Size diversity of old Large Magellanic Cloud clusters as determined by internal dynamical evolution

F. R. Ferraro1–2*, B. Lanzoni1–2, E. Dalessandro2, M. Cadelano1–2, S. Raso1–2, A. Mucciarelli1–2, G. Beccari2 and C. Pallanca1–2

The distribution of size as a function of age observed for star clusters in the Large Magellanic Cloud (LMC) is very puzzling: young clusters are all compact, while the oldest systems show both small and large sizes. This phenomenon is commonly interpreted as being due to a population of binary black holes driving a progressive expansion of cluster cores. Here we propose, instead, that it is the natural consequence of the fact that only relatively low-mass clusters have formed in the past ~3 Gyr in the LMC and only the most compact systems survived and are observable. The spread in size displayed by the oldest (and most massive) clusters, instead, can be explained in terms of initial conditions and internal dynamical evolution. To quantitatively explore the role of the latter, we selected a sample of five coeval and old LMC clusters with different sizes, and we estimated their dynamical age from the level of central segregation of blue straggler stars (the so-called dynamical clock). Similarly to what is found in the Milky Way, we indeed measure different levels of dynamical evolution among the selected coeval clusters, with large-core systems being dynamically younger than those with small size. This behaviour is fully consistent with what is expected from internal dynamical evolution processes over timescales mainly set by the structure of each system at formation.

The Large Magellanic Cloud (LMC) hosts star clusters covering a wide range of ages (from a few million to several billion years), at odds with the Milky Way where mostly old (>10 Gyr) globular clusters (GCs) are found. The LMC thus offers a unique opportunity to explore the evolutionary processes of stellar clusters over cosmic time. One of the most intriguing features emerging from these studies is the behaviour of the core radius \(r_c \) (which characterizes the size of the innermost cluster region) as a function of age (as measured from the cluster stellar population): the youngest clusters are all compact (with \(r_c < 2.5 \text{ pc} \)), while the oldest ones span the full range of observed \(r_c \) values, from a fraction of a parsec to almost 10 pc (Fig. 1a), similar to what is measured for the Milky Way (old) GCs. After ruling out any possible bias due to selection effects, the observed trend has been interpreted in terms of an evolutionary sequence. In this scenario, all clusters formed with compact cores (\(r_c < 2–3 \text{ pc} \)), then most of them maintained small cores, while several others experienced core expansion and moved to the upper-right corner of the diagram. Such an expansion, however, needs to be powered by some ad hoc mechanism. Among the different possibilities discussed in the literature, one often quoted scenario is that the core expansion is due to the heating action of a population of stellar-mass binary black holes (BHs) retained after the supernova explosions. Dynamical interactions among single and binary BHs led to multiple BH scatterings and ejections, thus driving the expansion of the central cluster regions.

An alternative reading of the cluster size–age distribution

Although intriguing, the proposed scenario implicitly requires an evolutionary link between the younger and the older GCs in the LMC, with the former being representative of the progenitors of the oldest ones. However, the two groups show different masses and positions within the LMC: all the young clusters are light stellar systems (with total mass \(M < 10^5 M_\odot \)), while old clusters are all more massive than \(10^5 M_\odot \) (Fig. 1b); moreover, the young objects are observed in the innermost regions of the host galaxy (within ~5 kpc from the centre), while the old ones are orbiting at any distance (Fig. 1c). These pieces of evidence strongly indicate that the progenitors of the old LMC clusters must have been more massive (up to a factor of 100) than the currently young systems, hence there does not appear to be a direct evolutionary connection between the two groups. In turn, this seriously challenges the reading of the LMC size–age distribution in terms of an ‘evolutionary sequence’.

In contrast, the observed distributions (Fig. 1) show how the cluster parameters changed over the time in the LMC:

- During the early formation epoch of the LMC (~13 Gyr ago), many star clusters more massive than \(10^5 M_\odot \) formed over a quite short timescale (the old clusters, in fact, all formed within a period of ~1 Gyr—see ‘The age of the five LMC clusters’ in the Methods) at any distance within the galaxy;
- After a long period of quiescence (~Δt~10 Gyr, the so-called age gap)~10, about 3 Gyr ago cluster formation was reactivated (likely because of a strong tidal interaction with the Small Magellanic Cloud)~11 and only less massive structures have been generated since then (that is, over a much more extended period, of several billion years) essentially in the innermost region of the galaxy (\(R_s < 4–5 \text{ kpc} \) around the LMC bar~11).

Within this scenario, the lack of young clusters with large \(r_c \) would be the natural consequence of the observed mass–age and distance–age distributions: since all recent clusters are light systems formed in the innermost region of the LMC, only the most...
compact ones can survive the tidal effects of the host galaxy, while any loose and light system that might have formed had been already disrupted. This directly explains why the upper-left portion of the r_c–age diagram is empty. According to the observed mass distribution of the old clusters, none of the young light systems currently observable in the LMC will probably survive over the next 10 Gyr.

Following these considerations, it remains to be understood why old GCs span a wide range of r_c values. Here we propose that this is primarily due to a combination of different properties at the moment of cluster formation and different stages of internal dynamical evolution (different dynamical ages) currently reached by each system, with the larger-core GCs being dynamically less evolved (younger) than those with small r_c. Indeed, it is well known that GCs are dynamically active stellar systems, where gravitational interactions among stars can significantly alter the overall energy budget and lead to a progressive internal dynamical evolution through processes such as mass segregation, evaporation of light stars, core collapse and so on. Thus, star clusters formed at the same cosmic time (that is, with the same chronological age) may have reached quite different stages of dynamical evolution, corresponding to different modifications of their internal structure with respect to the initial conditions. An innovative method to empirically measure the level of dynamical evolution suffered by a stellar system has been recently proposed based on blue straggler stars (BSSs). These peculiar objects are thought to be generated by some mass-enhancement processes, like mass-transfer in binary systems or stellar mergers due to direct collisions. Independently of their formation mechanism, BSSs constitute a population of heavy objects (with average masses of 1.2–1.3 M_\odot) in old stellar systems orbiting a sea of light stars (with an average mass $<m>$ of ~0.3–0.4 M_\odot). For this reason, they suffer the effect of dynamical friction, which makes them sink towards the cluster centre. The progressive (dynamical friction induced) central segregation of BSSs is very efficiently described by the parameter $A+$, defined as the area enclosed between the cumulative radial distribution of BSSs and that of a reference (lighter) population (typically with a mass of $\sim 0.8 M_\odot$). N-body and Monte Carlo simulations demonstrated that, as expected for a sensitive indicator of the BSS sedimentation process, the value of $A+$ systematically increases with time. From an empirical point of view, this parameter has been measured in a large sample of old galactic GCs, finding a strong correlation with the core relaxation time (t_c) and thus confirming that the level of BSS central segregation is a powerful indicator of the dynamical age of the parent cluster: the method is therefore dubbed the ‘dynamical clock’. Following this line of reasoning, we propose that the r_c spread observed for old GCs in the LMC could be explained in terms of different levels of dynamical evolution reached by systems of fixed chronological age.

The dynamical ages of five old star clusters in the LMC

To provide arguments to support this scenario, we determined (through the $A+$ parameter) the dynamical age of a sample of old LMC clusters, for which Hubble Space Telescope observations are adequate enough to properly study the BSS population and reliably evaluate the LMC field star contamination are available (see ‘The dataset’ in the Methods). The five selected clusters (namely NGC 1466, NGC 1841, NGC 2210, NGC 2257 and Hodge 11) are old, massive ($\log(M/M_\odot)$ \sim 5.2 \pm 0.2) and metal poor ([Fe/H] \sim −1.9 \pm 0.2): they are marked with red squares in Fig. 1. The photometric catalogues were first used to re-determine the gravitational centre of each system. In fact, a correct location of the cluster centre is a key step, especially in such distant stellar systems, since even small errors can significantly affect the derived radial behaviour of the observed stellar populations. With respect to previous studies, we found differences up to several arcseconds (Table 1). Note that one arcsecond corresponds to 0.24 pc at the distance of the LMC (we assumed $d = 50$ kpc).

We then determined new star density profiles and structural parameters (namely the core, half-mass and tidal radii, the concentration parameter, and so on) from resolved star counts and by properly taking into account the LMC field contamination (see ‘Field decontamination’ in the Methods and Supplementary Table 1). According to similar studies performed on galactic GCs, the BSS population has been selected in the ‘normalized colour magnitude diagram (n-CMD)’, where the magnitudes of all the measured stars are shifted to assign coordinates (0,0) to the colour and magnitude of the main-sequence turn-off point. The co-added n-CMD of the five target clusters is plotted in Fig. 2 (grey dots): as apparent, the main stellar evolutionary sequences of the five GCs are remarkably well superposed on one another, suggesting that these systems are all coeval. Moreover, the perfect match with the CMD of M30, one of the oldest Milky Way GCs with comparable metallicity, suggests a common age of ~13 Gyr, (see ‘The age of the five LMC clusters’ in the Methods). Hence, the BSS population has been identified by adopting the same selection box in all the target clusters. The same holds for the selection of the reference population, that is, a sample of normal cluster stars tracing the overall star density profile of the system. In particular, to be consistent with previous studies performed in galactic GCs,

![Fig. 1 | The drastic change in LMC cluster properties as a function of cosmic time. a–c. Observed distribution of core radius (r_c) (a), total mass (M) (b) and galactocentric distance (R_g) (c) versus chronological age for the LMC GCs. The average 1σ errors are marked in each panel. The ~10-Gyr-long period of cluster formation quiescence is marked with a grey shaded region. The dashed red lines in (c) correspond to different modifications of their internal structure with respect to the initial conditions. An innovative method to empirically measure the level of dynamical evolution suffered by a stellar system has been recently proposed based on blue straggler stars (BSSs). These peculiar objects are thought to be generated by some mass-enhancement processes, like mass-transfer in binary systems or stellar mergers due to direct collisions. Independently of their formation mechanism, BSSs constitute a population of heavy objects (with average masses of 1.2–1.3 M_\odot) in old stellar systems orbiting a sea of light stars (with an average mass $<m>$ of ~0.3–0.4 M_\odot). For this reason, they suffer the effect of dynamical friction, which makes them sink towards the cluster centre. The progressive (dynamical friction induced) central segregation of BSSs is very efficiently described by the parameter $A+$, defined as the area enclosed between the cumulative radial distribution of BSSs and that of a reference (lighter) population (typically with a mass of $\sim 0.8 M_\odot$). N-body and Monte Carlo simulations demonstrated that, as expected for a sensitive indicator of the BSS sedimentation process, the value of $A+$ systematically increases with time. From an empirical point of view, this parameter has been measured in a large sample of old galactic GCs, finding a strong correlation with the core relaxation time (t_c) and thus confirming that the level of BSS central segregation is a powerful indicator of the dynamical age of the parent cluster: the method is therefore dubbed the ‘dynamical clock’. Following this line of reasoning, we propose that the r_c spread observed for old GCs in the LMC could be explained in terms of different levels of dynamical evolution reached by systems of fixed chronological age.}
demonstrates that the five clusters are all old and coeval, with an age $t = 13\, \text{Gyr}$)39,40. The comparison clearly shows different levels of BSS segregation and, thus, different levels of dynamical evolution. This is further confirmed by Fig. 5a, showing the dynamical age of the investigated LMC GCs (large red squares) as a function of A^+. The dynamical age is expressed in terms of the ratio N_{relax} between the chronological age of the systems ($t = 13\, \text{Gyr}$) and their current central relaxation times (t_relax, see ‘Central relaxation times’ in Methods). This index quantifies the number of t_relax occurred since the epoch of cluster formation: a large value of N_{relax} means a dynamically evolved stellar system, while a small value means a dynamically unevolved cluster. As apparent, the BSS segregation level measured in NGC 2210 indicates that ~100 central relaxation times have occurred since the formation epoch of this cluster, while this index drops to 20–30 for NGC 1466 and NGC 2257, and to just a few units for Hodge 11 and NGC 1841. The figure also shows an impressive match between the results obtained here for the five LMC clusters and those previously found for a sample of 48 old and coeval galactic GCs (grey circles)15,39, demonstrating that the ‘dynamical clock’ can be efficiently used in any stellar environment. Figure 5b shows the effect of dynamical evolution on the core size for the entire sample of 48 galactic GCs (grey dots) and the five LMC systems studied here (large red squares). As can be seen from the nice correlation, clusters with large core radius are dynamically younger (with lower values of the A^+ parameter) than compact systems. The former have possibly maintained unchanged or only slightly modified their initial structure (in terms of core size, concentration, central density), while all dynamically old clusters currently appear as quite compact objects, although they possibly formed with a larger core. Hence, the internal dynamical evolution tends to generate compact clusters, systematically moving large-core systems towards small-size compact objects over a timescale that mainly depends on the cluster structure. Figure 1a,c suggests that also the local environment might have had some impact on the cluster dynamical evolution: in fact, the old GCs with smallest core radii are located at the smallest galactocentric distances, indicating that their internal evolution has been accelerated by an increased evaporation/tidal stripping of low mass stars in the innermost region of the LMC. Of course, also the fraction of dark remnants (as BHs and neutron stars) retained within each cluster and their ejection timescale has an impact on the dynamical evolution of the system (in the sense of slowing it down for increasing retention fraction)20. However, both

Table 1 | Cluster parameters determined in this study

Cluster	Gravitational centre	r.m.s.	Offset from MG03	r_c (arcsec) (pc)	r_h (arcsec) (pc)	$\log(t_\text{r}(\text{yr}))$	A^+		
NGC 1466	03 h 44 min 32.72 s −7° 40’ 15.63”	0.3”	2.8”	8.1±0.0	2.0 pc	24.5±0.2	5.9 pc	8.56	0.15±0.05
NGC 1841	04 h 45 min 22.49 s −83° 59’ 55.06”	0.4”	2.4”	30.3±1.3	7.3 pc	57.9±2.3	14.0 pc	9.54	0.02±0.07
NGC 2210	06 h 11 min 31.69 s −69° 07’ 18.37”	0.1”	1.7”	4.4±0.5	1.1 pc	15.9±0.5	3.9 pc	8.07	0.24±0.05
NGC 2257	06 h 30 min 12.59 s −64° 19’ 37.21”	0.4”	5.7”	26.7±1.6	6.5 pc	56.4±2.6	13.6 pc	9.51	0.11±0.05
Hodge 11	06 h 14 min 22.99 s −69° 50’ 49.92”	0.2”	3.6”	15.0±1.0	3.6 pc	36.3±1.5	8.8 pc	9.11	0.04±0.05

The quoted uncertainties are standard deviations.

Fig. 2 | The age of the five LMC clusters. The co-added n-CMDs of the five LMC clusters (in grey) is compared with that of the galactic GC M3010 ($t = 13\, \text{Gyr}$). The x and y axes show, respectively, the normalized colour ($V – I$)* and the normalized magnitude V^*. The comparison clearly demonstrates that the five clusters are all old and coeval, with an age of ~13 Gyr.

(1) We only considered BSSs with normalized V magnitude $V^* < -0.6$. This selection includes only the most massive portion of the BSS population, thus maximizing the sensitivity of the A^+ parameter to the dynamical friction effect. Moreover, it excludes the faintest portion where increasing photometric errors and blends can make the BSS selection more problematic.

(2) As a reference population, we adopted the lower portion of the red giant branch and the subgiant branch in the same range of magnitudes of the selected BSSs. This indeed provides the ideal reference population, as it includes several hundred stars (thus making statistical fluctuations negligible), and it assures the same level of completeness of the BSS sample.

(3) We measured the A^+ parameter within one half-mass radius (r_c). This assumption allows a direct comparison among the five different systems and with the large sample of galactic GCs studied in the literature14,13,1.

The n-CMDs for all the stars measured within one r_c in the five programme clusters are shown in Fig. 3, where the selection boxes of the BSS and reference populations are also drawn. The cumulative radial distributions of the two populations are plotted in Fig. 4,
these quantities are unknown at the moment, and only a few observational evidence of BH candidates in GCs has been found so far.26,27 Hence, here we consider the action of dark remnants as a second-order effect on the dynamical cluster aging.

Conclusion and future perspectives

On the basis of these results, we conclude that the observed spread of r_c at a given chronological age can be interpreted as the ‘natural’ consequence of GC internal dynamical evolution that brings

Fig. 3 | BSS selection. The selection boxes of BSSs and of the reference population are shown in the n-CMD of each cluster, where only stars measured within one half-mass radius are plotted. Only BSSs (black circles) and reference stars brighter than $V^* = -0.6$ have been considered in the present analysis. For the two most contaminated clusters (Hodge 11 and NGC 2210), the selection box appears to be more populated on the red side, thus suggesting that this is the region where the field contamination is more severe (see Methods, Supplementary Fig. 1 and Supplementary Table 1 for more details).

Fig. 4 | Measure of the $A+$ parameter Cumulative radial distributions, $\phi(r)$, of BSSs (blue lines) and reference stars (red lines) in the five LMC GCs discussed in this paper. Only stars within one half-mass radius have been considered and the cumulative radial distributions are thus normalized to unity at r_h. The size of the area between the two curves (shaded in grey) corresponds to the labelled value of $A+$. Clusters are ranked in terms of increasing value of $A+$.

Fig. 5 | Quantifying the internal dynamical evolution and its effect on the cluster physical size. a, Relation between the segregation level of BSSs (measured by A+) and the number of current central relaxation times occurred since cluster formation (Nrelax) for the 5 LMC clusters studied here (large red squares) and 48 galactic GCs (grey circles). The plotted 1σ errors have been computed as discussed in the Methods. B, Relation between A+ and the core radius, illustrating that cluster sizes move towards smaller values with the long-term internal dynamical evolution of the system: compact clusters are dynamically more evolved than large-r$_c$ GCs.

The evidence presented in this paper provides a new interpretative scenario for the age–size distribution in the LMC clusters that does not require the action ofBHs, but it is essentially driven by the cluster internal dynamical evolution. This scenario removes the necessity of an evolutionary path in which compact young clusters evolve into old globulars with a wide range of radii. Moreover, it provides further support to the other structural (see Fig. 1) and chemical pieces of evidence that already challenged such an evolutionary connection. Hence, this result redirects our attention to the cluster formation history in the LMC, its dramatic changes over the cosmic time and the environmental conditions at which this process is occurring.

Methods
The dataset. For this study, we used a set of high-resolution images acquired with the Wide Field Channel of the Advanced Camera for Survey (ACS/WFC) on board the Hubble Space Telescope, secured under proposal GO14164 (principal investigator: A. Sarajedini). We used the images acquired through the filters F606W (V) and F814W (I) to sample the cluster population, and those (typically located 5’ from the cluster centre) obtained through the filters F606W and F435W (B) to sample the LMC field population. For both datasets, an appropriate dither pattern of a few arcseconds has been adopted in each pointing to fill the inter-chip gaps and avoid spurious effects due to bad pixels. The photometric analysis was performed via the point-spread-function fitting method, by using DAOPHOT IV32, following the ‘standard’ approach used in previous studies$^{25-27}$. Briefly, point-spread-function models were derived for each image and chip by using some dozens of stars, and then applied to all the sources with flux peaks at least 3σ above the local background. A master list including stars detected in at least four images was then created. At the position of each star in the master list, a fit was forced with DAOPHOT/ ALLFRAME28 in each frame. For each star thus recovered, multiple magnitude estimates obtained in each chip with the same filter were homogenized by using DAOMATCH and DAOMASTER, and their weighted mean and standard deviation were finally adopted as star magnitude and photometric error. Instrumental magnitudes were calibrated onto the VEGAMAG photometric system29 by using the recipes and zero points reported in the Hubble Space Telescope websites. Instrumental coordinates were first corrected for geometric distortions by using the most updated distortion correction tables IDCTAB provided on the dedicated page of the Space Telescope Science Institute for the ACS/WFC images. Then, they were reported to the absolute coordinate system (α, δ) as defined by the world coordinate system by using the stars in common with the publicly available Gaia data release 2 catalogue30. The resulting 1σ astrometric accuracy is typically ≤0.1 mas.

The age of the five LMC clusters. The CMDs obtained in the present work allowed us to tightly constrain the age of the five target clusters, which are considered as old stellar systems (ages larger than 10 Gyr) in all the compilations present in the literature.

The co-added n-CMDs of the five targets are shown in Fig. 2 (grey dots), where only stars within the half-mass radius of each system have been plotted to better highlight the cluster populations. As can be appreciated, the match among the main evolutionary sequences is impressive: the co-added n-CMD appears as a single population, thus demonstrating that the five clusters are indeed coeval within less than 1 Gyr. To quantify their age, we superimposed the n-CMD of M3030, a galactic GC with comparable metallicity ([Fe/H] = −1.9)30 and very well-constrained age (13 Gyr)$^{31-32}$. Another impressive match of the main evolutionary sequences is found, demonstrating that M30 is coeval to the five LMC clusters. Thus an age of 13 Gyr ± 1 Gyr (with a conservative estimate of the error) can be assumed for the five LMC clusters.

Cluster structural parameters. Many papers in the literature$^{33-46}$ underline the advantages of using star counts, instead of surface brightness, profiles to derive the cluster structural parameters. In fact, surface brightness profiles are known to suffer from possible biases due to the presence of a few very bright stars, which instead do not affect the number density profiles. In spite of this, most of the morphological parameter estimates (including those for the five LMC clusters considered here) are still based on surface brightness profiles. We thus performed
new determinations based on star count profiles. The full analysis, including artificial star experiments for the photometric completeness estimate, is described and discussed elsewhere. Here we just summarize its main steps and the structural parameters relevant for the present discussion. According to the procedure adopted in previous studies14,15, we first determined the centre of gravity (\(C_{\text{rms}}\)) of each system by averaging the right ascension (\(\alpha\)) and declination (\(\delta\)) of all stars brighter than a given threshold magnitude (to avoid incompleteness biases) and lying within a circle of radius \(r\). For the five clusters discussed here, the threshold magnitude varied from \(3.1\) to \(4.8\) magnitude-magnitude within the bin, and we repeated this random decontamination procedure 5000 times, each time registering the resulting value of \(A_+\). Supplementary Fig. 2 shows the histogram of the obtained values. As can be seen, a peaked distribution with a small dispersion (smaller than 0.01) is obtained in both cases, thus testifying that the value of \(A_+\) is solidly estimated also in these contaminated clusters.

Errors in the measure of \(A_+\). As discussed in previous papers14,15, the main source of errors in the determination of the parameter \(A_+\) is due to the relatively small statistics of the BSS sample detected in each cluster. Thus, the uncertainties in \(A_+\) have been estimated by applying a jackknife bootstrapping technique16.

Following this approach, given a sample of \(N\) BSSs, \(A_+\) is recomputed \(N\) times from samples of \(N-1\) BSSs obtained by excluding, each time, one different star. Thus, the procedure yields \(N\) estimates of \(A_+\) and the final uncertainty on \(A_+\) is obtained as \(\sigma_{A_+} = \sqrt{N} - 1 \sigma_{\text{stat}}\), where \(\sigma_{\text{stat}}\) is the standard deviation of the \(A_+\)-distribution derived from the \(N\) realizations. The uncertainties are listed in Table 1 and reported in each panel of Fig. 4.

Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Received: 21 March 2019; Accepted: 10 July 2019; Published online: 9 September 2019

References
1. Elson, R. A. W., Freeman, K. C. & Lauers, T. R. Core expansion in young star clusters in the Large Magellanic Cloud. Astrophys. J. Lett. 347, L69–L73 (1989).
2. Elson, R. A. W. The structure and evolution of rich star clusters in the Large Magellanic Cloud. Astrophys. J. Suppl. Ser. 76, 185–214 (1991).
3. Elson, R. A. W. Surface brightness profiles for five rich star clusters in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 256, 515–518 (1992).
4. Mackey, A. D. & Gilmore, G. F. Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 338, 85–119 (2003).
5. Wilkinson, M. I., Hurley, J. R., Mackey, A. D., Gilmore, G. F. & Tout, C. A. Core radius evolution of star clusters. Mon. Not. R. Astron. Soc. 343, 1025–1037 (2003).
6. de Grijs, R. et al. Mass segregation in young compact clusters in the Large Magellanic Cloud—III. Implications for the initial mass function. Mon. Not. R. Astron. Soc. 337, 597–608 (2002).
7. Mackey, A. D., Wilkinson, M. I., Davies, M. B. & Gilmore, G. F. Black holes and core expansion in massive star clusters. Mon. Not. R. Astron. Soc. 386, 65–95 (2008).
8. Da Costa, G. S. The age–abundance relations and age distributions for the star clusters of the Magellanic Clouds. In Proc. 148th Symposium of the IAU: The Magellanic Clouds (eds Haynes, R. & Milne, D.) 183–190 (2012).
9. Guijarro, R. et al. A search for old star clusters in the Large Magellanic Cloud. Astron. J. 114, 1920 (2007).
10. Rich, R. M., Shara, M. M. & Zurek, D. New photometry for the intermediate-age Large Magellanic Cloud globular cluster NGC 2121 and the nature of the LMC age gap. Astron. J. 122, 842–848 (2001).
11. Bekki, K. et al. Explaining the mysterious age gap of globular clusters in the Large Magellanic Cloud. Astrophys. J. 610, L93–L96 (2004).
12. Meylan, G. & Heggie, D. C. Intercluster and core dynamics of globular clusters. Annu. Rev. Astron. Astrophys. 8, 1–143 (1997).
13. Ferraro, F. R. et al. Dynamical age differences among coeval star clusters as revealed by blue stragglers. Nature 492, 393–395 (2012).
14. Lanzoni, B. et al. Refining the dynamical clock for star clusters. Astrophys. J. Lett. 833, L29–L33 (2016).
15. Ferraro, F. R. et al. The hubble space telescope UV legacy survey of galactic globular clusters. XV. The dynamical clock: reading cluster dynamical evolution from the segregation level of blue straggler stars. Astrophys. J. 860, 36–48 (2018).
16. McCrea, W. H. Extended main-sequence of some stellar clusters. Mon. Not. R. Astron. Soc. 128, 147–155 (1964).
17. Hills, J. G. & Day, C. A. Stellar collisions in globular clusters. Astrophys. J. Lett. 17, 87–93 (1976).
18. Shara, M. M., Saffer, R. A. & Livio, M. The first direct measurement of the mass of a blue straggler in the core of a globular cluster: BSS19 in 47 tucanae. Astrophys. J. Lett. 489, L59–L63 (1997).

19. Fiorentino, G. et al. Blue straggler masses from pulsation properties. I. The case of NGC 6541. Astrophys. J. 783, 34–41 (2014).

20. Alessandrini, E. et al. Investigating the mass segregation process in globular clusters with blue straggler stars: the impact of dark remnants. Astrophys. J. 833, 252–262 (2016).

21. Sollima, A. & Ferraro, F. R. Investigating the blue straggler stars radial distribution in globular clusters with Monte Carlo simulations. Mon. Not. R. Astron. Soc. 483, 1523–1536 (2019).

22. McLaughlin, D. E. & van der Marel, R. P. Resolved massive star clusters in the Milky Way and its satellites: brightness profiles and a catalog of fundamental parameters. Astrophys. J. Suppl. Ser. 161, 304–360 (2005).

23. Pietrzyński, G. et al. An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent. Nature 495, 76–79 (2013).

24. Raso et al. The “UV-route” to search for blue stragglers in globular clusters: first results from the HST UV legacy survey. Astrophys. J. 839, 64 (2017).

25. Carretta, E. & Gratton, R. G. Abundances for globular cluster giants. I. Homogeneous metallicities for 24 clusters. Astron. Astrophys. Suppl. Ser. 121, 95–112 (1997).

26. Strader, J. et al. Two stellar-mass black holes in the globular cluster M22. Nature 490, 71–73 (2012).

27. Chomiuk, L. et al. A radio-selected black hole X-ray binary candidate in the Milky Way globular cluster M62. Astrophys. J. 777, 69 (2013).

28. Li, C. et al. Blue straggler stars beyond the Milky Way. IV. Radial distributions and dynamical implications. Astrophys. J. 871, 171–183 (2019).

29. Mucciarelli, A. et al. The chemical composition of red giant stars in four intermediate-age clusters of the Large Magellanic Cloud. Astron. J. 136, 375–388 (2008).

30. Mucciarelli, A. et al. No evidence of chemical anomalies in the bimodal turnoff cluster NGC 1806 in the Large Magellanic Cloud. Astrophys. J. 793, L6–L10 (2014).

31. Martocchia, S. et al. Age as a major factor in the onset of multiple populations in stellar clusters. Mon. Not. R. Astron. Soc. 473, 2688–2700 (2018).

32. Stetson, P. B. DAOPHOT—A computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 99, 191–222 (1987).

33. Dalessandro, E. et al. The peculiar radial distribution of multiple populations in the massive globular cluster M80. Astrophys. J. 859, 15 (2018).

34. Dalessandro, E. et al. The double blue-straggler sequence in NGC 2173: an artifact of field contamination. Astron. Astrophys. 621, 45 (2019).

35. Stetson, P. B. The center of the core-cusp globular cluster M15: CFHT and HST observations, ALLFRAME reductions. Publ. Astron. Soc. Pac. 106, 250–280 (1994).

36. Bohlin, R. C. Perfecting the photometric calibration of the ACS CCD cameras. Astron. J. 152, 60 (2016).

37. Gaia Collaboration et al. Gaia Data Release 2. The celestial reference frame (Gaia-CRF2). Astron. Astrophys. 616, 14 (2018).

38. Sarajedini, A. et al. The ACS survey of galactic globular clusters. I. Overview and clusters without previous Hubble Space Telescope photometry. Astron. J. 133, 1658–1672 (2007).

39. Ferraro, F. R. et al. Two distinct sequences of blue straggler stars in the globular cluster. Nature 462, 1028–1031 (2009).

40. Forbes, D. A. & Bridge, T. Accreted versus in situ Milky Way globular clusters. Mon. Not. R. Astron. Soc. 404, 1203–1214 (2010).

41. Lugger, P. M. et al. CCD photometry of globular cluster core structure. 2: U-band profiles for 15 candidate collapsed-core clusters. Astrophys. J. 439, 191–201 (1995).

42. Montegriffo et al. IR-array photometry of galactic globular clusters—II. JK photometry of 47 TUC. Mon. Not. R. Astron. Soc. 276, 739–752 (1995).

43. Ferraro, F. R. et al. The puzzling dynamical status of the core of the globular cluster NGC 6752. Astrophys. J. 595, 179–186 (2003).

44. Lanzi, F. et al. New density profile and structural parameters of the complex stellar system Terzan 5. Astrophys. J. 717, 653–657 (2010).

45. Miocchi, P. et al. Star count density profiles and structural parameters of 26 galactic globular clusters. Astrophys. J. 774, 151–165 (2013).

46. King, I. R. The structure of star clusters. III. Some simple dynamical models. Astron. J. 71, 64 (1966).

47. Djorgovski, S. G. Physical parameters of galactic globular clusters. In Structure and Dynamics of Globular Clusters (eds Djorgovski, S. G. & Meylan, G.) 373–382 (ASP Conference Series, Vol. 50, 1993).

48. Marigo, P. et al. A new generation of PARSEC-COLIBRI stellar isochrones for populations in stellar clusters. Mon. Not. R. Astron. Soc. 495, L59–L63 (1997).

49. Peterson, A. R., Saffer, R. A. & Livio, M. First direct measurements of the masses of blue stragglers in the core of a globular cluster: BSS19 in 47 tucanae. Nature 489, L59–L63 (1997).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.