Nice perfume. How long did you marinate in it?

Multimodal Sarcasm Explanation

Poorav Desai, Tanmoy Chakraborty, Md Shad Akhtar
Indraprastha Institute of Information Technology, Delhi (IIIT Delhi), India
{desai19010@iiit.ac.in, tanmoy, shad.akhtar}@iiitd.ac.in

Abstract
Sarcasm is a pervading linguistic phenomenon and highly challenging to explain due to its subjectivity, lack of context and deeply-felt opinion. In the multimodal setup, sarcasm is conveyed through the incongruity between the text and visual entities. Although recent approaches deal with sarcasm as a classification problem, it is unclear why an online post is identified as sarcastic. Without proper explanation, end users may not be able to perceive the underlying sense of irony. In this paper, we propose a novel problem – Multimodal Sarcasm Explanation (MuSE) – given a multimodal sarcastic post containing an image and a caption, we aim to generate a natural language explanation to reveal the intended sarcasm. To this end, we develop MORE, a new dataset with explanation of 3510 sarcastic multimodal posts. Each explanation is a natural language (English) sentence describing the hidden irony. We benchmark MORE by employing a multimodal Transformer-based architecture. It incorporates a cross-modal attention in the Transformer’s encoder which attends to the distinguishing features between the two modalities. Subsequently, a BART-based auto-regressive decoder is used as the generator. Empirical results demonstrate convincing results over various baselines (adopted for MuSE) across five evaluation metrics. We also conduct human evaluation on predictions and obtain Fleiss’ Kappa score of 0.4 as a fair agreement among 25 evaluators.

1 Introduction
Sarcasm refers to the use of satirical or ironic statements usually to hurt, insult, or offend someone. The surface meaning of such statements is usually different from the intended meaning, and to comprehend the sarcasm, one needs to be aware of the context in which the statement was uttered. Joshi, Sharma, and Bhattacharyya (2015) suggested the presence of incongruity as a vital signal for sarcasm. Traditionally, the research around sarcasm analysis revolves around the detection of underlying sarcasm in text (Campbell and Katz 2012; Riloff et al. 2013). In recent years, the exploitation of multimodal signals viz. image, video or audio, is on the rise for detecting sarcasm (Schifanella et al. 2016; Castro et al. 2019; Sangwan et al. 2020). With multimodal signals, the scope of incongruity in sarcastic posts expands to inter-modality and intra-modality incongruity. Most existing systems rely on the interaction among the modality-specific latent representations for leveraging incongruity. For example, Sangwan et al. (2020) employed a gating mechanism to fuse the two modalities.

Motivation. Sarcasm comes in different varieties – some sarcasms are lucid while some require intense scrutiny of the situation. In such situation, merely the detection of sarcasm without revealing the implicit irony may not be adequate for many use cases. For various applications, rang-
ing from feedback analysis in e-commerce to sensitive social media analysis, understanding why something is sarcastic is as crucial as detecting negative sentiment in the form of sarcasm. This suffices the requirement explaining the intended sarcasm for every sarcastic posts. To this end, we propose a novel problem – Multimodal Sarcasm Explanation (MuSE). The task takes a multimodal (image and its caption) sarcastic post as input, and aims to generate a natural language sentence to explain the intended irony in the sarcastic post. Figure 1 shows two instances of the MuSE task. In the first case, the image shows that a car is parked in front of a building with the user-written caption ‘This guy gets a gold star in parking.’. Taking the inter-modal incongruity into account, we can realize that the user is highlighting the improper car parking as it partially covers the reserved parking slot for handicapped person. As an outcome of the MuSE task, we expect to generate a similar explanation for the sarcastic post. Similarly, we show another instance of MuSE in Figure 1b. Moreover, the instance in Figure 1a highlights the importance of multimodal content for sarcasm detection. Evidently, it is extremely non-trivial to classify the post as sarcastic without image. On the other hand, the instance in Figure 1b defines both inter- and intra-modal incongruities. The inter-modal incongruity exists between 70mbps (text) and 0.21mbps (image), while the intra-modal incongruity is apparent in caption because of the positive words (awesome, love) and negative word (#wtf).

Formulation of MuSE. The task of MuSE is different from the traditional explainable systems that use attention heatmaps (Guo et al. 2019) [1], Yao and Wan (2020) [2] or similar mechanisms (e.g., SHAP [Parsa et al. 2020], LIME [Pramanick et al. 2021] [3], Mahajan, Shah, and Jafar [2021] [4], etc.) to explain the model behavior. In contrast, we project the sarcasm explanation as a natural language generated English sentence. We formally define MuSE as follows: For a given multimodal sarcastic post \(P = (I, T[t_{1}, t_{2}, ..., t_{N}]) \), where \(I \) and \(T \) denote the image and caption, respectively, and \(t_{i} \) is the token in the caption, we aim to reveal the intended irony by generating a natural language explanation \(E[e_{1}, e_{2}, ..., e_{D}] \), where \(\forall t_{i}, e_{j} \in Vocab^{English} \) and \(e_{j} \) indicates the token in the explanation.

New Dataset and Baselines. To address MuSE, we curate MORE, a novel multimodal sarcasm explanation dataset, consisting of 3510 sarcastic posts with natural language explanations manually generated by expert annotators. To benchmark MORE, we design a Transformer based encoder-decoder model. We employ two encoders—one each for text and image—to obtain the modality-wise latent representations, which is followed by the incorporation of a cross-modal attention module. Finally, a BART-based decoder is added in the pipeline for the explanation generation.

Novelty of MuSE. We draw the difference between MuSE and the non-sarcastic interpretation task proposed by Dubey, Joshi, and Bhattacharyya (2019) [5]. The first difference is the incorporation of multimodality in MuSE compared to the text-based non-sarcastic interpretation. The second and the prime difference is that the non-sarcastic interpretations are primarily the negation of the sarcastic texts. In contrast, MuSE is defined to explain the incongruity – not necessarily with the use of negation. However, we have a few examples for which the explanations can be termed as non-sarcastic interpretations (c.f. Figure 1b).

Contributions: Our main contributions are fourfold:

- We introduce MuSE, a novel task aiming to generate a natural language explanation for a given sarcastic post to explain the intended irony. To our knowledge, it is the first attempt at explaining the intended sarcasm.
- We develop MORE, a new dataset consisting of 3510 triples (image, caption, and explanation) for MuSE.
- We benchmark MORE with a new Transformer-based encoder-decoder model which would serve as a strong baseline. Empirical results show its superiority over various existing models adopted for this task, across five evaluation metrics.
- We perform extensive human evaluation to measure the coherence and cohesiveness of the generated explanations by our proposed model.

Reproducibility: The source code and dataset are available at https://github.com/LCS2-IIITD/Multimodal-Sarcasm-Explanation-MuSE.

2 Related Work

Sarcasm Detection: Most prior studies focus on detecting sarcasm using one or more modalities. Earlier methods including Bouazizi and Otsuki Ohtsuki (2016) and Felbo et al. (2017) use hand-crafted features such as punctuation marks, POS tags, emojis, lexicons, etc., for detecting the sarcastic nature of the input. Recent studies have explored sarcasm detection in multimodal setting. One of the earlier studies on multimodal sarcasm detection (Schifanella et al. 2016), incorporated images along with the corresponding captions for detecting inter-modal incongruity. Hazarika et al. (2018) extracted contextual information from the discourse of a discussion thread, encoded stylistic and personality features of the users, and subsequently used content-based features for sarcasm detection in online social media. Cai, Cai, and Wan (2019) exploited the multi-stage hierarchical fusion mechanism for multimodal sarcasm detection. In another work, Oprea and Magdy (2019) considered the distinction between the intended and perceived sarcasm and showed the limitations of the existing systems in capturing the intended sarcasm. Castro et al. (2019) extended multimodal sarcasm detection for conversational dialog systems. The authors introduced a new dataset, MUSTARD, for multimodal sarcasm detection. Recently, Bedi et al. (2021) explored the sarcasm detection task in Hindi–English code-mixed conversations.

Sarcastic to Non-Sarcastic Interpretation and Sarcasm Generation: In addition to sarcasm detection, a few attempts have been made in exploring different aspects of sarcasm analysis. Peled and Reichart (2017) and Dubey,
Figure 2: Posts that are discarded due to explicit sarcasm and do not suffice for an explanation.

Joshi, and Bhattacharyya (2019) explored an interesting idea of converting sarcastic text into non-sarcastic interpretation. Both approaches utilize machine translation based systems for generating non-sarcastic interpretation. In contrast, [Mishra, Tater, and Sankaranarayanan] (2019) focused on generating sarcastic text given a negative sentiment sentence. All these systems work at the unimodal textual level. In comparison, MuSE incorporates the multimodal signals, aiming to highlight the intended irony of sarcasm instead of converting a sarcastic instance to a non-sarcastic one.

Natural Language Explanations: There have been a few studies focusing on explaining model predictions by generating a natural language explanation. [Hendricks et al.] (2016) first proposed an explainable model for image classification that targets to explain the predicted label. [Kim et al.] (2018) proposed to explaining the model actions in self-driving cars. Recently, [Kayser et al.] (2021) introduce e-ViL, a benchmark for explainable vision-language (VL) tasks, that establishes a unified evaluation framework and provides the first comprehensive comparison of existing approaches that generate NLEs for VL tasks. A majority of these studies employ NLEs for justifying the outputs of their models. However, in our task, NLE itself is the output of the model which is intended to explain the underlying sarcasm in the given multimodal sarcastic sample. To the best our knowledge, this is the first attempt at generating natural language explanations for multimodal sarcastic posts.

3 Proposed Dataset
This section elaborates on our effort in developing the Multimodal sarcasm Explanation (MORE) dataset. Since, MuSE demands a sarcastic post, we explore two existing multimodal sarcasm detection datasets – [Schifanella et al.] (2016) and [Sangwan et al.] (2020) – to extract the sarcastic posts. Schifanella et al. (2016) used hashtag-based approach (#sarcasm or #sarcastic) to collect 10000 sarcastic posts from Twitter, Instagram, and Tumblr. On the other hand, Sangwan et al. (2020) manually annotated 1600 sarcastic posts. Additionally, we explore another multimodal sarcasm detection dataset to collect 10560 sarcastic posts. In total, we collect 22160 sarcastic posts.

Next, we adopt the following annotation guidelines to generate an explanation for each post.

Table 1: Statistics of the MORE dataset.

Split	# of Posts	Caption Avg. length	Explanation Avg. length	Caption	Explanation
Train	2983	19.75	9677	15.47	5972
Val	175	18.85	1230	15.39	922
Test	352	19.43	2172	15.08	1527
Total	3510	19.68	10865	15.43	6669

- **Exclusion:** Following posts are discarded
 - Non-sarcastic posts are discarded.
 - Posts with explicit mention of sarcasm are discarded.
 - Posts with non-English content are discarded.
 - Posts that require additional context to interpret sarcasm or the annotators are not familiar with the topics are discarded.

- **Inclusion:** Post describing the intra-incongruity (within text, or within image) or inter-incongruity (between image and text) are considered.

- **Annotation Scheme:** Annotators were given the following instructions for generating the explanation.
 - All entities including image, caption, hashtags, emojis, etc., are to be considered for interpreting the irony and generating an appropriate explanation.
 - In case the underlying sarcasm can be explained in multiple ways, the shorter and simpler explanation is preferred.
 - Any unrelated topic in explanation is avoided.

We obtained services of two annotators who carefully examined individual posts in our collection. Following the guidelines, annotators generated explanations of 3510 sarcastic posts. Out of these samples, MORE contains 1968 samples with textual entities as part of the image along with the captions, while the rest 1542 samples do not have images and texts overlapped. We call the former OCR samples, while the latter non-OCR samples throughout the paper. The remaining posts are discarded due to one of the aforementioned reasons for exclusion. Two such examples are shown in Figure 2. A brief statistics of the dataset is presented in Table 1.

4 Proposed Benchmark Model
To generate explanations, we employ ExMore, a multimodal Transformer-based encode-decoder approach. Figure 3 shows the complete architecture of ExMore.

At first, we take both inputs, i.e., images and captions, and pass them through pre-trained VGG-19 (Simonyan and Zisserman 2014) and BART (Lewis et al. 2020) encoders, respectively. Next, we feed the image ($x_I \in \mathbb{R}^{q \times d_I}$) and caption ($x_T \in \mathbb{R}^{r \times d_T}$) representations to the multimodal

3Text written within the image.

4Note that our aim is not to propose a sophistical model. Rather, we focus on proposing a new task and present a model to benchmark our dataset. Our model is expected to serve as a strong baseline for MuSE.
Transformer encoder for cross-modal learning, where \(r \) is the number of tokens in caption and \(q \) is the number of regions we obtain from the VGG-19 model. Unlike traditional Transformer architecture (Vaswani et al. 2017), where the same input is projected as ‘query’, ‘key’, and ‘value’, in the multimodal variant, we project the textual representation as ‘query’ (\(Q \in \mathbb{R}^{r \times d^k} \)) and image representation as ‘key’ (\(K \in \mathbb{R}^{q \times d^k} \)) and ‘value’ (\(V \in \mathbb{R}^{q \times d^k} \)). Subsequently, we apply the conventional self-attention mechanism to compute the cross-modal attentive representation \(z \in \mathbb{R}^{r \times d^k} \). Taking \(d^k = \frac{d^m}{M} \), we incorporate \(M = 4 \) heads for the computation. Following this, we apply layer normalization and fully-connected layers with residual connections to obtain the encoder’s output. Finally, we concatenate the textual representation \(x \) with the encoder output to obtain the final cross-modal encoder representation \(C_T \in \mathbb{R}^{2 \times r \times d^k} \). We feed \(C_T \) to the pre-trained auto-regressive BART decoder and fine-tune the entire model on MORE for the explanation generation.

5 Experiments, Results, and Analysis

We evaluate the generated explanations both quantitatively (using standard text generation evaluation metrics) and qualitatively (human evaluation). We also furnish comparative analyses at both levels.

5.1 Comparative Systems

Due to multimodal nature of the input, we study MuSE for both unimodal (text) and multimodal (text + image) inputs. Therefore, we also employ comparative systems for both the modalities. For text-based baselines, we employ Transformer (Vaswani et al. 2017) and Pointer Generator Network (See, Liu, and Manning 2017) for generating explanations. In the multimodal setup, we adopt MFFG, the video summarization system proposed by Liu et al. (2020). The MFFG architecture is a multi-stage fusion mechanism with a forget fusion gate acting as a multimodal noise filter. We compare with both RNN and Transformer variants of MFFG. We also utilize the multimodal Transformer (M-Transf) (Yao and Wan 2020) originally proposed for machine translation. M-Transf and ExMore differ in the way they consume multimodal inputs in their encoders. M-Transf considers the concatenation of text and image representations for query and text representation for key and value. On contrary, ExMore considers text representation for query and image representation for key and value projections.

5.2 Experimental Setup

We perform experiments on MORE and use 85:5:10 split to create train (2983), validation (175), and test (352) sets. We employ BLEU (B1, B2, B3, and B4), ROUGE (R1, R2, and RL), METEOR, BERTScore (Zhang et al. 2020), and SentBERT (a BERT-based cosine similarity at the explanation level), as evaluation metrics. SentBERT estimates the semantic closeness between the reference and generated explanations in the Sentence-BERT (Reimers and Gurevych 2019) embedding space.

Task-based pre-training: Since MORE has limited number of training samples, we utilize the existing multimodal sarcasm detection datasets (c.f. Section 3) to pre-train ExMore’s encoder. The pre-training was performed as a binary (sarcastic or non-sarcastic) classification task. This enables the encoder to learn the distinguishing features for sarcastic posts that can be leveraged in the MuSE task. Subsequently, the pre-trained ExMore encoder is then used to train and fine-tune on MORE.

Hyperparameters: We employ BART (Lewis et al. 2020) tokenizer with maximum token length as 256. We use AdamW (Loshchilov and Hutter 2017) optimizer with learning rate of \(1e-5 \) for the single cross-modal encoder and \(3e-4 \) for the LM head of decoder. We train ExMore for 125 epochs with batch_size = 16. During training, the cross-entropy loss is monitored over the validation set with image encoder in a frozen state.

5.3 Experimental Results

Table 2 shows the comparative results on MORE. We perform evaluation\(^3\) for three cases – (a) on complete dataset (both non-OCR + OCR samples) (Table 2a), (b) only on non-OCR samples (Table 2b), and (c) only on OCR samples (Table 2c).

\(^3\)We train on the complete dataset and evaluate according to the data type, i.e., non-OCR, OCR, or complete.
We experiment with a variant of ExMore and OCR cases. Evaluating separate results for OCR and Non-OCR samples reported in Tables 2b and 2c, respectively. The objective of we observe that are comparable and closer to the overall case. Furthermore, bias towards either the OCR samples or the Non-OCR samples. This could be because ExMore outperforms M-transf in both Non-OCR and OCR cases.

5.4 Ablation Study

We experiment with a variant of ExMore that leverage the ocr text extracted from image as the third modality input along with the caption and image (we call it ExMoreOCR). To handle the tri-modal case, we introduce two parallel cross-modal encoders – one for caption and image, and another for caption and ocr text. Utilizing the two encoders, we obtain two cross-modal encoded representations, $z_{img} \in \mathbb{R}^{r \times d_T}$ and $z_{ocr} \in \mathbb{R}^{r \times d_T}$. Since some posts may not contain ocr text, we introduce a filter/gating mechanism to intelligently fused the encoded representations. To achieve this, we compute the mean across the sequence length dimension of z_{img} and z_{ocr} representations. The resulting vectors are concatenated and passed through a 2-layered fully-connected network followed by a sigmoid function to produce a weight λ. The final encoder representation $C_T \in \mathbb{R}^{r \times d_T}$ is obtained as $(\lambda \times z_{img}) + z_{ocr}$, which is then passed to the pre-trained BART decoder to produce the explanation.

Table 2 reports the result of the ablation study. Similar to the earlier case, we evaluate ExMoreOCR for the overall, only Non-OCR, and only OCR samples. In comparison to ExMore, we obtain inferior results in all three cases. An interesting observation is that ExMoreOCR obtains better results for the OCR samples compared to the Non-OCR examples. This could be because ExMoreOCR incorporates the OCR text explicitly in the model. However, the performance was on a lower side perhaps due to the inability of the gating mechanism to learn in the absence of sufficient training data points.

In addition to ExMoreOCR, we also explore another variant that aims to leverage the image description of an image. The idea seems plausible as extracting desired and relevant
information from an image is comparatively non-trivial than extracting the same from text. Therefore, we try to incorporate the image description in place of an image. We generate image description of an image using Microsoft OSCAR (Li et al. 2020; Zhang et al. 2021), a state-of-the-art image descriptor. However, a manual analysis of the generated image description is found to be non-convincing. Though the image description highlights the key points in an image, features contributing to the irony is missing. One such example is shown in Figure 4. The description ‘A white car parked in a parking lot.’ appropriately describes various spatial features in the image; however, it fails to comprehend the way car is parked – the target of sarcasm. Therefore, we do not proceed with the image description-based experiments.

5.5 Result Analysis

Linguistic view: In this section, we review the generated explanations from linguistic aspect. We conduct our analyses according to four content POS tags – noun, verb, adjective, and adverb. Since the POS tags are the carriers of the core semantics of sentences, their comparison would provide us with a sense of their semantic context.

Table 4 presents the count-based comparison between ExMore and the best baseline, M-Transf (on avg), for the four tags. The numbers show the average count over the test set for the respective metrics. Though the results suggest that there is a significant gap in generating adequate explanations compared to the reference, we observe that the performance of ExMore is better than M-Transf in all cases. Another appealing observation is that the overlap count, albeit small, improves (except for the adverb case) with the inclusion of synonyms for noun (Table 4a), verb (Table 4b), adjective (Table 4c). It suggests that ExMore’s explanations are

Table 3: Ablation results for ExMore: Experiment with Image + Caption + OCR text.

Model	Total	Non-OCR	OCR	
	Gen count	Ref count	Gen count	Ref count
M-Transf	3.68	3.76	1.80	1.81
ExMore	3.57	3.75	1.78	1.79
M-Transf	3.62	3.73	1.80	1.80
ExMore	3.35	3.68	1.76	1.76

Table 4: POS-based comparison between the reference (Ref) explanation and generated (Gen) explanation for ExMore and M-Transf (the best baseline). Numbers show the average count respective to four PoS tags (Noun, Verb, Adjectives, and Adverb). Ref and Gen counts refer to the avg. frequencies. Difference and Overlap are the avg. word counts. Overlap–Syn is the avg. overlap counts; thus suggesting slightly better explanations at the semantic-level as well.

Table 4a: Noun

Model	Total	Non-OCR	OCR	
	Gen count	Ref count	Gen count	Ref count
M-Transf	0.86	1.03	0.79	0.91
ExMore	0.80	0.91	0.73	0.85
M-Transf	0.91	0.91	0.79	0.84
ExMore	0.91	1.14	0.73	1.19

Table 4b: Verb

Model	Total	Non-OCR	OCR	
	Gen count	Ref count	Gen count	Ref count
M-Transf	0.04	0.04	0.04	0.04
ExMore	0.04	0.04	0.04	0.04
M-Transf	0.04	0.04	0.04	0.04
ExMore	0.04	0.04	0.04	0.04

Table 4c: Adjective

Model	Total	Non-OCR	OCR	
	Gen count	Ref count	Gen count	Ref count
M-Transf	0.04	0.04	0.04	0.04
ExMore	0.04	0.04	0.04	0.04
M-Transf	0.04	0.04	0.04	0.04
ExMore	0.04	0.04	0.04	0.04

Caption: This guy gets a gold star for excellent parking.

Image description: A white car parked in a parking lot.

Figure 4: An example showing that the image description, obtained from Microsoft OSCAR image descriptor, does not capture the caption-specific context that the white car is parked partially covering the parking slot for handicapped. This context provided by the image modality is necessary for understanding the sarcasm.

To be clear, we do not claim that POS-based comparison would allow us to compare at the semantic level; instead, it would provide us with a high-level semantic context.

Utilizing WordNet: https://wordnet.princeton.edu/
ranges in 25-40 years.

Justify

Figure 5: Examples of adequacy ratings for the generated explanation by human evaluators. We map the adequacy rating to

in form of adequacy and fluency scores, adequacy rating dis-

of \([0, 1]\). Table 5 presents the summary of human evaluation

fluency of the generated explanation on the continuous scale

9
to rate the generated explanations.

Human Evaluation: We also perform human evaluation

for assessing the quality of the generated explanations. We

randomly sample 50 examples from the test set and ask

25 human evaluators\(^9\) to rate the generated explanations (ExMore and M-Transf) considering their adequacy and flu-

cy. The former metric measures the goodness of expla-

nation to reveal the underlying sarcasm, whereas the latter represents the coherency of English explanation. Inspired by

Kayser et al. (2021), for adequacy, the human evaluators are provided with four rating options – justify, weakly justify, somewhat related to input (SRI), and not related to input (NRI). Justify highlights the high semantic closeness between the generated and reference explanations; whereas weakly justify represents explanations which reveal the semantic incongruence without reasoning out the sarcastic na-

ture. In contrast, both SRI and NRI categorize the instances with no proper explanations, with the difference that, in SRI, the output refers to some entities related to the input (either in image or caption); however, the outputs in NRI are com-
pletely unrelated or random. A few examples related to the four classes of adequacy rating are shown in Figure 5.

Next, we map the four classes onto numeric scale of \([0, 1]\) – we assign a score of 1.0 to justify, 0.66 to weakly justify, 0.33 to SRI, and 0.0 to NRI samples. Evaluators rate fluency of the generated explanation on the continuous scale of \([0, 1]\). Table 5 presents the summary of human evaluation in form of adequacy and fluency scores, adequacy rating dis-

tribution, and Fleiss’ Kappa (Fleiss [1971]) scores among 25 evaluators. From Table 5, we observe that the evaluators showed more confidence in the explanation of ExMore than M-Transf for both adequacy (0.69 vs 0.37) and fluency (0.89 vs 0.74) metrics.

To compute the adequacy rating distribution, we adopt the majority-voting approach across evaluators to select the adequacy class. The results are shown in Table 5. We observe a significant percentage of samples fall under the justify or weakly justify categories for ExMore. In contrast, most of the samples belong to the SRI and NRI categories for M-Transf. It further strengthens our claim that ExMore yields better explanation than all baselines. Furthermore, we compute Fleiss’ Kappa to evaluate the agreement among 25 human evaluators. We observe fair agreement (Landis and Koch [1977]) among evaluators for adequacy.

6 Conclusion

In this paper, we proposed a novel task of multimodal sarcasm explanation (MuSE), aiming to unfold the intended sarcasm in multimedia posts with a caption and an image. To address the task, we developed a new dataset, MORE, containing 3510 sarcastic posts annotated with reference explanations in natural language (English) sentence. Further, we presented a strong baseline, ExMore, to benchmark the MORE dataset. Our evaluation showed that ExMore outperforms various baselines (adopted for MuSE) across five sets of evaluation metrics. Moreover, we conducted extensive analyses on the generated explanations. The POS tag and synonym-based linguistics analysis showed that ExMore produced semantically accurate output than the best

Table: Human Evaluation: A comparison between ExMore and M-Transf.

Model	Adequacy	Fluency
M-Transf	0.37	0.74
ExMore	0.69	0.89

(a) Adequacy and Fluency scores.

Model	Justify	W. Justify	SRI	NRI
M-Transf	15%	15%	35%	35%
ExMore	65%	5%	20%	10%

(b) Adequacy rating distribution of ExMore and SRI.

Model	Adequacy	Fluency
M-Transf	0.367	0.221
ExMore	0.401	0.175

(c) Fleiss’ Kappa scores among 25 human evaluators.

\(^9\)Evaluators are the experts in linguistics and NLP and their age ranges in 25-40 years.
baseline. In addition, the human evaluation with fair Fleiss’ Kappa agreement among 25 evaluators upheld the quality of ExMore’s explanation in form of higher adequacy scores. We believe that MuSE opens a new avenue in the domains of sarcasm analysis and explainability.

Acknowledgment

T. Chakraborty would like to acknowledge the support of the Ramanujan Fellowship, and ihub-Anubhuti-iiit Foundation set up under the NM-ICPS scheme of the Department of Science and Technology, India. M. S. Akhtar and T. Chakraborty thank Infosys Centre for AI at IIIT-Delhi for the valuable support.

References

Bedi, M.; Kumar, S.; Akhtar, M. S.; and Chakraborty, T. 2021. Multi-modal Sarcasm Detection and Humor Classification in Code-mixed Conversations. IEEE Transactions on Affective Computing.

Bouazizi, M.; and Otsuki Ohtsuki, T. 2016. A Pattern-Based Approach for Sarcasm Detection on Twitter. IEEE Access, 4: 5477–5488.

Cai, Y.; Cai, H.; and Wan, X. 2019. Multi-Modal Sarcasm Detection in Twitter with Hierarchical Fusion Model. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2506–2515. Florence, Italy: Association for Computational Linguistics.

Campbell, J. D.; and Katz, A. N. 2012. Are There Necessary Conditions for Inducing a Sense of Sarcastic Irony? Discourse Processes, 49(6): 459–480.

Castro, S.; Hazarika, D.; Pérez-Rosas, V.; Zimmermann, R.; Mihalcea, R.; and Poria, S. 2019. Towards Multimodal Sarcasm Detection (An Obviously Perfect Paper). In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 4619–4629. Florence, Italy: Association for Computational Linguistics.

Dubey, A.; Joshi, A.; and Bhattacharyya, P. 2019. Deep Models for Converting Sarcastic Utterances into Their Non Sarcastic Interpretation. In Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, CoDS-COMAD ’19, 289–292. New York, NY, USA: Association for Computing Machinery. ISBN 9781450362078.

Felbo, B.; Mislove, A.; Søgaard, A.; Rahwan, I.; and Lehmann, S. 2017. Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 1615–1625. Copenhagen, Denmark: Association for Computational Linguistics.

Fleiss, J. L. 1971. Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5): 378–382.

Guo, H.; Zheng, K.; Fan, X.; Yu, H.; and Wang, S. 2019. Visual attention consistency under image transforms for multi-label image classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 729–739.

Hazarika, D.; Poria, S.; Gorantla, S.; Cambria, E.; Zimmermann, R.; and Mihalcea, R. 2018. Cascade: Contextual sarcasm detection in online discussion forums. arXiv preprint arXiv:1805.06413.

Hendricks, L. A.; Akata, Z.; Rohrbach, M.; Donahue, J.; Schiele, B.; and Darrell, T. 2016. Generating visual explanations. In European conference on computer vision, 3–19. Springer.

Joshi, A.; Sharma, V.; and Bhattacharyya, P. 2015. Harnessing Context Incongruity for Sarcasm Detection. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 757–762. Beijing, China: Association for Computational Linguistics.

Kayser, M.; Camburu, O.-M.; Salewski, L.; Emde, C.; Do, V.; Akata, Z.; and Lukasiewicz, T. 2021. e-ViL: A Dataset and Benchmark for Natural Language Explanations in Vision-Language Tasks. arXiv preprint arXiv:2105.03761.

Kim, J.; Rohrbach, A.; Darrell, T.; Canny, J.; and Akata, Z. 2018. Textual explanations for self-driving vehicles. In Proceedings of the European conference on computer vision (ECCV), 563–578.

Landis, J. R.; and Koch, G. G. 1977. The measurement of observer agreement for categorical data. Biometrics, 33(1): 159–174.

Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L. 2020. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 7871–7880. Online: Association for Computational Linguistics.

Li, X.; Yin, X.; Li, C.; Hu, X.; Zhang, P.; Zhang, L.; Wang, L.; Hu, H.; Dong, L.; Wei, F.; Choi, Y.; and Gao, J. 2020. Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. ECCV 2020.

Liu, N.; Sun, X.; Yu, H.; Zhang, W.; and Xu, G. 2020. Multistage Fusion with Forget Gate for Multimodal Summarization in Open-Domain Videos. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1834–1845. Online: Association for Computational Linguistics.

Loshchilov, I.; and Hutter, F. 2017. Fixing Weight Decay Regularization in Adam. CoRR, abs/1711.05101.

Mahajan, A.; Shah, D.; and Jafar, G. 2021. Explainable AI approach towards toxic comment classification. In Emerging Technologies in Data Mining and Information Security, 849–858. Springer.

Mishra, A.; Tater, T.; and Sankaranarayanan, K. 2019. A modular architecture for unsupervised sarcasm generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 6144–6154.

Oprescu, S.; and Magdy, W. 2019. isarcasm: A dataset of intended sarcasm. arXiv preprint arXiv:1911.03123.
Parsa, A. B.; Movahedi, A.; Taghipour, H.; Derrible, S.; and Mohammadian, A. K. 2020. Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. *Accident Analysis & Prevention*, 136: 105405.

Peled, L.; and Reichart, R. 2017. Sarcasm SIGN: Interpreting Sarcasm with Sentiment Based Monolingual Machine Translation. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 1690–1700. Vancouver, Canada: Association for Computational Linguistics.

Pramanick, S.; Dimitrov, D.; Mukherjee, R.; Sharma, S.; Akhtar, M. S.; Nakov, P.; and Chakraborty, T. 2021. Detecting Harmful Memes and Their Targets. In *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, 2783–2796. Online: Association for Computational Linguistics.

Reimers, N.; and Gurevych, I. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, 3982–3992. Hong Kong, China: Association for Computational Linguistics.

Riloff, E.; Qadir, A.; Surve, P.; De Silva, L.; Gilbert, N.; and Huang, R. 2013. Sarcasm as Contrast between a Positive Sentiment and Negative Situation. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*, 704–714. Seattle, Washington, USA: Association for Computational Linguistics.

Sangwan, S.; Akhtar, M. S.; Behera, P.; and Ekbal, A. 2020. I didn’t mean what I wrote! Exploring Multimodality for Sarcasm Detection. In *2020 International Joint Conference on Neural Networks (IJCNN)*, 1–8.

Schifanella, R.; de Juan, P.; Tetreault, J.; and Cao, L. 2016. Detecting sarcasm in multimodal social platforms. In *Proceedings of the 24th ACM international conference on Multimedia*, 1136–1145. ACM.

See, A.; Liu, P. J.; and Manning, C. D. 2017. Get To The Point: Summarization with Pointer-Generator Networks. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 1073–1083. Vancouver, Canada: Association for Computational Linguistics.

Simonyan, K.; and Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017. Attention is All you Need. In Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and Garnett, R., eds., *Advances in Neural Information Processing Systems*, volume 30, 5998–6008. Curran Associates, Inc.

Yao, S.; and Wan, X. 2020. Multimodal Transformer for Multimodal Machine Translation. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguisitics*, 4346–4350. Online: Association for Computational Linguistics.

Zhang, P.; Li, X.; Hu, X.; Yang, J.; Zhang, L.; Wang, L.; Choi, Y.; and Guo, J. 2021. VinVL: Making Visual Representations Matter in Vision-Language Models. *CVPR 2021*.