In planta screening of chili roots’ endophyte bacteria to control bacterial wilt disease

T Habazar¹, Y Yanti¹, Yunisman¹, Reflinaldon¹, NR Daulay²

¹Department of Plant Pest and Disease, Faculty of Agriculture Andalas University, Kampus Limau Manih, Padang 25163 West Sumatera,
²Alumni of Plant Pest and Disease, Faculty of Agriculture Andalas, University

Email: trimurti@agr.unand.ac.id

Abstract. Bacterial wilt is an important disease of chili. This disease cause by Ralstonia syzygii subsp. indonesiensis. This pathogen causing plant death and up to 100% yield loss. The economical impact due to this pathogen problem, even though this pathogen had been controlled. Bacterial Endophyte usage which are one of biological control strategy were one of the considered alternative method which are also compatible with sustainable agriculture program. This study objected to obtain the endophyte bacteria strains from healthy roots of chili that had ability to control bacterial wilt and promote growth and yields. Bacterial endophytes were isolated from the roots of healthy chili plants at the bacterial wilt disease endemic area in West Sumatera Province, Indonesia. The screening methods used in this study were in planta technique which the approach was focused on indirect mechanism (induced systemic resistance). Among the 14 of 16 endophyte bacteria strains were found to had ability to control bacterial wilt on chili without any symptoms appear (100%). We have found three bacterial endophyte strains (SLBE.3.1.BB7, SLBE.3.1.AP3 and AGBE4.1.TL5, which have multiple traits as biocontrol of bacterial wilt disease and as growth promoter and yields of chili.

Keywords: chili, endophytic bacteria, healthy root, in planta technique, Ralstonia syzygii subsp. indonesiensis.

1. Introduction

Bacterial wilt cause by a soil-borne vascular pathogen, Ralstonia syzygii subsp. indonesiensis Safni et al. (2014) (formerly Ralstonia solanacearum Yabuuchi et al. 1995) is very common in the field, such as chili (Capsicum annum L.). Once this pathogen is existed in a field it is difficult to control [1]. Bacterial wilt causing the yield loss of many crops such as tomato, chili, eggplant, tobacco, and potato [2].

Bacterial wilt disease control is difficult because of the pathogen high variability, limited options of chemical pesticide, high survival rate of the pathogen in various environments and its wide host range. Biological control is desirable because control with other methods gives variable results [3]. As one of the key components of Integrated disease management, endophyte bacteria as biological control options is an important to study because its promising alternative to replace chemical pesticide and fertilizer in sustainable and organic agricultural systems [4]. In the last decades, bacterial endophyte
have attracted more and more concerns as novel resource in biocontrol of plant diseases and promotion of plant growth [5].

Bacterial endophytes are well known to colonize in plant tissue, in the cell walls’ intercellular space and roots’ xylem, stem and leaves, and also found in flower tissues[7], fruits and seeds[8]. As a rule more endophytes are found in the roots of plants than other plant parts [9]. The relatively steady internal environment inside the plant tissues makes bacterial endophytes more bioactive than the rhizospheric or others plant associated microorganisms. Use of indigenous bacterial endophyte is considered as an environmentally-friendly an ecologically efficient strategy [10].

Growth promoting ability by bacterial endophytes could be directly established by phytohormones productions, induced endogenous phytohormone production due to their interactions with plants or increases accessibilities of plant nutrients such as phosphor and nitrogen [11]. The biocontrol ability of the associated bacterial endophyte to increased resistance properties were by the ability to produce various compounds, such as antibiotics or enzyme such as chitinase, which inhibit the pathogens growth in the plans, and thus act as biocontrol agents [11-15]. Bacterial endophytes were also found to have the ability to stimulate defense mechanism that termed as induced systemic resistance (ISR) which provided a next level of protection of plants to wider spectrum of pathogens [16] such as nematode, fungi, bacteria and virus.

Some isolates of bacterial endophyte showed antagonistic effect on Globodera rostochiensis in vitro and in vivo [17]. Bacterial endophyte originated from roots of Cyperus rotundus are able to reduce the number of Meloidogyne incognita in the roots of plants and are able to able to reduce the number of gall on the roots of tomato plants infested with M. incognita [18]. Five bacterial endophyte isolates from different parts ant at different growth stages of soybean are considered as efficient to control some fungal pathogens on soybean. They havee dual abilities i.e. antagonistic and plant growth promotion with the view of plant health and yield [10]. Bacterial endophyte could control angular leaf spot cause by Xanthomonas axonopodis pv. malvacearum on cotton [19]. Curtobacterium flaccumfaciens as endophyte in citrus plant could increase the resistance of citrus against Xylella fastidiosa [20] and reduced the severity of the disease symptoms induced by X. fastidiosa in Catharanthus roseus [21]. Bacteria endophyte from potatoes could inhibit growth of Erwinia and Xanthomonas [22]. Two bacterial endophyte isolates from healthy soybean root showed as the best to control bacterial pustule on soybean cause by X. axonopodis pv. glycines [23]. Six bacterial endophyte isolates from onion roots showed better performance in induced the resistance of onion against X. axonopodis pv. allii and increased the yield of onion [24]. Three bacterial endophyte from different parts of chili showed the growth promoting activity, reduction of disease incidence of five genus of fungal pathogens and high yield under field condition. These isolates showing multi attributes that can significantly influence of chili growth [25]. The information about bacterial endophyte to control bacterial wilt disease on chili are still limited.

The objective of these experiment was to obtain the bacterial endophyte strains from healthy chili roots, which have multi functions as biocontrol against bacterial wilt and biofertilizer to increase growth and yield of chili.

2. Materials and Methods

2.1. Isolation of bacterial endophyte from healthy chili’s roots.

Chili’s root samples were collected from healthy chili in endemic area of bacterial wilt in Taluak Village, Banuhampu District, Agam Region and Alahan Panjang Village, Lembah Gumanti District, Solok Region, West Sumatera, Indonesia. Bacterial wilt disease on chili was collected also at the same location. Samples were stored in a refrigerator (at 5°C) Sample were tagged and brought to the laboratory. The procedures of isolation of bacterial endophyte were used according to Misagi and Donndelinger (1990) [26]. Plant samples were disinfected and subsequently crushed with a laboratory. Aliquots of 100 μl of the resulting plant juices was placed in a Petri dish to which 10 ml of Nutrient Agar (NA) were added and s27] stirred well. Petri dish placed at room temperature for 2 days (about 30°C). Thereafter, the dominant colonies suspected as biocontrol agents were further purified on NA
and their single colony were transferred to microtube contain 1mL of sterilized water as stock culture and stored in refrigerator.

2.1.1. *Isolation of R. syzygii subsp. indonesiensis*. *R. syzygii subsp. indonesiensis* was isolated from bacterial wilt diseased plant parts using Tetrazolium chloride (TZC) medium and incubated at 30 °C for 48 h. Pathogenicity of the pathogens were assayed by method of Winstead and Kelman [27]. And the most virulence strains were used for further assay.

2.2. *In planta screening of selected bacterial endophyte strains on seedlings’ stage.*

The experiments were conducted in a greenhouse to evaluate the ability of bacterial endophyte to promote growth of chili’s seedlings. The experiment was designed as randomized complete. It was consisted of 17 treatments and 6 replicates. The treatments were 16 bacterial endophyte strains and control.

2.2.1. *Multiplication of endophytic bacteria.* The endophyte bacteria from stock culture were grown on NA for 72h, then the inoculum were transferred to 100mL of Nutrient Broth (NB) in 250 mL Erlenmeyer flask as pre-culture, and cultured on a shaker at 150 rpm, room temperature 48h. The main-culture were produced by transferring 1 mL of preculture suspension to 50 mL of sterilized coconut water in a flask, incubated the same as preculture condition, then the density were determined comparing with scale 8 of McFarland solutions (approximately 10⁸CFU/mL)[28].

2.2.2. *Inoculation of bacterial endophyte.* Seeds used in this study were obtained from the native chili of Taluak Village, Banuhampu Districh, Agam Residence, West Sumatra which selected by the best performance. Germination rate test were done by common methods using paper [29]. The bacterial endophyte main-culture stock were applied as seed inoculation, soaked for 15 minutes and shade-dried for 30 minutes then sowed with 2 seeds/pot at pot tray. Seedings and planting were all use the agronomical practices recommend for chili in Indonesia. Growth obserations were done on the 5 random-selected seedlings for 15 days after sowing. Parameter observed (height and total of leaves) were observed at 21 days old seedlings.

2.3. *In planta evaluation of bacterial endophyte strains to control of bacterial wilt disease on chili*

The experiment were done in screen house using completely randomized design, consisted of 18 treatments with 6 replications. The treatments were 16 bacterial endophyte strains, antibiotic and control. The bacterial endophyte strains were inoculated on three weeks old chili seedlings by root dipping technique before transplanting. Suspension of *R. syzygii subsp. indonesiensis* (10⁸ cells/mL) were inoculated on 1 months old chili by stem injection. Disease assesments were observed as follow: incubation period, disease incidence and disease severity. To examine the effect of bacterial endophyte on the plant growth characteristics were counted plant height, number of leaves, generative phase, and fruit weight.

3. *Results and discussion*

3.1 *Isolation of potential bacterial endophyte as biocontrol agents*

Sixteen bacterial endophyte strains were isolated from healthy chili’s roots. The diversity of bacterial endophyte from healthy root of chili varied with regard to morphology of colony and Gram. The colony characters of the bacterial endophyte strains showed the diverse colony shapes, diameter, colors, margins, elevation. They were consisted of 10 colony types (Table 1). Healthy chili roots were dominated by Gram positive (13 strains), white color (11 strains), irregular shape (9 strains). All of bacterial endophyte strains showed negative for the hypersensitive reaction (HR). It is mean they are nonpathogenic, and they were tested for the next experiment.
whereas control plant the disease incidence 80 % introduced with 14 bacterial experiment post inoculation, dpi) or without wilt symptom compared with control (22.2 dpi) until the end of experiment. The disease incidence varied between 0-20 %, especially on plants, which were introduced with 14 bacterial endophyte strains and streptomycin sulphate treatment become 0 %, whereas control plant the disease incidence 80 % (Figure 3).

3.2 In planta screening of selected bacterial endophyte strains to increase growth of chili seedlings
All indigenous bacterial endophyte strains could enhance significantly germination of chili seeds (83.3-100.0 %) and the rate of enhancement varied 19.00-42.85 % over non treated control (70 %) (Table 2 and Figure 2). Seedling’s height also was increased after inoculation of indigenous bacterial endophyte strains (7.14-9.21 cm) and the enhancement varied 25.04-53.75 % compare to control (5.99 cm).

Seed inoculation with all indigenous bacterial endophyte isolates significantly enhanced seed germination from 83.3-100.0 % and the rate of enhancement varied 19.00-42.85 % over non treated control (70 %) (Table 2 and Figure 1). Seedling’s height also increased after inoculations varied from 7.14-9.21 cm and the enhancement varied 25.04-53.75 % compare to control (5.99 cm). Number of leaves of indigenous bacterial endophyte introduced chili seedlings varied from 3.40-4.00 pieces and the enhancement 13.33-33.33 % compare to control (3.00 pieces) The best isolates to promote growth of chili seedlings were SLBE.3.1.BB7, SLBE.1.2.BB5, AGBE.3.1.TL9, SLBE.2.2.AP6, SLBE.1.1.BB4 and AGBE.2.1.TL10.

3.3. In planta screening of selected endophytic bacterial strains to control bacterial wilt and to increase growth and yield of chili.
Under greenhouse conditions, results clearly confirm that plant treated bacterial endophyte strains significance reduced disease compare to infected control (Table 3). *R. syzigii* subsp. *indonesiensis*-incubation period in chili treated with bacterial endophyte strains were shown longer (39.0-46.0 days post inoculation, dpi) or without wilt symptom compared with control (22.2 dpi) until the end of experiment. The disease incidence varied between 0-20 %, especially on plants, which were introduced with 14 bacterial endophyte strains and streptomycin sulphate treatment become 0 %, whereas control plant the disease incidence 80 % (Figure 3).

Table 1. The characters of bacterial endophyte strains from healthy chili’s root

Nr.	Bacterial endophyte isolate	Type	Shape	Elevation	Margin	Diameter (mm)	Colour	Gram reaction	Hyper-sensitive Reaction
1	SLBE.1.1.AP1	1	Irregular	Raised	Lobate	0.2	Red	-	-
2	SLBE.1.1.SN1	1	Irregular	Raised	Lobate	0.7	Red	-	-
3	SLBE.2.1.BB2	2	Irregular	Raised	Lobate	0.5	White	+	-
4	SLBE.3.1.AP3	3	Irregular	Raised	Wavy	0.4	White	+	-
5	SLBE.1.1.BB4	4	Irregular	Flat	Wavy	0.3	White	+	-
6	SLBE.2.3.BB4	4	Irregular	Flat	Wavy	0.6	White	+	-
7	SLBE.1.2.BB5	5	Circular	Raised	Entire	0.2	White	+	-
8	AGBE.1.1.TL5	5	Circular	Raised	Entire	0.3	White	+	-
9	AGBE.4.1.TL5	5	Circular	Raised	Entire	0.4	White	+	-
10	SLBE.2.2.AP6	6	Rhizoid	Flat	Rhizoid	2.2	White	+	-
11	SLBE.3.3.AP6	6	Rhizoid	Flat	Rhizoid	1.0	White	+	-
12	SLBE.3.1.BB7	7	Irregular	Flat	Lobate	1.5	White	+	-
13	SLBE.4.2.BB8	8	Irregular	Umbonate	Lobate	0.3	White	+	-
14	AGBE.1.2.TL9	9	Circular	Raised	Entire	0.2	Yellow	+	-
15	AGBE.3.1.TL9	9	Circular	Raised	Entire	0.2	Yellow	-	-
16	AGBE.2.1.TL10	10	Irregular	Flat	Wavy	0.6	Transparent	+	-
Table 2. Germination rate and seedling’s growth of bacterial endophyte introduced chili (21 days post inoculation, dpi)

Bacterial endophyte strains	Germination rate (%)	Enhanced (%)	Seedling’s height (Cm)	Enhanced (%)	Number of leaves (Pieces)	Enhanced (%)	
SLBE.1.1.AP1	93.3	34.14	8.12	abc	35.55	4.00a	33.33
SLBE.1.1.SN1	96.7	38.14	8.01	abc	33.72	4.00a	33.33
SLBE.2.1.BB2	100.0	42.85	8.42	abc	40.56	4.00a	33.33
SLBE.3.1.AP3	90.0	28.57	8.29	abc	38.39	4.00a	33.33
SLBE.1.1.BB4	96.7	38.14	8.95	ab	49.41	4.00a	33.33
SLBE.2.3.BB4	83.3	19.00	8.21	abc	37.06	3.90a	30.00
SLBE.1.2.BB5	93.3	34.14	9.17	ab	53.08	4.00a	33.33
AGBE.1.1.TL5	93.3	34.14	8.51	abc	42.07	3.60ab	26.66
AGBE.4.1.TL5	90.0	28.57	8.11	abc	35.39	4.00a	33.33
SLBE.2.2.AP6	100.0	42.85	9.13	ab	52.42	4.00a	33.33
SLBE.3.3.AP6	96.7	38.14	8.39	abc	40.06	4.00a	33.33
SLBE.3.1.BB7	90.0	28.57	9.21	a	53.75	4.00a	33.33
SLBE.4.2.BB8	96.7	38.14	7.49	c	25.04	3.40bc	13.33
AGBE.1.2.TL9	96.7	38.14	8.44	abc	40.90	3.60ab	26.66
AGBE.3.1.TL9	100.0	42.85	9.17	d	53.08	4.00a	33.33
AGBE.2.1.TL10	100.0	42.85	8.92	ab	48.91	4.00a	33.33
control	70.0	0.00	5.99	d	0.00	3.00c	0.00

Means with the same letter are not significantly different by least significant difference at p < 0.05.

Figure 2. Growth of indigenous endophytic bacterial inoculated chili seedlings compare to control (21 days after seeding). A. SLBE.1.1.BB; B. SLBE.2.2.BB; C. SLBE.3.1.BB; D. AGBE.3.1.TL; E. SLBE.4.2.BB and F. control
Table 3. Disease incidence of bacterial wilt disease on bacterial endophyte introduced chili

Nr.	Bacterial endophyte strain	Incubation Period	Disease Incidence		
		Days	Prolonged (%)	%	Reduced %
1.	SLBE.1.1.AP1	46.0a*	100.00	0	100
2.	SLBE.1.1.SN	46.0a*	100.00	0	100
3.	SLBE.2.1.BB	46.0a*	100.00	0	100
4.	SLBE.3.1.AP3	46.0a*	100.00	0	100
5.	SLBE.1.1.BB	46.0a*	100.00	0	100
6.	SLBE.2.3.BB	46.0a*	100.00	0	100
7.	SLBE.1.2.BB	46.0a*	100.00	0	100
8.	AGBE.1.1.TL5	41.2a	85.58	20	75
9.	AGBE.4.1.TL5	46.0a*	100.00	0	100
10.	SLBE.2.2.AP6	39.0a	75.67	20	75
11.	SLBE.3.3.AP6	46.0a*	100.00	0	100
12.	SLBE.3.1.BB	46.0a*	100.00	0	100
13.	SLBE.4.2.BB	46.0a*	100.00	0	100
14.	AGBE.1.2.TL9	46.0a*	100.00	0	100
15.	AGBE.3.1.TL9	46.0a*	100.00	0	100
16.	AGBE.2.1.TL10	46.0a*	100.00	0	100
17.	Streptomycine sulphate	46.0a*	100.00	0	100
18.	Control	22.2b	0	80	0

Means with the same letter are not significantly different by least significant difference at p < 0.05.

Note: *The plants were still live until the end of experiment.

Not all bacterial endophyte strains could enhance the growth of chili compare than control plant. The plant height was increased on fourteen bacterial endophyte strains inoculated plants (56.68-84.98 cm) and the enhancement varied between 0.39-50.51 % compare than control plant (56.46 cm) (Table 4 and Figure 3). The number of leaves were increased on thirteen bacterial endophyte strains inoculated plants (210-270 pieces), the enhancement varied between 6.82-37.34 % compare than control (196.60 pieces). Whereas three bacterial endophyte strains and streptomycine sulphate treated plants showed a lower leaves number (149.0-194.6 pieces). The best bacterial endophyte strains to promote plant growth were SLBE.4.2BB8, SLBE.3.3.AP6 and AGBE.4.1.TL5.

The generative phase was earlier on three bacterial endophyte strains inoculated chili (48.00-49.20 days after transplanting, DAT) compare to control (56.6 DAT) (Table 5). Fruit yield increased on ten bacterial endophyte strains inoculated chili (44.83-83.80 g/plant), the enhancement 9.57-92.25 % compare to control (43.59 g/plant). The best strains to increase the fruit yield were SLBE.3.1.BB7, SLBE.3.1.AP3 and AGBE.4.1.TL5.

The diversity of bacterial endophyte in healthy chili roots were varied based on morphological characters of colonies and Gram reaction, they were consisted of 10 colony types. Bacteria endophytes were dominated by Gram positive. Similar results had reported by Amaresan et al., (2014) the
dominated species from chili roots were Bacillus sp. or Gram positive [25]. Bacterial endophyte community are diverse and extent of diversity may vary significantly between plant species.

![Image of bacterial endophytic introduced chili after inoculation](A) and wilted control plant (B).

Figure 2. Performance of bacterial endophytic introduced chili after R. syzygii subsp. indonesiensis inoculation (21 dpi) (A). Wilted control plant (B).

Table 4. Effect of bacterial endophyte isolates on growth of chili in pot experiment

Nr.	Bacterial endophyte isolate	Plant height cm	Enhance (%)	Number of leaves	Enhance (%)
1.	SLBE.1.1.AP1	56.04	-0.74	217.60	10.68
2.	SLBE.1.1.SN1	57.80	2.37	261.00	32.76
3.	SLBE.2.1.BB2	63.64 ab	12.72	238.20 ab	21.16
4.	SLBE.3.1.AP3	58.50 bc	3.61	216.40 ab	10.07
5.	SLBE.1.1.BB4	61.78 b	9.42	249.20 ab	26.76
6.	SLBE.2.3.BB4	64.86 ab	14.88	210.00 abc	6.82
7.	SLBE.1.2.BB5	62.10 ab	9.99	194.60 abc	-1.02
8.	AGBE.1.1.TL5	37.70 c	-33.23	149.00 c	-24.21
9.	AGBE.4.1.TL5	70.68 ab	25.19	270.00 a	37.34
10.	SLBE.2.2.AP6	59.06 bc	4.61	178.80 bc	-9.05
11.	SLBE.3.3.AP6	71.70 ab	26.99	249.00 ab	26.65
12.	SLBE.3.1.BB7	62.76 bc	11.16	231.40 ab	17.70
13.	SLBE.4.2.BB8	84.98a	50.51	238.40 ab	21.26
14.	AGBE.1.2.TL9	56.68 bc	0.39	254.80 ab	29.60
15.	AGBE.3.1.TL9	62.64 bc	10.95	244.20 ab	24.21
16.	AGBE.2.1.TL10	67.46 ab	19.48	247.60 ab	25.94
17.	Streptomycine sulphate	60.66 b	7.44	190.40 abc	-3.15
18.	Control	56.46 bc	0.00	196.60 c	0.00

Means with the same letter are not significantly different by least significant difference at p < 0.05.

This study shown that endophyte strains inoculated to chili seedlings had greater value in all the growth parameter monitored (Table 2). It was determined that the bacterial endophyte as PGPR applications could be able to improve plant growth, seed germination rate, transplant emergence, response to stress condition, and protect from disease [30], such as Azospirillum, Pseudomonas and Azotobacter have significant impact on seed germination transplant growth [31, 32, 33]. The isolates of
bacterial endophyte improved seed germination and plant growth of oilseed rape and tomato significantly [34]. Our result showed, that bacterial endophyte treated chili seeds could increase the germination’s rate 19.00-42.85 % above the untreated seed (control). This result was higher than other research, such as: rhizobacterial strains enhanced seed germination of tomato up to 15 % over nontreated seed [35].

![Image](image_url)

Figure 3. Growth performance of bacterial endophyte introduced chilli (70 dat) (A). Control (B).

Bacterial endophyte introduced chili showed prolong the incubation period of wilt disease, reduce the disease incidence and severity (Table 3). This study demonstrates that 14 bacterial endophyte strains introduced chili could decrease of wilt disease incidence (0 %) in comparison to control plant (80 %) and without symptom until the end of the observations (70 DAT). This result confirms to our previous research on PGPR to control bacterial plant pathogens, such as 41 bacterial strains from healthy ginger rhizosphere from bacterial wilt disease endemic area could control the disease 100 % without symptom [28]. Yanti et al., (2017) reported that 13 rhizobacterial strains from rhizosphere of healthy chili could control bacterial wilt of chili 100 % and also without symptom [36]. The efficacy of those endophytic bacterial strains to control bacterial wilt disease and provided disease suppression equal or better compare with the other experiment, such as Wydra and Semrau (2005) reported comparable R. syzygii subsp. indonesiensis wilt disease reduction associated with biocontrol agents caused a significant reduction bacterial wilt disease on pepper and tomato compared to the control [37]. The protection afforded bacteria endophyte treated plants resulted no bacterial wilt symptom on chili. This suggested that bacterial endophyte treatment for some extent able to induced systemic resistance (ISR) of plant to overcome bacterial wilt infection on chili. Beneficial effects of bacterial endophyte as bioprotectants on plants have been reviewed. Bacteria endophyte may play many important beneficial roles in metabolism and physiology of the host plant [38], including to stimulate a latent disease defense mechanism as ISR, that confers an enhanced level of protection to a broad spectrum of pathogen [16].
Table 5. Effect of bacterial endophyte isolates on generative stage and yield of chili in pot experiment

Nr	Endophytic bacterial isolate	Generative stage	Yield			
		Days after planting	Earlier (%)	g/plant	Ton/Hectare	Enhancement (%)
1	SLBE.1.1.AP1	57.40 ab	-1.41	0.00* h	0.00	-100.00
2	SLBE.1.1.SN1	56.80 ab	-0.35	55.44 e	1.85	27.19
3	SLBE.2.1.BB2	48.00 a	15.19	61.53 d	2.05	41.16
4	SLBE.3.1.AP3	52.20 ab	7.77	76.00 b	2.53	74.35
5	SLBE.1.1.BB4	52.80 ab	6.71	68.30 c	2.28	56.69
6	SLBE.2.3.BB4	59.00 ab	-4.24	0.00* h	0.00	-100.00
7	SLBE.1.2.BB5	51.60 ab	8.83	32.26 g	1.08	-25.99
8	AGBE.1.1.TL5	55.40 ab	2.12	0.00* h	0.00	-100.00
9	AGBE.4.1.TL5	49.20 ab	13.07	74.80 b	2.49	71.60
10	SLBE.2.2.AP6	60.00 b	-6.01	53.26 e	1.78	22.18
11	SLBE.3.3.AP6	57.40 ab	-1.41	83.80 a	2.79	92.25
12	SLBE.3.1.BB7	57.20 ab	-1.06	64.89 cd	2.16	48.86
13	SLBE.4.2.BB8	49.20 ab	13.07	47.76 f	1.59	9.57
14	AGBE.1.2.TL9	58.40 ab	-3.18	35.59 g	1.19	-18.35
15	AGBE.3.1.TL9	59.60 ab	-5.30	63.58 cd	2.12	45.86
16	AGBE.2.1.TL10	52.20 ab	7.77	44.83 f	1.49	2.84
17	Streptomycin sulphate	55.40 ab	2.12	43.59 f	1.45	0.00
18	Control	56.60 ab	0	43.59 f	1.45	0.00

Means with the same letter are not significantly different by least significant difference at p < 0.05.

Most of endophytic bacterial strains could enhance growth and yield of chili (Table 4 and 5). The best endophytic bacterial strains to increase chili yield were SLBE3.1BB7 (83.80 g/plant and the enhancement 92.25 %), SLBE.3.1.AP3 (76 g/plant and the enhancement 74.35 %) and AGBE4.1.TL5 (74.80 g/plant and the enhancement 71.60 %). Different mechanisms are employed by endophytic bacteria to promote plant growth including both direct and indirect mechanisms. Direct mechanisms include facilitating nutrient uptake through nitrogen fixation, solubilization of phosphate, production of siderophores, production of phytohormones (such as auxins, cytokinins, and gibberellins), or production of the enzyme 1-aminoacyclopropane-1-carboxylate (ACC) deaminase [39]. In conclusion in the present study, three bacterial endophytic strains (SLBE.3.1.BB7, SLBE.3.1.AP3 and AGBE4.1TL) stands out as a possible candidate for use as biocontrol agent with plant growth promoting characteristics and these were isolated from healthy root of chili (indigenous). Hence it is proposed that potential strains observed in this study can be deployed as bioinoculants to increase the resistance of chili against R. syzygi subsp. indonesiensis and to promote growth and yield.

4. Conclusion

Three endophytic strains (SLBE.3.1.BB7, SLBE.3.1.AP3 and AGBE4.1TL) stands out as a possible candidate for use as biocontrol agent with plant growth promoting characteristics and these were isolated from healthy root of chili (indigenous). Hence it is proposed that potential strains observed in this study can be deployed as bioinoculants to increase the resistance of chili against R. syzygi subsp. indonesiensis and to promote growth and yield.
5. Acknowledgment

This research was funded by Hibah Guru Besar Universitas Andalas, Padang, West Sumatra, Indonesia, Contract Nr. T/19/UN.16.17/PP.KP-KPRIGB/LPPM/2019, May 13th. 2019. The authors would like to sincerely thank to Rector of Andalas University.

References

[1] Lin C-H Wang J-F 2011 Phosphorous acid salt: a promising chemical to control tomato bacterial wilt. Technical Innovation Brief, 13.

[2] Safiri I Cleenwerck I De Vos P Fegan M Sly L Kappler U 2014 Polyphasic taxonomic revision of the *Ralstonia solanacearum* species complex: proposal to emend the descriptions of *Ralstonia solanacearum* and *Ralstonia syzygii* and reclassify current *R. syzygii* strains as *Ralstonia syzygii* subsp. *syzygii* subsp. nov., *R. solanacearum* phytype IV strains as *Ralstonia syzygii* subsp. *indonesiensis* subsp. nov., banana blood disease bacterium strains as *Ralstonia syzygii* subsp. *celebesensis* subsp. nov. and *R. solanacearum* phytype I and III strains as *Ralstonia pseudo*-*solanacearum* sp. nov. International Journal of Systematic and Evolutionary Microbiology, 64(9): 3087-3103.

[3] Nguyen MT and Ranamukhaarachchi SL 2010 Soil-borne antagonists for biological control of bacterial wilt disease caused by *Ralstonia solanacearum* in tomato and pepper. Journal of Plant Pathology, 92(2):395-406.

[4] Hagag WM 2010 Role of endophytic microorganisms in biocontrol of plant diseases. Life Science Journal 7(2):57-62. www.scienccepnet.net

[5] Lin L Qiao YS Ju ZY Ma CW Liu YH Zhou YJ Dong HS 2009 Isolation and characterization of endophytic *Bacillus subtilis* Jaas ed1 antagonist of eggplant *Verticillium* wilt. Biosci Biotech Bioch. 73: 1489-1493

[6] Compant S Mitter B Colli-Mull JG Gangl H Sessitsch A 2011 Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial Ecology, 62 (1): 188–197. http://dx.doi.org/10.1007/s00248-011-9883-y

[7] de Melo Pereira GV Magalhaes KT Lorenzetii ER Souza TP Schwan RF 2012 A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microbial Ecology, 63 (2): 405–417 http://dx.doi.org/10.1007/s00248-011-9919-3

[8] Trognitz F Piller K Nagel M Borner A Bacher C-F Rechlik M Maurhofer H Sessitsch A 2014 Isolation and characterization of endophytes isolated from seeds of different plants and the application to increase juvenile development. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Oesterreichs, 65: 25–28

[9] Rosenblueth M and Martinez-Romero E 2006 Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19: 827-837.

[10] Dalal J and Kulkarni N 2013 Antagonistic and plant growth promoting potentials of indigenous endophytic bacteria of soybean (*Glycine max* (L) Merril). Current Research in Microbiology and Biotechnology 1(2): 62-69. ISSN: 2320-2246.

[11] Glick BR 2012 Plant growth-promoting bacteria: Mechanisms and applications. *Scientifica* 2012: 1-15.

[12] Raaijmakers JM Mazzola M 2012 Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. *Annual Review of Phytopathology,* 50: 403–424. http://dx.doi.org/10.1146/annurev-phoyo-081211-172908

[13] Christina A Christopher V Bshore SJ 2013 Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacognosy Reviews, 7 (13): 11–16

[14] Brader G Compant S Mitter B Trognitz F Sessitsch A 2014 Metabolic potential of endophytic bacteria. *Curr Opin Biotechnol* 27: 30-37.

[15] Wang M Xing Y Wang J Xu Y Wang G 2014 The role of the chil gene from the endophytic
bacteria *Serratia proteamaculans* 336x in the biological control of wheat takeall. *Canadian Journal of Microbiology*, 60 (8): 533–540. http://dx.doi.org/10.1139/cjm-2014-0212

[16] Pieterse CM Zamioudis C Berendsen RL Weller DM Van Wees SC Bakker PA 2014 Induced systemic resistance by beneficial microbes. *Annual Review of Phytopathology*, 52: 347–375. http://dx.doi.org/10.1146/annurev-phyto-082712-102340

[17] Istifadah N Pratama N Taqwim S Sunarto T 2018 Effects of bacterial endophytes from potato roots and tubers on potato cyst nematode (*Globodera rostochiensis*). *Biodiversitas* 19(1): 47–51. ISSN: 1412-033X. E-ISSN: 2085-4722. DOI: 10.13057/biodiv/d190108.

[18] Rajendran L Saravanakumar D Ragunchander T Samiyappan R 2006 Endophytic bacterial induction of defense enzymes against bacterial blight of cotton. *Tamil Nadu* (IN): Tamil Nadu.

[19] Araujo WL Marcon J Maccheroni W Jr Van Elsas JD Van Vuurde JWL and Azevedo JL 2002 Diversity of endophytic bacterial populations and their interaction with *Xylella fastidiosa* in citrus plants. *Appl. Environ. Microbiol.* 68:4906–4914. DOI: http://dx.doi.org/10.1128/AEM.68.10.4906–4914.2002.

[20] Lacava PT Li W Luiz Araujo WL Azevedo JL and Hartung JS 2007 The Endophyte *Curtobacterium flaccumfaciens* reduces symptoms caused by *Xylella fastidiosa* in *Catharanthus roseus*. *The Journal of Microbiology*, 45(5):388–393

[21] Sessitsch A Reiter B Berg G 2004 Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. *Can J Microbiol*. 50:239–249. DOI: http://dx.doi.org/10.1139/w03-118.

[22] Habazar T Resti Z Yanti Y Trisno J Diana A 2012 Penapisan bakteri endofit akar kedelai secara in planta untuk mengendalikan penyakit pustul bakteri. *J Fitopatol Indones*. 8(4):97–103. DOI: http://dx.doi.org/10.14692/jfi.8.4.97.

[23] Resti Z Habazar T Putra DP dan Nasrun 2013 Skrining dan identifikasi isolat bakteri endofit untuk mengendalikan penyakit hawar daun bakteri pada bawang merah. *J. HPT Tropika* 13(2):167-178. ISSN 1411-7525

[24] Amaresan N Jayakumar V Thajuddin N 2014 Isolation and characterization of endophytic bacteria associated with chili (*Capsicum annuum*) grown in coastal agricultural ecosystem. *Indian Journal of Biotechnology* 13:247-255.

[25] Misaghi IJ Donndelinge CR 1990 Endophytic bacteria in symptom-free cotton plants. *Phytopathology*. 80: 808-811

[26] Winstead NN and Kelman A 1952 Inoculation techniques for evaluating resistance to *Pseudomonas solanacearum*. *Phytopathology* 42: 628-634.

[27] Habazar T Nasrun Dachryanus Suharti N and Yanti Y 2011 In planta technique, for screening rhizobacteria as biocontrol agents of bacterial wilt on ginger. *Proc Soc Indon Biodiv Intl Conf vol 1*, 49-54

[28] Nosheen A and Bano A 2014 Potential of plant growth promoting rhizobacteria on soil health and their interaction with chemical fertilizers. In *Proceeding Asian PGPR*, 186-203

[29] Ekinci M Turan M Yildirim E Güneş A Kotan R Dursun A 2014 Effect of plant growth promoting rhizobacteria on growth, nutrient, organic acid, amino acid and hormone content of cauliflower (*Brassica oleracea* L. var. *botrytis*) transplants. *Acta Sci. Pol.*, *Hortorum Cultus*, 13(6), 71-85.

[30] Shaukat K Affrasayab S Hasnain S 2006a Growth responses of *Helianthus annus* to plant growth promoting rhizobacteria used as a biofertilizer. *J. Agric. Res.*, 1, 573–581.

[31] Shaukat K Affrasayab S Hasnain S 2006b Growth responses of *Triticum aestivum* to plant growth promoting rhizobacteria used as a biofertilizer. *Res. J. Microbiol.*, 1, 330–338.
[33] Nezarat S Gholami A 2009 Screening plant growth promoting rhizobacteria for improving seed germination, transplant growth and yield of maize. *Pakistan J. Biol. Sci.*, 12(1), 26–32.

[34] Nejad P Johnson PA 2000 Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. *Biol Control* 18:208–215

[35] Seleim MAA Saead FA Abd-El-Moneem KMH Abo-El-Yousr KAM 2011 Biological control of bacterial wilt of tomato by plant growth promoting rhizobacteria. *Plant Pathology Journal*, 10(4):146-153. ISSN 1812-5387 / DOI: 10.3923/ppj.2011.146.153

[36] Yanti Y Astuti FF Habazar T Nasution CR 2017 Screening of rhizobacteria from rhizosphere of health chili to control bacterial wilt disease and to promote growth and yield of chili. Biodiversitas. 18(1):1-9

[37] Wydra K and Semrau J 2005 Phenotypic and molecular characterization of the interaction of antagonistic bacteria with *Ralstonia solanacearum* causing tomato bacterial wilt. In: Zeller W, Ulrich C. (eds). 1st International Symposium on Biological Control of Bacterial Plant Diseases, pp 112-118, Darmstadt, Germany

[38] Berg G and Hallmann J 2006 Control of plant pathogenic fungi with bacterial endophytes. In: Soil Biology (Microbial root endophytes) Vol IX, edited by B. Schulz, C. Boyle and TN Sieber (Springer Verlag, Berlin), 53-67

[39] Tsavkelova E Klimova SY Cherdynsveva T and Netrusov A 2006 Microbial producers of plant growth stimulators and their practical use: a review. *Appl. Biochem. Microbiol.*, 42(2): 117-126.