Genotypic and Phenotypic Characterization of Chikungunya Virus of Different Genotypes from Malaysia

I-Ching Sam1*, Shih-Keng Loong1, Jasmine Chandramathi Michael1, Chong-Long Chua1, Wan Yusoff Wan Sulaiman2, Indra Vythilingam2, Shie-Yien Chan1, Chun-Wei Chiam1, Yze-Shiuan Yeong2, Sazaly AbuBakar1, Yoke-Fun Chan1

1 Tropical Infectious Diseases Research and Education Centre, Department of Medical Microbiology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia, 2 Department of Parasitology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia

Abstract

Background: Mosquito-borne Chikungunya virus (CHIKV) has recently re-emerged globally. The epidemic East/Central/South African (ECSA) strains have spread for the first time to Asia, which previously only had endemic Asian strains. In Malaysia, the ECSA strain caused an extensive nationwide outbreak in 2008, while the Asian strains only caused limited outbreaks prior to this. To gain insight into these observed epidemiological differences, we compared genotypic and phenotypic characteristics of CHIKV of Asian and ECSA genotypes isolated in Malaysia.

Methods and Findings: CHIKV of Asian and ECSA genotypes were isolated from patients during outbreaks in Bagan Panchor in 2006, and Johor in 2008. Sequencing of the CHIKV strains revealed 96.8% amino acid similarity, including an unusual 7 residue deletion in the nsP3 protein of the Asian strain. CHIKV replication in cells and Aedes mosquitoes was measured by virus titration. There were no differences in mammalian cell lines. The ECSA strain reached significantly higher titres in Ae. albopictus cells (C6/36). Both CHIKV strains infected Ae. albopictus mosquitoes at a higher rate than Ae. aegypti, but when compared to each other, the ECSA strain had much higher midgut infection and replication, and salivary gland dissemination, while the Asian strain infected Ae. aegypti at higher rates.

Conclusions: The greater ability of the ECSA strain to replicate in Ae. albopictus may explain why it spread far more quickly and extensively in humans in Malaysia than the Asian strain ever did, particularly in rural areas where Ae. albopictus predominates. Intergenotypic genetic differences were found at E1, E2, and nsP3 sites previously reported to be determinants of host adaptability in alphaviruses. Transmission of CHIKV in humans is influenced by virus strain and vector species, which has implications for regions with more than one circulating CHIKV genotype and Aedes species.

Citation: Sam I-C, Loong S-K, Michael JC, Chua C-L, Wan Sulaiman WY, et al. (2012) Genotypic and Phenotypic Characterization of Chikungunya Virus of Different Genotypes from Malaysia. PLoS ONE 7(11): e50476. doi:10.1371/journal.pone.0050476

Introduction

Chikungunya virus (CHIKV) is an alphavirus from the *Togaviridae* family, which is transmitted by both *Aedes aegypti* and *Ae. albopictus*. It is a single-stranded, positive sense RNA virus, with a genome of about 11.8 kb, and two open reading frames encoding the nonstructural (nsP1-nsP2-nsP3-nsP4) and structural polyproteins (C-E3-E2-6K-E1). CHIKV causes fever, rash, and arthralgia, with the latter sometimes lasting for months. Phylogenetic analysis shows that there are three major CHIKV genotypes: West African, East/Central/South African (ECSA), and Asian [1]. After its identification in Tanzania in 1952 [2], CHIKV caused sporadic outbreaks in Asia and Africa, punctuated by years of apparent inactivity [1]. During interepidemic periods, CHIKV may be maintained in a sylvatic cycle in non-human primates [3,4]. However, since 2005, ECSA strains from East Africa have spread to the Indian Ocean [5] and India [6], and then onwards to Europe [7], Asia [8–11], and North America [12], affecting millions. Adaptation of the virus to the secondary vector *Ae. albopictus* contributed to this unprecedented spread [13].

Malaysia is located in Southeast Asia, which is endemic for CHIKV. Although low levels of seroprevalence were noted in human populations as early as the 1960s [14], CHIKV was only identified for the first time during an outbreak in Klang in 1998 [15]. A further outbreak occurred in Bagan Panchor, a fishing village in Perak state, in 2006 [16,17]. The causative CHIKV strains were of the Asian genotype, as were strains isolated from wild macaques in Malaysia in 2007 [4], suggesting that this genotype is endemic in Malaysia. A third outbreak in Ipoh in 2006 was the first to be caused by the ECSA genotype [18]. These three outbreaks were each limited to single sites, affecting about 300
people in total. CHIKV of the ECSA genotype then caused Malaysia’s first nationwide outbreak in 2008–2010, affecting over 10,000 people [11].

Malaysia therefore has two CHIKV genotypes: the previously isolated Asian and the recently imported epidemic ECSA genotypes, which have clear epidemiological differences. The Asian genotype caused restricted outbreaks with no reported severe disease, while the ECSA genotype caused an epidemic extending throughout the country. Comparative laboratory data between CHIKV genotypes is limited, but may have important implications for disease occurrence in countries with more than one circulating genotype. To gain insight into the observed epidemiological differences between the two CHIKV genotypes found in Malaysia, we studied their genotypic and phenotypic differences in cell lines, *Ae. albopictus*, and *Ae. aegypti* mosquitoes.

Materials and Methods

Ethics Statement

One of the authors (WYWS) consented to donate blood to feed the mosquitoes.

Virus Isolates

The CHIKV isolates sequenced in the study were two isolates from the Bagan Panchor outbreak in 2006 (MY/06/37348 and MY/06/37350, Asian genotype), and two isolates from Johor during the nationwide outbreak of the ECSA genotype in 2008 (MY/08/065 and MY/08/068). Isolates MY/06/37348 and MY/08/068 were used for study of replication in cells and mosquitoes. The Bagan Panchor and Johor isolates were isolated from patient serum, and passed not more than three times in Vero cells (African green monkey kidney, ATCC CCL-81). Virus stocks were prepared by freeze-thawing the infected cells once, centrifuging the suspension at 40,000 g and storing the filtered supernatants at −80°C.

Phylogenetic Analysis

Consensus full coding sequences were assembled using Geneious 5.1 (Biomatters Ltd, New Zealand), and aligned with other CHIKV genomes available from GenBank. Using jModeltest 0.1.1 [19], the best-fitting substitution model was found to be the general time reversible model with proportion of invariant sites (GTR+I). The maximum likelihood tree was drawn using MEGAS5 [20]. The strength of the phylogenetic tree was estimated by bootstrap analyses using 1000 random samplings.

Replication Kinetics of Viruses in Cells

The mammalian cell lines Vero and RD (human rhabdomyosarcoma, ATCC CCL-136), and the mosquito cell lines C6/36 (*Ae. albopictus*, ATCC CCL-1660) and CCL-125 (*Ae. aegypti*, ATCC CRL-125) were used to compare the replication of the isolates MY/06/37348 and MY/08/065. These cells were selected to represent the hosts of CHIKV. The same batch of each cell line was used for each comparative experiment. Vero and C6/36 cells were maintained in EMEM supplemented with 10% FBS, 2 mM L-glutamine, 1X non-essential amino acids.

Protein	Length (amino acids)	Number of amino acid differences (%)	Amino acid differences
nsP1	535	13 (2.4)	S3P, S34P, T128K, V153I, M232K, T376M, G454S, R473S, A478T, N486D, Q488R, Q491R, H507R
nsP2	798	12 (1.5)	L16P, S54N, S218T, L273Q, M338H, K374Y, V466M, L539S, I562V, S567N, A799V
nsP3	530	35 (6.6)	T77S, G117R, V175I, I176V, V213M, N283S, V303T, V331A, R332Q, M336T, I347T, A349V, T353I, del376-382THTLPST, I383T, I413T, Q434L, A437V, I449M, R452Q, I457T, H459S, V459T, L461P, S462N, P471S, D483N, D484E
nsP4	611	13 (2.1)	L42A, T58M, T75A, K85R, A905, V101I, R235Q, K252Q, V252K, T254A, R271K, D280E, A366T, Q500L, A582V
non-structural polyprotein	2474	73 (3.0)	P23S, V27I, K37Q, V48A, K73R, R78Q, M81T, V93A
C	261	8 (3.1)	K33E, S44R, R60H, R62Q
E3	64	4 (6.3)	I2T, H5N, G118S, R149K, A157V, A164T, S194G, D205G, S207N, S248L, K252Q, V255I, T312K, T317V, S318V, S375T, V384M, V386A
E2	423	18 (4.3)	V8I, M45T, T47A, L52M
structural polyprotein	1249	44 (3.5)	S72N, T98A, A145T, E211K, S225A, A226V, M269V, D284E, S304P, P397L

Amino acid differences are reported following alignment of sequences obtained in this study from the Bagan Panchor strains MY/06/37348 and MY/06/37350 (Asian genotype), and the Johor strains MY/08/065 and MY/08/068 (ECSA genotype). The first amino acid named is found in the Asian strains, while the second amino acid is found in the ECSA strains. Differences at sites reported to be mosquito adaptation determinants in other alphaviruses are underlined.
independent experiments were performed. 20% FBS, 1 mM sodium pyruvate, 2 mM L-glutamine, 1X non-essential amino acids, 100 units/ml penicillin and 100 μg/ml streptomycin. Mammalian and mosquito cells were incubated at 37°C for mock-infected mosquitoes, 3–5 whole mosquitoes were rinsed twice with serum-free medium, and medium supplement- ed with 2% FBS was added. Supernatant samples were collected at 8-hourly time-points until 72 hours, and at 96 hours, and stored at -80°C for later titration. At least 3 independent experiments were performed.

Replication Kinetics of Viruses in Ae. aegypti and Ae. albopictus

Ae. albopictus (Bangsar strain, collected in Kuala Lumpur) and Ae. aegypti (University Malaya strain, collected in Kuala Lumpur) mosquitoes, established in the Department of Parasitology, University of Malaya, were used in this study. Each mosquito species was fed blood meals containing either MY/06/37348 or MY/08/065. Blood was donated by one of the authors (WWWS) and shown to be CHIKV PCR-negative and neutralisation assay-negative. Virus strain MY/06/37348 or MY/08/065 at 5.5 log10 TCID50/ml was diluted 1:10 in the blood. Mosquitoes aged 3–6 days were starved overnight before being exposed to the blood meals using gerbil skin attached to a glass feeder. Blood meals were maintained at 37°C throughout the 1.5 hr feeding period. After feeding, fully engorged mosquitoes were sorted on ice into polystyrene cups for each subsequent planned time-point (days 0, 1, 2, 3, 5, 7, and 10). For the negative controls, 3 mosquitoes fed with clean blood were kept aside for sampling on each of days 0, 2 and 5. All mock-infected and infected mosquitoes were fed with CHIKV at MOI of 0.1, and rocked at room temperature for 1 hour. Virus titration performed at this time-point was considered to be at 0 hours post-infection (hpi). CCL-125 cells could not be successfully infected with an MOI of 0.1, and were infected at MOI of 1. Virus inoculums were then removed, cells rinsed twice with serum-free medium, and medium supplement- ed with 2% FBS was added. Supernatant samples were collected at 8-hourly time-points until 72 hours, and at 96 hours, and stored at -80°C for later titration. At least 3 independent experiments were performed.

Phylogenetic Analysis

The phylogenetic tree showed the three main genotypes of CHIKV, West African, ECSA, and Asian (Figure 1). The Bagan Panchor strains MY/06/37348 and MY/06/37350 grouped in the Asian genotype. The epidemic ECSA strains from 2005–2010...
were further divided into the Indian Ocean and Indian sublineages [21]. The ECSA strains MY/08/065 and MY/08/068 were within the Indian sublineage, and clustered with strains from Kerala (India), Taiwan, Thailand, China, and Singapore.

Comparative Replication Kinetics of Malaysian CHIKV Strains in Cells

The virus titres of MY/06/37348 and MY/08/065 in Vero, RD, C6/36 and CCL-125 cells were quantified. Both viruses replicated equally well in Vero cells, reaching a peak titre of 6.5–6.8 log_{10} TCID_{50}/ml at 40–48 hpi (Figure 2A). In RD cells, both viruses reached a similar peak titre of about 6.8 log_{10} TCID_{50}/ml at a similar rate by 48 hours, before declining (Figure 2B).

In C6/36 (Ae. albopictus) cells, there were significant differences in peak titres of the two viruses (Figure 2C). MY/06/37348 reached a peak titre of 7.2 log_{10} TCID_{50}/ml at 48 hpi, before declining. MY/08/065 attained a higher peak of 8.1 log_{10} TCID_{50}/ml at 64 hpi, and maintained titres which were significantly greater by 1.2–1.5 log_{10} TCID_{50}/ml up to 96 hpi. We were unable to infect CCL-125 (Ae. aegypti) cells with CHIKV at an MOI of 0.1. Using an MOI of 1, there was limited virus titre during early infection and short-lived replication, with peak titres of 3.7–4.4 log_{10} TCID_{50}/ml less than those achieved in C6/36 (Figure 2D). In CCL-125, the peak titre of 3.5 log_{10} TCID_{50}/ml for MY/06/37348 was achieved at 24 hpi, 16 hours earlier than the 3.7 log_{10} TCID_{50}/ml maximum for MY/08/065. There were no significant differences between the peak levels attained. Virus titres steadily declined to below starting levels by 48 hpi and 64 hpi for MY/06/37348 and MY/08/065, respectively.

Overall, the mammalian Vero and RD cells were highly and equally permissive to both Malaysian CHIKV strains. In C6/36 cells, the ECSA strain MY/08/065 reached and maintained significantly higher titres than the Asian strain MY/06/37348. Both viruses replicated equally poorly in CCL-125 cells.

Comparative Replication Kinetics of Malaysian CHIKV Strains in Mosquitoes

Ae. aegypti and *Ae. albopictus* mosquitoes were infected with either MY/06/37348 or MY/08/065. Virus titres were determined from culture of midguts (to demonstrate infection) and salivary glands...
At each time-point after infection, 10–17 mosquitoes were sampled (apart from one time-point, where n = 8).

The replication of each virus in different mosquito species was compared (Figure 3). The CHIKV isolate MY/06/37348 (Asian) infected Ae. albopictus at higher overall rates (64/97, 66.0%) than Ae. aegypti (25/60, 41.7%; p = 0.005), predominantly at later stages of infection, at 7 and 10 dpi (Figure 3A). There were no significant differences in midgut titre (Figure 3B) or total salivary gland dissemination rates (12.5% vs 24.0%, p = 0.21) (Figure 3C). The MY/08/065 ECSA strain also infected Ae. albopictus (53/58, 91.4%) at higher rates than Ae. aegypti (13/60, 21.7%; p<0.001), overall and at all time-points but 1 dpi (Figure 3D). While some of the virus found in the midgut in the early days is from the blood meal, MY/08/065 replicated to higher titres earlier in Ae. albopictus, significantly so at 1 dpi (Figure 3E), and there was a trend to greater dissemination in Ae. albopictus (21/53, 39.6%) than Ae. aegypti (2/13, 15.4%; p = 0.12) (Figure 3F). Therefore, both CHIKV strains showed higher infection rates in Ae. albopictus than Ae. aegypti.

The replication of both viruses was then compared within each mosquito species (Figure 4). In Ae. aegypti, total infection by MY/06/37348 was greater than MY/08/065 (41.7% vs 21.7%, p = 0.03) (Figure 4A), although midgut titres were similar (Figure 4B), salivary gland dissemination rates were also similar (15.4% vs 24.0%, p = 0.69) (Figure 4C). In Ae. albopictus, MY/08/065 clearly infected at higher rates (91.4% vs 66.0%, p<0.001) (Figure 4D), replicated more quickly over the first 2 dpi to reach titres greater by 1.0–1.8 log10 TCID₅₀/ml (Figure 4E), and disseminated at higher rates (39.6% vs 12.5%, p<0.001) than MY/06/37348 (Figure 4F). Therefore, the MY/08/065 ECSA strain infected, replicated, and disseminated at higher rates than the MY/06/37348 Asian strain in Ae. albopictus, while MY/06/37348 infected Ae. aegypti at a marginally higher rate than MY/08/065.
Discussion

In Asia, where both Asian and ECSA strains now circulate, differences in replication in humans, monkeys, or mosquitoes may impact the predominance of one CHIKV genotype over another. In this study, both Malaysian Asian (MY/06/37348) and ECSA (MY/08/065) strains replicated equally well in the mammalian cell lines Vero and RD. The ECSA strain replicated to significantly higher titres than the Asian strain in *Ae. albopictus* (C6/36) cells. Both strains replicated poorly in the *Ae. aegypti* cell line CCL-125, reaching similar titres albeit at different times. Poor replication in CCL-125 was also seen in a recent study of ECSA strains [22], consistent with the original descriptions of these mosquito cell lines [23].

To confirm the *in vitro* findings, we infected Malaysian *Aedes* mosquitoes with Malaysian CHIKV strains. This is more likely to reflect natural infection dynamics in a given location than using virus strains and mosquitoes from different regions, as genetic susceptibility of *Ae. albopictus* to CHIKV may vary by geography [24,25]. We found that both CHIKV strains infect *Ae. albopictus* at a higher rate than *Ae. aegypti*, as previously shown [25,26], and this was particularly marked with the ECSA strain. Furthermore, the ECSA strain infected, replicated, and disseminated at higher rates in *Ae. albopictus*. The Asian strain infected *Ae. aegypti* marginally better than the ECSA strain, which has not been previously shown. This supports existing field data on the likely vectors involved in the Malaysian outbreaks: *Ae. aegypti* was identified in the Bagan Panchor outbreak of Asian CHIKV [27], while the ECSA outbreaks were likely caused by *Ae. albopictus*, which predominate in the rural areas mainly involved [18,28].

In alphaviruses, mosquito adaptation determinants map to glycoproteins E2 and E1, which mediate receptor binding and membrane fusion, respectively [29]. There were differences between Malaysian Asian and ECSA strains at potential mosquito adaptation determinants (Table 1), in E1–98 [30], E1–226 [13], E2–118 [31,32] and E2–207 [33]. The E1-A226V change found in ECSA strains increases infectivity and dissemination of CHIKV in *Ae. albopictus*, but has inconsistent effects in *Ae. aegypti* [13,34]. The E1-98T residue, found only in the Asian genotype and seen in our Malaysian strains, limits the adaptive effect of E1-A226V.

Introduction of both E1-T98A and A226V; present in our ECSA strain, into a Malaysian Asian strain ML06 increased adaptation
to *Ae. albopictus*, with no effect on *Ae. aegypti* [30]. Of note, this ML06 clone was based on a Bagán Panchor strain MY0021MR/06/BP (EU703759) without the nsP3 deletion present in our isolates. Recently, epidemic ECSA strains with E1-226A and E1-226V were shown to infect C6/36 cells similarly, and reached higher titres than the prototype ECSA Ross strain [22]. This suggests that other unidentified genetic determinants also contribute to *Ae. albopictus* adaptation in the ECSA lineage. This evolved adaptation will impact regions where *Ae. albopictus* populations are increasing [35,36]. Where both genotypes co-exist, this may lead to displacement of Asian strains by ECSA strains.

The nsP3 protein is involved in negative strand RNA synthesis [37]. Deletions in the nsP3 hypervariable C terminus domain, which includes the deleted sites 376–382 in our Asian strains, are generally well tolerated by alphaviruses. Nevertheless, these deletions may reduce Sindbis virus infection of C7–10 (*Ae. aegypti*) cells [38]. Notably, the Indonesian CHIKV strain 0706aTW (FJ807897) from 2007, the most closely related sequence to the Malaysian Asian strains (Figure 1), had a deletion in a similar position, at codons 379–382 [8]. This suggests earlier spread of this Asian CHIKV from Indonesia to neighbouring Malaysia, with subsequent loss of a further 3 codons. Alternatively, as this deletion was absent in the few available Asian CHIKV sequences before 2006, it may be a recent evolutionary change in Asian isolates. The biological effects of this nsP3 deletion need to be determined.

Relatively little is known about CHIKV in mosquito saliva. Our data showed low dissemination rates, low salivary gland titres of 1.3–3.7 log$_{10}$ TCID$_{50}$/ml with no significant differences between the genotypes, and a short extrinsic incubation period of 2 days. Other studies also show low viral levels of 45–64 FUFU/ml [39] and 0.5–3.5 log$_{10}$ PFU/ml [40]. Dissemination rates in mosquito experiments are influenced by blood meal titres [26]. The blood meal titre of 4.5 log$_{10}$ TCID$_{50}$/ml used in our study was appropriate, as it is comparable to the median viral load of 4.7 log pfu/ml (equivalent to 4.9 log$_{10}$ TCID$_{50}$/ml) reported in CHIKV patients in Singapore [41]. As increased dissemination rates appear to be important in the adaptation of ECSA to *Ae. albopictus*, definitive study of inter-genotypic differences in dissemination and salivary titres are required with higher blood meal titres.

In this study, we compared replication of strains from each of the distinct Asian and ECSA CHIKV genotypes found in Malaysia. While *Ae. albopictus* was a better laboratory vector for both CHIKV genotypes than *Ae. aegypti*, the ECSA strain showed greater adaptation to *Ae. albopictus* than the Asian strain, while the Asian strain infected *aegypti* at a marginally higher rate than the ECSA strain. The genetic differences between the two genotypes include determinants of mosquito adaptation identified in other alphavirus studies. Our findings are consistent with the reported involvement of different vectors transmitting different genotypes in Malaysia, which caused human outbreaks of varying magnitude. In conclusion, transmission and epidemiology of CHIKV is critically influenced by virus strain and mosquito species. This has implications for areas with more than one circulating CHIKV genotype and varying relative proportions of different mosquito species.

Supporting Information

Table S1 Primers used for obtaining the full coding sequence of CHIKV isolates. Previously published primers were used [5], with modifications (marked *). Nucleotide positions are based on the prototype S27 strain.

Author Contributions

Conceived and designed the experiments: YFC ICS WWYS IV SA.Performed the experiments: SKL JCM CLC WYWS IV SYC CWC. Contributed reagents/materials/analysis tools: ICS YFC WYWS IV. Wrote the paper: ICS YFC SYC.

References

1. Powers AM, Beall AC, Tesh RB, Weaver SC (2000) Re-emergence of Chikungunya and O’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. *J Gen Virol* 81: 471–479.
2. Ross RW (1956) The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. *J Hyg (Lond)* 54: 177–191.
3. Diaoio M, Thoumon J, Traore-Lamizana M, Fontenille D (1999) Vectors of Chikungunya virus in Senegal: current data and transmission cycles. *Am J Trop Med Hyg* 60: 281–286.
4. Apandu Y, Nazi1 WA, Noor Azleen ZA, Vyhilangam I, Noorazian MY, et al. (2009) The first isolation of Chikungunya virus from non-human primates in Malaysia. *J Gen Molec Virol* 1: 35–39.
5. Schuffenecker I, Bermon C, Michault A, Murri S, Frangeul L, et al. (2006) Genome microevolution of Chikungunya viruses causing the Indian Ocean outbreak.PLoS Med 3: e263.
6. Arankalle VA, Shrivastava S, Chauhan A, Murti S, Frankel L, et al. (2006) Genetic divergence of Chikungunya viruses in India (1963–2006) with special reference to the 2003–2006 explosive epidemic. *J Gen Virol* 87: 2067–2076.
7. Rezza G, Nicolelli I, Angelini R, Rumi R, Finaroli AC, et al. (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. *Lancet* 370: 1049–1049.
8. Huang YJ, Yang CF, Su GL, Chang SF, Cheng CH, et al. (2009) Imported Chikungunya virus strains, Taiwan, 2006–2009. *Emerg Infect Dis* 15: 1854–1856.
9. Riantahvorn P, Pranantaiahvon K, Wuttirattanakowit N, Theamboonlers A, Posorsenau Y (2010) An outbreak of Chikungunya in southern Thailand from 2008 to 2009 caused by African strains with A226V mutation. *Int J Infect Dis* 14 S3: e161–e165.
10. Ng LC, Tan HK, Tan CH, Tan SS, Hapuarachchi HC, et al. (2009) Entomologic and virologic investigation of Chikungunya, Singapore. *Emerg Infect Dis* 15: 1243–1249.
11. Sam IC, Chan YF, Chan SY, Loong SK, Chin HK, et al. (2009) Chikungunya virus of Asian and Central/East African genotypes in Malaysia. *J Clin Virol* 46: 180–183.
12. Gibney KB, Fischer M, Prince HE, Kramer LD, St George K, et al. (2011) Chikungunya fever in the United States: a fifteen year review of cases. *Clin Infect Dis* 52: e121–e126.
13. Totsatsar KA, Vanlandingham VL, McGee CE, Higgs S (2007) A single mutation in Chikungunya virus affects vector specificity and epidemic potential. *PLoS Path* 4: e201.
14. Marchette NJ, Rushack A, Garcia R (1980) Alphahvirus in Peninsular Malaysia: II. Serological evidence of human infection. *Southeast Asian J Trop Med Public Health* 11: 14–23.
15. Lam MK, Chua KB, Hooi PS, Rahimah MA, Kumari S, et al. (2007) Chikungunya infection-an emerging disease in Malaysia. *Southeast Asian J Trop Med Public Health* 38: 447–451.
16. AbuBakar S, Sam IC, Wong PF, MatRahim N, Hooi PS, et al. (2007) Emergence of endemic Chikungunya, Malaysia. *Emerg Infect Dis* 13: 147–149.
17. Mas Auya S, Lai LR, Chan YF, Hatim A, Hairi NN, et al. (2010) Seroprevalence survey of Chikungunya virus in Bagan Panchor, Malaysia. *Am J Trop Med Hyg* 83: 1243–1248.
18. Noridah O, Paranthaman V, Nayar SK, Masliza M, Ranjit K, et al. (2007) An outbreak of Chikungunya virus due to virus of Central/East African genotype in Malaysia. *Med J Malaysia* 62: 323–328.
19. Posada D (2008) *jModelTest*: phylogenetic model averaging. *Mol Biol Evol* 25: 1253–1258.
20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) *MEGA5*: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol Biol Evol* 28: 2731–2739.
21. Voel SM, Chen R, Totsatsar KA, Adams AP, Garcia T, et al. (2010) Genome-scale phylogenetic analyses of Chikungunya virus reveal independent emer-
grences of recent epidemics and various evolutionary rates. J Virol 84: 6497–6504.
22. Wikin N, Sakonwatanyoo P, Ubed S, Yoksan S, Smith DR (2012) Chikungunya virus infection of cell lines: analysis of the East, Central and South African lineage. PLoS One 7: e51102.
23. Singh KRP, Paul SD (1968) Multiplication of arboviruses in cell lines from Aedes albopictus and Aedes aegypti. Curr Sci 37: 65–67.
24. Tesh RB, Gubler DJ, Rosen L (1976) Variation among geographic strains of Aedes albopictus in susceptibility to infection with Chikungunya virus. Am J Trop Med Hyg 25: 326–335.
25. Turell MJ, Beaman JR, Tammariello RF (1992) Susceptibility of selected strains of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to Chikungunya virus. J Med Entomol 29: 49–53.
26. Pesko K, Westbrook CJ, Mores CN, Lounibos LP, Reiskind MH (2009) Effects of infectious virus dose and bloodmeal delivery method on susceptibility of Aedes aegypti and Aedes albopictus to Chikungunya virus. J Med Entomol 46: 395–399.
27. Kumarasamy V, Prathapa S, Zuridah H, Chem YK, Norizah I, et al. (2006) Re-emergence of Chikungunya virus in Malaysia. Med J Malaysia 61: 221–225.
28. Rozilawati H, Faudzi AY, Siti Rahidah AA, Nor Azlina AH, Abdullah AG, et al. (2011) Entomological study of Chikungunya infections in the state of Kelantan, Malaysia. Indian J Med Res 133: 670–673.
29. Voss JE, Vaney MC, Duquerroyer S, Vorhein C, Girard-Blanc C, et al. (2010) Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468: 709–714.
30. Tsutsui K, Westbrook CJ, Mores CN, Lounibos LP, Reiskind MH (2009) Dengue virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci USA 106: 7872–7877.
31. Braud AC, Powers AM, Ortiz D, Estrada-Franco JG, Navarro-Lopez R, et al. (2004) Venezuelan equine encephalitis emergence: enhanced vector infection from a single amino acid substitution in the envelope glycoprotein. Proc Natl Acad Sci USA 101: 11344–11349.
32. Pierro DJ, Powers EL, Olson KE (2003) Genetic determinants of Sindbis virus mosquito infection are associated with a highly conserved alphavirus and flavivirus envelope sequence. J Virol 82: 2966–2974.
33. Woodward TM, Miller BR, Beatty BJ, Trent DW, Roehrig JT (1993) A single amino acid change in the E2 glycoprotein of Venezuelan equine encephalitis virus affects replication and dissemination in Aedes aegypti mosquitoes. J Gen Virol 74: 2341–2345.
34. Martin E, Moutailler S, Madec Y, Failloux AB (2010) Differential responses of the mosquito Aedes albopictus from the Indian Ocean region to two Chikungunya isolates. BMC Ecol 10: 8.
35. Raharimalala FN, Ravaomanarivo LH, Ravelonandro P, Rafarasoa IS, Zouache K, et al. (2012) Biogeography of the two major arbovirus mosquito vectors, Aedes aegypti and Aedes albopictus (Diptera, Culicidae), in Madagascar. Parasit Vectors 5: 56.
36. Delatte H, Bagny L, Breugue C, Boquet A, Paupy C, et al. (2011) The invaders: phylogeography of dengue and Chikungunya viruses in vectors, on the South West islands of the Indian Ocean. Infect Genet Evol 11: 1769–1781.
37. Varjak M, Zusinaiite E, Merits A (2010) Novel functions of the alphavirus nonstructural protein nsP3 C-terminal region. J Virol 84: 2352–2364.
38. Lastarza MW, Graikou A, Race CM (1998) Deletion and duplication mutations in the C-terminal nonconserved region of Sindbis virus: effects on phosphorylation and on virus replication in vertebrate and invertebrate cells. Virology 202: 224–232.
39. Vazeille M, Mousson L, Moutailler S, Vazeille M, Failloux AB (2009) Orally co-infected Aedes albopictus from La Reunion Island, Indian Ocean, can deliver both dengue and Chikungunya infectious viral particles in their saliva. PLoS Negl Trop Dis 4: e706.
40. Dubrulle M, Mousson L, Moutailler S, Vazeille M, Failloux AB (2009) Chikungunya virus and dengue mosquitoes: saliva is infectious as soon as two days after oral infection. PLoS One 4: e3095.
41. Chow A, Her Z, Ong EK, Chen JM, Dimatatac F, et al. (2011) Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J Infect Dis 203: 149–157.