Global validation of the WSES Sepsis Severity Score for patients with complicated intra-abdominal infections: a prospective multicentre study (WISS Study)

Massimo Sartelli1*, Fikri M. Abu-Zidan2, Fausto Catena3, Ewen A. Griffiths4, Salomone Di Saverio5, Raul Coimbra6, Carlos A. Ordoñez7, Ari Leppaniemi8, Gustavo P. Fraga9, Federico Coccolini10, Ferdinando Agresta11, Ashraf Abbas12, Saleh Abdel Kader13, John Agboola14, Adamu Amhed15, Adesina Ajibade16, Seckin Akkucuk17, Bandar Alharthi18, Dimitrios Anystantakis19, Goran Augustin20, Gianluca Baiocchi21, Miklosh Bala22, Oussama Baraket23, Savas Bayrak24, Giovanni Bellanova25, Marcelo A. Beltràn26, Roberto Bini27, Matthew Boal28, Andrej V. Borodach29, Konstantinos Bouliaris30, Frederic Branger31, Daniele Brunelli32, Marco Catani32, Asri Che Jusoh33, Alain Chichom-Mefire34, Gianfranco Cocorullo35, Elif Colak36, David Costa37, Silvia Costa38, Yunfeng Cui39, Geanina Loredana Curca40, Terry Curry40, Koray Das41, Samir Delibegovic42, Zaza Demetrashvili43, Isidoro Di Carlo44, Nadezda Drozdova45, Tamer El Zalabany46, Mushira Abdulaziz Enani47, Mario Fas48, Mahir Gachabayov49, Teresa Giménez Maurel50, Georgios Gkiokas51, Carlos Augusto Gomes52, Ricardo Alessandro Teixeira Gonsaga53, Gianluca Guercioni54, Ali Guer45, Sanjay Gupta46, Sandra Gutierrez57, Martin Hutan58, Orestis Ioannidis59, Arda Isik60, Yoshimitsu Iwase61, Sumita A. Jain62, Mantas Jokubauskas63, Aleksandar Karamarkovic64, Saida Kauhanen65, Robin Kaushik66, Jakub Kenig66, Vladimir Khokha67, Jae II Kim68, Victor Kong69, Renol Koshy70, Avidy Krasnqi70, Ashok Kshirsagar71, Zygmantas Kuliesius72, Konstantinos Lasithiotakis73, Pedro Leão74, Jae Gil Lee75, Miguel Leon76, Aintzane Lizarazu Pérez77, Varun Lohsiriwat78, Eudaldo López-Tomassetti Fernandez79, Efthychios Losteridis80, Raghveer Mn81, Piotr Majar82, Athanasios Marinis83, Daniele Marrelli84, Alexi Martinez-Perez85, Sanjay Manwah86, Michael McFarlane87, Renato Bessa Melo88, Cristian Mesina89, Nick Michalopoulos90, Radu Moldovanu91, Ouadii Mouaqit92, Akutu Munyika93, Ioni Negoi94, Ioannis Nikolopoulos95, Gabriela Enlia Nita95, Iyiade Olaoye96, Abdelkarim Omer97, Paola Rodríguez Ossa97, Zeynep Özkan98, Ramakrishnanpillai Padmakumar99, Francesco Pata100, Gerson Alves Pereira Junior101, Jorge Pereira102, Tadeja Pintar103, Konstantinos Pouggouras103, Vinod Prabhu104, Stefano Rausei105, Miran Rems106, Daniel Rios-Cruz107, Boris Sakakushev108, Maria Luisa Sánchez de Molina109, Charampolos Seretis110, Vishal Shelat111, Romeo Lages Simões112, Giovanni Sinibaldi113, Matej Skrovina113, Dmitriy Smirnov114, Charalampos Spyropoulos115, Jaan Tepp116, Tugan Tezcaner117, Matti Tolonen9, Myftar Torba118, Jan Ulych119, Mustafa Yener Uzunoglu120, David van Dellen121, Gabrielle H. van Ramshorst122, Giorgio Vasquez123, Aurélien Venara30, Andras Verczék124, Nereo Vettoretto125, Nutu Vlad126, Sanjay Kumar Yadav127, Tonguç Utku Yilmaz128, Kuo-Ching Yuan129, Sanoop Koshy Zachariah130, Maurice Zida131, Justas Zilinskas63 and Luca Ansaloni10

*Correspondence: massimosartelli@gmail.com
1Department of Surgery, Macerata Hospital, Macerata, Italy
Full list of author information is available at the end of the article

© 2015 Sartelli et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Abstract

Background: To validate a new practical Sepsis Severity Score for patients with complicated intra-abdominal infections (cIAIs) including the clinical conditions at the admission (severe sepsis/septic shock), the origin of the cIAIs, the delay in source control, the setting of acquisition and any risk factors such as age and immunosuppression.

Methods: The WISS study (WSES cIAIs Score Study) is a multicenter observational study underwent in 132 medical institutions worldwide during a four-month study period (October 2014-February 2015). Four thousand five hundred thirty-three patients with a mean age of 51.2 years (range 18–99) were enrolled in the WISS study.

Results: Univariate analysis has shown that all factors that were previously included in the WSES Sepsis Severity Score were highly statistically significant between those who died and those who survived (p < 0.0001). The multivariate logistic regression model was highly significant (p < 0.0001, R2 = 0.54) and showed that all these factors were independent in predicting mortality of sepsis. Receiver Operator Curve has shown that the WSES Severity Sepsis Score had an excellent prediction for mortality. A score above 5.5 was the best predictor of mortality having a sensitivity of 89.2 %, a specificity of 83.5 % and a positive likelihood ratio of 5.4.

Conclusions: WSES Sepsis Severity Score for patients with complicated Intra-abdominal infections can be used on global level. It has shown high sensitivity, specificity, and likelihood ratio that may help us in making clinical decisions.

Keywords: Intra-abdominal, Infections, Sepsis, Septic shock

Background

Intra-abdominal infections (IAIs) include several different pathological conditions [1] and are usually classified into uncomplicated and complicated. In complicated IAIs (cIAIs), the infectious process extends beyond the organ, and causes either localized peritonitis or diffuse peritonitis. The treatment of patients with complicated intra-abdominal infections involves both source control and antibiotic therapy. Complicated IAIs are an important cause of morbidity and may be associated with poor prognosis. However, the term “complicated intra-abdominal infections” describes a wide heterogeneity of patient populations, making it difficult to suggest a general treatment regimen and stressing the need of an individualized approach to decision making.

Early prognostic evaluation of complicated intra-abdominal infections is crucial to assess the severity and decide the aggressiveness of treatment. Many factors influencing the prognosis of patients with cIAIs have been described, including advanced age, poor nutrition, pre-existing diseases, immunosuppression, extended peritonitis, occurrence of septic shock, poor source control, organ failures, prolonged hospitalization before therapy, and infection with nosocomial pathogens [2–10].

Recently the World Society of Emergency Surgery (WSES) designed a global prospective observational study (CIAOW Study) [11, 12]. All the risk factors for occurrence of death during hospitalization were evaluated and then discussed with an international panel of experts. The most significant variables, adjusted to clinical criteria, were used to create a severity score for patients with cIAIs including the clinical conditions at admission (severe sepsis/septic shock), the origin of the cIAIs, the delay in source control, the setting of acquisition and any risk factors such as age and immunosuppression (Appendix).

There may be different causes of sepsis, health care standards, and differences in underlying health status, economical differences that make prediction of sepsis on global level difficult. The WSES addressed this issue in the present study which aims to validate a previous score on a global level.

Methods

Ethical statement

The study met the standards outlined in the Declaration of Helsinki and Good Epidemiological Practices. This study did not change or modify the laboratory or clinical practices of each centre and differences of practices were kept as they are. The data collection was anonymous and identifiable patient information was not submitted.

Individual researchers were responsible for complying with local ethical standards and hospital registration of the study.

Study population

This multicenter observational study was run in 132 medical institutions from 54 countries worldwide during a four-month period (October 2014-February 2015). Inclusion criteria were patients older than 18 years with complicated intra-abdominal sepsis (cIAIs) who had surgical management or interventional radiological drainage. cIAIs was defined as an infectious process that proceeded beyond the organ, and caused either localized peritonitis/abscess or diffuse peritonitis [13]. Patients who were younger than 18 years, or those
who had pancreatitis, or primary peritonitis were excluded from the study. Severe sepsis was defined as sepsis-induced tissue hypoperfusion or organ dysfunction (any of the following thought to be due to the infection): hypotension (<90/60 or MAP < 65), lactate above upper limits laboratory normal, Urine output < 0.5 mL/kg/h for more than 2 h despite adequate fluid resuscitation, Creatinine > 2.0 mg/dL (176.8 μmol/L), Bilirubin > 2 mg/dL (34.2 μmol/L), Platelet count < 100,000 μL, Coagulopathy (international normalized ratio > 1.5), Acute lung injury with Pao2/Fio2 < 250 in the absence of pneumonia as infection source. Septic shock was defined as severe sepsis associated with refractory hypotension (BP < 90/60) despite adequate fluid resuscitation [14].

WSES Sepsis Severity Score for patients with complicated Intra-abdominal infections is shown in Appendix.

Data monitoring and collection
The study was monitored by the coordination center, which investigated and verified missing or unclear data submitted to the central database. This study was performed under the direct supervision of the Board of Directors of WSES. In each centre, the coordinator collected and compiled data in an online case report system. Data were entered directly through a web-based computerized database. Data were entered either by a drop menu for categorical data like the source of infection or numbers for continuous variables such as age. Data collected included demographic data of the patient and disease characteristics, demographical data, type of infection (community- or healthcare-acquired), severity criteria and origin of infection and surgical procedures performed.

Statistical analysis
Sepsis status was coded as ordinal data for testing the logistic regression (not for scoring) as follows: no sepsis = 0, sepsis = 2, severe sepsis = 3, septic shock = 4. The source of sepsis was analysed as categorical data in the logistic regression, and the age as continuous data, while healthcare associated infection, delay in management, and immunosuppression as binomial data. The variables used in this scoring system in the patients who survived and those who died were compared using univariate analysis. This included Fisher’s exact test or Pearson Chi-Square as appropriate for categorical data and Mann–Whitney U-test for continuous or ordinal data. Significant factors were then entered into a direct logistic regression model. A p value of ≤ 0.05 was considered significant. Data were analyzed with PASW Statistics 21, SPSS Inc, USA.

Results
Four thousand six hundred fifty-two cases were collected in the online case report system. One hundred twenty-nine cases did not meet the inclusion criteria. Four thousand five hundred thirty-three patients with a mean age of 51.2 years (range 18–99) were enrolled in the WISS study. One thousand nine hundred thirty-five patients (42.7 %) were women and 2598 (57.3 %) were men.

Among these patients, 3966 (87.5 %) were affected by community-acquired IAIs while the remaining 567 (12.5 %) suffered from healthcare-associated infections. One thousand six hundred twenty-seven patients (35.9 %) were affected by generalized peritonitis while 2906 (64.1 %) suffered from localized peritonitis or abscesses. Seven hundred ninety-one patients (17.4 %) were admitted in critical condition (severe sepsis/septic shock). The various sources of infection are outlined in Table 1. The most frequent source of infection was acute appendicitis; 1553 cases (34.2 %) involved complicated appendicitis.

The overall mortality rate was 9.2 % (416/4533). Table 2 shows the univariate analysis comparing patients with complicated intra-abdominal infection who survived and those who died. The analysis shows that all factors included in the Sepsis Severity Score were highly significantly different between those who died and those who survived (p < 0.0001 in all variables). Accordingly all factors were entered into a direct logistic regression model (Table 3). The direct logistic regression model was highly significant (p < 0.0001, R2 = 0.54) and showed that all factors included in the Sepsis Severity Score were significant independent

Table 1 Source of infection in 4553 patients from 132 hospitals worldwide (15 October 2014–15 February 2015)

Source of infection	Number (%)
Appendicitis	1553 (34.2 %)
Cholecystitis	837 (18.5 %)
Post-operative	387 (8.5 %)
Colonic non diverticular perforation	269 (5.9 %)
Gastro-duodenal perforations	408 (11 %)
Diverticulitis	234 (5.2 %)
Small bowel perforation	243 (5.4 %)
Others	348 (7.7 %)
PID	50 (1.1 %)
Post traumatic perforation	114 (2.5 %)
Missing	
Total	4553 (100 %)

PID pelvic inflammatory disease
Table 2 Univariate analysis of patients with complicated intra-abdominal infection comparing patients who survived (*n* = 4117) and patient who died (*n* = 416)

Variable	Survived (% *n* = 4117)	Died (% *n* = 416)	*p* value
Sepsis status			<0.0001
No sepsis	1914 (46.5 %)	23 (5.5 %)	
Sepsis	1725 (41.9 %)	80 (19.2 %)	
Severe sepsis	404 (9.8 %)	157 (37.7 %)	
Septic shock	74 (1.8 %)	156 (37.5 %)	
Healthcare associated infection	433 (10.5 %)	134 (32.2 %)	<0.0001
Source of infection			<0.0001
Appendicitis	1536 (37.3 %)	17 (4.1 %)	
Cholecystitis	809 (19.7 %)	28 (6.7 %)	
Colonic non diverticular perforation	204 (5 %)	65 (15.6 %)	
Diverticulitis	203 (4.9 %)	31 (7.5 %)	
Gastro-duodenal perforation	431 (10.5 %)	67 (16.2 %)	
PID	50 (1.2 %)	0 (0)	
Postoperative	415 (10.1 %)	86 (20.7 %)	
Small bowel perforation	174 (4.2 %)	69 (16.6 %)	
Post-traumatic	104 (2.5 %)	10 (2.4 %)	
Others	259 (6.3 %)	53 (12.7 %)	
Delay in source control	2015 (48.9 %)	341 (82 %)	<0.0001
Median age years (range)	48 (18–97)	79 (18–99)	<0.0001
Immunosuppression	292 (7.1)	120 (28.8 %)	<0.0001
Sepsis severity score	3 (0–17)	10 (0–17)	<0.0001

Data presented as median range or number percentage as appropriate

PID pelvic inflammatory disease

p value = Fisher’s exact test, Pearson Chi-Square, or Mann Whitney U test as appropriate

Table 3 Direct logistic regression model with factors affecting mortality of patients complicated intra-abdominal infection, global study of 132 centres, (*n* = 4553)

Score variable	B	S.E.	Wald test	*P* value	OR	OR 95 % C.I.
Sepsis status	1.57	0.08	365.59	<0.0001	4.81	4.09–5.65
Setting of infection acquisition	0.6	0.18	10.49	0.001	1.81	1.27–2.60
Source of infection*	59.38	0.41	342.24	<0.0001	0.001	
Colonic non-divertical perforation	−0.26	0.27	0.97	0.33	0.77	0.46–1.30
Diverticulitis diffuse peritonitis	−0.26	0.34	0.51	0.48	0.78	0.40–1.54
Postoperative diffuse peritonitis	−0.005	0.29	0.09	0.99	1.00	0.56–1.76
Remaining sources	−1.2	0.21	32.47	<0.0001	0.30	0.20–0.46
Delay in management	1.47	0.17	78.53	<0.0001	4.33	3.13–5.99
Age	0.04	0.04	103.58	<0.0001	1.04	1.04–1.05
Immunosuppression	1.24	0.17	55.79	<0.0001	3.46	2.5–4.79
Constant	−7.52	0.41	342.24	<0.0001	0.001	

*OR odds ratio

Compared with small bowel perforation
predictors of mortality. Accordingly the ability of the score to predict mortality was tested by a direct logistic regression which is shown in Table 4. Again, this model using only the sepsis severity score was highly significant ($p < 0.0001$, $R^2 = 0.5$). The odds of death increased by 0.78 by an increase on one score which is remarkable.

Figure 1 shows that WSES Sepsis Severity Score had a very good ability of distinguishing those who survived from those who died. The overall mortality rate was 9.2 % (416/4533). This was 0.63 % for those who had a score of 0–3, 6.3 % for those who had a score of 4–6, and 41.7 % for those who had a score of ≥7. The receiver operating characteristic curve showed that the best cutoff point for predicting mortality was a Sepsis Severity Score. 5.5 was the best predictor of mortality having a sensitivity of 89.2 %, a specificity of 83.5 % and a positive likelihood ratio of 5.4 (Fig. 2).

Table 4

Variable	B	S.E.	Wald	P value	OR	OR 95 % C.I. Lower	OR 95 % C.I. Upper
WSES_SCORE	0.58	0.02	639.59	<0.0001	1.784	1.706	1.866
Constant	−5.79	0.19	958.74	<0.0001	0.003		

Discussion

Complicated intra-abdominal infections remain an important source of patient morbidity and may be frequently associated with poor clinical prognosis. Treatment of patients with cIAIs, has been usually described to achieve satisfactory results if adequate management is established [15]. However, results from published clinical trials may not be representative of the true morbidity and mortality rates of such severe infections. First of all, patients who have perforated appendicitis are usually over-represented in clinical trials. Furthermore patients with intra-abdominal infection enrolled in clinical trials have often an increased likelihood of cure and survival. In fact the trial eligibility criteria usually restrict the inclusion of patients with co-morbid diseases that would increase the death rate of patients with intra-abdominal infections [16]. In the WISS study we enrolled all the patients older than 18 years old with complicated intra-abdominal infection in the study-period and the overall mortality rate was 9.2 % (416/4533). Stratification of the patient’s risk is essential in order to optimize the treatment plan. Patients with intra-abdominal infections are generally classified into low risk and high risk. “High risk” is generally intended to describe patients with a high risk for treatment failure and mortality. In high risk patients the increased mortality associated with inappropriate management cannot be reversed by subsequent modifications. Therefore early prognostic...
evaluation of complicated intra-abdominal infections is important to assess the severity and decide the aggressiveness of treatment.

Scoring systems can be roughly divided into two groups: disease-independent scores for evaluation of serious patients requiring care in the intensive care unit (ICU) such as APACHE II and Simplified Acute Physiology Score (SAPS II) and peritonitis-specific scores such as Mannheim Peritonitis Index (MPI) [17].

Although considered a good marker, APACHE II value in peritonitis has been questioned because of the difficulty of the APACHE II to evaluate interventions despite the fact that interventions might significantly alter many of the physiological variables. Moreover it requires appropriate software to be calculated [18].

The MPI is specific for peritonitis and easy to calculate. MPI was designed by Wacha and Linder in 1983 [19]. It was based on a retrospective analysis of data from 1253 patients with peritonitis. Among 20 possible risk factors, only 8 proved to be of prognostic relevance and were entered into the Mannheim Peritonitis Index, classified according to their predictive power. After 30 years, identifying a new clinical score to assess the severity the cIAIS would be clinically relevant in order to modulate the aggressiveness of treatment according the type of infection and the clinical characteristics of the patients.

WSES Sepsis Severity Score is a new practical clinical severity score for patients with complicated intra-abdominal infections. It is specific for cIAIs and easy to calculate, even during surgery. It may be relevant in order to modulate the aggressiveness of treatment particularly in higher risk patients.

The score is illustrated in Appendix. The statistical analysis shows that the sepsis severity score has a very good ability of distinguishing those who survived from those who died. The overall mortality was 0.63 % for those who had a score of 0–3, 6.3 % for those who had a score of 4–6, 41.7 % for those who had a score of ≥ 7. In patients who had a score of ≥ 9 the mortality rate was 55.5 %, those who had a score of ≥ 11 the mortality rate was 68.2 % and those who had a score ≥ 13 the mortality rate was 80.9 %.

Conclusions

Given the sweeping geographical distribution of the participating medical centers, WSES Sepsis Severity Score for patients with complicated Intra-abdominal infections can be used on global level. It has shown high sensitivity, specificity, and likelihood ratio that may help us in making clinical decisions.
Appendix

Table 5 WSES sepsis severity score for patients with complicated Intra-abdominal infections (Range: 0–18)

Clinical condition at the admission	Score
Severe sepsis (acute organ dysfunction) at the admission	3 score
Septic shock (acute circulatory failure characterized by persistent arterial hypotension. It always requires vasopressor agents) at the admission	5 score

Setting of acquisition

| Healthcare associated infection | 2 score |

Origin of the IAI

Colonic non-diverticular perforation peritonitis	2 score
Small bowel perforation peritonitis	3 score
Diverticular diffuse peritonitis	2 score
Post-operative diffuse peritonitis	2 score

Delay in source control

| Delayed initial intervention [Preoperative duration of peritonitis (localized or diffuse) > 24 h)] | 3 score |

Risk factors

| Age > 70 | 2 score |
| Immunosuppression (chronic glucocorticoids, immunosuppressant agents, chemotherapy, lymphatic diseases, virus) | 3 score |

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MS designed the study and wrote the manuscript. FMA-Z performed statistical analysis. All authors participated in the study. All authors read and approved the final manuscript.

Author details

1Department of Surgery, Macerata Hospital, Macerata, Italy. 2Department of Surgery, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates. 3Department of Emergency Surgery, Maggiore Hospital, Parma, Italy. 4General and Upper GI Surgery, Queen Elizabeth Hospital, Birmingham, UK. 5Department of Surgery, Maggiore Hospital, Bologna, Italy. 6Department of Surgery, UC San Diego Medical Center, San Diego, USA. 7Fundación Valle del Lili, Universidad del Valle, Cali, Colombia. 8Abdominal Center, University Hospital Meilahti, Helsinki, Finland. 9Division of Trauma Surgery, Hospital de Clínicas, School of Medical Sciences, University of Campinas, Campinas, Brazil. 10General and Emergency Surgery, Papa Giovanni XXIII Hospital, Bergamo, Italy. 11General Surgery, ULSS19 del Veneto, Adria, RO, Italy. 12Department of Surgery, Mansoura University Hospital, Mansoura, Egypt. 13Department of General Surgery, Al Ain Hospital, Al Ain City, United Arab Emirates. 14Department of Surgery, Kwaara State General Hospital, Ilorin, Nigeria. 15Department of Surgery, Ahmadu Bello University Teaching Hospital Zaria, Kaduna, Nigeria. 16Department of Surgery, LAUTECH Teaching Hospital, Osogbo, Nigeria. 17Department of General Surgery, Training and Research Hospital of Mustafa Kemal University, Hatay, Turkey. 18Department of Surgery, King Fahad Medical City, Riyadh, Saudi Arabia. 19Primary Health Care Centre of Kissamos, Chania, Greece. 20Department of Surgery, University Hospital Center, Zagreb, Croatia. 21Clinical and Experimental Surgery, Brescia Civil Hospital, Brescia, Italy. 22Trauma and Acute Care Surgery Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel. 23Department of Surgery, Bizzere Hospital, Bizzere, Tunisia. 24Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey. 25Surgical II Division, S. Chiara Hospital, Trento, Italy. 26Department of General Surgery, Hospital San Juan de Dios de La Serena, La Serena, Chile. 27Department of General and Emergency Surgery, SG Bosco Hospital, Turin, Italy. 28Emergency Surgery Department, 1st Municipal Hospital, Novosibirsk State Medical University, Novosibirsk, Russian Federation. 29Department of Surgery, University Hospital of Larissa, Larissa, Greece. 30Vesicul Surgery, CHU, Angers, France. 31Chirurgia Generale, Ospedale di Città di Castello, Città di Castello, Italy. 32Department of Emergency Surgery, Umberto I Hospital, “La Sapienza” University, Rome, Italy. 33Department of Surgery, Kuala Krai Hospital, Kelantan, Malaysia. 34Department of Surgery, Regional Hospital, Limbe, Cameroon. 35General and Emergency Surgery, Polyclinico Paolo Giaccone, Palermo, Italy. 36Department of General Surgery, Samsun Education and Research Hospital, Samsun, Turkey. 37Department of General and Digestive Tract Surgery, Alicante University General Hospital, Alicante, Spain. 38Department of Surgery, CHNG/E, EPE, Vila Nova de Gaia, Portugal. 39Department of Surgery, Tianjin Nankai Hospital, Tianjin, China. 40Department of General Surgery, Emergency Municipal Hospital Pascani, Pascani, Iasi, Romania. 41Department of Surgery, Numune Training and Research Hospital, Adana, Turkey. 42Department of Surgery, University Clinical Center, Tuzla, Bosnia and Herzegovina. 43Department General Surgery, Kishchide Central University Hospital, Tbilisi, Georgia. 44Department of Surgery, Hamad General Hospital, Doha, Qatar. 45Department of Surgery, Riga East Clinical University Hospital, Riga, Latvia. 46Department of Surgery, Bahrain Defence Force Hospital, Manama, Bahrain. 47Department of General Surgery, Ospedale di Città di Castello, Città di Castello, Italy. 48Division of General and Emergency Surgery, Hospital Estadual Mario Covas, ABC School of Medicine, Santo André, Brazil. 49Department of Surgery, 1st Vladimir City Clinical Hospital of Emergency Medicine, Vladimir, Russian Federation. 50Cirugía General y Digestiva, Hospital Universitario Miguel Servet, Zaragoza, Spain. 51Department of Surgery, Aretaieio University Hospital, Athens, Greece. 52Department of Surgery, Hospital Universitario Terezinha de Jesus, Faculdade de Ciências Médicas e da Saúde de Juiz de Fora, Juiz de Fora, Brazil. 53Department of Surgery, Hospital Escola Padre Albino, Catanduva, Brazil. 54Department of Surgery, Ascoli Piceno Hospital, Ascoli Piceno, Italy. 55Department of General Surgery, Trabzon Kanuni Training and Research Hospital, Trabzon, Turkey. 56Department of Surgery, Government Medical College and Hospital, Chandigarh, India. 57Department Universitario del Valle, Universidad del Valle, Cali, Colombia. 58Department of Surgery, Medical Faculty Comenius University, University Hospital Bratislava, Bratislava, Slovakia. 59Department of Surgical General, University Hospital of Kavala, Kavala, Greece. 60Department of Surgery, Menguce Gazi Training Research Hospital, Erzincan, Turkey. 61Department of Emergency and Critical Care Medicine, Jichi Medical University, Shimotaketa, Japan. 62Department of Surgery, S M S Hospital, Jaipur, India. 63Department of Surgery, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania. 64Clinic for Emergency Surgery, Medical Faculty University of Belgrade, Belgrade, Serbia. 65Division Digestive Surgery and Urology, Turku University Hospital, Turku, Finland. 66Department of General Surgery, Jagiellonian University Collegium Minor, Krakow, Poland. 67Department of Emergency Surgery, City Hospital, Mozyr, Belarus. 68Department of Surgery, Ilsen Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea. 69Department of Surgery, Edendale Hospital, Pietermaritzburg, South Africa. 70Department of Surgery, University Clinical Center of Kosovo, Pristina, Kosovo. 71Department of General Surgery, Krishna Hospital, Karad, India. 72Department of General Surgery, Republican Vilnius University Hospital, Vilnius, Lithuania. 73Department of Surgery, York Teaching Hospital NHS Foundation Trust, York, UK. 74General Surgery/Colorectal Unit, Braga Hospital, Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. 75Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea. 76Department of Surgery, Hospital La Paz, Madrid, Spain. 77Cirugía de Urgencias, Hospital Universitario Donostia, Donostia, Spain. 78Department of Surgery, Faculty of Medicine Sinjaj Hospital, Mahidol University, Bangkok, Thailand. 79Department of Surgery, Insular University Hospital of Gran Canaria, Las Palmas, Spain. 801st Department of Surgery, Kavala General Hospital, Kavala, Greece. 81Department of General Surgery, Mysore Medical College and Research Institute, Government Medical College Hospital Mysore, Mysore, India. 82Department of Surgery, Traenze Hospital, Piraeus, Greece. 83Department of General Surgery and Surgical Oncology, Le Scotte Hospital, Siena, Italy. 84Department of Surgery, University Hospital, Valencia, Spain. 85Department of Surgery,
Post-Graduate Institute of Medical Sciences, Rohtak, India. 46Department of Surgery, Radiology, University Hospital of the West Indies, Kingston, Jamaica. 47General Surgery Department, Centro Hospitalar de São João, Porto, Portugal. 48Second Surgical Clinic, Emergency Hospital of Craiova, Craiova, Romania. 493rd Department of Surgery, Haepa University Hospital, Thessaloniki, Greece. 50Department of Surgery, CH Armentieres, Arras, France. 51Surgery Department, University Hospital Hassan II, Fez, Morocco. 52Department of Surgery, Onandjokwe Hospital, Ondangwa, Namibia. 53Department of Surgery, Emergency Hospital of Bucharest, Bucharest, Romania. 54Department of General Surgery, Lewis & Greenwich NHS Trust, London, UK. 55Department of Surgery, University of Iforin Teaching Hospital, Ilorin, Nigeria. 56Department of Surgery, King Abdulaziz University Hospital, Jeddah, Jordan. 57Department of Surgery, Elazig Training and Research Hospital, Elazig, Turkey. 58Department of Laparoscopic and Metabolic Surgery, Sunrise Hospital, Kochi, India. 59Department of Surgery, Sant’Antonio Abate Hospital, Gallarate, Italy. 60Division of Emergency and Trauma Surgery, Ribeirão Preto Medical School, Ribeirão Preto, Brazil. 61Surgery 1 Unit, Centro Hospitalar Tondela Viseu, Viseu, Portugal. 62Department of Surgery, UMC Ljubljana, Ljubljana, Slovenia. 63Department of Surgery, Bharati Medical College and Hospital, Sangli, India. 64Department of Surgery, Insubria University Hospital, Varese, Italy. 65Abdominal and General Surgery Department, General Hospital Jesenice, Jesenice, Slovenia. 66Department of Surgery, Hospital of Alta Especialidad de Veracruz, Veracruz, Mexico. 67General Surgery Department, Medical University University Hospital St George, Plovdiv, Bulgaria. 68Department of Surgery, Fundación Jimenez Diaz, Madrid, Spain. 69Department of Surgery, Good Hope Hospital, Heart of England NHS Foundation Trust, Birmingham, UK. 70Department of General Surgery, Tan Tock Seng Hospital, Novena, Singapore. 71Department of Surgery, Fattalbeinatrello Isola Tiberina Hospital, Rome, Italy. 72Department of Surgery, Hospital and Comprehensive Cancer Centre Noisy JCin, Noisy JCin, Czech Republic. 73Department of General Surgery, Clinical Hospital at Chelyabinsk Station of OJS “Russian Railroads”, Chelyabinsk, Russian Federation. 743rd Department of Surgery, Iaso General Hospital, Athens, Greece. 75Department of Surgery, North Estonia Medical Center, Tallinn, Estonia. 76Department of Surgery, Baskent University Ankara Hospital, Ankara, Turkey. 77General Surgery Service, Trauma University Hospital, Tirana, Albania. 781st Department of Surgery - Department of Abdominal, Thoracic Surgery and Traumatology, General University Hospital, Prague, Czech Republic. 79Department of General Surgery, Sakarya Teaching and Research Hospital, Sakarya, Turkey. 80Department of Renal and Pancreas Transplantation, Manchester Royal Infirmary, Manchester, UK. 81Department of Surgery, Red Cross Hospital, Beverwijk, Netherlands. 82Emergency Surgery, Arcispedale S Anna Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy. 83Department of Surgery, Medical University School Pecs, Pecs, Hungary. 84Department of Surgery, Montichiari Hospital, Ospedali Civili Brescia, Brescia, Italy. 851st Surgical Clinic, St Spiridon Hospital, Iasi, Romania. 86Department of Surgery, Rajendra Institute of Medical Sciences, Ranchi, India. 87Department of Surgery, Kocaeli University Training and Research Hospital, Kocaeli, Turkey. 88Trauma and Emergency Surgery Department, Chang Gung Memorial Hospital, Taoyuan City, Taiwan. 89Department of Surgery, MOSC Medical College Kolchenzy, Cochin, India. 90General and Digestive Surgery Department, Teaching Hospital Yalgado Ouedraogo, Ouagadougou, Burkina Faso.

Received: 17 November 2015 Accepted: 10 December 2015
Published online: 16 December 2015

References
1. Sartelli M, Viale P, Catena F, Ansaloni L, Moore E, Malangoni M, et al. 2013 WSES guidelines for management of intra-abdominal infections. World J Emerg Surg. 2013;8(1):3.
2. Mulari K, Leppäniemi A. Severe secondary peritonitis following gastrointestinal tract perforation. Scand J Surg. 2004;93(3):204–8.
3. Horiuchi A, Watanabe Y, Doi T, Sato K, Yukumi S, Yoshida M, et al. Evaluation of prognostic factors and scoring system in colonic perforation. World J Gastroenterol. 2007;13(23):5228–34.
4. Horisuchi A, Watanabe Y, Doi T, Sato K, Yukumi S, Yoshida M, et al. Evaluation of prognostic factors and scoring system in colonic perforation. World J Gastroenterol. 2007;13(23):3228–31.
5. Evans HL, Raymond DP, Pelletier SJ, Crabtree TD, Pruett TL, Sawyer KG. Tertiary peritonitis (recurrent diffuse or localized disease) is not an independent predictor of mortality in surgical patients with intra-abdominal infection. Surg Infect. 2001;2:255–65.
6. McLauchlan GJ, Anderson ID, Grant IS, Fearon KCH. Outcome of patients with abdominal sepsis treated in an intensive care unit. Br J Surg. 1995;82:524–9.
7. Koperna T, Schulz F. Prognosis and treatment of peritonitis: Do we need new scoring systems? Arch Surg. 1996;131:180–6.
8. Pacelli F, Doglietto GB, Alfieri S, Piccioni E, Spadari A, Gui D, et al. Prognosis in intra-abdominal infections. Multivariate analysis on 604 patients: Arch Surg. 1996;131:641–5.
9. Ohmann C, Yang Q, Hau T, Wacha H, the Peritonitis Study Group of the Surgical Infection Society Europe. Prognostic modelling in peritonitis. Eur J Surg. 1997;163:53–60.
10. Montavries P, Gauzit R, Muller C, Marmuse JP, Fichelle A, Desmonts JM. Emergence of antibiotic-resistant bacteria in cases of peritonitis after intra-abdominal surgery affects the efficacy of empirical antimicrobial therapy. Clin Infect Dis. 1996;23:486–94.
11. Prabhu V, Shivan A. An overview of history, pathogenesis and treatment of perforated peptic ulcer disease with evaluation of prognostic scoring in adults. Ann Med Health Sci Res. 2014;4(1):22–9.
12. Sartelli M, Catena F, Ansaloni L, Leppanen AJ, Viale P, Catena F, et al. Complicated intra-abdominal infections in Europe: a comprehensive review of the CIAOW study. World J Emerg Surg. 2012;7(1):36.
13. Sartelli M, Catena F, Ansaloni L, Cocolinelli F, Corbella D, Moore EE, et al. Complicated intra-abdominal infections worldwide: the definitive data of the CIAOW study. World J Emerg Surg. 2014;9:37.
14. Sartelli M. A focus on intra-abdominal infections. World J Emerg Surg. 2010;5:9.
15. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):421–228.
16. Mazuski JE, Solomkin JS. Intra-abdominal infections. Surg Clin North Am. 2009;89(2):421–37.
17. Merlino JJ, Malangoni MA, Smith CM, Lange RL. Prospective randomized trials affect the outcomes of intraabdominal infection. Ann Surg. 2001;233(6):859–66.
18. Komatsu S, Shimomatsu Y, Nakajima M, Amaya H, Kobuchi T, Shiraishi S, et al. Prognostic factors and scoring system for survival in colonic perforation. Hepatogastroenterology. 2005;52:761–64.
19. Koperna T, Semmler D, Marian F. Risk stratification in emergency surgical patients: is the APACHE II score a reliable marker of physiological impairment? Arch Surg. 2001;136(5):55–5.
20. Wacha H, Linder MM, Feldman U, Wesch G, Gundlach E, Steifensand RA. Mannheim peritonitis index – prediction of risk of death from peritonitis: construction of a statistical and validation of an empirically based index. Theor Surg. 1987;1:169–77.

Submit your next manuscript to BioMed Central and we will help you at every step:
• We accept pre-submission inquiries
• Our selector tool helps you to find the most relevant journal
• We provide round the clock customer support
• Convenient online submission
• Thorough peer review
• Inclusion in PubMed and all major indexing services
• Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit