Label-free quantitative proteomics of *Corynebacterium pseudotuberculosis* isolates reveals differences between Biovars *ovis* and *equi* strains

Wanderson M. Silva¹, Edson L. Folador³, Siomar C. Soares¹,⁸, Gustavo H. M. F. Souza⁴, Agenor V. Santos², Cassiana S. Sousa¹, Henrique Figueiredo⁷, Anderson Miyoshi¹, Yves Le Loir⁵,⁶, Artur Silva⁷ and Vasco Azevedo¹*

Abstract

Background: *Corynebacterium pseudotuberculosis* is a pathogen classified into two biovars: *C. pseudotuberculosis* biovar *ovis*, the etiologic agent of caseous lymphadenitis and *C. pseudotuberculosis* biovar *equi*, which causes ulcerative lymphangitis. The available whole genome sequences of different *C. pseudotuberculosis* strains have enabled identify difference of genes related both virulence and physiology of each biovar. To evaluate be this difference could reflect at proteomic level and to better understand the shared factors and the exclusive ones of biovar *ovis* and biovar *equi* strains, we applied the label-free quantitative proteomic to characterize the proteome of the strains: 1002-*ovis* and 258-*equi*, isolated from goat (Brazil) and equine (Belgium), respectively.

Results: From this analysis, we characterized a total of 1230 proteins in 1002-*ovis* and 1220 in 258-*equi* with high confidence. Moreover, the core-proteome between 1002-*ovis* and 258-*equi* obtained here is composed of 1122 proteins involved in different cellular processes, which could be necessary for the free living of *C. pseudotuberculosis*. In addition, 120 proteins from this core-proteome presented change in abundant with statistically significant differences. Considering the exclusive proteome, we detected strain-specific proteins to each strain. When correlated, the exclusive proteome of each strain and proteome with change in abundant, the proteomic differences, between the 1002-*ovis* and 258-*equi*, this related to proteins involved in cellular metabolism, information storage and processing, cellular processes and signaling.

Conclusions: This study reports the first comparative proteomic study of the biovars *ovis* and *equi* of *C. pseudotuberculosis*. The results generated in this study provide information about factors which can contribute to understanding both the physiology and the virulence of this pathogen.

Keywords: *Corynebacterium pseudotuberculosis*, Caseous lymphadenitis, Ulcerative lymphangitis, Proteomic bacterial, Label-free proteomics, proteomic
Background

Corynebacterium pseudotuberculosis is a Gram-positive facultative intracellular pathogen of the Corynebacterium, Mycobacterium, Nocardia, and Rhodococcus (CMNR) group. The CMNR group of pathogens has high G + C content in their genomes and shows a specific cell wall organization composed of peptidoglycan, arabinogalactan, and mycolic acids [1]. *C. pseudotuberculosis* is subdivided into two biovars: (i) *C. pseudotuberculosis* biovar *ovis* (nitrate negative) which is the etiologic agent of caseous lymphadenitis in small ruminants [2] and mastitis in dairy cattle [3] and (ii) *C. pseudotuberculosis* biovar *equi* (nitrate positive) that causes ulcerative lymphangitis and abscesses in internal organs of equines [4] and oedematous skin disease in buffalos [5]. *C. pseudotuberculosis* infection is reported worldwide and causes significant economic losses by affecting wool, meat, and milk production [6–9].

Various studies at genome level have been carried out by our research group in order to explore the molecular basis of specific and shared factors among different strains of *C. pseudotuberculosis* that could contribute to such biovar specific pathogenicity. Our studies on whole-genome sequencing and analysis of several *C. pseudotuberculosis* strains belonging to biovar *ovis* and *equi*, isolated from different hosts showed an average genome size of approximately 2.3 Mb, a core-genome having approximately 1504 genes across several *C. pseudotuberculosis* species, and accessory genomes of biovar *equi* and *ovis* composed of 95 and 314 genes, respectively [10–12]. According with pan-genome analysis, *C. pseudotuberculosis* biovar *ovis* presented a more clonal-like behavior, than the *C. pseudotuberculosis* biovar *equi*. In addition, in this *in silico* study was observed a variability most interesting related to pilus genes, where biovar *ovis* strain presented high similarity, while, biovar *equi* strains have a great variability, suggesting that this variability could influence in the adhesion and invasion cellular of each biovar [10].

Apart from the structural genome informatics studies of *C. pseudotuberculosis*, some proteomic studies were conducted to explore the functional genome of this pathogen [13–19]. However, all these proteomic studies were performed using only strains belonging to biovar *ovis*. Until the present time, no proteomic studies were performed between biovar *equi* strains or between biovar *ovis* and biovar *equi* strains. Therefore, to provide insights on shared and exclusive proteins among biovar *ovis* and biovar *equi* strains and to complement the previous studies on functional and structural genomics of *C. pseudotuberculosis* biovars, using LC-MS/MS approach [13, 18] this study reports for the first time a comparative proteomic analysis of two *C. pseudotuberculosis* strains, 1002_ovi and 258_eqi, isolated from caprine (Brazil) and equine (Belgium), respectively. Our proteomic dataset promoted the validations of previous work *in silico* of *C. pseudotuberculosis*; in addition, the qualitative and quantitative differences in the proteins identified in this present work have potential to help understand the factors that might contribute for pathogenic process of biovar *ovis* and *equi* strains.

Methods

Bacterial strain and growth condition

C. pseudotuberculosis biovar *ovis* 1002, isolated from a goat in Brazil, and *C. pseudotuberculosis* biovar *equi* 258, isolated from a horse in Belgium, were maintained in brain–heart infusion broth or agar (1.5%) (BHI-HiMedia Laboratories Pvt. Ltd., India) at 37 °C. For proteomic analysis, overnight cultures (three biological replicate to each strain) in BHI were inoculated with a 1:100 dilution in fresh BHI at 37 °C and cells were harvested during the exponential growth at D600 = 0.8 (Additional file 1: Figure S1).

Protein extraction and preparation of whole bacterial lysates for LC-MS/MS

After bacterial growth, the protein extraction was performed according to Silva et al. [18]. The cultures were centrifuged at 4000 x g at 4 °C for 20 min. The cell pellets were washed in phosphate buffered saline (PBS) and then resuspended in 1 mL of lysis buffer (7 M Urea, 2 M Thiourea, CHAPS 4% and 1 M DTT) and 10 μL of Protease Inhibitor Mix (GE Healthcare, Piscataway, NJ, USA) was added. The cells were broken by sonication at 5 × 1 min cycles on ice and the lysates were centrifuged at 14,000 x g for 30 min at 4 °C. Subsequently, samples were concentrated and lysis buffer was replaced by 50 mM ammonium bicarbonate at pH 8.0 using a 10 kDa ultra-filtration device (Millipore, Ireland). All centrifugation steps were performed at room temperature. Finally the protein concentration was determined by Bradford method [20]. A total of 50 μg proteins from each biological replicate of 1002_ovi and 258_eqi were denatured by using RapiGEST SF [(0.1%) (Waters, Milford, CA, USA)] at 60 °C for 15 min, reduced with DTT [(10 mM) (GE Healthcare)], and alkylated with iodoacetamide [(10 mM) (GE Healthcare)]. For enzymatic digestion, trypsin [(0.5 μg/μL) (Promega, Sequencing Grade Modified Trypsin, Madison, WI, USA)] was added and placed in a thermomixer at 37 °C overnight. The digestion process was stopped by the addition of 10 μL of 5% TFA (Sigma-Aldrich, St. Louis, Missouri, USA) and glycogen phosphorylase (Sigma-Aldrich) was added to the digests to give 20 fmol.L−1 as an internal standard for scouting normalization prior to each replicate injection into label-free quantitation [21].
LC-HDMSE analysis and data processing
Qualitative and quantitative analysis were performed using 2D RPxRP (two-dimensional reversed phase) nanoUPLC-MS (Nano Ultra Performance Liquid Chromatography Mass Spectrometry) approach with multiplexed Nano Electrospray High Definition Mass Spectrometry (nanoESI-HDMSE). To ensure that all samples were injected with the same amount into the columns and to ensure standardized molar values across all conditions, stoichiometric measurements based on scouting runs of the integrated total ion account (TIC) were performed prior to analysis. The experiments were conducted using both a 1 h reversed phase gradient from 7% to 40% (v/v) acetonitrile (0.1% v/v formic acid) and a 500 nL.min−1 on a 2D nanoACQUITY UPLC technology system [22]. A nanoACQUITY UPLC HSS (High Strength Silica) T3 1.8 μm, 75 μm × 15 cm column (pH 3) was used in conjunction with a reverse phase (RP) XBridge BEH130 C18 5 μm 300 μm × 50 mm nanoflow column (pH 10). Typical on-column sample loads were 250 ng of total protein digests for each 5 fractions (250 ng/fraction/load). For all measurements, the mass spectrometer was operated in the resolution mode with a typical m/z resolving power of at least 35,000 FMHW and an ion mobility cell filled with nitrogen gas and a cross-section resolving power at least 40 Ω/ΔΩ. All analyses were performed using nano-electrospray ionization in the positive ion mode nanoESI (+) and a NanoLockSpray (Waters, Manchester, UK) ionization source.

The lock mass channel was sampled every 30 s. The mass spectrometer was calibrated with a MS/MS spectrum of [Glu1]-Fibrinopeptide B human (Glu-Fib) solution (100 fmol.uL−1) delivered through the reference sprayer of the NanoLockSpray source. The doubly-charged ion ([M + 2H]2+ = 785.8426) was used for initial single-point calibration and MS/MS fragment ions of Glu-Fib were used to obtain the final instrument calibration. Multiplexed data-independent (DIA) scanning with added specificity and selectivity of a non-linear ‘T-wave’ ion mobility (HDMS3) experiments were performed with a Synapt G2-S HDMS mass spectrometer (Waters), which was automatically planned to switch between standard MS (3 eV) and elevated collision energies HDMSE (19–45 eV) applied to the transfer ‘T-wave’ CID (collision-induced dissociation) cell with argon gas. The trap collision cell was adjusted for 1 eV, using a millisecond scan time previously adjusted based on the linear velocity of the chromatography peak delivered through nanoACQUITY UPLC to get a minimum of 20 scan points for each single peak, both in low energy and at high-energy transmission at an orthogonal acceleration time-of-flight (oa-TOF) from m/z 50 to 2000. The RF offset (MS profile) was adjusted is such a way that the nanoUPLC-HDMSE data are effectively acquired from m/z 400 to 2000, which ensured that any masses observed in the high energy spectra with less than m/z 400 arise from dissociations in the collision cell.

Database searching and quantification
Following the identification of proteins, the quantitative data were packaged using dedicated algorithms [23, 24] and searching against a database with default parameters to account for ions [25]. The databases used were reversed “on-the fly” during the database queries and appended to the original database to assess the false positive rate (FDR) during identification. For proper spectra processing and database searching conditions, the Protein Lynx Global Server v.2.5.2 (PLGS) with IdentityE and ExpressionE informatics v.2.5.2 (Waters) were used. UniProtKB (release 2013_01) with manually reviewed annotations was used, and the search conditions were based on taxonomy (Corynebacterium pseudotuberculosis). We have utilized a database from genome annotation of 1002\textsubscript{ovis} CP001809.2 version and 258\textsubscript{equi} CP003540.2 version. These databases were randomized within PLGS v.2.5.2 for generate a concatenated database from both genomes. Thus, the measured MS/MS spectra from proteomic datasets of 1002\textsubscript{ovis} and 258\textsubscript{equi} were searched against this concatenated database. The maximum allowed missed cleavages by trypsin were up to one, and variable modifications by carboxymethyl (C), acetyl N-terminal, phosphoryl (STY) and oxidation (M) were allowed and peptide mass tolerance value of 10 ppm was used [26]. Peptides as source fragments, peptides with a charge state of at least [M + 2H]2+ and the absence of decays were the factors we considered to increase the data quality. The collected proteins were organized by the PLGS ExpressionE tool algorithm into a statistically significant list that corresponded to higher or lower regulation ratios among the different groups. For protein quantitation, the PLGS v2.5.2 software was used with the IdentityE algorithm using the Hi3 methodology. The search threshold to accept each spectrum was the default value in the program with a false discovery rate value of 4%. The quantitative values were averaged over all samples, and the standard deviations at p < 0.05 were determined using the Expression software. Only proteins with a differential expression log2 ratio between the two conditions greater than or equal to 1.2 were considered [26].

Bioinformatics analysis
The identified proteins in 1002\textsubscript{ovis} and 258\textsubscript{equi} were subjected to the bioinformatics analysis using the various prediction tools. SurfG+ v1.0 [27] was used to predict sub-cellular localization, SignalP 4.1.0 server [28] to
predict the presence of N-terminal signal peptides for secretory proteins, SecretomeP 2.0 server [29] to identify exported proteins from non-classical systems (positive prediction score greater than 0.5), LipoP server [30] to determine lipoproteins, Blast2GO [31] and COG database [32] were used for functional annotations. The protein-protein interaction network was generated using Cytoscape version 2.8.3 [33] with a spring-embedded layout.

Results and discussion

Characterization of the proteome of *C. pseudotuberculosis* biovar *ovis* and *equi*

In this study, we applied the 2D nanoUPLC-HDMSE approach to characterize the proteome of the strains 1002$_{ovis}$ and 258$_{equi}$. Both strains were grown in BHI media, subsequently proteins were extracted and digested in solution, and then the peptides were analyzed by LC/MSE. Our proteomic analysis identified a total of 1227 non-redundant proteins in 1002$_{ovis}$ (Additional file 2: Table S1 and Additional file 3: Table S2) and 1218 in 258$_{equi}$ (Additional file 2: Table S1 and Additional file 4: Table S3) (Fig. 1a). The information about sequence coverage and a number of identified peptides for each protein sequence identified, as well as the information about the native peptide are available at Additional file 5: Table S4 and Additional file 6: Table S5. Altogether from the proteome of these two biovars, we identified a total of 1323 different proteins of *C. pseudotuberculosis* with high confidence (Fig. 1a) and characterized approximately 58% of the predicted proteome of 1002$_{ovis}$ [11] (Fig. 1b). In the case of 258$_{equi}$, we characterized approximately 57% of the predicted proteome [12] (Fig. 1b). The proteins identified in both proteomes were analyzed by SurfG+ tool [27] to predict the subcellular localization into four categories: cytoplasmic (CYT), membrane (MEM), potentially surface-exposed (PSE) and secreted (SEC) (Fig. 1c). Further, we identified 83% (43 proteins) of the lipoproteins predicted in 1002$_{ovis}$ and 79% (41 proteins) in 258$_{equi}$. Considering proteins with LPxTG motif which are involved in covalent linkage with peptidoglycan, we identified 6 proteins in 1002$_{ovis}$ and 4 proteins in 258$_{equi}$ that correspond to approximately 38% and 34% of the LPxTG proteins predicted in each strain, respectively.

The biovar *equi* and biovar *ovis* core proteome

The core-proteome, between 258$_{equi}$ and 1002$_{ovis}$ is composed of 1122 proteins (Fig. 1) (Additional file 2: Table S1). Interestingly, when correlated these 1122 proteins with the in silico predicted proteome of both biovars, we observed a significant overlap (Fig. 1a).
proteins with in silico data of the *C. pseudotuberculosis* core-genome [10], we observed that 86% (960 proteins) of the Open Reading Frame (ORF) that encodes these proteins are part of the core-genome (Additional file 2: Table S1), what represents approximately 64% of the predicted core-genome of this pathogen. In addition, these data show a set of proteins involved in different cellular processes which could be necessary for the free living of *C. pseudotuberculosis*. The other 14% (262 proteins) of the proteins that constitute the core-proteome are shared by at least one of the 15 strains used in the core-genome study. According to Gene Ontology analysis [31, 32], the 1122 proteins were classified into four important functional groups: (i) metabolism, (ii) information storage and processing, (iii) cellular processes and signaling, and (iv) poorly characterized (Fig. 2a). As observed in the study of *C. pseudotuberculosis* [10] core genome in the categories “metabolism” and “information storage and processing” were detected a large number of proteins.

The label-free quantification was applied to evaluate the relative abundance of the core-proteome of 258_equi and 1002_ovis. The ProteinLynx Global Server (PLGS) v2.5.2 software with Expression^® algorithm tool was used to identify proteins with \(p \leq 0.05 \) (Additional file 2: Table S1). Among these proteins, 120 proteins between 258_equi and 1002_ovis showed difference in level of abundance (log2 ratios equal or greater than a factor of 1.2) [26] (Table 1). In this group of proteins that have presented different abundance level (258_equi:1002_ovis), 49 proteins were more abundant and 71 less abundant (Table 1). To visualize this differential distribution of the core-proteome a volcano plot of the log2 ratio of 258_equi/1002_ovis versus Log (e) Variance was generated (Fig. 2b). Interestingly, the Phospholipase D (Pld), the major virulence factor of *C. pseudotuberculosis*, was more abundant in 258_equi, than in 1002_ovis (Table 1). The Pld have an important play role in the pathogenic process of *C. pseudotuberculosis*, due to the sphingo-myelinase activity of the Pld, this exotoxin increases...
Accession	Description	Score	Log2Ratio (a)	p_value (a)
Cellular processes and signaling				
I3QUW8_CORPS	Periplasmic zinc binding protein troA	4245,52	-1,32	0
I3Q6G9_CORPS	Phospho N acetylmuramoyl pentapeptide	166,05	1,22	1
I3Q4F8_CORPS	Corynomycolyl transferase	3886,67	-1,45	0
I3R526_CORPS	Peptidoglycan recognition protein	5283,55	-2,06	0
I3Q4M0_CORPS	Cell wall channel	2220,85	-2,14	0
I3Q3I1_CORPS	Cell wall peptidase NlpC P60 protein	1207,7	-2,78	0
Defense mechanism				
I3Q677_CORPS	Cold shock protein	6171,9	1,37	1
I3Q632_CORPS	DNA protection during starvation protein	70,504,73	-1,48	0
I3Q4V4_CORPS	Protein GrpE	929,96	-3,43	0
I3Q4V2_CORPS	Heat shock protein HspR	705,01	-1,45	0,01
Intracellular trafficking secretion and vesicular transport				
I3Q697_CORPS	ABC type transporter	376,36	2,91	1
I3Q431_CORPS	ABC transporter ATP binding protein	6339,11	1,54	1
I3Q4N9_CORPS	ABC superfamily ATP binding cassette	25,578,26	-1,38	0
I3Q5B9_CORPS	Oligopeptide transport system permease	705,01	-1,45	0,01
Post-translational modification, protein turnover, chaperones				
I3Q7U6_CORPS	Thioredoxin TrxA	1832,12	3,15	1
I3Q692_CORPS	Thiol disulfide isomerase thiorodoxin	157,88	1,80	1
I3Q8CS_CORPS	Proteasome accessory factor PaP2A2	305,06	-1,32	0
I3Q493_CORPS	Glutaredoxin like protein rrdH	3140,61	-1,34	0
I3Q513_CORPS	Peptidyl prolyl cis trans isomerase	49,161,11	-1,44	0
I3Q7L6_CORPS	Ferredoxin	54,332,67	-1,48	0
I3Q753_CORPS	Peptidyl prolyl cis trans isomerase	19,736,36	-1,63	0
I3Q5Y2_CORPS	Catalase	52,016,22	-1,70	0
I3Q5T5_CORPS	Glyoxalase Bleomycin resistance protein	18,489,51	-1,99	0
I3Q6M3_CORPS	10 kDa chaperonin	90,387,73	-2,78	0
Signal transduction mechanisms				
I3Q8W_CORPS	Phosphocarrier protein HPr	38,569,08	-2,92	0
Information storage and processing				
I3Q606_CORPS	Metallophosphoesterase	529,63	1,88	1
I3Q7A0_CORPS	TetR family regulatory protein	5685,08	-1,38	0
I3Q8MS_CORPS	N utilization substance protein B homol	16,977,04	-1,42	0
I3Q7D4_CORPS	Transcriptional regulatory protein PvdS	7456,32	-1,48	0
I3Q3I4_CORPS	Ferric uptake regulatory protein	7805,46	-1,76	0
Accession	Description	Log2 fold change	P-value	
-----------	-------------	-----------------	---------	
I3QWK3_CORPS D9Q7G7_CORP1	Transcription elongation factor GreA	77,246.3	-1.87	0
I3QZJ2_CORPS D9Q4H4_CORP1	Transcriptional regulator	10,476.01	-1.93	0
I3QU73_CORPS D9QSV6_CORP1	Nucleoid associated protein ybaB	81,447.09	-3.04	0
I3QU44_CORPS D9QSQ1_CORP1	YaaA protein	25,362.05	-3.14	0
I3QU28_CORPS D9Q759_CORP1	Ribosomal RNA small subunit methyltransferase	395.99	1.29	1
I3QW9D9_CORPS D9Q7A3_CORP1	30S ribosomal protein S14	4756.75	-1.47	0

Translation, ribosomal structure and biogenesis

Accession	Description	Log2 fold change	P-value	
I3Q0I2_CORPS D9Q5F9_CORP1	Ribosomal RNA small subunit methyltransferase	395.99	1.29	1
I3QWD9_CORPS D9Q7A3_CORP1	30S ribosomal protein S14	4756.75	-1.47	0

Metabolism

Accession	Description	Log2 fold change	P-value	
I3Q0I2_CORPS D9Q5F9_CORP1	Ribosomal RNA small subunit methyltransferase	395.99	1.29	1
I3QWD9_CORPS D9Q7A3_CORP1	30S ribosomal protein S14	4756.75	-1.47	0

Amino acid transport and metabolism

Accession	Description	Log2 fold change	P-value	
I3Q3B4_CORP1	Glutamate dehydrogenase	1534.86	3.56	1
I3QX11_CORPS D9Q8D2_CORP1	Aspartate ammonia lyase	2326.21	1.60	1
I3QWF9_CORPS D9Q7C4_CORP1	Glycine betaine transporter	136.23	1.21	1
I3QV2I_CORPS D9Q5Y0_CORP1	Aspartate semialdehyde dehydrogenase	8778.47	-1.28	0
I3QWZ5_CORPS D9Q7V4_CORP1	Cysteine desulfurase	1813.31	-1.31	0
I3QXT1_CORPS D9Q8N1_CORP1	Chorismate synthase	5341.49	-1.41	0
I3QXI5_CORPS D9Q8D5_CORP1	Phosphoribosyl ATP pyrophosphatase	25,184.13	-1.90	0
I3QXL8_CORPS D9Q8G8_CORP1	UPF0237 protein Cps258	1096	16.01	1
I3QZ55_CORPS D9Q4X5_CORP1	Urease subunit beta	4349.97	-2.12	0

Carbohydrate transport and metabolism

Accession	Description	Log2 fold change	P-value	
I3R0E6_CORPS D9Q5C6_CORP1	Aldose 1 epimerase	221.55	2.78	1
I3QV93_CORPS D9Q660_CORP1	Formate acetyltransferase	9381.31	2.00	1
I3QX75_CORPS D9Q4A5_CORP1	Phosphoglucomutase	359.43	1.77	1
I3QWW1_CORPS D9Q8W7_CORP1	L lactate permease	103.53	1.38	0.99
I3QV92_CORPS D9Q8W6_CORP1	PTS system fructose specific EIIABC	191.71	1.35	1
I3QX02_CORPS D9Q8G5_CORP1	L lactate dehydrogenase	5695.04	1.32	1
I3R0S1_CORPS D9Q961_CORP1	Probable phosphoglycerate mutase	2044.4	-1.24	0
I3QY20_CORPS D9Q8I5_CORP1	PTS system fructose specific IIA/B/C	507.53	-1.25	0
I3QWR8_CORPS D9Q7N1_CORP1	Sucrose 6 phosphate hydrolase	6075.08	-1.34	0
I3QYN0_CORPS D9Q3L2_CORP1	Glycine cleavage system H protein	91529.52	-1.38	0
I3QWH7_CORPS D9Q7D8_CORP1	Glyceraldehyde 3 phosphate dehydrogenase	9529.4	-2.68	0

Coenzyme metabolism

Accession	Description	Log2 fold change	P-value	
I3QUS5_CORPS D9Q5N2_CORP1	NADH dehydrogenase	3257.66	3.14	1
I3QZ12_CORPS D9Q411_CORP1	Pyridoxal biosynthesis lyase PdxSo	1029.15	-1.42	0
I3QF8_CORPS D9Q881_CORP1	Pseudoxyal biosynthesis lyase PdxSo	34,981.98	-1.77	0
I3QX61_CORPS D9Q893_CORP1	Hemolysin related protein	3609.76	1.35	0

Energy metabolism

Accession	Description	Log2 fold change	P-value	
I3QY6_CORPS D9Q3A4_CORP1	ATP dependent dethiobiotin synthetase B	104,92	-1.24	1
I3QZ12_CORPS D9Q411_CORP1	Malate dehydrogenase	11,220.59	1.22	1
I3QX4_CORPS D9Q815_CORP1	Cytochrome oxidase assembly protein	297.19	-1.86	0.09
I3QY66_CORPS D9Q3A4_CORP1	Nitrogen regulatory protein P II	16,165.93	-2.29	0

Inorganic Ion Transport and Metabolism

Accession	Description	Log2 fold change	P-value	
I3R077_CORPS D9Q575_CORP1	Cation transport protein	882.31	-4.64	1
I3QZ55_CORPS D9Q4F0_CORP1	Trk system potassium uptake protein trk	2973.22	1.25	1
I3QV44_CORPS D9Q6Q3_CORP1	Hemolysin related protein hmuT	607.64	1.71	1
Table 1 Differentially regulated proteins between 258_equi and 1002_ovis (Continued)

Entry	Protein Description	Log2 Fold Change	p-value	
I3QVT3_CORPS	Manganese ABC transporter substrate binding	3917.5	1.51	0
Lipid transport and metabolism				
I3QUM7_CORPS	Phospholipase D	25,847.67	3.27	1
I3QZM9_CORPS	Secretory lipase	1254	3.08	1
Nucleotide metabolism				
I3QZR5_CORPS	Purine phosphoribosyltransferase	227,51	4.45	1
I3QZP7_CORPS	Phosphoribosylformylglycinamidine synth	978,57	1.45	1
I3QX6_CORPS	Adenine phosphoribosyltransferase	907,16	1.44	1
I3QZ07_CORPS	Nucleoside diphosphate kinase	14,996.33	1.35	1
I3QZG8_CORPS	HIT family protein	4039.81	1.21	1
Secondary metabolites biosynthesis, transport and catabolism				
I3QWA4_CORPS	Multidrug resistance protein norMo	208.76	1.35	0.98
Poorly characterized				
I3QX01_CORPS	Unknown function	7862.73	3.59	1
I3QXJ0_CORPS	Unknown function	276.68	3.43	1
I3QZT7_CORPS	Unknown function	1609.29	2.84	1
I3QXV6_CORPS	Unknown function	1476.56	2.58	1
I3QXZ5_CORPS	Unknown function	572.19	1.90	1
I3QY98_CORPS	Unknown function	1466.6	1.78	1
I3QY10_CORPS	Unknown function	304.96	1.65	0.98
I3QY01_CORPS	Unknown function	504.13	1.60	1
I3QY26_CORPS	Unknown function	985.97	1.47	1
I3QW51_CORPS	Unknown function	103.03	1.45	1
I3QW22_CORPS	Unknown function	4085.83	1.39	1
I3QW44_CORPS	Unknown function	87,929.25	1.35	0
I3QW77_CORPS	Unknown function	64,404.7	1.38	0
I3QW72_CORPS	Unknown function	4367.05	1.68	0
vascular permeability through the exchange of polar groups attached to membrane-bound lipids and helps the bacteria in spread inside the host [34, 35]. In addition, this exotoxin is able to reduce the viability of both macrophages and neutrophils [34, 36]. In comparative proteomic studies between 1002_ovi and C231_ovi exoproteome, Pld was detected only in the C231_ovi supernatant [13, 15, 16]. A study performed with pld mutant strains presented decreased virulence [37]. Thus, in relation to 258_equi, 1002_ovi could present a low potential of virulence.

The 120 differential proteins were organized by cluster of orthologous groups, and when evaluated the different biological processes that comprise each category listed above, we observed that 19 process were differentials between 258_equi and 1002_ovi (Fig. 2c, Additional file 7: Figure S2 and Additional file 8: Figure S3). The majority of the more abundant proteins (258_equi:1002_ovi) are related to cellular metabolism. On other hand, the majority of the less abundant proteins (258_equi:1002_ovi) are classified as poorly characterized or of unknown function. However, when proteins of known or predicted function are evaluated the majority of the less abundant proteins are related to cellular processes and signaling.

Table 1 Differentially regulated proteins between 258_equi and 1002_ovi (Continued)

BQYW4_CORPS	D9Q3V8_CORP1	Unknown function	15,928,9	−1,96	0
BQX9_CORPS	D9Q57T_CORP1	Unknown function	8100,51	−2,00	0
BQY8_CORPS	D9Q3F3_CORP1	Unknown function	78,035,52	−2,09	0
BQZ5_CORPS	D9Q5V4_CORP1	Unknown function	77,763,68	−2,09	0
BQU3_CORPS	D9Q5M1_CORP1	Unknown function	12,731,48	−2,27	0
BQW7_CORPS	D9Q6R6_CORP1	Unknown function	8564,11	−3,47	0
BQX0_CORPS	D9Q850_CORP1	Unknown function	19,485,3	−3,50	0
BQW2_CORPS	D9Q6W1_CORP1	Unknown function	49,581,23	−3,76	0
BQV0_CORPS	D9Q6N1_CORP1	Unknown function	66,162,63	−4,87	0
BRGS5_CORPS	D9Q5E4_CORP1	Unknown function	39,265,48	−5,65	0

Difference among the major functional classes identified from the core-proteome analysis of 1002_ovi and 258_equi

Metabolism

During the infection process, pathogens need to adjust their metabolism in response to nutrient availability inside and outside the host. In our proteomic study, we identified several proteins related to different metabolic pathways. To determine the metabolic network of each strain, the proteins identified in this study were analyzed using Kyoto Encyclopedia of Genes pathways and Genomes (KEGG) [38]. A total of 321 and 320 proteins, corresponding to 1002_ovi and 258_equi respectively, were mapped onto different metabolic pathways (Additional file 9: Figure S4 and Additional file 10: Figure S5). We observed differences in the metabolism of the biovars, related to Amino acid transport and metabolism, Carbohydrate transport and metabolism, Coenzyme metabolism, Energy metabolism, Lipid transport and metabolism, Nucleotide metabolism and Secondary metabolites biosynthesis, transport and catabolism. Difference in the metabolism cellular, also already observed in others comparative proteomic study of *C. pseudotuberculosis* [13, 16, 17, 19], as well as in the *Mycobacterium tuberculosis* pathogen [39].

Interestingly, the PTS system fructose-specific EIIABC component (PstF) related to carbohydrate metabolism was more abundant in 258_equi, than in 1002_ovi (Table 1). This protein showed increased abundance in field isolates of *C. pseudotuberculosis* biovar ovis grown in BHI when compared to C231_ovi, a reference strain [19]. This increased abundance of PstF in 258_equi, suggests that this protein could be important to the transport of carbon source both biovar ovis and biovar equi strains. On the other hand, the Precorrin 8X methyl mutase involved in cobalamin and vitamin B12 synthesis can be required only in biovar ovis strains, this protein beside being more abundant in 1002_ovi (Table 1), was also detected with greater abundance in the field isolates of *C. pseudotuberculosis* biovar ovis after having been grown in BHI [19]. Glutamate dehydrogenase (GDH) was detected more abundant in 258_equi (Table 1). A study performed with the *M. bovis* pathogen showed that GDH contributes to the survival of this pathogen during macrophage infection [40].

In *C. pseudotuberculosis*, it was demonstrated that genes related the iron-acquisition are involved in the virulence of this pathogen [41]. In the core-proteome of 1002_ovi and 258_equi, we detected proteins involved in this process, like CiUA, FagC and FagD; however, all these proteins were not differentially regulated between the two strains (Additional file 2: Table S1). On the other hand, HmuT protein, related to hemin uptake, was more abundant in 258_equi (Table 1). Additionally, we have also detected a cell surface hemin receptor in the..
exclusive proteome of this strain. Heme represents the major reservoir of iron source for many bacterial pathogens that rely on surface-associated heme-uptake receptors [42]. The HmuT is a lipoprotein that acts as a hemin receptor. The hmuT gene is part of the operon hmuTIV, an ABC transport system (haemin transport system), which is normally present in pathogenic Corynebacterium [43, 44]. In addition, in the pathogen C. ulcerans, HmuT is required for normal hemin utilization [44].

Information storage and processing

Of the total protein of proteins identify in the category “information storage and processing” the majority of the differential proteins were less abundant in 258_equi (Table 1). Only, Metallophosphoesterase involved in DNA repair, SAM dependent methyltransferase related to transcriptional process and Ribosomal RNA small subunit methyltransferase I involved in translation process were more induced in 258_equi. In 1002_ovi the Exodeoxyribonuclease 7 important protein related to the DNA-damage pathway was more induced in this strain. In addition, we identified the TetR family regulatory protein as more abundant in 1002_ovi, this result was also observed in field isolates of C. pseudotuberculosis from sheep infected naturally [19]. TerR proteins are related to regulation of multidrug efflux pumps, antibiotic biosynthesis, catabolic process and cellular differentiation process [45]. Others important transcriptional regulators also were induced in 1002_ovi such as PvdS and GreA regulators.

Cellular processes and signaling

Our proteomic analyses detected differentially regulated proteins belonging to different antioxidant systems. These could contribute to the survival of C. pseudotuberculosis in various stress conditions, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are generally found in macrophage. The three major thiol-dependent antioxidant systems in prokaryotic pathogens are the thioredoxin system (Trx), the glutathione system (GSH-system) and the catalase system [46]. Thioredoxin TrxA and Thiol-disulfide isomerase thioredoxin were more abundant in 258_equi (Table 1). These proteins are involved in the Trx-system, which has a major role against oxidative stress [46]. However, proteins like catalase and glutaredoxin (nrdH) were less abundant in 258_equi (Table 1), being more active in 1002_ovi. Catalase plays an important role in resistance to ROS and RNS, as well as in the virulence of M. tuberculosis [47]. The protein NrdH has a glutaredoxin amino acid sequence and thioredoxin activity. It is present in Escherichia coli [48] and C. ammoniagenes [49], as well as in bacteria where the GSH system is absent, such as M. tuberculosis [50]. Thus, the presence of NrdH may represent one more factor that contributes to the resistance of C. pseudotuberculosis against ROS and RNS during the infection process, as well as to the maintenance of the balance of intracellular redox potential. Proteins like NorB and Glyoxalase/Bleomycin, which play roles in the nitrosative stress response of 1002_ovi, were identified in the exclusive proteome of this strain (Additional file 3: Table S2) [14, 18]. These results shown that beside of present proteins with difference in abundance both strains present a set of proteins that could contribute to adaptive process under stress conditions.

Difference proteomic observed in the exclusive proteome of 258_equi and 1002_ovi

We found respectively 105 and 96 proteins in the exclusive proteome of 1002_ovi and 258_equi (Fig. 1) (Additional file 3: Table S2 and Additional file 4: Table S3), related to different biological process (Additional file 7: Figure S2 and Additional file 8: Figure S3). Interestingly, in this exclusive proteome of 1002_ovi and 258_equi, we detected specific proteins in each strain (Table 2, Additional file 3: Table S2 and Additional file 4: Table S3). In the exclusive proteome of 258_equi, the ORFs that codify twenty proteins are annotated as pseudogene in 1002_ovi (Table 2, Additional file 3: Table S2 and Additional file 4: Table S3). On the other hand, the ORFs that encode six proteins were not detected in the genome of 1002_ovi. These proteins are two CRISPR, MoeB, and three unknown function proteins. CRISPR is an important bacterial defense system against infections by viruses or plasmids, this immunity is obtained from the integration of short sequences of invasive DNA ‘spacers’ into the CRISPR loci [51].

The distinction between the biovar ovis and biovar biovar equi strains is based on a biochemical assay, where biovar ovis strains are negative for nitrate reduction, whereas biovar equi strains are positive [52]. However, to date, there is no available information regarding the molecular basis underlying nitrate reduction in C. pseudotuberculosis biovar equi. MoeB is involved in the molybdenum cofactor (Moco) biosynthesis, which plays an important role in anaerobic respiration in bacteria and also are required to activation of nitrate reductase (NAR) [53]. In the closely related pathogen M. tuberculosis several studies have showed the great importance of molybdenum cofactor in its virulence and pathogenic process, mainly macrophage intracellular environmental [54]. Therefore, more studies are necessary to explore the true role of MocB both physiology and virulence of biovar equi strains. Other protein that also could contribute to resistance of 258_equi macrophage is NADPH dependent nitro/flavin reductase (NfrA), a pseudogene in 1002_ovi. In addition, studies performed in Bacillus
subtilis showed that NfrA is involved in both oxidative stress [55] and heat shock resistance [56].

In 1002_ovi, only the ORF that encodes a DNA methylase was not found in the 258_equi genome (Table 2, Additional file 3: Table S2 and Additional file 4: Table S3). In addition, the ORFs that codifies seven proteins identified in the exclusive proteome of the strain 1002_ovi are annotated like pseudogene in 258_equi (Table 2, Additional file 3: Table S2 and Additional file 4: Table S3). Inside this group, we have identified important proteins involved in the process of adhesion and invasion cellular, which might contribute in the

Table 2 Exclusive proteins identified in 258_equi and 1002_ovi

Locus	Description	Biological Process
Cp1002_1457	DNA methylase	DNA Metabolism: replication, recombination and repair
Cp1002_1872	Collagen binding surface protein Cna	Adhesion and motility cell
Cp1002_1859	Sdr family related adhesin	Adhesion and motility cell
Cp1002_2025	Glycoside hydrolase 15 related protein	Carbohydrate transport and metabolism
Cp1002_0387	Neuraminidase Sialidase	Lipid transport and metabolism
Cp1002_0262	Ppx/GppA phosphatase family	General function prediction only
Cp1002_1151	Zinc metallopestidase	General function prediction only
Cp1002_0077	Unknown function	Unknown function
Cp258_0374	MoeB protein	Coenzyme metabolism
Cp258_0647	CRISPR associated protein	DNA Metabolism: replication, recombination and repair
Cp258_0028	CRISPR-associated protein	DNA Metabolism: replication, recombination and repair
Cp258_0076	Unknown function	Unknown function
Cp258_0585	Unknown function	Unknown function
Cp258_0586	Unknown function	Unknown function
Cp258_0896	Acetolactate synthase	Amino acid transport and metabolism
Cp258_0465	Cystathionine gamma synthase	Amino acid transport and metabolism
Cp258_0313	Aminopeptidase G	Amino acid transport and metabolism
Cp258_0893	Dihydroxy acid dehydrogenase	Amino acid transport and metabolism
Cp258_1223	Insolot 1 monophosphatase	Carbohydrate transport and metabolism
Cp258_1360	Unknown function	Coenzyme metabolism
Cp258_1892	Aldehyde dehydrogenase	Energy metabolism
Cp258_0123	ABC type metal ion transport system	Inorganic Ion Transport and Metabolism
Cp258_1854	Disulfide bond formation protein DsbB	Post-translational modification, protein turnover, chaperones
Cp258_0385	Methionine aminopeptidase	Post-translational modification, protein turnover, chaperones
Cp258_1923	Oligopeptide binding protein oppA	Intracellular trafficking secretion and vesicular transport
Cp258_1549	ABC transporter ATP binding protein	Intracellular trafficking secretion and vesicular transport
Cp258_1566	ABC transporter	Intracellular trafficking secretion and vesicular transport
Cp258_0693	Phosphatase YbF	General function prediction only
Cp258_1503	Alpha beta hydrolase	General function prediction only
Cp258_1265	Unknown function	General function prediction only
Cp258_0169	NADPH dependent nitro flavin reductase	General function prediction only
Cp258_1351	Unknown function	Unknown function
Cp258_1916	Unknown function	Unknown function
Cp258_2099	Unknown function	Unknown function

(a) Strain-specific protein, ORF detected only in the genome of 258_equi(
(b) Strain-specific protein, ORF detected only in the genome of 1002_ovi(
(c) ORF predicted like pseudogene in 1002_ovi(
(d) ORF predicted like pseudogene in 258_equi
pathogenesis of 1002_ovi. Adhesion to host cells is a crucial step that favors the bacterial colonization; this process is mediated by different adhesins [57]. We identified proteins such as: collagen binding surface protein Cna-like and Sdr family related adhesin, which are members of the collagen-binding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) (Table 2). This class of proteins is present in several Gram positive pathogens and plays an important role in bacterial virulence by acting mainly in the cellular adhesion process [58–61].

Another detected protein that might contribute to the virulence of 1002_ovi is Neuraminidase (NanH) (Table 2). This protein belongs to a class of glycosyl hydrolases that contributes to the recognition of sialic acids exposed on host cell surfaces [62]. In C. diphtheriae, it was demonstrated that a protein with trans-sialidase activity promotes cellular invasion [63, 64]. In addition, NanH was reported to be immunoreactive in the immunoproteome of 1002_ovi, showing the antigenicity of this protein [65]. Interestingly, genomic difference in relation to gene involved in the adhesion and invasion process, also already were observed between biovar ovis strain and biovar equi strains, mainly in genes related to pilus [10, 12]. According to pathogenic process of each biovar, unlike biovar equi strains, which rarely causes visceral lesions [4], biovar ovis strains, are responsible mainly by visceral lesions [2, 35], what requires a high ability to adhere and invade the host cell, thus these protein could be responsible by this ability of biovar ovis strain in attacks visceral organs.

Proteogenomic analysis

In our proteomic analysis, the measured MS/MS spectra from the proteomic datasets of 1002_ovi and 258_equi were searched against a concatenated database composed by genome annotation of 1002_ovi CP001809.2 version and 258_equi CP003540.2 version for identify possible errors or unannotated genes. Thus, by adopting more stringent criteria of considering only proteins with a minimum representative of two peptides and a FDR < 1%, we identified five proteins in 1002_ovi and seven proteins in 258_equi, which were not previously annotated. All parameters, as well as, the peptides sequence which were used for identification of these proteins are shown in Additional file 11: Table S6 and Additional file 12: Table S7. The proteins identified in this proteogenomic analysis are associated to different biological processes. For instance, the Aminopeptidase N involved in the amino acid metabolism was detected in 1002_ovi, whereas the Cobaltochelatase (cobN), associated to cobalt metabolism, glutamate dehydrogenase (gdh) involved in the L-glutamate metabolism, the PTS system fructose specific EIIABC related to fructose metabolism and the Phosphoribosylglycinamid-formyltransferase involved in the purine biosynthesis were all detected in 258_equi. Proteins involved in DNA processes, such as Uracil DNA glycosylase in 258_equi; and Exodeoxyribonuclease 7 small subunit in 1002_ovi were also detected in both strains. Proteins with general function prediction only and unknown function were also identified in both strains.

Conclusion

In conclusion, we used a label-free quantitative approach to compare, for the first time, the proteome of C. pseudotuberculosis strains belonging to both ovis and equi biovars. Taken together, the findings reported here show a set of shared and exclusive factors of 1002_ovi and 258_equi at the protein level, which can contribute to understanding both the physiology and the virulence of these strains. In addition, the functional analysis of the genome of 1002_ovi and 258_equi allows the in silico validation of data of the genome of these strains. Thus, the proteins identified here may be used as potential new targets for the development of vaccines against ovis and equi C. pseudotuberculosis in future investigations.

Availability of supporting data

The datasets supporting the results of this article were then concatenated into a *xlsx file at peptide and protein level to fulfill the requirements and is available at supplemental material including sequence coverage and a number of identified peptides for each protein sequence identified. It also includes the native peptide information.

Additional files

- **Additional file 1: Figure S1.** Growth rates in BHI media of 1002_ovi (blue circles) and 258_equi (red triangles). (JPEG 278 kb)
- **Additional file 2: Table S1.** Total list of proteins identified in the core-proteome of 1002_ovi and 258_equi. (XLS 215 kb)
- **Additional file 3: Table S2.** Total list of proteins identified in the exclusive proteome of 1002_ovi. (XLS 20 kb)
- **Additional file 4: Table S3.** Total list of proteins identified in the exclusive proteome of 258_equi. (XLS 21 kb)
- **Additional file 5: Table S4.** Total list of peptide and proteins identified 1002_ovi. (XLSB 31769 kb)
- **Additional file 6: Table S5.** Total list of peptide and proteins identified 258_equi. (XLSB 33204 kb)
- **Additional file 7: Figure S2.** The protein-protein interaction network of 1002_ovi. (A) General interactome of differentially regulated proteins, identified in the exclusive proteome of 1002_ovi. The proteins are marked with different shapes: exclusive proteome, circle; more abundant, square; less abundant, rhombus. The biological processes were marked with different colors: amino acid transport and metabolism, yellow; secondary metabolites biosynthesis, transport and catabolism, aquamarine; inorganic ion transport and metabolism, orange; coenzyme metabolism, brown; carbohydrate transport and metabolism, chartreuse green; nucleotide metabolism, cerulean; energy metabolism, olive; lipid transport and metabolism, virdian; adhesion and motility cell, cinnmon; intracellular trafficking secretion and vesicular transport, persian blue; signal transduction mechanisms, maroon; cell wall/membrane and envelope, gray; defense mechanism, red; post-translational modification, protein.
turnover, chaperones, electric blue; DNA metabolism, replication, recombination and repair; violet; translation, ribosomal structure and biogenesis; amber; transcription, regulation, degradation and RNA processing; salmon; poorly characterized, white. (JPEG 3310 kb)

Additional file 8: Figure S3. Metabolic network of 258_equi. (JPEG 8633 kb)

Additional file 9: Figure S4. Additional file 8: Figure S3. RNA processing, salmon; poorly characterized, white. (JPEG 4178 kb)

Additional file 10: Figure S5. Additional file 8: Figure S3. Structure and biogenesis, amber; transcription, regulation, degradation and RNA processing; salmon; poorly characterized, white. (JPEG 1267 kb)

Additional file 11: Table S6. Additional file 8: Figure S3. Proteins identified in the proteomic analysis, other colors represent less abundant, rhombus. The biological processes are marked with different colors: amino acid transport and metabolism, yellow; secondary metabolites biosynthesis, transport and catabolism, aquamarine; inorganic ion transport and metabolism, orange; coenzyme metabolism, brown; carbohydrate transport and metabolism, chartreuse green; nucleotide metabolism, cerulean; energy metabolism, olive; lipid transport and metabolism, viridian; adhesion and motility cell, crimson; intracellular trafficking secretion and vesicular transport, Persian blue; signal transduction mechanisms, maroon; cell wall/membrane and envelope, gray; defense mechanism, red; post-translational modification, protein turnover, chaperones, electric blue; DNA metabolism, replication, recombination and repair; violet; translation, ribosomal structure and biogenesis, amber; transcription, regulation, degradation and RNA processing; salmon; poorly characterized, white. (JPEG 4178 kb)

Additional file 9: Figure S4. Metabolic network of 1002_ovi. Red line, proteins identified in the proteomic analysis, other colors represent proteins not identified in this study. (JPEG 8633 kb)

Additional file 10: Figure S5. Additional file 8: Figure S3. Metabolic network of 258_equi. Red line, proteins identified in the proteomic analysis, other colors represent proteins not identified in this study. (JPEG 1267 kb)

Additional file 11: Table S6. Additional file 8: Figure S3. Proteins identified in 1002_ovi by Proteogenomics. (XLSX 216 kb)

Additional file 12: Table S7. Additional file 8: Figure S3. Proteins identified in 258_equi by Proteogenomics. (XLSX 266 kb)

Acknowledgment
This work involved the collaboration of various institutions, including the Genomics and Proteomics Network of the State of Pará of the Federal University of Pará, the Amazon Research Foundation (FAPEPA), the National Council for Scientific and Technological Development (CNPq), the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES), the Minas Gerais Research Foundation (FAPEMIG) and the Waters Corporation, Brazil.

Authors’ contributions
WMS performed microbiological analyses and sample preparation for proteomic analysis. GHMFS and WMS conducted the proteomic analysis. SCS and ELF performed bioinformatics analysis of the data. CSS, AVS, AM and HF contributed substantially to data interpretation and revisions. VA, AS and YLL participated in all steps of the project as coordinators, and critically reviewed the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
No ethics approval was required for any aspect of this study.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil.
2Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil.
3Centro de Biotecnologia, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brasil.
4Waters Corporation, Waters Technologies Brazil, MS Applications Laboratory, Alphaville, São Paulo, Brasil.
5INPA, UMR1253 STLO, 35042 Rennes, France.
6Agrocampus Ouest, UMR1253 STLO, 35042 Rennes, France.
7Escola de Veterinária, Aquavel, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil.
8Departamento de Microbiologia, Imunologia e Parastasiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil.

Received: 26 July 2016 Accepted: 31 May 2017

Published online: 08 June 2017

Reference
1. Dorella FA, Pacheco LG, Oliveira SC, Miyoshi A, Azevedo V. Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res. 2006;37:201–18.
2. Baird GI, Fontaine MC. Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J Comp Pathol. 2007;137:179–210.
3. Shimpe NG, Eldad D, Yerushalmi J, Winkler M, Saran A. An outbreak of Corynebacterium pseudotuberculosis infection in an Israeli dairy herd. Vet Rec. 1993;133:899–94.
4. Britz E, Spier SJ, Kass PH, Edman JM, Foley JE. The relationship between Corynebacterium pseudotuberculosis biivar ovi phenotype with location and extent of lesions in horses. Vet J. 2014;202:282–6.
5. Selim SA. Oedematous skin disease of buffalo in Egypt. J Vet Med B Infect Dis Vet Public Health. 2001;48:248–51.
6. Paton MW, Walker SB, Rose IR, Watt GF. Prevalence of caseous lymphadenitis and usage of caseous lymphadenitis vaccines in sheep flocks. Aust Vet J. 2002;80:91–5.
7. Foley JE, Spier SJ, Mihalyi D, Drazenovich N, Leutenegger CM. Molecular epidemiologic features of Corynebacterium pseudotuberculosis isolated from horses. Am J Vet Res. 2004;65:1734–7.
8. Seyffert N, Guimarães AS, Pacheco LG, Portela RW, Bastos BL, Dorella FA, et al. High seroprevalence of caseous lymphadenitis in Brazilian goat herds revealed by Corynebacterium pseudotuberculosis secreted proteins-based ELISA. Res Vet Sci. 2010;8850–5.
9. Kumar J, Singh F, Tripathi BN. Kumar 454 R, Diksh SK, Sonawane GG. Epidemiological, bacteriological and molecular studies on caseous lymphadenitis in Sirohi goats of Rajasthan, India. Trop Anim Health Prod. 2002;34:1319–22.
10. Soares SC, Silva A, Trost E, Blom J, Ramos R, Carneiro A, et al. The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biavar ovi and biavar equi strains. PLoS One. 2013;8:e58318.
11. Ruiz JC, D’Monseca V, Silva A, Ali A, Pinto AC, Santos AR, et al. Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One. 2011;6:e18551.
12. Soares SC, Trost E, Ramos RTI, Carneiro AR, Santos AR, Pinto AC, et al. Genome sequence of Corynebacterium pseudotuberculosis biavar equi strain 258 and prediction of antigenic targets to improve biotechnological vaccine production. J Biotechnol. 2012;163:35–41.
13. Pacheco LG, Slade SE, Seyffert N, Santos AR, Castro TL, Silva WM, et al. A combined approach for comparative exoproteome analysis of Corynebacterium pseudotuberculosis. BMC Microbiol. 2011;11:7:12.
14. Pacheco LG, Castro TL, Carvalho RD, Moraes PM, Dorella FA, Carvalho NB, et al. A Role for Sigma Factor r(E) in Corynebacterium pseudotuberculosis Resistance to Nitric Oxide/Peroxide Stress. Front Microbiol. 2012;3:126.
15. Silva WM, Seyffert N, Santos AV, Castro TL, Pacheco LG, Santos AR, et al. Identification of 11 new exoproteins in Corynebacterium pseudotuberculosis by comparative analysis of the exoproteome. Microb Pathog. 2013a;163:1–72.
16. Silva WM, Seyffert N, Ciprandi A, Santos AV, Castro TL, Pacheco LG, et al. Differential Exoproteome analysis of two Corynebacterium pseudotuberculosis
biovar ovis strains isolated from goat (1002) and sheep (C231). Curr Microbiol. 2013;67:460–5.
17. Rees MA, Stinear TP, Smith AI, et al. Proteomic characterization of a natural host-pathogen interaction: repertoire of in vivo expressed bacterial and host surface-associated proteins. J Proteome Res. 2015;14:120–32.
18. Silva WM, Carvalho RD, Soares SC, Bastos IF, Foladori EL, Souza GH, et al. Label free proteomic analysis to confirm the predicted proteome of Corynebacterium pseudotuberculosis under nitrosative stress mediated by nitric oxide. BMC Genomics. 2014;15:1065.
19. Rees MA, Stinear TP, Goede RJA, Coppell RL, Smith AI, Klefeldt O. Changes in protein abundance are observed in bacterial isolates from a natural host. Front Cell Infect Microbiol. 2015;5:571.
20. Bradford MM. A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.
21. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LC-MS²: a virtue of parallel MS acquisition. Mol Cell Proteomics. 2005b;14:56–66.
22. Gilar M, Ollivova P, Daly AE, Gebler JC. Two-dimensional separation of peptide using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci. 2005;28:1694–703.
23. Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass LI, Li GZ, et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem. 2005;77:2187–200.
24. Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, et al. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS/MS data with dependent LC-MS/MS. Proteomics. 2009;9:1683–95.
25. Li GZ, Vissers JP, Silva JC, Gollick D, Geromanos SJ, Gorenstein MV, et al. Comparative genomics research. Bioinformatics. 2005;15:3674–6.
26. Bendtsen JD, Kiemer L, Fausboll A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol. 2005;5:58.
27. Barinov A, Loux V, Hammani A, Nicolas P, Langella P, Ehrlich D, et al. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 2003;12:1652–7.
28. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6.
29. Bendtsen JD, Kiemer L, Fausboll A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol. 2005;5:58.
30. Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 2003;12:1652–6.
31. Conesa A, Gotz S, García-Gómez JM, Terol J, Talón M, Robles M, Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
32. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, et al. The CDG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001;29:22–8.
33. Shannon P, Markel A, Citzer O, Baliga NS, Wang JF, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
34. McKeen SC, Davies JK, Moore RJ. Expression of phospholipase D, the major virulence factor of Corynebacterium pseudotuberculosis, is regulated by multiple environmental factors and plays a role in macrophage death. Microbiology. 2007;153:2023–11.
35. Batey RG. Pathogenesis of caseous lymphadenitis in sheep and goats. Aust Vet J. 1986;63:269–72.
36. Yozwiak ML, Songer JG. Effect of Corynebacterium pseudotuberculosis phospholipase D on viability and chemotactic responses of ovine neutrophils. Am J Vet Res. 1993;54:392–7.
37. McNamara PI, Bradley GA, Songer JG. Targeted mutagenesis of the phospholipase D gene results in decreased virulence of Corynebacterium pseudotuberculosis. Mol Microbiol. 1994;12:921–30.
38. Kaneshia M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
39. Gunawardena HP, Felcthe ME, Wrobel JA, Gu S, Braunstein M, Chen X. Comparison of the membrane proteome of virulent Mycobacterium tuberculosis and the attenuated Mycobacterium bovis BCG vaccine strain by label-free quantitative proteomics. J Proteome Res. 2013;12:5463–74.