A FEASIBLE CENTRAL LIMIT THEOREM FOR REALISED
COVARIATION OF SPDES IN THE CONTEXT OF
FUNCTIONAL DATA

FRED ESPEN BENTH

Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316,
OSLO, Norway

DENNIS SCHROERS

Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316,
OSLO, Norway

ALMUT E. D. VERAART

Department of Mathematics, Imperial College London, 180 Queen’s Gate, London,
SW7 2AZ, UK

Abstract. This article establishes an asymptotic theory for volatility estimation in an infinite-dimensional setting. We consider mild solutions of semilinear stochastic partial differential equations and derive a stable central limit theorem for the semigroup adjusted realised covariation (SARCV), which is a consistent estimator of the integrated volatility and a generalisation of the realised quadratic covariation to Hilbert spaces. Moreover, we introduce semigroup adjusted multipower variations (SAMPV) and establish their weak law of large numbers; using SAMPV, we construct a consistent estimator of the asymptotic covariance of the mixed-Gaussian limiting process appearing in the central limit theorem for the SARCV, resulting in a feasible asymptotic theory. Finally, we outline how our results can be applied even if observations are only available on a discrete space-time grid.

Keywords: central limit theorem, high-frequency estimation, functional data, SPDE, power variations, volatility, C_0-semigroups, Hilbert-Schmidt operators

1. Introduction

Estimation of volatility is of great importance for capturing the second-order structure of a random dynamical system. For spatio-temporal stochastic processes, volatility can be interpreted as a process of square-roots of instantaneous covariance operators and, thus, takes a pivotal role for describing smooth features underlying...
the dynamics. In this work, we develop a feasible asymptotic distribution theory for the estimation of the integrated volatility operator \(\int_0^t \Sigma_s ds := \int_0^t \sigma_s \sigma_s^* ds \) corresponding to a stochastic partial differential equation (SPDE) in a separable Hilbert space \(H \) of the form

\[
dY_t = (AY_t + \alpha_t)dt + \sigma_t dW_t,
\]

based on discrete observations of its mild solution. Here \(A \) is the generator of a strongly continuous semigroup \(S := (S(t))_{t \geq 0} \) on \(H \), \(W \) is a cylindrical Wiener process, \(\alpha \) and \(\sigma \) are the drift- and volatility process respectively (see section 2 below for a detailed specification). Such SPDEs constitute a well-established framework for describing spatio-temporal dynamics with applications in, e.g., finance, physics, biology, meteorology and mechanics (cf. the textbooks Da Prato & Zabczyk (2014), Peszat & Zabczyk (2007), Liu & Röckner (2015) or Mandrekar & Gawarecki (2011)).

Our theory is based on the semigroup adjusted realised covariation \(\text{SARCV}_n \), given for \(\Delta_n := \frac{1}{n} \) for \(n \in \mathbb{N} \) by

\[
\text{SARCV}_n^t := \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \hat{\Delta}_i^n Y_{\cdot}^\otimes 2 := \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} (\hat{Y}_i^{\Delta_n} - S(\Delta)Y_{i-1}^{\Delta_n})^\otimes 2,
\]

which was shown to be a consistent estimator of the integrated volatility \(\int_0^t \Sigma_s ds \) in Benth et al. (2022). Here \(h^\otimes 2 = \langle h, \cdot \rangle h \) denotes the usual tensor product. In this paper we consider the more involved task of proving, under suitable regularity conditions, the functional central limit theorem

\[
\Delta_n^{-\frac{1}{2}} \left(\text{SARCV}_n^t - \int_0^t \Sigma_s ds \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \Gamma_t),
\]

where \(\xrightarrow{\mathcal{L}} \) stands for the stable convergence in law as a process in the Skorokhod space \(\mathcal{D}([0, T], \mathcal{H}) \). \(\mathcal{N}(0, \Gamma_t) \) is a multivariate continuous mixed Gaussian process with values in \(\mathcal{H} \), the space of Hilbert-Schmidt operators on \(H \), and with a covariance operator \(\Gamma_t \), called the asymptotic variance. The above central limit theorem is not feasible, as the asymptotic variance is a priori unknown, so we also derive a consistent estimator for \(\Gamma \). As this can be done conveniently by appealing to laws of large numbers for certain adjusted power and bipower variations, we also provide consistency results for general semigroup adjusted realised multipower variations \(\text{SAMPV}_n \) given by

\[
\text{SAMPV}_n^t(m_1, \ldots, m_k) := \sum_{i=1}^{\lfloor t/\Delta_n \rfloor-k+1} \bigotimes_{j=1}^k \hat{\Delta}_{i+j-1}^{\Delta_n} Y_{\cdot}^\otimes m_j.
\]

We refer to the preliminaries below for the general tensor power notation.

Compared with the finite-dimensional theory, the semigroup adjustment in the realised covariation and the multipower variations might seem unusual. Nevertheless, the results presented here should be understood as a direct generalisation of the theory for multivariate semimartingales to the setting of semilinear SPDEs as in [11]. This is because the semigroup adjustment just becomes relevant if \((Y_t)_{t \in [0, T]} \) is not a semimartingale, which is a purely infinite-dimensional issue. In fact, if \(H \) is finite-dimensional, \((Y_t)_{t \in [0, T]} \) is automatically a semimartingale and dropping the semigroup adjustment in (2) still yields a consistent estimator, namely, the
quadratic covariation

\[(4) \quad RV_t^n = \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} (Y_i \Delta_n - Y_{(i-1)} \Delta_n)^{\otimes 2}. \]

One can equivalently think of choosing the semigroup to equal the identity operator on \(H \) (i.e. \(S \equiv I \)) for the sake of the limit theorems and move the part of the (in this case) strong solution belonging to the original generator \(A \) in equation (1) into the drift \(\alpha \).

For over two decades, there have been many contributions to the asymptotic theory for stochastic volatility estimation in a finite-dimensional set-up. These include the articles by Barndorff-Nielsen & Shephard (2002, 2003, 2004), Andersen et al. (2003) and Jacod (2008), amongst many others, and the textbooks by Jacod & Protter (2012) and Aït-Sahalia & Jacod (2014), focusing on the semimartingale set-up. Moreover, recently, attention has also turned towards finite-dimensional volatility estimation in the context when the observed process is not necessarily a semimartingale, see e.g. Corcuera et al. (2006), Barndorff-Nielsen et al. (2011), Barndorff-Nielsen et al. (2013), Corcuera et al. (2013), Corcuera et al. (2014) and Granelli & Veraart (2019), Passeggeri & Veraart (2019).

There are two recent strands of research that are related to the infinite-dimensional case: during the last decade, some effort went into the generalisation of ARCH and GARCH models for functional data, appearing at a possibly high frequent rate in Hörmann et al. (2013), Aue et al. (2017), Cerovecki et al. (2019), Sun & Yu (2020) and Kühnert (2020). At the same time, a lot of recent research has been devoted to the intricate problem of estimating volatility based on observations of finite-dimensional realisations of second-order stochastic partial differential equations (cf. Bibinger & Trabs (2020), Chong (2020), Chong & Dalang (2020), Bibinger & Trabs (2019), Hildebrandt & Trabs (2021), Altmeyer & Reiß (2021), Cialenco & Kim (2022), Cialenco & Huang (2020) to mention some). We refer to Cialenco (2018) for a survey. In that sense, volatility estimation has been approached either discretely in time or discretely in space. So in contrast to the high research activity in both of these areas, to the best of the authors’ knowledge, there appear to be no results at the intersection that allow making inference on an underlying smooth spatio-temporal volatility structure like we do here. Such results, however, may be desirable in many situations. We discuss some applications and relevant types of data in the following subsection.

The presentation of our results is divided into five sections, where after a short consideration on data and some brief preliminaries following this introduction, we present a detailed discussion on limit theorems and applications of the \(SARCV \) in Section 2. There we added a corresponding feasible limit theory as well (accounting for the unknown random covariance structure in the basic central limit theorem for this estimator) in Subsection 2.2. A discussion about the convergence behaviour of the naïve quadratic variation is added in Subsection 2.3. Afterwards, we outline, how the limit theory can be applied in the case of discrete observations in time and space in Section 2.4. Section 3 addresses the laws of large numbers for the general semigroup adjusted multipower variations \(SAMPV(m_1, ..., m_k) \). Section 4 outlines the proofs of the limit theorems, which are given in full length in an appendix of supplementary material. We summarise and discuss the results with a conclusion in Section 5.
1.1. **Considerations on data.** As the $SARCV$ and the $SAMPV$ take into account the Hilbert space-valued data $(Y_{i\Delta_n}, i = 1, \ldots, \lfloor t/\Delta_n \rfloor)$, the theory presented here is part of the realm of *functional data analysis*. Functional data, which are usually sampled discretely, are often smoothed in order to obtain an element in some suitable function space. In our case, this means that practically every datum $Y_{i\Delta_n}$ should be considered as a smoothed version of discretely sampled data. Assuming that data are of high frequency in the spatial dimension as well, one can obtain fully feasible consistency results and central limit theorems for the integrated volatility operators from our results (see Section 2.4 for how this can be done for a regular sampling grid). This means, however, that (at least locally when estimating functionals of the integrated volatility) we need to have dense samples in both space and time.

Taking into account the effort that goes into the development of volatility estimation in the case of sampling the solution of an SPDE at a fixed finite number of points in space and a high frequent rate in time, it might be worthwhile underlining the following: the wording “high frequent” can be misleading, as this is primarily a matter of scale. For instance, in financial forward and futures markets, where one wants to capture price variations for contracts with times-to-maturity of more than a year, intra-daily patterns of variation might, for some purposes, not be as insightful as e.g., intra-monthly ones. Another example is meteorological data, where in several regions we find a considerable number of weather stations measuring for instance wind, temperature or rainfall at fixed time intervals such as every hour. This leads to a reasonable volume of spatio-temporal data for a week or a month rather than a day. Moreover, reducing volatility estimation to techniques that allow making inference based on fixed multivariate samples of the SPDE might make it hard to capture spatial features like slope and curvature induced by the dynamics of neighbouring stations via the asymptotic analysis. Dynamics that are dependent on this kind of *derivative information* are of course not just relevant to meteorological applications but are for instance considered important to describe the dynamics of term structure models in finance (c.f. Cont (2005)). Smooth features of the volatility operator can be conveniently accessed in the functional data framework we elaborate here and derivative information are inherent in the estimator itself (due to the adjustment).

On the other hand, in contrast to possibly prevalent perception, there are intraday high-frequency financial data that should eventually be considered as functional. One example can be found in the modern structure of intraday energy markets. In the European intraday energy markets, participants can continuously trade contracts for energy delivery each day (from late afternoon till midnight) for all 96 quarter-hours of the day ahead. Interpreting this as a discretisation of the curve of all potential forward contracts of the next day, this can, due to no-arbitrage arguments, be considered as a semimartingale in a Hilbert space of functions. We underline that our results are new also in the semimartingale case $S = I$, leading to an infinite-dimensional theory for realised covariation of H-valued semimartingales. Arguably, in that way, it becomes possible to estimate components of the recently treated infinite-dimensional stochastic volatility models (c.f. Cox et al. (2020, 2021), Benth & Simonsen (2018), Benth & Harang (2021), Benth & Sgarra (2021)).

Preliminaries and Notation. Throughout this work, H, is a separable Hilbert space. The corresponding inner product and norm are denoted by $\langle \cdot, \cdot \rangle_H$ and $\| \cdot \|_H$.

and the identity operator on \(H \) by \(I_H \), where we will drop the \(H \)-dependence most of the time and simply write \(\langle \cdot, \cdot \rangle \), \(|| \cdot || \) and \(I \). If \(G \) is another separable Hilbert space, \(h \in H \) and \(q \in G \), we write \(L(G, H) \) for the space of bounded linear operators from \(G \) to \(H \) and \(L(H) := L(H, H) \). We write \(|| \cdot ||_{op} \) for the operator norm on these spaces. \(L_{HS}(G, H) \) denotes the Hilbert space of Hilbert-Schmidt operators from \(G \) into \(H \), that is \(B \in L(G, H) \) such that

\[
|| B ||^2_{L_{HS}(U, H)} := \sum_{n=1}^{\infty} || B e_n ||^2 < \infty,
\]

for an orthonormal basis \((e_n)_{n \in \mathbb{N}}\) of \(G \). If \(G = H \), we write \(\mathcal{H} := L_{HS}(H, H) \). The operator \(h \otimes g := \langle h, \cdot \rangle g \) is a Hilbert-Schmidt (and even nuclear) operator from \(H \) to \(G \). Moreover, we shortly write \(h^{\otimes p} = h \otimes (h \otimes (\cdots \otimes (h \otimes h))) \) and \(\bigotimes_{j=1}^{k} h_j := h_1 \otimes \cdots \otimes h_k := h_1 \otimes (\cdots \otimes (h_{k-1} \otimes h_k)) \). We write recursively \(\mathcal{H}^2 = \mathcal{H} = L_{HS}(H, H) \) and \(\mathcal{H}^m = L_{HS}(H, \mathcal{H}^{m-1}) \), for \(m > 2 \). Thus, \(\mathcal{H}^m \) is the space of operators spanned by the orthonormal basis \((e_j)_{j=1}^{\infty},(e_{jm})_{j=1}^{\infty} \) for an orthonormal basis \((e_j)_{j \in \mathbb{N}}\) of \(H \) with respect to the Hilbert-Schmidt norm. As \(\mathcal{H}^m \) is isometrically isomorphic to the space \(L_{HS}(\mathcal{H}^p, \mathcal{H}^q) \) if \(p+q = m \) and \(p, q \geq 2 \) (and \(L_{HS}(H, \mathcal{H}^q) \) or \(L_{HS}(\mathcal{H}^p, H) \) if \(p \) or \(q \) equal to 1), we will alternate between the notations throughout the paper. For instance, if \(m \) is even, \(\mathcal{H}^m \) can be identified with the space \(L_{HS}(\mathcal{H}^{\frac{m}{2}}, \mathcal{H}^{\frac{m}{2}}) \), which is why we can speak without loss of generality of symmetric operators on these spaces. Recall moreover that

\[
(5) \quad \Sigma_t := \sigma_t \sigma_t^* \quad \forall t \in [0, T].
\]

We will also need the notation \(\Sigma^S_{t,n} := S \left((i \Delta_n - s) \right) \Sigma_s S \left((i \Delta_n - s)^* \right) \) for \(s \in ((i-1)\Delta_n, i\Delta_n] \). We also need different concepts of convergence of stochastic processes. Recall that a sequence of random variables \((X_n)_{n \in \mathbb{N}}\) defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and with values in a Polish space \(E \) converges stably in law to a random variable \(X \) defined on an extension \((\Omega', \mathcal{F}', \mathbb{P}')\) of \((\Omega, \mathcal{F}, \mathbb{P})\) with values in \(E \), if for all bounded continuous \(f : E \to \mathbb{R} \) and all bounded random variables \(Y \) on \((\Omega, \mathcal{F})\) we have \(\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)] \) as \(n \to \infty \), where \(\mathbb{E} \) denotes the expectation with respect to \(\mathbb{P} \). If, for a Hilbert space-valued process \(X^n \), we have that it converges stably in law as a process in the Skorokhod space \(D([0, T]; H) \), we write \(X^n \overset{\text{st}}{\to} X \). Here and throughout we always assume the space \(D([0, T]; H) \) to be endowed with the classical Skorokhod topology, making it a Polish space (c.f. for instance chapter VI in [Billingsley (1999)]). Moreover, by \(X^n \overset{\text{u.c.p}}{\to} X \) we mean convergence uniformly on compacts in probability, i.e. for all \(\epsilon > 0 \) it is \(\mathbb{P}[\sup_{t \in [0,T]} |X^n(t) - X(t)| > \epsilon] \to 0 \) for \(T > 0 \).

2. Limit theorems for the \(\text{SARCV} \)

Throughout this work we fix \((Y_t)_{t \in [0, T]}\) for \(T > 0 \) to be the mild solution of the SPDE \((\text{H})\), i.e. \(Y \) is a continuous adapted stochastic process defined on a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})\) taking values in the separable Hilbert space \(H \) and is given by the stochastic Volterra process

\[
(6) \quad Y_t = S(t)Y_0 + \int_0^t S(t-s)\alpha_s ds + \int_0^t S(t-s)\sigma_s dW_s, \quad t \in [0, T].
\]

Here, \(S := (S(t))_{t \geq 0} \) is a strongly continuous semigroup on \(H \) generated by \(\mathcal{A} \) and \(W \) is a cylindrical Wiener process potentially on another separable Hilbert
space U (with covariance operator I_U). Moreover, α is an almost surely Bochner integrable adapted stochastic process with values in H and σ is a Hilbert-Schmidt operator-valued process that is stochastically integrable with respect to W, i.e. for $\Omega_T := [0, T] \times \Omega$

$$
\sigma \in \left\{ \Phi : \Omega_T \rightarrow L_{HS}(U, H) : \Phi \text{ predictable and } \mathbb{P}\left[\int_0^T \|\Phi(s)\|_{L_{HS}(U, H)}^2 ds < \infty \right] = 1 \right\}
$$

(c.f. for instance Chapter 2.5 in Liu & Röckner (2015) for the definition of the stochastic integral in this context). Both coefficients α and σ can in principle be state (or even path) dependent, provided that there is a mild solution of the form \((6)\) to the equation. We refer to \((Y_t)_{t \in [0, T]}\) as a mild Itô process.

We present first our result on the asymptotic behaviour of the semigroup adjusted realised covariation (SARCV), as it is the most important example of the (semigroup adjusted) power variations. The law of large numbers for general multipower variations is postponed to the next section.

2.1. Infeasible central limit theorems for the SARCV. As it was shown in Benth et al. (2022), the law of large numbers needs no further assumption on Y\footnote{There are two minor differences with respect to the limit theory established in Benth et al. (2022): First, the driver W was assumed to have a covariance that is of trace class. However, considering the stochastic integral of a Hilbert-Schmidt operator-valued process with respect to a cylindrical Wiener noise or the stochastic integral of a process with values in $L_{HS}(Q^{1/2}U, H)$ with respect to the corresponding trace-class (Q-)Wiener process in U, does not make a difference. The stochastic integral can (on an extension of the probability space) in both cases be translated into one or the other, due to the martingale representation theorems (c.f. Section 2.2.5 in Mandrekar & Gawarecki (2011)). Second, the drift was assumed to be almost surely square-integrable. Here, in this paper, we do not aim to derive a rate of convergence via the laws of large numbers and are in that regard able to drop these conditions.}

Theorem 2.1. For a mild Itô process Y of the form \((6)\), we have

$$
\text{SARCV}_n \overset{u.c.p.}{\longrightarrow} \left(\int_0^t \Sigma_s ds \right)_{t \in [0, T]}.
$$

The derivation of a corresponding central limit theorem, that is, asymptotic normality of

$$
\tilde{X}_n^t := \text{SARCV}_n^t - \int_0^t \Sigma_s ds := \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} (\tilde{\Delta}_n Y)^{\otimes 2} - \int_0^t \Sigma_s ds,
$$

is more involved. First of all, already in finite dimensions some further assumptions have to be imposed, which is why we give an analogue of the fairly mild Assumption 5.4.1(i) from Jacod & Protter (2012) here:

Assumption 1. The coefficients α and σ satisfy the following local integrability condition:

$$
\mathbb{P}\left(\int_0^T \|\alpha_s\|_H^2 + \|\sigma_s\|_{L_{HS}(U, H)}^2 ds < \infty \right) = 1.
$$

The law of large numbers, Theorem 2.1, is very general, as there are no additional assumptions imposed on Y. However, the subtle difference to the convergence of realised variation in the finite-dimensional case is hidden in the rate of convergence. Even if Assumption 1 holds, the speed of convergence may become arbitrarily slow
and might not be of magnitude $O_p(\sqrt{n})$ anymore, where O_p denotes boundedness in probability (c.f. Example 2.6 below). The latter is however a crucial condition to obtain a central limit theorem. In order to overcome this issue, we need to impose further assumptions that account for the regularity.

For this purpose, we introduce the notion of Favard spaces. Here, for $\gamma \in (0, 1)$ the γ-Favard space F^γ_γ is defined by

$$F^\gamma_\gamma = F^\gamma_\gamma (H) := \left\{ h \in H : \|h\|_{F^\gamma_\gamma (N)} := \sup_{t \in [0,N]} \|t^{-\gamma} (I - S(t)) h\| < \infty, \forall N > 0 \right\}.$$

As $D(A) \subset F^\gamma_\gamma$, these spaces always form dense subsets of H and become Banach spaces when equipped with the norm $\sup_{N>0} \| \cdot \|_{F^\gamma_\gamma (N)}$ as long as the semigroup has a negative growth bound (c.f. Engel & Nagel (1999), Chapter II.5). An example of practical importance for a subset of a $1/2$-Favard space are the evaluation functionals in a Sobolev space (this is outlined further in Section 2.4).

For functionals in the $1/2$-Favard space, we have the following central limit theorem in the weak operator topology:

Theorem 2.2. Define the covariance operator process Γ_t for $t \in [0,T]$ on \mathcal{H} by

$$\Gamma_t B := \int_0^t \Sigma_s (B + B^*) \Sigma_s \, ds, \quad B \in \mathcal{H}.$$

Let $B \in \mathcal{H}$ be an operator with finite-dimensional range of the form $B = \sum_{i=1}^K \mu_i h_i \otimes g_i$ for $h_i, g_i \in F^\gamma_\gamma, \mu_i \in \mathbb{R}$ for $i = 1, ..., K, K \in \mathbb{N}$ and let Assumption 2 hold. Then

$$\left(\Delta_n^{-n/2} (\tilde{X}_t^n , B) \right) \overset{D}{\longrightarrow} (\mathcal{N}(0, (\Gamma_t B, B)))_{t \in [0,T]},$$

where the limiting process on the right is, conditionally on \mathcal{F}, a continuous centered Gaussian process with independent increments defined on a very good filtered extension $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ of $(\Omega, \mathcal{F}, \mathbb{P})$.

Remark 2.3. Recall that according to Jacod & Protter (2012, Sec.2.4.1) a probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ is an extension of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, if $\tilde{\Omega} = \Omega \times \Omega'$ and $\tilde{\mathcal{F}} = \mathcal{F} \otimes \mathcal{F}'$ for another measurable space (Ω', \mathcal{F}') and $\tilde{\mathbb{P}}[d\omega, d\omega'] = \mathbb{P}[d\omega] \mathbb{Q}[\omega, d\omega']$, where $\mathbb{Q}[\omega, d\omega']$ is a transition probability from (Ω, \mathcal{F}) to (Ω', \mathcal{F}'). If there is a filtration on $(\mathcal{F}_t)_t$ with respect to \mathcal{F} and a filtration $(\tilde{\mathcal{F}}_t)_t$ with respect to $\tilde{\mathcal{F}}$, such that $\mathcal{F}_t \subset \tilde{\mathcal{F}}_t$, then the extension is called a filtered extension. If in addition for all t we have

$$\omega \mapsto \int_{\Omega'} 1_A(\omega, \omega') \mathbb{Q}(\omega, d\omega')$$

is \mathcal{F}_t measurable for all $A \in \tilde{\mathcal{F}}_t$, then the filtered extension is called a very good filtered extension (as it preserves for instance the semimartingale property with respect to $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ to the extended space).

In order to derive a stable central limit theorem for the SARCV with respect to the Hilbert-Schmidt norm, we need to impose regularity assumptions on the volatility process itself, namely:

Assumption 2. One of the two following conditions is valid:
Theorem 2.5. Let

\[\lim_{t \to 0} \sup_{x \in [0,T]} t^{\frac{1}{2}} (I - S(t)) \sigma_x \|_{L_{op}} ds < \infty; \]

Remark 2.4. Observe that if the semigroup has negative growth bound and, thus, \(F^S_t \) is a Banach space, Assumption (i) and (ii) can be rewritten as

(i) \(\sigma \in L^2 \left([0,T], F^S_t \left(L^2(\Omega, L(U,H)) \right) \right) \),

(ii) \(\mathbb{P} \left[\int_0^T \sup_{t \in [0,T]} t^{\frac{1}{2}} (I - S(t)) \sigma_x \|_{L_{op}} ds < \infty \right] = 1. \)

Now we state the associated central limit theorem.

Theorem 2.5. Let \(\Gamma \) be as in Theorem 2.2. Under Assumptions 1 and 2 we have that

\[(\Delta_n^{\frac{1}{2}} \sqrt{n} X^n_t)_{t \in [0,T]} \overset{d}{\to} (\mathcal{N}(0, \Gamma_t))_{t \in [0,T]}, \]

where the limiting process on the right is, conditionally on \(\mathcal{F} \), a continuous centered \(\mathcal{H} \)-valued Gaussian process with independent increments defined on a very good filtered extension \((\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathcal{F}}_t, \hat{\mathbb{P}}) \) of \((\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P}) \).

Assumption 2 is a sharp regularity criterion for the validity of the central limit theorem in the Hilbert-Schmidt norm:

Example 2.6. Assumption 2 is sharp in the sense that for all \(\hat{H} < \frac{1}{2} \), we can always find a deterministic and constant volatility \(\sigma \), such that

\[\sup_{t \in [0,T]} \| t^{-\frac{1}{2}} (I - S(t)) \sigma \|_{L_{op}(U,H)} < \infty, \]

but convergence in distribution of \(\sqrt{n} X^n_t \) cannot take place, even with respect to the weak operator topology. Such a specification can be done for instance in the following way: Take \(H = L^2([0,2]), (S(t))_{t \geq 0} \) the nilpotent semigroup of left-shifts, such that for \(x \in [0,2], t \geq 0 \) it is \(S(t)f(x) = \mathbb{I}_{[0,2]}(x + t)f(x + t) \) and \(\sigma = e \otimes X \), where \(e \in H \) such that \(\| e \| = 1 \) and \(X \) is an appropriately chosen path of a rough fractional Brownian motion. That is, \(X(x) = B^\hat{H}_x(\omega) \) for a fractional Brownian motion \((B^\hat{H}_x)_{x \geq 0} \) with Hurst parameter \(\hat{H} < \frac{1}{2} \), defined on another probability space \((\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbb{P}}) \) and \(\omega \in \hat{\Omega} \) is such that \(B^\hat{H}_x(\omega) = \hat{H}_t(\omega) \) is \(\hat{H} \)-Hölder continuous and guarantees divergence of \(\sqrt{n} X^n_t \). Clearly, \(B^\hat{H}_x(\omega) \) is globally \(\hat{H} \)-Hölder continuous on \([0,2] \) and we can find a \(C > 0 \) such that

\[\| (I - S(t)) \sigma \|_{L_{op}(U,H)}^2 \leq \int_0^2 \left(\frac{B^\hat{H}_x(\omega) - B^\hat{H}_{x+1}(\omega)}{t^\frac{1}{2}} \right)^2 dx + \int_{2-t}^2 \left(\frac{B^\hat{H}_x(\omega)}{t^\frac{1}{2}} \right)^2 dx \leq C. \]

Hence, we have that (i) holds. However, it is intuitively clear, that the lower \(\hat{H} \) is chosen, the worse the impact on the regularity of \(Y \) is, which eventually leads to divergence of \(\sqrt{n} X^n_t \) for the rough case \(\hat{H} < \frac{1}{2} \). We give a detailed verification of this counterexample as well as how to choose the appropriate \(\omega \) in the supplementary material.
In order to account for such irregularities, one often scales the increments in a particular way and still obtains a feasible limit theory, such as was done for second-order stochastic partial differential equations in Bibinger & Trabs (2020) or Chong (2020) and for Brownian semistationary processes in Corcuera et al. (2006), Barndorff-Nielsen et al. (2011), Barndorff-Nielsen et al. (2013), Corcuera et al. (2013), Corcuera et al. (2014) and Granelli & Veraart (2019), Passeggeri & Veraart (2019). However, as we know from Theorem 2.2 that \(\sqrt{n} \tilde{X}_n(t) \), if it is projected onto regular enough functionals, is an asymptotically normal estimator, we cannot hope to derive a central limit theorem in the Hilbert-Schmidt (or even weak) topology by such a weighting scheme.

To get an intuition about the regularity that is induced by Assumption 2, observe the following.

Remark 2.7. Assumption 2(i) (and 2(ii)) is an assumption on the regularity of \(Y \) in space and time: In fact, suppose that the volatility has bounded second moment, that is, \(\sup_{s \in [0, T]} E[\|\sigma_s\|^2_{L_{\text{HS}}(U, H)}] < \infty \). The assumption then says that the stochastic convolution is weakly mean square \(\frac{1}{2} \)-regular in time, as for each \(h \in H \) and \(0 \leq u < t \leq T \)

\[
E \left[\left(\int_0^t S(t-s)\sigma_s dW_s - \int_0^u S(u-s)\sigma_s dW_s, h \right)^2 \right]^{\frac{1}{2}}
\leq \left(\int_0^u E \left[\| (S(t-u) - I)S(u-s)\sigma_s \|^2 \right] ds \right)^{\frac{1}{2}}
+ \left(\int_u^t E \left[\| (S(t-s)\sigma_s) \|^2 \right] ds \right)^{\frac{1}{2}}
= O \left((t-u)^{\frac{1}{2}} \right) .
\]

(10)

If we are in a reproducing kernel Hilbert space (i.e. a Hilbert space of functions, say over an interval in \(\mathbb{R} \) such that the evaluation functionals \(\delta_x \) are continuous) and the semigroup is the shift semigroup, it is easy to see that the assumption also gives mean square \(\frac{1}{2} \)-regularity in space: To see this, we write \(\delta_x \) for the evaluation functionals in \(H \) by \(\delta_x \) and observe that

\[
E \left[\left(\int_0^t S(t-s)\sigma_s dW_s(x) - \int_0^t S(t-s)\sigma_s dW_s(y) \right)^2 \right]^{\frac{1}{2}}
= E \left[\left(\delta_0 \left(\int_0^t S(t-s)\sigma_s dW_s \right) \right)^2 (x - y)^{\frac{1}{2}} \right]
= O(|x-y|^{\frac{1}{2}})
\]

by Itô’s formula for \(x > y \). Combining (10) and (11) we find that the random field \((t,x) \mapsto \int_0^t S(t-s)\sigma_s dW_s(x) \) has regularity \(\frac{1}{2} \) in space and in time.

Remark 2.8. If the volatility has finite second moment and is contained in the domain of the generator \(A \) of the semigroup (and we assume the drift to be zero for convenience), it is well known that the stochastic convolution is a strong solution
to the SPDE
\[dY_t = A Y_t dt + \sigma_t dW_t, \quad Y_0 = 0, \ t \in [0, T], \]
(which is especially fulfilled if \(A \) is continuous), c.f. (Mandrekar & Gawarecki 2011, Theorem 3.2). This yields that \(Y_t \) is of the form
\[Y_t = \int_0^t A Y_s ds + \int_0^t \sigma_s dW_s, \]
such that we can reinterpret \(Y_t \) to be a mild Itô process of the form (6) with the semigroup to be the identity for the sake of the limit theory. In that way, Assumption 2 is trivially fulfilled and the realised covariation \(RV^n_t \) (c.f. (1)) is consistent and asymptotically mixed normal.

At the same time, the adjustment with the initial semigroup (generated by \(A \)) works out as well, since the semigroup is Lipschitz-continuous on the range of the volatility due to the mean value theorem. Thus, \(\text{SARCV}^n_t \) converges in probability to the same limit and has the same asymptotic normal distribution as \(RV^n_t \). However, the assumption that the volatility is in the domain of the generator \(A \) or the existence of a strong solution is oftentimes too strong and the asymptotic equality of the semigroup adjusted and the nonadjusted variation is not in general fulfilled (c.f. Section 2.3).

Sometimes, we might be interested in estimating the operator
\[\int_0^T \Sigma_s^T ds := \int_0^T S(T-s)\Sigma_s S(T-s)^\ast ds. \]

In the case that the drift and the volatility are independent of the driving Wiener process this is the conditional covariance of the process \(Y_t \). I.e. we have
\[(Y_T - Y_0)_{\alpha, \sigma} \sim N \left(\int_0^T S(T-s)\alpha_s ds, \int_0^T \Sigma_s^T ds \right). \]

In that regard, it is helpful to exploit that the process
\[Y_t := S(T) Y_0 + \int_0^t S(T-s)\alpha_s ds + \int_0^t S(T-s)\sigma_s dW_s \]
\[= \tilde{Y}_0 + \int_0^t \tilde{\alpha}_s ds + \int_0^t \tilde{\sigma}_s dW_s, \quad t \in [0, T] \]
is a semimartingale on \(H \), where \(\tilde{Y}_0 := S(T) Y_0 \), \(\tilde{\alpha}_t = S(T-t) \alpha_t \) and \(\tilde{\sigma}_t = S(T-t) \sigma_t \). Hence, the associated nonadjusted realised covariation is a consistent and asymptotically normal estimator of \(\int_0^T \Sigma_s^T ds \). Luckily, in the presence of the functional data \((Y_{i\Delta_n}, i = 1, \ldots, [T/\Delta_n]) \), we can reconstruct the quadratic variation corresponding to \(Y^T_t \) by
\[Y^T_{i\Delta_n} - Y^T_{(i-1)\Delta_n} = S(T - i\Delta_n) Y_{i\Delta_n} - S(T - (i-1)\Delta_n) Y_{(i-1)\Delta_n}. \]
This yields the following limit theorems, which do not need Assumption 2

Corollary 2.9. We have
\[\sum_{i=1}^{[T/\Delta_n]} (S(T - i\Delta_n) Y_{i\Delta_n} - S(T - (i-1)\Delta_n) Y_{(i-1)\Delta_n}) \overset{\text{u.c.p.}}{\to} \int_0^T \Sigma_s^T ds \]
and, if Assumption 1 holds, we also have

\[\Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor T/\Delta_n \rfloor} \left(S(T - i\Delta_n)Y_{i\Delta_n} - S(T - (i-1)\Delta_n)Y_{(i-1)\Delta_n} \right)^{\otimes 2} - \int_0^T \Sigma_s^T \, ds \]

\[\overset{\text{L.s.}}{\Rightarrow} \mathcal{N}(0, \int_0^T \Sigma_s^T \Sigma_s \, ds). \]

We next outline how to transform Theorems 2.2 and 2.5 (as well as Corollary 2.9) into feasible results. In their current form, there appears the a priori unknown random covariance of the asymptotic conditional Gaussian law. This asymptotic covariance has to be estimated from the data as well.

2.2. Feasible central limit theorems for the SARCV.

The central limit Theorems 2.2 and 2.5 (and Corollary 2.9) are infeasible in practice, as we do not know the asymptotic variance operator \(\Gamma \) a priori. A consistent estimator of this random operator is given by the difference of the corresponding (semigroup adjusted) fourth power- and the second bipower variation, and therefore it will be possible to derive feasible versions of Theorems 2.2 and 2.5.

For that, we introduce \(\hat{\Gamma}_n \) given by

\[\hat{\Gamma}_n := \Delta_n^{-1} \left(\text{SAMPV}_n^{(4)} - \text{SAMPV}_n^{(2,2)} \right). \]

It can be seen by the following laws of large numbers in Theorems 3.1 and 3.4 that this defines a consistent estimator of \(\Gamma \). I.e., we have in \(\mathcal{H}^4 \)

\[\hat{\Gamma}_n \overset{\text{u.c.p.}}{\Rightarrow} \Gamma \quad \text{as } n \to \infty, \]

provided Assumption 3 holds:

Assumption 3. \(\alpha \) is locally bounded and \(\sigma \) is a càdlàg process w.r.t. \(\| \cdot \|_{L_{HS}(U,H)} \).

This assumption corresponds to Assumption (H) in [Jacod & Protter 2012, p.238]. Due to the next result, the estimator \(\hat{\Gamma}_n \) behaves well in the sense that it remains in the space of covariance operators:

Lemma 2.10. \(\hat{\Gamma}_n \) is a symmetric and positive semidefinite nuclear (and therefore Hilbert-Schmidt) operator.

Proof. That it is a symmetric nuclear operator follows immediately, since it is the difference of two symmetric nuclear operators. Notice that for any real vector \((x_1, \ldots, x_N) \), for some \(N \in \mathbb{N} \), we have

\[0 \leq \sum_{i=1}^{N-1} (x_{i+1} - x_i)^2 = \sum_{i=1}^{N-1} x_{i+1}^2 + \sum_{i=1}^{N-1} x_i^2 - 2 \sum_{i=1}^{N-1} x_{i+1}x_i \leq 2 \left(\sum_{i=1}^N x_i^2 - \sum_{i=1}^{N-1} x_{i+1}x_i \right). \]

Using this elementary inequality, we obtain positive semidefiniteness, since for each \(B \in \mathcal{H} \)

\[\Delta_n \left(\hat{\Gamma}_n B, B \right)_{\mathcal{H}} = \sum_{i=1}^{\lfloor T/\Delta_n \rfloor} \left(\left(\hat{\Delta}_n^i Y \right)^{\otimes 2}, B \right)_{\mathcal{H}}^2
\]

\[- \sum_{i=1}^{\lfloor T/\Delta_n \rfloor - 1} \left(\left(\hat{\Delta}_n^i Y \right)^{\otimes 2}, B \right)_{\mathcal{H}} \left(\left(\hat{\Delta}_n^{i+1} Y \right)^{\otimes 2}, B \right)_{\mathcal{H}}^2. \]

Hence, \(\hat{\Gamma}_n \) is positive semidefinite. \qed
We now give the feasible version of the central limit theorem 2.2:

Corollary 2.11. Let $B \in \mathcal{H}$ be an operator with finite-dimensional range of the form

$$B = \sum_{k=1}^{K} \mu_k h_k \otimes g_k$$

for $h_i, g_i \in F_{1/2}^*$ for $i = 1, \ldots, K, K \in \mathbb{N}$ and let Assumption 3 hold. Then

$$\Delta_n^{-1/2} \left(\bar{X}_n, B \right)_{\mathcal{H}} \overset{L^2}{\to} \mathcal{N}(0,1),$$

conditional on the set $\{(\Gamma, B)_{\mathcal{H}} > 0\} \subseteq \Omega$.

This corollary can be used to find confidence intervals in cases of Hilbert spaces of functions, in which evaluation functionals are in the $1/2$-Favard space. This is the case in Sobolev spaces (c.f. Subsection 2.4).

We also obtain a "feasible" version of Theorem 2.5:

Corollary 2.12. Under Assumptions 2 and 3, we obtain

$$\left(\Delta_n^{-1/2} \bar{X}_n, \bar{\Gamma}_n \right)_{t \in [0,T]} \overset{L^2}{\to} \left(\mathcal{N}(0, \Gamma_t), \Gamma_t \right)_{t \in [0,T]},$$

where we consider the processes in the space $\mathcal{H} \times \mathcal{H}^4$, equipped with the metric

$$d((B_1, \Psi_1), (B_2, \Psi_2)) := \|B_1 - B_2\|_{\mathcal{H}} + \|\Psi_1 - \Psi_2\|_{\mathcal{H}^4}.$$

2.3. Is the semigroup adjustment necessary?

Certainly, in many situations, it would be convenient to use the realised quadratic variation instead of the semigroup adjusted variation. We shall show below when this is possible but start here with an example where the realised co-variation diverges.

Example 2.13. Assume that for an element $e \in H$ such that $\|e\| = 1$ and an H-valued random variable X the volatility takes the simple form

$$\sigma_s = e \otimes S(s) X.$$

Moreover, we assume that there is no drift and $Y(0) = 0$. Moreover, let X (and hence σ_s) be independent on the driving cylindrical Wiener process W (i.e., no so-called leverage effect). The process $\beta_t := \langle e, W_t \rangle$ is well-defined and a one-dimensional standard Brownian motion. We obtain

$$Y_t := \int_0^t S(t-s) \sigma_s dW_s = \beta_t S(t)X \quad \forall t \in [0,T].$$

This simple form can be exploited in order to derive counterexamples for the validity of the law of large numbers and the central limit theorem for the quadratic variation. For that, we introduce two cases:

(i) (counterexample for the law of large numbers) $H = L^2[0,2], X(x) := B_x^H$, where B^H is a fractional Brownian motion with Hurst parameter $H = \frac{1}{4}$ and $(S(t))_{t \geq 0}$ is the (nilpotent) left-shift semigroup given by

$$S(t)f(x) := f(x+t) \mathbb{I}_{[0,2]}(x+t) \quad t \geq 0, x \in [0,2].$$

(ii) (counterexample for the central limit theorem) $H = L^2(\mathbb{R}), X(x) := \mathbb{I}_{[0,1]}(x)$, and $(S(t))_{t \geq 0}$ is the left-shift semigroup given by

$$S(t)f(x) := f(x+t) \quad x,t \geq 0.$$

Observe that in this case Assumptions 1 and 2 are satisfied, such that the central limit theorem 2.5 holds.
We start with the first case and make the following technical observation:

\[
\left\| \sum_{i=1}^{n} ((\mathcal{S}(\Delta_n) - I)Y_{(i-1)}) \right\|^2 = \sum_{i,j=1}^{n} \langle (\mathcal{S}(\Delta_n) - I)Y_{(i-1)}, (\mathcal{S}(\Delta_n) - I)Y_{(j-1)} \rangle_H
\]

\[
= \sum_{i,j=1}^{n} \langle (\mathcal{S}(\Delta_n) - I)Y_{(i-1)}, (\mathcal{S}(\Delta_n) - I)Y_{(j-1)} \rangle_H
\]

\[
\geq \sum_{i=1}^{n} \| (\mathcal{S}(\Delta_n) - I)Y_{(i-1)} \|^4.
\]

One can show, that \(\sum_{i=1}^{n} \langle (\mathcal{S}(\Delta_n) - I)Y_{(i-1)}, (\mathcal{S}(\Delta_n) - I)Y_{(j-1)} \rangle_H \) and hence \(\sum_{i=1}^{n} \| (\mathcal{S}(\Delta_n) - I)Y_{(i-1)} \|^4 \) converge in probability to 0 and that \(\sum_{i=1}^{n} \| (\mathcal{S}(\Delta_n) - I)Y_{(i-1)} \|^4 \) is uniformly integrable. This is a technical exercise, which can be found in the supplementary material. Thus, in the first case, we must necessarily have by Jensen’s inequality

\[
0 = \lim_{n \to \infty} \sum_{i=1}^{n} \mathbb{E} \left[\| (\mathcal{S}(\Delta_n) - I)Y_{(i-1)} \|^4 \right] \geq \lim_{n \to \infty} \sum_{i=1}^{n} \mathbb{E} \left[\| (\mathcal{S}(\Delta_n) - I)Y_{(i-1)} \|^2 \right]^2
\]

\[
= \lim_{n \to \infty} \Delta_n^{2+4\beta} \sum_{i=1}^{n} (i-1)^2 > 0,
\]

which is a contradiction.

We now turn to the second example (ii). In this case both \(\sqrt{n}(RV^n - \int_0^t \Sigma ds) \) and \(\sqrt{n}(SARCV^n - \int_0^t \Sigma ds) \) are uniformly integrable, such that their convergence in distribution implies convergence of their means. This is again a technical exercise and the details can be found in the supplementary material. We observe that

\[
\mathbb{E} \left[RV^n_t - \int_0^t \Sigma ds \right] = \mathbb{E} \left[SARCV^n_t - \int_0^t \Sigma ds \right] + \sum_{i=1}^{[t/\Delta_n]} \mathbb{E} \left[(\mathcal{S}(\Delta_n) - I)Y_{(i-1)} \right] \|^{\otimes 2} \right] .
\]

Normalising by \(\sqrt{n} \) we find that the first summand converges to 0, due to the uniform integrability and the central limit theorem \(\varepsilon \) (i.e. convergence in distribution to a centred random variable). With the notation \(\Delta_n S = S(i\Delta_n) - S((i-1)\Delta_n) \) we find, since \(\mathbb{E} \left[(\mathcal{S}(\Delta_n) - I)Y_{(i-1)} \right] \|^{\otimes 2} \right] = \int_0^{[t/\Delta_n]} \Delta_n S \|^{\otimes 2} \right] \|^{\otimes 2} \right] ds \) that

\[
\left\| \mathbb{E} \left[\sum_{i=1}^{n} (\mathcal{S}(\Delta_n) - I)Y_{(i-1)} \right] \right\|^2 = \sum_{i,j=1}^{n} (i-1)(j-1)\Delta_n^2 \mathbb{E} \left[(\mathcal{S}(\Delta_n) - I)Y_{(i-1)} \right] \right\|^2
\]

\[
\geq \sum_{i=1}^{n} (i-1)^2 \| \Delta_n S \|^{\otimes 2} \right] \|^{\otimes 2} \right] \|^4
\]

\[
= \Delta_n^2 \sum_{i=1}^{n} (i-1)^2 \Delta_n^2.
\]

After normalisation by \(n = (\sqrt{n})^2 \) the expression converges to a positive constant, which verifies that the second case (ii) provides a counterexample for the central limit theorem.

We can, however, impose assumptions on the regularity of the semigroup on the range of the volatility, such that we again obtain a law of large numbers and a
central limit theorem for the realised variations. The assumption for the law of large numbers is given as follows.

Assumption 4. Let almost surely
\[
\lim_{t \to 0} \int_0^T \| t^{-\frac{1}{2}} (I - S(t)) \sigma_s \|_{L_{\text{int}}(U; H)}^2 ds = 0.
\]

Analogously, we obtain a central limit theorem under the following assumption.

Assumption 5. Let almost surely
\[
\lim_{t \to 0} \int_0^T \| t^{-\frac{3}{4}} (I - S(t)) \sigma_s \|_{L_{\text{int}}(U; H)}^2 ds = 0.
\]

We have the following results.

Theorem 2.14.
(i) (Law of large numbers) If Assumption 4 is valid, we have
\[
RV_n \xrightarrow{\text{u.c.p.}} \int_0^t \Sigma_s ds.
\]

(ii) (Central limit theorem) If Assumptions 1 and 5 are valid, we have
\[
\Delta_n^{-\frac{1}{2}} \left(RV_n - \int_0^t \Sigma_s ds \right) \xrightarrow{L^2} N(0, \Gamma_t).
\]

We also have a central limit theorem in the weak operator topology as well as a law of large numbers with mild conditions on the functionals:

Theorem 2.15.
(i) (Law of large numbers) If \(B \in \mathcal{H} \) is of the form \(B = \sum_{i=1}^K \mu_i h_i \otimes g_i \) for \(h_i, g_i \in F_{3/4}^* \) for \(i = 1, \ldots, K, K \in \mathbb{N} \), we have
\[
\langle RV_n, B \rangle_{\mathcal{H}} \xrightarrow{\text{u.c.p.}} \int_0^t \langle \Sigma_s, B \rangle_{\mathcal{H}} ds.
\]

(ii) (Central limit theorem) If \(B \in \mathcal{H} \) is of the form \(B = \sum_{i=1}^K \mu_i h_i \otimes g_i \) for \(h_i, g_i \in F_{3/4}^* \) for \(i = 1, \ldots, K, K \in \mathbb{N} \) and Assumption 7 holds, we have
\[
\langle \Delta_n^{-\frac{1}{2}} \left(RV_n - \int_0^t \Sigma_s ds \right), B \rangle_{\mathcal{H}} \xrightarrow{L^2} N(0, \langle \Gamma_t B, B \rangle_{\mathcal{H}}).
\]

Remark 2.16. At this point, we can give a systematic overview of the validity of the infinite-dimensional limit theorems for mild It\'o processes established in this paper. For the sake of presentation, we assume \(\sigma \) to be deterministic, introduce \(p_n := \int_0^T \| (S(\Delta_n) - I) \sigma_s \|_{\text{op}} ds \) and distinguish cases depending on the rate of \(p_n \) in terms of \(\Delta_n \).

(i) If \(p_n = o(\Delta_n^{\frac{3}{2}}) \), then \(\text{SARCV}_n \) and \(RV_n \) satisfy LLN and CLT.

(ii) If \(p_n = o(\Delta_n^{\frac{1}{2}}) \), then \(RV_n \) satisfies LLN, \(\text{SARCV}_n \) satisfies LLN and CLT.

(iii) If \(p_n = O(\Delta_n^{\frac{3}{2}}) \), then \(\text{SARCV}_n \) satisfies LLN and CLT.

(iv) In general \(\text{SARCV}_n \) satisfies LLN.

Note that "satisfying LLN" (law of large numbers) means convergence to the integrated volatility in probability and "satisfying CLT" (central limit theorem) means asymptotic normality of the normalised estimator. Observe that Example 2.6 yields
that we cannot reduce the regularity in (iii) if we want to guarantee the validity of a general central limit theorem for SARCV\(^n\). Example 2.13 shows that RV\(^n\) must not satisfy a central limit theorem, if \(p_n = o(\Delta_n^{1/2})\) is not valid and underlines the necessity of the adjustment by the semigroup. If even \(p_n = o(\Delta_n^{1/4})\) does not hold, then RV\(^n\) must not even satisfy the LLN.

2.4. Discrete samples in space and time. We discuss in this subsection the case when we have observations which are discrete in space and time. Discretisation in space yields many nontrivial challenges (e.g. owing to asynchronicity or noise). Here we want to outline how our results can be used immediately for estimation of the second-order structure of a continuous mild Itô process and therefore we assume throughout this subsection that we have observations of \(Y\) on a discrete regular space-time grid. That is, we observe

\[Y_{i\Delta_n}(j\Delta_n) := Y_t(x_j), \quad i, j = 1, \ldots, n, \]

where for notational reasons we fix \(T = 1\). We assume that \(H\) is the Sobolev space

\[H^1(0, 1) := \{ h : [0, 1] \to \mathbb{R} : h \text{ is absolutely continuous and } h' \in L^2([0, 1]) \}, \]

equipped with the norm \(\|h\| := h(0)^2 + \int_0^1 (h'(x))^2 dx\). This is a reproducing kernel Hilbert space in which the corresponding reproducing kernel is \(k(x, y) := 1 + \min(x, y)\), c.f. [Berlinet & Thomas-Agnan 2004]. In fact, by virtue of the Riesz-Fréchet representation, the integrated volatility \(\int_0^t \Sigma_s ds\) is uniquely given by the kernel \(q_t(x, y) := \int_0^t (\Sigma_s \delta_x, \delta_y) ds\), where \(\delta_x = \langle k(x, \cdot), \cdot \rangle_{H^1}\) denotes the representation of the evaluation functional in \(x\) in \(H\). We approximate the operator corresponding to such a kernel by estimating the kernel as a function in the \(L^2([0, 1]^2)\)-norm.

We outline the situation here in two cases, which are well suited for discrete data. In the first case, the semigroup is equal to the identity and we thus have a continuous Itô semimartingale in \(H\). This covers suitable frameworks for intraday energy markets, as mentioned in the introductory section. In the second case, \(S\) is the semigroup of left shifts, which for instance correspond to the framework of Heath-Jarrow-Morton term structure models, c.f. [Filipović 2001] for interest rates and [Benth & Krühner 2014] for energy forward markets.

(a) (Semimartingale case) The semigroup is equal to the identity, i.e. we observe a continuous Itô semimartingale

\[Y_t = Y_0 + \int_0^t \alpha_s ds + \int_0^t \sigma_s dW_s. \]

In that case, we define the discretised kernel

\[(\tilde{\Sigma}_t f)(x) := \int_0^1 \tilde{q}_t^n(x, y) f(y) dy, \]

where the kernel \(\tilde{q}\) is given for \(u \in [x_{j_1}, x_{j_1} + \Delta_n]\) and \(v \in [x_{j_2}, x_{j_2} + \Delta_n]\) by

\[\tilde{q}_t^n(u, v) := \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} (Y_{i\Delta_n}(x_{j_1}) - Y_{i\Delta_n}(x_{j_1})) (Y_{i\Delta_n}(x_{j_2}) - Y_{i\Delta_n}(x_{j_2})) \]

\[= (RV_t^n \delta_{x_{j_1}}, \delta_{x_{j_2}}). \]

(b) (Shift case) \(S\) is the semigroup of left shifts, given by

\[S(t)h(x) := \begin{cases} h(x + t), & x + t \leq 1, \\ h(1), & x + t > 1, \end{cases} \]
which forms a strongly continuous semigroup on $H^1(0, 1)$. In this case, we define the discretised kernel $(\hat{\Sigma}_n f)(x) := \int_0^1 \hat{q}_n^u(x, y)f(y)dy$, where the kernel \hat{q} is given for $u \in [x_j, x_{j+1}]$ and $v \in [x_j, x_{j+1}]$ by

$$
\hat{q}_n^u(u, v) := \sum_{i=1}^{[t/\Delta_n]} (Y_{i, \Delta_n}(x_j) - Y_{i, \Delta_n}(x_{j+1})) (Y_{i, \Delta_n}(x_j) - Y_{i, \Delta_n}(x_{j+1}))
$$

$$
= \langle S\operatorname{ARC}V_1^n \delta_{x_{j_1}, \delta_{x_{j_2}}} \rangle.
$$

The proof of the next result makes use of Theorem 2.1 directly and is included in Section D of the Appendix.

Lemma 2.17. In both cases (a) and (b), we have $q_t^n \overset{u.c.p.}{\rightarrow} q_t$ in the space $L^2([0, 1]^2)$.

Certainly, due to the semimartingale property of the processes $(Y_t(x))_{t \in [0, T]}$ in case (a), both the finite-dimensional limit theory outlined in Jacod & Protter (2012) or by appealing to Theorem 2.2 we have the following result.

Corollary 2.18. In case (a), for $x, y > 0$ such that $x + y \in [0, 1]$, we have

$$
\sum_{i=1}^{[t/\Delta_n]} (Y_{i, \Delta_n}(x) - Y_{(i-1)\Delta_n}(x))^2 - \int_0^t \langle \sigma_s, \delta_x \rangle^2 ds \overset{L-\mathbb{P}}{\longrightarrow} \mathcal{N}(0, (\Gamma_1 \delta_{y+x}, \delta_{y+x})_\mathcal{H}).
$$

A feasible version, conditional on the set $\{ (\Gamma_1 \delta_{y+x}, \delta_{y+x})_\mathcal{H} > 0 \} \subseteq \Omega$, is given by

$$
\left(\sum_{i=1}^n (Y_{i, \Delta_n}(y) - Y_{(i-1)\Delta_n}(y))^4 - \sum_{i=1}^{n-1} (Y_{i, \Delta_n}(y) - Y_{(i-1)\Delta_n}(y))^2 (Y_{(i+1)\Delta_n}(y) - Y_{(i)\Delta_n}(y))^2 \right)^{-1}
$$

$$
\times \left(\sum_{i=1}^n (Y_{i, \Delta_n}(y + x) - Y_{(i-1)\Delta_n}(y + x))^2 - \int_0^t \langle \sigma_s, \delta_x \rangle^2 ds \right) \overset{L-\mathbb{P}}{\longrightarrow} \mathcal{N}(0, 1).
$$

However, it is interesting that this result can be recovered in case (b) as well, due to the following observation: In the case that $H = H^1(0, 1)$, the functions $k(\cdot, x)$ for $x \in H$, which are the representations of evaluation functionals, are in the $\frac{1}{2}$-Favard spaces of the shift semigroup and its dual. Namely, we have the following result.

Lemma 2.19. Let $H = H^1(0, 1)$ and S be the left shift semigroup. Then the representations δ_γ, for any $0 < x < 1$, of the evaluation functionals are elements in the Favard class $F_{\gamma/2}^S$ and $F_{\gamma/2}^{\ast}$, but not in the γ-Favard spaces F_{γ}^S and F_{γ}^{\ast} with respect to the shift semigroup for $\gamma > \frac{1}{2}$.

Let us assume for the moment we are in case (b) for the process

$$
Y_t(x) = Y_0(x + t) + \int_0^t \alpha_s(x + t - s)ds + \int_0^t \langle \sigma_s, \delta_{x+t-s} \rangle dW_s.
$$

This leads to the following useful limit theorem, which enables us to find confidence bounds for the process $(\int_0^t \langle \sigma_s, \delta_{x+t-s} \rangle^2 ds)_{t \in [0, T]}$ based on observations $(Y_{i, \Delta_n}(x + y), Y_{i, \Delta_n}(x + y + \Delta_n)), i = 1, \ldots, n$ in case (b):
In particular, we have, for case (b), we have, for Corollary 2.20.

Theorem 2.21 (respectively, Theorem 2.11)

A feasible version, conditional on the set \(\{\langle x, y \rangle \in \mathbb{R}^2 \} \) applies. Hence, it holds that

\[
\sum_{i=1}^{n} (Y_i \Delta_n (y + x) - Y_i(-1) \Delta_n (y + x + \Delta_n))^2 - \int_0^t \langle \sigma_s, \delta_{x+t-s} \rangle^2 ds
\]

\[\xrightarrow{\mathcal{L}} \mathcal{N}(0, (\Gamma_t \delta_t^{\otimes 2}, \delta_t^{\otimes 2})).\]

We remark, that even for case (b), Lemma 2.19 also guarantees that Theorem 2.15 applies. Hence, it holds that

\[
\sum_{i=1}^{n} (Y_i \Delta_n (y + x) - Y_i(-1) \Delta_n (y + x + \Delta_n))^2 \xrightarrow{u.c.p.} \int_0^t \langle \sigma_s, \delta_{x+t-s} \rangle^2 ds.
\]

Therefore, we just need observations \(Y_i \Delta_n (x + y), i = 1, \ldots, n \) to estimate the quadratic variation of the one-dimensional processes \((Y_i(x + y))_{t \in [0,T]} \) consistently.

3. A LAW OF LARGE NUMBERS FOR MULTIPower VARIATIONS

We still have to verify the consistency [14] of the estimator for the asymptotic variance \(\Gamma_t \). Rather than proving only this specific result, we provide general laws of large numbers for power and multipower variations in this section.

For a positive symmetric trace-class operator \(\Sigma \), we define the operator \(\rho_\Sigma(m) \), as the \(m \)th tensor moment of an \(H \)-valued random variable \(U \sim \mathcal{N}(0, \Sigma) \), i.e.,

\[
\rho_\Sigma(m) = \mathbb{E}[U^{\otimes m}].
\]

This operator can be characterised by the identity

\[
\langle \rho_\Sigma(m), h_1 \otimes \ldots \otimes h_m \rangle_{H^m} = \sum_{p \in \mathcal{P}(m)} \prod_{(x,y) \in p} \langle \Sigma h_x, h_y \rangle,
\]

for any collection \(h_1, \ldots, h_m \in H \), where the sum is taken over all pairings over \(\{1, \ldots, m\} \), i.e., all ways to disjointly decompose \(\{1, \ldots, m\} \) into pairs. We denote the set of all these pairings by \(\mathcal{P}(m) \), which is then given as

\[
\mathcal{P}(m) = \left\{ p \subseteq \{1, \ldots, m\}^2 : \#p = \frac{m}{2} \right\} \text{ and if } (x, y), (x', y') \in p,
\]

then \(x, y, x', y' \) are pairwise unequal and \(x < y, x' < y' \).

In particular, \(\rho_\Sigma(m) = 0 \), if \(m \) is odd. For the case of power variations, we need
Theorem 3.4. We have the following law of large numbers for multipower variations:

\[\mathbb{P} \left[\int_0^T \| \alpha_s \| \, ds + \int_0^T \| \sigma_s \| \, ds < \infty \right] = 1. \]

Observe that the assumption above corresponds to Condition 3.4.6 in the finite-dimensional law of large numbers Theorem 3.4.1 in Jacod & Protter (2012). We now state a law of large numbers for semigroup adjusted power variations:

Theorem 3.1. Let \(m \geq 2 \) be a natural number and Assumption \(\mathbf{A}(m) \) be valid. Then

\[\Delta_n^{1 - \frac{m}{2}} SAMPV^n_t(m) \xrightarrow{u.c.p.} \int_0^t \rho_{\Sigma_s}(m) \, ds, \]

with respect to the Hilbert-Schmidt norm on \(\mathcal{H}^m \).

Let us study some examples:

Example 3.2. If \(m = 2 \), there is just one way to decompose \(\{1, 2\} \) into pairs, i.e., \(\mathcal{P}(2) \) consists of the pair \(\{(1, 2)\} \) only. Therefore \(\rho_{\Sigma_s}(2) = \Sigma_s \), and in particular, the law of large numbers reads in this case

\[SARC\nu^n_t(2) \xrightarrow{u.c.p.} \int_0^t \Sigma_s \, ds, \]

which corresponds to the law of large numbers Theorem 2.1.

Example 3.3. If \(m = 4 \), then we find that \(\mathcal{P}(4) \) consists of the pairs \(\{(1, 2), (3, 4)\}, \{(1, 3), (2, 4)\}, \{(1, 4), (2, 3)\} \). Hence, it follows,

\[\langle \rho_{\Sigma_s}(4), h_1 \otimes \ldots \otimes h_4 \rangle_{\mathcal{H}} = \langle \Sigma_s h_1, h_2 \rangle \langle \Sigma_s h_3, h_4 \rangle + \langle \Sigma_s h_1, h_3 \rangle \langle \Sigma_s h_2, h_4 \rangle + \langle \Sigma_s h_1, h_4 \rangle \langle \Sigma_s h_2, h_3 \rangle \]

\[= \langle \Sigma_s \otimes \Sigma_s (\cdot \ast) \Sigma_s, h_1 \otimes h_2 \otimes h_3 \otimes h_4 \rangle. \]

This yields \(\rho_{\Sigma_s}(4) = \Sigma_s (\cdot \ast) \Sigma_s + \Sigma_s \otimes \Sigma_s \).

For a positive symmetric trace class operator \(\Sigma : H \to H \), define for \(m, m_1, \ldots, m_k \in \mathbb{N} \) such that \(m = m_1 + \ldots + m_k \)

\[\rho_{\Sigma_s}^{\otimes k}(m_1, \ldots, m_k) := \bigotimes_{j=1}^k \rho_{\Sigma_s}(m_j), \]

which is an operator in \(\mathcal{H}^m \), such that for any collection \(\{h_j,l\} \subset H, j = 1, \ldots, k \) and \(l = 1, \ldots, m_j \) we have

\[\langle \rho_{\Sigma_s}^{\otimes k}(m_1, \ldots, m_k), \bigotimes_{l=1}^{m_1} h_{1,l} \otimes \ldots \otimes \bigotimes_{l=1}^{m_k} h_{k,l} \rangle_{\mathcal{H}^m} = \prod_{l=1}^k \sum_{j=1}^{m_l} \prod_{p \in \mathcal{P}(m_l)} \langle \Sigma_s h_{x,j}, h_{y,j} \rangle. \]

We have the following law of large numbers for multipower variations:

Theorem 3.4. Let Assumption \(\mathbf{A} \) hold and \(m, m_1, m_2, \ldots, m_k \) be natural numbers such that \(m_1 + \ldots + m_k = m \geq 2 \). Then

\[\Delta_n^{1 - \frac{m}{2}} SAMPV^n(m_1, \ldots, m_k) \xrightarrow{u.c.p.} \left(\int_0^t \rho_{\Sigma_s}^{\otimes k}(m_1, \ldots, m_k) \, ds \right)_{t \in [0, T]}. \]

Let us consider the important example of bipower variation:
Example 3.5 (Bipower variation). Let $m_1 = m_2 = k = 2$, i.e., $m = 4$, and define the bipower variation

\begin{equation}
SAMPV^n_t (2, 2) = \sum_{i=1}^{\lfloor t/\Delta_n \rfloor - 1} \Delta_n^n Y^{\otimes 2} \otimes \tilde{\Delta}^n_{i+1} Y^{\otimes 2}.
\end{equation}

Observe that $\rho_{\Sigma_1}^{\otimes 2} (2, 2) = \rho_{\Sigma_2} \otimes \rho_{\Sigma_2} = \Sigma_n^{\otimes 2}$ by Example \ref{EXP:2.6}.

4. Outline of the Proofs

We will now provide an outline of the proofs of the main results (i.e. Theorems 2.1, 2.2, 2.5, 3.1 and 3.4). The remaining results Theorem 2.14, Theorem 2.15, Lemma 2.17 and Lemma 2.19 as well as Examples 2.6 and 2.13 are consequences of these limit theorems. The detailed proofs are relegated to the supplementary material.

Throughout this section, we let p_N be the projection onto $v^N := \text{lin} \{e_j : j \geq N\}$, for some orthonormal basis $(e_j)_{j \in \mathbb{N}}$ that is contained in $D(A^*)$, and P^2_N denote the projection onto $\text{lin} \{\bigotimes_{l=1}^m e_{k_l} : k_l \geq N\}$ (where m is variable, corresponding to the particular case). In the special case $m = 2$ we write $P^2_N =: P_N$.

First, it is important to note that we can appeal to localised versions of the assumptions of Theorems 2.1, 2.2, 2.5, 3.1 and 3.4. This is a common procedure that follows the arguments presented in Section 4.4.1 in Jacod & Protter (2012), which enables us to prove all theorems stated in this work under such localised assumptions. The localised assumptions essentially impose boundedness instead of almost sure finiteness, in order to ensure the existence of all necessary moments.

The first important observation is the following: By the localisation procedure, we can assume there is a constant A, such that

\begin{equation}
\int_0^T \|\alpha_s\|^{m_2} + \|\sigma_s\|_{L^{m_2}(U,H)}^m ds < A.
\end{equation}

In this case, the $SAMPV$, when projected onto functionals of the form $\bigotimes_{l=1}^m e_{j_l}$, for an orthonormal basis $(e_j)_{j \in \mathbb{N}}$ which is contained in $D(A^*)$, $m \in \mathbb{N}$ and $j_1, ..., j_m \in \mathbb{N}$, corresponds asymptotically to the tensor multipower variations of the semimartingale

\begin{equation*}
S_t := \int_0^t \alpha_s ds + \int_0^t \sigma_s dW_s.
\end{equation*}

We find that

\begin{equation}
\langle SAMPV^n_t (m_1, ..., m_k), \bigotimes_{l=1}^m e_{j_l} \rangle_{\mathcal{H}^m}
= \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \sum_{j=1}^k \langle \bigotimes_{l=1}^m \Delta_n^n S^{\otimes m_{j_l}}, \bigotimes_{l=1}^m e_{j_l} \rangle_{\mathcal{H}^m} + \mathcal{O}_p(\Delta_n^m).
\end{equation}

As the left-hand side of (26) corresponds to a multivariate continuous semimartingale, the limit theorems from Jacod & Protter (2012) are readily available.
Now we come to the second important observation: To this end, define the two sequences

\[a_N(z) := \sup_{n \in \mathbb{N}} \mathbb{E} \left[\int_0^T \| p_N \sigma^S_n \|_H^2 ds \right], \quad b_N(z) := \sup_{n \in \mathbb{N}} \mathbb{E} \left[\int_0^T \| p_N \sigma^S_n \|_{L_{\text{HS}}(U,H)}^2 ds \right], \]

for \(z \leq m, \sigma^S_n = S(i\Delta_n - s)\sigma_s \) and \(\alpha^S_n = S(i\Delta_n - s)\alpha_s \) with \(s \in ((i-1)\Delta_n, i\Delta_n] \), such that

\[\Sigma^S_n := \sigma^S_n (\sigma^S_n)^*. \]

Under [25] both \(a_N(z) \) for \(z \leq m/2 \) and \(b_N(z) \) for \(z \leq m \) converge to 0 as \(N \to \infty \) for \(z \leq m \), respectively \(z \leq \frac{m}{2} \). Moreover, we can find for all \(m \in \mathbb{N} \) a universal constant \(C > 0 \) possibly depending on \(m \), such that

\[\sum_{i=1}^{[t/\Delta_n]} \mathbb{E} \left[\| p_N \tilde{\Delta}_n^i Y \|_n^m \right] \leq C(\Delta_n^{m-1} a_N(m) + \Delta_n^{m-1} b_N(m)) = o(\Delta_n^{m-1}). \]

We notice that the Hilbert-Schmidt structure of the volatility is crucial to establish that \(b_N(z) \) converges to 0.

The proofs for limit theorems in this work follow a similar pattern. For the laws of large numbers:

(LLNa) Show that \((\Delta_n^{-1/2}(I - P_N^m)(SAMPV_t^n - \int_0^t \rho^{\otimes k}(m_1, ..., m_k) ds))_{t \in [0,T]} \) converges for all \(n \in \mathbb{N} \) to 0 as \(n \to \infty \), due to the available limit theory for finite-dimensional semimartingales.

(LLNb) Show that \((\Delta_n^{-1/2} P_N^m SAMPV_t^n)_{t \in [0,T]} \) converges to 0 uniformly in \(n \) and \(t \) as \(N \to \infty \). Standard arguments then imply that \((\Delta_n^{-1/2}(SAMPV_t^n - \int_0^t \rho^{\otimes k}(m_1, ..., m_k) ds))_{t \in [0,T]} \overset{u.c.p.}{\to} 0 \) as \(n \to \infty \).

For the central limit theorems for the SARCV we have

CLTa Show that

\[(\tilde{Z}_{t}^{n,2})_{t \in [0,T]} := \left(\Delta_n^{-1/2} \left(\sum_{i=1}^{[t/\Delta_n]} \tilde{\Delta}^i Y^{\otimes 2} - \int_{(i-1)\Delta_n}^{i\Delta_n} \Sigma^S_n ds \right) \right)_{t \in [0,T]} \]

for \(n \in \mathbb{N} \), which is a sequence of sums of martingale differences, is tight in \(\mathcal{D}([0,T], \mathcal{H}) \) provided that the (localised) Assumption 1 holds.

CLTb Prove that under (localised) Assumption 1 the finite-dimensional distributions \(((I - P_N)\tilde{Z}_{t}^{n,2})_{t \in [0,T]} \) converge to an asymptotically conditional Gaussian process with the covariance \((I - P_N)\Gamma_i (I - P_N) ds \) by virtue of [25] and the finite-dimensional limit Theorem 5.4.2 in [Jacod & Protter 2012].

CLTc In order to prove Theorem 2.5 we appeal to Assumption 2 to show that \(\Delta_n^{-1/2} \sum_{i=1}^{[t/\Delta_n]} \int_{(i-1)\Delta_n}^{i\Delta_n} \Sigma^S_n ds \overset{u.c.p.}{\to} 0 \) and for Theorem 2.2 to the fact that the operator \(B \) has its finite-dimensional range in the 1/2-Favard class of the dual semigroup in order to show that

\[\Delta_n^{-1/2} \sum_{i=1}^{[t/\Delta_n]} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma^S_n - \Sigma_s, B) ds \overset{u.c.p.}{\to} 0. \]
4.1. Comments on the proof of the laws of large numbers. The imposed conditions on the law of large numbers Theorems 3.4.1 and 3.4.4 state that the finite-dimensional multipower variations \(\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} ((I - P_N^m) \otimes_{j=1}^{l} \Delta_{i+j-1} S^{\otimes m_j}) \) fulfill the required conditions of the corresponding laws of large numbers. In the case of power variations, that is under the localised version of Assumption 6, Theorem 3.4.1 in Jacob & Protter (2012) is applicable. For the multipower variations with power variations, that is under the localised version of Assumption 6, Theorem 8.4.1 in Jacob & Protter (2012) applies and yields (LLNa).

Now, observe that the triangle inequality yields
\[
\left\| P_N^m \left(\text{SAMPV}_t^n(m_1, ..., m_k) - \int_0^t \rho_{\Sigma_e}(m_1, ..., m_k)ds \right) \right\|_{\mathcal{H}^m}
\leq \left\| P_N^m \text{SAMPV}_t^n(m_1, ..., m_k) \right\|_{\mathcal{H}^m} + \left\| P_N^m \int_0^t \rho_{\Sigma_e}(m_1, ..., m_k)ds \right\|_{\mathcal{H}^m}.
\]

For a given \(\epsilon > 0 \), after appealing to the inequalities of Markov and Hölder together with (28), one finds that
\[
\sup_{n \in \mathbb{N}} P \left[\sup_{t \leq T} \Delta_n^{1-\varphi} \left\| P_N^m \text{SAMPV}_t^n(m_1, ..., m_k) \right\|_{\mathcal{H}^m} > \epsilon \right] \to 0 \quad \text{as } N \to \infty.
\]

Moreover, by straightforward calculations
\[
\left\| \rho_{\Sigma_e} m \right\|_{\mathcal{H}^m}^2 \leq |P(m)|^2 \left(\sum_{j \geq N} \| \Sigma_{e_j}^2 \| \right)^m,
\]
which converges to 0 as \(N \to \infty \), since \(\Sigma_{e_j}^2 \) is a Hilbert-Schmidt operator. By Markov’s inequality one finds
\[
P \left[\sup_{t \leq T} \left\| P_N^m \int_0^t \rho_{\Sigma_e}(m_1, ..., m_k)ds \right\|_{\mathcal{H}^m} > \epsilon \right] \leq \left\| P(m) \right\|_{\mathcal{H}^m} \epsilon \int_0^T \mathbb{E} \left[\left(\sum_{j \geq N} \| \Sigma_{e_j}^2 \| \right)^{\varphi \left(\frac{2}{m} \right)} \right] ds.
\]
Dominated convergence implies that this converges to 0 as \(N \to \infty \), which shows (LLNb).

4.2. Comments on the proofs of the central limit theorem. In order to show tightness for the sequence \(\hat{Z}^{n,2} \) we appeal to a criterion from Joffe & Metivier 1986, p.35):

Theorem 4.1. Let \(H \) be a separable Hilbert space. The family of laws \((\mathbb{P}_{\psi^n})_{n \in \mathbb{N}} \) of a family of random variables \((\psi^n)_{n \in \mathbb{N}} \) in \(D([0,T], H) \) is tight if the following two conditions hold:

(i) \((\mathbb{P}_{\psi^n})_{n \in \mathbb{N}} \) is tight for each \(t \in [0,T] \) and

(ii) (Aldous’ condition) For all \(\epsilon, \eta > 0 \) there is an \(\delta > 0 \) and \(n_0 \in \mathbb{N} \) such that for all sequences of stopping times \((\tau_n)_{n \in \mathbb{N}} \) with \(\tau_n \leq T - \delta \) we have
\[
\limsup_{n \to \infty} \sup_{n \geq n_0} \mathbb{E}[\| \psi^n_{\tau_n} - \psi^n_{\tau_n + \delta} \|_H > \eta] \leq \epsilon.
\]

After some tedious estimations, one can verify Aldous’ condition for \(\hat{Z}^{n,2} \) under the localised versions of Assumptions. Then it remains to show the spatial tightness, that is tightness of \((\hat{Z}_t^{n,2})_{n \in \mathbb{N}} \) as random sequences in \(\mathcal{H} \) for each \(t \in [0,T] \).

In order to do this, we argue under condition (28) that, without loss of generality,
we can assume $\alpha \equiv 0$. Moreover, we will appeal to the following criterion, which is based on the equi-small tails-characterisation of compact sets in Hilbert spaces and is well known (c.f. Lemma 1.8.1 in van der Vaart & Wellner (1996)):

Lemma 4.2. Let $(Y_n)_{n \in \mathbb{N}}$ be a sequence of random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with values in a separable Hilbert space H and having finite second moments. If for some orthonormal basis $(e_n)_{n \in \mathbb{N}}$ we have

$$
\lim_{N \to \infty} \sup_{n \in \mathbb{N}} \sum_{k \geq N} \mathbb{E} \left[(Y_n, e_k)^2 \right] = 0,
$$

then the sequence $(Y_n)_{n \in \mathbb{N}}$ is tight.

To show the spatial tightness of $\tilde{Z}^{n,2}$, we observe that

$$
\sum_{m,k \geq N} \langle \tilde{Z}^{2,n}_t, e_k \otimes e_m \rangle_H^2 = \| \sum_{i=1}^{[t/\Delta_n]} \tilde{Z}^N_n(i) \|^2_H,
$$

where

$$
\tilde{Z}^N_n(i) := \Delta_n^{-\frac{1}{2}} \left((p_N \Delta_n \psi_t)^{\otimes 2} - \int_{i-1}^{t_i} p_N S(t_i - s) \Sigma_s S(t_i - s)^* p_N ds \right).
$$

Next note that $t \mapsto \psi_t = \int_{(i-1)\Delta_n}^t p_N S(i\Delta_n - s) \sigma_e \cdot dW_s$ is a martingale for $t \in [(i-1)\Delta_n, i\Delta_n]$. From Peszat & Zabczyk (2007, Theorem 8.2, p. 109) we then deduce that the process $(\zeta_t)_{t \geq 0}$ given by $\zeta_t = (\psi_t)^{\otimes 2} - \langle \psi \rangle_t$, where $\langle \psi \rangle_t = \int_{(i-1)\Delta_n}^t p_N S(t_i - s) \Sigma_s \sigma_e S(t_i - s)^* p_N ds$, is a martingale w.r.t. $(\mathcal{F}_t)_{t \geq 0}$. Therefore $\mathbb{E}[\tilde{Z}^N_n(i) | \mathcal{F}_{i-1}] = 0$ and $\mathbb{E}[\langle \tilde{Z}^N_n(i), \tilde{Z}^N_n(j) \rangle_H] = 0$, which yields $\mathbb{E}[\| \sum_{i=1}^{[t/\Delta_n]} \tilde{Z}^N_n(i) \|^2_H] = \sum_{i=1}^{[t/\Delta_n]} \mathbb{E}[\| \tilde{Z}^N_n(i) \|^2_H]$. Moreover, it holds

$$
\mathbb{E}[\| \tilde{Z}^N_n(i) \|^2_H] \leq 4\Delta_n \int_{(i-1)\Delta_n}^{i\Delta_n} \mathbb{E}[\| p_N \sigma_s \|_{L^H(U,H)}^4] ds
$$

such that we ultimately obtain

$$
\sum_{k,l \geq N} \mathbb{E} \left[(\tilde{Z}^{n,2}_t, e_k \otimes e_l)^2 \right] \leq 4 \sup_{n \in \mathbb{N}} \int_0^T \mathbb{E} \left[\| p_N \sigma_s \|_{L^H(U,H)}^4 \right] ds,
$$

which converges to 0 due to (27). Lemma 4.2 yields the claim in (CLTa), i.e., we have shown the following intermediate result:

Theorem 4.3. Let Assumption 4 hold. Then the sequence of processes $(\tilde{Z}^{n,2}_t)_{t \in [0,T]}$ is tight in $\mathcal{D}([0,T], \mathcal{H})$.

We now outline the proof of the stable convergence in law as a process of the finite-dimensional distributions $(\langle \tilde{Z}^{n,2}_t, e_k \otimes e_l \rangle)_{k,l=1,...,d}$. Due to (26) and after some technical calculations, these finite-dimensional distributions can be asymptotically identified with the ones of the quadratic variation of the associated multivariate semimartingale, i.e., the stable limit of $(\langle \tilde{Z}^{n}_t e_k, e_l \rangle)_{k,l=1,...,d}$ is the same as the one of

$$
\left(\Delta_n^{-\frac{1}{2}} \sum_{i=1}^{[t/\Delta_n]} \left(\langle \Delta_n S, e_k \rangle \langle \Delta_n S, e_l \rangle - \int_{(i-1)\Delta_n}^{i\Delta_n} \langle \Sigma_s e_k, e_l \rangle ds \right) \right)_{k,l=1,...,d}.
$$
The latter is a component of the difference of realised quadratic covariation and the quadratic covariation of the d-dimensional continuous local martingale $S_t^d = \langle (S_t, e_1), \ldots, (S_t, e_d) \rangle$. Therefore, $\langle (\hat{Z}_t^n e_k, e_l) \rangle_{k=1,\ldots,d}$ converges by Theorem 5.4.2 from [Jacod & Protter 2012] stably as a process to a continuous (conditional on \mathcal{F}) mixed normal distribution which can be realized on a very good filtered extension as

$$N_{k,l} = \frac{1}{\sqrt{2}} \sum_{c,b=1}^d \int_0^t \hat{\sigma}_{k,l,cb}(s) + \hat{\sigma}_{l(k,cb)}(s) dB_s^{cb}.$$

Here, $\hat{\sigma}(s)$ is a $d \times d$-matrix, being the square-root of the matrix $\hat{\sigma}(s)$ with entries $\hat{c}_{kl,k' l'}(s) = (\Sigma_s e_k, e_{k'})/\Sigma_s e_l, e_l')$. Furthermore, B is a matrix of independent Brownian motions. As now all finite-dimensional distributions converge stably and the sequence of measures is tight, we obtain by a modification of Proposition 3.9 in [Häusler & Luschgy 2013] that the convergence is indeed stable in the Skorokhod space. One can then show that the asymptotic normal distribution has covariance Γ_t. This gives (CLTb) and thus an auxiliary central limit theorem, which does not rely on the spatial regularity condition in Assumption 2.

Theorem 4.4. Let Assumption 1 hold. We have that $\hat{Z}^{n,2} \xrightarrow{L^\infty} \mathcal{N}(0, \Gamma_t)_{t \in [0,T]}$.

In order to prove Theorem 2.5 we have to show $\Delta_n^{1/2} \sum_{i=1}^{\lfloor \frac{t}{\Delta_n} \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} \Sigma_s^n - \Sigma_s ds \xrightarrow{u.c.p.} 0$. As $e_k \in D(A^*)$ and due to the fact that $\| (\Sigma(\Delta_n) - I) e_k \| = \| \Sigma^{1/2} (u, A^*) e_k du \| = O(\Delta_n)$, it is relatively straightforward to show that for all $N \in \mathbb{N}$

$$\langle I - P_N \rangle \Delta_n^{1/2} \sum_{i=1}^{\lfloor \frac{t}{\Delta_n} \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} \Sigma_s^n - \Sigma_s ds \xrightarrow{u.c.p.} 0.$$

Further, we find by the triangle, Bochner and Hölder inequalities

$$\mathbb{E} \left[\sup_{t \in [0,T]} \| P_N \Delta_n^{1/2} \sum_{i=1}^{\lfloor \frac{t}{\Delta_n} \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} \Sigma_s^n - \Sigma_s ds \|_H^2 \right] \leq \left(\int_0^T \mathbb{E} \left[\| \Delta_n^{-1/2} (\Sigma(\lfloor s/\Delta_n \rfloor \Delta_n - s) - I) \sigma_s \|_H^2 \right] ds \right)^{1/2} \times \left(\int_0^T \sqrt{2} \mathbb{E} \left[\| p_N \sigma_s \|_{L^2(U,H)}^2 + \| p_N \Sigma(\lfloor s/\Delta_n \rfloor \Delta_n - s) \sigma_s \|_{L^2(U,H)}^2 \right] ds \right)^{1/2}.$$

The first factor is finite by Assumption 2(i), whereas the second one converges to 0 as $N \to \infty$ by (27). Combining this with (32) the claim follows and Theorem 2.5 is proved.

In order to prove Theorem 2.2 we can argue similarly as for Theorem 2.5 that we just have to show $\Delta_n^{1/2} \sum_{i=1}^{\lfloor \frac{t}{\Delta_n} \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_s^n - \Sigma_s, B) \mathcal{H} ds \xrightarrow{u.c.p.} 0$. We can argue componentwise, which is why we assume without loss of generality that $B = h \otimes g$ and split the expression into two integral terms:

$$\Delta_n^{1/2} \sum_{i=1}^{\lfloor \frac{t}{\Delta_n} \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_s^n - \Sigma_s, h, g) ds.$$
\[(S(i\Delta_n - s) - I)\Sigma_s S(i\Delta_n - s)^*h, g)ds \]
\[+ \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{[t/\Delta_n]} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_s (S(i\Delta_n - s) - I)^*h, g)ds \]
\[= (1)_n + (2)_n. \]

We can show the convergence for \((1)_n\) only, as the convergence for \((2)_n\) is analogous. It holds that
\[(1)_n = \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{[t/\Delta_n]} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_s (S(i\Delta_n - s) - I)^*h, g)ds \]
\[+ \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{[t/\Delta_n]} \int_{(i-1)\Delta_n}^{i\Delta_n} \langle p_N (\Sigma_s (S(i\Delta_n - s) - I)^*h, g)ds \rangle \]
\[= (1.1)_{n,N} + (2)_{n,N}. \]

Using that \((S(i\Delta_n - s) - I)e_j = f_s^{i\Delta_n} S(u - s)Ae_j ds \) and writing \((I - P_N) = \sum_{j=1}^{N\rightarrow1} \langle \cdot, e_j \rangle e_j \), we can show that
\[\sup_{t \in [0,T]} \left| (1.1)_{n,N} \right| \leq \Delta_n^{\frac{1}{2}} \sum_{j=1}^{N-1} \int_0^T \| \Sigma_s \|_{\text{op}} \| h \| \| g \| \sup_{t \in [0,T]} \| S(t) \|_{\text{op}}^2, \]
which converges to 0 as \(n \to \infty \). In particular, \(\sup_{t \in [0,T]} \left| (1.1)_{n,N} \right| \xrightarrow{u.c.p.} 0 \) as \(n \to \infty \). From the assumption that \(g \in F_{1/2}^S \) we can derive a finite constant
\[K := \sup_{t \in [0,T]} \| S(t) \|_{\text{op}} \left(\int_0^T \mathbb{E} \left[\| \sigma_s \|_{\text{op}}^2 \right] \| h \|^2 ds \right)^{\frac{1}{2}} \sup_{t \leq T} \| t^{-\frac{1}{2}} (S(t) - I)^*g \| < \infty \]
such that
\[\mathbb{E} \left[\sup_{t \in [0,T]} \left| (1.2)_{n,N} \right| \right] \leq K \left(\int_0^T \mathbb{E} \left[\| p_N \|_{\text{op}}^2 \right] ds \right)^{\frac{1}{2}}, \]
which converges to 0 as \(N \to \infty \) by (33). Thus, combining this uniform convergence result with (33) and the analogous argumentation for \((2)_n\) yields the assertion and, thus, (CLTc).

5. Conclusion

In this paper we introduced feasible central limit theorems for the semigroup adjusted realised covariations and, thus, provided a basis for functional data analysis of mild solutions to a large number of semilinear stochastic partial differential equations. We also addressed the issue of how this can be translated into a fully discrete setting, whereby we assumed a regular spatio-temporal sampling grid. In general, finding closed forms for the semigroup adjusted multipower variations is a task that must be addressed for each semigroup (or equivalently each infinitesimal generator), each sampling grid and any precise application separately. Certainly, the Hilbert space approach is well suited to account for potentially any sampling grid.
Moreover, it is likely that in many realistic scenarios, the distribution underlying the data and the sampling itself yield some additional challenges, which can be approached in our setting. Let us comment on some of these points:

Functional sampling: In infinite dimensions, we witness sampling schemes that have no counterpart in finite dimensions. For instance, data could be sampled as averages (or in general smooth functionals) of the process of interest over certain time periods in the future or within a demarcated area. This is for instance the case for energy swap prices or meteorological forecasting data. Our framework yields an ideal basis to derive inferential statistical tools in these situations.

Jumps: Many processes are not considered to be continuous in time. In fact, many financial time series show jumps and spikes on a regular basis, which is, in particular, the case in energy markets, a potential application of our theory. This suggests the inclusion of a pure-jump component to our framework, such as in the framework of Filipović et al. (2010). However, as in finite dimensions, jumps will considerably complicate expressions, applications and proofs and, thus, more effort has to go into the task of making inference on non-continuous behaviour in infinite-dimensional models. Arguably, the structure of our proof, which appeals to tightness and already existing limit theorems from finite dimensions, yields a promising approach.

Asynchronous sampling: It could very well be, that we sample high frequent in time, but sparse and irregularly in space. Ignoring this (for instance by naïve rearrangement to refresh times) can have unpleasant consequences such as the Epps effect, c.f. (Aït-Sahalia & Jacod 2014, sec. 9.2.1). Again, energy intraday market prices, in which all available maturities are unlikely traded at the exact same time instances, can be prone to this. Infinite-dimensionality and the potentially necessary adjustment by the semigroup might make it harder than in the finite-dimensional case to deal with this issue, as in addition to asynchronous sampling, one has to deal with the problem of smoothing the adequately aggregated data in space.

Noise: The task of accounting for noise in the samples, mostly called market microstructure noise has received much attention from the research community (c.f. for example Zhang et al. (2005), Barndorff-Nielsen et al. (2008) or Jacod et al. (2009)), as noise lets the quadratic variation severely overshoot the integrated volatility in the presence of data sampled at very high frequency. In combination with the problem of smoothing (and asynchronous sampling) this appears to be a delicate question in infinite-dimensional applications. However, both finite-dimensional high-frequency statistics and functional data analysis have several tools available to deal with noise and it is intriguing to find out how they can be exploited to overcome this problem in the future.

Acknowledgements. F. E. Benth and A. E. D. Veraart would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme *The Mathematics of Energy Systems* when parts of the work on this paper were undertaken. This work was supported by: EPSRC grant number EP/R014604/1. D. Schroers and F. E. Benth gratefully acknowledge financial support from the STORM project 274410, funded by the Research Council of Norway, and the thematic research group SPATUS, funded by UiO:Energy at the University of Oslo.
References

Aït-Sahalia, Y. & Jacod, J. (2014), High-Frequency Financial Econometrics, Princeton University Press, Princeton, New Jersey.

Aliprantis, C. D. & Border, K. C. (2006), Infinite dimensional analysis, third edn, Springer, Berlin.

Altmeyer, R. & Reiß, M. (2021), ‘Nonparametric estimation for linear spdes from local measurements’, Ann. Appl. Probab. 31(1), 1–38.

Amblard, P., Coeurjolly, J., Lavancier, F. & Philippe, A. (2013), ‘Basic properties of the multivariate fractional Brownian motion’, Sémin. Congr. 28, 65–87.

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Labys, P. (2003), ‘Modeling and forecasting realized volatility’, Econometrica 71(2), 579–625.

Aue, A., Horváth, L. & F. Pellatt, D. (2017), ‘Functional generalized autoregressive conditional heteroskedasticity’, J. Time Ser. Anal. 38(1), 3–21.

Barndorff-Nielsen, O. E., Corcuera, J. & Podolskij, M. (2011), ‘Multipower variation for Brownian semistationary processes’, Bernoulli 17(4), 1159–1194.

Barndorff-Nielsen, O. E., Corcuera, J. & Podolskij, M. (2013), Limit theorems for functionals of higher order differences of Brownian semistationary processes, in A. E. Shiryayev, S. R. S. Varadhan & E. Presman, eds, ‘Prokhorov and Contemporary Probability’, Vol. 33 of Springer Proceedings in Mathematics and Statistics, pp. 69–96.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A. & Shephard, N. (2008), ‘Designing realized kernels to measure the ex post variation of equity prices in the presence of noise’, Econometrica 76(6), 1481–1536.

Barndorff-Nielsen, O. E. & Shephard, N. (2002), ‘Econometric analysis of realized volatility and its use in estimating stochastic volatility models’, J. R. Statist. Soc. B 64(2), 253–280.

Barndorff-Nielsen, O. E. & Shephard, N. (2003), ‘Realized power variation and stochastic volatility models’, Bernoulli 9(2), 243–265.

Barndorff-Nielsen, O. E. & Shephard, N. (2004), ‘Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics’, Econometrica 72(3), 885–925.

Benth, F. E. & Harang, F. A. (2021), ‘Infinite dimensional pathwise Volterra processes driven by Gaussian noise–probabilistic properties and applications’, Electron. J. Probab. 26.

Benth, F. E. & Krühner, P. (2014), ‘Representation of infinite-dimensional forward price models in commodity markets’, Commun. Math. Statist. 2(1), 47–106.

Benth, F. E., Schroers, D. & Veraart, A. E. (2022), ‘A weak law of large numbers for realised covariation in a Hilbert space setting’, Stoch. Proc. Applic. 145, 241–268.

Benth, F. E. & Sgarra, C. (2021), ‘A Barndorff-Nielsen and Shephard model with leverage in Hilbert space for commodity forward markets’, Available at SSRN 3835053.

Benth, F. E. & Simonsen, I. C. (2018), ‘The Heston stochastic volatility model in Hilbert space’, Stoch. Analysis Appl. 36(4), 733–750.

Berlinet, A. & Thomas-Agnan, C. (2004), Reproducing Kernel Hilbert Spaces in Probability and Statistics, Springer Science & Business Media.

Bibinger, M. & Trabs, M. (2019), On central limit theorems for power variations of the solution to the stochastic heat equation, in A. Steland, E. Rafajlowicz & O. Okhrin, eds, ‘Stochastic Models, Statistics and Their Applications’, Springer
Bibinger, M. & Trabs, M. (2020), ‘Volatility estimation for stochastic pdes using high-frequency observations’, Stoch. Proc. Applic. 130(5), 3005 – 3052.

Billingsley, P. (1999), Convergence of Probability Measures, 2 edn, John Wiley and Sons, New York.

Cerovecki, C., Francq, C., Hörmann, S. & Zakoian, J.-M. (2019), ‘Functional GARCH models: the quasi-likelihood approach and its applications’, J. Econometrics 209(2), 353–375.

Chong, C. (2020), ‘High-frequency analysis of parabolic stochastic pdes’, Ann. Statist. 48(2), 1143–1167.

Chong, C. & Dalang, R. C. (2020), ‘Power variations in fractional Sobolev spaces for a class of parabolic stochastic PDEs’, E-print arXiv:2006.15817.

Cialenco, I. (2018), ‘Statistical inference for SPDEs: an overview’, Statist. Inf. Stoch. Proc. 20(2), 309–329.

Cialenco, I. & Huang, Y. (2020), ‘A note on parameter estimation for discretely sampled SPDEs’, Stoch. Dynamics 20(03).

Cialenco, I. & Kim, H.-J. (2022), ‘Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise’, Stoch. Proc. Applic. 143, 1–30.

Cont, R. (2005), ‘Modeling term structure dynamics: An infinite dimensional approach’, Int. J. Theor. Appl. Finance 08(03), 357–380.

Corcuera, J. M., Hedevang, E., Pakkanen, M. S. & Podolskij, M. (2013), ‘Asymptotic theory for Brownian semi-stationary processes with application to turbulence’, Stoch. Proc. Applic. 123(7), 2552–2574.

Corcuera, J. M., Nualart, D. & Woerner, J. H. (2006), ‘Power variation of some integral fractional processes’, Bernoulli 12(4), 713–735.

Corcuera, J., Nualart, D. & Podolskij, M. (2014), ‘Asymptotics of weighted random sums’, Commun. Appl. Indust. Math. 6(1), e–486, 11.

Cox, S., Karbach, S. & Khedher, A. (2020), ‘Affine pure-jump processes on positive Hilbert-Schmidt operators’, Available at arXiv:2012.10406.

Cox, S., Karbach, S. & Khedher, A. (2021), ‘An infinite-dimensional affine stochastic volatility model’, Math. Finance.

Da Prato, G. & Zabczyk, J. (2014), Stochastic Equations in Infinite Dimensions, Vol. 152 of Encyclopedia of Mathematics and its Applications, second edn, Cambridge University Press, Cambridge.

Engel, K.-J. & Nagel, R. (1999), One-Parameter Semigroups for Linear Evolution Equations, Vol. 194, Springer Science & Business Media.

Filipović, D. (2001), Consistency Problems for HJM Interest Rate Models, Vol. 1760 of Lecture Notes in Mathematics, Springer, Berlin.

Filipović, D., Tappe, S. & Teichmann, J. (2010), ‘Jump-diffusions in Hilbert spaces: existence, stability and numerics’, Stochastics 82(5), 475–520.

Granelli, A. & Veraart, A. E. (2019), ‘A central limit theorem for the realised co-variation of a bivariate Brownian semistationary process’, Bernoulli 25(3), 2245–2278.

Häußler, E. & Luschgy, H. (2015), Stable Convergence and Stable Limit Theorems, Vol. 74 of Probability Theory and Stochastic Modelling, Springer.

Hildebrandt, F. & Trabs, M. (2021), ‘Parameter estimation for SPDEs based on discrete observations in time and space’, Electron. J. Stat. 15(1), 2716 – 2776.
Hörmann, S., Horváth, L. & Reeder, R. (2013), ‘A functional version of the ARCH model’, *Econometric Theory* 29(2), 267–288.

Jacod, J. (2008), ‘Asymptotic properties of realized power variations and related functionals of semimartingales’, *Stoch. Proc. Appl.* 118(4), 517–559.

Jacod, J., Li, Y., Mykland, P., Podolskij, M. & Vetter, M. (2009), ‘Microstructure noise in the continuous case: the pre-averaging approach’, *Stoch. Proc. Appl.* 119(7), 2249–2276.

Jacod, J. & Protter, P. (2012), *Discretization of Processes*, Vol. 67 of *Stochastic Modelling and Applied Probability*, Springer, Heidelberg.

Joffe, A. & Metivier, M. (1986), ‘Weak convergence of sequences of semimartingales with applications to multitype branching processes’, *Adv. Appl. Prob.* 18(1), 20–65.

Kühnert, S. (2020), ‘Functional ARCH and GARCH models: A Yule-Walker approach’, *Electron. J. Stat.* 14(2), 4321–4360.

Liu, W. & Röckner, M. (2015), *Stochastic Partial Differential Equations: An Introduction*, Universitext, Springer International Publishing.

Mandrekar, V. & Gawarecki, L. (2011), *Stochastic Differential Equations in Infinite Dimensions*, Probability and Its Applications, Springer, Berlin, Heidelberg.

Marinelli, C. & Röckner, M. (2016), ‘On the maximal inequalities of Burkholder, Davis and Gundy’, *Expo. Math.* 34, 1–26.

Passeggeri, R. & Veraart, A. (2019), ‘Limit theorems for multivariate Brownian semistationary processes and feasible results’, *Adv. Appl. Prob.* 51, 667–716.

Peszat, S. & Zabczyk, J. (2007), *Stochastic Partial Differential Equations with Lévy Noise*, Vol. 113 of *Encyclopedia of Mathematics and its Applications*, Cambridge University Press, Cambridge.

Rudin, W. (1976), *Principles of Mathematical Analysis*, 3 edn, McGraw-Hill, New York.

Sun, H. & Yu, B. (2020), ‘Volatility asymmetry in functional threshold GARCH model’, *J. Time Ser. Anal.* 41(1), 95–109.

van der Vaart, A. W. & Wellner, J. (1996), *Weak Convergence and Empirical Processes: with Applications to Statistics*, Springer Science & Business Media, New York.

Zhang, L., Mykland, P. & Aït-Sahalia, Y. (2005), ‘A tale of two time scales: Determining integrated volatility with noisy high-frequency data’, *J. Amer. Statist. Assoc.* 100(472), 1394–1411.
FUNCTIONAL DATA ANALYSIS FOR SPDE 29

Notation

For convenience, we list some of the frequently used notation throughout these appendices:

- \(L_{HS}(U, H) \): the space of Hilbert-Schmidt operators from \(U \) to \(H \).
- \(H \): equals \(L_{HS}(H, H) \), when \(H \) is the initial Hilbert space in which the mild \(\text{Itô} \) process \(Y \) takes its values.
- \(H_m \): for \(m \geq 3 \) this is the space of operators spanned by the orthonormal basis \((\epsilon_{j_1} \otimes \cdots \otimes \epsilon_{j_m})_{j_1, \ldots, j_m \in \mathbb{N}} \) for an orthonormal basis \((\epsilon_j)_{j \in \mathbb{N}} \) of \(H \) with respect to the Hilbert-Schmidt norm.
- \(\sigma_{S_n}^s = S(i \Delta_n - s) \sigma_s \) for \(s \in ((i-1) \Delta_n, i \Delta_n] \).
- \(\alpha_{S_n}^s = S(i \Delta_n - s) \alpha_s \) for \(s \in ((i-1) \Delta_n, i \Delta_n] \).
- \(\Sigma_{S_n}^s := \sigma_{S_n}^s (\sigma_{S_n}^s)^* \).
- \(p_N \) is the projection onto \(v_N := \text{lin}(\{\epsilon_j : j \geq N\}) \), for some orthonormal basis \((\epsilon_j)_{j \in \mathbb{N}} \).
- \(P_m^N \) is the projection onto \(\text{lin}(\{\bigotimes_{l=1}^m \epsilon_{k_l} : k_l \geq N\}) \).
- \(P_N = P_2^N \) for the special case \(m = 2 \).

We start by giving several auxiliary results that are needed to prove the limit theorems.

Appendix A. Technical tools

A.1. Localisation. For both the laws of large numbers Theorems 3.1 and 3.4 the central limit Theorems 2.5, 2.2 we can work under the following stronger assumptions:

Assumption 7. There is a constant \(A > 0 \) such that almost surely
\[
\int_0^T \| \alpha_s \|^2 + \| \sigma_s \|_{L_{HS}(U,H)} ds \leq A
\]

Assumption 8 (m). There is a constant \(A > 0 \) such that almost surely
\[
\int_0^T \| \alpha_s \|^m + \| \sigma_s \|_{L_{HS}(U,H)}^m ds \leq A.
\]

Assumption 9. Assumption 3 holds and there is an \(A > 0 \) such that almost surely
\[
\| \alpha_s \| + \| \sigma_s \|_{L_{HS}(U,H)} \leq A, \quad s \in [0, T]
\]

We have then the following simplifying localisation result:

Theorem A.1 (Localisation). The following relaxations can be made for the limit theorems in this work:

(a) (localisation for CLT for functionals of \(\text{SARCV} \) and \(\text{RV} \)) If the central limit Theorems 2.2 or 2.15(ii) hold under Assumption 7, then they also hold under Assumption 7.

(b) (localisation for LLN for power variations) If the law of large numbers Theorem 3.1 holds under Assumption 8(m), then it also holds under Assumption 8(m). Moreover, the laws of large numbers Theorems 2.14(i) or 2.15(i) hold, if they hold under the additional Assumption 8(2).

(c) (localisation for LLN for multipower variations) If the law of large numbers, Theorem 3.4 holds under Assumption 8, then it also holds under Assumption 8.
(d) (localisation for CLT for SARCV and RV) If the central limit Theorem 2.3 holds under Assumptions 7 and (i) (respectively Theorem 2.14(ii) holds under Assumptions 7 and 2(i), then it also holds under Assumptions 4 together with (i) or (ii) (respectively 7 and 2).

Proof: The same localisation procedure as for finite-dimensional semimartingales described in Section 4.4.1 in Jacod & Protter (2012) holds: We define under each of the assumptions a different sequence $(\tau_N(i))_{N \in \mathbb{N}}, i = 1, ..., 4$, of stopping times and the corresponding stopped process $Y_t(N, i) := Y_{t \wedge \tau_N(i)}$. Observe that on $\{t < \tau_N(i)\}$ we have $Y_t(N, i) = Y_t$: Set

\[
X(1) := \int_0^T \|\sigma_s\|^2 + \|\sigma_s\|^4_{L^{10}(U, H)} ds,
\]

\[
X(2) := \int_0^T \|\sigma_s\|^2 + \|\sigma_s\|^4_{L^{10}(U, H)} ds,
\]

\[
X(3) := \|\sigma_s\| + \|\sigma_s\|^2_{L^{10}(U, H)},
\]

\[
X(4) := \int_0^T \|\sigma_s\|^2 + \|\sigma_s\|^4_{L^{10}(U, H)} + \sup_{t \in [0, T]} \|t^{-\frac{1}{2}}(S(t) - I)\sigma_s\|^2_{\text{op}} ds.
\]

We define for $i = 1, ..., 4$

\[
\tau_N(i) := \inf \{s \in [0, T] : X(i) > N\}, N \in \mathbb{N}.
\]

Then Assumption 1 assures that $\tau_N(1) \uparrow T$, Assumption 6 assures that $\tau_N(2) \uparrow T$, Assumption 8 assures that $\tau_N(3) \uparrow T$, Assumption 1 together with (i) or (ii) ensures $\tau_N(4) \uparrow T$. Moreover, observe that $Y_t(N, 1)$ satisfies Assumption 7, $Y_t(N, 2)$ satisfies Assumption 8, $Y_t(N, 3)$ satisfies Assumption 9, $Y_t(N, 4)$ satisfies Assumption 4.

The localisation works now for all cases analogously: Observe, that as convergence in probability is a special case of stable convergence in law (when the underlying probability space for the limiting distribution coincides with the one on which the sequence of probability laws is defined), we just have to consider the stable convergence in law.

For any mild Itô process X, i.e. a process of the same form as Y as defined in 6, with values in H we write $U_n(X)$ either for the process of normalised multipower variations (for the central limit theorems) or the supremum over the unnormalised multipower variations (and as a special case, power variations). I.e., for proving (a) it is $U_n(X)_t = \Delta_n^{-1/2}(\text{SARCV}_n^t - \int_0^t \Sigma_s ds, B)$ (resp. $U_n(X)_t = \Delta_n^{-1/2}(\text{RV}_n^t - \int_0^t \Sigma_s ds, B)$) for $B = \sum_{i=1}^K \mu_i h_i \otimes g_i \in \mathcal{H}$ for $h_i, g_i \in F^S_{3/4}$ and $U(X)$ is the asymptotic distribution as in Theorem 2.2 for (d) it is $U_n(X)_t = \Delta_n^{-1/2}(\text{SARCV}_n^t - \int_0^t \Sigma_s ds)$ (resp. $U_n(X)_t = \Delta_n^{-1/2}(\text{RV}_n^t - \int_0^t \Sigma_s ds)$) and $U(X)$ is the asymptotic distributions as described in Theorem 2.5 and (b) and (c) it is $U(X) = 0$ and

\[
U_n(X)_t = \sup_{s \in [0, t]} \|\Delta_n^{-1/2} \sum_{i=1}^{s/\Delta_n} \prod_{j=1}^{k+1} k \Delta_n^{i+j-1} X_{i+m} - \int_0^t \rho_{\Sigma^k}^n (m_1, ..., m_k) ds\|_{\mathcal{H}^K}.
\]

Moreover, for the non-adjusted limit theorems, we exchange $\tilde{\Delta}$ by Δ in the above expressions.

In order to prove the claim, it is enough to show $U_n(Y) \to U(Y)$ stably in law as a process under the respective localised assumptions. I.e., if $\tilde{\Omega} = \Omega \times \Omega', \tilde{\mathcal{F}} = \mathcal{F} \otimes \mathcal{F}'$
and \(\hat{P} = P[\omega]Q[\omega, d\omega] \) is the extension on which \(U(X) \) can be realised, we want to show that for all bounded, continuous functions \(g : \mathcal{D}([0, T], \mathcal{H}) \to \mathbb{R} \) and all bounded \(\mathcal{F} \)-measurable real-valued random variables \(Z \) we have
\[
\lim_{n \to \infty} E[Zg(U_n(Y))] = \hat{E}[Zg(U(Y))],
\]
where \(\hat{E} \) is the expectation with respect to \(\hat{P} \). If we write
\[
Q_Y(g)(\omega) := \int_{\Omega'} g(U(Y))(\omega, \omega')Q(\omega, d\omega'),
\]
we can express (34) as
\[
\lim_{n \to \infty} E[Zg(U_n(Y))] = E[ZQ_Y(g)].
\]
Now assume that the convergence results hold for \(Y(N, i) \), for which the localised assumptions are valid. We can therefore deduce that
\[
\lim_{n \to \infty} E[Zg(U_n(Y))I_{t \leq \tau N(i)}] = \lim_{n \to \infty} E[Zg(U_n(Y(N, i)))]
= E[ZQ_Y(N,i)(g)] = E[ZQ_Y(g)I_{t \leq \tau N(i)}],
\]
holds for all \(N \in \mathbb{N} \). This implies \(\hat{E} \) as boundedness of \(Z \) and \(g \) yield that
\[
\sup_{n \in \mathbb{N}} E[Z(g(U_n(Y)) - Q_Y(g))I_{t \geq \tau N}] \to 0 \quad \text{as } N \to \infty.
\]
This proves the claim. □

In many occasions, we just need to impose a localised version of the condition
\[
\mathbb{P}\left[\int_0^T \|\alpha_s\|^{\mathcal{P}} + \|\sigma_s\|^m_{L^{\infty}(U, \mathcal{H})} \, ds < \infty \right] = 1.
\]
In that regard, we introduce the auxiliary assumption:

Assumption 10 ((m)). There is a constant \(A > 0 \) such that
\[
\int_0^T \|\alpha_s\|^m + \|\sigma_s\|^m_{L^{\infty}(U, \mathcal{H})} \, ds \leq A.
\]

Based upon choosing the right \(m \), this is satisfied under any (!) of the assumptions above. In particular Assumption 7 coincides with Assumption 10(4) while Assumption 8(2) coincides with Assumption 10(2). Assumption 8(m) is stricter than Assumption 10(m) if \(m > 2 \).

A.2. Elimination of the semigroup on finite-dimensional projections. We will see that if we apply certain functionals, the semigroup adjusted increments are essentially increments of finite-dimensional semimartingales. First, we recall the Burkholder-Davis-Gundy inequality (in what follows called the BDG inequality), c.f. Marinelli & Röckner (2016).

Theorem A.2. For an \(H \)-valued local martingale \((M_t)_{t \in [0, T]} \) we have for all real numbers \(m \geq 1 \) and all \(t \leq T \)
\[
E \left[\sup_{s \leq t} \|M_s\|^m \right] \leq C_m E \left[[M, M]^m_t \right],
\]
where the constant \(C_m > 0 \) is just depending on \(m \) and \([M, M] \) is the scalar quadratic variation of \(M \).
For our purposes, the most important application is given in the following example:

Example A.3. Let \(M_t := \int_0^t \sigma_s dW_s \) be a stochastic integral. Then the BDG inequality \([36]\) reads

\[
E \left[\sup_{s \leq t} \| \int_0^t \sigma_s dW_s \|^m \right] \leq C_m E \left[\left(\int_0^t \text{Tr}(\Sigma_s) ds \right)^\frac{m}{2} \right]
\]

\[
= C_m E \left[\left(\int_0^t \| \sigma_s \|_{L_{HS}(U,H)}^2 ds \right)^\frac{m}{2} \right],
\]

for the constant \(C_m \) just depending on \(m \) and for all \(t \leq T \).

Observe that there always exists an orthonormal basis \((e_i)_{i \in \mathbb{N}} \) of \(H \) that is contained in the domain \(D(A^*) \) of the generator \(A^* \) of the adjoint semigroup \((S(t)^*)_{t \geq 0} \). The latter is a semigroup since \(H \) is a Hilbert space, see [Engel & Nagel 1999, p.44].

Besides tightness, the most important argument to be able to appeal to the finite-dimensional limit theory of semimartingales is the following one:

Lemma A.4. Suppose that Assumption \([10](m)\) holds for \(m \geq 2 \). We define the \(H \)-valued semimartingale \(S \) by

\[
S_t := \int_0^t \alpha_s ds + \int_0^t \sigma_s dW_s,
\]

and fix a basis \((e_j)_{j \in \mathbb{N}} \subset D(A^*) \) of \(H \). Let furthermore \(\Delta_n^i S := S_{i\Delta_n} - S_{(i-1)\Delta_n} \) denote the non-adjusted increments of the semimartingale \(S \). Then for \(j_1, \ldots, j_m \in \mathbb{N} \)

\[
\langle \text{SAMPV}_t^m(m_1, \ldots, m_k), \bigotimes_{i=1}^m e_{j_i} \rangle_{\mathcal{H}^m} = \sum_{i=1}^{[t/\Delta_n]} \left(\bigotimes_{j=1}^k \Delta_{i+j-1}^{n_j} S \right) \otimes_{i=1}^m e_{j_i} \|_{\mathcal{H}^m} + O_p(\Delta_n^{m+2}).
\]

Proof. First, fix \(i, j \in \mathbb{N} \). By the stochastic Fubini theorem (and since \(Y_0 = 0 \)) we have

\[
\int_0^t \int_0^u \langle \alpha_s, A^* S(u-s)^* e_j \rangle ds du
\]

\[
= \int_0^t \int_0^u \langle \sigma_s, A^* S(u-s)^* e_j \rangle dW_s du + \langle S_t, e_j \rangle
\]

\[
= \int_0^t \int_0^u \frac{d}{du} \langle \alpha_s, S(u-s)^* e_j \rangle ds du
\]

\[
+ \int_0^t \int_0^u \frac{d}{du} \langle \sigma_s, S(u-s)^* e_j \rangle dW_s du + \langle S_t, e_j \rangle
\]

\[
= \int_0^t \int_s^u \frac{d}{du} \langle \alpha_s, S(u-s)^* e_j \rangle duds + \int_0^t \langle \alpha_s, e_j \rangle ds
\]

\[
+ \int_0^t \int_s^u \frac{d}{du} \langle \sigma_s, S(u-s)^* e_j \rangle duds + \int_0^t \langle \sigma_s, e_j \rangle dWs,
\]
Thus,

\[\int_0^t \langle \sigma_s, S(t - s)^* e_j \rangle ds + \int_0^t \langle \sigma_s, S(t - s)^* e_j \rangle dW_s \]

\[= (Y_t, e_j). \]

Now define

\[\Delta_n a^j := \int_t^{t + \Delta_n} \int_0^u \frac{d}{du} \langle \sigma_s, S(u - s)^* e_j \rangle duds \]

\[+ \int_t^{t + \Delta_n} \int_0^u \langle \sigma_s, A^* S(u - s)^* e_j \rangle dW_s du. \]

(38)

Again, by using the stochastic Fubini theorem we obtain

\[\langle Y_{t + \Delta_n}, e_j \rangle - (\langle S_{t + \Delta_n}, e_j \rangle - \langle S_t, e_j \rangle) + \Delta_n a^j \]

\[= \int_t^{t + \Delta_n} \int_0^u \frac{d}{du} \langle \sigma_s, S(u - s)^* e_j \rangle duds \]

\[+ \int_t^{t + \Delta_n} \int_0^u \langle \sigma_s, S(u - s)^* e_j \rangle dW_s du + \langle Y_t, e_j \rangle \]

\[= \int_0^t \int_s^{t + \Delta_n} \frac{d}{du} \langle \sigma_s, S(u - s)^* e_j \rangle duds \]

\[+ \int_0^t \int_s^{t + \Delta_n} \langle \sigma_s, S(u - s)^* e_j \rangle dudW_s + \langle Y_t, e_j \rangle \]

\[= \int_0^t \int_s^{t + \Delta_n} \frac{d}{du} \langle \sigma_s, S(u - s)^* e_j \rangle duds \]

\[+ \int_0^t \int_s^{t + \Delta_n} \langle \sigma_s, S(u - s)^* e_j \rangle dudW_s + \langle S_t, e_j \rangle \]

\[= \int_0^t \langle \sigma_s, S(t + \Delta_n - s)^* e_j \rangle ds + \int_0^t \langle \sigma_s, S(t + \Delta_n - s)^* e_j \rangle dW_s \]

\[= \langle S(\Delta_n) Y_t, e_j \rangle. \]

Thus,

\[\langle \tilde{\Delta}_n Y_t, e_j \rangle = \langle \Delta_n S_t, e_j \rangle + \Delta_n^{(i-1)} \Delta_n a^j. \]

Now let \(i_1, ..., i_m \in \mathbb{N} \). We get

\[\prod_{k=1}^m \langle \tilde{\Delta}_n Y_t, e_{i_k} \rangle = \prod_{k=1}^m \left(\langle \Delta_n S_t, e_{i_k} \rangle + \Delta_n^{(i_k-1)} \Delta_n a^{i_k} \right) \]
Then by the generalised H"older inequality

$$= \prod_{k=1}^{m} \langle \Delta_{ik}^n S, e_{jk} \rangle + \sum_{y=1,...,x=2}^{m} b_{xy}(i_1, ..., i_m, j_1, ..., j_m),$$

where each summand b_{xy} is of the form

$$b_{xy}(i_1, ..., i_m, j_1, ..., j_m) = \prod_{r=1}^{p} \langle \Delta_{ik}^n S, e_{jk} \rangle \prod_{s=1}^{q} \Delta_{(i_s-1)j}^n a_{is},$$

for $p \leq m - 1,$ $q \leq m,$ $p + q = m$ and

$$\{i_k, ..., i_{k_p}, i_1, ..., i_t\} = \{i_1, ..., i_m\}, \quad \{j_k, ..., j_{k_p}, j_1, ..., j_t\} = \{j_1, ..., j_m\}.$$

Then by the generalised Hölder inequality

$$E[|b_{xy}(i_1, ..., i_m, j_1, ..., j_m)|] \leq E[\langle \Delta_{ik}^n S, e_{jk} \rangle |^{m} \| s \| \cdots \| \Delta_{(i_t-1)j}^n a_{is} \|^{m} \| s \|].$$

(39)

This means that in order to estimate $E[|b_{xy}(i_1, ..., i_m, j_1, ..., j_m)|]$ we have to find bounds on $E[\langle \Delta_{ik}^n S, e_{jk} \rangle |^{m} \| s \|$ and $E[\langle \Delta_{(i_t-1)j}^n a_{is} \rangle |^{m} \| s \|$ for $i, j \in \mathbb{N}.$ We start with the latter term.

For any $t \leq u \leq T,$ $\{i, j\} \in \mathbb{N},$ we have for the quadratic variation

$$\left[\int_0^t \langle \sigma_s, S(u - s)^* A^* e_j \rangle dW_s \right]_{T} = \int_0^t \langle S(u - s) \Sigma_s S(t - s)^* A^* e_j, A^* e_j \rangle ds$$

$$= \int_0^t \| \sigma_s S(u - s)^* A^* e_j \|^2 ds.$$

Hence, by the BDG inequality (39) we obtain, for $t \leq u \leq t + \Delta_n,$

$$E \left[\left(\int_0^u \langle \sigma_s, A^* S(t - s)^* e_j \rangle ds + \int_0^u \langle \sigma_s, A^* S(u - s)^* e_j \rangle dW_s \right)^{m} \| \right]^\frac{1}{m}$$

$$\leq E \left[\left(\int_0^u \langle \sigma_s, A^* S(t - s)^* e_j \rangle ds \right)^{m} \right]^\frac{1}{m} + E \left[\left(\int_0^u \langle \sigma_s, A^* S(u - s)^* e_j \rangle dW_s \right)^{m} \right]^\frac{1}{m}$$

$$\leq E \left[\left(\int_0^u \langle \sigma_s, A^* S(t - s)^* e_j \rangle ds \right)^{m} \right]^\frac{1}{m} + C \| \sigma_s \|_{\| S(t) \|_{op}} \| A^* e_j \|^{m} \frac{1}{m}$$

$$\leq \Delta_n E \left[\left(\int_0^t \| \sigma_s \|_{\| S(t) \|_{op}} \| A^* e_j \|^{m} \frac{1}{m} \right)^{m} \right]^\frac{1}{m} + C \| \sigma_s \|_{\| S(t) \|_{op}} \| A^* e_j \|^{m} \frac{1}{m}$$

$$\qquad \qquad \quad + \Delta_n \left(\left(\int_0^t \| \sigma_s \|_{\| S(t) \|_{op}} \| A^* e_j \|^{m} \frac{1}{m} \right)^{m} \right)^\frac{1}{m} \sup_{t \in [0,T]} \| S(t) \|_{op} \| A^* e_j \|.$$
Now for the martingale differences $\E[|\langle \Delta^n S, e_j \rangle |^m]^{\frac{1}{m}}$ we can estimate by virtue of the BDG inequality (36):

$$\E[|\langle \Delta^n S, e_j \rangle |^m]^{\frac{1}{m}} \leq \E \left[\left(\frac{1}{m} \sum_{i=1}^{m} \alpha_i d\bar{S} \right)^m \right]^{\frac{1}{m}} + C_m^\frac{1}{m} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \langle \Sigma_s e_j, e_j \rangle d\bar{S} \right)^{\frac{1}{m}}$$

Combining (39), (40) and (41) yields, as $q \geq 1$

$$\E[b_{xy}(i_1, \ldots, i_m, j_1, \ldots, j_m)]$$

$$\leq \Delta_n^{\frac{m-2}{2m}} \sum_{l=1}^{q} \left(\frac{1}{m} \sum_{i=1}^{m} \alpha_i d\bar{S} \right)^{\frac{1}{m}} + C_m^\frac{1}{m} \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \langle \Sigma_s e_j, e_j \rangle d\bar{S} \right)^{\frac{1}{m}}$$

Now we use the notation $b_{xy}(i_1, \ldots, i_m, j_1, \ldots, j_m) = b_{xy}(i_1 \ldots i_m, j_1 \ldots j_m)$ in the case of $i_1, \ldots, l_{m_1} = i, i_{m_1+1}, \ldots, i_{m_1+m_2} = i+1 \ldots i_{m_2-2+1}, \ldots, i_{m_2-2+m_2-1} = i+k-1$ to help with the intuition, this is just a formal way to specify that the first m_1
components are equal and then the next m_2 are again equal and so on). Then
\[
\langle \text{SAM} P V_t^m(m_1, \ldots, m_k), \bigotimes_{j=1}^m e_j \rangle \\
= \sum_{i=1}^{[t/\Delta_n]} \sum_{j=1}^k (\bigotimes_{i+j-1} \Delta_i) S_i \bigotimes_{j=1}^m e_j + \sum_{i=1}^{[t/\Delta_n]} \sum_{x=2}^m b_{x,y}(i)^{m_{1,\ldots,m_k}}.
\]

In order to prove the assertion, we just have to show that the latter summand is $O(\Delta_n^\bar{p})$. Therefore, the generalised Hölder inequality and the elementary inequality $(a+b)^m \leq 2^m(a^m + b^m)$ for positive real numbers $a, b \in \mathbb{R}_+$ yield
\[
\sum_{i=1}^{[t/\Delta_n]} \sum_{y=1,x=2}^m \mathbb{E}[|b_{x,y}(i)^{m_{1,\ldots,m_k}}|] \\
\leq m(m - 1) \Delta_n^\bar{p} \left(\sup_{t \in [0,T], q,j = 1, \ldots, m} \| \mathcal{S}(t) \|_q^q \| A^* e_j \|_q^q \right) \\
\times \sum_{i=1}^{[t/\Delta_n]} \sum_{j=1}^k \prod_{j=1}^{k} \mathbb{E} \left[\left(\int_{(i+j-2)\Delta_n}^{(i+j-1)\Delta_n} \| \alpha_s \|_q ds \right)^2 \right]^{\frac{\bar{p}}{2}} \\
+ C_m \left(\sup_{t \in [0,T], q,j = 1, \ldots, m} \mathbb{E} \left[\| \sigma_s \|_{\text{op}}^{m \bar{p} \alpha} ds \right] \right)^{\frac{m}{\bar{p}}}. \\
\]

As $\mathbb{E} \left[\left(\int_{(i+j-2)\Delta_n}^{(i+j-1)\Delta_n} \| \alpha_s \|_q ds \right)^2 \right] \leq \mathbb{E} \left[\int_{(i+j-1)\Delta_n}^{(i+j-2)\Delta_n} \| \alpha_s \|_q ds \right]$ for Δ_n small enough, we obtain
\[
\sum_{i=1}^{[t/\Delta_n]} \sum_{y=1,x=2}^m \mathbb{E}[|b_{x,y}(i)^{m_{1,\ldots,m_k}}|] \\
\leq m(m - 1) \Delta_n^\bar{p} \left(\sup_{t \in [0,T], q,j = 1, \ldots, m} \| \mathcal{S}(t) \|_q^q \| A^* e_j \|_q^q \right) \\
\times \sum_{i=1}^{[t/\Delta_n]} \sum_{j=1}^k 2^m \mathbb{E} \left[\int_{(i+j-2)\Delta_n}^{(i+j-1)\Delta_n} \| \alpha_s \|_q ds + C_m \| \sigma_s \|_{\text{op}}^{m \bar{p} \alpha} ds \right]^{\frac{m}{\bar{p}}} \\
\leq m(m - 1) \Delta_n^\bar{p} \left(\sup_{t \in [0,T], q,j = 1, \ldots, m} \| \mathcal{S}(t) \|_q^q \| A^* e_j \|_q^q \right)
\[\times k!2^m E \left[\int_0^T \| \alpha_s \|^2 ds + C_m \| \sigma_s \|^m_{op} ds \right] \]
\[\leq m(m - 1) \Delta_n^2 \left(\sup_{t \in [0,T], q,j = 1, \ldots, m} \| S(t) \|_{op}^q \| \mathcal{A}^*e_j \|^q \right) k! A. \]

This proves the assertion \(\square \)

A.2.1. Uniform convergence of the finite-dimensional projections. We introduce the notation
\[\sigma_s^{S_n} = S(i \Delta_n - s) \sigma_s, \]
and
\[\alpha_s^{S_n} = S(i \Delta_n - s) \alpha_s, \]
for \(s \in (i - 1) \Delta_n, i \Delta_n], \) such that \(\sigma_s^{S_n}(\sigma_s^{S_n})^* = \Sigma_s^{S_n}. \) We often need the following technical lemma:

Lemma A.5. Suppose that for \(m \in \mathbb{N} \) we have
\[\int_0^T E \left[\| \alpha_s \|^m + \| \sigma_s \|^m_{L_{op}(U)} \right] ds < \infty, \]
which holds in particular under Assumption \([T/m].\) Let \((e_j)_{j \in \mathbb{N}}\) be an orthonormal basis of \(H \) and \(p_N \) be the projection onto \(\sigma^N := \text{span}\{e_j : j \geq N\}. \) Then for all natural numbers \(p \leq m, \) we have
\[\lim_{N \to \infty} \sup_{n \in \mathbb{N}} E \left[\int_0^T \| p_N \sigma_s^{S_n} \|_{L_{op}(U)}^p ds \right] = 0. \]
Moreover, for all \(q \leq \frac{m}{2}, \) we have
\[\lim_{N \to \infty} \sup_{n \in \mathbb{N}} E \left[\int_0^T \| p_N \alpha_s^{S_n} \|^q ds \right] = 0. \]

Proof. It is enough to prove the assertion for the first limit as the second limit can be treated as a special case, if we replace \(\sigma_s^{S_n} \) by the Hilbert-Schmidt operator \(e \otimes \alpha \) and using that
\[\| p_N \alpha_s^{S_n} \| = \| e \otimes p_N \alpha_s^{S_n} \|, \]
where \(e \) is an arbitrary element in \(U \) with \(\| e \| = 1. \) The Bochner integrability of \(\| p_N \sigma_s^{S_n} \|_{L_{op}(U)}^p \) is guaranteed by assumption.

\[E \left[\int_0^{[T/\Delta_n] \Delta_n} \| p_N \sigma_s^{S_n} \|_{L_{op}(U)}^p ds \right] \leq \sum_{i = 1}^{[T/\Delta_n]} E \left[\int_{(i-1)\Delta_n}^{i\Delta_n} \sup_{r \in [0,T]} \| p_N S(r) \sigma_s \|_{L_{op}(U)}^p ds \right] \]
\[= \int_0^T E \left[\sup_{r \in [0,T]} \| p_N S(r) \sigma_s \|_{L_{op}(U)}^p \right] ds. \]

Now observe that, for \(s, r \in [0,T] \) fixed, we have almost surely
\[\| p_N S(r) \sigma_s \|_{L_{op}(U)}^2 = \| \sigma_s^* S(r)^* p_N \|_{L_{op}(U)}^2 \leq \sum_{k = N}^{\infty} \| \sigma_s^* S(r)^* e_k \|^2 \to 0, \quad \text{as} \quad N \to \infty, \]
since \(\sigma^* S(s)^* \) is almost surely a Hilbert-Schmidt operator. Moreover, the function \(f_s(r) = \| p_N S(r) \sigma_s \|_{LHS(U,H)} \) is continuous in \(r \), as for

\[
|f_s(r_1) - f_s(r_2)| \leq \sup_{r \in [0,T]} \| S(r) \|_{op} \sup_{r \leq |r_1 - r_2|} \| (I - S(r)) \sigma_s \|_{LHS(U,H)}.
\]

The latter converges to 0, as \(n \to \infty \), by Proposition 5.1 in [Benth et al. (2022)]. As we also have

\[
\| p_N S(s) \sigma_t \|_{LHS(U,H)} \geq \| p_{N+1} p_N S(s) \sigma_t \|_{LHS(U,H)} = \| p_N S(s) \sigma_t \|_{LHS(U,H)},
\]

we find by virtue of Dini’s theorem (c.f. Theorem 7.13 in Rudin (1976)) that almost surely

\[
\lim_{N \to \infty} \sup_{t \in [0,T]} \| p_N S(r) \sigma_s \|_{LHS(U,H)} = 0.
\]

By the dominated convergence theorem, this immediately yields

\[
E \left[\int_0^{[T/\Delta_n] \Delta_n} \| p_N \sigma_s \|_{LHS(U,H)}^p ds \right] \leq E \left[\int_0^T \sup_{r \in [0,T]} \| p_N S(r) \sigma_s \|_{LHS(U,H)}^p ds \right] \to 0,
\]

as \(N \to \infty \). This proves the claim. \(\square \)

A.3. Various estimates for increments.

In this subsection, we will use the notation

\[
\tilde{\Delta}_i^n A := \int_{(i-1) \Delta_n}^{i \Delta_n} S(i \Delta_n - s) \alpha_s ds,
\]

\[
\tilde{\Delta}_i^n M := \int_{(i-1) \Delta_n}^{i \Delta_n} S(i \Delta_n - s) \sigma_s dW_s.
\]

We will make use of the following Lemma:

Lemma A.6. Suppose that Assumption (10)(m) holds. Let \((e_j)_{j \in \mathbb{N}}\) be an orthonormal basis of \(H \) and \(p_N \) be the projection onto \(v^N := \text{span}\{e_j : j \geq N\} \). Moreover, let

\[
a_N(z) := \sup_{n \in \mathbb{N}} E \left[\int_0^T \| p_N \alpha_s \|_{LHS(U,H)}^2 ds \right],
\]

and

\[
b_N(z) := \sup_{n \in \mathbb{N}} E \left[\int_0^T \| p_N \sigma_s \|_{LHS(U,H)}^2 ds \right],
\]

which both converge to 0 as \(N \to \infty \) for \(z \leq m \), respectively \(z \leq \frac{m}{T} \) by Lemma [A.3].

Then we can find for all \(m \in \mathbb{N} \) a universal constant \(C = C(m) > 0 \), such that

\[
\sum_{i=1}^{[t/\Delta_n]} E \left[\| p_N \tilde{\Delta}_i^n A \|_m \right] \leq C \Delta_n^{m-1} a_N(m),
\]

\[
\sum_{i=1}^{[t/\Delta_n]} E \left[\| p_N \tilde{\Delta}_i^n M \|_m \right] \leq C \Delta_n^{m-1} b_N(m),
\]

for all \(\Delta_n \) sufficiently small.
and
\begin{equation}
\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} E \left[\left\| p_N \Delta_i^n Y \right\|^m \right] \leq C(a_N(m) + b_N(m)) \Delta_n^{m-1} = o(\Delta_n^{m-1}).
\end{equation}

Proof. Throughout this proof we treat C as a generic constant that is chosen appropriately large in each step. The majorisation in (45) is an immediate implication of Bochner’s inequality and the boundedness of α. For (46), we get by the BDG inequality (36) that
\begin{align*}
\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} E \left[\left\| p_N \int_{(i-1)\Delta_n}^{i\Delta_n} S(i\Delta_n - s) \sigma_s dW_s \right\|^m \right] &\leq \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} C_m E \left[\left(\int_{(i-1)\Delta_n}^{i\Delta_n} \left| p_N S(i\Delta_n - s) \right|_{L_{H_s(U,H)}}^2 ds \right)^{\frac{m}{2}} \right] \\
&\leq \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} C_m \Delta_n^{\frac{m}{2} - 1} \int_{(i-1)\Delta_n}^{i\Delta_n} E \left[\left\| p_N S(i\Delta_n - s) \sigma_s \right\|^m \right] ds \\
&= C_m \Delta_n^{\frac{m}{2} - 1} b_N(m).
\end{align*}

Moreover, inequality (47) holds as
\begin{align*}
\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} E \left[\left\| p_N \tilde{\Delta}_n^m Y \right\|^m \right] &\leq 2^{m-1} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} E \left[\left\| p_N \int_{(i-1)\Delta_n}^{i\Delta_n} S(i\Delta_n - s) \sigma_s ds \right\|^m \right] \\
&\quad + 2^{m-1} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} E \left[\left\| p_N \int_{(i-1)\Delta_n}^{i\Delta_n} S(i\Delta_n - s) \sigma_s dW_s \right\|^m \right] \\
&\leq 2^{m-1} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \Delta_n^{\frac{m}{2} - 1} \int_{(i-1)\Delta_n}^{i\Delta_n} E \left(\left\| p_N \sigma_s \right\|^2 \right) ds \\
&\quad + 2^{m-1} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} E \left[\left(\int_{(i-1)\Delta_n}^{i\Delta_n} \left\| p_N \sigma_s \right\|^2 ds \right)^{\frac{m}{2}} \right] \\
&\leq 2^{m-1} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \Delta_n^{\frac{m}{2} - 1} \int_{(i-1)\Delta_n}^{i\Delta_n} \left\| p_N \sigma_s \right\|^m ds A^{m-1} \\
&\quad + 2^{m-1} \Delta_n^{\frac{m}{2} - 1} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} E \left[\left(\int_{(i-1)\Delta_n}^{i\Delta_n} \left\| p_N \sigma_s \right\|^m ds \right)^{\frac{m}{2}} \right] \\
&\leq \Delta_n^{\frac{m}{2} - 1} 2^{m-1} \left(a_N(m) A^{m-1} + b_N(m) \right).
\end{align*}

\[\square \]

Appendix B. Proof of the Laws of Large Numbers

Proof of Theorems 3.1 and 3.4. Let $(e_j)_{j \in \mathbb{N}}$ be an orthonormal basis of H, such that $e_j \in D(A^*)$ for all $j \in \mathbb{N}$. Recall that P_N is the projection onto V_N, with
\[V_N^d := \text{span}\{ e_j_1 \otimes \cdots \otimes e_j_d : j_i \geq N, i = 1, \ldots, d \}. \]
We write \(P^d_N = p_N \) if \(d = 1 \). Then we can identify \((I - P^m_N)\text{SAMPV}^n_t(m_1, \ldots, m_k)\) with the “matrix”

\[
((\text{SAMPV}^n_t(m_1, \ldots, m_k), e_{j_1} \otimes \cdots \otimes e_{j_d})_{(j_1, \ldots, j_d) \in \{1, \ldots, N\}^d}.
\]

To obtain the asymptotic behaviour of this “matrix”, and so the convergence

\[
(I - P^m_N) \Delta_n^{1 - \frac{m}{N}} \text{SAMPV}^n_t(m_1, \ldots, m_k) \xrightarrow{u.c.p} (I - P^m_N) \int_0^t \rho_{\Sigma_{\alpha}}^k(m_1, \ldots, m_k) \, ds,
\]

it is enough to check the convergence of the \(\langle \text{SAMPV}^n_t(m_1, \ldots, m_k), e_{j_1} \otimes \cdots \otimes e_{j_m} \rangle_{\mathcal{H}^m} \), for each \((j_1, \ldots, j_m) \in \{1, \ldots, N\}^m \) separately.

Fix therefore some \((e_{p_{i,j}})_{i=1,\ldots,k,j=1,\ldots,m_k} \) with \(p_{i,j} \in \mathbb{N} \) and \(e_{p_{i,j}} \in \{e_1, \ldots, e_N\} \). Using Lemma \(\text{[A,3]} \) and its notation, we find that

\[
\Delta_n^{1 - \frac{m}{N}} \langle \text{SAMPV}^n_t(m_1, \ldots, m_k), \bigotimes_{i=1, j=1}^{k, m_j} e_{p_{i,j}} \rangle_{\mathcal{H}^m}
\]

has the same asymptotic behaviour as \(\Delta_n^{1 - \frac{m}{N}} \sum_{i=1}^{t/\Delta_n} \| (\bigotimes_{i=1}^{k} \rho_{\Sigma_{\alpha_{i,j}}}^k(m_1, \ldots, m_k) \bigotimes_{j=1}^{m_j} e_{p_{i,j}})_{\mathcal{H}^m} \| \),

where we recall that

\[
\Delta^n_{i+1} S = \int_{(i+j-2)\Delta_n}^{(i+j-1)\Delta_n} \alpha_s \, ds + \int_{(i+j-2)\Delta_n}^{(i+j-1)\Delta_n} \sigma_s \, dW_s.
\]

This is however a component of the multipower variation of the multivariate semimartingale \(\langle S_t, e_1 \rangle, \ldots, \langle S_t, e_N \rangle \rangle \in \mathbb{R}^N \). Thus, in the case of power variations (i.e., under Assumption \(\text{[3]} \), Theorem 3.4.1 in [Jacod & Protter (2012)] applies, while in the case of multipower variations (i.e., under Assumption \(\text{[4]} \), Theorem 8.4.1 in [Jacod & Protter (2012)] applies. Hence, this yields

\[
\Delta_n^{1 - \frac{m}{N}} \langle \text{SAMPV}^n_t(m_1, \ldots, m_k), \bigotimes_{i=1, j=1}^{k, m_j} e_{p_{i,j}} \rangle_{\mathcal{H}^m}
\]

\[
\xrightarrow{u.c.p} \langle \int_0^t \rho_{\Sigma_{\alpha_{i,j}}}^k(m_1, \ldots, m_k) \, ds, \bigotimes_{i=1, j=1}^{k, m_j} e_{p_{i,j}} \rangle_{\mathcal{H}^m},
\]

i.e.,

\[
(I - P^m_N) \Delta_n^{1 - \frac{m}{N}} \text{SAMPV}^n_t(m_1, \ldots, m_k) \xrightarrow{u.c.p} (I - P^m_N) \int_0^t \rho_{\Sigma_{\alpha}}^k(m_1, \ldots, m_k) \, ds.
\]

This establishes the result for finite-dimensional projections of the multipower variation.

The triangle inequality yields

\[
\| (\text{SAMPV}^n_t(m_1, \ldots, m_k) - \int_0^t \rho_{\Sigma_{\alpha}}^k(m_1, \ldots, m_k) \, ds) \|_{\mathcal{H}^m}
\]

\[
\leq \| (I - P^m_N) (\text{SAMPV}^n_t(m_1, \ldots, m_k) - \int_0^t \rho_{\Sigma_{\alpha}}^k(m_1, \ldots, m_k) \, ds) \|_{\mathcal{H}^m}
\]

\[
+ \| P^m_N (\text{SAMPV}^n_t(m_1, \ldots, m_k)) \|_{\mathcal{H}^m} + \| P^m_N \int_0^t \rho_{\Sigma_{\alpha}}^k(m_1, \ldots, m_k) \, ds \|_{\mathcal{H}^m}.
\]
We next show the uniform convergence to zero of the latter two terms. The Markov and generalised Hölder inequality as well as (47) yield for a given \(\epsilon > 0 \),

\[
\mathbb{P} \left[\sup_{t \leq T} \left\| P_N^m S A M P V^m_t (m_1, \ldots, m_k) \right\|_{\mathcal{H}^m} > \epsilon \right]
\]

\[
\leq \frac{1}{\epsilon} \Delta_n^{\frac{1}{m} - \frac{m}{m+1}} \mathbb{E} \left[\sup_{t \leq T} \sum_{i=1}^{\frac{T}{\Delta_n} - k + 1} \prod_{j=1}^{k} \left\| p_N \tilde{\Delta}^n_{i+j-1} Y \right\|^m \right]
\]

\[
\leq \frac{1}{\epsilon} \Delta_n^{\frac{1}{m} - \frac{m}{m+1}} \sum_{i=1}^{\frac{T}{\Delta_n} - k + 1} \prod_{j=1}^{k} \mathbb{E} \left[\left\| p_N \tilde{\Delta}^n_{i+j-1} Y \right\|^m \right]^{m_j}
\]

\[
\leq \frac{1}{\epsilon} \Delta_n^{\frac{1}{m} - \frac{m}{m+1}} \prod_{j=1}^{k} \left(\sum_{i=1}^{\frac{T}{\Delta_n} - k + 1} \mathbb{E} \left[\left\| p_N \tilde{\Delta}^n_{i+j-1} Y \right\|^m \right] \right)^{m_j}
\]

\[
\leq \frac{1}{\epsilon} \Delta_n^{\frac{1}{m} - \frac{m}{m+1}} \prod_{j=1}^{k} \left(C \Delta_n^{\frac{m}{m+1} - 1} (a_N(m) + b_N(m)) \right)^{m_j}.
\]

This converges to 0 as \(N \to \infty \) uniformly in \(n \). Now, notice that by definition we have

\[
\langle \rho_{pN} \Sigma_{pN}, e_{j_1} \otimes \ldots \otimes e_{j_m} \rangle = \langle \rho_{\Sigma_{pN}}, e_{j_1} \otimes \ldots \otimes e_{j_m} \rangle \delta_{j_1, \ldots, j_m} \geq N.
\]

Therefore

\[
\left\| \rho_{pN} \Sigma_{pN} (m) \right\|_{\mathcal{H}^m}^2 = \sum_{j_1, \ldots, j_m \geq N} \left(\rho_{\Sigma_{pN}}(m), e_{j_1} \otimes \ldots \otimes e_{j_m} \right)^2
\]

\[
= \sum_{j_1, \ldots, j_m \geq N} \left(\sum_{p \in \mathcal{P}(m)} \prod_{k,l \in p} \langle \Sigma_{pN} e_{j_1}, e_{j_k} \rangle \right)^2
\]

\[
\leq |\mathcal{P}(m)| \sum_{p \in \mathcal{P}(m)} \sum_{j_1, \ldots, j_m \geq N} \prod_{k,l \in p} \langle \Sigma_{pN} e_{j_1}, e_{j_k} \rangle^2
\]

\[
\leq |\mathcal{P}(m)| \sum_{p \in \mathcal{P}(m)} \sum_{j_1, \ldots, j_m \geq N} \prod_{k,l \in p} \left\| \Sigma_{pN}^k e_{j_1} \right\|^2 \left\| \Sigma_{pN}^l e_{j_k} \right\|^2
\]

\[
= |\mathcal{P}(m)| \sum_{j \geq N} \left\| \Sigma_{pN}^j e_j \right\|^2 m_j
\]

which converges to 0 almost surely when \(N \to \infty \), as \(\Sigma_{pN}^j \) is a Hilbert-Schmidt operator. Hence, by the definition of \(\rho_{\Sigma_{pN}}^k (m_1, \ldots, m_k) \), it holds,

\[
\mathbb{P} \left[\sup_{t \leq T} \left\| P_N^m \int_0^t \rho_{\Sigma_{pN}}^k (m_1, \ldots, m_k) ds \right\|_{\mathcal{H}^m} > \epsilon \right]
\]

\[
\leq \frac{1}{\epsilon} \int_0^T \mathbb{E} \left[\left\| P_N^m \rho_{\Sigma_{pN}}^k (m_1, \ldots, m_k) \right\|_{\mathcal{H}^m} \right] ds
\]
This holds for all $\delta > 2$, that a sequence $(\epsilon_n)_{n \geq 0}$ exists such that sup $\mathbb{P}_{t \leq T} \left(\| (I - P^m_N) \mathbb{SAMPV}^n_t (m_1, \ldots, m_k) \|_{H^m} > \epsilon \right) < \epsilon$.

This holds for all $\delta > 0$, and hence the assertion follows.

APPENDIX C. PROOF OF THE CENTRAL LIMIT THEOREMS

We prove the central limit theorems by proving tightness of the laws of the processes in the Skorokhod space $D([0, T], H)$ first and then make use of the available finite-dimensional asymptotic limit theory in order to show convergence of the corresponding finite-dimensional distributions.

C.1. **A short primer on tightness.** Recall that a sequence of measures $(\mu_n)_{n \in \mathbb{N}}$ is tight on a Polish space B equipped with its Borel σ-algebra $(B, \mathcal{B}(B))$, if for each $\epsilon > 0$ there is a compact set $K_\epsilon \subset B$ such that sup $\mu_n(B \setminus K_\epsilon) < \epsilon$. We will say that a sequence $(X_n)_{n \in \mathbb{N}}$ of Borel-measurable random variables in B (e.g. stochastic processes) is tight, if the underlying sequence of laws $(\mu_{X_n})_{n \in \mathbb{N}}$ is tight.

C.1.1. **Tightness of random elements in the Skorokhod space $D([0, T], H)$.** For the convenience of the reader, we repeat the following tightness criterion from [Joffe & Metivier, 1986, p.35].
Theorem C.1. Let H be a separable Hilbert space. The family of laws $(P_{\psi^n})_{n \in \mathbb{N}}$ of a sequence of random variables $(\psi^n)_{n \in \mathbb{N}}$ in $D([0,T], H)$ is tight if the following two conditions hold:

(i) $(P_{\psi^n})_{n \in \mathbb{N}}$ is tight for each $t \in [0,T]$ and

(ii) (Aldous’ condition) For all $\epsilon, \eta > 0$ there is an $\delta > 0$ and $n_0 \in \mathbb{N}$ such that for all sequences of stopping times $(\tau_n)_{n \in \mathbb{N}}$ with $\tau_n \leq T - \delta$ we have

$$\sup_{n \geq n_0} \sup_{\theta \leq \delta} P\left[\|\psi^n_{\tau_n} - \psi^n_{\tau_n + \theta}\|_H > \eta\right] \leq \epsilon.$$

Regarding point (i) above, to show tightness in the space $D([0,T], H)$ it is necessary to find criteria for the tightness in the Hilbert space itself. This can be approached by an equi-small tails -argument and is well known (c.f. Lemma 1.8.1 in van der Vaart & Wellner (1996)):

Theorem C.2. Let $(Y_n)_{n \in \mathbb{N}}$ be a sequence of random variables on a probability space (Ω, \mathcal{F}, P) with values in a separable Hilbert space H, such that for all $\delta > 0$

$$\lim_{N \to \infty} \sup_{n \in \mathbb{N}} P\left[\sum_{l \geq N} \langle Y_n, e_l \rangle^2 > \delta \right] = 0,$$

for some orthonormal basis $(e_n)_{n \in \mathbb{N}}$. Then the sequence $(P_{Y_n})_{n \in \mathbb{N}}$ is tight in H.

Proof. Fix some $\epsilon > 0$. By assumption we can define two increasing sequences of natural numbers $(N_k^\epsilon)_{k \in \mathbb{N}}$ and $(l_k)_{k \in \mathbb{N}}$, such that $N_k^\epsilon = 1$ and

$$\sup_{n \in \mathbb{N}} P\left[\sum_{l \geq N_k^\epsilon} (Y_n, e_l)^2 > \frac{1}{l_k}\right] \leq \epsilon \frac{1}{l_k^2 \sum_{j=1}^{\infty} l_j^2}.$$

Further, we introduce

$$A_k^\epsilon := \left\{ h \in H : \sum_{l \geq N_k^\epsilon} \langle h, e_l \rangle^2 \leq \frac{1}{l_k} \right\}.$$

We prove now that $K_\epsilon = \bigcap_{k \in \mathbb{N}} A_k^\epsilon$ is compact. It is obviously closed and bounded. Then we have as $k \to \infty$

$$\sup_{h \in K_\epsilon} \sum_{l \geq N_k^\epsilon} \langle h, e_l \rangle^2 \leq \frac{1}{l_k} \to 0.$$

Hence, the set K_ϵ is totally bounded and by the Hausdorff theorem (c.f. Theorem 3.28 in Aliprantis & Border (2006)) compact.

It is now left to show that $1 - P_{Y_n}[K_\epsilon] < \epsilon$. But, by Markov’s inequality and the choice of N_k^ϵ we have

$$1 - P_{Y_n}[K_\epsilon] \leq \sum_{k=1}^{\infty} P_{Y_n}[\sigma_k^\epsilon] \leq \epsilon,$$

which proves the claim. \[\square\]

By Markov’s inequality, we have the following Corollary to Theorem C.2.
Corollary C.3. Let \((Y_n)_{n \in \mathbb{N}}\) be a sequence of random variables on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) with values in a separable Hilbert space \(H\) and having finite second moments. If for some orthonormal basis \((e_n)_{n \in \mathbb{N}}\) we have

\[
\lim_{N \to \infty} \sup_{n \in \mathbb{N}} \sum_{k \geq N} \mathbb{E} [(Y_n, e_k)^2] = 0,
\]

then the sequence \((\mathbb{P}_{Y_n})_{n \in \mathbb{N}}\) is tight in \(H\).

C.1.2. Tightness and stable convergence. Let \(E\) be a Polish space, \(\mathcal{E} := \mathcal{B}(E)\) its Borel \(\sigma\)-algebra and \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space. Recall that a map \(K : \Omega \times \mathcal{E} \to [0, 1]\) is called a Markov kernel from \((\Omega, \mathcal{F})\) to \((E, \mathcal{E})\), if for all \(\omega \in \Omega\) the map \(K(\omega, \cdot)\) is a Borel probability measure on \(E\) and for all \(A \in \mathcal{E}\) the map \(K(\cdot, A)\) is an \(\mathcal{F}\)-measurable random variable.

Let \((Y_n)_{n \in \mathbb{N}}\) be a sequence of random variables with values in the Skorokhod space \(D([0, T], H)\) defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and \(Y\) a random variable with values in \(D([0, T], H)\) defined on an extension \((\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})\) of \((\Omega, \mathcal{F}, \mathbb{P})\). Observe, that we can specify a Markov kernel \(K\) by the conditional distribution

\[
K(\omega, A) = \tilde{\mathbb{P}}[Y \in A | \mathcal{F}],
\]

One can then see that stable convergence of the sequence \((Y_n)_{n \in \mathbb{N}}\) to \(Y\) can be written as

\[
\mathbb{E}[Z f(Y_n)] \to \tilde{\mathbb{E}}[Z f(Y)] = \int_{\Omega} Z(\omega) \int_{D([0, T], H)} f(x) K(\omega, dx) \mathbb{P}[d\omega], \quad \text{as } n \to \infty
\]

for all bounded continuous functions \(f : D([0, T], H) \to \mathbb{R}\) and all bounded random variables \(Z\) on \((\Omega, \mathcal{F})\). In that way we can identify stable convergence of a sequence of random variables as convergence towards a Markov kernel in the sense of [53]. We will use this in the proof of the next theorem, which can be found in [Häusler & Luschgy 2015, Proposition 3.9] for continuous processes. Here we extend the proof for processes with values in the Skorokhod space.

Theorem C.4. Let \((Y_n)_{n \in \mathbb{N}}\) be a sequence of random variables with values in the Skorokhod space \(D([0, T], H)\) defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and \(Y\) a random variable with values in \(D([0, T], H)\) defined on an extension \((\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})\) of \((\Omega, \mathcal{F}, \mathbb{P})\). If \((Y_n)_{n \in \mathbb{N}}\) is tight and \((Y_n(t_1), ..., Y_n(t_d)) \to (Y(t_1), ..., Y(t_d))\) stably for each finite collection \(t_1, ..., t_d \in [0, T]\), \(d \in \mathbb{N}\), then \(Y_n \to Y\) stably as \(n \to \infty\).

Proof. Assume \((Y_n)_{n \in \mathbb{N}}\) is tight and \((Y_n(t_1), ..., Y_n(t_d)) \to (Y(t_1), ..., Y(t_d))\) stably for each finite collection \(t_1, ..., t_d \in [0, T]\) and \((Y_n)_{n \in \mathbb{N}}\) does not converge stably to \(Y\). Then we can find a subsequence \((n_k)_{k \in \mathbb{N}}\), \(\epsilon > 0\), a bounded real-valued random variable \(Z\) on \((\Omega, \mathcal{F}, \mathbb{P})\) and \(h \in C_b(D([0, T], H))\), such that

\[
|\mathbb{E}[Z h(Y_{n_k})] - \tilde{\mathbb{E}}[Z h(Y)]| \geq \epsilon.
\]

Equivalently, this means for the kernel

\[
K(\omega, A) := \tilde{\mathbb{P}}[Y \in A | \mathcal{F}](\omega)
\]

that

\[
|\mathbb{E}[Z h(Y_{n_k})] - \int_{\Omega} Z(\omega) \int_{D([0, T], H)} f(x) K(\omega, dx) \mathbb{P}[d\omega]| \geq \epsilon.
\]
By the tightness of \((Y_n)_{n \in \mathbb{N}}\), we can appeal to Theorem 3.4(a) in H¨ ausler & Luschgy (2015) and obtain a subsequence \((n_{k_i})_{i \in \mathbb{N}}\) of \((n_k)_{k \in \mathbb{N}}\), such that \(Y_{n_{k_i}} \rightarrow L\) stably for some Markov kernel \(L : \Omega \times \mathcal{B}(\mathcal{D}([0,T], H)) \rightarrow [0,1]\) as \(n_{k_i} \rightarrow \infty\). Then we have for all \(F \in \mathcal{F}\) with \(\mathbb{P}(F) > 0\) that

\[
\mathbb{P}^F \circ Y_{n_{k_i}}^{-1} \overset{d}{\rightarrow} \mathbb{P}^F[L] := \int_\Omega L(\omega, \cdot) \mathbb{P}^F[d\omega]
\]

weakly by Theorem 3.2 (iv) in H¨ ausler & Luschgy (2015), where \(\mathbb{P}^F[A] := \mathbb{P}[A \cap F] / \mathbb{P}[F]\) is the conditional probability. According to Billingsley (1999, p.138-139) there is then for each \(F \in \mathcal{F}\) with \(\mathbb{P}(F) > 0\) a dense set \(T_{\mathbb{P}^F[L]} \subset [0,T]\) (depending on the limiting distribution), that contains 0 and \(T\) and

\[
\mathbb{P}^F \circ Y_{n_{k_i}}^{-1} \circ (\pi_{t_1},...,t_d) \overset{d}{\rightarrow} \mathbb{P}^F[L] \circ (\pi_{t_1},...,t_d)
\]

whenever \(t_1, ..., t_d \in T_{\mathbb{P}^F[L]}\) for \(d\) arbitrary. Here, \(\pi_{t_1},...,t_d(f) = (f(t_1), ..., f(t_d))\) denotes the finite-dimensional projections. By Theorem 12.5 in Billingsley (1999), the sets

\[
\pi_{t_1},...,t_d(A), \quad A \in \mathcal{B}(H^d), t_1, ..., t_d \in T_{\mathbb{P}^F[L]}
\]

generate \(\mathcal{B}(\mathcal{D}([0,T], H))\), where \(H^d = H \times ... \times H\) is equipped with the product topology, and, in particular, two measures \(Q_1\) and \(Q_2\) coincide on \(\mathcal{B}(\mathcal{D}([0,T], H))\), if \(Q_1 \circ \pi_{t_1},...,t_d = Q_2 \circ \pi_{t_1},...,t_d\) for all \(t_1, ..., t_d \in T_{\mathbb{P}^F[L]}\), \(d \in \mathbb{N}\). By assumption we have that \((Y_n(t_1), ..., Y_n(t_d)) \rightarrow (Y(t_1), ..., Y(t_d))\) stably, which is equivalent to

\[
\mathbb{P}^F \circ Y_{n}^{-1} \circ \pi_{t_1},...,t_d \overset{d}{\rightarrow} \mathbb{P}^F \circ Y^{-1} \circ \pi_{t_1},...,t_d
\]

for all \(t_1, ..., t_d \in [0,T], d \in \mathbb{N}\) and all \(F \in \mathcal{F}\) with \(\mathbb{P}(F) > 0\) by (H¨ ausler & Luschgy 2015, Theorem 3.4(iv)). This together with (56) yields

\[
\mathbb{P}^F \circ Y_{n}^{-1} \circ \pi_{t_1},...,t_d \overset{d}{\rightarrow} \mathbb{P}^F[L] \circ (\pi_{t_1},...,t_d)
\]

for all \(t_1, ..., t_d \in T_{\mathbb{P}^F[L]}, d \in \mathbb{N}\) and, hence,

\[
\mathbb{P}^F[K] = \int_\Omega K(\omega, \cdot) \mathbb{P}^F[d\omega] = \mathbb{P}^F \circ Y^{-1} = \mathbb{P}^F[L]
\]

for all \(F \in \mathcal{F}\) with \(\mathbb{P}(F) > 0\). However, this shows that \(K = L\), which is a contradiction, as by construction of \(L\) it is

\[
\mathbb{E}[Zf(Y_{n_{k_i}})] \rightarrow \int_\Omega Z(\omega) \int_{\mathcal{D}([0,T], H)} f(x)L(\omega, dx)\mathbb{P}[d\omega], \quad as \ l \rightarrow \infty.
\]

\(\square\)

C.2. Tightness results for the central limit theorems. In this section we are going to prove in several steps the following theorem. Recall the notation \(\Sigma_n^S := S(i\Delta_n-s)\Sigma_n S(i\Delta_n-s)\) for \(s \in [(i-1)\Delta_n, i\Delta_n)\), that we will use extensively here.

Theorem C.5. Let Assumption 7 hold. Then the sequence of processes

\[
(\tilde{Z}_t^n)^2_{t \in [0,T]} := \left(\Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \tilde{\Delta}_n Y^\otimes 2 - \int_{(i-1)\Delta_n}^{i\Delta_n} \Sigma_n^S \, ds\right)_{t \in [0,T]} , \quad n \in \mathbb{N}
\]

is tight in \(\mathcal{D}([0,T], H)\).
Despite the rather extensive notation, it is relatively straightforward to show that \((\tilde{Z}^{n,2})_{t \in [0,T]}\) satisfies Aldous’ condition.

Theorem C.6. (Temporal tightness) Let \((\mathbb{P}_n)_{n \in \mathbb{N}}\) be given by \(\mathbb{P}_n = \mathbb{P}(Z^{n,2})_{t \in [0,T]}\) and Assumption 7 hold. Then \((\mathbb{P}_n)_{n \in \mathbb{N}}\) satisfies Aldous’ condition.

Proof. The Markov inequality yields
\[
\mathbb{P} \left[\left\| \tilde{Z}^{n,2}_T - Z^{n,2}_T \right\|_\mathcal{H} > \eta \right] \\
\leq \frac{1}{\eta} \mathbb{E} \left[\left\| \tilde{Z}^{n,2}_T - Z^{n,2}_T \right\|_\mathcal{H} \right] \\
\leq \frac{1}{\eta} \left(\Delta_n^{-\frac{1}{2}} \mathbb{E} \left[\left(\sum_{i=[\tau_n/\Delta_n]} \tilde{\Delta}_n^{(\tau_n/\Delta_n)} Y^\otimes 2 \right) + \mathbb{E} \left[\left\| \int_{\tau_n}^{\tau_n + \theta} \Sigma_s ds \right\|_\mathcal{H} \right] \right) .
\]

Now, set \(\theta < \delta < \Delta_n\). We can estimate further
\[
\mathbb{E} \left[\left(\sum_{i=[\tau_n/\Delta_n]} \tilde{\Delta}_n^{(\tau_n/\Delta_n)} Y^\otimes 2 \right) + \mathbb{E} \left[\left\| \int_{\tau_n}^{\tau_n + \theta} \Sigma_s ds \right\|_\mathcal{H} \right] \right] = (1) + (2).
\]

By (17) in Lemma A.6 and the Hölder inequality, we obtain
\[
\Delta_n^{-\frac{1}{2}} \mathbb{E} \left[\left\| \tilde{\Delta}_n^{(\tau_n/\Delta_n)} Y \right\|_\mathcal{H}^2 \right] \\
\leq \Delta_n^{-\frac{1}{2}} \mathbb{E} \left[\left\| \int_{\tau_n/\Delta_n}^{(\tau_n + \theta/\Delta_n) + 1} \alpha_s^{\mathcal{S}_n} ds \right\|_\mathcal{H}^2 \right] \\
+ \mathbb{E} \left[\left\| \int_{(\tau_n + \theta/\Delta_n) + 1}^{(\tau_n + \theta/\Delta_n) + 1} \alpha_s^{\mathcal{S}_n} ds \right\|_\mathcal{H}^2 \right] \\
\leq \Delta_n^{-\frac{1}{2}} \mathbb{E} \left[\Delta_n^{-1} \int_{(\tau_n + \theta/\Delta_n) + 1}^{(\tau_n + \theta/\Delta_n) + 1} \left\| \alpha_s^{\mathcal{S}_n} \right\|_\mathcal{H}^2 ds \right] \\
+ \mathbb{E} \left[\int_{(\tau_n + \theta/\Delta_n) + 1}^{(\tau_n + \theta/\Delta_n) + 1} \left\| \sigma_s \right\|_{L^2(\mathcal{H},U)}^2 ds \right] \\
\leq \Delta_n^{-\frac{1}{2}} \int_0^T \left\| \alpha_s^{\mathcal{S}_n} \right\|^2 ds \\
+ 2 \mathbb{E} \left[\left(\int_{(\tau_n + \theta/\Delta_n) + 1}^{(\tau_n + \theta/\Delta_n) + 1} \left\| \sigma_s \right\|_{L^2(\mathcal{H},U)}^2 ds \right)^{\frac{1}{2}} \right],
\]

(58)
which converges to 0 as \(n \to \infty \) since the function \(t \mapsto \int_0^t \|\sigma_s\|_{\mathcal{L}^{2}(U,H)}^4 \, ds \) is uniformly continuous on \([0, T]\) and bounded.

Analogously we obtain

\[
\Delta_n^{-\frac{1}{2}} \mathbb{E} \left[\left\| \tilde{\Delta}^n_{\lfloor \frac{t}{\Delta_n} \rfloor} Y \right\|_{\mathcal{H}} \right] \to 0,
\]
as \(n \to \infty \). This yields \(\lim_{n \to \infty} \Delta_n^{-\frac{1}{2}} (1)_n = 0 \).

It remains to show \(\lim_{n \to \infty} \Delta_n^{-\frac{1}{2}} (2)_n = 0 \). Observe that since \(s \mapsto \Sigma_s \) is bounded by assumption, the following convergence holds almost surely as \(n \to \infty \):

\[
\Delta_n^{-\frac{1}{2}} \int_{\tau_n}^{\tau_n + \theta} \|\Sigma_s\|_{\mathcal{H}} \, ds \leq \left(\int_{\tau_n}^{\tau_n + \theta} \|\Sigma_s\|_{\mathcal{H}}^2 \, ds \right)^{\frac{1}{2}} \leq \sup_{t \in [\tau_n, \tau_n + \theta]} \left(\int_{t}^{t + \theta} \|\Sigma_s\|_{\mathcal{H}}^2 \, ds \right)^{\frac{1}{2}} \leq \sup_{t, s \in [0, T], t - s \leq \Delta_n} \left(\int_{t}^{t + \theta} \|\Sigma_s\|_{\mathcal{H}}^2 \, ds \right)^{\frac{1}{2}}
\]

converges to zero, as \(t \mapsto \int_0^t \|\Sigma_s\|_{\mathcal{H}}^2 \, ds \) is uniformly continuous on \([0, T]\) almost surely, as \(\theta \leq \Delta_n \). Moreover, we have the integrable majorant

\[
\int_{\tau_n}^{\tau_n + \theta} \|\Sigma_s\|_{\mathcal{H}} \, ds \leq \int_0^T \|\Sigma_s\|_{\mathcal{H}} \, ds,
\]
such that we obtain by dominated convergence \(\Delta_n^{-\frac{1}{2}} (2) \to 0 \) as \(n \to \infty \). Hence, we conclude the Aldous condition in Theorem C.1. \(\square \)

In order to show tightness of the sequences \((\tilde{Z}^{n,2})_{n \in \mathbb{N}}\) in \(D([0, T], \mathcal{H})\) under the conditions of Theorem C.5, we have to verify the tightness of each \((\tilde{Z}^{n,2}_t)_{n \in \mathbb{N}}\) in \(\mathcal{H} \) for each \(t \in [0, T] \) separately. This is what we do in the remainder of this subsection.

We first argue that we can assume \(\alpha \equiv 0 \) in the proof of tightness of \(\tilde{Z}^{n,2}_t \) in \(\mathcal{H} \).

Observe that with the notation of Section A.3 we have

\[
\begin{align*}
\Delta_n^{-\frac{1}{2}} \left(SARC V^n_t - \int_0^t \Sigma_s \xi_s \, ds \right) &= \Delta_n^{-\frac{1}{2}} \left(\sum_{i=1}^{[t/\Delta_n]} \left(\tilde{\Delta}^n_i A + \tilde{\Delta}^n_i M \right) \otimes \Sigma_s \xi_s \, ds \right) \\
&= \Delta_n^{-\frac{1}{2}} \left(\sum_{i=1}^{[t/\Delta_n]} \tilde{\Delta}^n_i A \otimes \Sigma_s \xi_s \, ds \right) \\
&\quad + \Delta_n^{-\frac{1}{2}} \left(\sum_{i=1}^{[t/\Delta_n]} \tilde{\Delta}^n_i M \otimes \Sigma_s \xi_s \, ds \right) \\
&= (I)_t^n + (II)_t^n.
\end{align*}
\]

We obtain:

Theorem C.7 (Elimination of the drift). Suppose that Assumption 10(2m) holds. In this case, the first summand in (59), that is \((I)_t^n\), is tight. In particular, in order to show Theorem C.8 we can assume \(\alpha \equiv 0 \).
Proof. We show first that

\[(60) \quad \lim_{N \to \infty} \sup_{n \in \mathbb{N}} \mathbb{E} \left[\sup_{t \in [0,T]} \| P_N^2(I)^n_t \|_{\mathcal{H}} \right] = 0. \]

We can compute, using Hölder’s inequality

\[
\mathbb{E} \left[\sup_{t \in [0,T]} \| P_N^2(I)^n_t \|_{\mathcal{H}} \right] \\
\leq \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{[T/\Delta_n]} \mathbb{E} \left[\| P_N^2(I)^n_t \|_{\mathcal{H}} \right] \\
= \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{[T/\Delta_n]} \mathbb{E} \left[\| P_N^2(I)^n_t \|_{\mathcal{H}}^2 \right] \\
+ 2 \Delta_n^{-\frac{1}{2}} \left(\sum_{i=1}^{[T/\Delta_n]} \mathbb{E} \left[\| P_N^2(I)^n_t \|_{\mathcal{H}}^2 \right]\right)^{\frac{1}{2}} \left(\sum_{i=1}^{[T/\Delta_n]} \mathbb{E} \left[\| P_N^2(I)^n_t \|_{\mathcal{H}}^2 \right]\right)^{\frac{1}{2}}.
\]

Now using (45) and (46) as well as the corresponding notation from Lemma A.6 we find

\[
\mathbb{E} \left[\sup_{t \in [0,T]} \| P_N^2(I)^n_t \|_{\mathcal{H}} \right] \leq \Delta_n^{-\frac{1}{2}} C \Delta_n a_N(2) + 2 (C a_N(2))^\frac{1}{2} (C b_N(2))^\frac{1}{2}.
\]

The latter converges to 0, as \(N \to \infty \), uniformly in \(n \). Thus (60) holds. A straightforward application of Markov’s inequality and Theorem C.2 yield the assertion. \(\Box \)

In the subsections below we make the remaining steps in order to prove Theorem C.8 i.e., in view of Theorem C.1 and Theorem C.6 we have to prove that \((\tilde{Z}^n_t)_{n \in \mathbb{N}} \) is tight in \(\mathcal{H} \). In view of Theorem C.7 we further assume that \(\alpha \equiv 0 \) throughout these subsections.

C.2.1. Spatial tightness for quadratic variation. Recalling that Assumption 7 is satisfied under the assumptions of Theorem C.8 the tightness of the sequence of laws corresponding to \((\tilde{Z}^n_t)_{n \in \mathbb{N}} \) is tight in \(\mathcal{D}([0,T], \mathcal{H}) \) by

Theorem C.8. Assume that

\[
\int_0^T \mathbb{E} \left[\| \sigma_s \|_{L^{4}(U,H)}^4 \right] ds < \infty,
\]

which is in particular the case, if Assumption 7 holds. We have

\[
\lim_{N \to \infty} \sup_{t \in [0,T]} \sup_{n \in \mathbb{N}} \sum_{m, k \geq N} \mathbb{E} \left[(\tilde{Z}^{2,n}_t, e_k \otimes e_m)_{\mathcal{H}}^2 \right] \\
= \lim_{N \to \infty} \sup_{t \in [0,T]} \sup_{n \in \mathbb{N}} \mathbb{E} \left[\| P_N \tilde{Z}^{2,n}_t \|_{\mathcal{H}}^2 \right] = 0,
\]

and thus, the sequence \((\tilde{Z}^n_t)_{n \in \mathbb{N}} \) is tight in \(\mathcal{H} \). Hence, the sequence \((\tilde{Z}^n_t)_{n \in \mathbb{N}} \) is tight in \(\mathcal{D}([0,T], \mathcal{H}) \).
Therefore, by the triangle and Cauchy-Schwarz inequalities, we have

\[
(p_N \tilde{\Delta}^n Y)^{\otimes 2} - \langle p_N \tilde{\Delta}^n Y \rangle
\]

\[
= \Delta_n^{-\frac{1}{2}} \left((p_N \tilde{\Delta}^n Y)^{\otimes 2} - \int_{i-1}^t p_NS(t_i - s)\Sigma_sS(t_i - s)^* p_N ds \right).
\]

First we show that \(\text{sup}_{t \in [0,T]} \| \sum_{i=1}^{[t/\Delta_n]} \tilde{Z}_n(i) \|_{HS} \) has finite second moment. Note that, by the BDG inequality (36), we have

\[
\mathbb{E} \left[\| p_N \tilde{\Delta}^n Y \|^4 \right] \leq \mathbb{E} \left[\left(\int_{i-1}^{i\Delta_n} \| \sigma_s S_n \|^2_{LHS(U,H)} ds \right)^2 \right]
\]

\[
\leq \Delta_n \mathbb{E} \left[\int_{i-1}^{i\Delta_n} \| \sigma_s S_n \|^4_{LHS(U,H)} ds \right].
\]

Therefore, by the triangle and Cauchy-Schwarz inequalities, we have

\[
\mathbb{E} \left[\left\| \sum_{i=1}^{[t/\Delta_n]} \tilde{Z}_n(i) \right\|^2 \right]
\]

\[
\leq \mathbb{E} \left[\left(\sum_{i=1}^{[t/\Delta_n]} \left\| \tilde{Z}_n(i) \right\|_H \right)^2 \right]
\]

\[
\leq \Delta_n^{-1} \sum_{i=1}^{[t/\Delta_n]} \mathbb{E} \left[\left\| p_N \tilde{\Delta}^n Y \right\|^2 + \int_{i-1}^{i\Delta_n} \| \Sigma_s S_n \|^2_{LHS(U,H)} ds \right] \left\| \frac{t}{\Delta_n} \right\|
\]

\[
\leq \Delta_n^{-1} \sum_{i=1}^{[t/\Delta_n]} 2 \mathbb{E} \left[\left\| p_N \tilde{\Delta}^n Y \right\|^4 + \int_{i-1}^{i\Delta_n} \mathbb{E} \left[\left\| \sigma_s S_n \right\|^4_{LHS(U,H)} \right] ds \right] \left\| \frac{t}{\Delta_n} \right\|
\]

\[
\leq \Delta_n^{-1} \sum_{i=1}^{[t/\Delta_n]} 4 \Delta_n \int_{i-1}^{i\Delta_n} \mathbb{E} \left[\left\| \sigma_s S_n \right\|^4_{LHS(U,H)} \right] ds \left\| \frac{t}{\Delta_n} \right\| < \infty,
\]

where the finiteness is due the assumption.

Now note that \(t \mapsto \psi_t = \int_{i-1}^{t} p_N S(t_i - s) \sigma_s dW_s \) is a martingale for \(t \in [(i-1)\Delta_n, i\Delta_n] \). From Peszat & Zabczyk [2007, Theorem 8.2, p. 109] we deduce that the process \(\langle \zeta_t \rangle_{t \geq 0} \), with

\[
\zeta_t = \langle \psi_t \rangle^{\otimes 2} - \langle \langle \psi \rangle \rangle_t,
\]

is a martingale with respect to \((\mathcal{F}_t)_{t \geq 0} \), and hence,

\[
\mathbb{E} \left[(p_N \tilde{\Delta}^n Y)^{\otimes 2} | \mathcal{F}_{(i-1)\Delta_n} \right] = \mathbb{E} \left[\langle \psi_{i\Delta_n} \rangle^{\otimes 2} | \mathcal{F}_{(i-1)\Delta_n} \right]
\]
\[= \mathbb{E} \left[\langle \psi \rangle_{i, \Delta_n, \mathcal{F}_n} \right] = \int_{(i-1)\Delta_n}^{i\Delta_n} \mathbb{E} \left[p_N \mathcal{s}(t_i - s) \mathcal{s}(t_i - s)^* p_N | \mathcal{F}_n \right] ds. \]

So, \(\mathbb{E} \left[\hat{Z}_n(i) | \mathcal{F}_n \right] = 0 \). Moreover, for \(j < i \), as each \(\hat{Z}_n(i) \) is \(\mathcal{F}_n \)-measurable and the conditional expectation commutes with bounded linear operators, we find by using the tower property of conditional expectation that

\[\mathbb{E} \left[\langle \hat{Z}_n(i), \hat{Z}_n(j) \rangle_{\mathcal{H}} \right] = \mathbb{E} \left[\mathbb{E} \left[\langle \hat{Z}_n(i), \hat{Z}_n(j) \rangle_{\mathcal{H}} | \mathcal{F}_n \right] \right] = 0. \]

Thus, we obtain

\[\mathbb{E} \left[\left\| \sum_{i=1}^{[T/\Delta_n]} \hat{Z}_n(i) \right\|_{\mathcal{H}}^2 \right] \leq \sum_{i=1}^{[T/\Delta_n]} \mathbb{E} \left[\left\| \hat{Z}_n(i) \right\|_{\mathcal{H}}^2 \right]. \]

Applying the triangle and Bochner inequalities, the basic inequality \((a + b)^2 \leq 2(a^2 + b^2)\) and appealing to (62), we find

\[\mathbb{E} \left[\left\| \hat{Z}_n(i) \right\|_{\mathcal{H}}^2 \right] \leq 2\Delta_n^{-1} \mathbb{E} \left[\left\| (p_N \hat{Z}_n(i) Y)^\otimes 2 \right\|_{\mathcal{H}}^2 + \left(\int_{(i-1)\Delta_n}^{i\Delta_n} \| p_N \mathcal{s}(i\Delta_n - s) \mathcal{s}(i\Delta_n - s)^* p_N \|_{\mathcal{H}} ds \right)^2 \right] \leq 4 \int_{(i-1)\Delta_n}^{i\Delta_n} \mathbb{E} \left[\| p_N \mathcal{s}_n \|_{LHS(U,H)}^4 \right] ds. \]

Summing up, we have

\[\mathbb{E} \left[\sup_{t \in [0, T]} \left\| \sum_{i=1}^{[T/\Delta_n]} \hat{Z}_n(i) \right\|_{\mathcal{H}}^2 \right] \leq 4 \sup_{n \in \mathbb{N}} \int_0^T \mathbb{E} \left[\| p_N \mathcal{s}_n \|_{LHS(U,H)}^4 \right] ds, \]

which converges to 0 by Lemma A.5. Hence, as

\[\sup_{n \in \mathbb{N}} \sup_{t \in [0, T]} \sum_{i=1}^{[T/\Delta_n]} \mathbb{E} \left[\langle \hat{Z}_n(i), e_k \otimes e_m \rangle_{\mathcal{H}}^2 \right] = \sum_{i=1}^{[T/\Delta_n]} \left\| \hat{Z}_n(i) \right\|_{\mathcal{H}}^2, \]

the Theorem follows by Corollary C.3. \(\square \)

C.3. Convergence of finite-dimensional distributions and remainders.

C.3.1. Proof of the central limit theorem for realised covariation. Before we can finally prove the central limit theorem for realised covariation, we need the following auxiliary Lemma:

Lemma C.9. Let \((e_j)_{j \in \mathbb{N}}\) be an orthonormal basis of \(H\) that is contained in \(D(A^*)\). Then for any \(k, l \in \mathbb{N}\) we have

\[\int_{(i-1)\Delta_n}^{i\Delta_n} \langle \sum_{j=1}^{m, k \geq N} \mathcal{s}_j e_k, e_l \rangle ds = \int_{(i-1)\Delta_n}^{i\Delta_n} \langle \sum_{j=1}^{m} \mathcal{s}_j e_k, e_l \rangle ds + \psi_{i, k, l} \]

for all \(i \in \mathbb{N}\). \(\square \)
where $\psi^{i,k,l}_n$ is a sequence of random variables such that,

$$\mathbb{E}|\psi^{i,k,l}_n| \leq K \Delta_n^2,$$

for a constant $K = K_2(k,l) > 0$ independent of i.

Proof. Since $S(t\Delta_n - s)^* e_k = \int_s^{t\Delta_n} S(u - s)^* A^* e_k du + e_k$ for all $k \in \mathbb{N}$, we have that,

$$\int_{(i-1)\Delta_n}^{i\Delta_n} \langle \Sigma s^n e_k, e_l \rangle ds$$

$$= \int_{(i-1)\Delta_n}^{i\Delta_n} \langle \Sigma_s, \int_s^{i\Delta_n} S(u - s)^* A^* e_k du + \Sigma_s e_k, \int_s^{i\Delta_n} S(u - s)^* A^* e_l du + e_l \rangle ds$$

$$= \int_{(i-1)\Delta_n}^{i\Delta_n} \langle \Sigma_s e_k, e_l \rangle + \langle \Sigma_s \int_s^{i\Delta_n} S(u - s)^* A^* e_k du, e_l \rangle$$

$$+ \langle \Sigma_s \int_s^{i\Delta_n} S(u - s)^* A^* e_l du, \int_s^{i\Delta_n} S(u - s)^* A^* e_k du \rangle ds.$$

It holds by Bochner’s inequality

$$\mathbb{E} \left[\left\langle \Sigma_s e_k, \int_s^{i\Delta_n} S(u - s)^* A^* e_l du \right\rangle \right] \leq \int_s^{i\Delta_n} \mathbb{E} \left[\| \Sigma_s S(u - s)^* A^* e_l \| \right] du$$

$$\leq \Delta_n \sup_{t,s \in [0,T]} \mathbb{E} \left[\| \Sigma_s S(t)^* A^* e_l \| \right],$$

and analogous by swapping k and l

$$\mathbb{E} \left[\left\langle \Sigma_s e_l, \int_s^{i\Delta_n} S(u - s)^* A^* e_k du \right\rangle \right] \leq \int_s^{i\Delta_n} \mathbb{E} \left[\| \Sigma_s S(u - s)^* A^* e_k \| \right] du$$

$$\leq \Delta_n \sup_{t,s \in [0,T]} \mathbb{E} \left[\| \Sigma_s S(t)^* A^* e_k \| \right].$$

Moreover

$$\mathbb{E} \left[\left\langle \Sigma_s \int_s^{i\Delta_n} S(u - s)^* A^* e_k du, \int_s^{i\Delta_n} S(u - s)^* A^* e_l du \right\rangle \right]$$

$$= \int_s^{i\Delta_n} \int_s^{i\Delta_n} \mathbb{E} \left[\langle \Sigma_s S(u - s)^* A^* e_k, S(v - s)^* A^* e_l \rangle \right] dvdu$$

$$\leq \Delta_n^2 \sup_{t,s \in [0,T], j = k,l} \mathbb{E} \left[\| \Sigma_s S(t)^* A^* e_j \| ^2 \right].$$

By the choice $K = \sup_{t,s \in [0,T], j = k,l} \mathbb{E} \left[\| \Sigma_s S(t)^* A^* e_j \| ^2 \right]$, the assertion follows. \(\square \)

Theorem C.10. Let Assumption [2] hold. We have that $\tilde{Z}_n \xrightarrow{s} \mathcal{N}(0, \Gamma_t)$.

Proof. Let $(e_i)_{i \in \mathbb{N}}$ be an orthonormal basis of H that is contained in the domain $D(A^*)$ of the adjoint of the generator A. Since tightness of $(F_{\tilde{Z}_n})_{n \in \mathbb{N}}$ in the Skorokhod topology is guaranteed by Theorems [C.6] and [C.8] in combination with
Theorem C.1 it is enough to show the stable convergence in law as a process of the finite-dimensional distributions \(\{ \langle Z^n_{t}, e_k \otimes e_l \rangle \}_{k,l} \) := \(\{ \langle \hat{Z}_t^{n.2}, e_k \otimes e_l \rangle \}_{k,l} \).

Therefore, for \(k, l = 1, \ldots, d \) we find by Lemma A.4 and Lemma C.9 (and using the same notation) that

\[
\langle \hat{Z}_t^{n.2}, e_k \otimes e_l \rangle = \Delta_n^{-\frac{t}{\Delta_n}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left(\langle \hat{\Delta}_n^2 Y, e_k \rangle \langle \hat{\Delta}_n^2 Y, e_l \rangle - \int_{(i-1)\Delta_n}^{i\Delta_n} \langle \Sigma_s e_k, e_l \rangle \, ds \right)
\]

\[
= \Delta_n^{-\frac{t}{\Delta_n}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left(\langle \Delta_n^2 S, e_k \rangle \langle \Delta_n^2 S, e_l \rangle - \int_{(i-1)\Delta_n}^{i\Delta_n} \langle \Sigma_s e_k, e_l \rangle \, ds \right)
\]

\[
+ \Delta_n^{-\frac{t}{\Delta_n}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} (\psi_n^i \langle e_k, e_l \rangle - \psi_n^i \sigma_n^i \langle e_k, e_l \rangle) + \psi_n^i \sigma_n^i \langle e_k, e_l \rangle). \]

The second summand converges to 0 in probability uniformly on compacts, which is why we have that the stable limit of \(\langle \hat{Z}_t^{n.2}, e_k \otimes e_l \rangle \) is the same as the one of

\[
\Delta_n^{-\frac{t}{\Delta_n}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left(\langle \Delta_n^2 S, e_k \rangle \langle \Delta_n^2 S, e_l \rangle - \int_{(i-1)\Delta_n}^{i\Delta_n} \langle \Sigma_s e_k, e_l \rangle \, ds \right).
\]

The latter is a component of the difference of realised quadratic covariation and the quadratic covariation of the \(d \)-dimensional continuous local martingale \(S^n_t = (\langle S^n_t, e_1 \rangle, \ldots, \langle S^n_t, e_d \rangle) \). Therefore, \(\hat{Z}_t^{n.2} = (\langle \hat{Z}_t^{n}, e_k \otimes e_l \rangle)_{k,l} \) converges by Theorem 5.4.2 from Jacod & Protter (2012) stably as a process to a process that is defined on a very good filtered extension \((\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P}) \) of \((\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P}) \). This limiting process is conditionally on \(\mathcal{F} \) a centered Gaussian which can be realised on the very good filtered extension as

\[
N_{k,l} = \frac{1}{\sqrt{2}} \sum_{c,h=1}^{d} \int_{0}^{t} (\sigma_{k,l,cb}(s) + \sigma_{l,k,cb}(s)) \, dB^c_s.
\]

Here, \(\sigma(s) \) is a \(d^2 \times d^2 \)-matrix, being the square-root of the matrix \(\tilde{\sigma}(s) \) with entries \(\tilde{\sigma}_{k,l,v^u}(s) = \langle \Sigma_s e_k, e_k \rangle \langle \Sigma_s e_l, e_l \rangle \). Furthermore, \(B \) is a matrix of independent Brownian motions. This corresponds to the covariance \(\Gamma_t \), as by the Itô isometry we obtain

\[
\mathbb{E}[N_{k,l} N_{k',l'} | \mathcal{F}] = \frac{1}{2} \sum_{c,h=1}^{d} \int_{0}^{t} (\sigma_{k,l,cb}(s) + \sigma_{l,k,cb}(s)) (\sigma_{k',l',cb}(s) + \sigma_{l',k',cb}(s)) \, ds
\]

\[
= \frac{1}{2} \sum_{c,h=1}^{d} \int_{0}^{t} (\sigma_{k,l,cb}(s) \sigma_{k',l',cb}(s) + \sigma_{l,k,cb}(s) \sigma_{l',k',cb}(s)) \, ds
\]

\[
+ \int_{0}^{t} (\tilde{\sigma}_{k,l,cb}(s) + \tilde{\sigma}_{l,k,cb}(s)) (\tilde{\sigma}_{k',l',cb}(s) + \tilde{\sigma}_{l',k',cb}(s)) \, ds
\]

\[
= \frac{1}{2} \int_{0}^{t} (\tilde{\sigma}_{k,l,cb}(s) + \tilde{\sigma}_{l,k,cb}(s)) (\tilde{\sigma}_{k',l',cb}(s) + \tilde{\sigma}_{l',k',cb}(s)) \, ds
\]

\[
= \frac{1}{2} \int_{0}^{t} (\langle \Sigma_s e_k, e_k \rangle \langle \Sigma_s e_l, e_l \rangle + \langle \Sigma_s e_k, e_{l'} \rangle \langle \Sigma_s e_{l'}, e_{k'} \rangle + \langle \Sigma_s e_{l'}, e_k \rangle \langle \Sigma_s e_k, e_{l'} \rangle + \langle \Sigma_s e_{l'}, e_{l'} \rangle \langle \Sigma_s e_{l'}, e_{k'} \rangle) \, ds
\]
Proof of Theorem 2.5.

As now all finite-dimensional distributions converge stably and the sequence of measures is tight, we obtain by Theorem [C.4] that the convergence is indeed stable to a process Z in the Skorokhod space, whose corresponding finite-dimensional components $Z(d) := (Z, e_k, e_l)_{k,l=1,\ldots,d}$ are conditionally on \mathcal{F} a centred Gaussian process. It is itself conditionally centred Gaussian. Moreover, the process is continuous as well, since for Z in $\mathcal{D}([0,T], \mathcal{H})$ we have

$$
\|Z_t - Z_s\|_{\mathcal{H}} \leq \|P_d Z_t\|_{\mathcal{H}} + \|Z_t(d) - Z_s(d)\|_{\mathbb{R}^d} + \|P_d Z_s\|_{\mathcal{H}}.
$$

The outer terms can be made arbitrarily small, since by (61) it holds

$$
\lim_{d \to \infty} \sup_{t \in [0,T]} \mathbb{E} \left[\|P_d Z^2 \|_{\mathcal{H}}^2 \right] = 0.
$$

The middle term converges for each fixed d to 0 as $|t-s| \to 0$, as $P_d Z$ is continuous as an Itô integral. The proof is complete.

Now we are in the position to prove the central limit Theorems 2.5 and 2.2 for realised covariations.

Proof of Theorem 2.5. It is clear that $\Delta_n^{-\frac{1}{2}} \int_{[t/\Delta_n]}^t \Sigma_s ds$ converges to 0 in the u.c.p.-sense, and since

$$
\tilde{X}_t = \tilde{Z}_t + \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_{s} - \Sigma_s) ds + \Delta_n^{-\frac{1}{2}} \int_{[t/\Delta_n]}^t \Sigma_s ds,
$$

we have to show

$$
\Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_{s} - \Sigma_s) ds \xrightarrow{u.c.p.} 0.
$$

Recall that P_N denotes the projection onto $\{e_k \otimes e_l : k,l \geq N\}$, where again $(e_j)_{j \in \mathbb{N}}$ is an orthonormal basis of H that is contained in $D(A^*)$. Notice that for each $A \in \mathcal{H}$

$$
\|(I - P_N) A\|_{\mathcal{H}} = \| \sum_{k,l \leq N-1} \langle A, e_k \otimes e_l \rangle_{\mathcal{H}} e_k \otimes e_l \|_{\mathcal{H}}.
$$

Then, by Lemma [C.9],

$$
\mathbb{E} \left[\sup_{t \in [0,T]} \left\| \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_{s} - \Sigma_s) ds \right\|_{\mathcal{H}} \right].
$$

that

Now, estimating further using the Cauchy-Schwarz inequality along with the fact which converges to 0 as $N \to \infty$.

Further we have by triangle and Bochner inequalities

\[
E \left[\sup_{t \in [0,T]} \left\| P_N \Delta_n^{\frac{1}{2}} \sum_{i=1}^{[t/\Delta_n]} \int_{(i-1)\Delta_n}^i (\Sigma_s^N - \Sigma_s) \, ds \right\|_{\mathcal{H}} \right] \\
\leq N^{-\frac{1}{2}} \int_0^T E \left[\left\| P_N (\Sigma_s^N - \Sigma_s) \right\|_{\mathcal{H}} \right] \, ds \\
\leq N^{-\frac{1}{2}} \int_0^T E \left[\left\| P_N (S([s/\Delta_n] \Delta_n - s) - I) \Sigma_s S([s/\Delta_n] \Delta_n - s)^* \right\|_{\mathcal{H}} \right] \\
+ \left\| P_N \Sigma_s (S([s/\Delta_n] \Delta_n - s)^* - I) \right\|_{\mathcal{H}} \, ds.
\]

Now, estimating further using the Cauchy-Schwarz inequality along with the fact that $\|AB\|_{\mathcal{H}} \leq \|A\|_{\text{op}} \|B\|_{\text{LHS}(U;H)}$ for any Hilbert Schmidt operator $B : H \to U$ and continuous linear operator $A : U \to H$, we have

\[
E \left[\sup_{t \in [0,T]} \left\| P_N \Delta_n^{\frac{1}{2}} \sum_{i=1}^{[t/\Delta_n]} \int_{(i-1)\Delta_n}^i (\Sigma_s^N - \Sigma_s) \, ds \right\|_{\mathcal{H}} \right] \\
\leq N^{-\frac{1}{2}} \int_0^T E \left[\|p_N (S([s/\Delta_n] \Delta_n - s) - I) \sigma_s\|_{\text{op}} \right. \\
\left. \left(\|p_N \sigma_s\|_{\text{LHS}(U;H)} + \|p_N S([s/\Delta_n] \Delta_n - s) \sigma_s\|_{\text{LHS}(U;H)}\right) \right] \, ds \\
\leq \left(\int_0^T E \left[\|\Delta_n^{\frac{1}{2}} (S([s/\Delta_n] \Delta_n - s) - I) \sigma_s\|^2_{\text{op}} \right] \, ds \right)^{\frac{1}{2}} \\
\times \left(\int_0^T \sqrt{2} E \left[\|p_N \sigma_s\|^2_{\text{LHS}(U;H)} + \|p_N S([s/\Delta_n] \Delta_n - s) \sigma_s\|^2_{\text{LHS}(U;H)} \right] \, ds \right)^{\frac{1}{2}}.
\]

The first factor is finite by Assumption 2 whereas the second one converges to 0 as $N \to \infty$ by Lemma 3.5. Observe that we used that the Lemma holds also in the
special case $S(t) = I$ on H for all $t \geq 0$. Thus, we have

$$ \lim_{N \to \infty} \sup_{n \in \mathbb{N}} \mathbb{E} \left[\sup_{t \in [0,T]} \left\| P_N \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_{s}^{S_n} - \Sigma_s) \, ds \right\|_{\mathcal{H}} \right] = 0. $$

Therefore, we can find for each $\delta > 0$ an $N_{\delta} \in \mathbb{N}$ such that for all $N \geq N_{\delta}$

$$ \mathbb{E} \left[\sup_{t \in [0,T]} \left\| (I - P_N) \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_{s}^{S_n} - \Sigma_s) \, ds \right\|_{\mathcal{H}} \right] \leq \mathbb{E} \left[\sup_{t \in [0,T]} \left\| (I - P_N) \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_{s}^{S_n} - \Sigma_s) \, ds \right\|_{\mathcal{H}} \right] + \delta \to \delta. $$

As this holds for all $\delta > 0$, we obtain that

$$ \mathbb{E} \left[\sup_{t \in [0,T]} \left\| \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_{s}^{S_n} - \Sigma_s) \, ds \right\|_{\mathcal{H}} \right] \to 0, $$

as $n \to \infty$, and the assertion follows.

Proof of Theorem 2.2. For any $B \in \mathcal{H}$,

$$ \langle \hat{X}^n_t, B \rangle_{\mathcal{H}} = \langle \hat{Z}^{n,2}_t, B \rangle_{\mathcal{H}} + \langle \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_{s}^{S_n} - \Sigma_s) \, ds, B \rangle_{\mathcal{H}}. $$

Since the stable convergence with respect to the Hilbert-Schmidt norm as proven in Theorem C.10 implies the stable convergence in law with respect to the (analytically) weak topology, we only have to show

$$ \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_{s}^{S_n} - \Sigma_s), B \rangle_{\mathcal{H}} ds \overset{u.c.p.}{\longrightarrow} 0. $$

We can argue componentwise, which is why we assume without loss of generality that $B = h \otimes g$ for $h, g \in F_{1/2}$. We split into two terms as follows:

$$ \begin{align*}
\Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_{s}^{S_n} - \Sigma_s) h, g \rangle ds \\
= \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} ((S(i\Delta_n - s) - I) \Sigma_s \Sigma(I\Delta_n - s) h, g) ds \\
+ \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\Sigma_s (S(i\Delta_n - s) - I) h, g) ds
\end{align*} $$
We only show the convergence for \((1)\) since the argument for \((2)\) is analogous. It holds
\[
(1) = \Delta_n^{-2} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} \langle (I - p_N)(\Sigma_n S(i\Delta_n - s)^*)h, (S(i\Delta_n - s) - I)^*g \rangle ds
\]
\[
+ \Delta_n^{-2} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} \langle p_N(\Sigma_n S(i\Delta_n - s)^*)h, (S(i\Delta_n - s) - I)^*g \rangle ds
\]
\[
= (1.1)_{n,N} + (1.2)_{n,N},
\]
where again we denoted by \(p_N\) the projection onto \(\{e_j : j \geq N\}\) for an orthonormal basis \((e_j)_{j\in\mathbb{N}}\) of \(H\) that is contained in \(D(A)\). We have
\[
S(t - s)e_i - e_i = \int_s^t S(u - s)Ae_i du,
\]
and therefore it holds for the first summand that,
\[
\sup_{t \in [0,T]} \|((1)_{n,N})
\]
\[
= \sup_{t \in [0,T]} \|\Delta_n^{-2} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} \langle (I - p_N)(\Sigma_n S(i\Delta_n - s)^*)h, (S(i\Delta_n - s) - I)^*g \rangle ds\|
\]
\[
= \sup_{t \in [0,T]} \|\Delta_n^{-2} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} \sum_{j=1}^{N-1} \langle (\Sigma_n S(i\Delta_n - s)^*)h, e_j \rangle \langle (S(i\Delta_n - s) - I)^*g \rangle ds\|
\]
\[
= \sup_{t \in [0,T]} \|\sum_{j=1}^{N-1} \Delta_n^{-2} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} \langle (\Sigma_n S(i\Delta_n - s)^*)h, e_j \rangle \langle (S(u - s)Ae_j ds, g) \rangle ds\|
\]
\[
\leq \sum_{j=1}^{N-1} \Delta_n^{-2} \int_0^T \|\Sigma_n\|_{op} \|h\|_{\Delta_n} \|Ae_j\| ||g|| ds \sup_{t \in [0,T]} \|S(t)\|_{op}^2
\]
\[
(65)
\]
\[
\leq \Delta_n^{-2} \sum_{j=1}^{N-1} \int_0^T \|\Sigma_n\|_{op} ds \|h\| ||g|| \sup_{t \in [0,T]} \|S(t)\|_{op}^2.
\]

The last expression converges to 0 as \(n \to \infty\) almost surely. In particular, we have as \(n \to \infty\) that
\[
\|((1.1)_{n,N})\|_{u.c.p.} \xrightarrow{n \to \infty} 0.
\]

It follows from the fact that \(g \in F_{1/2}^S\) that we can find a constant \(K := \sup_{t \leq T} \|t^{-\frac{1}{2}}(S(t) - I)^*g\| < \infty\) such that
\[
\mathbb{E} \left[\sup_{t \in [0,T]} \|((1.2)_{n,N}) \| \right]
\]
\[
\leq \Delta_n^{-2} \sum_{i=1}^{\lfloor T/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} \mathbb{E} \|\langle p_N(\Sigma_n S(i\Delta_n - s)^*)h, (S(i\Delta_n - s) - I)^*g \rangle \| ds
\]
\[\leq \Delta_n^{-\frac{1}{2}} \sup_{t \leq \Delta_n} \| \mathcal{S}(t) - I \|^g \| \int_0^T \sup_{t \leq \Delta_n} \mathbb{E} [\| p_N \sigma_s \|_{op} \| \sigma_s^* \mathcal{S}(t) \|_{op} \| h \|] \, ds \]

\[\leq K \left(\int_0^T \mathbb{E} \left[\| p_N \sigma_s \|_{op}^2 \right] \right)^{\frac{1}{2}} \left(\int_0^T \mathbb{E} \left[\| \sigma_s^* \mathcal{S}(t) \|_{op}^2 \right] \right)^{\frac{1}{2}} \]

(66) \[\leq K \left(\int_0^T \mathbb{E} \left[\| p_N \sigma_s \|_{op}^2 \right] \right)^{\frac{1}{2}} \left(\int_0^T \mathbb{E} \left[\| \sigma_s^* \mathcal{S}(t) \|_{op}^2 \right] \right)^{\frac{1}{2}} \sup_{t \in [0,T]} \| \mathcal{S}(t) \|_{op} \]

As the first factor converges to 0 as \(N \to \infty \) by Lemma \(2.15 \) we obtain that \(\mathbb{E} [\sup_{t \in [0,T]} \| (1.2)_{n,N} \|] \) converges as \(N \to \infty \) uniformly in \(n \) to 0. Therefore, we can find for each \(\delta > 0 \) an \(N \in \mathbb{N} \), such that by Markov’s inequality

\[\lim_{n \to \infty} \mathbb{P} \left[\sup_{t \in [0,T]} |(1)_{n,u,c,p}^\epsilon| > \epsilon \right] \]

\[\leq \lim_{n \to \infty} \mathbb{P} \left[\sup_{t \in [0,T]} |(1.1)_{n,u,c,p}^\epsilon| > \epsilon \right] + \sup_{n \in \mathbb{N}} \mathbb{P} \left[\sup_{t \in [0,T]} |(1.2)_{n,u,c,p}^\epsilon| > \epsilon \right] \]

\[= 0 + \frac{1}{\mathbb{E}} \sup_{n \in \mathbb{N}} \mathbb{E} \left[\sup_{t \in [0,T]} |(1.2)_{n,u,c,p}^\epsilon| \right] \leq \delta. \]

As this holds for all \(\delta > 0 \) we obtain \((1)_{n,u,c,p}^\epsilon \to 0 \) as \(n \to \infty \). The assertion for \((2)_{n,u,c,p}^\epsilon \to 0 \) follows analogously. \(\square \)

Appendix D. Remaining proofs

We will now prove the remaining results, i.e. Theorem \(2.14 \) Theorem \(2.15 \) Lemma \(2.17 \) and Lemma \(2.19 \) as well as Examples \(2.6 \) and \(2.13 \) We start with the proof of Example \(2.6 \)

Proof of Example 2.6 We start with some general observations. If the central limit theorem should be valid, i.e., if \(\Delta_n^{-\frac{1}{2}} \left(\text{SARCV}_n^2 - \int_0^T \Sigma_s \, ds \right) \) should converge in distribution, we must necessarily have that it is tight. As the sum of two tight sequences is tight itself and since we have

\[\Delta_n^{-\frac{1}{2}} \left(\text{SARCV}_n^2 - \int_0^T \Sigma_s \, ds \right) - \Delta_n^{-\frac{1}{2}} \left(\text{SARCV}_n^2 - \int_0^t \Sigma_s \, ds \right) \]

\[= \left(\Delta_n^{-\frac{1}{2}} \sum_{i=1}^{[t/\Delta_n]} \int_0^t \Sigma_s \, ds \right), \]

we find that \(\left(\Delta_n^{-\frac{1}{2}} \sum_{i=1}^{[t/\Delta_n]} \int_0^t \Sigma_s \, ds \right) \) must be tight, due to Theorem \(C.10 \) I.e. for all \(\epsilon > 0 \) there is a compact set \(K_\epsilon \subset \mathcal{H} \) such that \(\mathbb{P} [X_n \notin K_\epsilon] < \epsilon \).

All compact sets \(K \subset \mathcal{H} \) are bounded and hence contained in a ball with radius large enough. Hence, from tightness we obtain that for all \(\epsilon > 0 \) there is an \(M_\epsilon > 0 \) such that

\[\sup_{n \in \mathbb{N}} \mathbb{P} \left[\left\| \left(\Delta_n^{-\frac{1}{2}} \sum_{i=1}^{[t/\Delta_n]} \int_0^t \Sigma_s \, ds \right) \right\|_{\mathcal{H}} > M_\epsilon \right] < \epsilon. \]
Thus, if for some specification of σ, there is an $\epsilon_0 > 0$ such that

$$\limsup_{M \to \infty} \sup_{n \in \mathbb{N}} \mathbb{P} \left(\left\| \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_0^t \Sigma_s - \Sigma_i ds \right\|_H > M \right) \geq \epsilon_0$$

we necessarily have that the central limit theorem cannot hold. For some $f_1 \in H$ let the volatility have the form

$$\sigma_s = e \otimes f_1,$$

where $e \in H$ is such that $\|e\| = 1$. Moreover, we let $f_2 \in H$ be such that

$$|\langle (S(x) - I) f_1, f_2 \rangle| \leq C x^\frac{1}{2},$$

for some constant $C > 0$, which does not depend on $x \geq 0$ and

$$\lim_{n \to \infty} \left| \Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\langle (S(i\Delta_n - s) - I) f_1, f_2 \rangle) ds \right| = \infty.$$

Moreover, we have $\Sigma_s = f_1^{\otimes 2}$ and hence

$$\Delta_n^{-\frac{1}{2}} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{0}^{t} \langle \Sigma_s - \Sigma_i ds, f_1^{\otimes 2} \rangle$$

$$= \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\langle S(i\Delta_n - s) f_1, f_2 \rangle^2 - \langle f_1, f_2 \rangle^2) ds$$

$$= \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\langle (S(i\Delta_n - s) - I) f_1, f_2 \rangle (\langle S(i\Delta_n - s) + I \rangle) f_1, f_2 \rangle) ds$$

$$= \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\langle (S(i\Delta_n - s) - I) f_1, f_2 \rangle^2) ds$$

$$+ 2 \langle f_1, f_2 \rangle \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \int_{(i-1)\Delta_n}^{i\Delta_n} (\langle (S(i\Delta_n - s) - I) f_1, f_2 \rangle) ds.$$
Brownian motion is globally Hölder on the compact interval \([0, \omega]\). By analogous reasoning and since the adjoint semigroup \((t < \omega)
abla\) holds for \(0 < \delta < \frac{1}{2}, 0 < \epsilon < \frac{1}{2} - \delta\) and \(\max(\delta, \epsilon) > \frac{1}{4}\). Moreover, we assume that \(\mathbb{E}[B_1(t)B_2(t)] = \rho > 0\) for \(t \in \mathbb{R}\). We also assume that \((B_1(t), B_2(t))_{t \in \mathbb{R}}\) is time-reversible, i.e. \((B_1(t), B_2(t)) = B_1(-t), B_2(-t))\) for all \(t \in \mathbb{R}\). In that case, the covariance structure of this process is given by

\[
\mathbb{E}[B_i(t)B_j(s)] = \frac{\rho_{i,j}}{2}(|s|^{\tilde{\delta}_{i,j}} + |t|^{\tilde{\delta}_{i,j}} - |t - s|^{\tilde{\delta}_{i,j}}),
\]

where

\[
\rho_{i,j} = \begin{cases} 1, & i = j, \\ \rho, & i \neq j, \end{cases}
\]

and

\[
\tilde{\delta}_{i,j} = \begin{cases} \delta, & i = j = 1, \\ \epsilon, & i = j = 2, \\ \delta + \epsilon, & i \neq j. \end{cases}
\]

Observe that we can always find a \(\rho > 0\) that guarantees the existence of such a process (c.f. Proposition 9 in Amblard et al. (2013)). We want to find an \(\omega \in \tilde{\Omega}\) such that the choice

\[
(f_1(x), f_2(x)) = (B_1(x)(\omega), B_2(x)(\omega)), \quad x \in [0, 2],
\]

we have \((68)\) and \((69)\). For that, observe that we have for \(t < 2\), as the fractional Brownian motion is globally Hölder on the compact interval \([0, 2]\) that for almost all \(\omega \in \tilde{\Omega}\) there is a \(\tilde{C}_\omega > 0\) such that

\[
\|(S(t) - I)B^\delta(\omega)\|^2 = \int_0^{2-t} (B^\delta_{t+s}(\omega) - B^\delta_s(\omega))^2 \, dx + \int_{2-t}^2 (B^\delta_s(\omega))^2 \, dx \leq \tilde{C}_\omega t^{2\delta}.
\]

By analogous reasoning and since the adjoint semigroup \((S(t)^*)_{t \geq 0}\) is given by the right-shift

\[
S(t)^* f(x) = f(x - t),
\]

we obtain for almost all \(\omega \in \tilde{\Omega}\) a \(\tilde{C}_\omega > 0\) such that

\[
\|(S(x) - I)f_1, f_2 \|^2 \leq \min(\|(S(x) - I)B_1(\omega)\| \|B_2(\omega)\|, \|(S(x)^* - I)B_2(\omega)\| \|B_1(\omega)\|) \leq \tilde{C}_\omega x^{\frac{3\delta}{2}},
\]

and hence \((68)\) holds. It is now enough to prove that \((69)\) holds for all \(\omega \in A\) which are in a set \(A \in \mathcal{F}\) such that \(\mathbb{P}[A] > 0\). For that, it is enough to prove that there is a \(c > 0\) and an \(N \in \mathbb{N}\), such that for all \(n \geq N\) we have

\[
\left| \mathbb{E} \left[\left(\left(B_1, B_2 \right) \sum_{i=1}^n \int_{(i-1)\Delta_n}^{i\Delta_n} \Delta_{n}^{-\alpha} \langle (S(i\Delta_n - s) - I)B_1, B_2 \rangle ds \right) \right] \right| > c,
\]

since in this case, for \(n \geq N\) we have \(\mathbb{P}[A] > 0\) for the choice

\[
A = \left\{ \left| \left(B_1, B_2 \right) \sum_{i=1}^n \int_{(i-1)\Delta_n}^{i\Delta_n} \Delta_{n}^{-\alpha} \langle (S(i\Delta_n - s) - I)B_1, B_2 \rangle ds \right| > c \right\}.
\]
If this would not be the case, there would be a subsequence \((n_k)_{k \in \mathbb{N}}\) such that on a full \(\bar{\mathbb{P}}\)-measure set \(\Omega_1\) we have
\[
\left| \langle B_1, B_2 \rangle \sum_{i=1}^{n_k} \int_{(i-1)\Delta_n}^{i\Delta_n} \Delta_n^{-\frac{\beta}{2}} \langle (S(i\Delta_n) - I)B_1, B_2 \rangle ds \right| \leq c.
\]
Letting \(\mathbb{E}_{\bar{\mathbb{P}}}\) denote the expectation with respect to the probability measure \(\bar{\mathbb{P}}\), we would have
\[
\mathbb{E}_{\bar{\mathbb{P}}} \left[\langle B_1, B_2 \rangle \sum_{i=1}^{n_k} \int_{(i-1)\Delta_n}^{i\Delta_n} \Delta_n^{-\frac{\beta}{2}} \langle (S(i\Delta_n) - I)B_1, B_2 \rangle ds \right]
= \int_{\Omega_1} \langle B_1, B_2 \rangle \sum_{i=1}^{n_k} \int_{(i-1)\Delta_n}^{i\Delta_n} \Delta_n^{-\frac{\beta}{2}} \langle (S(i\Delta_n) - I)B_1, B_2 \rangle ds(\omega) \bar{\mathbb{P}}[d\omega]
\leq \int_{\Omega_1} \langle B_1, B_2 \rangle \sum_{i=1}^{n_k} \int_{(i-1)\Delta_n}^{i\Delta_n} \Delta_n^{-\frac{\beta}{2}} \langle (S(i\Delta_n) - I)B_1, B_2 \rangle ds(\omega) \bar{\mathbb{P}}[d\omega] = c.
\]
This would contradict (71). That is, in particular, that if (71) is valid we obtain that (69) holds for the choice \(f_1 := B_1(\omega)\) and \(f_2 := B_2(\omega)\) for any \(\omega \in A\), as in this case
\[
\limsup_{n \to \infty} \left| \Delta_n^{-\frac{\beta}{2}} \langle f_1, f_2 \rangle \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \langle (S(i\Delta_n) - I)f_1, f_2 \rangle ds \right|
= \limsup_{n \to \infty} \left| \Delta_n^{-\frac{\beta}{2}} \langle f_1, f_2 \rangle \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \langle (S(i\Delta_n) - I)f_1, f_2 \rangle ds \right|
\geq \limsup_{n \to \infty} \left| \Delta_n^{-\frac{\beta}{2}} \langle f_1, f_2 \rangle \right|.
\]
Let us now prove that (71) holds to complete the proof. By the Isserlis-Wick formula we obtain
\[
\mathbb{E}_{\bar{\mathbb{P}}} \left[\langle B_1, B_2 \rangle \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \Delta_n^{-\frac{\beta}{2}} \langle (S(i\Delta_n) - I)B_1, B_2 \rangle ds \right]
= \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \int_0^{2} \int_{2-i\Delta_n+s}^{2-i\Delta_n} \Delta_n^{-\frac{\beta}{2}} \mathbb{E}_{\bar{\mathbb{P}}} [B_1(x)(B_1(y + i\Delta_n - s) - B_1(y))B_2(y)B_2(x)] dy dx ds
+ \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \int_0^{2} \int_{2-i\Delta_n+s}^{2-i\Delta_n} \Delta_n^{-\frac{\beta}{2}} \mathbb{E}_{\bar{\mathbb{P}}} [B_2(x)(B_1(y + i\Delta_n - s) - B_1(y))B_2(y)B_2(x)] dy dx ds
+ \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \int_0^{2} \int_{2-i\Delta_n+s}^{2-i\Delta_n} \Delta_n^{-\frac{\beta}{2}} \mathbb{E}_{\bar{\mathbb{P}}} [B_2(x)(B_1(y + i\Delta_n - s) - B_1(y))B_2(y)B_2(x)] dy dx ds
+ \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \int_0^{2} \int_{2-i\Delta_n+s}^{2-i\Delta_n} \Delta_n^{-\frac{\beta}{2}} \mathbb{E}_{\bar{\mathbb{P}}} [B_2(x)(B_1(y + i\Delta_n - s) - B_1(y))B_2(y)B_2(x)] dy dx ds
= (1)n(1) + (2)n(2) + (3)n(3) + (4)n.
Clearly, since

\[(72) \quad \sup_{r_1,1,\ldots,r_1,4, r_2,1,\ldots,r_2,2 \in [0,2]} \left| \mathbb{E} \left[\prod_{k=1}^{d_1} B_1(r_{1,k}) \prod_{k=1}^{d_2} B_2(r_{2,k}) \right] \right| < \infty, \]

the first term goes to 0 as \(n \to \infty \), as

\[
\left| \mathbb{E} \left[B_2(y)B_2(x) \right] \right| = \left| \int_0^\infty \mathbb{E} \left[B_2(y)B_2(x) \right] dy \right| \leq \Delta_n \int_0^{2-i\Delta_n+s} (y^{2\beta} + |y + i\Delta_n - s|^{2\beta} - |x - y - (i\Delta_n - s)|^{2\beta} - |y|^{2\beta}) dy
\]

For the second term, observe that, by the mean value theorem, we have for all \(x, y \in (0,2) \) such that \(y, y - x, y + i\Delta_n - s - x \neq 0 \) for \(s \in [(i-1)\Delta_n, i\Delta_n] \) that

\[
\left| x - y |^{2\beta} + |y + i\Delta_n - s|^{2\beta} - |x - y - (i\Delta_n - s)|^{2\beta} - |y|^{2\beta} \right|
\]

Hence,

\[
\left| \int_0^{2-i\Delta_n+s} \mathbb{E} \left[B_2(y)B_2(x) \right] \left(|x - y|^{2\beta} + |y + i\Delta_n - s|^{2\beta} - |x - y - (i\Delta_n - s)|^{2\beta} - |y|^{2\beta} \right) dy \right|
\]

It is

\[
\int_0^{2-i\Delta_n+s} |x - y|^{2\beta-1} dy \leq \int_0^{2-i\Delta_n+s} |x - y|^{2\beta-1} dy = \int_0^x (x - y)^{2\beta-1} dy + \int_x^{x} (y - x)^{2\beta-1} dy
\]

\[
= \frac{x^{2\beta} + (2 - x)^{2\beta}}{2\beta}
\]

and

\[
\int_0^{2-i\Delta_n+s} |x - y - i\Delta_n + s|^{2\beta-1} dy = \int_{i\Delta_n-s}^{2-i\Delta_n+s} |x - y|^{2\beta-1} dy \leq \int_0^{2-i\Delta_n+s} |x - y|^{2\beta-1} dy \leq \frac{2^{2\beta}}{\beta},
\]

as well as

\[
\int_0^{2-i\Delta_n+s} y^{2\beta-1} dy = \frac{(2 - i\Delta_n + s)^{2\beta}}{\beta} \leq \frac{2^{2\beta}}{\beta}.
\]

Hence,

\[
\left| \int_0^{2-i\Delta_n+s} \mathbb{E} \left[B_2(y)B_2(x) \right] \left(|x - y|^{2\beta} + |y + i\Delta_n - s|^{2\beta} - |x - y - (i\Delta_n - s)|^{2\beta} - |y|^{2\beta} \right) dy \right|
\]
\[\leq \Delta_n^{3/2} \sup_{r,s \in [0,2]} |\mathbb{E}_r[B_2(r)B_2(s)]| \]

This yields
\[
| (2)^n | = \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \int_0^2 \Delta_n^{-(\delta+\rho)} \mathbb{E}_r[B_2(r)(B_1(y)B_2(s))\mathbb{E}_r[B_2(y)B_2(x)] dy dx ds \]
\[
= \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \int_0^2 \Delta_n^{-(\delta+\rho)} \frac{1}{2} (|x-y|^{2\delta} + |y+i\Delta_n-s|^{2\delta} - |x-y-(i\Delta_n-s)|^{2\delta} - |y|^{2\delta}) \mathbb{E}_r[B_2(y)B_2(x)] dy dx ds \]
\[
\leq \Delta_n^{1-(\delta+\rho)} \frac{2^{2\delta}}{\delta} \sup_{r,s \in [0,2]} |\mathbb{E}[B_2(r)B_2(s)]|, \]

which goes to 0 as \(n \to \infty \). By analogous reasoning we obtain that the third summand (3)\(^n\) goes to 0 as \(n \to \infty \). We now come to the fourth term. For that, we find
\[
\sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \int_0^2 \Delta_n^{-(\delta+\rho)} \mathbb{E}[B_2(y)(B_1(y)B_2(s))B_2(x)] dy dx ds \]
\[
= \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \Delta_n^{-(\delta+\rho)} \int_0^2 \frac{1}{2} (x+i\Delta_n-s)^{\delta+\epsilon} - x^{\delta+\epsilon} - (i\Delta_n-s)^{\delta+\epsilon} dx ds \]
\[
= \frac{\rho}{2} \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \int_0^2 \frac{1}{\Delta_n^{\delta+\epsilon}} (x+i\Delta_n-s)^{\delta+\epsilon} - x^{\delta+\epsilon} dx ds \]
\[
= \frac{\rho}{2} n \int_{(i-1)\Delta_n}^{i\Delta_n} \int_0^2 \frac{1}{\Delta_n^{\delta+\epsilon}} (x+i\Delta_n-s)^{\delta+\epsilon} - x^{\delta+\epsilon} dx ds \]
\[
= \frac{\rho}{2} n \int_{(i-1)\Delta_n}^{i\Delta_n} \int_0^2 \frac{1}{\Delta_n^{\delta+\epsilon}} (x+i\Delta_n-s)^{\delta+\epsilon} - x^{\delta+\epsilon} dx ds. \]

The first and the third summand converge to 0 as \(n \to \infty \), as by the mean value theorem
\[
\left| \frac{\rho}{2} \sum_{i=1}^{n} \int_{(i-1)\Delta_n}^{i\Delta_n} \int_0^2 \frac{1}{\Delta_n^{\delta+\epsilon}} (x+i\Delta_n-s)^{\delta+\epsilon} - x^{\delta+\epsilon} dx ds \right| \]
Observe that \[\sum_{\eta > \eta_0} \leq n \]

As this holds for all \(\eta > \eta_0 \), we obtain that for any \(X \) of the counterexample 2.13 we still have to show that if \(\text{Proof of the remaining assertions of Example 2.13.} \)

In order to verify the validity \(\rho \Delta_n^{1-\eta} \sum_{i=1}^n \int_{(i-1)\Delta_n}^{i\Delta_n} \omega_{i-1} \int \frac{\rho}{\Delta_n^{\eta}} \int_{2-(i\Delta_n-s)} x^{\eta+1} ds dx \)

and

\[\leq \frac{\rho}{\Delta_n^{\eta+1}} \sum_{i=1}^n \int_{(i-1)\Delta_n}^{i\Delta_n} \omega_{i-1} \int \frac{\rho}{\Delta_n^{\eta}} \int_{2-(i\Delta_n-s)} x^{\eta+1} ds dx \]

\[\leq \rho \Delta_n^{1-\eta} \sum_{i=1}^n \int_{(i-1)\Delta_n}^{i\Delta_n} \omega_{i-1} \int \frac{\rho}{\Delta_n^{\eta}} \int_{2-(i\Delta_n-s)} x^{\eta+1} ds dx \]

Summing up, we obtain that for any \(\eta > 0 \) there is an \(N \in \mathbb{N} \), such that for all \(n \geq N \) we have as (1)\(\rho \), (2)\(\rho \), (3)\(\rho \) and the first and third term in (73) go to 0 as \(n \to \infty \)

\[\left| \mathbb{E} \left[(B_1, B_2) \sum_{i=1}^n \int_{(i-1)\Delta_n}^{i\Delta_n} (i\Delta_n)^{-(\eta+\rho)} ((S(i\Delta_n-s) - I)B_1, B_2) ds \right] \right| \]

\[\geq \int_0^2 \mathbb{E} \left[B_1(x)B_2(x) \right] dx \frac{\rho}{2} \sum_{i=1}^n \int_{(i-1)\Delta_n}^{i\Delta_n} \frac{(i\Delta_n-s)^{\eta+\rho}}{\Delta_n} (2-(i\Delta_n-s)) ds dx \]

\[\geq \int_0^2 \mathbb{E} \left[B_1(x)B_2(x) \right] dx \frac{\rho}{2} \sum_{i=1}^n \int_{(i-1)\Delta_n}^{i\Delta_n} \frac{(i\Delta_n-s)^{\eta+\rho}}{\Delta_n} (2-(i\Delta_n-s)) ds dx \]

\[= \int_0^2 \mathbb{E} \left[B_1(x)B_2(x) \right] dx \frac{\rho}{2} (5+\eta) - \eta. \]

As this holds for all \(\eta > 0 \), we obtain (11) and hence the proof. \(\square \)

We continue by proving the remaining assertions of Example 2.13

Proof of the remaining assertions of Example 2.13 In order to verify the validity of the counterexample 2.13, we still have to show that if \(X = B^\eta \),

(i) \(\{RV^n_t - \int_0^t \sum_{\Delta_n} (S(\Delta_n) - I)Y_{(i-1)\Delta_n}\} \) converges in probability to 0 and

(ii) \(\sum_{i=1}^n \| (S(\Delta_n) - I)Y_{(i-1)\Delta_n} \|^4 \) is uniformly integrable.

Moreover, in the second case, in which \(X = \mathbb{I}_{[0,1]} \), we must show that

(iii) \(\Delta_n^{1/2} \{SARCV^n_t - \int_0^t \sum_{\Delta_n} \} \) is uniformly integrable and

(iv) \(\Delta_n^{1/2} \{RV^n_t - \int_0^t \sum_{\Delta_n} \} \) is uniformly integrable.

Observe that

\[RV^n_t = \sum_{i=1}^{[t/\Delta_n]} \Delta_n Y_{[i\Delta_n]} \]

\[\Delta_n Y_{[i\Delta_n]} = \sum_{i=1}^{[t/\Delta_n]} \Delta_n Y_{[i\Delta_n]} \]

\[+ (S(\Delta_n) - I)Y_{(i-1)\Delta_n} \]

\[+ (S(\Delta_n) - I)Y_{(i-1)\Delta_n} \]
Thus, recalling that \(\Sigma_s^{S_\nu} = S(i\Delta_n - s)\Sigma_s S(i\Delta_n - s)^* \) for \(s \in ((i-1)\Delta_n, i\Delta_n] \)

\[
(RV'_n - \int_0^t \Sigma_s ds) = (S\text{ARCV}_n - \int_0^t \Sigma_s^{S_\nu} ds) + \Delta_n^{-\frac{1}{2}} \int_0^t \Sigma_s^{S_n} - \Sigma_s ds
\]

\[
+ \sum_{i=1}^{[t/\Delta_n]} \hat{\Delta}_n^\nu Y \otimes (S(\Delta_n) - I) Y_{(i-1)\Delta_n}
\]

\[
+ \sum_{i=1}^{[t/\Delta_n]} (S(\Delta_n) - I) Y_{(i-1)\Delta_n} \otimes \hat{\Delta}_n^\nu Y
\]

\[
+ \sum_{i=1}^{[t/\Delta_n]} [(S(\Delta_n) - I) Y_{(i-1)\Delta_n}]^\otimes 2
\]

\[
= (1)^n_t + (2)^n_t + (3)^n_t + (4)^n_t + (5)^n_t.
\]

The law of large numbers guarantees that (1)^n_t converges to 0 in probability with respect to the Hilbert-Schmidt norm. Moreover, for (3)^n_t (and analogously (4)^n_t) we find in the first case that, with the notation \(\Delta, \hat{S} = S(i\Delta_n) - S((i-1)\Delta_n) \),

\[
E \left[\| (3)^n_t \|^2 \right]
\]

\[
= \sum_{i,j=1}^n E \left[(\hat{\Delta}_n^\nu Y \otimes (S(\Delta_n) - I) Y_{(i-1)\Delta_n}, \hat{\Delta}_n^\nu Y \otimes (S(\Delta_n) - I) Y_{(j-1)\Delta_n})_H \right]
\]

\[
= \sum_{i,j=1}^n E \left[(\beta_i \Delta_n - \beta_{(i-1)\Delta_n}) \beta_{(i-1)\Delta_n} \beta_{(j-1)\Delta_n} \beta_{(j-1)\Delta_n} \right]
\]

\[
\times E \left[(S(i\Delta_n) B^\beta \otimes \Delta_i S B^\beta, S(j\Delta_n) B^\beta \otimes \Delta_j S B^\beta)_H \right]
\]

\[
= \sum_{i=1}^{(i-1)\Delta_n^2} E \left[\| S(i\Delta_n) B^\beta \otimes \Delta_i S B^\beta \|_H^2 \right]
\]

\[
\leq \sum_{i=1}^{(i-1)\Delta_n^2} E \left[\| S(i\Delta_n) B^\beta \|_H^4 \right] \frac{1}{2} E \left[\| \Delta_i S B^\beta \|_H^4 \right] \frac{1}{2}
\]

\[
= \sup_{r \in (0, T)} \| S(r) \|_{op}^4 E \left[\| B^\beta \|_H^4 \right] \frac{1}{2} E \left[\| (S(\Delta_n) - I) B^\beta \|_H^4 \right] \frac{1}{2} \sum_{i=1}^{(i-1)\Delta_n^2} (i-1) \Delta_n^2.
\]

This converges to 0, as \(n \to \infty \) and thus \((3)^n_t \to 0 \) (as well as \((4)^n_t \to 0 \)) as \(n \to \infty \) in \(L^2(\Omega) \). This shows the first point (i).

In order to prove (ii), observe that as by Jensen’s inequality it holds (since the central eight’s moment of a Gaussian random variable \(Z \sim N(0, \rho^2) \) is \(E[Z^8] = 105\rho^8 \))

\[
E \left[\| \Delta_i S B^\beta \|_H^8 \right] \leq \int_0^2 E \left[\left(B^\beta_{x + i\Delta_n} - B^\beta_{x + (i-1)\Delta_n} \right) \right] dx = 210 \Delta_n^8 H = 210 \Delta_n^2,
\]

we have

\[
E \left[\left(\sum_{i=1}^n \| (S(\Delta_n) - I) Y_{(i-1)\Delta_n}) \right\|_4^2 \right]
\]
This yields

\[
\mathbb{E}\left[\sum_{i,j=1}^{n} \beta^{4}_{(i-1)\Delta_{n}} \beta^{4}_{(j-1)\Delta_{n}} \right] \leq \sum_{i,j=1}^{n} \mathbb{E}\left[\beta^{8}_{(i-1)\Delta_{n}} \right] \mathbb{E}\left[\beta^{8}_{(j-1)\Delta_{n}} \right] \leq 210 \times 105 \sum_{i,j=1}^{n} (i-1)^{2} (j-1)^{2} \Delta_{n}^{4} \Delta_{n}^{2}
\]

which yields the \(L^{2}(\Omega)\)-boundedness of \(\sum_{i=1}^{n} \|(S(\Delta_{n}) - I) Y_{(i-1)}\|^{4}\) and, in particular, point (ii).

In order to show uniform integrability for the points (iii) and (iv) in the second case, in which \(X = \mathbb{I}_{[0,1]}\), it is enough to show (after normalisation by \(\sqrt{n}\)) that all summands \(\sqrt{\mathbb{E}}(1)^{n} - \sqrt{\mathbb{E}}(1)^{n}\) are bounded in \(L^{2}(\Omega)\) uniformly in \(n \in \mathbb{N}\). The first summand \(\sqrt{\mathbb{E}}(1)^{n}\) is bounded in \(L^{2}(\Omega)\), due to Theorem C.8

For the second term we observe

\[
\mathbb{E}\left[\left(\sum_{i=1}^{n} \int_{(i-1)\Delta_{n}}^{i\Delta_{n}} (\Sigma_{S_{n}}^{y} - \Sigma_{s}) ds \right)^{2} \right]^{\frac{1}{2}} \leq \int_{0}^{T} \mathbb{E}\left[\left((S(|s/\Delta_{n}| \Delta_{n} - s) - I) \Sigma_{s} S(|s/\Delta_{n}| \Delta_{n} - s) s^{2} \right)^{2} \right]^{\frac{1}{2}}
\]

\[
= \sup_{r \in [0,T]} \mathbb{E}\left[\left((S(r) - I) \Sigma_{s} s^{2} \right)^{2} \right]^{\frac{1}{2}} \leq 2 \sup_{r \in [0,T]} \|S(r)\|_{op} \int_{0}^{T} \sup_{x \in [0,\Delta_{n}]} \mathbb{E}\left[\left((S(x) - I) \Sigma_{ gre}-2\right)^{\frac{1}{2}} ds.
\]

It holds for \(x \geq 0, \|\sigma_{s}\|_{H^{s}(U,H)} = 1\) and

\[
\|S(x) - I\|_{op} = \|S(x) - S(s)\|_{H^{s}(U,H)} = 2x.
\]

This yields

\[
\Delta_{n}^{-\frac{1}{2}} \mathbb{E}\left[\left(\sum_{i=1}^{n} \int_{(i-1)\Delta_{n}}^{i\Delta_{n}} (\Sigma_{S_{n}}^{y} - \Sigma_{s}) ds \right)^{2} \right]^{\frac{1}{2}} \leq \Delta_{n}^{-\frac{1}{2}} \sup_{r \in [0,T]} \|S(r)\|_{op} \int_{0}^{T} \sup_{x \in [0,\Delta_{n}]} \|S(x) - I\|_{op} \|\sigma_{s}\|_{H} ds \leq 4 \sup_{r \in [0,T]} \|S(r)\|_{op}^{2} T.
\]

Hence \(\sqrt{\mathbb{E}}(2)^{n}\) is bounded in \(L^{2}(\Omega)\). We just proved point (iii).

Now we turn to the \(L^{2}(\Omega)\)-boundedness of \(\sqrt{\mathbb{E}}(3)^{n}\) \((\sqrt{\mathbb{E}}(4)^{n}\) is analogous). We have

\[
\langle (S(i \Delta_{n}) - S(\Delta_{n}(i - 1))) \mathbb{I}_{[0,1]}, (S(i \Delta_{n}) - S(\Delta_{n}(i - 1))) \mathbb{I}_{[0,1]} \rangle
\]

\[
= \int_{\mathbb{R}} \langle \mathbb{I}_{[-i \Delta_{n},-(i-1)\Delta_{n}]}(y) - \mathbb{I}_{[1-i \Delta_{n},1-(i-1)\Delta_{n}]}(y) \rangle
\]
This gives, by independence of β the
Hence, the L^2-boundedness of (5) follows. It remains to show the $L^2(\Omega)$-boundedness of $(5)_n^\circ$. We find

\[
\begin{align*}
\mathbb{E} \left[\| (S(\Delta_n)^{\circ}) r \|_H^2 \right] &= \mathbb{E} \left[\| \Delta_n^{-\frac{1}{2}} \sum_{i=1}^n (S(\Delta_n) - I) Y_{(i-1)\Delta_n} \|_H^2 \right] \\
&= \mathbb{E} \left[\Delta_n^{-1} \sum_{i,j=1}^n (S(\Delta_n) - I) Y_{(i-1)\Delta_n}, S(\Delta_n) - I) Y_{(j-1)\Delta_n} \right] \\
&= \mathbb{E} \left[\Delta_n^{-1} \sum_{i,j=1}^n \langle S(\Delta_n) - I) Y_{(i-1)\Delta_n}, S(\Delta_n) - I) Y_{(j-1)\Delta_n} \rangle \right] \\
&\leq 6.
\end{align*}
\]

This yields the $L^2(\Omega)$-boundedness of $(5)_n^\circ$ and, thus, we proved (iv). \hfill \Box

Now we give the proof of Theorem 2.13.

Proof of Theorem 2.13. Recall that by Theorem 2.11 (b) and (d) we can assume that Assumption [8] holds. This yields for the proof of the law of the large numbers that by the dominated convergence theorem

\[
\lim_{t \to 0} \mathbb{E} \left[\int_0^T \| t^{-\frac{1}{2}} (I - S(t)) \sigma_n \|_{L_{HS(U, H)}}^2 \right] ds = 0,
\]
and for the proof of the central limit theorem
\[
\lim_{t \to 0} \mathbb{E} \left[\int_0^T \left\| t^{-\frac{1}{2}} (I - S(t)) \sigma_s \right\|_{L^{HS(U,H)}}^2 \, ds \right] = 0.
\]

Then observe that we have
\[
RV_t^n = \sum_{i=1}^{[t/\Delta_n]} \Delta_i^n Y^{\otimes 2}
\]
\[
= \sum_{i=1}^{[t/\Delta_n]} \Delta_i^n Y^{\otimes 2} + \Delta_i^n Y \otimes (S(\Delta_n) - I) Y_{(i-1)\Delta_n}
\]
\[
+ (S(\Delta_n) - I) Y_{(i-1)\Delta_n} \otimes \Delta_i^n Y + [(S(\Delta_n) - I) Y_{(i-1)}]^{\otimes 2}
\]
\[
= (1)_t + (2)_t + (3)_t + (4)_t.
\]

We know that the first summand converges in u.c.p. to the integrated volatility
\[
\int_0^t \Sigma_s \, ds.
\]
Under this assumption, we obtain for the second and third summand
\[
\frac{1}{2} \sup_{t \in [0,T]} \mathbb{E} \left[\left\| (2)_t + (3)_t \right\| \right] \leq \sum_{i=1}^{[T/\Delta_n]} \mathbb{E} \left[\left\| (S(\Delta_n) - I) Y_{(i-1)\Delta_n} \right\| \right]
\]
\[
= \left(\sum_{i=1}^{[T/\Delta_n]} \mathbb{E} \left[\left\| \Delta_i^n Y \right\| \right] \right)^\frac{1}{2} \left(\sum_{i=1}^{[T/\Delta_n]} \mathbb{E} \left[\left\| (S(\Delta_n) - I) Y_{(i-1)\Delta_n} \right\| \right] \right)^\frac{1}{2}
\]
\[
\leq \sup_{r \in [0,T]} \left\| S(r) \right\|_{op} \left(\sum_{i=1}^{[T/\Delta_n]} \int_{(i-1)\Delta_n}^{i\Delta_n} \mathbb{E} \left[\left\| \sigma_s \right\|^2_{L^{HS(U,H)}} \right] \, ds \right)^\frac{1}{2}
\]
\[
\times \left(\sum_{i=1}^{[T/\Delta_n]} \int_0^T \mathbb{E} \left[\left\| (S(\Delta_n) - I) \sigma_s \right\|^2_{L^{HS(U,H)}} \right] \, ds \right)^\frac{1}{2}
\]
\[
= o(1),
\]
where the last equality is by assumption. Moreover, the last summand fulfills immediately
\[
\sup_{t \in [0,T]} (4)_t \leq \sup_{r \in [0,T]} \left\| S(r) \right\|_{op} \sum_{i=1}^{[t/\Delta_n]} \int_0^T \mathbb{E} \left[\left\| (S(\Delta_n) - I) \sigma_s \right\|^2_{L^{HS(U,H)}} \right] \, ds = o(1).
\]
This proves the claim for the law of large numbers. The central limit theorem follows by analogous reasoning, after normalising by \(\Delta_n^{-\frac{1}{2}} \). \qed

Now we give the proof of Theorem 2.15.

Proof of Theorem 2.15. We can argue componentwise, which is why we assume without loss of generality that \(B = h \otimes g \) for \(h, g \in F_{1/2}^{S*} \) for (i) or \(h, g \in F_{1/4}^{S*} \) for (ii) respectively. Again, we appeal to the decomposition
\[
\langle RV_t^n h, g \rangle = \sum_{i=1}^{[t/\Delta_n]} \langle \Delta_i^n Y^{\otimes 2} h, g \rangle
\]
\[\begin{align*}
\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} & \left(\Delta_i^n Y^\otimes 2 h, g \right) + \left(\Delta_i^n Y \otimes (S(\Delta_n) - I)Y_{(i-1)\Delta_n}, h, g \right) \\
& + \left(\left((S(\Delta_n) - I)Y_{(i-1)\Delta_n} \otimes \Delta_i^n Y h, g \right) \right) \left((S(\Delta_n) - I)Y_{(i-1)} \right)^{\otimes 2} h, g \right) \\
& = (1)^t_n + (2)^t_n + (3)^t_n + (4)^t_n.
\end{align*}\]

The first summand converges to \(\int_0^T \langle \Sigma_n h, g \rangle ds \), and after normalisation with \(\Delta_n^t \) it is asymptotically centred normal with variance \(\langle \Gamma, h \otimes g, h \otimes g \rangle \). Therefore, it is for

the law of large numbers enough to show

\[
\left((2)_{n}^{t} + (3)_{n}^{t} + (4)_{n}^{t} \right) \xrightarrow{\text{u.c.p.}} 0 \quad \text{as } n \to \infty.
\]

and for the central limit theorem to show

\[
\Delta_n^{t/2} \left((2)_{n}^{t} + (3)_{n}^{t} + (4)_{n}^{t} \right) \xrightarrow{\text{u.c.p.}} 0 \quad \text{as } n \to \infty.
\]

For the third (and analogously for the second) summand we have

\[
\left| (3)_{n}^{t} \right| = \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left| \langle (S(\Delta_n) - I)Y_{(i-1)\Delta_n} \otimes \Delta_i^n Y h, g \rangle \right|
\]

\[
\leq \left(\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left| \langle (S(\Delta_n) - I)Y_{(i-1)\Delta_n}, h \rangle \right|^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left| \langle \Delta_i^n Y^2, g \rangle \right|^2 \right)^{\frac{1}{2}}
\]

\[
= \left(\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left| \langle (S(\Delta_n) - I)Y_{(i-1)\Delta_n}, h \rangle \right|^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left| \langle \Delta_i^n Y^{\otimes 2}, g \rangle \right|^2 \right)^{\frac{1}{2}},
\]

and the second factor converges to an asymptotically normal law. For the fourth summand we have

\[
\left| (4)_{n}^{t} \right| = \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left| \langle (S(\Delta_n) - I)Y_{(i-1)}^{\otimes 2} h, g \rangle \right|
\]

\[
\leq \left(\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left| \langle (S(\Delta_n) - I)Y_{(i-1)}, h \rangle \right|^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left| \langle (S(\Delta_n) - I)Y_{(i-1)}, g \rangle \right|^2 \right)^{\frac{1}{2}}
\]

and, thus, for the law of large numbers it is enough to show for all \(h \in F_{\mathcal{H}}^{S^*} \),

\[
\sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left| \langle (S(\Delta_n) - I)Y_{(i-1)}, h \rangle \right|^2 \xrightarrow{\text{u.c.p.}} 0, \quad \text{as } n \to \infty
\]

and for the central limit theorem for all \(h \in F_{\mathcal{H}}^{S^*} \),

\[
\Delta_n^{t/2} \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} \left| \langle (S(\Delta_n) - I)Y_{(i-1)}, h \rangle \right|^2 \xrightarrow{\text{u.c.p.}} 0, \quad \text{as } n \to \infty.
\]

Due to Theorem (1) (respectively (a) for the central limit theorem) we can suppose that Assumption 8 (or Assumption 7 for the central limit theorem) is
valid. In that case, we have for the proof of the law of the large numbers by the dominated convergence theorem
\[\lim_{t \to 0} \mathbb{E} \left[\int_0^T \| t^{-\frac{1}{2}} (I - S(t)) \|_{\mathcal{F}}^2 ds \right] = 0 \]
and for the proof of the central limit theorem
\[\lim_{t \to 0} \mathbb{E} \left[\int_0^T \| t^{-\frac{1}{2}} (I - S(t)) \sigma_s \|_{\mathcal{F}}^2 ds \right] = 0. \]
Moreover, we have
\[\sum_{i=1}^{\lfloor T/\Delta_n \rfloor} \mathbb{E} \left[\left((S(\Delta_n) - I) Y_{(i-1), h} \right)^2 \right] \]
\[= \sum_{i=1}^{\lfloor T/\Delta_n \rfloor} \int_0^{(i-1)\Delta_n} \mathbb{E} \left[\left((S(i\Delta_n) - S((i-1)\Delta_n)) \Sigma_s^S (S(i\Delta_n) - S((i-1)\Delta_n))^* h, h \right) \right] ds \]
\[\leq T \int_0^T \sup_{t \in [0,T]} \mathbb{E} \left[\Delta_n^{-1} \left((S(t + \Delta_n) - S(t)) \Sigma_s^S (S(t + \Delta_n) - S(t))^* h, h \right) \right] ds. \]
Henceforth, in order to show (74) and (75) it is enough to show that, for all \(\gamma \in (0, 1) \) and \(h \in F_S^{\gamma \ast} \), we have, as \(n \to \infty \),
\[\int_0^T \sup_{t \in [0,T]} \mathbb{E} \left[\Delta_n^{-2\gamma} \left((S(t + \Delta) - S(t)) \Sigma_s (S(t + \Delta) - S(t))^* h, h \right) \right] ds \xrightarrow{u.c.p.} 0. \]
We note that
\[\int_0^T \sup_{t \in [0,T]} \mathbb{E} \left[\Delta_n^{-2\gamma} \left((I - p_N) \Sigma_s (S(t + \Delta) - S(t))^* h, (S(t + \Delta) - S(t))^* h \right) \right] ds \]
\[\leq \int_0^T \sup_{t \in [0,T]} \mathbb{E} \left[\Delta_n^{-2\gamma} \left((I - p_N) \Sigma_s (S(t + \Delta) - S(t))^* h, (S(t + \Delta) - S(t))^* h \right) \right] ds \]
\[+ \int_0^T \sup_{t \in [0,T]} \mathbb{E} \left[\Delta_n^{-2\gamma} \left(p_N \Sigma_s (S(t + \Delta_n) - S(t))^* h, \Delta_n^{-\gamma} (S(t + \Delta) - S(t))^* h \right) \right] ds \]
\[= (1)_{n,N} + (2)_{n,N}, \]
where again we denoted by \(p_N \) the projection onto \(v^N := \{ e_j : j \geq N \} \) for an orthonormal basis \((e_j)_{j \in \mathbb{N}} \) of \(H \) that is contained in \(D(\mathcal{A}) \). We have
\[S(t + \Delta_n) e_i - S(t) e_i = \int_t^{t+\Delta_n} S(u) A e_i du \]
and therefore we find for the first summand that
\[(1)_{n,N} \]
\[\leq \sum_{j=1}^{N-1} \left| \int_0^T \sup_{t \in [0,T]} \mathbb{E} \left[\Delta_n^{-2\gamma} \left(\Sigma_s (S(t + \Delta_n) - S(t))^* h, e_j, \Delta_n^{-\gamma} (S(t + \Delta_n) - S(t))^* h \right) \right] ds \right| \]
\[= \sum_{j=1}^{N-1} \Delta_n^{-2\gamma} \left| \int_0^T \sup_{t \in [0,T]} \mathbb{E} \left[\langle \Sigma_s (S(t + \Delta_n) - S(t))^* h, e_j \rangle \langle \int_t^{t+\Delta_n} S(u) A e_j du, h \rangle \right] ds \right|. \]
A.5. We obtain that
\[
E \leq \lim_{\delta \to 0} \sup_{t \in [0, T]} \|S(t)\|_{\text{op}} \|\Delta_n^{-\gamma}(S(t + \Delta_n) - S(t))^* h\|
\]
which converges to 0 as \(n \to \infty \). Moreover, it follows that for the second summand we have
\[
(2)_{n,N} \leq \Delta_n^{-2\gamma}\| (\mathcal{S}(\Delta) - I)^* h \|^2 \left(\int_0^T \sup_{t \in [0, T]} \mathbb{E} \left[\|p_N S(t)\|_{\text{op}}^2 \right]\right)^{\frac{1}{2}},
\]
where the first factor is bounded by Assumption on \(h \) and \(\int_0^T \mathbb{E} \left[\|p_N S(t)\|_{\text{op}}^2 \right] \) converges to 0 as \(N \to \infty \), as it can be shown analogously to the proof of Lemma A.3. We obtain that \(\mathbb{E}[\sup_{n \in \mathbb{N}} (1,2)_{n,N}] \) converges to 0 as \(N \to \infty \). Therefore, we can find for each \(\delta > 0 \) an \(N \in \mathbb{N} \), such that by Markov’s inequality
\[
\lim_{n \to \infty} \mathbb{P} \left[\sup_{t \in [0, T]} \int_0^T \sup_{t \in [0, T]} \mathbb{E} \left[(\Delta_n^{-2\gamma}(S(t + \Delta) - S(t))\Sigma_s (S(t + \Delta) - S(t))^* h, h) \right] ds > \epsilon \right] \\
\leq \lim_{n \to \infty} \mathbb{P} [||(1)_{n,N}|| > \epsilon] + \sup_{n \in \mathbb{N}} \mathbb{P} [||(2)_{n,N}|| > \epsilon] \\
= 0 + \frac{1}{\epsilon} \sup_{n \in \mathbb{N}} \mathbb{E} [||(2)_{n,N}||] \leq \delta.
\]
As this holds for all \(\delta > 0 \), we obtain the assertion. \(\square \)

We now prove Lemma 2.17.

Proof of Lemma 2.17 We have to show
\[
\hat{\Sigma}_t \overset{u.c.p.}{\to} \int_0^t \Sigma_s ds,
\]
with respect to the Hilbert-Schmidt norm over \(L^2([0, 1]) \). Moreover, recall that \(\delta_s(\cdot) = 1 + \min(x, \cdot) \). Define \(q(x, y) = \int_0^1 (\Sigma_s \delta_x, \delta_y) ds \) for \(x, y \in [0, 1] \) and moreover \(\hat{\Sigma}^n_t \) to be the integral operator corresponding to the kernel \(\hat{q}^n_t \), given for \(x \in [x_{j_1}, x_{j_1 + \Delta_n}] \) and \(y \in [x_{j_1}, x_{j_1 + \Delta_n}] \) by
\[
\hat{q}^n_t(x, y) := \int_0^t (\Sigma_s \delta_{x_{j_1}}, \delta_{x_{j_2}}) ds.
\]
I.e. \(\hat{\Sigma}_t f(x) := \int_0^t \hat{q}^n_t(x, y) f(y) dy \) for \(f \in L^2([0, 1]) \). Then we can conduct the
\[
\| \hat{\Sigma}_t^n - \int_0^t \Sigma_s ds\|_{L_{\text{HS}}(L^2([0, 1])))} \\
\leq \| \hat{\Sigma}_t^n - \hat{\Sigma}_t \|_{L_{\text{HS}}(L^2([0, 1])))} + \| \hat{\Sigma}_t - \int_0^t \Sigma_s ds \|_{L_{\text{HS}}(L^2([0, 1])))}.
\]
The first term goes to 0 u.c.p. as
\[
\| \hat{\Sigma}_t^n - \hat{\Sigma}_t \|_{L_{\text{HS}}(L^2([0, 1])))} \\
= \int_0^1 \int_0^1 (\hat{q}^n_t(x, y) - \hat{q}_t^n(x, y))^2 dx dy \\
= \sum_{j_1, j_2=0}^n \Delta_n^2 \left(\left(\text{SARCV}_t^n - \int_0^t \Sigma_s ds \right) \delta_{x_{j_1}, \delta_{x_{j_2}}} \right)^2.
\]
\[
\leq 4 \|SARC V_n - \int_0^t \Sigma_s \|_{op}^2,
\]
where we used that \(\|\delta_x\| \leq \sqrt{2}\) for all \(x \in [0, 1]\). This converges u.c.p. to zero, due to the law of large numbers Theorem 2.1. The second term in (76) also converges, as it is

\[
\|\Sigma^n - \int_0^t \Sigma_s ds\|_{L^1(\mathbb{R}^2)}^2
= \sum_{j_1, j_2=0}^n \int_{x_{j_1}}^{x_{j_1+1}} \int_{x_{j_2}}^{x_{j_2+1}} \left(\int_0^t \langle \Sigma_s \delta_{x_{j_1}}, \delta_{x_{j_2}} \rangle - \langle \Sigma_s \delta_x, \delta_y \rangle ds \right)^2 dxdy
\leq 2 \sum_{j_1, j_2=0}^n \int_{x_{j_1}}^{x_{j_1+1}} \int_{x_{j_2}}^{x_{j_2+1}} \left(\left(\int_0^t \Sigma_s ds \right) \delta_{x_{j_1}}, \delta_{x_{j_2}} - \delta_y \right)^2 dxdy
+ \left(\delta_{x_{j_1}} - \delta_x, \left(\int_0^t \Sigma_s ds \right) \delta_y \right)^2 dxdy
= 2 \sum_{j_1, j_2=0}^n \int_{x_{j_1}}^{x_{j_1+1}} \int_{x_{j_2}}^{x_{j_2+1}} \left(\delta_{x_{j_2}} ((S(y - x_{j_2}) - I) \left(\int_0^t \Sigma_s ds \right) \delta_{x_{j_1}} \right)^2 + \left(\delta_{x_{j_1}} ((S(x - x_{j_1}) - I) \left(\int_0^t \Sigma_s ds \right) \delta_{x_{j_2}} \right)^2 dxdy
\leq 16 \sum_{j=0}^n \int_{x_{j_1}}^{x_{j_1+1}} \left(\left(S(x - x_{j_1}) - I \right) \left(\int_0^t \Sigma_s ds \right) \right)^2_{op} ds
\leq 16 \int_0^T \sup_{r \leq \Delta_n} \left(\left(S(r) - I \right) \Sigma_s \right)^2_{op} ds,
\]
where \((S(t))_{t \geq 0}\) is the shift semigroup. As \(\Sigma_s\) is for each \(s\) almost surely a compact operator, the latter goes to 0, cf. Proposition 5.1 in Benth et al. (2022).

Next, we give the proof of Lemma 2.19.

Proof of Lemma 2.19 We recall that \(\delta_x(\cdot) = 1 + \min(x, \cdot)\). By the mean value theorem it holds for \(x \in (0, 1)\) and \(t > 0\) small enough, such that \(t < x < 1 - t\)

\[
\|S(t)\delta_x - \delta_x\|^2 = \int_0^1 \left(\mathbb{I}_{[0,x]} ((y + t) \land 1) - \mathbb{I}_{[0,x]}(y) \right)^2 dy
= \int_0^{1-t} \mathbb{I}_{[x-t,x]}(y) dy + \int_{1-t}^1 \mathbb{I}_{[0,x]}(y) dy
= (x \land (1 - t)) - (x - t) + x - (1 - t)
= x + 2t - 1
\in (t, 2t).
\]

This shows that \(\delta_x \in F^S\) but \(\delta_x \notin F^S_{\gamma}\) for any \(\gamma > \frac{1}{2}\). If \(x = 1\) and \(t\) small enough such that \(t \leq x\), it is

\[
\|S(t)\delta_x - \delta_x\|^2 = \int_0^1 \left(\mathbb{I}_{[0,1]} ((y + t) \land 1) - \mathbb{I}_{[0,1]}(y) \right)^2 dy
\]
such that $t < x$, This shows that all $\delta_x \in F^S_{\frac{1}{2}}$ but $\delta_x \notin F^S_\gamma$ for any $\gamma > \frac{1}{2}$.

We show that this holds for the adjoint semigroup $(S(t))_{t \geq 0}$ as well: For this purpose, we first derive an explicit representation of the adjoint operator $S(t)^*$. Let $g \in H$ be arbitrary. Then for $x < 1$, we have, as $\delta'_x(1) = 0$,

$$S^*(t)g(x) = (S(t)^*\delta_x, g)$$

$$= \delta_x(t)g(0) + \int_0^1 \delta'_x((y + t) \wedge 1) \, g'(y) \, dy$$

$$= \delta_x(t)g(0) + \int_0^{1-t} \delta'_x(y + t) \, g'(y) \, dx + \int_{1-t}^1 \delta'_x(1) \, g'(y) \, dy$$

$$= \left(\int_0^t \delta'_x(y) \, dy + \delta_x(0) \right) \, g(0) + \int_t^1 \delta'_x(y) \, g'(y - t) \, dx$$

$$= \left(\int_0^t \mathbb{I}_{[0,x]}(y) \, dy + 1 \right) \, g(0) + \int_t^1 \mathbb{I}_{[0,x]}(y) \, g'(y - t) \, dx$$

$$= g(0) + \int_0^1 \mathbb{I}_{[0,x]}(y) \left(\mathbb{I}_{[0,t]}(y) \, g(0) + \mathbb{I}_{[t,1]}(y) \, g'(y - t) \right) \, dy.$$

This yields $(S(t)^*g)(0) = g(0)$ and, for all $0 < t < 1$ and $x \in [0,1)$,

$$(S(t)^*g)'(x) = (\mathbb{I}_{[0,t]}(x)g(0) + \mathbb{I}_{[t,1]}(x)g'(x - t)).$$

In particular, $S(t)^*\delta_x(0) = 1$ and, for all $0 < t < 1$ and $y \in [0,1)$,

$$(S(t)^*\delta_x)'(y) = (\mathbb{I}_{[0,t]}(y) + \mathbb{I}_{[t,1]}(y)\mathbb{I}_{[0,x]}(y - t))$$

$$= (\mathbb{I}_{[0,t]}(y) + \mathbb{I}_{[t,(x+t)\wedge 1]}(y)).$$

Therefore, again by appealing to the mean value theorem and for t small enough such that $t < x < 1 - t$

$$\|S(t)^*\delta_x - \delta_x\|^2 = \int_0^1 \left(\mathbb{I}_{[0,t]}(y) + \mathbb{I}_{[t,x+t]}(y) - \mathbb{I}_{[0,x]}(y) \right) \, dy$$

$$= \int_0^1 \mathbb{I}_{[x,x+t]}(y) \, dy$$

$$= t.$$

This shows that all δ_x with $0 < x < 1$ are contained in the Favard space $F^S_{\frac{1}{2}}$, but not in F^S_γ for $\gamma > \frac{1}{2}$. \qed