Pentachlorophenol removal from aqueous solutions by microwave/persulfate and microwave/H$_2$O$_2$: a comparative kinetic study

Ghorban Asgari, AbdolMotaleb Seidmohammadi and Afsane Chavoshani*

Abstract

Pentachlorophenol (PCP) is one of the most fungicides and pesticides used in wood protection. Poisoning from PCP may be happened in dermal absorption, and respiration or ingestion. With regard to health and environmental effects of PCP, many methods were studied for its removal. Microwave assisted other methods are environmental friendly, safety, and economical method, therefore, in this study; a modified domestic microwave assisted hydrogen peroxide (MW/H$_2$O$_2$) and sodium persulfate (MW/SPS) was used for PCP removal from aqueous solutions. PCP removal rate was measured under different factors such as pH, energy intensity, SPS, H$_2$O$_2$ concentration, Tert- butyl alcohol (TBA) and chemical oxygen demand (COD). The concentration changes of PCP were determined using spectrophotometer and HPLC spectra, respectively. The best removal PCP rate obtained in condition of pH of 11, 0.02 mol L$^{-1}$ of SPS, 0.2 mol L$^{-1}$ of H$_2$O$_2$ and energy intensity of 600 W. Moreover, COD removals in MW/H$_2$O$_2$ and MW/SPS process were 83% and 94%, respectively, also TBA test decreased 15% and 3% of PCP removal in MW/SPS and MW/H$_2$O$_2$ processes respectively. Experimental results indicated that sulfate radical was stronger than hydroxyl radical and examinations order reaction was in first order. In this study, was cleared that MW/SPS process was more effective than MW/H$_2$O$_2$ process in PCP removal.

Keywords: Microwaves, Pentachlorophenol, Hydrogen peroxide, Sodium persulfate

Introduction

PCP, one of the phenolic compounds, is widely used in Wood protective industry [1]. Exposure of this compound makes diseases such as aplastic anemia, leukemia, peripheral neuropathy and other problems related to nerve damage (neurotoxicity). This pollutant is a significant contaminant of soil, surface, and groundwater especially around wood preserving facilities [2-6]. Researchers using a mathematical model calculate that 96.5% of PCP is in soil, 2.5% in water, 1% in air, and less than 1% in suspended sediments and organisms in aquatic environments [6,7]. Therefore, PCP removal from aqueous solutions is essential. According to previous studies is cleared that conventional treatment methods are ineffective for PCP and other refractory compounds removal, because these methods can only transfer the contaminants from one phase to another producing many environmental problems [8]. Recently researchers have found that microwave (MW) heating in combination with hydrogen peroxide (H$_2$O$_2$) and sodium persulfate (Na$_2$S$_2$O$_8$ or SPS) [9] can mineralize organic compounds successfully and completely [6,10,11]. The key effects of these processes is the replacement of hazardous solvents with environmentally benevolent ones [8]. Basic of MW process is the ability of molecules or substances to absorb and transmit MW irradiation [12]. MW irradiation is electromagnetic irradiation in the frequency range of 0.3 to 300 GHz, but laboratory microwave reactors operate at frequency of 2.45 GHz [6,13,14]. By breaking oxygen–oxygen bonds of H$_2$O$_2$ and S$_2$O$_8^{2-}$, MW commonly are able to dissociate H$_2$O$_2$ and S$_2$O$_8^{2-}$ into OH$^\bullet$ and SO$_4^{0}$ radicals and other radicals which are very powerful oxidizing species [15].

Similar to hydroxyl radicals, sulphate radicals react with organics by electron transfer, hydrogen abstraction,
or addition mechanisms [16,17]. According to results obtained of previous studies, SPS and H₂O₂ could be a good option for the MW oxidation technique. In this study, due to an environmental-friendly in addition to highly efficient method and low existence of specific work in this condition, analysis of the PCP removal by MW/H₂O₂ and MW/SPS under various kinds of parameters was performed and in the end, the effectiveness of MW/SPS and MW/H₂O₂ processes in the PCP removal was compared.

Materials and methods

Materials
Sodium salt PCP, which is the sodium salt of PCP (C₆Cl₅ONa) with 98% purity was used without further purification. The characteristics of the PCP included of boiling point: 309-310°C, mass molar: 288.32 g mol⁻¹. PCP solution was prepared by dissolving PCP in NaOH solution to accelerate its dissolution [6,18]. Hydrogen peroxide (30% w/w) and the sodium persulfate from Merck, 98% mass molar: 238.1 g mol⁻¹ were used as oxidants.

Experimental methods and measurements
Under atmospheric pressure, all of the experiments were performed and triplicated in modified domestic microwave oven (2450 MHz, M2330 DN, SAMSUNG Co, and output power of 100 to 850 W) (Figure 1). Detail modifications of MW were presented as follows: drilled a hole in the upper oven wall and then attached an aluminum tube of the same diameter to the hole then equipped with cooling system and a glass reactor with 500 mL volume. Then Samples were taken at suitable time intervals (10 min) from the reaction reactor with a 10 mL syringe and pipetted in to glass vials [6,11]. Besides, a Thermometer GENWAY Medal 2003 was utilized to detect variation of solution temperature during degradation process. The leakage of MW oven is measured at 20 cm distance from the aperture.

In this study different factors effects such as pH (3, 7, 11), energy intensity (180, 450, 600 W with optimal temperatures 80, 100, and 105°C respectively), SPS and H₂O₂ dose (0.01, 0.02, 0.03, 0.04, 0.05 mol L⁻¹), PCP concentration (100, 200, 300, 400, 500, 750, 1000 mg L⁻¹), effect of Tert-butyl alcohol (TBA) with 0.04 mol L⁻¹ concentration, and COD (344 mg L⁻¹) were determined. Changes of PCP concentration were detected using spectrophotometer according to (APHA [19]), and HPLC. HPLC (Part Number.WATO54275 with dimension of 4.6 mm × 250 mm and column of symmetry C18-50 μm) method was performed with an acetonitrile/water 60:40 (v/v) as mobile phase at a flow rate of 1 mL min⁻¹ and detection wavelengths of UV was 254 nm [6,20]. COD was detected using potassium dichromate solution as oxidizer in a strong acid medium, then by titration step using ferrous ammonium sulfate as the reducing agent and Ferroin as the indicator [6,9].

Results and discussion

Effect of pH on PCP removal
In this study under MW/SPS and pHs of 3,7 and 11, PCP removal rate was 48, 56, 67% respectively, but under MW/H₂O₂, its amount was 42, 53 and 56% respectively (Figure 2). It seems that strong power of MW in ionization of SPS and H₂O₂ leads to a negligible difference between
all pHs effect (Figure 2), therefore more research for pH effect is necessary. However, results shown that alkaline pH could more accelerate PCP degradation in MW/SPS and MW/H2O2 systems. These phenomena under MW/SPS and MW/H2O2 were attributed to the ability of H2O2 and SPS to absorb and transmit microwave irradiation in alkaline pH more a little than other pHs. Subsequently more radicals are produced in this condition [21-25].

In general and according to experimental conditions following reactions can be performed:

Under MW/SPS:

All pHs: \(\text{SO}_4^{2-} + \text{H}_2\text{O} \rightarrow \text{SO}_4^{2-} + \text{OH}^0 + \text{H}^+ \) (1)

Alkaline pH: \(\text{SO}_4^{2-} + \text{OH}^- \rightarrow \text{SO}_4^{2-} + \text{OH}^0 \) (2)

Under MW/H2O2:

\(\text{H}_2\text{O}_2 + \text{MW} \rightarrow 2\text{OH}^0 \) (3)

\(\text{OH}^0 + \text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + \text{HO}_2^0 \) (4)

\(2\text{OH}^0 \rightarrow \text{H}_2\text{O}_2 \) (5)

\(2\text{OH}^0 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \) (6)

\(\text{OH}^0 \leftrightarrow \text{O}_2^- + \text{H}^+ \) (7)

\(\text{H}_2\text{O} + \text{HO}_2^0 + \text{O}_2^- \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 + \text{OH}^- \) (8)

Under MW/SPS, the rate constants for Eqs. (1) and (2) are \(< 2 \times 10^{-3} \) and \((6.5 \pm 1) \times 10^7 \text{ M}^{-1}\text{S}^{-1} \) respectively. It is cleared that the reaction rate constant of Eq. (2) is more than Eq. (1). According these equations in all pHs and alkaline pH, both \(\text{SO}_4^{2-} \) and \(\text{OH}^0 \) are possibility responsible for degradation of organic contaminants, but previous studies have shown that in pHs of 3–10, amount of hydroxyl radical is more than sulfate radical and in pH > 10.5 amount of sulfate radical is more than hydroxyl [26,27]. According these results, the difference between our work and previous studies could partly attribute to pH = 11. Results of other studies confirm that organic removal efficiency is more in alkaline pH [15]. In similar to, under MW/H2O2 in alkaline pH, amount of \(\text{OH}^0 \) and other radicals participating in PCP removal is more than other pHs (Eqs (3) to (8)) [6,11,28].

Effect of SPS and H2O2 concentrations on PCP removal

From Figure 3 is observed that under MW/SPS with increasing SPS concentration from 0.01 to 0.02 mol L\(^{-1}\), PCP removal efficiency was increased (56 to 94%). But with increasing the initial SPS concentration from 0.02 to 0.05 mol L\(^{-1}\) PCP removal rate was decreased from 94 to 49% respectively. Furthermore under MW/H2O2, PCP removal efficiency for 0.01 to 0.05 mol L\(^{-1}\) of H2O2 was 12.5% to 75% respectively. PCP removal (87%) was stabled in doses of 0.2 and 0.3 mol L\(^{-1}\) of H2O2 (data not show). Therefore, optimal doses of SPS and H2O2 were 0.02 and 0.2 mol L\(^{-1}\) respectively. Shih et al. reported that, in extremely high initial concentration, \(\text{SO}_4^{2-} \) reacted with persulfate according to the following equation [29].

\(\text{SO}_4^{2-} + \text{S}_2\text{O}_8^{2-} \rightarrow \text{SO}_4^{2-} + \text{S}_2\text{O}_8^{0-} \) (9)

So that an over-dose of persulfate transformed the \(\text{SO}_4^{2-} \) to \(\text{S}_2\text{O}_8^{0-} \) reducing the oxidizing power for PCP removal [30,31]. Also with respect to Eq (10), under high H2O2 concentration in MW/H2O2 system, quenching of OH\(^+\) radicals is happened to produce HO\(_2^+\) radicals [6,11,15].

\(\text{H}_2\text{O}_2 + \text{OH}^0 \rightarrow \text{H}_2\text{O} + \text{HO}_2^0 \) (10)

Therefore, existences of a scavenger of OH\(^+\) radicals, such as H2O2, have a decreasing effect in the organic compounds removal efficiency [6,17].

![Figure 2](http://www.ijehse.com/content/12/1/94)
Effect of different energy intensity on PCP removal

The test results shown in Figure 4 indicated that PCP removal efficiency gradually increased by increasing the microwave power from 180 to 600 W. Amount of PCP removal in MW/SPS with energy intensity of 180, 450, and 600 W was 26, 89 and 93%, respectively. In addition, under MW/H2O2 system amount of PCP removal was 20, 80 and 87%, respectively. In addition, under MW/H2O2 system amount of PCP removal was 20, 80 and 87%, respectively. PCP removal efficiency did not change for higher power (>600 W). Subsequently, the microwave irradiation of 600 W was chosen for further experiments. According to other studies, removal efficiency can only increase to a limited extent [32] and degradation of organic materials is not always increased with increasing microwave power [33,34]. In this study, amount of Energy consumption in optimal condition (energy power of 600 W and reaction time of 30 min) for both of systems was 0.3 KWh, also other researchers confirm that energy consumption in MW process is very low and economy [35,36].

Effect of radical scavenger on PCP removal

In this study, 0.04 mol L\(^{-1}\) TBA (OH\(^0\) scavenger) added to MW/SPS and MW/H2O\(_2\). The results shown that the degradation rate of PCP was decreased 15% and 3% under MW/SPS/TBA and MW/H2O\(_2\)/TBA respectively (Figure 5). According to Eqs. (11) to (16) [37] is cleared that both SO\(_4^{0^-}\) and OH\(^0\) can degrade PCP, but with respect to TBA test, SO\(_4^{0^-}\) in MW/SPS play the dominant role and OH\(^0\) had only a negligible role (15%).
\[
\begin{align*}
\text{O}_3\text{S} - \text{O} - \text{S} - \text{O}_3^{-} & \rightarrow 2\text{O}_3\text{S} - \text{O}^0 \quad (11) \\
\text{O}_3\text{S} - \text{O}^0 + e^- & \rightarrow \text{SO}_2^{-4} \quad (12) \\
\text{O}_3\text{S} - \text{O}^0 + \text{PCP} & \rightarrow \text{Products} \quad (13) \\
\text{O}_3\text{S} - \text{O}^0 + \text{H}_2\text{O} & \rightarrow \text{HSO}_4^{-} + \text{OH}^0 \quad (14) \\
\text{O}_3\text{S} - \text{O}^0 + \text{HO}^- & \rightarrow \text{SO}_2^{-4} + \text{OH}^0 \quad (15) \\
\text{OH}^0 + \text{PCP} & \rightarrow \text{Products} \quad (16) \\
\end{align*}
\]

MW/H$_2$O$_2$/TBA results show that OH0 is activation initiator and isn’t dominant radical (its role was only 3%). Based on following equations, MW is able to dissociate H$_2$O$_2$ to many radicals as well as OH0 [6, 28, 38]. Also according to Hong et al. results in MW/H$_2$O$_2$ system, O$_2$ is dominant radical [9].

\[
\begin{align*}
\text{H}_2\text{O}_2 + \text{MW} & \rightarrow 2\text{OH}^0 \quad (17)
\end{align*}
\]
\[\text{OH}^\circ + \text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + \text{HO}_2^\circ \]
(18)

\[2\text{OH}^\circ \rightarrow \text{H}_2\text{O}_2 \]
(19)

\[2\text{OH}^\circ \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 \]
(20)

\[\text{OH}^\circ \leftrightarrow \text{O}_2^- + \text{H}^+ \]
(21)

\[\text{H}_2\text{O} + \text{HO}_2^\circ + \text{O}_2^- \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 + \text{OH}^- \]
(22)

Reaction kinetics

Obtained Results from reaction kinetics under MW/SPS and MW/H$_2$O$_2$ demonstrated that the PCP removal follows first-order kinetics law (Figure 6). In this study, K$_{\text{SPS}}$ and K$_{\text{H}_2\text{O}_2}$ only was 0.014 min$^{-1}$ and 0.004 min$^{-1}$ respectively, but K$_{\text{MW/SPS}}$ and K$_{\text{MW/H}_2\text{O}_2}$ was 0.095 min$^{-1}$ and 0.055 min$^{-1}$ respectively. So that, K$_{\text{SPS}}$ was 3.5 times more than K$_{\text{H}_2\text{O}_2}$, and K$_{\text{MW/SPS}}$ was 1.72 times more than K$_{\text{MW/H}_2\text{O}_2}$. Because energy of oxygen-oxygen bond in persulfate is less than H$_2$O$_2$ [15], SPS activation and subsequently PCP removal occur more rapidly in MW/SPS system than MW/H$_2$O$_2$. Also synergetic factor of MW in MW/SPS and MW/H$_2$O$_2$ was 6.6 and 13.75 respectively. This factor shows that MW process have higher synergetic effect on H$_2$O$_2$ decomposition than SPS [39].

Mineralization of PCP in MW/SPS and MW/H$_2$O$_2$ processes and identification of oxidation intermediates

Results abstained from COD removal showed that MW/SPS and MW/H$_2$O$_2$ were able to remove COD in amount of 94 and 83% respectively (Figure 7). Intermediates detected via HPLC were CO$_2$ and HCL (Eq. 23). In this study, the HPLC spectra and COD results showed a similar trend in mineralization and the lack of toxic intermediates and by products [28,39].

\[\text{C}_6\text{HCL}_5\text{O} + \text{MW} \rightarrow \text{CO}_2 + 5\text{HCl} \]
(23)

Conclusion

MW/SPS and MW/H$_2$O$_2$ processes could efficiently degrade refractory compounds at strong alkaline, via radical production. MW/SPS in PCP removal was more effective than MW/H$_2$O$_2$, because SPS is dissociated and activated more easily than hydrogen peroxide. Addition of SPS and H$_2$O$_2$ doses during MW process enhances the rate of PCP degradation, except when the radical scavenging effects of SPS and H$_2$O$_2$. Results obtained from radical scavenger test showed that OH$^\circ$ had only an initiator role, and had not a dominant role and order reaction in both of systems was in first order. Also, the microwave degradation is able to mineralize refractory compounds without any toxic byproduct. The microwave degradation has many advantages such as convenience, safety, economy and high efficiency. Accordingly these methods, especially WM/SPS, have a better prospect in future for removal of other chlorinated organic compounds such as Aldrin, Dieldrin and Lindane, in alkaline pH.

Abbreviations

PCP: Pentachlorophenol; AOPs: Advanced oxidation processes; TBA: Tert- butyl alcohol; COD: Chemical oxygen demand; SPS: Sodium Persulfate; H$_2$O$_2$: Hydrogen Peroxide; MW: Microwave; K: Reaction constant.

Competing interests

The authors declare that they have no competing interests.
Acknowledgements

The authors would like to thank Hamadan University of Medical Sciences for technical and financial support of this work (9010274023).

Author details

1 Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran. 2 Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, Gonabad University of Medical Sciences, Gonabad, Iran.

Received: 21 November 2013 Accepted: 5 May 2014

References

1. Navarro AE, Cuizano NA, Lazo JC, Sun-Kou MR, Llanos BP. Comparative study of the removal of phenolic compounds by biological and non-biological adsorbents. J Hazard Mater 2009, 164:1439–1446.
2. Ewers U, Krause C, Schulz C, Wilhelm M: Reference values and human biological monitoring values for environmental tox-ins. Int Arch Occup Environ Health 1999, 72:255–260.
3. Stehly GR, Hayton WL: Effect of pH on the accumulation kinetics of pentachlorophenol in goldfish. Arch Environ Contam Toxicol 1990, 19:464–470.
4. Song Z: Effects of Pentachlorophenol on Galba perva, Tubifex sinesis and Chironomus plumosus Larvae. Bull Environ Contam Toxicol 2007, 79:278–282.
5. Jores PG, J Schepens P.C: Human pentachlorophenol poisoning. Hum Exp Toxic 1993, 12:479–495.
6. Asgari G, Seidmohammadi AM, Chavoshani A, Rahmani AR: Microwave/H2O2 Efficiency in Pentachlorophenol Removal from Aqueous Solutions. RHB 2014, 4(3):4–9.
7. Fisher B: Pentachlorophenol: toxicological and environmental fate. J Pestic Reform: A Publ Northwest Coast Altern Pestic 1991, 11:1–5.
8. Remya N, Lin YF: Phenol degradation. Water Res 2002, 36:1034–1042.
9. Rodriguez M: Comparison of different advanced oxidation processes for phenol degradation. Water Res 2008, 42:10721–10731.
10. Movahedyan H, Seidmohammadi AM: Comparison of different advanced oxidation process degradation P-cholorophenol in aqueous solutions. Iran J Environ Health 2009, 6:153–160.
11. Lam SS, Chese HA: A Review on Waste to Energy Processes Using Microwave Pyrolysis. Energies 2012, 5:4209–4232.
12. Lidstrom P, Tierney J, Watthey B, Westman J: Microwave assisted organic synthesis—a review. Tetrahedron 2001, 57:9225–9283.
13. Nyfors E: Industrial microwave sensors—A Review. Sub Sen Tech Appl 2000, 1:23–43.
14. Raharini D, Ramanantiraisena G, Razafindramisa FL, Leitner NK: Comparison of UV/H2O2 and UV/S2O82− processes for the decoloration of azo dyes Congo Red in various kinds of water. 2012, 114:1–9.
15. Anisstakis GP, Dinosiou DD, Gonzalez MA: Cobalt-mediated activation of peroxymonsulfate and sulfate radical attack on phenolic compounds: Implications of chloride ions. Environ Sci Technol 2006, 40:1000–1007.
16. Daneshvar N, Rabanni M, Modirshahla N, Behnajady M: Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C Acid Red 7 (AR7). Chemosphere 2004, 56:895–900.
17. Ansol J, Wuttpong P, Visvanathan C: Oxidation and detoxification of pentachlorophenol in aqueous phase by ozonation. J Environ Manage 2007, 85:345–349.
18. Association A PH: Standard methods for the examination of water and waste water. Washington DC: APHA, 2005.
19. Al-Momani F: Combination of photo- oxidation process with biological treatment. (PhD thesis). Barcelona: Barcelona University of Environmental Engineering, 2003.
20. Abu Amro SS, Aziz HA, Adlan MN, Bashir MJ: Pretreatment of stabilized leachate using Ozone/Persulfate oxidation process. Chem Eng J 2013, 221:492–499.
21. Lin YT, Liang C, Chen JH: Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 2011, 82:1168–1172.
22. Yuan R, Ramaa SN, Wang Z, Liu J: Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. J Hazard Mater 2011, 196:173–179.
23. Furman OS, Teel AL, Ahmad M, Merker MC, Wats R: Effect of basicity on persulfate reactivity. J Environ Eng 2010, 137:241–247.
24. Liang C, Liang CP, Chen CC: pH dependence of persulfate activation by EDTA/Fe (III) for degradation of trichloroethylene. J Contam Hydrol 2009, 106:173–182.
25. Neppolian B, Dongaria A, Ashokkumar M: Sonooxidation of arsenic (III) to arsenic (V) using potassium peroxysulfate as an oxidizing agent. Water Res 2010, 44:3687–3695.
26. Li J, Wang ZS, Buell CI: Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 2007, 66:136–113.
27. Han DH, Cha SY, Yang HY: Improvement of oxidative decomposition of aqueous phenol by microwave. Water Res 2004, 38:2782–2790.
28. Yang Y, Wang P, Shi S, Liu Y: Microwave enhanced fenton-like process for the treatment of high concentration pharmaceutic-tal wastewater. J Hazard Mater 2009, 168:238–245.
29. Zeng H, Lu L, Liang M, Liu J, Li Y: Degradation of trace nitrobenezene in water by microwave-enhanced H2O2-based process. Front Environ Sci Technol 2012, 6:477–483.
30. Lin L, Chen J, Xu Z, Yuan S, Cao M, Liu H, Lu X: Removal of ammonia nitrogen in wastewater by microwave radiation: a pilot-scale study. J Hazard Mater 2009, 168:862–867.
31. Albas I: Microwave, air and combined microwave-air-drying parameters of pumpkin slices. LW-Food Sci Tech 2007, 14:1451–1457.
32. Yang S, Wang P, Yang X, Wei G, Zhang W, Shan L: A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. J Environ Sci 2009, 21:1173–1180.
33. Zhao D, Cheng J, Hoffmann MR: Kinetics of microwave-enhanced oxidation of phenol by hydrogen peroxide. Front Environ Sci China 2011, 5:67–64.
34. Lee HY, Lee CL, Jou CJG: Comparison degradation of penta-cholorophenol using microwave-induced nano scale Fe3O4 and activated carbon. Water Air Soil Pollut 2011, 219:17–24.

Cite this article as: Asgari et al.: Pentachlorophenol removal from aqueous solutions by microwave/persulfate and microwave/H2O2: a comparative kinetic study. Journal of Environmental Health Science & Engineering 2014 12:94.