A Tighter Relation Between Hereditary Discrepancy & Determinant Lower Bound

Victor Reis
SOSA 2022

Joint work with Haotian Jiang

W
UNIVERSITY of WASHINGTON
Outline of the talk

- Introduction to discrepancy and the determinant lower bound
Outline of the talk

- Introduction to discrepancy and the determinant lower bound
- Summary of previous results
Outline of the talk

- Introduction to discrepancy and the determinant lower bound
- Summary of previous results
- Our contribution
Outline of the talk

▶ Introduction to discrepancy and the determinant lower bound
▶ Summary of previous results
▶ Our contribution
▶ Open problems
Discrepancy as rounding

- Given $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^n$, how can we round y to $x \in \mathbb{Z}^n$ so that $Ax \approx Ay$?
Discrepancy as rounding

- Given $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^n$, how can we round y to $x \in \mathbb{Z}^n$ so that $Ax \approx Ay$?

- How much error do we necessarily incur in this rounding?
Discrepancy as rounding

- Given $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^n$, how can we round y to $x \in \mathbb{Z}^n$ so that $Ax \approx Ay$?

- How much error do we necessarily incur in this rounding?

- Denote $\|z\|_\infty := \max_{i \in [n]} |z_i|$ and define the linear discrepancy

\[
\text{lindisc}(A) := \max_{y \in \mathbb{R}^n} \text{lindisc}(A, y) := \max_{y \in \mathbb{R}^n} \min_{x \in \mathbb{Z}^n} \|Ax - Ay\|_\infty
\]

(Li-Nikolov, 2020) NP-hard to compute. Can we approximate it?
Discrepancy as rounding

Given $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^n$, how can we round y to $x \in \mathbb{Z}^n$ so that $Ax \approx Ay$?

How much error do we necessarily incur in this rounding?

Denote $\|z\|_\infty := \max_{i \in [n]} |z_i|$ and define the linear discrepancy

$$\text{lindisc}(A) := \max_{y \in \mathbb{R}^n} \text{lindisc}(A, y) := \max_{y \in \mathbb{R}^n} \min_{x \in \mathbb{Z}^n} \|Ax - Ay\|_\infty$$

(Li-Nikolov, 2020) NP-hard to compute. Can we approximate it?
Determinant lower bound

\[\text{lindisc}(A) = \max_{y \in \mathbb{R}^n} \min_{x \in \mathbb{Z}^n} \|Ax - Ay\|_\infty \]

Theorem (Lovász-Spencer-Vesztergombi, 1986)

For any square \(A \in \mathbb{R}^{n \times n} \) we have \(\text{lindisc}(A) \geq \frac{1}{2} |\det(A)|^{1/n} \).
Determinant lower bound

\[
\text{lindisc}(A) = \max_{y \in \mathbb{R}^n} \min_{x \in \mathbb{Z}^n} \|Ax - Ay\|_\infty
\]

Theorem (Lovász-Spencer-Vesztergombi, 1986)

For any square \(A \in \mathbb{R}^{n \times n}\) we have
\[
\text{lindisc}(A) \geq \frac{1}{2} |\det(A)|^{1/n}.
\]

- Denote \(K := \{x \in \mathbb{R}^n : \|Ax\|_\infty \leq 1\} = A^{-1}([-1, 1]^n)\)
Determinant lower bound

\[\text{lindisc}(A) = \max_{y \in \mathbb{R}^n} \min_{x \in \mathbb{Z}^n} \|Ax - Ay\|_{\infty} \]

Theorem (Lovász-Spencer-Vesztergombi, 1986)

For any square \(A \in \mathbb{R}^{n \times n} \) we have \(\text{lindisc}(A) \geq \frac{1}{2} |\det(A)|^{1/n} \).

- Denote \(K := \{x \in \mathbb{R}^n : \|Ax\|_{\infty} \leq 1\} = A^{-1}([-1, 1]^n) \)

- By definition, \(\text{lindisc}(A) \cdot K + \mathbb{Z}^n = \mathbb{R}^n \implies \text{vol}_n(\text{lindisc}(A) \cdot K) \geq 1 \)
Determinant lower bound

\[\text{lindisc}(A) = \max_{y \in \mathbb{R}^n} \min_{x \in \mathbb{Z}^n} \|Ax - Ay\|_\infty \]

Theorem (Lovász-Spencer-Vesztergombi, 1986)
For any square \(A \in \mathbb{R}^{n \times n} \) we have \(\text{lindisc}(A) \geq \frac{1}{2} |\det(A)|^{1/n} \).

- Denote \(K := \{x \in \mathbb{R}^n : \|Ax\|_\infty \leq 1\} = A^{-1}([-1, 1]^n) \)
- By definition, \(\text{lindisc}(A) \cdot K + \mathbb{Z}^n = \mathbb{R}^n \implies \text{vol}_n(\text{lindisc}(A) \cdot K) \geq 1 \)
- It remains to note \(\text{vol}_n(K) = |\det(A)|^{-1} \cdot \text{vol}([-1, 1]^n) = 2^n / |\det(A)| \).
Determinant lower bound

\[\text{lindisc}(A) = \max_{y \in \mathbb{R}^n} \min_{x \in \mathbb{Z}^n} \|Ax - Ay\|_\infty \]

Theorem (Lovász-Spencer-Vesztergombi, 1986)

For any square \(A \in \mathbb{R}^{n \times n} \) we have \(\text{lindisc}(A) \geq \frac{1}{2} |\det(A)|^{1/n} \).

- Denote \(K := \{x \in \mathbb{R}^n : \|Ax\|_\infty \leq 1\} = A^{-1}([-1, 1]^n) \)
- By definition, \(\text{lindisc}(A) \cdot K + \mathbb{Z}^n = \mathbb{R}^n \implies \text{vol}_n(\text{lindisc}(A) \cdot K) \geq 1 \)
- It remains to note \(\text{vol}_n(K) = |\det(A)|^{-1} \cdot \text{vol}([-1, 1]^n) = 2^n / |\det(A)|. \)

What about an upper bound?
Hereditary discrepancy

Define the *hereditary discrepancy*

$$\text{herdisc}(A) := \max_{S \subseteq [n]} \min_{x \in \{-1, 1\}^S} \| A_S x \|_\infty,$$

where A_S is the submatrix of A with columns from S.
Hereditary discrepancy

Define the hereditary discrepancy

\[\text{herdisc}(A) := \max_{S \subseteq [n]} \min_{x \in \{-1,1\}^S} \|A_S x\|_\infty, \]

where \(A_S\) is the submatrix of \(A\) with columns from \(S\).

Theorem (Lovász-Spencer-Vesztergombi, 1986)

For any \(A \in \mathbb{R}^{m \times n}\) we have \(\text{lindisc}(A) \leq \text{herdisc}(A)\).
Hereditary discrepancy

Define the *hereditary discrepancy*

\[\text{herdisc}(A) := \max_{S \subseteq [n]} \min_{x \in \{-1,1\}^S} \|A_S x\|_\infty, \]

where \(A_S \) is the submatrix of \(A \) with columns from \(S \).

Theorem (Lovász-Spencer-Vesztergombi, 1986)

For any \(A \in \mathbb{R}^{m \times n} \) we have \(\text{lindisc}(A) \leq \text{herdisc}(A) \).

- First step: \(\text{lindisc}(A, y) \leq \frac{1}{2} \text{herdisc}(A) \) for \(y \in \frac{1}{2} \mathbb{Z}^n \)
Hereditary discrepancy

Define the hereditary discrepancy

\[
\text{herdisc}(A) := \max_{S \subseteq [n]} \min_{x \in \{-1,1\}^S} \|A_S x\|_\infty,
\]

where \(A_S\) is the submatrix of \(A\) with columns from \(S\).

Theorem (Lovász-Spencer-Vesztergombi, 1986)

For any \(A \in \mathbb{R}^{m \times n}\) we have \(\text{lindisc}(A) \leq \text{herdisc}(A)\).

- First step: \(\text{lindisc}(A, y) \leq \frac{1}{2} \text{herdisc}(A)\) for \(y \in \frac{1}{2} \mathbb{Z}^n\)

- Round non-integer coordinates \(S := \{i : y_i \notin \mathbb{Z}\}\) based on \(x \in \{-1,1\}^S\).
Hereditary discrepancy

Define the *hereditary discrepancy*

\[
\text{herdisc}(A) := \max_{S \subseteq [n]} \min_{x \in \{-1,1\}^S} \|A_S x\|_\infty,
\]

where \(A_S\) is the submatrix of \(A\) with columns from \(S\).

Theorem (Lovász-Spencer-Vesztergombi, 1986)
For any \(A \in \mathbb{R}^{m \times n}\) we have \(\text{lindisc}(A) \leq \text{herdisc}(A)\).

- First step: \(\text{lindisc}(A, y) \leq \frac{1}{2} \text{herdisc}(A)\) for \(y \in \frac{1}{2} \mathbb{Z}^n\)

- Round non-integer coordinates \(S := \{i : y_i \notin \mathbb{Z}\}\) based on \(x \in \{-1, 1\}^S\).

Alternatively: \(\frac{1}{2} \mathbb{Z}^n \subseteq \frac{1}{2} \text{herdisc}(A) \cdot K + \mathbb{Z}^n\)
Hereditary discrepancy

Define the *hereditary discrepancy*

\[
\text{herdisc}(A) := \max_{S \subseteq [n]} \min_{x \in \{-1,1\}^S} \| A_S x \|_\infty,
\]

where \(A_S \) is the submatrix of \(A \) with columns from \(S \).

Theorem (Lovász-Spencer-Vesztergombi, 1986)

For any \(A \in \mathbb{R}^{m \times n} \) we have \(\text{lindisc}(A) \leq \text{herdisc}(A) \).

- First step: \(\text{lindisc}(A, y) \leq \frac{1}{2} \text{herdisc}(A) \) for \(y \in \frac{1}{2} \mathbb{Z}^n \)
- Round non-integer coordinates \(S := \{i : y_i \notin \mathbb{Z}\} \) based on \(x \in \{-1,1\}^S \).

Alternatively: \(\frac{1}{2} \mathbb{Z}^n \subseteq \frac{1}{2} \text{herdisc}(A) \cdot K + \mathbb{Z}^n \)

- Second step: Show this implies \(\mathbb{R}^n \subseteq \text{herdisc}(A) \cdot K + \mathbb{Z}^n \).
\(l \text{indisc} \leq \text{herdisc} \)

Second step: for any closed convex \(K \subset \mathbb{R}^n \),

\[
\frac{1}{2} \mathbb{Z}^n \subseteq K + \mathbb{Z}^n \implies \mathbb{R}^n \subseteq 2K + \mathbb{Z}^n.
\]
lindisc \leq herdisc

Second step: for any closed convex $K \subset \mathbb{R}^n$,

$$\frac{1}{2} \mathbb{Z}^n \subseteq K + \mathbb{Z}^n \implies \mathbb{R}^n \subseteq 2K + \mathbb{Z}^n.$$
\(\text{lindisc} \leq \text{herdisc} \)

Second step: for any closed convex \(K \subset \mathbb{R}^n \),

\[
\frac{1}{2} \mathbb{Z}^n \subseteq K + \mathbb{Z}^n \quad \Rightarrow \quad \mathbb{R}^n \subseteq 2K + \mathbb{Z}^n.
\]
Corollary

- We showed for any matrix A we have $\text{herdisc}(A) \geq \text{lindisc}(A)$
Corollary

- We showed for any matrix A we have $\text{herdisc}(A) \geq \text{lindisc}(A)$

- In particular, $\text{herdisc}(A) \geq \text{lindisc}(A_{S,T})$ for every $(S, T) \subseteq [m] \times [n]$
Corollary

- We showed for any matrix A we have $\text{herdisc}(A) \geq \text{lindisc}(A)$

- In particular, $\text{herdisc}(A) \geq \text{lindisc}(A_{S,T})$ for every $(S, T) \subseteq [m] \times [n]$

Corollary

For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \geq \frac{1}{2} \cdot \max_{(S, T) \subseteq [m] \times [n] \atop |S|=|T|=k} |\det(A_{S,T})|^{1/k}$.
Corollary

- We showed for any matrix A we have $\text{herdisc}(A) \geq \text{lindisc}(A)$

- In particular, $\text{herdisc}(A) \geq \text{lindisc}(A_{S,T})$ for every $(S, T) \subseteq [m] \times [n]$

Corollary

For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \geq \frac{1}{2} \cdot \max_{(S,T) \subseteq [m] \times [n]} |\det(A_{S,T})|^{1/k}$.

- Denote $\text{detLB}(A) := \max_{k \in \mathbb{N}} \max_{(S,T) \subseteq [m] \times [n]} |\det(A_{S,T})|^{1/k}$
Corollary

- We showed for any matrix A we have $\text{herdisc}(A) \geq \text{lindisc}(A)$

- In particular, $\text{herdisc}(A) \geq \text{lindisc}(A_{S,T})$ for every $(S, T) \subseteq [m] \times [n]$

Corollary

For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \geq \frac{1}{2} \cdot \max_{(S, T) \subseteq [m] \times [n]} |\det(A_{S, T})|^{1/k}$.

- Denote $\text{detLB}(A) := \max_{k \in \mathbb{N}} \max_{(S, T) \subseteq [m] \times [n]} |\det(A_{S, T})|^{1/k}$

- How tight is the bound $\text{herdisc} \gtrsim \text{detLB}$?
Corollary

- We showed for any matrix A we have $\text{herdisc}(A) \geq lindisc(A)$
- In particular, $\text{herdisc}(A) \geq lindisc(A_{S,T})$ for every $(S, T) \subseteq [m] \times [n]$

Corollary

For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \geq \frac{1}{2} \cdot \max_{k \in \mathbb{N}} \max_{(S, T) \subseteq [m] \times [n]} |\det(A_{S,T})|^{1/k}$.

- Denote $\detLB(A) := \max_{k \in \mathbb{N}} \max_{(S, T) \subseteq [m] \times [n]} |\det(A_{S,T})|^{1/k}$
- How tight is the bound $\text{herdisc} \succeq \detLB$?

Theorem (Matoušek, 2011)

For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \lesssim \sqrt{\log m \cdot \log n \cdot \detLB(A)}$.
Matoušek’s Bound

Theorem (Matoušek, 2011)

For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \lesssim \sqrt{\log m \cdot \log n \cdot \det \text{LB}(A)}$.

Combination of two results involving the *hereditary vector discrepancy*:
Matoušek’s Bound

Theorem (Matoušek, 2011)

For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \lesssim \sqrt{\log m \cdot \log n \cdot \text{detLB}(A)}$.

Combination of two results involving the *hereditary vector discrepancy*:
Matoušek’s Bound

Theorem (Matoušek, 2011)

For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \lesssim \sqrt{\log m \cdot \log n} \cdot \text{detLB}(A)$.

Combination of two results involving the *hereditary vector discrepancy*:

Theorem (Bansal, 2010)

For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \lesssim \sqrt{\log m \cdot \log n} \cdot \text{hervecdisc}(A)$.
Matoušek’s Bound

Theorem (Matoušek, 2011)

For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \lesssim \sqrt{\log m \cdot \log n} \cdot \detLB(A)$.

Combination of two results involving the *hereditary vector discrepancy*:

Theorem (Bansal, 2010)

For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \lesssim \sqrt{\log m \cdot \log n} \cdot \text{hervecdisc}(A)$.

Matoušek’s lemma (2011)

For any $A \in \mathbb{R}^{m \times n}$ we have $\detLB(A) \gtrsim \text{hervecdisc}(A)/\sqrt{\log n}$.
Our contribution

Theorem (Jiang-R., 2021)
For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \lesssim \sqrt{\log m \cdot \log n} \cdot \text{detLB}(A)$.

Combination of two results involving partial *hereditary vector discrepancy*:

Theorem (Bansal, 2010), slight adaptation
For any $A \in \mathbb{R}^{m \times n}$ we have $\text{herdisc}(A) \lesssim \sqrt{\log m \cdot \log n} \cdot \text{herpvdisc}(A)$.

Key lemma
For any $A \in \mathbb{R}^{m \times n}$ we have $\text{detLB}(A) \gtrsim \text{herpvdisc}(A)$.
Partial vector discrepancy

Given $A \in \mathbb{R}^{m \times n}$, the partial vector discrepancy is given by the SDP

$$\begin{align*}
\min \lambda \\
\left\| \sum_{j=1}^{n} a_{ij} v_j \right\|_2 \leq \lambda \quad \forall i \in [m] \\
\sum_{j=1}^{n} \|v_j\|_2^2 \geq n/2 \\
\|v_j\|_2^2 \leq 1 \quad \forall j \in [n].
\end{align*}$$
Partial vector discrepancy

Given \(A \in \mathbb{R}^{m \times n} \), the partial vector discrepancy is given by the SDP

\[
\begin{align*}
\min \ & \lambda \\
\| \sum_{j=1}^{n} a_{ij} v_j \|_2 & \leq \lambda \quad \forall \ i \in [m] \\
\sum_{j=1}^{n} \| v_j \|_2^2 & \geq n/2 \\
\| v_j \|_2^2 & \leq 1 \quad \forall \ j \in [n].
\end{align*}
\]

In order to show \(\det LB \gtrsim \lambda \), suffices to beat any dual feasible solution
Dual partial vector discrepancy SDP

The dual SDP is given by

\[
\begin{align*}
\max & \quad n\gamma - \sum_{j=1}^{n} z_j \\
\sum_{i=1}^{m} w_i a_i a_i^\top + \sum_{j=1}^{n} z_j e_j e_j^\top & \succeq 2\gamma \cdot I_n \\
\sum_{i=1}^{m} w_i & = 1 \\
w, z & \geq 0.
\end{align*}
\]

Here \(\lambda^2 = n\gamma - \sum_{j=1}^{n} z_j \) for some feasible \((w, z, \gamma)\).
Dual partial vector discrepancy SDP

The dual SDP is given by

\[
\max \ n \gamma - \sum_{j=1}^{n} z_j \\
\sum_{i=1}^{m} w_i a_i a_i^\top + \sum_{j=1}^{n} z_j e_j e_j^\top \geq 2 \gamma \cdot I_n \\
\sum_{i=1}^{m} w_i = 1 \\
w, z \geq 0.
\]

Here \(\lambda^2 = n \gamma - \sum_{j=1}^{n} z_j \) for some feasible \((w, z, \gamma)\).

Idea: find a submatrix with large singular values, therefore large det
Proof sketch

The dual SDP is given by

\[
\max \quad n \gamma - \sum_{j=1}^{n} z_j \\
\sum_{i=1}^{m} w_i a_i a_i^T + \sum_{j=1}^{n} z_j e_j e_j^T \succeq 2 \gamma \cdot I_n \\
\sum_{i=1}^{m} w_i = 1 \\
w, z \geq 0.
\]

Here \(\lambda^2 = n \gamma - \sum_{j=1}^{n} z_j \) for some feasible \((w, z, \gamma)\).

\(J := \{j \in [n] : z_j < 1.5 \gamma\} \) so that \(|J| \geq n/3\) and \(2 \gamma - z_j > 0.5 \gamma\) for \(j \in J\).
Proof sketch

The dual SDP is given by

$$\begin{align*}
\max & \quad n \gamma - \sum_{j=1}^{n} z_j \\
\sum_{i=1}^{m} w_i a_i a_i^\top + \sum_{j=1}^{n} z_j e_j e_j^\top & \succeq 2 \gamma \cdot I_n \\
\sum_{i=1}^{m} w_i &= 1 \\
w, z & \geq 0.
\end{align*}$$

Here $\lambda^2 = n \gamma - \sum_{j=1}^{n} z_j$ for some feasible (w, z, γ).

$J := \{j \in [n] : z_j < 1.5 \gamma\}$ so that $|J| \geq n/3$ and $2 \gamma - z_j > 0.5 \gamma$ for $j \in J$.

It follows all eigenvalues of $\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^\top$ are $> 0.5 \gamma \geq 0.5 \cdot \lambda^2 / n$.
Proof sketch

- It follows all eigenvalues of $\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^\top$ are $> 0.5 \gamma \geq 0.5 \cdot \lambda^2 / n$
Proof sketch

- It follows all eigenvalues of $\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^T$ are $> 0.5\gamma \geq 0.5 \cdot \lambda^2 / n$

- Therefore $\det(\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^T) \geq (0.5\lambda^2 / n)^{|J|}$
Proof sketch

- It follows all eigenvalues of $\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^T$ are $> 0.5 \gamma \geq 0.5 \cdot \lambda^2 / n$

- Therefore $\det(\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^T) \geq (0.5 \lambda^2 / n)^{|J|}$

- Cauchy-Binet also gives

$$\det(\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^T) = \sum_{I \subseteq \{m\}, |I| = |J|} \det(A_{I,J})^2 \prod_{i \in I} w_i$$
Proof sketch

- It follows all eigenvalues of $\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^\top$ are $> 0.5 \gamma \geq 0.5 \cdot \lambda^2 / n$

- Therefore $\det(\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^\top) \geq (0.5 \lambda^2 / n)^{|J|}$

- Cauchy-Binet also gives

$$\det(\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^\top) = \sum_{I \subseteq \{m\}, |I|=|J|} \det(A_{I,J})^2 \prod_{i \in I} w_i$$

$$\leq \detLB(A)^{2|J|} \cdot \sum_{I \subseteq \{m\}, |I|=|J|} \prod_{i \in I} w_i$$
Proof sketch

- It follows all eigenvalues of $\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^\top$ are $> 0.5\gamma \geq 0.5 \cdot \lambda^2 / n$

- Therefore $\det(\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^\top) \geq (0.5\lambda^2 / n)^{|J|}$

- Cauchy-Binet also gives

$$
\det(\sum_{i=1}^{m} w_i a_{i,J} a_{i,J}^\top) = \sum_{I \subseteq [m], |I| = |J|} \det(A_{I,J})^2 \prod_{i \in I} w_i
$$

$$
\leq \detLB(A)^{2|J|} \cdot \sum_{I \subseteq [m], |I| = |J|} \prod_{i \in I} w_i
$$

$$
\leq \detLB(A)^{2|J|} \cdot \frac{1}{|J|!} \cdot \left(\sum_{i=1}^{m} w_i \right)^{|J|}
$$

\[=1\]
Proof sketch

- It follows all eigenvalues of $\sum_{i=1}^{m} \omega_i a_{i,J} a_{i,J}^\top$ are $> 0.5\gamma \geq 0.5 \cdot \lambda^2 / n$.

- Therefore $\det(\sum_{i=1}^{m} \omega_i a_{i,J} a_{i,J}^\top) \geq (0.5\lambda^2 / n)^{|J|}$.

- Cauchy-Binet also gives

$$\det(\sum_{i=1}^{m} \omega_i a_{i,J} a_{i,J}^\top) = \sum_{I \subseteq \{m\}, |I| = |J|} \det(A_{I,J})^2 \prod_{i \in I} \omega_i$$

$$\leq \detLB(A)^{2|J|} \cdot \sum_{I \subseteq \{m\}, |I| = |J|} \prod_{i \in I} \omega_i$$

$$\leq \detLB(A)^{2|J|} \cdot \frac{1}{|J|!} \cdot \left(\sum_{i=1}^{m} \omega_i\right)^{|J|}$$

- Combining the two inequalities, $\detLB(A) \gtrsim \lambda \cdot \sqrt{|J|/n} \gtrsim \lambda$.
Open problems

▶ Is it possible to approximate detLB up to $\Theta(1)$ in poly time?

▶ We showed $\text{detLB} \gtrapprox \text{herpvdisc}$. Is it true $\text{detLB} \lesssim \text{herpvdisc}$?

▶ Is it true that $\text{herdisc}(A) \lesssim (p \log m + \log n) \cdot \text{detLB}(A)$?
Open problems

- Is it possible to approximate detLB up to $\Theta(1)$ in poly time?
- We showed $\text{detLB} \succeq \text{herpvdisc}$. Is it true $\text{detLB} \preceq \text{herpvdisc}$?
Open problems

- Is it possible to approximate detLB up to $\Theta(1)$ in poly time?
- We showed $\text{detLB} \gtrapprox \text{herpvdisc}$. Is it true $\text{detLB} \lesssim \text{herpvdisc}$?
- Is it true that $\text{herdisc}(A) \lesssim (\sqrt{\log m + \log n}) \cdot \text{detLB}(A)$?
Open problems

- Is it possible to approximate detLB up to $\Theta(1)$ in poly time?
- We showed $\text{detLB} \gtrsim \text{herpvdisc}$. Is it true $\text{detLB} \lesssim \text{herpvdisc}$?
- Is it true that $\text{herdisc}(A) \lesssim (\sqrt{\log m + \log n}) \cdot \text{detLB}(A)$?

Thanks for your attention!