A PRIORI ESTIMATES FOR DONALDSON’S EQUATION OVER
COMPACT HERMITIAN MANIFOLDS

YI LI

ABSTRACT. In this paper we prove a priori estimates for Donaldson’s equation
\[\omega \wedge (\chi + \sqrt{-1} \partial \bar{\partial} \varphi)^{n-1} = e^F (\chi + \sqrt{-1} \partial \bar{\partial} \varphi)^n, \]
over a compact complex manifold \(X \) of complex dimension \(n \), where \(\omega \) and \(\chi \) are arbitrary Hermitian metrics. Our estimates answer a question of Tosatti-Weinkove in [17].

CONTENTS

1. Introduction 1
 1.1. Donaldson’s equation over compact Kähler manifolds 1
 1.2. J-flow and Donaldson’s equation 2
 1.3. Donaldson’s equation over compact Hermitian manifolds 2

2. The second order estimates 3
 2.1. Basic facts and notions 3
 2.2. The estimate for \(\bar{\Delta} \log(\text{tr}_\omega \chi') \) 5
 2.3. The estimate for \(\bar{\Delta} \log(\text{tr}_\omega \chi') \), continued: \(\omega \) is Kähler 7
 2.4. The estimate for \(\bar{\Delta} \log(\text{tr}_\omega \chi') \), continued: general case 12

References 15

1. INTRODUCTION

1.1. Donaldson’s equation over compact Kähler manifolds. Let \((X, \omega)\) be a compact Kähler manifold of the complex dimension \(n \), and \(\chi \) another Kähler metric on \(X \). In [3], Donaldson considered the following interesting equation
\[\omega \wedge \eta^{n-1} = c\eta^n, \quad [\eta] = [\chi], \]
where \(c \) is a constant, depending only on the Kähler classes of \([\chi]\) and \([\omega]\), given by
\[c = \frac{\int_X \omega \wedge \chi^{n-1}}{\int_X \chi^n}. \]
He noted that a necessary condition for equation (1.1) is
\[nc\chi - \omega > 0, \]
and then conjectured that the condition (1.3) is also sufficient. For \(n = 2 \), Chen [11] observed that in this case the equation (1.1) reduces to a complex Monge-Ampère
equation completely solved by Yau on his celebrated work on Calabi’s conjecture [24].

1.2. J-flow and Donaldson’s equation. To better understand the equation (1.1), Donaldson [3] and Chen [1] independently discovered the J-flow whose critical point gives the equation (1.1), and Chen showed that such flow always exists for all time. Using the J-flow, Chen [2] proved that if $n = 2$ and the holomorphic bisectional curvature of ω is nonnegative then the J-flow converges to a critical metric. Later, the curvature assumption was removed by Weinkove [22] and hence gave an alternative proof of Donaldson’s conjecture on Kähler surfaces. For higher dimensional case, Weinkove [23] solved Donaldson’s conjecture on a slightly stronger condition

\[nc\chi - (n - 1)\omega > 0 \]

using the J-flow. For more detailed discussions and related works, we refer to [4, 5, 6, 7, 15, 16].

1.3. Donaldson’s equation over compact Hermitian manifolds. Recently, the complex Monge-Ampère equation over compact Hermitian manifolds was solved Tosatti and Weinkove [17, 18]. Other interesting estimates can be found in [19, 23, 26]. A parabolic proof was later given by Gill [8] by considering a parabolic complex Monge-Ampère equation. Other parabolic flows over compact Hermitian manifolds were considered in [14, 19, 20, 21], where they obtained lots of interesting results parallel to those in Kähler case. By Tosatti-Weinkove’s work, the author considers Donaldson’s equation over compact Hermitian manifolds.

Let (X, ω) be a compact Hermitian manifold of the complex dimension n and χ another Hermitian metric on X. We denote by \mathcal{H}_χ the set of all real-valued smooth functions φ on X such that $\chi_\varphi := \chi + \sqrt{-1} \partial \bar{\partial} \varphi > 0$. Locally we have

\[\omega = \sqrt{-1} g_{i\bar{j}} dz^i \wedge d\bar{z}^j, \quad \chi = \sqrt{-1} \chi_{i\bar{j}} dz^i \wedge d\bar{z}^j. \]

For any real positive $(1,1)$-form $\alpha := \sqrt{-1} \alpha_{i\bar{j}} dz^i \wedge d\bar{z}^j$ and real $(1,1)$-form $\beta := \sqrt{-1} \beta_{i\bar{j}} dz^i \wedge d\bar{z}^j$ we set

\[\text{tr}_\alpha \beta := \alpha^{i\bar{j}} \overline{\beta}_{i\bar{j}}. \]

We consider Donaldson’s equation

\[\omega \wedge \chi_{n-1}^{n-1} = e^F \cdot \chi^n, \quad \varphi \in \mathcal{H}_\varphi \]

on X, where F is a given smooth function on X.

The main result of this paper is the following a priori estimates.

Theorem 1.1. Let (X, ω) be a compact Hermitian manifold of the complex dimension n and χ another Hermitian metric. Let φ be a smooth solution of Donaldson’s equation (1.7). Assume that

\[\chi - \frac{n-1}{ne^n} \omega > 0. \]

Then

1. there exist uniform constant $A > 0$ and $C > 0$, depending only on $X, \omega, \chi,$ and F, such that

\[\text{tr}_\omega \chi \varphi \leq C \cdot e^{A(\varphi - \inf X \varphi)}; \]
(2) there exists a uniform constant $C > 0$, depending only on X, ω, χ, and F, such that

$$||\varphi||_{C^0} \leq C;$$

(3) there are uniform C^∞ a priori estimates on φ depending only on X, ω, χ, and F.

Meanwhile, Guan, Li and Sun [9, 11, 12, 13] considered a priori estimates for Donaldson’s equation over compact Hermitian manifolds under very general structure conditions rather than the condition (1.8).

Remark 1.2. As remarked in [17] (see page 22, line 27–28), to prove the zeroth estimate in Theorem 1.1 it suffices to show the second order estimate on φ. Our result gives an affirmative answer to the question in [17] (see page 22, line 28–30). Using the same argument in [17] (page 33), we can get a C^α estimate on φ for some $\alpha \in (0, 1)$. Differentiating (1.7) and applying the standard local elliptic estimates imply uniform C^∞ estimates on φ.

There are some natural questions about the equation (1.7). Is condition (1.8) sufficient to produce a solution to (1.7)? When ω and χ both are Kähler, it has been proved in [2, 22, 23] that this condition is sufficient. The second question is to consider a parabolic flow over compact Hermitian manifolds like the J-flow. Can we prove the long time existence and convergence of such a flow? Song and Weinkove [16] gave a necessary and sufficient condition for existence of solutions to the Donaldson’s equation over compact Kähler manifolds (and also for convergence of the J-flow over compact Kähler manifolds). The last question then is whether we can find an analogous of above Song-Weinkove’s condition. Those questions will be answered later.

Remark 1.3. Here and henceforth, when we say a “uniform constant” it should be understood to be a constant that depends only on X, ω, χ, and F. We will often write C or C' for such a constant, where the value of C or C' may differ from line to line. For the relation $P \leq CQ$ for a uniform constant C in the above sense, we write it as $P \lesssim Q$. Re(P) means the real part of P.

Acknowledgement. The author would like to thank Kefeng Liu, Valentino Tosatti, Xiaokui Yang for useful discussions on Donaldson’s equation, the complex Monge-Ampère equation and geometric flows. The author thanks referees’s helpful suggestions.

2. The second order estimates

2.1. Basic facts and notions. Let (X, ω) be a complex Hermitian manifold of the complex dimension n and χ another Hermitian metric on X. For a solution φ of Donaldson’s equation (1.7), we denote by

$$\chi' := \chi + \sqrt{-1} \partial \bar{\partial} \varphi = \sqrt{-1}(\chi_{ij} + \varphi_{ij})dz^i \wedge dz^j.$$

Also, we set $\chi'_{ij} := \chi_{ij} + \varphi_{ij}$. Then we observe that

$$\text{tr}_{\chi'} \omega = n \frac{\omega \wedge (\chi')^{n-1}}{(\chi')^n} = nF.$$
Consequently, $\text{tr}_{\chi'}\omega$ is uniformly bounded away from zero and infinity. Let Δ_ω denote the Laplacian operator of the Chern connection associated to the Hermitian metric ω, and similarly for Δ_χ. Note that

$$\text{tr}_\omega \chi' = g^{ij}(\chi'_{ij} + \varphi_{ij}) = \text{tr}_\omega \chi + \Delta_\omega \varphi.$$

Remark 2.1. $\text{tr}_\omega \chi'$ and $\text{tr}_\chi \omega$ are uniformly bounded from below away from zero. More precisely,

$$\text{tr}_\omega \chi' \geq \frac{n}{e^F}, \quad \text{tr}_\chi \omega = ne^F.$$

The second assertion follows from (2.2), while the first inequality is obtained as follows. We choose a normal coordinate system so that

$$g_{ij} = \delta_{ij}, \quad \chi'_{ij} = \lambda'_{ij}$$

for some $\lambda'_1, \cdots, \lambda'_n > 0$. Donaldson’s equation then yields

$$ne^F = \sum_{1 \leq i \leq n} \frac{1}{\lambda'_i}.$$

An elementary inequality shows that

$$\text{tr}_\omega \chi' = \sum_{1 \leq i \leq n} \lambda'_i \geq \frac{n^2}{\sum_{1 \leq i \leq n} \frac{1}{\lambda'_i}} = \frac{n^2}{ne^F} = \frac{n}{e^F}.$$

We will frequently use the following

Lemma 2.2. (Guan-Li [10]) At any point $p \in X$ there exists a holomorphic coordinates system centered at p such that, at p,

$$g_{ij} = \delta_{ij}, \quad \partial_j g_{ii} = 0$$

for all i and j. Furthermore, we can assume that χ'_{ij} is diagonal.

Let $\tilde{\Delta}$ denote the Laplacian operator associated to the Hermitian metric $h_{i\bar{j}}$ whose inverse matrix is given by

$$h^{ij} := \chi^{i\bar{k}} \chi^{j\bar{k}} g_{k\bar{\ell}},$$

and $\tilde{\nabla}$ the associated covariant derivatives.

The basic idea to obtain the second order estimate, following from the method of Yau [24], is to consider the quantity

$$Q := \log(\text{tr}_\omega \chi') - A\varphi$$

for some suitable constant A. Our first step is to estimate the term $\tilde{\Delta} \log(\text{tr}_\omega \chi')$.

Definition 2.3. For convenience, we say that a term E is of type I if

$$|E|_\omega \lesssim 1,$$

and is of type II if

$$|E|_\omega \lesssim \text{tr}_\omega \chi'.$$

It is easy to see that any uniform constant is of type I and any type I term is of type II. We will use E_1 and E_2 to denote a type I and type II term, respectively.
2.2. The estimate for $\tilde{\Delta}\log(tr_\omega \chi')$. Direct computation shows

\[
\tilde{\Delta}\log(tr_\omega \chi') = \frac{\tilde{\Delta}tr_\omega \chi'}{tr_\omega \chi'} - \frac{|\nabla tr_\omega \chi'|^2}{(tr_\omega \chi')^2}.
\]

By the definition, we have

\[
\tilde{\Delta}tr_\omega \chi' = h^{ij}\partial_i \partial_j (g^{k\ell} \chi'_{k\ell})
\]

\[
= h^{ij}\partial_i \left(-g^{kb} g^{af} \partial_j g_{ab} \cdot \chi'_{k\ell} + g^{k\ell} \partial_j \chi'_{k\ell} \right)
\]

\[
= h^{ij} \left[g^{k\ell} \partial_i \partial_j \chi'_{k\ell} - g^{kb} g^{af} \partial_i g_{ab} \cdot \partial_j \chi'_{k\ell} = h^{k\ell} g^{af} \partial_i g_{ab} \cdot \partial_j \chi'_{k\ell} \right.
\]

\[
- \left(g^{kb} g^{af} \partial_i g_{ab} \cdot \partial_j \chi'_{k\ell} - g^{k\ell} g^{af} \partial_i g_{ab} \cdot \partial_j \chi'_{k\ell} \right.
\]

\[
+ g^{k\ell} g^{af} \partial_i \partial_j g_{ab} \right] \chi'_{k\ell}.
\]

Using the local coordinates in Lemma 2.2, we deduce that

\[
\tilde{\Delta}tr_\omega \chi' = \sum_{1 \leq i,j \leq n} h^{ij} \partial_i \partial_j \chi'_{k\ell} - \sum_{1 \leq i, k, \ell \leq n} h^{ij} \partial_i \partial_j g_{k\ell} \cdot \partial_i \chi'_{k\ell}
\]

\[
- \sum_{1 \leq i, k, \ell \leq n} h^{ij} \partial_i \partial_j g_{k\ell} \cdot \partial_i \chi'_{k\ell} + \sum_{1 \leq i, k, \ell \leq n} h^{ij} \partial_i g_{k\ell} \cdot \partial_i \chi'_{k\ell}
\]

\[
+ \sum_{1 \leq i, k, \ell \leq n} h^{ij} \partial_i g_{k\ell} \cdot \partial_i \chi'_{k\ell} + \sum_{1 \leq i, k, \ell \leq n} h^{ij} \partial_i \partial_j g_{k\ell} \cdot \chi'_{k\ell}
\]

\[
(2.11)
\]

\[
= \sum_{1 \leq i, k \leq n} h^{ij} \partial_i \partial_j \chi'_{k\ell} - 2 \cdot \text{Re} \left(\sum_{1 \leq i, j, k \leq n} h^{ij} \partial_i g_{jk} \cdot \partial_j \chi'_{k\ell} \right) + E_1,
\]

where

\[
E_1 = \sum_{1 \leq i, j, k \leq n} h^{ij} \partial_i g_{jk} \cdot \partial_j g_{jk} \cdot \chi'_{k\ell} + \sum_{1 \leq i, j, k \leq n} h^{ij} \partial_i g_{jk} \cdot \partial_j g_{jk} \cdot \chi'_{k\ell}
\]

\[
- \sum_{1 \leq i, k \leq n} h^{ij} \partial_i \partial_j g_{k\ell} \cdot \chi'_{k\ell}.
\]

Since under the above mentioned local coordinates $\chi'_{k\ell} = \chi' \delta_{ij}$, it follows that $h^{ij} = (\chi'_{k\ell})^2 = 1/\chi'_{k\ell}$; hence $h^{ij} \leq e^{2F}$ using Remark 2.4. Therefore we see that E_1 is of type II, i.e.,

\[
|E_1|_{\omega} \lesssim tr_\omega \chi'.
\]

The first term on the right hand side of (2.11) can be computed as follows: From Donaldson’s equation (1.7), we obtain

\[
n e^F = tr_\chi' \omega = \chi'_{ij} g_{ij}
\]

and, after taking the derivative with respect to z^k,

\[
n \partial_i F \cdot e^F = -\chi'_{ij} \chi'_{jk} \partial_i g_{jk} + \chi'_{ij} \partial_i g_{jk}.
\]
we conclude that
\[
\begin{align*}
\Delta F = \sum_{i,j,k,\ell,p,q} \partial_i \partial_j \partial_k \partial_\ell \chi_{ijkl} \partial_p \chi_{ijkl} + \sum_{i,j,k,\ell,a,b} \partial_i \partial_j \partial_k \partial_\ell \chi_{ijkl} \partial_a \chi_{ijkl} + \sum_{i,j,k,\ell,a,b} \partial_i \partial_j \partial_k \partial_\ell \chi_{ijkl} \partial_b \chi_{ijkl}.
\end{align*}
\]

Multiplying above by \(g^{i\ell}\) on both sides implies
\[
(\Delta_+ F + |\nabla F|_w^2) ne^F = - \sum_{1 \leq i,j,k,\ell \leq n} \left(\chi•^{i\ell} g^{i\ell} \partial_i \partial_j \partial_k \partial_\ell g_{ij} - \chi^{i\ell} g^{i\ell} \partial_i \partial_j \partial_k \partial_\ell g_{ij} \right)
\]
\[
- \sum_{1 \leq i,j,k,\ell,a,b \leq n} \chi^{i\ell} \chi•^{i\ell} \partial_i \partial_j \partial_k \partial_\ell \chi_{ijkl} - \sum_{1 \leq i,j,k,\ell,p,q \leq n} \chi^{i\ell} \chi•^{i\ell} \partial_i \partial_j \partial_k \partial_\ell \chi_{ijkl} - \sum_{1 \leq i,j,k,\ell,a,b \leq n} \chi^{i\ell} \chi•^{i\ell} \partial_i \partial_j \partial_k \partial_\ell \chi_{ijkl}.
\]

Using the local coordinates (2.13) we arrive at
\[
(\Delta_+ F + |\nabla F|_w^2) ne^F = - \sum_{1 \leq i,j,\ell \leq n} h^{i\ell} \partial_i \partial_j \chi^{ij}_{i\ell} + \sum_{1 \leq i,j \leq n} \chi^{i\ell} \partial_i \partial_j g_{ij} + \sum_{1 \leq i,j,\ell \leq n} h^{i\ell} \chi^{i\ell} \partial_i \partial_j \chi_{ij} - 2 \cdot \text{Re} \left(\sum_{1 \leq i,j,\ell \leq n} \chi^{i\ell} \chi^{i\ell} \partial_i \partial_j \chi_{ij} \right).
\]

Equivalently,
\[
\sum_{1 \leq i,j \leq n} h^{i\ell} \partial_i \partial_j \chi^{ij}_{i\ell} = \sum_{1 \leq i,j \leq n} h^{i\ell} \chi^{i\ell} \partial_i \partial_j \chi_{ij} + \sum_{1 \leq i,j,\ell \leq n} h^{i\ell} \chi^{i\ell} \partial_i \partial_j \chi_{ij} - 2 \cdot \text{Re} \left(\sum_{1 \leq i,j \leq n} \chi^{i\ell} \chi^{i\ell} \partial_i \partial_j \chi_{ij} \right) + \sum_{1 \leq i,j \leq n} \chi^{i\ell} \partial_i \partial_j g_{ij} - (\Delta_+ F + |\nabla F|_w^2) ne^F.
\]

Since
\[
\partial_k \partial_\ell \chi_{ij} = \partial_k \partial_\ell (\chi_{ij} + \varphi_{ij}) = \partial_k \partial_\ell \chi_{ij} + \partial_k \partial_\ell \varphi_{ij} = \partial_k \partial_\ell \chi_{ij} + \partial_\ell \partial_k \varphi_{ij} = \partial_k \partial_\ell \chi_{ij} + \partial_\ell \partial_k (\chi_{kk} - \chi_{kk}) = \partial_\ell \partial_k \chi_{kk} + (\partial_k \partial_\ell \chi_{ij} - \partial_i \partial_j \chi_{kk}),
\]
we conclude that
\[
\sum_{1 \leq i,j,\ell \leq n} h^{i\ell} \partial_i \partial_j \chi_{kk} = \sum_{1 \leq i,j \leq n} h^{i\ell} \partial_i \partial_\ell \chi_{ij} + \sum_{1 \leq i,j \leq n} h^{i\ell} (\partial_i \partial_j \chi_{kk} - \partial_i \partial_\ell \chi_{ij}).
\]
Combining (2.13) and (2.14) yields

\[
\sum_{1 \leq i, k \leq n} h^{ik} \partial_{ik} \chi'_{kk} = \sum_{1 \leq i,j,k \leq n} h^{ij} \chi'_{ij} \partial_{ik} \chi'_{ij} + \sum_{1 \leq i,j,k \leq n} h^{ij} \chi'_{ij} \partial_{ik} \chi'_{ij}
\]

(2.15)

\[
- 2 \cdot \text{Re} \left(\sum_{1 \leq i,j,k \leq n} \chi^{ik} \chi'_{ik} \partial_{ik} \chi'_{ik} \right) + E_2,
\]

where

\[
E_2 = \sum_{1 \leq i,k \leq n} \chi^{ik} \partial_{ik} g_{ii} + \sum_{1 \leq i,k \leq n} h^{ik} (\partial_i \chi_{kk} - \partial_k \chi_{ii}) - (\Delta \omega F + |\nabla F|^2) n e^F.
\]

By the same reason that \(\chi^{ik} \leq e^F\) and \(h^{ik} \leq e^{2F}\), we observe that \(E_2\) is of type I and

\[
|E_2|_\omega \lesssim 1.
\]

From (2.11) and (2.15), we get

\[
\tilde{\Delta} \text{tr} \omega' = \sum_{1 \leq i,j,k \leq n} h^{ij} \chi'_{ij} \partial_{ik} \chi'_{ij} + \sum_{1 \leq i,j,k \leq n} h^{ij} \chi'_{ij} \partial_{ik} \chi'_{ij}
\]

\[
- 2 \cdot \text{Re} \left(\sum_{1 \leq i,j,k \leq n} \chi^{ik} \chi'_{ik} \partial_{ik} \chi'_{ik} \right) + E_1 + E_2
\]

\[
= \sum_{1 \leq i,j,k \leq n} h^{ij} \chi'_{ij} \partial_{ik} \chi'_{ij} + \sum_{1 \leq i,j,k \leq n} h^{ij} \chi'_{ij} \partial_{ik} \chi'_{ij}
\]

\[
- 2 \cdot \text{Re} \left(\sum_{1 \leq i,j,k \leq n} \chi^{ik} \chi'_{ik} \partial_{ik} \chi'_{ik} \right)
\]

\[
- 2 \cdot \text{Re} \left(\sum_{1 \leq i,j,k \leq n} h^{ik} \partial_{ik} g_{ii} \partial_{ik} \chi'_{ik} \right) + E_2,
\]

since any type I term is also of type II.

2.3. The estimate for \(\tilde{\Delta} \log(\text{tr} \omega')\), continued: \(\omega\) is Kähler. In the case that \(\omega\) is Kähler, we in addition have \(\partial_k g_{ij} = 0\) for any \(i, j, k\) in Lemma 2.2 and we deduce from the above equation that

\[
\tilde{\Delta} \text{tr} \omega' = \sum_{1 \leq i,j,k \leq n} h^{ij} \chi'_{ij} \partial_{ik} \chi'_{ij} + \sum_{1 \leq i,j,k \leq n} h^{ij} \chi'_{ij} \partial_{ik} \chi'_{ij} + E_2.
\]

(2.17)

It remains to control the term \(\mid \nabla \text{tr} \omega' \mid^2 / (\text{tr} \omega')^2\). Notice that

\[
\partial_i (\text{tr} \omega') = \partial_i \left(g^{ik} \chi'_{ik} \right) = g^{ik} \partial_i \chi'_{ik} = \sum_{1 \leq k \leq n} \partial_i \chi'_{kk}.
\]
As in [17], we first give an inequality for $\frac{\nabla \text{tr}_\omega \chi^\prime_j}{\text{tr}_\omega \chi^\prime}$ and then we control the term $\text{Re}(\sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \partial_i \chi^{j^\prime} (\partial_i \chi^{j^\prime} - \partial_j \chi^{j^\prime}))$. From

$$\frac{|\nabla \text{tr}_\omega \chi^\prime_j|^2}{\text{tr}_\omega \chi^\prime} = \sum_{1 \leq i,j,k \leq n} \frac{h^{i^\prime} \partial_i \chi^\prime_j \partial_k \chi^\prime_k}{\text{tr}_\omega \chi^\prime} = \sum_{1 \leq j,k,i \leq n} \frac{\sqrt{h^{i^\prime} \partial_i \chi^{j^\prime}} \sqrt{h^{i^\prime} \partial_i \chi^{j^\prime}}}{\text{tr}_\omega \chi^\prime}$$

$$\leq \frac{1}{\text{tr}_\omega \chi^\prime} \sum_{1 \leq j,k \leq n} \left(\sum_{1 \leq i \leq n} h^{i^\prime} \left| \partial_i \chi^{j^\prime} \right|^2 \right)^{1/2} \left(\sum_{1 \leq i \leq n} h^{i^\prime} \left| \partial_i \chi^{j^\prime} \right|^2 \right)^{1/2}$$

$$= \frac{1}{\text{tr}_\omega \chi^\prime} \left[\sum_{1 \leq j \leq n} \left(\sum_{1 \leq i \leq n} h^{i^\prime} \left| \partial_i \chi^{j^\prime} \right|^2 \right)^{1/2} \right]^2$$

$$= \frac{1}{\text{tr}_\omega \chi^\prime} \left[\sum_{1 \leq j \leq n} \sqrt{\chi^{j^\prime}} \left(\sum_{1 \leq i \leq n} h^{i^\prime} \left| \partial_i \chi^{j^\prime} \right|^2 \right) \right]^{1/2}$$

$$\leq \sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \left| \partial_i \chi^{j^\prime} \right|^2 = \sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \partial_i \chi^{j^\prime} \partial_j \chi^{j^\prime}.$$

From

$$\partial_i \chi^{j^\prime} = \partial_i (\chi^{j^\prime} + \varphi^{j^\prime}) = \partial_i \chi^{j^\prime} + \partial_j \varphi^{j^\prime} = \partial_i \chi^{j^\prime} - \partial_j \chi^{j^\prime},$$

$$\partial_i \chi^{j^\prime} = \partial_i (\chi^{j^\prime} + \varphi^{j^\prime}) = \partial_i \chi^{j^\prime} + \partial_j \varphi^{j^\prime} = \partial_i \chi^{j^\prime} - \partial_j \chi^{j^\prime},$$

it follows that

$$\frac{|\nabla \text{tr}_\omega \chi^\prime_j|^2}{\text{tr}_\omega \chi^\prime} \leq \sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \left(\partial_j \chi^{j^\prime} + \partial_i \chi^{j^\prime} - \partial_j \chi^{j^\prime} \right) \left(\partial_j \chi^{j^\prime} + \partial_i \chi^{j^\prime} - \partial_j \chi^{j^\prime} \right)$$

(2.18)

$$= \sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \partial_j \chi^{j^\prime} \partial_i \chi^{j^\prime} + \sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \left| \partial_i \chi^{j^\prime} - \partial_j \chi^{j^\prime} \right|^2$$

$$+ 2 \cdot \text{Re} \left[\sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \partial_j \chi^{j^\prime} \left(\partial_i \chi^{j^\prime} - \partial_j \chi^{j^\prime} \right) \right].$$

Note that

$$\partial_j \chi^{j^\prime} = \partial_j (\chi^{j^\prime} + \varphi^{j^\prime}) = \partial_j \chi^{j^\prime} + \partial_i \varphi^{j^\prime} = \partial_j \chi^{j^\prime} - \partial_i \chi^{j^\prime} + \partial_i \chi^{j^\prime}.$$

Substituting (2.19) into (2.18) we obtain

$$\frac{|\nabla \text{tr}_\omega \chi^\prime_j|^2}{\text{tr}_\omega \chi^\prime} \leq \sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \partial_j \chi^{j^\prime} \partial_i \chi^{j^\prime} - \sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \left| \partial_i \chi^{j^\prime} - \partial_j \chi^{j^\prime} \right|^2$$

(2.20)

$$+ 2 \cdot \text{Re} \left[\sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \partial_i \chi^{j^\prime} \left(\partial_i \chi^{j^\prime} - \partial_j \chi^{j^\prime} \right) \right].$$

$$\leq \sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \partial_j \chi^{j^\prime} \partial_i \chi^{j^\prime} + 2 \cdot \text{Re} \left[\sum_{1 \leq i,j \leq n} h^{i^\prime} \chi^{j^\prime} \partial_i \chi^{j^\prime} \left(\partial_i \chi^{j^\prime} - \partial_j \chi^{j^\prime} \right) \right].$$

Lemma 2.4. If ω is Kähler, then $\Delta \log(\text{tr}_\omega \chi^\prime) \gtrsim -1$.

Proof. Calculate, since $h^{ij} = \chi^{ij} \chi^{ji}$,

$$
2 \cdot \text{Re} \left[\sum_{1 \leq i, j \leq n} h^{ij} \chi^{ij} \partial_i \chi'_{jj} \left(\partial_j \chi_{ij} - \partial_j \chi_{ji} \right) \right]
$$

$$= 2 \cdot \text{Re} \left[\sum_{1 \leq i, j \leq n} h^{ij} \left(\sqrt{h^{ij}} \partial_i \chi'_{jj} \cdot \sqrt{h^{jj}} h^{ji} \left(\partial_j \chi_{ij} - \partial_j \chi_{ji} \right) \right) \right]
$$

(2.21)

$$\leq \sum_{1 \leq i, j \leq n} h^{ij} \chi^{ij} \partial_i \chi'_{jj} \partial_k \chi'_{ji} + \sum_{1 \leq i, j \leq n} \chi'_{jj} (h^{ii})^2 \left| \partial_i \chi_{ij} - \partial_j \chi_{ji} \right|^2
$$

$$\leq \sum_{1 \leq i, j, k \leq n} h^{kk} \chi^{ij} \partial_i \chi'_{kj} \partial_k \chi'_{ij} + E_2
$$

$$= \sum_{1 \leq i, j, k \leq n} h^{ii} \chi^{ij} \partial_k \chi'_{ji} \partial_k \chi'_{ij} + E_2,$$

where E_2 is a term of type II:

$$E_2 = \sum_{1 \leq i, j \leq n} \chi'_{jj} (h^{ii})^2 \left| \partial_i \chi_{ij} - \partial_j \chi_{ji} \right|^2.$$

From (2.10), (2.17), (2.20), and (2.21), we have

$$\widetilde{\Delta} \log(\text{tr}_\omega \chi') \geq \frac{1}{\text{tr}_\omega \chi'} \left[\sum_{1 \leq i, j, k \leq n} h^{ij} \chi^{ij} \partial_k \chi'_{ji} \partial_k \chi'_{jj} + E_2 \right]
$$

$$- \sum_{1 \leq i, j \leq n} h^{ij} \chi^{ij} \partial_j \chi'_{ij} \partial_j \chi'_{ji}]
$$

(2.22)

$$= \frac{1}{\text{tr}_\omega \chi'} \left(\sum_{1 \leq i, j \leq n} \sum_{1 \leq k \leq n} h^{ij} \chi^{ij} \partial_k \chi'_{ij} \partial_k \chi'_{ji} + E_2 \right)
$$

$$= \frac{1}{\text{tr}_\omega \chi'} \left(\sum_{1 \leq i, j \leq n} \sum_{1 \leq j \neq k \leq n} h^{ij} \chi^{ij} \left| \partial_k \chi'_{ij} \right|^2 + E_2 \right)
$$

$$\geq \frac{E_2}{\text{tr}_\omega \chi'}.
$$

By the definition of type II terms, there exists a positive universal constant C satisfying $|E_2|_\omega \leq C \cdot \text{tr}_\omega \chi'$. Therefore

$$\widetilde{\Delta} \log(\text{tr}_\omega \chi') \geq -1.$$

Thus we complete the proof of the lemma. \qed

Theorem 2.5. Let (X, ω) be a compact Kähler manifold of complex dimension n, and χ a Hermitian metric. Let φ be a smooth solution of Donaldson’s equation

$$\omega \wedge \chi_{\varphi}^{n-1} = e^F \chi_{\varphi}^n$$

where F is a smooth function on X. Assume that

$$\chi \geq \frac{n-1}{ne^n} \omega > 0.$$
Then there are uniform constants $A > 0$ and $C > 0$, depending only on X, ω, χ, and F, such that

$$\text{tr}_\omega \chi \varphi \leq C \cdot e^{A(\varphi - \inf X \varphi)}.$$

Proof. Use the local coordinates in Lemma 2.2. The proof is similar to that in \cite{22, 23}. By the definition, one has

$$\tilde{\Delta} \varphi = h^{kk} p_{kk} = (\chi^{kk})^2 (\chi^{kk} - \chi_{kk}) = \sum_{1 \leq k \leq n} \chi^{kk} - \text{tr}_h \chi = \text{tr}_\chi \omega - \text{tr}_h \chi.$$

Lemma 2.4 and (2.7) imply that

$$\tilde{\Delta} \varphi = \Delta [\log (\text{tr}_\omega \chi') - A \varphi] \geq -C - A (\text{tr}_\chi \omega - \text{tr}_h \chi)$$

$$\geq -C - A \sum_{1 \leq i \leq n} \chi^{ii} + A \sum_{1 \leq i \leq n} \chi^{ii} \chi^{ii}.$$

Since φ is a solution of Donaldson’s equation, it follows that $\text{tr}_\chi \omega = ne^F$ by (2.4) and hence, for any given positive uniform constants A and B (we will chose those constants later),

$$\tilde{\Delta} \varphi \geq (Bne^F - C) - (A + B) \sum_{1 \leq i \leq n} \chi^{ii} + A \sum_{1 \leq i \leq n} \chi^{ii} \chi^{ii}.$$

By the assumption we have $\chi \geq \frac{n-1}{ne^F} (1 + \epsilon) \omega$ for some suitable number ϵ such that $0 < \epsilon < \frac{1}{n-1}$. Let $p \in X$ be a point where Q achieves its maximum; so $\tilde{\Delta} \varphi \leq 0$. At this point, we conclude that

$$0 \geq (Bne^F - C) - (A + B) \sum_{1 \leq i \leq n} \chi^{ii} + A \sum_{1 \leq i \leq n} \chi^{ii} \chi^{ii}$$

$$\geq (Bne^F - C) - (A + B) \sum_{1 \leq i \leq n} \chi^{ii} + A \frac{n-1}{ne^F} (1 + \epsilon) \sum_{1 \leq i \leq n} \chi^{ii}.$$

We denote by λ_i' the eigenvalues of χ' at point p such that $\lambda_1' \leq \cdots \leq \lambda_n'$. Hence

$$0 \geq (Bne^F - C) - (A + B) \sum_{1 \leq i \leq n} \frac{1}{\lambda_i'} + A \frac{n-1}{ne^F} (1 + \epsilon) \sum_{1 \leq i \leq n} \frac{1}{\lambda_i'^2}.$$

In order to obtain the upper bound for λ_i' we need the following

Lemma 2.6. Let $\lambda_1, \cdots, \lambda_n$ be a sequence of positive numbers. Suppose

$$0 \geq 1 - \alpha \sum_{1 \leq i \leq n} \frac{1}{\lambda_i} + \beta \sum_{1 \leq i \leq n} \frac{1}{\lambda_i^2}$$

for some $\alpha, \beta > 0$ and $n \geq 2$. If

$$\frac{4}{n} \leq \frac{\alpha^2}{\beta} < \frac{4}{n-1}$$

holds, then

$$\lambda_i \leq \frac{2\beta}{\alpha - \sqrt{n\alpha^2 - 4\beta}}$$

for each i.

Proof. Note that $\alpha - \sqrt{na^2 - 4\beta} > 0$ by (2.23). Since

$$1 + \sum_{1 \leq i \leq n} \left(\frac{\alpha - \sqrt{\beta}}{2 \sqrt{\beta}} \right)^2 \leq \frac{na^2}{4\beta}$$

it implies that

$$\sum_{1 \leq i \leq n} \left(\frac{\alpha - \sqrt{\beta}}{2 \sqrt{\beta}} \right)^2 \leq \frac{na^2 - 4\beta}{4\beta}.$$

The right hand side of the above inequality is nonnegative by (2.23). Consequently,

$$\frac{\alpha - \sqrt{na^2 - 4\beta}}{2 \sqrt{\beta}} \leq \frac{\sqrt{\beta}}{\lambda_i}.$$

Hence we obtain (2.24).

To apply Lemma 2.6, we assume

$$(2.25) Bne^F > C,$$

and set

$$(2.26) \alpha \doteq \frac{A + B}{Bne^F - C}, \quad \beta \doteq \frac{A_{n+1}}{Bne^F - C}.$$

In the following we will find the explicit formulas for A and B in terms of C such that the assumption (2.25) and the condition (2.23) are both satisfied.

We choose a real number η satisfying

$$(2.27) \quad 0 \leq \eta < 1.$$

Set

$$(2.28) \quad \frac{\alpha^2}{\beta} = \frac{4}{n - \eta},$$

where α and β are given in (2.26). If (2.28) was valid, then the condition (2.23) is true. Equations (2.26) and (2.28) imply

$$(A + B)^2 = \frac{4}{n - \eta}(1 + \epsilon)(Bne^F - C) \frac{n - 1}{ne^F}A$$

so that

$$A^2 + B^2 + 2 \left[1 - \frac{2(1 + \epsilon)(n - 1)}{n - \eta} \right] AB + \frac{4(1 + \epsilon)(n - 1)C}{(n - \eta)ne^F}A = 0.$$

The above relation can be rewritten as

$$\left[A + \left(1 - \frac{2(1 + \epsilon)(n - 1)}{n - \eta} \right) B \right]^2 = \left[\left(1 - \frac{2(1 + \epsilon)(n - 1)}{n - \eta} \right)^2 - 1 \right] B^2 - \frac{4(1 + \epsilon)(n - 1)C}{(n - \eta)ne^F}A.$$

Taking

$$(2.29) \quad A = \left(-1 + \frac{2(1 + \epsilon)(n - 1)}{n - \eta} \right) B$$
we have $A > B$ and

$$
(2.30) \quad B = \frac{4(1+\epsilon)(n-1)C}{n^e} \left(-1 + \frac{2(1+\epsilon)(n-1)}{n^e} \right) = \frac{C}{n^e} \left[-1 + \frac{2(1+\epsilon)(n-1)}{n^e} \right] = \frac{C}{n^e} \cdot \frac{2(1+\epsilon)(n-1)}{n^e}.
$$

assuming

$$
(2.31) \quad (1 + \epsilon) > \frac{n - \eta}{n - 1}.
$$

From 2.30 and 2.31 we see that

$$
\frac{Bn^e}{C} = \frac{-1}{-1} + \frac{2(1+\epsilon)(n-1)}{n^e} > 1.
$$

From the assumption $0 < \epsilon < \frac{1}{n-1}$ we have $0 < n - (n-1)(1+\epsilon) < 1$ and then such a η always exists. Hence Lemma 2.6 yields

$$
\lambda_i' \leq \frac{2\beta}{\alpha - \sqrt{n\alpha^2 - 4\beta}}
$$

where α and β are determined by 2.26, 2.29, and 2.30. Since $tr_\omega \chi' = \sum_{i=1}^n \lambda_i'$, it follows that, at $p \in X$, $tr_\omega \chi' \leq C$ for some uniform constant C and, for any point $q \in X$,

$$
Q(q) \leq Q(p) \leq \log(tr_\omega \chi')(p) - A\varphi(p) \leq C - A \inf \varphi.
$$

Equivalently, $\log(tr_\omega \chi') \leq C + A(\varphi - \inf \varphi)$. \hfill \square

2.4. The estimate for $\bar{\Delta} \log(tr_\omega \chi')$, continued: general case.

Now we consider the general case that both ω and χ may not be Kähler. Using Lemma 2.2 we have

$$
\bar{\Delta} tr_\omega \chi' = \sum_{1 \leq i,j,k \leq n} h^{ij} \chi^{ij}_{k} \partial_k \chi^i_j + \sum_{1 \leq i,j,k \leq n} h^{i'} \chi^{i'j}_{k} \partial_k \chi^{j'}_i + E_2
$$

$$
- 2 \cdot \Re \left(\sum_{1 \leq i,j,k \leq n} h^{i'} \chi^{i'j}_{k} \partial_k g_{ji} \partial_k \chi^j_i \right)
$$

$$
- 2 \cdot \Re \left(\sum_{1 \leq i,j,k \leq n} h^{i'} \partial_ig_{jk} \partial_k \chi^j_i \right).
$$

As in [17] we deal with the last two terms by using the local coordinates in Lemma 2.2. Starting from the last term, we calculate

$$
\sum_{1 \leq i,j,k \leq n} h^{i'} \partial_i \chi^j_k \partial_j g_{jk} = \sum_{1 \leq i,j,k \leq n} h^{i'} \partial_i g_{jk} \partial_i \chi^j_k + \varphi_{kij}
$$

$$
= \sum_{1 \leq i,j,k \leq n} h^{i'} \partial_i g_{jk} \partial_i \chi^j_k + h^{i'} \partial_i g_{jk} \partial_k \chi^j_i + \varphi_{kij}
$$

$$
= \sum_{1 \leq i,j,k \leq n} h^{i'} \partial_i g_{jk} \partial_k \chi^j_i + \varphi_{kij}.
$$

$$
(2.33) \quad \bar{\Delta} tr_\omega \chi' = \sum_{1 \leq i,j,k \leq n} h^{i'} \partial_i g_{jk} \partial_k \chi^j_i + \varphi_{kij} + E_1.
$$
where E_1 is a term of type I and is given by

\begin{equation}
E_1 = \sum_{1 \leq i,j,k \leq n} h^{\bar{i}} \partial_{\bar{j}} g_{jk} \left(\partial_i \chi_{kj} - \partial_k \chi_{ij} \right).
\end{equation}

Taking the real part of (2.33) gives

\begin{equation}
\begin{aligned}
(2.35) \quad \left| 2 \cdot \text{Re} \left(\sum_{1 \leq i,j,k \leq n} h^{\bar{i}} \partial_{\bar{j}} g_{jk} \right) \right| &= \left| 2 \cdot \text{Re} \left(\sum_{1 \leq i \leq n \leq 1 \leq j \neq k \leq n} \sqrt{h^{\bar{i}}} \sqrt{\chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime \cdot \sqrt{h^{\bar{i}}} \sqrt{\chi_{ij}^{\bar{j}} \partial_k g_{jk}}} \right) + E_1 \right| \\
&\leq \sum_{1 \leq i \leq n \leq 1 \leq j \neq k \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime + \sum_{i=1}^n \sum_{1 \leq j \neq k \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k g_{jk} + E_1 \\
&\leq \sum_{1 \leq i \leq n \leq 1 \leq j \neq k \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime + E_2,
\end{aligned}
\end{equation}

since $\sum_{i=1}^n \sum_{1 \leq j \neq k \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k g_{jk} \partial_k g_{kj}$ is of type II. Similarly we have

\begin{equation}
(2.36) \quad \left| 2 \cdot \text{Re} \left(\sum_{1 \leq i,j,k \leq n} \chi^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime \partial_k g_{ij} \right) \right| = \left| 2 \cdot \text{Re} \left(\sum_{1 \leq i,j,k \leq n} \sqrt{h^{\bar{i}}} \sqrt{\chi^{\bar{i}} \partial_k \chi_{ij}^\prime \cdot \sqrt{\chi^{\bar{i}} \partial_k g_{ij}}} \right) \right| \\
\leq \frac{1}{2} \sum_{1 \leq i,j,k \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime + E_1 = \frac{1}{2} \sum_{1 \leq i,j,k \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime + E_1,
\end{equation}

where

\begin{equation}
E_1 = 2 \sum_{1 \leq i,j,k \leq n} \chi^{\bar{i}} \partial_k g_{ij} \partial_k g_{ji}
\end{equation}

is a term of type I.

From (2.32), (2.35), and (2.36), we conclude that

\begin{equation}
\Delta \text{tr}_\omega \chi^\prime \geq \sum_{1 \leq i,j,k \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime + \sum_{1 \leq i,j,k \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime \\
- \sum_{i=1}^n \sum_{1 \leq j \neq k \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime \partial_k \chi_{ij}^\prime - \frac{1}{2} \sum_{1 \leq i,j,k \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime \partial_k \chi_{ij}^\prime + E_2 \\
= \frac{1}{2} \sum_{1 \leq i,j,k \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime \partial_k \chi_{ij}^\prime + \sum_{1 \leq i,j \leq n} h^{\bar{i}} \chi_{ij}^{\bar{j}} \partial_k \chi_{ij}^\prime \partial_k \chi_{ij}^\prime + E_2.
\end{equation}
It remains to control the term $|\tilde{\nabla}\Tr_{\omega}\chi'|^2_h/(\Tr_{\omega}\chi')^2$. As in (2.20) one has

$$\frac{|\tilde{\nabla}\Tr_{\omega}\chi'|^2_h}{\Tr_{\omega}\chi'} \leq \sum_{1 \leq i, j \leq n} h^{i\bar{j}} \chi'^{i\bar{j}} \partial_i \chi'_j \partial_j \chi'_i$$

(2.39) \quad + 2 \cdot \text{Re} \left[\sum_{1 \leq i, j \leq n} h^{i\bar{j}} \chi'^{i\bar{j}} \partial_i \chi'_j (\partial_j \chi_{ji} - \partial_j \chi_{ij}) \right].

Lemma 2.7. One has $\tilde{\Delta}\log(\Tr_{\omega}\chi') \gtrsim -1$.

Proof. As in the proof of Lemma 2.4 we have

$$2 \cdot \text{Re} \left[\sum_{1 \leq i, j \leq n} h^{i\bar{j}} \chi'^{i\bar{j}} \partial_i \chi'_j \partial_j \chi'_i \right]$$

(2.40) \quad = \left| 2 \cdot \text{Re} \left[\sum_{1 \leq i, j \leq n} \sqrt{h^{i\bar{j}}} \sqrt{\chi'^{i\bar{j}}} \partial_i \chi'_j \partial_j \chi'_i \right] \right| \leq \frac{1}{2} \sum_{1 \leq i, j \leq n} h^{i\bar{j}} \chi'^{i\bar{j}} \partial_i \chi'_j \partial_j \chi'_i + 2 \sum_{1 \leq i, j \leq n} \chi'_j (h^{i\bar{j}})² \left| \partial_i \chi_{ji} - \partial_j \chi_{ij} \right|^2 \leq \frac{1}{2} \sum_{1 \leq i, j, k \leq n} h^{i\bar{j}} \chi'^{i\bar{j}} \partial_k \chi'_{ij} \partial_k \chi'_{ij} + E_2 = \frac{1}{2} \sum_{1 \leq i, j, k \leq n} h^{i\bar{j}} \chi'^{i\bar{j}} \partial_k \chi'_{ij} \partial_k \chi'_{ij} + E_2,

where E_2 is a term of type II and given by

$$E_2 = 2 \sum_{1 \leq i, j \leq n} \chi'_j (h^{i\bar{j}})² \left| \partial_i \chi_{ji} - \partial_j \chi_{ij} \right|^2.$$

Combining (2.40) with (2.20), (2.38), and (2.39), we arrive at

$$\tilde{\Delta}\log(\Tr_{\omega}\chi') \geq \frac{1}{\Tr_{\omega}\chi'} \left[\frac{1}{2} \sum_{1 \leq i, j, k \leq n} h^{i\bar{j}} \chi'^{i\bar{j}} \partial_k \chi'_{ij} \partial_k \chi'_{ij} + \sum_{1 \leq i, j \leq n} h^{i\bar{j}} \chi'^{i\bar{j}} \partial_i \chi'_j \partial_j \chi'_i \right. - \left. \sum_{1 \leq i, j \leq n} h^{i\bar{j}} \chi'^{i\bar{j}} \partial_i \chi'_j \partial_i \chi'_j - \frac{1}{2} \sum_{1 \leq i, j, k \leq n} h^{i\bar{j}} \chi'^{i\bar{j}} \partial_k \chi'_{ij} \partial_k \chi'_{ij} + E_2 \right] = \frac{E_2}{\Tr_{\omega}\chi'}.$$

By the definition of type II terms, there exists a positive uniform constant C satisfying $|E_2| \leq C \cdot \Tr_{\omega}\chi'$. Therefore

$$\tilde{\Delta}\log(\Tr_{\omega}\chi') \geq -C.$$

This complete the proof. \qed

By using the similar method as in the proof of Theorem 2.6 we have

Theorem 2.8. Let (X, ω) be a compact Hermitian manifold of the complex dimension n, and χ another Hermitian metric. Let φ be a smooth solution of Donaldson’s equation

$$\omega \wedge \chi^{n-1}_\varphi = e^F \chi^n_\varphi,$$

where F is a smooth function on X. Assume that

$$\chi - \frac{n-1}{ne^n} \omega > 0.$$
Then there are uniform constants $A > 0$ and $C > 0$, depending only on $X, \omega, \chi,$ and F, such that
\[
\text{tr}_\omega \chi \varphi \leq C \cdot e^{A(\varphi - \inf_X \varphi)}.
\]

REFERENCES

[1] Chen, Xixuiong. *On the lower bound of the Mabuchi energy and its application*, Internat. Math. Res. Notices, 2000, no. 12, 607–623. MR 1772078 (2001 f: 32042)

[2] Chen, Xixuiong. *A new parabolic flow in Kähler manifolds*, Comm. Anal. Geom., 12(2004), no. 4, 837–852. MR 2104078 (2005 h: 53116)

[3] Donaldson, S. K. *Moment maps and diffeomorphisms*, Asian J. Math., 3(1999), no. 1, 1–15. MR 1701920 (2001 a: 53122)

[4] Fang, Hao; Lai, Mijia. *On the geometric flows solving Kählerian inverse σ_k equations*, Pacific J. Math., 258(2012), no. 2, 291–304. MR 2981955

[5] Fang, Hao; Lai, Mijia. *Convergence of general inverse σ_k-flow on Kähler manifolds with Calabi Ansatz*, arXiv: 1203.5253. (To appear in Transactions of the American Mathematical Society)

[6] Fang, Hao; Lai, Mijia; Ma, Xinan. *On a class of fully nonlinear flow in Kähler geometry*, J. Reine Angew. Math., 653(2011), 189–220. MR 2794631 (2012 g: 53116)

[7] Gill, Matt. *Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds*, Comm. Anal. Geom., 19(2011), no. 2, 277–303. MR 2835881 (2012 h: 32047)

[8] Guan, Bo. *Second order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds*, arxiv: 2011.0181.

[9] Guan Bo; Li Qun. *Complex Monge-Ampère equations and totally real submanifolds*, Adv. Math., 225(2010), no. 3, 1185–1223. MR 2673728 (2011 g: 32053)

[10] Guan Bo; Li Qun. *A Monge-Ampère type fully nonlinear equation on Hermitian manifolds*, Discrete Contin. Dyn. Syst. Ser. B, 17(2012), no. 6, 1991–1999. MR 2924449

[11] Guan Bo; Li Qun. *The Dirichlet problem for a complex Monge-Ampère type equation on Hermitian manifolds*, arXiv: 1210.5526.

[12] Guan Bo; Sun, Wei. *On a class of fully nonlinear elliptic equations on Hermitian manifolds*, arXiv: 1301.5863.

[13] Liu, Ke-Feng; Yang, Xiao-Kui. *Geometry of Hermitian manifolds*, Internat. J. Math., 23(2012), no. 6, 1250055, 40pp. MR 2925476.

[14] Song, Jian; Weinkove, Ben. *On Donaldson’s flow of surfaces in a hyperkähler four-manifold*, Math. Z., 256(2007), no. 4, 769–787. MR 2308890 (2008 b: 53090)

[15] Song, Jian; Weinkove, Ben. *On the convergence and singularities of the J-flow with applications to the Mabuchi energy*, Comm. Pure Appl. Math., 61(2008), no. 2, 210–229. MR 2368374 (2009 a: 32038)

[16] Tosatti, Valentino; Weinkove, Ben. *Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds*, Asian J. Math., 14(2010), no. 1, 19–40. MR 2726593 (2011 h: 32043)

[17] Tosatti, Valentino; Weinkove, Ben. *The complex Monge-Ampère equation on compact Hermitian manifolds*, J. Amer. Math. Soc., 23(2010), no. 4, 1187–1195. MR 2669712 (2012 c: 32055)

[18] Tosatti, Valentino; Weinkove, Ben; Yau, Shing-Tung. *The evolution of a Hermitian metric by its Chern-Ricci form*, arxiv: 2012.0312v2.

[19] Tosatti, Valentino; Weinkove, Ben; Yang, Xiaokui. *Collapsing of the Chern-Ricci flow on complex surfaces*, arXiv:1209.2663.

[20] Tosatti, Valentino; Weinkove, Ben; Yang, Xiaokui. *Collapsing of the Chern-Ricci flow on complex surfaces*, arXiv:1209.2663.

[21] Tosatti, Valentino; Weinkove, Ben; Yang, Xiaokui. *Collapsing of the Chern-Ricci flow on complex surfaces*, arXiv:1302.6545.

[22] Weinkove, Ben. *Convergence of the J-flow on Kähler surfaces*, Comm. Anal. Geom., 12(2004), no. 4, 949–965. MR 2104082 (2005 g: 32027)

[23] Weinkove, Ben. *On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy*, J. Differential. Geom., 73(2006), no. 2, 451–538. MR 2226957 (2007 a: 32026)
[24] Yau, Shing Tung. *On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I*. Comm. Pure. Appl. Math., 31(1978), no. 3, 339–411. MR 0480350 (81 d: 53045)

[25] Zhang, Xiangwen. *A priori estimates for complex Monge-Ampère equation on Hermitian manifolds*, Int. Math. Res. Not. IMRN 2010, no. 19, 3814–3836. MR 2725515 (2011 k: 32057)

[26] Zhang, Xi; Zhang, Xiangwen. *Regularity estimates of solutions of complex Monge-Ampère equations on Hermitian manifolds*, J. Funct. Anal., 260(2011), no. 7, 2004–2026.

DEPARTMENT OF MATHEMATICS, SHANGHAI JIAO TONG UNIVERSITY, 800 DONGCHUAN ROAD, SHANGHAI, 200240 CHINA

E-mail address: yilicms@gmail.com