Type IV collagen α1-chain noncollagenous domain blocks MMP-2 activation both in-vitro and in-vivo

Yakkanti Akul Sudhakar1,4, Raj Kumar Verma2 & Smita C. Pawar3

1Cell Signaling Laboratory, Bioscience Division, Center for Cancer and Metabolism, SRI International, Menlo Park, CA 94025, USA, 2Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas 78363, USA, 3Department of Genetics, Osmania University, Hyderabad, AP 500007, India, 4Cell Signaling and Tumor Angiogenesis Laboratory, Department of Genetics, Boys Town National Research Hospital, Omaha, NE 68131, USA.

α1(IV)NC1 inhibits angiogenesis by regulating MMP-2 activation, this biological function was partly attributed α1(IV)NC1 binding to α1β1-integrin. However, its potent antiangiogenic activity and the molecular targets of α1(IV)NC1 has not been investigated. In the present study, the regulation of MMP-2 activation by α1(IV)NC1 was evaluated. α1β1-integrin which is required for inhibition of angiogenesis is not playing a role in cellular invasion and inhibition of MMP-2 activation by α1(IV)NC1. We found that α1(IV)NC1 binds the CBD of MMP-2 and forming a stable complex that prevents activation of MMP-2. The antiangiogenic activity of α1(IV)NC1 is inhibited, in part, by this binding activity. In addition, up-regulation of TIMP-2 by α1(IV)NC1 led to saturation of MT1-MMP binding sites, which in turn led to inhibition of MMP-2 activation. In-vivo studies using α1-integrin null-mice treated with higher doses of α1(IV)NC1 showed integrin independent inhibition of tumor growth and active-MMP-2, without affecting MMP-9, MMP-7 and angiostatin.

During vascular basement membranes (VBM) remodeling, crucial circulating angiogenic and antiangiogenic molecules are liberated that controls formation of new capillaries. Remodeling of basement membrane and de-novo expression of provisional matrix proteins promote cell adhesion, migration and differentiations that play important roles in angiogenesis. Angiogenesis is one of the most consistent host responses associated with cancer tumor angiogenesis which is partially regulated by endogenous angiogenesis inhibitors that are released from VBM upon proteolysis. The endogenous angiogenesis inhibitors released during remodeling includes some of the type IV collagen derived non-collagenous domains (NC1) that are liberated from extracellular matrix (ECM) by matrix metalloproteinases (MMPs). ECM degradation by MMPs is prerequisite during tumor growth and metastasis. MMPs exist as both soluble and membrane-anchored types (MT-MMPs). Soluble MMPs are responsible for ECM degradation, whereas MT-MMPs participate in pericellular VBM degradation. The cell surface activation of proMMP-2 by MT1-MMP is pivotal in tumor invasion following degradation of VBM by MMP-2.

The major component of vascular basement membrane (VBM) is type IV collagen. Type IV collagen have α1–α6 chains and have important roles in the assembly of BM. Remodeling of VBM can provide crucial angiogenic and antiangiogenic molecules to control the formation of new capillaries. Such anti-angiogenic molecules of VBM include NC1 domain of α1-chains of type IV collagen. The C-terminal non-collagenous domain from α1-chain of type IV collagen, α1(IV)NC1 (arresten) is a 26-kDa protein induced by p53 that binds to α1β1-integrin and mediates its antiangiogenic actions and suppresses invasion of squamous cell carcinoma. α1(IV)NC1 and its N- and C-terminal domains are promoting apoptosis. In addition we also showed that α1(IV)NC1 inhibits MMP-2 activation without affecting expression. Despite its potent in-vitro and in-vivo antiangiogenic activity, the molecular targets of α1(IV)NC1 are yet to be identified. In the present study, we reported that α1(IV)NC1 inhibits invasion and MMP-2 activation by forming a complex with collagen binding domain (CBD) of MMP-2. These findings demonstrate that α1(IV)NC1 regulates MMP2 activation without affecting circulating MMP-9, −7 and angiostatin activation in-vitro and in-vivo. This regulation of MMP-2 activation contributes α1(IV)NC1 mediated regression of tumor angiogenesis in mice. These findings indicate that a novel MMP-2 regulatory mechanism of α1(IV)NC1 that partly regulate its anti-angiogenic and anti-tumorogenic activity.
Results

Regulation of different cellular invasion by α1(IV)NC1. The C-terminal non-collagenous domain from α1-chain of type IV collagen (α1(IV)NC1) regulated endothelial cell invasion (in the reconstituted basement membrane). Absence of vascular endothelial growth factor (VEGF) reduced basal invasion of human umbilical vein endothelial cells (HUVEC) into matrigel (Fig. 1a, white bars). Treatment with VEGF resulted in a two-fold increase in cellular invasive activity, whereas treatment with α1(IV)NC1 inhibited VEGF induced cellular invasion in a dose-dependent manner (Fig. 1a, black bars). A similar inhibitory effect of α1(IV)NC1 was also observed in VEGF induced wild type and α1-integrin null mouse lung endothelial cells (MLEC) invasion (supplemental Fig. 1). Treatment of HUVECs with 4-aminophenylmercuric acetate (APMA) resulted in a two-fold increase in cell invasive activity. Addition of α1(IV)NC1 effectively blocked APMA induced cellular invasion in a dose-dependent manner (Fig. 1a, black bars).

A similar inhibitory effect of α1(IV)NC1 was also observed in VEGF induced wild type and α1-integrin null mouse lung endothelial cells (MLEC) invasion (supplemental Fig. 1). Treatment of HUVECs with 4-aminophenylmercuric acetate (APMA) resulted in a two-fold increase in cell invasive activity. Addition of α1(IV)NC1 effectively blocked APMA induced cellular invasion in a dose-dependent manner, while absence of APMA reduced basal cellular invasion of HUVEC cells into the matrigel (Fig. 1a, black bars).

Tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), a specific inhibitor of matrix metalloproteinase-2 (MMP-2), inhibited VEGF induced HUVEC invasion by 50%, whereas α1(IV)NC1 at similar concentration showed 62% inhibition. TIMP-2 and α1(IV)NC1 were used in combination showed about 70% inhibition of cell invasion (Fig. 1c). We also noticed that the SCC-PSA1 teratocarcinoma tumor cell line expresses high levels of MMP-2. Thus, we tested whether α1(IV)NC1 has any inhibitory effect on SCC-PSA1 cellular invasion. Addition of α1(IV)NC1 to SCC-PSA1 cells cultured on matrigel matrix showed inhibition of serum induced invasion dose dependently, when compared with and without serum induced invasion (Fig. 1d).

Regulation of MMP-2 activation by α1(IV)NC1. Matrix metalloproteinases are known to be crucial for degrading extracellular matrix (ECM), promoting endothelial and tumor cellular invasion. Wild type or α1-integrin null mouse lung endothelial cells (MLECs) were treated with α1(IV)NC1 and the conditioned medium was analyzed for MMP-2, MMP-7 activity in gelatin and casein zymography analysis showed inhibition of 66-kDa active MMP-2, where as the 53-kDa active MMP-9 was not inhibited in α1(IV)NC1 and conditioned medium (Fig. 2a). Further casein zymography analysis showed that MMP-7 was not inhibited in α1(IV)NC1 treated wild type or α1-integrin null cells conditioned medium (Fig. 2b). Similar inhibition of MMP-2 activation was also observed through gelatin zymography and immunoblotting of the conditioned culture medium from SCC-PSA1 cells treated with α1(IV)NC1 (supplemental Fig. 2). Earlier we reported that α1(IV)NC1 treated ECs did not affect the expression of MMP-2 mRNA as well as its secretion. We also identified that MMP-2 antibody was co-

![Figure 1](https://example.com/figure1.jpg)

Figure 1 α1(IV)NC1 inhibits cellular invasion. (a and b) Invasion in HUVECs treated with VEGF or APMA alone or combination with α1(IV)NC1. α1(IV)NC1 treated cells was shown in black bars and absence of VEGF or APMA was shown in white bars. *Indicates P < 0.03; α1(IV)NC1 treatment compared to VEGF or APMA treatment alone. (c) VEGF-induced invasion by TIMP-2 and α1(IV)NC1. **Indicates P < 0.04 (VEGF against α1(IV)NC1); *Indicates P < 0.05 (VEGF against TIMP-2); ***Indicates P < 0.03 (VEGF against TIMP-2/α1(IV)NC1). (d) SCC-PSA-1 teratocarcinoma cell invasion. *Indicates P < 0.05 control against α1(IV)NC1.

![Figure 2](https://example.com/figure2.jpg)

Figure 2 Regulation of MMP-2 activation by α1(IV)NC1. (a and b) MMP-9, MMP-2 and MMP-7 activity in gelatin and casein zymography of conditioned wild type or α1-integrin null cells conditioned medium (Fig. 2a). Further casein zymography analysis showed that MMP-7 was not inhibited in α1(IV)NC1 treated wild type or α1-integrin null cells conditioned medium (Fig. 2b). Similar inhibition of MMP-2 activation was also observed through gelatin zymography and immunoblotting of the conditioned culture medium from SCC-PSA1 cells treated with α1(IV)NC1 (supplemental Fig. 2). Earlier we reported that α1(IV)NC1 treated ECs did not affect the expression of MMP-2 mRNA as well as its secretion. We also identified that MMP-2 antibody was co-
immunoprecipitating α_1(IV)NC1 with proMMP-2, suggesting direct interaction of two proteins (supplemental Fig. 3).

APMA and MT1-MMP mediated regulation of MMP-2 activation. To test whether proMMP-2 interaction with α_1(IV)NC1 results in inhibition of proMMP-2 activation, we adopted a recombinant assay, where recombinant proMMP-2 when treated with APMA resulted in processing of 72-kDa proMMP-2 to 66-kDa active-MMP-2. Addition of different doses of α_1(IV)NC1 to APMA/proMMP-2 mixture inhibited MMP-2 activation dose dependently, and this inhibition appears to be due to a stable complex formation between α_1(IV)NC1 and proMMP-2 (Fig. 3a). Inhibition of MMP-2 activation was also observed when equimolar concentrations of membrane-bound matrix metalloproteinase (MT1-MMP, a known activator of proMMP-2) and proMMP-2 was incubated with various concentrations of α_1(IV)NC1 (Fig. 3b). Interestingly, endostatin also showed inhibition of APMA and MT1-MMP mediated MMP-2 activation, however similar complex formation between endostatin and proMMP-2 has not been reported. These results indicate that activation of secreted MMP-2 from endothelial or SCC-PSA1 cells was inhibited by α_1(IV)NC1 through complex formation with proMMP-2.

Identification of MMP-2 and α_1(IV)NC1 complex using ISCO gradient fractionator and ELISA. The complex formation between recombinant MMP-2 and α_1(IV)NC1 was further studied using ISCO upward gradient fractionator. Initial fractions collected were analyzed using antibodies against MMP-2 and α_1(IV)NC1. (c–d) ActiveMMP-2 and proMMP-2 complex with α_1(IV)NC1 using 10–30% sucrose ISCO gradient. Various fractions collected were analyzed using antibodies against MMP-2 and α_1(IV)NC1. (c) CBD and HPD domains of MMP-2 interactions with α_1(IV)NC1. Quantification of relative complex formation of α_1(IV)NC1 with MMP-2, CBD, and HPD domains. Complex was analyzed by ELISA using anti-α_1(IV)NC1 antibody. Results shown are mean ± SD. ***Indicates p < 0.002; compared to proMMP-2, * indicates p < 0.02; compared to active MMP-2, and ** indicates p < 0.004 compared to CBD domain.
vascular basement membrane (VBM) binding properties. The previous reports on CBD deletion mutant of MMP-2 that showed mediated only through the anti-angiogenic activity of different doses of a amount of proteins.

Domains (HPD) of MMP2, and recombinant MMP-2 proteins were used in ELISA assay. We found that α1(IV)NC1 showed strong binding to CBD domain but not with HPD domain of MMP-2 (Fig. 3e). These findings further support our ISCO gradient results demonstrate that α1(IV)NC1 binds to proMMP-2. These results are consistent with the previous reports on CB deletion mutant of MMP-2 that showed vascular basement membrane (VBM) binding properties.

Regulation of TIMP-2 and MT1-MMP by α1(IV)NC1
TIMP-2 and MT1-MMP were reported to play a crucial role in cellular invasion in the reconstituted basement membrane (BM) . A short peptide from α3(IV)NC1 (185–205 amino acids) showed inhibition of melanoma and fibrosarcoma cells migration, correlating with a decrease in expression of MT1-MMP. Therefore we tested α1(IV)NC1 for similar effects on TIMP-2 and MT1-MMP in endothelial cells. Interestingly, increased levels of secreted TIMP-2 were observed in HUVEC cell medium supernatants upon α1(IV)NC1 treatment, while the cytosolic and membrane extracts showed inhibition of MT1-MMP expression (Fig. 4a, b, and lower graphs).

Higher doses of α1(IV)NC1 regulates VEGF induced neovascularization in the matrigel plug of α1-integrin null mice. α1(IV)NC1 binds to α1 integrin in a collagen type IV dependent manner and inhibits certain biological activities of endothelial cells. If the anti-angiogenic activity of different doses of α1(IV)NC1 is mediated only through α1β1-integrin receptor, then mice lacking α1 integrin should not respond to α1(IV)NC1 even at high dose. Therefore, the antiangiogenic activity of α1(IV)NC1 using matrigel plug in wild type and α1-integrin null mice was tested in-vivo. Different doses of α1(IV)NC1 were found to significantly inhibit VEGF induced neovascularization in the matrigel plugs of wild type mice (Fig. 5a). Quantification of the number of blood vessels and hemoglobin content in the matrigel plugs revealed inhibition of neovascularization and hemoglobin content, upon α1(IV)NC1 treatment in a dose dependent manner (Fig. 5a, graphs). Lower doses of α1(IV)NC1 had less effect on VEGF induced neovascularization and hemoglobin content in the matrigel plugs of α1-integrin null mice (Fig. 5b). However, higher doses of α1(IV)NC1 showed significant inhibition of neovascularization and hemoglobin content indicating that treatment of α1(IV)NC1 may regulate MMP-2 activation in α1 integrin null mice (Fig. 5b, graphs).

Inhibition of circulating active-MMP-2 and tumor angiogenesis without affecting MMP-9, −7 and angiotatin in mice treated with α1(IV)NC1 Two different doses of α1(IV)NC1 were administrated intravenously into tumor bearing wild type and α1 integrin null mice when tumors reached about 150-mm3 size. Wild type mice that were not injected with α1(IV)NC1 showed a rapid rise in tumor growth and increased numbers of CD31 positive blood vessels, whereas α1(IV)NC1 treated mice showed a clear regression of tumor growth and number of CD31 positive blood vessels as reported previously (Fig. 6a-d). In contrast, α1-integrin null mice showed spontaneous up-regulation of angiostatin, MMP-9, -7 and MMP-2 leading to inhibition of tumor growth. When high dose of α1(IV)NC1 was administrated to tumor bearing α1-integrin null mice, a significant regression of tumor growth and CD31 positive blood vessels were observed when compared to control mice (Fig. 6a-c).

Higher or lower dose of α1(IV)NC1 did not show any effect on angiostatin and MMP-9 generation in serum plasma from wild type or α1-integrin null tumor mice (Fig. 7a and b). A drastic decline in circulating levels of active-MMP-2 was observed in both wild type and α1-integrin null mice treated with α1(IV)NC1 (Fig. 7b, lanes 2 and 4). Consistent with in-vivo data, in-vitro results from α1(IV)NC1 treated wild type and α1-integrin null mice MLEC medium supernatant did not show any change in MMP-9 or MMP-7, which plays a critical role in production of angiostatin, however a significant inhibition of MMP-2 activation was observed in figure 2. These in-vivo and in-vitro results strongly support that α1(IV)NC1 has no significant effect on MMP-9, MMP-7 and angiotatin production in α1-integrin null mice. In contrast, α1(IV)NC1 mediated inhibition of MMP-2 activation in α1-integrin null mice led to a further inhibition of tumor growth and angiogenesis. These findings indicate that antiangiogenic activity of α1(IV)NC1 is partly mediated by inhibiting MMP-2 activation.

Discussion
The soluble NC1 domain from α1-chain of type IV collagen (α1(IV)NC1 or arresten) is a known inhibitor of tumor angiogenesis, whose antiangiogenic actions are partly mediated through α1β1-integrin. The antiangiogenic functions of this molecule are still poorly understood. Although considerable work has been done on this molecule in identifying its potent angiogenic inhibitor,
its interactions with cellular proteins and pathways intermediate are not well documented. Our present work describes a novel mechanism of α_1(IV)NC1 inhibiting the activation of MMP-2 that contributes regulation of tumor angiogenesis.

This study demonstrates a novel mechanism of α_1(IV)NC1 inhibiting the activation of MMP-2 that contributes inhibition of different cellular invasion and tumor angiogenesis. α_1(IV)NC1 treated conditioned medium from MLEC showed inhibition of MMP-2 activation without affecting MMP-2 expression, indicating its additional role besides integrin mediated signaling. α_1(IV)NC1 treated medium supernatant from different cells showed inhibition of MMP-2 activation without affecting MMP-9, 7 and angiostatin. Also, α_1(IV)NC1 inhibits invasion of α_1-null and wild type endothelial and tumor cells, presumably through inhibition of MMP-2 activation in a manner similar to endostatin. In addition, up regulation of TIMP-2 and down regulation of MT1-MMP was observed in α_1(IV)NC1 treated endothelial cells. When TIMP-2 is present in higher concentrations, it inhibits MMP-2 activation through interactions with MT1-MMP. TIMP-2 in lower concentrations binds pro-MMP-2 results in the formation of TIMP-2-pro-MMP-2 complex. This complex then moves to cell surface and binds to the active site of MT1-MMP. Once this occurs, the adjacent free MT1-MMP

Figure 5 | Regulation of VEGF-induced angiogenesis in matrigel matrix. (a) Different conditions of wild type mouse matrigel are shown. Arrows point to the blood vessels. E, M, and SM represent endothelial cells, matrigel and smooth muscle. Scale bar corresponds to 50-µm. Graphs show number of blood vessels and Hb content quantification from wild type matrigel implants. Values in mean ± SEM are shown where, *p < 0.01 compared to VEGF with and without α_1(IV)NC1 (l/h). (b) In-vivo matrigel angiogenesis in α_1-integrin null mice from left to right similar to panel a. Lower graphs showing number of blood vessels and Hb content quantification from α_1-integrin null mice matrigel implants. *p < 0.01 compared to VEGF with and without α_1(IV)NC1 (l/h). The number of blood vessels in the matrigel plugs was counted in 10 fields. (‘l’ and ‘h’ represents low and high doses of α_1(IV)NC1).
recognizes pro-MMP-2/TIMP-2 complex and activates MMP-2. Our results show that α1(IV)NC1 inhibits the activation of MMP-2 by forming a stable complex with proMMP2.

The in-situ experiments demonstrate that, α1(IV)NC1 inhibits the activation of proMMP-2 induced by APMA and MT1-MMP, indicating that α1(IV)NC1 partly regulates its angiinhibitory actions through a mechanism that inhibits MMP-2 activity. To further validate MMP-2 activation inhibition by α1(IV)NC1, proMMP-2/α1(IV)NC1 interactions were studied using ISCO gradient fractionation in which bottom fractions containing complex proteins. The higher signal intensity of proMMP-2/α1(IV)NC1 complex in the bottom fractions indicate a strong interaction between proMMP-2 and α1(IV)NC1 but not with active MMP-2. The ISCO gradient and co-immunoprecipitation experiments confirm that α1(IV)NC1 directly interacts with proMMP-2 and such interaction is essential for the inhibition of MMP-2 activation by MT1-MMP5. Further ELISA results demonstrate that, α1(IV)NC1 interacts with CBD region of MMP-2. Based on more free TIMP-2 in the conditioned medium in presence of α1(IV)NC1, there may be a possible competition between α1(IV)NC1 and TIMP-2 for binding to proMMP-2. Another possible loss of MMP-2 activation may be due to decrease in active MT1-MMP expression in presence of α1(IV)NC1 or may be due to the direct binding of α1(IV)NC1 to pro-MMP-2. These in-vitro results suggest that α1(IV)NC1 binds to proMMP-2 and inhibits its enzymatic activation. We have included regulation of MMP-2 activation by α1(IV)NC1 and its signaling mechanism(s) in Table 1.

Higher dose treatment of α1(IV)NC1 from matrigel or from tumor studies in α1-integrin deficient mice showed inhibition of neo-vascularization and tumor growth. These findings support that α1(IV)NC1 treatment inhibits spontaneous activation of MMP-2 in α1-integrin null mice without affecting MMP-9, −7 or angiostatin, and leads to further regression of tumor growth in these mice. These results are coherent with the earlier reports showing reduced tumor growth in MMP-2 null mice21,44,45. The significance of these findings indicate that α1(IV)NC1 may also partly regulates tumor angiogenesis by integrin independent inhibiting of MMP-2 activation in addition to its integrin dependent MAPK signaling inhibition21.

Methods
Primary human umbilical vein endothelial cells (HUVECs) were purchased from Clontech (San Diego, CA). SCC-PSA1 tumor cells were obtained from the ATCC (Manassas, VA). Recombinant human VEGF and bFGF were obtained from R&D systems (Minneapolis, MN). Protein-A Sepharose CL-4B beads were from GE Healthcare (Little Chalfont Buckinghamshire, UK). Mouse anti-MMP-2 (1:5,000, MAB13406), anti-rabbit TIMP-2 (1:1000, AB801) and anti-human MT1-MMP polyclonal antibody (1:1000, AB815) purchased from Chemicon International (Temecula, CA). 4-Aminophenylmercuric acetate (APMA) purchased from Abcam (Cambridge, MA) Angiostatin, bovine hemoglobin and TMB were from EMD Biosciences (LaJolla, CA). HRP labeled secondary antibodies and penicillin/streptomycin were purchased from Sigma-Aldrich (St. Louis, MO). Martigel Matrix (14.6-mg/ml) was from BD Biosciences Discovery lab (Sandeigo, CA). Matrigel invasion chambers were from Corning Costar (Cambridge, MA). Intracellular adhesion molecule-2 and rat anti-mouse CD31 were from PharMingen (San Deigo, CA). Magnetic Dynabeads M-450 was from Dynal (Oslo, Norway). Ham’s F-12, DME
Figure 7 | MMP-2 activation Inhibition by α1(IV)NC1 without affecting K-1-3 and MMP-9. (a) Angiostatin generation in wild type and α1-integrin null tumor bearing mice plasma (upper) and coomassie stained gel with equal loading of the plasma used for western blot (lower). (b) MMP-9 and MMP-2 activity in gelatin zymography of plasma from wild type and α1-integrin null tumor bearing mice.

Low Glucose, heparin (Pierce, Rockford, IL) and endothelial mitogen were from Biomedical Technologies (Stoughton, MA). Ni-NTA agrose (affinity matrix) was from Qiagen (Valencia, CA). Matrigel invasion chambers were purchased from Corning Costar (Cambridge, MA). Fetal bovine serum was purchased from Fisher Scientific (Houston, TX). Brij-35 was purchased from Aquesolutions (Deer park, NY). Cell fixer, hematoxylin and eosin (H&E) staining were purchased from Fisher Diagnostics (Middletown, VA). Vectashield antifade mounting medium was purchased from Vector Laboratories (Burlingame, CA). Fetal liver was from American Bioscience (Buckingham, United Kingdom). Collagen binding domain (CBD) and hemopexin domain (HPD) of MMP-2 procured form Dr. Overall Laboratory (University of British Columbia, Vancouver, Canada).

Ethics statement. The Institutional Animal Care and Use Committee at Boys Town National Research Hospital approved all animal procedures involved in this study.

Cell culture. HUVECs were cultured in EGM-2 medium, mouse lung endothelial cells (MLEC) and α1-integrin null MLECs were maintained in 40% HAMS F-12, 40% DMEM-Low Glucose, 20% FCS supplemented with heparin, endothelial mitogen, glutamine (Biomedical Technologies) and penicillin/streptomycin at 37°C in a humidified mixture of air and CO₂ (5%). SCC-PSA1 (ATCC) tumor cell was maintained in DMEM supplemented with 10% FCS. All cells types were serum starved and exposed to α1(IV)NC1 for 24- and 48-hrs in incomplete medium as reported⁹⁵.

Expression of recombinant human α1(IV)NC1. Recombinant α1(IV)NC1 was expressed in Schizophyllum commune (St-9) insect cell system and purified as described previously⁹⁶-⁹⁸.

Table 1 | Regulation of MMP-2 activation by α1(IV)NC1

Inhibitor origin	Human α1(IV)NC1
Collagen NC1	α1-chain type IV collagen NC1
Generation of inhibitor	By MMP-9
MMP-2 activation	Effects
MMP-9 activation	No effect
TIMP-2 and MT1-MMP	Regulation
α1(IV)NC1	α1(IV)NC1 mediated endothelial specific signaling

Matripl invasion. Matripl invasion chambers (8-μm pore size; Corning Costar) were prepared according to the manufacturer’s instructions by coating culture inserts with 10-μg of matripl (BD Biosciences Discovery lab) for 24-well plates. Endothelial or SCC-PSA1 cells (2.0 × 10⁵/ml) in 100-μl suspension with α1(IV)NC1 or with and without APMA (100-nM) or TIMP-2 was seeded on the upper chamber and incubated at 37°C in a humidified chamber with 5% CO₂. VEGF (10-ng/ml) was added to the lower chamber (600-μl) as a chemo-attractant. After 24-hrs of incubation, non-migrated cells on the upper surface of the filter were removed by using a wet cotton swab. Cells migrated on to the lower surface of the filter were fixed and H&E stained and invasion activity was quantified by counting the number of cells that migrated towards lower side of the filter.

APMA and MT1-MMP mediated activation of MMP-2. Pro-MMP-2 (20μM) was treated with 100-nM APMA (Abcam) or 1-μM of active MT1-MMP and with different concentrations of α1(IV)NC1 proteins in a 50-μl MMP assay buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 5 mM CaCl₂,100 mM ZnCl₂, and 0.025% Brij 35) for 6-hrs at room temperature and the resulting reaction mixture was analyzed by zymography.

Analysis of complex formation using ISCO gradient fractionator. Equimolar concentrations of recombinant pro-MMP-2/active α1(IV)NC1 proteins (1.0-μM) were incubated in 100-μl of MMP buffer α1(IV)NC1 and α1-integrin null tumor bearing mice plasma (upper) and coomassie stained gel with precipitation in presence of 50 mM NaF, 5 mM EDTA, and 12-μl of 0.5-M glacial acetic acid to prevent the dissociation of complex. Samples were incubated on ice for 60-min and centrifuged at 12,000 rpm for 30-min. The resulting pellets was separated on SDS-PAGE, immuno-blotted and complex formation was detected using antibodies against MMP-2 and α1α(IV)NC1 using ECL Kit⁹⁹-¹⁰⁰.

ELISA assay. MMP-2 or collagen binding domain (CBD) and hemopexin domain (HPD) of MMP-2 interaction with α1(IV)NC1 was measured using a modified ELISA assay where samples in triplicate wells were assayed in a 96 well plate that was precoated with 0.5-μg/ml of 1-μM MMP-2 or CBD or HPD at 5.0 μg/ml carbonate buffer (pH 9.5) with and without 1-μM α1(IV)NC1 at 37°C for 1-hr. The wells were washed 4-times with PBS containing 0.05% Tween-20 (PBST) and blocked with 0.01% BSA at 37°C for 1-hr. After three washings with PBST, 50-μl/well of α1(IV)NC1 antibody was added and incubated at 37°C for 2-hrs. The wells were washed again 3-times with PBST and incubated with 50-μl of HRP conjugated goat anti-rabbit IgG antibody at 37°C for 1-hr. Finally the plates were washed for 5 times in PBST and incubated at 37°C for 1-hr with HRP substrate TMB and absorbance measured at 450-nm.

In-vitro angiogenesis and estimation of hemoglobin in different matripl plugs. About 8 to 10 weeks old 6 wild type and 6 α1-integrin null 129/Sv mice were used in each group. About 500-μl matripl plugs containing different doses of α1(IV)NC1 (30 and 45-μg) were incubated in 0.5-μg/ml of 1-μM MMP-2 or CBD or HPD in 0.5-M sodium carbonate buffer (pH 9.5) with and without 1-μM α1(IV)NC1 in 37°C overnight. Tumor bearing mice was analyzed by immunoblotting and complex formation was detected using antibodies against MMP-2 and α1(IV)NC1 using ECL Kit⁹⁹-¹⁰⁰.

Tumor studies using different dose of α1(IV)NC1 treatment. Wild type mice 10 and 15 α1-null 129/Sv mice age and sex-matched were used in this study. The mice backs were shaved and about 1.0 × 10⁵ SCC-PSA1 cells were injected subcutaneously on the back of each mouse under anesthesia (ketamine/xylazine). The 10th day following SCC-PSA1 cells injection, 100-μl of α1(IV)NC1 protein was intravenously injected into wild type (30 μg) or 5 μg α1-integrin null mouse (30 and 45-μg per mouse) daily for 15 days, while the same volume of sterile PBS was injected into the control mice. When control tumors reached 2.0-cm², all mice were sacrificed. Tumor bearing mice blood and tumors were collected for analysis of circulating MMPs, angiostatin and histology as reported¹⁰¹-¹⁰³.

Immunohistochemistry. Frozen tumor sections (4-μM) were fixed in acetone for 3-min at −20°C, air-dried and incubated at room temperature for 2-hrs with CD31 antibody (1-200 dilution). Subsequently, the sections were incubated with tetramethyl rhodamine conjugated secondary antibodies for 1-hr at 37°C. In each group of tumor sections, difference in vascularity and number of CD31 positive blood vessels per microscopic field were determined as described¹⁰³.

Gelatin and casein zymography. Different cells were serum starved and treated with 1-μM α1(IV)NC1 for 24-hrs and the resulting conditioned medium (20-μl) was analyzed by gelatin (10% polyacrylamide gel containing 2 mg/ml gelatin) zymography and immunoblotting. Serum plasma from wild type and α1-integrin null tumor bearing mice was analyzed by immunoblotting and gelatin or β-casein (10% polyacrylamide gel containing 2 mg/ml casein) zymography. The plasma samples (10-μg) were mixed with SDS-PAGE loading buffer without a reducing agent.
β-mercaptoethanol and subjected to electrophoresis at room temperature. After electrophoresis, SDS was removed from the gel by treating with 2.5% Triton X-100 to renature gelatinase activity. Gels were then incubated overnight at 37 °C in incubation buffer [50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10 mM CaCl₂ and Brij-35 (Aqueosol)] and enzymatic activity was visualized by negative staining with coomassie blue44,45.

Statistical analysis. Statistical differences between 2 groups were calculated using Student’s T-test. Analysis of variance (ANOVA) was used to determine statistical differences among different groups. A p-value of <0.05 was considered significant.

1. Ingber, D. & Folkman, J. Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest 59, 44–51 (1988).
2. Paulsson, M. Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 27, 93–127 (1992).
3. Folkman, J. Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182–1186 (1971).
4. O’Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).
5. Petitclerc, E. et al. New Functions for Non-collagenous Domains of Human Collagen Type IV. Novel interaction ligands inhibiting angiogenesis and tumor growth in vivo. J Biol Chem 275, 8051–8061 (2000).
6. Karihaloo, A. et al. Endostatin regulates branching morphogenesis of renal epithelial cells and ureteric bud. Proc Natl Acad Sci U S A 98, 12509–12514 (2001).
7. Sudhakar, A. & Boosani, C. S. C. Inhibition of tumor growth by Tumstatin: Insights into Signaling Mechanisms and Implications in Cancer Research. Pharm Res 25, 2731–2739 (2008).
8. Kalluri, R. Basement membranes: structure, assembly and role in tumor angiogenesis. Nat Rev Cancer 3, 422–433 (2003).
9. Boosani, C. S. & Sudhakar, Y. A. Proteolytically Derived Endogenous Angiostatins Originating from the Extracellular Matrix. Pharmaceuticals (Basel) 4, 1551–1577 (2011).
10. Colorado, P. C. et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60, 2520–2526 (2000).
11. Maeshima, Y. et al. Distinct antimotors properties of a type IV collagen domain derived from basement membrane. J Biol Chem 275, 21240–21248 (2000).
12. Kamphaus, G. D. & Constanin, A. novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275, 1209–1215 (2000).
13. Hamano, Y. et al. Physiological levels of tumstatin, a fragment of collagen alpha3 chain, are generated by factor XIIa and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3, 589–601 (2003).
14. Liotta, L. A. et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284, 67–68 (1980).
15. Sato, T., Liotta, L. A. & Tryggvason, K. Purification and characterization of a murine basement membrane collagen-degrading enzyme secreted by metastatic tumor cells. J Biol Chem 258, 3058–3063 (1983).
16. Tryggvason, K., Hoytynsa, M. & Sato, T. Proteolytic degradation of extracellular matrix in tumor invasion. Biochim Biophys Acta 90, 191–217 (1987).
17. Sterler-Stevenson, W. G., Aznavoorian, S. & Liotta, L. A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Semin Rev Cell Biol 9, 541–573 (1993).
18. Sterler-Stevenson, W. G. Matrix metalloproteinase angiogenesis: a moving target for therapeutic intervention. J Cell In vest 103: 1237–1241 (1994).
19. Tam, E. M., Wu, Y. I., Butler, G. S., Stark, J. M. & Overall, C. M. Collagen binding properties of the membrane type-1 matrix metalloproteinase (MT1-MMP) hemopexin C domain. The autocrine or the 44-kDa autotopiucytic product of MT1-MMP inhibits cell invasion by blocking native type I collagen cleavage. J Biol Chem 277, 39059–39064 (2002).
20. Hotary, K., Allen, E., Punwani, A., Yana, I. & Weiss, S. J. Regulation of cell invasion and morphogenesis in three-dimensional type I collagen matrix by a peptide from matrix metalloproteinases 1, 2, and 3. J Cell Biol 149, 1309–1323 (2000).
21. Sudhakar, A. et al. Human alpha1 type IV collagen NC1 domain exhibits distinct angiogenic activity mediated by alpha1beta1 integrin. J Clin Invest 115, 1–12 (2005).
22. Rim, M. F., Reeder, S. T. & Tryggvason, K. Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse homozythomatosis. J Biol Chem 268, 26033–26036 (1993).
23. Netzer, K. O., Suzuki, K., Itoh, Y., Hudson, B. G. & Khalifah, R. G. Comparative analysis of the noncollagenous NC1 domain of type IV collagen: identification of structural features important for assembly, function, and pathogenesis. Protein Sci 7, 1340–1351 (1998).
24. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).
25. Maragoudakis, M. E. et al. Basement membrane biosynthesis as a target for developing inhibitors of angiogenesis with anti-tumor properties. Kidney Int 43, 147–150 (1993).
26. Boosani, C. S. & Sudhakar, A. Cloning, purification, and characterization of a noncollagenous anti-angiogenic protein domain from human alpha1 type IV collagen expressed in S9 cells. Protein Expr Purif 49, 211–218 (2006).
Author contributions
Y.A.S. performed studies, write the manuscript, prepared all figures and R.K.V. and S.C.P. performed studies. All authors reviewed the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Sudhakar, Y.A., Verma, R.K. & Pawar, S.C. Type IV collagen α1-chain noncollagenous domain blocks MMP-2 activation both in-vitro and in-vivo. Sci. Rep. 4, 4136; DOI:10.1038/srep04136 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0