Influence of Cd, Mn, and Co addition on the structural and optical properties of TiO$_2$ crystal

S Wahyuningsih1, C Purnawan2 and D N Aisyah1

1Inorganic Material Research Group, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jalan Ir. Sutami No.36A Kentingan Surakarta

2Analytical and Instrumental Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jalan Ir. Sutami No.36A Kentingan Surakarta

E-mail: sayekti@mipa.uns.ac.id

Abstract. Synthesis of TiO$_2$-M (M = Cd, Mn, Co) has been done by the sol gel method. Solution of titanium (IV) isopropoxide was hydrolyzed using a solution of glacial acetic acid at a temperature range of 10-15 °C to obtain a sol, subsequently heated to form a white gel. Ion solution Cd (II), Mn (II) and Co (II) each added to the gel TiO$_2$ with Ti:M mole ratio (M= Cd, Mn, Co) = 3:1 (mol/mol). After calcination process at a temperature of 400 °C, we have obtained TiO$_2$ and TiO$_2$-M (Cd, Mn, Co). Characterization of the samples with XRD showed TiO$_2$-M (M = Cd, Mn, Co) produces crystalline of anatase TiO$_2$ phase. SEM-EDX results showed differences in the amount of metal contained within TiO$_2$-M (M= Cd, Mn, Co) that is equal to 8.62% (w/w) Cd; 3.26% (w/w) Mn; 0.721% (w/w) Co. The addition of transition metals ion as impurities as Cd (II), Mn (II), or Co (II) have inhibited the growth of TiO$_2$ crystals. The insertion of metal ions in the TiO$_2$ were also affected the optical properties shown by the energy band gap (E$_g$) shift in order of E$_g$ TiO$_2$ (3.35 eV)$>$TiO$_2$-Cd (3.10 eV)$>$TiO$_2$-Co (3.00 eV)$>$TiO$_2$-Mn (2.5 eV). The electronic structures of TiO$_2$ doped 3d transition metals showed that an electron occupied level energy occurs. Electron from dopand are somewhat delocalized, thus significantly contributing to the formation of the valence band with O p and Ti 3d electrons. Based on a comparison with the absorption data, we show that t$_2g$ state of the dopand plays a significant role in the photoresponse of TiO$_2$ under visible irradiation.

1. **Introduction**

Photocatalytic degradation for waste treatment has been widely practiced. Commonly degradation methods was used as photocatalyst, electrocatalyst and photoelectrocatalyst [1,2,3,4]. Wastewater treatment with filtration, adsorption and biological degradation has also been carried out, but the physical method usually still leaves waste elsewhere [5]. Adsorption process using zeolites and chitosan still produce waste of adsorbent-filled adsorbent [6] so that the effort to convert waste into harmless environmental compounds less optimal.

The photocatalytic process by the TiO$_2$ photocatalyst was performed by exposure a photon source that capable to excite their electrons for the initiation of oxidation and reduction pollutant processes. TiO$_2$ with a high gap value (E$_g$) (~3.2-3.4 eV) requires photon energy in the ultra violet region (λ<380 nm). Efforts to increase the uptake of photon energy above 380 nm, it can be performed on the TiO$_2$ semiconductor through insertion of transition metal ions into TiO$_2$ structure. The insertion of transition
metal ions to the TiO$_2$ crystal can be carried out by means of hydrogenation, metal doping [7,8,9], and nonmetallic doping [10,11].

The insertion of Cd$^{2+}$ metal ions into the TiO$_2$ structure can decrease the band gap energy [12] and increase photocatalytic activity in visible light [13]. The decreasing of TiO$_2$ band gap by the addition of Co have increased photocatalytic activity on visible light was also reported [14,15] and Mn metals [8,9,16,17]. The effect of the insertion of Fe$^{3+}$ metal ions on TiO$_2$ was capable influence the electronic level caused by the reduction potential of Fe$^{3+}$ lying below the reduction potential of the excited state TiO$_2$ (TiO$_2$(e$^-$)). In this study, we carried out the insertion of metal ions Cd$^{2+}$, Co$^{2+}$ and Mn$^{2+}$ through a sol gel process. The growth of TiO$_2$ crystals have inhibited by metal ions dopand. The character of the structure and optical properties were studied to discern the effect of metal insertion of Cd$^{2+}$, Co$^{2+}$ and Mn$^{2+}$ on the crystal structure and the ability of TiO$_2$-doped semiconductors to absorb a visible light.

2. Experimental

2.1. Materials

The materials used in this study were titanium tetraisopropoxide (TTIP) (E Merck), CdSO$_4$.8H$_2$O, MnSO$_4$.H$_2$O, CoSO$_4$.7H$_2$O (E merck), glacial acetic acid, aquades, and 98% ethanol (E Merck). Calcination of TiO$_2$ and TiO$_2$-M (M = Cd, Co, Mn) was performed by Furnace Thermo. Meanwhile, the analysis and characterization of materials were done by XRD (Bruker D8 Advantage), SEM-EDX (SEM 250 Quanta), UV Vis Spectrophotometer Pelkin Elmer Lambda 25, and FTIR (Shimadzu Prestige 21).

2.2. Synthesis of TiO$_2$-M (Cd, Mn, Co)

The titanium (IV) isopropoxide solution was hydrolyzed using a glacial acetic acid solution (temperature of 14 ºC) at a ratio of 1: 10 (v/v) and then stirred continuously using a magnetic stirrer until a white sol gel was obtained, then stirred and heated at 90ºC until obtained white gel [18]. After the gel obtained, the metal ions of CdII, CoII and MnII in the aquades solvent were added to the TiO$_2$ sol gel until a stoichiometric ratio of Ti:M (M= Cd, Mn, Co)= 3:1 (mol/mol). The mixtures were subsequently cooled to room temperature for a perfect gelation process. The resulting gel were heated at 150 ºC for ± 24 hours. The obtained TiO$_2$ xerogels were calcined at 400 ºC for 2 hours. The resulting TiO$_2$-M (M= Cd, Mn, Co) crystalline powder were then analyzed by XRD, UV Vis, FTIR spectrophotometer and SEM-EDX.

3. Results and Discussion

Synthesis of TiO$_2$ with the insertion of metal (Cd, Mn, Co) was carried out using the sol-gel method. The insertion of metals was expected to replace several positions of Ti atoms in TiO$_2$. The calcination process was carried out at 400 ºC for 2 hours to obtain TiO$_2$ crystals with an anatase phase. X-ray diffractograms of TiO$_2$ and TiO$_2$-M are shown in Figure 1.
Figure 1. X-Ray Diffractogram of (a) TiO$_2$-Co (3:1) (b) TiO$_2$-Mn (3:1) (c) TiO$_2$-Cd (3:1) (d) TiO$_2$ (e) JCPDS TiO$_2$ No 78-2486

TiO$_2$-M synthesized using the sol-gel method shows the anatase phase crystals at $2\theta = 25.49^\circ$, $2\theta = 37.79^\circ$ and $2\theta = 48.04^\circ$. In Figure 1, A is a symbol of anatase phase formed in TiO$_2$-M and TiO$_2$. Based on the XRD spectra of TiO$_2$-M (3:1) (Figure 1), it can be seen that the main peaks are A (101), A (004), A (200) at $2\theta = 25.49^\circ$, $2\theta = 37.79^\circ$ and $2\theta = 48.04^\circ$ which is the characterization of TiO$_2$. The XRD data is compatible with JCPDS No. 78-2486 after being processed with Jade MDI Program. The insertion of metal ions Cd, Mn and Co shows the characteristics of TiO$_2$ Anatase. The diffractogram of TiO$_2$-Cd (3:1), TiO$_2$-Mn (3:1) and TiO$_2$-Co (3:1) only shows the peak of anatase at $2\theta = 25.607^\circ$ (d_{101}), 38.010° (d_{004}) and 48.190° (d_{200}). The insertion of Cd, Mn and Co in TiO$_2$ semiconductors inhibits the growth of TiO$_2$ crystals and causes a decrease in TiO$_2$-M crystal size (M = Cd, Co, Mn).

Table 1. Crystal sizes of TiO$_2$ and TiO$_2$-M (M = Cd, Co, Mn)

Material	Crystal Size (nm)
TiO$_2$	15.622
TiO$_2$-Cd	6.907
TiO$_2$-Co	7.223
TiO$_2$-Mn	7.404

Figure 2. Morphology of (a) TiO$_2$-Cd (b) TiO$_2$-Mn (c) TiO$_2$-Co
SEM-EDX results showed that the percentage of M ($M = \text{Cd, Mn, Co}$) in TiO$_2$ is equal to 8.62%, 3.26% and 7.21%, respectively. The insertion of M ($M = (\text{Cd, Co, Mn})$ in TiO$_2$ crystallites affects the electronic properties showed by changes in band gap energy (Figure 3). The band gap energy from the calculation result is shown in Table 2.

![Figure 3. Tauc Plot Graph of (a) TiO$_2$-Co (b) TiO$_2$-Cd (c) TiO$_2$ (d) TiO$_2$-Mn](image)

Table 2. Band gap energy and wavelengths of TiO$_2$-M (3:1)

Material	Band Gap (eV)	λ (nm)
TiO$_2$	3.35	370.15
TiO$_2$-Cd	3.15	393.65
TiO$_2$-Co	3.00	413.33
TiO$_2$-Mn	2.5	496.00

The insertion of metal to TiO$_2$ causes a decrease in band gap energy as shown in Table 2 with the band gap energy of TiO$_2$ > TiO$_2$-Cd > TiO$_2$-Co > TiO$_2$-Mn. The wavelength is calculated using the equation $\lambda = \frac{1240}{E_g}$. Visually, the insertion of the metal affects the band gap energy (E_g) result as in Figure 4.

![Figure 4. Scheme of insertion metal ions Cd$^{2+}$, Co$^{2+}$, and Mn$^{2+}$ in TiO$_2$.](image)

Infra red spectra of TiO$_2$ showed characteristic absorptions at 3405.47 cm$^{-1}$, 1627.99 cm$^{-1}$, and strong wide absorption band at 576.74-421.46 cm$^{-1}$. Absorption band at 3405.47 cm$^{-1}$ showed the stretching vibration from H$_2$O in TiO$_2$ [19]. While the absorption band at 1625-1650 cm$^{-1}$ showed the
bending vibration of trapped water molecules in TiO$_2$ structure, and absorption band at 609.5-420.5 cm$^{-1}$ represent O-Ti-O vibration [18]. The presence of Cd is showed at 1115-1057 cm$^{-1}$ and 540-425 cm$^{-1}$ which can be associated with the formation of Ti-O-Cd bonds. Two absorption bands at 1100 cm$^{-1}$ and 980 cm$^{-1}$ are the characteristic stretching vibration of the Ti-O-Cd in accordance with Ge et al. [20]. Both absorption bands show different intensities in the mole ratio of TiO$_2$: Cd, where the absorption intensity looks sharp with the more addition of Cd. This observation is also occur at absorption band in the range 619.18–618.21 cm$^{-1}$ as bending vibration of Cd.

![Figure 5. IR spectra of TiO$_2$-Cd, synthesized with mole ratio of TiO$_2$: Cd (a) 1:3 (b) 1:2 (c) 1:1 (d) 2:1 (e) 3:1, and (f) TiO$_2$](image)

Similar characters are also showed in the absorption of TiO$_2$-Co (Figure 6). Weak wide absorption at 2840 cm$^{-1}$ getting stronger with the increase of Co bonded, indicating absorption from OH on Co-O (bounded to H$_2$O). Absorption peak at 1000-1250 cm$^{-1}$ is characteristic of Co, as evidenced by the increase absorption with the increasing of mole of Co [21].

![Figure 6. IR spectra of TiO$_2$-Co, synthesized with mole ratio of TiO$_2$: Co (a) 1:3 (b) 1:2 (c) 1:1 (d) 2:1 (e) 3:1, and (f) TiO$_2$](image)

TiO$_2$-Mn spectra (Figure 7) show the characteristic absorption at 660 cm$^{-1}$ which is a vibration of β-MnO$_2$. In addition, absorption band at 620 cm$^{-1}$ and 530 cm$^{-1}$ is indicated as vibrations of O-Ti-O
and Mn-O-Ti. Absorption band at 1140–997 cm$^{-1}$ is estimated to be characteristic of Mn-O because the intensity of the peak looks sharp within the addition of more Mn.

![Figure 7](image_url)

Figure 7. IR spectra of TiO$_2$-Mn, synthesized with mole ratio of TiO$_2$:Mn (a) 1:3 (b) 1:2 (c) 1:1 (d) 2:1 (e) 3:1, and (f) TiO$_2$

If we compare the FTIR spectra of the TiO$_2$-M (M = Cd, Co, Mn) (Figure 7), then the difference is seen in the M-O-Ti stretch vibration area at 1100-990 cm$^{-1}$. Absorption band in the area is characteristic of the insertion different dopants, and distinguish dopants added to TiO$_2$ crystal.

4. Conclusion

Synthesis of TiO$_2$ with the insertion of M (M= Cd, Co, Mn have been done using the sol-gel method. The insertion of Cd, Co, Mn decreases the crystallinity of TiO$_2$ as indicated by the decreasing in crystal size about ± 54%. The insertion of M (M=Cd, Co, Mn) in TiO$_2$ lattice were also affect the electronic properties of TiO$_2$ as a semiconductor with the band gap energy (E$_g$) was decrease as E$_g$ TiO$_2$ > E$_g$ TiO$_2$-Cd > E$_g$ TiO$_2$-Co > E$_g$ TiO$_2$-Mn.

References

[1] Rahmawati F, Wahyuningsih S and Irianti D 2014 Bull. Chem. React. Eng. Catal. 9 45-52
[2] Wahyuningsih S, Purnawan C, Saraswati T E, Pramono E, Ramelan A H, Wisnugroho A and Pramono S 2014 Journal of Environmental Protection. 5 1630-1640
[3] Wijaya K, Sugiharto E, Fatimah I, Sudiono S, and Kurniaysih D 2006 Teknoin. 11 199-209.
[4] Hamadanian M, A Reisi-Vanani and A Majedi 2010 Journal of The Iranian Chemical Society. 7: S52-S58
[5] Mahardani, Nila Sari and Ferdyan Hijrah Kusuma 2010 Journal Environment Chem. 10 6-17.
[6] Hwang A, Ming S 2009 Journal of Hazardous Materials. 1111-1121
[7] Chen X B, Y B Lou S Dayal, X F Qiu, R Krolicki, C Burda, C F Zhao and J Becker 2005. Journal of Nanoscience and Nanotechnology. 5 1408–1420
[8] Binas V D, K Sambani, T Maggos, A Katsanaki, G Kiriakidis 2011 Applied Catalysis B: Environmental. 113-114: 79-86
[9] Deng Q R, X H Xia, M L Guo and G Shao 2011 Material Letters. 65 2051-2054
[10] Chen, Xiaobo and Burda, Ciemens 2008 J. Am. Chem. Soc. 130 5018-5019
[11] Gole J L and Stout J D 2004 Journal Physical Chemistry. 108 1230-1240
[12] Li Xin, Ting Xia, Changhui Xu, James Murowchick and Xiaobo Chen 2014 Catalysis Today 225 64-73
[13] Shi J, Xiaoxia Y, Cui H, Xu Z, Fu M, Chen S and Wang L 2012 *Journal of Molecular Catalysis a: Chemical*. **356** 53-60

[14] Miao Y, Zhongbiao Z, Liang J, Yangmei S, Zhiying Y, Deliang D, Kai Z and Jiaqiang W 2014. *Powder Technology*. **266** 365-371

[15] Yang X, Cao C, Hohn K, Erickson L, Maghrang R, Hamal D and Klabunde K 2007 *Journal Catalys*. **252** 296-302

[16] Papadimitriou V S, Vassileios G S, Manolis N R, Panos P, Kyriaki S, Valentin T and George K. 2011 *Thin Solid Film*. **520** 1195-1201

[17] Wang L, Xi Zang, Peng Zang, Zetan Cao and Junhua Hu 2015 *Journal of Saudi Chemical Society* **19** 595-601

[18] Wahyuningsih S, C Purnawan, T E Saraswati, P A Kartikasari and N Praistia 2014 *Chemical Papers*. **68** 1248-1256

[19] Kuvarega A T, R W M Krause, B B Mamba 2011 *Journal of Physical Chemistry C*. **115** 22110-22120

[20] Ge L, F Zuo, J Liu, Q Ma, C Wang, D Sun, L Bartels, P Feng 2012 *Journal of Physical Chemistry C*. **116** 13708-13714

[21] Ganesh Ibram, A K Gupta, P P Kumar, P S Chandra Sekhar, K Radha, G Padmanabham and G. Sundararajan 2012 *Material Chemistry and Physics*. **135** 220-234