Single-molecule magnet engineering: building-block approaches†

Kasper S. Pedersen,*abc Jesper Bendix*cd and Rodolphe Clérac*ab

Tailoring the specific magnetic properties of any material relies on the topological control of the constituent metal ion building blocks. Although this general approach does not seem to be easily applied to traditional inorganic bulk magnets, coordination chemistry offers a unique tool to delicately tune, for instance, the properties of molecules that behave as "magnets", the so-called single-molecule magnets (SMMs). Although many interesting SMMs have been prepared by a more or less serendipitous approach, the assembly of predesigned, isolatable molecular entities into higher nuclearity complexes constitutes an elegant and fascinating strategy. This Feature article focuses on the use of building blocks or modules (both terms being used indiscriminately) to direct the structure, and therefore also the magnetic properties, of metal ion complexes exhibiting SMM behaviour.

1. Introduction

Single-molecule magnets (SMMs), i.e. paramagnetic molecules exhibiting a magnet behaviour,‡ of intrinsic molecular origin in the absence of a magnetic order, have received considerable attention in chemistry, physics and materials science since their discovery in the early 1990s.1-5 The main interest arose from the possible applications of SMMs in data storage, quantum computing6 and molecule-based spintronics devices.7-9 Even if SMMs have not yet been employed for practical applications, their underlying physics and chemistry have a much broader perspective. For instance, these “nanomagnets” and related molecular magnetic complexes serve as simple models for understanding more complex magnetic materials (extended 1D, 2D or 3D networks, large aggregates, . . .). Moreover, significant advancements in nanostructuring and deposition of single molecules...
allowed the studies on individual SMMs and to probe their intrinsic magnetic properties outside the crystal lattice.16,11 These detailed studies of the SMM properties include the seminal observation of slow relaxation12 and quantum tunnelling13 of magnetization of magnetically isolated molecules covalently grafted to surfaces. Furthermore, studies of SMMs in solution,14,15 as well as nanostructured on surfaces,16,17,18 films,19 porous materials20 or in multi-dimensional coordination networks have been undertaken.21–25

Key to the possible applications of molecular magnetic systems is a thorough understanding of the design pathways towards specific structural motifs and the understanding of the related magnetic properties of the constituent molecular entities. SMMs can be roughly divided into two classes: mononuclear and polynuclear complexes. Mononuclear SMMs have only been reported in recent years with the first example being the [Ln(pc)2]– (Ln = Dy31, Tb32, H3pc = phthalocyanine) “double decker” complexes.26 After this ground-breaking discovery, a multitude of mononuclear lanthanides,27–30 and more recently, several 3d metal ion complexes behaving as SMMs have been reported,39–48-46 Additionally, SMM behaviour in photo-induced spin-crossover complexes has very recently also been reported.49,50 Common to the majority of these systems, the slow-relaxation of magnetization arises due to a strong uniaxial magnetic anisotropy of the paramagnetic metal ion. The second class of SMMs encompasses polynuclear, exchange coupled complexes in which the constituent metal ions may be transition metal (nd, n = 3 to 5) ions, lanthanides/actinides (nf, n = 4, 5), or both. The SMM signature was reported for the first time in a dodecanuclear [Mn₁₂] complex that is the archetypal example of an exchange-coupled polynuclear SMM.1,5,21–25 This family of SMMs can be further sub-divided into two classes based on the employed synthetic approach. The synthesis of the first sub-class proceeds via a concerted association of metal ions through bridging ligands and with capping ligands to prevent polymerisation. The bridging ligands, most commonly oxide, hydroxide, alkoxides or phenolates obtained by deprotonation in the reaction medium, give pathways for magnetic exchange interactions between the constituent metal ions in the final polynuclear complex. The vast majority of SMMs have been obtained by this more or less serendipitous method53 and pivotal studies, which have paved the way for the current understanding of SMM physics (e.g. quantum tunneling of magnetization, QTM,54 and quantum coherence55), were discovered in such systems. Alternatively, the synthetic approach towards the second sub-class of polynuclear SMMs makes use of predesigned molecular building-blocks, which are able to associate directly in solution. In that respect, two kinds of precursors exist, namely M–L ligand donors and M’ ligand acceptors, which react and form M–L–M’ motifs.

The remaining and non-trivial question is now: how to define a building-block and to understand how the structure of the building-blocks influences the final polynuclear complex topology and eventually the magnetic properties? If these questions can be satisfactorily answered, SMMs can be tailored to specific applications by chemical design. In this Feature article, we review the recent efforts to design SMMs using building-block approaches. Instead of a comprehensive review of the vast literature, we have been selective and discuss several explanatory examples of different uses of building-blocks with various bridging ligands.

In most of the cases, the observation of an SMM behaviour is attributed to the presence of a large spin ground state (S_g) and a strong easy-axis magnetic anisotropy.56 The large spin ground state is secured by the magnetic superexchange mechanism, which couples constituent spin centres (S_i), more or less strongly as described by the phenomenological Heisenberg–Dirac–van Vleck (HDvV) spin-Hamiltonian:

$$H = -2 \sum_{i<j} J_{ij} \hat{S}_i \cdot \hat{S}_j$$

(1)

where J_{ij} is the interaction parameter representing ferro- or antiferro-magnetic interactions (positive and negative values, respectively) between the ith and jth spins. § In simple systems (like most of the 3d-based SMMs), the magnetic anisotropy, commonly referred to the (axial) zero-field splitting (ZFS) of the resulting ground state spin, S_g, is described by D\hat{S}_z^2 where \hat{S}_z projects S_z on the quantization (Z) axis with the eigenvalue of M_z, and D is the anisotropy parameter arising as a tensorial sum of single-ion contributions of the intrinsic local anisotropy of the metal ion units.56 Commonly, the single ion anisotropy mainly originates from the orbital angular momentum of excited states, which is mixed into the ground state by second-order spin–orbit coupling.56 For D < 0, an energy barrier (\Delta) of D\hat{S}_z^2 (for integer \hat{S}_z) or \Delta = D(S^2_z - 1/4) (for half-integer \hat{S}_z) separates

Rodolphe Clérac

Rodolphe Clérac (b. in 1971, Versailles, France) received his PhD at the University of Bordeaux 1 under the supervision of Prof. C. Coulon in 1997. After a short post-doctoral stay in the group of Prof. O. Kahn (ICMCB, Bordeaux), he joined Prof. K. R. Dunbar’s group at Michigan State University (East Lansing, Michigan, USA) in 1998 and in 1999, he moved with Dunbar’s group to Texas A&M University (College Station, Texas, USA) where he collaborated with Prof. F. A. Cotton. In 2000, he established his research group (Molecular Materials & Magnetism) at the Centre de Recherche Paul Pascal (CNRS) interested in the synthesis and physical properties of molecular materials.

\[§\] Alternative Hamiltonian conventions (as a matter of personal taste) such as \(- \sum_{i<j} J_{ij} \hat{S}_i \cdot \hat{S}_j\) or \(- \sum_{i<j} J_{ij} \hat{S}_i \cdot \hat{S}_j\) are often found in the literature and a special attention to the employed definition should be given when comparing parameter values. Throughout this Feature article, we will consistently adopt the definition given in eqn (1).
the $M_S = \pm S_T$ ground states. Recently, a few examples of mononuclear systems exhibiting $D > 0$ were reported to exhibit SMM properties; however, the underlying physics is still in debate.57-60 An energy diagram of an SMM with an easy-axis anisotropy ($D < 0$) is schematized in Fig. 1.61 The energy span of the $S_T = 4$ manifold resulting from ferromagnetic coupling of two $S = 2$ MnIII centres has an energy barrier from $M_S = \pm 4$ to $M_S = 0$ of $A/k_B = 25.5$ K.61 By application of a magnetic field, one of the two “wells” can be stabilized and thereby selectively populated due to the Zeeman energy $\mu_B g_S H m_S$ (with the field applied along the quantization, Z axis). When the polarizing field is removed, the system is magnetized and out of equilibrium. In a thermally activated regime where the relaxation is due to spin–phonon interaction, the magnetization of the system follows an exponential decay: $M(t) = M(\tau) \times \exp(-t/\tau)$. This expression also defines the relaxation time, τ, that obeys a thermally activated behaviour, i.e. the Arrhenius law: $\tau(T) = \tau_0 \exp[A/(k_B T)]$.2 The magnitude of the energy barrier, A, and the pre-exponential factor, τ_0, which is related to, for instance, the nature of the spin–phonon interaction,62 are the characteristic parameters commonly reported for an SMM. Most of the time, an experimental “effective” barrier (A_{eff}) smaller than the expected one (A, on the basis of S_T and D) is obtained due to quantum tunnelling of magnetization (QTM) through the potential barrier \textit{via} excited M_S states.5 Indeed this is the case of the above example (Fig. 1) for which the observed energy barrier (A_{eff}) extracted from ac susceptibility measurements is only 16 K, which is much lower than the calculated value (25.5 K). However, application of a small dc field (800 Oe) puts the $\pm M_S$ levels out of resonance and thereby increases A_{eff} to 23 K. The QTM is governed by non-diagonal terms entering into the Hamiltonian, giving rise to a mixing of M_S states. In the vast majority of the characterized SMMs, the symmetry is lower than axial and the anisotropy part of the spin Hamiltonian to second order reads $\hat{H} = D(S,Z^2 - \frac{1}{2}S(S+1)) + E(S,Z^2 - S_T^2)$ where $|E| < \frac{1}{2}|D|$. The E term has the effect of mixing the M_S states differing by $\Delta M_S = \pm 2$. In some cases, this anisotropy description might not be sufficient to explain the relaxation and thus higher order terms, despite their small parameter values, have to be taken into account.2

For the reasons stated above, the maximization of both D and S_T seems crucial for the successful preparation of SMMs. Synthetically, it has been proven very difficult to obtain a large S_T ground state by ferromagnetic interactions whilst simultaneously perfectly aligning anisotropy axes of each magnetic site. The largest SMM reported to date is an aesthetic [MnIII$_{8}$O$_{4}$]$_{2}$ nanoscopic wheel which, despite its high nuclearity, exhibits only a relatively small spin ground state of ~ 6 and a modest energy barrier of 18 K.63 The largest S_T is found in a ferromagnetically coupled mixed-valence [MnII$_{2}$MnIII$_{12}$] complex exhibiting a record $S_T = 83/2$ ground state but no SMM properties are observed due to an almost perfect compensation of the MnIII local anisotropy tensors.64,65 One of the successes in the realm of polynuclear SMMs has been a family of [Mn$_{8}$] complexes, some of which exhibit an energy barrier higher (A_{eff}/$k_B = 86.4$ K for [MnIII$_{8}$O$_{2}$(Et-sao)$_{6}$O$_{2}$(CPh)(Me)$_{2}$][EtOH]$_{6}$, Et-saoH$_{2}$ = 2-hydroxyphenylpropanone oxime) than the celebrated [Mn$_{12}$] complex (A_{eff}/$k_B = 61$ K).1,66,67 Indeed targeting very large spin ground states in pursuit of effective SMMs is not necessarily the most fruitful approach since the overall anisotropy decreases as S_T increases, leading to a SMM energy barrier almost independent of S_T for sufficiently large S_T values.68-70 Recently, M vs. H hysteresis loops at unprecedented temperatures (up to 14 K, 0.9 mT s$^{-1}$) have been reported for dinuclear lanthanide complexes bridged by the exotic paramagnetic N_2^{2-} radical,71,72 and a record anisotropy barrier for polynuclear SMMs of more than 600 K was observed for a {Dy$_{2}$K$_{2}$} hexanuclear complex.73 Particularly in the latter case, these promising results rely rather on the strong single-ion magnetic anisotropy of the lanthanide ions than on the spin ground state of the molecule. However, the use of spin architectures employing multiple spin centres remains a viable route to prepare individual molecules with interesting properties.
magnetic properties, while simultaneously exploiting and optimizing the existing knowledge of preparative coordination chemistry. Importantly, this also constitutes the most realistic approach towards a good understanding of the interaction of magnetic molecules (irrespective of their nuclearity) with extended structures, e.g. surfaces.

2. Topological control

The rational synthesis of polynuclear metal complexes using a bottom-up approach based on building blocks or modules is by no means a new idea nor restricted to magnetic systems. However, due to the intimate relationship between structure and magnetic properties, this approach is particularly relevant for polynuclear magnetic systems. In order for the building blocks to be able to direct or template the desired structure of a polynuclear system some prerequisites need to be fulfilled to avoid the synthesis of non-expected products that might be thermodynamically favored. One of the most important aspects is to consider modules with a sufficient degree of robustness to maintain their structure-directing abilities under the assembly conditions. This somewhat vague property reflects the relative nature of the robustness concept in connection with synthesis, balancing ligand exchange kinetics between the different precursors and with the harshness of the conditions required for the assembly of the targeted polynuclear system.

A second prerequisite for the building blocks to function as structure directing entities is a built-in preference for a specific coordination geometry at metal centers as well as at the bridging ligands. Octahedral coordination is predominant for the transition metal ions, and this is especially true for the kinetically robust systems. For a bridging ligand, the simplest conceivable geometry is to linearly connect two metal ions. This is true for the ubiquitous cyanide bridges, but also to quite some extent for fluoride, but not for oxide, when acting as bridging ligands. This tendency is supported by the histograms of Fig. 2 showing the crystallographically determined M–N ≡ C angle (where M is a transition metal ion) and, for comparison, the M–F/O–M′ angles in unsupported fluoride/oxide-bridged molecules and networks. The relative numbers are striking and reflect the extensive scientific work in cyanide chemistry. Consequently, M–N ≡ C–M′ motifs with robust octahedral metal ions, which are reminiscent of the Prussian blue compounds, are frequently used to design polynuclear complexes. Many molecular species obtained from building blocks of different denticities can be conceptually considered as fragments of a three-dimensional Prussian blue structure.

The robustness of a given building block can derive from either the metal center (e.g. the most robust ones being d^3 and diamagnetic low-spin d^6 metal ions) or from the use of polydentate, and possibly rigid ligands. Due to the limited choice of d^3 or d^6 systems, the use of polydentate ligands is the most efficient approach to enforce robustness and additionally to allow further geometrical preferences based on ligand design.

It should be mentioned that in this Feature article, the definition of the building blocks will be restricted to a molecular entity encompassing at least one metal ion. However, in a broader perspective, it is also useful to note that a less intuitive definition of the building block concept considers a metal-free module with a sufficient degree of robustness to maintain their structure-directing abilities under the assembly conditions. This definition significantly widens the modular description but allows for a unified view encompassing common polynuclear topologies directed by the ligand structure. This last aspect is well illustrated by the large number of ring structures obtained using bridging carboxylate ligands. Indeed, the vast majority of the reported SMMs also falls in this extended definition and will not be included in this article; instead the reader is directed to excellent reviews by Armi, Winpenny, Christou, Tang and Powell for a detailed discussion of SMM topologies and their molecular control by ligand design.

In the context of molecule-based magnetism, the bridging ligand, in addition to guiding the structure, also needs to be compact enough to mediate efficient magnetic interactions. From the synthetic point of view, it is also preferable to choose bridging ligands with moderate basicity. Bridging ligands that are too reactive would limit the range of possible partners and conditions (e.g. solvents) since their structural integrity may be compromised, emphasizing further the relative nature of the robustness concept.

An essential aspect in engineering building blocks is to provide intrinsic magnetic characteristics essential to contribute to the final magnetic properties. To obtain SMMs, the building blocks usually contribute with Ising-like magnetic anisotropy or a large spin but other interesting additional properties like photomagnetism or luminescence can also be implemented. Building blocks may come as either homoleptic complexes, for which the cyanide (see Section 3) and oxalate (see Section 4) complexes are the most common, or as heteroleptic systems for which a large variety of ligand combination have been employed with a strong predominance of cyanide-based complexes. For the heteroleptic systems, the coordination sphere of the octahedral complexes, which can be cis/trans- or fac-mer-stereoisomers, directs towards different polynuclear structures.

![Fig. 2](Image)

Histograms showing the numbers of the structurally characterized (Cambridge Structural Database) unsupported M–F–M′ (left), M–N ≡ C (middle) and unsupported M–O–M′ (right) bridging angles.
The polymerization of building block units into multidimensional structures is a common synthetic problem for chemists who want to engineer molecular objects. In most of the cases, the successful synthesis of polynuclear complexes involves precursor units with strongly directional coordination abilities, which must be assisted by an appropriate choice of capping ligands. This choice is by no means trivial. First, the capping ligands often provide the solubility requirements for the subsequent assembly. Furthermore, the nature of the capping ligand may have dramatic structure-directing properties imposed by second coordination sphere interactions and packing effects. On the other hand, coordination polymers of SMMs are certainly another interesting research area that has led to magnetically interesting systems such as single-chain magnets (SCMs).21,83-86 Indeed, some SCM systems can be considered as one-dimensional polymers of SMM repeating units, allowing the modelling of the complex dynamics of Ising-type SCMs,22,84,87-89 on the basis of the known properties of the isolated SMMs.

3. Cyanide-based precursors

By far, the cyanide-based homo- or heteroleptic precursors are the most ubiquitous building blocks that have been used to design SMMs, high-spin or simple magnetic molecules (“0D”), extended magnetic networks such as chains (1D), sheets (2D) and three–dimensional (3D) lattices. Shatruk, Avendano and Dunbar reviewed comprehensively the chemistry of polynuclear cyanidometallates in 2009 and herein we will focus mainly on results obtained since.76 To quote these authors: “The shape adopted by the cyanide-bridged core in these clusters is dictated by the topology of the available coordination sites”. This sentence describes precisely what will be the theme of the following paragraphs.76

The interest in cyanide-based SMMs is in direct line with the famous Prussian blue and its analogues, which have been intensively studied, in particular by the groups of Girolami,80 Verdaguer,91 and Miller.92 In these systems, an experimental and detailed theoretical understanding91,93 of the magnetic interaction through bridging cyanide ligands has been achieved in relation to the involved metal ions and structural/geometrical parameters. This knowledge of the exchange mechanisms was fundamental in order to engineer cyanide-encompassing molecular analogues with tailor-made magnetic properties. The popularity of the cyanide ion was also boosted by the availability and robustness of many cyanide complexes and the strong tendency of cyanide to bridge between transition metal centres. As discussed in the previous paragraph, cyanide often imposes an almost linear bridging mode that facilitates the design and prediction of specific topologies of the resulting polynuclear complexes. Moreover, the use of cyanide makes the heavier transition metals (4d, 5d) accessible to SMM materials. These elements exhibit some advantages over 3d metal ions as the transition metals (4d, 5d) accessible to SMM materials. These complexes. Moreover, the use of cyanide makes the heavier elements exhibit some advantages over 3d metal ions as the transition metals (4d, 5d) accessible to SMM materials. These complexes.
complexes but none showing SMM properties, while on the other hand, some of them showed remarkable spin-crossover and photomagnetic behaviour.111,115

The groups of Long, Miyasaka and Clérac reported similar trinuclear {MnIIIFeIII}{MnIII} SMMs in which two MnIII Schiff-base (SB) complexes “sandwich” a trans-bridging Fe(CN)6 complexes but none showing SMM properties, while on the other hand, some of them showed remarkable spin-crossover and photomagnetic behaviour.111,115

In these compounds, the co-axial orientation of the MnIII ZFS tensors and the ferromagnetic Mn–Fe interaction (J_{Mn-Fe}/k_B = +6.5 K) both contribute to the SMM behaviour.116 (NEt_4)[Mn_2(rac-salmen)_2(MeOH)]_2FeIII(CN)_6] (3) (rac-salmen^2− = rac-(methylenebisisalicylideneiminate, Fig. 3) has the higher spin-relaxation barrier (A_{00}/k_B) of 14 K (t_0 = 2.5 × 10^−7 s).88,117,118

The {Mn(SB)}^+ complexes are widely used modules to design SMMs due to the relatively strong magnetic anisotropy originating from the ZFS of the MnIII (d^6) metal ion in tetragonal ligand fields imposed by the Jahn–Teller (JT) elongation.119 A comprehensive discussion of the {Mn(SB)}^+ chemistry can be found in ref. 120 and some SMM highlights are presented in the next sections. Using the synthetic approach developed for 3 with different central hexacyanometallate moieties, an isostructural series of SMMs has been described based on [Cr(CN)_6]^3− (4),121 [Fe(CN)_6]^3− (5),122 [Ru(CN)_6]^3− (6),123 and [Os(CN)_6]^3− (7)124 building blocks, “sandwiched” between two [MnIII(5-Brsalen)2(MeOH)]^+ (5-Brsalen = ethylene-bis(5-bromosalicylideneiminate) units. The molecular structure of the [MnII(5-Brsalen)2(MeOH)],125 Mn(CN)_6]− unit is very close to that found in [K][MnII(5-Brsalen)2(H_2O)2M(CN)_6]2H_2O.116,118 but the presence of NEt_4^− counterions and methanol capping ligands on MnIII ligands leads to more magnetically isolated complexes and unquestionable SMM properties. From the viewpoint of the detailed understanding of the magnetic properties, 4 is the simplest system to analyse due to the orbitally non-degenerate ground state of the Jahn–Teller elongation. The MnIII–CrIII interaction is anti-ferromagnetic, thereby giving rise to an S_T = 5/2 ground state with a spin-relaxation barrier due to the intrinsic magnetic anisotropy provided by the MnIII sites. A detailed study of this SMM combining magnetic measurements, frequency-domain Fourier-transform THz–EPR spectroscopy and inelastic neutron scattering (INS) was reported to gain insight into the low-lying energy states of 4.121 Specifically, the analysis of both spectroscopic and magnetic data led to the following set of parameters: J_{Mn-Cr}/k_B = +6.90 K and D/k_B = −5.25 K. A similar analysis of the isostructural complex 8, incorporating diamagnetic [Ir(CN)_6]^3−, yielded D_{Mn/Ir}/k_B = −3.35 K and E_{Mn/Ir}/k_B = +0.30 K demonstrating that the intrinsic properties of the {Mn(SB)}^+ unit are unaltered.124

Complex 4 displays clear frequency-dependent maxima in the out-of-phase component of the dynamic (ac) susceptibility with an SMM energy barrier of 18 K (t_0 = 2 × 10^−8 s), which is slightly lower than the spectroscopically determined value of 26 K. This observation might be the result of QTVM via the first excited state located at 18 K (M_s = ±3/2, S_T = 5/2). In 5–7, the theoretical treatment is more complicated as the exchange interactions become largely anisotropic as a result of the first-order orbital angular momentum present within the ground 4T_{2g}(nd)^3 term (O_{h}).114,125–127 The transformation properties of the orbital angular momentum operator, L, leads to non-zero matrix elements, (Γ^Γ′|L|Γ′′), only for Γ = 2S\Gamma \pm 1 \Gamma_g or 2S\Gamma \pm 1 \Gamma_g.128 Importantly, the orbital contributions to the superexchange mechanism render the HDV Hamiltonian inapplicable.114,125 For 2T_{2g}(nd)^3, the strong coupling of the fictitious l = 1 orbital momentum associated with a T term and the S = 1/2 spin momentum, lifts the 6-fold degeneracy giving a lower-lying E_{1g}(2\Gamma) Kramers doublet (j = 1/2) of the octahedral double group (O_{h}).128 Taking 7 as an example, the simultaneous modelling of the dc susceptibility, magnetization, INS and frequency-domain Fourier-transform EPR spectra by means of a nearest neighbour spin-Hamiltonian yielded the following principal component parameters J_{xx}/k_B = 13(1) K, J_{yy}/k_B = −25(1) K and J_{zz}/k_B = 24(1) K.129 The averaged parameters show an increase in the values extracted for the isostructural complex 6,

Fig. 4 Molecular structures of 3 (a), 7 (b), 9 (c) and 19 (d). The main structural difference between 3 and 7 lies in the Mn–N–C angle being 165° and 145° degrees, respectively. Colour code: Os, green; Mo, turquoise; MnIII, purple; MnII, pink; Fe, orange; O, red; N, blue; C, grey.
incorporating \([\text{Ru(CN)}_6]^{3-}\), corroborating the common theorem that descending in a transition metal group gives rise to an increase in the magnetic interaction due to increasingly diffuse magnetic orbitals.34,95,110 The energy separation between the ground \(j = 1/2\) doublet and \(j = 3/2\) state is given by \(\Delta_j = \frac{1}{2} \zeta\), where \(\zeta\) is the one-electron spin–orbit coupling parameter. \(\zeta\) scales dramatically with the atomic number and is approximately 700 and 4000 K for Fe and Os, respectively.131 When \([\text{M(CN)}_6]^{3-}\) building blocks are parts of a polynuclear complex, the symmetry is no longer octahedral and low-symmetry ligand field effects become often of importance. For the \([\text{Os(CN)}_6]^{3-}\) unit that exhibits a strong ligand field of \(A_{2g}/k_B \approx 56000\) K (\(\sim 39000\) cm\(^{-1}\)),106 small ligand field effects are unlikely to alter the \(j = 1/2\) ground state or induce significant quantum mixing as the separation from the \(j = 3/2\) state is quite large: \(\Delta_j = 3/2 \zeta_{\text{Os(CN)}} \approx 6000\) K. For lighter atoms such as FeIII in a \([\text{Fe(CN)}_6]^{3-}\) environment, small ligand field effects are able to mix \(j = 3/2\) into the ground state. Using the angular overlap model, Tregenna-Piggott \textit{et al.} estimated the \(2\Delta_j\) energy splitting of a \([\text{Fe(CN)}_6]^{3-}\) trans-bridging unit to yield three Kramers doublets at 0, 850 and 1450 K.116 The intrinsic complicated magnetic properties of the \([\text{Fe(CN)}_6]^{3-}\) and \([\text{Mn(CN)}_6]^{3-}\) building blocks and their unexplored \([\text{V(CN)}_6]^{3-}\) and \([\text{Ti(CN)}_6]^{3-}\) analogues, make them less predictable – but fascinating – magnetic modules to design SMMs.132 Interestingly, \(A_{\text{eff}}\) for complexes 5 to 7 was found to increase upon descending in the group 8 of the periodic table, emphasizing the promising and largely unexplored properties of 4d and 5d metals in the quest for new SMMs.133

Related to the above systems based on \([\text{Mn(SB)}]^{1-}\) units, a “T-shaped” SMM, \([\text{Mn}^{\text{III}}(\text{salen})(\text{EtOH})]_2[\text{Fe}^{\text{III}}(\text{CN})_6]_3\) (9, Fig. 4c) was also reported (salen\(^5-\) = \(N,N^\prime\)-ethylene-bis(salicylidene-iminate)).134 The nearly perpendicular orientation of the MnIII JT axes reduces the overall magnetic anisotropy and the complex has a smaller energy barrier than the related system 3. When the assembly of \([\text{Mn(SB)}]^{1-}\) and \([\text{Cr(CN)}_6]^{3-}\) is pursued to its logical end, a heptanuclear complex is formed, \([\text{Cr}(\mu-\text{CN})_6\text{Mn}^{\text{III}}(\text{salen})_6]^3-\) (EtOH)\(_2\)) (10).119 For this complex, the nearly complete cancellation of \(D\) by the almost perpendicular JT axes results in the absence of SMM behaviour. The \([\text{Cr(CN)}_6]^{3-}\) module was also combined with an \(S = 2\) FeIII ion placed in a macrocyclic pentadentate ligand yielding a linear ferromagnetically \([\text{Fe-Cr}]/k_B = 5.41\) K) coupled \([\text{Fe}^{\text{II}}(\text{Cr}^{\text{III}})]\) complex (11, \([\{\{\text{Fe}^{(\text{LN})_2}(\text{H}_2\text{O})_2\}^2\text{Cr}(\text{CN})_6]^{2-}\text{ClO}_4]^{-}\)) \(3\text{H}_2\text{O}\); LN\(_2\text{O}_2 = 3,12,18\)-triaza-6,9-dioxabicyclo[12.3.1]octadeca-1(18),14,16-triene) with a large \(A_{\text{eff}}/k_B = 44.3\) K (\(\tau_0 = 1.4 \times 10^{-9}\) s).135 The magnetic anisotropy in this SMM originates from the hepta-coordinated FeII ion placed in a macrocyclic \(56000\) K \((\sim 39000\) cm\(^{-1}\)).106
[Fe(CN)₆]³⁻ affords the analogous {Mn³⁺₆Fe²⁺⁻} complex showing weak characteristics of SMM behaviour.²¹ However, substituting for [Os(CN)₆]³⁻ yields {Mn³⁺₆Os²⁺⁻} with stronger anisotropy and slower relaxation of the magnetization due to anisotropic Mn³⁺–Os⁻⁻ exchange interactions.³³

Recently, the same group reported an analogous {Mn²⁺₁₆Mn⁰⁺⁻} complex encompassing a central low-spin [Mn(CN)₆]³⁻ module ([(talenBu⁺)[Mn³⁺(MeOH)]₂][Mn³⁺(CN)₆]) in an axial field.³⁴ Thanks to the lackate counterions that favour the occurrence of hexagonal and cubic packings, the {Mn³⁺₆Mn⁰⁺⁻} complex adopts an S₆ crystallographic symmetry. Notably, a trigonal distortion of [Mn(CN)₆]³⁻ does not quench the effective l = 1 orbital angular momentum but the spin–orbit coupling leads to a nonmagnetic ground state for the f = 0 [Mn(CN)₆]³⁻ central unit.³⁴ ¹⁴ ¹⁴ Despite the “blocked” exchange pathway through the essentially diamagnetic [Mn(CN)₆]³⁻ unit (at low temperature), the {Mn³⁺₆Mn⁰⁺⁻} complex exhibits an unusual double M vs. H hysteretic behaviour. The weak intra-[talenBu⁺Mn³⁺]₄–Mn⁰⁺–Mn³⁺ antiferromagnetic interactions stabilize an S = 2 intermediate spin state for both [talenBu⁺Mn³⁺]₄ units, which interact weakly ferromagnetically leading to an S₄ = 4 ground state. Slow dynamics of this ground state is observed around zero-dc field but above 3.4 T, zero-field excited spin states become the lowest in energy giving rise to the second hysteresis loop.

Among the cyanide-based SMMs, the {Re⁴⁺Mn²⁺} complex (14; ([PY5Me₂)₄Mn(Re(CN)₇)(PF₆)₆; 6H₂O; PY₅Me₂ = 2,6-bis(1,1-bis(2-pyridyl)ethyl)-pyridine) based on the pentagonal bi-pyramidal {Re(CN)₇}³⁻ module stands apart with a large barrier of 47 K (τ₀ = 2.4 × 10⁻⁸ s).¹² ¹⁴ ¹³¹ ¹³¹ This system, depicted in Fig. 3, incorporates bulky [PY₅Me₂Mn²⁺]¹⁺ units (Scheme 10), which limit the nuclearity of the complex. At first look, the presence of an SMM behaviour in 14 seems surprising as the magnetic anisotropy of Mn²⁺ is well-known to be very weak and ZFS is obviously meaningless for S = 1/2 systems like [Re(CN)₇]³⁻.³³ ¹³¹ Indeed, the (NBu₄⁺)[Re(CN)₆] precursor exhibits a strongly anisotropic g tensor with g₁ = 3.66 and g⊥ = 1.59 (from X-band EPR) reflecting the unquenched orbital angular momentum of the ⁴E₄⁺(d⁴) ground state in the idealized D₅h symmetry.³³ ¹³¹ Therefore the strong magnetic anisotropy of 14 is likely due to anisotropic Re⁴⁺–Mn²⁺ exchange interactions, which have been described for isoelectronic [Mo(CN)₆]³⁻–Mn⁰⁺ systems in the frame of the super-exchange theory.¹⁴³ Similar complexes with [Ni³⁺₄Re⁴⁺] (15; [PY₅Me₂)₄Ni(Re(CN)₇)(PF₆)₆] and (Cu₄⁺Re⁴⁺) (16; [PY₅Me₂)₄Cu₄Re(CN)₇(PF₆)₆] cores also exhibit slow relaxation of the magnetization although with significantly reduced Δeff/s.¹⁴³ While Δeff/kB = 24 K and τ₀ = 1.4 × 10⁻⁷ s for 15, only a small frequency dependence of a non-zero 〈μ⟩/T with νₑ ≲ 1.5 kHz was observed for 16 suggesting a much smaller Δeff.¹⁴³ The potentially interesting magnetic properties of the [Mo(CN)₆]³⁻ module incorporated into molecular systems have been studied by Dunbar, Wang and co-workers. The first complex incorporating this moiety was [Mn(L₈)₂(H₂O)]₇[B₆Mo(CN)₇][Mn(L₈)₁₀][Mn(L₈)₂][H₂O)]₄·xH₂O (L₈ = 2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.3]octadeca-1(18),2,12,14,16-pentae)ne). This {Mn³⁺₆Mo⁰⁺⁻} (18) complex exhibits a large spin ground state (Sₐ = 31), but instead of possessing SMM properties, it shows a 3D ferrimagnetic ordering at low temperature.¹⁴⁶ Very recently, the same group reported on three trinuclear Mn⁰⁺–Mo⁴⁺–Mo⁴⁺(CN)₆–L complexes where L is a pentadentate ligand.¹⁴⁷ In particular, the quasi-linear Mn³⁺–NC–Mo⁴⁺–CN–Mn⁰⁺ complex, [Mn(L₈Me₅)₂H₂O][Mo(CN)₆]·6H₂O (19, L₈Me₅ = 2,6,8,13,15,17,18,20-octazabicyclo[12.1.0]pentadec-5-ene). This {Mn²⁺₆Mo⁴⁺⁻} complex exhibits large clear SMM properties with Δeff/kB = 58.5(4) K and τ₀ = 2.0(3) × 10⁻⁸ s. These characteristics make this complex the current record holder in terms of Δeff for cyanide-based SMMs. Additionally, this system exhibits a large M vs. H hysteresis loop at low temperatures with a coercive field of 2.0 T (with a 0.05 T s⁻¹ sweeping rate) at 1.8 K. Octacyanidometallates are known for W⁴⁺, Mo⁴⁺, Nb⁴⁺ and Re⁴⁺ metal ions. The incorporation of these units into coordination networks and their resulting magnetic properties have been the topics of reviews by Sieglucka and co-workers.¹⁴⁸–¹⁵¹

Using these octacyanidometallate building blocks, Dunbar and co-workers isolated TBP complexes similar to the ones described earlier (2, Fig. 3, left), [Ni³⁺[tmphen]ₓ]₂[W(CN)₆] (20), but no M vs. H hysteresis loop was observed down to 40 mK.¹⁵² Only a few reports on SMMs based on [MV(CN)₆]³⁻ building blocks (VM = Mo⁴⁺, W⁴⁺, Re⁴⁺ (S = 0)) have been reported. These include large polynuclear complexes with stoichiometries such as [Ni³⁺Mo⁴⁺] (21, Sₐ = 12; [Ni[Ni(bpy)(H₂O)]₈][Mo(CN)₆]₂) (21),¹⁵³ [Ni³⁺W⁴⁺] (22, Sₐ = 12; [Ni[Ni(bpy)(H₂O)]₈][W(CN)₆]₂) (22) and site-substituted Re⁴⁺ analogues ([Cu₆(CH₃OH)₂][W(CN)₆] [Re(CN)₆])·xCH₃OH·yH₂O (23),¹⁵⁵ but only thin evidence of slow magnetic relaxation has been observed. Another family of heterometallic systems encompass mixed 3d–3d–5f species incorporating para-magnetic octacyanometallates,¹⁵⁶–¹⁵⁹ some of which exhibit SMM behaviour.¹⁵⁹–¹⁶¹ Herein, the 3d–4f back-bone is based on bicompartamental Schiff-base ligands derived from o-vanillin and diamine ligands, which accommodate a Cu¹ ion in a salen-type environment.¹⁶²,¹⁶³ With the phenolates and the methoxy groups, this unit constitutes a chelating metallo-ligand for lanthanide ions, which, subsequently, may coordinate the octacyanometallate by either the Cu¹ or the Ln³⁺ ion.

Heteroleptic cyanidometallates

Detailed reviews of the use of di- and tri-cyanidometallate precursors in the design of polynuclear systems have recently been published by Wang et al.¹⁶⁴,¹⁶⁵ Using these modules, the first indications of SMM behaviour in a cyanide-bridged system was found in a {Mo³⁺₆Mn⁰⁺} complex (24; K[M(Me₃tacn)₆MnMo₆(CN)₁₈] (ClO₄)₄; Me₃tacn = N₃,N₃′-trimethyl-1,4,7-triazacyclononane) complex incorporating fac-[Mo³⁺(Me₃tacn)[CN]₆] units.¹⁶⁶ Each of these modules coordinates through only one cyanide ligand to the central Mn⁰⁺ ion leading to an approximately prismatic structure (Fig. 6). The intra-complex Mo³⁺–Mn⁰⁺ antiferromagnetic interactions (Jₘ₀–ₘ₄/kB = −9.6 K) yield an Sₐ = 13/2 spin ground state. Fitting of the M vs. H/T data revealed an Ising-type magnetic anisotropy of D/kB = −0.47 K.

Notably, the isostructural {Cr³⁺₆Mn⁰⁺} (25; K[M(Me₃tacn)₆Cr₆(CN)₁₈][ClO₄]₄) complex did not exhibit SMM properties,¹⁶⁷ likely due to a stronger magnetic anisotropy exhibited by the Mo⁴⁺ unit over the Cr³⁺ building block. For d³ ions (t₂g), like Mo⁴⁺, in an axially perturbed ligand field, the magnetic anisotropy is primarily induced by the mixing of the ⁴A₂g(O₃) ground
state with the excited $^4T_{2g}(O_6)$ state via spin–orbit coupling.\(^\text{168}\)

If only this mixing is taken into account, the D parameter scales as ζ_m^2. For 3d\(^2\) metal ions such as V\(^{\text{II}}\), Cr\(^{\text{III}}\) and Mn\(^{\text{IV}}\) for which the spin–orbit coupling is relatively weak, this second-order contribution to the magnetic anisotropy is often negligible, whereas this effect becomes important for 4d and 5d transition metal ions.

The trans-[ReCl\(_4\)(CN)\(_2\)]\(^{2-}\) building block reported by Long and co-workers is another interesting example of a heteroleptic cyanide-based 5d metal ion module.\(^\text{169}\) This building block is unique in the sense of being the sole example of a paramagnetic mixed halide–cyanide complex. In addition, it offers both strong magnetic anisotropy as well as effective mediation of ZFS parameters:\(^\text{170,171}\)

The pentagonal bipyramidal Fe\(^{\text{II}}\) precursor (S = 2) has (as the triflate complex) a strong magnetic anisotropy reflected by its ZFS parameters: $D/k_B = 11$ K and $|E|/k_B = 3.2$ K. ac susceptibility measurements reveal only an increase of $\chi' (\nu_{ac})$ without a maximum (with ν_{ac} \text{kHz} \text{kHz}) indicating a small Δ_{CEF}. Despite the promising Fe\(^{\text{II}}\)-Re\(^{\text{IV}}\) ferromagnetic interactions and the strong magnetic anisotropy of the building blocks, the non-collinearity of anisotropy tensors might be responsible for the small overall anisotropy of the final complex emphasizing the necessity to control the geometry of the designed polynuclear SMMs. Several other magnetic systems based on the trans-[ReCl\(_4\)(CN)\(_2\)]\(^{2-}\) module have been reported but most of them are chains (that are commonly observed for trans-dicyanidometallates) and SCM compounds.\(^\text{169,171}\)

Only a few other similar building blocks based on 4d/5d metal ions are known including trans-[Ru\(^{\text{III}}\)(acac)\(_2\)(CN)\(_2\)]\(^{2-}\) (acac = acetylacetonate),\(^\text{173}\) [M\(^{\text{III}}\)(salen)(CN)\(_2\)]\(^{-}\) (M = Ru,\(^\text{174}\) Os\(^\text{175}\)), and trans-[Ru\(^{\text{III}}\)(8-quin)\(_2\)(CN)\(_2\)]\(^{2-}\) (quin = 8-quinolinolinate),\(^\text{176}\) but none of them have been used to design SMMs yet. Returning to the first row transition metal ions, a particularly exotic complex is obtained with the trans-dicyanidometallate [Fe\(^{\text{III}}\)(bpm)(CN)\(_2\)]\(^{-}\) module: [Mn\(^{\text{III}}\)(salen)]\([\text{Fe}^{\text{III}}(\text{bpm})(\text{CN})_2]_\text{2H}_2\text{O}\) (28; $\text{H}_2\text{bpm} = 1,2$-bis(pyridine-2-carboxamido)-4-methylbenzene). Instead of forming a chain system, a twelve membered wheel is crystallized as shown in Fig. 7.\(^\text{177,178}\)

As the magnetic anisotropy is dictated by the JT distorted Mn\(^{\text{III}}\) ions, the overall magnetic anisotropy of 28 is accordingly small leading to SMM properties with an effective energy barrier of only 7.5 K.

Several facial tricyanido[orin\(^{\text{ni}}\)] complexes with the auxiliary ligand sphere occupied by various pyrazolylborate ligands, fac-[LFe\(^{\text{III}}\)(CN)\(_2\)]\(^{-}\), have been utilized as modules to synthesize SMMs.\(^\text{179–187}\) Most of these SMM systems encompass Ni\(^{\text{II}}\) ions and commonly give rise to square-based structures. However, the reaction of the simple [TpFe\(^{\text{III}}\)(CN)\(_2\)]\(^{-}\) module with [Me\(_2\)tcn]-Cu\(^{\text{II}}\)(H\(_2\)O)\(_2\)](ClO\(_4\))\(_2\) affords a remarkable TBP complex (29; Tp\(_2\)(Me\(_2\)tcn)Cu\(_2\)(CN)\(_2\)](ClO\(_4\))\(_2\)2H\(_2\)O Fig. 7).\(^\text{179}\) The apparent preference of the Cu\(^{\text{II}}\) ion to penta-coordinated geometry prevents the formation of a molecular square or cube structure as the Me\(_2\)tcn ligand blocks three facial coordination sites. The Cu\(^{\text{II}}\) (S = 1/2) and low-spin Fe\(^{\text{III}}\) (S = 1/2) magnetic centres couple ferromagnetically ($J_{\text{Cu-Fe}}/k_B = 12$ K) stabilizing an $S = 5/2$ ground state that combined with a relatively strong magnetic anisotropy ($D/k_B = -8.2$ K obtained from fitting of reduced magnetization data) induces SMM properties with $\Delta_{\text{CEF}}/k_B = 23$ K ($\tau_0 = 4.8 \times 10^{-8}$ s). As the local spins are all S = 1/2, the magnetic anisotropy is likely the result of the orbital angular momentum of the low-spin Fe\(^{\text{III}}\) modules. A structural analogue is obtained when [TpFe\(^{\text{III}}\)(CN)\(_2\)]\(^{-}\) is reacted with [Ni\(^{\text{II}}\)(cyc)\(_2\)](BF\(_4\))\(_2\) (cyc = 1,4,7,10-tetraazacyclododecane) giving a $\text{Fe}_{\text{2Ni}}^{\text{III}}$ SMM (30; [(cyc)Ni\(_2\)]\([\text{Fe}(\text{CN})_2]_{\text{2BF}_4}]_4\text{4H}_2\text{O}\). The TBP geometry is induced by the cis configuration of the accessible coordination sites of the Ni\(^{\text{II}}\) building block imposed by the small cavity of the cyclo ligand.\(^\text{188}\)

This complex displays intra-molecular ferromagnetic interactions ($J_{\text{Ni-Fe}}/k_B = +7.8$ K, $S_T = 4$) and shows the onset of $\chi' (T)$ peaks above 1.8 K suggesting SMM properties.

Other fac-tricyanido building blocks such as [Re\(^{\text{IV}}\)(triphos)(CN)\(_2\)] \((\text{triphos} = 1,1,1\text{-tri(diphenylphosphinomethyl)ethylene})\) have been studied by Dunbar and co-workers who have reported a $\text{Mn}_{\text{4}}^{\text{II}}\text{Re}_{\text{4}}^{\text{II}}$ complex.
(31; [MnCl]4[Re(triphos)(CN)3]4) SMM189,190 and polymeric systems191 based on this module. The structure of the parent complex, 31, is a molecular cube as depicted in Fig. 8. Other divalent metal ions such as FeIII, CoII, NiIII and ZnII have been incorporated into analogous systems, but only the MnIII complex was shown to be an SMM ($\Delta E/k_B = 13$ K, $\tau_0 = 3.25 \times 10^{-7}$ s).192 The static magnetic properties are dominated by the antiferromagnetic interactions between ReII ($S = 1/2$) and MnIII ($S = 5/2$) spins but a detailed analysis of the experimental magnetic data becomes highly complicated due to orbital contributions to the magnetic exchange mechanism and a large temperature independent paramagnetism (TIP) of the ReIII ion.193 Glaser and co-workers extended their strategy of molecular recognition with triple-salen ligands by exchanging [Cr(CN)\textsubscript{3}]2- with [fac-CrIII(Me\textsubscript{2}tacn)(CN)\textsubscript{3}]-. The three (fac) positions occupied by the Me\textsubscript{2}tacn ligand around the CrIII ion force the fac-[CrIII(Me\textsubscript{2}tacn)(CN)\textsubscript{3}] module to coordinate only one {MnIII}\textsubscript{3} triple-salen moiety; 32 [[talen\textsubscript{Me}][Mn(MeOH)\textsubscript{3}][Me\textsubscript{2}tacn-Cr(CN)\textsubscript{3}][ClO\textsubscript{4}]\textsubscript{3}]-.194 For this system, the $\chi''(T)$ data only show weakly frequency-dependent onsets of peaks between 1.8 and 2.5 K suggesting a lower spin-relaxation barrier than in the {MnIIICrIII} complex ($\Delta E/k_B = 25.4$ K) as expected when lowering the spin ground state from $S_T = 21/2$ (12) to 7/2 (32).

The groups of Holmes, Oshio and Zuo reported {FeIIINiII}\textsubscript{4} molecular cubes exhibiting SMM properties.195–199 All the reported examples are based on cyanido-based FeIII modules with tris(pyrazol-1-yl)borate capping ligand derivatives, whereas a plethora of ligands, primarily amines, have been employed for the more labile NiII moiety. The prototypical example, 38[[TpFe(CN)\textsubscript{3}][Ni(tpe)]\textsubscript{4}][OTf\textsubscript{4}]\textsubscript{-}10DMF-B\textsubscript{2}O\textsubscript{3} (33, Fig. 8) reported by Holmes and co-workers involves the [[TpFeIIIFe(CN)\textsubscript{3}]\textsubscript{2}]2+ building block (TP = tetra(pyrazol-1-yl)borate; OTF = trifluoroacetate) and a NiII site with a 2,2,2-tris(pyrazolyl)ethanol (tpe) capping ligand.196 The FeIII–NiII ferromagnetic coupling ($J/k_B = +9.5(5)$ K) yields an $S_T = 6$ ground state as found for the other analogues.195–199 Fitting of the M vs. H/T data allowed an estimation of D/k_B at about -0.33 K (and thus $\Delta H/k_B = |D|S_T^2 \approx 12$ K) that corroborates the experimental finding of only a small ΔE_{an}. It is worth mentioning that a similar \{FeIIINiII\}\textsubscript{4} complex 34[tach\textsubscript{2}(H\textsubscript{2}O)\textsubscript{2}NiFe\textsubscript{2}(CN)\textsubscript{3}]Br\textsubscript{5}18H\textsubscript{2}O based on the tach (1,3,5-triaminocyclohexane) capping ligand was synthesized by Long and co-workers but no slow relaxation of magnetization was reported.200 Recently, Oshio and co-workers reported a mixed-valence cube complex Na[[TpFeIIIFe\textsubscript{2}(CN)\textsubscript{3}]\textsubscript{2}Ni\textsubscript{II}L]\textsubscript{3}(BF\textsubscript{4})\textsubscript{3} (35) incorporating a red-ox-active ligand: L = α-(4’-methyl-4,5-dimethylthio-tetrathiafulvalene-5’-thio)-α-(tris-2,2,2-(1-pyrazolyl)-ethoxy)-p-xylene. Unfortunately this complex, which was not structurally characterized, only exhibits a small frequency-dependent increase of the $\chi''(T)$ data between 1.8 and 3 K.199 An analogous [Fe\textsubscript{Co}x] cube complex, 196[[pzTpFe(CN)\textsubscript{3}][Co(tpe)]\textsubscript{4}][ClO\textsubscript{4}]\textsubscript{13DMF-4H\textsubscript{2}O} (36), was also reported but instead of exhibiting SMM properties, it displays temperature- and light-induced magnetic bistability201 controlled by an intra-molecular electron transfer and two different redox configurations: i.e. the paramagnetic \{FeIIICoII\}\textsubscript{4} and diamagnetic \{FeIICoIII\}\textsubscript{4} states.

From a strategic point of view, the nearly cubic structure of the previously described SMMs does not appear to be the ideal geometry to obtain SMM properties (due to a near compensation of magnetic anisotropy tensors). Therefore, researchers have been trying to reduce the \{FeIIINiII\}\textsubscript{4} cubes into less-symmetrical smaller fragments like defect cubanes, squares and trinuclear complexes. Interestingly, the use of facial tricyanido modules also stabilizes molecular square SMMs with alternating FeIII and NiII\textsubscript{4} analogues with the same magnetic bistability201 controlled by an intra-molecular electron transfer and two different redox configurations: i.e. the paramagnetic \{FeIIICoII\}\textsubscript{4} and diamagnetic \{FeIICoIII\}\textsubscript{4} states.202
SMM energy gaps are relatively moderate with the largest reported value being $A_{\text{eff}}/k_B = 29.0(4)$ K.\(^{202}\)

Defect square ($\text{Fe}^{\text{III}}\text{Ni}^{\text{II}}$) SMMs were also obtained, for example by reaction of [Ni(Tp)(CN)]$_2$ with Ni$^{\text{II}}$ and bpy (38, $\{\text{pzTpFe(CN)CN}][\text{Ni(bpy)}]_2\text{H}_2\text{O}$; bpy = $2,2'$-bipyridine).\(^{183}\) Interestingly, this complex shown in Fig. 9 exhibits a clear SMM signature by ac susceptibility measurements despite the small $S_T = 2$ ground state induced by the intra-complex ferromagnetic interactions ($J_{\text{Fe-Ni}}/k_B = 7.0(2)$ K). In the absence of a static dc field, the energy barrier is about 12.0 K ($T_0 = 4 \times 10^{-7}$ s) that increases up to 20.6 K ($T_0 = 2 \times 10^{-8}$ s) in a small dc field (2000 Oe). Such trinuclear SMMs can be themselves viewed as building-blocks for larger molecular ($\text{Fe}^{\text{III}}\text{Ni}^{\text{II}}$)$_n$ structures where $n = 2$ or 3. Although not synthetically assembled from pre-isolated trinuclear precursors, an exo-cyclic ($\text{Fe}^{\text{III}}\text{Ni}^{\text{II}}$) SMM [$39$, $\{\text{Tp}^\text{Me}*\text{Fe}^{\text{III}}/(\text{CN})_3\}^n\text{Ni}^{\text{II}}(\text{dmp})_2\text{H}_2\text{O}$; $\text{Tp}^\text{Me}* = \text{tris}(3,4,5$-trimethylpyrazole)borate] and a fused system of exo-cyclic square [($\text{Fe}^{\text{III}}\text{Ni}^{\text{II}}$)$_4$] ($40$, $\{\text{Tp}^\text{Me}*\text{Fe(CN)}_3\}^n\text{Ni}(\text{MeOH})_3\}^n\text{Ni}(\text{MeOH})_3\}_2\text{H}_2\text{O}$) have been reported.\(^{208}\) In these two complexes, the Ni$^{\text{II}}$ sites connect three ($\text{Tp}^\text{Me}*\text{Fe(CN)}_3$)\(^{n-}\) modules. Their remaining positions are occupied by rather labile solvent molecules, which do not apply any particular geometrical constraints on the coordination sphere. The energy barriers for these ($\text{Fe}^{\text{III}}\text{Ni}^{\text{II}}$)$_n$ SMMs are slightly higher than for the trinuclear parent complex, 38, with $A_{\text{eff}}/k_B = 15.6$ K and 17.7 K in zero-dc field and 26 K and 24.5 K in 1500 and 600 Oe for 39 and 40, respectively.

The use of the same Fe$^{\text{III}}$ module, ($\text{Tp}^\text{Me}*\text{Fe}^{\text{III}}/(\text{CN})_3$)$^-$, and geometrical constraining the Ni$^{\text{II}}$ coordination sphere by the tetradentate tren ligand (tren = tris(2-aminoethyl)amine), leaving only two cis-positions accessible, leads to an octanuclear ($\text{Fe}^{\text{III}}\text{Ni}^{\text{II}}$)$_4$ complex (41, $\{\text{Tp}^{\text{Me}*-}\text{Fe}^{\text{III}}/(\text{CN})_3\}^2\text{Ni}(\text{tren})_2\text{Cl}_4\text{O}_4$), 7H$_2$O-MeCN.\(^{185}\) Its complicated molecular structure can be viewed as an “unwrapped” version of the ($\text{Fe}^{\text{III}}\text{Ni}^{\text{II}}$)$_n$ cube. This low-symmetric complex exhibits one of the largest effective energy barriers (33 K) for any cyanide-based 1st row transition metal SMM.

As previously mentioned for a (Fe_4Co_4) cube complex, a few examples of molecular ($\text{Fe}^{\text{III}}\text{Ni}^{\text{II}}\text{Co}^{\text{III}}\text{Ni}^{\text{II}}$)$_2$ complexes have been reported to exhibit photo- and thermally-assisted intra-molecular charge transfer similar to the effect observed in three-dimensional Fe/Co Prussian Blue analogues.\(^{37}\) The principle of this phenomenon is based on the reversible interconversion of diamagnetic ($\text{Fe}^{\text{III}}\text{III})(\mu-\text{CN})\text{Co}^{\text{III}}\text{III}$) pairs into paramagnetic ($\text{Fe}^{\text{III}}\text{III})(\mu-\text{CN})\text{Co}^{\text{III}}\text{II}$) pairs by light irradiation and thermal energy. Very recently, SMM properties in a photo-induced state were observed for the first time in this hexanuclear complex, ($\text{pzTp}_{4}\text{Fe}^{\text{III}}\text{II}[(\mu-\text{CN})_{2}\text{Co}(\text{bimp})_{2}]_{2}2\text{P}_{4}\text{OH}_{4}\text{H}_{2}\text{O}$ (42, bimp = 2,6-bis(benzimidazol-2-yl)pyridine) shown in Fig. 9. The use of the tridentate bimpy ligand permits only three vacant sites on the Co metal ions in a mer-position allowing the central ($\text{Fe}^{\text{III}}\text{III}\text{Co}^{\text{III}}\text{II}$)$_2$ square to be decorated by two ($\text{pzTp}\text{Fe}^{\text{III}}\text{II}(\mu-\text{CN})\text{Co}^{\text{III}}\text{II}$) units. These exo-cyclic moieties are permanently in a LS (t_{2g}) state, whereas the ($\text{Fe}^{\text{Co}2}$) square consists of (i) HS Co$^{\text{III}}$ ($S = 3/2$) and LS Fe$^{\text{III}}$ ($S = 1/2$) metal ions above 250 K and (ii) LS Co$^{\text{III}}$ ($S = 0$) and LS Fe$^{\text{III}}$ ($S = 0$) sites below 200 K, as evidenced from the χT vs. T data and single-crystal X-ray crystallography at different temperatures. Upon an 808 nm irradiation at 5 K, the χT product increases to 20.3 cm$^{-1}$ K mol$^{-1}$ as a result of an intra-square electron transfer from a diamagnetic central ([Co$^{\text{III}}\text{Fe}^{\text{III}}$]$_2$ core to an exchange-coupled ([Co$^{\text{III}}\text{Fe}^{\text{III}}$]$_2$) unit. Before irradiation, ac susceptibility measurements did not detect any sign of slow relaxation of magnetization in 42, but in its photo-excited state, clear frequency-dependent $\chi''(T)$ peaks were observed, suggesting that this complex was the first photo-switchable SMM. The associated spin-reversal barrier was estimated at about 26 K in a static field of 500 Oe.

In contrast to the fac-cyanido systems, mer-cyanido modules have received much less attention.\(^{217-222}\) mer-Tricyanido complexes are well-known especially for iron(III) as illustrated by the ($\text{Fe}^{\text{III}}\text{bpca}(\text{CN})]$\(^{-}\) [bpcaH = bis(2-pyridylcarboxyl)amine],\(^{223}\) and ($\text{Fe}^{\text{III}}\text{pcq}(\text{CN})]$\(^{-}\) [pcqH = 8-(pyridine-2-carboxamido)quinoline] building blocks.\(^{217,234}\) As for the trans-dicyanido modules (vide supra), these units are favoring one-dimensional assembly unless steric constraints from the other building blocks impose otherwise. To the best of our knowledge, no SMMs incorporating these mer-cyanido building blocks have been reported so far.

4. Non-cyanide based precursors

Undoubtedly, cyanide remains the coordination chemist’s favourite bridging ligand in the quest for new SMMs and functional materials. The cyanide-based complexes often possess three essential properties: (i) integrity in solution, (ii) relatively linear bridging modes between metal ions (Fig. 2) and (iii) a redox-activity that does not alter the complex structure. None of these properties are indeed exclusive to the cyanide-based building blocks, and magnetic modules based on other type of bridging groups should be considered in the design of SMM systems.

Halide and pseudo-halide based modules

Although a few examples of SMMs with chloride bridges have been reported,\(^{225}\) no examples assembled from modules can be said to exist. Building-block examples based on pseudohalides (other than cyanides) including azide and (iso)thiocyanate are also extremely rare\(^{226,227}\) and no examples of SMMs synthesized by a modular approach have been reported. Gao, Lau and co-workers reported the mer-[Ru$^{\text{III}}$(bpca)(N$_3$)]$^-$ (bpcaH = Bis(2-pyridylcarboxyl)amine) building blocks.\(^{217,234}\) For the trans-dicyanido modules (vide supra), these units are favoring one-dimensional assembly unless steric constraints from the other building blocks impose otherwise. To the best of our knowledge, no SMMs incorporating these mer-cyanido building blocks have been reported so far.
employ due to the strong basicity of most paramagnetic complexes. In principle, a reasonable approach could involve complexes with metal ions in a high oxidation state, which should have less basic oxide, or, eventually, nitride complexes. Only two examples of SMMs incorporating oxide-based modules have been reported, but both involve diamagnetic Re IV metal ions.229,230 Building blocks based on fluoride as the potential bridging ligand to synthesize magnetic materials are also largely unexplored.231–236 Being isoelectronic to oxide, the incorporation of fluoride is not obvious. In addition to its basicity, the oxide group has the tendency to form non-linear bridges (Fig. 2) between two or more metal ions making it less appealing as the bridging ligand. These two effects appear less pronounced for fluoride. Several mononuclear 3d metal ion fluoride complexes are known and commonly fluoride leads to linear or almost linear bridges.237 The main synthetic problem of these fluoride complexes arises from the inherent lability of many fluoride complexes. However, this issue can be overcome by using, for instance, kinetically robust Cr III fluoride complexes,232 or by enforcing robustness with selected auxiliary ligands as discussed earlier. Being a “hard” ligand, fluoride has a strong preference for “hard” metal ions such as lanthanides. Further discussions about the controlled design of 3d–4f SMM systems with fluoride-based modules will be presented in the last paragraph of this section dedicated to lanthanide and actinide based building-blocks. We recently reported (PPh 4)2[ReF 6]2H 2O (43) incorporating a close-to-octahedral [ReF 6]3− anion to exhibit slow relaxation of the magnetization.60 This interesting module in 43 has a large zero-field splitting of D/k B = +34.0 K and |E|/k B = 3.7 K as determined from inelastic neutron scattering and high-field EPR spectroscopy.60 The strong magnetic anisotropy combined with the ability to bridge several metal centres make homoleptic fluoride-complexes, such as [ReF 6]3−, interesting, but completely unexplored modules for SMMs.

Oxalate-based modules

Trisoxalatometallate(m), [M(ox) 3]1−, have been widely employed for assembling magnetic materials.238 This interest is motivated by the strong preference of the oxalate group to bridge two metal ions in a double-chelate fashion. However, the propensity of the [M(ox) 3]1− unit to form extended systems makes these precursors less suitable to design SMMs, unless sterical constraints imposed by capping ligands are introduced on the acceptor metal ions. This problem can also be overcome by turning to heteroleptic oxalate systems with an appropriate choice of capping ligands. For instance, an interesting Re IV module, [Re IV Cl(ox)]3−, has been reported.239 The d4-configuration of the Re IV ion gives a kinetically robust and hydrolytically stable building block. In combination with Ni III metal ions, a propeller-shaped {Ni IV Re IV} 2 complex ([NBu 4][Ni(ReCl(ox)) 3], 44; Fig. 10) is formed.240 Modelling of the θ/ψ vs. T data gave a ferromagnetic Ni IV–ox–Re IV interaction (J Re–Ni/k B) of +12 K. It is interesting to note that the field dependence of the magnetization for the (PPh 4)2[ReCl(ox)] precursor reveals a strong magnetic anisotropy that has been estimated at D/k B ≈ 86 K.239 Notably, Martinez-Lillo et al. recently reported NBu 4 + salts of [ReCl 4(ox)] 2− and [ReBr 4(ox)] 2−, to display SMM properties in small dc fields.242 For 44, an out-of-phase θ signal was clearly visible in zero dc field, but under 2000 Oe, the spin-relaxation slows down as expected in presence of significant QTM. In a recent communication, the same authors reported a {Gd III Re IV} 4 four-bladed propeller ([NBu 4][Gd{ReBr 4(µ-ox) 3}(H 2O)] 3H 2O) but no slow relaxation of the magnetization was observed.243 So far, the only example of SMM behaviour in a 3d transition metal oxalate complex is [[Cr III(bpy)(ox)] 3]Co III(Me 2phen)] 4H 2O (45; Me 2phen = 2,9-dimethyl-1,10-phenantraline) that is obtained by the reaction of the [Cr III(bpy)(ox)] 3− module with Co III in the presence of the Me 2phen ligand. Only an onset of θ(T) peaks is observed above 1.8 K, suggesting SMM properties and a small energy barrier.244

Acceptor modules

Some of the most commonly used modules to design SMMs are acceptor type units made of a Mn III ion and a Schiff base (SB) ligand (see e.g. Scheme 1j). Polynuclear complexes based on these Schiff base complexes (abbreviated {Mn(SB)} +) have already shown several examples of SMMs incorporating these units (Fig. 4, 5 and 7). The Schiff base ligands are often tetradentate to the Mn III site occupying equatorial positions and allowing the two remaining apical positions to be accessible for further coordination for example with a cyanide group.88,116–119,121–123 The {Mn(SB)} + units constitute a class of very useful modules for SMM synthesis due to their relatively strong magnetic anisotropy reflected in a large negative value of D estimated up to −6 K.244 In solution, the mononuclear {Mn(SB)} + unit is in equilibrium with an “out-of-plane” dinuclear form (see Scheme 1k) in which the phenolate oxygens bridge two {Mn(SB)} + moieties along the JT axes.120 Depending on the structural parameters, the Mn III–Mn III interaction through the bis-phenolate oxygens in this dinuclear module is often ferromagnetic in nature due to an accidental orthogonality of the d z 2 orbitals occupied by one electron and the empty d z 2 d x 2 y 2 orbital of the other Mn III centre. Due to this ferromagnetic interaction, that leads to an S θ = 4 spin ground state, and the covalent ZFS Mn III tensors, the [Mn III(saltmen) 2(ReO 4)] 2 complex (46; saltmen 2− = N,N′-(1,1,2,2-tetramethyleyle)bis(salicylidene-iminate)) was found to be an SMM (Fig. 1).61 Since then,
several other \(\text{Mn}_2(\text{SB})_2\)2SMMs have been reported.246,247 These out-of-plane \(\text{Mn}_2(\text{SB})_2\)2SMMs have also been employed extensively to obtain photomagnetic chains,248 SCMs,249 and two-dimensional networks by assembly with appropriate modules.22,249–252

The terminal labile positions of the \(\{\text{Mn}^\text{II}(\text{SB})_2\}^{2+}\) module can be decorated by other building blocks, for instance the \(S = 1/2\) \([W^\text{VI}((\text{CN})_6)_2]^-\) unit yielding a \(\{\text{Mn}^\text{III}_2W^\text{VI}_2\}\) linear complex \([W^\text{VI}((\text{CN})_6)_2][\text{Mn}(\text{L})_2]_2\text{H}_2\text{O}\) with \(L = N,N’\text{-bis}(2\text{-hydroxyacetophenylene})\text{-1,2-diaminopropane}\), 47 Fig. 11).253 Overall, \(47\) is ferromagnetically coupled, \(J_{\text{Mn-Mn}/kB} = +1.2\) \(K\) and \(J_{\text{Mn-Mn}/kB} = +1.4\) \(K\), leading to an \(S_T = 5\) ground state. Although the energy barrier of \(32\) \(K\) is relatively large, the \(\tau_0\) pre-exponential factor is small, \(5.1 \times 10^{-12}\) \(s\), and thus the relaxation of the magnetization is observed using the ac technique only below \(3\) \(K\).

Other building blocks such as aldoximates have been also associated with \(\{\text{Mn}^\text{III}(\text{SB})_2\}^{2+}\) moieties as exemplified by the series of tetranuclear \(\{\text{Mn}^\text{III}(\text{5-Rsaltmen})_2\text{Ni}^\text{II}(\text{pao})_2(\text{phen})\}^{2+}(\text{ClO}_4)_4\) complexes, which do not show any slow relaxation of the magnetization slow dynamics.38,269 For these reasons, \(\{\text{Mn}^\text{III}(\text{SB})_2\}^{2+}\) units (Fig. 11), clear SMM properties are detected.256 Similarly, the reaction of a manganese[II] complex \([\text{Mn}^\text{II}(\text{5-MeOsaltmen})]_2\text{H}_2\text{O}\) with \(N,N’\text{-dicyano-1,4naphthoquinonedimine} (DCNNQI)\) affords \(\text{Mn}^\text{III}-\text{radical complexes with a }[\text{Mn}^\text{III}_2\text{(5-MeOsaltmen)}_2\text{(DCNNQI)}^\text{−}]_1^n\) core.257 The \(\text{Mn}^\text{III}-\text{radical interaction is antiferromagnetic } (J_{\text{Mn-Mn}/kB} < -23\) \(K\) and much stronger than the ferromagnetic \(\text{Mn}^\text{III}\)–\(\text{Mn}^\text{III}\) interaction \((J_{\text{Mn-Mn}/kB} < +2.0\) \(K\)) leading to an \(S_T = 3\) ground state. The ac susceptibility measurements reveal the SMM properties of these complexes with frequency-dependent in-phase and out-of-phase components \((\nu_{\text{ac}} \leq 1.5\) \(kHz\), \(T \geq 1.8\) \(K\)) as well as a sweep rate dependence of the \(M\) vs. \(H\) hysteresis at 0.4 \(K\).

Beside the \(\{\text{Mn}(\text{SB})^\text{−}\}\) modules, similar acceptor building blocks to design SMMs are relatively rare and only a few other examples, which have already been described in the previous paragraphs, are shown in Scheme 1(l–o). Recently, mononuclear transition metal complexes with “unconventional” coordination numbers and geometries have been reported to display SMM properties due to a very strong magnetic anisotropy.40,46,258 This new category of mononuclear SMMs is currently the topic of a very competitive subject with a rapidly growing number of published systems.39–48,259 It sounds reasonable to think that in the close future some of these complexes could be employed as acceptors or, in some cases, donor modules to design new polynuclear SMMs with remarkable characteristics.

Lanthanide and actinide based building-blocks

Obtaining a topological control of coordination architectures with f-block elements is notoriously difficult due to their high coordination numbers and the lack of ligand field stabilization. Indeed the coordination geometries are mainly governed by the sterical hindrances of the [metal–ligand] and crystal packing effects.260 In addition, even very weak ligand field perturbations may have a significantly strong influence on the SMM properties.38,261–263 Despite the obvious downsides from the viewpoint of the chemical design, lanthanide-based complexes have received an immense attention in recent years as they have served as key ingredients in several high barrier 3d–4f or pure 4f SMMs.71,72,264–266 Although the observation of SMM properties in most lanthanide complexes is inherently related to the ligand field of the isolated lanthanide ion,262,263,267,268 effects of even small ligand field perturbations and exchange interactions have shown to be of crucial importance in the observation of magnetization slow dynamics.38,269 For these reasons, the molecular design of lanthanide-based SMMs requires the ligand field of the lanthanide ions to be as preserved as possible. This is clearly not an easy task even if the use of multi-dentate chelating ligands or other particularly rigid ligands, with or without functional groups susceptible to bridge adjacent magnetic centers, might be an approach to explore. Recently, Murugesu and Long reported COT-based Er and Dy SMMs (COT = cycloocta-1,3,5,7-tetraenediide), which exhibit \(M\) vs. \(H\) hysteresis loops at temperatures of up to 10 \(K\) (for \([\text{Er}(\text{COT})_2]_2\) with a field sweep rate of 0.78 mT s\(^{-1}\)). Indeed such rigid complexes appear to be promising modules for higher-nuclearity systems.38 Although serendipitous approaches have
been use extensively to synthesize 4f metal ion based SMMs, lanthanide building blocks do exist and the modular strategy has also been applied successfully to a limited number of systems. A very common building block is the [Dy(hfac)3(H2O)2] complex (hfac = 1,1,1,5,5-hexafluorocacetylelacetonate). The two coordinately water molecules are easily replaced either by azeotropic distillation or directly in the synthesis of polysynthetic. Lanthanide-based SMM complexes are reported with coordinating nitronyl nitroxide radicals, organic linkers and transition metal complexes. For instance, [Ni II(bpca)2] (Scheme 1g; Hbpca = bis(2-pyridylecarbonylamine) able to coordinate bidentately to one or two lanthanide ions in an “acac-like” fashion (Fig. 12). Both [Dy(hfac)3(Ni(bpca)3]− Dy(hfac)3]2+CHCl3 (53) and the iron(II) analogue 54 incorporating low-spin diamagnetic [Fe 0(bpca)3]− show SMM properties but the latter has a higher energy barrier (9.7 K vs. 4.9 K) despite the ferromagnetic Dy−Ni interactions in 53. This result illustrates well that a simple design of lanthanide-based SMMs is currently not easily accessible.

Indeed, only a very few polynuclear lanthanide complexes, which exhibit SMM properties, were obtained using a molecular building block approach. Recent examples are the \{DY,Co\III\} (55) and \{DY,Fe\III\} (56) propellers ([MDy(Tp)(dto)]4CH3CN−2CH2Cl2; M = Co III or Fe III; dto = dithiooxalate dianion) reported by Tang and co-workers. In these complexes, three dithiooxalate dianions bridge by the sulfur end to the “softer” Co III or Fe III metal ions while the “hard” Dy III sites prefer to coordinate to the donor oxygens (Fig. 10). It is worth noting that lanthanide oxalates are extremely insoluble and only one lanthanide-based SMM featuring oxalate bridging has been reported so far ([TP]Dy2(μ-ox)]2CH3CN−CH2Cl2). Interestingly, the SMM barrier of 55 (52 K) is higher than for the exchange coupled complex 56 that corroborates the argumentation given by Sessoli and co-workers for 53 and 54. Winpenny and co-workers have elegantly used Cr III “horse-shoe” modes to obtain mixed chromium(III)–lanthanide(III) complexes but none of them were reported to be SMMs. Bendix’s group has recently demonstrated the possibility of controlling to some extent the topology of the lanthanide-based complexes using fluoride bridges. The strong preference of fluoride to stabilize linear bridges seems to dictate the polynuclear complex arrangement. For instance, cis-difluoride, trans-difluoride and fac-trifluoride complexes can form linear rod-like, square-like and pyramidal molecular systems, respectively, which show SMM properties for some of them. As an illustration, the trinuclear fluoride-bridged SMM (57), [Dy(hfac)3(H2O)CrF2(py)4Dy(hfac)3(NO3)], is obtained from the assembly of trans−[CrF2(py)4]2+ and [Dy(hfac)3(H2O)2] modules. The magnetization dynamics was too fast to be able to observe a χ′′ maximum (with νac ≤ 1.5 kHz), but muon-spin rotation spectroscopy reveals a small energy barrier of about 4.2 K (τ0 = 5.3(4) × 10−8 s). In addition, the study of 57 by X-ray magnetic circular dichroism allowed a direct estimation of the nature and magnitude of the exchange interaction. This information can hardly be obtained from bulk magnetic measurements and is therefore, generally, not known for lanthanide SMMs.

Actinide based complexes are gaining an increasing attention in the SMM community due to their strong magnetic anisotropy, like lanthanide ions, but also because they offer the possibility of stronger exchange interaction due to the less localized 5f orbitals over the 4f orbitals of the lanthanides. Until now, actinide SMMs are known only for U and Np systems. But most of the few published studies have been dedicated to mononuclear U III systems for which it was recently argued that the SMM properties are intrinsic to the trivalent uranium centre. A single example of a mononuclear Np IV system has been reported: neptunocene, [Np(COT)2]2 (58). Only two examples of exchange coupled polynuclear uranium SMMs are reported so far. The first one reported by Liddle and co-workers is an inverted-sandwich arené-bridged diuranium(III) species that shows a frequency dependent ac susceptibility signal below 5 K. The second example is an U IV-based [MnIV2U V12] wheel complex ([UO2(salen)]12−Mn[py]3)3[C] (Fig. 12) prepared by one-electron reduction of [U V12O14(salen)] with [Co 0(Cp)2] (Cp* = pentamethylcyclopentadiene) and subsequent assembly with Mn IV metal ions. The six-coordinate [UO2(salen)]− unit dimerizes to form an approximate pentagonal bipyramidal local symmetry around the U V site. This complex exhibits an M vs. H hysteresis loop below 4 K (with an 4 mT s−1 average field sweep rate) and a relaxation time that is thermally activated with a large barrier of 142(7) K and a very small τ0 = 3(2) × 10−12 s. In 2010, Magnani and co-workers reported the first neptunium SMM, [NpV12O14Cl2][NpV12O14Cl2(THF)]2 (60), exhibiting an exotic trinuclear neptunium(VIII) core. The slow dynamics of the

Fig. 12 Molecular structure of 53 (top) and 59 (bottom). U, marine; Dy, pink; Ni, green; Mn, pink; Cr, green; O, red; N, light blue; C, grey.
magnetization of this complex was studied using the ac technique leading to an 140-K energy barrier.50,295

5. Conclusions and perspectives

Combining relevant and interesting physical properties in a controlled manner in the same material is an important topic for modern chemists. In particular, the engineering of new multifunctional materials associating magnetism with e.g. photo-activity, electro-activity, porosity, conductivity or other properties controlled by an external stimuli, are being currently targeted by many research groups. Potentially, coordination chemistry provides the necessary tools for designing such new materials in rational and methodical approaches. However, the development of the preparative coordination chemistry is still behind the organic chemistry and consequently, it remains difficult for coordination chemists to design and synthesize, at will, polynuclear metal ion complexes or coordination polymers. Inspired from the protective groups in organic chemistry that direct the reactivity in particular positions, coordination chemists increase their structural control on the final material by using precursors with reduced degrees of freedom. Along this line, the used building-blocks are often carrying capping or strongly coordinating ligands to be able to direct the coordination properties and the final assemblies. Nevertheless, it is important to keep in mind that serendipitous self-assembly reactions have provided many systems of crucial importance to the development of the field of molecular magnetism and that the limitations of the modular approach with respect to structural design of polynuclear complexes are still important.

By creating complicated structures in a hierarchical fashion, the preparative coordination chemist can rely on an existing understanding of the first and second coordination sphere complexations and the well-understood relative robustness of coordination complexes. Furthermore, this modular strategy offers an efficient transfer of the metal ion properties, imposed by the first coordination sphere, to extended structures. Thus, this approach allows us to control not only the spatial arrangements, but also the electronic structure of complicated systems. In this context, many combinations of metal ion modules and bridging ligands are unexplored to design new molecule-based magnetic materials including SMMs and related materials.

In parallel with the use of known building-blocks, the quest for new magnetic modules should not be forgotten as they constitute the basis of this synthetic strategy. In particular, it would be very interesting to exploit the recent examples of mononuclear SMMs and photo-switchable SMMs as modules for higher nuclearity SMM-based architectures. As evidenced in this Feature article by the current limited number of modules used to elaborate SMMs, chemists should continue to develop this step-by-step approach in concert with more serendipitous syntheses, which have led, and will also lead, to many magnetically interesting systems without clearly identified building-block precursors. However, we believe that the described modular synthetic strategy, that efficiently used the existing knowledge of coordination chemistry, offers the best chances to premeditate and control the physical properties of the resulting coordination structures.

Acknowledgements

We are grateful to all our co-workers, past students and friends who have contributed to our scientific adventures. Special thanks to Dr D. Woodruff for valuable discussions. In addition, the authors thank the Danish Ministry of Science, Innovation and Higher Education for the EliteForsk travel stipend to K.S.P., the Conseil Régional d'Aquitaine, the Université de Bordeaux, the Danish research Councils, the French Embassy in Denmark (IFD, French-Danish Research Collaboration Program), the CNRS and the ANR.

Notes and references

1. R. Sessoli, D.Gatteschi, A. Caneschi and M. A. Novak, Nature, 1993, 365, 141–143.
2. D. Gatteschi and R. Sessoli, Angew. Chem., Int. Ed., 2003, 42, 268–297.
3. G. Aromi and E. K. Brechin, in Single-Molecule Magnets and Related Phenomena, ed. R. Winpenny, 2006, pp. 1–67.
4. G. Christou, D. Gatteschi, D. N. Hendrickson and R. Sessoli, MRS Bull., 2000, 25, 66–71.
5. R. Sessoli, H. L. Tsai, A. R. Schake, S. Y. Wang, J. B. Vincent, K. Foltz, D. Gatteschi, G. Christou and D. N. Hendrickson, J. Am. Chem. Soc., 1993, 115, 1804–1816.
6. M. N. Leuenberger and D. Loss, Nature, 2001, 410, 789–793.
7. L. Bogani and W. Wernsdorfer, Nat. Mater., 2008, 7, 179–186.
8. J. Lehmann, A. Gaita-Arino, E. Coronado and D. Loss, J. Mater. Chem., 2009, 19, 1672–1677.
9. J. Camargo and E. Coronado, J. Mater. Chem., 2009, 19, 1678–1684.
10. D. Gatteschi, A. Cornia, M. Mannini and R. Sessoli, Inorg. Chem., 2009, 48, 3408–3419.
11. A. Cornia, M. Mannini, P. Sainctavit and R. Sessoli, Chem. Soc. Rev., 2011, 40, 3076–3091.
12. M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore, A. M. Talarico, M. A. Arrio, A. Cornia, D. Gatteschi and R. Sessoli, Nat. Mater., 2009, 8, 194–197.
13. M. Mannini, F. Pineider, C. Danieli, F. Totti, L. Sorace, P. Sainctavit, M. A. Arrio, E. Otero, L. Joly, J. C. Cezar, A. Cornia and R. Sessoli, Nature, 2010, 468, 417–421.
14. C. Schlegel, E. Zucchini, F. Luis, F. Moro, M. Manoli, E. K. Brechin, M. Murrie and J. van Slageren, Chem.–Eur. J., 2010, 16, 10178–10185.
15. R. Inglis, J. Bendix, T. Brock-Nannestad, H. Weihe, E. K. Brechin and S. Pilgkos, Chem. Soc., 2010, 1, 631–636.
16. A. Cornia, A. P. Costantino, L. Zobbi, A. Caneschi, D. Gatteschi, M. Mannini and R. Sessoli, in Single-Molecule Magnets and Related Phenomena, ed. R. Winpenny, Springer-Verlag Berlin, Berlin, 2006, pp. 133–161.
17. N. Domingo, E. Bellido and D. Ruiz-Molina, Chem. Soc. Rev., 2012, 41, 258–302.
18. R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer and F. Ballestro, Nature, 2012, 488, 357–360.
19. M. Clemente-León, H. Soyer, E. Coronado, C. Mingotaud, C. J. Gómez-García and P. Delhaes, Angew. Chem., Int. Ed., 1998, 37, 2842–2845.
20. T. Coradin, J. Larionowa, A. A. Smith, G. Rogez, R. Clérac, C. Guérin, G. Blondin, R. E. P. Winpenny, C. Sanchez and T. Mallah, Adv. Mater., 2002, 14, 896–898.
21. C. Coulon, H. Miyasaka and R. Clérac, in Single-Molecule Magnets and Related Phenomena, ed. R. Winpenny, 2006, pp. 163–206.
22. I-R. Jeon and R. Clérac, Dalton Trans., 2012, 41, 9569–9586.
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
285 J. D. Rinehart, T. D. Harris, S. A. Kozimor, B. M. Bartlett and J. R. Long, *Inorg. Chem.*, 2009, 48, 3382–3395.
286 J. D. Rinehart and J. R. Long, *Dalton Trans.*, 2012, 41, 13572–13574.
287 J. D. Rinehart and J. R. Long, *J. Am. Chem. Soc.*, 2009, 131, 12538–12559.
288 M. A. Antunes, L. C. J. Pereira, I. C. Santos, M. Mazzanti, J. Marçalo and M. Almeida, *Inorg. Chem.*, 2011, 50, 9915–9917.
289 J. D. Rinehart, K. R. Meihaus and J. R. Long, *J. Am. Chem. Soc.*, 2010, 132, 7572–7573.
290 J. T. Coutinho, M. A. Antunes, L. C. J. Pereira, H. Bolvin, J. Marçalo, M. Mazzanti and M. Almeida, *Dalton Trans.*, 2012, 41, 13568–13571.
291 F. Moro, D. P. Mills, S. T. Liddle and J. van Slageren, *Angew. Chem., Int. Ed.*, 2013, 52, 3430–3433.
292 N. Magnani, C. Apostolidis, A. Morgenstern, E. Colineau, J.-C. Griveau, H. Bolvin, O. Walter and R. Caciuffo, *Angew. Chem., Int. Ed.*, 2011, 50, 1696–1698.
293 D. P. Mills, F. Moro, J. McMaster, J. van Slageren, W. Lewis, A. J. Blake and S. T. Liddle, *Nat. Chem.*, 2011, 3, 454–460.
294 V. Mougel, L. Chatelain, J. Pécaut, R. Caciuffo, E. Colineau, J.-C. Griveau and M. Mazzanti, *Nat. Chem.*, 2012, 4, 1011–1017.
295 S. M. Cornet, L. J. L. Haller, M. J. Sarsfield, D. Collison, M. Hellwell, I. May and N. Kaltsoyannis, *Chem. Commun.*, 2009, 917–919.