NEW RESULTS ON COLLECTIVITY WITH ATLAS

KRZYSZTOF W. WOŹNIAK

On behalf of the ATLAS Experiment,
Institute of Nuclear Physics, Polish Academy of Sciences
Krakow, Poland

ABSTRACT

The collective phenomena are observed not only in heavy ion collisions, but also in the proton-nucleus and in high-multiplicity pp collisions. The latest results from this area obtained in ATLAS are presented. In p+Pb collisions the emission source of particles is measured using the HBT method. The analysis of p+Pb data collected in 2016 provides information on the elliptic flow of charged hadrons and muons. Low multiplicity events from pp, p+Pb and peripheral Pb+Pb collisions are studied with the cumulant methods. A deeper understanding of Pb+Pb collisions is provided by the analysis of longitudinal fluctuations of the collective flow parameters.

PRESENTED AT

The Fifth Annual Conference on Large Hadron Collider Physics
Shanghai Jiao Tong University, Shanghai, China
May 15-20, 2017

1Work supported in part by the National Science Centre, Poland, grant 2015/18/M/ST2/00087 and by PL-Grid Infrastructure.
Figure 1: The ratio of exponential radii $R_{\text{out}}/R_{\text{side}}$ (left) as a function of the pair transverse momentum, k_T, in four centrality bins [2] and (right) as a function of the angular distance from the second-order event plane $2(\phi_k - \Psi_2)$ in five bins of elliptic flow vector magnitude $|q_2|$ [3]. The points for different intervals of $|q_2|$ are offset for visibility, as indicated in the legend.

1 Introduction

Strong collective effects were first found in heavy ion collisions, where they indicate a creation of the Quark-Gluon Plasma. This phase of matter manifests azimuthal correlations among produced particles, referred to as collective particle flow. However, similar effects are observed in proton-nucleus and even in high-multiplicity proton-proton collisions. The measurements of Pb+Pb, p+Pb and pp collisions at energies available from the Large Hadron Collider (LHC) and performed using the ATLAS detector [1] allow to study collective phenomena in detail. The obtained results are important for understanding the particle production at LHC energies.

2 Results

One of the questions, which can be answered by analysing correlations among produced particles is the size of their emission source. The Bose-Einstein correlations of identical bosons, as a function of the difference of their momenta, $q = p^a - p^b$, can be parameterized as:

$$C_{\text{BE}}(q) = 1 + e^{||Rq||},$$

where the diagonal elements of the matrix R are R_{out}, R_{side} and R_{long}. These parameters were studied for p+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [2] as a function of k_T (where $k = 0.5(p^a - p^b)$) and the number of nucleons participating in collisions, N_{part}. Especially interesting is the ratio $R_{\text{out}}/R_{\text{side}}$ which represents asymmetry of the source. In Figure 1(left) one can see that this ratio depends on k_T, which indicates radial expansion of the source of particles [2]. This ratio depends also on the orientation of the correlated pairs (represented by ϕ_k, azimuthal angle of k_T) with respect to the event plane, Ψ_2, as shown in Figure 1(right). The $R_{\text{out}}/R_{\text{side}}$ ratio is larger out of plane than in plane ($\phi_k \approx \Psi_2$) as R_{out} is enhanced out of plane and R_{side} does not change much with $\phi_k - \Psi_2$ [3].

In the studies of azimuthal correlations among charged particles the Fourier decomposition is used:

$$\frac{dN_{\text{ch}}}{d\phi} \sim 1 + 2 \sum_{n=1}^{\infty} v_n(p_T, \eta) \cos(n(\phi - \Psi_n)).$$

The flow harmonics v_n can be obtained also from two-particle correlations. In pp and p+Pb collisions these correlations contain large contributions from other sources (non-flow), which have to be subtracted. ATLAS
Figure 2: The v_2 values, as a function of N_{ch}^{rec}, obtained (left) in $p+\text{Pb}$ collisions at 8.16 TeV and 5.02 TeV and (right) in $p+\text{Pb}$ collisions at 8.16 TeV from $h-h$ correlations (circles) and $h-\mu$ correlations (squares) [5].

Figure 3: Multiplicity dependence of (left) $v_2\{2,|\Delta\eta|>2\}$, $v_2\{4\}$, $v_2\{6\}$ and $v_2\{8\}$ for $p+\text{Pb}$ collisions at 5.02 TeV and low-multiplicity $\text{Pb}+\text{Pb}$ collisions at 2.76 TeV and (right) $v_2\{2,|\Delta\eta|>2\}$ for pp collisions at 5.02 TeV and 13 TeV, $p+\text{Pb}$ collisions at 5.02 TeV and low-multiplicity $\text{Pb}+\text{Pb}$ collisions at 2.76 TeV [6].

applies a template method [4] to remove them. In Figure 2 the elliptic flow v_2 in $p+\text{Pb}$ collisions at 5.02 TeV and 8.16 TeV for all hadrons ($h-h$) and for hadron-muon ($h-\mu$) correlations (at 8.16 TeV) is shown as a function of charged-particle multiplicity, N_{ch}^{rec} [5]. There is no dependence of v_2 on the energy of collisions and a very weak increase with multiplicity. The values of $v_2^{h-\mu}$ reach only about 0.6 v_2^{h-h}.

The non-flow effects are most pronounced in low-multiplicity events as they usually involve relatively small number of particles in limited kinematical range (resonance decays, jets) and are thus suppressed in multi-particle correlations. Such correlation can be used to calculate cumulants, $c_n\{2k\}$ [6], closely related to flow harmonics:

$$v_n\{2\} = \sqrt{c_n\{2\}}, \quad v_n\{4\} = \sqrt{-c_n\{4\}}, \quad v_n\{6\} = \sqrt[3]{-c_n\{6\}/4}, \quad v_n\{8\} = \sqrt[4]{-c_n\{8\}/33}. \quad (3)$$

In the case of $c_n\{2\}$ a separation of particles in pseudorapidity ($|\Delta\eta|>2$) is required in calculations of $v_n\{2,|\Delta\eta|>2\}$ to suppress short-range correlations. In Figure 3 elliptic flow v_2 values obtained for $p+\text{Pb}$, $\text{Pb}+\text{Pb}$ and pp collisions using different multi-particle cumulants are compared [6]. While the $v_2\{2k\}$ values are similar (for $k=2, 3, 4$), those for $k=1$ with $|\Delta\eta|>2$ requirement are larger. Comparison of
Figure 4: The \(c_2\{4\} \) cumulants in \(p+Pb \) collisions at 5.02 TeV calculated for charged particles with (left) 0.3 < \(p_T < 3 \) GeV and (right) 0.5 < \(p_T < 5 \) GeV compared across the three cumulant methods \[7\].

![Figure 4: The \(c_2\{4\} \) cumulants in \(p+Pb \) collisions at 5.02 TeV calculated for charged particles with (left) 0.3 < \(p_T < 3 \) GeV and (right) 0.5 < \(p_T < 5 \) GeV compared across the three cumulant methods \[7\].](image1)

Figure 5: The \(v_2\{4\} \) values calculated for charged particles with 0.3 < \(p_T < 3 \) GeV using the three-subevent method in \(pp \) collisions at (left) 5.02 TeV, (middle) 13 TeV and (right) in \(p+Pb \) collisions at 5.02 TeV. They are compared to \(v_2 \) obtained from a two-particle correlation analysis using a template fit procedure (solid circles) or peripheral subtraction (solid line) to remove non-flow effects \[7\].

![Figure 5: The \(v_2\{4\} \) values calculated for charged particles with 0.3 < \(p_T < 3 \) GeV using the three-subevent method in \(pp \) collisions at (left) 5.02 TeV, (middle) 13 TeV and (right) in \(p+Pb \) collisions at 5.02 TeV. They are compared to \(v_2 \) obtained from a two-particle correlation analysis using a template fit procedure (solid circles) or peripheral subtraction (solid line) to remove non-flow effects \[7\].](image2)

Figure 6: The number of sources inferred from \(v_2\{2\} \) and \(v_2\{4\} \) using Eq. 4 in \(pp \) and \(p+Pb \) collisions at 13 TeV and 5.02 TeV, respectively, as a function of charged-particle multiplicity, \(N_{ch}^{Sel} \), obtained by selecting charged particles with (left) 0.3 < \(p_T < 3 \) GeV and (right) 0.5 < \(p_T < 5 \) GeV \[7\].

![Figure 6: The number of sources inferred from \(v_2\{2\} \) and \(v_2\{4\} \) using Eq. 4 in \(pp \) and \(p+Pb \) collisions at 13 TeV and 5.02 TeV, respectively, as a function of charged-particle multiplicity, \(N_{ch}^{Sel} \), obtained by selecting charged particles with (left) 0.3 < \(p_T < 3 \) GeV and (right) 0.5 < \(p_T < 5 \) GeV \[7\].](image3)
\[v_2(2, |\Delta\eta| > 2) \] for different systems shows an increase with the size of colliding projectiles for events with the same number of produced particles. The \(v_2 \{2k\} \) harmonics do not change with the multiplicity and the energy for \(pp \) collisions while are increasing with multiplicity for \(p+Pb \) and \(Pb+Pb \) collisions.

Further suppression of short range correlations can be achieved if in the calculations of correlations, used to obtain cumulants, particles from different ranges of pseudorapidity (i.e. subevents) are used \[7\]. For \(c_2 \{4\} \) negative values are expected, as otherwise \(v_2 \{4\} \) can not be calculated using Eq. \[5\]. In Figure \[4\] one can see that positive \(c_2 \{4\} \) are obtained at low multiplicities, but are reduced in two- and especially three-subevent cumulant methods. The \(v_2 \{4\} \) values from three-subevent method are lower than \(v_2 \{2\} \) from peripheral subtraction or template fit method (Figure \[5\]). This difference can be interpreted as a result of event-by-event flow fluctuations, which are closely related to the effective number of sources, \(N_s \), for particle production:

\[
\frac{v_2 \{4\}}{v_2 \{2\}} = \left(\frac{4}{3 + N_s} \right)^{1/4}.
\]

The number of sources shown in Figure \[6\] is similar for \(pp \) and \(p+Pb \) collisions and for the latter it increases from 10 to 20 in the full available event-multiplicity range.
For events with large multiplicities, such as measured in Pb+Pb collisions at 5.02 TeV, standard methods of calculation of flow harmonics are sufficiently robust against non-flow effects. In Figure 7 (left) v_n, for $n = 2 – 7$, as a function of p_T in 20-30% centrality interval are shown. Flow harmonics up to v_7 are non-zero. The v_2 is 0.05 even for $p_T > 20$ GeV. Relatively large v_2 for particles with high transverse momenta means that also very energetic partons are interacting in the QGP. This observation is consistent with the measured suppression of high-p_T charged hadrons as quantified by the nuclear modification factor, R_{AA}.

In Figure 7 (right) one can see that $R_{AA} < 1$ in the same centrality and p_T range.

A deeper understanding of flow phenomena may provide study of the dependence of flow fluctuations on position in pseudorapidity using correlators $r_{n|n;k}$ and $R_{n,n|n,n}$ (see Ref. [10] for definitions). Assuming that their dependence on pseudorapidity is linear it can be parameterized as:

$$r_{n|n;k} \approx 1 - 4 \frac{F_{n;k}}{n} \eta \quad \text{and} \quad R_{n,n|n,n} \approx 1 - 4 \frac{F_{twi}}{n} \eta,$$

where $F_{n;k} = F_{asy} + F_{twi}$, F_{asy} and F_{twi} are decorrelation parameters connected with magnitude (asymmetry) and twist fluctuations, respectively. In Pb+Pb collisions the decorrelation parameters $F_{n;k}$ are similar for all centralities but depend on the energy of the collision and are 10-16% larger at 2.76 TeV than at 5.02 TeV (see Figure 8 (left)). On the other hand the magnitude and twist decorrelation parameters, shown in Figure 8 (right), are approximately constant for $N_{part} > 100$. In the whole multiplicity range $F_{asy} \approx F_{twi}$ for the same n.

3 Conclusions

Studies of correlations among particles produced in different types of collisions available at LHC provide valuable information on properties of their source. In $p+Pb$ collisions the volume from which particles are emitted has an elongated shape and undergoes a radial expansion. The flow of muons originating from b or c quarks is much smaller than that of charged hadrons. Results on flow harmonics obtained using cumulant methods clearly show that the non-flow contributions are very important in low-multiplicity events and need to be properly subtracted. In new detailed studies of Pb+Pb collisions non-zero flow harmonics up to v_7 were measured. Analysis of longitudinal fluctuations of flow harmonics reveals decorrelation effects which are stronger at lower collision energy, but similar when decomposed into magnitude and twist contributions.

References

[1] ATLAS Collaboration, JINST 3 (2008) S08003.
[2] ATLAS Collaboration, arXiv:1704.01621 [hep-ex], submitted to Phys. Rev. C.
[3] ATLAS Collaboration, ATLAS-CONF-2017-008, https://cds.cern.ch/record/2244818.
[4] ATLAS Collaboration, Phys. Rev. Lett. 116 (2016) 172301.
[5] ATLAS Collaboration, ATLAS-CONF-2017-006, https://cds.cern.ch/record/2244808.
[6] ATLAS Collaboration, arXiv:1705.04176 [hep-ex], submitted to EPJC.
[7] ATLAS Collaboration, ATLAS-CONF-2017-002, https://cds.cern.ch/record/2244764.
[8] ATLAS Collaboration, ATLAS-CONF-2016-105, https://cds.cern.ch/record/2220372.
[9] ATLAS Collaboration, ATLAS-CONF-2017-012, https://cds.cern.ch/record/2244824.
[10] ATLAS Collaboration, ATLAS-CONF-2017-003, https://cds.cern.ch/record/2244796.