Habitat or temporal isolation: Unraveling herbivore–parasitoid speciation patterns using double digest RADseq

Y. Miles Zhang1 | Amber I. H. Bass1 | D. Catalina Fernández2 | Barbara J. Sharanowski1

Abstract
Ecological speciation is often observed in phytophagous insects and their parasitoids due to divergent selection caused by host-associated or temporal differences. Most previous studies have utilized limited genetic markers or distantly related species to look for reproductive barriers of speciation. In our study, we focus on closely related species of Lygus bugs and two sister species of Peristenus parasitoid wasps. Using mitochondrial DNA COI and genomewide SNPs generated using ddRADseq, we tested for potential effects of host-associated differentiation (HAD) or temporal isolation in this system. While three species of Lygus are clearly delineated with both COI and SNPs, no evidence of HAD or temporal differentiation was detected. Two Peristenus sister species were supported by both sets of markers and separated temporally, with P. mellipes emerging early in June and attacking the first generation of Lygus, while P. howardi emerging later in August and attacking the second generation of their hosts. This is one of the few studies to examine closely related hosts and parasitoids to examine drivers of diversification. Given the results of this study, the Lygus-Peristenus system demonstrates temporal isolation as a potential barrier to reproductive isolation for parasitoids, which could indicate higher parasitoid diversity in regions of multivoltine hosts. This study also demonstrates that incorporating systemsatics improves studies of parasitoid speciation, particularly by obtaining accurate host records through rearing, carefully delimiting cryptic species and examining population-level differences with genomic-scale data among closely related taxa.

KEYWORDS
Braconidae, ddRADseq, herbivore, parasitic wasp, reproductive isolation

1 | INTRODUCTION

A growing number of evolutionary studies have focused on ecological speciation, in which new species arise as a result of ecologically driven divergent selection (Egan et al., 2015; Hood et al., 2015; Nosil, Crespi, & Sandoval, 2002; Rundle & Nosil, 2005; Schluter, 2009). During ecological speciation, reproductive barriers arise as a by-product of adaptation to divergent environments. Ecological speciation has been observed in herbivorous insects in the form of host-associated differentiation (HAD), where specialists diverge through phenological or host shifts as a result of competition and/or predation (Nosil et al., 2002; Rundle & Nosil, 2005; Schluter, 2009). Adaptation to divergent host plants leads to an accumulation of multiple reproductive barriers, ultimately resulting in the separation and formation of new species (Dres & Mallet, 2002; Forbes et al., 2017). The presence of HAD is often associated with...
a temporal component, where temporal divergence in the breeding time over timescales ranging from days, seasons, or even years (Taylor & Friesen, 2017). Temporal isolation can contribute to divergence alone or concurrently with traits such as host preference to reinforce divergence along the speciation continuum (Egan et al., 2015; Feder et al., 1994; Taylor & Friesen, 2017). Although allopatric populations are often defined by spatial differentiation, populations with overlapping distributions and phenological differences can also be argued as allopatric, but on a temporal scale (Taylor & Friesen, 2017). Most documented cases of temporal speciation among phytophagous insects involve seasonal separation of breeding time after host shifts resulting in selection of synchrony with host phenology, contributing to reproductive isolation as selection (Egan et al., 2015; Feder et al., 1994; Nosil et al., 2002; Stireman, Nason, & Heard, 2005). These phenological shifts are often associated with genes controlling diapause duration, timing of diapause termination, and circadian rhythms, which could contribute to divergent selection that ultimately drives ecological speciation (Ragland, Egan, Feder, Berlocher, & Hahn, 2011; Ragland, Sim, Goudarzi, Feder, & Hahn, 2012; Ragland et al., 2017; Taylor & Friesen, 2017).

Numerous studies have shown that generalist insect herbivore "species" are often multiple, genetically divergent cryptic lineages, each specializing on a subset of the full host plant range (Dres & Mallet, 2002; Peccoud, Ollivier, Plantegenest, & Simon, 2009; Powell, Forbes, Hood, & Feder, 2014). This is an important distinction as true generalists feed on a variety of host plants indiscriminately, while cryptic specialists exhibit host preferences that were overlooked due to morphological similarities. Therefore, the accurate identification of true generalists from cryptic specialists in various stages of speciation is vital to studies on the effects of host or temporal differences on biogenesis.

HAD has been recorded in diverse insect families across multiple orders (Antwi, Sword, & Medina, 2015; Ferrari, West, Via, & Godfray, 2012; Leppanen, Malm, Varri, & Nyman, 2014; Sword, Joern, & Senior, 2005), further suggesting that it is an important driver of speciation that contributed to the insect biodiversity we see today. In addition, HAD can have rippling effects at higher trophic levels, resulting in divergence of parasitoids in the form of cascading/sequential HAD (Abrahamson & Weis, 1997; Forbes, Powell, Stelinski, Smith, & Feder, 2009; Hood et al., 2015; Nicholls, Schönrogge, Preuss, & Stone, 2018; Stireman, Nason, Heard, & Seehawer, 2006). As many parasitoids are also cryptic specialists that are tightly linked to the phenology of their hosts, cascading HAD on species lineages of herbivores could result in the sequential radiation of these hyperdiverse lineages of parasitoids (Forbes et al., 2009; Hood et al., 2015; Stireman et al., 2006). However, many previous studies of HAD and sequential HAD were limited to few molecular markers (Antwi et al., 2015; Hood et al., 2015; Leppanen et al., 2014; Nicholls et al., 2018; Stireman et al., 2006), which provides limited molecular characters to examine fine-scaled species-level differentiation. In addition, most studies focus on specialist herbivores with few studies on parasitoids. Studies that have involved examinations of parasitoids have mainly included assemblages of distantly related parasitoids that make inferences about drivers of diversification in upper trophic levels difficult (Hood et al., 2015; Nicholls et al., 2018; Stireman et al., 2006). Therefore, studies focusing on closely related parasitoids species are needed to examine patterns of speciation due to ecologically divergent selection.

Accurate delimitation of divergent lineages is paramount to studies, as they are often morphologically cryptic. Studies utilizing variations in restriction-site associated DNA sequencing (RADseq) to delimit species and determine drivers of divergence have become more abundant (Bagley, Sousa, Niemiller, & Linnen, 2017; Bernal, Gaither, Simison, & Rocha, 2017; de Oca et al., 2017; Eaton & Ree, 2013). RADseq approaches are less susceptible to incomplete lineage sorting and introgression than traditional multigene methods (Andrews, Good, Miller, Luikart, & Hohenlohe, 2016). This method is ideal for detecting population/species-level differences and has been shown to be promising for studies on ecological speciation of herbivorous insects (Bagley et al., 2017; Egan et al., 2015).

Studying the reproductive barriers of parasitoid in relation to their hosts is central to understanding origins of parasitoid diversity and may also provide important insights into conservation biology as parasitoids have been shown to provide ecosystems with trophic redundancy that reduces extinction risks (Sanders, Thébault, Kehoe, & van Veen, 2018). In addition, understanding the intimate relationships between pestiferous herbivores and their parasitoids would greatly improve the success rate of biological control programs (Peixoto et al., 2018; Zhang, Ridenbaugh, & Sharanowski, 2017). To that end, we investigate potential reproductive barriers in the Lygus-Peristenus system, which includes a genus of economically important herbivores and the parasitoid species that attack them.

The herbivores in this system are plant bugs in the genus Lygus Hahn (Hemiptera: Miridae), which include many species of generalist agricultural pests (such as Lygus lineolaris Palisot de Beauvois) that feed on a variety of economically important crops. Although HAD has been recorded from other Miridae (Hereward, Walter, Debarro, Lowe, & Riginos, 2013), no evidence of HAD has been shown in Lygus species despite the detection of population-level differences based on geography (Burgeon, Roehrdanz, & Boetel, 2012; Zhou, Kandemir, Walsh, Zalom, & Lavine, 2012). Lygus have one to three generations per year depending on the temperature, where southern populations in warmer climates are multivoltine and northern populations in cooler climates tend to be univoltine (Cárccamo et al., 2002; Haye et al., 2013). The Canadian prairies ecosystem is a major agricultural growing region where Lygus is an economically relevant pest on several field crops, such as canola, alfalfa, and mustard. Closely related species are often found in sympatry, so HAD may be a driver of population divergence in this system, as populations could be cryptic, specializing on certain plants.

Species of Peristenus (Hymenoptera: Braconidae) are widely distributed koinobiont endoparasitoids of nymphal plant bugs, including Lygus species (Zhang, Stigenberg, Meyer, & Sharanowski, 2018). A recent revision of the Nearctic Peristenus pallipes complex synonymized nine species recognized by Goulet and Mason (2006)
to just three based on morphometrics, mitochondrial DNA (COI and CytB), and ecological differences (Zhang et al., 2017). This revision also demonstrated a range overlap for *Peristenus dayi* Goulet with sister species *Peristenus mellipes* (Cresson) and *Peristenus howardi* Shaw in southern Alberta (Zhang et al., 2017). As these *Peristenus* species persist in sympathy, there are likely reproductive barriers preventing hybridization and interbreeding between species. These may be ecological isolating mechanisms, such as differences in micro-habitat, emergence timing, and reproduction. *Peristenus* host preference may also explain the maintenance of three sympatric species, but due to morphological similarity among Lygus nymphs, host records are often listed simply as *Lygus* species (Goulet & Mason, 2006). The drivers and maintenance of species boundaries in these closely related parasitoids are unknown, but a likely explanation is divergence through sequential HAD as their hosts specialize and diverge.

In this study, we used a combination of COI (mtDNA) and double digest RADseq (ddRADseq) (Peterson et al., 2012) to test for barriers of reproductive isolation in closely related parasitoids. We (a) confirm monophyly and delimit species of *Lygus* and their *Peristenus* parasitoids; (b) test for potential host plant associations or temporal differentiation on sympatric species of *Lygus*; and (c) determine whether sequential HAD or temporal differentiation are driving forces of speciation on sympatric species of *Peristenus*. As herbivore–parasitoid evolutionary histories can provide valuable insights into the genesis of biodiversity, this is one of the first studies to address the evolutionary patterns within a tritrophic system that utilizes host plant, herbivore, and parasitoid using next-generation sequencing data and closely related parasitoids.

2 MATERIALS AND METHODS

2.1 Sample collection and DNA Extraction

To obtain *Peristenus* with accurate host records delineated to species, we sampled early instar nymphal *Lygus* bugs weekly from May to August of 2015 from two sites in Lethbridge, Alberta, as this is the only region in which the range of both *P. mellipes* and *P. howardi* overlaps (Sharanowski, Zhang, & Wanigasekara, 2014; Zhang et al., 2017). One additional site where only *P. mellipes* is found was sampled in Carman, Manitoba. While *Lygus* attacks a variety of plants, we chose three common host plants: alfalfa (*Medicago sativa* L.), yellow sweetclover (*Melilotus officinalis* (L.)), and wild mustard (*Sinapis arvensis* L.) as they were readily accessible and yielded large quantities of nymphs based on pilot studies. We reared nymphs individually in growth chambers (25°C, 14:10 hr L:D photoperiod) using green beans as a food source and checked daily for parasitoid emergence. If the *Lygus* nymphs were parasitized, the emerged larval parasitoid and dead host were preserved in 95% EtOH until DNA extraction. Genomic DNA was extracted following the DNeasy Tissue Kit Protocol (Qiagen, Valencia, CA, USA), using a destructive sampling method as the larval parasitoid and host nymphs were unidentifiable morphologically. We quantified the concentration of DNA extracts using Quanti-t-iT High-Sensitivity DNA Assay Kit (Invitrogen, Eugene, OR, USA). *Peristenus dayi* was excluded from this study despite being closely related to the other parasitoids, as it parasitizes Adelphocoris lineolatus (Goeze), a distant relative of *Lygus* within Miridae, and we were interested in patterns between closely related herbivores and parasitoids.

2.2 Molecular data protocols

We amplified the mitochondrial gene cytochrome oxidase I (COI) using universal primers LCO1490 (5′-GGT CAA CAA ATC ATA AAG ATA TTG G-3′) and HCO2198 (5′-TAA ACT TCA GGG TGA CCA AAA AAT CA-3′) (Folmer, Black, Hoeh, Lutz, & Vrijenhoek, 1994). Polymerase chain reactions were performed on a Bio-Rad MyCycler thermal cycler (Hercules, CA, USA), using ~1 μg DNA extract, 1× Standard Taq Buffer (10 mM Tris–HCl, 50 mM KCl, 1.5 mM MgCl2, pH 8.3; New England Biolabs, Ipswich, Massachusetts, USA), 200 μM dNTP (Invitrogen, Carlsbad, California, USA), 4 mM MgSO4, 400 nM of each primer, 1 unit of Taq DNA polymerase (New England Biolabs), and nuclease-free water to a final volume of 25 μl.

We generated COI amplicons for both *Lygus* and *Peristenus* with an initial denaturation of 1 min at 95°C, followed by 35 cycles of 95°C for 15 s, 49°C for 15 s, and 72°C for 45 s, and a final elongation period of 4 min at 72°C. Reaction products were cleaned with Agencourt CleanSEQ magnetic beads (Beckman Coulter Life Sciences, Indianapolis, IN, USA) and sequenced in both directions using the BigDye Terminator Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and the Applied Biosystems 3730xl DNA Analyzer at the University of Kentucky, Advanced Genetic Technologies Center (UK-AGTC). Contigs were assembled and edited using Geneious version 8.1.8 (Kearse et al., 2012), and alignment was conducted using MUSCLE under default settings (Edgar, 2004) and checked manually by eye using the reading frame as a guide. All COI sequences were uploaded to GenBank (accession nos. MG944319–MG944389).

We used a modified ddRADseq protocol from Peterson et al. (2012) to generate genomewide SNPs for both *Lygus* and *Peristenus*. NlaIII and MluCI (NEB, Ipswich, MA, USA) were the enzyme pair chosen based on in silico digestion of the following genomes: *Acrithosiphon pisum* (International Aphid Genomics Consortium, 2010), *Microplitis demolitor* (Burke, Walden, Whitfield, Robertson, & Strand, 2014), and *Fopius arisanus* (Geib, Liang, Murphy, & Sim, 2017) using SimRAD (Lepais & Weir, 2014). We prepared libraries containing up to 48 individuals grouped by DNA yield, with each sample assigned one of 48 unique 5-base pair (bp) in-line barcode sequences during adapter ligation. Each set of 48 samples was then pooled for automated size selection (216–336 bp fragments) on a PippinHT (Sage Science, Beverly, MA, USA). The size-selected samples were then subjected to 12 rounds of high-fidelity PCR amplification (Q5 High-Fidelity DNA Polymerase, NEB) using PCR primers that included one of 12 unique Illumina multiplex read indices.
Lygus sample number	ID	GenBank/SRA Accession number	Peristenus Sample number	ID	GenBank/SRA Accession number	Locality	Host plant	Date collected
YMZ213	L. borealis	MG944319/ SAMN08614153	N/A	N/A	N/A	Manitoba, Carman, 49.500834, –98.023839	Alfalfa	16.VI.2015
YMZ222	L. borealis	MG944326	YMZ225	P. mellipes	MG944354	Manitoba, Carman, 49.500834, –98.023839	Alfalfa	16.VI.2015
YMZ215	L. borealis	MG944320	YMZ224	P. mellipes	MG944353	Manitoba, Carman, 49.500834, –98.023839	Alfalfa	16.VI.2015
YMZ220	L. borealis	MG944324/ SAMN08614154	YMZ227	P. mellipes	MG944356	Manitoba, Carman, 49.500834, –98.023839	Alfalfa	16.VI.2015
YMZ216	L. borealis	MG944321	YMZ226	P. mellipes	MG944355/ SAMN08614174	Manitoba, Carman, 49.500834, –98.023839	Alfalfa	16.VI.2015
YMZ217	L. borealis	MG944322	YMZ228	P. mellipes	MG944357/ SAMN08614175	Manitoba, Carman, 49.500834, –98.023839	Alfalfa	16.VI.2015
YMZ218	L. borealis	MG944323/ SAMN08614154	YMZ229	P. mellipes	MG944358/ SAMN08614176	Manitoba, Carman, 49.500834, –98.023839	Alfalfa	16.VI.2015
YMZ219	L. borealis	MG944324	YMZ230	P. mellipes	MG944359/ SAMN08614177	Manitoba, Carman, 49.500834, –98.023839	Alfalfa	16.VI.2015
YMZ221	L. borealis	MG944325	YMZ231	P. mellipes	MG944360/ SAMN08614178	Manitoba, Carman, 49.500834, –98.023839	Alfalfa	16.VI.2015
YMZ222	L. borealis	MG944326	YMZ232	P. mellipes	MG944361/ SAMN08614179	Manitoba, Carman, 49.500834, –98.023839	Alfalfa	16.VI.2015
YMZ233	L. keltoni	MG944327	YMZ233	P. mellipes	MG944362	Alberta, Lethbridge, 49.721307, –112.853001	Yellow Clover	30.VI.2015
YMZ234	L. elisus	MG944328/ SAMN08614156	YMZ234	P. mellipes	MG944363/ SAMN08614180	Alberta, Lethbridge, 49.721307, –112.853001	Yellow Clover	30.VI.2015
YMZ235	L. keltoni	MG944329	YMZ235	P. mellipes	MG944364/ SAMN08614181	Alberta, Lethbridge, 49.721307, –112.853001	Yellow Clover	30.VI.2015
YMZ236	L. borealis	MG944330	YMZ236	P. mellipes	MG944365/ SAMN08614182	Alberta, Lethbridge, 49.721307, –112.853001	Alfalfa	30.VI.2015
YMZ237	L. borealis	MG944331	YMZ237	P. howardi	MG944366	Alberta, Lethbridge, 49.700244, –112.763226	Alfalfa	08.VIII.2015
YMZ239	L. elisus	MG944332/ SAMN08614157	YMZ238	P. mellipes	MG944367/ SAMN08614183	Alberta, Lethbridge, 49.700244, –112.763226	Alfalfa	30.VI.2015
YMZ241	L. borealis	MG944333/ SAMN08614158	YMZ239	P. mellipes	MG944369/ SAMN08614183	Alberta, Lethbridge, 49.700244, –112.763226	Alfalfa	30.VI.2015
Lygus sample number	ID	GenBank/SRA Accession number	Peristenus Sample number	ID	GenBank/SRA Accession number	Locality	Host plant	Date collected
---------------------	--------	-----------------------------	--------------------------	--------	-----------------------------	----------------------------------	------------	------------------
YMZ252	P. mellipes	MG944370	N/A	YMZ2252	Alberta, Lethbridge, 49.700244, -112.763226	Alfalfa	30.VI.2015	
YMZ263	P. howardi	MG944371	N/A	YMZ263	Alberta, Lethbridge, 49.721307, -112.853001	Wild Mustard	08.VIII.2015	
YMZ264	P. howardi	MG944372	N/A	YMZ264	Alberta, Lethbridge, 49.721307, -112.853001	Wild Mustard	08.VIII.2015	
YMZ255	L. keltoni	MG944334/ SAMN08614159	YMZ265	P. howardi	YMZ255	Alberta, Lethbridge, 49.721307, -112.853001	Wild Mustard	08.VIII.2015
YMZ256	L. elisus	MG944335	N/A	YMZ256	Alberta, Lethbridge, 49.721307, -112.853001	Wild Mustard	08.VIII.2015	
YMZ257	L. keltoni	MG944336/ SAMN08614160	YMZ267	P. howardi	YMZ257	Alberta, Lethbridge, 49.721307, -112.853001	Wild Mustard	08.VIII.2015
YMZ259	L. keltoni	MG944337	YMZ269	P. howardi	YMZ259	Alberta, Lethbridge, 49.721307, -112.853001	Wild Mustard	08.VIII.2015
YMZ260	L. keltoni	MG944338/ SAMN08614161	YMZ270	P. howardi	YMZ260	Alberta, Lethbridge, 49.721307, -112.853001	Alfalfa	08.VIII.2015
YMZ262	L. elisus	MG944339	YMZ271	P. howardi	YMZ262	Alberta, Lethbridge, 49.721307, -112.853001	Alfalfa	08.VIII.2015
YMZ293	L. borealis	MG944340	YMZ303	P. mellipes	YMZ293	Manitoba, Carman, 49.500834, -98.023839	Alfalfa	16.VI.2015
YMZ294	L. borealis	MG944341	YMZ304	P. mellipes	YMZ294	Manitoba, Carman, 49.500834, -98.023839	Alfalfa	16.VI.2015
YMZ295	L. borealis	MG944342	N/A	YMZ295	Manitoba, Carman, 49.500834, -98.023839	Alfalfa	16.VI.2015	
YMZ296	L. borealis	MG944343	N/A	YMZ296	Manitoba, Carman, 49.500834, -98.023839	Alfalfa	16.VI.2015	
YMZ297	L. borealis	MG944344	YMZ307	P. mellipes	YMZ297	Manitoba, Carman, 49.500834, -98.023839	Alfalfa	16.VI.2015
YMZ298	L. borealis	MG944345	YMZ308	P. mellipes	YMZ298	Manitoba, Carman, 49.500834, -98.023839	Alfalfa	16.VI.2015
YMZ299	L. borealis	MG944346	N/A	YMZ299	Manitoba, Carman, 49.500834, -98.023839	Alfalfa	16.VI.2015	
YMZ300	L. borealis	MG944347	N/A	YMZ300	Manitoba, Carman, 49.500834, -98.023839	Alfalfa	16.VI.2015	
Lygus sample number	ID	GenBank/SRA Accession number	Peristenus Sample number	ID	GenBank/SRA Accession number	Locality	Host plant	Date collected
---------------------	--------	------------------------------	--------------------------	--------	------------------------------	------------------------------	-------------	----------------
YMZ301	L. borealis	MG944348/SAMN08614161	YMZ311	P. mellipes	MG944382	Manitoba, Carman, 49.500834, −98.023839	Alalfa	16.VI.2015
YMZ302	L. borealis	MG944349	YMZ322	P. howardi	MG944383/SAMN08614184	Manitoba, Carman, 49.500834, −98.023839	Alalfa	08.VIII.2015
YMZ313	L. elius	SAMN08614163	YMZ323	P. howardi	MG944384/SAMN08614172	Alberta, Lethbridge, 49.700244, −112.763226	Alalfa	08.VIII.2015
YMZ314	L. borealis	MG944350/SAMN08614164	YMZ325	P. howardi	MG944385/SAMN08614173	Alberta, Lethbridge, 49.700244, −112.763226	Alalfa	08.VIII.2015
YMZ316	L. elius	SAMN08614165	N/A	N/A	N/A	Alberta, Lethbridge, 49.700244, −112.763226	Alalfa	08.VIII.2015
YMZ317	L. borealis	MG944351	YMZ327	P. howardi	MG944386	Alberta, Lethbridge, 49.700244, −112.763226	Alalfa	08.VIII.2015
N/A	N/A	N/A	YMZ329	P. mellipes	MG944387	Alberta, Lethbridge, 49.700244, −112.763226	Alalfa	30.VI.2015
N/A	N/A	N/A	YMZ330	P. mellipes	MG944388	Alberta, Lethbridge, 49.700244, −112.763226	Alalfa	30.VI.2015
YMZ331	L. keltoni	MG944352/SAMN08614166	YMZ332	P. mellipes	MG944389/SAMN08614185	Alberta, Lethbridge, 49.700244, −112.763226	Alalfa	16.VI.2015

Note. GenBank Accession Numbers for COI and SRA Accession Numbers for ddRADseq are provided when available.
After verifying library quality using high-sensitivity DNA kit on TapeStation (Agilent, Santa Clara, CA, USA), libraries were sent to Sanford Burnham Prebys Medical Discovery Institute (Orlando, FL, USA) for sequencing using 2 × 300 bp paired-end reads on a single Illumina MiSeq lane. All raw fastq files were uploaded onto the NCBI SRA database accession number SRP132595.

We used ipyrad v0.7.23 (Eaton, 2014) to process raw sequences, using the following stringent settings to ensure the data quality for downstream analyses after parsing out Lygus from Peristenus: Assembly methods: de novo; minimum depth of reads per within-sample cluster: 10; maximum number of sites in a read which can have a quality score of less than twenty: 4; clustering threshold: 0.90; minimum number of samples in each across-sample cluster: 10; maximum number of individuals with a shared heterozygous site in an across-sample cluster: 3. These settings were chosen based on multiple test runs with different parameter settings to balance between stringent filtering high-quality SNP calls without losing too much data. All other settings were default values. Additionally, we removed samples with >80% missing data and suspected Peristenus males, which are haploid and thus have low heterozygosity.

2.3 | Phylogenetic analyses

The best-fitting model of molecular evolution for COI was tested using jmodeltest2 (Darriba, Taboada, Doallo, & Posada, 2012). The general time-reversible model, with a parameter for invariant sites and rate heterogeneity modeled under a gamma distribution (GTR + I + Γ), was chosen based on the Bayesian information criterion (BIC). The COI sequences were then analyzed using MrBayes v3.2.6 (Ronquist et al., 2012) on the CIPRES Science Gateway (Miller et al., 2010). Two independent searches were carried out and four chains run for 2,000,000 generations, sampling every 1,000th generation and with a 10% burn-in discarded. The dataset was not partitioned based on the nucleotide position as it would limit the amount of data needed for accurate parameter estimation. The phylogenetic trees were visualized in FigTree v1.4.2 (Rambaut, 2012) and modified using R package ggtree (Yu, Smith, Zhu, Guan, & Lam, 2017). The Lygus samples were identified by comparing COI sequences with identified adult specimens on the Barcode of Life database (BOLD: http://barcodinglife.org/) that were authoritatively identified by Lygus expert Michael D. Schwartz. In cases of ambiguous identification (i.e., multiple species share the same DNA
barcode), we chose the species name based on the most common identification (>80%) for each species. Similarly, *Peristenus* was identified by comparing the COI sequences with samples from Zhang et al. (2017).

A maximum-likelihood supermatrix approach using the concatenated ddRADseq SNPs dataset was also conducted with RAxML 8.2.0 (Stamatakis, 2006), using the GTR + Γ model of nucleotide substitution and 1,000 bootstrap pseudoreplicates. The resulting trees were visualized and modified in the same manner as the COI trees.

2.4 Population genomic analyses

To determine whether there was population structure within clades identified in the phylogenetic analysis, we performed a Bayesian clustering analysis for both *Lygus* and *Peristenus* unlinked SNP datasets (1 SNP per locus) from the ipyrad output stated earlier without prior assignments in Structure v 2.3.4 (Pritchard, Stephens, & Donnelly, 2000). Ten runs were completed for each population (K) up to the maximum number of populations within each clade using 100,000 burn-ins and 500,000 replicates for each run. The R package pophelper (Francis, 2017) was used to visualize the diagrams. The Evanno ΔK method (Evanno, Regnaut, & Goudet, 2005) was used in Structure Harvester v 0.6.94 (Earl, 2012) to determine the most likely value for K. We also created a custom dataset of the SNPs containing only Alberta populations of *P. mellipes* and *P. howardi* in ipyrad using the same settings discussed above. We tested for potential genetic differences under selection between the Alberta populations where the two *Peristenus* species are found in sympatry.

Impacts of locality, host association, and time of emergence on genetic variation of the three *Lygus* species were tested using AMOVA (analysis of molecular variance) using clustering between localities (for *L. borealis*), host plants (for *L. keltoni* and *L. elisus*), and collecting dates for all three species of *Lygus*. Similarly, AMOVA was used to test for differences between hosts for both *Peristenus* species and difference between collection localities for *P. mellipes*. All AMOVAs were conducted with R packages adegenet (Jombart & Ahmed, 2011) and poppr (Kamvar, Tabima, & Grünwald, 2014) using the full SNP dataset as described above.

3 RESULTS

3.1 Phylogenetic analyses

A total of 23 samples each of *Lygus* and *Peristenus* were used to generate the ddRADseq dataset (Table 1). There were an average of ~732,000 reads per individual with a mean length of 142 bp and 15× mean depth of coverage per loci (average 183 loci per *Lygus* and 5,993 loci per *Peristenus*). The final filtered SNP dataset consisted of 14 of 23 *Lygus* individuals with 1,453 parsimonious informative SNPs and 19 of 23 *Peristenus* individuals with 18,157 parsimonious informative SNPs (Table 1). The low number of SNPs recovered from *Lygus* was likely due to the low-input DNA quantity or degradation because of parasitism by *Peristenus*. The topology of the maximum-likelihood trees based on the ddRADseq data recovered the same clades as the COI Bayesian analyses with strong
Bootstrap support for all three species of Lygus (Supporting information Figure S1) and both species of Peristenus (Supporting information Figure S2).

A total of 33 Lygus (543 bp) and 37 Peristenus (629 bp) COI sequences were used for the phylogenetic analyses (Table 1). Three monophyletic clades of Lygus were identified based on the monophyletic clustering with identified specimens available in BOLD: *Lygus borealis* (Kelton), *Lygus keltoni* Schwartz, and *Lygus elisus* Van Duzee (Supporting information Figure S1). All three species of Lygus were collected in Alberta, while only *L. borealis* was collected in Manitoba. Both *L. keltoni* and *L. elisus* were collected from all three host plants, while *L. borealis* was collected exclusively on alfalfa (Table 1). Both *Peristenus mellipes* and *P. howardi* were recovered as monophyletic clades (Supporting information Figure S2). *Peristenus mellipes* was reared from all three Lygus species and found in both Manitoba and Alberta, while *P. howardi* was reared from *L. borealis* and *L. keltoni* and was found exclusively in Alberta (Table 1; Supporting information Figure S2).

Table 2

Analysis of molecular variance (AMOVA) using clustering between (a) localities, (b) host plants, and (c) collecting dates for all three species of Lygus used in this study.

Taxon assessed	Source of variation	df	Variance component	% total variation	Φ-statistics	p-value
(a) Between localities						
L. borealis	Between localities	1	-1.55	-5.95	-0.73	0.95
	Among samples within localities	4	-17.74	-67.79	-0.64	1.00
	Within samples	6	46.48	173.74	0.06	1.00
(b) Between host plants						
L. keltoni	Among plants	1	1.09	3.01	-0.73	0.37
	Among samples within plants	2	-27.61	-76.09	-0.78	0.89
	Within samples	4	62.79	173.08	0.03	0.98
L. elisus	Among plants	1	0.20	0.64	-0.87	0.71
	Among samples within plants	3	-27.90	-87.95	-0.89	0.93
	Within samples	4	59.43	187.31	0.01	1.00
(c) Between collection dates						
L. borealis	Among dates	1	-2.21	-8.69	-0.78	0.87
	Among samples within dates	4	-17.84	-70.15	-0.64	0.99
	Within samples	6	45.48	178.83	0.09	1.00
L. keltoni	Among dates	1	1.16	3.17	-0.72	0.45
	Among samples within dates	2	-27.46	-75.24	-0.78	0.96
	Within samples	4	62.79	172.07	0.03	1.00
L. elisus	Among dates	1	-0.87	-2.78	-0.91	1.00
	Among samples within dates	2	-27.37	-87.74	-0.85	1.00
	Within samples	4	59.43	190.52	0.03	1.00

structure results show \(K = 3 \) among the two *Peristenus* species, as population structure was not found within *P. howardi*, but splits *P. mellipes* into an Alberta-specific population and a Manitoba population (Figure 3B).

No significant genetic differentiation was detected among any of the AMOVA partitions (locality, host plant, collecting date) for the three *Lygus* species (Table 2). No differences between host bugs were detected for both species of *Peristenus* (Table 3a), but significant genetic differences \((p = 0.01)\) were detected among collection localities within *P. mellipes*, explaining 11.77\% of the genetic variation (Table 3b).

4 | DISCUSSION

4.1 | Identification of *Lygus* and *Peristenus* species using molecular data

The accurate identification of *Lygus* species has been problematic in the past, because of the inconsistency between morphological differences of nymphs and COI data (Gwiazdowski, Footit, Maw, & Hebert, 2015). The *Lygus* species included in this study, *L. borealis*, *L. elisus*, and *L. keltoni*, were often misidentified even by experts because of their variable adult phenotypes (Gwiazdowski et al., 2015). This taxonomic confusion has made previous host plant records in this group...
Using COI and SNPs, we confirmed the identity of the Lygus nymphs used in this study and established accurate host bug records for the parasitoids. Taxonomic revision of Lygus is needed, as current morphological character without the aid of molecular tools is unreliable, and we advise caution when using publicly available databases such as GenBank and BOLD as misidentifications are common despite expert identification. The identification of *P. mellipes* and *P. howardi* using both COI and SNPs was consistent with Zhang et al. (2017), lending support to the continued use of COI to accurately delimit closely related parasitoid wasps at a cheaper cost compared to genomic data.

4.2 Lack of HAD and Temporal isolation within Lygus species

Based on our phylogenetic analyses on Lygus (Figure 1) and AMOVA (Table 2), it is unlikely that Lygus species evolved through host-associated differentiation in the Canadian prairies. The three species of Lygus are all generalist herbivores feeding on a variety of available food sources, as no host plant-specific lineages were found within each species (Figure 1, Table 2). While both *L. elisus* and *L. keltoni* were found on all three host plants sampled in this study, *L. borealis* were only found from alfalfa. The apparently narrow host range of *L. borealis* could be a by-product of our sampling, as they have been collected from other host plants such as canola (*Brassica* spp.) in other studies (Cárcamo et al., 2002; Otani & Cárcamo, 2011). These results show that Lygus species are truly generalists as we found no genetic divergence based on host. This lack of HAD is consistent with studies of other Lygus species such as *L. lineolaris* (Burange et al., 2012) and *L. hesperus* (Zhou et al., 2012) despite the detection of population-level differences, indicating that factors other than HAD likely drove their evolution.

4.3 Temporal isolation but no HAD within the Peristenus species

Peristenus host choice was not significantly different in the hierarchical AMOVAs (Table 3a) and most of the variation occurred within
samples, suggesting that factors other than hosts are likely driving the bulk of the genetic variation. This is further corroborated by the lack of host-specific lineages within each of the *Peristenus* species (Figure 2). Unlike their herbivore hosts, the two *Peristenus* species exhibit temporal differentiation in Alberta, where both species occur (Figure 2). Both species appear to be attacking all available hosts upon emergence, with *P. mellipes* appearing early in June and attacking the first generation of *Lygus* and *P. howardi* emerging later in August and attacking the second *Lygus* generation. This temporal separation could be the result of selection for niche partitioning to avoid direct competition, as both *Peristenus* species are ecological competitors that occur in the same geographic and host ranges. Alternatively, the presence of this temporal heterogeneity could predate the contact of the two *Peristenus* species; however, this is unlikely as both species collected outside of this contact zone in Alberta are not bound by this strict temporal separation (Zhang et al., 2017). Our findings are consistent with Fernández, Laird, Herle, Goulet, and Cárcamo (2018), who found *P. mellipes* occurs early in the season between late May and late *July* and *P. howardi* in late June to late August. In addition, emergence times of *P. mellipes* were on average 13 days earlier than *P. howardi* in laboratory trials (Fernández et al., 2018). It is unknown how frequently parasitoids exhibit temporal speciation, as most of previous works on ecological speciation have focused on herbivorous insects (Forbes et al., 2017). However, the development of reproductive isolation as a by-product of divergent ecological selection should have similar genomewide effects as herbivorous insects, especially if considerable standing genomic variation is already present (Egan et al., 2015; Michel et al., 2010).

Interestingly, both STRUCTURE (Figure 3b) and AMOVA (Table 3b) detected population structure within *P. mellipes* that splits the Manitoba population from Alberta (11.77% variation, *p* = 0.01). However, most of the genetic variation is still within samples of each site (55.78% variation, *p* = 0.01), suggesting that other factors are responsible for the genetic variation observed. Additionally, no host-associated patterns were observed as Manitoba samples only consisted of wasps reared from *L. borealis* feeding on alfalfa (Table 3). The Manitoba *P. mellipes* has only one generation per year despite the absence of *P. howardi*, which could be the result of their host phenology as Manitoba has a shorter summer than Alberta, thus only allowing for the development of one full generation of *Lygus* (Haye et al., 2013). While *P. mellipes* were only collected from Canadian prairies in this study, previous work (Zhang et al., 2017) and historical records have shown that there are two generations of *Lygus* and *P. mellipes* in warmer regions such as Ontario (Goulet & Mason, 2006). This study is limited in terms of host plant breadth and sampling across the range of both *Peristenus* species; thus, future studies should include additional populations from multiple host plants that cover the entire range of *P. mellipes* to determine the degree of gene flow between the eastern and western populations. The third species within the Nearctic *Peristenus pallipes* complex is *P. dayi*, which emerges earlier than *P. mellipes*, with peak activity late May to early June. *Peristenus dayi* attacks *A. lineolatus* rather than *Lygus* spp. (Goulet & Mason, 2006; Zhang et al., 2017). While *P. dayi* was not the focus of the current study, the effects of partial host and temporal separation between closely related *Peristenus* species and their evolutionary history could be tested using similar methods.

Differences in breeding time can be interpreted as an alternate to spatial differentiation, or as a type of ecological differentiation that warrants further attention, as examples in the literature remain sparse (Taylor & Friesen, 2017). *Peristenus* specialization on different generations of *Lygus* may have led to temporal assortative mating limiting gene flow, equating to allopatric populations separated by temporal rather than physical barriers (Taylor & Friesen, 2017). Without knowing the full distribution range and biogeographic history of these two *Peristenus* species, it is difficult to determine whether temporal separation was the cause of the speciation event or the result of niche partitioning in the form of secondary reinforcement when they came into secondary contact in Alberta. However, in areas such as Manitoba where *Lygus* has one generation per year, we expect that *Peristenus* would show little to no evidence of divergence as there would be little selection pressure on mating/host choice. However, in areas where *Lygus* and *Peristenus* have more than one generation, temporal divergence could facilitate the development of incipient temporal isolation like that shown in this study. In short, studies on whether voltinism facilitates or hampers divergence would yield interesting insights into the broader patterns of herbivore and parasitoid speciation.

5 Conclusion

Using mitochondrial DNA and genomewide SNPs, our comparative analysis of genetic differentiation between the two sister *Peristenus* species attacking multiple *Lygus* hosts revealed temporal divergence rather than host-associated differentiation. Temporal isolation likely played a vital role in the speciation process of *Peristenus*, whether it is acting alone or in concert with host preferences or other pre- or postzygotic barriers to gene flow. This is one of the first studies to demonstrate the potential of genomic data in resolving the tritrophic evolutionary relationships between plant, herbivore, and parasitoids. This study also demonstrates the importance of systematics to studies of parasitoid speciation, particularly careful delimitation of cryptic species, host rearing to obtain accurate records, and genomic-scale data for examining any population-level differences among closely related taxa.

Given the results of our study, the *Lygus–Peristenus* system can also be added to the growing body of literature on the importance of temporal separation as a driving force for ecological speciation and its effect on the evolution of the rich diversity of life. Currently, the importance of temporal differences in parasitoid speciation is poorly understood, but temporal isolation likely plays a significant role in the adaptations to host phenology. Many phytophagous insects and their parasitoid systems are well studied because of their agricultural and economical importance; thus, large, collaborative, genomewide-scale studies exploring these taxa could yield valuable insights into the prevalence and impact of temporal isolation in host-driven ecological speciation.
ACKNOWLEDGEMENTS

We would like to thank Leah Irwin and Melanie Scallion for assistance with specimen collecting and parasitoid rearing; Patrick Larabee for debugging and computational issues; and Michelle Gaither, Anna Forsman, and Alexa Trujillo for troubleshooting ddRADseq issues and data interpretation. We would also like to thank Robin Bagley for providing valuable feedback on earlier drafts of this paper. This research was supported in part from funding through the Western Grains Research Foundation, Growing Forward 2 program from Agriculture and Agri-Food Canada, an NSERC discovery grant and internal funding from the University of Central Florida, all awarded to B.J. Sharanowski.

CONFLICT OF INTEREST

None declared.

AUTHOR CONTRIBUTIONS

Y.M.Z. and B.J.S. conceived and designed this project. Y.M.Z., A.I.H.B., and D.C.F. collected specimens. Y.M.Z. and A.I.H.B. generated and analyzed the data. All four authors interpreted the data and wrote the manuscript.

DATA ACCESSIBILITY

COI sequences are available on GenBank Accession Numbers MG944319–MG944389. Raw FastQ files for ddRADseq data can be found on NCBI SRA database Accession Number SRP132595.

The following datasets are available on Dryad (https://doi.org/10.5061/dryad.5v1dj8):

- VCF files for all raw SNP datasets,
- Input files for MrBayes (Nexus format), RAxML (PHYLIP format), and STRUCTURE (.str format), and
- R scripts for AMOVA and ggtree.

ORCID

Y. Miles Zhang http://orcid.org/0000-0003-4801-8624

REFERENCES

Abrahamson, W. G., & Weis, A. E. (1997). Evolutionary ecology across three trophic levels: Goldenrods, gallmakers, and natural enemies (vol. 29). Princeton, NJ: Princeton University Press.

Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hoehnlohe, P. A. (2016). Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 17(2), 81–92. https://doi.org/10.1038/nrg.2015.28

Antwi, J. B., Sword, G. A., & Medina, R. F. (2015). Host-associated differentiation in a highly polyphagous, sexually reproducing insect herbivore. Ecology and Evolution, 5(13), 2533–2543. https://doi.org/10.1002/ece3.1526

Bagley, R. K., Sousa, V. C., Niemiller, M. L., & Linnen, C. R. (2017). History, geography and host use shape genomewide patterns of genetic variation in the redheaded pine sawfly (Neodiprion lecontei). Molecular Ecology, 26(4), 1022–1044. https://doi.org/10.1111/mec.13972

Bernal, M. A., Gaither, M. R., Simison, W. B., & Rocha, L. A. (2017). Intrigression and selection shaped the evolutionary history of sympatric sister-species of coral reef fishes (genus: Haemulon). Molecular Ecology, 26(2), 639–652. https://doi.org/10.1111/mec.13937

Burange, P. S., Roehrdanz, R. L., & Boete, M. A. (2012). Geographically based diversity in mitochondrial DNA of North American Lygus lin - eolaris (Hemiptera: Miridae). Annals of the Entomological Society of America, 105(6), 917–929. https://doi.org/10.1603/an11146

Burke, G. R., Walden, K. K., Whitfield, J. B., Robertson, H. M., & Strand, M. R. (2014). Widespread genome reorganization of an obligate virus mutualist. PloS genetics, 10(9), e1004660. https://doi.org/10.1371/journal.pgen.1004660

Cárcamo, H., Otani, J., Herle, C., Dolinski, M., Dosdall, L., Mason, P., ... Offert, O. (2002). Variation of Lygus species assemblages in canola agroecosystems in relation to ecoregion and crop stage. The Canadian Entomologist, 134(1), 97–111. https://doi.org/10.4039/Ent13497-1

International Aphid Genomics Consortium. (2010). Genome sequence of the pea aphid Acyrthosiphon pism. PLoS Biology, 8(2), e1000313.

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelT est 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772–772. https://doi.org/10.1038/nmeth.2109

Dres, M., & Mallet, J. (2002). Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1420), 471–492. https://doi.org/10.1098/rstb.2002.1059

Earl, D. A. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7

Eaton, D. A. (2014). PyRAD: Assembly de novo RADseq loci for phylogenetic analyses. Bioinformatics, 30(13), 1844–1849. https://doi.org/10.1093/bioinformatics/btu121

Eaton, D. A., & Ree, R. H. (2013). Inferring phylogeny and introgression using RADseq data: An example from flowering plants (Pedicularis: Orobanchaceae). Systematic Biology, 62(5), 689–706. https://doi.org/10.1002/sysbio.syt032

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340

Egan, S. P., Ragland, G. J., Assour, L., Powell, T. H., Hood, G. R., Emrich, S., ... Feder, J. L. (2015). Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow. Ecology Letters, 18(8), 817–825. https://doi.org/10.1111/ele.12460

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Feder, J. L., Opp, S. B., Wiazlo, B., Reynolds, K., Go, W., & Spisak, S. (1994). Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proceedings of the National Academy of Sciences, 91(17), 7990–7994. https://doi.org/10.1073/pnas.91.17.7990

Fernández, D. C., Laird, R., Herle, C., Goulet, H., & Cárcamo, H. (2018). Seasonality and species composition of Peristenus (Hymenoptera: Braconidae) species, and Lygus species (Hemiptera: Miridae) parasitism in southern Alberta, Canada. Biocontrol Science and Technology, 28(7), 702–717. https://doi.org/10.1080/09583157.2018.1487025

Ferrari, J., West, J. A., Via, S., & Godfray, H. C. (2012). Population genetic structure and secondary symbionts in host-associated populations
of the pea aphid complex. Evolution, 66(2), 375–390. https://doi.org/10.1111/j.1558-5646.2011.01436.x

Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299.

Forbes, A. A., Devine, S. N., Hipple, A. C., Twedt, E. S., Ward, A. K., Widmayer, H. A., & Wilson, C. J. (2017). Revisiting the particular role of host shifts in initiating insect speciation. Evolution, 71(5), 1126–1137. https://doi.org/10.1111/evo.13164

Geib, S. M., Liang, G. H., Murphy, T. D., & Sim, S. B. (2017). Whole genome sequencing of the Braconid parasitoid wasp Fopius arisanus, an important biocontrol agent of pest Tepritid fruit flies. G3: Genes, Genomes, Genetics, 7(8), 2407–2411. https://doi.org/10.1534/g3.117.040741

Goulet, H., & Mason, P. G. (2006). Review of the Nearctic species of Leiophron and Peristenus (Hemiptera: Braconidae: Euphorinae) parasitizing Lygus (Hemiptera: Miridae: Mirini). Zootaxa, 1323, 1–118.

Gwiazdowski, R. A., Foottit, R. G., Maw, H. E. L., & Hebert, P. D. (2015). An important biocontrol agent of pest Tepritid fruit flies. G3: Genes, Genomes, Genetics, 5(7), 2635–2640. https://doi.org/10.1007/s11377-015-0077-0

Haye, T., Olfter, O., Weiss, R. M., Gariepy, T. D., Broadbent, B., & Kuhlmann, U. (2013). Bioclimatic analyses of distributions of a parasitoid Peristenus digoneutis and its host species Lygus spp. in Europe and North America. Agricultural and Forest Entomology, 15(1), 43–55. https://doi.org/10.1111/j.1461-9563.2012.00590.x

Hereward, J. P., Walter, G. H., Debarro, P. J., Lowe, A. J., & Riginos, C. (2015). Developmental trajectories of gene expression reveal changes in the pea aphid complex. Proceedings of the National Academy of Sciences, 112(44), E5980–5989. https://doi.org/10.1073/pnas.1513621112

Kuhlmann, U. (2013). Bioclimatic analyses of distributions of a parasitoid Peristenus digoneutis and its host species Lygus spp. in Europe and North America. Agricultural and Forest Entomology, 15(1), 43–55. https://doi.org/10.1111/j.1461-9563.2012.00590.x

Lepais, O., & Weir, J. T. (2014). SimRAD: An R package for simulation-based prediction of the number of loci expected in RADseq and similar genotyping by sequencing approaches. Molecular Ecology Resources, 14(6), 1314–1321. https://doi.org/10.1111/1755-0998.12273

Leppanen, S. A., Malm, T., Varri, K., & Nyman, T. (2014). A comparative analysis of genetic differentiation across six shared willow host species in leaf- and bud-galling sawflies. PLoS ONE, 9(12), e116286. https://doi.org/10.1371/journal.pone.0116286

Michel, A. P., Sim, S., Powell, T. H., Taylor, M. S., Nosil, P., & Feder, J. L. (2010). Widespread genomic divergence during sympatric speciation, Proceedings of the National Academy of Sciences, 107(21), 9724–9729. https://doi.org/10.1073/pnas.1000939107

Miller, M., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop New Orleans, Louisiana, 14 November 2010, pp. 1–8.

Otte, A. A., Schönrogge, K., Preuss, S., & Stone, G. N. (2018). Partitioning of herbivore hosts across time and food plants promotes diversification in the Megasitigmus dorsalis oak gall parasitoid complex. Ecology and Evolution, 8(2), 1300–1315. https://doi.org/10.1002/ece3.3712

Nosil, P., Crespi, B. J., & Sandoval, C. P. (2002). Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature, 417(6887), 440. https://doi.org/10.1038/417440a

de Oca, A. N.-M., Barley, A. J., Meza-Lázaro, R. N., García-Vázquez, U. O., Zamora-Abrego, J. G., Thomson, R. C., & Leaché, A. D. (2017). Phylogenomics and species delimitation in the knob-scaled lizards of the genus Xenosaurus (Squamata: Xenosauridae) using ddRAD-seq data reveal a substantial underestimation of diversity. Molecular Phylogenetics and Evolution, 106, 241–253. https://doi.org/10.1016/j.ympev.2016.09.001

Otani, J., & Cárjamo, H. (2011). Biology and management of Lygus in canola. Prairie Soils & Crops Journal, 4, 42–53.

Pecquod, J., Olliver, A., Plantegenest, M., & Simon, J.-C. (2009). A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proceedings of the National Academy of Sciences, 106(18), 7495–7500. https://doi.org/10.1073/pnas.0811117106

Peixoto, L., Allen, G. R., Ridenbaugh, R. D., Quarrell, S. R., Withers, T. M., & Sharanowski, B. J. (2018). When taxonomy and biological control researchers unite: Species delimitation of Eadya parasitoids (Braconidae) and consequences for biological control of invasive parcels pests of Eucalyptus. PLoS ONE, 000, 000–000.

Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE, 7(5), e37135. https://doi.org/10.1371/journal.pone.0037135

Powell, T. H., Forbes, A. A., Hood, G. R., & Feder, J. L. (2014). Ecological adaptation and reproductive isolation in sympatry: Genetic and phenotypic evidence for native host races of Rhagoletis pomonella. Molecular Ecology, 23(3), 688–704. https://doi.org/10.1111/mec.12635

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.

Ragland, G. J., Doellman, M. M., Meyers, P., Hood, G. R., Egan, S. P., Powell, T. H., ... Feder, J. L. (2017). A test of genomic modularity among life history adaptations promoting speciation-with-gene-flow. Molecular Ecology, 26, 3926–3942. https://doi.org/10.1111/mec.14178

Ragland, G. J., Egan, S. P., Feder, J. L., Berlocher, S. H., & Hahn, D. A. (2011). Developmental trajectories of gene expression reveal candidates for diapause termination: A key life-history transition in the apple maggot fly Rhagoletis pomonella. Journal of Experimental Biology, 214(23), 3948–3960. https://doi.org/10.1242/jeb.061085

Ragland, G. J., Sim, S. B., Goudarzi, S., Feder, J. L., ... & Hahn, D. A. (2012). Environmental interactions during host race formation: Host fruit environment moderates a seasonal shift in phenology in host races of Rhagoletis pomonella. Functional Ecology, 26(4), 921–931. https://doi.org/10.1111/j.1365-2435.2012.01992.x

Rambaut, A. (2012). FigTree v1. Molecular evolution, phylogenetics and epidemiology. Edinburgh, UK: University of Edinburgh, Institute of Evolutionary Biology.

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., ... Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
