The strong reflecting property and Harrington’s Principle

Yong Cheng

Department of Philosophy, Wuhan University, BaYi Road 299, Wuchang District, Wuhan, Hubei Province, 430072, People’s Republic of China

Received 20 February 2014, revised 3 December 2014, accepted 16 December 2014
Published online 20 August 2015

In this paper we characterize the strong reflecting property for L-cardinals for all ω_n, characterize Harrington’s Principle $HP(L)$ and its generalization and discuss the relationship between the strong reflecting property for L-cardinals and Harrington’s Principle $HP(L)$.

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction and preliminaries

The notion of the strong reflecting property for L-cardinals is introduced in [1, Definition 2.5]. The motivation of introducing this notion is to force a set model of Harrington’s Principle, $HP(L)$ for short (cf. Definition 3.1), over higher order arithmetic (cf. Definition 1.1). However the proof of [1, Main Theorem 1.3] uses very little knowledge about the strong reflecting property for L-cardinals. In this paper, in § 2, we develop the full theory of the strong reflecting property for L-cardinals and characterize $SRP_L(\omega_n)$ for $n \in \omega$ (cf. Propositions 2.9, & 2.12 and Theorems 2.17 & Theorem 2.23). We also generalize some results on $SRP_L(\gamma)$ to $SRP^M(\gamma)$ for other inner models M (cf. Theorems 2.20 & 2.27).

In § 3, we generalize Harrington’s Principle to inner models M and define $HP(M)$; we give characterizations of $HP(M)$ for some well known inner models (cf. Theorems 3.3 & 3.9) and show that, in some cases, this generalized principle fails (cf. Corollary 3.11 and Theorem 3.14). In § 4, we discuss the relationship between the strong reflecting property for L-cardinals and Harrington’s Principle $HP(L)$.

Our definitions and notations are standard. We refer to textbooks such as [8, 10, 11] for the definitions and notations we use. We write $tr(X)$ for the transitive closure of X. For the definition of admissible set and admissible ordinal, cf. [4]. For notions of large cardinals, cf. [10]. Our notation for forcing is standard (cf. [3, 8]).

Definition 1.1 (Cheng, [1]) We write ZFC$^-$ for ZFC with the Power Set Axiom deleted and Collection instead of Replacement1 and write \mathbb{Z}_2 for ZFC$^- + \text{"every set is countable"}, \mathbb{Z}_3$ for ZFC$^- + \text{"}\varphi(\omega)\text{ exists"} + \text{"every set is of cardinality } \leq \aleph_1\text{"}$, and \mathbb{Z}_4 for ZFC$^- + \text{"}\varphi(\varphi(\omega))\text{ exists"} + \text{"every set is of cardinality } \leq \beth_2\text{"}$. The axiom systems $\mathbb{Z}_2, \mathbb{Z}_3$ and \mathbb{Z}_4 are the axiomatic systems for second, third, and fourth order arithmetic, respectively.

Throughout this paper whenever we write $X \prec H_\kappa$ and $\gamma \in X$, $\bar{\gamma}$ always denotes the image of γ under the transitive closure of X. If U is an ultrafilter on κ, we say that U is countably complete if and only if whenever $Y \subseteq U$ is countable, we have that $\bigcap Y \neq \emptyset$. The distinction between V-cardinals and L-cardinals is present throughout the article. Whenever we write ω_n (for some n) without a superscript it is understood that we mean the ω_n of V. In this paper, a κ-model is a model of the form $L[U]$ such that $L[U], \in, U \models U$ is a normal ultrafilter over κ.

* E-mail: world-cyr@hotmail.com

1 Cf. [6] for a discussion about the proper axiomatic framework for set theory without the power set axiom.
2 Characterizations of the strong reflecting property for L-cardinals

In this section, we develop the full theory of the strong reflecting property for L-cardinals and characterize SRP$^\omega(\omega)$ for $n \in \omega$. We also generalize some results on SRP$^\omega(\gamma)$ to SRP$^\omega(\gamma)$ for any inner model M.

Recall that an inner model M is L-like if M is of the form $(\mathcal{L}, \in, \vec{E})$ where \vec{E} is a coherent sequence of extenders; moreover, for an L-like inner model M, $M|\emptyset$ is of the form $(\mathcal{J}_0^\vec{E}, \in, \vec{E}|\emptyset, \emptyset)$.

Convention 2.1 Throughout, whenever we consider an inner model M we assume that M is L-like and has the property that $M|\emptyset$ is definable in H_γ for any regular cardinal $\emptyset > \omega_2$. All known core models satisfy this convention.

Definition 2.2 Let $\gamma \geq \omega_1$ be an L-cardinal.

(i) The ordinal γ has the strong reflecting property for L-cardinals, denoted SRP$^L(\gamma)$, if and only if for some regular cardinal $\kappa > \gamma$, if $X < H_\kappa$, $|X| = \omega$ and $\emptyset \in X$, then $\vec{\emptyset}$ is an L-cardinal.

(ii) The ordinal γ has the weak reflecting property for L-cardinals, denoted WRP$^L(\gamma)$, if and only if for some regular cardinal $\kappa > \gamma$, there is $X < H_\kappa$ such that $|X| = \omega$, $\emptyset \in X$ and $\vec{\emptyset}$ is an L-cardinal.

Proposition 2.3 Suppose $\gamma \geq \omega_1$ is an L-cardinal. If $X \subseteq \gamma$ and $F : \gamma^{<\omega} \to \gamma$, we say that X is closed under F if $F^*X^{<\omega} \subseteq X$. Then the following are equivalent:

1. SRP$^L(\gamma)$.
2. For any regular cardinal $\kappa > \gamma$, if $X < H_\kappa$, $|X| = \omega$ and $\emptyset \in X$, then $\vec{\emptyset}$ is an L-cardinal.
3. For some regular cardinal $\kappa > \gamma$, $\{X \mid X < H_\kappa, |X| = \omega, \emptyset \in X \text{ and } \vec{\emptyset} \text{ is an L-cardinal} \}$ contains a club.
4. There exists $F : \gamma^{<\omega} \to \gamma$ such that if $X \subseteq \gamma$ is countable and closed under F, then $\text{o.t.}(X)$ is an L-cardinal.
5. For any regular cardinal $\kappa > \gamma$, $\{X \mid X < H_\kappa, |X| = \omega, \emptyset \in X \text{ and } \vec{\emptyset} \text{ is an L-cardinal} \}$ contains a club.

Proof. Note that (2) \Rightarrow (1), (1) \Rightarrow (3), (2) \Rightarrow (5) and (5) \Rightarrow (3). It suffices to show that (4) \Rightarrow (2) and (3) \Rightarrow (4). For the proof, cf. [1, Proposition 2.4]. □

Suppose $\gamma \geq \omega_1$ is an L-cardinal. Let (1)*, (2)*, (3)*, (4)* and (5)* be the statements which replace “is an L-cardinal” with “is not an L-cardinal” in Definition 2.2(i) and statements (2), (3), (4) and (5) in Proposition 2.3, respectively. The following corollary is an observation from the proof of Proposition 2.3.

Corollary 2.4 The statements (1)*, (2)*, (3)*, (4)*, and (5)* are equivalent.

Proposition 2.5 Suppose $\gamma \geq \omega_1$ is an L-cardinal, κ is regular and $|\gamma| = \kappa$. Then the following are equivalent:

(a) SRP$^L(\gamma)$.
(b) For any bijection $\pi : \kappa \to \gamma$, there exists a club $D \subseteq \kappa$ such that for any $\emptyset \in D$, o.t.$\{\pi(\alpha) \mid \alpha < \emptyset\}$ is an L-cardinal.
(c) For some bijection $\pi : \kappa \to \gamma$, there exists a club $D \subseteq \kappa$ such that for any $\emptyset \in D$, o.t.$\{\pi(\alpha) \mid \alpha < \emptyset\}$ is an L-cardinal.

Proof. The proof is essentially the same as the case $\kappa = \omega_1$ in [1, Proposition 2.6]. □

Let (6)* and (7)* be the statement which replaces “is an L-cardinal” with “is not an L-cardinal” in Proposition 2.5(b) and Proposition 2.5(c), respectively. The following corollary is an observation from the proof of Proposition 2.5.

Corollary 2.6 Suppose $\gamma \geq \omega_1$ is an L-cardinal, κ is regular and $|\gamma| = \kappa$. Then both (6)* and (7)* are equivalent to (1)*.

2 For the definition of coherent sequences of extenders $\vec{E}, \vec{J}_0^\vec{E}$ and $\vec{E}|\alpha$, cf. [16, § 2.2].
Proposition 2.7 Suppose $\gamma \geq \omega_1$ is an L-cardinal. Then the following are equivalent:

(a) WRP$^L(\gamma)$.
(b) For any regular cardinal $\kappa > \gamma$, there is $X < H_\kappa$ such that $|X| = \omega, \gamma \in X$ and \bar{\gamma} is an L-cardinal.
(c) For some regular cardinal $\kappa > \gamma$, $\{X \mid X < H_\kappa, |X| = \omega, \gamma \in X \}$ is a stationary L-cardinal.
(d) For any $F : \gamma^{<\omega} \to \gamma$, there exists $X \subseteq \gamma$ such that X is countable, closed under F and $\text{o.t.}(X)$ is an L-cardinal.
(e) For any regular cardinal $\kappa > \gamma$, $\{X \mid X < H_\kappa, |X| = \omega, \gamma \in X \}$ and $\bar{\gamma}$ is an L-cardinal.

Proof. Note that (e) \Rightarrow (c) and (c) \Rightarrow (a). It suffices to show that (a) \Rightarrow (d), (d) \Rightarrow (b), and (b) \Rightarrow (e). “(a) \Rightarrow (d)” follows from (4) \Leftrightarrow (2)” in Corollary 2.4. “(d) \Rightarrow (b)” follows from (1) \Leftrightarrow (4)” in Corollary 2.4. “(b) \Rightarrow (e)” follows from (3) \Leftrightarrow (1)” in Corollary 2.4.

Proposition 2.8 Suppose $\gamma \geq \omega_1$ is an L-cardinal, κ is regular and $|\gamma| = \kappa$. Then the following are equivalent:

(1) WRP$^L(\gamma)$.
(2) For some bijection $\pi : \kappa \to \gamma$, there exists a stationary $D \subseteq \kappa$ such that for any $\vartheta \in D$, $\text{o.t.}(\{\pi(\alpha) \mid \alpha < \vartheta\})$ is an L-cardinal.
(3) For any bijection $\pi : \kappa \to \gamma$, there exists a stationary $D \subseteq \kappa$ such that for any $\vartheta \in D$, $\text{o.t.}(\{\pi(\alpha) \mid \alpha < \vartheta\})$ is an L-cardinal.

Proof. The claim follows from Corollary 2.6 and (1) \Leftrightarrow (2) \Leftrightarrow in Corollary 2.4. The proof is standard and we omit the details.

Proposition 2.9 The following are equivalent:

(1) ω_1 is a limit cardinal in L.
(2) WRP$^L(\omega_1)$.
(3) SRP$^L(\omega_1)$.

Proof. It suffices to show that (1) \Rightarrow (3) and (2) \Rightarrow (1) since (3) \Rightarrow (2) is immediate.

“(1) \Rightarrow (3)” Suppose ω_1 is a limit cardinal in L. Then $\{\alpha < \omega_1 \mid \alpha$ is an L-cardinal$\}$ is a club. By Proposition 2.5, SRP$^L(\omega_1)$ holds.

“(2) \Rightarrow (1)” Suppose WRP$^L(\omega_1)$ holds. Then $\{X \cap \omega_1 \mid X < H_{\omega_1}, |X| = \omega \}$ and $\text{o.t.}(X \cap \omega_1)$ is an L-cardinal is stationary in ω_1. It is easy to see that for any $\alpha < \omega_1$ there is $\alpha < \beta < \omega_1$ such that β is an L-cardinal.

Proposition 2.10 Suppose $\gamma \geq \omega_1$ is an L-cardinal, $\kappa > \gamma$ is a regular cardinal and SRP$^L(\gamma)$ holds. If $Z < H_\kappa, |Z| \leq \omega_1$ and $\gamma \subseteq Z$, then $\bar{\gamma}$ is an L-cardinal.

Proof. Suppose $\bar{\gamma}$ is not an L-cardinal. Let M be the transitive collapse of Z and $\pi : M < H_\kappa$ be the inverse of the collapsing map. Take $Y \times H_\kappa$ such that $|Y| = \omega$ and $M, \bar{\gamma} \subseteq Y$. Note that $Y \vDash \bar{\gamma}$ is not an L-cardinal. If $\bar{\gamma}$ is the image of $\bar{\gamma}$ under the transitive collapse of Y, then $\bar{\gamma}$ is not an L-cardinal. Let $X = \pi"(Y \cap M)$. Since $\bar{\gamma} \subseteq Y \cap M$ and $\pi(\bar{\gamma}) = \gamma$, we have $\gamma \subseteq X$. Note that $X \subseteq Z < H_\kappa$ and the image of γ under the transitive collapse of X is $\bar{\gamma}$. By SRP$^L(\gamma)$, $\bar{\gamma}$ is an L-cardinal. Contradiction.

Proposition 2.11 Suppose $\omega_1 \leq \gamma_0 < \gamma_1$ are L-cardinals. Then SRP$^L(\gamma_1)$ implies SRP$^L(\gamma_0)$ and WRP$^L(\gamma_1)$ implies WRP$^L(\gamma_0)$.

Proof. We only show the strong reflecting property case (the argument for the weak reflecting property case is similar). Let $\kappa > \gamma_1$ be a regular cardinal. It suffices to show if $X < H_\kappa, |X| = \omega$ and $\{\gamma_0, \gamma_1\} \subseteq X$, then $\bar{\gamma}_0$ is an L-cardinal. Note that $L_{\gamma_1} \vDash \gamma_0$ is a cardinal. Since $\gamma_1 \in X$, we have $L_{\gamma_1} \subseteq X$. Since $L_{\gamma_1} = \bar{\gamma}_0$ and $L_{\gamma_1} \vDash \gamma_0$ is a cardinal, we have that $L_{\gamma_0} \vDash \gamma_0$ is a cardinal. By SRP$^L(\gamma_1), \gamma_1$ is an L-cardinal and hence γ_0 is an L-cardinal.

Proposition 2.12 The following are equivalent:

(1) SRP$^L(\omega_2)$.

www.mlq-journal.org © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
(2) ω_2 is a limit cardinal in L and for any L-cardinal $\omega_1 \leq \gamma < \omega_2$, $\text{SRP}^L(\gamma)$ holds.

(3) $[\alpha < \omega_2 \mid \alpha \text{ is an } L\text{-cardinal and } \text{SRP}^L(\alpha) \text{ holds}]$ is unbounded in ω_2.

Proof. “(1) \Rightarrow (2)”. By Proposition 2.11, it suffices to show ω_2 is a limit cardinal in L. Let $\kappa > \omega_2$ be the regular cardinal that witnesses $\text{SRP}^L(\omega_2)$. Fix $\alpha < \omega_2$. Pick $Z < H_\kappa$ such that $|Z| = \omega_1$, $\alpha \subseteq Z$ and $\omega_2 \in Z$. By Proposition 2.10, ω_2 is an L-cardinal. Note that $\alpha \leq \omega_2 < \omega_2$.

“(2) \Rightarrow (1)”. Suppose $\kappa > \omega_2$ is a regular cardinal, $X < H_\kappa$, $|X| = \omega$ and $\omega_2 \in X$. We show that ω_2 is an L-cardinal. Note that $\omega_2 = o.t.(X \cap \omega_2)$. Let $E = \{ \gamma \mid \omega_1 \leq \gamma < \omega_2 \wedge \gamma \text{ is an } L\text{-cardinal} \}$. The set E is definable in H_κ. Since ω_2 is a limit cardinal in L, E is cofinal in ω_2 and hence $E \cap X$ is cofinal in $\omega_2 \cap X$. For $\gamma \in E \cap X$, $\vec{\gamma} = o.t.(X \cap \gamma)$ and by $\text{SRP}^L(\gamma)$, $\vec{\gamma}$ is an L-cardinal. Note that $\omega_2 = \sup(\{ \vec{\gamma} \mid \gamma \in E \cap X \})$. Hence ω_2 is an L-cardinal.

“(1) \Leftrightarrow (3)” follows from (1) \Rightarrow (2) and Proposition 2.11.

The notion of remarkable cardinal was introduced by Schindler in [15]. Any remarkable cardinal is remarkable in L (cf. [15, Lemma 1.7]):

Let κ be a cardinal, G be $\text{Col}(\omega, < \kappa)$-generic over V, $\vartheta > \kappa$ be a regular cardinal and $X \in [H_\kappa]^{\omega_1}$. We say that X condenses remarkably if $X = \text{ran}(\pi)$ for some elementary $\pi : (H_\vartheta^{V[G]}, \in, H_\vartheta^V, G, \cap H_\vartheta^V) \rightarrow (H_\vartheta^{V[G]}, \in, H_\vartheta, G)$ where $\alpha = \text{crit}(\pi) < \beta < \kappa$ and β is a cardinal in V.

For regular cardinal $\vartheta > \kappa$, κ is ϑ-remarkable if and only if in $V^{\text{Col}(\omega, < \kappa)}$, $\{ X \in [H_\kappa]^{\omega_1} \mid X \text{ condenses remarkably} \}$ is stationary. We say that κ is remarkable if κ is ϑ-remarkable for all regular cardinal $\vartheta > \kappa$.

Lemma 2.13 (Cheng, [1, Lemma 2.2]) Suppose κ is an L-cardinal. The following are equivalent:

1. κ is remarkable in L.
2. If $\gamma \geq \kappa$ is an L-cardinal, $\vartheta > \gamma$ is a regular cardinal in L, then $\models_{L}^{L} \text{“[X]} X < L_{\vartheta}[\bar{G}]_{L}, |X| = \omega$ and o.t.(X \cap $\vec{\gamma}$) is an L-cardinal”.

Corollary 2.14 If κ is remarkable in L and G is $\text{Col}(\omega, < \kappa)$-generic over L, then $L[G] \models \text{WRP}^L(\gamma)$ holds for any L-cardinal $\gamma \geq \kappa$.

Proof. The claim follows from Lemma 2.13.

Fix some L-cardinal $\gamma \geq \omega_1$. The statement $\text{SRP}^L(\gamma)$ is upward absolute (cf. [1, Proposition 2.8]; the key point is that Proposition 2.3(4) is upward absolute). As a corollary, $\text{WRP}^L(\gamma)$ is downward absolute (the key point is that Proposition 2.7(d) is downward absolute). So if $\text{WRP}^L(\gamma)$ holds, then $\text{WRP}^L(\gamma)$ holds in L. The converse is not true in general.

Proposition 2.15 Suppose $\text{WRP}^L(\kappa)$ holds where $\kappa \geq \omega_1$ is an L-cardinal. Then $L \models \text{“} \omega_1$ is κ^+-remarkable” and for any regular $\vartheta > \kappa$ in L, we have that $L \models \text{“} \omega_1$ is ϑ-remarkable”.

Proof. We have that $L \models \text{WRP}^L(\kappa)$ iff $\{ X \mid X < L_{\kappa^+}, |X| = \omega$ and o.t.(X \cap κ) is an L-cardinal \}$ is stationary in L iff for any L-regular cardinal $\vartheta > \kappa$, $\{ X \mid X < L_{\vartheta}, |X| = \omega$ and o.t.(X \cap ϑ) is an L-cardinal \}$ is stationary in L. For L-regular cardinal $\vartheta > \kappa$, we have that $L \models \text{“} \omega_1$ is ϑ-remarkable” iff for any G which is $\text{Col}(\omega, < \omega_1)$-generic over L, $L[G] \models \{ X \in [L_\vartheta]^{\omega_1} \mid X = \text{ran}(\pi), \pi : (L_\vartheta[G], \in, L_\vartheta, G, \alpha) \rightarrow (L_\vartheta[G], \in, L_\vartheta, G)$ where $\alpha = \text{crit}(\pi) < \beta < \omega_1$ and β is an L-cardinal \}$ is stationary. Note that $L \models \text{WRP}^L(\kappa)$ and $\text{Col}(\omega, < \omega_1)$ is stationary preserving.

Corollary 2.16 “For any L-cardinal $\gamma \geq \omega_1$, $\text{WRP}^L(\gamma)$ holds” is equiconsistent with “ω_1 is remarkable”.

Proof. The claim follows from Corollary 2.14 and Proposition 2.15.

Theorem 2.17 (Set forcing) The following two theories are equiconsistent:

1. $\text{SRP}^L(\omega_2)$.
2. $\text{ZFC} + \text{“there exists a remarkable cardinal with a weakly inaccessible cardinal above it”}$.
Theorem 2.20 Suppose M is an inner model which satisfies Convention 2.1 and has both the full covering and the rigidity property. Then, for every M-cardinal $\gamma > \omega_2$, $\text{SRP}^M(\gamma)$ fails.

Proof. Suppose $\text{SRP}^M(\gamma)$ holds for some $\gamma > \omega_2$. Let $\kappa > \gamma$ be the witnessing regular cardinal for $\text{SRP}^M(\gamma)$. Build an elementary chain $\langle Z_\alpha \mid \alpha < \omega_1 \rangle$ of submodels of H_κ such that for all $\alpha < \beta < \omega_1$, $Z_\alpha < Z_\beta$ and $Z_\alpha \in Z_\beta$. Then $Z = \bigcup_{\alpha < \omega_1} Z_\alpha$. Let $\pi : N \equiv Z \prec H_\kappa$ and $\pi^* : N_\alpha \equiv Z_\alpha$. Let $\gamma = \omega_1$. Since $\omega_1 \subseteq Z$, we have that $\text{crit}(\pi) > \omega_1$. Since $\omega_2 \in Z$ and $|Z| = \omega_1$, we have that $\text{crit}(\pi) \leq \omega_2$. So $\text{crit}(\pi) = \omega_2$.

Note that Proposition 1.10 still holds if we replace L with M. By $\text{SRP}^M(\gamma)$, γ is an M-cardinal. Since $M|\gamma$ is definable in H_κ, we have that $\varphi(\omega_2) \cap M \subseteq \gamma$ and $\varphi(\omega_2) \cap M \in N$. Define $U = \{X \subseteq \omega_2 \mid X \in M \land \omega_2 \in \pi(X)\}$. Then U is an M-ultrafilter. For $\alpha < \omega_1$, the image of Z_α under the transitive collapse of Z is $j_\alpha'' N_\alpha$ and $j_\alpha'' N_\alpha \in N$.

Lemma 2.21 The M-ultrafilter U is countably complete.

Proof. Suppose $Y \subseteq U$ and Y is countable. We show that $\bigcap Y \neq \emptyset$. Since $Y \subseteq N$, take $\alpha < \omega_1$ large enough such that $Y \subseteq j_\alpha'' N_\alpha$. Let $S \subseteq N \cup \omega_2$. Note that $S \subseteq N$ and $N \vDash \text{countable}$.

Using that $M|\theta$ is definable in H_κ for regular cardinal $\theta > \omega_2$, we note that $H_\kappa \vDash "M has the full covering property"$ whence $N \vDash M$ has the full covering property. Fix $T \subseteq N$ such that $T \subseteq \varphi(\omega_2) \cap M$, $T \supseteq S$, $T \subseteq M$ and $N \vDash |T| = \omega_1$. Since $\omega_2 = \text{crit}(\pi) > \omega_1$, we have that $\pi(T) = \pi''T$. Since $T \subseteq N$, we have that $\varphi(T) \cap M \subseteq N$.

Claim 2.22 We have that $U \cap T \subseteq N$.

Proof. Since $\pi(T) = \pi''T \in M$, we have that $\pi''(U \cap T) = \{\pi(A) \mid A \in T \land \omega_2 \in \pi(A)\} = \{B \in \pi(T) \mid \omega_2 \in B\}$ and $\pi''(U \cap T) \subseteq M$. Note that $\varphi(\pi''T) \cap M = \pi''(\varphi(T) \cap M)$ since for all $D \in \varphi(T) \cap M$, $\pi(D) = \pi''D$. Since $\pi''(U \cap T) \subseteq \varphi(\pi''T) \cap M$, we have that $\pi''(U \cap T) = \pi(D) = \pi''D$ for some $D \in \varphi(T) \cap M \subseteq N$. So $U \cap T = D$ and hence $U \cap T \subseteq N$.

Note that $Y \subseteq j_\alpha'' N_\alpha \cap \varphi(\omega_2) \cap M = S \subseteq T$. Since $Y \subseteq T \cap U$, to show that $\bigcap Y \neq \emptyset$, it suffices to show that $\bigcap (U \cap T) \neq \emptyset$. Note that $\omega_2 \in \bigcap \pi''(U \cap T)$ and $\pi(U \cap T) = \pi''(U \cap T)$. Then $\bigcap \pi''(U \cap T) = \bigcap (U \cap T) = \omega_2 \neq \emptyset$. So $\bigcap (U \cap T) \neq \emptyset$.

So we can build a nontrivial embedding from M to M which contradicts the rigidity property of M.

Theorem 2.23 The following are equivalent:

(i) $\text{SRP}^L(\gamma)$ holds for some L-cardinal $\gamma > \omega_2$.

(ii) 0^\sharp exists.

(iii) $\text{SRP}^L(\gamma)$ holds for every L-cardinal $\gamma \geq \omega_1$.

www.mlq-journal.org © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Proof. “(i) ⇒ (ii)”. Assume 0^α does not exist. Then L satisfies all the conditions for M in Theorem 2.20. From the proof of Theorem 2.20 (replace M with L), $\text{SRP}^L(\gamma)$ does not hold for any L cardinal $\gamma > \omega_2$.

“(ii) ⇒ (iii)”. We write $\mathcal{M}(0^\alpha, \alpha)$ for the unique transitive $(0^\alpha, \alpha)$-model (cf. [10] for definitions). Note that if $X \in H_\alpha$ and $\gamma \in X$, then $\mathcal{M}(0^\alpha, \gamma + 1) \in X$ and its image under the transitive collapse of X is $\mathcal{M}(0^\alpha, \tilde{\gamma} + 1)$. Note that for $\alpha \in \text{Ord}$, $\mathcal{M}(0^\alpha, \alpha) \sim L$.

So for $n \geq 3$, $\text{SRP}^L(\omega_n)$ is equivalent to “0^α exists”. We have characterized $\text{SRP}^L(\omega_n)$ for $n \geq 1$.

Definition 2.24 Suppose M is an inner model. For M-cardinal λ, let $\text{SRP}_{\gamma, \lambda}^M(\lambda)$ denote the statement: “for some regular cardinal $\beta > \lambda$, if $X \in H_\beta$, $|X| < \lambda$ and $\lambda \in X$, then λ is an M-cardinal”.

Fact 2.25 Assume 0^1 does not exist but there is an inner model with a measurable cardinal and $L[U]$ is chosen such that $\kappa = \text{crit}(U)$ is as small as possible. Then one of the following holds:

(a) There is a sequence $\langle C_\alpha \mid \alpha < \kappa \rangle$, which is Přikry generic over $L[U]$, such that for all set X of ordinals, there is a set $\gamma \in L[U, C]$ such that $\gamma \in X$ and $|\gamma| = |X| + \omega_1$.

(b) There is a sequence $\langle C_\alpha \mid \alpha < \kappa \rangle$, which is Přikry generic over $L[U]$, such that for all set X of ordinals, there is a set $\gamma \in L[U, C]$ such that $\gamma \in X$ and $|\gamma| = |X| + \omega_1$.

For a proof, cf. [13, Theorem 1.3].

Fact 2.26 The following are equivalent:

1. 0^1 exists.
2. There is a κ-model for some κ and an elementary embedding from that model to itself with critical point greater than κ.

Cf. [10, Exercise 21.22].

Theorem 2.27 Suppose there is an inner model with a measurable cardinal and $L[U]$ is chosen such that $\kappa = \text{crit}(U)$ is as small as possible. Suppose $\lambda > \kappa^+$ is an $L[U]$-cardinal. Then $\text{SRP}^L_{\lambda}([U])$ if and only if 0^1 exists.

Proof. “⇒”. We assume that 0^1 does not exist and try to get a contradiction. By Fact 2.25, we need to discuss two cases.

Case 1. Fact 2.25(a) holds. Let $\beta > \lambda$ be the witness regular cardinal for $\text{SRP}^L_{\lambda}(\beta)$. Build an elementary chain $\langle Z_\alpha \mid \alpha < \kappa \rangle$ of submodels of H_λ such that for $\alpha < \beta < \kappa$, we have $Z_\alpha < Z_\beta < H_\beta$, $Z_\alpha \in Z_\beta$, $|Z_\alpha| = \kappa$, and $\{\kappa^+, \lambda\} \cup \text{tr}([U]) \subseteq Z_0$. Let $Z = \bigcup_{\alpha < \kappa} Z_\alpha$. Then $|Z| = \kappa$. Let $\pi : X \in Z \in H_\beta$ and $\pi_\alpha : N_\alpha \in Z_\alpha < H_\beta$ be the inverses of the collapsing maps. Since $Z_\alpha < Z$, let $j_\alpha : N_\alpha < N$ be the induced embedding. Then $\pi_\alpha = \pi \circ j_\alpha$ and $N = \bigcup_{\alpha < \kappa} j_\alpha^* N_\alpha$. Let $\text{crit}(\pi) = \eta_\alpha$. Then $\eta_\alpha > \kappa = \kappa^+$ and since $|Z| = \kappa$, we have $\eta_\alpha < \kappa^+$. So $\eta = \kappa^+ < \lambda$.

By $\text{SRP}^L_{\lambda}(\lambda)$, λ is an $L[U]$-cardinal. Let $W = \{X \subseteq \eta \mid X \in L[U] \text{ and } \eta \in \pi(X)\}$. Note that $U = \tilde{U} \in N$ and $W \subseteq L_\lambda[U] \subseteq N$. Then W is an $L[U]$-ultrafilter on η. Note that $Z \models \langle Z_\alpha \rangle = \kappa$ and the image of Z_α under the transitive collapse of Z is $j_\alpha^* N_\alpha$. So for $\alpha < \kappa$, we have $j_\alpha^* N_\alpha \in N$ and $N \models \langle j_\alpha^* N_\alpha \rangle = \kappa$.

Lemma 2.28 The filter W is countably complete.

Proof. Suppose $Y \subseteq W$ and Y is countable. We show that $\bigcap Y \neq \emptyset$. Since $Y \subseteq N$, take $\alpha < \kappa$ large enough such that $Y \subseteq j_\alpha^* N_\alpha$. Let $S = \varphi(\eta) \cap L[U] \cap j_\alpha^* N_\alpha$. Note that $\varphi(\eta) \cap L[U] \subseteq N$ and hence $S \subseteq N$. We have that $N \models |S| \leq \kappa$. Since Fact 2.25(a) holds in H_β and $N < H_\beta$, Fact 2.25(a) holds in N. Take $T \subseteq N$ such that $T \subseteq \varphi(\eta) \cap L[U]$, $T \subseteq S$, $T \subseteq L[U]$, and $N \models |T| < \kappa$. Since $\eta > \kappa$, we have $\pi(T) = \pi(T)$. Let $\tilde{T} = \{X \in T \mid \eta \in \pi(X)\}$.

Claim 2.29 We have that $\tilde{T} \in N$.

Proof. Since $N \models |T| \leq \kappa$, there is $h \in N$ such that $h : T \leftrightarrow \gamma$ for some $\gamma < \eta$. Then $\tilde{T} = \{X \in T \mid \eta \in \pi^\alpha(h^{-1}(\pi(h)))\}$. So $\tilde{T} \in N$.

Note that $\bigcap \tilde{T} \neq \emptyset$ since $\pi(\tilde{T}) = \pi'' \tilde{T}$ and $\eta \in \pi'' \tilde{T} = \bigcap \pi(\tilde{T}) = \pi(\bigcap \tilde{T})$. Since $Y \subseteq S \subseteq T$ and $Y \subseteq W$, we have $Y \subseteq \tilde{T}$ and hence $\bigcap Y \neq \emptyset$.

So there exists a nontrivial elementary embedding $j : L[U] < L[U]$ with $\text{crit}(j) = \eta > \kappa$. By Fact 2.26, 0^1 exists. Contradiction.
Case 2. Fact 2.25(b) holds. The proof is essentially the same as Case 1 with small modifications (e.g., let $tr((U, C)) \subseteq Z_0$ and $W = \{ X \subseteq \eta \mid X \in L[U, C] \}$ and $\eta \in \pi(X))$. Since Přikry forcing preserves all cardinals, λ is an $L[U, C]$-cardinal. As in Case 1, we can show that there exists a nontrivial elementary embedding $j : L[U, C] \prec L[U]$. Since $j(U, C) = (U, C)$, we have $j[L[U] : L[U] \prec L[U]$ with $crit(j[L[U]] = \eta > \kappa$. So by Fact 2.26, 0^\dagger exists. Contradiction.

\[\Rightarrow \]. Assume 0^\dagger exists. Suppose $\theta > \lambda$ is a regular, $X \prec H_\theta$, $|X| < \lambda$ and $\lambda \in X$. We show that λ is an $L[U]$-cardinal. Since $\lambda \in X$ and $0, \lambda \in X$, we have $M(0^\dagger, \omega, \lambda + 1) \in X$. Note that for any $\alpha, \beta \in \text{Ord}, M(0^\dagger, \alpha, \beta) \prec L[U]$. Since $\alpha \in L[U]$-cardinal and $\lambda \in M(0^\dagger, \omega, \lambda + 1)$, we have $M(0^\dagger, \omega, \lambda + 1) \models \text{"\lambda is a cardinal"}. Note that the image of $M(0^\dagger, \omega, \lambda + 1)$ under the transitive collapse of X is $M(0^\dagger, \omega, \lambda + 1)$. So $M(0^\dagger, \omega, \lambda + 1) \models \text{"\lambda is a cardinal"}. Since $M(0^\dagger, \omega, \lambda + 1) \prec L[U]$, we have that λ is an $L[U]$-cardinal. □

In [14], Räsch and Schindler introduced the condensation principle ∇_x: for any regular cardinal $\theta > \kappa$, $\{ X \prec L_\theta \mid |X| < \kappa, X \cap \kappa \in \kappa \}$ and $L \models \text{"o.t.}(X \cap \theta)$ is a cardinal" is stationary. The notion of the strong reflecting property for L-cardinals was introduced before the author knew about the work on ∇_κ in [14]. The following theorem summarizes the strength of ∇_κ for $n \in \omega$.

Theorem 2.30 (Räsch & Schindler, [14, Theorems 2 & 4 and Corollary 12]) (1) The following theories are equiconsistent:

(a) $\text{ZFC} + \nabla_{\omega_1}$

(b) $\text{ZFC} + \nabla_{\omega_2}$

(c) $\text{ZFC} + \text{there exists a remarkable cardinal.}$

(2) For $n \geq 3$, ∇_{ω_n} is equivalent to 0^n exists.

Now we discuss the relationship between $\text{SRP}^L(\omega_n)$ and ∇_{ω_n} for $n \in \omega$. By Theorems 2.23 & 2.30, for $n \geq 3$, $\text{SRP}^L(\omega_n)$ is equivalent to ∇_{ω_n}. If κ is regular cardinal and ∇_{κ} holds, then κ is remarkable in L (cf. [14, Lemma 7]). By Proposition 2.9, ∇_{ω_1} implies $\text{SRP}^L(\omega_1)$ which is strictly weaker. By Theorem 2.17, $\text{SRP}^L(\omega_2)$ does not imply ∇_{ω_2} since ∇_{ω_2} implies ω_2 is remarkable in L. By Theorems 2.30 & 2.17, the strength of $\text{SRP}^L(\omega_2)$ is strictly stronger than ∇_{ω_2}.

In Definition 2.2, we only consider countable elementary submodels of H_κ. Similarly as ∇_{κ} we could also consider uncountable elementary submodels of H_κ. However this does not change the picture. Obviously, $\text{SRP}^L_{<\omega_1}(\omega_1)$ iff $\text{SRP}^L(\omega_1)$. By Proposition 2.10, $\text{SRP}^L_{<\omega_2}(\omega_2)$ iff $\text{SRP}^L(\omega_2)$. By Theorem 2.20, for $n \geq 3$, $\text{SRP}^L_{<\omega_n}(\omega_n)$ iff 0^n exists iff $\text{SRP}^L(\omega_n)$.

3 Harrington’s Principle $\text{HP}(L)$ and its generalization

In this section, we define the generalized Harrington’s Principle $\text{HP}(M)$ for any inner model M. Considering various known examples of inner models we give particular characterizations of $\text{HP}(M)$, while we also show that in some cases this generalized principle fails.

Recall that for limit ordinal $\alpha > \omega$, α is x-admissible if and only if there is no $\Sigma_1(L_\alpha[x])$ mapping from an ordinal $\delta < \alpha$ cofinally into α (cf. [4, Lemma 7.2]).

Definition 3.1 Suppose M is an inner model. The Generalized Harrington’s Principle $\text{HP}(M)$ denotes the following statement: there is a real x such that, for any ordinal α, if α is x-admissible then α is an M-cardinal, i.e., $M \models \alpha$ is a cardinal. We denote Harrington’s Principle by $\text{HP}(L)$.

Harrington’s principle $\text{HP}(L)$ was isolated by Harrington in the proof of his celebrated theorem “$\text{Det}(\Sigma^1_1)$ implies $0^\text{#}$” in [7].

Fact 3.2 (Essentially [4]; Z_4) The model L_{ω_2} has an uncountable set of indiscernibles if and only if $0^\text{#}$ exists.

Note that $M(0^\dagger, \omega, \alpha)$ is the unique transitive $(0^\dagger, \omega, \alpha)$-model. For the notation of $M(0^\dagger, \omega, \alpha)$, cf. [10].
The following are equivalent:

(1) $\text{HP}(L)$.
(2) The model L_{ω_1} has an uncountable set of indiscernibles.
(3) $0^\#$ exists.

Proof. Note that in Z_2, $0^\#$ implies $\text{HP}(L)$ since any $0^\#$-admissible ordinal is an L-cardinal. It suffices to show that (1) \Rightarrow (2). Let a be the witness real for $\text{HP}(L)$. We work in $L[a]$. Pick $\eta > \omega_2$ and N such that η is η-admissible, $N \subseteq L[a]$, and $\omega_2 \subseteq N$. N is closed under ω-sequences. Let $j : L_\eta[a] \equiv N \prec L_{\omega_1}[a]$ be the inverse of the collapsing map and $\kappa = \text{crit}(j)$. By $\text{HP}(L)$, κ is an L-cardinal. Define $U = \{ X \subseteq \kappa : X \in L \wedge \kappa \in j(X) \}$. Note that $(\kappa^+)^L \subseteq \kappa < \omega_2$ and $U \subseteq L_\eta$ is an L-ultrafilter on κ. Do the ultrapower construction for (L_{ω_1}, \in, U). Since $L_\kappa[a]$ is closed under ω-sequences, L_{ω_1}/U is well founded and hence we get a nontrivial elementary embedding $e : L_{\omega_1} \prec L_{\omega_1}$ with $\text{crit}(e) = \kappa$.

Now we show that there exists a club on ω_2 of regular L-cardinals. Suppose $X \prec L_\eta[a]$, $\omega_1 \subseteq X$ and $\omega_2 \subseteq X$. The transitive collapse of X is $L_\eta[a]$ for some η. Since $L_{\omega_1} \models \omega_2$ is a regular cardinal, $L_{\omega_1} \models \omega_2$ is a regular cardinal.

By $\text{HP}(L)$, ω_2 is an L-cardinal and hence ω_2 is a regular L-cardinal. Since $\omega_1 \subseteq X$, we have that $\omega_2 = X \cap \omega_2$. We have shown that if $X \prec L_\eta[a]$, $\omega_1 \subseteq X$ and $\omega_2 \subseteq X$, then $X \cap \omega_2 = \omega_2$ is a regular L-cardinal. So there exists a club on ω_2 of regular L-cardinals. Let D be such a club such that $D \cap (\kappa + 1) = \varnothing$.

Claim 3.4 For any $\alpha \in D$, $e(\alpha) = \alpha$.

Proof. Suppose $\alpha \in D$ and $f \in L_{\omega_2}$ where $f : \kappa \rightarrow \alpha$. Since $\alpha > \kappa$ is a regular L-cardinal, f is bounded by some $\eta < \alpha$. So $[f] < [\eta]$. Hence $e(\alpha) = \lim_{\beta < \eta} e(\beta)$. If $\beta < \alpha$, then $|e(\beta)| \leq (|\beta|^L)^L \leq \alpha$. So $e(\alpha) = \alpha$. \hfill \Box

We define a sequence $(C_\alpha : \alpha < \omega_1)$ as follows. Let $C_0 = D$. For any $\nu < \omega_1$, $C_{\nu+1} = \{ \mu \in C_\nu : \mu = \mu$ is the μ-th element of C_ν in the increasing enumeration of $C_\nu \}$. If $\nu = \omega_1$ is a limit ordinal, $C_\nu = \bigcap_{\beta < \nu} C_\beta$. Note that C_ν is a club on ω_2 for all $\nu < \omega_1$. By Claim 3.4, for $\nu < \omega_1$, $e(C_\nu)$ is id. Now we will find ω_1-many indiscernibles for (L_{ω_2}, \in). The rest of the argument essentially follows from [8, Theorem 18.20].

For each $\nu < \omega_1$, let M_ν be the Skolem hull of $\kappa \cup C_\nu$ in L_{ω_2}. The transitive collapse of M_ν is L_{ω_2}. Let $i_\nu : L_{\omega_2} \equiv M_\nu \prec L_{\omega_2}$ be the inverse of the collapsing map and $\kappa_\nu = i_\nu(\kappa)$. By [8, Lemmas 18.24, 18.25, & 18.26], $\{ \kappa_\nu : \nu < \omega_1 \}$ is a set of indiscernibles for L_{ω_2}.

Theorem 3.5 (Cheng, [2]) $Z_3 + \text{HP}(L)$ does not imply $0^\#$ exists.

By a similar argument as in Theorem 3.3 we can show from $Z_3 + \text{HP}(L)$ that there exists a nontrivial elementary embedding $j : L_{\omega_2} \prec L_{\omega_2}$ and there is a club $C \subseteq \omega_1$ of regular L-cardinals. However, by Theorem 3.5, from these we can prove that Z_3 that does not exist.

Note that Theorem 3.3 still holds if we replace the term “L-cardinal” with any large cardinal notion compatible with L in the definition of $\text{HP}(L)$. This is because the Silver indiscernibles can have any large cardinal property compatible with L.

A proof of the following statement can be found in [10, Theorem 21.15]:

Fact 3.6 The following are equivalent:

(1) $0^\#$ exists.
(2) For every uncountable cardinal κ there is a κ-model and a double class (X, Y) of indiscernibles for it such that: $X \subseteq \kappa$ is closed unbounded, $Y \subseteq \text{Ord}(\kappa + 1)$ is a closed unbounded class, $X \cup (\kappa \cup Y)$ contains every uncountable cardinal and the Skolem hull of $X \cup Y$ in the κ-model is again the model.

\footnote{In [2], we define $0^\#$ as the minimal iterable mouse and prove in Z_4 that $\text{HP}(L)$ is equivalent to “$0^\#$ exists”. Theorem 3.3 proves that these two definitions of $0^\#$ are equivalent in Z_4.}

\footnote{Note that the proof of [8, Theorem 18.20], as opposed to the proof of Theorem 3.3 above, is not done in Z_4.}

\footnote{Examples of large cardinal notions compatible with L: inaccessible cardinals, reflecting cardinals, Mahlo cardinals, weakly compact cardinals, indescribable cardinals, unfoldable cardinals, subtle cardinals, ineffable cardinals, 1-iterable cardinals, remarkable cardinals, 2-iterable cardinals, and ω-Erdös cardinals.}
Fact 3.7 Suppose that A is a set, $X \prec L_{\alpha}[A]$ where $\alpha \in \text{Ord} \cup \{\text{Ord}\}$ and the transitive closure of $A \cap L_{\alpha}[A]$ is contained in X. Then $X \cong L_{\alpha}[A]$ for some $\alpha^* \leq \alpha$. [12, Lemma 1.7]

Fact 3.8 (Folklore) Suppose 0^I exists, $L[U]$ is the unique κ-model and (X, Y) is the double class of indiscernibles for $L[U]$ as in Fact 3.6. If $\alpha \leq \kappa$ is 0^I-admissible, then X is unbounded in α, and if $\alpha > \kappa$ is 0^I-admissible, then Y is unbounded in α.7

Theorem 3.9 Suppose κ is a measurable cardinal and $L[U]$ is the unique κ-model. Then $\text{HP}(L[U])$ if and only if 0^I exists.

Proof. “⇒”. Let x be the witness real for $\text{HP}(L[U])$. Pick $\lambda > 2^\omega$ and X such that λ is (x, U)-admissible, $X \prec L_{\lambda}[U][x]$, $|X| = 2^\omega$, X is closed under ω-sequences and the transitive closure of $U \cap L_{\lambda}[U]$ is contained in X. By Fact 3.7, the transitive collapse of X is of the form $L_{\theta}[U][x]$. Let $j : L_{\theta}[U][x] \cong X \prec L_{\lambda}[U][x]$ be the inverse of the collapsing map and $\eta = \text{crit}(j)$. Note that $\eta > \kappa$. Since θ is (x, U)-admissible, by $\text{HP}(L[U])$, θ is an $L[U]$-cardinal. Define $U = \{X \subseteq \eta \mid X \in L[U] \text{ and } \eta \in j(X)\}$. Since $(\eta^+)_{L[U]} \leq \theta$, we have that $\bar{U} \subseteq L_{\theta}[U]$. Then \bar{U} is an $L[U]$-ultrafilter on η. Since $L_{\theta}[U][x]$ is closed under ω-sequences, \bar{U} is countably complete. So we can build a nontrivial embedding from $L[U]$ to $L[U]$ with critical point greater than κ. By Fact 2.26, 0^I exists.

“⇐”. Suppose 0^I exists and α is 0^I-admissible. We show that α is an $L[U]$-cardinal. By Fact 3.6, let (X, Y) be the double class of indiscernibles for $L[U]$. If $\alpha \leq \kappa$, then by Fact 3.8, $\alpha \in X$. If $\alpha > \kappa$, then by Fact 3.8, $\alpha \in Y$. Trivially, elements of X and Y are $L[U]$-cardinals.

Fact 3.10 Suppose there is no inner model with one measurable cardinal and let K be the corresponding core model. Then, K has the rigidity property. [13, 16]

Corollary 3.11 (1) Suppose 0^I exists. Then $\text{HP}(L[0^I])$ if and only if $(0^I)^a$ exists.

(2) Suppose there is no inner model with one measurable cardinal and that K is the corresponding core model. Then $\text{HP}(K(K))$ does not hold.

Proof. (1) follows from the proof of “$\text{HP}(L) \Leftrightarrow 0^I$ exists”. Note that if α is $(0^I)^a$-admissible and I is the class of Silver indiscernibles for $L[0^I]$, then I is unbounded in α and hence $\alpha \in I$.

(For) Note that $K = L[M]$ where M is a class of mice. Suppose $\text{HP}(K)$ holds and x is the witness real for $\text{HP}(K)$. Pick $\theta > \omega_2$ and X such that θ is (M, x)-admissible, $X \prec J_{\theta}[M, x]$, $\omega_2 \in X$, $|X| = \omega_1$ and X is closed under ω-sequences. Since $K \models \text{GCH}$, such an X exists. By the condensation theorem for K, let $j : J_{\theta}[M, \theta', x] \cong X \prec J_{\lambda}[M, \lambda] \subseteq L[U]$. Note that θ' is a K-cardinal and $U = \{X \subseteq \lambda \mid X \in K \text{ and } \lambda \in j(X)\}$. Note that θ' is a K-cardinal and U is a countably complete K-ultrafilter on λ. So there is a nontrivial elementary embedding from K to K which contradicts Fact 3.10.

From proof of Corollary 3.11(2), if M is an L-like inner model, M has the rigidity property and some proper form of condensation, and $M \models \text{CH}$, then $\text{HP}(M)$ does not hold.

Fact 3.12 (AD$_{L(R)}$, [16]) $\text{HOD}^{L(R)} = L(P)$ for some $P \subseteq \Theta$ where $\Theta = \sup\{\alpha \mid \exists f \in L(R) \mid f : R \to \alpha \text{ is surjective}\}$.

It is an open question whether there exists a nontrivial elementary embedding from HOD to HOD. However, the following fact shows that the answer to this question is negative for embeddings which are definable in V from parameters.

Fact 3.13 (Hamkins, Kirmayer, & Perlmutter, [9, Theorem 35]) Do not assume AC. There is no nontrivial elementary embedding from HOD to HOD that is definable in V from parameters.

Theorem 3.14 (ZF + AD$_{L(R)}$) $\text{HP}(\text{HOD})$ does not hold.

Proof. By Fact 3.12, under ZF + AD$_{L(R)}$, $\text{HOD} = L(P)$ for some $P \subseteq \Theta$. Suppose $\text{HP}(\text{HOD})$ holds. Then, since $L(P) \models \text{CH}$, by a similar proof as in Corollary 3.11(2) we can show that there exists a nontrivial

7 We should like to thank W. Hugh Woodin and Sy Friedman for pointing out this fact to us. The proof of this fact is essentially similar as the proof of the following standard fact: if 0^I exists, I is the class of Silver indiscernibles and α is 0^I-admissible, then I is unbounded in α (cf. [5, Theorem 4.3]).

8 The answer to this question is negative if $V = \text{HOD}$. [9, Theorem 21] provides a very easy proof of the Kunen inconsistency in the case $V = \text{HOD}$.

www.mlq-journal.org © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
elementary embedding \(j : L(P) \rightarrow L(P) \). Note that \(j \) is definable in \(V \) from parameters, i.e., there is a formula \(\varphi \) and parameter \(\vec{a} \) such that \(j(x) = y \) if and only if \(\varphi(x, y, \vec{a}) \). This contradicts Fact 3.13.

\[\square \]

4 Relationship between \(HP(L) \) and the strong reflecting property for \(L \)-cardinals

In this section, we discuss the relationship between the strong reflecting property for \(L \)-cardinals and Harrington’s Principle \(HP(L) \).

Theorem 4.1 (Set forcing) \(SRP^L(\omega_1) \) implies \(Con(Z_2 + HP(L)) \).

Proof. Suppose \(SRP^L(\omega_1) \) holds and we want to build a model of \(Z_2 + HP(L) \). By Proposition 2.9, \(\omega_1 \) is limit cardinal in \(L \), i.e., \(\{ \alpha < \omega_1 \mid \alpha \text{ is an } L \text{-cardinal} \} \) is a club. Let \(C = \{ \omega \leq \alpha < \omega_1 \mid \alpha \text{ is an } L \text{-cardinal and } L_{\alpha}^C < \omega \} \). Note that \(C \) is a club. Let

\[D = \{ \gamma < \omega_1 \mid (L_\gamma[C], C \cap \gamma) < (L_{\omega_1}[C], C) \}. \]

Note that \(D \subseteq C \). Define \(F : \omega^\omega \rightarrow \omega^\omega \) as follows: if \(y \subseteq \omega \) codes \(\gamma \), then \(F(y) \) is a real which codes \((\beta, C \cap \beta) \) where \(\beta \) is the least element of \(D \) such that \(\beta > \gamma \) (since \(D \) is a club in \(\omega_1 \), such a \(\beta \) exists); if \(y \) does not code an ordinal, let \(F(y) = \emptyset \).

Let \(\delta_\alpha \mid \alpha < \omega_1 \) be a pairwise almost disjoint set of reals such that \(\delta_\alpha \) is the \(\langle L_\gamma[C] \rangle \)-least real which is almost disjoint from any member of \(\{ \delta_\beta \mid \beta < \alpha \} \) and \(\delta_\alpha \) is definable from any \(\beta \in \omega_1 \) for every admissible ordinal \(\alpha < \omega_1 \).

Let \((x_\alpha \mid \alpha < \omega_1) \) be the enumeration of \(\varphi(\omega) \) in \(L[C] \) in the order of construction. Let \(Z_F \subseteq \omega_1 \) be defined as:

\[Z_F = \{ \alpha \cdot \omega + i \mid \alpha < \omega_1 \land i \in F(x_\alpha) \}. \]

Now we do almost disjoint forcing to code \(Z_F \) via \(\langle \delta_\alpha \mid \alpha < \omega_1 \rangle \). Then we get a real \(x \) such that \(\alpha \in Z_F \Leftrightarrow |x \cap \delta_\alpha| < \omega \). The forcing is c.c.c. and hence preserves all cardinals.

Now we work in \(L[x] \). Take the least \(\theta \) such that \(L_\theta[x] = Z_2 \). We will show that \(L_\varphi(x) \models HP(L) \). By absoluteness, it suffices to show that if \(\alpha < \theta \) is \(x \)-admissible, then \(\alpha \) is an \(L \)-cardinal. Fix some \(x \)-admissible \(\alpha < \theta \) and let \(\gamma_0 = sup(\alpha \cap D) \).

If \(\alpha \cap D = \emptyset \), let \(\gamma_0 = 0 \). Note that if \(\gamma_0 > 0 \), then \(\gamma_0 \in D \). We assume that \(\gamma_0 < \alpha \) and try to get a contradiction. Let \(\omega_0 \) be the least admissible ordinal such that \(\alpha_0 > \gamma_0 \). Since \(\alpha \) is admissible, we have \(\omega_0 \leq \alpha \).

Claim 4.2 We have that \(C \cap \omega_0 = C \cap (\gamma_0 + 1) \).

Proof. We show that \(C \cap \omega_0 \subseteq C \cap (\gamma_0 + 1) \). Suppose \(\gamma \in C \cap \omega_0 \) and \(\gamma > \gamma_0 \). Since \(\gamma \in C \), we have that \(L_\gamma[C] < L_{\omega_0} \). Since \(\alpha_0 \) is definable from \(\gamma_0 \), it follows that \(\alpha_0 \) is definable in \(L_\gamma \). So \(\alpha_0 \leq \gamma \). Contradiction.

By Claim 4.2, \(L_{\omega_0}[C] = L_{\omega_0}[C \cap \gamma_0] \). We need the following lemma to get that \(L_\varphi([C \cap \gamma_0] \mid x) = L_\varphi[x] \) in Claim 4.5.

Lemma 4.3 We have that \(C \cap \gamma_0 \in L_{\omega_0+1}[x] \).

Proof. We prove by induction that for any \(\gamma \in D \cap \theta, C \cap \gamma \in L_{\omega_0+1}[x] \). Fix \(\gamma \in D \cap \theta \). Suppose for any \(\gamma' \in D \cap \gamma, C \cap \gamma' \in L_{\omega_0+1}[x] \). We show that \(C \cap \gamma \in L_{\omega_0+1}[x] \).

Case 1. There is \(\gamma' \in D \) such that \(\gamma \) is the least element of \(D \) such that \(\gamma > \gamma' \). Let \(\eta \) be the least admissible ordinal such that \(\eta > \gamma' \). By a similar argument as in Claim 4.2, \(C \cap \eta = C \cap (\gamma' + 1) \). From our definitions, for any \(\beta < \eta \) we have: (1) \((\xi_\beta \mid \xi \in \beta) \in L_\eta[C] = L_\eta[C \cap \gamma'] \); (2) \((\delta_\beta \mid \xi \in \beta) \in L_\eta[C] = L_\eta[C \cap \gamma'] \); and (3) \((\langle x_\xi \mid \xi \in \eta \rangle \) enumerates \(\varphi(\omega) \cap L_\eta[C] = \varphi(\omega) \cap L_\eta[C \cap \gamma'] \).

Suppose \(y \subseteq \omega \) and \(y \in L_\eta[C \cap \gamma'] \). Then \(y = x_\xi \) for some \(\xi < \eta \). Note that \(\xi \cdot \omega + i < \eta \) for any \(i < \omega \). Moreover, \(i \in F(\gamma) \) if and only if \([x \cap \delta_{\xi+i}] < \omega \). So \(F(\gamma) \in L_\eta[C \cap \gamma'] \). Hence we have shown that if \(y \in \varphi(\omega) \cap L_\eta[C \cap \gamma'] \), then \(F(\gamma) \in L_\eta[C \cap \gamma', x] \).

Claim 4.4 We have that \(L_\eta[C \cap \gamma'] \models \gamma' < \omega_1 \).
Proof. Suppose, towards a contradiction, that
\[y' = \omega_1^{L_{\gamma}[C \cap y']} \].
(1)
Let \(P \) be the almost disjoint forcing that codes \(Z_F \) via the almost disjoint system \((\delta_\beta \mid \beta < \omega_1) \), i.e., \(P = [\omega]^{\omega_1} \times [Z_F]^{\omega_1} \) with the order defined by \((p, q) \leq (p', q')\) iff \(p \supseteq p', q \supseteq q' \) and \(\forall \alpha \in q' (p \cap \delta_\alpha \subseteq p') \). From our definitions of \(C, F \) and \((x_\alpha \mid \alpha < \omega_1) \), \(P \) is a definable subset of \(L_{\omega_1}[C] \). A standard argument gives that \(P \) has the \(\omega_1 \)-c.c. in \(L_{\omega_1}[C] \), i.e., if \(D \subseteq P \) is a maximal antichain with \(D \in L_{\omega_1}[C] \), then \(L_{\omega_1}[C] \models D \) is at most countable. Let \(P^* = P \cap L_{\gamma'}[C] \). Since \(y' \in D \), we have that
\[(L_{\gamma'}[C], C \cap y') < (L_{\omega_1}[C], C) \].
(2)
Suppose \(D^* \subseteq P^* \) is a maximal antichain with \(D^* \in L_{\gamma'}[C] \). Then by (2), \(D^* \) is a maximal antichain in \(P \). Since \(L_{\omega_1}[C] \models D^* \) is at most countable, by (2), \(L_{\gamma'}[C] \models D^* \) is at most countable. So \(P^* \) has the \(\omega_1 \)-c.c. in \(L_{\gamma'}[C] \). By (1),
\[L_{\omega_1}[C \cap y'] \cap 2^\omega = L_{\gamma'}[C \cap y'] \cap 2^\omega \].
(3)
Since \(P^* \) has the \(\omega_1 \)-c.c. in \(L_{\gamma'}[C] \), by (3), \(P^* \) has the \(\omega_1 \)-c.c. in \(L_{\omega_1}[C \cap y'] \).

We show that \(x \) is generic over \(L_{\omega_1}[C \cap y'] \) for \(P^* \). Let \(Y \subseteq P^* \) be a maximal antichain with \(Y \in L_{\omega_1}[C \cap y'] \). Since \(P^* \) has the \(\omega_1 \)-c.c. in \(L_{\omega_1}[C \cap y'] \), by (1), \(Y \in L_{\gamma'}[C \cap y'] \). By (2), \(Y \) is a maximal antichain in \(P \). So the filter given by \(X \) meets \(Y \).

Note that \(y' = \omega_1^{L_{\gamma}[C \cap y']} = \omega_1^{L_{\gamma}[C \cap y']}[x] \). Since \(y' \in D \), by induction hypothesis \(L_{\gamma'}[C \cap y', x] = L_{\gamma'}[x] \). So \(L_{\gamma'}[x] = Z_2 \) which contradicts the minimality of \(\theta \). This finishes the proof of Claim 4.4.

Case 2. The ordinal \(y \) is the least element of \(D \). Take \(y \in L_{\omega_1}[C \cap \varphi(\omega)] \) such that \(y \) codes \(y' \). So \(F(y) \) codes \((y, C \cap y) \) and \(F(y) \in L_{\omega_1}[C \cap y', x] \). Then \(F(y) \) is definable in \(L_{\gamma'}[C \cap y', x] \). By induction hypothesis, \(F(y) \in L_{\gamma+1}[x] \). Since \(F(y) \) codes \(C \cap y \), we have that \(C \cap y \in L_{\gamma+1}[x] \).

Case 3. The ordinal \(y \) is a limit point of \(D \). Then a standard argument gives that \(C \cap y \in L_{\gamma+1}[x] \) by induction hypothesis.

Since \(y_0 \in D \cap \theta \), we have \(C \cap y_0 \in L_{\omega_1+1}[x] \). This finishes the proof of Lemma 4.3.

Claim 4.5 The ordinal \(y_0 \) in \(L_{\omega_1}[C \cap y_0] \).

Proof. The proof is essentially the same as Claim 4.4 (replace \(\eta \) by \(\alpha_0 \) and \(y' \) by \(y_0 \)). Suppose, towards a contradiction, that \(y_0 = \omega_1^{L_{\gamma_0}[C \cap y_0]} \). Let \(P \) be the almost disjoint forcing that codes \(Z_F \) via \((\delta_\beta \mid \beta < \omega_1) \) as in the proof of Claim 4.4. By the similar argument, we can show that \(x \) is generic over \(L_{\omega_1}[C \cap y_0] \) for \(P^* = P \cap L_{\omega_1}[C] \).

Since \(y_0 = \omega_1^{L_{\gamma_0}[C \cap y_0]} = \omega_1^{L_{\gamma_0}[C \cap y_0][x]} \) and by Lemma 4.3, \(L_{\gamma_0}[C \cap y_0][x] = L_{\omega_1}[x] \), we have \(L_{\omega_1}[x] = Z_2 \) which contradicts the minimality of \(\theta \).

From our definitions, we have:
\[\text{For } \eta < \alpha_0, (\delta_\beta : \beta < \eta) \in L_{\omega_1}[C] = L_{\omega_1}[C \cap y_0]; \]
\[(x_\alpha : \alpha < \alpha_0) \text{ enumerates } \varphi(\omega) \cap L_{\omega_1}[C] = \varphi(\omega) \cap L_{\omega_1}[C \cap y_0]. \]

Claim 4.6 If \(y \in \varphi(\omega) \cap L_{\omega_1}[C \cap y_0] \), then \(F(y) \in L_{\omega_1}[x] \).

Proof. Suppose \(y \in \varphi(\omega) \cap L_{\omega_1}[C \cap y_0] \). By (5), \(y = x_\delta \) for some \(\delta < \alpha_0 \). Note that for \(\xi < \alpha_0, \xi : \omega + i < \alpha_0 \) for any \(i \in \omega \). By the definition of \(Z_F, i \in F(y) \Leftrightarrow \xi : \omega + i \in Z_F \Leftrightarrow [x \cap \delta_{\omega+1}] = 0. \) By (4), \(y \in L_{\omega_1}[C \cap y_0][x] \). Since \(C \cap y_0 \in L_{\omega_1+1}[x] \) by Lemma 4.3, we have \(L_{\omega_1}[C \cap y_0][x] = L_{\omega_1}[x] \). So \(F(y) \in L_{\omega_1}[x] \).

By Claim 4.5, there exists a real \(y \in L_{\omega_1}[C \cap y_0] \) such that \(y \) codes \(y_0 \). Note that \(F(y) \) codes \(y_1 \) where \(y_1 \) is the least element of \(C \) such that \(y_1 > y_0 \) and \(\langle L_{\gamma_1}[C], C \cap y_1 \rangle < (L_{\omega_1}[C], C) \). Since \(F(y) \) codes \(y_1 \) and \(F(y) \in L_{\omega_1}[x] \),
we have $\gamma_1 < \alpha_0$. Since $\gamma_1 < \alpha$ and $(L_{\gamma_1}[C], C \cap \gamma_1) \prec (L_{\alpha_0}[C], C)$, by the definition of γ_0, we have that $\gamma_1 \leq \gamma_0$. Contradiction.

So the assumption $\gamma_0 < \alpha$ is false. Then $\gamma_0 = \alpha$. So $\alpha \in C$ and hence α is an L-cardinal. We have shown that $L_\alpha[x] \models Z_2 + HP(L)$.

Theorem 4.7 (Cheng, [2, Theorems 3.1 & 3.2]; class forcing) $Z_2 + HP(L)$ is equiconsistent with ZFC and $Z_3 + HP(L)$ is equiconsistent with ZFC + there exists a remarkable cardinal. □

Theorem 4.8

(a) For $n \geq 3$, SRP$_L(\omega_n)$ is equivalent to HP(L).

(b) SRP$_L(\omega_2)$ is strictly stronger than $Z_3 + HP(L)$.

(c) SRP$_L(\omega_1)$ is strictly stronger than $Z_2 + HP(L)$.

Proof. (a) follows from Theorems 2.23 & 3.3. (b) follows from Theorems 2.17 & 4.7. (c) follows from Theorems 4.1 & 4.7 and Proposition 2.9. Items (b) and (c) use set forcing.

Acknowledgements

Some material in this paper evolved from the author’s Ph.D. thesis written in 2012 at the National University of Singapore under the supervision of Chong Chi Tat and W. Hugh Woodin. I should like to thank W. Hugh Woodin for his support and guidance on the thesis, the members of my Ph.D. committee, Ralf Schindler for his support through SFB 878, and the referees for their careful reading and helpful comments.

References

[1] Y. Cheng, Forcing a set model of $Z_3 +$ Harrington’s Principle, Math. Log. Q. 61(4–5), 274–284, 2015.
[2] Y. Cheng and R. Schindler, Harrington’s principle in higher order arithmetic, J. Symb. Log. 80(2), 477–489 (2015).
[3] J. Cummings, Iterated Forcing and Elementary Embeddings, in: Handbook of Set Theory, Volume II, edited by M. Foreman and A. Kanamori (Springer-Verlag, 2010), pp. 775–883.
[4] K. J. Devlin, Constructibility, Perspectives in Mathematical Logic (Springer-Verlag, 1984).
[5] S. D. Friedman, Constructibility and Class Forcing, in: Handbook of Set Theory, Volume I, edited by M. Foreman and A. Kanamori (Springer-Verlag, 2010), pp. 557–604.
[6] V. Gitman, J. D. Hamkins and T. A. Johnstone, What is the theory ZFC without Powerset?, preprint (2011), (arXiv:1110.2430)
[7] L. A. Harrington, Analytic determinacy and 0^\sharp, J. Symb. Log. (43), 685–693 (1978).
[8] T. J. Jech, Set Theory, Third Millennium Edition, Revised and Expanded (Springer-Verlag, 2003).
[9] J. D. Hamkins, G. Kirmayer and N. L. Perlmutter, Generalizations of the Kunen inconsistency, Ann. Pure Appl. Log. 163(12), 1872–1890, 2012.
[10] A. Kanamori, The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings, Springer Monographs in Mathematics (Springer-Verlag, 2003)
[11] K. Kunen, Set Theory: An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics Vol. 102 (North Holland, 1980).
[12] W. J. Mitchell, Beginning Inner Model Theory, in: Handbook of Set Theory, Volume III, edited by M. Foreman and A. Kanamori (Springer-Verlag, 2010), pp. 1449–1495.
[13] W. J. Mitchell, The Covering Lemma, in: Handbook of Set Theory, Volume III, edited by M. Foreman and A. Kanamori (Springer-Verlag, 2010), pp. 1497–1594.
[14] T. Räsch and R. Schindler, A new condensation principle, Arch. Math. Log. 44, 159–166 (2005).
[15] R. Schindler, Proper forcing and remarkable cardinals II, J. Symb. Log. (66), 1481–1492 (2001).
[16] J. R. Steel, An Outline of Inner Model Theory, in: Handbook of Set Theory, Volume III, edited by M. Foreman and A. Kanamori (Springer-Verlag, 2010), pp. 1595–1684.