Research article

Fengyan Yang, Zhen-Hu Ning*, and Liangbiao Chen

Exponential stability of the nonlinear Schrödinger equation with locally distributed damping on compact Riemannian manifold

https://doi.org/10.1515/anona-2020-0149
Received December 2, 2019; accepted August 23, 2020.

Abstract: In this paper, we consider the following nonlinear Schrödinger equation:
\[
\begin{aligned}
    iu_t + \Delta_g u + ia(x)u - |u|^{p-1}u &= 0 \quad (x, t) \in M \times (0, +\infty), \\
    u(x, 0) &= u_0(x) \quad x \in M,
\end{aligned}
\]  
(0.1)

where \((M, g)\) is a smooth complete compact Riemannian manifold of dimension \(n=2, 3\) without boundary. For the damping terms \(-a(x)(1 - \Delta)^{-1}a(x)u_t\) and \(ia(x)(-\Delta)^{\frac{1}{2}}a(x)u\), the exponential stability results of system (0.1) have been proved by Dehman et al. (Math Z 254(4): 729-749, 2006), Laurent. (SIAM J. Math. Anal. 42(2): 785-832, 2010) and Cavalcanti et al. (Math Phys 69(4): 100, 2018). However, from the physical point of view, it would be more important to consider the stability of system (0.1) with the damping term \(ia(x)u\), which is still an open problem. In this paper, we obtain the exponential stability of system (0.1) by Morawetz multipliers in non Euclidean geometries and compactness-uniqueness arguments.

Keywords: nonlinear Schrödinger equation, Morawetz multipliers in non Euclidean geometries, exponential stability

MSC: 58J45, 93D20

1 Introduction

1.1 Notations

Suppose that \((M, g)\) is a smooth complete compact Riemannian manifold of dimension \(n=2, 3\) without boundary.

Denote
\[
\langle X, Y \rangle_g = g(X, Y), \quad |X|^2_g = \langle X, X \rangle_g, \quad X, Y \in \mathcal{M}_x, x \in M.
\]  
(1.1)

Let \(D\) be the Levi-Civita connection of the metric \(g\) and \(H\) be a vector field. The covariant differential \(DH\) of the vector field \(H\) is a tensor field of order 2 as follow:
\[
DH(X, Y)(x) = \langle D_H X, Y \rangle_g(x) \quad X, Y \in \mathcal{M}_x, x \in M.
\]  
(1.2)
Finally, we set $\text{div}_g$, $\nabla_g$ and $\Delta_g$ as the divergence operator, the gradient operator and the Laplace–Beltrami operator of $(\mathcal{M}, g)$, respectively.

### 1.2 Nonlinear Schrödinger equation

We consider the following system:

$$
\begin{cases}
    iu_t + \Delta_g u + ia(x)u - |u|^{p-1}u = 0 & (x, t) \in \mathcal{M} \times (0, +\infty), \\
    u(x, 0) = u_0(x) & x \in \mathcal{M},
\end{cases}
$$

(1.3)

where $1 < p < +\infty$ for dimension $n = 2$, $1 < p \leq 3$ for dimension $n = 3$. And $a(x) \in C^1(\mathcal{M})$ is a nonnegative real function.

Define the energy of system (1.3) by

$$
E(t) = \frac{1}{2} \int_{\mathcal{M}} \left( |u|^2 + |\nabla_g u|_g^2 \right) dx_g + \frac{1}{p+1} \int_{\mathcal{M}} |u|^{p+1} dx_g,
$$

(1.4)

where $dx_g$ denotes the volume element of $(\mathcal{M}, g)$ and

$$
|u|^2 = u\bar{u}, \quad |\nabla_g u|_g^2 = \langle \nabla_g u, \nabla_g \bar{u} \rangle_g.
$$

(1.5)

There are extensive available literatures on the estimates of solutions of the Schrödinger equation on Riemannian manifold. See [6, 9, 18, 20, 30] for Strichartz estimates, [1–5, 7, 10, 21, 27–29, 32] for local energy decay and [11–16, 19, 26] for stability results on compact manifold or Euclidean space.

When dimension $n = 2$, the exponential stability of the following system

$$
\begin{cases}
    iu_t + \Delta u - a(x)(1-\Delta)^{-1}a(x)u_t = P'(|u|^2)u & (x, t) \in \mathcal{M} \times [0, T), \\
    u(x, 0) = u_0(x) & x \in \mathcal{M}
\end{cases}
$$

(1.6)

has been proved by [19] and the exponential stability of the following system

$$
\begin{cases}
    iu_t + \Delta u - f(|u|^2)u + ia(x)(-\Delta)^{1/2}a(x)u = 0 & (x, t) \in \mathcal{M} \times (0, +\infty), \\
    u(x, 0) = u_0(x) & x \in \mathcal{M}
\end{cases}
$$

(1.7)

has been obtained in [13].

When dimension $n = 3$, the exponential stability of the following system:

$$
\begin{cases}
    iu_t + \Delta_g u - a(x)(1-\Delta_g)^{-1}a(x)u_t = (1+|u|^2)u & (x, t) \in \mathcal{M} \times (0, T), \\
    u(x, 0) = u_0(x) & x \in \mathcal{M},
\end{cases}
$$

(1.8)

has been established in [24].

In fact, from the physical point of view, it would be more important to consider the damping term like $ia(x)u$. When dimension $n = 2$, asymptotic stability of the system (1.3) has been proved by [13]. It is said that the energy of system (1.3) goes to zero as time goes to infinity. However, the exact stability (especially the exponential stability) of system (1.3) is still an open problem. In this paper, under suitable geometric assumptions, we obtain the exponential stability of system (1.3) by Morawetz multipliers in non Euclidean geometries and compactness-uniqueness arguments.

Our paper is organized as follows. In Section 2, we will state our main results. Then, multiplier identities and key lemmas are presented in Section 3. Finally, we prove the exponential stability of the nonlinear Schrödinger equation in Section 4.
2 Main results

When \( n = 2 \), the well-posedness of system (1.3) has been proved by Theorem 1.4 in [13]. When \( n = 3 \), the unique global weak solution of system (1.3) has been given by [8] and the well-posedness of system (1.3) in Bourgain spaces has been proved by [3]. Throughout the paper, we assume that the system (1.3) is well-posed such that

\[
  u \in C \left( [0, +\infty), H^1(M) \right). \tag{2.1}
\]

The followings are the main assumptions of this paper.

**Assumption (A)** There exists a \( C^2 \) vector field \( H \) on \( M \) such that

\[
  DH(X, X) \geq \delta |X|^2, \quad X \in M, x \in \overline{\Omega}, \tag{2.2}
\]

where \( \delta > 0 \) is a constant and \( \Omega \subset M \) is an open set with smooth boundary. Moreover, \( a(x) \) satisfies

\[
  a(x) \geq a_0 > 0, \quad x \in M \backslash \Omega, \tag{2.3}
\]

where \( a_0 > 0 \) is a constant.

**Remark 2.1.** The vector field given by assumption (A) is called escape vector field and it was introduced by Yao [33] for the controllability of the wave equation with variable coefficients, which is also a useful condition for the controllability and the stabilization of the quasilinear wave equation (see [17, 34, 36]). Existence of escape vector field depends on the sectional curvature of the Riemannian manifold \((M, g)\). There are a number of methods and examples in [35] to find out escape vector field. The explicit expression of \( D \left( \frac{\partial}{\partial t} \right) \) in Riemannian manifold \((\mathbb{R}^n, g)\) is given by [25, 26].

**Assumption (B)** (Unique continuation) Let \( \Omega \subset M \) be an open set with smooth boundary and \( \omega \subset \Omega \) be an open subset. Assume that \( \omega \) satisfies the geometric control condition:

**GCC** There exists constant \( T_0 > 0 \) such that for any \( x \in \Omega \) and any unit-speed geodesic \( y(t) \) of \((M, g)\) starting at \( x \), there exists \( t < T_0 \) such that \( y(t) \subset \omega \).

As a consequence, for every \( T > 0 \), the only solution in \( C([0, T], H^1(\Omega)) \) to the system

\[
\begin{align*}
  iu_t + \Delta u + b_1(x, t)u + b_2(x, t)\nu &= 0, \quad (x, t) \in \Omega \times (0, T), \\
  u &= 0, \quad (x, t) \in \omega \times (0, T),
\end{align*} \tag{2.4A}
\]

is the trivial one \( u \equiv 0 \), where \( b_1(x, t) \) and \( b_2(x, t) \in L^\infty([0, T], L^3(\Omega)) \).

**Remark 2.2.** Let \( H = D\varphi \), where \( H \) is given by (2.2) and \( \varphi \) is a strictly convex function, then assumption (B) follows from Proposition B.3 in [24]. It can also be proved in particular cases by Carleman estimates in Euclidean space, see [22, 23, 31].

**Theorem 2.1.** Let assumption (A) and assumption (B) hold true. Given constant \( E_0 > 0 \). Assume that \( \|u_0\|_{L^2(M)} \leq E_0 \). Then there exist positive constants \( C_1 \) and \( C_2 \), which are only dependent on \( E_0 \), such that

\[
  E(t) \leq C_1 e^{-C_2 t} E(0), \quad \forall t > 0. \tag{2.5}
\]

3 Multiplier Identities and Key Lemmas

We need to establish several multiplier identities, which are useful for our problem.
Lemma 3.1. Suppose that \( u(x,t) \) solves the following equation:

\[
iu_t + \Delta_g u + ia(x)u - |u|^{p-1}u = 0 \quad (x,t) \in \mathcal{M} \times (0, +\infty).
\]  

Let \( \mathcal{M} \) be a \( C^1 \) vector field defined on \( M \). Then

\[
0 = \frac{1}{2} \int_{\mathcal{M}} \text{Im} \left( u \mathcal{H}(\bar{u}) \right) dx_g \bigg|_0^T + \int_0^T \text{Re} D\mathcal{H}(\nabla_g u, \nabla_g u) dx_g dt
\]

\[
+ \int_0^T \int_{\mathcal{M}} \text{Im} \left( a(x)u \mathcal{H}(\bar{u}) \right) dx_g dt
\]

\[
+ \frac{1}{2} \int_0^T \int_{\mathcal{M}} \left( \text{Im} (u \bar{u}_t) - |\nabla_g u|^2 - \frac{2}{p+1} |u|^{p+1} \right) \text{div}_g \mathcal{H} dx_g dt.
\]  

Moreover, assume that the real function \( P \in C^1(\mathcal{M}) \). Then

\[
\int_0^T \int_{\mathcal{M}} \left( \text{Im} (u \bar{u}_t) - |\nabla_g u|^2 - |u|^{p+1} \right) P dx_g dt = \frac{1}{2} \int_0^T \int_{\mathcal{M}} \nabla_g P(|u|^2) dx_g dt.
\]  

Proof. Multiplying the Schrödinger equation in (3.1) by \( \mathcal{H}(\bar{u}) \) and then integrating over \( \mathcal{M} \times (0, T) \), we deduce that

\[
\text{Re} \left( iu_t \mathcal{H}(\bar{u}) \right) = -\text{Im} \left( u \mathcal{H}(\bar{u}) \right) - \frac{1}{2} \text{Im} \left( u \mathcal{H}(\bar{u}) - u_t \mathcal{H}(u) \right)
\]

\[
= -\frac{1}{2} \text{Im} \left( u \mathcal{H}(\bar{u}) \right) + \frac{1}{2} \text{Im} \mathcal{H}(u \bar{u}_t) + \frac{1}{2} \text{Im} \mathcal{H}(u \bar{u}_t)
\]

\[
= -\frac{1}{2} \text{Im} \left( u \mathcal{H}(\bar{u}) \right) + \frac{1}{2} \text{Im} \text{div}_g (u \bar{u}_t \mathcal{H}) - \frac{1}{2} \text{Im} (u \bar{u}_t \text{div}_g \mathcal{H}),
\]  

\[
\text{Re} \left( \mathcal{H}(\bar{u}) \Delta_g u \right) = \text{Re} \left( \text{div}_g \mathcal{H}(\bar{u}) \nabla_g u - \nabla_g \left( \mathcal{H}(\bar{u}) \nabla_g u \right) \right)
\]

\[
= \text{Re} \text{div}_g \mathcal{H}(\bar{u}) \nabla_g u - \text{Re} \nabla_g \left( \mathcal{H}(\bar{u}) \nabla_g u \right)
\]

\[
= \text{Re} \text{div}_g \mathcal{H}(\bar{u}) \nabla_g u - \text{Re} D\mathcal{H}(\nabla_g u, \nabla_g u) - \text{Re} D\mathcal{H}(\bar{u}, \nabla_g u)
\]

\[
= \text{Re} \text{div}_g \mathcal{H}(\bar{u}) \nabla_g u - \text{Re} D\mathcal{H}(\nabla_g u, \nabla_g u) - \frac{1}{2} \mathcal{H}(\nabla_g u)^2
\]

\[
= \text{Re} \text{div}_g \mathcal{H}(\bar{u}) \nabla_g u - \text{Re} D\mathcal{H}(\nabla_g u, \nabla_g u) - \frac{1}{2} \text{div}_g (|\nabla_g u|^2 \mathcal{H})
\]

\[
+ \frac{1}{2} \text{div}_g (|\nabla_g u|^2 \mathcal{H}),
\]  

and

\[
\text{Re} \left( ia(x)u - |u|^{p-1}u \right) \mathcal{H}(\bar{u}) = -\text{Im} \left( a(x)u \mathcal{H}(\bar{u}) \right) - \frac{1}{p+1} \text{div}_g \left( |u|^{p+1} \mathcal{H} \right)
\]

\[
+ \frac{|u|^{p+1}}{p+1} \text{div}_g \mathcal{H}.
\]  

The equality (3.2) follows from Green’s formula.

In addition, we multiply the Schrödinger equation in (3.1) by \( P \bar{u} \) and integrate over \( \mathcal{M} \times (0, T) \). It gives that

\[
\text{Re} \left( iP u_t \bar{u} \right) = -\text{Im} \left( P u_t \bar{u} \right) = \text{Im} \left( P u \bar{u}_t \right),
\]

\[
\text{Re} \left( P \Delta_g u \right) = \text{Re} \left( \text{div}_g P \bar{u} \nabla_g u - \nabla_g u(P \bar{u}) \right)
\]
\[ \text{Re} \, \text{div}_g P \bar{u} \nabla_g u - P |\nabla_g u|^2 - \frac{1}{2} \nabla_g P |u|^2, \quad (3.8) \]

and

\[ \text{Re} \left( ia(x)u - |u|^{p-1} u \right) P \bar{u} = \text{Re} \left( ia(x)P|u|^2 \right) - P |u|^{p+1} \]
\[ = -P |u|^{p+1}. \quad (3.9) \]

The equality \((3.3)\) follows from Green’s formula. □

The following lemma shows the relationship between the metric \(g\) and the geometric control condition.

**Lemma 3.2.** Let \(\Omega \subset M\) be a bounded domain. Assume that there exists a \(C^1\) vector field \(H\) on \(M\) such that

\[ DH(X, X) \geq \delta |X|^2, \quad X \in M, \quad x \in \Omega, \]

where \(\delta > 0\) is a constant. Then, for any \(x \in \Omega\) and any unit-speed geodesic \(y(t)\) starting at \(x\), if

\[ y(t) \in \Omega, \quad 0 \leq t \leq t_0, \]

we have

\[ t_0 \leq \frac{2}{\delta} \sup \left\{ |H|_g(x) \mid x \in \Omega \right\}. \quad (3.12) \]

**Proof.** Note that

\[ |y'(t)|_g = 1, \quad D_{y'(t)}y'(t) = 0. \quad (3.13) \]

Then

\[ \langle H, y'(t) \rangle_g |_0 \overset{t_0}{=} \int_0^{t_0} y'(t) \langle H, y'(t) \rangle_g dt = \int_0^{t_0} DH(y'(t), y'(t)) dt \geq \delta t_0. \quad (3.14) \]

Hence

\[ t_0 \leq \frac{2}{\delta} \sup \left\{ |H|_g(x) \mid x \in \Omega \right\}. \quad (3.15) \]
\[ \square \]

**Lemma 3.3.** Let \(u(x, t)\) solve the system \((1.3)\). Then

\[ \int_M |u|^2 dx_g = -2 \int_0^T a(x)|u|^2 dx_g dt, \quad (3.16) \]

\[ \int_M \left( |\nabla_g u|^2 + \frac{2}{p+1} |u|^{p+1} \right) dx_g |_0 \overset{T}{=} -2 \int_0^T a(x) \left( |\nabla_g u|^2 + |u|^{p+1} \right) dx_g dt \]
\[ - \int_0^T \nabla_g a(x)|u|^2 dx_g dt, \quad (3.17) \]

for any \(T > 0\).

**Proof.** After multiplying the Schrödinger equation in \((1.3)\) by \(2\bar{u}\) and integrating over \(M \times (0, T)\), the equality \((3.16)\) holds.

Multiplying the Schrödinger equation in \((1.3)\) by \(2\bar{u}_t\) and integrating over \(M \times (0, T)\), we obtain

\[ \int_M \left( |\nabla_g u|^2 + \frac{2}{p+1} |u|^{p+1} \right) dx_g |_0 \overset{T}{=} -2 \int_0^T \text{Im}(a(x)u\bar{u}_t) dx_g dt. \quad (3.18) \]
Let $P = a(x)$ in (3.3). Substituting (3.3) into (3.18), we have

$$
\int_{\mathcal{M}} \left( |\nabla_g u|^2 + \frac{2}{p+1} |u|^{p+1} \right) dx_g \bigg|_0^T = -2 \int_0^T \int_{\mathcal{M}} a(x) \left( |\nabla_g u|^2 + |u|^{p+1} \right) dx_g dt - \int_0^T \int_{\mathcal{M}} \nabla_g a(x) |u|^2 dx_g dt.
$$

(3.19)

$\square$

4 Exponential stability of the nonlinear Schrödinger equation

From Lemma 3.2, the following lemma holds true.

**Lemma 4.1.** Let assumption (A) hold true. Then, there exists $t_0 > 0$, for any $x \in \Omega$ and any unit-speed geodesic $y(t)$ starting at $x$, there exists $t < t_0$ such that

$$
y(t) \in \partial \Omega.
$$

(4.1)

The following lemmas follow from assumption (B).

**Lemma 4.2.** (Unique continuation) Let assumption (B) hold true. Let $\Omega \subset \mathcal{M}$ be an open set with smooth boundary and $\omega \subset \Omega$ be an open subset. Assume that $\omega$ satisfies the geometric control condition:

**(GCC)** There exists constant $T_0 > 0$ such that for any $x \in \Omega$ and any unit-speed geodesic $y(t)$ of $(\mathcal{M}, g)$ starting at $x$, there exists $t < T_0$ such that $y(t) \subset \omega$.

Accordingly, for every $T > 0$, the only solution in $C([0, T], H^1(\Omega))$ to the system

$$
\begin{cases}
  iu_t + \Delta_g u = 0 & (x, t) \in \Omega \times (0, T), \\
  u = 0 & (x, t) \in \omega \times (0, T),
\end{cases}
$$

(4.2)

is the trivial one $u \equiv 0$.

**Lemma 4.3.** (Unique continuation) Let assumption (B) hold true. Let $\Omega \subset \mathcal{M}$ be an open set with smooth boundary and $\omega \subset \Omega$ be an open subset. Assume that $\omega$ satisfies the geometric control condition:

**(GCC)** There exists constant $T_0 > 0$ such that for any $x \in \Omega$ and any unit-speed geodesic $y(t)$ of $(\mathcal{M}, g)$ starting at $x$, there exists $t < T_0$ such that $y(t) \subset \omega$.

Therefore, for every $T > 0$, the only solution in $C([0, T], H^1(\Omega))$ to the system

$$
\begin{cases}
  iu_t + \Delta_g u - |u|^{p-1} u = 0 & (x, t) \in \Omega \times (0, T), \\
  u = 0 & (x, t) \in \omega \times (0, T),
\end{cases}
$$

(4.3)

is the trivial one $u \equiv 0$.

**Proof.**

Let

$$
b_1(x, t) = -|u|^{p-1} u, \quad b_2(x, t) = 0, \quad (x, t) \in \Omega \times (0, T).
$$

(4.4)

Note that

$$
E(t) = E(0), \text{ for all } t \in [0, T],
$$

(4.5)

and

$$
H^1(\Omega) \hookrightarrow L^{3(p-1)}(\Omega).
$$

(4.6)
Hence
\[ b_1(x, t), b_2(x, t) \in L^\infty([0, T], L^3(p-1)(\Omega)). \]  
(4.7)

It follows from assumption (B) that \( u \equiv 0. \)

**Lemma 4.4.** For any \( \varepsilon > 0, \) there exists \( C_\varepsilon > 0 \) such that
\[ |\nabla g a(x)|^2 \leq C_\varepsilon a(x) + \varepsilon, \quad \text{for all} \: x \in M, \]  
(4.8)

where \( a(x) \) is given by (1.3).

**Proof.** We prove (4.8) by contradiction. If (4.8) doesn't hold true, then there exist constant \( \varepsilon_0 > 0 \) and \( \{x_k\}_{k=1}^\infty \subset M \) such that
\[ |\nabla g a(x)|^2 \geq k a(x_k) + \varepsilon_0. \]  
(4.9)

Therefore, there exists \( x_0 \) and a subset of \( \{x_k\}_{k=1}^\infty, \) still denoted by \( \{x_k\}_{k=1}^\infty, \) such that
\[ \lim_{k \to +\infty} x_k = x_0. \]  
(4.10)

Note that
\[ a(x) \geq 0, \quad x \in M, \]  
(4.11)

and
\[ \sup_{x \in M} |\nabla g a(x)|^2 < +\infty. \]  
(4.12)

It follows from (4.9) that
\[ a(x_0) = 0, \]  
(4.13)

and
\[ |\nabla a(x_0)| \geq \sqrt{\varepsilon_0}. \]  
(4.14)

With (4.11) and (4.13), we obtain
\[ \nabla a(x_0) = 0, \]  
(4.15)

which contradicts (4.14). □

**Lemma 4.5.** Let assumption (A) hold true. Let \( u(x, t) \) solve the system (1.3). Then
\[
E(0) + \int_0^T E(t) dt \leq C \int_0^T \int_M a(x) \left( |u|^2 + |\nabla g u|^2 + |u|^{p+1} \right) dx_g dt 
+ C \int_0^T \int_M |u|^2 dx_g dt,
\]  
(4.16)

for sufficiently large \( T. \)

**Proof.**

Note that \( a(x) \in C^1(M), \) then there exists an open set \( \Omega_0 \subset M, \) such that
\[ \overline{\Omega_0} \subset \Omega, \]  
(4.17)

\[ a(x) \geq \frac{a_0}{2}, \quad x \in M \setminus \Omega_0. \]  
(4.18)

Let \( b(x) \in C^\infty(M) \) be a nonnegative function satisfying
\[ b(x) = 1, \quad x \in \Omega_0 \quad \text{and} \quad b(x) = 0, \quad x \in M \setminus \Omega. \]  
(4.19)
Let
\[ \mathcal{H}(x) = b(x)H, \quad x \in \mathcal{M}. \quad (4.20) \]

Note that
\[ D\mathcal{H}(X, X) \geq \delta |X|^2 \quad \text{for all} \quad X \in \mathcal{M}, x \in \mathcal{O}_0, \quad (4.21) \]
\[ \text{div}_g \mathcal{H} = trD\mathcal{H} \geq n\delta \quad \text{for all} \quad x \in \mathcal{O}_0. \quad (4.22) \]

It follows from (3.2) that
\[ 0 \geq \frac{1}{2} \int \Omega \left| \text{Im} \left( uH(\bar{u}) \right) \right| dx_g + \frac{1}{4} \int_0^T \int_\Omega \left| \nabla_g u_g \right|^2 dx_g dt \]
\[ -C \int_0^T \int_{\Omega \setminus \Omega_0} \left| \nabla_g u_g \right|^2 dx_g dt + \int_0^T \int \left( \text{Im}(a(x)uH(\bar{u})) \right) dx_g dt \]
\[ + \frac{1}{2} \int_0^T \int \left( \text{Im}(u\bar{u}) - \left| \nabla_g u_g \right|^2 - \frac{2}{p+1} |u|^{p+1} \right) \text{div}_g H dx_g dt \]
\[ = \frac{1}{2} \int_0^T \int \left( \text{Im}(uH(\bar{u})) \right) dx_g + \frac{1}{4} \int_0^T \int_\Omega \left| \nabla_g u_g \right|^2 dx_g dt \]
\[ -C \int_0^T \int_{\Omega \setminus \Omega_0} \left| \nabla_g u_g \right|^2 dx_g dt + \int_0^T \int \left( \text{Im}(a(x)uH(\bar{u})) \right) dx_g dt \]
\[ + \frac{1}{2} \int_0^T \int \left( \text{Im}(u\bar{u}) - \left| \nabla_g u_g \right|^2 - |u|^{p+1} \right) \text{div}_g H dx_g dt \]
\[ + \int_0^T \int_\Omega \frac{(p-1)}{2(p+1)} \left| u \right|^{p+1} dx_g dt. \quad (4.23) \]

Let \( P = \frac{\text{div}_g H}{2} \) in (3.3). Substituting (3.3) into (4.23), we obtain
\[ \frac{1}{2} \int_\Omega \text{Im}(uH(\bar{u})) dx_g \left|_0^T \right| + \frac{1}{4} \int_0^T \int_\Omega \nabla_g P|u|^2 dx_g dt \]
\[ + \int_0^T \int \text{Im}(a(x)uH(\bar{u})) dx_g dt \]
\[ + \delta \int_0^T \int_{\Omega \setminus \Omega_0} \left| \nabla_g u_g \right|^2 dx_g dt + \int_0^T \int_{\Omega_0} \frac{\delta n(p-1)}{2(p+1)} |u|^{p+1} dx_g dt \]
\[ \leq C \int_0^T \int \left( \left| \nabla_g u_g \right|^2 + |u|^{p+1} \right) dx_g dt. \quad (4.24) \]

Then
\[ \int_0^T \int_{\Omega_0} \left( \left| \nabla_g u_g \right|^2 + |u|^{p+1} \right) dx_g dt \]
\[ \leq C(E(0) + E(T)) + C \int_0^T \int_\Omega a(x) \left( |u|^2 + |\nabla_g u|_g^2 + |u|^{p+1} \right) dx_g dt \]
\[ + \int_0^T \int_\Omega \left( C_\epsilon |u|^2 + \epsilon |\nabla_g u|_g^2 \right) dx_g dt. \]  
(4.25)

Therefore
\[ \int_0^T \int_{\Omega_0} \left( |\nabla_g u|_g^2 + |u|^{p+1} \right) dx_g dt \]
\[ \leq C(E(0) + E(T)) + \int_0^T \int_\Omega a(x) \left( |u|^2 + |\nabla_g u|_g^2 + |u|^{p+1} \right) dx_g dt \]
\[ + C \int_0^T \int_{\Omega} |u|^2 dx_g dt. \]  
(4.26)

Hence
\[ \int_0^T E(t) dt \leq C(E(0) + E(T)) \]
\[ + C \int_0^T \int_\Omega a(x) \left( |u|^2 + |\nabla_g u|_g^2 + |u|^{p+1} \right) dx_g dt \]
\[ + C \int_0^T \int_{\Omega_0} |u|^2 dx_g dt. \]  
(4.27)

With (3.16) and (3.17), we deduce that
\[ CE(T) = CE(0) - C \int_0^T \int_\Omega a(x) \left( |u|^2 + |\nabla_g u|_g^2 + |u|^{p+1} \right) dx_g dt \]
\[ - \frac{C}{2} \int_0^T \int_{\Omega} \nabla a(x)(|u|^2) dx_g dt, \]  
(4.28)

and
\[ 4CE(0) = \int_0^T E(t) dt - \int_0^T (E(t) - E(0)) dt \]
\[ \leq \int_0^T E(t) dt + 4C \int_0^T \int_\Omega a(x) \left( |u|^2 + |\nabla_g u|_g^2 + |u|^{p+1} \right) dx_g dt \]
\[ + 4C \int_0^T \int_{\Omega_0} \left( |\nabla g a(x)|_g |u| \right) |\nabla_g u|_g dx_g dt. \]  
(4.29)

Substituting (4.28) and (4.29) into (4.27), for \( T > 5C \), we have
\[ E(0) + \int_0^T E(t) dt \leq C \int_0^T \int_\Omega a(x) \left( |u|^2 + |\nabla_g u|_g^2 + |u|^{p+1} \right) dx_g dt \]
Thus, where

Then, if the estimate (4.32) doesn’t hold true, there exist

Proof. We apply compactness-uniqueness arguments to prove the conclusion. It follows from (4.16) that

The estimate (4.16) holds true.

Lemma 4.6. Let assumption (A) and assumption (B) hold true. Let $T$ be sufficiently large. Then for any $\|u_0\|_{L^1(M)} \leq E_0$, there exists positive constant $C(E_0, T)$ such that

Proof. We apply compactness-uniqueness arguments to prove the conclusion. It follows from (4.16) that

Then, if the estimate (4.32) doesn’t hold true, there exist $\{u_k\}_{k=1}^\infty$ satisfying (1.3) and

Thus,

where

It follows from (3.16), (3.17) and (4.36) that there exists $C(T) > 0$ such that

which implies

Therefore, there exists $\tilde{u}$ and a subset of $\{u_k\}_{k=1}^\infty$, still denoted by $\{u_k\}_{k=1}^\infty$, such that

$u_k \rightharpoonup \tilde{u}$ weakly in $L^2([0, T], H^1(M))$, (4.40)
and
\[ u_k \to \hat{u} \text{ strongly in } L^2(\mathcal{M}) \text{ for arbitrarily fixed } t \in [0, T]. \]  
(4.41)

Note that
\[ \|u_k - \hat{u}\|_{L^2(\mathcal{M})}^2 \leq \tilde{C}(T)E_0, \quad \forall t \in [0, T], \quad \forall 1 \leq k < +\infty. \]  
(4.42)

Lebesgue’s dominated convergence theorem yields
\[ u_k \to \hat{u} \text{ strongly in } L^2(M \times (0, T)). \]  
(4.43)

Case a:
\[ \int_0^T \int_M |\hat{u}|^2 dx_g dt > 0. \]  
(4.44)

Note that
\[ H^1(\mathcal{M}) \hookrightarrow L^{2p}(\mathcal{M}). \]  
(4.45)

Therefore, it follows from (4.39) that
\[ \{|u_k|^{p-1}u_k\} \text{ are bounded in } L^2(\mathcal{M} \times (0, T)). \]  
(4.46)

Hence, there exists a subset of \( \{u_k\}_{k=1}^{\infty} \), still denoted by \( \{u_k\}_{k=1}^{\infty} \), such that
\[ |u_k|^{p-1}u_k \to |\hat{u}|^{p-1}\hat{u} \text{ weakly in } L^2(\mathcal{M} \times (0, T)). \]  
(4.47)

It follows from (4.34) and (4.35) that
\[ a(x)\hat{u} = 0 \quad (x, t) \in \mathcal{M} \times (0, T). \]  
(4.48)

Therefore, with (4.40) and (4.47), we obtain
\[ \begin{cases} 
  i\hat{u}_0 + \Delta_g \hat{u} - |\hat{u}|^{p-1}\hat{u} = 0 & (x, t) \in \mathcal{M} \times (0, T), \\
  a(x)\hat{u} = 0 & (x, t) \in \mathcal{M} \times (0, T).
\end{cases} \]  
(4.49)

With (4.1) and Lemma 4.3, we have
\[ \hat{u} \equiv 0 \quad \text{on} \quad \mathcal{M} \times (0, T), \]  
(4.50)

which contradicts (4.44).

Case b:
\[ \hat{u} \equiv 0 \quad \text{on} \quad \mathcal{M} \times (0, T). \]  
(4.51)

Denote
\[ v_k = \frac{u_k}{\sqrt{c_k}} \quad \text{for} \quad k \geq 1, \]  
(4.52)

where
\[ c_k = \int_0^T \int_\mathcal{M} |u_k|^2 dx_g dt. \]  
(4.53)

Then \( v_k \) satisfies
\[ iv_{kt} + \Delta_g v_k + ia(x)v_k - |u_k|^{p-1}v_k = 0 \quad (x, t) \in \mathcal{M} \times (0, T), \]  
(4.54)

and
\[ \int_0^T \int_\mathcal{M} |v_k|^2 dx_g dt = 1. \]  
(4.55)
It follows from (4.35) that

\[ 1 \geq k \int_0^T \int_M a(x) \left( |v_k|^2 + |\nabla g v_k|^2 + |u_k|^{p-1}|v_k|^2 \right) \, dx_g \, dt. \tag{4.56} \]

Therefore, it follows from (4.33) that

\[ \hat{E}_k(0) + \int_0^T \hat{E}_k(t) \, dt \leq 1 + \frac{1}{k} \leq 2, \tag{4.57} \]

where

\[ \hat{E}_k(t) = \frac{1}{2} \int_M \left( |v_k|^2 + |\nabla g v_k|^2 + \frac{2}{p+1} |u_k|^{p-1}|v_k|^2 \right) \, dx_g. \tag{4.58} \]

With (4.38), (4.52) and (4.57), we obtain

\[ \hat{E}_k(t) \leq C(T) \hat{E}_k(0) \leq 2 C(T), \quad \forall t \in (0, T), \quad \forall 1 \leq k < +\infty, \tag{4.59} \]

which implies

\[ \{v_k\} \text{ are bounded in } L^\infty([0, T], H^1(M)). \tag{4.60} \]

Hence, there exist \( \hat{v} \) and a subset of \( \{v_k\}_{k=1}^\infty \), still denoted by \( \{v_k\}_{k=1}^\infty \), such that

\[ v_k \rightarrow \hat{v} \text{ weakly in } L^2([0, T], H^1(M)), \tag{4.61} \]

and

\[ v_k \rightarrow \hat{v} \text{ strongly in } L^2(M) \text{ for any fixed } t \in [0, T]. \tag{4.62} \]

Then by Lebesgue’s dominated convergence theorem, we have

\[ v_k \rightarrow \hat{v} \text{ strongly in } L^2(M \times (0, T)). \tag{4.63} \]

Note that

\[ H^1(M) \hookrightarrow L^{2p}(M). \tag{4.64} \]

Therefore, it follows from (4.60) that

\[ \{|v_k|^{p-1} v_k\} \text{ are bounded in } L^\infty([0, T], L^2(M)). \tag{4.65} \]

Hence

\[ \int_M \left( |u_k|^{p-1} |v_k| \right)^2 \, dx_g = c_k^{p-1} \int_M |v_k|^2 \, dx_g \leq c_k^{p-1} C(T). \tag{4.66} \]

With (4.51) and (4.53), we obtain

\[ |u_k|^{p-1} |v_k| \rightarrow 0 \text{ strongly in } L^\infty([0, T], L^2(M)). \tag{4.67} \]

It follows from (4.55), (4.56) and (4.63) that

\[ \int_0^T \int_M \hat{v}^2 \, dx_g \, dt = 1, \tag{4.68} \]

and

\[ a(x) \hat{v} = 0 \quad (x, t) \in M \times (0, T). \tag{4.69} \]
Therefore, it follows from (4.54), (4.61) and (4.67) that
\[
\begin{cases}
\dot{v} + \Delta_p \tilde{v} = 0 & (x, t) \in \mathcal{M} \times (0, T), \\
a(x) \tilde{v} = 0 & (x, t) \in \mathcal{M} \times (0, T).
\end{cases}
\] (4.70)

With (4.1) and Lemma 4.2, we have
\[
\tilde{v} \equiv 0 \quad \text{on } \mathcal{M} \times (0, T),
\] (4.71)
which contradicts (4.68). □

**Proof of Theorem 2.1** Let T be sufficiently large. It follows from (3.16) that \( \|u\|_{L^2(\mathcal{M})} \) is non-increasing. It follows from (4.8), (3.16), (3.17) and (4.32) that
\[
E(0) + \int_0^T E(t) \, dt \\leq C(E_0, T) \left( E(0) - E(T) + \int_0^T \int_\mathcal{M} \left( |\nabla_g a(x)| |u| \right) |\nabla_g u|_g \, dx_g \, dt \right) \\leq C(E_0, T) \left( E(0) - E(T) + C_C \int_0^T \int_\mathcal{M} a(x) |u|^2 \, dx_g \, dt + \epsilon \int_0^T \int_\mathcal{M} \left( |u|^2 + |\nabla_g u|^2 \right) \, dx_g \, dt \right) 
\] (4.72)

Therefore
\[
E(0) \leq C(E_0, T) \left( E(0) - E(T) - C(\mathcal{E}_0, T) \int_\mathcal{M} |u|^2 \, dx_g \right). \] (4.73)

Denote
\[
\tilde{E}(t) = E(t) + \tilde{C}(E_0, T) \int_\mathcal{M} |u|^2 \, dx_g.
\] (4.74)

From (4.73), we obtain
\[
\tilde{E}(0) \leq \tilde{C}(E_0, T)(\tilde{E}(0) - \tilde{E}(T)). \] (4.75)

Then
\[
\tilde{E}(T) \leq \tilde{C}(E_0, T) - \frac{1}{\tilde{C}(E_0, T)} \tilde{E}(0). \] (4.76)

It follows from (3.16), (3.17) and (4.74) that there exists \( \tilde{C}(T) > 0 \) such that
\[
\tilde{E}(t) \leq \tilde{C}(E_0, T) \tilde{E}(0), \quad \forall \ 0 \leq t \leq T.
\] (4.77)

Note that \( \|u\|_{L^2(\mathcal{M})} \) is non-increasing. Therefore, it follows from (4.76) that \( \tilde{E}(t) \) is of exponential decay. Hence, there exist \( C_1(E_0), C_2(E_0) > 0 \) such that
\[
E(t) \leq C_1(E_0)e^{-C_2(E_0)t}E(0), \forall t > 0.
\] (4.78)

□

**Acknowledgements:** The authors would like to express their gratitude to the referee and editor for their valuable comments and helpful suggestions.

This work is supported by the Fundamental Research Funds for the Central Universities, NO.BLX2019724, the National Natural Science Foundation of China, grants NO.61573342 and NO.11901329, the Natural Science Foundation of Shandong Provience under grant No.ZR2019BA022 and Key Research Program of Frontier Sciences, CAS, NO.QYZDJ-SSW-SYS011.
References

[1] L. Aloui, Smoothing effect for regularized Schrödinger equation on compact manifolds, Collect. Math. 59(2008), no. 1, 53-62.
[2] L. Aloui, Smoothing effect for regularized Schrödinger equation on bounded domains, Asymptotic Anal. 59(2008), no. 3-4, 179-193.
[3] L. Aloui and M. Khenissi, Stabilization of Schrödinger equation in exterior domains, ESAIM, Control Optim. Calc. Var. 13(2007), no. 3, 570-579.
[4] L. Aloui and M. Khenissi, Boundary stabilization of the wave and Schrödinger equations in exterior domains, Discrete and continuous dynamical systems 27(2010), no. 3, 919-934.
[5] J. F. Bony and D. Hafner, Local energy decay for several evolution equations on asymptotically Euclidean manifolds, Annales Scientifiques de l’écot Normale Supérieure 45(2012), no. 2, 311-335.
[6] J. M. Bouclet and N. Tzvetkov, On global Strichartz estimates for non-trapping metrics, J. Funct. Anal. 254(2008), no. 6, 1661-1682.
[7] J. M. Bouclet, Low frequency estimates and local energy decay for asymptotically Euclidean laplacians, Comm. Part. Diff. Equations 36(2011), no. 12, 1329-1386.
[8] N. Burq, Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not. 5(2002), no. 6, 221-241.
[9] N. Burq, Global Strichartz estimates for nontrapping geometries: About an article by H. F. Smith and C. D. Sogge, Comm. Partial Differential Equations 28(2003), no. 6, 1675-1683.
[10] N. Burq, Smoothing effect for Schrödinger boundary value problems, Duke Math. J. 123(2004), no. 2, 403-427.
[11] N. Burq, P. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains. [Equations de Schrödinger non linéaires dans des domaines extérieurs.] Annales de l’Institut Henri Poincaré Anal. Non Linéaire 21(2004), no. 3, 295-318.
[12] N. Burq, P. Gérard and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Am. J. Math. 126(2004), no. 3, 569-605.
[13] M. M. Cavalcanti, V. N. Domingos Cavalcanti and M. R. Astudillo Rojas, Asymptotic behavior of cubic defocusing Schrödinger equations on compact surfaces, Z. Angew. Math. Phys. 69(2018), no. 4, 69-100.
[14] M. M. Cavalcanti, V. N. Domingos Cavalcanti, R. Fukuoka and F. Natali, Exponential stability for the 2-D defocusing Schrödinger equation with locally distributed damping, Differential Integral Equations 22(2009), no. 7-8, 617-636.
[15] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. A. Soriano and F. Natali, Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: exponential and polynomial stabilization, J. Differential Equations. 248(2010), no. 12, 2955-2971.
[16] M. M. Cavalcanti, W. J. Corrêa, V. N. Domingos Cavalcanti and L. Tebou, Well-posedness and energy decay estimates in the Cauchy problem for the damped defocusing Schrödinger equation, J. Differ. Equ. 262(2017), no. 3, 2521-2539.
[17] S. G. Chai and K. S. Liu, Observability inequalities for the transmission of shallow shells, Systems Control Lett. 55(2006), no. 9, 726-735.
[18] H. Christianson, Dispersive estimates for manifolds with one trapped orbit, Comm. Partial Differential Equations 33(2008), no. 7, 1147-1174.
[19] B. Dehman, P. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface, Math. Z. 254(2006), no. 4, 729-749.
[20] A. Hassell, T. Tao and J. Wunsch, Sharp Strichartz estimates on non-trapping asymptotically conic manifolds, Amer. J. Math. 128(2006), no. 6, 963-1024.
[21] M. Khenissi and J. Royer, Local energy decay and the smoothing effect for the damped Schrödinger equation, Analysis&PDE 10(2017), no. 6, 1285-1315.
[22] I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. I. $H^1(Ω)$-estimates, J. Inverse Ill-Posed Probl. 12(2004), no. 1, 43-123.
[23] I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. II. $L^2(Ω)$-estimates, J. Inverse Ill-Posed Probl. 12(2004), no. 2, 183-231.
[24] C. Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3, SIAM J. Math. Anal. 42(2010), no. 2, 785-832.
[25] Z. H. Ning, Asymptotic behavior of the nonlinear Schrodinger equation on exterior domain, Mathematical Research Letters, in press. arXiv:1905.09540 [math.AP].
[26] Z. H. Ning, F. Yang and X. Zhao, Escape Metrics and its Applications, arXiv:1811.12668 [math.AP].
[27] J. Rauch, Local decay of scattering solutions to Schrödinger’s equation, Commun. Math. Phys. 61(1978), no. 2, 169-168.
[28] J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J. 24(1976), no. 1, 79-86.
[29] J. Royer, Exponential decay for the Schrödinger equation on a dissipative wave guide, Ann. Henri Poincaré 16(2015), no. 8, 1807-1836.
[30] H. F. Smith and C. D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations 25(2000), no. 11-12, 2171-2183.

[31] D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures & Appl. 8(1996), no. 4, 367-408.

[32] Y. Tsutsumi, Local energy decay of solutions to the free Schrödinger equation in exterior domains, J. Fac. Sci., Univ. Tokyo, Sect. I A 31(1984), no. 6, 97-108.

[33] P. F. Yao, On the observability inequalities for the exact controllability of the wave equation with variable coefficients, SIAM J. Control Optim. 37(1999), no. 6, 1568-1599.

[34] P. F. Yao, Boundary controllability for the quasilinear wave equation, Appl. Math. Optim. 61(2010), no. 2, 191-233.

[35] P. F. Yao, Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach, Chapman and Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton, FL, 2011.

[36] Z. F. Zhang and P. F. Yao, Global smooth solutions of the quasi-linear wave equation with internal velocity feedback, SIAM J. Control Optim. 47(2008), no. 4, 2044-2077.