The current issue of Prion marks the 10-year anniversary since our journal has started in 2007. Unfortunately, Prion enters its second decade without one of the valuable members of its Editorial Board. Dr. Susan Lindquist, Professor of the Massachusetts Institute of Technology, Howard Hughes Medical Institute Investigator and Member of the National Academy of Sciences of USA, died of cancer on October 27, 2016.

Susan Lindquist was one of the leading figures in studies of protein folding and related fields, whose work contributed a lot to our understanding of the role of protein conformational changes in a variety of biological processes. Many scientists who are actively working and publishing in these areas now were her graduate students or postdocs at some period of their careers. It is impossible to assess the dimensions of Susan’s scientific heritage within the framework of this brief Editorial. Prion is planning to revisit her scientific achievements in a more detailed manner in subsequent issues later this year. Here, I am trying to offer only some of my personal recollections.

I first met with Susan Lindquist in the early 1990s, when I was a postdoc at the laboratory of Professor Susan Liebman at the Chicago campus of the University of Illinois. I was then studying the genetic control of protein biosynthesis in yeast. As a “side” project, originating from my previous work in the laboratories of Professors S.G. Inge-Vechtomov (Russia) and B. Ono (Japan), I was investigating the effects of some cellular proteins on the then elusive non-Mendelian element \([PSI]^+\), influencing translational termination. As a “side” project, originating from my previous work in the laboratories of Professors S.G. Inge-Vechtomov (Russia) and B. Ono (Japan), I was investigating the effects of some cellular proteins on the then elusive non-Mendelian element \([PSI]^+\), influencing translational termination. Once we have identified one of the proteins having a strong impact on \([PSI]^+\) inheritance as the chaperone Hsp104, I realized that the person who knew most about this chaperone was located in the same city. Susan Lindquist, then a Professor at University of Chicago and already highly...
respected scientist and a leading expert in the chaperone field, had just described the role of Hsp104 in yeast stress tolerance.2,3 I had contacted Susan and was invited to give a presentation on our work to her lab. This became the start of a fruitful collaboration, resulting in the paper that was published in \textit{Science} in 1995.1 As by that time [PSI+] had been implicated as a self-perpetuating protein isoform analogous to mammalian prions,4 our paper provided the first experimental evidence connecting chaperones to prions. This work helped me to secure an independent faculty position at Georgia Tech and served as a basis for many further developments in my lab. It also triggered Susan’s interest in yeast prions, resulting in a subsequent flood of influential papers from her lab, that contributed greatly to the shaping of the whole field.

From the very first meeting, I was greatly impressed by Susan’s personality, as well as by the breadth of her scientific interests, appreciation of new ideas and constant willingness to look for a broader picture behind any specific observation. In a strong contrast to some other scientists I have met during my career, she was always very open about her own ideas and results, independently of whether or not they were already published, and expected the same level of openness from her colleagues.

Papers coming from Susan’s lab were never simply the records of experimental results, even though they typically contained huge amounts of data. She always remembered to address broad biological implications, which were of no less importance to authors and readers than results themselves. She did not hesitate to propose controversial hypotheses and ideas that could draw criticisms from others, but then stimulated new directions of research. I recall my conversation with one brilliant scientist, who was skeptical regarding some of Susan’s ideas and pointed my attention to his data that suggested a different explanation for her results. “However”, I said, “if not for her paper, you might not even do these experiments.” To his credit, he agreed.

The other talent of Susan Lindquist was her exceptional ability to explain complicated things in a simple way. Her explanations were so powerful and clear that I am even afraid those judging about the field only on the basis of what they have heard from Susan might underappreciate its actual complexity. However, the end result was that her review papers and numerous lectures at scientific conferences conferred a broad publicity to the studies of yeast prions and protein-based epigenetic phenomena in general. While such a publicity is well deserved by the importance of the topic, it is never achieved automatically without tremendous effort from scientists willing to commit themselves to the difficult task of reaching both academic audiences from other fields and the general public. I must add that as a member of the Editorial Board of \textit{Prion} journal from the very beginning, Susan made a huge contribution in various ways to making it possible for us to survive in a highly competitive world of scientific publishing and achieving our current standings.

I regularly met with Susan after my relocation to Atlanta, mostly at various scientific conferences, and each time such a meeting was accompanied by insightful and enjoyable conversations on a variety of topics. Last time, we overlapped at the Yeast Genetics and Molecular Biology Conference in Italy back in September of 2015. Susan received one of her numerous and well-deserved awards at that conference, and came there with her family. She was so full of life and ideas, and it was impossible to imagine that this meeting would become our last . . . We have had a number of Email exchanges thereafter but I never had a chance to say goodbye.

I am trying to do this now. Goodbye, dear Susan. You are leaving a mark which will stay for a very long time. You are survived not only by your family but also by a number of scientists whom you have trained and helped to establish their academic careers. Your torch will be carried further. On my side, I consider it a blessing that you were my senior colleague and a friend.

\textbf{DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST}

No potential conflicts of interest were disclosed.
ACKNOWLEDGEMENTS

I thank P. Chandramowlishwaran, T. Chernova, Z. Deckner and R. Howie for helpful comments.

FUNDING

I thank National Science Foundation (grant MCB 1516872) and Russian Science Foundation (grant 14-50-00069) for support.

REFERENCES

[1] Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 1995; 268:880-4; PMID:7754373; http://dx.doi.org/10.1126/science.7754373

[2] Sanchez Y, Lindquist SL. HSP104 required for induced thermotolerance. Science 1990; 248:1112-15; PMID:2188365; http://dx.doi.org/10.1126/science.2188365

[3] Sanchez Y, Taulien J, Borkovich KA, Lindquist S. Hsp104 is required for tolerance to many forms of stress. EMBO J 1992; 11:2357-64; PMID:1600951

[4] Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 1994; 264:566-9; PMID: 7909170; http://dx.doi.org/10.1126/science.7909170