Monogamy relations of concurrence for any dimensional quantum systems

Xue-Na Zhu1, Xianqing Li-Jost2,3, and Shao-Ming Fei3,4
1School of Mathematics and Statistics Science, Ludong University, Yantai 264025, China
2School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China
3Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
4School of Mathematical Sciences, Capital Normal University Beijing 100048, China

We study monogamy relations for arbitrary dimensional multipartite systems. Monogamy relations based on concurrence and concurrence of assistance for any dimensional $m_1 \otimes m_2 \otimes ... \otimes m_N$ quantum states are derived, which give rise to the restrictions on the entanglement distributions among the subsystems. Besides, we give the lower bound of concurrence for four-partite mixed states. The approach can be readily generalized to arbitrary multiparticle systems.

PACS numbers: 03.67.Mn,03.65.Ud

I. INTRODUCTION

Quantum entanglement \cite{1, 2} is an essential feature of quantum mechanics, which distinguishes the quantum from classical world. As one of the fundamental differences between quantum entanglement and classical correlations, a key property of entanglement is that a quantum system entangled with one of other systems limits its entanglement with the remaining others. In multipartite quantum systems, there can be several inequivalent types of entanglement among the subsystems. The amount of entanglement for different types might not be directly comparable each other. The monogamy relation of entanglement is a way to characterize the different types of entanglement distribution. The monogamy relations give rise to the structures of entanglement in the multipartite setting. Monogamy is also an essential feature allowing for security in quantum key distribution \cite{7}. Monogamy relations are not always satisfied by any entanglement measures. Although the concurrence and entanglement of formation do not satisfy such monogamy inequalities themselves, it has been shown that the αth ($\alpha \geq 2$) power of concurrence and αth ($\alpha \geq \sqrt{2}$) power entanglement of formation for N-qubit states do satisfy the monogamy relations \cite{8}.

Nevertheless, the monogamy relations have been established for qubit systems. For high dimensional systems, it has been shown that the monogamy inequalities can be violated \cite{9, 10}. In this paper, toward the open problem of monogamy properties in higher dimensional systems, we study the monogamy relations in any $m_1 \otimes m_2 \otimes ... \otimes m_N$ dimensional systems. Based on concurrence and concurrence of assistance we present the monogamy inequalities for pure states and the restrictions on entanglement distribution for any dimensional mixed quantum states.

II. MONOGAMY RELATIONS OF CONCURRENCE

The concurrence for a bipartite $2 \otimes d$ pure state $|\psi\rangle_{AB}$ is given by \cite{11, 13}

\[
C(|\psi\rangle_{AB}) = \sqrt{2(1 - \text{Tr}(\rho_A^2))},
\]

(1)

where ρ_A is the reduced density matrix by tracing over the subsystem B, $\rho_A = Tr_B(|\psi\rangle_{AB}\langle\psi|)$. The concurrence is extended to mixed states $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$, $0 \leq p_i \leq 1$, $\sum_i p_i = 1$, by the convex roof extension,

\[
C(\rho_{AB}) = \min_{\{p_i, |\psi_i\rangle\}} \sum_i p_i C(|\psi_i\rangle),
\]

(2)

where the minimum is taken over all possible pure state decompositions of ρ_{AB}.

For a tripartite state $|\psi\rangle_{ABC}$, the concurrence of assistance is defined by \cite{14}

\[
C_a(|\psi\rangle_{ABC}) \equiv C_a(\rho_{AB}) = \max_{\{p_i, |\psi_i\rangle\}} \sum_i p_i C(|\psi_i\rangle),
\]

(3)

for all possible ensemble realizations of $\rho_{AB} = Tr_C(|\psi\rangle_{ABC}\langle\psi|) = \sum_i p_i |\psi_i\rangle_{AB}\langle\psi_i|$. If $\rho_{AB} = |\psi\rangle_{AB}\langle\psi|$ is a pure state, one has $C(|\psi\rangle_{AB}) = C_a(\rho_{AB})$.

For an $m \otimes n \otimes l$ quantum state $|\psi\rangle_{ABC}$, the concurrence $C(|\psi\rangle_{A|BC})$ of the state $|\psi\rangle_{ABC}$, viewed as a bipartite state with partitions A and BC, satisfies the Coffman-Kundu-Wooters inequality when $m = n = l = 2$ \cite{12}. In fact, for qubit systems, in \cite{11,10} it has been shown that the concurrence of a state $\rho_{A|B_1 \ldots B_{N-1}}$ satisfies a more general monogamy inequality,

\[C_A^{\alpha}(B_1,B_2 \ldots B_{N-1}) \geq C_{AB_1} + C_{AB_2} + \ldots + C_{AB_{N-1}}, \]

where $\rho_{AB} = Tr_{B_1 \ldots B_{i-1}B_{i+1} \ldots B_{N-1}}(\rho_{A|B_1 \ldots B_{N-1}})$, $C_{AB_1} = C(\rho_{A|B_1 \ldots B_{N-1}})$, $C_{AB_i} = C(\rho_{AB_i})$, $i = 1, \ldots, N-1$, and $\alpha \geq 2$. The dual inequality in terms of the concurrence of assistance for N-qubit pure state $|\psi\rangle_{A|B_1 \ldots B_{N-1}}$ has the form \cite{12},

\[C^2(|\psi\rangle_{A|B_1 \ldots B_{N-1}}) \leq \sum_{i=1}^{N-1} C^2(\rho_{AB_i}). \]

For higher dimensional systems, such relations are no longer satisfied in general.

First, for any dimensional case, we have the following Lemma.

Lemma 1 For any quantum states ρ_{AB}, we have

\[C_a(\rho_{AB}) \leq \min \left\{ \sqrt{2[1 - Tr(\rho_A^2)]}, \sqrt{2[1 - Tr(\rho_B^2)]} \right\}, \quad (4) \]

where $\rho_A = Tr_B(\rho_{AB})$ and $\rho_B = Tr_A(\rho_{AB})$.

[Proof] Assume that $\rho_{AB} = \sum_i p_i |\psi_i\rangle_i \langle \psi_i|$ is the optimal decomposition of $C_a(\rho_{AB})$. Then

\[C_a^2(\rho_{AB}) = \left(\sum_i p_i C(|\psi_i\rangle_i \langle \psi_i|) \right)^2 \]

\[\leq \sum_i p_i C^2(|\psi_i\rangle_i \langle \psi_i|) \]

\[= \sum_i p_i 2[1 - Tr((\rho_i^t)^2)] \]

\[\leq 2[1 - Tr(\rho_t^2)], \]

where $t \in \{A, B\}$, the first inequality is due to the Cauchy-Schwarz inequality $\sum_i x_i y_i \leq \sqrt{\sum_i x_i^2} \sqrt{\sum_i y_i^2}$ with $x_i = \sqrt{p_i} C(|\psi_i\rangle_i \langle \psi_i|)$. The second inequality holds due to the convex property of $Tr(\rho_t^2)$ \cite{18,19}, see Eq. (9) of \cite{19}. \[\Box\]

From the Lemma we have the following monogamy like relations satisfied by the concurrence and the concurrence of assistance.

Theorem 1 For any $m \otimes n \otimes l$ pure quantum state $|\psi\rangle_{ABC}$, we have

\[C^2(|\psi\rangle_{A|BC}) \geq x C_a^2(\rho_{AB}) + (1 - x) C_a^2(\rho_{AC}). \quad (5) \]

where $\rho_{AB} = Tr_C(\rho_{ABC})$, $\rho_{AC} = Tr_B(\rho_{ABC})$, $\rho_{ABC} = |\psi\rangle_{ABC}\langle \psi|$, and $x \in [0, 1]$.

[Proof] For any $m \otimes n \otimes l$ pure state $|\psi\rangle_{ABC}$, one has, $\rho_{AB} = Tr_C(\rho_{ABC})$ and $\rho_{AC} = Tr_B(\rho_{ABC})$. Therefore we have

\[C^2(|\psi\rangle_{A|BC}) \]

\[= 2(1 - Tr(\rho_A^2)) \]

\[= 2x(1 - Tr(\rho_A^2)) + (2 - 2x)(1 - Tr(\rho_A^2)) \]

\[\geq x C_a^2(\rho_{AB}) + (1 - x) C_a^2(\rho_{AC}), \]
where the first inequality is due to the inequality $C_a(\rho_{AB}) \leq \sqrt{2(1 - Tr(\rho_A^2))}$ for any bipartite quantum state ρ_{AB}. \square

As an example, let us consider the $2 \otimes 2 \otimes 3$ pure state
\begin{equation}
|\psi\rangle_{ABC} = \frac{1}{\sqrt{3}}(|000\rangle + |111\rangle + |\varphi^+\rangle|2\rangle),
\end{equation}
where $|\varphi^+\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$ is one of the Bell states. One has $C_a(\rho_{AB}) = 1$ and $C_a(\rho_{AC}) = \frac{2\sqrt{2}}{3}$. According to theorem 1, we have $C(|\psi\rangle_{A|BC}) \geq \frac{\sqrt{2+7}}{3}$ with $0 \leq x \leq 1$. The state $|\psi\rangle_{ABC}$ saturates the Eq. (1) with $x = 1$.

Theorem 1 shows that the entanglement contained in the pure quantum states $|\psi\rangle_{A|BC}$ is related to the sum of the concurrence of assistance for bipartite states ρ_{AB} and ρ_{AC}. Similarly, we have also the following conclusion.

Theorem 2 For any $m \otimes n \otimes l$ mixed quantum state $\rho_{A|B_1B_2}$, we have
\begin{equation}
C^2(\rho_{A|B_1B_2}) \geq xC^2(\rho_{AB_1}) + (1 - x)C^2(\rho_{AB_2}),
\end{equation}
where $\rho_{AB_1} = Tr_{B_2}(\rho_{AB_1B_2})$, $i \neq j$, $i, j \in \{1, 2\}$, and $x \in [0, 1]$.

[Proof] We assume that $\rho_{A|B_1B_2} = \sum_i p_i |\psi_i\rangle_{A|B_1B_2} \langle \psi|$, is the optimal decomposition of $C(\rho_{A|B_1B_2})$.
\begin{align}
C(\rho_{A|B_1B_2}) & = \sum_i p_i C(|\psi_i\rangle_{A|B_1B_2} \langle \psi|) \\
& \geq \sum_i p_i \sqrt{xC^2(\rho_{AB_1}^i) + (1 - x)C^2(\rho_{AB_2}^i)} \\
& \geq \left(x \left(\sum_i p_i C(\rho_{AB_1}^i) \right)^2 + (1 - x) \left(\sum_i p_i C(\rho_{AB_2}^i) \right)^2 \right)^{\frac{1}{2}} \\
& \geq \sqrt{xC^2(\rho_{AB_1}) + (1 - x)C^2(\rho_{AB_2})}.
\end{align}

Where the first inequality is due to theorem \square and $C_a(\rho) \geq C(\rho)$, the relation $\left(\sum_j (\sum_i x_{ij})^2 \right)^{\frac{1}{2}} \leq \sum_i (\sum_j x_{ij}^2)^{\frac{1}{2}}$ has been used in the second inequality. \square

Theorem 2 gives the monogamy relation of concurrence for any dimensional quantum systems. To show how the monogamy inequality \square works, let us consider the following example. Consider the pure totally antisymmetric state on a three-qutrit system Ref. $\cite{3}$: $|\psi\rangle = \frac{1}{\sqrt{6}}(|123\rangle - |132\rangle + |231\rangle - |213\rangle + |312\rangle - |321\rangle)$. One has $C(|\psi\rangle_{1|23}) = \frac{2\sqrt{3}}{3}$ and $C(\rho_{12}) = C(\rho_{13}) = 1$. Therefore one gets that $C^2(|\psi\rangle_{1|23}) = \frac{4}{3} < 2 = C^2(\rho_{12}) + C^2(\rho_{13})$, namely, the usual relation $C^2(|\psi\rangle_{1|23}) \geq C^2(\rho_{12}) + C^2(\rho_{13})$ is no longer satisfied. However, our monogamy relation \square is valid, $C^2(|\psi\rangle_{1|23}) = \frac{2}{3} \geq 1 = xC^2(\rho_{12}) + (1 - x)C^2(\rho_{13})$ for any $x \in [0, 1]$.

Theorem 1 and Theorem 2 can be readily generalized to arbitrary dimensional multipartite systems, and we have the following corollaries.

Corollary 1 For any $m_1 \otimes m_2 \otimes \ldots \otimes m_N$ pure quantum state $|\psi\rangle_{A|B_1\ldots B_{N-1}}$, we have
\begin{equation}
C^2(|\psi\rangle_{A|B_1\ldots B_{N-1}}) \geq \sum_{i=1}^{N-1} p_i C_a^2(\rho_{AB_i}),
\end{equation}
where $\rho_{AB_i} = Tr_{B_{i+1}\ldots B_{N-1}}(|\psi\rangle_{A|B_1\ldots B_{N-1}} \langle \psi|)$, $p_i \geq 0$ and $\sum_i p_i = 1$.

Corollary 2 For any $m_1 \otimes m_2 \otimes \ldots \otimes m_N$ mixed quantum state $\rho_{A|B_1\ldots B_{N-1}}$, we have
\begin{equation}
C^2(\rho_{A|B_1\ldots B_{N-1}}) \geq \sum_{i=1}^{N-1} p_i C^2(\rho_{AB_i}),
\end{equation}
where $\rho_{AB_i} = Tr_{B_{i+1}\ldots B_{N-1}}(\rho_{AB_i\ldots B_{N-1}})$, $p_i \geq 0$ and $\sum_i p_i = 1$.
III. LOWER BOUND OF CONCURRENCE FOR 4-PARTITE QUANTUM SYSTEMS

In this section, we study the concurrence of 4-partite quantum states based on [7]. We present analytical expressions of lower bound of concurrence based on the monogamy inequality [7].

Theorem 3 For any \(m \otimes n \otimes p \otimes q \) pure quantum state \(|\psi\rangle_{A_1A_2B_1B_2}\), we have

\[
C^2(|\psi\rangle_{A_1A_2B_1B_2}) \geq \sum_{i=1}^{n} T_{ij} C^2(\rho_{A_iB_j}),
\]

(11)

where \(\rho_{A_iB_j} = Tr_{A_1A_2B_1B_2}(I/\{A_iB_j\})(\rho_{A_1A_2B_1B_2}) \) with \(i, j \in \{1, 2\} \), \(T_{11} = x_1y_1 + x_2y_1, T_{12} = x_2y_2 + x_2y_1, T_{21} = x_1y_1 + x_4y_1, T_{22} = x_2y_2 + x_4y_2 \), with \(\sum_{i=1}^{4} x_i = 1 \) and \(\sum_{i=1}^{2} y_i = 1, t \in \{1, 2, 3, 4\} \).

Proof For any \(m \otimes n \otimes p \otimes q \) quantum pure state \(|\varphi\rangle\langle\varphi|_{A_1A_2B_1B_2}\), one has

\[
C^2 (|\varphi\rangle\langle\varphi|_{A_1A_2B_1B_2}) = 2x_1(1 - Tr(\rho^2_{A_1A_2})) + 2x_2(1 - Tr(\rho^2_{A_2}))
\]

\[
+ (2x_3)(1 - Tr(\rho^2_{B_2})) + (2 - 2 \sum_{i=1}^{3} x_i)(1 - Tr(\rho^2_{B_1}))
\]

\[
\geq x_1 C^2(\rho_{A_1A_2B_1}) + x_2 C^2(\rho_{A_1A_2B_2})
\]

\[
+ x_3 C^2(\rho_{B_1B_2A_1}) + (1 - 3 \sum_{i=1}^{3} x_i) C^2(\rho_{B_1B_2A_2}),
\]

where the first inequality is due to Lamme 1. By using \(C^2(\rho_{AB|C}) \geq C^2(\rho_{AB|C}) \) and Theorem 1, we obtain the theorem 3. \(\Box \)

For example, taking \(x_i = \frac{1}{4}, i = 1, 2, 3, 4 \), and \(y_{ti} = \frac{1}{2}, i = 1, 2 \) for all \(t = 1, 2, 3, 4 \), we have

\[
C^2(|\psi\rangle_{A_1A_2B_1B_2}) \geq \sum_{i=1}^{n} T_{ij} C^2(\rho_{A_iB_j}).
\]

In particular, for the \(2 \otimes 2 \otimes 2 \otimes 2 \) pure quantum states, we have \(T_{11} = x_1 + x_2, T_{12} = x_2 + x_4, T_{21} = x_1 + x_4 \) and \(T_{22} = x_2 + x_4 \) due to \(C^2(\rho_{123}) \geq C^2(\rho_{12}) + C^2(\rho_{13}) \).

Theorem 4 For any \(m \otimes n \otimes p \otimes q \) mixed quantum state \(\rho_{1234} \), we have

\[
C^2(\rho_{1234}) \geq \frac{1}{4} \sum_{i \neq j} L_{ij} C^2(\rho_{ij}),
\]

(12)

where \(I = \{1, 2, 3, 4\}, \rho_{ij} = Tr_{I/(i,j)}(\rho_{1234}), L_{ij} = p_{ij} + p_{ji} + \sum_{m=1}^{4}(x_{m}^{ij} + x_{m}^{ji}), \sum_{i \notin I} p_{ii} = 1 \) with \(t = 1, 2, 3, 4 \) and \(p_{ii} \geq 0, \sum_{m=1}^{4} x_{m}^{ij} = 1 \) with \(i, j, k, l \) = 1 and \(x_{m}^{ij} \geq 0 \).

Proof For any \(m \otimes n \otimes p \otimes q \) quantum state \(|\psi\rangle\), the concurrence of \(|\psi\rangle\) is given by,

\[
C^2(|\psi\rangle_{1234}) = \frac{1}{4}(C^2_{1234}(|\psi\rangle) + C^2_{2134}(|\psi\rangle) + C^2_{3124}(|\psi\rangle) + C^2_{4123}(|\psi\rangle)
\]

\[
+ C^2_{1234}(|\psi\rangle) + C^2_{2134}(|\psi\rangle) + C^2_{3124}(|\psi\rangle) + C^2_{4123}(|\psi\rangle)).
\]

Since \(C^2_{1234}(|\psi\rangle_{1234}) \geq \sum_{t=1}^{3} p_{tt} C^2(\rho_{ij}), \) and \(C^2(|\psi\rangle_{i123}) \geq T_{i1j1} C^2(\rho_{i1j1})+T_{i1j2} C^2(\rho_{i1j2})+T_{i2j1} C^2(\rho_{i2j1})+T_{i2j2} C^2(\rho_{i2j2}) \), where \(T_{i,j,q} \ (p, q \in \{1, 2\}) \) has the same express in (11), we obtain (12). \(\Box \)
Example: We consider the $2 \otimes 2 \otimes 2 \otimes 3$ mixed quantum state $\rho_{1234} = \frac{1}{16}I_{16} + t|\psi\rangle\langle\psi|$, where $|\psi\rangle\langle\psi| = \frac{1}{2}(|0000\rangle + |0012\rangle + |1100\rangle + |1112\rangle)$. We have $C(\rho_{12}) = \max\{0, \frac{3t-1}{2}\}$. By our theorem 3 the lower bound of concurrence is $C(\rho_{1234}) \geq C(\rho_{12})$, where we have taken into account that

$$C^2(\rho_{12|34}) \geq \frac{1}{2}C^2(\rho_{14|2}) + \frac{1}{2}C^2(\rho_{12|3}) \geq C^2(\rho_{12})$$

and

$$C^2(\rho_{13|24}) \geq \frac{1}{2}C^2(\rho_{13|2}) + \frac{1}{2}C^2(\rho_{12|4}) \geq C^2(\rho_{12}).$$

Fig. 1 shows that this lower bound can detect the entanglement of ρ_{1234} for $t > \frac{1}{3}$.

IV. CONCLUSION AND REMARK

Entanglement monogamy is a fundamental property of multipartite entanglement. We have presented a kind of monogamy relations satisfied by the concurrence and the concurrence of assistance for any pure quantum states, and monogamy relations of concurrence for arbitrary dimensional quantum systems. Moreover, we have obtained the lower bound of concurrence for four-partite quantum systems based on the monogamy relations. This approach for lower bound of concurrence can be readily generalized to arbitrary multipartite systems.

Acknowledgments We thank Ming Li, Huilai Qin and Tinggui Zhang for helpful discussions. This work is supported by NSFC under numbers 11675113 and 11605083.

[1] F. Mintert, M. Kuś, and A. Buchleitner, Concurrence of Mixed Bipartite Quantum States in Arbitrary Dimensions, Phys. Rev. Lett. 92, 167902 (2004).
[2] K. Chen, S. Albeverio, and S. M. Fei, Concurrence of Arbitrary Dimensional Bipartite Quantum States, Phys. Rev. Lett. 95, 040504 (2005).
[3] H. P. Breuer, Separability criteria and bounds for entanglement measures, J. Phys. A: Math. Gen. 39, 11847 (2006).
[4] H. P. Breuer, Optimal Entanglement Criterion for Mixed Quantum States, Phys. Rev. Lett. 97, 080501 (2006).
[5] J. I. de Vicente, Lower bounds on concurrence and separability conditions, Phys. Rev. A 75, 052320 (2007).
[6] C. J. Zhang, Y. S. Zhang, S. Zhang, and G. C. Guo, Optimal entanglement witnesses based on local orthogonal observables, Phys. Rev. A 76, 012334 (2007).
[7] M. Pawlowski, Security proof for cryptographic protocols based only on the monogamy of Bell's inequality violations, Phys. Rev. A 82, 032313 (2010).
[8] X. N. Zhu, and S. M. Fei, Entanglement monogamy relations of qubit systems, Phys. Rev. A 90, 024304 (2014).
[9] Y. Ou, Violation of monogamy inequality for higher-dimensional objects, Phys. Rev. A 75, 034305 (2007).
[10] J. S. Kim, A. Das, and B. C. Sanders, Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity, Phys. Rev. A 79, 012329 (2009).
[11] A. Uhlmann, Fidelity and concurrence of conjugated states, Phys. Rev. A 62, 032307 (2000).
[12] P. Rungta, V. Bužek, C. M. Caves, M. Hillery, and G. J. Milburn, Universal state inversion and concurrence in arbitrary dimensions, Phys. Rev. A 64, 042315 (2001).
[13] S. Albeverio, and S. M. Fei, A Note on Invariants and Entanglements, J Opt B: Quantum Semiclass Opt. 3, 223 (2001).
[14] C. S. Yu, and H. S. Song, Entanglement monogamy of tripartite quantum states, Phys. Rev. A 77, 032329 (2008).
[15] V. Coffman, J. Kundu, W. K. Wootters, Distributed entanglement, Phys. Rev. A 61, 052306 (2000).
[16] T. J. Osborne, and F. Verstraete, General Monogamy Inequality for Bipartite Qubit Entanglement, Phys. Rev. Lett. 96, 220503 (2006).
[17] G. Goura, S. Bandyopadhyayb, and B. C. Sandersc, Dual monogamy inequality for entanglement, J. Math. Phys. 48, 012108 (2007).
[18] J.I. de Vicente, Further results on entanglement detection and quantification from the correlation matrix criterion, J. Phys. A 41, 065309 (2008).
[19] M. Li, and S. M. Fei, Measurable bounds for entanglement of formation, Phys. Rev. A 82, 044303 (2010).