13C Enrichment of the CO2 in Breast Milk and in the Breath Is Rapidly Modified by Changes in the 13C Content of the Diet

Salvador Villalpando a Martha Del Prado b Edith Cienfuego c Pedro Morales c

a Center for Research on Nutrition and Health, Instituto Nacional de Salud Pública, Cuernavaca, and b Unidad de Investigación en Nutrición, Instituto Mexicano del Seguro Social, and c Stable Isotopes Laboratory, Instituto de Geología Universidad Nacional Autónoma de Mexico, Mexico City, Mexico

Key Words
13C enrichment · Breast milk · Breath CO2 · 13C content of diet · C3 and C4 plants

Abstract
Background: C4 plants (e.g. corn and sugar cane) have greater 13C enrichment than C3 plants (e.g. wheat and sugar beet).
Objective: To assess whether 13C enrichment of CO2 in the breath and breast milk of women on diets based on C3 and C4 foods changes from one diet to the other.
Materials and Methods: Six breast-feeding women were studied at 5–6 months postpartum. They ate a controlled C4 diet on days 1 and 2 followed by a C3 diet on days 3 and 4. Diet duplicates, breast milk on days 2 and 4 and hourly breath samples were collected over 4 days. 13C enrichment was measured by isotope-ratio mass spectrometry. Values of δ13C were calculated from the international PDBV standard (δ13C PDBV). Differences between means were compared by paired t test or t test for repeated measurements.
Results: δ13C PDBV values were significantly higher in the C4 diet than in the C3 diet composites (p < 0.01). In breast CO2, the δ13C PDBV value was greater on days 3 and 4 (range −20.0 to −21.8, respectively, p < 0.01). The lipid and milk serum fractions of breast milk had significantly higher δ13C PDBV on the C3 diet than on the C4 diet (p < 0.01).
Conclusions: Subjects eating a C4 diet have a higher δ13C PDBV value in the breath and breast milk fractions, which diminish rapidly on a C3 diet. Further studies focusing on individual nutrients are warranted.

Introduction
Plants incorporate carbon atoms from atmospheric CO2 into complex molecules by photosynthesis via the Calvin cycle (e.g. C3 plants like wheat, rice, nuts and potatoes) or the Hatch-Slack cycle (e.g. C4 plants like corn, sugar cane and some amaranthaceous plants) [1–4]. C4 plants preferentially incorporate 12C, but C3 plants have a greater preference for 12C. This results in the higher 13C content of C4 plant products compared to C3-derived products, i.e. carbohydrates, lipids and, to a lesser extent, protein.
Animals of the same species that are fed diets with differing contents of C3 and C4 plants [5] have different 13C enrichments in their expired CO$_2$, serum and breast milk.

Some investigators reported differences in the background 13C enrichment of expired CO$_2$ between European and American men during exercise. Such a difference was attributed to a higher content of C3 plants (i.e. potato and sugar beet) in the European diet. To the contrary, there is a higher content of C4 plants (i.e. corn and sugar cane) in the American diet [6]. Children drinking milk from cows that are fed C4 plants have greater 13CO$_2$ enrichment in their expired air than those drinking milk from cows fed with C3 plants [7, 8]. Several studies have used C4 plant products as tracers to study metabolic pathways [9–11]. In a study from our laboratory, we found a greater background 13C enrichment in the fat tissue of lactating women eating a corn-based diet, compared to the fat of women eating a wheat-based diet [Villalpando, unpubl. data]. Based on the findings from that study, we hypothesized that their fat deposits must have greater natural 13C enrichment. We propose devoicing the diet of C4 plant products from lactating women it could be possible to trace the flow of naturally 13C-enriched nutrients mobilized from the circulation or body stores into expired air and breast milk.

The objective of this study was to establish whether, under controlled metabolic conditions, we could observe changes in the 13C enrichment of CO$_2$ in the expired air and the fractions of breast milk samples from women on diets based on foods from C3 and C4 plants, sequentially.

Materials and Methods

Subjects

Six healthy women attending the local prenatal clinic of San Mateo Capulhuac, Mexico, who were predominantly breast-feeding their infants, were enrolled for the study at 5–6 months postpartum. The following inclusion criteria were met: they had had an uneventful pregnancy, they had delivered singletons weighing $>$2,500 g, they were between 18 and 34 years old, had a parity $<$4, a height of between 145–154 cm, were free of any chronic disease and did not take any medication or drink alcohol regularly. The characteristics of the village have been described elsewhere [12]. In short, it is located in a mountainous area, 150 km northwest of Mexico City, at 2,800 m above sea level and has 5,500 inhabitants. They live on subsistence agriculture, with maize as their main staple. The habitual dietary intake of lactating women includes an energy intake of 48.2 6.1 kcal/kg of body weight, and 0.8 0.1 g of protein/kg. Carbohydrates provide about 75% and lipids about 17% of the energy intake. Cooking oil (mostly sesame seed, a C3 plant and sorghum, a C4 plant) is the main source of dietary lipids, eaten as a combination of 73 and 27%, on average [12].

The study protocol was reviewed and approved by the Ethics Committee of the Instituto Mexicano del Seguro Social. Written informed consent was obtained from all subjects after carefully explaining the nature, procedures and burdens of the study.

Methods

Subjects were admitted to the local health facility on the morning of day 1 for 5 days. Basal samples of breath and breast milk were obtained at 7 a.m. All women were encouraged to maintain their habitual daily activity pattern (i.e. cooking, cleaning the house, laundry, etc.) within the grounds of the health center.

Habitual Dietary Intake and Design of Experimental Diets

The usual dietary intake of the subjects was assessed during the week prior to the study by a combination of test-weighing for 2 days and 24-hour recall for 1 day in their households. Macronutrients and energy intakes were calculated by comparison with Mexican food composition tables [13]. Based on this information, we designed two controlled diets that resembled the nutrient composition and energy density of the habitual diets of these women. One was based on corn and cane sugar as staples, representing 70% of the energy intake. This diet had greater 13C enrichment, and will be referred to from here on as the C4 diet. This was eaten by the subjects on the first 2 days of the study. The second controlled diet was based on wheat products, bee honey and vegetables belonging to the C3 family. This diet, referred to from here on as the C3 diet, had a lower 13C enrichment, and was eaten by the subjects on days 3 and 4 of the study. Other vegetables classified as CAM (combining the metabolic characteristics of C3 and C4 plants), like a cactus eaten frequently at that locality, were avoided. Both controlled diets were isoenergetic and contained the same proportion of macronutrients; no changes were introduced in the composition of fat and protein. The sources of fat and proteins: milk, chicken meat, eggs and edible oil were not changed in either experimental diet. The women’s individual energy intake was calculated according to their reported habitual energy intake, but if the reported intake was <40 kcal/kg$^{-1}$/day$^{-1}$, the diet was adjusted to yield enough energy content. Meals were provided according to a fixed timetable, in accordance with the cultural norms of the community and the convenience for the study, i.e. breakfast at 7 a.m., lunch at 1 p.m. and supper at 7 p.m.

Composites of both types of diets were collected, homogenized, and frozen at $–20^\circ$C until the analysis of total fat content by gravimetry, and an acid precipitation with trichloroacetic acid procedure for protein and the energy content was performed using an adiabatic calorimeter (Parr Model 1266, Parr Instruments Co., Moline, Ill., USA) and 13C enrichment by isotope-ratio mass spectrometry.

Milk Sample Collection and Fractionation

Milk samples were collected by emptying the left breast with an electric pump (Egnell breast-pump, Egnell Inc., Cary, Ill., USA) at 7 a.m. on days 2 and 4. Samples were stored at $–70^\circ$C until analysis. Each milk sample was separated into three fractions: lipids, precipitable proteins and milk serum. To obtain the lipid fraction, samples were centrifuged at 2,300 g for 20 min at 4°C. The fat layer was removed and stored at $–70^\circ$C until analysis. Although we did not test the milk for contamination, the literature reports that it contains cell membranes from fat globules, liposolubilins and some sterols [14, 15]. The precipitable protein and the milk

Diet and 13C Enrichment of Breast Milk and Breath

Ann Nutr Metab 2014;64:44–49
DOI: 10.1159/000360405
serum fractions were obtained by adding 1 ml of a 10% solution of sodium tungstate and 1 ml of 0.6 N of H₂SO₄ per milliliter of defatted milk, heated at 80°C for 5 min and then centrifuged at 1,500 g for 5 min. The upper aqueous phase was considered as the serum milk fraction and the pellet as the precipitable protein fraction; both were stored at –70°C until analysis.

Breath Samples

Breath samples were collected in Douglas bags at hourly intervals from 7 a.m. on day 1 until midnight (12 p.m.) on day 4. Aliquots were transferred into evacuated glass tubes (Exetainer, Labco, High Wycombe, UK) and stored at 4°C until analysis.

Isotope-Ratio Mass Spectrometry of Breath Air, Diet and Breast Milk Fractions

The ¹³C enrichment of CO₂ in breath air was determined by isotope-ratio mass spectrometry (Breath MAT, Finnigan MAT, Bremen, Germany), after chromatographic purification of the CO₂ in a continuous-flow inlet system, as previously described [16].

The samples of diet and milk fractions were combusted in sealed evacuated quartz capillary tubes at 900°C for 2 h and at 650°C for 1 h in the presence of cupric oxide and metallic silver and copper. The CO₂ produced by such combustion was purified cryogenically and the ¹³C/¹²C ratio was measured in a mass spectrometer model Finnigan Mat 250 (Finnigan MAT).

The δ¹³C values were calculated by relating the ¹³C/¹²C ratio of the sample to the PDBV international standard (δ¹³C_PDBV) [17]. The ¹³C/¹²C values come from CO₂ generated by a phosphoric acid reaction with the VPDV international standard (VPDV is an acronym for Pee Dee belemnite, sold by IAEA in Vienna and VPDV is a carbonate of marine origin from a cretasic formation) [17]. The δ¹³C value was calculated by dividing the ¹³C/¹²C ratio value of each sample by the value provided by the PDBV international standard minus 1 and this was all multiplied by 1,000, using the following value for ¹³C/¹²C:

\[
\delta^{13} C_{VPDB} = \left[\frac{^{13} C/^{12} C_{sample}}{^{13} C/^{12} C_{VPDB}} - 1 \right] \cdot 10^3.
\]

This determination was made on the isotope-ratio mass spectrometer.

Statistical Analysis

Differences between means for descriptive variables were analyzed by paired t test and differences among mean δ¹³C_PDBV values by t test for repeated measurements. Statistical significance was set at p < 0.05. All values are presented as mean ± SD. The SPSS Statistical Software program v. 8 (SPSS Inc., Chicago, Ill., USA) was used for statistical data analysis.

Results

There were no differences in the energy intake and macronutrient distribution between the two controlled diets or on the different days of the study (table 1).

¹³C Enrichment in Breath Samples

The enrichment of ¹³C in breath CO₂ on days 1 and 2 on the C4 diet is shown in figure 1. The δ¹³C_PDBV in breath CO₂ increased progressively from the first hours of the morning (–15.4 δ¹³C_PDBV) until midnight (–13.2 δ¹³C_PDBV). There were important peaks and troughs in the δ¹³C_PDBV of expired ¹³CO₂ across the day; the peaks were roughly associated with meals and the troughs were associated with fasting periods.
On day 3 of the study, the first day of the C3 diet based on wheat and bee honey, there was a decline of 55.8% of the δ^{13}C\textsubscript{PDBV} in breath CO\textsubscript{2} (from -13.9 to -21.8 δ^{13}C\textsubscript{PDBV}) in the first 16 h after changing to this diet. After this, it remained stable at around -20.0 δ^{13}C\textsubscript{PDBV} for the rest of the study (fig. 2). Absorptive and postabsorptive peaks and troughs were associated with fasting periods.

δ^{13}C Enrichment in Milk Fractions and Diet Composite Samples

The δ^{13}C\textsubscript{PDBV} in two out of the three milk fractions (lipid and milk serum) obtained during the C4 diet was significantly higher than in the corresponding fractions of milk collected while subjects were on the C3 diet ($p < 0.01$; table 2).

The δ^{13}C\textsubscript{PDBV} value was significantly higher in the composites of the C4 diet (-17.0 δ^{13}C\textsubscript{PDBV}) than in the C3 diet (-25.2 δ^{13}C\textsubscript{PDBV}; $p < 0.001$). The enrichment of 13C in the dietary protein was similar in the two diets (table 2).

Discussion

We present evidence that individuals on diets based on C4 plant products (e.g. corn, sugar cane and sesame seed oil) have greater δ^{13}C\textsubscript{PDBV} in their breath CO\textsubscript{2} than when on a diet based on C3 plant products (e.g. wheat, bee honey, citrous fruits and apples).
The high value of $\delta^{13}C_{PDBV}$ that prevailed, even during the fasting periods of days 1 and 2, must be attributed to the oxidation of nutrients not only after their immediate intestinal absorption, but also of nutrients mobilized from the fast-mobilizable pools. This suggests that it is plausible to measure flows of specific nutrients from body deposits, fat and glycogen. There are several studies that have successfully used nutrients that were naturally [9, 10, 18, 19] or artificially [20, 21] labeled for physiological examination.

It is clear that the 13C enrichment of dietary fat and protein changed very little, thus most of the 13C must have come from the dietary carbohydrates as shown by the 13CO$_2$ expired in the breath air and milk serum. It was not possible to measure the 13C enrichment of dietary carbohydrates due to technical problems in separating the simple sugars and complex carbohydrates and fiber. The intake of fiber was approximately 20 g/day.

We are aware that the design of this study meant that the exhaled 13CO$_2$ represents the final oxidation of all dietary sugars and complex carbohydrates and fiber. The changes presented here in the $\delta^{13}C_{PDBV}$ value of the two human milk fractions (lipids and milk serum) demonstrate the rapid changes in the 13C enrichment of several nutrients (contained in the fractions) that occur as a consequence of changes in the diet. The milk serum and lipid fractions had the greatest changes in magnitude whereas the precipitable protein remained almost unchanged. The most abundant molecule in milk serum, by far, is lactose [22, 23]. So most of the changes in the $\delta^{13}C_{PDBV}$ in this fraction should be attributed to the 13C glucose from the diet, the main substrate for the synthesis of lactose. One example of studies in this field is the experiment reporting the incorporation of exogenous 13C lactose, administered orally to lactating women, into milk oligosaccharides, and its excretion through the urine of their infants [24]. The lipid fraction of the milk contains large amounts of saturated fat that may come from the maternal liver or from mammary synthesis, with glucose as a substrate [22]. The changes in milk fat 13C enrichment are more due to changes in the 13C content of glucose.

In summary, we present evidence that subjects habitually consuming a diet based on C4 plants have a larger body content of 13C-labeled metabolites. Changing the dietary content with respect to intake C3/C4 plants, it is feasible to assess metabolic pathways in physiological studies. Further studies focusing on individual nutrients are warranted.

Acknowledgements

This work was partially supported by grant RLA007 of the International Atomic Energy Agency, UN, Vienna, Austria.

References

1 Zelitch I: Patron of carbon fixation in green plants. Annu Rev Biochem 1975;44:123–145.
2 Woodward FI: Carbon cycle. Discriminating plants. Science 2001;29:2562–2563.
3 Gibbs M, Latzko E, O’Neal D, Hew CS: Photosynthetic carbon fixation by isolated maize chloroplasts. Biochem Biophys Res Commun 1970;40:1356–1361.
4 Rathnam CK, Edwards GE: C4 acid decarboxilation and CO$_2$ donation to photosynthesis in bundle shea strands and chloroplasts from species representing three groups of C4 plants. Arch Biochem Biophys 1977;182:1–13.
5 Metges C, Kempe K, Schmidt HL: Dependence of the carbon-isotope contents of breath carbon dioxide, milk, serum and rumen fermentation products on the $\delta^{13}C_{PDBV}$ value of food in dairy cows. Br J Nutr 1990;63:187–196.
6 Wagenmakers AJ, Reherer NJ, Brouns F, Saris WH, Halliday D, Breath $\delta^{13}C_{PDBV}$ CO$_2$ back-ground enrichment during exercise: diet-related differences between Europe and America. J Appl Physiol 1993;74:2353–2357.
7 Schoeller DA, Klein PD, Watkins JB, Heim T, MacLean WC: 13C abundance of nutrients and the effect of variations in 13C isotopic abundances of test meals formulated for 13CO$_2$ breath tests. Am J Clin Nutr 1980;33:2375–2385.
8 Wilson GF, Mackenzie DD, Brookes IM, Lyon GL: Importance of body tissues as sources of nutrients for milk synthesis in the cow, using 13C as a marker. Br J Nutr 1988;60:605–617.
9 Lacroix M, Mosora F, Pontus M, Lefebvre P, Lucyckx A, Lopez-Habib G: Glucose naturally 13C labeled with carbon-13: use for metabolic studies in man. Science 1973;181:445–446.
10 Demmelmaier H, Schenck U, Behrendt E, Sauерwald T, Koletzko B: Estimation of araquidonic acid synthesis in full term neonates using natural variation of 13C content. J Pediatr Gastroenterol Nutr 1995;21:31–36.
11 Fidler N, Sauerwald T, Pohl A, Demmelmaier H, Koletzko B: Docosahexaenoic acid transfer into human milk after dietary supplementation: a randomized clinical trial. J Lipid Res 2000;41:1376–1383.

12 Villalpando S, Butte NF, Wong WW, Flores-Huerta S, Hernández MJ, Smith ED, Garza C: Lactation performance of rural Meso-American. Eur J Clin Nutr 1992;46:337.

13 Hernández M, Chavez A, Bourges H: Valor nutritivo de los alimentos mexicanos. Tablas de uso práctico. Mexico City, Instituto Nacional de la Nutrición, 1980.

14 Villalpando S, Butte NF, Flores-Huerta S, Thottathuchery M: Qualitative analysis of human milk produced by women consuming a maize-predominant diet typical of rural Mexico. Ann Nutr Metab 1998;42:23–32.

15 Jensen RG, Bitman J, Wood L, Hamosh M, Cladimir MT, Clark RM: Methods for the sampling and analysis of milk lipids; in Jensen RG, Neville M (eds): Human Lactation: Milk Components and Methodology. New York, Plenum Press, 1985.

16 Demmelmaier H, Baumheuer M, Koletzko B, Dokoupil K, Kratil G: Metabolism of 13C-labeled linoleic acid in lactating women. J Lipid Res 1998;39:1389–1396.

17 Craig H: Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis or carbon dioxide. Geochim Cosmochim Acta 1957;12:133–149.

18 Tanis AA, Rietveld T, Van den Berg JW, Wattimena JL, Swart GR: Influence of the 13C-enrichment of the habitual diet on a 13CO2 breath test used as an index of liver glycogen oxidation: a validation study in western Europe and Africa. Nutrition 2000;16:6–10.

19 Rhee SK, Reed RG, Brenna TJ: Fatty acid carbon isotope ratios in humans on controlled diets. Lipids 1997;32:1257–1263.

20 Kao CC, Guntupalli KK, Bandi V, Jhoor F: Whole-body CO2 production as an index of the metabolic response to sepsis. Shock 2009;32:23–28.

21 Antoniewicz MR: Using multiple tracers for 13C metabolic flux analysis. Methods Mol Biol 2013;853:353–365.

22 Neville MC, Picciano MF: Regulation of milk lipid secretion and composition. Annu Rev Nutr 1997;17:159–184.

23 Bell AW, Bauman DE: Adaptations of glucose metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia 1997;2:265–278.

24 Obermeier S, Rudloff S, Pohlentz G, Lentze MJ, Kunz C: Secretion of 13C-labelled oligosaccharides into human milk and infant’s urine after an oral 13C galactose load. Isotopes Environ Health Stud 1999;35:119–125.