Neural correlates of somatoform disorders from a meta-analytic perspective on neuroimaging studies

Markus Boeckle*a, Marlene Schrimpf, Gregor Liegl, Christoph Pieh

* Department of Psychotherapy and Biopsychosocial Health, Donau-Universität Krems, Krems, Austria
Department of Psychosomatic Medicine, Charité—Universitätsmedizin, Berlin, Germany
Karl Landsteiner University of Health Sciences, Krems, Austria
Department of Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany

A B S T R A C T

Somatoform disorders (SD) are common medical disorders with prevalence rates between 3.5% and 18.4%, depending on country and medical setting. SD as outlined in the ICD-10 exhibits various biological, social, and psychological pathogenic factors. Little is known about the neural correlates of SD. The aims of this meta-analysis are to identify neuronal areas that are involved in SD and consistently differ between patients and healthy controls. We conducted a systematic literature research on neuroimaging studies of SD. Ten out of 686 studies fulfilled the inclusion criteria and were analyzed using activation likelihood estimation. Five neuronal areas differ between patients with SD and healthy controls namely the premotor and supplementary motor cortices, the middle frontal gyrus, the anterior cingulate cortex, the insula, and the posterior cingulate cortex. These areas seem to have a particular importance for the occurrence of SD. Out of the ten studies two did not contribute to any of the clusters. Our results seem to largely overlap with the circuit network model of somatosensory amplification for SD. It is conceivable that functional disorders, independent of the clinical impression, show similar neurobiological processes. While overlaps do occur it is necessary to understand single functional somatic syndromes and their aetiology for future research, terminology, and treatment guidelines.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Somatoform disorders (SD) are highly prevalent in many medical settings. In German psychosomatic hospitals, 18.4% of the inpatients fulfilled the criteria of the ICD-10 (WHO, 1992) for SD (Pfiehl et al., 2010). It is estimated that SD have a prevalence of 16.1% in primary care settings in the Netherlands (de Waal et al., 2004), a life-time-prevalence of 12.9% in Germany (Meier et al., 2000) and a 12-month prevalence of 6.3% (Wittchen et al., 2011) in Germany. General practitioners overestimate the prevalence of patients with SD in their medical practice considerably with 27.7% (Boeckle et al., 2014). Because of high medical costs and indirect costs, such as those caused by times of un-employability and early retirement, patients with somatoform disorder generate high economic costs for the health system (Rief and Henningsen, 2011). Patients with somatoform disorders (F45.-) have physical symptoms that suggest a medical condition but are not or not fully explained by any other medical condition and are related to psychological factors (WHO, 1992). The symptoms must cause impairment in occupational, social or other areas, or clinically relevant stress (WHO, 1992).

While many potential pathogenic factors have been discussed for somatoform disorders (SD) and related diagnoses, the pathogenesis of the symptoms is still unclear. There is some evidence that physically and sexually abused people have a higher risk of developing a somatoform disorder (Faras et al., 2009), as are persons with insecure or disorganized/disoriented attachment style (Waller et al., 2004). Barsky (1992) describes a cognitive style called “somatosensory amplification”, which can be applied to many patients with somatoform disorder. Patients with somatoform disorder often exhibit a heightened focus on their own bodies, perceiving their bodily complaints quicker as illness than healthy people do. The term “central sensitization” has recently been used to describe a neurobiological process, which assumes that symptom onset is associated with a hyper-responsive neural network in high-risk individuals (Bourke et al., 2015; Nijs et al., 2012; Phillips and Clauw, 2011). Patients with SD rate normally innocuous stimuli as painful stimulation due to an alteration of the network (Bourke et al., 2015). Additionally, patients perceive their complaints as illness and thus display augmented bodily attention (Barsky, 1992).
Risk factors for SD are, amongst others, personality traits like neuroticism and alexithymia, childhood adversity, physical trauma, infections as triggers, and changes in the hypothalamic–pituitary–adrenal axis or in the immune system (American Psychiatric Association, 2013; Bourke et al., 2015; Burba et al., 2006; Rief and Henningsen, 2011).

Neuroimaging methods, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and voxel-based morphometry (VBM) enable us to investigate neuronal activities and structural differences between different subpopulations. For instance, Yildirim et al. (2012) found smaller pituitary volumes in somatization patients than in a healthy control group, while Atmaca et al. (2011) examined differences in hippocampal and amygdalar volumes. Bourke et al. (2015) report that the most commonly found components of the neural network in central sensitization are, on the one hand the insula, which is involved in multimodal pain input (Peyron et al., 2002), threat detection (Critchley et al., 2002), interoception (Craig, 2003a) or emotional regulation (Gray et al., 2007), and motivation (Balleine and Dickinson, 2000), and on the other hand, the striatum (Zink et al., 2003), functionally involved in multimodal pain input (Peyron et al., 2002), threat and stress responses (Zald and Pardo, 2003) or reward processing (Kringelbach and Berridge, 2009), which is involved in the central augmentation of innocuous stimuli (Iannetti et al., 2006), novelty (Iannetti et al., 2008), and context (Näätänen et al., 2007). Although neuroimaging findings have led to a better understanding of the pathogenesis of SD and other functional somatic syndromes (FSS), the evidence of neurobiological changes of FSS is still contradictory, as is true for SD. Additionally, there is evidence to support that FSS might be based on changes of the central nervous system, resulting in a common central augmentation of innocuous stimuli to pain (Bourke et al., 2015). The aims of this meta-analysis are to identify consistently differing neuronal areas that are involved in SD. Additionally, we hypothesize that identified areas coincide with theoretical models, e.g. central sensitization (Bourke et al., 2015; Perez et al., 2015).

2. Material and methods

2.1. Literature search

We searched the scientific databases Pubmed, ISI web of knowledge, Scopus, Cochrane database, Psycinfo, and Psyndex for relevant publications with the following terms: (“somatic symptom disorder” OR “somatoform disorder” OR “somatization” OR “functional somatic symptoms” OR “functional somatic syndrome” OR “somatization disorder”) AND (“neuro imaging” OR (“magnetic resonance imaging” OR (“magnetic” AND “resonance” AND “imaging”) OR “magnetic resonance imaging” OR “fMRI”) OR (“magnetic resonance imaging” OR (“magnetic” AND “resonance” AND “imaging”) OR “magnetic resonance imaging” OR “MRI”) OR PET OR VBM). Abstracts and titles were scanned by MB and LA, excluding coordinates in Talairach space via the icbm2tal tool (Laird et al., 2010; Lancaster et al., 2007) providing by brainmap.org (Eickhoff, 2014). We calculated a cluster-level of 0.05 with 1000 threshold permutations, a minimum cluster size of 240 mm3 and Cluster forming value of 0.001. ALE maps were visualized with Mango version 3.7 (1415) (Mango, 2014) to investigate threshold maps that were superimposed on a standard anatomical image (Collin1.1.1.ni). We summed healthy controls and patients to quantify our number of subjects. To calculate the most conservative ALE analysis, for each dataset we entered the number of individuals participating in the experiment with the lowest number of participants. Publications analyzing the same individuals were subsumed under one publication, in order to prevent overestimating the influence of these individuals on the whole sample. All reported foci of these publications entered ALE analysis, including the foci lying outside of the mask, as small proportions of outside foci do not influence results. In the results, the nearest gray matters within ±5 mm are reported.

3. Results

3.1. Study selection

The systematic literature search yielded 686 research articles on SD (Fig. 1). Search results included 143 duplicates, resulting in 543 studies eligible for abstract and title review. The title and abstract review resulted in 507 excluded studies, leaving 36 studies for full text analysis. After the exclusion of non-eligible publications ($n = 27$), ten studies (Table 1) were included in the meta-analysis. Several studies were based on the same population; namely two by de Greck and colleagues (de Greck et al., 2012; de Greck et al., 2011) as well as three publications by a working group from China (Song et al., 2015; Su et al., 2014; Zhang et al., 2015). We subsumed all of the results based on the sample within one dataset to prevent pseudo-replication and overestimating the influence of these individuals on the results. We analyzed seven datasets when using all studies, six when excluding structural studies. Thus, 243 individuals entered the full analysis including structural and functional studies, while 204 subjects the analysis focusing on functional studies (Table 1). Five foci were outside the mask in both analyses, whereby functional and structural analysis has a total of 107 foci and functional analysis 90 foci.

3.1.1. ALE clusters of somatoform disorders

Five brain areas have been identified to repeatedly differ between patients with SD and healthy controls (Table 2) according to the calculated clusters. Out of the ten publications contributing to the calculations two did not contribute to any of the ALE clusters (Gündel et al., 2008; Yoshino et al., 2014).
3.1.2. Functional areas of ALE clusters of SD in functional studies

In cluster 1 the dorsal posterior cingulate cortex (dPCC, Brodmann area (BA) 30 & 31) was identified to be significantly different across studies comparing patients and HC (Egloff et al., 2009; Song et al., 2015; Su et al., 2014; Zhang et al., 2015), while in Cluster 2 (de Greck et al., 2011, 2012; Stoeter et al., 2007) the anterior prefrontal cortex (aPFC, BA 10) and in cluster 3 (Egloff et al., 2009; Stoeter et al., 2007) the insula (BA 13).

3.1.3. Functional areas of ALE clusters of SD in structural and functional studies

In cluster 1 the aPFC (BA 10) was identified to be significantly different between patients and HC across several studies (de Greck et al., 2011, 2012; Song et al., 2015; Stoeter et al., 2014; Su et al., 2014; Zhang et al., 2015). The premotor and supplementary motor cortex (PSMC, BA 6) including the lateral and medial supplementary motor area (BA 8), which is significant in cluster 2 (de Greck et al., 2011, 2012; Egloff et al., 2009), is also within the 5 mm boundary in SD. While in cluster 3 (Egloff et al., 2009; Song et al., 2015; Su et al., 2014; Zhang et al., 2015) the aPFC (BA 30 & 31) is differentially activated. In cluster 4 the anterior cingulate cortex (ACC, BA 24 & 32) (Egloff et al., 2009; Valet et al., 2009) varies significantly between patients with SD and healthy controls (Fig. 2).

4. Discussion

In this meta-analysis, we present the results of an ALE-analysis on SD using the results of published neuro-imaging (MRI, SPECT, PET) studies. We herewith provide a first attempt to combine various studies to find consistent significant neurobiological differences between healthy controls and patients with SD. In both analyses combined we identified five areas showing functional and/or structural differences between the two groups of interest, namely the dorsal posterior cingulate cortex, anterior cingulate cortex, the anterior prefrontal cortex, the insula and the premotor and supplementary motor cortex.

We found significant differences between patients and controls in the ACC (Egloff et al., 2009; Valet et al., 2009). Functional studies showed that the ACC processes amongst others emotion (Kawamoto et al., 2012; Killgore and Yurgelun-Todd, 2007), attention (Nebel et al., 2005), and pain (Büchel et al., 2002; Lloyd et al., 2004). Changes in the ACC have been reported in cases of pain-induced depression (Barthas et al., 2014) and anxiety disorder (Shinoura et al., 2013). Patients with FSS experience alterations of attention, anticipation, and pain memories that correlate with increased activity of the ACC. These also correlate with the prefrontal areas and the ACC when stimulated below pain thresholds in both patients with FMS (Cook et al., 2004; Peyron et al., 2000) and IBS (Andreassen et al., 2005; Naliboff et al., 2001). Additionally, studies on FMS repeatedly report reduced activation of the ACC during nocuous stimulation (e.g.; Gracely et al., 2002; Jensen et al., 2009; Lee et al., 2013). The interaction of the ACC with prefrontal areas is in correlation with the negative forecasting while catastrophizing (Seminowicz and Davis, 2006).

The changed interaction between ACC and prefrontal areas might be represented in our data, as we also found changes in the aPFC, a part of the middle frontal gyrus (de Greck et al., 2011, 2012; Stoeter et al., 2007). Chronic back pain disrupts normal functioning in the default mode network (DMN) also represented in the middle frontal gyrus of our results (Laird et al., 2009; Tagliazucchi et al., 2010). Changes in cortical thickness in the middle frontal gyrus have been shown to be reversible with back pain surgery (Seminowicz et al., 2011), whereby the resulting increases in gray matter in the MFG resulted in a reduction of pain and physical disability (Seminowicz et al., 2011). Patients with IBS show reductions of gray matter (Seminowicz et al., 2010) similar to the reductions of gray matter in patients with SD, as well as reductions of activation in the middle frontal gyrus (de Greck et al., 2011, 2012; Song et al., 2006; Stoeter et al., 2007).

Another important area for the occurrence of SD and that shares important interactions with the ACC is the insula. The insula is known to be important for pain processing (Fitzek et al., 2004; Kong et al., 2006; Schoedel et al., 2008; Strigo et al., 2003) and in paradigms when painful

Table 1

Citation	Type of disorder	Number of participants	Imaging method	Task
de Greck et al. (2011)	Somatoform disorder	P:20 (12f); HC: 20 (12f)	MRI (1.5T)	Monetary reward task
de Greck et al. (2012)	Somatoform disorder	P:20 (12f); HC: 20 (12f)	MRI (1.5T)	Emotional empathy
Gündel et al. (2008)	Somatoform pain disorder	P:12 (12f); HC: 20 (13f)	MRI (1.5T)	Noxious heat stimuli
Egloff et al. (2009)	Chronic pain, not explained by peripheral tissue damage	P:11 (6f); HC: 12 (6f)	PET	Glucose metabolism resting state
Song et al. (2015)	Somatization disorder	P:25 (21f); HC: 28 (22)	MRI (3.0T)	Resting state (ReHo)
Stoeter et al. (2007)	Somatization disorder	P:17 (11f); HC: 17 (11f)	MRI (3.0T)	Pin-prick stimulation, emotional and cognitive stress
Su et al. (2014)	Somatization disorder	P:25 (21f); HC: 28 (22)	MRI (3.0T)	Resting state (ALFF)
Valet et al. (2009)	Pain disorder, without any somatic cause	P:14 (14f); HC: 14 (14f)	MRI (1.5T)	VBM structural scan
Yoshino et al. (2014)	Somatization disorder	P: 9 (4); HC: 20 (13)	MRI (3.0T)	Resting state (ReHo)
Zhang et al. (2015)	Somatization disorder	P:25 (21f); HC: 28 (22)	MRI (3.0T)	DTI structural scan

P: patients; HC: healthy controls; T:Tesla; MR: magnetic resonance tomography; PET: positron emission tomography; f: number of females; ReHo: regional homogeneity; ALFF: fractional amplitude of low-frequency fluctuations.
stimulation is expected (Sawamoto et al., 2000). Activation of the insula has been reported primarily for cutaneous pain rather than visceral pain (Strigo et al., 2003). In patients with FMS, the activation of the insula was connected to experiments on pain expectation (Gracely et al., 2007). Egloff et al. (2009) show that in cases of non-painful stimuli, the insula activation is correlated with heightened sensory coding of stimuli, which is coded as innocuous in healthy patients (Cook et al., 2004; Perez et al., 2015). This effect has also been shown in patients with IBS (Berman et al., 2008). Medial and posterior parts of the insula are significantly different area that is connected with the thalamus and was brought into connection for a first application of the DMN in schizophrenia are related to overtly increased self-reference, at-tention directedness and impairments of working memory, while in depressive patients hyper-activation of the DMN might correlate with negative rumination (Whitfield-Gabrieli and Ford, 2012). Out of the four core regions (Whitfield-Gabrieli and Ford, 2012) of the DMN (medial prefrontal cortex (BA 10, 24, 23); PCC and retrosplenial cortex (BA 29, 30, 23, 13); left and right inferior parietal lobules (BA 39, 40)), all except the inferior parietal lobules seem to be dysfunctional in patients with SD. The DMN is also related to personal introspection, autobiographical memories, and thoughts about the future. Thus, disruptions of the DMN can lead to alexithymia as well as increased introspection and reflection of others (Buckner et al., 2008; Saxe et al., 2004; Whitfield-Gabrieli and Ford, 2012), aspects often observed in patients with SD.

In our analysis we found that evaluative regional areas like PCC, ACC, and insula are likely to have a high influence on the occurrence of SD. Thus it might be similar to sleep deprived individuals, who show an increased pain sensitivity (Schrimpf et al., 2015) that is based on changes of the evaluative brain network, which influences clinical pain complaints but not pain thresholds (Busch et al., 2012). Therefore, it seems

Table 2

Cluster	# of datasets	Gray matter at center	Additional gray matter within 5 mm	Center	Vol. mm³	Studies included
Functional studies						
Cluster 1	2	BA 31: dorsal posterior CC	BA 30: part of posterior CC	x = −13.2, y = −62.6, z = 15.1	384	Egloff et al. (2009), Song et al. (2015), Su et al. (2014), Zhang et al. (2015)
Cluster 2	2	BA 10: anterior prefrontal cortex		x = 23.4, y = 50.3, z = 7.3	304	de Greck et al. (2011, 2012), Stoeter et al. (2007)
Cluster 3	2	BA 13: Insula		x = −37.3, y = −21.1, z = 19.8	256	Egloff et al. (2009), Stoeter et al. (2007)
Structural & functional studies						
Cluster 1	3	BA 10: anterior prefrontal cortex	BA 8: lateral and medial supplementary motor area	x = −43.2, y = 14.6, z = 48.7	376	de Greck et al. (2011, 2012), Song et al. (2015), Stoeter et al. (2007), Su et al. (2014), Zhang et al. (2015)
Cluster 2	2	BA 6: premotor and supplementary motor cortex	BA 31: dorsal posterior CC	x = 21.8, y = 50.9, z = 7.5	808	de Greck et al. (2011, 2012), Song et al. (2015), Stoeter et al. (2007), Su et al. (2014), Zhang et al. (2015)
Cluster 3	2	BA 31: dorsal posterior CC	BA 30: part of posterior cingulate cortex	x = 13.3, y = −62.5, z = 15.1	352	Egloff et al. (2009), Song et al. (2015), Su et al. (2014), Zhang et al. (2015)
Cluster 4	2	BA 32: anterior CC	BA 24: part of anterior CC	x = −6.2, y = 33.7, z = −2.2	272	Egloff et al. (2009), Valet et al. (2009)

Brodman Area (BA), Cingulate cortex (CC), number (#), x-, y-, z-coordinates in Talairach space.
that central mechanisms like central sensitization might have a higher impact than peripheral mechanisms like spinal sensitization. This un-
specific network of higher brain functions was also called ‘neuromatrix’ (Melzack, 2001). This network that previously was also called ‘painmatrix’ (Iannetti and Mouraux, 2010) is not specific for pain as it is active in various conscious processes (Melzack, 2001). The ‘neuromatrix’ has been divided in three subsystems, namely the lateral (sensory and discriminative), medial (affective and motivational) and frontal (cognitive and evaluative) system (Apkarian et al., 2005; Melzack, 2001). SD patients appear to have mainly changes in medial and frontal parts of the neuromatrix, responsible for affective and evaluative responses. This has specifically shown for pain where affective components were processed in dACC, while sensory components are processed by primary and secondary somatosensory cortex (S1, S2) and the posterior part of the insula (PI) (Treede et al., 1999). According to our meta-analysis the somatosensory cortex is not found to be different between SD patients and HC in our study. Though, differences in the posterior part of the insula, responsible for somatosensory processes of pain, do show differences.

4.1. Limitations

By undertaking an ALE analysis of SD, we were able to include a sample of 243 (204 functional) individuals from ten respectively 8 functional studies, and nine (7 functional) datasets. In our analysis two studies did not contribute to any of the resulting clusters (Gündel et al., 2008; Yoshino et al., 2014). This resulted in a sample, with which we were able to identify neurobiological similarities within this disorder. We have to report, that the foci included in our study are uncorrected for intervening factors, such as varying experimental design, imaging parameters, analysis software, etc. Still, we think that due to the meta-analytic approach, it was possible to identify some commonalities amongst patients via this ALE analysis. Especially when comparing our results with previous theoretical models based on various imaging studies.
across paradigms and neuroimaging methods, our meta-analytical perspective bases its conclusion on statistical testing and can thus contrast to merely theoretically driven functional models. Still, as some of the studies that were included for the proposal of the circuit model did not report any coordinates and were thus not included in our analysis, some differences between the model of Perez et al. (2015) and ours might be based on the difference between inclusion criteria. Additionally, most studies used mainly female participants. Thus, all results may be applicable to female patients with SD only. In future studies, it would be highly advantageous to look for studies including male patients with SD, as it has been shown that differences between male and female patients do exist in somatoform disorders (Labus et al., 2008, 2013). Finally, specificity of our results for SD might be limited, as Hsu et al. (2009) has shown that gray matter changes in FMS patients are dependent on affective disorder rather than on FMS. A similar effect might underlie the selected studies. This might be especially critical, as it has been found that SD and depression are highly comorbid (Busch et al., 2012). Thus, future functional and structural studies should control for affective disorders. Additionally, a recent meta-analysis revealed that changes in the dorsal ACC, as well as the left and right insula are common to all psychiatric diagnoses (Goodkind et al., 2015) and might not be specific to SD.

5. Conclusions

This meta-analysis underlines neurobiological aspects of SD. In SD, the premotor and supplementary motor cortex, the middle frontal gyrus, the anterior cingulate cortex, the insula and the posterior cingulate cortex seem to be of particular importance. Furthermore, these results seem in line with the hypothesis of “central sensitization” (CS) (Bourke et al., 2015) especially when looking at the neurobiological model (Perez et al., 2015). Still discrepancies do exist and future research is needed in order to better understand the underlying brain network and mechanisms. However, it is important to also consider the influence of a co-morbid depression. Hsu et al. (2009), for example, found no consistent difference in gray matter volume between FMS patients when controlling for affective disorder (Hsu et al., 2009). Thus, future neuroimaging studies should consider the role of affective disorders when investigating somatoform disorder. Still, it is conceivable that many FSS, independent of the clinical impression, show similar neurobiological processes. However, we expect specificities to be at work in each single FSS and thus presented results for SD only. Investigating neurobiological mechanisms of various FSS like SD will help to understand the aetiology of the disorders, lead away from medically unexplained syndromes, and might in the long run help to develop better treatment programs for patients suffering from SD.

Conflict of interests

The authors have no conflicts of interest to report.

Acknowledgements

We would like to thank our interns for helping in numerous ways during the research process. For supporting us with an initial abstract analysis form, we thank Prof. Gerald Garthelner. We would also like to thank Stephanie Larumbe for her comments on the manuscript.

References

American-Psychiatric-Association, 2013. Diagnostic and Statistical Manual of Mental Disorders: Dsm-5. Amer Psychiatric Pub Incorporated.
Andresen, V., Bach, D.R., Poelinger, A., Tsourya, C., Stroh, A., Foerschler, A., Georgiewa, P., Zimmer, C., Monnikes, H., 2005. Brain activation responses to subliminal or supraliminal rectal stimuli and to auditory stimuli in irritable bowel syndrome. Neurogastroenterol Motil. 17, 827–837.
Apkarian, A.V., Bushnell, M.C., Treede, R.D., Zubieta, J.K., 2005. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484.
Araujo, M., Sirlier, B., Yildirim, H., Kayali, A., 2011. Hippocampal and amygdalar volumes in patients with somatization disorder. Prog. Neuro-PsychoPharmacol. Biol. Psychiatry 35, 1699–1703.
Balleine, B.W., Dickinson, A., 2000. The effect of lesions of the insular cortex on instrumental conditioning: evidence for a role in incentive memory. J. Neurosci. 20, 8954–8964.
Barsky, A.J., 1992. Amplification and sensitization in irritable bowel syndrome. Gastroenterology 103, 498–504.
Barsky, A.J., 1992. Amplification and sensitization in irritable bowel syndrome. Gastroenterology 103, 498–504.
Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., 2008. The brain’s default network. Ann. N. Y. Acad. Sci. 1124, 1–88.
Burd, R., Oswald, R., Grigaliunien, V., Nevalainen, A., Jankuviene, O., Chue, P., 2006. A controlled study of alexithymia in adolescent patients with persistent somatoform pain disorder. Can. J. Psychiatry 51, 488–491.
Busch, V., Haas, J., Crömelein, T., Pieh, C., Geisler, P., Hjakal, C., Eichhammer, P., 2012. Sleep deprivation in chronic somatoform pain-effects on mood and pain regulation. Psychiatry Res. 195, 134–143.
Cauda, F., Geminiani, G., D’agata, F., Sacco, D., Buonaguro, L., Piana, S., Caccia, A.M., Valeriani, M., 2011. Functional connectivity of the somatosensory cortex. PLoS One 6, e13107.
Cook, D.B., Lange, G., Ciccone, D.S., Liu, J.C., Strother, S.C., 2004. Somatoform disorders in general practice: prevalence, functional impairment and comorbidity with anxiety and depressive disorders. Br. J. Psychiatry 185, 470–476.
Craig, A., 2003a. Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13, 500–505.
Craig, A., 2003b. A new view of pain as a homeostatic emotion. Trends Neurosci. 26, 303–307.
Critchley, H.D., Mathias, C.J., Dolan, R.J., 2002. Fear conditioning in humans: the influence of autonomic and arousal areas on functional neuroanatomy. Neuron 33, 653–663.
Brooks, J., Zambreanu, L., Godinez, A., Tracey, I., 2005. Somatosensory cortex is a functional component of cortical reorganisation and phantom limb pain. Lancet 365, 1699–1703.
Burba, B., Oswald, R., Grigaliunien, V., Nevalainen, A., Jankuviene, O., Chue, P., 2006. A controlled study of alexithymia in adolescent patients with persistent somatoform pain disorder. Can. J. Psychiatry 51, 488–491.
Busch, V., Haas, J., Crömelein, T., Pieh, C., Geisler, P., Hjakal, C., Eichhammer, P., 2012. Sleep deprivation in chronic somatoform pain-effects on mood and pain regulation. Psychiatry Res. 195, 134–143.
Cauda, F., Geminiani, G., D’agata, F., Sacco, D., Buonaguro, L., Piana, S., Caccia, A.M., Valeriani, M., 2011. Functional connectivity of the somatosensory cortex. PLoS One 6, e13107.
Cook, D.B., Lange, G., Ciccone, D.S., Liu, J.C., Strother, S.C., 2004. Somatoform disorders in general practice: prevalence, functional impairment and comorbidity with anxiety and depressive disorders. Br. J. Psychiatry 185, 470–476.
Egloff, N., Sabbioni, M.E., Salatèi, C., Wiest, R., Juengling, D.D., 2009. Nondemotional somatopsychic deficits in patients with chronic pain disorder: clinical findings and hypnotic metabolic pattern in FTD-PET. Pain 145, 252–258.
Eich, W., Häuser, W., Friedel, E., Klement, A., Herrmann, M., Petzke, F., Offenhäuser, M., Schiltenwolf, M., Sommer, C., Tölle, T., 2008. Definition, Klassifikation und Diagnose des Fibromyalgiesyndroms. Schmerz 22, 255–266.
Eickhoff, SB., 2014. brainmap.org.
Eickhoff, SB., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., Fox, PT., 2009. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30, 2907–2926.
Eickhoff, SB., Bzdok, D., Laird, A.R., Kurth, F., Fox, PT., 2012. Activation likelihood estimation meta-analysis revisited. NeuroImage 59, 2349–2361.
Fitzek, S., Fitzek, C., Huonen, R., Reichenbach, J.R., Mentre, H.J., Witt, O.W., Kaiser, W.A., 2004. Event-related fMRI with painful electrical stimulation of the trigeminal nerve. Magn. Reson. Imaging 22, 205–209.
Flor, H., Denke, S., Schaeler, M., Grüsser, S., 2001. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 357, 1763–1764.
Gao, W., Zhu, H., Giovanisello, S.K., Smith, J.K., Shen, D., Gilmore, J.H., Lin, W., 2009. Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc. Natl. Acad. Sci. 106, 6790–6795.
Goodkind, N., Eickhoff, S.B., Schmitz, D.J., Yang, X., Chang, A., Jones-Hagata, L.B., Ortega, B.N., Zaiko, Y.V., Roach, E.L., Korgaonkar, M.S., 2015. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315.
Gracey, R.H., Petzke, F., Wolf, J.M., Clow, D.J., 2002. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 46, 1333–1341.
Näätänen, R., Paavilainen, P., Rinne, T., Alho, K., 2007. The mismatch negativity (MMN) in
subjects. Pain 154, 2088

Meyer, C., Rumpf, H.J., Hapke, U., Dilling, H., John, U., 2000. Lebenszeitprävalenz
reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264

Mango, 2014. Res Imaging Inst website.

Laird, A.R., Robinson, J.L., McMillan, K.M., Tordesillas-Gutiérrez, D., Moran, S.T., Gonzales,
– 316.

Gray, M.A., Harrison, N.A., Wiens, C., Critchley, H.D., 2007. Modulation of emotional appra-
seals physiological feedback during fMRI. PloS One 2, e46

Güdem, H., Valet, M., Schöpfer, H., Zimmer, C., Spenger, T., Tolle, T.R., 2008. Altered cerebral
to noxious heat stimulation in patients with somatofacial pain
Order. Pain 137, 413–421.

Häuser, W., Henningsen, P., 2014. Fibromyalgia syndrome: a somatofacial disorder? Eur.
J. Pain 18, 1052–1059.

henningens, P., Toelle, T., Guendel, H., 2010. Aftermath of sexual abuse history on
work for somatosensory amplification in chronic back pain patients. Neurosci. Lett. 485, 26

Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R., 2010. Brain resting state is
– 212.

Shinoura, N., Yamada, R., Tabei, Y., Shiode, T., Itoi, C., Saito, S., Midorikawa, A., 2013. The
– 907.

Strigo, I.A., Duncan, G.H., Boivin, M., Bushnell, M.C., 2003. Differentiation of visceral and
cortical responses to pain in healthy individuals during provoked pain. Pain 144, 95

Nebel, K., Wiese, H., Stude, P., de Greiff, A., Diener, H.C., Keidel, M., 2005. On the neural
basis of focused and divided attention. Brain Res. Cogn. Brain Res. 25, 760

Nachtigall, C., Wellmark, M., Dalsgaard, S., Jørgensen, L., 2013. Suplementation with
acetyl-L-carnitine in patients with central sensitization. Headache 53, 518

Mair, A., Barose, R., Schöner, U., Binder, A., Birklein, F., Deuschl, G., Handwerker, H.O.,
Schattschneider, J., 2007. The motor system shows adaptive changes in complex regional
pain syndrome. Brain 130, 2671–2678.

Mamoto, H., Takahashi, S., 1998. Abnormal activation in the left anterior cingulate cortex
in the first-episode, treatment-naive somatization disorder. PLoS One 9, e99273.

Song, H.G., Venkatraman, V., Ho, K.Y., Chee, M.W., Yeoh, K.G., Wilder-Smith, C.H., 2006. Cortical
effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. PLoS Med. 3, e79–90.

Song, Y., Su, Q., Jiang, M., Liu, F., Yao, D., Li, Y., Lu, Y., Liu, J., Zhang, Z., Jiang, X., Guo, W., 2015. Abnormal regional homogeneity and its correlation with personality in first-episode, treatment-naive somatization disorder. Int. J. Psychophysiol. 96, 90–99.

Stoefer, P., Bauermann, T., Nickel, R., Corulka, L., Gawehn, J., Vucurevic, G., Vossel, G., Eule,
U.T., 2007. Cerebral activation in patients with somatoform pain disorder exposed to pain and stress: an fMRI study. NeuroImage 36, 418–430.

Strigo, I.A., Duncan, G.H., Boivin, M., Bushnell, M.C., 2003. Differentiation of visceral and cutaneous pain in the human brain. J. Neurophysiol. 89, 3294–3303.

Su, Q., Yao, D., Jiang, M., Liu, F., Jiang, X., Xu, C., Dai, Y., Yu, M., Liu, L., Li, H., Liu, J., Zhang, Z., Jiang, X., Xiao, C., Guo, W., 2014. Discrimination of somatic disorder in adult male network: a comparison between non-medication-naive and medication-naive somatization disorder. PLoS One 9, e95570.

Swart, C., Stins, J.F., Beek, P.J., 2009. Cortical changes in complex regional pain syndrome: a pilot study. Neuroreport 20, 36–31.

Treedee, R.-D., Kenshala, D.R., Gracely, R.H., Jones, A.K., 1999. The cortical representation of pain. Pain 79, 105–111.

Turkelbaeva, P.E., Eckhoff, S.B., Laird, A.R., Fox, M., Wiener, M., Fox, P., 2012. Minimizing within-imaging and between-imaging effects in activation likelihood estimation meta-analyses. Hum Brain Mapp. 33, 1–13.

Nijss, J., Meeus, M., Van Oosterwijck, J., Ickmans, K., Moorkens, G., Hans, G., De Clerck, L.S., 2012. In the mind or in the brain? Scientific evidence for central sensitisation in fibromyalgia. PLoS One 7, e31995.

Noll-Hussong, M.,otti, A., Laer, L., Wohlschläger, A., Zimmer, C., Lahmann, C., Henningsen,
P., Toelle, T., Guendel, H., 2010. Aftermath of sexual abuse history on adult patients suffering from chronic functional pain syndromes: an fMRI pilot study. Pain Res. and Behav. Sci. 42, 203–211.

Paras, M.L., Murad, M.H., Chen, L.P., Goranson, E.N., Sattler, A.L., Colbenson, K.M., Elamin,
M.B., Seime, R.J., Prokop, L.J., Zirakzadeh, A., 2009. Sexual abuse and lifetime diagnosis of somatoform disorders: a systematic review and meta-analysis. JAMA 302, 550–561.

Perez, D.J., Barsky, A.J., Vago, D.R., Baskin, G., Sibberng, D.A., 2015. A neural circuit frame-
work for somatosensory amplification in somatoform disorders. J. Neuropsychiatry Clin. Neurosci. 27, e40–e50.

Peyron, R., Laurent, B., Garcia-Larrea, L., 2000. Functional imaging of brain responses to pain: A review and meta-analysis (2000). NeuroImage. Clin. 30, 263–288.

Peyron, R., Frot, M., Schneider, F., Garcia-Larrea, L., Mertens, P., Barral, F., Sindou, M.,
Laurent, B., Mauguière, F., 2002. Role of operculomotor cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recording of evoked potentials. NeuroImage 17, 1336–1346.

Phillips, K., Cauquiz, D.J., 2011. Central pain mechanisms in chronic pain states—maybe it is all in their head. Best Pract. Res. Clin. Rheumatol. 25, 141–154.

Piech, C., Lahmann, C., Heymann, F., Trift, K., Loew, T., Busch, V., Probst, T., 2010. Prevalence and comorbidity of somatoform disorder in psychosomatic inpatients: a multicentre study. Z. Psychosom. Med. Psychot. 57, 244–250.

Puri, B., Agour, M., Gunatilake, K., Fernando, K., Gurusighe, A., Treasaden, L., 2010. Reduc-
tion in left supplementary motor area grey matter in adult female fibromyalgien suf-
ters with marked fatigue. J. Pain 11, 90–95.

Purves, D., Brown, S.P., 2004. Ruben’s Photographic Atlas of the Human Brain. Elsevier
– 1205.

Puri, B., Agour, M., Gunatilake, K., Fernando, K., Gurusighe, A., Treasaden, L., 2010. Reduc-
tion in left supplementary motor area grey matter in adult female fibromyalgien suf-
ters with marked fatigue. J. Pain 11, 90–95.

Purves, D., Brown, S.P., 2004. Ruben’s Photographic Atlas of the Human Brain. Elsevier
– 1205.

Puri, B., Agour, M., Gunatilake, K., Fernando, K., Gurusighe, A., Treasaden, L., 2010. Reduc-
tion in left supplementary motor area grey matter in adult female fibromyalgien suf-
ters with marked fatigue. J. Pain 11, 90–95.

Purves, D., Brown, S.P., 2004. Ruben’s Photographic Atlas of the Human Brain. Elsevier
– 1205.

Purves, D., Brown, S.P., 2004. Ruben’s Photographic Atlas of the Human Brain. Elsevier
– 1205.

Purves, D., Brown, S.P., 2004. Ruben’s Photographic Atlas of the Human Brain. Elsevier
– 1205.

Purves, D., Brown, S.P., 2004. Ruben’s Photographic Atlas of the Human Brain. Elsevier
– 1205.

Purves, D., Brown, S.P., 2004. Ruben’s Photographic Atlas of the Human Brain. Elsevier
– 1205.
Valet, M., Guendel, H., Sprenger, T., Sorg, C., Muehlau, M., Zimmer, C., Henningsen, P., Toelle, T.R., 2009. Patients with pain disorder show gray-matter loss in pain-processing structures: a voxel-based morphometric study. Psychosom. Med. 71, 49–56.

Vann, S.D., Aggleton, J.P., Maguire, E.A., 2009. What does the retrosplenial cortex do? Nat. Rev. Neurosci. 10, 792–802.

Waller, E., Scheidt, C.E., Hartmann, A., 2004. Attachment representation and illness behavior in somatoform disorders. J. Nerv. Ment. Dis. 192, 200–209.

White, P.D., 2010. Chronic fatigue syndrome: is it one discrete syndrome or many? Implications for the “one vs. many” functional somatic syndromes debate. J. Psychosom. Res. 68, 455–459.

White, P.D., 2013. Functional somatic syndromes may be either “polysyndromic” or “monosyndromic”. J. Psychosom. Res. 74, 2–3.

Whitfield-Gabrieli, S., Ford, J.M., 2012. Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8 (8) (49–+).

WHO, 1992. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. World Health Organization, Geneva.

Wittchen, H.-U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jönsson, B., Olesen, J., Allgulander, C., Alonso, J., Faravelli, C., 2011. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 655–679.

Yildirim, H., Atmaca, M., Sırlier, B., Kayali, A., 2012. Pituitary volumes are reduced in patients with somatization disorder. Psychiatry Investig. 9, 278–282.

Yoshino, A., Okamoto, Y., Kunito, Y., Yoshimura, S., Jinnin, M., Hayashi, Y., Kobayakawa, M., Doi, M., Oshita, K., Nakamura, R., 2014. Distinctive spontaneous regional neural activity in patients with somatoform pain disorder: a preliminary resting-state fMRI study. Psychiatry Res. Neuroimaging 221, 246–248.

Zhang, J., Jiang, M., Yao, D., Dai, Y., Long, L., Yu, M., Liu, J., Zhang, Z., Xiao, C., Guo, W., 2015. Alterations in white matter integrity in first-episode, treatment-naive patients with somatization disorder. Neurosci. Lett.

Zink, C.F., Pagnoni, G., Martin, M.E., Dhamala, M., Berns, G.S., 2003. Human striatal response to salient nonrewarding stimuli. J. Neurosci. 23, 8092–8097.