Nocardia asteroides

Víctor Llorenç Bellésª, Rosa Ferreruela Vicenteª

Servei de Microbiologia Clínica, Hospital Universitari Vall d’Hebron, Barcelonaª, y
Servicio de Microbiología. Hospital “Lluis Alcanyis”, Xátiva (Valencia)b

El primer actinomiceto aerobio reconocido como patógeno fue aislado por el veterinario francés Edmund Nocard en 1888 en una epidemia de muermo bovino o farcin du boeuf que afectó al ganado de la isla de Guadalupe. En 1891, Eppinger describe el primer caso documentado de nocardiosis humana en un paciente con “síndrome pseudotuberculoso” y abscesos cerebrales que estaba producido por un microorganismo como el aislado por Nocard. En 1889, Trevisan crea el género Nocardia, con Nocardia farcinica como especie tipo; en 1980, Gordon y Mihn proponen, y es oficialmente aceptado, el nombre de Nocardia asteroides para la especie tipo, reemplazando a N. farcinica. Unos años después se designa una nueva cepa como cepa tipo, en lugar de la aislada originariamente en 1888.

El género Nocardia pertenece al orden Actinomycetales y a la familia Nocardiaceae. Dentro de este género se han descrito 18 especies oficialmente aceptadas, de las que se reconocen 11 como patógenas humanas: N. asteroides sensu stricto (tipo I y tipo VI), N. farcinica, Nocardia nova, Nocardia brasiliensis, Nocardia otitidiscaviarum, complejo Nocardia transvalensis (N. asteroides tipo IV, sensu stricto, nuevo taxon I y II), Nocardia pseudobrasiliensis, Nocardia brevicatena, Nocardia paucivorans, Nocardia abscesus y Nocardia veterana; siendo las seis primeras especies las que causan infección en el hombre con mayor frecuencia. La descripción y reclasificación de especies han sido constantes en los últimos años.

Las nocardias, en las muestras clínicas o en los cultivos primarios, se caracterizan por ser bacilos ramificados de 0,5 a 1 µm de diámetro, con subramificaciones en ángulo recto. Son irregularmente Gram positivas y parcialmente ácido-alcohol resistentes. En los subcultivos van perdiendo sus afinidades tintoriales y su morfología inicial, fragmentándose en formas cocobacilares. Poseen una pared celular de tipo IV con ácidos grasos de unos 50 átomos de carbono, ácido 2,6 meso-diaminopimélico, arabinosa y galactosa. Son inmóviles, no capsuladas, no esporuladas, resistentes a la lisozima y productoras de catalasa y superóxido dismutasa.

El hábitat natural de las nocardias es telúrico, desarrollando un importante papel en los procesos de descomposición de la materia vegetal, no formando parte de la flora comensal humana ni animal. Son aerobias estrictas, no son nutricionalmente exigentes, toleran un pH entre 6,5 y 9, crecen a temperaturas entre 10 y 50ºC; aunque las condiciones óptimas de crecimiento son: 35-37ºC, ligera alcalinidad y atmósfera con 5-10% de CO₂. En medios sólidos usuales crecen variablemente, entre 48 h a 3-4 semanas. El aspecto de las colonias depende de la especie, el medio de cultivo y de la propia cepa, formando colonias que normalmente son blancas, secas y arraigadas al agar o, a veces, pastosas, picudas y pigmentadas de color marrón asalmonado, desprendiendo un olor característico a enmohecido o tierra mojada.

NOCARDIOSIS: CUADROS CLÍNICOS

* Nocardia asteroides es la especie que causa infección humana con mayor frecuencia en nuestro medio. Entre las formas localizadas (86%) destaca la infección pulmonar (70 a 79%), siendo menos importantes las formas cutáneas primarias. Las formas sistémicas, que
suponen entre el 14 al 50% de los casos, suelen estar precedidas en un 60 a 80% de las ocasiones de una afectación pulmonar y pueden producirse metástasis en el sistema nervioso central (SNC, 20-44%), en la piel y el tejido celular subcutáneo (9%), en el riñón (8%) y, más raramente, en otras localizaciones como la pleura, pared torácica, hígado y ojos. La colonización de las vías aéreas o, excepcionalmente la piel, se ha observado hasta en un 10% de personas asintomáticas.

Nocardiosis pulmonar

Se adquiere, probablemente, por inhalación del microorganismo vehiculizado a través de partículas finas suspendidas en el aire y no existe evidencia significativa de relación con la actividad profesional o lúdica. Los estudios de patogenicidad ponen de manifiesto que las cepas virulentas resisten la fagocitosis por los macrófagos alveolares con multiplicación intracelular; siendo capaces de impedir la unión fagosoma-lisosoma y de disminuir la producción de fosfatasa ácida lisosomal. Tras esta fase de multiplicación intracelomalágica inicial se produce la invasión del foco por los neutrófilos y, aunque son capaces de limitar el crecimiento de las nocardias *in vitro*, no pueden eliminar a las cepas virulentas. La producción de catalasa y superóxido dismutasa potencia la acción contra los neutrófilos mientras las nocardias son activadas por las células T. El resultado es un foco necrosante-purulento de evolución subaguda o crónica con neutrófilos, células plasmáticas, macrófagos y tejido fibroso poco organizado. Con menor frecuencia se produce una reacción granulomatosa, más propia del micetoma, o caseosa, con células gigantes de Langhans.

Como se ha señalado, la mayor parte de las veces el curso es subagudo o crónico y, eventualmente, la lesión se cavita (40-60%). En un 14 a 50% de nocardiosis pulmonares se produce una diseminación hematogena preferentemente con localización en el cerebro (normalmente en forma de abscesos múltiples) y en la piel. La neumonitis necrosante aguda con diseminación miliar es más propia de inmunodeprimidos graves. En pacientes con procesos broncopulmonares crónicos no son excepcionales las bronquitis e infecciones de repetición por nocardias que pueden acentuar las lesiones preexistentes de la vía respiratoria por proliferación bacteriana, destrucción de las paredes bronquiales y, posiblemente, por la persistencia de formas L intracelomáticas.

La sintomatología es bastante inespecífica. Lo más frecuente es la presencia de fiebre y tos con expectoración purulenta, o hemoptoica en caso de cavitation. Si existe afectación del SNC puede aparecer cefalea, letargia, parestesias, etc. que, en muchos casos con diseminación, son los síntomas de inicio, ya que la afectación pulmonar con frecuencia pasa inadvertida. Aunque la nocardiosis pulmonar debe ser considerada una infección oportunistia, lo cierto es que, en un 49% de los casos, no se detecta una disminución de la inmunidad en sentido estricto, pero en un 80 a 90% se consigue reconocer algún factor predisponente. Los factores causantes de inmunodepresión son el sida, el alcoholismo, la diabetes, el tratamiento con corticoides (45% de casos) o inmunosupresores (8%, trasplantados, etc.). El factor local más importante es una alteración broncopulmonar crónica subyacente (12 a 57%), como la enfermedad pulmonar obstructiva crónica, bronquectasias, tuberculosis previa, etc. En ocasiones, coexisten factores predisponentes generales y locales.

La mortalidad global se cifra en un 29 a 60%. Asimismo, las secuelas en los supervivientes pueden ser importantes. Son factores que agraván el pronóstico la diseminación (mayor si hay afectación del SNC, con una mortalidad del 80%), el tratamiento específico tardío, un curso agudo (menor de 3 semanas), una enfermedad grave de base, la infección por una cepa especialmente virulenta o resistente y la corticodependencia (que no favorece la diseminación, pero si aumenta la mortalidad). El tratamiento con quimioterapia o radioterapia parece no influir en el pronóstico.
Existe una relación hombre/mujer de 2-3 a 1. Curiosamente, esta proporción también se da en animales afectos de nocardiosis, postulándose un estímulo hormonal androgénico como se ha demostrado en otras enfermedades como la coccidioidomicosis. No existen diferencias raciales y aunque su distribución es universal, existen áreas con elevada incidencia como la India o los EEUU.

Existe una práctica unanimidad en admitir que la incidencia de esta enfermedad está en ascenso. Así, en 1986, se comunicaron en Francia 25 casos, pasando a 250 en 1990; hoy, seguramente, la incidencia es mucho mayor. Las posibles causas de este aumento son un diagnóstico más certero, el aumento de la población inmunodeprimida y de la esperanza de vida y, posiblemente, por el tratamiento eficaz de las enfermedades oportunistas tempranas.

Nocardiosis cutánea primaria

La localización cutánea primaria de la nocardiosis, en nuestro medio, es mucho menos frecuente que la pulmonar, aunque es la segunda infección en frecuencia producida por *N. asteroides*. Un 53% de pacientes recuerdan el antecedente de un traumatismo local previo. *Nocardia brasiliensis* causa un 90% de casos cutáneos en países de Centro y Sudamérica mientras que, en EEUU y Europa, un 50% de las formas cutáneas se deben a *N. asteroides*. La presentación más característica es en forma de una reacción granulomatosa infiltrante crónica o micetoma. También puede presentarse como absceso subcutáneo único o múltiple; relacionado a veces con catéteres y, en raras ocasiones, como pioferma o pústulas diseminadas, como lesión linfocutánea o adoptando la forma cervicofacial (escrofulosa).

Nocardiosis extrapulmonar no cutánea localizada

Se trata de cuadros clínicos muy poco frecuentes pero, en ocasiones, de gran importancia, como queratitis, endoftalmitis y dacriocanaliculitis.

DIAGNÓSTICO DE LA NOCARDIOSIS PULMONAR

La nocardiosis pulmonar sigue siendo una entidad de diagnóstico difícil por su inespecificidad clínica y radiológica, condicionando un diagnóstico diferencial amplio; por ello, en ocasiones, su hallazgo es fortuito tras el examen microscópico rutinario de las muestras o el procesamiento de esputos para micobacterias, hongos o *Legionella*

La obtención de muestras variará en función del grado de sospecha y de la gravedad del enfermo. Así, en infecciones poco graves, se debe intentar el diagnóstico con muestras de obtención no cruenta, como esputos seriados de buena calidad, pero si aquél no se consigue, se puede proceder a la obtención de muestras por fibrobroncoscopia. Si tampoco se consigue de esta manera y la enfermedad persiste o progresa, o si el paciente es un inmunodeprimido con riesgo de diseminación o gravedad inminente, es de preferencia una actuación más directa, mediante la punción transtorácica guiada (o estereotaxia si ya existe diseminación al SNC) o incluso biopsia a cielo abierto. En el 40 a 80% de nocardiosis pulmonares graves son necesarias muestras directas para establecer el diagnóstico y éste se consigue en el 72 a 100% de las veces con dichas muestras.

El examen microscópico (Gram) es muy importante, ya que la morfología del microorganismo y su disposición es muy característica, de manera que la imagen en el esputo es sugerente de infección en un tercio o más de los casos. Este microorganismo crece en la mayoría de medios de cultivo bacteriológicos como el agar eosina azul de metileno (EMB de Levine) donde las colonias de nocardia suelen ser muy características. En los cultivos en medios poco selectivos el sobrecrecimiento de la flora comensal puede
producir resultados falsamente negativos; por este motivo se prefieren medios selectivos como el agar de Thayer-Martin modificado y el agar BCYE-\(\alpha\), aunque su carga antibiótica puede inhibir alguna cepa. Los procesamientos para micobacterias se han demostrado tóxicos para las nocardias (especialmente el cloruro de benzalconio con fosfato trisódico) disminuyendo notablemente la posibilidad de aislamiento.

Las técnicas serológicas ensayadas hasta la fecha no son lo suficientemente sensibles, y muestran un gran número de reacciones cruzadas con otros actinomicetos. Las técnicas de biología molecular siguen en expansión con resultados esperanzadores para el diagnóstico y extremadamente útiles en algunos casos, como la identificación de las especies aisladas. Recientemente se ha experimentado con una PCR semi-anidada para la detección de \textit{Nocardia} a partir de muestras clínicas (sangre y vísceras) en modelos murinos de nocardiosis diseminada, obteniéndose mejores resultados que con el cultivo.

A pesar de lo expuesto, el diagnóstico de nocardiosis, desgraciadamente, sigue retrasándose o siendo falsamente negativo en algunos casos, con lo cual el tratamiento específico se instaura tarde y el pronóstico se ensombrece.

IDENTIFICACIÓN MICROBIOLÓGICA

La identificación se inicia con la observación de la morfología de las colonias y practicando un examen microscópico a partir del cultivo mediante las tinción de Gram y la de Kinyoun modificada, que pondrá de manifiesto la ácido-alcohol resistencia parcial de algunas cepas. La diferenciación de los principales géneros relacionados con \textit{Nocardia} puede hacerse basándose en las características y pruebas de la tabla 1. Para la identificación de especie se emplean métodos fenotípicos basados en los estudios bioquímicos y de sensibilidad antibiótica, que vendrían a simplificarse en el esquema propuesto por Kiska \textit{et al.} (tabla 2). También pueden realizarse las pruebas clásicas de Gordon \textit{et al.}, complementadas con las descritas por Wallace \textit{et al.} (tabla 3).

No obstante, las pruebas fenotípicas resultan tediosas y lentas y, además, la descripción y reclasificación de especies es constante. La cromatografía de gases y el análisis por HPLC, arrojan perfiles difíciles de interpretar, aunque se han empleado en la identificación de las especies. Por el contrario, las técnicas de biología molecular, rápidas y relativamente sencillas, han demostrado una capacidad igual o superior para identificar las distintas especies del género \textit{Nocardia} mediante el estudio del polimorfismo de restricción. Por ejemplo, la amplificación y restricción (PRA) de una secuencia de 439 pb del gen de una proteína de 65 kD, descrita por Steingrube \textit{et al.}, o el PRA de una secuencia genómica de la 16S ARNr descrita por Conville \textit{et al}. Estos procedimientos, no obstante, tampoco están exentos de limitaciones, ya que la extracción o la amplificación puede resultar difícil en algunas cepas, o algunos perfiles pueden no corresponder a ninguno de los descritos. Por último, la secuenciación genómica de la 16S ARNr y su comparación en un banco genético es un arma extremadamente útil para la identificación definitiva, aunque no está al alcance de todos los laboratorios.

TRATAMIENTO

Los estudios de sensibilidad \textit{in vitro} encuentran dificultades metodológicas como la imposibilidad de obtener una suspensión uniforme del microorganismo, su lento crecimiento o el hecho de que algunas cepas sean incapaces de crecer en agar de Mueller-Hinton si no se suplementa con sangre. A pesar de la aceptable correlación entre los métodos de dilución en agar (Gombert) o difusión disco-placa (Kirby-Bauer), pequeñas variaciones en el inóculo, la incubación o el medio de cultivo suponen grandes variaciones de la concentración inhibitoria mínima (CIM), con importantes discordancias comunicadas tras el tratamiento. Así pues, la interpretación del antibiograma para \textit{Nocardia} resulta complicado.
Además, la descripción de determinados patrones de resistencia para *N. asteroides* y otras especies, y su correlación con determinados patrones de restricción enzimática (RFLP) por parte de Wallace *et al.* incrementó el interés por conseguir una identificación lo más precisa y rápida posible.

El tratamiento ha de abarcar procedimientos médicos y quirúrgicos, cuando sean necesarios, como el drenaje de colecciones purulentas. Existe la tendencia a disminuir las dosis de corticoides, pero la disminución del tratamiento inmunosupresor en los trasplantados es controvertido, requiriendo una valoración individualizada.

El género *Nocardia* produce β-lactamasas en un 90% de cepas y su resistencia a la meticilina es intrínseca. El tratamiento antibiótico de elección sigue siendo las sulfonamidas, asociadas o no al trimetoprim, a pesar de que la práctica totalidad de las cepas de *Nocardia* son resistentes *in vitro* a este último compuesto, y de que la experiencia clínica no ha demostrado mayor actividad, pero sí una mayor toxicidad del cotrimoxazol respecto a las sulfonamidas solas, diversos autores recomiendan tratar con cotrimoxazol en proporción 1:1 a dosis plenas. La toxicidad del trimetoprim a esta dosis no es bien conocida. Otros antibióticos de primera línea son la sulfadiazina (75 mg/Kg/día en cuatro tomas), sulfisoxazol (100 mg/Kg/día) y sulfametoxazol. La minociclina se ha propuesto en los pacientes con sida como antibiótico de primera línea, ya que el cotrimoxazol produce en esta enfermedad un 65% de reacciones adversas, obligando a suspenderlo en un 20 a 25% de los tratamientos. La asociación imipenem más amikacina ha mostrado mayor actividad en modelos animales que cualquier otro antibiótico ensayado, por eso es de elección en pacientes gravemente enfermos o en las formas diseminadas, sobre todo en los inmunodeprimidos. También en los procesos crónicos, que se exacerban con frecuencia, como tratamiento erradicador, a dosis de 1-2 g más 500 mg/día; tras la curación, se continuará con sulfonamidas y trimetroprim durante un año para evitar recidivas.

Se han considerado antibióticos de segunda línea la clindamicina [5-90% de cepas son sensibles (S), según las series], la eritromicina (estolato, etilsuccinato y estearato), con un 5-40% de cepas S y la ampicilina sódica (45% de cepas S). La amikacina, que es activa sobre el 95-100% de las cepas, es nefrotóxica y sus niveles en LCR son un 15% de los del suero, pero su CMI es tan baja que los resultados *in vivo* son excelentes. La minociclina (90-100% S) se considera de primera línea en pacientes con sida. Otros compuestos alternativos son el ciprofloxacino (29 a 50% S), la amoxicilina más ácido clavulánico (50% S, 0% en caso de *N. nova*), la cefotaxima, la ceftriaxona (80% S, 0% en caso de *N. farcinica*), el imipenem (90% S, 0% en caso de *N. brasiliensis*), el linezolid etc.

La duración del tratamiento recomendada es de seis meses en la nocardiosis pulmonar localizada y de seis semanas si se trata de una sobreinfección bronquial. En las formas diseminadas, inmunodeprimidos o en pacientes neoplásicos se administra hasta un año después de la curación y en inmunodeprimidos crónicos puede plantearse de por vida.

CASO CLÍNICO PRESENTADO EN EL CONTROL

El caso clínico motivo de este control trata de una paciente de 70 años de edad, hipertensa, con antecedentes de dudosa alergia a la penicilina y una probable tuberculosis en su infancia, tratada profilácticamente con hidrazidas hace 10 años al detectársele una prueba de Mantoux positiva de 16 mm. Presentaba bronquiectasias, hiperreactividad bronquial y posible obstrucción crónica al flujo aéreo. Había sufrido tres ingresos por sobreinfección respiratoria en los dos últimos años. Hacía un mes que había acudido a Urgencias por descompensación de su patología respiratoria que se atribuyó a bronquiectasias sobreinfectadas, siguiendo tratamiento, en régimen de hospitalización a domicilio (UHD), con ceftriaxona, tobramicina, broncodilatadores, corticoides y oxígeno. La evolución no fue buena y la paciente volvió a Urgencias por presentar un dolor torácico,
aumento de su disnea, que ya era de reposo, tos, expectoración amarillenta y fiebre de 38.5ºC, por lo que se decide su ingreso hospitalario. En los análisis destacaba una leucocitosis de 26.500 leucocitos, con desviación izquierda, así como una hiponatremia de 129 mEq/L. En la radiografía de tórax y en la tomografía axial computarizada (TAC) se observaban múltiples nódulos en ambos pulmones, con predominio en los campos medios e inferiores, algunos de ellos cavitados. Los hallazgos pulmonares sugerían una bronconeumonía. Se programó una broncoscopia que fue mal tolerada sin poderse realizar una biopsia transbronquial. La paciente evolucionó progresivamente hacia una insuficiencia respiratoria, con incremento de los infiltrados pulmonares, por lo que se decide su traslado a una unidad de Medicina Intensiva (UCI). Tras la intubación, se consigue aspirar secreciones verdosas muy espesas que se remiten a Microbiología donde, en la visión directa, se observan filamentos grampositivos ramificados y débilmente ácido alcohol resistentes, sugestivos de *Nocardia*. Se inició tratamiento con trimetoprim-sulfametoxazol, ceftriaxona y se retiraron los corticoides. En las primeras horas de tratamiento se observó una mejoría en la oxigenación y una lenta corrección de la hiponatremia. A las 48-72 h se aisló en medios de agar sangre y chocolate, en cultivo puro, unas colonias blancas rugosas y quebradizas con olor característico a tierra húmeda que fueron identificadas como *Nocardia*. Una vez remitidas a un laboratorio de referencia, éste confirmó que correspondían a *Nocardia asteroides*. A los dos meses y medio de su estancia en la UCI, y debido a su mejoría clínica y radiológica, se le dio de alta y se remitió, a través de la UHD, a su médico de cabecera para seguimiento.

Comentarios al caso clínico

La asociación entre bronquiectasias y nocardiosis ha sido referida de forma ocasional en la literatura. Sin embargo, Ferrer et al. en una revisión de los aislamientos del complejo *Nocardia asteroides* durante los últimos once años en el Hospital Vall d’Hebron de Barcelona, encuentran 129 muestras positivas correspondientes a 40 pacientes, de los cuales, 25 presentaron infección (20 pulmonar localizada y 5 diseminada) y 15 casos colonización bronquial; se produjeron 7 éxitus y 2 pacientes presentaron secuelas neurológicas. En esta serie, las bronquiectasias fueron la patología que más se asoció con todas las formas clínicas (32% de infecciones y 100% de colonizaciones), argumentando que quizás la colonización de las bronquiectasias por *N. asteroides* puede ser, especialmente en pacientes con corticoterapia u otros factores de riesgo, el paso previo a una nocardiosis pulmonar y a una eventual diseminación. Esta hipótesis se vería reforzada también por el caso clínico que nos ocupa. En este mismo trabajo se expone que la inclusión de medio BCYE-α modificado en el procesamiento de secreciones respiratorias en estos pacientes permitió el alto número de aislamientos rápidos (3-7 días) de *N. asteroides* al inhibir la flora saprofita o potencialmente patógena (*Aspergillus* spp., *Candida* spp., *Pseudomonas aeruginosa*, etc.) de rápido crecimiento que suele enmascarar el crecimiento de nocardia en pacientes con bronquiectasias. Aunque no está claro el riesgo que comporta la presencia de *Nocardia* en un paciente con bronquiectasias, estos casos de paso de colonización a infección hacen reflexionar acerca de la necesidad de instaurar tratamiento erradicador, al menos en pacientes con factores de riesgo.
BIBLIOGRAFÍA

BANI-SADR F, HAMIDOU M, RAFFI F, CHAMOUX C, CAILLON J, FRELAND C. Aspectes cliniques et bacteriologiques des nocardioses. 9 Observations. Presse Med 1995; 24:1062-1066.

BEAMAN BL, BEAMAN L. Nocardia species: host-parasite relationships. Clin Microbiol Rev 1994; 7:213-264.

BETRIU C. Infecciones por Nocardia. Enferm Infec Microbiol Clin 1997; 15:34-40.

BOIRON P, PRONOST F, CHEVRIER G, DUPONT B. Review of nocardial infections in France 1987-1990. Eur J Clin Microbiol 1992; 11:709-714.

CONVILLE PS, FISCHER SH, CARTWRIGHT CP, WITEBSKY FG. Identification of Nocardia species by restriction endonuclease analysis of an amplified portion of the 16S rRNA gene. J Clin Microbiol 2002; 38:158-164.

CREMADÉS MJ, MENÉNDEZ R, SANTOS M, GOBERNADO M. Repeated pulmonary infection by Nocardia asteroides complex in a patient with bronchiectasis. Respiration 1998; 65:211-213.

FARINA C, BOIRON P, GOGLIO A, PRONEST F, AND THE NORTHERN ITALY COLLABORATIVE GROUP ON NOCARDIOSIS. Human nocardiosis in northern Italy from 1982 to 1992. Scand J Infect Dis 1995; 27:23-27.

GEORGHIOU PR, BLACKLOK ZM. Infection with Nocardia species in Queensland. A review of 102 clinical isolates. Med J Australia 1992; 156:693-697.

KISKA DL, HICKS K, PETTIT DJ. Identification of medically relevant Nocardia species with an abbreviated battery of tests. J Clin Microbiol 2002; 40:1346-1351.

LERNER PL. Nocardiosis. Clin Infect Dis 1996; 22:891-905.

MCNEIL MM, BROWN JM. The medically important aerobic actinomycetes. Epidemiology and Microbiology. Clin Microbiol Rev 1994; 4:357-417.

MENÉNDEZ R, CORDEIRO PJ, SANTOS M, GOBERNADO M, MARCO V. Pulmonary infection with Nocardia species: a report of 10 cases and review. Eur Respir J 1997; 10:1542-1546.

MORI B, MONTON C, MARISCAL D, LUJAN M, DOMINGO C. Pulmonary nocardiosis. Clinical experience in ten cases. Respiration 2001; 68:382-388.

PINTADO V, GOMEZ-MAMPASO E, FORTÚN J, et al. Infection with Nocardia spp: clinical spectrum of disease and species distribution in Madrid, Spain, 1978-2001. Infection 2002; 30:338-340.

SORRELL TC, IREDELL JR, MITCHELL DH. Nocardia species. En: Mandell GL, Bennett JE, Dolin R (eds). Mandell Douglas and Bennett’s. Principles and Practice of Infectious Diseases, 5ª ed. New York: Churchill Livingstone, 2000; pp 2637-2645.

STEINGRUBE VA, WILSON RW, BROWN BA, et al. Rapid identification of clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Gordona, Nocardia, Rhodococcus, Streptomyces and Tsukamurella isolates, by DNA amplification and restriction endonuclease analysis. J Clin Microbiol 1997; 35:817-822.
Género	Tipo respiratorio	Micelio aéreo	Ramificaciones filamentosas macroscópicas	Fragmentación cocobacilar	Conidas	Ácido-alcohol R	Movilidad	Lisozima
Nocardia	A	+	+	V	–	+	–	R
Rhodococcus	A	–	–	+	–	–	–	–
Oerscivia	A/F	–	+	–	–	–	–	R
Streptomyces	A	+	–	+	–	–	–	–
Actinomadura	A	+	–	V	–	–	–	–
Nocardiopsis	A	+	–	+	–	–	–	–
Gordona	A	–	–	–	–	+	–	V
Tsukamurella	A	–	–	–	–	+	–	R
Rothia	A/M	–	+	–	–	–	–	–
Mycobacterium	A	–	–	+	+	–	–	–
Corynebacterium	A/F	–	–	–	–	–	–	–

*Abreviaturas: +, 90% o más cepas positivas; –, 90% o más cepas negativas; V, 11-89% de cepas positivas; A, aerobio; F, anaerobio facultativo; N, anaerobio; M, microaerofílico; R, resistencia.
Tabla 2. Algoritmo para la identificación de las especies del género *Nocardia*\(^a\).

Sensibilidad\(^b\) a la:	**RSSR**	**SSSS**	**SSSR**	**RRSS**	**SRSS**	**RRRR**	**SRRR**
Gentamicina	*N. brevicatena*	*N. nova*	Colonias características, amarillas en Mueller-Hinton	+	Halo de ciprofloxacino >35 mm	+	*N. pseudobrasiliensis*
Tobramicina							
Amikacina							
Eritromicina							
Asimilación de inositol	-	-	-	-	-	-	-
Asimilación de adonitol	+	+	+	+	+	+	+
Utilización de acetamida	-	-	-	-	-	-	-
Utilización de citrato	-	-	+	-	-	-	-
Halo de ciprofloxacino			>35 mm				
Halo de tobramicina			<10 mm				
Cargas antibióticas de los discos:							
gentamicina (10 µg)							
tobramicina (10 µg)							
amikacina (30 µg)							
eritromicina (15 µg)							
ciprofloxacino (5 µg)							

\(^a\)Abreviaturas: S, sensible; R, resistente.

\(^b\)Cargas antibióticas de los discos: gentamicina (10 µg), tobramicina (10 µg), amikacina (30 µg), eritromicina (15 µg), ciprofloxacino (5 µg).
Tabla 3. Pruebas clásicas para la identificación de las especies de Nocardia de interés médico.

Pruebas	N. asteroides sensu stricto	N. brasiliensis	Complejo N. brevicatena	N. farcinica	N. nova	N. otitidiscaviarum	N. pseudobrasiliensis	Complejo N. transvalensis
Adenina^a	−	−	−	−	−	+	−	−
Caseína^a	−	+	−	−	−	+	−	−
Hipoxantina^a	−	+	−	−	−	+	+	+
Tirosina^a	−	+	−	−	−	+	−	−
Xantina^a	−	−	−	−	−	+	−	−
Rhamnosa^a	V	−	V	+	−	−	−	−
Crece a 45°C	V	−	V	+	−	V	V	NT
Acetamida^a	V	−	+	−	−	−	+	−
Glucosa^a	+	+	−	+	+	+	+	V
Arilsulfatasae^a	−	−	−	−	+	−	−	−

^aAbreviaturas: +, 90% o más cepas positivas; −, 90% o más cepas negativas; V, 11 a 89% de cepas positivas; NT, no realizado.

^bUtilización o asimilación del substrato a los 7 días.

^cHidrólisis a los 7 días.

^dProducción de gas a los 7 días.

^eActividad enzimática a los 14 días.