Advances and potential of gene therapy for type 2 diabetes mellitus

Zonghao Yuea,b, Lijuan Zhanga, Chunyan Lia, Yanjuan Chena, Yaping Taia, Yihao Shena and Zhongke Sun a,b,c

aDepartment of Bioengineering, College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, PR China; bDepartment of Food Science, Institute of Food and Drug Inspection, Zhoukou Normal University, Zhoukou, PR China; cDepartment of Molecular Engineering, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, PR China

ABSTRACT
Gene therapy of type 2 diabetes mellitus (T2DM) and its complications has attracted intensive interest in recent years. In this paper, we critically review literature reports on gene therapy of T2DM published over the last five years. By reviewing these advances, three questions were addressed. First, which genes and how do they exert anti-diabetic effects? Target genes including those regulating glucose homeostasis, improving insulin secretion or sensitivity, and ameliorating diabetic induced complications are summarized. Second, how to deliver and which route is advantageous? All main methods that have been used for delivery of target genes into diabetic subjects are outlined and discussed regarding their pros and cons. Last, what are the future directions and how do these advances promote the study of T2DM gene therapy? Testing of novel targets in a parallel way and especially, using combinational approaches may be the main directions. In conclusion, there are a large number of genes playing important roles during the incidence and development of T2DM, and many of them hold great promise as potential targets for gene therapy. Oral delivery of target genes by probiotics may be a nice route with priority to develop, due to its high efficiency and safety for future gene therapy of T2DM.

Introduction to T2DM and gene therapy
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycaemia resulting from insufficient insulin production, as well as insulin resistance [1]. Data from the International Diabetes Federation (IDF) show that over 90% of patients among 425 million diabetic adults worldwide suffered from T2DM in 2017, and 352 million people had impaired glucose tolerance (IGT) [2]. In T2DM patients, there are not only elevated glucose levels, but also multiple potential complications, such as heart attack, stroke, blindness, kidney failure, and lower limb amputation [3]. Epidemiological studies have proved that T2DM is a multifactorial disease involving both genetic and environmental factors [4]. These risk factors and the genetic susceptibility make T2DM complicated to cure [5].

Currently, oral administration of hypoglycaemic agents and injection of insulin (like) agents are the main therapeutic strategies for T2DM. Although these agents play important roles in T2DM therapy, they still have various adverse effects [6–8]. Therefore, new alternative strategies for T2DM treatment, including gene therapy, have been studied [9]. Gene therapy is a strategy correcting or compensating the symptoms of diseases caused by defective or abnormal genes through introduction of exogenous normal genes. Gene therapy has the advantage that diseases can be potentially cured by a single treatment, and it is now bringing new treatment options to multiple fields of medicine [10]. Nowadays, the manipulation of genetic material is not restricted to gene addition but also to gene regulation and editing. Gene therapy for diabetes is not a new idea, and this topic was reviewed several years ago [11,12]. Therefore, in this paper we make an updated mini-review of the advances over the past five years focussing on T2DM gene therapy, from gene targets to delivery routes.

CONTACT Zhongke Sun a sunzh@daad-alumni.de a Department of Bioengineering, College of Life Sciences and Agronomy, Zhoukou Normal University, Room A407, Life Science Building, East Wenchang Road, Chuanhui District, Zhoukou, 466001 PR China

a c 2019 The Author(s). Published by Taylor & Francis Group on behalf of the Academy of Forensic Science. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Potential targets for T2DM gene therapy

Although gene therapy for diabetes mainly focuses on T1DM, several genes have been investigated for potential therapy for T2DM, as the disease has a strong genetic predisposition [13]. Genetic association studies have identified at least 75 independent genetic loci for T2DM and various new therapeutic targets have been determined [14]. For example, three novel mutations in gene KCNJ11 are associated with the development of autosomal dominant, early-onset T2DM [15]. Contrasting with their limited effects on disease incidence and development, genetic loci may have much stronger effects on drug response [16]. A large number of genetic polymorphisms affect the response to oral anti-diabetic drugs. Genes encoding SLC2A2 and organic cation transporters (OCT1, OCT2, and OCT3) are associated with glycemic response to metformin [17–19], while SLCO1B3 and KCNQ are associated with sulfonylurea response [20,21]. However, these genes have little applicability in therapy due to the different polymorphisms among different populations.

However, there are still several genetic loci with potential for T2DM gene therapy. One good example is nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3). Inhibition of gene NLRP3 attenuates inflammation, protects pancreatic β-cells from apoptosis, and prevents T2DM development in mice [22]. Theoretically, all genes involved in the onset, development, and deterioration of T2DM, have potential as targets. For simplicity, we will address the genes (Table 1) that regulate glucose homeostasis, improve insulin secretion or/and sensitivity, and ameliorate diabetic induced complications in the following sections.

Genes regulating glucose homeostasis

Glucose transporters (GLUTs) and sodium-glucose co-transporters (SGLTs)

Glucose transporters (GLUTs) play a fundamental role in the muscle and liver glucose fluxes. GLUT4 (Slic2a4 gene) and GLUT2 (Slic2a2 gene) are potential targets for T2DM gene therapy, as restoring their expression in muscle and liver improves glycemic control [23]. Sodium-glucose co-transporters (SGLTs) are responsible for the tubular reabsorption of filtered glucose from the kidney into the bloodstream. As found in human kidney biopsy specimens, the expression of SGLT1 is markedly increased in patients with T2DM, and SGLT1 mRNA is highly and significantly correlated with fasting and postprandial plasma glucose and HbA1c. In contrast, the levels of SGLT2 and GLUT2 mRNA are down-regulated in diabetic patients [24]. Therefore, inhibition of SGLT1 and/or enhancement of SGLT2 may be an effective strategy to alleviate hyperglycaemia in patients with T2DM.

Fibroblast growth factors (FGFs)

Fibroblast growth factors are a class of potential targets studied in relation to gene therapy of T2DM. Several FGFs, such as FGF1, FGF19, and FGF21, play significant roles in glucose homeostasis [25]. FGF1 knockout mice showed diabetic phenotype with increased blood glucose and insulin resistance. Non-ventricular injection of recombinant murine FGF1

Table 1. Potential targets can be used for T2DM gene therapy.

Class	Gene(s)	Main function	Reference
Genes regulating glucose homeostasis	GLUTs	Re-absorption of filtered glucose from the kidney into the bloodstream	[23]
	SGLTs	Play a fundamental role in the muscle and liver glucose fluxes	[24]
	FGFs	Play significant roles in glucose homeostasis	[25]
	SIRT6	Associated with increased glycolysis and GLUTs expression	[33]
Genes improving insulin secretion and/or sensitivity	GLP-1 and its analogs/agonists	Increase beta-cell survival, stimulate insulin gene expression, and secretion	[35]
	GPGRs and their agonists	Stimulate insulin and GLP-1 secretion	[36]
	CTB-APSL	Promotes insulin secretion and insulin resistance	[40]
	IRK c, TBK1	Associated with weight reduction, insulin resistance, fatty liver, and inflammation	[38]
Genes ameliorating diabetic induced complications	IL-1β	Associated with inflammation and β-cell failure	[39]
	ADPN	Ameliorates diabetic nephropathy	[45]
	TGF-α	Plays a role in DKD associated with nephron reduction	[41]
	NLRP3	Ameliorates diabetic cardiomyopathy	[47]
	CDKN2A/2B	Associated with T-cell phenotype modulation and chronic inflammation	[43]
	HSP70	Associated with mitochondrial bioenergetics and diabetic sensory neuropathy	[44]
	MicroRNAs	Involved in regulating the diabetic microvasculature	[46]

Note: SGLTs, sodium-glucose co-transporters; GLUTs, glucose transporters; FGFs, fibroblast growth factors; SIRT6, Sirtuin 6; GLP-1, glycogen like peptide 1; GPGRs, G protein–coupled receptors; CTB-APSL, cholera toxin B subunit and active peptide from shark liver; ADPN, adiponectin; TGF-α, transforming growth factor-alpha; NLRP3, nucleotide-binding oligomerization domain-like receptor protein 3; DKD, diabetic kidney disease; HSP70, heat shock protein 70.
(rFGF1) in diabetic mice resulted in a normal glycaemia for more than two days and increased insulin sensitivity [26]. Moreover, single intracerebroventricular (ICV) injection of FGF1 brought glucose levels back to normal for at least 18 weeks without side effects such as hypoglycaemia and weight gain in diabetic mice [27]. In contrast, FGFR9 has a critical role in glycogen metabolism, and the anti-diabetic effect of FGFR9 has been confirmed to be related to the central nervous system. Injection (ICV) of FGFR9 ameliorates glycemic status and increases insulin sensitivity through suppression of hypothalamic AGRP/NPY neuron activity and the hypothalamic-pituitary-adrenal axis [28,29]. In addition, FGFR21 is involved in controlling glucose and lipid homeostasis. FGFR21 is elevated in patients with impaired glucose tolerance and progressively increases in patients with overt T2DM [30]. Mimetics targeting FGFR21 signalling have a beneficial effect on glycemic control [31].

Sirtuin 6 (SIRT6)
Recent studies revealed the critical role of SIRT6 in the pathophysiology of metabolic diseases like T2DM. These roles include promoting pancreatic insulin secretion, inhibiting hepatic gluconeogenesis and triglyceride synthesis, and suppressing adiposity [32]. SIRT6 has been investigated as a target for treating T2DM. Improvements in glucose tolerance, glycolysis, and the expression of glucose transporter GLUT1 and GLUT4 in skeletal muscle were achieved after inhibition of SIRT6 in mice [33]. However, muscle-specific SIRT6 knockout displayed impaired glucose homeostasis and insulin sensitivity. Mechanistically, deletion of SIRT6 in muscle decreased expression of genes involved in glucose and lipid uptake, fatty acid oxidation, and mitochondrial oxidative phosphorylation in muscle cells because of the reduced AMP-activated protein kinase (AMPK) activity. In contrast, over-expression of SIRT6 in C2C12 myotubes activates AMPK thereby regulating metabolic homeostasis [34].

Genes improving insulin secretion or sensitivity
Several genes are associated with insulin secretion and sensitivity. Glucagon-like peptide 1 (GLP1) and its analogues are incretins with such roles, for example, stimulation of glucose-dependent insulin secretion, increase in insulin gene expression and ß-cell survival [35]. G protein–coupled receptors (GPCRs) have also received attention in T2DM therapeutics, mainly the incretin receptors and the bile acid receptor GPBAR1 [36]. In fact, there are more than 30 GPCRs and many of them are directly involved in insulin resistance, ß-cell dysfunction, and the aetiology of inflammation that lead to obesity-induced T2DM [37]. Furthermore, inhibition of the inflammatory kinases IKKc and TBK1 in mice reduces weight, insulin resistance, fatty liver and inflammation, and improves insulin sensitivity and hepatic steatosis in T2DM patients [38]. A little differently, targeted immunization of the proinflammatory cytokine IL-1ß improves glucose tolerance and insulin sensitivity [39]. Oral administration of an exogenous fusion protein cholera toxin B subunit and an active peptide from shark liver (CTB-APSL) for five weeks promotes insulin secretion and insulin resistance in T2DM mice, suggesting that CTB-APSL is also a promising target for gene therapy [40].

Genes ameliorating diabetes-induced complications
T2DM has various complications that heavily affect the quality of life of patients. Diabetic kidney disease (DKD) is a common dysfunction in patients with T2DM and transforming growth factor alpha (TGF-α) is increased in serum of DKD subjects. Blockade of TGF-α attenuates nephron reduction in db/db mice thereby delaying kidney disease progression [41]. Diabetic cardiomyopathy (DCM) is triggered by metabolic disorder and cell death that is associated with NLRP3 inflammation. Silencing of gene NLRP3 ameliorates cardiac inflammation, pyroptosis, fibrosis, and cardiac function [42]. Progression of T2DM and T2DM-coronary artery disease (CAD) is accompanied by T-cell imbalance and chronic inflammation. CDKN2A/2B genes are associated with T-cell phenotype modulation, so these genes may restore immune cell homeostasis and delay disease progression [43]. Modulation of Hsp70 offers an effective approach to correcting sensory neuron bioenergetic deficits and diabetic peripheral neuropathy (DPN) in both T1DM and T2DM [44]. Delivery of the exogenous globular adiponectin (ADPN) gene ameliorates the progression of diabetic nephropathy (DN) [45]. In addition, microRNAs involved in a range of diabetes-associated complications such as retinopathy, nephropathy, wound healing, and myocardial injury, are potential targets for therapeutic gene intervention for T2DM and its complications [46].

Methods of gene delivery
The success of gene therapy requires suitable gene delivery systems or vectors to provide the therapeutic
Table 2. Gene therapy of T2DM in the last five years.

Gene target	Delivery route/method	Treatment period	Main results	Reference
GLP-1	OA/recombinant	11 hours	Significant decrease ($p < 0.05$) in blood glucose levels during 2–11 hours post dosing and a significant increase in insulin levels	[60]
5 × GLP-1	OA/recombinant	16 days	Has no effect on glucose levels	[61]
10 × GLP-1	OA/recombinant	16 days	Ameliorates weight loss, decreases blood glucose levels	[62]
GLP-1	OA/plasmid DNA encoding GLP-1	32 days	Decreases diabetic glucose levels to the normoglycemic range with significant weight reduction	[65]
GLP-1	IP/HIV based lentiviral vector encoding GLP-1	24 days	Reduces blood glucose levels, improves insulin sensitivity and glucose tolerance, normalizes glycemia, and plasma triglyceride levels	[63]
Exendin-4	Submandibular gland injection/dsAAV	8 weeks	Increases insulin levels, decreases blood glucose levels	[64]
NLRP3	Jugular-vein injection/ NLRP3-miRNA	8 weeks	Gene silencing of NLRP3 ameliorates diabetic cardiomyopathy	[42]
ADPN	IP/recombinant plasmid mediated by lipofectamine	12 weeks	Ameliorates diabetic nephropathy, attenuates urine albumin excretion, reduces the generation of ROS, and prevents interstitial fibrosis	[45]
mGCK	SC/adenovirus-based vector encoding mGCK	8 weeks	Decreases blood glucose levels over a period of 12 and 70 days without inducing hypoglycemia	[66]
VIP	IP/HIV based lentiviral vector encoding VIP	4 weeks	Improves insulin sensitivity, glucose tolerance and reduces serum triglyceride/cholesterol levels	[67]
ANGPTL8	UTMD delivery of human ANGPTL8 gene plasmids	4 weeks	Promotes the proliferation of beta cells, improves glucose tolerance, and the fasting blood insulin level	[68]
FGF21	IV/liver specific AAV encoding a murine optimized FGF21	69 weeks	Reduces body weight, adipose tissue hypertrophy and inflammation, hepatic steatosis, inflammation and fibrosis, and insulin resistance	[69]

Note: ADPN, adiponectin; OA, oral administration; IP, intraperitoneal injection; SC, subcutaneous injection; IV, intravenous injection; dsAAV, double-stranded adeno-associated virus; FGF21, fibroblast growth factor 21; GLP-1, glucagon like peptide 1; mGCK, mutant glucokinase; NLRP3, nucleotide-binding oligomerization domain-like receptor protein 3; UTMD, ultrasound-targeted microbubble destruction; VIP, vasoactive intestinal peptide.

effect where needed [47]. Therefore, determination of delivery methods is as important as identification of gene targets. However, it is well-recognized that gene delivery technology is a major obstacle to the success of gene therapy at present [48]. Based on the vectors used for loading/delivering genes, these methods can be classified into viral gene delivery and non-viral gene delivery. Virus packaged genes can be either injected or orally administered exploiting the natural ability of viruses to enter cells and to transfer their genetic material to the nucleus and express proteins [49]. Previously, delivery systems based on non-viral vectors only included the direct administration of naked nucleic acids and the uses of different materials to ferry the genetic material into the target cell, such as liposomes or cationic polymers [50]. In recent years, delivery systems based on bacteria (mainly probiotics) have been quickly developed and orally applied, and provide more efficient alternatives to traditional non-viral delivery systems [51].

All the above-mentioned delivery methods have been tested in diabetic animals, and most of those developed before 2014 were based on viral vectors, including adenovirus and adeno-associated virus (AAV) [35]. The viral DNA integrates into the host cell genome, thus conferring stable therapeutic gene expression. However, viruses have wild tropism to transduce multiple cell types, and genetic manipulation of viruses is needed before the virus genome with the gene target is packaged [52]. Direct injection of naked DNA is of low immunity and low cost and is convenient for preparation, but the main barrier for its wide use is poor delivery efficiency and transient gene expression [53]. Administration of (nano-scale) DNA-material conjugates significantly improved delivery efficiency and stability but its expression and localization are still uncontrollable [54,55]. In contrast to the above delivery methods, gene delivery by bacteria is much more controllable and can reach high-level gene expression as host bacteria can be manipulated as live microbial cell factories for long-term production of targets [56].

Current advances in T2DM gene therapy

As mentioned in the gene targets and delivery methods section, there have been great advances in T2DM gene therapy over the last five years. Currently, studies on T2DM gene therapy mainly concern ameliorating insulin resistance in peripheral tissues, enhancing insulin production or increasing the functionality of β-cells. Here, we summarize some advances in gene therapy for T2DM in Table 2 and compare their designs and their main results.
Gene therapy with GLP-1 and its analogs

The majority of studies on gene therapy for T2DM are focussed on GLP-1 and its derivatives. GLP-1 is a short incretin hormone that secretes mainly from the proximal small intestine endocrine L cells. It is now used as a leading therapeutic drug for T2DM which modulates insulin secretion in a glucose-dependent manner, enhancing insulin sensitivity, suppressing glucagon secretion, and promoting pancreatic β-cell proliferation. However, the active forms of GLP-1, GLP-1(7–36) amide, and GLP-1(7–37), have a very short physiological half-life of less than 2 minutes. Different forms of human GLP-1 are expressed in different hosts but are still used as peptides and applied after protein purification [57–59].

Many groups have already investigated GLP-1 gene therapy for T2DM. Using probiotic Lactococcus lactis, GLP-1 gene was orally delivered into ZDF rats [60]. The therapy resulted in a significant decrease (p < 0.05) in blood glucose levels 2–11 hours after dosing and a significant increase in insulin (p < 0.01) compared with the free solution of GLP-1 peptide. A similar study, using Lactobacillus paracasei as host, orally delivered pentameric GLP-1 into diabetic Goto-Kakizaki (GK) rats. However, delivery of 5 × GLP-1 for 16 days had no added anti-diabetic effect, though L. paracasei itself significantly lowered the blood glucose level [61]. This result might be because of either the low level expression or incorrect enzymatic degradation of 5 × GLP-1 protein in vivo. In contrast, oral administration of recombinant Saccharomyces cerevisiae expressing 10 × GLP-1 for 16 days has shown less weight loss and lower glucose levels in T2DM rats [62].

Injection (IP) of lentiviral vector encoding GLP-1 not only reduces blood glucose and plasma triglyceride, but also improves insulin sensitivity and glucose tolerance for diabetes [63]. Apart from GLP-1, its derivatives, like Exendin-4, have been loaded into double-stranded AAV (dsAAV) and injected into the submandibular gland of diabetic rats. After 8 weeks of intervention, the levels of blood glucose were lower and insulin concentration was higher in the Exendin-4/ dsAAV group than in the control group [64]. Different from the above studies, oral administration of the plasmid DNA encoding GLP-1 decreased diabetic glucose levels to the normoglycemic range with significant weight loss [65]. To facilitate oral delivery, the plasmid was conjugated with a nano-sized complex coated with heparin-taurocholic acid (HTCA). This novel oral system delivers GLP-1 gene through the enterohepatic recycling pathways of bile acids.

Gene therapy with other novel targets

Other genes have also been delivered through different routes, and they were either over-expressed or inhibited in vivo to exert anticipated effects. For example, expression of exogenous ADPN by injection (IP) of recombinant plasmid mediated by lipofectamine ameliorated diabetic nephropathy [45]. Expression of a mutant glucokinase (mGCK), which is an enzyme critical for glucose metabolism, by injection (SC) of adenovirus-based vector resulted in steady decrease in blood glucose over a long period (12–70 days) without inducing hypoglycaemia [66]. Expression of vasoactive intestinal peptide (VIP) by injection (IP) of HIV-based lentiviral vector encoding VIP improved insulin sensitivity, glucose tolerance, and reduced serum triglyceride/cholesterol levels [67]. ANGPTL8 gene delivery by ultrasound-targeted micro-bubble destruction promoted β-cells proliferation, expanded the β-cell mass, improved glucose tolerance, and increased the fasting blood insulin level in a diabetic rat model [68]. Gene silencing of NLRP3 by jugular-vein injection of NLRP3-miRNA for 8 weeks ameliorated diabetic cardiomyopathy [42]. Moreover, a recent landmark study showed, excitingly, that FGF21 gene delivery by AAV resulted in reductions in body weight, adipose tissue hypertrophy and inflammation, hepatic steatosis, inflammation and fibrosis, and insulin resistance for more than 1 year after a single injection. Furthermore, this therapy prevented the increase in weight and insulin resistance in healthy animals, without side effects [69].

Future directions and potential of T2DM gene therapy

As summarized, there are many genes classified into different classes with potential for gene therapy (Table 1). However, current studies on gene therapy for T2DM are limited to a few targets and only in animals (Table 2). Therefore, the effects of other genes need to be investigated in the future. Crucially, parallel comparisons cannot be made due to the different designs of these reported gene therapies. Although GLP-1 is the most widely studied target for gene therapy for T2DM, contradictory results still exist [61,62]. Hence, we believe parallel studies should be carried out by more groups/centers as reproducibility is crucial for a therapy, for example, using the same gene target, the same delivery method, and the same animal models.

Gene therapy works through two different mechanisms: gain or loss of function achieved by over-expression or inhibition. Gene therapy by inhibition of targets
(e.g. microRNA) needs further study as it is little reported at present. The majority of studies obtained therapeutic effects by over expression of delivered gene targets. As known, heterogeneous over-expression is restrained by many factors, especially the expression vector. Therefore, more attention should be paid when designing vectors. Fusion is also important for many gene targets, as this may significantly improve their stability or accessibility in vivo [70,71].

Probiotics, especially many lactic acid bacteria, have many appealing features as delivery live vectors for biomedical purposes [72,73]. In fact, many animal studies have highlighted the great potential of probiotic intervention in the management of diabetes. Probiotics have many health-promoting properties including anti-diabetic properties, and there are different intervention approaches for T2DM using probiotics [74]. As noted, probiotic L. paracasei significantly lowers the blood glucose level [61]. Lactobacillus reuteri SDS865 significantly improves the secretion of GLPs, insulin and C-peptide [75]. Therefore, these strains may be of advantage when used as delivery hosts considering their beneficial effects on T2DM, especially during the early intervention stage. Also, other targets like FGF21 hold great promise for probiotic delivery.

Conclusions
Overall, there have been great advances in gene therapy for T2DM and the therapies hold great promise. Many and various genes affect T2DM and its complications. These target genes of therapeutic potential can be delivered through either viral or non-viral based methods. However, more studies have to be conducted in a comparable way to pave the way for gene therapy for T2DM. Efficiency, stability, specificity, safety, and convenience are key factors requiring careful consideration before clinical application of any gene delivery system. A combination of gene therapy and other interventions may be necessary to combat T2DM effectively.

Disclosure statement
The authors declare that there is no conflict of interest.

Funding
This work was supported by the Henan Science and Technology Agency (No. 192102310137) and China Postdoctoral Science Foundation (No. 2018M642772). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References
[1] American Diabetes Association (ADA). Classification and diagnosis of diabetes. Diabetes Care. 2016;39: S13–S22.
[2] International Diabetes Federation (IDF). IDF diabetes atlas. 8th ed. Brussels (Belgium): International Diabetes Federation; 2017.
[3] World Health Organization (WHO). Global report on diabetes. Geneva, Switzerland: WHO Press, World Health Organization; 2016. http://www.who.int/diabetes/global-report/en/.
[4] Wu Y, Ding Y, Tanaka Y, et al. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11: 1185–1200.
[5] Hivert MF, Vassy JL, Meigs JB. Susceptibility to type 2 diabetes mellitus-from genes to prevention. Nat Rev Endocrinol. 2014;10:198–205.
[6] Palmer SC, Mavridis D, Niculucci A, et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA. 2016;316:313–324.
[7] Taylor SI, Blau JE, Rother CI. SGLT2 inhibitors may predispose to ketoacidosis. J Clin Endocrinol Metab. 2015;100:2849–2852.
[8] DeFronzo R, Fleming GA, Chen K, et al. Metformin-associated lactic acidosis: current perspectives on causes and risk. Metabolism 2016;65:20–29.
[9] Holt RIG, Cockram CS, Flyvbjerg A, et al. Textbook of diabetes. 5th ed. In Haurigot V, Jimenez V, and Bosch F, editors. Chapter 70, Gene therapy for diabetes. Hoboken (NJ): John Wiley & Sons, Ltd; 2017. p. 1029–1037.
[10] Dunbar CE, High KA, Jouflong J, et al. Gene therapy comes of age. Science. 2018;359:eaan4672.
[11] Xu R, Li H, Tse LY, et al. Diabetes gene therapy: potential and challenges. Curr Gene Ther. 2003;3: 65–82.
[12] Wong MS, Hawthorne WJ, Manolios N. Gene therapy in diabetes. Self Nonsel. 2010;1:165–175.
[13] Kwak SH, Park KS. Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med. 2016;48:e220.
[14] Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, et al. Current therapies and targets for type 2 diabetes mellitus. Panminerva Med. 2018;60:117–131.
[15] Liu L, Nagashima K, Yasuda T, et al. Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes. Diabetologia. 2013;56:2609–2618.
[16] Florez JC. Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool?. Diabetologia. 2017; 60:800–807.
[17] Zhou K, Yee SW, Seiser EL, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet. 2016;48: 1055–1059.
Z. YUE ET AL.

[18] Zaharenko L, Kalnina I, Geldner K, et al. Single nucleotide polymorphisms in the intergenic region between metformin transporter OCT2 and OCT3 coding genes are associated with short-term response to metformin monotherapy in type 2 diabetes mellitus patients. Eur J Endocrinol. 2016;175:531–540.

[19] Mofo Mato EP, Guewo-Fokeng M, Essop MF, et al. Genetic polymorphisms of organic cation transporter 1 (OCT1) and responses to metformin therapy in individuals with type 2 diabetes: a systematic review. Medicine (Baltimore). 2018;97:e11349.

[20] Ren Q, Han X, Ren J, et al. Influence of the SLCO1B3 gene on sulfonylurea failure in patients with type 2 diabetes in China. Exp Clin Endocrinol Diabetes. 2017;125:449–453.

[21] Li Q, Tang TT, Jiang F, et al. Polymorphisms of the KCNQ1 gene are associated with the therapeutic responses of sulfonylureas in Chinese patients with type 2 diabetes. Acta Pharmacol Sin. 2017;38:80–89.

[22] Abderrazak A, El Hadri K, Bosc E, et al. Inhibition of the inflammasome NLRP3 by arglabin attenuates inflammation, protects pancreatic β-Cells from apoptosis, and prevents type 2 diabetes mellitus development in apoE2K mice on a chronic high-fat diet. J Pharmacol Exp Ther. 2016;357:487–494.

[23] Yonamine CY, Pinheiro-Machado E, Michalani ML, et al. Resveratrol improves glycemic control in type 2 diabetic obese mice by regulating glucose transporter expression in skeletal muscle and liver. Molecules. 2017;22:1180.

[24] Norton L, Shannon CE, Fourcaudot M, et al. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes Obes Metab. 2017;19:1322–1326.

[25] Imamura T. Physiological functions and underlying mechanisms of fibroblast growth factor (FGF) family members: recent findings and implications for their pharmacological application. Biol Pharm Bull. 2014;37:1081–1089.

[26] Suh JM, Jonker JW, Ahmadian M, et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature. 2014;513:436–439.

[27] Scarlett JM, Rojas JM, Matsen ME, et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat Med. 2016;22:800–806.

[28] Marcelin G, Jo YH, Li X, et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab. 2013;3:19–28.

[29] Perry RJ, Lee S, Ma L, et al. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Commun. 2015;6:6980–6910.

[30] Liu JJ, Foo JP, Liu S, et al. The role of fibroblast growth factor 21 in diabetes and its complications: a review from clinical perspective. Diabetes Res Clin Pract. 2015;108:382–389.

[31] Strowski MZ. Impact of FGF21 on glycemic control. Horm Mol Biol Clin Investig. 2017;30:1–6.

[32] Bae EJ. Sirtuin 6, a possible therapeutic target for type 2 diabetes. Arch Pharm Res. 2017;40:1380–1389.

[33] Sociali G, Magnone M, Ravera S, et al. Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model. FASEB J. 2017;31:3138–3149.

[34] Cui X, Yao L, Yang X, et al. SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK. Am J Physiol Endocrinol Metab. 2017;313:E493–E505.

[35] Tasyurek MH, Altunbas HA, Canatan H, et al. GLP-1-mediated gene therapy approaches for diabetes treatment. Expert Rev Mol Med. 2014;16:e7–20.

[36] Reimann F, Gribble FM. G protein-coupled receptors as new therapeutic targets for type 2 diabetes. Diabetologia. 2016;59:229–233.

[37] Riddy DM, Delerive P, Summers RJ, et al. G protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus. Pharmacol Rev. 2018;70:39–67.

[38] Oral EA, Reilly SM, Gomez AV, et al. Inhibition of IKKβ and TBK1 improves glucose control in a subset of patients with type 2 diabetes. Cell Metab. 2017;26:157–170.

[39] Zhang Y, Yu XL, Zha J, et al. Therapeutic vaccine against IL-1β improved glucose control in a mouse model of type 2 diabetes. Cell Sci. 2018;192:68–74.

[40] Liu Y, Gao Z, Guo Q, et al. Anti-diabetic effects of CTB-APSL fusion protein in type 2 diabetic mice. Mar Drugs. 2014;12:1512–1529.

[41] Heuer JG, Harlan SM, Yang DD, et al. Role of TGF-alpha in the progression of diabetic kidney disease. Am J Physiol Renal Physiol. 2017;312:F951–F962.

[42] Luo B, Li B, Wang W, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One. 2014;9:e104771.

[43] VinuÉ Á, Martínez-Hervás S, Herrero-Cervera A, et al. Changes in CDKN2A/2B expression associate with T-cell phenotype modulation in atherosclerosis and type 2 diabetes mellitus. Transl Res. 2019;203:31–48.

[44] Ma J, Farmer KL, Pan P, et al. Heat shock protein 70 is necessary to improve mitochondrial bioenergetics and reverse diabetic sensory neuropathy following KU-32 therapy. J Pharmacol Exp Ther. 2014;348:281–292.

[45] Yuan F, Liu YH, Liu FY, et al. Infraperitoneal administration of the globular adiponectin gene ameliorates diabetic nephropathy in Wistar rats. Mol Med Rep. 2014;9:2293–2300.

[46] Zhang Y, Sun X, Icli B, et al. Emerging roles for microRNAs in diabetic microvascular disease: novel targets for therapy. Endocr Rev. 2017;38:145–168.

[47] Xu L, Sezer AD. Future prospects for gene delivery systems. Expert Opin Drug Deliv. 2017;14:1205–1215.

[48] Cucchiaroni M. Human gene therapy: novel approaches to improve the current gene delivery systems. Discov Med. 2016;21:495–506.

[49] Nimesh S, Halappanavar S, Kaushik NK, et al. Advances in gene delivery systems. Biomed Res Int. 2015;2015:1–2.

[50] Helal NA, Osami A, Helmy A, et al. Non-viral gene delivery systems: hurdles for bench-to-bedside transformation. Pharmazie. 2017;72:627–693.
[51] Chiang CJ, Chang CH, Chao YP, et al. Development of a targeted gene-delivery system using Escherichia coli. Methods Mol Biol. 2016;1409:85–93.

[52] Xiao X, Guo P, Shiota C, et al. Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes. Cell Stem Cell. 2018;22:78–90.

[53] Kovacsics D, Raper J. Transient expression of proteins by hydrodynamic gene delivery in mice. J Vis Exp. 2014;87:e51481.

[54] Dorraj G, Carreras JJ, Nunez H, et al. Lipid Nanoparticles as potential gene therapeutic delivery systems for oral administration. Curr Gene Ther. 2017;17:89–104.

[55] Garcia-Guerra A, Dunwell TL, Trigueros S. Nano-scale gene delivery systems: current technology, obstacles, and future directions. CMC. 2018;25:2448–2464.

[56] Cummins J, Cronin M, van Pijkeren JP, et al. Bacterial systems for gene delivery to systemic tumors. Methods Mol Biol. 2014;1141:201–209.

[57] Tu P, Ma Z, Wang H, et al. Expression of CTB-10/C2GLP-1 in E. coli and its therapeutic effect on type 2 diabetes. Curr Pharm Biotechnol. 2015;16:564–572.

[58] Kong Y, Tong Y, Gao M, et al. Linker engineering for fusion protein construction: improvement and characterization of a GLP-1 fusion protein. Enzyme Microb Technol. 2016;82:105–109.

[59] Xu F, Wang KY, Wang N, et al. Modified human glucagon-like peptide-1 (GLP-1) produced in E. coli has a long-acting therapeutic effect in type 2 diabetic mice. PLoS One. 2017;12:e0181939.

[60] Agarwal P, Khatri P, Billack B, et al. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res. 2014;31:3404–3414.

[61] Lin Y, Krogh-Andersen K, Pelletier J, et al. Oral delivery of pentameric glucagon-like peptide-1 by recombinant Lactobacillus in diabetic rats. PLoS One. 2016;11:e0162733.

[62] Wu R, Chao M, Li X, et al. Construction of yeast strains expressing long-acting glucagon-like peptide-1 (GLP-1) and their therapeutic effects on type 2 diabetes mellitus mouse model. Hereditas. 2015;37:183–191.

[63] Tasurek HM, Altunbas HA, Balci MK, et al. Therapeutic potential of lentivirus-mediated glucagon-like peptide-1 gene therapy for diabetes. Hum Gene Ther. 2018;29:802–815.

[64] Wang J, Wen J, Bai D, et al. Injection of submandibular gland with recombinant exendin-4 and adeno-associated virus for the treatment of diabetic rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2015;40:1179–1185.

[65] Nurunnabi M, Lee SA, Revuri V, et al. Oral delivery of a therapeutic gene encoding glucagon-like peptide 1 to treat high fat diet-induced diabetes. J Control Release. 2017;268:305–313.

[66] Lu G, Teng X, Zheng Z, et al. Overexpression of a glucokinase point mutant in the treatment of diabetes mellitus. Gene Ther. 2016;23:323–329.

[67] Tasurek HM, Eksi YE, Sanlioglu AD, et al. HIV-based lentivirus-mediated vasoactive intestinal peptide gene delivery protects against DIO animal model of type 2 diabetes. Gene Ther. 2018;25:269–283.

[68] Chen J, Chen S, Huang P, et al. In vivo targeted delivery of ANGPTL8 gene for beta cell regeneration in rats. Diabetologia. 2015;58:1036–1044.

[69] Jimenez V, Jambrina C, Casana E, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med. 2018;10:e8791.

[70] Chang X, Hou Y. Expression of RecA and cell-penetrating peptide (CPP) fusion protein in bacteria and in mammalian cells. Int J Biochem Mol Biol. 2018;9:1–10.

[71] Ishikawa T, Somiya K, Munehika R, et al. Mitochondrial transgene expression via an artificial mitochondrial DNA vector in cells from a patient with a mitochondrial disease. J Control Release. 2018;274:109–117.

[72] Cano-Garrido O, Seras-Franzoso J, Garcia-Fruitos E. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb Cell Fact. 2015;14:137.

[73] Mao R, Wu D, Hu S, et al. Secretory expression and surface display of a new and biologically active single-chain insulin (SCI-59) analog by lactic acid bacteria. Appl Microbiol Biotechnol. 2017;101:3259–3271.

[74] Sun Z, Sun X, Li J, et al. Using probiotics for type 2 diabetes mellitus intervention: advances, questions, and potential. Crit Rev Food Sci Nutr. 2019;1–14. doi: 10.1080/10408398.2018.1547268.

[75] Simon MC, Strassburger K, Nowotny B, et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care. 2015;38:1827–1834.