肝胆膵癌における血中galectin-3の意義

福島県立医科大学腫瘍生体エレクトロニクス講座1), 同 器官制御外科2), 同 臓器再生外科3)
志村 龍男1), 柴田 昌彦1), 小船戸 康英2), 石亀 輝英2)
岡田 良2), 木村 隆3), 見城 明3), 丸橋 繁3)
大木 達司2), 河野 進浩2) 竹之下 誠2)

原 著

背景と目的: 諸種の癌で血中galectin-3（以下、gal-3）濃度上昇が報告されている。本研究では肝胆膵癌患者における意義を検討する。対象と方法: 血液中gal-3、interleukin（以下、IL）-6、vascular endothelial growth factor（以下、VEGF）、soluble intercellular adhesion molecule（以下、ICAM）-1、granulocyte colony stimulating factor（以下、GCSF）を測定し、サイトカイン産生能、炎症指標と比較した。結果: gal-3濃度は癌患者で有意に上昇しており、VEGF、sICAM-1、GCSFおよび炎症指標と正の相関を認め、IL-12産生能と負の相関を認め（P < 0.05）。結論: 血中gal-3は血管新生因子、炎症を介して癌進展に関与している可能性がある。

索引用語: galectin-3、肝細胞癌、胆道癌、膵癌、血管新生因子

緒 言

βガラクトシド結合レクチンの一種であるgalectin-3（gal-3）は、細胞増殖、分化、アポトーシス、接着、血管新生など多くの機能を有することが報告されてきた1)4)。免疫組織染色法による癌組織における発現は多くの癌種において予後と関連があると報告されている5)10)。2013年に血清中gal-3が血管内皮細胞からのinterleukin（以下、IL）-6、intercellular adhesion molecule（以下、ICAM）-1、granulocyte colony stimulating factor（以下、G-CSF）、granulocyte macrophage colony-stimulating factor（以下、GM-CSF）産生を誘導するとする報告がなされた11)。

一方、血液中gal-3濃度が乳癌12)、大腸癌11)13)、胃癌14)、膀胱癌15)、頭頭部癌16)、肝癌17)、甲状腺癌18)、悪性黒色腫19)などで増加しているとの報告があるが、その意義についてはまだ明らかになっていない。今回、われわれは、肝胆膵癌患者において血液中gal-3を測定し、血液中の様々な血管新生因子、サイトカイン産生能、炎症指標および栄養指標との関係を検討した。

対象および方法

2011年4月から2014年3月までに当科を受診した術前、未治療の肝胆膵癌63名（肝細胞癌21人、胆道癌23人、膵癌19人）を対象とした。年齢は、70.0±9.8歳（平均±標準偏差）、性別は男性47人、女性16人であった。全例に対して根治術が施行された。本研究は、福島県立医科大学倫理委員会において承認され（承認番号2010-204）、全ての患者から書面によるインフォームドコンセントを得た。採血後血清を分離採取したのち、末梢血単核細胞（以下、PBMC）をFicoll-Hypaque濃度勾配により速やかに分離した（18℃、400×g、30分遠心）。血清は使用時まで-80℃で保存した。分離したPBMCはRPMI-1640培養液で洗浄したのち、RPMI-1640培養液を用いて10^6cells/mlとし、加熱処理したウシ胎児血清を10%になるよう添加したのち、5% CO₂、37℃で24時間培養した。IL-10とIL-17産生の検討には20μg/mlのphytohemagglutininで、IL-12産生の検討には0.01%濃度となるようにStaphylococcus aureus Cowan-1を添加して24時間刺激したのち、培養上清を採取して-80℃で保存した。IL-10、IL-12、17はそれぞれenzyme-linked immunosorbent assay（以下、ELISA）法にて測定した（R&D Systems社製Minneapolis、MN、USA）。

血清中のgal-3、VEGF、IL-6、ICAM-1、G-CSF
濃度は同じくELISA法により測定した。ELISAは全てR&D Systems社製（Minneapolis, MN, USA）のキットを使用し、そのプロトコールに従って測定した。gal-3に関しては、健常正常者14人（男性7人、女性7人、平均年齢57.2歳）から同様に血清を採取し測定し対照とした。
栄養学的指標としてretinol binding protein（以下、RBP）、transferrin（以下、TF）、prealbumin（以下、PA）を、また、炎症の指標として、c-reactive protein（以下、CRP）、白血球数（以下、WBC）、好中球/リンパ球数比（以下、NLR）を測定した。2群間での比較はStudent-t testにて行った。相関関係はSpearmanの順位相関係数を算出した。腫瘍マーカーとしての血液中gal-3濃度の有用性はreceiver operating characteristics（ROC）曲線を用いて検討した。統計はSPSS version 24を用いて計算し、P < 0.05をもって統計学的有意差ありと考えた。

結果
Fig. 1に健常者および患者血清中のgal-3濃度を示す。健常者（2.4 ± 0.8ng/ml）に比して肝癌（9.6 ± 3.8ng/ml）、胆道癌（11.0 ± 4.9ng/ml）、膵癌（10.2 ± 4.1ng/ml）では有意に上昇していた（P < 0.001）。
Fig. 2には、血液中gal-3濃度と血管新生因子との相関を示す。gal-3はVEGF（r = 0.33）、G-CSF（r = 0.29）、ICAM-1（r = 0.40）と正の相関関係を示した（P < 0.05）。IL-6とは相関関係は認められなかった。
Fig. 3はgal-3とIL-12産生能の相関を示す。gal-3はIL-12産生能と負の相関を示した（r = -0.39）。他のサイトカインであるIL-6、IL-10、IL-17産生能とは相関関係は認められなかった。
Fig. 4には血清gal-3濃度と炎症指標との関係を示す。gal-3はCRP（r = 0.45）、WBC（r = 0.32）、NLR（r = 0.36）とそれぞれ有意に正の相関を示した（P < 0.05）。

考察
われわれは、gal-3が血管新生因子であるIL-6、ICAM-1、G-CSF、GM-CSFの産生を誘導するととの報告がなされてからこれまでに、食道癌・大腸癌・甲状腺癌において血液中gal-3とこれら血管新生因子とに正の相関があることを報告してきた11)〜23)。本来は、肝癌・胆道癌・膵臓癌それぞれを個別に検討することが望まれるが、免疫・炎症・栄養の各指標と
肝胆膵癌と血中galectin-3との関係を検討するに当たってはある程度まとまった症例数での検討が必要と考え、われわれは肝胆膵領域の癌として63例において検討することとした。血中gal-3と肝胆膵疾患の関連ではこれまでに、肝炎、肝硬変、肝細胞癌、および膵癌に関する報告がある。肝細胞癌（n = 19）および慢性肝炎（n = 24）および肝硬変（n = 22）で検討した報告では、肝炎から肝硬変になるに従い血液中のgal-3濃度は上昇し、ウイルスではHCV陽性肝炎の方が、HBV陽性肝炎よりも上昇していた。gal-3と線維化に関しては心血管系疾患において高度の相関が認められており、肝疾患での検討も大変興味あるところである。われわれの検討では、gal-3は炎症指標と正の相関を示しており、担癌状態では単純に線維化の指標とはならないと考えた。また、症例数が少ないことから今後の更なる検討が待たれる。膵癌（n = 78）でのXieらの検討では、同時に免疫染色も行っている。膵癌患者ではgal-3の組織での発現が増強されており、血清中のgal-3濃度が上昇していると報告されている。Carcinoembryonic antigenやcarbohydrate antigen 19-9といった腫瘍マーカーとの関連は認められなかったとされている。一方で、膵癌組織でのgal-3発現低下がステージ、予後不良と関係しているとの報告もあり、一定の見解に至っていない。胆道癌と血清gal-3の関連についてはこれまで報告はない。

これまで報告された担癌患者での血清gal-3濃度は、全ての報告において健康者よりも上昇していた12)～20)。われわれの検討においても、同様の結果であった。血清中のgal-3が担癌患者で上昇するメカニズムについてはまだ明らかにされていない。血液中に分泌される産生源としてはこれまで、腫瘍だけでなく、マクロファージ、肥満細胞、好酸球などが候補として考えられている21)が、詳細は不明である。

免疫学的指標との関係では、IL-12産生能と負の相関を示した。これまでの基礎的研究では、gal-3の発現していないgal-/- ヌードマウスにおいて樹状細胞からのIL-12産生がwild typeのマウスに比較して有意に増加しており、gal-/-マウスのTh-1優位の反応を説明していると述べられている26)。今回の検討でgal-3と正の相関関係にあったVEGFは、血管新生因子であると同時に、進行恶性黑色腫において樹状細胞の応答減少およびTh-2有意な免疫環境を誘導すると報告されている27)。本研究での結果を踏まえると、血清中のgal-3濃度はIL-12産生能の低下およびVEGF産生亢進に関連して、Th-2優位な状況を作り出している可能性がある。

炎症指標であるCRP、WBC、NLRとは強い正の相関関係が認められた。全身的な慢性炎症が発癌および
癌の進展に大きな関わりがあるとする報告がある通り、gal-3がこれら炎症指標と強い相関にあることは発癌過程にも関与している可能性が示唆される。

血液中gal-3濃度が腫瘍マーカーとして有用であるかをROC curveを用いて検討した。今回の検討ではcutoff値を3.91に設定すると有用との結果を得たが、症例数・検助者数とともに少なく今後症例を増やしてなる検討が必要と考えている。

結 論

血中gal-3濃度の上昇は、血管新生の亢進と炎症、および免疫低下により肝胆膵癌の発癌、進展に関与していると考えられた。

本論文の要旨は第78回日本臨床外科学会総会（2016年、東京）において報告した。

利益相反：なし

References

1) Akahani S, Nangia-Makker P, Inohara H, et al: Galectin-3: A novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res 1997; 57: 5272-5276
2) Danguy A, Camby I, Kiss R: Galectins and cancer. Biochim Biophys Acta 2002; 1572: 285-293
3) Davidson PJ, Davis MJ, Patterson RJ, et al: Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology 2002; 12: 329-337
4) Lin HM, Pestell RG, Raz A, et al: Galectin-3 enhances cyclin D (1) promoter activity through SP1 and cAMP-responsive elements in human breast epithelial cells. Oncogene 2002; 21: 8001-8010
5) Kim MK, Sung CO, Do IG, et al: Overexpression of galectin-3 and its clinical significance in ovarian carcinoma. Int J Clin Oncol 2011; 16: 352-358
6) Acikalin M, Etiz D, Gurbuz MK, et al: Prognostic significance of galectin-3 and cyclin D1 expression in undifferentiated nasopharyngeal carcinoma. Med Oncol 2012; 29: 742-749
7) Brown ER, Doig T, Anderson N, et al: Association of galectin-3 expression with melanoma progression and prognosis. Eur J Cancer 2012; 48: 865-874
8) Yang LP, Jiang S, Liu JQ, et al: Up-regulation of galectin-3 and sambucus nigra agglutinin binding site is associated with invasion, metastasis and poor-progression of the gallbladder adenocarcinoma. Hepatogastroenterology 2012; 59: 2089-2094
9) Zhou X, Jing J, Peng J, et al: Expression and clinical significance of galectin-3 in osteosarcoma. Gene 2014; 546: 403-407
10) Jiang SS, Weng DS, Wang QJ, et al: Galectin-3 is associated with a poor prognosis in primary hepatocellular carcinoma. J Transl Med 2014; 12: 273
11) Chen C, Duckworth CA, Zhao Q, et al: Increased circulation of galectin-3 in cancer induces secretion of metastasis-promoting cytokines from blood vascular endothelium. Clin Cancer Res 2013; 19: 1693-1704
12) Iurisci I, Tinari N, Natoli C, et al: Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 2000; 6: 1389-1393
13) Iacovazzi PA, Notarnicola M, Caruso MG, et al: Serum levels of galectin-3 and its ligand 90k/mac-2bp in colorectal cancer patients. Immuno pharmacol Immunotoxicol 2010; 32: 160-164
14) Cheng D, Liang B, Li Y: Serum galectin-3 as apotential marker for gastric cancer. Med Sci Monit 2015; 21: 755-760
15) Sakaki M, Oka N, Nakanishi R, et al: Serum level of galectin-3 in human bladder cancer. J Med Invest 2008; 55: 127-132
16) Sausez P, Lorfevre F, Lequeux T, et al: The determination of the levels of circulating galectin-1 and -3 in HNSCC patients could be used to monitor tumor progression and/or responses to therapy. Oral Oncol 2008; 44: 86-93
17) Ulu M, Alacacioglu A, Yuksel E, et al: Prognostic significance of serum galectin-3 levels in patients with hepatocellular cancer and chronic viral hepatitis. Saudi J Gastroenterol 2015; 21: 47-50
18) Išić T, Savin S, Cvejić D, et al: Serum Cyfra 21.1 and galectin-3 protein levels in relation to immunohistochemical cytokeratin 19 and galectin-3 expression in patients with thyroid tumors. J Cancer Res Clin Oncol 2010; 136: 1805-1812
Circulating galectin-3 (gal-3) has been reported to induce angiogenetic factors, such as vascular endothelial growth factor (VEGF), intercellular adhesion molecule (ICAM)–1, granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and interleukin (IL)–6. Circulating gal-3, VEGF, G-CSF, and IL–6 concentrations were investigated in patients with hepatobiliary and pancreatic cancer (n = 63), in relation to various nutritional and inflammatory factors, such as retinol binding protein, transferrin, prealbumin, C-reactive protein (CRP), white blood cell count (WBC), and the neutrophil/lymphocyte ratio (NLR). Serum galectin-3 concentrations were significantly higher in patients than in healthy controls (P < 0.001). Circulating gal-3 concentrations were significantly correlated with VEGF, ICAM–1, G-CSF, and NLR concentrations (P < 0.05), whereas they were inversely correlated with IL–12 production (P < 0.05). Circulating gal-3 might have a role in the induction of angiogenetic factors and Th–2–dominant immunological status in hepatobiliary and pancreatic cancer.

Key words: galectin-3, hepatocellular carcinoma, biliary cancer, pancreatic cancer, angiogenetic factor