Nixon, Andrew C., Bampouras, Theodoros, Pendleton, Neil, Woywodt, Alexander, Mitra, Sandip and Dhaygude, Ajay (2018) Frailty and chronic kidney disease: current evidence and continuing uncertainties. Clinical Kidney Journal, 11 (2). pp. 236-245.

Downloaded from: http://insight.cumbria.ac.uk/id/eprint/3343/

Usage of any items from the University of Cumbria’s institutional repository ‘Insight’ must conform to the following fair usage guidelines.

Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available here) for educational and not-for-profit activities provided that

- the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form
 - a hyperlink/URL to the original Insight record of that item is included in any citations of the work
 - the content is not changed in any way
 - all files required for usage of the item are kept together with the main item file.

You may not

- sell any part of an item
- refer to any part of an item without citation
- amend any item or contextualise it in a way that will impugn the creator’s reputation
- remove or alter the copyright statement on an item.

The full policy can be found here. Alternatively contact the University of Cumbria Repository Editor by emailing insight@cumbria.ac.uk.
Abstract

Frailty, the state of increased vulnerability to physical stressors as a result of progressive and sustained degeneration in multiple physiological systems, is common in those with chronic kidney disease (CKD). In fact, the prevalence of frailty in the older adult population is reported to be 11%, whereas the prevalence of frailty has been reported to be greater than 60% in dialysis-dependent CKD patients. Frailty is independently linked with adverse clinical outcomes in all stages of CKD and has been repeatedly shown to be associated with an increased risk of mortality and hospitalization. In recent years there have been efforts to create an operationalized definition of frailty to aid its diagnosis and to categorize its severity. Two principal concepts are described, namely the Fried Phenotype Model of Physical Frailty and the Cumulative Deficit Model of Frailty. There is no agreement on which frailty assessment approach is superior, therefore, for the time being, emphasis should be placed on any efforts to identify frailty. Recognizing frailty should prompt a holistic assessment of the patient to address risk factors that may exacerbate its progression and to ensure that the patient has appropriate psychological and social support. Adequate nutritional intake is essential and individualized exercise programmes should be offered. The acknowledgement of frailty should prompt discussions that explore the future care wishes of these vulnerable patients. With further study, nephrologists may be able to use frailty assessments to inform discussions with patients about the initiation of renal replacement therapy.

Key words: CKD, dialysis, elderly, exercise, frailty, nutrition

Introduction

Frailty is a state of increased vulnerability to physical stressors, such as illness or trauma, with an associated increased risk of poor clinical outcomes [1]. This occurs as the result of a progressive and sustained degeneration in multiple physiological systems and, some would argue, also the result of a decline in psychological health and inadequate social support [1–3]. In isolation these deficits may not be considered severe enough to be classified as a disease state or to require the individual to need additional care [2]. It is the accumulation of multiple deficits across various systems that is thought to be fundamental to the development of...
frailty [2]. In recent years there have been efforts to create an operationalized definition of frailty to aid in its diagnosis and to categorize its severity. Two principal concepts are described: the Fried Phenotype Model of Frailty, which focuses on physical frailty, and the more holistic Cumulative Deficit Model of Frailty, also known as the Frailty Index, which takes into account a broad range of medical and psychological conditions and considers functional impairments [2, 4–8].

Frailty is common in those with chronic kidney disease (CKD). The prevalence of frailty in the community-dwelling older adult population is reported to be 11%, whereas studies have reported a frailty prevalence of >60% in dialysis-dependent CKD patients [9–11]. The Atherosclerosis Risk in Communities (ARIC) Study demonstrated that frailty is strongly associated with progressive renal impairment [12]. Furthermore, frailty is independently linked with adverse clinical outcomes in all stages of CKD and has been repeatedly shown to be associated with an increased risk of mortality and hospitalization [9, 10, 13–16].

Given the convincing relationship between frailty and adverse outcomes in those with CKD, nephrologists should be more aware of the concept of frailty. This is particularly true during interactions with other health care providers, such as general practitioners and geriatric medicine physicians, who will assess frailty in the renal population and use the diagnosis as part of decision making. The European Renal Best Practice (ERBP) Working Group recently released a clinical practice guideline on the management of older patients with CKD Stage 3b or higher [17]. They emphasized the importance of assessing functional decline in older frail patients with advanced CKD, although they conceded that there was insufficient evidence to recommend a specific frailty scoring tool [17]. So where does this leave the practising nephrologist? How should we screen for frailty in those with CKD? Are scores and tools better than clinical acumen, and if so, which should be used? What’s more, if we identify frailty, what can we do for our patients? Here we provide a focused review of frailty in the renal population with an emphasis on learning points for the general nephrologist. We also provide a brief review of the recent literature and highlight areas of uncertainty and controversy with a need for further research.

Why does physical frailty occur in those with CKD?

Patients with advanced CKD often have a reduced energy intake that contributes to sarcopenia and, subsequently, physical frailty [18, 19]. Studies have shown that there is in fact a progressive decline in food intake with deteriorating kidney function [18, 20, 21]. The reduced energy intake is frequently due to anorexia, which is present in up to one-third of patients with end-stage renal disease (ESRD) [18, 22]. The loss of appetite that occurs in CKD is likely multifactorial; potential contributors include the uraemic milieu, inflammation, superimposed illnesses, medications and coexistent low mood [18, 19]. It has been postulated that the accumulation of uraemic toxins may cause defects in the hypothalamic regulation of appetite [18]. Furthermore, cognitive impairment is more common in the CKD population and may lead to reduced food intake [23]. Another dietary challenge for those with CKD is maintaining adequate protein and energy intake while restricting dietary phosphate intake to prevent the development of secondary hyperparathyroidism and CKD–mineral bone disease [24]. This is particularly difficult in those that are dialysis-dependent as there are unavoidable losses of amino acids during the dialysis procedure [25].

Physical activity tends to decrease with ageing and this decline is more marked for individuals with CKD [26–29]. Notably, patients with dialysis-dependent CKD who maintain physical activity have superior gait speed, leg strength and lean body mass [19, 30, 31]. Furthermore, physical inactivity is associated with increased mortality in those with CKD, as in the general population [29, 32]. Hence physical inactivity may be partly responsible for the reduced lean body mass and, in turn, the development of sarcopenia and frailty in patients with CKD.

Studies have demonstrated a correlation between pro-inflammatory cytokines and white blood cell count with frailty in older adults [33–36]. There are increased levels of pro-inflammatory cytokines in CKD, including IL-6 and tumour necrosis factor alpha (TNF-α) [18, 37–39]. This is likely secondary to a combination of impaired clearance of cytokines with progressive renal impairment and exposure to inflammatory stimuli, such as uraemic toxins, dialysis and concomitant infections [19, 37]. The signalling of the anabolic hormones insulin and insulin-like growth factor 1 (IGF)-1 is impaired by these pro-inflammatory cytokines by increasing the activity of glucocorticoids and by directly causing skeletal muscle resistance to insulin and IGF-1 [18, 19, 37, 38, 40]. This incites muscle protein breakdown via the caspase-3 and ubiquitin proteasome system [38]. The inflammatory state is also associated with an increase in resting energy expenditure that may contribute to the imbalance of muscle protein homeostasis and, in turn, the frailty syndrome [18, 19].

Metabolic acidosis develops with progressive renal impairment as the ability of nephrons to excrete the daily acid load is impaired [41]. Metabolic acidosis activates caspase-3 and the ubiquitin proteasome system, inhibits intracellular signalling of insulin and IGF-1 and increases adrenal glucocorticoid production [18, 19, 38]. All of the above result in a state of protein catabolism that, if it persists, can lead to sarcopenia [41].

Prolactin retention occurs with progressive renal impairment [18]. This impairs the production of gonadotropic hormones such as testosterone [18]. Testosterone is an anabolic hormone that promotes muscle protein synthesis [18]. Testosterone deficiency is frequently present in male individuals with ESRD and is independently associated with adverse outcomes [42]. In earlier stages of CKD, testosterone level was an independent predictor of muscle mass and strength [43]. Thus low levels of testosterone in men are likely a factor in the pathophysiology of sarcopenia and, subsequently, frailty.

Low 25-hydroxyvitamin D [25(OH)D] levels are associated with frailty in the older population [35, 44]. 25(OH)D is hydroxylated to the more active 1,25-dihydroxyvitamin D [1,25(OH)2D] in the proximal tubule of the kidney [45]. Levels of 1,25(OH)2D decrease with progressive renal impairment, thus deficiency of 1,25(OH)2D is common in those with CKD [46]. Evidence suggests that vitamin D may act directly on skeletal muscle through genomic and non-genomic pathways, ultimately affecting contractile muscle function and muscle metabolism [45]. Gordon et al. [47] demonstrated that 1,25(OH)2D is a determinant of physical function and muscle size in those with CKD. It is therefore conceivable that vitamin D deficiency may be a factor in the development of frailty in CKD, although further study is needed.

Finally, cellular senescence, loss of telomeric structures, mitochondrial dysfunction, increased free radical production and poor DNA repair capability are important in the ageing
process and in the development of frailty [48]. These processes occur prematurely in those with CKD and are thought to be the result of the uraemic milieu [49, 50]. They ultimately lead to sarcopenia, vascular dysfunction and progressive organ damage [49, 50]. Although not exhaustive, Figure 1 summarizes fundamental mechanisms involved in the pathophysiology of physical frailty in those with CKD.

Frailty assessment for the nephrologist

In their seminal paper, Fried et al. [4] described the Frailty Phenotype (FP) as ‘a clinical syndrome involving at least three of the following: unintentional weight loss, self-reported exhaustion, weakness, slow walking speed and low physical activity’ (Table 1). They demonstrated that their definition of physical frailty, although having some overlap with disability and comorbidity, was a distinct syndrome and independently predictive of adverse outcomes, including falls, hospitalization and death [4]. Furthermore, the presence of one or two of their frailty criterion, termed intermediate frailty (or pre-frailty), was predictive of becoming frail over the subsequent 3–4 years [4].

The FP has been used in several studies involving patients with CKD. Roshanravan et al. [51] reviewed the outcomes for those categorized as frail by the FP in patients with CKD Stages 1–4. They established that the FP is associated with a 2.5-fold [95% confidence interval (CI) 1.4–4.4] increased risk of death or requiring dialysis in those with CKD [51]. Bao et al. [9] evaluated the outcomes of those diagnosed as frail at dialysis initiation. They demonstrated that frailty at dialysis initiation was associated with an increased risk of mortality [hazard ratio (HR) 1.57 (95% CI 1.25–1.97)] [9]. They also determined that frailty at dialysis initiation was an independent risk factor for first hospitalization [HR 1.26 (95% CI 1.09–1.45)] [9]. McAdams-DeMarco et al. [13] assessed the association between frailty and

Table 1. Operationalized definitions of frailty [2, 4–8]

Phenotype model of physical frailty	Cumulative Deficit Model of Frailty
Clinical syndrome involving at least three of the following: 1. Unintentional weight loss 2. Self-reported exhaustion 3. Weakness 4. Slow walking speed 5. Low physical activity	A Frailty Index score is calculated by totaling the number of deficits from a predetermined list of ≥ 30 clinical variables including a broad range of medical and psychological conditions and functional impairments.

Fig. 1. Putative mechanisms involved in the pathophysiology of physical frailty in CKD.
mortality and hospitalization risk in those established on dialysis. The authors categorized participants as either non-frail, intermittently frail or frail [13]. They found that the proportion of participants admitted to hospital on two or more occasions over the subsequent year after enrolment was 43% for frail dialysis-dependent CKD patients compared with 28% for non-frail dialysis-dependent CKD patients [13]. They also showed that the 3-year mortality was 40% for frail dialysis-dependent CKD patients [13]. Notably, 34% of those categorized as intermediately frail died within the 3-year follow-up period, compared with only 16% of those that were categorized as non-frail [13]. This study thus suggests that differentiating degrees of frailty may offer even greater clinical utility. In an additional study, McAdams-DeMarco et al. [52] reviewed the number of falls occurring over a 6.7-month follow-up period of 95 dialysis-dependent CKD patients. They used the phenotype definition of frailty and demonstrated that frailty predicted a 3.09-fold (95% CI 1.38–6.90) greater number of falls in a dialysis-dependent CKD population [52]. There was no difference in the association between frailty and falls for younger and older participants [52].

Notwithstanding the value of the FP, the measures of weakness and walking speed present practical issues, specifically the time the FP, often substituting questionnaire-based assessments for the frailty assessment. The FI accurately predicts out-of-hospital admission and institutionalization [6]. The FI is challenging to implement into routine clinical nephrology care. Further research is required to establish the construct validity and interrater reliability of the FI within CKD populations given the inherent subjective nature of the tool.

Clinicians’ perception of frailty does not correlate well with measured frailty, therefore there definitely is merit in formally assessing frailty [66]. Unfortunately, it has not been agreed what precise operational definition of frailty should be adopted. There is certainly overlap between both these concepts of frailty. However, in the general older population and in the CKD population, the prevalence of frailty differs depending on the approach employed [11, 67]. A study performed by Drost et al. [68] effectively demonstrated the inconsistencies in frailty identification when using different operational definitions of frailty. Their study population included 95 patients that were either dialysis-dependent or who had advanced CKD not yet necessitating dialysis [68]. They demonstrated a frailty prevalence of 37% when using the FI and 27% when using the FP criteria, perhaps because the FI is a more holistic approach to the concept of frailty [68]. There have been more CKD studies to date that assess frailty using the FP rather than the Cumulative Deficit Model of Frailty [67]. There is some progress towards a consensus in gerontology, namely that it is useful to identify physical frailty for which a targeted management plan can be developed [69, 70]. Given that currently there is no overall agreement as to which concept of frailty is superior and as both approaches are associated with clinical outcomes, arguably it is more important that efforts are made to identify frailty, regardless of the adopted methodology.

Several frailty screening tools have been developed, although not all have been used in CKD cohorts [61, 71–77]. Following on from their work with the FI, Rockwood et al. [5] developed the Clinical Frailty Scale (CFS), which is a frailty screening tool that relies on clinical judgement alone. In its original form, the CFS was a 7-point scale with descriptors for levels of frailty [5]. It has since been updated to include nine descriptors (Figure 2) [61]. In their 2005 study, Rockwood et al. [5] demonstrated that the CFS correlated well with the FI in the general population. Higher scores on the CFS were also associated with an increased risk of death [HR 1.30 (95% CI 1.27–1.33)] and institutionalization [HR 1.46 (95% CI 1.39–1.53)] [5]. Alfaadhel et al. [76] demonstrated that CFS scores at dialysis initiation are associated with mortality. A subsequent study showed that the CFS performed in patients predialysis is an independent predictor of mortality [78]. Iyase et al. [75] performed the CFS within their study that compared the quality of life and physical function in older patients on assisted peritoneal dialysis and haemodialysis. The authors demonstrated that higher CFS scores are associated with worse health-related quality of life scores [75]. We believe that the CFS is a promising frailty screening tool that could be incorporated into routine clinical nephrology care. Further research is required to establish the construct validity and interrater reliability of the CFS within CKD populations given the inherent subjective nature of the tool.

How should we care for the frail patient with CKD?

The management of frailty is multifaceted and multidisciplinary given that frailty is the result of multiple deficits. A cornerstone...
of the management of frailty is a holistic medical review. Within gerontology, the Comprehensive Geriatric Assessment (CGA) is advocated [1, 79–82]. The CGA is a multidisciplinary, systematic approach to identify the medical, psychosocial and functional needs of older adults [79–81]. This allows the formulation of a targeted management plan that should address current medical conditions and include a medication review, fall prevention measures and anticipatory care planning (Table 2) [79–83]. The use of the CGA in the management of older adults has been associated with improved outcomes, both in terms of physical function and survival [79–81]. Recent studies have demonstrated that it is feasible to use a CGA within nephrology care, although further research is required to assess outcomes [84, 85]. We encourage nephrology services to consider the development of management pathways with local gerontology departments so that patients identified as frail receive specialist geriatric assessment.

Undernutrition is a key contributor to the development of sarcopenia and frailty in those with CKD [18, 19, 70]. First and foremost, it is important to address possible causes for reduced appetite, including medications, uraemia, metabolic acidosis, intercurrent illness and comorbid conditions such as depression [24]. Nutritional supplementation may enhance protein anabolism in the general older patient [86, 87]. A Cochrane review illustrated that calorie supplementation in older adults does lead to a modest but consistent gain in weight [88]. Cheu et al. [89] demonstrated that oral nutritional supplementation is associated with positive outcomes, specifically, fewer hospital admissions, in those with ESRD and hypoalbuminaemia, although they did not show any significant effect on survival. The risks of undernutrition and protein-energy wasting may outweigh the benefits of strict phosphate control in the frail CKD cohort, therefore dietary phosphate restriction should be individualized to allow adequate nutritional intake [17, 90–93]. In fact, recent guidelines state that ‘preserving nutritional status should prevail over any other dietary restriction’ [17]. There is a need for further research that investigates the benefits of phosphate and potassium restriction compared with dietary advice more focused at maintaining adequate nutrition.
Intradialytic parenteral nutrition has been used in dialysis-dependent CKD, although the evidence to date is limited [19, 24, 94, 95]. It may improve nutritional status, but it has yet to be shown to have any beneficial effects on survival [19, 24, 94, 95].

Good and timely care of the complications of CKD is essential to limit the propagation of protein-energy wasting, sarcopenia and frailty [19]. As mentioned earlier, metabolic acidosis develops as renal function declines and is thought to contribute to the development of sarcopenia [41]. Oral sodium bicarbonate treatment in those with mild acidosis is associated with an improvement in nutritional parameters and in muscle strength [96, 97]. Most guidelines currently recommend administering oral sodium bicarbonate when the serum bicarbonate concentration falls below 22 mmol/L, though the target serum bicarbonate level is not well-defined [41, 98]. It is also important to avoid periods of significant fluid overload that can stimulate the inflammatory cascade and subsequent protein catabolism [24]. This requires judicious fluid management that may include fluid restriction, diuretic therapy and renal replacement therapy [24]. Lastly, uraemia leads to protein catabolism and subsequent sarcopenia, therefore the timing of dialysis is likely important—this is discussed in more detail below [18, 19].

Exercise has well-established, multifaceted benefits for patients with all stages of CKD, including improvements in muscle strength, cardiovascular function, physical function and health-related quality of life [99-101]. Aerobic, resistance and combined exercise programmes have been investigated and all have demonstrated benefits for those with CKD [102–112]. Several studies have examined the effects of intradialytic exercise programmes [104, 106, 108, 109, 112]. For example, Konstantinidou et al. [104] examined the effect of different programmes and concluded that exercising during non-dialysis days was most effective, but exercising during dialysis was both effective and preferable. So it seems that regardless of the form or mode of exercise, exercise is beneficial for those with CKD. Exercise training is also associated with improved functional performance in frail older adults [113–117]. Although studies to date have not directly targeted frailty status as a primary outcome in frail adults with CKD, it is conceivable that exercise may improve physical frailty in this patient group, provided there is appropriate consideration of the individual patient’s medical condition and functional needs. Further work is required to explore the feasibility of a targeted exercise program for frail patients with CKD.

There are potential pharmacological options for frailty under investigation in those with CKD, although further evidence is required before they can be recommended in routine clinical practice [109, 118–123]. Vitamin D replacement is currently recommended for those that are frail and vitamin D deficient, although a randomized controlled trial has not yet been performed [70, 123]. The evidence so far has demonstrated that vitamin D supplementation for those with native vitamin D deficiency is associated with improved outcomes in the elderly, including a reduced risk of falls and risk of hip fractures, improved muscle strength and balance and reduced mortality [70, 124–128]. Vitamin D supplementation in a CKD cohort was also linked with an improvement in physical performance [129].

Finally, how does dialysis affect the trajectory of frailty and should this influence the timing of dialysis or indeed the decision to commence dialysis at all? Kurella Tamura et al. [130] assessed the functional status of elderly nursing home residents before and after commencing dialysis. They demonstrated that dialysis was associated with a sustained decline in functional ability rather than an improvement that would be expected if uraemia alone was thought to be the cause of their poor performance status [130]. van Loon et al. [131] also demonstrated that physical performance declines while on haemodialysis, especially for older patients. These reports appear at odds with a study by John et al. [132] that demonstrated that muscle loss is more pronounced pre-dialysis and that this actually may be ameliorated once dialysis has been established. One of the main difficulties in establishing how dialysis affects the trajectory of frailty is that few studies to date have measured frailty directly and over a sustained period before and after dialysis initiation. A recent study by Johansen et al. [133] directly assessed frailty, although participants were already established on dialysis at the time of assessment. They demonstrated that there is variability in frailty scores over time, with a roughly equal difference in those whose frailty scores improved and those that worsened [133]. It thus remains unclear precisely how dialysis affects the trajectory of frailty in patients with advanced CKD. Moreover, in the absence of randomized controlled trials, it is unclear if dialysis, regardless of the modality, offers a significant survival benefit over conservative management for frail older patients with advanced CKD [17, 134, 135]. We recommend that future studies involving patients with advanced CKD assess the FP so that more direct comparisons and more definite conclusions can be made. For the time being, the decision to commence renal replacement therapy should be made in collaboration with the individual patient, outlining the perceived risks and benefits within the context of the limited evidence currently available. If a patient opts for renal replacement therapy, with the lack of a clear consensus, the choice of modality should be governed by patient preference and individual circumstances. We believe that the acknowledgement of frailty in these discussions provides a meaningful opportunity to discern future care wishes of these vulnerable patients.

Conclusion

Frailty is not just a problem faced by geriatricians. Frail patients with CKD are more likely to require hospitalization and more likely to die than their non-frail counterparts. Therefore, nephrologists should actively attempt to identify these vulnerable patients. With no agreement on which frailty assessment approach is superior, for the time being emphasis should be placed on any efforts to identify frailty. Recognizing frailty should prompt a holistic assessment of the patient to address risk factors that may exacerbate its progression and to ensure they have appropriate psychological and social support. Adequate nutritional intake is essential and individualized exercise programmes should be offered. In the same way that the assessment of frailty may be used to guide chemotherapy decisions, with further study nephrologists may be able to use frailty assessments to inform discussions with patients about dialysis initiation [136, 137]. Finally, acknowledging frailty should prompt discussions with patients that establish future care wishes.

Conflict of interest statement

None declared. The views expressed are those of the authors and not necessarily those of the National Health Service, the National Institute for Health Research or the Department of Health.

References

1. Clegg A, Young J, Iliffe S et al. Frailty in elderly people. Lancet 2013; 381: 752–762
2. Rockwood K, Mitnitski A. Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci 2007; 62: 722–727
3. Levers MJ, Estabrooks CA, Ross Kerr JC. Factors contributing to frailty: literature review. J Adv Nurs 2006; 56: 282–291
4. Fried LP, Tangen CM, Walston J et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56: M146–M156
5. Rockwood K, Song X, MacKnight C et al. A global clinical measure of fitness and frailty in elderly people. Can Med Assoc J 2005; 173: 489–495
6. Rockwood K, Andrew M, Mitnitski A. A comparison of two approaches to measuring frailty in elderly people. J Gerontol A Biol Sci Med Sci 2007; 62: 738–743
7. Mitnitski AB, Mogliner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. Sci World J 2001; 1: 323–336
8. Walston JD, Bandeen-Roche K. Frailty: a tale of two concepts. BMC Med 2015; 13: 185
9. Bao Y, Dalrymple L, Chertow GM et al. Frailty, dialysis initiation, and mortality in end-stage renal disease. Arch Intern Med 2012; 172: 1071–1077
10. Johansen KL, Chertow GM, Jin C et al. Significance of frailty among dialysis patients. J Am Soc Nephrol 2007; 18: 2960–2967
11. Collard RM, Boter H, Schoevers RA et al. Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Geriatr Soc 2012; 60: 1487–1492
12. Ballew SH, Chen Y, Daya NR et al. Frailty, kidney function, and polypharmacy: the atherosclerosis risk in communities (ARIC) study. Am J Kidney Dis 2016; 67: 218–226
13. McC Adams-DeMarco MA, Law A, Salter ML et al. Frailty as a novel predictor of mortality and hospitalization in individuals of all ages undergoing hemodialysis. J Am Geriatr Soc 2013; 61: 896–901
14. Kallen berg MH, Klein veld HA, Dekker FW et al. Functional and cognitive impairment, frailty, and adverse health outcomes in older patients reaching ESRD—a systematic review. Clin J Am Soc Nephrol 2016; 11: 1624–1639
15. Walker SR, Gill K, Macdonald K et al. Association of frailty and physical function in patients with non-dialysis CKD: a systematic review. BMC Nephrol 2013; 14: 228
16. Shen Z, Ruan Q, Yu Z et al. Chronic kidney disease-related physical frailty and cognitive impairment: a systemic review. Geriatr Gerontol Int 2017; 17: 529–544.
17. Farrington K, Covic A, Aucella F et al. Clinical practice guideline on management of older patients with chronic kidney disease stage 3b or higher (eGFR <45 mL/min/1.73 m²). Nephrol Dial Transplant 2016; 31(Suppl 2): i1–i66
18. Carrero JJ, Stenvinkel P, Cuppari L et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNRM). J Ren Nutr 2013; 23: 77–90
19. Kim JC, Kalantar-Zadeh K, Kopple JD. Frailty and protein-energy wasting in elderly patients with end stage kidney disease. J Am Soc Nephrol 2013; 24: 337–351
20. Ikizler TA, Greene JH, Wingard RL et al. Spontaneous dietary protein intake during progression of chronic renal failure. J Am Soc Nephrol 1995; 6: 1386–1391
21. Duenhas MR, Draibe SA, Avesani CM et al. Influence of renal function on spontaneous dietary intake and on nutritional status of chronic renal insufficiency patients. Eur J Clin Nutr 2003; 57: 1473–1478
22. Bossola M, Tazza L, Giungi S et al. Anorexia in hemodialysis patients: an update. Kidney Int 2006; 70: 417–422
23. Berger I, Wu S, Masson P et al. Cognition in chronic kidney disease: a systematic review and meta-analysis. BMC Med 2016; 14: 206
24. Ritter CS, Slatopolsky E. Phosphate toxicity in CKD: the killer among us. Clin J Am Soc Nephrol 2016; 11: 1088–1100
25. Ikizler TA, Cano NJ, Franch H et al. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int 2013; 84: 1096–1107
26. Johansen KL, Chertow GM, Ng AV et al. Physical activity levels in patients on hemodialysis and healthy sedentary controls. Kidney Int 2000; 57: 2564–2570
27. Johansen KL, Chertow GM, Kutner NG et al. Low level of self-reported physical activity in ambulatory patients new to dialysis. Kidney Int 2010; 78: 1164–1170
28. Bowby W, Zelnick LR, Henry C et al. Physical activity and metabolic health in chronic kidney disease: a cross-sectional study. BMC Nephrol 2016; 17: 187
29. Bedhu S, Baird BC, Zitterkoph J et al. Physical activity and mortality in chronic kidney disease (NHANES III). Clin J Am Soc Nephrol 2009; 4: 1901–1906
30. Majchrzak KM, Pupim LB, Sundell M et al. Body composition and physical activity in end-stage renal disease. J Ren Nutr 2007; 17: 196–204
31. Kutsuna T, Matsunaga A, Matsumoto T et al. Physical activity is necessary to prevent deterioration of the walking ability of patients undergoing maintenance hemodialysis. Ther Apher Dial 2010; 14: 193–200
32. Roshanravan B, Robinson-Cohen C, Patel KV et al. Association between physical performance and all-cause mortality in CKD. J Am Soc Nephrol 2013; 24: 822–830
33. Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 2000; 51: 245–270
34. Leng SX, Hung W, Cappola AR et al. White blood cell counts, insulin-like growth factor-1 levels, and frailty in community-dwelling older women. J Gerontol A Biol Sci Med Sci 2009; 64: 499–502
35. Puts MT, Visser M, Twisk JW et al. Endocrine and inflammatory markers as predictors of frailty. Clin Endocrinol 2005; 63: 403–411
36. Schaap LA, Pluijm SM, Deeg DJ et al. Sarcopenia: a major challenge in elderly patients with end-stage renal disease. J Aging Res 2012; 2012: 754739
37. Carrero JJ, Stenvinkel P. Inflammation in end-stage renal disease—what have we learned in 10 years? Semin Dial 2010; 23: 498–509
38. Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 2014; 10: 504–516
39. Doma T, Tominaga S, Seino Y et al. The prognostic relevance of serum interleukin-6 gene expression, late-life diseases, and frailty in patients on hemodialysis and healthy sedentary controls. J Renal Care 2015; 13: 185
40. Hu Z, Wang H, Lee IH et al. Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice. J Clin Invest 2009; 119: 3059–3069
41. Kraut JA, Madias NE. Metabolic acidosis of CKD: an update. Am J Kidney Dis 2016; 67: 307–317
42. Carrero JJ, Qureshi AR, Nakashima A et al. Prevalence and clinical implications of testosterone deficiency in men with...
43. Cigarran S, Pouza M, Castro MJ et al. Endogenous testosterone, muscle strength, and fat-free mass in men with chronic kidney disease. J Ren Nutr 2011; 26: 184–190
44. Bruyere O, Cavalier E, Buckinx F et al. Relevance of vitamin D in the pathogenesis and therapy of frailty. Curr Opin Clin Nutr Metab Care 2017; 20: 26–29
51. Roshanravan B, Khatri M, Robinson-Cohen C et al.}

Frankly speaking, the document contains a variety of references to studies and research articles, discussing topics related to frailty in chronic kidney disease (CKD) and end-stage renal disease (ESRD). The text includes discussions on the role of vitamin D, muscle strength, and quality of life in patients with CKD, as well as the impact of frailty on mortality and the effectiveness of pre-dialysis education. It also highlights the challenges faced by patients with CKD and ESRD, particularly in terms of physical performance and self-reported function.

In conclusion, the document underscores the importance of understanding frailty in the context of CKD and ESRD, and the need for targeted interventions to improve outcomes for these patients. Further research is needed to explore the underlying mechanisms of frailty in CKD and ESRD, and to develop effective strategies for its management.
80. Ellis G, Whitehead MA, Robinson D et al. Comprehensive geriatric assessment for older adults hospital: meta-analysis of randomised controlled trials. BMJ 2011; 343: d6555

81. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 2003; 42(Suppl 3): S1–201

82. Heiwe S, Jacobson SH. Exercise training in adults with CKD: a systematic review and meta-analysis. Am J Kidney Dis 2014; 64: 383–393

83. Cheu C, Pearson J, Dahlerus C et al. Association between oral nutritional supplementation and clinical outcomes among patients with ESRD. Clin J Am Soc Nephrol 2013; 8: 100–107

84. Hall RK, Haines C, Gorbatkin SM et al. Incorporating geriatric assessment into a nephrology clinic: preliminary data from two models of care. J Am Geriatr Soc 2016; 64: 2154–2158

85. Wilson SM, Bunker CH, Hoh J et al. Effects of oral sodium bicarbonate in patients with CKD. Clin J Am Soc Nephrol 2013; 8: 714–720

86. Ellis G, Whitehead MA, Robinson D et al. Comprehensive geriatric assessment for older adults hospital: meta-analysis of randomised controlled trials. BMJ 2011; 343: d6555

87. de Brito-Ashurst I, Varagnam M, Raftery MJ et al. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 2009; 20: 2075–2084

88. DePaul V, Moreland J, Eager T et al. The effectiveness of aerobic and muscle strength training in patients receiving hemodialysis and EPO: a randomized controlled trial. Am J Kidney Dis 2002; 40: 1219–1229

89. van Vilsteren MC, de Greef MH, Huisman RM. The effects of a low-to-moderate intensity pre-conditioning exercise programme linked with exercise counselling for sedentary haemodialysis patients in The Netherlands: results of a randomized clinical trial. Nephrol Dial Transplant 2005; 20: 141–146

90. Castaneda C, Gordon PL, Parker RC et al. Resistance exercise training to reduce the malnutrition-inflammation complex syndrome of chronic kidney disease. Am J Kidney Dis 2004; 43: 607–616

91. Singh NA, Quine S, Clemson LM et al. Progressive resistance exercise training in CKD: a feasibility study. Am J Kidney Dis 2015; 66: 249–257

92. Segura-Orti E, Koudi E, Lisón JF. Effect of resistance exercise during hemodialysis on physical function and quality of life: randomized controlled trial. Clin Nephrol 2009; 71: 527–537

93. Singh NA, Quine S, Clemson LM et al. Effects of high-intensity progressive resistance training and targeted multidisciplinary treatment of frailty on mortality and nursing home admissions after hip fracture: a randomized controlled trial. J Am Med Dir Assoc 2012; 13: 24–30

94. Koufaki P, Mercer TH, Naish PF. Effects of exercise training on aerobic and functional capacity of end-stage renal disease patients. Clin Physiol Funct Imaging 2002; 22: 115–124

95. Konstantinidou E, Koukouvou G, Koudi E et al. Exercise training in patients with end-stage renal disease on hemodialysis: comparison of three rehabilitation programs. J Rehabil Med 2002; 34: 40–5

96. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 2009; 12: 86–90

97. Depaul V, Moreland J, Eager T et al. The effectiveness of aerobic and muscle strength training in patients receiving hemodialysis and EPO: a randomized controlled trial. Am J Kidney Dis 2002; 40: 1219–1229

98. Koufaki P, Mercer TH, Naish PF. Effects of exercise training on aerobic and functional capacity of end-stage renal disease patients. Clin Physiol Funct Imaging 2002; 22: 115–124

99. Van Vilsteren MC, de Greef MH, Huisman RM. The effects of a low-to-moderate intensity pre-conditioning exercise programme linked with exercise counselling for sedentary haemodialysis patients in The Netherlands: results of a randomized clinical trial. Nephrol Dial Transplant 2005; 20: 141–146

100. Tirfikis E, Sanz P, Costa-Silva J et al. Exercise training to reduce the malnutrition-inflammation complex syndrome of chronic kidney disease. Am J Kidney Dis 2004; 43: 607–616

101. Watson EL, Greening NJ, Viana JL et al. Progressive resistance exercise training in CKD: a feasibility study. Am J Kidney Dis 2015; 66: 249–257
115. de Labra C, Guimaraes-Pinheiro C, Maseda A et al. Effects of physical exercise interventions in frail older adults: a systematic review of randomized controlled trials. BMC Geriatr 2015; 15: 154

116. Binder EF, Schechtman KB, Ehsani AA et al. Effects of exercise training on frailty in community-dwelling older adults: results of a randomized, controlled trial. J Am Geriatr Soc 2002; 50: 1921–1928

117. Marijke JM, Paw MCA, de Jong N, Stevens M et al. Development of an exercise program for the frail elderly. J Aging Phys Activity 2001; 9: 452–465

118. Ottenbacher KJ, Ottenbacher ME, Ottenbacher AJ et al. Androgen treatment and muscle strength in elderly men: a meta-analysis. J Am Geriatr Soc 2006; 54: 1666–1673

119. Iglesias P, Diez JJ, Fernandez-Reyes MJ et al. Recombinant human growth hormone therapy in malnourished dialysis patients: a randomized controlled study. Am J Kidney Dis 1998; 32: 454–463

120. Fouque D, Peng SC, Shamir E et al. Recombinant human insulin-like growth factor-1 induces an anabolic response in malnourished CAPD patients. Kidney Int 2000; 57: 646–654

121. Niemczyk S, Sikorska H, Wiecek A et al. A super-agonist of growth hormone-releasing hormone causes rapid improvement of nutritional status in patients with chronic kidney disease. Kidney Int 2010; 77: 450–458

122. Basaria S, Coviello AD, Travison TG et al. Adverse events associated with testosterone administration. N Engl J Med 2010; 363: 109–122

123. Stenvinkel P, Carrero JJ, von Walden F et al. Muscle wasting in end-stage renal disease promulgates premature death: established, emerging and potential novel treatment strategies. Nephrol Dial Transplant 2016; 31: 1070–1077

124. Murad MH, Elamin KB, Abu Elnour NO et al. Clinical review: the effect of vitamin D on falls: a systematic review and meta-analysis. J Clin Endocrinol Metab 2011; 96: 2997–3006

125. Bischoff-Ferrari HA, Willett WC, Orav EJ et al. A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med 2012; 367: 40–49

126. Rejnmark L, Avenell A, Masud T et al. Vitamin D with calcium reduces mortality: patient level pooled analysis of 70,528 patients from eight major vitamin D trials. J Clin Endocrinol Metab 2012; 97: 2670–2681

127. Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 2011; 59: 2291–2300

128. Gillespie LD, Robertson MC, Gillespie WJ et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 2012; 15:CD007146

129. Taskapan H, Baysal O, Karahan D et al. Vitamin D and muscle strength, functional ability and balance in peritoneal dialysis patients with vitamin D deficiency. Clin Nephrol 2011; 76: 110–116

130. Kurella Tamura M, Covinsky KE, Chertow GM et al. Functional status of elderly adults before and after initiation of dialysis. New Engl J Med 2009; 361: 1539–1547

131. van Loon l, Hamaker ME, Boereboom FTJ et al. A closer look at the trajectory of physical functioning in chronic hemodialysis. Age Ageing 2017; 6: 1–6

132. John SG, Sigrist MK, Taal MW et al. Natural history of skeletal muscle mass changes in chronic kidney disease stage 4 and 5 patients: an observational study. PLoS One 2013; 8: e65372

133. Johansen KL, Dalrymple LS, Delgado C et al. Factors associated with frailty and its trajectory among patients on hemodialysis. Clin J Am Soc Nephrol 2017; 12: 1100–1108

134. O’Connor NR, Kumar P. Conservative management of end-stage renal disease without dialysis: a systematic review. J Palliat Med 2012; 15: 228–235

135. Foote C, Kotwal S, Gallagher M et al. Survival outcomes of supportive care versus dialysis therapies for elderly patients with end-stage kidney disease: a systematic review and meta-analysis. Nephrology 2016; 21: 241–253

136. Handforth C, Clegg A, Young C et al. The prevalence and outcomes of frailty in older cancer patients: a systematic review. Ann Oncol 2014; 26: 1091–1101

137. Rodriguez Villarreal I, Ortega O, Hinoestroza J et al. Geriatric assessment for therapeutic decision-making regarding renal replacement in elderly patients with advanced chronic kidney disease. Nephron Clin Pract 2014; 128: 73–78