The Relationship Between Genetic Variants Associated with Premature Menopause and Lipid Profile in Women Recruited from MASHAD Cohort Study

Mohammad Reza Mirinezhad
Mashhad University of Medical Sciences

Hamideh Ghazizadeh
International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran

Maliheh Aghsizadeh
Birjand University of Medical Sciences

Mohammad Zamiri Bidary
Mashhad University of Medical Sciences

Alireza Naghipour
Mashhad University of Medical Sciences

Elahe Hasanzadeh
Mashhad University of Medical Sciences

Mahdiyeh Yaghoooti-Khorasani
Mashhad University of Medical Sciences

Ali Ebrahimi Dabagh
Varastegan Institute for Medical Sciences, Mashhad, Iran

Mohammad Reza Shadmand Foumani Moghadam
Varastegan Institute for Medical Sciences, Mashhad, Iran

Nazanin Sheikh Andalibi
Mashhad University of Medical Sciences

Zeynab Naseri Far
Mashhad University of Medical Sciences

Habibollah Esmaily
Mashhad University of Medical Sciences

Gordon A Fems
Brighton and Sussex Medical School

Tayebeh Hamzehloei
Mashhad University of Medical Sciences

Alireza Pasdar
Research Article

Keywords: Premature menopause, cardiovascular disease, ARMS-PCR, ASO-PCR

DOI: https://doi.org/10.21203/rs.3.rs-143916/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. [Read Full License](https://creativecommons.org/licenses/by/4.0/)
Abstract

Background and aim: Premature menopause (PM) is defined by the occurrence of the menopause before the age of 40 years. It is often associated with cardiovascular disease (CVD). The purpose of this study was to explore the relationship between PM-associated genotypes cardio metabolic disorder risk factors.

Methods: One hundred seventeen women with PM and one hundred eighty-three healthy women without PM were recruited in this study. DNA was extracted and analyzed using ASO-PCR or Tetra ARMS-PCR. Lipid profiles were also assessed.

Results: Multivariate logistic regression analysis showed that individuals with GG vs. TT genotype of the rs1046089 SNP were more likely to have high serum LDL risk (p = 0.03) compared to the control group. There was also a significant association between low serum HDL risk and rs2303369 and rs4806660 SNP genotypes in the PM group. In the PM group, the percentage of those with a high total cholesterol was lower in those with a CC genotype compared to those with a TT genotype (p = 0.03).

Conclusion: Some SNPs reported to be associated with PM appear to be independently associated with dyslipidemia. These results may be helpful to identify subjects with PM who may be susceptible to CVD.

Introduction

Menopause is defined as occurring when menstruation stops for 12 consecutive months due to loss of ovarian follicular activity; this usually occurs around the age of 45-55 years. Menopause that happens before the age of 40 years is called premature menopause (PM) or premature ovarian insufficiency (POI), which may be natural or due to or reproductive surgeries. This condition is accompanied by amenorrhea, estrogen deficiency and an increase of gonadotrophin levels. It has been reported that about 3.6% of women develop PM. Various factors such as smoking, certain medications, infections and genetic and autoimmune disorders have been associated with PM. Iatrogenic causes such as radiotherapy, chemotherapy, pelvic surgery are also associated with PM. About 60-90% of PM cases are idiopathic. Several studies have also found that PM increases the risk of hypertension, cardiovascular disease, osteoporosis, cerebral infarction, all-cause mortality, type 2 diabetes mellitus, and other negative health consequences.

Genetic factors also play a significant role in PM. The heritability of menopausal age is estimated about 30-85%. About 20-25% of PM cases are due to genetic causes. Genome-wide association studies (GWAS) have identified a polymorphism (rs16991615) of minichromosome maintenance 8 homologous recombination repair factor (MCM8) gene involved in the age of natural menopause. Also, rs1046089 and rs4806660, located on Proline Rich Coiled-Coil 2A (PRRC2A) and transmembrane (TMEM) gene, respectively are associated with the age at menopause. GWAS identified several other variants that are associated with PM.
Deleterious changes in risk factors for cardiometabolic disorders often occur around the age of menopausal 25-28. Estrogen is involved in dilating blood vessels and helping blood flow 25. Various studies have also shown that estrogen therapy in postmenopausal women reduces serum total cholesterol and low density lipoprotein (LDL) cholesterol concentrations, and increases serum high-density lipoprotein (HDL) cholesterol and triglyceride concentrations 29, 30. Moreover, lack of ovarian function in the menopause is involved in the activation of the renin-angiotensin system, leads to immunodeficiency, inflammation and endothelial dysfunction 25, 31. These are associated with obesity, diabetes and high blood pressure 25, 31. Several studies have shown that age at menopause is associated with cardiovascular disease 18, 32-34. A Japanese study found women with early menopause had a higher risk for hypercholesterolemia 35, and another study showed that early menopause is associated with hypertension 36. Sarnowski et al. founded that genetic variants associated with early menopause are also associated with increased cardiovascular disease risk 37. There appeared to be a need to evaluate the relationship between PM-related variants with lipid profile and susceptibility to cardiometabolic disease risk factors. Few studies have been done on this subject. We aimed to explore the associations between PM-related variants with lipid profile and susceptibility to cardiometabolic disease risk factors in Mashhad stroke and heart atherosclerotic disorders (MASHAD) cohort study population.

Methods

117 women who had PM were included in the case group. Healthy women (n = 183) were recruited into the control group. All of participants were recruited as part of the MASHAD study. The MASHAD study is a cohort study from 2010-2020 that were included 9704 participants aged 35-65 years who will be follow-up exams every three years until 2020 38. The inclusion criteria were as follows: the diagnostic criterion was based on the definition of PM: 1) Women who go through menopause before the age of 40 years; 2) 12 continuous months have passed since the last bleeding; and 3) serum FSH > 40 IU/L. Exclusion criteria were: women over 40 years old, with a history of diseases and surgeries affecting menstruation (oophorectomy, hysterectomy), history of genetic abnormalities and syndromes associated with an early menopause is a part of their manifestation, history of using drugs affecting menstruation. Blood samples were collected into vacutainer® plain tubes, and were taken after 14 hours fast. Blood samples were centrifuged at 4° C in 5000 rpm for 15 minutes and the serum part was used for lipid profile measurement. Body Mass Index (BMI) was measured using standard method 38. Kidney, liver, and thyroid activity were normal in all participants.

DNA extraction and quality controls

Participants’ DNA was extracted from 200 µl blood or buffy coat samples using a DNA extraction kit (Pars Tous, Mashhad, Iran). Qualitative and quantitative quality control was performed by agarose gel electrophoresis (Pars Tous, Mashhad, Iran) and Nano drop 2000 (Thermo Fisher Scientific, USA) in 280 and 260 nanometer wavelengths, respectively.
Allele-specific oligonucleotide polymerase chain reaction (ASO-PCR)

The ASO-PCR reaction volume was 15 µl which included: 1.5 µl water, 2 µl genomic DNA, 1 µl of each primer, and 7.5 µl master mix (Pars Tous, Mashhad, Iran). First, to carry out PCR, we performed one cycle of denaturation for 7 minutes at 95°C. After that, 35 cycles include the following: 95°C for 30 sec, annealing for 30 s at 60°C, 72°C for 30 sec, and eventually one cycle of 7 min was done for final extension.

Tetra amplification refractory mutation system PCR (ARMS-PCR)

Tetra ARMS was carried out by the same method and the same composition of 15 µl reaction volume that performed in ASO-PCR. Primers were designed with Primer1 software.

Lipid profile measurements and dyslipidemia diagnosis

Total cholesterol (TC), triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels were measured from serum which was taken from participants 12 hours fasting using standard method. The NCEP ATPIII criteria were used to diagnose dyslipidemia. 1) If serum cholesterol levels \(\geq 200 \text{ mg/dl} \) (5.2 mmol/l) is considered hypercholesterolemia. 2) If HDL cholesterol levels <40 mg/dl (<1.04 mmol/l) for men and <50 mg/dl (<1.3 mmol/l) for women is considered low HDL cholesterol. 3) If LDL cholesterol levels \(\geq 130 \text{ mg/dl} \) (\(\geq 3.4 \text{ mmol/l} \)) is considered high LDL cholesterol. 4) If serum triglycerides \(\geq 150 \text{ mg/dl} \) is considered Hypertriglyceridemia.

Physical activity level assessment

The equations of James and Schofield for energy requirements, were used to assess physical activity of all participants. Questions regarding the physical activity level were based on the mentioned equations which were selected from World Health Organization MONICA project questionnaires. The level of physical activity was calculated by total energy expenditure (TTE) and basal metabolism rate (BMR) during a whole day and night.

Ethics

All steps of the study were approved by the Mashhad University of Medical Sciences (MUMS) Ethics Committee. Informed consents were obtained from all subjects and the procedure and possible risks were explained completely, pursuant to the Declaration of Helsinki.

Statistical analysis

All analysis tests were performed by Statistical Package for Social Sciences (SPSS) (IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.). The values in this study have been reported frequently with percentage or mean and standard deviation. Single Nucleotide
Polymorphisms’ (SNPs’) genotypes between PM cases and healthy controls were compared by Chi-square test. Assessment of normal distribution in quantitative data was performed by Kolmogorov-Smirnoff test. Man-Whitney test was used for comparing quantity of normally distributed values between the subgroups. Besides, we used multivariate logistic regression to prevent confounder’s factors from affecting our results. P-value < 0.05 was statistically significant.

Results

The clinical characteristics of the population have been summarized in Table 1. In our cross-sectional analysis, participants had a mean age of 55 years averagely. Differences in lipid profile factors serum level between different genotypes of PM-related polymorphisms were examined (Table 2). Furthermore, Table 3 and 4 show the results of multivariate logistic regression analysis before and after adjustment for age and physical activity level.

In the PM cases, serum total cholesterol was significantly different between various rs16991615, rs244715, rs4806660, and rs10183486 SNP genotypes; however, this association was not observed in the healthy controls. Interestingly, three of four of the investigated factors including serum total cholesterol, triglyceride, and HDL were substantially associated with different genotypes of rs4806660 SNP in participants with PM and this association was not detected in controls group.

These results for rs1046089 showed individuals with GG genotype were more likely to have low serum LDL (OR= 5.48, CI= 1.14-26.34, p = 0.02) risk than individuals with the AA genotype in control group using a multivariate logistic regression test. Also, the results demonstrate that there was a significant association with high TG risk in CC variant vs. TT in rs10183486 in PM group (OR= 4.63, CI= 1.17-18.29, p = 0.02). Furthermore, these results suggest that individuals carried the recessive homozygous genotype (CC) of rs2303369 SNP compared to individuals with dominant homozygous genotype (TT) had an increased risk of a high serum LDL and low serum HDL and the risk of high TC was decreased in control group.

The risk of low HDL was increased in individuals carrying rs23303369 variant (CT) compared to non-carriers (TT) in both studied groups, (OR, 6.6; 95% CI, 1.88-19.53, P=0.003 in PM group) and (OR= 4.21, CI= 1.17-15.18, p = 0.02 in control group).

Discussion

Our findings suggest that serum levels of several parameters in the fasted serum lipid profile consisting of total cholesterol, LDL, and HDL, but not serum triglycerides, were associated with PM. Further analyses indicated that genotypes of polymorphisms, which were previously reported to be related with the incidence of PM, are substantially associated with the level of lipid profile factors in PM cases. Moreover, we found that some genotypes in specific polymorphisms including rs4806660, rs10183486, and rs2303369 SNPs were significantly related to abnormalities regarding total cholesterol, LDL and HDL level in the cases' serum.
Initially our results found significant difference between PM cases and control participants for serum HDL, LDL, and total cholesterol levels, and these factors were significantly higher in the PM group. Gulhan and his coworkers have also found that among the 4 lipid factors, only total cholesterol and LDL were substantially different between cases diagnosed with premature ovarian failure (POF) and control subjects. POF group in this study had higher levels of total cholesterol and LDL. Gulhan et al. work had included only women with previous history of successful childbirth and without any hormone therapy within the last 6 months, this inconsistency in HDL serum level had happened. However, this difference might have occurred due to their use of a small sample size as it was as one third as our study or due to the role of age as a confounding factor and also the role of some genetic variants related to PM. Interestingly, a recent study on 3 Dutch university medical centers did not report any significant difference in lipid profile between previously POI-diagnosed participants and population-based controls. In their study, secondary amenorrhea (cessation of menstruation for at least 3 consecutive months) was one of the criteria for including POI cases; While, this period was too short compared to our criteria (12 consecutive months) and this important thing might have affected their results. Moreover, they have not indicated whether their participants had any previous history of surgeries, diseases, or taking medications related to female reproductive tract or not; Thus, this factor might have not been considered in their study which cause this disagreement.

Knauff et al. have reported changes in lipid profile of cases with POF compared to the controls is potentially related to the rate of ovarian function. Another study which included cases who enter menopause by surgical ovariectomy, clarified that this intervention on female's reproductive tract, has caused impaired lipid metabolism 6 months post-surgery and substantial increase in all four lipid indicators (Total Cholesterol, Triglyceride, LDL, and HDL). Moreover it has been demonstrated that POI cases had significant lower level of Free Androgen Index (FAI) than people with regular menstrual cycles and there, it has been suggested that higher FAI was associated with high serum triglyceride and LDL in POI cases. Overall, these results suggest that impairment in sexual hormones level, as a result of decreased females' reproductive system activity, is related to weaken lipid metabolism.

Our study has for the first time investigated the association between PM-related polymorphisms' genotypes and lipid profile status. In our analysis, we observed that genotypes of 2 different SNPs including rs4806660 (TMEM150B) and rs10183486 (TLK1) are substantially associated with abnormalities of lipid profile. Regarding the first one, low level of HDL was observed by 5.26 times higher in PM cases with TC genotype rather than CC participants. This association was not found in the controls. It is possible that these results are due to hormonal disorders that occur in postmenopausal individuals and consequently the lipid profile in individuals is impaired. Furthermore, for the second mentioned SNP, hypercholesterolemia was found over 450 percent higher in cases who carried CC than those with TT genotype. Previous studies have reported that both rs4806660 and rs10183486 polymorphisms are associated with the incidence of PM. While it has been proved that TLK1 gene encodes nuclear serine-threonine kinases in which actively transfers signals from receptors of estrogen.
within the cell membrane to the nucleus, the exact function of TMEM150B gene product, called transmembrane protein 150B, has not yet been discussed.

Several SNPs, have been found to be associated with PM, a condition in which ovaries stop releasing sexual hormones, especially estrogen, making females infertile as early as before the age of 40. This estrogen hormone deficiency affects metabolism of lipids and thus, PM cases might face some lipid profile abnormalities that could increase the risk of cardiovascular disorders in participants of our study.

Our study was mainly limited by its design as a cross-sectional study, and changes in the level of lipid profile factors were not prospectively assessed. Data regarding pattern of the target population diet for the consumption of oils and meats, as the most common lipids, were not recorded in this study. We suggest future studies consider these limitations to achieve more reliable results. Moreover, several PM-related SNPs were not investigated in our study that might be associated with the cases' metabolic status and it is highly recommended to include these polymorphisms in the analysis.

In conclusion, SNPs which are previously found to be attributed to PM, could cause impairment in cases' lipid profile status through hormonal abnormalities. Present study clarifies that TC, CC and, CT genotypes of rs4806660, rs10183486, and rs2303369 SNPs, respectively increase the rate of dyslipidemia by approximately 5 times compared to their reference genotype (rs4806660: CC; rs10183486: TT; rs2303369: TT) in PM cases. But, GG and CC genotypes of rs1046089 and rs2303369 SNPs, respectively increase the rate of dyslipidemia about 6 times compared to their reference genotype in healthy population.

Declarations

Ethics approval and consent to participate

Informed consent was obtained from all subjects using protocols approved by the Ethics Committee of the Mashhad University of Medical Sciences. All participants were able to read and understand and were willing to provide written, informed consent.

Consent to publish

Not applicable

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare no conflict of interests.
Funding: Research reported in this publication was supported by the Mashhad University of Medical Sciences, Mashhad, Iran.

Acknowledgment

We would like to thank Mashhad University of Medical Sciences Research council for their financial support. The study was approved by the Ethics Committee of Mashhad University of Medical Sciences (Ethics number: IR.MUMS.REC.1386.250).

Authors' Contributions

We declare that We contributed significantly towards the research study i.e., (a) conception (M.R M and Z N-F), design (M A and A E-D) and/or analysis and interpretation of data (H Gh, N S-A, M Z-B, A N and M.R S-F-M) and to (b) drafting the article (E H and M Y-Kh) or revising it critically for important intellectual content (H E and G.A F) and on (c) final approval of the version (T H, A P and M G-M) to be published.

Conflict of interest

The authors have no conflict of interest to disclose.

References

1. Ko SH, Kim HS. Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. *Nutrients*. Jan 13 2020;12(1)doi:10.3390/nu12010202
2. Fu X, Wang H, Zhang X. Genetic aspects of early menopause. *Journal of Bio-X Research*. 2019;2(3):105-111.
3. Honigberg MC, Zekavat SM, Aragam K, et al. Association of Premature Natural and Surgical Menopause With Incident Cardiovascular Disease. *JAMA*. 2019;322(24):2411-2421. doi:10.1001/jama.2019.19191
4. Mishra GD, Chung H-F, Cano A, et al. EMAS position statement: Predictors of premature and early natural menopause. *Maturitas*. 2019;123:82-88.
5. Okeke T, Anyaehie U, Ezenyeaku C. Premature menopause. *Annals of medical and health sciences research*. 2013;3(1):90-95.
6. Golezar S, Ramezani Tehrani F, Khazaie S, Ebadi A, Keshavarz Z. The global prevalence of primary ovarian insufficiency and early menopause: a meta-analysis. *Climacteric*. 2019;22(4):403-411.
7. Whitcomb BW, Purdue-Smithe AC, Szegda KL, et al. Cigarette smoking and risk of early natural menopause. *American journal of epidemiology*. 2018;187(4):696-704.
8. De Bruin ML, Huisbrink J, Hauptmann M, et al. Treatment-related risk factors for premature menopause following Hodgkin lymphoma. *Blood, The Journal of the American Society of Hematology*. 2008;111(1):101-108.
9. De Vos M, Devroey P, Fauser BC. Primary ovarian insufficiency. *The Lancet*. 2010;376(9744):911-921.
10. Calvet GA, Grinsztejn B, Quintana MdSB, et al. Predictors of early menopause in HIV-infected women: a prospective cohort study. *American journal of obstetrics and gynecology.* 2015;212(6):765.e1-765.e13.

11. Ikeme A, Okeke T, Akogu S, Chinwuba N. Knowledge and perception of menopause and climacteric symptoms among a population of women in Enugu, South East, Nigeria. *Annals of medical and health sciences research.* 2011;1(1):31-36.

12. Mikkelsen TF, Graff-Iversen S, Sundby J, Bjertness E. Early menopause, association with tobacco smoking, coffee consumption and other lifestyle factors: a cross-sectional study. *BMC Public Health.* 2007;7(1):149.

13. Sklar C. Maintenance of ovarian function and risk of premature menopause related to cancer treatment. *JNCI Monographs.* 2005;2005(34):25-27.

14. Gunning M, Troia L, Janse F, Luisi S, C. Fauser B. Premature Ovarian Insufficiency. *Female Reproductive Dysfunction.* 2020:287-307.

15. Anagnostis P, Christou K, Artzouchaltzi A-M, et al. Early menopause and premature ovarian insufficiency are associated with increased risk of type 2 diabetes: a systematic review and meta-analysis. *European journal of endocrinology.* 2019;180(1):41-50.

16. Purdue-Smithe AC, Whitcomb BW, Manson JE, et al. Vitamin D status is not associated with risk of early menopause. *The Journal of Nutrition.* 2018;148(9):1445-1452.

17. Baba Y, Ishikawa S, Amagi Y, Kayaba K, Gotoh T, Kajii E. Premature menopause is associated with increased risk of cerebral infarction in Japanese women. *Menopause.* May-Jun 2010;17(3):506-10. doi:10.1097/gme.0b013e3181c7dd41

18. Muka T, Oliver-Williams C, Kunutsor S, et al. Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: a systematic review and meta-analysis. *JAMA cardiology.* 2016;1(7):767-776.

19. Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. *Clinical Genetics.* 2017;91(2):183-198. doi:10.1111/cge.12921

20. Fenton AJ. Premature ovarian insufficiency: Pathogenesis and management. *Journal of mid-life health.* 2015;6(4):147.

21. He C, Kraft P, Chen C, et al. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. *Nature genetics.* 2009;41(6):724-728.

22. Stolk L, Perry JR, Chasman DI, et al. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. *Nature genetics.* 2012;44(3):260-268.

23. Murray A, Bennett CE, Perry JR, et al. Common genetic variants are significant risk factors for early menopause: results from the Breakthrough Generations Study. *Human molecular genetics.* 2011;20(1):186-192.

24. Laven JS. Genetics of early and normal menopause. Thieme Medical Publishers; 2015:377-383.
Muka T, Oliver-Williams C, Kunutsor S, et al. Association of Age at Onset of Menopause and Time Since Onset of Menopause With Cardiovascular Outcomes, Intermediate Vascular Traits, and All-Cause Mortality: A Systematic Review and Meta-analysis. *JAMA Cardiology*. 2016;1(7):767-776. doi:10.1001/jamacardio.2016.2415

Carr MC. The emergence of the metabolic syndrome with menopause. *The Journal of Clinical Endocrinology & Metabolism*. 2003;88(6):2404-2411.

Agrinier N, Cournot M, Dallongeville J, et al. Menopause and modifiable coronary heart disease risk factors: a population based study. *Maturitas*. 2010;65(3):237-243.

Toth M, Tchernof A, Sites C, Poehlman E. Effect of menopausal status on body composition and abdominal fat distribution. *International journal of obesity*. 2000;24(2):226-231.

Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. *New England journal of medicine*. 1999;340(23):1801-1811.

Trial WGftP. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. *Jama*. 1995;273(3):199-208.

Zhao Z, Wang H, Jessup JA, Lindsey SH, Chappell MC, Groban L. Role of estrogen in diastolic dysfunction. *American Journal of Physiology-Heart and Circulatory Physiology*. 2014;306(5):H628-H640.

van der Schouw YT, van der Graaf Y, Steyerberg EW, Eijkemans MJC, Banga JD. Age at menopause as a risk factor for cardiovascular mortality. *The Lancet*. 1996/03/16/ 1996;347(9003):714-718. doi:https://doi.org/10.1016/S0140-6736(96)90075-6

Wellons M, Ouyang P, Schreiner PJ, Herrington DM, Vaidya D. Early menopause predicts future coronary heart disease and stroke: the Multi-Ethnic Study of Atherosclerosis (MESA). *Menopause (New York, NY)*. 2012;19(10):1081.

Qiu C, Chen H, Wen J, et al. Associations Between Age at Menarche and Menopause With Cardiovascular Disease, Diabetes, and Osteoporosis in Chinese Women. *The Journal of Clinical Endocrinology & Metabolism*. 2013;98(4):1612-1621. doi:10.1210/jc.2012-2919

Lee JS, Hayashi K, Mishra G, Yasui T, Kubota T, Mizunuma H. Independent association between age at natural menopause and hypercholesterolemia, hypertension, and diabetes mellitus: Japan nurses’ health study. *J Atheroscler Thromb*. 2013;20(2):161-9. doi:10.5551/jat.14746

Anagnostis P, Theocharis P, Lallas K, et al. Early menopause is associated with increased risk of arterial hypertension: A systematic review and meta-analysis. *Maturitas*. 2020/05/01/ 2020;135:74-79. doi:https://doi.org/10.1016/j.maturitas.2020.03.006

Samowski C, Kavousi M, Isaacs S, et al. Genetic variants associated with earlier age at menopause increase the risk of cardiovascular events in women. *Menopause*. 2018;25(4):451-457. doi:10.1097/gme.0000000000001017

Ghayour-Mobarhan M, Moohebati M, Esmaily H, et al. Mashhad stroke and heart atherosclerotic disorder (MASHAD) study: design, baseline characteristics and 10-year cardiovascular risk
estimation. International journal of public health. 2015;60(5):561-572.

39. Collins A, Ke X. Primer1: primer design web service for tetra-primer ARMS-PCR. The Open Bioinformatics Journal. 2012;6(1)

40. Oladi M, Nohtani M, Avan A, et al. Impact of the C1431T polymorphism of the peroxisome proliferator activated receptor-gamma (PPAR-γ) gene on fasted serum lipid levels in patients with coronary artery disease. Annals of Nutrition and Metabolism. 2015;66(2-3):149-154.

41. Mirhafez SR, Avan A, Pasdar A, et al. Association of tumor necrosis factor-α promoter G-308A gene polymorphism with increased triglyceride level of subjects with metabolic syndrome. Gene. 2015;568(1):81-84.

42. Maki KC, Bays HE, Dicklin MR. Treatment options for the management of hypertriglyceridemia: strategies based on the best-available evidence. Journal of clinical lipidology. 2012;6(5):413-426.

43. The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration. WHO MONICA Project Principal Investigators. Journal of clinical epidemiology. 1988;41(2):105-14. doi:10.1016/0895-4356(88)90084-4

44. Mazidi M, Vadadian P, Rezaie P, et al. Levels of physical activity are correlated with intima media ratio in subjects without but not with metabolic syndrome: A study of Iranians without a history of cardiovascular events. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2017/04/01/2017;11(2):99-102. doi:https://doi.org/10.1016/j.dsx.2016.08.001

45. Association GAotWM. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. The Journal of the American College of Dentists. 2014;81(3):14.

46. Gulhan I, Bozkaya G, Uyar I, Oztekin D, Pamuk BO, Dogan E. Serum lipid levels in women with premature ovarian failure. Menopause (New York, NY). Nov 2012;19(11):1231-4. doi:10.1097/gme.0b013e318254102b

47. Gunning MN, Meun C, van Rijn BB, et al. The cardiovascular risk profile of middle age women previously diagnosed with premature ovarian insufficiency: A case-control study. PloS one. 2020;15(3):e0229576. doi:10.1371/journal.pone.0229576

48. Knauff EA, Westerveld HE, Goverde AJ, et al. Lipid profile of women with premature ovarian failure. Menopause (New York, NY). Sep-Oct 2008;15(5):919-23. doi:10.1097/gme.0b013e31816b4509

49. Yoshida T, Takahashi K, Yamatani H, Takata K, Kurachi H. Impact of surgical menopause on lipid and bone metabolism. Climacteric : the journal of the International Menopause Society. Aug 2011;14(4):445-52. doi:10.3109/13697137.2011.562994

50. Daan NM, Jaspers L, Koster MP, et al. Androgen levels in women with various forms of ovarian dysfunction: associations with cardiometabolic features. Human reproduction (Oxford, England). Oct 2015;30(10):2376-86. doi:10.1093/humrep/dev195

51. Murray A, Bennett CE, Perry JRB, et al. Common genetic variants are significant risk factors for early menopause: results from the Breakthrough Generations Study. Hum Mol Genet. 2011;20(1):186-192.
52. Stolk L, Perry JRB, Chasman DI, et al. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. *Nat Genet.* 2012;44(3):260-268. doi:10.1038/ng.1051

53. Kousteni S. Chapter 22 - The Molecular Biology of Sex Steroids in Bone: Similarities and Differences among the Sexes. In: Orwoll ES, Bilezikian JP, Vanderschueren D, eds. *Osteoporosis in Men (Second Edition).* Academic Press; 2010:269-281.

Tables

Table 1

Characteristics	PM cases, N = 117	Controls, N = 183	P-value
BMI (kg/m²)	28.78 ± 5.06	29.34 ± 4.22	0.323
FBG (mg/dl)	88.74 ± 20.06	88.96 ± 31.43	0.948
PAL	1.78 ± 0.25	1.70 ± 0.23	0.008
Non smoker	86 (74.8%)	146 (79.8%)	NA
Ex-smoker	10 (8.7%)	9 (4.9%)	0.390
Current smoker	19 (16.5%)	28 (15.3%)	NA
TC (mg/dl)	207.8 ± 35.8	188.8 ± 33.1	< 0.001
TG (mg/dl)	111.0 (82.0-162.5)	117.0 (80.0-159.0)	0.684
LDL-C (mg/dl)	128.39 ± 33.96	110.47 ± 33.42	< 0.001
HDL-C (mg/dl)	47.45 ± 9.33	45.06 ± 11.34	0.040

Data are shown as Mean ± SD; Student t-test and Chi-square test were used; PM: Premature Menopause; SD: Standard Deviation; BMI: Body Mass Index; FBG: Fasting Blood Glucose; PAL: Physical Activity Level; TC: Total Cholesterol; TG: Triglyceride; HDL: High Density Lipoprotein; LDL: Low Density Lipoprotein.
Table 2
Association of genotypes related to PM with lipid profile in our target population divided into PM cases and healthy controls

Polymorphisms	PM cases (N = 117)	Controls (N = 183)						
	AA	GA	GG	P	AA	GA	GG	P
Serum Total Cholesterol (mg/dl)	222.3 ± 41.4^a	195.8 ± 35.3^b	209.4 ± 29.5^{ab}	0.01	190.2 ± 33.8	191.2 ± 33.5	186.4 ± 32.7	0.64
Triglyceride (mg/dl)	108.0 (78.0-181.0)	112.0 (82.0-147.0)	107.0 (89.0-156.0)	0.96	98.5 (65.8-121.3)	129.0 (87.0-159.0)	108.0 (79.5-162.3)	0.14
HDL (mg/dl)	48.6 ± 7.7	45.9 ± 8.9	48.0 ± 10.5	0.44	45.0 (40.8-53.0)	44.0 (35.0-53.0)	43.0 (35.6-54.3)	0.58
LDL (mg/dl)	136.1 ± 37.8	120.3 ± 29.9	130.6 ± 34.1	0.15	116.7 ± 35.2	112.7 ± 34.0	107.1 ± 32.5	0.39
rs244715	GG	AG	AA	P	GG	AG	AA	P
Serum Total Cholesterol (mg/dl)	213.3 ± 44.4^a	216.7 ± 35.5^a	198.8 ± 32.3^b	0.04	185.8 ± 25.8	182.9 ± 29.2	192.1 ± 35.0	0.21
Triglyceride (mg/dl)	140.5 (77.5-202.7)	112.0 (85.0-179.0)	108.0 (82.7-151.5)	0.75	107.0 (84.0-231.3)	122.0 (85.5-163.5)	113.0 (77.0-149.5)	0.55
HDL (mg/dl)	46.3 ± 8.6	47.8 ± 8.2	47.4 ± 10.5	0.88	43.5 (33.8-49.3)	42.0 (36.3-55.7)	44.0 (35.6-52.9)	0.93
LDL (mg/dl)	126.8 (111.9-158.8)	134.4 (115.9-146.5)	124.1 (93.1-142.6)	0.18	96.1 ± 36.4^b	97.2 ± 34.3^a	118.2 ± 30.5^b	<0.001
rs451417	AA	CA	CC	P	AA	CA	CC	P
Serum Total Cholesterol (mg/dl)	201.0 (191.0-236.0)	207.5 (178.0-231.7)	208.5 (181.2-223.2)	0.71	194.5 (174.0-211.5)	181.5 (164.5-201.5)	192.0 (162.0-217.0)	0.31
Triglyceride (mg/dl)	120.0 (82.0-185.0)	111.5 (78.3-153.0)	107.5 (84.5-151.5)	0.51	106.0 (88.3-144.0)	124.0 (77.3-166.5)	115.0 (80.0-154.0)	0.94
HDL (mg/dl)	47.5 ± 9.1	46.2 ± 9.0	48.4 ± 9.8	0.56	45.5 (39.3-54.4)	43.5 (34.3-54.5)	42.8 (36.6-52.1)	0.78
Polymorphisms	PM cases (N = 117)	Controls (N = 183)						
---------------	------------------	------------------						
LDL (mg/dl)	132.3 ± 38.3	122.0 ± 29.8						
	130.7 ± 33.9	117.4 ± 28.9						
		104.7 ± 34.1						
		113.9 ± 33.3	0.14					
rs1046089	AA	GA						
	GA	GG	P					
	AA	GA	GG					
Serum	196.0 (177.0-	207.0 (184.0-						
Total	225.0)	232.0)						
Cholesterol	(mg/dl)	(82.0-153.0)						
		(84.0-154.5)	0.76					
Triglyceride	112.0 (79.0-	112.0 (80.0-						
(mg/dl)	214.0)	155.0)						
		(84.0-162.5)	0.87					
HDL (mg/dl)	50.4 ± 7.7	47.4 ± 9.4						
	46.6 ± 9.7	52.0 (40.0-						
		58.0)						
LDL (mg/dl)	122.5 ± 40.1	127.2 ± 32.8						
	132.2 ± 34.7	75.5 (58.6-						
		111.0)	0.65					
rs7246479	AA	TA						
	TA	TT	P					
	AA	TA	TT					
Serum	201.5 (196.3-	200.5 (176.0-						
Total	233.5)	234.0)						
Cholesterol	(mg/dl)	(81.3-150.7)						
		(94.0-186.0)	0.12					
Triglyceride	101.5 (73.3-	108.0 (97.5-						
(mg/dl)	167.0)	183.5)						
		(90.0-160.0)	0.29					
HDL (mg/dl)	48.7 ± 7.1	47.6 ± 9.2						
	46.8 ± 10.4	53.5 (41.5-						
		57.7)						
LDL (mg/dl)	137.9 ± 31.2	123.8 ± 30.7						
	133.6 ± 39.8	82.6 ± 29.4						
		107.8 ± 33.9	0.23					
rs4806660	CC	TC						
	TC	TT	P					
	CC	TC	TT					
Serum	200.6 ± 34.8	217.0 ± 34.3						
Total	34.8ab	34.3a						
Cholesterol	(mg/dl)							
	(73.3-168.0)	(97.5-130.0)	0.04					
Triglyceride	93.5 (73.3-	122.0 (100.0-						
(mg/dl)	168.0)ab	167.0)						
		(80.7-160.5)	0.02					
		(76.7-156.0)	0.08					

Note:
- Values are presented as mean ± standard deviation, with ranges in parentheses.
- Significant differences are indicated by subscripts: a, b, and c, where a indicates significance at P < 0.05, b at P < 0.01, and c at P < 0.001.
- **P** values are provided to indicate statistical significance of differences between groups.
| Polymorphisms | PM cases (N = 117) | Controls (N = 183) | | | | | | |
|---|---|---|---|---|---|---|---|---|
| | Mean ± SD | Mean ± SD |
| | Range | Range |
| | P | |
| HDL (mg/dl) | 53.5 ± 12.3 | 44.9 ± 8.0 | 48.7 ± 9.0ab |
| | (40.0–56.0) | (35.5–54.3) | (35.7–52.5) |
| | 0.01 | | 0.82 |
| LDL (mg/dl) | 112.2 ± 32.9 | 134.7 ± 34.9 | 125.6 ± 32.1 |
| | 73.1 ± 26.1ab | 104.3 ± 33.0b | 118.6 ± 31.4c |
| | < 0.001 | | |
| rs10183486 | TT | CT | CC | P | TT | CT | CC | P |
| | | | | | | | | |
| | Serum Total Cholesterol (mg/dl) | 197.7 ± 27.7ab | 199.3 ± 34.6a | 220.1 ± 35.9b |
| | (194.7–220.0) | (185.0–240.5) | (198.0–235.0) |
| | 202.1 ± 23.4a | | | 0.01 |
| | 193.9 ± 35.3 | 192.4 ± 36.5 | 185.2 ± 29.5 |
| | 0.32 | | | |
| rs2303369 | TT | CT | CC | P | TT | CT | CC | P |
| | | | | | | | | |
| | Serum Total Cholesterol (mg/dl) | 206.5 ± 29.7 | 213.6 ± 36.8 | 200.8 ± 36.5 |
| | (190.0–223.0) | (195.0–231.0) | (184.0–216.0) |
| | 202.1 ± 23.4a | | | 0.23 |
| | 181.9 ± 19.6 | 192.6 ± 32.8 | 185.9 ± 35.3 |
| | 0.19 | | | |
| Triglyceride (mg/dl) | 97.5 (74.7–119.5) | 107.5 (80.7–150.7) | 122.0 (94.0–185.0) |
| | 143.0 (91.0–140.5) | 111.0 (77.5–144.0) | 120.0 (82.5–164.5) |
| | 0.12 | | | |
| HDL (mg/dl) | 47.2 ± 6.4 | 47.7 ± 11.2 | 47.2 ± 7.5 |
| | 35.5 (31.4–39.3) | 44.0 (39.0–54.5) | 43.5 (34.0–53.3)bc |
| | 0.95 | | | 0.02 |
| LDL (mg/dl) | 118.9 ± 25.1ab | 119.5 ± 31.1a | 140.9 ± 35.5b |
| | 120.5 ± 29.3 | 114.4 ± 34.3 | 106.1 ± 32.7 |
| | 0.003 | | | 0.17 |
| Triglyceride (mg/dl) | 98.0 (69.0–129.0) | 117.0 (94.5–182.0) | 106.0 (77.5–152.0) |
| | 106.0 (75.0–150.0) | 120.0 (84.5–162.3) | 117.0 (76.0–154.5) |
| | 0.05 | | | 0.36 |
| HDL (mg/dl) | 52.0 ± 10.1a | 44.6 ± 8.5b | 48.9 ± 9.1ab |
| | 56.5 (49.8–60.8)a | 44.5 (34.0–55.0)b | 42.8 (35.3–48.7)bc |
| | 0.01 | | | 0.002 |
| LDL (mg/dl) | 117.6 (100.9–139.6) | 134.4 (116.3–140.0) | 123.6 (103.1–147.8) |
| | 85.8 ± 27.6a | 109.7 ± 32.2b | 117.1 ± 33.2bc |
| | 0.14 | | | 0.001 |

PM: Premature Menopause; HDL: High-Density Lipoprotein; LDL: Low Density Lipoprotein; One-way analysis of variance (ANOVA) and Kruskal-Wallis tests were used; Anomalous letters indicate a significant difference; Significant P value <0.05
Table 3
Investigation of the relationship between the risk of polymorphisms related to premature menopause and dyslipidemia factors in the study population in a crude model

Polymorphisms Lipid profile abnormalities	PM cases	Controls						
	OR (95% CI)	P						
rs16991615 GA/AA	0.65 (0.24–1.74)	0.39	0.65 (0.23–1.84)	0.39	0.65 (0.23–1.84)	0.42	0.65 (0.23–1.84)	0.42
High LDL (mg/dl)	0.51 (0.17–1.50)	0.22	0.88 (0.33–2.35)	0.79	1.93 (0.51–7.32)	0.33	2.41 (0.65–9.03)	0.19
High Triglyceride (mg/dl)	1.55 (0.55–4.31)	0.40	1.01 (0.39–2.66)	0.98	1.08 (0.36–3.21)	0.89	0.89 (0.30–2.60)	0.83
Low HDL (mg/dl)	0.36 (0.13–1.02)	0.05	0.90 (0.32–2.51)	0.84	0.69 (0.24–1.94)	0.48	0.64 (0.23–1.78)	0.39
High Total Cholesterol (mg/dl)	2.06 (0.57–7.47)	0.27	1.04 (0.29–3.69)	0.95	1.22 (0.13–11.48)	0.86	3.17 (0.36–28.01)	0.30
rs244715 AG/GG	0.42 (0.12–1.55)	0.19	0.39 (0.11–1.38)	0.14	1.13 (0.19–6.66)	0.89	0.67 (0.12–3.83)	0.65
High LDL (mg/dl)	0.54 (0.13–2.25)	0.39	0.52 (0.13–2.16)	0.37	0.41 (0.05–3.75)	0.43	0.37 (0.04–3.24)	0.37
High Triglyceride (mg/dl)	1.87 (0.50–6.95)	0.35	0.77 (0.22–2.73)	0.69	0.71 (0.12–4.26)	0.71	1.36 (0.24–7.74)	0.73
rs451417 CA/AA	1.24 (0.47–3.26)	0.67	1.80 (0.72–4.52)	0.21	0.54 (0.18–1.55)	0.25	1.19 (0.43–3.29)	0.74
High LDL (mg/dl)	0.69 (0.25–1.92)	0.48	0.56 (0.21–1.49)	0.48	1.96 (0.59–6.48)	0.27	1.52 (0.46–5.02)	0.49
Polymorphisms Lipid profile abnormalities	PM cases	Controls						
--	----------	----------						
	OR (95% CI)	P	OR (95% CI)	P	OR (95% CI)	P		
Low HDL (mg/dl)	1.26 (0.46–3.44)	0.65	0.98 (0.39–2.50)	0.97	0.83 (0.29–2.31)	0.72		
	1.34 (0.48–3.74)	0.58						
High Total Cholesterol (mg/dl)	0.88 (0.33–2.36)	0.81	1.08 (0.42–2.75)	0.88	0.57 (0.21–1.60)	0.29		
	1.06 (0.39–2.85)	0.91						
rs1046089	GA/AA	GG/AA	GA/AA	GG/AA				
High LDL (mg/dl)	2.59 (0.63–10.63)	0.19	3.50 (0.80–15.34)	0.10	4.82 (1.06–21.99)	0.04		
	6.84 (1.49–31.47)	0.01						
High Triglyceride (mg/dl)	0.46 (0.13–1.70)	0.24	0.58 (0.15–2.27)	0.43	1.05 (0.39–2.84)	0.93		
	0.78 (0.28–2.19)	0.63						
Low HDL (mg/dl)	2.05 (0.57–7.44)	0.28	2.50 (0.63–9.86)	0.19	1.85 (0.74–4.67)	0.19		
	3.47 (1.30–9.26)	0.01						
High Total Cholesterol (mg/dl)	1.92 (0.53–6.96)	0.32	2.22 (0.57–8.68)	0.25	2.33 (0.79–6.86)	0.12		
	1.96 (0.65–5.90)	0.23						
rs7246479	TA/AA	TT/AA	TA/AA	TT/AA				
High LDL (mg/dl)	0.46 (0.13–1.62)	0.23	1.37 (0.36–5.25)	0.65	2.87 (0.34–24.54)	0.34		
	3.93 (0.46–33.39)	0.21						
High Triglyceride (mg/dl)	1.04 (0.25–4.30)	0.96	2.25 (0.52–9.77)	0.28	0.34 (0.08–1.49)	0.15		
	0.44 (0.10–1.87)	0.26						
Low HDL (mg/dl)	1.17 (0.34–4.09)	0.80	1.37 (0.36–5.25)	0.65	5.60 (1.06–29.47)	0.04		
	7.27 (1.38–38.39)	0.02						
High Total Cholesterol (mg/dl)	0.53 (0.15–1.94)	0.34	1.69 (0.40–7.10)	0.48	1.53 (0.29–8.04)	0.62		
	1.86 (0.35–9.72)	0.47						
rs4806660	TC/CC	TT/CC	TC/CC	TT/CC				
High LDL (mg/dl)	2.73 (0.73–10.21)	0.14	1.63 (0.43–6.14)	0.47	NA	0.62		
	NA	0.47						

Polymorphisms Lipid profile abnormalities	PM cases	Controls						
	OR (95% CI)	P						
High Triglyceride (mg/dl)	1.88 (0.45–7.77)	0.39	0.97 (0.23–4.19)	0.97	0.62 (0.13–2.97)	0.55	0.46 (0.09–2.19)	0.33
Low HDL (mg/dl)	6.00 (1.55–23.25)	0.01	2.67 (0.71–10.05)	0.15	0.77 (0.14–4.23)	0.77	0.78 (0.14–4.22)	0.77
High Total Cholesterol (mg/dl)	2.14 (0.58–7.93)	0.25	0.63 (0.18–2.27)	0.48	NA	NA	NA	NA
rs10183486	CT/TT	CC/TT	CT/TT	CC/TT				
High LDL (mg/dl)	0.82 (0.23–2.94)	0.77	2.71 (0.74–9.92)	0.13	1.95 (0.38–10.02)	0.42	1.43 (0.28–7.34)	0.67
High Triglyceride (mg/dl)	1.75 (0.34–8.98)	0.50	3.39 (0.67–17.25)	0.14	0.33 (0.08–1.37)	0.13	0.66 (0.17–2.61)	0.55
Low HDL (mg/dl)	0.73 (0.19–2.72)	0.64	0.97 (0.25–3.71)	0.96	0.25 (0.03–2.10)	0.20	0.22 (0.03–1.81)	0.16
High Total Cholesterol (mg/dl)	1.51 (0.43–5.35)	0.53	4.58 (1.21–17.35)	0.03	0.82 (0.20–3.27)	0.77	0.57 (0.14–2.27)	0.42
rs2303369	CT/TT	CC/TT	CT/TT	CC/TT				
High LDL (mg/dl)	2.42 (0.82–7.12)	0.11	1.34 (0.44–4.10)	0.61	6.77 (0.85–53.84)	0.07	9.06 (1.14–72.26)	0.04
High Triglyceride (mg/dl)	3.23 (0.84–12.50)	0.09	2.21 (0.54–8.99)	0.27	1.43 (0.42–4.81)	0.57	1.05 (0.30–3.64)	0.94
Low HDL (mg/dl)	5.86 (1.89–18.18)	0.002	2.19 (0.72–6.70)	0.17	5.18 (1.55–17.38)	0.01	10.59 (3.02–37.08)	< 0.001
High Total Cholesterol (mg/dl)	0.76 (0.23–2.44)	0.64	0.31 (0.09–1.01)	0.05	2.89 (0.77–10.86)	0.12	2.21 (0.58–8.45)	0.25

Multivariate logistic regression models were performed; PM: Premature Menopause; LDL: Low-Density Lipoprotein; HDL: High-Density Lipoprotein; High LDL >130 and Normal LDL <130; High Triglyceride >150
and Normal Triglyceride <150; Low HDL <40 (Male) or <50 (Female) and Normal HDL >40 (Male) or >50 (Female), High Total Cholesterol >200 and Normal Total Cholesterol <200; Normal groups of all lipid profile measures were considered as references; The common genotypes of each studied variants were considered as references; Significant P-value <0.05.
Table 4
Investigation of the relationship between the risk of polymorphisms related to premature menopause and dyslipidemia factors in the study population in an adjusted model for age and physical activity level

Polymorphisms Lipid profile abnormalities	PM cases	Control					
	OR (95% CI)	P	OR (95% CI)	P	OR (95% CI)	P	
rs16991615 GA/AA	0.63 (0.23–1.73)	0.37	1.21 (0.46–3.18)	0.69	0.65 (0.21–2.05)	0.47	
High LDL (mg/dl)			0.37	1.21 (0.46–3.18)	0.69	0.65 (0.21–2.05)	0.47
rs244715 AG/GG AA/GG	2.12 (0.57–7.83)	0.25	1.02 (0.28–3.70)	0.96	1.18 (0.12–11.38)	0.88	
High LDL (mg/dl)			0.25	1.02 (0.28–3.70)	0.96	1.18 (0.12–11.38)	0.88
rs451417 CA/AA CC/AA	1.87 (0.50–7.02)	0.35	0.76 (0.21–2.71)	0.67	0.68 (0.11–4.20)	0.68	
High Total Cholesterol (mg/dl)			0.35	0.76 (0.21–2.71)	0.67	0.68 (0.11–4.20)	0.68

| High Triglyceride (mg/dl) | 0.45 (0.15–1.37) | 0.16 | 0.85 (0.31–2.35) | 0.76 | 1.46 (0.36–5.81) | 0.59 |
| | | | 0.16 | 0.85 (0.31–2.35) | 0.76 | 1.46 (0.36–5.81) | 0.59 |

| High Triglyceride (mg/dl) | 0.39 (0.10–1.48) | 0.17 | 0.37 (0.10–1.37) | 0.13 | 1.51 (0.24–9.55) | 0.65 |
| | | | 0.17 | 0.37 (0.10–1.37) | 0.13 | 1.51 (0.24–9.55) | 0.65 |

| Low HDL (mg/dl) | 1.46 (0.52–4.13) | 0.46 | 0.97 (0.36–2.59) | 0.96 | 0.75 (0.23–2.44) | 0.64 |
| | | | 0.46 | 0.97 (0.36–2.59) | 0.96 | 0.75 (0.23–2.44) | 0.64 |

| Low HDL (mg/dl) | 0.51 (0.12–2.18) | 0.36 | 0.51 (0.12–2.17) | 0.36 | 0.51 (0.05–4.81) | 0.55 |
| | | | 0.36 | 0.51 (0.12–2.17) | 0.36 | 0.51 (0.05–4.81) | 0.55 |

| High Total Cholesterol (mg/dl) | 1.87 (0.50–7.02) | 0.35 | 0.76 (0.21–2.71) | 0.67 | 0.68 (0.11–4.20) | 0.68 |
| | | | 0.35 | 0.76 (0.21–2.71) | 0.67 | 0.68 (0.11–4.20) | 0.68 |

| rs451417 CA/AA CC/AA | 1.26 (0.46–3.41) | 0.64 | 1.81 (0.71–4.61) | 0.21 | 0.51 (0.17–1.52) | 0.23 |
| High LDL (mg/dl) | | | 0.64 | 1.81 (0.71–4.61) | 0.21 | 0.51 (0.17–1.52) | 0.23 |

| rs451417 CA/AA CC/AA | 0.56 (0.19–1.62) | 0.56 | 0.52 (0.19–1.42) | 0.20 | 1.83 (0.54–6.19) | 0.32 |
| High Triglyceride (mg/dl) | | | 0.56 | 0.52 (0.19–1.42) | 0.20 | 1.83 (0.54–6.19) | 0.32 |

| High Triglyceride (mg/dl) | | | 0.56 | 0.52 (0.19–1.42) | 0.20 | 1.83 (0.54–6.19) | 0.32 |

| rs451417 CA/AA CC/AA | 0.56 (0.19–1.62) | 0.56 | 0.52 (0.19–1.42) | 0.20 | 1.83 (0.54–6.19) | 0.32 |
| High Triglyceride (mg/dl) | | | 0.56 | 0.52 (0.19–1.42) | 0.20 | 1.83 (0.54–6.19) | 0.32 |
Polymorphisms Lipid profile abnormalities	PM cases	Control						
	OR (95% CI)	P						
Low HDL (mg/dl)	1.11 (0.40–3.11)	0.83	0.94 (0.36–2.44)	0.91	0.73 (0.25–2.11)	0.56	1.24 (0.42–3.63)	0.68
High Total Cholesterol (mg/dl)	0.83 (0.30–2.28)	0.72	1.07 (0.41–2.76)	0.88	0.55 (0.19–1.56)	0.26	0.89 (0.32–2.48)	0.83
rs1046089	GA/AA	GG/AA	GA/AA	GG/AA				
	2.53 (0.61–10.52)	0.20	3.65 (0.82–16.24)	0.08	3.37 (0.70–16.27)	0.12	5.48 (1.14–26.34)	0.03
High LDL (mg/dl)	0.45 (0.11–1.71)	0.24	0.60 (0.14–2.47)	0.48	0.65 (0.21–2.02)	0.46	0.48 (0.15–1.54)	0.22
Low HDL (mg/dl)	2.12 (0.57–7.83)	0.25	2.69 (0.67–10.80)	0.16	1.41 (0.51–3.88)	0.50	2.63 (0.93–7.47)	0.06
High Total Cholesterol (mg/dl)	1.91 (0.52–7.01)	0.32	2.28 (0.57–9.04)	0.23	1.63 (0.52–5.14)	0.39	1.49 (0.47–4.75)	0.49
rs7246479	TA/AA	TT/AA	TA/AA	TT/AA				
High LDL (mg/dl)	0.45 (0.12–1.63)	0.23	1.47 (0.37–5.81)	0.57	1.68 (0.18–15.66)	0.64	2.09 (0.22–19.70)	0.52
High Triglyceride (mg/dl)	0.95 (0.22–4.04)	0.95	2.31 (0.51–10.33)	0.27	0.18 (0.03–1.02)	0.05	0.18 (0.03–1.08)	0.06
Low HDL (mg/dl)	1.09 (0.30–3.88)	0.89	1.32 (0.33–5.18)	0.68	4.37 (0.76–24.92)	0.09	5.33 (0.90–31.30)	0.06
High Total Cholesterol (mg/dl)	0.52 (0.14–1.94)	0.33	1.77 (0.41–7.54)	0.43	0.83 (0.14–4.98)	0.84	0.93 (0.15–5.68)	0.94
rs4806660	TC/CC	TT/CC	TC/CC	TT/CC				
High LDL (mg/dl)	2.67 (0.68–10.48)	0.15	1.58 (0.39–6.33)	0.51	-	-	-	
Polymorphisms Lipid profile abnormalities	PM cases			Control				
--	----------	----	---	----------	----			
	OR (95% CI)	P						
High Triglyceride (mg/dl)	1.53 (0.35–6.61)	0.56	0.70 (0.15–3.21)	0.64	0.51 (0.10–2.63)	0.42	0.36 (0.07–1.85)	0.22
Low HDL (mg/dl)	5.26 (1.32–20.94)	0.01	2.19 (0.56–8.62)	0.25	0.63 (0.10–3.88)	0.61	0.60 (0.10–3.68)	0.58
High Total Cholesterol (mg/dl)	2.14 (0.56–8.22)	0.26	0.59 (0.15–2.25)	0.44	NA	NA	NA	NA
rs10183486	CT/TT	CC/TT	CT/TT	CC/TT	0.76			
High LDL (mg/dl)	0.70 (0.18–2.61)	0.59	2.41 (0.64–9.10)	0.19	2.01 (0.38–10.55)	0.40	1.29 (0.24–6.78)	0.76
High Triglyceride (mg/dl)	1.87 (0.33–10.40)	0.47	3.86 (0.70–21.30)	0.12	0.35 (0.08–1.52)	0.16	0.68 (0.16–2.83)	0.60
Low HDL (mg/dl)	0.74 (0.19–2.91)	0.67	1.02 (0.25–4.09)	0.97	0.27 (0.03–2.31)	0.23	0.22 (0.02–1.89)	0.16
High Total Cholesterol (mg/dl)	1.50 (0.40–5.58)	0.54	4.63 (1.17–18.29)	0.02	0.82 (0.20–3.35)	0.78	0.51 (0.12–2.08)	0.34
rs2303369	CT/TT	CC/TT	CT/TT	CC/TT	0.07			
High LDL (mg/dl)	2.18 (0.72–6.55)	0.16	1.22 (0.39–3.84)	0.72	4.40 (0.52–36.78)	0.17	6.94 (0.83–57.53)	0.07
High Triglyceride (mg/dl)	3.01 (0.75–11.97)	0.11	1.84 (0.43–7.74)	0.40	0.97 (0.25–3.72)	0.96	0.73 (0.18–2.81)	0.64
Low HDL (mg/dl)	6.06 (1.88–19.53)	0.003	2.03 (0.64–6.41)	0.22	4.21 (1.17–15.18)	0.02	8.55 (2.33–31.25)	0.001
High Total Cholesterol (mg/dl)	0.68 (0.20–2.26)	0.53	0.26 (0.07–0.90)	0.03	1.92 (0.47–7.75)	0.35	1.62 (0.40–6.57)	0.49

Multivariate logistic regression models were performed; PM: Premature Menopause; LDL: Low-Density Lipoprotein; HDL: High-Density Lipoprotein; High LDL >130 and Normal LDL <130; High Triglyceride >150
and Normal Triglyceride <150; Low HDL <40 (Male) or <50 (Female) and Normal HDL >40 (Male) or >50 (Female), High Total Cholesterol >200 and Normal Total Cholesterol <200; Normal groups of all lipid profile measures were considered as references; The common genotypes of each studied variants were considered as references; Adjusted with Age & Physical Activity Level; Significant P-value <0.05.