Cognitive diagnosis models (CDMs) are a family of discrete latent attribute models that serve as statistical basis in educational and psychological cognitive diagnosis assessments. CDMs aim to achieve fine-grained inference on individuals' latent attributes, based on their observed responses to a set of designed diagnostic items. In the literature, CDMs usually assume that items require mastery of specific latent attributes and that each attribute is either fully mastered or not mastered by a given subject. We propose a new class of models, partial mastery CDMs (PM-CDMs), that generalizes CDMs by allowing for partial mastery levels for each attribute of interest. We demonstrate that PM-CDMs can be represented as restricted latent class models. Relying on the latent class representation, we propose a Bayesian approach for estimation. We present simulation studies to demonstrate parameter recovery, to investigate the impact of model misspecification with respect to partial mastery, and to develop diagnostic tools that could be used by practitioners to decide between CDMs and PM-CDMs. We use two examples of real test data – the fraction subtraction and the English tests – to demonstrate that employing PM-CDMs not only improves model fit, compared to CDMs, but also can make substantial difference in conclusions about attribute mastery. We conclude that PM-CDMs can lead to more effective remediation programs by providing detailed individual-level information about skills learned and skills that need to study.

1. Introduction. Cognitive diagnosis assessments provide information on an individual’s latent traits – skills, knowledge components, personality traits, or psychological disorders – based on his or her observed responses to carefully designed items. Compared with traditional tests for measuring proficiency that often assume the existence of a unidimensional latent trait, cognitive diagnosis models (CDMs) focus on detecting the presence or absence of several distinct skills or traits, also known as latent attributes. The information on “mastery” or “nonmastery” of the given skill set for a given individual – a cognitive diagnosis – is used for designing targeted intervention strategies to remedy those latent attributes that have not been mastered yet.

CDMs are tools that provide a cognitive diagnosis profile for every respondent. Even though the earliest cognitively diagnostic models were proposed in 1980s, this topic has gained great popularity in recent years due to the advancement of computation power needed for handling complex models and also due to the models’ desirable diagnostic nature of providing informative cognitive profiles for every respondent (Tatsuoka, 2009; Rupp et al., 2010). Various CDMs have been developed under different assumptions about cognitive processes (e.g., DiBello et al., 1995; Junker and Sijtsma, 2001; de la Torre and Douglas, 2004; Templin and Henson, 2006; von Davier, 2008; Henson et al., 2009; de la Torre, 2011). Two
notable CDMs are the basic Deterministic Input Noisy output “And” gate (DINA) model (Junker and Sijtsma, 2001), which requires only two parameters for each item regardless of the number of attributes measured by the item, and the more complex Generalized DINA (GDINA) model (de la Torre, 2011), which includes many commonly used CDMs as special cases.

Most CDMs currently assume binary classifications – mastery or nonmastery – for latent attributes. As a consequence, when partial or incomplete mastery is possible, heterogeneity in response data may not be well accounted for by standard CDMs. Likewise, standard CDMs with binary attributes may not be able to provide accurate classifications for subjects with immature – yet better than guessing – mastery skills. Even though various goodness-of-fit tests have been developed in the CDM settings (e.g., de la Torre, 2008a; Rupp and Templin, 2008a; Hansen et al., 2016; Gu et al., 2018), to our knowledge, only few diagnosis tools are available for testing for partial mastery under the CDM framework. Among them, tools proposed by Chen and de la Torre (2013) who developed a general CDM to accommodate the expert-defined polytomous attributes, which are pre-defined as part of the test development process to provide additional diagnostic information; see also the GDM for polytomous attributes (von Davier, 2008). Moreover, due to the discreteness nature of CDMs, identifiability conditions might be difficult to satisfy in practice; for instance, it has been established that single-attribute items are necessary to identify all attribute profiles under the DINA model (Chiu et al., 2009) and estimate the model parameters (Xu and Zhang, 2016; Xu, 2017; Gu and Xu, 2019).

This paper proposes a new and flexible type of cognitive diagnosis models – Partial-Mastery CDMs (PM-CDMs) – that builds on the notion of multiple latent dimensions as in CDMs, but allows for partial mastery. For each subject, we introduce a set of continuous partial mastery scores between 0 and 1 that measure his/her mastery level for each attribute; this assumption subsumes CDMs as special cases when all mastery scores are either 0 or 1. This general assumption is closely related to the grade of membership model (Manton et al., 1994; Haberman, 1995), also called the mixed membership model (Erosheva et al., 2004; Erosheva, 2005). The mixed membership model has been employed for development of statistical models for complex multivariate data in many fields, from computer science to genetics and the social and medical sciences (Erosheva, 2002; Airoldi, Blei, Erosheva, and Fienberg, 2014). Despite the similarity, the proposed PM-CDM class differs from the class of mixed membership models in that it assumes a (continuous) mastery score for each latent dimension (attribute) – where the latent dimensions are pre-determined by expert knowledge about skills required for each item – as opposed to a mixed membership among latent dimensions (attributes) in the mixed membership model that are typically unspecified but inferred from the analysis. In addition, the mastery score for each latent attribute in PM-CDMs is between 0 and 1, indicating the corresponding mastery level, while membership scores across different latent dimensions are assumed to add up to one in the mixed membership models, which therefore cannot be interpreted as the mastery level of each attribute.

To estimate the model parameters and latent mastery scores, this paper develops a Gibbs sampling algorithm that is applicable to all PM-CDMs and further demonstrates its good performance using extensive simulation studies and two real datasets. Moreover, under the proposed PM-CDM framework, we propose two diagnostic methods for examining the binary assumption of the attribute mastery level. We demonstrate utility of our partial mastery analysis framework on two existing real data examples from cognitive diagnosis literature – the Fraction Subtraction and the English test data sets. The data examples show that the proposed PM-CDMs not only improve the goodness of fit over CDMs, but also could make substantial difference in conclusions about attribute mastery. Therefore, PM-CDMs would lead to more effective remediation programs in practice by providing the detailed individual-level information about the targeted ability skills.
The rest of this paper is organized as follows. Section 2 gives a brief review of CDMs. Section 3 introduces PM-CDMs and the estimation of the model parameters. Simulation studies are further conducted for special cases of DINA and GDINA to compare the performance of the respective PM-CDMs and CDMs in Section 4. Section 5 presents analyses of the Fraction Subtraction and English test data sets. Section 6 provides further discussion, and the Supplementary Material (Shang et al., 2021) presents details for the proposed Gibbs sampling algorithm and additional numerical results.

2. A Brief Review of CDMs. In cognitive diagnosis setting, a subject (e.g., examinee or patient) provides a J-dimensional binary response vector $R = (R_1, \ldots, R_J)^\top$ to J diagnostic test items, where the superscript \top denotes the transpose. These responses are assumed to be dependent in a certain way on K unobserved latent attributes that is of practical interest. In cognitive diagnosis, each of the K latent attributes, denoted by $\alpha_k \in \{0, 1\}$ for $k \in \{1, \ldots, K\}$, is assumed to be a binary indicator of the mastery or nonmastery, respectively, of the kth attribute. A complete set of K latent attributes, $\alpha = (\alpha_1, \ldots, \alpha_K)^\top$, is known as an attribute profile or a latent subgroup/class. Such a construction of α differs from the conventional latent class model setting and is necessary for the diagnosis purpose.

For instance, in educational testing, each α_k may represent a certain ability or skill, and teachers may want to know whether a student has mastered this skill or not. For example, the Fraction Subtraction test dataset – one of the first designed cognitive diagnostic tests in educational measurement – contains responses to 20 fraction subtraction problems designed to measure 8 skills that students in middle school need to learn for fraction subtraction (see the upper panel in Table 1). The original items, attributes and response data were conceived and collected by Tatsuoka (1990). Researchers are interested in estimating the mastery status of each of the 536 middle school students on 8 fraction subtraction attributes.

Cognitive Diagnostic Models (CDMs) are statistical and psychometric tools that have been specifically designed to estimate which skills have been mastered – the subjects’ diagnostic attribute profiles – from their responses. CDMs achieve this by modeling the complex relationship among items, multivariate binary latent trait vector, and categorical item responses.

Many CDMs have the following two-step data generating process. The first step proposes a population model for the attributes profile. A common assumption is that the attribute profile follows from a population categorical distribution $\alpha \sim \text{Categorical}(p)$ with proportion parameters $p := (p_\alpha : \alpha \in \{0, 1\}^K)^\top$, where $p_\alpha \in (0, 1)$ and $\sum_{\alpha \in \{0, 1\}^K} p_\alpha = 1$. The second step in CDMs follows a restricted latent class model framework with constraints that are incorporated according to the cognitive processes. Given a subject’s attribute profile α, response R_j to item j under the corresponding model follows a Bernoulli distribution, $R_j \mid \alpha \sim \text{Bernoulli}(\theta_{j, \alpha})$, where $\theta_{j, \alpha} = P(R_j = 1 \mid \alpha)$, is the probability of positive response to item j for subjects with α. Parameters $\Theta = (\theta_{j, \alpha})$ are constrained by the relationship between the J items and the K latent attributes, specified through the Q-matrix that is a $J \times K$ binary matrix with entries $q_{jk} \in \{0, 1\}$ indicating the absence or presence, respectively, of a link between the jth item and the kth latent attribute. The jth row vector q_j of Q provides the full attribute requirements for item j. For illustration, Table 1 presents the 20 \times 8 binary Q-matrix for the Fraction Subtraction dataset.

Given an attribute profile α and a Q-matrix Q, we write $\alpha \succeq q_j$ if $\alpha_k \geq q_{jk}$ for any $k \in \{1, \ldots, K\}$, and $\alpha \nprec q_j$ if there exists k such that $\alpha_k < q_{jk}$; similarly we define the operations \preceq and \nprec. If $\alpha \succeq q_j$, a subject with α has all the attributes for item j specified by the Q-matrix and would be “capable” to answer item j correctly; on the other hand, if $\alpha' \nprec q_j$, the subject with α' misses some related attribute and is expected to have a smaller response probability than subjects with $\alpha \succeq q_j$. That is, $\theta_{j, \alpha} \geq \theta_{j, \alpha'}$ for $\alpha \succeq q_j$ and $\alpha' \nprec q_j$; such monotonicity assumption is common to most CDMs. Another common assumption of
TABLE 1
Attributes of the Fraction Subtraction Data

Attributes	Interpretation
α_1	Convert a whole number to a fraction
α_2	Separate a whole number from a fraction
α_3	Simplify before subtracting
α_4	Find a common denominator
α_5	Borrow from whole number part
α_6	Column borrow to subtract the second numerator from the first
α_7	Subtract numerators
α_8	Reduce answer to simplest form

Q-matrix of the Fraction Subtraction Data

Item	α_1	α_2	α_3	α_4	α_5	α_6	α_7	α_8
1	0	0	1	0	1	1	0	
2	0	0	0	1	1	1	1	0
3	0	0	0	1	0	1	1	0
4	0	1	1	0	0	1	1	0
5	0	1	0	1	0	0	1	1
6	0	0	0	0	0	0	1	0
7	0	1	0	0	0	0	1	0
8	0	1	0	0	0	0	0	0
9	0	0	0	1	0	1	1	0
10	0	0	0	0	0	0	1	1
11	0	0	0	0	0	0	1	0
12	0	0	0	0	0	0	1	0
13	0	0	0	0	0	0	1	0
14	0	0	0	0	0	0	1	0
15	0	0	0	0	0	0	1	0
16	0	0	0	0	0	0	1	0
17	0	0	0	0	0	0	1	0
18	0	0	0	0	0	0	1	0
19	0	0	0	0	0	0	1	0
20	0	0	0	0	0	0	1	0

CDMs is that mastering nonrequired attributes will not change the response probability, i.e., $\theta_{j,\alpha} = \theta_{j,\alpha'}$, if $\alpha \otimes q_j = \alpha' \otimes q_j$, where \otimes is the element-wise multiplication operator. Note that this constraint implies that $\max_{\alpha \geq q_j} \theta_{j,\alpha} = \min_{\alpha \geq q_j} \theta_{j,\alpha}$, which is a key assumption for the identifiability of the CDM parameters (Xu, 2017). From the construction, CDMs can then be viewed as Q-restricted latent class models with 2^K latent classes.

CDMs with various diagnostic assumptions on the modeling of θ’s have been proposed in the psychometrics literature for different application purposes. We next introduce the popularly used DINA and GDINA models, which are the representations of the basic and general CDMs respectively.

2.0.0.1. DINA model. One of the basic cognitive diagnosis model is the DINA model (Junker and Sijtsma, 2001), which assumes a conjunctive relationship among attributes. That is, it is necessary to possess all the attributes indicated by the Q-matrix to be capable of providing a correct response. In addition, having additional unnecessary attributes does not compensate for the lack of necessary attributes. For item j and attribute vector α, we define the ideal response $\xi_{j,\alpha}^{DINA} = I(\alpha \geq q_j)$, i.e., the response when there is no measurement error. The uncertainty is further incorporated at the item level, using the slipping and guessing parameters s and g. For each item j, the slipping parameter $s_j = P(R_j = 0 | \xi_{j,\alpha}^{DINA} = 1)$ denotes the probability of the respondent making an incorrect response despite mastering all necessary skills; similarly, the guessing parameter $g_j = P(R_j = 1 | \xi_{j,\alpha}^{DINA} = 0)$ denotes the
probability of a correct response despite an incorrect ideal response. The response probability \(\theta_{j,\alpha} \) then takes the form

\[
\theta_{j,\alpha} = (1 - s_j)^{\xi_{j,\alpha}^{DINA}} g_j^{1 - \xi_{j,\alpha}^{DINA}}.
\]

In practice, it is usually assumed that \(1 - s_j > g_j \) for any \(j \) for model identifiability.

2.0.0.2. G-DINA model. de la Torre (2011) generalizes the DINA model to the G-DINA model. The formulation of the G-DINA model based on de la Torre (2011) generalizes the DINA model to the G-DINA model.

In practice, it is usually assumed that \(1 - s_j > g_j \) for any \(j \) for model identifiability.

\[
\theta_{j,\alpha} = \beta_{j0} + \sum_{k=1}^{K} \beta_{jk}(q_{jk}\alpha_k) + \sum_{k' = k+1}^{K} \sum_{k=1}^{K-1} \beta_{jkk'}(q_{jk}\alpha_k)(q_{jk'}\alpha_{k'}) + \cdots + \beta_{j12\cdots K} \prod_{k}(q_{jk}\alpha_k).
\]

Note that not all \(\beta \)'s in the above equation are included in the model. For instance, when \(q_j \neq 1^T \), we do not need parameter \(\beta_{j12\cdots K} \) since \(\prod_{k}(q_{jk}\alpha_k) = 0 \). To interpret, \(\beta_{j0} \) represents probability of a positive response when none of the required attributes are present; when \(q_{jk} = 1 \), \(\beta_{jk} \) is included in the model and it shows the change in the positive response probability as a result of mastering a single attribute \(\alpha_k \); when \(q_{jk} = q_{jk'} = 1 \), \(\beta_{jkk'} \) is in the model and it shows the change in the positive response probability due to the interaction effect of mastery of both \(\alpha_k \) and \(\alpha_{k'} \); similarly, when \(q_j = 1^T \), \(\beta_{j12\cdots K} \) represents the change in the positive response probability due to the interaction effect of mastery of all the required attributes.

The above model setup uses \(\mathbf{R} \) and \(\alpha \) to denote the responses and attribute profile for a random subject from the population. In a cognitive diagnostic assessment, suppose we have \(N \) independent subjects, indexed by \(i = 1, \ldots, N \). For the \(i \)th subject, we denote his/her response vector by \(\mathbf{R}_i = (R_{ij} : j = 1, \ldots, J)^T \) and his/her latent attribute profiles by \(\alpha_i = (\alpha_{ik} : k = 1, \ldots, K)^T \). Under the local independence assumption, the likelihood function of the observed responses is

\[
L_{CDM}(\mathbf{p}, \Theta; \mathbf{R}) = \prod_{i=1}^{N} \sum_{\alpha_i, \alpha_{\cdot} \in \{0,1\}^K} \mathbf{p}_{\alpha} \prod_{j=1}^{J} \theta_{R_{ij}}^{R_{ij}} (1 - \theta_{R_{ij}})^{1 - R_{ij}}.
\]

The CDM model parameters can then be estimated by maximizing the likelihood function via the EM-algorithm (e.g., de la Torre, 2009; Feng et al., 2014); alternatively, researchers have proposed Bayesian estimation approaches (e.g., Culpepper, 2015; Culpepper and Hudson, 2018). R packages “CDM” and “GDINA” for CDM estimation and inference have also been recently developed by George et al. (2016) and Ma and de la Torre (2019), respectively.

3. Partial-Mastery Cognitive Diagnosis Models.

3.1. Model setup. We propose a partial-mastery modeling approach for cognitive diagnosis, which provides a generalization of CDMs. Usually, CDMs assume that each subject belongs to only one particular attribute profile \(\alpha \in \{0,1\}^K \), where mastery of each skill is either 0 or 1. That is, each attribute must be either fully mastered or not mastered. Such an assumption may be too strong when certain attributes are mastered gradually, and partial mastery is possible. In such a case, the usual CDMs with binary attributes may not fit the
responses well and diagnostic classification of the subjects may also be affected; we will provide illustrations with our simulated and real data examples. The proposed Partial-Mastery CDMs (PM-CDMs) relax this assumption by introducing K subject-specific attribute scores $d_k \in [0, 1]$, which indicate the subject’s mastery level of the kth attribute with $d_k = 1$ the highest and $d_k = 0$ the lowest level. The attribute mastery score $\mathbf{d} = (d_1, \cdots, d_K)^\top$ then contains the subject’s attribute profile information. Comparing with CDMs in Section 2, PM-CDMs are more flexible, with d_k measuring how well a student masters the kth skill, yet includes respective CDMs as special cases when $d_k = \alpha_k \in \{0, 1\}$.

We assume the latent attribute mastery score \mathbf{d} follows a distribution $D(\cdot)$ on $[0, 1]^K$. Depending on application, different D may be chosen. We propose to use a Gaussian copula model to allow for the dependencies among the attributes. In particular, we assume

$$
(3.1) \quad \{ \Phi^{-1}(d_k); k = 1, \cdots, K \}^\top \sim N(\mu, \Sigma)
$$

where Φ^{-1} is the inverse cumulative distribution function of a standard normal distribution, μ is a K-dimensional mean vector, and Σ is a $K \times K$ covariance matrix. An advantage of the Gaussian copula model is that it can directly characterize both the population mean mastery scores via μ and the latent correlations among the K attributes via the underlying covariance matrix Σ. Our model is similar to the correlated topic model by Blei et al. (2007) in the sense that it allows for modeling dependencies among the latent attributes, however, the major difference is that mastery scores for the latent attributes do not add up to one whereas topic proportions in the correlated topic model do have to add up to one. In other words, the mastery scores in PM-CDMs live on the hypercube $[0, 1]^K$ while the topic proportions in the correlated topic model live on a simplex.

Under the PM-CDM framework, the attribute mastery score d_k indicates the mastery level of the kth attribute and the item response function follows a similar assumption to the grade of membership models (Manton et al., 1994; Haberman, 1995). Specifically, for a subject with a general mastery score \mathbf{d}, the marginal probability of a positive response to item j is a weighted combination of $\theta_{j, \alpha}$ defined under the corresponding CDM:

$$
(3.2) \quad \theta_{j, \mathbf{d}} = P(R_j = 1 \mid \mathbf{d}) = \sum_{\alpha = (\alpha_1, \cdots, \alpha_K) \in \{0, 1\}^K} \theta_{j, \alpha} \times p_{\alpha \mid \mathbf{d}}.
$$

Here $p_{\alpha \mid \mathbf{d}} = \prod_{k=1}^{K} d_k^{\alpha_k} (1 - d_k)^{1 - \alpha_k} \in [0, 1]$, denoting the mixture weight of $\theta_{j, \alpha}$ given \mathbf{d}. Note that $\sum_{\alpha} p_{\alpha \mid \mathbf{d}} = 1$; we have $\min_{\alpha} \theta_{j, \alpha} \leq \theta_{j, \mathbf{d}} \leq \max_{\alpha} \theta_{j, \alpha}$ and thus $\theta_{j, \mathbf{d}}$ are well defined.

Under the local independence assumption that responses to different items are independent given a mastery score, the probability mass function of a subject’s observed responses \mathbf{R} is

$$
P_{PMCDM}(\mathbf{R} \mid \Theta, \mu, \Sigma) = \int_{\mathbf{d} \in [0, 1]^K} \prod_{j=1}^{J} \theta_{j, \mathbf{d}}^{R_j} (1 - \theta_{j, \mathbf{d}})^{1 - R_j} d\mu, \Sigma(\mathbf{d}).
$$

3.1.0.1. A restricted latent class model representation. From the model (3.2), $\theta_{j, \mathbf{d}}$ can also be represented by a restricted latent class model (RLCM). Consider a vector of $J \times 2^K$ latent variables $A = (\alpha^*_1, \cdots, \alpha^*_J)$, where $\alpha^*_j \in \{0, 1\}^K$. The set of all possible A‘s is $\mathcal{A} = \prod_{j=1}^{J} \{0, 1\}^K$, which has $2^K \times J$ classes. Define the distribution of the latent classes $A = (\alpha^*_1, \cdots, \alpha^*_J) \in \mathcal{A}$ as

$$
(3.3) \quad \pi_A = E_{D_{\mu, \Sigma}}(\mathbf{d}) \prod_{j=1}^{J} \prod_{k=1}^{K} d_k^{\alpha^*_j k} (1 - d_k)^{1 - \alpha^*_j k}
$$
subject’s observed responses in the CDMs. Under the local independence assumption, the probability mass function of a constraint that

\[P_{\text{constraint}}(\alpha_j) = \prod_{k=1}^{K} d_k \sum_{i=1}^{J} \alpha_{jk}^i (1 - d_k) \sum_{j'=1}^{J} (1 - \alpha_{j'}^k), \]

The conditional distribution of the responses given a latent class \(A \) is modeled under the constraint that \(P(R_j = 1 \mid A) = P(R_j = 1 \mid \alpha_j^A) = \theta_j, \alpha_j^A \). The \(\theta_j, \alpha_j^A \in [0, 1] \) is as defined in the CDMs. Under the local independence assumption, the probability mass function of a subject’s observed responses \(R \) under the above RLCM is

\[P_{\text{RLCM}}(R \mid \Theta, \mu, \Sigma) = \sum_{A=\{\alpha_1^\ast, \ldots, \alpha_J^\ast\} \in A} \pi_A \prod_{j=1}^{J} \theta_j, \alpha_j^A \]

Following an argument similar to that of Lemma 3.1 in Erosheva et al. (2007), we can prove that \(P_{\text{RLCM}}(R \mid \Theta, \mu, \Sigma) = P_{\text{PMCDM}}(R \mid \Theta, \mu, \Sigma) \). Therefore, the PM-CDM is equivalent to the above RLCM with the distribution of the latent classes as specified in Equation (3.3).

The equivalent RLCM representation plays a key role in our estimation of PM-CDM as introduced in Section 3.2. Moreover, with the above RLCM representation, we can study identifiability of PM-CDMs using recently developed techniques for identifiability of RLCMs (Xu, 2017; Gu and Xu, 2020). In particular, Xu (2017) and Gu and Xu (2020) studied identifiability and partial identifiability of a general family of RLCMs, including the DINA and GDINA model, and showed that these RLCMs are identifiable if the \(Q \)-matrix satisfies certain structural conditions. With the RLCM representation, we would expect that the identifiability of the model parameters of PM-CDMs could be established under a similar set of structural conditions for the \(Q \)-matrix.

3.1.0.2. Relationships with CDMs

The key concept of PM-CDMs is to assume that each subject has a continuous score \(d_k \), for any \(k \in \{1, \ldots, K\} \) of each attribute in the range \([0, 1]\), indicating the mastery level of the \(k \)th attribute. Following (3.2), we can show that the proposed PM-CDMs cover the CDMs as special cases when the mastery score \(d_k \) takes discrete values. In particular, when \(d \to 1 \), then only \(p_{1,d} \) is significant and \(\theta_j, d \to \theta_j, 1 = \max_\alpha \theta_j, \alpha \) and similarly, when \(d \to 0 \), \(\theta_j, d \to \theta_j, 0 = \min_\alpha \theta_j, \alpha \). More generally, when \(d = \alpha \in \{0, 1\}^K \), i.e., the subject’s mixed attribute profile is exactly a binary vector \(\alpha \), the probability of providing a positive response to item \(j \) is \(\theta_j, d = P(R_j = 1 \mid d = \alpha) = \theta_j, \alpha \). Therefore, with \(\theta_j, \alpha \) defined under any CDM, the PM-CDM covers the corresponding CDM as a special case.

The difference between PM-CDMs and CDMs can be further revealed under the RLCM representation of PM-CDMs. Following Equation (3.3) and the related discussion, we can interpret a PM-CDM corresponding to the following three-step data generating process:

1. The attribute mastery score \(d \) is generated from a population distribution \(D_{\mu, \Sigma}(\cdot) \);
2. The auxiliary latent indicators for item \(j \), \(\alpha_j^* = (\alpha_{jk}^* : k = 1, \ldots, K) \), is generated such that \(\alpha_{jk}^* \)'s are independent across \(k \) and \(\alpha_{jk}^* \sim \text{Bernoulli}(d_k) \).
3. Given the working latent attributes \(\alpha_j^* \) for item \(j \), the response \(R_j \) is generated from \(\text{Bernoulli}(\theta_j, \alpha_j^*) \).

The three-step data generating process is also illustrated in Figure 1, where for comparison, we also include an illustration of the data generating process of a CDM. Under this RLCM representation, we can see that the PM-CDMs allow the “working” attribute profiles \(\{\alpha_j^*, j = 1, \ldots, J\} \) of a subject to be flexible from item to item, whereas CDMs assume the attribute profile \(\alpha \) is fixed for all items. Therefore, instead of performing “hard” clustering as in CDMs, where each subject is only assigned to one latent attribute profile, the RLCM representation of PM-CDMs implies that PM-CDMs are performing “soft” clustering of each subject, by allowing its latent attribute profile \(\alpha_j^* \) varying from item to item. Note that the overall
distribution of α_j^* across all items is characterized by the partial mastery score (probability) d, which is estimated from the response data; and as discussed above, in the special case of $d = \alpha \in \{0, 1\}^J$, we have $\alpha_j^* = \alpha$ for $j = 1, \ldots, J$, and the PM-CDM reduces exactly to the corresponding CDM. To provide an intuitive interpretation, we can view a subject’s partial mastery score d_k, $0 < d_k < 1$, as his/her mastery level of the kth attribute. That is, for this subject, he/she masters the kth attribute with a certain probability (as characterized by d_k) and thus the realization of α^* for the kth attribute may be 1 for some items and 0 for others. For instance, for a set of pure items measuring only this attribute with zero measurement error, the subject who only partially masters the kth attribute with $0 < d_k < 1$ may answer some items correctly and others incorrectly, which would be consistent with α^* for the kth attribute being 1 or 0 for different items. Please also see Galyardt (2014) for more details on the model interpretation under the RLCM representation. Such flexibility of PM-CDMs provides one major feature that distinguishes them from CDMs, and that helps with accounting for additional subject-level heterogeneity in responses. This also makes the PM-CDMs distinct from the high-order CDMs, whose data generating process also follows the CDM illustration provided in Figure 1, though both types of models using continuous latent traits in modeling the distribution of the discrete latent attributes.

We would like to emphasize that the proposed PM-CDMs are a mixed membership generalization of the binary attribute CDMs. Under the RLCM presentation, we can see that the proposed PM-CDMs inherit a binary attribute nature from CDMs. Specifically, the PM-CDMs are constructed using the mixed membership modeling approach to capture the distribution of the binary attribute profiles α^* as in Steps 1) and 2), while still using the binary attribute cognitive diagnosis modeling for the item response function in Step 3. In the literature, polytomous attribute CDMs (e.g., Chen and de la Torre, 2013; von Davier, 2008) have also been proposed to relax the binary assumption of the attributes. The PM-CDMs differ from the polytomous attribute CDMs in two major aspects: first, PM-CDMs relax the binary attribute assumption by allowing different realizations of binary attribute profiles in
different items, whereas the polytomous attribute CDMs relax the assumption by directly letting \(\alpha \) to be polytomous; second, the item response function of PM-CDMs follow from the binary CDMs assumptions, whereas polytomous attribute CDMs make polytomous item response function assumptions, such as requiring polytomous entries of the \(Q \)-matrix in some proposed models (e.g., Chen and de la Torre, 2013). Due to these differences, the proposed PM-CDMs and polytomous CDMs may not be directly comparable. On the other hand, we would like to point out that following a similar three-step data generating process, an extension from the polytomous attribute CDMs to the polytomous attribute PM-CDMs can be done by setting the \(\alpha^*_j \) in Step 2) to be polytomous instead of binary, and setting Step 3) to be the data generating process of the corresponding polytomous CDMs.

Note that, as introduced in Section 2, our focus is on CDMs that can be formulated as restricted latent class models. There are other CDMs not falling in the family of restricted latent class models, such as the Reparameterized Unified Model (RUM; DiBello et al., 1995; Hartz, 2002; Stout et al., 2019). In addition to the latent attribute \(\alpha \), the RUM also incorporates an extra probability term \(P_{c_j}(\eta) \) into the \(j \)th item’s response function with a subject-dependent continuous latent variable \(\eta \) for the respondent and an additional item parameter \(c_j \). The RUM shares the similarity to the PM-CDM that they both use continuous variables for modeling the item response function. Nevertheless, the two models are constructed differently. The continuous latent variable \(\eta \) in RUM is introduced to account for the additional response variability after considering the binary latent attribute \(\alpha \)’s. The PM-CDM, on the other hand, directly models the latent attribute as a continuous mastery score, indicating the mastery level of each attribute of interest. In addition, the \(\eta \) in RUM is usually unidimensional, while the mastery scores \(d \) in PM-CDM are multidimensional. Moreover, the PM-CDM and RUM model the continuous latent variable differently. The RUM uses a Rasch-type item response function for \(P_{c_j}(\eta) \) with \(\eta \) following a normal population distribution, while the PM-CDM uses a mixed membership modeling approach and the CDM-type item response functions. Particularly, the introduced restricted latent class model representation of the PM-CDM makes it statistically distinct from the RUM.

3.1.0.3. Relationships with multidimensional item response theory (MIRT) models. By assuming the mastery level to be continuous, PM-CDMs also relate to the traditional multidimensional item response theory (MIRT) models. Such continuous latent variable models have been proposed by researchers to perform cognitive diagnosis. For instance, Hong et al. (2015) proposed a model includes a noncompensatory IRT term and a term following the discrete attribute DINA model; Hartz and Roussos (2008) proposed a fusion model with both IRT-based continuous latent variable and skills-based diagnosis attributes; Bolt and Lall (2003) studied the estimation of both compensatory and noncompensatory MIRT models; and Embretson and Yang (2013) presents the noncompensatory multicomponent latent trait model for diagnosis (MLTM-D). Despite the similarity, there are several differences between the proposed PM-CDMs and these existing MIRT models. First, the modeling construction is different. Given an individual’s latent score, the item response function of PM-CDMs uses a mixture modeling framework together with cognitive diagnosis assumptions. In particular, PM-CDMs can be equivalently represented by the family of the restricted latent class models mentioned above, which significantly differs from the MIRT modeling of the latent traits. Therefore, the partial mastery score is not a simple mapping of the latent trait \(\theta \) in MIRT from \((-\infty, \infty) \) to \([0, 1]\). Second, PM-CDMs have the cognitive diagnostic nature built directly into the item response function modeling, similarly to CDMs. Thus, PM-CDMs naturally incorporate any CDM item level cognitive diagnostic assumption, such as the conjunctive (fully noncompensatory) and disjunctive (fully compensatory) assumptions that make use of interaction terms of the attributes. Therefore, similarly to CDMs, PM-CDMs provide a more flexible diagnostic modeling approach compared to MIRT. Third, the estimated mastery score
\[d_k \in [0, 1] \] from PM-CDMs directly leads to a diagnostic interpretation, indicating a subject’s mastery level of an attribute, while an ability trait in \((-\infty, +\infty)\) under MIRT is not directly applicable for diagnosis and certain threshold would be needed post estimation.

3.2. PM-CDM Estimation. To make inference on model parameters and latent variables, we propose a Gibbs sampling Markov chain Monte Carlo (MCMC) algorithm. We introduce the algorithm under the general PM-CDM setting while it can be easily applied to each specific PM-CDM such as the PM-DINA and PM-GDINA models.

From the RLCM representation in Section 3.1, the \(\theta_{j,d} \) can also be interpreted from a mixture model point of view by introducing for each subject a vector of \(J \times 2^K \) auxiliary latent indicators \((\alpha^*_1, \ldots, \alpha^*_J) \), where \(\alpha^*_j \in \{0, 1\}^K \). This restricted latent class model can be equivalently represented by the 3 steps as in Figure 1. With the auxiliary latent indicators \(\alpha^* \) integrated out, we can see that this model setup gives the same form of \(\theta_{j,d} = P(R_j = 1 \mid d) \) as in (3.2). This equivalent RLCM representation plays a key role in designing an efficient Gibbs sampling algorithm to estimate the model parameters as described below.

Suppose we observe \(N \) independent subjects, indexed by \(i = 1, \ldots, N \), with their responses generated from a PM-CDM. For the \(i \)th subject, we denote his/her response vector by \(R_i = (R_{ij} : j = 1, \ldots, J)^\top \), latent mastery score by \(d_i = (d_{ik} : k = 1, \ldots, K)^\top \), and latent indicators for item \(j \) by \(\alpha_{ij}^* = (\alpha_{ijk}^*: k = 1, \ldots, K)^\top \). Denote \(D = \{d_i : i = 1, \ldots, N\} \), \(A^* = \{\alpha_i^*: i = 1, \ldots, N\} \), and \(R = \{R_i : i = 1, \ldots, N\} \). Following the RLCM representation, the joint probability distribution of \((D, A^*, R)\) is

\[
P(D, A^*, R \mid \Theta, \mu, \Sigma) = \prod_{i=1}^{N} D_{\mu, \Sigma}(d_i) \prod_{j=1}^{J} \prod_{k=1}^{K} d_{ik}^{\alpha_{ijk}^*} (1 - d_{ik})^{1 - \alpha_{ijk}^*} \theta_{j, \alpha_{ij}^*}^{R_{ij}} (1 - \theta_{j, \alpha_{ij}^*})(1 - R_{ij}). \]

Let \(p_0(\mu), p_0(\Sigma), p_0(\Theta) \) be the priors of \(\mu, \Sigma, \) and \(\Theta \). From the RLCM representation, we have the joint posterior distribution of \(\mu, \Sigma, \Theta, D, A^* \) as

\[
P(\mu, \Sigma, \Theta, D, A^* \mid R) = p_0(\mu)p_0(\Sigma)p_0(\Theta) \times \prod_{i=1}^{N} D_{\mu, \Sigma}(d_i) \prod_{j=1}^{J} \prod_{k=1}^{K} d_{ik}^{\alpha_{ijk}^*} (1 - d_{ik})^{1 - \alpha_{ijk}^*} \theta_{j, \alpha_{ij}^*}^{R_{ij}} (1 - \theta_{j, \alpha_{ij}^*})(1 - R_{ij}). \]

Computationally, it is more convenient to work with \(\tilde{d}_i = (\tilde{d}_{ik}, k = 1, \ldots, K) \) which is defined to be

\[
\tilde{d}_i := \Phi^{-1}(d_i) = (\Phi^{-1}(d_{ik}) : k = 1, \ldots, K). \]

The posterior distribution represented by \(\tilde{D} := \{\tilde{d}_i : i = 1, \ldots, N\} \) is

\[
P(\mu, \Sigma, \Theta, \tilde{D}, A^* \mid R) = p_0(\mu)p_0(\Sigma)p_0(\Theta) \prod_{i=1}^{N} N_{\mu, \Sigma}(\tilde{d}_i) \times \prod_{j=1}^{J} \prod_{k=1}^{K} \Phi(\tilde{d}_{ik})^{\alpha_{ijk}^*} (1 - \Phi(\tilde{d}_{ik}))^{1 - \alpha_{ijk}^*} \theta_{j, \alpha_{ij}^*}^{R_{ij}} (1 - \theta_{j, \alpha_{ij}^*})(1 - R_{ij}). \]

where \(N_{\mu, \Sigma}(\tilde{d}_i) \) denotes the normal distribution density with mean \(\mu \) and covariance matrix \(\Sigma \).
To perform the Gibbs sampling based on the posterior distribution in (3.6), the difficulty arises from the sampling of \(\tilde{d}_i \). Note that the conditional distribution of \(\tilde{d}_i \) is

\[
P(\tilde{d}_i | \mu, \Sigma, \Theta, A^*, R) \propto N_{\mu, \Sigma}(\tilde{d}_i) \prod_{j=1}^{J} \prod_{k=1}^{K} \Phi(\tilde{d}_{ik})^{\alpha_{ijk}^*} (1 - \Phi(\tilde{d}_{ik}))^{1-\alpha_{ijk}^*}.
\]

The above conditional distribution of \(\tilde{d}_i \) given \(\alpha_{ij}^* \)'s is nontrivial to sample directly. To overcome this difficulty, we use an equivalent representation of the proposed model by introducing the auxiliary variables \(z_{ijk} \sim N(\tilde{d}_{ik}, 1) \) and redefining \(\alpha_{ijk}^* = 1 \) if \(z_{ijk} \geq 0 \) and \(\alpha_{ijk}^* = 0 \) otherwise. We denote \(z_i = (z_{ijk} : j = 1, \ldots, J; K = 1, \ldots, K) \). With this representation, we can first sample \(z_{ijk} \) from the conditional posterior distribution \(p(z_{ijk} | \mu, \Sigma, \Theta, \tilde{d}_i, A^*, R) \propto N_{\tilde{d}_{ik}, 1}(z_{ijk}) I(z_{ijk} \geq 0)^{\alpha_{ijk}^*} I(z_{ijk} < 0)^{1-\alpha_{ijk}^*} \) which is a truncated Gaussian distribution with mean \(d_{ik} \) and variance one; then we sample \(\tilde{d}_i \) from Gaussian distribution \(p(\tilde{d}_i | \mu, \Sigma, \Theta, A^*, z_i, R) \propto \prod_{j=1}^{J} \prod_{k=1}^{K} N_{\tilde{d}_{ik}, 1}(z_{ijk}). \)

With augmented variables \(z \) and conjugate priors, the conditional distribution of model parameters can be written in closed-form expressions. Sampling from the above conditional distribution of each parameter can be done using standard statistical software such as R. The detailed Gibbs sampling steps are provided in the Supplementary Material (Shang et al., 2021).

4. Simulation Studies. There are three primary objectives of the simulation studies presented in this paper: (1) to demonstrate parameter recovery via our Gibbs sampling under the new PM-CDM approach, (2) to investigate the impact of model misspecification with respect to partial mastery, and (3) to develop diagnostic tools that could be used by practitioners to decide between CDM and PM-CDM approaches.

4.1. Simulation settings. We conducted simulation studies to compare the model fit for PM-CDM and classical CDM under various data generation conditions. The proposed model is evaluated when the data are generated from either a classical CDM or a partial-mastery CDM, in terms of item parameter estimation and latent profile (attribute) specification. In the simulation, we consider two popular CDMs in educational measurements, the DINA and GDINA models, and their partial mastery counterparts, PM-DINA and PM-GDINA. Specifically, for each model we consider a fixed-length test of \(J = 20 \) and the number of latent attributes to be \(K = 3 \) and \(K = 5 \). For each \(K \), we simulate two types of \(Q \)-matrices as given in (4.1): the complete – under the DINA model – \(Q \)-matrices (\(Q_3 \) and \(Q_5 \)), with an \(K \times K \) identity submatrix, and the \(Q \)-matrices without identify submatrices (\(Q'_3 \) and \(Q'_5 \)). Note that \(Q'_3 \) and \(Q'_5 \) are incomplete under the DINA model (Chiu et al., 2009) while they are complete under the GDINA model (Köhne and Chiu, 2017, 2018).
used to reflect different scenarios of the knowledge mastery in the population. For $K = 3$, the mean of \mathbf{d} is set to be $\mu_3 = 0$ or $(-1, 0, 1)^T$, and for $K = 5$, the mean is $\mu_5 = 0$ or $(-1, -0.5, 0, 0.5, 1)^T$. Note that the non-constant mean represents an imbalanced distribution of the latent attribute profiles. The covariance matrix of \mathbf{d} is defined as $\Sigma = \sigma^2 \{ \rho \mathbf{1}\mathbf{1}^T + (1 - \rho) I_K \}$, where $\mathbf{1} = (1, \ldots, 1)^T$ and I_K is the $K \times K$ identity matrix. The diagonal terms of covariance matrix are fixed to be $\sigma^2 = 1$ and the correlation parameter ρ is taken as 0 or 0.8, corresponding to low and high correlations of the latent attributes. Since CDMs can be considered as special cases of PM-CDMs with each $d_k \in \{0, 1\}$, when we simulate data from the CDMs, we follow the PM-CDM data generating process by first simulating \mathbf{d}’s and then rounding them to be 0 or 1. Note that the used method of simulating correlated attributes under CDMs is the same as many existing studies (e.g., Chiu et al., 2009; Chen et al., 2015).

After generating latent attributes \mathbf{d}_i from $\text{Normal}(\mu, \Sigma)$ for $i = 1, \ldots, N$, we generate data under conventional CDMs and PM-CDMs. In particular, datasets are simulated according to 4 models: DINA, PM-DINA, GDINA and PM-GDINA. The correct response probability for DINA and PM-DINA model is set to be 0.2 (non-mastery) and 0.8 (mastery); in other words, both the slipping and guessing parameters are set to be 0.2 for all items. For GDINA and PM-GDINA, there is an additive effect of the mastered attributes on the probability. For items requiring only 1 attribute, it is either 0.2 (non-mastery) or 0.8 (mastery); for 2-attribute items, it is 0.2 (master none), 0.5 (master 1 of 2) or 0.8 (master both); for 3-attribute items, it’s 0.2 (master none), 0.4 (master 1 of 3), 0.6 (master 2 of 3) or 0.8 (master all).

We consider two sample sizes for each K. For $K = 3$, we generate $N = 500$ and $N = 1000$ subjects; for $K = 5$ we use $N = 1000$ and $N = 2000$. In summary, this simulation study uses the following 128 conditions:

$$
\begin{pmatrix}
\text{DINA} \\
\text{PM-DINA} \\
\text{GDINA} \\
\text{PM-GDINA}
\end{pmatrix} \otimes
\begin{pmatrix}
K = 3 \\
K = 5
\end{pmatrix} \otimes
\begin{pmatrix}
Q_K \\
Q'_K
\end{pmatrix} \otimes
\begin{pmatrix}
\mu = 0 \\
\mu \neq 0
\end{pmatrix} \otimes
\begin{pmatrix}
\rho = 0 \\
\rho = 0.8
\end{pmatrix} \otimes N' s.
$$

For each condition, we generate 50 replications.

For a direct comparison to CDMs, we fit both the DINA and PM-DINA models for the DINA- and PM-DINA-generated datasets, and both the G-DINA and PM-GDINA models for the the GDINA- and GPM-DINA-generated datasets. For PM-CDM estimation, we perform

$$
(4.1) \quad Q_3 = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad Q'_3 = \begin{pmatrix}
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}, \quad Q_5 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad Q'_5 = \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}.
$$
the proposed Gibbs sampling algorithm. In particular, we take weakly-informative priors of \(\mu, \Sigma \) and \(\theta \)’s: for \(\mu \), we take \(\mu_0 = 0 \) and \(\Sigma_0 = I_K \); for \(\Sigma \), we take \(\Psi_0 = I_K \) and \(\nu_0 = K + 1 \); for \(\theta \)’s, we take weakly-informative priors \(\text{Beta}(a_0 = 1, b_0 = 2) \) for \(\alpha^* = 0 \) and \(\text{Beta}(a_0 = 2, b_0 = 1) \) for \(\alpha^* > q_j \), and noninformative priors \(\text{Beta}(a_0 = 1, b_0 = 1) \) for other \(\alpha^* \)’s. Such Beta priors are set to reflect the assumption that students mastering no skills will have lower probabilities to get the correct response and those mastering all required skills of item \(j \) will have higher chances to answer it correctly (e.g., Chen et al., 2018).

We take the following initial values: \(\mu^{(0)} = (0, ..., 0)^T \); \(\Sigma^{(0)} = E \); \(d^{(0)} \sim \text{Unif}(0.01, 0.99) \); \(\tilde{d}^{(0)} = \Phi^{-1}(d^{(0)}) \); \(z_{ij}^{(0)} \sim \text{Normal}(\tilde{d}_{ik}^{(0)}, 1) \); \(\alpha_{ij}^{(0)} = 1(z_{ij}^{(0)} \geq 0) \); \(\theta_{jl}^{(0)} = 0.5 \); \(\forall j = 1, ..., J; l = 1, ..., 2^K \).

We run MCMC chains in R with a total number of \(M = 30,000 \) and burn-in size at 10,000 in the simulation studies. Using Macbook Pro with 3 GHz Dual-Core Intel Core i7 CPU, the computational time of the proposed Gibbs sampling algorithm is about 300 seconds for 1000 MCMC iterations under the setting of \(K = 3 \) and \(N = 500 \) and about 690 seconds for 1000 MCMC iterations under the setting of \(K = 5 \) and \(N = 1000 \), meanwhile the Bayesian DINA takes 100 and 230 seconds, respectively. As \(K \) increases, the proposed algorithm gradually gains advantage over the Bayesian CDM. Under a case of \(K = 10 \), \(N = 1000 \), the estimation of the PM-CDM takes about 45 minutes whereas classical Bayesian CDM would take 95 minutes. Overall, as \(N \) increases, the computational time increases approximately linearly in \(N \). Though \(M = 30,000 \) and burn-in size 10,000 are used in our simulation, we find that the MCMC chain converges well after about 1000 iterations (the convergence of the MCMC chains is diagnosed with trace plots and Gelman-Rubin’s \(R^2 < 1.1 \)); therefore, a few thousands iterations would suffice in practice. We note that the EM algorithm for CDM estimation is computationally more efficient (taking about 5 minutes for the case of \(K = 10 \)); nevertheless, the MCMC estimation provides the full distributional information of the estimates, and its computational time may not be directly comparable to that of the EM algorithm, which usually only provides the point estimation (and standard error) results. It would be an interesting future research direction to study a more efficient EM-type estimation algorithm for the proposed models.

4.2. Simulation Results

4.2.1. Item Parameter Recovery Results.

For each simulated dataset, we first compare the CDMs and PM-CDMs in terms of their estimation of item parameters. Table 2 summarizes the simulation results for \((K = 3, N = 500, Q = Q_3) \) and \((K = 5, N = 1000, Q = Q_5) \), respectively. Results for other simulation settings are presented in the Supplementary Material (Shang et al., 2021) due to space constraint. For the estimation of item parameters, we report the mean absolute errors (MAEs) of the posterior mean estimates of the item parameters (\(\theta_{ij, \alpha} \)’s), averaged over 50 replications, and the corresponding averaged root mean squared errors (RMSEs), which are in the columns “MAE” and “RMSE” of Table 2. When the PM-DINA and PM-GDINA are the true models, simulation results show that the proposed Gibbs sampling algorithm estimates the item parameters accurately with small MAEs and RMSEs. Nonconstant means and high correlations of the mastery scores have little effect on estimating the items parameters, compared with the cases with constant mean and zero correlation.

4.2.1.1. Model misspecification impact.

When the DINA is fitted for these data generated from the PM-DINA, the DINA model has severe misfitting and much larger MAEs and RMSEs for the item parameters. Similarly, we observe that the PM-GDINA outperform the GDINA in terms of item parameter estimation for all simulation cases when the PM-GDINA is the true model. On the other hand, when DINA or GDINA is the true model, they perform...
better than the PM-DINA or PM-GDINA, respectively, though the differences are minor especially for the GDINA model with larger $K = 5$, lower sample size, and more complicated settings with nonzero means and high correlations. This indicates that performance of PMDINA or PM-GDINA in item parameter estimation is comparable to that of DINA or GDINA, due to the fact that CDMs can be viewed as a submodel of PM-DCMs with extremal d values.

4.2.2. Attribute Mastery Recovery Results. We approach evaluating the estimation of attribute profiles or mastery scores in different ways that depend on the true assumption about subject-level heterogeneity. We consider two cases: (i) If the true model assumes Binary mastery (CDMs), the models are evaluated by mis-classification rates. In particular, we consider the Attribute-level Mis-Classification Rate (AMCR) that is the proportion of incorrectly classified attributes among all subjects and all attributes, i.e., $AMCR = \sum_{i=1}^{N} \sum_{k=1}^{K} |\hat{\alpha}_{ik} - \hat{\alpha}_{ik}| / NK$, where $\hat{\alpha}_{ik} \in \{0, 1\}$ is the estimated kth latent attribute for the ith individual: when CDMs are fitted to the data, it is estimated based on the maximum likelihood estimator and when PM-CDMs are fitted to the data, the estimated $\hat{\alpha}_{ik}$ is computed by rounding the estimated latent mastery score \hat{d}_{ik} to the nearest binary class. (ii) When the true model assumes partial mastery (PM-CDMs), we evaluate models by the root mean squared error in estimating the latent attribute: $ARSE = (\sum_{i=1}^{N} \sum_{k=1}^{K} (\hat{d}_{ik} - \tilde{d}_{ik})^2 / NK)^{1/2}$, where \tilde{d}_{ik} is the estimated latent mastery score: when CDMs are fitted to the data, we take the posterior mean estimator from the MCMC algorithm. In addition, to have a direct comparison of the CDMs and PM-CDMs, we also compute AMCR, where the “true” attribute profile of the ith individual is set to be $I(d_i \geq 0.5)$; then for PM-CDMs we use $I(d_i \geq 0.5)$ as the estimator, and for CDMs we use the maximal likelihood estimators.

Table 2 summarizes simulation results for $(K = 3, N = 500, Q = Q_3)$ and $(K = 5, N = 1000, Q = Q_5)$, respectively, while results for other settings are reported in the Supplementary Material (Shang et al., 2021). We can see that the PM-CDMs outperform the CDMs in most cases. In particular, when the PM-DINA is the true model, the DINA model has higher AMCR for latent attributes than the PM-DINA. On the other hand, when the DINA is the true model, the latent attribute classification results from the PM-DINA are comparable to the true DINA model. Similarly, we observe that the PM-GDINA outperform the GDINA in all cases when the PM-GDINA is the true model, while being comparable to the GDINA model when the GDINA is true.

4.2.3. Model Diagnosis of CDMs Using Mastery Score Plots. In this subsection, we propose two types of diagnosis for the binary assumption of the attribute mastery status under CDMs and use simulation results to illustrate their performance.

The first diagnosis method is to examine the estimated covariance matrix from PM-CDMs. From the definition of PM-CDMs, the covariance matrix Σ in (3.1) characterizes the dependent structure of the latent scores $d_k \in [0, 1], k = 1, \ldots, K$, up to the Φ^{-1} transformation. Since CDMs can be viewed as special cases of PM-CDMs with $d_k \in \{0, 1\}$, under the CDMs, the corresponding $\tilde{d}_k = \Phi^{-1}(d_k)$ as defined in (3.1) would diverge to $\{-\infty, +\infty\}$. Therefore, we would expect that when the data are generated from the CDMs, the diagonal elements of the estimated covariance matrix $\hat{\Sigma}$ of the transformed variables \tilde{d}’s from the PM-CDMs would be relatively larger than that in the case when the data are generated from the PM-CDMs with $d_k \in [0, 1]$. Thus, examination of diagonal elements of $\hat{\Sigma}$ fitted by the PM-CDMs can then be used as an exploratory tool for the diagnosis of the binary assumption of the attribute mastery status under the CDMs. We have done a simulation study to confirm our observation above. Table 3 reports covariance estimation results from the PM-CDMs under
Table 2

MAE is the mean absolute error of item parameter estimates; RMSE is the root mean squared error of item parameter estimates; AMCR is the attribute level misclassification rate; ARSE is the root mean squared error of mastery score estimates.

Simulation results for $K = 3$, $Q = Q_3$, and $N = 500$.

| μ | ρ | Fitted Model | PM-DINA | | | \makecell{MAE \hspace{1cm} RMSE \hspace{1cm} AMCR \hspace{1cm} ARSE} | DINA | | | \makecell{MAE \hspace{1cm} RMSE \hspace{1cm} AMCR} |
|-------|--------|--------------|---------|--------|-----------------|--------|--------|-----------------|
| | | Constant | PM-DINA | 0.051 | 0.065 | 0.281 | 0.235 | 0.058 | 0.071 | 0.069 |
| | | DINA | PM-DINA | 0.154 | 0.182 | 0.290 | 0.257 | 0.026 | 0.034 | 0.068 |
| | | | DINA | 0.044 | 0.057 | 0.207 | 0.189 | 0.040 | 0.050 | 0.061 |
| | 0.8 | | | 0.127 | 0.145 | 0.217 | 0.223 | 0.022 | 0.028 | 0.050 |
| | | Non-const. | PM-DINA | 0.053 | 0.071 | 0.194 | 0.215 | 0.066 | 0.080 | 0.056 |
| | | | DINA | 0.161 | 0.205 | 0.242 | 0.243 | 0.033 | 0.047 | 0.055 |
| | 0.8 | | PM-DINA | 0.045 | 0.061 | 0.175 | 0.191 | 0.051 | 0.063 | 0.043 |
| | | | DINA | 0.149 | 0.189 | 0.250 | 0.253 | 0.029 | 0.039 | 0.041 |

Simulation results for $K = 5$, $Q = Q_5$, and $N = 1000$.

| μ | ρ | Fitted Model | PM-DINA | | | \makecell{MAE \hspace{1cm} RMSE \hspace{1cm} AMCR \hspace{1cm} ARSE} | DINA | | | \makecell{MAE \hspace{1cm} RMSE \hspace{1cm} AMCR} |
|-------|--------|--------------|---------|--------|-----------------|--------|--------|-----------------|
| | | Constant | PM-DINA | 0.058 | 0.073 | 0.285 | 0.238 | 0.076 | 0.090 | 0.084 |
| | | DINA | PM-DINA | 0.125 | 0.144 | 0.308 | 0.273 | 0.043 | 0.054 | 0.094 |
| | | | DINA | 0.059 | 0.072 | 0.207 | 0.185 | 0.067 | 0.083 | 0.053 |
| | | | | 0.092 | 0.104 | 0.249 | 0.234 | 0.057 | 0.076 | 0.084 |
| | 0.8 | Non-const. | PM-DINA | 0.065 | 0.081 | 0.196 | 0.229 | 0.072 | 0.087 | 0.067 |
| | | | DINA | 0.114 | 0.133 | 0.328 | 0.332 | 0.053 | 0.071 | 0.061 |
| | 0.8 | | PM-DINA | 0.060 | 0.075 | 0.161 | 0.186 | 0.068 | 0.081 | 0.051 |
| | | | DINA | 0.093 | 0.118 | 0.218 | 0.240 | 0.063 | 0.087 | 0.046 |

Simulation settings in Table 2, when the data are generated either from the CDMs or PM-CDMs. We can observe that when the PM-CDMs are true, the estimated diagonal terms are close to the true value and the estimated correlation $\hat{\rho}$ is close to the truth; on the other hand,
Table 3
Covariance estimation results for $K = 3$, $Q = Q_3$ and $N = 500$. The fitted models are PM-CDMs and values in parentheses are the standard errors.

	μ	ρ	True Model	$\hat{\sigma}^2$	$\hat{\rho}$
	0		P-DINA	1.03(0.43)	-0.01(0.15)
			DINA	11.84(3.64)	-0.01(0.07)
		0.8	P-DINA	1.30(0.48)	0.67(0.06)
			DINA	19.08(6.18)	0.70(0.05)
	0		P-DINA	1.00(0.37)	0.02(0.16)
			DINA	7.50(1.68)	0.03(0.11)
		0.8	P-DINA	1.01(0.29)	0.64(0.08)
			DINA	10.84(2.79)	0.65(0.14)
	0		P-GDINA	1.16(0.88)	0.05(0.12)
			GDINA	4.40(1.28)	0.03(0.07)
		0.8	P-GDINA	1.21(0.45)	0.68(0.07)
			GDINA	9.91(4.41)	0.73(0.05)
	0		P-GDINA	0.78(0.34)	0.04(0.14)
			GDINA	3.04(0.89)	0.01(0.09)
		0.8	P-GDINA	1.24(0.88)	0.62(0.09)
			GDINA	4.06(1.16)	0.64(0.12)

When the CDMs are true, the diagonal terms $\hat{\sigma}^2$ estimated from the PM-CDMs tend to be large. Based on these results, in practice, when some of the estimated diagonal elements of Σ’s is not large, it may imply that the CDM’s assumption on the corresponding attribute does not hold; see real data examples in Section 5.

The second diagnosis method is to examine the scatter plot of the latent attribute mastery scores estimated from PM-CDMs. If binary mastery is true, the estimated mastery scores \hat{d}’s from PM-CDMs would be close to 0 or 1; on the other hand, if partial mastery is true, we would expect \hat{d}’s are distributed between 0 and 1. To illustrate this, Figure 2 report the scatter plots for the settings in the upper panel of Table 2 (the data are simulated from DINA or PM-DINA with $K = 3$); simulation results of other settings are presented in the Supplementary Material (Shang et al., 2021). From Figure 2, when the DINA is the true model, we can see that the estimated attribute mastery scores are concentrated at the corners, corresponding to the binary assumption of the mastery status of the attributes. On the other hand, if the true model are the PM-DINAs (with $\sigma = 1$), we can observe many data points spread in the middle part of the plot. Therefore, in practice, if the plot of the attribute mastery scores shows that most points are on the edges or corners, it may be preferable to use CDMs; on the other hand, if most points are concentrated in the middle, PM-CDMs may be a better fit.

5. Real Data Examples.

5.1. Fraction Subtraction Data. We first consider the Fraction Subtraction Data discussed in Table 1, which is a dataset containing responses from 536 middle school students to 20 fraction subtraction problems. Based on the understanding of the problem solving process, eight latent attributes required to answer the items and the $20 \times 8 Q$-matrix were specified (e.g. Tatsuoka, 1990; de la Torre and Douglas, 2004), which are given in Table 1. The data have been analyzed by many researchers, including Tatsuoka (2002), de la Torre and Douglas (2004), Xu and Shang (2018), among others. Identifiability issue of the DINA model for this dataset has also been discussed in DeCarlo (2011). Gu and Xu (2020) recently proved that
under the given Q-matrix, the DINA item parameters are all identifiable and the proportion parameters are partially identifiable.

With the Q-matrix, DINA, GDINA, high-order DINA (HO-DINA), high-order GDINA (HO-GDINA), PM-DINA and PM-GDINA are fitted. The information criteria values in Table 7 in the Supplementary Material (Shang et al., 2021) show that the PM-DINA is a much better fit to these data comparing to the other models. The difference in BIC/AIC values provides a very strong evidence for supporting this conclusion, according to guidelines suggested by Kass and Raftery (1995). To compare the DINA and PM-DINA models, the estimated correct response probability of non-mastery subjects (θ_0, the guessing parameter) and mastery subjects ($\theta_1, 1 - \rho$ the slipping parameter) are also reported in Table 4. We can see that the PM-CDMs generally give smaller slipping parameters on all items and smaller guessing parameters on all but one item (item 3), which agrees with the simulation estimation results when the data are generated from the PM-DINA model.

Figure 3 shows the plot of the estimated latent attribute mastery scores from the PM-DINA model. We can see that some of the plots (e.g., A1-A4, A1-A7 pairs) are similar to those in the simulation study when DINA model is true (upper panels in Figures 2), while others (e.g., A2-A3, A2-A8 pairs) seem to be more similar to that when the PM-DINA is true (lower panels in Figures 2). In addition, most of the subjects have the mastery scores of A6 close to 1. We also report in Table 4 the estimated mean, covariance, and correlation matrix from the PM-DINA model. According to the discussions based on the simulation study, larger values of the variances $\hat{\sigma}^2$'s serve as an indicator of an underlying DINA model while smaller $\hat{\sigma}^2$'s are likely the result from a PM-DINA model. Interestingly, the results here show a mixture of both cases. For A1, A3, A4, A5 and A7, $\hat{\sigma}^2$'s are large, while A2, A6 and A8 have relatively smaller $\hat{\sigma}^2$'s. Moreover, we can see that most of the attributes are strongly-correlated, but A6
is weakly correlated with the others. Based on our results, we conclude that the DINA model fits well on some attributes but not on others, while PM-DINA fits better overall. Hence, we recommend to use PM-DINA to fit the fraction subtraction data.

5.2. English Tests Data. The second dataset is the English tests dataset collected by the Examination for the Certificate of Proficiency in English (ECPE). Designed and organized by University of Michigan English Language Institute, the examination is developed to test high-level English language skills to determine language proficiency of non-native speakers. It contains questions to evaluate grammar, vocabulary and reading skills. We consider a subset of the data from 2003-2004 ECPE grammar section with 2922 subjects and 28 items (Liu et al., 2007). The Q-matrix contains three attributes: Morphosyntactic Form, Cohesive Form and Lexical Form. The data were also analyzed in Chiu et al. (2016) using a joint likelihood estimation approach. We again use DINA, GDINA and their partial mastery counterparts for
fitting this dataset. The information criteria results in Table 7 in the Supplementary Material (Shang et al., 2021) provide strong evidence in favor of partial mastery (Kass and Raftery, 1995). The PM-GDINA provides the best fit, yet the BIC difference between PM-DINA and PM-GDINA is negligible.

Table 5 provides the estimated $\hat{\theta}_{j,0}$'s from the GDINA and the PM-GDINA. We observe that the estimates from the PM-GDINA satisfy the monotonicity assumption while the results for items 1 and 12 from the GDINA violate that. In addition, the PM-GDINA generally gives smaller estimates of $\hat{\theta}_{j,0}$ and larger estimates of $\hat{\theta}_{j,1}$ than the GDINA, which agrees with the simulation study when the PM-GDINA is correct. For the population parameters, the estimated μ's from the PM-GDINA is (0.227, 0.624, 0.944) which corresponds to (0.590, 0.734, 0.827) on the 0-1 scales of the mastery scores. Comparing to the fraction subtraction data, all estimated μ's are relatively small; moreover, all diagonal terms of estimated covariance matrix in Table 5 are fairly close to one. These results suggest that the PM-GDINA may be a better fit for all attributes than the GDINA. The plots of the attribute mastery scores in Figure 4 further demonstrate this. Instead of concentrating at the edges and corners, the majority of the subjects' mastery scores lie in the middle of the plot. According to the simulation results (e.g., Figure 2), this suggests that PM-GDINA fits the data better than the GDINA model. Overall, the results provide strong evidence in favor of partial mastery over binary mastery for all items and attributes.

Figure 3. Scatter plots of attribute scores for Fraction Subtraction data.
We further investigate goodness-of-fit of the GDINA and PM-GDINA on individual levels. In Figure 5, we present the frequency of estimated all-zero \(\alpha \) (left panel) or all-one \(\alpha \) (right panel) attribute profiles – students who have not mastered any skill or have mastered all three skills, respectively – from PM-GDINA and GDINA versus the number of correct responses. The right panel suggests that the two models have similar classification performance for the classification of students into the all-one attribute profile. However, the left panel indicates a substantial difference for the classification of students into the zero skill mastery profile. Thus, while the PM-GDINA and GDINA models are similar in classifying students with less than 12 correct responses into the all-zero profile, GDINA also estimates zero skill mastery for a substantial proportion of students who had more than 12 correct responses.

Table 5

Q-matrix and estimation results. \(\theta_{0,0} \) is for subjects with \(\alpha = (0, 0, 0) \), \(\theta_{1,0} \) is for subjects only mastering the first of all required attributes, \(\theta_{0,1} \) is for subjects only mastering the last of all required attributes, and \(\theta_{1,1} \) is for subjects mastering all required attributes; note here each item \(j \) requires at most 2 attributes and thus has at most 4 different \(\theta_{j,\alpha} \).

Item	Q	PM-GDINA	GDINA								
	Morph.	Coh.	Lex.	\(\hat{\theta}_{00} \)	\(\hat{\theta}_{10} \)	\(\hat{\theta}_{01} \)	\(\hat{\theta}_{11} \)	\(\hat{\theta}_{00} \)	\(\hat{\theta}_{10} \)	\(\hat{\theta}_{01} \)	\(\hat{\theta}_{11} \)
1	1	1	0	0.54	0.76	0.83	0.98	0.70	0.46	0.80	0.94
2	0	1	0	0.59		0.95	0.74	0.91			
3	1	0	1	0.35	0.58	0.41	0.90	0.41	0.67	0.50	0.78
4	0	0	1	0.19		0.91	0.47	0.82			
5	0	0	1	0.62		0.99	0.75	0.96			
6	0	0	1	0.53		0.98	0.70	0.93			
7	1	0	1	0.20	0.82	0.74	0.99	0.48	0.95	0.70	0.94
8	0	1	0	0.71		0.99	0.81	0.97			
9	0	0	1	0.29		0.86	0.53	0.79			
10	1	0	0	0.41		0.99	0.52	0.89			
11	1	0	1	0.28	0.75	0.71	0.99	0.49	0.62	0.72	0.93
12	1	0	1	0.06	0.24	0.19	0.94	0.15	0.00	0.38	0.74
13	1	0	0	0.58		0.99	0.66	0.91			
14	1	0	0	0.45		0.92	0.54	0.83			
15	0	0	1	0.59		0.99	0.73	0.96			
16	1	0	1	0.27	0.74	0.68	0.98	0.48	0.84	0.69	0.91
17	0	1	1	0.62	0.86	0.88	0.97	0.79	0.93	0.88	0.94
18	0	0	1	0.56		0.96	0.72	0.91			
19	0	0	1	0.16		0.93	0.45	0.84			
20	1	0	1	0.09	0.39	0.20	0.95	0.20	0.20	0.38	0.76
21	1	0	0	0.27	0.62	0.86	0.96	0.54	0.77	0.79	0.92
22	0	0	1	0.01		0.89	0.29	0.80			
23	0	1	0	0.47		0.99	0.66	0.94			
24	0	1	0	0.09		0.77	0.34	0.69			
25	1	0	0	0.44		0.87	0.52	0.77			
26	0	0	1	0.36		0.84	0.54	0.78			
27	1	0	0	0.17		0.82	0.29	0.70			
28	0	0	1	0.43		0.97	0.64	0.91			

Covariance and correlation estimation results for English data

Item	Cov.	Morph.	Coh.	Lex.
Morph.	1.126	0.867	1.010	
Coh.	0.867	1.083	0.973	
Lex.	1.010	0.973	1.337	

Item	Cov.	Morph.	Coh.	Lex.
Morph.	1.000	0.784	0.823	
Coh.	0.784	1.000	0.809	
Lex.	0.823	0.809	1.000	
PARTIAL-MASTERY COGNITIVE DIAGNOSIS MODELS

While PM-GDINA does not. Take subject 1792 as an example, who got correct answers in 20 out of the total 28 questions (Table 6), the GDINA classifies its attribute pattern as \((0, 0, 0)\) with its posterior probability \((0.48)\) significantly higher than those of other attribute profiles, which indicates the test-taker does not master any of the attributes. On the other hand, the PM-GDINA estimates \(\hat{d} = (0.41, 0.65, 0.67)\) suggest partial mastery of all the three skills. In Table 6, we also list observed responses from the other four subjects who answered at least 18 out of 28 items correctly but were classified as \((0, 0, 0)\) by the G-DINA model. On the other hand, the PM-GDINA estimates reflect partial-mastery of the three skills. We also present in Table 6 the posterior estimation result of each attribute from the GDINA (values in parentheses of the column “GDINA Class”). Though subject 1792’s results are more similar to the PM-GDINA, the rest four subjects’ results are quite different. The posterior estimate of each attribute of these four subjects from GDINA appears close to zero, while each of subjects answered 18 out of 28 items correctly.

Overall, the above analysis shows that the PM-GDINA appears to statistically fit the data better. Practically, we may further consult education domain experts to decide which results should be used in reporting the cognitive diagnosis results for the subjects.

One interesting observation pointed out by an anonymous reviewer is that the subject 1792 correctly answered 10 out of those 13 items that require the first attribute, seemingly contradicting the estimation result of a relatively low mastery score \(d_1 = 0.41\). One reason for this is that the estimation of each attribute is largely affected by the item parameters. Consider items 13 and 27 for example. Though both items only require the first attribute, we can see from the estimation results in Table 5 that item 13 is a much easier problem than item 27; for a subject without mastering any attribute, \(d = (0, 0, 0)\), he/she still has a probability of \(\theta_{000} = 0.58\) to correctly answer item 13, but only a probability of \(\theta_{000} = 0.17\) to correctly answer item 27. Such differences in item parameters would lead to different estimated mastery scores even for subjects answering the same number of items correctly; for instance, conditional on the other items’ responses, answering item 13 correctly but not item 27 (as did by subject 1792) would result in a lower \(d_1\) estimate than the other way around. Another major reason is that the estimation of each attribute also depends on the \(q\)-vectors. Note that several items requiring the first attributes also require the other attributes; under the compensatory GDINA and PM-GDINA model assumption, the absence of one required attribute can be compensated by the presence of other latent attributes. Take item 1, which requires the first two attributes, for example; from the estimation results, an individual with attribute profile \((010)\), though lacking the first attribute, still has a probability of 0.83 to answer this item correctly. Thus, the simple subscore of counting how many items requiring each attribute were correctly answered often does not provide a reasonable estimation of

![Fig 4. Estimated attribute scores by PM-GDINA for English data.](image)
the latent attribute, a phenomenon commonly occurring in multidimensional latent variable models, such as CDMs (Rupp et al., 2010) and item response theory models (Reckase, 2009). This is also the reason why latent variable statistical models are often preferred in educational measurement rather than simply using total scores or subscores.

We use a simulation study to further illustrate this. Under the PM-GDINA model, using the data Q-matrix and the estimated item parameters in Table 5, we simulate 10,000 independent response vectors to the 28 items from the estimated mastery score $\hat{d} = (0.41, 0.65, 0.67)$ of subject 1792. We find that about 21% out of the 10,000 simulations have correct answers to at least 10 out of those 13 items that require the first attribute, indicating that the seemingly contradictory observation is a normal phenomenon under the estimated model parameters.

We further present in Figure 6 the estimated probability of providing correct answers to at least 10 out of those 13 items for mastery scores $\hat{d} = (d_1, 0.65, 0.67)$ with the mastery scores of attributes 2 and 3 taking the same estimated values as subject 1792 (solid curve) and $\hat{d} = (d_1, 0, 0)$ (dashed curve), where the mastery score of the first attribute d_1 varies from 0 to 1. Comparing the two curves, we can see that when attributes 2 and 3 take 0 values, the chance of observing at least 10 correct answers out of those 13 items is much lower. In addition, both curves increase with d_1, indicating a positive correlation between the number of correct answers and the level of the first mastery score. All these results suggest the reasonableness of the estimation result for subject 1792.

Table 6

Individual case study for English Data. “GDINA Class” column gives the estimated attribute profiles by GDINA and the posterior estimate of each attribute (in parentheses), and “PM-GDINA” column gives the estimated mastery scores.

Subject	Response	GDINA Class	PM-GDINA Scores
1792	110011101111110010111001	000 (0.36, 0.45, 0.51)	(0.41, 0.65, 0.67)
429	1010111111001001011111001	000 (0.05, 0.20, 0.32)	(0.28, 0.56, 0.63)
824	1110011011001110111101101	000 (0.23, 0.20, 0.34)	(0.41, 0.62, 0.65)
1366	1001001111111011011111111111111	000 (0.02, 0.02, 0.05)	(0.36, 0.51, 0.51)
2273	11111101111101110111001111111111111111	000 (0.08, 0.17, 0.19)	(0.38, 0.62, 0.65)

FIG 5. (Left) Frequency of estimated all-zero \mathbf{a} of English Test Data from PM-GDINA and GDINA, versus the number of correct responses. (Right) Frequency of estimated all-one \mathbf{a} from PM-GDINA and GDINA, versus the number of correct responses.
The estimated probability (y-axis) of providing correct answers to at least 10 out of those 13 items requiring attribute 1, for mastery scores \(\hat{d} = (d_1, 0.65, 0.67) \) (solid curve) and \(\hat{d} = (d_1, 0, 0) \) (dashed curve), with first attribute’s mastery score \(d_1 \) (x-axis) varying from 0 to 1. The dotted vertical line indicates the estimated score \(d_1 = 0.41 \) of subject 1792.

Finally, we would like to point out that the hierarchical structure of the latent attributes for this dataset was studied in Templin and Bradshaw (2014) under CDMs. Even though the hierarchy structure is not used in the CDM and PM-CDM modeling of this work, the corresponding hierarchical models can be viewed as submodels of the fitted CDM and PM-CDM by constraining the model parameters to respect the hierarchy. As the sample size of this dataset is relatively large (\(N = 2922 \)), fitting the general models would yield similar results as the hierarchical submodels. This was also found in the data analysis in Templin and Bradshaw (2014) that “Agreement between the two models [the hierarchy and general models] was very high, providing matching classifications for 93.6\% of examinees. The two models provide similar classifications of examinees with only a few cases where classifications differed substantially.” For this reason, this work focuses on the general CDM and PM-CDM.

6. Discussion. In this paper, we propose a mixed membership modeling approach for cognitive diagnosis, PM-CDM, which allows for partial mastery along multiple dimensions of latent attributes. The proposed approach covers CDMs as special cases and provides a more flexible tool for cognitive diagnosis assessment. We develop a Bayesian estimation method that is applicable to all PM-CDMs and demonstrate accurate parameter recovery in simulated setting with partial mastery assumption. Using simulation studies, we investigate the impact of model misspecification when the true data generation process assumes binary mastery but partial mastery models are fitted to the data, and vice versa. Our results indicate that partial mastery models are able to fit simulated data better than binary mastery CDMs when partial mastery is present, and provide comparable (or slightly worse) results to CDMs when binary mastery is the correct assumption. In addition to goodness-of-fit measures such as AIC and BIC, we suggest several diagnostics that could be used for determining when partial mastery models are more appropriate. In the two real data examples considered in this paper, we find strong evidence in support of partial mastery. For the fraction subtraction data, partial mastery was clearly more appropriate than binary mastery for some attributes (such as A3 “simplify before subtracting”) but not for others (such as A7 “subtract numerators”), whereas in the English tests data, partial mastery specification was found to be more appropriate for all attributes. Examining discrepancies between estimated individual-level partial mastery scores
and attribute profiles, we observe that PM-CDMs provide more detailed information about the skills learned that skills that need study. This property of PM-CDMs has the potential to lead to more effective remediation programs.

The proposed Gaussian copula modeling approach needs $K + K(K + 1)/2$ parameters to model the distribution of the attribute mastery score d. The computation cost of the proposed Gibbs sampling method increases quadratically with respect to K. An interesting direction is to further reduce the model complexity, especially when the number of attributes K is large. We may consider a factor analysis model for the latent scores; for instance, the one-factor model is \{ $\Phi^{-1}(d_k); k = 1, \ldots, K$ \} $^T = \mu + \Lambda \eta + \epsilon$, where Λ is a $K \times 1$ loading vector, η is a subject specific factor following standard normal distribution and ϵ follows a multivariate K-dimensional normal distribution with zero mean and diagonal covariance E. Then this model corresponds to \{ $\Phi^{-1}(d_k); k = 1, \ldots, K$ \} $^T \sim N(\mu, \Lambda \Lambda^T + E)$, which has fewer model parameters than the proposed model in Section 2 (when $K \geq 4$). The above factor analysis modeling is similar to the higher-order factor models and higher-order CDMs proposed in de la Torre and Douglas (2004), Templin et al. (2008), and Culpepper and Chen (2019); this is also related to the multidimensional IRT model (Reckase, 2009). However, as discussed in Section 3.1, our method differs from these existing studies due to the different cognitive diagnosis modeling from the latent scores to responses. Alternatively, to reduce the computation cost when K is large, we may use the variational approximation inference method (Blei et al., 2003; Erosheva et al., 2007; Blei et al., 2007) or moment based method (Zhao et al., 2018) for PM-CDMs.

Another interesting extension of this study is to allow for mixtures of binary and partial mastery across attributes. As illustrated in the analysis of the Fraction Subtraction data, in practice some attributes may satisfy the partial mastery assumption while other may follow the binary assumption. Moreover, as discussed in the analysis of the English data, the extension to hierarchical PM-CDMs is also worthy of further investigation. Such an extension would need to carefully incorporate prespecified hierarchical structures among the latent attributes by domain experts.

Finally, in this paper, we have assumed that the pre-specified Q-matrix is known and correct. In practice, the Q-matrix is usually constructed by the users and may not be accurate. A misspecified Q-matrix could lead to substantial lack of fit and, consequently, erroneous classification of subjects (Rupp and Templin, 2008b; de la Torre, 2008b). Various methods for Q-matrix validation and estimation have been proposed under CDMs (e.g., Liu, Xu, and Ying, 2012, 2013; DeCarlo, 2012; Chen, Liu, Xu, and Ying, 2015; de la Torre and Chiu, 2016; Xu and Shang, 2018; Chen, Culpepper, Chen, and Douglas, 2018). It would be interesting to use these approaches to develop a more general PM-CDM framework for estimating the Q-matrix of multiple latent dimensions.

Acknowledgements. The authors thank the editors, an associate editor, and two anonymous referees for their constructive comments. This research is partially supported by NSF grants CAREER SES-1846747, SES-1659328 and DMS-1712717, and IES grant R305D160010. Elena Erosheva would like to acknowledge that this research has partly taken place while she was a visiting professor at the Laborаторie J. A. Dieudonné, Université Côte d’Azur, CNRS, Nice, France.

SUPPLEMENTARY MATERIAL

Supplement to “Partial-Mastery Cognitive Diagnosis Models” (doi: COMPLETED BY THE TYPESETTER; .pdf). The supplementary material includes details for the Gibbs sampling algorithm and additional simulation and data analysis results.
REFERENCES

Airoldi, E. M., D. Blei, E. A. Erosheva, and S. E. Fienberg (2014). *Handbook of mixed membership models and their applications*. CRC Press.

Blei, D. M., J. D. Lafferty, et al. (2007). A correlated topic model of science. *The Annals of Applied Statistics* 1(1), 17–35.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003). Latent Dirichlet allocation. *Journal of machine Learning research* 3(Jan), 993–1022.

Bolt, D. M. and V. F. Lall (2003). Estimation of compensatory and noncompensatory multidimensional item response models using markov chain monte carlo. *Applied Psychological Measurement* 27(6), 395–414.

Chen, J. and J. de la Torre (2013). A general cognitive diagnosis model for expert-defined polytomous attributes. *Applied Psychological Measurement* 37(6), 419–437.

Chen, Y., S. A. Culpepper, Y. Chen, and J. Douglas (2018). Bayesian estimation of the DINA Q matrix. *Psychometrika* 83(1), 89–108.

Chen, Y., J. Liu, G. Xu, and Z. Ying (2015). Statistical analysis of Q-matrix based diagnostic classification models. *Journal of the American Statistical Association* 110, 850–866.

Chiu, C.-Y., J. A. Douglas, and X. Li (2009). Cluster analysis for cognitive diagnosis: theory and applications. *Psychometrika* 74, 633–665.

Chiu, C.-Y., H.-F. Kohn, Y. Zheng, and R. Henson (2016). Joint maximum likelihood estimation for diagnostic classification models. *Psychometrika* 81(4), 1069–1092.

Culpepper, S. A. (2015). Bayesian estimation of the dina model with gibbs sampling. *Journal of Educational and Behavioral Statistics* 40(5), 454–476.

Culpepper, S. A. and Y. Chen (2019). Development and application of an exploratory reduced reparameterized unified model. *Journal of Educational and Behavioral Statistics* 44(1), 3–24.

Culpepper, S. A. and A. Hudson (2018). An improved strategy for bayesian estimation of the reduced reparameterized unified model. *Applied psychological measurement* 42(2), 99–115.

de la Torre, J. (2008a). An empirically based method of Q-matrix validation for the DINA model: Development and applications. *Journal of educational measurement* 45(4), 343–362.

de la Torre, J. (2008b). An empirically-based method of Q-matrix validation for the DINA model: Development and applications. *Journal of Educational Measurement* 45, 343–362.

de la Torre, J. (2009). DINA model and parameter estimation: a didactic. *Journal of Educational and Behavioral Statistics* 34, 115–130.

de la Torre, J. (2011). The generalized DINA model framework. *Psychometrika* 76, 179–199.

de la Torre, J. and C.-Y. Chiu (2016). A general method of empirical Q-matrix validation. *Psychometrika* 81, 253–273.

de la Torre, J. and J. A. Douglas (2004). Higher order latent trait models for cognitive diagnosis. *Psychometrika* 69, 333–353.

DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: the DINA model, classification, class sizes, and the Q-matrix. *Applied Psychological Measurement* 35, 8–26.

DeCarlo, L. T. (2012). Recognizing uncertainty in the Q-matrix via a bayesian extension of the DINA model. *Applied Psychological Measurement* 36(6), 447–468.

DiBello, L. V., W. F. Stout, and L. A. Roussos (1995). Unified cognitive psychometric diagnostic assessment likelihood-based classification techniques. In P. D. Nichols, S. F. Chipman, and R. L. Brennan (Eds.), *Cognitively diagnostic assessment*, pp. 361–390. Hillsdale, NJ: Erlbaum Associates.

Embretson, S. E. and X. Yang (2013). A multicomponent latent trait model for diagnosis. *Psychometrika* 78(1), 14–36.

Erosheva, E. (2002). Partial membership models with application to disability survey data. *Statistical data mining and knowledge discovery. Chapman and Hall/CRC; Boca Raton*, 117–133.

Erosheva, E., S. Fienberg, and J. Lafferty (2004). Mixed-membership models of scientific publications. *Proceedings of the National Academy of Sciences* 101(suppl 1), 5220–5227.

Erosheva, E. A. (2005). Comparing latent structures of the grade of membership, rasch, and latent class models. *Psychometrika* 70(4), 619–628.

Erosheva, E. A., S. E. Fienberg, and C. Joutard (2007). Describing disability through individual-level mixture models for multivariate binary data. *The Annals of Applied Statistics* 1(2), 502–537.

Feng, Y., B. T. Habing, and A. Huebner (2014). Parameter estimation of the reduced rum using the em algorithm. *Applied Psychological Measurement* 38(2), 137–150.

Galyardt, A. (2014). Interpreting mixed membership models: Implications of Erosheva’s representation theorem. *Handbook of mixed membership models*.

George, A. C., A. Robitzsch, T. Kiefer, J. Groß, and A. Ünlü (2016). The R package CDM for cognitive diagnosis models. *Journal of Statistical Software* 74(2), 1–24.
Gu, Y., J. Liu, G. Xu, and Z. Ying (2018). Hypothesis testing of the Q-matrix. *Psychometrika* 83, 515–537.

Gu, Y. and G. Xu (2019). The sufficient and necessary condition for the identifiability and estimability of the DINA model. *Psychometrika* 84(2), 468–483.

Gu, Y. and G. Xu (2020). Partial identifiability of restricted latent class models. *The Annals of Statistics* 48(4), 2082–2107.

Haberman, S. (1995). Book review of “Statistical applications using fuzzy sets,” by K.G. Manton, M.A. Woodbury, and L.S. Corder. *Journal of the American Statistical Association* 90, 1131–1133.

Hansen, M., L. Cai, S. Monroe, and Z. Li (2016). Limited-information goodness-of-fit testing of diagnostic classification item response models. *British Journal of Mathematical and Statistical Psychology* 69(3), 225–252.

Hartz, S. and L. Roussos (2008). The fusion model for skills diagnosis: Blending theory with practicality. *ETS Research Report Series* 2008(2), i–57.

Hartz, S. M. (2002). *Multidimensional item response theory*. V olume 150. Springer.

Henson, R. A., J. L. Templin, and J. T. Willse (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. *Psychometrika* 74, 191–210.

Hong, H., C. Wang, Y. S. Lim, and J. Douglas (2015). Efficient models for cognitive diagnosis with continuous and mixed-type latent variables. *Applied psychological measurement* 39(1), 31–43.

Junker, B. W. and K. Sijtsma (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. *Applied Psychological Measurement* 25, 258–272.

Kass, R. E. and A. E. Raftery (1995). Bayes factors. *Journal of the american statistical association* 90(430), 773–795.

Kohn, H.-F. and C.-Y. Chiu (2017). A procedure for assessing the completeness of the Q-matrices of cognitively diagnostic tests. *Psychometrika* 82(1), 112–132.

Kohn, H.-F. and C.-Y. Chiu (2018). How to build a complete Q-matrix for a cognitively diagnostic test. *Journal of Classification* 35(2), 273–299.

Liu, J., G. Xu, and Z. Ying (2012). Data-driven learning of Q-matrix. *Applied Psychological Measurement* 36, 548–564.

Liu, J., G. Xu, and Z. Ying (2013). Theory of self-learning Q-matrix. *Bernoulli* 19(5A), 1790–1817.

Liu, Y., J. A. Douglas, and R. A. Henson (2007). Testing person fit in cognitive diagnosis. *Paper presented at the annual meeting of the National Council on Measurement in Education (NCME), Chicago, IL, April*.

Ma, W. and J. de la Torre (2019). Gdina: The generalized dina model framework. *R package version, 2.3.2. Retrieved from https://CRAN.R-project.org/package=GDINA*.

Manton, K., M. Woodbury, and H. Tolley (1994). *Statistical applications using fuzzy sets*. New York: Wiley.

Reckase, M. (2009). *Multidimensional item response theory*, Volume 150. Springer.

Rupp, A. A. and J. Templin (2008a). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. *Educational and Psychological Measurement* 68(1), 78–96.

Rupp, A. A. and J. L. Templin (2008b). Effects of Q-matrix misspecification on parameter estimates and misclassification rates in the DINA model. *Educational and Psychological Measurement* 68, 78–98.

Rupp, A. A., J. L. Templin, and R. A. Henson (2010). *Diagnostic Measurement: Theory, Methods, and Applications*. New York: Guilford Press.

Shang, Z., E. A. Erosheva, and G. Xu (2021). Supplement to “partial-mastery cognitive diagnosis models”. *The Annals of Applied Statistics*.

Stout, W., R. Henson, L. DiBello, and B. Shear (2019). The reparameterized unified model system: a diagnostic assessment modeling approach. In *Handbook of Diagnostic Classification Models*, pp. 47–79, Springer.

Tatsuoka, C. (2002). Data-analytic methods for latent partially ordered classification models. *Applied Statistics (JRSS-C)* 51, 337–350.

Tatsuoka, K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. *Diagnostic monitoring of skill and knowledge acquisition*, 453–488.

Tatsuoka, K. K. (2009). *Cognitive Assessment: An Introduction to the Rule Space Method*. New York: Routledge.

Templin, J. and L. Bradshaw (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. *Psychometrika* 79(2), 317–339.

Templin, J. L. and R. A. Henson (2006). Measurement of psychological disorders using cognitive diagnosis models. *Psychological Methods* 11, 287–305.

Templin, J. L., R. A. Henson, S. E. Templin, and L. Roussos (2008). Robustness of hierarchical modeling of skill association in cognitive diagnosis models. *Applied Psychological Measurement* 32(7), 559–574.

von Davier, M. (2008). A general diagnostic model applied to language testing data. *British Journal of Mathematical and Statistical Psychology* 61, 287–307.

Xu, G. (2017). Identifiability of restricted latent class models with binary responses. *The Annals of Statistics* 45, 675–707.
Xu, G. and Z. Shang (2018). Identifying latent structures in restricted latent class models. *Journal of the American Statistical Association* 113, 1284–1295.

Xu, G. and S. Zhang (2016). Identifiability of diagnostic classification models. *Psychometrika* 81, 625–649.

Zhao, S., B. E. Engelhardt, S. Mukherjee, and D. B. Dunson (2018). Fast moment estimation for generalized latent Dirichlet models. *Journal of the American Statistical Association* 113, 1528–1540.