A reduction of the string bracket to the loop product

Katsuhiko Kuribayashi
Takahito Naito
Shun Wakatsuki
Toshihiro Yamaguchi
A reduction of the string bracket to the loop product

Katsuhiko Kuribayashi
Takahito Naito
Shun Wakatsuki
Toshihiro Yamaguchi

The negative cyclic homology for a differential graded algebra over the rational field has a quotient of the Hochschild homology as a direct summand if the S–action is trivial. With this fact, we show that the string bracket in the sense of Chas and Sullivan is reduced to the loop product followed by the BV operator on the loop homology provided the given manifold is BV-exact. The reduction is indeed derived from the equivalence between the BV-exactness and the triviality of the S–action. Moreover, it is proved that a Lie bracket on the loop cohomology of the classifying space of a connected compact Lie group possesses the same reduction. By using these results, we consider the nontriviality of string brackets. We also show that a simply connected space with positive weights is BV-exact. Furthermore, the higher BV-exactness is discussed featuring the cobar-type Eilenberg–Moore spectral sequence.

55P35, 55P50, 55T20

1. Introduction
2. String brackets described in terms of the Hochschild homology
3. Preliminaries
4. Proofs of assertions
5. The string brackets for formal spaces
6. Computation of the string bracket for a nonformal space
7. The cobar-type EMSS and r–BV-exactness
Appendix A. A non-BV-exact space
Appendix B. Connes’ B–map in the Gysin exact sequence
List of symbols
References
1 Introduction

Let LM be the free loop space, namely, the space of continuous maps from the circle S^1 to a space M with compact-open topology. The rotation on the domain space S^1 of LM induces an S^1–action on LM. Then we have the S^1–equivariant homology $H^*_{S^1}(LM) = H_*(ES^1 \times_{S^1} LM)$ for a space M. The string bracket is a Lie bracket on the S^1–equivariant homology of the free loop space LM of an orientable closed manifold M, which is introduced by Chas and Sullivan in [8]. The bracket is defined by using the loop product on the loop homology $H_*(LM)$ and maps in the Gysin exact sequence of the S^1–principal bundle

$$S^1 \to ES^1 \times LM \to ES^1 \times_{S^1} LM.$$

In particular, the Batalin–Vilkovisky (BV) identity of the BV operator on the loop homology induces the Jacobi identity for the string bracket; see the proof of [8, Theorem 6.1].

As for computations of the string brackets, Basu [2] and Félix, Thomas and Vigué-Poirrier [19] have determined explicitly the rational string bracket of the product of spheres. For a simply connected closed manifold M whose rational cohomology is generated by a single element, the rational string bracket is trivial though the rational loop product of M is highly nontrivial; see [2, Theorem 3.4] and [19, Section 5.2, Example 1]. On the other hand, a result due to Tabing [43] shows that the integral string bracket of the sphere is nontrivial.

The loop homology of the classifying space BG of a connected compact Lie group G in the sense of Chataur and Menichi [9] admits the BV algebra structure; see also [27, Theorem C.1]. Therefore, the same argument as that about manifolds allows us to deduce that the string cohomology of BG is endowed with a graded Lie algebra structure; see Proposition 2.3 and Chen, Eshmatov and Liu [11, Theorem 1.1].

The aim of this article is to investigate general methods for computing the rational string brackets for a manifold and the classifying space of a connected compact Lie group. The key strategy is to use Jones’ isomorphisms

$$H^*(LM; \mathbb{Q}) \cong HH_*(A_{PL}(M)) \quad \text{and} \quad H^*_{S^1}(LM; \mathbb{Q}) \cong HC^{-}_*(A_{PL}(M)),$$

where $A_{PL}(M)$ is the polynomial de Rham algebra over \mathbb{Q} of a simply connected space M and the right-hand sides of the isomorphisms denote the Hochschild homology and the negative cyclic homology of the complex, respectively; see Section 3 for more details. Furthermore, the decomposition theorem of the negative cyclic homology and the cyclic homology (additive K–theory in the sense of Feigin and Tsygan [20]) in Vigué-Poirrier [46] and Kuribayashi and Yamaguchi [29] is applied in the computation; see Theorem 2.15. It turns out that for a simply connected closed manifold M, the rational string bracket for M is reduced to the loop product of M followed by the BV operator provided the manifold possesses the exactness of the operator; see Definition 2.9.
Assertion 1.2 Let M be a simply connected closed manifold. Suppose further that M is BV-exact. Then the string bracket in the string homology $H^*_S(LM; \mathbb{Q})$ is regarded as the loop bracket in the loop homology $H_*(LM; \mathbb{Q})$ up to isomorphism, and hence the string bracket is determined by the Gerstenhaber bracket in the Hochschild cohomology of the polynomial de Rham algebra $A_{PL}(M)$ of M.

The detail is described in Corollary 2.16. In particular, the nilpotency of the string bracket is equivalent to that of the Gerstenhaber bracket. We stress that the Gerstenhaber algebra in Assertion 1.2 is considered with the Lie model for M without using the loop product; see Félix, Menichi and Thomas [16]. It is worth mentioning that the BV-exactness, which is introduced to consider the reduction of the string brackets, is a new homotopy invariant deeply related to other traditional rational homotopy invariants for spaces. We discuss and summarize this topic in Assertion 1.3 below and several paragraphs before the assertion.

Félix, Thomas and Vigué-Poirrier [19] have given an explicit description of the rational string bracket of M with its Sullivan model. On the other hand, our method for computing the string bracket is formulated with the loop product and the BV operator on the loop homology. Moreover, the BV-exactness is also described in terms of the loop homology. Therefore, it is possible to make a computation of the dual to the string bracket on the equivariant homology $H^*_S(LM; \mathbb{Q})$ by considering only behavior of the BV operator on the loop homology $H_*(LM; \mathbb{Q})$; see Remark 2.14 for more details. This is an advantage of our result.

In the case of the classifying space, the same strategy as above is applicable in the computation of the string bracket. In fact, for the classifying space BG of every compact connected Lie group G, the rational string bracket for BG is described as the BV operator followed by the dual loop coproduct; see Theorems 2.7(i) and 2.8(i). As for general properties of the string brackets, the theorems allow us to deduce that the Lie bracket on the string cohomology $H^*_S(LBG; \mathbb{Q})$ is highly nontrivial even if rank $G = 1$; see Proposition 5.2. Moreover, Propositions 5.3 and 5.4 assert that the loop homology endowed with the string bracket of a simply connected Lie group G is nilpotent if and only if rank $G = 1$.

The notion of a Gorenstein space due to Félix, Halperin and Thomas [14] enables us to deal with a manifold and the classifying space of a Lie group simultaneously. As a consequence, with the influence of string topology on Gorenstein spaces (see Félix and Thomas [18]), we have Theorems 2.7, 2.8 and 2.15 mentioned above.

We moreover propose a method for computing the string bracket of a non-BV-exact space M. To this end, we introduce a bracket on the cobar-type Eilenberg–Moore spectral sequence (EMSS) converging to $H^*_S(LM; \mathbb{Q})$ which is compatible with the string bracket of the target; see Theorem 7.7. Moreover, the EMSS carries a decomposition compatible with the Hodge decomposition of the target; see Remark 7.3. While there is no computational example obtained by applying the spectral sequence, in future work, it is expected that the EMSS is applicable in computing the string bracket explicitly; see Section 1.1 problems.

As described above, the BV-exactness is a key to computing string brackets on Gorenstein spaces. Moreover, it is worthwhile mentioning that the BV-exactness for a space M is equivalent to the triviality
of the S–action in Connes’ exact sequence; see Theorem 2.11. In fact, the new invariant is only described in terms of the Hochschild homology while the S–action is defined on the negative cyclic homology. A deep consideration due to Vigué-Poirrier in [45; 46] shows that the S–action on the negative cyclic homology is trivial if M is formal. Thus we see that the class of BV-exact spaces contains that of formal spaces; see Corollary 2.13.

With historical perspectives, we comment on relationships among notions of p–universality in Mimura, O’Neill and Toda [36], positive weights in Body and Douglas [4], the BV-exactness and its variants; see Definition 2.20 for positive weights.

By definition, simply connected spaces X and Y are said to be p–equivalent if there is a map $f : X \to Y$ which induces $H^*(X; \mathbb{Z}/p) \cong H^*(Y; \mathbb{Z}/p)$, where p is a prime or zero and $\mathbb{Z}/0 = \mathbb{Q}$. In [41], Serre raised the so-called symmetry question whether the existence of a p–equivalence $X \to Y$ implies the existence of a p–equivalence in the reverse direction $Y \to X$. However, in general, the p–equivalence does not satisfy the symmetricity.

Mimura, O’Neill and Toda [36] defined the notion of a p–universal space and proved that in the full subcategory of p–universal spaces of the category of simply connected spaces whose homotopy types are those of finite CW complexes, the p–equivalence is indeed an equivalence relation. We observe that the p–universality does not depend on p or 0; see [36, Proposition 2.9]. Afterward, Body and Douglas [4] defined the concept of positive weights for Sullivan minimal models. Scheerer’s result [40, Theorem 2], in turn, yields that the two notions of p–universality and positive weights are equivalent.

By using the EMSS mentioned above, we also introduce the notion of r–BV-exactness; see Definition 7.11. The r–BV-exactness for a simply connected space M is equivalent to the collapsing at the E_{r+1}–term of the EMSS for M; see Corollary 7.5. The decomposition of the EMSS allows us to deduce that the notion of BV-exactness is indeed equivalent to that of 1–BV-exactness; see Theorem 7.10. Thus r–BV-exactness is regarded as a higher version of BV-exactness. We summarize important relationships among invariants mentioned above.

Assertion 1.3 The following implications concerning rational homotopy invariants hold for a simply connected space X:

- X is formal \Rightarrow X is (1–)BV-exact \Rightarrow X is 2–BV-exact \Rightarrow X is r–BV-exact
- X admits positive weights $\Rightarrow X$ is 2–BV-exact
- The S–action on $\tilde{H}_S^*(LX; \mathbb{Q})$ is trivial \Rightarrow X is 2–BV-exact
- The r times S–action on $\tilde{H}_S^*(LX; \mathbb{Q})$ is trivial \Rightarrow X is r–BV-exact

Algebraic & Geometric Topology, Volume 24 (2024)
Here the reduced cohomology \(\tilde{H}^*_S(LX; \mathbb{Q}) \) is the cokernel of the map \(H^*_S(\ast; \mathbb{Q}) \to H^*_S(LX; \mathbb{Q}) \) induced by the trivial map, and the \(S \)-action on \(\tilde{H}^*_S(LX; \mathbb{Q}) \) is defined by the multiplication of the generator of \(\tilde{H}^*(BS^1; \mathbb{Q}) \) with the map induced by the projection \(q \) of the fibration

\[
LX \to ES^1 \times_{S^1} LX \xrightarrow{q} BS^1.
\]

Observe that the equivalence \((*)\) holds if \(X \) has the homotopy type of a finite CW complex.

As mentioned above, a simply connected space admitting positive weights is BV-exact. Proposition 6.1 gives an example of a nonformal BV-exact manifold. Moreover, we obtain an elliptic and non-BV-exact space in Appendix A.

This manuscript is organized as follows. In Section 2, our results are stated in detail. In Section 3, we recall the Hochschild homology, the cyclic homology and Connes’ exact sequences. Moreover, the Gorenstein space in the sense of Félix, Halperin and Thomas [14] is also recalled. Section 4 provides the proofs of our results described in Section 2. Section 5 discusses the nilpotency of the string homology of a Lie group and the classifying space of a Lie group. In Section 6, the BV-exactness for a nonformal manifold of dimension 11 is considered. Thanks to the reduction for computing the bracket described in Section 2, we determine explicitly the dual string bracket for the manifold; see Theorem 6.6. We believe that the result gives the first example which computes the string bracket of a non formal space. Section 7 considers the cobar-type Eilenberg–Moore spectral sequence (EMSS) for computing string brackets of non-BV-exact manifolds.

In Appendix A, we obtain an example of an elliptic and non-BV-exact space. Appendix B describes the Gysin exact sequence associated with the principal bundle \(S^1 \to ES^1 \times LM \xrightarrow{p} ES^1 \times_{S^1} LM \) for a simply connected space \(M \) in terms of Sullivan models; see Whitehead [52, (5.12) Theorem] for the exact sequence.

Finally, on page 2651 there is a list of symbols used repeatedly in this article.

1.1 Problems

We propose questions and problems on topics in this article.

(P1) If a space is BV-exact, then does it admit positive weights?

(P2) For each \(r > 1 \), is there an \(r \)-BV-exact space which is not \((r-1)\)-BV-exact?

(P3) Is a space \(r \)-BV-exact for some \(r < \infty \)?

(P4) By making use of the EMSS in Section 7, compute explicitly the string brackets of a non-BV-exact manifold.
2 String brackets described in terms of the Hochschild homology

While the underlying field in Proposition 2.3 below is of arbitrary characteristic, other results described in this section hold for a field of characteristic zero.

Let \(\mathbb{K} \) be a field and denote the singular homology and cohomology with coefficients in \(\mathbb{K} \) by \(H_*(-) \) and \(H^*(-) \), respectively. For an orientable closed manifold \(M \) of dimension \(d \), the Chas and Sullivan loop product \(\cdot \) on the shifted homology \(H_*^{S_1}(LM) := H_{*+d}(LM) \) is unital, associative and graded commutative; see [8]. Consider the principal bundle \(S^1 \to ES^1 \times LM \xrightarrow{p} ES^1 \times_{S^1} LM \). The bundle gives rise to the homology Gysin sequence

\[
\cdots \to H_{*+d}(LM) \xrightarrow{p_*} H_*^{S_1}(LM) \xrightarrow{c} H_{*+2}(LM) \xrightarrow{M} H_{*-d+1}(LM) \to \cdots.
\]

The string bracket \([\cdot, \cdot]\) on \(H_*^{S_1}(LM) \) is defined by

\[
[a, b] := (-1)^{|a|-d} p_*(M(a) \cdot M(b)) \quad \text{for } a, b \in H_*^{S_1}(LM).
\]

The bracket is of degree \(2 - d \) and gives a Lie algebra structure to the equivariant homology of \(LM \).

Let \(G \) be a connected compact Lie group of dimension \(d \). We write \(\mathbb{H}^*(LBG) := H^{*+d}(LBG) \) and \(\mathcal{C}^*(LBG) := H_{*+d+1}^{S_1}(LBG) \). With this notation, the cohomology Gysin sequence associated with the principal bundle \(S^1 \to ES^1 \times LBG \xrightarrow{p} ES^1 \times_{S^1} LBG \) induces an exact sequence of the form

\[
\cdots \to \mathcal{C}^{*+2}(LBG) \xrightarrow{S} \mathcal{C}^*(LBG) \xrightarrow{\pi := p^*} \mathbb{H}^{*+1}(LBG) \xrightarrow{\beta} \mathcal{C}^{*-1}(LBG) \to \cdots.
\]

Chataur and Menichi [9] have proved that there exists an associative and graded commutative multiplication \(\odot \) on \(\mathbb{H}^*(LBG) \) which is induced by the dual loop coproduct with an appropriate sign; see [27, Corollary B.3] and also Section 3. Then the dual string cobracket \([\cdot, \cdot]\) on \(\mathcal{C}^*(LBG) \) is defined by

\[
[x, y] := (-1)\|x\| \beta(\pi(x) \odot \pi(y)) \quad \text{for } x, y \in \mathcal{C}^*(LBG).
\]

Here the notation \(\|x\| \) means the degree of \(x \) as an element in the shifted cohomology.

Proposition 2.3 Let \(G \) be a connected compact Lie group of dimension \(d \) and \(\mathbb{K} \) a field of arbitrary characteristic. Then the dual string cobracket gives \(\mathcal{C}^*(LBG) \) a graded Lie algebra structure.

Remark 2.4 Proposition 2.3 is a particular case of [9, Theorem 65] and [11, Theorem 1.1]. The result [9, Theorem 65] shows the Lie algebra structure on a homological conformal field theory. The result [11, Theorem 1.1] describes a gravity algebra structure on the negative cyclic homology of a mixed complex; see [21] for a gravity algebra. We give an elementary proof of this proposition by taking care of sign convention in Section 4.

We relate the string brackets (ie the string bracket (2.1) and the dual string cobracket (2.2)) above to the Hochschild homology and the cyclic homology. Let \(\Omega \) be a connected differential graded algebra (DGA) over a field \(\mathbb{K} \) of arbitrary characteristic. A DGA \(\Omega \) is called a cochain algebra if the differential...
is of degree $+1$. If the differential of a DGA Ω decreases degree by one, we call the DGA Ω a *chain algebra*. Let Ω be a chain algebra, which is nonpositive; that is, $\Omega = \bigoplus_{i \leq 0} \Omega_i$. We recall Connes’ exact sequences [30, Theorem 2.2.1 and Proposition 5.1.5] for the Hochschild homology, cyclic homology and the negative cyclic homology of Ω, which are of the form

$$
\cdots \to \text{HH}_{n+1}(\Omega) \overset{I}{\to} \text{HC}_{n+1}(\Omega) \overset{S'}{\to} \text{HC}_{n-1}(\Omega) \overset{B_{\text{HH}}}{\to} \text{HH}_n(\Omega) \to \cdots.
$$

(2.5)

$$
\cdots \to \text{HC}_{n+2}^-\text{(}\Omega) \overset{S=\times u}{\to} \text{HC}_{n}^-\text{(}\Omega) \overset{\pi}{\to} \text{HH}_n(\Omega) \overset{\beta}{\to} \text{HC}_{n+1}^-\text{(}\Omega) \to \cdots,
$$

$$
\cdots \to \text{HC}_{n+1}^-\text{(}\Omega) \overset{\times u}{\to} \text{HC}_{n-1}^\text{per}\text{(}\Omega) \overset{\tilde{\pi}}{\to} \text{HC}_{n-1}(\Omega) \overset{B_{\text{HC}}}{\to} \text{HC}_n^-\text{(}\Omega) \to \cdots.
$$

Here S denotes the S–action and the maps B_{HH}, β and B_{HC} are induced by Connes’ B–map B; see Section 3.1 for more details. The reduced versions of the Hochschild homology and the negative cyclic homology of Ω are denoted by $\overline{\text{HH}}_*(\Omega)$ and $\overline{\text{HC}}_*^-\text{(}\Omega)$, respectively; see Section 3.1.

Remark 2.6 Following Jones [26], we define the Hochschild homology and the cyclic homology for a chain algebra but not a cochain algebra. For a cochain algebra Ω, we define a chain algebra $\Omega_\#_i$ by $(\Omega_\#_i)_{-i} = \Omega^i$ for i. Thus, for a nonnegative cochain algebra \mathcal{M}, we have a nonpositive chain algebra $\mathcal{M}_\#$. The Hochschild homology and the negative cyclic homology of \mathcal{M} are defined by $\overline{\text{HH}}_*\text{(}\mathcal{M}_\#)\text{ and }\overline{\text{HC}}_*^-\text{(}\mathcal{M}_\#)$, respectively. By abuse of notation, we may write $\overline{\text{HH}}_*\text{(}\mathcal{M})\text{ and }\overline{\text{HC}}_*^-\text{(}\mathcal{M})\text{ for }\overline{\text{HH}}_*\text{(}\mathcal{M}_\#)\text{ and }\overline{\text{HC}}_*^-\text{(}\mathcal{M}_\#)$, respectively.

The constructions of the string brackets above are generalized with *Gorenstein spaces*. An orientable manifold and the classifying space of a connected Lie group are typical examples of Gorenstein spaces; see Section 3 for the definition and fundamental properties of a Gorenstein space. For a Gorenstein space M of dimension d, we define a comultiplication \bullet^\vee and a multiplication \odot on the cohomology $H^*\text{(}\text{LM}; \mathbb{K})$, which are called the *dual loop product* and the *dual loop coproduct*, respectively; see Section 3. Therefore, by using the formulae (2.1) and (2.2) above, we have the string bracket and the dual string cobracket for a Gorenstein space M with $\bullet := (\bullet^\vee)\vee$ and \odot, respectively; see Theorems 2.7 and 2.8 below for more details. We do not know the string brackets satisfy the Jacobi identity for general Gorenstein spaces. However, as seen in Theorem 2.8, these constructions indeed give generalizations of brackets (2.1) on manifolds and (2.2) on classifying spaces.

The following theorem asserts that the dual to the string bracket in the sense of Chas and Sullivan for a manifold is the dual loop product followed by the BV operator. Moreover, we see that the string bracket in Proposition 2.3 is described as the BV operator followed by the dual loop coproduct.

In the rest of this section, we further assume that \mathbb{K} is a field of characteristic zero and a DGA Ω is locally finite; that is the homology $H_i(\Omega)$ is finite-dimensional for each $i \leq 0$.

Algebraic & Geometric Topology, Volume 24 (2024)
Theorem 2.7 Let M be a simply connected Gorenstein space and Ω the chain algebra $A_{PL}(M) \# \otimes_{\mathbb{Q}} \mathbb{K}$. Suppose that the S–action on the reduced negative cyclic homology $\tilde{HC}^{-*}(\Omega)$ is trivial. Then:

(i) There is a commutative diagram

\[(\tilde{HH}^{-*}(\Omega)/\text{Im} \Delta) \oplus \mathbb{K}[u] \xrightarrow{\beta} \tilde{HC}^{-*}(\Omega) \]

Here $\Delta = B_{HH} \circ I : \tilde{HH}^{-*}(\Omega) \to \tilde{HH}^{-*}(\Omega)$ is the “BV operator”, \circ is the product described in Section 3.3, Cokernel is defined by (projection on the cokernel, 0), and the horizontal isomorphism Ξ is defined by the composite

\[(\tilde{HH}^{-*}(\Omega)/\text{Im} \Delta) \oplus \mathbb{K}[u] \xrightarrow{I} \tilde{HC}^{-*}(\Omega) \oplus \mathbb{K}[u] \xrightarrow{B_{HC}} \tilde{HC}^{-*}(\Omega) \oplus \mathbb{K}[u] \xrightarrow{\text{sp}} \tilde{HC}^{-*}(\Omega),
\]

with the map sp in Remark 3.1 below.

(ii) There is a commutative diagram

\[\begin{array}{ccc}
\tilde{HH}^{-*}(\Omega) & \xrightarrow{\beta} & \tilde{HH}^{-*}(\Omega) \\
\text{Cokernel} & \xrightarrow{\circ} & \text{Cokernel}
\end{array}\]

Here $\Delta = B_{HH} \circ I$ is the BV operator of the BV algebra $\tilde{HH}^{-*}(\Omega)$, and the horizontal isomorphism Ξ is the one defined in (i).

We call the right-hand vertical composites in Theorem 2.7(i) and (ii) the dual string cobracket and the dual string bracket, respectively.

Note that the condition on the S–action can be replaced with BV-exactness; see Definition 2.9 and Remark 2.14 for details. It is also worth mentioning that the composite $B_{HH} \circ I$ is nothing but the cohomological Batalin–Vilkovisky (BV) operator Δ on the Hochschild homology of a DGA Ω if Ω is the polynomial de Rham algebra of a manifold or the classifying space of a connected Lie group. By abuse of terminology, we may call $B_{HH} \circ I$ the BV operator in general.
As mentioned above, under the isomorphisms Θ_1 and Θ_2 due to Jones [26, Theorem A], the loop cohomology $H^*(LM)$ and the string cohomology $H^*_{S^1}(LM)$ are identified with the Hochschild homology and the negative cyclic homology of $A_{PL}(M)$, respectively. Thus, we have:

Theorem 2.8
(i) The dual string cobracket for BG described in Proposition 2.3 coincides with that in Theorem 2.7(i) up to isomorphisms Θ_1 and Θ_2.

(ii) Let M be a simply connected closed manifold of dimension d. Then the dual $[\ , \]^\vee$ to the string bracket in the sense of Chas and Sullivan on M coincides with the dual string bracket in Theorem 2.7(ii) up to isomorphisms Θ_1 and Θ_2.

In view of [27, Theorem 4.1], Theorem 2.7(i) and Theorem 2.8(i) allow us to compute the dual string cobracket on $H^*_{S^1}(LBG;\mathbb{K})$ explicitly if \mathbb{K} is a field of characteristic zero; see Section 5. We observe that the classifying space BG is formal and then the S–action is trivial; see Corollary 2.13 below.

Moreover, by dualizing Theorem 2.7(ii) and Theorem 2.8(ii), we have Theorem 2.15, described below, for computing the string bracket of a manifold. It turns out that, in the rational case, the original string bracket can be formulated as the loop product followed by the BV operator on the loop homology. Before describing our main result concerning a manifold, we need a notion of the Batalin–Vilkovisky exactness.

Definition 2.9 A DGA Ω is **Batalin–Vilkovisky exact** (BV-exact) if $\text{Im} \widetilde{B} = \text{Ker} \widetilde{B}$, where the reduced operator $\widetilde{B} : \widehat{\mathbb{HH}}_*(\Omega) \to \widehat{\mathbb{HH}}_*(\Omega)$, is a restriction of Connes’ B–operator $B := \pi \circ \beta : \mathbb{H}_*(\Omega) \to \mathbb{H}_*(\Omega)$. We say that a simply connected space M is BV-exact if the polynomial de Rham algebra $A_{PL}(M)$ of M is.

Remark 2.10 Let M be a simply connected closed manifold. The result [17, Proposition 2] implies that the dual of the BV operator $\Delta' : H_*(LM) \to H_{*+1}(LM)$ is identified with the operator B in Definition 2.9 under the isomorphism Θ_1 mentioned above. Then, it follows that a manifold M is BV-exact if and only if $\text{Im} \widetilde{\Delta}' = \text{Ker} \widetilde{\Delta}'$ for the reduced BV operator $\widetilde{\Delta}' : \widehat{H}_*(LM) \to \widehat{H}_{*+1}(LM)$.

Theorem 2.11 A simply connected DGA Ω is BV-exact if and only if the reduced S–action on $\widehat{\mathbb{HC}}^*_-(\Omega)$ is trivial.

We refer the reader to Theorem 7.10 for a generalization of the result. An important example with trivial reduced S–action is given by the following proposition due to Vigué-Poirrier.

Proposition 2.12 [46, Proposition 5] If a simply connected DGA Ω is formal, then the reduced S–action on $\widehat{\mathbb{HC}}^*_-(\Omega)$ is trivial.

By combining Theorem 2.11 and Proposition 2.12, we have:

Corollary 2.13 If a simply connected DGA Ω is formal, then it is BV-exact. As a consequence, a simply connected manifold whose rational cohomology is generated by a single element and the classifying space of a compact connected Lie group are BV-exact.
We also have a generalization of the corollary; see Theorem 2.21.

Remark 2.14 It follows from Theorem 2.11 that the condition on the S–action in Theorems 2.7 and 2.8 may be replaced with the BV-exactness. This implies that the string brackets are determined exactly with the loop (co)products and the BV operator on the Hochschild homology of a DGA Ω without dealing with the cyclic homology of Ω itself provided Ω is BV-exact. There is an isomorphism

$$\tilde{\Delta} : \widetilde{HH}_*(\Omega)/\text{Im} \tilde{\Delta} = \widetilde{HH}_*(\Omega)/\text{Ker} \tilde{\Delta} \cong \text{Im} \tilde{\Delta} = \text{Ker} \tilde{\Delta}.$$

Dualizing Theorems 2.7(ii) and 2.8(ii), we have:

Theorem 2.15 Let M be a simply connected closed manifold and \mathbb{K} a field of characteristic zero. Assume further that M is BV-exact. Then there exists a commutative diagram

$$
\begin{array}{ccc}
H_*^{S^1}(LM; \mathbb{K}) \otimes \mathbb{K}^2 & \xrightarrow{\Phi \otimes \Phi} & (\text{Ker } \tilde{\Delta}' \oplus \mathbb{K}[u]) \otimes \mathbb{K}^2 \\
\downarrow \text{the string bracket} & & \downarrow \text{the loop product} \\
H_*^{S^1}(LM; \mathbb{K}) & \xrightarrow{\Phi} & (\text{Ker } \tilde{\Delta}' \oplus \mathbb{K}[u]) \leftarrow \tilde{\Delta}' \rightarrow H_*^{S^1}(LM; \mathbb{K})
\end{array}
$$

Here $\tilde{\Delta}' : \widetilde{H}_*(LM; \mathbb{K}) \to \widetilde{H}_{p+1}(LM; \mathbb{K})$ denotes the reduced BV operator on the homology, and Φ is the dual of the composite of the isomorphisms Θ_2 and Ξ described in Theorem 2.7.

The shifted homology $\mathbb{H}_*(LM) := H_{*+d}(LM)$ for an orientable closed manifold M of dimension d admits a BV algebra structure with the loop product \bullet and the BV operator Δ'; see [8]. It turns out that the homology is endowed with a Gerstenhaber algebra structure whose Lie bracket (loop bracket) $\{ , \}$ is given by

$$\{a, b\} = (-1)^{|a|}(\Delta'(a \bullet b) - (\Delta' a) \bullet b - (-1)^{|a|} a \bullet (\Delta'b)) \quad \text{for } a, b \in \mathbb{H}_*(LM).$$

If a and b are in the kernel of Δ', then $\{a, b\} = (-1)^{|a|}\Delta'(a \bullet b)$. Therefore, by virtue of Theorem 2.15, we have:

Corollary 2.16 Under the same assumption and notations as in Theorem 2.15, the rational string bracket of the loop space LM is regarded as a restriction of the loop bracket up to the isomorphism Φ.

Remark 2.17 (i) Proposition 2.12 implies that Theorems 2.7, 2.8 and 2.15 are applicable to a formal simply connected closed manifold.

(ii) It follows from [10, Theorem 8.5] that the loop homology of an orientable closed manifold admits a gravity algebra structure extending the Lie algebra structure on the string homology. Theorem 2.15 may enable us to determine a gravity algebra structure on the string homology of a BV-exact manifold M; see Example 5.6.
Remark 2.18 In general, the cyclic homology (additive K–theory [20]) for a DGA does not appear as the singular homology of any topological space because the homology is of \(\mathbb{Z}\)–grading. We stress that, however, the cyclic homology is used to investigate the string brackets for a manifold and the classifying space of a Lie group. In fact, the horizontal isomorphism \(\Xi\) in Theorem 2.7 factors through the cyclic homology of \(A_{PL}(M)\#\).

Remark 2.19 By using the description of the dual loop product \(Dlp\) in [28, Theorem 2.3] and Theorem 2.7, we may relate the dual of the string bracket to the cup product on \(H^*(LM; \mathbb{K})\) for a manifold \(M\). In fact, the isomorphism \(\Xi\) in Theorem 2.7 is a morphism of algebras if the \(S\)–action is trivial; see [29, Theorem 2.5]. We observe that the additive K–theory \(K^+ (\Omega) := HC_{*-1}(\Omega)\) for a chain algebra \(\Omega\) is a graded algebra with the Loday–Quillen \(*\)--product in [31]; see [29, Proposition 1.1].

We relate the BV-exactness to a more familiar rational homotopy invariant.

Definition 2.20 A simply connected space \(X\) admits positive weights if the Sullivan minimal model \((\wedge V, d)\) for \(X\) has a direct sum decomposition \(V = \bigoplus_{i>0} V(i)\) satisfying \(d(V(i)) \subset (\wedge V)_i\). A nonzero element in \(V(i)\) is said to have weight \(i\), and the weight on \(V\) is extended in a multiplicative way to \(\wedge V\). For \(x \in (\wedge V)_i\), its weight is written by \(\text{wt}(x) = i\).

Many spaces admit positive weights.

1. The Sullivan minimal model \(\mathcal{M}(X)\) of a formal space \(X\) is given by the bigraded model \((\Lambda V, d)\) of its cohomology algebra \(H^*(X; \mathbb{Q})\) [24, Section 3], whose lower degree is given by \(dV_p \subset (\Lambda V)_{p-1}\) for \(p > 0\) and \(dV_0 = 0\). Then the space \(X\) admits positive weights defined by \(\text{wt}(v) := |v| + \text{p}\) for \(v \in V_p\).

2. If a space \(X\) has a two stage Sullivan minimal model \(\mathcal{M}(X) = (\Lambda (V_0 \oplus V_1), d)\) with \(dV_0 = 0\) and \(dV_1 \subset \Lambda V_0\), then \(X\) admits positive weights defined by \(\text{wt}(v) := |v| + i\) for \(v \in V_i\). For example, a homogeneous space is such a space even if it is not formal; see also Section 6 for such a manifold.

3. It is known that smooth complex algebraic varieties admit positive weights coming from its mixed Hodge structure [38]. In the paper, the Sullivan minimal models are discussed over \(\mathbb{C}\), but admitting positive weights is reduced to that over \(\mathbb{Q}\); see [5, Theorem 2.7].

Theorem 2.21 A simply connected space \(X\) admitting positive weights is BV-exact.

A simply connected space does not necessarily admit positive weights. In fact, there exist a four cell complex [37, Section 4] and elliptic spaces [1, Section 5] not admitting positive weights; see also Appendix A. It is worth mentioning that every finite group is realized as the group of self-homotopy equivalences of a rationalized elliptic space which does not admit positive weights; see [13].
We recall Connes’ exact sequences (2.5). The projection of the cyclic complex onto itself gives rise to the map ∂, with a differential ∂.

The cyclic bar complex B is the complex $\bigoplus_{i=0}^{\infty} B_i$ of a DGA Ω over a field \mathbb{K} of arbitrary characteristic endowed with a differential d of degree -1. We call a DGA Ω nonpositive if $\Omega = \bigoplus_{i=0}^{\infty} \Omega_i$. In what follows, it is assumed that a DGA is nonpositively graded algebra with the properties above unless otherwise stated. The degree of a homogeneous element x of a graded algebra is denoted by $|x|$.

In this section we recall the definitions of the Hochschild chain complex and the cyclic bar complex in [22] and [23]. Let Ω be a connected commutative DGA over a field \mathbb{K} of arbitrary characteristic endowed with a differential d of degree -1. We call a DGA Ω nonpositive if $\Omega = \bigoplus_{i=0}^{\infty} \Omega_i$. In what follows, it is assumed that a DGA is nonpositively graded algebra with the properties above unless otherwise stated. The degree of a homogeneous element x of a graded algebra is denoted by $|x|$.

First we recall the Hochschild chain complex together with the Connes’ B–operator. Write $\widetilde{\Omega} = \Omega/\mathbb{K}$ and $C(\Omega) = \sum_{k=0}^{\infty} \Omega \otimes \widetilde{\Omega}^\otimes k$. We define \mathbb{K}–linear maps b, $B : C(\Omega) \to C(\Omega)$ of degrees -1 and 1 by

$$b(w_0, \ldots, w_k) = -\sum_{i=0}^{k} (-1)^{\epsilon_i+1} (w_0, \ldots, w_{i-1}, dw_i, w_{i+1}, \ldots, w_k)$$

$$B(w_0, \ldots, w_k) = \sum_{i=0}^{k} (-1)^{\epsilon_i+1}(\epsilon_k-\epsilon_{i-1}) (1, w_i, \ldots, w_k, w_0, \ldots, w_{i-1}).$$

Here $\deg(w_0, \ldots, w_k) = |w_0| + \cdots + |w_k| + k$ for $(w_0, \ldots, w_k) \in C(\Omega), \epsilon_i = |w_0| + \cdots + |w_i| - i$ and $|u| = -2$. Note that the formulae $bB + Bb = 0$ and $b^2 = B^2 = 0$ hold. The chain complex $(C(\Omega), b)$ is called the Hochschild chain complex. The Hochschild homology $HH_*(\Omega)$ and the reduced Hochschild homology $\widetilde{HH}_*(\Omega)$ are the homologies of the complexes $(C(\Omega), b)$ and $(C(\Omega)/\mathbb{K}, b)$, respectively.

The cyclic bar complex is the complex $(C(\Omega)[u^{-1}], b + uB)$, where b and B are regarded as $\mathbb{K}[u^{-1}]$–linear maps extending b and B on $C(\Omega)$. Its homology is denoted by $HC_*(\Omega)$ and called the cyclic homology. The negative cyclic homology $HC_*^-(\Omega)$, the reduced negative cyclic homology $\widetilde{HC}_*^-(\Omega)$ and the periodic cyclic homology $HC^\per_*(\Omega)$ of a DGA Ω are defined as the homologies of the complexes $(C(\Omega)[u], b + uB)$, $(C(\Omega)/\mathbb{K})[u], b + uB)$ and $(C(\Omega)[u, u^{-1}], b + uB)$, respectively. Since a DGA in our case has negative degree, the power series algebra $C(\Omega)[u]$ coincides with the polynomial algebra $C(\Omega)[u]$; similarly, $(C(\Omega)/\mathbb{K})[u] = (C(\Omega)/\mathbb{K})[u]$ and $C(\Omega)[u, u^{-1}] = C(\Omega)[u, u^{-1}]$.

We recall Connes’ exact sequences (2.5). The projection of the cyclic complex onto itself gives rise to the map $S’$. More precisely, we have $S’(\sum_{i\geq 0} x_i u^{-i}) = \sum_{i\geq 0} x_i x_{i+1} u^{-i}$. Observe that the cyclic homology $HC_*(\Omega)$ and the negative cyclic homology $HC_*^-(\Omega)$ are $\mathbb{K}[u]$–modules, where $|u| = -2$. The multiplication $S = xu : HC_{n+2}(\Omega) \to HC_n(\Omega)$ is called the S–action on the negative cyclic homology.
For the connecting homomorphism β in Connes’ exact sequence (2.5), we see that $\beta([a_0]) = [B(a_0)]$. Moreover, we have $B_{HH}(\{(\sum_{i \geq 0} x_i u^{-i})\}) = [B(x_0)]$ and $B_{HC}(\{(\sum_{i \geq 0} x_i u^{-i})\}) = [B(x_0)]$.

Remark 3.1 Under the same notation as above, the unit and augmentation of Ω yield a split exact sequence of $\mathbb{K}[u]$–modules of the form $0 \to C(\mathbb{K})[u] \to C(\Omega)[u] \to (C(\Omega)/\mathbb{K})[u] \to 0$. Then the splitting map $s': \overline{HC}^*_\ast(\Omega) \to HC^*_\ast(\Omega)$ gives rise to an isomorphism $sp: \overline{HC}^*_\ast(\Omega) \oplus \mathbb{K}[u] \cong HC^*_\ast(\Omega)$. We observe that $C(\mathbb{K})[u] = \mathbb{K}[u] = HC^*_\ast(\mathbb{K})$.

3.2 Sullivan minimal models

Let $\mathcal{M}(Z) = (\wedge V, d)$ be the Sullivan minimal model of a nilpotent CW complex Z of finite type [15]. It is a free \mathbb{Q}–commutative DGA with a \mathbb{Q}–graded vector space $V = \bigoplus_{i \geq 1} V^i$, where $\dim V^i < \infty$, and a decomposable differential in the sense that $d(V^i) \subset (\wedge^+ V \cdot \wedge^+ V)^{i+1}$ and $d \circ d = 0$. Here $\wedge^+ V$ denotes the ideal of $\wedge V$ generated by elements of positive degree. Observe that $\mathcal{M}(Z)$ determines the rational homotopy type of Z; that is, the spatial realization $\|\mathcal{M}(Z)\|$ is homotopy equivalent to Z_0, the rationalization of Z. In particular, we see that

$$V^n \cong \text{Hom}(\pi_n(Z), \mathbb{Q}) \quad \text{and} \quad H^*(\wedge V, d) \cong H^*(Z; \mathbb{Q}),$$

the second isomorphism being of graded algebras. A space X is said to be formal if there exists a quasi-isomorphism $\rho: \mathcal{M}(X) \to (H^*(X; \mathbb{Q}), 0)$ of DGA’s. We refer the reader to [15] for more details.

In what follows, let \mathbb{K} be a field of characteristic zero unless otherwise specifically mentioned. Let \mathcal{M} be a free DGA $(\wedge V, d)$ with $V = \bigoplus_{i \geq 1} V^i$ over \mathbb{K}. We denote by (\mathcal{L}, δ, s) the double complex defined in [7]. Namely, $\mathcal{L} = (\wedge(V \oplus \overline{V}))$, s is the unique derivation of degree -1 defined by $s(v) = \overline{v}$, $s(\overline{v}) = 0$ and δ is the unique derivation of degree $+1$ which satisfies $\delta|_{\mathcal{L} = \delta} = d$ and $\delta s + s \delta = 0$. Here \overline{V} is the suspension of V; that is, $\overline{V} = V^{n+1}$. By [7, Theorem 2.4(i)], we see that the map $\Theta: C(\mathcal{M}) \to \mathcal{L}$ defined by $\Theta(a_0, a_1, \ldots, a_p) = (1/p!)a_0s(a_1) \cdots s(a_p)$ is a chain map between the double complexes $(C(\mathcal{M}), b, B)$ and (\mathcal{L}, δ, s). Moreover, it follows from [7, Theorem 2.4(ii)–(iii)] that the map Θ induces isomorphisms $H(\Theta): \overline{HH}_\ast(\mathcal{M}) \cong H_\ast(C(\mathcal{M}), b) \cong H_\ast(\mathcal{L}, \delta)$ and $H(\Theta \otimes 1): \overline{HC}^\ast_{\ast}(\mathcal{M}) \cong H^\ast(C(\mathcal{M})[u], b + uB) \cong H^\ast(\mathcal{L}[u], \delta + u \cdot s)$.

Remark 3.2 As mentioned in Section 3.1, the connecting homomorphism β in Connes’ exact sequence (2.5) is given by $\beta([a_0]) = [B(a_0)]$. It follows that $\beta([a_0]) = [s(a_0)]$ up to the isomorphism $H(\Theta)$; see again [7, Theorem 2.4(i)].

Let X be a simply connected space of finite type and LX the free loop space of X. Then the Sullivan minimal model of LX over \mathbb{K}, $\mathcal{M}(LX)$, is given by (\mathcal{L}, δ) (see [48]), and the Sullivan minimal model of the orbit space $E S^1 \times S^1 LX$, $\mathcal{M}(E S^1 \times S^1 LX)$, is given by $(\mathcal{E}, D) := (\mathcal{L}[u], \delta + u \cdot s)$ (see [47, Theorem A]). Thus we have isomorphisms $\overline{HH}_\ast(\mathcal{M}(X)) \cong H^{\ast\ast}(LX; \mathbb{K})$ and $\overline{HC}^\ast_{\ast}(\mathcal{M}(X)) \cong H^{\ast\ast}(E S^1 \times S^1 LX; \mathbb{K})$ by composing Θ_1 and Θ_2 with $H(\Theta)$ and $H(\Theta \otimes 1)$, respectively.
3.3 Loop product and coproduct on Gorenstein spaces

In order to introduce uniformly the loop product due to Chas and Sullivan and the dual loop coproduct due to Chataur and Menichi, we recall the notion of a Gorenstein DGA introduced by Félix, Halperin and Thomas in [14].

Let A be an augmented DGA over \mathbb{K}. We call A a Gorenstein algebra of dimension d if
\[
\dim \text{Ext}_A^*(\mathbb{K}, A) = \begin{cases}
0 & \text{if } \ast \neq d, \\
1 & \text{if } \ast = d.
\end{cases}
\]

Here Ext is defined by using semifree resolutions; see [14, Appendix] for details. A path-connected space M is called a Gorenstein space of dimension d if the polynomial de Rham algebra $A_{\text{PL}}(M)$ is a Gorenstein algebra of dimension d.

The result [14, Theorem 3.1] implies that a simply connected Poincaré duality space, for example a simply connected closed orientable manifold of dimension d, is a Gorenstein space of dimension d. It follows from [14, Proposition 3.2] that the classifying space BG of a connected compact Lie group G is also a Gorenstein space of dimension $-\dim G$. The following result due to Félix and Thomas is a key to defining the loop product and the loop coproduct on the loop homology of a Gorenstein space.

Theorem 3.3 [20, Theorem 12] Let M be a simply connected Gorenstein space of dimension d whose cohomology with coefficients in \mathbb{Q} is of finite type. Then, for any integer k,
\[
\text{Ext}^k_{A_{\text{PL}}(M^n)}(A_{\text{PL}}(M), A_{\text{PL}}(M^n)) \cong H^{k-(n-1)d}(M; \mathbb{Q}),
\]
where $A_{\text{PL}}(M)$ is considered an $A_{\text{PL}}(M^n)$–module via the diagonal map $\text{Diag}: M \to M^n$.

For a Gorenstein space M as in Theorem 3.3, let $D(\text{Mod–}A_{\text{PL}}(M^n))$ be the derived category of right $A_{\text{PL}}(M^n)$–modules. In the category, we define $\text{Diag}^!$ by the map which corresponds to a generator of the one-dimensional vector space $H^0(M; \mathbb{Q})$ under the isomorphism $\text{Ext}^{(n-1)d}_{A_{\text{PL}}(M^n)}(A_{\text{PL}}(M), A_{\text{PL}}(M^n)) \cong H^0(M)$. Moreover, for a homotopy fiber square
\[
\begin{array}{ccc}
E' & \xrightarrow{q} & E \\
\downarrow{p'} & & \downarrow{p} \\
M & \xrightarrow{\text{Diag}} & M^n
\end{array}
\]
there exists a unique map q' in $\text{Ext}^{(n-1)d}_{A_{\text{PL}}(E')}(A_{\text{PL}}(E'), A_{\text{PL}}(E))$ which fits into the commutative diagram in $D(\text{Mod–}A_{\text{PL}}(M^n))$
\[
\begin{array}{ccc}
A_{\text{PL}}^*(E') & \xrightarrow{q'^*} & A_{\text{PL}}^*(n-1)d(E) \\
(p')^* & & \uparrow{p^*} \\
A_{\text{PL}}^*(M) & \xrightarrow{\text{Diag}'} & A_{\text{PL}}^*(n-1)d(M^n)
\end{array}
\]

The result follows from the same proof as that of [18, Theorems 1 and 2].
We recall the definition of the loop product on a simply connected Gorenstein space M. Consider the diagram

\[
\begin{array}{ccc}
LM & \xrightarrow{\text{Comp}} & LM \times_M LM \\
\downarrow & & \downarrow q \\
M & \xrightarrow{\text{Diag}} & M \times M
\end{array}
\]

(3.4)

where the right-hand square is the pull-back of the evaluation map $(\text{ev}_0, \text{ev}_0)$ defined by $\text{ev}_0(\gamma) = \gamma(0)$ along the diagonal map Diag, and Comp denotes the concatenation of loops. By definition, the composite

\[
q^! \circ (\text{Comp}^*) : A_{\text{PL}}(LM) \to A_{\text{PL}}(LM \times_M LM) \to A_{\text{PL}}(LM \times LM)
\]

induces Dlp, the dual to the loop product on $H^*(LM; \mathbb{Q})$; see [18, Introduction]. We define a product \bullet on $H^*(LM)$, which is called the loop product, by

\[
a \bullet b = (-1)^{d(|a|+d)}((\text{Dlp})^\vee)(a \otimes b)
\]

for a and $b \in H^*(LM)$; see [12, Proposition 4] and [44, Definition 3.2].

In order to recall the loop coproduct for a Gorenstein space M, we consider the commutative diagram

\[
\begin{array}{ccc}
LM \times LM & \xleftarrow{q} & LM \times_M LM \\
\downarrow & & \downarrow \text{Comp} \\
M & \xrightarrow{\text{Diag}} & M \times M
\end{array}
\]

where $l : LM \to M \times M$ is a map defined by $l(\gamma) = (\gamma(0), \gamma(\frac{1}{2}))$. By definition, the composite

\[
\text{Comp}^! \circ q^* : A_{\text{PL}}(LM \times LM) \to A_{\text{PL}}(LM \times_M LM) \to A_{\text{PL}}(LM)
\]

induces the dual to the loop coproduct Dlcop on $H^*(LM)$. We define a product \circ on the shifted cohomology $\mathbb{H}^*(LM) = H^{*-d}(LM)$, called the dual loop coproduct, by

\[
a \circ b = (-1)^{d(-|a|)} \text{Dlcop}(a \otimes b) \quad \text{for} \ a \otimes b \in H^*(LM) \otimes H^*(LM).
\]

Remark 3.5 The product \bullet on $\mathbb{H}^*(LM)$ is associative and graded commutative if M is a simply connected Poincaré duality space; see [28, Proposition 2.7]. So is the product \circ on $\mathbb{H}^*(LM)$ if M is the classifying space BG of a connected Lie group G; see [9] and [27, Theorem B.1]. Moreover, so are both of \bullet and \circ if M is a Gorenstein space with $\dim(\bigoplus_n \pi_n(M) \otimes \mathbb{Q}) < \infty$; see [39, Theorem 1.1] and [50, Theorem 1.5].

Remark 3.6 By the same fashion as above, a Gorenstein space is defined on an arbitrary field \mathbb{K}. Then Theorem 3.3 remains true after replacing $A_{\text{PL}}(X)$ with the singular cochain algebra of X with coefficients in \mathbb{K}. That is the original assertion in [18]. Moreover, the constructions of the loop product and the loop coproduct are applicable to the Gorenstein space M; that is, those products are defined on the singular cohomology of LM with coefficient in \mathbb{K}; see [18]. However, we only use such an algebra defined on a field of characteristic zero for our purpose.
We conclude this section with the definition of a BV algebra. In the next section, the notion plays an important role in defining the dual string cobracket of the classifying space of a Lie group.

Definition 3.7 A graded algebra (\mathbb{H}^*, \odot) equipped with an operator Δ on \mathbb{H}^* of degree -1 is a BV algebra if $\Delta \circ \Delta = 0$ and the Batalin–Vilkovisky identity holds; that is, for any elements a, b and c in \mathbb{H}^*,

$$
\Delta(a \odot b \odot c) = \Delta(a \odot b) \odot c + (-1)^{\|a\|} a \odot \Delta(b \odot c) + (-1)^{\|b\|+\|a\|} b \odot \Delta(a \odot c) - \Delta(a) \odot b \odot c - (-1)^{\|a\|+\|b\|} a \odot b \odot \Delta(c),
$$

where $\|a\|$ stands for the degree of an element a in \mathbb{H}^*.

4 Proofs of assertions

The strategy of the proof of Proposition 2.3 is exactly that of [8, Theorem 6.2]. In order to make the sign computation more clear in our setting, we give the proof.

Proof of Proposition 2.3 It is readily seen that the dual string cobracket satisfies skew-symmetry since the multiplication m is commutative. Indeed, we have

$$
[y, x] = (-1)^{\|y\|} \beta(\pi(y) \odot \pi(x)) = (-1)^{\|x\|+\|y\|+1} \beta(\pi(x) \odot \pi(y)) = -(1)^{\|x\|\|y\|}[x, y].
$$

Let $\Delta : \mathbb{H}^*(LBG) \to \mathbb{H}^{*-1}(LBG)$ be the cohomological BV operator stated in [27, Appendix E]. Observe that Δ coincides with the composite $\pi \beta$. It follows from [27, Corollary C.3] that the triple $(\mathbb{H}^*(LBG), \odot, \Delta)$ is a BV algebra; hence the bracket

$$\{a, b\} := (-1)^{\|a\|} \Delta(a \odot b) - (-1)^{\|a\|} \Delta(a) \odot b - a \odot \Delta(b)
$$

satisfies the Poisson identity

$$
\{a, b \odot c\} = \{a, b\} \odot c + (-1)^{\|a\|-1} \|b\| b \odot \{a, c\}. \tag{4.1}
$$

In the case where $a = \pi(x), b = \pi(y)$ and $c = \pi(z)$, applying β to (4.1) we see that $\beta\{\pi(x), \pi(y) \odot \pi(z)\}$ coincides with

$$
\beta(\{\pi(x), \pi(y)\} \odot \pi(z) + (-1)^{\|\pi(x)\|\|\pi(y)\|} \pi(y) \odot \{\pi(x), \pi(z)\}).
$$

Since $\Delta \pi = 0$ and $\beta \Delta = 0$, it follows that

$$
\{\pi(x), \pi(y)\} = (-1)^{\|x\|-1} \Delta(\pi(x) \odot \pi(y)) = -\pi[x, y], \\
\beta\{\pi(x), \pi(y) \odot \pi(z)\} = -(1)^{\|x\|\|y\|} \beta(\pi(x) \odot \pi[y, z]) = -(1)^{\|x\|+\|y\|}[x, y, z].
$$

Therefore, by combining the formulae, we see that

$$
-(1)^{\|x\|+\|y\|}[x, y, z] = -\beta(\pi[x, y] \odot \pi(z)) - (1)^{\|\pi(x)\|\|\pi(y)\|} \beta(\pi(y) \odot \pi[x, z])
$$

$$
= -(1)^{\|x\|+\|y\|}[x, y, z] - (1)^{\|\pi(x)\|\|\pi(y)\|+\|y\|}[y, [x, z]]
$$

$$
= -(1)^{\|x\|+\|y\|+[\|x\|+\|y\|\|z\|]}[z, [x, y]] + (1)^{\|x\|\|y\|\|z\|}[y, [z, x]].
$$
Multiplying the both sides of the above equality by \((-1)^{\|x\|+\|y\|+1+\|x\|\|z\|}\), we have
\[
(-1)^{\|x\|\|z\|}[x, [y, z]] = -(-1)^{\|y\|\|z\|}[z, [x, y]] - (-1)^{\|x\|\|y\|}[y, [z, x]],
\]
which is indeed the Jacobi identity. This completes the proof. \(\Box\)

Proof of Theorem 2.7 We will first prove (i). Recall the homomorphisms \(B_{\text{HC}} : \text{HC}_{n-1}(\Omega) \to \text{HC}_n(\Omega)\) and \(B_{\text{HH}} : \text{HC}_{n-1}(\Omega) \to \text{HH}_n(\Omega)\) in Connes’ exact sequence in Section 3, which are defined by \(B_{\text{HC}}(\sum_{i \geq 0} x_i u^{-i}) = B x_0\) and \(B_{\text{HH}}(\sum_{i \geq 0} x_i u^{-i}) = B x_0\). The result [29, Theorem 2.5(i)] implies that \(B\) is an isomorphism. By assumption, the \(S\)-action is trivial. Then, by [29, Theorems 2.5(ii)–(iii)], the map \(I\) is an isomorphism. By a direct calculation, we see that \(\pi \circ \Xi = B_{\text{HH}} \circ I\) and \(\Xi \circ \text{Cokernel} = \beta\). The same consideration as above enables us to obtain the result (ii). \(\Box\)

Proof of Theorem 2.8 The assertions (i) and (ii) follow from [26, Theorem A]; see also [10, Theorem 8.3]. In fact, the dual of the homology Gysin exact sequence for the fibration \(S^1 \to ES^1 \times LM \to ES^1 \times S^1 \times LM\) is identified with the Connes exact sequence under isomorphisms \(\Theta_1\) and \(\Theta_2\) mentioned in the sentence before Theorem 2.8; see [6, Theorem B] and Appendix B for a description of the Gysin sequence in terms of rational models. With those isomorphisms, we compare the dual to string bracket for a manifold and the dual string cobracket for \(BG\) with the dual string bracket and the dual string cobracket in Theorem 2.7, respectively.

To this end, we recall that a simply connected closed manifold \(M\) of dimension \(d\) is a Gorenstein space of dimension \(d\). Moreover, the classifying space \(BG\) of a connected compact Lie group \(G\) is a Gorenstein space of dimension \(-\dim G\); see [14]. Thus the result [18, Theorem A] and observations in [18, pages 419–420] yield that the dual loop product \(*^\vee\) for the manifold \(M\) and the dual loop coproduct \(\circ\) for the classifying space \(BG\) are nothing but the dual to the loop product and the dual to the loop coproduct, respectively. It turns out that the bracket on \(H_*(LM; \mathbb{K})\) for the manifold \(M\) and the dual string cobracket on \(H^*(LBG; \mathbb{K})\) coincide with the original string brackets (2.1) and (2.2), respectively. Thus, we have the results. \(\Box\)

Proof of Theorem 2.15 Let \(\Omega\) be the DGA \(\Omega = A_{\text{PL}}(M)_{\#} \otimes_{\mathbb{Q}} \mathbb{K}\). We observe that the dual of the BV operator \(\Delta' : H_*(LM; \mathbb{K}) \to H_*(LM; \mathbb{K})\) on the homology is regarded as the BV operator \(\Delta : \text{HH}_*(\Omega) \to \text{HH}_*(\Omega)\) in Theorem 2.7; see Remark 2.10.

Let \(\widehat{\text{HH}}_*\) denote the reduced Hochschild homology \(\widehat{\text{HH}}_*(\Omega)\). Dualizing the reduced BV operator \(\widehat{\Delta}' : \widehat{H}_*(LM) \to \widehat{H}_*(LM)\), we have an exact sequence (*):
\[
\widehat{\text{HH}}_* \xrightarrow{\widehat{\Delta}'^\vee} \widehat{\text{HH}}_* \xrightarrow{\pi} \widehat{\text{HH}}_*/\text{Im} \widehat{\Delta}'^\vee \to 0.
\]
Observe that \(\widehat{\Delta}'^\vee = B_{\text{HH}} \circ I = \Delta\). By considering the dual exact sequence of (*), we see that \(\pi\) gives rise to the isomorphism \(\pi^\vee : \text{Ker} \widehat{\Delta}' = \text{Ker}(\Delta^\vee) \xrightarrow{\cong} (\text{HH}_*/\text{Im} \Delta)^\vee\). Theorem 2.8(ii) yields the result. \(\Box\)
In the rest of the section, we prove Theorems 2.11 and 2.21. First we prove the “if” part of Theorem 2.11.

Proof of the “if” part of Theorem 2.11 Let Ω be a simply connected DGA such that the reduced S–action on $\widetilde{HC}_*(\Omega)$ is trivial. Consider the reduced version of Connes’ exact sequence

$$\cdots \to \widetilde{HC}_{n+2}(\Omega) \xrightarrow{S=0} \widetilde{HC}_n(\Omega) \xrightarrow{\pi} \widetilde{HH}_n(\Omega) \xrightarrow{\beta} \widetilde{HC}_{n+1}(\Omega) \to \cdots,$$

which splits into a short exact sequence

$$0 \to \widetilde{HC}_n(\Omega) \xrightarrow{\pi} \widetilde{HH}_n(\Omega) \xrightarrow{\beta} \widetilde{HC}_{n+1}(\Omega) \to 0.$$

By definition, there is a decomposition $\widetilde{B} = \pi \circ \beta : \widetilde{HH}_*(\Omega) \to \widetilde{HC}_*(\Omega)$ and hence the above short exact sequence implies $\text{Ker} \widetilde{B} = \text{Ker} \beta = \text{Im} \pi = \text{Im} \widetilde{B}$. \hfill \Box

In order to prove the “only if” part of Theorem 2.11, we recall the notion of the proper exactness of a sequence of complexes defined in [42].

Definition 4.2 Let $M_1 \to M_2 \to M_3$ be a sequence of complexes and chain maps (of arbitrary degrees).

(i) The sequence is H–exact at M_2 if the sequence of cohomology $H(M_1) \to H(M_2) \to H(M_3)$ is exact.

(ii) The sequence is Z–exact at M_2 if the sequence of modules of cycles $Z(M_1) \to Z(M_2) \to Z(M_3)$ is exact.

(iii) The sequence is **proper exact** (at M_2) if the sequence is exact (as a sequence of underlying graded modules), H–exact and Z–exact [42].

(iv) The sequence is **weakly proper exact** at M_2 if the sequence is exact and H–exact.

The following lemma is useful to prove the proper exactness from the weak proper exactness of a given sequence.

Lemma 4.3 Let $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \xrightarrow{f_3} M_4$ be a sequence of complexes which is proper exact at M_2 and weakly proper exact at M_1 and M_3. Then it is proper exact also at M_3.

Proof For simplicity, we assume that the degrees of the chain maps are zero. We show that $\text{Ker} Z(f_3) \subset \text{Im} Z(f_2)$. For any x_3 in $\text{Ker} Z(f_3)$, there exists an element $y_2 \in M_2$ such that $f_2(y_2) = x_3$ by the exactness at M_3. By the proper exactness at M_2, we see that $dy_2 = f_1(y_1)$ for some $y_1 \in Z(M_1)$. Since $H(f_1)[y_1] = [dy_2] = 0$, it follows from the H–exactness at M_1 that $y_1 - f_0 y_0 = dz$ for some $[y_0] \in H(M_0)$ and $z \in M_1$. It is readily seen that $f_2(y_2 - f_1 z) = f_2 y_2 = x_3$ and $d(y_2 - f_1 z) = 0$. We have the result. \hfill \Box

It is proved that the weak proper exactness for a long sequence yields the proper exactness.
Proposition 4.4 A weakly proper exact sequence $0 \rightarrow M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \cdots$ starting from 0 is always proper exact.

Proof Since the sequence $0 \rightarrow 0 \rightarrow 0 \rightarrow M_0 \rightarrow M_1$ is weakly proper exact at M_0 and proper exact at 0, it follows from Lemma 4.3 that the sequence is proper exact at M_0. Similarly, the sequence $0 \rightarrow 0 \rightarrow M_0 \rightarrow M_1 \rightarrow M_2$ gives proper exactness at M_1. By repeating this argument, we can prove the proper exactness at M_n for all n.

Remark 4.5 By the same argument as in the proof above, we can also prove the dual of Proposition 4.4, which asserts that a weakly proper exact sequence ending with 0 is always proper exact.

Next we give a key lemma for proving Theorem 2.11.

Lemma 4.6 Let $M_0 \rightarrow M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3$ be a proper exact sequence. Then one has

$$\text{Im } d \cap \text{Ker } f_2 = d(\text{Ker } f_2).$$

Proof The Z–exactness at M_2 and the H–exactness at M_2 give the result. The details are left to the reader.

Note that the consequence in Lemma 4.6 is equivalent to the exactness of the sequence of modules of coboundaries.

Now we begin the proof of the “only if” part of Theorem 2.11. Let $(\wedge V, d)$ be a Sullivan model of the DGA Ω with $V = V^{\geq 2}$. Define $(\widehat{\mathcal{L}}, \delta) = (\wedge^+(V \oplus \overline{V}), \delta)$ and $(\widehat{\mathcal{E}}, D) = (\wedge u \otimes \overline{\mathcal{L}}, D)$; see Section 3. Then $(\widehat{\mathcal{L}}, \delta)$ and $(\widehat{\mathcal{E}}, D)$ are chain models for the reduced Hochschild homology and the reduced negative cyclic homology of Ω, respectively. Let $\tilde{s}: \widehat{\mathcal{E}} \rightarrow \widehat{\mathcal{L}}$ be the derivation defined by $\tilde{s}(v) = \overline{v}$ and $\tilde{s}(\overline{v}) = 0$ for $v \in V$. Now we have a direct sum decomposition $(\widehat{\mathcal{L}}, \delta) = \bigoplus_n (\widehat{\mathcal{E}}(n), \delta)$ of complexes, where $\widehat{\mathcal{E}}(n) = \widehat{\mathcal{L}} \cap (\wedge V \otimes \wedge^n \overline{V})$. Then \tilde{s} decomposes into a sequence $0 \rightarrow \widehat{\mathcal{E}}(0) \rightarrow \widehat{\mathcal{E}}(1) \rightarrow \widehat{\mathcal{E}}(2) \rightarrow \cdots$ of complexes.

Lemma 4.7 The sequence $0 \rightarrow \widehat{\mathcal{E}}(0) \rightarrow \widehat{\mathcal{E}}(1) \rightarrow \widehat{\mathcal{E}}(2) \rightarrow \cdots$ is exact; that is, $\text{Ker } \tilde{s} = \text{Im } \tilde{s}$ in $\widehat{\mathcal{L}}$.

Proof Take a basis $\{v_\lambda\}_\lambda$ of V. Then we have $(\mathcal{L}, s) \cong \bigotimes_\lambda (\wedge (v_\lambda, \overline{v}_\lambda), s)$ and hence $H(\mathcal{L}, s) \cong \mathbb{Q}$, which is equivalent to $H(\widehat{\mathcal{L}}, \tilde{s}) \cong 0$.

Remark 4.8 The operator $\tilde{B}: \widehat{HH}_*(\Omega) \rightarrow \widehat{HH}_*(\Omega)$ is nothing but the homomorphism $H(\tilde{s})$ up to the isomorphism $H(\Theta)$. This follows from the definition of the map B in Section 3 and Remark 3.2.

Now we recall a result of Vigué-Poirrier which gives a description of the cyclic homology in terms of $\widehat{\mathcal{L}}$. Here we give a proof for the convenience of the reader.
Lemma 4.9 [45, Lemma 2] The canonical inclusion \(\Phi : (\text{Ker} \tilde{s}, d) \to (\tilde{\mathcal{E}}, D) \) is a quasi-isomorphism.

Proof Define bounded double complexes \(\{K^p,q\} \) and \(\{\tilde{\mathcal{E}}^{p,q}\} \) by \(K^{p,0} = (\text{Ker} \tilde{s})^p \) and \(K^{p,q} = 0 \) for \(q \neq 0 \), and \(\tilde{\mathcal{E}}^{p,q} = \wedge^q u \otimes \tilde{\mathcal{E}}^{p-q} \). Then their total chain complexes are \((\text{Ker} \tilde{s}, \delta)\) and \((\tilde{\mathcal{E}}, D)\), respectively, and the inclusion \(\Phi \) gives rise to a morphism of double complexes. Now consider the filtration with respect to \(p \). By Lemma 4.7, we have \(E_1^{p,0} \Phi = E_1^{p,0} \tilde{s} = (\text{Ker} \tilde{s})^p \) and \(E_1^{p,q} \Phi = E_1^{p,q} \tilde{s} = 0 \) for \(q \neq 0 \). Hence \(E_1 \Phi \) is an isomorphism and so is \(H\Phi \) by the convergence of the spectral sequences. \(\square \)

Now we describe the \(S \)-action \(S = u \times (\mathbb{R}, \cdot) : H(\tilde{\mathcal{E}}) \to H(\tilde{\mathcal{E}}) \) in terms of \(\text{Ker} \tilde{s} \). By Lemma 4.7, we have an exact sequence \(0 \to \text{Ker} \tilde{s} \to \tilde{\mathcal{E}} \overset{\tilde{s}}{\to} \text{Ker} \tilde{s} \to 0 \), and its connecting homomorphism \(c : H(\text{Ker} \tilde{s}) \to H(\text{Ker} \tilde{s}) \) is given by \(c(\tilde{\mathcal{E}}) = [\delta \alpha] \). Note that any element in \(H(\text{Ker} \tilde{s}) \) can be written as \([\tilde{\mathcal{E}}] \) for some \(\alpha \in \tilde{\mathcal{E}} \) with \(\delta \tilde{\alpha} = 0 \), since \(\text{Ker} \tilde{s} = \text{Im} \tilde{s} \) by Lemma 4.7. By a straightforward computation, we have:

Lemma 4.10 The map \(c \) coincides with \(S \) through \(H\Phi \) up to sign, ie \(S \circ H\Phi = -H\Phi \circ c \).

We are ready to prove the “only if” part of Theorem 2.11.

Proof of the “only if” part of Theorem 2.11 By Lemmas 4.9 and 4.10, in order to prove the assertion it suffices to show that the connecting homomorphism \(c \) is trivial. To this end, we show that \([\delta \alpha] = 0 \) in \(H(\text{Ker} \tilde{s}) \) for any \(\alpha \in \tilde{\mathcal{E}} \) with \(\delta \tilde{\alpha} = 0 \); see the argument before Lemma 4.10. Remark 4.8 yields that the BV-exactness of the DGA \(\Omega \) is equivalent to the BV-exactness by Theorem 2.11.

Moreover, Lemma 4.6 implies that \(\text{Ker} \tilde{s} \cap \text{Im} \delta = \delta(\text{Ker} \tilde{s}) \). Therefore, it follows that \(\delta \alpha \in \text{Ker} \tilde{s} \cap \text{Im} \delta = \delta(\text{Ker} \tilde{s}) \) for any \(\alpha \in \tilde{\mathcal{E}} \) with \(\delta \tilde{\alpha} = 0 \). We have the result. \(\square \)

We conclude this section proving Theorem 2.21. The proof is given by slightly modifying the proof of [46, Proposition 5].

Proof of Theorem 2.21 Recall that \((\tilde{\mathcal{E}}, \delta) = (\wedge^+ (V \oplus \overline{V}), \delta) \) is a model of the Hochschild complex. For a derivation \(\theta : \wedge V \to \wedge V \) of degree 0 with \(\theta d = d \theta \) and \(\theta(V) \subset \wedge^+ V \), define derivations \(L_\theta, e_\theta : \tilde{\mathcal{E}} \to \tilde{\mathcal{E}} \) by \(L_\theta(v) = \theta v, L_\theta(\overline{v}) = \delta \theta v, e_\theta(v) = 0 \) and \(e_\theta(\overline{v}) = \theta v \). Then, as derivations on \(\tilde{\mathcal{E}} \), we have \([L_\theta, \delta] = [e_\theta, \delta] = 0 \) and \([e_\theta, \delta] = L_\theta \). Hence \(L_\theta \) induces \(H(L_\theta) : H(\text{Ker} \tilde{s}) \to H(\text{Ker} \tilde{s}) \) and it follows that \(H(L_\theta) \circ c = 0 : H(\text{Ker} \tilde{s}) \to H(\text{Ker} \tilde{s}) \) by a straightforward computation from the above equations.

Now we let \(\theta \) be the derivation defined by \(\theta(x) = \text{wt}(x)x \) for weight-homogeneous elements \(x \in \wedge V \). Then for any weight-homogeneous element \(\alpha \in H(\text{Ker} \tilde{s}) \), we have \(0 = H(L_\theta) \circ c(\alpha) = \text{wt}(\alpha)c(\alpha) \), where the weight on \(\tilde{\mathcal{E}} \) is defined as an extension of that on \(\wedge V \) with \(\text{wt}(\overline{v}) = \text{wt}(v) \) for \(v \in V \). By the positivity of the weight, we have \(c(\alpha) = 0 \) and hence \(c = 0 \). Therefore, Lemmas 4.9 and 4.10 imply the triviality of the reduced \(S \)-action, which is equivalent to the BV-exactness by Theorem 2.11. \(\square \)
5 The string brackets for formal spaces

In this section, we consider string brackets for formal spaces as an application of Theorem 2.7.

5.1 Dual string cobrackets for classifying spaces

We begin by considering the string bracket for the classifying space of a connected Lie group of rank one.

Example 5.1 The result [27, Theorem 4.1] enables us to compute the dual loop coproduct on the loop cohomology $H^*(L BG; \mathbb{Q})$ for every compact connected Lie group G. Thus, in particular, by Theorem 2.7, we determine explicitly the Lie algebra structure of $\mathcal{H}^*(L SU(2)) := H^*_{S^1}(L SU(2); \mathbb{Q})$ endowed with the dual string cobracket. In fact, we see that

$$
\mathcal{H}^* := \mathcal{H}^*(L SU(2)) \cong (\mathbb{H}_*^*(\Omega)/\text{Im } \Delta)_{-3-2} \oplus (\mathbb{Q}[u]_{-3-1}
\cong \mathbb{Q}\{x, x^2, \ldots, x^n, \ldots\} \oplus \mathbb{Q}\{1, u, u^2, \ldots, u^k, \ldots\}
$$

as vector spaces, where Ω denotes the Sullivan minimal model for $SU(2)$. Observe that $|x^n| = 4n - 5$ and $|1| = -4$ for x^n and $1 \in \mathcal{H}^*(L SU(2))$. The formula in [27, Theorem 4.1] for the loop product \circ yields that $\Delta(x^n) \circ 1 = nx^{n-1}$, $\Delta(x^n) \circ \Delta(x^m) = \pm nm \Delta(x)x^{n+m-2}$ and $\Delta(1) = 0$ in $\mathbb{H}_*^*(L SU(2))$. Therefore, we see that $[1, 1] = 0$, $[x^n, x^m] = 0$ for $m, n \geq 1$, $[u^l, \alpha] = 0$ for every $\alpha \in \mathcal{H}^*$, $l \geq 1$ and $[x^n, 1] = -nx^{n-1}$ for $n \geq 1$.

Next we consider the dual string cobracket for the classifying space of G with arbitrary rank.

Proposition 5.2 For each n, the n–fold dual string cobracket $[\mathcal{H}, [\mathcal{H}, \ldots, [\mathcal{H}, \mathcal{H}] \cdots]]$ is nontrivial on $\mathcal{H}^* := H^*_{S^1} (L BG; \mathbb{K})$.

Proof For the case rank $G = 1$, Example 5.1 implies the result. Assume that $N := \text{rank } G \geq 2$. Recall the result [27, Theorem 4.3], which asserts that the loop cohomology $H^*(L BG) := H^{*+\text{dim } G}(L BG)$ is isomorphic to the tensor product of algebra

$$
H^*(BG) \otimes H_{-*}(G) = \mathbb{K}[y_1, \ldots, y_N] \otimes \wedge(x_1^\vee, \ldots, x_N^\vee)
$$

equipped with the BV operator Δ given by $\Delta(x_i^\vee y_j^\vee) = \Delta(y_i y_j) = \Delta(x_i^\vee) = \Delta(y_i) = 0$ and

$$
\Delta(y_i x_j^\vee) = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}
$$

Thus, an induction argument with the BV identity enables us to deduce that

$$
\Delta(y_1^{k_1} \cdots y_N^{k_N} x_i^\vee \cdots x_s^\vee) = \sum_{1 \leq j \leq s} (-1)^d_j k_{i_j} y_1^{k_{i_1}} \cdots y_{i_j}^{k_{i_{j-1}}} \cdots y_N^{k_N} x_1^\vee \cdots y_j^\vee \cdots x_s^\vee,
$$

where \wedge denotes omission and $d_j = |x_i^\vee| + \cdots + |x_{i_{j-1}}^\vee|$. Therefore, it follows that

$$
\Delta(y_2 x_2^\vee x_1^\vee) \circ \Delta(y_1^l x_1^\vee x_2^\vee) = x_1^\vee \circ l y_1^{l-1} x_2^\vee = l y_1^{l-1} x_1^\vee x_2^\vee.
$$
Moreover, we see that $\Delta(y_1^{l-1}x_1^y x_2^y) \neq 0$ for $l \geq 2$. Then the element $y_1^{l-1}x_1^y x_2^y$ is not in $\text{Im} \Delta$. Observe that $\Delta^2 = 0$. We consider an n–fold bracket of the form

$$\alpha := [y_2x_2^y x_1^y, [y_2x_2^y x_1^y, \ldots, [y_2x_2^y x_1^y, y_1^{l-1}x_1^y x_2^y] \cdots]$$

for $l > n$.

It turns out that

$$\alpha = l(l-1) \cdots (l-(n-1)) y_1^{l-n}x_1^y x_2^y \neq 0$$

in the codomain $(\overline{\text{HH}}_s(\Omega)/\text{Im} \overline{\Delta}) \oplus \mathbb{K}[u]$ of the dual string cobracket. Theorem 2.7(i) allows us to obtain the result.

\[\square\]

5.2 String brackets for manifolds

As an application of Theorem 2.8 (or Theorem 2.15), we give another proof of the first half of the result [2, Theorem 3.4] due to Basu and [19, Example 5.2] due to Félix, Thomas and Vigué-Poirrier.

Proposition 5.3 For a simply connected closed manifold M such that $H^*(M; \mathbb{Q})$ is generated by a single element, the string bracket is trivial.

Proof The result [17, Theorem 1] implies that the loop homology of M is isomorphic to the Hochschild cohomology of $A_{\text{PL}}(M)$ endowed with the BV algebra structure due to Menichi [33]. We observe that M is formal. Therefore, Theorem 2.15 and explicit computations in [34, Theorem 16] and [53, Main Theorem] yield the result. In fact, for elements α_1 and α_2 in $\text{Im} \overline{\Delta} = \text{Ker} \overline{\Delta}$, we have $\Delta(\alpha_1 \bullet \alpha_2) = 0$; see Theorem 2.11 and Remark 2.10. In particular, we observe the case where $H^*(M) \cong H^*(S^n)$ with odd degree is in $H_0(LM)$. Then the generator a_{-n} of the loop homology $\mathbb{H}_*(LM) := H_{*+n}(LM)$ with odd degree is in $H_0(LM)$. Then the generator a_{-n} is not in $\text{Ker} \overline{\Delta}$; see Theorem 2.15.

The result [35, Theorem 39] due to Menichi gives an explicit form of the BV operator on the rational loop homology of a connected compact Lie group. We can also apply the result in our computation. In particular, the behavior of the string bracket as seen in Proposition 5.3 changes drastically in case of a Lie group with rank greater than one.

Proposition 5.4 (cf [19, Example 5.2]) Let G be a simply connected Lie group with rank greater than one. The Lie algebra $\mathfrak{h}_* = H^S_{*+\dim G+2}(LG; \mathbb{Q})$ endowed with the string bracket is non-nilpotent. More precisely, for any n, the n–fold bracket $[\mathfrak{h}, [\mathfrak{h}, \ldots, [\mathfrak{h}, \mathfrak{h}] \cdots]]$ is nontrivial.

Proof We first observe that a simply connected Lie group is formal. Indecomposable elements x_1, \ldots, x_N in $\mathbb{H}_*(G)$ are in the reduced homology $\overline{\mathbb{H}}_*(LG)$ because $N := \text{rank} G > 1$. Thus, it follows from [35, Theorem 39] and [25, Theorem 1] that x_i and $(s^{-1} x_j)^k$ are in $\text{Ker} \overline{\Delta}$. Moreover, there exists a nontrivial n–fold string bracket. For example, for $k > n$, we see that on \mathfrak{h}_*,

$$[x_j, [x_j, \ldots, [x_j, (s^{-1} x_j)^k] \cdots]] = \pm k(k-1) \cdots (k-(n-1))(s^{-1} x_j)^{k-n} \neq 0.$$

This follows from the explicit formula of the BV operator in [35, Theorem 39] and Theorem 2.15. Observe that x_j is in $\text{Ker} \overline{\Delta}$ if rank $G > 1$. We have the result.

\[\square\]
5.3 Gravity algebras

The gravity algebra with higher Lie brackets was introduced by Getzler [21]. We consider a gravity algebra structure which appears on the string homology of a manifold and the classifying space of a Lie group; see, for example, [10, Definition 8.1] for the definition of the gravity algebra.

Example 5.5 The result [11, Theorem 1.1] due to Chen, Eshmatov and Liu shows that the negative cyclic homology of a DGA Ω admits a gravity algebra structure if the Hochschild homology of Ω has a BV algebra structure. The higher Lie bracket $\{\ldots, \cdot, \cdot, \cdot\}$ defined for $n \geq 2$ by

$$ [x_1, \ldots, x_n] = (-1)^{(n-1)|x_1| + (n-2)|x_2| + \cdots + |x_{n-1}|} \beta(\pi(x_1) \odot \pi(x_2) \odot \cdots \odot \pi(x_n)), $$

where \odot denotes the dual loop coproduct on the Hochschild homology.

Let G be a connected Lie group. We see that all higher Lie brackets are nontrivial for the classifying space BG. For the case where rank $G \geq 2$, it follows from Theorem 2.7 that

$$ [y_i x_i^\vee, \ldots, y_i x_i^\vee, y_2 x_2^\vee x_1^\vee, y_1^I x_1^\vee x_2^\vee] = \pm 1 \odot \cdots \odot 1 \odot \Delta(y_2 x_2^\vee x_1^\vee) \odot \Delta(y_1^I x_1^\vee x_2^\vee) = ly_1^{l-1} x_1^\vee x_2^\vee \neq 0 $$

with the same notation as in the proof of Proposition 5.2. Suppose that rank $G = 1$. Then, with the same notation as in Example 5.1, we see that $[x^2, \ldots, x^2] = \pm \text{Coker}(\Delta(x^2) \odot \cdots \odot \Delta(x^2) \odot 1) = \pm \text{Coker}(\Delta(x^2) \odot \cdots \odot \Delta(x^2) \odot 2x) = \pm 2^{n-1} x^{n-1} \neq 0$ for the higher Lie bracket of rank n.

Example 5.6 In [10], Chen has proved that the string homology of an orientable closed manifolds admits a gravity algebra structure extending the Lie algebra structure; see [10, Theorem 8.5] for more details. Let G be a simply connected Lie group. We see that all higher Lie brackets in the string homology of G are nontrivial if and only if rank $G > 1$. In fact, in case of rank $G > 1$, by applying Theorem 2.15 to the higher Lie bracket of G, we have $[x_j, s^{-1} x_j, \ldots, s^{-1} x_j] = \pm k(s^{-1} x_j)^{k-1}$ in $H^1_S(LG; \mathbb{Q})$ with the same notation as in Proposition 5.4. If rank $G = 1$, the only generator x_1 of odd degree is not in Ker $\tilde{\Delta}$ and then all higher Lie brackets are trivial; see the computation in the proof of Proposition 5.4.

6 Computation of the string bracket for a nonformal space

In this section, we consider the string bracket of a nonformal and BV-exact manifold. We begin recalling a nonformal manifold in [19, 6.4 Example].

Let $UTS^6 \to S^6$ be the unit tangent bundle over S^6. Then, we have a simply connected 11–dimensional manifold M which fits in the pullback diagram

$$
\begin{array}{ccc}
M & \to & UTS^6 \\
\downarrow & & \downarrow p \\
S^3 \times S^3 & \overset{f}{\to} & S^6
\end{array}
$$

Algebraic & Geometric Topology, Volume 24 (2024)
where $f: S^3 \times S^3 \to S^6$ is a smooth map homotopic to the map defined by collapsing the 3–skeleton into a point. Since the Euler class of the unit tangent bundle mentioned above is nontrivial, it follows that the minimal model of M has the form $\mathcal{M} = \langle (x, y, z), d \rangle$, where $d(x) = 0 = d(y)$, $d(z) = xy$, $|x| = |y| = 3$ and $|z| = 5$. It is readily seen that M is nonformal since the Massey product (x, x, y) does not vanish; see [24, page 277]. Moreover, we have:

Proposition 6.1 The 11–dimensional manifold M is BV-exact.

Proposition 6.1 is proved by computing the Hochschild homology explicitly. To this end, we recall the minimal model \mathcal{M} for M mentioned above. The Hochschild homology of \mathcal{M} is the homology of the Sullivan algebra $\mathcal{L} = \langle (x, y, z), \bar{x}, \bar{y}, \bar{z}, d \rangle$, where $d(\bar{x}) = 0 = d(\bar{y})$, $d(\bar{z}) = -\bar{x}y + x\bar{y}$; see Section 3. To compute $H(\mathcal{L})$, we define its subcomplex \mathcal{L}' by $\langle (x, y, \bar{x}, \bar{y}, \bar{z}) \rangle$. By a simple calculation, we have the following lemma.

Lemma 6.2 The set $\{ \bar{x}^p \bar{y}^q, x\bar{x}^p \bar{y}^q, y\bar{y}^r, xy\bar{z}^r \mid p, q, r \geq 0 \}$ forms a basis of $H(\mathcal{L}')$.

Next we compute $H(\mathcal{L})$ by comparing with $H(\mathcal{L}')$ and \mathcal{L}/\mathcal{L}'.

Proposition 6.3 The following set forms a basis of the Hochschild homology $H(\mathcal{L})$:

$$\{ \bar{x}^p \bar{y}^q, x\bar{x}^p \bar{y}^q, y\bar{y}^r, x\bar{y}^r, xz\bar{z}^r, yz\bar{z}^r, x\bar{x}^p \bar{y}^q \bar{z}, y\bar{y}^r \bar{z}, xz\bar{x}^p \bar{y}^q \bar{z}, yz\bar{y}^r \bar{z}, xz\bar{x}^p \bar{y}^q \bar{z}, yz\bar{y}^r \bar{z} \},$$

where p, q and r run over all nonnegative integers.

Proof Since there is an isomorphism of complexes $(\mathcal{L}/\mathcal{L}', d) \cong (\mathbb{Q}\{z\} \otimes (\mathcal{L}', d)$, Lemma 6.2 implies that the set $\{ z\bar{x}^p \bar{y}^q, xz\bar{x}^p \bar{y}^q, yz\bar{y}^r, xz\bar{z}^r \mid p, q, r \geq 0 \}$ forms a basis of $H(\mathcal{L}/\mathcal{L}')$. Consider the long exact sequence associated with the short exact sequence $0 \to \mathcal{L}' \to \mathcal{L} \to \mathcal{L}/\mathcal{L}' \to 0$. The connecting homomorphism $H(\mathcal{L}/\mathcal{L}') \to H(\mathcal{L})$ sends z to xy and the other basis elements to zero. Hence each basis element of $H(\mathcal{L}')$ or $H(\mathcal{L}/\mathcal{L}')$ corresponds to a basis element of $H(\mathcal{L})$, except for z and xy. By lifting basis elements of $H(\mathcal{L}/\mathcal{L}')$ to cocycles in \mathcal{L}, we get the above basis. □

Proof of Proposition 6.1 Let $\widetilde{\mathcal{L}}$ be the reduced complex $\wedge^+ (x, y, z, x, \bar{x}, \bar{y}, \bar{z})$. Recall that the reduced operation \widetilde{B} in Definition 2.9 is modeled by the map $H\widetilde{\mathcal{S}}: H(\widetilde{\mathcal{L}}) \to H(\widetilde{\mathcal{L}})$ induced by the derivation $\widetilde{s}: \widetilde{\mathcal{L}} \to \widetilde{\mathcal{L}}$, $v \mapsto \bar{v}$ for $v = x, y, z$; see Remark 3.2.

By using the basis given in Proposition 6.3, we see that

$$H\widetilde{\mathcal{S}}(x\bar{x}^p \bar{y}^q) = \bar{x}^{p+1} \bar{y}^q, \quad H\widetilde{\mathcal{S}}(y\bar{y}^r) = \bar{y}^{q+1}, \quad H\widetilde{\mathcal{S}}(xz\bar{x}^p \bar{y}^q) = z\bar{x}^{p+1} \bar{y}^q - x\bar{x}^p \bar{y}^q \bar{z},$$

$$H\widetilde{\mathcal{S}}(yz\bar{y}^r) = z\bar{y}^{q+1} - y\bar{y}^q \bar{z}, \quad H\widetilde{\mathcal{S}}(xyz\bar{z}^r) = \frac{r+2}{r+1} xy\bar{z}^{r+1}.$$}

This proves $\ker H\widetilde{\mathcal{S}} = \text{im} H\widetilde{\mathcal{S}}$. □

Remark 6.4 A program [51] on a personal computer for computing the homology of a DGA helps us in proving Proposition 6.3. In fact, the computer calculation shows the basis in the proposition, while our proof is by hand.
Then the morphism \(\beta \) in Theorem 2.7 is induced by the derivation \(s: \mathcal{L} \to \mathcal{G} \).

It follows from the BV-exactness of the manifold \(M \) that \(\text{HC}^* (\mathcal{M}) \) decomposes into a direct sum \(\mathbb{Q}[u] \oplus \text{Im} \beta \), where \(\beta \) is a morphism induced by the map \(\beta: \mathcal{L} \to \mathcal{G} \) on the reduced complexes. Hence, by applying \(\beta \) to the basis except for 1 in Proposition 6.3, we see that \(\text{Im} \beta \) is spanned by the homology classes

\[
\xi_{p,q} := \frac{1}{p!q!} x^p y^q, \quad \eta_{p,q} := \frac{1}{p!q!} (z x^p y^q - x x^{p-1} y^q z) \quad \text{if} \ p \neq 0, \\
\theta_r := \frac{r+1}{r} x y z^r, \\
\text{for } p, q \geq 0, r \geq 1 \text{ with } (p, q) \neq (0, 0). \]

We also put \(\xi_{0,0} = 1 \) for convenience. Denote by \(D_{sb} \) the dual string bracket \([,]^v\) over \(\mathbb{Q} \) stated in Theorem 2.8.

Theorem 6.6 For the dual string bracket \(D_{sb} \) over \(\mathbb{Q} \) of the 11–dimensional manifold \(M \), one has

\[
\begin{align*}
D_{sb}(\xi_{p,q}) &= \sum_{i=0}^{p+1} \sum_{j=0}^{q+1} \{ i(q+1) - j(p+1) \} (\xi_{i,j} \otimes \eta_{p+1-i,q+1-j} - \eta_{p+1-i,q+1-j} \otimes \xi_{i,j}), \\
D_{sb}(\eta_{p,q}) &= \theta_2 \otimes \xi_{p,q} - \xi_{p,q} \otimes \theta_2 - \sum_{i=0}^{p+1} \sum_{j=0}^{q+1} \{ i(q+1) - j(p+1) \} \eta_{i,j} \otimes \eta_{p+1-i,q+1-j}, \\
D_{sb}(\theta_r) &= 0.
\end{align*}
\]

Proof We first compute the dual loop product \(D_{lp} \) by the rational model described in [19]. Let \(\mathcal{M} = \wedge V \) be the minimal model for \(M \), \(\mathcal{P} = (\wedge V) \otimes \wedge \bar{V} \) the Sullivan model for the free path space stated in [15, Section 15] and \(\varepsilon: \mathcal{P} \to \wedge V \) the \((\wedge V) \otimes \wedge \bar{V}–\)semifree resolution of \(\wedge V \) which is given by the multiplication of \(\wedge V \) and the canonical augmentation of \(\wedge \bar{V} \).

By virtue of [19, Lemma 1], we see that a DGA morphism \(\mathcal{P} \to \mathcal{P} \otimes \wedge \bar{V} \mathcal{P} \) defined by \(v_1 \otimes v_2 \mapsto v_1 \otimes 1 \otimes v_2, \ x \mapsto 1 \otimes x + \bar{x} \otimes 1, \ y \mapsto 1 \otimes \bar{y} + \bar{y} \otimes 1, \ z \mapsto 1 \otimes \bar{z} + \bar{z} \otimes 1 - \frac{1}{2} x \otimes \bar{y} + \frac{1}{2} \bar{y} \otimes x \) for \(v_i \in V \) is a Sullivan representative for the composition of free paths. This induces a Sullivan representative \(\mathcal{M}_{\text{Comp}}: \mathcal{L} \to \mathcal{L} \otimes \wedge \bar{V} \mathcal{L} \) for \(\text{Comp} \) in (3.4) which has formulae

\[
\begin{align*}
\mathcal{M}_{\text{Comp}}(v) &= v, & \mathcal{M}_{\text{Comp}}(x) &= 1 \otimes x + \bar{x} \otimes 1, \\
\mathcal{M}_{\text{Comp}}(y) &= 1 \otimes \bar{y} + \bar{y} \otimes 1, & \mathcal{M}_{\text{Comp}}(z) &= 1 \otimes \bar{z} + \bar{z} \otimes 1 - \frac{1}{2} x \otimes \bar{y} + \frac{1}{2} \bar{y} \otimes x.
\end{align*}
\]
where \(v \in V \). Recall the morphism \(\varepsilon_\mathcal{P} \otimes 1 : \mathcal{P} \otimes (\wedge V) \otimes \mathcal{F} \rightarrow \wedge V \otimes (\wedge V) \otimes \mathcal{F} \) appeared in the model for \(\text{Dlp} \). A section \(\sigma \) of the morphism \(\varepsilon_\mathcal{P} \otimes 1 \) is given by

\[
\sigma(v) = v \otimes 1, \quad \sigma(\bar{x} \otimes 1) = 1 \otimes (\bar{x} \otimes 1), \quad \sigma(1 \otimes \bar{x}) = 1 \otimes (1 \otimes \bar{x}), \quad \sigma(\bar{y} \otimes 1) = 1 \otimes (\bar{y} \otimes 1),
\]

\[
(1 \otimes \bar{y}) = 1 \otimes (1 \otimes \bar{y}), \quad \sigma(\bar{z} \otimes 1) = 1 \otimes (\bar{z} \otimes 1), \quad \sigma(1 \otimes \bar{z}) = 1 \otimes (1 \otimes \bar{z}) - \bar{x} \otimes (1 \otimes \bar{y}) + \bar{y} \otimes (1 \otimes \bar{x}).
\]

Define a \((\wedge V) \otimes 2\)-morphism \(\text{Diag}^1 : \mathcal{P} \rightarrow (\wedge V) \otimes 2 \) of degree 11 by

\[
\text{Diag}^1(1) = (-x \otimes 1 + 1 \otimes x)(-y \otimes 1 + 1 \otimes y)(-z \otimes 1 + 1 \otimes z), \quad \text{Diag}^1|_{\wedge \mathcal{P}} = 0,
\]

which gives a representative of a nonzero element in \(\text{Ext}^{11}_{(\wedge V) \otimes 2}(\wedge V, \wedge V) \); see [49, Section 5] for the detail about a construction of the shriek map \(\text{Diag}^1 \). Then, the result [19, Theorem A] yields that the composite

\[
\mathcal{L} \xrightarrow{\text{dt Comp}} \mathcal{L} \otimes \Lambda V \mathcal{L} \cong \wedge V \otimes (\wedge V) \otimes 2 \mathcal{L} \otimes 2 \xrightarrow{\sigma} \mathcal{P} \otimes (\wedge V) \otimes 2 \mathcal{L} \otimes 2 \xrightarrow{\text{Diag}^1 \otimes 1} \mathcal{L} \otimes 2
\]

induces the dual loop product \(\text{Dlp} \) on homology. This rational model and a straightforward computation enable us to compute \(\text{Dlp} \) explicitly. In fact, we have

\[
\text{Dlp}(\bar{x}^p \bar{y}^q) = xyz \otimes \bar{x}^p \bar{y}^q + \bar{x}^p \bar{y}^q \otimes xyz
\]

\[
+ \sum_{i=0}^p \sum_{j=0}^q \left(\binom{p}{i} \binom{q}{j} \right) \left(-x^i \bar{y}^j \otimes yz \bar{x}^{p-i} \bar{y}^{q-j} + y^i \bar{x}^j \otimes xz \bar{x}^{p-i} \bar{y}^{q-j} - xz \bar{x}^j \bar{y}^j \otimes y \bar{x}^{p-i} \bar{y}^{q-j} + yz \bar{x}^j \bar{y}^j \otimes x \bar{x}^{p-i} \bar{y}^{q-j} \right),
\]

\[
\text{Dlp}(z \bar{x}^p \bar{y}^q - x \bar{x}^{p-1} \bar{y}^q \bar{z}) = xyz \otimes (z \bar{x}^p \bar{y}^q - x \bar{x}^{p-1} \bar{y}^{q} \bar{z}) + (z \bar{x}^p \bar{y}^q - x \bar{x}^{p-1} \bar{y}^{q} \bar{z}) \otimes xyz
\]

\[
+ xyz \otimes xz \bar{x}^{p-1} \bar{y}^q + xz \bar{x}^{p-1} \bar{y}^q \otimes xzyz + xy \bar{z} \otimes xz \bar{x}^{p-1} \bar{y}^q - xz \bar{x}^{p-1} \bar{y}^q \otimes xyz \bar{z}
\]

\[
- \sum_{i=0}^p \sum_{j=0}^q \left(\binom{p}{i} \binom{q}{j} \right) \left(xz \bar{x}^j \bar{y}^j \otimes yz \bar{x}^{p-i} \bar{y}^{q-j} - yz \bar{x}^j \bar{y}^j \otimes xz \bar{x}^{p-i} \bar{y}^{q-j} \right),
\]

\[
\text{Dlp}(z \bar{y}^q - y \bar{y}^q \bar{z}) = -xyz \otimes (z \bar{y}^q - y \bar{y}^q \bar{z}) - (z \bar{y}^q - y \bar{y}^q \bar{z}) \otimes xyz + xyz \otimes y \bar{y}^q \bar{z} + y \bar{y}^q \bar{z} \otimes xyz
\]

\[
+ xy \bar{z} \otimes y \bar{y}^q \bar{z} - yz \bar{y}^q \bar{z} \otimes xyz - \sum_{j=0}^q \left(\binom{q}{j} \right) \left(xz \bar{y}^j \otimes yz \bar{y}^{q-j} - yz \bar{y}^j \otimes xz \bar{y}^{q-j} \right),
\]

\[
\text{Dlp}(xyz^r) = \sum_{i=0}^r \binom{r}{i} (-xyz^{i} \otimes x yz^{r-i} + x yz^i \otimes x yz^{r-i}).
\]

It follows from Theorem 2.8(ii) that

\[
\text{Dsb}(\xi_{p,q}) = \frac{1}{p!q!} (\beta \otimes \beta) \otimes \varepsilon (\bar{x}^p \bar{y}^q), \quad \text{Dsb}(\eta_{p,q}) = \frac{1}{p!q!} (\beta \otimes \beta) \otimes \varepsilon (z \bar{x}^p \bar{y}^q - x \bar{x}^{p-1} \bar{y}^{q} \bar{z}),
\]

\[
\text{Dsb}(\eta_{0,q}) = \frac{1}{q!} (\beta \otimes \beta) \otimes \varepsilon (z \bar{y}^q - y \bar{y}^q \bar{z}), \quad \text{Dsb}(\theta_r) = \frac{r+1}{r} (\beta \otimes \beta) \otimes \varepsilon (x y^r).
\]

Therefore, by these formulæ and the computations of \(\text{Dlp} \) above, we have the result. \(\square \)
7 The cobar-type EMSS and r–BV-exactness

Let X be a simply connected space. We define a cobracket on the cobar-type Eilenberg–Moore spectral sequence converging to the rational equivariant cohomology of the free loop space LX, which is compatible with the dual to the string bracket in the sense of Chas and Sullivan [8] if X is a simply connected closed manifold.

We begin by recalling the spectral sequence associated with a filtered complex (A, F, d). Consider the submodules $Z_{p,q}^r$ and $B_{p,q}^r$ defined by

$$Z_{p,q}^r := F^p A^{p+q} \cap d^{-1}(F^{p-r} A^{p+q+1})$$

and

$$B_{p,q}^r := F^p A^{p+q} \cap d(F^{p-r} A^{p+q-1}).$$

With the submodules of A, we have a spectral sequence $\{E_r, d_r\}$ whose E_r–term is defined by $E_{p,q}^r := Z_{p,q}^r/(Z_{p+1,q}^{r-1} + B_{p,q}^{r-1})$; see [32, Proof of Theorem 2.6].

We use the same notation as that in Section 2. In particular, for a cochain algebra A, we define a chain algebra $A_\#$ by $(A_\#)_{-i} = A^i$ for i. The converse is also considered; that is, for a chain algebra Ω, we have a cochain algebra $\Omega^\#$ defined by $((\Omega)^\#)_i = \Omega_{-i}$ for i; see Remark 2.6.

Let (\wedge, d) be a Sullivan model of a simply connected commutative cochain algebra A. Define $(\mathcal{L}, \delta) = (\wedge(V \oplus \overline{V}), \delta)$ and $(\mathcal{E}, D) = (\wedge u \otimes \mathcal{L}, D)$; see Section 3. Then complexes (\mathcal{L}, δ) and (\mathcal{E}, D) compute the Hochschild homology and the negative cyclic homology of $A_\#$, respectively. Thus we have the cobar-type Eilenberg–Moore spectral sequence (the EMSS for short) $\{E_{r+1,*}, d_r\}$ converging to $HC^-(A) := (HC_*^\#(A_\#))^\#$ as an algebra with

$$E_2^{*,*} \cong \text{Cotor}_{(\wedge(t))}^*(HH_*(A), \mathbb{Q})$$

as a bigraded algebra, where $|t| = 1$ and the $(\wedge(t))$–comodule structure on the Hochschild homology $HH_*(A) := (HH_*(A_\#))^\#$ is induced by the derivation s in the cyclic complex (\mathcal{E}, D). In fact, the $(\wedge(t))$–comodule structure $\nabla: \mathcal{L} \to \mathcal{L} \otimes (\wedge(t)$ on (\mathcal{L}, δ) is given by $\nabla(\alpha) = \gamma(\alpha) \otimes t + \alpha \otimes 1$, where $\gamma(\alpha) = (-1)^{|\alpha|} s(\alpha)$. A map assigning the element $a^\alpha u^n$ in the cyclic complex \mathcal{E} to an element $a[t|\cdots|t]$ in the n^{th} cobar complex gives rise to an isomorphism of complexes. As a consequence, we have isomorphisms

$$\text{Cotor}_{(\wedge(t))}^*(\mathcal{L}, \mathbb{Q}) \cong H(\mathcal{E}, D) \cong HC^-(A_\#)^\#.$$

Remark 7.2 The isomorphisms above allow us to work in the category of $(\wedge(t))$–comodule in order to investigate the negative cyclic homology of a DGA.

We observe that, by construction, there is an isomorphism $E_1^{0,*} \cong HH_*(A)$. In particular, when we choose the polynomial de Rham algebra $A_{PL}(M)$ for a simply connected space M as the DGA A, the spectral sequence converges to the S^1–equivariant cohomology $HC^*(A) = H^*(LM; \mathbb{Q})$, with

$$E_2^{*,*} \cong \text{Cotor}_{(\wedge(S^1;))}^*(H^*(LM; \mathbb{Q}), \mathbb{Q}).$$
One has a direct sum decomposition $(\mathfrak{F}, \delta) = \bigoplus_n (\mathfrak{F}(n), \delta)$ of complexes, where $\mathfrak{F}(n) = \mathfrak{F} \cap (\wedge^V \otimes \wedge^n \mathcal{V})$ with $\mathfrak{F} = \mathfrak{F} \oplus \mathbb{Q}$. Then the reduced derivation \mathfrak{s} decomposes (\mathfrak{F}, δ) into a sequence $0 \to \mathfrak{F}(0) \to \mathfrak{F}(1) \to \mathfrak{F}(2) \to \cdots$ of complexes. Thus it follows that the EMSS $\{E_r^{*,*}, d_r\}$ is decomposed as

$$\{E_r^{*,*}, d_r\} = \bigoplus_{N \in \mathbb{Z}} \{(N)E_r^{*,*}, d_r\} \oplus \{\mathbb{Q}[u], 0\},$$

where bideg $u = (1, 1)$, each spectral sequence $\{(N)E_r^{*,*}, d_r\}$ for $N \geq 0$ is constructed by the double complex

$$(N)\mathfrak{H}: 0 \to \mathfrak{F}(N) \to \mathfrak{F}(N+1) \otimes \mathbb{Q}\{u\} \to \mathfrak{F}(N+2) \otimes \mathbb{Q}\{u^2\} \to \cdots$$

and for $N < 0$, the spectral sequence $\{(N)E_r^{*,*}, d_r\}$ is obtained by the double complex

$$(N)\mathfrak{H}: 0 \to 0 \to \cdots \to 0 \to \mathfrak{F}(0) \otimes \mathbb{Q}\{u^{-N}\} \to \mathfrak{F}(1) \otimes \mathbb{Q}\{u^{-N+1}\} \to \cdots.$$

Here, the double complex $(N)\mathfrak{H}$ is regarded as a filtered complex associated with the horizontal degrees. Thus, in the spectral sequence $\{(N)E_r^{*,*}, d_r\}$ for $N < 0$, we have $(N)E_r^{*,*} = 0$ for $i < -N$. We observe that each spectral sequence $\{(N)E_r^{*,*}, d_r\}$ converges to the target as an algebra.

Remark 7.3 The direct sum of the targets of the spectral sequences $\{(N)E_r^{*,*}, d_r\}$ is nothing but the Hodge decomposition of $H^\bullet_C(A)$; that is, we have $H^\bullet_C(A) = \bigoplus_{N \geq 0} H^\bullet(\mathfrak{H}(N))$; see [6, Section 2]. If A is the polynomial de Rham algebra $A_{PL}(X)$ for a simply connected space X, then the direct summands in the Hodge decomposition are identified with the eigenspaces of the Adams operation on $\tilde{H}^\bullet_S(LX; \mathbb{Q})$; see [6, Theorem 3.2] for the identification. We refer the reader to [30, 4.5.4] for the operation. The result [3, Theorem 1.1] shows that the string bracket respects the Hodge decomposition in some sense. Thus, we are also interested in computations of string brackets, as described in Section 1.1, together with the consideration of the Hodge decomposition.

Proposition 7.4 If the spectral sequence $\{(0)E_r, d_r\}$ collapses at E_r–term, then so does $\{(N)E_r, d_r\}$ for each integer N, and then $\text{Tot} E_r \cong H^\bullet_S(LX)$ as a vector space.

Thus, it is readily seen that the collapsing of the EMSS is governed by that of the zeroth spectral sequence.

Corollary 7.5 The spectral sequence $\{(0)E_r, d_r\}$ collapses at the E_r–term if and only if so does $E_r^{*,*}, d_r$.

Lemma 7.6 For $l \geq r - 1$ and $N \in \mathbb{Z}$, we have $\{(0)E_r^{I+N,*,*} \cong (N)E_r^{I,*}.$

Proof For $N < 0$, the multiplication $u^{-N} \times: (0)E_r^{*,*} \to (N)E_r^{*-N,*,*}$ gives an isomorphism. Assume that $N \geq 0$. By definition, we see that

$$(N)E_r^{I,*} = (N)Z_r^{I,*}/((N)Z_r^{I+1,*-1} + (N)B_r^{I,*}),$$

$$(0)E_r^{I+N,*,*} = (0)Z_r^{I+N,*,*} /((0)Z_r^{I+N+1,*-N-1} + (0)B_r^{I+N,*,*}).$$
where \((N)Z\) and \((N)B\) denote the subcomplexes of \((N)\mathcal{H}\) defined in (7.1) for the filtered complex \(A = (N)\mathcal{H}\). Moreover, we have \((N)Z_{r-1} / \cong (0)Z_{r-1}^{l+N,*,*+N}\) and \((N)Z^l_{r-1} / \cong (0)Z_{r-1}^{l+N,*,*+N-1}\). Since \(l \geq r - 1\), it follows that \((N)B_{r-1}^{l,*} / \cong (0)B_{r-1}^{l+N,*,*+N}\). Then the multiplication \(u^N \times : (N)E_{r,*} / \cong (0)E_{r,*}^{l+N,*,*+N}\) is an isomorphism.

\[\square\]

Proof of Proposition 7.4 Lemma 4.7 yields that the spectral sequence \(\{(0)E_{r,*}, d_r\} / \text{converges to } 0\), the trivial module. The assumption and Lemma 7.6 imply that \((N)E_{r,*} / = 0\) for \(l \geq r - 1\) and \(N\).

\[\square\]

Theorem 7.7 Let \(M\) be a simply connected closed manifold, and \(A\) the polynomial de Rham algebra \(A_{PL}(M)\) of \(M\). Then the map \([,]_r^\vee : E_{r,*} \to (E_{r,*} \otimes E_{r,*})p,*+d-2\) defined by \([,]_r^\vee \equiv 0\) for \(p > 0\) and for \(p = 0\), the composite

\[E_{r,0,*} = \text{Ker} \, d_{r-1} \to \text{HH}_*(A) \overset{\cdot}{\rightarrow} \text{HH}_*(A) \otimes^2 \Delta \otimes \Delta \to E_{r,*}^0 \otimes E_{r,*}^0\]

gives rise to a cobracket on the spectral sequence, where \(i\) denotes the inclusion. That is, it is compatible with the differentials and \(H([,]_r^\vee) = [,]_r^\vee + 1\). Moreover, the cobracket \([,]_r^\vee\) is compatible with the dual to the string bracket on \(H_{S^1}^{*}(LM)\) at the \(E_{\infty}\)-term in the sense that the composite

\[H_{S^1}^{*}(LM) \overset{\pi}{\longrightarrow} E_{\infty,0,*} \overset{i}{\rightarrow} \text{HH}_*(A) \overset{\cdot}{\rightarrow} \text{HH}_*(A) \otimes^2 \Delta \otimes \Delta \to E_{\infty,*}^0 \otimes E_{\infty,*}^0\]

coincides with the dual to the string bracket modulo \(F^1H_{S^1}^{*}(LM)\). Here \(\pi\) is the projection and \([F^1H_{S^1}^{*}(LM)]_{l,0}^{\infty}\) is the decreasing filtration associated with the spectral sequence.

Proof By dimensional reasons, it is readily seen that \((d_r \otimes 1 \pm 1 \otimes d_r) \circ [,]_r^\vee = 0 = [,]_r^\vee \circ d_r\) for \(p > 0\). Moreover, we see that every element in the image of \(\Delta\) in \(E_{r,*}^0\) is a permanent cocycle. In fact, for \(w \in \text{Im} \, \Delta\), we have \(Dw = (\delta + ws)w = 0\). Then, it follows that \((d_r \otimes 1 \pm 1 \otimes d_r) \circ [,]_r^\vee = 0 = [,]_r^\vee \circ d_r\) in \(E_{r,*}^0\). By the definition of the cobrackets, we have \(H([,]_r^\vee) = [,]_r^\vee + 1\). In fact, the left-hand side is the restriction of \([,]_r^\vee\) in the nontrivial case.

Consider the compatibility of the cobracket at the \(E_{\infty}\)-term. We have a commutative diagram

\[\begin{array}{ccc}
\text{HC}_*(A) & \overset{\pi}{\longrightarrow} & \text{HH}_*(A) \\
\downarrow & & \downarrow \\
\text{HC}_*(A) / F^1 \oplus \text{F}^1 / \text{F}^2 \oplus \cdots \oplus \text{F}^* & \overset{\cdot}{\longrightarrow} & \text{HH}_*(A) \otimes^2 \beta \otimes \beta \to \text{HC}_*(A) \otimes^2 \\
\oplus_{p+q = \ast} E_{\infty}^{p,q} & \overset{\text{pr}}{\longrightarrow} & E_{\infty,0,*} \\
\end{array}\]

where \([F^1]_{l,0}^{\infty}\) denotes the decreasing filtration of \(\text{HC}_*(A) \cong H_{S^1}^{*}(LM)\) associated with the spectral sequence. In fact, the commutativity of the left-hand side square and the right-hand side triangle follows from the construction of the spectral sequence; see for example [32, Proof of Theorem 2.6]. **Theorem 2.8(ii)** implies the upper sequence is the dual of the string bracket. We have the result.

\[\square\]
We define $E^{2} = A$.

Definition 7.11 A simply connected space x is r-BV-exact if the E_{r+1}-term $(0)E_{r+1}^{p,q}$ in the spectral sequence $(0)E_{r}^{*,*}, d_{r}$ is trivial for any (p, q). Then the $(r - 1)$ times S-action S^{r-1} on $\wedge H_{-}^{*}(A)$ is trivial.

Proof Let x be an element in $\wedge H_{-}^{*}(A)$. Then x is in $\wedge H_{-}^{*}(n)(A)$ for some $n \geq 0$ and then it is represented by an element α in $(n)E_{r}^{*,*}$ for some $t \geq 0$. Thus the element $S^{r-1}x$ is represented by $S^{r-1}\alpha \in (n-(r-1))E_{r}^{*,*}$. By assumption, it follows from Lemma 7.6 that $(N)E_{r}^{*,*} = 0$ for $l \geq r - 1$ and $N \in \mathbb{Z}$. This implies that $S^{r-1}\alpha = 0$ in the E_{∞}-term and that there is no extension problem; that is, $S^{r-1}x = S^{r-1}\alpha = 0$ in $H_{-}^{*}(n-(r-1))(A) \subset H_{-}^{*}(A)$. This completes the proof.

Moreover, we have:

Theorem 7.10 The E_{r}-term $(0)E_{r}^{p,q}$ in $(0)E_{r}^{*,*}, d_{r}$ is trivial for any (p, q) if and only if the $(r - 1)$ times S-action S^{r-1} on $\wedge H_{-}^{*}(A)$ is trivial.

Proof The “only if” part follows from Lemma 7.9. To prove the “if” part, we assume that S^{r-1} is trivial on $\wedge H_{-}^{*}(A)$. Take any element $x = x_{p} \otimes u^{p} + x_{p+1} \otimes u^{p+1} + \cdots \in (0)Z_{r}^{p,*}$, where $x_{i} \in \mathcal{F}(i)$ is zero for sufficiently large i. By the definition of $(0)Z_{r}^{p,*}$, the total differential increases the filtration degree of x by r, i.e. we have $dx_{p} = 0$ and $\tilde{x}_{i} + dx_{i+1} = 0$ for $p \leq i \leq p + r - 2$. Now we have an element $[\tilde{x}x_{p+r-1}] \in H(\ker \tilde{s})$ and the above equation implies that $[dx_{p+1}] = S^{r-1}[\tilde{x}x_{p+r-1}] = 0 \in H(\ker \tilde{s})$ by Lemma 4.10 and the assumption of triviality of S^{r-1}. By Lemma 4.7, we see that $\ker \tilde{s} = \text{Im} \tilde{s}$. Thus, there is an element $v_{p} \in \mathcal{F}(p)$ with $d\tilde{s}v_{p} = dx_{p+1}$. By using these elements, we define $y = (x_{p+1} - \tilde{s}v_{p}) \otimes u^{p+1} + x_{p+2} \otimes u^{p+2} + x_{p+3} \otimes u^{p+3} + \cdots (0)Z_{r}^{p+1,*}$. Then we can show $x - y = x_{p} \otimes u^{p} + \tilde{s}v_{p} \otimes u^{p+1} \in (0)B_{r-1}^{*,*}$ by the same argument as above. It follows that $x = y + (x - y) \in (0)Z_{r-1}^{p+1,*} + (0)B_{r-1}^{*,*}$ and hence $[x] = 0 \in (0)Z_{r}^{p,*}/(0)Z_{r-1}^{p+1,*} + (0)B_{r-1}^{*,*} = (0)E_{r}^{*,*}$. Since x is an arbitrary element of $(0)Z_{r}^{p,*}$, this proves the “if” part.

The BV-exactness of a space is equivalent to the condition that the E_{2}-term of the spectral sequence $(0)E_{r}^{*,*}, d_{r}$ is trivial. Then Theorem 7.10 gives another proof of Theorem 2.11. This consideration allows us to propose a higher version of the BV-exactness.

Definition 7.11 A simply connected space X is r-BV-exact if the E_{r+1}-term $(0)E_{r+1}^{p,q}$ in the spectral sequence $(0)E_{r}^{*,*}, d_{r}$ associated with X is trivial for any (p, q).
Indeed, there exists a non-BV-exact space in the class of rational elliptic spaces; see Appendix A below. While we are interested in the hierarchy of rational spaces defined by the r–BV-exactness as seen in Section 1.1, we do not pursue the topic in this manuscript.

Appendix A A non-BV-exact space

We describe an example of a non-BV-exact space. Let $(\wedge V, d)$ be the minimal model

$$(\wedge(x_1, x_2, y_1, y_2, y_3, z), d)$$

of an elliptic space X of dimension 228, given in [1, Example 5.2]. The degrees are given by $|x_1| = 10, |x_2| = 12, |y_1| = 41, |y_2| = 43, |y_3| = 45$ and $|z| = 119$. The differential is as follows:

- $dx_1 = 0, \quad dy_1 = x_1^3x_2,$
- $dx_2 = 0, \quad dy_2 = x_1^2x_2^2, \quad dz = x_2(y_1x_2 - x_1y_2)(y_2x_2 - x_1y_3) + x_1^{12} + x_2^{10}.$
- $dy_3 = x_1^3,$

Note that X does not admit positive weights. Indeed, let $\text{wt}(x_1) = i$ and $\text{wt}(x_2) = j$. Then $\text{wt}(y_1) = 3i + j$, $\text{wt}(y_2) = 2i + 2j$ and $\text{wt}(y_3) = i + 3j$. By dz, we have the equations $5i + 6j = 12i = 10j$ induced from $\text{wt}(x_2(y_1x_2 - x_1y_2)(y_2x_2 - x_1y_3)) = \text{wt}(x_1^{12}) = \text{wt}(x_2^{10})$. Thus we obtain $i = j = 0$.

Let $\omega = x_1^{14}y_2y_3 - x_1^{13}y_2y_1y_3 + x_1^{12}x_2^2y_1y_2$ be the representing cocycle of the fundamental class of the manifold, which is considered as an element of $\wedge^+ V = \tilde{\mathcal{L}}^{(0)} \subset \tilde{\mathcal{L}}$. Then $[\omega] \not\in \text{Im}(H(\tilde{s}) : H(\tilde{\mathcal{L}}^{(0)}) \to H(\tilde{\mathcal{L}}^{(1)})) = 0$. On the other hand, we have $[\alpha] \in \text{Ker}(H(\tilde{s}) : H(\tilde{\mathcal{L}}^{(0)}) \to H(\tilde{\mathcal{L}}^{(1)}))$, since $\tilde{s}(\alpha) = \delta(\alpha)$ for the element α defined by

$$\alpha = -1380x_1^{11}x_2^6y_3^2 - 5290x_1^{11}x_2^5y_3x_2 - 114x_1^{10}y_1y_2y_3 + 114x_1^{10}y_1y_3y_1$$

$$- 114x_1^9y_2y_1y_2y_1 + 93x_1^2y_2y_3z - x_1^2y_2z_3y_3 - x_1^2y_2z_3y_3 + 114x_1^2y_2y_3y_3$$

$$- \frac{93}{2}x_1^2y_2y_1y_2z - x_1^2y_2y_1y_2z - 114x_1^2y_2y_2zy_3 + 115x_1^2y_2y_2z_3y_1 + 115x_1^2y_2y_2z_3y_2$$

$$+ 572x_1^2y_2y_2z_1 + 115x_1^2y_2y_2z_3x_1 + 114x_1^2y_2y_2z_3x_1 + 114x_1^2y_2y_2z_3x_1 + 1150x_1^2y_2z_3x_1$$

$$+ \frac{93}{2}x_1^2y_2y_2z_3 + 115x_1^2y_2y_2z_3 - 115x_1^2y_2y_2z_3 - 115x_1^2y_2y_2z_3 - 340x_1^2y_2y_2z_3x_1 - 229x_1^2y_2y_2z_3x_1.$$

Hence we have $\text{Im} H(\tilde{s}) \subseteq \text{Ker} H(\tilde{s})$, i.e $(\wedge V, d)$ is not BV-exact. Note that we have found the element α by using the program [51] mentioned in Remark 6.4, while the equality is also checked by hand.

Finally we consider the differentials in the spectral sequence $\{_{(0)}E_r, d_r\}$ defined in Section 7. Since $d_1[\omega] = H(\tilde{s})[\omega] = 0$, the cocycle ω defines an element $[\omega] \in _{(0)}E_2$, where $(0)E_2$ is considered as a subquotient of $(0)E_1 = H(\tilde{L}, \delta)$. Then the equality $\tilde{s}(\omega) = \delta(\alpha)$ enables us to compute $d_2[\omega] = [\tilde{s}\alpha] \neq 0 \in _{(0)}E_2$, where the nontriviality is proved by using the program [51]. Thus this Sullivan algebra gives an example such that $d_2 \neq 0$ on $(0)E_2$. Note that it is currently unknown whether $(0)E_3 = 0$ (i.e 2–BV-exact) or not.
Appendix B Connes’ B–map in the Gysin exact sequence

In this section, by giving precisely a rational model for the integration over the fiber $\beta : H^{*+1}(LX; \mathbb{Q}) \rightarrow H^*_S(LX; \mathbb{Q})$, we describe the Gysin exact sequence of the S^1–principal bundle

$$S^1 \rightarrow ES^1 \times LX \xrightarrow{p} ES^1 \times_{S^1} LX$$

in terms of Sullivan models for LX and $ES^1 \times_{S^1} LX$. As a consequence, the Gysin sequence is identified with Connes’ exact sequence under the isomorphisms $HH^*_S(\mathcal{M}(X)) \cong H^{-*}(LX; \mathbb{Q})$ and $HC^\bullet_\bullet(\mathcal{M}(X)) \cong H^{-*}(ES^1 \times_{S^1} LX; \mathbb{Q})$ described in Section 3.

The cohomology Gysin sequence associated with the bundle has the form

$$\cdots \rightarrow H^{*-2}_{S^1}(LX) \xrightarrow{S} H^*_S(LX) \xrightarrow{p^*} H^*(LX) \xrightarrow{\beta} H^{*-1}_{S^1}(LX) \rightarrow \cdots,$$

in which S is defined by the cup product with the Euler class $q^*(u)$, where u is the generator of $H^2(ES^1)$. The S^1–principal bundle above fits in the pullback diagram

\[
\begin{array}{ccc}
S^1 & \to & S^1 \\
\downarrow & & \downarrow \\
LX & \to & ES^1 \times_{S^1} LX \\
\longdownarrow & & \longdownarrow \\
LX & \to & ES^1 \times_{S^1} LX \to BS^1
\end{array}
\]

in which the lower sequence is the fiber bundle associated with the universal bundle $ES^1 \rightarrow BS^1$.

We recall the Sullivan models \mathcal{L} and \mathcal{C} defined in Section 3. In the model \mathcal{C} for $ES^1 \times_{S^1} LX$, we write u for the Euler class $q^*(u)$. Thus the map S in the Gysin sequence is regarded as the multiplication by u in the models, namely the S–action in Connes’ exact sequence. In order to obtain rational models for p and β, we here consider the relative Sullivan algebra $\mathcal{L}^\wedge := (\mathcal{C} \otimes (e, \widehat{\delta}))$ with base \mathcal{C}, where $\widehat{\delta}(e) = u$ and $|e| = 1$.

Lemma B.1 The canonical projection $\rho : \mathcal{L}^\wedge \rightarrow \mathcal{L}$ is a homotopy equivalence.

Proof We define a DGA morphism $\iota : \mathcal{L} \rightarrow \mathcal{L}^\wedge$ by $\iota(\alpha) = \alpha + (-1)^{|\alpha|} s(\alpha) e$ for $\alpha \in \mathcal{L}$, where s is the derivation on \mathcal{L} stated in Section 3. Then, we have $\rho \circ \iota = 1$ by definition. Moreover, a homotopy $\mathcal{L}^\wedge \rightarrow \mathcal{L}^\wedge \otimes (t, dt)$ defined by $e \mapsto et$, $u \mapsto ut - e dt$ and $\alpha \mapsto \alpha + (-1)^{|\alpha|} s(\alpha) e (1 - t)$ for $\alpha \in \mathcal{C}$ implies that $\iota \circ \rho$ is homotopic to 1. This completes the proof. \square

Proposition B.2 The derivation $s : \mathcal{L} \rightarrow \mathcal{C}$ is a rational model for β.

Alpberaic & Geometric Topology, Volume 24 (2024)]
Proof From Lemma B.1, the inclusion $\mathcal{E} \hookrightarrow \mathcal{L}^\wedge$ is a rational model for the principal bundle

$$p : ES^1 \times LM \to ES^1 \times_{S^1} LM.$$

Since β is the fiber integration associated with the principal bundle, it is modeled by a map $\int_e : \mathcal{L}^\wedge \to \mathcal{E}$ defined by $\int_e(\alpha_0 + \alpha_1 e) = \alpha_1$ for $\alpha_i \in \mathcal{E}$. Therefore, the result follows since the composite $\int_e i$ coincides with the derivation s.

List of symbols

symbol	meaning	page
\cdot	the loop product	2633
\otimes	the dual loop coproduct	2633
$[,]$	the string bracket, dual string cobracket	2624
Δ	the BV operator on the Hochschild homology of a differential graded algebra	2626
Δ'	the BV operator on the homology of LM	2627
$\mathcal{H}H_\ast(\Omega)$	the Hochschild homology of a DGA Ω	2630
$\mathcal{H}H_\ast(\Omega)$	the reduced Hochschild homology, $\mathcal{H}H_\ast(\Omega) \cong \mathcal{H}H_\ast(\Omega) \oplus \mathbb{K}$	2630
$\mathcal{H}C_\ast(\Omega)$	the negative cyclic homology of a DGA Ω	2630
$\mathcal{H}C_\ast(\Omega)$	the reduced negative cyclic homology, $\mathcal{H}C_\ast(\Omega) \cong \mathcal{H}C_\ast(\Omega) \oplus \mathbb{K}[u]$	2630
S	the S–action on the negative cyclic homology	2630
\mathcal{L}, (\mathcal{L}, δ)	the Sullivan minimal model for the free loop space LM (and the Hochschild homology)	2631
\mathcal{E}, (\mathcal{E}, D)	the Sullivan minimal model for the Borel construction $ES^1 \times_{S^1} LM$ (and the negative cyclic homology)	2631
(\mathcal{L}, δ)	the reduced version of (\mathcal{L}, δ)	2637
$(\mathcal{L}^{(n)}, \delta)$	a direct summand of $(\mathcal{L}, \delta) = \bigoplus_n (\mathcal{L}^{(n)}, \delta)$	2637
s	a derivation on \mathcal{L}, which is a chain model of Δ	2631

Acknowledgements The authors thank Jean-Claude Thomas and Luc Menichi for comments on the first draft of this manuscript. The authors are grateful to the referee for a very careful reading of the manuscript, valuable suggestions and comments.

Kuribayashi was partially supported by a Grant-in-Aid for Scientific Research (B) 21H00982 from Japan Society for the Promotion of Science. Naito was supported by JSPS KAKENHI grant JP18K13403. Wakatsuki was supported by JSPS KAKENHI grant 20J00404. Yamaguchi was partially supported by JSPS KAKENHI grant 20K03591.

Algebraic & Geometric Topology, Volume 24 (2024)
References

[1] M Arkowitz, G Lupton, *Rational obstruction theory and rational homotopy sets*, Math. Z. 235 (2000) 525–539 MR Zbl

[2] S Basu, *Transversal string topology & invariants of manifolds*, PhD thesis, State University of New York at Stony Brook (2011) MR Available at https://www.proquest.com/docview/89888965

[3] Y Berest, A C Ramadoss, Y Zhang, *Hodge decomposition of string topology*, Forum Math. Sigma 9 (2021) art. id. e33 MR Zbl

[4] R Body, R Douglas, *Unique factorization of rational homotopy types*, Pacific J. Math. 90 (1980) 21–26 MR Zbl

[5] R Body, M Mimura, H Shiga, D Sullivan, *p–universal spaces and rational homotopy types*, Comment. Math. Helv. 73 (1998) 427–442 MR Zbl

[6] D Burghelea, Z Fiedorowicz, W Gajda, *Adams operations in Hochschild and cyclic homology of de Rham algebra and free loop spaces*, K–Theory 4 (1991) 269–287 MR Zbl

[7] D Burghelea, M Vigué-Poirrier, *Cyclic homology of commutative algebras, I*, from “Algebraic topology: rational homotopy” (Y Félix, editor), Lecture Notes in Math. 1318, Springer (1988) 51–72 MR Zbl

[8] M Chas, D Sullivan, *String topology*, preprint (1999) arXiv math/9911159

[9] D Chataur, L Menichi, *String topology of classifying spaces*, J. Reine Angew. Math. 669 (2012) 1–45 MR Zbl

[10] X Chen, *An algebraic chain model of string topology*, Trans. Amer. Math. Soc. 364 (2012) 2749–2781 MR Zbl

[11] X Chen, F Eshmatov, L Liu, *Gravity algebra structure on the negative cyclic homology of Calabi–Yau algebras*, J. Geom. Phys. 147 (2020) 103522, 19 MR Zbl

[12] R.L. Cohen, J D S Jones, J Yan, *The loop homology algebra of spheres and projective spaces*, from “Categorical decomposition techniques in algebraic topology” (G Arone, J Hubbuck, R Levi, M Weiss, editors), Progr. Math. 215, Birkhäuser, Basel (2004) 77–92 MR Zbl

[13] C Costoya, A Viruel, *Every finite group is the group of self-homotopy equivalences of an elliptic space*, Acta Math. 213 (2014) 49–62 MR Zbl

[14] Y Félix, S Halperin, J-C Thomas, *Gorenstein spaces*, Adv. in Math. 71 (1988) 92–112 MR Zbl

[15] Y Félix, S Halperin, J-C Thomas, *Rational homotopy theory*, Graduate Texts in Math. 205, Springer (2001) MR Zbl

[16] Y Félix, L Menichi, J-C Thomas, *Gerstenhaber duality in Hochschild cohomology*, J. Pure Appl. Algebra 199 (2005) 43–59 MR Zbl

[17] Y Félix, J-C Thomas, *Rational BV–algebra in string topology*, Bull. Soc. Math. France 136 (2008) 311–327 MR Zbl

[18] Y Félix, J-C Thomas, *String topology on Gorenstein spaces*, Math. Ann. 345 (2009) 417–452 MR Zbl

[19] Y Félix, J-C Thomas, M Vigué-Poirrier, *Rational string topology*, J. Eur. Math. Soc. 9 (2007) 123–156 MR Zbl

[20] B L Feigin, B L Tsygan, *Additive K–theory*, from “K–theory, arithmetic and geometry” (Y I Manin, editor), Lecture Notes in Math. 1289, Springer (1987) 67–209 MR Zbl
A reduction of the string bracket to the loop product

[21] E Getzler, *Two-dimensional topological gravity and equivariant cohomology*, Comm. Math. Phys. 163 (1994) 473–489 MR Zbl

[22] E Getzler, J D S Jones, *A_{∞}–algebras and the cyclic bar complex*, Illinois J. Math. 34 (1990) 256–283 MR Zbl

[23] E Getzler, J D S Jones, S Petrack, *Differential forms on loop spaces and the cyclic bar complex*, Topology 30 (1991) 339–371 MR Zbl

[24] S Halperin, J Stasheff, *Obstructions to homotopy equivalences*, Adv. in Math. 32 (1979) 233–279 MR Zbl

[25] R A Hepworth, *String topology for Lie groups*, J. Topol. 3 (2010) 424–442 MR Zbl

[26] J D S Jones, *Cyclic homology and equivariant homology*, Invent. Math. 87 (1987) 403–423 MR Zbl

[27] K Kuribayashi, L Menichi, *The Batalin–Vilkovisky algebra in the string topology of classifying spaces*, Canad. J. Math. 71 (2019) 843–889 MR Zbl

[28] K Kuribayashi, L Menichi, T Naito, *Derived string topology and the Eilenberg–Moore spectral sequence*, Israel J. Math. 209 (2015) 745–802 MR Zbl

[29] K Kuribayashi, T Yamaguchi, *On additive K–theory with the Loday–Quillen *–product*, Math. Scand. 87 (2000) 5–21 MR Zbl

[30] J-L Loday, *Cyclic homology*, Grundl. Math. Wissen. 301, Springer (1992) MR Zbl

[31] J-L Loday, D Quillen, *Cyclic homology and the Lie algebra homology of matrices*, Comment. Math. Helv. 59 (1984) 569–591 MR Zbl

[32] J McCleary, *A user’s guide to spectral sequences*, 2nd edition, Cambridge Studies in Advanced Mathematics 58, Cambridge Univ. Press (2001) MR Zbl

[33] L Menichi, *Batalin–Vilkovisky algebra structures on Hochschild cohomology*, Bull. Soc. Math. France 137 (2009) 277–295 MR Zbl

[34] L Menichi, *String topology for spheres*, Comment. Math. Helv. 84 (2009) 135–157 MR Zbl

[35] L Menichi, *A Batalin–Vilkovisky algebra morphism from double loop spaces to free loops*, Trans. Amer. Math. Soc. 363 (2011) 4443–4462 MR Zbl

[36] M Mimura, R C O’Neill, H Toda, *On p–equivalence in the sense of Serre*, Jpn. J. Math. 40 (1971) 1–10 MR Zbl

[37] M Mimura, H Toda, *On p–equivalences and p–universal spaces*, Comment. Math. Helv. 46 (1971) 87–97 MR Zbl

[38] J W Morgan, *The algebraic topology of smooth algebraic varieties*, Inst. Hautes Études Sci. Publ. Math. 48 (1978) 137–204 MR Zbl

[39] T Naito, *String operations on rational Gorenstein spaces*, preprint (2013) arXiv 1301.1785

[40] H Scheerer, *Fibrewise P–universal nilpotent fibrations*, Proc. Roy. Soc. Edinburgh Sect. A 98 (1984) 89–104 MR Zbl

[41] J-P Serre, *Groupes d’homotopie et classes de groupes abéliens*, Ann. of Math. 58 (1953) 258–294 MR Zbl

[42] L Smith, *Homological algebra and the Eilenberg–Moore spectral sequence*, Trans. Amer. Math. Soc. 129 (1967) 58–93 MR Zbl
[43] FY Tabing, *String homology and Lie algebra structures*, PhD thesis, University of California, Santa Cruz (2015) MR arXiv 1610.03933

[44] H Tamanoi, *Cap products in string topology*, Algebr. Geom. Topol. 9 (2009) 1201–1224 MR Zbl

[45] M Vigué-Poirrier, *Sur l’algèbre de cohomologie cyclique d’un espace 1–connexe applications à la géometrie des variétés*, Illinois J. Math. 32 (1988) 40–52 MR Zbl

[46] M Vigué-Poirrier, *Homologie cyclique des espaces formels*, J. Pure Appl. Algebra 91 (1994) 347–354 MR Zbl

[47] M Vigué-Poirrier, D Burghelea, *A model for cyclic homology and algebraic K–theory of 1–connected topological spaces*, J. Differential Geom. 22 (1985) 243–253 MR Zbl

[48] M Vigué-Poirrier, D Sullivan, *The homology theory of the closed geodesic problem*, J. Differential Geometry 11 (1976) 633–644 MR Zbl

[49] S Wakatsuki, *Description and triviality of the loop products and coproducts for rational Gorenstein spaces*, preprint (2016) arXiv 1612.03563

[50] S Wakatsuki, *Coproducts in brane topology*, Algebr. Geom. Topol. 19 (2019) 2961–2988 MR Zbl

[51] S Wakatsuki, *Kohomology: cohomology calculator for Sullivan algebras* (2024) Available at https://github.com/shwaka/kohomology/index.html

[52] G W Whitehead, *Elements of homotopy theory*, Graduate Texts in Math. 61, Springer (1978) MR Zbl

[53] T Yang, *A Batalin–Vilkovisky algebra structure on the Hochschild cohomology of truncated polynomials*, Topology Appl. 160 (2013) 1633–1651 MR Zbl

Department of Mathematical Sciences, Faculty of Science, Shinshu University

Matsumoto, Nagano, Japan

Nippon Institute of Technology

Gakuendai, Miyashiro-machi, Minamisaitama-gun, Saitama, Japan

Department of Mathematical Sciences, Faculty of Science, Shinshu University

Matsumoto, Nagano, Japan

Faculty of Education, Kochi University

Akebono-cho, Kochi, Japan

kuri@math.shinshu-u.ac.jp, naito.takahito@nit.ac.jp, shun.wakatsuki@math.nagoya-u.ac.jp, tyamag@kochi-u.ac.jp

Received: 12 May 2022 Revised: 11 May 2023
ALGEBRAIC & GEOMETRIC TOPOLOGY

Volume 24 Issue 5 (pages 2389–2970) 2024

Formal contact categories 2389

Benjamin Cooper

Comparison of period coordinates and Teichmüller distances 2451

Ian Frankel

Topological Hochschild homology of truncated Brown–Peterson spectra, I 2509

Gabriel Angelini-Knoll, Dominic Leon Culver and Eva Höning

Points of quantum SL_n coming from quantum snakes 2537

Daniel C Douglas

Algebraic generators of the skein algebra of a surface 2571

Ramanuan Santhanaroubane

Bundle transfer of L–homology orientation classes for singular spaces 2579

Markus Banagl

A reduction of the string bracket to the loop product 2619

Katsuhiko Kuribayashi, Takahto Naito, Shun Wakatsuki and Toshihiro Yamaguchi

Asymptotic dimensions of the arc graphs and disk graphs 2655

Koji Fujiwara and Saul Schleimer

Representation stability for homotopy automorphisms 2673

Erik Lindell and Bashar Saleh

The strong Haken theorem via sphere complexes 2707

Sebastian Hensel and Jennifer Schultens

What are GT–shadows? 2721

Vasily A Dolgushev, Khanh Q Le and Aidan A Lorenz

A simple proof of the Crowell–Murasugi theorem 2779

Thomas Kindred

The Burau representation and shapes of polyhedra 2787

Ethan Dlugie

Turning vector bundles 2807

Diarmuid Crowley, Csaba Nagy, Blake Sims and Huijun Yang

Rigidification of cubical quasicategories 2851

Pierre-Louis Curien, Muriel Livernet and Gabriel Saadia

Tautological characteristic classes, I 2889

Jan Dymara and Tadeusz Januszkiewicz

Homotopy types of suspended 4–manifolds 2933

Pengcheng Li

The braid indices of the reverse parallel links of alternating knots 2957

Yuanan Diao and Hugh Morton