Fueling genome maintenance: On the versatile roles of NAD\(^+\) in preserving DNA integrity

Received for publication, January 19, 2022, and in revised form, May 5, 2022. Published, Papers in Press, May 17, 2022, https://doi.org/10.1016/j.jbc.2022.102037

Joanna A. Ruszkiewicz*, Alexander Bürkle*, and Aswin Mangerich*
From the Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
Edited by Patrick Sung

NAD\(^+\) is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD\(^+\) in mechanisms promoting genome maintenance. Numerous NAD\(^+\)-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD\(^+\) serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD\(^+\) levels.

DNA is constantly exposed to a plethora of damaging factors of both exogenous and endogenous origin, such as replication stress, alkylating and oxidative molecules, or UV radiation. To protect DNA from lesions caused by such stressors and to ensure genomic stability, cells have developed several pathways that recognize and repair specific DNA lesions (Fig. 1). Thus, in particular, small lesions are subject to direct reversal mediated by single proteins, for example, O\(^-\)alkylguanine-DNA alkyltransferase repairs O-alkylated DNA damage, and the alkB homolog dioxygenases reverse N-alkylated base adducts (1). Yet, the majority of repair mechanisms involves multiple events mediated by different proteins and orchestrated in a complex network of DNA repair pathways: base excision repair (BER) targets small lesions like oxidized bases and apurinic/apurinic sites, in a mechanism overlapping with single-strand break repair. Larger nucleotide adducts are removed by nucleotide excision repair, and mismatch repair targets errors produced during DNA replication and recombination. Double-strand breaks (DSBs) are repaired either through homologous recombination or nonhomologous end-joining (NHEJ) comprising a canonical pathway (C-NHEJ) or alternative end-joining (A-EJ). As a comprehensive review of DNA repair pathways falls outside the scope of this article, we refer the reader to other in-depth review articles on this topic (2, 3). The diversity of active repair mechanisms ensures DNA stability, but when it is impaired, the persistence of genomic errors may lead to severe cellular consequences, including senescence and cell death (2). In the long term, inefficient DNA repair and compromised genome maintenance contribute to carcinogenesis and determines the adaptational capacity of cancer cells as well as aging and age-related diseases (4–6).

NAD\(^+\) fulfills multiple cellular roles, ranging from its function as a cofactor in energy production and redox regulation up to various signaling pathways essential for cell survival (7, 8). Interestingly, numerous NAD\(^+\)-dependent reactions are involved in the preservation of genomic stability, cellular response to DNA damage, and other pathways concerning nucleic acids, such as gene expression or cell proliferation. Thus, the cellular NAD\(^+\) status influences genomic stability and sensitivity to DNA-damaging agents (9–13). Of note, NAD\(^+\) depletion in aging and age-related diseases implies supplementation of NAD\(^+\) boosting molecules as a plausible strategy in addressing age-dependent DNA damage (7, 14, 15).

Here, we first introduce the reader to the NAD\(^+\) biosynthesis and major cellular roles of this ubiquitous and versatile molecule. Furthermore, we turn our focus on the NAD\(^+\)-dependent molecular mechanisms involved in mammalian genome maintenance. We concisely review both well-established concepts as well as new findings in the field. Finally, we discuss current controversies around NAD\(^+\)-dependent therapeutic approaches that target various pathophysiological conditions in the light of its role in genome maintenance processes.

NAD\(^+\) biosynthesis

In mammals, NAD\(^+\) is synthesized from various precursors ingested through the diet, such as forms of vitamin B\(_3\): nicotinic acid (NA), nicotinamide (NAM), and nicotinamide riboside (NR); as well as the essential amino acid tryptophan (Trp), which is metabolized via three major pathways: (i) salvage pathway, (ii) de novo pathway, and (iii) Preiss–Handler pathway (Fig. 2). In addition, alternative precursors such as nicotinic acid riboside (NAR) (16), biosynthesis intermediates, such as nicotinamide mononucleotide (NMN) (17), or products of NAD\(^+\) consumption (NAM, NMN, and NR) are...
salvaged to replenish cellular NAD⁺ pools. In order to supply cells with “fresh” exogenous precursors, those can enter the cell during a passive process (e.g., NAM) or via membrane transporters—members of the solute carrier transporter family (for Trp and NA) or equilibrative nucleoside transporter (for NR and NAR). Furthermore, exogenous NMN can be taken up by cells, yet the cellular transport of this precursor molecule remains unclear (18, 19), with some studies suggesting that NMN uptake requires the prior conversion to NR by glycohydrolase, cluster of differentiation 73 (CD73) (20, 21).

The salvage pathway is a primary source of NAD⁺ in mammals (22) (Fig. 2). The first and rate-limiting step in this pathway—conversion of NAM to NMN, catalyzed by nicotinamide phosphoribosyl transferase (NAMPT)—is crucial in cellular NAD⁺ synthesis because numerous NAD⁺-consuming reactions release NAM. The enzyme NAMPT is present both extracellularly (eNAMPT) and intracellularly (iNAMPT) in the cytoplasm and nucleus, whereas its mitochondrial presence is disputed (23). Besides, NMN can be produced during ATP-dependent phosphorylation of NR by nicotinamide riboside kinase (17), and cleavage of the NR glycosidic bond by purine nucleoside phosphorylase produces NAM. Moreover, nicotinamide riboside kinase and purine nucleoside phosphorylase convert NAR to NAMN and NA, respectively, which feed the Preiss–Handler pathway (see later) (24). In the second (and final) step of the salvage pathway, NMN is converted to NAD⁺ by ATP-dependent nicotinamide mononucleotide adenyl transferase (NMNAT). This enzyme in human tissues exists in three isoforms: the most ubiquitous nuclear NMNAT1, cytoplasmic NMNAT2 (25), and mitochondrial NMNAT3, whose function remains controversial (26–28). In addition, NMNAT catalyzes the formation of nicotinic acid adenine dinucleotide (NAAD) from NAMN, which comes from either Preiss–Handler or de novo pathways. In the Preiss–Handler pathway, NAMN is produced from NA by nicotinic acid phosphoribosyl transferase (29). In the de novo pathway, Trp is first transformed to quinolinic acid in the multistep process during the kynurenine pathway, and then quinolinic acid is converted to NAMN by quinolinic acid phosphoribosyl transferase. While originally thought to play a minor role in mammalian NAD⁺ synthesis, it has been recently suggested that the de novo pathway may play an important role in NAD⁺ homeostasis in humans (30, 31). In the final step of both Preiss–Handler or de novo pathways, NAAD is amidated to NAD⁺ by the cytosolic enzyme NAD⁺ synthase, which requires ATP, and ammonia or l-glutamine (32).

Cellular NAD⁺ levels are maintained in the range of 100 μM in the cytoplasm and nucleus and 200 μM in mitochondria (8). Such differences in subcellular NAD⁺ pools reflect its biological functions (see later) and are variable in tissues with different metabolic roles. Similarities in nuclear and cytoplasmic levels are likely because of the passive diffusion of NAD⁺ and its precursors through nuclear pores (33), although the detailed relationships between nuclear and cytoplasmic pools appear to be complex, since depletion of NAD⁺ in one compartment cannot be fully compensated by the other pool (28). As NAD⁺ has an overall negative charge, it is unable to passively cross lipid bilayers in mitochondria and other cellular membranes. Therefore, for a long time, the cytoplasmic/nuclear NAD⁺ pool has been thought to be strictly separated...
from the mitochondrial one, and it remained rather obscure how mitochondria build up their significant intraorganelle NAD$^+$ levels. However, recently, this issue had been at least partially resolved. Thus, in 2020, a series of studies demonstrated the existence of a mitochondrial NAD$^+$ carrier, that is, solute carrier transporter family SLC25A51 (or MCART1), providing mechanistic insight how mitochondria are supplied with NAD$^+$ (28, 34–36).

The extracellular NAD$^+$ presence, around 0.1 µM in mammals (37), is a result of either passive release from damaged cells (38) or active transport, for example, via connexin hemichannels like connexin 43 (39, 40). In turn, extracellular NAD$^+$ can be degraded to precursors that can be taken up into the cell (41). Depending on the individual tissue, NAD$^+$ molecules have a quite variable half-life that varies from 15 min to 15 h (42–44). Therefore, in tissues with high fluxes such as the small intestine and spleen, quick and efficient biosynthesis is necessary to compensate for a rapid cellular consumption via numerous NAD$^+$-dependent ARTDs and SIRTs (see text for details).

Figure 2. NAD$^+$ biosynthesis and major cellular functions. Cellular NAD$^+$ levels are maintained by biosynthesis from dietary precursors: amino acid tryptophan (Trp) and vitamin B3, which comprises nicotinic acid (NA), nicotinamide (NAM), and nicotinamide riboside (NR). Trp is converted to quinolinic acid (QA) in the kynurenine pathway and further by quinolinate phosphoribosyltransferase (QAPRT) into nicotinamide mononucleotide (NAMN). NAMN is also produced from NA in the Preiss–Handler pathway by nicotinic acid phosphoribosyltransferase (NAPRT). Both pathways are completed by the transformation of NAMN into nicotinamide adenine dinucleotide (NAAD) by nicotinamide mononucleotide adenyltransferases (NMNAT1, NMNAT2, and NMNAT3) and further into NAD$^+$ by NAD$^+$ synthetase (NADS). The salvage pathway recycles NAM produced by NAD$^+$-consuming enzymes: sirtuins (SIRTs), ADP-ribosyltransferases (ARTDs), as well NAD$^+$ glycyrhydrases and cysolic ADP-ribose synthases. NAM is transformed by nicotinamide phosphoribosyltransferase (NAMPT) into nicotinamide mononucleotide (NMN), which is then turned into NAD$^+$ via NMNATs. This pathway can be also fueled by NR, derived from diet or from dephosphorylation of nicotinamide mononucleotide (NMM). NAD$^+$ levels are balanced by subcellular compartmentalization of NAD$^+$ synthesis and consumption. In the cytoplasm and mitochondria, NAD$^+$ is utilized via multiple pathways in bioenergetics, maintenance of redox homeostasis, or cell signaling. Whereas the nuclear NAD$^+$ pool contributes in addition to maintenance of genomic homeostasis mainly via the NAD$^+$-dependent ARTDs and SIRTs (see text for details).

Cellular roles of NAD$^+$

Numerous biochemical reactions require NAD$^+$ as a cosubstrate (Fig. 2). NAD$^+$ and its reduced form (NADH) are critical regulators of cellular bioenergetics, serving as cofactors in reactions of glucose metabolism, fatty acid β-oxidation, or...
intracellular trafﬁc, such as signal transduction, energy metabolism, ribosylation (PARylation). ADP-ribosylation is a post-translational modification, which generates a polymer of ADPR (MAR or PAR, respectively) covalently bound to the target molecule. There, NAD⁺ is reduced by pyruvate dehydrogenase complex and the tricarboxylic acid cycle enzymes: malate dehydrogenase, α-ketoglutarate dehydrogenase, and isocitrate dehydrogenase. NAD⁺ is also reduced by hydroxyacyl-CoA dehydrogenase in β-oxidation during fatty acid metabolism. Subsequently generated NADH is the major reducing factor in complex I mitochondria electron transport chain, for the transfer of electrons in oxidative phosphorylation that produces ATP. Thus, the NAD⁺/NADH abundance reﬂects the energy status of the cell (7, 45).

ATP-dependent NAD⁺ kinases (NADKs) in the cytosol (cNADK) and mitochondria (mNADK) phosphorylate NAD⁺ to NADP⁺, which together with its reduced form NADPH, is critical for the maintenance of cellular redox homeostasis. It generates molecules responsible for xenobiotic detoxiﬁcation, for example, cytochrome P450, and eradication of reactive oxygen species (ROS), such as GSH, thioredoxin, or peroxiredoxin (46). NADP⁺ is also a cosubstrate for glucose-6-phosphate dehydrogenase, a key enzyme in the pentose phosphate pathway, which produces precursors for the synthesis of nucleotides and aromatic amino acids. Moreover, it contributes to the synthesis of fatty acids and nicotinic acid adenine dinucleotide phosphate, which serves as a second messenger for intracellular calcium (Ca²⁺) signaling (46, 47). Because of its reducing role, NADP⁺ is found predominantly in the reduced state, with NADP⁺/NADPH ratios 1:200, which contrasts the NAD⁺/NADH ratio of 1000:1 in the cytoplasm and of 10:1 in the mitochondria (48).

In addition to the numerous reactions where NAD(P)⁺/NAD(P)H couples serve as an electron carrier, NAD⁺ can be also irreversibly consumed (Fig. 3). ADP-ribosyl transferases (ARTs) cleave the N-glycosidic bond, which releases NAM and ADP-ribose (ADPR) and further covalently attach the latter to the target molecule. Cholera toxin–like ADP-ribosyltransferases are localized often in the extracellular space and catalyze the addition of a single ADPR unit, called mono-ADP-ribosylation. Diphtheria toxin–like ADP-ribosyltransferases (ARTDs; also called poly-ADP-ribose polymerases [PARPs]) come in three flavors: (i) without any known enzymatic activity, (ii) as mono-ARTs catalyzing mono-ADP-ribosylation, or (iii) as poly-ARTs, catalyzing the attachment of numerous ADPR moieties, forming poly-ADP-ribose (PAR) chains in the process called poly(ADP-ribosyl)ation (PARylation). ADP-ribosylation is a post-translational modiﬁcation that serves multiple cellular functions, such as signal transduction, energy metabolism, intracellular trafﬁcking, or cell death (49–51). Yet, one of its major roles is the maintenance of nuclear homeostasis, regulation of DNA repair mechanism, chromatin remodeling, and transcription (52).

NAD⁺ is also consumed by histone deacetylases known as sirtuins (SIRTs). They use NAD⁺ as an acceptor during the transfer of acetyl (Ac) and other groups from target protein, which is a common post-translational modiﬁcation, implemented in numerous cellular pathways, including those involved in genomic maintenance (53, 54). Another family of NAD⁺ consuming enzymes are glycohydrolases (NADases), such as CD73, CD38, or sterile α and TIR motif–containing 1. Apart from generating ADPR, this enzyme exhibits ADP-ribosyl cyclase activity, which produces cyclic ADPR, a second messenger in Ca²⁺ signaling. For instance, CD38 is a major extracellular NAD⁺ consumer, and its activity has a wide range of implications in the context of infection, metabolic dysfunction, aging, or tumor biology (55, 56). For more information regarding NAD⁺ multiple cellular roles, we refer the reader to recent reviews (7, 43, 45). In further parts of this review, we focus exclusively on NAD⁺-dependent pathways involved in the maintenance of genome integrity.

NAD⁺-dependent processes in genome maintenance

There is now a growing body of evidence that NAD⁺-dependent processes are heavily involved in genome maintenance and DNA repair mechanisms (57). This is exempliﬁed in a study by Kiss et al. (58), demonstrating that CRISPR–Cas9–generated NMNAT1 U2OS knockout cells show reduced intracellular NAD⁺ levels, which was accompanied by hypersensitivity toward DNA-damaging cisplatin treatment. Furthermore, this study revealed that genetic inactivation of NMNAT1 completely blocked PARP1 activation in the nucleus, leading to increased γ-H2AX DNA damage foci formation (58). In addition to PARP1, NAD⁺ also fuels the enzymatic activities of other PARPs involved in genome maintenance, such as PARP2, PARP3, TNKS1 (tankyrase 1), and TNKS2 (tankyrase 2). Those PARPs share NAD⁺ as a substrate with the SIRTs, of which some family members, such as SIRT1, SIRT6, and SIRT7, are directly involved in genome maintenance (59). Because of a functional and physical interplay between NAD⁺, PARPs, and SIRTs, the existence of a PARP–NAD–SIRT axis has been proposed that actively supports DNA repair mechanisms (57). In addition, DNA ligases (LIGs) have been suggested as a third class of enzymes that may use NAD⁺ as a substrate to support DNA repair (60). In the following paragraphs, we summarize and discuss the current state of the art on the role of NAD⁺ in functions of these enzymes during genome maintenance.

ARTDs (aka PARPs)

ARTDs (aka PARPs) are the major consumers of cellular NAD⁺. ARTDs use NAD⁺ to synthesize a monomer or polymer of ADPR (MAR or PAR, respectively) covalently attached to the target molecule. Thereby, ARTDs modify protein residues (Ser, Asp, Glu, Arg, and Lys) or terminal phosphates at DNA breaks (61, 62). During the process, the N-glycosidic bond of NAD⁺ is cleaved and NAM is released.
The elongation of PAR chains involves the formation of the glycosidic bond between two riboses: 2′–1′ for linear chains and 1′–2′ for branched molecules and can involve up to 200 ADPR units (Fig. 3A). Although PARylation is reversible, NAD+ is not restored—PAR chains are degraded by poly(ADP-ribose) glycohydrolase to free PAR and/or ADPR molecules because of the cleavage of O-glycosidic bond. The terminal protein-ADPR moiety is cleaved by ADP-ribosyl hydrolases, the macrodomain containing proteins MacroD1/2, or the terminal ADP-ribose protein glycohydrolase 1 (TARG1) (63). The highly dynamic process of PARylation serves multiple cellular roles, including regulation of cellular stress response, survival, energy metabolism, inflammation, host–virus interactions, and many more, as reviewed elsewhere (49, 50). Furthermore, major roles of ARTDs are detection of DNA damage and facilitation of DNA repair and other nuclear mechanism maintaining genomic integrity (52, 64).

The first member identified within the ARTD family, that is, PARP1, accounts for the majority of PARylation activity, both constitutively and upon hyperactivation during DNA damage, when it consumes up to 80% of the nuclear NAD+ pool (65–67). PARP1 acts as a DNA nick sensor, which recognizes, binds to, and becomes activated by DNA strand breaks, and catalyzes immediate PAR synthesis, including autoPARylation (52, 64, 68–70). That serves as a scaffold for the recruitment of factors involved in different DNA repair mechanism, such as single-strand break repair /BER (e.g., X-ray repair cross-complementing protein 1 [XRCC1]) (71), homologous recombination (e.g., breast cancer type 1 susceptibility protein [BRCA1]), (72) or NHEJ (e.g., DNA-dependent protein kinase catalytic subunit, DNA-PKcs) (73) (more examples can be found in Table 1). PARP1 is recruited to stalled replication forks and helps to stabilize those during DNA damage repair (74, 75). PARP1-mediated PARylation of histone tails results in chromatin relaxation and recruitment of chromatin.
may cause severe depletion of cellular NAD+ levels. ATP-chinery. But if the damage is extensive, hyperactivation of PARP contributes to cell survival by mobilizing the DNA repair machinery (92). If DNA damage is low, PARP1 activation linked to patho-mechanisms of numerous disorders and cancer (91), which has been shown to regulate numerous steps in mechanisms maintaining RNA stability, processing, and translation (84, 87). Moreover, PARylation have been also shown to regulate numerous steps in mechanisms maintaining transcription (85, 86). Further, PARP1 can act as a multitasking transcriptional regulator by binding to promoter sequence of transcription factors (e.g., NF-kB) or to transcription enhancers (e.g., cAMP response element—binding protein) (77, 78). PARP1 activity inhibits the negative elongation factor (NELEF), thereby facilitating transcript elongation (79). Other ARTDs family members, particularly PARP2, PARP3, TNKS1, and TNKS2 exhibit partly overlapping as well as non-redundant functions with PARP1 (Table 1). For a detailed discussion, we refer the reader to previous reviews focusing on the role of ARTDs in DNA damage repair (51, 52, 80). Of importance, PARP1 overactivation is believed to determine the fate of the cell following DNA damage (91), which has been linked to patho-mechanisms of numerous disorders and cancer development (92). If DNA damage is low, PARP1 activation contributes to cell survival by mobilizing the DNA repair machinery. But if the damage is extensive, hyperactivation of PARP may cause severe depletion of cellular NAD+ levels. ATP-dependent NAD+ re-synthesis can lead to an energy crisis and metabolic shifts (e.g., impaired glycolysis, stimulation of pentose phosphate pathway) which cause cellular damage and subsequent cell death via necrosis (93). Furthermore, PARP1 regulates p53 activity (94), which initiates caspase-dependent apoptosis, although in the later phase nuclear caspases cleave PARP1, thereby inactivating it and preventing the decline of ATP, which is required for the execution of apoptosis (49, 95). Besides, PAR initiates caspase-independent apoptosis known as parthanatos.

Table 1

Class of enzymes	Specific NAD+ consuming members followed by target proteins
ARTDs	PARP1: ATM (236), BRCA1 (72), CHD (227), DDR1–DDR2 (228), DNA-Pkcs (73), FUS (229), LIG III (230), MRN (74), NELF (79), RECQ1 (75), SAFB1 (231), SMARCA5 (76), TP1 (232), Timeless (233), XPA (234), and XRCC1 (71)
	PARP2: H1P1 (235), PARP1, and XRCC1 (236)
	PARP3: APLF (237), DNA-Pkcs, LIG IV, Ku70, Ku80, XRCC4 (238), NuMA, and TNKS1 (239)
	PARP9: BRAP (240)
	PARP10: PCNA and RAD51 (241)
	PARP14: PCNA (242)
	TNKS1: MDC1 (243) and MERIT40 (244)
	TNKS2: MDC1 (243)
SIRTs	SIRT1: APE1 (245), Ku70 (246), NBS1 (247), TDG (248), WRN (249), and XPA (250)
	SIRT2: ATRIP (145), CDK9 (251), and H3 (142)
	SIRT3: Ku70 (146), OGG1 (148), and RAD52 (147)
	SIRT6: DNA-Pkcs (McCord et al., 2009), H3 (123), Ku80 (Chen et al., 2017), and PARP1 (133, 166)
	SIRT7: ATM (136), CDK9 (139), H3 (124, 134)
NAD+–dependent LIG	LIG IV (60)

remodeling proteins, such as SMARCA5 (SWI/SNF related, matrix associated, actin-dependent regulator of chromatin, subfamily A, member 5) facilitating DNA repair (76). Moreover, such chromatin modifications may alter transcription.

Table 1

Specific NAD+ consuming members followed by target proteins
PARP1: ATM (236), BRCA1 (72), CHD (227), DDR1–DDR2 (228), DNA-Pkcs (73), FUS (229), LIG III (230), MRN (74), NELF (79), RECQ1 (75), SAFB1 (231), SMARCA5 (76), TP1 (232), Timeless (233), XPA (234), and XRCC1 (71)
PARP2: H1P1 (235), PARP1, and XRCC1 (236)
PARP3: APLF (237), DNA-Pkcs, LIG IV, Ku70, Ku80, XRCC4 (238), NuMA, and TNKS1 (239)
PARP9: BRAP (240)
PARP10: PCNA and RAD51 (241)
PARP14: PCNA (242)
TNKS1: MDC1 (243) and MERIT40 (244)
TNKS2: MDC1 (243)

Table 1

Specific NAD+ consuming members followed by target proteins
PARP1: ATM (236), BRCA1 (72), CHD (227), DDR1–DDR2 (228), DNA-Pkcs (73), FUS (229), LIG III (230), MRN (74), NELF (79), RECQ1 (75), SAFB1 (231), SMARCA5 (76), TP1 (232), Timeless (233), XPA (234), and XRCC1 (71)
PARP2: H1P1 (235), PARP1, and XRCC1 (236)
PARP3: APLF (237), DNA-Pkcs, LIG IV, Ku70, Ku80, XRCC4 (238), NuMA, and TNKS1 (239)
PARP9: BRAP (240)
PARP10: PCNA and RAD51 (241)
PARP14: PCNA (242)
TNKS1: MDC1 (243) and MERIT40 (244)
TNKS2: MDC1 (243)

NAD+–dependent LIG | LIG IV (60) |

Fragments of PAR, released through poly(ADP-ribose) glycylation activity, act as signaling molecules that can be distributed to subcellular compartments and attached to various targets. Binding of PAR fragments to mitochondrial apoptosis-inducing factor (AIF) promotes its nuclear translocation, initiation of large-scale DNA fragmentation, and subsequently cell death (49, 96). Interestingly, knock-in mice expressing a PARP1 variant (PARP1^{999A}) resulting in hypo-PARylation activity and the formation of hypobranched PAR, revealed compromised genotoxic stress response during replication and led to a shift of the cell fate of mouse embryonic fibroblasts after genotoxic treatment away from DNA repair towards cell death and senescence (97). By these mechanisms, activation of PARP1 after DNA damage, may serve as a molecular switch to determine the post-damage cell fate in terms of DNA repair, cell death, or senescence.

There is room for speculation that besides the quality and quantity of the genotoxic stress, the local and systemic availability of NAD+ contributes to such PARylation dependent cell fate decision making. What speaks in favor for such a hypothesis is that PARP1 activity is tightly regulated by the availability and accessibility of NAD+. The Michaelis-Menten constant <i>K_m</i>(NAD+) for major PARPs are similar to or higher than the concentration of free NAD+, which indicates that NAD+ levels in different subcellular compartments can significantly affect the activity of PARP1 and other PARP family members (98). Under normal conditions, PARP1 has limited NAD+ binding ability that accounts for the basal (unstimulated) PARP1 activity, but upon DNA damage, PARP1 interaction with DNA strand breaks leads to allosteric changes that allow full NAD+ access to its catalytic site and promotes activation of the enzyme (99). Interestingly, PARP1 activity also stimulates NAD+ synthesis, i.e., autoPARylated PARP1 has been shown to bind to NMMAT1, which may provide NAD+ to support PARP1 catalytic activity, but also stimulate PARP1 independently of NAD+ synthesis (100). Thereby, the interplay between PARP1 and NMMAT1 depends on the phosphorylation state of NMMAT1, which is subject to phosphorylation by protein kinase C (101). Moreover, in response to DNA damage, PARylation has been shown to stimulate the expression of salvage pathway enzymes NAMPT and NMMAT1 (102). Besides, a negative feedback mechanism that prevents excessive depletion of NAD+ by PARP1 upon DNA damage has been observed—decreased NAD+ levels promoted the binding of PARP1 to DBC1 (deleted in breast cancer 1), a potential tumor suppressor, which inhibits PARP1 activity and leads to DNA damage accumulation (103). Moreover, the NAD+–PARP1 interplay fosters crosstalk between subcellular compartments. Nuclear PARP1-dependent NAD+ depletion may impact NAD+ metabolism in distant regions of the cell (104). On the other hand, mitochondrial (105) and extracellular (21) pools of NAD+ have been demonstrated to influence nuclear PARP1 activation and DNA repair. Such observations indicate a complex, multilayer NAD+–PARP1 interaction. Taken together, the NAD+–dependent PARylation has been well established as a critical regulator of DNA damage repair factors, triggering chromatin structural changes, modulating the recruitment of

JBC REVIEWS: NAD+ in preserving DNA integrity
transcription factors, modulating post-transcriptionally the stability of mRNAs, or interfering with mitotic events.

SIRTs

SIRTs (SITRs) are NAD⁺-dependent deacetylases associated with longevity, aging, and age-related pathologies (106, 107). SIRTs catalyze the removal of an acetyl group from protein lysine (Lys) residues, using NAD⁺ as an acetyl acceptor. During the process cleavage of NAD⁺ N-glycosidic bond releases NAM and the ADPR moiety is covalently attached to the acetyl group on the Lys. Then, the cleavage between acetyl and amino group produces 2-O-acetyl-ADPR (OAADPR) and deacetylated protein (Fig. 3B) (8, 108). In mammals, seven homologs are distributed within the cell in the nucleus (SIRT1, 6, 7), cytoplasm (SIRT2), and mitochondria (SIRT3, 4, 5) (109), and the shuttle between cellular compartments has been observed in response to pathological conditions (110, 111). While deacetylation accounts for the main activity, some SIRT family members have been shown to catalyze ADP-ribosylation or removal of different acyl groups, such as malonyl, glutaryl, succinyl, propionyl, myristoyl, and palmitoyl (112, 113). Owing to their wide involvement in post-translational modification, SIRTs are recognized as regulators of diverse biological processes, including energy metabolism (114, 115), inflammation (116), circadian rhythm control (117), redox homeostasis (118), autophagy (119), apoptosis (120), as well as genomic stability (53, 54), and tumorigenesis (108).

Analogously to PARPs, nuclear SIRTs contribute to genome integrity and DNA repair at numerous levels (Table 1). SIRT1 (121, 122), SIRT6 (123), and SIRT7 (124) deacetylate histones leading to the formation of higher-order chromatin compaction, which decreases accessibility for transcription factors. SIRT1 has been shown to directly deacetylate transcription factors, including p53 (125), NF-κB (126), or CAMP response element-binding protein (127), and has been implicated in other aspects of DNA integrity, including replication (128), recombination, DNA damage repair, and tumorigenesis (54, 129). Likewise, SIRT6 (130–133) and SIRT7 (134) also regulate proteins involved in DNA damage repair. For example, SIRT7 is recruited to DSBs in a PARP1-dependent manner and catalyze H3K122 desucinylation causing chromatin condensation facilitating damage repair (135). SIRT7-mediated H3 deacetylation affects the accumulation of the DNA damage response factor 53BP1 (134), and direct deacetylation of ataxia–telangiectasia mutated (ATM) kinase promotes activation of various components of DNA damage response (136). SIRT7 has been also implicated in the regulation of ribosome biogenesis and protein synthesis (137) as well as RNA stability (138, 139).

SIRT6 association with H3 telomeres has been shown to facilitate the stability of telomeric chromatin (140). Albeit non-nuclear SIRTs have been involved predominantly in the regulation of metabolic homeostasis (107, 141), evidence on their role in genome maintenance is growing. SIRT2 shuttle between cytoplasm and nuclei under pathological and stress conditions has been implicated in the regulation of transcription (142), chromatin condensation during mitosis (111), and DNA damage response (143–145). SIRT3-mediated deacetylation of Ku70 (146) or RAD52 (147) points to its role in DSBR, whereas modification of 8-oxoguanine-DNA glycosylase 1 (OGG1) facilitates the excision of 7,8-dihydro-8-oxoguanine (8-oxoG) from damaged mitochondrial DNA (148). Overall, the broad and complex involvement of SIRT family members in genomic maintenance is well established and has been a subject on recent reviews (53, 54, 59, 149, 150).

Like PARPs, the activities of SIRTs are tightly regulated by NAD⁺ availability (151, 152), and age-associated decline in NAD⁺ levels and subsequent decrease in SIRT activity have been implicated in the pathogenesis of numerous aging-related diseases (107, 114). Targeting NAD⁺ biosynthesis enzymes such as NAMPT or NMNAT modulate SIRT activity (153, 154). Thus, increased dosage of NAMPT enhanced the transcriptional regulatory activity of the catalytic domain of SIRT2 recruited onto a reporter gene in mouse fibroblasts (153). Furthermore, NMNAT-1 has been shown to interact with SIRT1 in MCF-7 breast cancer cells and was recruited to target gene promoters by SIRT1 to support its deacetylase activity and transcriptional regulation (154). Experiments in mice suggested that modulation of NAD⁺ biosynthesis via the *de novo* synthesis pathway and the salvage synthesis pathway activated SIRT1 and prevented ototoxicity of the DNA damaging chemotherapeutic cisplatin (155). In turn, SIRTs affect NAD⁺ biosynthetic pathways to promote an increase in NAD⁺ levels (154, 156), albeit they consume a significantly lower amount of NAD⁺ than PARPs (8). NAMPT was identified as a direct substrate of SIRT6 deacetylation, with a mechanism that upregulates NAMPT enzymatic activity in the cancer cell lines BxPC-3 and MCF-7 (156). Interestingly, SIRT1, but not ARTDs, has been showed to maintain NAD⁺ homeostasis in conditions of excess NAD⁺ availability—SIRT1 silencing prevented intracellular NAD⁺ resetting under prolonged extracellular NAD⁺ exposure in HeLa cells (157).

In addition, a complex interplay between SIRTs and ARTDs occurs, since the enzymes compete for NAD⁺ as a substrate (158, 159). SIRT1 activity seems to be more affected by fluctuating NAD⁺ levels than PARP1 activity, whereas PARP1 displays a higher catalytic turnover of NAD⁺ than SIRT1 (158) that might lead in consequence to reduced SIRT1 activity during PARP1 overactivation following DNA damage (160). SIRT1 (161) and SIRT3 (162) deacetylate PARP1, which blocks its catalytic activity. Moreover, PARP1 and SIRT6 have been shown to bind to each other, which was potentiated by DNA damage (163). Besides crossmodifications, there is evidence on transcriptional coregulation—SIRT1 has been shown to negatively regulate the PARP1 promoter (164), whereas the SIRT1 promoter has been shown to be regulated by PARP2 (165). That adds an additional dimension to SIRT–ARTD crosstalk via coregulation of common pathways and targets in maintaining genomic integrity (133, 166).

NAD⁺-dependent DNA LIGs

In prokaryotes, DNA LIGs can catalyze the ATP/NAD⁺-dependent formation of phosphodiester bonds between...
adjacent DNA strands, required in the process of replication, recombination, and DNA repair (167). The reaction is initiated by an active site Lys, which attacks the α-phosphate moiety of either ATP or NAD⁺ to form a covalent enzyme–AMP intermediate, and the release of either pyrophosphate (from ATP), or NMN (from NAD⁺). Upon binding to nicked DNA, the AMP moiety is transferred from the Lys to the 5′-phosphate end. Subsequently, the hydroxyl group at 3′-OH attacks the adenylated 5′-phosphate (5′-PO₄) to establish the new phosphodiester bond between the two ends, which releases AMP and finalizes the ligation (Fig. 3C) (168, 169).

Mammalian cells have three genes encoding for DNA LIGs—LIGI, LIGIII, and LIGIV, which are essential for normal development and survival (170–172). Previously, they have been known to use only the ATP for the adenylation, unlike some archaean LIGs, which utilize either ATP or NAD⁺ (169, 173). Of note, a recent study showed that human LIG IV, involved in the final step of NHEJ, indeed can use NAD⁺ as an alternative substrate for double-stranded DNA ligation (60).

Although this finding has been doubted in a subsequent study (174) and requires further confirmation, it questions the exclusiveness of NAD⁺-dependent LIGs in prokaryote and points out a potential caveat in the concept to target them in a novel generation of antibiotics (175).

NAD⁺-dependent cellular homeostasis

Besides direct reactions mediated by NAD⁺-dependent enzymes, NAD⁺ affects genomic integrity through the maintenance of cellular homeostasis, such as energy production, redox balance, or Ca²⁺ levels. The efficiency of mechanisms involved in genomic stability depends greatly on energy. ATP is required for chromatin expansion, mediated by chromatin remodelers, for example, chromodomain helicase DNA-binding or switch/sucrose nonfermentable (SWI/SNF) (176, 177), which facilitates the recruitment of DNA repair proteins or gene expression. Numerous molecules involved in DNA damage signaling and repair are ATP dependent: DNA LIGs (178), kinases, for example, ATM, ataxia–telangiectasia and Rad3 related (ATR), DNA-PKcs (179, 180), or ATPases such as DNA-binding protein Rad50 (181). Likewise, numerous steps in genome expression and cell division are energy dependent (182, 183).

Disrupted redox balance and accumulation of ROS are major effectors in genotoxic stress. ROS induce DNA damage by oxidation of nucleobases, especially adenine and guanine (8-oxoA and 8-oxo-G), impair the activity of molecules regulating DNA damage response, DNA repair, and other nuclear processes, and influence the activity of transcription factors, modulating gene expression. Such a wide array of ROS-induced alterations affects genomic integrity, contribute to mutagenesis, and cell death (4, 184–186). An interesting example linking NAD⁺-dependent energy and redox homeostasis with genome maintenance is GAPDH. When oxidized by ROS, it acquires nonglycolytic functions and translocates to the nucleus, where it contributes to the maintenance of DNA integrity, transcriptional regulation, and tRNA export (187).

NAD⁺-derived cyclic ADPR regulates Ca²⁺ signaling (55, 56), which is another important factor in DNA integrity. Dysregulated Ca²⁺ homeostasis leads to mitochondrial accumulation of ROS and subsequently DNA damage (188). Ca²⁺ stimulates proteins involved in DNA damage repair (189, 190), mRNA stability (191), and mitosis (192, 193). Thus, dysregulation of NAD⁺-dependent homeostasis is often deleterious and linked to diseases and cancer (4, 194, 195).

NAD⁺ supplementation in maintaining genomic stability

Numerous studies confirmed that NAD⁺ status and its supplementation affect genomic stability, DNA repair, and sensitivity to cytotoxic effects of DNA-damaging agents or associated diseases. For instance, Kirkland et al. in a number of seminal articles have demonstrated that in rat bone marrow niacin is required for the maintenance of chromosomal stability and facilitates PARP-mediated DNA repair when challenged by the chemotherapy drugs etoposide (12) and ethylnitrosourea (13, 196–199). These data suggest that niacin supplementation might be beneficial for cancer patients in decreasing the severity of the side effects of chemotherapy (200). NAM supplementation ameliorated the DNA damage induced by exposure of human lymphocytes to various genotoxins, UV irradiation, N-methyl-N-nitro-N-nitroso guanidine, or dimethyl sulfate, ex vivo (201). Our group showed that NA supplementation increased DNA repair efficiency and enhanced genomic stability after X-ray exposure in human peripheral blood mononuclear cells ex vivo (10). NR, investigated extensively by Bohr et al., has shown numerous beneficial effects in aging-related and DNA repair–deficient disease models. Xeroderma pigmentosum group A (XPA) is a disorder associated with decreased ability to repair DNA via nucleotide excision repair. NR treatment ameliorated numerous endpoints in mitochondrial dysfunction in XPA protein–deficient cells and rescued the life span defect in XPA–1–deficient Caenorhabditis elegans (202). Analogously, NR treatment stimulated neuronal DNA repair and improved mitochondrial quality in animal models of ataxia–telangiectasia, a disease linked to ATM deficiency. Moreover, NR supplementation reduced the neuropathological and neurobehavioral disease outcomes and extends the animal life span (203). Cockayne syndrome (CS) is a segmental accelerated aging disorder characterized by progressive neurodegeneration caused by a deficiency of DNA repair proteins CS group A or B. In CS models, because of deficient DNA repair, PARP overactivation leads to decreased cellular NAD⁺ levels and subsequently decreased SIRT1 activity and mitochondrial dysfunction. One-week-long NR treatment reduced CS-associated increased mitochondrial membrane potential or ROS production and normalized the cerebellar transcriptome involved in the mitochondrial pathways, oxidative stress, transcription, DNA repair, DNA damage response, and histone acetylation in CS mice (204). In a mouse model of Alzheimer’s disease (3xTgAD mice), which in addition lack the BER enzyme DNA polymerase β, an exacerbation of major Alzheimer’s disease...
features was ameliorated by NR supplementation, such as DNA damage, neuroinflammation, neuronal apoptosis, decreased SIRT3 activity, increased PARP1 activity, but NR also improved cognitive function in multiple behavioral tests and restored hippocampal synaptic plasticity (205). Moreover, short-term NR supplementation prevented the hearing loss in CS mice (206). NR restored mitochondrial quality via mitophagy and delayed accelerated aging in C. elegans and Drosophila melanogaster models of Werner syndrome, a disease caused by mutations in the gene encoding the Werner syndrome (WRN) DNA helicase (207). Furthermore, NR treatment attenuated age-associated and functional changes in hematopoietic stem cells in mice, which was accompanied by significant transcriptional changes of genes involved in DNA damage response and DNA repair (208). Such well and extensively documented benefits of NAD⁺ supplements, particularly NR, imply the universal therapeutic application of these compounds in treating diseases associated with impaired genomic stability. However, because of the complex and still not completely understood cellular function of NAD⁺, the translation to humans remains challenging.

Yet, what has been shown in humans by now is that supplementation with NR ameliorated telomere damage, and several other endpoints of the pathophysiology of dyskeratosis congenita evaluated in primary fibroblasts from dyskeratosis congenita patients (209). Moreover, phase 2 and 3 clinical studies in high-risk patients receiving 500 mg of NAM twice daily for up to 12 months significantly reduced the rates of nonmelanoma skin cancers and actinic keratoses by 10 to 30% compared with placebo control groups. These studies impressively indicate the chemopreventive potential of NAM treatment (210, 211). However, as discussed in the next section, several caveats must be taken into account, when considering the broader use of NAD⁺ boosting molecules as genoprotective agents in humans.

A double-faced role of NAD⁺ in genome maintenance

With a broad (and constantly growing) number of mechanisms relying on NAD⁺, maintaining its cellular pool emerges as critical to ensure genome integrity and expression. That becomes particularly important in the light of age-related NAD⁺ decline. Therefore, boosting NAD⁺ levels has been considered as a potential therapeutic or preventive factor in multiple pathological conditions (212). In laboratory conditions, supplementation with NAD⁺ precursors, such as NR and NMN, has been shown beneficial against aging and age-related diseases (213, 214). Similar effects have been reached by approaches aiming to increase NAD⁺ levels and metabolism via caloric restriction, intermittent fasting, or exercise (7, 106). However, these promising preclinical studies are not easily translated to humans (215). The reason for that might be the complexity of the cellular roles of NAD⁺. For example, the involvement of NAD⁺ in numerous redox reactions may be detrimental for cellular homeostasis when exposed to supra-physiologic NAD⁺ levels (98).

Another issue regarding supplementing NAD⁺ involves the risk of fueling cancer cells. Increased metabolic demands of rapidly growing cancer cells require more NAD⁺ (216). The proliferation-promoting shift toward lactate fermentation in the cytoplasm and reduced oxidative phosphorylation in mitochondria (i.e., the Warburg effect) (217) may impair the NAD⁺/NADH ratio. High NAD⁺ levels may lead to cancer promotion (218). Numerous genes, associated with NAD⁺ biosynthesis and metabolism, have been identified as promoting tumor development, for example, NAMPT (219, 220), nicotinic acid phosphoribosyl transferase (221, 222), NADK (47), which makes them promising targets in cancer therapy. [NB: Yet, NAD⁺ supplementation has also been shown to reduce the incidence and size of tumors (223, 224).] Besides, NAD⁺-consuming enzymes, such as PARPs and SIRTs, play a complex role in cancer development. Under normal conditions, their beneficial role in the maintenance of genome integrity prevents the occurrence of cancer-driving mutations. But at conditions, when tumor already exists, their activity may promote cancer development and resistance to treatment. In such cases, enhancing NAD⁺ levels might have a tumor-promoting effect (14, 225).

Concluding remarks

Although our understanding of the role of NAD⁺ in nucleic acid maintenance has significantly expanded during recent years, the complexity of NAD⁺ cellular functions makes this topic of relevance in future studies. Many aspects of NAD⁺ metabolism remain unresolved, such as cell type–specific differences or subcellular compartmentalization. Topics, such as the role of NAD⁺ in mitochondrial DNA repair, or NAD⁺ capping, are yet poorly studied and deserve further exploration. Equally important is an understanding and evaluation of the risk–benefit ratio associated with elevating NAD⁺ levels, which may act as a double-edged sword in the context of maintaining DNA integrity and overall NAD⁺-dependent cellular homeostasis. It will be exciting to see how future studies will provide a deeper understanding of these mechanisms.

Acknowledgments—The experimental work in our group has been supported by grants from the German Ministry of Defense (grant numbers: E/U2AD/ID015/IF561 and E/U2CB/EA199/EF552) as well as the German Research Foundation (DFG, grant number: MA-4905/4-1).

Author contributions—J. A. R. and A. M. conceptualization; J. A. R. writing–original draft; J. A. R., A. B., and A. M. writing–review & editing; A. B. and A. M. funding acquisition.

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: ADPR, ADP-ribose; ART, ADP-ribosyl transferase; ARTD, diphtheria toxin–like ADP-ribosyltransferase; ATM, ataxia–telangiectasia mutated; BER, base excision repair; CD, cluster of differentiation; CS, Cockayne
syndrome; DSB, double-strand break; LIG, ligase; NA, nicotinic acid; NAD, nicotinamide adenine dinucleotide; NADK, NAD+ kinase; NAM, nicotinamide; NAMPT, nicotinamide phosphoribosyltransferase; NAR, nicotinic acid riboside; NHEJ, nonhomologous end-joining; NMN, nicotinamide mononucleotide; NMMAT, nicotinamide mononucleotide adenyl transferase; PAR, poly-ADP-ribose; PARP, poly-ADP-ribose polymerase; PARylation, poly(ADP-ribose)ation; ROS, reactive oxygen species; SIRT, sirtuin; Trp, tryptophan; XPA, xeroderma pigmentosum group A.

References
1. Eker, A. P., Quayle, C., Chaves, I., and van der Horst, G. T. (2009) DNA repair in mammalian cells: direct DNA damage reversal: elegant solutions for nasty problems. Cell Mol Life Sci. 66, 968–980
2. Jackson, S. P., and Bartek, J. (2009) The DNA-damage response in human biology and disease. Nature 461, 1071–1078
3. Scully, R., Panday, A., Elango, R., and Willis, N. A. (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell. Biol. 20, 698–714
4. Srinivas, U. S., Tan, B. W. Q., Vellayappan, B. A., and Jayasekharan, A. D. (2019) ROS and the DNA damage response in cancer. Redox Biol. 25, 101084
5. Petr, M. A., Tulika, T., Carmona-Marín, L. M., and Scheibe-Knudsen, M. (2020) Protecting the aging genome. Trends Cell Biol. 30, 117–132
6. Schumacher, B., Pothof, J., Vlij, J., and Hoeijmakers, J. H. J. (2021) The central role of DNA damage in the ageing process. Nature 592, 672–678
7. Katsumi, Y., Romani, M., Hofer, D., and Auswirx, J. (2020) NAD(+) homeostasis in health and disease. Nat. Metab. 2, 9–31
8. Kulkarni, C. A., and Brookes, P. S. (2019) Cellular compartmentation and the redox/nonredox functions of NAD. Antioxid. Redox Signal. 31, 623–642
9. Durkacz, B. W., Omidji, O., Gray, D. A., and Shull, S. (1980) ADP-ribose participates in DNA excision repair. Nature 283, 593–596
10. Weidele, K., Beneke, S., and Burkle, A. (2017) The NAD(+) precursor nicotinic acid improves genomic integrity in human peripheral blood mononuclear cells after X-irradiation. DNA Repair (Amst) 52, 12–23
11. Weitberg, A. B. (1989) Effect of nicotinic acid supplementation in vivo on oxygen radical-induced genetic damage in human lymphocytes. Mutat. Res. 216, 197–201
12. Spronck, J. C., and Kirkland, J. B. (2002) Niacin decompartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenyltransferase isoforms. J. Biol. Chem. 280, 36334–36341
13. Yamamoto, M., Hikosaka, K., Mahmooh, A., Tohe, K., Shojaku, H., Inohara, H., et al. (2016) Nmnat3 is dispensable in mitochondrial NAD level maintenance in vivo. PLoS One 11, e0147037
14. Ziegler, M., Monné, M., Nikiforov, A., Agrimi, G., Heiland, I., and Palmieri, F. (2021) Welcome to the family: identification of the NAD+-transporter of animal mitochondria as member of the solute carrier family SLC25. Biochimie 134, 88–93
15. Piasecka, K., Caffà, L., Ravaer, S., Sociali, G., Passalacqua, M., Vellone, G., et al. (2017) Nicotinic acid phosphoribosyltransferase regulates cancer cell metabolism, susceptibility to NAMPT inhibitors, and DNA repair. Cancer Res. 77, 3857–3869
16. Shi, H., Enríquez, A., Rapadas, M., Martin, E., Wang, R., Moreau, J., et al. (2017) NAD deficiency, congenital malformations, and niacin supplementation. New Engl. J. Med. 377, 544–552
17. Poyan Mehr, A., Tran, M. T., Ralco, K. M., Leaf, D. E., Washco, V., Messner, J., et al. (2018) De novo NAD(+) biosynthetic impairment in acute kidney injury in humans. Nat. Med. 24, 1351–1359
18. Hara, N., Yamada, K., Terashima, M., Osago, H., Shimoyma, M., and Tsuchiya, M. (2003) Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency. J. Biol. Chem. 278, 10914–10921
19. Cambronero, X. A., Stewart, M. L., Kim, D., Jones-Brunette, A. M., Morgan, R. K., Farrens, D. L., et al. (2016) Biosensor reveals multiple sources for mitochondrial NAD(+) Science. 352, 1477–1477
20. Girardi, E., Agrimi, G., Goldmann, U., Fiume, G., Lindinger, S., Sedlyarov, V., et al. (2020) Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import. Nat. Commun. 11, 6145
21. Kory, N., Uit de Bos, J., van der Rijt, S., Jankovic, N., Gura, M., Arp, N., et al. (2020) MCA RT1/SLC25A51 is required for mitochondrial NAD transport. Sci. Adv. 6, eabe5510
22. Luongo, T. S., Eller, J. M., Lu, M. J., Nieme, R., Raith, F., Perry, C., et al. (2020) SLC25A51 is a mammalian mitochondrial NAD(+) transporter. Nature 588, 174–179
23. Davies, C. A., Perrett, D., Zhang, Z., Nielsen, B. R., Blake, D. R., and Winyard, P. G. (1999) Simultaneous analysis of nitrite, nitrate and the nitric oxide metabolites nitroso compounds by capillary electrophoresis: application to biochemical studies and human extracellular fluids. Electrophoresis 20, 2111–2117
24. Haag, F., Adrienouch, S., Brass, A., Jung, C., Möller, S., Scheuplein, F., et al. (2007) Extracellular NAD and ATP: partners in immune cell modulation. Purinergic Signal. 3, 71–81

JBC REVIEWS: NAD+ in preserving DNA integrity

19. Schmidt, M. S., and Brenner, C. (2019) Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nat. Metab. 1, 660–661

20. Kulikova, V., Shabalin, K., Nerinovski, K., Yakimov, A., Svetlova, M., Soloveyva, L., et al. (2019) Degradation of extracellular NAD(+) intermediates in cultures of human HEK293 cells. Metabolites 9, 293

21. Wilk, A., Hayat, F., Cunningham, R., Li, J., Garavaglia, S., Zamani, L., et al. (2020) Extracellular NAD(+) enhances PARP-dependent DNA repair capacity independently of CD73 activity. Sci. Rep. 10, 651

22. Magni, G., Amici, A., Emanuelli, M., Raffaelli, N., and Ruggieri, S. (1999) Enzymology of NAD+ synthesis. Adv. Enzymol. Relat. Areas Mol. Biol. 73, 135–182

23. Garten, A., Schuster, S., Penke, M., Gorski, T., de Giorgis, T., and Kiess, W. (2015) Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 11, 535–546

24. Belenky, F., Christensen, K. C., Gazzaniga, F., Pletnev, A. A., and Brenner, C. (2009) Nicotinamide riboside and nicotinamide riboside salvage in fungi and mammals. Quantitative basis for Urea1 and purine nucleoside phosphorylase function in NAD+ metabolism. J. Biol. Chem. 284, 158–164

25. Hicks, A. N., Lorenzetti, D., Gilley, J., Lu, B., Andersson, K. E., Miligan, 47869

26. Luongo, T. S., Eller, J. M., Lu, M. J., Niere, M., Raith, F., Perry, C., et al. (2020) SLC25A51 is a mammalian mitochondrial NAD(+) transporter. Nat. Commun. 11, 6145

27. Kory, N., Uit de Bos, J., van der Rijt, S., Jankovic, N., Gura, M., Arp, N., et al. (2020) MCA RT1/SLC25A51 is required for mitochondrial NAD transport. Sci. Adv. 6, eabe5510

28. Luongo, T. S., Eller, J. M., Lu, M. J., Nieme, R., Raith, F., Perry, C., et al. (2020) SLC25A51 is a mammalian mitochondrial NAD(+) transporter. Nature 588, 174–179

29. Davies, C. A., Perrett, D., Zhang, Z., Nielsen, B. R., Blake, D. R., and Winyard, P. G. (1999) Simultaneous analysis of nitrite, nitrate and the nitric oxide metabolites nitroso compounds by capillary electrophoresis: application to biochemical studies and human extracellular fluids. Electrophoresis 20, 2111–2117

30. Haag, F., Adrienouch, S., Brass, A., Jung, C., Moller, S., Scheuplein, F., et al. (2007) Extracellular NAD and ATP: partners in immune cell modulation. Purinergic Signal. 3, 71–81
39. Billington, R. A., Travelli, C., Ercolano, E., Galli, U., Roman, C. B., Grolla, A. A., et al. (2008) Characterization of NAD uptake in mammalian cells. *J. Biol. Chem.* 283, 6367–6374
40. Pillai, V. B., Sundaresan, N. R., Kim, G., Gupta, M., Rajamohan, S. B., Pillai, J. B., et al. (2010) Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. *J. Biol. Chem.* 285, 3133–3144
41. Grozio, A., Socialli, G., Sturla, L., Caffa, I., Soncini, D., Salis, A., et al. (2013) CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. *J. Biol. Chem.* 288, 25938–25949
42. Rechsteiner, M., Hilliard, D., and Olivera, B. M. (1976) Turnover at DNA ADP-ribosylation. *Cell. Biol. Metab.* 33, 1076–1087
43. Liu, L., Su, X., Quinn, W. J., Hui, S., Krukenberg, K., Frederick, D. W., et al. (2018) Quantitative analysis of NAD synthesis-breakdown fluxes. *Cell Metab.* 27, 1067–1080.e1065
44. Reber, J. M., and Mangerich, A. (2021) Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose). *Nucl. Acids Res.* 49, 8432–8448
45. Azarmi, K., and Smith, S. (2020) Nuclear PARPs and genome integrity. *Genes Dev.* 34, 285–301
46. Kosciuk, T., Wang, M., Hong, J. Y., and Lin, H. (2019) Updates on the epigenetic roles of sirtuins. *Curr. Opin. Chem. Biol.* 51, 18–29
47. Aksyov, P., White, T. A., Thompson, M., and Chini, E. N. (2006) Regulation of intracellular levels of NAD: a novel role for CD38. *Biochem. Biophys. Res. Commun.* 345, 1386–1392
48. Lee, H. C., and Zhao, Y. J. (2013) Resolving the topological enigma in DNA repair. *Nucl. Acids Res.* 41, 7026–7042
49. Saville, K. M., Clark, J., Wilk, A., Rogers, G. D., Andrews, J. F., Koczor, F. A., et al. (2019) Evolving concepts in NAD(+)-dependent metabolism. *Cell Metab.* 33, 1076–1087
50. Liu, L., Su, X., Quinn, W. J., Hui, S., Krukenberg, K., Frederick, D. W., et al. (2018) Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation. *Nucl. Acids Res.* 46, 2417–2431
51. Matta, E., KiriBayeva, A., Khassenov, B., Matkarimov, B. T., and Ishchenko, A. A. (2020) Insight into DNA substrate specificity of PARP1-catalysed DNA poly(ADP-ribosyl)ation. *Sci. Rep.* 10, 3699
52. O’Sullivan, J., Tedim Ferreira, M., Gagné, J. P., Sharma, A. K., Hendzel, M. J., Masson, I. Y., et al. (2019) Emerging roles of erasers enzymes in the dynamic control of protein ADP-ribosylation. *Nat. Commun.* 10, 1182
53. Eisenman, T., and Pascal, J. M. (2020) Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. *Cell. Mol. Life Sci.* 77, 19–35
54. Xiao, W., Wang, R. S., Handy, D. E., and Loscalzo, J. (2018) NAD(H) and NAD+ in preserving DNA integrity. *JBC REVIEWS: NAD+ in preserving DNA integrity*.
JBC REVIEWS: NAD⁺ in preserving DNA integrity

83. Burkle, A., and Virag, L. (2013) Poly(ADP-ribose): PARadigms and PARadoxes. Mol. Aspects Med. 34, 1046–1065

84. Ray Chaudhuri, A., and Nussenzweig, A. (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell. Biol. 18, 610–621

85. Szanto, M., Brunyanszki, A., Kiss, B., Nagy, L., Gergely, P., Virag, L., et al. (2012) Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol. Life Sci. 69, 4079–4092

86. Pahi, Z. G., Borsos, B. N., Pantazi, V., Ujjaloud, Z., and Pankotai, T. (2020) PARYlation during transcription: insights into the fine-tuning mechanism and regulation. Cancers (Basel) 12, 183

87. Kim, D. S., Challa, S., Jones, A., and Kraus, W. L. (2020) PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis. Genes Dev. 34, 302–320

88. Bock, F. J., Todorova, T. T., and Chang, P. (2015) RNA regulation by poly(ADP-ribose) polymerases. Mol. Cell 58, 959–969

89. Munnu, D., Bartlett, E., Mikolajcic, P., Kirby, I. T., Rack, J. G. M., Mikoc, A., et al. (2019) Reversible ADP-ribosylation of RNA. Nucl. Acids Res. 47, 5658–5669

90. Slade, D. (2019) Mitotic functions of poly(ADP-ribose) polymerases. Biochem. Pharmacol. 167, 33–43

91. Berger, N. A. (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Radiat. Res. 101, 4–15

92. Curtin, N. J., and Szabo, C. (2020) Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat. Rev. Drug Discov. 19, 711–736

93. Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q., and Thompson, C. B. (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272–1282

94. Fischbach, A., Kruger, A., Hampp, S., Assmann, G., Rank, L., Hufnagel, M., et al. (2018) The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosylation) of p53 by PARP1. Nucl. Acids Res. 46, 804–822

95. Ivanova Scovassi, A., and Diederich, M. (2004) Modulation of poly(ADP-ribosylation) in apoptotic cells. Biochem. Pharmacol. 68, 1041–1067

96. Wang, Y., Dawson, V. L., and Dawson, T. M. (2009) Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp. Neurol. 218, 193–202

97. Schuulwer, H., Bruhn, C., Simuk, K., Min, W., Ereren, S., Grigaravicius, P., et al. (2017) Kinetics of poly(ADP-ribosylation), but not PARP1 itself, determines the cell fate in response to DNA damage in vitro and in vivo. Nucl. Acids Res. 45, 11174–11192

98. Cohen, M. S. (2020) Interplay between compartmentalized NAD(+) synthesis and consumption: a focus on the PARP family. Genes Dev. 34, 254–262

99. Langelier, M. F., Zandarashvili, L., Aguiar, P. M., Black, B. E., and Pascal, N. A. (2011) PAR5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Nat. Metab. 34, 102037

100. van de Ven, R. A. H., Santos, D., and Haigis, M. C. (2017) Mitochondrial sirtuins and molecular mechanisms of aging. Trends Mol. Med. 23, 320–331

101. Chakladaki, A., and Guarente, L. (2015) The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15, 608–624

102. Michishita, E., Park, J. Y., Burneski, J. M., Barrett, J. C., and Horikawa, I. (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell. 16, 4623–4635

103. van Dongen, S., Baker, J. R., Vuppusetty, C., Koga, T., Colley, T., Fenchel, P., et al. (2018) The dynamic shutting of SIRT1 between cytoplasm and nuclei in bronchial epithelial cells by single and repeated cigarette smoke exposure. PLoS One 13, e0193921

104. Bock, F. J., Todorova, T. T., and Chang, P. (2015) RNA regulation by poly(ADP-ribose) polymerases. Mol. Cell 58, 959–969

105. Munnu, D., Bartlett, E., Mikolajcic, P., Kirby, I. T., Rack, J. G. M., Mikoc, A., et al. (2019) Reversible ADP-ribosylation of RNA. Nucl. Acids Res. 47, 5658–5669

106. Slade, D. (2019) Mitotic functions of poly(ADP-ribose) polymerases. Biochem. Pharmacol. 167, 33–43

107. Berger, N. A. (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Radiat. Res. 101, 4–15

108. Curtin, N. J., and Szabo, C. (2020) Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat. Rev. Drug Discov. 19, 711–736

109. Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q., and Thompson, C. B. (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272–1282

110. Fischbach, A., Kruger, A., Hampp, S., Assmann, G., Rank, L., Hufnagel, M., et al. (2018) The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosylation) of p53 by PARP1. Nucl. Acids Res. 46, 804–822

111. Ivanova Scovassi, A., and Diederich, M. (2004) Modulation of poly(ADP-ribosylation) in apoptotic cells. Biochem. Pharmacol. 68, 1041–1067

112. Wang, Y., Dawson, V. L., and Dawson, T. M. (2009) Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp. Neurol. 218, 193–202

113. Schuulwer, H., Bruhn, C., Simuk, K., Min, W., Ereren, S., Grigaravicius, P., et al. (2017) Kinetics of poly(ADP-ribosylation), but not PARP1 itself, determines the cell fate in response to DNA damage in vitro and in vivo. Nucl. Acids Res. 45, 11174–11192

114. Cohen, M. S. (2020) Interplay between compartmentalized NAD(+) synthesis and consumption: a focus on the PARP family. Genes Dev. 34, 254–262

115. Langelier, M. F., Zandarashvili, L., Aguiar, P. M., Black, B. E., and Pascal, N. A. (2011) PAR5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Nat. Metab. 34, 102037

116. van Dongen, S., Baker, J. R., Vuppusetty, C., Koga, T., Colley, T., Fenchel, P., et al. (2018) The dynamic shutting of SIRT1 between cytoplasm and nuclei in bronchial epithelial cells by single and repeated cigarette smoke exposure. PLoS One 13, e0193921

117. Bock, F. J., Todorova, T. T., and Chang, P. (2015) RNA regulation by poly(ADP-ribose) polymerases. Mol. Cell 58, 959–969

118. Munnu, D., Bartlett, E., Mikolajcic, P., Kirby, I. T., Rack, J. G. M., Mikoc, A., et al. (2019) Reversible ADP-ribosylation of RNA. Nucl. Acids Res. 47, 5658–5669

119. Slade, D. (2019) Mitotic functions of poly(ADP-ribose) polymerases. Biochem. Pharmacol. 167, 33–43
Utani, K., and Aladjem, M. I. (2018) Extra view: sirt1 acts as a gatekeeper.

Yasuda, T., Kagawa, W., Ogī, T., Kato, T. A., Suzuki, T., Dohmae, N., et al. (2018) Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites. PLoS Genet. 14, e1007277.

Cheng, Y., Ren, X., Gowda, A. S., Shang, Y., Zhang, L., Yuan, Y. S., et al. (2013) Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis. 4, e731.

Blank, M. F., and Grummt, I. (2017) The seven faces of SIRT7. Transcription 8, 67–74.

Kugel, S., and Mostoslavsky, R. (2014) Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem. Sci. 39, 72–81

Belenky, P., Racette, F. G., Bogan, K. L., McClure, J. M., Smith, J. S., and Brenner, C. (2007) Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Uth1/Pnpl1/Meul pathways to NAD+. Cell 129, 473–484.

Revollo, J. R., Grimm, A. A., and Imai, S. (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754–50763.

Zhang, T., Berragal, J. G., Frizzell, K. M., Gamble, M. J., DuMond, M. E., Krishnakumar, R., et al. (2009) Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. J. Biol. Chem. 284, 20408–20417.

Zhang, T., Xiong, H., Pang, J., Zhang, W., Ye, Y., Liang, Z., et al. (2021) Modulation of NAD+ biosynthesis activates SIRT1 and resists cisplatin-induced ototoxicity. Toxicol. Lett. 349, 115–123.

Sociali, G., Grozio, A., Caffa, I., Schuster, S., Becherini, P., Damonte, P., et al. (2019) SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)H pools in cancer cells. FASEB J. 33, 3704–3717.

Buvicinovic, D., Ranieri, G., Pittelli, M., Lapucci, A., Bragliola, S., and Chiarugi, A. (2021) SIRT1-dependent restoration of NAD+ homeostasis after increased extracellular NAD+ exposure. J. Biol. Chem. 297, 100855.

Cantó, C., Sauve, A. A., and Bai, P. (2013) Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol. Aspects Med. 34, 1168–1201.

Luna, A., Aladjem, M. I., and Kohn, K. W. (2013) SIRT1/PARP1 crosstalk: connecting DNA damage and metabolism. Genome Integr. 4, 6.

Kotheur-Seehtaram, U., Dantzer, F., McBurney, M. W., Murcia, G. D., and Sassone-Corsi, P. (2006) Control of AID-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle (Georgetown, Tex.) 5, 873–877.

Rajamohan, S. B., Pillai, V. B., Gupta, M., Sundaresan, N. R., Birukov, K. G., Samant, S., et al. (2009) SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol. Cell. Biol. 29, 4116–4129.

Feng, X., Wang, Y., Chen, W., Xu, S., Li, L., Geng, Y., et al. (2020) SIRT3 inhibits cardiac hypertrophy by regulating PARP-1 activity. Aging (Albany NY) 12, 4178–4192.

Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., et al. (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science (New York, N.Y.) 332, 1443–1446.

Bai, P., Cantó, C., Oudart, H., Brunyánszki, A., Cen, Y., Thomas, C., et al. (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468.

Bai, P., Canto, C., Brunyánszki, A., Huber, A., Szántó, M., Cen, Y., et al. (2011) PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab. 13, 450–460.

Xu, Z., Zhang, L., Zhang, W., Meng, D., Zhang, H., Jiang, Y., et al. (2015) SIRT6 rescues the age related decline in base excision repair in a PARP1-dependent manner. Cell Cycle (Georgetown, Tex.) 14, 269–276.

Lehman, I. R. (1974) DNA ligase: structure, mechanism, and function. Science 186, 790–797.

Shuman, S. (2009) DNA ligases: progress and prospects. J. Biol. Chem. 284, 17365–17369.

Doherty, A. J., and Suh, S. W. (2000) Structural and mechanistic conservation in DNA ligases. Nucl. Acids Res. 28, 4051–4058.

Barnes, D. E., Tomkinson, A. E., Lehmann, A. R., Webster, A. D., and Lindahl, T. (1992) Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents. Cell 69, 495–503.
Akbari, M., Keijzers, G., Maynard, S., Scheibye-Knudsen, M., Desler, C., Hickson, I. D., et al. (2014) Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair (Amst) 16, 44–53

Altman, T., and Gennery, A. R. (2016) DNA ligase IV syndrome; a review. Orphanet J. Rare Dis. 11, 137

Ellenberger, T., and Tomkinson, A. E. (2008) Eukaryotic DNA ligases: structural and functional insights. Annu. Rev. Biochem. 77, 313–338

Zhao, B., Nair, T., Lieber, M. R., and Tomkinson, A. E. (2020) NAD+ is not utilized as a co-factor for DNA ligation by human DNA ligase IV. Nucl. Acids Res. 48, 12746–12750

Bi, F., Ma, R., and Ma, S. (2017) Discovery and optimization of NAD+-dependent DNA ligase inhibitors as novel antibacterial compounds. Curr. Pharm. Des. 23, 2117–2130

Narlikar, G. J., Sundaramoorthy, R., and Owen-Hughes, T. (2013) Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503

Clapiere, C. R., Iwasa, I., Cairns, B. R., and Peterson, C. L. (2017) Sub-cellular Biochem. 88, 21–22

Martin, I. V., and MacNeill, S. A. (2002) ATP-dependent DNA ligases. Curr. Pharm. Des. 8, 23

Shiloh, Y., and Ziv, Y. (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210

Liu, S., Opjo, S. O., Manthey, K., Glanzer, J. G., Ashley, A. K., Amerin, C., et al. (2012) Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress. Nucl. Acids Res. 40, 10780–10794

Deshpande, R. A., Lee, J. H., and Paull, T. T. (2017) Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites. Nucl. Acids Res. 45, 5255–5268

Yount, A. L., Zong, H., and Walczak, C. E. (2015) Regulatory mechanisms that control mitotic kinesins. Exp. Cell Res. 334, 70–77

Lynch, M., and Marinov, G. K. (2015) The bioenergetic costs of a gene. Proc. Natl. Acad. Sci. U. S. A. 112, 15690–15695

Sies, H., and Tomkinson, A. E. (2008) Eukaryotic DNA ligases: structural and functional insights. Annu. Rev. Biochem. 77, 313–338

Sirover, M. A. (2018) Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastasis. Cancer Met. Rev. 37, 665–676

Wang, J. Q., Chen, Q., Wang, X., Wang, Q. C., Wang, Y., Cheng, H. P., et al. (2013) Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease. J. Biol. Chem. 288, 3070–3084

Bugeev, D. V., and Mazin, A. V. (2004) Ca2+ activates chromatin-directed recombination protein Rad51 by modulating its ATPase activity. Proc. Natl. Acad. Sci. U. S. A. 101, 9988–9993

Dantas, T. I., Wang, Y., Loral, P., Dockery, P., and Morrison, C. G. (2011) Defective nucleotide excision repair with normal centromere structures and functions in the absence of all vertebrate centrin-1s. J. Cell Biol. 193, 307–318

Misquitta, C. M., Chen, T., and Grover, A. K. (2006) Control of protein expression through mRNA stability in calcium signalling. Cell Calcium 40, 329–346

Salisbury, J. L., Suino, K. M., Busby, R., and Springett, M. (2002) Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287–1292

Helasa, N., Nugues, C., Rajamanoharan, D., Burgoyne, R. D., and Haynes, L. P. (2019) A centrosome-localized calcium signal is essential for mammalian cell mitosis. FASEB J. 33, 14602–14610

Stewart, T. A., Yapa, K. T., and Monteith, G. R. (2015) Altered calcium signaling in cancer cells. Biochim. Biophys. Acta 1848, 2502–2511

Martinez-Outschoorn, U. E., Peiris-Pages, M., Pestell, R. G., Sotgia, F., and Lisanti, M. P. (2017) Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31

Sprock, J. C., Nickerson, J. L., and Kirkland, J. B. (2007) Niacin deficiency alters p53 expression and impairs etoposide-induced cell cycle arrest and apoptosis in rat bone marrow cells. Nutr. Cancer 57, 88–99

Sprock, J. C., Bartleman, A. P., Boyonoski, A. C., and Kirkland, J. B. (2003) Chronic DNA damage and niacin deficiency enhance cell injury and cause unusual interactions in NAD and poly(ADP-ribose) metabolism in rat bone marrow. Nutr. Cancer 45, 124–131

Boyonoski, A. C., Sprock, J. C., Gallacher, L. M., Jacobs, R. M., Shah, G. M., Poirier, G. G., et al. (2002) Niacin deficiency decreases bone marrow poly(ADP-ribose) and the latency of ethyl nitrosourea-induced carcinogenesis in rats. J. Nutr. 132, 108–114

Boyonoski, A. C., Sprock, J. C., Jacobs, R. M., Shah, G. M., Poirier, G. G., and Kirkland, J. B. (2002) Pharmacological intakes of niacin increase bone marrow poly(ADP-ribose) and the latency of ethyl nitrosourea-induced carcinogenesis in rats. J. Nutr. 132, 115–120

Kirkland, J. B. (2012) Niacin status and genomic instability in bone marrow cells; mechanisms favoring the progression of leukemogenesis. Sub-cellular Biochem. 56, 21–36

Berger, N. A., and Sikorski, G. W. (1980) Nicotinamide stimulates repair of DNA damage in human lymphocytes. Biochem. Biophys. Res. Commun. 95, 67–72

Fang, E. F., Scheibye-Knudsen, M., Brace, L. E., Kassahun, H., Sen Gupta, T., Nilsen, H., et al. (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157, 882–896

Fang, E. F., Kassahun, H., Croteau, D. L., Scheibye-Knudsen, M., Marsili, K., Lu, H., et al. (2016) NAD+ replenishment improves lifespan and healthspan inaxin telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581

Scheibye-Knudsen, M., Mitchell, S. J., Fang, E. F., Iyama, T., Ward, T., Wang, J., et al. (2014) A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab. 20, 840–855

Hou, Y., Lautrup, S., Cordonnier, S., Wang, Y., Croteau, D. L., Zavala, E., et al. (2018) NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl. Acad. Sci. U. S. A. 115, E1876–E1885

Okur, M. N., Mao, B., Kimura, R., Haraczy, S., Fitzgerald, T., Edwards-Hollingsworth, K., et al. (2020) Short-term NAD+ supplementation prevents hearing loss in mouse models of Cockayne syndrome. NPI Aging Mech. Dis. 6, 1

Fang, E. F., Hou, Y., Lautrup, S., Jensen, M. B., Yang, B., Sen Gupta, T., et al. (2019) NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nat. Commun. 10, 5284

Sun, X., Cao, B., Naval-Sanchez, M., Pham, T., Sun, Y. B. Y., Williams, B., et al. (2021) Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells. Nat. Commun. 12, 2665

Sun, C., Wang, K., Stock, A. J., Gong, Y., Demarest, T. G., Yang, B., et al. (2020) Re-equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction. EMBO J. 39, e103420

Chen, A. C., Martin, A. J., Choy, B., Fernández-Peñas, P., Dalziel, R. A., McKenzie, C. A., et al. (2015) A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. New Engl. J. Med. 373, 1618–1626

Suriyan, D., Halliday, G. M., Martin, A. J., Moloney, F. J., and Damian, D. L. (2012) Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials. J. Invest. Dermatol. 132, 1497–1500

Xie, N., Zhang, L., Gao, W., Huang, C., Huber, P. E., Zhou, X., et al. (2020) NAD(+) metabolism: pathophysiological mechanisms and therapeutic potential. Signal. Transduc. Target Ther. 5, 227
213. Yoshino, J., Baur, J. A., and Imai, S. I. (2018) NAD(+)-intermediates: the biology and therapeutic potential of NMM and NR. Cell Metab. 27, 513–528

214. Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., et al. (2016) NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443

215. Dollerup, O. L., Trammell, S. A. J., Hartmann, B., Holst, J. J., Christensen, B., Moller, N., et al. (2019) Effects of nicotinamide riboside on endocrine Pancreatic function and incretin hormones in nondiabetic men with obesity. J. Clin. Endocrinol. Metab. 104, 5703–5714

216. Delberardinis, R. J., Lum, J. J., Hatzivassiliou, G., and Thompson, C. B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20

217. Warburg, O., Wind, F., and Negelein, E. (1927) The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530

218. Nacarelli, T., Lau, L., Fukumoto, T., Zundell, J., Fatkhutdinov, N., Wu, S., et al. (2019) NAD(+) metabolism governs the proinflammatory senescence-associated secretome. Nat. Cell. Biol. 21, 397–407

219. Sampath, D., Zabka, T. S., Misner, D. L., O’Brien, T., and Dragovich, P. S. (2015) Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharmacol. Ther. 151, 16–31

220. Gujar, A. D., Le, S., Mao, D. D., Dadey, D. Y., Turski, A., Sasaki, Y., Tummala, K. S., Gomes, A. L., Yilmaz, M., Grana, O., Bakiri, L., Ruppen, I., Sampath, D., Zabka, T. S., Misner, D. L., O’Brien, T., and Dragovich, P. S. (2019) NAD metabolic dependency in cancer is shaped by gene expression and confers NAMPT inhibitor sensitivity in glioma. Nat. Commun. 10, 5790

221. Chowdhry, S., Zanca, C., Rajkumar, U., Koga, T., Diao, Y., Raviram, R., et al. (2019) NAD-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma. Proc. Natl. Acad. Sci. U. S. A. 116, E8247–E8256

222. Fons, N. R., Sundaram, R. K., Breuer, G. A., Peng, S., McLean, R. L., Kalathil, A. N., et al. (2019) PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma. Nat. Commun. 10, 5790

223. Haince, J. F., Kozlov, S., Dawson, V. L., Dawson, T. M., Hendzel, M. J., Lavin, M. F., et al. (2007) Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway that regulates the function of the Nijmegen breakage syndrome protein. J. Biol. Chem. 282, 16441–16453

224. Gottschalk, A. J., Timinszky, G., Kong, S. E., Jin, J., Cai, Y., Swanson, S. L., et al. (2014) PARP1-TDP1 coupling for the repair of topoisomerase I-induced DNA damage. Nucl. Acids Res. 42, 4435–4449

225. Xie, S., Mortusewicz, O., Ma, H. T. K., Herr, P., Poon, R. Y., Helliday, T., et al. (2015) Timeless interacts with PARP-1 to promote homologous recombination repair. Mol. Cell 60, 163–176

226. King, B. S., Cooper, K. L., Liu, K. J., and Hudson, L. G. (2012) Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair. J. Biol. Chem. 287, 39824–39833

227. Quenet, D., Gasser, V., Fouillen, L., Cammas, F., Sanglier-Cianfani, S., Losson, R., et al. (2008) The histone subcode: poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1beta and the heterochromatin protein HP1alpha. FASEB J. 22, 3853–3865

228. Schreiber, V., Ame, J. C., Dolle, P., Schultz, L., Rinaldi, B., Fraulob, V., et al. (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J. Biol. Chem. 277, 23028–23036

229. Rullem, S. L., Fisher, A. E., Robert, I., Zuma, M. C., Rouleau, M., Ju, L., et al. (2011) PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol. Cell 41, 33–45

230. Rouleau, M., McDonald, D., Gagne, P., Ouellet, M. E., Droit, A., Hunter, J. M., et al. (2007) PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. J. Cell. Biochem. 100, 385–401

231. Boehler, C., Gauthier, L. R., Mortusewicz, O., Biard, D. S., Salou, J. M., Bresson, A., et al. (2011) Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc. Natl. Acad. Sci. U. S. A. 108, 2783–2788

232. Yan, Q., Xu, R., Zhu, L., Cheng, X., Wang, Z., Manis, J., et al. (2013) BAL1 and its partner E3 ligase, BBAP, link Poly(ADP-ribose) activation, ubiquitylation, and double-strand DNA repair independent of ATMD1 and RNF8. Mol. Cell. Biol. 33, 845–857

233. Nicolae, C. M., Abo, E. R., Vlahos, A. H., Cho, K. N., De, S., Karras, G. L., et al. (2014) The ADP-ribosyltransferase PARP10/ARTD10 interacts with proliferating cell nuclear antigen (PCNA) and is required for DNA damage tolerance. J. Biol. Chem. 289, 13627–13637

234. Nicolae, C. M., Abo, E. R., Cho, K. N., Constantin, D., Hu, H. J., Lee, D., et al. (2015) A novel role for the mono-ADP-ribosyltransferase PARP14/ARTD8 in promoting homologous recombination and protecting against replication stress. Nucl. Acids Res. 43, 3143–3153

235. Nagy, Z., Kalouzi, A., Forst, A., Koch, M., Fischer, B., and Soutoglou, E. (2016) Tankyrases promote homologous recombination and check point activation in response to DSBs. PLoS Genet. 12, e1005791

236. Okamoto, K., Ohishi, T., Kuroiwa, M., Iemura, S. I., Natsume, T., and Seimiya, H. (2018) MERIT40-dependent recruitment of tankyrases to damaged DNA and its implication for cell sensitivity to DNA-damaging anticancer drugs. Oncotarget 9, 35844–35855

237. Yamamori, T., DeRicco, J., Naqui, A., Hoffmann, T. A., Mattagajasingh, I., Kasuno, K., et al. (2010) SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucl. Acids Res. 38, 832–845

238. Jeong, J., Juhn, K., Lee, H., Kim, S. H., Min, B. H., Lee, K. M., et al. (2007) SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp. Mol. Med. 39, 8–13

239. Yuan, Z., Zhang, X., Sengupta, N., Lane, W. S., and Seto, E. (2010) Poly(ADP-ribose) polymerase 3 (PARP3), a mediator of response to DNA damage, induces apoptosis in response to DNA damage. JBC REVIEWS: NAD(+) in preserving DNA integrity

240. Madabushi, A., Hwang, B. J., Jin, J., and Lu, A. L. (2013) Histone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase. Biochem. J. 456, 89–98

241. Li, K., Casta, A., Wang, R., Lozada, E., Fan, W., Kane, S., et al. (2008) Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J. Biol. Chem. 283, 7590–7598

242. Fan, W., and Luo, J. (2010) SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol. Cell 39, 247–258

243. Zhang, H., Park, S. H., Pantazides, B. G., Karpiuk, O., Warren, M. D., Hardy, C. W., et al. (2013) SIRT2 directs the replication stress response through CDK9 deacetylation. Proc. Natl. Acad. Sci. U. S. A. 110, 13546–13551