Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Presence and persistence of SARS-CoV-2 in aquatic environments: A mini-review
Jürgen Mahlknecht

Abstract
The introduction of SARS-CoV-2 into water bodies via sewage raises public health concerns. For the assessment of public health risks, it is necessary to know the presence and persistence of infectious SARS-CoV-2 in water and wastewater. The present mini-review documents the occurrence and decay rates of viable infectious SARS-CoV-2 and SARS-CoV-2 RNA in different water matrices including wastewater, river water, groundwater, tap water, and seawater. Persistence of viable SARS-CoV-2 is mainly temperature dependent. A rapid inactivation of infectious SARS-CoV-2 is found in river water, sea water, and wastewater compared to tap water. SARS-CoV-2 RNA was found to be considerably more stable than infectious SARS-CoV-2, indicating that the environmental detection of RNA alone does not prove risk of infection. Persistence assays need to consider physicochemical and biological water composition as well as the effect of detergents, enzymes, and filtering particulate matter.

Addresses
Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, 64849, Nuevo Leon, Mexico

Corresponding author: Mahlknecht, Jürgen (jurgen@tec.mx)

Keywords
SARS-CoV-2, Water, Wastewater, Stability, Decay rate.

Introduction
SARS-CoV-2, a positive-strand RNA coronavirus responsible for the respiratory disease COVID-19 has a low mortality rate of 1.2% compared to other coronavirus (SARS-CoV and MERS-CoV) but is highly contagious due to the spread via droplets (from respiration), direct contact, and fomites [1]. Viable virus particles have been detected in feces and to a lesser extent in urine of infected persons [2,3], as well as viral RNA has been identified early in untreated wastewater, for example, the studies by Ahmed et al., Medema et al., Randazzo et al., and La Rosa et al. [4–7], suggesting that other routes of infection may exist. These findings have raised concerns about global health, especially about the possibility that SARS-CoV-2 passes from wastewater treatment plants (WWTPs) to the receiving environment, affecting downstream human activities such as agriculture, recreation, and public health in general [7,8].

This has led to the extensive use of wastewater surveillance for containing and mitigating outbreaks [9,10]. Wastewater-based epidemiology has been used to predict community outbreaks in urban centers, universities, hospitals, and airplanes [11]. While wastewater surveillance has been impactful, it is relevant to know the presence and persistence of infectious SARS-CoV-2 in water and wastewater for the assessment of public health risks, that is, for describing the exposure risks associated with waters and wastewater to the public. Besides, water bodies may act as natural reservoirs or repositories for the virus [8,12,13].

Due to safety challenges in performing laboratory work with highly infectious human coronaviruses, researchers have preferred to evaluate closely related viral surrogates to assess the persistence of SARS-CoV-2 in water [14]. However, the suitability of enveloped virus surrogates varies depending upon the environmental conditions, which could lead to obvious wrong estimates. Therefore, researchers started to perform confirmatory experiments in high biological safety level laboratories analyzing spiked viable SARS-CoV-2 or viral strains in different water matrices [9,15].

The objective of this mini-review is to compile and update quantitative information on the presence and stability of SARS-CoV-2 in different water matrices based on experiments using viable virus or its genetical strains. Further, equations for calculating decay rates and corresponding statistics are presented. This
contribution is thought to serve as reference and practical guide for future work in this field.

Detection in aquatic systems

Studies on aquatic environments reported a wide range of SARS-CoV-2 concentration [13] (Figure 1). In wastewater, the viral load of reported studies varied between \(1.9 \times 10^1\) and \(7.0 \times 10^6\) copies/L \([4,9,6,16–23]\), in secondary treated wastewater between \(1.6 \times 10^2\) and \(2.51 \times 10^5\) copies/L \([6,24,25]\), in tertiary treated effluent between \(1.3 \times 10^3\) and \(4.6 \times 10^5\) copies/L \([28,29]\), in river water between \(2.0 \times 10^2\) and \(3.19 \times 10^6\) copies/L \([16,22,25,30–32]\), and in groundwater between \(2.6 \times 10^3\) and \(3.8 \times 10^5\) copies/L \([8]\). As expected, primary sludge has in general higher viral loads than wastewater, because it contains a broad diversity of human viruses, including commonly circulating coronavirus strains. On the other hand, it is notable that the tertiary effluents and influents have almost similar data trends.

Estimation of decay rates and statistics

The decay rates typically are obtained with log—linear Eq. (1). For determination of the decay rate constants of the first-order kinetics, the virus titer, and corresponding time points are used together. The \(T_{90}\) value (time required to reach a 90% reduction) is calculated using Eq. (2).

\[
\ln \left(\frac{C_t}{C_0} \right) = -k \cdot t
\]

\[
T_{90} = \frac{-\ln(0.1)}{k}
\]

where, \(k\) is the constant first-order decay rate, \(C_0\) and \(C_t\) are the corresponding initial viral loads and viral loads at time \(t\) of the assays. A linear regression analysis may be used to calculate the associated 95% confidence intervals of the decay rate constants. Reported errors and model fit values are usually reported as \(R^2\) and/or root-mean-square error (RMSE). As alternative to the log-linear model, nonlinear models may also be applied to describe the decay, including exponential-nonlinear least square, exponential biphasic, and Weibull models \([33]\).

To select the best model, all models may be fit to the observed data and compared using an extra sum-of-squares F test. In most cases, the log-linear model may fit best. The \(k\) values may be \(\log_{10}\)-transformed and linear regression used to characterize the relationship between temperature and decay rate constant within each matrix. The fit of the regression is assessed using \(R^2\) values and RMSE. All plotting, regressions, and statistical analyses can be performed in scientific graphing and statistics programs, for example, open-source Rstudio (stats package) and commercial GraphPad PRISM.

Persistence and decay in different water matrices

Data from previous studies suggest that the coronavirus seems to have a low persistence in the environment and is very subtle to oxidants, such as chlorine; it also demonstrates that its inactivation is significantly quicker in water compared to non-enveloped human enteric viruses with known waterborne transmission \([7,10,34]\). Like with SARS-CoV, genetic material of the SARS-CoV-2 virus was found in wastewater, whose decay is altered by various factors, including virus physiology, time outside the host, wastewater composition, temperature, and pH \([35]\). In addition, it is known that enveloped viruses exhibit shorter lifespans when outside the host \([36]\). Finally, the effect of proteolytic enzymes and detergents on the external lipid envelope of the virus may impose a shorter survival time for enveloped viruses \([12,35]\).

Several researchers have investigated the persistence in different water matrices using viable SARS-CoV-2 and SARS-COV-2 RNA (Table 1). For security reasons, most
Article	Virus	Matrix	Temperature (°C)	Best fit model	k (d⁻¹)	R² of k	RMSE	T₉₀ (days)	Data location in the mentioned article
[13]	SARS-CoV-2 RNA	Raw wastewater	4	First order	−0.13	0.74	–	17.17	Table 2
	Raw wastewater	26		First order	−0.27	0.99	–	7.68	Table 2
[36]	SARS-CoV-2	River water (filter sterilized)	4	First order	0.61	0.93	0.57	3.8	Table 2
	River water (filter sterilized)	20	First order	1.01	0.92	0.66	2.3	Table 2	
	Seawater (filter sterilized)	4	First order	1.07	0.91	0.73	2.2	Table 2	
	Seawater (filter sterilized)	20	First order	2.02	0.99	0.28	1.1	Table 2	
	SARS-CoV-2 RNA	River water (filter sterilized)	20	First order	0.14	0.80	0.3	16.6	Tables 4 and 5
	Seawater (non-filter sterilized)	20	First order	0.26	0.46	1.08	8.9	Tables 4 and 5	
[33]	SARS-CoV-2	River water	24	First order/Weibull	−0.37	0.65	0.049	1.9	Table 4
	River water	4	First order/Weibull	−0.16	0.76	0.064	7.7	Table 4	
	River water (filtered)	24	First order/Weibull	−0.32	0.82	0.067	3.3	Table 4	
	Wastewater	24	First order/Weibull	−0.83	0.79	0.022	1.2	Table 4	
	Wastewater	4	First order/Weibull	−0.19	0.75	0.062	5.5	Table 4	
	Wastewater (filtered)	24	First order/Weibull	−0.80	0.80	0.052	1.5	Table 4	
[9]	SARS-CoV-2 RNA	Raw wastewater	37	First order	0.29	0.74	1.10	8.04	Table 3
	Raw wastewater	25	First order	0.18	0.87	0.67	12.6	Table 3	
	Raw wastewater	15	First order	0.11	0.71	0.59	20.4	Table 3	
	Raw wastewater	4	First order	0.08	0.79	0.37	27.8	Table 3	
	Autoclaved wastewater	37	First order	0.41	0.94	0.59	5.71	Table 3	
	Autoclaved wastewater	25	First order	0.17	0.93	0.48	13.5	Table 3	
	Autoclaved wastewater	15	First order	0.08	0.85	0.32	29.9	Table 3	
	Autoclaved wastewater	4	First order	0.05	0.95	0.14	43.2	Table 3	
	Tap water	37	First order	0.04	0.88	0.86	9.4	Table 3	
	Tap water	25	First order	0.05	0.78	0.68	15.2	Table 3	
	Tap water	15	First order	0.15	0.28	0.33	51.2	Table 3	
	Tap water	4	First order	0.25	0.83	0.17	58.6	Table 3	
[15]	SARS-CoV-2	Wastewater (low titer)	20	First order	1.4	0.71	1.8	1.6	Table 1
	Wastewater (high titer)	20	First order	1.1	0.54	1.2	2.1	Table 1	
	Tap water (high titer)	20	First order	1.2	0.88	1.2	1.7	Table 1	
	Wastewater	50	First order	0.15 min⁻¹	0.88	1.4	15 min	Table 1	
	Wastewater	70	First order	1.0 min⁻¹	0.88	1.9	2.2 min	Table 1	
studies have been carried out using RNA rather than isolated infectious virions in water matrices. In general, it can be anticipated that SARS-CoV-2 RNA is considerably more persistent than infectious SARS-CoV-2, implying that the environmental detection of RNA alone does not validate risk of infection [15,36].

Wastewaters

As expected from other human coronaviruses, the persistence and decay of SARS-CoV-2 in municipal wastewater are strongly dependent on the environmental temperature [37,38]. At high ambient temperatures (37°C) the decay rates are higher than at low temperatures (4°C). Also, there exists a faster degradation of low titer viruses in untreated wastewater than in sewage spiked with high titer exogenous viruses due to the incomplete viral structure in the wastewater that makes viral RNA easier to degrade [9]. Wurtzer et al. [39] detected that SARS-CoV-2 RNA could persist in wastewater for 19 days after the last confirmed case of infection. The reason might be that SARS-CoV-2 RNA may be shed by possible asymptomatic infected individuals for a long time, rather than the persistence of the virus in the wastewater [13]. Bivins et al. [15] reported that the T90 of viable SARS-CoV-2 in wastewater at room temperature was 1.6–2.1 days (Table 1). However, the virus remained infectious for 7 days during high-titer experiments and for three days at the low-titer experiments.

Extended SARS-CoV-2 survival times were experimented in filtered samples compared to unfiltered samples [33]. They obtained a T90 of 1.5 and 1.2 days, respectively, for viable SARS-CoV-2 in filtered and unfiltered wastewater at 24°C. Ahmed et al. [9] determined that the average T90 for SARS-CoV-2 RNA ranged from 8.0 (37°C) to 27.8 days (4°C) and from 5.7 (37°C) to 43.2 days (4°C) in untreated and autoclaved wastewater, respectively. Yang et al. [13] obtained a slightly differing result, demonstrating that the T90 value of SARS-CoV-2 RNA in raw wastewater was between 7.7 (26°C) and 17.2 days (4°C). Regarding the different treatment steps in a WWTP, the two main mechanisms that control the attenuation/decay of human coronavirus in wastewater are inactivation and viral adsorption [35]. Finally, SARS-CoV-2 viral RNA is appreciably less persistent compared to other microbiological contaminants, such as E. coli [12].

River water

SARS-CoV-2 decay in river water is less sensitive to temperature than wastewater, and the SARS-CoV-2 survival times are longer in river water than in wastewater. A 90% reduction of viable SARS-CoV-2 in river water has been reported ranging from 1.9 (24°C) to 7.7 days (4°C) [33] (Table 1). Also, dissolved solids and pH may alter SARS-CoV-2 persistence. For example, the lower pH of river water may stimulate higher electrostatic interactions and viral adsorption to the solids, which presents a more mineral composition (lower volatile solids/total solids ratio) compared to the solids present in wastewater samples (higher volatile solids/total solids ratio) [33]. This agrees with previous literature [40], in which a faster virus inactivation was observed in complex rather than in simpler matrices.

According to Scheller et al. [41], pH and organic/inorganic solids may play important roles in the formation of pH-dependent electrically charged surfaces by producing significant alterations in the virus structure proteins due to changes in its isoelectric point. Likewise with wastewater, lengthier SARS-CoV-2 survival times were reported in filtered samples compared to unfiltered samples [33]. A T90 value of 3.3 days for filtered river water against 1.9 days for raw river water at 24°C was observed. The faster inactivation in unfiltered compared to filtered river water samples is probably due to the presence of inorganic clays, given their highly adsorptive properties, which could potentially act as SARS-CoV-2 sink [42].

Drinking water (tap water)

All in all, in surface water and drinking water, the identification of genetic material was less successful compared to wastewater [12]. This was expected with drinking water, since this water was chlorinated, which completely inactivates enveloped viruses such as the SARS-CoV-2. Ahmed et al. [9] investigated SARS-CoV-2 RNA in untreated wastewater, autoclaved wastewater, and dechlorinated tap water. They reported an average T90 of 9.4 (37°C), 15.2 (25°C), 51.2 (15°C), and 58.6 days, respectively, in tap water (Table 1) and found that tap water was more stable than wastewater. Bilvins et al. [15] determined the persistence of SARS-CoV-2 in water and wastewater; they observed a T90 of viable SARS-CoV-2 in tap water at room temperature 2.0 days, being slightly higher than wastewater.

Seawater

The study of Lee et al. [43] reported that SARS-CoV-2 quickly lost activity as soon as it is introduced in seawater. This trend was also observed when examining viral RNA levels. In contrast, SARS-CoV-2 in filtered seawater was significantly more stable than that in unfiltered. The authors concluded that the presence of predatory microbes could inactivate viruses through protease and nuclease activity. However, even after SARS-CoV-2 particles were inactivated, viral RNA remained still detectable (up to 5 or 6 days). This was expected, because similar as in other media (sputum, nasal mucus) the nucleic acid remained after the virus was inactivated [44].

Sala-Comolera et al. [36] used filter sterilized seawater spiked with infectious SARS-CoV-2 incubated at two
Persistence of SARS-CoV-2 in aquatic environments Mahlknecht

Concluding remarks

The emerging analytical methods have shown that environmental waters could contain viable SAR-CoV-2 with a relatively high level of persistence. However, no study has demonstrated or confirmed the transmission of SARS-CoV-2 via water or other environmental compartments, nor the fecal–oral transmission could be confirmed so far.

Nevertheless, the decay rate data is extremely important for the quantitative microbial risk assessment associated to exposure to SARS-CoV-2 contaminated water. Thus, there is still a need to further investigate and gather data to unravel the complete mechanism for the SARS-CoV-2, especially regarding the different pathways of transmission. This makes it imperative to use infectious SARS-CoV-2 virus rather than strains or RNA, although this would involve a high level of safety to conduct. So far, only a very limited number of studies has detected and isolated infectious virions in water matrices.

Temperature has an important effect on SARS-CoV-2 persistence in water and wastewater. Nevertheless, the understanding of other factors like water composition, the presence of oxidants, potentially competing microorganisms, pH, and detergents, as well as the impact of filtration of particulate matter needs to be advanced. In this sense, standard protocols must be defined for persistence assays.

Conventional virus detection techniques show several shortcomings, such as a highly tedious and skill-dependent virus detection. Therefore, biosensing techniques were proposed recently as alternative, including the combination of various detection techniques (optical, electrochemical, PCR), with functional nanomaterials, LAMP, and low-cost microfluidics. These techniques need further development.

Declaration of competing interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Acknowledgment

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT) through Fondo Bicentenario Tecnológico Innovación COVID-19 (grant No. 312558). Complementary funding is acknowledged from the Circular Economy of Water Professorship FEMSA at Tecnológico de Monterrey. FEMSA had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

Papers of particular interest, published within the period of review, have been highlighted as:

* of special interest
** of outstanding interest

1. World Health Organization – Who: Coronavirus disease 2019 (COVID-19), situation report. 2020:151. Internet: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200619-covid-19-sitrep-151.pdf (26/05/2022).

2. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W: Detection of SARS-CoV-2 in different types of clinical specimens. J Am Med Assoc 2020, 323:1843–1844.

3. Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, Wang YY, Xiao GF, Yan B, Shi ZL, Zou H: Molecular and serological investigations of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microb Infect 2020, 9: 386–389.

4. Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O’Brien JW, Choi PM, Kitajima M, Simpson SL, Li J, Tscharke B, Verhagen R, Smith WJM, Zaugg J, Dierens L, Hugenholz P, Thomas KV, Mueller JF: First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ 2020, 728:138764.

5. Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A: Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Environ Sci Technol Lett 2020, 7:511–516.

6. Randazzo W, Truchado P, Cueva-Ferrando E, Simón P, Allende A, Sánchez G: SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res 2020:115942.

7. La Rosa G, Iaconelli M, Mancini P, Bonan Darrasso F, Veneri C, Bonadonna L, Lucentini L, Suffredini E: First detection of SARS-CoV-2 RNA in different freshwater environments in urban settings determined by RT-qPCR: implications for water safety. Sci Total Environ 2021:147183.

8. Mahlknecht J, Reyes DAP, Ramos E, Reyes LM, Álvarez MM: Persistence of SARS-CoV-2 RNA in different freshwater environments in urban settings determined by RT-qPCR: implications for water safety. Sci Total Environ 2020:139652.

9. Ahmed W, Bertsch PM, Bibby K, Haramote E, Hewitt J, Huygens F, Gyawali P, Korajkic A, Riddell S, Scherchan SP: Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environ Res 2020:110092.

This review article is an excellent source of information for readers seeking quantitative information on decay rates based on SARS-CoV-2 RNA experiments.

10. Bivins A, North D, Ahmad A, Ahmed W, Alm E, Been F, Bhattacharya P, Blijlevens N, Boshern AB, Brown J, Buttiglieri G, Calabro V, Carducci A, Castiglioni S, Cetecoglou GZ, Chakraborty S, Costa F, Curcio S, De Los Reyes FL, Delgado VJ, Farkas K, Fernandez-Cas i X, Gerba C, Gernot D, Giorno R, Gonzalez R, Haramote E, Harris A, Holden PA, Islam MT, Jones DL, Kaspryzk-Horder B, Kitajima M, Kotlarz N, Kumar M, Kuroda K, La Rosa G, Malpe F, Mautus M, McLellan SL, Medema G, Meschke JS, Mueller J, Newton RJ, Nilsson D, Noble RT, Van Nuijs A, Poccia J, Perkins TA, Pickering AJ, Rose J, Sanchez G, Smith A, Stadler L, Stauber C, Thomas K, Van Der Voom T, Wigginton K, Zhu K, Bibby K: Wastewater-based epidemiology: global collaborative to maximize contributions in the fight against COVID-19. Environ Sci Technol 2020, 54:7754–7775.

www.sciencedirect.com
11. Rocha AY, Verbyla ME, Sant KE, Madenov N: Detection, quantification, and simplified wastewater surveillance model of SARS-CoV-2 RNA in the tijuana river. ACS EST Water 2022: xxxx.

12. Masindi V, Foteinis S, Nduli K, Akinwekomi V: Systematic assessment of SARS-CoV-2 virus in wastewater, rivers and drinking water – A catchment-wide appraisal. Sci Total Environ 2021:145298.

13. Yang S, Dong Q, Li S, Cheng Z, Kang X, Ren D, Xu C, Zhou X, Liang P, Sun L, Zhao J, Jiao Y, Han T, Liu Y, Qian Y, Liu Y, Huang X, Qu J: Persistence of SARS-CoV-2 RNA in wastewater after the end of the COVID-19 epidemic. J Hazard Mater 2022:138588.

Recent article on the persistence of SARS-CoV-2 in wastewater. It suggests that the SARS-CoV-2 RNA could persist in wastewater for more than two weeks, which would demonstrate that WWTPs could act as reservoirs of the virus.

14. Silverman AI, Boehm AB: Systematic review and meta-analysis of the persistence and disappearance of human coronaviruses and their viral surrogates in water and wastewater. Environ Sci Technol Lett 2020, 7:544–553.

This article represents a systematic review and meta-analysis of the decay rate constants (k) of enveloped viruses from 12 families (including several Coronaviridae) in conventional and viral waters and wastewater to evaluate their decay kinetics and identify the environmental and virus characteristics that influence k.

15. Blivins A, Greaves J, Fischer R, Yinda KC, Ahmed W, Kitajima M, Munster VJ, Bibby K: Persistence of SARS-CoV-2 in water and wastewater. Environ Sci Technol Lett 2020, 7:937–942.

This article is one of the first in estimating the persistence of SARS-CoV-2 infectivity and RNA signal tap water and wastewater.

16. Peccia J, Zulli A, Brackney DE, Grubaugh ND, Kaplan EH, Ca-CoV-2 infectivity and RNA signal tap water and wastewater. This article is one of the first in estimating the persistence of SARS-CoV-2 infectivity and RNA signal tap water and wastewater.

17. Arora S, Nag A, Sethi J, Rajvanshi J, Saxena S, Shrivastava SK, Gupta AB: Surveillance for the persistence of SARS-CoV-2 genome as a useful wastewater based epidemiology (WBE) tracking tool in India. Water Sci Technol 2020, 82:2823–2836.

18. Ampuero M, Valenzuela S, Valiente-Echeverria F, Soto-Rifo R, Barriga GP, Chnaiderman J, Rojas C, Guajardo-Leiva S, Díez B, Mileto D, Maresca M, Longobardi C, Mancon A, Romeri F: Persistence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci Total Environ 2020, 140911.

19. Maidana-Kulesza MN, Poma HR, Sanguino-Jorquera DG, Reyes SI, del Milagro Saíd-Adamo M, Remis MM, Guiterrez-Cacciabue D, Cristobal HA, Cruz MC, Gonzalez MA, Rajal VB: Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. medRxiv 2021.

20. de Oliveira LC, Torres-Franco AF, Lopes BC, da Silva Santos BSA, Costa EA, Costa MS, Reis MT, Melo MC, Polizzi RB, Teixeira MM, Mota CR: Viability of SARS-CoV-2 in river water and wastewater at different temperatures and solids content. Water Res 2021:117002.

21. Mejarova E: Preliminary study of SARS-CoV-2 occurrence in wastewater in the Czech Republic. Int J Environ Res Publ Health 2020, 17:5508.

22. Mejer WG, Fletcher NF: Decay of infectious SARS-CoV-2 and surrogates in aquatic environments. Water Res 2021:117090.

This important study determined the decay rates of viable infectious SARS-CoV-2 and SARS-CoV-2 RNA in river and seawater. They also investigated the effect of sterilized samples, and suggest that the use of certain surrogate markers for the persistence of SARS-CoV-2 in the environment is limited.

23. Hokajärvi A-M, Rytkönen A, Tiwari A, Kauppinen A, Oikarinen S, Lehto K-M, Kankaanpää A, Gunnar T, Al-Hello H, Blomqvist S: First environmental evidence for the presence of SARS-CoV-2 RNA in wastewater in Finland. Sci Total Environ 2021:145274.

This review provides a general introduction of coronavirus in aquatic environments and its persistence.

24. Shcherchan SP, Shahin S, Ward LM, Tandukar S, Aw TG, Schmitz B, Ahmed W, Kitajima M: First detection of SARS-CoV-2 RNA in wastewater in North America: a study in Louisiana, USA. Sci Total Environ 2020:140821.
based epidemiology and risk assessment. Water Res 2021: 117183.

40. Bertrand I, Schijven JF, Sánchez G, Wyn-Jones P, Ottoson J, Morin T, Muscielo M, Verani M, Nasser A, de Roda Husman AM, Myrmel M, Sellwood J, Cook N, Gantzer C: The impact of temperature on the inactivation of enteric viruses in food and water: a review. J Appl Microbiol 2012, 112:1059–1074.

41. Scheller C, Krebs F, Minkner R, Astner I, Gil-Moles M, Wätzig H: Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis 2020, 41:1137–1151.

42. Abduljauwad SN, Habib T, Ahmed H-R: Nano-clays as potential pseudo-antibodies for COVID-19. Nanoscale Res Lett 2020, 15: 173.

43. Lee YJ, Kim JH, Choi BS, Choi JH, Jeong YI: Characterization of severe acute respiratory syndrome coronavirus 2 stability in multiple water matrices. J Kor Med Sci 2020, 35:1–5.

44. Matson MJ, Yinda CK, Seifert SN, Bushmaker T, Fischer RJ, van Doremalen N, Lloyd-Smith JO, Munster VJ: Effect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputum. Emerg Infect Dis 2020, 26:2276–2278.