Blocks in the category of finite-dimensional representations of principal \(W \)-algebra for \(Q(2) \)

Elena Poletaeva
School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
E-mail: elena.poletaeva@utrgv.edu

Abstract. We describe the blocks in the category of finite-dimensional representations of the principal finite \(W \)-algebra for the Lie superalgebra \(Q(2) \).

Introduction
In the classical case when \(g \) is a complex semi-simple Lie algebra and \(e \) is a nilpotent element in \(g \), a finite \(W \)-algebra for \(g \) is a quantization of the Poisson structure on the Slodowy slice (a transversal slice to the orbit of \(e \) in the adjoint representation). The general definition of a finite \(W \)-algebra was given by A. Premet in [16]. For a Lie superalgebra \(g = g_0 \oplus g_1 \) with a reductive even part \(g_0 \), the finite \(W \)-algebra is associated with an even nilpotent element \(e \in g_0 \). It is denoted by \(W \).

In the case when \(g = gl(m|n) \) and \(e \) is the even principal nilpotent, J. Brown, J. Brundan and S. Goodwin classified irreducible representations of \(W \) and explored the connection with the category \(O \) for \(g \) using coinvariants functor [1, 2].

In [13] we considered \(W \) associated with an even nilpotent element \(\varphi \in g_0^* \subset g^* \) in the coadjoint representation (this means that for the algebraic reductive group \(G_0^* \) of \(g_0^* \), the closure of the \(G_0 \)-orbit of \(\varphi \) in \(g_0^* \) contains zero). We proved that if \(\varphi \) is the principal nilpotent, i.e. the dimension of the even part of the annihilator of \(\varphi \) in \(g \) is minimal, and \(g \) is isomorphic to \(sl(m|n) \), \(\mathfrak{usp}(2|2n) \) or \(Q(n) \), then every simple \(W \)-module is finite-dimensional. In [15] we classified simple \(W \)-modules for \(g = Q(n) \) associated with the principal nilpotent coadjoint orbits (Theorem 4.6). The technique we used is completely different from one used in [1] due to the lack of triangular decomposition of \(W \) in our case. Instead, we described the restriction of simple \(U(\mathfrak{g}) \)-modules to \(W \) and proved that any simple \(W \)-module occurs as a constituent of this restriction.

We consider the category \(W - \text{mod} \) of finite-dimensional \(W \)-modules. The natural problem is to describe the blocks in this category. In this work we make a step in this direction and describe the blocks in the case when \(g = Q(2) \) (Theorem 8). Our results should have applications to the study of primitive ideals of \(U(\mathfrak{g}) \) in the sense of I. Losev (see [8, 9, 10]). In the super case the theory of the primitive ideals is even more complicated (see [3]). We also intend to apply these results to classify simple modules for super-Yangians of type \(Q \).

All results are joint work with V. Serganova.
1. Finite W-algebra for $Q(n)$

In this paper we consider the Lie superalgebra $\mathfrak{g} = Q(n)$ defined as follows (see [6]). Equip $\mathbb{C}^{n|n}$ with the odd operator ζ such that $\zeta^2 = -\text{Id}$. Then $Q(n)$ is the centralizer of ζ in the Lie superalgebra $\mathfrak{g}(n|n)$. It is easy to see that $Q(n)$ consists of matrices of the form $\begin{pmatrix} A & B \\ B & A \end{pmatrix}$, where A, B are $n \times n$ matrices. We fix the Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ to be the set of matrices with diagonal A and B. By n^+ (respectively, n^-) we denote the nilpotent subalgebras consisting of matrices with strictly upper triangular (respectively, lower triangular) A and B. The Lie superalgebra \mathfrak{g} has the triangular decomposition $\mathfrak{g} = n^- \oplus \mathfrak{h} \oplus n^+$ and we set $\mathfrak{b} = n^+ \oplus \mathfrak{h}$.

Denote by W the finite W-algebra associated with a principal even nilpotent element φ in the coadjoint representation of $Q(n)$. Let us recall the definition (see [16]). Let $\{e_{i,j}, f_{i,j} \mid i, j = 1, \ldots, n\}$ denote the basis consisting of elementary even and odd matrices:

$$
e_{i,j} = \begin{pmatrix} E_{ij} & 0 \\ 0 & E_{ij} \end{pmatrix}, \quad f_{i,j} = \begin{pmatrix} 0 & E_{ij} \\ -E_{ij} & 0 \end{pmatrix}.
$$

Choose $\varphi \in \mathfrak{g}^*$ such that $\varphi(f_{i,j}) = 0$, $\varphi(e_{i,j}) = \delta_{i,j+1}$.

Let I_φ be the left ideal in $U(\mathfrak{g})$ generated by $x - \varphi(x)$ for all $x \in n^-$. Let $\pi : U(\mathfrak{g}) \to U(\mathfrak{g})/I_\varphi$ be the natural projection. Then

$$W = \{\pi(y) \in U(\mathfrak{g})/I_\varphi \mid \text{ad}(x)y \in I_\varphi \text{ for all } x \in n^-\}.
$$

Using identification of $U(\mathfrak{g})/I_\varphi$ with the Whittaker module $U(\mathfrak{g}) \otimes_{U(n)} \mathbb{C}_\varphi \simeq U(\mathfrak{b}) \otimes \mathbb{C}$ we can consider W as a subalgebra of $U(\mathfrak{b})$. The natural projection $\vartheta : U(\mathfrak{b}) \to U(\mathfrak{h})$ with the kernel $n^+U(\mathfrak{b})$ is called the Harish-Chandra homomorphism. It is proven in [13] that the restriction of ϑ to W is injective.

Set

$$\xi_i := (-1)^{i+1}f_{i,i}, \quad x_i := \xi_i^2 = e_{i,i},$$

then

$$U(\mathfrak{h}) \simeq \mathbb{C}[\xi_1, \ldots, \xi_n]/(\xi_i\xi_j + \xi_j\xi_i)_{1 < j \leq n}.
$$

We will identify W with $\vartheta(W)$ and use the generators in W introduced in [14] (Corollary 5.15):

$$u_k(0) := \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} (x_{i_1} + (-1)^{k+1}\xi_{i_1}) \cdots (x_{i_{k-1}} - \xi_{i_{k-1}})(x_{i_k} + \xi_{i_k})|_{\text{even}},$$

$$u_k(1) := \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} (x_{i_1} + (-1)^{k+1}\xi_{i_1}) \cdots (x_{i_{k-1}} - \xi_{i_{k-1}})(x_{i_k} + \xi_{i_k})|_{\text{odd}}.
$$

For convenience we assume $u_k(0) = u_k(1) = 0$ for $k > n$.

2. Simple modules over associative superalgebras

We work in the category of vector superspaces over \mathbb{C}. We denote the parity of a homogeneous vector v of a superspace by $\hat{v} \in \mathbb{Z}_2$. All tensor products are over \mathbb{C} unless specified otherwise.

Let A be a superalgebra. By an A-module M we mean a \mathbb{Z}_2-graded left A-module. A submodule of M is a \mathbb{Z}_2-graded submodule. By Π we denote the functor of parity switch $\Pi(M) = M \otimes \mathbb{C}^{0|1}$. For a module M over an associative superalgebra A, ΠM has the same underlying vector space but with the opposite \mathbb{Z}-grading. The new action of $a \in A$ on $m \in \Pi M$ is given in terms of the old action by $a \cdot m := (-1)^{\hat{a}\hat{m}}am$.

Recall that if M is a simple finite-dimensional A-module over some associative superalgebra A, then by Schur’s Lemma $\text{End}_A(M)$ is either one-dimensional, or two-dimensional and has
basis \(\{\text{Id}_M, \epsilon_M\} \), where \(\epsilon_M \) is a (unique up to a sign) odd involution on \(M \): \(\epsilon_M^2 = \text{Id}_M \). Note that \(\epsilon_M \) provides an \(A \) isomorphism \(M \rightarrow \Pi(M) \). We say that \(M \) is an \textit{irreducible of M-type} in the former case and an \textit{irreducible of Q-type} in the latter (see \cite{7, 4}).

Let \(A \) and \(B \) be two superalgebras. The tensor product \(A \otimes B \) is again a superalgebra, where multiplication is given by

\[
(a_1 \otimes b_1)(a_2 \otimes b_2) = (-1)^{\tilde{b}_1 \tilde{a}_2} a_1 a_2 \otimes b_1 b_2
\]

for \(a_i \in A, b_i \in B \). Let \(M \) and \(N \) be two modules over associative superalgebras \(A \) and \(B \). Then \(M \otimes N \) is naturally a module over \(A \otimes B \) where

\[
(a \otimes b)(m \otimes n) = (-1)^{bn am} a \otimes b m,
\]

where \(a \in A, b \in B \) and \(m \in M, n \in N \). If \(M \) and \(N \) are two simple finite-dimensional modules over associative superalgebras \(A \) and \(B \), then the module \(M \otimes N \) might be not simple. In fact, if \(M \) and \(N \) are both of M-type, then \(M \otimes N \) is simple of M-type. If one of these modules is of M-type, and the other is of Q-type, then \(M \otimes N \) is simple of Q-type. However, if \(M \) and \(N \) are both of Q-type, then \(M \otimes N \) is not simple. Let \(\epsilon_M \) and \(\epsilon_N \) be odd involutions of \(M \) and \(N \), respectively. Then the map \(\epsilon_M \otimes \epsilon_N \) defined by

\[
(\epsilon_M \otimes \epsilon_N)(m \otimes n) = (-1)^{mn} \epsilon_M(m) \otimes \epsilon_N(n)
\]

is an even \(A \otimes B \)-automorphism of \(M \otimes N \), and its square is \(-\text{Id}_{M \otimes N}\). In this case \(M \otimes N \) decomposes into a direct sum of two \(A \otimes B \)-submodules, which are formed by the \pm 1-eigenspaces of \(\epsilon_M \otimes \epsilon_N \). We can choose either submodule and denote it by \(M \otimes N \). Then

\[
M \otimes N \simeq M \otimes N \oplus \Pi(M \otimes N).
\]

Both submodules are simple and of M-type.

3. Irreducible representations of \(W \)

3.1. Representations of \(U(\mathfrak{h}) \)

Let \(s = (s_1, \ldots, s_n) \in \mathbb{C}^n \). We call \(s \) regular if \(s_i \neq 0 \) for all \(i \leq n \) and typical if \(s_i + s_j \neq 0 \) for all \(i \neq j \leq n \).

It follows from the representation theory of Clifford algebras that all irreducible representations of \(U(\mathfrak{h}) \) up to change of parity can be parameterized by \(s \in \mathbb{C}^n \). Indeed, let \(M \) be an irreducible representation of \(U(\mathfrak{h}) \). By Schur’s lemma every \(x_i \) acts on \(M \) as a scalar operator \(s_i \text{Id} \). Let \(I_\delta \) denote the ideal in \(U(\mathfrak{h}) \) generated by \(x_i - s_i \), then the quotient algebra \(U(\mathfrak{h})/I_\delta \) is isomorphic to the Clifford superalgebra \(C_\delta \) (we consider Clifford algebras as superalgebras with the natural \(\mathbb{Z}_2 \)-grading) associated with the quadratic form:

\[
B_\delta(\xi_i, \xi_j) = \delta_{ij}s_i.
\]

Then \(M \) is a simple \(C_\delta \)-module.

The radical \(R_\delta \) of \(C_\delta \) is generated by the kernel of the form \(B_\delta \). Let \(m(s) \) be the number of non-zero coordinates of \(s \), then \(C_\delta/R_\delta \) is isomorphic to the matrix superalgebra \(M(2^{\frac{m-1}{2}}|2^{\frac{m-1}{2}}) \) for even \(m \) and to the superalgebra \(M(2^{\frac{m-1}{2}}) \otimes \mathbb{C}[\epsilon]/(\epsilon^2 - 1) \) for odd \(m \).

Therefore \(C_\delta \) has one (up to isomorphism) simple \(\mathbb{Z}_2 \)-graded module \(V(s) \) of type Q for odd \(m(s) \), and two simple modules \(V(s) \) and \(\Pi V(s) \) of type M for even \(m(s) \) (see \cite{11}). In the case when \(s \) is regular, the form \(B_\delta \) is non-degenerate and the dimension of \(V(s) \) equals \(2^k \), where \(k = \lfloor n/2 \rfloor \). In general, \(\dim V(s) = 2^{m(s)/2} \).
Let \(i + j = n \). We have the natural embedding of the Lie superalgebras \(Q(i) \oplus Q(j) \hookrightarrow Q(n) \). If \(\mathfrak{h}_r \) denotes the Cartan subalgebra of \(Q(r) \), the above embedding induces the isomorphism

\[
U(\mathfrak{h}) \simeq U(\mathfrak{h}_i) \otimes U(\mathfrak{h}_j).
\]

It induces an isomorphism of \(U(\mathfrak{h}) \)-modules

\[
V(s) \simeq V(s_1, \ldots, s_i) \otimes V(s_{i+1}, \ldots, s_n).
\]

3.2. Restriction from \(U(\mathfrak{h}) \) to \(W \)

We denote by the same symbol \(V(s) \) the restriction to \(W \) of the \(U(\mathfrak{h}) \)-module \(V(s) \). We proved the following two statements in [15].

Proposition 1 ([15], Proposition 4.1). Let \(S \) be a simple \(W \)-module. Then \(S \) is a simple constituent of \(V(s) \) for some \(s \in \mathbb{C}^n \).

Theorem 2 ([15], Theorem 4.2). If \(s \) is typical, then \(V(s) \) is a simple \(W \)-module.

3.3. Simple \(W \)-modules for \(n = 2 \)

Let \(n = 2 \). Let \(s_1 \neq -s_2 \) and assume that \(s_1, s_2 \neq 0 \). Then by Theorem 2, \(V(s) \) is simple as \(W \)-module. First, we describe the action of \(U(\mathfrak{h}) \) in \(V(s_1, s_2) \simeq V(s_1) \otimes V(s_2) \). Note that

\[
U(\mathfrak{h}) \simeq U(\mathfrak{h}_1) \otimes U(\mathfrak{h}_1),
\]

where \(\mathfrak{h}_1 \) is the Cartan subalgebra of \(Q(1) \). Clearly, \(U(\mathfrak{h}_1) \cong \mathbb{C}[\xi] \). Let \(x = \xi^2 \). For some suitable bases in \(V(s_1) \) and \(V(s_2) \), namely, \(V(s_1) = \langle v_1 | v_2 \rangle \), \(V(s_2) = \langle w_1 | w_2 \rangle \), where \(\bar{v}_1 = \bar{w}_1 = 0 \) and \(\bar{v}_2 = \bar{w}_2 = 1 \), the action of \(U(\mathfrak{h}_1) \) in \(V(s_i) \) is given by

\[
\xi \mapsto \left(\begin{array}{cc} 0 & \sqrt{s_i} \\ \sqrt{s_i} & 0 \end{array} \right), \quad x \mapsto \left(\begin{array}{cc} s_i & 0 \\ 0 & s_i \end{array} \right) \quad \text{for } i = 1, 2.
\]

We identify the elements \(\xi_i, x_i \) of \(U(\mathfrak{h}) \) as follows:

\[
\xi_1 \leftrightarrow \xi \otimes 1, \quad \xi_2 \leftrightarrow 1 \otimes \xi, \quad x_1 \leftrightarrow x \otimes 1, \quad x_2 \leftrightarrow 1 \otimes x.
\]

Then \(V(s_1) \otimes V(s_2) = V(s_1, s_2) \oplus \Pi V(s_1, s_2) \), where

\[
V(s_1, s_2) = \langle v_1 \otimes w_1 + iv_2 \otimes w_2 | v_2 \otimes w_1 + iv_1 \otimes w_2 \rangle, \quad (1)
\]

\[
\Pi V(s_1, s_2) = \langle -v_1 \otimes w_1 + iv_2 \otimes w_2 | v_2 \otimes w_1 - iv_1 \otimes w_2 \rangle. \quad (2)
\]

Hence the action of \(U(\mathfrak{h}) \) in \(V(s_1, s_2) \) is given by the following formulas in basis (1):

\[
\xi_1 \mapsto \left(\begin{array}{cc} 0 & \sqrt{s_1} \\ \sqrt{s_1} & 0 \end{array} \right), \quad \xi_2 \mapsto \left(\begin{array}{cc} 0 & \sqrt{s_2} \\ \sqrt{s_2} & 0 \end{array} \right).
\]

Note that \(W \) is generated by \(\phi_0, \phi_1, z_0 \) and \(z_1 \), where

\[
\phi_0 := u_1(1) = \xi_1 + \xi_2, \quad \phi_1 := -u_2(1) = x_2 \xi_1 - x_1 \xi_2, \quad z_0 = u_1(0) = x_1 + x_2, \quad z_1 = u_2(0) = x_1 x_2 - \xi_1 \xi_2.
\]

Then we obtain the following formulas for the action of the generators of \(W \):

\[
\phi_0 \mapsto \left(\begin{array}{cc} 0 & \sqrt{s_1} + \sqrt{s_2}i \\ \sqrt{s_1} - \sqrt{s_2}i & 0 \end{array} \right), \quad \phi_1 \mapsto \sqrt{s_1s_2} \left(\begin{array}{cc} 0 & \sqrt{s_2} - \sqrt{s_1}i \\ \sqrt{s_2} + \sqrt{s_1}i & 0 \end{array} \right), \quad (3)
\]

\[
\phi_0 \mapsto \left(\begin{array}{cc} 0 & \sqrt{s_1} + \sqrt{s_2}i \\ \sqrt{s_1} - \sqrt{s_2}i & 0 \end{array} \right), \quad \phi_1 \mapsto \sqrt{s_1s_2} \left(\begin{array}{cc} 0 & \sqrt{s_2} - \sqrt{s_1}i \\ \sqrt{s_2} + \sqrt{s_1}i & 0 \end{array} \right), \quad (3)
\]

\[
\phi_0 \mapsto \left(\begin{array}{cc} 0 & \sqrt{s_1} + \sqrt{s_2}i \\ \sqrt{s_1} - \sqrt{s_2}i & 0 \end{array} \right), \quad \phi_1 \mapsto \sqrt{s_1s_2} \left(\begin{array}{cc} 0 & \sqrt{s_2} - \sqrt{s_1}i \\ \sqrt{s_2} + \sqrt{s_1}i & 0 \end{array} \right), \quad (3)
\]
\(z_0 \mapsto (s_1 + s_2)\text{Id}, \quad z_1 \mapsto \begin{pmatrix} s_1s_2 + \sqrt{s_1s_2i} & 0 \\ 0 & s_1s_2 - \sqrt{s_1s_2i} \end{pmatrix}. \) (4)

Note that formulas (3) and (4) hold when \(s_1 \neq -s_2 \).

Assume that \(s_1 = -s_2 \). If \(s_1, s_2 = 0 \) then \(V(s) \) is isomorphic to \(\mathbb{C} \oplus \mathbb{C}^2 \), where \(\mathbb{C} \) is the trivial module. If \(s_1 \neq 0 \), we choose \(\sqrt{s_1}, \sqrt{s_2} \) so that \(\sqrt{s_2} = -\sqrt{s_1} \). Note that the choice of sign controls the choice of the parity of \(V(s) \). The following exact sequence easily follows from (3) and (4):

\[0 \to \Pi \Gamma_{-s_1^2 + s_1} \to V(s) \to \Gamma_{-s_1^2 - s_1} \to 0, \]

where \(\Gamma_t \) is the simple module of dimension \((1|0)\) on which \(\phi_0, \phi_1 \) and \(z_0 \) act by zero and \(z_1 \) acts by the scalar \(t \). The sequence splits only in the case \(s_1 = 0 \), when \(\Gamma_0 \cong \mathbb{C} \) is trivial. Thus, using Proposition 1, Theorem 2 and (5) we obtain

Lemma 3. If \(n = 2 \), then every simple \(W \)-module is isomorphic to one of the following:

1. \(V(s_1, s_2) \) or \(\Pi V(s_1, s_2) \) for \(s_1 \neq -s_2, s_1, s_2 \neq 0 \);
2. \(V(s, 0) \) if \(s \neq 0 \);
3. \(\Gamma_t \) or \(\Pi \Gamma_t \).

3.4. Invariance under permutations

Theorem 4 ([15], Theorem 4.4). Let \(s' = \sigma(s) \) for some permutation of coordinates.

1. If \(s \) is typical, then \(V(s) \) is isomorphic to \(V(s') \) as a \(W \)-module.
2. If \(s \) is arbitrary, then \([V(s)] = [V(s')] \) or [\(\Pi V(s') \)], where \([X] \) denotes the class of \(X \) in the Grothendieck group.

Proof. We will prove the statement for \(n = 2 \). Assume first that \(s_2 \neq -s_1 \). In this case \(V(s_1, s_2) \) is a \((1|1)\)-dimensional simple \(W \)-module.

Let

\[D = \begin{pmatrix} \sqrt{s_2} + \sqrt{s_1}i & 0 \\ 0 & \sqrt{s_1} + \sqrt{s_2}i \end{pmatrix}. \]

Then by direct computation we have

\[D\phi_0D^{-1} = \begin{pmatrix} 0 & \sqrt{s_2} + \sqrt{s_1}i \\ \sqrt{s_2} - \sqrt{s_1}i & 0 \end{pmatrix} \quad \text{and} \quad D\phi_1D^{-1} = \begin{pmatrix} 0 & \sqrt{s_1} \sqrt{s_2}i \\ \sqrt{s_1} + \sqrt{s_2}i & 0 \end{pmatrix}. \]

Therefore \(D \) defines an isomorphism between \(V(s_1, s_2) \) and \(V(s_2, s_1) \).

Now consider the case \(s_1 = -s_2 \). Then the structure of \(V(s_1, -s_1) \) is given by the exact sequence (5). Let \(V(s') = V(-s_1, s_1) \), then analogously we have the exact sequence

\[0 \to \Pi \Gamma_{-s_1^2 - s_1} \to V(s') \to \Gamma_{-s_1^2 + s_1} \to 0. \]

The statement (2) now follows directly from comparison of (5) and (6). The proof for an arbitrary \(n \) see in [15].

\[\square \]

4. Central characters

The center of \(U(q) \) for \(q = Q(n) \) is described in [18]. The center of \(U(\mathfrak{h}) \) coincides with \(\mathbb{C}[x_1, \ldots, x_n] \) and the image of the center of \(U(q) \) under the Harish-Chandra homomorphism is generated by the polynomials \(p_k = x_1^{2k+1} + \ldots + x_n^{2k+1} \) for all \(k \in \mathbb{N} \). These polynomials are called \(Q \)-symmetric polynomials.

In [13] we proved that the center \(Z \) of \(W \) coincides with the image of the center of \(U(q) \) and hence can be also identified with the ring of \(Q \)-symmetric polynomials.
Every \(s \) defines the central character \(\chi_s : Z \to \mathbb{C} \). Furthermore, it follows from the description of simple \(W \)-modules in \([15]\) (Theorem 4.6) that every simple \(W \)-module admits central character \(\chi_s \) for some \(s \). For every \(s = (s_1, \ldots, s_n) \) we define the core \(c(s) = (s_i, \ldots, s_m) \) as a subsequence obtained from \(s \) by removing all \(s_j = 0 \) and all pairs \((s_i, s_j)\) such that \(s_i + s_j = 0 \). Up to a permutation this result does not depend on the order of removing. Thus, the core is well defined up to permutation. We call \(m \) the length of the core. The notion of core is very useful for describing the blocks in the category of finite-dimensional \(Q(n) \)-modules, see \([12, 17]\).

Example 5. Let \(s = (1, 0, 3, -1, -1) \), then \(c(s) = (3, -1) \).

The following is a reformulation of the central character description in \([18]\).

Lemma 6. Let \(s, s' \in \mathbb{C}^n \). Then \(\chi_s = \chi_{s'} \) if and only if \(s \) and \(s' \) have the same core (up to permutation).

It follows from Lemma 6 that the core depends only on the central character \(\chi_s \), we denote it \(c(\chi) \).

5. The category of finite-dimensional \(W \)-modules and blocks

Let \(W - \text{mod} \) be the category of finite-dimensional \(W \)-modules. A \(W \)-module \(M \) has generalized central character \(\chi \), if for any \(z \in Z \) and \(m \in M \), there exists \(n \in \mathbb{Z}_{\geq 0} \) such that \((z - \chi(z))^n \cdot m = 0\). Let \(W^x - \text{mod} \) be the full subcategory of modules admitting generalized central character \(\chi \). The category \(W - \text{mod} \) is the direct sum of the subcategories \(W^x - \text{mod} \), as \(\chi \) ranges over the central characters.

The blocks in the category \(W - \text{mod} \) are equivalence class of linked objects. Each block lies in a single \(W^x - \text{mod} \), however, different blocks can belong to the same \(W^x - \text{mod} \), see \([5]\).

5.1. Blocks in the category of finite-dimensional \(W \)-modules for \(Q(2) \)

Lemma 7. Let \(n = 2 \). A simple \(W \)-module \(S \) belongs to \(W^x - \text{mod} \) if and only if one of the following three cases takes place:

1. \(S \simeq V(s_1, s_2) \) for \(s_1 \neq s_2, s_1, s_2 \neq 0 \) and \(c(\chi) = (s_1, s_2) \),
2. \(S \simeq V(s, 0) \) for \(s \neq 0 \) and \(c(\chi) = (s) \),
3. \(S \simeq \Gamma_t \) or \(\Pi^t \) and \(\chi = 0 \).

Proof. We have to compute the central character of the simple \(W \)-module. For a \(Q \)-symmetric polynomial \(p_k = x_1^{2k+1} + x_2^{2k+1} \) we have that

\[
p_k(S) = \begin{cases}
 s_1^{2k+1} + s_2^{2k+1} & \text{if (1)} \\
 s_2^{2k+1} & \text{if (2)} \\
 0 & \text{if (3)}
\end{cases}
\]

Since \(p_k \) generate the center of \(W \) the statement follows.

\[\square\]

Theorem 8. (1) Each simple \(W \)-module \(V(s_1, s_2) \) for \(s_1 \neq s_2, s_1, s_2 \neq 0 \) forms a block in \(W^x \)-mod, where \(c(\chi) = (s_1, s_2) \).

2. Each simple \(W \)-module \(V(s, 0) \) for \(s \neq 0 \) forms a block in \(W^x \)-mod, where \(c(\chi) = (s) \).

3. The blocks in the subcategory \(W^x \)-mod, where \(\chi = 0 \), are described as follows. Let \(a \in \mathbb{C} \). Define

\[
a_n = a - n^2 + n\sqrt{1-4a} \quad \text{for } n = 0, \pm 1, \pm 2, \ldots
\]

Then \(\Gamma_a \) lies in the block formed by \(\Gamma_{a_n} \) if \(n \) is even and \(\Pi^a \), if \(n \) is odd. \(\Pi^a \) lies in the block formed by \(\Pi^a \), if \(n \) is even and \(\Gamma_{a_n} \), if \(n \) is odd.
Proof. Statements (1) and (2) follow from Lemma 6 and Lemma 7. To prove (3), first we will show that Γ_a is linked to $\Pi\Gamma_b$ if and only if

$$b = a - 1 \pm \sqrt{1 - 4a}.$$ \hfill (8)

Recall that W is generated by ϕ_0, ϕ_1, z_0 and z_1, where

$$\phi_0 = \xi_1 + \xi_2, \quad \phi_1 = x_2\xi_1 - x_1\xi_2, \quad z_0 = x_1 + x_2, \quad z_1 = x_1x_2 - \xi_1\xi_2.$$

We have

$$[z_1, \phi_1] = 2z_1\phi_0 + 2\phi_1, \quad (9)$$

$$[z_1, \phi_0] = -2\phi_1. \quad (10)$$

Suppose that Γ_a is linked to $\Pi\Gamma_b$. The generators ϕ_0 and z_1 act in the vector superspace $\Gamma_a \oplus \Pi\Gamma_b$ as follows:

$$\phi_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad z_1 = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}.$$

Then from (10)

$$\phi_1 = \begin{pmatrix} 0 & b-a \\ 0 & 2 \\ 0 \end{pmatrix}$$

and hence $[z_1, \phi_1] = \begin{pmatrix} a & 0 \\ 0 & b-a \end{pmatrix}$.

On the other hand, from (9)

$$[z_1, \phi_1] = 2\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + 2 \begin{pmatrix} 0 & b-a \\ 0 & a+b \end{pmatrix}.$$

Hence

$$\frac{(a-b)(b-a)}{2} = 2a + b - a.$$

Then

$$b^2 + (2 - 2a)b + (a^2 + 2a) = 0.$$ \hfill (11)

This implies (8).

Conversely, if $a \neq 0$, set $s_1 = \frac{1-\sqrt{1-4a}}{2}$ and consider $V(-s_1, s_1)$ ($s_1 \neq 0$). Recall that we have the non-split exact sequence (6):

$$0 \rightarrow \Pi\Gamma_{-s_1^2} \rightarrow V(-s_1, s_1) \rightarrow \Gamma_{-s_1^2+s_1} \rightarrow 0,$$

which becomes

$$0 \rightarrow \Pi\Gamma_b \rightarrow V(-s_1, s_1) \rightarrow \Gamma_a \rightarrow 0,$$ \hfill (12)

with $b = a - 1 + \sqrt{1 - 4a}$. If we set $s_1 = \frac{1+\sqrt{1-4a}}{2}$, we obtain (12) with $b = a - 1 - \sqrt{1 - 4a}$.

If $a = 0$, set $s_1 = 1$ in (12). Then

$$0 \rightarrow \Pi\Gamma_{-2} \rightarrow V(-1, 1) \rightarrow \Gamma_0 \rightarrow 0.$$

Let V be a $(1|1)$-dimensional module on which z_0, z_1 and ϕ_1 act by zero and ϕ_0 acts by $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then

$$0 \rightarrow \Gamma_0 \rightarrow V \rightarrow \Pi\Gamma_0 \rightarrow 0.$$
Finally, the sum of the roots of equation (11) is $2a - 2$. This gives the relation
\[a_{n-1} + a_{n+1} = 2a_n - 2 \quad (a_n = a). \] (13)

Then (8) and (13) imply (7).

Example 9.
(1) $a = 0$, then $a_n = n(1 - n)$ and Γ_0 lies in the block
\[\ldots, \Gamma_{-30}, \Pi_{-20}, \Gamma_{-12}, \Pi_{-6}, \Gamma_{-2}, \Pi_0, \Gamma_0, \Pi_{-2}, \Gamma_{-6}, \Pi_{-12}, \Gamma_{-20}, \Pi_{-30}, \ldots \]

(2) $a = \frac{1}{4}$, then $a_n = \frac{1}{4} - n^2$ and $\frac{\Gamma_1}{4}$ lies in the block
\[\frac{\Gamma_1}{4}, \Pi \frac{-\frac{1}{4}}{4}, \frac{\Gamma_{-\frac{1}{4}}}{4}, \ldots \]

(3) $a = 1$, then $a_n = 1 - n^2 + n\sqrt{-3}$ and Γ_1 lies in the block
\[\ldots, \Pi_{-3\sqrt{-3}}, \Pi_{-2\sqrt{-3}}, \Pi_{-\sqrt{-3}}, \frac{\Gamma_1}{2}, \Pi_{\sqrt{-3}}, \frac{\Gamma_2}{2}, \Pi_{3\sqrt{-3}}, \Pi_{2\sqrt{-3}}, \Pi_{\sqrt{-3}}, \ldots \]

6. Acknowledgments

This work was supported by a grant from the Simons Foundation (#354874, Elena Poletaeva). I thank the organizers of the XXVIth Colloquium on Integrable Systems and Quantum Symmetries (ISQS-26) Czech Technical University, Prague, Czech Republic, July 8-12, 2019, for the very interesting conference and hospitality. I am grateful to V. Serganova for very helpful discussions.

References

[1] Brown J, Brundan J and Goodwin S 2013 Algebra Number Theory 7 1849-82
[2] Brundan J and Goodwin S 2019 Adv. Math. 347 273-339
[3] Coulembier K and Musson I 2018 Tohoku Math. J. (2) 70 225-66
[4] Cheng S-J and Wang W 2012 Dualities and Representations of Lie Superalgebras Graduate Studies in Mathematics vol 144 (Providence, RI: American Mathematical Society) p 94
[5] Humphreys J 2008 Representations of Semisimple Lie Algebras in the BGG Category O Graduate Studies in Mathematics vol 94 (Providence, RI: American Mathematical Society) pp 30-32
[6] Kac V G 1977 Adv. Math. 26 8-96
[7] Kac V G 1978 Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) Lecture Notes in Math. vol 676 (Berlin: Springer) pp 597-626
[8] Losev I 2010 Finite W-algebras Proc. Intern. Congr. of Mathematicians vol 3 (New Delhi: Hindustan Book Agency) 1281–1307 (Preprint arXiv:1003.5811 (v1) [math-RT])
[9] Losev I 2010 J. Amer. Math. Soc. 23 35-59
[10] Losev I 2011 Duke Math. J. 159 99-143
[11] Meinrenken E 2013 Clifford Algebras and Lie Theory A Series of Modern Surveys in Mathematics vol 58 (Heidelberg: Springer) pp 23-48
[12] Penkov I 1986 Funktional. Anal. i Prilozhen. 20 37-45
[13] Poletaeva E and Serganova V 2016 On Kostant’s theorem for the Lie superalgebra $Q(n)$ Adv. Math. 300 320-59 (Preprint arXiv:1403.3866 (v1) [math-RT])
[14] Poletaeva E and Serganova V 2017 On the finite W-algebra for the Lie superalgebra $Q(n)$ in the non-regular case J. Math. Phys. 58 111701 (Preprint arXiv:1705.10200 (v1) [math-RT])
[15] Poletaeva E and Serganova V 2019 Representations of principal W-algebra for the superalgebra $Q(n)$ Preprint arXiv:1903.05272 (v1) [math-RT]
[16] Premet A 2002 Adv. Math. 170 1-55
[17] Serganova V 2014 Proc. Intern. Congr. of Mathematicians-Seoul 2014 vol 1 (Seoul: Kyung Moon Sa) pp 603-32
[18] Sergeev A 1983 Lett. Math. Phys. 7 177-79