I. INTRODUCTION

Intensive experimental studies of highly-excited nuclei during the last two decades have produced many data on the evolution of the giant dipole resonance (GDR) as a function of temperature T and spin. The data show that the GDR width increases sharply with increasing T from $T > 1 \text{ MeV}$ up to $\approx 3 \text{ MeV}$. At higher T a width saturation has been reported (see [1] for the most recent review). The increase of the GDR width with T is described reasonably well within the thermal shape-fluctuation model [2] and the phonon damping model (PDM) [3,4,5]. The thermal shape-fluctuation model assumes an adiabatic coupling of GDR to quadrupole degrees of freedom with deformation parameters β and γ induced by thermal fluctuations and high spins in the intrinsic frame of reference. Although this model shows an increase of the GDR width with T comparable with the experimental systematic at $1.2 \lesssim T \lesssim 3 \text{ MeV}$, the GDR shapes generated using the strength function of this model differ significantly from the experimental ones [6]. The PDM considers the coupling of the GDR to pp and hh configurations at $T \neq 0$ as the mechanism of the width increase and saturation. The PDM calculates the GDR width and strength function directly in the laboratory frame without any need for an explicit inclusion of thermal fluctuation of shapes. The PDM reproduces fairly well both of the observed width [3,4] and shape [5,7] of the GDR at $T \neq 0$.

In general, pairing was neglected in the calculations for hot GDR as it was believed that the gap vanishes at $T = T_c < 1 \text{ MeV}$ according to the temperature BCS theory. However, it has been shown in [8] that thermal fluctuations smear out the superfluid-normal phase transition in finite systems so that the pairing gap survives up to $T \approx 1 \text{ MeV}$. This has been confirmed microscopically in the recent modified Hartree-Fock-Bogoliubov (HFB) theory at finite T [9], whose limit is the modified-BCS theory [10,11]. Other approaches such as the static-path approximation [12], shell model calculations [13], as well as the exact solution of the pairing problem [14] also show that pairing correlations do not abruptly disappear at $T \neq 0$. It was suggested in [15] that the decrease of the pairing gap with increasing T, which is also caused by pp and hh configurations at low T, may slow down the increase of the GDR width. By including a simplified T-dependent pairing gap in the CASCADE calculations using the PDM strength functions, Ref. [5] has improved the agreement between the calculated GDR shapes and experimental ones.

Very recently the γ decays were measured in coincidence with 17O particles scattered inelastically from 120Sn [16]. A GDR width of around 4 MeV has been extracted at $T = 1 \text{ MeV}$, which is smaller than the value of $\approx 4.9 \text{ MeV}$ for the GDR width at $T = 0$. This result and the existing systematic for the GDR width in 120Sn up to $T \approx 2 \text{ MeV}$ are significantly lower than the prediction by the thermal shape-fluctuation model. Based on this, Ref. [16] concluded that the narrow width observed in 120Sn at low T is not understood. The aim of the present work is to show that it is thermal pairing that causes the narrow GDR width in 120Sn at low T. For this purpose we include the thermal pairing gap obtained from the modified-BCS theory [9,14,11] in the PDM [3,4,5], and carry out the calculations for the GDR width in 120Sn at $T \lesssim 5 \text{ MeV}$.

The paper is organized as follows. Section I summarizes the main equations for the GDR including thermal pairing within the PDM and discusses in detail the physical assumptions of the PDM. Section II analyzes the results of calculations of GDR width, energy, and cross section for 120Sn at finite temperature in comparison with the most recent experimental systematic. The paper is summarized in the last section, where conclusions are drawn.
II. MAIN EQUATIONS FOR HOT GDR WITHIN PHONON DAMPING MODEL

A. Equations for GDR width and energy including thermal pairing

The quasiparticle representation of the PDM including pairing has been already reported in Ref. [17]. Therefore we discuss here only the final equations, which will be used in numerical calculations. According to this formalism the GDR width Γ_{GDR} is presented as the sum of quantal (Γ_Q) and thermal (Γ_T) widths as

$$\Gamma_{\text{GDR}} = \Gamma_Q + \Gamma_T,$$

(1a)

$$\Gamma_Q = 2\pi F^2 \sum_{pph} [u_{pph}^{(+)}]^2 (1 - n_p - n_h) \delta(E_{\text{GDR}} - E_p - E_h),$$

(1b)

$$\Gamma_T = 2\pi F^2 \sum_{s > s'} [v_{ss'}^{(-)}]^2 (n_s - n_s) \delta(E_{\text{GDR}} - E_s + E_{s'}),$$

(1c)

where $(ss') = (pp')$ and (hh') with p and h denoting the orbital angular momenta j_p and j_h for particles and holes, respectively. The quantal and thermal widths come from the couplings of quasiparticle pairs $[a_p^\dagger \otimes a_h^\dagger]_{LM}$ and $[a_p \otimes a_{h'}^\dagger]_{LM}$ to the GDR, respectively. At zero pairing they correspond to the couplings of p and h pairs, $[a_p^\dagger \otimes a_{h'}^\dagger]_{LM}$, to the GDR, respectively. (The tilde $\tilde{\cdot}$ denotes the time-reversal operation). The quasiparticle energies $E_{j} = (\epsilon_{j} - \bar{\mu}^0 + \Delta^2)^{1/2}$ are found from the modified-BCS equations (39) and (40) of [17], which determine the modified thermal gap $\bar{\Delta}$ and chemical potential $\bar{\mu}$ from the single particle energies ϵ_j and particle number N. From them one defines the Bogoliubov coefficients u_j, v_j, and the combinations $u_{pph}^{(+)}, v_{ss'}^{(-)}$. The quasiparticle occupation number n_j is calculated as

$$n_j = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{n_F(E) \gamma_j(E)}{(E - E_j - M_j(E))^2 + \gamma_j^2(E)} dE,$$

(2)

where $M_j(E)$ is the mass operator, and $\gamma_j(E)$ is the quasiparticle damping, which is determined as the imaginary part of the complex continuation of $M_j(E)$ into the complex energy plane. These quantities appear due to coupling between quasiparticles and the GDR. Their explicit expressions are given by Eqs. (3) and (4) of Ref. [3], respectively, in which E_s is now the quasiparticle energy E_j. From Eq. (2) it is seen that the functional form for the occupation number n_j is not given by the Fermi-Dirac distribution $n_F(E)$ for non-interacting quasiparticles. It can be approximately to be so if the quasiparticle damping γ_j is sufficiently small so that the Breit-Wigner-like kernel under the integration can be replaced with the δ-function. Equation (2) also implies a zero value for n_j in the ground state, i.e. $n_j(T = 0) = 0$. In general, it is not the case because of ground-state correlations (see e.g Refs. [10, 11, 12]). They lead to $n_j(T = 0) \neq 0$, which should be found by solving self-consistently a set of nonlinear equations within the renormalized random-phase approximation (renormalized RPA). Within the RPA the equation for n_j yields the approximate expression $n_j(T = 0) \approx \sum_{J,j,J'} (2J+1)/(2J+1)|Y_{jj'}^{(J)}|^2$, where $Y_{jj'}^{(J)}$ is the RPA backward-going amplitude (J is the multipolarity).

Since for collective high-lying excitations such as GDR one has $|Y_{jj'}^{(J)}| \ll 1$, we expect the value $n_j(T = 0)$ to be negligible.

The GDR energy E_{GDR} is found as the solution of the equation

$$\omega - \omega_q - P(\omega) = 0,$$

(3)

where ω_q is the unperturbed phonon energy, and $P(\omega)$ is the polarization operator:

$$P(E) = F^2 \sum_{pph} \frac{[u_{pph}^{(+)}]^2 (1 - n_p - n_h)}{E - E_p - E_h} - F^2 \sum_{ss'} \frac{[v_{ss'}^{(-)}]^2 (n_s - n_{ss'})}{E - E_s + E_{ss'}},$$

(4)

Note that, in general, there are also backward-going processes leading to the terms $\sim \delta(\omega + E_p - E_h)$ and $\delta(\omega + E_s - E_{ss'})$ as has been shown in Eqs. (14) and (15) of Ref. [17]. However, as the maximum of these terms is located at negative energy $\omega = -(E_p + E_h) < 0$, and $\omega = -(E_s - E_{ss'}) < 0$, respectively, their contribution to the GDR, which is located at $\omega = E_{\text{GDR}} \gg 1$ MeV, is negligible. Therefore these backward-going processes are omitted here. It is now easy to see that, at zero pairing $\bar{\Delta} = 0$, one has $u_{pph}^{(+)} = 1, v_{ss'}^{(-)} = 0, u_h = 0, v_h = 1$, so that $[u_{pph}^{(+)}]^2 = 1, [v_{ss'}^{(-)}]^2 = 1$. As for the single-particle occupation number f_j, one obtains $f_h = 1 - n_h$ and $f_p = n_p$. The PDM equations for $\bar{\Delta} = 0$ in Ref. [3, 4] are then easily recovered from Eqs. (10, 11).
B. Assumptions of phonon damping model

The PDM is based on the following assumptions:

i) The matrix elements for the coupling of GDR to non-collective \(ph \) configurations, which causes the quantal width \(\Gamma_Q \), are all equal to \(F_1 \). Those for the coupling of GDR to \(pp \) (\(hh \)), which causes the thermal width \(\Gamma_T \), are all equal to \(F_2 \). The assumption of a constant coupling strength is well justified when the width of a collective mode is much smaller than the energy range \(\Delta E \) (of order of \(E_{\text{GDR}} \)) over which this mode is coupled to the background states (the so-called weak coupling limit discussed in Refs. \[13, 20\]).

ii) It is well established that the microscopic mechanism of the quantal (spreading) width \(\Gamma_Q \) \[11\] comes from quantal coupling of \(ph \) configurations to more complicated ones, such as \(2p2h \) ones. The calculations performed in Refs. \[21, 22\] within two independent microscopic models, where such couplings to \(2p2h \) configurations were explicitly included, have shown that \(\Gamma_Q \) depends weakly on \(T \). The microscopic study in Ref. \[20\], where an hierarchy of states of increasing complexity located around \(E_{\text{GDR}} \) is considered, has also confirmed the nearly constancy of \(\Gamma_Q \). It also indicated that the width of a collective vibration does not depend on the detailed coupling to the compound nuclear eigenstates. Therefore, in order to avoid complicate numerical calculations, which are not essential for the increase of \(\Gamma_Q \)\[\text{(1b)}\] over which this mode is coupled to the background states, the so-called weak coupling limit discussed in Refs. \[13, 20\].

The PDM is based on the following assumptions:

i) The matrix elements for the coupling of GDR to non-collective \(ph \) configurations, which causes the quantal width \(\Gamma_Q \) \[11\], are all equal to \(F_1 \). Those for the coupling of GDR to \(pp \) (\(hh \)), which causes the thermal width \(\Gamma_T \) \[14\], are all equal to \(F_2 \). The assumption of a constant coupling strength is well justified when the width of a collective mode is much smaller than the energy range \(\Delta E \) (of order of \(E_{\text{GDR}} \)) over which this mode is coupled to the background states (the so-called weak coupling limit discussed in Refs. \[13, 20\]).

ii) It is well established that the microscopic mechanism of the quantal (spreading) width \(\Gamma_Q \) \[11\] comes from quantal coupling of \(ph \) configurations to more complicated ones, such as \(2p2h \) ones. The calculations performed in Refs. \[21, 22\] within two independent microscopic models, where such couplings to \(2p2h \) configurations were explicitly included, have shown that \(\Gamma_Q \) depends weakly on \(T \). The microscopic study in Ref. \[20\], where an hierarchy of states of increasing complexity located around \(E_{\text{GDR}} \) is considered, has also confirmed the nearly constancy of \(\Gamma_Q \). It also indicated that the width of a collective vibration does not depend on the detailed coupling to the compound nuclear eigenstates. Therefore, in order to avoid complicate numerical calculations, which are not essential for the increase of \(\Gamma_Q \) at \(T \neq 0 \), such microscopic mechanism is not included within PDM, assuming that \(\Gamma_Q \) at \(T = 0 \) is known. The model parameters are then chosen so that the calculated \(\Gamma_Q \) and \(E_{\text{GDR}} \) reproduce the corresponding experimental values at \(T = 0 \) (See below).

Assumption (i) is satisfied for \(F_1 \) since the quantal width \(\Gamma_Q \) does not exceed 4.9 MeV. The PDM calculations in fact have shown that \(\Gamma_Q \) decreases from 4.9 MeV at \(T = 0 \) to around 2.5 MeV at \(T = 5 \) MeV for \(^{120}\text{Sn} \) due to thermal effects in the factor \(1 - n_p - n_h \) (See the dashed line in Fig. 1 (a) of Ref. \[8\] for zero pairing). A similar trend was also observed in the microscopic calculations of Ref. \[21\], where it was found that the GDR width at \(T = 3 \) MeV is in fact smaller that at \(T = 0 \) (See Figs. 9 and 10 of Ref. \[21\] (in the discussion therein)). That’s why \(\Gamma_Q(T = 0) \) cannot be simply taken as a parameter uniformly added to what is calculated for \(\Gamma_Q \) at \(T \neq 0 \) since a width \(\Gamma_Q(T) = \Gamma_Q(T = 0) \) would lead to a larger value for the total width \(\Gamma_{\text{GDR}} \) at higher \(T \), worsening the agreement with the data.

Assumption (i) becomes poor for \(F_2 \) at \(T \gtrsim 3 \) MeV, when the thermal width \(\Gamma_T \) is larger than 10 MeV (See the dotted line in Fig. 1 (a) of Ref. \[8\]). Within such a large width one expects a considerable change of the level density of background states. To be quantitatively precise, one needs to use a self-consistent theory for the strength function, which includes the coupling to doorway states as in Ref. \[20\]. Such theory is valid for any ratio of \(\Gamma_{\text{GDR}}/\Delta E \). However, from assumption (ii) it also follows that the increase of \(\Gamma_{\text{GDR}} \) is now driven mainly by the thermal width \(\Gamma_T \) due to the factor \(n_{ph} - n_s \). The change of \(n_s \) implies a change of the quasiparticle entropy \(S_{qp} \). The latter is ultimately related to the change of the level density of background states within the realistic mean-field basis. This can be seen as follows. The complexity of the background states is measured by the information entropy \(S_{\text{inf}} \) of individual wave functions, which reflects the complicated relationship between the eigenbasis and representation basis. Meanwhile, the thermodynamic entropy \(S_{\text{th}} \) of the total system is directly determined by its statistical weight \(\Omega(E) = \rho(E)\delta(E) \) as \(S_{\text{th}} = -\ln \Omega(E) \), where \(\rho(E) \) is the level density. In a situation with incomplete information, such as in the statistical description of hot nuclei considered here, individual compound systems are replaced with a grand canonical ensemble of nuclei in thermal equilibrium. The probability for a quantum system to have a given eigenenergy is determined by the density matrix \(\mathcal{D} \) rather than by a pure wave function. The expectation value \(\langle \mathcal{O} \rangle \) of an observable \(\mathcal{O} \) is given as the statistical average over the grand canonical ensemble \(\langle \mathcal{O} \rangle = \text{Tr}(\mathcal{D}\mathcal{O}) \), which is derived from the maximum of the thermodynamic entropy \(S_{\text{th}} = -\text{Tr}(\mathcal{D}\ln \mathcal{D}) \). The modern shell-model calculations in Ref. \[13\] have shown that these three apparently different entropies, \(S_{\text{inf}} \), \(S_{\text{inf}} \), and \(S_{\text{th}} \), behave very similarly for the majority of states in the realistic mean-field basis consistent with residual interactions (See column II of Fig. 56 in Ref. \[13\] and the discussion therein). Significant differences between them take place only when the residual interaction beyond the mean field is very weak (See column I of Fig. 56 in Ref. \[13\]) or when the quasiparticle mean-field is absent (\(S_{\text{inf}} \) reaches its chaotic limit) (See column III of Fig. 56 in Ref. \[13\]). This might be the reason why the numerical results performed so far within the zero-pairing PDM \[8, 14, 15\] using assumptions (i) and (ii) fit fairly well the experimental systematic for the GDR width including the existing data on the width saturation at \(T \gtrsim 3 \) MeV. This is partly also due to the large experimental errorsbars for the extracted GDR width at high \(T \) (See, e.g. Refs. \[23, 24\]). Therefore, at \(T \gtrsim 3 \) MeV the results obtained under these assumptions should be considered as qualitative. This does not affect our present study of the pairing effect as the latter is significant only at low temperature (\(T < 2.5 \) MeV).

Within assumptions (i) and (ii) the model has only three \(T \)-independent parameters, which are the unperturbed phonon energy \(\omega_p \), \(F_1 \), and \(F_2 \). The parameters \(\omega_p \) and \(F_1 \) are chosen so that after the \(ph \)-GDR coupling is switched on, the calculated GDR energy \(E_{\text{GDR}} \) and width \(\Gamma_{\text{GDR}} \) reproduce the corresponding experimental values for GDR on the ground-state. At \(T \neq 0 \), the coupling to \(pp \) and \(hh \) configurations is activated. The \(F_2 \) parameter is then fixed at \(T = 0 \) so that the GDR energy \(E_{\text{GDR}} \) does not change appreciably with varying \(T \). The values of the PDM parameters for \(^{120}\text{Sn} \) are given in \[4\] for the zero-pairing case.

In Ref. \[4\] we have presented an argument that, in our opinion, the effect due to coupling of GDR to noncollective
by a frequency E body-fixed (principal axes) frame of reference (intrinsic frame). It parametrizes a priori the dipole correlation tensor X^0_{ph} and Y^q_{ph}. This leads to Eq. (2.43) in Ref. 4 for the part of the PDM Hamiltonian, which describes coupling between the phonon and single-particle fields. Hence if $Q^1_{q_1}$ and Q_q are GDR phonon operators, $\{Q^1_{q_1}, Q_q\}$ and $\{Q^1_{q_2}, Q_{q_2}\}$ in Eq. (2.43) of Ref. 4 can have the moment and parity equal to $(1^-, 2^+)$, $(2^+, 3^-)$, etc. to preserve the total momentum $\lambda^+ = 1^-$. Therefore, although $F^{(q)}_{ss'}$ are dipole matrix elements, the amplitudes X_{ph}^0 and $Y_{ph}^q (i = 1, 2)$ can be calculated microscopically, using the dipole-dipole, quadrupole-quadrupole, octupole-octupole, etc. components of residual interaction. This means that coupling to pp and hh configurations already includes in principle the coupling to different multipole-multipole fields via multiphonon configuration mixing at $T \neq 0$.

CASCADE calculations using PDM strength functions have produced the GDR shapes in good agreement with the experimental data for 120Sn at $T > 1.54$ MeV (See page 437 and 438 of Ref. [4]). The discrepancy at $T \leq 1.54$ MeV is due to omission or improperly inclusion of pairing at low T, which is now studied in the present work. The splitting of GDR into two peaks is also clearly seen in the PDM calculations for 106Sn [26]. These evidences are in favor of the argument discussed above and in Ref. 4.

Nonetheless, we recognize that the issue of whether coupling to pp and hh configurations at $T \neq 0$ is a microscopic (although indirect) interpretation of thermal shape fluctuations within the PDM is still not settled. The question on whether thermal shape fluctuations need to be included additionally within PDM or not remains to be investigated. The thermal shape-fluctuation model calculates the time-correlation function of the GDR by replacing the microscopic configuration mixing at $T \neq 0$ with RPA amplitudes X^0_{ph} and Y^q_{ph}. This leads to Eq. (2.43) in Ref. 4 for the part of the PDM Hamiltonian, which describes coupling between the phonon and single-particle fields. Hence if $Q^1_{q_1}$ and Q_q are GDR phonon operators, $\{Q^1_{q_1}, Q_q\}$ and $\{Q^1_{q_2}, Q_{q_2}\}$ in Eq. (2.43) of Ref. 4 can have the moment and parity equal to $(1^-, 2^+)$, $(2^+, 3^-)$, etc. to preserve the total momentum $\lambda^+ = 1^-$. Therefore, although $F^{(q)}_{ss'}$ are dipole matrix elements, the amplitudes X_{ph}^0 and $Y_{ph}^q (i = 1, 2)$ can be calculated microscopically, using the dipole-dipole, quadrupole-quadrupole, octupole-octupole, etc. components of residual interaction. This means that coupling to pp and hh configurations already includes in principle the coupling to different multipole-multipole fields via multiphonon configuration mixing at $T \neq 0$.

Nonetheless, we recognize that the issue of whether coupling to pp and hh configurations at $T \neq 0$ is a microscopic (although indirect) interpretation of thermal shape fluctuations within the PDM is still not settled. The question on whether thermal shape fluctuations need to be included additionally within PDM or not remains to be investigated. The thermal shape-fluctuation model calculates the time-correlation function of the GDR by replacing the microscopic configuration mixing at $T \neq 0$ with RPA amplitudes X^0_{ph} and Y^q_{ph}. This leads to Eq. (2.43) in Ref. 4 for the part of the PDM Hamiltonian, which describes coupling between the phonon and single-particle fields. Hence if $Q^1_{q_1}$ and Q_q are GDR phonon operators, $\{Q^1_{q_1}, Q_q\}$ and $\{Q^1_{q_2}, Q_{q_2}\}$ in Eq. (2.43) of Ref. 4 can have the moment and parity equal to $(1^-, 2^+)$, $(2^+, 3^-)$, etc. to preserve the total momentum $\lambda^+ = 1^-$. Therefore, although $F^{(q)}_{ss'}$ are dipole matrix elements, the amplitudes X_{ph}^0 and $Y_{ph}^q (i = 1, 2)$ can be calculated microscopically, using the dipole-dipole, quadrupole-quadrupole, octupole-octupole, etc. components of residual interaction. This means that coupling to pp and hh configurations already includes in principle the coupling to different multipole-multipole fields via multiphonon configuration mixing at $T \neq 0$.

Nonetheless, we recognize that the issue of whether coupling to pp and hh configurations at $T \neq 0$ is a microscopic (although indirect) interpretation of thermal shape fluctuations within the PDM is still not settled. The question on whether thermal shape fluctuations need to be included additionally within PDM or not remains to be investigated. The thermal shape-fluctuation model calculates the time-correlation function of the GDR by replacing the microscopic configuration mixing at $T \neq 0$ with RPA amplitudes X^0_{ph} and Y^q_{ph}. This leads to Eq. (2.43) in Ref. 4 for the part of the PDM Hamiltonian, which describes coupling between the phonon and single-particle fields. Hence if $Q^1_{q_1}$ and Q_q are GDR phonon operators, $\{Q^1_{q_1}, Q_q\}$ and $\{Q^1_{q_2}, Q_{q_2}\}$ in Eq. (2.43) of Ref. 4 can have the moment and parity equal to $(1^-, 2^+)$, $(2^+, 3^-)$, etc. to preserve the total momentum $\lambda^+ = 1^-$. Therefore, although $F^{(q)}_{ss'}$ are dipole matrix elements, the amplitudes X_{ph}^0 and $Y_{ph}^q (i = 1, 2)$ can be calculated microscopically, using the dipole-dipole, quadrupole-quadrupole, octupole-octupole, etc. components of residual interaction. This means that coupling to pp and hh configurations already includes in principle the coupling to different multipole-multipole fields via multiphonon configuration mixing at $T \neq 0$.

Nonetheless, we recognize that the issue of whether coupling to pp and hh configurations at $T \neq 0$ is a microscopic (although indirect) interpretation of thermal shape fluctuations within the PDM is still not settled. The question on whether thermal shape fluctuations need to be included additionally within PDM or not remains to be investigated. The thermal shape-fluctuation model calculates the time-correlation function of the GDR by replacing the microscopic configuration mixing at $T \neq 0$ with RPA amplitudes X^0_{ph} and Y^q_{ph}. This leads to Eq. (2.43) in Ref. 4 for the part of the PDM Hamiltonian, which describes coupling between the phonon and single-particle fields. Hence if $Q^1_{q_1}$ and Q_q are GDR phonon operators, $\{Q^1_{q_1}, Q_q\}$ and $\{Q^1_{q_2}, Q_{q_2}\}$ in Eq. (2.43) of Ref. 4 can have the moment and parity equal to $(1^-, 2^+)$, $(2^+, 3^-)$, etc. to preserve the total momentum $\lambda^+ = 1^-$. Therefore, although $F^{(q)}_{ss'}$ are dipole matrix elements, the amplitudes X_{ph}^0 and $Y_{ph}^q (i = 1, 2)$ can be calculated microscopically, using the dipole-dipole, quadrupole-quadrupole, octupole-octupole, etc. components of residual interaction. This means that coupling to pp and hh configurations already includes in principle the coupling to different multipole-multipole fields via multiphonon configuration mixing at $T \neq 0$.

Nonetheless, we recognize that the issue of whether coupling to pp and hh configurations at $T \neq 0$ is a microscopic (although indirect) interpretation of thermal shape fluctuations within the PDM is still not settled. The question on whether thermal shape fluctuations need to be included additionally within PDM or not remains to be investigated. The thermal shape-fluctuation model calculates the time-correlation function of the GDR by replacing the microscopic configuration mixing at $T \neq 0$ with RPA amplitudes X^0_{ph} and Y^q_{ph}. This leads to Eq. (2.43) in Ref. 4 for the part of the PDM Hamiltonian, which describes coupling between the phonon and single-particle fields. Hence if $Q^1_{q_1}$ and Q_q are GDR phonon operators, $\{Q^1_{q_1}, Q_q\}$ and $\{Q^1_{q_2}, Q_{q_2}\}$ in Eq. (2.43) of Ref. 4 can have the moment and parity equal to $(1^-, 2^+)$, $(2^+, 3^-)$, etc. to preserve the total momentum $\lambda^+ = 1^-$. Therefore, although $F^{(q)}_{ss'}$ are dipole matrix elements, the amplitudes X_{ph}^0 and $Y_{ph}^q (i = 1, 2)$ can be calculated microscopically, using the dipole-dipole, quadrupole-quadrupole, octupole-octupole, etc. components of residual interaction. This means that coupling to pp and hh configurations already includes in principle the coupling to different multipole-multipole fields via multiphonon configuration mixing at $T \neq 0$.

Nonetheless, we recognize that the issue of whether coupling to pp and hh configurations at $T \neq 0$ is a microscopic (although indirect) interpretation of thermal shape fluctuations within the PDM is still not settled. The question on whether thermal shape fluctuations need to be included additionally within PDM or not remains to be investigated. The thermal shape-fluctuation model calculates the time-correlation function of the GDR by replacing the microscopic configuration mixing at $T \neq 0$ with RPA amplitudes X^0_{ph} and Y^q_{ph}. This leads to Eq. (2.43) in Ref. 4 for the part of the PDM Hamiltonian, which describes coupling between the phonon and single-particle fields. Hence if $Q^1_{q_1}$ and Q_q are GDR phonon operators, $\{Q^1_{q_1}, Q_q\}$ and $\{Q^1_{q_2}, Q_{q_2}\}$ in Eq. (2.43) of Ref. 4 can have the moment and parity equal to $(1^-, 2^+)$, $(2^+, 3^-)$, etc. to preserve the total momentum $\lambda^+ = 1^-$. Therefore, although $F^{(q)}_{ss'}$ are dipole matrix elements, the amplitudes X_{ph}^0 and $Y_{ph}^q (i = 1, 2)$ can be calculated microscopically, using the dipole-dipole, quadrupole-quadrupole, octupole-octupole, etc. components of residual interaction. This means that coupling to pp and hh configurations already includes in principle the coupling to different multipole-multipole fields via multiphonon configuration mixing at $T \neq 0$.
To analyze the qualitative effect of thermal pairing on the GDR width we plot the usual single-particle occupation number \(f_j = u_j^2 n_j + v_j^2 (1 - n_j) \) with \(n_j \) obtained within the modified-BCS theory (\(\gamma_j(E) = 0 \)) as a function of single-particle energy \(\epsilon_j \) for the neutron levels around the chemical potential in Fig. 2. It is seen that, in general, the pairing effect always goes counter the temperature effect on \(f_j \), causing a steeper dependence of \(f_j \) on \(\epsilon_j \). Decreasing with increasing \(T \), this difference becomes small at \(T \geq 3 \text{ MeV} \), when the gap \(\bar{\Delta} \) becomes small, both values nearly coincide. This improves significantly the agreement quite well with the latest experimental point [16]. At \(T > \delta_N A \) and \(B \), are nearly the same. The effect of quantal fluctuations \(T_{0.5} \text{ MeV} \), the above-mentioned competition between the decreasing quantal and increasing thermal widths makes the projection method at finite \(\omega \) energy \(E \text{GDR} \) width increases to 5.3 MeV compared to 4.9 MeV on the ground state as shown in Fig. 4 (a). At 0

The GDR width \(\Gamma_{\text{GDR}} \) and energy \(E_{\text{GDR}} \) for \(^{120}\text{Sn} \) were calculated from Eqs. 11 and 13, respectively, using the same set of PDM parameters \(\omega_{q \gamma}, F_1, \) and \(F_2 \), which have been chosen for the zero-pairing case 2 (set A). The effect of quasiparticle damping is included in the calculations by using Eq. 2. The results are shown as the thin solid lines in Fig. As seen from Fig. 4(b), the oscillation of GDR energy \(E_{\text{GDR}} \) with varying \(T \) occurs within the range of \(\sim \pm 1.5 \text{ MeV} \), which is wider compared with that obtained neglecting pairing. The latter is almost independent on \(T \) (dashed line in Fig. 4(b)). As expected from the discussion above, the GDR energy \(E_{\text{GDR}} \) at \(T = 0.1 \text{ MeV} \) drops to 14 MeV, i.e. by 1.4 MeV lower than the GDR energy measured on the ground state. The GDR width increases to 5.3 MeV compared to 4.9 MeV on the ground state as shown in Fig. 4(a). At \(0 \leq T \leq 0.5 \text{ MeV} \), the above-mentioned competition between the decreasing quantal and increasing thermal widths makes the total width decrease first to reach a minimum of 3.4 MeV at \(T \simeq 0.2 \text{ MeV} \) then increase again with \(T \). At \(T \geq T_c \) the width only increases with \(T \). At \(1 \leq T \leq 3 \text{ MeV} \) the GDR width obtained including pairing is smaller than the one obtained neglecting pairing (dashed line in Fig. 4(a)), but this difference decreases with increasing \(T \) so that at \(T > 3 \text{ MeV} \), when the gap \(\Delta \) becomes small, both values nearly coincide. This improves significantly the agreement with the experimental systematic at \(1 \leq T \leq 2.5 \text{ MeV} \). In order to have the same value of 4.9 MeV for the GDR width at \(T \simeq 0 \), we also carried out the calculation using slightly readjusted values \(F_1' = 0.96 F_1 \) and \(F_2' = 1.03 F_2 \) while keeping the same \(\omega_{q \gamma} \) (set B). The result obtained is shown in the same Fig. 4 as the thick solid lines. The GDR energy \(E_{\text{GDR}} \) moves up to 16.6 MeV at \(T = 0.1 \text{ MeV} \) and at \(T_c \leq T \leq 1.2 \text{ MeV} \) in agreement with the value of 16.5 ± 0.7 MeV extracted at \(T = 1 \text{ MeV} \) in Ref. 14. The width at \(T = 1 \text{ MeV} \) also becomes slightly smaller, which agrees quite well with the latest experimental point 16. At \(T > 1 \text{ MeV} \) the results obtained using two parameter sets, A and B, are nearly the same. The effect of quantal fluctuations \(\delta N^2 \) of particle number within the BCS theory at \(T = 0 \), however, is neglected in these results. To be precise, this effect should be included using the particle-number projection method at finite \(T \). However, the latter is so computationally intensive that the calculations were carried
out so far only within schematic models (See, e.g. [31]), or one major shell for nuclei with \(A \leq 60 \) as in the Shell-Model Monte-Carlo method [32]. Therefore, for the limited purpose of the present study, assuming that \(\delta N^2 \gg 1 \), we applied the approximated projection at \(T = 0 \) proposed in Ref. [33], which leads to the renormalization of the gap as \(\tilde{\Delta}(T) = [1 + 1/\delta N^2] \Delta \) with \(\delta N^2 = \Delta(0)^2 \sum j (j+1/2)/[(\epsilon_j - \bar{\mu})^2 + \Delta(0)^2] \). This yields \(\Delta(T = 0) \approx 1.5 \) MeV (\(\delta N \approx \pm 4 \)). The PDM results obtained using the gap \(\Delta \) and the parameter set B are shown in the same Fig. 4 as the thick dotted lines. The GDR width becomes 5 MeV with \(E_{\text{GDR}} = 15.3 \) MeV at \(T = 0 \) in good agreement with the GDR parameters extracted on the ground state. It is seen that the fluctuation of the width at \(T \lesssim 0.5 \) MeV is largely suppressed by using this renormalized gap \(\tilde{\Delta} \). For comparison, the predictions by two versions of thermal shape-fluctuation model [2, 28] are also plotted in Fig. 4(a) as the dash-dotted [2] and thin dotted [28] lines. It is seen that these predictions, in particular the one given by the phenomenological version in Ref. [28], significantly overestimate the GDR width at low temperature \(T \lesssim 1.3 \) MeV. The predicted overall increase of the width is not as steep as the experimental systematic and the PDM prediction. The curvature of the trend is also opposite to the experimental one and that given by the PDM. It is, therefore, highly desirable to see how the prediction by the thermal shape-fluctuation model would change by taking into account the effect of thermal pairing gap discussed in the present work in combination with the use of a specific Hamiltonian to calculate every quantity [35].

C. Effect of thermal pairing on GDR cross section at low temperature

Shown in Fig. 5 are GDR cross-sections obtained for \(^{120}\)Sn using Eq. (1) of Ref. [7]. The experimental cross-section are taken from Fig. 2 of Ref. [7]. They have been generated by cascade at excitation energy \(E^* = 30 \) and 50 MeV, which correspond to \(T_{\text{max}} = 1.24 \) and 1.54 MeV, respectively. The theoretical cross-sections have been obtained using the PDM strength function \(S_{\text{GDR}}(E_\gamma) \) from Eq. (2.22) of Ref. [3] at \(T = T_{\text{max}} \). This is the low temperatures region, at which discrepancies are most pronounced between theory and experiment. (A divided spectrum free from detector response at \(T = 1 \) MeV is not available in Ref. [16]). From this figure it is seen that thermal pairing clearly offers a better fit to the experimental line shape of the GDR at low temperature. As has been discussed in Ref. [7], for an absolute comparison, the PDM strength functions for all decay steps starting from \(T_{\text{max}} \) down to \(T \approx 0 \) MeV should be included in the cascade to generate a divided spectra, which can be directly compared with the experimental ones. It is our wish that such calculations can be carried out in collaboration with the authors of [16] in the near future.

IV. CONCLUSIONS

In this paper we have included the pairing gap, determined within the modified-BCS theory [10, 11], in the PDM to calculate the width of GDR in \(^{120}\)Sn at \(T \leq 5 \) MeV. In difference with the gap given within the conventional BCS theory, which collapses at \(T_c \approx 0.79 \) MeV, the modified-BCS gap never vanishes, but monotonously decreases with increasing \(T \) up to \(T \approx 5 \) MeV. The results obtained show that thermal pairing indeed plays an important role in lowering the width at \(T \lesssim 2 \) MeV as compared to the value obtained without pairing. This improves significantly the overall agreement between theory and experiment, including the width at \(T = 1 \) MeV extracted in the latest experiment [16].

Acknowledgments

The numerical calculations were carried out using the FORTRAN IMSL Library 3.0 by Visual Numerics on the Alpha server 800 5/500 at the Division of Computer and Information of RIKEN.

[1] M.N. Harakeh and A. van der Woude, Giant resonances - Fundamental high-frequency modes of nuclear excitation (Clarendon Press, Oxford, 2001).
[2] W.E. Ormand, P.F. Bortignon, and R.A. Broglia, Phys. Rev. Lett. 77, 607 (1966); W.E. Ormand et al., Nucl. Phys. A 614, 217 (1997).
[3] N.D. Dang and A. Arima, Phys. Rev. Lett. 80, 4145 (1998).
[4] N.D. Dang and A. Arima, Nucl. Phys. A 636, 427 (1998)
[5] N. Dinh Dang, K. Tanabe, and A. Arima, Nucl. Phys. A 645, 536 (1998).
[6] G. Gervais, M. Thoennessen, and W.E. Ormand, Phys. Rev. C 58, R1377 (1998).
[7] N. Dinh Dang, K. Eisenman, J. Seitz, and M. Thoennessen, Phys. Rev. C 61, 027302 (2000).
[8] L.G. Moretto, Phys. Lett. B 40, 1 (1972).
[9] N. Dinh Dang and A. Arima, Phys. Rev. C 68, 014318 (2003).
[10] N. Dinh Dang and V. Zelevinsky, Phys. Rev. C 64, 064319 (2001).
[11] N. Dinh Dang and A. Arima, Phys. Rev. C 67, 014304 (2003).
[12] N.D. Dang, P. Ring, and R. Rossignoli, Phys. Rev. C 47, 606 (1993).
[13] V. Zelevinsky, B.A. Brown, N. Frazier, and M. Horoi, Phys. Rep. 276, 85 (1996).
[14] A. Volya, B.A. Brown, and V. Zelevinsky, Phys. Lett. B 509, 37 (2001).
[15] N. Dinh Dang, K. Tanabe, and A. Arima, Nucl. Phys. A 675, 531 (2000).
[16] P. Heckman et al., Phys. Lett. B 555, 43 (2003).
[17] N.D. Dang, V.K. Au, T. Suzuki, and A. Arima, Phys. Rev. C 63, 044302 (2001).
[18] K. Hara, Prog. Theor. Phys. 32, 88 (1964); K. Ikeda, T. Udagawa, and H. Yamamura, Prog. Theor. Phys. 33, 22 (1965); D.J. Rowe, Phys. Rev. 175, 175 (1968); J. Dukezsky and P. Schuck, Nucl. Phys. A 512, 466 (1990).
[19] F. Catara, N. Dinh Dang, and M. Sambataro, Nucl. Phys. A 579, 1 (1994).
[20] B. Lauritzen, P.F. Bortignon, R.A. Broglia, and V.G. Zelevinsky, Phys. Rev. Lett. 74 (1995) 5190.
[21] P.F. Bortignon, R.A. Broglia, G.F. Bertsch, and J. Pacheco, Nucl. Phys. A 460, 149 (1986).
[22] N. Dinh Dang, Nucl. Phys. A 504, 143 (1989).
[23] A. Bracco et al., Phys. Rev. Lett. 62, 2080 (1989).
[24] J.J. Gaardhoje et al., Phys. Rev. Lett. 59, 1409 (1987).
[25] N. Dinh Dang, K. Tanabe, and A. Arima, Phys. Rev. C 58, 3374 (1998).
[26] N. Dinh Dang, A. Ansari, and A. Arima, preprint RIKEN-AF-NP-361 (2000), N. Dinh Dang, Nucl. Phys. A 687, 253c (2001).
[27] L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Moscow, Nauka, 1964).
[28] D. Kusnezov, Y. Alhassid, and K.A. Snover, Phys. Rev. Lett. 81, 542 (1998) and references therein.
[29] M.P. Kelly et al., Phys. Rev. Lett. 82, 3404 (1999).
[30] B.L. Berman, At. Data Nucl. Data Tables 15, 319 (1975).
[31] R. Rossignoli, N. Canosa, and P. Ring, Phys. Rev. Lett. 80, 1853 (1998).
[32] Y. Alhassid, S. Liu, and H. Nakada, Phys. Rev. Lett. 83, 4265 (1999).
[33] I.N. Mikhailov, Sov. Phys. JETP 18, 761 (1964).
[34] N.D. Dang, Z. Phys. A 335, 253 (1990).
[35] A. Ansari, N. Dinh Dang, and A. Arima, Phys. Rev. C 62, 011302(R) (2000), Phys. Rev. C 63, 024310 (2000).
FIG. 1: Neutron pairing gap as a function of T. Solid and dotted lines show the modified-BCS gap $\bar{\Delta}$ and BCS gap, respectively.

FIG. 2: Single-particle occupation number f_j as a function of ϵ_j for the neutron levels around the chemical potential at $T = 0.1, 1, \text{and} 3 \text{MeV}$. Results obtained including and without pairing are shown by solid and dotted lines, respectively (A thicker line corresponds to a higher T). The horizontal dashed line at $\sim -6 \text{MeV}$ shows the chemical potential at $\bar{\Delta} = 0$ and $T = 0$.

FIG. 4: GDR width Γ_{GDR} (a) and energy E_{GDR} (b) as functions of T for ^{120}Sn. The black solid lines show the PDM results obtained neglecting pairing (In (a) it is the same as the solid line with diamonds from Fig. 1 (a) of Ref. [3]). The green and red lines are the PDM results including the gap Δ, which are obtained using the parameter sets A and B, respectively. The blue lines are the PDM results including the renormalized gap $\tilde{\Delta}$ (see text). Solid circles are the low-T data from Ref. [16]. Crosses and open triangles in (a) are from Fig. 4 of Ref. [28]. The corresponding GDR energies decrease from 16 MeV to 14.5 MeV with increasing T as shown in the shaded rectangle in (b). Solid upside-down triangles are data from Ref. [29]. Open squares and stars are high-T data for ^{110}Sn from Refs. [23] and [24], respectively. Data at $T = 0$ are for GDR built on the ground state of tin isotopes with masses $A = 116 – 124$ from Ref. [30]. The predictions by two versions of the thermal shape-fluctuation model are shown in (a) as the dash-dotted [2] and thin dotted [28] lines, respectively.

FIG. 5: Experimental (shaded areas) and theoretical divided spectra obtained without pairing (black solid lines) and including the gap Δ (red lines) as for the red lines in Fig. 4.

FIG. 3: Combinations of Bogoliubov coefficients (a) and quasiparticle occupations numbers (b). In (a): The thin and thick lines show $[u^{(+)}_{\text{ph}}]^2$ and $[v^{(-)}_{\text{hh}'}]^2$, respectively, for the orbits $p = 2j_{7/2}$, $h = 2d_{3/2}$, and $h' = 1d_{5/2}$. In (b): The corresponding factors $1 - n_p - n_h$ (thin line) and $n_h - n_{h'}$ (thick line) are shown. The factors $f_h - f_p$ and $f_{h'} - f_h$ for the zero-pairing case are shown as the dotted and dashed lines, respectively.
This figure "fig1.gif" is available in "gif" format from:

http://arxiv.org/ps/nucl-th/0309010v1
This figure "fig2.gif" is available in "gif" format from:

http://arxiv.org/ps/nucl-th/0309010v1
This figure "fig3.gif" is available in "gif" format from:

http://arxiv.org/ps/nucl-th/0309010v1
This figure "fig4.gif" is available in "gif" format from:

http://arxiv.org/ps/nucl-th/0309010v1
This figure "fig5.gif" is available in "gif" format from:

http://arxiv.org/ps/nucl-th/0309010v1