Mass models of the Milky Way

Walter Dehnen and James Binney

Theoretical Physics, 1 Keble Road, Oxford OX1 3NP

Abstract

A parameterized model of the mass distribution within the Milky Way is fitted to the available observational constraints. The most important single parameter is the ratio of the scale length $R_{d, \ast}$ of the stellar disk to R_0. The disk and bulge dominate $v_c(R)$ at $R \lesssim R_0$ only for $R_{d, \ast}/R_0 \lesssim 0.3$. Since the only knowledge we have of the halo derives from studies like the present one, we allow it to contribute to the density at all radii. When allowed this freedom, however, the halo causes changes in assumptions relating to $R \ll R_0$ to affect profoundly the structure of the best-fitting model at $R \gg R_0$. For example, changing the disk slightly from an exponential surface-density profile significantly changes the form of $v_c(R)$ at $R \gg R_0$, where the disk makes a negligible contribution to v_c. Moreover, minor changes in the constraints can cause the halo to develop a deep hole at its centre that is not physically plausible. These problems call into question the proposition that flat rotation curves arise because galaxies have physically distinct halos rather than outwards-increasing mass-to-light ratios.

The mass distribution of the Galaxy and the relative importance of its various components will remain very uncertain until more observational data can be used to constrain mass models. Data that constrain the Galactic force field at $z \gtrsim R$ and at $R > R_0$ are especially important.

Key words: Galaxy: structure – Galaxy: kinematics and dynamics

1 Introduction

One of the fundamental tasks of Galactic astronomy is the determination of the mass and luminosity distributions of the Milky Way. In the 1950s the development of radio astronomy opened up the study of the Galaxy’s large-scale structure, and much of the understanding that was attained at that time was summarized by Schmidt’s (1956) mass model. In the 1970s and early 1980s our picture of the Milky Way changed in response both to studies of external galaxies and to a growing awareness of the existence of “dark matter” at large radii. These developments were reflected in the Bahcall & Soneira (1980), Caldwell & Ostriker (1981) and Rohlfis & Kreitschmann (1988) Galaxy models. These models were based on two rather different methodologies: whereas Bahcall & Soneira concentrated on fitting the distribution of luminosity within the Galaxy by fitting star counts, Caldwell & Ostriker and Rohlfis & Kreitschmann concentrated on fitting various measures of the Galactic gravitational force-field. Never the less, all these models decompose the Galaxy into “components” that are motivated by photometric studies of external galaxies, and incorporated a range of dynamical constraints. It is our aim in this and subsequent papers to update and extend these models.

The principal direction in which we wish to extend traditional galaxy models is the incorporation of kinematic information that is capable of constraining the degree of flattening of the mass distribution. The kinematic information that has traditionally been used to constrain galaxy models – the shape of the circular-speed curve, the values of the Oort constants, etc – relates almost exclusively to the radial force within the plane. Such information is in principle incapable of determining how much of the Galaxy’s mass lies near the plane, which is clearly of prime importance astrophysically.

This deficit of kinematic information has been papered over in two ways. The first is a one-dimensional analysis of the vertical structure of the disk along the lines pioneered by Oort (1932). Such analyses ultimately come up against the problem that the vertical and horizontal motions of stars do not decouple to the necessary degree, so that a one-dimensional analysis cannot precisely determine the vertical distribution of matter – see, e.g., Kuijken & Gilmore (1991).

The second way in which the deficit of kinematic constraints on the Galaxy’s vertical structure has been papered over is to use star counts to constrain the flattening of the components into which the overall luminosity density is decomposed, and to assume that each component is characterized by a constant mass-to-light ratio Υ_i. This procedure is methodologically questionable since it appears to presume that the phenomenon of “dark matter” implies the existence of a completely dark component comprised of exotic parti-
cles, whereas it may merely reflect the variation from point to point of each Υ_i.

This is the first of a series of papers in which we plan to overcome these difficulties by treating the orbits of stars in the meridional plane with sufficient sophistication. Our approach, which has been described elsewhere (Binney 1994, Dehnen & Binney 1996), is iterative: we choose a potential, determine a range of orbits in this potential, populate these with stars of various spectral types and then compare the resulting predictions with the available surveys. The potential is modified in the light of this comparison. Thus our first step is to choose potentials (and thus, implicitly, mass models) which are compatible with all the standard kinematic and photometric constraints. This task of updating the Caldwell & Ostriker and Rohlfis & Kreitschmann models is even now by no means trivial, as is made apparent by recent divergent results (Gates, Gyuk & Turner, 1995; Cowsik, Ratnam & Bhattacharjee, 1996; Evans 1996). Therefore we believe it will be useful to present in this paper our initial mass models and the consider actions upon which they are based. Computer programs for evaluating the density and potential of the models are available upon request to the authors.

Although there is now abundant evidence that the inner Galaxy is significantly non-axisymmetric, our model conforms to the traditional axisymmetric pattern because the success of axisymmetric models in accounting for observations in the 21-cm line of hydrogen at longitudes $l \gtrsim 30$ deg suggests that orbits in the Galactic potential that carry stars to radii $r \gtrsim 5$ kpc can be accurately modelled by orbits in an axisymmetric potential.

We do not distinguish between the visible halo, of which RR-Lyrae stars and metal-poor globular clusters are classical tracers, and the putative dark halo: since we do not understand why the mass-to-light ratio rises with galactocentric radius r, we are at liberty to assume that the Galaxy possesses a single, massive halo that simply becomes more luminous with decreasing r.

2 FUNCTIONAL FORMS

Our mass model contains three principal components: the disk, the bulge and the halo.

2.1 The Disk

Our disk is made up of three components, namely the ISM, and the thin and thick stellar disks. The density of each sub-disk is given by

$$\rho_i(R, z) = \frac{\Sigma_{d, i}}{2\pi d} \exp \left(-\frac{R_m}{R} - \frac{R}{R_d} - \frac{|z|}{z_d} \right),$$

(1)

With $R_m = 0$, equation (1) describes a standard double exponential disk with scale-length R_d, scale-height z_d and central surface-density Σ_d. Since there appears to be very little interstellar gas between the molecular ring at $R = 4.5$ kpc and the nuclear disk at $\lesssim 200$ pc (Dame et al. 1987), there should be a depression in the central surface-density of the ISM. The parameter R_m, in equation (1), allows for such a central depression. We set $R_m = 0$ for the stellar disks and adopt $R_m = 4$ kpc for the ISM. The total mass of a disk with density (1) is

$$M_d = 4\pi \Sigma_{d, i} R_m R_d K_2(2\sqrt{R_m/R_d}),$$

(2)

where K_2 is a modified Bessel function. For $R_m = 0$ this gives $M_d = 2\pi\Sigma_{d, i} R_d^2$.

Table 1 gives our adopted values of the scale heights of the three sub-disks as well as the fraction of the whole disk’s surface density at R_0 which is contributed by each sub-disk. As can also be seen from this table, we fix the ratios between the sub-disk’s scale-lengths. The value of R_d, the scale length of the stellar disk, and the mass of the whole disk are obtained from least-squared fits to the observational constraints to be discussed below.

2.2 Bulge and Halo

The bulge and halo are each described by the spheroidal density distribution

$$\rho_b = \rho_0 \left(\frac{m}{r_0}\right)^{-\gamma} \left(1 + \frac{m}{r_0}\right)^{-\beta} e^{-m^2/r_b^2},$$

(3)

where

$$m \equiv (R^2 + q^{-2} z^2)^{1/2}.$$

(4)

Thus the density of bulge and halo is proportional to $r^{-\gamma}$ for $r \ll r_0$, proportional to $r^{-\beta}$ for $r_0 \ll r \ll r_c$, and is softly truncated at $r = r_c$. Infrared photometry obtained by the COBE/DIRBE satellite and analyzed by Spergel, Malhotra & Blitz (1997) yields values for four of the five bulge parameters: we adopt $\beta_b = 1.8$, $q_b = 0.6$, $r_{o,b} = 1$ kpc, and $r_{b,b} = 1.9$ kpc. The density normalization ρ_0, which is not determined by the COBE/DIRBE data, is obtained from our least-squared fits.

The axis ratio of the halo is not significantly constrained by the observations discussed below, and we arbitrarily set it to $q_h = 0.8$ (our standard value). However, we will also consider models with $q_h = 0.3$ motivated by (i) possible evidence that the halos of external galaxies might be that flat (Olling 1996; Sackett et al. 1994), and (ii) Sciana’s (1990) decaying neutrino model for dark matter that requires a high local neutrino density (~ 0.04 M⊙ pc⁻²) only achievable with a flat neutrino halo.

The remaining five halo parameters, β_h, γ_h, $\rho_{0,h}$, $r_{o,h}$, and $r_{b,h}$, are determined by the least-squares fitting procedure described below subject to the restrictions $-2 \leq \gamma_h \leq 0$ and $\beta_h \geq 1$, which limit the sharpness of any inner and outer edges of the halo, respectively.

2.3 Gravitational potential and forces

The total gravitational potential Φ of a model must satisfy Poisson’s equation

$$\frac{\nabla^2 \Phi}{4\pi G} = \sum_{j=1}^{2} \rho_{0,j} + \sum_{i=1}^{3} \rho_{d,i}.$$

(5)
A standard way to solve (6) involves expanding \(\rho \) in spherical harmonics (c.f. BT section 2.8). Unfortunately, the expansion of a thin disk converges very slowly, so this straightforward approach does not yield a fast and accurate solution of Poisson’s equation.

Fortunately, Kuijken & Dubinski (1994) have described a modified multipole technique that works well when the density is sum over components that are separable in cylindrical coordinates, that is, of the form

\[
\rho_{d,l} = f_l(R) h_l(z),
\]

where \(1 = \int_{\infty}^{-\infty} h_l(z) \) so that \(f(R) \) is the radial surface-density profile. Let \(H_l(z) \) be such that

\[
(i) \quad H''_l(z) \equiv h_l(z),
\]

and

\[
(ii) \quad H_l(0) = H_l'(0) = 0,
\]

where the prime denotes a derivative as usual. Then we write

\[
\Phi(R, z) = \Phi_{ME}(R, z) + 4\pi G \sum_{i} f_i(R) H_i(z),
\]

where the argument of \(f_i \) is now the spherical radius \(r \) rather than the cylindrical radius \(R \) and \(\Phi_{ME} \) is a function to be determined. At \(z = 0 \) the second term on the right hand side of (8) and its first derivatives vanish, so both the potential and the forces in the planes are determined by \(\Phi_{ME} \) alone. Inserting (8) and (9) into (6) we obtain for \(\Phi_{ME} \)

\[
\frac{\nabla^2 \Phi_{ME}}{4\pi G} = \sum_{j} \rho_{s,j} + \sum_{i} \left\{ f_i(R) - f_i(r) \right\} h_i(z) - \frac{2}{r} f'_i(r) \left\{ H_i(z) + zH'_i(z) \right\}.
\]

This equation takes the form of Poisson’s equation for \(\Phi_{ME} \) with a mass-density given by the complex expression on its right-hand side. At \(z = 0 \) we have \(R = r \), so with (9) this expression simplifies to \(\sum_{j} \rho_{s,j} \). That is, \(\Phi_{ME} \) is generated by a mass distribution that is not strongly confined to the plane, and can be economically evaluated by expanding both sides of equation (6) in spherical harmonics.

Once \(\Phi_{ME} \) has been found, it and its first derivatives are stored on a grid in \(\ln r \) and \(|z|/r \). A two-dimensional fifth-order spline is used to interpolate on this grid: at each grid point this spline yields the stored values of the potential and its derivatives, and the forces have everywhere continuous first and second derivatives. In particular, the interpolated forces agree with the derivatives of the interpolated potential, as is necessary if energy is to accurately conserved along numerically integrated orbits. Furthermore, the evaluation of potential and forces is quick once the spline coefficients have been computed.

We plan to make available after publication of this paper a C++ source code for the evaluation of the potential of any superposition of spheroids (eq. 3) and exponential disks with vertical profiles as in Table 2 – send e-mail to w.dehnen@physics.ox.ac.uk. (Public-domain C compilers are available that allow C++ code to be linked to otherwise pure C programs.)

3 THE OBSERVATIONAL CONSTRAINTS

Three groups of observational data constrain the values of the free parameters in the model introduced in section 2: (i) tangent velocities at \(R < R_0 \); (ii) rotation velocities at \(R > R_0 \); (iii) other data, such as the values of Oort’s constants and the local surface density. We discuss each group of constraints separately.

3.1 Terminal velocities for the inner Galaxy

For an axisymmetric Galaxy with circularly rotating ISM, the peak velocity along a given line-of-sight at \(b = 0 \) and \(l \) in either the first or fourth quadrant originates from the radius \(R = R_0 \sin l \). Relative to the LSR this ‘terminal velocity’ is related to the circular speed \(v_c \) by

\[
v_{\text{term}} = v_c(R_0 \sin l) - v_c(R_0) \sin l.
\]

In reality, non-circular motions of the ISM induced, for instance, by spiral arms, lead to deviations from this ideal relation. However, outside the region \(|l| \lesssim 20 \deg \) that is dominated by the bar, these deviations are expected to be ignorable for our purposes.

Numerous surveys of the ISM have been undertaken. In this study we restrict ourselves to three surveys in HI (Weaver & Williams 1973; Bania & Lockman 1984; Kerr et al. 1986) and one in CO (Knapp, Stark & Wilson 1985). Malhotra (1994,1995) has modelled these raw data in detail and kindly provided us her values for the terminal velocities in electronically readable form. We restrict the data to \(|s| \geq 0.3 \) to avoid distortions by the central bar.

3.2 The rotation curve of the outer Galaxy

For an axisymmetric galaxy, the radial velocity relative to the LSR, \(v_{\text{bar}} \), of a circularly orbiting object at galactic coordinates \((l,b)\) and galactocentric radius \(R \) is related to the circular speed by

\[
W(R) \equiv \frac{v_{\text{bar}}}{\sin l \cos b} = \frac{R_0}{R} v_c(R) - v_c(R_0).
\]

As is well known, for \(R > R_0 \) one cannot infer \(R \) for an object at given \(l \) without a knowledge of the distance \(d \) to the object. If \(d \) is known, then \(R \) follows from

\[
R = \left(\frac{d^2 \cos^2 b + R_0^2 - 2R_0d \cos b \cos l}{1/2} \right).
\]

Several surveys are available that contain measured values of \(W \) and \(d \) for objects that ought to be on nearly circular orbits. Here we use the data of two recent studies. Brand & Blitz (1993) list HI regions/reflection nebulae that have (spectro-) photometric distances and associated molecular clouds with measured radial velocities. Pont et al. (1997) give radial velocities and photometry for classical cepheids in the outer disk. For these objects we have transformed \(v_c \) to \(v_{\text{bar}} \) and evaluated the distances using the
period-luminosity relation derived from Hipparcos parallaxes by Feast and co-workers (1997a, b), $M_V = -2.81 \log P - 1.43$, in conjunction with a Galactic period-colour relation from Laney & Stobie (1994): $(B - V)_0 = 0.416 \log P + 0.314$.

We have rejected objects for which either $155 \leq l \leq 205\circ$, or $d < 1$ kpc, or $W > 0$, because for these objects ν_0 is very likely dominated by non-circular motions. Furthermore, we have not used data points at $R < R_0$ where the terminal velocities provide a much better constraint. 93 of the 205 objects in Brand & Blitz (1993) and 26 of the 48 Cepheids survived this cull.

We have not employed a number of data sets that are similar in scope to those of Brand & Blitz and Feast et al. because these sets are either rather restricted in their radial coverage, or have problematic distances. For example, the distances to carbon stars are seriously affected by both Malmquist bias and interstellar extinction (Schechter, private communication).

A technique for measuring $W(R)$ from 21-cm emission without independent distance information has been proposed by Merrifield (1992). This involves a determination of the extent in b of the emission observed at given W: in an axisymmetric galaxy with circularly orbiting H\,I, all emission at given W will originate in a galactocentric ring. If this ring has a constant vertical extension, it creates a distinct pattern in the (l, b) plane. From the H\,I surveys of Weaver & Williams (1974) and Kerr et al. (1986) Merrifield estimated relative galactocentric distances R/R_0 by fitting this characteristic pattern to the emission from each bin in W. It is not immediately apparent how accurate Merrifield’s radii are since both random motions in the plane and systematic variations in the thickness of the H\,I layer around circles will contribute errors.

It is worth comparing the three data sets before trying to fit them to a mass model. Fig. 1. shows the data in W vs. R/R_0 for $R_0 = 7.5$ kpc, 8 kpc, and 8.5 kpc. Also shown is $W(R)$ predicted by flat rotation curves for $\nu_c(R_0) = 180$ km s$^{-1}$ (uppermost line), 200 km s$^{-1}$, 220 km s$^{-1}$, and 240 km s$^{-1}$ (lowest line). Several points can be drawn immediately from this Figure. (i) The data of Merrifield (using H\,I) at $R > 1.3 R_0$ are incompatible with the Cepheid data (Pont et al. 1997). (ii) The H\,II data at $R < 1.5 R_0$ and the Cepheid data imply a falling rotation curve, unless $\nu_c(R_0) \geq 240$ km s$^{-1}$ and/or $R_0 \lesssim 7.5$ kpc. (iii) Merrifield’s measurements require a rising rotation curve, unless $\nu_c(R_0) \lesssim 180$ km s$^{-1}$.

Clearly, it makes no sense trying to fit inconsistent data; we must decide which data to trust. Cepheid distances have been extensively studied, whereas Merrifield’s novel method rests on several ad hoc assumptions. Furthermore, his values for W are suspect because they are non-monotonic at $R > 2R_0$. (Note that they do not represent individual objects as do the other data points.) Therefore, we have decided to discard Merrifield’s points altogether.

3.3 Other constraints

By dividing equation (10) by $R_0 \sin l$ and equation (11) by R_0, one sees that studies of the ISM measure $\Omega \equiv \nu_c(R)/R$ at various positions in the Milky Way relative to its local value. To fix the absolute values of ν_c, additional information is essential.

3.3.1 Oort’s constants

Oort’s constants A and B are defined by

$$A = -\frac{1}{2} \left(\frac{\nu_c}{R} \frac{\partial \nu_c}{\partial R} \right)$$

$$B = -\frac{1}{2} \left(\frac{\nu_c}{R} + \frac{\partial \nu_c}{\partial R} \right).$$

They can be derived from the kinematics of nearby stars. Kerr & Lynden-Bell (1986) reviewed the published measurements and concluded that $A = 14.4 \pm 1.2$, $B = -12.0 \pm 2.8$, and $A - B = 26.4 \pm 1.9$, all in units of km s$^{-1}$ kpc$^{-1}$. Hanson (1987) found from an analysis of the NPM catalog $A = 11.3 \pm 1.1$, $B = -13.9 \pm 0.9$, and $A - B = 25.2 \pm 1.6$, while a more recent study of Hipparcos proper motions for Cepheids by Feast & Whitelock (1997b) yields $A = 14.8 \pm 0.8$, and $A - B = 27.2 \pm 0.9$ in the same units. Since the Hipparcos values are likely to be significantly more reliable than the earlier studies, we give them the highest weight.

A potentially relevant measurement is the proper motion of Sgr A*: $\mu_t = (-6.55 \pm 0.17)$ mas yr$^{-1} = (-31.05 \pm 0.81)$ km s$^{-1}$ kpc$^{-1}$ (Eckart 1990). To this the peculiar motion of the Sun contributes $V_G/R_0 \approx 1$ km s$^{-1}$ kpc$^{-1}$. Hence, if we believe that Sgr A*, which is certainly massive (Eckart & Genzel 1997), is stationary at the centre of the Galaxy then we have $A - B = 30 \pm 1$ km s$^{-1}$ kpc$^{-1}$, which is significantly inconsistent with the result of Feast & Whitelock. In view of this conflict and the possibility that the Galactic centre is oscillating, perhaps in an $m = 1$ mode, (Gould &
Ramírez 1997) we have not used Backer’s result but imposed the constraints
\[A = 14.5 \pm 1.5 \text{ km s}^{-1} \text{ kpc}^{-1} \]
\[B = -12.5 \pm 2 \text{ km s}^{-1} \text{ kpc}^{-1} \]
\[A - B = 27 \pm 1.5 \text{ km s}^{-1} \text{ kpc}^{-1} \] (14).

3.3.2 The mass at large radii
While observations for \(A, B \), and \(v_c(R_0) \) restrict the circular speed locally, and hence the mass inside \(R_0 \), there are some important constraints at much larger radii. The total mass within a sphere of radius \(r \gg R_0 \) can be estimated (i) from the velocity distribution of the Milky Way’s satellites, (ii) from the maximal locally observed stellar velocity (the ‘escape velocity’ argument), (iii) the timing of the local group, and (iv) by modelling the dynamics of the Magellanic Clouds and Stream. All these estimates rely on certain assumptions and are model dependent. However, with reasonable assumptions Kochanek (1996) found a simple model that satisfies the first three of these constraints and yields an acceptable value of \(v_c(R) \). From his Figure 7 we extracted for the mass inside 100 kpc \(M_{R<100\text{kpc}} = 7.5 \pm 2 \times 10^{11} M_\odot \).

For comparison, by modelling the dynamics of the Magellanic Clouds and Stream Lin, Jones & Klemola (1995) found that \(M_{R<100\text{kpc}} = 5.5 \pm 1 \times 10^{11} M_\odot \). Clearly, the uncertainties here are dominated by systematic errors, so we allow for a generous error bound on our adopted constraint, which is
\[M_{R<100\text{kpc}} = (7 \pm 2.5) \times 10^{11} M_\odot. \] (15)

3.3.3 The local vertical force
The vertical force \(K_z \) at some height above the plane places a condition on the local mass distribution, and certainly is an important observable our model must agree with. Using K stars as a tracer population, Kuijken & Gilmore (1989,1991) have deduced
\[K_{z,1.1} \equiv |K_z(R_0, 1.1 \text{ kpc})| = 2 \pi G \times (71 \pm 6) M_\odot \text{ pc}^{-2}. \] (16)

We have adopted this as a constraint for our models.

3.3.4 The disk’s local surface density
Unfortunately, the local disk surface density \(\Sigma_0 \) is not as well determined as the closely related quantity \(K_{z,1.1} \) (Kuijken & Gilmore 1991). However, by counting identified matter Kuijken & Gilmore (1989) concluded that \(\Sigma_{\text{stars+gas}}(R_0) = 48 \pm 8 M_\odot \text{ pc}^{-2} \). We adopt the constraint
\[\Sigma_0 \equiv \Sigma_{\text{disk}}(R_0) \geq 40 M_\odot \text{ pc}^{-2}. \] (17)

3.3.5 The dispersion velocity in Baade’s window
Finally, an important constraint on the bulge is provided by the observed velocity dispersion of the bulge in Baade’s window of \(117 \pm 5 \text{ km s}^{-1} \) (Rich 1995). The simplest way to estimate the velocity dispersion of our models is to solve the Jeans equations assuming isotropy in the velocities, which yields
\[\sigma_0^2 = \frac{1}{\rho_b} \int_{-\infty}^{\infty} \rho_b \frac{\partial \Phi}{\partial z} \, dz, \] (18)

where the subscript b stands for bulge. The bulge is now known to be significantly elongated towards us (e.g., Binney, Gerhard & Spergel, 1997) and this elongation is probably reflected in the line-of-sight dispersion along the Galaxy’s minor axis being larger than equation (18) allows. On the other hand, the velocity dispersion probably falls as one moves away from the minor axis along the line of sight, and this effect will tend to cause equation (18) to overestimate the measured dispersion within Baade’s window. In view of these oppositely directed factors, we adopt (19) as the central value of our constraint on the dispersion within Baade’s window and allow a wide range around this value:
\[\sigma_{BW} \equiv \sigma_0(0.0175R_0, -0.068R_0) = 117 \pm 15 \text{ km s}^{-1}. \] (19)

4 FITTING THE MASS MODEL
The free parameters of the mass model described in section 2 are determined by minimizing the quantity
\[\chi^2_{\text{out}} = \frac{W_{\text{in}}}{N_{\text{in}}} \chi^2_{\text{in}} + \frac{W_{\text{out}}}{N_{\text{out}}} \chi^2_{\text{out}} + \frac{W_{\text{other}}}{N_{\text{other}}} \chi^2_{\text{other}} \] (20)

that is the sum of pseudo-chi-squared contributions from our three classes of constraint. Here the \(N_i \) are the numbers of data points actually used, while the \(W_i \) are weights, which may be interpreted as the number of really independent constraints (for instance, Oort’s \(A \) has been obtained from much more data than we use for \(v_{\text{term}} \)). Clearly, the \(W_i \) are subject to ones prejudices, we took \(W_{\text{in}} = W_{\text{out}} = W_{\text{other}} = N_{\text{other}} = 6 \).

There are contributions to \(\chi^2_{\text{in}} \) from 53 data points at \(l < 0 \) and 77 at \(l > 0 \). In order to minimize the influence of systematic deviations from circular motion, which differ on the two sides of the Galaxy, the data for positive and negative longitude are weighted by 0.844 and 1.23, respectively. This gives an effective number of 65 data points on either side, while leaving the effective total number of data points unchanged. In order to allow for non-circular motions both random and systematic, we adopt a constant uncertainty of 7 km s\(^{-1}\) for \(v_{\text{term}} \). Hence each data point adds to \(\chi^2_{\text{in}} \) an amount
\[w \left(\frac{v_{\text{term, model}}(l) - v_{\text{term, data}}(l)}{7 \text{ km s}^{-1}} \right)^2 \] (21)

where \(w = 0.844 \) or \(w = 1.23 \) depending on whether \(l \) is greater than or less than 0.

The rotation-curve data for \(R > R_0 \) cannot be treated in an exactly analogous way because now two numbers contain significant uncertainties: \(d \) and \(W \). Following Fich, Blitz & Stark (1989) we take the contribution to \(\chi^2_{\text{out}} \) from the \(i \)th data point to be
\[w \min_{R > R_0} \left(\frac{\ln d_i - \ln d_{\text{model}}(R)}{\Delta \ln d_i}^2 + \left(\frac{W_i - W_{\text{model}}(R)}{\Delta W_i} \right)^2 \right), \] (22)
where $\Delta \ln d$ and ΔW are the uncertainties in the observables. In order to give each catalog the same weight, the data taken from Brand & Blitz (1993) and Pont et al. (1997) are weighted by $w = 0.665$ and 2.016, respectively, leaving the effective total number of data points unchanged at 119. To account for non-circular motions, a dispersion velocity of 7 km s$^{-1}$ is quadratically added to the measurement errors of v_{lsr}.

5 RESULTS

There are two aspects of any given model to consider: (i) how well does it fit the observational constraints, and (ii) how is its mass distributed. Since the observational constraints mostly relate to motions in the plane, these two questions are in large degree independent of one another. Table 3 lists the defining characteristics of each model and the quality of the fit to the data that it furnishes. Table 4 lists the values of each model's parameters.

The most important parameter of the models proves to be $R_{d,\ast}/R_0$. The first four rows of Tables 3 and 4 refer to our `standard models', which all have $R_0 = 8$ kpc but adopt four values of $R_{d,\ast}/R_0$: 0.25, 0.3, 0.35 and 0.4. Each model is determined by specifying the value of $R_{d,\ast}/R_0$ and then solving for the values of the other model parameters which minimize χ^2_{tot}. These values are given in Table 4.

Fig. 2 shows the circular-speed curves predicted by the four standard models together with the contributions to v_c from each component. In all four models the circular speed declines outside R_0, although in Model 4 the decline is extremely slow near R_0.

As $R_{d,\ast}/R_0$ increases from 0.25 to 0.4, the peak in the disk’s contribution to v_c moves outwards from 5 kpc and the amplitude of the disk’s contribution to v_c declines markedly. This decline in the disk’s contribution to the inner circular-speed curve is compensated by an increase in the halo’s contribution. This increase is achieved by making the halo more centrally concentrated, with the result that for $R_{d,\ast}/R_0 = 0.35$ the halo does not differ greatly from a pure power-law component whose contribution to v_c is nearly independent of radius. For $R_{d,\ast}/R_0 = 0.4$ this contribution dominates v_c at all radii.

The parameter $\Sigma_{d,\text{tot}}$ is the sum of the values for the
three disks of the parameter Σ_d that is defined by equation (4). Table 3 shows that $\Sigma_{d,\text{tot}}$ decreases by a factor of almost 4 as $R_{d,\text{tot}}/R_0$ increases from 0.25 to 0.4. Consequently, the disk’s contribution to v_c at small radii decreases by a factor of 2, which is first compensated by a near doubling in the bulge mass, and then by a dramatic increase in the central density of the halo. Specifically, whereas for the smallest two values of $R_{d,\text{tot}}/R_0$ the halo has a hole at its centre ($\gamma_d = -2$), for all larger values of $R_{d,\text{tot}}/R_0$ the halo density decreases outwards as $\sim r^{-1.7}$.

The amplitude of the bulge’s contribution to v_c near the centre is largest for $R_{d,\text{tot}}/R_0 = 0.3$ – smaller and larger values of this parameter yield bulges that are less massive by a factor in excess of 40 per cent. In all four models the velocity dispersion in Baade’s window lies below the target value. As we indicated above, this shortfall probably reflects the fact that our models take no account of the elongation of the bulge along the line of sight.

The model with the smallest value of $R_{d,\text{tot}}/R_0$ is nearly a maximum-disk model in the sense that there is a wide range of radii $R \lesssim 10$ kpc within which nearly all of v_c derives from the disk alone. In Model 2, which has $R_{d,\text{tot}}/R_0 = 0.3$, the disk and bulge together dominate v_c at $R \lesssim 10$ kpc; the principal difference between Models 1 and 2 is the dominance of the bulge at $R \lesssim 2$ kpc discussed above. For $R_{d,\text{tot}}/R_0 \gtrsim 0.35$ the disk’s contribution to v_c is nowhere as important as the halo, even though the disks of these models are only slightly less massive than those of models with $R_{d,\text{tot}}/R_0 \lesssim 0.3$.

All the standard models have masses $M_{R<100}$ kpc that lie below the target value. This is because the rotation-curve data for $R > R_0$ force v_c to decline just beyond the Sun. In extreme cases – for example Model 3 and Model 2a below – the constraint on $M_{R<100}$ kpc obliges the halo to make an outwards-increasing contribution to v_c even at the largest radii, with the result that v_c is increasing at $R = 100$ kpc.

All four standard models provide satisfactory fits to the constraints of Section 3.3 – see Table 3. Fig. 3 shows that these models also provide excellent fits to the observed rotation velocities at $R < R_0$: the deviations between observed and predicted points are of the order of those expected to arise from spiral structure. Fig. 3 shows that all four standard models provide essentially the same reasonable fit to the (widely scattered) rotation-curve data for $R > R_0$.

Tables 3 and 4 also describe variants of the standard models. Models 2a and 2b explore the effect of changing R_0: reducing R_0 from 8 kpc to 7.5 kpc increases A and reduces $v_c(R_0)$. The top two panels of Fig. 3 show that it also changes the form of $v_c(R)$ from steady decline at all $R > R_0$ to a steady rise at $R \gtrsim 40$ kpc. This coupling between the value of R_0 and the rotation curve at $R \gg R_0$ arises because the tangent velocities strongly constrain the mass distribution at $R < R_0$. Hence any change in one component at $R < R_0$ must be compensated by a change in another component. Since our model for the halo has only a few free parameters, a change in its density at $R < R_0$ is accompanied by significant changes in density at $R \gg R_0$, and vice versa.

Model 2c shows the effect of fixing the inner slope of the halo’s density profile at $\gamma_d = 1$; this value is motivated by Navarro, Frenk & White (1996), who find that in simulations of cosmological clustering, dark-matter halos tend to a universal profile that has a slope ~ 1 at small radii. Even
though Model 2 has $\gamma_h = -2$, fixing γ_h in this way has a negligible effect on the observable properties of the model, and causes a negligible increase in χ^2_{tot}. This is because the halo makes a negligible contribution to the central density even for $\gamma_h = 1$. Moreover, the increase in γ_h is at small radii largely compensated for by a six-fold increase in the halo’s break radius $r_{0, h}$.

Model 2d explores the effect of fixing both the inner and the outer slopes of the halo to values, $\gamma_h = 1, \beta_h = 3$, that are suggested by Navarro et al. (1996). Again the model’s observables and value of χ^2_{tot} change remarkably little, while $r_{0, h}$ increases again, this time by a further factor of ~ 3.

Models 2e and 2f show the effect of employing a slightly non-exponential disk: a term $\pm 0.1 \cos(R/R_0)$ is added to the exponent in equation [1]. The lower two panels of Fig. 1 show that at $R < 10$ kpc this extra term changes the balance between the contributions to v_t of the bulge, disk and halo without significantly affecting the overall rotation curve. At large R the effect of the additional term is more dramatic in that with a plus sign v_t declines steadily at $R > R_0$, while with a minus sign it rises gently at the largest radii. Again we encounter the consequence of the rotation curve at large radii being inadequately constrained by the observations: it mirrors changes in the functional form of the halo that are designed to fit the data at $R \lesssim R_0$.

Model 2g shows that increasing σ_{BW}, the target dispersion in Baade’s window, by 23 km s^{-1} has little effects on the derived model: the predicted dispersion is grudgingly raised from 108 km s$^{-1}$ to 115 km s$^{-1}$, and χ^2_{tot} increases significantly.

Microlensing surveys have suggested that the bulge may be significantly more massive than studies of the tangent velocities would imply (e.g., Bissantz et al. 1996). Model 2h shows the effect of imposing the constraint $M_{\text{bulge}} \geq 1.5 \times 10^{10} M_\odot$. This causes v_t to be dominated by the bulge out to ~ 3.5 kpc. It also, by the mechanism described above, changes the form of $v_t(R)$ at large R so that with a more massive bulge v_t is predicted to decline significantly more steeply at $R \gtrsim 50$ kpc. Like the other model with an artificially enhanced bulge (Model 2g), this model has an anomalously large value of χ^2_{tot}.

It is not clear that a massive halo should be nearly round (axis ratio $q_h = 0.8$) as in all the models described above, so Model 2i explores the effect of assuming that the halo is highly flattened: axis ratio $q_h = 0.3$. This has the effect of making the halo virtually a pure power-law component that is dynamically dominant at all radii. Consequently, it predicts that the rotation curve rises at the very largest radii. The massive, flattened halo contributes strongly to $K_{z, 1.1}$, so that the target value of $K_{z, 1.1}$ is significantly over-shot, despite the local disk surface density, Σ_0, being pushed right down to its floor value, $\Sigma_0 = 40 M_\odot \text{ pc}^{-2}$. For this model χ^2_{tot} is on the high side.
β always larger than the parameters of the halo are strongly correlated with one another. Indeed, the halo's density normalization $\rho_{0,h}$, central slope γ_h and scale length $r_{0,h}$ have almost unit correlations between them. The density normalization of the bulge, $\rho_{0,b}$, is strongly correlated with all the halo parameters, especially $\rho_{0,h}$, γ_h and $r_{0,h}$. By contrast, $\Sigma_{d,\text{tot}}$ is only weakly correlated with the other parameters. These strong correlations between parameters reflect the existence of a long, level valley in parameter space.

Figure 5. Rotation curves of models 2a,b,e,f (thick solid lines). The circular velocities due the disk (dotted), bulge (short dashed), disk and bulge (dash dotted), and halo (long dashed) are also shown.

Models 4a – 4i explore the effect on Model 4 of the changes that were made to Model 2 in making Models 2a – 2i. Qualitatively the results are similar, but quantitatively they tend to be smaller because the halo is very much more important in Model 4 than it is in Model 2 and the effects of changes in the disk and bulge are relatively minor.

Inspection of Table 4 shows that there is a general anticorrelation between the steepness of the halo's central density profile and the bulge mass. In particular, when the halo density is strongly cusped at the centre ($\gamma_h > 1$), the bulge mass is small: $M_0 \sim 0.37 \times 10^{10} M_\odot$. Conversely, with the exception of the model with the smallest value of $R_{d,*}/R_0$, the bulge mass is large ($M_0 \sim 0.8 \times 10^{10} M_\odot$) when the halo has a hole at its centre ($\gamma_h = -2$).

The asymptotic slope of the halo profile at large R is always larger than $\beta_h = 1.63$ and no model has a finite halo cut-off radius $r_{1,h}$. That is, the data imply only that the halo ends at $R > 100$ kpc.

The only models that comes near to violating the lower limit on the local column density are Model 1, which has the smallest disc scale-length, Model 2h, which is obliged to have a massive bulge, and Models 2i and 4i, which have highly flattened halos.

Table 4 gives the correlation matrix of the fitted parameters for both Models 2 and 4: the upper right triangle is for Model 2 while the lower-left triangle is for Model 4. The parameters of the halo are strongly correlated with one another.

6 CONCLUSIONS

We have fitted a multiparameter mass model to the available kinematic data for the Milky Way. The wide variety of models that emerge from this fitting process demonstrates that the mass distribution within the Milky Way is currently ill determined.

The principal problem in determining the Galaxy’s mass distribution is that very few hard facts are available regarding the vertical distribution of the Galaxy’s mass. Also the circular speed is observationally much less well constrained at $R > R_0$ than it is at $R < R_0$. These deficiencies in the spatial coverage of the data have several unfortunate effects. First they oblige use to represent the Galaxy as a superposition of components, and to adopt simple functional forms for the distribution of mass within each component.

The assumed distribution of mass within the halo plays a particularly important and confusing role. Since we know nothing about the halo except what can be gleaned from studies such as this, we have allowed the halo density as much freedom as is compatible with (i) its being much thicker than the disk (axis ratio $q_h \geq 0.3$), (ii) its density function containing only a few free parameters, and (iii) its not being implausibly sharp-edged ($-2 \leq \gamma_h \leq 1, \beta_h \geq 1$).

With these assumptions we find that even the circular-speed curve of the best-fitting model depends significantly on both the adopted values of parameters such as $R_{d,*}/R_0$ and R_0, and on the adopted functional forms of the components. The density model is even less well constrained by the data. In particular, remarkably small changes in $v_c(R)$ and the other observational constraints can be associated with dramatic changes in the distribution of mass between the different components, and the degree of central concentration of the halo.

A particularly disturbing phenomenon is that a change in a component that contributes to v_c only at small radii causes the predicted value of v_c to change at large radii. This connection between small and large scales within the Galaxy is established by the halo component, which must be allowed to contribute to the density at all radii and yet be determined by a small number of parameters. In general there is a clear need to model components non-parametrically or at least by functions that contain more parameters. However, we do not yet have enough observational constraints to constrain adequately models that are significantly more complex than those used here.

As is traditional, we have represented the Galaxy as a superposition of components that individually represent plausible stellar systems. The justification for the use of such components in preference to a family of orthogonal (and therefore non-positive) functions, is the hypothesis that these components do, in fact, represent real physical sys-
tems. While there can be no doubt of the reality of the disk and bulge, the status of the halo is entirely speculative. Indeed, although observations of external galaxies clearly require high mass-to-light ratios at large radii, it does not follow that these reflect the existence of a physically distinct dark halo; it is perfectly possible that the mass-to-light ratio of the disk or bulge increases strongly away from the Galactic centre. If the halo does represent a distinct dynamical entity, then in an exercise like the present one it should emerge with a dynamically plausible density profile. Table 4 shows that it frequently fails this test: in just over half the models, the central density slope γ_h lies at one or other extreme of its permitted range $-2 \leq \gamma_h \leq 1.8$. In four models (Models 3, 2a,f,i) the halo’s density profile is an essentially featureless power law of slope ~ -1.8. In seven models the halo has a hole at its centre. N-body simulations of structure formation offer no encouragement to the idea that the Galaxy’s distribution of axions or other exotic particles would have a hole at its centre. Nor do they suggest that it should be a featureless power law (Navarro et al. 1996).

The road to an improved understanding of the Galaxy’s mass distribution must lie with the introduction of more observational constraints, especially ones that relate to $R > R_0$ and $z > z_0$. The goal of later papers in this series is to bring to bear on this problem observations of halo stars, which should provide a wealth of information about the density at $z > z_0$, and, to a lesser extent, about the density at $R > R_0$.

The models described here simultaneously provide starting points for this enterprise and demonstrate its urgency by underlining that at the present time we know depressingly little about the distribution of mass within our own Galaxy.

REFERENCES

Backer D.C., 1996, in Blitz L. & Teuben P., eds, Unsolved Problems of the Milky Way, IAU Symp. 169, p. 193
Bahcall J.N., Soneira R.M., 1980, ApJS, 44, 73
Bania T.M., Lockman F.J., 1984, ApJS, 54, 513
Binney J.J., 1994, in Morrison L.V., Gilmore, G.F., eds., Galactic and Solar System Optical Astrometry. Cambridge Univ. Press, p. 141
Binney J.J., Gerhard., Spergel, 1997, MNRAS, 288, 365
Binney J.J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press, Princeton (BT)
Bissantz N., Englmaier P., Binney J.J., Gerhard O.E., 1997, MNRAS, 289, 651
Brand J., Blitz L., 1993, A& A, 275, 67
Caldwell J.A.R., Ostriker J.P., 1981, ApJ, 251, 61
Cowls K., Ratnam M., Bhattcharjee P., 1996, Phys. Rev. Let. 76, 3886
Dame T., Ungerechts H., Cohen R.S., de Geus E., Grenier I., May J., Murphy D.C., Nyman L.-Å., Thadeus P., 1987, ApJ, 322, 706
Dehnen W., Binney J.J., 1996, in Morrison H., Sarajedini A., eds., Formation of the Galactic Halo ... Inside and Out. ASP Ser. 92, p. 393
Evans N.W., 1996, submitted to Phys. Rev. Let.
Feast M.W., Catchpole R.M., 1997, MNRAS, 286, L1
Feast M.W., Whitelock P.A., 1997a, to appear in Perryman M., ed., Hipparcos Venice’97 Symposium, ESA SP-402
Feast M.W., Whitelock P.A., 1997b, MNRAS in press
Fich M., Blitz L., Stark A.A., 1989, ApJ, 342, 272
Gates E.J., Gyuk G., Turner M.S., 1995, ApJ, 449, L123
Eckart A., Genzel R., 1997, MNRAS, 284, 576

Gould A., Ramírez S.V., 1997, preprint astro-ph/9705174
Hanson R.B., 1987, AJ, 94, 409
Kerr F.J., Lynden-Bell D., 1986, MNRAS, 221, 1023
Kerr F.J., Bowers P.F., Jackson P.D., Kerr M., 1986, A&AS, 66, 373
Knapp G.R., Stark A.A., Wilson R.W., 1985, AJ, 90, 254
Koehneke C.S., 1996, ApJ, 457, 228
Kuijken K., Dubinski J., 1994, MNRAS, 269, 13
Kuijken K., Gilmore G., 1989, MNRAS, 239, 605
Kuijken K., Gilmore G., 1991, ApJ, 367, L9
Kuijken K., Tremaine S., 1994, ApJ, 421, 178
Lin D.N.C., Jones B.F., Klemola A.R., 1995, ApJ, 439, 652
Malhotra S., 1994, ApJ, 433, 687
Malhotra S., 1995, ApJ, 448, 138
Merrifield M.R., 1992, AJ, 103, 1552
Navarro J., Frenk C.S., White S.D.M., 1996, ApJ, 462, 563
Olling R.P., 1996, AJ, 112, 4810
Oort J.H., 1932, Publ. Astron. Inst. Neth. 6, 349
Pont F., Queloz D., Bratschi P., Mayor M., 1997, A&A, 318, 416
Rich R.M., 1988, AJ, 9, 5 828
Rohlf K., Kreitschmann J., 1988, A&A, 201, 51
Sackett P.D., Rix, H-W., Jarvis B.J., Freeman K.C., 1994, ApJ, 436, 629
Schmidt, M., 1956, Bull. Astr. Inst. Neth., 13, 15
Sciama D.W., 1990, ApJ, 364, 549
Spergel D.N., Malhotra S., Blitz L., 1997, submitted to ApJ
Terehulup D.M., Sadler E.M., Rich R.M., 1995, AJ, 110, 1774
Weaver H., Williams D.R., 1973, A&AS, 132, 20

© 1997 RAS, MNRAS 000, 000–000