Some results on Euler class groups

Manoj K. Keshari

Department of Mathematics, IIT Mumbai, Mumbai - 400076, India; keshari@math.iitb.ac.in

Abstract: Let A be a regular domain of dimension d containing an infinite field and let n be an integer with $2n \geq d + 3$. For a stably free A-module P of rank n, we prove that (i) P has a unimodular element if and only if the euler class of P is zero in $E^n(A)$ and (ii) we define Whitney class homomorphism $w(P) : E^n(A) \to E^{n+s}(A)$, where $E^n(A)$ denotes the nth Euler class group of A for $s \geq 1$.

Mathematics Subject Classification (2000): Primary 13C10.

Key words: Euler class group, Whitney class homomorphism.

1 Introduction

Let A be a commutative Noetherian ring of dimension d. For any $1 \leq s \leq d$, abelian group called the Euler class group $E^n(A)$ of A is defined in [8] and given any projective A-module P of rank $n < d$, a Whitney class homomorphism $w(P) : E^{d-n} \to E^d(A)$ is defined. Further it is proved that if P has a unimodular element, then $w(P)$ is the zero map. Assume that A is a regular domain of dimension d containing an infinite field k. For a positive integer n with $2n \geq d + 3$, we prove the following results:

(i) For a stably free A-module P of rank n, we will associate an element $e(P)$ of $E^n(A)$ and prove that $e(P) = 0$ in $E^n(A)$ if and only if P splits off a free summand of rank one (i.e. $P \oplus A$ for some projective A-module Q of rank $n-1$). When $P \oplus A \cong A^{n+1}$, this result is due to Bhatwadekar and Raja Sridharan [4].

(ii) An element (J, w_J) is zero in $E^n(A[T])$ if and only if J is generated by n elements and w_J is a global orientation of J. This result is also proved by Das and Raja [6], Theorem 3.1), but their proof is different from ours. When $2n > d + 3$, this result follows from [8] for any Noetherian ring A. Hence the regularity of the ring is used only in the case $2n = d + 3$.

(iii) Given a stably free A-module Q of rank n, we define a Whitney class homomorphism $w(Q) : E^n(A) \to E^{n+s}(A)$. Further, we prove that if Q has a unimodular element, then $w(Q)$ is the zero map. When $n + s = d$, these results are proved in [8] for arbitrary projective module Q over any Noetherian ring A.

It will be ideal to define the Whitney class homomorphism for all projective A-module Q of rank n. For this first we need to define the euler class of Q in $E^n(A)$ which is not known.

2 Euler class groups

All the rings considered are commutative Noetherian and all the modules are finitely generated. For a ring A of dimension $d \geq 2$ and $1 \leq n \leq d$, the nth Euler class group of A, denoted by $E^n(A)$ is defined in [8] as follows:
Let $E_n(A)$ denote the group generated by $n \times n$ elementary matrices over A and let $F = A^n$. A local orientation is a pair (I, w), where I is an ideal of A of height n and w is an equivalence class of surjective homomorphisms from F/IF to I/I^2. The equivalence is defined by $E_n(A/I)$-maps.

Let $L^n(A)$ denote the set of all pairs (I, w), where I is an ideal of height n such that Spec (A/I) is connected and $w : F/IF \to I/I^2$ is a local orientation. Similarly, let $L^n_0(A)$ denote the set of all ideals I of height n such that Spec (A/I) is connected and there is a surjective homomorphism from F/IF to I/I^2.

Let $G^n(A)$ denote the free abelian group generated by $L^n(A)$ and let $G^n_0(A)$ denote the free abelian group generated by $L^n_0(A)$.

Suppose I is an ideal of height n and $w : F/IF \to I/I^2$ is a local orientation. By ([3], Lemma 4.1), there is a unique decomposition $I = \cap I_i$, such that I_i’s are pairwise comaximal ideals of height n and Spec (A/I_i) is connected. Then w naturally induces local orientations $w_i : F/I_iF \to I_i/I_i^2$. Denote $(I, w) = \sum (I_i, w_i) \in G^n(A)$. Similarly we denote $(I) = \sum (I_i) \in G^n_0(A)$.

We say a local orientation $w : F/IF \to I/I^2$ is global if w can be lifted to a surjection $\Omega : F \to I$. Let $H^n(A)$ be the subgroup of $G^n(A)$ generated by global orientations. Also let $H^n_0(A)$ be the subgroup of $G^n_0(A)$ generated by (I) such that I is a surjective image of F.

The Euler class group of codimension n cycles is defined as $E^n(A) = G^n(A)/H^n(A)$ and the weak Euler class group of codimension n cycles is defined as $E^n_0(A) = G^n_0(A)/H^n_0(A)$.

The following result is proved in ([4], Corollary 2.4) in the case P is free. Same proof works in this case, hence we omit the proof.

Lemma 2.1 Let A be a ring of dimension d and let n be an integer such that $2n \geq d + 1$. Let I be an ideal of A of height n. Let P be a projective A-module of rank n. Suppose $\phi : P \to I/I^2$ is a surjection. Then, we can find a lift $\Phi' : P \to I$ of ϕ such that $\Phi'(P) = I \cap I'$, where I' is an ideal of height $\geq n$ and comaximal with I.

Further, given any ideal K of A of height $\geq d - n + 1$, we can choose I' to be comaximal with K.

Using ([2], (2), 4.11, 5.7) and following the proof of ([1], Proposition 3.3), we can prove the following result. Hence we omit the proof.

Proposition 2.2 Let A be a regular domain of dimension d containing an infinite field and let n be an integer such that $2n \geq d + 3$. Let $P = Q \oplus A$ be a projective A-module of rank n. Let J, J_1, J_2 be ideals of $A[T]$ of height n such that J is comaximal with J_1 and J_2. Assume that there exist surjections

$$\alpha : P[T] \to J \cap J_1, \ \beta : P[T] \to J \cap J_2$$

with $\alpha \otimes A[T]/J = \beta \otimes A[T]/J$. Suppose that there exists an ideal $J_3 \subset A[T]$ of height n such that J_3 is comaximal with J, J_1, J_2 and there exists a surjection $\gamma : P[T] \to J_3 \cap J_1$ with $\alpha \otimes A[T]/J_1 = \gamma \otimes A[T]/J_1$.

Then there exists a surjection $\delta : P[T] \to J_3 \cap J_2$ with $\delta \otimes A[T]/J_3 = \gamma \otimes A[T]/J_3$ and $\delta \otimes A[T]/J_2 = \beta \otimes A[T]/J_2$.

If we replace $A[T]$ be any Noetherian ring B of dimension d and $P[T]$ by any projective B-module $\tilde{P} = Q \oplus B$ of rank n, then using ([2], Theorems 3.7 and 5.6) and following the proof of ([1], Proposition 3.3), we can prove ([2], in this case also.
Using (2, 4.11, 5.7), and following the proof of ([4], Theorem 4.2), we can prove the following result. This result is also proved in ([6], Theorem 3.1). Note that regularity of the ring is used only when $2n = d + 3$. When $2n > d + 3$, [2.3] holds for any ring A by ([4], Theorem 4.2).

Theorem 2.3 Let A be a regular ring of dimension $d \geq 3$ containing an infinite field and let n be an integer such that $2n \geq d + 3$. Assume that the image of (J, w_J) is zero in $E^n(A[T])$, where $J \subset A[T]$ is an ideal of height n and $w_J : (A[T]/J)^n \rightarrow J/J^2$ is an equivalence class of surjections. Then J is generated by n elements and w_J can be lifted to a surjection $\theta : A[T]^n \rightarrow J$.

2.1 Euler class of Stably free modules

Let A be a regular ring of dimension $d \geq 3$ containing an infinite field and let n be an integer such that $2n \geq d + 3$. In ([4], a map from $\text{Um}_{n+1}(A)$ to $E^n(A)$ is defined and it is proved that, if P is a projective A-module of rank n defined by the unimodular element $[a_0, \ldots, a_n]$, then P has a unimodular element if and only if the image of $[a_0, \ldots, a_n]$ in $E^n(A)$ is zero ([4], Theorem 5.4). Note that $P \oplus A \simeq A^{n+1}$.

For $r \geq 1$, let $\text{Um}_{r,n+r}(A)$ be the set of all $r \times (n+r)$ matrices σ in $M_{r,n+r}(A)$ which has a right inverse, i.e., there exists $\tau \in M_{n+r,r}$ such that $\sigma \tau$ is the $r \times r$ identity matrix. For any element $\sigma \in \text{Um}_{r,n+r}(A)$, we have an exact sequence

$$0 \rightarrow A^r \xrightarrow{\sigma} A^{n+r} \rightarrow P \rightarrow 0,$$

where $\sigma(v) = \nu \sigma$ for $v \in A^r$ and P is a stably free projective A-module of rank n. Hence, every element of $\text{Um}_{r,n+r}(A)$ corresponds to a stably free projective A-module of rank n and conversely, any stably free projective A-module P of rank n will give rise to an element of $\text{Um}_{r,n+r}(A)$ for some r. We will define a map from $\text{Um}_{r,n+r}(A)$ to $E^n(A)$ which is a natural generalization of the map $\text{Um}_{n+1}(A) \rightarrow E^n(A)$ defined in [4].

Let σ be an element of $\text{Um}_{r,n+r}(A)$.

$$\sigma = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n+r} \\ \vdots & \ddots & \vdots \\ a_{r,1} & \cdots & a_{r,n+r} \end{bmatrix}$$

Let e_1, \ldots, e_{n+r} be the standard basis of A^{n+r} and let

$$P = A^{n+r}/(\sum_{i=1}^{n+r} a_{1,i} e_i, \ldots, \sum_{i=1}^{n+r} a_{r,i} e_i)A.$$

Let p_1, \ldots, p_{n+r} be the images of e_1, \ldots, e_{n+r} respectively in P. Then

$$P = \sum_{i=1}^{n+r} A p_i \text{ with relations } \sum_{i=1}^{n+r} a_{1,i} p_i = 0, \ldots, \sum_{i=1}^{n+r} a_{r,i} p_i = 0.$$

To the triple $(P, (p_1, \ldots, p_{n+r}), \sigma)$, we associate an element $e(P, (p_1, \ldots, p_{n+r}), \sigma)$ of $E^n(A)$ as follows:

Let $\lambda : P \rightarrow J$ be a surjection, where $J \subset A$ is an ideal of height n. Since $P \oplus A^r = A^{n+r}$ and $\dim A/J \leq d - n \leq n - 3$, by ([1], P/JP is a free A/J-module of rank n. Since J/J^2 is a surjective image of P/JP, J/J^2 is generated by n elements.
Let "bar" denote reduce modulo \(J \). By Bass result (\(\mathbb{H} \)), there exists \(\Theta \in E_{n+r}(A/J) \) such that
\[
[\overline{a}_{1,1}, \ldots, \overline{a}_{1,n+r}] \Theta = [1, 0, \ldots, 0].
\]
Let \(\sigma \Theta = \begin{bmatrix}
1 & 0 & 0 & 0 \\
\overline{b}_{2,1} & \overline{b}_{2,2} & \cdots & \overline{b}_{2,n+r} \\
\vdots & \vdots & & \vdots \\
\overline{b}_{r,1} & \overline{b}_{r,2} & \cdots & \overline{b}_{r,n+r}
\end{bmatrix}.
\]

Further, there exists \(\Theta_1 \in E_{n+r}(A/J) \) such that \(\sigma \Theta \Theta_1 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \overline{b}_{2,2} & \cdots & \overline{b}_{2,n+r} \\
\vdots & \vdots & & \vdots \\
0 & \overline{b}_{r,2} & \cdots & \overline{b}_{r,n+r}
\end{bmatrix}.
\]

It is clear that the first row of the elementary matrix \((\Theta \Theta_1)^{-1}\) is \([\overline{a}_{1,1}, \ldots, \overline{a}_{1,n+r}]\) and the matrix
\[\sigma_1 = \begin{bmatrix}
\overline{b}_{2,2} & \cdots & \overline{b}_{2,n+r} \\
\vdots & \vdots & \vdots \\
\overline{b}_{r,2} & \cdots & \overline{b}_{r,n+r}
\end{bmatrix}\]
belongs to \(U_{m(r-1),(n+r-1)}(A/J) \). Hence, by induction on \(r \), there exists \(\Theta_2 \in E_{n+r-1}(A/J) \) such that the first \(r-1 \) rows of \(\Theta_2 \) are \(\sigma_1 \). Hence \(\sigma \) can be completed to an elementary matrix \(\Delta \in E_{n+r}(A/J) \) (i.e. \(\sigma \) is the first \(r \) rows of an elementary matrix \(\Delta \in E_{n+r}(A/J) \)).

Since \(\sum_{i=1}^{n+r} a_{1,i} p_i = 0, \ldots, \sum_{i=1}^{n+r} a_{r,i} p_i = 0 \), we get
\[
\Delta[p_{1}^t, \ldots, p_{n+r}]^t = [0, \ldots, 0, q_{1}, \ldots, q_{n}]^t,
\]
where \(t \) stands for transpose.

Thus \([q_{1}, \ldots, q_{n}]\) is a basis of the free module \(P/JP \). Let \(w_j \) be given by the set of generators \(\lambda(q_{1}), \ldots, \lambda(q_{n}) \) of \(J/J^2 \), i.e \(w_j : (A/J)^n \rightarrow J/J^2 \) given by \(w_j(e_i) = \lambda(q_{i}) \) for \(i = 1, \ldots, n \).

We define \(e(P, (p_1, \ldots, p_{n+r}), \sigma) = (J, w_j) \in E^n(A) \). We need to show that \(e(P, (p_1, \ldots, p_{n+r}), \sigma) \) is independent of the choice of the elementary completion of \(\sigma \).

Lemma 2.4 Suppose \(\Gamma \in E_{n+r}(A/J) \) is chosen so that its first \(r \) rows are \(\sigma \). Let \(\Gamma[p_{1}^t, \ldots, p_{n+r}]^t = [0, \ldots, 0, q_{1}, \ldots, q_{n}]^t \). Then there exists \(\Psi \in E_{n}(A/J) \) such that \(\Psi[p_{1}^t, \ldots, p_{n}]^t = [q_{1}, \ldots, q_{n}]^t \).

Proof The matrix \(\Gamma \Delta^{-1} \in E_{n+r}(A/J) \) is such that its first \(r \) rows are
\[
\begin{bmatrix}
1 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & \cdots & 0
\end{bmatrix}.
\]
Therefore, there exists \(\Psi \in SL_n(A/J) \cap E_{n+r}(A/J) \) such that \(\Psi[p_{1}^t, \ldots, p_{n}]^t = [q_{1}, \ldots, q_{n}]^t \). Since \(n > \dim A/J + 1 \), by (\(\mathbb{H} \), Theorem 3.2), \(\Psi \in E_{n}(A/J) \).

The remaining arguments needed to show that \(e(P, (p_1, \ldots, p_{n+r}), \sigma) \) is a well defined element of \(E^n(A) \) is same as in (\(\mathbb{H} \), p. 152-153), hence we omit it. Therefore we have a well defined map \(U_{m(r,n+r)}(A) \xrightarrow{\epsilon} E^n(A) \).

The following result can be proved by following the proof of (\(\mathbb{A} \), Theorem 5.4). Hence we omit the proof.

Theorem 2.5 Let \(A \) be a regular ring of dimension \(d \) containing an infinite field \(k \) and let \(n \) be an integer such that \(2n \geq d+3 \). Let \(P \) be a stably free \(A \)-module of rank \(n \) defined by \(\sigma \in U_{m(r,n+r)}(A) \). Then \(P \) has a unimodular element if and only if \(e(P) = e(\sigma) = 0 \) in \(E^n(A) \).
2.2 Whitney class homomorphism

Let A be a regular domain of dimension $d \geq 2$ containing an infinite field k and let Q be a stably free A-module of rank n with $2n \geq d + 3$. In [Lus99], we proved that $e(Q) = 0$ in $E^n(A)$ if and only if Q has a unimodular element. Using this result we will establish a Whitney class homomorphism of stably free modules. When $n + s = d$, then [Lus99] is proved in ([8], Theorem 3.1) for any projective A-module Q. Our proof is a simple adaptation of their proof.

Theorem 2.6 Let A be a regular domain of dimension $d \geq 2$ containing an infinite field k. Suppose Q is a stably free A-module of rank n defined by $s \in \text{Um}_{r,n+r}(A)$. Then there exists a homomorphism $w(Q) : E^n(A) \to E^{n+s}(A)$ for every integer $s \geq 1$ with $2n + s \geq d + 3$.

Proof Write $F = A^n$ and $F' = A^n$. Let I be an ideal of height s and $w : F'/IF' \to I/I^2$ be an equivalence class of surjective homomorphisms, where the equivalence is defined by $E_s(A/I) = E(F'/IF')$ maps. To each such pair (I, w), we will associate an element $w(Q) \cap (I, w) \in E^{n+s}(A)$.

First we can find an ideal $\overline{I} \subset A$ of height $n + s$ and a surjective homomorphism $\psi : Q/\overline{I}Q \to \overline{I}/I$ (this is just the existence of a generic surjection of $Q/\overline{I}Q$). Let $\psi \circ A/\overline{I} = \psi$. Then $\psi : Q/\overline{I}Q \to \overline{I}/(I + \overline{I}^2)$ is a surjection.

Since $\dim A/\overline{I} \leq d - (n + s) \leq n - 3$, $Q/\overline{I}Q$ is a free A/\overline{I}-module, by Bass result ([1]). Let “bar” denotes reduction modulo \overline{I}, then $\overline{T} \in \text{Um}_{r,n+r}(A)$ can be completed to an elementary matrix $\Theta \in E_{n+r}(\overline{A})$. This gives a well defined basis $[\overline{t}_1, \ldots, \overline{t}_n]$ for Q which does not depends on the elementary completions of \overline{T} (in the sense that any two basis of \overline{T} obtained this way will be connected by an element of $E_{n+r}(\overline{A})$).

Let $\gamma : F/\overline{I}F \to Q/\overline{I}Q$ be the isomorphism given by $\gamma(\overline{t}_i) = \overline{t}_i$ for $i = 1, \ldots, n$, where e_1, \ldots, e_n is the standard basis of the free module F. Let $\beta = \overline{\psi} \gamma : F/\overline{I}F \to \overline{I}/(I + \overline{I}^2)$ be a surjection and let $\beta' : F/F' \to \overline{I}/\overline{I}^2$ a lift of β.

Further, $w : F'/IF' \to I/I^2$ induces a surjection $\overline{w} : F'/\overline{I}F' \to (I + \overline{I}^2)/\overline{I}^2$. Composing \overline{w} with the natural inclusion $(I + \overline{I}^2)/\overline{I}^2 \subset \overline{I}/\overline{I}^2$, we get a map $w' : F'/\overline{I}F' \to \overline{I}/\overline{I}^2$.

Combining w' and β', it is easy to see that we get a surjective homomorphism

$$\Delta = \beta' \oplus w' : F/\overline{I}F \oplus F'/\overline{I}F' = (F \oplus F')/\overline{I}(F \oplus F') = \overline{I}/\overline{I}^2$$

(surjectivity follows by considering the exact sequence $0 \to (I + \overline{I}^2)/\overline{I}^2 \subset \overline{I}/\overline{I}^2 \to 0$). We have (\overline{I}, Δ) a local orientation of \overline{I}. We will show that the image of (\overline{I}, Δ) in $E^{n+s}(A)$ is independent of choices of ψ, the lift β' and the representative of w in the equivalence class.

Step 1. First we show that for a fixed ψ, (\overline{I}, Δ) in E^{n+s} is independent of the lift β' and the representative of w.

(a) Suppose $w, w_1 : F'/IF' \to I/I^2$ are two equivalent local orientations of I. Then $w_1 = w_0 \epsilon$ for some $\epsilon \in E(F'/IF')$. Using the canonical homomorphisms $E(F'/IF') \to E(F'/\overline{I}F') \to E((F \oplus F')/\overline{I}(F \oplus F'))$, we get that $w_1 = w \epsilon_1$ for some $\epsilon_1 \in E((F \oplus F')/\overline{I}(F \oplus F'))$.

Let Δ_1 be the local orientation of \overline{I} obtained by using β' and w_1. Then $\Delta_1 = \Delta \epsilon_1$. Hence $(\overline{I}, \Delta) = (\overline{I}, \Delta_1)$ in $E^{n+s}(A)$.

5
(b) Let $\beta'' : F/IF \to \bar{I}/\bar{I}^2$ be another lift of β. Then $\phi = \beta'' - \beta'' : F/IF \to (I + \bar{I}^2)/\bar{I}^2$. Since $\bar{w}_1 : F'/IF' \to (I + \bar{I}^2)/\bar{I}^2$ is a surjection, there exists $g : F/IF \to F'/IF'$ such that $\bar{w}_1 g = \phi$.

Let $\varepsilon_2 = (\begin{smallmatrix} 3 \varepsilon \\ 0 \end{smallmatrix}) \in E((F \oplus F')/(F \oplus F'))$. Then $(\beta'' + w') \varepsilon_2 = (\beta' + w')$. Therefore, if $\Delta_2 = \beta'' + w'$, then $\Delta_2 \varepsilon_2 = \Delta_1 = \Delta \varepsilon_1$.

This completes the proof of the claim in step 1.

Step 2. Now we will show that $(\bar{I}, \Delta) \in E^{n+s}(A)$ is independent of ψ also (i.e. it depends only on (I, w)).

Recall that $w : F'/IF' \to I/I^2$ is a surjection. It is easy to see that we can lift w to a surjection $\Omega : F' \to I \cap K$, where $K + I = A$ and K is an ideal of height s (or $K = A$).

We can find an ideal $\bar{K} \subset A$ of height $\geq n + s$ and a surjective homomorphism $\psi' : Q/KQ \to \bar{K}/K$. Let $\psi' \otimes A/\bar{K} = \bar{\psi'}$. Then $\bar{\psi} : Q/\bar{K}Q \to \bar{K}/(K + \bar{K}^2)$ is a surjection.

Again, since $\dim A/\bar{K} \leq n - 3$, $Q/\bar{K}Q$ is a free A/\bar{K}-module. If "bar" denotes reduction modulo \bar{K}, then $\bar{\sigma} \in \text{Um}_r(A/\bar{K})$ can be completed to an elementary matrix which gives a basis $\bar{p}_1, \ldots, \bar{p}_n$ for $Q/\bar{K}Q$. Let $\gamma' : F'/KF \to Q/KQ$ be the isomorphism given by $\gamma'(\bar{p}_i) = \bar{p}_i$. Let $\eta = \bar{\psi} \gamma' : F/\bar{K}F \to \bar{K}/(I + \bar{K}^2)$ be a surjection and let $\eta' : F/\bar{K}F \to \bar{K}/\bar{K}^2$ be a lift of η.

The map $\Omega : F' \to I \cap K$ induces a surjection $\Omega \otimes A/K = \Omega' : F'/KF' \to K/K^2$ which in turn induces a surjection $\Omega' \otimes A/\bar{K} = w'' : F'/\bar{K}F' \to (K + \bar{K}^2)/\bar{K}^2$. Since $(K + \bar{K}^2) \subset \bar{K}$, we get a map $w'' : F'/\bar{K}F' \to \bar{K}/\bar{K}^2$.

Combining w'' and η', we get a surjection $\Delta' = \eta' \oplus w'' : (F \oplus F')/\bar{K}(F \oplus F') \to \bar{K}/\bar{K}^2$.

Claim. $(\bar{I}, \Delta) + (\bar{K}, \Delta') = 0$ in $E^{n+s}(A)$.

Since $I + K = A$, we get $\bar{I} + \bar{K} = A$. Further, we get a surjection $\Psi = \psi \oplus \psi' : Q/(I \cap K)Q \simeq Q/IQ \oplus Q/KQ \to \bar{I}/\bar{I} \oplus \bar{K}/K \simeq (\bar{I} \cap \bar{K})/(I \cap K)$.

Let $\bar{\Psi} : Q \to \bar{I} \cap \bar{K}$ be a lift of Ψ such that the following holds:

(i) $\bar{\Psi} \otimes A/\bar{I} = \bar{\psi}$, where $\bar{\psi} : Q/\bar{I}Q \to \bar{I}/(I + \bar{I}^2)$ is a surjection and

(ii) $\bar{\Psi} \otimes A/\bar{K} = \bar{\psi}'$, where $\bar{\psi}' : Q/\bar{K}Q \to \bar{K}/(K + \bar{K}^2)$ is a surjection.

Let $\bar{\Psi}_1 : Q/\bar{I}Q \to \bar{I}/\bar{I}^2$ be a lift of $\bar{\psi} \otimes A/\bar{I}$ and let $\bar{\Psi}_2 : Q/\bar{K}Q \to \bar{K}/\bar{K}^2$ be a lift of $\bar{\psi}' \otimes A/\bar{K}$. Then $\bar{\Psi}_1$ and $\bar{\Psi}_2$ induces a map $\bar{\Psi}_3 : Q/(\bar{I} \cap \bar{K})Q \to (\bar{I} \cap \bar{K})/(I \cap K)^2$.

Since $\beta = \bar{\psi} \gamma = (\bar{\psi} \otimes A/\bar{I}) \gamma$ and $\beta' : F/IF \to \bar{I}/\bar{I}^2$ is a lift of β, we get that $\alpha_1 = \beta' \gamma^{-1} - \bar{\Psi}_1$ is a map from Q/IQ to $(I + \bar{I}^2)/\bar{I}^2 \subset \bar{I}/\bar{I}^2$. Similarly, $\alpha_2 = \eta'(\gamma')^{-1} - \bar{\Psi}_2$ is a map from $Q/\bar{K}Q$ to $(K + \bar{K}^2)/\bar{K}^2 \subset \bar{K}/\bar{K}^2$.

Since $\bar{w} : F'/IF' \to (I + \bar{I}^2)/\bar{I}^2$ is a surjection, we can find $g_1 : Q/\bar{I}Q \to F'/\bar{I}F'$ such that $\bar{w}_1 g_1 = \alpha_1$. Similarly, we can find $g_2 : Q/\bar{K}Q \to F'/\bar{K}F'$ such that $w'' g_2 = \alpha_2$ (here $w'' = \Omega' \otimes A/\bar{K}$).

Let g be given by g_1, g_2 and $\tilde{\gamma}$ be given by γ, γ'. Then

(a) $\left(\begin{smallmatrix} \gamma & 0 \\ 0 & 1 \end{smallmatrix} \right)$ is an isomorphism from $(F \oplus F')/(\bar{I} \cap \bar{K})(F \oplus F')$ to $(Q \oplus F')/(\bar{I} \cap \bar{K})(F \oplus F')$ and
Write $\Gamma = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$. Since Ψ is a lift of Φ, Ψ is a surjection from $Q/(I \cap K)Q$ to $(\tilde{I} \cap \tilde{K})/(I \cap K)$ and $\Omega : F' \to I \cap K$ is a surjection, we get that $\Psi \oplus \Omega : Q \oplus F' \to \tilde{I} \cap \tilde{K}$ is a surjection.

Let $\Theta = \begin{pmatrix} \Psi \oplus \Omega \end{pmatrix} \otimes A/(\tilde{I} \cap \tilde{K})$. Then $\Theta : (Q \oplus F')/(\tilde{I} \cap \tilde{K})(Q \oplus F') \to (\tilde{I} \cap \tilde{K})/(\tilde{I} \cap \tilde{K}) \cdot I, \tilde{K}$. Let $(\delta, \delta') : (F \oplus F')/(\tilde{I} \cap \tilde{K})(F \oplus F') \to (\tilde{I} \cap \tilde{K})/(\tilde{I} \cap \tilde{K}) \cdot I, \tilde{K}$ be the surjection induced from δ, δ'. We claim that $(\delta, \delta') = \Theta \Gamma$. (This follows by checking on $V(\tilde{I})$ and $V(\tilde{K})$ separately, but we give a direct proof below.)

Let $\alpha_3 : Q/(\tilde{I} \cap \tilde{K})Q \to (\tilde{I} \cap \tilde{K})/(\tilde{I} \cap \tilde{K}) \cdot I, \tilde{K}$ be the map induced from α_1, α_2 and let $\tau : F/(\tilde{I} \cap \tilde{K}) \to (\tilde{I} \cap \tilde{K})/(\tilde{I} \cap \tilde{K}) \cdot I, \tilde{K}$ be the map induced from β, η. Then we have $\alpha_3 = \tau \gamma^{-1} - \Psi_3$. Let $\Omega : F'/(\tilde{I} \cap \tilde{K})F' \to (\tilde{I} \cap \tilde{K})/(\tilde{I} \cap \tilde{K}) \cdot I, \tilde{K}$ be the map induced from \bar{w}, w'. Then we have $\Omega g = \alpha_3$.

Let $\Theta = \Theta(0, y) = (\tilde{I}, \tilde{K})/(0, 0)$ and $\Theta \Gamma(x, 0) = \Theta(\gamma(x), \gamma(x)) = \bar{\Psi}_3 \gamma(x) + \bar{\Omega} \gamma(x) = \bar{\Psi}_3 \gamma(x) + \tau \gamma^{-1} \gamma(x) - \bar{\Psi}_3 \gamma(x) = \tau(x) = (\delta, \delta')(0, x)$.

This proves that $(\delta, \delta') = \Theta \Gamma$. By [2.4], Theorem 4.2, we get that $\tilde{I}(\tilde{I}) + (\tilde{K}, \tilde{K}) = 0$ in $E^{n+1}(A)$. Since (\tilde{K}, \tilde{K}) depends only on (I, w), it follows that (\tilde{I}, \tilde{K}) is independent of the choice of ψ. This establishes the claim in step 2.

If (I, w) is a global orientation, then we can take $K = A$ in the above proof and it will follow that (\tilde{I}, \tilde{K}) is also a global orientation.

Thus the association $(I, w) \mapsto (\tilde{I}, \tilde{K}) \in E^{n+1}(A)$ defines a homomorphism $\phi(Q) : G^s(A) \to E^{n+1}(A)$, where (I, w) are the free generators of $G^s(A)$. Further $\phi(Q)$ factors through a homomorphism $w_0(Q) : E^s(A) \to E^{n+1}(A)$ sending (I, w) to $E^s(A)$ to $(\tilde{I}, \tilde{K}) \in E^{n+1}(A)$. This completes the proof of the theorem.

Corollary 2.7 Let A be a regular domain of dimension $d \geq 2$ containing an infinite field. Suppose Q is a stably free A-module of rank n. Then there exists a homomorphism $w_0(Q) : E^0_0(A) \to E^{n+1}_0(A)$ for every integer $s \geq 1$ with $2n + s \geq d + 3$.

Proof The proof is similar to that of [2.4] and we give an outline. Write $F = A^n$ and $F' = A^s$.

Suppose (I) is a generator of $G^0_0(A)$. Here I is an ideal of height s, $\text{Spec}(A/I)$ is connected and there is a surjection from F'/IF' to I/I^2. There is a surjection $\psi : Q/IQ \to \tilde{I}, I$, where \tilde{I} is an ideal of height $\geq n + s$. For such a generator (I), we associate $(\tilde{I}) \in E^{n+1}_0(A)$.

For well-definedness, fix a local orientation $w : F'/IF' \to I/I^2$ and a surjective lift $\Omega : F' \to I \cap K$ of w, where K is an ideal of height $\geq s$ and $K + I = A$. Let $\psi' : Q/KQ \to \tilde{K}/K$ be a surjection, where \tilde{K} is an ideal of height $\geq n + s$. As in [2.0], there exists a surjection from $F \oplus F' \to \tilde{I} \cap \tilde{K}$. This shows that $(\tilde{I}) + (\tilde{K}) = 0$ in $E^{n+1}_0(A)$ and so $(\tilde{I}) \in E^{n+1}_0(A)$ is independent of the choice of ψ.

The association $(I) \mapsto (\tilde{I}) \in E^{n+1}_0(A)$ extends to a homomorphism $\phi_0 : G^0_0(A) \to E^{n+1}_0(A)$.

If (I) is global (i.e. I is a surjective homomorphism of F'), then taking $K = A$ in the above argument, we can prove that (\tilde{I}) is also global. So ϕ_0 factors through a homomorphism $w_0(Q) : E^0_0(A) \to E^{n+1}_0(A)$.

Remark
Definition 2.8 The homomorphism \(w(Q) \) in theorem \(\text{[2.6]} \) will be called the Whitney class homomorphism. The image of \((I, w) \in E^n(A)\) under \(w(Q) \) will be denoted by \(\Phi(I, w) \).

Similarly, the homomorphism \(w_0(Q) \) in \(\text{[2.7]} \) will be called the weak Whitney class homomorphism. The image of \((I) \in E^n_0(A)\) under \(w_0(Q) \) will be denoted by \(\Phi_0(I) \).

The proof of the following result is same as \(\text{[8], Corollary 3.4} \), hence we omit it.

Corollary 2.9 Let \(A \) be a regular domain of dimension \(d \geq 2 \) containing an infinite field. Suppose \(Q \) is a stably free \(A \)-module of rank \(n \). For every integer \(s \geq 1 \) with \(2n + s \geq d + 3 \), we have

\[
\Phi_0(Q) \xi^s = \xi^{n+s} \Phi(Q) \quad \text{and} \quad C^n(Q^*) \eta^s = \eta^{n+s} \Phi(Q),
\]

where \(i) \xi^r : E^n(A) \to E^n_0(A) \) is a natural surjection obtained by forgetting the orientation,

(ii) \(\eta^r : E^n_0(A) \to CH^n(A) \) is a natural homomorphism, sending \((I) \) to \([A/I] \). Here \(CH^n(A) \) denotes the Chow group of cycles of codimension \(r \) in \(\text{Spec} (A) \) and

(iii) \(C^n(Q^*) \) denote the top Chern class homomorphism \(\text{[7]} \).

The following result is about vanishing of Whitney class homomorphism. When \(n + s = d \), it is proved in \(\text{[8], Theorem 3.5} \) for arbitrary projective module \(Q \) and our proof is an adaptation of \(\text{[8]} \). We will follow the proof of \(\text{[2.6]} \) with necessary modifications.

Theorem 2.10 Let \(A \) be a regular domain of dimension \(d \geq 2 \) containing an infinite field. Suppose \(Q \) is a stably free \(A \)-module of rank \(n \) defined by \(\sigma \in \text{Um}_{n,n+r}(A) \). Let \(s \geq 1 \) be an integer with \(2n + s \geq d + 3 \).

Write \(F = A^n \) and \(F' = A^s \). Let \(I \) be an ideal of height \(s \) and let \(w : F'/IF' \to I/I^2 \) be a surjection. If \(Q/IQ = P_0 \oplus A/I, \) then \(w(Q) \cap (I, w) = 0 \) in \(E^{n+s}(A) \).

In particular, if \(Q = P \oplus A \), then the homomorphism \(w(Q) : E^n(A) \to E^{n+s}(A) \) is identically zero. Similar statements hold for \(w_0(Q) \).

Proof Step 1. We can find an ideal \(\tilde{I} \subset A \) of height \(n + s \) and a surjective homomorphism \(\psi : Q/IQ \to \tilde{I}/I \). Let \(\tilde{\psi} = \psi \otimes A/\tilde{I} : Q/\tilde{I} \to \tilde{I}/(I + \tilde{I}^2) \).

Let \(\Omega : F' \to I \) be a lift of \(w \) and let \(\overline{\nu} = w \otimes A/\tilde{I} : F'/IF' \to I/I\tilde{I} \). Composing \(\overline{\nu} \) with the natural map \(I/I\tilde{I} \to \tilde{I}/I\tilde{I} \), we get a map \(w' : F'/IF' \to \tilde{I}/I\tilde{I}^2 \).

Since \(Q/IQ = P_0 \oplus A/I, \) we can write \(\psi = (\theta, \overline{\nu}) \) for some \(\theta \in P_0^* \). We may assume that \(\psi(P_0) = \tilde{J}/I, \) for some ideal \(\tilde{J} \subset A \) of height \(n + s - 1 \). Note that \(\tilde{I} = (\tilde{J}, a) \).

Since \(\dim A/\tilde{J} = d - (n + s - 1) \leq n - 2 \) and \(P_0/IP_0 \) is stably free \(A/\tilde{I} \)-module of rank \(n - 1 \), \(P_0/JP_0 \) is free. If “prime” denotes reduction modulo \(\tilde{J} \), then \(\sigma' \) can be completed to an elementary matrix in \(E_{n+s}(A/\tilde{J}) \). This gives a canonical basis of \(P_0/JP_0, \) say \(q_1', \ldots, q_{n-1}' \). Let \(\gamma' : (A/\tilde{J})^{n-1} \to P_0/JP_0 \) be the isomorphism given by \([q_1', \ldots, q_{n-1}'] \).

Let \(\gamma : F/IF = (A/\tilde{I})^n \to Q/IQ = P_0/JP_0 \) be the isomorphism given by \((\gamma', 1) \), i.e. \(\gamma = [\overline{\nu}, \ldots, q_{n-1}] \). Let \(\beta = \overline{\psi} \gamma : F/IF \to \tilde{I}/(I + \tilde{I}^2) \) and let \(\beta' : F/IF \to \tilde{I}/I\tilde{I}^2 \) be a lift of \(\beta \).

As in the proof of \(\text{[2.6]} \), combining \(w' \) and \(\beta' \), we get a surjection \(\Delta = \beta' \circ w' : (F \oplus F')/\tilde{I}(F \oplus F') \to \tilde{I}/I\tilde{I}^2 \) and \((\tilde{I}, \Delta) = (Q/IQ \cap (I, w) \cap \Delta = 0 \) in \(E^{n+s}(A) \).
Step 2. In this step, we will prove the claim. The surjection \(\theta : P_0 \rightarrow \tilde{J}/I \) induces a surjection \(\overline{\theta} = \theta \otimes A/\overline{J} : P_0/\overline{J}P_0 \rightarrow \tilde{J}/(I + \tilde{J}^2) \). Let \(\zeta = \overline{\theta}^* : (A/\overline{J})^{n-1} \rightarrow \tilde{J}/(I + \tilde{J}^2) \) and let \(\zeta' : (A/\overline{J})^{n-1} \rightarrow \tilde{J}/\tilde{J}^2 \) be a lift of \(\zeta \).

If \(\overline{\zeta} \) denotes the composition of \(\zeta' \otimes A/\overline{J} : (A/\overline{J})^{n-1} \rightarrow \tilde{J}/\tilde{J}^2 \) with natural maps \(\tilde{J}/\tilde{J}^2 \rightarrow \tilde{J}/\tilde{J}^2 \rightarrow \tilde{J}/\tilde{J}^2 \), we get that \((\overline{\zeta}, \overline{\pi}) \) is a lift of \(\beta : F/IF \rightarrow \tilde{J}/(I + \tilde{J}^2) \). Since \(w(Q) \cap (I, w) \) is independent of \(\tilde{\beta} \), we may assume that \(\tilde{\beta} = (\overline{\zeta}, \overline{\pi}) \).

If \(\delta : A^{n-1} \rightarrow J \) is a lift of \(\zeta' \), then \((\delta, a, \Omega) : F \oplus F' \rightarrow \tilde{J} \) is a lift of \((\beta', w') \). If \(\tilde{J} \) is the image of \((\delta, \Omega) \), then \(\tilde{J} = \tilde{J}' + \tilde{J}^2 \). (To see this, let \(y \in \tilde{J} \), then there exists \(x \in A^{n-1} \) such that \(\delta(x) - y = y_1 + z \) for some \(y_1 \in I \) and \(z \in \tilde{J}^2 \). Choose \(x \in F' \) such that \(y_1 - \Omega(x_1) = z_1 \in I^2 \subset \tilde{J}^2 \). Therefore \(\delta(x) - \Omega(x_1) = y \) modulo \(\tilde{J}^2 \).

Since \(\tilde{J} = \tilde{J}' + \tilde{J}^2 \), we can find \(e \in \tilde{J}^2 \) such that \((1 - e)\tilde{J} \subset \tilde{J}' \) and \(\tilde{J} = (\tilde{J}', e) \). Therefore by (9), Lemma 1), \(\tilde{J} = (\tilde{J}', a) = (\tilde{J}', b) \), where \(b = e + (1 - e)a \). Thus \((\delta, b, \Omega) : F \oplus F' \rightarrow \tilde{J} \) is a surjection which is a lift of \((\beta', w') \). This proves that \((\tilde{I}, \Delta) = 0 \) in \(E^{n+s}(A) \). This completes the proof.

2.3 Remark on some results of Yang

We start this section by describing some results of Yang [11].

(1) Let \(R \) be a Noetherian commutative ring of dimension \(d \) and let \(n \) be an integer with \(2n \geq d + 3 \). Let \(l \) be an ideal of \(R \) and let \(\rho : R \rightarrow \overline{R} = R/l \) be the natural surjection. Yang [11] defines a group homomorphism \(E(\rho) : E^n(R; R) \rightarrow E^n(\overline{R}; \overline{R}) \), called the restriction map of Euler class group, as \(E(\rho)(I, w_I) = (\overline{I}, w_{I/l}) \), where \((I, w_I) = (I', w_{I'}) \) in \(E^n(R; R) \) with height of \(\overline{I} + I \geq n \) in \(\overline{R} \).

(2) Further, let \(A \) be a Noetherian commutative ring of dimension \(s \) with \(2n \geq s + 3 \). Assume there exists a ring homomorphism \(\phi : R \rightarrow A \) such that for any local orientation \((I, w_I) \in E^n(R; R) \), height of \(\phi(I) \) is \(\geq n \). Then Yang defines a group homomorphism \(E(\phi) : E^n(R; R) \rightarrow E^n(A; A) \), called the extension map of Euler class group, as \(E(\phi)(I, w_I) = (\phi(I), w_{\phi(I)}) \).

(3) Let \(D(R, l) \) denotes the double of \(R \) along \(l \), then

\[
0 \rightarrow l \rightarrow D(R, l) \xrightarrow{p_l} R \rightarrow 0
\]

is a split exact sequence. The relative Euler class group of \(R \) and \(l \) is defined as

\[
E^n(R, l; R) = \ker(E(p_l)) : E^n(D(R, l); D(R, l)) \rightarrow E^n(R; R),
\]

where \(E(p_l) \) is the restriction map.

(4) (Homology sequence) Let \(p_2 \) denote the second projection from \(D(R, l) \rightarrow R \). Then the following Homology sequence of Euler class group is exact.

\[
E^n(R, l; R) \xrightarrow{E(p_2)} E^n(R; R) \xrightarrow{E(\rho)} E^n(R/l; R/l).
\]

(5) (Excision theorem) Further assume that there exists a splitting of \(\rho : R \rightarrow R/l \) (i.e., a ring homomorphism \(\beta : R/l \rightarrow R \) such that \(\rho \beta = id \)) satisfying the condition that for any local orientation \((J, w_J) \in E^n(R/l; R/l) \), height of \(\beta(J) \) is \(\geq n \). Then we have the following exact sequence, called the Excision sequence of Euler class group.

\[
0 \rightarrow E^n(R, l; R) \xrightarrow{E(p_2)} E^n(R; R) \xrightarrow{E(\rho)} E^n(R/l; R/l) \rightarrow 0.
\]
Note that the existence of a splitting of ρ is sufficient for the injectivity of Homology sequence.

(6) As a consequence of above results, if 2n ≥ d + 4, then we have the following split short exact sequence:

$$0 \rightarrow E^n(R[T], (T); R[T]) \xrightarrow{E(p_2)} E^n(R[T]; R[T]) \xrightarrow{E(\rho)} E^n(R; R) \rightarrow 0.$$

Further if \(R\) is a regular affine domain essentially of finite type over an infinite perfect field, then it is proved that \(E(\rho) : E^n(R[T]; R[T]) \rightarrow E^n(R; R)\) is an isomorphism. Note that Das and Raja (\cite{6}, Theorem 3.8) also proved this isomorphism for \(2n \geq d + 3\).

Using (\cite{2}, 4.11, 5.7) and following the proof in (\cite{11}), we get the following stronger results in case of polynomial ring over \(R\).

Theorem 2.11 Assume that \(R\) is a regular domain of dimension \(d\) containing an infinite field and let \(n\) be an integer with \(2n \geq d + 3\). Then we have the following results:

(i) (Homology sequence) Let \(p_2\) denote the second projection from \(D(R[T], l) \rightarrow R[T]\), where \(l\) is an ideal of \(R[T]\). Then we have the following Homology exact sequence of Euler class group:

$$E^n(R[T], l; R[T]) \xrightarrow{E(p_2)} E^n(R[T]; R[T]) \xrightarrow{E(\rho)} E^n(R[T]/l; R[T]/l).$$

(ii) (Excision theorem) Further assume that there exists a splitting \(\beta : R[T] \rightarrow R[T]/l\) satisfying the condition that for any local orientation \((J, w, r) \in E^n(R[T]/l; R[T]/l)\), height of \(\beta(J)\) is \(\geq n\). Then we have the following Excision exact sequence of Euler class group:

$$0 \rightarrow E^n(R[T], l; R[T]) \xrightarrow{E(p_2)} E^n(R[T]; R[T]) \xrightarrow{E(\rho)} E^n(R[T]/l; R[T]/l) \rightarrow 0.$$

In particular, when \(l = (T)\), then we have the following split short exact sequence:

$$0 \rightarrow E^n(R[T], (T); R[T]) \xrightarrow{E(p_2)} E^n(R[T]; R[T]) \xrightarrow{E(\rho)} E^n(R; R) \rightarrow 0.$$

References

[1] H. Bass, *K-Theory and stable algebra*, I.H.E.S. 22 (1964), 5-60.

[2] S. M. Bhatwadekar and M. K. Keshari, *A question of Nori: projective generation of ideals*, K-Theory 28 (2003), 329-351.

[3] S. M. Bhatwadekar and Raja Sridharan, *Projective generation of curves in polynomial extensions of an affine domain and a question of Nori*, Invent. Math. 133 (1998), 161-192.

[4] S. M. Bhatwadekar and Raja Sridharan, *On Euler classes and stably free projective modules*, Proceedings of the international colloquium on Algebra, Arithmetic and Geometry, Mumbai 2000, Narosa Publishing House, 139-158.

[5] M.K. Das, *The Euler class groups of a polynomial algebras*, J. Algebra 264 (2003), 582-612.

[6] M.K. Das and Raja Sridharan, *Euler class groups and a theorem of Roitman*, Preprint.

[7] W. Fulton, *Intersection theory*, Second Ed., Springer Verlag, 1998.
[8] S. Mandal and Y. Yang, Intersection theory of algebraic obstructions, To appear in J. Pure and Applied Algebra.

[9] N. Mohan Kumar, Complete intersections, J. M Ath. Kyoto Univ. 17 (1977), 533-538.

[10] L.N. Vaserstein, On the stabilisation of the general linear group over a ring, Math. USSR. Sbornik 8 (1969), (English Translation) 383-400.

[11] Yong Yang, Homology sequence and Excision theorem for Euler class group, Preprint.