Regular holonomic $\mathcal{D}[[\hbar]]$-modules

Andrea D’Agnolo, Stéphane Guillermou and Pierre Schapira

Abstract

We describe the category of regular holonomic modules over the ring $\mathcal{D}[[\hbar]]$ of linear differential operators with a formal parameter \hbar. In particular, we establish the Riemann-Hilbert correspondence and discuss the additional t-structure related to \hbar-torsion.

Introduction

On a complex manifold X, we will be interested in the study of holonomic modules over the ring $\mathcal{D}_X[[\hbar]]$ of differential operators with a formal parameter \hbar. Such modules naturally appear when studying deformation quantization modules (DQ-modules) along a smooth Lagrangian submanifold of a complex symplectic manifold (see [11, Chapter 7]).

In this paper, after recalling the tools from loc. cit. that we shall use, we explain some basic notions of $\mathcal{D}_X[[\hbar]]$-modules theory. For example, it follows easily from general results on modules over $\mathbb{C}[[\hbar]]$-algebras that given two holonomic $\mathcal{D}_X[[\hbar]]$-modules \mathcal{M} and \mathcal{N}, the complex $R\mathcal{H}om_{\mathcal{D}_X[[\hbar]]}(\mathcal{M}, \mathcal{N})$ is constructible over $\mathbb{C}[[\hbar]]$ and the microsupport of the solution complex $R\mathcal{H}om_{\mathcal{D}_X[[\hbar]]}(\mathcal{M}, \mathcal{O}_X[[\hbar]])$ coincides with the characteristic variety of \mathcal{M}.

Then we establish our main result, the Riemann-Hilbert correspondence for regular holonomic $\mathcal{D}_X[[\hbar]]$-modules, an \hbar-variant of Kashiwara’s classical theorem. In other words, we show that the solution functor with values in $\mathcal{O}_X[[\hbar]]$ induces an equivalence between the derived category of regular holonomic $\mathcal{D}_X[[\hbar]]$-modules and that of constructible sheaves over $\mathbb{C}[[\hbar]]$. A quasi-inverse is obtained by constructing the “sheaf” of holomorphic functions with temperate growth and a formal parameter \hbar in the subanalytic site. This needs some care since the literature on this subject is written in the framework of sheaves over a field and does not immediately apply to the ring $\mathbb{C}[[\hbar]]$.
We also discuss the t-structure related to h-torsion. Indeed, as we work over the ring $\mathbb{C}[[h]]$ and not over a field, the derived category of holonomic $\mathcal{D}_X[[h]]$-modules (or, equivalently, that of constructible sheaves over $\mathbb{C}[[h]]$) has an additional t-structure related to h-torsion. We will show how the duality functor interchanges it with the natural t-structure.

Finally, we describe some natural links between the ring $\mathcal{D}_X[[h]]$ and deformation quantization algebras, as mentioned above.

Notations and conventions

We shall mainly follow the notations of [10]. In particular, if \mathcal{C} is an abelian category, we denote by $\mathcal{D}(\mathcal{C})$ the derived category of \mathcal{C} and by $\mathcal{D}^*(\mathcal{C})$ ($* = +, -, b$) the full triangulated subcategory consisting of objects with bounded from below (resp. bounded from above, resp. bounded) cohomology.

For a sheaf of rings \mathcal{R} on a topological space, or more generally a site, we denote by $\text{Mod}(\mathcal{R})$ the category of left \mathcal{R}-modules and we write $\mathcal{D}^*(\mathcal{R})$ instead of $\mathcal{D}^*(\text{Mod}(\mathcal{R}))$ ($* = \emptyset, +, -, b$). We denote by $\text{Mod}_{\text{coh}}(\mathcal{R})$ the full abelian subcategory of $\text{Mod}(\mathcal{R})$ of coherent objects, and by $\mathcal{D}_{\text{coh}}^b(\mathcal{R})$ the full triangulated subcategory of $\mathcal{D}^b(\mathcal{R})$ of objects with coherent cohomology groups.

If R is a ring (a sheaf of rings over a point), we write for short $\mathcal{D}_{\text{coh}}^b(R)$ instead of $\mathcal{D}_{\text{coh}}^b(\text{Mod}(R))$.

1 \ Formal deformations (after [11])

We review here some definitions and results from [11] that we shall use in this paper.

Modules over $\mathbb{Z}[h]$-algebras

One says that a $\mathbb{Z}[h]$-module \mathcal{M} has no h-torsion if $\mathcal{M} \to \mathcal{M}$ is injective and one says that \mathcal{M} is h-complete if $\mathcal{M} \to \lim_{\mathcal{M}/h^n}$ is an isomorphism.

Let \mathcal{R} be a $\mathbb{Z}[h]$-algebra, and assume that \mathcal{R} has no h-torsion. One sets

$$\mathcal{R}^{\text{loc}} := \mathbb{Z}[h, h^{-1}] \otimes_{\mathbb{Z}[h]} \mathcal{R}, \quad \mathcal{R}_0 := \mathcal{R}/h\mathcal{R},$$
and considers the functors
\[(\cdots)^{\text{loc}}: \operatorname{Mod}(\mathcal{R}) \to \operatorname{Mod}(\mathcal{R}^{\text{loc}}), \quad \mathcal{M} \mapsto \mathcal{M}^{\text{loc}} := \mathcal{R}^{\text{loc}} \otimes_{\mathcal{R}} \mathcal{M},\]
\[\text{gr}_h: D(\mathcal{R}) \to D(\mathcal{R}_0), \quad \mathcal{M} \mapsto \text{gr}_h(\mathcal{M}) := \mathcal{R}_0^{\mathbb{L}} \otimes_{\mathcal{R}} \mathcal{M}.\]

Note that \((\cdots)^{\text{loc}}\) is exact and that for \(\mathcal{M}, \mathcal{N} \in D^b(\mathcal{R})\) and \(\mathcal{P} \in D^b(\mathcal{R}^{\text{op}})\) one has isomorphisms:

\[
\begin{align*}
(1.1) \quad & \quad \text{gr}_h(\mathcal{P}^{\mathbb{L}} \otimes_{\mathcal{R}} \mathcal{M}) \simeq \text{gr}_h \mathcal{P}^{\mathbb{L}} \otimes_{\mathcal{R}_0} \text{gr}_h \mathcal{M}, \\
(1.2) \quad & \quad \text{gr}_h(\mathcal{R} \mathcal{H}om_{\mathcal{R}}(\mathcal{M}, \mathcal{N})) \simeq \mathcal{R} \mathcal{H}om_{\mathcal{R}_0}(\text{gr}_h \mathcal{M}, \text{gr}_h \mathcal{N}).
\end{align*}
\]

Cohomologically \(h\)-complete sheaves

Definition 1.1. One says that an object \(\mathcal{M}\) of \(D(\mathcal{R})\) is cohomologically \(h\)-complete if \(\mathcal{R} \mathcal{H}om_{\mathcal{R}}(\mathcal{R}^{\text{loc}} \otimes_{\mathcal{R}} \mathcal{M}, \mathcal{M}) = 0\).

Hence, the full subcategory of cohomologically \(h\)-complete objects is triangulated. In fact, it is the right orthogonal to the full subcategory \(D(\mathcal{R}^{\text{loc}})\) of \(D(\mathcal{R})\).

Remark that \(\mathcal{M} \in D(\mathcal{R})\) is cohomologically \(h\)-complete if and only if its image in \(D(\mathbb{Z}[\mathcal{X}[h]])\) is cohomologically \(h\)-complete.

Proposition 1.2. Let \(\mathcal{M} \in D(\mathcal{R})\). Then \(\mathcal{M}\) is cohomologically \(h\)-complete if and only if

\[\lim_{\substack{\text{U}\in\mathcal{X} \ni x \text{ open}} \mathbb{E}xt^j_{\mathbb{Z}[h]}(\mathbb{Z}[h, h^{-1}], H^i(U; \mathcal{M}))} = 0,\]

for any \(x \in X\), any integer \(i \in \mathbb{Z}\) and any \(j = 0, 1\). Here, \(U\) ranges over an open neighborhood system of \(x\).

Corollary 1.3. Let \(\mathcal{M} \in \operatorname{Mod}(\mathcal{R})\). Assume that \(\mathcal{M}\) has no \(h\)-torsion, is \(h\)-complete and there exists a base \(\mathcal{B}\) of open subsets such that \(H^i(U; \mathcal{M}) = 0\) for any \(i > 0\) and any \(U \in \mathcal{B}\). Then \(\mathcal{M}\) is cohomologically \(h\)-complete.

The functor \(\text{gr}_h\) is conservative on the category of cohomologically \(h\)-complete objects:

Proposition 1.4. Let \(\mathcal{M} \in D(\mathcal{R})\) be a cohomologically \(h\)-complete object. If \(\text{gr}_h(\mathcal{M}) = 0\), then \(\mathcal{M} = 0\).
Proposition 1.5. Assume that $M \in D(\mathcal{R})$ is cohomologically \hbar-complete. Then $R\mathcal{H}om(\mathcal{N}, M) \in D(\mathbb{Z}_X[\hbar])$ is cohomologically \hbar-complete for any $\mathcal{N} \in D(\mathcal{R})$.

Proposition 1.6. Let $f: X \rightarrow Y$ be a continuous map, and $M \in D(\mathbb{Z}_X[\hbar])$. If M is cohomologically \hbar-complete, then so is Rf_*M.

Reductions to $\hbar = 0$

Now we assume that X is a Hausdorff locally compact topological space.

By a basis \mathcal{B} of compact subsets of X, we mean a family of compact subsets such that for any $x \in X$ and any open neighborhood U of x, there exists $K \in \mathcal{B}$ such that $x \in \text{Int}(K) \subset U$.

Let \mathcal{A} be a $\mathbb{Z}[\hbar]$-algebra, and recall that we set $\mathcal{A}_0 = \mathcal{A} / \hbar \mathcal{A}$. Consider the following conditions:

(i) \mathcal{A} has no \hbar-torsion and is \hbar-complete,

(ii) \mathcal{A}_0 is a left Noetherian ring,

(iii) there exists a basis \mathcal{B} of compact subsets of X and a prestack $U \mapsto \text{Mod}_{\text{gd}}(\mathcal{A}_0|U)$ (U open in X) such that

(a) for any $K \in \mathcal{B}$ and an open subset U such that $K \subset U$, there exists $K' \in \mathcal{B}$ such that $K \subset \text{Int}(K') \subset K' \subset U$,

(b) $U \mapsto \text{Mod}_{\text{gd}}(\mathcal{A}_0|U)$ is a full subprestack of $U \mapsto \text{Mod}_{\text{coh}}(\mathcal{A}_0|U)$,

(c) for any $K \in \mathcal{B}$, any open set U containing K, any $\mathcal{M} \in \text{Mod}_{\text{gd}}(\mathcal{A}_0|U)$ and any $j > 0$, one has $H^j(K; \mathcal{M}) = 0$,

(d) for an open subset U and $\mathcal{M} \in \text{Mod}_{\text{coh}}(\mathcal{A}_0|U)$, if $\mathcal{M}|V$ belongs to $\text{Mod}_{\text{gd}}(\mathcal{A}_0|V)$ for any relatively compact open subset V of U, then \mathcal{M} belongs to $\text{Mod}_{\text{gd}}(\mathcal{A}_0|U)$,

(e) for any U open in X, $\text{Mod}_{\text{gd}}(\mathcal{A}_0|U)$ is stable by subobjects, quotients and extensions in $\text{Mod}_{\text{coh}}(\mathcal{A}_0|U)$,

(f) for any $\mathcal{M} \in \text{Mod}_{\text{coh}}(\mathcal{A}_0|U)$, there exists an open covering $U = \bigcup_i U_i$ such that $\mathcal{M}|U_i \in \text{Mod}_{\text{gd}}(\mathcal{A}_0|U_i)$,

(g) $\mathcal{A}_0 \in \text{Mod}_{\text{gd}}(\mathcal{A}_0)$,

(iii') there exists a basis \mathcal{B} of open subsets of X such that for any $U \in \mathcal{B}$, any $\mathcal{M} \in \text{Mod}_{\text{coh}}(\mathcal{A}_0|U)$ and any $j > 0$, one has $H^j(U; \mathcal{M}) = 0$.

4
We will suppose that \mathcal{A} and \mathcal{A}_0 satisfy either Assumption 1.7 or Assumption 1.8.

Assumption 1.7. \mathcal{A} and \mathcal{A}_0 satisfy conditions (i), (ii) and (iii) above.

Assumption 1.8. \mathcal{A} and \mathcal{A}_0 satisfy conditions (i), (ii) and (iii)' above.

Theorem 1.9. (i) \mathcal{A} is a left Noetherian ring.

(ii) Any coherent \mathcal{A}-module \mathcal{M} is \mathfrak{h}-complete.

(iii) Let $\mathcal{M} \in D^b_{\text{coh}}(\mathcal{A})$. Then \mathcal{M} is cohomologically \mathfrak{h}-complete.

Corollary 1.10. The functor $\text{gr}_\mathfrak{h} : D^b_{\text{coh}}(\mathcal{A}) \to D^b_{\text{coh}}(\mathcal{A}_0)$ is conservative.

Theorem 1.11. Let $\mathcal{M} \in D^+(\mathcal{A})$ and assume:

(a) \mathcal{M} is cohomologically \mathfrak{h}-complete,

(b) $\text{gr}_\mathfrak{h}(\mathcal{M}) \in D^+_{\text{coh}}(\mathcal{A}_0)$.

Then, $\mathcal{M} \in D^+_{\text{coh}}(\mathcal{A})$ and for all $i \in \mathbb{Z}$ we have the isomorphism

$$H^i(\mathcal{M}) \cong \lim_{\leftarrow n} H^i(\mathcal{A} / \mathfrak{h}^n \mathcal{A} \otimes^L_\mathcal{A} \mathcal{M}).$$

Theorem 1.12. Assume that $\mathcal{A}_0^{\text{op}} = \mathcal{A}^{\text{op}} / \mathfrak{h} \mathcal{A}^{\text{op}}$ is a Noetherian ring and the flabby dimension of X is finite. Let \mathcal{M} be an \mathcal{A}-module. Assume the following conditions:

(a) \mathcal{M} has no \mathfrak{h}-torsion,

(b) \mathcal{M} is cohomologically \mathfrak{h}-complete,

(c) $\mathcal{M} / \mathfrak{h} \mathcal{M}$ is a flat \mathcal{A}_0-module.

Then \mathcal{M} is a flat \mathcal{A}-module.

If moreover $\mathcal{M} / \mathfrak{h} \mathcal{M}$ is a faithfully flat \mathcal{A}_0-module, then \mathcal{M} is a faithfully flat \mathcal{A}-module.

Theorem 1.13. Let $d \in \mathbb{N}$. Assume that \mathcal{A}_0 is d-syzygic, i.e., that any coherent \mathcal{A}_0-module locally admits a projective resolution of length $\leq d$ by free \mathcal{A}_0-modules of finite rank. Then
(a) \mathcal{A} is $(d+1)$-syzygic.

(b) Let \mathcal{M}^\bullet be a complex of \mathcal{A}-modules concentrated in degrees $[a,b]$ and with coherent cohomology groups. Then, locally there exists a quasi-isomorphism $\mathcal{L}^\bullet \to \mathcal{M}^\bullet$ where \mathcal{L}^\bullet is a complex of free \mathcal{A}-modules of finite rank concentrated in degrees $[a-d-1,b]$.

Proposition 1.14. Let $\mathcal{M} \in D^b_{\text{coh}}(\mathcal{A})$ and let $a \in \mathbb{Z}$. The conditions below are equivalent:

(i) $H^a(\text{gr}_h(\mathcal{M})) \simeq 0$,

(ii) $H^a(\mathcal{M}) \simeq 0$ and $H^{a+1}(\mathcal{M})$ has no h-torsion.

Cohomologically h-complete sheaves on real manifolds

Let now X be a real analytic manifold. Recall from [7] that the microsupport of $F \in D^b(Z_X)$ is a closed involutive subset of the cotangent bundle T^*X denoted by $\text{SS}(F)$. The microsupport is additive on $D^b(Z_X)$ (cf Definition 3.3 (ii) below). Considering the distinguished triangle $F \xrightarrow{h} F \to \text{gr}_h F \xrightarrow{+1}$, one gets the estimate

\[(1.3) \quad \text{SS}(\text{gr}_h(F)) \subset \text{SS}(F).\]

Using Proposition 1.4 and 1.6, one easily proves:

Proposition 1.15. Let $F \in D^b(Z_X[h])$ and assume that F is cohomologically h-complete. Then

\[(1.4) \quad \text{SS}(F) = \text{SS}(\text{gr}_h(F)).\]

For \mathbb{K} a commutative unital Noetherian ring, one denotes by $\text{Mod}_{\mathbb{R},c}(\mathbb{K}_X)$ the full subcategory of $\text{Mod}(\mathbb{K}_X)$ consisting of \mathbb{R}-constructible sheaves and by $D^b_{\mathbb{R},c}(\mathbb{K}_X)$ the full triangulated subcategory of $D^b(\mathbb{K}_X)$ consisting of objects with \mathbb{R}-constructible cohomology. In this paper, we shall mainly be interested with the case where \mathbb{K} is either \mathbb{C} or the ring of formal power series in an indeterminate h, that we denote by $\mathbb{C}^h := \mathbb{C}[[h]]$.

By Proposition 1.2 one has
Proposition 1.16. Let $F \in \mathbf{D}^b_{\mathbb{R}-c}(\mathbb{C}^h_X)$. Then F is cohomologically h-complete.

Corollary 1.17. The functor $\text{gr}_h : \mathbf{D}^b_{\mathbb{R}-c}(\mathbb{C}^h_X) \to \mathbf{D}^b_{\mathbb{R}-c}(\mathbb{C}_X)$ is conservative.

Corollary 1.18. For $F \in \mathbf{D}^b_{\mathbb{R}-c}(\mathbb{C}^h_X)$, one has the equality

$$\text{SS}(\text{gr}_h(F)) = \text{SS}(F).$$

Proposition 1.19. For $F \in \mathbf{D}^b_{\mathbb{R}-c}(\mathbb{C}^h_X)$ and $i \in \mathbb{Z}$ one has $\text{supp} H^i(F) \subset \text{supp} H^i(\text{gr}_h F)$. In particular if $H^i(\text{gr}_h F) = 0$ then $H^i(F) = 0$.

Proof. We apply Proposition 1.14 to F_x for any $x \in X$. Q.E.D.

2 Formal extension

Let X be a topological space, or more generally a site, and let \mathcal{R}_0 be a sheaf of rings on X. In this section, we let

$$\mathcal{R} := \mathcal{R}_0[[h]] = \prod_{n \geq 0} \mathcal{R}_0 h^n$$

be the formal extension of \mathcal{R}_0, whose sections on an open subset U are formal series $r = \sum_{n=0}^{\infty} r_j h^n$, with $r_j \in \Gamma(U; \mathcal{R}_0)$. Consider the associated functor

$$\begin{align*}
(\cdot)^h : \text{Mod}(\mathcal{R}_0) &\to \text{Mod}(\mathcal{R}), \\
\mathcal{N} &\mapsto \mathcal{N}[[h]] = \lim_{\leftarrow n}(\mathcal{R}_n \otimes_{\mathcal{R}_0} \mathcal{N}),
\end{align*}$$

where $\mathcal{R}_n := \mathcal{R}/h^{n+1}\mathcal{R}$ is regarded as an $(\mathcal{R}, \mathcal{R}_0)$-bimodule. Since \mathcal{R}_n is free of finite rank over \mathcal{R}_0, the functor $(\cdot)^h$ is left exact. We denote by $(\cdot)^{Rh}$ its right derived functor.

Proposition 2.1. For $\mathcal{N} \in \mathbf{D}^b(\mathcal{R}_0)$ one has

$$\mathcal{N}^{Rh} \simeq \mathcal{R}\text{Hom}_{\mathcal{R}_0}(\mathcal{R}^{\text{loc}}/h\mathcal{R}, \mathcal{N}),$$

where $\mathcal{R}^{\text{loc}}/h\mathcal{R}$ is regarded as an $(\mathcal{R}_0, \mathcal{R})$-bimodule.

Proof. It is enough to prove that for $\mathcal{N} \in \text{Mod}(\mathcal{R}_0)$ one has

$$\mathcal{N}^h \simeq \mathcal{R}\text{Hom}_{\mathcal{R}_0}(\mathcal{R}^{\text{loc}}/h\mathcal{R}, \mathcal{N}).$$

7
Let $\mathcal{R}_n^* = \text{Hom}_{\mathcal{R}_0}(\mathcal{R}_n, \mathcal{R}_0)$, regarded as an $(\mathcal{R}_0, \mathcal{R})$-bimodule. Then

$$\mathcal{N}^h = \lim_{\leftarrow n} (\mathcal{R}_n \otimes_{\mathcal{R}_0} \mathcal{N}) \simeq \text{Hom}_{\mathcal{R}_0}(\lim_{\leftarrow n} \mathcal{R}_n^*, \mathcal{N}).$$

Since

$$\mathcal{R}^{\text{loc}} / \hbar \mathcal{R} \simeq \lim_{\leftarrow n} (\hbar^{-n} \mathcal{R} / \hbar \mathcal{R}),$$

it is enough to prove that there is an isomorphism of $(\mathcal{R}_0, \mathcal{R})$-bimodules

$$\text{Hom}_{\mathcal{R}_0}(\mathcal{R}_n, \mathcal{R}_0) \simeq \hbar^{-n} \mathcal{R} / \hbar \mathcal{R}.$$

Recalling that $\mathcal{R}_n = \mathcal{R} / \hbar^{n+1} \mathcal{R}$, this follows from the pairing

$$(\mathcal{R} / \hbar^{n+1} \mathcal{R}) \otimes_{\mathcal{R}_0} (\hbar^{-n} \mathcal{R} / \hbar \mathcal{R}) \to \mathcal{R}_0, \quad f \otimes g \mapsto \text{Res}_{\mathcal{R}_0}(f g dh/\hbar).$$

Q.E.D.

Note that the isomorphism of $(\mathcal{R}, \mathcal{R}_0)$-bimodules

$$\mathcal{R} \simeq (\mathcal{R}_0)^h = \text{Hom}_{\mathcal{R}_0}(\mathcal{R}^{\text{loc}} / \hbar \mathcal{R}, \mathcal{R}_0)$$

induces a natural morphism

(2.2) \hspace{1cm} \mathcal{R} \otimes_{\mathcal{R}_0} \mathcal{N} \to \mathcal{N}^{R\hbar}, \quad \text{for } \mathcal{N} \in \text{D}^b(\mathcal{R}_0).

Proposition 2.2. For $\mathcal{N} \in \text{D}^b(\mathcal{R}_0)$, its formal extension $\mathcal{N}^{R\hbar}$ is cohomologically \hbar-complete.

Proof. The statement follows from $(\mathcal{R}^{\text{loc}} / \hbar \mathcal{R}) \otimes_{\mathcal{R}} \mathcal{R}^{\text{loc}} \simeq 0$ and from the isomorphism

$$\text{RHom}_{\mathcal{R}_0}(\mathcal{R}^{\text{loc}}, \mathcal{N}^{R\hbar}) \simeq \text{RHom}_{\mathcal{R}_0}((\mathcal{R}^{\text{loc}} / \hbar \mathcal{R}) \otimes_{\mathcal{R}} \mathcal{R}^{\text{loc}}, \mathcal{N}).$$

Q.E.D.

Lemma 2.3. Assume that \mathcal{R}_0 is an \mathcal{I}_0-algebra, for \mathcal{I}_0 a commutative sheaf of rings, and let $\mathcal{I} = \mathcal{I}_0[[h]]$. For $\mathcal{M}, \mathcal{N} \in \text{D}^b(\mathcal{R}_0)$ we have an isomorphism in $\text{D}^b(\mathcal{I})$

$$\text{RHom}_{\mathcal{R}_0}(\mathcal{M}, \mathcal{N})^{R\hbar} \simeq \text{RHom}_{\mathcal{R}_0}(\mathcal{M}, \mathcal{N}^{R\hbar}).$$
Proof. Noticing that $R_{\mathcal{L}/\hbar} \simeq R_0 \otimes_{\mathcal{I}/\hbar} (\mathcal{L}_{\mathcal{L}/\hbar})$ as (R_0, \mathcal{I})-bimodules, one has

$$R_{\text{Hom}}_{R_0} (M, N)^{R_{\mathcal{L}}} = R_{\text{Hom}}_{R_0} (\mathcal{I}_{\mathcal{L}/\hbar}, R_{\text{Hom}}_{R_0} (M, N))$$

$$\simeq R_{\text{Hom}}_{R_0} (\mathcal{I}_{\mathcal{L}/\hbar}, R_{\text{Hom}}_{R_0} (M, N))$$

$$\simeq R_{\text{Hom}}_{R_0} (M, R_{\text{Hom}}_{R_0} (\mathcal{I}_{\mathcal{L}/\hbar}, N))$$

$$= R_{\text{Hom}}_{R_0} (M, N^{R_{\mathcal{L}}}).$$

Q.E.D.

Lemma 2.4. Let $f: Y \to X$ be a morphism of sites, and assume that $\left(f^{-1} R_0\right)^{h} \simeq f^{-1} \mathcal{R}$. Then the functors R_{f*} and $(\cdot)^{R_{\mathcal{L}}}$ commute, that is, for $\mathcal{P} \in D^{b}(f^{-1} R_0)$ we have $(R_{f*} \mathcal{P})^{R_{\mathcal{L}}} \simeq R_{f*} (\mathcal{P}^{R_{\mathcal{L}}})$ in $D^{b}(\mathcal{R})$.

Proof. One has the isomorphism

$$R_{f*} (\mathcal{P}^{R_{\mathcal{L}}}) = R_{f*} R_{\text{Hom}}_{f^{-1} R_0} (f^{-1} (\mathcal{I}_{\mathcal{L}/\hbar}), \mathcal{P})$$

$$\simeq R_{\text{Hom}}_{R_0} (\mathcal{I}_{\mathcal{L}/\hbar}, R_{f*} \mathcal{P})$$

$$= R_{f*} (\mathcal{P}^{R_{\mathcal{L}}}).$$

Q.E.D.

Proposition 2.5. Let \mathcal{T} be either a basis of open subsets of the site X or, assuming that X is a locally compact topological space, a basis of compact subsets. Denote by $J_{\mathcal{T}}$ the full subcategory of $\text{Mod}(R_0)$ consisting of \mathcal{T}-acyclic objects, i.e., sheaves \mathcal{N} for which $H^k(S; \mathcal{N}) = 0$ for all $k > 0$ and all $S \in \mathcal{T}$. Then $J_{\mathcal{T}}$ is injective with respect to the functor $(\cdot)^{h}$. In particular, for $\mathcal{N} \in J_{\mathcal{T}}$, we have $\mathcal{N}^{h} \simeq \mathcal{N}^{R_{\mathcal{L}}}$.}

Proof. (i) Since injective sheaves are \mathcal{T}-acyclic, $J_{\mathcal{T}}$ is cogenerating.

(ii) Consider an exact sequence $0 \to \mathcal{N}^{-} \to \mathcal{N} \to \mathcal{N}^{-h} \to 0$ in $\text{Mod}(R_0)$. Clearly, if both \mathcal{N}^{-} and \mathcal{N} belong to $J_{\mathcal{T}}$, then so does \mathcal{N}^{-h}.

(iii) Consider an exact sequence as in (ii) and assume that $\mathcal{N}^{-} \in J_{\mathcal{T}}$. We have to prove that $0 \to \mathcal{N}^{-h} \to \mathcal{N} \to \mathcal{N}^{-h} \to 0$ is exact. Since $(\cdot)^{h}$ is left exact, it is enough to prove that $\mathcal{N}^{-h} \to \mathcal{N}^{-h}$ is surjective. Noticing that $\mathcal{N}^{-h} \simeq \prod_{N} \mathcal{N}$ as R_0-modules, it is enough to prove that $\prod_{N} \mathcal{N} \to \prod_{N} \mathcal{N}^{-h}$ is surjective.

(iii)-(a) Assume that \mathcal{T} is a basis of open subsets. Any open subset $U \subset X$ has a cover $\{U_i\}_{i \in I}$ by elements $U_i \in \mathcal{T}$. For any $i \in I$, the morphism
\(\mathcal{N}(U_i) \to \mathcal{N}''(U_i) \) is surjective. The result follows taking the product over \(\mathbb{N} \).

(iii)-(b) Assume that \(\mathcal{F} \) is a basis of compact subsets. For any \(K \in \mathcal{F} \), the morphism \(\mathcal{N}(K) \to \mathcal{N}''(K) \) is surjective. Hence, there exists a basis \(\mathcal{V} \) of open subsets such that for any \(x \in X \) and any \(V \ni x \in \mathcal{V} \), there exists \(V' \in \mathcal{V} \) with \(x \in V' \subset V \) and the image of \(\mathcal{N}(V') \to \mathcal{N}''(V') \) contains the image of \(\mathcal{N}''(V) \) in \(\mathcal{N}''(V') \). The result follows as in (iii)-(a) taking the product over \(\mathbb{N} \). Q.E.D.

Corollary 2.6. The following sheaves are acyclic for the functor \((\bullet)^h\):

(i) \(\mathbb{R}\text{-constructible sheaves of } \mathbb{C}\text{-vector spaces on a real analytic manifold } X \) (see [7, §8.4]),

(ii) coherent modules over the ring \(\mathcal{O}_X \) of holomorphic functions on a complex analytic manifold \(X \),

(iii) coherent modules over the ring \(\mathcal{D}_X \) of linear differential operators on a complex analytic manifold \(X \).

Proof. The statements follow by applying Proposition 2.5 for the following choices of \(\mathcal{F} \).

(i) Let \(F \) be an \(\mathbb{R}\text{-constructible sheaf}. \) Then for any \(x \in X \) one has \(F_x \cong \Gamma(U_x; F) \) for \(U_x \) in a fundamental system of open neighborhoods of \(x \). Take for \(\mathcal{F} \) the union of these fundamental systems.

(ii) Take for \(\mathcal{F} \) the family of open Stein subsets.

(iii) Let \(\mathcal{M} \) be a coherent \(\mathcal{D}_X \)-module. The problem being local, we may assume that \(\mathcal{M} \) is endowed with a good filtration. Then take for \(\mathcal{F} \) the family of compact Stein subsets. Q.E.D.

Example 2.7. Let \(X = \mathbb{R} \), \(\mathcal{A}_0 = \mathcal{C}_X \), \(Z = \{1/n: n = 1, 2, \ldots \} \cup \{0\} \) and \(U = X \setminus Z \). One has the isomorphisms \((\mathcal{C}^h)_X \cong (\mathcal{C}_X)^h \cong (\mathcal{C}_X)^{Rh} \) and \((\mathcal{C}^h)_U \cong (\mathcal{C}_U)^h \). Considering the exact sequences

\[
0 \to (\mathcal{C}^h)_U \to (\mathcal{C}^h)_X \to (\mathcal{C}^h)_Z \to 0,
\]

\[
0 \to (\mathcal{C}_U)^h \to (\mathcal{C}_X)^h \to (\mathcal{C}_Z)^h \to H^1(\mathcal{C}_U)^{Rh} \to 0,
\]

we get \(H^1(\mathcal{C}_U)^{Rh} \cong (\mathcal{C}_Z)^h/(\mathcal{C}^h)_Z \), whose stalk at the origin does not vanish. Hence \(\mathcal{C}_U \) is not acyclic for the functor \((\bullet)^h\).
Assume now that
\[\mathcal{A}_0 = \mathcal{B}_0 \quad \text{and} \quad \mathcal{A} = \mathcal{B}_0[[h]] \]
satisfy either Assumption 1.7 or Assumption 1.8 (where condition (i) is clear) and that \(\mathcal{A}_0 \) is syzygic. Note that by Proposition 2.5 one has \(\mathcal{A} \simeq (\mathcal{A}_0)^{Rh} \).

Proposition 2.8. For \(\mathcal{N} \in D^b_{coh}(\mathcal{A}_0) \):

(i) there is an isomorphism \(\mathcal{N}^{Rh} \xrightarrow{\sim} \mathcal{A} \otimes_{\mathcal{A}_0} \mathcal{N} \) induced by (2.2),

(ii) there is an isomorphism \(\text{gr}_h(\mathcal{N}^h) \simeq \mathcal{N} \).

Proof. Since \(\mathcal{A}_0 \) is syzygic, we may locally represent \(\mathcal{N} \) by a bounded complex \(\mathcal{L}^\bullet \) of free \(\mathcal{A}_0 \)-modules of finite rank. Then (i) is obvious. As for (ii), both complexes are isomorphic to the mapping cone of \(h: (\mathcal{L}^\bullet)^h \to (\mathcal{L}^\bullet)^h \).

Q.E.D.

In particular, the functor \((\bullet)^h \) is exact on \(\text{Mod}_{coh}(\mathcal{A}_0) \) and preserves coherence. One thus get a functor
\[(\bullet)^{Rh}: D^b_{coh}(\mathcal{A}_0) \to D^b_{coh}(\mathcal{A}). \]

The subanalytic site

The subanalytic site associated to an analytic manifold \(X \) has been introduced and studied in [9, Chapter 7] (see also [13] for a detailed and systematic study as well as for complementary results). Denote by \(\text{Op}_X \) the category of open subsets of \(X \), the morphisms being the inclusion morphisms, and by \(\text{Op}_{X_{sa}} \) the full subcategory consisting of relatively compact subanalytic open subsets of \(X \). The site \(X_{sa} \) is the presite \(\text{Op}_{X_{sa}} \) endowed with the Grothendieck topology for which the coverings are those admitting a finite subcover. One calls \(X_{sa} \) the subanalytic site associated to \(X \). Denote by \(\rho: X \to X_{sa} \) the natural morphism of sites. Recall that the inverse image functors \(\rho^{-1} \), besides the usual right adjoint given by the direct image functor \(\rho_* \), admits a left adjoint denoted \(\rho_! \). Consider the diagram
\[
\begin{array}{cccc}
D^b(C_X) & \xrightarrow{R\rho_*} & D^b(C_{X_{sa}}) \\
\downarrow (\bullet)^{Rh} & & \downarrow (\bullet)^{Rh} \\
D^b(C_{hX}) & \xrightarrow{R\rho_*} & D^b(C_{hX_{sa}}).
\end{array}
\]
Lemma 2.9. (i) The functors ρ^{-1} and $(\cdot)^{Rh}$ commute, that is, for $G \in D^b(C_{X_{sa}})$ we have $(\rho^{-1}G)^{Rh} \simeq \rho^{-1}(G^{Rh})$ in $D^b(C^h_X)$.

(ii) The functors $R\rho_*$ and $(\cdot)^{Rh}$ commute, that is, for $F \in D^b(C_X)$ we have $(R\rho_*F)^{Rh} \simeq R\rho_*(F^{Rh})$ in $D^b(C^h_{X_{sa}})$.

Proof. (i) Since it admits a left adjoint, the functor ρ^{-1} commutes with projective limits. It follows that for $G \in \text{Mod}(C_{X_{sa}})$ one has an isomorphism

$$\rho^{-1}(G^h) \to (\rho^{-1}G)^h.$$

To conclude, it remains to show that $(\rho^{-1}(\cdot))^{Rh}$ is the derived functor of $(\rho^{-1}(\cdot))^h$. Recall that an object G of $\text{Mod}(C_{X_{sa}})$ is quasi-injective if the functor $\text{Hom}_{C_{X_{sa}}}((\cdot), G)$ is exact on the category $\text{Mod}_{\mathfrak{g}-c}(C_X)$. By a result of [13], if $G \in \text{Mod}(C_{X_{sa}})$ is quasi-injective, then $\rho^{-1}G$ is soft. Hence, $\rho^{-1}G$ is injective for the functor $(\cdot)^h$ by Proposition 2.5.

(ii) By (i) we can apply Lemma 2.4. Q.E.D.

3 $\mathcal{D}[[h]]$-modules and propagation

Let now X be a complex analytic manifold of complex dimension d_X. As usual, denote by C_X the constant sheaf with stalk \mathbb{C}, by \mathcal{O}_X the structure sheaf and by \mathcal{D}_X the ring of linear differential operators on X. We will use the notations

$$D' : D^b(C_X)^{op} \to D^b(C_X), \quad F \mapsto R\mathcal{H}om_{C_X}(F, C_X),$$
$$D : D^b_{\text{coh}}(\mathcal{D}_X)^{op} \to D^b_{\text{coh}}(\mathcal{D}_X), \quad M \mapsto R\mathcal{H}om_{\mathcal{D}_X}(M, \mathcal{D}_X \otimes_{\mathcal{O}_X} \Omega_X \otimes_{\mathcal{O}_X} \Omega_X^{-1})[d_X],$$
$$\text{Sol} : D^b_{\text{coh}}(\mathcal{D}_X)^{op} \to D^b(C_X), \quad M \mapsto R\mathcal{H}om_{\mathcal{D}_X}(M, \mathcal{O}_X),$$
$$\text{DR} : D^b_{\text{coh}}(\mathcal{D}_X) \to D^b(C_X), \quad M \mapsto R\mathcal{H}om_{\mathcal{D}_X}(\mathcal{O}_X, M),$$

where Ω_X denotes the line bundle of holomorphic forms of maximal degree and Ω_X^{-1} the dual bundle.

As shown in Corollary 2.6, the sheaves C_X, \mathcal{O}_X and \mathcal{D}_X are all acyclic for the functor $(\cdot)^h$. We will be interested in the formal extensions

$$C^h_X = C_X[[h]], \quad \mathcal{O}^h_X = \mathcal{O}_X[[h]], \quad \mathcal{D}^h_X = \mathcal{D}_X[[h]].$$

In the sequel, we shall treat left \mathcal{D}^h_X-modules, but all results apply to right modules since the categories $\text{Mod}(\mathcal{D}^h_X)$ and $\text{Mod}(\mathcal{D}^{h,\text{op}}_X)$ are equivalent.
Proposition 3.1. The \mathbb{C}_h-algebras \mathcal{D}_X^h and $\mathcal{D}_X^{h,\text{op}}$ satisfy Assumptions 1.7.

Proof. Assumption 1.7 hold for $\mathcal{A} = \mathcal{D}_X^h$, $\mathcal{A}_0 = \mathcal{D}_X$, $\text{Mod}_{\text{gd}}(\mathcal{A}_0|_U)$ the category of good \mathcal{D}_U-modules (see [5]) and for \mathcal{B} the family of Stein compact subsets of X. Q.E.D.

In particular, by Theorem 1.11 one has that \mathcal{D}_X^h is right and left Noetherian (and thus coherent). Moreover, by Theorem 1.13 any object of $\text{D}^{b}_{\text{coh}}(\mathcal{D}_X^h)$ can be locally represented by a bounded complex of free \mathcal{D}_X^h-modules of finite rank.

We will use the notations

$$
\begin{align*}
\mathcal{D}_h': \mathcal{D}^b_{\text{coh}}(\mathcal{C}_X^h)^{\text{op}} & \to \mathcal{D}^b(\mathcal{C}_X^h), \\
\mathcal{D}_h: \mathcal{D}^b_{\text{coh}}(\mathcal{D}_X^h)^{\text{op}} & \to \mathcal{D}^b_{\text{coh}}(\mathcal{D}_X^h), \\
\text{Sol}_h: \mathcal{D}^b_{\text{coh}}(\mathcal{D}_X^h)^{\text{op}} & \to \mathcal{D}^b(\mathcal{C}_X^h), \\
\text{DR}_h: \mathcal{D}^b_{\text{coh}}(\mathcal{D}_X^h) & \to \mathcal{D}^b(\mathcal{C}_X^h),
\end{align*}
$$

By Proposition 2.8 and Lemma 2.3, for $\mathcal{N} \in \text{D}^{b}_{\text{coh}}(\mathcal{D}_X)$ one has

$$
\begin{align*}
\mathcal{N}^{\mathcal{R}h} & \simeq \mathcal{D}_X^h \otimes_{\mathcal{D}_X} \mathcal{N}, \\
\text{gr}_h(\mathcal{N}^{\mathcal{R}h}) & \simeq \mathcal{N}, \\
\text{Sol}_h(\mathcal{N}^{\mathcal{R}h}) & \simeq \text{Sol}(\mathcal{N})^{\mathcal{R}h}.
\end{align*}
$$

Definition 3.2. For $\mathcal{M} \in \text{Mod}(\mathcal{D}_X^h)$, denote by $\mathcal{M}_{h\text{-tor}}$ its submodule consisting of sections locally annihilated by some power of h and set $\mathcal{M}_{h\text{-tf}} = \mathcal{M} / \mathcal{M}_{h\text{-tor}}$. We say that $\mathcal{M} \in \text{Mod}(\mathcal{D}_X^h)$ is an h-torsion module if $\mathcal{M}_{h\text{-tor}} \to \mathcal{M}$ and that \mathcal{M} has no h-torsion (or is h-torsion free) if $\mathcal{M} \to \mathcal{M}_{h\text{-tf}}$.

Denote by $n_{\mathcal{M}}$ the kernel of $h^{n+1}: \mathcal{M} \to \mathcal{M}$. Then $\mathcal{M}_{h\text{-tor}}$ is the sheaf associated with the increasing union of the $n_{\mathcal{M}}$’s. Hence, if \mathcal{M} is coherent, the increasing family $\{n_{\mathcal{M}}\}_n$ is locally stationary and $\mathcal{M}_{h\text{-tor}}$ as well as $\mathcal{M}_{h\text{-tf}}$ are coherent.

Characteristic variety

Recall the following definition
Definition 3.3. (i) For \(\mathcal{C} \) an abelian category, a function \(c: \text{Ob}(\mathcal{C}) \to \text{Set} \) is called additive if \(c(M) = c(M') \cup c(M'') \) for any short exact sequence \(0 \to M' \to M \to M'' \to 0 \).

(ii) For \(\mathcal{T} \) a triangulated category, a function \(c: \text{Ob}(\mathcal{T}) \to \text{Set} \) is called additive if \(c(M) = c(M[1]) \) and \(c(M) \subset c(M') \cup c(M'') \) for any distinguished triangle \(M' \to M \to M'' +1 \to 0 \).

Note that an additive function \(c \) on \(\mathcal{C} \) naturally extends to the derived category \(\text{D}(\mathcal{C}) \) by setting \(c(M) = \bigcup_i c(H^i(M)) \).

For \(\mathcal{N} \) a coherent \(\mathcal{D}_X \)-module, denote by \(\text{char}(\mathcal{N}) \) its characteristic variety, a closed involutive subvariety of the cotangent bundle \(T^*X \). The characteristic variety is additive on \(\text{Mod}_{\text{coh}}(\mathcal{D}_X) \). For \(\mathcal{N} \in \text{D}_{\text{coh}}^b(\mathcal{D}_X) \) one sets \(\text{char}(\mathcal{N}) = \bigcup_i \text{char}(H^i(\mathcal{N})) \).

Definition 3.4. The characteristic variety of \(\mathcal{M} \in \text{D}_{\text{coh}}^b(\mathcal{D}_\hbar X) \) is defined by

\[
\text{char}_\hbar(\mathcal{M}) = \text{char}(\text{gr}_\hbar(\mathcal{M})).
\]

To \(\mathcal{M} \in \text{Mod}_{\text{coh}}(\mathcal{D}_\hbar X) \) one associates the coherent \(\mathcal{D}_X \)-modules

\[
\begin{align*}
\mathcal{M}_0 &= \text{Ker}(h: \mathcal{M} \to \mathcal{M}) = H^{-1}(\text{gr}_\hbar(\mathcal{M})), \\
\mathcal{M}_0 &= \text{Coker}(h: \mathcal{M} \to \mathcal{M}) = H^0(\text{gr}_\hbar(\mathcal{M})).
\end{align*}
\]

Lemma 3.5. For \(\mathcal{M} \in \text{Mod}_{\text{coh}}(\mathcal{D}_\hbar X) \) an \(\hbar \)-torsion module, one has

\[
\text{char}_\hbar(\mathcal{M}) = \text{char}((\mathcal{M}_0) = \text{char}(0\mathcal{M}).
\]

Proof. By definition, \(\text{char}_\hbar(\mathcal{M}) = \text{char}(\mathcal{M}_0) \cup \text{char}(\mathcal{M}_0) \). It is thus enough to prove the equality \(\text{char}(\mathcal{M}_0) = \text{char}(0\mathcal{M}) \).

Since the statement is local we may assume that \(h^N\mathcal{M} = 0 \) for some \(N \in \mathbb{N} \). We proceed by induction on \(N \).

For \(N = 1 \) we have \(\mathcal{M} \simeq \mathcal{M}_0 \simeq 0\mathcal{M} \), and the statement is obvious.

Assume that the statement has been proved for \(N - 1 \). The short exact sequence

\[
0 \to h\mathcal{M} \to \mathcal{M} \to \mathcal{M}_0 \to 0
\]

induces the distinguished triangle

\[
\text{gr}_\hbar h\mathcal{M} \to \text{gr}_\hbar \mathcal{M} \to \text{gr}_\hbar \mathcal{M}_0 \to 1.
\]
Noticing that $\mathcal{M}_0 \simeq (\mathcal{M}_0)_0 \simeq 0(\mathcal{M}_0)$, the associated long exact cohomology sequence gives

$$0 \to 0(\mathcal{M}) \to 0 \to \mathcal{M} \to (\mathcal{M}_0)_0 \to 0.$$

By inductive hypothesis we have $\text{char}(0(\mathcal{M})) = \text{char}((\mathcal{M}_0)_0)$, and we deduce $\text{char}(\mathcal{M}_0) = \text{char}(\mathcal{M}_0)$ by additivity of $\text{char}(\cdot)$. Q.E.D.

Proposition 3.6. (i) For $\mathcal{M} \in \text{Mod}_{\text{coh}}(\mathcal{D}_X^h)$ one has

$$\text{char}_h(\mathcal{M}) = \text{char}(\mathcal{M}_0).$$

(ii) The characteristic variety $\text{char}_h(\cdot)$ is additive both on $\text{Mod}_{\text{coh}}(\mathcal{D}_X^h)$ and on $\mathcal{D}_b(\mathcal{D}_X^h)$.

Proof. (i) As $\text{char}(\text{gr}_h \mathcal{M}) = \text{char}(\mathcal{M}_0) \cup \text{char}(0(\mathcal{M}))$, it is enough to prove the inclusion

$$(3.7) \quad \text{char}(0(\mathcal{M})) \subset \text{char}(\mathcal{M}_0).$$

Consider the short exact sequence $0 \to \mathcal{M}_{\text{h-tor}} \to \mathcal{M} \to \mathcal{M}_{\text{h-tf}} \to 0$. Since $\mathcal{M}_{\text{h-tf}}$ has no h-torsion, $0(\mathcal{M}_{\text{h-tf}}) = 0$. The associated long exact cohomology sequence thus gives

$$0(\mathcal{M}_{\text{h-tor}}) \simeq 0(\mathcal{M}) \text{, } 0 \to (\mathcal{M}_{\text{h-tor}})_0 \to \mathcal{M}_0 \to (\mathcal{M}_{\text{h-tf}})_0 \to 0.$$

We deduce

$$\text{char}(0(\mathcal{M}) = \text{char}(\mathcal{M}_{\text{h-tor}})) = \text{char}((\mathcal{M}_{\text{h-tor}})_0) \subset \text{char}(\mathcal{M}_0),$$

where the second equality follows from Lemma 3.5.

(ii) It is enough to prove the additivity on $\text{Mod}_{\text{coh}}(\mathcal{D}_X^h)$, i.e. the equality

$$\text{char}_h(\mathcal{M}) = \text{char}_h(\mathcal{M}') \cup \text{char}_h(\mathcal{M}'')$$

for $0 \to \mathcal{M}' \to \mathcal{M} \to \mathcal{M}'' \to 0$ a short exact sequence of coherent \mathcal{D}_X^h-modules.

The associated distinguished triangle $\text{gr}_h \mathcal{M}' \to \text{gr}_h \mathcal{M} \to \text{gr}_h \mathcal{M}'' +1$ induces the long exact cohomology sequence

$$0(\mathcal{M}'') \to (\mathcal{M}')_0 \to \mathcal{M}_0 \to (\mathcal{M}'')_0 \to 0.$$
By additivity of char(·), the exactness of this sequence at the first, second and third term from the right, respectively, gives:

\[
\text{char}_h(M'') \subset \text{char}_h(M), \\
\text{char}_h(M) \subset \text{char}_h(M') \cup \text{char}_h(M''), \\
\text{char}_h(M') \subset \text{char}_0(M'') \cup \text{char}_h(M).
\]

Finally, note that \(\text{char}_0(M'') \subset \text{char}_h(M'') \subset \text{char}_h(M).\) Q.E.D.

Remark 3.7. In view of Proposition 3.6 (i), in order to define the characteristic variety of a coherent \(D^h\)-module \(M\) one could avoid derived categories considering \(\text{char}(M_0)\) instead of \(\text{char}(\text{gr}_h(M))\). It is then natural to ask if these definitions are still compatible for \(M \in D^b_{\text{coh}}(D^h_X)\), i.e. to ask if the following equality holds

\[
\bigcup_i \text{char}(H^i(\text{gr}_h(M))) = \bigcup_i \text{char}((H^iM)_0).
\]

Let us prove it. By additivity of char(·), the short exact sequence

\[
0 \to (H^iM)_0 \to H^i(\text{gr}_h(M)) \to 0 \to (H^{i+1}M) \to 0
\]

from [11, Lemma 1.4.2] induces the estimates

\[
\text{char}((H^iM)_0) \subset \text{char}(H^i(\text{gr}_h(M))),
\]

\[
\text{char}(H^i(\text{gr}_h(M))) = \text{char}((H^iM)_0) \cup \text{char}_0(H^{i+1}M)).
\]

One concludes by noticing that (3.7) gives

\[
\text{char}_0(H^{i+1}M) \subset \text{char}_h(H^{i+1}M).
\]

Proposition 3.8. Let \(M \in \text{Mod}(D^h_X)\) be an \(h\)-torsion module. Then \(M\) is coherent as a \(D^h_X\)-module if and only if it is coherent as a \(D_X\)-module, and in this case one has \(\text{char}_h(M) = \text{char}(M)\).

Proof. As in the proof of Lemma 3.5 we assume that \(h^N M = 0\) for some \(N \in \mathbb{N}\). Since coherence is preserved by extension and since the characteristic varieties of \(D^h_X\)-modules and \(D_X\)-modules are additive, we can argue by induction on \(N\) using the exact sequence (3.6). We are thus reduced to the case \(N = 1\), where \(M = M_0\) and the statement becomes obvious. Q.E.D.

It follows from (3.2) that

Proposition 3.9. For \(N \in D^b_{\text{coh}}(D_X)\) one has \(\text{char}_h(N^h) = \text{char}(N)\).
Holonomic modules

Recall that a coherent \mathcal{D}_X-module (or an object of the derived category) is called holonomic if its characteristic variety is isotropic. We refer e.g. to [5, Chapter 5] for the notion of regularity.

Definition 3.10. We say that $\mathcal{M} \in \mathcal{D}_{coh}^b(\mathcal{D}_X^h)$ is holonomic, or regular holonomic, if so is $gr_h(\mathcal{M})$. We denote by $\mathcal{D}_{hol}^b(\mathcal{D}_X^h)$ the full triangulated subcategory of $\mathcal{D}_{coh}^b(\mathcal{D}_X^h)$ of holonomic objects and by $\mathcal{D}_{rh}^b(\mathcal{D}_X^h)$ the full triangulated subcategory of regular holonomic objects.

Note that a coherent \mathcal{D}_X^h-module is holonomic if and only if its characteristic variety is isotropic.

Example 3.11. Let \mathcal{N} be a regular holonomic \mathcal{D}_X-module. Then
 (i) \mathcal{N} itself, considered as a \mathcal{D}_X^h-module, is regular holonomic, as follows from the isomorphism $gr_h(\mathcal{N}) \simeq \mathcal{N} \oplus \mathcal{N}[1]$;
 (ii) \mathcal{N}^h is a regular holonomic \mathcal{D}_X^h-module, as follows from the isomorphism $gr_h(\mathcal{N}) \simeq \mathcal{N}$. In particular, \mathcal{O}_X^h is regular holonomic.

Propagation

Denote by $\mathcal{D}_{C-c}^b(\mathcal{C}_X^h)$ the full triangulated subcategory of $\mathcal{D}^b(\mathcal{C}_X^h)$ consisting of objects with \mathbb{C}-constructible cohomology over the ring \mathbb{C}^h.

Theorem 3.12. Let $\mathcal{M}, \mathcal{N} \in \mathcal{D}_{coh}^b(\mathcal{D}_X)$. Then

$$SS(R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{M}, \mathcal{N})) = SS(R\mathcal{H}om_{\mathcal{O}_X}(gr_h(\mathcal{M}), gr_h(\mathcal{N}))).$$

If moreover \mathcal{M} and \mathcal{N} are holonomic, then $R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{M}, \mathcal{N})$ is an object of $\mathcal{D}_{C-c}^b(\mathcal{C}_X^h)$.

Proof. Set $F = R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{M}, \mathcal{N})$. Then F is cohomologically h-complete by Theorem 1.9 and Proposition 1.5. Hence $SS(F) = SS(gr_h(F))$ by Proposition 1.15. Moreover, the finiteness of the stalks $gr_h(F_x)$ over \mathbb{C} implies the finiteness of F_x over \mathbb{C}^h by Theorem 1.11 applied with $X = \{pt\}$ and $\mathcal{A} = \mathbb{C}^h$.

Q.E.D.

Applying Theorem 3.12, and [7, Theorem 11.3.3], we get:
Corollary 3.13. Let $\mathcal{M} \in \mathcal{D}^b_{coh}(\mathcal{D}^h_X)$. Then

$$\mathrm{SS}(\mathrm{Sol}_h(\mathcal{M})) = \mathrm{SS}(\mathrm{DR}_h(\mathcal{M})) = \mathrm{char}_h(\mathcal{M}).$$

If moreover \mathcal{M} is holonomic, then $\mathrm{Sol}_h(\mathcal{M})$ and $\mathrm{DR}_h(\mathcal{M})$ belong to $\mathcal{D}^b_{c,c}(\mathcal{C}^h_X)$.

Theorem 3.14. Let $\mathcal{M} \in \mathcal{D}^b_{hol}(\mathcal{D}^h_X)$. Then there is a natural isomorphism in $\mathcal{D}^b_{c,c}(\mathcal{C}^h_X)$

$$\mathrm{Sol}_h(\mathcal{M}) \simeq D'_h(\mathrm{DR}_h(\mathcal{M})).$$

Proof. The natural \mathcal{C}^h-linear morphism

$$\mathcal{R}\mathcal{H}\text{om}_{\mathcal{D}^h_X}(\mathcal{O}^h_X, \mathcal{M}) \otimes_{\mathcal{C}^h_X} \mathcal{R}\mathcal{H}\text{om}_{\mathcal{D}^h_X}(\mathcal{M}, \mathcal{O}^h_X) \to \mathcal{R}\mathcal{H}\text{om}_{\mathcal{D}^h_X}(\mathcal{O}^h_X, \mathcal{O}^h_X) \simeq \mathcal{C}^h_X$$

induces the morphism in $\mathcal{D}^b_{c,c}(\mathcal{C}^h_X)$

$$\alpha: \mathcal{R}\mathcal{H}\text{om}_{\mathcal{D}^h_X}(\mathcal{M}, \mathcal{O}^h_X) \to D'_h(\mathcal{R}\mathcal{H}\text{om}_{\mathcal{D}^h_X}(\mathcal{O}^h_X, \mathcal{M})).$$

(Note that, choosing $\mathcal{M} = \mathcal{D}^h_X$, this morphism defines the morphism $\mathcal{O}^h_X \to D'_h(\mathcal{O}^h_X[d_X])$.) The morphism (3.9) induces an isomorphism

$$\text{gr}_h(\alpha): \mathcal{R}\mathcal{H}\text{om}_{\mathcal{D}^h_X}(\text{gr}_h(\mathcal{M}), \mathcal{O}_X) \to D'(\mathcal{R}\mathcal{H}\text{om}_{\mathcal{D}^h_X}(\mathcal{O}_X, \text{gr}_h(\mathcal{M}))).$$

It is thus an isomorphism by Corollary 1.17.

Q.E.D.

4 Formal extension of tempered functions

Let us start by reviewing after [9, Chapter 7] the construction of the sheaves of tempered distributions and of C^∞-functions with temperate growth on the subanalytic site.

Let X be a real analytic manifold X. One says that a function $f \in \mathcal{C}^\infty_X(U)$ has polynomial growth at $p \in X$ if, for a local coordinate system (x_1, \ldots, x_n) around p, there exist a sufficiently small compact neighborhood K of p and a positive integer N such that

$$\sup_{x \in K \cap U} (\text{dist}(x, K \setminus U))^N |f(x)| < \infty.$$

18
One says that f is \textit{tempered} at p if all its derivatives are of polynomial growth at p. One says that f is tempered if it is tempered at any point of X. One denotes by $\mathcal{C}^\infty_t(U)$ the \mathbb{C}-vector subspace of $\mathcal{C}^\infty(U)$ consisting of tempered functions. It then follows from a theorem of Lojasiewicz that $U \mapsto \mathcal{C}^\infty_t(U)$ ($U \in \text{Op}_{\text{Xsa}}$) is a sheaf on Xsa. We denote it by $\mathcal{C}^\infty_{\text{Xsa}}$ or simply $\mathcal{C}^\infty_{\text{X}}$ if there is no risk of confusion.

\textbf{Lemma 4.1.} One has $H^j(U; \mathcal{C}^\infty_{\text{X}}) = 0$ for any $U \in \text{Op}_{\text{Xsa}}$ and any $j > 0$.

This result is well-known (see [8, Chapter 1]), but we recall its proof for the reader’s convenience.

\textit{Proof.} Consider the full subcategory \mathcal{J} of $\text{Mod}(\mathbb{C}_{\text{Xsa}})$ consisting of sheaves F such that for any pair $U, V \in \text{Op}_{\text{Xsa}}$, the Mayer-Vietoris sequence

$$0 \rightarrow F(U \cup V) \rightarrow F(U) \oplus F(V) \rightarrow F(U \cap V) \rightarrow 0$$

is exact. Let us check that this category is injective with respect to the functor $\Gamma(U; \cdot)$. The only non obvious fact is that if $0 \rightarrow F' \rightarrow F \rightarrow F'' \rightarrow 0$ is an exact sequence and that F' belongs to \mathcal{J}, then $F(U) \rightarrow F''(U)$ is surjective. Let $t \in F''(U)$. There exist a finite covering $U = \bigcup_{i \in I} U_i$ and $s_i \in F(U_i)$ whose image in $F''(U_i)$ is $t|_{U_i}$. Then the proof goes by induction on the cardinal of I using the property of F' and standard arguments. To conclude, note that $\mathcal{C}^\infty_{\text{X}}$ belongs to \mathcal{J} thanks to Lojaciewicz’s result (see [12]).

Q.E.D.

Let $\mathcal{D}b_X$ be the sheaf of distributions on X. For $U \in \text{Op}_{\text{Xsa}}$, denote by $\mathcal{D}b^\prime_X(U)$ the space of tempered distributions on U, defined by the exact sequence

$$0 \rightarrow \Gamma_{X \setminus U}(X; \mathcal{D}b_X) \rightarrow \Gamma(X; \mathcal{D}b_X) \rightarrow \mathcal{D}b^\prime_X(U) \rightarrow 0.$$

Again, it follows from a theorem of Lojasiewicz that $U \mapsto \mathcal{D}b^\prime(U)$ is a sheaf on Xsa. We denote it by $\mathcal{D}b^\prime_{\text{Xsa}}$ or simply $\mathcal{D}b^\prime_X$ if there is no risk of confusion. The sheaf $\mathcal{D}b^\prime_X$ is quasi-injective, that is, the functor $\mathcal{H}om_{\mathcal{C}_{\text{Xsa}}} (\cdot, \mathcal{D}b^\prime_X)$ is exact in the category $\text{Mod}_{\text{g-c}}(\mathbb{C}_X)$. Moreover, for $U \in \text{Op}_{\text{Xsa}}$, $\mathcal{H}om_{\mathcal{C}_{\text{Xsa}}}(\mathbb{C}_U, \mathcal{D}b^\prime_X)$ is also quasi-injective and $R\mathcal{H}om_{\mathcal{C}_{\text{Xsa}}}(\mathbb{C}_U, \mathcal{D}b^\prime_X)$ is concentrated in degree 0. Note that the sheaf

$$\Gamma_{[U]} \mathcal{D}b_X := \rho^{-1} \mathcal{H}om_{\mathcal{C}_{\text{Xsa}}}(\mathbb{C}_U, \mathcal{D}b^\prime_X)$$

is a \mathcal{C}^∞_X-module, so that in particular $R\Gamma(V; \Gamma_{[U]} \mathcal{D}b_X)$ is concentrated in degree 0 for $V \subset X$ an open subset.
Formal extensions

By Proposition 2.5 the sheaves $C_{X}^{\infty,t,h}$, $\mathcal{D}_{X}^{t,h}$ and $\Gamma_{[U]}\mathcal{D}_{X}$ are acyclic for the functor $(\cdot)^{h}$. We set

$$C_{X}^{\infty,t,h} := (\mathcal{C}_{X}^{\infty,t})^{h}, \quad \mathcal{D}_{X}^{t,h} := (\mathcal{D}_{X}^{t})^{h}, \quad \Gamma_{[U]}\mathcal{D}_{X}^{h} := (\Gamma_{[U]}\mathcal{D}_{X})^{h}.$$

Note that, by Lemmas 2.3 and 2.9,

$$\Gamma_{[U]}\mathcal{D}_{X}^{h} \simeq \rho^{-1}\mathcal{H}om_{C_{Xsa}}(\mathcal{C}_{U}, \mathcal{D}_{X}^{t,h}).$$

By Proposition 2.2 we get:

Proposition 4.2. The sheaves $C_{X}^{\infty,t,h}$, $\mathcal{D}_{X}^{t,h}$ and $\Gamma_{[U]}\mathcal{D}_{X}^{h}$ are cohomologically h-complete.

Now assume X is a complex manifold. Denote by \overline{X} the complex conjugate manifold and by X^{R} the underlying real analytic manifold, identified with the diagonal of $X \times \overline{X}$. One defines the sheaf (in fact, an object of the derived category) of tempered holomorphic functions by

$$\mathcal{O}_{X}^{t} := \mathcal{R}\mathcal{H}om_{\rho\mathcal{D}_{X}}(\rho_{\mathcal{O}_{X}}, \mathcal{C}_{X}^{\infty,t}) \simeq \mathcal{R}\mathcal{H}om_{\rho\mathcal{D}_{X}}(\rho_{\mathcal{O}_{X}}, \mathcal{D}_{X}^{t,h}).$$

Here and in the sequel, we write $\mathcal{C}_{X}^{\infty,t}$ and \mathcal{D}_{X}^{t} instead of $\mathcal{C}_{X}^{\infty,t}$ and \mathcal{D}_{X}^{t}, respectively. We set

$$\mathcal{O}_{X}^{t,h} := (\mathcal{O}_{X}^{t})^{R_{h}},$$

a cohomologically h-complete object of $D^{b}(C_{Xsa})$. By Lemma 2.3,

$$\mathcal{O}_{X}^{t,h} \simeq \mathcal{R}\mathcal{H}om_{\rho\mathcal{D}_{X}}(\rho_{\mathcal{O}_{X}}, \mathcal{C}_{X}^{\infty,t,h}) \simeq \mathcal{R}\mathcal{H}om_{\rho\mathcal{D}_{X}}(\rho_{\mathcal{O}_{X}}, \mathcal{D}_{X}^{t,h}).$$

Note that $gr_{h}(\mathcal{O}_{X}^{t,h}) \simeq \mathcal{O}_{X}^{t}$ in $D^{b}(C_{Xsa})$.

5 Riemann-Hilbert correspondence

Let X be a complex analytic manifold. Consider the functors

$$\mathcal{T}\mathcal{H}(\cdot): D^{b}_{C-c}(C_{X}) \to D^{b}_{rh}(\mathcal{D}_{X})^{op}, \quad F \mapsto \rho^{-1}\mathcal{R}\mathcal{H}om_{C_{Xsa}}(\rho_{\ast}F, \mathcal{O}_{X}^{t}),$$

$$\mathcal{T}\mathcal{H}_{h}(\cdot): D^{b}_{C-c}(C_{X}^{h}) \to D^{b}(\mathcal{D}_{X}^{h})^{op}, \quad F \mapsto \rho^{-1}\mathcal{R}\mathcal{H}om_{C_{Xsa}^{h}}(\rho_{\ast}F, \mathcal{O}_{X}^{t,h}).$$
The classical Riemann-Hilbert correspondence of Kashiwara [4] states that the functors Sol and TH are equivalences of categories between $\mathcal{D}^b_{\text{C-c}}(\mathcal{C}_X)$ and $\mathcal{D}^b_{\text{th}}(\mathcal{D}_X)^{\text{op}}$ quasi-inverse to each other. In order to obtain a similar statement for \mathcal{C}_X and \mathcal{D}_X replaced with \mathcal{C}_X^h and \mathcal{D}_X^h, respectively, we start by establishing some lemmas.

Lemma 5.1. Let $\mathcal{M}, \mathcal{N} \in \mathcal{D}^b_{\text{hol}}(\mathcal{D}_X^h)$. The natural morphism in $\mathcal{D}^b_{\text{C-c}}(\mathcal{C}_X^h)$

$$R\mathcal{H}\text{om}_{\mathcal{D}_X^h}(\mathcal{M}, \mathcal{N}) \to R\mathcal{H}\text{om}_{\mathcal{C}_X^h}(\text{Sol}_h(\mathcal{N}), \text{Sol}_h(\mathcal{M}))$$

is an isomorphism.

Proof. Applying the functor gr_h to this morphism, we get an isomorphism by the classical Riemann-Hilbert correspondence. Then the result follows from Corollary 1.17 and Theorem 3.12. Q.E.D.

Note that there is an isomorphism in $\mathcal{D}^b(\mathcal{D}_X)$

\begin{equation}
\text{gr}_h(\text{TH}_h(F)) \simeq \text{TH}_(\text{gr}_h(F)).
\end{equation}

Lemma 5.2. The functor TH_h induces a functor

\begin{equation}
\text{TH}_h: \mathcal{D}^b_{\text{C-c}}(\mathcal{C}_X^h) \to \mathcal{D}^b_{\text{th}}(\mathcal{D}_X^h)^{\text{op}}.
\end{equation}

Proof. Let $F \in \mathcal{D}^b_{\text{C-c}}(\mathcal{C}_X^h)$. By (5.1) and the classical Riemann-Hilbert correspondence we know that $\text{gr}_h(\text{TH}_h(F))$ is regular holonomic, and in particular coherent. It is thus left to prove that $\text{TH}_h(F)$ is coherent. Note that our problem is of local nature.

We use the Dolbeault resolution of $\mathcal{O}_X^{t, h}$ with coefficients in $\mathcal{D}_X^{t, h}$ and we choose a resolution of F as given in Proposition A.1 (i). We find that $\text{TH}_h(F)$ is isomorphic to a bounded complex \mathcal{M}^*, where the \mathcal{M}^i are locally finite sums of sheaves of the type $\Gamma[U]\mathcal{D}_X^{t, h}$ with $U \in \text{Op}_{X_{\text{sa}}}$. It follows from Proposition 4.2 that $\text{TH}_h(F)$ is cohomologically h-complete, and we conclude by Theorem 1.11 with $\mathcal{A} = \mathcal{D}_X^h$. Q.E.D.

Lemma 5.3. We have $R\mathcal{H}\text{om}_{\rho_{\mathcal{D}_X^h}}(\rho, \mathcal{O}_X^h, \mathcal{O}_X^{t, h}) \simeq \mathcal{O}_{X_{\text{sa}}}^h$.

Proof. This isomorphism is given by the sequence

\begin{align*}
R\mathcal{H}\text{om}_{\rho_{\mathcal{D}_X^h}}(\rho, \mathcal{O}_X^h, \mathcal{O}_X^{t, h}) & \simeq R\mathcal{H}\text{om}_{\rho_{\mathcal{D}_X^h}}(\rho, \mathcal{O}_X^h, \mathcal{O}_X^{t, h})^R \\
& \simeq (\rho R\mathcal{H}\text{om}_{\rho_{\mathcal{D}_X^h}}(\mathcal{O}_X^h, \mathcal{O}_X^h))^R \simeq (\mathcal{C}_{X_{\text{sa}}}^h)^R \simeq \mathcal{C}_{X_{\text{sa}}}^h.
\end{align*}
where the first isomorphism is an extension of scalars, the second one is Lemma 2.3 and the third one is given by the adjunction between $\rho_!$ and ρ^{-1}.

Q.E.D.

Theorem 5.4. The functors Sol_h and TH_h are equivalences of categories between $\mathbf{D}^b_{\text{C-c}}(\mathbb{C}^h_X)$ and $\mathbf{D}^b_{\text{rh}}(\mathcal{D}^h_X)^{\text{op}}$ quasi-inverse to each other.

Proof. In view of Lemma 5.1, we know that the functor Sol_h is fully faithful. It is then enough to show that $\text{Sol}_h(\text{TH}_h(F)) \simeq F$ for $F \in \mathbf{D}^b_{\text{C-c}}(\mathbb{C}^h_X)$. Since we already know by Lemma 5.2 that $\text{TH}_h(F)$ is holonomic, we may use (3.8).

We have the sequence of isomorphisms:

$$
\rho_*\mathcal{H}om_{\mathcal{O}_h}^h(\mathcal{O}^h_X, \text{TH}_h(F)) = \rho_*\mathcal{H}om_{\mathcal{O}_h}^h(\mathcal{O}^h_X, \rho^{-1}_!\mathcal{H}om_{\mathcal{C}^h_X}^h(\rho_*F, \mathcal{O}^h_X))
\simeq \mathcal{H}om_{\rho_!\mathcal{O}_h}^h(\rho_!\mathcal{O}^h_X, \mathcal{H}om_{\mathcal{C}^h_X}^h(\rho_*F, \mathcal{O}^h_X))
\simeq \mathcal{H}om_{\mathcal{C}^h_X}^h(\rho_*F, \mathcal{H}om_{\rho_!\mathcal{O}_h}^h(\rho_!\mathcal{O}^h_X, \mathcal{O}^h_X))
\simeq \mathcal{H}om_{\mathcal{C}^h_X}^h(\rho_*F, \mathcal{C}^h_X)
\simeq \rho_*\mathcal{D}^h_F,$$

where we have used the adjunction between $\rho_!$ and ρ^{-1}, the isomorphism of Lemma 5.3 and the commutation of ρ_* with $\mathcal{H}om$. One concludes by recalling the isomorphism of functors $\rho^{-1}_*\rho_* \simeq \text{id}$. Q.E.D.

t-structure

Recall the definition of the middle perversity t-structure for complex constructible sheaves. Let \mathbb{K} denote either the field \mathbb{C} or the ring \mathbb{C}^h. For $F \in \mathbf{D}^b_{\text{C-c}}(\mathbb{K}_X)$, we have $F \in \mathbf{pD}^\leq_{\text{C-c}}(\mathbb{K}_X)$ if and only if

$$
\forall i \in \mathbb{Z} \quad \dim \text{supp} H^i(F) \leq d_X - i,
$$

and $F \in \mathbf{pD}^{\geq 0}_{\text{C-c}}(\mathbb{K}_X)$ if and only if, for any locally closed complex analytic subset $S \subset X$,

$$
H^i_S(F) = 0 \text{ for all } i < d_X - \text{dim}(S).
$$

With the above convention, the de Rham functor

$$
\text{DR} : \mathbf{D}^b_{\text{hol}}(\mathcal{D}_X) \to \mathbf{pD}^b_{\text{C-c}}(\mathbb{C}_X)
$$

is t-exact.
Theorem 5.5. The de Rham functor $\text{DR}_h: \mathcal{D}^b_{\text{hol}}(\mathcal{O}_X^h) \to \mathcal{D}^b_{\text{C}^c}(\mathcal{C}_X^h)$ is t-exact.

Proof. (i) Let $\mathcal{M} \in \mathcal{D}^\leq_{\text{hol}}(\mathcal{O}_X^h)$. Let us prove that $\text{DR}_h \mathcal{M} \in \mathcal{D}^\leq_{\text{C}^c}(\mathcal{C}_X^h)$. Since $\text{DR}_h \mathcal{M}$ is constructible, Proposition 1.19 shows that it is enough to check (5.3) for $\text{gr}_h(\text{DR}_h \mathcal{M}) \simeq \text{DR}(\text{gr}_h \mathcal{M})$. In other words, it is enough to check that $\text{DR}(\text{gr}_h \mathcal{M}) \in \mathcal{D}^\leq_{\text{C}^c}(\mathcal{C}_X^h)$. Since $\text{gr}_h \mathcal{M} \in \mathcal{D}^\leq_{\text{hol}}(\mathcal{O}_X)$, this result follows from the t-exactness of the functor DR.

(ii) Let $\mathcal{M} \in \mathcal{D}^\geq_{\text{hol}}(\mathcal{O}_X^h)$. Let us prove that $\text{DR}_h \mathcal{M} \in \mathcal{D}^\geq_{\text{C}^c}(\mathcal{C}_X^h)$. We set $N = (H^0 \mathcal{M})_{\text{tor}}$. We have a morphism $u: \mathcal{N} \to \mathcal{M}$ induced by $H^0 \mathcal{M} \to \mathcal{M}$ and we let \mathcal{M}' be the mapping cone of u. We have a distinguished triangle

$$\text{DR}_h \mathcal{N} \to \text{DR}_h \mathcal{M} \to \text{DR}_h \mathcal{M}' \xrightarrow{+1}$$

so that it is enough to show that $\text{DR}_h \mathcal{N}$ and $\text{DR}_h \mathcal{M}'$ belong to $\mathcal{D}^\geq_{\text{C}^c}(\mathcal{C}_X^h)$.

(a) By Proposition 3.6 (ii) and Proposition 3.8, \mathcal{N} is holonomic as a \mathcal{O}_X-module. Hence $\text{DR}_h \mathcal{N} \simeq \text{DR} \mathcal{N}$ is a perverse sheaf (over \mathbb{C}) and satisfies (5.4). Since (5.4) does not depend on the coefficient ring, $\text{DR}_h \mathcal{N} \in \mathcal{D}^\geq_{\text{C}^c}(\mathcal{C}_X^h)$.

(b) We note that $H^0 \mathcal{M}' \simeq (H^0 \mathcal{M})_{\text{tr}}$. Hence by Proposition 1.14, $\text{gr}_h \mathcal{M}' \in \mathcal{D}^\geq_{\text{hol}}(\mathcal{O}_X^h)$ and $\text{DR}(\text{gr}_h \mathcal{M}') \in \mathcal{D}^\geq_{\text{C}^c}(\mathcal{C}_X^h)$, that is, $\text{DR}(\text{gr}_h \mathcal{M}')$ satisfies (5.4). Let $S \subset X$ be a locally closed complex subanalytic subset. We have

$$\text{R}\Gamma_S(\text{DR}(\text{gr}_h \mathcal{M}')) \simeq \text{gr}_h(\text{R}\Gamma_S(\text{DR}_h \mathcal{M}'))$$

and it follows from Proposition 1.19 that $\text{DR}_h \mathcal{M}'$ also satisfies (5.4) and thus belongs to $\mathcal{D}^\geq_{\text{C}^c}(\mathcal{C}_X^h)$.

Q.E.D.

6 Duality and h-torsion

The duality functors \mathcal{D} on $\mathcal{D}_{\text{hol}}(\mathcal{O}_X)$ and \mathcal{D}' on $\mathcal{D}^b_{\text{C}^c}(\mathcal{C}_X)$ are t-exact. We will discuss here the finer t-structures needed in order to obtain a similar result when replacing \mathcal{C}_X and \mathcal{O}_X by their formal extensions \mathcal{C}_X^h and \mathcal{O}_X^h.

Following [1, Chapter I.2], let us start by recalling some facts related to torsion pairs and t-structures. We need in particular Proposition 6.2 below, which can also be found in [2].
Definition 6.1. Let \(\mathcal{C} \) be an abelian category. A torsion pair on \(\mathcal{C} \) is a pair \((\mathcal{C}_{\text{tor}}, \mathcal{C}_{\text{tf}})\) of full subcategories such that

(i) for all objects \(T \) in \(\mathcal{C}_{\text{tor}} \) and \(F \) in \(\mathcal{C}_{\text{tf}} \), we have \(\text{Hom}_\mathcal{C}(T, F) = 0 \),

(ii) for any object \(M \) in \(\mathcal{C} \), there are objects \(M_{\text{tor}} \) in \(\mathcal{C}_{\text{tor}} \) and \(M_{\text{tf}} \) in \(\mathcal{C}_{\text{tf}} \) and a short exact sequence \(0 \to M_{\text{tor}} \to M \to M_{\text{tf}} \to 0 \).

Proposition 6.2. Let \(\mathcal{D} \) be a triangulated category endowed with a t-structure \((pD^{\leq 0}, pD^{\geq 0})\). Let us denote its heart by \(\mathcal{C} \) and its cohomology functors by \(pH^i : \mathcal{D} \to \mathcal{C} \). Suppose that \(\mathcal{C} \) is endowed with a torsion pair \((\mathcal{C}_{\text{tor}}, \mathcal{C}_{\text{tf}})\). Then we can define a new t-structure \((\pi D^{\leq 0}, \pi D^{\geq 0})\) on \(\mathcal{D} \) by setting:

\[
\pi D^{\leq 0} = \{ M \in pD^{\leq 1} : pH^1(M) \in \mathcal{C}_{\text{tor}} \},
\]

\[
\pi D^{\geq 0} = \{ M \in pD^{\geq 0} : pH^0(M) \in \mathcal{C}_{\text{tf}} \}.
\]

With the notations of Definition 3.2, there is a natural torsion pair attached to \(\text{Mod}(\mathcal{D}^h_X) \) given by the full subcategories

\[
\text{Mod}(\mathcal{D}^h_X)_{h\text{-tor}} = \{ \mathcal{M} : \mathcal{M}_{h\text{-tor}} \sim \to \mathcal{M} \},
\]

\[
\text{Mod}(\mathcal{D}^h_X)_{h\text{-tf}} = \{ \mathcal{M} : \mathcal{M} \sim \to \mathcal{M}_{h\text{-tf}} \}.
\]

Definition 6.3. (a) We call the torsion pair on \(\text{Mod}(\mathcal{D}^h_X) \) defined above, the \(h \)-torsion pair.

(b) We denote by \((D^{\leq 0}(\mathcal{D}^h_X), D^{\geq 0}(\mathcal{D}^h_X)) \) the natural t-structure on \(\mathcal{D}(\mathcal{D}^h_X) \).

(c) We denote by \((tD^{\leq 0}(\mathcal{D}^h_X), tD^{\geq 0}(\mathcal{D}^h_X)) \) the t-structure on \(\mathcal{D}^h(\mathcal{D}^h_X) \) associated via Proposition 6.2 with the \(h \)-torsion pair on \(\text{Mod}(\mathcal{D}^h_X) \).

Proposition 1.14 implies the following equivalences for \(\mathcal{M} \in \mathcal{D}^b_{\text{coh}}(\mathcal{D}^h_X) \):

\[
(6.1) \quad \mathcal{M} \in tD^{\geq 0}(\mathcal{D}^h_X) \iff \text{gr}_h \mathcal{M} \in D^{\geq 0}(\mathcal{D}_X),
\]

\[
(6.2) \quad \mathcal{M} \in D^{\leq 0}(\mathcal{D}^h_X) \iff \text{gr}_h \mathcal{M} \in D^{\leq 0}(\mathcal{D}_X).
\]

Proposition 6.4. Let \(\mathcal{M} \) be a holonomic \(\mathcal{D}^h_X \)-module.

(i) If \(\mathcal{M} \) has no \(h \)-torsion, then \(\mathcal{D}_h \mathcal{M} \) is concentrated in degree 0 and has no \(h \)-torsion.

(ii) If \(\mathcal{M} \) is an \(h \)-torsion module, then \(\mathcal{D}_h \mathcal{M} \) is concentrated in degree 1 and is an \(h \)-torsion module.
Proof. By (1.2) we have $\text{gr}_h (\mathcal{D}_h\mathcal{M}) \simeq \mathcal{D}(\text{gr}_h \mathcal{M})$. Since $\text{gr}_h \mathcal{M}$ is concentrated in degrees 0 and -1, with holonomic cohomology, $\mathcal{D}(\text{gr}_h \mathcal{M})$ is concentrated in degrees 0 and 1. By Proposition 1.14, $\mathcal{D}_h\mathcal{M}$ itself is concentrated in degrees 0 and 1 and $H^0(\mathcal{D}_h\mathcal{M})$ has no h-torsion.

(i) The short exact sequence
\[0 \rightarrow \mathcal{M} \xrightarrow{h} \mathcal{M} \rightarrow \mathcal{M}/h\mathcal{M} \rightarrow 0 \]
induces the long exact sequence
\[\cdots \rightarrow H^1(\mathcal{D}_h(\mathcal{M}/h\mathcal{M})) \rightarrow H^1(\mathcal{D}_h\mathcal{M}) \xrightarrow{h} H^1(\mathcal{D}_h\mathcal{M}) \rightarrow 0. \]
By Nakayama’s lemma $H^1(\mathcal{D}_h\mathcal{M}) = 0$ as required.

(ii) Since \mathcal{M} is locally annihilated by some power of h, the cohomology groups $H^i(\mathcal{D}_h\mathcal{M})$ also are h-torsion modules. As $H^0(\mathcal{D}_h\mathcal{M})$ has no h-torsion, we get $H^0(\mathcal{D}_h\mathcal{M}) = 0$. Q.E.D.

Theorem 6.5. The duality functor $\mathcal{D}_h\colon \mathcal{D}_{\text{hol}}^b(\mathcal{D}_X^h)^{\text{op}} \rightarrow t\mathcal{D}_{\text{hol}}^b(\mathcal{D}_X^h)$ is t-exact.

In other words, \mathcal{D}_h interchanges $\mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_X^h)$ with $t\mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_X^h)$ and $\mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_X^h)$ with $t\mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_X^h)$.

Proof. (i) Let us first prove for $\mathcal{M} \in \mathcal{D}_{\text{hol}}^b(\mathcal{D}_X^h)$:
\[(6.3) \quad \mathcal{M} \in \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_X^h) \iff \mathcal{D}_h(\mathcal{M}) \in t\mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_X^h). \]
By (1.2) we have $\text{gr}_h(\mathcal{D}_h\mathcal{M}) \simeq \mathcal{D}(\text{gr}_h \mathcal{M})$ and we know that the analog of (6.3) holds true for \mathcal{D}_X-modules:
\[\mathcal{N} \in \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_X) \iff \mathcal{D}(\mathcal{N}) \in \mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_X). \]
Hence (6.3) follows easily from (6.1) and (6.2).

(ii) We recall the general fact for a t-structure $(D, D^{\leq 0}, D^{\geq 0})$ and $A \in D$:
\[A \in D^{\leq 0} \iff \forall B \in D^{\geq 1} \text{ Hom}(A, B) = 0, \]
\[A \in D^{\geq 0} \iff \forall B \in D^{\leq -1} \text{ Hom}(B, A) = 0. \]
Since \mathcal{D}_h is an involutive equivalence of categories we deduce from (6.3) the dual statement:
\[\mathcal{M} \in \mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_X^h) \iff \mathcal{D}_h(\mathcal{M}) \in t\mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_X^h). \]
Q.E.D.
Remark 6.6. The above result can be stated as follows in the language of quasi-abelian categories of [16]. We will follow the same notations as in [6, Chapter 2]. The category $\mathcal{C} = \text{Mod}(\mathcal{D}^h_X)_{\text{htf}}$ is quasi-abelian. Hence its derived category has a natural generalized t-structure $(\mathcal{D}^{\leq s}(\mathcal{C}), \mathcal{D}^{>s-1}(\mathcal{C}))_{s \in \frac{1}{2}\mathbb{Z}}$. Note that $\mathcal{D}^{[-1/2,0]}(\mathcal{C})$ is equivalent to $\text{Mod}(\mathcal{D}^h_X)$, and that $\mathcal{D}^{[0,1/2]}(\mathcal{C})$ is equivalent to the heart of $^t\mathcal{D}^b(\mathcal{D}^h_X)$. Then Theorem 6.5 states that the duality functor \mathcal{D}_h is t-exact on $\mathcal{D}^b_{\text{hol}}(\mathcal{C})$.

Consider the full subcategories of $\text{Perv}(\mathcal{C}^h_X)$

$$\text{Perv}(\mathcal{C}^h_X)_{\text{ht-tor}} = \{F: \text{locally } h^N F = 0 \text{ for some } N \in \mathbb{N}\},$$

$$\text{Perv}(\mathcal{C}^h_X)_{\text{ht-tf}} = \{F: F \text{ has no non zero subobjects in } \text{Perv}(\mathcal{C}^h_X)_{\text{ht-tor}}\}.$$

Lemma 6.7. (i) Let $F \in \text{Perv}(\mathcal{C}^h_X)$. Then the inductive system of sub perverse sheaves $\text{Ker}(h^n: F \to F)$ is locally stationary.

(ii) The pair $(\text{Perv}(\mathcal{C}^h_X)_{\text{ht-tor}}, \text{Perv}(\mathcal{C}^h_X)_{\text{ht-tf}})$ is a torsion pair.

Proof. (i) Set $\mathcal{M} = \mathcal{D}_h \text{TH}_h(F)$. By the Riemann-Hilbert correspondence, one has $\text{Ker}(h^n: F \to F) \simeq \text{DR}_h(\text{Ker}(h^n: \mathcal{M} \to \mathcal{M}))$. Since \mathcal{M} is coherent, the inductive system $\text{Ker}(h^n: \mathcal{M} \to \mathcal{M})$ is locally stationary. Hence so is the system $\text{Ker}(h^n: F \to F)$.

(ii) By (i) it makes to define for $F \in \text{Perv}(\mathcal{C}^h_X)$:

$$F_{\text{ht-tor}} = \bigcup_n \text{Ker}(h^n: F \to F), \quad F_{\text{ht-tf}} = F/F_{\text{ht-tor}}.$$

It is easy to check that $F_{\text{ht-tor}} \in \text{Perv}(\mathcal{C}^h_X)_{\text{ht-tor}}$ and $F_{\text{ht-tf}} \in \text{Perv}(\mathcal{C}^h_X)_{\text{ht-tf}}$. Then property (ii) in Definition 6.1 is clear. For property (i) let $u: F \to G$ be a morphism in $\text{Perv}(\mathcal{C}^h_X)$ with $F \in \text{Perv}(\mathcal{C}^h_X)_{\text{ht-tor}}$ and $G \in \text{Perv}(\mathcal{C}^h_X)_{\text{ht-tf}}$. Then $\text{Im } u$ also is in $\text{Perv}(\mathcal{C}^h_X)_{\text{ht-tor}}$ and so it is zero by definition of $\text{Perv}(\mathcal{C}^h_X)_{\text{ht-tf}}$. Q.E.D.

Denote by $(^\pi \mathcal{D}^{\leq 0}_{C^h,c}(\mathcal{C}^h_X), ^\pi \mathcal{D}^{>0}_{C^h,c}(\mathcal{C}^h_X))$ the t-structure on $\mathcal{D}_{C^h,c}(\mathcal{C}^h_X)$ induced by the perversity t-structure and this torsion pair as in Proposition 6.2. We also set $^\pi \text{Perv}(\mathcal{C}^h_X) = ^\pi \mathcal{D}^{\leq 0}_{C^h,c}(\mathcal{C}^h_X) \cap ^\pi \mathcal{D}^{>0}_{C^h,c}(\mathcal{C}^h_X)$.

Corollary 6.8. There is a quasi-commutative diagram of t-exact functors
where the duality functors are equivalences of categories and the de Rham functors become equivalences when restricted to the subcategories of regular objects.

Example 6.9. Let \(X = \mathbb{C}, U = X \setminus \{0\} \) and denote by \(j: U \hookrightarrow X \) the embedding. Let \(L \) be the local system on \(U \) with stalk \(\mathbb{C} \) and monodromy \(1 + \hbar \). The sheaf \(Rj_*L \simeq D'_h(j_!(D'_hL)) \) is perverse for both \(t \)-structures, as is the sheaf \(H^0(Rj_*L) = j_*L \simeq jL \). From the distinguished triangle \(j_*L \to Rj_*L \to \mathbb{C}\{0\}[-1] \to \), one gets the short exact sequences

\[
0 \to j_*L \to Rj_*L \to \mathbb{C}\{0\}[-1] \to 0 \quad \text{in} \ Perv(\mathbb{C}_X^h),
\]

\[
0 \to \mathbb{C}\{0\}[-2] \to j_*L \to Rj_*L \to 0 \quad \text{in} \ \pi \text{Perv}(\mathbb{C}_X^h).
\]

7 \(\mathcal{D}(\hbar) \)-modules

Denote by

\[
\mathbb{C}^{h,\text{loc}} := \mathbb{C}(\hbar) = \mathbb{C}[h^{-1}, \hbar]
\]

the field of Laurent series in \(\hbar \), that is the fraction field of \(\mathbb{C}^h \). Recall the exact functor

\[(\bullet)^{\text{loc}}: \text{Mod}(\mathbb{C}_X^h) \to \text{Mod}(\mathbb{C}_X^{h,\text{loc}}), \quad F \mapsto \mathbb{C}_X^{h,\text{loc}} \otimes_{\mathbb{C}_X^h} F, \]

and note that by [7, Proposition 5.4.14] one has the estimate

\[\text{SS}(F^{\text{loc}}) \subset \text{SS}(F). \]

For \(G \in \mathbb{D}^b(\mathbb{C}_X) \), we write \(G^{h,\text{loc}} \) instead of \((G^h)^{\text{loc}} \). We will consider in particular

\[
\mathcal{O}_X^{h,\text{loc}} = \mathcal{O}_X((h)), \quad \mathcal{D}_X^{h,\text{loc}} = \mathcal{D}_X((h)).
\]

Lemma 7.1. Let \(\mathcal{M} \) be a coherent \(\mathcal{D}_X^{h,\text{loc}} \)-module. Then \(\mathcal{M} \) is pseudo-coherent over \(\mathcal{D}_X^h \). In other word, if \(\mathcal{L} \subset \mathcal{M} \) is a finitely generated \(\mathcal{D}_X^h \)-module, then \(\mathcal{L} \) is \(\mathcal{D}_X^h \)-coherent.

Proof. The proof follows from [5, Appendix. A1]. Q.E.D.

Definition 7.2. A lattice \(\mathcal{L} \) of a coherent \(\mathcal{D}_X^{h,\text{loc}} \)-module \(\mathcal{M} \) is a coherent \(\mathcal{D}_X^h \)-submodule of \(\mathcal{M} \) which generates it.
Since \(\mathcal{M} \) has no \(h \)-torsion, any of its lattices has no \(h \)-torsion. In particular, one has \(\mathcal{M} \cong \mathcal{L}^{\text{loc}} \) and \(\text{gr}_h \mathcal{L} \cong \mathcal{L}_0 = \mathcal{L}/h\mathcal{L} \).

It follows from Lemma 7.1 that lattices locally exist: for a local system of generators \((m_1, \ldots, m_N)\) of \(\mathcal{M} \), define \(\mathcal{L} \) as the \(\mathcal{D}_X^h \)-submodule with the same generators.

Lemma 7.3. Let \(0 \rightarrow \mathcal{M}' \rightarrow \mathcal{M} \rightarrow \mathcal{M}'' \rightarrow 0 \) be an exact sequence of coherent \(\mathcal{D}_X^{h,\text{loc}} \)-modules. Locally there exist lattices \(\mathcal{L}', \mathcal{L}, \mathcal{L}'' \) of \(\mathcal{M}', \mathcal{M}, \mathcal{M}'' \), respectively, inducing an exact sequence of \(\mathcal{D}_X^h \)-modules

\[
0 \rightarrow \mathcal{L}' \rightarrow \mathcal{L} \rightarrow \mathcal{L}'' \rightarrow 0.
\]

Proof. Let \(\mathcal{L} \) be a lattice of \(\mathcal{M} \) and let \(\mathcal{L}'' \) be its image in \(\mathcal{M}'' \). We set \(\mathcal{L}':= \mathcal{L} \cap \mathcal{M}' \). These sub-\(\mathcal{D}_X^h \)-modules give rise to an exact sequence.

Since \(\mathcal{L}' \) is a lattice of \(\mathcal{M}' \), being the kernel of a morphism \(\mathcal{L} \rightarrow \mathcal{L}'' \) between coherent \(\mathcal{D}_X^h \)-modules, \(\mathcal{L}' \) is coherent. To show that \(\mathcal{L}' \) generates \(\mathcal{M}' \), note that any \(m' \in \mathcal{M}' \subset \mathcal{M} \) may be written as \(m' = h^{-N}m \) for some \(N \geq 0 \) and \(m \in \mathcal{L} \). Hence \(m = h^N m' \in \mathcal{M}' \cap \mathcal{L} = \mathcal{L}' \). Q.E.D.

For an abelian category \(\mathcal{C} \), we denote by \(K(\mathcal{C}) \) its Grothendieck group. For an object \(M \) of \(\mathcal{C} \), we denote by \([M]\) its class in \(K(\mathcal{C}) \). We let \(\mathcal{K}(\mathcal{D}_X) \) be the sheaf on \(X \) associated to the presheaf

\[
U \mapsto K(\text{Mod}_{\text{coh}}(\mathcal{D}_X|U)).
\]

We define \(\mathcal{K}(\mathcal{D}_X^{h,\text{loc}}) \) in the same way.

Lemma 7.4. Let \(\mathcal{L} \) be a coherent \(\mathcal{D}_X^h \)-module without \(h \)-torsion. Then, for any \(i > 0 \), the \(\mathcal{D}_X \)-module \(\mathcal{L}/h^i\mathcal{L} \) is coherent, and we have the equality

\[
[\mathcal{L}/h^i\mathcal{L}] = i \cdot [\text{gr}_h(\mathcal{L})]
\]

in \(K(\text{Mod}_{\text{coh}}(\mathcal{D}_X)) \).

Proof. Since the functor \((\cdot) \otimes_{\mathcal{C}} \mathbb{C}/h^i\mathbb{C}^h \) is right exact, \(\mathcal{L}/h^i\mathcal{L} \) is a coherent \(\mathcal{D}_X \)-module. Since \(\mathcal{L} \) has no \(h \)-torsion, multiplication by \(h^i \) induces an isomorphism \(\mathcal{L}/h\mathcal{L} \cong h^i\mathcal{L}/h^{i+1}\mathcal{L} \). We conclude by induction on \(i \) with the exact sequence

\[
0 \rightarrow h^i\mathcal{L}/h^{i+1}\mathcal{L} \rightarrow \mathcal{L}/h^{i+1}\mathcal{L} \rightarrow \mathcal{L}/h^i\mathcal{L} \rightarrow 0.
\]

Q.E.D.
Lemma 7.5. For $\mathcal{M} \in \text{Mod}_{\text{coh}}(\mathcal{D}_X^{\text{h,loc}})$, $U \subset X$ an open set and $\mathcal{L} \subset \mathcal{M}|_U$, the class $[\text{gr}_h(\mathcal{L})] \in K(\text{Mod}_{\text{coh}}(\mathcal{D}_X^{\text{h,loc}}))$ only depends on \mathcal{M}. This defines a morphism of abelian sheaves $\mathcal{K}(\mathcal{D}_X^{\text{h,loc}}) \to \mathcal{K}(\mathcal{D}_X)$.

Proof. (i) We first prove that $[\text{gr}_h(\mathcal{L})]$ only depends on \mathcal{M}. We consider another lattice \mathcal{L}' of $\mathcal{M}|_U$. Since \mathcal{L} is a \mathcal{D}_X^{h}-module of finite type, and \mathcal{L}' generates \mathcal{M}, there exists $n > 1$ such that $\mathcal{L} \subset \mathcal{h}^{-n}\mathcal{L}'$. Similarly, there exists $m > 1$ with $\mathcal{L}' \subset \mathcal{h}^{-m}\mathcal{L}$, so that we have the inclusions

$$
\mathcal{h}^{m+n+2}\mathcal{L} \subset \mathcal{h}^{m+n+1}\mathcal{L} \subset \mathcal{h}^{m+1}\mathcal{L}' \subset \mathcal{h}^{m}\mathcal{L}' \subset \mathcal{L}.
$$

Any inclusion $A \subset B \subset C$ yields an identity $[C/A] = [C/B] + [B/A]$ in the Grothendieck group, and we obtain in particular:

$$
\begin{align*}
 [\mathcal{h}^m\mathcal{L}'/\mathcal{h}^{m+n+1}\mathcal{L}] &= [\mathcal{h}^m\mathcal{L}'/\mathcal{h}^{m+1}\mathcal{L}'] + [\mathcal{h}^{m+1}\mathcal{L}'/\mathcal{h}^{m+n+1}\mathcal{L}] \\
 [\mathcal{L}/\mathcal{h}^{m+n+1}\mathcal{L}] &= [\mathcal{L}/\mathcal{h}^{m+1}\mathcal{L}] + [\mathcal{h}^{m+1}\mathcal{L}'/\mathcal{h}^{m+n+1}\mathcal{L}] \\
 [\mathcal{L}/\mathcal{h}^{m+n+2}\mathcal{L}] &= [\mathcal{L}/\mathcal{h}^{m+1}\mathcal{L}] + [\mathcal{h}^{m+1}\mathcal{L}'/\mathcal{h}^{m+n+2}\mathcal{L}].
\end{align*}
$$

Since our modules have no h-torsion, we have isomorphisms of the type $h^k\mathcal{M}_1/h^k\mathcal{M}_2 \simeq \mathcal{M}_1/\mathcal{M}_2$. Then Lemma 7.4 and the above equalities give:

$$
\begin{align*}
 [\mathcal{L}'/\mathcal{h}^{n+1}\mathcal{L}] &= [\text{gr}_h(\mathcal{L}')] + [\mathcal{L}'/\mathcal{h}^n\mathcal{L}] \\
 (m + n + 1)[\text{gr}_h(\mathcal{L})] &= [\mathcal{L}/\mathcal{h}^{m+1}\mathcal{L}] + [\mathcal{L}'/\mathcal{h}^n\mathcal{L}] \\
 (m + n + 2)[\text{gr}_h(\mathcal{L})] &= [\mathcal{L}/\mathcal{h}^{m+1}\mathcal{L}'] + [\mathcal{L}'/\mathcal{h}^{n+1}\mathcal{L}].
\end{align*}
$$

A suitable combination of these lines gives $[\text{gr}_h(\mathcal{L})] = [\text{gr}_h(\mathcal{L}')]$, as desired.

(ii) Now we consider an open subset $V \subset X$ and $\mathcal{M} \in \text{Mod}_{\text{coh}}(\mathcal{D}_X^{\text{h,loc}}|_V)$. We choose an open covering $\{U_i\}_{i \in I}$ of V such that for each $i \in I$, $\mathcal{M}|_{U_i}$ admits a lattice, say \mathcal{L}_i. We have seen that $[\text{gr}_h(\mathcal{L}_i)] \in K(\text{Mod}_{\text{coh}}(\mathcal{D}_X^{\text{h,loc}}|_{U_i}))$ only depends on \mathcal{M}. This implies that

$$
[\text{gr}_h(\mathcal{L}_i)]|_{U_{i,j}} = [\text{gr}_h(\mathcal{L}_j)]|_{U_{i,j}} \text{ in } K(\text{Mod}_{\text{coh}}(\mathcal{D}_X^{\text{h,loc}}|_{U_{i,j}})).
$$

Hence the $[\text{gr}_h(\mathcal{L}_i)]$’s define a section, say $c(\mathcal{M})$, of $\mathcal{K}(\mathcal{D}_X)$ over V. By Lemma 7.3, $c(\mathcal{M})$ only depends on the class $[\mathcal{M}]$ in $K(\text{Mod}_{\text{coh}}(\mathcal{D}_X^{\text{h,loc}}|_V))$, and $\mathcal{M} \mapsto c(\mathcal{M})$ induces the morphism $\mathcal{K}(\mathcal{D}_X^{\text{h,loc}}) \to \mathcal{K}(\mathcal{D}_X)$. Q.E.D.

By Lemma 7.5, the following definition is well posed.
Definition 7.6. Let \mathcal{M} be a coherent $\mathscr{D}_X^{h,\text{loc}}$-module. For $\mathcal{L} \in \text{Mod}_{\text{coh}}(\mathscr{D}_X^h)$ a (local) lattice, the characteristic variety of \mathcal{M} is defined by

$$\text{char}_{h,\text{loc}}(\mathcal{M}) = \text{char}_h(\mathcal{L}).$$

For $\mathcal{M} \in D^b(\mathscr{D}_X^{h,\text{loc}})$, one sets $\text{char}_{h,\text{loc}}(\mathcal{M}) = \bigcup_j \text{char}_{h,\text{loc}}(H^j(\mathcal{M}))$.

Proposition 7.7. The characteristic variety $\text{char}_{h,\text{loc}}(\mathcal{M})$ is additive both on $\text{Mod}_{\text{coh}}(\mathscr{D}_X^{h,\text{loc}})$ and on $D^b(\mathscr{D}_X^{h,\text{loc}})$.

Proof. This follows from Proposition 3.6 (ii) and Lemma 7.3. Q.E.D.

Consider the functor

$$\text{Sol}_{h,\text{loc}}(\mathcal{M}) : D^b(\mathscr{D}_X^{h,\text{loc}})^{\text{op}} \to D^b(\mathbb{C}_X^{h,\text{loc}}), \; \mathcal{M} \mapsto \mathbb{R}\text{Hom}_{\mathscr{D}_X^{h,\text{loc}}}(\mathcal{M}, \mathcal{O}_X^{h,\text{loc}}).$$

Proposition 7.8. Let $\mathcal{M} \in D^b(\mathscr{D}_X^{h,\text{loc}})$. Then

$$\text{SS} \left(\text{Sol}_{h,\text{loc}}(\mathcal{M}) \right) \subset \text{char}_{h,\text{loc}}(\mathcal{M}).$$

Proof. By dévissage, we can assume that $\mathcal{M} \in \text{Mod}_{\text{coh}}(\mathscr{D}_X^{h,\text{loc}})$. Moreover, since the problem is local, we may assume that \mathcal{M} admits a lattice \mathcal{L}.

One has the isomorphism $\text{Sol}_{h,\text{loc}}(\mathcal{M}) \simeq \mathbb{R}\text{Hom}_{\mathscr{D}_X^{h,\text{loc}}}(\mathcal{L}, \mathcal{O}_X^{h,\text{loc}})^{\text{op}}$ by extension of scalars. Taking a local resolution of \mathcal{L} by free \mathscr{D}_X^h-modules of finite type, we deduce that $\text{Sol}_{h,\text{loc}}(\mathcal{M}) \simeq F^{\text{loc}}$ for $F = \text{Sol}_h(\mathcal{L})$. The statement follows by (7.2) and Corollary 3.13. Q.E.D.

One says that \mathcal{M} is holonomic if its characteristic variety is isotropic.

Proposition 7.9. Let $\mathcal{M} \in D^b(\mathscr{D}_X^{h,\text{loc}})$. Then $\text{Sol}_{h,\text{loc}}(\mathcal{M}) \in D^b_{\text{C-c}}(\mathbb{C}_X^{h,\text{loc}})$.

Proof. By the same arguments and with the same notations as in the proof of Proposition 7.8, we reduce to the case $\text{Sol}_{h,\text{loc}}(\mathcal{M}) \simeq F^{\text{loc}}$, for $F = \text{Sol}_h(\mathcal{L})$ and \mathcal{L} a lattice of $\mathcal{M} \in \text{Mod}_{\text{hol}}(\mathscr{D}_X^{h,\text{loc}})$. Hence \mathcal{L} is a holonomic \mathscr{D}_X^h-module, and $F \in D^b_{\text{C-c}}(\mathbb{C}_X^{h})$. Q.E.D.

Remark 7.10. In general the functor

$$\text{Sol}_{h,\text{loc}} : D^b_{\text{hol}}(\mathscr{D}_X^{h,\text{loc}})^{\text{op}} \to D^b_{\text{C-c}}(\mathbb{C}_X^{h,\text{loc}})$$

30
is not locally essentially surjective. In fact, consider the quasi-commutative diagram of categories

\[
\begin{array}{ccc}
D^b_{hol}(\mathcal{D}_X^{\hbar})^{\text{op}} & \xrightarrow{\text{Sol}_h} & D^b_{\mathcal{C}-c}(\mathcal{C}_X^{\hbar}) \\
(\cdot)^{\text{loc}} \downarrow & & \downarrow (\cdot)^{\text{loc}} \\
D^b_{hol}(\mathcal{D}_X^{\hbar,\text{loc}})^{\text{op}} & \xrightarrow{\text{Sol}_{h,\text{loc}}} & D^b_{\mathcal{C}-c}(\mathcal{C}_X^{h,\text{loc}}).
\end{array}
\]

By the local existence of lattices the left vertical arrow is locally essentially surjective. If \(\text{Sol}_{h,\text{loc}}\) were also locally essentially surjective, so should be the right vertical arrow. The following example shows that it is not the case.

Example 7.11. Let \(X = \mathbb{C}\), \(U = X \setminus \{0\}\) and denote by \(j: U \hookrightarrow X\) the embedding. Set \(F = \text{R} j_! L\), where \(L\) is the local system on \(U\) with stalk \(\mathbb{C}^{h,\text{loc}}\) and monodromy \(h\). There is no \(F_0 \in D^b_{\mathcal{C}-c}(\mathbb{C}_X^{h})\) such that \(F \simeq (F_0)^{\text{loc}}\).

One can interpret this phenomenon by remarking that \(D^b_{hol}(\mathcal{D}_X^{h,\text{loc}})\) is equivalent to the localization of the category \(D^b_{\mathcal{C}-c}(\mathcal{D}_X^{h})\) with respect to the morphism \(h\), contrarily to the category \(D^b_{\mathcal{C}-c}(\mathbb{C}_X^{h,\text{loc}})\).

8 Links with deformation quantization

In this last section, we shall briefly explain how the study of deformation quantization algebras on complex symplectic manifolds is related to \(\mathcal{D}_X^{h}\). We follow the terminology of [11].

The cotangent bundle \(\mathfrak{X} = T^* X\) to the complex manifold \(X\) has a structure of a complex symplectic manifold and is endowed with the \(\mathbb{C}^{h}\)-algebra \(\hat{\mathcal{W}}_{\mathfrak{X}}\), a non homogeneous version of the algebra of microdifferential operators. Its subalgebra \(\mathcal{W}_X(0)\) of operators of order at most zero is a deformation quantization algebra. In a system \((x, u)\) of local symplectic coordinates, \(\mathcal{W}_X(0)\) is identified with the star algebra \((\mathcal{O}_X^{h}, \star)\) in which the star product is given by the Leibniz product:

\[f \star g = \sum_{\alpha \in \mathbb{N}^n} \frac{\hbar^{\left|\alpha\right|}}{\alpha!} (\partial_\alpha^u f)(\partial_\alpha x g), \quad \text{for } f, g \in \mathcal{O}_X.\]

(8.1)

In this section we will set for short \(\mathcal{A} := \mathcal{W}_X(0)\), so that \(\mathcal{A}^{\text{loc}} \simeq \mathcal{W}_X\). Note that \(\mathcal{A}\) satisfies Assumption 1.8.
Let us identify X with the zero section of the cotangent bundle \mathfrak{X}. Recall that X is a local model for any smooth Lagrangian submanifold of \mathfrak{X}, and that \mathcal{O}_X^h is a local model of any simple \mathcal{A}-module along X. As \mathcal{O}_X^h has both a \mathcal{D}_X^h-module and an $\mathcal{A}|_X$-module structure, there are morphisms of \mathbb{C}^h-algebras

\[
\mathcal{D}_X^h \to \mathcal{E}nd_{\mathbb{C}^h}(\mathcal{O}_X^h) \leftarrow \mathcal{A}|_X.
\]

Lemma 8.1. The morphisms in (8.2) are injective and induce an embedding $\mathcal{A}|_X \hookrightarrow \mathcal{D}_X^h$.

Proof. Since the problem is local, we may choose a local symplectic coordinate system (x, u) on \mathfrak{X} such that $X = \{u = 0\}$. Then $\mathcal{A}|_X$ is identified with $\mathcal{O}_X^h|_X$. As the action of u_i on \mathcal{O}_X^h is given by $\hbar \partial_x$, the morphism $\mathcal{A}|_X \to \mathcal{E}nd_{\mathbb{C}^h}(\mathcal{O}_X^h)$ factors through \mathcal{D}_X^h, and the induced morphism $\mathcal{A}|_X \to \mathcal{D}_X^h$ is described by

\[
\sum_{i \in \mathbb{N}} f_i(x, u)h^i \mapsto \sum_{j \in \mathbb{N}} \left(\sum_{\alpha \in \mathbb{N}^n, |\alpha| \leq j} \partial_{u}^\alpha f_j - |\alpha| \partial_x \right) h^j,
\]

which is clearly injective. Q.E.D.

Consider the following subsheaves of \mathcal{D}_X^h

\[
\mathcal{D}_X^{h,m} = \prod_{i \geq 0} \left(F_{i+m} \mathcal{D}_X \right) h^i, \quad \mathcal{D}_X^{h,f} = \bigcup_{m \geq 0} \mathcal{D}_X^{h,m}.
\]

Note that $\mathcal{D}_X^{h,0}$ and $\mathcal{D}_X^{h,f}$ are subalgebras of \mathcal{D}_X^h, that $\mathcal{D}_X^{h,0}$ is \hbar-complete while $\mathcal{D}_X^{h,f}$ is not and that $\mathcal{D}_X^{h,0,loc} \simeq \mathcal{D}_X^{h,f,loc}$. By (8.3), the image of $\mathcal{A}|_X$ in \mathcal{D}_X^h is contained in $\mathcal{D}_X^{h,0}$. (The ring $\mathcal{D}_X^{h,0}$ should be compared with the ring $\mathfrak{B}_{X \times \mathbb{C}}$ of [14].)

Remark 8.2. More precisely, denote by $\mathcal{O}_X^h|_X \simeq (\mathcal{O}_X^h|_X)^h$ the formal restriction of \mathcal{O}_X^h along the submanifold X. Then the star product in (8.1) extends to this sheaf, and (8.3) induces an isomorphism $(\mathcal{O}_X^h|_X, \ast) \simeq \mathcal{D}_X^{h,0}$.

Summarizing, one has the compatible embeddings of algebras

\[
\mathcal{A}^{loc}|_X \hookrightarrow \mathcal{D}_X^{h,0,loc} \simeq \mathcal{D}_X^{h,f,loc} \hookrightarrow \mathcal{D}_X^{h,loc}
\]

\[
\mathcal{A}|_X \hookrightarrow \mathcal{D}_X^{h,0} \hookrightarrow \mathcal{D}_X^{h,f} \hookrightarrow \mathcal{D}_X^h
\]

32
One has
\[\text{gr}_h \mathcal{A}|_X \simeq \mathcal{O}_X|_X, \quad \text{gr}_h \mathcal{D}_X^{h,0} \simeq \mathcal{O}_X|_X, \quad \text{gr}_h \mathcal{D}_X^{h,f} \simeq \text{gr}_h \mathcal{D}_X^h \simeq \mathcal{D}_X. \]

Proposition 8.3.
(i) The algebra \(\mathcal{D}_X^{h,0} \) is faithfully flat over \(\mathcal{A}|_X \).

(ii) The algebra \(\mathcal{D}_X^{h,\text{loc}} \) is flat over \(\mathcal{A}_{\text{loc}}|_X \).

Proof. (i) follows from Theorem 1.12.

(ii) follows from (i) and the isomorphism \((\mathcal{D}_X^{h,0})_{\text{loc}} \simeq \mathcal{D}_X^{h,\text{loc}}. \) Q.E.D.

The next examples show that the scalar extension functor
\[\text{Mod}_{\text{coh}}(\mathcal{D}_X^{h,0}) \to \text{Mod}_{\text{coh}}(\mathcal{D}_X^h) \]
is neither exact nor full.

Example 8.4. Let \(X = \mathbb{C}^2 \) with coordinates \((x, y)\). Then \(\hbar \partial_y \) is injective as an endomorphism of \(\mathcal{D}_X^{h,0}/\langle \hbar \partial_x \rangle \) but it is not injective as an endomorphism of \(\mathcal{D}_X^h/\langle \hbar \partial_x \rangle \), since \(\partial_x \) belongs to its kernel. This shows that \(\mathcal{D}_X^h \) is not flat over \(\mathcal{D}_X^{h,0} \).

Example 8.5. This example was communicated to us by Masaki Kashiwara. Let \(X = \mathbb{C} \) with coordinate \(x \), and denote by \((x, u)\) the symplectic coordinates on \(X = T^*\mathbb{C} \). Consider the cyclic \(\mathcal{A} \)-modules
\[\mathcal{M} = \mathcal{A}/\langle x - u \rangle, \quad \mathcal{N} = \mathcal{A}/\langle x \rangle, \]
and their images in \(\text{Mod}(\mathcal{D}_X^h) \)
\[\mathcal{M}' = \mathcal{D}_X^h/\langle x - \hbar \partial_x \rangle, \quad \mathcal{N}' = \mathcal{D}_X^h/\langle x \rangle. \]

As their supports in \(X \) differ, \(\mathcal{M} \) and \(\mathcal{N} \) are not isomorphic as \(\mathcal{A} \)-modules. On the other hand, in \(\mathcal{D}_X^h \) one has the relation
\[(8.4) \quad x \cdot e^{\hbar \partial_x^2/2} = e^{\hbar \partial_x^2/2} \cdot (x - \hbar \partial_x), \]
and hence an isomorphism \(\mathcal{M}' \xrightarrow{\sim} \mathcal{N}' \) given by \([P] \mapsto [P \cdot e^{-\hbar \partial_x^2/2}]\). In fact, one checks that
\[\mathcal{H}om_{\mathcal{A}}(\mathcal{M}, \mathcal{N})|_X = 0, \quad \mathcal{H}om_{\mathcal{D}_X^h}(\mathcal{M}', \mathcal{N}') \simeq \mathbb{C}_X. \]

33
A Complements on constructible sheaves

Let us review some results, well-known from the specialists (see e.g., [15, Proposition 3.10]), but which are usually stated over a field, and we need to work here over the ring \mathbb{C}^h.

Let K be a commutative unital Noetherian ring of finite global dimension. Assume that K is syzygic, i.e. that any finitely generated K-module admits a finite projective resolution by finite free modules. (For our purposes we will either have $K = \mathbb{C}$ or $K = \mathbb{C}^h$).

Let X be a real analytic manifold. Denote by $\text{Mod}_{R-c}(KX)$ the abelian category of R-constructible sheaves on X and by $\text{D}^b_{R-c}(KX)$ the bounded derived category of sheaves of K-modules with R-constructible cohomology.

For the next two lemmas we recall some notations and results of [4, 7]. We consider a simplicial complex $S = (S, \Delta)$, with set of vertices S and set of simplices Δ. We let $|S|$ be the realization of S. Thus $|S|$ is the disjoint union of the realizations $|\sigma|$ of the simplices. For a simplex $\sigma \in \Delta$, the open set $U(\sigma)$ is defined in [7, (8.1.3)]. A sheaf F of K-modules on $|S|$ is said weakly S-constructible if, $\forall \sigma \in \Delta, F|_\sigma$ is constant. An object $F \in \text{D}^b(K|S|)$ is said weakly S-constructible if its cohomology sheaves are so. If moreover, all stalks F_x are perfect complexes, F is said S-constructible. By [7, Proposition 8.1.4] we have isomorphisms, for a weakly S-constructible sheaf F and for any $\sigma \in \Delta$ and $x \in |\sigma|:

\begin{align}
\Gamma(U(\sigma); F) & \sim \Gamma(|\sigma|; F) \sim F_x, \\
H^j(U(\sigma); F) & = H^j(|\sigma|; F) = 0, \quad \text{for } j \neq 0.
\end{align}

\[(A.1) \quad \Gamma(U(\sigma); F) \sim \Gamma(|\sigma|; F) \sim F_x,
\]

\[(A.2) \quad H^j(U(\sigma); F) = H^j(|\sigma|; F) = 0, \quad \text{for } j \neq 0.
\]

It follows that, for a weakly S-constructible $F \in \text{D}^b(K|S|)$, the natural morphisms of complexes of K-modules

\[(A.3) \quad \Gamma(U(\sigma); F) \rightarrow \Gamma(|\sigma|; F) \rightarrow F_x
\]

are quasi-isomorphisms.

For $U \subset X$ an open subset, we denote by $K_U := (K_X)_U$ the extension by 0 of the constant sheaf on U.

Proposition A.1. Let $F \in \text{D}^b_{R-c}(K_X)$. Then

(i) F is isomorphic to a complex

\[0 \rightarrow \bigoplus_{i_a \in I_a} K_{U_a,i_a} \rightarrow \cdots \rightarrow \bigoplus_{i_b \in I_b} K_{U_b,i_b} \rightarrow 0,
\]

34
where the \(\{ U_{k,i} \}_{k,i} \)'s are locally finite families of relatively compact subanalytic open subsets of \(X \).

(ii) \(F \) is isomorphic to a complex

\[
0 \to \bigoplus_{i_a \in I_a} \Gamma_{V_{k,i_a}} K_X \to \cdots \to \bigoplus_{i_b \in I_b} \Gamma_{V_{k,i_b}} K_X \to 0,
\]

where the \(\{ V_{k,i} \}_{k,i} \)'s are locally finite families of relatively compact subanalytic open subsets of \(X \).

Proof. (i) By the triangulation theorem for subanalytic sets (see for example [7, Proposition 8.2.5]) we may assume that \(F \) is an \(S \)-constructible object in \(D^b(\mathbb{K}[S]) \) for some simplicial complex \(S = (S, \Delta) \). For \(i \) an integer, let \(\Delta_i \subset \Delta \) be the subset of simplices of dimension \(\leq i \) and set \(S_i = (S, \Delta_i) \).

We denote by \(\mathbb{K}^b(\mathbb{K}) \) (resp. \(\mathbb{K}^b(\mathbb{K}|S|) \)) the category of bounded complexes of \(\mathbb{K} \)-modules (resp. sheaves of \(\mathbb{K} \)-modules on \(|S| \)) with morphisms up to homotopy. We shall prove by induction on \(i \) that there exists a morphism \(u_i : G_i \to F \) in \(\mathbb{K}^b(\mathbb{K}|S|) \) such that:

(a) the \(G^k_i \) are finite direct sums of \(\mathbb{K}_{U(\sigma)} \)'s for some \(\sigma \in \Delta_i \),

(b) \(u_i|_{|S|} : G_i|_{|S|} \to F|_{|S|} \) is a quasi-isomorphism.

The desired result is obtained for \(i \) equal to the dimension of \(X \).

(i)-(1) For \(i = 0 \) we consider \(F|_{|S_0|} \simeq \bigoplus_{\sigma \in \Delta_0} F_\sigma \). The complexes \(\Gamma(U(\sigma); F) \), \(\sigma \in \Delta_0 \), have finite bounded cohomology by the quasi-isomorphisms (A.3). Hence we may choose bounded complexes of finite free \(\mathbb{K} \)-modules, \(R_{0,\sigma} \), and morphisms \(u_{0,\sigma} : R_{0,\sigma} \to \Gamma(U(\sigma); F) \) which are quasi-isomorphisms.

We have the natural isomorphism \(\Gamma(U(\sigma); F) \simeq a_* \mathcal{H}om_{\mathbb{K}^b(\mathbb{K}|S|)}(\mathbb{K}_{U(\sigma)}, F) \) in \(\mathbb{K}^b(\mathbb{K}) \), where \(a : |S| \to \text{pt} \) is the projection and \(\mathcal{H}om \) is the internal Hom functor. We deduce the adjunction formula, for \(R \in \mathbb{K}^b(\mathbb{K}) \), \(F \in \mathbb{K}^b(\mathbb{K}|S|) \):

\[
\text{Hom}_{\mathbb{K}^b(\mathbb{K})}(R, \Gamma(U(\sigma); F)) \simeq \text{Hom}_{\mathbb{K}^b(\mathbb{K}|S|)}(R_{U(\sigma)}, F).
\]

Hence the \(u_{0,\sigma} \) induce \(u_0 : G_0 := \bigoplus_{\sigma \in \Delta_0} (R_{0,\sigma})_U(\sigma) \to F \). By (A.3) \((u_0)_x \) is a quasi-isomorphism for all \(x \in |S_0| \), so that \(u_0|_{|S_0|} \) also is a quasi-isomorphism, as required.
(i)-(2) We assume that \(u_i \) is built and let \(H_i = M(u_i)[-1] \) be the mapping cone of \(u_i \), shifted by \(-1\). By the distinguished triangle in \(\mathcal{K}^b(\mathbb{K}_S) \)

\[
(A.5) \quad H_i \xrightarrow{v_i} G_i \xrightarrow{u_i} F \xrightarrow{+1} \]

\(H_i \vert_{S_i} \) is quasi-isomorphic to 0. Hence \(\bigoplus_{\sigma \in \Delta_i \setminus \Delta_i} (H_i)_{\vert_{S_i}} \rightarrow H_i \vert_{S_i} \) is a quasi-isomorphism. As above we choose quasi-isomorphisms \(u_{i,\sigma} : R_{i+1,\sigma} \rightarrow \Gamma(U(\sigma); H_i), \sigma \in \Delta_i \setminus \Delta_i \), where the \(R_{i+1,\sigma} \) are bounded complexes of finite free \(\mathbb{K} \)-modules. By (A.4) again the \(u_{i,\sigma} \) induce a morphism in \(\mathcal{K}^b(\mathbb{K}_S) \)

\[
u_{i+1} : G'_{i+1} := \bigoplus_{\sigma \in \Delta_{i+1} \setminus \Delta_i} (R_{i+1,\sigma})_{\vert_{S_i}} \rightarrow H_i.
\]

For \(x \in |S_{i+1}| \setminus |S_i| \), \((u'_{i+1})_x \) is a quasi-isomorphism by (A.3), and, for \(x \in |S_i| \), this is trivially true. Hence \(u'_{i+1} \vert_{S_i} \) is a quasi-isomorphism.

Now we let \(H_{i+1} \) and \(G_{i+1} \) be the mapping cones of \(u'_{i+1} \) and \(v_i \circ u'_{i+1} \), respectively. We have distinguished triangles in \(\mathcal{K}^b(\mathbb{K}_S) \)

\[
(A.6) \quad G'_{i+1} \xrightarrow{u'_{i+1}} H_i \rightarrow H_{i+1} \xrightarrow{+1}, \quad G'_{i+1} \xrightarrow{v_i \circ u'_{i+1}} G_i \rightarrow G_{i+1} \xrightarrow{+1}.
\]

By the contraction of the mapping cone, the definition of \(G'_{i+1} \) and the induction hypothesis, \(G_{i+1} \) satisfies property (a) above. The octahedral axiom applied to triangles (A.5) and (A.6) gives a morphism \(u_{i+1} : G_{i+1} \rightarrow F \) and a distinguished triangle \(H_{i+1} \rightarrow G_{i+1} \xrightarrow{u_{i+1}} F \xrightarrow{+1} \). By construction \(H_{i+1} \vert_{S_{i+1}} \) is quasi-isomorphic to 0 so that \(u_{i+1} \) satisfies property (b) above.

(ii) Consider the duality functor \(D'_{\mathbb{K}}(\cdot) = R\mathcal{H}om_{\mathbb{K}_X}(\cdot, \mathbb{K}_X) \). Set \(G = D'_{\mathbb{K}}(F) \), and represent it by a bounded complex as in (i). Since \(U_{k,i} \) corresponds to an open subset of the form \(U(\sigma) \) in \(|S| \), the sheaves \(\mathbb{K}_{U_{k,i}} \) are acyclic for the functor \(D'_{\mathbb{K}} \). Hence \(F \simeq D'_{\mathbb{K}}(G) \) can be represented as claimed.

Q.E.D.

Lemma A.2. Let \(F \rightarrow G \rightarrow 0 \) be an exact sequence in \(\text{Mod}_{\mathbb{K},c}(\mathbb{K}_X) \). Then for any relatively compact subanalytic open subset \(U \subset X \), there exists a finite covering \(U = \bigcup_{i \in I} U_i \) by subanalytic open subsets such that, for each \(i \in I \), the morphism \(F(U_i) \rightarrow G(U_i) \) is surjective.

Proof. As in the proof of Proposition A.1 we may assume that \(F \) and \(G \) are constructible sheaves on the realization of some finite simplicial complex \((S, \Delta)\). For \(\sigma \in \Delta \) the morphism \(\Gamma(U(\sigma); F) \rightarrow \Gamma(U(\sigma); G) \) is surjective, by (A.1). Since \(|S| \) is the finite union of the \(U(\sigma) \) this proves the lemma.

Q.E.D.
B Complements on subanalytic sheaves

We review here some well-known results (see [9, Chapter 7] and [13]) but which are usually stated over a field, and we need to work here over the ring \(\mathbb{C}^{\hbar} \).

Let \(\mathbb{K} \) be a commutative unital Noetherian ring of finite global dimension (for our purposes we will either have \(\mathbb{K} = \mathbb{C} \) or \(\mathbb{K} = \mathbb{C}^{\hbar} \)). Let \(X \) be a real analytic manifold, and consider the natural morphism \(\rho: X \to X_{sa} \) to the associated subanalytic site.

Lemma B.1. The functor \(\rho_*: \text{Mod}_{\mathbb{R},c}(\mathbb{K}_X) \to \text{Mod}(\mathbb{K}_{X_{sa}}) \) is exact and \(\rho^{-1}\rho_* \) is isomorphic to the canonical functor \(\text{Mod}_{\mathbb{R},c}(\mathbb{K}_X) \to \text{Mod}(\mathbb{K}_X) \).

Proof. Being a direct image functor, \(\rho_* \) is left exact. It is right exact thanks to Lemma A.2. The composition \(\rho^{-1}\rho_* \) is isomorphic to the identity on \(\text{Mod}(\mathbb{K}_X) \) since the open sets of the site \(X_{sa} \) give a basis of the topology of \(X \). Q.E.D.

In the sequel, we denote by \(\text{Mod}_{\mathbb{R},c}(\mathbb{K}_{X_{sa}}) \) the image by the functor \(\rho_* \) of \(\text{Mod}_{\mathbb{R},c}(\mathbb{K}_X) \) in \(\text{Mod}(\mathbb{K}_{X_{sa}}) \). Hence \(\rho_* \) induces an equivalence of categories \(\text{Mod}_{\mathbb{R},c}(\mathbb{K}_X) \simeq \text{Mod}_{\mathbb{R},c}(\mathbb{K}_{X_{sa}}) \). We also denote by \(\text{D}^b_{\mathbb{R},c}(\mathbb{K}_{X_{sa}}) \) the full triangulated subcategory of \(\text{D}^b(\mathbb{K}_{X_{sa}}) \) consisting of objects with cohomology in \(\text{Mod}_{\mathbb{R},c}(\mathbb{K}_{X_{sa}}) \).

Corollary B.2. The subcategory \(\text{Mod}_{\mathbb{R},c}(\mathbb{K}_{X_{sa}}) \) of \(\text{Mod}(\mathbb{K}_{X_{sa}}) \) is thick.

Proof. Since \(\rho_* \) is fully faithful and exact, \(\text{Mod}_{\mathbb{R},c}(\mathbb{K}_{X_{sa}}) \) is stable by kernel and cokernel. It remains to see that, for \(F, G \in \text{Mod}_{\mathbb{R},c}(\mathbb{K}_X) \)

\[
\text{Ext}^1_{\text{Mod}_{\mathbb{R},c}(\mathbb{K}_X)}(F, G) \simeq \text{Ext}^1_{\text{Mod}(\mathbb{K}_{X_{sa}})}(\rho_* F, \rho_* G).
\]

By [4] we know that the first \(\text{Ext}^1 \) may as well be computed in \(\text{Mod}(\mathbb{K}_X) \). We see that the functors \(\rho^{-1} \) and \(R\rho_* \) between \(\text{D}^b(\mathbb{K}_X) \) and \(\text{D}^b(\mathbb{K}_{X_{sa}}) \) are adjoint, and moreover \(\rho^{-1} R\rho_* \simeq \text{id} \). Thus, for \(F', G' \in \text{D}^b(\mathbb{K}_X) \) we have

\[
\text{Hom}_{\text{D}^b(\mathbb{K}_{X_{sa}})}(R\rho_* F', R\rho_* G') \simeq \text{Hom}_{\text{D}^b(\mathbb{K}_X)}(F', G'),
\]

and this gives the result. Q.E.D.

This corollary gives the equivalence \(\text{D}^b_{\mathbb{R},c}(\mathbb{K}_X) \simeq \text{D}^b_{\mathbb{R},c}(\mathbb{K}_{X_{sa}}) \), both categories being equivalent to \(\text{D}^b(\text{Mod}_{\mathbb{R},c}(\mathbb{K}_X)) \).
References

[1] D. Happel, I. Reiten and S. Smalø, *Tilting in abelian categories and quasitilted algebras*, Mem. Amer. Math. Soc. 120, 575, (1996).

[2] D. Juteau, *Decomposition numbers for perverse sheaves*, Ann. Inst. Fourier 59 2 p. 1177–1229 (2009).

[3] M. Kashiwara, *On the maximally overdetermined systems of linear differential equations*, Publ. RIMS, Kyoto Univ. 10 p. 563–579 (1975).

[4] ———, *The Riemann-Hilbert problem for holonomic systems*, Publ. RIMS, Kyoto Univ. 20 p. 319–365,(1984).

[5] ———, *D-modules and Microlocal Calculus*, Translations of Mathematical Monographs, 217 American Math. Soc. (2003).

[6] ———, *Equivariant derived category and representation of real semisimple Lie groups*, in Representation theory and complex analysis, p. 137–234, Lecture Notes in Math., 1931, Springer, Berlin, 2008.

[7] M. Kashiwara and P. Schapira, *Sheaves on Manifolds*, Grundlehren der Math. Wiss. 292 Springer-Verlag (1990).

[8] ———, *Moderate and formal cohomology associated with constructible sheaves*, Mémoires Soc. Math. France, 64 (1996).

[9] ———, *Ind-sheaves*, Astérisque Soc. Math. France, 271 (2001).

[10] ———, *Categories and sheaves*, Grundlehren der Math. Wiss. 332 Springer-Verlag (2006).

[11] ———, *Deformation quantization modules*, to appear. (See arXiv:0802.1245 and arXiv:0809.4309).

[12] B. Malgrange, *Ideals of differentiable functions*, Tata Institute for Fundamental Study in Mathematics, Oxford University Press (1966).

[13] L. Prelli, *Sheaves on subanalytic sites*, Rend. Sem. Mat. Univ. Padova, 120 p. 167–216 (2008).

[14] C. Sabbah, *Polarizable twistor D-modules*, Astérisque Soc. Math. France, 300 (2005).
[15] P. Schapira and J-P. Schneiders, *Elliptic pairs I*, Astérisque Soc. Math. France, 224 (1994).

[16] J-P. Schneiders, *Quasi-abelian categories and sheaves*, Mémoires Soc. Math. France, 76 (1999).

Andrea D’Agnolo: Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, via Trieste 63, 35121 Padova, Italy
E-mail address: dagnolo@math.unipd.it
Web page: www.math.unipd.it/~dagnolo

Stéphane Guillermou: Institut Fourier, Université de Grenoble I, BP 74, 38402 Saint-Martin d’Hères, France
E-mail address: Stephane.Guillermou@ujf-grenoble.fr
Web page: www-fourier.ujf-grenoble.fr/~guillerm

Pierre Schapira: Institut de Mathématiques, Université Pierre et Marie Curie, 175 rue du Chevaleret, 75013 Paris, France
E-mail address: schapira@math.jussieu.fr
Web page: www.math.jussieu.fr/~schapira