Effects of Perennial Intercrops on Oil Palm Agronomic and Yield Traits

Thanet Khomphet, Theera Eksomtramage, Jakarat Anothai, Pilalak Popet

10.18805/IJARe.A-610

ABSTRACT

Background: Intercropping is widely practiced in oil palm plantation in Thailand for a long time. However, there are few studies connected to oil palm intercropping. This study evaluated the effects of perennial intercrops on the agronomic and yield traits of oil palm.

Methods: The observation used a completely randomized design with eight treatments including oil palm monocropping, oil palm intercropped with Intsia palembanica, Hopea odorata, Swietenia macrophylla, Ternstroemia wallichiana, Azardirachta excelsa, Magnolia champaca and Mesua ferrea. The height and stem perimeter of intercrops were recorded as were the plant height and diameter, number of male and female inflorescences and sex ratio of the oil palms. Those parameters were observed in October 2019, February and June 2020.

Result: Oil palm intercropped with A. excelsa produced the highest number of female inflorescences and oil palm intercropped with M. champaca produced the highest sex ratio in October 2019 and February 2020, however, the differences of those parameters were not found in June 2020. There were no significant differences in the diameter, height, the number of male inflorescences throughout the observation. Among the 7 intercrops, M. champaca and A. excelsa produced the highest growth rate of plant height and stem perimeter, respectively. In conclusion, oil palm can be intercropped with perennial plants. However, more research is needed to determine the long-term effects of intercropping in oil palm.

Key words: Agronomic traits, Oil palm, Perennial intercrop, Yield traits.

INTRODUCTION

Oil palm (Elaeis guineensis Jacq.) is a potentially economic oil crop in Thailand (Soonsuwon et al., 2020). In 2019, Thailand had 0.94 million hectares under cultivation with oil palm, of which 86.23 per cent was in the south of Thailand (Office of Agricultural Economics, 2019). In general, oil palms are planted at a triangular distance of 9 x 9 x 9 m with 143 palm trees per hectare (Dariah et al., 2014). In plantations in southern Thailand, the first harvestable bunches appear less than 3 years after planting, but during the period when the palm trees are young, they are intercropped with a number of different short-lived plants such as pineapple, banana, chili, cucumber, cocoyam, soybean, maize and groundnut. Several previous studies have reported that the intercropping of plants has no effect on oil palm. Moreover, some studies have found that intercropping oil palm improves the properties of the soil and aids the development the trees as compared to monocropped oil palm (Erhabor and Filson, 1999; Okyere et al., 2014; Putra et al., 2012; Salako et al., 1995; Dissanayake and Palihakkara, 2019). However, once the trees become mature, 3 years after planting, few plants can be intercropped with oil palm because of lack of sufficient light under the oil palms and restriction on the availability of minerals and water in the soil due to high use by the oil palms (Goh et al., 2011; Dhandapani et al., 2020). Nevertheless, some farmers in southern Thailand have planted perennial plants among mature oil palms and it appears that those plants have not been affected by the growth and cropping of oil palm and have been successfully intercropped with oil palm. However, there have been a few empirical studies reported in this connection. The findings reported will be helpful and informative to farmers and may form a baseline for researchers to further study this subject.

MATERIALS AND METHODS

Study site

The plantation studied is located at Lam Sin Tambon, Srinagarindra District, Phatthalung Province, southern Thailand (7°30’02.4”N 99°53’58.7”E). This site has a tropical climate with an average rainfall of 2,156.9 mm per year, with the highest rainfall occurring between October and...
December. The lowest monthly average temperature in December is 26.7°C and April is the hottest month with an average temperature of 29.3°C. The relative humidity ranges between 75% and 83% percent. The area of the plantation studied is around 6 hectares, to which chemical fertilizers are applied every 3 months. The quantity and quality of the fertilizers applied are monitored based on soil analysis and the nutrient demands of the oil palms. In addition, manure is applied twice a year to improve the physical and biological properties of the soil. Harvestable bunches are harvested twice a month and the fronds of the oil palms are cut during the harvesting of the oil palm fruit bunches. The fronds are maintained at 24-32 fronds per plant. The soil properties in the 0-30 cm soil depth are: pH = 6.0, organic carbon = 1.5%, cation exchange capacity = 12 mol kg⁻¹, total nitrogen = 0.15 g kg⁻¹, available phosphorus = 20.00 mg kg⁻¹ and available potassium = 30.09 mg kg⁻¹.

Oil palms, Intercrops and parameters measurements

This study employed a completely randomized design of 8 treatments as follows: oil palm monocropping (Palm), oil palm intercropped with Intsia palembanica (Palm-A), Hopea odorata (Palm-B), Swietenia macrophylla (Palm-C), Ternstroemia wallichiana (Palm-D), Azadirachta excelsa (Palm-E), Magnolia champaca (Palm-F) and Mesua ferrea (Palm-G). Each treatment consisted of 10 replications. In each replication, a ten-year-old intercropped plant was planted with a twelve-year-old oil palm (tenera variety) as the same row. Their agronomic and yield traits were recorded. For the oil palms, their diameter and height were measured, the number of male and female inflorescences were counted and the sex ratio was calculated as the number of female inflorescences relative to the total number of inflorescences (Rival, 2017).

The growth rates (GR) of the stem perimeter and plant height in the observed months was calculated as:

$$GR = (H_2 - H_1)/(t_2 - t_1),$$

where H_2 and H_1 are the plant height (or stem perimeter) at t_2 and t_1, respectively. For the perennial intercrops, their perimeter and height were measured. The observations were carried out in October 2019, February and June 2020. General information regarding the oil palms and perennial intercrops is shown in Table 1.

Statistical analysis

The variance in the parameters was calculated using ANOVA. The means were compared using Duncan’s multiple range test and differences were reported as significant at or above $p < 0.05$ (Harter, 1960). All statistical analyses were conducted using the R software program (version 3.6.1) with the Agricolae package (de Mendiburu, 2019).

Results and Discussion

The agronomic traits and inflorescence yield of oil palm

The plant diameter and height, the number of male and female inflorescences and sex ratio of oil palms planted with different intercrops are presented in Table 2. Plate 1 illustrates twelve-year-old oil palms intercropped with some perennial plants. The diameter, height and the number of male inflorescences in all observed months, the number of female inflorescences in June 2020 and sex ratio in October 2019 and June 2020, were not significantly different among the various treatments. The only significant differences were found in the number of female inflorescences in October 2019 and February 2020 and sex ratios in February 2020.

Oil palm intercropped with A. excelsa (6.00±0.00) and M. champaca (5.71±1.70) produced the greatest number of inflorescences in October 2020, but they were statistically at par with monocropped oil palm (3.25±0.38; $p < 0.05$), oil palm intercropped with I. palembanica (4.20±2.17; $p < 0.05$), H. odorata (3.55±2.62; $p < 0.05$), S. macrophylla (3.43±1.40; $p < 0.05$) and T. wallichiana (4.50±1.91; $p < 0.05$). Monocropped oil palm (5.13±2.75), oil palm intercropped with I. palembanica (5.40±3.13), H. odorata (5.25±2.65), S. macrophylla (5.57±3.74), T. wallichiana (5.25±2.87), A. excelsa (6.00±1.41) and M. champaca (4.43±2.64) produced a greater number of female inflorescences than oil palm intercropped with M. ferrea (0.50±0.07; $p < 0.05$) in February 2020. Oil palm intercropped with T. wallichiana (0.93±0.14), A. excelsa (0.92±0.12) and M. champaca (1.00±0.00) produced the greatest sex ratio in February 2020, but they were statistically at par with monocropped oil palm (0.86±0.35; $p < 0.05$), oil palm intercropped with I. palembanica (0.76±0.43; $p < 0.05$), H. odorata (0.87±0.25; $p < 0.05$) and S. macrophylla (0.76±0.27; $p < 0.05$).

The agronomic traits of perennial intercrops and their growth rates

The plant height and stem perimeter of the intercrops are presented in Table 3. M. champaca produced the greatest

Table 1: General information relating to oil palm and perennial intercrops.

Plants	Codes	Scientific names	Plant ages
Oil palm	Palm	Elaeis guineensis Jacq.	12 years
Borneo Teak, Merbau	A	Intsia palembanica Miq.	10 years
Iron Wood	B	Hopea odorata Roxb.	10 years
Broad Leaf Mahogany	C	Swietenia macrophylla King.	10 years
Ternstroemia	D	Ternstroemia wallichiana (Griff.) Engl.	10 years
Indian walnut	E	Azadirachta excelsa (Jack) Jacobs	10 years
Champak	F	Magnolia champaca L.	10 years
Ceylon ironwood	G	Mesua ferrea L.	10 years
Table 2: Plant diameter, plant height, number of male and female inflorescences and sex ratio of oil palms intercropped with different plants.

Treatments	Plant diameter (cm)	Plant height (m)	Number of male inflorescences	Sex ratio								
	Oct 2019	Feb 2020	Jun 2020	Average	Oct 2019	Feb 2020	Jun 2020	Average	Oct 2019	Feb 2020	Jun 2020	Average
Palm	75.63±5.63	5.81±0.37	6.38±0.23	7.13±0.35	6.44±0.29	1.13±0.46	0.13±0.05	0.38±0.06	0.54±0.59			
Palm-A	72.00±4.47	5.86±0.35	6.40±0.42	7.20±0.27	6.49±0.33	1.40±0.67	0.40±0.09	0.40±0.09	0.73±0.60			
Palm-B	76.69±6.39	5.73±0.47	6.40±0.46	7.02±0.56	6.33±0.47	1.77±0.88	0.48±0.09	0.72±0.05	0.99±0.81			
Palm-C	72.14±8.59	6.04±0.31	6.64±0.24	7.57±0.19	6.75±0.19	2.00±0.29	1.14±0.21	0.86±0.21	1.33±1.00			
Palm-D	73.75±11.09	5.75±0.65	6.25±0.65	7.13±0.63	6.38±0.63	1.25±0.89	0.50±0.00	0.00±0.00	0.58±0.69			
Palm-E	70.00±7.07	5.00±0.00	6.00±0.71	6.75±0.35	5.92±0.35	2.50±1.22	0.50±0.07	0.50±0.01	1.17±0.71			
Palm-F	73.57±6.90	5.91±0.27	6.21±0.27	7.00±0.29	6.38±0.24	0.71±0.25	0.00±0.00	0.14±0.08	0.29±0.49			
Palm-G	65.00±7.07	5.75±0.35	6.50±0.71	7.25±1.06	6.50±0.71	0.50±0.71	0.00±0.00	0.00±0.00	0.17±0.24			

F-test: ns, ns, ns, ns, ns, ns, ns, ns, ns
CV: 8.87, 7.69, 6.96, 7.23, 6.88, 109.66, 174.37, 166.94, 87.22

The values are mean ± standard error, ns: Not significantly different, * Significantly different at p < 0.05: values with the same alphabetical superscript within the same column are not significantly different based on Duncan’s multiple range test. CV is coefficient of variation.
plant height (15.83±4.62, 18.83±2.99 and 19.83±3.20 m) in all observed months, but they were statistically at par with S. macrophylla (13.67±3.61, 13.87±1.94 and 13.92±1.72 m; p < 0.01), A. excelsa (13.00±3.45, 14.00±1.55 and 15.00±3.25 m; p < 0.01) and M. ferrea (9.50±2.12, 11.00±1.41 and 12.00±1.41 m; p < 0.01). A. excelsa produced the greatest stem perimeter (84.90±4.90, 90.00±3.00 and 93.20±3.20 cm) in all observed months, however, these were statistically at par with M. champaca (74.90±14.27, 80.83±16.23 and 83.30±15.16 cm; p < 0.01) and S. macrophylla (54.55±8.11, 58.92±9.82 and 60.70±10.54 cm; p < 0.01). Growth rates of plant height and stem perimeter of intercrops are presented in Table 4. From October 2019 to February 2020, M. champaca produced the highest growth rate of plant height (55.00±8.74 cm month⁻¹), but was at par with S. macrophylla, A. excelsa and M. ferrea (29.17±9.21, 25.00±3.56 and 37.50±7.68 cm month⁻¹). A. excelsa produced the highest growth rate of stem perimeter (2.03±0.15 cm month⁻¹), but they were statistically at par with S. macrophylla and M. champaca (1.09±0.85 and 1.48±0.85 cm month⁻¹). From February to June 2020, M. champaca produced the highest growth rate of plant height (35.00±7.91 cm month⁻¹); but they were statistically at par with S. macrophylla, A. excelsa and M. ferrea (18.75±8.85, 20.00±4.25 and 29.00±5.00 cm month⁻¹).

The results are similar to those found in previous studies relating to oil palm, where it has been reported that oil palm can be intercropped with different plants at different growth stages. Salako et al. (1995) studied the effect of intercropping oil palm with cocoyam (Xanthosoma sagittifolium) and the results show that such intercropping did not affect the growth or yield of oil palm. They recommended that owners of oil palm plantations maximize their land use and profit by intercropping oil palm with cocoyam during the first five years after planting oil palm.

Intercrops	Plant height (m)	Stem perimeter (cm)				
	Oct 2019	Feb 2020	Jun 2020	Oct 2019	Feb 2020	Jun 2020
I. palenbanca	7.83±2.84	8.67±3.06	9.33±3.01	20.60±9.20	21.17±9.17	21.87±8.81
H. odorata	5.81±4.33	6.54±4.80	7.16±5.02	22.19±22.15	22.54±18.41	23.03±18.88
S. macrophylla	13.67±3.61	13.87±1.94	13.92±1.72	54.55±8.11	58.92±9.82	60.70±10.54
T. wallichiana	5.83±1.61	6.33±1.61	6.93±1.29	23.10±11.03	24.50±11.82	26.00±11.09
A. excelsa	13.00±3.45	14.00±1.55	15.00±3.25	84.90±4.90	90.00±3.00	93.20±3.20
M. champaca	15.83±4.62	18.83±2.99	19.83±3.20	74.90±14.27	80.83±16.23	83.30±15.16
M. ferrea	9.50±2.12	11.00±1.41	12.00±1.41	12.00±9.33	22.50±10.61	23.10±11.17

F-test

CV

75.76 55.07 53.03 59.15 61.83 58.11

The values are mean ± standard error. ** Significantly different at p < 0.01: values with the same alphabetical superscript within the same column are not significantly different based on Duncan’s multiple range test. CV is coefficient of variation.

Table 4: Growth rates of plant height and stem perimeter of intercrops.

Intercrops	Growth rate of plant height (cm month⁻¹)	Growth rate of stem perimeter (cm month⁻¹)		
	Oct 2019-Feb 2020	Feb-Jun 2020	Oct 2019-Feb 2020	Feb-Jun 2020
I. palenbanca	20.83±7.22	16.67±7.22	0.14±0.03	0.18±0.09
H. odorata	18.14±7.57	15.57±9.86	0.42±0.48	0.25±0.23
S. macrophylla	29.17±9.21	18.75±6.85	1.09±0.85	0.45±0.30
T. wallichiana	12.50±2.00	15.00±9.01	0.35±0.22	0.38±0.19
A. excelsa	25.00±3.56	25.00±4.25	2.03±0.15	1.05±0.11
M. champaca	55.00±8.74	35.00±7.91	1.48±0.85	0.92±0.42
M. ferrea	37.50±7.68	29.00±5.00	0.28±0.32	0.15±0.14

F-test

CV

127.02 56.28 97.04 86.35

The values are mean ± standard error. ** Significantly different at p < 0.01: values with the same alphabetical superscript within the same column are not significantly different based on Duncan’s multiple range test. CV is coefficient of variation.
Effects of Perennial Intercrops on Oil Palm Agronomic and Yield Traits

of oil palms was found not to inhibit the growth rate and development of the oil palms. Okyere et al. (2014) investigated the effects of intercropping four-year-old oil palm with maize, cassava and plantain, finding that there were no significant differences between the vegetative growth and yield of oil palm intercropped with those plants and those of sole cropped oil palm. Moreover, intercropping oil palm with maize, plantain and/or cassava had no adverse effect on the growth, development and yield of the oil palm. Amoah et al. (1995) studied the feasibility of cocoa intercropping with eighteen-year-old oil palm which had achieved maximum canopy formation. The results found that, there were no significant differences in oil palm yield between oil palms intercropped with cocos and monocropped oil palms. Oil palms have a four-level root system, consisting of primary, secondary, tertiary and quaternary roots. The root system of oil palm spreads in both the vertical and horizontal directions and extends to a maximum depth of over 6 meters (Jourdan and Rey, 1997). The number and strength of the roots of oil palms affects their potential to absorb water and minerals from the soil. In addition, intercropping oil palm with other plants could provide a habitat for and increase the activities of soil microorganisms, resulting in the release of fixed minerals, leading to an increase in available plant nutrients in the soil (Belel et al., 2014; Buragohain, 2015; Rahim et al., 2016).

CONCLUSION
Oil palm can be intercropped with many perennial plants which can be grown under light competition conditions under oil palm shading. Based on the findings of this study, A. excelsa and M. champaca can be grown as intercrops with oil palm. However, more research is needed to determine the long-term effects of intercropping in oil palm.

ACKNOWLEDGEMENT
This study was facilitated by Mr. Thana-art Inpaeng, the owner of the farm. We are grateful to him for helping us to select the plants and record the data and for giving general information relating to oil palms and intercrops. This study was supported by graduate student development grant from National Research Council of Thailand (fiscal year 2020) and the government budget of Prince of Songkla University (NAT620172b).

REFERENCES
Amoah, F.M., Nuerley, B.N., Baidoo-Addo, K., Oppong, F.K., Osei-Bonsu, K. and Asamoah, T.E.O. (1995). Underplanting oil palm with cocoa in Ghana. Agroforestry Systems. 30: 289-299.
Belel, M.D., Halim, R.A., Rafii, M.Y. and Saud, H.M. (2014). Intercropping of corn with some selected legumes for improved forage production: a review. Indian Journal of Agricultural Research. 6: 48-62.
Buragohain, R. (2015). Identification of intercrops in small tea plantations at golaghat district of Assam, India. Indian Journal of Agricultural Research. 49: 290-293.
Dariah, A., Marwanto, S. and Agus, F. (2014). Root- and peat-based CO₂ emissions from oil palm plantations. Mitigation and Adaptation Strategies for Global Change. 19: 831-843.
de Mendiburu, F. (2019). Package ‘agricolae’ version 1.3-1. Statistical Procedures for Agricultural Research. Comprehensive R Archive Network, Institute for Statistics and Mathematics, Vienna, Austria.
Dhandapani, S., Girkin, N.T., Evers, S., Ritz, K. and Sjögersten, S. (2020). Is intercropping an environmentally-wise alternative to established oil palm monoculture in tropical peatlands? Frontiers in Forests and Global Change. 3: 1-8.
Dissanayake, S.M. and Palihakkara, I.R. (2019). A review on possibilities of intercropping with immature oil palm. International Journal for Research in Applied Sciences and Biotechnology. 6: 23-27.
Erhabor, J.O. and Filson, G.C. (1999). Soil fertility changes under an oil palm-based intercropping system. Journal of Sustainable Agriculture. 14: 45-61.
Goh, K.J., Ng, P.H.C., Mahamooth, T.N., Petronella, G.A.T. and Gan, H.H. (2011). Integrated oil palm nutrient management and its implication on environmental quality. Biotechnology and Sustainability Conference. 441-454.
Harter, H.L. (1960). Critical value for Duncan’s new multiple range test. Biometrics. 16(4): 671-685.
Jourdan, C. and Rey, H. (1997). Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant and Soil. 189: 33-48.
Office of Agricultural Economics. (2019). Agricultural economic information. http://www.oae.go.th/view/1/Information/EN

Plate 1: Twelve-year-old oil palms intercropped with I. Palembanica (a), H. odorata (b), S. macrophylla (c), T. wallichiana (d) and M. champaca (e).
Effects of Perennial Intercrops on Oil Palm Agronomic and Yield Traits

Okyere, S.A., Danso, F. Larbi, E. and Danso, I. (2014). Residual effect of intercropping on the yield and productivity of oil palm. International Journal of Plant and Soil Science. 3(7): 854-862.

Putra, E.T.S., Simatupang, A.F., Supriyanta, Waluyo, S. and Indradewa, D. (2012). The growth of one-year-old oil palms intercropped with soybean and groundnut. The Journal of Agricultural Science. 4(5): 169-180.

Rahim, N.A., Jais, H.M. and Hassan, H.M. (2016). Environment and host affect arbuscular mycorrhiza fungi (AMF) population. Tropical Life Sciences Research. 27(1): 9-13.

Rival, A. (2017). Breeding the oil palm (Elaeis guineensis Jacq.) for climate change. Oil- and Protein-Crops and Climate Change. 24(1): 1-7.

Salako, F.K., La, R. and Swift, M.J. (1995). Intercropping oil palm (Elaeis guineensis) with cocoyam (Xanthosoma sagittifolium) on windrows and non-windrows in Southern Nigeria. Journal of Sustainable Agriculture. 6: 47-60.

Soonsuwon, W., Eksomtramage, T., Nakkanong, K., Songsri, N. and Kaewsrisom, H. (2020). Identifying F₂ oil palm (Elaeis guineensis Jacq.) trees for their dura, pisifera and tenera types using fruit morphology and SSR markers. Indian Journal of Agricultural Research. 1-4.