Coherence loss and recovery of an electron spin coupled inhomogeneously to a one-dimensional interacting spin bath: an adaptive t-DMRG study

Zhi-Hui Wang,1 Bing-Shen Wang,2 and Zhao-Bin Su1

1 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China
2 State Key Laboratory of Semiconductor Superlattice and Microstructure and Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100090, China

(Dated: July 31, 2008)

Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, is studied using the adaptive time dependent density matrix renormalization group (t-DMRG) method. It is found that the interplay of the coupling inhomogeneity and the transverse intra-bath interactions results in two qualitatively different coherence evolutions, namely, a coherence preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron spin flip at time τ exhibit stable decoherence pulse sequence for the periodic evolution and a single peak at \(\sqrt{2}\tau \) for the decoherence evolution, respectively. With the diagonal intra-bath interaction included, the specific feature of the periodic regime is kept, while the \(\sqrt{2}\tau \)-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of τ is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.

PACS numbers: 03.65.Yz, 03.67.Pp, 75.40.Mg, 76.60.Lz

I. INTRODUCTION

Decoherence of a quantum object induced by an interacting spin bath rather than the conventional boson bath is currently an attractive research subject. This interest stems mostly from the belief that electron spin is a promising candidate of qubit in scalable solid-state quantum computer architectures.2,3 Recently the Hahn echo technique was also applied to measuring the decoherence of the localized electron spin. The rapid experimental progress in single spin measurements promises sensitive measurements of quantum dephasing effects in the near future.

For an electron spin embedded in a semiconductor matrix, in a proper range of external magnetic field and at low temperature, the dominant decoherence source is the temporally fluctuating random magnetic field originated from the dipolar interaction induced flip-flops of the surrounding nuclear spin pairs. The electron spin dephasing due to this random magnetic filed then depends intimately on the quantum dynamics of the nuclear spin bath. Such an intuitive dephasing mechanism can be properly described by the hyperfine (HF) interaction in association with the intra-bath nuclear spin-spin interactions.

In Ref.2 the authors reported a non-Markovian treatment for the dynamics of a localized electron spin coupled to a three-dimensional (3D) environment of nuclear spins solely via the HF interaction. Further work4,5 stressed the importance of a quantum dynamic treatment for the intra-bath spin interactions and developed a quantum cluster expansion method (see also Ref.3) to calculate the Hahn echo decay with its numerical results in good agreement with recent experiments.6 Also, in Ref.4 an intuitive pseudo-spin model was proposed for the pair interaction in the nuclear spin bath and predicted a remarkable recoherence effect at time \(\sqrt{2}\tau \) through entanglement if the localized electron spin is flipped at time τ.

Almost in parallel, the decoherence of a central spin caused by a one-dimensional (1D) spin bath is becoming an alternative interesting subject. The 1D spin bath, e.g., an Ising or XY spin chain, has the advantage of being analytically solvable or allowing for more reliable simulations. It was suggested that the decoherence is subtly related to the characteristic status of the spin bath, such as correlations, entanglement and criticality.7,8 For instance, a universal decoherence regime, which is independent of the system-bath coupling strength, was identified as a consequence of phase transition.9

In this paper we consider an electron spin coupled via HF type interaction to an interacting 1D quantum spin chain, and employ the adaptive time dependent density matrix renormalization group (t-DMRG) technique to simulate the underlying quantum many-body dynamics. The model adopted in this work retains the basic ingredients of the quantum dephasing of an electron spin embedded in a mesoscopic 3D nuclear spin bath, yet differs from the above mentioned 1D spin-bath models in that the electron spin is coupled inhomogeneously to all bath spins, where the inhomogeneity is crucial in the electron spin - bath spin coupling. We show that the interplay of the HF-type coupling inhomogeneity and the intra-bath interactions leads to two kinds of qualitatively different behaviors for the electron spin coherence evolution, namely, fully periodic and monotonically decaying evolutions, with a crossover regime in between; And the former corresponds to a coherence preserving phase, while
the latter a complete decoherence phase.

Specifically, (i) The periodic free induction evolution (FIE) carries a slow modulation with a super-periodic component, measurable to its basic period. The competition between the two periods is responsible for the crossover to the decoherence evolution. In the decoherence evolution, the coherence decreases monotonically with an exponential decay index \(k = 4\). (ii) The echo effects induced by a sudden electron spin flip show an additional recoherence peak sequence initiated at \(t = \sqrt{2\tau}\) or \(2\pi - \sqrt{2(\pi - \tau)}\) in the periodic regime, and a single peak at \(t = \sqrt{2\tau}\) in the decoherence regime. (iii) The periodic evolution is intrinsic and stable in sense that, as the chain length increases, the basic period, the modulation super-period, as well as the corresponding peak value maintain unchanged, while the peak width keeps shrinking with an interval of almost zero coherence value emerging from the midpoint of each basic period. We suggest that, the recoherence effect can be applied to explore the properties of periodic and decoherence evolutions with the same almost zero coherence value. (iv) To render the experimental verifications possible, we show that, the periodic versus zero coherence value. (iv) To render the experimental verifications possible, we show that, the periodic versus decoherence evolution behaviors can be unshielded from the inhomogeneous broadening effect by the Hahn echo envelope at \(t = 2\tau\).

The rest of this paper is organized as follows: Sec. II is the physical background of our study. Sec. III is devoted to the motivations, 1D model and calculation method. Sec. IV is the coherence evolutions in the single system dynamics. Here we denote SSD as the coherence evolution initiated from any state of the bath ensemble. Subsec. IV A is for free induction coherence evolution; Subsec. IV B is for recoherence evolution; Subsec. IV C is for the coherence loss (or coherence collapse) phenomena; In Subsec. IV D two variations of the primary model with modified HF-type interactions are studied. Sec. V is devoted to the ensemble average over the spin bath for the coherence evolution of the electron spin; Sec. VI is discussions and the concluding remarks. The appendix is devoted to the bath-size dependence of the periodic evolution.

II. PHYSICAL BACKGROUND

We consider the quantum dephasing, i.e., the coherence evolution, of an electron spin embedded in a nuclear spin-\(\frac{1}{2}\) bath with a moderate to strong magnetic field applied. It can be described by the ensemble average of the off-diagonal matrix element of the electron spin \(\hat{S}_\alpha(\alpha = x, y)\), with the expression as:

\[
|\rho_{+-}(t)| = |\langle T\tau|(-)|U^h(t)\rho_0U^{h\dagger}(t)|\rangle .
\]

This expression provides itself as a starting point to deal with both the free induction coherence evolution and the spin echo effect. Here, \(\rho_0 = \hat{\rho}^x \otimes \hat{\rho}^N\) is the initial density matrix of the “electron spin-nuclear spin bath” system. And \(\hat{\rho}^\alpha = |\Phi^S\rangle\langle \Phi^S|\) is the initial density matrix of the localized spin in a pure state \(|\Phi^S\rangle\). \(\rho_n = \sum \rho_n|\Phi_n^N\rangle\langle \Phi_n^N|\) is that of the nuclear spin bath where \(|\Phi_n^N\rangle\) is a complete set of the nuclear spin bath and \(\{\rho_n\}\) is the corresponding probability distribution.

In Eq. (1), \(\hat{U}^h(t) = \theta(t - \tau)\hat{U}(t) + \theta(t - \tau)\hat{U}(t - \tau)\hat{S}_{x,y}\hat{U}(\tau)\) is the evolution operator with an instantaneous spin flip imposed to the electron spin at time \(\tau\), and \(\hat{U}(t) = e^{-i\hat{H}t}\) is the dynamical evolution operator of the “electron spin - spin bath” system. The total Hamiltonian

\[
\hat{H} = |+\rangle\langle +| (\hat{H}_Z + \frac{1}{2}\Omega_e + \hat{H}_z) + |-\rangle\langle -| (\hat{H}_Z - \frac{1}{2}\Omega_e + \hat{H}_z)\]

with \(|\pm\rangle\) being the eigenstates of the \(z\) component of the localized spin operator \(\hat{S}_z\), is decomposed into a direct sum of two parts, i.e., that projected to the electron spin up subspace and that to the spin down. And

\[
\hat{H}_\pm = \pm \hat{H}_0 + \hat{V}_{dd} + \hat{V}_{hf} \]

(3)

is the effective bath spin Hamiltonian conditioned on the electron spin polarization. In Eq. (3),

\[
\hat{H}_0 = \frac{1}{2} \sum_i A_i^hf_0^i \hat{I}_i^z , \quad \hat{V}_{dd} = \sum_{i<j} (A_{ij}^d \hat{I}_i^z \hat{I}_j^z + \frac{1}{2} B_{ij}^d (\hat{I}_i^+ \hat{I}_j^- + \hat{I}_i^- \hat{I}_j^+)) , \quad \hat{V}_{hf} = \frac{1}{2} \sum_{i<j} B_{ij}^hf_0^i (\hat{I}_i^+ \hat{I}_j^- + \hat{I}_i^- \hat{I}_j^+) \quad \text{(4)}
\]

are the longitudinal hyperfine interaction, intrinsic dipolar nuclear spin interaction and the effective interaction mediated by the transverse hyperfine coupling with the electron, respectively. \(\Omega_e\) is the Zeeman energy of the electron spin, while \(\hat{H}_Z = \omega_I \sum \hat{I}_i^z\) the Zeeman energy of the nuclear spin with \(\hat{I}_i^z = \frac{1}{2}(\hat{I}_i^+ - \hat{I}_i^-)\) and \(\hat{I}_i^z = \frac{1}{2}(\hat{I}_i^+ + \hat{I}_i^-)\) being the nuclear spin operators on the \(i\)th site.

The coherence can be therefore expressed as

\[
|\rho_{+-}(t)| = |\langle \Phi^S | \hat{S}_x - i\hat{S}_y | \Phi^S \rangle \otimes \sum_n \rho_n \langle \psi_n^- (t) | \psi_n^+ (t) \rangle| .
\]

(5)

with

\[
|\psi_n^\pm (t)\rangle = e^{-i\hat{H}_Z t} [\theta(t - \tau) e^{\mp \frac{i}{2} \Omega_e} e^{-i\hat{H}_z t} + \theta(t - \tau) e^{\mp \frac{i}{2} \Omega_e} e^{-i\hat{H}_z (t - \tau)} e^{-i\hat{H}_z t} | \Phi_n^N \rangle] .
\]

(6)

It shows that the non-Markovian quantum dephasing of an electron spin is due to the dynamical entanglement between the embedded spin and the bath (nuclear) spins such that the bifurcated pathways \(|\psi_n^\pm (t)\rangle\) detach from each other far apart as \(\langle \psi_n^\pm (t) | \psi_n^\pm (t) \rangle \to 0\). And yet, the coherence can also be restored by the disentanglement
of the localized electron spin from the bath when the bifurcated pathways of the bath intersect at some later time, i.e., \(|\psi_+^>(t)⟩ ≠ |\psi_-^>(t)⟩ \).

In the solid-state quantum computer architectures, typical experiments would be carried out around the temperature \(T \sim 100 \text{ mK} \), which is low temperature for the nuclear spin bath described by the evolution operators \(\hat{A}^\text{hf} \). The ensemble average of the spin bath therefore should be taken into account to incorporate the extremely low excitation energy scale of the nuclear spin bath.

Generally, the nuclear spin excitation spectrum of a large system is the same up to a relative variance \(1/\sqrt{N} \) (\(N \) being the total number of bath spins) for different initial states \(|\Phi_n^0⟩ \). Thus, the decoherence due to quantum fluctuations in SSD \(|\langle \psi_n^-(t)|\psi_n^+(t)⟩| \) is insensitive to initial bath state when the system is sufficiently large and the temperature is appreciable for the nuclear spins. The coherence Eq. (6) can be therefore factorized into

\[
|\rho_{+,-}(t)⟩ = \mathcal{L}_{+,-}(t)|\mathcal{E}_{\text{av}}(t)⟩ ,
\]

where the Loschmidt echo \(\mathcal{L}_{+,-}(t) \equiv |\langle \psi_n^-(t)|\psi_n^+(t)⟩| \) reveals the dynamic entanglement between the electron and the nuclear spins in sense of SSD, and the ensemble average \(\mathcal{E}_{\text{av}}(t) \equiv \sum_n p_n e^{-i\phi_n(t)} \) is the inhomogeneous broadening factor, with

\[
\phi_n(t) \equiv -\arg[|\langle \psi_n^-(t)|\psi_n^+(t)⟩|] = \theta(\tau-t)\sum_j A^\text{hf}_j I_z^j(t = 0) \, t + \theta(t-\tau)\sum_j A^\text{hf}_j I_z^j(t = 0) \, (t-2\tau) .
\]

Obviously, as shown in Eq. (5), the Zeeman frequency of the electron spin \(\Omega_e \) and nuclear spins \(\tilde{H}_2 \), do not contribute to the coherence, so that the dynamics of the nuclear spin bath described by the evolution operators \(e^{-i\tilde{H}_2 t} \) maneuvers the coherence of the embedded electron spin.

III. 1D MODEL: MOTIVATIONS AND CALCULATION METHOD

To initiate our discussion, it is interesting to verify that the diagonal HF interaction contributed \(\tilde{H}_0 \) can be put into the form as

\[
\tilde{H}_0 = \frac{1}{2N} \sum_i A^\text{hf}_i \hat{I}_z^i + \frac{1}{2N} \sum_{i<j} (A^\text{hf}_i - A^\text{hf}_j) (\hat{I}_z^i - \hat{I}_z^j) .
\]

Since \(\hat{I}_z \equiv \sum_i \hat{I}_z^i \) commutes with all terms in \(\tilde{H}_0 \), Eq. (7) shows explicitly that \(\tilde{H}_0 \) can be equivalently expressed as a sum of pairwise terms \((A^\text{hf}_i - A^\text{hf}_j)(\hat{I}_z^i - \hat{I}_z^j) \) as far as Loschmidt echo is concerned. On the one hand, the physics of the longitudinal HF interaction in SSD depends on the relative differences \(\Delta A^\text{hf}_j = A^\text{hf}_j - A^\text{hf}_i \), i.e., it is not affected by the substitution \(A^\text{hf}_j \to A^\text{hf}_j + \text{cons} \) for all sites. On the other hand, the dynamic evolution of the spin bath is then driven by four types of pairwise spin operators \(\hat{I}_z^i - \hat{I}_z^j, \hat{I}_z^i, \hat{I}_z^j \) and \(\hat{I}_z^{i,j} \).

In particular, for \(I = \frac{1}{2} \), the former three form an SU(2) algebra satisfying

\[
\begin{align*}
&\{ \hat{I}_z^i - \hat{I}_z^j, \hat{I}_z^k \} = \hat{I}_z^i \hat{I}_z^k - \hat{I}_z^k \hat{I}_z^i , \\
&\{ \hat{I}_z^i, \hat{I}_z^j \} = -\hat{I}_z^i \hat{I}_z^j + \hat{I}_z^j \hat{I}_z^i , \\
&\{ \hat{I}_z^{i,j}, \hat{I}_z^{k,l} \} = \hat{I}_z^{i,j} \hat{I}_z^{k,l} - \hat{I}_z^{k,l} \hat{I}_z^{i,j} ,
\end{align*}
\]

while \(\hat{I}_z^{i,j} \) commutes with the other three terms in the spin pair subspace.

Since the 1D model has the advantage of being analytically solvable or allowing for reliable precise simulations, to set up an 1D model from its 3D counterpart is often attractive and beneficial. It could be helpful to clarify some of the essential physics shared with the corresponding 3D physical system. It might also enrich the understanding of the quantum dynamics of the decoherence of a central spin caused by 1D spin bath itself. The observations in the above paragraph form a guideline in extracting a 1D model from the decoherence of an electron spin embedded in a 3D mesoscopic nuclear spin bath.

For a 3D quantum dot, \(A^\text{hf}_j \) is proportional to the modulus square of the electron wavefunction at site \(j \), in which the difference \(\Delta A^\text{hf}_j \) varies significantly site to site. As the longitudinal HF coupling plays a major role in the electron-spin-bath interaction, to keep its distinctive feature of spatial inhomogeneity in our 1D model, we would like to take \(\Delta A^\text{hf}_j = \Delta A^\text{hf} \delta(j-i) \) with \(\Delta A^\text{hf} \) being constant as a minimal model, i.e.,

\[
A^\text{hf}_j = (N-j)\Delta A^\text{hf} + A^\text{hf}_N .
\]

Moreover, the transverse HF interaction contributed effective intra-bath interaction is external magnetic field dependent. For a typical semiconductor quantum dot with field strength 10−1 \(T \) \[\text{mK}\] it has an energy scale of \(B^\text{hf}_{ij} \sim 1 - 10 \text{ s}^{-1} \). Meanwhile that of the near-neighbor dipolar intra-bath interaction is \(B^\text{dd} \sim 10^2 \text{ s}^{-1} \). The former is much smaller than that of the longitudinal part by an order of \(A^\text{hf}_j/\Omega_e \), it is also smaller than the latter by an order of 10. We therefore neglect the extrinsic nuclear spin interaction and set \(B^\text{dd}_{ij} = 0 \). We further take the intrinsic dipolar interaction to be nearest-neighbor as \(B^\text{dd}_{ij} = B^\text{dd} \delta_{i,j,1} \), and \(A^\text{dd}_j = A^\text{dd} \delta_{i,j,1} \). Then the electron-spin conditioned effective bath Hamiltonian becomes

\[
\tilde{H}_\pm = \frac{\Delta A^\text{hf} \pm \text{cons}}{2} \left(\sum_{j=1}^N j \hat{I}_z^j + \frac{1}{\xi} \sum_{j=1}^{N-1} -(\hat{I}_z^j \hat{I}_z^{j+1} + \hat{I}_z^{j+1} \hat{I}_z^j) + 2\eta \hat{I}_z^{j+1} + \hat{I}_z^j \right) .
\]

Now the dynamic evolution of the quantum coherence can be characterized by dimensionless parameters \(\xi \equiv
\[\Delta A^{hf}/(-B^{dd}) \text{ and } \eta \equiv A^{dd}/(-B^{dd}), \] with the time variable \(t \) normalized by \(4/\Delta A^{hf} \) (throughout the paper). In sum, such extracted 1D system retains the essential features of its 3D counterpart, e.g., the monotonically descending spatial inhomogeneity of the longitudinal HF interaction, the pairwise SU(2) algebra and that the sign of \(H_0 \) is conditioned on the embedded electron spin state. The t-DMRG method is available and can be properly applied to simulate the time evolution with enough precision.

In our t-DMRG calculations, the chain length is taken as \(N=50, 100, 150, 200 \) and \(250 \), with properly chosen hundreds of truncation states being kept. Since, as shown in Appendix A, the coherence evolution is stabilized after \(N \gtrsim 30 \), the calculations in our manuscript are proceeded with \(N=50 \) if not specified. The Trotter-Suzuki decomposition is held up to the 2nd order. If \(\xi=100 \), the time step is chosen as \(\Delta t \sim 10^{-2} \), the numerical precision can be maintained for \(10^4 \) time steps. Our initial bath states are prepared as the eigenstates of the Zeeman energy of the bath by an independent DMRG calculation where off-diagonal coherence is absent.

IV. SINGLE-SYSTEM DYNAMICS

A. Free induction coherence evolution in single-system dynamics

We initiate our discussion from the single state coherence evolution, in which the initial bath spin state is taken as any of the eigenstates of the Zeeman energy of the bath spin.

For simplicity, we first take the longitudinal intra-bath interaction as \(A^{dd} = 0 \). We find that the coherence evolution is controlled by two kinds of distinct behaviors, the periodic evolution in the regime with \(\xi \) large enough and the decoherence evolution with \(\xi \) small enough. The gradient of the longitudinal HF interaction \(\Delta A^{hf} \) favors the periodic evolution while the intra-bath spin interaction causes decoherence.

![Fig. 1](image1) Free induction coherence evolution in the periodic regime with \(\xi = 10 \). \(A^{dd} = 0 \). The time is normalized by \(4/\Delta A^{hf} \). The evolution exhibits a basic periodic \(\pi \).

For \(\xi \gg 1 \), see \(\xi=10 \) in Fig. 1, the coherence evolution exhibits a periodic oscillation versus the reduced time with a generic period \(T^{dd} \equiv \pi \) independent of \(\xi \). It shows also a mirror symmetry with respect to the midpoint of each period.

Moreover, if we attend to the time scale of the order of \(\xi (\gg T^{dd}) \), we find that the oscillating evolution carries a slow modulation with a super-period \(T^{sup} \) locked at an integer multiplier of \(T^{dd} \) as

\[T^{sup} \equiv (1 + \lceil \xi \rceil^{\text{fl,ce}}) T^{dd}, \tag{13} \]

where the superscript “fl” means the floor function and “ce” the ceiling function. For any real number \(x \), we denote the integer closest to \(x \) by \(\lfloor x \rfloor^{\text{fl,ce}} \). The coexistence of two mutually commensurate periodicities is essentially the consequence of two kinds of energy scales as that of

![Fig. 2](image2) (color online). Crossover behavior of free induction coherence evolution with \(A^{dd} = 0 \). (a) For \(\xi = 3 \), the periodic evolution carries a modulation with period \(10T^{dd} \). (b) For \(\xi = 1.3 \), the peaks at \(t = mT^{dd} \) oscillate irregularly.

![Fig. 3](image3) (color online). (a) Free induction coherence evolution in the decoherence regime for \(A^{dd} = 0 \), with \(\Delta A^{hf} = 0 \) (red solid line) and \(\Delta A^{hf} = -2B^{dd} \) (blue dashed line). The coherence decreases monotonically. Coherence disappearing time \(t_d \) is labeled on the t axis. (b) Logarithmic plot for (a). The exponential decay indices are \(k=4 \) for both evolutions.
the HF interaction and that of the intra-bath interaction. When \(\xi \) is large enough \((\Delta A_{hf} \gg B_{dd}^d) \), such slow modulation does not affect the above discussions which mainly extend only a few \(T_{dd} \) periods. When \(\xi \) gets down to the lower brim of the periodic regime, as a precursor of the crossover zone, the modulation becomes palpable and is then responsible for the evolution periodicity, see Fig. 2 (a).

With the further decrease of \(\xi \), the super-period becomes comparable to \(T_{dd} \), and its periodicity starts to disappear, i.e., its peak sequence starts to decay in a chaotic way, see Fig. 2 (b). The time scale of the basic period \(T_{dd} \) appears quite robust such that its remnant persists even up to the periodic regime of the decoherence evolution.

When \(\xi \) is small enough, the coherence attenuates monotonically approaching zero within a time interval \(t_d \) and will not rise up perceptibly any more, see Fig. 3 (a). The decoherence time evolution can be fitted as an exponential function of minus \(t \) to the power \(k \) with \(k=4 \). Such decoherence behaviors in our 1D model are in excellent consistence with those deduced from the pseudo-spin model in 3D [7].

Now we further introduce the diagonal spin-spin interaction with \(A_{dd}^d = -2B_{dd}^d \), \((\eta = 2, \) which is consistent with the nuclear intrinsic dipole-dipole interaction [2]. The coherence evolution still exhibits two types of qualitatively different behaviors, i.e., periodic oscillation and complete decoherence evolution.

In the periodic regime, although the diagonal interaction constant \(A_{dd}^d \) is of the same order of magnitude with that of \(B_{dd}^d \), it makes the modulation considerably strengthened with the modulation period shortened and its amplitude enhanced. Instead of \((|\xi|^2 \sqrt{t / \tau}) \) in the case of \(A_{dd}^d = 0 \), the modulation period becomes much smaller as

\[
T_{sup} = \frac{\xi}{2} \sqrt{t / \tau} T_{dd}
\]

see Fig. 4 (a).

The inclusion of the diagonal intra-bath interaction encroaches the periodic regime of the case with \(A_{dd}^d = 0 \) and extends the crossover regime. Take \(\xi = 10 \) as an example, instead of exhibiting typical periodic behavior with \(A_{dd}^d = 0 \), the peak sequence of the coherence evolution decays in a chaotic way with \(A_{dd}^d = -2B_{dd}^d \) included, see Fig. 4 (b).

In the decoherence regime, the coherence evolution behavior is very close to that with \(A_{dd}^d = 0 \), it keeps not only almost same coherence disappearing time \(t_d \), but also the same decay index \(k = 4 \), see Fig. 3 (b).

B. Recoherence effects in single-system dynamics

We then impose a sudden electron spin flip to the coherence evolution at \(t = \tau \) and consider the case \(A_{dd}^d = 0 \) first. For the periodic evolution, with \(\tau \in (0, T_{dd} / 2) \), it would yield an additional periodic pulse sequence at \(\sqrt{2\tau + nT_{dd}} \) with \(n = 0, 1, \ldots \) Meanwhile, those coherence peaks in the absence of spin flip still survive but, due to the intervention of the spin flip, experience a phase delay \(\Delta \phi(\tau) \) and shift to \(t = \Delta \phi(\tau) + nT_{dd} \) with \(m = 1, 2, \ldots \), see Fig. 5. For \(\tau \in (T_{dd} / 2, T_{dd}) \), the recoherence evolution is found to be the reflection image of that resulting from spin flip at \(T_{dd} - \tau \), so that the recoherence peak sequence initiates at \(2T_{dd} - \sqrt{2}(T_{dd} - \tau) \) and \(\Delta \phi(\tau) = -\Delta \phi(T_{dd} - \tau) \), see Fig. 5 (a). This behavior is a direct consequence of the mirror symmetry of the free induction periodic evolution, with respect to reflection points \((n+1/2)T_{dd} \). We further realize that, as expected, the recoherence evolution exhibits the same super-period as that of the free induction evolution.

In the decoherence regime, the recoherence signal closely depends on the time \(\tau \) when the spin flip is imposed. As long as \(\tau < t_d \), the recoherence pulse will peak at \(t = \sqrt{2\tau} \) with the coherence fully recovered as shown in Fig. 5 (a). However, if the spin flip time \(\tau \) exceeds \(t_d \), the coherence recoveries still at \(\sqrt{2\tau} \) but damps quickly, see solid lines in Fig. 5 (b).

With the longitudinal spin-spin interaction included \(A_{dd}^d = -2B_{dd}^d \), in the periodic regime, the recoherence behavior exhibits similar evolution to that with \(A_{dd}^d = 0 \). The recoherence peak sequence experiences the same enhanced modulation as in the case without spin flip. In the decoherence regime, however, even with the spin flip exerted within \(t_d \), with increase \(\tau \), the peak value at \(\sqrt{2\tau} \) decreases considerably faster than that without \(A_{dd}^d \), as shown in Fig. 5 by the dashed lines.
We have studied the bath size dependence of the coherence evolution in detail starting from $N = 2$, see Appendix A. We realize that, when the chain size N exceeds 30 sites, the coherence evolution in the periodic regime becomes stable in sense that, the basic period, the modulation super-period, as well as the corresponding peak value maintain unchanged; Meanwhile, the dip of each basic period moves down gradually, and the width of the peak keeps shrinking as the chain length increases, see Fig. 7.

Such shrinking of the peak width of the periodic coherence evolution is essentially a distinctive feature sharing with the Hepp-Coleman type models. In particular, after the coherence at the dip of each period drops down to a value close to zero, an interval with almost zero coherence value emerges from the dip and stretches to both sides within each period. In fact, in the Hepp-Coleman type models, the evolution operator can be factorized into a continued multiplication over chain sites due to the non-interacting character of the spin bath. What we have here is an interacting spin bath with its evolution operator cannot be factorized.

To our understanding, the above calculated $\sqrt{2} \tau$-type spin echo effect validates the intuitive mechanism of the recoherence effect proposed in Ref. [12] for a mesoscopic 3D quantum dot. Yet the diagonal intra-bath interactions considerably weakens the recoherence effect in the decoherence evolution in 1D case.

C. Coherence loss versus coherence preserving

We have studied the bath size dependence of the coherence evolution in detail starting from $N = 2$, see Appendix A. We realize that, when the chain size N exceeds 30 sites, the coherence evolution in the periodic regime becomes stable in sense that, the basic period, the modulation super-period, as well as the corresponding peak value maintain unchanged; Meanwhile, the dip of each basic period moves down gradually, and the width of the peak keeps shrinking as the chain length increases, see Fig. 7.

Such shrinking of the peak width of the periodic coherence evolution is essentially a distinctive feature sharing with the Hepp-Coleman type models. In particular, after the coherence at the dip of each period drops down to a value close to zero, an interval with almost zero coherence value emerges from the dip and stretches to both sides within each period. In fact, in the Hepp-Coleman type models, the evolution operator can be factorized into a continued multiplication over chain sites due to the non-interacting character of the spin bath. What we have here is an interacting spin bath with its evolution operator cannot be factorized.

To our understanding, the above calculated $\sqrt{2} \tau$-type spin echo effect validates the intuitive mechanism of the recoherence effect proposed in Ref. [12] for a mesoscopic 3D quantum dot. Yet the diagonal intra-bath interactions considerably weakens the recoherence effect in the decoherence evolution in 1D case.

C. Coherence loss versus coherence preserving

We have studied the bath size dependence of the coherence evolution in detail starting from $N = 2$, see Appendix A. We realize that, when the chain size N exceeds 30 sites, the coherence evolution in the periodic regime becomes stable in sense that, the basic period, the modulation super-period, as well as the corresponding peak value maintain unchanged; Meanwhile, the dip of each basic period moves down gradually, and the width of the peak keeps shrinking as the chain length increases, see Fig. 7.

Such shrinking of the peak width of the periodic coherence evolution is essentially a distinctive feature sharing with the Hepp-Coleman type models. In particular, after the coherence at the dip of each period drops down to a value close to zero, an interval with almost zero coherence value emerges from the dip and stretches to both sides within each period. In fact, in the Hepp-Coleman type models, the evolution operator can be factorized into a continued multiplication over chain sites due to the non-interacting character of the spin bath. What we have here is an interacting spin bath with its evolution operator cannot be factorized.
evolution is coherence preserving in sense that the spin-flip operation always induces a stable recoherence peak sequence, while the decoherence evolution with the coherence monotonically decreasing is actually a coherence-losing process. Our model accommodates these two qualitatively different coherence evolutions connected by a continuous crossover, and under the control of the competition between the electron spin-bath interaction and the intra-bath interaction.

D. Extension of the minimal model

Besides the study in the above subsections, it is also interesting to examine the effect of relaxing the condition of constant $\Delta A_{j,j+1}$, i.e., Eq. (11) in our minimal model.

We first consider the case with ΔA_{j}^{hf} being chain size dependent $\Delta A_{j}^{hf} \propto N^{-1/3}$ but maintaining itself as a site-independent constant. In Appendix A we have numerically verified that the coherence evolution is stable with the increase of bath chain. In the present case, as chain size increases, the slope of the hyperfine interaction decreases. We calculated the coherence evolution for $N = 50, 100, 400$, with $\Delta A_{j}^{hf} = (50/N)^{1/3}$, and fixed $B^{dd} = -0.1$. The results are shown in Fig. 9. For $N = 50$, the evolution parameter is $\xi = 10$, the coherence evolution exhibits typical periodic behavior. As bath size increases, the super-period of the periodic evolution shrinks, since the effective ξ decreases as chain length extends. Therefore, it can be understood that, as the chain size increases, due to the decreasing of the inhomogeneity of the HF interaction, the system shows up a tendency from periodic oscillation to crossover into a decoherence evolution.

We now consider the effect of the site-dependence of $A_{j,j+1}^{hf}$. Along certain crystalline symmetry axis, the wave function of the embedded electron in a 3D quantum dot has the form of a cosine function. We take $A_{j}^{hf} = \hat{A}_{j}^{hf} \cos^{2} \frac{(j-1)\pi}{2N}$, Then, $\Delta A_{j,j+1}^{hf}$ varies from site to site on the lattice chain, and the average slope of A_{j}^{hf} is chain-size dependent for a given \hat{A}_{j}^{hf}. Take the chain length $N = 200$ and $B^{dd} = 10^{5} \ s^{-1}$. If A_{j}^{hf} is set as $2 \times 10^{7} \ s^{-1}$, we find that, the periodicity disappears due to the lack of a unified time normalization ΔA_{j}^{hf}, although the site-dependent $\Delta A_{j}^{hf}/B^{dd}$ is of the order 200, which falls into the periodic regime of our primary model.

Nevertheless, interestingly, the non-periodic coherence evolution keeps oscillating close to unity without decaying, see Fig. 10. For $\hat{A}_{j}^{hf} = 10^{5} \ s^{-1}$, $\Delta A_{j,j+1}^{hf}/B^{dd}$ is of the order 1, the coherence and recoherence evolutions behave almost the same way as their counterparts in decoherence regime of our primary model, see Fig. 11. We stress that, the larger chain size N, the larger \hat{A}_{j}^{hf} is required so stay in the coherence preserving regime, for any chain size N (at least within our calculation experience), the non-decaying coherence preserving regime always exists if we choose \hat{A}_{j}^{hf} large enough.

In fact, in a 3D quantum dot, the wavefunction of the
coherence sustains a non-decaying irregular oscillation. In our primary model, and corresponding to the periodic evolution is still under the control of two fix points, that of inhomogeneous interaction, the dynamic coherence resembles these two aspects of the 3D quantum dot.

variations on the HF-type interaction in our 1D model is dependent on the specific form of the wavefunction site by site, but also dot-volume dependent. The above two variations on the HF-type interaction in our 1D model resembles these two aspects of the 3D quantum dot.

The discussions in this section imply that, for a general class of inhomogeneous interaction, the dynamic coherence evolution is still under the control of two fix points, i.e., a decoherence regime with its whole feature kept as in our primary model, and corresponding to the periodic regime, a quantum chaotic regime instead, in which the coherence sustains a non-decaying irregular oscillation.

V. INHOMOGENEOUS BROADENING AND HAHN ECHO ENVELOPE

The single system dynamics studied in the above section exhibits various important features of the quantum dynamic entanglement process. Yet, these interesting properties could be shielded by the inhomogeneous broadening effect contributed by the ensemble average $E_{av}(t)$. It is then desirable to limit the bath spin configurations experimentally to observe the SSD.

Nontheless, if an electron spin flip is imposed at time τ, the broadening effect due to phase accumulation will be canceled as $E_{av}(2\tau)=1$ at $t=2\tau$, see Eq. (5). The coherence $|\rho_{+,-}(2\tau)|$ then results solely from the dynamic quantum entanglement as

$$|\rho_{+,-}(2\tau)|=\mathcal{L}_{+,-}(2\tau)$$

and serves an exposure of the quantum coherence evolution in SSD. We plot $|\rho_{+,-}(2\tau)|$ as functions of τ in Fig. 12. In fact, in the periodic regime, compare the re-coherence evolutions induced by spin flip exerted at τ and $\tau+T_{dd}$ respectively, since the coherence status at τ and $\tau+T_{dd}$ are the same, meanwhile the re-coherence evolutions are also periodic with period $2T_{dd}$. We further provide two examples to illustrate its physical implications, see dashed lines in Fig. 12. In the decoherence regime, the Hahn echo exhibits a quartic exponential decay as shown in Fig. 12(b), consistent with that reported in 3D case. Therefore, in virtue of the Hahn echo technique, we can detect the two qualitatively different dynamic coherence evolutions in SSD.

We notice that, if A_N^{hf} can be adjusted to be $A_N^{hf}=mA^{hf}$, $m=0,1,...$, the inhomogeneous broadening factor $E_{av}(t)$ will be refocused to 1 at $t=mT_{dd}/2$, which would provide directly exposures of coherence evolution in SSD without spin flips.

FIG. 11: (color online). For $N=200$ with $A_N^{hf}=A^{hf}/\cos^{8}\frac{(n-1)\pi}{8}$, $A^{hf}=10^5$ s$^{-1}$, $E^{dd}=100$ s$^{-1}$, and $A^{dd}=0$. (a) recoherence evolutions behaves similar to that in the decoherence regime of our primary model. (b) Logarithmic plot of coherence evolution in (a) before spin flip, the evolution also exhibits quartic exponential coherence decay.

![Graph](image)

FIG. 12: (color online). Hahn echo envelope $|\rho_{+,-}(2\tau)|$ as functions of 2τ with $A^{dd}=0$. High temperature approximation for the nuclear spin bath ensemble is taken as $p_n=\text{const.}$

(a) For $\xi=20$, $|\rho_{+,-}(2\tau)|$ (solid line) is a periodic function with period $2T_{dd}$. The short dashed line is the recoherence evolution in SSD for $\tau=T_{dd}$, where the spin flip effects virtually disappears; it intersects the Hahn echo envelope at $t=2nT_{dd}$, $n=1,2,...$ The long dashed line is for $\tau=T_{dd}/2$, and intersects the Hahn echo envelope at nT_{dd}. (b) and (c) show that for $\xi=0.5$, the Hahn echo signal exhibits a quartic exponential decay.

VI. CONCLUDING REMARKS

In this paper, we studied the coherence evolution of an electron spin interacting with a 1D finite spin chain
via inhomogeneous hyperfine-type coupling. This model is extracted from its 3D counterpart: an electron-spin dephases due to the interaction with the nuclear spins in a mesoscopic 3D quantum dot.

We realized that in our model, the dynamic evolution of the electron spin coherence manifests a continuous crossover from a periodic to a decoherence evolution within our numerical precision. The periodic evolution carries a modulation with a commensurate super-period, and the competition between the two periods is responsible for the crossover. The counterpart of the periodic evolution in our model was not found in the 3D case. The decoherence evolution as well as its √2τ-type echo effect validates most of the distinctive features resulted from the pseudo-spin model or cluster-expansion method for a 3D quantum dot.

We included the longitudinal intra-bath spin-spin interaction. Physically, it is a kind of scattering term between the collective excitations, and provides a decoherence-favorable mechanism. We found that, the system still exhibits periodic evolution as long as the deep inhomogeneity of HF-type interaction dominates. In the decoherence regime, the longitudinal interaction has little effect on the free induction evolution, but would significantly affect the √2τ-type echo effect.

As the bath size increases, the periodic evolution shows up a “loss of coherence” phenomena, i.e., an interval with almost zero coherence value emerges from the midpoint and stretches to both sides within each evolution period. Nevertheless, by imposing the spin echo effect, we learn that the periodic evolution is essentially a coherence-preserving evolution while the decoherence evolution is a coherence losing process.

We investigated two variations of our primary model with modified hyperfine-type interaction. The dynamic coherence evolution still exhibits two kinds of qualitatively different behaviors.

In case the proposed 1D system can be realized experimentally, e.g., by applying the optical lattice manipulation techniques to cold atom system,[15] the Hahn echo type refocusing effect could then unveil the rich phenomena in single-system dynamics.

As the final remarks, we would like to stress that, increase the gradient of hyperfine interaction ∆A_{ij+1} favors to keep the coherence evolution in the periodic regime. Therefore, steepening the inhomogeneity of the wavefunction of the embedded electron could be favorable to preserve the coherence. This might shed light on the materialization of prolonging the quantum coherence time of the embedded electron spin. Moreover, for the evolution status with the same almost-zero coherence values, the different responses to the electron spin flip suggests an unexplored and rather intriguing aspect of the coherence description for the electron spin interacting with a nuclear spin bath.

Acknowledgments

We are grateful to Prof. Chang-Pu Sun for bringing our attentions to this interesting topic, to Prof. Xin-Qi Li and Dr. Hui Tang for helpful discussions.

APPENDIX A: CHAIN LENGTH DEPENDENCE OF THE PERIODIC EVOLUTION

It is crucial to verify that in the regime of ξ ≫ 1, the periodic coherence evolution is stable with the increase of the chain length.

We first consider the chain length dependence of the periodic evolution for N being small. For convenience, we take $A^{dd} = 0$, and focus on the first few periods. We have exact solution for the electron spin interacting with a 2-sites nuclear spin bath, the solved basic period is $T_{dd}(N = 2) = \pi / \sqrt{1 + 4 / \xi^2}$. As the chain size increases from $N = 2$, our numerical calculations show that, see Fig. 13 the basic period increases correspondingly and stabilizes at a value π for $N \geq 30$ approximately, which is independent of ξ. And the super-period is also stable for $N > 2$. For comparison, we consider additionally the coherence evolution beyond the periodic regime with, e.g., $\xi = 0.1$. As shown in Fig. 13 for $N \geq 30$, the decoherence evolution comes into appearing as a monotonically decaying evolution with an exponential decay index $k = 4$. The corresponding calculation proceeds over 100π without any coherence revival effect. These two mutually complemented aspects indicate that the coherence evolution is indeed stable for chain length $N \geq 30$. The calculated various properties of the coherence evolution for $N \geq 50$ are intrinsic.

![FIG. 13: (color online). Basic period T_{dd} as a function of chain size N for $\xi = 10, 8, 7$, with $A^{dd} = 0$. The initial configuration of the bath spin is randomly picked.](image-url)

We further investigate the bath size dependence of periodic evolutions with $N = 50, 100, \ldots, 250$. We choose relatively large ξ to filter the effect of the super modulation and find that, not only the basic period π but also the peak value of the oscillating coherence is kept unchanged, see Fig. 14 i.e., the T_{dd} periodicity is robust against the extending of chain length. On the other hand,
FIG. 14: (color online). Coherence evolution for different bath size with $\xi = 0.1$ and $A^{dd} = 0$. The decoherence evolution comes into being for $N > 30$.

FIG. 15: (color online). Modulation on the periodic evolution for $N = 50, 250$ with $\xi = 5, A^{dd} = 0$. The super-period is not affected by chain length.

FIG. 16: (color online). Modulation on the periodic evolution with $A^{dd} = 0$ for $\xi = 5$. The first two peaks of the super modulation at $t = T_{sup}$ and $t = 2T_{sup}$ are shown in detail. The results for two randomly-selected initial state configurations are shown in (a) and (b). In each sub-figure, curves from outside to inside are for $N = 50, 100, 250$, respectively. The super-period is not affected by chain length, the peak value of the super modulation is kept at unity.

FIG. 17: (color online). Modulation on the periodic evolution with $A^{dd} = -2B^{dd}$ for $\xi = 40$. The first two peaks of the super modulation at $t = T_{sup}$ and $t = 2T_{sup}$ are shown in detail. The results for two randomly-selected initial state configurations are shown in (a) and (b). In each sub-figure, curves from outside to inside are for $N = 50, 100, 250$, respectively. The super-period is not affected by chain length, the peak value of the super modulation is kept at unity.

The dip of each oscillation period moves down gradually, and the width of the peak keeps shrinking as the chain length increases, see Fig. 7.

We further attend to the long-time behavior of the periodic evolution. As shown in Fig. 15, the super modulation periodicity still keeps unchanged with the increase of chain length, and the peak value of the coherence evolution, which occurs at the nodes of the super-modulation, maintains at unity, see Fig. 16.

We now take the diagonal interaction $A^{dd} = -2B^{dd}$ into consideration. As the chain size increases, although the amplitude of the modulation increases as shown in Fig. 4, the super-period keeps invariant, and the peak value of the super-modulated coherence evolution maintains unchanged as in the case with $A^{dd} = 0$, see Fig. 17. This actually provides a strong numerical evidence that the periodic evolution even with $A^{dd} = -2B^{dd}$ included is stable.

Above all, the investigation on the chain-length dependence provides clear evidence that the calculated coherence evolutions in the main text is intrinsic.

1 A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983).

2 B. E. Kane, Nature (London) 393, 133 (1998).
3. D. Loss and D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
4. W. A. Coish and D. Loss, Phys. Rev. B 70, 195340 (2004).
5. W. M. Witzel, R. de Sousa and S. Das Sarma, Phys. Rev. B 72, 161306(R) (2005).
6. W. M. Witzel and S. Das Sarma, Phys. Rev. B 74, 035322 (2006); arXive:0712.3065 (unpublished).
7. S. K. Saikin, Wang Yao and L. J. Sham, Phys. Rev. B 75, 125314 (2007).
8. A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin and A. M. Raitsimring, Phys. Rev. B 68, 193207 (2003); E. Abe, A. Fujimoto, J. Isoya, S. Yamasaki and K.M. Itoh, cond-mat/0512404 (unpublished).
9. Wang Yao, Ren-Bao Liu and L. J. Sham, Phys. Rev. B 74, 195301 (2006).
10. D. Rossini, T. Calarco, V. Giovannetti, S. Montangero and R. Fazio, Phys. Rev. A 75, 032333 (2007); H. T. Quan, Z. Song, X. F. Liu, P. Zanardi and C. P. Sun, Phys. Rev. Lett. 96, 140604 (2006).
11. F. M. Cucchietti, S. Fernandez-Vidal, and J. P. Paz, Phys. Rev. A 75, 032337 (2007).
12. Wang Yao, Ren-Bao Liu and L. J. Sham, Phys. Rev. Lett. 98, 077602 (2007); Ren-Bao Liu, Wang Yao, and L Sham New J. Phys. 9, 226 (2007).
13. A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat. Mech. 04005 (2004); S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004).
14. M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976); H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).
15. D. Gobert, C. Kollath, U. Schollwöck, and G. Schütz, Phys. Rev. E 71, 036102 (2005).
16. R. de Sousa and S. Das Sarma, Phys. Rev. B 68, 115322 (2003).
17. O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006).
18. K. Hepp, Helv. Phys. Acta 45, 237 (1972).
19. J. S. Bell, Helv. Phys. Acta, 48, 93 (1975).
20. M. Namiki and S. Pascazio, Phys. Rev. A 44, 39 (1991).
21. T. Kobayashi, Found. Phys. Lett. 5, 265 (1992).
22. H. Nakazato and S. Pascazio, Phys. Rev. Lett. 70, 1 (1993).
23. C. P. Sun, Phys. Rev. A 48, 898 (1993).
24. C. P. Sun, D. L. Zhou, S. X. Yu, X. F. Liu, Eur. Phys. J. D 13, 145, (2001).
25. G. Feher, Phys. Rev. 114, 1219 (1959)