of auxotrophy. Transcriptomic, proteomic and metabolomic analysis of complemented auxotrophs show however that this is not the case; the metabolic background deficiencies interact epistatically with the majority of the coding genome and in a context dependent manner. The biological explanation for this phenomenon is that metabolism is intrinsically intertwined with the gene expression machinery and is dependent on metabolic flux distribution. The same gene deletion introduced in a different auxotrophic background can hence cause an entirely different transcriptional response, so that a matched parent background is not able to compensate for these effects.

We here present a series of single copy plasmids derived from the pHUM minichromosome, which can be used for restoring prototrophy as well as for testing the metabolic capacity of budding yeast, by compensating for the possible combinations of his, leu, ura, met17 (or lys2) deficiencies. For their use in S. cerevisiae, the plasmids contain a centromeric origin for single copy expression and express the marker genes under native S. cerevisiae promoter sequences. To exploit multiple markers to reduce the plasmid segregation problem for protein expression experiments, we further introduced the uniform multiple cloning site of the pRS300 vector series. For cloning and manipulation in E. coli, the shuttle vectors contain a bacterial high-copy replication origin (pUC) and an ampicillin antibiotic resistance marker. Finally, the pHUM series of the plasmid contains an N-terminal fragment (α-peptide) of the E. coli beta galactosidase (lacZ), for blue-white selection in appropriate cloning strains, and an F1 origin for use in phage libraries. These plasmids can be used for complementing unused auxotrophies in laboratory yeast strains, to express proteins exploiting multiple parallel selection markers, and to study metabolite exchange interactions in synthetic yeast communities.

Materials and methods

Strains, media and cultivation conditions

Escherichia coli strain DH5α was used as plasmid host and strains containing the recombinant plasmids were selected on LB medium with ampicillin (100 µg/ml) and grown at 37°C. Two commonly used S. cerevisiae strains in the S288c background, BY4741 (MATa his3Δ1 leu2Δ0 met17Δ0 ura3Δ0) and BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0), were used to test for genetic complementation of auxotrophic requirements by the plasmids created. The strains were grown in YPD (2% Glucose, 20 g/l peptone (Bacto)), 10 g/l yeast extract (Bacto) or synthetic minimal (SM) medium (2% glucose, 6.8 g/l yeast nitrogen base), as indicated. To enable growth of auxotrophic strains, the SM medium was supplemented with 20 mg/l histidine, 60 mg/l leucine, 20 mg/l uracil, 20 mg/l methionine and/or 50 mg/l lysine as indicated.

Plasmid construction

For site directed mutagenesis the Quikchange Lightning kit (Agilent) was used according to manufacturer guidelines, taking 50 ng of plasmid DNA as a template and 6.3 µM of each oligonucleotide (primers O09-O12, Table 1) to a total volume of 25 µl. The manufacturer’s recommended cycling parameters, with a 2.5 min extension time, were followed.
Table 1. List of oligonucleotides used to create pHLUM, pHLUM (version 2) and pHLUK.

Primer ID	Sequence (5′-to-3′)	Application
O01	GACGGATCCCTCGACTACGTCGTAAGGCCGT	amplification of LEU2 from pRS425, BamHI restriction site in leader sequence
O02	TCACTCGAGGCGCGCCATCGAGGAGAACTTTCTAGTA	amplification of LEU2 from pRS425, Ascl and XhoI restriction sites in leader sequence
O03	ATGGGCGGCCCTGATGCGGTATTTTCTCCTT	amplification of URA3 from p426GPD, Ascl restriction site in leader sequence
O04	GGCCTCGAGGCATGCGATTCGGTAATCTCCGAACA	amplification of URA3 from p426GPD, SphI and XhoI restriction sites in leader sequence
O05	ATCGCATGCCATCCTCATGAAAACGT	amplification of MET17 from pRS411, SphI restriction site in leader sequence
O06	CATCTCAGCTTGTGAGAGAAAGTAGGTT	amplification of MET17 from pRS411, XhoI restriction site in leader sequence
O07	TAGCGTCGACCGCTCGAGGAAAACCTCTCAATAG	amplification of LYS2 from BY4741, SalI and MluI restriction sites in leader sequence
O08	GCTAGCATGCACATATCATACGTAATGCTC	amplification of LYS2 from BY4741, SphI restriction site in leader sequence
O09	CTCTTGAACCTCGAGGATCTATGCGGTGTG	modification by site directed mutagenesis, new XhoI and BamHI restriction sites
O10	GGTGTGGCGGACGTCGGGCTGGCTTAAC	modification by site directed mutagenesis, new AatII restriction site
O11	CTAGAATCTAGTGGTCCCCGCGGCTG	modification by site directed mutagenesis, loss of BamHI restriction site
O12	CGATACCGTCGACCTGGAGGGGGGCG	modification by site directed mutagenesis, loss of XhoI restriction site
O13	GATCTGTATTAATATACCTAGGA	modification by annealed primer cloning, loss of BamHI restriction site
O14	GATCTCATTAGCTGATGGTTAACAGTTAAACA	modification by annealed primer cloning, loss of BamHI and addition of a PmeI restriction site
O15	TCAGACGAAATTGACTGAGAGTAGCACCATAATTTCAATAGACAGCTGACGATAGCATACGATAT	modification by homologous recombination, excision of HIS3
O16	ATATCGTATGCCTRACGCTTTAAATATCGTGTCATTTGGAATTAGGTCACTCTGCTACATCGTTGAATGGCTCCTGTA	modification by homologous recombination, excision of HIS3
All other enzymes for molecular cloning were purchased from New England Biolabs (NEB) and used as instructed. Genomic DNA was extracted from yeast with repeated freeze-thawing of cells in a lysis buffer as per previous publication, DNA from genomic and plasmid templates was amplified with Phusion High-Fidelity DNA Polymerase (Finnzymes) supplemented with the CES combinatorial enhancer solution to increase primer specificity as described previously.

Plasmids were isolated both from *E. coli* and *S. cerevisiae* with the QIAprep Spin Miniprep Kit (Qiagen). For the latter, a Qiagen protocol (Michael Jones, Chugai Institute for Molecular Medicine, Ibaraki, Japan, https://www.qiagen.com/gb/resources/resourcedetail?id=5b59b6b3-f11d-4215-b3f7-995a95875fc0&lang=en) was used. The protocol employs 425–600 µm acid-washed glass beads (Sigma) for mechanical lysis (30 sec, 6.5 M/s in a FastPrep®-24 Instrument (MP Biomedicals)). For homologous recombination to construct pLUK, two complementary primers were designed with 5’ and 3’ leader sequences homologous to plasmid 5’ and 3’ of the HIS3 marker gene (primers O15-O16, Table 1). The oligonucleotides were annealed by heating to 95°C then gradual cooling to RT. The plasmid pHLUK was linearized by cutting inside the HIS3 sequence with *MscI*. The yeast strain BY4741 was transformed with 100 ng of cut vector and 500 ng of annealed primers and was selected on SM medium supplemented with histidine. Clones with successful homologous recombination events were identified by failure to grow on SM medium without histidine.

Yeast transformation

Yeast strains were transformed with a high efficiency lithium acetate, PEG, salmon sperm protocol using 300 ng of plasmid per reaction.

Results

Generation of the plasmid backbone for pHLUM (version 2) series, to complement auxotrophies in BY4741 and isogenic strains

For the genetic complementation of the commonly used auxotrophic lesions in HIS1, LEU2, URA3 and MET17 we have previously constructed the pHLUM minichromosome (Addgene ID 40276). The plasmid is based on pRS313, contains a centromere, and an autonomous replication sequence, and the HIS3 marker as derived from the pRS313 backbone. The additional marker genes LEU2, URA3 and MET17 were cloned from other popular yeast plasmids (pRS425, p426GPD and pRS411) and were placed between unique restriction sites, so that they can be individually excised, primers O01 - O06, Table 1). The three-gene insert is flanked by *BamHI* and *XhoI* and unique restriction sites *AscI* and *SphiI* were designed between *LEU2/URA3 and URA3/MET17*, respectively, to allow for selective excision of the individual markers. However, in this original version of pHLUM, the HIS3 marker cannot be removed in a straightforward manner.

In order to improve the usefulness of the minichromosome, we decided to redesign the plasmid backbone, replacing all 4 marker genes but leaving the multiple cloning site of pRS313 intact. With a site directed mutagenesis strategy, we added an *AatII* restriction site 5’ and *XhoI* and *BamHI* sites 3’ of HIS3 (primers O09-O10, Table 1). In the same reaction we eliminated the *BamHI* and *XhoI* recognition sites from the multiple cloning site by exchanging two bases and preserving the sequence of the lacZ α-peptide (primers O11-O12, Table 1). With the new restriction sites available and the absence of *XhoI* and *BamHI* in the multiple cloning site, the DNA fragment containing *LEU2, URA3 and MET17* could be excised from pHLUM with *XhoI* and *BamHI* and integrated 3’ of the HIS3 gene on the modified pRS313 vector. The resulting plasmid was named pHLUM (plasmid HIS3 LEU2 URA3 MET17) (version 2). It maintains 8 unique endonuclease recognition sites in the multiple cloning site and the capacity for colorimetric lacZ complementation assays (Figure 1A).

Generation of the plasmid backbone for pHLUK series, to complement auxotrophies in BY4742 isogenic strains

In the typical MATα derivatives of the *S. cerevisiae* gene deletion collection (i.e. BY4742), LYS2 is deleted while the MET17 marker is wild-type. We used pHLUM (version 2) as a template and exchanged the MET17 marker with LYS2 to create an analogous vector series (pHLUK). The LYS2 coding sequence contains recognition sites for both *XhoI* and *BamHI*. Therefore we removed the *BamHI* site from pHLUM (version 2), and introduced at the same position a recognition sequence for *PmeI*. To this end we synthesised two complementary oligonucleotides (O13-O14, Table 1) and annealed them by heating to 95°C and gradual cooling to RT to yield a small double stranded DNA segment containing a *PmeI* site and cohesive ends to the *BamHI* digested pHLUM (version 2). The digested vector was dephosphorylated with Antarctic phosphatase (NEB), the annealed primers phosphorylated with polynucleotide kinase (NEB) and then ligated by T4 DNA ligase abolishing the recognition site for *BamHI*. Next, we amplified the LYS2 gene from BY4741 genomic DNA (O07-O08, Table 1) including the promoter and terminator regions according to the yeast promoter atlas. Primer O07 contained recognition sites for *SacI* and *MluI* and primer O08 for *SphiI* (Table 1). The modified plasmid was digested with *XhoI* and *SphiI* and the MET17 marker replaced with the LYS2 PCR product digested with *SacI/SphiI*. The cohesive ends of *SacI* and *XhoI* DNA fragments are compatible and abolish their recognition sites upon ligation. The *MluI* site allows digestion of the vector between LYS2 and HIS3 and excision of either marker (Figure 1B).

Generation of pHLUM and pHLUK derivatives possessing all marker combinations

The unique endonuclease recognition sites between each of the marker genes facilitated the creation of the 21 derivatives of pHLUM (version 2) and pHLUK containing between 1 and 3 marker genes, in all possible combinations. The marker genes were excised by digestion with appropriate endonucleases, the 3’ and 5’ overhangs were removed or filled in with T4 DNA polymerase and the plasmid ligated with T4 ligase (Table 2, Figure 2). The plasmid pLUK was generated using homologous recombination in yeast.

The completed plasmids were re-sequenced, which led to some corrections compared to the Genebank deposited version of pRS313 (GenBank: U03439.1) (Supplementary material). Successful genetic complementation of auxotrophic markers is illustrated upon transforming BY4741 and BY4742 strains, with the generated plasmids, and subsequent scoring of their growth on selective media for histidine, leucine, uracil and methionine or lysine, respectively. The plasmids restored all auxotrophies in BY4741 and BY4742 in the desired combination (Figure 3). Further, we tested the
Table 2. A plasmid series to complement auxotrophic markers HIS3, LEU2, URA3, MET17 or LYS2, in 23 possible combinations.

Plasmid	Addgene ID	Marker genes	Parental plasmid	Cloning strategy
pHLUM (version 2)	64166	HIS3 LEU2 URA3 MET17	pRS313 and pHLUM (ID 40276)	SD, RE
pHLU	64167	HIS3 LEU2 URA3	pHLUM (version 2)	RE, BE
pHLM	64168	HIS3 LEU2 MET17	pHLUM (version 2)	RE, BE
pLUM	64169	LEU2 URA3 MET17	pHLUM (version 2)	RE, BE
pHLM	64170	HIS3 URA3 MET17	pHLUM (version 2)	RE, BE
pHU	64171	HIS3 LEU2	pHLUM (version 2)	RE, BE
pHU	64172	HIS3 URA3	pHLM	RE, BE
pHM	64173	HIS3 MET17	pHLUM (version 2)	RE, BE
pLU	64174	LEU2 URA3	pHLUM (version 2)	RE, BE
pLM	64175	LEU2 MET17	pLUM	RE, BE
pUM	64176	URA3 MET17	pHLM	RE, BE
pL	64177	LEU2	pHLUM (version 2)	RE, BE
pL	64178	HIS3	pHLM (version 2)	RE, BE
pM	64179	MET17	pLUM	RE, BE
pU	64180	URA3	pLU	RE, BE
pHLUK	64181	HIS3 LEU2 LYS2 URA3	pHLUM (version 2)	AP, RE, BE
pHLK	64182	HIS3 LEU2 LYS2	pHLUK	RE, BE
pHIK	64183	HIS3 URA3 LYS2	pHLUK	RE, BE
pLUK	64184	LEU2 URA3 LYS2	pHLUK	RE, BE
pLU	64185	URA3 LYS2	pHUK	RE, BE
pL	64186	LEU2 LYS2	pHUK	RE, BE
pH	64187	HIS3 LYS2	pHUK	RE, BE
pK	64188	LYS2	pHUK	RE, BE

SD, site directed mutagenesis; RE, restriction endonuclease; BE, blunt end ligation; HR, homologous recombination; AP, annealed primer cloning.
Figure 2. A plasmid series to restore prototrophy in derivatives of BY4741 and BY4742. (A) The plasmids are generated from pHLUM (version 2) containing HIS3, LEU2, URA3 and MET17, and (B) pHLUK containing HIS3, LEU2, URA3 and LYS2 expressed under control of S. cerevisiae promoter and terminator sequences. Unique restriction sites between the marker genes and in the multiple cloning site (M) are indicated in the parent pHLUM (version 2) and pHLUK (Figure 1). Loss or acquisition of unique restriction sites is highlighted in the individual vector maps.
functionality of the lacZ α-peptide sequence retained in the pHLUM (version 2) series for blue-white selection, by transforming them in DHBα (Figure 3C). On X-Gal containing medium, a blue colour shift was observed.

Discussion

Due to the physiological impact of auxotrophy one would in an ideal world conduct all yeast experiments in prototrophic backgrounds and, if the objective of the experiment is to study a physiological process, use cells grown in minimal nutrient medium. However, most existing Saccharomyces lab strain resources are auxotrophic, and a majority of genetic techniques depend on the ability to select with genetic markers. The switch to antibiotic resistance markers is not a viable alternative to auxotrophies in many cases, as antibiotics can be expensive, are prone to persistence of sensitive cells, and by interfering with translation or transcription, have strong biological effects on their own.13,44. We have noticed in our previous work, that a useful workaround, or compromise, for many applications is to complement the unused auxotrophic marker mutation with a multi-gene containing, single copy, centromeric single copy plasmid (minichromosome) that compensates for metabolic deficiencies present in the cell.24,31. By nature, introducing an episome adds a new constraint due to its segregation. However, we found that the four metabolic genes on the pHLUM minichromosome provide selective advantage also under nutrient-rich growth conditions, so that cells retain the vector even in the absence of selection pressure13. Further, we tested for copy number effects, and found that the expression of HIS3, LEU2, MET17 and URA3 from the minichromosome fully suffices the biosynthetic needs33. A situation in which all cells are provided with a high concentration of nutrients, as would occur with media supplementation, may also be less native to cells community where, usually, a certain fraction of cells are dependent on metabolite exchange25,45. For the typical experiment, the constraints arising from segregation of a single-copy minichromosome that restores auxotrophy, are hence much smaller compared to the problems caused by the use of nutrient supplemented media and auxotrophic strain backgrounds.

To support the work with prototrophic yeasts, we present here 23 minichromosomal vectors for restoring prototrophy in popular laboratory strains of budding yeast. These plasmids compensate for histidine (HIS3), leucine (LEU2), uracil (URA3), methionine (MET17) and lysine (LYS2) deficiencies and combinations thereof, which have been introduced into many yeast strains derived from the S288c background. Furthermore, the multiple cloning array is compatible with the widely used pRS300 plasmid series and provides unique restriction sites to facilitate cloning of genes of interest. The different marker genes of these vectors also enable expression analysis in various genetic backgrounds. The main intended application of these plasmids is to restore auxotrophy in laboratory strains and to be able to conduct experiments in minimal nutrient supplemented medium. In this way, the effect of amino acid and nucleotide biosynthetic metabolism, which is responsible for a major fraction of the metabolic flux of a cell, as well as has a profound impact on gene expression and physiology, can be studied.

Another application for these plasmids is to study metabolic cooperation in self establishing yeast communities (SeMeCo). It has been known for a long time that a subpopulation of plasmid free cells can co-grow alongside plasmid containing cells, despite using nutrient selection24,46. In our lab we have exploited this property to study metabolite exchange interactions between cells, and developed a system of self-establishing metabolically cooperating communities (SeMeCo) in which a series of auxotrophs cooperate to enable the growth of a yeast community25,45. This system exploits plasmid segregation, starting from an initially self-supporting cell, that grows progressively into an increasingly heterogeneous population, which is able to proliferate on the basis of nutrient exchange occurring between yeast cells. The progressive self-establishment overcomes a failure that is typically observed when yeast auxotrophs are forced to establish a bilateral cooperation. Other than through self-establishment, this lethality is overcome by yeast cells being genetically modified to artificially overproduce metabolites needing to be exchanged. The synthetic communities generated in this way have been intensively studied and serve as a model for ecological metabolite exchange interactions26-52. The new vector series, having multiple auxotrophic markers on single centromeric plasmids, can support the design of such communities, as it removes the likelihood of recombination occurring when multiple plasmids are used in parallel, to obtain the desired auxotrophic background...
Finally, the uniform multiple cloning site (MCS) in the plasmid series allows for the inclusion of marker proteins, such as GFP or beta-galactosidase, to track individual cell types in SeMeCo communities, that reveal phenotypic heterogeneity at the single cell level45. This MCS further allows the use of these plasmids for the recombinant expression of proteins. Here, one can profit from multiple auxotrophic markers on one plasmid to improve selection and reduce plasmid segregation rate, so that (as long as no disadvantageous protein is expressed) the plasmids can be maintained in rich medium in the absence of selection pressure33. This strategy of using multiple markers in parallel can further be exploited to increase selection pressure, to counteract the well-known issue of clonal selection phenotypes, emerging when overexpressing recombinant proteins.

In summary, to test both the effects of prototrophy as well as the metabolic capacity of budding yeast, to design self-establishing metabolically cooperating communities, and to profit from multiple selection markers when expressing proteins, we present a series of centromeric plasmids that can compensate for histidine (\textit{HIS3}), leucine (\textit{LEU2}), uracil (\textit{URA3}), methionine (\textit{MET17}) or lysine (\textit{LYS2}) deficiencies in 23 possible combinations. These vectors are accessible individually (Table 2) or as a Kit from Addgene (www.addgene.org/kits/prototrophy/). We hope they benefit the community when analysing the importance of biosynthetic metabolism for gene function, gene expression, physiology and metabolite exchange.

Data availability
The full sequences of the 23 plasmids are deposited in Addgene under the ID numbers listed in Table 1.

Author contributions
MM designed the plasmids, MM, KC, OM, and FE constructed the plasmids, MM, KC, tested the plasmids, MR designed the study, MM, KC and MR wrote the paper.

Competing interests
No competing interests were disclosed.

Grant information
This work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001134), the UK Medical Research Council (FC001134), and the Wellcome Trust (FC001134), as well as grant funding from the Wellcome Trust (RG 093735/Z/10/Z, 200829/Z/16/Z) and the ERC (Starting Grant 260809) to MR.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements
We thank Eric Perkins (Addgene) for supporting this project by sequencing of the 23 plasmids.

Supplementary material

Plasmid sequences used in Figure 1 and Figure 2. Plasmid sequences for the 23 vectors have been assembled from the pHLUM and pRS300 vector sequences, respectively, and verified and corrected upon resequencing.

Click here to access the data.

References

1. Tong AH, Evangelista M, Parsons AB, et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 2001; 294(5550): 2364–8. PubMed Abstract | Publisher Full Text
2. Pronk JT: Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol. 2002; 68(5): 2095–100. PubMed Abstract | Publisher Full Text | Free Full Text
3. Rothstein RJ: One-step gene disruption in yeast. Methods Enzymol. 1983; 101: 202–11. PubMed Abstract | Publisher Full Text
4. Brachmann CB, Davies A, Cost GJ, et al.: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998; 14(2): 115–32. PubMed Abstract | Publisher Full Text
5. Winzeler EA, Shoemaker DD, Astromoff A, et al.: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999; 285(5429): 901–6. PubMed Abstract | Publisher Full Text
6. Fink GR: GENE-ENZYME RELATIONS IN HISTIDINE BIOSYNTHESIS IN YEAST. Science. 1964; 146(3643): 525–7. PubMed Abstract | Publisher Full Text
7. Lacroute F: Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1968; 96(3): 824–32. PubMed Abstract | Free Full Text
8. Masselot M, De Robichon-Szulmajster H: Methionine biosynthesis in Saccharomyces cerevisiae. I. Genetical analysis of auxotrophic mutants.
yeast strains. Nat Commun. 2010; 1: 145.
31. Gupta JC, Mukherjee KJ: Stability studies of recombinant Saccharomyces cerevisiae in the presence of varying selection pressure. Biotechnol Bioeng. 2002; 78(5): 475–88.
32. polished Abstract | Publisher Full Text
33. Polished McCurdy J: Aminoglycoside sensitivity in Saccharomyces cerevisiae strain WP030-1A. FEMS Yeast Res. 2014; 14(5): 697–707.
34. polished Abstract | Publisher Full Text
35. Müller M, Capuano F, Pir P, et al.: A prototypic deletion mutant collection for yeast metabolomics and systems biology. Nat Biotechnol. 2012; 30(12): 1176–8.
36. polished Abstract | Publisher Full Text
37. Niederberger P, Mizzanti G, Hüter R: Biological role of the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol. 1981; 1(7): 584–93.
38. polished Abstract | Publisher Full Text
39. Wagner A, Fell DA: The small world inside large metabolic networks. Proc Biol Sci. 2001; 268(1478): 1803–10.
40. polished Abstract | Publisher Full Text | Free Full Text
41. Hanj Ž, Fasolyuk H, Peterson KR: Rapid isolation of yeast genomic DNA: Bust n’ Grab. BMC Biotechnol. 2004; 4(1): 8.
42. polished Abstract | Publisher Full Text | Free Full Text
43. Raiser M, Guerfurth R, Wannatz HJ, et al.: An efficient and economic enhancer mix for PCR. Biotech Bioeng. 2006; 97(3): 747–51.
44. polished Abstract | Publisher Full Text
45. Gietz RD, Schiestl RH: High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007; 2(1): 31–4.
46. polished Abstract | Publisher Full Text
47. Sikorski RS, Hieter P: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989; 122(1): 19–27.
48. polished Abstract | Publisher Full Text
49. Cronan JE Jr, Narasimhan ML, Rawlings M: Insertional restoration of beta-galactosidase alpha-complementation (white-to-blue colony screening) facilitates assembly of synthetic genes. Gene. 1988; 79(1): 161–70.
50. polished Abstract | Publisher Full Text
51. Mumberg D, Müller R, Funk M: Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995; 196(1): 119–22.
52. polished Abstract | Publisher Full Text
53. Chang DT, Huang CY, Wu CY, et al.: YPA: an integrated repository of promoter features in Saccharomyces cerevisiae. Nucleic Acids Res. 2011; 39(Database issue): D647–52.
54. polished Abstract | Publisher Full Text | Free Full Text
55. Andersson DI, Levin BR: The biological cost of antibiotic resistance. Curr Opin Microbiol. 1999; 2(5): 489–93.
56. polished Abstract | Publisher Full Text
57. Andersson DI: The biological cost of mutualistic antibiotic resistance: any practical conclusions? Curr Opin Microbiol. 2006; 9(5): 461–5.
58. polished Abstract | Publisher Full Text
59. Campbell K, Vovinckel J, Raiser M: Cell-to-cell heterogeneity emerges as consequence of metabolic cooperation in a synthetic yeast community. Biotechnol J. 2016; 11(9): 1169–78.
60. polished Abstract | Publisher Full Text
61. Meinander NO, Hahn-Hägerdal B: Fed-batch xyitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability. Biotechnol Bioeng. 1997; 54(4): 391–9.
62. polished Abstract | Publisher Full Text
63. Sandorini CA, DiBasso D: A model for growth of Saccharomyces cerevisiae containing a recombinant plasmid in selective media. Biotechnol Bioeng. 1987; 29(4): 469–75.
64. polished Abstract | Publisher Full Text
65. Momoni B, Brileya KA, Fields MW, et al.: Strong inter-population cooperation leads to partner intermixing in microbial communities. eLife. 2013; 2: e00330.
66. polished Abstract | Publisher Full Text | Free Full Text
67. Shou W, Ram S, Vilar JM: Synthetic cooperation in engineered yeast populations. Nat Nat Acad Sci USA. 2007; 104(6): 1877–82.
68. polished Abstract | Publisher Full Text | Free Full Text
69. Hoek TA, Axlodt K, Bicanalani T, et al.: Resource Availability Modulates the Cooperative and Competitive Nature of a Microbial Cross-Feeding Mutualism. PLoS Biol. 2016; 14(8): e1002528.
70. polished Abstract | Publisher Full Text | Free Full Text
71. Müller MJ, Neugeboren BI, Nelson DR, et al.: Genetic drift opposes mutualism during spatial population expansion. Proc Natl Acad Sci USA. 2014; 111(3): 1037–42.
72. polished Abstract | Publisher Full Text | Free Full Text

F1000Research 2016, 5:2351 Last updated: 24 OCT 2016

Page 10 of 12
Open Peer Review

Current Referee Status: ✔️ ✔️

Version 1

Referee Report 24 October 2016

doi:10.5256/f1000research.10348.r16547

Amy A. Caudy
Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada

The Ralser group has thoughtfully designed and created a comprehensive set of plasmids suitable for the complementation of various combinations of the widely used leucine (leu2), uracil (ura3), methionine (met17, formerly known as met15), histidine (his3), and lysine (lys2) markers. Auxotrophy can have significant effects on a variety of phenotypes, as shown by this group and others (and as well-described in the introduction). This new collection of plasmids provides a convenient source of auxotrophic markers supplied from their endogenous promoters on a CEN/ARS plasmid, which is near single-copy in most situations.

Not content to make a simple derivative of the pHLUM plasmid they previously created in order to build a prototrophic version of the yeast deletion collection, the group went to significant efforts to preserve several sites including BamHI and XhoI within the blue/white compatible multiple cloning site of their base vector. These plasmids have been fully sequenced in collaboration with Addgene, revealing a handful of mutations not present in the original (theoretical) sequence of the parent plasmid deposited in Genbank more than a decade ago.

One minor point could be mentioned for clarity -

The introduction mentions supplementation of “nucleotides” but it is important to note that yeast cells do not take up (phosphorylated) nucleotides directly. Instead, these are dephosphorylated by extracellular phosphatases to nucleosides and then imported. There are also transporters that can efficiently take in nucleobases such as uridine.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.

Referee Report 10 October 2016

doi:10.5256/f1000research.10348.r16449

✔️
Campbell Gourlay
School of Biosciences, Kent University, Kent, UK

The paper nicely describes the generation and testing of a useful plasmid set that allows complementation of commonly used auxotrophic markers in the budding yeast system. The paper provides clear and adequate descriptions of their construction and therefore represents a solid piece of work that is ready for indexing as it is currently presented.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Competing Interests: No competing interests were disclosed.