Determining the Efficiency of Ergonomic Belt During Patient Handling and its Effect on Reducing Musculoskeletal Disorders in Nurses

Seyed Abolfazl Zakerian¹, Mansooreh Afzalinejad², Mahmood Mahmodi³ and Niloofar Sheibani⁴

Abstract

Introduction: Nursing personnel are always at risk for work-related musculoskeletal disorders, and patient transportation is one of the major risk factors for these disorders.

Objective: The aim of this study was to evaluate the ergonomic belt to improve patient transferring conditions.

Methods: The subjects included 60 health care workers (HCW) of a hospital with patient transfer experience. The ergonomic belt was examined to help move the patient from one bed to another. The prevalence of musculoskeletal disorders was assessed through the Nordic questionnaire, the degree of perceived exertion through the Borg criterion, and the patient’s movement through the MAPO index before and after the intervention.

Results: The results showed a significant decrease in Borg scale scores and MAPO index in two factors of education and auxiliary tools and overall scores of this index. We also saw a significant reduction in musculoskeletal disorders in the neck, shoulders and arms, waist, hands and wrists, thighs, knees and legs. There were no significant differences in the elbow and forearm before and after using the ergonomic belt.

Conclusion: In general, it can be concluded that the use of ergonomic belt had helped to reduce the risk of musculoskeletal disorders, as well as reducing the perceived exertion of nurses and other relevant personnel.

Keywords

nursing, patient movement, ergonomic belt, borg scale, MAPO

Received 13 April 2021; accepted 14 October 2021

Introduction

Musculoskeletal disorders, or MSDs, are often identified as the biggest health problem faced by industrial workers (Punnett et al., 2004), especially in developing Asian countries (Choi et al., 2005). According to the Occupational Safety & Health Administration (OSHA), most injuries and illnesses among health care workers, including nursing professionals (Alexopoulos et al., 2003; Tinubu et al., 2010), can cause pain in their back and shoulders (Occupational Safety & personal care facilities, 2014). Even the findings suggest that health care workers are at greater risk of developing musculoskeletal disorders than workers in manufacturing, construction, and mining industries (Daraieh et al., 2010). Injuries due to musculoskeletal disorders cause lost work time and excessive costs; as a result, labor productivity decreases (Ando et al., 2000; Singh, 2018). Patient handling is recognized as the most important risk factor related to work in nursing profession (Caruso and Waters, 2008; Davis and Kotowski, 2015; Marcum and Adams, 2017; Oranye, 2018; Yassi et al., 2013).

¹Department of Occupational Health, School of Health, Tehran University of Medical Sciences, Tehran, Iran
²Department of Occupational Health, School of Health, Tehran University of Medical Sciences, Tehran, Iran
³Department of Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
⁴Department of Occupational Health, School of Health, Tehran University of Medical Sciences, Tehran, Iran

Corresponding Author:
Niloofar Sheibani, Department of Occupational Health, School of Health, Tehran University of Medical Sciences, Tehran, Iran.
Email: niloofarsheibani94@gmail.com
An epidemiological study conducted in 2015 in the United States showed a higher incidence of low back pain in nurses compared to different general populations (Davis and Kotowski, 2015). The study of Azizpour et al. (2017) showed that the rate of low back pain in Iran is higher in women than men. In a study conducted by Saberipour et al. (2019), they estimated a lifetime prevalence rate of 82% among Iranian nurses working in hospitals. Factors contributing to the prevalence of these disorders include individual factors, such as high BMI, number of pregnancies and osteoarthritis, and work-related factors including daily frequency of patient transporting and awkward body posture (Boughattas et al., 2017). The high prevalence of musculoskeletal disorders in the nursing profession and their direct and indirect costs indicate the importance of the problem.

Review of Literature

Prolonged standing; awkward posture; use of medical equipment that forces a person to perform movements, such as pulling, pushing and lifting the device; and patient care tasks can all cause discomfort and disorders in musculoskeletal system (Choobineh et al., 2010). The tasks of caring for the patient that can lead to back pain are as follows: changing the patient’s position in bed (Smedley et al., 1995), moving the patient between the bed and the wheelchair (Smedley et al., 1995), and helping the patient to change position from lying to sitting on the bed (Freiberg et al., 2016; Karahan et al., 2009). Manual patient handling can generally be defined whenever a patient care provider is directly involved in the patient’s transfer, placement, or lifting (Anyan et al., 2013). Studies have shown that in specialized wards of hospitals, the risk of musculoskeletal disorders appears to increase due to the physical load on the lower spine (Nabe-Nielsen et al., 2008). In conclusion, it can be said that the amount of mechanical load on the lower back is very high (Jordan et al., 2011; Skotte, 2001) and the use of ergonomic interventions to reduce this mechanical load is recommended (Koppelaaar et al., 2013).

The effect of musculoskeletal disorders, such as low back pain, may be reduced by considering the principles of ergonomics in the workplace, conducting regular individual examinations, identifying risk factors for the development of musculoskeletal disorders and then trying to eliminate them (Azizpour et al., 2017). Identifying nurses and their jobs, identifying the primary factors to assess the prevalence and purpose of effective interventions, can be the first step in this direction (Balogh et al., 2001). Interventions that can reduce the biomechanical load on the user’s back and self-reported pain and disability can include the use of ergonomic belts, lifting equipment and small aiding equipment, patient training, multi-component interventions, cognitive behavioral therapy and use of unstable shoes while carrying the patient (Jordan et al., 2011; Richardson et al., 2018).

The handling tool policy is a method in which assistive devices, such as belts, lifts, and other devices, are used to move the patient, and the method of using these tools is given to staff (including nurses). In the case of patient handling tools, previous research suggested that adequate handling tools, and adequate space in patient care units can to some extent prevent MSDs (Krill et al., 2012) and have positive long-term and short-term effects (Elnitsky et al., 2014; Iakovou, 2008). An Ergonomic belt is one of the aids used in moving the patient. These belts are inexpensive and convenient mechanical aids. These devices are placed around the patient’s waist and handles are used to lift the patient when transferring them from bed to wheelchair and stretcher, as well as moving them from sitting to standing or vice versa (Nelson, 2001/2005). The use of ergonomic belts, in addition to reducing the pressure on the spine and reducing musculoskeletal diseases, effectively provides comfort to the patients (Yassi et al., 2001). According to Li et al. (2013); ergonomic belts may improve the efficiency of physician work, reduce adverse events, and increase the completeness of physician handoffs. However, further evaluation using rigorous study designs is needed.

Preventive measures must be taken to protect health care workers from mechanical overload. But, more research is needed on the effectiveness of these devices (Jordan et al., 2011). Due to the lack of scientific evidence for determining the efficiency of ergonomic belts during patient transferring tasks and its impacts on musculoskeletal disorders, in this study, we aimed to: (1) determine the efficiency of an ergonomic belt during patient transferring task, (2) and evaluate musculoskeletal disorders among Iranian nurses while using the ergonomic belt.

Material and Methods

Participants

This was a cross-sectional study that was performed on 60 staff members of the ICU of one of the health centers in Tehran. The intended subjects were all employees of a hospital in Iran. Inclusion criteria were that the subject was a nurse or assistant nurse who had a role in patient transferring and also a willingness to participate in the study. All of the participants provided written informed consent.

Data Collection Tools

To collect data, four questionnaires of demographic information, Nordic, MAPO index, and Borg criteria were used.

Demographic information questionnaire. This questionnaire contained questions about demographic characteristics (age, sex, height, weight, work experience, marital status, education, history of musculoskeletal disease before starting
nursing) and labor organization (type of organizational position, working hours per week, and secondary job).

**Nordic musculoskeletal disorders questionnaire.** This questionnaire contained questions about neck, shoulder, elbow, wrist, back, low back, thigh, knee and/or leg pain to determine the prevalence of musculoskeletal disorders in these areas (Lei et al., 2005). The participants self-report the level of pain they are experiencing from 1 (no pain) to 9 (unbearable pain). The validity and reliability of the Persian version have been studied in some studies (Mokhtarinia et al., 2015; Namnik et al., 2016). The results of a study showed that the Intra-class Correlation Coefficient and the Standard Error of Measurement of the Persian version of the NMQ-E were deemed acceptable (SEM = 0.56–1.76 and ICC>0.7) and the Kappa coefficient was calculated as 0.78–1.00 (Mokhtarinia et al., 2015). In our study, to evaluate the prevalence of musculoskeletal disorders and the effect of the use of ergonomic belts on its reduction, the Persian version of the Extended Nordic Questionnaire presented by Dowson was used.

**MAPO** Index. This tool assessed the risk of transferring patients to different work areas, such as hospitals and nursing homes (Menoni et al., 1999). The MAPO tool focuses on factors of work organization, average number of arrests, type of patients, equipment, environmental conditions, and operator training. The final score of the MAPO index is calculated from the combination of the mentioned factors. (Cantarella et al., 2020). In the ISO technical report in 2012, the MAPO tool was mentioned as a useful tool for planning appropriate preventive measures and selecting appropriate equipment (Hignett et al., 2014) and relocation (Villarroya et al., 2016) for different types of patients. MAPO scores can be classified into three different levels of exposure: low (green), medium (yellow) and high (red) (Battevi et al., 2006; Cantarella et al., 2020).

**Borg scale.** This questionnaire is used for mental exertion. Borg scale has self-report 10 ranks (from 1 to 10), which is the amount of perceived exertion during physical activity (Faulkner and Eston, 2007). The current study examines the amount of perceived exertion by nurses during patient transfer. The amount of perceived exertion to move the patient is divided into the ranks of nothing, very light, light, moderate, high, very high and maximal. In the study of Daneshmandi et al. (2012), the validation of Persian version of this scale in industrial workers based on heart rate were examined. Subjects were assessed by ergocycle test according to Astrand protocol for 6 min. The participants were asked to rate the Borg’s RPE scale during the test at the end of each minute. Additionally, heart rate was recorded by heart rate monitoring device at the end of each minute. Pearson correlation coefficient (r) indicated a high correlation between RPE and heart rate (r = 0.847).

**Study Design Method**

An experimental study was carried out to design and evaluate the ergonomic belt for patient transferring. This study had been carried out in three main stages, the general stages of which are shown in Figure 1.

**Stage 1.** In this stage, first, basic and demographic information was collected from the sample group. Then, we used MAPO index to evaluate patient transferring. Finally, the prevalence of perceived exertion to move the patient by the sample group was measured using the Borg questionnaire and the prevalence of musculoskeletal disorders was measured using the Nordic questionnaire.

**Stage 2.** At this stage, the ergonomic belt designed to move the patient (Figure 2) and the necessary training on how to use it was given to the sample group (all 60 participants) and was used continuously for 15 days to perform the task of moving the patient. Each staff received 0.5 to 1 h of training. The training program was provided for each shift. All
trials were conducted on the ward, rather than in a laboratory setting.

The ergonomic belt is rectangular in shape with dimensions of 120 × 26 cm and it is made with a strong plastic material. In the middle part of this belt, there are two hard pieces with a length of 50 cm that are used as a fixed and motionless surface on the patient’s back and waist and to support it during movement. On each side of the belt, two places are placed elliptically at distances of 10 cm from each other so that the personnel in charge of handling can hold the belt through them and perform the movement action (Figure 2).

How to use this belt was taught to the nurses so that they could place the belt under and behind the patient. First, the patient was placed on one side, then the relevant nurse placed the belt in the desired part to be moved, then the patient returned to its original state. Then, by moving the patient sideways through the ergonomic belt, the patient could be fully supported so that nursing measures could be taken to change the sheets and so on. Also, in cases where there was a need to change position from sitting to lying or vice versa, the patient could be supported by using this belt. The belt was worn for all patient handling by the staff who participated in this study.

Stage 3. Again, the patient’s movement was evaluated through the MAPO index, the Borg questionnaire examined the amount of perceived exertion and the Nordic questionnaire examined the effect of the ergonomic belt in reducing musculoskeletal disorders after its use.

Data Analysis
To analyze the data, version 16 of SPSS software was used using descriptive statistics, chi-square and t-test at a significance level of α <0.05 to compare before and after the intervention.

Results
The results showed that 61.1% of the subjects were female and 38.5% were male and the mean age of the subjects was 38.15 years; and, 5.5% had a diploma, 35.5% of the subjects had a post-diploma degree and 59% had a bachelor’s degree. Also 23% were single and 77% of the sample were married. The average work experience of the above research subjects was 11.5 years.

The Results of MAPO index
Table 1 shows the MAPO index scores obtained before and after using the ergonomic belts. As you can see in Table 2, the obtained t is at the significance level (0.001). Therefore, it can be concluded that there is a significant difference in MAPO index scores before and after using the ergonomic belt, which is a significant result.

Results of Borg Scale
Based on the t-test (Table 4), there is a significant difference in Borg standard scores before and after using the ergonomic belt (P <0.001). The percentage of perceived exertion before using ergonomic belt was 71.91% and after using ergonomic belt, it reduced to 48.58% (Table 3).

Results of Nordic Questionnaire
The results of the Nordic Questionnaire showed that the use of ergonomic belt has the greatest effect in reducing lumbar disorders, and has the lowest effect on the elbow and forearm (Figure 3). According to this questionnaire, there are significant differences before and after using the ergonomic belt in the neck, shoulders and arms, waist, hands and wrists, buttocks, thighs, knees and legs. There is no significant
difference in the elbow and forearm before and after using the ergonomic belt (Table 5).

**Discussion**

After an intervention consisting of using an ergonomic belt and training in its use, we observed beneficial changes. These changes included a decrease in mental exertion and musculoskeletal disorders, as well as a significant decrease in MAPO index scores.

Health care workers and especially nursing staff are at risk of musculoskeletal disorders due to the nature of work, as well as the severity of tasks and the intervention of influential factors, such as individual, organizational and work-related parameters (Azizpour et al., 2017; Choobineh et al., 2007; Daraiseh et al., 2010; Davis and Kotowski, 2015; Hignett, 1996; Hofmann et al., 2002; Schneider et al., 2006). In our study, the prevalence of musculoskeletal disorders among nursing staff was high (88.2%). This finding is consistent with the results of other studies (Kim et al., 2012; Nakhaei et al., 2006). Another similar study was conducted by Battevi et al. (2006). They reported that 85.5% of all subjects, that were nurses, were at risk for musculoskeletal injury; of which, 41.5% were at high risk. The findings of the present study showed that in the ICU, where disabled people are hospitalized, the incidence of back pain was high. According to our research findings, the most relevant complaint among the participants was pain in the lumbar region, followed by the shoulder and arm pain.

In a study by Bernal et al. (2015) conducted in the United States, 50 percent of occupational health care workers with low back pain reported adverse effects on their lives. According to various reports, it can be stated that the

| Table 1. Comparison of MAPO index Before and After Using Ergonomic Belt. |
|------------------|------------------|------------------|
|                  | before | after |
| LIFTING DEVICE FACTOR (LF)* | 1     | 0.5   |
| TRAINING FACTOR**   | 2     | 0.75  |
| MAPO Index          | 2.61  | 0.675 |
| Risk level***       | medium| negligible |

* The value assigned to the LF varies from 0.5 to 4.
** 0.75 = adequate training, 1 = when training simply provided information, and 2 = When no training was given.
*** 0.1 to 1.5 = negligible exposure level (green), 1.51 to 5 = medium exposure level (yellow), and >5 = high exposure level (red).

| Table 2. Correlated t-Test Results to Compare MAPO index Before and After Using Ergonomic Belt. |
|-------------------------------------------------|
| Variables | means | Standard deviation | Standard error | t   | Sig. |
| Index     | −0.43 | 0.351              | 0.274          | 4.31 | 0.001|
| LIFTING DEVICE FACTOR (LF)                      | −0.43 | 0.524              | 0.542          | 1.48 | 0.001|
| TRAINING FACTOR                                 | −0.49 | 0.176              | 0.842          | 5.86 | 0.001|

| Table 3. Borg index Before and After Using Ergonomic Belt. |
|-------------------------------------------------|
| Percentage | Perceived Exertion |
| Before    | 71.91               |
| After     | 48.58               |

Figure 3. Mean of scores obtained in the NORDIC questionnaire for each part of the body, before and after using the ergonomic belt.
prevalence of low back pain in nursing staff is due to prolonged standing and activities, such as transferring the patient and constantly changing the patient position from sitting to standing and vice versa (Bernal et al., 2015; Engst et al., 2004). Therefore, principled and practical measures should be taken to reduce and prevent this disorder. According to our study, after using the ergonomic belt, the amount of back pain had decreased significantly.

According to previous studies by Marras et al. (2009) and Santaguida et al. (2005), the main purpose of patient transport assistive devices is only to prevent back injuries during patient transfer. However, the findings of our study showed that the most effective use of ergonomic belt in the prevention of musculoskeletal pain in addition to the back, is seen in shoulder, arm and neck. Also, according to the results of a study by Lee et al. (2013), the use of assistive devices has led to a reduction in shoulder and neck injuries, which is consistent with the present study. In another study by J.Li et al. (2004), the greatest effect of use of mechanical patient lifts in the six months follow up was in the lumbar region and upper back, shoulders and arms.

According to the findings of our study, there is a significant relationship between using ergonomic belts and preventing hand and wrist disorders. In a study on ergonomic assessment of the risk of musculoskeletal disorders due to patient transfer in nursing staff using the Nordic questionnaire, findings indicated that the prevalence of musculoskeletal disorders in nurses was 88.2%, and in particular, the prevalence of musculoskeletal disorders of the hands and wrists was 5.64 (Jensen and Hygiene, 1990). It can be concluded that the prevalence of disorders in this area is considerable and measures should be taken to reduce and control it.

In the present study, it was the use of ergonomic belts that could be useful in reducing it.

According to our results, there is a significant relationship between calf, thigh and knee disorders, and using ergonomic belt. Research shows that a risk factor for musculoskeletal pain is when the frequency of transport of the patient is more than 15 times per shift and involves 25 kg or more. Musculoskeletal injuries are reduced by using equipment aids, such as ergonomic belts, in nursing units (Hoogendoorn et al., 2000). The use of patient lifting equipment can be effective in reducing musculoskeletal injuries caused by work in nursing staff in both long-term and short-term care (Evanoff et al., 2003).

Regarding the MAPO index, according to the findings of our study, the influential factors included the assistant tool factor and the training factor, which showed a significant difference in scores before and after using the ergonomic belt. Abedini et al. (2013) in their study stated that the assistant tool factor was not present in any of the hospitals in their study and this could be an important issue in the occurrence of musculoskeletal disorders. Insufficient equipment is one of the most important barriers to motivation and the possibility of using them in medical personnel (Evanoff et al., 2003; Fujishiro et al., 2005; Li et al., 2004). Therefore, having enough equipment to reduce the load is very important; and, the availability of adequate relocation assistance equipment should be included in management policies.

Bewick et al. (2000) reported in their study that one of the reasons for not using patient transfer equipment is the lack of knowledge of nurses about how to use it. Nurses who have received practical training in the use of transfer equipment in their ward or who use transfer equipment frequently have a lower risk of back injuries (Engkvist, 2004). Evanoff et al. (2003) reported that lack of knowledge is an obstacle to ergonomic interventions. In our study, these trainings were given to all participants before working with the belt. Although training seems to be ineffective as an initial preventive intervention to reduce the incidence of low back pain (Hignett, 2003; Martimo et al., 2008), training can be used as a first step to increase knowledge to encourage nurses to use assistive devices (Koppelaar et al., 2013).

**Strengths and Limitations**

The strengths of this study were the comprehensive evaluation and consideration of various criteria, including the criteria of physical pain, perceived exertion and evaluation of the effectiveness of the ergonomic belt, as well as providing the necessary training for the use of assistive devices.

This study had potential limitations. The study was cross-sectional in nature and assessed respondent perceptions at a short specific time (14 days). The result of this study may not be completely generalizable because the sample size was small. It also is not generalizable to other units in the

---

**Table 4.** Correlated t-Test Results to Compare Borg Scale Before and After Using Ergonomic Belt.

| Variable      | Mean | Standard Deviation | Standard Error | t     | Sig. |
|---------------|------|--------------------|----------------|-------|------|
| Borg scale    | -0.72| 0.713              | 0.812          | 4.46  | 0.001|

*significant values are bold.

**Table 5.** Correlated t-Test Results to Compare Nordic Questionnaire Scores Before and After Using Ergonomic Belt.

|                          | t     | Sig    |
|--------------------------|-------|--------|
| Neck                     | 18.37 | 0.001* |
| Shoulders & arm          | 21.17 | 0.001* |
| Lower back               | 18.46 | 0.001* |
| Elbow                    | 3.29  | 0.084  |
| Wrist & hand             | 9.77  | 0.002* |
| Thigh & knees            | 6.66  | 0.010* |
| Legs & feet              | 7.27  | 0.013* |

*significant values are bold.
same hospital. Due to the fact that the population of the study was nurses of a hospital, caution should be exercised in generalizing the above results to nurses in other hospitals. Additionally, the study did not include a quantitative assessment of the risk. The evaluation focused on transfers, not repositioning, and last but not least, the evaluation wasn’t from patient perspective.

**Implication for Practice**

Despite these limitations, this study supports the theory that using an ergonomic belt is helpful for transferring patients. This study gives valuable information about prevalence of musculoskeletal disorders and perceived exertion before and after using ergonomics belt for patient transfer in nursing staff. These results may also be valuable for those who work with patients suffering from disabilities both in primary care and the hospital setting.

**Conclusion**

In general, it can be concluded that the use of an ergonomic belt helped to reduce the risk of musculoskeletal disorders, especially in the low back, shoulders and arms, thighs and knees, as well as reduced the perceived exertion of nurses and other relevant personnel. Of course, these results have only been obtained in the study population. Future studies should be performed to examine the effectiveness of using other devices to transport patients in other communities and compare the effectiveness of different devices to each other.

**Acknowledgments**

The present study is the result of a master’s thesis. We would like to express our gratitude to Tehran University of Medical Sciences, as well as to all the dear and hard-working nurses participating in this study.

**Declaration of Conflicting Interests**

The authors have no conflicts of interest to declare.

**ORCID iD**

Nilofar Sheibani [https://orcid.org/0000-0001-7993-6669](https://orcid.org/0000-0001-7993-6669)

**Note**

1. Movement and Assistance of Hospital Patients

**References**

Abedini, R., Choobineh, A., & Hasanzadeh, J. (2013). Ergonomics risk assessment of musculoskeletal disorders related to patient transfer operation among hospital nurses using PTAI technique. *Iran Journal of Nursing*, 25(80), 75–84.

Alexopoulos, E. C., Burdorf, A., & Kalokerinou, A. (2003). Risk factors for musculoskeletal disorders among nursing personnel in Greek hospitals. *International Archives of Occupational and Environmental Health*, 76(4), 289–294. [https://doi.org/10.1007/s00420-003-0442-9](https://doi.org/10.1007/s00420-003-0442-9)

Ando, S., Ono, Y., Shimaoka, M., Hiruta, S., Hattori, Y., Hori, F., & Takeuchi, Y. J. O. (2000). Associations of self estimated workloads with musculoskeletal symptoms among hospital nurses. *Occupational & Environmental Medicine*, 57(3), 211–211. [https://doi.org/10.1136/oem.57.3.211](https://doi.org/10.1136/oem.57.3.211)

Anyan, W., Faraklas, I., Morris, S., & Cochran, A. (2013). Overhead lift systems reduce back injuries among burn care providers. *Journal of Burn Care & Research*, 34(6), 586–590. [https://doi.org/10.1097/bcr.0b013e3182a2ab67](https://doi.org/10.1097/bcr.0b013e3182a2ab67)

Azizpour, Y., Delipsheh, A., Montazeri, Z., & Sayehmiri, K. (2017). Prevalence of low back pain in Iranian nurses: A systematic review and meta-analysis. *BMC Nursing*, 16(1), 50. [https://doi.org/10.1186/s12912-017-0243-1](https://doi.org/10.1186/s12912-017-0243-1)

Balogh, I., Ørbaek, P., Winkel, J., Nordander, C., Ohlsson, K., & Ektor-Andersen, J. (2001). Questionnaire-based mechanical exposure indices for large population studies—reliability, internal consistency and predictive validity. *Scandinavian Journal of Work, Environment & Health*, 27(1) 41–48. [https://doi.org/10.5271/sjweh.585](https://doi.org/10.5271/sjweh.585)

Battevi, N., Menoni, O., Ricci, M. G., & Cairoli, S. J. E. (2006). MAPO index for risk assessment of patient manual handling in hospital wards: A validation study. *Ergonomics*, 49(7), 671–687. [https://doi.org/10.1080/001401306005858041](https://doi.org/10.1080/001401306005858041)

Bernal, D., Campos-Serna, J., Tobias, A., Vargas-Prada, S., Benavides, F. G., & Serra, C. (2015). Work-related psychosocial risk factors and musculoskeletal disorders in hospital nurses and nursing aides: A systematic review and meta-analysis. *International Journal of Nursing Studies*, 52(2), 635–648. [https://doi.org/10.1016/j.ijnurstu.2014.11.003](https://doi.org/10.1016/j.ijnurstu.2014.11.003)

Bewick, N., & Gardner, D. (2000). Manual handling injuries in health care workers. *International Journal of Occupational Safety and Ergonomics*, 6(2), 209–221. [https://doi.org/10.1080/10803548.2000.706452](https://doi.org/10.1080/10803548.2000.706452)

Boughhattas, W., El Maaele, O., Maoua, M., Bougmiza, I., Kalboussi, H., Brahem, A., Chatti, S., Mahjoub, F., Mrizak, N. J. O. D., & Medicine, E. (2017). Low back pain among nurses: Prevalence, and occupational risk factors. *Occupational Diseases and Environmental Medicine*, 5(1), 26–37. [https://doi.org/10.4236/odem.2017.51003](https://doi.org/10.4236/odem.2017.51003)

Cantarella, C., Stucchi, G., Menoni, O., Consolini, D., Cairoli, S., Manno, R., Tasso, M., Galinotti, L., & Battevi, N. J. H. F. (2020). MAPO Method to assess the risk of patient manual handling in hospital wards: A validation study. *Human Factors: The Journal of the Human Factors and Ergonomics Society*, 62(7), 1141–1149. [https://doi.org/10.1177/0018720819869119](https://doi.org/10.1177/0018720819869119)

Caruso, C. C., & Waters, T. R. (2008). A review of work schedule issues and musculoskeletal disorders with an emphasis on the healthcare sector. *Industrial Health*, 46(6), 523–534. [https://doi.org/10.2486/indhealth.46.523](https://doi.org/10.2486/indhealth.46.523)

Choi, S.-Y., Kim, H.-S., Kim, T.-H., & Park, D.-H. (2005). A study on job stress and MSDs (musculoskeletal disorders) of workers at automobile manufacturing industry. *Journal of the Korean Society of Safety*, 20(3), 202–211.

Choobineh, A., Movahed, M., Tabatabaie, S. H., & Kumashiro, M. (2010). Perceived demands and musculoskeletal disorders in operating room nurses of shiraz city hospitals. *Industrial Health*, 48(1), 74–84. [https://doi.org/10.2486/indhealth.48.74](https://doi.org/10.2486/indhealth.48.74)
Chooibin, A., Rajaeefard, A., & Neghab, M. (2007). Perceived demands and musculoskeletal disorders among hospital nurses. *Hakim Research Journal, 10*(2), 70–75.

Daneshmehdi, H., Chooibin, A. R., & Rajaeefard, A.-R. (2012). Validation of borg’s RPE 6-20 scale in male industrial workers of shiraz city based on heart rate. *Jundishapur Scientific Medical Journal, 1*(1), 1–10.

Daraiseh, N., Cronin, S., Davis, L., Shell, R., & Karwowski, W. (2010). Low back symptoms among hospital nurses, associations to individual factors and pain in multiple body regions. *International Journal of Industrial Ergonomics, 40*(1), 19–24. https://doi.org/10.1016/j.ergon.2009.11.004

Davis, K. G., & Kotowski, S. E. (2015). Prevalence of musculoskeletal disorders for nurses in hospitals, long-term care facilities, and home health care: A comprehensive review. *Human Factors: The Journal of the Human Factors and Ergonomics Society, 57*(5), 754–792. https://doi.org/10.1177/0018720815581933

Elntisky, C. A., Lind, J. D., Rugs, D., & Powell-Cope, G. (2014). Implications for patient safety in the use of safe patient handling equipment: A national survey. *International Journal of Nursing Studies, 51*(12), 1624–1633. https://doi.org/10.1016/j.ijnurstu.2014.04.015

Engkvist, I.-L. (2004). The accident process preceding back injuries among Australian nurses. *Safety Science, 42*(3), 221–235. https://doi.org/10.1016/S0925-7535(03)00044-4

Engst, C., Chhokar, R., Miller, A., & Yassi, A. (2004). Preventing back injuries to healthcare workers in British Columbia, Canada and the ceiling lift experience. In *Back injury among healthcare workers: Causes, solutions, and impacts* (pp. 253–263). Lewis Publishers.

Evanoff, B., Wolf, L., Aton, E., Canos, J., & Collins, J. (2003). Reduction in injury rates in nursing personnel through introduction of mechanical lifts in the workplace. *American Journal of Industrial Medicine, 44*(5), 451–457. https://doi.org/10.1002/ajim.10294

Faulkner, J., & Eston, R. (2007). Overall and peripheral ratings of perceived exertion during a graded exercise test to volitional exhaustion in individuals of high and low fitness. *European Journal of Applied Physiology, 101*(5), 613–620. https://doi.org/10.1007/s00421-007-0536-2

Freiberg, A., Euler, U., Girgib, M., Nienhaus, A., Freitag, S., & Seidler, A. (2016). Does the use of small aids during patient handling activities lead to a decreased occurrence of musculoskeletal complaints and diseases? A systematic review. *International Archives of Occupational and Environmental Health, 89*(4), 547–559. https://doi.org/10.1007/s00420-015-1094-2

Fujishiro, K., Weaver, J. L., Heaney, C. A., Hamrick, C. A., & Marras, W. S. (2005). The effect of ergonomic interventions in healthcare facilities on musculoskeletal disorders. *American Journal of Industrial Medicine, 48*(5), 338–347. https://doi.org/10.1002/ajim.20225Citations: 37PDFPDF

Hignett, S. (1996). Work-related back pain in nurses. *Journal of Clinical Nursing, 23*(6), 1238–1246. https://doi.org/10.1046/j.1365-2648.1996.13423.x

Hignett, S. J. O. (2003). Intervention strategies to reduce musculoskeletal injuries associated with handling patients: A systematic review. *Occupational and Environmental Medicine, 60*(9), e6–e6. https://doi.org/10.1136/oem.60.9.e6

Hignett, S., Fray, M., Battevi, N., Occhipinti, E., Menoni, O., Tamminen-Peter, L., Waaier, E., Knibbe, H., & Jäger, M. (2014). International consensus on manual handling of people in the healthcare sector: Technical report ISO/TR 12296. *International Journal of Industrial Ergonomics, 44*(1), 191–195.

Hofmann, F., Stössel, U., Michaelis, M., Nübling, M., & Siegel, A. (2002). Low back pain and lumbago–sciatica in nurses and a reference group of clerks: Results of a comparative prevalence study in Germany. *International Archives of Occupational and Environmental Health, 75*(7), 484–490. https://doi.org/10.1007/s00420-002-0332-6

Hoogendoom, W. E., Bongers, P. M., De Vet, H. C., Douwes, M., Koes, B. W., Miedema, M. C., Ariëns, G. A., & Bouter, L. M. J. S. (2000). Flexion and rotation of the trunk and lifting at work are risk factors for low back pain: Results of a prospective cohort study. *Spine, 25*(23), 3087–3092.

Iakovou, G. T. J. T. (2008). Implementation of an evidence-based safe patient handling and movement mobility curriculum in an associate degree nursing program. *Teaching and Learning In Nursing, 3*(2), 48–52.

Jensen, R. C. J. A. O., & Hygiene, E. (1990). Back injuries among nursing personnel related to exposure. *Applied Occupational and Environmental Hygiene, 5*(1), 38–45. https://doi.org/10.1080/1047322X.1990.10389586

Jordan, C., Luttmann, A., Theilmeier, A., Kuhn, S., Wortmann, N., & Jäger, M. (2011). Characteristic values of the lumbar load of manual patient handling for the application in workers’ compensation procedures. *Journal of Occupational Medicine and Toxicology, 6*(1), 17. https://doi.org/10.1186/1745-6673-6-17

Karahan, A., Kav, S., Abbasoglu, A., & Dogan, N. (2009). Low back pain: Prevalence and associated risk factors among hospital staff. *Journal of Advanced Nursing, 65*(3), 516–524. https://doi.org/10.1111/j.1365-2648.2008.04905.x

Kim, H., Dropkin, J., Spaeth, K., Smith, F., & Moline, J. (2012). Patient handling and musculoskeletal disorders among hospital workers: Analysis of 7 years of institutional workers’ compensation claims data. *American Journal of Industrial Medicine, 55*(8), 683–690. https://doi.org/10.1002/ajim.22006

Koppelaar, E., Knibbe, J., Miedema, H., & Burdorf, A. J. A. E. (2013). The influence of individual and organisational factors on nurses’ behaviour to use lifting devices in healthcare. *Applied Ergonomics, 44*(4), 532–537. https://doi.org/10.1016/j.apergo.2012.11.005

Krill, C., Staffileno, B. A., & Raven, C. J. N. O. (2012). Empowering staff nurses to use research to change practice for safe patient handling. *Nursing Outlook, 60*(3), 157–162. e151. https://doi.org/10.1016/j.outlook.2011.06.005

Lee, S.-J., Faucett, J., Gillen, M., & Krause, N. (2013). Musculoskeletal pain among critical-care nurses by availability and use of patient lifting equipment: An analysis of cross-sectional survey data. *International Journal of Nursing Studies, 50*(12), 1648–1657. https://doi.org/10.1016/j.ijnurstu.2013.03.010

Lei, L., Dempsey, P. G., Xu, J.-G., Ge, L.-N., & Liang, Y.-X. (2005). Risk factors for the prevalence of musculoskeletal disorders among Chinese foundry workers. *International Journal of Industrial Ergonomics, 35*(3), 197–204. https://doi.org/10.1016/j.ergon.2004.08.007

Li, J., Wolf, L., & Evanoff, B. J. I. P. (2004). Use of mechanical patient lifts decreased musculoskeletal symptoms and injuries among health care workers. *Injury Prevention, 10*(4), 212–216. http://dx.doi.org/10.1136/ip.2003.004978
Li, P., Ali, S., Tang, C., Ghali, W. A., & Stelfox, H. T. (2013). Review of computerized physician handoff tools for improving the quality of patient care. *Journal of Hospital Medicine*, 8(8), 456–463. https://doi.org/10.1002/jhm.1988

Marcum, J., & Adams, D. (2017). Work-related musculoskeletal disorder surveillance using the Washington state workers’ compensation system: Recent declines and patterns by industry, 1999-2013. *American Journal of Industrial Medicine*, 60(5), 457–471. https://doi.org/10.1002/ajim.22708

Marras, W., Knapik, G., & Ferguson, S. J. E. (2009). Lumbar spine forces during manoeuvring of ceiling-based and floor-based patient transfer devices. *Ergonomics*, 52(3), 384–397. https://doi.org/10.1080/00140130802376075

Martimo, K.-P., Verbeek, J., Karppinen, J., Furlan, A. D., Takala, E.-P., Kuijer, P. P. F., Jouhaini, M., & Viikari-Juntura, E. J. B. (2008). Effect of training and lifting equipment for preventing back pain in lifting and handling: Systematic review. *BMJ*, 336(7641), 429–431. https://doi.org/10.1136/bmj.39463.418380.BE

Menoni, O., Ricci, M., Panciera, D., & Occhipinti, E. (1999). The assessment of exposure to and the activity of the manual lifting of patients in wards: Methods, procedures, the exposure index (MAPO) and classification criteria. Movimentazione e assistenza pazienti ospedalizzati (lifting and assistance to hospitalized patients). *Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte*, 90(2), 152–172.

Mokhtarinia, H., Shafiee, A., & Pashmdarfar, M. (2015). Translation and localization of the extended nordic musculoskeletal questionnaire and the evaluation of the face validity and test-retest reliability of its Persian version. *Iranian Journal of Ergonomics*, 3(3), 21–29. https://www.sid.ir/en/journal/ViewPaper.aspx?id=524619

Nabe-Nielsen, K., Fallentin, N., Christensen, K. B., Jensen, J. N., & Mokhtarinia, H., Sha...