The one-dimensional Heisenberg model describing the exchange interaction of spins is intensively applied to study the magnetic properties of quantum spin chains. The XXZ spin-1/2 chain with external magnetic field along the z direction is exactly integrable, consequently its thermodynamics has been investigated since very early works [1, 2]. It has also been verified the existence of higher-spin quasi one-dimensional magnetic systems such as $\text{CsVC} \text{I}_3$ and CsVBr_3 ($S = 3/2$) [3, 4], $(\text{C}_{10}\text{H}_3\text{N}_2)\text{MnCl}_3$ ($S = 2$) [5] and $(\text{CD}_3)_2\text{NMnCl}_3$ ($S = 5/2$) [6, 7]. All these antiferromagnetic structures exhibit nearly ideal one-dimensional behavior over a considerable range of temperature. Motivated by these features, magnetic and thermodynamical properties for higher-spin chains were first investigated numerically [8]. More recently we obtained in Ref. [9] the HFE is obtained from the Bethe ansatz through a couple of integral equations [2] and an infinite non-linear coupled equation [11].

The model is no longer integrable, though, if an external magnetic field in any direction is introduced. This is the case of the XXZ spin-1/2 spin chain with transverse external magnetic field; so far, only its phase diagram at zero temperature has been investigated [12], since the external magnetic field does not commute with the Hamiltonian. However, an analytic high temperature series of its HFE has not been obtained so far.

In this communication we present the high temperature thermodynamics of the spin-S XYZ model, for arbitrary value of S, in the presence of an external magnetic field and a single-ion anisotropy term. We also investigate if the anisotropy in the XY plane avoids or does not avoid the classical behavior of the magnetic susceptibility and magnetization in this region of temperature, even for $S = 3/2$, as was shown in Ref. [4] for the spin-S XXZ model.

The Hamiltonian of the spin-S XYZ quantum periodic chain with N sites reads

$$H = \sum_{i=1}^{N} \left[J'_x S_i^x S_{i+1}^x + J'_y S_i^y S_{i+1}^y + J'_z S_i^z S_{i+1}^z - h' S_i^z + D (S_i^3)^2 \right],$$

where S_i^α, $\alpha \in \{x, y, z\}$, are the spin matrices at the i-th site, the J'_α are the exchange interaction couplings between first neighbors, and h' is the external magnetic field along the z-axis. We also include the single ion-anisotropy D' parallel to the external magnetic field. The periodic boundary condition $S_0 = S_N$ is used.
In order to render the thermodynamic functions to be finite, even in the classical limit \((S \to \infty)\), we define a scaled spin operator \(s\) with unitary norm \[/s/\sqrt{S(S+1)}\] as \(s \equiv S/\sqrt{S(S+1)}\). In order to write explicitly the effect of the anisotropy in the \(x\) and \(y\) directions in relation to the \(XXZ\) model[9], we rewrite the hamiltonian \[/s/\] in terms of the spin operators \(s^z_i\) and \(s^\pm_j \equiv \frac{1}{\sqrt{2}}(s^x_j \pm is^y_j)\), with \(j = 1, \cdots, N\),

\[
H = \sum_{i=1}^{N} \{ J[s_i^- s_{i+1}^+ + s_i^+ s_{i+1}^-] + \delta(s_i^+ s_{i+1}^+) \\
+ s_i^- s_{i+1}^-) + \Delta s_i^z s_{i+1}^z \} - hs_i^z + D(s_i^z)^2. \tag{2}
\]

The relations among the constants in hamiltonians \[/s/\] and \[/s/\] are: \(J \equiv (S/2)(S + 1)(J'_x + J'_y), \delta \equiv (J'_x - J'_y)/(J'_x + J'_y), \Delta \equiv 2J'_z/(J'_x + J'_y), h \equiv \sqrt{S(S+1)}h'\) and \(D \equiv S(S+1)D'\).

In Ref. [13] we presented a closed version of the cumulant expansion for any chain (any one-dimensional classical or quantum model) with periodic boundary condition and interaction between first neighbours. A survey with the main results of [13] is presented in Refs. [14, 15]. In this work we apply that method to compute the high temperature expansion of the HFE of the \(XYZ\) model \(\mathcal{W}_s\), for a fixed value of the spin (with unitary norm). Like in the case of the \(XXZ\) model, this high temperature expansion is written as a series in powers of \([S(S+1)]^{-1}\). We use the interpolation method described in Ref. [9] to calculate the high temperature expansion of \(\mathcal{W}_s\), for arbitrary values of \(S, J, \delta, \Delta, h\) and \(D\), up to order \((J \beta)^5\). The whole expression is too large, so we present it here only up to order \((J \beta)^3\).
\[
\frac{W_s(\beta)}{J} = -\frac{\ln(2S + 1)}{(J \beta)} + \frac{\hat{D}}{3} + \left(-\frac{\Delta}{36S(S + 1)} + (-\frac{\delta^2}{9} - \frac{\Delta^2}{18} - \frac{\hat{h}^2}{6} - \frac{1}{9} + \frac{1}{30}(S(S + 1) - \frac{2}{45})\hat{D}^2 \right) (J \beta)
\]

\[
+ \left(-\frac{\Delta}{36S(S + 1)} + (-\frac{\delta^2}{9} - \frac{\Delta^2}{18} - \frac{\hat{h}^2}{6} + \frac{1}{5} \frac{2}{45} D \hat{h}^2 + \frac{1}{45}(S(S + 1) - \frac{2}{45})\hat{D} \right)
\]

\[
+ \left(-\frac{\Delta}{36S(S + 1)} + (-\frac{\delta^2}{9} + \frac{1}{126}\frac{1}{S(S + 1)^2} - \frac{4}{315 S(S + 1) + \frac{8}{2805})\hat{D} \right)
\]

\[
+ \left(-\frac{1}{45}(S(S + 1) + \frac{4}{135})\hat{D} \right) \Delta^2 \hat{D} + \left(-\frac{1}{45}(S(S + 1) - \frac{2}{45})\hat{D} \delta^2 \right) (J \beta)^2
\]

\[
+ \left(-\frac{1}{2} \frac{2}{5400S^2(S + 1)^2} + \frac{1}{675S(S + 1) + \frac{2}{225})\Delta^4 \right)
\]

\[
+ \left(-\frac{1}{2} \frac{1}{300S^2(S + 1)^2} + \frac{1}{2025S(S + 1) - \frac{1}{25})\Delta^2 \right)
\]

\[
+ \left(-\frac{1}{2} \frac{1}{5400S^2(S + 1)^2} + \frac{1}{2025S(S + 1) - \frac{1}{1350})\Delta^4 \right)
\]

\[
+ \left(-\frac{1}{2} \frac{1}{90S(S + 1) - \frac{1}{135})\Delta^2 \right)
\]

\[
+ \left(-\frac{1}{2} \frac{1}{360S(S + 1) + \frac{1}{180})\Delta \hat{h}^2 - \frac{11}{5400S^2(S + 1)^2} + \frac{1}{2025S(S + 1) - \frac{1}{1350})\Delta \hat{h}^2 \right)
\]

\[
+ \left(-\frac{1}{2} \frac{1}{45(S(S + 1) - \frac{8}{135})\Delta \hat{h}^2 \hat{D} \right)
\]

\[
+ \left(-\frac{1}{2} \frac{1}{360S^3(S + 1)^2} + \frac{97}{18500S^2(S + 1)^2} + \frac{8}{4725S(S + 1) + \frac{4}{14175})\hat{D} \right)
\]

\[
+ \left(-\frac{1}{2} \frac{3}{700S^3(S + 1)^2} + \frac{1575S(S + 1) + \frac{4}{4725})\hat{D} \delta^2 \right)
\]

\[
+ \left(-\frac{1}{2} \frac{16}{1575S^3(S + 1)^2} + \frac{8}{4725S(S + 1) - \frac{32}{4725})\Delta^2 \hat{D} \right) (J \beta)^3 + O((J \beta)^4),
\]

where \(\hat{h} \equiv h/J \) and \(\hat{D} \equiv D/J \).

We point out that these coefficients of the HFE, calculated up to order \((J \beta)^5\), are exact and valid for \(S = 1/2, 1, 3/2, 2, \ldots \). The dependence of the HFE on even \(\beta \) comes from the symmetry on the \(x \) and \(y \) directions. Letting \(W_S \) be the HFE of the \(XY \) model of spin with norm \(S(S + 1) \), we have that

\[
W_s(J, \delta, h, D; \beta) \equiv W_S (\sigma J, \delta, \Delta, \sqrt{\sigma}h, \sigma D; \beta),
\]

where \(\sigma = [S(S + 1)]^{-1} \). The HFE is an homogeneous function of first degree, so it is simple to obtain the \(\beta \)-expansion of \(W_S(J, \delta, h, D; \beta) \) from eq. (3). For \(\delta = 0 \) we recover the results of Ref. [4]. The full expression of the expansion, up to order \((J \beta)^5\), can be obtained upon request to the authors.

It is simple to derive from [6] the high temperature expansion of the specific heat per site of the spin-\(S \) of the \(XYZ \) model, with unitary norm \((C_s = -\beta^2 \frac{\partial^2 H}{\partial \beta^2}) \). We obtain \(C_s \equiv -(\frac{4D^2}{45} - \frac{h^2}{9} + \frac{D^2}{15S(S + 1)} - \frac{\Delta^2}{9} - \frac{2}{9})\beta^2 + O(\beta^3) \), which shows that in the high temperature region, the \(XYZ \) model also presents a tail of the Schottky peak [10] \((C_{S, \text{ch}} \propto \beta^2) \), for all values of \(S \).

As a check of our \(\beta \)-expansion of the HFE [3], valid for arbitrary spin-\(S \), we compare the specific heat per site for \(S=1/2 \) derived from it to the numerical result obtained from the coupled equations by Takahashi [11]. In Fig. [11] we plot the specific heat for \(S = 1/2 \) with \(J_x = -1.0 \), \(J_y = 1.2 \) and \(J_z = 2.0 \) (which corresponds to \(J = (3/4) \times 0.1 \),
$\Delta = 20$ and $\delta = -11$) in the absence of an external magnetic field ($h = 0$) and no single-ion anisotropy term ($D = 0$). At $T = 0.90$ the difference of the solution is 2.9%.

One difficulty about the spin-S XYZ chain model is that it is no longer exactly soluble, in the presence of an external magnetic field, even for $S = 1/2$; moreover, the absence of symmetry in the x, y and z directions makes numerical calculations much more involved. However, its classical limit, in the high temperature region, can be easily obtained from eq. (3) by taking $S \to \infty$.

In Fig. 2 we show that the magnetic susceptibility per site of this model can be approximated by their classical analog for $S = 1/2$, in the high temperature region, with a percental error larger than 2%.

Fig. 3 shows the comparison of the classical magnetization per site of the model to its quantum version for several values of spin, in the region of high temperatures. We verify that this thermodynamical function can be well approximated, in the high temperature region, by its classical result up to $S = 1$; the percental error, in this case, is smaller than 3% (see Fig. 3.2).

In summary, we have presented the high temperature expansion of the HFE of the XYZ model, for arbitrary values of spin, in the presence of an external magnetic field and single-ion anisotropy term, up to order $(J \beta)^5$. The thermodynamic functions derived from eq. (3) can be used to fit experimental data to determine the value of the constants that describe the material under interest. As a check, we show that our expansion of the specific heat coincides with the numerical solution of Takahashi’s coupled equations [11] up to $T \approx 1$ for $h = 0$, $D = 0$, $J_x = -1.0$, $J_y = 1.2$ and $J_z = 2.0$.

We easily obtain the β-expansion of the classical behavior of the model in this region of temperature. Finally we showed that the magnetic susceptibility and magnetization of the quantum XYZ model can be approximated by their classical analog for $S \geq 3/2$ and $S \geq 1$ respectively. Our result allows the determination of the relative percental error between classical and quantum solutions, for any value of spin, for those thermodynamical functions, although this is not true for other functions like the specific heat per site.

O. R. thanks FAPEMIG for financial support. The authors are in debt to CNPq for partial financial sup-

FIG. 1: Specific heat of spin-1/2 XYZ chain with $h = 0$, $D = 0$, $J_x = -1.0$, $J_y = 1.2$ and $J_z = 2.0$. The solid line corresponds to the numerical solution of Takahashi and the dashed line represents the β-expansion of this function derived from [11].

FIG. 2: In 2.1 we compare the classical ($S \to \infty$) and the quantum ($S = 1/2, 1, 3/2$ and 4) magnetic susceptibility per site as a function of $(J \beta)$. In 2.2 we present the relative percental difference between the quantum and classical results. We let $\Delta = 1$, $\delta = 1$, $h/J = 0.3$ and $D/J = -0.5$.

FIG. 3: The magnetization versus h/J at $J = 0.4$ is presented in Fig. 3.1 for $S = 1/2, 1, 3/2, 4$ and $S \to \infty$. Figure 3.2 shows the percental difference of those quantum magnetization curves with respect to the classical one. We let $\Delta = 1$, $\delta = 1$, $h/J = 0.3$ and $D/J = -0.5$.
S.M. de S. thanks FAPEMIG and M.T.T. thanks FAPERJ for partial financial support.

[1] M. Takahashi, Prog. Theor. Phys. 46, 401 (1971).
[2] A. Klümper, Z. Phys. B 91, 507 (1993).
[3] H. Kadowaki, K. Hirakawa and K. Ubukoshi, J. Phys. Soc. Japan 52, 1799 (1983).
[4] S. Itoh, Y. Endoh, K. Kakurai and H. Tanaka, Phys. Rev. Lett. 74, 2375 (1995); S. Itoh, Y. Endoh, K. Kakurai S. M. Bennington, T. G. Perring, K. Ohoyama, M. J. Harris, K. Nakajima and C. D. Frost, Phys. Rev B 59, 14406 (1999-II).
[5] G. E. Granroth, M. W. Meisel, M. Chaparala, T. Jolecœur, B. H. Ward and D. R. Taham, Phys. Rev. Lett. 77, 1616 (1996).
[6] R. J. Birgeneau, R. Dingle, M. T. Hutchings, G. Shirane and S. L. Holt, Phys. Rev. Lett. 26, 718 (1971).
[7] M. T. Hutchings, G. Shirane, R. J. Birgeneau and S. L. Holt, Phys. Rev. B 5 1999 (1972).
[8] S. Moukouri and G. Caron, Phys. Rev. Lett. 77, 4640 (1996); Tao Xiang, Phys. Rev. B 58, 9142 (1998-II); S. Yamamoto, Phys. Rev. B53 3364 (1996-II); Phys. Lett. A213, 102 (1996).
[9] O. Rojas, S. M. de Souza, E. V. Corrêa Silva and M. T. Thomaz, Thermodynamics of the quantum spin-S XXZ model. Accepted for publication in Eur. Jour. of Phys. B (cond/mat 0504527).
[10] A. C. Phaff, C. H. W. Swuste, W. J. M. De Jonge, R. Hoogerbeets and A. J. van Duyneveldt, J. Phys. C 17, 2583 (1984).
[11] M. Takahashi, Phys. Rev. B 43, 5788 (1991).
[12] D. V. Dmitriev, V. Ya. Krivnov, A. A. Ovchinnikov and A. Langari, J. Exp. and Theor. Phys. 95, 538 (2002).
[13] O. Rojas, S. M. de Souza and M. T. Thomaz, J. Math. Phys. 43, 1390 (2002).
[14] O. Rojas, E. V. Corrêa Silva, W.A. Moura-Melo, S. M. de Souza, and M. T. Thomaz, Phys. Rev. B 67, 115128 (2003).
[15] O. Rojas, S. M. de Souza, E. V. Corrêa Silva and M. T. Thomaz, J. Phys.: Condensed Matter 15, 8527 (2003).
[16] E.S.R. Gopal, Specific heats at low temperatures. Plenum Press (NY, 1966); S.J. Collocott, R. Driver, L. Dale and S.X. Dou, Phys. Rev. B37, 7917 (1988).