Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial

The CORIMUNO-19 Collaborative group††

Summary

Background Patients with COVID-19 pneumonia have an excess of inflammation and increased concentrations of cytokines including interleukin-1 (IL-1). We aimed to determine whether anakinra, a recombinant human IL-1 receptor antagonist, could improve outcomes in patients in hospital with mild-to-moderate COVID-19 pneumonia.

Methods In this multicentre, open-label, Bayesian randomised clinical trial (CORIMUNO-ANA-1), nested within the CORIMUNO-19 cohort, we recruited patients from 16 University hospitals in France with mild-to-moderate COVID-19 pneumonia, severe acute respiratory syndrome coronavirus 2 infection confirmed by real-time RT-PCR, requiring at least 3 L/min of oxygen by mask or nasal cannula but without ventilation assistance, a score of 5 on the WHO Clinical Progression Scale (WHO-CPS), and a C-reactive protein serum concentration of more than 25 mg/L not requiring admission to the intensive care unit at admission to hospital. Eligible patients were randomly assigned (1:1) using a web-based secure centralised system, stratified by centre and blocked with varying block sizes (randomly of size two or four), to either usual care plus anakinra (200 mg twice a day on days 1–3, 100 mg twice on day 4, 100 mg once on day 5) or usual care alone. Usual care was provided at the discretion of the site clinicians. The two coprimary outcomes were the proportion of patients who had died or needed non-invasive or mechanical ventilation by day 4 (ie, a score of >5 on the WHO-CPS) and survival without need for mechanical or non-invasive ventilation (including high-flow oxygen) at day 14. All analyses were done on an intention-to-treat basis. The trial is registered with ClinicalTrials.gov, NCT04341584, and is now closed to accrual.

Findings Between April 8 and April 26, 2020, we screened 153 patients. The study was stopped early following the recommendation of the data and safety monitoring board, after the recruitment of 116 patients: 59 were assigned to the anakinra group, and 57 were assigned to the usual care group. Two patients in the usual care group withdrew consent and were not analysed. In the analysable population, the median age was 66 years (IQR 59 to 76) and 80 (70%) participants were men. In the anakinra group, 21 (36%) of 59 patients had a WHO-CPS score of more than 5 at day 4 versus 21 (38%) of 55 in the usual care group (median posterior absolute risk difference [ARD] –2.5%, 90% credible interval [CrI] –17·1 to 12·0), with a posterior probability of ARD of less than 0 (ie, anakinra better than usual care) of less than 1) of 54.5% (median posterior HR 0·97; 90% CrI 0·62 to 1·52). At day 90, 16 (27%) patients in the anakinra group and 21 (38%) in the usual care group had died. Serious adverse events occurred in 27 (46%) patients in the anakinra group and 25 (43%) in the usual care group (p=0.45).

Interpretation Anakinra did not improve outcomes in patients with mild-to-moderate COVID-19 pneumonia. Further studies are needed to assess the efficacy of anakinra in other selected groups of patients with more severe COVID-19.

Funding The Ministry of Health, Programme Hospitalier de Recherche Clinique, Foundation for Medical Research, and AP-HP Foundation.

Copyright © 2021 Elsevier Ltd. All rights reserved.

Introduction COVID-19 is a respiratory disease, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that has already caused more than 1 million deaths over the world.1-4 Most people with COVID-19 have only mild or uncomplicated symptoms, but approximately 10–15% of patients have moderate or severe disease that requires admission to hospital and oxygen support, and 3–5% require admission to an intensive care unit (ICU) mainly for ventilation assistance.5-7 In severe cases, COVID-19 can be complicated by acute respiratory distress syndrome. Older age, male sex, and comorbid diseases are risk factors for death.6,7

At the beginning of the epidemic in France, when no standard of care was defined, we decided to set up the publicly supported CORIMUNO-19 (Cohort Multiple randomized controlled trials open-label of immune modulatory drugs and other treatments in COVID-19 patients) cohort.
Articles

Research in context

Evidence before the study
Since the beginning of the COVID-19 pandemic, no definitive standard of care for mild-to-moderate COVID-19 pneumonia has clearly emerged. Patients with COVID-19 pneumonia have an excess of inflammation and increased concentrations of cytokines including interleukin-1 (IL-1). We searched PubMed for clinical trials published in English from database inception until March 30, 2020, assessing the effect of anakinra (a recombinant human IL-1 receptor antagonist) among patients with laboratory-confirmed COVID-19 using the search terms (“COVID-19”[All Fields] OR “2019-nCoV”[All Fields]) OR “SARS-CoV-2”[All Fields]) AND (“anakinra”[All Fields] (filters: Clinical Trial, Randomized Controlled Trial). We identified only cohort or observational studies and no randomised clinical trials that compared anakinra with usual care in patients with COVID-19.

Added value of this study
To our knowledge, this is the first randomised clinical trial to report the effects of anakinra in patients with mild-to-moderate COVID-19 pneumonia requiring at least 3 L/min of oxygen but not receiving non-invasive or invasive mechanical ventilation at randomisation. The study was stopped early for futility following the recommendation of the data and safety monitoring board. We found no difference between the anakinra group and the usual care group in terms of 4-day improvement, 14-day ventilation requirement or death, and 28-day and 90-day mortality.

Implications of all the available evidence
Since the beginning of this study and based on a large randomised open trial done by the RECOVERY collaborative group, dexamethasone is now largely used in the treatment of mild-to-moderate, severe, or critical COVID-19. Our finding of no clinical benefit from anakinra treatment compared with usual care is not encouraging to set up a larger randomised controlled trial to test anakinra in the population of patients with mild-to-moderate COVID-19 pneumonia, but our findings do not preclude the possible efficacy of anakinra in more severe cases of COVID-19. Another trial within the CORIMUNO platform (CORIMUNO-ANA-2) that aims to assess the effect of anakinra in patients with more severe COVID-19 who are in intensive care units has now been completed and is being analysed.

Methods
Study design and participants
We enrolled patients with COVID-19 from University hospitals in France for a series of randomised controlled trials testing different therapeutic regimens (CORIMUNO-19 cohort). Patients with mild-to-moderate COVID-19 pneumonia and patients with severe and critical COVID-19 pneumonia were included in independent clinical trials. Here we report data from CORIMUNO-ANA-1, a CORIMUNO-19, multicentre, open-label, randomised controlled trial of patients with mild-to-moderate COVID-19 pneumonia.

Participants were recruited from 16 French University hospitals (appendix 2 p 2). The CORIMUNO cohort and all embedded trials (ie, trials using data collected in the CORIMUNO cohort) were approved by an ethics committee (Comité de Protection des Personnes Ile-de-France VI) and relevant authorities. Legal issues and trial procedures are presented in detail in the appendix 2 (p 12). Written informed consent was obtained from all patients or from the patient’s legal
representative for entering the CORIMUNO cohort and longitudinal data (including clinical status, biological data, and outcomes) were recorded as part of their participation in the cohort. In this consent form, patients were made aware that a number of trials might occur inside the cohort, and that they would probably be offered participation in some of them. In practice, for logistical reasons, only one trial was done in each centre at a given time. Specific additional written consent was obtained from eligible patients who were randomly selected to be offered anakinra and agreed to receive this treatment. Eligible patients assigned to receive usual care were not notified about the trial but their data as part of the CORIMUNO cohort were available for analysis. Patients were eligible for inclusion in the CORIMUNO-19 cohort if they had confirmed SARS-CoV-2 infection (positive on real-time RT-PCR or chest CT scan typical of COVID-19 pneumonia, or both) with mild-to-severe, severe, or critical pneumonia (ie, receiving oxygen at a flow of >3 L/min via mask or nasal cannula and a score of ≥5 points on the WHO Clinical Progression Scale [WHO-CPS] 10-point ordinal scale, which is described in the appendix 2 [pp 12–13]). Patients from the CORIMUNO-19 cohort were eligible for the CORIMUNO-ANA-1 trial if they had a C-reactive protein serum concentration of more than 25 mg/L not requiring admission to the hospital intensive care unit at the time of admission, and mild-to-severe COVID-19 pneumonia with a WHO-CPS score of 5 points, receiving at least 3 L/min of oxygen but without ventilation assistance (eg, high-flow oxygen, non-invasive ventilation, or mechanical ventilation). Key exclusion criteria included known hypersensitivity to anakinra or any of its excipients, pregnancy, current documented bacterial infection, an absolute neutrophil count of 1·0×10⁹ per L or less, a platelet concentration of less than 50 G/L, serum aspartate aminotransferase or serum alanine aminotransferase of more than five-times the upper limit of normal, or severe renal insufficiency defined by an estimated glomerular filtration rate of less than 30 mL/min. Full inclusion and exclusion criteria are listed in the appendix 2 (p 12).

Randomisation and masking
Participants were randomly assigned (1:1) using a web-based secure centralised system to either usual care plus anakinra or usual care alone. An independent statistician provided a computer-generated assignment randomisation list stratified by centre and blocked with varying block sizes (randomly of sizes two or four) unknown to the investigators. Patients and investigators were not masked to treatment assignment due to the nature of the intervention.

Procedures
Because of the emergency nature of the trial and feasibility issues, no placebo alternative for anakinra was prepared. Anakinra (Sobi, Puteaux, France) was given intravenously 200 mg twice a day (total 400 mg) on days 1–3 after randomisation, then at 100 mg twice a day (total 200 mg) on day 4, and 100 mg once on day 5. If no improvement was seen on the morning of day 4 (improvement was determined as a reduction in requirement of oxygen of more than 50%, but the decision was left to the treating physician), 3 supplementary days of treatment at 400 mg per day were done on days 4–6, followed by a decrease to 200 mg per day on day 7 and 100 mg per day on day 8, and no treatment thereafter. Usual care (antibiotic drugs, antiviral drugs, corticosteroids, vasopressor support, anticoagulants) was provided at the discretion of the site clinicians.

Outcomes
The two coprimary outcomes were the proportion of patients who had died or needed non-invasive or mechanical ventilation by day 4 (ie, a score of >5 points on the WHO-CPS); and survival with no need for mechanical or non-invasive ventilation (including high-flow oxygen) at day 14. Both outcomes were consistent with the core outcome set proposed by WHO for a minimal outcome measure for COVID-19 clinical outcomes.21

Prespecified secondary outcomes were clinical status assessed with the WHO-CPS at days 4, 7, and 14; overall survival at days 14, 28, and 90; time to discharge from hospital; time to oxygen supply independency; and time to negative viral excretion (not assessed due to paucity of data). We also measured biological factors (eg, C-reactive protein concentration) and adverse events. Time to discharge and time to oxygen supply independency was assessed at day 28 because this was the latest timepoint when data were complete for almost all patients.

Statistical analysis
We used a Bayesian monitoring and analytical approach based on the coprimary outcomes. The sample size was initially set at 120, with interim analyses presented weekly to the data and safety monitoring board (DSMB) and a provision to increase the sample size in case of promising but not conclusive results. We calculated that the trial would have frequentist power of 97.2% to detect a decrease in event rate from 0.50 to 0.20, and of 73.9% to detect a decrease in event rate from 0.50 to 0.30. For the day 4 outcome, we used a β prior distribution with parameters 1 and 1 for the proportion in each treatment group. For the day 14 outcome, we used a Gaussian prior distribution with a mean log hazard ratio (HR) of 0 and variance of 1×10⁶ for the log HR. We then did sensitivity analyses using a range of prior distributions (appendix 2 pp 13–14, 19). The treatment effect was expressed in terms of absolute risk difference (ARD) for the day 4 outcome and HR for the day 14 outcome. We calculated posterior probabilities of ARD of less than 0 for
analysed secondary outcomes using a frequentist framework, except for the analysis of the WHO-CPS scores as an ordinal variable. All efficacy analyses, except the posterior distribution of the ARD for the day 4 outcome, were adjusted for age and centre. The statistical analysis plan and details of the statistical analyses are in the appendix 2 (pp 12–14, 21–39).

We did all analyses on an intention-to-treat basis with no correction for multiplicity for prespecified secondary outcomes. Thus, these secondary outcomes are exploratory and reported as point estimates and 95% CrIs.

We analysed safety in all patients in the intention-to-treat population. We compared proportions of participants with at least one adverse event or at least one severe adverse event using Fisher’s exact tests, and the total numbers of adverse events and severe adverse events using Poisson models.

We did all statistical analyses using SAS (version 9.4) or R (version 3.6.1). This study is registered with ClinicalTrials.gov, NCT04341584.

Data quality monitoring included both remote data monitoring and on-site monitoring done by dedicated staff who were independent of the site investigators, with source data verification done for all patients recruited at every site for all critical datapoints, inclusion and exclusion criteria, primary endpoints, survival until day 90 (appendix 2 p 13). On April 23, 2020, the DSMB met and recommended suspension of recruitment for futility on the basis of the interim analysis of the 102 first patients recruited, although the futility boundaries were not formally crossed. The sponsor decided to discontinue the study on April 26, 2020.

Role of the funding source
The funders of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report.

Results
Between April 8 and April 26, 2020, 153 patients were screened and 146 were randomly assigned to the anakinra group (59) or the usual care group (57). Following an interim analysis, the study was closed to accrual on April 26, 2020 due to futility. Among the 57 patients assigned to receive usual care, two withdrew consent and were not analysed (figure 1). Among the 59 who received anakinra treatment, all received 2–15 injections of anakinra (median 11 [IQR 9–15]). Median dose of anakinra by perfusion was 180 mg (IQR 167–186), 55 (93%) patients received seven perfusions or more, and the median cumulative dose of anakinra was 1900 mg (1500–2700). Demographic and baseline clinical and biological characteristics of patients are shown in table 1. The median age was 66 years (IQR 59–76) and 80 (70%) participants were men. The treatment groups were well balanced.

During the trial, including any time before or after randomisation, in the anakinra group, two (3%) of...
59 patients were given antiviral drugs, 30 (51%) were given glucocorticoids, 52 (88%) were given antibiotics, and 53 (90%) were given anticoagulants. In the usual care group, four (7%) of 55 patients were given antiviral drugs, 29 (53%) were given glucocorticoids, 48 (87%) were given antibiotics, and 49 (89%) were given anticoagulants. Additional immunomodulators were given to one (2%) patient in the anakinra group (tocilizumab). Details of treatments received at the time of and after randomisation until day 14 are in the appendix 2 (p 15).

On day 4, 21 (36%) of 59 patients in the anakinra group had a WHO-CPS score of more than 5 versus 21 (38%) of 55 in the usual care group (median posterior ARD –2·5% [90% CrI –17·1 to 12·0]; table 2). The posterior probability of any efficacy of anakinra (ie, ARD of less than 0) was 0·97 (90% CrI 0·62 to 1·52), and the posterior probability of any efficacy of anakinra (ie, HR <1) was 0·91 [95% CI 0·56 to 1·48; table 2).

On day 14, at least one event of interest (non-invasive ventilation, high-flow oxygen, mechanical ventilation, or death) had occurred in 28 of 59 patients in the anakinra group (cumulative incidence of event 47%; 95% CI 33–59) and 28 of 55 patients in the usual care group (cumulative incidence 51% [95% CI 36–62]; figure 2, table 2; appendix 2 p 15). The median posterior odds ratio was 0·90 (90% CrI 0·47 to 1·73). The cumulative incidence of discharge from hospital by day 14 were in the appendix 2 (p 18).

We assessed biological parameters over the course of 14 day follow up (appendix 2 p 18). Overall, we found no major difference between groups regarding the decrease of serum C-reactive protein level and the

Table 1: Baseline characteristics

	Anakinra group (n=59)	Usual care group (n=55)
Age, years	67·0 (55·5–73·3; n=59)	64·9 (59·5–78·8; n=55)
Sex		
Male	43 (73%)	37 (67%)
Female	16 (27%)	18 (33%)
Weight, kg	78·0 (67·0–91·0; n=59)	77·5 (70·0–95·0; n=46)
BMI, kg/m²	27·4 (24·9 to 32·0; n=41)	26·8 (24·7 to 31·5; n=42)
Oxygen flow, L/min	13·58 (22%)	15·55 (27%)
Temperature, °C	37·8 (36·7–38·8; n=59)	37·6 (37·0–38·5; n=55)
Respiratory rate, breaths per min	5·0 (4·0–7·0; n=59)	6·0 (4·0–9·0; n=55)
SpO₂, %	95·0 (93·0–97·0; n=59)	95·0 (93·0–97·0; n=55)
Time from symptoms onset to randomisation, days	10·0 (8·0–13·0; n=59)	10·0 (7·0–13·0; n=54)

Diagnosis of SARS CoV-2 infection

- Positive rRT-PCR: 54 (92%) vs 48 (87%)
- Typical chest CT scan: 53 (90%) vs 51 (93%)

Laboratory values

	Anakinra group (n=59)	Usual care group (n=55)
C-reactive protein, mg/L	121·0 (77·0–198·0; n=58)	120·0 (87·0–191·5; n=52)
D-dimer, µg/L	991 (720–1499; n=59)	1280 (750–2017; n=43)
Ferritin, mg/L	1479 (444–2334; n=38)	1151 (847–2530; n=35)
Neutrophil count, G/L	5·4 (3·8–7·5; n=54)	5·2 (3·4–7·1; n=50)
Lymphocyte count, G/L	0·8 (0·6–1·2; n=54)	0·9 (0·7–1·3; n=50)
Lymphocytes to neutrophils ratio	0·2 (0·1–0·3; n=54)	0·2 (0·1–0·4; n=59)
Haemoglobin, g/dL	12·3 (11·3–13·5; n=57)	12·9 (11·7–13·8; n=55)
Platelet count, g/L	234 (166–327; n=57)	267 (203–357; n=54)
Alanine aminotransferase, IU/L	440 (30·0–69·0; n=57)	30·5 (20·0–48·5; n=52)
Aspartate aminotransferase, IU/L	56·0 (41·0–79·0; n=59)	49·0 (35·0–68·0; n=50)
Creatinine, μmol/L	82·0 (60·0–101·0; n=57)	70·0 (56·0–88·0; n=54)
Lactate dehydrogenase, IU/L	437 (346–614; n=44)	475 (359–631; n=42)

Treatments at baseline

- Anticoagulants: 33 (59%) vs 29 (53%)
- Azithromycin: 11 (19%) vs 14 (25%)
- Hydroxychloroquine: 2 (3%) vs 4 (7%)
- Lopinavir–ritonavir or lopinavir: 1 (2%) vs 2 (4%)
- Other antivirals: 0 (0%) vs 0 (0%)
- Dexamethasone: 1 (2%) vs 0 (0%)
- Other glucocorticoids: 6 (10%) vs 8 (15%)

Data are median (IQR) or n (%). BMI=body-mass index. rRT-PCR=real-time RT-PCR. SARS-CoV-2=severe acute respiratory syndrome coronavirus 2. SpO₂=oxygen saturation. **"This variable was also recorded as a binary condition at screening, hence the lower number of missing values. 1 All patients had either positive rRT-PCR for SARS-CoV-2 or chest CT scan typical of COVID-19 pneumonia.
change in blood neutrophils and lymphocytes counts over time.

A total of 29 (49%) of 59 patients in the anakinra group and 23 (42%) of 55 in the usual care groups reported adverse events (table 3). 113 adverse events occurred in the anakinra group and 60 in the usual care group (p=0·0004 for the average number of events per patient). Serious adverse events occurred in 27 (46%) patients in the anakinra group and 21 (38%) in the usual care group (p=0·45). Bacterial and fungal sepsis occurred in 11 patients in the anakinra group (ten bacterial sepsis, one fungal sepsis) and in four patients in the usual care group (all bacterial sepsis; p=0·099).

Discussion

We did not find any efficacy of anakinra (400 mg for 3 days, possibly repeated for 3 additional days) in patients with COVID-19 and mild-to-moderate pneumonia for decreasing the proportion of patients on non-invasive ventilation, high-flow oxygen, mechanical ventilation, or who died by day 14 of the proportion with a WHO-CPS score of more than 5 at day 4. Likewise, all the secondary outcomes, including survival up to 90 days, did not differ between the anakinra and the usual care groups.

Since the beginning of the COVID-19 pandemic, no definitive standard of care has emerged. The antiviral drug remdesivir reduced the length of recovery by 4 days but did not reduce the number of patients needing mechanical ventilation or the death rate.22 The RECOVERY collaborative group found that dexamethasone 6 mg per day for up to 10 days decreased 28-day mortality among patients receiving mechanical ventilation or oxygen.21 Therefore, dexamethasone is now largely used in most part of the world in the treatment of COVID-19.

Some observational studies have suggested the possible efficacy of anakinra for patients with mild-to-moderate, severe, or critical SARS-CoV-2 infection. The first retrospective monocentric cohort study was done in Italy and included patients from a

Table 2: Primary and secondary efficacy outcomes

Outcome	Anakinra group (n=59)	Usual care group (n=55)	Treatment effect
Coprimary outcomes			
WHO-CPS score of >5 points at day 4	21 (36%)	21 (38%)	-2·5% (90% CrI -17·1 to 12·0)*
Posterior probability of any benefit	-	-	61·2%
Posterior probability of moderate or greater benefit	-	-	36·9%
Non-invasive ventilation, mechanical ventilation or death up to day 14	28 (47%)	28 (51%)	0·97 (90% CrI 0·62 to 1·52)†
Posterior probability of any benefit	-	-	54·5%
Posterior probability of moderate or greater benefit	-	-	31·7%
Secondary outcomes			
Overall survival			
Mortality at day 14	9 (15%)	13 (24%)	0·56 (95% CrI 0·23 to 1·39)†
Mortality at day 28	13 (22%)	13 (24%)	0·77 (95% CrI 0·33 to 1·77)†
Mortality at day 90	16 (27%)	15 (27%)	0·97 (95% CrI 0·46 to 2·04)†
WHO-CPS score (10-point scale)			
Day 4	5 (5 to 6)	5 (5 to 6)	0·80 (95% CrI 0·38 to 1·68)¶
Day 7	5 (5 to 7)**	5 (5 to 7)**	0·69 (95% CrI 0·33 to 1·43)¶
Day 14	5 (2 to 8)††	5 (3 to 8)**	0·70 (95% CrI 0·35 to 1·38)¶
Day 2 to 14 (longitudinal analysis)	-	-	0·92 (95% CrI 0·32 to 2·65)¶
Time to discharge			
Discharged at day 28	34 (58%)	34 (62%)	0·91 (95% CrI 0·56 to 1·48)†
Time to oxygen supply independency			
Independent from oxygen at day 28	37 (63%)	38 (69%)	1·01 (95% CrI 0·64 to 1·61)†
Data are n (%), median (IQR), or estimate with 90% or 95% CrI or 95% CI in parentheses. 95% CrIs are shown for Bayesian analyses, and 95% Cs for frequentist analyses. CrI=credible interval. WHO-CPS=WHO Clinical Progression Scale. *Median posterior absolute risk difference. †Median posterior hazard ratio adjusted for age and centre. ‡Hazard ratio, adjusted for age and centre. ¶One patient died on day 91 and is not counted here. **Median posterior odds ratio in a proportional odds model, adjusted for age and centre. ††n=54 with available data.			

300 www.thelancet.com/respiratory Vol 9 March 2021
Figure 2: Kaplan-Meier estimates of probability of mechanical or non-invasive ventilation or death (A), mechanical ventilation or death (B), and overall survival (C) during follow-up, for the anakinra group versus usual care group.

In panel A, events occurring on day 1 occurred on the same day as but after randomisation. For the outcomes of death or ventilation support and death or mechanical ventilation, data are analysed in a Bayesian framework, and median posterior HRs and 90% CrIs are presented, together with posterior probabilities of achieving specified outcomes. Overall survival was analysed in a frequentist framework, and so posterior probabilities are not relevant and not calculated. In part C, HRs are adjusted for age and centre. CrI=credible interval. HR=hazard ratio.
single hospital in France who required oxygen support, and we included similar patients here in our study. Patients received subcutaneous anakinra at 100 mg twice a day for 3 days, then 100 mg daily for 7 days. Need for mechanical ventilation or death occurred in 13 (25%) of 52 patients in the anakinra group compared with 32 (73%) of 44 patients with COVID-19 treated with usual care in the same hospital. Day-28 mortality was also decreased by 50%. However, the day-28 mortality in the usual care group was again around 50%, whereas in our study mortality in the usual care group at day 28 was 24%.

In our trial, the chosen dose was approximately half that used in the Italian study, but we also chose an intravenous route that allows for better bioavailability of the drug. Although the typical dose of anakinra is 100–200 mg subcutaneous daily, we purposely used a dose and administration route that were around the same as those recently used successfully in haemophagocytic lymphohistiocytosis, in which hyperinflammation is in the same range and even higher than in COVID-19. However, we cannot exclude that anakinra might not inhibit lung inflammation because we used it at too low a dose. Alternatively, these negative findings might suggest that the hyperinflammatory status of most patients with mild-to-moderate COVID-19 pneumonia might not be due to excess of IL-1 signalling alone and might instead be a more subtle combination of proinflammatory cytokines.

Our trial planned a statistical analysis of the coprimary outcomes after approximately 60 patients had reached day 14. After the second analysis, having included 114 patients up until this point, the DSMB decided to stop the trial on the ground of futility.

Strengths of this trial include the multicentre design, thorough monitoring to ensure data quality, and a homogeneous target population of patients with moderate pneumonia requiring at least 3 L/min of oxygen support. The groups were well balanced regarding baseline characteristics and additional treatments taken during the study.
Our study also had several limitations. The trial was not blinded because we aimed to collect data as quickly as possible in the pandemic setting, and so we did not have sufficient time to coordinate a double-blind academic study. Another limitation is that usual care could differ among centres and over time, especially regarding corticosteroid use. However, the short period of accrual and the stratification of randomisation might have restricted the effect of this absence of standardisation. The sample size was small, restricting the power of the study, and the CIs and CRIs were wide, but increasing the number of patients is unlikely to have affected our outcomes. Since arterial blood gas measurements were not done, we cannot provide an accurate measure of the ratio of partial pressure of oxygen to fractional concentration of oxygen in inspired air. Finally, in this trial we targeted a narrow segment of the COVID-19 patient population (patients with a WHO-CPS score of exactly 5 points and requiring at least 3 L/min of oxygen without any ventilatory support regardless of inflammatory status), and thus our results are not generalisable to the whole COVID-19 population. Another trial within the CORIMUNO platform (CORIMUNO-ANA-2) that aims to assess the effect of anakinra in patients with more severe COVID-19 who are in intensive care units (WHO-CPS score ≥ 6 points) has now been completed and is being analysed.

In summary, this randomised clinical trial suggests that anakinra was not effective in reducing the need for non-invasive or mechanical ventilation or death in patients with COVID-19 and mild-to-moderate pneumonia. These results are relevant for this patient population at the dose we used and cannot be extended to other populations with other doses. Further studies are needed to assess the efficacy of anakinra in other selected groups of patients with more severe COVID-19 and at other doses.

Contributors
XM, OH, PLT, MR-R, RP, and PR initially drafted the report and all members of the trial steering committee approved it before submission. MR-R organised collection of the data. RP and PR did the statistical analysis. All authors from the writing committee contributed to design of the trial and of study protocol, data interpretation and critical review and revision of the manuscript. The writing committee was responsible for the design, conduct, and reporting of the trial. RP and MR-R accessed and verified the raw data and vouch for the data and analyses, and for the fidelity of this report to the study protocol and statistical analysis plan. All members of the writing committee had full access to all of the data and the final responsibility to submit for publication.

The CORIMUNO-1 Collaborative group
Writing committee: France Xavier Mariette (Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, INSERM, Le Kremlin Bicêtre), Olivier Hermine (Université de Paris, AP-HP, Hôpital Necker, INSERM, Imagine Institute, Paris), Pierre Louis Tharaux (Paris Cardiovascular Centre, Université de Paris, INSERM, Paris), Matthieu Resche-Rigon (Centre of Research in Epidemiology and Statistics, Université de Paris, INSERM, Hôpital Saint Louis, Paris), Raphael Porcher, Philippe Ravaud (Centre of Research in Epidemiology and Statistics, Université de Paris, INSERM, INRAE, AP-HP, Hôpital Hôtel-Dieu, Paris). Steering Committee: France Philippe Ravaud (chair), Serge Bureau (AP-HP), Maxime Dougdados (AP-HP), Olivier Hermine, Xavier Mariette, Matthieu Resche-Rigon, Pierre-Louis Tharaux, Annick Tibi (AP-HP).

Declaration of interests
The writing committee declares no competing interests.

Data sharing
The protocol will be available at ClinicalTrials.gov and the statistical analysis plan is available in the appendix 2 (pp 21–39). Consent forms, regulatory documents, and other relevant study materials were submitted to the journal with the manuscript. As described in the protocol, the trial steering committee will facilitate use of the study data and approval will not be unreasonably withheld. De-identified participant data collected during the CORIMUNO-ANA-1 trial (and the data dictionary) will be made available to bona fide researchers registered with an appropriate institution within 3 months of publication, and for 10 years thereafter. Proposals should be sent to Raphael Porcher (raphael.porcher@aphp.fr) and will be reviewed by the CORIMUNO scientific committee. The steering committee will need to be satisfied that any proposed publication is of high quality, honours the commitments made to the study participants in the consent documentation and ethical approvals, and is compliant with relevant legal and regulatory requirements (eg, relating to data protection and privacy). To gain access, data requesters will need to sign a data access agreement and confirm that data will only be used for the agreed purpose for which access was granted. The steering committee will have the right to review and comment on any draft manuscripts before publication.

Acknowledgments
This trial was publicly funded by the Ministry of Health, Programme Hospitalier de Recherche Clinique (PHRC COVID-19-20-0151, PHRC COVID-19-20-0029), Foundation for Medical Research, and AP-HP Foundation. Sobi (Puteaux, France) donated the anakinra and had no role in the study. An independent DSMB oversees all CORIMUNO trials (appendix 2 p 2). We thank all patients who participated in the CORIMUNO study, and their families. We also thank Maxime Dougdados, who was in charge of the validation and opening of the centres, and the investigators who collaborated in this study (appendix 2 pp 2–11) and Universities of Paris, Paris-Saclay, Paris-Sorbonne, Paris-Nord Sorbonne, Paris-Est Créteil, Versailles-Saint Quentin and Strasbourg (Medical Students support), INSERM, and REACTing consortium for having provided medical students for help filling out electronic case report forms.

References
1. Wu J, Liu J, Zhao X, et al. Clinical characteristics of imported cases of coronavirus disease 2019 (COVID-19) in Jiangsu Province: a multicenter descriptive study. Clin Infect Dis 2020; 71: 706–12.
2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497–506.
3. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507–13.
4. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382: 1708–20.
5. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054–62.
6. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8: 475–81.
7. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323: 1061–69.
8. Shakoor B, Carcillo JA, Chatham WW, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit Care Med 2016; 44: 275–81.

9. Rajasekaran S, Kruse K, Kovey K, et al. Therapeutic role of anakinra, an interleukin-1 receptor antagonist, in the management of secondary hemophagocytic lymphohistiocytosis/sepsis/macrophage activating syndrome in critically ill children*. Pediatr Crit Care Med 2014; 15: 401–08.

10. Ocon AJ, Bhatt BD, Miller C, Peredo RA. Safe usage of anakinra and dexamethasone to treat refractory hemophagocytic lymphohistiocytosis secondary to acute disseminated histoplasmosis in a patient with HIV/AIDS. BMJ Case Rep 2017; 2017: bcr2017221264.

11. Néel A, Wahhi A, Tessoulin B, et al. Diagnostic and management of life-threatening adult-onset still disease: a French nationwide multicenter study and systematic literature review. Crit Care 2018; 22: 88.

12. Lind-Holst M, Hartling UB, Christensen AE. High-dose anakinra as treatment for macrophage activation syndrome caused by refractory Kawasaki disease in an infant. BMJ Case Rep 2019; 12: e229708.

13. Wohlfarth P, Agis H, Guidoni GA, et al. Interleukin 1 receptor antagonist anakinra, intravenous immunoglobulin, and corticosteroids in the management of critically ill adult patients with hemophagocytic lymphohistiocytosis. J Intensive Care Med 2019; 34: 723–31.

14. Elosely EM, Weiser P, Crayne CB, et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheumatol 2020; 72: 326–34.

15. Dimopoulos G, de Mast Q, Markou N, et al. Favorable anakinra responses in severe COVID-19 patients with secondary hemophagocytic lymphohistiocytosis. Cell Host Microbe 2020; 28: 117–23.

16. Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol 2020; 72: 1059–63.

17. Aouba A, Baldelli A, Geoffroy L, et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series. Ann Rheum Dis 2020; 79: 1381–82.

18. Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol 2020; 2: e325–31.

19. Huet T, Beauquier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol 2020; 2: e193–400.

20. Marshall JC, Murthy S, Diaz J, et al. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis 2020; 20: e192–97.

21. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with COVID-19 - preliminary report. N Engl J Med 2020; published online July 17. https://doi.org/10.1056/NEJMoA201436.

22. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19 - final report. N Engl J Med 2020; 383: 1813–26.

23. Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 2020; 26: 1636–43.