COVID-19 in individuals adapted to aerobic exercise

Andrey Yu. Tretyakov¹, Svetlana P. Zakharchenko¹, Lyubov’ V. Romasenko², Alena V. Dятлова³, Aleksandra V. Zhabskaya¹, 4, Oleg V. Ermilov¹, 5, 6, Mikhail A. Tretyakov¹, Dar’ya D. Chentsova⁶

¹ Federal Belgorod National Research University, Ministry of Education and Science of Russia; ul. Pobedy 85, Belgorod, 308015, Russia
² V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, Healthcare Ministry of Russia: Kropotkinsky per. 23, Moscow, 119034, Russia
³ State Institution “City Clinic No.212”, Moscow Healthcare Department: Solntsevsky Prospekt 11a, Moscow, 119620, Russia
⁴ Belgorod City Municipal Hospital No.2: ul. Gubkina 46, Belgorod, 308036, Russia
⁵ Saint Ioasaf Belgorod Region Clinical Hospital: ul. Nekrasova 8/9, Belgorod, 308007, Russia
⁶ The Peoples’ Friendship University of Russia: ul. Miklukho-Maklaya 6, Moscow, 117198, Russia

Analysis of COVID-19 features in individuals who regularly practice aerobic training. Methods. Asymptomatic persons and patients with COVID-19 older than 30 years, 293 people (180 men and 113 women), 214 of them — inhabitants of the Moscow region (the beginning of the sampling — 2nd decade of April 2020) and 79 — inhabitants of the Belgorod region (the beginning of the sampling — 2nd decade of May 2020), adapted (27 people — 1st group) and unadapted (266 — control group) to aerobic training (AT). Computer tomography of the chest, RNA test for SARS-CoV-2 in smears from the nasopharynx-oro-pharynx, the clinical blood sample and level of antibodies to SARS-CoV-2 were studied. The criterion for adaptation to aerobic loads was considered compliance with the rules of the American Heart Association, 2008. Results. Adapted to AT individuals, in contrast to the control group, characterized with the prevalence of asymptomatic (p = 0.045) and absence of severe forms of COVID-19, limited cataral symptoms of the disease (p < 0.001), rare pneumonia with absence (1) or presence (2) of acute respiratory failure (p1 = 0.028; p2 = 0.034), along with lower prevalence of diseases, potentiating this infection (p = 0.03). Conclusion. Patients adapted to AT have less severe course of COVID-19.

The article is licensed by CC BY-NC-ND 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/
К существенным итогам адаптации относится по- вышение уровня надежности биологических систем и организма в целом с увеличением устойчивости их работы в ответе на возникающие средовые воздействия [1]. В связи с этим поиск закономерностей формирования клинической неоднородности COVID-19 был сосредоточен на характеристике исходной тренированности дыхательной системы человека, точнее — адаптации к аэробной нагрузке (АН). При этом тема «COVID-19 — адаптация к АН» шире проблемы «COVID-19 — спорт», даже когда речь идет только о т. н. циклических видах (легкая атлетика, гребля, плавание, велоспорт). Такое ограничение, особенно если это спорт высоких достижений, обусловлено не только фактором возраста (спортомен — сравнительно молодые люди), но и влиянием главных производных спортивного развития, нарушающих гармоничное развитие человека, — иммунно- модулирующей ролью соревновательного стресса, облегчающей инфицирование скученностью во время тренировок и соревнований, сегодняшей высокой степенью коммерциализации данного вида деятельности. Немногочисленные исследования о специфике COVID-19 у физически тренированных испытуемых, посвященные именно реконвалесцентам, не могут дать ответ на вопрос о естественных санационных механизмах, определяющих в одних ситуациях бессимптомное течение, а в других — тяжелую пневмонию при коронавирусной инфекции [2, 3].

Целью данной работы, начатой в период наибольшей неопределенности и загадочности для отечественной медицины этой новой болезни, явилась оценка особенностей COVID-19 среди лиц, предварительно адаптированных к АН. При этом исходное знание о меньшей заболеваемости и относительной благоприятности патологии у молодых явилось условием формирования выборки только из пациентов старше 30 лет.

Материалы и методы

В исследовании включены лица с бессимптомной формой и больные COVID-19 старше 30 лет (n = 293: 180 мужчин, 113 женщин), медиана и межквартильные значения возраста — 54,5 (44–65) года, жители Москвы и Московской области (n = 214; начало формирования выборки — 2-я декада апреля 2020 г.) и Белгородского региона (n = 79; начало формирования выборки — 2-я декада мая 2020 г.). Эпидемические районы за рубежом посещали 56 (21,1 %) обследуемых (из них 49 — жители столицы и Подмосковья). Диагностика COVID-19 проводилась в соответствии с правилами Временных методических рекомендаций профилактики, диагностики и лечения новой коронавирусной инфекции Министерства здравоохранения Российской Федерации (версии № 4 от 27.03.20 и № 5 от 08.04.20) с выделением 3 степеней тяжести течения заболевания — легкое (n = 146), среднетяжелое (n = 63) и тяжелое (n = 53) и 6 клинических вариантов болезни, из которых в исследовании отмечены лишь первые 4: острая респираторная вирусная инфекция (ОРВИ), пневмония без дыхательной недостаточности (ДН), пневмония с острой ДН, острый респираторный дистресс-синдром (ОРДС); случаев сепсиса и септического шока в работе не установлено. В связи с неоднинаковой возможностью выполнения полного диагностического комплекса, особенно на амбулаторном этапе, в качестве оценочных характеристик использованы данные компьютерной томографии (КТ) органов грудной клетки, тест на РНК SARS-CoV-2 в мазках из носоглотки / ротоглотки, общий анализ крови с лейкограммой и изучение уровня антител к иммуноглобулинам (Ig) G и M.

К бессимптомной форме относились случаи (n = 31), ограниченные лишь положительным результатом на РНК SARS-CoV-2 в мазках из носоглотки / ротоглотки при выполнении теста методом полимеразной цепной реакции и / или повышением титров IgG (> 10 ед. / мл) и M (> 2 ед. / мл) к SARS-CoV-2 по данным иммуноферментного анализа. Все последующие анастомические данные, исключая случаи бессимптомного течения, были получены, по известным причинам, только от реконвалесцентов по COVID-19.

Для характеристики понятия адаптированности к АН человека использованы модифицированные критерии Американской ассоциации сердца (American Heart Association — АНА, 2008), когда в течение предшествующих 12 мес. пациент практиковал аэробные физические нагрузки высокой интенсивности ≥ 150 мин в неделю или сочетал интенсивные нагрузки (≥ 75 мин в неделю) с нагрузками умеренной интенсивности (≥ 150 мин в неделю). Градации интенсивности соответствовали шкалам АНА по значениям частоты сердечных сокращений (ЧСС) во время тренировок: умеренно интенсивные нагрузки, если ЧСС составляла 50–70 % от ЧСС макс.; интенсивные нагрузки, соответствовали шкале AHA по градациям от ЧСС > 70 % до ≤ 85 % макс. Однако такая методическая точность оценки показателей длительности тренировки и ЧСС в клинических условиях скорее цель, чем реальная возможность, достигнутая лишь у той части пациентов, которые знали принципы и владели правилами самоконтроля. Остальные причислялись к категории лиц с адаптацией к АН, если на протяжении последних 12 мес. регулярно (> 5 раз в неделю)
Целенаправленно включали в свой дневной распорядок беговую нагрузку на открытом воздухе или на беговой дорожке (> 30 мин), занятие на велотренажере (> 40 мин), степпере (суммарная продолжительность 1 тренировки — 30 мин) или скандинавскую ходьбу в высоком темпе (60—90 мин). Названные формы аэробных занятий в рекомендациях АНА (2008) соответствуют квалификации «интенсивные нагрузки».

Сформирована 1-я группа обследуемых (n = 27: 17 мужчин, 10 женщин; медиана и межквартирные значения возраста — 54 [42; 67] года), отвечающих указанным критериям. Остальные лица (n = 266: 163 мужчины и 103 женщины; возраст — 55 [43; 66] лет) из основной выборки, не адаптированные к АН, служили контролем (2-я группа). В связи с отсутствием в 1-й группе лиц с очевидными признаками депрессии иммунитета (прием системных глюкокортикоидов, цитостатических препаратов, истощения и т.д.) или представителей замкнутых коллективов (интерната, дома престарелых) данные условия служили критериями исключения и в контроле.

Регулярность выполнения в достаточном объеме физических упражнений отражает одно из волевых качеств индивида — целестремленность, дополнительные волевые свойства: смелость, самостоятельность, самообладание и т.д. С целью дополнительной характеристики личностных свойств пациентов для конкретизации показателя целестремленности использована шкала «настойчивость» опросника, разработанная А.В. Зверьковой — Е.В. Эйдмана [4]. Следует отметить, что объективность результатов в подобном анализе во многом зависит от доверительности общения между пациентом и врачом, и формализм тестирования через заполнение испытуемым опросника иногда дискредитирует методику. Особенно это касается больных COVID-19, переживших в т.ч. психологическую травму. В связи с этим для сохранения принципов врачебного патернализма 16 вопросов данной шкалы (с заменой в «Вы», «Ваши», «Вам») были распределены по ходу обычной беседы с пациентом, а итоговый результат (в баллах) выводился оператором после прослушивания диктофонной записи данного диалога.

Полученные результаты обработаны с помощью вариационно-статистических методов с использованием статистических программ Statistica 6.0 (StatSoft Inc., США) и Биостатистика для Windows 4.03.

Результаты и обсуждение

В представленной выборке жителей Москвы, Московской и Белгородской областей с COVID-19 доля лиц, исходно регулярно использующих аэробный тренинг, составила 27 (9,2 %) человек, включая 3 участников старше 80 лет (2 мужчин — 81 года и 83 лет и 1 женщина 80 лет), практикующих тренировки в форме скандинавской ходьбы от 5 до 7 км в день. В структуре тяжести заболевания обращало на себя внимание отсутствие среди лиц, адаптированных к АН, случаев с тяжелой формой патологии, преобладание случаев бессимптомного течения болезни (p < 0,05); средняя степень тяжести заболевания отмечена всего у 1 участника исследования (табл. 1). Данная закономерность выявлена на этапе промежуточного анализа по мере формирования групп, в период наибольших сомнений в правильности выбора направления поиска, когда, помимо крайней ограниченности знаний об этой инфекции и отсутствия опыта ведения таких больных, уже существовало указание в литературных источниках на тяжелое течение COVID-19 у человека, наиболее адаптированного к АН. Речь шла о 38-летнем итальянце, легкоатлете-марафонце, > 2 нед. находившемся на аппаратном дыхании и ставшем, как его обозначила Daily Mail от 27.02.20, суперраспространителем коронавируса в Ломбардии [5].

Доля летних форм заболевания в 1-й группе, при исключении случаев бессимптомного течения, составила 95 %, тогда как во 2-й — 66,5 %; распределение у последних числа среднетяжелых и тяжелых больных составляло 11,6 и 21,9 % соответственно. Такое соотношение рангов тяжести существенно отличается от принятой на сегодня пропорции для COVID-19 (81, 14 и 5 %), что, вероятно, обусловлено не только малым объемом представленной здесь выборки, но и ограничениями при ее формировании по фактору возраста (с исключением лиц моложе 30 лет) и критерию отсутствия у человека явных причин депрессии иммунитета.

У лиц, адаптированных к АН, по характеристике клинических вариантов болезни существенно чаще
Частота отдельных признаков* COVID-19 у больных, адаптированных (1-я группа) и неадаптированных (2-я группа) к аэробной нагрузке; n (%)

Характеристика	1-я группа	2-я группа	p
Лихорадка	16 (84,2)	241 (99,6)	Нет данных
Продолжительность вирусной симптоматики, сутки, Ме (Q1–Q2)	3 (3–5)	5 (3–14)	0,001**
Кашель	3 (15,8)	227 (93,8)	0,003
Одышка	1 (5,2)	112 (46,3)	0,023
Насморк	18 (94,7)	181 (74,8)	Нет данных
Нарушение обоняния	17 (89,5)	231 (95,5)	То же
Головная боль	5 (26,3)	107 (44,2)	"
Нарушение вкуса	1 (5,2)	60 (24,8)	"
Диарея	–	18 (7,4)	"
Миалгия, артритalia	6 (31,6)	148 (61,2)	"
Все КТ-позитивные случаи	6 (31,6)	234 (86,7)	0,025

Степень тяжести КТ-позитивных случаев:
• I | 5 (26,3) | 134 (55,4) | Нет данных |
• II | 1 (5,2) | 39 (16,1) | То же |
• II–III | – | 8 (3,3) | " |
• III | – | 50 (20,7) | " |
• III–IV | – | 3 (1,2) | " |
| Лимфопения (уровень лимфоцитов < 20 %) | – | 28 (11,6) | |

Примечание: КТ – компьютерная томография; достоверность р по критерию χ²; ** – для парателесных признаков при неоднородности выполнения исследования использован результат с наименьшим отклонением; ** – достоверность p по критерию Т Манна–Уитни; Me (Q1–Q2) – мединан, квартиль 25 – 75 %.

Таблица 2

Table 2

Frequency of individual signs* COVID-19 in patients adapted (group 1) and unadapted (group 2) to aerobic training; n (%)

Частота отдельных признаков* COVID-19 у больных, адаптированных (1-я группа) и неадаптированных (2-я группа) к аэробной нагрузке; n (%)
регулярных звеньев дыхательной системы в условиях обычных нагрузок и повышение резервных возможностей респираторного аппарата вместе со способностью более результативной его мобилизации при предъявлении высоких требований. Кроме того, хорошо известны положительные перекрестные эффекты такой адаптации к антиоксидантную и иммунную системы [1]. Так, универсальным проявлением воспалительной активности и снижение эластичности и диффузионной способности как при нормоксии, так и при гипоксических эпизодах. Кроме того, при оксигенировании в условиях гипоксии значительно сокращается число альвеолярных эпителиальных клеток II типа и альвеолярных макрофагов, растет доля окисленных дефектных ДНК, способствуя падению общей резистентности АКМ [11]. АПФ II — тормозной АПФ, но по своим физиологическим эффектам противоположен ему, являясь компонентом контрагрегатной ассоциированных длинных и коротких фракций белка. Следовательно, можно предположить усиление разобщения АПФ при АН высокой интенсивности нагрузки и снижение уровня АПФ в плазме крови и костной массе [12, 13], тем самым должны были бы облегчить проникновение короновируса в клетку и увеличивать агрессивность COVID-19. Однако как показано в клинических и экспериментальных исследованиях эффекты ингибиторов АПФ и блокаторы рецепторов ангиотензина II, чей фармакологический механизм препятствия биохимическому каскаду АПФ приводит к повышению количества АПФ II, реальная картина иная: прием препаратов асоциирован со снижением риска смерти больных COVID-19, а в эксперименте уменьшал летальность и предотвращал остое повреждение легких у мышей, инфицированных SARS-CoV [8, 14, 15].

Дополнительные аргументы по теме физической нагрузки и увеличения АПФ II приведены в исследовании D.M. Magalhães et al. (2020): на примере тренированных мужчин при АН высокой интенсивности в плазме крови и моче существенно увеличивается концентрация АПФ II, а при умеренных нагрузках достоверно повышается почечная элиминация фермента [16]. Нетрудно заметить, что все это — несвязанные с мемориальной (солюбилизированные) фракции белка. Следовательно, можно предположить усиление разобщения АПФ II с клеточными мембранами при АН и снижение возможности проникновения вируса внутрь клетки через данный рецептор у адаптированных лиц. На состояние иммунной системы человека и животных оказывает влияние общая двигательная активность и АН [17]. Адаптация к АН захватывает клеточные и гуморальные звенья врожденного и при-
приспособление одновременно к бинованный адаптации, когда организм реализует нейтрофилы / лимфоциты, плотность Toll- и Нод-подобных рецепторов, изменяется уровень Th1, Th2, Th17, секреторного IgA в слизистых верхних дыхательных путей и т. д. [18, 19]. Все это преимущество повышает устойчивость организма к респираторным инфекциям, неоплазмам, токсическим и даже радиационным воздействиям [1, 6, 20, 21]. Однако существуют и отрицательные перекрестные эффекты такой адаптации. Они возникают в результате избыточных нагрузок при явления перетренированности (J-эффект, D.C.Nieman, 1994), когда риск инфекционных заболеваний дыхательной системы возрастает. Особенно это касается многочасовых АН [22–24]. Дополнительным условием здесь выступает физическая травма эпителия (бронхиального и альвеолярного) вследствие продолжительной гипервентиляции при неверно выстроенном тренировочном режиме [25]. По-видимому, все это имеется в тех литературных примерах, когда COVID-19 у тренированных к АН больных принимал тяжелые формы (кстати, из многочисленного отряда легкоатлетов-марафонцев отмечено всего 2 таких случая и еще 1 — среди профессиональных велосипедистов) [2, 3]. Не допустить развития неблагоприятных последствий адаптации к АН позволяет соблюдение правил, сформулированных отечественной физиологической школой: «такое предупреждение... состоит, во-первых, в рациональном ограничении физических нагрузок и правильном выборе этапа онтогенеза, когда их можно применять (или повышать) и, во-вторых, в использовании так называемой комбинированной адаптации, когда организм реализует приспособление одновременно к нескольких фактограм», температурным (закаливание), гипоксическим и т. д.* [1].

Заключение

В проведенном исследовании у физически активных лиц в возрасте старше 30 лет, адаптированных к АН, в отличие от пациентов, не практикующих аэробный тренинг, течение COVID-19 характеризовалось преобладанием бессимптомной формы или ограниченным ОРВИ с преимущественным повышением периферических гранулоцитов и снижение нейтрофилы / лимфоциты, плотность Toll- и Нод-подобных рецепторов, изменяется уровень Th1, Th2, Th17, секреторного IgA в слизистых верхних дыхательных путей и т. д. [18, 19]. Все это преимущество повышает устойчивость организма к респираторным инфекциям, неоплазмам, токсическим и даже радиационным воздействиям [1, 6, 20, 21]. Однако существуют и отрицательные перекрестные эффекты такой адаптации. Они возникают в результате избыточных нагрузок при явления перетренированности (J-эффект, D.C.Nieman, 1994), когда риск инфекционных заболеваний дыхательной системы возрастает. Особенно это касается многочасовых АН [22–24]. Дополнительным условием здесь выступает физическая травма эпителия (бронхиального и альвеолярного) вследствие продолжительной гипервентиляции при неверно выстроенном тренировочном режиме [25]. По-видимому, все это имеется в тех литературных примерах, когда COVID-19 у тренированных к АН больных принимал тяжелые формы (кстати, из многочисленного отряда легкоатлетов-марафонцев отмечено всего 2 таких случая и еще 1 — среди профессиональных велосипедистов) [2, 3]. Не допустить развития неблагоприятных последствий адаптации к АН позволяет соблюдение правил, сформулированных отечественной физиологической школой: «такое предупреждение... состоит, во-первых, в рациональном ограничении физических нагрузок и правильном выборе этапа онтогенеза, когда их можно применять (или повышать) и, во-вторых, в использовании так называемой комбинированной адаптации, когда организм реализует приспособление одновременно к нескольких факто

1. Газенко О., Мерсон Ф., Пшенникова М. Физиология адаптационных процессов. М.: Наука; 1986.
2. Halabchi F., Ahmadinejad Z., Selk-Ghaflari M. COVID-19 Epidemic: exercise or not to exercise; that is the question! Asian. J. Sports. Med. 2020; 11 (1): e102630. DOI: 10.5812/ajsm.202630.
3. Wackerhage H., Everett R., Krüger K. et al. Sport, exercise and COVID-19, the disease caused by the SARS-CoV-2 coronavirus. Dtsch. Z. Sportmed. 2020; 71 (5): e1–12. DOI: 10.5960/dzsm.2020.441.
4. Пашукова Т.И., Допира А.И., Дыковон Г.В. Психологические исследования: Практикум по общей психологии для студентов педагогических вузов. М.: Институт практической психологии; 1996.
5. Paterlini M. On the front lines of coronavirus: the Italian response to covid-19. Br. Med. J. 2020; 368: m1065. DOI: 10.1136/bmj.m1065.
6. Мерсон Ф.З., Пшенникова М.Г. Адаптация к стресс-сituациям и физическим нагрузкам. М.: Медицина; 1988.
7. Toledo A.C., Magalhaes R.M., Hizume D.C. et al. Aerobic exercise attenuates pulmonary injury induced by exposure to cigarette smoke. Eur. Respir. J. 2012; 39 (2): 254–264. DOI: 10.1183/09031936.0003411.
8. Yan T., Xiao R., Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? FASEB J. 2020; 34 (5): 6017–6026. DOI: 10.1096/fj.202000782.
9. Tedjasaputra V., Bouwsema M.M., Stickland M.K. Effect of aerobic fitness on capillary blood volume and diffusing membrane capacity responses to exercise. J. Physiol. 2016; 594 (15): 4359–4370. DOI: 10.1113/JP272037.
10. Foster D.J., Ravikumar P., Bellotto D.J. et al. Fatty diabetic lung: altered alveolar structure and surfactant protein expression. Am. J. Lung Cell. Mol. Physiol. 2010; 298 (3): L392–403. DOI: 10.1152/ajlplm.00041.2009.
11. Yilmaz C., Ravikumar P., Gyawali D. et al. Alveolar-capillary adaptation to chronic hypoxia in the fatty lung. Acta Physiol. 2015; 213 (4): 933–946. DOI: 10.1111/apha.12419.
12. Dizon L.A., Seo D.Y., Kim H.K. et al. Exercise perspective on common cardiac medications. Integr. Med. Res. 2013; 2 (2): 49–55. DOI: 10.1016/j.imr.2013.04.006.
13. Agarwal D., Welsch M.A., Keller J.N., Francis J. Chronic exercise modulates RAS components and improves balance between pro-and anti-inflammatory cytokines in the brain of SHR. Basic Res. Cardiol. 2011; 106 (6): 1069–1085. DOI: 10.1007/s00395-011-0231-7.
14. Zhang P., Zhu L., Cai J. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ. Res. 2020; 126 (12): 1671–1681. DOI: 10.1161/CIRCRESAHA.120.317134.
15. Kai H., Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors — lessons from available evidence and insights into COVID-19. Hypertens. Res. 2020; 43 (7): 648–654. DOI: 10.1038/s41440-020-0455-8.
16. Magalhães D.M., Nunes-Silva A., Rocha G.C. et al. Two protocols of aerobic exercise modulate the counter-regulatory axis of the renin-angiotensin system. Helixyon. 2020; 6 (1): e03208. DOI: 10.1016/j.helixyon.2020.e03208.
17. Poos M.I., Costello R., Carlson-Newberry S.J. Military strategies for sustainment of nutrition and immune function in the field. Washington, DC: The National Academies Press, Institute of Medicine; 1999. DOI: 10.17226/6450.
References

1. Gazenko O., Meerson F., Pshennikova M. [Physiology of adaptation processes]. Moscow: Nauka; 1986 (in Russian).

2. Halabchi F., Ahmadinejad Z., Setk-Ghaffari M. COVID-19 Epidemic: exercise or not to exercise; that is the question! Asian. J. Sports. Med. 2020; 11 (1): e102630. DOI: 10.5812/asjms.102630.

3. Wackerhage H., Everett R., Krüger K. et al. Sport, exercise and COVID-19, the disease caused by the SARS-CoV-2 coronavirus. Dtsch. Z. Sportmed. 2020; 71 (5): e1–12. DOI: 10.5960/dzsm.2020.441.

4. Pashukhova T.I., Dopira A.I., D’yakokov G.V. [Psychological research: a workshop on general psychology for students of pedagogical universities]. Moscow: Institut prakticheskoy psikholigii; 1996 (in Russian).

5. Paterlini M. On the front lines of coronavirus: the Italian response to covid-19. Br. Med. J. 2020; 368: m1065. DOI: 10.1136/bmj.m1065.

6. Meerson F.Z., Pshennikova M.G. [Adaptation to stressful situations and physical exertion]. M.: Meditsina; 1988 (in Russian).

7. Toledo A.C., Magalhaes R.M., Hizume D.C. et al. Aerobic exercise attenuates pulmonary injury induced by exposure to cigarette smoke. Eur. Respir. J. 2012; 39 (2): 254–264. DOI: 10.1183/09031936.0003411.

8. Yan T., Xiao R., Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? FASEB J. 2020; 34 (5): 6017–6026. DOI: 10.1096/fj.202000782.

9. Tedjasaputra V., Bouwsena M.M., Stickland M.K. Effect of aerobic fitness on capillary blood volume and diffusing membrane capacity responses to exercise. J. Physiol. 2016; 594 (15): 4359–4370. DOI: 10.1113/JPH272037.

10. Foster D.J., Ravikumar P., Bellotto D.J. et al. Fatty diabetic lung: altered alveolar structure and surfactant protein expression. Am. J. Lung Cell. Mol. Physiol. 2010; 298 (3): L392–403. DOI: 10.1152/ajlun.0041.2009.

11. Yilmaz C., Ravikumar P., Gyawali D. et al. Alveolar-capillary adaptation to chronic hypoxia in the fatty lung. Acta Physiol. 2015; 213 (4): 933–946. DOI: 10.1111/alpha.12419.

12. Dizon L.A., Seo D.Y., Kim H.K. et al. Exercise perspective on common cardiac medications. Integr. Med. Res. 2013; 2 (2): 49–55. DOI: 10.1016/j.imr.2013.04.006.

13. Agarwal D., Welsch M.A., Keller J.N., Francis J. Chronic exercise modulates RAS components and improves balance between pro-and anti-inflammatory cytokines in the brain of SHR. Basic Res. Cardiol. 2011; 106 (6): 1069–1085. DOI: 10.1007/s00395-011-0231-7.

14. Zhang P., Zhu L., Cai J. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hyper-tension hospitalized with COVID-19. Circ. Res. 2020; 126 (12): 1671–1681. DOI: 10.1161/CIRCRESAHA.120.317134.

15. Kai H., Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors – lessons from available evidence and insights into COVID-19. Hypertens. Res. 2020; 43 (7): 648–654. DOI: 10.1083/s41440-020-0455-8.

16. Magalhães D.M., Nunes-Silva A., Rocha G.C. et al. Two protocols of aerobic exercise modulate the counter-regulatory axis of the renin-angiotensin system. Helioy. 2020; 6 (1): e03208. DOI: 10.1016/j.hely.2020.e03208.

17. Poos M.I., Costello R., Carlson–Newberry S.J. Military strategies for sustenance of nutrition and immune function in the field. Washington, DC: The National Academies Press, Institute of Medicine; 1999. DOI: 10.17226/6450.

18. Timmons B.W., Cieslak T. Human natural killer cell subsets and acute exercise: a brief review. Exerc. Immunol. Rev. 2008; 14: 8–23.

19. Nieman D.C., Wentz L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019; 8 (3): 201–217. DOI: 10.1016/j.jshs.2018.09.009.

20. Campbell J.P. Infekt nach Marathon? Mythos widerlegt! Dtsch. Med. Wochensch. 2018; 143 (12): 853–853. DOI: 10.1055/a-0598-1219.

21. Gleson M., Pyne D.B., Austin J.P. et al. Epstein–Barr virus reactivation and upper-respiratory illness in elite swimmers. Med. Sci. Sports Exerc. 2002; 34 (3): 411–417. DOI: 10.1097/00005768-200203000-00005.

22. Nieman D.C. Exercise, upper respiratory tract infection, and the immune system. Med. Sci. Sports Exerc. 1994; 26 (2): 128–139. DOI: 10.1249/00005768-199402000-00002.

23. Campbell J.P., Turner J.E. There is limited existing evidence to support the common assumption that strenuous endurance exercise bouts impair immune competency. Expert Rev. Clin. Immunol. 2019; 15 (2): 105–109. DOI: 10.1080/1744666X.2019.1548933.

24. Estruel-Amades S., Camps-Bossacoma M., Massot-Cladera M. et al. Alterations in the innate immune system due to exhausting exercise in intensively trained rats. Sci. Rep. 2020; 10 (1): 967. DOI: 10.1038/s41598-020-57783-4.

25. Combes A., Dekerle J., Dumont X. et al. Continuous exercise induces airway epithelium damage while a matched-intensity and volume intermittent exercise does not. Respir. Res. 2019; 20 (1): 12. DOI: 10.1186/s12931-019-0978-1.

Госпушкина 25.07.20
Информация об авторах / Author Information

Третьяков Андрей Юрьевич — д. м. н., профессор Медицинского института Федерального государственного автономного образовательного учреждения высшего образования «Белгородский государственный национальный исследовательский университет». Министерства науки и высшего образования Российской Федерации; тел.: (4722) 30-12-11; e-mail: opensource2007@yandex.ru

Светлана П. Захарченко — к. м. н., старший научный сотрудник Медицинского института Федерального государственного автономного образовательного учреждения высшего образования «Белгородский государственный национальный исследовательский университет». Министерства науки и высшего образования Российской Федерации; тел.: (4722) 30-12-11; e-mail: opensbox.2013@yandex.ru

Ромасенко Любовь Владимировна — д. м. н., профессор, руководитель отделения психосоматических расстройств, отдел пограничной психиатрии Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр психиатрии и наркологии им. В.П. Сербского» Министерства здравоохранения Российской Федерации; тел.: (499) 248-75-96; e-mail: fromasenko@mail.ru

Любовь В. Ромасенко — д. м. н., профессор, Head of Psychosomatic Disorders Department, Borderline Psychiatry Department, V. P. Serbsky National Medical Research Center of Psychiatry and Nарcology, Healthcare Ministry of Russia; тел.: (499) 248-75-96; e-mail: fromasenko@mail.ru

Дятлова Алена Владиславовна — врач-терапевт Государственного бюджетного учреждения здравоохранения города Москвы «Городская больница № 2 имени Святителя Иоасафа»; тел.: (4722) 50-42-32; e-mail: neglect@mail.ru (ORCID: https://orcid.org/0000-0001-8489-3851)

Михаил А. Третьяков — Федеральный Белгородский национальный исследовательский университет, Министерство образования и науки Российской Федерации, врач-рентгенолог Федерального государственного бюджетного учреждения здравоохранения «Белгородская областная клиническая больница Святителя Иоасафа»; тел.: (4722) 30-12-11; e-mail: neglect@mail.ru (ORCID: https://orcid.org/0000-0001-8489-3851)

Ченцова Дарья Дмитриевна — врач-терапевт клинично-диагностического центра Федерального государственного автономного образовательного учреждения высшего образования «Российский университет дружбы народов»; тел.: (495) 434-24-91; e-mail: dmitriuca@rambler.ru

Informations About Author / Author Information

Tretyakov Andrey Yu. — Professor of the Clinic Institute of the Federal state autonomous educational institution of higher education "Belgorod State Medical Research Center of Psychiatry and Narcology" of the Ministry of Education and Science of the Russian Federation; tel.: (4722) 30-12-11; e-mail: opensource2007@yandex.ru

Svetlana P. Zakharchenko — Candidate of Medicine, assistant, Head of the Psychosomatic Disorders Department, Borderline Psychiatry Department, V. P. Serbsky National Medical Research Center of Psychiatry and Nарcology, Healthcare Ministry of Russia; tel.: (499) 248-75-96; e-mail: fromasenko@mail.ru

Lyubov’ V. Romasenko — Doctor of Medicine, Professor, Head of Psychosomatic Disorders Department, Borderline Psychiatry Department, V. P. Serbsky National Medical Research Center of Psychiatry and Nарcology, Healthcare Ministry of Russia; tel.: (499) 248-75-96; e-mail: fromasenko@mail.ru

Alena V. Dyatlova — Physician, Department of Therapy No. 1, State Institution “City Clinic No.212”, Moscow Healthcare Department, tel.: (903) 673-50-95; e-mail: dr.al-vasilchenko@yandex.ru

References

24. Estruel-Amades S., Camps-Bossacoma M., Massot-Cladera M. et al. Alterations in the innate immune system due to exhausting exercise in intensively trained rats. *Sci. Rep.* 2019; 10 (1): 967. DOI: 10.1038/s41598-019-57783-4.

25. Combes A., Dekerle J., Dumont X. et al. Continuous exercise induces airway epithelium damage while a matched-intensity and volume intermittent exercise does not. *Respir. Res.* 2019; 20 (1): 12. DOI: 10.1186/s12931-019-0978-1.

Received: July 25, 2020