Antimicrobial resistance profiles of human commensal Neisseria species

Maira Goytia¹*, Symone T. Thompson¹, Skylar V. L. Jordan¹, and Kacey A. King¹

¹ Department of Biology, Spelman College, Atlanta, GA, USA
* Correspondence: mgoytia@spelman.edu; Tel.: +1 (404) 308-4063

Abstract: Pathogenic Neisseria gonorrhoeae causes the sexually-transmitted infection gonorrhea. N. gonorrhoeae has evolved high levels of antimicrobial resistance (AR) leading to therapeutic failures even in dual-therapy treatment with azithromycin and ceftriaxone. AR mechanisms can be acquired by genetic transfer from closely related species, such as naturally-competent commensal Neisseria species. At present, little is known about the antimicrobial resistance profiles of commensal Neisseria. Here, we characterized the phenotypic resistance profile of four commensal Neisseria species (N. lactamica, N. cinerea, N. mucosa, and N. elongata) against 10 commonly used antibiotics, and compared their profiles to 4 N. gonorrhoeae strains, using disk diffusion and minimal inhibitory concentration assays. Overall, we observed that 3 of the 4 commensals were more resistant to several antibiotics than pathogenic N. gonorrhoeae strains. Next, we compared the penicillin-binding-protein 2 (PBP2) sequences between commensal and N. gonorrhoeae strains. We found mutations in PBP2 known to confer resistance in N. gonorrhoeae also present in commensal Neisseria sequences. Our results suggest that commensal Neisseria have unexplored antibiotic resistance gene pools that may be exchanged with pathogenic N. gonorrhoeae, possibly impairing drug development and clinical treatment.

Keywords: Commensal bacteria; Neisseria; antimicrobial resistance; multidrug resistance

1. Introduction

Neisseria gonorrhoeae, the etiologic agent of gonorrhea, is the second most commonly reported bacterial sexually-transmitted infection in the US [1], and a worldwide public health concern. The World Health Organization (WHO) estimates there were 87 million new cases globally of N. gonorrhoeae in 2016 [2]; this incidence is increasing in many countries including the USA [3]. The Centers for Disease Control and Prevention (CDC) classifies N. gonorrhoeae as an “urgent threat” due to the emergence of antibiotic resistance (AR) and multidrug resistance (MDR) [4-9]. The spread of MDR has led to increasing rates of untreatable gonorrhea [10], including reports of untreatable and harder to treat pharyngeal N. gonorrhoeae, acquired through oral sex [11-13], where N. gonorrhoeae shares the environment with closely related commensal Neisseria.

Pathogenic and commensal Neisseria species exchange and transfer genes via natural competence and transformation [14]. Neisseria will exchange and transfer genes at high rates, as long as they share an identical or similar DNA uptake Sequences (DUS) and the corresponding DNA import complex [15-18]. Hence, in this study, we characterize the antimicrobial resistance profiles of commensal Neisseria species and explore their potential role as antibiotic resistance gene reservoirs for pathogenic Neisseria species. We selected and characterized commensal Neisseria species across a spectrum of genetic relatedness, including N. lactamica, N. elongata, N. cinerea, and N. mucosa. Of these, N. lactamica is the closest relative to the pathogens N. gonorrhoeae and N. meningitidis, while N. elongata appears to be the most distant relative to the pathogens [19-21]. N. cinerea is more closely related to N. lactamica; N. mucosa is closely related to the common
ancestor of \textit{N. lactamica} and \textit{N. cinerea}. We also used the \textit{N. gonorrhoeae} FA19 strain [22] as our reference strain, susceptible to antibiotics, while strains MS11, H041, and F89 are representatives of resistant strains for several antibiotics. We tested commensal and pathogenic strains against a panel of 10 antibiotics that are commonly or previously used, or likely to be used in a therapeutic context. We used disk diffusion and minimal inhibitory concentration assays, and show that commensal \textit{Neisseria} display increased antimicrobial resistance profiles to widely used antibiotics, including the first line dual-therapy drugs, azithromycin and ceftriaxone, compared to pathogenic \textit{N. gonorrhoeae} strains. Notably, when analyzing the penA sequences, which encode the Penicillin Binding Protein 2 (PBP2), we identified several mutations in some commensal \textit{Neisseria} species that are known to cause resistance in \textit{N. gonorrhoeae}. We discuss these findings in light of the potential for commensal \textit{Neisseria} to function as de facto reservoirs of antibiotic resistance genes for the pathogenic \textit{N. gonorrhoeae}.

2. Results

2.1. Commensal \textit{Neisseria} display increased resistance levels to several antibiotics, detected by disk diffusion assays

In order to assess the levels of antibiotic resistance of commensal \textit{Neisseria}, we performed disk diffusion assays (DDA) with 10 commonly used antibiotics, including 3 beta-lactams and 7 protein synthesis inhibitors as described in the Methods. Our DDA results revealed that some commensal \textit{Neisseria} species were particularly resistant to azithromycin and ceftriaxone (Fig 1 and Supplementary Table 1), the first-line treatment drugs against \textit{N. gonorrhoeae}, as well as to erythromycin, the antibiotic applied on newborns’ eyes to prevent gonococcal conjunctivitis. All commensal species displayed increased resistance to azithromycin as evidenced by the smaller zone of inhibition (Zol) diameters (Zol ranging 14.7 - 21.2 mm) than any of the \textit{N. gonorrhoeae} strains (Zol ranging 29.2 - 34.1 mm), including the highly resistant strains \textit{N. gonorrhoeae} F89 and H041. For ceftriaxone, only \textit{N. lactamica} displayed susceptibility levels similar to \textit{N. gonorrhoeae} strains, with Zol of 36.7 mm and ranging 30.8 - 43.0 mm, respectively. Commensals \textit{N. cinerea}, \textit{N. mucosa}, and \textit{N. elongata} were found to be more resistant to ceftriaxone (Zol ranging 21.3 - 28.5 mm) than any of the \textit{N. gonorrhoeae} tested. According to the CLSI guidelines, Zol > 35 mm suggest that \textit{N. gonorrhoeae} were susceptible to ceftriaxone [32]; hence, only \textit{N. lactamica} and \textit{N. gonorrhoeae} FA19 can be considered susceptible to ceftriaxone; all other strains tested displayed resistance to it. The resistance of commensals to erythromycin resembled azithromycin’s pattern where \textit{N. cinerea}, \textit{N. mucosa} and \textit{N. elongata} displayed increased erythromycin resistance levels (Zol ranging 13.5 - 15.0 mm), while \textit{N. lactamica} was more susceptible (Zol at 19.0 mm). Nonetheless, all the commensals tested were less susceptible to erythromycin than the 4 strains of \textit{N. gonorrhoeae} tested (Zol ranging 23.8 - 30.5 mm).

Commensal \textit{Neisseria} species displayed increased resistance to penicillin and ampicillin (Zol ranging 20.3 - 31.0 mm and 21.8 - 28.5 mm, respectively) compared to the susceptible \textit{N. gonorrhoeae} FA19 strain (Zol 41.7 mm and 38.5 mm, respectively). \textit{N. lactamica} appears again more susceptible to these antibiotics than the other commensal \textit{Neisseria} tested. According to the interpretive standards published by the CLSI [32], \textit{N. gonorrhoeae} were considered resistant to penicillin when Zol < 26 mm, such as \textit{N. cinerea}, \textit{N. elongata}, \textit{N. gonorrhoeae} MS11 and H041.

Similarly, three commensals, but not \textit{N. lactamica}, displayed higher resistance to chloramphenicol (Zol ranging 21.3 - 24.5 mm) than the susceptible \textit{N. gonorrhoeae} FA19 (Zol of 38.7 mm). The other \textit{N. gonorrhoeae} strains (MS11, F89, H041) displayed Zol to chloramphenicol similar to the commensal species. Commensal \textit{Neisseria} strains were more resistant to tetracycline (Zol ranging 21.2 - 28.7 mm) than \textit{N. gonorrhoeae} FA19 (Zol of 34.8 mm). Streptomycin was the only antimicrobial tested for which commensals displayed slightly higher susceptibility levels (Zol ranging 12.5 - 17.7 mm) than the susceptible \textit{N. gonorrhoeae} FA19 (Zol of 14.9 mm). Only two commensals, \textit{N. cinerea} and \textit{N. elongata} displayed kanamycin resistance levels (Zol of 20.5 and 21.3 mm respectively) higher than \textit{N.
gonorrhoea FA19 (Zol of 31.3 mm). It is important to note that the Zol of N. cinerea, N. mucosa, and N. elongata were found to be at least 14 mm smaller than those of N. gonorrhoeae FA19, for ampicillin, ceftriaxone, azithromycin, erythromycin, and chloramphenicol, reflecting a wide gap in resistance levels between these 3 commensals and the susceptible N. gonorrhoeae FA19 strain.

Interestingly, both groups of commensal and pathogenic strains displayed similar levels of resistance to gentamicin (Zol ranging 17.8 - 21.8 mm and 17.5 - 20.2 mm, respectively), a possible alternative to treat N. gonorrhoeae (Fig. 1 and Supplementary Table 1). These Zol to gentamicin were slightly larger than the Zol ≥ 16 mm categorized as the limit for susceptibility to gentamicin [33]. This suggests that the Neisseria species tested do not currently display antibiotic resistance against gentamicin, nor should they be considered a reservoir of gentamicin resistance. However, the small difference between the threshold of susceptibility (16 mm) and the range of Zol observed (ranging 17.5 - 21.8 mm) suggests that a mutation, even if slightly decreasing the susceptibility level to gentamicin, could render these species resistant.

Overall, N. cinerea, N. mucosa, and N. elongata appeared more resistant to antibiotics than N. lactamica, which is more closely related to N. gonorrhoeae and N. meningitidis. As shown in Figure 1, N. lactamica was the most susceptible of the four commensals to seven of the 10 antibiotics tested and the second-most susceptible in the three remaining antibiotics (see Figure 1); and therefore N. lactamica was most similar in its antibiotic susceptibility profile to the susceptible pathogenic Neisseria gonorrhoeae FA19. This suggests that the other commensal strains - N. cinerea, N. mucosa, and N. elongata - may have distinct antimicrobial resistance mechanisms than N. gonorrhoeae FA19. Indeed, the profile of resistance for these 3 commensal species was very different from N. lactamica and the 4 N. gonorrhoeae strains, possibly suggesting that these commensals carry mutations and/or genes that confer increased antimicrobial resistance, in ways that have not been observed in N. gonorrhoeae. This requires further exploration of genomic data of commensal Neisseria species, both in known antimicrobial resistance genes and in regions that are not known to confer antimicrobial resistance.

2.2. Commensal Neisseria display increased resistance levels to several antibiotics, detected by minimal inhibitory concentrations

Next, we performed minimal inhibitory concentration (MIC) assays using a 2-fold serial dilution of azithromycin, ceftriaxone, penicillin, erythromycin, chloramphenicol, and gentamicin (see materials and methods for concentration ranges). We compared our
results to susceptible and resistant strains of *N. gonorrhoeae* with values reported in the literature. Figure 2 shows differences in MIC to these 6 antibiotics for the commensal *Neisseria* species tested in the lab. Similarly to our DDA analysis, *N. lactamica* appeared susceptible compared to the other commensal *Neisseria* species (Fig. 2 and Supplementary Table 2). Indeed, *N. cinerea*, *N. mucosa*, and *N. elongata* showed increased ceftriaxone MIC values (0.128 µg/mL, 0.064 µg/mL, 0.064 µg/mL respectively), reflecting increased resistance, than *N. lactamica* (0.008 µg/mL) or a susceptible *N. gonorrhoeae* strain (≤0.015 µg/mL). *N. cinerea* displayed ceftriaxone MIC values 16 times higher than *N. lactamica*; *N. mucosa* and *N. elongata* displayed ceftriaxone MIC values 8 times higher than *N. lactamica*. However, these values of MIC for commensal *Neisseria* were still below the MIC breakpoint for ceftriaxone described by Kirkcaldy et al. [34]. The MIC values for azithromycin in commensal *Neisseria* were lower (0.25-0.5 µg/mL) than the MIC breakpoint for resistant *N. gonorrhoeae* (≥2 µg/mL) described by Kirkcaldy et al. [34]; hence, commensals appeared sensitive to azithromycin, detected by MIC assays. All commensals were overall more resistant to penicillin than the susceptible strain of *N. gonorrhoeae*. *N. elongata* and *N. mucosa* appeared more resistant than *N. cinerea* and *N. lactamica* towards chloramphenicol and erythromycin; we did not find MIC values to these antibiotics for *N. gonorrhoeae* susceptible and resistant strains. These observations reinforce the need to analyze genomic sequences of commensal *Neisseria* to identify possible antimicrobial resistance genes and mutations.

We also noted that there were key differences in the relative resistance between commensal and pathogenic species when contrasting DDA to MIC assays. Contrary to our DDA observations, commensal and pathogenic species displayed differences in resistance to gentamicin. Detected by MIC, commensal species appeared more susceptible than a susceptible *N. gonorrhoeae* strain. Currently, we cannot explain the discrepancies in our observations between DDA and MIC data, except that MIC can identify extreme behaviors of resistance as values reflect growth of a reduced number of individuals (0.01% of the population) under high antibiotic levels. These observations were less likely to be detected in DDA.

![Figure 2](image-url)

Figure 2: Minimal Inhibitory Concentrations (µg/mL) of several antibiotics in commensal (Comm, circles) *Neisseria* species compared to *N. gonorrhoeae* (Pathog, triangles) susceptible (Su) and resistant (Re) strains. MIC were performed 3 times independently, using 2-fold serial dilutions of the antibiotics. When necessary, ranges (as color-coded bars) of MIC are displayed for specific data points that are plotted as a midpoint of the range. N/A, Not available.

2.3. *Mutations in penicillin-binding protein 2 (PBP2) sequences can partially explain resistance in commensal species*

In order to explore the potential mechanistic basis for variation in resistance, we compared sequence variation amongst commensal and pathogenic strains, focusing on previously identified genes associated with antibiotic resistance. One of these genes - the *penA* gene - encodes the penicillin-binding-protein-2 that is known to modify penicillin and other beta-lactam drugs [35]. In *N. gonorrhoeae*, known mutations in *penA* lead to increased...
resistance [36]. *N. gonorrhoeae* resistant strains often contain point mutations leading to amino acid changes, and/or contain a mosaic sequence of *penA*, which is a recombination of *penA* genes from *N. perflava* and *N. cinerea* [37-40], both commensal species regularly carried in the human oro- and nasopharynx, where other commensal *Neisseria* also reside, and where *N. gonorrhoeae* may be found in cases of oral sex gonococcal infections.

The *penA* sequences of commensal *Neisseria* species reveal genetic polymorphism. We aligned amino acid sequences of PBP2 from the different commensal *Neisseria*, *N. gonorrhoeae* susceptible strain LM306 (wild-type sequence, Ngo_WTSu) and resistant strain NG-3 (mosaic sequence, Ngo_mosaic), and 2 outgroup sequences from *Eikenella corrodens* (Eik) and *Kingella oralis* (Kor) (from the family Neisseriaceae), using BLASTp [41] and Clustal Omega [42] algorithms. We observed that mutations in PBP2 known to increase antibiotic resistance in *N. gonorrhoeae*, were present in *N. mucosa* (Nmu), *N. elongata* (Nel), and *N. cinerea* (Nci) (Fig. 3). On the other hand, *N. lactamica* (Nla) conserved the amino acids present in the susceptible *N. gonorrhoeae* strain LM306 (highlighted in yellow). Other described mutations were not present in the commensal *Neisseria* species (hence, are not shown in Fig. 3), namely the insertion of an aspartate after position 345 of the wild-type susceptible sequence [38,43], the mutation A501V or A501P [25,44], and the mutation G545S [45].

The differences observed among PBP2 sequences of commensal *Neisseria* species may partially explain the higher resistance levels observed in these species for beta-lactam antibiotics, penicillin and ceftriaxone. Further analyses of other known antimicrobial
Resistance genes are necessary to explain antibiotic resistance for non-beta-lactam antibiotics, such as azithromycin, chloramphenicol, and erythromycin.

3. Discussion

In this study, we characterized the antimicrobial resistance profiles of 4 commensal Neisseria species, closely related to pathogenic Neisseria, and clinically relevant given their natural niche, the human oral and nasal pharynx (ONP) [46]. We compared the resistance levels of N. lactamica, N. cinerea, N. mucosa, and N. elongata to 4 N. gonorrhoeae strains (FA19, MS11, F89, H041). We observed that N. cinerea, N. mucosa, and N. elongata generally displayed higher resistance levels than N. gonorrhoeae FA19 or N. lactamica. Given the high antimicrobial resistance (AR) profiles observed for the commensals, it is possible that commensals present AR genes, mutations, and/or mechanisms not yet identified in N. gonorrhoeae. Hence, commensals are likely antimicrobial resistance gene reservoirs for N. gonorrhoeae.

Among the ten antibiotics tested, ceftriaxone and azithromycin are particularly relevant as they are the current line of treatment against N. gonorrhoeae. Indeed, N. gonorrhoeae is treated with a dual therapy of oral azithromycin (1 g, single dose) and injectable intramuscular ceftriaxone (0.25 g, single dose) (or oral cefixime) [47], to which certain gonococcal strains display resistance, such as N. gonorrhoeae F89 and H041 from France and Japan, respectively [10,25]. While antibiotic resistance to this dual treatment is increasing, the rates of resistance are still below the 5% threshold needed to recommend new guidelines by the CDC. However, if this treatment fails, clinicians require a time- and resource-consuming antibiogram to assess the antibiotic susceptibility panel of the infectious strain. Gentamicin was the only antibiotic for which all strains displayed a similar level of susceptibility and were categorized as susceptible according to EUCAST and Bala et al. [33]. Gentamicin could be a possible drug of choice to treat extreme drug resistant N. gonorrhoeae, as all strains tested in our study show ZoI larger than 16 mm, breakpoint for susceptibility to gentamicin [33]. Additionally, new data associated with gentamicin shows that N. gonorrhoeae WHO reference strains present an MIC of 4 µg/mL (dispersion 2-8 µg/mL) [33], which is also consistent with our MIC results for commensal Neisseria. However, gentamicin is an aminoglycoside used to treat Gram-negative infections causing bone, urinary tract and respiratory infections, endocarditis, meningitis, and pelvic inflammatory disease. Often, these infections have limited treatment alternatives. Knowing how easily N. gonorrhoeae acquires resistance whether through mutation or natural competence, it is absolutely indispensable that scientists and clinicians reflect on and model the outcome of prescribing gentamicin as a future drug of choice for N. gonorrhoeae.

In order to explore a potential genetic mechanism for variation in antibiotic resistance profiles, we analyzed protein sequences of PBP2, encoded by the penA gene in the four commensal strains along with the focal N. gonorrhoea strain. We observed that mutations known to increase antibiotic resistance to beta-lactams were found in N. cinerea, N. mucosa, and N. elongata. However, these mutations were not found in N. lactamica which conserves the amino acids present in susceptible strains of N. gonorrhoeae strain LM306. These differences may partially explain the reduced susceptibility to beta-lactams observed in the commensals studied. This suggests that genome analyses of commensal Neisseria species for antimicrobial resistance mechanisms could reveal known and new candidate genes and mutations involved in antimicrobial resistance, in particular to azithromycin and ceftriaxone, two antibiotics currently used to treat N. gonorrhoeae infections. Further work is needed to explore the potential influence of plasmid-mediated penicillin resistance in commensal Neisseria species, which is highly prevalent in N. gonorrhoeae strains.
As with PBP2, several other genes are involved in antimicrobial resistance, such as mtrR, penA (PBP2), penC, penA (PBP1), tetM, pilTQ, folP, mtrC, 23S rRNA, rpsJ, 16S rRNA, gyrB, gyrA, parC, prld, porB (PIB). Genetic analysis of these sequences for commensal Neisseria both at the nucleic acid and protein levels could help inform the antimicrobial resistance profile of the pathogen. Antibiotic resistance in commensals has been observed in several genera, often through transformation with plasmids carrying antibiotic resistance genes [48,49]. Antibiotic resistance is widely spread in N. gonorrhoeae, and researchers have focused their studies on genomic analyses of AR genes in pathogenic Neisseria [11] given the potential for transfer of AR genes between pathogenic Neisseria species [50-54]. However, our results and those of Fiore et al. [55] emphasize the need to further investigate AR gene pools in commensal Neisseria species. Fiore et al. [55] initiated this work by performing a genomic and phenotypic study of the CDC AR panel of Neisseria species, using 6 antibiotics (penicillin, cefixime, ceftriaxone, tetracycline, azithromycin, and ciprofloxacin). Our study further complements that work by analyzing the antibiotic resistance profile of 8 Neisseria strains to 10 antibiotics. Together, these studies provide a gateway to understanding bacterial mechanisms of resistance and help to identify putative genes involved in the expression and regulation of these mechanisms.

Moving forward, given observations that antibiotic resistance levels were higher in N. cinerea, N. mucosa, and N. elongata, it would be critical to further compare genomic sequences of these species, to identify candidate genes involved in resistance mechanisms not yet observed in N. gonorrhoeae, and to continue the analysis of phenotypic antibiotic resistance level characterization of other commensal Neisseria species.

4. Materials and Methods

Bacterial strains:
Commensal and pathogenic Neisseria species were kindly provided by W. M. Shafer (Emory University School of Medicine, Atlanta, GA) and E. Aho (Concordia College, Moorhead, MN). N. lactamica strain NRL 36016 [23], N. cinerea strain ATCC 14685, N. mucosa strain NRL 9297 [23], and N. elongata strain ATCC 25295, N. gonorrhoeae FA19 [22], N. gonorrhoeae MS11[24], N. gonorrhoeae F89 [25], N. gonorrhoeae H041[10] were stored at -80°C in GCB broth containing 30% glycerol. Bacteria were plated on GCB agar with Supplements I and II [15], and incubated overnight at 37°C, in a 5% CO₂ atmosphere. When cultured in liquid broth, GCB liquid media was supplemented with supplements I and II, and 0.043%(w/v) of NaHCO₃.

Disk Diffusion Assays:
Neisseria strains plated on GCB agar plates, overnight, at 37°C in 5% CO₂, were harvested with a sterile loop and suspended in supplemented GCB broth at OD₆₀₀nm 0.2 UA. Bacteria were spread on the plate using CLSI guidelines [26]. Briefly, a sterile cotton swab was dipped in the suspension and spread in one direction on the plate. The procedure (dip and spread) was repeated two additional times, every time rotating the plate by 120 degrees, to obtain a homogeneous lawn of bacterial growth throughout the plate. Plates were then allowed to dry for 10 min, and antibiotic disks were applied. To prevent overlay of antibiotics or zones of inhibitions (ZoI), we applied 3 antibiotics per plate. Zones of inhibition were measured using AntibiogramJ [27] and ImageJ[28]. Averages and standard deviation (SD) values were obtained from 3 independent experiments, each containing 3 biological replicates. All strains (4 commensal strains and 4 N. gonorrhoeae strains (FA19, MS11, F89 and H041), were tested against a panel of 10 antibiotics (Penicillin 10 UI, Kanamycin 30 µg, Streptomycin 10 µg, Azithromycin 15 µg, Ceftriaxone 30 µg, Erythromycin 15 µg, Tetracycline 30 µg, Ampicillin 10 µg, Chloramphenicol 30 µg, Gentamicin 10 µg), on pre-loaded disks (6 mm diameter) purchased from Hardy Diagnostics (Santa Maria, CA), stored at -20°C when not in use.

Minimal Inhibitory Concentrations:
The minimal inhibitory concentration (MIC) was determined as the concentration of antimicrobial inhibiting 99.99% (or a 4-log_{10} decrease) of bacterial growth. We used the plate dilution technique to quantify inhibition, following CLSI guidelines [29]. Briefly, three biological replicates of each bacterial species grown overnight on supplemented GCB plates at 37°C, in 5% CO_{2}, were harvested with sterile plastic loops, and suspended in supplemented GCB broth, at OD_{600nm} 0.2 UA. Five µL of each suspension were plated in triplicates (technical replicates), on supplemented GCB agar plates containing a range of antibiotics, in 2-fold serial dilutions. Plates contained 0.006 µg/mL to 2 µg/mL of Penicillin G, or 4 ng/mL to 512 ng/mL of Ceftriaxone, or 0.031 µg/mL to 4 µg/mL of Azithromycin, or 2 µg/mL to 256 µg/mL of Erythromycin, or 0.125 µg/mL to 16 µg/mL of Chloramphenicol, or 1 µg/mL to 64 µg/mL of Gentamicin. Plates were stored at 4°C and used at most 5 days after plating. Three independent experiments were performed. The concentrations of antibiotics on plates were considered the minimal inhibitory concentrations where less than 4 colonies were observed per spot, as it suggests 99.99% growth inhibition.

Penicillin-binding protein 2 (PBP2) sequence alignment:
Sequences from penicillin-binding protein 2 (PBP2) of several *Neisseria* and non-*Neisseria* Neisseriaceae sequences were obtained from NCBI. Amino acid sequences were aligned using ClustalOmega and BLASTp platforms, using the default parameters. Nucleotide sequence accession numbers used were *N. gonorrhoeae* LM306 (AAA25463), *N. gonorrhoeae* NG-3 (BAB86942), *N. lactamica* (WP_003709943), *N. cinerea* (WP_003676738), *N. mucosa* (EFC88110), *N. elongata* (WP_107971226), *Kingella oralis* (QMT43252), *Eikenella corroden* (SNW07260).

Data analysis:
Data were analyzed using R and RStudio [30], and plots were made using ggplot2 [31]. All experiments were performed at least 3 times independently. Each experiment contained 3 biological replicates of each species. Means and standard error of the means (SEM) were reported where applicable on the charts and tables.
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, Table S1: title, Video S1: title.

Author Contributions: Conceptualization, methodology, formal analysis, investigation, M.G.; writing—original draft preparation, M.G.; writing—review and editing, M.G., S.T.T., S.V.L.J., K.A.K.; funding acquisition, M.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants from the National Science Foundation to MG (RIA #1800691) which supported work by undergraduate students (STT, SVLJ, and KAK), and a Junior Faculty Development grant from Spelman College to MG.

Acknowledgments: We thank past members of the Goytia lab for technical assistance; William M. Shafer (Emory University), Joshua Weitz (Georgia Institute of Technology), and Yonas Tekle (Spelman College) for comments and constructive discussion on the manuscript; and Rena Diamond for editing and logistical assistance.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2017.; 2018.
2. Wi, T.; Lahra, M.M.; Ndowa, F.; Bala, M.; Dillon, J.R.; Ramon-Fardo, P.; Eremin, S.R.; Bolan, G.; Unemo, M. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med 2017, 14, e1002344, doi:10.1371/journal.pmed.1002344.
3. Centers for Diseases Control and Prevention. Sexually Transmitted Disease Surveillance 2016; U.S. Department of Health and Human Services: 2017.
4. Kirkcaldy, R.D.; Kidd, S.; Weinstock, H.S.; Papp, J.R.; Bolan, G.A. Trends in antimicrobial resistance in Neisseria gonorrhoeae in the USA: the Gonococcal Isolate Surveillance Project (GISP), January 2006–June 2012. Sex Transm Infect 2013, 89 Suppl 4, iv5-10, doi:10.1136/sextrans-2013-051162.
5. Golparian, D.; Harris, S.R.; Sanchez-Buso, L.; Hoffmann, S.; Shafer, W.M.; Bentley, S.D.; Jensen, J.S.; Unemo, M. Genomic evolution of Neisseria gonorrhoeae since the preantibiotic era (1928-2013): antimicrobial use/misuse selects for resistance and drives evolution. BMC Genomics 2020, 21, 116, doi:10.1186/s12864-020-6511-6.
6. Unemo, M.; Del Rio, C.; Shafer, W.M. Antimicrobial Resistance Expressed by Neisseria gonorrhoeae: A Major Global Public Health Problem in the 21st Century. Microbiol Spectr 2016, 4, doi:10.1128/microbiolspec.EI10-0009-2015.
7. Carnicer-Pont, D.; Smithson, A.; Fina-Homar, E.; Bastida, M.T.; Gonococcus Antimicrobial Resistance Surveillance Working Group. First cases of Neisseria gonorrhoeae resistant to ceftriaxone in Catalonia, Spain, May 2011. Enferm Infecc Microbiol Clin 2012, 30, 218-219, doi:10.1016/j.eimc.2011.11.010.
8. Monfort, L.; Caro, V.; Devaux, Z.; Delannoy, A.S.; Brisse, S.; Sednaoui, P. First Neisseria gonorrhoeae genotyping analysis in France: identification of a strain cluster with reduced susceptibility to Ceftriaxone. J Clin Microbiol 2009, 47, 3540-3545, doi:10.1128/JCM.01236-09.
9. Tapsall, J. Multidrug-resistant Neisseria gonorrhoeae. CMAJ 2009, 180, 268-269, doi:10.1503/cmaj.081721.
10. Ohnishi, M.; Golparian, D.; Shimuta, K.; Saika, T.; Hoshina, S.; Iwasaku, K.; Nakayama, S.; Kitawaki, J.; Unemo, M. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 2011, 55, 3538-3545, doi:10.1128/AAC.00325-11.
11. Golparian, D.; Shafer, W.M.; Ohnishi, M.; Unemo, M. Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 2014, 58, 3556-3559, doi:10.1128/AAC.00338-14.
12. Unemo, M.; Golparian, D.; Hellmark, B. First three Neisseria gonorrhoeae isolates with high-level resistance to azithromycin in Sweden: a threat to currently available dual-antimicrobial regimens for treatment of gonorrhea? Antimicrob Agents Chemother 2014, 58, 624-625, doi:10.1128/AAC.02093-13.
13. Unemo, M.; Shafer, W.M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 2014, 27, 887-613, doi:10.1128/CMR.00010-14.
14. Rotman, E.; Seifert, H.S. The genetics of Neisseria species. Annu Rev Genet 2014, 48, 405-431, doi:10.1146/annurev-genet-120213-092007.
15. Sparling, P.F. Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 1966, 92, 1364-1371.
16. Hamilton, H.L.; Dillard, J.P. Natural transformation of Neisseria gonorrhoeae from DNA donation to homologous recombination. Mol Microbiol 2006, 59, 376-385, doi:10.1111/j.1365-2958.2005.04964.x.
42. Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Soding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol* **2011**, *7*, 539, doi:10.1038/msb.2011.75.

43. Fedarovich, A.; Cook, E.; Tomberg, J.; Nicholas, R.A.; Davies, C. Structural effect of the Asp345a insertion in penicillin-binding protein 2 from penicillin-resistant strains of *Neisseria gonorrhoeae*. *Biochemistry* **2014**, *53*, 7596-7603, doi:10.1021/bi5011317.

44. Bharat, A.; Demczuk, W.; Martin, I.; Mulvey, M.R. Effect of Variants of Penicillin-Binding Protein 2 on Cephalosporin and Carbapenem Susceptibilities in *Neisseria gonorrhoeae*. *Antimicrob Agents Chemother* **2015**, *59*, 5003-5006, doi:10.1128/AAC.00626-06.

45. Takahata, S.; Senju, N.; Osaki, Y.; Yoshiida, T.; Ida, T. Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of *Neisseria gonorrhoeae*. *Antimicrob Agents Chemother* **2006**, *50*, 3638-3645, doi:10.1128/AAC.00626-06.

46. Liu, G.; Tang, C.M.; Exley, R.M. Non-pathogenic *Neisseria*: members of an abundant, multi-habitat, diverse genus. *Microbiology (Reading, Engl.)* **2015**, *161*, 1297-1312, doi:10.1099/mic.0.000086.

47. Workowski, K.A.; Bolan, G. Sexually Transmitted Diseases Treatment Guidelines, 2015. *MMWR Recommendations and Reports* **2015**, *64* 60-68.

48. McInnes, R.S.; McCallum, G.E.; Lamberte, L.E.; van Schaik, W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. *Curr Opin Microbiol* **2020**, *53*, 35-43, doi:10.1016/j.mib.2020.02.002.

49. von Wintersdorff, C.J.; Penders, J.; van Niekerk, J.M.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.; Wolfs, P.F. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. *Front Microbiol* **2016**, *7*, 173, doi:10.3389/fmicb.2016.00173.

50. Chen, M.; Zhang, C.; Zhang, X.; Chen, M. Meningococcal Quinolone Resistance Originated from Several Commensal *Neisseria* Species. *Antimicrob Agents Chemother* **2020**, *64*, doi:10.1128/AAC.01494-19.

51. Furuya, R.; Onoye, Y.; Kanayama, A.; Saika, T.; Iyoda, T.; Tatewaki, M.; Matsuzaki, K.; Kobayashi, I.; Tanaka, M. Antimicrobial resistance in clinical isolates of *Neisseria subflava* from the oral cavities of a Japanese population. *J Infect Chemother* **2007**, *13*, 302-304, doi:10.1007/s10156-007-0541-8.

52. Galimand, M.; Gerbaud, G.; Courvalin, P. Spectinomycin resistance in *Neisseria ssp.* due to mutations in 16S rRNA. *Antimicrob Agents Chemother* **2000**, *44*, 1365-1366.

53. Rouquette-Loughlin, C.E.; Reimche, J.L.; Balthazar, J.T.; Dhulipala, V.; Gernert, K.M.; Kersh, E.N.; Pham, C.D.; Pettus, K.; Abrams, A.J.; Trees, D.L.; et al. Mechanistic Basis for Decreased Antimicrobial Susceptibility in a Clinical Isolate of *Neisseria gonorrhoeae* Possessing a Mosaic- Like mtr Efflux Pump Locus. *mBio* **2018**, *9*, doi:10.1128/mBio.02281-18.

54. Apicella, M.A. Commensal Bacteria: Not Just Innocent Bystanders. *mBio* **2019**, *10*, doi:10.1128/mBio.02723-18.

55. Fiore, M.A.; Raisman, J.C.; Wong, N.H.; Hudson, A.O.; Wadsworth, C.B. Exploration of the *Neisseria* Resistome Reveals Resistance Mechanisms in Commensals That May Be Acquired by *N. gonorrhoeae* through Horizontal Gene Transfer. *Antibiotics (Basel)* **2020**, *9*, doi:10.3390/antibiotics9100656.