Efficacy of non-surgical monotherapies for hidradenitis suppurativa: a systematic review and network meta-analyses of randomized trials

Aditya K. Guptaa,b, Neil H. Shearb,c, Vincent Piguetb,d,e and Mary A. Bamimorea

aMediprobe Research Inc, London, Canada; bDivision of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Canada; cDivision of Dermatology, Sunnybrook Health Sciences Centre, Toronto, Canada; dDivision of Dermatology, Women’s College Hospital, Toronto, Canada; eDivision of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom

ABSTRACT
Objective: We determined the relative efficacy of non-surgical monotherapies for hidradenitis suppurativa (HS).
Methods: Network meta-analyses were conducted to determine treatments’ surface under the cumulative ranking curve (SUCRA) value (i.e. an estimate that ranks efficacy); pairwise comparisons were conducted.
Results and conclusions: Ten trials were eligible for quantitative analyses; however, all did not have a common endpoint. Outcomes corresponded to pain severity, clinical response, quality of life and abscess count. For pain reduction, infliximab was ranked most efficacious (SUCRA = 94%) compared to bimekizumab, anakinra and placebo; infliximab reduced pain more significantly (\(p < .05 \)) than anakinra and then placebo. For the occurrence of clinical response, bimekizumab had the highest SUCRA (67%) relative to adalimumab, anakinra and placebo; bimekizumab was more efficacious than placebo (\(p < .05 \)). For the quality of life in mild HS, Botox had the highest SUCRA (94%) compared to adalimumab and placebo; Botox was more efficacious than placebo (\(p < .05 \)). For reduction in abscess count, oral tetracycline had the highest SUCRA (48%) compared to topical clindamycin and vehicle. Our work—being the first NMA study on non-surgical HS monotherapies—contributes to the comparative effectiveness literature for this condition.

Introduction
Hidradenitis suppurativa (HS) was first described in 1839 by the French surgeon Alfred Velpeau (1,2). It is a chronic and painful inflammatory skin condition of multifactorial etiology. According to the comprehensive literature review by Ingram (2020) (3), the prevalence of this disorder remains unresolved. Given that this condition occurs at sites that are rich in hair follicles, HS was believed to be linked to bacterial infection in the apocrine glands (4,5). However, the current body of evidence supports that HS is primarily an inflammatory disorder initiated by hair follicle dysfunction (1,6–10).

While surgical intervention is a treatment option, numerous noninvasive modalities exist (1). Topical and systemic antibiotics have been used to treat HS; newer treatment modalities include immunomodulatory therapies such as inhibitors of tumor necrosis factor-alpha (TNF-\(\alpha \)), interleukin-1 (IL-1) and selective phosphodiesterase-4 (PDE-4) (11). Adalimumab and infliximab are well-known TNF-\(\alpha \) inhibitors whose efficacies have been determined in various randomized trials for HS; apremilast, a PDE-4 inhibitor, and the IL-1 inhibitor anakinra are among the HS therapies that have been investigated more recently (1,11,12). Results from single-arm studies have shown that interleukin-17 antagonists, such as brodalumab and secukinumab, are effective in treating HS (13–15).

There is a paucity of head-to-head evidence for the relative efficacy of non-surgical treatments for HS (16). We systematically reviewed the literature to identify randomized trials that evaluated the efficacy of non-surgical monotherapies for HS; data from these trials were used to determine the relative efficacy of such therapies using network meta-analyses (NMAs).

Methods
Our work was conducted under the guidance of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Appendix S1 of Supporting Information). This study was registered with the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42018096927) (Appendix S2 of Supporting Information).

Search details are provided in Appendix S3 (see Supporting Information); systematic searches were made in PubMed, Scopus, EMBASE, EU Clinical Trials Register (https://www.clinicaltrialsregister.eu/), and ClinicalTrials.gov (https://clinicaltrials.gov/). Eligible studies were randomized trials on non-surgical monotherapies for HS; trials published in a non-English language were ineligible. As per our eligibility criteria, no specific endpoint was specified \textit{a priori}: given that core outcome sets (COSs) for HS were not established until very recently (17), we did not expect all the eligible studies to have one or more endpoints in common.
Data were extracted from tables, figures and textual content; extracted information included baseline characteristics and outcome data. More information pertaining to the data extraction process is provided in Appendix S3 (see Supporting Information). The quality of evidence was evaluated using the van Tulder scale (18).

Each network was depicted with a network plot, which can be defined as a diagram of nodes and edges. Each node represents a treatment; an edge, the line between two nodes, corresponds to a pairwise comparison of efficacy from direct evidence. Statistical consistency would be assessed if networks had closed loops (19).

Our NMAs were arm-based and were conducted using a Bayesian random-effects model with uniform priors; for each NMA, four Markov Chain Monte Carlo (MCMC) chains were used where each had 20,000 iterations. Pairwise comparisons of interventions within a given network were presented in league tables. For every network, we computed treatments’ surface under the cumulative ranking curve (SUCRA) value; a treatment’s SUCRA corresponds to their overall rank of efficacy. Statistical analyses were conducted with the software RStudio; the gemtc and BUGsnet packages were used (19,20). In all analyses, the alpha was set to 5%.

Results

Ten randomized trials were eligible for quantitative analyses (Figure 1) (21–29); with the available data across these studies, we were able to construct six networks and details thereof—including endpoint definition—are presented in Table 1. None of the 10 trials had a common measure of outcome; however, some studies had some endpoints in common. In addition to controls (i.e. placebo), eight treatment modalities were considered across the six networks (adalimumab, anakinra, bimekizumab, botulinum toxin type B (Botox-B), clindamycin (topical), infliximab, MABp1 (also known as bermekimumab), and tetracycline (oral)). The common endpoints pertained to pain severity, clinical response, quality of life and abscess count (Table 1). Characteristics of the eligible studies are detailed in Table 2; the earliest one was published by

![Figure. 1 Flow chart depicting inclusion of studies.](image)

Table 1. Brief description of the six networks.

Network	Studies	Outcome/endpoint	Interventions compared	N (sample size of network)
Ia²	Grant et al. (23), Tzanetakou et al. (30), Kanni et al. (27)	Reduction in skin pain as per the VAS at 8 weeks	Infliximab, anakinra, mabp1², placebo	72
Ib²	Miller et al. (24), Tzanetakou et al. (30)	Reduction in skin pain as per the VAS at 12 weeks	Adalimumab, anakinra, placebo	40
Iia³	Tzanetakou et al. (30), Kimball et al. (26), EudraCT Number: 2017-000892-10 (29)	Clinical response as per the HiSCR at 12 weeks	Anakinra, adalimumab, bimekizumab, placebo	743
Iib³	Tzanetakou et al. (30), Kanni et al. (27)	Clinical response as per the HiSCR at 12 weeks	Anakinra, mabp1³, placebo	40
IIb²	Miller et al. (24), Grimstad et al. (28)	Improvement in quality of life as per DLQI at 12 weeks	Adalimumab, botox-b, placebo	41
IVc	Clemmensen (21), Jemec & Wendelboe (22)	Reduction in mean number of abscesses at 4 weeks	Clindamycin, tetracycline, vehicle	61

Abbreviations: Botox-B: botulinum toxin type B; DLQI: dermatology life quality index; HiSCR: hidradenitis suppurativa clinical response score; VAS: visual analogue scale

²Across all the trials, patients with moderate to severe hidradenitis suppurativa were included.

³The trial by Miller et al. (24) included patients with Hurley stage II to III—while the one by Grimstad et al. (28) included patients with Hurley stage I to III. Thus, disease severity was adjusted for through network meta-regression.

⁴Given that the Hurley staging system—that was developed in 1989 (60,61)—did not exist when the trial by Clemmensen (21) was published, the disease severity of the patients therein—and their counterparts in the trial by Jemec & Wendelboe (22)—were deemed to be homogenous: patients with Hurley stage I to II hidradenitis suppurativa were included in the trial by Jemec & Wendelboe (22), while Clemmensen (21) included patients with moderate hidradenitis suppurativa.

⁵MABp1 is currently known as bermekimumab (62).
Table 2. Characteristics of the included studies.

Author	Trial duration and baseline characteristics	Intervention	Sample size after randomization
Clemmensen (21)	Trial duration: 12 weeks	Arm 1: clindamycin hydrochloride 1% topical solution in a vehicle that is constituted of: 80% isopropanol, 10% propylene glycol, and 9% water	15
	Number of participants: 30 patients entered the trial; however, 27 of them completed it	Arm 2: vehicle	15
	Demographic information (based on the 27 participants):		
	- 21 women and 6 men		
	- mean age was 31.3 years (range was 18–59 years)		
Jemec et al. (22)	Trial duration: 16 weeks	Arm 1: tetracycline (500 mg twice daily)	24
	Number of participants: 46 participants entered the trial; however, 34 of them completed it	Arm 2: clindamycin phosphate 1% topical solution in a vehicle of propylene glycol, isopropyl alcohol, and water	22
	Demographic information (based on the 46 participants):		
	- 39 women and 7 men		
	- mean age of subjects in the oral tetracycline group was 31.8 years (95% CI: 27.3–36.5), while the mean age of subjects in the topical clindamycin group was 33.3 years (95% CI: 28.9–37.8)		
Grant et al. (23)	Trial duration: 52 weeks. This trial study had 3 phases, and the current study only focused on the 1st one, i.e. the double-blind placebo-controlled phase; this phase was for 8 weeks.	Arm 1: infliximab (5mg/kg) at weeks 0, 2, and 6	15
	Number of participants: 38 subjects entered the trial	Arm 2: placebo	23
	Demographic information (based on the 38 participants):		
	- 26 women and 12 men		
	- mean age of subjects in the infliximab group was 34 years (±SD = 13.44), while those of subjects of the placebo group was 33.2 years (±SD = 11.42)		
Miller et al. (24)	Trial duration: 24 weeks; the first 12 weeks was the treatment period, while the last 12 weeks was an observational period (i.e. a period where subjects received no treatment).	Arm 1: adalimumab 80 mg subcutaneous at baseline, followed by 40 mg subcutaneous every other week for 12 weeks.	15
	Number of participants: 21 patients entered the trial	Arm 2: placebo	6
	Demographic information (based on the 21 subjects):		
	- There were 17 women and 4 men		
	- The mean (95% CI) age of subjects in the adalimumab and placebo groups were 38.7 (30.9–46.4), and 40.2 (25.8–54.5), respectively.		
Tzanetakou et al. (30)	Trial duration: The treatment phase of the trial was for 12 weeks.	Arm 1: anakinra 100 mg subcutaneous in a volume of 0.67 mL once daily for 12 weeks	10
	Number of participants: 20 subjects were randomized to receive anakinra or placebo	Arm 2: placebo (0.67 mL of sterile water)	10
	Demographic information (based on 19 of the 20 subjects who completed the study):		
	- There were 9 women and 10 men		
	- The mean ages (±SD), in years, of subjects in the anakinra and placebo groups, were 42.8 (±13.8), and 36 (±11.3), respectively.		
Kimball et al. (PIONEER I) (26)	Trial duration: This trial had 2 periods, where the 1st and 2nd spanned 12 and 24 weeks, respectively. The current study focused on the 12-week period.	Arm 1: adalimumab 40 mg subcutaneous once weekly for 12 weeks	153
	Number of participants: There were 307 subjects where 153 were randomized to 40mg	Arm 2: placebo	154

(continued)
Author	Trial duration and baseline characteristics	Intervention	Sample size after randomization
Kanni et al. (27)	Trial duration: The first treatment phase was for 12 weeks (and the current study focused on the first treatment phase).	Arm 1: placebo	
Arm 2: adalimumab			
Arm 3: bimekizumab	22		
22			
46			
Grimstad et al. (28)	Trial duration: 6 months (the 1st three months was the blinded placebo-controlled phase)	Arm 1: Botox-B was injected intradermally into each lesion; the concentration differed by lesion location; a maximum of 150 units (U), 200U and 600U could be administered to the axilla, groin and perianal (or perigenital) regions, respectively. A maximum dose of 1300 U per session	
Arm 2: placebo (saline) | 10
10 |

Abbreviations: CI: confidence interval; SD: standard deviation; BTX-B: botulinum toxin type b.
Clemmensen (21). Quantitative evaluation of evidence quality is presented in Table 3. To make each network homogenous, we used studies across which outcome(s) were measured at a given time point, and in patients with similar disease severity. Trials that met our eligibility criteria, but whose data were not included in our quantitative analyses, are listed in Table 4. Most of these studies were excluded because the endpoints therein were incongruent with those of our networks. For instance, the three endpoints Fajgenbaum et al. (2020) (36) used were ‘patient satisfaction after 14 days’, ‘pain reduction after 5 days’, and ‘mean duration to the resolution of lesions’ (Table 1). Ineligible (i.e. observational) studies that investigated the efficacy of HS monotherapies are listed in Table 5. As per the published literature, a repertoire of modalities were investigated with observational study designs (Table 5); for example, Romani et al. (2019) (40) retrospectively examined the effectiveness of ustekinumab.

Plots of the six networks are presented in Figure 2. Most of our networks did not have a closed loop, so analyses of inconsistency could not be undertaken. However the transitivity assumption was not violated.

Clinical response

Network Ila pertained to the simultaneous comparison of adalimumab, anakinra, bimekizumab and placebo in terms of occurrence of a clinical response—as per the Hidradenitis Suppurativa Clinical Response (HiSCR)—at 12 weeks of follow up—for moderate to severe HS (Table 1). A HiSCR is defined as the occurrence of an at least 50% reduction in the count of inflammatory lesions from baseline, in addition to the absence of new fistulas and abscesses (41).

Meta-analyzing data from trials that investigated bermekimab (formerly known as MABp1) and adalimumab in one network would arguably violate the transitivity assumption as subjects’ eligibility for receiving bermekimab was predicated on their non-eligibility for adalimumab (27). Hence, we created ‘network IIb’ which—for the same outcome as network Ila—simultaneously compared anakinra, bermekimab and placebo (Table 1). Bimekizumab has the highest SUCRA in network Ila (67.38%), while bermekimab had the highest SUCRA in network IIb (82.8%) (Figure 3). Pairwise analyses showed that a HiSCR, on average, was significantly more likely to occur with adalimumab than with placebo (odds ratio = 3.3, p < .05) (Figure 4).

Pain severity

Network Ia (Figure 2.) pertained to the simultaneous comparison of infliximab, bermekimab, anakinra and placebo in terms of pain reduction at 8 weeks of follow up for moderate to severe HS (Table 1); pain was evaluated using the visual analogue scale.
(VAS). Infliximab had the highest SUCRA (96.4%) (Figure 3). Furthermore, pairwise analyses showed that infliximab, on average, reduced VAS pain scores significantly more than placebo (mean difference = 8.4, \(p < 0.05 \)) (Figure 4).

Network Ib pertained to the simultaneous comparison of adalimumab, anakinra and placebo in terms of reduction in VAS pain scores at 12 weeks of follow up for moderate to severe HS (Table 1). Adalimumab had the highest SUCRA (67.4%) (Figure 3), and pairwise analyses found no significant comparison (Figure 4).

Quality of life

Network III pertained to the simultaneous comparison of Botox-B, adalimumab and placebo in terms of improvement in Dermatology Life Quality Index (DLQI) scores at 12 weeks of follow up (Table 1); the DLQI is a widely used measure for quality of life (42). Data for this network were obtained from Miller et al. (24) and Grimstad et al. (28); the former study included patients with Hurley stage II–III HS, while the latter included their counterparts with Hurley stage I – III HS (24,28). Hence, we conducted network meta-regression to adjust for disease severity; we created a variable for proportion of individuals who had Hurley stage I (where 1.0 corresponded to all individuals having stage I, 0 corresponds to all individuals having stage II–III).

For stage I HS, Botox-B had the highest SUCRA (94.2%) (Figure 3); pairwise analyses showed that Botox-B, on average, improves DLQI scores significantly more than placebo (mean difference = 8.4, \(p < 0.05 \)) for stage II–III HS, Botox-B also had the highest SUCRA (91.9%), however pairwise analyses showed no significant comparisons (Figure 4).

Abscess reduction

Network IV pertained to the simultaneous comparison of oral tetracycline, topical clindamycin and vehicle (topical) in terms of reduction in mean number of abscesses at 4 weeks for moderate HS (Table 1). Oral tetracycline had the highest SUCRA (47.6%) (Figure 3), and pairwise analyses found no significant comparisons (Figure 4).

Table 4. Studies that met eligibility criteria, but were excluded from quantitative analyses.

Authors (or ClinicalTrial.gov ID)	Comparators	Reason for exclusion^{a,b}
Tierney et al. (31)	Neodymium-doped-yttrium–aluminium–garnet (Nd:YAG) laser, clindamycin	Incongruent endpoints
Adams et al. (32)	Etanercept, placebo	Incongruent endpoints
Highton et al. (33)	Intense pulsed light therapy, no treatment	Incongruent endpoints
Kimball et al. (34)	Adalimumab (2 doses), placebo	Incongruent endpoints
Vossen et al. (35)	Apremilast, placebo	Incongruent endpoints
Fajgenbaum et al (36)	Intraleisional triamcinolone (2 doses), placebo	Incongruent endpoints
Mahmoud et al. (37)	Clindamycin and benzoyl peroxide (i.e. combination) with Nd:YAG laser, clindamycin and benzoyl peroxide (i.e. combination)	Incongruent endpoints
Fadel & Tawfik (38)	Intense pulsed laser with the photosentizer ‘niosomal methylene blue’ (NMB) gel, intense pulsed laser with the photosentizer ‘free methylene blue’ (FMB) gel	Incongruent endpoints
Wilden et al. (39)	Intense pulsed light (IPL), radiofrequency (RF), IPL and RF (i.e. combination)	Incongruent endpoints
NCT03827798	CFZ533, placebo	Results unavailable
NCT03054155	Alexandrite laser (755 nm)	Results unavailable
NCT03926169	Risankizumab, placebo	Results unavailable
NCT03607487	INCB054707, placebo	Results unavailable
NCT04242498	Bimekizumab, placebo	Results unavailable
NCT04242446	Bimekizumab, placebo	Results unavailable
NCT04430855	Upadacitinib, placebo	Results unavailable
NCT04218422	Battlefield acupuncture, sham acupuncture	Results unavailable
NCT03713632	Secukinumab, placebo	Results unavailable
NCT03713619	Secukinumab, placebo	Results unavailable
NCT04493502	LY3041658, placebo	Results unavailable
NCT0421172	CJM112, placebo	Results unavailable
NCT03103074	Botulinum b toxin, placebo	Results unavailable
NCT00494351	Long-pulsed Nd:YAG laser (1064 nm) (intra-patient)	Results unavailable
NCT03628924	3 Doses of guselkumab, and placebo	Results unavailable
NCT03049267	3 Doses of intraleisional triamcinolone, and placebo	Incongruent endpoints
NCT0349267	Apremilast, placebo	Results unavailable
NCT04476043	INCB054707, placebo	Results unavailable
NCT03852472	Avacopan, placebo	Results unavailable
NCT04019041	Bermekimab, placebo	Results unavailable
NCT04092452	PF 06650833, PF 0670841, PF 06826647, placebo	Results unavailable
NCT03487276	IFX-1, placebo	Results not finalized

^aResults unavailable: results were not available on the ClinicalTrials.gov website.

^bIncongruent endpoints: The endpoints were not concordant with that of any of our six networks (description of the networks, including endpoint definition, are provided in Table 1).
incorporate quality of evidence into its estimation of rank abilities) (44). Clinical decisions are more informed when based

Secondly, the NMA technique currently does not

ture; most published systematic reviews have this language limi-

include HS treatments investigated in single-arm studies, case

non-randomized studies, our simultaneous comparison did not

point across the 10 trials included in quantitative analyses

therapies for the treatment of HS. We found no common end-

Discussion

We determined the relative efficacies of non-surgical mono-

for pain and QoL (17). We determined the relative efficacies of

Moreover, the recently published COSs for HS include domains

subjective experiences (48). The use of this instrument is wide-

HS treatments on patients’ assessment of their life quality as per the DLQI. Like

Table 5. Ineligible (i.e. non-randomized) studies that investigated the effect of hidradenitis suppurativa monotherapies.

Authors (or ClinicalTrials.gov ID)	Design	Comparator(s)
Fardet et al. (63)	Retrospective single-arm	Infliximab
Lee et al. (64)	Prospective single-arm	Etanercept
Yazdanyar et al. (65)	Case series	Dapsone
Randhawa et al. (66)	Case series	Finasteride
Anderson et al. (67)	Case series	Cyclosporine
Delaunay et al. (68)	Retrospective single-arm	Ofloxacin with clindamycin (i.e. Combination)
Caro et al. (69)	Retrospective cohort	Clindamycin with rifampicin (i.e. Combination), clindamycin
Romani et al. (70)	Retrospective single-arm	Ustekinumab
NCT03512275	Single group assignment	Bemekimab
NCT03569371	Single group assignment	Incb054707
NCT02786576	Prospective cohort	Adalimumab
NCT04756336	Prospective cohort	Ltx-109 gel
NCT01516749	Single group assignment	Anakinra
NCT03894956	Prospective cohort	Humira
NCT00329623	Single group assignment	Etanercept
NCT03001622	Single group assignment	Ixf-1
NCT03099980	Single group assignment	Secukinumab
NCT02949002	Single group assignment	Adalimumab
NCT01704534	Single group assignment	Ustekinumab
NCT02695212	Single group assignment	Apremilast
NCT01635764	Single group assignment	Adalimumab
NCT02805595	Single group assignment	23.4% Hypertonic saline, saline
NCT00134134	Single group assignment	Efalizumab
NCT00827996	Single group assignment	Adalimumab
NCT00395187	Single group assignment	Photodynamic therapy
NCT00107991	Single group assignment	Etanercept
NCT03972280	Sequential assignment	Cis24
NCT02896920	Prospective cohort	Humira
NCT00949546	Prospective cohort	Etanercept
NCT03275870	Single group assignment	Hydroxychloroquine
NCT04099212	Case study	Topical resorcin
NCT04449354	Single group assignment	Hidrawear Ax

Given that diminished quality of life (QoL) and skin pain are consequences of HS (46), treatments that address pain and well-

are extremely important to persons with HS (47). Guidelines

recommend antibiotics as a treatment modality (56). Hendricks

et al. (2019) compared nine international HS management
guidelines and found that all nine—including the 2018 British
Association of Dermatologists HS guidelines (55); this guide-
line recommends treating HS with oral tetracyclines such as
lymecycline and doxycycline. North American guidelines also
recommend antibiotics as a treatment modality (56). We found that oral tetracycline ranked more efficacious than
topical clindamycin for HS management insofar as reducing
number of abscesses; this supports clinicians’ belief of systemic
antibiotics being more effective than their topical counterparts
in HS care. This is also congruent with the 2018 British
Association of Dermatologists guidelines for HS (55); this guide-
line recommends treating HS with oral tetracyclines such as
lymecycline and doxycycline. North American guidelines also
recommend antibiotics as a treatment modality (56). Hendricks
et al. (2019) compared nine international HS management
guidelines and found that all nine—including the 2018 British
Association of Dermatologists HS guidelines—recommend oral
tetracycline as a first-line option (57).

Adalimumab is approved by the Food and Drug Administration (FDA) for treatment of HS (58); this TNF-α inhibi-
tor is also approved by the European Medicine Agency (EMA)
(59). Of the 10 trials that were included in our quantitative anal-
yses, the one by Kimball et al. (34)—where adalimumab was
investigated—had the highest quality score as per the van
Tulder scale. Adalimumab has been recommended as a first-line
biologic in at least nine clinical guidelines including the 2015
European Academy of Dermatology and Venerology; across
these guidelines, infliximab has been recommended as a
second-line therapy (57). Guidelines’ recommendation of inflix-
imbab as a second-line therapy—while adalimumab is a first-line
option—can be due to the fact that randomized-controlled trials
for infliximab are fewer, in addition to being of smaller sample
sizes (57).
Various clinical guidelines for HS management—including the 2018 British Association of Dermatologists—suggest that more evidence regarding the efficacy of anakinra is essential for consideration of it as a first-, second-, or third-line treatment option.

We simultaneously compared the efficacy of various non-surgical monotherapies for HS; all the included studies did not have a common outcome; however, various endpoints were common in some trials. Therefore, we were able to determine the relative efficacy of non-surgical HS monotherapies as per endpoints pertaining to pain severity, clinical response, quality of life and reduction in abscess count. For pain reduction, infliximab had the highest SUCRA (94%) compared to bermekimab (47%), anakinra (34%) and placebo (23%); the mean difference in pain reduction for infliximab vs. anakinra, and infliximab vs. placebo were 30 and 33, respectively. For occurrence of clinical response (as per a HiSCR), bimekizumab had the highest SUCRA (67%) when compared to adalimumab (64%), anakinra (49%) and placebo (19%); the odds of having a clinical response was significantly higher with adalimumab than with placebo (odds ratio = 3.3, p < .05). For quality of life in mild HS, Botox-B had the highest SUCRA (94%) compared to adalimumab (43%) and

Figure 2. Plots of the respective networks. The endpoints corresponding to each of these networks are defined in Table 1. The geometry of the network was represented through network plots. Such plots are characterized by nodes and edges (i.e. the lines between two nodes that represent a comparison from direct evidence). Nodes correspond to an intervention. The number of studies contributing to direct evidence is listed in the edges.
Figure 3. Surface under the cumulative ranking curve (SUCRA) values for treatments in the respective networks. Abbreviations: Botox-B: botulinum toxin type b.

Treatment	Network Ia (pain)	SUCRA (%)	Network Ib (pain)	SUCRA (%)	Network Ila (clinical response)	SUCRA (%)
infliximab		96.43	adalimumab	67.42	bimekizumab	67.38
bermekimab		46.93	anakinra	51.01	adalimumab	64.0
anakinra		33.83	placebo	31.59	anakinra	49.33
placebo		23.14			placebo	19.30

Treatment	Network Ila (pain)	SUCRA (%)	Network IIa (clinical response)	SUCRA (%)
treatment			treatment	
			bimekizumab	67.38
			adalimumab	64.0
			anakinra	49.33
			placebo	19.30

Figure 4. League tables for the pair-wise comparisons of hidradenitis suppurativa treatments, in terms of endpoints of the six networks (i.e. Networks Ia, Ib, Ila, IIa, III and IV, see Table 1 for more details of the networks). The league tables for Networks Ila and IIb correspond to pairwise comparisons in terms of the log odds ratio (and 95% credible intervals in parentheses). For all the other networks, pairwise comparisons correspond to mean differences (and 95% credible intervals in parentheses). Each cell compares the column against the row. Alpha was set to 5%, and cells with "**" correspond to statistically significant results (i.e. \(p < .05 \)). Abbreviations: Botox-B: botulinum toxin type b.
placebo (12%); Botox-B had significantly better-quality scores than placebo (mean difference = 8.40, p < .05). Our work is the first to determine the relative efficacy of HS monotherapies; our findings contribute to the comparative effectiveness literature for HS treatments. Our results support the conduct of future randomized trials with consistent endpoints, and larger sample sizes. Such trials would eventually allow for more statistically powered meta-analyses which, in turn, could permit clinicians to more confidently make therapeutic decisions in HS care.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

1. Sabat R, Jemec GBE, Matusiak Ł, et al. Hidradenitis suppurativa. Nat Rev Dis Prim. 2020;6(1).DOI:10.1038/s41572-020-0149-1
2. Velpeau A. Dictionnaire de Médecine. Vol 2. In: Bechel Jeune Z, editor. Paris: Repertoire générale des Sciences Medicals sous le rapport theorique et pratique; 1839.
3. Ingram JR. The epidemiology of hidradenitis suppurativa. Br J Dermatol. 2020;183(6):990–998.
4. Jemec G, Gniadecka M. Ultrasound examination of hair follicles in hidradenitis suppurativa. Arch Dermatol. 1997;133(8):967–970.
5. Donsky H, Mendelson C. Squamous cell carcinoma as a complication of hidradenitis suppurativa. Arch Dermatol. 1964;90(5):488–491.
6. Yu C, Cook M. Hidradenitis suppurativa: a disease of follicular epithelium, rather than apocrine glands. Br J Dermatol. 1990;122(6):763–769.
7. von der Werth JM, Williams HC. The natural history of hidradenitis suppurativa. J Eur Acad DERMATOLOGY Venereol. 2000;14(5):389–392.
8. Zouboulis CC, Nogueira da Costa A, Fimmel S, et al. Apocrine glands are bystanders in hidradenitis suppurativa and their involvement is gender specific. J Eur Acad Dermatol Venereol. 2020;34(7):1555–1563.
9. Yazdanyar S, Jemec GBE. Hidradenitis suppurativa: a review of cause and treatment. Curr Opin Infect Dis. 2011;24(2):118–123.
10. Naik HB, Nassif A, Ramesh MS, et al. Are bacteria infectious pathogens in hidradenitis suppurativa? Debate at the symposium for hidradenitis suppurativa advances meeting. November 2017. J Invest Dermatol. 2019;139(1):13–16.
11. Lim SYD, Oon HH. Systematic review of immunomodulatory therapies for hidradenitis suppurativa. Biologics. 2019;13:53–78.
12. Frew JW, Marzano AV, Wolk K, et al. A systematic review of promising therapeutic targets in hidradenitis suppurativa: a critical evaluation of mechanistic and clinical relevance. J Invest Dermatol. 2020;141:316–324.e2.
13. Regiuai Z, Fougereousse AC, Maccari F, et al. Effectiveness of secukinumab in hidradenitis suppurativa: an open study (20 cases). J Eur Acad Dermatol Venereol. 2020;34(11):e750–e751.
14. Prussick L, Rothstein B, Joshipura D, et al. Open-label, investigator-initiated, single-site exploratory trial evaluating secukinumab, an anti-interleukin-17A monoclonal antibody, for patients with moderate-to-severe hidradenitis suppurativa. Br J Dermatol. 2019;181(3):609–611.
15. Frew JW, Navrazhina K, Grand D, et al. The effect of subcutaneous brodalumab on clinical disease activity in hidradenitis suppurativa: an open-label cohort study. J Am Acad Dermatol. 2020;83:1341–1348.
16. Zouboulis CC, Bechara FG, Dickinson-Blok JL, et al. Hidradenitis suppurativa/acne inversa: a practical framework for treatment optimization – systematic review and recommendations from the HS ALLIANCE working group. J Eur Acad Dermatol Venereol. 2019;33(1):19–31.
17. Thorlacius L, Ingram JR, Villumsen B, et al. A core domain set for hidradenitis suppurativa trial outcomes: an international Delphi process. Br J Dermatol. 2018;179(3):642–650.
18. van Tulder M, Furlan A, Bombardier C, et al. Updated method guidelines for systematic reviews in the cochrane collaboration back review group. Spine. 2003;28(12):1290–1299.
19. Beliveau A, Boyne DJ, Slater J, et al. BUGSnet: an R package to facilitate the conduct and reporting of Bayesian network Meta-analyses. BMC Med Res Methodol. 2019;19(1):196.
20. R Studio Team. RStudio: Integrated Development for R. Published online 2015. Available from: https://support.rstudio.com/hc/en-us/articles/206212048-Citing-RStudio
21. Clemmensen O. Topical treatment of hidradenitis suppurativa with clindamycin. Int J Dermatol. 1983;22(5):325–328.
22. Jemec G, Wendelboe P. Topical clindamycin versus systemic tetracycline in the treatment of hidradenitis suppurativa. J Am Acad Dermatol. 1998;39(6):971–974.
23. Grant A, Gonzalez T, Montgomery MO, et al. Infliximab therapy for patients with moderate to severe hidradenitis suppurativa: a randomized, double-blind, placebo-controlled crossover trial. J Am Acad Dermatol. 2010;62(2):205–217.
24. Miller I, Lyngaard CD, Lophaven S, et al. A double-blind placebo-controlled randomized trial of adalimumab in the treatment of hidradenitis suppurativa. Br J Dermatol. 2011;165(2):391–398.
25. Tzanetakou V, Kanni T, Giarakou S, et al. Safety and efficacy of anakinra in severe hidradenitis suppurativa: a randomized clinical trial. JAMA Dermatol. 2016;152(1):52–59.
26. Kimball AB, Okun MM, Williams DA, et al. Two phase 3 trials of adalimumab for hidradenitis suppurativa. N Engl J Med. 2016;375(5):422–434.
27. Kanni T, Argyropoulou M, Spyridopoulos T, et al. MABp1 Targeting IL-1x for moderate to severe hidradenitis suppurativa not eligible for adalimumab: a randomized study. J Invest Dermatol. 2018;138(4):795–801.
28. Grimstad Ø, Kvammen BØ, Swartling C. Botulinum toxin type B for hidradenitis suppurativa: a randomised, double-blind, placebo-controlled pilot study. Am J Clin Dermatol. 2020;21(5):741–748.
29. UCB Biopharma SRL. A Phase 2 Multicenter, Investigator-Blind, Subject-Blind, Placebo-Controlled Study of the
Efficacy, Safety, and Pharmacokinetics of Bimekizumab in Subjects with Moderate to Severe Hidradenitis Suppurativa. Eur Union Clin Trials Regist. Published online 2019. Available from: https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-000892-10/results

Tzanetakou V, Kann T, Giatrakou S, et al. Safety and efficacy of anakinra in severe hidradenitis suppurativa: a randomized clinical trial. JAMA Dermatol. 2016;152(1):52–59.

Tierney E, Mahmoud BH, Hexsel CL, et al. Randomized control trial for the treatment of hidradenitis suppurativa with a neodymium-doped yttrium aluminium garnet laser. Dermatol Surg. 2009;35(8):1188–1198.

Adams DR, Yankura JA, Fogelberg AC, et al. Treatment of hidradenitis suppurativa with etanercept injection. Arch Dermatol. 2010;146(5):501–504.

Highton L, Chan W-Y, Khwaja N, et al. Treatment of hidradenitis suppurativa with intense pulsed light: a prospective study. Plast Reconstr Surg. 2011;128(2):459–465.

Kimball AB, Kerdel F, Adams D, et al. Adalimumab for the treatment of moderate to severe hidradenitis suppurativa: a parallel randomized trial. Ann Intern Med. 2012;157(12):846–855.

Vossen AV, van Doorn MBA, van der Zee HH, et al. Apremilast for moderate hidradenitis suppurativa: results of a randomized controlled trial. J Am Acad Dermatol. 2019;80(1):80–88.

Fajgenbaum K, Crouse L, Dong L, et al. Intraleveal trimcinoone may not be beneficial for treating acute hidradenitis suppurativa lesions: a double-blind, randomized, placebo-controlled trial. Dermatol Surg. 2020;46(5):685–689.

Mahmoud BH, Tierney E, Hexsel CL, et al. Prospective controlled clinical and histopathologic study of hidradenitis suppurativa treated with the long-pulsed neodymium:yttrium-aluminum-garnet laser. J Am Acad Dermatol. 2010;62(4):637–645.

Fadel MA, Tawfik AA. New topical photodynamic therapy for treatment of hidradenitis suppurativa using methylene blue niosomal gel: a single-blind, randomized, comparative study. Clin Exp Dermatol. 2015;40(2):116–122.

Wilden S, Friis M, Tuettenberg A, et al. Combined treatment of hidradenitis suppurativa with intense pulsed light (IPL) and radiofrequency (RF). J Dermatolog Treat. 2019;32:1–8.

Romani J, Vilarresa E, Martorell A, et al. Ustekinumab with Intravenous Infusion: results in hidradenitis suppurativa. Dermatol. 2020;236(1):21–24.

Kimball AB, Sobell JM, Zouboulis CC, et al. HSCR (Hidradenitis Suppurativa Clinical Response): a novel clinical endpoint to evaluate therapeutic outcomes in patients with hidradenitis suppurativa from the placebo-controlled portion of a phase 2 adalimumab study. J Eur Acad Dermatol Venereol. 2016;30(6):989–994.

Finlay AY, Khan GK. Dermatology life quality index (DLQI)—a simple practical measure for routine clinical use. Clin Exp Dermatol. 1994;19(3):210–216.

Jackson JL, Kuriyama A. How often do systematic reviews exclude articles not published in English? J Gen Intern Med. 2019;34(8):1388–1389.

Li T, Puhan MA, Vedula SS, et al. Network meta-analysis—highly attractive but more methodological research is needed. BMC Med. 2011;9(1):2–5.

Veroniki AA, Straus SE, Rucker G, et al. Is providing uncertainty intervals in treatment ranking helpful in a network meta-analysis? J Clin Epidemiol. 2018;100:122–129.

Scheinfeld N, Sundaram M, Teixeira H, et al. Reduction in pain scores and improvement in depressive symptoms in patients with hidradenitis suppurativa treated with adalimumab in a phase 2, randomized, placebo-controlled trial. Dermatol Online J. 2016;22(3). DOI:10.5070/D322303060.

Zouboulis CC, Desai N, Emtestam L, et al. European S1 guideline for the treatment of hidradenitis suppurativa/ acne inversa. J Eur Acad Dermatology Venereol. 2015;29(4):619–644.

Wewers ME, Lowe NK. A critical review of visual analogue scales in the measurement of clinical phenomena. Res Nurs Health. 1990;13(4):227–236.

Minor V, Marris CK, McGorray SP, et al. Effects of preoperative ibuprofen on pain after separator placement. Am J Orthod Dentofacial Orthop. 2009;136(4):510–517.

Salmassian R, Oesterle LJ, Shellhart WC, et al. Comparison of the efficacy of ibuprofen and acetaminophen in controlling pain after orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2009;135(4):516–521.

Cheng C, Xie T, Wang J. The efficacy of analgesics in controlling orthodontic pain: a systematic review and meta-analysis. BMC Oral Health. 2020;20(1):259.

Gould D, Kelly D, Goldstone L, et al. Examining the validity of pressure ulcer risk assessment scales: developing and using illustrated patient simulations to collect the data. J Clin Nurs. 2001;10(5):697–706.

Ingram JR, Hadjieconomou S, Piguet V. Development of core outcome sets in hidradenitis suppurativa: systematic review of outcome measure instruments to inform the process. Br J Dermatol. 2016;175(2):263–272.

Katugampola RP, Lewis VJ, Finlay AY. The dermatology life quality index: assessing the efficacy of biological therapies for psoriasis. Br J Dermatol. 2007;156(5):945–950.

Ingram JR, Collier F, Brown D, et al. British association of dermatologists guidelines for the management of hidradenitis suppurativa (acne inversa) 2018. Br J Dermatol. 2019;180(5):1009–1017.

Alkhun A, Sayed C, Alavi A, et al. North American clinical management guidelines for hidradenitis suppurativa: part I: diagnosis, evaluation, and the use of complementary and procedural management. J Am Acad Dermatol. 2019;81(1):76–90.

Hendricks AJ, Hsiao JL, Lowe MA, et al. A Comparison of International Management Guidelines for Hidradenitis Suppurativa. Dermatology. 2021;237(1):81–96.

Larla S, Lyons AB, Hamzavi IH. The most recent advances in understanding and managing hidradenitis suppurativa. F1000Res. 2020;9:1049.

Magalhães RF, Rivitti-Machado MC, Duarte GV, et al. Consensus on the treatment of hidradenitis suppurativa – Brazilian society of dermatology. An Bras Dermatol. 2019;94(2 Suppl 1):7–19.

Ovadaz RN, Schuit MM, Horst CMAM, et al. Inter- and intra-rater reliability of Hurley staging for hidradenitis suppurativa. Br J Dermatol. 2019;181(2):344–349.
61. Thorlacius L. Severity staging of hidradenitis suppurativa: is Hurley classification the answer? Br J Dermatol. 2019;181(2):243–244.

62. Kurzrock R, Hickish T, Wyrwicz L, et al. Interleukin-1 receptor antagonist levels predict favorable outcome after bermekimab, a first-in-class true human interleukin-1α antibody, in a phase III randomized study of advanced colorectal cancer. Oncoimmunology. 2019;8(3):1551651.

63. Fardet L, Dupuy A, Kerob D, et al. Infliximab for severe hidradenitis suppurativa: transient clinical efficacy in 7 consecutive patients. J Am Acad Dermatol. 2007;56(4):624–628.

64. Lee RA, Dommasch E, Treat J, et al. A prospective clinical trial of open-label etanercept for the treatment of hidradenitis suppurativa. J Am Acad Dermatol. 2009;60(4):565–573.

65. Yazdanyar S, Boer J, Ingvarsson G, et al. Dapsone therapy for hidradenitis suppurativa: a series of 24 patients. Dermatology. 2011;222(4):342–346.

66. Randhawa HK, Hamilton J, Pope E. Finasteride for the treatment of hidradenitis suppurativa in children and adolescents. JAMA Dermatol. 2013;149(6):732–735.

67. Anderson MD, Zauli S, Bettoli V, et al. Cyclosporine treatment of severe Hidradenitis suppurativa–A case series. J Dermatolog Treat. 2016;27(3):247–250.

68. Delaunay M, Cadranel J, Lusque A, et al. Immune-checkpoint inhibitors associated with interstitial lung disease in cancer patients. Eur Respir J. 2017;50(2):1700050.

69. Caposiena Caro RD, Cannizzaro MV, Botti E, et al. Clindamycin versus clindamycin plus rifampicin in hidradenitis suppurativa treatment: clinical and ultrasound observations. J Am Acad Dermatol. 2019;80(5):1314–1321.

70. Romaní J, Vilarrasa E, Martorell A, et al. Ustekinumab with intravenous infusion: results in Hidradenitis suppurativa. Dermatology. 2020;236(1):21–24.