Heavy Quarkonia at LHCb

R. Cardinale$^{1,\ast}$ on behalf of the LHCb collaboration.

$^1$Department of Physics and INFN Genova, via Dodecaneso 33, 16146 Genova (Italy)

Abstract. The $pp$ collision data collected by the LHCb experiment during Run I provides a great opportunity for heavy flavour studies. The latest results on exotic states and quarkonia production are reported.

1 Introduction

Thanks to the large center-of-mass energy available at the LHC, $b\bar{b}$ and $c\bar{c}$ pairs are produced with great abundancy, which provides great opportunities for studying production and properties of heavy hadrons. The LHCb experiment has collected data in 2011 and 2012 corresponding to an integrated luminosity of 1 fb$^{-1}$ at $\sqrt{s} = 7$ TeV centre-of-mass energy and 2 fb$^{-1}$ at $\sqrt{s} = 8$ TeV respectively. With this large statistics, its efficient trigger, its excellent momentum resolution and particle identification, LHCb is the ideal place to perform hadron spectroscopy studies.

2 Exotic states

In the last few years a number of quarkonium-like states, generally called as $X$, $Y$ and $Z$ that do not fit the conventional picture, have been discovered. The existence of tetraquarks, hadronic molecules, and other bound states involving gluons has been invoked to explain these exotic states, but a compelling unified description has not yet emerged. At LHCb high-precision studies of the $X(3872)$ and the $Z(4430)^-$ states have been performed.

2.1 $X(3872)$

The $X(3872)$, discovered by Belle in 2003 in the $J/\psi\pi^+\pi^-$ invariant mass distribution of $B^- \rightarrow J/\psi\pi^+\pi^- K^+$ decays [1] and subsequently observed by several other experiments, was the first charmonium-like state found not to fit the conventional quarkonium description. The $X(3872)$ is particularly intriguing since decaying into $J/\psi\pi^+\pi^-$ leads to a natural interpretation as a charmonium excitation, on the other hand the closeness of its mass to the $D^0\bar{D}^0$ threshold and its prominent decay to $D^0\bar{D}^0$ suggest that it may be an example of a hadron molecule with an extremely small binding energy. After measuring the $X(3872)$ mass and production cross-section in $pp$ collisions [2], LHCb has also determined its quantum numbers to be $J^{PC} = 1^{++}$ [3] ruling out with a significance of more than eight standard deviations the only alternative assignment allowed by previous measurements $J^{PC} = 2^{-+}$ [4]. These quantum numbers favour the conventional charmonium state $X_{c1}(2P)$. Despite this large experimental effort, after more than 10 years since its discovery, nowadays its nature is still unclear.

One of the quantities, which is sensitive to the nature of the $X(3872)$ state is the ratio of the branching fractions for radiative decays to $\psi(2S)\gamma$ and $J/\psi\gamma$

$$R_\gamma = \frac{B(X(3872) \rightarrow \psi(2S)\gamma)}{B(X(3872) \rightarrow J/\psi\gamma)}$$

This ratio is predicted to be in the range $(3 - 4) \times 10^{-3}$ for a $D^0\bar{D}^0$ molecule [7], 1.2-15 for a pure $c\bar{c}$ state [5, 6] and 0.5-5 for a molecule-charmonium mixture [8]. The BaBar collaboration has measured a relative large branching fraction for the $X(3872) \rightarrow \psi(2S)\gamma$ decay, with $R_\gamma = 3.4 \pm 1.4$ [9], a result generally inconsistent with a pure molecular interpretation; in contrast, no significant signal was found by Belle [10]. At LHCb, a search for the $X(3872)$ into $\psi(2S)\gamma$ is performed using $B^+ \rightarrow X(3872)K^+$ decays and reconstructing the $\psi(2S)$ meson in $\mu^+\mu^-$ channel [11]. The data sample corresponds to the full statistics recorded by LHCb during Run1, i.e. 1 fb$^{-1}$ at $\sqrt{s} = 7$ TeV and 2 fb$^{-1}$ at $\sqrt{s} = 8$ TeV.

The signal yield is determined from a two-dimensional unbinned maximum likelihood fit in the $(J/\psi\gamma K^+, J/\psi\gamma)$ and $(\psi(2S)\gamma K^+, \psi(2S)\gamma)$ invariant masses. The invariant mass distributions of $\psi(2S)$ and $\psi(2S)\gamma$ combinations for the $J/\psi$ and $\psi(2S)$ channels are shown in Figure 1. The observed signal in the $\psi(2S)$ channel of $36.4 \pm 9.0$ events has a significance of 4.4. Using the measured yields, the ratio of the branching fractions is calculated to be

$$R_\gamma = 2.46 \pm 0.63(stat) \pm 0.29(syst)$$

This value agrees with the expectations both for a pure charmonium and a molecular-charmonium mixture but does not support a pure $D\bar{D}^*$ molecular interpretation.
2.2 \( Z(4430)^- \)

The exotic state that attracts a lot of attention recently is the charged charmonium-like \( Z(4430)^- \). For a charged charmonium state, the \( Z(4430)^- \) has a minimum quark content of \( c\bar{c}du \) which clearly does not fit into the traditional quark model. This state was first observed by the Belle collaboration as a charged resonance structure in the \( \psi(2S)\pi^- \) invariant mass distribution of the \( B^0 \rightarrow \psi(2S)K^+\pi^- \) decays [12]. Subsequent reanalysis of the data was performed with 2D and 4D amplitude analyses [13]. BaBar collaboration analysed the same decays using a model independent approach and it concluded that the enhancement could be explained as a reflection of the known \( K^* \) states but did not rule out the existence of the \( Z(4430)^- \) either [14].

The LHCb collaboration has investigated resonant structures in \( B^0 \rightarrow \psi(2S)K^+\pi^- \) decays, with the \( \psi(2S) \) decaying into two muons, using \( pp \) collision data corresponding to an integrated luminosity of 3 fb\(^{-1} \) [15]. About 25000 \( B^0 \) candidates were reconstructed with approximately 4% of background in the signal region, as shown in Figure 2. The sample size is about 10 times larger than the ones analysed by \( B \)-factories. Dalitz plot of the selected events in the signal region is shown in Figure 3. Clear contributions from \( K^*(892) \) and kaon states around 1.43 GeV are visible as two vertical bands. The \( Z(4430)^- \) state would correspond to the horizontal band at \( m^2(\psi(2S)\pi^-) \approx 20 \text{ GeV}^2 \).

LHCb has performed an analysis based on the model-independent approach developed by BaBar to check whether the \( m_{\psi(2S)\pi^-} \) spectrum can be understood in terms of any combination of known \( K^* \) resonances. No constraint is imposed on these resonances besides restricting
their maximal spin to two, as the $K^+\pi^-$ invariant mass spectrum is dominated by $S$, $P$ and $D$ partial waves. The description of the $K^+\pi^-$ angular structure is performed in terms of Legendre polynomial moments. The analysis shows that the relatively narrow peaking structure in $m_{\psi(2S)\pi^-}$ cannot be described in terms of moments of $K^+$ resonances as shown in Figure 4.

A full amplitude fit was performed to be able to extract quantitative information about the $Z(4430)^-$ such as its mass, width and spin. The amplitude was calculated in a four-dimensional space using the invariant masses $m_{\psi(2S)\pi^-}$ and $m_{\psi(2S)\pi^-}$, the $\cos \theta_{(2S)}$ which is the $\psi(2S)$ helicity angle and the $\phi$ angle between the $K^{*0}$ and the $\psi(2S)$ planes in the $B^0$ rest frame.

The amplitude model includes all known $K^{*0}$ resonances in various spin states with nominal mass at or slightly above kinematic limits. As shown in Figure 5, the data are not well described when considering only known $K^+ \to K^+\pi^-$ resonances, while a better description is obtained when including in the fit a $Z(4430)^- \to \psi(2S)\pi^-$ with $J^P = 1^+$. Other $J^P$ hypothesis (0$,1^+,2^+$ and $2^-$) are ruled out with a significance larger than nine standard deviations, thus confirming previous indications from Belle [16]. The fit gives for the mass and the width of the $Z(4430)^-$

$$M_{Z^-} = 4475 \pm 7 \text{ MeV},$$

$$\Gamma_{Z^-} = 172 \pm 13 \text{ MeV}$$

and for the amplitude fraction

$$f_{Z^-} = (5.9 \pm 0.9)\%,$$

which are consistent with Belle results [16]. Uncertainties are statistical only. The significance of the $Z(4430)^-$ contribution is 13.9$\sigma$. An additional fit is performed where the $Z(4430)^-$ amplitude is represented as a combination of independent complex amplitudes ($\text{Re} A_{Z(4430)^-}$, $\text{Im} A_{Z(4430)^-}$) at six equidistant points in the $m_{\psi(2S)\pi^-}$ range to address the question if the $Z(4430)^-$ is a real bound state that follows a resonant behaviour. The resulting Argand diagram, shown in Figure 6, exhibits a quasi circular pattern, which is consistent with a rapid phase transition at the peak of the amplitude, just as expected for a resonance, providing a strong argument in favour of the resonant character of the $Z(4430)^-$ state.

### 3 Heavy quarkonia production

Measurements of heavy quarkonia production is fundamental to test QCD models. The mechanism for the production of quarkonia in hadronic collisions is in fact not yet completely understood. It is well known that the LO Colour Singlet Model leads to predictions of the cross-sections which are in disagreement with the observations at high $p_T$. New theoretical approaches have been proposed in recent years. The debate is still open and experimental confirmations from the LHC experiments are needed to determine the reliability of the proposed models. Unique measurements of the production of quarkonia and quarkonia-like states in the forward rapidity range ($2 < y < 4.5$) and in the low $p_T$ range have been performed at LHCb.
3.1 $\chi_b$ production

Feed-down contributions from P-wave quarkonium state to S-wave quarkonium states might be of crucial importance for the comparison between experimental results and theory prediction for prompt production of S-wave quarkonia. It can also impact on the interpretation of the measured polarization of S-wave vector quarkonia. Moreover, measurements of the relative production rates of P-wave to S-wave quarkonia (and tensor-to-vector ratios) can provide valuable information on colour-octet matrix elements \[17–19\]. Two different analyses which study the $\chi_b$ production in LHCb and measure the fraction of $\Upsilon(nS)$ originating from $\chi_b$ decays have been performed, one using calorimetric photons \[20\], the other one using photons converted in the detector material \[21\].

The first analysis uses prompt muon pairs selected requiring for each muon a $p_T$ larger than 1 GeV. Further cuts refine the quality and the purity of the muons. Cuts improving the two-prong common vertex and the compatibility of this vertex with the primary vertex are applied. Three very clean peaks, $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$, are observed in the $m_{\mu^+\mu^-}$ mass distribution as shown in Figure 7. Photons reconstructed using the calorimeter are combined to each muon pair having an invariant mass within 150 MeV of one of the ‘T states to form a $\chi_b$. The $\chi_b$ yields are determined from an extended maximum likelihood fit. The fit model consists of the sum of signal components for all kinematically allowed $\chi_b(mP) \rightarrow \Upsilon(nS)\gamma\gamma$ decays and combinatorial background (see Figure 8). In the fit, the $\chi_b$ contribution of the multiplet is neglected while the $\chi_b$ and the $\chi_b$ are fitted simultaneously assuming a fixed mass difference, $\Delta m_{12}$ and a fixed ratio of yields. This assumption is needed since the $\chi_b$ mass resolution does not allow to separate these two states. The assumption on the relative $\chi_b/\chi_b$ contribution and the electromagnetic calorimeter energy scale are entering as the dominant systematic errors on the measurement of the $\chi_b(3P)$ mass. This mass is measured to be

$$m_{\chi_b(3P)} = 10511.3 \pm 1.7(\text{stat}) \pm 2.4(\text{syst}) \text{ MeV}/c^2.$$
Figure 8. Distributions of the corrected mass $m_{\Upsilon(3S)}$ for the selected $\chi_b$ candidates (black points) decaying into (top row) $\Upsilon(1S)$, (middle row) $\Upsilon(2S)$ and (bottom row) $\Upsilon(3S)$, in the transverse momentum ranges given in the text, for (left) $\sqrt{s} = 7$ TeV and (right) 8 TeV data. Each plot shows also the result of the fit (solid red curve), including the background (dotted blue curve) and the signal (dashed green and magenta curves) contributions. The green dashed curve corresponds to the $\chi_b1$ signal and the magenta dashed curve to the $\chi_b2$ signal.

Figure 10. Relative production cross-sections of $\chi_b1$ and $\chi_b2$ mesons as a function of $p_T$. The plot shows the comparison of this measurement (the hatched rectangles show the statistical uncertainties and the red crosses the total experimental uncertainty) to the LO NRQCD prediction (green band) [18], and to the LHCb $\chi_c$ result (blue crosses) [24], where the $p_T$ axis has been scaled by $m(\chi_b)/m(\chi_c) = 2.8$.

are in agreement with the world average values. The mass for the $\chi_b1(3P)$ is measured to be

$$m(\chi_b1(3P)) = 10515.7^{+2.2}_{-1.7}(\text{stat})^{+1.5}_{-2.2}(\text{syst})\text{MeV}/c^2$$

This result is compatible with the measurement performed by LHCb with the radiative decays to the $\Upsilon(3S)$ meson that uses non-converted photons. A combined value of the two measurements is

$$m(\chi_b1(3P)) = 10512.1 \pm 2.1(\text{exp}) \pm 0.9(\text{mod})\text{MeV}/c^2$$

where the experimental systematic uncertainties are uncorrelated since the photon reconstruction is based on different subdetectors, while the uncertainty related to the model used for summing the $J = 1$ and $J = 2$ contributions are fully correlated. These results are compatible with ATLAS [22] and D0 [23] measurements.

### 3.2 $\eta_c(1S)$ production cross-section

The investigation of the lowest state, the $\eta_c(1S)$ meson, can provide important additional information on the long-distance matrix elements. In particular, the heavy-quark
The spin-symmetry relation between the $\eta_c(1S)$ and $J/\psi$ matrix elements can be tested [25, 26], with the NLO calculations predicting a different dependence of the production rates on charmonium transverse momentum, $p_T$, for spin singlet ($\eta_c(1S)$) and triplet ($J/\psi$, $\chi_{cJ}$) states. Thus, a measurement of the $p_T$ dependence of the $\eta_c(1S)$ production rate can have important implications. LHCb has performed the first measurement of the cross-section for prompt production of $\eta_c(1S)$ mesons in $p\bar{p}$ collisions at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV centre-of-mass energies, as well as the $b$-hadron inclusive branching fraction into $\eta_c(1S)$ final states. The measurements have been performed relative to the $J/\psi$ channel which allows partial cancellation of systematic uncertainties in the ratio.

The signal selection is largely performed at the trigger level. The offline analysis, in addition, requires the transverse momentum of the protons to be $p_T > 2.0$ GeV/c and restricts charmonium candidates to the rapidity range $2.0 < y < 4.5$. Prompt and $b$-decays candidates are separated using the pseudo-decay time. The invariant mass for selected prompt candidates is reported in Figure 11. The cross-section for prompt production of $\eta_c(1S)$ relative to the prompt $J/\psi$ production has been measured in the rapidity range $2.0 < y < 4.5$ and in the transverse-momentum range $p_T > 6.5$ GeV/c to be at $\sqrt{s} = 7$ TeV

$$\frac{\sigma_{\eta_c(1S)}}{\sigma_{J/\psi}} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18$$
into $\eta$ decays to $\psi(2S)\gamma$ has been observed with a significanc
of 4.4$\sigma$ [11]. This result favours the interpretation of
the $X(3872)$ as a mixture of a $D^0\bar{D}^0$ molecule and charmon-
iun. LHCb also provided confirmation of the $Z(4430)^-$
state seen by Belle and it established its spin-parity to be
$1^+$ [15]. From study of the phase motion the resonance
character of this state has been demonstrated.

Moreover unique measurements of the production of
quarkonia have been obtained with the LHCb experiment.
These studies provide valuable input to improve the accu-
ricy of theoretical models. All these results demonstrate
the excellent performance of the LHCb experiment and the
excellent prospects for hadronic spectroscopy.

### References

1. S. K. Choi et al. [Belle Collaboration], Phys. Rev. Lett. 91 (2003) 262001 [hep-ex/0309032].
2. R. Aaij et al. [LHCb Collaboration], Eur. Phys. J. C 72 (2012) 1972 [arXiv:1112.5310 [hep-ex]].
3. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 110 (2013) 222001 [arXiv:1302.6269 [hep-ex]].
4. A. Abulencia et al. [CDF Collaboration], Phys. Rev. Lett. 98 (2007) 132002 [hep-ex/0612553].
5. B. Q. Li and K. T. Chao, Phys. Rev. D 79 (2009) 094004 [arXiv:0903.5506 [hep-ph]].
6. A. M. Badalian, V. D. Orlovsky, Y. A. Simonov and B. L. G. Bakker, Phys. Rev. D 85 (2012) 114002
[arXiv:1202.4882 [hep-ph]].
7. J. Ferretti, G. Galatà and E. Santopinto, Phys. Rev. D 90 (2014) 5, 054010 [arXiv:1401.4431 [nucl-th]].
8. E. J. Eichten, K. Lane and C. Quigg, Phys. Rev. D 73 (2006) 014014 [Erratum-ibid. D 73 (2006) 079903]
[hep-ph/0511179].
9. B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 102 (2009) 132001 [arXiv:0809.0042 [hep-ex]].
10. V. Bhardwaj et al. [Belle Collaboration], Phys. Rev. Lett. 107 (2011) 091803 [arXiv:1105.0177 [hep-ex]].
11. R. Aaij et al. [LHCb Collaboration], Nucl. Phys. B 886 (2014) 665 [arXiv:1404.0275 [hep-ex]].
12. S. K. Choi et al. [BELLE Collaboration], Phys. Rev. Lett. 100 (2008) 142001 [arXiv:0708.1790 [hep-ex]].
13. R. Mizuk et al. [BELLE Collaboration], Phys. Rev. D 80 (2009) 031104 [arXiv:0905.2869 [hep-ex]].
14. B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 79 (2009) 112001 [arXiv:0811.0564 [hep-ex]].
15. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 112 (2014) 222202 [arXiv:1404.1903 [hep-ex]].
16. K. Chilikin et al. [Belle Collaboration], Phys. Rev. D 88 (2013) 074026 [arXiv:1306.4894 [hep-ex]].
17. Y. Q. Ma, K. Wang and K. T. Chao, Phys. Rev. D 83 (2011) 111503 [arXiv:1002.3987 [hep-ph]].

### 4 Conclusions

LHCb has used the large data sample available to perform
studies of exotic charmonium-like states. After having
determined the $X(3872)$ quantum numbers [3], the decay
$X(3872) \to \psi(2S)\gamma$ has been observed with a significanc
of 4.4$\sigma$ [11]. This result favours the interpretation of
the $X(3872)$ as a mixture of a $D^0\bar{D}^0$ molecule and charmon-
ium. LHCb also provided confirmation of the $Z(4430)^-$
state seen by Belle and it established its spin-parity to be
$1^+$ [15]. From study of the phase motion the resonance
character of this state has been demonstrated.

Moreover unique measurements of the production of
quarkonia have been obtained with the LHCb experiment.
These studies provide valuable input to improve the accu-
ricy of theoretical models. All these results demonstrate
the excellent performance of the LHCb experiment and the
excellent prospects for hadronic spectroscopy.

Figure 12. Prompt production spectra as a function of transverse
momentum for $\eta_c(1S)$ mesons (red filled circles). The $p_T$
spectra of $J/\psi$ from Refs. are shown for comparison as blue open circles.

and at $\sqrt{s} = 8$ TeV

$$\sigma_{\eta_c(1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17_B$$

where the uncertainties are statistical, systematic and that
on the ratio of branching fractions of the $\eta_c(1S)$ and $J/\psi$
decays to $p\bar{p}$ final states. This is the first measurement
of $\eta_c$ production at an hadron machine. The cross-section
for the $\eta_c(1S)$ prompt production is in agreement with the
colour-singlet leading order calculations, while the pre-
dicted cross-section exceeds the observed value by two or-
ders of magnitude when the colour-octet LO contribution
is taken into account. However the NLO contribution
is expected to significantly modify the LO result [28].

The $\eta_c(1S)$ differential cross-section as a function of
$p_T$ is obtained by fitting the $p\bar{p}$ invariant mass spectrum in
three or four bins of $p_T$ (see Figure 12). The $p_T$
dependencies of the $\eta_c(1S)$ and $J/\psi$ production rates exhibit similar
behaviour in the kinematic region studied.

The inclusive branching fraction of $b$-hadron decays
into $\eta_c(1S)$ mesons with $p_T > 6.5$ GeV/c, relative to the
corresponding fraction into $J/\psi$ mesons, is measured, for
the first time, to be

$$\mathcal{B}(b \to \eta_c(1S)X)/\mathcal{B}(b \to J/\psi X) =$$

$$= 0.421 \pm 0.055 \pm 0.022 \pm 0.045_B$$
[18] A. K. Likhoded, A. V. Luchinsky and S. V. Poslavsky, Phys. Rev. D 86 (2012) 074027 [arXiv:1203.4893 [hep-ph]].

[19] A. K. Likhoded, A. V. Luchinsky and S. V. Poslavsky, arXiv:1305.2389 [hep-ph].

[20] R. Aaij et al. [LHCb Collaboration], Eur. Phys. J. C 74 (2014) 10, 3092 [arXiv:1407.7734 [hep-ex]].

[21] R. Aaij et al. [LHCb Collaboration], JHEP 1410 (2014) 88 [arXiv:1409.1408 [hep-ex]].

[22] G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 108 (2012) 152001 [arXiv:1112.5154 [hep-ex]].

[23] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. D 86 (2012) 031103 [arXiv:1203.6034 [hep-ex]].

[24] R. Aaij et al. [LHCb Collaboration], JHEP 1310 (2013) 115 [arXiv:1307.4285 [hep-ex]].

[25] M. Butenschoen and B. A. Kniehl, Phys. Rev. Lett. 108 (2012) 172002 [arXiv:1201.1872 [hep-ph]].

[26] K. T. Chao, Y. Q. Ma, H. S. Shao, K. Wang and Y. J. Zhang, Phys. Rev. Lett. 108 (2012) 242004 [arXiv:1201.2675 [hep-ph]].

[27] S. S. Biswal and K. Sridhar, J. Phys. G 39 (2012) 015008 [arXiv:1007.5163 [hep-ph]].

[28] F. Maltoni and A. D. Polosa, Phys. Rev. D 70 (2004) 054014 [hep-ph/0405082].