Overlap of proteomics biomarkers between women with pre-eclampsia and PCOS: a systematic review and biomarker database integration

Gulafshana Hafeez Khan1,*, Nicolas Galazis1, Nikolina Docheva1, Robert Layfield2, and William Atiomo1

1Division of Human Development, School of Clinical Sciences, University of Nottingham, Queen’s Medical Centre, D Floor, East Block, Nottingham, UK 2School of Life Sciences, University of Nottingham, Nottingham, UK

*Correspondence address. E-mail: gulafshanaafeez@hotmail.com

Submitted on April 28, 2014; resubmitted on August 29, 2014; accepted on September 19, 2014

STUDY QUESTION: Do any proteomic biomarkers previously identified for pre-eclampsia (PE) overlap with those identified in women with polycystic ovary syndrome (PCOS).

SUMMARY ANSWER: Five previously identified proteomic biomarkers were found to be common in women with PE and PCOS when compared with controls.

WHAT IS KNOWN ALREADY: Various studies have indicated an association between PCOS and PE; however, the pathophysiological mechanisms supporting this association are not known.

STUDY DESIGN, SIZE, DURATION: A systematic review and update of our PCOS proteomic biomarker database was performed, along with a parallel review of PE biomarkers. The study included papers from 1980 to December 2013.

PARTICIPANTS/MATERIALS, SETTING, METHODS: In all the studies analysed, there were a total of 1423 patients and controls. The number of proteomic biomarkers that were catalogued for PE was 192.

MAIN RESULTS AND THE ROLE OF CHANCE: Five proteomic biomarkers were shown to be differentially expressed in women with PE and PCOS when compared with controls: transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. In PE, the biomarkers were identified in serum, plasma and placenta and in PCOS, the biomarkers were identified in serum, follicular fluid, and ovarian and omental biopsies.

LIMITATIONS, REASONS FOR CAUTION: The techniques employed to detect proteomics have limited ability in identifying proteins that are of low abundance, some of which may have a diagnostic potential. The sample sizes and number of biomarkers identified from these studies do not exclude the risk of false positives, a limitation of all biomarker studies. The biomarkers common to PE and PCOS were identified from proteomic analyses of different tissues.

WIDER IMPLICATIONS OF THE FINDINGS: This data amalgamation of the proteomic studies in PE and in PCOS, for the first time, discovered a panel of five biomarkers for PE which are common to women with PCOS, including transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. If validated, these biomarkers could provide a useful framework for the knowledge infrastructure in this area. To accomplish this goal, a well co-ordinated multidisciplinary collaboration of clinicians, basic scientists and mathematicians is vital.

STUDY FUNDING/COMPETING INTEREST(S): No financial support was obtained for this project. There are no conflicts of interest.

Key words: polycystic ovarian syndrome / pre-eclampsia / biomarker / proteomic / overlap

The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Introduction

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder of women of reproductive age. PCOS can present as infertility, oligomenorrhoea, hirsutism, acne, hyperandrogenaemia and/or obesity and have metabolic consequences such as an increased risk of hypertension, insulin resistance and type 2 diabetes in later life (Dunaif and Thomas, 2001; Wild, 2002; Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group, 2004). Women with PCOS are also known to have an increased risk of obstetric complications including pre-eclampsia (PE), gestational diabetes and preterm birth (Mikola et al., 2001; Boosma et al., 2006; Altieri et al., 2010; Kjerulff et al., 2011; Galazis et al., 2013).

A systematic review performed recently showed that the pregnant women who are known to have PCOS were four times more likely to develop PE when compared with controls (Kjerulff et al., 2011). Although the association between PCOS and PE has been documented, the underlying pathophysiological mechanisms involved are not completely understood; however, it is possible that the raised androgen levels, hyperinsulinaemia and subsequent diabetic and hypertensive susceptibilities in PCOS may act as co-factors (Troisi et al., 2003). Among the various implicating factors, defective placental vasculature appears to be central to the disease (Duckitt and Harrington, 2005).

Currently, there is insufficient evidence to establish causation and to establish screening for patients for these complications, solely based on PCOS diagnosis. There is however a need for research studies into the molecular mechanisms underpinning the link between PCOS and PE. This could facilitate screening in women with PCOS for PE, which could minimize the occurrence of maternal and fetal morbidity/mortality associated with PE in pregnant women with PCOS. Proteomic biomarker discovery programmes may address this need.

PE is pregnancy-induced hypertension in association with proteinuria (>0.3 g in 24 h) with or without oedema (Royal College of Obstetricians and Gynaecologists, 2006). Virtually, any organ system may be affected. The incidence of severe PE is ~5 in 1000 pregnancies and is a major cause of poor pregnancy outcomes, including severe obstetric morbidity and maternal and fetal mortality (Royal College of Obstetricians and Gynaecologists, 2006). PE is associated with fetal growth restriction, low birthweight, preterm delivery and respiratory distress syndrome (Royal College of Obstetricians and Gynaecologists, 2006). Pregnant women who are at high risk of developing PE can be identified in the early antenatal period from a comprehensive history enquiring about risk factors, including previous history or family history of PE, age and BMI as well as co-morbidities such as hypertension, renal disease and diabetes (Duckitt and Harrington, 2005). PE is still the second most common cause of maternal mortality as reported by the confidential enquiry into Maternal and Child Health for the triennium of 2006–2008 (CMACE, 2011). The exact pathophysiological mechanism of PE is still unknown.

Proteomics is an emerging discipline which involves the global analysis of protein expression changes (Anderson and Anderson, 1998). There is a common consensus that the information obtained from the protein component of the cell or tissue complements the genomic data. Alterations in protein expression depict biological processes as proteins are the vital elements that control cell function. Proteomic methods are appropriate to detect post-translational alterations. In a literature review of MEDLINE (1966–December 2013), EMBASE (1980–December 2013), ISI web of knowledge (v4.2) and Cochrane (1993–December 2013) databases combining the terms: ‘proteomics’, ‘proteomic’, ‘pre-eclampsia’, and ‘PCOS’ or ‘polycystic ovary syndrome’, no studies were isolated, where proteomic biomarkers for PE had been specifically investigated in women with PCOS. However, several studies were identified where proteomic techniques had been used in the study of pregnant women with PE and in women with PCOS as separate entities.

The present study aimed at systematically reviewing the research undertaken using proteomic technologies for the detection of proteomic biomarkers in PE and consider whether any of these biomarkers could be used as candidate biomarkers for identifying the women with PCOS who are at risk of developing PE in pregnancy. This was achieved by performing a comparison of PE biomarkers against previously a published database of all proteomic biomarkers identified so far in women with PCOS (Atiomo et al., 2009). Any biomarkers found to be common to both conditions could be investigated in future studies to understand the mechanisms that link PE with PCOS.

Methods

This study did not involve patient contact; hence, Institutional Review Board (IRB) approval was not mandatory.

Studies eligible for review

MEDLINE (1966–December 2013), EMBASE (1980–December 2013), Cochrane (1993–December 2013) and ISI web of knowledge (v4.2) databases were searched using the terms ‘proteomics’, ‘proteomic’, ‘pre-eclampsia’, ‘pre-eclamptic toxemia’, ‘proteomic biomarker’, and ‘polycystic ovary syndrome’ without any restrictions. Animal studies were not included in the review.

Data abstraction

The original PDFs of studies were acquired through online links to the files obtained from the search results. The references from the studies were manually searched to identify any other relevant studies. The search criterion ended in December 2013. The searches were independently conducted by two of the authors (G.H.K. and N.D.).

Main characteristics of the PE studies

The selected studies were assessed and a record was made of the specific study characteristics including type of study, design, number of participants (n), type of proteomic technique used and the exact nature of the sample analysed in each study (whether serum, urine etc.). A list of proteins was created, that were identified to have been expressed differently in women with PE versus controls (normal pregnancy). These parameters are presented in Table I. To improve accuracy, the studies were screened independently by two of the co-authors (G.H.K., N.D.).

Methodological quality assessment

The QUADOMICS tool, which is an adaptation of QUADAS (a quality assessment tool for use in systematic reviews of the diagnostic accuracy studies) takes into account the particular challenges encountered using ‘omics’ based techniques (Parker et al., 2010) and is recommended in studies using this methodology. The tool was applied to determine the methodological quality of the studies included in this systematic review (Table II). The studies that achieved the score of 12/16 were classified as high quality (HQ), whereas those which scored 11/16 or less were classified as low quality (LQ). The methodological quality assessment was also performed independently by two of the co-authors (G.H.K. and N.D.).
Table I The main characteristics of each study and the proteins differentially expressed in patients with PE compared with normal individuals.

Study	Population	Selection criteria	Proteins identified	Change versus control (↑/↓)	Sample site	Technique used	
Epiney et al. (2012)	Control, n = 6	Normotensive pregnant patients	FNI protein	Decreased	Placenta	LC-ESI-MS/MS	
	PE, n = 4	Systolic blood pressure level ≥ 160 mmHg or a diastolic blood pressure level ≥ 110 mmHg on two occasions and proteinuria ≥ 3+ on a urine stick or ≥ 5 g in a 24-h urine specimen (ACOG practice, 2002)	α-Actinin-4, Actin, Transgelin-2, Pregnancy-specific β-1-glycoprotein 3, Choriogonadotrophin subunit β, Pregnancy-specific β-1-glycoprotein 2, Protein S00-A11, Pregnancy-specific β-1-glycoprotein 4, Phosphatidylethanolamine-binding protein 1, β-2-microglobulin, Coagulation factor XIII A chain, Follistatin-related protein 1, Malate dehydrogenase, Annexin A2, Thioredoxin domain-containing protein 4, Serotransferrin, C9orf88 variant protein (Fragment), Cystatin-M, Polypyrrolidine tract-binding protein 1, 40S ribosomal protein 55, Calnexin, Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A α isoform	Decreased, Increased, Decreased, Increased, Increased, Decreased, Decreased, Decreased, Increased, Decreased, Decreased, Increased, Decreased, Increased, Decreased, Increased, Decreased, Increased, Decreased, Increased, Increased			
Buhimschi et al. (2008)	38 = PE (n = 4)	Severe PE (sPE)	21-aa C-terminus fragment of SERPINA-1	Increased	Urine + Placenta	SELDI-TOF-MS	
	21 = control	NA	24-aa N-terminus fragment of SERPINA-1	Increased	Placenta		
	206 (cross-sectional cohort)	Low risk of PE (n = 4)					
	19 (longitudinal cohort)	High risk of PE (n = 15)					
Study	Population	Selection criteria	Proteins identified	Change versus control	Sample site	Technique used	
-------	------------	---------------------	---------------------	-----------------------	-------------	----------------	
		Inclusion	Exclusion	atty/ardownarrow			
Park et al. (2008)	PE, n = 18	Blood pressure ≥ 140/90 after 20 weeks and proteinuria	Multiple pregnancy	Proapolipoprotein A-I	Increased	Amniotic fluid	SELDI-TOF-MS
	Chronic hypertension, n = 7	Blood pressure ≥ 140/90 before pregnancy or after 20 weeks	Evidence of intrauterine infection	SBBH42	Increased	Western blot	
	Control, n = 16	No evidence of high blood pressure or proteinuria	Smokers Diabetes IUGR Medication other than antihypertensives	a-2-HS-glycoprotein	Increased	Placenta	LC-MS/MS
	PE, n = 6	Blood pressure ≥ 140/90 after 20 weeks and proteinuria		Glutathione S-transferase	Decreased	Western blot	
				Peroxiredoxin 6	Decreased		
				Aldose reductase	Decreased		
				Heat shock protein 60	Decreased		
				β-Tubulin	Decreased		
				Heat shock protein 70	Decreased		
				Proteasome, α subunit	Decreased		
				Erin	Decreased		
				Protein disulphide isomerase	Decreased		
				Phosphoglycerate mutase 1	Decreased		
				Triosephosphate isomerase	Decreased		
				Chain A of enoyl-co-enzyme A hydratase	Decreased		
				Apolipoprotein A-1	Increased		
				Heat shock protein gp96 precursor	Decreased		
				Chloride intracellular channel 3	Increased		
				Chain A of enoyl-co-enzyme A hydratase	Decreased		
				Chain A, crystal structure of human Apolipoprotein A-1	Decreased		
				Protein disulphide isomerase	Increased		
				Cu/Zn-superoxide dismutase	Increased		
				Actin, γ I pro-peptide	Decreased		
				Peroxiredoxin 3, isoform CRA-a	Decreased		
				HSPA8 (Hsc 70)	Decreased		
				Peroxiredoxin 2 isoform a	Decreased		
				Chain A, Transthyretin	Decreased		
				Fibronectin 1 isoform 3 preproprotein	Increased		
Johnstone et al. (2011)	Control, n = 6	No evidence of high blood pressure or proteinuria					
	PE, n = 6	Blood pressure ≥ 140/90 after 20 weeks and proteinuria					
Ghareesi et al. (2010)	Normal, n = 5	No evidence of high blood pressure or proteinuria	Multigravida				
	sPE, n = 5	Blood pressure, 160 mmHg or higher systolic or 110 mmHg or higher diastolic on two occasions at least 6 h apart, and new onset of proteinuria, 500 mg or more of protein in a 24 h urine collection or 3+ or greater on urine dipstick testing of two random urine samples collected at least 4 h apart	Vaginal birth				
Blumenstein et al. (2009a)	Normal, n = 57	Plasma obtained at 20 ± 1 week gestation from the SCOPE biobank. No evidence of high blood pressure or proteinuria	NA		Serum	LC-MS/MS	
Study	Normal pregnant women	PE	Blood pressure ≥ 140/90 after 20 weeks on two occasions 4 h apart and combined with either proteinuria or multi-organ complication	Fibrinogen, β chain preproprotein	Increased	Western Blot	
-------------------------------	-----------------------	----	---	-----------------------------------	-----------	--------------	
Watanabe et al. (2004)	n = 80	PE	No evidence of high blood pressure or proteinuria	Clusterin isoform I	Increased		
			Diagnosis of PE was based on the criteria of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy	TTR	Increased		
				Apolipoprotein A-I precursor	Increased		
				Hemopexin	Increased		
				Transferrin	Increased		
				Fibrinogen γ chain	Increased	Serum	
				Serine protease inhibitor	Increased	2-Dimensional electrophoresis MALDI-TOF-MS WESTERN BLOT	
Blankley et al. 2009	n = 23	PE	No evidence of high blood pressure or proteinuria	Clusterin	Increased	Plasma MALDI TOF/TOF	
			PE was diagnosed using standard definitions from the International Society for the Study of Hypertension in Pregnancy	Apolipoprotein B	Increased		
				Inter-α inhibitor H1	Increased		
				Inter-α inhibitor H2	Increased		
				Inter-α inhibitor H3	Increased		
				Complement C6	Increased		
				Complement C7	Increased		
				PAPP-A	Increased		
				Vitamin K-dependent protein Z	Increased		
				Complement C1s	Increased		
				Sex hormone-binding globulin	Increased		
				Clusterin	Increased		
				Coagulation factor X	Increased		
				Coagulation factor V	Increased		
				Insulin-like growth factor binding protein complex acid labile chain precursor (ALS)	Increased		
				Pregnancy-specific B-1 glycoprotein	Increased		
				Pregnancy-specific B-1 glycoprotein	Increased		
				Vitamin D binding protein	Increased		
				Serum amyloid P-component	Increased		
				Complement C2	Increased		
				Pregnancy-specific glycoprotein 9	Increased		
				Paraoxonase 1	Increased		

Continued
Study	Population	Selection criteria	Proteins identified	Change versus control	Sample site	Technique used
Liu et al.	Normal pregnant	n = 5 28.2 ± 1.8 No evidence of high blood pressure or proteinuria	Peroxiredoxin-2	Increased	Plasma	LC-MS/MS
	sPE	n = 5 30.3 ± 2.4 Severe PE was defined as increased blood pressure (≥ 160 mmHg systolic or ≥ 110 mmHg diastolic on ≥2 occasions at least 6 h apart) that occurred after 20 weeks of gestation in women with previously normal blood pressure, accompanied with proteinuria (≥5 g/24 h) or proteinuria of 2+ or more by dipstick measurement	Carboxypeptidase N catalytic chain, Vitamin D binding protein, α-2-macroglobulin, Vitronectin precursor, Afamin precursor (α-albumin), Fibronectin I, Trypsin-I, Extracellular matrix protein I, Complement C1q, Plasma protease C1 inhibitor, Fetuin-A, Zinc finger protein, Complement C4B, Serpin peptidase inhibitor, clade A, member I, α-2-HS-glycoprotein, AMBP protein, Apolipoprotein E, Apolipoprotein H, Ceruloplasmin, Chorionic somatomammotropin hormone, Clu...	Decreased		
			Ceruloplasmin, Chorionic somatomammotropin hormone, Clu...			

Khan et al.
Proteomics biomarkers in pre-eclampsia and PCOS
Fibronectin Increased
Fibulin-1 Increased
Galectin-3-binding protein Increased
Hyaluronan-binding protein 2 Increased
Kininogen-1 Increased
Lysozyme C Increased
Serpin peptidase inhibitor, clade F, member 1
Plasminogen Increased
Pregnancy-specific β-1-glycoprotein 3 Increased
Pregnancy-specific β-1-glycoprotein 4 Increased
Vitamin D-binding protein Increased
Vitronectin Increased
α-2-macroglobulin Increased
Angiogenin Increased
Serpin peptidase inhibitor, clade C, member 1
Apolipoprotein A-II Decreased
Apolipoprotein B-100 Decreased
Apolipoprotein-L1 Decreased
C4b-binding protein α chain Decreased
Complement factor H-related protein 1 Decreased
Glutathione peroxidase 3 Decreased
Haemoglobin subunit α Decreased
Haemoglobin subunit ε Decreased
Leucine-rich repeat-containing protein 6 Decreased
Mannan-binding lectin serine protease 2 Decreased
Plasma retinol-binding protein 4 Decreased
Platelet factor 4 Decreased
Pregnancy zone protein Decreased
Serum amyloid A2 protein Decreased
Serum amyloid A-4 protein Decreased
Serum amyloid P-component Decreased
Transthyretin Decreased
Continued
Study

Rasanen et al. (2010)
Study

Vascotto et al. (2007)
Myers et al. (2013)
Centlow et al. (2010)
Kolla et al. (2012)
Blumenstein et al. (2009b)

Continued
The PCOS proteomics biomarkers database

The PCOS proteomic biomarkers data has been previously published and validated (Atiomo et al., 2009). A further literature search was however performed on MEDLINE (1966–December 2013), EMBASE (1980–December 2013) and the ISI web of knowledge (v4.2) databases using the following search terms 'polycystic ovary syndrome' and 'proteomic', 'proteomics', or 'proteomics biomarker' without any limits/restrictions. All relevant studies published since the database was last updated in February 2011 were reviewed. One relevant study has since been published, but the updated PCOS database already contained the listed biomarkers found in the paper.

Searching for PE biomarkers in the PCOS biomarker database

A comparison was established between proteomic biomarkers for PE and the updated database of proteomic biomarkers for PCOS. Where overlaps were present, the name of the protein, the original tissue in women with PCOS and PE (where these biomarkers had been identified) and the protein function was recorded.

Results

Proteomic studies of PE

The selection process of the primary studies where proteomic methodologies were used for the identification of biomarkers of PE is shown in Fig. 1. The search generated 58 articles. Review articles, studies that did not use proteomic techniques or studies that did not compare PE with a normotensive (control) group were excluded. Moreover, studies involving animals only, studies presenting protein \(m/z \) values only rather than protein identifications, or those studies that compared different proteomic approaches were excluded, leaving 16 primary studies eligible for this review (Watanabe et al., 2004; Vascotto et al., 2007; Buhimschi et al., 2008; Jin et al., 2008; Park et al., 2008; Blankley et al., 2009; Blumenstein et al., 2009 a,b; Centlow et al., 2010; Gharesi-Fard et al., 2011).

Table I

Study Population	Selection criteria	Proteins identified	Change versus control
Sample site	Technique used		
n	Mean age	SD	age range

The section processes of the primary studies where proteomic methods were used to identify potential biomarkers were as follows:

1. A comparison was established between proteomic biomarkers for PE and the updated PCOS database.

2. The overlap in biomarkers was considered.

3. The proteins identified in both databases were then reviewed.

4. A comparison was established between proteomic biomarkers for PE and the updated PCOS database.

The overlap in biomarkers was considered.

The sections processes of the primary studies where proteomic methods were used to identify potential biomarkers were as follows:

1. A comparison was established between proteomic biomarkers for PE and the updated PCOS database.

2. The overlap in biomarkers was considered.

3. The proteins identified in both databases were then reviewed.

4. A comparison was established between proteomic biomarkers for PE and the updated PCOS database.

The overlap in biomarkers was considered.

The sections processes of the primary studies where proteomic methods were used to identify potential biomarkers were as follows:

1. A comparison was established between proteomic biomarkers for PE and the updated PCOS database.

2. The overlap in biomarkers was considered.

3. The proteins identified in both databases were then reviewed.

4. A comparison was established between proteomic biomarkers for PE and the updated PCOS database.

The overlap in biomarkers was considered.

The sections processes of the primary studies where proteomic methods were used to identify potential biomarkers were as follows:

1. A comparison was established between proteomic biomarkers for PE and the updated PCOS database.

2. The overlap in biomarkers was considered.

3. The proteins identified in both databases were then reviewed.

4. A comparison was established between proteomic biomarkers for PE and the updated PCOS database.

The overlap in biomarkers was considered.

The sections processes of the primary studies where proteomic methods were used to identify potential biomarkers were as follows:

1. A comparison was established between proteomic biomarkers for PE and the updated PCOS database.
Table II Methodological Quality Assessment using the QUADOMICS Tool.

Quality criteria	Epiney et al. (2012)	Buhimschi et al. (2008)	Park et al. (2008)	Johnstone et al. (2011)	Ghareisi-Fard et al. (2010)	Blumenstein et al. (2009a)	Watanabe et al. (2004)	Blankley et al. (2009)	Liu et al. (2011)
1	N	Y	Y	N	N	N	N	N	N
2	N	Y	Y	N	N	Y	Y	Y	N
3	Y	Y	Y	Y	Y	Y	Y	Y	Y
4	Y	Y	Y	N	N	Y	Y	N	N
5	Y	Y	Y	Y	Y	N/A	Y	Y	Y
6	Y	Y	Y	Y	Y	N/A	Y	Y	Y
7	Y	Y	Y	Y	Y	Y	Y	Y	Y
8	Y	N	Y	Y	Y	Y	Y	Y	Y
9	Y	N	Y	Y	Y	Y	Y	Y	Y
10	Y	Y	Y	Y	Y	N	Y	Y	Y
11	Y	Y	Y	Y	Y	N	Y	Y	Y
12	N/A	Y	N	N	N	N	N	N	N
13	Y	Y	N	N	N	N	N	N	N
14	Y	Y	Y	Y	Y	N	Y	Y	Y
15	Y	Y	N	N/A	N	N	N	N	N
16	Y	N	N	N	N	N	N	N	N
Total									
	13	14	13	10	9	13	12	10	11

Quality criteria	Rasanen et al. (2010)	Jin et al. (2008) (2007)	Vascotto et al. (2013)	Myers et al. (2010)	Centlow et al. (2010)	Kolla et al. (2012)	Blumenstein et al. (2009b)
1	N	N	Y	Y	Y	N	N
2	Y	N	N	Y	N	Y	Y
3	N	N	N	Y	Y	Y	Y
4	Y	N	Y	Y	Y	Y	Y
5	Y	Y	Y	Y	Y	Y	Y
6	N/A	Y	N/A	N	Y	Y	Y
7	Y	Y	Y	Y	Y	Y	Y
8	Y	Y	Y	Y	Y	Y	Y
9	Y	Y	Y	Y	Y	Y	Y
10	Y	Y	Y	Y	Y	Y	Y
11	N	Y	Y	Y	N	Y	N
12	N	N	N	Y	N	N	N

Continued
Table II

Quality criteria	Rasanen et al. (2010)	Jin et al. (2008)	Vascotto et al. (2007)	Myerson et al. (2013)	Centlow et al. (2010)	Kolla et al. (2012)	Blumenstein et al. (2009b)
1	Y	Y	Y	Y	Y	Y	Y
2	N	Y	Y	Y	Y	Y	N
3	N	N	Y	Y	Y	Y	Y
4	Y	Y	Y	Y	Y	Y	Y
5	Y	N	Y	Y	Y	Y	Y
6	Y	N	Y	Y	Y	Y	Y
7	Y	N	Y	Y	Y	Y	Y
8	Y	Y	Y	Y	Y	Y	Y
9	Y	N	N	Y	Y	Y	Y
10	Y	N	N	Y	Y	Y	Y
11	Y	Y	Y	Y	Y	Y	Y
12	N	N	N	Y	Y	Y	Y
13	Y	N	N	Y	Y	Y	Y
14	Y	Y	Y	Y	Y	Y	Y
Total	13	12	14	14	13	13	13

1. description of selection criteria; 2. the spectrum of patients used in each study is representative of the patients for which the index test was intended; 3. adequate description of the method of handling and preanalytical procedures—were these the same for the whole sample?; 4. the whole sample or a random selection of the sample was used; 5. the whole sample of patients was tested with an identical referencetest in practice; 6. full description of the sample size; 7. adequate description of handling and pre-analytical procedures—were these the same for the whole sample?; 8. the whole sample or a random selection of the sample was used; 9. the test was not influenced by the results of the reference standard; 10. the execution of the referencetest is sufficiently described to its permit replication; 11. the execution of the index test is sufficiently described to its permit replication; 12. the index test results are interpreted without knowledge of the results of the reference standard; 13. the index test results are interpreted without knowledge of the likely outcome; 14. criterion achieved; N, criterion not achieved or not mentioned; HQ, high quality; LQ, low quality; N/A, not applicable.

Assessing the quality of the relevant studies

Out of the 16 studies, 10 were HQ, fulfilling 12 or more of the 16 QUALICOMICS criteria (Watanabe et al., 2004; Vascotto et al., 2007; Buhimschi et al., 2008; Park et al., 2008; Blumenstein et al., 2009a,b; Centlow et al., 2010; Epiney et al., 2012; Kolla et al., 2012; Myers et al., 2013). The remaining six studies were LQ, achieving >12 out of the 16 quality criteria (Jin et al., 2008; Blankley et al., 2009; Blumenstein et al., 2009a; Rasanen et al., 2010; Myers et al., 2011) (Table II).

Cross-referencing proteomic biomarkers identified in primary studies of PE with database of proteomic biomarkers for PCOS

The 192 proteomic biomarkers for PE were cross-referenced with the PCOS database to determine if any were also differentially expressed in PCOS. Five biomarkers were found to be differentially expressed in women with PE and with PCOS compared with controls. Transferrin, fibrinogen α, β and γ chain variants and kininogen-1 were increased and annexin 2 and peroxiredoxin 2 were decreased both in women with PCOS and women with PE. For PE, these biomarkers were found in serum, plasma and placenta, respectively, whereas in PCOS, the biomarkers identified were in serum, follicular fluid, ovarian and omental biopsy, respectively.

Overlaps of the proteomic biomarkers amongst the 16 studies included in this review were also identified and tabulated (Table III).

Discussion

This is the first study that has identified a panel of five proteomic biomarkers which were similarly differentially expressed in women with PE and in women with PCOS. These are transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. These findings are of interest but they will need to be validated, and there is a need for future studies that should explore how these proteins interrelate. We have also examined the interactomes of the potential biomarkers using STRING (an online functional protein interaction network; http://string-db.
Table III Overlaps of the proteomic biomarkers amongst the studies included in this review.

Proteins co-expressed	Studies													
	Epiney et al. (2012)	Johnstone et al. (2011)	Gharesi et al. (2010)	Blumenstein et al. (2009a)	Watanabe et al. (2004)	Blankley et al. (2009)	Liu et al. (2011)	Rasane et al. (2010)	Jin et al. (2008)	Vascotto et al. (2007)	Myes et al. (2013)	Centlow et al. (2010)	Kolla et al. (2012)	Blumenstein et al. (2009b)
Choriogonadotrophin subunit b/b														
β-2-microglobulin														
Serotransferrin/ transferrin														
Calnexin														
Apolipoprotein I/ Apolipoprotein A-I														
α-2-HS-glycoprotein														
Protein disulphide isomerise														
Heat shock protein 70/HSPA 8 (Hsc 70)														
Chloride intracellular channel protein 3														
Transthyretin (TTC)														
Fibronectin I/ Fibronectin														
Fibrinogen γ chain														
Haemopexin														
α-1-antichymotrypsin (SERPINA3)														
Clusterin														
Coagulation factor X														
Vitamin D binding protein														
Serum amyloid P-component														
α-2-macroglobulin														
IGFAL														
Galactin-3-binding protein														
Plasminogen														
Kininogen-1														
No evidence for functional interactions between the potential biomarkers (with the exception of the closely related fibrinogen α, β and γ proteins which do interact with each other) was found, although STRING did highlight the co-expression of fibrinogen β and kininogen-1. Thus, at present we are unable to present a pathway that rationalizes how changes in the different candidate biomarkers may relate to one another.

The five proteomic biomarkers identified might clarify the link between PCOS and PE. There is a constant and evolving theme from studies applying proteomic approaches in PCOS about the possible role of immune regulation/inflammation and antioxidants in the pathogenesis of the condition. Similarly, these two pathways have also been implicated in the pathogenesis of PE (Tousoulis et al., 2008; Szarka et al., 2010; Redman, 2011; Yun et al., 2012).

Annexin A2 was down-regulated both in patients with PE and PCOS, although in PCOS, it was found in ovarian biopsies and in PE, it was in placental biopsies. It is known that Annexin A2 is the key physiological receptor for plasminogen on the extracellular surface of endothelial cells (Gugliucci and Ghitescu, 2002). It causes fibrinolysis by accelerating tissue plasminogen activator (Kang et al., 1999) at the endothelial level, via insulin-stimulated plasma membrane translocation of the glucose transporter GLUT-4 (Lennon et al., 2003; Huang et al., 2004). The down-regulation observed in PE tilts the coagulation/fibrinolysis balance towards enhanced coagulation and thrombosis (Gugliucci and Ghitescu, 2002; Ma et al., 2007). We thus postulate that since Annexin A2 is down-regulated both in women with PCOS and PE, it could be a strong candidate for a potential biomarker for the detection of PE in women with PCOS.

Annexin A2 and fibrinogen α, β and γ chains are central in regulating fibrinolysis and thrombosis and their altered expression might represent changes in permeability of the peripheral vessels and vasculature of the various tissues, including ovaries, causing fibrinolysis and abnormal fibrinogenesis and thrombosis in PCOS (Gugliucci and Ghitescu, 2002). We speculate that the impaired expression of these proteins may account for the early pregnancy complications such as miscarriage and could impinge upon the cardiovascular system in PCOS patients due to hypofibrinolysis and thrombophilia (Gugliucci and Ghitescu, 2002).

Transferrin was found to be up-regulated in sera of women with PE and PCOS. It is an important β-globulin responsible for transporting iron to various tissues and promoting cell growth and development (Gatter et al., 1983). Transferrin also plays a vital role in pregnancy where it is expressed significantly in the villous syncytiotrophoblasts in women with PE compared with those with normal pregnancies. The cause for this substantial expression in the placenta of pregnancies complicated by either gestational diabetes or PE could be the developing or existing fetal stress (Kralova et al., 2008). Transferrin in high concentrations can inhibit FSH to interact with its receptors on the granulosa cells and this can affect the maturation of oocytes by decreasing the levels of cAMP (Kawano et al., 1995). Transferrin is also known to be a stress/acute phase response molecule. Its upsurge in both women with PCOS and PE could be explained on the basis of the inflammatory constituent of the two conditions.

Kininogen-1 was found to be up-regulated both in women with PE and PCOS in plasma and omental biopsy, respectively. Kininogens play an important role in blood coagulation by helping to position optimally pre-kallikrein and factor XI next to factor XII and inhibiting the thrombin- and plasmin-induced aggregation of thrombocytes (Wong and Takei, 2013). Moreover, they are a mediator of inflammation and cause increases in vascular permeability, stimulation of nociceptors, and release of other mediators of inflammation (Wong and Takei, 2013). These mechanisms have been implicated in the pathogenesis of both PE and PCOS (Gugliucci and Ghitescu, 2002; Tousoulis et al., 2008; Szarka et al., 2010; Redman, 2011; Yun et al., 2012; Cubedo et al., 2013).

Peroxiredoxin 2 was found to be down-regulated in both PE and PCOS in placental and omental biopsy, respectively (Gatter et al., 1983). In view of the essential role of peroxiredoxin in protecting cells against H2O2-induced cell damage and apoptosis, down-regulation in placentae of women with PE emphasizes the role of oxidative stress as an important factor in the development of PE (Cubedo et al., 2013). Furthermore, recent studies have advocated that oxidative stress stimulates androgen-producing steroidogenic enzymes leading to the hyperandrogenism observed in women with PCOS (Burton and Jauniaux, 2004).

As the proteins are the functional units within the cellular environment, analysis of proteomes provide what is presently the finest depiction of disease aetiology at a molecular level.

The discovery of biomarkers poses a challenging task and this is mainly due to the different nature of the samples tested (serum, plasma, urine, tissue). All these samples contain proteins in abundance which reflects their biological activity. It is often thought that tissue biopsy may reflect the disease process more accurately; however, the low invasiveness, low cost and easy sample collection and processing makes the use of body fluids a more attractive option in biomarker studies (Hu et al., 2006). The key to overcome the issues with different samples and analysis is vigilance in sample preparation, state of the art mass spectrometry, careful data processing and cautious data analysis.

One important consideration is that in our analysis, we searched for common biomarkers (to PE and PCOS) but identified from proteomic analyses of different tissues. This raises the question as to whether specific changes in protein (biomarker) expression in, for example, placenta, would be accurately reflected in serum or plasma. Certainly, tissues are characterized by a higher protein complexity than blood, but with the latter is more challenging to interrogate in the initial biomarker discovery phase due to the large dynamic range of blood-derived protein concentrations. Indeed, this is an important question for clinical proteomic analyses in general and not one that has been extensively addressed to date in an evidence-based manner. A few studies relevant to different clinical conditions (such as PE and PCOS) have considered correlations between levels of tissue and circulating biomarkers, with differing results. For example, one study of individuals with abdominal aortic aneurysms found no correlation between levels of amino-terminal pro-peptide of type III pro-collagen between plasma and tissue (Treska and Topolcan, 2000). In contrast, a recent study of non-small lung cell carcinoma demonstrated that GP88 (pro-granulin) is both a tissue and circulating disease biomarker (Edelman et al., 2014), suggesting an association in expression levels. In the context of our own work, it would be of particular interest to perform a future study comparing relative expression levels of proteins in placenta, follicular fluid, ovarian and omental biopsies compared with serum/plasma, and determine whether under conditions where changes in tissue expression occur, such changes are also manifest in the circulation.

The various quantitative and semi-quantitative proteomic techniques used up till now poses a challenge because of the disparate accuracy of the results. We chose to report differential protein expression as either up- or down-regulated which is consistent with previously published systematic reviews of proteomic biomarkers (Baek et al., 2010).
as there is a concern that systematic reviews and meta-analysis are influenced by the clinical heterogeneity. The use of inflammatory markers for diagnosing diseases is another challenge as these markers can also be associated with various other concomitant disease processes. This is a limitation that is known to all biomarker studies of complex diseases (Ling et al., 2011). It is not recommended at this stage that the biomarkers identified in our study are used as conclusive biomarkers of PE and PCOS. Our results provide a framework on which future work can be based and validation studies can be used to better understand the pathophysiological mechanisms linking PCOS and PE.

Proteomic and other ‘omic’ technologies offer a great prospective for creating new insights into disease aetiology, but it is not without limitations. The relatively slow pace at which research findings have been translated into clinical care is of a concern (Peral et al., 2009). Proteomic techniques have a restricted ability to detect low-abundance proteins, some of which may have diagnostic potential. Moreover, there is a risk of false-positive results as the sample sizes are small (Solomon and Seely, 2006). Emphasis should be placed on data assimilation from primary proteomic studies in order to improve interpretation of research findings and prospective endorsement (Hojlund et al., 2008).

All these issues highlight the fact that there should be more collaboration. This would ensure data synthesis and integration (as in this review) in order to narrow down replicated biomarkers which can be then be validated in subsequent hypothesis-driven research. We see great significance in disseminating our findings to the scientific community as it is vital for the progress in the area of ‘omic’ research.

Conclusion

Through integrating data from proteomic studies of PE with data from proteomic studies of PCOS, we have for the first time identified a panel of five biomarkers of PE which are common to women with PCOS; these are transferrin, fibrinogen α, β and α chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. If validated, these biomarkers could provide a useful framework on which the knowledge base in this area could be developed. This goal can be achieved by greater collaboration between clinicians, basic scientists and mathematicians.

Authors’ roles

G.H.K. and W.A. conceived the idea, did the literature search and supervised the writing of the manuscript. G.H.K. and N.G. did the literature search and wrote the first draft of the manuscript, the flow chart and Table I. G.H.K. and N.D. designed Table II and the Venn diagram, and performed the methodological quality assessments. G.H.K., R.L. and W.A. edited various drafts of the manuscript and R.L. advised on data interpretation and analysis and contributed to the revised submission of the manuscript. G.H.K. wrote various drafts of the manuscript, revised the manuscript after review and designed Table I.

Funding

No financial support was obtained for this project. Funding to pay the Open Access publication charges for this article was provided by University of Nottingham.

Conflict of interest

None declared.

References

Altei P, Gambineri A, Prontera O, Cionci G, Franchina M, Pasquali R. Maternal polycystic ovary syndrome may be associated with adverse pregnancy outcomes. Eur J Obstet Gynecol Reprod Biol 2010; 149:31–36.

Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 1998; 11:1853–1861.

Atimou WU, Khalid S, Ziauddin A, Tooth D, Layfield R. Framework for a systems approach to proteomic biomarker profiling in polycystic ovary syndrome. Special Report. Expert Rev Proteomics 2009; 6:469–499.

Baek KH, Kim YS, Gu BH, Kim MS, Chung HY, Choi BC. Apolipoprotein as a novel gene associated with polycystic ovary syndrome. Annual Meeting of the American Society for Reproductive Medicine, ASRM 2010 Denver, CO United States. Fertil Steril 2010; 94(Suppl. 1):S197–S198.

Blankley RT, Gaskell SJ, Whetton AD, Dive C, Baker PN, Myers JE. A proof-of-principle gel-free proteomics strategy for the identification of predictive biomarkers for the onset of pre-eclampsia. BJOG 2009; 116:1473–1480.

Blumenstein M, McMaster MT, Black MA, Wu S, Prakash R, Cooney J, McCowan LM, Cooper GJ, North RA. A proteomic approach identifies early pregnancy biomarkers for preeclampsia: novel linkages between a predisposition to preeclampsia and cardiovascular disease. Proteomics 2009a; 9:2929–2945.

Blumenstein M, Prakash R, Cooper GJ, North RA. SCOPE Consortium. Aberrant processing of plasma vitronectin and high-molecular-weight kininogen precedes the onset of preeclampsia. PloS One 2009b; 4:e401–e419.

Boomsma CM, Eijkemans MJ, Hughes EG, Visser GH, Fauser BC, Macklon NS. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update 2006; 12:673–683.

Buhimschi IA, Zhao G, Funai EF, Harris N, Sasson IE, Berstein IM, Saade GR, Buhimschi CS. Proteomic profiling of urine identifies specific fragments of SERPINA1 and albumin as biomarkers of preeclampsia. Am J Obstet Gynecol 2008; 199:S1–S16.

Burton GJ, Jauniaux E. Placental oxidative stress from miscarriage to preeclampsia. J Soc Gynecol Invest 2004; 11:342–345.

Czentlow M, Hansson SR, Welinder C. Differential proteome analysis of the preeclamptic placenta using optimized protein extraction. J Biomed Biotechnol 2010; 2010. doi: 10.1155/2010/458748.

Centre for Maternal and Child Enquiries (CMACE). Saving Mothers’ Lives: Reviewing maternal deaths to make motherhood safer: 2006–08. The Eighth Report on Confidential Enquiries into Maternal Deaths in the United Kingdom. BJOG 2011; 118(Suppl. 1):1–203.

Cubedo J, Ramaiola I, Padró T, Martin-Yuste V, Sabate-Tenas M, Badimon L. High-molecular-weight kininogen and the intrinsic coagulation pathway in patients with de novo acute myocardial infarction. Thromb Haemost 2013; 110:1211–12134.

Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BJM 2005; 330:565.

Dunaif A, Thomas A. Current concepts in the polycystic ovary syndrome. Annu Rev Med 2001; 52:401–419.

Edelman MJ, Feliciano J, Yue B, Bejarano P, Ioffe O, Reisman D, Hawkins D, Gai Q, Hicks D, Serrero G. GP88 (progranulin): a novel tissue and circulating biomarker for non-small cell lung carcinoma. Hum Pathol 2014; 45:1893–1899.

Epiney M, Ribaup D, Arboit P, Horion O, Cohen M. Comparative analysis of secreted proteins from normal and preeclamptic trophoblastic cells using proteomic approaches. J Proteomics 2012; 75:1771–1777.
Galazis N, Docheva N, Nicolaides KH, Atiomo W. Potential biomarkers for predicting preterm birth in women with polycystic ovary syndrome. Hum Reprod Update 2013;19:603.

Gatter KC, Brown G, Trowbridge IS, Woolston RE, Mason DY. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol 1983;36:539–545.

Ghareisi-Fard B, Zolghadri J, Kamali-Sarvestani E. Proteomic analysis of human serum for finding pathogenic factors and potential biomarkers in amniotic fluid using SELDI-TOF mass spectrometry. Reprod Sci 2008;15:457–468.

Gugliucci A, Ghitescu L. Is diabetic hypercoagulability an acquired annexinopathy? Glycation of annexin II as a putative mechanism for impaired fibrinolysis in diabetic patients. Med Hypotheses 2002;59:247–251.

Hojlund K, Mogensen M, Sahlin K. Mitochondrial dysfunction in type 2 diabetes and obesity. Endocr Rev 2010;31:121–125.

Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics 2006;6:6326–6335.

Huang J, Hsia SH, Imamura T, Usui I, Olefsky JM. Annexin II is a thiazolidinedione responsive gene involved in insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Endocrinology 2004;145:1579–1586.

Kawano Y, Narahara H, Miyamura K, Mifune K, Miyakawa I. Inhibitory effect of transferrin on progesterone production in the granulosa cell of humans in vivo and porcine granulosa cell in vitro. Gynecol Obstet Invest 1995;40:1–4.

Keller SF, Sanchez-Ramos L, Duffy D. Pregnancy outcomes in women with polycystic ovary syndrome: a metaanalysis. Am J Obstet Gynecol 2011;204:558.e1–6.

Kolla V, Jeno P, Moes S, Lapaire O, Hoesli I, Hahn S. Oxidative stress and reduced cytotrophoblast antioxidant defense. Proteomics 2011;11:4077–4084.

Kang HM, Choi KS, Kassam G, Fitzpatrick SL, Kwon M, Waisman DM. Role of annexin II tetramer in plasminogen activation. Trends Cardiovasc Med 1999;9:92–102.

Kawano Y, Narahara H, Miyamura K, Mifune K, Miyakawa I. Inhibitory effect of transferrin on progesterone production in the granulosa cell of humans in vivo and porcine granulosa cell in vitro. Gynecol Obstet Invest 1995;40:1–4.

Lennon NJ, Kho A, Bacskaí BJ, Perlmutter SL, Hyman BT, Brown RH. Dysfibrinogenemia interacts with annexins A1 and A2 and mediates sarcoclemmal wound-healing. J Biol Chem 2003;278:50466–50473.

Leslie JW, Zhao KK, Cui YG, Li Y, Wang X, Li M, Xue K, Ma X, Liu JY. Heat shock protein 10 regulated apoptosis of mouse ovarian granulosa cells. Gynecol Endocrinol 2011;27:63–71.

Liu C, Zhang N, Yu H, Chen Y, Liang Y, Deng H, Zhang Z. Proteomic analysis of human serum for finding pathogenic factors and potential biomarkers in preeclampsia. Placenta 2011;32:168–174.

Mikola M, Hilesmaa V, Halttunen M, Suohon M, Titinen A. Obstetric outcome in women with polycystic ovary syndrome. Hum Reprod 2001;16:226–229.

Myers JE, Tuyttten R, Thomas G, Laroy W, Kas K, Vanpoucke G, Roberts CT, Kenny LC, Simpson NA, Baker PN et al. Integrated Proteomics pipeline yields novel biomarkers for predicting preeclampsia. Hypertension 2013;61:1281–1288.

Park JS, Oh KJ, Narowitz ER, Hans JS, Choi HJ, Seong HS, Kang YD, Park CW, Kim BJ, Jun JK et al. Identification of proteomic biomarkers of preeclampsia in amniotic fluid using SELDI-TOF mass spectrometry. Reprod Sci 2008;15:457–468.

Peral B, Camafeita E, Fernandez-Real JM. Tackling the human adipose tissue proteome to gain insight into obesity and related pathologies. Expert Rev Proteomics 2009;6:353–361.

Pisaner J, Girsen A, Li X, Lapidus JA, Standley M, Reddy A, Dasari S, Thomas A, Jacob T, Poula A et al. Comprehensive maternal serum proteomic profiles of preclinical and clinical preeclampsia. J Proteome Res 2010;9:4274–4281.

Redman CW. Preeclampsia: a multi-stress disorder. Rev Med Interne 2011;32(Suppl.1):S41–S44.

RotterdamESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004;19:41–47.

Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C. Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization: therapeutic implications for cardiovascular diseases. Atherosclerosis 2008;201:236–247.

Treska V, Topolcan O. Plasma and tissue levels of collagen types I and III receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol 2006;59:713.

Troisi R, Poitschnman N, Johnson CN, Roberts JM, Hargrave S, Markovic N, Sitten P, Hoover RN. Estrogen and androgen concentrations are not lower in the umbilical cord serum of pre-ecclamptic pregnancies. Cancer Epidemiol Biomarkers Prev 2003;12(11 Pt 1):1268–1270.

Watanabe H, Hamada H, Yamada N, Sohda S, Yamakawa-Kobayashi K, Yoshikawa H, Arimata T. Proteome analysis reveals elevated serum levels of clusterin in patients with preeclampsia. Proteomics 2004;4:537–543.

Wild RA. Long term health consequences of PCOS. Hum Reprod Update 2008;14:231–241.

Yun SH, Moon YS, Sohn SH, Jang IS. Effects of cyclic heat stress or vitamin C supplementation during cyclic heat stress on HSP70, inflammatory cytokines, and the antioxidant defense system in Sprague Dawley rats. Exp Anim 2012;61:543–553.