Using Deep Learning in Ultra-High Energy Cosmic Ray Experiments
 Cosmic rays

Different Physics in each energy range:

Solar modulation:
\[10^8 \text{eV} \leq E \leq 10^{11} \text{eV} \]

Galactic sources:
\[10^{11} \text{eV} \leq E \leq 10^{18} \text{eV} \]

Extragalactic sources:
\[E > 10^{18} \text{eV} \]

GZK cut-off \(E \simeq 10^{20} \text{eV} \)

Problem:
Extremely small flux, hard to observe directly
Questions

- Sources (extragalactic)
- Production mechanism

Observables (indirect)

- Energy spectrum
- Mass composition
- Arrival directions

Observables (direct)

- EAS properties observable from Earth (density profile on SD, fluorescence light on FD)
Questions

• Sources (extragalactic)
• Production mechanism

Observables (indirect)

• Energy spectrum
• Mass composition
• Arrival directions

Observables (direct)

• EAS properties observable from Earth (density profile on SD, fluorescence light on FD)

B and R must be big enough to keep particles inside in the acceleration region for enough time
Questions

- Sources (extragalactic)
- Production mechanism

Observables (indirect)

- Energy spectrum
- Mass composition
- Arrival directions

Observables (direct)

- EAS properties observable from Earth (density profile on SD, fluorescence light on FD)
UHECR Detection Methods

Surface detectors:
- Duty cycle ~ 95%

Fluorescence detectors:
- Duty cycle ~ 10%
Modern UHECR experiments

- Southern hemisphere: Pierre Auger Observatory (Argentina)
 - 1660 Cherenkov detectors (water tanks), placed at distance 1.5 km from each other (hexagonal grid) covering the surface above 3000 km²
 - 4 fluorescence telescope stations in the corners
 - International collaboration (16 countries)
Modern UHECR experiments

- Northern hemisphere: Telescope Array (Utah, USA).

USA, Russia, Japan, Korea, Belgium
Auger and TA spectra

Ivanov ICRC2017, CRI231
(Auger/TA spectrum WG)

Full Sky spectra

Common declination band \((-15.9^\circ < \delta < 24.8^\circ)\)

Better agreement between Auger and TA in the common declination band

Declination dependence?
Composition of UHECR

EAS produced by different mass nuclei are very similar - hard to distinguish at the level of individual events

- E=1-few EeV: light nuclei
- Heavier composition at larger energies

Deflection angles in Milky Way > 20 deg.
Cosmic rays may not point to the source

Auger 2017
Arrival directions and their interpretation

- Accuracy for nuclei primaries: 1.5 deg, gamma primaries: 2-3 deg
- Interpretation for nuclei depends on the assumption on the composition. Extra information needed.
- Multimessenger approach (study secondary signals from CR interactions)
- GZK photons and neutrinos may point back to source (expected energies E~EeV) Not observed yet. Sensitivity to diffuse and directional flux should be enhanced.
Ways to improve gamma sensitivity.

• For diffuse flux: Improve discrimination of gamma and nuclei induced showers

• For directional flux search: enhance angular resolution for both nuclei and gamma to reduce the background
Ways to improve gamma sensitivity.

- For diffuse flux: Improve discrimination of gamma and nuclei induced showers

 Construct the function of observables most sensitive to composition using NN *in progress*

- For directional flux search: enhance angular resolution for both nuclei and gamma to reduce the background

this talk
Jan. 22, 2009, 22:54:22 UTC
zenith ~38°

Sample event

Time step 20 ns

relative arrival time [μs]
Event reconstruction

\textit{standard parametric approach}

- **LDF**

\[f(r) = \left(\frac{r}{R_m} \right)^{-1.2} \left(1 + \frac{r}{R_m} \right)^{-(\eta-1.2)} \left(1 + \frac{r^2}{R_1^2} \right)^{-0.6} \]

\[R_m = 90.0 \text{ m}, \; R_1 = 1000 \text{ m}, \; R_L = 30 \text{ m}, \; \eta = 3.97 - 1.79 (\sec (\theta) - 1), \]

\[r = \sqrt{(x_{\text{core}} - x)^2 + (y_{\text{core}} - y)^2}, \]

- **Timing**

\[t_r = t_o + t_{\text{plane}} + a \times (1 + r/R_L)^{1.5} LDF (r)^{-0.5} \]

\[LDF (r) = f (r)/f (800 \text{ m}) \quad S (r) = S_{800} \times LDF (r) \]

Free parameters: \(x_{\text{core}}, y_{\text{core}}, \theta, \phi, S_{800}, t_0, a \)

Observables: \(t_r \) - detector time \(S_r \) - detector integral signal
Event reconstruction

standard parametric approach

Energy estimate

\[E'_{SD} = E'_{SD}(S800, \theta) \]

- table function

\[\log_{10}(S800) \]

\[\sec(\theta) \]

Charge density, [VEM/m²]

Distance from shower axis, [1200m]

r = 800m

S800
Event reconstruction

Machine learning approach

Purpose (ideally): recover primary particle properties (arrival direction, energy, mass, …) as function of observables.

Direct observables in SD:
- Time series of the SD signals

Instruments:
- SD Monte-Carlo (EAS development and detector response)
- Artificial neural network (NN)
 - Can describe any continuous function of input data
 - Can be tuned using examples generated using Monte-Carlo
Event reconstruction

Machine learning approach

Purpose (ideally): recover primary particle properties (arrival direction, energy, mass, …) as function of observables.

In real life:
- observables depend on unknown/random factors
- NN function defines optimal test statistic
- obtain corrections to parametric reconstruction

Observables in SD:
- Time series of the SD signals

Instruments:
- SD Monte-Carlo (EAS development and detector response)
- Artificial neural network (NN)
- Can describe any continuous function of input data
- Can be tuned using examples generated using Monte-Carlo
Method in nutshell

- Extract useful detector features using 1-D convolutions
- Treat detector network as a multichannel image using 2D convolution layers

First proposed:
M. Erdmann, J. Glombitza, D. Walz Astropart.Phys. 97 (2018)
Applied to Pierre Auger geometry with toy Monte Carlo

Track 2 talk
SD reconstruction NN architecture

- **Event data**

- **Dimensions:**
 \[(N, N, T, 2)\]

- **Waveform**

- **Detector layers**

- **N=4-8, T=128-256**

- **Standard SD reconstruction** is used to center image around shower core
SD reconstruction NN architecture

Using 1D + 2D convolutions

Input (4,4,256,2)

1-3 x Conv3D 16x(1,1,4)

Pool3D (1,1,4)

... (4,4,1,16)

Reshape (4,4,16)

1-3 x Conv2D

Pool2D

... (1,1,256)

Flatten (256)

Dense

Output

feature vectors for each detector
SD reconstruction NN architecture

Using 1D + 2D convolutions

Adding extra detector features:

- Exact detector position
- Detector state (on/off/saturated)
- Standard reconstruction parameters (integral signal, timing relative to plane front)
SD reconstruction NN architecture

Using 1D + 2D convolutions

Adding extra event features:
- season and time
- optionally standard reconstruction data (e.g. S_{800})

1-3 x
Input (4,4,256,2)

Conv3D 16x(1,1,4)

Pool3D (1,1,4)

...

(4,4,1,16)

Reshape (4,4,16)

Concatenate (4,4,16+N_d)

1-3 x
Conv2D

Pool2D

...

(1,1,256)

Flatten (256)

Concatenate → Dense → Output

Input (4,4,N_d)

Input (N_{ev})

Concatenate (4,4,16+N_d)
SD reconstruction NN architecture

Using 1D + 2D convolutions

Simplifying task:

Modifying cost function - we calculate correction to standard reconstruction for angles and energy
SD reconstruction NN architecture

Using 1D + 2D convolutions

Further optimisation (optional):

- Use dropout regularization
- Replace heavy 2D-convolutions with depth-wise separable convolutions
- Using residual blocks (shortcuts)
Training the model

- Minimizing mean square error
- Adaptive learning rate (adadelta optimizer \texttt{arxiv 1212.5701})
- Number of training samples $\sim 10^6$ (100 GB data) - do not fit into RAM). hdf container is used in generator API in keras
- Number of weights to learn $10^5 - 10^6$
- Regularization to avoid overfitting:
 - L2
 - dropout
 - noise layers
- Optimizing network architecture hyper-parameters (\texttt{hyperopt} package)
- Hardware: NVIDIA GTX-1080-Ti GPU
- Instruments: python, numpy, tensorflow, keras, h5py
EAS modelling

• MC: CORSIKA

• HE hadronic interactions: QGSJETII-03 (QGSJETII-04 in preparation)

• LE hadronic interactions: FLUKA

• EM processes: EGS4

• Detector response: GEANT4

• Event sampling:
 • Energy sampling E^{-1}
 • Mass composition: H, He, N, Fe (1:1:1:1)
 • Isotropic primary flux with zenith angles < 45 degrees
 • Standard energy spectrum reconstruction cuts applied
How to see that model does job
in presence of unavoidable uncertainty

Explained variance score

\[EV(y, \hat{y}) = 1 - \frac{Var(y - \hat{y})}{Var(y)} \]

\(y \) - true value of quantity being predicted (in our case, error of parametric reconstruction)

\(\hat{y} \) - model estimate of \(y \)
How to see that model does job
in presence of unavoidable uncertainty

Explained variance score

$$EV(y, \hat{y}) = 1 - \frac{Var(y - \hat{y})}{Var(y)}$$

y - true value of quantity being predicted (in our case, error of standard reconstruction)

\hat{y} - model estimate of y

More visually:
Compare error distribution in two approximations
Preliminary results

Zenith angle reconstruction errors

$\Delta \cos(\theta)$ nuclei

$\Delta \cos(\theta)$ photons

$log(E/E_{eV})$
Preliminary results

Energy reconstruction errors (nuclei primaries)

$$\Delta E/E$$

$$\log(E/E_{eV})$$
Conclusion

- NN allows to enhance substantially the accuracy of geometry and energy reconstruction
- Future plans:
 - Build photon-nucleon classifier
 - Investigate influence of cuts, enhance exposure
 - Study impact of systematics (hadronic interaction model, etc.)
 - Try more network architectures
 - Mass composition study
Appendix
Surface Detectors

- 3m² x 1.2cm x 2 layers
- WLSF: φ1mm 2cm spacing
- PMT for each layer

- 12bit 50MHz FADC x 2 layers
- CPU: Renesas SH4(25MHz)
- GPS, WLAN-modem
- Charge controller

wireless LAN 2.4GHz
Solar panel 120W
GPS
Scintillation detector
SD energy from the hadronic models relative to the FD

\[\log_{10}(E_{\text{FD}}) \]

\[\log(E_{\text{MODEL}}/E_{\text{FD}}) \]

--- --- P QGSJET-II.3
--- --- P EPOS
--- --- P QGSJET-II.4
--- --- P QGSJET-I
--- --- P Sybill

SD energy from the hadronic models after normalization at 10^{19} eV

\[\log_{10}(E_{\text{FD}}) \]

\[\log(E_{\text{MODEL}}/E_{\text{FD}}) \text{ (normalized to FD)} \]

--- --- P QGSJET-II.3
--- --- P EPOS
--- --- P QGSJET-II.4
--- --- P QGSJET-I
--- --- P Sybill
Hotspot with 9yr data (>57EeV)

Matthews, ICRC2017 TA highlight

With original 20° oversampling, spot looks larger … Thus, scan over 15°, 20°, 25°, 30° and 35°

With 25° oversampling, significance maximum \(-3\sigma\)

Binsize	15	20	25	30	35					
	Local	Global								
Year 5	5.12	3.14	5.43	3.55	5.16	3.19	4.82	2.73	4.33	2.05
Year 7	4.92	2.84	5.37	3.44	5.65	3.80	5.37	3.44	5.03	2.99
Year 9	4.42	2.06	4.72	2.50	5.06	2.96	5.01	2.91	4.66	2.41
Problem: how to better take absent/not functioning detectors

- The event may occur close to detector network boundary
- Part of detectors may be turned off
Problem: how to better take absent/not functioning detectors

- The event may occur close to detector network boundary
- Part of detectors may be turned off

Dropout, the regularisation method in NN, simulate this situation
Dealing with absent/not working detectors:

Dropout, the regularisation method in NN

Srivastava et. al JMLR 15 (2014)

- In training mode neurons are switched off with probability p
- For $p=0.5$ we train simultaneously 2^n thinned neural networks
- In prediction mode neurons are on but their output weights are multiplied by p (we average predictions of thinned nets)
SD reconstruction NN architecture

Take into account absent/not working detectors

Modified dropout

- Weights are corrected using fraction of working detectors
- In training mode part of the detectors may be switched off as in conventional dropout method
SD reconstruction NN architecture

Naive variant: なう using 3D - convolution

Problem: incomparable scales in t and L

- L unit: 1200 meters
- t unit: 20ns ~ 6 meters

Adjacent detectors waveforms are weakly correlated
Cuts applied on MC samples.

• 1. Each event must include at least 5 counters.
• 2. The reconstructed primary zenith angle must be less than 45°.
• 3. The reconstructed event core must be more than 1200 m from edge of the array.
• 4. Both the timing and lateral distribution fits must have χ^2/degree of freedom value less than 4.
• 5. The angular uncertainty estimated by the timing fit must be less than 5°.
• 6. The fractional uncertainty in S(800) estimated by the lateral distribution fit must be less than 25%.
Neural networks

- Perceptron
- Multilayer perceptron networks
- Overfitting and regularization
- Convolutional neural networks
Perceptron

Combination of perceptrons can be used to build any logical operation

How to find proper weights:

- replace step function with continuous approximation
- adjust weights with gradient decent

\[a = \sigma \left(\sum_{k} w_{j} x_{j} + b \right) \]

\[\sigma(z) \equiv \frac{1}{1 + e^{-z}} \]
Multilayer perceptron (MLP)

Learning by minimising loss function:

\[C(w, b) \equiv \frac{1}{2n} \sum_x \| y(x) - a \|^2 \]

Theorem: any finite continuous function can be approximated with any given accuracy by MLP

Back-propagation algorithm: calculate all derivatives \(\frac{dC}{d\omega_{jk}^l} \) in parallel in one pass
Overfitting

NN may adopt to the particular training set and lose prediction capabilities

Solution: regularisation techniques

- L2 - regularisation \[C(w, b) \rightarrow C(w, b) + \lambda \left(\sum w^2 + \sum b^2 \right) \]
- admixture of random noise to data
- Dropout (see appendix)
Dealing with sequences/images

MLP are not very effective when dealing with high-dimensional data

+ Large input data size
+ Signals in the adjacent pixels are often correlated
+ We want more layers - implement more complex logic
+ We want less weights - easier to train

Convolutional layers

• Small amount of shared nonzero weights (kernel)

\[
\sigma \left(b + \sum_{l=0}^{4} \sum_{m=0}^{4} w_{l,m} a_{j+l,k+m} \right)
\]

• Capture local feature maps
Pooling layer

Scale down the image to capture larger-scale features

- Maximum
- Average
- …

operation:
Convolutional NN architecture

Minimal

Galaxy zoo challenge winner

morphological classification of galaxies based on images