Photosynthetic organisms have developed various light-harvesting systems to adapt to their environments. Phycobilisomes are large light-harvesting protein complexes found in cyanobacteria and red algae, although how the energies of the chromophores within these complexes are modulated by their environment is unclear. Here we report the cryo-electron microscopy structure of a 14.7-megadalton phycobilisome with a hemiellipsoidal shape from the red alga *Porphyridium purpureum*. Within this complex we determine the structures of 706 protein subunits, including 528 phycoerythrin, 72 phycocyanin, 46 allophycocyanin and 60 linker proteins. In addition, 1,598 chromophores are resolved comprising 1,430 phycoerythrobilin, 48 phycourobilin and 120 phycocyanobilin molecules. The markedly improved resolution of our structure compared with that of the phycobilisome of *Griffithsia pacifica* enabled us to build an accurate atomic model of the *P. purpureum* phycobilisome system. The model reveals how the linker proteins affect the microenvironment of the chromophores, and suggests that interactions of the aromatic amino acids of the linker proteins with the chromophores may be a key factor in fine-tuning the energy states of the chromophores to ensure the efficient unidirectional transfer of energy.

Structural basis of energy transfer in *Porphyridium purpureum* phycobilisome

Jianfei Ma1,2, Xin You1,2, Shan Sun1,2, Xiaoxiao Wang2, Song Qin2 & Sen-Fang Sui1

Photosynthetic organisms have developed various light-harvesting systems to adapt to their environments. Phycobilisomes are large light-harvesting protein complexes found in cyanobacteria and red algae, although how the energies of the chromophores within these complexes are modulated by their environment is unclear. Here we report the cryo-electron microscopy structure of a 14.7-megadalton phycobilisome with a hemiellipsoidal shape from the red alga *Porphyridium purpureum*. Within this complex we determine the structures of 706 protein subunits, including 528 phycoerythrin, 72 phycocyanin, 46 allophycocyanin and 60 linker proteins. In addition, 1,598 chromophores are resolved comprising 1,430 phycoerythrobilin, 48 phycourobilin and 120 phycocyanobilin molecules. The markedly improved resolution of our structure compared with that of the phycobilisome of *Griffithsia pacifica* enabled us to build an accurate atomic model of the *P. purpureum* phycobilisome system. The model reveals how the linker proteins affect the microenvironment of the chromophores, and suggests that interactions of the aromatic amino acids of the linker proteins with the chromophores may be a key factor in fine-tuning the energy states of the chromophores to ensure the efficient unidirectional transfer of energy.
cylinders (A and A’), each of which is assembled by one (αβ)$_6$ allophycocyanin hexamer and one allophycocyanin trimer (Extended Data Fig. 4b). The rods are categorized into two types according to their PBP composition: type I rods (Ra/Ra’, Rb/Rb’ and Rc/Rc’) are composed of both phycoerythrin and phycocyanin, whereas type II rods (Rd/Rd’, Re/Re’, Rf/Rf’ and Rg/Rg’ ) are composed entirely of phycoerythrin (Extended Data Fig. 4d). Except for rods Rf/Rf’ and Rg/Rg’, each of which contains two phycoerythrin hexamers in both PBSs, the number of phycoerythrin hexamers in each of the remaining rods is one fewer in the $P. purpureum$ PBS than in the $G. pacifica$ PBS (Extended Data Fig. 4c, d). The $P. purpureum$ PBS also contains extra phycoerythrin hexamers; however, the hexamers He/He’, which are located near the surface of the outermost hexamer of rods Rb/Rb’ and Rc/Rc’ in the $G. pacifica$ PBS, are absent owing to the short lengths of these rods in the $P. purpureum$ PBS (Fig. 1d, Extended Data Fig. 4c). There are 2 individual phycoerythrin (αβ) monomers M1 (M1') and 20 individual phycoerythrin β subunits S1–S10 (S1’–S10’) interspersed throughout the whole PBS (Fig. 1e). These components fill the empty spaces outside the rods, core and extra hexamers, and may stabilize the PBS. The $P. purpureum$ PBS is aligned well with the $G. pacifica$ PBS, but has a smaller size owing to the reduced number of phycoerythrin hexamers, indicating a similar overall organization of the rods and core (Fig. 1d, Extended Data Fig. 4c). The molecular mass of the $P. purpureum$ PBS is 14.7 MDa, which is less than that of the $G. pacifica$ PBS (18.0 MDa) after considering the molecular masses of the chromophores.

The skeleton formed by the linker proteins is very similar in the PBSs from both $P. purpureum$ and $G. pacifica$ (Fig. 1f), and both contain 17 types of linker protein. Superimposing the two PBSs indicates that they share very high structural conservation, except for the rod linker protein L$_{6}$ (Extended Data Fig. 4e). L$_{6}$ of the $P. purpureum$ PBS contains the Pfam00427 domain, instead of the CBDy domain that is present in L$_{6}$ of the $G. pacifica$ PBS; this is in accordance with the overall tendency for the $P. purpureum$ PBS to contain fewer bilins than the $G. pacifica$ PBS. The roles of linker proteins in the assembly of the PBS—such as the sequential interactions between them to form the skeleton, the extensive contacts between them and the hexamers, and the α-helix-mediated interactions between L$_{6}$ proteins and the core—are common between these two PBSs, highlighting their evolutionary conservation (Extended Data Fig. 5).

There are 120 PCBs, 1,430 PEBs and 48 phycourobilins in $P. purpureum$ PBS (Extended Data Table 2a). The phycourobilin content in the $P. purpureum$ PBS is considerably lower than that in the $G. pacifica$ PBS; this is because all phycourobilins in the $P. purpureum$ PBS originate solely from the L$_{6}$Y proteins, whereas in the $G. pacifica$ PBS—besides the L$_{6}$Y proteins—all phycoerythrin β subunits also contain phycourobilin$^{5e}$. The lower phycourobilin content and the reduced number of total bilins
Interactions of Lγs with chromophores

In *P. purpureum* PBSs are consistent with the fact that *P. purpureum* lives at the sea surface\(^\text{1,2}\), where the light intensity is higher compared with that beneath the sea surface where *G. pacifica* are found\(^\text{3,4}\).

**Interactions of Lγys with chromophores**

The (αβ) trimers of the phycocyanins, phycoerythrins and allophycoerythrins have very similar ring-like structures, in which the central cavity is a common feature. Three β82 chromophores are located near to the inner cavity and are subjected to interactions with linker proteins\(^\text{38}\) (Fig. 2a). The trimers Rc3I and Rd3I—from the type I rod Rc and the type II rod Rd, respectively—are used here to illustrate how the rod linkers Lγ of Rc3I (denoted Lγ1, Lγ2 and Lγ3) interact with the β82 chromophores (Fig. 2). Each of the β82 PEBs of Rc3I (denoted PEB1, PEB2 and PEB3) is bound by two hydrogen bonds formed between the nitrogen atoms of the pyrrole rings B and C and the carboxyyl group of the D85 residue of the β subunit (Fig. 2b—d), in agreement with the crystal structure of R-phycoerythrin\(^\text{39}\). In particular, three aromatic residues of Lγ4 (F80, F139 and D85) are located close to rings D of the β82 PEBs. The interaction between F80 and the bilin \(\text{RCβ}_{\beta_2}\) (Fig. 2b) reveals that the LRγ linker proteins in the inner cavity and are subjected to interactions with linker proteins\(^\text{38}\). Three β82 PEBs are located near to the inner cavity and are subjected to interactions with linker proteins\(^\text{38}\). The energy level of \(\text{F124}\) is located close to rings D of the β82 PEBs of Rc3I (denoted \(\text{RCγ}_{\beta_2}\)) and \(\text{RCB}_{\beta_2}\), respectively. Three aromatic residues of Lγ4 (F80, F139 and D85) are located close to rings D of the β82 PEBs (Fig. 2b—d). The distance between the residue F80 and the bilin \(\text{RCβ}_{\beta_2}\) is 2.9 Å (Fig. 2e). Therefore, the chromophore pair may further down-grade the energy level of \(\text{RCβ}_{\beta_2}\) owing to excited-state coupling\(^\text{40,41}\), with the result that \(\text{RCβ}_{\beta_2}\) is probably at a lower energy level compared with that of \(\text{RCγ}_{\beta_2}\) and \(\text{RCB}_{\beta_2}\). Notably, the trimer Rd3I in the type II rod displays similar structural features: one aromatic residue is close to each of the β82 PEBs, and an additional bilin from the linker LγYS of Y135 also resides close to the \(\text{RCβ}_{\beta_2}\) (Extended Data Fig. 6a—d). Moreover, structural superimposition reveals that the Lγ linker proteins in the outmost hexamers of various rods of PBSs from both *P. purpureum* and *G. pacifica* also have similar structures (Extended Data Fig. 7a, b). These key aromatic residues, and the cysteine residues that are used to link the bilins, are well conserved in red algae (Extended Data Fig. 7c). The structural features of the interaction between Lγ and β82 PEBs therefore suggest that \(\text{RCβ}_{\beta_2}\) PEB is in the lowest energy state among the three β82 PEBs, and that energy migration through \(\text{RCβ}_{\beta_2}\) PEB could be the major route by which to pass energy through the rod.

**Interactions of LRCs with chromophores**

Energy is then transferred along the rods to the triangular area of the core-proximal hexamer (Fig. 2e). Two types of rod use different rod–core linkers to associate with the core. For Rc—which uses the linker LRC1—a heterocyclic residue (H58) from LRC1c is located close to \(\text{RCβ}_{\beta_2}\), with a minimum distance of 2.8 Å (Fig. 2f). The pyrrole group of H58 can form a strong π–π interaction with rings B and C of \(\text{RCβ}_{\beta_2}\) (Fig. 2c). Although, modified by the specific surroundings, \(\text{RCβ}_{\beta_2}\) may be in the lowest-energy state among the three β82 chromophores. Moreover, \(\text{RCβ}_{\beta_2}\) has the shortest distance to the core compared with \(\text{RCγ}_{\beta_2}\) and \(\text{RCB}_{\beta_2}\) (Fig. 2h), which further suggests that it may act as an energy-transit station, converging the energy absorbed by the rod and transferring it to the core. Similar situations are found for another two rods of type I and the three type I rods in *G. pacifica* (Extended Data Fig. 7d). This histidine residue is conserved completely across different red algal and cyanobacterial species, which is indicative of its functional importance (Extended Data Fig. 7e).

For Rd—which uses LRC2—two aromatic residues from LRC2 form parallel-displaced and T-shaped π–π interactions with \(\text{RCβ}_{\beta_2}\) (Extended Data Fig. 6f). By contrast, each of another two β82 PEBs interacts with only one aromatic residue (Extended Data Fig. 6g, h). Superimposition of the LRC proteins (LRC2 and LRC3) of type II rods from both *P. purpureum* and *G. pacifica* shows that two such aromatic
Key chromophores in the core

Previous studies have shown that three PCB chromophores in ApcD, ApcF and the α subunit of LCM (apoApcD, apoApcF and apoαLCM) perform critical functions in energy transfer in the core. However, why each of these chromophores have unique functions remains to be clarified. Here we use our high-resolution structure to analyse the immediate surroundings of these key core chromophores in their native states.

Functionally, ApcD is the main protein responsible for energy transfer to photosystem II. In our structure, two aromatic residues—W87 from ApcD and Y73 from the β subunit of the core trimer A3—form T-shaped and parallel-displaced π–π interactions with 3AzApcD respectively; this enhances the tight fitting of ring D (Fig. 3a), which is consistent with the crystal structure of ApcD from *Synechocystis* PCC 6803 (PDB: 4P05)12. Notably, we observed that W87 was surrounded by R83 and Y90 from ApcD and Y73 from the core A3, which provided two cation–π interactions and one T-shaped π–π interaction to W87, respectively (Fig. 3a). It can therefore be inferred that the presence of these three residues is necessary to stabilize the orientation of W87, which is critical for the conformation of 3AzApcD. In addition, more π-related interactions between residues and 3AzApcD are extracted from the high-resolution structure of the entire PBS. The cationic side chain of R83 extends to the top of ring C of 3AzApcD, forming the cation–π interaction (Fig. 3a). F59 and Y65 may contribute two additional π–π interactions to ring A of 3AzApcD (Fig. 3a). We then superimposed ApcDs from *P. purpureum*, *G. pacifica* and *Synechocystis* PCC 6803 with the α subunit of the core A3, and found that W87, F59 and Y65 are common to all ApcD molecules, although Y65 was replaced by Y63 in the A3 α subunit (Extended Data Fig. 8a).

ApcF plays a crucial role in energy migration to the terminal chromophore of LCM14,15. Analysis of the PCB pocket of ApcF showed that the positively charged R89 formed one cation–π interaction with ring C of 3AzApcD, and Y93 and Y97 formed one T-shaped π–π and one parallel-displaced π–π interaction with ring D, respectively. Moreover, R89, Y93 and Y97 interact with each other by either cation–π or π–π interactions (Fig. 3b). The superimposition of ApcF molecules from *P. purpureum* and *G. pacifica* with the β subunit from the core A2 shows that these three residues exist in the same position in all proteins, suggesting their importance for the stability of the PCB (Extended Data Fig. 8b). Except for these common features, an aromatic residue from ApcF (F60) is located above ring A of 3AzApcF (Fig. 3b); an aromatic residue was also found in the ApcF of *G. pacifica* (Y60), whereas this residue is replaced by L60 in other β subunits (Extended Data Fig. 8b). This aromatic residue may therefore form additional π–π interactions with 3AzApcF and hence lower its energy. Another notable feature in our structure of the complete PBS is that L186 is directly involved in the interaction with 3AzApcF. Several hydrophobic residues of LCM are located at the ApcF/LCM interface and within 4 Å of 3AzApcF—this creates a contiguous hydrophobic cap that buries 3AzApcF (Fig. 3c, d, Extended Data Fig. 8c), which can enhance the stability of the conformation of 3AzApcF. The residues present around the chromophores from other β subunits (ApcF1 and ApcF2) are less hydrophobic (Extended Data Fig. 8d). Similarly, this hydrophobic cap is also found around the PCB of ApcF from the *G. pacifica* PBS (Extended Data Fig. 8e).

The terminal chromophore PCB in LCM (3AzLCM) exhibits fluorescence with similar emission wavelengths to those of the intact PBS, and is at a lower energy than the upstream PCBs12. Although the overall structure of the α subunit domain of LCM (3AzLCM) overlapped well with the recombinant α LCM (PDB: 4XXI)10 (Fig. 4a), 3AzLCM and 4XXI are coloured red and pale yellow, respectively. The bilin in 3AzLCM is shown in ball-and-stick representation. Two extra loops (Y77–A98 and F132–M145) are displayed in sausage representation. B, Structural differences between 3AzLCM and 4XXI. Two different conformations of tryptophan (W154 in LCM and W164 in 4XXI) are shown in stick representation in red and yellow. Y40 and R144 from one loop are shown in surface representation in red. C, Steric clashing is observed between Y140 from LCM and the ZZ2asa configuration of αLCM (grey), but is absent between Y140 and the ZZ2asa configuration of αLCM (red). D, Cryo-EM densities (mesh of the bilins (stick) in the α subunit of the core (Core_PCB, yellow) and 3AzLCM (3AzLCM, red) show the enhanced coplanarity of rings A and B of 3AzLCM.

Fig. 3 | The bilins of ApcD and ApcF and their surrounding residues. a, The surrounding residues of the bilin 3AzApcD. The residues and bilin are shown in stick and ball-and-stick representations, respectively. b, The interactions between 3AzApcD and ApcF. The residues and bilin are shown in stick and ball-and-stick representations, respectively. c, 3AzApcD is buried by a contiguous hydrophobic cap formed by the linker protein LCM. LCM is shown in cartoon representation in red, and the cap is displayed in surface representation. 3AzApcF is shown in sphere representation. d, The interactions between the cap and 3AzApcF. The hydrophobic residues in the cap are shown in stick representation in red.

Fig. 4 | The conformation of PCB in LCM. a, Structural alignment of the α subunit of LCM (3AzLCM) in the PBS and the recombinant α subunit of LCM (PDB: 4XXI). 3AzLCM and 4XXI are coloured red and pale yellow, respectively. The bilin in 3AzLCM is shown in ball-and-stick representation. Two extra loops (Y77–A98 and F132–M145) are displayed in sausage representation. B, Structural differences between 3AzLCM and 4XXI. Two different conformations of tryptophan (W154 in LCM and W164 in 4XXI) are shown in stick representation in red and yellow. Y40 and R144 from one loop are shown in surface representation in red. C, Steric clashing is observed between Y140 from LCM and the ZZ2asa configuration of αLCM (grey), but is absent between Y140 and the ZZ2asa configuration of αLCM (red). D, Cryo-EM densities (mesh of the bilins (stick) in the α subunit of the core (Core_PCB, yellow) and 3AzLCM (3AzLCM, red) show the enhanced coplanarity of rings A and B of 3AzLCM.
The βLCM other chromophores in the core are subjected to modification by the and B compared with other PCBs in the α subunits of the core (Fig. 4d, 150). Thus, the energy could flow from either Re1 or Re2 to the core. The transfer because it is subjected to π–π interactions with Y63 from LC linker proteins. The shortest distance between rod Ra and the core was (Fig. 4c, Extended Data Fig. 8f). Comparison of thus providing a driving force for the formation of the ZZZssa configuration (Fig. 4c, Extended Data Fig. 8f). Therefore, Y140 of LCM is another factor that causes the ZZZssa geometry, which exhibits enhanced coplanarity of rings A and B compared with other PCBs in the α subunits of the core (Fig. 4d, Extended Data Fig. 3c).

In addition to A2ApcD, A2ApcF, and A3ApcF, the energy states of some other chromophores in the core are subjected to modification by the linker proteins. The shortest distance between rod Ra and the core was found between P2Ra and A3A2 (31 Å) (Fig. 5a), which may facilitate energy transfer from Ra to the core. The bilin nearest to A3A2 is A2P1, rings C and D of which form a parallel-displaced π–π interaction with F361 from LCM (Fig. 5b), and thus may mediate energy transfer to A3ApcF. The energy absorbed by rods Rd and Rc may travel through the core layer B1 to A81, the nearest bilin to the basal cylinders (Fig. 5a). Bilin A81 can play an essential role in this process because it is subjected to a parallel-displaced π–π interaction with F850 from LCM (Fig. 5c). In the basal cylinders, the two bilins A2P2/A2P2, A3P2/A3P3—which are adjacent to the bilins on ApcF/ApcF—and separated from them by 34.8 Å and 25.7 Å, respectively—have special microenvironments (Fig. 5a). A3P2 is affected by the π–π interactions with Y416 and F420 from LCM (Fig. 5d) and A3P3 is affected by several π–π interactions between its rings C and D with Y443, YS83 and F610 from LCM (Fig. 5e)—this suggests that these two bilins may facilitate energy flow to A3ApcF/ApcF. The bilin pair A3A2 and A3A3 shows the shortest distance (26.1 Å) between rod Rd and the core (Fig. 5a). The bilin A3P3 may mediate further energy transfer because it is subjected to π–π interactions with Y63 from LCM (Fig. 5f). For Re, both hexamers Re1 and Re2 attach to the core layer A1; as such, the energy could flow from either Re1 or Re2 to the core. The shortest distance between Re2 and the core is from A3P2/Re to A3P3 (33 Å) (Fig. 5a). The energy could then travel via the A3P3, because this bilin has the shortest distance to A3P3 and is affected by F454 from LCM through two parallel-displaced π–π interactions with rings C and D (Fig. 5g). Together, our results show that core linker proteins are extensively involved in the modulation of the energy states of core bilins to ensure the efficient unidirectional transfer of energy. These findings provide the framework for a detailed examination of energy transfer in future studies.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-020-2020-7.
11. Glazer, A. N. & Bryant, D. A. Allophycocyanin B (λ_{max} 671, 618 nm): a new cyanobacterial phycobiliprotein. *Arch. Microbiol.* **104**, 15–22 (1975).

12. Peng, P. P. et al. The structure of allophycocyanin B from Synechocystis PCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobilisomes. *Acta Crystallogr. D Biol. Crystallogr.* **70**, 2558–2569 (2014).

13. Dong, C. et al. ApoC is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium *Synechococcus* sp. PCC 7002. *Biochim. Biophys. Acta* **1787**, 1122–1128 (2009).

14. Ashby, M. K. & Mullineaux, C. W. The role of ApoC and ApoF in energy transfer from phycobilisomes to PS I and PS II in a cyanobacterium. *Photosynth. Res.* **61**, 169–179 (1999).

15. Bryant, D. A., Guglielmi, G., de Marsac, N. T., Castets, A.-M. & Cohen-Bazire, G. The structure of cyanobacterial phycobilisomes: a model. *Arch. Microbiol.* **123**, 113–127 (1979).

16. Williams, R. C., Gingrich, J. C. & Glazer, A. N. Cyanobacterial phycobilisomes. *Particles from Synechocystis 6701 and two pigment mutants*. *J. Cell Biol.* **85**, 558–566 (1980).

17. Yamanaka, G., Glazer, A. N. & Williams, R. C. Molecular architecture of a light-harvesting antenna. *Comparison of wild type and mutant Synechococcus 6301 phycobilisomes*. *J. Biol. Chem.* **255**, 11104–11110 (1980).

18. Guglielmi, G., Cohen-Bazire, G. & Bryant, D. A. The ultrastructure of phycobilisomes of *Porphyridium purpureum*. *J. Cell Biol.* **26**, 726–737 (1963).

19. Arteni, A. A., Ajlani, G. & Boekema, E. J. Structural organisation of phycobilisomes from *Griffithsia pacifica*. *J. Cell Biol.* **52**, 313–324 (1972).

20. Glazer, A. N. & Hixson, C. S. Characterization of R-phycocyanin. *Chromophore content of B-phycoerythrin*. *Biochim. Biophys. Acta* **123**, 224–231 (1999).

21. Bryant, D. A., Guglielmi, G., de Marsac, N. T., Castets, A.-M. & Cohen-Bazire, G. The ultrastructure of cyanobacterial phycobilisomes: a model. *Arch. Microbiol.* **123**, 113–127 (1979).

22. Arteni, A. A., Ajlani, G. & Boekema, E. J. Structural organisation of phycobilisomes from *Synechocystis* sp. strain PCC6803 and their interaction with the membrane. *Biochim. Biophys. Acta* **1787**, 272–279 (2009).

23. Chang, L. et al. Structural organization of an intact phycobilisome and its association with photosystem II. *Cell Res.* **25**, 726–737 (2015).

24. Gantt, E. & Lipschultz, C. A. Phycobilisomes of *Porphyridium cruentum*. I. Isolation. *J. Cell Biol.* **54**, 313–324 (1972).

25. Gantt, E. & Lipschultz, C. A. Structure and photosystem composition of phycobilisomes from *Gloeobacter violaceus*. *J. Physiol.* **16**, 394–398 (1980).

26. Ducret-Artigas, A. et al. pH-dependent structural conformations of B-phycoerythrin from *Porphyridium cruentum*. *FEBS J.* **279**, 3680–3689 (2012).

27. Luning, K. in *Seaweeds: their environment, biogeography, and ecophysiology* (ed. Yarish, C. and Kirkman, H.) (John Wiley & Sons, 1999).

28. Liu, L.-N., Chen, X.-L., Zhang, Y.-Z. & Zhou, B.-C. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. *Biochim. Biophys. Acta* **1708**, 133–142 (2005).

29. Jiang, T., Zhang, J. & Liang, D. Structure and function of chromophores in R-phycocyanin at 1.9 Å resolution. *Proteins* **34**, 224–231 (1999).

30. Gantt, E. & Lipschultz, C. A. Phycobilisomes of *Porphyridium cruentum*: pigment analysis. *Biochemistry* **13**, 2960–2966 (1974).

31. Glazer, A. N. & Hixson, C. S. Subunit structure and chromophore composition of rhodophyta phycocyanin. *Porphyridium cruentum B-phycocyanin and B-phycocyanin. J. Biol. Chem.* **252**, 32–42 (1977).

32. Redlinger, T. & Gantt, E. Phycobilisome structure of *Porphyridium cruentum*: polypeptide composition. *Plant Physiol.* **68**, 1370–1379 (1981).

33. Glazer, A. N. & Hixson, C. S. Characterization of R-phycocyanin. *Chromophore content of R-phycocyanin and C-phycocyanin*. *J. Biol. Chem.* **250**, 5487–5495 (1975).

34. Gantt, E. & Lipschultz, C. A. Phycobilisomes of *Porphyridium cruentum*: pigment analysis. *Biochemistry* **13**, 2960–2966 (1974).

35. Camara-Artigas, A. et al. Phycocyanin structure of cyanobacterial phycobilisomes. *FEBS J.* **279**, 3680–3689 (2012).

36. Ritter, S., Hiller, R. G., Wrench, P. M., Welte, W. & Diederichs, K. Crystal structure of a phycocyanobilin-containing phycocyanin at 1.9 Å resolution. *J. Struct. Biol.* **126**, 86–97 (1999).

37. Luning, K. in *Seaweeds: their environment, biogeography, and ecophysiology* (ed. Yarish, C. and Kirkman, H.) (John Wiley & Sons, 1999).

38. Liu, L.-N., Chen, X.-L., Zhang, Y.-Z. & Zhou, B.-C. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. *Biochim. Biophys. Acta* **1708**, 133–142 (2005).

39. Jiang, T., Zhang, J. & Liang, D. Structure and function of chromophores in R-phycocyanin at 1.9 Å resolution. *Proteins* **34**, 224–231 (1999).

40. Gantt, E. & Lipschultz, C. A. Phycobilisomes of *Porphyridium cruentum*: pigment analysis. *Biochemistry* **13**, 2960–2966 (1974).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020
Article

Methods

No statistical methods were used to predetermine sample size. The experiments were not randomized and the investigators were not blinded to allocation during experiments and outcome assessment.

Preparation of phycobilisomes

*P. purpureum* (From UTEX Culture Collection of Algae, UTEX 2757) was cultured in Bold INV: Erdschreiber (1:1) half-seawater medium, bubbled with sterilized filtered air at 22 °C, under a 16 h:8 h light–dark cycle, with a white-light flux of about 37 μmol photons per m² per second. Algal cells were collected by centrifugation for 10 min at 6,000 g, and resuspended in Buffer A (0.65 M Na/KPO₄ buffer with 0.5 M sucrose and 10 mM EDTA, pH 7.0) at 0.3 g of wet weight per ml. Then cells were homogenized twice at 4 °C using a French Press (Emulsiflex C3, Avestin) at 4,000 p.s.i., and phenylmethylsulfonyl fluoride was added to a final concentration of 1 mM. After 30 min of incubation with lauryldimethylamine N-oxide (Sigma) (48 mg g⁻¹ wet algal cells), debris and supernatant chlorophyll were removed by centrifugation at 20,000 g for 30 min at 18 °C. The middle aequorin solution was loaded in a discontinuous sucrose gradient (2 ml of 0.5 M, 2 ml of 0.75 M, 2 ml of 1.0 M, 2 ml of 1.5 M, 1 ml of 2.0 M, all in Buffer B: 0.75 M K/NaPO₄ buffer with 10 mM EDTA, pH 7.0) and spun at 120,000 g for 4 h at 18 °C using a SW41 rotor on Optima XPN-100 centrifuge (Beckman Coulter). Three visible bands were obtained after centrifugation and violet band 1 is the main layer of intact PBSs (Extended Data Fig. 1a).

Absorption and fluorescence spectrum measurement

Absorption of the intact PBS was measured between 300–800 nm using an Ultraspec 2100 Pro ultraviolet–visible spectrophotometer (Biochrom).

Fluorescence emission spectra were recorded using a Hitachi FL-4500 fluorescence spectrophotometer at room temperature. After exciting at 450 nm, fluorescence emission was monitored from 500 to 700 nm.

Mass spectrometry analysis

Mass spectrometry analysis was performed as previously described. In brief, the purified PBS was separated by 4–12% Bis-Tris SDS–PAGE in MES buffer and the gel was stained with ZnSO₄ to detect bilin-containing proteins with ultraviolet light by Zn-enhanced fluorescence. Then, four fluorescence bands with molecular mass greater than 25 kDa were excised for in-gel digestion and proteins were identified by mass spectrometry (Extended Data Fig. 1b). The intact PBS complex in solution was also subjected to mass spectrometric analysis. Finally, all 25 protein components of PBS were identified in the samples (Extended Data Fig. 1e).

Cryo-EM sample preparation and data collection

We used holey-carbon copper grids (Quantifoil R2/2, 400 mesh) covered with homemade ultrathin carbon for cryo-EM sample preparation. Cryo-EM grids were prepared with Vitrobot Mark IV (FEI Company) at 25°C and 100% humidity. The grids were glow-discharged after adding 1.5 mg ml⁻¹ to the grids and quickly mixed with the solution of 50 mM Tris buffer (pH 8.0) to the grids and waited for 60 s, and then added 3.5 μl of 1.0 M, 2 ml of 1.5 M, 1 ml of 2.0 M, all in Buffer B: 0.75 M K/NaPO₄ buffer with 10 mM EDTA, pH 7.0 and spun at 120,000 g for 4 h at 18 °C using a SW41 rotor on Optima XPN-100 centrifuge (Beckman Coulter). Three visible bands were obtained after centrifugation and violet band 1 is the main layer of intact PBSs (Extended Data Fig. 1a).

Cryo-EM data analysis

A total of 16,218 micrographs were collected. Micrograph screening, manual particle picking and normalization were performed using EMAN²⁹ and RELION3.0 beta²⁹. The contrast transfer function parameters of each micrograph were estimated using CTFFIND⁴⁰ and automatic particle picking; all the 2D, 3D classification, 3D refinement and local defocus calculation were performed with RELION3.0 beta²⁹. The workflow of the data analysis is shown in Extended Data Fig. 2f. Two batches of data were collected and processed individually at the beginning. Particles were first manually picked from a small set of micrographs to produce templates for autopicking. Then particles were autopicked on all micrographs and manually screened to eliminate aggregation and ice contamination. Finally 322,889 and 363,480 particles were selected for the next 2D classification. After several rounds of 2D classification, 299,888 and 333,012 particles were left for the 3D classification. After 3D classification, two classes from each dataset with good quality were selected for the final reconstruction. At this point, we calculated the local defocus values for each particle and re-extracted particles from the dose-weighted micrographs. Then two batches of data were merged to perform the 3D refinement. The final resolution of the 3D auto-refinement after post-processing was 2.82 Å with a final particle number of 191,825 after imposing the C2 symmetry. Application of a mask for the core region during refinement further improved the resolution of this region to 2.68 Å. We also applied local masks for each rod and extra phycocerythrin hexamer, which resulted in improved quality of local maps with resolutions ranging between 2.77 Å and 3.56 Å. The maps for the target regions were extracted from the overall map by Chimera³⁵, and the masks were created by RELION3.0 beta²⁹. All resolutions were estimated with the gold-standard Fourier shell correlation 0.143 criterion with high-resolution noise substitution. All the local resolution maps were calculated using ResMap³⁵.

Model building and refinement

We searched the published genome and transcriptome database of *P. purpureum* against the 25 protein sequences of the G. pacifica PBS using the Basic Local Alignment Search Tool (BLAST). A total of 24 homologues, including eight PBP proteins and 16 linker proteins were obtained by this procedure, and these proteins are used as the candidates for model building. Local maps generated by the different masks described above were used to facilitate the model building process. Because the sequences of *P. purpureum* and *G. pacifica* have high homology with each other, we first docked the structures of the G. pacifica PBS proteins (PDB: 5Y6P) into the electron microscopy maps using Chimera³⁵. All the PBP proteins and most of the linker proteins were fitted well. Then the sequence assignments were guided by well-resolved bulky residues such as phenylalanine, tyrosine, tryptophan and arginine, and the sequences of the G. pacifica PBS were replaced with corresponding residues in the P. purpureum PBS in Coot⁴⁰ and every residue was examined and manually adjusted to better fit in the map. Some of the La₄Y₄ proteins could not be fitted well at the N-terminal region. We first built the C-terminal CBDy domain as described above, and then performed the de novo building in Coot⁴⁰ with bulky residues as land markers as most of these residues were clearly visible in our cryo-EM maps. The linker protein located at the centre cavity of the hexamer Hd is La₄Y₆ in the G. pacifica PBS that contains the CBDy domain; however, the density at this region in the P. purpureum PBS shows recognizable structural features of the Pfam00427 domain. Therefore, we named this linker protein La₆ and first docked the structure of the Pfam00427 domain from La₂ into the density. By carefully...
examining the densities outside the Pfam00427 domain of Lr6, a YYW motif was unambiguously identified according to the clear side-chain densities. Then we obtained the full-length sequence of Lr6 by searching the published genome and transcriptome database of P. purpureum for the protein containing both the Pfam00427 domain and the YYW motif. The sequence of Lr2 was replaced with corresponding residues in Lr6 in Coot and de novo atomic model building was conducted for the rest of the sequence in Coot. Finally, 25 protein sequences were identified and confirmed by good agreement of the side-chain information between the sequences and the density maps (Supplementary Table 1).

The initial model was completed via iterative rounds of manual building with Coot and refinement with phenix.real_space_refine. During this process, each part of the whole PBS model corresponding to each local map was refined against the local map with secondary structure and geometry restraints to prevent overfitting. Then, all parts were merged into a whole PBS model and this overall model was refined again against the overall 2.8 Å map using phenix.real_space_refine. The atomic model was cross-validated according to previously described procedures. In brief, atoms in the final model were randomly shifted by up to 0.5 Å, and the new model was then refined against one of two half-maps generated during the final 3D reconstruction. FSC values were calculated between the map generated from the resulting model and the two half-maps, as well as the averaged map of two half-maps. We did not observe notable separation between FSCwork and FSCfree, indicating that our model was not over-refined (Extended Data Fig. 2e).

The data collection, model refinement and validation statistics are presented in Extended Data Tables 1, 2b. The statistics of the geometries of the models were generated using MolProbity. All the figures were prepared in PyMOL (http:// pymol.org) or Chimera. The sequence alignments were performed by ClustalX and created by ESPript.

**Reporting summary**

Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

**Data availability**

The atomic coordinates have been deposited in the Protein Data Bank with the accession code 6KGX. The electron microscopy maps have been deposited in the Electron Microscopy Data Bank with accession codes EMD-9976 for the overall map and EMD-9977 through to EMD-9988 for the 12 local maps. The raw electron microscopy images used to build the 3D structure are available from the corresponding authors upon request.
**Extended Data Fig. 1** | Preparation and characterization of the PBS from *P. purpureum*. a, Isolation of PBSs using sucrose density gradient centrifugation. Three visible bands were observed. Band 1 is the sample of PBSs used for single-particle analysis in this study. The purification of PBS was repeated independently at least three times with similar results. b, Analysis of the protein composition of band 1 by SDS–PAGE stained with ZnSO$_4$ to enable the detection of bilin-containing proteins with ultraviolet light by Zn-enhanced fluorescence. The bands of L$_{\gamma 4}$, 5, 7, 8 and PBPs identified by mass spectrometric analysis are indicated. For gel source data, see Supplementary Fig. 1. The purification and characterization of the protein composition was repeated independently at least three times with similar results. c, Absorption spectrum of band 1 and the PBS from *G. pacifica*. The peaks at 498 nm, 620 nm and 650 nm are from phycourobilins, PCBs of phycocyanins and PCBs of allophycocyanins, respectively. The peaks at 540 nm and 565 nm are from PEBs. The reduced absorption of the *P. purpureum* PBS compared with the *G. pacifica* PBS at 498 nm indicates that the phycourobilin content of *P. purpureum* is much lower than that of *G. pacifica*. d, Fluorescence emission spectra of the three bands. Emission maxima at 580 nm and 676 nm represent the disassembled phycoerythrin hexamer and the terminal emitter in the intact PBS, respectively. Band 1 has an emission peak at 676 nm, band 2 at 580 nm and band 3 has two emission peaks at 676 nm and 580 nm, indicating that band 1 contains intact PBSs, band 2 contains free PBPs and band 3 contains partially disassembled PBSs. e, Results of the mass spectrometric analysis of purified PBSs. Two batches of sample were analysed. The similar results confirmed the consistency of our purification method.
Extended Data Fig. 2 | Cryo-EM analysis of the PBS from *P. purpureum*. a, A representative motion-corrected electron micrograph of PBSs. Scale bar, 50 nm. Tens of thousands of micrographs were collected with similar results. b, Fourier power spectrum of the micrograph showing the Thon ring extending to 2.25 Å. Tens of thousands of micrographs were collected with similar results. c, Typical good, reference-free 2D class averages from single-particle PBS images. Scale bar, 20 nm. More than three rounds of 2D class average were performed with similar results. d, Gold-standard Fourier shell correlation (FSC) curves for the 3D electron microscopy reconstructions of the PBS. Blue curve, FSC curve for the overall structure; green curve, FSC curve for the core region that was masked during refinement. e, FSC curves for the cross-validation of the atomic model. The small difference between work and free FSC curves suggested that the model was not overfitted. f, The workflow for the 2D and 3D classifications for cryo-EM data processing. The masking strategy for dealing with sub-regions of PBS is enclosed within dashed lines. For details, see 'Cryo-EM data analysis' in Methods.
Extended Data Fig. 3 | Characterization of different types of chromophore.

A. Cryo-EM densities (mesh) of bilins (stick) bound to L_{r4} in the rod Rb, L_{r5} in rod Rd, L_{r7} in the hexamer Ha and L_{r8} in the rod Rd. B. The densities (mesh) of some PCB and PEB bilins (stick) in R-phycocyanins and phycoerythrins from rods Ra and Rb to show their different coplanarities. All of the density maps of PCB bilins showed a very flat conformation of rings B, C and D, consistent with the carbon–carbon double bond between rings C and D in PCB that constraints the movement of ring D, so that ring D is coplanar with the B–C plane. Conversely, most of the density maps of PEB displayed a curved conformation of rings B, C and D owing to the single carbon–carbon bond between rings C and D in PEB that allows the rotation of ring D, so that ring D deviates from the B–C plane. However, some PEBs in R-phycocyanin also showed a planar conformation—such as PBa1 and PBb1—although to a lesser extent than that for a typical PCB molecule. C. Dihedral angles of three kinds of chromophore. The dihedral angles Φ, Ψ, Φ, ..., are defined by the atoms NA–C(4)–C(5)–C(6), C(4)–C(5)–C(6)–NB, NB–C(9)–C(10)–C(11)–... etc.

|       | Φ_1 | Ψ_1 | Φ_2 | Ψ_2 | Φ_3 | Ψ_3 | Chemical structure |
|-------|-----|-----|-----|-----|-----|-----|--------------------|
| PEB   | 0.1 | 132.4 | -1.1 | 4.0 | 85.1 | 45.1 | ![PCB structure](PCB_structure.png) |
| PUB   | -38.4 | -84.1 | 17.3 | 0.2 | 52.9 | 75.4 | ![PEB structure](PEB_structure.png) |
| PCB (core) | 5.8 | 157.9 | 0.6 | -1.4 | 167.3 | 5.5 | ![PCB core structure](PCB_core_structure.png) |
| PCB (L_{CM}) | 0.1 | 0 | 0.2 | -0.1 | 179.8 | 0.1 | ![PCB L_{CM} structure](PCB_L_{CM}_structure.png) |
Extended Data Fig. 4 | Overall structure of the PBS from *P. purpureum* and comparison with that from *G. pacifica*. a, Schematic diagram showing the organization of the rods and the core from two perpendicular views. The colouring scheme is the same as in Fig. 1e. b, Structure of the core from two perpendicular views shows the assembly and arrangement of the core layers. c, Overall structure of the PBS overlapped with the *G. pacifica* PBS displayed in surface representation from three perpendicular views. The additional hexamers in the *G. pacifica* PBS are coloured white and labelled. d, Schematic model of the PBS architecture. The connections between PBS components are shown. Dark and light colours show C2 symmetric parts of rods. Dark and light salmon, phycocyanin hexamers in rod; dark and light brown, extra phycocyanin hexamers; dark and light forest green, phycoerythrin hexamers; blue, allophycocyanin trimer; large rectangular box, Pfam00427 domains; small rectangular box, Pfam01383 domains; square box, CBDγ. e, Comparison of linker proteins from *P. purpureum* with those from *G. pacifica*. Structures of the 19 well-resolved linker proteins (magenta) are superimposed with those from the *G. pacifica* PBS (cyan). The linker proteins share very high structural conservation—such as the Pfam00427 domain in the rod–core linker (LRC1–3)/LRC1′–3′, the rod linker (LR1–3)/LR1′–3′ and LCM/LCM′, the Pfam01383 domain in the core linker (LC)/LC′ and LR1/LR1′, the FAS1 domain in LRC6/LRC6′ and LR9/LR9′, the CBDγ domain in LRγ4–5/LRγ4′–5′ and LRγ7–8/LRγ7′–8′, the coiled-coil motif at the C termini of LRC2–3/LRC2′–3′, and the long α-helix in the middle of the LRC4–5/LRC4′–5′. Note that LR6 from the *P. purpureum* PBS is different from LRγ6 from the *G. pacifica* PBS, therefore they are not aligned. Domains of αLCM, Pfam00427 (00427), Pfam01383 (01383), CBDγ, and FAS1 are labelled.
Extended Data Fig. 5 | Interactions between LRC proteins and the core.

a, Organization of LRC proteins LRC1–3/LRC1′–3′ and the core. The grooves on the α subunits that contact the linker helices are shown in red.
b, Structural similarity and differences among LRC1a, LRC1b and LRC1c. These rod–core linkers are superimposed relative to the Pfam00427 domain. The helices that interact with the core are boxed.
c, Structural similarity of LRC2 and LRC3, as demonstrated by superimposition of the Pfam00427 domain at the N termini and the coiled-coil motif at the C termini. The helices interacting with the core are boxed.
d–f, Interactions between the α APC subunit and the helices of LRC1b (d), LRC2 (e) and LRC3 (f). The residues involved in the interaction of LRC proteins are coloured green and shown in stick representation. The α APC are shown in surface representation, and the residues involved in the interaction are red.
Extended Data Fig. 6 | Interactions of the linker proteins Lγ5 and Lγ5s with chromophores in the rod Rd. a, Bottom, overall structure of the rod Rd with the hexamers shown in surface representation and the linker proteins shown in cartoon representation. Top, structure of the layer Rd3I. Proteins and bilins are shown in cartoon and sphere representations, respectively. Three β subunits are coloured differently and the β82 PEBs are boxed and analysed in detail in b–d. b, The interactions between the residue Y63 and the bilin \( \beta_{Rd}^{\text{Lγ5}} \) from LRγ5 with the bilin \( \beta_{Rd}^{\text{Lγ5s}} \). c, The interaction between F122 from LRγ5 and the bilin \( \beta_{Rd}^{\text{Lγ5s}} \). d, The interaction between F107 from LRγ5 and the bilin \( \beta_{Rd}^{\text{Lγ5s}} \). e, A focused view of the structure of the layer Rd1I showing the central triangle area. PBPs, the linker protein, bilins and residues are shown in surface, cartoon, ball-and-stick and stick representations, respectively. Three β82 PCBs are boxed and analysed in detail in f–h. f, The interactions between Y201 and F207 from LRγ2 and the bilin \( \beta_{Rd}^{\text{Lγ5s}} \). g, The interaction between Y90 from LRγ2 and the bilin \( \beta_{Rd}^{\text{Lγ5s}} \). h, The interaction between Y137 from LRγ2 and the bilin \( \beta_{Rd}^{\text{Lγ5s}} \).
Extended Data Fig. 7 | Comparisons of linker proteins from both *P. purpureum* and *G. pacifica*. 

**a, b**, Structural alignment of Lγ linker proteins in the outmost hexamers of various rods from the *P. purpureum* PBS (a) and the *G. pacifica* PBS (b). β82 PEBs and residues of Lγ linker proteins are shown in ball-and-stick and stick representations, respectively. Note that an aromatic residue from the Lγ linker is present near to each β82 PEB to form π–π interactions, and one bilin from the Lγ linker (γ) γLγR always provides additional π electrons to the conjugation system of the β82 PEB. These aromatic residues and the bilins from Lγ linker proteins are conserved in both *P. purpureum* and *G. pacifica*.

**c**, Sequence alignment of Lγ4–5 from *P. purpureum* and other red algae. Three aromatic residues interacting with the β82 PEBs and the cysteine residues used to link the bilins close to the β82 PEBs are marked by stars. LRgamma4_GP and LRgamma5_GP are from *G. pacifica*; PXF41621.1, γ-subunit from *Gracilariopsis chorda*; XP_005715244.1, γ-subunit from *Chondrus crispus*; OSX79262, γ-subunit from *Porphyra umbilicalis*; AAN39000.1, γ-subunit from *Griffithsia japonica*; AXQ05179.1, γ-subunit from cyanobacteria *Arthrospira platensis*.

**d**, Structural alignment of the Lγ linker proteins from *P. purpureum* and *G. pacifica* in the phycoerythrin hexamer showing the bilin βγ and the surroundings. The key histidine residue close to the βγ PCB is conserved.

**e**, Sequence alignment of Lα1 from *P. purpureum* and other red algal and cyanobacterial species. The key histidine residue close to the β82 PCB is marked with a star. LRC1_GP, Lα1 from *G. pacifica*; XP_009294673.1, Lα1 from red algal *G. chorda*; YP_007627464.1, Lα1 from red algal *C. crispus*; YP_009413376.1, Lα1 from red algal *P. umbilicalis*; YP_009244497.1, Lα1 from red algal *A. chilense*; WP_006617749.1, Lα1 from cyanobacteria *Arthrospira platensis*; WP_009783358.1, Lα1 from cyanobacteria *Lyngbya sp.*; WP_007583358.1, Lα1 from cyanobacteria *Oscillatoria sp.*. WP_009244497.1, Lα1 from cyanobacteria *Geitlerinema sp.*.

**f**, Structural alignment of the Lα2 and Lα3 linker proteins from *P. purpureum* and *G. pacifica* in the phycocyanin hexamer proximal to the core showing the bilin βγ and the surroundings. Two aromatic residues near to the βγ PEB are conserved in both *P. purpureum* and *G. pacifica*. g, Sequence alignment of Lα2–3 from *P. purpureum* and other red algae. Two aromatic residues close to the β82 PEBs are marked with stars. Lα2–3_GP are from *G. pacifica*; PXF39827.1, XP_005715356.1 and OSX69059.1 are from *G. chorda*, *C. crispus* and *P. umbilicalis*, respectively.
Extended Data Fig. 8 | Characterization of ApcD, ApcF and the α subunit domain of LCM.

a, Magnified view of the superimposition of ApcD proteins from *P. purpureum*, *G. pacifica* (GP_ApcD), *Synechocystis* PCC 6803 (4PO5_ApcD) and the α subunit of the core layer A3 (α_CoreA3). Bilins and residues are shown in ball-and-stick and stick representations, respectively. Three aromatic residues near to the PCB are conserved in all ApcD proteins, but not in the α subunit of the core layer A3.

b, Magnified view of the superimposition of ApcF proteins from *P. purpureum* and *G. pacifica* (GP_ApcF), and the β subunit of the core A2 (β_CoreA2). βA2 ApcF 87 is shown in ball-and-stick representation in sand.

c, A schematic of interactions between βA2 ApcF 87 and the hydrophobic cap.

d, Magnified view of the PCB pocket of ApcF (left), αA2 186 (middle) and αA2 186 (right). The protein is shown in surface representation and coloured on the basis of amino acid hydrophobicity (see colour bar). The side chains of hydrophobic residues within 5 Å of the PCB are shown in stick representation.

e, Magnified view of the structural alignment of the hydrophobic caps formed by Lcm proteins from *P. purpureum* and *G. pacifica*. f, Schematic of the steric hindrance experienced by Y140/Lcm and the ZZasa configuration of αA2 186. g, Structural alignment of αApcD, ApcF, the α subunit (ApcA_A2) and the β subunit (ApcB_A2) in the core. The PCB pockets are indicated in the magnified view on the right.
Extended Data Table 1 | Cryo-EM data collection, refinement and validation statistics

|                                      | Phycobilisome from P. purpureum (EMDB-9976) (PDB 6KGX) |
|--------------------------------------|--------------------------------------------------------|
| **Data collection and processing**   |                                                        |
| Magnification                        | 105,000                                                |
| Voltage (kV)                         | 300                                                    |
| Electron exposure (e-/Å²)            | 48                                                    |
| Defocus range (µm)                   | -1.2 ~ -2.2                                            |
| Pixel size (Å)                       | 1.091                                                  |
| Symmetry imposed                     | C2                                                    |
| Initial particle images (no.)        | 686,369                                                |
| Final particle images (no.)          | 191,825                                                |
| Map resolution (Å)                   | 2.82                                                   |
| FSC threshold                        | 0.143                                                  |
| Map resolution range (Å)             | 2.4 ~ 7.4                                              |
| **Refinement**                       |                                                        |
| Initial model used (PDB code)        | 5Y6P                                                   |
| Model resolution (Å)                 | 2.82                                                   |
| FSC threshold                        | 0.143                                                  |
| Model resolution range (Å)           | 2.4 ~ 7.4                                              |
| Map sharpening B factor (Å²)          | -54.74                                                 |
| Model composition                    |                                                        |
| Non-hydrogen atoms                   | 1014714                                                |
| Protein residues                     | 125577                                                 |
| Ligands                              | 1598                                                   |
| B factors (Å²)                       |                                                        |
| Protein                              | 57.95                                                  |
| Ligand                               | 71.06                                                  |
| R.m.s. deviations                    |                                                        |
| Bond lengths (Å)                     | 0.009                                                  |
| Bond angles (°)                      | 2.064                                                  |
| Validation                           |                                                        |
| MolProbity score                     | 1.79                                                   |
| Clashscore                           | 8.07                                                   |
| Poor rotamers (%)                    | 0.53                                                   |
| Ramachandran plot                    |                                                        |
| Favored (%)                          | 94.88                                                  |
| Allowed (%)                          | 5.11                                                   |
| Disallowed (%)                       | 0.01                                                   |
## Extended Data Table 2 | Summary of proteins, chromophores and model validation

### a

| Subunit | Numbers in PBS | PCB Per subunit | PCB Total | PEB Per subunit | PEB Total | PUB Per subunit | PUB Total | Total |
|---------|----------------|-----------------|-----------|-----------------|-----------|-----------------|-----------|-------|
| $\alpha_{APC}$ | 20 | 1 | 20 | | | | | 20 |
| $\beta_{APC}$ | 22 | 1 | 22 | | | | | 22 |
| ApcD | 2 | 1 | 2 | | | | | 2 |
| ApeF | 2 | 1 | 2 | | | | | 2 |
| $\alpha_{PC}$ | 36 | 1 | 36 | | | | | 36 |
| $\beta_{PC}$ | 36 | 1 | 36 | 1 | 36 | | | 72 |
| $\alpha_{PE}$ | 254 | | | 2 | 508 | | | 508 |
| $\beta_{PE}$ | 274 | | | 3 | 822 | | | 822 |
| Lc | 2 | | | | | | | 2 |
| LcM | 2 | 1 | 2 | | | | | 2 |
| LrC1 | 6 | | | | | | | 6 |
| LrC2 | 2 | | | | | | | 2 |
| LrC3 | 2 | | | | | | | 2 |
| LrC4 | 2 | | | | | | | 2 |
| LrC5 | 2 | | | | | | | 2 |
| LrC6 | 2 | | | | | | | 2 |
| Lr1 | 6 | | | | | | | 6 |
| Lr2 | 2 | | | | | | | 2 |
| Lr3 | 2 | | | | | | | 2 |
| LrY4 | 10 | | | 3 | 30 | 2 | 20 | 50 |
| LrY5 | 6 | | | 3 | 18 | 2 | 12 | 30 |
| Lr6 | 4 | | | 4 | 2 | | | 12 |
| LrY7 | 4 | | | 3 | 12 | 2 | 8 | 20 |
| LrY8 | 4 | | | 1 | 4 | 2 | 8 | 12 |
| Lr9 | 2 | | | | | | | 2 |
| Total | 706 | 120 | 1430 | 48 | 1598 | | | |

### b

| Molecule* | MolProbity Scores | Ramachandran plot statistics (%) | RMS deviations |
|-----------|-------------------|----------------------------------|----------------|
| Core | 1.52 | 96.53 | 3.47 | 0.00 | 0.004 | 1.518 |
| Ra/Ra' | 1.75 | 94.43 | 5.57 | 0.00 | 0.009 | 2.149 |
| Rb/Rb' | 1.39 | 96.32 | 3.68 | 0.01 | 0.007 | 1.919 |
| Rc/Rc' | 1.53 | 95.96 | 4.04 | 0.00 | 0.009 | 1.952 |
| Rd/Rd' | 1.64 | 95.77 | 4.23 | 0.00 | 0.012 | 2.076 |
| Re/Re' | 1.62 | 94.76 | 5.23 | 0.01 | 0.008 | 2.287 |
| Rf/Rf' | 1.78 | 93.33 | 6.67 | 0.00 | 0.007 | 1.919 |
| Rg/Rg' | 1.44 | 96.16 | 3.84 | 0.00 | 0.010 | 2.175 |
| H/H' | 1.65 | 94.64 | 5.31 | 0.05 | 0.013 | 2.247 |
| M/M' | 1.46 | 95.42 | 4.58 | 0.00 | 0.006 | 2.239 |

---

*a*, *b*, a. Numbers of proteins and chromophores in the PBS. b. Summary of model validation for the PBS components. "Core contains all α subunits, β subunits in core, and LrC1/LrC2, LrC3/LrC4, LrC5/LrC6; each rod (Ra/Ra’–Rg/Rg’) contains all α subunits, β subunits and linker proteins in the rod; H/H’ contains all extra hexamers (Hα/Hα’, Hβ/Hβ’, Hc/Hc’ and Hd/Hd’) including all α subunits, β subunits and linker proteins in the hexamers; and Lr9/Lr9’; M/M’ contains individual (αβ) monomers and all individual β subunits.
# Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

## Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

| n/a | Confirmed |
|-----|-----------|
| ☑   | The exact sample size \((n)\) for each experimental group/condition, given as a discrete number and unit of measurement |
| ☐   | A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly |
| ☑   | The statistical test(s) used AND whether they are one- or two-sided  
  *Only common tests should be described solely by name; describe more complex techniques in the Methods section.* |
| ☑   | A description of all covariates tested |
| ☑   | A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons |
| ☑   | A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) |
| ☑   | For null hypothesis testing, the test statistic (e.g. \(F\), \(t\), \(r\)) with confidence intervals, effect sizes, degrees of freedom and \(P\) value noted  
  *Give \(P\) values as exact values whenever suitable.* |
| ☑   | For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings |
| ☑   | For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes |
| ☑   | Estimates of effect sizes (e.g. Cohen’s \(d\), Pearson’s \(r\)), indicating how they were calculated |

Our web collection on [statistics for biologists](https://natureresearch.com/statistics/biologists) contains articles on many of the points above.

## Software and code

Policy information about availability of computer code

| Data collection | AutoEMation 1.0 |
|-----------------|-----------------|
| Data analysis   | Relion 2.0, Relion 3.0 beta, MotionCor2 1.1.0, EMAN2.1, CTFFIND4, Phenix 1.14-3260, Coot 0.8.9.1, Pymol 1.8.2.1, Chimera 1.12, CLUSTAL 2.0, ResMap v1.1, MolProbity 4.4, ENDscript 2.0 |

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research [guidelines for submitting code & software](https://natureresearch.com/guidelines/code) for further information.

## Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets  
- A list of figures that have associated raw data  
- A description of any restrictions on data availability

The atomic coordinates have been deposited in the Protein Data Bank with the accession code 6KGX. The EM maps have been deposited in the Electron Microscopy Data Bank with the accession codes EMD-9976 for the overall map and EMD-9977 to EMD-9988 for the twelve local maps. All other data and materials are available from the corresponding authors upon reasonable request.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☑ Life sciences  ☐ Behavioural & social sciences  ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

| Sample size | Amount of cryo-EM micrographs collected was based on the previous knowledge that the reconstruction of the protein particles picked from these micrographs could reach to a near atomic resolution and also limited by the time allocation of the microscope. |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data exclusions | The exclusion criteria were not pre-established. 2D and 3D classification yielded multiple classes. Only the particles in the classes that showed clear structural signals and intact structures were selected, combined and used in the final reconstruction and refinement. Details are described in the flowchart of Extended Data Figure 2e and Methods. |
| Replication | Multiple rounds of structural refinement have been performed and all resulted in same density maps (with different resolutions though). The purification and characterization of PBS (sucrose density gradient centrifugation, SDS-PAGE, absorption spectrum, fluorescence emission spectra) have been repeated for at least three times with similar results. Two batches of sample were analyzed by MS and the similar results confirmed the consistency of our purification method. |
| Randomization | Randomization of samples is not relevant for a single particle electron microscopy study because the study focused on a specific protein complex. |
| Blinding | Binding is not relevant because we are studying a specific protein complex. |

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

| Materials & experimental systems | Methods |
|---------------------------------|---------|
| n/a | Involved in the study |
| ☑ | Antibodies |
| ☑ | Eukaryotic cell lines |
| ☑ | Palaeontology |
| ☑ | Animals and other organisms |
| ☑ | Human research participants |
| ☑ | Clinical data |
| n/a | Involved in the study |
| ☑ | ChIP-seq |
| ☑ | Flow cytometry |
| ☑ | MRI-based neuroimaging |