Search for lepton flavor violating decays of a heavy neutral particle in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV

D. Acosta, T. Affolder, H. Akimoto, M.G. Albwor, D. Ambrose, D. Amidei, K. Anikeev, J. Antos, G. Apollinari, T. Arisawa, A. Artikov, T. Asakawa, W. Ashmanskas, F. Azfar, P. Azzi-Bacchetta, N. Bacchetta, H. Bachacou, W. Badgett, S. Bailey, P. de Barbaro, A. Barbaro-Galtieri, V.E. Barnes, B.A. Barnett, S. Baroiant, M. Barone, G. Bauer, F. Bedeschi, S. Behari, S. Belforte, W.H. Bell, G. Bellettini, J. Bellinger, D. Benjamin, J. Bensinger, A. Beretvas, J. Berryhill, A. Bhatti, M. Binkley, D. Bisello, M. Bishai, R.E. Blair, C. Blocker, K. Bloom, B. Blumenfeld, S.R. Blusk, A. Bocci, A. Bodek, G. Bolla, A. Bolshov, Y. Bonushkin, D. Bortoletto, J. Boudreau, A. Brandl, C. Bromberg, M. Brozovic, E. Brubaker, N. Bruner, J. Budagov, H.S. Budd, K. Burkett, G. Busetto, K.L. Byrum, S. Cabrera, P. Calafiura, M. Campbell, W. Carithers, J. Carlson, D. Carlsmith, W. Caskey, A. Castro, D. Cauz, A. Cerri, L. Cerrito, A.W. Chan, P.S. Chang, P.T. Chang, J. Chapman, C. Chen, Y.C. Chen, M.-T. Cheng, M. Chertok, G. Chiarelli, I. Chirikov-Zorin, G. Chlachidze, F. Chlebana, L. Christofek, M.L. Chu, J.Y. Chung, W.H. Chung, Y.S. Chung, C.I. Ciobanu, A.G. Clark, M. Coca, A. Connolly, M. Convery, J. Conway, M. Cordelli, J. Cranshaw, R. Culbertson, D. Dagenhart, S. D’Auria, S. De Cecco, F. DeJongh, S. Dell’Agnello, M. Dell’Orso, S. Demers, L. Demortier, M. Deninno, D. De Pedis, P.F. Derwent, T. Devlin, C. Dionisi, J.R. Dittmann, A. Dominguez, S. Donati, M. D’Onofrio, T. Dorigo, N. Eddy, K. Einsweiler, E. Engels, R. Erbacher, D. Errede, S. Errede, R. Eusebi, Q. Fan, S. Farrington, R.G. Feild, J.P. Fernandez, C. Ferretti, R.D. Field, I. Fiori, B. Flaugher, L.R. Flores-Castillo, G.W. Foster, M. Franklin, J. Freeman, J. Friedman, Y. Fukui, I. Furic, S. Galeotti, A. Gallas, M. Gallinaro, T. Gao, M. Garcia-Sciveres, A.F. Garfinkel, P. Gatti, C. Gay, D.W. Gerdes, E. Gerstein, S. Giagu, P. Giannetti, K. Giolo, M. Giordani,
T. Nelson,13 C. Neu,33 M.S. Neubauer,27 D. Neuberger,22 C. Newman-Holmes,13
C-Y.P. Ngan,27 T. Nigmanov,30 H. Niu,4 L. Nodulman,2 A. Nomerotski,14 S.H. Oh,12
Y.D. Oh,24 T. Ohmoto,19 T. Ohsugi,19 R. Oishi,49 T. Okusawa,34 J. Olsen,52
W. Orejudos,25 C. Pagliarone,38 F. Palmonari,38 R. Paoletti,38 V. Papadimitriou,46
D. Partos,4 J. Patrick,13 G. Pauletta,48 M. Paulini,9 T. Pauly,35 C. Paus,27 D. Pellett,5
A. Penzo,48 L. Pescara,36 T.J. Phillips,12 G. Piacentino,38 J. Piedra,8 K.T. Pitts,20
A. Pompoš,40 L. Pondrom,52 G. Pope,39 T. Pratt,35 F. Prokoshin,11 J. Proudfoot,2
F. Ptohos,15 O. Pukhov,11 G. Punzi,38 J. Rademacker,35 A. Rakitine,27 F. Ratnikov,44
H. Ray,28 D. Reher,25 A. Reichold,35 P. Renton,35 M. Rescigno,43 A. Ribon,36 W. Riegler,18
F. Rimondi,3 L. Ristori,38 M. Rivelino,47 W.J. Robertson,12 T. Rodrigo,8 S. Rolli,50
L. Rosenson,27 R. Roser,13 R. Rossin,36 C. Rott,40 A. Roy,40 A. Ruiz,8 D. Ryan,50
A. Safonov,5 R. St. Denis,17 W.K. Sakamoto,41 D. Saltzberg,6 C. Sanchez,33 A. Sansoni,15
L. Santi,48 S. Sarkar,43 H. Sato,49 P. Savard,47 A. Savoy-Navarro,13 P. Schlabach,13
E.E. Schmidt,13 M.P. Schmidt,53 M. Schmitt,32 L. Scodeller,36 A. Scott,6 A. Scribano,38
A. Sedov,40 S. Seidel,31 Y. Seiya,49 A. Semenov,11 F. Semeria,3 T. Shah,27 M.D. Shapiro,25
P.F. Shepard,39 T. Shibayama,49 M. Shimojima,49 M. Shochet,10 A. Sidoti,36 J. Siegrist,25
A. Sill,46 P. Sinervo,47 P. Singh,20 A.J. Slaughter,53 K. Sliwa,50 F.D. Snider,13 R. Snihur,26
A. Solodsky,42 T. Speer,16 M. Spezziga,46 P. Sphicas,27 F. Spinella,38 M. Spiropulu,10
L. Spiegel,13 J. Steele,52 A. Stefanini,38 J. Strologas,20 F. Strumia,16 D. Stuart,7
A. Sukhanov,14 K. Sumorok,27 T. Suzuki,49 T. Takano,34 R. Takashima,19 K. Takikawa,49
P. Tamburello,12 M. Tanaka,49 B. Tannenbaum,6 M. Tecchio,28 R.J. Tesarek,13 P.K. Teng,1
K. Terashi,42 S. Tether,27 J. Thom,13 A.S. Thompson,17 E. Thomson,33 R. Thurman-Keup,2
P. Tipton,41 S. Tkaczyk,13 D. Toback,45 K. Tollefson,29 D. Tonelli,38 M. Tonnesmann,29
H. Toyoda,34 W. Trischuk,47 J.F. de Troconiz,18 J. Tseng,27 D. Tsybychev,14 N. Turini,38
F. Ukegawa,49 T. Unverhau,17 T. Vaiciulis,41 J. Valls,44 A. Varganov,28 E. Vataga,38
S. Vejcik III,13 G. Vele,13 G. Veramendi,25 R. Vidal,13 I. Vila,8 R. Vilar,8 I. Volobouev,25
M. von der Mey,6 D. Vucinic,27 R.G. Wagner,2 R.L. Wagner,13 W. Wagner,22
N.B. Wallace,44 Z. Wan,44 C. Wang,12 M.J. Wang,1 S.M. Wang,14 B. Ward,17 S. Waschke,17
T. Watanabe,49 D. Waters,26 T. Watts,44 M. Weber,25 H. Wenzel,22 W.C. Wester III,13
B. Whitehouse,50 A.B. Wicklund,2 E. Wicklund,13 T. Wilkes,5 H.H. Williams,37
P. Wilson, B.L. Winer, D. Winn, S. Wolbers, D. Wolinski, J. Wolinski, S. Wolinski, M. Wolter, S. Worm, X. Wu, F. Würthwein, J. Wyss, U.K. Yang, W. Yao, G.P. Yeh, K. Yi, J. Yoh, C. Yosef, T. Yoshida, I. Yu, S. Yu, Z. Yu, J.C. Yun, L. Zanello, A. Zanetti, F. Zetti, and S. Zucchelli

(The CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
4 Brandeis University, Waltham, Massachusetts 02254
5 University of California at Davis, Davis, California 95616
6 University of California at Los Angeles, Los Angeles, California 90024
7 University of California at Santa Barbara, Santa Barbara, California 93106
8 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
9 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
10 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
11 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
12 Duke University, Durham, North Carolina 27708
13 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
14 University of Florida, Gainesville, Florida 32611
15 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
16 University of Geneva, CH-1211 Geneva 4, Switzerland
17 Glasgow University, Glasgow G12 8QQ, United Kingdom
18 Harvard University, Cambridge, Massachusetts 02138
19 Hiroshima University, Higashi-Hiroshima 724, Japan
20 University of Illinois, Urbana, Illinois 61801
21 The Johns Hopkins University, Baltimore, Maryland 21218
22 Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
23 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan
24 Center for High Energy Physics: Kyungpook National University, Taegu 702-701; Seoul National University, Seoul 151-742; and SungKyunKwan University, Suwon 440-746, Korea
25 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720
26 University College London, London WC1E 6BT, United Kingdom
27 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
28 University of Michigan, Ann Arbor, Michigan 48109
29 Michigan State University, East Lansing, Michigan 48824
30 Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
31 University of New Mexico, Albuquerque, New Mexico 87131
32 Northwestern University, Evanston, Illinois 60208
33 The Ohio State University, Columbus, Ohio 43210
34 Osaka City University, Osaka 588, Japan
35 University of Oxford, Oxford OX1 3RH, United Kingdom
36 Universita di Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
37 University of Pennsylvania, Philadelphia, Pennsylvania 19104
38 Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore of Pisa, I-56100 Pisa, Italy
39 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
40 Purdue University, West Lafayette, Indiana 47907
41 University of Rochester, Rochester, New York 14627
42 Rockefeller University, New York, New York 10021
43 Instituto Nazionale di Fisica Nucleare, Sezione di Roma, University di Roma I, “La Sapienza,” I-00185 Roma, Italy
44 Rutgers University, Piscataway, New Jersey 08855
45 Texas A&M University, College Station, Texas 77843
46 Texas Tech University, Lubbock, Texas 79409
47 Institute of Particle Physics, University of Toronto, Toronto M5S 1A7, Canada
48 Istituto Nazionale di Fisica Nucleare, University of Trieste/ Udine, Italy
49 University of Tsukuba, Tsukuba, Ibaraki 305, Japan
50 Tufts University, Medford, Massachusetts 02155
51 Waseda University, Tokyo 169, Japan
52 University of Wisconsin, Madison, Wisconsin 53706
53 Yale University, New Haven, Connecticut 06520
Abstract

We report on a search for a high mass, narrow width particle that decays directly to $e\mu$, $e\tau$, or $\mu\tau$. We use approximately 110 pb$^{-1}$ of data collected with the Collider Detector at Fermilab from 1992 to 1995. No evidence of lepton flavor violating decays is found. Limits are set on the production and decay of sneutrinos with R-parity violating interactions.

PACS numbers: 11.30.Fs, 13.85.Rm, 14.80.-j, 14.80.Ly
Particles that decay to $e\mu$, $e\tau$, or $\mu\tau$ occur in a number of extensions to the standard model. Examples include Higgs bosons in models with multiple Higgs doublets [1, 2, 3], sneutrinos in supersymmetric models with R-parity violation (RPV) [4, 5, 6], horizontal gauge bosons [7], and Z' bosons [8]. In this paper we report results from a search based on final states containing $e\mu$. We are sensitive to $e\tau$ and $\mu\tau$ modes through $\tau \to \mu\nu\nu$ and $\tau \to e\nu\nu$ respectively. We analyze data from $p\bar{p}$ collisions at center of mass energy $\sqrt{s} = 1.8$ TeV recorded with the Collider Detector at Fermilab (CDF) during the 1992 to 1995 Tevatron run. The integrated luminosity is approximately 110 pb$^{-1}$.

The CDF detector has been described in detail elsewhere [9]. This analysis makes use of several detector subsystems. The position of $p\bar{p}$ collisions along the beam line is measured in the vertex time projection chambers (VTX). The central tracking chamber (CTC), located within the 1.4 T magnetic field of a superconducting solenoid, measures the momentum of charged particles. The transverse momentum resolution for muon and charged hadron tracks in the pseudorapidity interval $|\eta| < 1.1$ that are constrained to originate at the beamline is better than 0.1% x p_T, where p_T is measured in GeV/c and is the momentum component transverse to the beam line. Sampling calorimeters surround the solenoid. The central electromagnetic calorimeter (CEM) covers $|\eta| < 1.1$ and measures the energy of electromagnetic showers with a resolution of about $(13.7/\sqrt{E_T} + 2)\%$, where \oplus means addition in quadrature and the transverse energy E_T is measured in GeV. The transverse energy is defined as $E \sin(\theta)$, with E being the shower energy measured in the calorimeter and θ the polar angle of the energy flow, from the $p\bar{p}$ interaction vertex to the calorimeter deposition. Within the CEM, proportional chambers (CES) measure the transverse shape of showers. Drift chambers located outside the calorimeters detect muons in the region $|\eta| < 1$. A measure of the energy carried by neutrinos escaping the detector is the missing transverse energy E_T, calculated from the vector sum of the energy depositions in the calorimeters and the momentum of muon tracks.

Events containing an electron and a muon are recorded by an assortment of single lepton, dilepton, and jet triggers [10]. We select events that have an electron with $E_T > 20$ GeV, a muon with $p_T > 20$ GeV/c, and a primary $p\bar{p}$ interaction vertex within 60 cm of the center of the detector. The electron and muon must have opposite charges. We identify electrons and muons using criteria that retain efficiency for very high momentum particles [11]. Electrons must have a shower contained within the sensitive region of the CEM and have a CTC
track with $p_T > 13$ GeV/c that matches the position of the shower in the CES. The CEM determines the electron energy. Requirements on the p_T of the associated CTC track are kept loose because electrons can lose energy in the tracking volume due to bremsstrahlung. In cases in which an electron has $E_T < 100$ GeV or $p_T < 25$ GeV/c there are additional requirements: the lateral distribution of energy must be consistent with an electromagnetic shower, and the ratio of energy measured in the calorimeter to the momentum measured in the CTC must be less than four. Electrons that appear to be one leg of a photon conversion—because the second leg is found or because the CTC track is not confirmed by hits in the VTX—are removed. Muons must have a track in the CTC that originates from the primary vertex and matches a track segment in the muon system. The energy along the muon path through the calorimeters must be consistent with a minimum ionizing particle. Electrons and muons are both required to be isolated from other energy deposition in the calorimeter. The combination of triggers is, within one standard deviation, fully efficient for events that satisfy the offline selection.

Backgrounds with two isolated high p_T leptons arise from standard model production of Z/γ, WW, WZ, ZZ, and $t\bar{t}$. The cross sections for the first four of these processes are calculated at next-to-leading order using MCFM v1.0 [12] and MRST99 parton distribution functions [13]. The $t\bar{t}$ production cross section is taken from the parameterized formula of Ref. [14] evaluated at the Tevatron average top quark mass of 174.3 GeV/c^2 [15]. For each of the five processes, the fraction of events expected to pass the offline selection (the acceptance) is calculated by Monte Carlo using Pythia v5.7 [16], the CDF detector simulation, and the same analysis software used to select events in the data. The efficiency of the lepton identification requirements in the simulation is calibrated using electrons and muons from Z decays. For each background process, the expected number of events is estimated to be $\sigma_B A_B n_{ee}/(\sigma_{ee} A_{ee})$, where σ_B is the cross section for the background process, A_B is the acceptance for the background process, n_{ee} is the number of e^+e^- events observed in the data with a mass in the region of the Z peak, σ_{ee} is the Z/γ cross section times branching fraction to e^+e^-, and A_{ee} is the acceptance for e^+e^-. By normalizing to e^+e^- data we eliminate uncertainties in the background level due to the integrated luminosity and the Z/γ cross section times branching fraction to leptons, and we reduce the uncertainty from lepton efficiencies. The $t\bar{t}$, WW, WZ, and ZZ cross sections are assigned uncertainties of 25%, 11%, 10%, and 10% respectively. Other uncertainties are from the detector model (6%), Monte
Carlo statistics (2–4%), $Z \rightarrow ee$ statistics (2%), particle identification efficiencies (2%), and trigger efficiencies (1%). The remaining backgrounds arise from particles produced in jets. These include instrumental fakes and real leptons from b- and c-quark decays. All of them are denoted false leptons. The false lepton backgrounds are estimated using a method similar to that of Ref. [17], in which the probability for a false lepton to appear isolated is measured in a control sample of dijet data.

In a WW or $t\bar{t}$ event, the electron and the muon, originating from different W bosons, have largely independent directions, spin correlations not withstanding. To reduce these backgrounds, we require that the angle between the electron and muon in the plane transverse to the beam be at least 120 degrees. This is almost fully efficient for two-body decays of a particle as heavy as the Z boson. For the $e\mu$ channel, there are no further requirements. An $e\mu$ event is additionally classified as an $e\tau$ event if the angle between the electron and muon, $\Delta \phi(e, E_T)$, is less than 60 degrees. This eliminates events that are not consistent with $\tau \rightarrow \mu \nu \nu$, since the tau is energetic enough that its decay products are nearly collinear. Likewise, an $e\mu$ event is additionally classified as a $\mu\tau$ event if $\Delta \phi(e, E_T) < 60$ degrees. The distribution of $\Delta \phi(e, E_T)$ versus E_T is shown in Figure 1. Since the electrons and muons are nearly back-to-back in ϕ, $\Delta \phi(\mu, E_T)$ is approximately $\Delta \phi(e, E_T) + 180$ degrees.

There are nineteen $e\mu$ candidates in the data. Four of these are also $e\tau$ candidates, and twelve are also $\mu\tau$ candidates. The contributions of the various backgrounds to each channel are listed in Table I. The dominant source of background is $Z/\gamma \rightarrow \tau\tau$ where one tau decays to $e\nu\nu$ and the other to $\mu\nu\nu$. The small contribution from $Z/\gamma \rightarrow \mu\mu$ is from cases in which one muon is mistaken for an electron after radiating an energetic photon.

The distributions of the lepton pair masses m_{ll} are shown in Figure 2. For the $e\tau$ and $\mu\tau$ hypotheses, m_{ll} is calculated assuming that the tau momentum components are $p_x^\tau = p_x^l + E_T^x$, $p_y^\tau = p_y^l + E_T^y$, and $p_z^\tau = p_z^l \times (1 + E_T/p_T^l)$, where p_l is the momentum of the electron or muon to which the tau is assumed to have decayed. The data show no indication of a signal peak. The distribution of observed events is compared to the expected background shape using a Kolmogorov test. The test statistic probability is 19%, 65%, and 74% for $e\mu$, $e\tau$, and $\mu\tau$ respectively, consistent with the absence of a signal.

As a specific signal model, we consider the process $d\bar{d} \rightarrow \tilde{\nu} \rightarrow ll'$ mediated by RPV interactions. The RPV sneutrino couplings allowed in the supersymmetric Lagrangian are $[\lambda_{ijk} (\bar{\nu}_L^{i} \nu_L^j \bar{e}_R^k) + \lambda'_{ijk} \bar{\nu}_L^i d_R^j \nu_L^k] + h.c.$ where the indices i, j, and k label gener-
Source	$e\mu$	$e\tau$	$\mu\tau$
$Z/\gamma \rightarrow \tau\tau$	13.91 ± 0.99	5.20 ± 0.43	6.48 ± 0.59
$Z/\gamma \rightarrow \mu\mu$	0.27 ± 0.16	0	0.27 ± 0.16
WW	2.37 ± 0.32	0.42 ± 0.07	0.45 ± 0.08
WZ	0.13 ± 0.02	0.03 ± 0.01	0.04 ± 0.01
ZZ	0.024 ± 0.004	0.007 ± 0.001	0.007 ± 0.002
$t\bar{t}$	1.34 ± 0.36	0.40 ± 0.11	0.35 ± 0.10
False e	0.85 ± 0.44	-0.04 ± 0.23	0.96 ± 0.32
False μ	0.98 ± 0.27	-0.06 ± 0.11	1.07 ± 0.25
Total Background	19.88 ± 1.42	5.95 ± 0.55	9.62 ± 0.81
Data	19	4	12

TABLE I: The expected number of background events and the observed number of candidates in each channel.
of the $e\mu$, $e\tau$, and $\mu\tau$ mass distributions are 3, 6, and 7 GeV/c2 respectively for $m_{\tilde{\nu}} = 100$ GeV/c2. For $m_{\tilde{\nu}} = 400$ GeV/c2 they are 30, 14, and 60 GeV/c2. The broadening with $m_{\tilde{\nu}}$ is due to the muon p_T resolution and, to a lesser degree, the electron energy resolution. At low $m_{\tilde{\nu}}$ the resolution for the $e\tau$ and $\mu\tau$ modes is poorer than for $e\mu$ due to the inclusion of E_T-tag. The $e\tau$ resolution degrades more slowly than the others because the muons from tau decays have lower momenta.

To study the full range of $m_{\tilde{\nu}}$ without gaps in which a signal might hide, we count events within three standard deviations of the mean m_{ll}' for a sequence of $m_{\tilde{\nu}}$ values starting at 50 GeV/c2 with step size from the ith to the $(i+1)$th value equal to one tenth of the rms of the m_{ll}' distribution at the ith point. The mean and rms of the m_{ll}' distribution for each $m_{\tilde{\nu}}$ is linearly interpolated between values at the generated $m_{\tilde{\nu}}$ points. A three standard deviation window provides good statistical sensitivity while incurring little dependence on any possible systematic errors in the width or mean.

For each decay mode we derive a 95% C.L. upper limit on $\sigma \times B$ using the number of events, expected background, and acceptance in the mass window corresponding to each $m_{\tilde{\nu}}$ point. Figure 3 shows the limits as a function of $m_{\tilde{\nu}}$. The limits on $\sigma \times B(\tilde{\nu} \rightarrow e\nu)$ and $\sigma \times B(\tilde{\nu} \rightarrow \mu\nu)$ are higher than the limit on $\sigma \times B(\tilde{\nu} \rightarrow e\mu)$ because of the tau branching ratio to leptons and, particularly at low $m_{\tilde{\nu}}$, because the leptons from tau decays tend to fall below the 20 GeV/c p_T threshold.

As a benchmark, Figure 3 also shows the theoretical cross section times branching fraction for $d\bar{d} \rightarrow \tilde{\nu} \rightarrow e^+\mu^- \text{ plus } d\bar{d} \rightarrow \tilde{\nu} \rightarrow e^-\mu^+$ as a function of $m_{\tilde{\nu}}$ in the case $\lambda'_{311} = 0.1$ and $\lambda_{132} = 0.05$. The curve is obtained using next-to-leading order values of $\sigma(d\bar{d} \rightarrow \tilde{\nu})$ for $\lambda' = 0.01$ [25, 26], which we scale by $(\lambda'/0.01)^2$. $B(\tilde{\nu} \rightarrow e\mu)$ is calculated assuming that weak decays of the sneutrino are kinematically forbidden and that the only non-zero RPV couplings are λ'_{311} and λ_{132}.

In conclusion, we find no evidence for new particles with lepton flavor violating decays. We set limits on the cross section for single sneutrino production times the branching fractions $B(\tilde{\nu} \rightarrow e\mu)$, $B(\tilde{\nu} \rightarrow e\tau)$, and $B(\tilde{\nu} \rightarrow \mu\tau)$ as a function of the sneutrino mass. For a sneutrino mass of 200 GeV/c2, the 95% C.L. upper limits on $\sigma \times B$ are 0.14 pb, 1.2 pb, and 1.9 pb for the $e\mu$, $e\tau$, and $\mu\tau$ modes respectively.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. We are grateful to Debajyoti Choudhury and Swapan Majhi for
providing NLO sneutrino cross sections for $\sqrt{s} = 1.8$ TeV. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fuer Bildung und Forschung, Germany; and the Korea Science and Engineering Foundation (KoSEF); the Korea Research Foundation; and the Comision Interministerial de Ciencia y Tecnologia, Spain.

[1] J. L. Diaz-Cruz and J. J. Toscano, Phys. Rev. D 62, 116005 (2000), hep-ph/9910233.
[2] T. Han and D. Marfatia, Phys. Rev. Lett. 86, 1442 (2001), hep-ph/0008141.
[3] K. A. Assamagan, A. Deandrea, and P.-A. Delsart, Phys. Rev. D 67, 035001 (2003), hep-ph/0207302.
[4] J. Kalinowsky, R. Ruckl, H. Speisberger, and P. M. Zerwas, Phys. Lett. B 414, 297 (1997).
[5] B. Allanach et al. (24 March 2000), hep-ph/9906224.
[6] S. Dimopoulos, R. Esmailzadeh, L. J. Hall, J.-P. Merlo, and G. D. Starkman, Phys. Rev. D 41, 2099 (1990).
[7] H.-U. Bengtsson, W.-S. Hou, A. Soni, and D. H. Stork, Phys. Rev. Lett. 55, 2762 (1985).
[8] B. Murakami, Phys. Rev. D 65, 055003 (2002), hep-ph/0110095.
[9] F. Abe et al., Nucl. Instrum. Methods Phys. Res., Sect. A 271, 387 (1988).
[10] F. Abe et al., Phys. Rev. D 50, 2966 (1994).
[11] F. Abe et al., Phys. Rev. Lett. 79, 2192 (1997).
[12] J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999), hep-ph/9905386.
[13] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Eur. Phys. J. C 14, 133 (2000), hep-ph/9907231.
[14] S. Catani, M. L. Mangano, P. Nason, and L. Trentadue, Phys. Lett. B 378, 329 (1996).
[15] D. E. Groom et al., Eur. Phys. J. C 15, 1 (2000).
[16] T. Sjostrand, Computer Physics Commun. 82, 74 (1994).
[17] B. Abbott et al., Phys. Rev. D 61, 072001 (2000).
[18] V. Barger, G. F. Giudice, and T. Han, Phys. Rev. D 40, 2987 (1989).
[19] B. C. Allanach, A. Dedes, and H. K. Dreiner, Phys. Rev. D 60, 075014 (1999), hep-ph/9906209.
[20] A. Faessler, R. Kosmas, S. Kovalenko, and J. D. Vergados, Nucl. Phys. B587, 25 (2000), hep-ph/9904335.
[21] R. Barate et al., Eur. Phys. J. C 19, 415 (2001).
[22] F. Abe et al., Phys. Rev. Lett. 83, 2133 (1999).
[23] F. Abe et al., submitted to Phys. Rev. Lett. (2003), hep-ex/0305010, FERMILAB-Pub-03/070-E.
[24] R. M. Barnett et al., Phys. Rev. D 54, 1 (1996).
[25] D. Choudhury and S. Majhi, private communication (2002).
[26] D. Choudhury, S. Majhi, and V. Ravindran (2002), hep-ph/0207247.
FIG. 1: The angle in the plane transverse to the beamline between the direction of the missing energy and the electron versus the missing transverse energy: data (upper left); simulated $Z/\gamma \rightarrow \tau\tau \rightarrow e\mu\nu\nu$, the dominant background (upper right); and a hypothetical signal $\tilde{\nu} \rightarrow \mu\tau \rightarrow \mu\nu\nu$ for a sneutrino mass of 100 GeV/c^2 (lower left) and 200 GeV/c^2 (lower right). The requirement $\Delta\phi(e, \mu) > 120^\circ$ has already been imposed.
FIG. 2: The reconstructed mass of the lepton pairs. The points show the nineteen $e\mu$ candidates (upper), the four $e\tau$ candidates (lower left), and the twelve $\mu\tau$ candidates (lower right). The histograms show the total background in each sample. The $e\tau$ and $\mu\tau$ samples have no events in common; both are subsets of the $e\mu$ sample. E_T is used in computing τ momentum, as explained in the text.
FIG. 3: 95% C.L. upper limits on $\sigma \times B(\tilde{\nu} \rightarrow e\mu)$, $\sigma \times B(\tilde{\nu} \rightarrow e\tau)$, and $\sigma \times B(\tilde{\nu} \rightarrow \mu\tau)$ as a function of sneutrino mass, together with the next-to-leading order cross section for the reference parameters.