A nongenomic mechanism for progesterone-mediated immunosuppression: inhibition of K+ channels, Ca2+ signaling, and gene expression in T lymphocytes.

Permalink
https://escholarship.org/uc/item/9vp6q27p

Journal
The Journal of experimental medicine, 188(9)

ISSN
0022-1007

Authors
Ehring, GR
Kerschbaum, HH
Eder, C
et al.

Publication Date
1998-11-01

DOI
10.1084/jem.188.9.1593

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
A Nongenomic Mechanism for Progesterone-mediated Immunosuppression: Inhibition of K⁺ Channels, Ca²⁺ Signaling, and Gene Expression in T Lymphocytes

By George R. Ehring, Hubert H. Kerschbaum, Claudia Eder, Amber L. Neben, Christopher M. Fanger, Rosana M. Khoury, Paul A. Negulescu, and Michael D. Cahalan

Immunosuppression within the uterus is crucial for the survival of the fetus (1, 2). Although the maternal immune system becomes sensitized to paternal antigens during pregnancy, fetal cells and placental trophoblasts bearing those antigens do not elicit a cytolytic immune response (3–5). High concentrations of progesterone in the placenta inhibit the maternal immune response against the fetal allograft (6, 7). The immunosuppressive effects of progesterone were demonstrated in vivo by prolonged survival of xenografts near silastic implants containing progesterone at concentrations typically found in the placenta (3, 6). In vitro assays have established that progesterone inhibits lymphocyte activation and proliferation in response to allogeneic cells or mitogens (8–10). In contrast, progesterone does not inhibit the effector functions of previously activated cytolytic T cells (11). These data suggest that progesterone may interfere with the early phases of T cell activation.

Antigen presentation and TCR ligation stimulate tyrosine kinases, leading to the generation of inositol 1,4,5-trisphosphate (IP₃) and a consequent rise in the cytoplasmic calcium concentration ([Ca²⁺]). Elevated [Ca²⁺], activates calcineurin, a phosphatase which then dephosphorylates a cytoplasmic transcription factor, the nuclear factor of activated T cells (NF-AT). Dephosphorylated NF-AT moves into the nucleus where it promotes the expression of the IL-2 gene (12). A sustained elevation in [Ca²⁺] is necessary for the retention of NF-AT in the nucleus and efficient transcription of IL-2 (13–16). In lymphocytes, the opening of Ca²⁺ release-activated Ca²⁺ (CRAC) channels initiates Ca²⁺ influx after the depletion of Ca²⁺ stores by

Abbrivations used in this paper: [Ca²⁺], intracellular free calcium concentration; CRAC, Ca²⁺ release-activated Ca²⁺; CTX, charybdotoxin; E₉, membrane potential; IP₃, inositol 1,4,5-trisphosphate; Kᵥ, voltage-gated K⁺; NF-AT, nuclear factor of activated T cells; TG, thapsigargin.
IP3 (17–19). Once the CRAC channels are open, the transmembrane concentration gradient for Ca²⁺ produces the driving force for Ca²⁺ entry. Eₘ is set by the interplay between several ion channels in the T cell membrane. By itself, the Ca²⁺ current through CRAC channels would diminish the driving force for calcium entry by reducing Eₘ. However, currents through voltage-gated K⁺ (Kᵥ) channels and Ca²⁺-activated K⁺ (KᵥCa) channels enhance Ca²⁺ entry by driving Eₘ to a negative voltage. Chloride channels may also play a role in maintaining a negative Eₘ during T cell activation (20, 21). The four major types of ion channels found in T cells are possible targets for immunosuppressive agents. In particular, the Kᵥ channel encoded by Kv1.3 is required for normal lymphocyte activation both in vitro and in vivo (14, 22–25).

We have determined the effects of progesterone on lymphocyte ion channels, Ca²⁺ signaling, and gene expression. By combining functional assays of gene expression with patch-clamp and Ca²⁺-imaging measurements, we demonstrate that progesterone blocks lymphocyte K⁺ channels, interferes with TCR-induced [Ca²⁺]ᵢ signaling, and inhibits gene expression. We propose that progesterone acts as an endogenous immunosuppressant by directly and reversibly blocking K⁺ channels.

Materials and Methods

Chemicals and Solutions. Salts and other reagents were obtained from Sigma Chemical Co. (St. Louis, MO) unless otherwise noted. Thapsigargin (TG) was obtained from Alexis Corp. (San Diego, CA). Progesterone (10 mM) and PMA (3 mM) stocks were prepared in DMSO.

Cell Culture. B3Z cells and K897 cells were provided along with the antigenic peptide fragment SIIN FEKL by Dr. N. Shastri (University of California, Berkeley, CA). B3Z cells are a murine, CD8+, T cell hybridoma with a known antigen specificity for OVA/Kᵇ-MHC and containing a β-galactosidase reporter gene construct (lacZ) under the control of the NF-AT promoter (26). The corresponding antigen-presenting K897 cells had been transfected with K⁺ class I MHC as described (27). The human leukemia T cell line Jurkat E6-1 was obtained from the American Type Culture Collection (Rockville, MD). Human peripheral T lymphocytes were collected from venous blood of healthy volunteers and isolated using a Ficoll-Hypaque density gradient. Many were incubated for 1–2 d before use.

β-Galactosidase reporter gene assay. The fraction of B3Z cells expressing β-galactosidase was measured using flow cytometry (FACScan; Becton Dickinson, San Jose, CA) as described previously (13). In brief, 5 × 10⁴ cells in RPMI without serum were plated in individual wells of 24-well plates activated either by 1 μM TG plus 50 nM PMA or by antibodies to the CD3-ε subunit of the TCR complex. In the latter, wells were coated with 10 μg/ml anti-CD3-ε antibodies (Pharmingen, San Diego, CA) overnight and rinsed briefly with PBS before use. Cells were activated in the incubator for a total of 4 h before being resuspended and loaded by osmotic shock with the fluorogenic substrate, fluorescein-di-β-galactopyranoside (FDG; Molecular Probes, Inc., Eugene, OR). The fluorescence of lactZ cells was at least fivefold greater than autofluorescence. The effect of progesterone on lactZ gene expression was quantified using a MUG (4-methylumbelliferone-galactopyranoside) assay (29). In brief, B3Z cells were plated at 10⁴ cells per well in 96-well plates, and the fluorescence produced by cell lysates in a solution containing 3 mM MUG was measured in a multi-well plate reader (CytoFluor Series 4000; PerSeptive Biosystems, Framingham, MA).

Patch-clamp Recordings. Membrane currents were measured using the whole-cell configuration of the patch-clamp technique (28, 30), and membrane potential was measured using the perforated patch method in current-clamp mode with nystatin to permeabilize the cells (21). An EPC-9 amplifier (HEKA, Lambrecht/Pfalz, Germany) interfaced to a M acintosh Quadra 700 computer was used for pulse application and data recording. Membrane voltages were corrected for liquid junction potentials, and current recordings were averaged for leak and capacitative currents. Patch pipettes were pulled from Accu-fill 90 Micropet (Becton Dickinson, Parsippany, NJ) using a P87 microtopipe puller (Sutter Instruments Co., Novato, CA). Pipettes were coated with Sylgard (Dow Corning Corp., Midland, MI) and heat polished to final resistances of 2–5 MΩ. Patch-clamp experiments were performed at room temperature (20–25°C). Unless otherwise indicated, the membrane currents were filtered at 1.5 kHz. Data analysis was performed using the program Pulse (HEKA). Mamalian Ringer contained (in mM): 160 NaCl, 4.5 KCl, 2 CaCl₂, 1 MgCl₂, 10 Hepes (pH 7.4; osmolality 290–310 mosmol/kg). The ionic composition of the pipette solutions used in the individual experiments is reported in the figure legends.

[Ca²⁺]ᵢ measurement. [Ca²⁺]ᵢ was measured ratiometrically using fura-2, as described previously (13). In brief, cells were loaded with 3 μM fura-2/AM (Molecular Probes, Inc.) for 30–40 min at room temperature (20–25°C). T cells were then washed three times with RPMI 10% FCS and stored in the dark. Illumination was provided by a xenon arc-lamp (Carl Zeiss, Jena, Germany) and transmitted through a filter wheel unit (Lambda 10; Axon Instruments, Foster City, CA) containing 350- and 385-nm excitation filters. The filtered light was reflected by a 400-nm dichroic mirror with a 63× oil-immersion objective to illuminate cells. Emitted light >480 nm was received by a SiT camera (C2400; Hamamatsu Photonics, Bridgewater, NJ) and the video information relayed to an image processing system (Videoprobe; ETM Systems, Petaluma, CA). Full-field-of-view 8-bit images, averaged over 16 frames, were collected at 350- and 385-nm wavelengths. Digitalized stored 350/385 ratios were constructed from background-corrected 350- and 385-nm images. Single-cell measurements of [Ca²⁺]ᵢ were calculated from the 350/385 ratios using the equation of Grynkiewicz et al. (32) and a Kᵢ of 250 nM for fura-2. The minimum 350/385 ratio was measured in single cells after incubation for 10 min in Ca²⁺-free Ringer containing 2 mM EGTA. Maximum ratio values were obtained after perfusion with Ringer containing 10 mM CaCl₂, 1 μM TG, and 10 μM ionomycin.
Data analysis. Numerical values for single-cell [Ca\(^{2+}\)] traces were analyzed with Origin (Microcal Software, Inc., Northampton, MA). Statistical analysis was performed on data sets using Excel version 5.0 (Microsoft Corp., Redmond, WA). Data are reported as mean ± SD. Analysis of variance (ANOVA) or Student’s t test was used to compare mean values. Pairs of means were considered statistically different if \(P < 0.05\).

Results

Progesterone Suppresses Gene Expression Driven by NF-AT.

The murine T cell hybridoma, B3Z, recognizes an octapeptide fragment from ovalbumin (SIINFKL) and expresses the laZ reporter construct under transcriptional control of the NF-AT response element of the IL-2 promoter (26, 27). Several treatments that increase [Ca\(^{2+}\)], lead to NF-AT–driven laZ expression in B3Z cells (13), including TCR engagement or stimulation with TG, a specific inhibitor of the endoplasmic reticulum Ca\(^{2+}\)-ATPase (33). By flow cytometry in the present series of experiments, cross-linking the TCR with anti-CD3-ε antibodies or stimulating with TG plus PMA produced laZ expression in the majority of B3Z cells (60 ± 4%, \(n = 7\); or 72 ± 10%, \(n = 3\), respectively). Progesterone reduced NF-AT–mediated laZ gene expression in a concentration-dependent manner, with an IC\(_{50}\) value of 22 ± 2.1 μM in cells stimulated by TG/PMA (Fig. 1A, filled circles). The progesterone antagonist RU 486 also inhibited gene expression with slightly lower potency (Fig. 1A, open squares). Progesterone reduced laZ expression when B3Z cells were stimulated by TG alone or with PMA, by immobilized anti-CD3-ε antibody, or by antigen presentation (Fig. 1B). Thus, at concentrations normally obtained in the placenta (34, 35), progesterone inhibits NF-AT–mediated gene expression when driven by four treatments that increase [Ca\(^{2+}\)]. Our results with NF-AT–driven laZ reporter gene expression are consistent with levels of progesterone or RU 486 shown previously to inhibit activation of human T cells in vitro (8, 9).

Progesterone Inhibits [Ca\(^{2+}\)] Oscillations in T Cells after TCR Engagement or TG Stimulation.

Upon contact with K897 cells preloaded with SIIN FEKL, B3Z cells responded with an initial Ca\(^{2+}\) transient from a resting [Ca\(^{2+}\)] of 180 ± 86 nM to a peak of 2.5 ± 0.5 μM (\(n = 20\)), followed by sustained Ca\(^{2+}\) oscillations (Fig. 2A). In the absence of preloaded antigen, K897 cells did not elicit Ca\(^{2+}\) signaling in B3Z cells (data not shown). Application of 50 μM progesterone reversibly suppressed antigen-induced Ca\(^{2+}\) oscillations (Fig. 2A).

To determine if progesterone directly inhibits TCR-initiated signaling or interferes with costimulatory pathways, we activated the TCR complex by cross-linking CD3. Setting B3Z cells onto chambers coated with anti-CD3-ε antibodies elicited an initial Ca\(^{2+}\) transient followed by vigorous Ca\(^{2+}\) oscillations that continued for at least 40 min (Fig. 2B). In the presence of 50 μM progesterone, most cells produced only the initial Ca\(^{2+}\) transient lasting 271 ± 178 s, or a transient followed by severely attenuated oscillations (\(n = 14\); Fig. 2C). These data demonstrate that progesterone blocks Ca\(^{2+}\) signaling after TCR engagement. Since the initial Ca\(^{2+}\) transient results from IP\(_{3}\)-mediated release of Ca\(^{2+}\) from intracellular stores, and the sustained Ca\(^{2+}\) signal requires Ca\(^{2+}\) influx, these data also suggest that progesterone inhibits Ca\(^{2+}\) influx but not the steps that lead to Ca\(^{2+}\) release from intracellular stores.

TG inhibits the Ca\(^{2+}\) reuptake pump, leading to depletion of the intracellular Ca\(^{2+}\) stores and Ca\(^{2+}\) influx while bypassing the initial steps of TCR signaling and IP\(_{3}\) generation (36, 37). In resting human T cells, the addition of TG to the bathing solution increased [Ca\(^{2+}\)], from 72 ± 8 nM to a stable plateau level of 1.2 ± 0.1 μM (\(n = 76\); Fig. 3A). Progesterone reversibly inhibited the sustained Ca\(^{2+}\) signal with an IC\(_{50}\) value of 28 ± 2.7 μM (Fig. 3A and B).

![Figure 1](https://example.com/figure1.png)

Figure 1. Progesterone inhibits NF-AT–mediated gene expression in B3Z cells. (A) The concentration-dependent inhibition of laZ expression in B3Z cells by progesterone (○) or RU 486 (□) was measured in a multwell fluorescence plate reader using MUG as a substrate for β-galactosidase. The cells were stimulated for 4 h with 1 μM TG plus 50 nM PMA. For each experiment, triplicate samples were corrected for background fluorescence and normalized for control laZ expression. Data are presented as mean ± SD (\(n = 10\)), and were fitted to a Hill equation of the form

\[
y = \frac{y_{\text{max}}}{1 + \left(\frac{X}{IC_{50}}\right)^n}
\]

where \(y = \text{the fraction of control laZ expression with a maximum level represented by } y_{\text{max}}, X = \text{the concentration of progesterone}, IC_{50} = \text{the dissociation constant, and } n = \text{the Hill coefficient. The curve represents a Hill equation with an IC}_{50} \text{ value of } 22 \pm 2.1 \mu M \text{ and } n = 1.7 \pm 0.3. \text{ The effects of progesterone were not due to nonspecific toxicity, since after treatment with 30 μM progesterone, >95% of the cells stained with vital stain acetoxy-methoxy calcium and <5% stained with propidium iodide, a dye that is excluded from live cells. (B) Application of 30 μM progesterone reduced laZ expression when B3Z cells were stimulated for 4 h by 1 μM TG alone, a combination of 1 μM TG plus 50 nM PMA (TG + PMA), immobilized anti-CD3-ε antibodies, or K 897 cells presenting SIIN FEKL. Fluorescence readouts from the multwell plate reader in arbitrary units (a.u.) are presented as mean ± SD (white bars, stimulation alone; hatched bars, stimulation plus 30 μM progesterone). *Significance was determined with one-tail t tests (P < 0.0001).
the Driving Force for Ca\(^{2+}\) influx subsequent to emptying of the Ca\(^{2+}\) stores.

Progesterone depolarizes the membrane potential, reducing the driving force for Ca\(^{2+}\) entry. Ca\(^{2+}\) influx depends upon the opening of CRAC channels and upon an electrochemical gradient for Ca\(^{2+}\) entry across the cell membrane. The negative membrane potential supported by K\(^{+}\) channels provides the electrical component of the driving force favoring Ca\(^{2+}\) entry; membrane depolarization would reduce this driving force. By direct measurement during perforated-patch current-clamp recording, we found that progesterone depolarizes the membrane potential, \(E_m\). K\(^{+}\) channels normally maintain the resting membrane potential of T lymphocytes near −60 mV (38). Fig. 4A illustrates that membrane hyperpolarization accompanies TG stimulation (from −61 ± 1.2 mV, \(n = 3\); to −78 ± 2.0 mV, \(n = 11\)). The hyperpolarization that follows TG stimulation is produced by activation of K\(_{Ca}\) channels during the rise in [Ca\(^{2+}\)], driving \(E_m\) towards the K\(^{+}\) equilibrium potential of \(\sim 80\) mV. Progesterone (50 \(\mu\)M; application bar, Fig. 4A) not only reversed the hyperpolarization, but also resulted in depolarization to an average of −41 ± 4.3 mV (\(n = 13\), \(P < 0.0001\)). These results suggest that progesterone may block both K\(_{V}\) and K\(_{Ca}\) channels. If the reduction of [Ca\(^{2+}\)], by progesterone is secondary to decreased K\(^{+}\) current, then restoration of a K\(^{+}\) flux across the cell membrane should reverse this effect of progesterone. We tested this hypothesis by using the K\(^{+}\) ionophore, valinomycin, to hyperpolarize \(E_m\). In the experiment shown in Fig. 4B, 30 \(\mu\)M progesterone reduced the plateau in [Ca\(^{2+}\)], that followed TG stimulation. The subsequent addition of valinomycin in the continued presence of progesterone resulted in an increase of [Ca\(^{2+}\)]. Thus, Ca\(^{2+}\)-imaging and current-clamp experiments demonstrate that progesterone reduces the driving force for Ca\(^{2+}\) entry, an effect that can be reversed by reestablishing K\(^{+}\) efflux. These data suggest that progesterone may affect [Ca\(^{2+}\)], and gene expression by blocking K\(^{+}\) channels.

Progesterone blocks voltage-gated K\(^{+}\) and Ca\(^{2+}\)-activated K\(^{+}\) channels in T cells. Whole-cell recording with the patch-clamp technique permits direct measurement of several types of channel activity in T cells. A voltage step from a holding potential of −80 to +30 mV elicits rapidly activating K\(_{V}\) currents, which reach a peak and then slowly inactivate. K\(_{V}\) currents consist of two components, a predominant fraction encoded by homotetramers of the Shaker-related Kv1.3 gene and a much smaller fraction of unknown molecular identity (for a review, see reference 24). The two components can be readily distinguished by their biophysical and pharmacological properties. Kv1.3 channels are blocked by nanomolar concentrations of a scorpion toxin, charybdotoxin (CTX), and undergo cumulative (use-dependent) C-type inactivation during repetitive depolarization. The smaller, CTX-resistant current does not exhibit use-dependent inactivation. Application of progesterone rapidly and reversibly reduces K\(_{V}\) currents in human or B3Z T cells, with an IC\(_{50}\) of 29 ± 2 \(\mu\)M for the peak K\(^{+}\) current (Fig. 5). Progesterone accelerates the decline of K\(^{+}\) current during a depolarizing pulse, and thus the block

![Figure 2](image-url)

Figure 2. Progesterone inhibits [Ca\(^{2+}\)] oscillations induced by TCR ligation. (A) [Ca\(^{2+}\)] responses from four representative B3Z cells activated by contact with SIINFEKL-presenting K897 cells illustrate that [Ca\(^{2+}\)] oscillations were reversibly inhibited by the application of 50 \(\mu\)M progesterone to the bath (bar). (B) [Ca\(^{2+}\)] oscillations in four B3Z cells activated by settling onto coverslips coated with anti-CD3-e antibodies in the absence (a) or presence (b) of 50 \(\mu\)M progesterone.

![Figure 3](image-url)

Figure 3. Progesterone reduces the [Ca\(^{2+}\)] plateau evoked by TG stimulation in human T cells. (A) Average [Ca\(^{2+}\)] is plotted against time (\(n = 76\)) before and during stimulation with 1 \(\mu\)M TG (arrow). TG stimulated Ca\(^{2+}\) influx, resulting in a stable rise in [Ca\(^{2+}\)]. Addition of 30 \(\mu\)M progesterone (bar) reversibly reduced the [Ca\(^{2+}\)] plateau obtained after TG stimulation. (B) The concentration dependence of the reduction of [Ca\(^{2+}\)], by progesterone is plotted for TG-stimulated cells. Calcium levels were normalized by subtracting the resting [Ca\(^{2+}\)], and dividing [Ca\(^{2+}\)], in the presence of progesterone and TG by [Ca\(^{2+}\)], in the presence of TG alone. Data are presented as mean ± SD and were fitted to a Hill equation illustrated by the smooth curve (IC\(_{50}\) = 28 ± 2.7 \(\mu\)M and \(n = 1.3 ± 0.2\)).
activated a significant fraction of Kv1.3 channels by decreasing activation enhances the block by progesterone, we inactivated the cell to −26 mV, resulting in a reduction of the driving force for Ca2+ influx. Subsequent application of 50 μM progesterone depolarized the cell to −80 mV, demonstrating that channel inactivation effectively enhances the block of Kv1.3 currents by progesterone. During antigen-pulsing, because channel inactivation recovers 10-fold faster than when inactivated state (Fig. 6, A), Kv1.3 channels would undergo repetitive cycles of activation, inactivation, and recovery as the membrane potential fluctuates. Activation cycles can result in frequency or use-dependent inhibition if the interval between depolarizations is less than the time required for full recovery from inactivation; normally, pulse intervals of >20 s allow full recovery. In the presence of progesterone, Kv1.3 currents steadily declined during repetitive pulsing, because channel inactivation recovers 10-fold more slowly, resulting in accumulation of channels in the inactivated state (Fig. 6, B and C). We also examined the effects of progesterone on the smaller component of Kv1.3 current by selectively blocking the Kv1.3 component with 100 nM CTX. At this dose, we expect a residual Kv1.3 current of only 2% that in the absence of CTX.

![Image](image-url)

Figure 4. Progesterone reduces the driving force for Ca2+ influx. (A) Current-clamp recordings using the perforated-patch technique were performed in B3Z cells to determine the effects of progesterone on Erev. This panel presents a representative single-cell recording. The addition of 1 μM TG (arrow) hyperpolarized the cell from the resting potential (−60 mV) to near the K+ equilibrium potential (−80 mV), enhancing the driving force for Ca2+ influx. Subsequent application of 50 μM progesterone depolarized the cell to −26 mV, resulting in a reduction of the driving force for Ca2+ influx. For perforated-patch recordings, the tips of the pipettes were filled with the following solution (in mM): 120 K2SO4, 16 KCl, 5 MgSO4, 10 Hepes (pH 7.2). A stock solution of nystatin in DMSO (25 μg/ml) was prepared daily and subsequently diluted in the pipette solution to a final concentration of 100 μg/ml. After sonication, this solution was used for backfilling the pipettes as described previously (reference 31). (B) Measurements of average [Ca2+]i rose from a resting level of 1.3 ± 0.4 μM. Progesterone (30 μM) reduced the [Ca2+]i to approximately half of plateau concentration, an effect that was completely reversed by the addition of 2 μM valinomycin. Application bars. The additions of progesterone and valinomycin to the bath is more potent when evaluated at the end of a 200-ms pulse (Fig. 5, A, filled triangles). The apparent increased rate of channel inactivation (Fig. 5, A and B) suggests that progesterone may preferentially bind to and block the open or inactivated Kv1.3 channel. To determine if steady-state inactivation enhances the block by progesterone, we inactivated a significant fraction of Kv1.3 channels by decreasing the holding potential from −80 to −50 mV. As shown in Fig. 6 A, progesterone (30 μM) reduced the peak Kv1.3 currents more potently when the holding potential was −50 mV (70% block; see open circle in Fig. 5 C) than when the holding potential was −80 mV (45% block), demonstrating that channel inactivation effectively enhances the block of Kv1.3 currents by progesterone. During antigen-induced oscillations of [Ca2+]i, Kv1.3 channels would undergo repetitive cycles of activation, inactivation, and recovery as the membrane potential fluctuates. Activation cycles can result in frequency or use-dependent inhibition if the interval between depolarizations is less than the time required for full recovery from inactivation; normally, pulse intervals of >20 s allow full recovery. In the presence of progesterone, Kv1.3 currents steadily declined during repetitive pulsing, because channel inactivation recovers 10-fold more slowly, resulting in accumulation of channels in the inactivated state (Fig. 6, B and C).

We also examined the effects of progesterone on the smaller component of Kv1.3 current by selectively blocking the Kv1.3 component with 100 nM CTX. At this dose, we expect a residual Kv1.3 current of only 2% that in the absence of CTX.

![Image](image-url)

Figure 5. Progesterone blocks Kv1.3 channels. Whole-cell currents were measured in human T cells (A) and B3Z cells (B) during 200-ms voltage pulses from a holding potential of −80 mV to +30 mV applied every 30 s. The pipette solution contained (in mM): 160 K+ (apparent), 2 HEPES, 1 Cacitrate, 10 EGTA, 10 Hepes (pH 7.2). Currents are shown before and during bath application of 10, 30, or 100 μM progesterone. (C) Concentration dependence for the reduction of Kv1.3 currents by progesterone. Peak current amplitudes in human T cells (○) and B3Z cells (●) were analyzed and plotted against progesterone concentration. Data points for B3Z and human T cells overlap at other concentrations. For human T cells, the current at the end of the 200-ms pulse (●) was also plotted. To determine the effect of depolarization on progesterone block, Erev was held at −50 mV (○). Data were normalized to control currents measured in the absence of progesterone and presented as mean ± SD. The line represents a fit using a Hill equation with an IC50 of 29 ± 2 μM and n = 2.1 ± 0.4.
The CTX-resistant component of Kᵥ current more than RU 486 blocks primarily the Kv1.3 component. Progesterone blocks both the predominant Kv1.3 component and the CTX-resistant component of Kᵥ current and the KᵥCa current for progesterone and RU 486.

Selectivity of Progesterone for Kᵥ Channels: Progesterone Does Not Block CRAC or Chloride Channels in T Cells. The results from patch-clamp experiments suggested that progesterone, RU 486, and perhaps other steroid hormones might block several Kᵥ channel types, albeit with rather low affinity. Therefore, we screened a panel of steroids on the Kᵥ and KᵥCa channels in T lymphocytes. Most of the compounds tested either had no effect or were less effective than progesterone in blocking Kᵥ or KᵥCa currents (Table 1). In addition, we screened several channel types, including both cloned and native channels expressed in a variety of cell lines, for block by progesterone, as summarized in Table 2. Progesterone blocks several Kᵥ1 family members, activated human T cells with solutions containing 1 μM Ca²⁺ activated a large K⁺ current that was evident in voltage ramps (Fig. 8 A). Progesterone blocked KᵥCa channels with an IC₅₀ value of 113 ± 9 μM (Fig. 8 B). Thus, progesterone blocks the Kᵥ current more potently than the KᵥCa currents in T cells. In contrast, the progesterone antagonist RU 486 was consistently more potent than progesterone in blocking KᵥCa current (Fig. 8 C). These experiments demonstrate some degree of selectivity of the two components of Kᵥ current and the KᵥCa current for progesterone and RU 486.

Figure 7. Progesterone blocks CTX-resistant Kᵥ channels. Pipette solution as in Fig. 5. (A) Current responses of the total Kᵥ current (●) and the CTX-resistant current (■) to repetitive voltage pulses from −80 to +30 mV separated by 1 s. At this rate of pulsing, Kv1.3 channels undergo cumulative inactivation, as shown by normalized peak current amplitudes in the absence of CTX (●). With 100 nM CTX present (○), the remaining current does not decline during repetitive pulsing. (B) Progesterone or RU 486 (50 μM) blocks the Kᵥ component. (C) Progesterone blocks the CTX-resistant component of Kᵥ current more than RU 486. 100 nM CTX was preapplied in Ringer in order to block Kv1.3 channels.

Figure 8. Concentration-dependent inhibition of KᵥCa current in B3Z cells by progesterone. (A) KᵥCa currents were activated by dialyzing the cell with a solution containing (in mM) 140 KCl, 10 Hepes (pH 7.2). The nominal free Ca²⁺ concentration of this solution was 1 μM, assuming a dissociation constant for EGTA and Ca²⁺ of 10⁻⁷ at pH 7.2. Ca²⁺-activated Kᵥ current that was evident in voltage ramps of 200-ms duration from −120 to +50 mV every 30 s. Application of progesterone at different concentrations (indicated at the right of each trace) inhibited the KᵥCa current. (B) Concentration-response curve for progesterone block of KᵥCa currents (●). The slope conductance between −100 and −60 mV was used as a measure of the KᵥCa conductance to avoid contamination by Kᵥ currents. Data were normalized to the conductance measured in the absence of progesterone and presented as a mean ± SD. The line represents the fit to a Hill equation with IC₅₀ 113 μM and n = 1.2. Block of KᵥCa channels by 60 μM RU 486 (○) is shown for comparison. (C) Comparison of progesterone and RU 486. Slope conductance values at −80 mV illustrate activation and block of the KᵥCa current by RU 486 and progesterone, each applied at 60 μM.
including Kv1.3 expressed in lymphocytes as the predominant Kv current, as well as Kv3.1 expressed in the brain and in certain subsets of mouse thymocytes. In contrast, progesterone had very little effect on a cloned voltage-gated Na+ channel found in skeletal muscle, or on a strongly inward rectifying K+ channel found in RBL cells. We conclude that progesterone is a broad spectrum, low-affinity K+ channel blocker.

In further experiments on Jurkat T lymphocytes, we evaluated effects of progesterone on CRAC and Cl− channels to determine if modulation of these channel types might contribute to the inhibition of Ca2+ signaling. During whole-cell patch-clamp recordings, intracellular dialysis with heavily buffered low-Ca2+ solutions passively depleted the intracellular Ca2+ stores and activated CRAC channels (Fig. 9 A). After maximal activation, 30 μM progesterone (Fig. 9 B, application bar) had no effect on the amplitude or the current-voltage characteristics (n = 6 cells). This experiment rules out direct CRAC channel block as a possible contributor to the inhibition of Ca2+ signaling by progesterone; instead, it appears that progesterone blocks Ca2+ signaling by inhibiting K+ channels, indirectly reducing the driving force for Ca2+ entry. Cl− channels have also been implicated in lymphocyte signaling mechanisms by helping to maintain E\textsubscript{m} during T cell activation (20, 21). However, superfusion of B3Z or Jurkat cells with 50 μM progesterone did not affect the amplitude or the current-voltage characteristics of Cl− currents induced by cell swelling (Fig. 9, C and D).

Discussion

In this report, we demonstrate by patch-clamp measurement that progesterone directly blocks K\textsubscript{V} and K\textsubscript{Ca} channels, but not Ca2+ or Cl− channels in T lymphocytes. Furthermore, we show that K+ channel blockade is associated with membrane depolarization, inhibition of Ca2+ signaling, and a reduction of NF-AT driven gene expression. Since NF-AT links activation of the TCR to IL-2 production, interruption of these signals would inhibit production of the major proliferative cytokine for T cells. We propose that K+ channel blockade provides a mechanism contributing to the immunosuppressive effects of progesterone.

The rapid onset and reversibility of K\textsubscript{V} channel block by progesterone is incompatible with changes in mRNA or protein synthesis, suggesting that these effects are not mediated by the classical steroid receptor pathway (40). The progesterone antagonist RU 486 is nearly as potent as progesterone in blocking both K\textsubscript{V} channels and gene expression, also implicating a nongenomic action of progesterone.

Table 1. Percent Inhibition of K\textsubscript{V} and K\textsubscript{Ca} Channels by Steroids (60 μM)

Steroid	K\textsubscript{V}	K\textsubscript{Ca}
Progesterone	77 ± 8	34 ± 11
RU 486	61 ± 15	55 ± 12
Estradiol	24 ± 7	8 ± 10
Testosterone	17 ± 12	4 ± 7
Cortisol	13 ± 4	0.0 ± 0.1
DHEA	10 ± 6	0.4 ± 0.7
OHP	12 ± 6	2 ± 4
Aldosterone	12 ± 13	6 ± 7

Table 2. Percent Inhibition of Various Channel Types by Progesterone

Cloned channels	Gene	Cell type	Native channels	Channel	Cell type	Cell type
K\textsubscript{V}	K\textsubscript{V}1.1	L929	K\textsubscript{V}	Human T	50 ± 6	0 ± 0
K\textsubscript{V}	K\textsubscript{V}1.2	NGK1	K\textsubscript{V} (CTX)	B3Z	40 ± 10	4 ± 12
K\textsubscript{V}	K\textsubscript{V}1.3	L929	K\textsubscript{Ca}	Human T	70 ± 20	4 ± 12
K\textsubscript{V}	K\textsubscript{V}1.4	LTK	CRAC	Human T, act.	34 ± 11	4 ± 12
K\textsubscript{V}	K\textsubscript{V}1.5	MEL	Cl−	Jurkat T	0	0
K\textsubscript{V}	K\textsubscript{V}3.1	L929	K\textsubscript{IR}	Jurkat T	0	4 ± 12
hSKM1	HFK			RBL	0	0

The panel of cloned K\textsubscript{V} channels was provided by Dr. K. George Chandy (Department of Physiology and Biophysics, University of California, Irvine), as described (reference 55). The voltage-gated Na+ channel clone hSKM1, originally derived from skeletal muscle, was made by Dr. Frank Lehmann-Horn (Department of General Physiology, University of Ulm, Germany). Peak Na+ currents were evaluated at +10 mV. K\textsubscript{V} currents were evoked by depolarizing pulses, as in Fig. 5. CTX-resistant K\textsubscript{V} channels (K\textsubscript{V} (CTX)) were studied in the presence of 100 nM CTX, as in Fig. 7. K\textsubscript{Ca} channels were activated by 1 μM [Ca2+]\textsubscript{M}, as in Fig. 8. CRAC and Cl− channels were activated by Ca2+ store depletion or by cell swelling, respectively, as in Fig. 9. Inwardly rectifying K+ (K\textsubscript{IR}) currents were evaluated during voltage-ramp stimuli. In each case, progesterone was tested at 30 μM, except for K\textsubscript{V} (CTX), K\textsubscript{Ca} and Cl− channels tested at 50 μM. Data are presented as mean ± SD, with at least three separate experiments for each channel type.
terone. Furthermore, channel inactivation enhances block by progesterone, suggesting that the state of the channel modulates the affinity of progesterone. In T cells, the direct block of Kv channels by dihydroquinolines and benzhydryl piperidines is also enhanced by inactivation (41, 42). In addition, progesterone blocks Kv1.3 channels exogenously expressed in a cell line (Table 2). Progesterone also blocks other Kv and KCa channels with low affinity. These data suggest that progesterone blocks Kv1.3 channels directly, rather than acting via the classical nuclear progesterone receptor pathway.

Channel blockade by progesterone is not without precedent. Previous studies demonstrated that progesterone blocks voltage-gated Ca2+ channels in smooth muscle cells and a variety of K+ channels in MDCK cells and hepatocytes (43-45). Several transmitter-activated channels are also suppressed by progesterone in the micromolar concentration range (46-49). In contrast to its effects on somatic cells, progesterone activates Ca2+ influx in sperm (50, 51). We found no evidence for progesterone-induced Ca2+ influx in T cells.

Our data provide the first evidence that an endogenous hormone may act as an immunosuppressant by blocking K+ channels. Inhibition of K+ channels has been shown to reduce IL-2 production and T cell activation in vitro (22, 23, 52). Moreover, recent studies demonstrated that the peptide scorpion toxin margatoxin, a specific blocker of Kv1.3 channels, inhibits delayed-type hypersensitivity reaction and reduces response to allogeneic challenge in vivo (25). The depolarization and reduction of the driving force for Ca2+ entry resulting from K+ channel inhibition are sufficient to account for the reduction of Ca2+ signals and NFAT-driven gene expression. CRAC channels are inwardly rectifying, and a modest depolarization can reduce Ca2+ entry significantly, reducing the rise in [Ca2+]i below the threshold for gene expression (for a review, see reference 24). At high concentrations, progesterone reduces Ca2+ signaling and gene expression almost to control levels, below a plateau level seen with 100 nM CTX (21, 53, and data not shown). Progesterone, although acting with low affinity, may reduce Ca2+ signaling and gene expression to a greater extent than CTX because progesterone also inhibits CTX-resistant Kv1.3 channels. The block of K+ channels by progesterone or RU 486 can also account for previous results showing that progesterone or RU 486 inhibits activation of human T cells in vitro (8, 9), as well as the reduction of the number of CD3+ cells in the placenta compared with maternal blood (11, 54).

During pregnancy, immunoregulatory mechanisms must operate locally at the placental interface and be readily reversible to preserve the systemic immune competence of the mother. Several mechanisms involving progesterone may contribute to fetal-maternal protection, including altered expression of MHC class I proteins in fetal tissue, altered T cell subsets, or elaboration of immunosuppressive factors (2). Biochemical measurements have estimated progesterone concentrations to be 20 μM within the placenta (34, 35); concentrations in the vicinity of trophoblasts producing progesterone must be even higher. Average progesterone levels found in the placenta would be sufficient to block lymphocyte K+ channels and thereby mediate a highly localized and reversible immunosuppression without compromising the maternal immune system. The affinity of progesterone for K+ channels ensures that this mechanism would only be effective in the region of potential contact between allogenic cells, where progesterone is present at high concentrations.
We thank Dr. Patricia Schmidt for helpful discussions at the onset of this project, Dr. K. George Chandy for providing clones and a panel of stable cell lines, and Dr. Lu Forrest for tissue culture support.

This work is supported by National Institutes of Health grants GM 41514 and NS 14609 (to M. D. Cahalan), a Schroedinger Stipendium (to H. H. Kerschbaum), and a fellowship of the Alexander von Humboldt Foundation (to C. Eder).

Address correspondence to Michael D. Cahalan, Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560. Phone: 714-824-7260; Fax: 714-824-3143; E-mail: mcahalan@uci.edu

H. H. Kerschbaum's present address is Department of Physiology, Institute for Zoology, University of Salzburg, 5020 Salzburg, Austria. Claudia Eder's current address is Department of Neurophysiology, Institute of Physiology Humboldt University, D-10019 Berlin, Germany. P. A. Negulescu’s present address is Aurora Biosciences, 11010 Torreyana R.d., San Diego, CA 92121.

Received for publication 20 April 1998 and in revised form 30 July 1998.

References
1. Stites, D. P., and P. K. Siiteri. 1983. Steroids as immunosuppressants in pregnancy. Immunol. Rev. 75:117–138.
2. Pepe, G. J., and E. D. Albrecht. 1995. Actions of placental and fetal adrenal steroid hormones in primate pregnancy. Endo. Rev. 16:608–648.
3. Beer, A. E., and J. O. Sio. 1982. Placenta as an immunological barrier. Biol. Reprod. 26:15–27.
4. Gurka, G., and R. E. Rocklin. 1987. Reproductive immunology. JAMA (J. Am. Med. Assoc.). 258:2983–2987.
5. Hunt, J. S. 1994. Immunologically relevant cells in the uterus. Biol. Reprod. 50:461–466.
6. Siiteri, P. K., F. Febres, L. E. Clemens, R. J. Chang, B. Gon- dos, and D. Stites. 1977. Progesterone and maintenance of pregnancy: is progesterone nature’s immunosuppressant? Ann. N. Y Acad. Sci. 386:384–397.
7. Stites, D. P., and P. K. Siiteri. 1982. Immunologic and endocrine interrelationships in pregnancy. Biol. Reprod. 26:1–14.
8. Clemens, L. E., P. K. Siiteri, and D. P. Stites. 1979. Mechanism of immunosuppression of progesterone on maternal lymphocyte activation during pregnancy. J. Immunol. 122:1978–1985.
9. Van Voorhis, B. J., D. J. Anderson, and J. A. Hill. 1989. The effects of RU 486 on immune function and steroid-induced immunosuppression in vitro. J. Clin. Endocrinol. Metab. 69:1195–1199.
10. Monterauro, V. H., and P. J. Hansen. 1993. Regulation of bovine and ovine lymphocyte proliferation by progesterone: modulation by steroid receptor antagonists and physiological status. Ada Endocrinol. 129:532–535.
11. Pavia, C., P. K. Siiteri, J. D. Perlman, and D. P. Stites. 1979. Suppression of murine allogeneic cell interactions by sex hormones. J. Reprod. Immunol. 197:34–38.
12. Crabtree, G. R., and N. A. Clipstone. 1994. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu. Rev. Biomed. 63:137–138.
13. C. N. Eglescu, P. A., N. Shastri, and M. D. Cahalan. 1994. Intracellular calcium dependence of gene expression in single T lymphocytes. Proc. Natl. Acad. Sci. USA. 91:2873–2877.
14. Lewis, R. S., and M. D. Cahalan. 1995. Potassium and calcium channels in lymphocytes. Annu. Rev. Immunol. 13:623–653.
15. Timmerman, L. A., N. A. Clipstone, S. N. Ho, J. P. Northrop, and G. R. Crabtree. 1996. Rapid shuttling of N,F-AT in discrimination of calcium signals and immunosuppression. Nature. 383:837–840.
16. Dolmetsch, R. E., R. S. Lewis, C. C. Goodnow, and J. I. Healy. 1997. Differential activation of transcription factors induced by calcium response amplitude and duration. Nature. 386:855–858.
17. Lewis, R. S., and M. D. Cahalan. 1989. Mitogen-induced oscillations of cytosolic calcium and transmembrane calcium current in human leucemic T cells. Cell. Signaling. 1:99–112.
18. Zweifach, A., and R. S. Lewis. 1993. Mitogen-regulated calcium current of T lymphocytes is activated by depletion of intracellular calcium stores. Proc. Natl. Acad. Sci. USA. 90:6295–6299.
19. Premack, B. A., T. V. McDonald, and P. Gardner. 1994. Activation of calcium current in Jurkat T cells following the depletion of calcium stores by microsomal calcium-ATPase inhibitors. J. Immunol. 152:5226–5240.
20. Phipps, D. J., D. R. Branch, and L. C. Schlichter. 1996. Chloride-channel block inhibits T lymphocyte activation and signaling. Cell. Signaling. 8:141–149.
21. Kerschbaum, H. H., P. A. N. Eglescu, and M. D. Cahalan. 1997. Ion channels, calcium signaling, and reporter gene expression in antigen-specific mouse T cells. J. Immunol. 159:1628–1630.
22. Chandy, K. G., T. E. DeCourcey, M. D. Cahalan, C. M. Laughlin, and S. Gupta. 1984. Voltage-gated potassium channels are required for human T lymphocyte activation. J. Exp. Med. 160:389–385.
23. Lin, C. S., R. C. Boltz, J. T. Blake, M. N. Gwen, A. Talento, P. A. Fischer, M. S. Springer, N. H. Sigal, R. S. Slaughter, and M. L. Garcia. 1993. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J. Exp. Med. 177:637–645.
24. Cahalan, M. D., and K. G. Chandy. 1997. Ion channels in the immune system as targets for immunosuppression. Curr. Opin. Biotechnol. 8:749–756.
25. Koo, G. C., J. T. Blake, A. Talento, M. N. Gwen, S. Lin, A. Sirota, K. Shah, K. M. Mavlyan, D. J. Hora, P. Cunningham, et al. 1997. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J. Immunol. 158:5120–5128.
26. Karrtunen, J., and N. Shastri. 1991. Measurement of ligand-
induced activation in single viable T cells using the lacZ reporter gene element of the human interleukin 2 enhancer. Proc Natl Acad Sci U S A. 88:3972–3976.

27. Shastri, N., and F. Gonzalez. 1993. Endogenous generation and presentation of the ovalbumin peptide Kb complex to T cells. J. Immunol. 150:2724–2736.

28. Cahalan, M.D., K.G. Chandy, T.E. DeCoursey, and S. Gupta. 1985. A voltage-gated potassium channel in human T lymphocytes. J. Physiol. (Lond.) 358:197–237.

29. Fiering, S.N., M. Roederer, G.P. Nolan, D.R. Micklem, D.R. Parks, and L.A. Herzenberg. 1991. Improved FACSCal: flow cytometric analysis and sorting of viable eucaryotic cells expressing reporter gene constructs. Cytometry. 12:291–301.

30. Hamill, O.P., A. Marty, E. Neher, B. Sakmann, and F.J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391:85–100.

31. Horn, R., and A. Marty. 1988. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92:145–159.

32. Grynkiewicz, G., M. Poenie, and R.Y. Tsien. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3404–3405.

33. Thadrap, O., A.P. Dawson, O. Schaff, B. Foder, P.J. Cullen, B.K. Drobak, P.J. Bjerrum, S.B. Christensen, and M.R. Hanley. 1989. Thiapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions 27:17–23.

34. Runnebaum, B., H. Runnebaum, I. Stoiber, and J. Zander. 1975. Progesterone 20 alpha-dihydroprogesterone and 20 beta-dihydroprogesterone levels in different compartments of the foeto-placental unit. Ada Endocrinol. 80:558–568.

35. Runnebaum, B., I. Stoiber, and J. Zander. 1975. Progesterone, 20 alpha-dihydroprogesterone and 20 beta-dihydroprogesterone in mother and child at birth. Ada Endocrinol. 80:569–576.

36. Gouy, H., C. Cefai, S.B. Christensen, P. Debre, and G. Bismuth. 1990. Ca2+ influx in human T lymphocytes is induced independently of inositol phosphate production by mobilization of intracellular Ca2+ stores. A study with the Ca2+-endoplasmic reticulum-ATPase inhibitor thapsigargin. Eur. J. Immunol. 20:2269–2275.

37. Mason, M.J., M.P. Mahaut-Smith, and S. Grinstein. 1991. The role of intracellular Ca2+ in the regulation of the plasma membrane Ca2+ permeability of unstimulated rat lymphocytes. J. Biol. Chem. 266:10872–10879.

38. Verheugen, J.A., H.P. Vijverbergh, M. Oortgiesen, and M.D. Cahalan. 1995. Voltage-gated and Ca2+-activated K+ channels in intact human T lymphocytes. N oninvasive measurements of membrane currents, membrane potential, and intracellular calcium. J. Gen. Physiol. 105:765–794.

39. Logsdon, N.J., J. Kang, J.A. Togo, E.P. Christian, and J. Aiyar. 1997. A novel gene, hKC44, encodes the calcium-activated potassium channel in human T lymphocytes. J. Biol. Chem. 272:32723–32726.

40. Revelli, A., M. Massobrio, and J. Tesarik. 1998. Nonemonic actions of steroid hormones in reproductive tissues. Endocrinol. Rev. 19:3–17.

41. Michne, W.F., J.W. Guiles, A.M. Treasurywala, L.A. Casteelguay, C.A. Weigelt, B. O’connor, W.A. Volberg, A.M. Grant, C.C. Chadwick, and D.S. Krafte. 1995. Novel inhibitors of potassium ion channels on human T lymphocytes. J. Med. Chem. 38:1877–1883.

42. Nguyen, A., J.C. Kath, D.C. Hanson, M.S. Biggers, P.C. Canniff, C.B. Donovan, R.J. Mather, M.J. Brun, H.R. Auers, J. Aiyar, et al. 1996. Novel nonpeptide agents potently block the C-type inactivated conformation of Kv1.3 and suppress T cell activation. Mol. Pharmacol. 50:1672–1679.

43. Bielefeldt, K., L. Waite, F.M. Abboud, and J.L. Conklin. 1996. Nongenomic effects of progesterone on human intestinal smooth muscle cells. A m. J. Physiol. 271:G370–G376.

44. Wuldegger, S., F. Beise, H. Apfel, S. Breit, H.A. Kolb, D. Haussinger, and F. Lang. 1995. Electrophysiological effects of progesterone on hepatocytes. Biochim. Biophys. Acta. 1266:186–190.

45. Breit, S., H. Kolb, H. Apfel, C. Haberland, M. Schmitt, D. Haussinger, J. Graf, and F. Lang. 1998. Regulation of ion channels in rat hepatocytes. Pflügers Arch. 435:203–210.

46. Wu, F.S., T.T. Gibbs, and D.H. Fabr. 1990. Inverse modulation of gamma-aminobutyric acid- and glycine-induced currents by progesterone. Mol. Pharmacol. 37:597–602.

47. Bertrand, D., S. Valera, S. Bertrond, M. Ballivet, and D. Rungger. 1991. Steroids inhibit nicotinic acetylcholine receptors. N euroreport 2:277–280.

48. Valera, S., M. Ballivet, and D. Bertrand. 1992. Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A. 89:9949–9953.

49. Bergeron, R., C. de Mortigny, and G. Decomenel. 1996. Potentialization of neuronal N MDA response induced by dehydroepiandrosterone and its suppression by progesterone: effects mediated via sigma receptors. J. Neurosci. 16:1193–1202.

50. Foresta, C., M. Rossato, and F. Di Virgilio. 1993. Ion fluxes through the progesterone-activated channel of the sperm plasma membrane. Biochem. J. 294:279–283.

51. Blackmore, P.F. 1993. Rapid non-genomic actions of progesterone stimulate Ca2+ influx and the acrosome reaction in human sperm. Cell. Signalling. 5:531–538.

52. Price, M., S.C. Lee, and C. Deutsch. 1992. Progesterone binds to the human plasma membrane and interacts with the human plasma membrane progesterone receptor. Proc Natl Acad Sci U S A. 90:21071–21075.

53. Hess, S., M. Oortgiesen, and M.D. Cahalan. 1993. Calcium oscillations in human T and natural killer cells depend upon membrane potential and calcium influx. J. Immunol. 150:2620–2633.

54. Roussev, R.G., N.G. Higgins, and J.A. McIntyre. 1993. Phenotypic characterization of normal human placental mononuclear cells. J. Reprod Immunol. 25:15–29.

55. Grismer, S., A.N. Nguyen, J. Aiyar, D.C. Hanson, R.J. Mather, G.A. Gutman, M.J. Karmilowicz, D.D. Auperin, and K.G. Chandy. 1994. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol. Pharmacol. 45:1227–1234.