The effects of inhomogeneities on scroll-wave dynamics in an anatomically realistic mathematical model for canine ventricular tissue

K. V. Rajanya,1,*, Rupamanjari Majumderb, Alok Ranjan Nayakc, Rahul Pandird,2

aCentre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
bDepartment of Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization.
cInternational Institute of Information Technology, Bhubaneswar.
dCentre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.

Abstract

Ventricular tachycardia (VT) and ventricular fibrillation (VF) are lethal rhythm disorders, which are associated with the occurrence of abnormal electrical scroll waves in the heart. Given the technical limitations of imaging and probing, the \textit{in situ} visualisation of these waves inside cardiac tissue remains a challenge. Therefore, we must, perforce, rely on \textit{in silico} simulations of scroll waves in mathematical models for cardiac tissue to develop an understanding of the dynamics of these waves in mammalian hearts. We use direct numerical simulations of the Hund-Rudy-Dynamic (HRD) model, for canine ventricular tissue, to examine the interplay between electrical scroll-waves and conduction and ionic inhomogeneities, in anatomically realistic canine ventricular geometries with muscle-fiber architecture. We find that millimeter-sized, distributed, conduction inhomogeneities cause a substantial decrease in the scroll wavelength, thereby increasing the probability for wave breaks; by contrast, single, localized, medium-sized (\textasciitilde cm) conduction inhomogeneities, exhibit the potential to suppress wave breaks or enable the self-organization of wave fragments into stable, intact scrolls. We show that ionic inhomogeneities, both distributed or localized, suppress scroll-wave break up. The dynamics of a stable rotating wave is not affected significantly by such inhomogeneities, except at high concentrations of distributed inhomogeneities, which can cause a partial break up of scroll waves. Our results indicate that inhomogeneities in the canine ventricular tissue are less arrhythmogenic than inhomogeneities in porcine ventricular tissue, for which an earlier \textit{in silico} study has shown that the inhomogeneity-induced suppression of scroll waves is a rare occurrence.

1. Introduction

Life-threatening cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), which are the leading cause of death in the industrialised world, are associated with unbroken (for VT) or broken (for VF) spiral or scroll waves of electrical activation in ventricular tissue \cite{9, 10, 15, 16, 17, 18, 11, 12}. The mechanisms leading to the formation of such scroll waves, their dynamics, and their interactions with other structural features in mammalian hearts continue to be an active area of research \cite{9, 10, 15, 16, 17, 18, 11, 12}. For many different features can be arrhythmogenic. The heart has a complex, inhomogeneous structure and intricate geometry; it includes conducting tissue, with cardiac myocytes, nonconducting tissue, with fibroblasts, muscle fibers, a sheet structure, blood vessels, and scar tissues. The elucidation of the interactions of scroll waves of electrical activation with these multi-scale structures in cardiac tissue is required to develop (a) a detailed understanding of VT and VF and (b) possible defibrillation strategies, either pharmacological or electrical.

Experimental and numerical studies have shown that heterogeneities in cardiac tissue affect the dynamics of spiral or scroll waves and their break up (see, e.g., Refs. \cite{9, 10, 15, 16, 17, 18, 11, 12} and references therein), and thereby, both atrial and ventricular fibrillation. However, experiments on intact mammalian hearts are usually laborious, time-consuming, expensive, and still hampered by the considerable challenges in the visualization of electrical activity, below the tissue surface. \cite{9, 10, 15, 16, 17, 18, 11, 12}. Up until now, the experimental visualization of scroll filaments in the intact heart was only possible during fibrillation; a recent study \cite{20} has used high-resolution, four-dimensional (4D), ultrasound-based imaging to map the occurrence of mechanical filamentous phase singularities that coexist with electrical phase singularities during cardiac fibrillation; 4D cardiac electromechanical activation imaging has also been used in Ref. \cite{21}. Thus, numerical simulations or \textit{in silico} studies, which use mathematical models for cardiac tissue, have become an increasingly promising alternative to \textit{in vivo} and other experimental studies of scroll-wave dynamics in cardiac tissue.

\textit{In silico} studies also give us great flexibility in changing individual parameter values (to explore, e.g., the effects of different medications on various ion-channel properties). However, such \textit{in silico} studies are computationally challenging, especially if we use (a) physiologically realistic mathematical models, (b) anatomically realistic geometries, and (c) structural complexi-
ties like muscle-fiber orientation. It is not surprising, therefore, that many numerical studies use either simplified cardiac-tissue mathematical models or idealised geometries, e.g., a cubical domain or a wedge [7].

For reviews of the dynamics of scroll waves in the presence of structural and electrophysiological heterogeneities in cardiac tissue, we refer the reader to Ref. [2, 3, 4, 5, 8]. There have been studies of fiber-rotation-induced scroll-wave turbulence (see, e.g., Refs. [22, 23, 24] and references therein); in particular, they have investigated the effects of the anisotropy, because of fiber and sheet orientation, on such turbulence. Numerical studies, which use simplified models, have shown that an inhomogeneous excitable three-dimensional (3D) system, with a gradient of excitability, promotes twisting of the scroll waves, and can cause a simple scroll wave to change to a meandering scroll wave [25]. Thin, rod-like heterogeneities have been shown to suppress otherwise developing spatiotemporal chaos; furthermore, (a) they clear out already existing chaotic excitation patterns [26] and (b) spiral waves are either attracted towards or repelled from the centers of such inhomogeneities [27]. Computer-simulation studies have studied the effects of the structure of the heart on scroll waves in mathematical models [2, 3, 4, 5]; for recent in silico studies of mathematical models for different mammalian hearts see, e.g., Refs. [28, 29, 30], for porcine- rabbit-, and human-ventricular models, respectively.

We investigate the interaction of scroll waves with two types of inhomogeneities in a realistic heart geometry for canine ventricles, conduction inhomogeneities and Ionic inhomogeneities. As a person ages, the concentration of nonconducting tissue increases; also, scars or dead tissue act as conduction blocks. These are the physiological equivalents of distributed conduction inhomogeneities and localized conduction inhomogeneities, respectively. Changes in different ionic conductivities do occur in mammalian hearts, in abnormal situations, or because of medicines or other external factors; these changes can be modelled as Ionic inhomogeneities. Majumder, et al. have conducted a study of scroll-wave dynamics in a mathematical model for a pig heart with inhomogeneities [28]. In particular, they have studied the case in which the ventricle initially has a single rotating scroll wave; and they have then investigated how this single scroll evolves, as a result of the inhomogeneity that is introduced. We go beyond the study of Ref. [28] by including initial conditions that produce meandering as well as broken scroll waves, in the absence of inhomogeneities; we then let these waves evolve in the presence of inhomogeneities. Furthermore, we use a mathematical model for a dog heart instead of a pig heart. We compare the dynamics of scroll waves in these mathematical models for two different mammalian species, which have hearts of comparable sizes, but different electrophysiology. We find that inhomogeneities in the canine ventricular tissue are less arrhythmogenic than inhomogeneities in porcine ventricular tissue, for which an earlier in silico study [28] has shown that the inhomogeneity-induced suppression of scroll waves is a rare occurrence.

The remaining part of this paper is organised as follows. In Sec. 2 we present the model we use and the numerical methods we employ for our in silico study of this model. We discuss our results, for both conduction- and ionic-type inhomogeneities, in Sec. 3. We end with conclusions and a discussion of our results in Sec. 4.

2. Models and Methods

For the canine-ventricular geometry that we use in our computations, we have downloaded diffusion-tensor magnetic-resonance-imaging (DTMRI) data from [31]; and we have then processed these data to produce our simulation geometry, with the locations of heart points and fiber directions.

We use the electrophysiologically detailed Hund-Rudy-Dynamic (HRD) model [32] for canine-ventricular myocytes to describe the dynamics at the cell level. The HRD model has 45 variables, including membrane and intercellular currents, gating variables, ionic concentrations, and the transmembrane potential V. We give a detailed description of this model in the Supplementary Material [33]. We use the monodomain approach
for ventricular tissue; and the spatiotemporal evolution of the transmembrane potential V is given by the following partial-differential equation (PDE), which is of the reaction-diffusion type (all the other variables follow coupled ordinary differential equations (ODEs)):

$$\frac{\partial V}{\partial t} = \nabla \cdot (D \nabla V) - \frac{I_{ion}}{C_m} + \frac{I_{app}}{C_m},$$ \hspace{2cm} (1)

where I_{ion} contains all the ionic currents, I_{app} is the external current, C_m the capacitance density, and D the diffusion tensor that accounts for the conductivity of the tissue and propagation between cells; its elements are $[34]$

$$D_{ij} = D_T \delta_{ij} + (D_L - D_T)a_i a_j,$$ \hspace{2cm} (2)

where a is the vector describing the muscle-fiber direction, and D_L and D_T are the conductivities in the longitudinal and transverse fiber directions, respectively.

We impose Neumann boundary conditions by using the phase-field approach of Ref. [35] (see the Supplementary Material [33]). We solve the ODEs via the forward-Euler scheme and the PDEs by using a central-difference finite-difference method.

We use a spatial resolution of 0.02 cm and a time step of 0.01 ms for our simulations. Such simulations are computationally challenging. To meet this challenge, we have developed an efficient CUDA code that we run on computer clusters that use graphics processing units (GPUs). This requires specialisation programming [36]. We have checked our numerical results by comparing them with results for various ionic currents and the conduction velocity in the original HRD-model paper [32]. We have also carried out trial runs for a long time (≈ 10 s) to ensure the numerical stability of our results.

We consider the following two types of inhomogeneities in our HRD ventricular-tissue model: (a) conduction inhomogeneities because of a change in the diffusivity of the medium; we simulate these by setting the diffusion constant $D = 0$ at the locations of the inhomogeneities; (b) ionic inhomogeneities that arise from a change in any of the ionic properties across the cell membrane; in particular, we study ionic inhomogeneities by varying the L-type Calcium-ion-channel current I_{CaL} by reducing the value of the relevant parameter to $\zeta_{CaL} = 0.0314$. We have conducted extensive numerical studies with (a) medium-sized spherical inhomogeneities, located at four representative positions, as shown in Fig. 1 and (b) small-sized inhomogeneities, distributed throughout the simulation domain, with concentrations 5%, 10% and 20% of the whole volume of the tissue, as shown in Fig. 2.

With no inhomogeneity in our simulation domain, we have two types of scroll-wave dynamics: In the first case, there is a single, rotating, meandering scroll ($G_{Kr} = 5 \times 0.0138542$ and $\zeta_{CaL} = 3 \times 0.3410$); in the second, the scroll breaks up and its pieces interact with each other ($G_{Kr} = 3 \times 0.0138542$ and $\zeta_{CaL} = 1 \times 0.3410$) [38]. We illustrate these two types of scroll-wave dynamics, without any inhomogeneities, in Fig. 1. We now introduce inhomogeneities into our simulation domain to investigate how they affect the dynamics of these scroll waves. We study 28 cases in total. For each one of these cases we run our simulation for a time that is equivalent to 2.5 s in real time.

3. Results

In this Section, we present the results of our in silico studies. We first present the results of our simulations with conduction-type inhomogeneities, and then the results we have obtained with ionic-type inhomogeneities.

3.1. Conduction Inhomogeneity: Effects on Scroll-wave Dynamics

Before we describe our results in detail, we refer the reader to Table 1 which summarizes our principal results for the effects of conduction-type inhomogeneities on scroll-wave dynamics.

Figure 4 shows the final configuration of the evolution of scroll waves with a localized, spherical inhomogeneity (obstacle) of conduction type, for the four different, representative positions, on an initially rotating-scroll configuration. In this case we do not observe a qualitative change in the scroll-wave dynamics introduced by the inhomogeneity. The rotating scroll continues to rotate and is stable.

Figure 5 shows the effects of a localized spherical inhomogeneity (obstacle) of conduction type on a broken-scroll configuration for four different positions of this obstacle. Panel a shows scroll-wave dynamics for position 1 of the inhomogeneity; we show isosurfaces of V at an early time as well as at the final stage: the broken scrolls slowly move away from the spherical inhomogeneity (depicted in yellow) and finally disappear from the medium. The panel-c shows the evolution of the scroll wave with the obstacle at position 2: We see that the broken scrolls have changed to a single rotating scroll; the scroll breaks up again because of the functional instabilities introduced by the parameter set we use; the broken scrolls again change to a rotating scroll; and the last snap-shot depicts another break up. Thus, in this case, the inhomogeneity prevents scroll break...
Table 1: This table summarizes our results for the effects of conduction-type inhomogeneities on scroll-wave dynamics.

Broken scroll	localized spherical inhomogeneity	distributed small-scale inhomogeneities	
position 1	broken scrolls move away from the inhomogeneity and eventually move out of the domain.	5 %	rotating scroll with reduced wavelength.
position 2	breakup partially suppressed; broken scrolls change to a rotating scroll; it breaks again because of functional instability; and the cycle repeats.	10 %	wavelength reduces and break up occurs.
position 3	broken scrolls continue to breakup and interact; scroll filament moves away from the inhomogeneity; breaking is not suppressed.	20 %	wavelength reduces significantly and break up is considerable.
position 4	breaking suppressed in the long run; and broken scrolls change to a rotating scroll.		

Rotating scroll	position 1	continues rotating		5 %	wavelength reduces; and the scroll wave continues to rotate.
	position 2	continues rotating		10 %	wavelength reduces and the scroll breaks up.
	position 3	continues rotating		20 %	wavelength reduces by a large amount and there is considerable break up.
	position 4	scroll continues rotating.			

Figure 4: Two-level isosurface plots of the transmembrane potential V illustrating scroll-wave dynamics, with a medium-sized spherical inhomogeneity of conduction type placed at position 1, 2, 3, and 4 in the domain (see Fig. 1). The initial configuration is obtained from the parameter set that produces a rotating scroll wave without the inhomogeneity; we depict the final configurations here. The rotating scroll is unaffected by the inhomogeneity. For the full spatio-temporal evolution of V see the videos S47, S48, S49 and S410 in the Supplementary Material [37].

Figure 5: Two-level isosurface plots of the transmembrane potential V illustrating the spatio-temporal evolution of scroll waves in the HRD model in the anatomically realistic canine ventricular geometry, when a medium-sized spherical inhomogeneity of conduction type is placed at the illustrative positions 1 (panel a), 3 (panel b), 2 (panel c), and 4 (panel d) shown in Fig. 1. The initial configuration is obtained from the parameter set that produces a broken scroll-wave state without the inhomogeneity; we depict the final configurations here. For the full spatio-temporal evolution of V see the videos S43 (for panel a), S44 (for panel b), S45 (for panel c) and S46 (for panel d) in the Supplementary Material [37].
up; it changes broken scrolls into a single rotating scroll, which again breaks, and this keeps on repeating. The panel-b shows the spatio-temporal evolution of the scroll wave with the obstacle at position 3: here, the inhomogeneity cannot suppress the scroll breakup; in some regions it reduces the extent of break up, but it never completely changes the broken scrolls into a single scroll; the breakup of scrolls is considerable in this case. The lowest panel(d) shows the evolution of a scroll wave for position 4 of the inhomogeneity; in this case the broken scrolls are slowly changed to a single rotating scroll.

In summary, then, with the localized, medium sized conduction inhomogeneity, for initial conditions with a rotating scroll, the wave dynamics remains unchanged for all of the locations of the localized inhomogeneity. If the initial conditions produce broken scrolls, a localized inhomogeneity drives away the broken scrolls from the inhomogeneity; and the broken scrolls change into a rotating scroll, with its tip far away from the inhomogeneity for positions 1, 2, and 4. However, the presence of spherical inhomogeneity at position 3, i.e., at the septum, does not affect the broken scroll waves, which continue to break up. Thus, a medium-sized, spherical conduction inhomogeneity affects the scroll-wave dynamics slightly differently depending on its location: specifically, this dynamics depends on the relative distance between the phase-singularity line of the scroll wave and the position of the inhomogeneity. In general, such an inhomogeneity prevents scroll-wave break up, stabilizes broken scrolls into a single rotating scroll, and does not affect a single rotating scroll. If, however, the inhomogeneity is very far from the center of rotation, it cannot change the broken scrolls into a single rotating scroll.

We now present the results with small-sized, spherical inhomogeneities distributed throughout the simulation domain, with three different concentrations.

In Fig. 6 we show the spatiotemporal evolution of a scroll waves when we have distributed inhomogeneities, of the conduction type, for the following three different concentrations of inhomogeneities: 5%, 10%, and 20%.

In the left (panel (a)) we depict the spatio-temporal evolution of an initially rotating scroll wave. The wavelength of the scroll is reduced significantly. With a 5% concentration of the inhomogeneities, the wave does not break up; it continues rotating. For a 10% concentration of the inhomogeneities, the wave breaks up and forms a statistically steady broken-scroll state. With a 20% concentration of the inhomogeneities, the scroll breaks up to yield a statistically steady, broken-scroll state; the wavelength is reduced significantly.

With an initial parameter values which yield broken-scroll configuration, distributed conduction-type inhomogeneities have a marked effect on scroll-wave dynamics; in particular, the wavelength of the scroll is significantly reduced. With a 5% concentration of these inhomogeneities, the wave does not break up, but it rotates and curls up more than the initial configuration; in the last stages of this evolution, we see the two ends of the curved wave interacting with each other. With a 10% concentration of inhomogeneities, the wave breaks up immediately and we get a statistically steady broken-scroll state. When we have a 20% concentration of the inhomogeneities, the wave breaks up rapidly and it has a greatly reduced wavelength. As the percentage of inhomogeneities increases from 5% to 20% the drop in the wavelength and scroll-wave breakup is substantial.

3.2. Results for Ionic Inhomogeneity

Before we describe our results in detail, we refer the reader to Table 2, which summarizes our results for the effects of ionic-type inhomogeneities on scroll-wave dynamics. We have considered here all of the cases mentioned in the above section for conduction inhomogeneities.

In Fig. 7, panel (a) we show the effect of a localized, spherical inhomogeneity, of ionic type, on scroll-wave dynamics with an initial rotating-scroll configuration. For this initial condition, we find that the localized ionic inhomogeneities have no qualitative effect on the rotating scroll waves. The rotating scroll continues to rotate (Table 2). For position 3 we see the scroll centre tends to move away from the inhomogeneity. We conclude, therefore, that scroll-wave dynamics is not affected substantially by the presence of localized ionic inhomogeneities when we use rotating-scroll initial conditions.

Figure 7 panel (b) shows the effect of a localized, spherical inhomogeneity, of ionic type, on an initial configuration corresponding to broken-waves. If the ionic inhomogeneity is at positions 1 or 2, it partially prevents scroll breakup; and it stabilizes the dynamics to a single rotating scroll; but, for positions 3 and 4, the ionic inhomogeneity does not suppress the break up. Also, an ionic inhomogeneity does not completely remove
Table 2: This table summarizes our results on the effects of ionic-type inhomogeneities on scroll-wave dynamics.

Localized Spherical Inhomogeneity	Distributed Small-Scale Inhomogeneities		
Broken Scroll			
position 1	Broken scroll filaments tend to move away from the inhomogeneity; partially; suppresses scrolls break-up.	5%	Does not suppress scroll-wave break-up.
position 2	Same dynamics as for position 1.	10%	Reduces scroll-wave break-up, but does not suppress it completely.
position 3	Does not suppress break up; broken scrolls continue to break up.	20%	Does not suppress scroll wave break-up.
position 4	Same dynamics as for position 3.		
Rotating Scroll			
position 1	Continues rotating.	5%	Continues rotating; meandering is increased.
position 2	Continues rotating.	10%	Scroll wave breaks-up occurs.
position 3	Continues rotating; the scroll tends to move away from the inhomogeneity.	20%	Scroll rotates for a long time without breaking, finally break-up occurs.
position 4	Continues rotating.		

Figure 7: Two-level isosurface plots of the transmembrane potential V illustrating the final state of the scroll-wave dynamics when a medium-sized spherical inhomogeneity, of ionic type, is placed at positions 1 (pos1), 2 (pos2), 3 (pos3), and 4 (pos4), as shown in Fig. 1. The initial configuration is the one that we obtain from the parameter set that yields a rotating scroll state for the left panel (a) and a broken-scroll state for the right panel (b). For the full spatio-temporal evolution of V see the videos S417, S418, S419, and S420, S421, S422, S423, and S424 in the Supplementary Material [37].

the broken scrolls from the domain, as we have observed for position 1 for a conduction-type inhomogeneity.

We now examine the effects of distributed inhomogeneities, of ionic type, on two initial configurations in Fig. 8, for each case, we depict isosurfaces of V from the last stage of our simulation. For small-sized, distributed inhomogeneities, with a rotating-scroll initial configuration, we see that (as in the case of conduction inhomogeneities), for small concentrations of inhomogeneities (5%), the rotating scroll wave is unaffected by them; but, as this concentration increases, the inhomogeneities cause the rotating scroll to break up. The break up is not as fast, intense, or statistically steady, as in the case of conduction inhomogeneities. Furthermore, here the wavelength of the scrolls does not change (as it does for conduction inhomogeneities). We observe that the extent of such break up is more for 10% inhomogeneities than for 20%.

Figure 8, panel (b), shows the effects on scroll-wave dynamics, of distributed inhomogeneities of ionic type, for an initial broken-scroll configuration. We observe that, for 10% distributed inhomogeneities, the scroll break up is partially suppressed. In other cases the such break up is not suppressed.

We conclude that the effect of ionic-type inhomogeneities on scroll-wave dynamics of broken scrolls are different, in detail, from those of conduction-type of inhomogeneities. For distributed, small-sized inhomogeneities, conduction inhomogeneities break up the scrolls significantly; ionic inhomogeneities prevent scroll-wave break up for moderate (10%) concentration of inhomogeneities. Localized inhomogeneities have almost the same effect on scroll-wave dynamics as conduction-
type obstacles. At two positions (1 and 2), they prevent the breaking up of scrolls by partially changing broken waves to rotating scrolls. For ionic inhomogeneities at positions 3 and 4, we do not see this behavior. Thus, scroll-wave dynamics also depends on the position of the inhomogeneity. Finally, we note that a localized ionic inhomogeneity does not have a significant effect on an initially rotating scroll wave as in the case of localized conduction inhomogeneity.

4. Conclusions

We have carried out a detailed \textit{in silico} study to examine the effects of different types of inhomogeneities on scroll-wave dynamics in dog ventricles. Our work goes well beyond earlier studies because we have used an anatomically realistic model for canine ventricles, namely, the HRD model; and we have also included muscle-fiber orientation. Our study has elucidated the effects of conduction and ionic inhomogeneities on scroll waves in this model.

In particular, we have found that small-scale, distributed, conduction inhomogeneities have the most marked effect on scroll-wave dynamics: these inhomogeneities reduce the wavelength significantly at all concentrations. Low concentration of the inhomogeneities ($\approx 5\%$) do not break up the scroll wave; but higher concentrations (10% and above) do break up the rotating scroll and, indeed, break up the broken scrolls too. A localized, large-scale conduction inhomogeneity, partially suppresses wave break ups and stabilizes broken waves to form a rotating wave (for most positions of the inhomogeneity); and it does not affect the break up of scrolls in one position (in the septum). However, if the medium already has a stable rotating wave, the presence of such inhomogeneities does not affect the wave dynamics.

We find, for the ionic inhomogeneities that we have studied, at medium (10%) concentrations of distributed, small-scale inhomogeneities partially suppress scroll-wave break up; at other concentrations, the such inhomogeneities do not affect the broken waves. Higher (10% and above) concentrations of distributed inhomogeneities, can cause the partial break up of initially rotating scroll waves; and low concentrations do not affect the scroll-wave dynamics. A localized, large-scale, ionic-type inhomogeneity stabilizes the broken-wave dynamics at two positions; and it does not affect the dynamics when it is at the other positions (see above). The dynamics of a stable rotating wave is not affected significantly by localized ionic inhomogeneities. The scrolls tend to move away from local inhomogeneities of both conduction and ionic types. When the position of the inhomogeneity is away from the region of the phase singularity of the scrolls, it does not suppress the break up significantly.

In summary, our study shows that localized conduction inhomogeneities can suppress scroll-wave break up and chaos, to some extent; and distributed, conduction inhomogeneities can lead to a statistically steady broken-wave state with spatiotemporal chaos. Stable rotating scrolls in the medium are not affected by localized inhomogeneities, but are broken by distributed inhomogeneities at high concentrations, for both con-

![Figure 8: Two-level isosurface plots of the transmembrane potential V illustrating scroll-wave dynamics, when small ionic inhomogeneities are distributed in the domain with a concentration 5%, 10% and 20% of the total number of sites. The initial configuration corresponds to the parameter set that yields, in the absence of inhomogeneities, a rotating scroll wave [panel (a)], and scroll wave break-up [panel (b)]. For the full spatio-temporal evolution of V see the videos S425, S426, S427, S428, S429, and S430 in the Supplementary Material [37].](image-url)
duction and ionic types of inhomogeneities. Ionic type inhomogeneities can suppress scroll-wave break up.

Our results can be compared fruitfully with a similar in silico study [28] of scroll-wave dynamics in a mathematical model for a pig heart. This study also finds that small-scale, distributed, conduction inhomogeneities have the most marked effect on scroll-wave dynamics, as we have found for the HRD canine-ventricular model. The main findings of the above study are conduction-type inhomogeneities become increasingly important, in the case of multiple, randomly distributed, obstacles at the cellular scale (0.2 mm –0.4 mm). Such configurations can lead to scroll-wave break up; and ionic inhomogeneities affect scroll-wave dynamics significantly at large length scales, when these inhomogeneities are localized in space at the tissue level (5 mm –10 mm). In such configurations, these inhomogeneities can (a) attract scroll waves, by pinning them to the heterogeneity, or (b) lead to scroll-wave breakup. The authors of Ref. [28] used an initial configuration with a stable rotating spiral. They found no qualitative change in the dynamics of such a wave when small-scale ionic distributed inhomogeneities were introduced and also when large, localized conduction inhomogeneities were included.

We also find that large, localized, conduction inhomogeneities do not affect a stable rotating wave. Thus, for such inhomogeneities, our results match with those for this pig-heart study [28], with the same initial conditions. We study broken-wave initial conditions too. For ionic inhomogeneities, our HRD-model studies show that the stable rotating wave finally breaks up for large concentration of distributed inhomogeneities; this is in contrast to pig-heart study of Ref. [28], in which such a wave is not significantly affected by these inhomogeneities. Conduction inhomogeneities affect the diffusion part of the governing equations; this is the same for all models, so the results also turn out to be the same for canine- and porcine-ventricular models. The reaction part of the equations, with such inhomogeneities, are model specific.

We mention some limitations of our study. We have used a monodomain model for the cardiac-tissue equations in our study; bidomain models are more realistic than monodomain ones; however, a recent study [39] has shown that the latter are adequate when currents are low, as in our study. To impose boundary conditions we have used a phase-field approach; this can also be done with a finite-element model, which we leave for future work. The inhomogeneities could be handled in a more realistic way than in our study in terms of shape, composition, etc.

We hope our work will lead to other detailed studies of scroll-wave dynamics in realistic models for mammalian hearts. Only by contrasting the results of such studies can we develop a detailed understanding of VT and VF, which is a prerequisite for the efficient elimination (i.e., defibrillation) of such life-threatening cardiac arrhythmias.

5. Acknowledgments

We thank Council of Scientific and Industrial Research, University Grants Commission and Department of Science and Technology for support, and Supercomputing Education and Research Centre (IISc) for computational resources.

References

[1] J.M. Davidenko, Journal of Cardiovascular Electrophysiology 4, 730-746 (1993).
[2] R. Clayton and A. Panfilov, Progress in Biophysics and Molecular Biology 96, 19-43 (2008).
[3] R.H. Clayton, O. Berusu, E.M. Cherry, H. Dierckx, F.H. Fenton, L. Mirabella, A.V. Panfilov, F.B. Sachse, G. Seemann, H. Zhang, Progress in Biophysics and Molecular Biology 104, 22-48 (2011).
[4] N.A. Trayanova, Circ. Res. 108, 113-128 (2011).
[5] E.M. Cherry and F.H. Fenton, New Journal of Physics 10 (2008) 125016 (43pp) (2008); doi:10.1088/1367-2630/10/12/125016.
[6] J. Keener, J. Sneyd, Mathematical Physiology (Springer, New York, 1998).
[7] A. Pertsov and M. Vinson, Philosophical Transactions: Physical Sciences and Engineering 347, 687-701 (1994).
[8] J.N. Weiss, A. Garfinkel, et al. Journal of Molecular and Cellular Cardiology 82, (2015).
[9] R. Majumder, A. R. Nayak, and R. Pandit, Heart Rate and Rhythm (Springer, 2011), pp. 269-282.
[10] T.K. Shajahan, S. Sinha and R. Pandit, “The Mathematical Modelling of Inhomogeneities in Ventricular Tissue” in Complex Dynamics in Physiological Systems: From Heart to Brain. Understanding Complex Systems, Springer, Dordrecht, edited by S. K. Dana, P. K. Roy, J. Kurths, pp. 51-67, (2009).
[11] T.K. Shajahan, S. Sinha, and R. Pandit, Phys. Rev. E. 75, 011929-1-011929-8 (2007).
[12] T.K. Shajahan, A. R. Nayak, and R. Pandit, PLoS ONE. 4, e4739 (2009).
[13] T. Ikeda, M. Yashima, T. Uchida, D. Hough, M. C. Fishbein et al., Circ. Res. 81, 753 (1997).
[14] J. H. Glin, B. Maskara, F. Aguie, R. E. Boskove Jr., and L. Tung, Circulation 114, 2113-2121 (2006).
[15] R. Majumder, A. R. Nayak, and R. Pandit, Phys. Rev. E. 76, e5040 (2012).
[16] R. Majumder, A. R. Nayak, and R. Pandit, PLoS ONE. 6, e18052 (2011).
[17] A. R. Nayak and R. Pandit, Frontiers in Physiology 5, 207 (2014).
[18] A. R. Nayak, T. K. Shajahan, A. V. Panfilov, and R. Pandit, PLoS ONE. 8, (2013).
[19] A. V. Panfilov, and B. N. Vassev, Physica D 49, 107-113 (1991).
[20] J. Christoff, M. Chebbok, C. Richter, et al. Nature 555, 667-672 (2017).
[21] J. Grondin, D. Wang, C.S. Grubb, N. Trayanova, E.E. Konofagou, Computers in Biology and Medicine 113, 103382 (2019).
[22] F. Fenton and A. Karma Phys. Rev. Lett. 81, 481-484 (1998).
[23] F. Fenton and A. Karma, Chaos 8, 20-47 (1998).
[24] R. Majumder, A. R. Nayak, and R. Pandit, PLoS ONE. 6, e18052 (2011).
[25] Z. Yang, S. Gao, Q. Ouyang, and H. Wang, Phys. Rev. E. 86, 056209 (2012).
[26] F. Spreckelsen, D. Hornung, O. Steinbock, U. Parlitz, and S. Luther, Phys Rev E. 92, 042920(2015).
[27] P. Haukla, P. Sanders, L. Szumowski, and J. J. Zebrowski, J Biol Phys 39, 042920 (2015).
[28] R. Majumder, R. Pandit, and A. V. Panfilov JETP Letters, 104 11796-799 (2016).
[29] S.K. Galappaththige, P. Pathmanathan, M.J. Bishop, and R.A. Gray, Frontiers in Physiology 10, 564 (2019).
[30] S. Zimik, R. Pandit, and R. Majumder, PLoS ONE 15(3): e0230214 (2020); https://doi.org/10.1371/journal.pone.0230214
[31] http://cmiss.bio.engl.auckland.ac.nz
[32] T. Hund and Y. Rudy, Circulation 110, 20 (2004).
[33] Supplemetary Material. K.V. Rajany, IISc. Bangalore.
[34] K.H.W.J. ten Tusscher, O. Bernus, R. Hren, and A.V. Panfilov, Progress in Biophysics and Molecular Biology 90, 326-345 (2006).
[35] F.H. Fenton, E.M. Cherry, A. Karma, and W.J. Rappel, CHAOS 15, 013502 (2005).
Chapter 4: Movies showing the spatiotemporal evolution of the various systems in this study, Supplementary Material. K.V. Rajany, IISc. Bangalore.

K.V. Rajany, A.R. Nayak, R. Majumder, and R. Pandit “Rapid-rectifier-potassium and L-type-calcium currents play a crucial role in spiral- and scroll-wave dynamics in mathematical models for canine and human ventricular tissue” (unpublished); see Chapter 3 of Ref. [36].

M. Potse, B. Dube, J. Richer, A. Vinet and R. M. Gulrajani “A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart” IEEE Transactions on Biomedical Engineering, 53 No. 12 (2006).