THE AGE OF THE YOUNG BULGE-LIKE POPULATION IN THE STELLAR SYSTEM TERZAN 5: LINKING THE GALACTIC BULGE TO THE HIGH-Z UNIVERSE

F. R. Ferraro1, D. Massari2,3, E. Dalessandro1, B. Lanzoni1, L. Origlia3, R. M. Rich4, and A. Mucciarelli1
1 Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, Viale Berti Pichat 6/2, I–40127 Bologna, Italy
2 INAF-Osservatorio Astronomico di Bologna, Via Ranzani, 1, I–40127 Bologna, Italy
3 Kapteyn Astronomical Institute, University of Groningen, Kapteyn Astron Institute, NL–9747 AD Groningen, The Netherlands
4 Department of Physics and Astronomy, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547, USA

Received 2016 May 18; revised 2016 June 24; accepted 2016 July 7; published 2016 September 6

ABSTRACT

The Galactic bulge is dominated by an old, metal-rich stellar population. The possible presence and the amount of a young (a few gigayears old) minor component is one of the major issues debated in the literature. Recently, the bulge stellar system Terzan 5 was found to harbor three sub-populations with iron content varying by more than one order of magnitude (from 0.2 up to two times the solar value), with chemical abundance patterns strikingly similar to those observed in bulge field stars. Here we report on the detection of two distinct main-sequence turnoff points in Terzan 5, providing the age of the two main stellar populations: 12 Gyr for the (dominant) sub-solar component and 4.5 Gyr for the component at super-solar metallicity. This discovery classifies Terzan 5 as a site in the Galactic bulge where multiple bursts of star formation occurred, thus suggesting a quite massive progenitor possibly resembling the giant clumps observed in star-forming galaxies at high redshifts. This connection opens a new route of investigation into the formation process and evolution of spheroids and their stellar content.

Key words: Galaxy: bulge – globular clusters: Individual (Terzan 5) – techniques: photometric

1. INTRODUCTION

The picture of galaxy bulge formation is still highly debated in the literature (for a review of the Milky Way bulge, see, e.g., Rich 2013; Origlia 2014). Among the proposed scenarios, three main channels can be grossly distinguished: dissipative collapse (e.g., Ballero et al. 2007; McWilliam et al. 2008), with possibly an additional component formed with a time delay of a few gigayears (e.g., Grieco et al. 2012; Tsujimoto & Bekki 2012), dynamical secular evolution of a massive disk that buckles into a bar (e.g., Combes & Sanders 1981; Raha et al. 1991; Saha & Gerhard 2013), and merging of substructures either of primordial galaxies embedded in a dark matter halo (e.g., Scannapieco & Tissera 2003; Hopkins et al. 2010), or massive clumps generated by early disk fragmentation (e.g., Immeli et al. 2004; Carollo et al. 2007; Elmegreen et al. 2008). In the merging scenarios, most of the early fragments rapidly dissolved/merged together to form the bulge. However, a few of them could have survived the total disruption (e.g., Immeli et al. 2004; Carollo et al. 2007; Elmegreen et al. 2008) and it is very possible that such fossil relics are still observable somewhere in the host galaxy, grossly appearing as normal globular clusters (GCs). Because of their original large mass, these clumps should have been able to retain the iron-enriched ejecta and the stellar remnants of the supernova (SN) explosions, and they likely experienced more than one burst of star formation. As a consequence, we expect these fossil relics to host multi-iron sub-populations and, possibly, also a large number of neutron stars. Clearly, finding stellar systems with these properties would provide crucial observational support to the “merging” scenario for bulge formation.

Until recently, no empirical probes of such fossil clumps in galaxy bulges were available. The situation changed in 2009, when Ferraro et al. (2009) discovered two stellar components with very different iron abundances in Terzan 5, a stellar system in the Milky Way bulge previously cataloged as a GC, with the only peculiarity of hosting the largest population of millisecond pulsars in the Galaxy (Ransom et al. 2005). The two components of Terzan 5 appear to be distinct at the level of the red clump (RC) and red giant branch (RGB) in the combined NIR–optical color–magnitude diagram (CMD; Ferraro et al. 2009; Massari et al. 2012). Moreover, they display significantly different iron and α-element abundances, the metal-poor population having [Fe/H] = −0.25 dex and [α/Fe] = +0.34, the metal-rich one showing [Fe/H] = +0.27 dex and [α/Fe] = +0.03 (Origlia et al. 2011; a minor component at [Fe/H] = −0.8 has been also detected, extending the internal metallicity range of Terzan 5 over more than 1 dex; see Origlia et al. 2013; Massari et al. 2014). Given these abundance patterns, the observed RC split could be explained either in terms of an age difference of a few gigayears, or in terms of different helium content in two nearly coeval sub-populations (D’Antona et al. 2010; Lee et al. 2015).

The chemical abundance patterns measured in Terzan 5 are strikingly similar to those observed toward the Galactic bulge, while no other stellar system within the Milky Way outer disk and halo or in the Local Group show analogous properties (Chiappini et al. 1999; Matteucci & Chiappini 2005; Lemus et al. 2012). This opens the intriguing possibility that Terzan 5 is a fossil relic of one of the structures that contributed to generating the Galactic bulge. The bulge is known to be dominated by an old (>10 Gyr) stellar population with solar-like metallicity (Clarkson et al. 2008; Rich 2013; Valenti et al. 2013). However, growing indirect evidence (Bensby et al. 2013; Dékány et al. 2015; Nataf 2015) supports the existence...
of a minor, significantly younger component, of which the age has not yet been precisely determined. Thus, measuring the absolute ages of the two major stellar components in Terzan 5 is also of paramount importance in the context of the bulge formation history.

Here we present the accurate determination of the main-sequence turnoff (MS-TO) region in Terzan 5, from which we determined the age of its two main stellar populations. The paper is organized as follows. The data sets used and the data reduction procedures are presented and discussed in Section 2. The analysis of the CMDs, and the measure of the ages and radial distributions of the two populations are presented in Section 3. Section 4 is devoted to the discussion and conclusions.

2. OBSERVATIONS AND DATA ANALYSIS

For this study, we used a wide photometric database collected with different instruments and telescopes: (1) ultra-deep images in the F606W and F814W filters acquired with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST), in three different epochs spanning more than 11 years (GO: 9799, PI: Rich; GO: 12933, PI: Ferraro and GO: 14061, PI: Ferraro); (2) a set of images in the F110W and F160W filters secured with the IR channel of the Wide Field Camera 3 (WFC3) on board the HST (GO: 12933, PI: Ferraro); (3) a set of high-resolution images in the J and K bands acquired with the Multi-conjugate Adaptive Optic Demonstrator (MAD) at the ESO Very Large Telescope (Science Demonstration Proposal, PI: Ferraro); (4) a set of K-band images obtained at the Keck Telescope by using the camera NIRC2 assisted with laser adaptive optics (U156N2L, PI: Rich). Most of the data set used in this work was already presented and discussed in previous papers (see Ferraro et al. 2009; Lanzoni et al. 2010; Massari et al. 2014, 2015; Ferraro et al. 2015). Hence detailed information on the observations, data quality and data analysis can be found in those papers, while here we report only a schematic summary of the data sets and the reduction processes.

The optical HST data set acquired with the Wide Field Channel (WFC) of the ACS camera is described in detail in Massari et al. (2015) and Ferraro et al. (2015). Here we used exclusively the _FLC images, already flat fielded and corrected for charge transfer efficiency losses with the pixel-based correction in the pipeline (Anderson & Bedin 2010; Ubeda & Anderson 2012). The data reduction was performed using the software DAOPHOT-II (Stetson 1987, 1994), following the standard procedure described, e.g., in Dall’antonio et al. (2015). Briefly, for each exposure, we determined the best point-spread function (PSF) model using a few hundred bright, isolated stars. The model was then applied to all the sources detected (using ALLSTAR) above a 3σ threshold from the background. Since the images secured with the F814W filter (being less affected by the strong extinction present in the cluster direction) turned out to be significantly deeper than those acquired in the filter F606W, we created a master list of stars composed by sources detected in at least three frames. This master list was used as input to force the PSF fitting with DAOPHOTII/ALLFRAME. The star magnitudes obtained in each frame secured in the same filter were then homogenized, and their weighted mean and standard deviation were finally adopted as magnitude and photometric error of each source. The stellar instrumental magnitudes and positions were finally calibrated onto the Johnson–Cousins system and reported onto the 2MASS equatorial reference frame, respectively, as described in Lanzoni et al. (2010).

The WFC3 data set is made of 32 images, each one acquired with an exposure time of 300 s in both the F110W and the F160W filters. We worked on the images already pre-reduced by the STScI pipeline, following the same reduction procedure described in the previous paragraph. Also in this case, the F814W ACS catalog was used as input for the ALLFRAME analysis of all the exposures. The final catalog was built with the same prescriptions used for the ACS one. The instrumental magnitude were calibrated using the aperture correction and the zero-points listed at http://www.stsci.edu/hst/wfc3/phot_zpsf-lbn. Stellar positions were brought to the 2MASS astrometric reference using the CataPack suit of software.5

The MAD data set is already described in Ferraro et al. (2009). Since the observations span a temporal interval of several hours, with seeing conditions varying quite significantly from one exposure to another, we limited our analysis only to those with a stable Full Width at Half Maximum (FWHM) of ~0.′1 across the entire MAD field of view. FWHM were measured on bright, non-saturated and isolated stars using the standard IRAF tools. Fifteen exposures survived such a selection, and we reduced them as described for the previous data sets. In this case, however, the PSF model was computed by allowing the look-up table of the star profile fitting residuals to vary across the field of view as a third-order polynomial. This is because, as demonstrated in Saracino et al. (2015) and Massari et al. (2016), the PSF variability due to anisoplanatism effects in MCAO images is too large to be properly accounted for by a uniform PSF model. The magnitude of the final MAD catalog were calibrated as described in Ferraro et al. (2009).

The NIRC2 data set consists of 82 exposures in the K-filter with integration times of 180 s, taken during two observing nights (see Table 1). NIRC2 uses one Laser Guide Star (LGS) to correct for the blurring effect of the atmosphere. For this reason, the PSF variation within the field of view is much stronger than what was observed in MCAO data, and the PSF deformation mainly follows a radial pattern around the LGS itself. In the acquired images, not even a third-order polynomial allowed a proper modeling of the PSF, and a good photometry was achieved only within the isoplanatic region. Nonetheless, each exposure has been treated as described for the previous sets, and a final catalog including only stars found in at least five single exposures was built. The instrumental magnitudes were calibrated using the MAD catalog as reference.

3. UNVEILING THE DOUBLE TURNOFF

The gold standard method to measure the age of a stellar population requires the accurate definition of the MS-TO region in the CMD. In Terzan 5, this is hampered by three major problems: (1) strong differential reddening, (2) heavy contamination from disk and bulge field stars, and (3) severe stellar crowding. To overcome these obstacles, we took advantage of previous works published by our group. In particular, the high-resolution extinction map obtained in the direction of Terzan 5 (Massari et al. 2012) was used to identify regions where the color excess is the least and the most homogeneous: we excluded from the analysis all the cluster

5 www.bo.astro.it/~paolo/Main/CataPack.html
regions (as the north and the northeast portions of the system) where the reddening map shows large variations of the extinction. Once the most appropriate region was selected, we also applied differential reddening corrections (following the prescriptions by Cardelli et al. 1989) to the magnitudes of all the stars detected therein. To remove possible non-member objects, we excluded all the sources with relative proper motions larger than 1.5 mas yr\(^{-1}\), which likely belong to the Galactic disk and bulge populations (Massari et al. 2015).\(^6\) In order to remove blends, only sources with a quite symmetric brightness profile (as measured by the PSF sharpness parameter) have been considered. Moreover, to minimize the scatter, only sources within 3\(\sigma\) of the median photometric error at different magnitude levels, in the \(K\)-magnitude versus photometric error diagram, have been taken into account. Finally, we excluded the innermost and most crowded regions of the cluster, depending on the field of view and the performances of each instrument: we excluded stars with \(r < 16''\) in the MAD and NIRC2 samples, those with \(r < 20''\) in the ACS sample, and those with \(r < 35''\) in the WFC3 sample.

Figure 1 schematically shows the portions of the cluster field covered by each data set and considered for the analysis. As can be seen, different portions of the south and southwest regions of Terzan 5 are sampled. Figure 2 shows the CMD of the TO/sub-giant branch (SGB) region in a few planes, obtained by combining observations in different photometric bands, under the criteria described above. Although they refer to different regions of the cluster, they all show (at different levels of significance) the existence of two distinct evolutionary sequences at the MS-TO/SGB level. The clearest one is obtained in the combined NIR/optical (\(K\), \(I-K\)) plane and is plotted in Figure 3: a well-defined secondary SGB is clearly emerging from the MS-TO of the dominant population at \(K \sim 17\), and it merges into the RGB at \(K \sim 16.2\).

3.1. The Age of the Two Populations

In order to determine the age of the two sub-populations hosted in Terzan 5, we searched for the best-fit isochrones reproducing the features shown in Figure 3. To this end, we assumed a distance of 5.9 kpc and a color excess \(E(B-V) = 2.38\) (from Valenti et al. 2007), and we adopted the following procedure. The metallicity of each population (\(Z = 0.01\) and \(Z = 0.03\)) has been fixed according to the spectroscopic observations ([Fe/H] = −0.3 dex and [Fe/H] = +0.3 dex, respectively), while for the helium mass fractions, we adopted \(Y = 0.26\) for the metal-poor component and \(Y = 0.29\) for the super-solar one, as expected from “standard” \(Y/\text{[Fe/H]}\) enrichment scenarios (Girardi et al. 2002). Hence, having fixed the metallicity and the helium mass fraction, the only free parameter of the fit is the age. In Figure 4, we show a set of isochrones with the adopted metallicities and helium mass fractions, and with different ages selected to match the two detected MS-TO/SGB features. In order to identify the isochrones best reproducing the observations, we performed a \(\chi^2\) analysis. The \(\chi^2\) parameter has been computed selecting a sample of stars along the MS-TO/SGB sequences of the two populations as \(\chi^2 = \Sigma (O_k - E_k)/E_k\), where \(O_k\) is the observed magnitude of each star and \(E_k\) is the corresponding value of the magnitude read along the isochrone. The results are shown in Figure 5: the two distinct MS-TO/SGBs are well reproduced by two isochrones (Girardi et al. 2002) with quite different ages: \(t = 12 \pm 1\) Gyr for the dominant, sub-solar component, and \(t = 4.5 \pm 0.5\) Gyr for the extreme metal-rich sub-population.

For the sake of completeness, we also investigated the effect of an increased helium abundance on the isochrones. Indeed in genuine GCs there is evidence of helium abundances...
significantly enhanced with respect to the standard values (Piotto et al. 2007), and a large \((Y = 0.35 - 0.4)\) helium content at fixed old age has been advocated (D’Antona et al. 2010; Lee et al. 2015) to explain the origin of the bright RC observed in Terzan 5. Stellar models show that increasing the helium abundance at fixed age makes the MS-TO/SGB fainter (see Figure 6), at variance to what is needed to reproduce the secondary MS-TO observed in Terzan 5. The best-fit isochrones (of 12 and 4.5 Gyr and standard helium) also nicely reproduce the location of the two RCs, thus demonstrating that even this feature is likely due to an age difference, instead of a different helium abundance in two almost coeval populations. Hence the detection of the bright TO completely removes the possibility that the two stellar populations are due to a difference in helium and definitely breaks the helium/age degeneracy.

3.2. The Radial Distribution of the Two Populations

The super-solar RC sub-population was found to be more centrally concentrated than the more metal-poor one (Ferraro et al. 2009; Lanzoni et al. 2010). In order to study the radial distribution of the two MS-TO/SGB populations, we first considered the CMD shown in Figure 3, where the two sequences are clearly distinguishable, and adopted the sample selection boxes marked as colored shaded regions in the left-hand panel of Figure 7. Then, all the stars measured in the \(K\) and \(I\) bands and located within the two selection boxes have been considered, with the only exception (for avoiding incompleteness biases) of the innermost stars within 10″ from the center. To investigate the completeness of the samples thus selected, we followed the standard procedures of adding artificial stars to the original frames. The results obtained for the \(I\) band (providing the main source of incompleteness) are shown in the right-hand panel of Figure 7, where the two shaded strips mark the \(I\)-band magnitude range of the young (20.9 < \(I\) < 21.35, in red) and of the old (21.4 < \(I\) < 21.8 in blue) population selection boxes. As can be seen, at these magnitude levels the completeness of both the samples is 100%.

The final samples count about 670 stars along the young MS-TO/SGB and 900 stars along the old MS-TO/SGB. The radial distribution of the two samples is shown in Figure 8 and demonstrates that the young component is clearly more centrally concentrated than the old one. This finding is fully consistent with what was found from the analysis of the
double clumps (Ferraro et al. 2009; Lanzoni et al. 2010) and in agreement with what is expected in the context of a self-enrichment scenario, where the younger population formed from a central concentration of gas enriched from the previous stellar generation.

In order to investigate whether Galactic field contamination significantly affects the selected populations, we estimated the field star radial distribution. Indeed, Galactic field stars are expected to be uniformly distributed over the small region covered by the observations, while any stellar populations belonging to Terzan 5 must be concentrated toward the center of the system. Hence, the field star radial distribution has been derived from a simulation of 10,000 artificial stars with a uniform spatial distribution in the observed field of view. The field distribution (black dashed lines in Figure 8) turns out to be totally incompatible with that of both the Terzan 5 sub-populations.

4. DISCUSSION AND CONCLUSIONS

Both the multi-peak iron distribution (Ferraro et al. 2009; Origlia et al. 2011, 2013; Massari et al. 2014) and the clear separation of the two MS-TO/SGBs (this paper) observed in Terzan 5 suggest that the star formation process in the system was not continuous, but characterized by distinct bursts. Dating the two main sub-populations provides the timescale of the enrichment process. After an initial period of star formation, which occurred at the epoch of the original assembly of the system (∼12 Gyr ago) and generated the two sub-solar components from gas enriched by SN II, Terzan 5 experienced a long phase (t ∼ 7.5 Gyr) of quiescence during which the gas ejected from both SNe II and SNe Ia accumulated in the central region. Then, approximately 4.5 Gyr ago, the super-solar component formed. This requires the Terzan 5 ancestor to be quite massive (at least a few 10^5 M_☉; Baumgardt et al. 2008). The amount of gas retained by the proto-Terzan 5 system was
huge: on the basis of the observed RC populations (Ferraro et al. 2009; Lanzoni et al. 2010), we estimate that the young component in Terzan 5 currently amounts to roughly $7.5 \times 10^5 M_\odot$ (the same size of a 47 Tucanae-like GC) corresponding to approximately 38% of the total mass of the system. These results definitely put Terzan 5 outside the context of genuine CGs. Indeed, apart from the overall morphological appearance, Terzan 5 shares no other property with globulars, neither in terms of chemistry (GCs show inhomogeneities only in the light-elements; Carretta et al. 2009), nor in the enrichment history and age spread of the sub-populations (the enrichment timescale in GCs is of a few 10^6 years and their light-element sub-populations are thus almost coeval; D’Ercole et al. 2008), nor in terms of the mass of the progenitor (GCs did not retain the high-velocity SN ejecta and therefore do not need to have been as massive as Terzan 5 in the past; Baumgardt et al. 2008). If Terzan 5 is not a genuine GC, what is it then? As shown in Figure 9, the metallicity distribution and chemical abundance patterns of Terzan 5 are strikingly similar to those observed in bulge stars (Gonzalez et al. 2011; Ness et al. 2013; Johnson et al. 2014; Rojas-Arriagada et al. 2014; Ryde et al. 2016): not only the iron abundance, but also the amount of α-enhancement and its dependence on metallicity are fully consistent with those measured in the Galactic bulge. Note that setting such an abundance pattern requires quite special conditions. In fact, the large value of [Fe/H] (approximately -0.2) at which the [α/Fe] versus [Fe/H] relation changes slope necessarily implies that an exceptionally large number of SNe II exploded over a quite short timescale (i.e., before the explosion of the bulk of SNe Ia, which polluted the medium with iron, generating the knee in the relation). In turn, this requires a very high star formation efficiency. Indeed, the stellar populations in the Galactic halo/disk system (Chiappini et al. 1999; Matteucci & Chiappini 2005) and in the dwarf galaxies observed in the vicinity of the Milky Way (Lemasle et al. 2012) show abundance patterns inconsistent with those plotted in the figure: they do not reach the same high iron content and the knee in the [α/Fe] versus [Fe/H] relation occurs at much lower metallicities ([Fe/H] ~ -1 and [Fe/H] ~ -1.5 in the disk/halo and in dwarfs, respectively), indicating a significantly less efficient SN II enrichment process. Hence, within the Local Group, the abundance patterns shown in Figure 9 can be considered as an unequivocal signature of stellar populations toward the Galactic bulge. Because of the tight chemical link between Terzan 5 and the bulge, it seems reasonable to ask whether there is any connection also in terms of stellar ages, in particular, between the super-solar (and young) population of Terzan 5 and the super-solar component of the bulge. Deep photometric studies (Clarkson et al. 2008; Valenti et al. 2013) of a few bulge fields properly decontaminated from the disk population indicate that the vast majority of the bulge is significantly old (up to 80% is older than 10 Gyr; Clarkson et al. 2008; Nataf 2015). However, a multi-peak metallicity distribution very similar to that of Terzan 5 is observed in samples of giant, RC, and lensed dwarf stars in the bulge (Bensby et al. 2013; Ness et al. 2013; Rojas-Arriagada et al. 2014, respectively; but see Johnson et al. 2014). Moreover, in close analogy with what was found for Terzan 5, two prominent epochs of star formation are estimated for the lensed dwarfs (more than 10 Gyr ago for stars at [Fe/H] < 0, and ~3 Gyr ago for the youngest super-solar objects; Bensby et al. 2013; Nataf 2015). The possible presence of a younger population was also recently suggested in the photometric and spectroscopic study of the bulge within the GAIA-ESO Survey. Rojas-Arriagada et al. (2014) detected a bimodal magnitude distribution for the two RC samples with different metallicities observed in their surveyed field closest to the Galactic plane (the Baade’s Window), where geometric effects due to the X-shaped morphology of the bulge should be negligible, thus concluding that this might be due to an intrinsic age difference of the order of 5 Gyr. Interestingly enough, the difference in magnitude ($\Delta K \sim 0.3$), the metallicities (super-solar in the bright RC and sub-solar in the fainter one), and the proposed difference in age ($\Delta t \sim 5$ Gyr) of their two RC populations turn out to be in nice agreement with those measured in the two main sub-populations of Terzan 5. The collected evidence suggests that the proto-Terzan 5 system was a massive structure formed at the epoch of the Milky Way bulge formation. Indeed, 10^5–$10^6 M_\odot$ clumps are observed in early disks at high redshifts, thus confirming that such massive structures existed in the remote epoch of the Galaxy assembling (~ 12 Gyr ago), when Terzan 5 also formed. These giant clumps are thought to form from the fragmentation of highly unstable disks, to experience intense star formation episodes over quite short timescales (less than 1 Gyr)7 and then to coalesce and give rise to galaxy bulges (e.g., Elmegreen et al. 2008). Notably, the metallicity and the α-element enhancement of the high-z clumps ([Fe/H] $= -0.6$ and [α/Fe] ~ 0.25–0.7; Pettini et al. 2002; Halliday et al. 2008) are in

Figure 6. Effect of increasing the helium abundance at fixed age at the MS/TO/SGB level. For illustrative purposes, the MS/TO/SGB region of isochrones (Girardi et al. 2002) calculated at fixed age (12 Gyr) and metallicity ($Z = 0.03$) is shown for increasing helium abundances (see the labels). An increased helium abundance makes the MS/TO/SGB fainter.
agreement with the values measured in the two oldest stellar populations of Terzan 5 (and in the Galactic bulge), thus suggesting that the major star formation events occurred at

Figure 7. Population selection and completeness analysis for the cumulative radial distribution study. Top panel: the boxes adopted to select stars along the MS-TO/SGB sequences of the old (blue shaded region) and young (red shaded region) populations. All the stars with \(r > 10'' \) lying within the two selection boxes have been considered to construct the radial distributions shown in the upper panel of Figure 8. Bottom panel: the completeness curves in the I band obtained in radial annuli at different distances from the center (see labels). The two vertical strips mark the I-band magnitude ranges \(20.9 < I < 21.35 \) in red, and \(21.4 < I < 21.8 \) in blue) covered by the boxes adopted to select, respectively, the young and the old populations used to study the cumulative radial distributions.

Figure 8. Top panel: cumulative radial distribution of MS-TO/SGB stars belonging to the young population (red line) and to the old population (blue line), compared to that of field stars (black dashed line), as a function of the projected distance from the center of Terzan 5. The samples of MS-TO/SGB stars have been selected on the basis of the \((K, I-K)\) CMD as shown in Figure 7. In order to avoid incompleteness biases, only stars at \(r > 10'' \) from the center have been considered. The field distribution has been obtained from a synthetic sample of 10,000 stars uniformly distributed over the considered observed region. Bottom panel: the same as in the top panel, but for stars selected from the two red clumps with no radial selection. Clearly, the young population is more centrally concentrated than the old one.

Figure 9. Top panel: iron distribution of the three sub-populations of Terzan 5 (gray histogram and colored lines) compared to that of the Galactic bulge field stars from the literature (Ness et al. 2013; Johnson et al. 2014). Bottom panel: \([\alpha/Fe]-[Fe/H]\) distribution of the three sub-populations of Terzan 5 (extreme metal-poor: black circle; sub-solar: blue triangle; super-solar: red square) compared to that of the bulge field stars from the literature (gray dots). The formation epoch of the two major Terzan 5 sub-populations is also labeled.

agreement with the values measured in the two oldest stellar populations of Terzan 5 (and in the Galactic bulge), thus suggesting that the major star formation events occurred at
early epochs and over a quite short timescale, before the bulk of SNe Ia exploded. Hence the progenitor of Terzan 5 might have been one of these clumps, which survived the complete destruction. Most of the pristine gas was frenetically converted into stars within the giant clumps that populated the forming bulge. The coalescence of most of these systems in the very early epoch contributed to form the “old bulge” that we currently observe.\(^8\) However, a few of them survived the destruction. A possibility is that the proto-Terzan 5 system was originally less massive (Behrendt et al. 2016) and more compact than other clumps and, because of its lower mass, it did not rapidly sink and merge in the central region, but it was scattered out to large radii by dynamical interactions with more massive substructures (indeed such events are observed to occur in simulations; Bournaud 2016. Thus the proto-Terzan 5 clump might have evolved in an environment significantly less violent than the central forming bulge, and, as a giant “cocoon,” it may have retained a large amount of gas ejected by SNe for several gigayears, before producing a new generation of stars (such bursty star formation histories, with long periods of quiescence, are observed in the universe; e.g., VandenBerg et al. 2015). For instance, the most recent burst in Terzan 5 could have been promoted by a major interaction with bulge substructures, possibly also driving the mass-loss phenomenon that significantly reduced its mass (from the initial \(\sim10^9 M_\odot\) to the current \(10^8 M_\odot\); Lanzoni et al. 2010).

An alternative possibility is that Terzan 5 is the former nuclear cluster of a massive satellite that contributed to generate the Milky Way bulge via repeated mergers at high redshift (e.g., Hopkins et al. 2010). In order to account for the observed chemical abundance patterns (Figure 9), the satellite hosting the Terzan 5 progenitor should have been much more metal-rich (and massive) than the dwarf galaxies currently populating the Local Group. Although such objects are not present anymore in the Milky Way vicinity (Chiappini et al. 1999; Matteucci & Chiappini 2005; Lemasle et al. 2012), they possibly existed at the epoch of the Galaxy assembly.\(^9\) Thus, the proto-Terzan 5 host might have been one of several satellites that merged together to originate the bulge (Hopkins et al. 2010). A speculation on its mass can be derived from the mass–metallicity relation of \(z = 3–4\) galaxies (Mannucci et al. 2009), by assuming that the satellite was somehow \(<0.5\) dex more metal-poor than its nucleus (which seems to be the case at least for the most massive structures; see Figure 4 in Paudel et al. 2011). This yields to a mass of the proto-Terzan 5 host galaxy of a few \(10^9 M_\odot\). Thus similar primordial massive structures (see Hopkins et al. 2010) could have contributed to the mass budget of the Galactic bulge \((2 \times 10^8 M_\odot)\); Valenti et al. 2016).

In general, the broad metallicity distribution and kinematics of the bulge formation history cannot be explained within a simple scenario (either merging, dissipative collapse, or some disk instability/secular evolution), but it is likely that all of these processes and perhaps others have played some role. Complexity is a matter of fact in all the galactic components, especially in the central region of the Galaxy. Any ad hoc model that neglects complexity to support one specific scenario is not thorough. While the presence of bars and disks with complex chemistry and kinematics in the central region of our Galaxy has been well established for quite a long time, observational evidence of the existence of fossil remnants of massive clumps in our bulge, as those observed at high-z, is still lacking. Terzan 5 could be the first of such evidence, providing a direct link between the distant and the local universe and also calling for models able to account for the survival of similar structures and for the existence of younger (minor) stellar populations in galaxy bulges. From an observational point of view, one should check whether other stellar systems similar to Terzan 5 still orbit the Milky Way bulge and constrain the amount of intermediate-age stars therein. Finally, it is also worth mentioning that the presence of massive clumps that merged/dissolved to form the bulge, or survived disruption and evolved as independent systems, does not necessarily exclude the formation (and possible secular evolution) of disks, bars, and other substructures as those observed toward the Galactic bulge.

This research is part of the project Cosmic-Lab (see http://www.cosmic-lab.eu) funded by the European Research Council (under contract ERC-2010-AdG-267675).

\(^8\) The proposed scenario might also naturally account for the \(\gamma\)-ray emission recently detected in the central region of our Galaxy (Brandt & Kocsis 2015).

\(^9\) On the other hand, a scenario where the structure hosting the proto-Terzan 5 was accreted in a single event well after the bulge formation seems to be quite implausible, since it would require that such a structure independently experienced a chemical evolutionary history very similar to that of the bulge (see Figure 9).

REFERENCES

Anderson, J., & Bedin, L. R. 2010, PASP, 122, 1035
Ballero, S. K., Matteucci, F., Origlia, L., & Rich, R. M. 2007, A&A, 467, 123
Baumgardt, H., Kroupa, P., & Parmentier, G. 2008, MNRAS, 384, 1251
Behrendt, M., Burkert, A., & Schartmann, M. 2016, ApJL, 819, L2
Bensby, T., Yee, J. C., Feltzing, S., et al. 2013, A&A, 549, A147
Bhattacharya, D., & van den Heuvel, E. P. J. 1991, P&SS, 203, 1
Bournaud, F. 2016, Galactic Bulges (Basel: Springer)
Brandt, T. D., & Kocsis, B. 2015, ApJ, 812, 15
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Carollo, C. M., Scarlata, C., Stiavelli, M., Wyse, R. F. G., & Mayer, L. 2007, ApJ, 658, 960
Carretta, E., Bragaglia, A., Gratton, R., & Lucatello, S. 2009, A&A, 505, 139
Chiappini, C., Matteucci, F., Beers, T. C., & Nomoto, K. 1999, ApJ, 515, 226
Clarkson, W., Sahu, K., Anderson, J., et al. 2008, ApJ, 684, 1110
Combes, F., & Sanders, R. H. 1981, A&A, 96, 164
Dalessandro, E., Ferraro, F. R., Massari, D., et al. 2015, ApJL, 810, 40
D’Antona, F., Ventura, P., Caloi, V., et al. 2010, ApJL, 715, L63
Déány, I., Mmini, D., Majoess, D., et al. 2015, ApJL, 812, L29
D’Ercole, A., Vesperini, E., D’Antona, F., McMillan, S. L. W., & Recchi, S. 2008, MNRAS, 391, 825
Elmegreen, B. G., Boundad, F., & Elmegreen, D. M. 2008, ApJ, 686, 67
Ferraro, F. R., Dalessandro, E., Mucciarelli, A., et al. 2009, Natur, 462, 483
Ferraro, F. R., Pallanca, C., Lanzoni, B., et al. 2015, ApJL, 807, L1
Girardi, L., Bertelli, G., Bressan, A., et al. 2002, A&A, 391, 195
Gonzalez, O. A., Rejkuba, M., Zoccali, M., et al. 2011, A&A, 530, A54
Grieco, V., Matteucci, F., Pipino, A., & Cescutti, G. 2012, A&A, 548, A60
Halliday, C., Daddi, E., Cimatti, A., et al. 2008, A&A, 479, 417
Hopkins, P. F., Bundy, K., Crotto, D., et al. 2010, ApJ, 715, 202
Hopkins, P. F., Kereš, D., Murray, N., Quataert, E., & Hernquist, L. 2012, MNRAS, 427, 968
Immeli, A., Samland, M., Gerhard, O., & Westera, P. 2004, A&A, 413, 547
Johnson, C. I., Rich, R. M., Kobayashi, C., Kunder, A., & Koch, A. 2014, AJ, 148, 67
Lanzoni, B., Ferraro, F. R., Dalessandro, E., et al. 2010, ApJ, 717, 653
Lee, Y.-W., Joo, S.-J., & Chung, C. 2015, MNRAS, 453, 3906
Lemasle, B., Hill, V., Tolstoy, E., et al. 2012, A&A, 538, A100
Mannucci, F., Cresci, G., Maiolino, R., et al. 2009, MNRAS, 398, 1915
Massari, D., Dalessandro, E., Ferraro, F. R., et al. 2015, ApJ, 810, 69
Massari, D., Fiorentino, G., McConnachie, A., et al. 2016, A&A, 586, A51
Massari, D., Mucciarelli, A., Dalessandro, E., et al. 2012, ApJL, 755, L32
Massari, D., Mucciarelli, A., Ferraro, F. R., et al. 2014, ApJ, 795, 22
Matteucci, F., & Chiappini, C. 2005, PASA, 22, 49
McWilliam, A., Matteucci, F., Ballero, S., et al. 2008, AJ, 136, 367
Nataf, D. M. 2016, PASA, 33, 23
Ness, M., Freeman, K., Athanassoula, E., et al. 2013, MNRAS, 430, 836
Origlia, L. 2014, in IAU Symp. 298, Setting the Scene for Gaia and LAMOST (Cambridge: Cambridge Univ. Press), 298
Origlia, L., Ferraro, F. R., Bellazzini, M., & Pancino, E. 2003, ApJ, 591, 916
Origlia, L., Massari, D., Rich, R. M., et al. 2013, ApJL, 779, L5
Origlia, L., Rich, R. M., Ferraro, F. R., et al. 2011, ApJL, 726, L20
Paudel, S., Lisker, T., & Kuntschner, H. 2011, MNRAS, 413, 1764
Pettini, M., Rix, S. A., Steidel, C. C., et al. 2002, ApJ, 569, 742
Piotto, G., Bedin, L. R., Anderson, J., et al. 2007, ApJL, 661, L53
Raha, N., Sellwood, J. A., James, R. A., & Kahn, F. D. 1991, Natur, 352, 411
Ransoms, S. M., Hessels, J. W. T., Stairs, I. H., et al. 2005, Sci, 307, 892
Rich, R. M. 2013, Planets, Stars and Stellar Systems, Vol. 5: Galactic Structure and Stellar Populations (Dordrecht: Springer)
Rojas-Arriagada, A., Recio-Blanco, A., Hill, V., et al. 2014, A&A, 569, A103
Ryde, N., Schultheis, M., Greco, V., et al. 2016, AJ, 151, 1
Saha, K., & Gerhard, O. 2013, MNRAS, 430, 2039
Scannapieco, C., & Tissera, P. B. 2003, MNRAS, 338, 880
Stetson, P. B. 1987, PASP, 99, 191
Stetson, P. B. 1994, PASP, 106, 250
Tsujimoto, T., & Bekki, K. 2012, ApJL, 751, L35
Ubeda, L., & Anderson, J. 2012, STScI Inst. Sci. Rep. ACS 2012-03 (Baltimore, MD: STScI)
Valenti, E., Ferraro, F. R., & Origlia, L. 2007, AJ, 133, 1287
Valenti, E., Zoccali, M., Gonzalez, O. A., et al. 2016, A&A, 587, L6
Valenti, E., Zoccali, M., Renzini, A., et al. 2013, A&A, 559, A98
VandenBerg, D. A., Stetson, P. B., & Brown, T. M. 2015, ApJL, 805, 103
Zanella, A., Daddi, E., Le Floc’h, E., et al. 2015, Natur, 521, 54