ACL AND DIFFERENTIABILITY OF THE OPEN DISCRETE RING \((p, Q)\)-MAPPINGS

R. Salimov and E. Sevost’yanov

April 19, 2010

Abstract

We study the so-called ring \(Q\)-mappings which are the natural generalization of quasiregular mappings. It is proved that open discrete ring \(Q\)-mappings are differentiable a.e. and belong to the class \(ACL\) in \(\mathbb{R}^n\), \(n \ge 2\), furthermore, \(f \in W^{1,1}_{\text{loc}}\) provided that \(Q \in L^1_{\text{loc}}\).

2000 Mathematics Subject Classification: Primary 30C65; Secondary 30C75

1 Introduction

Recall that, given a family of paths \(\Gamma\) in \(\mathbb{R}^n\), a Borel function \(\varrho : \mathbb{R}^n \to [0, \infty]\) is called admissible for \(\Gamma\), abbr. \(\varrho \in \text{adm } \Gamma\), if

\[\int_{\gamma} \varrho \, ds \ge 1 \]

for all \(\gamma \in \Gamma\). The modulus of \(\Gamma\) is the quantity

\[M_\varrho (\Gamma) = \inf_{\varrho \in \text{adm } \Gamma} \int_{\mathbb{R}^n} \varrho^\alpha (x) \, dm(x) . \]

Let \(D\) be a domain in \(\mathbb{R}^n\), \(n \ge 2\), and \(f : D \to \mathbb{R}^n\) be a \(Q\)-quasiconformal mapping. Then necessarily

\[M_n (f\Gamma) \le \int_D K_I (x, f) \cdot \rho^n (x) \, dm(x) \]

for every family \(\Gamma\) of paths in \(D\) and every admissible function \(\rho\) for \(\Gamma\), see e.g. [BGMV], where \(K_I (x, f)\) stands for the well-known inner or outer dilatation of \(f\) at \(x\). One can replace the above necessary condition with the following, equivalent by Gehring’s result [Ge], inequality

\[M_n (f (\Gamma (S_1, S_2, A))) \le \int_{A(r_1, r_2, x_0)} K_I (x, f) \cdot \rho^n (|x - x_0|) \, dm(x) \]

for every point \(x_0 \in D\) and every \(r_1, r_2\), such that \(0 < r_1 < r_2 < r_0 = \text{dist} (x_0, \partial D)\), where \(A = A(r_1, r_2, x_0) = \{ x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2 \}\) and \(\Gamma (S_1, S_2, A)\) is a family of all paths.
joining the spheres \(S_i = S(x_0, r_i) = \{ x \in \mathbb{R}^n : |x - x_0| = r_i \} \), \(i = 1, 2 \), in \(A(r_1, r_2, x_0) \).

The above inequalities together with the modulus technique are the powerful tools for the study of quasiconformal (quasiregular) mappings in the plane and in space, see e.g. [GL], [Va], [Re2] and [Ri]. In order to extend as much as possible the set of maps for the study of which the well developed modulus technique can be also applied, we replace in (1.3) (in (1.4)) the dilatation \(K_I(x, f) \) with a measurable function \(Q(x) \), say of the class \(L^1_{\text{loc}}(D) \), and then declare the inequality

\[
M_p(f I) \leq \int_D Q(x) \cdot \rho^p(x) \, dm(x)
\]

or

\[
M_p \left(f \left(I(S_1, S_2, A) \right) \right) \leq \int_A Q(x) \cdot \eta^p(|x - x_0|) \, dm(x),
\]

due to \([MRSY_2]\), as the necessary condition for the mapping \(f : D \to \mathbb{R}^n \) to belong to the class of the \(Q \)–homeomorphisms, or the ring \(Q \)–homeomorphisms, respectively, etc. See also the conception of the weighted modulus, \([AC_1]–[AC_2]\), and applications of the \(Q \)–homeomorphisms, cf. \([Cr_1]–[Cr_2]\), \([BGR]\) and \([S_1]–[S_2]\).

Note that, if \(f \) is homeomorphism, the inequality (1.6) holds at every point \(x_0 \in D \) and \(Q(x) \leq K \) a.e., the definitions of \(Q \)–homeomorphism and ring \(Q \)–homeomorphism are equivalent, see \([Ge]\), and give that \(f \) is \(K \)–quasiconformal mapping. Moreover, every \(K \)–quasiconformal (or \(K \)–quasiregular) mapping satisfies to (1.6) and (1.5) with \(Q(x) \equiv K \). Our paper is devoted to the study of mappings having unbounded \(Q(x) \) in above definitions.

Recall that a mapping \(f : D \to \mathbb{R}^n \) is said to be absolutely continuous on lines, write \(f \in ACL \), if all coordinate functions \(f = (f_1, \ldots, f_n) \) are absolutely continuous on almost all straight lines parallel to the coordinate axes for any \(n \)–dimensional parallelepiped \(P \) with edges parallel to the coordinate axes and such that \(\overline{P} \subset D \).

It is well–known that quasiconformal and quasiregular mappings are absolutely continuous on lines, see e.g. Corollary 31.4 in [Va], Lemma 4.11 and Theorem 4.13 in [MRV_1], and differentiable a.e., see e.g. Corollary 32.2 in [Va], Theorem 2.1 Ch. I in [Ri] and Theorem 4 in [Re_1]. Moreover, in the plane case, every \(ACL \)–homeomorphism is differentiable a.e., see [GL]. However, above results did not give any information about differentiability (or \(ACL \)) for more general mappings having non–bounded dilatation. The first steps in this direction were made in the work of one of authors, see [Sal]. More detail, it has been shown that \(Q \)–homeomorphisms are differentiable a.e. and belong to the class \(ACL \) provided that a function \(Q \) is locally integrable. In the present paper we extend these results to open discrete mappings satisfying the conditions of the type (1.6).

Thus, the goal of the present paper is to prove the following:

I. Open discrete ring \((p, Q)\)–mappings \(f : D \to \mathbb{R}^n \) with \(Q \in L^1_{\text{loc}} \) and \(p > n - 1 \) are differentiable a.e. in \(D \).

II. Open discrete ring \((p, Q)\)–mappings \(f : D \to \mathbb{R}^n \) with \(Q \in L^1_{\text{loc}} \) and \(p > n - 1 \) belongs to the class \(ACL \) in \(D \).
III. Open discrete ring \((p, Q)\)-mappings \(f : D \to \mathbb{R}^n\) with \(Q \in L^1_{loc}\) and \(p > n - 1\) belong to the Sobolev class \(W^{1, p}_{loc}\) and satisfy to the inequality

\[
\|f'(x)\|^p \leq C.|J(x, f)|^{1-n+p} Q^{n-1}(x)
\]

a.e. where a constant \(C\) depends only on \(n\) and \(p\).

2 Preliminaries

Let \(D\) be a domain in \(\mathbb{R}^n, n \geq 2\). A mapping \(f : D \to \mathbb{R}^n\) is said to be discrete if the preimage \(f^{-1}(y)\) of every point \(y \in \mathbb{R}^n\) consists of isolated points, and an open if the image of every open set \(U \subseteq D\) is open in \(\mathbb{R}^n\). The notation \(G \subseteq D\) means that \(\overline{G}\) is a compact subset of \(D\). We suppose that \(f : D \to \mathbb{R}^n\) is continuous and sense-preserving, i.e. a topological index \(\mu(y, f, G) > 0\) for any \(G \subseteq D\) and \(y \in f(G) \setminus f(\partial G)\). A neighborhood of a point \(x\) or a set \(A\) is an open set containing \(x\) or \(A\), correspondingly. Suppose that \(x \in D\) has a connected neighborhood \(G\) such that \(\overline{G} \cap f^{-1}(f(x)) = \{x\}\). Then \(\mu(f(x), f, G)\) is well-defined and independent of the choice of \(G\) for discrete open \(f\) and denoted by \(i(x, f)\).

For \(f : D \to \mathbb{R}^n\) and \(E \subseteq D\), we use the multiplicity functions

\[
N(y, f, E) = \text{card} \left\{ x \in E : f(x) = y \right\},
\]

\[
N(f, E) = \sup_{y \in \mathbb{R}^n} N(y, f, E).
\]

In what follows, we also use the notations \(B(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| < r\}\) and \(\mathbb{R}^n = \mathbb{R}^n \cup \{\infty\}\). The above definitions can be extended in a natural way to mappings \(f : D \to \mathbb{R}^n\).

The following notion is motivated by the Gehring ring definition of quasiconformality, see [Ge], and generalizes a notion of ring \(Q\)-homeomorphism, see [RSY].

Given a domain \(D\) and two sets \(E\) and \(F\) in \(\mathbb{R}^n, n \geq 2\), \(\Gamma(E, F, D)\) denotes the family of all paths \(\gamma : [a, b] \to \mathbb{R}^n\) which join \(E\) and \(F\) in \(D\), i.e., \(\gamma(a) \in E, \gamma(b) \in F\) and \(\gamma(t) \in D\) for \(a < t < b\). We set \(\Gamma(E, F) = \Gamma(E, F, \mathbb{R}^n)\) if \(D = \mathbb{R}^n\). Let \(r_0 = \text{dist}(x_0, \partial D)\) and \(Q : D \to [0, \infty]\) is a measurable function. Set

\[
A(r_1, r_2, x_0) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\},
\]

\[
S_i = S(x_0, r_i) = \{x \in \mathbb{R}^n : |x - x_0| = r_i\}, \text{ } i = 1, 2.
\]

A homeomorphism \(f : D \to \mathbb{R}^n\) is said to be a ring \((\psi, Q)\)-homeomorphism at a point \(x_0 \in D\), if

\[
(2.1) \quad M_p(f(\Gamma(S_1, S_2, A))) \leq \int_A Q(x) \cdot \eta^p(|x - x_0|) \, dm(x)
\]

holds for every annulus \(A = A(r_1, r_2, x_0), 0 < r_1 < r_2 < r_0\) and every measurable function \(\eta : (r_1, r_2) \to [0, \infty]\) such that

\[
\int_{r_1}^{r_2} \eta(r) \, dr \geq 1.
\]

If (2.1) holds for every \(x_0 \in D\), \(f\) is said to be a ring \((p, Q)\)-homeomorphism. In general case, every \((p, Q)\)-homeomorphism \(f : D \to \mathbb{R}^n\) is a ring \((p, Q)\)-homeomorphism, but the
inverse conclusion, generally speaking, is not true. In [RSY] there are examples of ring Q-homeomorphisms in a fixed point x_0 such that $Q(x) \in (0, 1)$ on some set for which x_0 is a density point. We will not discuss here these connections in more details.

Let $D \subset \mathbb{R}^n$, $n \geq 2$, be a domain and $Q : D \to [0, \infty]$ be a measurable function. We say that a continuous sense–preserving mapping $f : D \to \mathbb{R}^n$ is a ring (p, Q)-mapping in D if (2.1) holds for every $x_0 \in D$. Note that correspondingly to these definitions the class of the so-called (p, Q)-mappings which consists of the continuous sense–preserving mappings satisfying the condition (1.5) is included in the class of ring (p, Q)-mappings. Thus, all results for ring (p, Q)-mappings formulated below hold, in particular, for (p, Q)-mappings.

Correspondingly to [MRV] a condenser is a pair $E = (A, C)$ where $A \subset \mathbb{R}^n$ is open and C is non–empty compact set contained in A. A condenser $E = (A, C)$ is said to be in a domain G if $A \subset G$. For a given condenser $E = (A, C)$, we set

\begin{equation}
(2.2) \quad \text{cap}_p E = \text{cap}_p (A, C) = \inf_{u \in W_0(E)} \int_A |\nabla u|^p \, dm(x)
\end{equation}

where $W_0(E) = W_0(A, C)$ is the family of non–negative functions $u : A \to R^1$ such that

1. u is continuous and finite on A, (2) $u(x) \geq 1$ for $x \in C$, and (3) u is ACL. In the above formula

$$|\nabla u| = \left(\sum_{i=1}^n (\partial_i u)^2 \right)^{1/2}.$$

The quantity $\text{cap}_p E$ is called the p-capacity of the condenser E.

We say that a family of curves Γ_1 is minorized by a family Γ_2, denoted by $\Gamma_1 \supset \Gamma_2$, if for every curve $\gamma \in \Gamma_1$ there is a subcurve that belongs to the family Γ_2. It is known that $M_p(\Gamma_1) \leq M_p(\Gamma_2)$ if $\Gamma_1 \supset \Gamma_2$, see Theorem 6.4 in [Va].

3 Differentiability

Let $f : D \to \mathbb{R}^n$ be a discrete open mapping. Let $\beta : [a, b) \to \mathbb{R}^n$ be a path and $x \in f^{-1}(\beta(a))$. A path $\alpha : [a, c) \to D$ is called a maximal f-lifting of β starting at x if

1. $\alpha(a) = x$; (2) $f \circ \alpha = \beta|_{[a,c)}$; (3) if $c < c' \leq b$, then there is no path $\alpha' : [a, c') \to D$ such that $\alpha = \alpha'|_{[a,c)}$ and $f \circ \alpha' = \beta|_{[a,c')}$. If f is a discrete open mapping, then every path β with $x \in f^{-1}(\beta(a))$ has a maximal f-lifting starting at a point x, see Corollary 3.3 Ch.II in [Ri]. We need the following statement, see Proposition 10.2 Ch. II in [Ri].

3.1. Lemma. Let $E = (A, C)$ be a condenser in \mathbb{R}^n and let Γ_E be the family of all paths of the form $\gamma : [a, b) \to A$ with $\gamma(a) \in C$ and $|\gamma| \cap (A \setminus F) \neq \emptyset$ for every compact $F \subset A$. Then $\text{cap}_p E = M_p(\Gamma_E)$.

3.2. Theorem. Let D be a domain in \mathbb{R}^n, $n \geq 2$, and $f : D \to \mathbb{R}^n$ be a ring (p, Q)-mapping with $Q \in L^1_{loc}$ and $p > n - 1$. Suppose that f is discrete and open. Then f is differentiable a.e. in D.

Proof. Without loss of generality we may assume that $\infty \notin D' = f(D)$. Let us consider the set function $\Phi(B) = m(f(B))$ defined over the algebra of all the Borel sets B in D. By
2.2, 2.3 and 2.12 in [MRV1]

\[\varphi(x) = \limsup_{\varepsilon \to 0} \frac{\Phi(B(x, \varepsilon))}{\Omega_n \varepsilon^n} < \infty \]

for a.e. \(x \in D \). Consider the spherical ring \(R_\varepsilon(x) = \{ y : \varepsilon < |x - y| < 2\varepsilon \}, x \in D \), with \(\varepsilon > 0 \) such that \(B(x, 2\varepsilon) \subset D \). Note that \(E = (B(x, 2\varepsilon), B(x, \varepsilon)) \) is a condenser in \(D \) and \(fE = (fB(x, 2\varepsilon), fB(x, \varepsilon)) \) is a condenser in \(D' \). Let \(\Gamma_E \) and \(\Gamma_{fE} \) be path families from Lemma 3.1. Then

\[\text{cap}_p \left(fB(x, 2\varepsilon), fB(x, \varepsilon) \right) = M_{p_1} \left(\Gamma_{fE} \right). \]

Let \(\Gamma^* \) be a family of maximal \(f \)-liftings of \(\Gamma_{fE} \) starting at \(B(x, \varepsilon) \). We show that \(\Gamma^* \subset \Gamma_E \). Suppose the contrary. Then there is a path \(\beta : [a, b) \to \mathbb{R}^n \) of \(\Gamma_{fE} \) such that the corresponding maximal \(f \)-lifting \(\alpha : [a, c) \to B(x, 2\varepsilon) \) is contained in some compact \(K \) inside of \(B(x, 2\varepsilon) \). Thus \(\alpha \) is a compactum in \(B(x, 2\varepsilon) \), see Theorem 2, §45 in [Ku]. Remark that \(c \neq b \). Indeed, in the contrary case \(\beta \) is a compact in \(f(A) \) that contradicts to the condition \(\beta \in \Gamma_{fE} \).

Consider the set

\[G = \left\{ x \in \mathbb{R}^n : x = \lim_{k \to \infty} \alpha(t_k) \right\}, \quad t_k \in [a, c), \lim_{k \to \infty} t_k = c. \]

Without loss of generality we may assume that \(t_k \) is the monotone sequence. By continuity of \(f \), for \(x \in G \), \(f(\alpha(t_k)) \to f(x) \) as \(k \to \infty \) where \(t_k \in [a, c), t_k \to c \) as \(k \to \infty \). However, \(f(\alpha(t_k)) = \beta(t_k) \to \beta(c) \) as \(k \to \infty \). Thus, \(f \) is a constant in \(G \subset B(x, 2\varepsilon) \). On the other hand, from the Cantor condition on the compact \(\alpha \),

\[G = \bigcap_{k=1}^{\infty} \alpha([t_k, c]) = \limsup_{k \to \infty} \alpha([t_k, c]) = \liminf_{k \to \infty} \alpha([t_k, c]) \neq \emptyset \]

by monotonicity of the sequences of connected sets \(\alpha([t_k, c]) \), see [Ku]. Thus, \(G \) is connected by \(I(9.12) \) in [Wh]. Consequently, \(G \) is a single point by discreteness of \(f \). So a path \(\alpha : [a, c) \to B(x, 2\varepsilon) \) can be extended to \(\alpha : [a, c] \to K \subset B(x, 2\varepsilon) \) and \(f(\alpha(c)) = \beta(c) \).

By Corollary 3.3 Ch. II in [Ri] we can construct a maximal \(f \)-lifting \(\alpha' \) of \(\beta|_{[c, b)} \) started at \(\alpha(c) \). United the liftings \(\alpha \) and \(\alpha' \), we have a new \(f \)-lifting \(\alpha'' \) of \(\beta \) defined on \([a, c') \), \(c' \in (c, b) \), that contradicts to the maximality of \(f \)-lifting \(\alpha \). Thus \(\Gamma^* \subset \Gamma_E \). Remark that \(\Gamma_{fE} > f\Gamma^* \) and, consequently,

\[M_p \left(\Gamma_{fE} \right) \leq M_p \left(f\Gamma^* \right) \leq M_p \left(f\Gamma_E \right). \]

Let \(\{r_i\}_{i=1}^{\infty} \) be an arbitrary sequence of numbers with \(\varepsilon < r_i < 2\varepsilon \) such that \(r_i \to 2\varepsilon - 0 \). Denote by \(\Gamma_i \) a family of paths joining the spheres \(|x| = \varepsilon \) and \(|x| = r_i \) in a ring \(\varepsilon < |x| < r_i \). Then \(\Gamma_E > \Gamma_i \) for every \(i \in \mathbb{N} \). Consider the family of functions

\[\eta_{i, \varepsilon}(t) = \begin{cases} \frac{1}{r_i - \varepsilon}, & t \in (\varepsilon, r_i), \\ 0, & t \in \mathbb{R} \setminus (\varepsilon, r_i). \end{cases} \]

By definition of a ring \(Q \)-mapping

\[(3.5) M_p(f\Gamma_E) \leq M_p(f\Gamma_i) \leq \frac{1}{(r_i - \varepsilon)^p} \int_{\varepsilon < |x| < r_i} Q(x) \, dm(x) \leq \frac{1}{(r_i - \varepsilon)^p} \int_{B(x, 2\varepsilon)} Q(x) \, dm(x). \]
Letting to the limit in (3.5) as $i \to \infty$, we obtain
\begin{equation}
M_p(f \Gamma_E) \leq \frac{1}{\varepsilon^p} \int_{B(x, 2\varepsilon)} Q(x) \, dm(x).
\end{equation}

From (3.4) and (3.6)
\begin{equation}
\text{cap}_p (f B(x, 2\varepsilon), \overline{f B(x, \varepsilon)}) \leq \frac{1}{\varepsilon^p} \int_{B(x, 2\varepsilon)} Q(x) \, dm(x).
\end{equation}

On the other hand, by Proposition 6 in [Kr]
\begin{equation}
\text{cap}_p (f B(x, 2\varepsilon), \overline{f B(x, \varepsilon)}) \geq \left(c_1 \frac{d^p(f B(x, \varepsilon))}{m(f B(x, 2\varepsilon))^{1-n+p}} \right)^{\frac{1}{n-1}}
\end{equation}
where c_1 depends only on n and p, $d(A)$ is a diameter and $m(A)$ is the Lebesgue measure of A in \mathbb{R}^n. Combining (3.7) and (3.8), we obtain that
\begin{equation}
\frac{d(f B(x, \varepsilon))}{\varepsilon} \leq c_2 \left(m(f B(x, 2\varepsilon))^{\frac{1-n+p}{p}} \int_{B(x, 2\varepsilon)} \frac{1}{m(B(x, 2\varepsilon))} \int_{B(x, 2\varepsilon)} Q(y) \, dm(y) \right)^{\frac{n-1}{p}}
\end{equation}
and hence
\begin{equation}
L(x, f) \leq \limsup_{\varepsilon \to 0} \frac{d(f B(x, \varepsilon))}{\varepsilon} \leq c_2 \varphi^{\frac{1-n+p}{p}}(x) Q^{\frac{n-1}{p}}(x)
\end{equation}
where
\begin{equation}
L(x, f) = \limsup_{y \to x} \frac{|f(y) - f(x)|}{|y - x|}.
\end{equation}
Thus, $L(x, f) < \infty$ a.e. in D. Finally, applying the Rademacher–Stepanov theorem, see e.g. [Sa], p. 311, we conclude that f is differentiable a.e. in D.

3.10. Corollary.
Let D be a domain in \mathbb{R}^n, $n \geq 2$, and $f : D \to \mathbb{R}^n$ be a ring (p, Q)–mapping with $Q \in L^1_{\text{loc}}$ and $p > n - 1$. Suppose that f is discrete and open. Then the partial derivatives of f are locally integrable.

Proof. Given a compact set $V \subset D$, we have
\begin{equation}
\int_V L(x, f) \, dx \leq c_2 \int_V \varphi^{\frac{1-n+p}{p}}(x) Q^{\frac{n-1}{p}}(x) \, dm(x)
\end{equation}

Applying the Hölder inequality, see (17.3) in [BB], we obtain
\begin{equation}
\int_V \varphi^{\frac{1-n+p}{p}}(x) Q^{\frac{n-1}{p}}(x) \, dm(x) \leq \left(\int_V \varphi(x) \, dm(x) \right)^{\frac{1-n+p}{p}} \left(\int_V Q(x) \, dm(x) \right)^{\frac{n-1}{p}}
\end{equation}
and since $Q \in L^1_{\text{loc}}$

$$\int_V L(x, f) \, dm(x) \leq c_2 N(f, V)^{2/n} \left(\int_V Q(x) \, dm(x) \right)^{\frac{n-1}{p}} < \infty,$$

see Lemma 2.3 in [MRV 1].

3.11. Corollary. Let D be a domain in \mathbb{R}^n, $n \geq 2$, and $f : D \to \mathbb{R}^n$ be a ring (p, Q)–mapping with $Q \in L^1_{\text{loc}}$ and $p > n - 1$. Suppose that f is discrete and open. Then

$$\|f'(x)\|^p \leq C \cdot |J(x, f)|^{1-n+p} Q^{n-1}(x)$$

a.e. where a constant C depends only on n and p.

4 On the ACL property of discrete open (p, Q)–mappings

4.1. Theorem. Let D be a domain in \mathbb{R}^n, $n \geq 2$, and $f : D \to \mathbb{R}^n$ be a ring (p, Q)–mapping with $Q \in L^1_{\text{loc}}$ and $p > n - 1$. Suppose that f is discrete and open. Then $f \in \text{ACL}$.

Proof. Without loss of generality we may assume that $\infty \notin D' = f(D)$. Let $I = \{x \in \mathbb{R}^n : a_i < x_i < b_i, \ i = 1, \ldots, n\}$ be an n-dimensional interval in \mathbb{R}^n such that $\overline{T} \subset D$. Then $I = I_0 \times J$ where I_0 is an $(n-1)$-dimensional interval in \mathbb{R}^{n-1} and J is an open segment of the axis x_n, $J = (a, b)$. Next we identify $\mathbb{R}^{n-1} \times \mathbb{R}$ with \mathbb{R}^n. We prove that for almost everywhere segments $J_z = \{z\} \times J$, $z \in I_0$, the mapping $f|_{J_z}$ is absolutely continuous.

Consider the set function $\Phi(B) = m(f(B \times J))$ defined over the algebra of all Borel sets B in I_0. By 2.2, 2.3 and 2.12 in [MRV 1]

$$(4.2) \quad \varphi(z) = \limsup_{r \to 0} \frac{\Phi(B(z, r))}{\Omega_{n-1} r^{n-1}} < \infty$$

for a.e. $z \in I_0$ where $B(z, r)$ is a ball in \mathbb{R}^{n-1} centered at the point $z \in I_0$ of the radius r and Ω_{n-1} is a volume of the unit ball in \mathbb{R}^{n-1}.

Let $\Delta_i, i = 1, 2, \ldots$, be some enumeration S of all intervals in J such that $\overline{\Delta}_i \subset J$ and the ends of Δ_i are the rational numbers. Set

$$\varphi_i(z) := \int_{\Delta_i} Q(z, x_n) \, dx_n.$$

Then by the Fubini theorem, see e.g. III. 8.1 in [Sa], the functions $\varphi_i(z)$ are a.e. finite and integrable in $z \in I_0$. In addition, by the Lebesgue theorem on differentiability of the indefinite integral there is a.e. a finite limit

$$(4.3) \quad \lim_{r \to 0} \frac{\Phi_i(B^{n-1}(z, r))}{\Omega_{n-1} r^{n-1}} = \varphi_i(z)$$
where Φ_i for a fixed $i = 1, 2, \ldots$ is the set function

$$\Phi_i(B) = \int_B \varphi_i(\zeta) \, d\zeta$$

given over the algebra of all Borel sets B in I_0.

Let us show that the mapping f is absolutely continuous on each segment $J_z, z \in I_0$, where the finite limits (4.2) and (4.3) exist. Fix one of such a point z. We have to prove that the sum of diameters of the images of an arbitrary finite collection of mutually disjoint segments in $J_z = \{z\} \times J$ tends to zero together with the total length of the segments. In view of the continuity of the mapping f, it is sufficient to verify this fact only for mutually disjoint segments with rational ends in J_z. So, let $\Delta_i = \{z\} \times \Delta_i \subset J_z$ where $\Delta_i \in S, i = 1, \ldots, k$ under the corresponding re-enumeration of S, are mutually disjoint intervals. Without loss of generality, we may assume that $\Delta_i, i = 1, \ldots, k$ are also mutually disjoint.

Let $\delta > 0$ be an arbitrary rational number which is less than half of the minimum of the distances between $\Delta_i, i = 1, \ldots, k$, and also less than their distances to the end-points of the interval J_z. Let $\Delta_i = \{z\} \times [\alpha_i, \beta_i]$ and $A_i = A_i(r) = B^{n-1}(z, r) \times (\alpha_i - \delta, \beta_i + \delta), i = 1, \ldots, k$ where $B^{n-1}(z, r)$ is an open ball in $I_0 \subset \mathbb{R}^{n-1}$ centered at the point z of the radius $r > 0$.

For small $r > 0$, $E_i = (A_i, \Delta_i), i = 1, \ldots, k$ are condensers in I and hence, $fE_i = (fA_i, f\Delta_i), i = 1, \ldots, k$ are condensers in D'. By Lemma 3.1,

$$\text{cap}_p (fA_i, f\Delta_i) = M_p(\Gamma_{fE_i}).$$

Denoting through Γ'_{E_i} a family of maximal f–liftings of Γ_{fE_i} starting at Δ_i, we obtain $\Gamma'_{E_i} \subset \Gamma_{E_i}$ and

(4.4)$$\text{cap}_p (fA_i, f\Delta_i) \leq M_p(\Gamma'_{E_i}).$$

Let m be a natural number such that $1/m < \delta$. Consider the ring $\varepsilon_1 < |x - z_0| < \varepsilon_2$ where $z_0 = \left(z, \frac{\alpha_i + \beta_i}{2}\right)$, $\varepsilon_1 = \frac{\beta_i - \alpha_i}{2}$, $\varepsilon_2 = \frac{\beta_i - \alpha_i}{2} + \delta - 1/m$. Let $\Gamma_{i, m}$ is a path family joining the spheres $S_1 = \{|x - z_0| = \varepsilon_1\}$ and $S_2 = \{|x - z_0| = \varepsilon_2\}$ in \mathbb{R}^n. Note that $\Gamma_{i, m} < \Gamma_{E_i}$ and by (4.4)

(4.5)$$\text{cap}_p (fA_i, f\Delta_i) \leq M_p(\Gamma_{i, m}).$$

Consider the family of functions

$$\eta_{i, m}(t) = \begin{cases} \frac{1}{r - 1/m}, & t \in \left[\frac{\beta_i - \alpha_i}{2}, \frac{\beta_i - \alpha_i}{2} + \delta - 1/m\right], \\ 0, & t \in \mathbb{R}\setminus\left[\frac{\beta_i - \alpha_i}{2}, \frac{\beta_i - \alpha_i}{2} + \delta - 1/m\right]. \end{cases}$$

as $r < \delta$. By definition of ring (p, Q)–mappings, from (4.5) we have

(4.6)$$\text{cap}_p (fA_i, f\Delta_i) \leq \frac{1}{(r - 1/m)^p} \int_{A_i} Q(x) \, dm(x).$$

Letting into the limit in (4.6) as $m \to \infty$, we obtain

(4.7)$$\text{cap}_p (fA_i, f\Delta_i) \leq \frac{1}{r^p} \int_{A_i} Q(x) \, dm(x).$$
On the other hand, by Proposition 6 in [Kr],

\[
(4.8) \quad \operatorname{cap}_p (f A_i, f \Delta^n) \geq \left(\frac{c d_i^p}{m_i^{1-n+p}} \right)^{\frac{1}{n-1}}
\]

where \(d_i \) is a diameter of the set \(f \Delta_i^n \), \(m_i \) is a volume of \(f A_i \) and \(c \) is a constant depending only on \(n \) and \(p \).

Combining (4.7) and (4.8), we have

\[
(4.9) \quad \left(\frac{d_i^p}{m_i^{1-n+p}} \right)^{\frac{1}{n-1}} \leq \frac{c_1}{r^p} \int_{A_i} Q(x) dm(x)
\]

with a constant \(c_1 \) depending only on \(n \), \(p \) and all \(i = 1, \ldots, k \).

By the discrete Hölder inequality see e.g. (17.3) in [BB], we obtain

\[
\sum_{i=1}^{k} d_i \leq \left(\sum_{i=1}^{k} \left(\frac{d_i^p}{m_i^{1-n+p}} \right)^{\frac{1}{n-1}} \right)^{n-1} \left(\sum_{i=1}^{k} m_i^{\frac{1-n+p}{p}} \right)^{\frac{1}{n-1}},
\]

i.e.

\[
\left(\sum_{i=1}^{k} d_i \right)^{p} \leq \left(\sum_{i=1}^{k} \left(\frac{d_i^p}{m_i^{1-n+p}} \right)^{\frac{1}{n-1}} \right)^{n-1} [\Phi(B(z,r))]^{1-n+p}.
\]

By (4.9)

\[
\left(\sum_{i=1}^{k} d_i \right)^{p} \leq c_2 \left[\Phi(B(z,r)) \right]^{1-n+p} \left(\sum_{i=1}^{k} \frac{\int_{A_i} Q(x) dm(x)}{\Omega_{n-1} r^{n-1}} \right)^{n-1}
\]

where \(c_2 \) depends only on \(n \) and \(p \). Passing to the limit first as \(r \rightarrow 0 \) and then as \(\delta \rightarrow 0 \), we obtain

\[
(4.10) \quad \left(\sum_{i=1}^{k} d_i \right)^{p} \leq c_2 [\varphi(z)]^{1-n+p} \left(\sum_{i=1}^{k} \varphi_i(z) \right)^{n-1}.
\]

Finally, in view of (4.10), the absolute continuity of the indefinite integral of \(Q \) over the segment \(J_z \) implies the absolute continuity of the mapping \(f \) over the same segment. Hence \(f \in ACL \).

Combining Theorem 4.1 and Corollary 3.10, we obtain a following conclusion, see also [Ma].

4.11. Corollary. Let \(D \) be a domain in \(\mathbb{R}^n \), \(n \geq 2 \), and \(f : D \rightarrow \mathbb{R}^n \) be a ring \((p, Q)\)-mapping with \(Q \in L^1_{\text{loc}} \) and \(p > n - 1 \). Suppose that \(f \) is discrete and open. Then \(f \in W^{1,1}_{\text{loc}} \).
References

[AC1] Andrean Cazacu C., *Influence of the orientation of the characteristic ellipses of the properties of the quasiconformal mappings*, Proceedings of the Romanian–Finnish Seminar on Teichmüller Spaces and Riemann Surfaces, Bucharest, 1971, 65–85.

[AC2] Andrean Cazacu C., *Moduli inequalities for quasiregular mappings*, Ann. Acad. Sci. Fenn. Math. 2 (1976), 17–28.

[BB] Beckenbach E.F., Bellman R., *Inequalities*, Springer-Verlag, New York, 1965.

[BGMV] Bishop C.J., Gutlyanskii V.Ya., Martio O., Vuorinen M., *On conformal dilatation in space*, Intern. Journ. Math. and Math. Scie. 22 (2003), 1397–1420.

[BGR] Bojarski B.V., Gutlyanskii V.Ya, Ryazanov V.I., *General Beltrami equations and BMO*, Ukr. Math. Bull., 5 (2008), no. 3, 305–326.

[Cr1] Cristea M., *Local homeomorphisms having local ACL^n inverses*, Compl. Var. and Ellipt. Equat., 53 (2008), no.1, 77–99.

[Cr2] Cristea M., *Open discrete mappings having local ACL^n inverses*, 2008, Preprint Ser. Inst. Math. of Romanian Acad., Inst. de Math. ”Simion Stoilow” Al Acad. Rom., 2008.6.

[Ge] Gehring F.W., *Rings and quasiconformal mappings in space*, Trans. Amer. Math. Soc. 103 (1962), 353–393.

[GL] Gehring F.W. and Lehto O., *On the total differentiability of functions of a complex variable*, Ann. Acad. Sci. Fenn. Math. AI. 272 (1959), 1–9.

[KM] Koskela, P., Maly J., *Mappings of finite distortion: The zero set of Jacobian*, J. Eur. Math. Soc. 5 (2003), 95–105.

[Kr] Kruglikov, V., *Capacity of condensers and spatial mappings quasiconformal in the mean*, Matem. sborn. 1986. V. 130. N. 2. P. 185206

[Ku] Kuratowski K., *Topology*, Vol.1, Academic Press, New York and London, 1966.

[MRV1] Martio O., Rickman S., Väisälä J., *Definitions for quasiregular mappings*, Ann. Acad. Sci. Fenn. Ser. A I. Math. 448 (1969), 1-40.

[MRV2] Martio O., Rickman S., Väisälä J., *Distortion and singularities of quasiregular mappings*, Ann. Acad. Sci. Fenn. Ser. A I. Math. 465 (1970), p. 1–13.

[MRSY1] Martio O., Ryazanov V., Srebro U. and Yakubov E., *Mappings of finite length distortion*, J. d’Anal. Math. 93 (2004), 215–236.

[MRSY2] Martio O., Ryazanov V., Srebro U., Yakubov E., *On Q–homeomorphisms*, Ann. Acad. Sci. Fenn. Ser. A1. Math. 30 (2005), 49–69.

[MV1] Manfredi J.J. and Villamor E., *Mappings with integrable dilatation in higher dimensions*, Bull. Amer. Math. Soc. 32 (1995), no.2, p. 235–240.
[MV] Manfredi J.J. and Villamor E., An extension of Reshetnyak’s theorem, Indiana Univ. Math. J. 47 (1998), no.3, p. 1131–1145.

[Ma] Maz’ya, V., Sobolev classes, Springer, Berlin – New York, 1985.

[Pon] Ponomarev S.P., The N^{-1}–property of mappings, and Lusin’s (N) condition, Mat. Zametki 58 (1995), 411-418; transl. in Math. Notes 58 (1995), 960–965 (1996).

[Re] Reshetnyak Yu. G., Generalized derivatives and differentiability a.e. (In Russian), Math. Sb. 75 (1968), no. 3, 323–334.

[Ri] Rickman S., Quasiregular Mappings, Springer, Berlin etc., 1993.

[RSY] Ryazanov V., Srebro U. and Yakubov E., On ring solutions of Beltrami equations, J. dAnal. Math. 96 (2005), 117150.

[Sa] Saks S., Theory of the Integral, New York, Dover Publ. Inc., 1964.

[Sal] Salimov R., ACL and differentiability of Q–homeomorphisms, Ann. Acad. Sci. Fenn. Ser. AI. Math. 33 (2008), 295–301.

[Va] Väisälä J., Lectures on n–Dimensional Quasiconformal Mappings, Lecture Notes in Math. 229. – Berlin etc.: Springer–Verlag, 1971.

[Wh] Whyburn G.T., Analytic topology, American Mathematical Society, Rhode Island. – 1942.

[S1] Sevost’yanov E.A., Theory of moduli, capacities and normal families of mappings admitting branching, Ukr. Math. Bull., 4 (2007), no. 4, 573–593.

[S2] Sevost’yanov E.A., The theorems of Liouville, Picard and Sohotski for ring mappings, Ukr. Math. Bull., 5 (2008), no. 3, 366–381.

Ruslan Salimov and Evgeny Sevost’yanov,
Institute of Applied Mathematics and Mechanics,
National Academy of Sciences of Ukraine,
74 Roze Luxemburg str., 83114 Donetsk, UKRAINE
Phone: +38 – (062) – 3110145 Fax: +38 – (062) – 3110285
salimov@iamm.ac.donetsk.ua, e-sevostyanov@rambler.ru