Supporting Information

Catalytic Oxidative Deamination by Water with H₂ Liberation

Shan Tang¹, Michael Rauch¹, Michael Montag¹, Yael Diskin-Posner², Yehoshoa Ben-David¹, and David Milstein¹*

¹Department of Organic Chemistry, ²Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel; *Correspondence and requests for materials should be addressed to D.M. (email: david.milstein@weizmann.ac.il).

General information..S2

Synthesis and characterization of complexes...S3

Synthesis and characterization of organic products..S6

Procedures for mechanistic experiments...S16

Copies of NMR spectra ..S19

Crystallographic analysis of complex [Ru]-5..S42

Computational details... S44

References.. S73
General information

All reactions were performed under an atmosphere of purified nitrogen in an MBraun glovebox, or by using standard Schlenk techniques, unless otherwise noted. All commercially available reagents were used as received. 1,4-Dioxane was purified prior to use by refluxing and distilling over Na/benzophenone under an argon atmosphere. Water was purified on a Synergy UV Water Purification System, and was degassed prior to use by bubbling argon for at least 20 min. Complexes $[\text{Ru}]^1$, $[\text{Ru}]^2$, and N-alkyl acetamides3 were synthesized according to reported procedures. GC–MS analysis was carried out on an Agilent Technologies 7820A chromatograph (flame ionization detector and thermal conductivity detector) equipped with a 5975 Series Mass Selective Detector, using helium as the carrier gas. Each of the conversions and yields were determined as an average of two runs, based on GC analysis using an Agilent Technologies 7890B chromatograph (flame ionization detector) with nitrogen as the carrier gas. Hydrogen gas was detected by GC analysis on an HP 6890 chromatograph (TCD detector) with nitrogen as the carrier gas. High resolution electrospray ionization mass spectrometry (HR-ESI-MS) was carried out on a Waters Xevo G2-XS QTof mass spectrometer at the Department of Chemical Research Support, Weizmann Institute of Science. NMR spectra were recorded using Bruker Advance III 300 MHz, Advance III 400 MHz, or Advance III HD-500 MHz spectrometers at 293 K. 1H NMR chemical shifts are referenced to the residual hydrogen signal of the deuterated solvent, and the 13C NMR chemical shifts are referenced to the 13C signal of the deuterated solvent. 31P NMR chemical shifts are reported relative to H$_3$PO$_4$, and referenced to an external sample of 85% aqueous phosphoric acid ($\delta = 0.0$ ppm). Abbreviations used in the description of the NMR data are as follows: Ar, aryl; br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet.
Synthesis and characterization of complexes

Complex [Ru]-3: A THF solution of NaBEt₃H was prepared by adding 113 μl of 1.0 M NaBEt₃H (0.112 mmol) in toluene to 1.7 mL of THF. The afforded solution was added dropwise to a stirring suspension of 66.9 mg (0.111 mmol) of [Ru]-2 in 1.7 mL of THF. The resulting mixture was stirred at room temperature for 0.5 h, and the solvent was then removed under vacuum. The solid residue was washed twice with 3 mL of n-pentane to remove a dark impurity, and the remaining orange solids were extracted twice with 1.7 mL of benzene. The combined benzene extracts were filtered via a glass wool plug, and then frozen. The resulting solid solution was then placed under vacuum to remove the solvent, affording 60.5 mg (0.106 mmol; 96% yield) of [Ru]-3 as a flocculent orange powder. NMR data for this complex in C₆D₆ were reported previously.¹³¹P{¹H} NMR (162 MHz, dioxane-d₆): 75.63 (s). ¹H NMR (400 MHz, dioxane-d₆): 7.00 (d, 3JHH = 7.1 Hz, 2H, Ar-H), 6.87 (d, 3JHH = 7.2 Hz, 2H, Ar-H), 6.67 (t, 3JHH = 7.3 Hz, 2H, Ar-H), 3.62 (d, 2JHH = 14.2 Hz, 1H, dihydroacridine ArCH(H)Ar), 3.15 (d, 2JHH = 14.3 Hz, 1H, dihydroacridine ArCH(H)Ar), 2.96 (m, 4H, ArCH₂P), 2.38 (m, 2H, PCH(CH₃)₂), 1.56 (m, 2H, PCH(CH₃)₂), 1.33 (q, 3JHH = 6.8 Hz, 6H, PCH(CH₃)₂), 1.27 (q, 3JHH = 7.3 Hz, 6H, PCH(CH₃)₂), 0.72 (q, 3JHH = 7.2 Hz, 6H, PCH(CH₃)₂), -20.84 (t, 2JHH = 22.1 Hz, 1H, Ru-H).

Complex [Ru]-4: 4.4 mg (0.008 mmol) of [Ru]-3 were dissolved in 0.53 mL of dioxane-d₆. To the resulting solution were then added 8.7 mg of 9.6 wt% benzylamine (0.008 mmol) in dioxane-d₆. The color of the solution immediately changed from orange to brownish-yellow. ¹H and ³¹P NMR spectra of the resulting mixture indicated quantitative formation of [Ru]-4. ³¹P{¹H} NMR (162 MHz, dioxane-d₆): 76.39 (s). ¹H NMR (400 MHz, dioxane-d₆): 7.25 (m, 2H, benzylamine Ar₀₉₆₋ₓ-H), 7.18 (m, 1H, benzylamine Ar₃₆₋ₓ-H), 7.09 (d, 3JHH = 7.3 Hz, 2H, benzylamine Ar₉₋ₓ-H), 6.80 (d, 3JHH = 7.2 Hz, 4H, dihydroacridine Ar-H), 6.52 (t, 3JHH = 7.2 Hz, 2H, dihydroacridine Ar-H), 3.69 (t, 3JHH = 7.9 Hz, 2H, ArCH₂N), 3.64 (d, 2JHH = 16.2 Hz, 1H, dihydroacridine ArCH(H)Ar), 3.27 (d, 2JHH = 16.0 Hz, 1H, dihydroacridine ArCH(H)Ar), 3.04 (d, 2JHH = 11.8 Hz, 2H, ArCH(H)P), 2.97 (m, 2JHH = 11.9 Hz, 2H, ArCH(H)P), 2.53 (m, 2H, PCH(CH₃)₂), 2.13 (br s, 2H, NH₂), 1.49 (m, 2H, PCH(CH₃)₂), 1.37 (q, 3JHH = 7.0 Hz, 6H, PCH(CH₃)₂), 1.32 (q, 3JHH = 6.8 Hz, 6H, PCH(CH₃)₂), 1.19 (q, 3JHH = 7.5 Hz, 6H, PCH(CH₃)₂), 1.12 (q, 3JHH = 6.9 Hz, 6H, PCH(CH₃)₂), -15.02 (t, 2JHH = 25.0 Hz, 1H).
Ru-H). 13C 1H} (101 MHz, dioxane-d_8): 210.6 (t, 2J$_{PC}$ = 14.2 Hz, RuCO), 153.0 (t, 3J$_{PC}$ = 2.8 Hz, dihydroacridine C$_A$N(C$_A$), 143.8 (s, benzylamine C$_{ipso}$), 129.3 (s, benzylamine C$_{Ar-H}$), 128.5 (s, benzylamine C$_{Ar-H}$), 127.8 (s, benzylamine C$_{Ar-H}$), 127.6 (s, dihydroacridine C$_{Ar-H}$), 126.6 (s, dihydroacridine C$_{Ar-H}$), 126.3 (s, C$_{Ar-CH_2}$), 123.1 (s, C$_{Ar-CH_2}$), 117.6 (s, dihydroacridine C$_{Ar-H}$), 51.0 (br s, ArCH$_2$N), 36.4 (s, dihydroacridine ArCH$_2$Ar), 31.9 (vt, 1J$_{PC}$ + 3J$_{PC}$ = 21.3 Hz, ArCH$_2$P), 27.4 (vt, 1J$_{PC}$ + 3J$_{PC}$ = 29.7 Hz, PCH(CH$_3$)$_2$), 25.3 (vt, 1J$_{PC}$ + 3J$_{PC}$ = 11.6 Hz, PCH(CH$_3$)$_2$), 21.6 (s, PCH(CH$_3$)$_2$), 20.1 (vt, 1J$_{PC}$ + 3J$_{PC}$ = 5.7 Hz, PCH(CH$_3$)$_2$), 20.0 (s, PCH(CH$_3$)$_2$), 17.3 (s, PCH(CH$_3$)$_3$). The 13C 1H} NMR data were obtained from a DEPTQ experiment. Assignment of the 1H and 13C 1H} NMR signals was confirmed by 1H 31P}, 1H-1H COSY, 1H-13C HSQC and 1H-13C HMBC experiments. The absolute configuration of the complex in dioxane-d_8 was corroborated by an 1H-1H NOESY experiment. The relevant observed NOESY correlations are illustrated below:

Complex [Ru]-5: A solution of 5.3 mg (0.043 mmol) of benzoic acid in 0.57 mL of C$_6$H$_6$ was added to a stirring suspension containing 24.7 mg (0.043 mmol) of [Ru]-3 in 0.91 mL of C$_6$H$_6$. An immediate color change ensued, from dark orange to light orange-yellow. The afforded mixture was loaded into a pressure flask, and stirred a

S4
dihydroacridine $C_{ArC}\text{N}_{Ar}$), 134.1 (s, benzoate C_{ipso}), 131.9 (s, benzoate C_{Ar-H}), 130.0 (s, $C_{Ar\text{CH}_2C_{Ar}}$), 128.8 (s, benzoate C_{Ar-H}), 128.0 (s, benzoate C_{Ar-H}), 127.5 (s, dihydroacridine C_{Ar-H}), 126.5 (s, dihydroacridine C_{Ar-H}), 122.3 (s, $C_{Ar\text{CH}_2P}$), 118.7 (s, dihydroacridine C_{Ar-H}), 34.4 (s, dihydroacridine ArCH$_2$Ar), 29.8 (m, PCH(CH$_3$)$_2$), 28.4 (m, ArCH$_2$P), 26.3 (m, PCH(CH$_3$)$_2$), 20.7 (s, PCH(CH$_3$)$_2$), 19.8 (s, PCH(CH$_3$)$_2$), 19.1 (s, PCH(CH$_3$)$_2$), 19.0 (m, PCH(CH$_3$)$_2$). The $^{13}C\{^1H\}$ NMR data were obtained from a DEPTQ experiment. Assignment of the 1H and $^{13}C\{^1H\}$ NMR signals was confirmed by $^1H\{^{31}P\}$, $^1H-^1H$ COSY, $^1H-^{13}C$ HSQC and $^1H-^{13}C$ HMBC experiments. HRMS (ESI) calculated for $C_{35}H_{46}NO_3P_2Ru$ [M+H]$^+$: 692.1996; found: 692.1981. $^{31}P\{^1H\}$ NMR (202 MHz, dioxane-d_8): 88.16 (s). 1H NMR (500 MHz, dioxane-d_8): 7.51 (d, $^3J_{HH} = 7.7$ Hz, 2H, benzoate Ar-H), 7.39 (t, $^3J_{HH} = 7.5$ Hz, 1H, benzoate Ar-H), 7.23 (t, $^3J_{HH} = 7.7$ Hz, 2H, benzoate Ar-H), 6.87 (d, $^3J_{HH} = 7.3$ Hz, 2H, dihydroacridine Ar-H), 6.72 (d, $^3J_{HH} = 7.2$ Hz, 2H, dihydroacridine Ar-H), 6.57 (t, $^3J_{HH} = 7.4$ Hz, 2H, dihydroacridine Ar-H), 3.28 (d, $^2J_{HH} = 16.8$ Hz, 1H, dihydroacridine ArCHHAAr), 3.16 (d, $^2J_{HH} = 16.8$ Hz, 1H, dihydroacridine ArCHHAAr), 3.16 (m, 2H, ArCHHP), 2.69 (dd, $^2J_{HH} = 12.4$ Hz, $^2J_{PH} = 6.8$ Hz, 2H, ArCHHP), 2.39 (m, 2H, PCH(CH$_3$)$_2$), 1.89 (m, 2H, PCH(CH$_3$)$_2$), 1.50-1.43 (m, 18H, PCH(CH$_3$)$_2$), 1.39 (dd, $^2J_{PH} = 11.1$ Hz, $^3J_{HH} = 7.3$ Hz, 6H, PCH(CH$_3$)$_2$). The absolute configuration of the complex in dioxane-d_8 was corroborated by an $^1H-^1H$ NOESY experiment. The relevant observed NOESY correlation is illustrated below:
Synthesis and characterization of the organic products

Butyric acid (2a): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), *n*-butylamine (49 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na₂SO₄ and all volatiles were removed under vacuum. The product was obtained as a yellow oil in 95% yield (41.7 mg).

1H NMR (400 MHz, CDCl₃): δ 10.62 (br s, 1H), 2.35 (t, *J* = 7.4 Hz, 2H), 1.68 (h, *J* = 7.4 Hz, 2H), 0.98 (t, *J* = 7.4 Hz, 3H).

13C{1H} NMR (101 MHz, CDCl₃): δ 180.0, 35.9, 18.1, 13.6.

Determination of H₂ and NH₃ generated during the reaction: After cooling the reaction mixture to room temperature, the headspace was analyzed by GC with a TCD detector, using N₂ as the carrier gas. As shown in Figure S1, only H₂ was detected by GC while no other gases were present in detectable amounts. In a parallel experiment, the evolved gas was quantified by displacing water in an inverted graduated cylinder filled with water. About 24 mL of gas were collected, amounting to 98% yield based on full conversion of *n*-butylamine to butyrate. The reaction mixture was then acidified with 4 M HCl (3.0 mL). As shown in Figure S2, NH₄⁺ was detected as a characteristic triplet at 7.10 ppm in the ¹H NMR spectrum of the reaction mixture. Following similar procedures and analytical methods, H₂ and NH₄⁺ were also detected upon the oxidative deamination of other amines and amides.

Figure S1. GC analysis of the gas evolved during the oxidative deamination of *n*-butylamine

S6
Hexanoic acid (2b): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), \(n\)-hexylamine (57 \(\mu\)L, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na\(_2\)SO\(_4\) and all volatiles were removed under vacuum. The product was obtained as a yellow oil in 86% yield (50.0 mg). \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 11.01 (br s, 1H), 2.35 (t, \(J = 7.5\) Hz, 2H), 1.71–1.59 (m, 2H), 1.41–1.23 (m, 4H), 0.91 (t, \(J = 6.8\) Hz, 3H). \(^{13}\)C\(\{^1\text{H}\}\) NMR (126 MHz, CDCl\(_3\)): \(\delta\) 180.4, 34.1, 31.2, 24.3, 22.3, 13.8.

Octanoic acid (2c): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), \(n\)-octylamine (82 \(\mu\)L, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na\(_2\)SO\(_4\) and all volatiles were removed under vacuum. The product was obtained as a yellow oil in 98% yield (70.7 mg). \(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 11.33 (br s, 1H), 2.34 (t, \(J = 7.5\) Hz, 2H), 1.71–1.59 (m, 2H), 1.41–1.23 (m, 4H), 0.91 (t, \(J = 6.8\) Hz, 3H). \(^{13}\)C\(\{^1\text{H}\}\) NMR (126 MHz, CDCl\(_3\)): \(\delta\) 180.4, 34.1, 31.2, 24.3, 22.3, 13.8.
6,6-Dimethylbicyclo[3.1.1]heptane-2-carboxylic acid (2d): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), cis-myrtanylamine (84 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na₂SO₄ and all volatiles were removed under vacuum. The product was obtained as a brown oil in 71% yield (52.7 mg).

1H NMR (400 MHz, CDCl₃): δ 10.98 (brs, 1H), 2.94 (t, J = 8.8 Hz, 1H), 2.23 – 2.03 (m, 3H), 1.93 – 1.82 (m, 3H), 1.76 (td, J = 8.7, 4.6 Hz, 1H), 1.54 (d, J = 10.0 Hz, 1H), 1.24 (s, 3H), 0.88 (s, 3H).

13C{1H} NMR (101 MHz, CDCl₃): δ 183.0, 43.7, 41.2, 40.1, 39.2, 26.4, 24.2, 23.7, 20.3, 16.6.

5-Norbornane-2-carboxylic acid (2e): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), 5-norbornene-2-methylamine (62 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na₂SO₄ and all volatiles were removed under vacuum. The product was obtained as an orange oil in 65% yield (49.4 mg, a mixture of two stereoisomers). 1H NMR (400 MHz, CDCl₃): δ 9.47 (brs, 1H), 2.57 – 2.52 (m, 1H), 2.36 (dd, J = 9.2, 5.3 Hz, 1H), 2.33 – 2.25 (m, 1H), 1.88 – 1.79 (m, 1H), 1.57 – 1.43 (m, 4H), 1.30 – 1.23 (m, 1H), 1.22 – 1.16 (m, 2H). 13C{1H} NMR (101 MHz, CDCl₃): δ 182.3, 46.3, 40.9, 36.5, 36.0, 34.0, 29.4, 28.6.

2-Methoxyacetate (2f): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (6.0 mg, 0.010 mmol), NaOH (40.0 mg, 1.0 mmol), 2-methoxyethylamine (43 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was
sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. The reaction mixture was analyzed by \(^1\)H NMR spectroscopy with a long delay time (10 s), using pyridine as an internal standard (quantitative yield).

2-Phenylacetic acid (2g):

A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), 2-phenethylamine (63 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na₂SO₄ and all volatiles were removed under vacuum. The product was obtained as a yellow solid in 98% yield (66.7 mg). \(^1\)H NMR (500 MHz, CDCl₃): \(\delta\) 8.70 (b s, 1H), 7.40 – 7.22 (m, 5H), 3.65 (s, 2H).

\(^{13}\)C\{\(^1\)H\} NMR (126 MHz, CDCl₃): \(\delta\) 177.4, 133.2, 129.4, 128.6, 127.3, 41.0.

2-(1H-indol-3-yl)acetic acid (2h):

A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), tryptamine (73 mg, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na₂SO₄ and all volatiles were removed under vacuum. The product was obtained as a brown solid in 75% yield (65.7 mg). \(^1\)H NMR (400 MHz, DMSO-d₆): \(\delta\) 12.09 (br s, 1H), 10.89 (s, 1H), 7.49 (d, \(J = 7.9\) Hz, 1H), 7.34 (d, \(J = 8.1\) Hz, 1H), 7.24-7.19 (m, 1H), 7.07 (t, \(J = 7.5\) Hz, 1H), 6.97 (t, \(J = 7.4\) Hz, 1H), 3.63 (s, 2H). \(^{13}\)C\{\(^1\)H\} NMR (101 MHz, DMSO-d₆): \(\delta\) 173.2, 136.1, 127.2, 123.9, 121.0, 118.6, 118.4, 111.4, 107.7, 31.0.
Benzoic acid (2i): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), benzylamine (55 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na₂SO₄ and all volatiles were removed under vacuum. The product was obtained as a pale-yellow solid in 98% yield (59.7 mg).

\[
\begin{align*}
\text{O} & \quad \text{MeO} \\
\text{OH} & \quad \text{H}
\end{align*}
\]

1H NMR (400 MHz, DMSO-d₆): δ 12.72 (br s, 1H), 7.95 (d, J = 7.4 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H). 13C {1H} NMR (101 MHz, DMSO-d₆): δ 167.3, 132.9, 130.8, 129.3, 128.6. In two control experiments, excess Hg (230 mg) or NEt₃ (70 μL) was added at the beginning of the reaction. Following the same reaction procedure as described above, the product, benzoic acid, was isolated in 97% yield in both cases (59.0 and 59.4 mg, respectively).

4-Methoxybenzoic acid (2j): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), 4-methoxybenzylamine (49 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na₂SO₄ and all volatiles were removed under vacuum. The product was obtained as a pale-yellow solid in 95% yield (72.1 mg).

\[
\begin{align*}
\text{O} & \quad \text{MeO} \\
\text{OH} & \quad \text{H}
\end{align*}
\]

1H NMR (500 MHz, DMSO-d₆): δ 12.55 (br s, 1H), 7.90 (d, J = 8.8 Hz, 2H), 7.02 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H). 13C {1H} NMR (126 MHz, DMSO-d₆): δ 167.1, 162.9, 131.4, 123.1, 113.9, 55.5.

4-(Trifluoromethyl)benzoic acid (2k): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), 4-(trifluoromethyl)benzylamine (71 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath...
temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na₂SO₄ and all volatiles were removed under vacuum. The product was obtained as a pale-yellow solid in 87% yield (82.6 mg). ¹H NMR (400 MHz, DMSO-d₆): δ 8.13 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 8.3 Hz, 1H). ¹³C{¹H} NMR (101 MHz, DMSO-d₆): δ 166.3, 135.1, 132.4 (q, J_C-F = 31.9 Hz), 130.2, 125.7 (q, J_C-F = 3.8 Hz), 123.9 (q, J_C-F = 273.5 Hz).

4-Chlorobenzoic acid (2l): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), 4-chlorobenzylamine (61 µL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na₂SO₄ and all volatiles were removed under vacuum. The product was obtained as a yellow solid in 93% yield (71.7 mg). ¹H NMR (500 MHz, DMSO-d₆): δ 13.16 (br s, 1H), 7.95 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H). ¹³C{¹H} NMR (126 MHz, DMSO-d₆): δ 166.5, 137.9, 131.2, 129.8, 128.8.

4-aminobenzoate (2m): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), 4-(aminomethyl)aniline (57 µL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. The reaction mixture was analyzed by ¹H NMR spectroscopy with a long delay time (10 s), using pyridine as an internal standard (98% yield).
Furan-2-carboxylic acid (2n): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex \([\text{Ru-2]}\) (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), 2-aminomethylfuran (46 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na₂SO₄ and all volatiles were removed under vacuum. The product was obtained as a yellow solid in 81% yield (45.4 mg). ¹H NMR (400 MHz, DMSO-d₆): δ 12.96 (br s, 1H), 7.91 (s, 1H), 7.20 (s, 1H), 6.64 (s, 1H). ¹³C{¹H} NMR (101 MHz, DMSO-d₆): δ 159.3, 147.1, 144.9, 117.7, 112.1.

Nicotinate (2o): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex \([\text{Ru-2]}\) (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), 3-aminomethylpyridine (51 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. The reaction mixture was analyzed by ¹H NMR with long a delay time (10 s), using pyridine as an internal standard (89% yield).

Isophthalic acid (2p): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex \([\text{Ru-2]}\) (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), 1,3-phenylenedimethanamine (33 μL, 0.25 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na₂SO₄ and all
Volatile molecules were removed under vacuum. The product was obtained as a pale-yellow solid in 99% yield (41.1 mg). 1H NMR (500 MHz, DMSO-d_6): δ 13.23 (br s, 2H), 8.48 (t, $J = 1.6$ Hz, 1H), 8.16 (dd, $J = 7.7$, 1.7 Hz, 2H), 7.64 (t, $J = 7.7$ Hz, 1H). 13C(1H) NMR (126 MHz, DMSO-d_6): δ 166.7, 133.5, 131.3, 130.0, 129.2.

Adipic acid (2q): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (6.0 mg, 0.010 mmol), NaOH (40.0 mg, 1.0 mmol), 1,6-hexanediamine (29.0 mg, 0.25 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na$_2$SO$_4$ and all volatile molecules were removed under vacuum. The product was obtained as a pale-yellow solid in 65% yield (23.8 mg). The same product was obtained from the oxidative deamination of hexamethylenimine (50% yield) or caprolactam (68% yield). 1H NMR (500 MHz, DMSO-d_6): δ 11.96 (br s, 2H), 2.20 (t, $J = 6.6$ Hz, 4H), 1.53 – 1.45 (m, 4H). 13C(1H) NMR (126 MHz, DMSO-d_6): δ 174.4, 33.5, 24.1.

Glutaric acid (2r): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), 5-amino-1-pentanol (25.8 mg, 0.25 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na$_2$SO$_4$ and all volatile molecules were removed under vacuum. The product was obtained as a pale-yellow solid in 52% yield (17.3 mg). The same product could be obtained from the oxidative deamination of piperidine (30% yield) or δ-valerolactam (59% yield). 1H NMR (400 MHz, DMSO-d_6): δ 12.08 (br s, 2H), 2.20 (t, $J = 6.6$ Hz, 4H), 1.53 – 1.45 (m, 4H). 13C(1H) NMR (101 MHz, DMSO-d_6): δ 174.1, 32.8, 20.0.

Octan-2-one (3w): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), 2-aminoocetane (84 μL, 0.50 mmol), 2.0 mL of
dioxane, and 0.50 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Water (4.0 mL) was then added to the reaction mixture and ethyl acetate (3 × 4.0 mL) was used to extract the organic compounds. The combined organic extracts were analyzed by GC (FID detector), using mesitylene as an internal standard (94% yield).

Pentan-3-one (3x):11 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), 3-aminopentane (58 μL, 0.50 mmol), 2.0 mL of dioxane, and 0.50 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Water (4.0 mL) was then added to the reaction mixture and ethyl acetate (3 × 4.0 mL) was used to extract the organic compounds. The combined organic extracts were analyzed by GC (FID detector), using mesitylene as an internal standard (74% yield).

Cyclopentanone (3y):12 A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), cyclopentanamine (49 μL, 0.50 mmol), 2.0 mL of dioxane, and 0.50 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Water (4.0 mL) was then added to the reaction mixture and ethyl acetate (3 × 4.0 mL) was used to extract the organic compounds. The combined organic extracts were analyzed by GC (FID detector), using mesitylene as an internal standard (84% yield).

Cyclohexanone (3z):12 A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), cyclohexanamine (57 μL, 0.50 mmol), 2.0 mL of dioxane, and 0.50 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Water (4.0 mL) was then added to the reaction mixture and ethyl acetate (3 × 4.0 mL) was used to extract the organic compounds. The combined organic extracts were analyzed by GC (FID detector), using mesitylene as an internal standard (81% yield).
Cycloheptanone (3aa): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), cycloheptanamine (64 μL, 0.50 mmol), 2.0 mL of dioxane, and 0.50 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Water (4.0 mL) was then added to the reaction mixture and ethyl acetate (3 × 4.0 mL) was used to extract the organic compounds. The combined organic extracts were analyzed by GC (FID detector), using mesitylene as an internal standard (90% yield).

Cyclooctanone (3ab): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), cyclooctanamine (68 μL, 0.50 mmol), 2.0 mL of dioxane, and 0.50 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Water (4.0 mL) was then added to the reaction mixture and ethyl acetate (3 × 4.0 mL) was used to extract the organic compounds. The combined organic extracts were analyzed by GC (FID detector), using mesitylene as an internal standard (73% yield).

Acetophenone (3ac): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), 1-phenylethylamine (64 μL, 0.50 mmol), 2.0 mL of dioxane, and 0.50 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Water (4.0 mL) was then added to the reaction mixture and ethyl acetate (3 × 4.0 mL) was used to extract the organic compounds. The combined organic extracts were analyzed by GC (FID detector), using mesitylene as an internal standard (86% yield).

Acetophenone (3ad): A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), 1-(4-methoxyphenyl)ethylamine (74 μL, 0.50 mmol), 2.0 mL of dioxane, and 0.50 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture...
was cooled down to room temperature and the generated gas was carefully released in a hood. Water (4.0 mL) was then added to the reaction mixture and ethyl acetate (3 × 4.0 mL) was used to extract the organic compounds. The combined organic extracts were analyzed by GC (FID detector), using mesitylene as an internal standard (98% yield).

\[
\text{1-(Naphthalen-1-yl)ethan-1-one (3ae):}^{13}
\]

A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 (3.0 mg, 0.0050 mmol), 1-(1-naphthyl)ethylamine (40 μL, 0.25 mmol), 2.0 mL of dioxane, and 0.50 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Water (4.0 mL) was then added to the reaction mixture and ethyl acetate (3 × 4.0 mL) was used to extract the organic compounds. The combined organic extracts were analyzed by GC (FID detector), using mesitylene as an internal standard (59% yield).

Procedures for mechanistic experiments

Catalytic deamination of benzylamine in the absence of base: A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 or [Ru]-3 (0.0050 mmol), benzylamine (55 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts were analyzed by GC (FID detector) using mesitylene as an internal standard to determine the yields of benzyl alcohol and N-benzylidenebenzylamine. In the next step, the aqueous phase was acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were also analyzed by GC (FID detector) using mesitylene as an internal standard to determine the yield of benzoic acid.

Effect of different bases on the catalytic deamination of benzylamine: A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-2 or [Ru]-3 (0.0050 mmol), benzylamine (55 μL, 0.50 mmol), base (1.0 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled to room temperature.
Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts were analyzed by GC (FID detector) using mesitylene as an internal standard to determine the yields of benzyl alcohol and \(N\)-benzylidenebenzylamine. In the next step, the aqueous phase was acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were also analyzed by GC (FID detector) using mesitylene as an internal standard to determine the yield of benzoic acid. The reaction results with the bases including \(\text{NEt}_3\), \(\text{Na}_2\text{CO}_3\), \(\text{K}_3\text{PO}_4\) and \(\text{NaOH}\) are shown in Table S1.

Table S1. Effect of Different Bases on the Catalytic Oxidative Deamination of Benzylamine

entry	base	yield (%)	2i	4i	6i
1	none		24	50	8
2	\(\text{NEt}_3\)		21	47	3
3	\(\text{Na}_2\text{CO}_3\)		16	50	6
4	\(\text{K}_3\text{PO}_4\)		74	20	n.d.
5	\(\text{NaOH}\)		99	n.d.	n.d.

Catalytic oxidation of benzyl alcohol by water: A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex \([\text{Ru}]\)-3 (2.9 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), benzyl alcohol (52 \(\mu\)L, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over \(\text{Na}_2\text{SO}_4\) and all volatiles were removed under vacuum. The product, benzoic acid, was obtained as a pale-yellow solid in 99% yield (60.7 mg).

Catalytic oxidative deamination of \(N\)-benzylidenebenzylamine by water: A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex \([\text{Ru}]\)-3 (2.9 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), \(N\)-benzylidenebenzylamine (47 \(\mu\)L, 0.25 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over \(\text{Na}_2\text{SO}_4\) and all volatiles were removed under vacuum. The product, benzoic acid, was obtained as a pale-yellow solid in 96% yield (58.5 mg).
Catalytic oxidation of benzaldehyde by water: A 50 mL thick-glass pressure tube, equipped with a stirring bar, was charged with complex [Ru]-3 (2.9 mg, 0.0050 mmol), NaOH (40.0 mg, 1.0 mmol), benzaldehyde (51 μL, 0.50 mmol), 2.0 mL of dioxane, and 2.0 mL of water. The tube was sealed, and the reaction mixture was stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). After 48 h, the reaction mixture was cooled down to room temperature and the generated gas was carefully released in a hood. Saturated brine (5.0 mL) was then added to the reaction mixture, and the mixture was extracted with ethyl acetate (3 × 5.0 mL). The aqueous phase was then acidified with 4 M HCl (3.0 mL) and extracted with ethyl acetate (3 × 5.0 mL). The combined organic extracts from the acidified aqueous phase were dried over Na$_2$SO$_4$ and all volatiles were removed under vacuum. The product, benzoic acid, was obtained as a pale-yellow solid in 99% yield (60.7 mg).

Determination of the kinetic profile of benzylamine dehydrogenation: A series of 50 mL thick-glass pressure tubes, equipped with a stirring bar, was charged with complex [Ru]-3 (2.9 mg, 0.0050 mmol), benzylamine (55 μL, 0.50 mmol), water (18 μL, 0.50 mmol), and 2.0 mL of dioxane. An additional series of pressure tubes was set up as described above, but in the absence of water. All tubes were sealed, and the reaction mixtures were then stirred and heated at 150 °C (silicon oil bath temperature, solvent reflux). The tubes were removed from the heating bath at different designated time intervals, i.e., after 3, 6, 12, 18 and 24 h. After cooling to room temperature, the reaction mixtures were then subjected to GC analysis, using biphenyl as the internal standard.
Copies of NMR Spectra

31P(1H) NMR (162 MHz, dioxane-d_6)

1H NMR (400 MHz, dioxane-d_6)
13C^{1}H DEPTQ NMR (101 MHz, dioxane-d_{8})

^{1}H-^{1}H COSY NMR (400 MHz, dioxane-d_{8})
1H-13C HSQC NMR (400 MHz, dioxane-d_8)

1H-13C HMBC NMR (400 MHz, dioxane-d_8)
1H-1H NOESY NMR (400 MHz, dioxane-d$_8$)

31P(1H) NMR (162 MHz, C$_6$D$_6$)
1H NMR (400 MHz, C$_6$D$_6$)

13C(1H) DEPTQ NMR (101 MHz, C$_6$D$_6$)
1H-1H COSY NMR (400 MHz, C$_6$D$_6$)

1H-13C HSQC NMR (400 MHz, C$_6$D$_6$)
1H-13C HMBC NMR (400 MHz, C$_6$D$_6$)

31P{1H} NMR (202 MHz, dioxane-d_8)
1H NMR (500 MHz, dioxane-d_8)

1H-1H NOESY NMR (500 MHz, dioxane-d_8)
\[^1\text{H NMR} (400 \text{ MHz, CDCl}_3) \]

\[^{13}\text{C NMR} (101 \text{ MHz, CDCl}_3) \]
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
2h

1H NMR (400 MHz, DMSO-d_6)

13C NMR (101 MHz, DMSO-d_6)
1H NMR (400 MHz, DMSO-d_6)

13C NMR (101 MHz, DMSO-d_6)
1H NMR (500 MHz, DMSO-d_6)

13C NMR (126 MHz, DMSO-d_6)

S35
1H NMR (400 MHz, DMSO-d_6)

13C NMR (101 MHz, DMSO-d_6)
1H NMR (500 MHz, DMSO-d_6)

13C NMR (126 MHz, DMSO-d_6)
1H NMR (400 MHz, DMSO-d_6)

13C NMR (101 MHz, DMSO-d_6)
1H NMR (500 MHz, DMSO-d_6)

13C NMR (126 MHz, DMSO-d_6)
1H NMR (500 MHz, DMSO-d_6)

13C NMR (126 MHz, DMSO-d_6)

COOH

COOH
1H NMR (400 MHz, DMSO-d_6)

\[\text{COOH} \]
\[\text{COOH} \]

13C NMR (101 MHz, DMSO-d_6)
Crystallographic analysis of [Ru]-5

Crystals of [Ru]-5 were grown from a saturated pentane solution at -30 °C. Diffraction data for one of these crystals were collected at 100 K with Cu Kα radiation (λ = 1.54184 Å), on a Rigaku XtaLab Pro diffractometer, equipped with microfocus and a Dectris Pilatus 200K detector. The structure was solved by direct methods using SHELXT. Data were refined as Full-matrix least-squares refinement based on F² with SHELXL and OLEX2. All non-hydrogen atoms were further refined with anisotropic displacement coefficients. Hydrogen atoms were assigned isotropic displacement coefficients, and their coordinates were allowed to ride on their respective carbons. Crystallographic data and refinement parameters are summarized in Table S2.

Table S2. Crystallographic data for complex [Ru]-5

Property	Value
CCDC number	2023878
Empirical formula	2C₃H₄NO₃P₂Ru+C₃H₁₂
Crystal dimensions (mm)	0.039 x 0.028 x 0.024
Formula weight (g/mol)	1453.60
T (K)	100(2)
Wavelength (Å)	1.54184
Crystal system	Monoclinic
Space group	P2₁/n
a (Å)	25.7295(3)
b (Å)	11.2014(1)
c (Å)	25.9806(3)
α (°)	90
β (°)	109.322(1)
γ (°)	90
Volume (Å³)	7066.02(14)
Z	4
ρcal (mg/m³)	1.366
μ (mm⁻¹)	4.727
Figure S3. X-ray crystal structure of [Ru]-5 (thermal ellipsoids set at 50% probability level, isopropyl groups are presented as wireframe, and hydrogen atoms are omitted for clarity). Selected bond distances (Å) and angles (°) for [Ru]-5: Ru1-N1 2.163(2), Ru1-C35 1.833(3), Ru1-O2 2.2248(18), Ru1-O3 2.1673(18), Ru1-P1 2.2936(7), Ru1-P2 2.2941(7), O2-C28 1.271(3), O3-C28 1.267(3), N1-Ru1-C35 177.17(10), P1-Ru1-P2 106.27(2), O2-Ru1-O3 60.07(7), P1-Ru1-O2 151.68(5), P2-Ru1-O3 159.79(5), P1-Ru1-N1 87.92(6).
Computational details

All geometries were optimized using Truhlar’s M06-L functional, the triple-ξ def2-TZVP basis set and W06 density fitting to increase computational efficiency, as well as Grimme’s D3(0) empirical dispersion correction. To take the influence of the solvent into account, optimizations were performed with the integral equation formalism variant (IEFPCM) of the PCM model in the SMD variation of Truhlar and co-workers, with a 1:1 water/dioxane mixture (\(\epsilon = 40.28245 \), \(\epsilon_{\text{inf}} = 1.89979 \)). Frequency calculations at this level of theory at 423.15K were run in order to confirm stationary points and transition states, as well as to compute thermodynamic properties. Single point energies of the optimized structures were computed using the range-separated meta-GGA hybrid functional \(\omega \)B97M-V of the Head-Gordon group including dispersion correction, together with the triple-ξ def2-TZVPP basis set and the corresponding auxiliary basis sets, def2/J and def2-TZVPP/C for RIJCOSX density fitting. The single point calculations include the same solvation (SMD) approach as described above in the optimizations. Gibbs free energies were computed by adding the free energy correction term from the frequency calculation to the single point energy according to:

\[
G_{\omega \text{B97M-V SMD}} = E_{\omega \text{B97M-V elSMD}} + G_{\text{corr M06-L freq SMD}}
\]

Free energy values (\(G^0 \)) were then corrected to account for changes in standard states (\(G^0 \rightarrow G^{0'} \)). Specifically, all species were corrected for the condensed phase (1 atm to 1M at 423.15K), with the exception of \(\text{H}_2 \) (maintained at 1 atm standard state) and water (1 atm to 27.75M at 423.15K). Optimizations and frequency calculations were done using the Gaussian 16 software suite in the C.01 revision. Single point calculations were performed using the ORCA Software in the 4.2.1 release.

Free energy diagram:
Energy values (Hartrees) and imaginary frequencies (cm⁻¹):

	$E^\text{M06-}^{au}$	$G^\text{o} \text{ freq/SMD}$	Imaginary Frequency
	el/SMD	(1 atm, 423.15K)	
mer-[Ru]-3	-1999.26270290704	0.51485	
fac-[Ru]-3	-1999.25112921153	0.518434	
INT1	-2075.72182197317	0.539052	
INT2	-2074.52002276128	0.521987	
INT3	-2401.46478513765	0.657525	
INT4	-2401.44162146400	0.652585	
INT5 INT6 INT7	-2324.97870410119	0.633346	
TS1	-2075.68455030215	0.539836 -1162.3272	
TS2	-2326.13221735081	0.643038 -895.8696	
TS3	-2401.44248623527	0.653345 -804.0563	
TS4	-2324.97234687098	0.628221 -561.2405	
Water	-76.445699461786	-0.005837	
1i	-326.898833228635	0.096054	
1-Phenylethane-1-imine	-325.692951307968	0.074648	
Hydrogen	-1.158892721333	-0.008092	

Atomic coordinates:

mer-[Ru]-3:

	x	y	z							
Ru	-0.275616000	6.318234000	1.352914000							
P	-1.852198000	7.542998000	0.151635000							
P	1.644530000	5.957582000	2.632845000							
O	-2.158425000	5.645525000	3.557758000							
N	0.963442000	6.116792000	-0.511800000							
C	-1.409897000	5.968689000	2.718797000							
C	-1.530622000	10.154854000	1.159965000							
C	-3.211069000	8.703682000	2.312735000							
C	-2.554897000	9.044569000	0.984325000							
C	-4.087612000	7.513292000	-1.618629000							
C	-3.086250000	5.295539000	-0.976686000							
C	-3.369399000	6.725305000	-0.535310000							
C	3.519141000	4.195581000	3.854920000							
C	1.189336000	3.304220000	3.412228000							
C	2.293337000	4.249900000	2.958360000							
C	0.983048000	6.279110000	5.358107000							
C	1.539703000	8.356863000	4.088920000							
C	1.822403000	6.869653000	4.236674000							
Atomic Symbol	Atomic Position									
---------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------
C	0.359542000	6.130090000	-1.779943000							
C	2.214415000	5.480352000	-0.487752000							
C	-0.914746000	8.258391000	-1.253404000							
C	-0.487422000	7.186822000	-2.195478000							
C	-0.977003000	7.211985000	-3.498630000							
C	-0.681802000	6.219085000	-4.419015000							
C	0.106319000	5.155105000	-4.007581000							
C	0.604156000	5.098901000	-2.715103000							
C	1.396702000	3.935563000	-2.226371000							
C	2.525228000	4.443749000	-1.396359000							
C	3.797952000	3.899087000	-1.471741000							
C	4.803698000	4.324411000	-0.616945000							
C	4.492700000	5.277987000	0.339656000							
C	3.228264000	5.853911000	0.430176000							
C	2.939287000	6.747544000	1.584907000							
H	-0.675069000	9.822434000	1.751698000							
H	-1.155102000	10.534585000	0.211360000							
H	-1.984433000	10.993706000	1.690272000							
H	-3.767662000	9.564634000	2.686359000							
H	-3.908337000	7.868777000	2.240857000							
H	-2.462046000	8.448165000	3.063586000							
H	-3.327281000	9.402446000	0.296244000							
H	-5.033609000	7.030584000	-1.870997000							
H	-4.315941000	8.535370000	-1.318224000							
H	-3.493480000	7.557833000	-2.531805000							
H	-2.499928000	5.268850000	-1.895916000							
H	-2.538346000	4.737464000	-0.214624000							
H	-4.020576000	4.766406000	-1.171481000							
H	-4.017091000	6.677002000	0.348105000							
H	3.943393000	3.189689000	3.853964000							
H	4.300768000	4.880885000	3.525001000							
H	3.275274000	4.441458000	4.889246000							
H	0.805590000	3.553576000	4.401670000							
H	0.346549000	3.313810000	2.719353000							
H	1.566859000	2.281453000	3.460809000							
H	2.592814000	3.930631000	1.954596000							
H	-0.079381000	6.296943000	5.112387000							
H	1.256716000	5.252331000	5.593657000							
H	1.114806000	6.866980000	6.268299000							
H	1.843267000	8.879925000	4.997343000							
H	2.071817000	8.812707000	3.254112000							
H	0.473898000	8.542269000	3.948262000							
H	2.881151000	6.749003000	4.489637000							
H	-0.056869000	8.754164000	-0.789686000							

S46
	X	Y	Z
H	-1.502882000	9.019243000	-1.770660000
H	-1.603426000	8.048478000	-3.788814000
H	-1.066874000	6.270106000	-5.429367000
H	0.335301000	4.342648000	-4.689175000
H	0.751680000	3.297854000	-1.601019000
H	1.745511000	3.308554000	-3.047151000
H	3.987254000	3.117181000	-2.199672000
H	5.799462000	3.903934000	-0.674828000
H	5.245577000	5.593877000	1.053788000
H	3.846624000	6.945354000	2.158972000
H	2.516502000	7.707458000	1.277351000
H	-0.050909000	7.749587000	1.942729000

fac-[Ru]-3:

	X	Y	Z
H	0.698609000	8.624298000	5.363443000
P	-2.356218000	7.714541000	2.806985000
P	0.486103000	6.145084000	4.963616000
O	-2.304538000	7.829335000	6.892610000
N	0.747745000	8.356968000	2.717657000
C	-1.576282000	7.892267000	1.149925000
H	-0.916678000	7.025929000	1.048764000
H	-2.338242000	7.825471000	0.370669000
C	-0.784789000	9.148896000	1.015786000
C	-1.151379000	10.123653000	0.093424000
H	-2.051912000	9.969819000	-0.492303000
C	-0.368983000	11.250637000	-0.117225000
H	-0.661165000	11.990772000	-0.851266000
C	0.802375000	11.406170000	0.614359000
H	1.433561000	12.274223000	0.454186000
C	1.174066000	10.474229000	1.571942000
C	0.377327000	9.333574000	1.799740000
C	2.393589000	10.638753000	2.427720000
H	3.119453000	11.306833000	1.961270000
H	2.102150000	11.129162000	3.369432000
C	3.000070000	9.308167000	2.756240000
C	4.360752000	9.125231000	2.954835000
H	5.033113000	9.962257000	2.796388000
C	4.860105000	7.901061000	3.384371000
H	5.921997000	7.768422000	3.548067000
C	3.979898000	6.849828000	3.607206000
H	4.355966000	5.888363000	3.940990000
C	2.614555000	6.992146000	3.384587000
C	2.108228000	8.237363000	2.953100000
C	1.676817000	5.849070000	3.590402000
Atom	X	Y	Z
------	-----------	-----------	-----------
H	2.22906600	4.92909100	3.78371500
H	1.05434700	5.68695200	2.70491300
C	-3.44391600	6.22986200	2.59227800
H	-4.23232700	6.54279500	1.90276500
C	-4.08865900	5.83926600	3.91305400
H	-3.34285800	5.55839100	4.65847900
H	-4.75325000	4.98499200	3.77373700
H	-4.68165400	6.65178500	4.33339400
C	-2.69524500	5.07541400	1.93806900
H	-2.49194500	5.26988300	0.88621900
H	-3.29310700	4.16422800	1.99295700
H	-1.73850000	4.86602200	2.41897800
C	-3.50176900	9.18367500	2.82295400
H	-2.84896200	9.96966500	2.42659600
C	-3.92281700	9.60688200	4.22148400
H	-4.49466700	8.83164200	4.73270300
H	-4.55552600	10.49481500	4.16810600
H	-3.06330000	9.85098200	4.84512300
C	-4.69792000	9.05658900	1.89342600
H	-4.42098700	8.72489500	0.89232200
H	-5.19412700	10.02337000	1.79165900
H	-5.43629900	8.35586800	2.28619000
C	1.61269000	6.19578500	6.43832700
H	2.34515300	6.93815900	6.09926100
C	0.97886600	6.73395900	7.71120600
H	0.52020700	7.70878000	7.55680400
H	1.74679800	6.84881200	8.47811300
H	0.22127200	6.06197800	8.11276800
C	2.35316800	4.89174200	6.70261600
H	1.69169300	4.12284200	7.10138200
H	3.13140900	5.06266000	7.44856000
H	2.83888900	4.49036500	5.81422900
C	-0.54795100	4.60701300	5.05531600
H	-1.34581700	4.84633600	4.34963900
C	-1.19776900	4.41124900	6.41746500
H	-0.47572400	4.09385300	7.16961400
H	-1.95683200	3.63004400	6.34941700
H	-1.68842900	5.31253900	6.78218700
C	0.12566300	3.33149500	4.56908200
H	0.47409200	3.41146600	3.54072400
H	-0.59516800	2.51226000	4.60367700
H	0.97205700	3.04360100	5.19099000
C	-1.62199000	7.89793600	5.94816800
Ru	-0.55610800	8.05100000	4.47532800
INT1:			
---------------	------------------	------------------	------------------
H	0.701353000	8.673856000	5.352573000
P	-2.374633000	7.734428000	2.847680000
P	0.424080000	6.148020000	4.944699000
O	-2.310859000	7.936893000	6.915883000
N	0.742314000	8.336312000	2.677616000
C	-1.614172000	7.977623000	1.186740000
H	-0.954576000	7.116128000	1.053310000
H	-2.388481000	7.930634000	0.418805000
C	-0.816260000	9.230128000	1.068602000
C	-1.207396000	10.259706000	0.220219000
H	-2.141418000	10.158947000	-0.322890000
C	-0.408374000	11.379738000	0.029422000
H	-0.721676000	12.166714000	-0.644548000
C	0.803717000	11.470901000	0.702336000
H	1.443669000	12.334931000	0.556424000
C	1.205351000	10.480644000	1.589120000
C	0.391655000	9.347316000	1.798087000
C	2.462846000	10.583065000	2.406290000
H	3.202516000	11.215211000	1.905916000
H	2.230713000	11.093899000	3.348489000
C	3.021066000	9.227925000	2.718566000
C	4.375822000	9.002320000	2.913610000
H	5.073250000	9.818781000	2.755757000
C	4.839313000	7.762500000	3.338939000
C	5.897332000	7.597495000	3.498263000
C	3.928296000	6.738350000	3.563821000
C	4.275684000	5.765814000	3.896651000
C	2.567397000	6.923118000	3.345340000
C	2.098250000	8.182865000	2.914216000
C	1.591949000	5.813438000	3.556533000
H	2.113477000	4.874325000	3.741757000
H	0.956631000	5.678090900	2.675841000
C	-3.339521000	6.172532000	2.588542000
H	-4.112038000	6.420962000	1.856388000
C	-4.030453000	5.742032000	3.874181000
H	-3.327384000	5.619419000	4.699493000
H	-4.541519000	4.788374000	3.731334000
H	-4.777303000	6.469321000	4.191591000
C	-2.462782000	5.084186000	1.975569000
H	-2.325688000	5.238884000	0.906528000
H	-2.924249000	4.104241000	2.109069000
H	-1.467674000	5.039938000	2.420744000
C -3.648354000 9.094480000 2.861173000
H -3.054702000 9.956543000 2.537440000
C -4.189552000 9.409406000 4.246703000
H -4.733487000 8.567520000 4.676705000
H -4.886457000 10.248060000 4.191106000
H -3.395783000 9.685105000 4.936927000
C -4.778425000 8.902699000 1.861350000
H -4.424107000 8.644643000 0.863260000
C -5.354548000 9.825584000 1.773573000
H -5.470261000 10.131280000 2.183815000
C 1.587300000 6.205446000 6.394192000
H 2.312713000 6.943425000 6.031202000
C 0.989267000 6.757258000 7.678882000
H 0.526865000 7.730865000 7.528395000
H 1.777778000 6.879635000 8.422546000
H 0.243464000 6.090409000 8.109787000
C 2.333529000 4.904226000 6.655490000
H 1.682443000 4.142389000 7.084176000
H 3.133440000 5.083375000 7.376386000
H 2.792637000 4.488537000 5.759630000
C -0.608339000 4.609958000 5.091563000
H -1.422053000 4.826988000 4.399569000
C -1.230146000 4.452244000 6.471678000
H -0.496656000 4.141453000 7.215281000
H -2.001755000 3.681008000 6.437712000
H -1.700412000 5.368803000 6.826315000
C 0.048826000 3.320113000 4.621739000
H 0.373649000 3.374392000 3.583829000
H -0.674689000 2.505267000 4.691610000
H 0.908396000 3.041546000 5.229442000
C -1.638272000 7.994194000 5.963847000
Ru -0.586032000 8.117295000 4.485783000
O -1.090089000 10.424639000 4.122268000
H -0.600291000 10.869365000 4.826695000
H -0.642154000 10.694064000 3.303733000

INT2:
O 0.967396000 9.138912000 5.359373000
P -2.274871000 7.689116000 2.875282000
P 0.412081000 6.133454000 4.884986000
O -2.413812000 7.797519000 6.773807000
N 0.755244000 8.364872000 2.686982000
C -1.555829000 7.884194000 1.190283000
H -0.889619000 7.026884000 1.058864000
Atom	X-Coordinate	Y-Coordinate	Z-Coordinate
C	-2.353132000	7.804548000	0.448926000
C	-0.786693000	9.150415000	1.017650000
C	-1.168276000	10.114201000	0.090923000
H	-2.079430000	9.959734000	-0.477970000
C	-0.380980000	11.234132000	-0.144474000
H	-0.681506000	11.968227000	-0.881279000
C	0.806733000	11.391330000	0.561650000
H	1.438958000	11.253543000	0.375139000
C	1.194623000	10.469428000	1.523030000
C	0.389719000	9.341081000	1.775946000
H	2.436807000	10.630388000	2.348858000
H	3.174408000	11.248999000	1.833436000
C	2.184935000	11.177305000	3.268642000
C	3.012112000	9.298583000	2.731545000
C	4.365973000	9.102445000	2.959065000
H	5.052567000	9.927129000	2.795593000
C	4.844424000	7.881136000	3.422699000
H	5.901686000	7.741493000	3.609484000
C	3.951402000	6.838573000	3.636281000
H	4.313262000	5.875428000	3.980791000
C	2.593331000	6.993613000	3.382351000
C	2.106943000	8.242071000	2.940374000
C	1.639687000	5.854891000	3.543823000
H	2.177352000	4.927492000	3.742103000
H	1.047018000	5.710891000	2.635437000
C	-3.373313000	6.213395000	2.664303000
H	-4.161932000	6.550143000	1.987033000
C	-4.024033000	5.822855000	3.982035000
H	-3.289177000	5.557535000	4.742490000
H	-4.679485000	4.961850000	3.841723000
H	-4.628808000	6.634681000	4.386751000
C	-2.647660000	5.064283000	1.971593000
H	-2.524940000	5.256630000	0.906907000
H	-3.220917000	4.141583000	2.074065000
H	-1.653037000	4.877064000	2.377361000
C	-3.426008000	9.161325000	2.898573000
H	-2.768357000	9.944600000	2.504565000
C	-3.875788000	9.604502000	4.281062000
H	-4.435513000	8.828914000	4.804544000
H	-4.530986000	10.473115000	4.192851000
H	-3.034876000	9.893405000	4.909679000
C	-4.611137000	9.032170000	1.953239000
H	-4.328252000	8.681075000	0.960865000
H	-5.091577000	10.004355000	1.830432000
H -5.364164000 8.348791000 2.348721000
C 1.507774000 6.253854000 6.377516000
H 2.188926000 7.044846000 6.045667000
C 0.837762000 6.744107000 7.651443000
H 0.278939000 7.665108000 7.501793000
H 1.601841000 6.945346000 8.404317000
H 0.156956000 6.007130000 8.074857000
C 2.313885000 4.989901000 6.646474000
H 1.688969000 4.184731000 7.033056000
H 3.069757000 5.201060000 7.405211000
H 2.835155000 4.618200000 5.765810000
C -0.595662000 4.583899000 4.999435000
H -1.400587000 4.786538000 4.293948000
C -1.233986000 4.388469000 6.367178000
H -0.504096000 4.080168000 7.115121000
H -1.984957000 3.599240000 6.304533000
H -1.732694000 5.285388000 6.731934000
C 0.116140000 3.323059000 4.528843000
H 0.447068000 3.394926000 3.494189000
H -0.576214000 2.481456000 4.590532000
H 0.980480000 3.075999000 5.144050000
C -1.691455000 7.911944000 5.866537000
Ru -0.566124000 8.100474000 4.437118000
H 0.774145000 9.235530000 6.297538000

INT3:
O 1.360982000 0.747325000 1.244053000
P -2.002353000 -0.522675000 -1.307485000
P 0.766759000 -2.128745000 0.651825000
O -2.171808000 -0.664043000 2.537252000
N 1.061632000 0.174373000 -1.509989000
C -1.248465000 -0.324047000 -2.978277000
H -0.550472000 -1.160840000 -3.066048000
H -2.017176000 -0.447523000 -3.741904000
C -0.502515000 0.955079000 -3.156660000
C -0.909357000 1.927351000 -4.063791000
H -1.821247000 1.766948000 -4.629031000
C -0.146384000 3.067001000 -4.287453000
C -0.469995000 3.807973000 -5.007357000
C 1.043107000 3.236829000 -3.587560000
H 1.648903000 4.122133000 -3.752806000
C 1.461359000 2.300921000 -2.652852000
C 0.688858000 1.145176000 -2.419547000
C 2.681224000 2.490748000 -1.801552000
S53
Atom	X	Y	Z
C	-0.12326500	-3.75948600	0.67425000
H	-0.90988600	-3.60234200	-0.06228200
C	-0.80028000	-4.02207000	2.01237600
H	-0.08036500	-4.31310900	2.77701700
H	-1.51334800	-4.84224000	1.91041600
H	-1.34791600	-3.15528100	2.38285800
C	0.67860200	-4.96687400	0.20830500
H	1.03785800	-4.85511200	-0.81360000
H	0.03665000	-5.84992200	0.22953700
H	1.53630900	-5.17622400	0.84569400
C	-1.44093100	-0.40868400	1.66250200
Ru	-0.31614900	-0.09981000	0.27017100
N	-0.60814100	2.13334200	0.02953900
H	-0.77950700	2.41735000	-0.93087300
H	0.38401100	2.29454900	0.22263200
C	-1.41682500	2.97739200	0.93419000
H	-1.41364200	4.00548800	0.55794300
H	-2.44842200	2.62919600	0.90789200
C	-0.89571400	2.95724100	2.33993600
C	0.36354000	3.48505400	2.63024800
C	-1.64665800	2.41833500	3.37841200
C	0.86541900	3.45295800	3.92108800
C	-1.14856500	2.38502300	4.67484500
C	0.11082700	2.89724000	4.94812400
H	0.95813300	3.91531700	1.83082400
H	-2.62800300	2.01169700	3.16482100
H	1.84612300	3.86280300	4.12864100
H	-1.74552800	1.95558600	5.47002200
H	0.50298400	2.86970100	5.95708200
H	1.09487400	0.96412300	2.14413700

INT4:

Atom	X	Y	Z
O	1.40969600	0.92899800	1.34632400
P	-2.01481200	-0.46698500	-1.30037300
P	0.73663200	-2.18734700	0.59159200
O	-2.22774400	-0.67076200	2.50214100
N	1.04329400	0.18305300	-1.49507000
C	-1.26079900	-0.27181700	-2.96834000
H	-0.58017800	-1.12191200	-3.06076500
H	-2.04043000	-0.38317500	-3.72287500
C	-0.49075700	0.99142600	-3.15393800
C	-0.86263800	1.95860200	-4.08082500
H	-1.76610000	1.80925000	-4.66221000
C	-0.07296700	3.07988200	-4.30429500

S54
Atom	x	y	z
H	-0.368959	3.817916	-5.038934
C	1.106354	3.236201	-3.584610
H	1.730856	4.108781	-3.747289
C	1.491127	2.301066	-2.634865
C	0.695279	1.162620	-2.406960
C	2.701426	2.468907	-1.766112
C	3.442010	3.120059	-2.234323
H	2.400744	2.984115	-0.840254
C	3.291874	1.138687	-1.405382
C	4.647451	0.960940	-1.175253
H	5.318607	1.803309	-1.309198
C	5.145233	-0.266502	-0.751631
H	6.203500	-0.394370	-0.562197
C	4.269363	-1.331107	-0.587960
H	4.646355	-2.301923	-0.283402
C	2.908981	-1.193986	-0.845636
H	2.399121	0.061583	-1.237216
C	1.991253	-2.366603	-0.745311
H	2.563869	-3.281162	-0.592130
C	1.412952	-2.484177	-1.667231
H	2.954102	-2.061318	-1.451410
C	-3.855065	-1.792352	-2.011802
C	-3.388108	-2.600735	-0.096399
H	-2.541635	-2.754290	0.568745
H	-3.891281	-3.561209	-0.220975
H	-4.076577	-1.932475	0.415848
C	-2.187192	-3.092094	-2.272749
H	-2.187728	-2.846042	-3.333151
H	-2.647418	-4.075185	-2.162592
H	-1.144254	-3.183557	-1.964524
C	-3.352568	0.828372	-1.295471
H	-2.790489	1.758497	-1.177199
C	-4.312696	0.692039	-0.121419
H	-5.012766	-0.129049	-0.281538
H	-4.906454	1.602362	-0.024744
H	-3.812337	0.524000	0.830942
C	-4.139329	0.917053	-2.596358
H	-3.522424	1.197270	-3.446655
H	-4.915211	1.677979	-2.494699
H	-4.643048	-0.019960	-2.838664
C	1.839671	-2.027617	2.085850
H	2.475334	-1.196946	1.762900
C	1.137445	-1.587301	3.363369
H	0.481314	-0.730254	3.214887

S55
Atoms	X	Y	Z
H	1.88175700	-1.30404000	4.110242000
H	0.534888000	-2.383263000	3.799264000
C	2.743608000	-3.222064000	2.356386000
H	2.187565000	-4.069340000	2.757664000
H	3.493557000	-2.949186000	3.101804000
H	3.277547000	-3.560190000	1.469368000
C	-0.092454000	-3.851760000	0.677231000
H	-0.897329000	-3.753353000	-0.050487000
C	-0.737571000	-4.087240000	2.035979000
H	-0.003392000	-4.340610000	2.794210000
C	2.743608000	-3.222064000	2.356386000
C	0.028832000	-1.035903000	-3.068471000

INT5:

Atoms	X	Y	Z
P	-1.832187000	-0.401127000	-1.127173000
P	0.905255000	-2.215584000	0.491447000
O	-1.746579000	-0.577926000	2.679057000
N	1.189613000	0.117179000	-1.616075000
C	-1.253583000	-0.157838000	-2.858009000
H	-0.638341000	-1.035903000	-3.068471000

S56
Atom	X	Y	Z
H	-2.121199	-0.191251	-3.518524
C	-0.443886	1.071137	-3.081028
C	-0.864348	2.101053	-3.912643
H	-1.845436	2.038374	-4.371964
C	-0.029819	3.177296	-4.193501
H	-0.362680	3.967886	-4.853958
C	1.241152	3.220657	-3.631495
H	1.902259	4.053301	-3.849456
C	1.674406	2.225907	-2.76483
C	0.826579	1.142448	-2.46821
C	2.997680	2.278058	-2.05672
H	3.731893	2.845863	-2.63188
H	2.875598	2.834556	-1.11547
C	3.504081	0.899568	-1.74512
C	4.857481	0.606431	-1.66689
H	5.577020	1.392125	-1.87150
C	5.295572	-0.66493	-1.31439
H	6.354200	-0.881414	-1.24725
C	4.359215	-1.659195	-1.06453
H	4.686561	-2.662706	-0.81373
C	2.994805	-1.408166	-1.16514
C	2.549739	-0.106512	-1.48739
C	1.998361	-2.503784	-0.96834
H	2.508605	-3.461629	-0.86794
H	1.323507	-2.571170	-1.82760
C	-2.830979	-1.953167	-1.27565
H	-3.698591	-1.665040	-1.87541
C	-3.329883	-2.425734	0.080611
H	-2.513167	-2.577193	0.786404
H	-3.861285	-3.373398	-0.02063
H	-4.017498	-1.709740	0.529834
C	-2.068616	-3.022555	-2.05286
H	-2.111673	-2.841820	-3.12561
H	-2.500580	-4.007149	-1.86755
H	-1.012659	-3.071089	-1.78069
C	-3.070610	0.981514	-0.96446
H	-2.466833	1.838028	-1.27942
C	-3.554777	1.253734	0.449623
H	-4.164717	0.436621	0.835853
H	-4.175880	2.151627	0.457994
H	-2.735437	1.416131	1.145096
C	-4.255398	0.863127	-1.91370
H	-3.967871	0.643688	-2.94093
H	-4.807204	1.804515	-1.92534
	X	Y	Z
---	---------	---------	---------
H	-4.950477000	0.089207000	-1.585302000
C	2.195908000	-2.028421000	1.828829000
H	2.817987000	-1.242470000	3.010848000
C	1.679827000	-1.477248000	3.148998000
H	1.124929000	-0.550684000	3.808102000
H	2.522483000	-1.585302000	2.561424000
H	1.034301000	-2.179162000	2.671430000
C	3.081770000	-3.246596000	2.046041000
H	2.549077000	-4.046014000	2.293630000
H	3.934353000	-2.973536000	2.578418000
H	3.478246000	-3.652897000	1.116359000
C	0.021748000	-3.831263000	0.774811000
H	-0.871933000	-3.725267000	0.160304000
C	-0.447641000	-3.969062000	2.216298000
H	0.377789000	-4.188809000	2.892947000
H	-1.158434000	-4.793768000	2.293630000
H	-0.947874000	-3.070689000	2.578418000
C	0.743721000	-5.080142000	0.291860000
H	0.929735000	-5.057202000	-0.781158000
H	0.121424000	-5.954544000	0.492911000
H	1.696372000	-5.238300000	0.795415000
C	-1.094544000	-0.348163000	1.741053000
Ru	-0.073529000	-0.087258000	0.247139000
N	0.200520000	1.916147000	0.359222000
H	0.536173000	2.319471000	-0.509672000
C	-0.445786000	2.973809000	1.108259000
H	0.134243000	3.898496000	0.975551000
H	-1.446545000	3.216036000	0.717845000
C	-0.562749000	2.708452000	2.583441000
C	0.511211000	2.184402000	3.301688000
C	-1.728891000	3.022997000	3.276145000
C	0.420016000	1.974667000	4.668900000
C	-1.825451000	2.818039000	4.646206000
C	-0.751122000	2.289579000	5.347715000
H	1.424437000	1.934956000	2.772827000
H	-2.573058000	3.430650000	2.729719000
H	1.265499000	1.563198000	5.207931000
H	-2.743861000	3.065057000	5.164903000
H	-0.824675000	2.122919000	6.415246000

INT6:

	X	Y	Z
P	-2.425494000	7.904217000	2.719739000
P	0.284344000	6.548400000	5.116023000
O	-2.562114000	8.472143000	6.751671000
---	----------	----------	----------
N	0.720616000	8.534687000	2.641808000
C	-1.562714000	8.002031000	1.098783000
H	-0.892853000	7.138290000	0.872527000
C	-2.288711000	7.853820000	0.297281000
C	-0.758850000	9.234462000	-0.403618000
H	-1.117284000	10.150982000	-0.106834000
C	-2.033138000	9.985259000	-0.665222000
C	-0.306790000	11.240167000	0.282898000
H	-0.592642000	11.942979000	-1.175951000
C	0.889731000	11.394069000	0.045256000
C	1.549185000	12.222850000	1.290461000
C	1.261191000	10.512214000	1.627898000
C	2.533203000	10.704908000	2.063137000
H	3.309099000	11.134127000	1.423895000
H	2.379050000	11.458328000	2.849345000
C	3.009429000	9.425694000	3.021028000
C	4.343819000	9.240439000	2.788536000
H	5.053927000	10.027811000	2.942118000
C	4.773205000	8.084520000	3.659852000
H	5.814820000	7.956014000	3.925123000
C	3.846908000	7.089784000	3.941616000
H	4.165339000	6.169653000	4.420350000
H	2.508579000	7.230135000	3.592405000
C	4.061965000	8.422068000	2.974550000
C	1.542205000	6.121741000	3.844904000
H	2.069786000	5.216808000	4.147376000
H	0.967890000	5.892474000	2.942118000
C	-3.239620000	6.242127000	2.595808000
H	-3.983006000	6.338664000	1.800633000
C	-3.979332000	5.901406000	3.884341000
H	-3.367452000	6.059874000	4.773826000
H	-4.293164000	4.856024000	3.881092000
H	-4.875764000	6.509140000	4.001075000
C	-2.242391000	5.172707000	2.151396000
H	-2.112520000	5.179302000	1.070372000
H	-2.595289000	4.179317000	2.433871000
H	-1.250894000	5.303371000	2.587757000
C	-3.811489000	9.127701000	2.514659000
H	-3.264251000	10.023800000	2.205683000
C	-4.542436000	9.446324000	3.810746000
H	-5.157033000	8.609680000	4.143835000
H	-5.211210000	10.296051000	3.663203000
H	-3.868274000	9.697020000	4.628248000
INT7:			
Symbol	X-coordinate	Y-coordinate	Z-coordinate
--------	---------------	---------------	---------------
H	0.503862000	8.559881000	5.489575000
P	-2.423842000	7.655246000	2.818570000
P	0.338135000	6.065613000	4.938696000
O	-2.572837000	7.612646000	6.855081000
N	0.681037000	8.379061000	2.785509000
C	-1.593296000	7.942911000	1.198752000
H	-0.894371000	7.108061000	1.099734000
H	-2.323151000	7.865920000	0.391107000
C	-0.836169000	9.223804000	1.116583000
C	-1.230893000	10.240910000	0.255671000
H	-2.140714000	10.112404000	-0.321406000
C	-0.461844000	11.387211000	0.093638000
H	-0.775926000	12.166047000	-0.589523000
C	0.726656000	11.509658000	0.804039000
H	1.346470000	12.391721000	0.678382000
C	1.129843000	10.529794000	1.700533000
C	0.340809000	9.376354000	1.889164000
C	2.360387000	10.674858000	2.545638000
H	3.106522000	11.299883000	2.050370000
H	2.097929000	11.216892000	3.466249000
C	2.931118100	9.339257000	2.918833000
C	4.281942000	9.157011000	3.178243000
H	4.958535000	9.966333000	3.051928000
C	4.767535000	9.731679000	3.619649000
H	5.821580000	7.801394000	3.829697000
C	3.882944000	6.873322000	3.781341000
H	4.248609000	5.905446000	4.108517000
C	2.528725000	7.013907000	3.497887000
C	2.030845000	8.266535000	3.074295000
C	1.598037000	5.853096000	3.609339000
H	2.156580000	4.932282000	3.777366000
H	1.019579000	5.731824000	2.687976000
C	-3.317020000	6.058871000	2.501795000
H	-4.102935000	6.295892000	1.780386000
C	-3.981782000	5.553025000	3.773918000
H	-3.265876000	5.422471000	4.586265000
H	-4.462303000	4.589074000	3.597361000
H	-4.748314000	6.240854000	4.130078000
C	-2.395285000	5.030981000	1.851646000
H	-2.272713000	5.223306000	0.786918000
H	-2.808937000	4.026646000	1.958769000
H	-1.395767000	5.020957000	2.289460000
C	-3.762815000	8.954074000	2.769530000
H	-3.179850000	9.859916000	2.560714000
	X	Y	Z
----	------	------	------
C	-4.480902000	9.149396000	4.097948000
H	-5.165813000	8.327027000	4.305869000
H	-5.077231000	10.063474000	4.073364000
H	-3.800460000	9.220388000	4.946117000
C	-4.771360000	8.795176000	1.641830000
H	-4.304448000	8.623697000	0.672622000
H	-5.377363000	9.699009000	1.556279000
H	-5.456415000	7.968749000	1.835630000
C	1.426403000	6.110079000	6.450589000
H	2.123823000	6.905029000	6.160070000
C	0.737482000	6.566885000	7.727455000
H	0.214951000	7.512402000	7.594377000
H	1.483258000	6.710854000	8.511883000
H	0.021147000	5.834587000	8.097920000
C	2.235619000	4.844545000	6.695625000
H	1.611429000	4.029067000	7.061107000
H	2.990125000	5.036169000	7.461183000
H	2.758761000	4.494073000	5.806908000
C	-0.591709000	4.453295000	4.965517000
H	-1.378419000	4.641898000	4.235854000
C	-1.279537000	4.206551000	6.300684000
H	-0.572360000	3.904611000	7.073064000
H	-2.006626000	3.398973000	6.195991000
H	-1.815442000	5.084309000	6.661400000
C	0.168876000	3.224334000	4.489282000
H	0.543192000	3.338260000	3.472810000
H	-0.504007000	2.364053000	4.490057000
H	1.011924000	2.974202000	5.131607000
C	-1.852702000	7.789878000	5.952315000
Ru	-0.741986000	8.052186000	4.540973000
N	-1.232971000	10.279206000	4.317403000
H	-2.233125000	10.424620000	4.416481000
H	-1.023026000	10.554798000	3.360482000
C	-0.552720000	11.227723000	5.231923000
H	0.515483000	11.020979000	5.195393000
H	-0.707459000	12.250064000	4.871396000
C	-1.066332000	11.101571000	6.632854000
C	-2.380009000	11.463744000	6.929962000
C	-0.259336000	10.616937000	7.657801000
C	-2.877274000	11.335900000	8.217685000
C	-0.752419000	10.490917000	8.949645000
C	-2.063307000	10.847430000	9.232024000
H	-3.016538000	11.853465000	6.141575000
H	0.763895000	10.335076000	7.436056000
----	----	----	----
H	-3.899316000	11.622619000	8.432380000
H	-0.111269000	10.110373000	9.735453000
H	-2.449419000	10.748772000	10.238850000

TS1:

H	0.570356000	9.103583000	5.367297000
P	-2.398206000	7.801841000	2.834580000
P	0.303987000	6.190143000	4.827585000
O	-2.559639000	7.861909000	6.745414000
N	0.651895000	8.444495000	2.658047000
C	-1.653787000	8.013408000	1.165543000
H	-0.985845000	7.157105000	1.041207000
H	-2.442797000	7.935193000	0.415823000
C	-0.879162000	9.276650000	1.007038000
C	-1.262089000	10.266962000	0.110338000
H	-2.181724000	10.138237000	-0.450795000
C	-0.465983000	11.385394000	-0.103491000
H	-0.769068000	12.142547000	-0.815361000
C	0.729488000	11.515739000	0.593637000
H	1.363393000	12.380777000	0.428435000
C	1.119481000	10.563965000	1.525943000
C	0.309361000	9.434807000	1.753253000
C	2.357817000	10.700980000	2.362813000
H	3.104689000	11.321917000	1.865821000
H	2.103437000	11.237242000	3.289182000
C	2.919929000	9.356696000	2.724998000
C	4.273898000	9.142991000	2.936856000
H	4.966423000	9.964506000	2.784414000
C	4.743928000	7.906260000	3.364433000
H	5.801384000	7.751992000	3.537552000
C	3.843243000	6.868157000	3.562415000
H	4.198668000	5.893933000	3.881055000
C	2.483612000	7.039996000	3.325182000
C	2.005381000	8.302159000	2.913292000
C	1.522767000	5.906611000	3.475907000
H	2.057410000	4.974470000	3.657996000
H	0.925015000	5.780102000	2.568066000
C	-3.409368000	6.268110000	2.635432000
H	-4.218918000	6.554650000	1.959117000
C	-4.030014000	5.845114000	3.958246000
H	-3.278110000	5.671820000	4.728413000
H	-4.594859000	4.920110000	3.832752000
H	-4.715946000	6.600429000	4.341138000
C	-2.611762000	5.163254000	1.948621000
Element	X	Y	Z
---------	----	----	-------
H	-2.527079000	5.342100000	0.877991000
H	-3.108296000	4.201192000	2.083358000
H	-1.596901000	5.064831000	2.336011000
C	-3.604350000	9.217067000	2.864348000
H	-2.961246000	10.046295000	2.548015000
C	-4.147510000	9.570637000	4.238666000
H	-4.709231000	8.750937000	4.687205000
H	-4.830871000	10.417616000	4.151127000
C	-3.349198000	9.860862000	4.917220000
H	-4.731278000	9.070776000	1.851597000
H	-4.384830000	8.777626000	0.860948000
H	-5.252678000	10.023484000	1.745516000
H	-5.468261000	8.336241000	2.179717000
C	1.434863000	6.352933000	6.296996000
H	2.120574000	7.126195000	5.929810000
C	0.784340000	6.895845000	7.559520000
H	0.284382000	7.846909000	7.386192000
H	1.552394000	7.065025000	8.316665000
H	0.059880000	6.203936000	7.987120000
C	2.255702000	5.105933000	6.596479000
H	1.644996000	4.316303000	7.034055000
H	0.303906000	5.349348000	7.322184000
H	2.749733000	4.699503000	5.715156000
C	-0.648221000	4.605226000	4.987781000
H	-1.462307000	4.756291000	4.279522000
C	-1.279622000	4.443064000	6.363187000
H	-0.540913000	4.187443000	7.122295000
H	-2.008379000	3.631271000	6.334562000
H	-1.803653000	5.339762000	6.692552000
C	0.093534000	3.348116000	4.556769000
H	0.411712000	3.393311000	3.516332000
H	-0.574278000	2.490035000	4.653772000
H	0.970854000	3.146697000	5.169787000
C	-1.852115000	7.995122000	5.833172000
Ru	-0.721553000	8.213506000	4.410463000
O	-0.974785000	10.443996000	4.334901000
H	0.052174000	9.813217000	5.005044000
H	-0.602098000	10.716331000	3.485210000

TS2:

Element	X	Y	Z
H	0.543803000	8.735523000	5.542040000
P	-2.388371000	7.640701000	2.877082000
P	0.322217000	5.953055000	4.869904000
O	-2.607831000	7.502565000	6.831007000
	X	Y	Z
---	--------------------	--------------------	--------------------
N	0.677212000	8.336914000	2.836497000
C	-1.588429000	8.020255000	1.263091000
H	-0.900315000	7.188866000	1.091110000
C	-2.348906000	7.993575000	0.480841000
C	-0.828300000	9.301072000	1.237688000
C	-1.217845000	10.373027000	0.444116000
H	-2.129839000	10.289902000	-0.138101000
C	-0.440701000	11.522276000	0.361561000
H	-0.749745000	12.346389000	-0.268827000
C	0.744599000	11.596998000	1.084178000
H	1.362706000	12.487078000	1.024406000
C	1.141844000	10.556120000	1.912968000
C	0.347818000	9.398960000	2.011946000
C	2.353311000	10.633414000	2.794412000
H	3.103957000	11.310594000	2.382330000
H	2.058996000	11.077754000	3.758586000
C	2.927183000	9.272402000	3.054919000
C	4.277527000	9.063294000	3.292083000
H	4.958901000	9.905646000	3.229010000
C	4.756649000	7.803513000	3.633542000
H	5.811184000	7.651195000	3.825322000
C	3.867156000	6.741531000	3.725216000
H	4.227893000	5.751308000	3.982383000
C	2.511839000	6.911322000	3.461753000
C	2.024376000	8.193055000	3.126970000
C	1.564995000	5.758968000	3.521349000
H	2.108868000	4.823715000	3.653318000
H	0.981350000	5.683722000	2.598761000
C	-3.242302000	6.041895000	2.511913000
H	-4.008889000	6.290078000	1.773491000
C	-3.943930000	5.501387000	3.749713000
H	-3.266882000	5.398001000	4.598547000
H	-4.371240000	4.518200000	3.546027000
H	-4.757981000	6.154005000	4.064230000
C	-2.282793000	5.049048000	1.859069000
H	-2.177000000	5.244164000	0.793117000
H	-2.652418000	4.028606000	1.971855000
H	-1.279917000	5.083910000	2.287217000
C	-3.728466000	8.926927000	2.933547000
H	-3.157365000	9.835064000	2.711069000
C	-4.360685000	9.113566000	4.301963000
H	-4.892303000	8.222256000	4.636741000
H	-5.087853000	9.927089000	4.263523000
H	-3.620350000	9.369190000	5.054908000
	X	Y	Z
---	-----------	-----------	-----------
C	-4.794242	8.748403	1.862287
H	-4.381170	8.584677	0.867319
H	-5.415008	9.644627	1.812211
H	-5.457019	7.912693	2.092289
C	1.436201	6.047605	6.359791
H	2.115215	6.848137	6.041440
C	0.765375	6.519499	7.640477
H	0.241310	7.463900	7.502930
H	1.523755	6.676480	8.409687
H	0.055565	5.792857	8.033279
C	2.270680	4.798895	6.606433
H	1.666317	3.980320	6.997307
H	3.038410	5.014358	7.351467
H	2.778245	4.443355	5.710649
C	-0.602065	4.341450	4.939294
H	-1.412700	4.511239	4.231703
C	-1.246691	4.105048	6.297590
H	-0.514000	3.824600	7.053780
H	-1.964145	3.286011	6.222629
H	-1.786855	4.978976	6.660767
C	0.162889	3.118222	4.455701
H	0.498348	3.222781	3.424771
H	-0.494500	2.247336	4.494725
H	1.032630	2.894688	5.071814
C	-1.894779	7.688099	5.930739
Ru	-0.750202	7.995534	4.538975
N	-1.121518	10.199128	4.468150
H	0.053364	9.447806	5.208357
H	-0.538431	10.724514	3.824777
C	-1.549878	11.050420	5.569997
H	-2.258705	11.807369	5.203806
H	-2.100884	10.440273	6.290467
C	-0.406960	11.735573	6.269194
C	0.185227	11.174408	7.400920
C	0.151783	12.898488	5.737349
C	1.310042	11.748514	7.976937
C	1.273906	13.477751	6.311403
C	1.859759	12.901293	7.431627
H	-0.247475	10.276916	7.831788
H	-0.300987	13.347976	4.858745
H	1.755779	11.298458	8.855840
H	1.692334	14.382085	5.886221
H	2.735826	13.352103	7.880846
TS3:

O 1.069448000 9.155957000 5.484309000
P -2.370929000 7.727204000 2.996675000
P 0.399299000 6.028278000 4.849066000
O 2.474552000 7.542784000 6.821995000
N 0.679752000 8.358390000 2.725050000
C -1.657879000 7.895718000 1.308085000
H -2.370929000 7.727204000 2.996675000
P 0.399299000 6.028278000 4.849066000
C -1.280373000 10.115009000 0.164693000
H -2.201752000 9.967029000 -0.388218000
C -0.799991000 11.960413000 -0.826411000
O 0.713830000 11.380567000 0.588330000
H 1.341518000 12.244672000 0.395542000
C 1.179450000 10.453407000 1.538061000
C 0.316798000 9.326453000 1.804355000
C 2.356620000 10.617254000 2.366800000
H 3.089571000 11.253385000 1.867118000
H 2.091183000 11.145779000 3.295401000
C 2.941706000 9.284404000 2.726349000
C 4.301537000 9.090577000 2.914046000
H 4.979668000 9.921701000 2.745327000
C 4.795956000 7.623920000 3.340210000
H 5.850810000 7.722066000 3.496221000
C 3.911296000 6.813130000 3.549616000
H 4.284688000 5.841737000 3.856815000
C 2.545144000 6.966502000 3.334866000
H 2.040724000 8.222879000 2.940122000
C 1.613725000 5.809475000 3.481932000
C 2.176743000 4.889087000 3.635866000
H 1.008042000 5.683948000 2.578775000
C 3.347166000 6.154023000 2.875476000
H 4.244988000 6.432763000 2.315327000
C 3.783966000 5.646763000 4.248153000
H 2.936537000 5.475217000 4.902078000
H 4.318406000 4.701046000 4.240831000
C 4.447032000 6.343779000 4.749975000
C 2.606549000 5.095496000 2.064739000
H 2.618565000 5.321366000 0.999910000
C 3.079011000 4.121343000 2.199870000
H 1.560524000 4.994661000 2.359190000
C 3.665132000 9.064234000 3.015496000
S68

H -3.055787000 9.973291000 3.043101000
C -4.545582000 9.032031000 4.256770000
H -5.277774000 8.225825000 4.196523000
H -5.106174000 9.964913000 4.337334000
H -3.984084000 9.941886000 1.865144000
C -4.537166000 9.119821000 1.768534000
H -3.970074000 9.290857000 0.856640000
H -5.248689000 9.964913000 1.637210000
C 1.541730000 6.199112000 6.310737000
H 2.174329000 7.020018000 5.956901000
C 0.882813000 6.665377000 7.601827000
H 0.251789000 7.542906000 7.464116000
H 1.653867000 6.928966000 8.328438000
H 0.266777000 5.890567000 8.056810000
C 2.437652000 4.996448000 6.571972000
H 1.883046000 4.163694000 7.004639000
H 3.214376000 5.270745000 7.288260000
H 2.938724000 4.636354000 5.674583000
C -0.458542000 4.383197000 4.982713000
H -1.280460000 4.487036000 4.274994000
C -1.073064000 4.175957000 6.360146000
H -0.317037000 3.932668000 7.106318000
H -1.776528000 3.342070000 6.328094000
H -1.619072000 5.051690000 6.711919000
C 0.349171000 3.171544000 4.540000000
H 0.650614000 3.237098000 3.495539000
H -0.267147000 2.276075000 4.642090000
H 1.244421000 3.017884000 5.140216000
C -1.778469000 7.801281000 5.923059000
Ru -0.679551000 8.103577000 4.500995000
N -0.815186000 10.284040000 4.397035000
H -0.808403000 10.612632000 3.437691000
H 0.423330000 9.949789000 5.045950000
C -1.729677000 11.118643000 5.169929000
H -1.643354000 12.153695000 4.813947000
H -2.782548000 10.845390000 5.030533000
C -1.424349000 11.099745000 6.643425000
C -0.188409000 11.545962000 7.117105000
C -2.359139000 10.648850000 7.569529000
C 0.110607000 11.518009000 8.470156000
C -2.067365000 10.620551000 8.927537000
C -0.829136000 11.049342000 9.381555000
H 0.546310000 11.916802000 6.409553000
H	-3.324427000	10.303434000	7.216232000
H	1.075431000	11.867593000	8.817049000
H	-2.807434000	10.257188000	9.630209000
H	-0.597016000	11.024953000	10.438995000
H	0.948235000	9.232631000	6.439910000

TS4:

P	-2.454343000	7.836564000	2.649420000
P	0.229859000	6.542721000	5.064913000
O	-2.815728000	8.296709000	6.547635000
N	0.655526000	8.526580000	2.593850000
C	-1.578791000	7.879781000	1.033940000
H	-0.891234000	7.030976000	1.070244000
H	-2.297077000	7.693652000	0.233425000
C	-0.809778000	9.130735000	0.783564000
C	-1.178789000	10.006069000	-0.230412000
H	-2.076156000	9.792478000	-0.802170000
C	-0.398142000	11.110778000	-0.545322000
H	-0.689345000	11.778737000	-1.345993000
C	0.776313000	11.327074000	0.163229000
H	1.411306000	12.171888000	-0.084577000
C	1.153408000	10.492100000	1.206605000
C	0.345479000	9.392873000	1.556773000
C	2.392571000	10.762146000	2.007881000
H	3.172651000	11.192839000	1.374533000
H	2.186029000	11.542728000	2.754217000
C	2.897515000	9.526681000	2.694768000
C	4.225165000	9.414986000	3.085044000
H	4.904658000	10.231105000	2.860502000
C	4.685770000	8.294239000	3.763361000
H	5.721205000	8.223195000	4.071039000
C	3.801124000	7.256975000	4.023802000
H	4.147833000	6.359969000	4.526132000
C	2.471583000	7.322632000	3.621872000
C	1.988174000	8.483482000	2.972159000
C	1.558900000	6.164364000	3.850322000
H	2.126905000	5.296431000	4.185904000
H	1.037138000	5.890853000	2.928094000
C	-3.349462000	6.217568000	2.568947000
H	-4.122062000	6.349004000	1.806915000
C	-4.034081000	5.907729000	3.891459000
H	-3.323063000	5.865632000	4.717530000
H	-4.539530000	4.941905000	3.840593000
H	-4.782528000	6.657468000	4.146791000

S69
C -1.034848000 12.043417000 8.070812000
C 1.359634000 11.911179000 7.926092000
C -0.215392000 12.238655000 8.642424000
H -2.127656000 11.367916000 6.358872000
H 2.137988000 11.116339000 6.086999000
H 0.297647000 12.646542000 9.641919000

Water:
O -1.120191000 0.000000000 -0.070599000
H -1.120191000 0.756126000 0.525818000
H -1.120191000 0.756126000 -0.525818000

1i:
N -0.828890000 -0.009859000 -0.893455000
H -0.823732000 0.983247000 -0.696437000
H -1.712384000 -0.188577000 -1.358742000
C -0.785088000 -0.740766000 0.364379000
H 0.106830000 -0.415442000 0.908442000
H -1.627405000 -0.188577000 -1.358742000
C -0.807360000 -3.058071000 1.309244000
C -0.502380000 -4.212910000 -1.184543000
C -0.737308000 -4.436043000 1.189939000
C -0.584325000 -5.021471000 -0.061746000
H -0.497470000 -2.204480000 -1.942013000
H -0.932961000 -2.607157000 2.288062000
H -0.386085000 -4.657766000 -2.165539000
H -0.804999000 -5.057134000 2.074878000
H -0.533171000 -6.098833000 -0.157929000

1-Phenylethane-1-imine:
N -1.020470000 -0.064366000 -0.894671000
H -0.166102000 0.469212000 -1.042203000
C -1.005499000 -0.609586000 0.256295000
H -0.169174000 -0.493421000 0.956389000
C -2.100081000 -1.442263000 0.756388000
C -3.243652000 -1.693251000 -0.007389000
C -2.000418000 -2.004120000 2.030845000
C -4.259005000 -2.484517000 0.495832000
C -3.018975000 -2.794955000 2.535274000
C -4.149369000 -3.037419000 1.768328000

S71
	X	Y	Z
H	-3.320276	-1.258714	-0.996477
H	-1.113217	-1.806295	2.622975
H	-5.142190	-2.675253	-0.100935
H	-2.931438	-3.223875	3.525409
H	-4.946881	-3.656895	2.159241

Hydrogen:

	X	Y	Z
H	0.053636	-0.004747	0.000000
H	0.795664	-0.070413	0.000000
References

1. Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D., Direct Hydrogenation of Amides to Alcohols and Amines under Mild Conditions. *J. Am. Chem. Soc.* 2010, 132, 16756-16758.

2. Gunanathan, C.; Milstein, D., Selective Synthesis of Primary Amines Directly from Alcohols and Ammonia. *Angew. Chem. Int. Ed.* 2008, 47, 8661-8664.

3. Dialer, L. O.; Selivanova, S. V.; Müller, C. J.; Müller, A.; Stellfeld, T.; Graham, K.; Dinkelbog, L. M.; Krämer, S. D.; Schibli, R.; Reimer, M.; Ametamey, S. M., Studies toward the Development of New Silicon-Containing Building Blocks for the Direct 18F-Labeling of Peptides. *J. Med. Chem.* 2013, 56, 7552-7563.

4. Gunanathan, C.; Gnanaprakasam, B.; Iron, M. A.; Shimon, L. J. W.; Milstein, D., “Long-Range” Metal–Ligand Cooperation in H₂ Activation and Ammonia-Promoted Hydride Transfer with a Ruthenium–Acridine Pincer Complex. *J. Am. Chem. Soc.* 2010, 132, 14763-14765.

5. Yu, H.; Ru, S.; Dai, G.; Zhai, Y.; Lin, H.; Han, S.; Wei, Y., An Efficient Iron(III)-Catalyzed Aerobic Oxidation of Aldehydes in Water for the Green Preparation of Carboxylic Acids. *Angew. Chem. Int. Ed.* 2017, 56, 3867-3871.

6. Shao, Z.; Wang, Y.; Liu, Y.; Wang, Q.; Fu, X.; Liu, Q., A general and efficient Mn-catalyzed acceptorless dehydrogenative coupling of alcohols with hydroxides into carboxylates. *Org. Chem. Front.* 2018, 5, 1248-1256.

7. Santilli, C.; Makarov, I. S.; Fristerup, P.; Madsen, R., Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols and Hydroxide Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex. *J. Org. Chem.* 2016, 81, 9931-9938.

8. Pradhan, D. R.; Pattanaik, S.; Kishore, J.; Gunanathan, C., Cobalt-Catalyzed Acceptorless Dehydrogenation of Alcohols to Carboxylate Salts and Hydrogen. *Org. Lett.* 2020, 22, 1852-1857.

9. An, G.; Ahn, H.; De Castro, K. A.; Rhee, H., Pd/C and NaBH₄ in Basic Aqueous Alcohol: An Efficient System for an Environmentally Benign Oxidation of Alcohols. *Synthesis 2010*, 2010, 477-485.

10. Hwang, K. C.; Sagadevan, A., One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light. *Science 2014*, 346, 1495-1498.

11. Lou, Y.; Hu, Y.; Lu, J.; Guan, F.; Gong, G.; Yin, Q.; Zhang, X., Dynamic Kinetic Asymmetric Reductive Amination: Synthesis of Chiral Primary β-Amino Lactams. *Angew. Chem. Int. Ed.* 2018, 57, 14193-14197.

12. Fuse, H.; Mitsunuma, H.; Kanai, M., Catalytic Acceptorless Dehydrogenation of Aliphatic Alcohols. *J. Am. Chem. Soc.* 2020, 142, 4493-4499.

13. Golime, G.; Bogonda, G.; Kim, H. Y.; Oh, K., Biomimetic Oxidative Deamination Catalysis via ortho-Naphthoquinone-Catalyzed Aerobic Oxidation Strategy. *ACS Catal.* 2018, 8, 4986-4990.

14. Tang, S.; Ben-David, Y.; Milstein, D., Oxidation of Alkenes by Water with H₂ Liberation. *J. Am. Chem. Soc.* 2020, 142, 5980-5984.

15. Sheldrick, G., SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallogr. A* 2015, 71, 3-8.

16. Sheldrick, G., Crystal structure refinement with SHELXL. *Acta Crystallogr. C* 2015, 71, 3-8.

17. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* 2009, 42, 339-341.

18. Zhao, Y.; Truhlar, D. G., A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. *J. Chem. Phys.* 2006, 125, 194101.

19. Weigend, F.; Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* 2005, 7, 3297-3305.

20. Weigend, F., Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* 2006, 8, 1057-1065.

21. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional
dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phy.* 2010, *132*, 154104.

22. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 2009, *113*, 6378-6396.

23. Gellrich, U.; Khusnutdinova, J. R.; Leitius, G. M.; Milstein, D., Mechanistic Investigations of the Catalytic Formation of Lactams from Amines and Water with Liberation of H$_2$. *J. Am. Chem. Soc.* 2015, *137*, 4851-4859.

24. Mardikian, N.; Head-Gordon, M., osB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. *J. Chem. Phy.* 2016, *144*, 214110.

25. Vydrov, O. A.; Voorhis, T. V., Nonlocal van der Waals density functional: The simpler the better. *J. Chem. Phy.* 2010, *133*, 244103.

26. Hujo, W.; Grimme, S., Performance of the van der Waals Density Functional VV10 and (hybrid)GGA Variants for Thermochemistry and Noncovalent Interactions. *J. Chem. Theory Comput.* 2011, *7*, 3866-3871.

27. Hellweg, A.; Häfftig, C.; Höfener, S.; Klopper, W., Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Ra. *Theor. Chem. Acc.* 2007, *117*, 587-597.

28. Cramer, C. J., *Essentials of Computational Chemistry: Theories and Models*. 2nd Edition. John Wiley & Sons Ltd: West Sussex, England, 2004.

29. Sparta, M.; Riplinger, C.; Neese, F., Mechanism of Olefin Asymmetric Hydrogenation Catalyzed by Iridium Phosphino-Oxazoline: A Pair Natural Orbital Coupled Cluster Study. *J. Chem. Theory Comput.* 2014, *10*, 1099-1108.

30. Hopmann, K. H., How Accurate is DFT for Iridium-Mediated Chemistry? *Organometalics* 2016, *35*, 3795-3807.

31. Gusev, D. G., Revised Mechanisms of the Catalytic Alcohol Dehydrogenation and Ester Reduction with the Milstein PNN Complex of Ruthenium. *Organometalics* 2020, *39*, 258-270.

32. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Frisch, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreken, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

33. Neese, F., Software update: the ORCA program system, version 4.0. *WIREs Comp. Mo. Sci.* 2018, *8*, e1327.