Ornithogalum sibthorpii Greuter (Asparagaceae), a species overlooked in Croatia

Milica Rat¹, Sandro Bogdanović²,³*

¹ University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
² University of Zagreb, Faculty of Agriculture, Department of Agricultural Botany, Svetosimunska cesta 25, 10000 Zagreb, Croatia
³ Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetosimunska cesta 25, 10000 Zagreb, Croatia

Abstract – *Ornithogalum sibthorpii* (Asparagaceae) is an early flowering species, with populations scattered across the Balkan Peninsula and Turkey. It inhabits rocky places and clearings, open habitats, parks and marginal parts of wetlands. Based on the known distribution, habitat preferences and literature records for the Balkan Peninsula, it was hypothesised that this species might be distributed in Croatia as well. To confirm this, herbarium material was revised, and field investigations were organized. The first report confirmed that *O. sibthorpii* is widespread along the eastern Adriatic coast, reaching the inland Dinaric region too. To present the currently known localities in Croatia, a distribution map is provided. Detailed morphological and leaf anatomy descriptions are given. Morphological affinities with similar species, *O. excapum* and *O. refractum*, are also briefly discussed, and an identification key is given. All Croatian populations of *O. sibthorpii* proved to be diploids with chromosome number 2n = 18.

Keywords: anatomy, geophytes, karyology, morphology, *Ornithogalum*

Introduction

The genus *Ornithogalum* L. is characterized by a wide ecological tolerance and pronounced morphological variability. According to Stevens (2001) it is one of the largest genera in the Asparagaceae family, with approximately 160 species (300 taxa). It is distributed in Africa, Europe and Southwest Asia (Speta 1998, Martínez-Azorín et al. 2013). Global databases record nearly 120 species with distributions in the Mediterranean region and in the rest of Europe (Govaerts 2019, Euro+Med 2006–2019). According to Nikolić (2019a, b) in the Croatian flora there are 19 *Ornithogalum* species, three stenoendemic, and 10 species belonging to the subgenus *Ornithogalum*.

Several discrete European *Ornithogalum* groups are differentiated based on flowering time, that is, species flowering in late winter/early spring, spring, and in late spring/early summer. One of the species that flower in late winter/early spring is *Ornithogalum sibthorpii* Greuter. It is a rare and scattered species, distributed in the western part of Turkey and in the Balkan Peninsula, in the north reaching Dobruja in Romania (Sibthorp and Smith 1809, Baker 1873a, b, Markgraf 1932, Radenkova 1964, Zahariadi 1966, 1977, 1980, Diklić 1975, Landström 1989, Speta 1990, Rat and Barić 2017, Rat 2019). It prefers karst, rocky ground, clearings and open habitats (Zahariadi 1980), and belongs to the group of *Ornithogalum* species that have underground scape, bearing from one to many flowers on the shortened inflorescence. Taxonomically significant characters compared with morphologically similar species in the investigated region (*O. excapum* Ten. and *O. refractum* Kit. ex Schltdl.) are the more or less pronounced pulvinus, refracted pedicels at anthesis and bulbs without bulbils (Zahariadi 1980, Landström 1989).

There is one literature reference indicating that *O. sibthorpii* is distributed in Croatia. Ascherson and Graebner (1905–1907: 249) stated that *Ornithogalum nanum* Smith in Sibth. et Smith (today synonym of *O. sibthorpii*) is recorded...
in Ljubuški and Stolac in Bosnia and Herzegovina, near to the Croatian border. Furthermore, for general distribution they cited the Adriatic region which covers an important part of the Croatian coast. For that reason, herbarium revisions and field trips were organized, with the aim of providing new data about the potential distribution of the species in the western part of the Balkan Peninsula i.e. Croatia, and to complement it with biological and ecological descriptions.

Materials and methods

Field trips were organized during season in 2015 and 2016. Plant material was collected for morphological, anatomical and karyological analysis (Tab. 1). Voucher specimens are kept in the herbarium collections ZAGR and BUNS. Herbarium materials of O. sibthorpii were revised in BEO, BEOU, BP, BUNS, K, MKNH, SOM, SARA, W, WU, ZA, ZAGR and ZAHO. Virtual collections G, GZU and OXF were accessed as well. Herbaria acronyms follow Thiers (2019). A distribution map of O. sibthorpii in Croatia was produced in QGIS software ver. 3.10.

Observations and morphological analyses included qualitative and quantitative description of bulb, leaves, scape and inflorescence with flowers. Ten fresh plants were collected and pressed for analysis. All observations were performed on fresh material using a Leica M205C binocular stereomicroscope, while measurements were carried out using Digimizer image analysis software ver. 4.2.6.0.

Anatomical investigations included a description of leaf structure. Cross sections were cut from the middle part of the leaf blade, using Leica CM 1850 cryostat, at –20°C with a cutting interval of 60 μm. Observations and measurements were performed using a ZEISS light microscope AxioVision A2, equipped with a ProgRes Speed XT camera and CapturePro v.2.8.8 image analysis software.

For chromosome counting and analyses, 10 bulbs were planted in pots, and young root tips were collected, treated with 0.5% colchicine solution for 1 h at room temperature, and then fixed with a fresh solution of ethanol and glacial acid (3:1) for storage. To visualize metaphase chromosomes, root tips were hydrolysed with 1M HCl at room temperature, and then stained with Schiff’s reagent. Standard squash technique was used for preparation of slides (Jong 1997). Image analysis and measurements of chromosomes were completed using KaryoType 2 software (Altinordu et al. 2016).

Results

Ornithogalum sibthorpii Greuter, Boissiera 13: 160 (1967) (Fig. 1)

Type – “In Arcadia, et prope Abydum, Martio florens”, Smith loc. cit. (OXF!; file name: Sib-0793).

Synonyms – Ornithogalum nanum Smith in Sibth. et Smith, Fl. Graec. Prodr. 1: 230 (1809); Fl. Graec. (Sibthorp). 4: 28, t. 333 (1823); non O. nanum (Burm. f.) Thunb., Prodr. Fl. Cap. 62 (1794).

Morphological description (based on Croatian material, Fig. 1) – Bulb hypogeal, ovoid, 12 – 15 × 0.8 – 20 mm, with

Fig. 1. Ornithogalum sibthorpii (Croatia, material from Brgat locality): a – ascapose form with prominent pulvinus (bulb without outer tunics), b – scapose form with small pulvinus, c – flower, d – gynoecium, e – seed micromorphology. Scale bar: a-d – 1 mm, e – 200 μm.

Tab. 1. List of examined plant materials of Ornithogalum sibthorpii in Croatia.

Locality	Latitude / Longitude	Collecting date	Collector(s)	Herbarium voucher number
Croatia, Brgat	42°38’45.06" N, 18°09’30.63" E	28.03.2015	M. Rat	BUNS-2-1151
(South Dalmatia)				
Croatia, Nin	44°14’48.58" N, 15°10’38.10" E	23.04.2016	S. Bogdanović, V. Šegota, Z. Ljubešić	ZAGR-41135
(North Dalmatia)				
Croatia, Donji Lapac (Lika)	44°31’36.82" N, 15°58’44.48" E	06.05.2016	S. Bogdanović	ZAGR-55520, ZAGR-55521
Croatia, Sukošan (North	44°02’59.10" N, 15°24’17.05" E	05.04.2018	M. Pandža, M. Milović	ZAGR-46301
Dalmatia)				
out bulbils; outer tunic light brown to brown. Leaves numerous, glabrous, longer than inflorescence, up to 3.5 mm wide, canaliculate, with median white stripe on the adaxial side. Scape short, mostly hypogeal, 1 – 5 cm long. Inflorescence up to 20 mm long, corymbose, with 1 – 8 (12) flowers. The overall length (scape + inflorescence) is ca 5 cm. The lower pedicels refracted, 10 – 25 mm long, with the pultinnus at the base. Bracts shorter than or equal to pedicels. Outer tepals 16 – 20 × 4 – 7 mm, with abaxial green stripe 4 – 6 mm wide. Inner tepals 15 – 21 × 5 – 8 mm, with abaxial green stripe 3 – 6 mm wide. Filaments 7 – 11 mm long; anthers 2.5 – 5 mm long. Ovary elongated to rounded, 5 – 6 × 3.5 – 5.5 mm, with 6 prominent ribs; style 4 – 6 mm long, longer than or equal to ovary. Seeds globose, 1 – 2 mm in diameter, black, luminous, with reticulate testa.

Phenology – Flowering and fruiting time from March to June.

Leaf anatomy – Leaf has typical “umbellatum-type”, that is “U” shape on transverse cross section. Leaf blade is canaliculate, on abaxial side with 3 – 6 ribs. Longitudinal white stripe visible on the adaxial side is a consequence of non-continuous palisade tissue in the central part. Visible on the cross section are 1-layered epidermis, 1-layered palisade tissue and mesophyll. Vascular bundles are arranged in two lines: larger bundles are in the centre of mesophyll, and smaller ones along palisade tissue of abaxial side. Other than vascular bundles, mesophyll contains large and small cavities, later usually with raffid crystals (Fig. 2).

Karyology – For karyological studies, bulbs were available from localities Brgat, Donji Lapac and Nin. All investigated individuals were diploid, \(2n=2x=18\) (Fig. 3a). Combined chromosome formula is \(2n=2x=6m+12sm\), and Stebbins karyotype asymmetry degree is 2A. Two chromosome pairs are long, three of medium length and four pairs are small chromosomes. Karyotype is characterized with chromosomes that have more or less gradual transition in size (Fig. 3b). Two pairs are metacentric, while others are submetacentric, with total haploid chromosome length 59.01±0.89 \(\mu\)m (Tab. 2). Satellited chromosomes were not detected.

![Fig. 2. Leaf “U” cross section of *Ornithogalum sibthorpii* (Croatia, material from Brgat locality). Scale bar: 50 \(\mu\)m.](image)

Fig. 3. Mitotic metaphase chromosome plate of *Ornithogalum sibthorpii* (Croatia, from Brgat locality): a – metaphase plate; b – karyogram (\(2n=2x=18\)). Scale bar: 10 \(\mu\)m.

Tab. 2. Chromosome parameters for *Ornithogalum sibthorpii* in Croatia. Ten individuals are analyzed (\(2n=2x=18\)); four from Donji Brgat, three each from Nin and Donji Lapac. Number of analyzed metaphase plates is 40 in total (four per individua). Abbreviations: L – long arm length, S – short arm length, TAL – total absolute length, TRL – total relative length, m – metacentric, sm – submetacentric.

Chromosome pairs	L (µm)	S (µm)	TAL (µm)	TRL (%)	Type
I	6.20±0.72	5.13±1.03	11.32±1.39	10.51+8.68=19.19	m
II	5.96±0.48	3.12±0.65	9.08±0.84	10.10+5.29=15.38	m
III	5.41±0.55	2.08±0.51	7.49±0.97	9.17+3.52=12.69	sm
IV	4.52±0.99	2.18±0.50	6.71±1.30	7.66+3.70=11.36	sm
V	4.17±0.71	2.01±0.54	6.18±0.98	7.07+3.41=10.47	sm
VI	3.80±1.25	1.67±0.41	5.47±1.27	6.44+2.83=9.27	sm
VII	3.04±0.51	1.87±0.58	4.92±0.99	5.15+3.18=8.33	sm
VIII	2.82±0.58	1.54±0.29	4.36±0.62	4.78+2.61=7.39	sm
IX	2.10±0.82	1.39±0.51	3.49±1.18	3.55+2.36=5.91	sm
ORNITHOGALUM SIBTHORPII IN CROATIA

Distribution and habitat – First herbarium specimens that confirmed presence of *O. sibthorpii* in Croatia were found in the collection of Ivo Horvat (ZAHO), and date back to the first half of the 20th century. Since then this species was omitted in collections, most probably due to the short vegetation period and early spring flowering time. However, herbarium revision of collections in GZU, W and WU revealed that the species was recorded earlier, but sparse data led to its neglect in Croatia. Recent field trips expanded the known distribution range of *O. sibthorpii* in Croatia. It is spread from the southeast of the eastern Adriatic coast to the central Dalmatian region in the west, and in the north the central Dinaric region, which is the only continental location in Croatia. According to all the data gathered, a distribution map was created (Fig. 4). *O. sibthorpii* inhabits dry, clear, open habitats, dry hillsides as well as anthropogenic areas and bare surfaces. The estimated altitude in Croatia ranges from sea level up to 1000 m. In other regions of the Balkan Peninsula habitats and altitude are similar (Radenkova 1964, Rat et al. 2014, Rat and Barina 2017, Rat 2019).

Examined specimens (*specimina visa*) – Croatia: Lika, Krbava – Donji Lapac, Bare, u nižem vlažnijem dijelu polja, 07.06.1958, I. Horvat s.n. (ZAHO-41129, ZAHO-41130); Makarska (Dalm.), 17.04.1931, M. Salzmann s.n. (GZU-057466); Orebić (Dalmatien), 16.04.; 19.04.1930, M. Salzmann s.n. (GZU 057466); Süddalmatien, Halbinsel Peljesac: zw. Orebić u. Sattel östl. des, Mte. Vipera, 16.04.1930, J. Eggler s.n. (GZU 103693); Süddalmatien, Halbinsel Peljesac: Kräuterfuren u. Macchie westl. von Orebic., 14.04.1930, J. Eggler s.n. (GZU 103694); Dalmatien, Gravosa [Dubrovnik], 10.04.1933, K. Ronniger s.n. [sub *Ornithogalum exscapum* Ten.] (W, Herbarium Karl Ronniger 5580); Dalmatia, in vienes pr. Spalato [Split], 04.1870, Pichler s.n. [sub *Ornithogalum umbellatum* L. (Vis.)] (WU, Herbarium Kerner).

Identification key for *O. sibthorpii* and morphologically similar species in Croatia

1. Bulb with numerous bulbils (>10) outside of tunics; bracts equal to or longer than pedicels *O. refractum*
 – Bulb without bulbils; bracts equal to or shorter than pedicels .. 2

2. Scape hypogeous, 20–50 mm long; inflorescence 1–8 (15)-flowered; lower pedicels refracted at anthesis, up to 30 mm long; pulvinus prominent; bracts subequal the pedicels *O. sibthorpii*
 – Scape only partly hypogeous, 10–30 mm long; inflorescence 5–10-flowered; pedicels erect to divergent (basal pedicel), 35–42 mm long; pulvinus absent; bracts shorter than pedicels *O. exscapum*

Discussion

This species has been known since the pre-Linnaean period. Buxbaum (1728) described it for the first time from the region around Istanbul (Constantinopolium) in Turkey and he also provided the first iconography of the species. It was overlooked by Linne, but later botanists who investigated Greece and the eastern Mediterranean, Sibthorp and Smith, described *Ornithogalum nanum* as new species. *Ornithogalum nanum* Smith in Sibthorp and Smith (1809) was
In addition, Speta (1990) described two new species, *O. exscapum pulvinus* in deflexed), visible pulvinus in O. sibthorpii, and absence of pulvinus in *O. exscapum*. Another informative parameter is bract/pedicel length ratio; in *O. sibthorpii* bract and pedicel are almost of the same length, while in *O. exscapum* bract is about half the length of the pedicel.

Comparative morpho-anatomical and cytotaxonomical studies of *Omnithogalum* species that belong to the group of small plants (overall length up to 10 cm) with hypogaeal scape, including *O. sibthorpii*, have been done to clearly describe morphologically similar species in the area of Turkey and the Balkan Peninsula (Zahariadi 1962, 1965, 1977, Speta 1990, 2000). Both authors recognized three separated species: *O. sintenisii* Freyn, *O. sigmoideum* and *O. sibthorpii*. In addition, Speta (1990) described two new species, *O. saginatum* Speta and *O. plutullum* Speta, first from Romania and Moldavia, and later from the Balkan Peninsula.

Moreover, Landström (1989) recognized two ecotypes (montane and lowland) of *O. sibthorpii* and compare them to the intermediate type, localised for the region of Istanbul (Turkey). These ecotypes are confirmed in Croatia as well, since for plants collected at higher altitudes in the continental region (Donji Lapac, Lika, Dinaric area, 900 m a.s.l.) the flowering time is in June. In Croatia, two distinct morphotypes of *O. sibthorpii* are observed: ascapose and scapose. The ascapose form (Fig. 1a) is characterized by a short scape, and the inflorescence is more or less sessile on the ground, with numerous flowers; pulvinus is strong and prominent. The scapose form (Fig. 1b) is differentiated with a scape up to 5 cm long, and an inflorescence with only a few (1 to 2) flowers (Fig. 1b). Comparing our results with those of Speta (1990) who investigated *O. sibthorpii* and related species in the eastern part of the Balkan Peninsula, we can confirm that both morphotypes are mostly present in the same population. Going further, he indicated that it is not unusual for two or more species from this group, that are morphologically indivisible, to coexist in one locality.

In the Balkan Peninsula, *O. sibthorpii* could be easily misidentified with *O. refractum*. The most informative discriminating characteristic is a bulb without bulbils in *O. sibthorpii* (Landström 1989, Rat et al. 2014). It is not unusual to find both species in close localities, when in addition to bulb parameters flower characteristics can contribute to species identification (Rat et al. 2014). Furthermore, according to Rat et al. (2017) seed testa micromorphology can be used as a taxonomically important character for the differentiation of *O. sibthorpii* from other omnithogalum species. Globose seeds are typical only for *O. sibthorpii* (Fig. 1e) and *O. refractum*, while, former is differentiated as species with rather small seeds.

Cytological review by Cullen and Ratter (1967), with doubtful discussion on plant material, reported three main cytotypes for *O. sibthorpii* ~ *O. sigmoideum* group, in the region from Caucasus to Italy, with numerous aloploid series reported from different sources (2n = 12, 16, 17, 18, 19, 20, 28). They did not undertake any morphological measurements, and it was impossible for them to compare morphotypes and cytotypes or to discuss in detail obtained results. Nonetheless, they recognized only two species, *O. sigmoideum* and *O. sintenisii*, while for them *O. sibthorpii* was a synonym of *O. sigmoideum*. An opposite view was presented by Speta (2000), who included both morpho-anatomical and cytological reports for 18 species that belong to this group. He recognized all species based on taxonomical characters, including the karyotypes described. It is clear from his results that *O. sibthorpii* is separated from all other species, with 2n = 14, 28 chromosome complements, while in *O. sigmoideum* they are 2n = 20, 24. Chromosome arrangement 2n = 18 was documented also by Speta (1990) in an unresolved discussion in short notes. In addition to these species, for *O. sintenisii* chromosome number 2n = 12 is recorded. Diverse chromosome numbers (2n = 14, 16, 18, 24, 28) for *O. sibthorpii* were recorded and documented from the Balkan Peninsula, by other authors.
as well. For Bulgaria, Markova (1972) reported three different chromosome numbers \(2n = 14, 16, 28\), while Lungeanu (1971) reported \(2n = 18, 24\) for Romania.

Following evolutionary patterns in different *Ornithogalum* groups, it can be recognized that in almost all subgenera there are several groups or complexes that are characterized with “high morphological variability” and extensive chromosome numbers among samples. By now, for most of them, systematic studies have been undertaken and it has been confirmed that every complex (i.e. *O. tenuifolium* in Africa and *O. umbellatum* in Europe) includes “good species” and “transitional forms” (cytotypes and morphotypes) that exist in nature thanks to vegetative reproduction (Stedje and Nordan 1984, 1987, van Raamsdonk 1985, van Raamsdonk and Heringa 1987, Andrić et al. 2015). Stedje and Nordan (1984) concluded that rapid evolutionary processes in *Ornithogalum*, visible as cytotype differentiation, do not express their changes in morphological characters, but do indicate the evolutionary progress in the taxon. This statement evidently can be accepted for the *O. sibthorpii* related group that was studied in this research, taking into consideration that many similarities were observed.

Acknowledgements

We would like to thank Zrinka Ljubešić ex-president of the Croatian Botanical Society (HBoD) for financial support during the field trips to Nin and to Donji Lapac. We are grateful to our colleagues Milenko Milović and Marija Pandža who provide a new locality of *O. sibthorpii* from Sukošan. The research work of Milica Rat for her PhD thesis was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-68/2020-14/200125).

References

Altinordu, F., Peruzzi, L., Yu, Y., He, X., 2016: A tool for the analysis of chromosomes: KaryoType. Taxon 65, 586–592.

Andrić, I., Kočić Tubić, N., Rat, M., Obreht Vidaković, D., 2015: Diversity and genetic structure of *Ornithogalum* L. (Hyacinthaceae) populations as revealed by RAPD-PCR Markers. Genetika (Beograd) 47, 275–288.

Ascherson, P.F.A., Graebner, A., 1905–1907: Synopsis der mit griechischen Gefäßpflanzenarten. Boissiera 13, 1–206.

Baker, J., 1873a: Revision of the genera and species of *Ornithogalum* (Liliaceae). III. Morphological analysis. Plant Systematics and Evolution 150, 179–190.

Baker, J., 1873b: Revision of the genera and species of *Scilleae* and *Chlorogalae*. Journal of Linnean Society of Botany 13, 209–266.

Buxbaum, J.C., 1728: Plantarum minus cognitarum. Centuria II. Typographia Academiae, Petropoli.

Cullen, J., Ratter, J., 1967: Taxonomic and cytological notes on Turkish *Ornithogalum*. Notes from the Royal Botanic Garden 27, 293–336.

Diklić, N., 1975: *Ornithogalum* L. In: Josipović, M. (ed.), Flora of SR Serbia vol. 7, 544–559. Serbien Academy of science and art, Belgrade (In Serbian).

Garbari, F., Giordani, A., Marcucci, R., Tornadore, N., 2003: The genus *Ornithogalum* L. (Hyacinthaceae) in Italy, XIV: towards a redefinition of infrageneric taxa, with new proposals. Bocconea 16, 269–281.

Govaerts, R. (ed.), 2019: World Checklist of Asparagaceae. Facilitated by the Royal Botanic Gardens, Kew. Retrieved December 20, 2018 from http://wcsp.science.kew.org/.

Greuter, W., Rechinger, K., 1967: Flora der Insel Kythera, gleichzeitig Beginn einer nomenklatorischen Überprüfung der griechischen Gefäßpflanzarten. Boissiera 13, 1–206.

Jong, K., 1997: Laboratory manual of plant cytological techniques. Royal Botanic Garden Edinburgh, Edinburgh.

Landström, T., 1989: The species of *Ornithogalum* L. subg. *Ornithogalum* (Hyacinthaceae) in Greece. PhD Thesis. University of Lund, Lund.

Lungeanu, I., 1971: Reports. In: Lave, A. (ed.), IOPB Chromosome numbers reports, XXXIII. Taxon 20, 610.

Markgraf, F., 1932: *Ornithogalum*. In: Hayek, A. (ed.), Prodromus Florae peninsulae Balcanicae, 76–83. Repertorium specierum novarum regni vegetabilis 30, Berlin.

Markova, M.M., 1972: Reports. In: Lave, A. (ed.), IOPB Chromosome numbers reports, XXXVI. Taxon 21, 339.

Martinez-Azorin, M., Crespo, M., Juan, A., 2013: *Ornithogalum* L. In: Rico, E., Crespo, M.B., Quintanar, A., Herrero, A., Aedo, C. (eds.), Flora Iberica. Plantas vasculares de la Península Iberica e Islas Baleares, 188–207. Real Jardín Botánico, CSIC, Madrid.

Nikolić, T. (ed.), 2019a: Flora Croatica Database. University of Zagreb, Faculty of Science. Retrieved December 19, 2019 from http://hirc.botanic.hr/fcd

Nikolić, T., 2019b: Flora Croatica – vascular for of the Republic of Croatia, vol. 4. Alfa d.d., Zagreb (In Croatian).

Parlatore, F., 1857: Flora Italiana, ossia descizione delle piante che crescono spontane o vegetano come tali in Italia e nelle isole ad essa aggiacenti, 435–450. Tipographia Le Monnier, Firenze.

Peruzzi, L., Passalacqua, N.G., 2002: Biosystematic and taxonomic considerations about Italian units of the genus *Ornithogalum* (Hyacinthaceae) showing reflexed pedicels. Webbia: Journal of Plant Taxonomy and Geography 57, 193–216.

van Raamsdonk, L.W.D. van, 1985: Crossing and selfing experiments in the *Ornithogalum umbellatum*angustifolium complex. Plant Systematics and Evolution 150, 179–190.

van Raamsdonk, L.D.W. van, Heringa, I., 1987: Biosystematic studies on the *umbellatum*-angustifolium complex in the genus *Ornithogalum* (Liliaceae). III. Morphological analysis. Nordic Journal of Botany 7, 631–637.

Radenkova, I., 1964: *Ornithogalum* L. In: Iordanov, D. (ed.), Flora of the People’s Republic of Bulgaria II, 277–288. Bulgarian Academy of Sciences, Sofia (In Bulgarian).

Rat, M., 2019: *Ornithogalum* sect. Heliocharmos Baker (Hyacinthaceae, Ornithogaloidae) in Balkan Peninsula and Pannonian Plain: revision of nomenclature, taxonomy and distribution (PhD Thesis). University of Novi Sad, Novi Sad (In Serbian).

Rat, M., Jovanović, Z., Stanisavljević, N., Radak, B., Bokić, B., Radović, S., Anačkov, G., 2014: A simple and efficient DNA isolation for *Ornithogalum* L. species (Hyacinthaceae, Asparagales). Botanica Serbica 38, 185–189.

Rat, M., Barina, Z., 2017: *Ornithogalum* L. In: Barina, Z. (ed.), Distribution atlas of vascular plants in Albania, 93–94. Hungarian Natural History Museum, Budapest.
Rat, M., Andrić, A., Anačkov, G., 2017: Deceptive taxonomic importance of the *Ornithogalum* (Asparagaceae) seed morphology. Plant Systematics and Evolution 303, 573–586.

Sibthorp, J., Smith, J.E., 1809: *Florae Graecae Prodromus: sive plantarum omnium enumeratio, quas in provinciis aut insulis Graeciae invent John Sibthorp*, vol. 1. Typis Richardi Taylor et Soch, London.

Sibthorp, J., Smith, J.E., 1823: *Flora Graeca Sipthropiana, Centuria quarta.* / Flora Graeca: sive plantarum rariorum historia, quas in provinciis aut insulis Graeciae. Typis Richardi Taylor, London.

Speta, F., 1990: *Ornithogalum sibthorpii* Greuter und O. *sigmoideum* Freyn et Sint. sind nicht identisch. Linzer biologische Beiträge 22, 787–829.

Speta, F., 1998: Hyacinthaceae, In: Kubitzki, K. (ed.), *The families and genera of vascular plants, flowering plants monocotyledons Liliaeae (except Orchidaceae)*, vol. 3, 261–285. Springer. Berlin.

Speta, F., 2000: Bemerkungen zu *Ornithogalum sintenisii* Freyn (Hyacinthaceae) und ähnlichen Arten. Phyton (Horn, Austria) 40, 115–140.

Stearn, W.T., 1984: Homonyms in the genus *Ornithogalum* L. (Liliaeae). Botanica Helvetica 94, 189–197.

Stearn, W.T., 1967: Sibthorp, Smith, the ‘Flora Graeca’ and the ‘Florae Graecae Prodromus’. Taxon 16, 168–178.

Stedje, B., Nordal, I., 1987: Cytogeographical studies of Hyacinthaceae in Africa south of the Sahara. Nordic Journal of Botany 7, 53–65.

Stevens, P.F., 2001 onwards: Angiosperm Phylogeny Website, Version 14. Retrieved December 16, 2019 from http://www.mobot.org/MOBOT/research/APweb/

Thiers, B., 2019: *Index Herbariorum: A global directory of public herbaria and associated staff*, New York Botanical Garden’s Virtual Herbarium. Retrieved March 3, 2019 from http://sweetgum.nybg.org/science/ih/

Zahariadi, C., 1962: Caracteres morphologiques, anatomiques et biologiques dans la taxonomie du genre *Ornithogalum*. Revue de Biologie 7, 5–41.

Zahariadi, C., 1965: Sous-genres et sections mesogees du genre *Ornithogalum* et la valeur comparative de leurs caracteres differentiels. Revue Roumaine de Biologie, Serie de botanique 4, 271–291.

Zahariadi, C., 1966: *Ornithogalum* L. In: Nyaradi E. (ed.), *Flora of Socialistic Republic of Romania*, 317–349. Academiei Republicii Socialiste Romania, Bukurest (In Romanian).

Zahariadi, C., 1977: Notes on the intrageneric classification of the genus *Ornithogalum* L. (Liliaceae). Botaniceskij Zhurnal 62, 1624–1639 (In Russian).

Zahariadi, C., 1980: *Ornithogalum* L. In: Tutin, T., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A. (eds.), *Flora Europaea* vol. 5, 35–40. Cambridge University Press, Cambridge.