INVARIANT RADON MEASURES AND MINIMAL SETS FOR COMMUTATIVE SUBGROUPS OF Homeo$_+$(\mathbb{R})

HUI XU & ENHUI SHI & YIRUO WANG

Abstract. For every $\alpha > 0$, we show that every $C^{1+\alpha}$ commutative subgroup of Homeo$_+$(\mathbb{R}) has an invariant Radon measure and has a minimal closed invariant set. A counterexample of C^1 commutative subgroup of Homeo$_+$(\mathbb{R}) is constructed.

1. Introduction

In the theory of dynamical systems, the following two facts are well known:

(1) if G is a group consisting of homeomorphisms on a compact metric space X, then G has a minimal set K in X, that is K is minimal among all nonempty G-invariant closed subsets with respect to the inclusion relations on sets;

(2) if G is an amenable group consisting of homeomorphisms on a compact metric space X, then G has an invariant Borel probability measure on X.

In general, these two results do not hold if X is not compact. However, if the topology of X is very constrained and the acting group G possesses some specified structures, then the existence of invariant Radon measures (Borel measures which are finite on every compact set) or minimal sets can still be true, even if X is noncompact.

When X is the real line \mathbb{R} and Γ is a finitely generated virtually nilpotent subgroup, Plante obtained the following theorem in [3].

Theorem 1.1. If Γ is a finitely generated virtually nilpotent subgroup of Homeo$_+$(\mathbb{R}), then Γ preserves a Radon measure on the line.

Here, Homeo$_+$(\mathbb{R}) means the orientation preserving homeomorphism group on \mathbb{R}. The following theorem appears in A. Navas’ book (see Prop. 2.1.12 in [1]).

Theorem 1.2. Every finitely generated subgroup of Homeo$_+$(\mathbb{R}) admits a nonempty minimal invariant closed set.

Date: November 5, 2019.
In this paper, we are interested in the commutative subgroup of Homeo⁺(ℝ), which consists of \(C^{1+\alpha} \) homeomorphisms with \(\alpha \geq 0 \), and get the following theorem.

Theorem 1.3. For every \(\alpha > 0 \) and every \(C^{1+\alpha} \) commutative subgroup \(H \) of Homeo⁺(ℝ), \(H \) has an invariant Radon measure and has a minimal closed invariant set.

We should note that there is no requirement of finite generation or even countability for \(H \) appearing in Theorem 1.3. This is the key point that differs from Theorem 1.1 and Theorem 1.2.

The strategy to prove Theorem 1.3 is to establish a combinatorial lemma in Section 3 which shows the equivalence between the existence of invariant measures, the existence of minimal sets, and the nonexistence of an infinite tower covering the whole line (see Section 2 for the definition). This together with a generalized version of Kopell’s lemma due to A. Navas implies the conclusion.

As a supplement of Theorem 1.3, we construct an abelian subgroup of Homeo⁺(ℝ) consisting of \(C^1 \) diffeomorphisms in Section 4, which has neither invariant Radon measure nor minimal set. Certainly, such groups can’t be finitely generated by Theorem 1.1 and Theorem 1.2.

2. **Notions and Auxiliary Lemmas**

In this section, we give some definitions and lemmas which will be used in the proof of the main theorem.

Let \(G \) be a subgroup of Homeo⁺(ℝ). For \(x \in ℝ \), we denote the orbit of \(x \) by \(Gx = \{ g(x) : g \in G \} \). For \(g \in G \), we denote by \(\text{Fix}(g) \) the set of fixed points of \(g \) and denote by \(\text{Fix}(G) \) the set of global fixed points of \(G \). For commuting homeomorphisms, we recall the following facts that we will used frequently.

Fact 2.1. Let \(f \) and \(g \) be two commuting homeomorphisms on a space \(X \). Then \(g(\text{Fix}(f)) \subseteq \text{Fix}(f) \).

Proof. For any \(x \in \text{Fix}(f) \), \(f(g(x)) = g(f(x)) = g(x) \). Thus \(g(x) \in \text{Fix}(f) \). Hence \(g(\text{Fix}(f)) \subseteq \text{Fix}(f) \). \(\square \)

From Fact 2.1 we immediately get the following

Fact 2.2. Let \(f \) and \(g \) be two commuting homeomorphisms in Homeo⁺(ℝ) with \(\text{Fix}(f) \neq \emptyset \), and let \((\alpha, \beta) \) be a connected component of \(ℝ \setminus \text{Fix}(f) \). Then either \(g((\alpha, \beta)) = (\alpha, \beta) \) or \(g((\alpha, \beta)) \cap (\alpha, \beta) = \emptyset \).
Fact 2.3. Let G be a subgroup of $\text{Homeo}_+ (\mathbb{R})$. For any $x \in \mathbb{R}$, set

\[\alpha := \inf \{ Gx \}, \quad \beta := \sup \{ Gx \}. \]

Then either $\alpha = -\infty$ (resp. $\beta = +\infty$) or $\alpha \in \text{Fix}(G)$ (resp. $\beta \in \text{Fix}(G)$).

Proof. We may assume that $\alpha \neq -\infty$. Then for any $g \in G$,

\[g(\alpha) \geq \alpha, \quad \text{and} \quad g^{-1}(\alpha) \geq \alpha \implies g(\alpha) \leq \alpha. \]

Hence $g(\alpha) = \alpha$. It is similar for β. \hfill \Box

Definition 2.4. If $\{I_i\}_{i=1}^{\infty}$ is a sequence of closed intervals such that $I_1 \subsetneq I_2 \subsetneq \cdots$, and $\{f_i\}_{i=1}^{\infty}$ is a sequence of orientation preserving homeomorphisms on \mathbb{R} such that $\text{Fix}(f_i) \cap I_i = \text{End}(I_i)$ for each i, where $\text{End}(I_i)$ denotes the endpoint set of interval I_i, then we call the sequence of pairs $\{(I_i, f_i)\}_{i=1}^{\infty}$ an infinite tower.

Lemma 2.5. Let H be a commutative subgroup of $\text{Homeo}_+ (\mathbb{R})$. If for every $f \in H$, $\text{Fix}(f) \neq \emptyset$ and there is no global fixed point for H, then there exists an infinite tower $\{(I_i, f_i)\}_{i=1}^{\infty}$ such that $\bigcup_{i=1}^{\infty} I_i = \mathbb{R}$.

Proof. Since $\text{Fix}(H) = \emptyset$, we can choose $f_1 \in H, f_1 \neq \text{id}$. Since f_1 is nontrivial, we have $\text{Fix}(f_1) \subsetneq \mathbb{R}$. Then $\mathbb{R} \setminus \text{Fix}(f_1)$ is a nonempty open set. Take a connected component (α_1, β_1) of $\mathbb{R} \setminus \text{Fix}(f_1)$.

We claim that $-\infty < \alpha_1 < \beta_1 < +\infty$. In fact, since $\text{Fix}(f_1) \neq \emptyset$, at least one of α_1, β_1 is finite. We may assume that $\alpha_1 \in \mathbb{R}$. Since H has no global fixed point, by Fact 2.3, there exists $f_2 \in H \setminus \{f_1\}$ such that $f_2(\alpha_1) > \max \{\alpha_1, 2\}$. Since f_1 commutes with f_2, $f_2((\alpha_1, \beta_1)) \cap (\alpha_1, \beta_1) = \emptyset$ by Fact 2.2. Therefore, $\beta_1 < f_2(\alpha_1) < +\infty$.

Set $\alpha_2 = \inf \{f_2^i(\alpha_1) : i \in \mathbb{Z}\}$ and $\beta_2 = \sup \{f_2^i(\alpha_1) : i \in \mathbb{Z}\}$. Then either $\alpha_2 \neq -\infty$ or $\beta_2 \neq +\infty$ by the assumption that $\text{Fix}(f) \neq \emptyset$ for every $f \in H$. Similar to the argument of the previous claim, we have $\alpha_2 \in \mathbb{R}$ and $\beta_2 \in \mathbb{R}$. Then $\alpha_2 < \alpha_1 < \beta_1 < \beta_2$ and $\text{Fix}(f_2) \cap [\alpha_2, \beta_2] = \{\alpha_2, \beta_2\}$ and $\beta_2 > 2$.

Similar to the above arguments, we can get $\alpha_3, \beta_3 \in \mathbb{R}$ and $f_3 \in H$ such that $\alpha_3 < \alpha_2 < \beta_2 < \beta_3$, and $\text{Fix}(f_3) \cap [\alpha_3, \beta_3] = \{\alpha_3, \beta_3\}$, and $\alpha_3 < -3$.

Continuing this process, we obtain a nested closed intervals $[\alpha_1, \beta_1] \subsetneq [\alpha_2, \beta_2] \subsetneq \cdots$ and a sequence $f_1, f_2, \cdots \in H$ such that

$\text{Fix}(f_i) \cap [\alpha_i, \beta_i] = \{\alpha_i, \beta_i\}, i = 1, 2, \ldots,$

and $\alpha_{2i-1} < -(2i-1)$ and $\beta_{2i} > 2i$ for each $i > 0$. Set $I_i = [\alpha_i, \beta_i]$. Then $\{(I_i, f_i)\}_{i=1}^{\infty}$ is the desired infinite tower. \hfill \Box
Lemma 2.6. Let f be an orientation preserving homeomorphism of \mathbb{R}. If f has no fixed point, then f or f^{-1} is topologically conjugate to the unit translation $L_1 : x \mapsto x + 1$, by an orientation preserving homeomorphism.

Proof. We may assume that $f(0) > 0$, otherwise replace f by f^{-1}. We need to construct an orientation preserving homeomorphism φ of \mathbb{R} such that $\varphi f = L_1 \varphi$. Since f has no fixed point, we have $(f^n(0), f^{n+1}(0))$ are pairwise disjoint and $\bigcup_{n \in \mathbb{Z}} [f^n(0), f^{n+1}(0)] = \mathbb{R}$. Let φ be the homeomorphism on \mathbb{R} such that $\varphi | [0, f(0)] : [0, f(0)] \to [0, 1]$ is affine and $\varphi(x) = \varphi(f^{-n}x) + n$ for $x \in [f^n(0), f^{n+1}(0)]$, $n \in \mathbb{Z}$. Then φ satisfies the requirement. □

Lemma 2.7. Let X be a compact metric space and let G be a commutative subgroup of $\text{Homeo}(X)$. Then there is a G invariant Borel probability measure on X.

Proof. Let $\mathcal{M}(X)$ be the set of all Borel probability measures on X. Then $\mathcal{M}(X)$ is compact under the weak-$*$ topology. For any finite subset F of G, since the group $\langle F \rangle$ generated by F is a countable commutative group, we have that the set of common invariant measures of F, $\text{Inv}(F) \neq \emptyset$, by the amenability of $\langle F \rangle$. Thus the family of closed sets $\{\text{Inv}(g) : g \in G\}$ has the finite intersection property. By the compactness of $\mathcal{M}(X)$, we have $\text{Inv}(G) = \cap_{g \in G} \text{Inv}(g) \neq \emptyset$. □

Lemma 2.8. Let G be a commutative subgroup of $\text{Homeo}_+(\mathbb{R})$. If G commutes with the unit translation L_1 of the real line, then G naturally induces an action on the circle S^1. Moreover, every invariant Borel probability measure and every minimal subset of S^1 under the induced action can be lifted to an invariant Radon measure and a minimal set of \mathbb{R} under the G action respectively.

Proof. Let $\pi : \mathbb{R} \to S^1 = \mathbb{R}/\mathbb{Z}$ be the standard quotient map. Since G commutes with L_1, we can define a G action on S^1 by

$$(2.1) \quad g \cdot (x + \mathbb{Z}) := g(x) + \mathbb{Z}, \ x \in \mathbb{R}.$$

By Lemma 2.7 there exists a G invariant Borel probability measure ν on S^1. We need to show that ν can be lifted to a G invariant Radon measure μ on \mathbb{R}. For any Borel measurable set E of \mathbb{R}, define

$$(2.2) \quad \mu(E) = \sum_{k \in \mathbb{Z}} \nu \left(\pi \left(E \cap [k, k + 1) \right) \right).$$

From the definition, we immediately have that for any $t \in \mathbb{R}$,

$$(2.3) \quad \mu(E) = \sum_{k \in \mathbb{Z}} \nu \left(\pi \left(L^k_t(E) \cap [t, t + 1) \right) \right).$$
Since G commutes with L_1, for any $g \in G$ and $x \in \mathbb{R}$,
\begin{equation}
(2.4) \quad g(x + 1) - g(x) = gL_1(x) - g(x) = L_1g(x) - g(x) = 1.
\end{equation}
Thus, for any $g \in G$ and any Borel measurable set of \mathbb{R},
\begin{align*}
\mu(gE) &= \sum_{k \in \mathbb{Z}} \nu\left(\pi\left(L_1^k(gE) \cap [0, 1]\right)\right) \text{ (by 2.3)} \\
&= \sum_{k \in \mathbb{Z}} \nu\left(\pi\left(gL_1^kE \cap [0, 1]\right)\right) \text{ (by commutativity)} \\
&= \sum_{k \in \mathbb{Z}} \nu\left(\pi\left(L_1^k\pi gE \cap g^{-1}([0, 1])\right)\right) \\
&= \sum_{k \in \mathbb{Z}} \nu\left(\pi\left(L_1^kE \cap g^{-1}(0), g^{-1}(0) + 1\right)\right) \text{ (by 2.4)} \\
&= \sum_{k \in \mathbb{Z}} \nu\left(\pi\left(L_1^kE \cap [g^{-1}(0), g^{-1}(0) + 1]\right)\right) \text{ (by the invariance of ν)} \\
&= \mu(E) \text{ (by 2.3)}.
\end{align*}
Hence μ is G invariant. On the other hand, if E is compact, then the summation in 2.2 is finite. Since each summand in 2.2 is no greater than 1, we have $\mu(E)$ is bounded. Therefore, μ is a G invariant Radon measure on \mathbb{R}.

Now let Λ be a nonempty closed minimal subset of \mathbb{S}^1 for the induced G action on \mathbb{S}^1. Define
\[\tilde{\Lambda} = \pi^{-1}(\Lambda). \]
We claim that $\tilde{\Lambda}$ is a nonempty closed minimal subset of \mathbb{R} for the G action. By the minimality of Λ, for any $x \in \tilde{\Lambda}$,
\[\Lambda = \{g(\pi(x)) : g \in G\} = \{\pi g(x) : g \in G\}. \]
This implies
\[\tilde{\Lambda} = \pi^{-1}(\Lambda) = \{g(x) : g \in G\}. \]
Therefore, $\tilde{\Lambda}$ is a nonempty closed minimal subset of \mathbb{R}. \hfill \Box

3. Proof of the main theorem

In this section, we first establish a combinatorial lemma which is key for the proof of the main theorem.

Lemma 3.1. Let G be a commutative subgroup of $\text{Homeo}_+(\mathbb{R})$. Then the following items are equivalent:
(1) there exists a G-invariant Radon measure;
(2) there exists a nonempty closed minimal set;
(3) there does not exist an infinite tower $\{(I_i, f_i)\}_{i=1}^{\infty}$ such that $\bigcup_{i=1}^{\infty} I_i = \mathbb{R}$.

Proof. We show the lemma by proving $(1) \iff (3)$ and $(2) \iff (3)$.

$(1) \implies (3)$: Let μ be a G-invariant Radon measure on \mathbb{R}. If there exists an infinite tower $\{(I_i, f_i)\}_{i=1}^{\infty}$ such that $\bigcup_{i=1}^{\infty} I_i = \mathbb{R}$, then there is $N \in \mathbb{N}^+$ such that $\mu(\text{int}(I_N)) > 0$. Let $B = \text{int}(I_N)$. By the definition of infinite tower, we see that $B, f_{N+1}(B), f_{N+1}^2(B), ...$ are pairwise disjoint and are all contained in I_{N+1}. Since μ is G-invariant, we have
$$
\mu(B) = \mu(f_{N+1}(B)) = \mu(f_{N+1}^2(B)) = \cdots
$$
and then
$$
\mu(I_{N+1}) \geq \sum_{i=0}^{\infty} \mu(f_{N+1}^i(B)) = \infty,
$$
which contradicts the assumption that μ is a Radon measure.

$(3) \implies (1)$:

Case1 $\text{Fix}(G) \neq \emptyset$. Then take any fixed point $x \in \text{Fix}(G)$, the Dirac measure δ_x is a G-invariant Radon measure.

Case2 $\text{Fix}(G) = \emptyset$. By Lemma 2.5, there exists $f \in G$ such that $\text{Fix}(f) = \emptyset$. By Lemma 2.6, f (or f^{-1}) is topologically conjugate to the unit translation on the real line, i.e., there exists $\varphi \in \text{Homeo}_+(\mathbb{R})$, such that $\varphi f = L_1 \varphi$. Hence the group $\varphi G \varphi^{-1}$ commutes with $\varphi f \varphi^{-1} = L_1$. By Lemma 2.8, there exists a $\varphi G \varphi^{-1}$ invariant Radon measure μ on \mathbb{R}.

We claim that $\mu^* := \varphi^{-1}_{*\mu}$ is a G-invariant Radon measure on \mathbb{R}, where $\varphi^{-1}_{*\mu}(E) = \mu(\varphi(E))$, for any Borel measurable set E. This can be seen as follows
$$
\mu^*(gE) = \mu(\varphi g E) = \mu(\varphi g \varphi^{-1}(\varphi E)) = \mu(\varphi E) = \mu^*(E),
$$
for any $g \in G$ and any Borel measurable set E.

$(2) \implies (3)$: Assume that Λ is a nonempty closed minimal subset of \mathbb{R}. Fix a point $x \in \Lambda$. If there exists an infinite tower $\{(I_i, f_i)\}_{i=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} I_n = \mathbb{R}$, then there exists $N \in \mathbb{N}^+$ such that $x \in \text{int}(I_N)$. Write $I_N = [a, b]$. We may assume that $f_N(x) > x$, otherwise replace f_N by f_N^{-1}. Then $\lim_{n \to +\infty} f_N^n(x) = b$. Then $b \in \text{Fix}(f_N)$, and $Gb \subseteq \text{Fix}(f_N)$ by Fact 2.1. Since $\text{Fix}(f_N) \cap (a, b) = \emptyset$, $x \notin Gb$, which contradicts the minimality of Λ.

6
We may assume that $\text{Fix}(G) = \emptyset$, otherwise any point in $\text{Fix}(G)$ is a nonempty closed minimal set. By Lemma 2.5 there exists $f \in G$ such that $\text{Fix}(f) = \emptyset$. By Lemma 2.6 we may assume that f is topologically conjugate to the unit translation on the real line. As showing in Case 2 in the proof of $(3) \implies (1)$, the group $\varphi G \varphi^{-1}$ commutes with $\varphi f \varphi^{-1} = L_1$. By Lemma 2.8 there is a nonempty closed minimal subset Λ of \mathbb{R} for $\varphi G \varphi^{-1}$. Then $\varphi^{-1}(\Lambda)$ is a nonempty closed minimal subset of \mathbb{R} for G, since

$$\varphi^{-1}(\Lambda) = \varphi^{-1}\{\varphi g \varphi^{-1}(\varphi x) : g \in G\} = \{gx : g \in G\},$$

for any $x \in \varphi^{-1}(\Lambda)$.

The following theorem is due to A. Navas, which is a generalized version of Kopell’s lemma.

Theorem 3.2. ([2, Theorem B]) Let $\{I_{i_1,\cdots,i_{d+1}} : (i_1,\cdots,i_{d+1}) \in \mathbb{Z}^{d+1}\}$ be a family of subintervals of $[0,1]$ that are disposed respecting the lexicographic order. Assume that f_1,\cdots,f_{d+1} are diffeomorphisms of class $C^{1+\alpha_1},\cdots,C^{1+\alpha_{d+1}}$ such that

$$f_j(I_{i_1,\cdots,i_{j-1},i_j,i_{j+1},\cdots,i_{d+1}}) = I_{i_1,\cdots,i_{j-1},i_j+1,i_{j+1},\cdots,i_{d+1}},$$

for all $1 \leq j \leq d+1$. Then $\alpha_1 + \cdots + \alpha_d < 1$.

Proof of Theorem 1.3. By Lemma 3.1 it suffices to show that there does not exist any infinite tower $\{(I_i,g_i)\}_{i=1}^\infty$ with $\bigcup_{i=1}^\infty I_i = \mathbb{R}$. Assume to the contrary that there exists such an infinite tower. For each $d > 0$, let

$$f_1 = g_{d+2}, f_2 = g_{d+1}, \cdots, f_{d+1} = g_2,$$

and

$$I_{i_1,\cdots,i_{d+1}} = f_1^{i_1} f_2^{i_2} \cdots f_{d+1}^{i_{d+1}}(I_1), \quad (i_1,\cdots,i_{d+1}) \in \mathbb{Z}^{d+1}.$$

Then $\{I_{i_1,\cdots,i_{d+1}} : (i_1,\cdots,i_{d+1}) \in \mathbb{Z}^{d+1}\}$ is a family of subintervals of $I := I_{d+3}$ and satisfies

$$f_j(I_{i_1,\cdots,i_{j-1},i_j,i_{j+1},\cdots,i_{d+1}}) = I_{i_1,\cdots,i_{j-1},i_j+1,i_{j+1},\cdots,i_{d+1}},$$

for all $1 \leq j \leq d+1$, by the definition of infinite tower. Applying Theorem 3.2 we have $d\alpha < 1$. This contradicts $\alpha > 0$, since d is arbitrary. □
4. A Counterexample of C^1 Subgroup

In this section, we construct an example which shows that Theorem 1.3 does not hold for C^1 commutative subgroups of $\text{Homeo}_+(\mathbb{R})$. The following construction is due to Yoccoz ([4, Lemma 2.1]).

Lemma 4.1. For any closed intervals $I = [a, b], J = [c, d]$ there exists a C^1 orientation preserving diffeomorphism $\phi_{I,J} : I \rightarrow J$ with the following properties:

1. $\phi_{I,J}'(a) = \phi_{I,J}'(b) = 1$;
2. Given $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in [a, b],
 \left| \phi_{I,J}(x) - 1 \right| < \varepsilon$, whenever $\left| \frac{d - c}{b - a} - 1 \right| < \delta$;
3. For any closed interval K and for any $x \in I$,

 $\phi_{I,K}(x) = \phi_{J,K}(\phi_{I,J}(x))$.

Theorem 4.2. There exists a non-finitely generated abelian group G consisting of C^1 orientation preserving diffeomorphisms of \mathbb{R} such that there exists an infinite tower $\{(I_j, f_j)\}_{j=1}^{\infty}$ with $f_j \in G, j = 1, 2, \cdots$, such that $\bigcup_{j=1}^{\infty} I_j = \mathbb{R}$.

(Then, by Lemma 3.1 there exists neither G invariant Radon measure nor nonempty closed minimal set.)

Proof. Firstly, we define $f_1 : [-1, 1] \rightarrow [-1, 1]$ by

$$
 f_1(x) = \begin{cases}
 \exp \left(\frac{1}{x-1} - \frac{1}{x+1} \right) + x, & x \in (-1, 1) \\
 -1, & x = -1 \\
 1, & x = 1.
 \end{cases}
$$

Then f_1 satisfies

- f_1 is a C^1 orientation preserving diffeomorphism of $[-1, 1]$;
- $f_1(\pm 1) = \pm 1$ and $f_1(x) > x$ for any $x \in (-1, 1)$;
- $f_1'(1) = 1$.

Next, choose two infinite sequences $-2 < \cdots < a_2 < a_1 < a_0 = -1$ and $1 = b_0 < b_1 < b_2 < \cdots < 2$ such that

$$
 \lim_{n \rightarrow \infty} a_n = -2, \quad \lim_{n \rightarrow \infty} b_n = 2,
$$

and

$$
 \lim_{n \rightarrow \infty} \frac{a_{n-1} - a_n}{a_n - a_{n+1}} = 1, \quad \lim_{n \rightarrow \infty} \frac{b_{n+1} - b_n}{b_n - b_{n-1}} = 1.
$$

For example, we can take

$$
 a_n = -2 + \frac{1}{n+1}, \quad b_n = 2 - \frac{1}{n+1}, \quad n = 1, 2, \cdots.
$$
Define
\[
\begin{align*}
 f_2(x) &= \begin{cases}
 \phi_{[a_{n+1}, a_n], [a_n, a_{n-1}]}(x), & x \in [a_{n+1}, a_n], n = 1, 2, \ldots \\
 \phi_{[a_1, a_0], [-1, 1]}(x), & x \in [a_1, a_0] \\
 \phi_{[-1, 1], [b_n, b_1]}(x), & x \in [-1, 1] \\
 \phi_{[b_n, b_{n+1}], [b_{n+1}, b_{n+2}]}(x), & x \in [b_n, b_{n+1}], n = 0, 1, 2, \ldots \\
 \pm 2, & x = \pm 2,
\end{cases}
\end{align*}
\]

Then, by Lemma 4.1 and the choices of \(\{a_n\}\) and \(\{b_n\}\), \(f_2\) satisfies
- \(f_2\) is a \(C^1\) orientation preserving diffeomorphism of \([-2, 2]\);
- \(f_2(\pm 2) = \pm 2\) and \(f_2(x) > x\) for any \(x \in (-2, 2)\);
- \(f_2'(2) = 1\).

Then we extend \(f_1\) to a diffeomorphism \(\tilde{f}_1\) of \([-2, 2]\):
\[
\tilde{f}_1(x) = \begin{cases}
 f_2^{-(n+1)} f_1 f_2^{n+1}(x), & x \in [a_{n+1}, a_n], n = 1, 2, \ldots \\
 f_1(x), & x \in [-1, 1] \\
 f_2^{n+1} f_1 f_2^{-(n+1)}(x), & x \in [b_n, b_{n+1}] \\
 \pm 2, & x = \pm 2.
\end{cases}
\]

We denote \(\tilde{f}_1\) by \(f_1\) for \(x \in [-2, 2]\). Then
\[
f_1 f_2(x) = f_2 f_1(x), \quad \forall x \in [-2, 2].
\]

Continuing the above process, we can construct a sequence of commuting \(C^1\) orientation preserving diffeomorphisms \(f_1, f_2, \cdots\) of \(\mathbb{R}\). More precisely, assume that we have constructed pairwise commuting \(C^1\) orientation preserving diffeomorphisms \(f_1, \cdots, f_k\) of \([-k, k]\) for \(k \in \mathbb{N}^+\) with the following properties:
1. \(f_i(\pm i) = \pm i\) and \(\forall x \in (-i, i), f_i(x) > x\), for \(i = 1, 2, \cdots, k\);
2. \(f_i((-i)) = f_i'(i) = 1\), for \(i = 1, 2, \cdots, k\);
3. \(f_i f_j(x) = f_j f_i(x)\) for all \(x \in [-k, k]\) and \(1 \leq i, j \leq k\).

Then choose two infinite sequences \(- (k+1) < \cdots < c_2 < c_1 < c_0 = -k\) and \(k = d_0 < d_1 < d_2 < \cdots < k + 1\) such that
\[
\lim_{n \to \infty} c_n = -(k + 1), \quad \lim_{n \to \infty} d_n = k + 1,
\]
and
\[
\lim_{n \to \infty} \frac{c_{n-1} - c_n}{c_n - c_{n+1}} = 1, \quad \lim_{n \to \infty} \frac{d_{n+1} - d_n}{d_n - d_{n-1}} = 1.
\]

For example, we can take
\[
c_n = -(k + 1) + \frac{1}{n + 1}, \quad d_n = k + 1 - \frac{1}{n + 1}, \quad n = 1, 2, \cdots.
\]
Define

$$f_{k+1}(x) = \begin{cases}
\phi_{[c_n, c_{n-1}]}[c_n, c_{n-1}](x), & x \in [c_{n+1}, c_n], n = 1, 2, \cdots \\
\phi_{[c_1, c_0]}[-k,k](x), & x \in [c_1, c_0] \\
\phi_{[-k,k]}[d_0, d_1](x), & x \in [-k, k] \\
\phi_{[d_n, d_{n+1}]}[d_{n+1}, d_{n+2}](x), & x \in [d_n, d_{n+1}], n = 0, 1, 2, \cdots \\
\pm(k+1), & x = \pm(k+1).
\end{cases}$$

Then by Lemma 4.1 and the choices of \{c_n\} and \{d_n\}, \(f_{k+1}\) satisfies

- \(f_{k+1}\) is a \(C^1\) orientation preserving diffeomorphism of \([-k - 1, k + 1]\);
- \(f_{k+1}(\pm(k+1)) = \pm(k+1)\) and \(f_{k+1}(x) > x\) for any \(x \in (-(k+1), k + 1)\);
- \(f_{k+1}'(k-1) = f_{k+1}'(k + 1) = 1\).

We extend \(f_1, \cdots, f_k\) to diffeomorphisms \(\tilde{f}_1, \cdots, \tilde{f}_k\) of \([-k+1, k + 1]$: for \(i = 1, \cdots, k,$

$$\tilde{f}_i(x) = \begin{cases}
\tilde{f}_{k+1}^{-n+1} f_i f_{k+1}^{n+1}(x), & x \in [c_{n+1}, c_n], n = 1, 2, \cdots \\
\tilde{f}_k(x), & x \in [-k, k], \\
\tilde{f}_{k+1}^{-1} f_i f_{k+1}^{n+1}(x), & x \in [d_n, d_{n+1}], \\
\pm(k+1), & x = \pm(k+1).
\end{cases}$$

Denote \(\tilde{f}_i\) by \(f_i\) for \(x \in [-k + 1, k + 1]\). Then \(f_1, \cdots, f_{k+1}\) are commuting orientation preserving \(C^1\) diffeomorphisms of \([-k + 1, k + 1]\).

From the constructing process, we see that \([-1, 1] \subset [-2, 2] \subset \cdots\) and \(f_1, f_2, \cdots\) form an infinite tower, and the group \(G\) generated by \(f_1, f_2, \cdots\) is a non-finitely generated abelian group consisting of \(C^1\) orientation preserving diffeomorphisms of \(\mathbb{R}\). This completes the proof. \(\square\)

Acknowledgements. The work is supported by NSFC (No. 11771318, No. 11790274).

References

[1] A. Navas, Groups of circle diffeomorphisms. Chicago Lectures in Math. (2011).

[2] A. Navas, On centralizers of interval diffeomorphisms in critical (intermediate) regularity. Journal d’Analyse Math. 121 (2013), 21-30.
[3] J. Plante, On solvable groups acting on the real line. Trans. AMS 278 (1983), 401-414.

[4] B. Farb & J. Franks, Groups of homeomorphisms of one-manifolds III: nilpotent subgroups. Ergodic Theory and Dynamical Systems 23 (2003), 1467-1484.

Enhui Shi, School of mathematical and sciences, Soochow University, Suzhou, 215006, P.R. China (ehshi@suda.edu.cn)

Yiruo Wang, School of mathematical and sciences, Soochow University, Suzhou, 215006, P.R. China (632804847@qq.com)

Hui Xu, School of mathematical and sciences, Soochow University, Suzhou, 215006, P.R. China (20184007001@stu.suda.edu.cn)