Inhibition of endogenous ouabain by atrial natriuretic peptide is a guanylyl cyclase independent effect

Gulay Tegin¹, Yonglin Gao¹, John M. Hamlyn², Barbara J. Clark³, Rif S. El-Mallakh¹*

¹ Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, Kentucky, United States of America, ² Department of Physiology, School of Medicine, University of Maryland, Baltimore, Mississippi, United States of America, ³ Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, United States of America

* rifaat.elmallakh@louisville.edu

Abstract

Background

Endogenous ouabain (EO) and atrial natriuretic peptide (ANP) are important in regulation of sodium and fluid balance. There is indirect evidence that ANP may be involved in the regulation of endogenous cardenolides.

Methods

H295R are human adrenocortical cells known to release EO. Cells were treated with ANP at physiologic concentrations or vehicle (0.1% DMSO), with or without guanylyl cyclase inhibitor 1,2,4 oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Cyclic guanosine monophosphate (cGMP), the intracellular second messenger of ANP, was measured by a chemiluminescent immunoassay and EO was measured by radioimmunoassay of C18 extracted samples.

Results

EO secretion is inhibited by ANP treatment, with the most prolonged inhibition (90 min vs ≤ 60 min) occurring at physiologic ANP concentrations (50 pg/mL). Inhibition of guanylyl cyclase with ODQ, also reduces EO secretion. The inhibitory effects on EO release in response to cotreatment with ANP and ODQ appeared to be additive.

Conclusions

ANP inhibits basal EO secretion, and it is unlikely that this is mediated through ANP-A or ANP-B receptors (the most common natriuretic peptide receptors) or their cGMP second messenger; the underlying mechanisms involved are not revealed in the current studies. The role of ANP in the control of EO synthesis and secretion in vivo requires further investigation.
Introduction

Endogenous cardenolides (ECs) are groups of steroid back-boned chemicals that include ouabain, digoxin, bufodienolides, and their metabolites [1–5]. These chemicals were originally identified from plants and non-mammalian sources including the foxglove (Digitalis species) [6], climbing oleander (Strophantus gratus and other Apocynaceae) [7], and in toads (Bufo) and frogs (Atelopus) [8]. More recently, it has become clear that these compounds or very similar mammalian counterparts are synthesized and released from adrenal gland and hypothalamus [2, 9–12]. In the human body, they are thought to play important roles in sodium and fluid homeostasis by affecting sodium- and potassium-activated adenosine triphosphatase (Na\(^+\)-K\(^+\)-ATPase) activity, and in cellular signaling pathways [13–17]. Their role in blood pressure control has been more extensively examined.

Endogenous ouabain (EO) has been implicated in many cellular mechanisms and physiological pathologies [17], including modulation of cellular or organ size [18, 19], sodium homeostasis [20], hypertension [21, 22], mood disorders [23, 24], and possibly cancer [25]. This is accomplished via regulation of sodium pump activity [13–17] and cellular signaling pathways [26–28].

The natriuretic peptide family mainly consists of Atrial Natriuretic Peptide (ANP), Brain or B-type Natriuretic Peptide (BNP), and C-type Natriuretic Peptide (CNP). Each natriuretic peptide in this family appears to induce diuresis, natriuresis, vasodilation, and inhibition of the renin-angiotensin-aldosterone system and the sympathetic nervous system [29–31]. Recent research suggests multiple interactions between cardiotonic steroids (CTS) and ANP [32]. Both ANP and ECs are thought to play important roles in sodium and fluid homeostasis. In cardiac tissue, both endogenous cardenolides and ANP were increased in similar pathological conditions [32]. For example, in a study to test possible interactions between ANP and ouabain in the heart it was found that ANP antagonizes stimulation of the Na\(^+\)-K\(^+\)-ATPase by low concentrations of ouabain [33]. However, ANP when used alone stimulated Na\(^+\)-K\(^+\)-ATPase activity [33].

There are three known natriuretic peptide receptors: Natriuretic Peptide Receptor-A (NPR-A), NPR-B, and NPR-C. ANP and BNP preferentially bind to NPR-A [34], while NPR-C has 50-fold greater affinity to CNP than either ANP or BNP [35]. Both NPR-A and NPR-B are coupled with guanylyl cyclase [34]. In contrast, NPR-C has no guanylyl cyclase activity [36] and has long been thought to act as a natriuretic peptide clearance receptor because it is primarily found in the kidney, has similar affinity for two of the three natriuretic peptides [35, 37], and its elimination in transgenic mice increases the half-life of ANP by 66% [38]. NPR-C appears to be coupled with the G\(_{ia}\) protein and other intracellular signals, but not cGMP [39]. Activation of this receptor with a ring deleted ANP analogue, cANF\(_{4-23}\), which blocks natural ANP and does not increase cGMP, results in natriuresis and reduction of blood pressure in conscious rats [40]. The NPR-C is widely distributed [36] including in the adrenal gland, where it is 5-fold less abundant than NPR-A [41].

The vasodilatory effects of ANP appear to be mediated by stimulation of guanylyl cyclase, elevation of intracellular cyclic guanosine monophosphate (cGMP), and activation of cGMP-dependent protein kinase [42–44]. ANP increases cGMP production and attenuates agonist-stimulated aldosterone synthesis in adrenal zona glomerulosa cells [42]. Over 30 years ago, ANP was demonstrated to reduce synthesis of a Na\(^+\)-K\(^+\)-ATPase inhibitor by brain tissue both in vivo and in vitro [45].

In the present study, we investigated whether ANP is involved in the secretion of EO in H295R human adrenocortical cells, which have previously demonstrated to spontaneously excrete endogenous cardenolides [12] and which have functional ANP receptors [46]. We
examined the roles of guanylyl cyclase (using 1H-[1,2,4]oxadiazolo[4,3-a] quinoxaline-1-one [ODQ] to inhibit the enzyme) and cGMP in mediating an inhibitory effect of ANP on EO synthesis.

Methods

Cell culture

Human adrenocortical cells (H295R) were from American Type Culture Collection (ATCC). NCI-H295R was adapted from the NCI-H295 pluripotent adrenocortical carcinoma cell line (ATCC CRL-10296). While the original cells grew in suspension, the adapted cells were selected to grow in a monolayer with a 2 day doubling time.

The cells were grown and maintained in DMEM/F12 medium (GIBCO, Grand Island, NY) containing 25 mL/L NuSerum type I, 10 g/L ITS culture supplements (Corning, NY), and antibiotics in 75 cm² flasks at 37 °C under a humid atmosphere of 5% CO₂–95% air.

Treatments

For the experiments, flasks were seeded with H295R cells and grown to ~80% confluent density at 37° C in air containing 5% CO₂ (~1 x 10⁶ cells). Culture medium was removed and discarded; 3.0 mL of Trypsin-EDTA solution (HyClone™, Cytiva, Marlborough, MA) were added until the cell layer dispersed (usually within 5 min). Then, 6 mL of complete growth medium were added, and the cell suspension was centrifuged at 125 x g for 5 min. The cell pellet was resuspended in fresh growth medium. The subculture ratio was 1:3 to 1:4. The media was replaced every 3 days.

H295R human adrenocortical cells were treated with: 1) 0.1% DMSO or ANP (5, 50, 200 pg/mL; California Peptide Research, Inc, Salt Lake City, UT) dissolved in 0.1% DMSO for 30 min, 60 min and 90 min; 2) 0.1% DMSO, 50pg/mL ANP, 10 μM of guanylyl cyclase inhibitor 1,2,4 oxadiazolo[4,3-a]quinazolin-1-one (ODQ; Cruz Biotechnology, Inc Santa Cruz, CA) for 90min; and 3) pretreated with ODQ for 30min followed by 50 pg/mL ANP for 60 min. Normal serum ANP levels are frequently reported in the mid 30s pg/mL with a range up to 200 pg/mL in renal failure [47–49]. The culture media was collected after different time points and different treatment for EO measurements. We only used no treatment controls, and did not examine the effect of adding other non-ANP peptides to the cell cultures. All experiments had 3–6 replicates.

Measurements

H295R human adrenocortical cells were treated with ANP at various concentrations (0, 5, 50, 200 pg/mL) for 30, 60 and 90 min in serum-free medium. The culture media were collected for assay of endogenous ouabain (EO) by radioimmunoassay of C18 extracted samples [50]. In brief, 200 mg Bond Elut C18 columns (Varian) were preconditioned by sequential passage of 3 mls each of 100, 50, 25, and 5% CH₃CN in water. Thereafter, each column was washed twice with 3 ml water. For the samples, 10–12 ml of the conditioned cell culture fluid was centrifuged at 2,500 x g for 20 min. The supernatants were applied to the columns which were then washed sequentially with 2 x 3 ml water and 3 ml 5% CH₃CN. Differential elution was then used to elute the desired bound steroids as follows: Bound EO was eluted by a 20% CH₃CN wash, while less polar steroids including endogenous digoxin-like immunocrossreactive materials [9, 51] and aldosterone, that remained bound after the 20% CH₃CN wash were eluted with a 50% CH₃CN wash. Sample blanks were run in parallel. In some experiments, the recovery of EO as well as the success of the differential elution was assessed by inclusion of tracer amounts of ³H-
ouabain and 3H-digoxin. For immunoassay, all eluates of interest were dried by vacuum centrifugation (Savant) and reconstituted at 60–120 x their original concentration in water. For analysis of the efficiency of steroid recoveries, aliquots of the eluates were taken directly for liquid scintillation counting. The radioimmunoassay was performed in a manner similar to that previously described using the R8 ouabain-antiserum [50] with the exception that a micro format was employed wherein the total assay volume was 50 μL. In this assay, 30 μL was the reconstituted sample and the remainder was comprised of 3H-ouabain (final concentration = 1.35 nM) and buffer. The reaction was incubated at room temperature for one hour and terminated by rapid filtration over glass fiber filters (Whatman GF/B) using a 24 well cell harvester (Brandel). The filters were soaked in scintillation cocktail (Ultima Gold, Perkin Elmer) for 40 hours and then counted (Beckman TA3000) with quench correction. Non-specific binding was determined by inclusion of excess ouabain in the reaction and typically was < 4% of the total bound count. The antiserum exhibits no meaningful crossreactivity (<0.01%) with the vast majority of common adrenocortical, ovarian, or testicular steroids (see Table 1 in [51]). In addition, the immuno-crossreactivities for dihydro-ouabain, digoxin, digitoxin, and aldosterone were 0.16, 5.2, 28 and 0.012%, respectively. The crossreactivity of the latter three steroids is of no concern; the use of a differential elution process excludes the vast majority of digoxin, digoxin-like materials, and aldosterone from the eluates used for EO measurement. The low crossreactivity for dihydro-ouabain, i.e., 625-fold less than for ouabain, makes it unlikely that any dihydro-ouabain that may have been secreted [11, 12] contributed significantly to the EO measurement. All measurements were made with an operator blinded to the study design.

We did not assay intracellular EO concentrations because previous work revealed that the intracellular EO concentrations in H295R cells was below assay detection [12]. Four mL PBS were added to the remaining cells that were scratched twice, and then transferred to a centrifuge and spun at 125x g for 5 minutes. The cell pellet lysates of were used for intracellular cGMP assay using a chemiluminescent immunoassay kit (Arbor assay, Ann Arbor, Michigan) based on the product manual. Protein was determined by the BCA method (Pierce, Grand Island, NY). Samples were stored at -80°C.

Statistics

Student’s T-test was used to examine differences in response. The data were presented as mean ± SE.

Results

Fig 1 shows the integrity of the C18 extraction with respect to ouabain and digoxin. Essentially all of the 3H-ouabain added to samples appeared in the 20% eluate with a yield approaching 100%. The small amount of label detected in the flow through (i.e., unbound label) for both ouabain and digoxin likely represents free 3H in water. In contrast, the vast majority of the 3H-digoxin was detected in the 50% eluate, there being minimal cross contamination (~ 6%) in the 20% eluates.

Fig 2 shows the standard curve for the ouabain radioimmunoassay. The data were fitted by a standard sigmoidal four parameter Hill equation of the form: $f = \frac{y_0 + ax^b}{(c^b + x^b)}$. The slope of the relationship was -1.069 consistent with a single class of specific binding sites with minimal apparent negative or positive cooperativity under the conditions used. The EC$_{50}$ was 4.83 +/- 0.27 nM. The threshold sensitivity of the assay, defined as 5% displacement of the label from the control value, ranged from 2–5 femtomoles. The coefficient of error for the EO measurement expressed as a % variance of the mean value from three replicates for each sample
ranged between 0.42 and 5.2%. The assay precision ranged from 94–99% in the working range of the samples.

Human H295R adrenocortical cells grown in culture spontaneously secrete EO at low rates, especially when compared to aldosterone. The concentration in the supernatant spontaneously increases over time, and nearly doubles in 90 minutes (Fig 3). Addition of ANP inhibited the appearance of EO at 60 minutes and 90 minutes of treatment compared to untreated cells (Fig 3). At 60 minutes, all concentrations of ANP tested inhibited EO secretion with no obvious dose-effect (Fig 3). However, at 90 minutes, the inhibitory effect of ANP persisted at the physiological concentration of 50 pg/mL. In contrast, the significant effects of subphysiologic ANP concentrations (5 pg/mL) or supraphysiologic ANP concentrations (200 pg/mL) that were apparent at 60 minutes had waned by 90 minutes (0.014 ± 0.003 vs 0.062 ± 0.006, t = 6.58, \(P = 0.03 \); 0.014 ± 0.003 vs 0.053 ± 0.003, \(t = 8.70, P < 0.001 \), respectively) (Fig 3).
The ANP-A receptor mediates its effect through activation of guanylyl cyclase that generates cGMP. However, the generation of cGMP by ANP in H295R cells was muted and dose-dependent. Specifically, cyclic GMP levels increased significantly when the cells were treated with ANP at 50 pg/mL for 60 min (0.084 ± 0.008 vs 0.050 ± 0.011, $t = -2.65$, $P < 0.05$), but this effect was transient, returning to baseline after 90 min (Fig 4). Based on this result, ANP 50 pg/mL was selected for the following experiments that explored the role of guanylyl cyclase.

![Fig 2. ouabain standard curve.](https://doi.org/10.1371/journal.pone.0260131.g002)

Coefficient	Std. Error	t	p
a = 2766.5	91.71	41.57	-0.0001
b = -1.0691	0.064	-16.75	-0.0001
c = 4.83	0.27	17.73	-0.0001
y = 163.3	67.9	2.40	0.023

Fig 2. ouabain standard curve. Radioimmunooassay standard curve for ouabain. Each point is the mean ± SEM for triplicate determinations. Error bars are obscured where the symbol diameter > sem. The data were fitted iteratively to the equation described in the text and the resultant parameters including coefficients ($a = B_{max}$, $b =$ slope, $c =$ EC$_{50}$, $d =$ nonspecific binding), standard errors, t statistics, and probability values for the fit are shown below the figure.

The ANP-A receptor mediates its effect through activation of guanylyl cyclase that generates cGMP. However, the generation of cGMP by ANP in H295R cells was muted and dose-dependent. Specifically, cyclic GMP levels increased significantly when the cells were treated with ANP at 50 pg/mL for 60 min (0.084 ± 0.008 vs 0.050 ± 0.011, $t = -2.65$, $P < 0.05$), but this effect was transient, returning to baseline after 90 min (Fig 4). Based on this result, ANP 50 pg/mL was selected for the following experiments that explored the role of guanylyl cyclase.

![Fig 3. EO content in culture media.](https://doi.org/10.1371/journal.pone.0260131.g003)

Fig 3. EO content in culture media. The EO content in the culture media of H295R human adrenocortical cells increased significantly at 90 min, in the absence of ANP treatment. ANP concentrations of 5, 50, 200 pg/mL reduced EO secretion at 60 and 90 min. The inhibitory effect of 50 pg/mL ANP was significantly lower compared to lower (ANP5) and higher (ANP200) at 90 min. Error bars represent standard error. (*$P < 0.05$, compared to 30 min untreated, **$P < 0.05$, compared to untreated at corresponding time point, ***$P < 0.05$, compared to ANP5 and ANP200 at 90 min. Y axis units are pM/mg protein).
EO secretion by human H295R adrenocortical cells was significantly reduced after treatment with ANP 50 pg/mL for 60 min (untreated 0.145 ± 0.003 vs ANP 50 pg/mL 0.067 ± 0.004 pM/mg protein; *P < 0.05) and to a similar degree when 10 μM of the guanylyl cyclase inhibitor, ODQ, was used alone (untreated 0.145 ± 0.003 vs ODQ 10 μM 0.092±0.012 pM/mg protein; *P < 0.05) (Fig 5). The combination of the two treatments, pretreatment with ODQ 10 μM for 30 minutes followed by ANP 50 pg/mL for 60 minutes, suppressed EO secretion further when compared with untreated or ANP alone or ODQ alone (to 0.03 ± 0.006 pM/mg protein, *P < 0.05 for both) (Fig 5).

While we use the term ‘secretion’, our data does not determine the mechanism involved or the intracellular source of the secreted EO that was measured. The present experiments do not

Fig 4. cGMP Levels. Intracellular cGMP levels following ANP treatment for 30, 60, and 90 min in H295R human adrenocortical cells. A significant increase in cGMP was observed only with 50 pg/mL at 60min. Error bars represent standard errors. (* P < 0.05 compared to control; Y axis units are pM/mg protein).

https://doi.org/10.1371/journal.pone.0260131.g004

Fig 5. Effect of ANP on EO secretion. Change in EO secretion 60 min following addition of ANP 50 pg/mL, 10 mM ODQ and ODQ+ANP treatment. ANP alone and ODQ alone reduced EO secretion (*P < 0.05 compared to control). Pretreatment with ODQ followed by ANP further decreased secreted EO when compared to ANP or ODQ alone (*P < 0.05). (Error bars represent standard error; Y axis units are pM/mg protein).

https://doi.org/10.1371/journal.pone.0260131.g005
determine whether the spontaneous secretion of EO from the unstimulated cells is derived from de novo synthesis, as seems likely, or is the result of the release of stored EO, or even if there is a degradation of a carrier protein that obscures EO measurements at baseline. Likewise, the ability of ANP to suppress the basal EO secretion may involve one or more of the phenomena mentioned above.

Data has been submitted to Zenodo under the title and authors of this publication (and may be accessed at: https://zenodo.org/record/5594568#.YXRY-S2z3a8).

Discussion

EO is produced in the adrenal and to some limited extent in the hypothalamus [2, 9, 11, 12]. Human H295R adrenocortical cells also produce and secrete small amounts of EO in culture [12]. In the present work, we have replicated earlier observations concerning the spontaneous production of an ouabain-like compound by these cells in culture (Fig 3). We have also demonstrated that ANP at physiologic concentrations inhibits the production of EO (Fig 3). However, our observations are of some surprise because they indicate that the inhibitory effect of ANP on EO secretion is unlikely to be mediated through the ANP-A receptor, which is the most common natriuretic peptide receptor [41], and utilizes cGMP as a second messenger [34]. In our studies, inhibition of generation of cGMP did not prevent the ANP effect, and actually reduced EO production independent of ANP (Fig 5). Further, the effects of ANP and of guanylyl cyclase inhibition appear to be additive (Fig 5), suggesting that they are mediated by independent mechanisms. Nonetheless, there are potential alternative explanations of the data. For example, nitric oxide (NO) is known to activate guanylyl cyclase and sufficient NO can overcome ODQ inhibition [52]. Likewise, confirmation of a guanylyl cyclase component does not exclude other potential mechanisms of ANP, as is the case with NO [44, 53]. This is especially important given the lack of a clear dose response effect of ANP on either EO or cGMP production.

Given that inhibition of guanylyl cyclase does not reverse the EO inhibition caused by ANP and may actually magnify it (Fig 5), the control of EO synthesis may be mediated in part by NPR-C. This conclusion is further supported by the minimal and transient increase of cGMP seen in the cells (Fig 4). Conversely, the transient nature of effects of ANP on both EO and cGMP may be consistent with the apparent tachyphylaxis seen in blood pressure control with ANP [54].

The existence of endogenous cardenolides, like EO, remains controversial to some [55] despite overwhelming evidence of its existence and physiological and pathological roles—some of which has been proven in studies using transgenic animals [21]. Many of the challenges related to the successful measurement of EO have been described elsewhere [21]. Of critical importance is the extraction procedure which must be performed with care. Ouabain is a highly polar steroid; its interaction with C18 is much weaker than all of the known adrenocortical steroids and most of the known CTS. Accordingly, it is critical to fully precondition the C18 columns, bringing them carefully and fully to water before sample application to ensure that all of the sample EO will become bound. The presence of even small amounts of organic solvents such as acetonitrile or methanol will prevent EO from binding and it will be lost to the flow through. Further, the mass of the C18 sorbent must be sufficient to trap all the EO and this is a function of the sample mass, type, and origin. For example, 200 mg of C18 sorbent will typically trap all the EO from 2–3 ml of plasma. With conditioned cell culture medium, up to 20 ml can be extracted per column because this matrix is much less complex than native plasma and the competition of ancillary polar chemical entities with EO for binding to the sorbent is much less. Once the sample has been applied and EO is bound, it is
necessary to wash with the appropriate volumes of water and then low concentrations of acetonitrile (2.5 to 5%) or methanol (5–10%) to reduce some of the very highly polar entities that can interfere in the radioimmunoassay and lead to massive suppression of ionization in mass spectrometry. The volume of this organic wash also is critical; overly large wash volumes will eventually elute bound EO, and it will be lost. Similarly, the concentration and volume of acetonitrile used to elute EO is important. Typically, 20–25% acetonitrile is used and the volume is chosen to ensure that all the EO is recovered without significant contamination by e.g., digoxin (Figs 1 and 2) or other less polar eCTS. In validating the extraction method, it is most useful to use ^3^H labeled steroids of interest using the anticipated sample conditions. For the immunoassay, a highly selective antiserum with affinity for ouabain in the high picomolar to low nanomolar range is required that has minimal crossreactivity with the common classical mammalian steroids. Thus far, this antibody requirement has been met with polyclonal but not monoclonal sources. The final critical factor in the radioimmunoassay method we use concerns the method by which the binding assay is terminated. With the vast majority of high affinity ouabain antibodies, the half time for the dissociation of ouabain or EO from antibody binding sites is surprisingly rapid ranging from 2–15 minutes. Thus, the method used to separate bound from free must be much faster than the dissociation half time if the high sensitivity required to detect EO is to be retained. Among the various options, filtration over glass fiber filters is convenient and very rapid, typically requiring <15 seconds including multiple washes. Another advantage of the method is the very low background binding of the tracer ^3^H-ouabain to the filters. Other assay formats including ELISA [51, 56], radioimmunoassays that do not require a bound/free separation as well as mass spectrometry [21] can be used with the appropriate modifications.

In the adrenal glands, EO is synthesized in and secreted from the cortex, which also synthesizes cortisol, aldosterone, and a number of other steroids. Like aldosterone, EO biosynthesis requires progesterone [57]. However, in the normal adrenal, the amount of EO secreted is some 20–50 times lower than the amount of aldosterone secreted, and some 10,000-fold lower than the amount of cortisol made [21]. Although H295R cells maintain their aldosterone secretory phenotype in prolonged cell culture, their ability to secrete EO is reduced ~10–20 fold when compared with unstimulated adrenocortical cells in primary cell culture [56]. Hence, when working with H295R cells and when feasible it is helpful to extract large volumes of cell conditioned media and, critically, to concentrate the samples post extraction prior to immunoassay. In the present work, the extracted samples were concentrated between 60–120 fold prior to introduction into the assay. In order to obtain interpretable data under these conditions, EO was differentially eluted from the C18 columns to minimize assay cross-contamination with all of the classical adrenocortical steroids. Of particular relevance to the present experimental conditions, the differential elution minimizes aldosterone, digoxin-like materials and other non-polar eCTS in the samples used for the EO measurement. In addition, a highly selective ouabain antiserum was used to minimize interference from any dihydro-ouabain that may have been present in the EO extract [11, 12]. Under these conditions, it was possible to explore the impact of ANP and its related signaling on basal EO secretion with reasonable confidence.

A number of studies have previously implicated both angiotensin II and ACTH in vitro and more especially ACTH in vivo as stimulants to EO secretion [21]. However, investigation of the hormonal factors that might suppress EO secretion are very few. In particular, there are three reports regarding the influence of ANP on eCTS-like activity and these have led to different conclusions. One study indicated that ANP suppressed the secretion of an eCTS-like factor from brain fragments in vitro [45] while two others suggested that central infusions of ANP in vivo increased eCTS-like activity in the circulation [58]. Further, the latter response was
blocked by electrolytic lesions in the anteroventral third ventricular region of the brain [59]. It may be noted that all of these studies used bioassays where the nature of the eCTS-like factor was unknown. The new results from the present study, made with extracted samples and a highly selective ouabain-antiserum, confirm that physiological concentrations of ANP do have a modulatory role and significantly suppress EO secretion from adrenocortical cells in vitro. But the question remains regarding the significance of this phenomenon. Is the suppressive action of ANP on EO secretion sufficiently dramatic to reduce the circulating levels of EO and lower blood pressure in vivo? Various experimental models are available to test this idea including animals transgenic for various ANP receptor subtypes and the rodent model of ACTH induced hypertension. In the latter model plasma EO is elevated and the elevated blood pressure depends upon the ouabain binding site of the sodium pump [60].

The roles of EO and ANP regarding blood pressure and sodium control overlap considerably [20, 34, 41, 60–62] and overlap in their role in pathological states [32], so that one would expect that they may play a role in modulating each other [34]. In this study we found evidence that ANP inhibits the production of EO, and that mechanism does not appear to involve activation of NPR-A or NPR-B receptors. The implication, not tested here due to preconceived expectations about NPR-C, is that NPR-C receptors contribute to the control of EO secretion. Accordingly, future work will be needed to determine the inhibitory mechanism of ANP including the specific role of $G_{i\alpha}$ proteins.

In the present study ANP suppressed the secretion of EO from H295R cells. The effects of ANP we observe could involve an action on the biosynthesis of EO, its secretory mechanism, or both. Our experimental design does not discriminate among these possibilities. However, it is a generally accepted assumption in most all steroid-related studies that secretion occurs by passive diffusion across the plasma membrane and, accordingly, that altered secretion is a simple reflection of corresponding changes in biosynthesis. In the adrenal cortex, it is widely understood that steroids are secreted as they are synthesized and, with the exception of cholesterol esters, are not stored.

As mentioned above, the normal adrenal cortex secretes very little EO when compared with aldosterone. This phenomenon is mirrored also in H295R cells and measurements of EO secretion under basal secretory conditions add further to the challenge. Nevertheless, the suppressive effects of ANP on EO secretion we observed are noteworthy, appear to be independent of intracellular cGMP and are generally consistent with the effects of ANP on the secretion of other adrenocortical steroids. Accordingly, further studies will be needed to further dissect the site of action of ANP on EO secretion under baseline and stimulated conditions and especially when the flow of carbon from cholesterol to aldosterone is blocked.

Author Contributions

Conceptualization: Yonglin Gao, Rif S. El-Mallakh.

Data curation: Yonglin Gao.

Formal analysis: Yonglin Gao.

Funding acquisition: Rif S. El-Mallakh.

Investigation: Gulay Tegin, Yonglin Gao, John M. Hamlyn, Barbara J. Clark.

Methodology: Yonglin Gao, John M. Hamlyn, Barbara J. Clark, Rif S. El-Mallakh.

Resources: Barbara J. Clark.

Supervision: Yonglin Gao, Rif S. El-Mallakh.
References

1. Goto A, Ishiguro T, Yamada K, Ishii M, Yoshioka M, Eguchi C, et al. Isolation of a urinary digitalis-like factor indistinguishable from digoxin. Biochem Biophys Res Commun 1990; 173(3):1093–1101. https://doi.org/10.1016/s0006-291x (05)80898-8 PMID: 2176483

2. Hamlyn JM, Blausstein MP, Bova S, DuCharme DW, Harris DW, Mandel F, et al. Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci U S A. 1991; 88 (14):6259–63. https://doi.org/10.1073/pnas.88.14.6259 Erratum in: Proc Natl Acad Sci U S A 1991;88 (21):9907. PMID: 1648735

3. Ludens JH, Clark MA, DuCharme DW, Harris DW, Lutzke BS, Mandel F, et al. Purification of an endogenous digitalislike factor from human plasma for structural analysis. Hypertension 1991; 17(6 Pt 2):923–929. https://doi.org/10.1161/01.hyp.17.6.923 PMID: 1641717

4. Mathews WR, DuCharme DW, Hamlyn JM, Harris DW, Mandel F, Clark MA, et al. Mass spectral characterization of an endogenous digitalis-like factor from human plasma. Hypertension 1991; 17(6 Pt 2):930–935. https://doi.org/10.1161/01.hyp.17.6.930 PMID: 1641717

5. Lichtstein D, Steinitz M, Gati I, Samuelov S, Deutsch J, Orly J. Bufodienolides as endogenous Na+,K+-ATPase inhibitors: biosynthesis in bovine and rat adrenals. Clin Exp Hypertens. 1998; 20(5–6):573–579. https://doi.org/10.3109/10641969809053235 PMID: 9682913

6. Goldthorp WO. Medical classics: An account of the Foxglove and some of its medicinal uses by William Withering, published 1785. Br Med J. 2009; 338:b2189. https://doi.org/10.1136/bmj.b2189

7. Hollman A. Plants and cardiac glycosides. Br. Heart J. 1985; 54(3):258–261. https://doi.org/10.1136/hrt.54.3.258 PMID: 4041297

8. Flier J, Edwards MW, Daly JW, Myers CW. Widespread occurrence in frogs and toads of skin compounds interacting with the ouabain site of Na+, K+-ATPase. Science 1980; 208(4443):503–505. https://doi.org/10.1126/science.6245447

9. Valdes R, Graves SW, Becker SL. Protein binding of endogenous digoxin-immunoactive factors in human serum and its variation with clinical condition. J Clin Endocrinol Metab 1985; 60:1135–1143. https://doi.org/10.1210/jcem-60-6-1135 PMID: 3998064

10. Boulanger BR, Lilly MP, Hamlyn JM, Laredo J, Shurtleff D, Gann DS. Ouabain is secreted by the adrenal gland in awake dogs. Am J Physiol. 1993; 264(3 Pt 1):E413–9. https://doi.org/10.1152/ajpendo.1993.264.3.E413 PMID: 8460688

11. Qazzaz HM, El-Masri MA, Valdes R Jr. Secretion of a lactone-hydrogenated ouabain-like effector of sodium, potassium-adenosine triphosphatase activity by adrenal cells. Endocrinology. 2000; 141 (9):3200–3209. https://doi.org/10.1210/endo.141.9.7664 PMID: 10965891

12. El-Masri MA, Clark BJ, Qazzaz HM, Valdes R Jr. Human adrenal cells in culture produce both ouabain-like and dihydroouabain-like factors. Clin Chem. 2002; 48(10):1720–1730. PMID: 12324489

13. Tian J, Li X, Liang M, Liu L, Xie JX, Ye Q, et al. Changes in sodium pump expression dictate the effects of ouabain on cell growth. J Biol Chem 2009; 284(22):14921–14929. https://doi.org/10.1074/jbc.M808355200 PMID: 19329430

14. Fedorova OV, Shapiro JL, Bagrov AY. Endogenous cardiotonic steroids and salt-sensitive hypertension. Biochim Biophys Acta. 2010 Dec; 1802(12):1230–6. https://doi.org/10.1016/j.bbadis.2010.03.011 PMID: 20347967

15. Jaitovich A, Bertorello AM. Salt, Na+/K+-ATPase and hypertension. Life Sci 2010; 86:73–78. https://doi.org/10.1016/j.lfs.2009.05.019 PMID: 19909757

16. Hamlyn JM, Manunta P. Endogenous ouabain: a link between sodium intake and hypertension. Curr Hypertens Rep 2011; 13(1):14–20. https://doi.org/10.1007/s11906-010-0161-z PMID: 20972650

17. El-Mallakh RS, Brar KS, Yeruva RR. Cardiac glycosides in human physiology and disease: update for entomologists. Insects 2019; 10(4): 102. https://doi.org/10.3390/insects10040102 PMID: 30974644

18. Ferrandi M, Molinari I, Barassi P, Minotti E, Bianchi G, Ferrari P. Organ hypertrophic signaling within caveolae membrane subdomains triggered by ouabain and antagonized by PST 2238. J Biol Chem 2004; 279:33366–33374. https://doi.org/10.1074/jbc.M402187200 PMID: 15161929

19. Skoumal R, Szokodi I, Aro J, Foldes G, Gozo M, Seres L, et al. Involvement of endogenous ouabain-like compound in the cardiac hypertrophic process in vivo. Life Sci 2007; 80:1303–1310. https://doi.org/10.1016/j.lfs.2006.12.026 PMID: 17266992
20. Loreaux EL, Kaul B, Lorenz JN, Lingrel JB. Ouabain-sensitive alpha1 Na,K-ATPase enhances natriuretic response to saline load. J Am Soc Nephrol 2008; 19:1947–1954. https://doi.org/10.1681/ASN.20080202174 PMID: 18667729

21. Hamlyn JM, Blaustein MP. Endogenous ouabain: Recent advances and controversies. Hypertension 2016; 68(3):526–532. https://doi.org/10.1161/HYPERTENSIONAHA.116.06598 PMID: 27456525

22. Simonini M, Casanova P, Citterio L, Messaggio E, Lanzani C, Manunta P. Endogenous ouabain and related genes in the translation from hypertension to renal diseases. Int J Mol Sci 2018; 19(7):pii: E1948. https://doi.org/10.3390/ijms19071948 PMID: 29970843

23. Goldstein I, Levy T, Galli D, Ovadia H, Yirmiya R, Rosen H, et al. Involvement of Na+,K+-ATPase and endogenous digitalis-like compounds in depressive disorders. Biol Psychiatry 2006; 60:491–499. https://doi.org/10.1016/j.biopsych.2005.12.021 PMID: 16712803

24. El-Mallakh RS, Yff T, Gao Y. Ion dysregulation in the pathogenesis of bipolar disorder. Ann Depress Anxiety 2016; 3(1):1076.

25. Weidemann H, Salomon N, Avnit-Sagi T, Weidenfeld J, Rosen H, Lichtstein D. Diverse effects of stress and additional adrenocorticotropic hormone on digitalis-like compounds in normal and nude mice. J Neuroendocrinol 2004; 16: 458–463. https://doi.org/10.1111/j.1365-2826.2004.01181.x PMID: 15117339

26. Aizman O, Uhlen P, Lal M, Brismar H, Aperia A. Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc Natl Acad Sci USA 2001; 98(23):13420–13424. https://doi.org/10.1073/pnas.221315298 PMID: 11687608

27. Harwood S, Yaqoob MM. Ouabain-induced cell signaling. Front Biosci 2005; 10:2011–2017. https://doi.org/10.2741/1676 PMID: 15970473

28. Xie Z, Xie J. The Na/K-ATPase mediated signal transduction as a target for new drug development. Front Biosci 2005; 10:3100–3109. https://doi.org/10.2741/1766 PMID: 15970564

29. de Bold AJ. Atrial natriuretic factor: a hormone produced by the heart. Science 1985; 230:767–770. https://doi.org/10.1126/science.2932797 PMID: 2932797

30. Brar K, Gao Y, El-Mallakh RS. Are endogenous cardenolides controlled by atrial natriuretic peptide. Med Hypotheses. 2016; 92:21–25. https://doi.org/10.1016/j.mehy.2016.04.030 PMID: 27241248

31. Neshar M., Bai Y., Li D., Rosen H., Lichtstein D., Liu L. Interaction of atrial natriuretic peptide and ouabain in the myocardium. Can J Physiol Pharmacol 2012; 90(10):1386–1393. https://doi.org/10.1139/y2012-112 PMID: 22966876

32. Suga S, Nakao K, Hogoda K, Mukoyama M, Ogawa Y, Shirakami G, et al. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide and C-type natriuretic peptide. Endocrinology 1992; 130(1):229–239. https://doi.org/10.1210/endo.130.1.1309330 PMID: 1309330

33. Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, et al. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 1991; 252(5002):120–123. https://doi.org/10.1126/science.1672777 PMID: 1672777

34. Rose RA, Giles WR. Natriuretic peptide C receptor signaling in the heart and vasculature. J Physiol 2008; 586(2):353–366. https://doi.org/10.1113/jphysiol.2007.144253 PMID: 18006579

35. Anand-Srivastava MB, Trachte GJ. Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev 1993; 45(4):455–497. PMID: 8127920

36. Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci USA 1999; 96(13):7403–7408. https://doi.org/10.1073/pnas.96.13.7403 PMID: 10377427

37. El Andalousi J, Li Y, Anand-Srivastava MB. Natriuretic peptide receptor-C agonist attenuates the expression of cell cycle proteins and proliferation of vascular smooth muscle cells from spontaneously hypertensive rats: Role of Gi proteins and MAPKinease/Pi3kinase signaling. PLoS One 2013; 8(10):e76183. https://doi.org/10.1371/journal.pone.0076183 PMID: 24155894

38. Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA, et al. Physiological role of silent receptors of atrial natriuretic factor. Science 1987; 238(4827):675–678. https://doi.org/10.1126/science.2823385 PMID: 2823385
41. Sarzani R, Dessì-Fulgheri P, Paci VM, Espinosa E, Rappelli A. Expression of natriuretic peptide receptors in human adipose and other tissues. J Endocrinol Invest 1996; 19(9):581–585. https://doi.org/10.1007/BF03349021 PMID: 8957740

42. Drewett JG, Garbers DL. The family of guanylyl cyclase-receptors and their ligands. Endocr Rev 1994; 15:135–162. https://doi.org/10.1210/edrv-15-2-135 PMID: 7913014

43. Hanke Craig J., Drewett James G., Myers Charles R. Nitric oxide inhibits aldosterone synthesis by a guanylyl cyclase-independent effect. Endocrinology. 1998; 139(10):4053–4060. https://doi.org/10.1210/endo.139.10.6252 PMID: 9751482

44. Thégeli F, Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. Am J Physiol Renal Physiol 2015; 308(10): F1047–F1055. https://doi.org/10.1152/ajprenal.00164.2014 PMID: 25651559

45. Crabos M, Ausiello DA, Haupert GT Jr, Cantiello HF. Atrial natriuretic peptide regulates release of Na+-K+-ATPase inhibitor from rat brain. Am J Physiol 1988; 254(6 Pt 2):F912–F917. https://doi.org/10.1152/ajprenal.1988.254.6.F912 PMID: 2837911

46. Bodart V, Rainey WE, Fournier A, Ong H, De Léan A. The H295R human adrenocortical cell line contains functional atrial natriuretic peptide receptors that inhibit aldosterone biosynthesis. Mol Cell Endocrinol 1996; 118(1–2):137–144. https://doi.org/10.1016/0303-7207(96)03776-8 PMID: 8735599

47. Yuksel MA, Alici Davutoglu E, Temel Yuksel I, Kucur M, Ekmekci H, Balci Ekmekci O, et al. Maternal serum atrial natriuretic peptide (ANP) and brain-type natriuretic peptide (BNP) levels in gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2016; 29(15):2527–30. https://doi.org/10.3109/14767058.2015.1092958 PMID: 26445241

48. Zachariah PK, Burnett JC Jr, Ritter SG, Strong CG. Atrial natriuretic peptide in human essential hypertension. Mayo Clin Proc. 1987 Sep; 62(9):782–6. https://doi.org/10.1016/s0025-6196(12)62331-3 PMID: 2957551

49. Hasegawa K, Matsushita Y, Inoue T, Morii H, Ishibashi M, Yamaji T. Plasma levels of atrial natriuretic peptide in patients with chronic renal failure. J Clin Endocrinol Metab. 1986 Oct; 63(4):819–22. https://doi.org/10.1210/jcem-63-4-819 PMID: 2943754

50. Manunta P, Rogowski AC, Hamilton BP, Hamlyn JM. Ouabain-induced hypertension in the rat: relationships among plasma and tissue ouabain and blood pressure. J Hypertens 1994; 12(5):549–5460. PMID: 7930555

51. Harris DW, Clark MA, Fisher JF, Hamlyn JM, Kolbasa KP, Ludens JH, et al. Development of an immunoassay for endogenous digitalis-like factor. Hypertension 1991; 6 pt 2: 936–943.

52. Lies B, Groneberg D, Gambaryan S, Friebe A. Lack of effect of ODQ does not exclude cGMP signalling via NO-sensitive guanylyl cyclase. Br J Pharmacol 2013; 170(2):317–27. https://doi.org/10.1111/bph.12275 PMID: 23763290

53. Edwards TM, Rickard NS. New perspectives on the mechanisms through which nitric oxide may affect learning and memory processes. Neurosci Biobehav Rev 2007; 31(3):413–425. https://doi.org/10.1016/j.neubiorev.2006.11.001 PMID: 17188748

54. Madhani M, Okorie M, Hobbs AJ, MacAllister RJ. Reciprocal regulation of human soluble and particulate guanylate cyclases in vivo. Br J Pharmacol. 2006; 149(6):797–801. https://doi.org/10.1038/sj.bjp.0706920 PMID: 17016498

55. Kaaja RJ, Nicholls MG. Does the hormone *endogenous ouabain* exist in the human circulation? Biofactors 2003; 19(3):219–221. https://doi.org/10.1002/biof.1421 PMID: 29524270

56. Laredo J, Hamilton BP, Hamlyn JM. Secretion of endogenous ouabain from bovine adrenocortical cells: role of the zona glomerulosa and zona fasciculata. Biochem Biophys Res Commun. 1995; 212(2):487–93. https://doi.org/10.1006/bbrc.1995.1996 PMID: 7626063

57. Hamlyn JM, Laredo J, Shah JR, Lu ZR, Hamilton BP. 11-hydroxylation in the biosynthesis of endogenous ouabain: Multiple implications. Ann N Y Acad Sci 2003; 986:685–693. https://doi.org/10.1111/j.1749-6632.2003.tb07283.x PMID: 12763919

58. Songu-Mize E Bealer SL, Hassid AI. Centrally administered ANF promotes appearance of a circulating sodium pump inhibitor. Am J Physiol 1990; 258 (6pt2): H1855–9. https://doi.org/10.1152/ajpheart.1990.258.6.H1655 PMID: 2163216

59. Songu-Mize E Bealer SL. Effect of hypothalamic lesions on interaction of centrally administered ANF and the circulating sodium-pump inhibitor. Cardiovasc Res 1993; 22(suppl 2): S4–S6. https://doi.org/10.1097/00001523-199322002-00003 PMID: 758025

60. Dostanic-Larson I, Van Huyssse JW, Lorenz JN, Lingrel JB. The highly conserved cardiac glycoside binding site of Na,K-ATPase plays a role in blood pressure regulation. Proc Natl Acad Sci USA 2005; 102:15845–15850. https://doi.org/10.1073/pnas.0507358102 PMID: 16243970
61. Nesher M, Dvola M, Igbokwe VM, Rosen H, Lichtsein D. Physiologic roles of endogenous ouabain in normal rats. Am J Physiol Heart Circ Physiol 2009; 297:H2026–H2034. https://doi.org/10.1152/ajpheart.00734.2009 PMID: 19837951

62. Bie P. Natriuretic peptides and normal body fluid regulation. Compr Physiol 2018; 8(3):1211–1249. https://doi.org/10.1002/cphy.c180002 PMID: 29978892