We are considering the integration of functions as in the subject of classical integration theory.

The modern interpretation of the Riemann integral is a subject that continues to arouse interest in diverse areas of analysis and its applications to such areas as optimisation and mathematical economics, as well as in the subject of classical integration theory.

We are considering the integration of functions f defined on a bounded interval of the real line which for simplicity we take to be $[0, 1]$. A key concept is a tagged partition $T = \{\Delta_j, t_j\}_{j=1}^n$, $n = 1, 2, \ldots$, of $[0, 1]$ with

$$0 = a_1 < b_1 < a_2 < b_2 < \cdots < a_j < b_j = \cdots = a_n < b_n = 1,$$

$\Delta_j = [a_j, b_j]$, $|\Delta_j| = b_j - a_j$ and $t_j \in [a_j, b_j]$ for $j = 1, \ldots, n$. The uniform convergence of the associated Riemann sums $S(f, T)$ as $|\Delta_j| \to 0$ ensures that f is Riemann integrable. Convergence over gauges is associated with the Henstock-Kurzweil integral.

The present paper deals with the Riemann integral of a multifunction $F : [0, 1] \to 2^X \setminus \emptyset$ taking values in the nonempty subsets of a real Banach space X. It is assumed that $F([0, 1]) \subseteq B(X)$, the collection of nonempty bounded subsets of X equipped with the Hausdorff distance. In Definition 1.3 of the paper, the Riemann integral $\int_0^1 F(t) \, dt$ is a closed bounded set defined analogously to the Riemann integral of a scalar valued function.

It is not difficult to show that the Riemann integral $\int_0^1 F(t) \, dt$ of the multifunction F is convex and its convex hull $\text{conv} F : t \mapsto \text{conv}(F(t))$, $t \in [0, 1]$, is also Riemann integrable and

$$\int_0^1 \text{conv} F(t) \, dt = \int_0^1 F(t) \, dt.$$

On the other hand, the assertion that $\text{conv} F$ is integrable necessarily implies that F is integrable depends on the Banach space geometry of X studied by G. Pisier in Seminaire Maurey-Schwartz 1973-1974. The required property is that there exists $C > 0$ and $p > 1$ such that

$$\min_{\alpha_j = \pm 1} \left\| \sum_{j=1}^n \alpha_j x_j \right\| \leq C \left(\sum_{j=1}^n \|x_j\|^p \right)^{\frac{1}{p}}$$

for all $x_j \in X$, $j = 1, \ldots, n$ and $n = 1, 2, \ldots$, in which case X is said to have infratype p. The paper has a clear discussion of infratype and its consequences for the local theory of Banach spaces.

If $\text{conv} F$ is integrable and in addition $\int_0^1 \text{conv} F(t) \, dt$ is compact, then F is Riemann integrable without any further assumption on the Banach space X. The proof is achieved by a clever appeal to the approximation property for $C(K)$ with K compact.

Reviewer: Brian Jefferies (Sydney)

MSC:

28B05 Vector-valued set functions, measures and integrals
46G10 Vector-valued measures and integration

Keywords:

Banach space; multifunction; Riemann integral

Full Text: DOI arXiv
References:

[1] Aumann, R. J., Integrals of set-valued functions, J. Math. Anal. Appl., 12, 1-12 (1965) · Zbl 0163.06301
[2] Benyamini, Y.; Lindenstrauss, J., Geometric Nonlinear Functional Analysis: Volume 1, Colloquium Publications, xi, AMS, vol. 48, 488 (2000), AMS: AMS Providence, RI · Zbl 0946.46002
[3] Cascales, B.; Kadets, V.; Rodríguez, J., The Pettis integral for multi-valued functions via single-valued ones, J. Math. Anal. Appl., 332, 1, 1-10 (2007) · Zbl 1119.28009
[4] Cascales, B.; Kadets, V.; Rodríguez, J., Measurable selectors and set-valued Pettis integral in non-separable Banach spaces, J. Funct. Anal., 256, 3, 673-699 (2009) · Zbl 1160.28004
[5] Cascales, B.; Kadets, V.; Rodríguez, J., Measurability and selections of multi-functions in Banach spaces, J. Convex Anal., 17, 1, 229-240 (2010) · Zbl 1192.28005
[6] Cascales, B.; Rodríguez, J., Birkhoff integral for multi-valued functions, Special Issue Dedicated to John Horváth, Special Issue Dedicated to John Horváth, J. Math. Anal. Appl., 297, 2, 540-560 (2004) · Zbl 1066.46037
[7] Castaing, C.; Valadier, M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580 (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0346.46038
[8] Debreu, G., Integration of correspondences, (Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, Vol. II: Contributions to Probability Theory, Part 1. Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, Vol. II: Contributions to Probability Theory, Part 1, Berkeley, Calif., 1965-66 (1967), Univ. California Press: Univ. California Press Berkeley, Calif.), 351-372
[9] Gaebler, H., Towards a characterization of the property of Lebesgue, Real Anal. Exch., 46, 2, 1-26 (2021)
[10] Gordon, R. A., Riemann integration in Banach spaces, Rocky Mt. J. Math., 21, 3, 923-949 (1991) · Zbl 0764.28008
[11] Hess, C., Set-valued integration and set-valued probability theory: an overview, (Handbook of Measure Theory, Vol. I, II (2002), North-Holland: North-Holland Amsterdam), 617-673 · Zbl 1022.60011
[12] Hukuhara, M., Integration Des Applications Mesurables Dont La Valeur Est Un Compact Convexe, Funkc. Ekvacioj, 10, 205-223 (1967), (in French) · Zbl 0163.06301
[13] Ivanov, G.; Polovinkin, E. S., A generalization of the set averaging theorem, Math. Notes, 92, 3, 369-374 (2012) · Zbl 1267.26010
[14] Kadets, V., The domain of weak limits of integral Riemann sums of an abstract function, Sov. Math. Dokl., Sov. Math. Dokl., Izv. Vyssh. Uchebn. Zaved., Mat., 9, 316, 39-46 (1988), translation from · Zbl 0669.46023
[15] Kadets, M.; Kadets, V., Series in Banach Spaces: Conditional and Unconditional Convergence, Operator Theory: Advances and Applications, vol. 94 (1997), Birkhäuser Verlag: Birkhäuser Verlag Basel, Translated from Russian by Andrei Iacob - Zbl 0876.46009
[16] Klein, E.; Thompson, A. C., Theory of Correspondences, Canadian Mathematical Society Series of Monographs and Advanced Texts (1984), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York, Including applications to mathematical economics, A Wiley-Interscience Publication
[17] Martín-Valverde, G., Riemann integrability versus weak continuity, J. Math. Anal. Appl., 438, 2, 840-855 (2016) · Zbl 1353.46031
[18] Musiał, K., Approximation of Pettis integrable multifunctions with values in arbitrary Banach spaces, J. Convex Anal., 20, 3, 833-870 (2013) · Zbl 1284.28006
[19] Musiał, K., Gelfand integral of multifunctions, J. Convex Anal., 21, 4, 1193-1200 (2014) · Zbl 1320.28021
[20] Musiał, K., Multimeasures with values in conjugate Banach spaces and the weak Radon-Nikodym property, J. Convex Anal., 28, 3 (2021)
[21] Musiał, K., Pettis integrability of multifunctions with values in arbitrary Banach spaces, J. Convex Anal., 18, 3, 769-810 (2011) · Zbl 1245.28011
[22] Naralenkov, K. M., Asymptotic structure of Banach spaces and Riemann integration, Real Anal. Exch., 33, 1, 111-124 (2008) · Zbl 1151.46016
[23] Di Piazza, L.; Musiał, K., Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values, Monatsh. Math., 173, 4, 459-470 (2014) · Zbl 1293.28006
[24] Pisier, G., Sur les espaces qui ne contiennent pas de \(\ell_n^1\) uniformément, Séminaire Analyse fonctionnelle (dit “Maurey-Schwartz”), vol. 7, 1, 1-19 (1974), (French) · Zbl 0299.46021
[25] Pisier, G., Geometry of Banach spaces, (Local Finite-Dimensional Theory. Lectures Given at the University of Zaragoza, December 1980 (Geometria de los Espacios de Banach. Teoria Local Finito-Dimensional) (1983)), 54, Compiled by J. Bastero, (Spanish) Zaragoza: Universidad de Zaragoza, Facultad de Ciencias, Departamento de Teoria de Funciones. II
[26] Polovinkin, E. S., Riemannian integral of set-valued function, (Optimization Techniques IFIP Technical Conference Novosibirsk. Optimization Techniques IFIP Technical Conference Novosibirsk, July 1-7, 1974 (1975), Springer: Springer-Verlag Berlin-Heidelberg), 405-410
[27] Polovinkin, E. S., The integration of multivalued mappings, Dokl. Akad. Nauk SSSR, Dokl. Akad. Nauk SSSR, Dokl. Math., 28, 5, 223-228 (1983) · Zbl 0593.28009
[28] Rådström, H., An embedding theorem for spaces of convex sets, Proc. Am. Math. Soc., 3, 165-169 (1952) · Zbl 0046.33304
[29] Ryan, R. A., Introduction to Tensor Products of Banach Spaces (2001), Springer: Springer Galway
[30] Schneider, R., Convex Bodies: The Brunn-Minkowski Theory (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0798.52001
[31] Wojtaszczyk, P., Banach Spaces for Analysts, xiii, 382 (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0858.46002

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.