Research on Optimization of Tourism Route Based on Genetic Algorithm

Yafeng Chen, Xiaoyang Zheng*, Ziming Fang, Yue Yu, Zhongjie Kuang and Yiting Huang

University Institute of Liangjiang Artificial Intelligence, Chongqing University of Technology, Chongqing, China
Email: zhengxiaoyang@cqut.edu.cn

Abstract. This paper aims at the tourist route planning of 47 scenic spots faced by tourists when traveling in Chongqing. The route distance and transportation cost of tourists during travel are taken into account and the optimal planning of tourist routes are recommended to meet their personal needs. First, the coordinates of longitude and latitude of each attraction and the transportation costs between the attractions are collected. Second, the distance target and transportation cost target are combined into a combined target by using the weighting coefficient method. Finally, the optimal solution of the combined target was solved by the genetic algorithm. The result obtained is that when only the cost is considered, the distance of 47 attractions is 2257.76 kilometers and the transportation cost is 2866.2 yuan. While only the distance is analyzed, the above two values are 1426.68 kilometers and 4931.18 yuan, respectively.

1. Introduction
The development strategy of global tourism has broken through the concept of resources in traditional scenic spots and the scenic spots extend to farming folk customs and industrial heritage such as social resources [1-2]. However, with the sharp increase in the number of available locations, how to help users quickly plan travel routes according to the needs of tourists has become a difficult problem to be solved in global tourism, which makes the research of related travel route planning methods be the current research front in the tourism field [3-6].

At present, although tourists can conveniently view relevant information on the Internet when planning their trips, it still requires a lot of time and effort. Therefore, in order to solve the tourist route planning problems faced by tourists when traveling, this paper uses the idea of multi-objective conversion and genetic algorithm to establish a mathematical model for the tourist route planning, which comprehensively considers the needs of route distances and transportation costs during the user travel. Finally the planning of tourist routes and recommend tourist routes that meet their personal needs are obtained.

2. Route Optimization

2.1. Multi-Objective Function into a Single Objective Function
Evaluating the advantages and disadvantages of a route is mainly determined by the total distance between the attractions and the total transportation cost. The distance is determined by the distance between each city and the distance objective function obtained is
\[f_i(X) = \sum_{i,j}^{} d_{ij}, i \neq j, \]
\[f_z(X) = \sum_{i,j}^{} s_{ij}, i \neq j. \]

Where \(d_{ij} \) shows the distance from the attraction \(i \) to attraction \(j \).

The objective function \([7-9]\) of the total transportation cost for each route is

\[f_z(X) = \sum_{i,j}^{} s_{ij}, i \neq j. \]

In (2), the total transportation cost of each route can be obtained.

Using the weighted combination method, the distance objective function and the transportation cost objective function can be converted into a single objective function, and the combined objective function is solved to obtain optimal solution as

\[f(x) = \lambda \sum_{i,j}^{} d_{ij} + (1 - \lambda) \sum_{i,j}^{} s_{ij}, i \neq j, \]

Where \(\lambda \) is the weight factor and its range is \(0 \leq \lambda \leq 1 \). When \(\lambda = 0 \), it means that it only takes the transportation cost into consideration for the tourist route. While \(\lambda = 1 \), it means that only the distance is considered.

2.2. Data Normalization

Because the difference between the distance and the cost numerical dimension is large, then the data must be dimensionless \([10]\).

The latitude and longitude data for each attraction are as follows:

Attraction Name	Latitude	Longitude
Dazu Rock Carving	29.7131	105.7284
Qinglong Lake	29.7131	106.1734
Liberation Monument	29.5661	106.5861

As shown in Table 1, the longitude and latitude of each attraction are not much different, and the normalization is more conducive to the differentiation of the location of each attraction. The normalized result is

Attraction Name	Longitude	Dimension
Dazu Rock Carving	0.0000	0.3752
Hongchiba	0.7964	1.0000
Great Hall of the People	0.1998	0.3258

As shown in Table 2, the differences in latitude and longitude of each attraction's location after normalization are more obvious.

The transportation cost data between various attractions is as follows:

Attraction Name	Tea and Bamboo Forest	Ciqikou ancient town	Happy Valley
Tea and Bamboo Forest	0.00	133.60	162.20
Ciqikou ancient town	139.13	113.60	98.80
Happy Valley	162.60	229.60	248.80
As shown in Table 3, the transportation costs of various attractions vary greatly and the dimension of the distance value is relatively large. Consequently, the method of normalization can eliminate the dimensional impact of distance and transportation cost and the normalized result is

Table 4. Transport costs between some attractions after normalization

	Tea and bamboo Forest	Ciqikou ancient town	Happy Valley
Tea and Bamboo Forest	0	0.1218	0.1424
Ciqikou ancient town	0.1218	0	0.2011
Happy Valley	0.1424	0.2011	0

As shown in Table 4, the normalized transportation costs between various attractions are more reasonable.

2.3. Optimal Route Using Genetic Algorithm

Collected the relevant information of 47 scenic spots in Chongqing and the 47 cities are as follows:

Table 5. The table of scenic spots

number	scenic spot	number	scenic spot
0	Dazu Rock Carvings	24	Three natural bridges
1	Tea and Bamboo Forest	25	Fairy mountain
2	Qinglong Lake	26	Snow Jade Cave
3	Hechuan fishing city	27	Huatian Valley
4	The Four Sided Mountain	28	Ayi river rafting
5	Ciqikou ancient town	29	Yushan ancient town
6	Happy Valley	30	Wujiang Gallery
7	Guanyinqiao pedestrian street	31	Zhou’ Stockade
8	Old town of anziba	32	Gong Tan ancient town
9	Great Hall of the People	33	Taibaiyan Park
10	Arhat Temple	34	Waterfall group tourist area
11	Hongya cave	35	Ancient town of Luotian
12	Liberation Monument	36	Gaoyang Ping Lake
13	ChaoTianmen Square	37	Three Gorges Cultural Relics Park
14	Foreigner's Street	38	The Peach Garden
15	Golden knife Gorge	39	Longtang Geopark
16	A tree viewing platform	40	Hongchiba
17	Foying gorge	41	Shidi ancient town
18	Liangjiang Movie City	42	Xiaozhai Tiankeng
19	Wansheng Stone Forest	43	Wuxi Lingwu cave
20	Black Valley	44	Wushan Goddess Heaven Road
21	Mount Putuo	45	Small Three Gorges
22	Big wood Flower Valley	46	Tong Jing hot spring
23	Baiheliang underwater Museum		

Using Genetic Algorithm [11-13] to solve the optimal solution of the combined objective function, we can get the most suitable tourist route. Through experiments, i.e. the weight value of λ is 0, 0.2, 0.4, 0.6, 0.8 and 1, respectively, the results of distance, traffic cost and combined objective function values are as follows:
Table 6. The table of experimental result

λ	distance	cost	value
0	23.16	2686.2	2.353
0.2	19.8581	2947.04	3.1591
0.4	15.9275	3334.51	3.5041
0.6	14.8663	3035.8	3.5464
0.8	13.458	3816.06	3.6988
1	12.853	4931.18	3.5638

As shown in Table 6, when only considering the transportation cost, the distance to complete 47 scenic spots is 2570.76 kilometers, and the transportation cost is 2686.2 yuan; when only considering the distance, the distance to complete 47 scenic spots is 1426.68km, and the transportation cost is 4931.18 yuan. When the value of λ increases, the distance decreases gradually, and the traffic cost increases as a whole; when the value of λ is about 0.4, the traffic cost changes less.

When $\lambda=1$ in the process of population evolution, the curve change of the minimum and average value of the combination objective function of the population is as follows:

![Figure 1. The curve of Algorithm evolution](image)

In Figure 1, it can be seen that the value of the optimal solution of the population is less than the average value of the population in the first 100 evolutions. While the evolution reaches 450 iteration steps, the value of the optimal solution is basically equal to the average value, which indicates that the algorithm is convergence.
It can be seen from Figure 2, tourists start from Hongchiba in Wuxi and finally arrive at Shidi ancient town in Xiushan with the shortest distance. The detailed route is 40->43->45->44->42->39->36->34->33->35->27->26->23->21->18->46->15->3->2->0->1->5->6->14->7->8->9->10->12->11->13->16->17->4->19->20->24->25->29->28->30->31->32->38->41.

As shown in Figure 3, tourists start from Hongchiba in Wuxi and finally arrive at the old city of anziba with short route distance and less transportation cost. The detailed route is 40->43->45->44->42->39->37->36->33->34->35->27->26->25->29->31->32->41->38->30->28->24->23->22->21->17->20->19->4->1->0->3->15->46->18->6->2->5->7->9->11->13->12->10->16->14->8.

As shown in Figure 4, tourists start from Luotian ancient town and finally arrive at the tea mountain and bamboo sea in Yongchuan with the lowest transportation cost. The detailed route is 35->26->23->22->25->24->27->8->33->34->37->36->40->43->42->44->45->39->28->38->30->41.
From Figure 2-4, it can be seen that the weight of traffic cost is larger, then the crossing degree of the planned route is heavier. While, the weights of the route distance and traffic cost are little difference, then the crossing degree of the planned route is less.

3. Conclusion

This paper not only considers the distance, but also fully analyses the factor of transportation cost. The multiple factors are integrated into an objective function to make the problem simple and meet the requirements of tourists. The genetic algorithm is used to find the best route more quickly. Through adjusting the importance of various factors according to their own situation, the route of tourists' satisfaction is planned with good scalability.

4. Acknowledgements

This work is funded by Fundamental and Advanced Research Project of Chongqing CSTC of China, the project No. cstc2019jcyj-msxmX0386. Student research project support of Chongqing University of science and technology No. KLA19048.

5. References

[1] Chen Xiang, Yang Jianlong. Research on the current situation of China's tourism development. Value engineering, 2016, 35 (06): 219-222.
[2] Gao Rui. On the current situation and development trend of China's tourism industry. Tourism overview (industry Edition), 2012 (05): 82.
[3] Xiaohui Qian, Xiaopeng Zhong. Optimal individualized multimedia tourism route planning based on ant colony algorithms and large data hidden mining. Multimedia Tools and Applications, 2019, 78(15).
[4] Kenneth C. Gilbert, Ruth B. Hofstra. A New Multiperiod Multiple Traveling Salesman Problem with Heuristic and Application to a Scheduling Problem. Decision Sciences, 1992, 23 (1): 250-259.
[5] Xiong Y, Schneider J B. Shortest Path within Polygon and Best Path around or through Barriers. Journal of Urban Planning & Development, 1992, 118 (2): 65-79.
[6] Alhanjouri M, Alfarra B. Ant Colony versus Genetic Algorithm based on Travelling Salesman Problem. International Journal of Computer Technology, &Applications, 2011, 02 (03): 570-578.
[7] Wang Jigang, Hu Yonghui, he Zhemin, Yang Haiyan, Hou Juan. Application of linear weighted combination Kalman filter in clock difference prediction. Tian Wenxue Bao, 2012, 53 (03): 213-221.
[8] Du Minhua, Tian Long. Optimization of vacuum freeze drying process of strawberry pulp by linear weighted combination method. Food industry, 2007 (04): 15-17.
[9] Bai Xuemei. Discussion on linear weighted combination weighting method. Statistics and information, 1998 (03): 5-6.
[10] Ji Xiaojiang, Du Sanbao, Wang Guandong. Determination of regional economic growth difference by min max standardized analysis method -- Taking Yulin area of Shaanxi Province as an example. Economy and management, 2016, 30 (03): 54-56 [11] Holland J.H. Outline for a logical theory of adaptive systems. Journal of the Association for Computing Machinery, 1962, 9 (3): 297-314.
[11] Pei Jiaming, Zhou Bin, Li Li. TSP algorithm based on genetic algorithm to solve the shortest journey of 20 major cities. Computer knowledge and technology, 2019, 15 (16): 194-195.
[12] Zeng Wenfei, Zhang Yingjie, Yan Ling. Basic principles and application of genetic algorithm. Software guide, 2009, 8 (09): 54-56.