Morphologically similar but not closely related: the long-spored species of *Subulicystidium* (Trechisporales, Basidiomycota)

Alexander Ordynets¹ · Robert Liebisch¹ · Ludmila Lysenko¹ · David Scherf¹ · Sergey Volobuev² · Alessandro Saitta³ · Karl-Henrik Larsson⁴ · Eugene Yurchenko⁵ · Bart Buyck⁶ · Sergey Bolshakov² · Ewald Langer¹

Received: 26 March 2020 / Revised: 29 April 2020 / Accepted: 1 May 2020
© The Author(s) 2020

Abstract
Species boundaries and geographic distribution of corticioid fungi (resupinate Basidiomycota) are often poorly known. Our recent study on *Subulicystidium* showed that species diversity in this genus is at least twice as high as previously recognized. This re-estimation of the species diversity was based on a study of only a part of the genus. The present study sheds light on molecular and morphological diversity of three more species. We generated 27 ITS and 24 28S nuclear ribosomal DNA sequences from 49 specimens labelled as *Subulicystidium cochleum*, *S. longisporum* and *S. perlongisporum* and collected in distant geographic localities. We assessed pairwise dissimilarities and phylogenetic relationships of DNA sequences with Bayesian and maximum likelihood methods. We correlated phylogenetic information with morphological data on spores and cystidia. We found that the three species are not closely related, despite their similarity in spore shape and size. In one of the species, *S. perlongisporum*, we detected the presence of two sympatric lineages. These lineages are not morphologically distinct, except for a small difference in the mean length of cystidia. Our study provides a further example of transoceanic species distribution in Agaricomycetes.

Keywords Cryptic species · Genetic distance · Homoplasic character · Internal transcribed spacer · Large subunit · Traditional morphometrics

Introduction
Species boundaries and geographic distribution of corticioid fungi (resupinate Basidiomycota) are often poorly known. Fungi from the genus *Subulicystidium* Parmasto 1968 (Hydnodontaceae, Trechisporales, Agaricomycetes, Basidiomycota) occur on moderately or strongly decayed wood and are common in many forest ecosystems, especially tropical ones. For many decades, *Subulicystidium* has challenged both morphology- and DNA-based mycology. The presence of numerous transitional forms as to basidiospore size and shape hindered species delimitation (Oberwinkler
1977; Liberta 1980; Duhem and Michel 2001). Recently, Ordynets et al. (2018) described 11 new species based on analyses of ribosomal DNA and morphometry of spores and cystidia. The genus now includes 22 accepted species (Index Fungorum 2019).

In *Subulicystidium*, morphological species identification through a key traditionally begins with defining whether the spores’ length-to-width ratio (Q) is lower or higher than four. This criterion is stable and allows one to assign each specimen unambiguously to one of the morphogroup (Boidin and Gilles 1988; Duhem and Michel 2001; Gorjón et al. 2012). For easier unambiguously to one of the morphogroup (Boidin and Gilles (1988) and differs from *S. longisporum* by the presence of needle-like crystals on cystidia and by more strongly curved spores (Punugu et al. 2018), by means of the package “dplyr” (Wickham et al. 2019) in R v. 3.5.3 (R Core Team 2019).

During the measurements of cystidia, the protruding bow-tie crystals were included in the cystidium diameter. In most cases, between 9 and 28 cystidia per specimen were measured (in two cases nine and in one case 38). In total 645 cystidia were measured from 36 sequenced specimens (see Supplementary file 2). These measurements were not checked for outliers and were directly summarized on specimen level with the same method as used for the spores (Ordynets and Denecke 2018). To compare the mean size and shape of spores and cystidia between phylogenetically defined groups, the unpaired two-sample Wilcoxon test was used as implemented in the function “wilcox.test”, with default settings, from the R “stats” package (R Core Team 2019).

DNA extraction, amplification and sequencing

Sequences of two nuclear ribosomal DNA regions were considered in our study: internal transcribed spacer (nc ITS rDNA) and ribosomal large subunit-coding DNA (nc 28S rDNA). Total DNA was extracted from dried herbarium specimens. For this, pieces of fungal fruiting bodies totalling about 20 mm2 were placed into 2-ml tubes containing two small and two large sterile metallic beads. The tube content was ground in the mixer mill for 1 min at 30 Hz. Then, tubes were centrifuged at 16,060 g for 30 s. The following methods of total DNA isolation were used:
(1) Most of the specimens were processed with the E.Z.N.A.® Fungal DNA Mini Kit from Omega Bio-tek, Inc. (Norcross, GA, USA). We used the short version of the protocol from the manufacturer’s manual with few modifications. In particular, after adding FG1 buffer, we added to each tube 10 μl of proteinase K (20 mg/ml, Ambion, Thermo Fischer Scientific, Waltham, MA, USA) and used neither RNase A or β-mercaptoethanol. We also used a fixed volume of 300 μl for FG3 buffer and 600 μl for 100% ethanol. We added sterile deionized water instead of elution buffer at the two final elution steps. We performed all the centrifuging steps at 9500g. We used the DNA gained with this protocol in undiluted form for PCR.

(2) For Reunionese specimens collected in 2013 and 2015 (herbaria KAS, FR), the protocol of Izumitsu et al. (2012) was used (see details in Ordynets et al. 2018).

(3) For collections from Russia (herbarium LE), total DNA extraction followed the manufacturer’s protocol of the NucleoSpin Plant II kit (Macherey–Nagel GmbH and Co. KG, Duren, Germany).

(4) In specimens from Sicily and Estonia (herbarium TU), the total DNA was extracted in a lysis buffer (0.8 M Tris-HCl, 0.2 M (NH₄)₂SO₄, 0.2% w/v Tween-20) (Soil BioDyne, Tartu, Estonia) using a proteinase K method (100 μl lysis buffer and 2.5 μl proteinase K; incubation at 56 ºC for 24 h and at 98 ºC for 15 min).

Primer pairs used to amplify the complete ITS region were ITS1f/ITS4, ITS1f/ITS4B and ITS5/ITS4 (White et al. 1990; Gardes and Bruns 1993). If the amplification of the complete ITS region failed, it was performed for shorter ITS portions with primer pairs ITS1f/ITS2 and ITS3f/ITS4. Each of these two fragments represents nearly half of ITS and they were later assembled to a single complete ITS sequence. The D1–D2 domains at the 5′ end of the 28S region were amplified with primer pair LR0R/LR5 (Hopple and Vilgalys 1999) or alternatively with NL1/NL4 (O’Donnell 1992). Finally, for some Sicilian collections, primer pair ITS1f/LB-W was used to recover the full ITS and partial 28S region with a total length of ca. 1000 nucleotides (Tedersoo et al. 2008).

The PCR after extraction methods 1 and 2 were performed on 25 μl solution containing 2.5 μl of extracted DNA and 22.5 μl master mix. One master mix portion contained 15.1 μl of double-distilled H₂O, 5 μl of 5× MangoTaq® Colored Reaction Buffer, 1 μl dNTPs (5 mM), 1 μl MgCl₂ (50 mM), 0.1 μl MangoTaq DNA polymerase 5 units/μl (all components above from Bioline GmbH, Luckenwalde, Germany), 1 μl of bovine serum albumin (20 μg/μl) and 0.4 μl of each forward and reverse primers (25 pmol) from Thermo Fisher Scientific (Waltham, MA, USA). PCR with primer pairs ITS1f/ITS4 and ITS3f/ITS4 was set as initial denaturation at 94 ºC for 3 min followed by 29 cycles of denaturation at 94 ºC for 30 s, annealing at 55 ºC for 45 s and extension at 72 ºC for 60 s; final elongation was done at 72 ºC for 7 min. PCR with primer pair LR0R/LR5 differed in having the annealing temperature as 58 ºC and for primer pairs NL1/NL4 and ITS1f/ITS2 at 60 ºC. PCR products were checked on 1% agarose gel stained with GelRed fluorescence dye (Biotium, Hayward, CA, USA). PCR products were cleaned with QiAquick PCR Purification Kit according to the manufacturer’s instructions (QIAGEN GmbH, Hilden, Germany). Sanger sequencing of purified products was performed by the company Eurofins Genomics Germany GmbH (Ebersberg, Germany) and in the facilities of the Senckenberg Research Institute and Natural History Museum (Frankfurt am Main, Germany). The primers used for sequencing were identical to those used for amplification.

The PCR after extraction method 3 was performed on 20 μl solution containing 2 μl of extracted DNA, 7.6 μl of distilled H₂O and 10 μl of iQ Supermix (Bio-Rad Laboratories, USA).

The purification of PCR products was made with the GeneJET PCR Purification Kit (Thermo Fisher Scientific, Lithuania). Sequencing was performed in house on ABI 3130 Genetic Analyzer (Applied Biosystems, CA, USA).

The PCR after extraction method 4 was performed in 25 μl containing 0.5 μl of each primer, 5 μl FirePol Mastermix (Solis BioDyne, Tartu, Estonia), 1 μl of 10 times diluted DNA template and sterilized distilled water. PCR conditions for the amplification of ITS region were set as initial denaturation at 95 ºC for 15 min followed by 35 cycles of denaturation at 95 ºC for 30 s, annealing at 55 ºC for 30 s and extension 72 ºC for 60 s; final elongation was done at 72 ºC for 7 min. PCR products were cleaned using Exo-SAP enzymes (GE Healthcare, Freiburg, Germany) using incubation at 37 ºC for 45 min and at 85 ºC for 15 min. PCR products were sequenced by Macrogen Inc. (Amsterdam, the Netherlands) with the same primers as used for PCR.

DNA sequence—analyses

Raw sequence data were processed with Geneious v. 5.6.7 (http://www.geneious.com, Kearse et al. 2012) and Sequencher v. 5.1 (Gene Codes Corporation, Ann Arbor, USA). For various sequence format conversion and alignment viewing, Mesquite v. 3.6 (build 917) (Maddison and Maddison 2018) and AliView v. 1.19 (Larsson 2014) were used. For phylogenetic data import and processing within R, the following packages were used: “ape” (Paradis et al. 2004), “forcats” (Wickham 2019), “gdata” (Wames et al. 2017), “geiger” (Harmon et al. 2008), “Hmisc” (Harrell Jr et al. 2019), and with contributions from Charles Dupont, many others (2019), “pals” (Wright 2018) and “treeio” (Yu 2019).

In this study, the following numbers of new nc ITS rDNA sequences were generated: 21 sequences for S. perlongisporum, three for S. cochleum and three for...
S. longisporum. For the nc 28S rDNA, the numbers of sequences generated for these same species were 19, 3 and 2, respectively. The newly generated DNA sequences were submitted to GenBank (Benson et al. 2018). Additional six ITS and four 28S sequences of S. perlongisporum and two ITS and three 28S sequences of S. longisporum available in GenBank (e.g. Volobuev 2016) and UNITE database (Nilsson et al. 2018) were used in our analyses after the corresponding herbarium specimens were examined (Table 1).

To relate the DNA sequences of S. perlongisporum, S. cochleum and S. longisporum to the rest of the genus Subulicystidium, we combined our data for these three species with the datasets of 57 ITS and 55 28S DNA sequences of other Subulicystidium species (Table 2). We used ITS and 28S DNA sequences from the holotype of S. oberwinkleri (KAS:L 1860) as an outgroup in all genus-level phylogenetic analyses.

Sequences from each locus, 92 of ITS region and 86 of 28S region, were aligned in MAFFT v. 7 online (Katoh et al. 2017), with L-INS-i algorithm and other settings as default. The small fragments of 18S rDNA and 28S rDNA were automatically trimmed from the target ITS region with the ITSx software (Bengtsson-Palme et al. 2013) implemented in the PlutoF workbench (Abarenkov et al. 2010). The final ITS alignment had 659 nucleotide positions. The 28S alignment was trimmed manually to produce sequences of the same length and with fewer (if any) gaps at both ends, leaving 911 positions in the final version. ITS and 28S alignments were concatenated with the SequenceMatrix v. 1.8 (Vaidya et al. 2011) to produce a matrix with 100 rows and 1570 columns.

We performed phylogenetic reconstruction for Subulicystidium from concatenated ITS+28S alignment using Bayesian and maximum likelihood analyses. For Bayesian inference of phylogeny, GTR+G+I evolutionary model was used in MrBayes 3.2.3 (Ronquist et al. 2012) run on CIPRES Science Gateway v. 3.3 (Miller et al. 2010; http://www.phylo.org). Two independent MCMC processes, each in 4 chains, were run. Ten million trees were generated; the sample size was 4924.1347. The plot of the generation versus alignment was performed with PhyML v. 3.0 (Guindon et al. 2010) after automated model selection with SMS v. 1.8.1, both run online (Lemoine et al. 2019, https://ngphylogeny.fr). Evolutionary model comparison was performed under Bayesian information criterion and resulted in selecting TN93+G+I as the best-fitting model. BioNJ was used as a starting tree. The algorithm to explore the space of tree topologies was subtree pruning and regrafting (SPR). For branch support estimation, an approximate likelihood ratio test was requested that relies on a nonparametric, Shimodaira-Hasegawa-like procedure (SH-like aLRT, Guindon et al. 2010).

To visualize results for the genus-level concatenated ITS+28S dataset, the consensus tree from Bayesian analysis was plotted with both posterior probabilities from Bayesian analysis and SH-like aLRT support values from PhyML. For this, we used R script of Ordynets which is based on the R code from Crane (2013).

In the most abundant species, S. perlongisporum, we analyzed also the intraspecific genetic diversity. We produced a species-level ITS alignment with 27 sequences that after trimming with ITSx was 554 positions long. We calculated pairwise genetic distances between these ITS sequences using “pairDistPlot” function of “adegenet” R package (Jombart 2008) setting the arguments as follows: model = “raw”, pairwise.deletion = TRUE (i.e. with deleting the sites with missing data in a pairwise way). Phylogenetic inference for this dataset was performed in PhyML v. 3.0 online with settings identical to those in the analysis of concatenated genus-level dataset but with HKY85+G as the best model. The result was visualized with the R packages “ggtree” (Yu et al. 2017), “ggstance” (Henry et al. 2019) and “ggplot2” (Wickham 2009).

The multiple sequence alignments, details of phylogenetic analyses and trees were deposited in TreeBASE (Piel et al. 2009) under submission ID S24881. The R code for the DNA-based analyses and visualizations is available on GitHub (https://github.com/ordynets/subLongSpored).

Results

Phylogenetic analyses

The genus-level phylogenetic analyses based on the ITS+28S dataset showed that each of the species Subulicystidium cochleum, S. longisporum and S. perlongisporum is monophyletic (Fig. 1). The three species were not closely related to each other. S. cochleum (branch support PP = 1, aLRT = 0.92) was placed as a sister species to S. acerosum on a highly supported branch (PP = 1, aLRT = 1). S. longisporum (PP = 1, aLRT = 0.95) was nested in the clade dominated by numerous sequences of S. meridense and S. brachysporum (PP = 0.94, aLRT = 0.87). S. perlongisporum (PP = 1, aLRT = 0.98) was
Table 1 DNA sequences of Subulicystidium perlongisporum, S. longisporum and S. cochleum with voucher specimen data and publication source. Abbreviation “na” means our failure to generate DNA sequence of a particular region.

Species	Locality	Collector(s)	Voucher specimens	GenBank/UNITE accession numbers	Source
S. cochleum	Jamaica: Middlesex	K.-H. Larsson	GB: KHL 10517	MN207035 MN207023	This study
S. cochleum	Costa Rica: Alajuela	K.-H. Larsson	GB: KHL 11200	MN207036 MN207024	This study
S. longisporum	Madagascar: Anony	K.-H. Larsson	O:F: KHL 14355	MN207034 MN207026	This study
S. longisporum	Italy: Sicily	A. Saitta	O:F: KHL 14355	MN207034 MN207026	This study
S. longisporum	Sweden: Skåne	K.-H. Larsson	GB: KHL 14229	MH000601 MH000601	Larsson (unpublished)
S. longisporum	Ukraine: Zakarpatska	A. Ordynets	CWU 6737	MN207038 MN207016	This study
S. longisporum	Taiwan: Nantou	G. Langer; E. Langer; C.-J. Chen	KAS: GEL 3550	MN207037 AJ406423	This study and Langer (2001), respectively
S. longisporum	Germany: Hesse	A. Ordynets	KAS: Ordynets 00146	MN207039 MN207032	This study
S. perlongisporum	Réunion: Saint-Benoît	J. Boidin	LY 11631	MN207054 MN207030	This study
S. perlongisporum	Brazil: Paraiba	K.-H. Larsson	O:F: KHL 16062	MH000600 MH000600	This study
S. perlongisporum	Brazil: Saô Paulo, Canaranie	D. Pegler; K. Hjortstam; L. Ryvarden	O:F: LR 24826	MN207042 MN207029	This study
S. perlongisporum	Brazil: Saô Paulo, Saô Paulo	D. Pegler; K. Hjortstam; L. Ryvarden	GB: Hjm 16,340	na	MN207017 This study
S. perlongisporum	Cuba: Villa Clara	S. Kõljalg; U. Kõljalg	TU 108264	UDB016775 UDB016775	Kõljalg (unpublished)
S. perlongisporum	Dominican Republic:	K.-H. Larsson	GB: KHL 9926	MN207041 MN207027	This study
S. perlongisporum	Provincia La Altagracia	K.-H. Larsson	GB: KHL 9943	MN207051 MN207028	This study
S. perlongisporum	Dominican Republic:	K.-H. Larsson	GB: KHL 10671	MN207040 na	This study
S. perlongisporum	Madagascar: Ambotanithely	B. Buyck	PC 0125118; Buyck 001899	MN207052 MN207015	This study
S. perlongisporum	Madagascar: Ilhornbe	K.-H. Larsson	O:F: KHL 14305	MN207044 MN207025	This study
S. perlongisporum	Italy: Sicily	A. Saitta	TU 124387	UDB028354 UDB028355	Saitta (unpublished)
S. perlongisporum	Réunion: Saint-Pierre	E. Langer	KAS: L 0103	MN207058 na	This study
S. perlongisporum	Réunion: Saint-Benoît	E. Langer; E. Hennen	KAS: GEL 5217a	MN207043 AJ406422	This study and Langer (2001), respectively
S. perlongisporum	Réunion: Saint-Paul	G. Langer; E. Langer; E. Hennen	KAS: GEL 4815	MN207055 na	This study
S. perlongisporum	Réunion: Saint-Pierre	M. Striegel	KAS: L 1726b	MN207045 MN207022	This study
S. perlongisporum	Réunion: Saint-Pierre	J. Boidin	LY 12824	MN207046 MN207031	This study
S. perlongisporum	Russia: Kaluga	S. Volobuev	LE 302156	MN207044 MN207025	This study
S. perlongisporum	Russia: Briansk	S. Volobuev	LE 314099	MN207044 MN207025	This study
S. perlongisporum	Russia: Chuvash Republic	S. Bolshakov	LE 315315	MN207043 AJ406422	This study and Langer (2001), respectively
S. perlongisporum	Spain: Gipuzkoa	J.M. Riezua	ARAN:Fungi 303195	MN207057 na	This study
S. perlongisporum	Spain: Gipuzkoa	J.M. Riezua	ARAN:Fungi 4160	MN207057 na	This study
S. perlongisporum	Taiwan: Chiayi	G. Langer; E. Langer; C.-J. Chen	KAS: GEL 3681	MN207049 MN207021	This study
S. perlongisporum	Taiwan: Miaoli	G. Langer; E. Langer; C.-J. Chen	KAS: GEL 3388	MN207047 MN207019	This study
S. perlongisporum	Taiwan: Miaoli	G. Langer; E. Langer; C.-J. Chen	KAS: GEL 3392	MN207048 MN207020	This study

most closely related to S. robustius and S. rarocrystallinum (occupying the next more basal node) and to S. boidinii, S. harpagum, S. parvisporum and S. tropicum and to the specimen of S. obtusisporum from Jamaica (occupying the next highest node).

Concatenated ITS+28S DNA sequences from S. perlongisporum were grouped into two clades of unequal size (Fig. 1). The larger clade included the holotype (LY 11631) and sequences of various geographic origin (Paleotropics, Neotropics and temperate Europe) strongly
Table 2 DNA sequences of Subulicystidium species besides *S. perlongisporum*, *S. longisporum* and *S. cochleum* used in this study with information on voucher specimens and publication source. Abbreviation “na” means sequence is not available.

Species	Locality	Voucher specimen	Collector(s)	GenBank/UNITE accession numbers	Source
Subulicystidium acerosum (holotype)	China: Guizhou	BJFC 022303	S. H. He	MK204539 MK204543	Liu et al. (2019)
S. boidinii	Reunion: Saint-Benoît	KAS: L 1584a	M. Striegel	MH041527 na	Ordynets et al. (2018)
S. boidinii	Costa Rica: Puntarenas	GB: KHL 12830	K.-H. Larsson	MH041537 MH041570	Ordynets et al. (2018)
S. brachysporum	Argentina: Misiones	O:F: 506782	L. Ryvarden	MH041518 MH041572	Ordynets et al. (2018)
S. brachysporum	Brazil: Paraiba	O:F: KHL 16100	K.-H. Larsson	MH000599 MH000599	Ordynets et al. (2018)
S. brachysporum	Brazil: Rondonia	O:F: KHL 15352	K.-H. Larsson	MH041553 MH041576	Ordynets et al. (2018)
S. brachysporum	Brazil: Saõ Paulo	GB: Hjm 16,573	K. Hjortstam	MH041545 MH041596	Ordynets et al. (2018)
S. brachysporum	Colombia: Magdalena	O:F: 918493	L. Ryvarden	MH041522 MH041605	Ordynets et al. (2018)
S. brachysporum	Costa Rica: Alajuela	GB: KHL 11216	K.-H. Larsson	MH041517 MH041580	Ordynets et al. (2018)
S. brachysporum	Jamaica: Cornwall	GB: KHL 10763	K.-H. Larsson	MH041546 MH041598	Ordynets et al. (2018)
S. brachysporum	Jamaica: Middlesex	GB: KHL 10566	na	MH041599	Ordynets et al. (2018)
S. brachysporum	Madagascar: Anosy	O:F: KHL 14537	K.-H. Larsson	MH041552 MH041573	Ordynets et al. (2018)
S. brachysporum	Puerto Rico: Isabela	GB: KHL 9544	K.-H. Larsson	MH041555 MH041560	Ordynets et al. (2018)
S. brachysporum	Puerto Rico: Luquillo	GB: KHL 10406	K.-H. Larsson	MH041543 MH041600	Ordynets et al. (2018)
S. brachysporum	Puerto Rico: Luquillo	GB: KHL 10411	K.-H. Larsson	MH041549 MH041601	Ordynets et al. (2018)
S. brachysporum	Réunion: Saint-Pierre	KAS: L 0134	E. Langer	MH041541 MH041593	Ordynets et al. (2018)
S. brachysporum	Réunion: Saint-Benoît	KAS: L 1584b	M. Striegel	MH041544 MH041610	Ordynets et al. (2018)
S. brachysporum	Réunion: Saint-Pierre	KAS: L 1147	J. Riebesehl; M. Schroth	MH041542 MH041594	Ordynets et al. (2018)
S. brachysporum	Réunion: Saint-Pierre	KAS: L 1498	M. Striegel	MH041526 na	Ordynets et al. (2018)
S. brachysporum	Réunion: Saint-Pierre	KAS: L 1795	M. Striegel	MH041525 MH041579	Ordynets et al. (2018)
S. brachysporum	Réunion: Saint-Pierre	LY 12293	G. Gilles	MH041550 MH041571	Ordynets et al. (2018)
S. brachysporum	Réunion: Saint-Pierre	LY 12772	G. Gilles	na MH041595	Ordynets et al. (2018)
S. brachysporum	Brazil: Rondonia	O:F: KHL 15318	K.-H. Larsson	MH041557 MH041577	Ordynets et al. (2018)
S. brachysporum	Brazil: Saõ Paulo	O:F: LR 24170	D. Pegler; K. Hjortstam; L. Ryvarden	MH041556 na	Ordynets et al. (2018)
S. brachysporum	Reunion: Saint-Paul	LY 11378	J. Koidin	na MH041574	Ordynets et al. (2018)
S. fusisporum (holotype)	Puerto Rico: Rio Grande	GB: KHL 10360	K.-H. Larsson	MH041535 MH041567	Ordynets et al. (2018)
S. fusisporum	Costa Rica: Puntarenas	GB: KHL 12761	K.-H. Larsson	MH041536 MH041568	Ordynets et al. (2018)
S. fusisporum	Puerto Rico: Rio Grande	GB: KHL 9093	K.-H. Larsson	MH041534 na	Ordynets et al. (2018)
S. grandisporum (holotype)	Costa Rica: Cartago	O:F: 506781	L. Ryvarden	MH041547 MH041592	Ordynets et al. (2018)
S. harpagum (holotype)	Réunion: Saint-Pierre	KAS: L 1726a	M. Striegel	MH041532 MH041588	Ordynets et al. (2018)
S. harpagum	Colombia: Magdalena	O:F: LR 15736	L. Ryvarden	MH041531 MH041586	Ordynets et al. (2018)
Species	Locality	Voucher specimen	Collector(s)	GenBank/UNITE accession numbers	Source
---------	----------	------------------	--------------	--------------------------------	--------
				ITS 28S	
S. harpagum	Jamaica: Cornwall	GB: KHL 10733	K.-H. Larsson	MH041520 MH041563	Ordynets et al. (2018)
S. harpagum	Réunion: Saint-Benoît	KAS: L 0244	E. Langer	MH041533 MH041609	Ordynets et al. (2018)
S. inornatum (holotype)	Puerto Rico: Rio Grande	GB: KHL 10444	K.-H. Larsson	MH041558 MH041569	Ordynets et al. (2018)
S. meridense	Brazil: Rondónia	O:F: KHL 15322	K.-H. Larsson	MH041540 MH041602	Ordynets et al. (2018)
S. meridense	Brazil: São Paulo	GB: Hjm 16,400	D. Pegler; K. Hjortstam; L. Ryvarden	MH041538 MH041604	Ordynets et al. (2018)
S. meridense	Costa Rica: Guanacaste	GB: KHL 11355	K.-H. Larsson	na	MH041583 Ordynets et al. (2018)
S. meridense	Costa Rica: Guanacaste	GB: KHL 11365	K.-H. Larsson	MH041523 MH041584	Ordynets et al. (2018)
S. meridense	Réunion: Saint-Benoît	LY 12816	G. Gilles	na	MH041597 Ordynets et al. (2018)
S. meridense	Taiwan: Nantou	KAS: GEL 3520	E. Langer; G. Langer; C.-J. Chen	MH041548	na Ordynets et al. (2018)
S. meridense	Argentina: Misiones	O:F: LR 19581	L. Ryvarden	MH041551 MH041578	Ordynets et al. (2018)
S. meridense	Brazil: Rondónia	O:F: KHL 15325	K.-H. Larsson	na	MH041585 Ordynets et al. (2018)
S. meridense	Colombia: Magdalena	O:F: 918846	L. Ryvarden	MH041554 MH041575	Ordynets et al. (2018)
S. meridense	Puerto Rico: Cerro Alto	GB: KHL 9561	K.-H. Larsson	MH041524 MH041581	Ordynets et al. (2018)
S. meridense	Puerto Rico: Luquillo	GB: KHL 10397	K.-H. Larsson	MH041519 MH041582	Ordynets et al. (2018)
S. nikau	Réunion: Saint-Pierre	KAS: L 1296	J. Riebesehl; M. Schroth	MH041513 MH041565	Ordynets et al. (2018)
S. Oberwinkleri (holotype)	Réunion: Saint-Pierre	KAS: L 1860	J. Riebesehl	MH041511 MH041562	Ordynets et al. (2018)
S. obtusisporum	Germany: Hesse	FR: Piepenbrink & Lotz-Winter W213-3-1	O. Koukol	MH041521 MH041566	Ordynets et al. (2018)
S. obtusisporum	Jamaica: Cornwall	GB: KHL 10622	K.-H. Larsson	MH041559 MH041606	Ordynets et al. (2018)
S. parvisporum (holotype)	Réunion: Saint-Pierre	KAS: L 0140	E. Langer	MH041529 MH041590	Ordynets et al. (2018)
S. parvisporum	Réunion: Saint-Benoît	KAS: L 1226	J. Riebesehl	MH041528 MH041587	Ordynets et al. (2018)
S. parvisporum	Réunion: Saint-Pierre	KAS: GEL 5032	E. Langer; E. Hennen	MH041530 MH041591	Ordynets et al. (2018)
S. parvisporum	Réunion: Saint-Pierre	LY 12750	G. Gilles	na	MH041589 Ordynets et al. (2018)
S. rarerocrystallinum (holotype)	Colombia: Cundinamarca	O:F: 918488	L. Ryvarden	MH041512 MH041564	Ordynets et al. (2018)
S. robustus (holotype)	Jamaica: Cornwall	GB: KHL 10813	K.-H. Larsson	MH041514 MH041608	Ordynets et al. (2018)
S. robustus	Jamaica: Cornwall	GB: KHL 10780	K.-H. Larsson	AY463468 AY586714	Larsson (unpublished) Ordynets et al. (2018)
S. robustus	Puerto Rico: Luquillo	GB: KHL 10039	K.-H. Larsson	MH041515 na	Ordynets et al. (2018)
S. robustus	Puerto Rico: Río Grande	GB: KHL 10272	K.-H. Larsson	MH041516 MH041607	Ordynets et al. (2018)
S. tedersooi (holotype)	Vietnam: Ninh Bình	TU 110894	L. Tedersoo	UDB014161 na	Tedersoo (unpublished)
S. tedersooi	Vietnam: Ninh Bình	TU 110895	L. Tedersoo	UDB014162 na	Tedersoo (unpublished)
S. tropicum (holotype)	China: Hainan	BJFC 022470	S.H. He	MK204531 MK204544	Liu et al. (2019)
S. tropicum	China: Hainan	BJFC 022083	S.H. He	MK204530 MK204542	Liu et al. (2019)
S. tropicum	Papua New Guinea: Morobe	TU 110416	L. Tedersoo	UDB013052 UDB013052	Tedersoo (unpublished)
Fig. 1 Phylogenetic relationship of *Subulicystidium* based on concatenated ITS+28S nc rDNA alignment. 50% majority-rule consensus tree from Bayesian analysis is shown, with posterior probabilities above the branches and supports from approximated likelihood ratio test from the maximum likelihood estimation below the branches, both in the range from 0 to 1. NA means the absence of branch support. Tips of the tree include GenBank/UNITE accession numbers for the ITS region followed by 28S region, voucher specimen and country of collection. Tree tips are coloured according to the species name. Scale bar shows the number of substitutions per site.
The smaller clade contained two specimens from temperate Europe, two from the Mediterranean region in...
Europe and one specimen from the Southern Hemisphere (La Réunion).

Within the larger clade of \textit{S. perlongisporum}, further labelled as clade 1 (aLRT = 1), two subclades on short basal branches were distinguishable (Fig. 2a). Subclade 1.1 (aLRT = 0.8) included DNA sequences merely from the Eastern Hemisphere while subclade 1.2 (aLRT = 0.67) was dominated by DNA sequences from the Western Hemisphere. The sequences from La Réunion and Madagascar were found in both subclades.

Genetic and morphological diversity within \textit{S. perlongisporum}

Between the ITS rDNA sequences of \textit{S. perlongisporum}, there were signatures in the multiple sequence alignment that allowed to differentiate clade 2 from clade 1. The most striking feature of clade 2 was the insertion at positions 107–118 (Fig. 2a). Subclade 1.1 (aLRT = 0.8) included DNA sequences merely from the Eastern Hemisphere while subclade 1.2 (aLRT = 0.67) was dominated by DNA sequences from the Western Hemisphere. The sequences from La Réunion and Madagascar were found in both subclades.

Pairwise genetic distances were lowest between members of clade 1 (maximum 0.037, median 0.021; Fig. 3) and slightly higher between members of clade 2 (maximum 0.052, median 0.042). The distances between the members of clades 1 and 2 were always distinctly higher (maximum 0.122, median 0.109).

Between the clades 1 and 2 of \textit{S. perlongisporum}, there were no differences in the mean length, width and length-to-width ratio of spores (Supplementary fig. S4.1a and table S4.2). The mean length of cystidia per specimen was significantly higher in clade 2 compared with that in clade 1 (Wilcoxon \(W = 18, p = 0.019\), Fig. 4). There were no differences in the mean width and length-to-width ratio of cystidia between clades 1 and 2.

Morphological differences between long-spored \textit{Subulicystidium} species

Morphological comparison based only on specimens for which DNA sequences were obtained showed that \textit{S. cochleum}, \textit{S. longisporum} and \textit{S. perlongisporum} differed in basidiospore length (Fig. 5a). Basidiospore width and length-to-width ratio distinguished \textit{S. longisporum} from \textit{S. perlongisporum} and \textit{S. cochleum} but did not separate the two latter species. \textit{S. perlongisporum} had shorter and narrower cystidia than the two other species (Fig. 5b).

Discussion

In this study, we assessed the range of molecular (nc rDNA) and morphological variation in the long-spored species of \textit{Subulicystidium}: \textit{S. cochleum}, \textit{S. longisporum} and \textit{S. perlongisporum}. We found that each of these species was monophyletic. However, none of them was sister to any of the other. For \textit{S. cochleum} and \textit{S. perlongisporum}, we confirmed a transoceanic distribution pattern.

We included the holotype of \textit{S. perlongisporum} in our study (LY11631) and successfully obtained ITS and 28S DNA sequences from this 35-year-old specimen. We generated first DNA sequence data for the species \textit{S. cochleum}. We successfully sequenced collections made in Costa Rica, Jamaica and Madagascar, but failed to obtain sequences from those made in Réunion and Zimbabwe. We provided additional morphometric and genetic data for \textit{S. longisporum}.

Furthermore, phylogenetic analyses allowed us to re-identify the specimen from Papua New Guinea (TU110416) as \textit{S. tropicum} (previous identification: \textit{S. brachysporum}). The new identification was added to the specimen and DNA sequence records in the PlutoF platform (https://plutof.ut.ee/#/specimen/view/651339; Abarenkov et al. 2010).

With the support of molecular data, we demonstrated a rather broad intraspecific variation in studied \textit{Subulicystidium} species, especially in the length of spores and cystidia. Following the recommendations of Parmasto...
et al. (1987), we provided more accurate morphological data for *S. perlongisporum*, *S. cochleum* and *S. longisporum* by separating intra-individual, intraspecific and interspecific size variation. Our data showed that basidiospores of *S. cochleum* and *S. perlongisporum* can be considerably shorter than stated in the protologues of these species (Punugui et al. 1980; Boidin and Gilles 1988). Previous authors also faced this problem and apparently attributed more importance to the values of spore width and length-to-width ratio for identification (Boidin and Gilles 1988; Duhem and Michel 2001). We confirm that spore length is more variable than the spore width or length-to-width ratio in the studied species of *Subulicystidium*.

Despite the similarity in the shape and size of spores, the three long-spored *Subulicystidium* species were not closely related. Therefore, the spore shape can be considered a homoplastic character in this genus. On the other hand, we recovered a sister relationship for *S. cochleum* and *S. acerosum*. They share cystidia that are sheathed by needle-like crystals in the middle part. This crystal arrangement is different from most species in *Subulicystidium* that have rectangular crystals arranged in longitudinal rows. In *S. oberwinkleri*, a peculiar cystidium ornamentation (crystal plates) correlates with an isolated phylogenetic position. The cystidial encrustation deserves more attention in further studies on *Subulicystidium*.

We found that *S. perlongisporum* includes two sympatric lineages. Morphologically these lineages differed slightly, but significantly, in the mean length of cystidia (longer in clade 2) but not in other characters of cystidia and spores. The genetic distance between ITS nrDNA sequences from these two lineages was as high as are usually the distances between separate species within the same fungal genus, i.e. well over 3% (Schoch et al. 2012; Köljalg et al. 2013).

Clades 1 and 2 of *S. perlongisporum* differed strongly in the number of available specimens, viz. 22 versus 5. The holotype of *S. perlongisporum* from La Réunion Island (LY 11631) was recovered in clade 1. The DNA sequences within clade 1 were more similar and were connected by shorter branches on the phylogenetic tree than the members of clade 2. We see a need for additional data for clade 2, in order to test whether it represents more than one cryptic lineage, and in order to confirm with a more balanced sampling whether the observed difference in the length of cystidia compared to clade 1 is real. Until then, we are reluctant to introduce any new species name.

Using nc ITS rDNA data, other authors showed that a single corticioid species may represent numerous phylogenetic lineages. Allopatric speciation was found within *Hyphoderma setigerum* and *Xylocladon raduloides* species complexes (Nilsson et al. 2003; Fernández-López et al. 2019). In contrast, the clades of *Peniophorella praetermissa* species complex contained specimens of very distant geographic origin suggesting sympatric speciation (Hallenberg et al. 2007). Morphological differences between the members of the clades in the above-mentioned species complexes were often missing. Our finding for *S. perlongisporum* is congruent with the pattern for *P. praetermissa*, although the former includes only two clades while the latter has eight. It remains a challenge to explain why allopatric speciation prevails in some species complexes while genetically deviating populations may occur sympatrically in others, even when all share a saprotrophic lifestyle and live in strongly decayed wood.

Struck et al. (2018) consolidated the concept of cryptic species and stated that crypts may represent a substantial fraction of biodiversity. They emphasized the need for a quantitative assessment of morphological disparity versus genetic divergence and comparing them with those for non-cryptic taxa. However, methods for quantitative assessment of morphological variation should become more standardized. Our protocols for morphometric analysis used for *Subulicystidium* (Ordynets et al. 2018; Ordynets and Denecke 2018) can be applied to all other fungi. We hope these protocols will enhance the reproducibility of the morphometric analysis in mycology and facilitate the correlation of morphometric data with genomic-scale DNA data.

Acknowledgements We would like to thank the curators of herbaria and mycologists who provided loan specimens for our study: Ibai Olariaga (ARAN), Markus Scholler (KR), Mélanie Thiébaut (LY), Ira Saar (TU), Cornelia Díger-Endrulat and Franz Oberwinkler (TUB). Ulrike Frieling and Sylvia Heinemann (University of Kassel) and Rasmus Pussepp (University of Tartu) are deeply acknowledged for the assistance with the molecular laboratory work. We thank the reviewers and editors for their comments that helped to improve the manuscript.

Author contributions A. Ordynets conceived the idea. K.-H. Larsson, E. Langer, A. Saitta, S. Volobuev, S. Bolshakov, B. Buyck and E. Yurchenko collected and identified fungal specimens. R. Liebisch, A. Ordynets, A. Saitta, D. Scherf, L. Lysenko, S. Volobuev and S. Bolshakov obtained morphometric data. R. Liebisch, A. Saitta, D. Scherf, L. Lysenko, S. Volobuev, S. Bolshakov and K.-H. Larsson performed molecular lab work and generated DNA sequences. A. Ordynets, R. Liebisch and D. Scherf analyzed the data. A. Ordynets wrote the first version of the manuscript and all authors read, contributed to and agreed on the final version.

Funding information Open Access funding provided by Projekt DEAL. The work of A. Ordynets and E. Langer was partly funded by the LOEWE excellence initiative of the state of Hesse (Germany) within the framework of the Cluster for Integrative Fungal Research (IPF). K.-H. Larsson received support from SIU, Norwegian Centre for International Cooperation in Education (projects CAPES-SIU-2013/10057 and CAPES-SIU-2015/10004). The work of S. Volobuev and S. Bolshakov was carried out within the framework of the institutional research project AAAA-A19-11902080079-6 using equipment of The Core Facilities Center “Cell and Molecular Technologies in Plant Science” at the Komarov Botanical Institute RAS (St.-Petersburg, Russia).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abarenkov K, Tedersoo L, Nilsson RH et al (2010) PlutoF—a web based workbench for ecological and taxonomic research, with an online implementation for fungal its sequences. Evol Bioinforma 6: EBO.S6271. https://doi.org/10.4137/EBO.S6271

Bengtsson-Palme J, Ryberg M, Hartmann M et al (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919. https://doi.org/10.1111/2041-210X.12073

Benson DA, Cavanaugh M, Clark K, Marsch-Mizrachi I, Ostell J, Pruitt KD, Sayers EW (2018) GenBank. Nucleic Acids Res 46(D1):D41–D47. https://doi.org/10.1093/nar/gkx1094

Boïdin J, Gilles G (1988) Basidiomycetes aphyllorophores de l’île de la Réunion. XII: Le genre Subulicystidium Parmasto Bull Trimest la Société Mycol Fr 104:191–198

Crane S (2013) labelNodeSupport. R function. https://github.com/samuelcrane/label-node-support/blob/cf4671dc01ea9b0e9c7d06aee29fabae2df0834/labelNodeSupport.R. accessed 15 Aug 2019

Duhem B, Michel H (2001) Contribution à la connaissance du genre Subulicystidium Parmasto 1968 (Basidiomycota, Xenasmatales). Cryptogam Mycologist 22:163–173. https://doi.org/10.1016/S0181-1584(01)01067-3

Fernández-López J, Telleria MT, Dueñas M et al (2019) Addressing the diversity of Xylodon raduloides complex through integrative taxonomy. IMA Fungus 10:9. https://doi.org/10.1186/s43008-019-0010-x

Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes, application to the identification of mycorrhizal and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x

Gorjón SP, Greslebin AG, Rajchenberg M (2012) Subulicystidium curvisporum sp. nov. (Hymenochaetales, Basidiomycota) from the Patagonian Andes. Mycokeys 118:47–52. https://doi.org/10.5248/118.47

Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010

Hallenberg N, Nilsson RH, Antonelli A et al (2007) The Peniophorea praeternissa species complex (Basidiomycota). Mycol Res 111: 1366–1376. https://doi.org/10.1016/j.mycres.2007.10.001

Harmon LJ, Weir JT, Brock CD et al (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131. https://doi.org/10.1093/bioinformatics/btm538

Harrell Jr FE, with contributions from Charles Dupont, many others. (2019) Hmisc: Harrell Miscellaneous. R package version 4.2-0. https://cran.r-project.org/package=Hmisc

Henry L, Wickham H, Chang W (2019) ggstance: horizontal “ggplot2” components. R package version 0.3.2. https://cran.r-project.org/packages/ggstance

Hoppe JS, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit rna: divergent domains, outgroups, and monophyly. Mol Phylogenet Evol 13:1–19. https://doi.org/10.1006/mpev.1999.0634

Index Fungorum (2019) Index Fungorum. http://www.indexfungorum.org. Accessed 9 Oct 2019.

Izumitsu K, Hatoh K, Sumita T et al (2012) Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience 53:396–401. https://doi.org/10.1007/s10267-012-0182-3

Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129

Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. https://doi.org/10.1093/bib/bbx108

Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Köljalg U, Nilsson RH, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22: 5271–5277. https://doi.org/10.1111/mec.12481

Langer E (2001) Phylogeny of non-gilled and gilled basidiomycetes: DNA sequence inference, ultrastructure and comparative morphology. Habilitationsschrift, Universität Tübingen, Tübingen

Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278. https://doi.org/10.1093/bioinformatics/btu531

Lemoine F, Coreia D, Lefort V et al (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 47:W260–W265. https://doi.org/10.1093/nar/gkz303

Liberta AE (1980) Notes on the genus Subulicystidium. Mycotaxon 10: 409–412

Liu S-L, Ma H-X, He S-H, Dai Y-C (2019) Four new corticioid species in Trechisporales (Basidiomycota) from the East Asia and notes on phylogeny of the order. MycoKeys 48:97–113. https://doi.org/10.3897/mycokeys.48.31956

Maddison WP, Maddison DR (2018) Mesquite: a modular system for evolutionary analysis. Version 3.6 (build 917). http://www.mesquiteproject.org

Martini E (2020) Crusts and jells. URL: https://www.aphyllo.net, access date: 26 Feb 2020.

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). IEEE, pp. 1–8.

Nilsson RH, Hallenberg N, Nordén B et al (2003) Phylogeography of Hyphoderma setigerum (Basidiomycota) in the Northern Hemisphere. Mycol Res 107:645–652. https://doi.org/10.1017/S0953756203007925

Nilsson RH, Larsson K-H, Taylor AF et al (2018) The UNITE database implementation for fungal its sequences. Evol Bioinforma 6:919. https://doi.org/10.4137/EBO.S6271

Ordynets A (2018) Plotting phylogenetic tree with branch supports from two phylogenetic analyses. In: protocols.io. https://doi.org/10.1016/j.mycetoz.2018.131.001

O’Donnell K (1992) Fusarium and its near relatives. The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233

Oberwinkler F (1977) Species and generic concepts in the Corticiaceae. In: The species concept in Hymenomycetes. Cramer, Vaduz, pp. 331–348.

Ordynets A, Denecke J (2018) Calculating and plotting size range of morphological structures. In: protocols.io. https://doi.org/10.1016/j.mycetoz.2018.131.001

Ordynets A (2018) Plotting phylogenetic tree with branch supports from two phylogenetic analyses. In: protocols.io. https://doi.org/10.1016/j.mycetoz.2018.131.001

Ramette A (2009) Multivariate data analysis in ecology using example R software. In: Protocols.io. https://doi.org/10.1016/j.mycetoz.2018.131.001

Robert C, Brière N (2010) A Complete Guide to R. Springer, New York

Springer
