A study on highly concentrated lactic acid and the synthesis of lactide from its solution

Xiaolong Xu and Lijuan Liu

Abstract
Lactic acid is an important platform compound used as raw material for the production of lactide and polylactic acid. However, its concentration and composition distribution are not as simple as those of common compounds. In this work, the mass concentration distribution of highly concentrated lactic acid is determined by back titration. The components of highly concentrated lactic acid, crude lactide, and polymer after the reaction are analyzed by HPLC. Different concentrations of lactic acid solution were prepared for the synthesis of lactide and its content in the product was determined by 1H NMR analysis. We found that lactide is more easily produced from high-concentration lactic acid solution with which the condensed water is easier to release. Hence, the removal of condensed water is crucial to the formation of lactide, although it is not directly formed by esterification of two molecules of lactic acid.

Keywords
component, concentration, condensed water, lactic acid, lactide

Introduction
Petroleum-based plastics are now used in many fields due to their low cost and great diversity. However, they are usually very difficult to degrade in nature unlike degradable substances. In addition, the large-scale production of petroleum-based plastics has also resulted in serious pollution because of the lack of effective means and strategies for plastic waste disposal or recycling.

Fortunately, bio-based plastics are expected to overcome these environmental challenges as a substitute for petroleum-based plastics. Polyactic acid (PLA), a thermoplastic polyester with good biocompatibility and biodegradability, is one of the most well-known bio-based plastics. Currently, PLA is regarded as an indispensable material that has been used in biomedicine, fishing, forestry, agriculture, and other fields. In general, there are three methods for the production of PLA with different molecular weights, namely condensation polymerization, melt polycondensation, and ring-opening polymerization. High-molecular-weight PLA ($>10^5$ Da) can be obtained by ring-opening polymerization when lactide is used as the raw material.

Lactide is a six-membered cyclic ester of lactic acid and an important intermediate for the synthesis of PLA. However, lactide has a high price due to its complex production process and low yield. Several reaction parameters, such as temperature, pressure, the type of catalyst and the molecular weight of lactic acid oligomers, have significant effects on the yield of lactide. Thus, most research now focuses on the improvement of the lactide production process and the development of various catalysts.

However, the raw lactic acid has a significant influence on the production of lactide, which has not been noted in many studies. Lactic acid (LA) is a hydroxy carboxylic acid that can be mutually soluble with water. Intermolecular esterification can occur in aqueous solutions when the lactic acid concentration is high (>30 wt%). In addition, the content of monomers and multimers is mainly determined by the lactic acid concentration, which has a direct influence on the formation of lactide. The concentration is also a crucial factor for the formation of lactide.
In this work, we analyzed the mass concentration distribution of highly concentrated lactic acid (HCLA), and the existence of some other components was investigated. Meanwhile, lactic acid solutions with different concentrations were prepared for the synthesis of lactide. Herein, we report our observations and discuss the results.

Results and discussion

Concentrations of HCLA

The NaOH (0.9027 mol L\(^{-1}\)) and H\(_2\)SO\(_4\) (0.8615 mol L\(^{-1}\)) standard solutions were consumed in the sample titration, and the results of the back titration for lactic acid samples 1, 2 and 3 are shown (Table 1). Obviously, the mass concentrations of HCLA, increasing from top to bottom, are different in the presence of crystallization. The mass concentrations of the middle and lower layers, calculated from the back titration equation, were more than 100%. In this case, it was the superficial weight percent of lactic acid, which is defined as the ratio of the weight of the total monomer with the corresponding hydrolyzed water and the total solution weight. The superficial concentration of lactic acid can exceed 100% when multimer content is high enough in solution. The solution near the upper layer contains relatively more water and less lactic acid multimers, so its concentration and density are lower. The part with the higher mass concentration is also denser, so it will settle in the lower layer where the higher concentration also leads to the formation of more lactic acid crystals. This is because the degree of crystallization of lactic acid is determined by the temperature and concentration. Generally, at lower temperature, the concentration is higher and the degree of crystallization is greater. If the solution does not reach the concentration required for crystallization at a certain temperature, the lactic acid crystals will not form.

Components of HCLA

As a reference, 10 wt% lactic acid aqueous solution was also analyzed by HPLC, which showed only one peak in the HPLC chromatograph (Figures 1 and 2). The solution contains only lactic acid monomers (LA or LA\(_1\)) and no multimers (LA\(_n\), n > 1) at a low concentration. Different components of HCLA were separated by such solvent, flow rate, and mobile phase in HPLC analysis, and six peaks occurred in the HPLC chromatography (Figure 3). The peak times of the different components were not the same. This indicates that HCLA consists of not only lactic acid monomers but also multimers. According to the sequence of peaks, the subsequent peaks should be lactic acid multimers, namely LA\(_2\), LA\(_3\), LA\(_4\), LA\(_5\), and LA\(_6\).

In the HPLC chromatograp of (HCLA + LT)/CH\(_3\)OH solution (Figure 4), an additional peak occurred between LA\(_2\) and LA\(_3\) compared with that of the HCLA/CH\(_3\)OH solution. The additional peak time was 8.493 min, which was the same as that of lactide standard (Figure 5) and distinguished from that of other components, while the peak times of LA\(_1~LA\(_6\) remained basically unchanged (Table 2). This means that a new component appeared after the lactide standard was added to the HCLA/CH\(_3\)OH solution. This component must be the added lactide standard, which is not originally present in highly concentrated lactic acid.

To more accurately detect whether the structure of the ring dimer exists in highly concentrated lactic acid, \(^1\)H NMR technique was also used to analyze the HCLA sample. In the \(^1\)H NMR spectrum of the HCLA sample (Figure 6), there is a single peak at \(\delta = 7.29\) which is the \(^1\)H atom of the solvent CDCl\(_3\). There is no peak near \(\delta = 5.07\), so the existence of the –CH of lactide is not detected. In addition, there are two irregular peaks near \(\delta = 1.65\), which are inconsistent with the double peak of –CH\(_3\) of lactide. Thus, it can be determined that there is no cyclic dimer of lactic acid in highly concentrated lactic acid.

Many studies have also demonstrated that lactide is difficult to directly synthesize from the esterification of lactic acid.

| Table 1. Back titration results of the lactic acid samples. |
|---------------------------------|-------|-------|-------|
| Sample | Blank | 1 | 2 | 3 |
| Lactic acid sample (g) | 0 | 1.0190| 1.0180| 1.0175|
| Deionized water (mL) | 60 | | | |
| NaOH standard solution (mL) | 40 | | | |
| H\(_2\)SO\(_4\) standard solution (mL) | 39.4 | 31.8 | 23.4 | 20.5 |
| Mass concentration (wt%) | – | 61.69 | 121.97| 144.15|

Figure 1. HPLC chromatograph of 10 wt% lactic acid/CH\(_3\)OH solution.
acid, while the condensation of two molecules of lactic acid is more likely to form a linear dimer. Lactide is usually produced by depolymerization of lactic acid oligomers at high temperature.

Synthesis of lactide

After the reaction, the lactic acid solution was separated into two parts, namely the product and distillate. Oligomers formed when condensed water was released by heating lactic acid at high temperature, and then, some of these with certain molecular weight depolymerized to give lactide. Therefore, the product is mainly lactic acid polymer, but also contains lactide. The polymer was dissolved in acetonitrile and analyzed by HPLC. Polymers with different molecular weights were separated according to the solvent, flow rate, and mobile phase (Figure 7). We found that the number of components was even higher than that of highly concentrated lactic acid before the reaction.

The distillate is mostly water, sometimes containing very little crude lactide. The components of crude lactide can all dissolve in acetonitrile and be separated during HPLC analysis. There are three peaks in the HPLC chromatograph of crude lactide/CH₃CN solution (Figure 8), which indicates that crude lactide also contains other components besides lactide. The highest peak that is the main component of crude lactide is lactide based on the peak time. The first peak time is obviously that of lactic acid monomer, so there is no doubt that the component is lactic acid. According to the peak time sequence of the components, the lactic acid dimer appears later than the monomer and earlier than the cyclic dimer. Thus, the second peak should be lactic acid dimer, since its peak time is also closer to this component in the HPLC chromatogram of (HCLA + LT)/CH₃OH solution (Table 3).
It is feasible to use 1H NMR to determine the presence and content of lactide in the product. Taking the 1H NMR spectrum of product synthesized from 61.46 wt% lactic acid solution as an example (Figure 9), the presence of methylene (–CH) and methyl (–CH$_3$) in the target product lactide molecules was detected. As can be seen, the signal at $\delta = 5.07$ is a quater peak with an intensity ratio of 1:3:3:1 and a peak area of 3.43, indicating that it is due to –CH; the signal at $\delta = 1.65$ shows a double peak with an intensity ratio of 1:1 and a peak area of 11.48, indicating that it is due to –CH$_3$, respectively. Taking the single peak ($\delta = 7.284$) area of 1H of CDCl$_3$ as the benchmark 1, the lactide concentration in the tested sample showed a linear relationship with the peak areas corresponding to –CH and –CH$_3$.

Obviously, the results with different concentrations of lactic acid solution as reactants to produce lactide varied. When the concentrations were 78.53 wt% and 90.11 wt%, a small amount of lactide was observed in the distillate. More lactide appeared in the distillate when 90.11 wt% lactic acid solution was used, so the lactide content at 90.11 wt% of lactic acid is smaller than at 78.53 wt% (Table 4). In this case, the gaseous lactide from the product can directly vaporize with the water under the low vacuum conditions (5~10 Kpa) due to the relatively high content. The 1H NMR analysis did not detect the presence of the lactide structure, which meant there was almost no lactide in the product. When the lactic acid concentration was low (<70 wt%), less condensed water was released, although the total water evaporation was higher. This can be explained by the presence of more free water, which is obstructive to esterification and condensation of lactic acid, and by the fact that the equilibrium of the reaction is hard to move toward formation of oligomers.

The water in the distillate consists of free water from the solution and condensed water from the polymerization of lactic acid. Free water can more easily evaporate from the reaction system when heated at 210 °C. The quantity of condensed water released depends on the degree of polymerization, which is also related to the concentration of lactic acid. For the equal mass of lactic acid, high-concentration lactic acid solution can release more condensed water. The results of the lactide content in the products calculated according to the formulae in Table 5 are reliable, although there is a small difference that is within the acceptable range. The lactide content also improves with an increase of lactic acid concentration. The variation in trend of the lactide content in the product is consistent with that of the amount of condensed water released by a unit mass lactic acid (Figure 10). It can be seen that the key to the formation of lactide is the release of intermolecular condensed water from lactic acid. Although lactide is not formed by esterification of two molecules of lactic acid, the depolymerization of oligomers to lactide is equivalent to removing two molecules of water for every two molecules of lactic acid. This is evidence that the final reaction is independent of the path. Thus, the release of condensed water is essential for the synthesis of lactide at any lactic acid concentration. By comparison, high-concentration lactic acid, which is easier to esterify and condense to form oligomers, is more likely to produce lactide.

Conclusion

In this study, we have found that the concentration distribution in highly concentrated lactic acid is uneven. A concentrated solution of lactic acid also contains lactic acid multimers, but does not contain ring dimers. Our main work has focused on the synthesis of lactide by using different concentrations of lactic acid solution, and we have found that the characteristics of the reactions for synthesizing lactide, that is, the removal of condensed water are crucial to the formation of lactide. This also provides an important explanation for the reaction mechanism of lactide synthesis. The content of free water in lactic acid solution has a direct impact on the formation of oligomers and its depolymerization into lactide. As a
consequence, lactide synthesis from different concentrations of lactic acid give different results. The production of lactide from a lactic acid solution with a low concentration is difficult, while a high-concentration solution is more suitable as a raw material. This is significant for the industrial production of lactide.
Highly concentrated lactic acid (HCLA) was purchased from Henan Jindan Lactic Acid Technology Co., Ltd. Lactide standard (LT, AR, 99%) was purchased from Sigma-Aldrich, Co., Ltd. Sodium hydroxide (NaOH, AR, ≥ 96.0%), sulfuric acid (H2SO4, AR, 98.0%), and phosphoric acid (H3PO4, AR, ≥ 85.0%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Methanol (CH3OH, HPLC grade, 99.9%) was purchased from Sinopharm Chemical Reagent Co., Ltd. Acetonitrile (CH3CN, HPLC grade, 99.9%) was purchased from Tianjin Guangfu Fine Chemical Research Institute. Chloroform-D (CDCl3, AR, 99.8%) was purchased from Cambridge Isotope Laboratories, Inc.

Methods and instruments

Back titration. About 1.0 g lactic acid sample was accurately weighed and dissolved in 60 mL of deionized water, and then 40 mL of NaOH standard solution (about 1 mol L⁻¹) was added. The multimers of lactic acid were completely hydrolyzed by boiling for 5 min. Three drops of phenolphthalein were added as a visual indicator to titrate the sample with H2SO4 standard solution (about 1 mol L⁻¹) while hot. At the same time, a blank titration using 40 mL of NaOH standard solution was also carried out. The total mass concentration was calculated according to following equation

\[
\text{wt} \, \% = \frac{(V_{\text{blank, NaOH}} - V_{\text{sample}}) \times C_H}{m} \times 0.09008 \times 100%
\]

where \(C_H^+ \) is the H⁺ concentration of the H₂SO₄ standard solution, mol L⁻¹; \(V_{\text{blank, NaOH}} \) and \(V_{\text{sample}} \) are the volumes of the H₂SO₄ standard solution consumed by titrating the sample and the blank 40 mL NaOH standard solution, respectively, mL; and \(m \) is the weight of the sample, g.

HPLC analysis. An Agilent Technologies 1200 Series liquid chromatograph equipped with an automatic sampler, a gradient flow pump, an oven and a Hitachi-L4000 UV detector (set at 210 nm) was used. A Venusil C₁₈ column (4.6 mm × 250 mm) installed in the column oven was maintained at 30 °C. The sample was analyzed at a flow rate of 5 mL min⁻¹. 1 L of solvent (500 mL H₂O + 500 mL CH₃OH) was prepared as the mobile phase, and 1 mL of H₃PO₄ was added to adjust the pH value of the mobile phase to 2.5.

Each component of the sample has a particular peak time, so it is feasible to determine what the specific component is according to the peak time. The peak time of known substances need be measured as the identification basis. 10 wt% of lactic acid aqueous solution and lactide standards were dissolved in methanol and acetonitrile,

![HPLC chromatograph of crude lactide/CH₃CN solution.](image)

Figure 8. HPLC chromatograph of crude lactide/CH₃CN solution.

Component	LA	LT	Crude lactide
LA₁	6.617	–	6.572
LA₂	–	–	7.633
LT	–	8.723	8.783

LA: lactic acid.

Table 4. Results of lactide synthesized from lactic acid solution.

CLA (wt%)	Lactide in distillate (g)	X⁻CH (wt%)	X⁻CH₃ (wt%)
50.36	0	–	–
61.46	0.0038	4.05	4.22
71.22	0.0292	3.74	3.90
78.53	0.0292	3.74	3.90
90.11	0.0292	3.74	3.90

CLA represents the mass concentration of lactic acid solution used in this work and X⁻CH and X⁻CH₃ represent the lactide content in the product calculated from the formula in Table 5.

Formula	R²	δ
A = 1.944 + 0.5489C	0.9624	–CH
A = 6.482 + 1.7303C	0.9569	–CH₃

A represents the peak area corresponding to the hydrogenation chemical shift; C represents the lactide concentration in the sample, g L⁻¹.

Experimental

Materials

Highly concentrated lactic acid (HCLA) was purchased from Henan Jindan Lactic Acid Technology Co., Ltd. Lactide standard (LT, AR, 99%) was purchased from Sigma-Aldrich, Co., Ltd. Sodium hydroxide (NaOH, AR, ≥ 96.0%), sulfuric acid (H₂SO₄, AR, 98.0%), and phosphoric acid (H₃PO₄, AR, ≥ 85.0%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Methanol (CH₃OH, HPLC grade, 99.9%) was purchased from Sinopharm Chemical Reagent Co., Ltd. Acetonitrile (CH₃CN, HPLC grade, 99.9%) was purchased from Tianjin Guangfu Fine Chemical Research Institute. Chloroform-D (CDCl₃, AR, 99.8%) was purchased from Cambridge Isotope Laboratories, Inc.
respectively, and then analyzed by HPLC to obtain the peak time of the lactic acid monomer and cyclic dimer (Figures 1, 2, 5, and 11). Their peak time is very slightly different in the two solvents. (LA represents the lactic acid monomer; LT represents the lactic acid cyclic dimer).

1H NMR analysis. 1H NMR spectroscopy was used to analyze tested samples. According to the obtained spectrum (Figure 12), the peak area of the hydrogen chemical shift of the solvent CDCl$_3$ ($\delta = 7.26$) was taken as the benchmark 1 and that of –CH ($\delta = 5.0–5.1$) and –CH$_3$ ($\delta = 1.68–1.72$) were recorded. Standard LT/CDCl$_3$ solutions with concentrations of 5.0, 10.0, 15.0, 20.0, 25.0, and 30.0 g L$^{-1}$ were prepared. The peak areas corresponding to the hydrogen shifts of the –CH and –CH$_3$ groups were linearly related to the lactide concentration.

Figure 9. 1H NMR spectrum of the product synthesized from 61.46 wt% lactic acid solution.

Figure 10. The amount of condensed water in different concentrations of lactic acid solution. (m$_{\text{CW}}$ represents the mass of condensed water; m$_{\text{LA}}$ represents the mass of lactic acid in solution).
After fitting the data, the lactide concentration in the sample could be calculated according to the formulae shown in Table 5.

Figure 11. HPLC chromatograph of lactide standard/CH$_3$CN solution.

Figure 12. 1H NMR spectrum of lactide standard.

Titration of concentrations. Highly concentrated lactic acid contains very little water. When standing, the upper layer is a clear colorless liquid, while the lower layer is mostly...
milky white crystals. Samples were taken from different layers of HCLA, denoted as samples 1, 2, and 3, and their appearance characteristics were as follows:

Sample 1: taken from the surface layer of HCLA, colorless transparent liquid, no lactic acid crystals.

Sample 2: taken from the middle layer of HCLA, with certain fluidity, containing a small amount of lactic acid crystals.

Sample 3: taken from the bottom layer of HCLA, with a large amount of white lactic acid crystals.

The mass concentrations of samples 1, 2, and 3 were determined by back titration.

Analysis of the components. In order to investigate whether lactide is present in highly concentrated lactic acid, solutions of HCLA/CH$_3$OH and (HCLA + LT)/CH$_3$OH were prepared by the standard addition method. About 1 g of the HCLA sample was weighed and dissolved in 20 mL of CH$_3$OH; 10 mL of this solution was removed and 0.05 g of lactide standard was added for dissolution. Samples (0.5 mL) were taken from the two solutions respectively and analyzed by HPLC.

Synthesis of lactide with lactic acid solution. The HCLA was heated for 1 h based on the heating rate of the oil bath and heating was kept at 210 °C for 20 min. At the end of the reaction, 100-mL round-bottom flask, and a high-temperature resistant rotor was added to enable stirring. The reaction vessel was vacuum-pumped and decompressed to 5~10 KPa. The reactants were heated from room temperature to 210 °C in the oil bath. The heating process lasted for about 100 m of CH$_3$OH; 10 mL of this solution was removed and 0.05 g of lactide standard was added for dissolution. Samples (0.5 mL) were taken from the two solutions respectively and analyzed by HPLC.

References

1. Brockhaus S. *J Clean Prod* 2016; 127: 84.
2. Santos J and Pham A. *Sci Tot Environ* 2021; 751: 141842.
3. Raddadi N and Fava F. *Sci Tot Environ* 2019; 679: 148.
4. Zhu J and Wang C. *Mar Pollut Bull* 2020; 161: 111774.
5. Chen X and Yan N. *Mat Today Sustain* 2020; 7-8: 100031.
6. Mekonnen T, Mussone P, Khalil H, et al. *J Mat Chem A* 2013; 1: 13379.
7. Li T, Sun H, Wu B, et al. *Mat Des* 2020; 195: 109003.
8. Gritsch L, Conoscenti G, La Carrubba V, et al. *Mat Sci Eng C Mat Biol Appl* 2019; 94: 1083.
9. Hamad K, Kaseem M, Yang H W, et al. *Exp Polym Lett* 2015; 9: 435.
10. Saini P, Arora M and Kumar M. *Adv Drug Deliv Rev* 2016; 107: 47.
11. Farah S, Anderson DG and Langer R. *Adv Drug Deliv Rev* 2016; 107: 367.
12. Nofar M, Sacligil D and Carreau P J. *Int J Biol Macromol* 2019; 125: 307.
13. Sungyeap Hong CL. *Mod Chem Appl* 2014; 02: 4.
14. Pretula J, Slomkowski S and Penczek S. *Adv Drug Deliv Rev* 2016; 107: 3.
15. Castro-Aguirre E, Iniguez-Franco F, Samsudin H, et al. *Adv Drug Deliv Rev* 2016; 107: 333.
16. Hamad K, Kaseem M, Ayyoob M, et al. *Prog Polym Sci* 2018; 85: 83.
17. Kremer AB and Mehrkhodavandi P. *Coord Chem Rev* 2019; 380: 35.
18. Mezzasalma L, Dove AP and Coulombier O. *Eur Polym J* 2017; 95: 628.
19. Lalanne-Tisne M, Mees MA, Eyley S, et al. *Carb Polym* 2020; 250: 116974.
20. Park J, Cho H, Hwang D, et al. *Indus Engin Chem Res* 2018; 57: 11955.
21. Van Wouwe P, Dusselier M, Vanleeuw E, et al. *Chem Sus Chem* 2016; 9: 907.
22. Ehsani M, Khodabakhshi K and Asgari M. *e-Polymers* 2014; 14: 353.
23. Upare PP, Yoon JW, Hwang DW, et al. *Green Chem* 2016; 18: 5978.
24. Hasegawa T, Nomura N, Moriya T, et al. *Energy Proced* 2014; 56: 195.
25. Yoo D K and Kim D. *Macrom Res* 2006; 13: 510.
26. Yarkova AV, Novikov VT, Glotova VN, et al. *Proced Chem* 2015; 15: 301.
27. Upare PP, Hwang YK, Chang JS, et al. *Indus Engin Chem Res* 2012; 51: 4837.
28. Castillo Martinez FA, Balciunas EM, Salgado JM, et al. *Trends Food Sci Tec* 2013; 30: 70.
29. Abedi E and Hashemi SMB. *Heliyon* 2020; 6: 1.
30. Frattari S, Gironi F, Sabia R, et al. *Can J Chem Engin* 2017; 95: 863.
31. Vu DT, Kolah AK, Asthana NS, et al. *Fluid Phase Equil* 2005; 236: 125.
32. Feng S, Xiang S, Bian X, et al. *Microch J* 2020; 157: 10549.
33. Botvin V, Karaseva S and Khasanov V. *Polym Degrad Stab* 2020; 182: 109382.

Declaration of conflicts of interest. The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding. The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD.

Xiaolong Xu https://orcid.org/0000-0001-7037-1120