Transcriptional activation by MafR, a global regulator of Enterococcus faecalis

Sofía Ruiz-Cruz, Ana Moreno-Blanco, Manuel Espinosa & Alicia Bravo

Proteins that act as global transcriptional regulators play key roles in bacterial adaptation to new niches. These proteins recognize multiple DNA sites across the bacterial genome by different mechanisms. Enterococcus faecalis is able to survive in various niches of the human host, either as a commensal or as a leading cause of serious infections. Nonetheless, the regulatory pathways involved in its adaptive responses remain poorly understood. We reported previously that the MafR protein of E. faecalis causes genome-wide changes in the transcriptome. Here we demonstrate that MafR functions as a transcription activator. In vivo, MafR increased the activity of the P12294 and P11486 promoters and also the transcription levels of the two genes controlled by those promoters. These genes are predicted to encode a calcium-transporting P-type ATPase and a QueT transporter family protein, respectively. Thus, MafR could have a regulatory role in calcium homeostasis and queuosine synthesis. Furthermore, MafR recognized in vitro specific DNA sites that overlap the −35 element of each target promoter. The MafR binding sites exhibit a low sequence identity, suggesting that MafR uses a shape readout mechanism to achieve DNA-binding specificity.

Global transcriptional regulators play crucial roles during bacterial adaptation to specific niches. They activate and/or repress the transcription of multiple genes and, therefore, make possible to rapidly adjust the gene expression pattern to new environmental situations. Enterococcus faecalis is usually found as a harmless commensal in the human gastrointestinal tract. However, this Gram-positive bacterium is able to colonize other niches of the human host and cause a variety of life-threatening infections, such as urinary tract infections, endocarditis or bacteraemia. Despite the pathogenic potential of E. faecalis, our understanding of the regulatory circuits involved in its adaptive responses is still very limited.

The MafR protein (482 amino acids) of E. faecalis is highly conserved among the strains whose genomes have been totally or partially sequenced. Genome-wide microarray assays showed that MafR is involved in global regulation of gene expression. In such experiments, the transcriptional profiles of strains OG1RF (wild-type) and OG1RFΔmafR (mafR deletion mutant) were compared, demonstrating that MafR activates, directly or indirectly, the expression of at least 87 genes. Many of them are organized in operons and encode proteins involved in the utilization of carbon sources (e.g. mannitol, glycerol, gluconate, maltose and citrate). Furthermore, compared to OG1RF, the OG1RFΔmafR strain was shown to induce a lower degree of inflammation in the peritoneal cavity of mice. Because of these findings, we proposed that MafR could facilitate the growth of E. faecalis in particular human niches and, consequently, could contribute to its potential virulence.

Different protein-DNA recognition mechanisms have been characterized. In some cases, proteins recognize a sequence-dependent DNA shape (shape readout mechanism) rather than the unique chemical signatures of the DNA bases (base readout mechanism). MafR is a new member of the Mga/AtxA family of global transcriptional regulators. This family includes AtxA from Bacillus anthracis, MgaSpn from Streptococcus pneumoniae, and Mga from S. pyogenes. Like these three regulatory proteins, MafR has two putative helix-turn-helix DNA-binding motifs within the N-terminal region, the so-called HTH_Mga (residues 11–69) and Mga (residues 76–164) motifs. In the Mga regulator, both motifs were found to be required for DNA-binding and transcriptional activation. In vitro protein-DNA interaction studies have shown that MafR binds to linear double-stranded DNAs with little or no sequence specificity. Furthermore, MafR was able to generate multimeric complexes on linear double-stranded DNAs. Similar DNA-binding properties have been described for the pneumococcal MgaSpn regulator. MgaSpn has a preference for AT-rich DNA sites, as well as a high affinity for a naturally occurring DNA sequence.
Curved DNA11-13. On DNA fragments that contain the promoter of the mafR gene (P\textit{maf} promoter), MafR recognizes a potentially curved DNA region, which is located upstream of the promoter (positions –69 to –104)4. We hypothesized that MafR, and most likely the regulators of the Mga/AtxA family, recognizes structural features in its target DNAs rather than specific nucleotide sequences2. Nevertheless, verification of this hypothesis requires the identification of additional MafR binding sites across the bacterial genome.

A further DNA microarray assay using an OG1RFΔ\textit{maf}R derivative that overproduces MafR (plasmid-encoded MafR) allowed us to identify two new potential MafR target genes: \textit{OG1RF_12294} and \textit{OG1RF_11486}. In the presence of plasmid-encoded MafR, the highest increase in gene expression corresponded to both genes (our unpublished results). In this manuscript, we addressed the validation of such a finding by \textit{in vivo} and \textit{in vitro} approaches. Gene \textit{OG1RF_12294} encodes a putative phosphorylated intermediate-type ATPase (P-type ATPase) transporter, which could contribute to maintain calcium homeostasis. Gene \textit{OG1RF_11486} encodes a putative QuE transporter family protein, which could be involved in uptake of a queuosine biosynthetic intermediate. Here we demonstrate that MafR activates directly the transcription of both genes by binding to a specific DNA site overlapping the core promoter. Such sites exhibit a low sequence identity. This study shows, for the first time, that MafR functions as a transcription activator. Moreover, it supports that MafR might recognize particular DNA shapes.

Results

Transcription of \textit{maf}R under laboratory conditions. The genome of the \textit{E. faecalis} strain OG1RF has been totally sequenced (GenBank CP002621.1)14. By quantitative RT-PCR (qRT-PCR) assays and using the comparative \textit{C}\textsubscript{r} method15, we determined the relative expression of the regulatory \textit{maf}R gene (\textit{locus_tag OG1RF_12293}) in cells grown under laboratory conditions (Brain Heart Infusion (BHI) broth, 37 °C, without aeration) to both logarithmic and stationary phases. Transcription of \textit{maf}R was found to be higher at logarithmic phase. Compared to stationary phase, the fold change (log\textsubscript{2}FC) in optimal spacer length of 22 nucleotides. These features suggested that promoter experiments shown in this work were performed at the logarithmic growth phase.

Gene \textit{OG1RF_12294} encodes a putative P-type ATPase cation transporter. P-type ATPases constitute a large superfamily of cation and lipid pumps that use ATP hydrolysis for energy. They are integral, multispanning membrane proteins that are found in bacteria and in a number of eukaryotic plasma membranes and organelles16. The enterococcal \textit{OG1RF_12294} gene, which is adjacent to \textit{maf}R (Fig. 1A), encodes a putative P-type ATPase cation transporter. Such a gene has been annotated as \textit{pmr1} (GenId: 12289043) because it encodes a protein (850 amino acids) that has sequence similarity (~52%) to eukaryotic PMR1 (plasma membrane ATPase related) P-type ATPases (Supplementary Table S1). Some PMR1-type pumps are able to transport calcium, as well as manganese, into the Golgi apparatus17-19.

In addition to \textit{OG1RF_12294}, the OG1RF genome encodes two putative calcium-transporting ATPases: \textit{OG1RF_10600} and \textit{OG1RF_11602} (Supplementary Table S2). Using the BLASTP protein sequence alignment program20, we found that \textit{OG1RF_12294} has sequence similarity (~53–56%) to both ATPases (Supplementary Table S1). Furthermore, \textit{OG1RF_12294} has sequence similarity (~53–56%) to several prokaryotic proteins characterized as calcium P-type ATPases (Supplementary Table S1)21-25. Thus, protein \textit{OG1RF_12294} might contribute to maintain calcium homeostasis in enterococcal cells.

MafR influences positively the transcription of \textit{OG1RF_12294}. To analyse whether MafR regulates the expression of the \textit{OG1RF_12294} gene, we determined its relative expression in OG1RF (wild-type) and OG1RFΔ\textit{maf}R (deletion mutant) by qRT-PCR. The log\textsubscript{2}FC in \textit{OG1RF_12294} expression due to the presence of MafR was ~3, indicating that MafR has a positive effect on the transcription of such a gene. This conclusion was further confirmed by increasing the intracellular level of MafR. Specifically, we determined the relative expression of \textit{OG1RF_12294} in two strains: \textit{OG1RF_maf}R harbouring pDLF (absence of MafR) and \textit{OG1RF_maf}R harbouring pDLF\textit{maf}R (plasmid-encoded MafR). In addition, we determined the relative expression of the \textit{OG1RF_10600} and \textit{OG1RF_11602} genes, which encode putative calcium-transporting ATPases (Supplementary Table S1). In the presence of plasmid-encoded MafR, only transcription of \textit{OG1RF_12294} was increased (log\textsubscript{2}FC ~4). Thus, MafR influences positively and specifically the transcription of the \textit{OG1RF_12294} gene.

MafR activates the \textit{P12294} promoter \textit{in vivo}. In the OG1RF genome14, the ATG codon at coordinate 2425611 is likely the translation start site of the \textit{OG1RF_12294} gene (Fig. 1A). It is preceded by a putative ribosome binding site sequence (AGGAGG). Upstream of such a sequence there is a putative promoter (here named \textit{P12294}) that has a canonical –10 element (\textit{TATAAT}) but lacks a potential –35 element (\textit{consensus TTGACA}) at the optimal length of 17 nucleotides. Nevertheless, there is a near-consensus –35 element (\textit{TCGACC}) at the suboptimal spacer length of 22 nucleotides. These features suggested that promoter \textit{P12294} could be recognized by a \textit{σ} factor similar to the \textit{Escherichia coli} \textit{σ}\textsubscript{E} and that its activity could be enhanced by regulatory proteins. Sequence analysis of the region located between the TAA stop codon of the \textit{OG1RF_12295} gene (coordinate 2425761) and the \textit{P12294} promoter revealed the existence of an inverted-repeat (IR) that may function as a Rho-independent transcriptional terminator (Fig. 1A).

To characterize the \textit{P12294} promoter, a 255-bp DNA fragment (coordinates 2425885 to 2425631) (Fig. 2) was inserted into the \textit{pASTT} promoter-probe vector, which is based on the \textit{gfp} reporter gene. The recombinant plasmid (\textit{pASTT-P12294}) was first introduced into OG1RF and OG1RFΔ\textit{maf}R. In these strains, the expression of \textit{gfp} (0.32 ± 0.02 and 0.26 ± 0.04 units, respectively) was similar to the basal level (OG1RF harbouring \textit{pASTT}: 0.38 ± 0.02 units). Different results were obtained when \textit{pASTT-P12294} was introduced into OG1RFΔ\textit{maf}R harbouring either pDLF or pDLF\textit{maf}R (plasmid-encoded MafR) (Fig. 2). The expression of \textit{gfp} was ~2.5-fold higher in the presence of plasmid-encoded MafR. This result indicated that the 255-bp DNA fragment contains a MafR-dependent promoter activity. Removal of the –10 element of the \textit{P12294} promoter resulted in loss of such...
Figure 1. Relevant features of the P12294 promoter region. (A) Genetic organization of the chromosome region that contains OG1RF_12294. Coordinates of the translation start and stop codons are indicated. Stem-loop elements represent potential transcriptional terminators. Arrows upstream of the genes represent promoters. The nucleotide sequence of the region spanning coordinates 2425780 to 2425601 is shown. The stop codon (TAA) of OG1RF_12295 and the start codon (ATG) of OG1RF_12294 are indicated in boldface letters. IR: inverted-repeat. SD: Shine-Dalgarno sequence. The main sequence elements (−35 box and −10 box) of the P12294 promoter are indicated. The MafR binding site defined in this work is shown (shadowed box). Genes OG1RF_12294 and OG1RF_12295 correspond to genes EF3014 and EF3015 in E. faecalis strain V583. (B) Bendability/curvature propensity plot of the region spanning coordinates 2425817 to 2425548. The location of the P12294 core promoter, the start codon of OG1RF_12294 and the MafR binding site are indicated.

Figure 2. Effect of plasmid-encoded MafR on the activity of the P12294 promoter. Four regions from the OG1RF chromosome were inserted independently into the SacI site of pASTT. The coordinates of such regions are indicated. Gene tetL: tetracycline resistance determinant. Gene gfp: green fluorescent protein. The T1T2 box represents the tandem transcriptional terminators T1 and T2 of the Escherichia coli rrnB rRNA operon. The stem-loop element represents the inverted-repeat located upstream of the P12294 promoter (see Fig. 1A). The arrow represents the canonical −10 element of the P12294 promoter. The intensity of fluorescence (arbitrary units) corresponds to 0.8 ml of culture (OD650 = 0.4). In each case, three independent cultures were analysed. N.D.: non-determined.
an activity (plasmid pASTT-P12294Δ-10). A further deletion analysis allowed us to conclude that the 186-bp region between coordinates 2425816 and 2425631 contains both the P12294 promoter and the site required for its activation by MafR (plasmids pASTT-P12294Δ69 and pASTT-P12294Δ208) (Fig. 2).

MafR binds to the P12294 promoter region in vitro. To investigate whether MafR activates directly the expression of the OG1RF_12294 gene, we performed DNase I footprinting experiments. We used a His-tagged MafR protein (MafR-His) and a 270-bp DNA fragment (coordinates 2425817 to 2425548). This fragment contains the P12294 promoter and the site required for its activation by MafR in vivo (Fig. 2). The presence of a His-tag at the C-terminal end of MafR does not affect its DNA-binding properties. The 270-bp DNA fragment was radioactively labelled either at the 5′-end of the coding strand or at the 5′-end of the non-coding strand. On the coding strand and at 100 nM of MafR-His, protections against DNase I digestion were observed within the region spanning coordinates 2425708 and 2425658. On the non-coding strand and at 125 nM of MafR-His, diminished cleavages were observed between coordinates 2425712 and 2425686. Thus, MafR-His recognizes a site overlapping the −35 element of the P12294 promoter (Fig. 3). This result allowed us to conclude that MafR activates directly the transcription of the OG1RF_12294 gene.

Figure 3 shows the bendability/curvature propensity plot of the 270-bp DNA fragment according to the bend.it program. The profile contains an intrinsic curvature of high magnitude (~13 degrees per helical turn), which is adjacent to the MafR binding site. In addition, the site recognized by MafR contains a region of potential bendability (~5.2 units).
Gene OG1RF_11486 encodes a putative QueT transporter family protein. Energy-coupling factor (ECF) transporters are a family of ATP-binding cassette (ABC) transporters that are responsible for the uptake of essential micronutrients in prokaryotes. They consist of a membrane-embedded S-component that provides substrate specificity and a three-subunit ECF module that couples ATP hydrolysis to transport. In the so-called group II ECF transporters, different S-components share the same ECF module. Furthermore, the S-component genes are not located in the same operon as the genes for the ECF module.

The enterococcal OG1RF_11486 gene encodes a putative QueT transporter family protein (GenBank AEA94173.1). Proteins identical to OG1RF_11486 (173 residues) are encoded by Mycobacterium abscessus (CPW17925.1), Listeria monocytogenes (CWW42654.1; 172 up to 173 residues are identical) and S. agalactiae (KLL29182.1). In the two former bacteria, the corresponding protein has been annotated as queuosine precursor ECF transporter S-component QueT. Therefore, protein OG1RF_11486 could be involved in the uptake of a queuosine biosynthetic intermediate. Using the BLASTP program, we found that the OG1RF genome encodes an additional QueT transporter family protein (OG1RF_12031; 168 residues; AEA94718.1). It has 55% of similarity to the OG1RF_11486 protein.

MafR activates the P11486 promoter in vivo. By qRT-PCR assays, we found that MafR has a positive effect on the transcription of OG1RF_11486. Compared to strain OG1RFΔmafR, the relative expression of OG1RF_11486 was slightly higher in strain OG1RF (log2FC ~0.9). Moreover, the relative expression of OG1RF_11486 was higher in strain OG1RFΔmafR harbouring pDLFmafR (plasmid-encoded MafR) than in strain OG1RFΔmafR harbouring pDLF (log2FC ~2.4).

The BPROM program (Softberry, Inc.) predicts a promoter sequence (named P11486 herein) upstream of the OG1RF_11486 gene. The −35 (TTTACA) and −10 (TAACAT) elements of this promoter are separated by 17 nucleotides (Fig. 4A). By primer extension using total RNA from OG1RF cells, we demonstrated that the P11486 promoter is functional in vivo (Fig. 5). Oligonucleotide R11486-D was used as primer (Table 1). A cDNA product of 130 nucleotides was detected, indicating that transcription of OG1RF_11486 starts at coordinate 1543115 (Fig. 4A).

To further characterize the P11486 promoter, we constructed several transcriptional fusions (Fig. 6). A 284-bp DNA fragment (coordinates 1542902 to 1543185) was inserted into pASTT. The recombinant plasmid (pASTT-P11486) was first introduced into OG1RF and OG1RFΔmafR. In both strains, gfp expression (1.48 ± 0.10 and 1.51 ± 0.16 units, respectively) was ~4-fold higher than the basal level (OG1RF harbouring pASTT). This result indicated that the 284-bp DNA fragment has promoter activity, however, the chromosomal copy of mafR is not sufficient to activate such a promoter located on pASTT (multicopy plasmid). Next, we introduced pASTT-P11486 into OG1RFΔmafR harbouring pDLFmafR (plasmid-encoded MafR). In this strain, gfp expression was ~3-fold higher than in the control strain (OG1RFΔmafR harbouring pDLF) (Fig. 6). Similar results were obtained with plasmids pASTT-P11486Δ66 and pASTT-P11486Δ145, which allowed us to conclude that the 139-bp region between coordinates 1543047 and 1543185 contains both the P11486 promoter and the site required for its activation by MafR. A further deletion analysis showed that sequences between coordinates 1543047 and 1543071 (plasmid pASTT-P11486Δ66) are needed for MafR-mediated activation of the P11486 promoter but not for promoter activity. Moreover, deletion of the region that spans coordinates 1543071 and 1543090 (plasmid pASTT-P11486Δ145) removes the −35 element of the P11486 promoter and, consequently, reduces the expression of gfp to basal levels (Fig. 6).

MafR binds to the P11486 promoter region in vitro. By DNase I footprinting assays, we analysed whether MafR-His binds to the P11486 promoter region (Fig. 7). We used a 275-bp DNA fragment (coordinates 1542969 to 1543243), which contains both the P11486 promoter and the site required for its activation by MafR in vivo (Fig. 6). On the coding strand and at 350 nM of MafR-His, changes in DNase I sensitivity were observed within the region spanning coordinates 1543047 and 1543110. On the non-coding strand and at 300 nM of MafR-His, diminished cleavages were observed between coordinates 1543047 and 1543110. On both strands and at 400 nM of MafR-His, regions protected against DNase I digestion were observed along the DNA fragment, which is consistent with the ability of MafR-His to generate multimeric complexes. Therefore, MafR-His recognizes preferentially a DNA site overlapping the core promoter. Such a DNA site includes sequences needed for MafR-mediated activation of the P11486 promoter.

Discussion

Gene regulation plays a key role during bacterial adaptation to environmental fluctuations. The ability of enterococci to metabolize numerous carbohydrates enables them to colonize diverse environments. Our previous work showed that MafR activates, directly or indirectly, the transcription of numerous genes on a genome-wide scale. Many of such genes encode proteins involved in transport or metabolism of carbon sources. Now, by qRT-PCR, transcriptional fusions and DNase I footprinting experiments, we have demonstrated that MafR functions as a transcription activator. It activates directly the transcription of the OG1RF_12294 and OG1RF_11486 genes. Gene OG1RF_12294 encodes a protein that has sequence similarity to several eukaryotic and prokaryotic proteins characterized as calcium P-type ATPases (Supplementary Table S1). This finding suggests that MafR could have a regulatory role in maintaining cellular calcium homeostasis. Calcium ions are known to affect different physiological processes in prokaryotic organisms, such as division, secretion, transport, and stress response. Gene OG1RF_11486 encodes a putative ECF transporter S-component, likely involved in the uptake of a queuosine precursor. Thus, MafR could have an additional regulatory role in the biosynthesis of queuosine, a modified nucleoside found at the wobble position of particular transfer RNAs. There is evidence that queuosine contributes
to the efficiency of protein synthesis. In *Shigella flexneri*, the intracellular concentration of the virulence-related transcriptional regulator VirF is reduced in the absence of queuosine. Moreover, it has been reported that the lack of queuosine affects the growth of some bacteria under stress conditions. Bacteria use a variety of mechanisms to activate transcription from specific promoters. Genetic and biochemical studies have shown that some proteins stimulate transcription by binding to a specific DNA site either upstream of or overlapping the core promoter. By DNase I footprinting experiments, we have found that MafR recognizes a site overlapping the core promoter, as well as a site overlapping the promoter identified in this work. The MafR binding site defined in this work is shown (shadowed box). Genes *OG1RF_11486* and *OG1RF_11487* correspond to genes EF1774 and EF1775 in *E. faecalis* strain V583. (B) Bendability/curvature propensity plot of the region spanning coordinates 1542969 to 1543243. The location of the *P11486* core promoter, the start codon of *OG1RF_11486* and the MafR binding site are indicated.

Figure 4. Relevant features of the *P11486* promoter region. (A) Genetic organization of the chromosome region that contains *OG1RF_11486*. Coordinates of the translation start and stop codons are indicated. The arrow upstream of the *OG1RF_11486* gene represents its promoter. The nucleotide sequence of the region spanning coordinates 1543043 to 1543234 is shown. The stop codon (TAA) of *fabG2* and the start codon (ATG) of *OG1RF_11486* are indicated in boldface letters. SD: Shine-Dalgarno sequence. The transcription start site (+1 position) of the *OG1RF_11486* gene, and the main sequence elements (−35 box and −10 box) of the *P11486* promoter identified in this work are indicated. The MafR binding site defined in this work is shown (shadowed box). Genes *OG1RF_11486* and *OG1RF_11487* correspond to genes EF1774 and EF1775 in *E. faecalis* strain V583. (B) Bendability/curvature propensity plot of the region spanning coordinates 1542969 to 1543243. The location of the *P11486* core promoter, the start codon of *OG1RF_11486* and the MafR binding site are indicated.
Therefore, MafR does not seem to recognize a specific nucleotide sequence. Several findings suggest that recognition of particular DNA shapes could be a characteristic of the global regulators that constitute the Mga/AtxA family. MgaSpn from S. pneumoniae recognizes a DNA site upstream of the P1623B promoter (positions −60 to −99), as well as a DNA site overlapping the Pmga promoter (positions −23 to +21)\(^\text{12}\). The former interaction enhances the efficiency of the promoter\(^\text{11}\), whereas the function of the latter remains unknown. Such MgaSpn binding sites have a low sequence identity and, according to predictions, they contain an intrinsic curvature flanked by regions of bendability\(^\text{12}\). Furthermore, MgaSpn was shown to have a preference for AT-rich DNA regions\(^\text{13}\). Concerning Mga from S. pyogenes, several DNA-binding sites have been identified. These sites exhibit a low sequence identity (13.4%)\(^\text{37}\), although a consensus Mga binding sequence was initially proposed\(^\text{38}\). In the case of AtxA from B. anthracis, in vitro protein-DNA interaction studies have not been reported. Nevertheless, sequence similarities are not apparent in its target promoter regions, and some of them are intrinsically curved\(^\text{39}\).

In conclusion, our study shows for the first time that MafR is a transcription activator. It stimulates transcription from the P12294 and P11486 promoters in vivo. Moreover, MafR binds in vitro to a specific DNA site that overlaps the −35 element of each promoter. The two MafR binding sites have a low sequence identity but share a six-base pair motif. We propose that MafR would recognize intrinsic DNA structural features rather than particular DNA sequences on its target DNAs.

Materials and Methods

Oligonucleotides, bacterial strains, and plasmids. Oligonucleotides used in this work are listed in Table 1. E. faecalis strains OG1RF\(^\text{14}\) and OG1RFΔmafR\(^\text{5}\) were used. Plasmids pDLF (expression vector) and pDLFmafR were described\(^\text{7}\). These plasmids carry a kanamycin resistance gene. Plasmid pASTT (D. Garcia-Rincón, V. Solano-Collado and A. Bravo, unpublished results) is based on the pAST promoter-probe vector\(^\text{40}\), which carries a tetracycline resistance gene. Plasmid pASTT carries the TrsV transcriptional terminator\(^\text{40}\) downstream of the gfp reporter gene. The following pASTT-derivatives were constructed in this work. In all cases, a region of the OG1RF chromosome was amplified by PCR using the indicated primers, digested with SacI, and inserted into pASTT: pASTT-P12294 (primers F12294 and R12294, 260-bp restriction fragment), pASTT-P12294Δ-10 (primers F12294 and R12294Δ-10, 236-bp restriction fragment), pASTT-P12294Δ69 (primers F12294Δ69 and R12294, 192-bp restriction fragment), pASTT-P12294Δ208 (primers F12294Δ208 and R12294, 53-bp restriction fragment), pASTT-P11486 (primers F11486 and R11486, 290-bp restriction fragment), pASTT-P11486Δ66 (primers F11486Δ66 and R11486, 224-bp restriction fragment), pASTT-P11486Δ145 (primers F11486Δ145 and R11486, 145-bp restriction fragment), pASTT-P11486Δ169 (primers F11486Δ169 and
Growth and transformation of bacteria. *E. faecalis* was grown in BHI medium, which was supplemented with tetracycline (4 μg/ml) and/or kanamycin (250 μg/ml) when strains carrying plasmids were used. Experiments were performed at 37 °C without aeration. The protocol used to transform *E. faecalis* by electroporation was described41.

DNA and RNA isolation. Genomic DNA was prepared using the Bacterial Genomic Isolation Kit (Norgen Biotek Corporation). Plasmid DNA was prepared using the High Pure Plasmid Isolation Kit (Roche Applied Science) as described5. Total RNA was isolated using the RNeasy mini Kit (QIAGEN). In general, bacteria were grown to an optical density at 650 nm (OD650) of 0.4 (logarithmic growth phase). For stationary phase, bacteria were grown to an OD650 of 0.8 and then incubated for two hours at the same temperature. Then, cultures were processed as reported5. The integrity of rRNAs was analysed by agarose gel electrophoresis. RNA concentration was determined using a NanoDrop ND-2000 Spectrophotometer.

Polymerase chain reaction (PCR). The Phusion High-Fidelity DNA polymerase (Thermo Scientific) and the Phusion HF buffer were used. Reaction mixtures (50 μl) contained 5–30 ng of template DNA, 20 pmol of each primer, 200 μM each deoxynucleoside triphosphate (dNTP), and one unit of DNA polymerase. PCR conditions were reported40. To amplify the 270-bp DNA fragment (promoter P12294) used in footprinting experiments, the Phusion GC buffer was used. In this case, reaction mixtures were supplemented with 7% DMSO and the annealing step was performed at 59 °C. PCR products were purified with the QIAquick PCR purification kit (QIAGEN).

Quantitative RT-PCR (qRT-PCR). For cDNA synthesis with random primers, the iScript Select cDNA Synthesis kit (Bio-Rad) was used as described5. Quantitative PCR were performed using the iQ SYBR Green Supermix (Bio-Rad) and a iCycler Thermal Cycler (Bio-Rad) as reported5. Forward (Fgene-q) and reverse (Rgene-q) primers used in the quantitative PCRs are listed in Table 1. Relative quantification of gene expression was performed using the comparative Ct method15 as described5. Except for gene mafR, the internal control gene was recA (OG1RF_12439; recombination protein RecA). In the case of mafR, the internal control gene was zwf (OG1RF_10737; glucose-6-phosphate 1-dehydrogenase) because its expression level was similar at the logarithmic and stationary growth phases.

Primer extension. Oligonucleotide R11486-D was radioactively labelled at the 5′-end using [γ-32P]-ATP (PerkinElmer) and T4 polynucleotide kinase (New England Biolabs) as reported12. Primer extension reactions (20 μl) contained 1.2 pmol of 32P-labelled oligonucleotide and 5 μg of total RNA isolated from strain OG1RF. The ThermoScript Reverse Transcriptase enzyme (Invitrogen) was used. Reactions were incubated at 55 °C for 5 min. After heating at 85 °C for 5 min, samples were ethanol precipitated and dissolved in loading buffer (80% formamide, 1 mM EDTA, 10 mM NaOH, 0.1% bromophenol blue, 0.1% xylene cyanol). cDNA products were analysed by sequencing gel (8 M urea, 6% polyacrylamide) electrophoresis. Dideoxy-mediated chain termination sequencing reactions were run in the same gel. Labelled products were visualized using a Fujifilm Image Analyser FLA-3000.

Fluorescence assays. Plasmid-carrying cells were grown to an OD650 of 0.4 (logarithmic phase). Then, different volumes of culture (0.4 to 1 ml) were centrifuged, and cells were resuspended in 200 μl of

Figure 6. Effect of plasmid-encoded MaFR on the activity of the P11486 promoter. Five regions from the OG1RF chromosome were inserted independently into the SacI site of pASTT. The coordinates of such regions are indicated. Gene tetL: tetracycline resistance determinant. Gene gfp: green fluorescent protein. The T1T2 box represents the tandem transcriptional terminators T1 and T2 of the *Escherichia coli* rrnB rRNA operon. The arrow represents the −35 element of the P11486 promoter. The intensity of fluorescence (arbitrary units) corresponds to 0.8 ml of culture (OD650 = 0.4). In each case, three independent cultures were analysed. N.D.: non-determined.
Figure 7. DNase I footprints of complexes formed by MafR-His on the 275-bp DNA fragment that contains the P11486 promoter. 32P-labelled DNA (4 nM) was incubated with the indicated concentrations of MafR-His and then it was digested with DNase I. Non-digested DNA (F) and dideoxy-mediated chain termination sequencing reactions (A, C, G, T) were run in the same gel. All the lanes displayed came from the same gel (delineation with dividing lines). Densitometer scans corresponding to free DNA (grey line) and DNA with protein (black line) are shown. The nucleotide sequence of the region spanning coordinates 1543037 to 1543176 is shown. The transcription initiation site (+1 position) of OG1RF_11486 is shown. The −35 and −10 elements of the P11486 promoter are indicated. Brackets indicate regions protected against DNase I digestion. The site recognized by MafR-His (coordinates 1543043-1543110) is indicated with a grey box.

Figure 8. DNA sites recognized by MafR. (A) Nucleotide sequence alignment of the DNA sites recognized by MafR on the P12294 and P11486 promoter regions. Identical nucleotides are highlighted in grey boxes. (B) Nucleotide sequence of the DNA site recognized by MafR on the Pma promoter region (positions −69 to −104). Nucleotides shared with the MafR binding sites shown in (A) are highlighted in grey boxes.
Table 1. Oligonucleotides used in this work. Restriction sites are underlined, and the base changes that generate restriction sites are in bold.

Name	Sequence (5' to 3')^{ab}
11486CAGGCCATAGCTGTCATGC	AGCTTTGACGTTGACGTTG
11486GCCACAGGAAGTAGCAAAACT	GACCCGTTTGCTTCGTCTTAGT
12294GTGTTTGTGGATTTGATGAATGA	GCCACAGGAAGTAGCAAAACT
12294GCCACAGGAAGTAGCAAAACT	GCCACAGGAAGTAGCAAAACT
12294CAACCGCTAAGGACCAAGC	GACCCGTTTGCTTCGTCTTAGT

Phosphate-buffered saline (PBS). In each case, three independent cultures were analysed. Fluorescence intensity was measured using a Thermo Scientific Varioskan Flash instrument (excitation at 488 nm and emission at 515 nm). The fluorescence corresponding to 200 μl of PBS buffer without cells was ~0.03 arbitrary units.

Purification of MafR-His. The procedure to overproduce and purify a His-tagged MafR_{HG1RF} protein (herein MafR-His) was reported⁴. MafR-His carries the Leu-Glu-6xHis peptide (His-tag) fused to its C terminus. Protein concentration was determined using a NanoDrop ND-2000 Spectrophotometer (Thermo Scientific).

DNase I footprinting assays. Oligonucleotides were ³²P-labelled at the 5'-end as described¹². 32P-labelled oligonucleotides were used for PCR amplification to obtain double-stranded DNA fragments labelled at either the coding or the non-coding strand. Two regions of the OG1RF chromosome were amplified: a 270-bp region (coordinates 2425817-2425548) using the F₁₁₄₈₆-D oligonucleotides, and a 275-bp region (coordinates 1542969-1543243) using the F₁₁₄₈₆-D oligonucleotides. Binding reactions (8 μl and 10 nM DNA) using the F₁₁₄₈₆-D oligonucleotides, and a 275-bp region (coordinates 1542969-1543243) using the F₁₁₄₈₆-D oligonucleotides were incubated at room temperature for 20 min. Then, 0.015 units of DNase I (Roche Applied Science) was added and the reaction proceeded for 5 min at the same temperature. DNase I digestion was stopped by adding 1 μl of loading buffer (80% formamide, 1 mM EDTA, 10 mM NaOH, 0.1% bromophenol blue and 0.1% xylene cyanol) was added. Samples were heated at 95 °C for 5 min and loaded onto sequencing gels (6% polyacrylamide, 8 M urea). Dideoxy-mediated chain termination sequencing reactions were run in the same gel. Labelled products were visualized using a Fujifilm Image Analyser FLA-3000. The intensity of the bands was quantified using the Quantity One software (Bio-Rad).

In silico prediction of intrinsic curvature. The bendability/curvature propensity plots were calculated with the bend.it server²⁶ (http://hydra.icgeb.trieste.it/dna/bend_it.html) as described previously²⁷.

References

1. Ramsey, M., Hartke, A. & Huycke, M. The Physiology and Metabolism of Enterococci. In: Gilmore MS, Clewell DB, Ike Y, et al. editors. *Enterococci: From Commensals to Leading Causes of Drug Resistant Infection* (Internet). Boston, Massachusetts Eye and Ear Infirmary, 1–43 (2014).
2. Kim, S., Covington, A. & Pamer, E. G. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. *Immunol. Rev.* **279**, 90–105 (2017).
17. Rudolph, H. K.
13. Solano-Collado, V., Hüttener, M., Espinosa, M., Juárez, A. & Bravo, A. Mga
9. McIver, K. S. & Myles, R. L. Two DNA-binding domains of Mga are required for virulence gene activation in the group A streptococcus. Mol. Microbiol. 43, 1591–1601 (2002).
16. Palmgren, M. G. & Nissen, P. P-Type ATPases.
12. Solano-Collado, V., Lurz, R., Espinosa, M. & Bravo, A. The pneumococcal MgaSpn virulence transcriptional regulator generates multimeric complexes on linear double-stranded DNA. Nucleic Acids Res. 41, 6975–6991 (2013).
11. Solano-Collado, V., Huttener, M., Espinosa, M., Juarez, A. & Bravo, A. MgaSpn and H-NS: Two unrelated global regulators with similar DNA-binding properties. Front. Mol. Biosci. 3, 60 (2016).
8. Hondorp, E. R. & McIver, K. S. The pneumococcal MgaSpn virulence transcriptional regulator generates multimeric complexes on linear double-stranded DNA. Nucleic Acids Res. 41, 6975–6991 (2013).
4. Ruiz-Cruz, S., Espinosa, M. & Bravo, A. DNA-binding properties of MafR, a global regulator of gene expression in the group A streptococcus. Mol. Microbiol. 43, 1591–1601 (2002).
19. Van Baalen, K., Vanoevelen, J., Missiaen, L., Raeymaekers, L. & Wuytack, F. The Golgi PMR1 P-type ATPase of Bacillus subtilis: Gene expression and demonstration of calcium and manganese transport. J. Biol. Chem. 276, 10683–10691 (2001).
20. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
12. Solano-Collado, V., Espinosa, M. & Bravo, A. The pneumococcal MgaSpn virulence transcriptional regulator generates multimeric complexes on linear double-stranded DNA. Nucleic Acids Res. 41, 6975–6991 (2013).
23. Faxén, K.
30. Domínguez, D. C., Guragain, M. & Patrauchan, M. Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 57, 151–165 (2015).
3. Beganovic, M.
32. Slotboom, D. J. Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat. Rev. Microbiol. 12, 79–87 (2014).
34. Thibessard, A.
25. Hein, K. L., Nissen, P. & Morth, J. P. Purification, crystallization and preliminary crystallographic studies of a PacL homologue from Bacillus subtilis. Protein Sci. 16, 424–427 (2007).
28. Slotboom, D. J. Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat. Rev. Microbiol. 12, 79–87 (2014).
33. Noguchi, S., Nishimura, Y., Hirota, Y. & Nishimura, S. Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. Function and biosynthesis of queuosine in tRNA. J. Biol. Chem. 257, 6544–6550 (1982).
15. Ruiz-Cruz, S., Solano- Collado, V., Espinosa, M. & Bravo, A. Novel plasmid-based genetic tools for the study of promoters and terminators in Streptococcus pneumoniae and Enterococcus faecalis. J. Microbiol. Method 83, 156–163 (2010).
Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-42484-4.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019