Effect and economic feasibility of preharvest spray of Calcium nitrate, Boric acid and Zinc sulphate on yield attributing characters of Nagpur mandarin (Citrus reticulata Blanco.)

Manish Kumar Meena, MC Jain, Jitendra Singh and Manoj Kumar Sharma

Abstract
An investigation was carried out during 2014-15 to study the effect of preharvest spray of Calcium nitrate, Boric acid and Zinc sulphate on yield attributing characters of Nagpur mandarin. Various doses of Calcium nitrate (1.0%, 2.0% and 3.0%), Boric acid (0.2%, 0.4% and 0.6%) and Zinc sulphate (0.2%, 0.4% and 0.6%) were sprayed before harvesting. The maximum increase in yield attributing characters like diameter of fruit, fruit weight, fruit volume, fruit yield/plant, estimated (yield/hectare), maximum gross return, highest net profit and reduced peel thickness was recorded with T27 treatment combination (calcium nitrate 3.0% + boric acid 0.6% + Zinc sulphate 0.6%) over control. Further, T24 treatment combination (calcium nitrate 3.0% + boric acid 0.4% + Zinc sulphate 0.6%) has also significantly increased number of segments per fruit, and reduced number of seeds per fruit over control.

Keywords: Pre-harvest spray, calcium nitrate, zinc sulphate, boric acid, yield and economic feasibility

1. Introduction
Nagpur Mandarin (Citrus reticulata Blanco) which occupies the first position among the citrus in India with respect to area and production is considered one of the most important cultivated varieties among loose skinned oranges and is being commercially grown in Nagpur region of Maharashtra and Jhalawar District of Rajasthan. In India citrus fruits have a prominent place among popular and extensively grown tropical and subtropical fruits after mango and banana. The Fruit of Nagpur Santra are subglobose, with average weight 110-125g, rind medium thick, fairly loosely adherent, surface is relatively smooth, segment 10-15 number and seeds 1-2 per segment, peel colour pale orange fruits quality good. The total production of mandarin in India is 34.31 lakh tonnes from an area of 330.0 thousand hectares with the productivity of 10.4 MT/ha]. In Rajasthan mandarin covers 11.20 thousand hectares area producing 229.90 thousand MT with the productivity of 20.5 MT/ha (Anonymous, 2015) [1]. The nutrient plays an important role in the development and growth of new cells in plant meristem. The Calcium salts are known to be involved in a number of physiological processes concerning membrane structure, function and enzymatic activity. The exact role of calcium, like that of all minerals, is still obscure, but it is important for cell wall development (Babu and Yadav (2005) [2]. Zinc (Zn) is an essential micro element for plants, being involved in many enzymatic reactions and is necessary for their good growth and development. Zinc improves the auxins content and it also acts as catalyst in oxidation-reduction processes (Khan et al. (2015) [6]. Boron is also a heavy metal micronutrient. It is absorbed by plant in the form of boric acid (H₃BO₃). It is essential for translocation of sugar; involved in reproduction of plants and germination of pollen grains (Haque et al. (2000) [5]. Since the demand of fruit is increasing in the market, thereby to achieve higher yield of good quality fruit become the priority. The application of mineral nutrients like calcium nitrate, boric acid and zinc sulphate are known to play a crucial role in growth, development of fruits. The present study will contribute in understanding the physical and biochemical status of Nagpur mandarin fruits at harvest as influenced by pre-harvest spray of mineral nutrients, which may help in increasing the yield Nagpur mandarin. Hence the present studies were undertaken under Rajasthan conditions especially in Jhalawar with the followings objectives:
To study the effect of preharvest spray of calcium nitrate, boric acid and zinc sulphate on yield attributing characters and economic feasibility of Nagpur mandarin.

2. Materials and Methods

The present investigation was carried out on eight years old Nagpur mandarin (*Citrus reticulata* Blanco) of uniform size and growth at the Fruit research farm, Department of Fruit Science, College of Horticulture and Forestry, Jhalawar during the year 2014-15. The selected plants were sprayed with Calcium nitrate (1.0, 2.0 and 3.0 per cent), Boric acid (0.2, 0.4 and 0.6 per cent) and Zinc sulphate (0.2, 0.4 and 0.6 per cent). This experiment was laid out in Factorial Randomized Block Design (RBD) with three replications. The factors of experimentation comprising of 28 treatment combinations to study the effect of pre-harvest spray of Calcium nitrate, Zinc sulphate and Boric acid on yield and economic feasibility of Nagpur mandarin (*Citrus reticulata* Blanco). The treatments were applied during second week of September, 2014 after selection of good uniform size and bearer plant. The observations were recorded on different aspects viz. physical characteristics of fruits (diameter of fruit, peel thickness, fruit weight, fruit volume, number of fruits per plant, number of sacs per fruit, number of seeds per fruit. The data generated during the experimentation were subjected to statistical analysis of variance. The significance of the treatments was tested through ‘F’ test at 5 per cent level of significance. The critical difference was calculated to assess the significance of difference among the different treatments as described by Fisher (1950) [4].

3. Result and Discussion

1) Yield attributing characters

A. Diameter of fruit (cm)

The data in (table 4.1) reveal that interaction effect of calcium nitrate, boric acid and zinc sulphate was significant on diameter of fruits. The maximum increase in horizontal diameter (7.89 cm) and vertical diameter (7.58 cm) was observed with treatment T27 (Calcium nitrate @ 3.0% + boric acid @ 0.6% + zinc sulphate @ 0.6%), which was closely followed by T23, T26, T24, T22 and T21 treatments. The higher fruit diameter due to combined application of calcium, boron and zinc may be attributed to their stimulatory effect on plant metabolism and better increase in cell division and cell elongation of cells. The results are in conformity with the observations recorded by Trivedi et al. (2012) [12] in Guava, Razzaq et al. (2013) [9] in Kinnow and Meena et al. (2014) in Guava [7].

B. Peel thickness (mm)

The data in (Table-1) reveal that interaction effect of calcium nitrate, boric acid and zinc sulphate was significantly observed on peel thickness. The minimum peel thickness (3.21 mm) of fruit was recorded with the treatment T27 (Calcium nitrate @ 3.0% + boric acid @ 0.6% + zinc sulphate @ 0.6%) and which was closely followed by T26, T23, T24 and T25 treatments. However, the maximum peel thickness of fruit (4.86 mm) was recorded under control. The reduction in peel thickness might be attributed to the effect of zinc sulphate and prevailing climate condition during harvesting of fruit. The present results are in close conformity with the finding of Haque et al. (2000) [5] in Mandarin, Razzaq et al. (2013) in kinnow [9].

(C) Fruit weight (gm) and Volume (cc)

The data in (Table-1) narrate that fruit weight and fruit volume of Nagpur mandarin increased significantly by the application of calcium nitrate, boric acid and zinc sulphate. The maximum fruit weight (160.72 g) and volume (190.14 cc) were recorded with treatment T27 (Calcium nitrate @ 3.0% + boric acid @ 0.6% + zinc sulphate @ 0.6%). The minimum fruit weight and volume (113.61 g) and 138.03 cc were measured under control. The increase in fruit weight and volume might be due to increased rate of cell division and cell enlargement leading to more accumulation of metabolites in the fruit and better translocation of photosynthates as a result of boron application (Abd-Allah (2006). The findings are similar to those reported by Babu and Yadav (2007) [1] in Kinnow and Meena et al. (2008) in Berg.

(D) Number of seeds per fruit

The data in (table-2) reveal that interaction effect of calcium nitrate, boric acid and zinc sulphate was significant on number of seeds per fruit. The minimum number of seeds per fruit (6.33) was recorded with treatment T24 (calcium nitrate @ 3 per cent + boric acid @ 0.4 per cent + zinc sulphate @ 0.6 per cent) which was closely followed by T27, T26, T21, T22 and T23 treatments. However, the maximum number of seed per fruit (9.89) was recorded in control. The present results are in consonance with the findings of Haque et al. (2000) [5] in Mandarin and Sharma et al. (2002) [10] in Kajzi lime.

(E) Number of segments per fruit

The data in (table-2) reveal that interaction effect of calcium nitrate, boric acid and zinc sulphate was significant on number of segments per fruit. The maximum number of segments per fruit (12.56) was recorded with treatment T24 (calcium nitrate @ 3.0 per cent + boric acid @ 0.4 per cent + zinc sulphate @ 0.6 per cent) which was closely followed by T23, T27, T26, T21 and T26 treatments. However, the minimum number of number of segments per fruit (9.00) was recorded in control. The variation in the number of segments per fruit due to combination of different micronutrients might be attributed to difference in enzyme ion alluding during cell division and cell differentiation phases of fruit developments. The present results are in conformity with the findings of Razzaq et al. (2013) [9] in kinnow, and Khan et al. 2015 in Kinnow [6].

(F) Number of fruits per plant

The maximum number of fruits per plant (134.43) was recorded with treatment T27 (calcium nitrate @ 3.0% + boric acid @ 0.6% + zinc sulphate @ 0.6%) treatments. (Table-4.2) It was closely followed by T24, T26 and T21 treatments. However, the minimum number of fruits per plant (97.67) was recorded in control. The increase in number of fruits by application of micronutrient treatments may be due to reduction in fruit drop as a result of zinc, boron and calcium application which resulted in higher number of fruits and consequently the yield. The present results are in conformity with the findings of Haque et al. (2000) [5] in mandarin and Razzaq et al. (2013) in kinnow [9].

(G) Fruit yield in kg/tree

The data in (table-2) indicated that the interaction effect of calcium nitrate, zinc sulphate and boric acid was significantly observed on fruit yield in kg/tree and tonnes/ha. The fruit yield of Nagpur mandarin (21.67 kg/tree and 6.32 tonnes/ha)
recorded maximum with treatment T27 (calcium nitrate @ 3.0% + boric acid @ 0.6% + zinc sulphate @ 0.6%) which was at par with T24, T26, T23 and T25 treatments. However, the minimum fruit yield (11.27) kg/tree and 3.55 tonnes/ha) was recorded in control. The increase in yield of Nagpur mandarin fruits by application of micronutrient treatments may be due to the direct or indirect involvement of nutrients which provide better mobilization of nutrients and metabolites for the growth and development of fruits by increase in metabolic activities and better cellular pathways. These activities improve their size, weight and volume and thereby synergistically increased the total yield of Nagpur mandarin. The present results are in conformity with the findings of Abd-Allah (2006) [2] in Orange and Patil et al. (2014) in Kinnow [8].

(2) Economics Feasibility
The economics of different micronutrient treatments used at various concentrations in the present investigation was calculated and presented in Table-3. The economic feasibility calculated for various treatments showed that the application of T27 (calcium nitrate @ 3.0% + boric acid @ 0.6% + Zinc sulphate @ 0.6%) treatment has resulted the maximum gross return of Rs. 1,26,400/ha which was Rs. 55,400/ha excess over control and with highest net profit (Rs. 48,560 /ha) which was 78.03 per cent higher than control, which was followed by T24 (calcium nitrate @ 3.0% + boric acid @ 0.4% + Zinc sulphate @ 0.6%) and T26 (calcium nitrate @ 3.0% + boric acid @ 0.6% + Zinc sulphate @ 0.4%) having net profit values of Rs. 48, 272 and Rs. 47,208 which was 76.90 per cent and 75.49 per cent higher than control, respectively. The highest percent increase in net profit due to calcium nitrate @ 3.0% + boric acid @ 0.6% + Zinc sulphate @ 0.6% (T27) treatment may be because of highest yield under this treatment as evident from the present results discussed earlier in the text. Therefore, among the various micronutrient treatments attempted under present investigation, the application of calcium nitrate @ 3.0% + boric acid @ 0.6% + Zinc sulphate @ 0.6% (T27) was found to be most economic and desirable treatment.

The relative economics of the various micronutrient treatments was also worked out. On the basis of relative economics it can again be suggested that calcium nitrate @ 3.0% + boric acid @ 0.6% + Zinc sulphate @ 0.6% treatment was found to be most effective and desirable on the basis of highest yield of Nagpur mandarin fruit.

Table 1: Effect of pre-harvest spray of calcium nitrate, boric acid and zinc sulphate on physical characteristics of Nagpur mandarin (Citrus reticulata Blanco)

Treatments	Diameter of fruits (cm)	Peel Thickness (mm)	Fruit weight (g)	Fruit volume (cc)			
	Horizontal	Vertical					
T0	Ca0 B0 Zn0		6.11	5.18	4.86	113.61	138.03
T1	Ca1 B1 Zn1		6.22	5.56	4.78	122.67	148.79
T2	Ca1 B1 Zn2		6.48	5.65	4.52	125.83	149.45
T3	Ca1 B1 Zn3		6.58	5.78	4.39	130.53	152.82
T4	Ca1 B2 Zn1		6.80	5.82	3.97	132.34	160.00
T5	Ca1 B2 Zn2		6.79	5.98	4.29	129.28	156.29
T6	Ca1 B2 Zn3		6.85	5.60	3.82	138.30	156.24
T7	Ca1 B3 Zn1		6.92	5.98	3.83	140.11	170.16
T8	Ca1 B3 Zn2		6.66	6.02	3.79	130.22	157.82
T9	Ca1 B3 Zn3		7.12	6.44	3.53	140.08	168.55
T10	Ca2 B1 Zn1		6.88	6.34	3.72	147.98	173.22
T11	Ca2 B1 Zn2		6.94	5.95	3.69	140.12	167.45
T12	Ca2 B1 Zn3		7.38	6.42	3.77	141.36	171.32
T13	Ca2 B2 Zn1		7.41	6.54	3.78	148.97	175.22
T14	Ca2 B2 Zn2		7.43	6.76	3.74	139.32	171.11
T15	Ca2 B2 Zn3		7.39	6.38	3.66	150.19	178.82
T16	Ca2 B3 Zn1		7.48	6.85	3.67	142.78	167.17
T17	Ca2 B3 Zn2		7.52	7.05	3.65	151.07	178.33
T18	Ca2 B3 Zn3		7.11	6.92	3.50	144.83	176.12
T19	Ca3 B1 Zn1		7.53	6.22	3.57	153.42	183.11
T20	Ca3 B1 Zn2		7.42	7.08	3.67	150.99	178.31
T21	Ca3 B1 Zn3		7.70	7.23	3.67	145.54	176.23
T22	Ca3 B2 Zn1		7.77	7.27	3.38	147.44	176.57
T23	Ca3 B2 Zn2		7.83	7.47	3.57	157.33	187.34
T24	Ca3 B2 Zn3		7.78	7.31	3.27	158.89	189.37
T25	Ca3 B3 Zn1		7.31	6.93	3.48	153.78	183.87
T26	Ca3 B3 Zn2		7.82	7.44	3.33	157.33	187.86
T27	Ca3 B3 Zn3		7.89	7.58	3.21	160.72	190.14
CD at 5%	0.14	0.16	0.07	2.73	3.75		
SEm±	0.41	0.46	0.21	7.77	10.63		

Here,
Ca1 – Calcium nitrate – 1% B1 – Boric acid – 0.2%, Zn1 – Zinc sulphate – 0.2%
Ca2 – Calcium nitrate – 2% B2 – Boric acid – 0.4%, Zn2 – Zinc sulphate – 0.4%
Ca3 – Calcium nitrate – 3% B3 – Boric acid – 0.6%, Zn3 – Zinc sulphate – 0.6%
Table 2: Effect of pre-harvest spray of calcium nitrate, boric acid and zinc sulphate on yield attributes characters of Nagpur mandarin

Treatments	No. of seeds / fruit	No. of sacs / fruit	No. of fruits per plant	Yield per plant (kg)	Estimated yield (tones / ha.)
T0 C a0 B0 Zn0	9.89	9.00	97.67	11.27	3.55
T1 C a1 B1 Zn1	9.78	9.89	100.33	12.06	3.69
T2 C a1 B1 Zn2	9.78	9.67	107.00	12.11	3.77
T3 C a1 B1 Zn3	9.42	9.89	109.00	13.77	4.02
T4 C a1 B2 Zn1	9.67	10.11	110.67	15.22	4.14
T5 C a1 B2 Zn2	9.23	10.78	118.00	14.33	4.24
T6 C a1 B2 Zn3	8.94	10.44	117.67	15.78	3.92
T7 C a1 B3 Zn1	9.12	10.78	110.67	16.39	4.14
T8 C a1 B3 Zn2	8.89	10.00	118.54	16.22	4.27
T9 C a1 B3 Zn3	8.89	10.78	120.00	15.78	4.42
T10 C a2 B1 Zn1	9.12	10.33	121.33	17.34	4.64
T11 C a2 B1 Zn2	8.89	10.78	121.67	17.34	4.77
T12 C a2 B1 Zn3	9.00	11.11	125.33	17.34	4.96
T13 C a2 B2 Zn1	8.78	10.67	128.23	17.34	5.27
T14 C a2 B2 Zn2	8.50	11.44	130.78	17.34	5.48
T15 C a2 B2 Zn3	8.24	11.78	132.33	17.34	5.70
T16 C a2 B3 Zn1	8.37	11.78	136.00	17.34	5.92
T17 C a2 B3 Zn2	8.10	11.00	138.43	17.34	6.14
T18 C a2 B3 Zn3	7.96	11.78	140.00	17.34	6.36
T19 C a3 B1 Zn1	8.10	10.89	124.00	17.34	5.82
T20 C a3 B1 Zn2	7.78	11.67	129.00	17.34	6.04
T21 C a3 B1 Zn3	7.44	12.00	134.00	17.34	6.26
T22 C a3 B2 Zn1	7.67	11.78	138.00	17.34	6.48
T23 C a3 B2 Zn2	7.67	11.78	138.00	17.34	6.70
T24 C a3 B2 Zn3	7.44	12.00	143.00	17.34	6.92
T25 C a3 B3 Zn1	7.67	11.78	142.00	17.34	7.14
T26 C a3 B3 Zn2	7.44	12.00	147.00	17.34	7.36
T27 C a3 B3 Zn3	7.44	12.00	152.00	17.34	7.58

The treatments are as follows:

- Ca1 – Calcium nitrate– 1% B1 – Boric acid – 0.2%, Zn1 – Zinc sulphate – 0.2%
- Ca2 – Calcium nitrate – 2% B2 – Boric acid – 0.4%, Zn2 – Zinc sulphate – 0.4%
- Ca3 – Calcium nitrate – 3% B3 – Boric acid – 0.6%, Zn3 – Zinc sulphate – 0.6%

Here:

Treatments	Additional treatment cost	Yield (tones/ha)	Gross return (@ Rs. 20/kg)	Excess income over control	Net profit due to treatment	% Increase in yield over control	% Increase in net profit over control
T0 C a0 B0 Zn0	0	71000	2800	520	3.55	0.73	
T1 C a1 B1 Zn1	2280	73800	2800	520	6.20	2.35	
T2 C a1 B1 Zn2	3176	78000	2800	520	6.18	2.35	
T3 C a1 B1 Zn3	3688	84800	2800	520	6.12	2.35	
T4 C a1 B2 Zn1	4352	92800	2800	520	6.11	2.35	
T5 C a1 B2 Zn2	4864	98800	2800	520	6.09	2.35	
T6 C a1 B2 Zn3	5376	104800	2800	520	6.07	2.35	
T7 C a1 B3 Zn1	5888	110800	2800	520	6.05	2.35	
T8 C a1 B3 Zn2	6392	116800	2800	520	6.03	2.35	
T9 C a1 B3 Zn3	6840	122800	2800	520	6.01	2.35	

The treatments are as follows:

- Ca1 – Calcium nitrate– 1% B1 – Boric acid – 0.2%, Zn1 – Zinc sulphate – 0.2%
- Ca2 – Calcium nitrate – 2% B2 – Boric acid – 0.4%, Zn2 – Zinc sulphate – 0.4%

Here:

Treatments	Additional treatment cost	Yield (tones/ha)	Gross return (@ Rs. 20/kg)	Excess income over control	Net profit due to treatment	% Increase in yield over control	% Increase in net profit over control
T0 C a0 B0 Zn0	0	71000	2800	520	3.55	0.73	
T1 C a1 B1 Zn1	4200	73800	2800	520	6.20	2.35	
T2 C a1 B1 Zn2	4864	78000	2800	520	6.18	2.35	
T3 C a1 B1 Zn3	5376	84800	2800	520	6.12	2.35	
T4 C a1 B2 Zn1	5888	92800	2800	520	6.09	2.35	
T5 C a1 B2 Zn2	6392	98800	2800	520	6.07	2.35	
T6 C a1 B2 Zn3	6840	104800	2800	520	6.05	2.35	
T7 C a1 B3 Zn1	7352	110800	2800	520	6.03	2.35	
T8 C a1 B3 Zn2	7864	116800	2800	520	6.01	2.35	
T9 C a1 B3 Zn3	8376	122800	2800	520	5.99	2.35	
5. Conclusion
On the basis of results obtained from the field experiment, it may be concluded that the pre-harvest spray of different micronutrients was found beneficial for yield attributes and economic feasibility of Nagpur mandarin. Among different doses the application of T27 treatment was found best with regards to maximum increase in fruit weight, fruit volume, diameter of fruit (horizontal and vertical), reduced peel thickness, number of fruit per plant, fruit yield per plant, estimated yield tonnes/ha, gross return, highest net profit. Further T24 treatment combination (calcium nitrate @ 3.0% + boric acid @ 0.4% + Zinc sulphate @ 0.6%) has also given maximum increased number of segments per fruit and reduced number of seeds per fruit.
Therefore, based on the present research it may be concluded that, in Nagpur mandarin the pre harvest spray of calcium nitrate @ 3.0% + boric acid @ 0.6% + Zinc sulphate @ 0.6% before harvesting may improve the yield characteristics of Mandarin.

5. Acknowledgement
The authors of the manuscript are highly thankful to College of Horticulture and forestry Jhalawar and Agriculture University, Kota, Rajasthan for providing facility to carry out the research on this aspect.

6. References
1. Anonymous. Indian Horticulture Database Published From National Horticulture Board, Gurgaon, 2015, 118-121.
2. Abd-Allah AS. Effect of spraying some macro and micro nutrients on fruit set, yield and fruit quality of Washington Navel orange trees. Journal of Applied Sciences Research. 2006; 2(11):1059-1063.
3. Babu KD, Yadav DS. Foliar spray of micronutrients for yield and quality improvement in Khasi mandarin (Citrus reticulata Blanco.) Indian Journal of Horticulture. 2005; 62(3):280-281.
4. Fisher RA. Statistical methods for research workers Oliver and Boyd, Edinburgh. 1950.
5. Haque R, Roy A, Pramanick M. Response of foliar application of Ca, Zn, and B on improvement of growth and yield of mandarin orange in Darjeeling hills of West Bengal. Horticultural Journal. 2000; 13(2):15-20
6. Khan AS, Nasir M, Malik AU, Basra SMA, Jaskani MJ. Effect of calcium, boron and zinc on the leaf mineral status, growth, productivity and fruit quality of 'Kinnow' mandarin (Citrus nobilis Lour x Citrus deliciosa Tenora). Journal of Plant Nutrition. 2015; 38(6):821-838.
7. Meena VS, Yadav PK, Meena PM. Yields attributes of ber (Ziziphus mauritiana) cv. Gola as influenced by foliar application of ferrous sulphate and borax. Agriculture Science Digest. 2008; 28(3):219-221.
8. Patil MS, Shafeeq LB, Swamy GSK. Studies on the influence of micronutrient on growth, yield and quality of Kinnow mandarin. Trends in Biosciences. 2014; 7(9):786-788.
9. Razzak K, Khan AS, Malik AU, Shahid M, Ullah S. Foliar application of zinc influences the leaf mineral status, vegetative and reproductive growth, and yield and fruit quality of 'kinnow' mandarin. Journal of Plant Nutrition. 2013; 36(10):1479-1495.
10. Sharma AK, Singh K, Mishra SP. Effect of foliar spray of zinc sulphate 2, 4, 5-T and GA3 on quality of Kagzi lime (Citrus aurantifolia Swingle). Orissa Journal of Horticulture. 2002; 30(2):115-118.
11. Sajid M, Rab A, Tanveer S, Iqbal A, Zamin M, Shakur M. Pre-harvest treatment of Zn & B affects the fruit quality and storability of sweet orange. J Agric. Sci. and Technology. 2012; 2(2):1224-1233
12. Trivedi N, Singh D, Bahadur V, Prasad VM, Collis JP. Effect of foliar application of zinc and boron on yield of guava (Psidium guajava L.). Hort Flora Research Spectrum. 2012; 1(3):281-283.