mTOR: Driving apoptosis and autophagy for neurocardiac complications of diabetes mellitus

Kenneth Maiese

Abstract
The World Health Organization estimates that diabetes mellitus (DM) will become the seventh leading cause of death during the next two decades. DM affects approximately 350 million individuals worldwide and additional millions that remain undiagnosed are estimated to suffer from the complications of DM. Although the complications of DM can be seen throughout the body, the nervous, cardiac, and vascular systems can be significantly affected and lead to disorders that include cognitive loss, stroke, atherosclerosis, cardiac failure, and endothelial stem cell impairment. At the cellular level, oxidative stress is a significant determinant of cell fate during DM and leads to endoplasmic reticulum stress, mitochondrial dysfunction, apoptosis, and autophagy. Multiple strategies are being developed to combat the complications of DM, but it is the mechanistic target of rapamycin (mTOR) that is gaining interest in drug development circles especially for protective therapies that involve cytokines and growth factors such as erythropoietin. The pathways of mTOR linked to mTOR complex 1, mTOR complex 2, AMP activated protein kinase, and the hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 2) complex can ultimately influence neuronal, cardiac, and vascular cell survival during oxidant stress in DM through a fine interplay between apoptosis and autophagy. Further understanding of these mTOR regulated pathways should foster novel strategies for the complications of DM that impact millions of individuals with death and disability.

Key words: Apoptosis; Autophagy; Cardiac disease; Diabetes mellitus; Erythropoietin; Metformin; Oxidative stress; Neurodegeneration; Mechanistic target of rapamycin; Vascular disease

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
THE GROWING THREAT FROM DIABETES MELLITUS

The incidence of diabetes mellitus (DM) throughout the world is increasing at an exponential rate such that the World Health Organization predicts that DM will be the seventh leading cause of death by the year 2030[1]. In 2013, greater than a million deaths were attributable to DM that is believed to affect 347 million individuals throughout the world. In the United States, 21 million individuals are diagnosed with DM and another 8 million individuals are estimated to suffer from DM but are currently undiagnosed[2]. Reduced activity, increased body weight, and poor nutritional intake are considered significant factors that can lead to adult onset DM[3,4]. Duration of obese-years rather than body mass index can become a significant risk for developing DM[5].

DM is defined as being either non-insulin dependent (type 1) or insulin dependent (type 2)[6,7]. Type 1 DM occurs in approximately 5%-10% of DM patients and is an autoimmune disorder with the presence of alleles of the human leukocyte antigen class II genes within the major histocompatibility complex. Destruction of pancreatic β-cells with inflammatory infiltration of the islets of Langerhans results in lost insulin production and regulation. About 90% of patients with type 1 DM have increased titers of autoantibodies (type 1A DM). The remaining 10% of type 1 DM individuals do not have serum autoantibodies and are considered to have maturity-onset diabetes of the young that can be a result of β-cell dysfunction with autosomal-dominant inheritance (type IB DM). Type 2 DM occurs in approximately 80%-90% of individuals with DM greater than the age of 40. Although approximately 10% of individuals with type 2 DM may have elevated serum autoantibodies similar to type 1 DM, type 2 DM represents a progressive deterioration of glucose tolerance with early β-cell compensation that has cell hyperplasia followed by a decrease in β-cell mass. Insulin resistance ensues as well as impairments in insulin secretion. Insulin resistance also may be a component of type 1 DM in some patients. Defective insulin secretion can result from impaired β-cell function, chronic exposure to free fatty acids and hyperglycemia, as well as the absence of inhibitory feedback through plasma glucagon levels.

CLINICAL IMPLICATIONS OF DM IN THE NERVOUS, CARDIAC, AND VASCULAR SYSTEMS

As a disease that affects all systems of the body, DM can lead to multiple clinical impairments especially in the nervous, cardiac, and vascular systems. DM results in cognitive loss not only through vascular disease and stroke[8], but also during chronic neurodegenerative disorders such as Alzheimer’s disease[9,10]. Insulin resistance similar to its occurrence in DM also has been reported in patients with Alzheimer’s disease, suggesting that degenerative disorders such as Alzheimer’s disease could be mediated in some patient populations by impaired cellular metabolism[11]. DM also results in neuropsychiatric disorders[12,13], retinal disease[14-16], and peripheral nerve disorders[17]. In the cardiac system, DM can lead to sympathetic nerve dysfunction[18], cardiac fibrosis[19,20], ischemic reperfusion injury[21], cardiomyocyte injury[22], and cardiac hypertrophy[23]. DM also can significantly impact endothelial cells either in the brain or elsewhere in the body. Exposure to elevated glucose levels can result in endothelial cell senescence[24], dysfunctional mobilization of endothelial progenitor cells from the bone marrow[25], injury to the neuroglialvascular unit[26], loss of angiogenesis[26], and endothelial cell injury and loss[27].

During DM, oxidative stress is an important driver of cell injury[28,29]. In murine animal models of type 2 DM, oxidative stress can lead to elevated glutathione levels and increased lipid peroxidation[22]. “Highly-oxidized glycated” low density lipoproteins that can occur in DM lead to oxidative and endoplasmic reticulum stress in human retinal capillary pericytes. Subsequently, mitochondrial dysfunction and cell death with apoptosis and autophagy ensues[15]. Exposure of glucolipotoxicity caused by elevated plasma glucose and lipid levels to pancreatic β-cells promotes oxidative stress with cytochrome c release, caspase activation, and apoptosis[30]. Advanced glycation end products (AGEs), entities that promote complications in DM[41], lead to the release of reactive oxygen species (ROS) and caspase activation[37]. In addition, high fat diets[42] as well as free fatty acids have been shown to release ROS, lead to mitochondrial DNA damage, and impair pancreatic β-cell function[43]. In cardiomyocytes[20,22,44] neurons[8,15,30,40,46], and endothelial cells[42,27,29,47], exposure to elevated glucose levels foster oxidant stress mechanisms that can impair cellular function and lead to cell death. In clinical studies, patients with type 2 DM display serum markers of oxidative stress with ischemia-modified albumin[48]. Interestingly, elevations in serum glucose can increase antioxidant enzyme levels in human endothelial cells, suggesting that some cells may initiate a reparative process against oxidative stress injury[49]. Of note, chronic hyperglycemia is not necessary to lead to oxidative stress injury, since even brief periods of hyperglycemia generate ROS[50]. Clinical correlates support these experimental studies to show that both acute glucose swings as well as chronic hyperglycemia can trigger oxidative stress mechanisms during type 2 DM[41].

NOVEL STRATEGIES FOR DM WITH MECHANISTIC TARGET OF RAPAMYCIN

Numerous cellular pathways can lead to oxidative stress during DM. As a result, multiple therapeutic avenues are being pursued to develop therapy against...
complex-associated protein 1, is a 289-ku serine/threonine protein kinase. mTOR is encoded by a single gene \textit{FRAP1} and is a component of the protein complexes mTOR complex 1 (mTORC1) and mTORC2 (Figure 1). Rapamycin, an agent that inhibits mTOR activity, blocks mTORC1 by preventing the phosphorylation of mTOR. In some cases with chronic administration, rapamycin also can inhibit mTORC2. mTORC1 is composed of raptor (regulatory-associated protein of mTOR), the proline rich Akt substrate 40 kD, deutor (DEP domain-containing mTOR interacting protein), and mLST8/G/L (mammalian lethal with Sec13 protein B, termed mLST8). Two important targets of mTORC1 through mLST8 that promote mTOR kinase activity are p70 ribosomal S6 kinase and the eukaryotic initiation factor 4E-binding protein 1 \cite{56,60-63}. mTORC2 is composed of rictor (rapamycin-insensitive companion of mTOR), deutor, mLST8, the mammalian stress-activated protein kinase interacting protein (mSIN1), and the protein observed with rictor-1 (Protor-1) \cite{75,79,80}.

In addition to phosphoinositide 3-kinase and protein kinase B (Akt) \cite{6,62}, mTOR signaling also is governed by AMP activated protein kinase (AMPK) \cite{75,79}. AMPK can control the activity of the hamartin (tuberous sclerosis 1)/tuberin (tuberous sclerosis 2) (TSC1/TSC2) complex that is an inhibitor of mTORC1. AMPK phosphorylates TSC2 as well as Raptor to block the activity of mTORC1 during energy stress \cite{93}. AMPK also controls TSC1/2 activity through RTP801 (REDD1/ product of the Ddit4 gene). AMPK activity can increase REDD1 expression, such as in the presence of hypoxic environments, to suppress mTORC1 activity by releasing TSC2 from its inhibitory binding to protein 14-3-3 \cite{90}.

AMPK can have dual roles in cell survival (Figure 1). AMPK activation can suppress \textit{Î²}-amyloid (AÎ²) production \cite{95}, regulate tau phosphorylation \cite{96}, limit oxidative stress that can lead to hypertenion \cite{97}, increase cell survival during hypoxia \cite{98}, and promote autophagy that may resolve memory impairment \cite{99}. However, in other experimental models, AMPK activity has been suggested to influence neuroinflammation \cite{100}, lead to aberrant AÎ² stress \cite{101} and AÎ² toxicity \cite{102}, result in cardiac dysfunction \cite{102}, and result in the hypertrophy of cardiac tissues \cite{103}. In regards to cellular metabolism with AMPK \cite{104}, AMPK can reduce insulin resistance and diminish oxidative stress mediated through the programmed cell death pathway of autophagy \cite{105}, reduce myocardial ischemia in experimental models of diabetes \cite{21}, be necessary for proper metabolic function of cells \cite{106}, and block adipocyte differentiation, lipid accumulation, and obesity \cite{107}. Loss of AMPK may lead to insulin resistance \cite{108}.

TARGETING APOPTOSIS AND AUTOPHAGY WITH mTOR FOR DM

For the development of new strategies against DM with mTOR, a careful balance in the activity of the programmed
cell death pathways of apoptosis and autophagy must be considered. Both apoptosis[4,7,17,32,38,109] and autophagy[6,74,110,111] can influence cell survival during oxidative stress[112]. In regards to cellular metabolic pathways, activation of mTOR that blocks apoptotic pathways may limit insulin resistance and vascular thrombosis in patients with metabolic syndrome[113]. Increased activity of mTOR also may prevent the development of atherosclerosis[114]. Furthermore, mTOR activation through glucagon-like peptide-1 agonists has recently been reported to protect pancreatic β-cells from cholesterol mediated apoptotic cell injury[115], promote pancreatic β-cell proliferation[116], and prevent neural apoptotic cell loss during DM through the epidermal growth factor receptor[117].

In other studies with DM, it is the induction of autophagy with requisite mTOR inhibition that is suggested to foster cellular protection. For example, metformin, an agent used to control hyperglycemia in DM, inhibits mTOR activity and promotes autophagy. Metformin can offer protection against endothelial cell senescence[24], limit androgen up-regulation during prostate cancer through mTOR inhibition[118], prevent cell loss during hypoxia through increased AMPK activity[98], and protect against neuronal cell apoptosis[119]. Metformin through pathways that activate AMPK also prevents cardiomyopathy in experimental models of DM[20], fosters cardiomyocyte cell survival[121], and reduces cortical infarction in stroke models[122]. Additional work suggests that autophagy irrespective of the contribution of mTOR may be protective during DM. Autophagy haploinsufficiency in murine animal models of obesity leads to increased insulin resistance with elevated lipids and inflammation[123], suggesting that loss of autophagy may foster the progression from obesity to DM. Autophagy also may be required to remove misfolded proteins and eliminate non-functioning mitochondria to prevent β-cell dysfunction and the onset of DM[24]. In addition, exercise in mice has been shown to initiate autophagy and regulate glucose homeostasis[125]. These results may be associated with observations that autophagy has been reported to improve insulin sensitivity during high fat diets in mice[105].

Yet, in other experimental models, autophagy may not be beneficial even though it can be less of a prominent modulator of cell survival than apoptosis in some experimental models[126]. Autophagy during high glucose exposure has been shown to impair endothelial progenitor cells, lead to mitochondrial oxidative stress, and prevent the formation of new blood vessels[127]. Increased autophagy also has been associated with significant loss of cardiac and liver tissue in diabetic rats during attempts to achieve glycemic control through diet modification[128]. During periods of elevated glucose that occur in DM, AGEs have been shown to lead to the induction of autophagy and vascular smooth muscle proliferation that can result in atherosclerosis[129] as well as cardiomyopathy[44].

FUTURE CONSIDERATIONS

DM is a significant and growing disorder throughout the world that leads to increased disability and death through multiple complications in the nervous, cardiac, and vascular systems. Current therapies for these complications are limited. As a result, novel therapeutic strategies are required to address the cellular mechanisms of oxidant stress and cell injury that can mediate complications of DM. Given the recent discovery that cytoprotective strategies against oxidative stress, i.e., EPO, employ mTOR, the mTOR signaling pathways that include AMPK and TSC1/TSC2 have become increasingly recognized as a potential targets for the treatment of the complications of DM. However, future work will need to concentrate upon the complex relationship that the programmed cell death pathways of apoptosis and autophagy hold over cellular survival and longevity to attain both efficacy and safety for mTOR targeted strategies.

REFERENCES

1. World Health Organization. Global status report on non-communicable diseases 2010. Geneva: World Health Organization, 2011

2. Centers for Disease Control and Prevention. National diabetes statistics report: Estimates of diabetes and its burden in the United States, Atlanta, GA: US Department of Health and Human Services, 2014

3. Maiese K, Chong ZZ, Shang YC. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51: 128-152 [PMID: 2022043]

4. Maiese K, Chong ZZ, Shang YC, Wang S. Novel directions for diabetes mellitus drug discovery. Expert Opin Drug Discov 2013; 8: 35-48 [PMID: 23092114 DOI: 10.1517/17460441.2013.736485]

5. Abdullah A, Wolfé R, Maman H, Stoevalinder JU, Stevenson C, Peeters A. Epidemiologic merit of obese-years, the combination of degree and duration of obesity. Am J Epidemiol 2012; 176: 99-107 [PMID: 22759723 DOI: 10.1093/aje/kwr522]

6. Maiese K, Chong ZZ, Wang S, Shang YC. Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci 2012; 13: 13830-13866 [PMID: 22320307 DOI: 10.3390/ijms131113830]

7. Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7: 59-64 [PMID: 20158461]

8. Zhao Z, Huang G, Wang B, Zhong Y. Inhibition of NF-kappaB activation by Pyrrolidine dithiocarbamate partially attenuates hippocampal MMP-9 activation and improves cognitive deficits in streptozotocin-induced diabetic rats. Behav Brain Res 2013; 238: 44-47 [PMID: 23089644 DOI: 10.1016/j.bbr.2012.10.018]

9. Maiese K, Chong ZZ, Shang YC. Mechanistic insights into diabetes mellitus and oxidative stress. Curr Med Chem 2007; 14: 1729-1738 [PMID: 17627510 DOI: 10.2174/092986707781058968]

10. Sonnen JA, Larson EB, Brickell K, Crane PK, Woltering R, Montine TJ, Craft S. Different patterns of cerebral injury in dementia with or without diabetes. Arch Neurol 2009; 66: 315-322 [PMID: 19139294 DOI: 10.1001/archneur.2009.579]

11. Kapogiannis D, Baxer A, Schwartz JB, Abner EL, Biragyn A, Masharani U, Frasseto L, Petersen RC, Miller BL, Goetzl EJ. Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer’s disease. FASEB J 2015; 29: 589-596 [PMID: 25342129 DOI: 10.1096/fj.14-262048]

12. Aksu I, Ates M, Baykara B, Kiray M, Sisman AR, Buyuk E, Baykara B, Cetinkaya C, Gunus H, Uysal N. Anxiety correlates to decreased blood and prefrontal cortex IGF-1 levels in...
streptozotocin induced diabetes. *Neurosci Lett* 2012; 531: 176-181 [PMID: 23213774 DOI: 10.1016/j.neulet.2012.10.045]

Reagan L.P. Diabetics as a chronic metabolic stressor: causes, consequences and clinical complications. *Exp Neurol* 2012; 233: 68-78 [PMID: 21320480 DOI: 10.1016/j.expneurol.2011.02.004]

Busch S, Kannit A, Kolibabka M, Schlotterer A, Wang Q, Lin J, Feng Y, Hoffmann S, Grett N, Hammed H.P. Systemic treatment with erythropoietin protects the neovascular unit in a rat model of retinal neovascular degeneration. *PloS One* 2014; 9: e102013 [PMID: 25013951 DOI: 10.1371/journal.pone.0102013]

Fu D, Wu M, Zhang J, Du M, Yang S, Hammad SM, Wilson K, Chen J, Lyons TJ. Mechanisms of modified LDL-induced pericyte loss and retinal injury in diabetic retinopathy. *Diabetologia* 2012; 55: 3128-3140 [PMID: 22935961 DOI: 10.1007/s00120-012-2692-0]

Tang L, Zhang Y, Jiang Y, Willard L, Ortiz E, Wark L, Medeiros D, Lin D. Dietary wellfryber ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. *Exp Biol Med (Maywood)* 2011; 236: 1051-1063 [PMID: 21750018 DOI: 10.1258/embr.2011.010400]

Gomes MB, Negrato CA. Alpha-lipoic acid as a pleiotropic antioxidant in diabetes mellitus. *Am J Physiol Heart Circ Physiol* 2011; 299: H2123-H2134 [PMID: 21421816 DOI: 10.1152/ajpheart.00707.2010]

Zhang C, Zhang L, Chen S, Feng B, Lu X, Bai Y, Liang G, Tan Y, Shao M, Skibba M, Jin L, Li X, Chakrabarti S, Cai L. The prevention of diabetic cardiomyopathy by non-mitogenic acidic fibroblast growth factor is probably mediated by the suppression of oxidative stress and damage. *PloS One* 2013; 8: e62287 [PMID: 24394248 DOI: 10.1371/journal.pone.0062287]

Puthanveetil P, Wan A, Rodrigues B. FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell survival. *Cardiovascular Research* 2013; 97: 393-403 [PMID: 23263330 DOI: 10.1093/cvr/cvs426]

Zhang C, Zhang L, Chen S, Feng B, Lu X, Bai Y, Liang G, Tan Y, Shao M, Skibba M, Jin L, Li X, Chakrabarti S, Cai L. The prevention of diabetic cardiomyopathy by non-mitogenic acidic fibroblast growth factor is probably mediated by the suppression of oxidative stress and damage. *PloS One* 2013; 8: e62287 [PMID: 24394248 DOI: 10.1371/journal.pone.0062287]

Paiva MA, Rutter-Locher Z, Gonçalves LM, Providência LA, Davidson SM, Yellon DM, Mocanu MM. Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. *Am J Physiol Heart Circ Physiol* 2011; 300: H2123-H2134 [PMID: 21421816 DOI: 10.1152/ajpheart.00707.2010]

Ling S, Birnbaum Y, Nanwan MK, Thomas B, Bujal M, Li Y, Li Y, Ye Y. Dickkopf-1 (DKK1) phosphatase and tensin homolog on chromosome 10 (PTEN) crosstalk via microRNA interference in the diabetic heart. *Cell Rep* 2013; 4: 3128-3140 [PMID: 22935961 DOI: 10.1007/s00125-012-2692-0]

Das A, Durrant D, Koka S, Salloum FN, Xi L, Kukreja RC. Potential role of attenuated oxidative stress and altered contractile myofibers in the diabetic heart. *J Mol Endocrinol* 2014; 52: 67-76 [PMID: 24198288 DOI: 10.1530/jme-13-0229]

Xu YJ, Tappia PS, Neki NS, Dhalia NS. Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. *Heart Fail Rev* 2014; 19: 113-123 [PMID: 23463002 DOI: 10.1007/s10741-013-9379-6]

Yang H, Jin X, Kei Lam CW, Yan SK. Oxidative stress and diabetes mellitus. *Clin Chem Lab Med* 2011; 49: 1773-1782 [PMID: 21800608 DOI: 10.1515/cclm.2011.250]

Liu Z, Stanojevic V, Brindamour LJ, Habener JF. GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic β-cells from glucolipotoxicity. *J Endocrinol* 2012; 213: 143-154 [PMID: 22414687 DOI: 10.1530/jme-11-0328]

Maiese K, Morhan SD, Chong ZZ. Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus. *Curr Neuropsychopharmacology* 2007; 4: 63-71 [PMID: 17311546]

Ribeiro MC, Barbosa NB, de Almeida TM, Parcianello LM, Perottoni J, de Avila DS, Rocha JB. High-fat diet and hydrochlorothiazide increase oxidative stress in brain of rats. *Cell Biochem Funct* 2009; 27: 473-478 [PMID: 19784960 DOI: 10.1002/cbf.1599]

Racheck LI, Thornley NP, Grishko VI, LeDoux SP, Wilson GL. Protection of INS-1 cells from free fatty acid-induced apoptosis by targeting hOGG1 to mitochondria. *Diabetes* 2006; 55: 1022-1028 [PMID: 16567524]

Lee Y, Hong Y, Lee SR, Chang KT, Hong Y. Autophagy contributes to retardation of cardiac growth in diabetic rats. *Lab Anim Res* 2012; 28: 99-107 [PMID: 22787483 DOI: 10.5625/ lar.2012.28.2.99]

Das F, Dey S, Venkatesan B, Kasinath BS, Ghosh-Choudhury N, Choudhury GG. High glucose upregulation of early-onset Parkinson’s disease protein DJ-1 integrates the PRAS40/TORC1 axis to mesangial cell hypertrophy. *Cell Signal* 2011; 23: 1311-1319 [PMID: 21426932 DOI: 10.1016/j.cellsig.2011.03.012]
Maiase K. mTOR and diabetes

46 Mao XY, Cao DF, Li X, Yin JY, Wang ZB, Zhang Y, Mao CX, Zhou HH, Liu LZ. Huperzine A ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Int J Mol Sci 2014; 15: 7667-7680 [PMID: 24857910 DOI: 10.3390/ijms15075676]

47 Hou J, Chong ZZ, Shang YC, Maiase K. Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation. Curr Neurovasc Res 2010; 7: 95-112 [PMID: 20370652]

48 Kurban S, Mehmethoglu I, Yerlikaya H, Gönşen S, Erdem S. Effect of chronic regular exercise on serum ischemia-modified albumin levels and oxidative stress in type 2 diabetes mellitus. Endocr Regen 2011; 36: 116-123 [PMID: 21736494 DOI: 10.3701/journals.1235800.2011.566236]

49 Cerillo A, dello Russo P, Bojarska-Junak A, Tabarkiewicz J, Putowski L. A modified method of insulin producing cells’ generation from bone marrow-derived mensenchymal stem cells. J Diabetes Res 2014; 2014: 628591 [PMID: 25405207 DOI: 10.1155/2014/628591]

50 Hamed S, Bennett CL, Demiot C, Ullmann Y, Teot L, Desmoulière A. Erythropoietin, a novel repurposed drug: an innovative treatment for wound healing in patients with diabetes mellitus. Wound Repair Regen 2014; 22: 23-33 [PMID: 24471742 DOI: 10.1111/wrr.12135]

51 Maiase K, Chong ZZ, Shang YC, Wang S. Erythropoietin: new directions for the nervous system. Int J Mol Sci 2012; 13: 1102-1119 [PMID: 23109841 DOI: 10.3390/ijms13091110]

52 Maiase K, Li F, Chong ZZ. New avenues for exploration for erythropoietin. JAMA 2005; 293: 90-95 [PMID: 15632341]

53 White MF. IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity. Diabetes Obes Metab 2014; 16 Suppl 1: 4-15 [PMID: 25200290]

54 Dang J, Jia R, Tu Y, Xiao S, Ding G. Erythropoietin prevents reactive oxygen species generation and renal tubular cell apoptosis at high glucose level. Biomed Pharmacother 2010; 64: 681-685 [PMID: 20685070 DOI: 10.1016/j.biopha.2010.06.011]

55 Maiase K, Chong ZZ, Li F, Shang YC. Erythropoietin: elucidating new cellular targets that broaden therapeutic strategies. Prog Neurobiol 2008; 85: 194-213 [PMID: 18396368]

56 Maiase K, Hou J, Chong ZZ, Shang YC. Erythropoietin, forkhead proteins, and oxidative injury: biomarkers and biology. ScientificWorldJournal 2009; 9: 1072-1104 [PMID: 19042563 DOI: 10.1101/tsw.2009.121]

57 Chong ZZ, Maiase K. Mammalian target of rapamycin signaling in diabetic cardiovascular disease. Cardiov Diabetol 2012; 11: 45 [PMID: 22545721 DOI: 10.1186/1475-2840-11-45]

58 Hao J, Zhu L, Li F, Liu Q, Zhao X, Liu S, Xing L, Feng X, Duan H. Phospho-mTOR: a novel target in regulation of renal lipid metabolism abnormality of diabetes. Exp Cell Res 2013; 319: 2296-2306 [PMID: 23837786 DOI: 10.1016/j.yexcr.2013.06.013]

59 Jia G, Aroor AR, Martinenez-Lemus LA, Sowers JR. Overnutrition, mTOR signaling, and cardiovascular diseases. Am J Physiol Regul Integr Comp Physiol 2014; 307: R1198-R1206 [PMID: 25253086 DOI: 10.1152/ajpregu.00262.2014]

60 Maiase K, Chong ZZ, Shang YC, Wang S. mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 2013; 19: 51-60 [PMID: 23269540 DOI: 10.1016/j.molmed.2012.11.001]

61 Wang H, Zhang Q, Wen Q, Cheng Y, Lazarchivi P, Fang H, Lin J, Zheng W. Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3K/Akt signaling pathway. Cell Signal 2012; 24: 17-24 [PMID: 21906675 DOI: 10.1016/j.cellsig.2011.08.010]

62 Jenwitheesuk A, Nopparat C, Mukda S, Wongchitrat P, Govitratong P. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 2014; 15: 16848-16884 [PMID: 25247581 DOI: 10.3390/ijms15091648]

63 Liu J, Reeves C, Michalak Z, Coppola A, Diethel B, Sisodiya SM, Thom M. Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies. Acta Neuropathol Commun 2014; 2: 71 [PMID: 25005575 DOI: 10.1186/2051-9960-2-71]

64 Chong ZZ, Shang YC, Wang S, Maiase K. PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS One 2012; 7: e45546 [PMID: 23029019 DOI: 10.1371/journal.pone.0045546]

65 Shang YC, Chong ZZ, Wang S, Maiase K. Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr Neurovasc Res 2011; 8: 270-285 [PMID: 22023617]

66 Shang YC, Chong ZZ, Wang S, Maiase K. Prevention of β-amylod degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY) 2012; 4: 187-201 [PMID: 22388478]

WJD | www.wjgnet.com

February 28, 2015 | Volume 6 | Issue 2 |
Maiese K. mTOR and diabetes
Maiese K. mTOR and diabetes

Y, Zhao B, Miao J. An activator of mTOR inhibits oxLDL-induced autophagy and apoptosis in vascular endothelial cells and restricts atherosclerosis in apolipoprotein E−/− mice. Sci Rep 2014; 4: 5519 [PMID: 24980430 DOI: 10.1038/srep05519]

115 Zhou J, Wu J, Zheng F, Jin M, Li H. Glucagon-like peptide-1 analog-mediated protection against cholesterol-induced apoptosis via mammalian target of rapamycin activation in pancreatic βTC-6 cells -1mTOR/βTC-6. J Diabetes 2015; 7: 231-239 [PMID: 24909811 DOI: 10.1111/1753-0407.12177]

116 Miao XY, Gu ZY, Liu P, Hu Y, Li L, Gong YP, Shu H, Liu Y, Li CL. The human glucagon-like peptide-1 analogue liraglutide regulates pancreatic beta-cell proliferation and apoptosis via an AMPK/mTOR/P70S6K signaling pathway. Peptides 2013; 39: 71-79 [PMID: 23116613 DOI: 10.1016/j.peptides.2012.10.006]

117 Kimura R, Okouchi M, Kato T, Imaeda K, Okayama N, Asai K, Joh T. Epidermal growth factor receptor transactivation is necessary for glucagon-like peptide-1 to protect PC12 cells from apoptosis. Neuroendocrinology 2013; 97: 300-308 [PMID: 23147408 DOI: 10.1159/000345529]

118 Malaguarnera R, Sacco A, Moretallo A, Squatrito S, Migliaccio A, Morrione A, Maggisiolini M, Belfiore A. Metformin inhibits androgen-induced IGF-IR up-regulation in prostate cancer cells by disrupting membrane-initiated androgen signaling. Endocrinology 2014; 155: 1207-1221 [PMID: 24437490 DOI: 10.1210/en.2013-1925]

119 Ullah I, Ullah N, Nasir E, Lee HY, Kim MO. Neuroprotection with metformin and thyrokinine against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons. BMC Neurosci 2012; 13: 11 [PMID: 22260211 DOI: 10.1186/1471-2202-13-11]

120 Xie Z, Lau K, Leung A, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH. Improvement of cardiac muscle glucose homeostasis. BMC Pharmacol 2011; 60: 1770-1778 [PMID: 21562078 DOI: 10.2337/db10-0351]

121 He C, Zhu H, Li H, Zou MH, Xie Z. Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomycopathy. Diabetes 2013; 62: 1270-1281 [PMID: 23223177 DOI: 10.2337/db12-0533]

122 Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L, Shi JQ, Zhang YD, Tan L. Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 2014; 171: 3146-3157 [PMID: 24617741 DOI: 10.1111/bph.12655]

123 Lin YM, Liu ZY, Quan W, Lee HY, Cheon H, Ryu D, Koo SH, Kim HL, Kim J, Komatsu M, Lee MS. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun 2014; 5: 4934 [PMID: 25255859 DOI: 10.1038/ncomms5934]

124 Liu Y, Shi S, Gu Z, Du Y, Liu M, Yan S, Gao J, Li J, Shao Y, Zhong W, Chen X, Li C. Impaired autophagic function in rat islets with aging. Age (Dordr) 2013; 35: 1531-1544 [PMID: 22843415 DOI: 10.1007/s11357-012-9456-0]

125 He C, Bassik MC, Morevi S, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012; 481: 511-515 [PMID: 22258505 DOI: 10.1038/nature10758]

126 Wang S, Chong ZZ, Shang YC, Maiese K. WISP1 (CCN4) autoregulates its expression and nuclear trafficking of β-catenin during oxidant stress with limited effects upon neuronal autophagy. Curr Neurovasc Res 2012; 9: 91-101 [PMID: 22475393 DOI: 10.2174/156720212800410858]

127 Kim KA, Shin YJ, Akram M, Kim ES, Choi KW, Suh H, Lee CH, Bae ON. High glucose condition induces autophagy in endothelial progenitor cells contributing to angiogenic impairment. Biol Pharm Bull 2014; 37: 1248-1252 [PMID: 24989016 DOI: 10.1248/bpb.b14-00172]

128 Lee JH, Lee JH, Jin M, Han SD, Chon GR, Kim IH, Kim S, Kim SY, Choi SB, Noh YH. Diet control to achieve euglycemia induces significant loss of heart and liver weight via increased autophagy and apoptosis in vascular endothelial cells and restricts in rat vascular smooth muscle cells. Int J Mol Med 2012; 29: 613-618 [PMID: 22293957 DOI: 10.3892/imjmm.2012.891]
