Determining Multifunctional Genes and Diseases in Human Using Gene Ontology

Hisham Al-Mubaid¹, Sasikanth Potu¹, and M. Shenify²
¹Dept. of Computer Science. University of Houston - Clear Lake, Houston, TX 77058, USA
²University of Baha, Baha, KSA
¹Email: Hisham@uhcl.edu

Abstract
The study of human genes and diseases is very rewarding and can lead to improvements in healthcare, disease diagnostics and drug discovery. In this paper, we further our previous study on gene–disease relationship specifically with the multifunctional genes. We investigate the multifunctional gene–disease relationship based on the published molecular function annotations of genes from the Gene Ontology which is the most comprehensive source on gene functions. We present a computational approach based on path length between molecular function annotations as our main metric for estimating the semantics of gene functions and multifunctionality in connection with gene–disease association. We utilized functional genomics data from OMIM, the Gene Ontology, and GOA Annotation databases to compute the similarity between genes using the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. In this work, we use the functional annotations of a gene from the Gene Ontology Annotation (GOA) databases to compute the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. We utilized the relationship between the multifunctional genes and diseases in human. A great body of research has been conducted in the past two decades addressing the similarity between genes using various sources and most commonly using the Gene Ontology (GO) [5, 6]. GO has been extensively used to compute the similarity between genes (details in section 3) [19, 20]. In this work, we use the functional annotations of a gene from the Gene Ontology Annotation (GOA) databases to compute the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. In the GO, molecular function (mf) terms are organized as nodes in a tree-like directed acyclic graph (DAG). For example, Figure 1 exhibits 7 nodes representing 7 molecular function terms in GO [5, 6]. Based on the published molecular function annotations of genes from the GO, we examine the relationships between multifunctional genes and diseases and present a computational approach based on path length between mf annotations from Gene Ontology as our main metric for estimating the semantics of gene functions and multifunctionality in connection with gene – disease association.

We utilize functional genomics data from OMIM, the Gene Ontology, and GOA Annotation databases to compute the similarity between genes using the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. We utilized the relationship between the multifunctional genes and diseases in human. A great body of research has been conducted in the past two decades addressing the similarity between genes using various sources and most commonly using the Gene Ontology (GO) [5, 6]. GO has been extensively used to compute the similarity between genes (details in section 3) [19, 20]. In this work, we use the functional annotations of a gene from the Gene Ontology Annotation (GOA) databases to compute the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. In the GO, molecular function (mf) terms are organized as nodes in a tree-like directed acyclic graph (DAG). For example, Figure 1 exhibits 7 nodes representing 7 molecular function terms in GO [5, 6].

1. Introduction
The study of multifunctional genes and diseases in the human genome is a very rewarding work and can benefit the multifunctional genes and diseases in human. A great body of research has been conducted in the past two decades addressing the similarity between genes using various sources and most commonly using the Gene Ontology (GO) [5, 6]. GO has been extensively used to compute the similarity between genes (details in section 3) [19, 20]. In this work, we use the functional annotations of a gene from the Gene Ontology Annotation (GOA) databases to compute the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. We utilized the relationship between the multifunctional genes and diseases in human. A great body of research has been conducted in the past two decades addressing the similarity between genes using various sources and most commonly using the Gene Ontology (GO) [5, 6]. GO has been extensively used to compute the similarity between genes (details in section 3) [19, 20]. In this work, we use the functional annotations of a gene from the Gene Ontology Annotation (GOA) databases to compute the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. We utilized the relationship between the multifunctional genes and diseases in human. A great body of research has been conducted in the past two decades addressing the similarity between genes using various sources and most commonly using the Gene Ontology (GO) [5, 6]. GO has been extensively used to compute the similarity between genes (details in section 3) [19, 20]. In this work, we use the functional annotations of a gene from the Gene Ontology Annotation (GOA) databases to compute the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. We utilized the relationship between the multifunctional genes and diseases in human. A great body of research has been conducted in the past two decades addressing the similarity between genes using various sources and most commonly using the Gene Ontology (GO) [5, 6]. GO has been extensively used to compute the similarity between genes (details in section 3) [19, 20]. In this work, we use the functional annotations of a gene from the Gene Ontology Annotation (GOA) databases to compute the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. We utilized the relationship between the multifunctional genes and diseases in human. A great body of research has been conducted in the past two decades addressing the similarity between genes using various sources and most commonly using the Gene Ontology (GO) [5, 6]. GO has been extensively used to compute the similarity between genes (details in section 3) [19, 20]. In this work, we use the functional annotations of a gene from the Gene Ontology Annotation (GOA) databases to compute the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. We utilized the relationship between the multifunctional genes and diseases in human. A great body of research has been conducted in the past two decades addressing the similarity between genes using various sources and most commonly using the Gene Ontology (GO) [5, 6]. GO has been extensively used to compute the similarity between genes (details in section 3) [19, 20]. In this work, we use the functional annotations of a gene from the Gene Ontology Annotation (GOA) databases to compute the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. We utilized the relationship between the multifunctional genes and diseases in human. A great body of research has been conducted in the past two decades addressing the similarity between genes using various sources and most commonly using the Gene Ontology (GO) [5, 6]. GO has been extensively used to compute the similarity between genes (details in section 3) [19, 20]. In this work, we use the functional annotations of a gene from the Gene Ontology Annotation (GOA) databases to compute the shortest distance (path length) between the Molecular Function (mf) GO terms annotating the gene. We utilized the relationship between the multifunctional genes and diseases in human.

Figure 1: a small part of the GO representing 7 nodes from the molecular function aspect.
In other words, we utilized the functional GOA annotations of a gene to predict its multifunctionality and so to determine how likely that gene is associated with diseases. The main contribution of this work is in the new technique of determining multifunctional genes using GO *mf* path length which has never been used before as gene multifunctionality metric (or measure) to the best of our knowledge. Also we point out here that the relationship between diseases and multifunctional genes is not the main contribution of this paper.

2. Background and Related Work

There are several databases and online resources for functions and other information on human genes and the human genome. The NCBI may be regarded as one of the most official resources about human genes in terms of gene name, gene sequence, gene symbols, etc. [17]. For example, when it comes to gene identifier (gene Id) there are at least four gene Id codings as shown in Table 1: NCBI (enterz) gene Id, UniprotKB, MIM, …etc [18]. In this work we try to report multiple Id’s for each gene.

As reported by several research projects, multifunctional genes tend to have more association with diseases compared with non-multifunctional genes [1–4, 8–10]. Therefor the relationships between diseases and multifunctional genes is signification and proved [1, 10]. A multifunctional gene is a gene that is involved in several functions and activities, including molecular and cellular tasks, inside the cell [1-3, 8]. Typically, studying multifunctional genes can disclose more knowledge about diseases associated with the multifunctional genes. In this paper, we rely on the gene ontology (GO) which is the most popular repository of functional information about human genes [5, 6]. Pritykin, Gheresi, and Singh (2015) presented a comprehensive study of genome-wide multifunctional genes in human [1]. They found that multifunctional genes are significantly more likely to be involved in human disorders [1]. Also, they found that 32% of all multifunctional genes produced by their method are involved in at least one OMIM disorder, whereas the fraction of other annotated genes involved in at least one OMIM disorder is 21% [1, 7].

In [12], Salathe et al. investigated the multifunctionality of yeast genes and proteins for a different goal. They found a positive correlation between how many biological process (*bp*) GO terms a gene is annotated with and its evolutionary conservation in yeast; that is, they found highly significant negative correlation between number of *bp* GO terms and rate of change of yeast genes [12]. Also in [1], they observed that that multifunctional genes tend to be more evolutionarily conserved.

A method for identifying novel moonlighting proteins from current functional annotations in public databases was proposed by Khan et al. (2013) in [3]. They identified potential moonlighting proteins in the Escherichia coli K-12 genome by examining clusters of GO term annotations taken from UniProt and constructed three datasets of experimentally confirmed moonlighting proteins [3].

In another study of multifunctional genes [13], Clark and Radivojac (2011) discovered a statistically significant positive correlation between the number of GO biological process leaf terms a gene has and its number of Pfam domains and are usually longer [13].

3. Methods and Techniques

A great body of research has been conducted in the past two decades addressing the similarity between genes using various sources and most commonly using the Gene Ontology (GO) [20]. GO is the main and most comprehensive source of information on gene functions, processes, and cellular localizations [5, 6, 19]. In the past decade or so, it has been used widely and extensively to predict and validate scientific results and findings related to genes [5, 6, 16, 19]. Also, GO has been used extensively to compute the semantic similarity between genes using the GO annotation terms of genes [20]. The semantic similarity measure is a function that estimates the similarity (or distance) between two genes as a numeric value [19, 20]. Typically, the similarity between two genes will be computed as a function of the similarity between their GO annotation terms.

Basically the similarity $Sim(g_1, g_2)$ between two genes g_1 and g_2 can be a similarity function $Sim(.,.)$ between the GO annotation terms of g_1 and g_2:

$$Sim(g_1, g_2) = Sim_i(TS_1, TS_2) \ldots$$ \hspace{1cm} (1)

where $Sim_i(g_1, g_2)$ is the similarity between genes g_1 and g_2; $Sim_i(TS_1, TS_2)$ is the similarity between GO term sets TS_1 and TS_2; and TS_1 and TS_2 are the sets of GO terms annotating genes g_1 and g_2 respectively. That is $TS_i = \{t_1, \ldots, t_n\}$ are the GO terms annotating gene g_i. In this paper we would like to use the path length (shortest distance) between GO terms in the molecular function (mf) aspect of GO as a metric of gene multifunctionality in connection with gene–diseases relationship. Let $PL(t_1, t_2)$ be the shortest path length between terms t_1, t_2 in the GO DAG (see Figure 2). For example, in Figure 2, the path length between GO terms (nodes) A and B is 6, while between B and C the path length is 3 using edge counting. Let

$$Dist_f(g_k) = \max_{i,j} PL(t_i, t_j) \ldots$$ \hspace{1cm} (2)
where \(t_i, t_j \) are two GO annotation terms for gene \(g_k \). That is, the \(mf \) distance \(D_{mf}(g_k) \) of gene \(g_k \) is the maximum pair-wise distance of all \(mf \) terms of gene \(g_k \). For example, in Table 1, we can see that gene \(COL2A1 \) (UniprotKB: P02458; gene Id: 1280; MIM: 120140) has four GO terms (in the molecular function aspect) representing four different functions that this gene is involved in as shown in Figure 2 (nodes \(A \), \(B \), \(C \), and \(D \)), and these four \(mf \) GO terms are:

- GO:0030020 extracellular matrix structural constituent conferring tensile strength
- GO:0042802 identical protein binding
- GO:0046872 metal ion binding
- GO:0048407 platelet-derived growth factor binding

The distance (shortest path length) between these four \(mf \) terms, as we can see in Figure 8, ranges from 3 (between \(B \) and \(C \)) to 7 (between \(A \) and \(C \)). If a gene is involved in two molecular functions that are relatively far apart in the \(mf \) aspect of the GO then these two functions are highly distinct (different) and more likely the gene is more candidate to be multigenic. In this paper we investigate and analyze the maximum distance, equation (2), of all-pair \(mf \) terms of a gene and its relationship with multifunctionality and diseases for human genes.

4. Evaluation Results and Discussion

We conducted a number of experimental evaluations on human gene annotations, human diseases, and multifunctionality. We used data from Online Mendelian Inheritance in Man \textit{OMIM} \cite{7} on gene and disease relationships; also used GOA database for gene functional annotations from the molecular function aspect. We further verified some information and results from \textit{QuickGO} and \textit{NCBI} \cite{17,21}. In the first experiment, as shown in Figure 3, we examined all human genes available in OMIM \cite{7} that have at least on molecular function \(mf \) annotation in the gene ontology \cite{5,6} (roughly >16,000 genes). On average each gene is annotated (associated) with 5.6 molecular functions (i.e., 5.6 \(mf \) terms per gene). Next, we examined the top 20 genes associated with highest number of diseases according to OMIM and found that on average each one of these genes is annotated with 11.5 molecular functions in the gene ontology as illustrated in Figure 3. This result is significant (\(p < 9e^{-8} \), significance by hypergeometric test) which is a clear indication that more molecular functions for a given gene indicate the multifunctionality of the gene and more likelihood of being a disease-gene.

Let a disease-gene be a human gene that is associated with one or more phenotypes in the OMIM database \cite{7}, otherwise let us call it a non-disease gene. Next, we proved that disease-genes have significantly higher distance in their molecular function terms in the gene ontology GO (Figure 4) compared with all other genes in the OMIM database \cite{7,16}. Figure 4 illustrates the significant difference in the GO term (node) distance between \(mf \) terms of all genes vs genes associated with highest number of phenotypes in OMIM. It is shown that the maximum distance between all molecular function \(mf \) terms in the GO is on average 7.75 for all OMIM genes whereas it is 10.8 for top 20 disease-genes. From these two evaluations, it is very clear that the human genes that are associated with the most number of
On average genes associated with highest number of OMIM phenotypes have higher distance between their mf terms (10.8) compared with all genes (7.75). This makes these genes that are associated with disease more likely to be multifunctional.

Next, we investigated the maximum distance between mf terms for all genes using the gene ontology annotations GOA. The results are shown in Figure 5. As shown, the largest number of genes (~1400) have distance of 12 between their mf terms and the least is distance 2 (~220 genes); Figure 5.

To further the study, we examined the total number of mf terms and max GO mf term distance for the top 20 genes with the highest number of associated diseases. From OMIM, we extracted the top 20 genes having the highest number of phenotypes. These genes are shown in Table 1 (we included MIM, UniprotKB, and NCBI gene Id for each gene). We ran our technique and computed number of GO terms and the maximum distance between GO mf terms for each one of these 20 genes as shown in Table 1. Evidently, these too heavily disease-associated genes are multifunctional as their mf term distance average is 10.8 which is significantly higher than the average of all genes (which is 7.8); see Figure 4 and Table 1. We say multifunctional because each one of these genes is associated on average with 11.5 different molecular functions (the average is 5.6).

Moreover, we randomly extracted 20 non-disease genes (selected from OMIM randomly). These genes are not associated with any phenotype in OMIM. We analyzed these genes examining their molecular functions (mf) in GO and the distance between their mf terms and the results are in Table 2 and illustrated in Figure 6. As shown in Table 2, these genes have on average max distance of 6.4 which is not high enough compared with disease-genes (average 10.8). In fact, these genes have lower max distance (6.40) than the average of all human genes (which is 7.75 as shown in Figure 4). Moreover, these genes are annotated with an average of 3.6 mf terms in the GO which is significantly lower than the average of all genes 5.6 mf terms (shown in Figure 3).

Finally, in the Gene Ontology Annotation GOA database, all genes having only one molecular function (GO mf term) were extracted and then we randomly selected a set of 20 genes from them shown in Table 3. Thus, these genes are highly likely non-multi-functional since each gene is associated with only one mf term in the GO. Therefore, we expect these genes to be non-disease genes more often than not. This randomly selected set of genes were analyzed and found that only four of them (4 out of 20 or 20%) are associated with phenotypes (disease genes) and the remaining (80%) are not (non-disease genes). This finding is fairly significant (hypergeometric test, p < 8e-9) as the ratio in OMIM database is more than 80% of genes having mf annotations are associated with at least one phenotype.

![Figure 4: On average genes associated with highest number of OMIM phenotypes have higher distance between their mf terms (10.8) compared with all genes (7.75). This makes these genes that are associated with disease more likely to be multifunctional.](image)

![Figure 5: Illustration of number of genes for each value of maximum distance between GO mf terms of all OMIM genes.](image)
5. Conclusion

This paper presents a method for examining the relationships between diseases from OMIM database and gene ontology annotations of human genes using the molecular function aspect. Specifically, we used the distance between the molecular function mf annotation terms as an indicator or metric of gene multifunctionality. Numerous studies have shown that multifunctional genes are more likely associated with diseases compared with non-multifunctional genes [1, 3, 9, 8]. Therefore, we investigated the multifunctionality of a gene using the shortest distance between mf GO terms of the gene. The main goal and contribution of this paper is in the way of identifying and determining multifunctional genes using GO mf path length and using it as a gene multifunctionality metric which has never been used before to the best of our knowledge. The evaluation results proved that gene multifunctionality indicated by GO term distance is highly correlated with gene–disease association. We showed that, for example, the top 20 genes associated with the highest number of phenotypes in the OMIM database exhibit significantly higher GO distance (path length) compared with the average of all human genes in OMIM. We also showed that genes not associated with any disease exhibit significantly lower GO distance compared with all human genes in OMIM; and genes annotated with only one GO mf terms have significantly lower disease association compared with all human genes; and more results reported in section 4. All these findings clearly indicate the existence of this interesting correlation. Further study may be needed for a genome-wide correlation investigation with all aspects of GO with all human diseases in OMIM.

References

[1] Y. Pritykin, D. Ghersi, M. Singh. Genome-Wide Detection and Analysis of Multifunctional Genes. PLOS Computational Biology, October 5, 2015
[2] van de Peppel J, Holstege FCP (2005) Multifunctional genes. Molecular Systems Biology 1: 1–2. doi: 10.1038/msb4100006, 2005.
[3] I. Khan, Y. Chen, T. Dong, Hong X, Takeuchi R, et al. (2014) Genome-scale identification and characterization of moonlighting proteins. Biology Direct 9: 30. doi: 10.1186/s13062-014-0030-9 PMID: 25497125, 2014.
[4] Becker E, Robisson B, Chapple C, Guénoche A, Brun C (2012) Multifunctional proteins revealed by overlapping clustering in protein interaction network. Bioinformatics 28: 84–90. doi: 10.1093/bioinformatics/btr621 PMID: 22080466, 2012.
[5] Ashburner et al. Gene Ontology: tool for the unification of biology (2000) Nat Genet 25(1):25-9. Online at Nature Genetics.
[6] The Gene Ontology Consortium. Gene Ontology Consortium: going forward. (2015) Nucl Acids Res 43 Database issue D1049–D1056. Online at Nucleic Acids Research, 2015.
[7] Online Mendelian Inheritance in Man, OMIM. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD), May 2016. World Wide Web URL: http://omim.org/
[8] Hernández S, Ferragut G, Amelia I, Perez-Pons J, Pinol J, et al. (2014) MultitaskProtDB: a database of multitasking proteins. Nucleic Acids Research 42: D517–D520. doi: 10.1093/nar/gkt1153. pmid:24253302, 2014.
[9] Mani M, Chen C, Amblee V, Liu H, Mathur T, et al. (2015) Moonprot: a database for proteins that are known to moonlight. Nucleic Acids Research 43: D277–D282, pmid:25324305, 2015.
[10] A. Day, J. Dong, V. A. Funari, B. Harry, S.P. Strom, D.H. Cohn, and S. F. Nelson. Disease Gene Characterization through Large-Scale Co-Expression Analysis. PLoS ONE Vol.4, Issue 12, 2009.
[11] J. Gillis, P. Pavlidis (2013) Assessing identity, redundancy and confounds in gene ontology annotations over time. Bioinformatics 29: 476–482. doi: 10.1093/bioinformatics/bts727, 2013.
[12] M. Salathe M, Ackermann M, Bonhoeffer S (2006) The effect of multifunctionality on the rate of evolution in yeast. Molecular Biology and Evolution 23: 721–722, 2006.
[13] W.T. Clark, Radivojac P (2011) Analysis of protein function and its prediction from amino acid sequence. Proteins: Structure, Function, and Bioinformatics 79: 2086–2096, 2011.
[14] S. Hernandez et al. (2011) Do moonlighting proteins belong to the intrinsically disordered protein class? Proteomics Bioinformatics., 5, 262–264, 2011.
[15] S. Hernandez et al. (2014) MultitaskProtDB: a database of multitasking proteins. Nucleic Acids Res., 42, D517–D520, 2014.
[16] H. Al-Mubaid et. al. Assessing Gene-Disease Relationship with Multifunctional Genes Using GO. IEEE AICCSA 2016.
[17] The National Center for Biotechnology Information, NIH, USA: https://www.ncbi.nlm.nih.gov
[18] NCBI. Clearing Up Confusion with Human Gene Symbols & Names Using NCBI Gene Data. NIH, USA, https://ncbiinsights.ncbi.nlm.nih.gov/2016/11/07/clearing-up-confusion-with-human-gene-symbols-names-using-ncbi-gene-data/, 2016.
[19] K. Glass and M. Girvan. Finding New Order in Biological Functions from the Network Structure of Gene Annotations. PLoS Comput Biol. 11(11): 2015.
[20] A. Nagar and H. Al-Mubaid. A Hybrid Semantic Similarity Measure for Gene Ontology Based On Offspring and Path Length. IEEE CIBCB-2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology. August, 2015, Canada. DOI: 10.1109/CIBCB.2015.7300290.
[21] QuickGO http://www.ebi.ac.uk/QuickGO
Table 1: Top 20 disease genes with highest number of phenotypes in OMIM.

No.	Gene MIM	UniProtKB	Gen Id	Gene Symbol	Numbr of associated phenotypes	Min mf term distance	Max mf term distance	Nmbr of mf terms
1	120140	P02458	1280	COL2A1	16	3	7	4
2	134934	P22607	2261	FGFR3	14	2	11	8
3	176943	P21802	2263	FGFR2	14	2	11	10
4	150330	P02545	4000	LMNA	12	3	3	2
5	171834	P42336	5290	PIK3CA	11	1	11	10
6	190070	P01116	3845	KRAS	10	2	13	6
7	300017	P21333	2316	FLNA	10	1	11	18
8	120120	Q02388	1294	COL7A1	9	1	9	3
9	134797	P35555	2200	FBN1	9	1	8	8
10	191170	P04637	7157	TP53	9	1	12	31
11	601728	P60484	5728	PTEN	9	1	13	17
12	605427	TRPV4	59341	TRPV4	9	1	13	14
13	121014	P17302	2697	GJA1	8	1	13	13
14	139320	P05647	2778	GNAS	8	1	14	12
15	141900	P68871	3043	HBB	8	1	9	8
16	600163	Q14524	6331	SCN5A	8	1	15	17
17	607108	P26367	5080	Pax6	8	1	14	17
18	611731	P25054	324	APC	8	1	10	12
19	104311	P49768	5663	PSEN1	7	1	13	15
20	120150	p02452	1277	COL1A1	7	1	6	5

Mean: 9.7 1.35 10.8 11.5

Table 2: Randomly selected 20 non-disease genes.

No.	Gene MIM	UniProtKB	Gene Id	Gene Symbol	Nmbr of mf terms	Max mf distance
1	100640	P0352	216	ALDH1A1	5	10
2	606380	Q09PV8	53829	P2R313	1	0
3	607097	Q0NSAO	55867	SLC22A11	4	8
4	603555	P63272	6827	SUPT4H1	4	8
5	600295	P16680	4879	NPPB	3	2
6	604637	Q95158	11247	NPHP4	2	3
7	154360	Q43451	8972	MGAM	6	9
8	610808	A0A087X179	10272-3859	TBC1D3E	1	0
9	605664	Q95235	10112	KIF20A	6	13
10	015504	Q15504	11097	NUP12	4	8
11	164060	P55209	4673	NAP1L1	2	5
12	602223	Q13541	1978	EIF4EBP1	4	8
13	115442	P19784	1459	CSNK2A2	4	11
14	600187	P63241	1984	EIF5A	7	8
15	607020	Q8WWWW	83593	RASSF5	3	8
16	602500	Q14789	2804	GOLGB1	4	7
17	611811	Q96IL9	84449	ZNF333	2	6
18	600141	P61604	3336	HSPE1	6	7
19	607698	Q96JN0	84458	LCOR	1	0
20	185860	Q7L03	9900	SV2A	3	7

Average 3.6 6.40
Figure 6: Illustration of different types of human genes compared by their associated number of molecular functions mf from the gene ontology GO.

Table 3: A list of 20 genes randomly selected from all human genes having only one mf GO term (~3900 genes).

Seq.	MIM	Gene Id	Gene symbol	Phenotypes	Notes
1	300618	9767	JADE3	0	non-disease-gene
2	605006	23401	FRAT2	0	non-disease-gene
3	603835	4705	NDUFA10	1	disease-gene
4	613993	58498	MYL7	0	non-disease-gene
5	610337	55665	URGCP	0	non-disease-gene
6	603199	10207	PATJ	0	non-disease-gene
7	612435	28232	SLCO3A1	0	non-disease-gene
8	608680	51002	TPRKB	0	non-disease-gene
9	611000	26122	EPC2	0	non-disease-gene
10	120220	1291	COL6A1	1	disease-gene
11	146790	2212	FCGR2A	1	disease-gene
12	605783	10286	BCA52	0	non-disease-gene
13	602051	5301	PIN1P1	0	non-disease-gene
14	300794	441519	CT45A3	0	non-disease-gene
15	607051	147323	STAR0D6	0	non-disease-gene
16	602502	2800	GOLGA1	0	non-disease-gene
17	142987	3231	HOXD1	0	non-disease-gene
18	602908	10741	RBBP9	0	non-disease-gene
19	607139	2175	FANCA	0	disease-gene
20	609933	130120	REG3G	0	non-disease-gene