Erratum: Hints of unitarity at large N in the $O(N)^3$ tensor field theory

Dario Benedetti, a Razvan Gurau, a,b Sabine Harribey a and Kenta Suzuki a

a CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
b Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, ON, N2L 2Y5, Canada
E-mail: dario.benedetti@polytechnique.edu, rgurau@cpht.polytechnique.fr, sabine.harribey@polytechnique.edu, kenta.suzuki@polytechnique.edu

Erratum to: JHEP02(2020)072
ArXiv ePrint: 1909.07767

The measure in equation (2.11) contains a wrong normalization factor, and it should be multiplied by $2^{1-d} \Gamma(d-1)/\Gamma(d/2)^2$. Therefore, the correct result reads

$$\mu^d_{\Delta \phi}(h, J) = \left(\frac{1 + (-1)^d}{2} \right) \frac{\Gamma(J + \frac{d}{2})}{\Gamma(J + 1)} \times \frac{\Gamma(\frac{d}{2} - \Delta \phi)^2 \Gamma(2\Delta \phi - d+h+J)}{\Gamma(\Delta \phi)^2 \Gamma(2\Delta \phi - h+J)} \Gamma(h - 1) \Gamma(d - h + J) \Gamma(\frac{h + J}{2})^2 \Gamma(h + J - 1) \Gamma(\frac{d-h+J}{2})^2.$$

This error does not affect any qualitative result, but it alters several equations which should be multiplied by the same factor. The concerned equations are: (1.5), (1.6), (3.11), (3.12), (3.14), (3.16), (3.18), (3.23), (3.24), (3.25), (A.1), (A.4), (A.6), (B.3).

A similar normalization error affects also the special $d = 1$ case in section 3.4, where equations (3.28), (3.31), (3.32), and the second line of (3.33) should be multiplied by a factor $2\pi/3$.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.