14C-urea breath test in patients undergoing anti-tuberculosis therapy

Sayed Amir Mirbagheri, Amir Ali Sohrabpour, Mehrdad Hasibi, Babak Moghimi, Mehdi Mohamadnejad

Abstract

AIM: Urea breath test (UBT) is a non-invasive diagnostic test for detecting the presence of Helicobacter pylori (H pylori). In this study we evaluated the effect of anti-tuberculosis therapy on the results of 14C-UBT.

METHODS: Patients, with the diagnosis of tuberculosis (TB) who had a positive UBT at the point of starting anti-TB therapy, were included. None had a history of peptic ulcer disease or had taken antibiotics, bismuth compounds and/or PPI in the previous month. 14C-UBT was repeated at the end of the second month and one month after completion of treatment course.

RESULTS: Thirty-five patients (23 males) were enrolled. 14C-UBT was negative in all 35 patients (100%) at the end of the second month and remained negative in 30 cases (85.7%) at the end of the treatment course. One month after completion of treatment course, UBT remained negative in 13 patients (37.1%).

CONCLUSION: Our report underscores the need for caution while interpreting urea breath test results in patients undergoing anti-tuberculosis therapy. World J Gastroenterol 2005; 11 (11): 1712-1714

http://www.wjgnet.com/1007-9327/11/1712.asp

INTRODUCTION

Helicobacter pylori (H pylori) is the most renowned factor among peptic ulcer risk factors[1][2]. Eradication of this germ has contributed to a significant reduction in the peptic ulcer prevalence[3][4]. Several drug regimens have been introduced for H pylori eradication[5][6]. Urea Breath Test (UBT) is currently the standard means of determining H pylori eradication. Some drugs, including antibiotics are known to lower the accuracy of this test. In the present study, we evaluated specifically the effect of a four-agent anti-tuberculosis therapy on the results of 14C-UBT in a group of patients with tuberculous and positive baseline UBT.

MATERIALS AND METHODS

All patients referred to Amir-Alam General Hospital from January 2002 to December 2003 with a diagnosis of tuberculosis (TB) were evaluated. TB had been documented based on clinical and laboratory findings and anti-tuberculosis treatment was ordered for all of them. Patients with a history of documented peptic ulcer before treatment or using Bismuth, proton pump inhibitors (PPIs), H2 blocker agents or antibiotics in the month before were excluded from the study. None of the enrolled patients had ever been treated for H pylori eradication or undergone gastric resection. UBT test was done for all patients at the time of starting anti-TB therapy and patients with positive tests were enrolled. The anti-TB regimen in all patients consisted of Isoniazid, Rifampicin, Ethambutol and Pyrazinamide for two months, after which the latter two drugs were stopped and the treatment was carried on with Isoniazid/Rifampicin until the end of the treatment course. Cases of spinal tuberculosis were planned for a 12-mo course of therapy, whereas a 6-mo course was considered for other types of tuberculous organ involvement.

14C-UBT was repeated three times for every enrolled patient: (1) at 2 mo (time of stopping Ethambutol/Pyrazinamide); (2) end of treatment course (mo 12 for spinal TB cases); (3) one month after completion of the anti-TB treatment course. The tests were all performed in the Nuclear Medicine Laboratory, Shariati Hospital, Tehran University of Medical Sciences, by a single team of specialized staff. Each overnight fasting patient was given 1 μCi (37 kBq) of 14C-urea.
H pylori colonizes gastric mucosa and elicits both inflammatory and immune lifelong responses, with release of various bacterial and host-dependent cytotoxic substances[8]. H pylori eradication can be established reliably by histology, rapid urease testing and the urea breath test (UBT). The UBT uses labeled urea (14C or 15N) that, in the presence of H pylori, is metabolized by urease to yield CO2. The labeled gas is absorbed across the gastric mucosa and subsequently measured in the patient’s expired breath.

Analysis of the results reported in studies in which urea breath-tests were evaluated against an accepted gold standard, confirms the great accuracy (sensitivity 97%; specificity 95%) of this technique[9].

There is general consensus[10-13] regarding the adverse effect of proton pump inhibitors (PPIs) on the UBT (false negative results range from 17% to 61%). Moreover, antibiotics and bismuth compounds reduce H pylori load such that infection may be undetectable. Thus, urea breath-tests should not be performed within 4 wk of receiving such drugs, whether given specifically to treat the infection or not[14].

In 1992, Mitchell found that a history of pulmonary TB might be associated with an increased prevalence of H pylori infection[15]. More recently, Woeltje assessed the prevalence of tuberculin skin test (TST) positivity in a cohort of 346 newly hospitalized patients. A history of peptic ulcer disease was one of the identified risk factors for a positive TST test (odds ratio: 4.53, P = 0.017)[16]. Increased risk of TB for persons with a history of peptic ulcer disease has also been reported[17]. H pylori is seen in high prevalence in some populations around the world[18] especially in regions having lower socioeconomic status[19,20]. The same is true for the distribution of tuberculosis which is, to a great extent, clustered in some developing countries[21]. Rationally, there seems to exist a population of considerable size, potentially exposed to both microorganisms.

DISCUSSION

H pylori is a slow-growing, microaerophilic, gram-negative bacterium, whose most striking biochemical characteristic is the abundant production of urease. This bacterium colonizes gastric mucosa and elicits both inflammatory and

RESULTS

During the study period, 44 patients with a definite diagnosis of tuberculous infection were planned for anti-TB therapy. Three patients revealed a history of antibiotic therapy during the month before and were therefore excluded. Six more patients had negative or intermediate UBT results and were also excluded. Thirty-five patients including 23 males (age 17-55 years; mean age: 38.5) and 12 females (age 16-39 years; mean age: 24) were eligible for the study. Among the enrolled patients there were 12 pulmonary and 23 extra-pulmonary cases of TB including 5 patients with a diagnosis of vertebral tuberculous osteomyelitis (Table 1). None were critically ill or under treatment with immunosuppressive drugs.

At the end of the second month of therapy, UBT became negative in all 35 patients (100%). The test results at the end of the treatment course were still negative in 30 cases (85.7%). One month after completion of anti-tuberculosis therapy, UBT turned positive in 17 of 30 patients, so 22 (85.7%). One month after completion of anti-tuberculosis therapy, UBT turned positive in 17 of 30 patients, so 22 (85.7%). One month after completion of anti-tuberculosis therapy, UBT turned positive in 17 of 30 patients, so 22 (85.7%).

Type of infection	Male	Female
Pulmonary TB	12	16-39
TB adenitis	9	25
TB enteritis	5	35
TB osteomyelitis (vertebra)	5	75
Meningeal TB	2	35
Peritoneal TB	2	35
Total	35	35

DISCUSSION

Table 1 Patient characteristics

Gender	Male	Female
Total	35	35

DISCUSSION

Table 1 Patient characteristics

Gender	Male	Female
Total	35	35

DISCUSSION

Table 2 14C-urea breath test results among 35 patients during the course of anti-tuberculosis therapy

	Baseline	End of 2nd mo of therapy	End of treatment course	One month after completion on therapy
Positive (%)	35 (100)	0 (0)	4 (11.4)	22 (62.9)
Negative (%)	0 (0)	35 (100)	30 (85.7)	13 (37.1)
Furthermore, the combination of drugs used in this study resulted in *H pylori* eradication in a minority of patients.

REFERENCES

1. Fennerty MB. *Helicobacter pylori*. Arch Intern Med 1994; 154: 721–727
2. O’Connor HJ. The role of Helicobacter pylori in peptic ulcer disease. Scand J Gastroenterol Suppl 1994; 201: 11–15
3. NIH Consensus Conference. Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in Peptic Ulcer Disease. JAMA 1994; 272: 65–69
4. Hopkins RJ, Girardi LS, Turney EA. Relationship between Helicobacter pylori eradication and reduced duodenal and gastric ulcer recurrence: a review. Gastroenterology 1996; 110: 1244–1252
5. Graham DY, Lew GM, Klein PD, Evans DG, Evans DJ, Saeed ZA, Malaty HM. Effect of treatment of Helicobacter pylori infection on the long-term recurrence of gastric or duodenal ulcer. A randomized, controlled study. Ann Intern Med 1992; 116: 705–708
6. Soll AH. Consensus conference. Medical treatment of peptic ulcer disease. Practice guidelines. Practice Parameters Committee of the American College of Gastroenterology. JAMA 1996; 275: 622–629
7. de Boer WA, Tytgat GN. Regular review: treatment of Helicobacter pylori infection. BMJ 2000; 320: 31–34
8. Peterson WL, Graham DY. Helicobacter pylori In: Feldman M, Scharschmidt BF, Sleisinger MH eds. Gastrointestinal and liver disease: Pathophysiology, diagnosis, management. 6th ed. Philadelphia: WB Saunders Pub 1998: 604–619
9. Vaira D, Holton J, Menegatti M, Ricci C, Gatta L, Geminiani A, Miglioli M. Review article: invasive and non-invasive tests for Helicobacter pylori infection. Aliment Pharmacol Ther 2000; 14 Suppl 3: 13–22
10. Atherton JC, Spiller RC. The urea breath test for Helicobacter pylori infection. Gut 1994; 35: 723–725
11. Laine L, Estrada R, Trujillo M, Knigge K, Fennerty MB. Effect of proton-pump inhibitor therapy on diagnostic testing for Helicobacter pylori. Ann Intern Med 1998; 129: 547–550
12. Chey WD, Woods M, Scheiman JM, Nostranti TT, DeValle J, Lansoprazole and ranitidine affect the accuracy of the 14C-urea breath test by a pH-dependent mechanism. Am J Gastroenterol 1997; 92: 446–450
13. Chey WD, Spybrook M, Carpenter S, Nostranti TT, Elta GH, Scheiman JM. Prolonged effect of omeprazole on the 14C-urea breath test. Am J Gastroenterol 1996; 91: 89–92
14. Atherton JC. Non-endoscopic tests in the diagnosis of Helicobacter pylori infection. Aliment Pharmacol Ther 1997; 11 Suppl 1: 11–20
15. Mitchell HM, Li YY, Hu PJ, Liu Q, Chen M, Du GG, Wang ZJ, Lee A, Hazell SL. Epidemiology of Helicobacter pylori in southern China: identification of early childhood as the critical period for acquisition. J Infect Dis 1992; 166: 149–153
16. Woeltje KF, Kilo CM, Johnson K, Primack J, Fraser VJ. Tuberculin skin testing of hospitalized patients. Infect Control Hosp Epidemiol 1997; 18: 561–566
17. Holmboe AM, Nissen-Meyer S. Gastroduodenal ulcer and pulmonary tuberculosis. Nord Med 1957; 57: 575–578
18. Malaty HM, Nyren O. Epidemiology of Helicobacter pylori infection. Helicobacter 2003; 8 Suppl 1: 8–12
19. Pounder RE, Ng D. The prevalence of Helicobacter pylori infection in different countries. Aliment Pharmacol Ther 1995; 9 Suppl 2: 33–39
20. Webb PM, Knight T, Greaves S, Wilson A, Newell DG, Elder J, Forman D. Relation between infection with Helicobacter pylori and living conditions in childhood: evidence for person to person transmission in early life. BMJ 1994; 308: 750–753
21. Cave DR. Transmission and epidemiology of Helicobacter pylori. Am J Med 1996; 100: 125–175; discussion 175–185
22. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 1999; 282: 677–686
23. Benciaglia MI, Fornara AM, Scalfrito MM, Braqa PC, Dubini F. Activity of amoxicillin, metronidazole, bismuth salicylate and six aminoglycosides against Helicobacter pylori. J Chemother 1996; 8: 52–54
24. Heep M, Beck D, Bayerdorffer E, Lehn N. Rifampin and rifabutin resistance mechanism in Helicobacter pylori. Antimicrob Agents Chemother 1999; 43: 1497–1499
25. Fujimura S, Kato S, Kawamura T, Watanabe A. In vitro activity of rifampicin against Helicobacter pylori isolated from children and adults. J Antimicrob Chemother 2002; 49: 541–543
26. Sanaka M, Kuyama Y, Yamanaka M, Iwasaki M. Decrease in serum concentrations of Helicobacter pylori IgG antibodies during antituberculosis therapy: the possible eradication by rifampicin and streptomycin. Am J Gastroenterol 1999; 94: 1983–1984
27. Perri F, Festa V, Clemente R, Villani MR, Quitadamo M, Caruso N, Bergoli ML, Andriulli A. Randomized study of two "rescue" therapies for Helicobacter pylori-infected patients after failure of standard triple therapies. Am J Gastroenterol 2001; 96: 58–62
28. Berning SE, Peloquin CA. Antimycobacterial agents: Iso-niazid In: Yu V, Merigan T, Barriere S eds. Antimicrobial therapy and vaccines. Baltimore: Williams and Wilkins 1999: 654–662

Science Editor Guo SY Language Editor Elsevier HK