Reconstruction of an unknown cavity with Robin boundary condition inside a heat conductor

Gen Nakamura and Haibing Wang

1 Department of Mathematics, Inha University, Incheon 402-751, Korea
2 Department of Mathematics, Southeast University, Nanjing 210096, People’s Republic of China

E-mail: hbwang@seu.edu.cn

Received 11 May 2015, revised 20 September 2015
Accepted for publication 6 October 2015
Published 3 November 2015

Abstract
Active thermography is a non-destructive testing technique to detect the internal structure of a heat conductor, which is widely applied in industrial engineering. In this paper, we consider the problem of identifying an unknown cavity with Robin boundary condition inside a heat conductor from boundary measurements. To set up the inverse problem mathematically, we first state the corresponding forward problem and show its well-posedness in an anisotropic Sobolev space by the integral equation method. Then, taking the Neumann-to-Dirichlet map as mathematically idealized measurement data for the active thermography, we present a linear sampling method for reconstructing the unknown Robin-type cavity and give its mathematical justification by using the layer potential argument. In addition, we analyze the indicator function used in this method and show its pointwise asymptotic behavior by investigating the reflected solution of the fundamental solution. Based on our asymptotic analysis, we can establish a pointwise reconstruction scheme for the boundary of the cavity, and can also know the distance to the unknown cavity as we probe it from its inside. The numerical results are presented to show the performance of the reconstruction scheme and the asymptotic behavior.

Keywords: inverse boundary value problem, heat equation, reconstruction scheme, Robin boundary condition, asymptotic behavior

(Some figures may appear in colour only in the online journal)
1. Introduction

Active thermography is a widely used non-destructive testing technique in industrial engineering, which aims to detect the internal information of a heat conductor \[7, 22, 37, 38\]. The principle of active thermography is as follows. If there is an anomaly inside the conductor, it affects the propagation of the heat flow inside the conductor and as a result it also directly affects the temporal behavior of the surface temperature distribution. By measuring the surface temperature distribution and by solving some inverse problem, the information on the anomaly can be calculated. The information we want to know are the size, location and shape of anomalies and their physical properties such as heat conductivities. The measurement of active thermography is a non-contact, very fast and large area measurement which is conducted by injecting a heat flux to the conductor by a flash lamp or heater and measuring the corresponding temperature distribution on the surface of the conductor by an infrared light camera.

In this paper, we want to recover an unknown cavity with Robin boundary condition inside a heat conductor via active thermography. To begin with, we give the mathematical formulation as follows. Let \(\Omega \subset \mathbb{R}^n \) \((n = 2, 3) \) be a heat conductor and \(D \) a cavity with Robin boundary condition embedded in \(\Omega \). We assume that the boundaries \(\partial \Omega \) and \(\partial D \) of \(\Omega \) and \(D \), respectively, are of class \(C^2 \). Injecting a heat flux \(f \) on \(\partial \Omega \) over some time interval \((0, T) \), the corresponding temperature distribution \(u(x, t) \) in \((\Omega \setminus D) \times (0, T) \) can be modeled by the following initial-boundary value problem:

\[
\begin{cases}
\left(\partial_t - \Delta \right) u = 0 & \text{in } (\Omega \setminus D) \times (0, T), \\
\partial_n u - \lambda u = 0 & \text{on } \partial D \times (0, T), \\
\partial_n u = f & \text{on } \partial \Omega \times (0, T), \\
u = 0 & \text{at } t = 0,
\end{cases}
\] (1.1)

where \(\lambda = \lambda(x) \in C^1(\partial D) \) is the real-valued impedance and \(\nu \) on \(\partial D \) (or \(\partial \Omega \)) is the unit normal vector directed into the exterior of \(D \) (or \(\Omega \)). We will show that the initial-boundary value problem (1.1) is well-posed in a suitable Sobolev space. Then we idealize a set of many pairs of the heat flux \(f \) and the corresponding surface temperature distribution \(u |_{\partial \Omega \times (0, T)} \) which is the measured data for active thermography as the Neumann-to-Dirichlet map \(\Lambda_D \) given by \(\Lambda_D : f \mapsto u \big|_{\partial \Omega \times (0, T)} \). Thus, our inverse problem for thermography is to reconstruct \(D \) from \(\Lambda_D \).

When \(D \) is a usual cavity with Neumann boundary condition or an inclusion, the corresponding inverse problem has been extensively studied. In [3, 14–16], the uniqueness and stability estimate are established. In [4, 8, 9], Newton-type iteration algorithms based on domain derivatives are introduced. As for non-iterative reconstruction schemes, we can consult the papers [12, 13, 23, 24, 26, 27, 30, 35, 43] and the references therein, where the reconstruction schemes called the dynamical probe method and the enclosure method are studied. A reconstruction scheme for unknown cavities via Feynman–Kac type formula is also proposed in [29]. Recently, the authors established a linear sampling-type method for the heat equation to identify unknown cavities with Neumann boundary condition [21]. This method was extended to the inclusion case in [36].

In this paper, we are concerned with the reconstruction of an unknown cavity where a Robin boundary condition is prescribed. Some results on uniqueness and stability for this inverse problem can be found in [2, 25]. Assuming that \(D \) is given, the determination of the Robin coefficient \(\lambda \) from measured data was considered; see [20, 28] and the references therein. In this work, assuming that both the geometrical information of the cavity \(D \) and the
Robin coefficient λ on its boundary are unknown, we establish a linear sampling method to identify the unknown Robin-type cavity D from the boundary measurements Λ_D. As we know, the linear sampling method was originally proposed for inverse scattering problems in [10], and was further investigated from both the theoretical and numerical aspects; for example, see [1, 5, 6, 31, 32–34, 40, 41]. Roughly speaking, this method in the heat equation case is based on the characterization of the approximate solvability of the so-called Neumann-to-Dirichlet map gap equation $(\Lambda_D - \Lambda_{\partial\Omega})\Psi = G^{\Omega}(x, t; y, s)$, where $\Lambda_{\partial\Omega}$ is the Neumann-to-Dirichlet map when there are not any cavities inside Ω, and $G^{\Omega}(x, t; y, s)$ is the Green function for the heat operator $\partial_t - \Delta$ in $\Omega \times (0, T)$ with homogeneous Neumann boundary condition on its boundary. By giving this characterization, we define a mathematical testing machine called an indicator function to reconstruct the boundary of D. When we probe it from the inside of D, we do not need to let the discrepancy of the Neumann-to-Dirichlet map gap equation tend to zero.

The new ingredients of this paper consist of two parts. First, we prove the well-posedness of the forward problem (1.1) in an anisotropic Sobolev space by the integral equation method. This is necessary for our purpose to investigate the inverse problem using layer potential argument, although the well-posedness can also be justified in the usual function space $W(0, T)$ by the argument in [42]. Second, compared with our previous works in [21, 36] for the Neumann cavity and inclusion cases, we provide a further investigation of the linear sampling method for the heat equation and show the asymptotic behavior of the indicator function by carefully analyzing that of the reflected solution of the fundamental solution. Since the reflected solution is the compensating term of the Green function for the related initial-boundary value problem, we actually give a pointwise short time asymptotic behavior of the Green function near ∂D. As a consequence, by observing the asymptotic behavior of the indicator function, we can have the followings:

(i) pointwise reconstruction of the shape and location of an unknown cavity;
(ii) information about the distance to the boundary of the cavity.

The more precise meaning of the above item (ii) is that we can know the distance to ∂D when we probe it from inside D by using the indicator function.

The rest of the paper is organized as follows. In section 2, we show the well-posedness of the forward problem in an anisotropic Sobolev space by the integral equation method. Then, in section 3, we present a mathematical justification of the linear sampling method, while the asymptotic behavior of the indicator function is provided in section 4. In section 5, we present some numerical results showing the performance of the reconstruction scheme and the asymptotic behavior. Finally, in section 6, we give some concluding remarks.

2. The integral equation method for the forward problem

In this section, we show the unique solvability of the forward problem by the integral equation method. Then we explicitly define the Neumann-to-Dirichlet map Λ_D and state our inverse problem. Since our analysis for the inverse problem is based on the layer potential argument, it is necessary to establish the well-posedness of the forward problem in an anisotropic Sobolev space, instead of the usual function space $W(0, T)$.

3
Let us start by introducing the anisotropic Sobolev spaces \([11]\). For \(p, q \geq 0\) we define
\[
H^{p,q}(\mathbb{R}^n \times \mathbb{R}) := L^2(\mathbb{R}; H^p(\mathbb{R}^n)) \cap H^q(\mathbb{R}; L^2(\mathbb{R}^n)).
\]
For \(p, q \leq 0\) we define the space \(H^{p,q}\) by duality \((H^{p,q}(\mathbb{R}^n \times \mathbb{R}))'\).
Throughout this paper, we denote \(X \times (0, T)\) and \(\partial X \times (0, T)\) by \(X_T\) and \((\partial X)_T\), respectively, where \(X\) is a bounded domain in \(\mathbb{R}^n\) and \(\partial X\) denotes its boundary. By \(H^{p,q}(X_T)\) we denote the space of restrictions of elements in \(H^{p,q}(\mathbb{R}^n \times \mathbb{R})\) to \(X_T\). The space \(H^{p,q}((\partial X)_T)\) is defined analogously. For later use, we also introduce the following function spaces:
\[
H^{1,\frac{1}{2}}(X_T) := \left\{ u \in H^{1,\frac{1}{2}}(X \times (-\infty, T)) \mid u(x, t) = 0 \text{ for } t < 0 \right\},
\]
\[
H^{1,\frac{1}{2}}(X_T; \partial_t - \Delta) := \left\{ u \in H^{1,\frac{1}{2}}(X_T) \mid (\partial_t - \Delta)u \in L^2(X_T) \right\}.
\]
Then our forward problem is formulated as follows.
\textbf{Forward problem:} Given \(f \in H^{1,\frac{1}{2}}((\partial \Omega)_T)\) and \(\lambda \in C^1(\partial D)\), find a unique solution \(u \in \tilde{H}^{1,\frac{1}{2}}((\Omega \setminus D)_T)\) to the problem (1.1).

Denote by
\[
G(x, t; y, s) := \begin{cases}
\frac{1}{(4\pi(t-s))^{n/2}} \exp\left(-\frac{|x-y|^2}{4(t-s)}\right), & t > s, \\
0, & t \leq s
\end{cases}
\]
the fundamental solution of the heat operator \(\partial_t - \Delta\). For convenience, we sometimes write it as \(G(x,t; y)\).

Define the following heat layer potentials:
\[
(\mathcal{V}_j \varphi)(x, t) := \int_0^t \int_{S_i} G(x, t; x, s) \varphi(x, s) ds dy, \quad (x, t) \in S_j \times (0, T),
\]
\[
(\mathcal{K}_j \varphi)(x, t) := \int_0^t \int_{S_i} \frac{\partial G(x, t; y, s)}{\partial \nu(y)} \varphi(y, s) ds dy, \quad (x, t) \in S_j \times (0, T),
\]
\[
(\mathcal{N}_j \varphi)(x, t) := \int_0^t \int_{S_i} \frac{\partial G(x, t; y, s)}{\partial \nu(x)} \varphi(y, s) ds dy, \quad (x, t) \in S_j \times (0, T),
\]
\[
(\mathcal{W}_j \varphi)(x, t) := -\int_0^t \int_{S_i} \frac{\partial G(x, t; y, s)}{\partial \nu(y)} \varphi(y, s) ds dy, \quad (x, t) \in S_j \times (0, T).
\]

In this paper we take \(i, j = 1, 2\) with \(S_1 = \partial D\) and \(S_2 = \partial \Omega\).

We now show the unique solvability of (1.1) in \(\tilde{H}^{1,\frac{1}{2}}((\Omega \setminus D)_T)\) by the integral equation method.

\textbf{Theorem 2.1.} Suppose that \(\lambda \in C^1(\partial D)\) and \(0 \leq \lambda_1 \leq \lambda \leq \lambda_2\), where \(\lambda_1 \) and \(\lambda_2 \) are two given constants. Then, there exists a unique solution \(u \in \tilde{H}^{1,\frac{1}{2}}((\Omega \setminus D)_T)\) to the initial-boundary value problem (1.1) for any \(f \in H^{1,\frac{1}{2}}((\partial \Omega)_T)\).

\textbf{Proof.} To prove the uniqueness of solutions in \(\tilde{H}^{1,\frac{1}{2}}((\Omega \setminus D)_T)\), we first establish the uniqueness in the function space \(W(0, T)\) defined by
\[
W(0, T) := \left\{ w : w \in L^2((0, T); H^1(\Omega \setminus D)), \partial_t w \in L^2((0, T); (H^1(\Omega \setminus D))') \right\}.
\]
Consider the bilinear form associated with (1.1)
\[
b(u, v, t) := \int_{\Omega \setminus \mathcal{D}} \nabla u \cdot \nabla v \, dx + \int_{\partial \mathcal{D}} \lambda uv \, d\sigma(x)
\]
for \(u, v \in H^1(\Omega \setminus \mathcal{D}) \) and \(t \in [0, T] \). It is easy to verify that
\[
|b(u, v, t)| \leq c \|u\|_{H^1(\Omega \setminus \mathcal{D})} \|v\|_{H^1(\Omega \setminus \mathcal{D})}, \quad b(u, u, t) \geq \|u\|_{H^1(\Omega \setminus \mathcal{D})}^2 - \|u\|_{L^2(\mathcal{D})}^2,
\]
where \(c \) is a positive constant. Then the uniqueness of solutions to (1.1) in \(W(0, T) \) can be justified in a standard way; see, for example, [42, section 26]. Since any solution \(u \in H^{1,2}(\Omega \setminus \mathcal{D}) \) to \((\partial_t - \Delta)u = 0\) with zero initial condition is in \(W(0, T) \), we also have the uniqueness in \(H^{1,2}(\Omega \setminus \mathcal{D}) \).

To prove the existence of the solution in \(H^{1,2}(\Omega \setminus \mathcal{D}) \), we make use of the integral equation method [11]. By Green’s representation theorem for (1.1), we have
\[
\frac{\partial}{\partial t} G(x, t; y, s) = \frac{\partial}{\partial y} G(x, t; y, s), \quad \text{for} \quad x \neq y, t \neq s.
\]

Set \(u(x, t) = u_t(x) + u_s(x) \) and the space \(\mathcal{H} := H^{1,2}(\Omega \setminus \mathcal{D}) \times H^{1,2}(\partial \mathcal{D}) \times H^{1,2}(\partial \mathcal{D}) \) with the norm
\[
\|(u_t, u_s, u)\|_{\mathcal{H}} := \left(\|u_t\|_{H^{1,2}(\Omega \setminus \mathcal{D})}^2 + \|u_s\|_{H^{1,2}(\partial \mathcal{D})}^2 + \|u\|_{H^{1,2}(\partial \mathcal{D})}^2 \right)^{1/2}
\]
for \((u_t, u_s, u)^T \in \mathcal{H}\). We will show the unique solvability of the system (2.2) in \(\mathcal{H} \). To accomplish this, we define the operator
\[
\mathcal{A} := \begin{pmatrix} V_{11} & \frac{1}{2}I - K_{11} & K_{21} \\ -\frac{1}{2}I + N_{11} & W_{11} + \lambda I & -W_{21} \\ V_{12} & -K_{22} & \frac{1}{2}I + K_{22} \end{pmatrix} \quad \text{and the space} \quad \mathcal{H}_0 := H^{\frac{1}{2},-\frac{1}{2}}(\partial \mathcal{D}) \times H^{\frac{1}{2},-\frac{1}{2}}(\partial \mathcal{D}) \times H^{\frac{1}{2},-\frac{1}{2}}(\partial \mathcal{D}) \quad \text{equipped with the norm}
\]
\[
\|(u_t, u_s)^T\|_{\mathcal{H}_0} := \left(\|u_t\|_{H^{\frac{1}{2},-\frac{1}{2}}(\partial \mathcal{D})}^2 + \|u_s\|_{H^{\frac{1}{2},-\frac{1}{2}}(\partial \mathcal{D})}^2 \right)^{1/2} \quad \text{for} \quad (u_t, u_s)^T \in \mathcal{H}_0.
\]
Let \(\mathcal{H}_0' := H^{\frac{1}{2},\frac{1}{2}}(\partial \mathcal{D}) \times H^{\frac{1}{2},\frac{1}{2}}(\partial \mathcal{D}) \times H^{\frac{1}{2},\frac{1}{2}}(\partial \mathcal{D}) \) be the dual space of \(\mathcal{H}_0 \) with the duality between \(\mathcal{H}_0 \) and \(\mathcal{H}_0' \) defined by
\[
\left\langle \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}, \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \right\rangle = \left\langle \varphi_1, \psi_1 \right\rangle + \left\langle \varphi_2, \psi_2 \right\rangle \quad \text{for} \quad (\varphi_1, \varphi_2)^T \in \mathcal{H}_0', \quad (\psi_1, \psi_2)^T \in \mathcal{H}_0.'
In the following, we first prove the invertibility of \(A: \mathcal{H}_0 \to \mathcal{H}_0'\). Define a bilinear form \(a(\cdot, \cdot)\) on \(\mathcal{H}_0 \times \mathcal{H}_0\) associated with the operator \(A\) by
\[
a((u_1, u_2)^T, (v_1, v_2)^T) = \left\{ A\left(\begin{array}{c} u_1 \\ u_2 \end{array}\right), \left(\begin{array}{c} v_1 \\ v_2 \end{array}\right) \right\} \text{ for } (u_1, u_2)^T, (v_1, v_2)^T \in \mathcal{H}_0.
\]

There exists a positive constant \(C_1\) such that
\[
a((u_1, u_2)^T, (v_1, v_2)^T) \leq C_1 \|(u_1, u_2)^T\|_{\mathcal{H}_0} \|(v_1, v_2)^T\|_{\mathcal{H}_0}, \tag{2.4}
\]
Note that
\[
a((u_1, u_2)^T, (u_1, u_2)^T) = \left(\begin{array}{c} V_{11} - K_{11} \\ N_{11} \end{array}\right) \left(\begin{array}{c} u_1 \\ u_2 \end{array}\right) + \langle u_2, \lambda u_2 \rangle.
\]
Since the operator
\[
A_0 = \left(\begin{array}{c} V_{11} - K_{11} \\ N_{11} \end{array}\right)
\]
is positive on \(\mathcal{H}_0\) (see [11, theorem 3.11]), we have the estimate
\[
a((u_1, u_2)^T, (u_1, u_2)^T) \geq C_2 \|(u_1, u_2)^T\|_{\mathcal{H}_0}^2, \tag{2.5}
\]
where \(C_2\) is a positive constant. From (2.4) and (2.5) we conclude that \(A: \mathcal{H}_0 \to \mathcal{H}_0'\) is an isomorphism.

In addition, it follows from corollary 3.14 in [11] that
\[
\frac{1}{2}I + K_{22} : H^{\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \to H^{\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T)
\]
is also an isomorphism. Since \(G(x, t; y, s)\) is smooth enough for \(x \neq y, 0 \leq s \leq t \leq T\), the following operators
\[
K_{21} : H^{\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \to H^{\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T), \quad W_{21} : H^{\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \to H^{-\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T),
\]
\[
V_{12} : H^{-\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \to H^{1, \frac{1}{2}}((\partial \Omega)_T), \quad K_{12} : H^{1, \frac{1}{2}}((\partial \Omega)_T) \to H^{1, \frac{1}{2}}((\partial \Omega)_T)
\]
are compact. Therefore, the system (2.2) is Fredholm with index zero. To show the unique solvability of (2.2), it suffices to show its uniqueness.

Let \((\varphi_1, \varphi_2, \varphi_3)^T \in \mathcal{H}\) be the solution to the homogeneous form of (2.2). That is
\[
\begin{pmatrix}
V_{11} & \frac{1}{2}I - K_{11} \\
- \frac{1}{2}I + N_{11} & W_{11} + \lambda I - W_{21}
\end{pmatrix} \begin{pmatrix}
\varphi_1 \\
\varphi_2
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix}. \tag{2.6}
\]

Define
\[
w(x, t) := -\int_0^t \int_{\partial D} G(x, t; y, s) \varphi_1(y, s) d\sigma(y) ds + \int_0^t \int_{\partial D} \frac{\partial G(x, t; y, s)}{d\nu(y)} \varphi_2(y, s) d\sigma(y) ds - \int_0^t \int_{\partial D} \frac{\partial G(x, t; y, s)}{d\nu(y)} \varphi_3(y, s) d\sigma(y) ds, \quad (x, t) \in \left(\mathbb{R}^n \setminus (\partial D \cup \partial \Omega)\right)_T. \tag{2.7}
\]
Note that $w(x, t)$ satisfies
\begin{equation}
\partial_t w - \Delta w = 0 \quad \text{in } (\mathbb{R}^n \setminus \Omega)_{T_r} \tag{2.8}
\end{equation}
and
\begin{equation}
w = 0 \quad \text{at } t = 0. \tag{2.9}
\end{equation}

Letting x tend to the boundary $\partial \Omega$, we derive from the jump relations of layer potentials that
\begin{equation}
w^+ = -V_{12} \varphi_1 + K_{12} \varphi_2 - \left(\frac{1}{2} I + K_{22} \right) \varphi_3. \tag{2.10}
\end{equation}
Throughout this paper we use ‘$+$’ and ‘$-$’ to denote the limits taken from the exterior and interior of a domain, respectively. It implies from the third equation of (2.6) that
\begin{equation}
w^+ = 0 \quad \text{on } (\partial \Omega)_{T_r}. \tag{2.10}
\end{equation}
Then, using the same argument as in [21, appendix A], we can prove that $w = 0$ in $(\mathbb{R}^n \setminus \Omega)_{T_r}$.

On the other hand, the function w defined by (2.7) also satisfies the heat equation in $(\Omega \setminus D)_{T_r}$. Using the jump relations of layer potentials again, we derive that
\begin{equation}
w = -V_{11} \varphi_1 + K_{11} \varphi_2 + \frac{1}{2} \varphi_2 - K_{21} \varphi_3 \quad \text{on } (\partial D)_{T_r},
\end{equation}
\begin{equation}
\partial_\nu w = \frac{1}{2} \varphi_1 - N_{11} \varphi_1 - W_{11} \varphi_2 + W_{21} \varphi_3 \quad \text{on } (\partial D)_{T_r}.
\end{equation}

In terms of the first two equations of (2.6), we have $w = \varphi_2$ and $\partial_\nu w = \lambda \varphi_2$ on $(\partial D)_{T_r}$. In conclusion, the function w defined by (2.7) satisfies
\begin{equation}
\begin{cases}
(\partial_t - \Delta)w = 0 \quad \text{in } (\Omega \setminus D)_{T_r}, \\
\partial_\nu w - \lambda w = 0 \quad \text{on } (\partial D)_{T_r}, \\
\partial_\nu w = 0 \quad \text{on } (\partial \Omega)_{T_r}, \\
w = 0 \quad \text{at } t = 0.
\end{cases} \tag{2.11}
\end{equation}

By the uniqueness of solutions to (1.1), we have $w = 0$ in $(\Omega \setminus D)_{T_r}$, and hence
\begin{equation}
w^- = 0 \quad \text{on } (\partial \Omega)_{T_r}. \tag{2.12}
\end{equation}
Combining (2.10) and (2.12), we obtain that $\varphi_3 = w^- - w^+ = 0$ on $(\partial \Omega)_{T_r}$. As a consequence, we have
\begin{equation}
\begin{pmatrix}
V_{11} \\
\frac{1}{2} I - K_{11} \\
- \frac{1}{2} I + N_{11} \\\ W_{11} + \lambda I
\end{pmatrix}
\begin{pmatrix}
\varphi_1 \\
\varphi_2 \\
\varphi_3
\end{pmatrix} =
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}.
\end{equation}
Now by the invertibility of A, we conclude that $\varphi_1 = \varphi_2 = 0$ on $(\partial D)_{T_r}$. Due to the Fredholm theory, the unique solvability of the system (2.2) is justified. Moreover, according to the mapping properties of heat layer potentials, the function u expressed by (2.1) is the desired solution in $H^{1 + \frac{1}{2}}((\Omega \setminus D)_{T_r})$. The proof is complete.

Based on our theorem 2.1 and lemma 2.4 in [11], we define the Neumann-to-Dirichlet map Λ_D by
\[\Lambda_D : H^{-\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \rightarrow H^{\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T), \quad f \mapsto u_f |_{\partial \Omega_T}. \]

(2.13)

If there is not any cavity inside \(\Omega \), i.e., \(D = \emptyset \), the unique solvability of the forward problem in \(H^{\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \) can be found in [11]. In this case, we denote the Neumann-to-Dirichlet map by \(\Lambda_{\emptyset} \). Taking the Neumann-to-Dirichlet map \(\Lambda_D \) as the measured data, our inverse problem for (1.1) is formulated as follows:

Inverse Problem: Reconstruct \(D \) from \(\Lambda_D \).

3. The linear sampling method for the inverse problem

In this section, we present a linear sampling-type method for the inverse problem formulated above and give its mathematical justification by using the layer potential argument. Let \(G_{\partial \Omega}^0(x, t) = G^0(x, t; y, s) \) be the Green function of the heat operator in \(\Omega_T \) with Neumann boundary condition on its boundary \((\partial \Omega)_T \). Then the linear sampling method for the heat equation is based on the characterization of the approximate solution to the Neumann-to-Dirichlet map gap equation

\[(\Lambda_D - \Lambda_{\emptyset})g = G_{\partial \Omega}^0(x, t), \quad (x, t) \in (\partial \Omega)_T, \]

where \(s \in (0, T) \) is a fixed time and \(y \in \Omega \) is a sampling point. By this characterization, we can define an indicator function as a mathematical testing machine to reconstruct the location and shape of \(D \).

To begin with, let us define the operators \(S, H, A \) and \(F \) as follows.

- Define \(S : H^{-\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \rightarrow \tilde{H}^{\frac{1}{2}, \frac{1}{2}}(D_T) \) and \(H : H^{-\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \rightarrow H^{\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \) by
 \[S : f \mapsto u_f |_{D_T}, \]
 \[H : f \mapsto (\partial_n u_f - \lambda u_f) |_{\partial D_T}, \]

respectively, where \(u_f \) is the solution to

\[\begin{cases}
(\partial_t - \Delta)u_f = 0 & \text{in } \Omega_T, \\
\partial_n u_f = f & \text{on } (\partial \Omega)_T, \\
u_f = 0 & \text{at } t = 0.
\end{cases} \]

(3.4)

- Define \(A : H^{-\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \rightarrow H^{\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \) by
 \[A : g \mapsto z^g |_{\partial \Omega_T}, \]

(3.5)

where \(z^g \) is the solution to

\[\begin{cases}
(\partial_t - \Delta)z^g = 0 & \text{in } (\Omega \setminus D)_T, \\
\partial_n z^g - \lambda z^g = g & \text{on } (\partial D)_T, \\
\partial_n z^g = 0 & \text{on } (\partial \Omega)_T, \\
z^g = 0 & \text{at } t = 0.
\end{cases} \]

(3.6)

Define \(F : H^{-\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \rightarrow H^{\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \) by \(F = \Lambda_D - \Lambda_{\emptyset} \).

To characterize the solution to (3.1), we first investigate the operator \(F \) and prove the following lemmas.
Lemma 3.1. The operator F can be factorized as $F = -AH$.

Proof. For $f \in H^{1 \frac{1}{4}}((\partial \Omega), T)$, let u and v be such that
\[
\begin{align*}
\begin{cases}
(\partial_t - \Delta) u &= 0 \quad \text{in } (\Omega \setminus \overline{D})_T, \\
\partial_n u - \lambda u &= 0 \quad \text{on } (\partial D)_T, \\
\partial_t u &= f \quad \text{on } (\partial \Omega)_T, \\
u &= 0 \quad \text{at } t = 0,
\end{cases}
\end{align*}
\]
and
\[
\begin{align*}
\begin{cases}
(\partial_t - \Delta) v &= 0 \quad \text{in } \Omega_T, \\
\partial_n v &= f \quad \text{on } (\partial \Omega)_T, \\
v &= 0 \quad \text{at } t = 0,
\end{cases}
\end{align*}
\]
respectively. Define w as the solution to
\[
\begin{align*}
\begin{cases}
(\partial_t - \Delta) w &= 0 \quad \text{in } (\Omega \setminus \overline{D})_T, \\
\partial_n w - \lambda w &= -(\partial_n v - \lambda v) \quad \text{on } (\partial D)_T, \\
\partial_t w &= 0 \quad \text{on } (\partial \Omega)_T, \\
w &= 0 \quad \text{at } t = 0.
\end{cases}
\end{align*}
\]
then it holds that
\[
\begin{align*}
\begin{cases}
(\partial_t - \Delta) (u - v - w) &= 0 \quad \text{in } (\Omega \setminus \overline{D})_T, \\
\partial_n (u - v - w) - \lambda (u - v - w) &= 0 \quad \text{on } (\partial D)_T, \\
\partial_t (u - v - w) &= 0 \quad \text{on } (\partial \Omega)_T, \\
u - v - w &= 0 \quad \text{at } t = 0.
\end{cases}
\end{align*}
\]
The uniqueness result in theorem 2.1 says that $u - v = w$ in $H^{1 \frac{1}{4}}((\Omega \setminus \overline{D})_T)$. Hence, we have $A(-Hf) = w \mid_{(\partial D)_T} = (u - v) \mid_{(\partial D)_T} = (\Lambda_D - \Lambda_\phi)f = Ff$, which completes the proof. \hfill \Box

Lemma 3.2. The operator $H : H^{1 \frac{1}{4}}((\partial \Omega)_T) \rightarrow H^{1 \frac{1}{4}}((\partial D)_T)$ is continuous and has a dense range.

Proof. We prove the result using the layer potential argument. For $f \in H^{1 \frac{1}{4}}((\partial \Omega)_T)$, we consider the following initial-boundary value problem:
\[
\begin{align*}
\begin{cases}
(\partial_t - \Delta) u &= 0 \quad \text{in } \Omega_T, \\
\partial_n u &= f \quad \text{on } (\partial \Omega)_T, \\
u &= 0 \quad \text{at } t = 0.
\end{cases}
\end{align*}
\tag{3.7}
\]
Express its solution by a single-layer heat potential
\[
u(x, t) = V_0 \psi = \int_0^t \int_{\partial \Omega} G(x, t; y, s) \psi(y, s) d\sigma(y) ds, \quad (x, t) \in \Omega_T \tag{3.8}
\]

with an unknown density \(\psi \in H^{-\frac{1}{2},-\frac{1}{2}}((\partial \Omega)_T) \). Using the jump relations of layer potentials, the problem (3.7) is reformulated as the boundary integral equation

\[
\left(\frac{1}{2} I + N_{22} \right) \psi = f \quad \text{on} \quad (\partial \Omega)_T, \tag{3.9}
\]

where the operator \(\frac{1}{2} I + N_{22} : H^{-\frac{1}{2},-\frac{1}{2}}((\partial \Omega)_T) \to H^{-\frac{1}{2},-\frac{1}{2}}((\partial \Omega)_T) \) is an isomorphism (see [11 corollary 3.14]).

Define \(\mathcal{V} \psi := (\partial_\nu (V_0 \psi) - \lambda (V_0 \psi)) |_{\partial \Omega} \). Then the operator \(H \) can be represented as

\[
H = \mathcal{V} \left(\frac{1}{2} I + N_{22} \right)^{-1}.
\]

Thus, the continuity of \(H \) is evident. To prove the denseness property of \(H \), it suffices to show that the operator \(\mathcal{V} : H^{-\frac{1}{2},-\frac{1}{2}}((\partial \Omega)_T) \to H^{-\frac{1}{2},-\frac{1}{2}}((\partial D)_T) \) has a dense range.

Indeed, by direct calculations, we have

\[
\mathcal{V} \psi(x, t) = \int_0^T \int_{\partial \Omega} M(x, t; y, s) \psi(y, s) d\sigma(y) ds, \quad (x, t) \in (\partial D)_T \tag{3.10}
\]

with \(M(x, t; y, s) = \partial_\nu G(x, t; y, s) - \lambda(x) G(x, t; y, s) \). Denote by \(\mathcal{V}^* : H^{\frac{1}{2},\frac{1}{2}}((\partial D)_T) \to H^{\frac{1}{2},\frac{1}{2}}((\partial \Omega)_T) \) the transpose of \(\mathcal{V} \) in the sense that \(\langle \mathcal{V} \psi, \eta \rangle = \langle \psi, \mathcal{V}^* \eta \rangle \) for any \(\psi \in H^{-\frac{1}{2},-\frac{1}{2}}((\partial \Omega)_T) \) and \(\eta \in H^{\frac{1}{2},\frac{1}{2}}((\partial D)_T) \). It follows that

\[
\mathcal{V}^* \eta(y, s) = \int_0^T \int_{\partial \Omega} M(x, t; y, s) \eta(x, t) d\sigma(x) dr, \quad (y, s) \in (\partial \Omega)_T. \tag{3.11}
\]

Then, to show that the range of \(\mathcal{V} \) is dense, we are led to prove the injectivity of \(\mathcal{V}^* \), that is, \(\eta = 0 \) in \(H^{\frac{1}{2},\frac{1}{2}}((\partial D)_T) \) if we have \(\mathcal{V}^* \eta = 0 \) on \((\partial \Omega)_T \). To this end, we define

\[
w(y, s) = \int_y^T \int_{\partial \Omega} M(x, t; y, s) \eta(x, t) d\sigma(x) dr, \quad (y, s) \in (\partial \Omega)_T. \tag{3.12}
\]

Noticing that \(w \) satisfies

\[
\begin{cases}
\partial_s w + \Delta w = 0 & \text{in} \quad (\mathbb{R}^n \setminus \Omega)_T, \\
w = 0 & \text{on} \quad (\partial \Omega)_T, \\
w = 0 & \text{at} \quad s = T,
\end{cases}
\]

we have \(w = 0 \) in \((\mathbb{R}^n \setminus \Omega)_T \) by the same argument as in [21, appendix A]. Using the unique continuation principle [39], we further have

\[
w = 0 \quad \text{in} \quad (\mathbb{R}^n \setminus D)_T, \tag{3.13}
\]

and therefore

\[
\frac{\partial w^\pm}{\partial \nu} = 0, \quad w^\pm = 0 \quad \text{on} \quad (\partial D)_T. \tag{3.14}
\]

Note that

\[
w(y, s) = \int_y^T \int_{\partial \Omega} (\partial_\nu (G(y, T - s; x, \tau) - \lambda(x) G(y, T - s; x, \tau)) \tilde{\eta}(x, \tau) d\sigma(x) dr,
\]

where \(\tilde{\eta}(x, \tau) = \eta(x, T - \tau) \). Using the jump relations of layer potentials, we have

\[
\frac{\partial w^+}{\partial \nu} - \frac{\partial w^-}{\partial \nu} = \lambda \eta, \quad w^+ - w^- = \eta \quad \text{on} \quad (\partial D)_T. \tag{3.15}
\]
It implies from (3.14) and (3.15) that
\[\frac{\partial w^-}{\partial \nu} - \lambda w^- = 0 \quad \text{on} \ (\partial D)_T. \]
(3.16)

Observe that \(w \) meets
\[
\begin{aligned}
\partial_s w + \Delta w &= 0 \quad \text{in } D_T, \\
w &= 0 \quad \text{at } s = T.
\end{aligned}
\]
Then, by the uniqueness of solutions to the backward problem, we obtain that
\[w = 0 \quad \text{in } D_T. \]
(3.17)

Thus, it can be concluded from (3.13), (3.15) and (3.17) that \(\eta = 0 \). This completes the proof. \(\square \)

Lemma 3.3. The operator \(A : \mathcal{H}^{\frac{1}{2}, -\frac{1}{2}}((\partial D)_T) \to \mathcal{H}^{\frac{1}{2}, \frac{1}{2}}((\partial \Omega)_T) \) is injective, compact and has a dense range.

Proof. The injectivity can be easily seen from the unique continuation principle for the heat operator \(\partial_t - \Delta \). We now show the denseness. Let \(g_j \in \mathcal{H}^{\frac{1}{2}, -\frac{1}{2}}((\partial D)_T) \) (\(j \in \mathbb{N} \)) be such that the linear hull of \(\{g_j\} \) is dense in \(\mathcal{H}^{\frac{1}{2}, -\frac{1}{2}}((\partial D)_T) \). Then it is enough to prove \(f = 0 \) if
\[
\int_{(\partial\Omega)_T} \varphi_j \, d\sigma \, dt = 0
\]
for \(f \in \mathcal{H}^{\frac{1}{2}, -\frac{1}{2}}((\partial \Omega)_T) \) and all \(\varphi_j := A g_j = z^\delta \mid_{\partial D_T} \). Here we recall that \(z^\delta \) is the solution to (3.6) with \(g = g_j \).

Let \(v \in \tilde{\mathcal{H}}^{\frac{1}{2}, \frac{1}{2}}((\Omega \setminus \mathcal{D})_T) \) be the solution to the following backward problem
\[
\begin{aligned}
(\partial_t + \Delta)v &= 0 \quad \text{in } (\Omega \setminus \mathcal{D})_T, \\
\partial_n v - \lambda v &= 0 \quad \text{on } (\partial D)_T, \\
\partial_s v &= f \quad \text{on } (\partial \Omega)_T, \\
v &= 0 \quad \text{at } t = T,
\end{aligned}
\]
and set \(z_j = z^\delta \). Then, we have
\[
0 = \int_{(\Omega \setminus \mathcal{D})_T} (v \Delta z_j - z_j \Delta v) \, dx \, dt
\]
\[
= \int_{(\partial\Omega)_T} (\partial_n z_j v - \partial_n v z_j) \, d\sigma(x) \, dt - \int_{(\partial D)_T} (\partial_s z_j v - \partial_s v z_j) \, d\sigma(x) \, dt
\]
\[
= - \int_{(\partial D)_T} g_j v \, d\sigma(x) \, dt.
\]
So \(v = 0 \) on \((\partial D)_T \). By the boundary condition of \(v \), we further have \(\partial_t v \mid_{\partial D_T} = 0 \). Therefore, \(v = 0 \) in \((\Omega \setminus \mathcal{D})_T \), and then \(f = \partial_t v \mid_{\partial D_T} = 0 \).

Finally, let us prove the compactness of \(A \). Indeed, there exists a unique density \(\varphi \in \mathcal{H}^{\frac{1}{2}, -\frac{1}{2}}((\partial D)_T) \) such that the solution \(z^\delta \) to (3.6) with \(g \in \mathcal{H}^{\frac{1}{2}, -\frac{1}{2}}((\partial D)_T) \) is given by
\[
z^\delta(x, t) = \int_0^t \int_{\partial D} G^\delta(x, t; y, s) \varphi(y, s) \, d\sigma(y) \, ds.
\]
Notice that $G^0(x, t; y, s)$ is smooth enough for $x \in \partial \Omega$, $y \in \partial D$ and $0 \leq s \leq t \leq T$. It can be concluded that $Ag = z^s |(\partial D)_T| \subseteq C^\infty(\partial \bar{\Omega} \times [0, T])$, and hence A is compact. This completes the proof.

We are now in a position to state our main results, which motivate the linear sampling method for reconstructing D.

Theorem 3.4. Let $s \in (0, T)$ be fixed and $\varepsilon > 0$. For $y \in D$, there exists a function $g^y \in H^{\frac{1}{2} - \frac{1}{2s}}((\partial D)_T)$ satisfying

$$
\|Fg^y - G^0_{y,s}\|_{H^{\frac{1}{2} - \frac{1}{2s}}((\partial D)_T)} < \varepsilon
$$

such that

$$
\lim_{y \to \partial D} \|g^y\|_{H^{\frac{1}{2} - \frac{1}{2s}}((\partial D)_T)} = \infty
$$

and

$$
\lim_{y \to \partial D} \|Sg^y\|_{H^{\frac{1}{2}}((D_T)} = \infty.
$$

Proof. According to lemma 3.2, for any $\varepsilon > 0$ there exists a function $g^y \in H^{\frac{1}{2} - \frac{1}{2s}}((\partial D)_T)$ such that

$$
\left\| Hg^y + \left(\partial_\nu G^0_{y,s} - \lambda G^0_{y,s} \right) \right\|_{H^{\frac{1}{2} - \frac{1}{2s}}((\partial D)_T)} < \varepsilon \frac{\|A\|}{\| \|A\|},
$$

where $\|A\|$ is the norm of the operator A defined by (3.5). Since $G^0_{y,s}$ satisfies the heat equation in $(\Omega \setminus \overline{D})_T$ and $\partial_\nu G^0_{y,s}|_{\partial D_T} = 0$, it holds that

$$
A \left(\partial_\nu G^0_{y,s} - \lambda G^0_{y,s} \right) = G^0_{y,s}|_{\partial D_T}.
$$

By lemma 3.1, we have

$$
\left\| Fg^y - G^0_{y,s} \right\|_{H^{\frac{1}{2} - \frac{1}{2s}}((\partial D)_T)} \leq \|A\| \left\| Hg^y + \left(\partial_\nu G^0_{y,s} - \lambda G^0_{y,s} \right) \right\|_{H^{\frac{1}{2} - \frac{1}{2s}}((\partial D)_T)} < \varepsilon.
$$

Hence, due to (3.21) and the boundedness of H, we have

$$
\|g^y\|_{H^{\frac{1}{2} - \frac{1}{2s}}((\partial D)_T)} \geq C \|Hg^y\|_{H^{\frac{1}{2} - \frac{1}{2s}}((\partial D)_T)} > C \left\| \partial_\nu G^0_{y,s} - \lambda G^0_{y,s} \right\|_{H^{\frac{1}{2} - \frac{1}{2s}}((\partial D)_T)} \frac{\|A\|}{\|A\|},
$$

where C is a positive constant.

We next prove

$$
\left\| \partial_\nu G^0_{y,s} - \lambda G^0_{y,s} \right\|_{H^{\frac{1}{2} - \frac{1}{2s}}((\partial D)_T)} \to \infty \quad \text{as } y \to \partial D.
$$

Since $G^0(x, t; y, s) = G(x, t; y, s) \in C^\infty(\overline{D_T})$, that is, G^0 has the same singularity as G at $(x, t) = (y, s)$, we only need to prove that
We consider here the case for $n = 3$. Under the assumption that ∂D is of class C^2, for any point $x_0 \in \partial D$ there exists a C^2-function Φ such that

$$D \cap B(x_0, r) = \{ x \in B(x_0, r) : x_3 > \Phi(x_1, x_2) \},$$

where $B(x_0, r)$ is the ball with radius $r > 0$ and center at x_0. We choose a new orthonormal basis $\{e_j\}$, $j = 1, 2, 3$, centered at x_0 with $e_3 = -\nu$, where ν is the unit outward normal vector to the boundary at x_0. The vectors e_1 and e_2 lie in the tangent plane to ∂D at x_0. Let x be the local coordinate defined by the basis $\{e_j\}$. We introduce the local transformation of coordinate $\eta = F(x)$ as follows:

$$\eta' = x', \eta_3 = x_3 - \Phi(x'),$$

with $x' = (x_1, x_2)$, $\eta' = (\eta_1, \eta_2)$.

We note that $\partial_3 \Phi(0) = \nabla_x \Phi(0) = 0$. For $x \in \partial D$ and $y \in D$, let $\eta := F(x)$, $\xi := F(y)$ with $\eta = (\eta', 0)$, $\xi = (0, \xi_3)$. Then it holds that

$$|x - y|^2 = |F^{-1}(\eta) - F^{-1}(\xi)|^2 \leq c_2|\eta - \xi|^2 = c_2(\xi_3^2 + |\eta'|^2).$$

We now pick up the dominant part of (3.24), that is

$$\|\partial_{\eta_j} G(\eta, \xi) - \lambda G(\eta, \xi)\|_{H^{\gamma}(\partial D)} \to \infty \quad \text{as } y \to \partial D. \quad (3.24)$$

and ignore all the other terms which are bounded as $y \to \partial D$, where $D_2 = [-l, l] \times [-l, l]$ with $0 < l << 1$. To estimate (3.25), without loss of generality, we assume $s = 0$ and introduce an auxiliary function

$$\varphi(\eta', t) = c_\lambda(\eta', t) t^{-\alpha} e^{-c_2 t |\eta'|^2},$$

with $0 < \alpha < 1/2$, where $\lambda(\eta', t)$ is a smooth cut-off function such that it vanishes near $t = T$ and $\eta_j = \pm l$ ($j = 1, 2$) but equals one in a neighborhood of the origin $(\eta', t) = (0, 0)$. Let us first show that $\varphi \in H^{1/4}(D_2) \subset H^{3/2}(D_2)$ and $\|\varphi\|_{H^{3/2}(D_2)} \leq 1$ for sufficiently small constant c.

Indeed, by direct calculations, we have

$$\varphi_{\eta_j} = c_\lambda(\eta', t) e^{-c_2 t |\eta'|^2} \left(-\alpha t^{-\alpha-1} + c_2 \frac{|\eta'|^2}{4t} t^{-\alpha-1} \right) + c_\lambda(\eta', t) t^{-\alpha} e^{-c_2 t |\eta'|^2},$$

$$\varphi_{t} = -\frac{1}{2} c_2 \alpha c_\lambda(\eta', t) t^{-\alpha-1} e^{-c_2 t |\eta'|^2} \eta_j + c_\lambda(\eta', t) t^{-\alpha} e^{-c_2 t |\eta'|^2} \eta_j.$$

So, for $0 < t \ll 1$, φ_t and φ_{η_j} can be estimated by

$$|\varphi_t| \leq c_4 t^{-\alpha-1} e^{-c_2 t |\eta'|^2}, \quad |\varphi_{\eta_j}| \leq c_4 t^{-\alpha-1} e^{-c_2 t |\eta'|^2}.$$

Note that

$$\int_{\mathbb{R}^2} \left(e^{-c_2 t |\eta'|^2} \right) d\eta' = \int_{\mathbb{R}^2} e^{-c_2 t |\eta'|^2} d\eta' = O(t).$$

Then we have

$$\int_{0}^{T} \int_{D_2} |\varphi| d^2x dt \leq c_4 \int_{0}^{T} \left(t^{-\alpha-1/2} \right)^2 t dt = c_4 \int_{0}^{T} t^{-2\alpha} dt < \infty. \quad (3.26)$$
In addition, we deduce that

\[
\left(\int_{D_t} \left[\partial_t^{1/4} \varphi \right]^2 \, dx \right)^{1/2} \leq \frac{1}{\Gamma(3/4)} \int_0^t (t - \tau)^{-1/4} \left(\int_{\mathbb{R}^2} |\partial_x \varphi(x, \tau)|^2 \, dx \right)^{1/2} \, d\tau
\]

\[
\leq c_5 \int_0^t (t - \tau)^{-1/4} \tau^{-\alpha - 1/2} \, d\tau \leq c_6 t^{-\alpha + 1/4},
\]

(3.27)

which guarantees the integrability of \(\partial_t^{1/4} \varphi \) in \(L^2 \) under our condition \(0 < \alpha < 1/2 \). Here \(\Gamma \) is the usual Gamma function. Thus, we conclude that \(\varphi \in H^{1/4}((D_2)_T) \subset H^{1/4}((D_2)_T) \) and \(\| \varphi \|_{H^{1/4}((D_2)_T)} \leq 1 \) by taking a sufficiently small constant \(c \).

Next, we compute the norm of \(\partial_{\partial_t} G(\xi, s) - \lambda G(\xi, s) \) using the duality. In fact, we have

\[
\| \partial_{\partial_t} G(\xi, s) - \lambda G(\xi, s) \|_{H^{-1/4}(\partial(D_2)_T)} \\
\geq \frac{c_7}{8 \pi^{3/2}} \int_0^T \int_{D_t} \left(\frac{C_2}{2t} \xi_3 - \lambda_2 \right) t^{-3/2} e^{-\xi_3^2} \left(C_1 t^{-\alpha - 1/2} \right) \, dt \, d\tau
\]

\[
\geq \frac{c_8}{8 \pi^{3/2}} \int_0^T \int_0^\infty \left(\frac{C_2}{2t} \xi_3 - \lambda_2 \right) t^{-2/3} e^{-\xi_3^2} \, dt \, d\tau
\]

\[
= \frac{c_8}{8 \pi^{3/2}} \int_0^\infty \left(\frac{C_2 \xi_3 - 2\lambda_2 \xi_3^2 - \lambda_2 \xi_3^{2a + 1}}{2} \right) e^{-\xi_3^2} \, d\tau \to \infty \quad \text{as} \quad \xi_3 \to 0 \quad (y \to \partial D).
\]

Now we can conclude from (3.22) and (3.23) that the blow-up properties (3.19) and (3.20) hold. The proof is complete. \(\square \)

To further investigate the behavior of the density \(g^\gamma \) as \(y \) approaches to \(\partial D \) from the exterior of \(D \), we need the following lemma.

Lemma 3.5. For any fixed \(s \in (0, T) \), the Green function \(G^0_{(\nu,t)}(x, t) \) is not in the range of \(A \) if \(y \in \Omega \setminus D \).

Proof. Suppose that \(G^0_{(\nu,t)}(x, t) \) is in the range of \(A \). Then there exists a function \(g \in H^{1/4}((\partial(D)_T) \) such that

\[
w^g \mid_{\partial(D)_T} = G^0_{(\nu,t)} \mid_{\partial(D)_T},
\]

where \(w^g \in H^{1/4}(\Omega \setminus D) \) is the solution to

\[
\begin{cases}
(\partial_t - \Delta)w^g = 0 & \text{in } (\Omega \setminus D)_T, \\
\partial_\nu w^g - \lambda w^g = g & \text{on } (\partial(D)_T, \\
\partial_\nu w^g = 0 & \text{on } (\partial\Omega)_T, \\
w^g = 0 & \text{at } t = 0.
\end{cases}
\]

From (3.28) and \(\partial_t w^g \mid_{\partial(D)_T} = \partial_t G^0_{(\nu,t)} \mid_{\partial(D)_T} = 0 \), it follows that \(w^g = G^0_{(\nu,t)} \) in \((\Omega \setminus D) \cup \{y\})_T \) and hence \(\|G^0_{(\nu,t)}\|_{H^{1/4}((\Omega \setminus D) \cup \{y\})_T} = \|w^g\|_{H^{1/4}((\Omega \setminus D) \cup \{y\})_T} < \infty \). Here \(y \in \Omega \setminus D \)
can be either \(y \in \partial D \) or \(y \in \Omega \setminus \overline{D} \), and for each case it holds \(\| G_{0,y}^{0} \|_{H^{1/2}((\Omega \setminus \overline{D})_{y})} = \infty \). This gives a contradiction and completes the proof.

In contrast to theorem 3.4 for \(y \in D \), we now establish the following blowup property of the density \(g^{y} \) for \(y \not\in D \).

Theorem 3.6. Fix \(s \in (0, T) \) and let \(y \in \Omega \setminus D \). Then, for every \(\varepsilon > 0 \) and \(\delta > 0 \), there exists a function \(g^{y}_{s,\delta} \in H^{-1/2}((\partial D)_{y}) \) satisfying

\[
\| Fg^{y}_{\delta,\varepsilon} - G^{0}_{(\varepsilon,\varepsilon)} \|_{H^{-1/2}((\partial D)_{y})} < \varepsilon + \delta
\]

such that

\[
\lim_{\delta \to 0} \| g^{y}_{s,\delta} \|_{H^{-1/2}((\partial D)_{y})} = \infty
\]

and

\[
\lim_{\delta \to 0} \| Sg^{y}_{s,\delta} \|_{H^{-1/2}(D_{y})} = \infty.
\]

Proof. By lemma 3.3, for arbitrary \(\delta > 0 \) there exists a function \(f^{y}_{\delta} \in H^{-1/2}((\partial D)_{y}) \) such that

\[
\| Af^{y}_{\delta} - G^{0}_{(\varepsilon,\varepsilon)} \|_{H^{-1/2}((\partial D)_{y})} < \delta.
\]

Since \(G^{0}_{(\varepsilon,\varepsilon)} \) is not in the range of \(A \) due to lemma 3.5, we have

\[
\| f^{y}_{\delta} \|_{H^{-1/2}((\partial D)_{y})} \to \infty \quad \text{as} \quad \delta \to 0.
\]

Recall that the range of \(H \) is dense in \(H^{-1/2}((\partial D)_{y}) \). For any \(\varepsilon > 0 \), we can find a function \(g^{y}_{s,\delta} \in H^{-1/2}((\partial D)_{y}) \) such that

\[
\| Hg^{y}_{s,\delta} + f^{y}_{\delta} \|_{H^{-1/2}((\partial D)_{y})} < \varepsilon / (\| A \| + 1),
\]

and hence

\[
\| Af^{y}_{\delta} + AHg^{y}_{s,\delta} \|_{H^{-1/2}((\partial D)_{y})} < \varepsilon.
\]

So, it can be derived that

\[
\| Fg^{y}_{\delta,\varepsilon} - G^{0}_{(\varepsilon,\varepsilon)} \|_{H^{-1/2}((\partial D)_{y})} \leq \| AHg^{y}_{s,\delta} + Af^{y}_{\delta} \|_{H^{-1/2}((\partial D)_{y})} + \| Af^{y}_{\delta} - G^{0}_{(\varepsilon,\varepsilon)} \|_{H^{-1/2}((\partial D)_{y})} < \varepsilon + \delta.
\]

Moreover, we obtain from (3.32) and (3.33) that

\[
\| Hg^{y}_{s,\delta} \|_{H^{-1/2}((\partial D)_{y})} \to \infty \quad \text{as} \quad \delta \to 0,
\]

which implies

\[
\| g^{y}_{s,\delta} \|_{H^{-1/2}((\partial D)_{y})} \to \infty, \quad \| Sg^{y}_{s,\delta} \|_{H^{1/2}(D_{y})} \to \infty \quad \text{as} \quad \delta \to 0.
\]

This completes the proof. \(\square \)
By theorems 3.4 and 3.6, Sg^y can be taken as an indicator function for reconstructing the boundary of the cavity D, where g^y is the approximate solution to (3.1) for the sampling point $y \in \Omega$.

4. The asymptotic behavior of the indicator function

In this section, we show a short time asymptotic behavior of the indicator function Sg^y as y approaches to the boundary ∂D from the interior of D. To do this, we analyze the asymptotic behavior of the reflected solution of the fundamental solution. As we know, the reflected solution is the compensating term of the Green function for the related initial-boundary value problem. This means that we actually provide a pointwise short time asymptotic behavior of the Green function near ∂D. We would like to emphasize that our asymptotic analysis is valid for any fixed discrepancy ε introduced in theorem 3.4. By the asymptotic analysis, we can establish a pointwise reconstruction scheme for the location and shape of the cavity, and can also know the distance to the unknown cavity when we probe it from the interior of D.

Without loss of generality, we only consider the three-dimensional case.

Let $\tilde{G}_{(y,s)}(x, t)$ be the reflected solution of $G^0_{(y,s)}(x, t)$. That is

$$
\begin{cases}
(\partial_t - \Delta)\tilde{G}_{(y,s)}(x, t) = 0 & \text{in } D_T, \\
(\partial_{n} - \lambda)\tilde{G}_{(y,s)}(x, t) = -\left(\partial_{n} - \lambda\right)G^0_{(y,s)}(x, t) & \text{on } (\partial D)_T, \\
\tilde{G}_{(y,s)}(x, t) = 0 & \text{for } x \in D, t \leq s.
\end{cases}
$$

Then, by the well-posedness of the above initial-boundary value problem, we obtain from (3.21) that

$$
\|Sg^y(x, t) - \tilde{G}_{(y,s)}(x, t)\|_{\mathcal{H}^1(D_T)} \leq C_1\varepsilon, \tag{4.1}
$$

where C_1 is a positive constant. Denote by $R_{(y,s)}(x, t)$ the reflected solution of $G_{(y,s)}(x, t)$, i.e.,

$$
\begin{cases}
(\partial_t - \Delta)R_{(y,s)}(x, t) = 0 & \text{in } D_T, \\
(\partial_{n} - \lambda)R_{(y,s)}(x, t) = -\left(\partial_{n} - \lambda\right)G_{(y,s)}(x, t) & \text{on } (\partial D)_T, \\
R_{(y,s)}(x, t) = 0 & \text{for } x \in D, t \leq s.
\end{cases}
$$

Since $G^0_{(y,s)}(x, t) - G_{(y,s)}(x, t)$ for $(y, s) \in \overline{D_T}$ is smooth in Ω_T, there exists a positive constant C_2 such that

$$
\|\tilde{G}_{(y,s)}(x, t) - R_{(y,s)}(x, t)\|_{\mathcal{H}^1(D_T)} \leq C_2. \tag{4.3}
$$

Combining (4.1) and (4.3) yields

$$
\|\left(Sg^y\right)(x, t) - R_{(y,s)}(x, t)\|_{\mathcal{H}^1(D_T)} \leq C_1\varepsilon + C_2. \tag{4.4}
$$

This implies that Sg^y and $R_{(y,s)}$ have the same blow-up behavior as y approaches to ∂D. Hence, to get the asymptotic behavior of Sg^y, we only need to show the corresponding result of $R_{(y,s)}(x, t)$.

To begin with, we locally flatten the boundary ∂D. For any point $z \in \partial D$, there is a diffeomorphism $\Phi : \mathbb{R}^3 \to \mathbb{R}^3$ which transforms z to the origin 0 such that

$$
\Phi(D) \subset \mathbb{R}^2 := \left\{ \xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 : \xi_3 < 0 \right\}.
$$
Without loss of generality, we assume \(\theta \in \partial D \) with \(\nu(\theta) = e_3 \) and locally flatten the boundary \(\partial D \) around \(\theta \). Let \(\xi = \Phi(x) \) and \(\eta = \Phi(y) \). Denote by \(J(x) \) the Jacobian matrix of \(\Phi \). We have

\[
J(x) = \nabla \Phi(x), \quad J(\theta) = I, \quad \nu(x) = \left[J^T \nu(\xi) \right].
\]

Set \(\tilde{R}(\xi, t; \eta, s) = R(x, t; y, s) \) and \(\tilde{G}(\xi, t; \eta, s) = G(x, t; y, s) \). We deduce from (4.2) that \(\tilde{R}(\xi, t; \eta, s) \) near \(\theta \) satisfies

\[
\left\{
\begin{aligned}
&\left(\partial_t - \Delta_t \right) \tilde{R}(\xi, t; \eta, s) = 0, \quad t \in (0, T), \quad \xi_3 < 0, \\
&\left(\partial_\xi - \lambda(\theta) \right) \tilde{R}(\xi, t; \eta, s) = -\left(\partial_\xi - \lambda(\theta) \right) \tilde{G}(\xi, t; \eta, s), \quad t \in (0, T), \quad \xi_3 = 0, \\
&\tilde{R}(\xi, t; \eta, s) = 0, \quad t \leq s, \quad \xi_3 < 0,
\end{aligned}
\right.
\]

(4.5)

where \(M(\xi) = (J^T)(\Phi^{-1}(\xi)) \). Let \(W^+(\xi, t; \eta, s) \) be such that

\[
\left\{
\begin{aligned}
&\left(\partial_t - \Delta_t \right) W^+(\xi, t; \eta, s) = 0, \quad t \in (0, T), \quad \xi_3 < 0, \\
&\left(\partial_\xi - \lambda(\theta) \right) W^+(\xi, t; \eta, s) = -\left(\partial_\xi - \lambda(\theta) \right) \tilde{G}(\xi, t; \eta, s), \quad t \in (0, T), \quad \xi_3 = 0, \\
&W^+(\xi, t; \eta, s) = 0, \quad t \leq s, \quad \xi_3 < 0.
\end{aligned}
\right.
\]

(4.6)

In the following, we first estimate the difference \(\tilde{R}(\xi, t; \eta, s) - W^+(\xi, t; \eta, s) \), and then analyze the asymptotic behavior of \(W^+(\xi, t; \eta, s) \). As a consequence, the asymptotic behavior of \(\tilde{R}(\xi, t; \eta, s) \) is obtained.

Lemma 4.1. Let \(\eta = (\eta_1, \eta_2, \eta_3)^T \), where \(\eta_3 = -d/2 \) and \(|\eta| \leq cd \) for small \(d > 0 \) and some constant \(c > 0 \). Then there exists a positive constant \(C \) such that

\[
\left| \tilde{R}(\eta, s + d^2; \eta, s) - W^+(\eta, s + d^2; \eta, s) \right| \leq Cd^{-2} \quad \text{as } d \to 0.
\]

(4.7)

Proof. Define \(P(\xi, t; \eta, s) = \tilde{R}(\xi, t; \eta, s) - W^+(\xi, t; \eta, s) \). We derive from (4.5) and (4.6) that near \(\theta \) the function \(P(\xi, t; \eta, s) \) satisfies

\[
\left\{
\begin{aligned}
&\left(\partial_t - \Delta_t \right) P(\xi, t; \eta, s) = \nabla \cdot (M - I) \nabla \tilde{R}, \quad t \in (0, T), \quad \xi_3 < 0, \\
&\left(\partial_\xi - \lambda(\theta) \right) P(\xi, t; \eta, s) = \left(\partial_\xi (\tilde{R} + \tilde{G}) - e_3 \cdot \left[M(\xi) \nabla_2 (\tilde{R} + \tilde{G}) \right] \right) \\
&\quad - \left(\lambda(\theta) \right) \left(\Phi^{-1}(\xi) \right) \left| J^T \nu(\xi) \right| (\tilde{R} + \tilde{G}), \\
&t \in (0, T), \quad \xi_3 = 0, \\
&P(\xi, t; \eta, s) = 0, \quad t \leq s, \quad \xi_3 < 0.
\end{aligned}
\right.
\]

(4.8)
Denote by \(\hat{G}_{\ell,(r)}(\xi, t) = \hat{G}(\xi, t; \eta, s) \) the solution to the following problem:

\[
\begin{cases}
- (\partial_t + \Delta) \hat{G}(\xi, t; \eta, s) = \delta(t - s) \delta(\xi - \eta), & t \in (0, T), \quad \xi_3 < 0, \\
(\partial_\xi - \lambda(0)) \hat{G}(\xi, t; \eta, s) = 0, & t \in (0, T), \quad \xi_3 = 0, \\
\hat{G}(\xi, t; \eta, s) = 0, & t \geq s, \quad \xi_3 < 0.
\end{cases}
\] (4.9)

Let \(Q \) be a small bounded domain in the lower half-plane such that \(0 \in \partial Q \cap \partial \mathbb{R}^3_+ \subset \partial (\Phi(D)) \) and \(Q \) totally lies in \(\Phi(D) \). We decompose the boundary of \(Q \) into two disjoint parts such that \(\partial Q = \partial Q_1 \cup \partial Q_2 \) with \(\partial Q_2 = \partial Q \cap \partial \mathbb{R}^3_+. \) Since we only consider the singularity locally at \(0 \), we have

\[
P_{\ell,(r)}(\xi, t) = - \int_s^t \int_{\partial Q_1} \left(P_{\ell,(r)}(z, \tau) \partial_\tau \hat{G}_{\ell,(r)}(z, \tau) - \partial_z P_{\ell,(r)}(z, \tau) \hat{G}_{\ell,(r)}(z, \tau) \right) dz' + \int_s^t \int_{\partial Q_2} \left(e_3 \cdot (M(z) - I) \nabla \hat{R}_{\ell,(r)}(z, \tau) \cdot \hat{G}_{\ell,(r)}(z, \tau) \right) ds(z)

- \int_s^t \int_Q \left((M(z) - I) \nabla \hat{R}_{\ell,(r)}(z, \tau) \cdot \nabla \hat{G}_{\ell,(r)}(z, \tau) \right) dz + O(1).
\] (4.10)

To estimate (4.10), we need the following estimates \([18, 19]\):

\[
\begin{align*}
|\hat{R}_{\ell,(r)}(z, \tau)| & \leq c_1(\tau - s)^{-3/2} \exp\left(-\frac{|z - \eta|^2}{c_2(\tau - s)}\right), \\
|\nabla \cdot \hat{R}_{\ell,(r)}(z, \tau)| & \leq c_3(\tau - s)^{-2} \exp\left(-\frac{|z - \eta|^2}{c_4(\tau - s)}\right), \\
|\hat{G}_{\ell,(r)}(z, \tau)| & \leq c_1(\tau - s)^{-3/2} \exp\left(-\frac{|z - \eta|^2}{c_2(\tau - s)}\right), \\
|\nabla \cdot \hat{G}_{\ell,(r)}(z, \tau)| & \leq c_3(\tau - s)^{-2} \exp\left(-\frac{|z - \eta|^2}{c_4(\tau - s)}\right), \\
|\hat{G}_{\ell,(r)}(z, \tau)| & \leq c_1(\tau - s)^{-3/2} \exp\left(-\frac{|z - \xi|^2}{c_2(\tau - s)}\right), \\
|\nabla \cdot \hat{G}_{\ell,(r)}(z, \tau)| & \leq c_3(\tau - s)^{-2} \exp\left(-\frac{|z - \xi|^2}{c_4(\tau - s)}\right),
\end{align*}
\]

where \(\eta = (\eta_1, \eta_2, -\eta_3)^T \), and \(c_j (j = 1, \cdots, 4) \) are positive constants.

On the plane \(z_3 = 0 \), it holds that

\[
\begin{align*}
|P_{\ell,(r)}(z, \tau) \partial_\tau \hat{G}_{\ell,(r)}(z, \tau) - \partial_z P_{\ell,(r)}(z, \tau) \hat{G}_{\ell,(r)}(z, \tau)|
& = \left| e_3 \cdot \left((I - M(z)) \nabla \left(\hat{R} + \hat{G} \right) \right) \hat{G}_{\ell,(r)}(z, \tau) \right|
+ \left| \lambda(0) \left(1 - J^{T}(\nu(z)) \right) + \left(\lambda(0) - \lambda(\Phi^{-1}(z)) \right) J^{T}(\nu(z)) \left(\hat{R} + \hat{G} \right) \hat{G}_{\ell,(r)}(z, \tau) \right|
\end{align*}
\]
\[
\leq C_1 |z'| \left(\left| \nabla \tilde{R}_{(0,s)}(z, \tau) \right| + \left| \nabla \tilde{G}_{(0,s)}(z, \tau) \right| \\
+ \left| \tilde{R}_{(0,s)}(z, \tau) \right| + \left| \tilde{G}_{(0,s)}(z, \tau) \right| \right) |\tilde{G}_{(\xi,\delta)}(z, \tau)|.
\] (4.11)

Set \(z' := (z_1, z_2) \), \(\eta' := (\eta_1, \eta_2) \) and \(\xi' := (\xi_1, \xi_2) \). Using lemma 3 in [18, chapter 1], we derive that
\[
\int_s' \, d\tau \int_{\partial Q_1} |z'| \left(\left| \nabla \tilde{R}_{(0,s)}(z, \tau) \right| + \left| \nabla \tilde{G}_{(0,s)}(z, \tau) \right| \right) |\tilde{G}_{(\xi,\delta)}(z, \tau)| \, dz'.
\]
\[
\leq C_2 \int_s' \, d\tau \int_{\partial Q_1} |z' - \eta'| (\tau - s)^{-2} \exp \left(-\frac{|z' - \eta'|^2 + \eta_3^2}{c_2(\tau - s)} \right) dz' \\
\times (t - \tau)^{-3/2} \exp \left(-\frac{|z' - \xi'|^2 + \xi_3^2}{c_2(t - \tau)} \right) dz' \\
+ C_3 \int_s' \, d\tau \int_{\partial Q_1} |\eta'| (\tau - s)^{-2} \exp \left(-\frac{|z' - \eta'|^2 + \eta_3^2}{c_2(\tau - s)} \right) dz' \\
\times (t - \tau)^{-3/2} \exp \left(-\frac{|z' - \xi'|^2 + \xi_3^2}{c_2(t - \tau)} \right) dz'
\]
\[
\leq C_4 \eta_3^{-2} \xi_3^{-2} \int_s' \, d\tau \int_{\partial Q_1} (\tau - s)^{-1/2} \exp \left(-\frac{|z' - \eta'|^2}{c_2(\tau - s)} \right) \\
\times (t - \tau)^{-1/2} \exp \left(-\frac{|z' - \xi'|^2}{c_2(t - \tau)} \right) dz' \\
+ C_5 |\eta'| \eta_3^{-2} \xi_3^{-2} \int_s' \, d\tau \int_{\partial Q_1} (\tau - s)^{-1} \exp \left(-\frac{|z' - \eta'|^2}{c_2(\tau - s)} \right) \\
\times (t - \tau)^{-1/2} \exp \left(-\frac{|z' - \xi'|^2}{c_2(t - \tau)} \right) dz' \\
\leq C_6 \eta_3^{-2} \xi_3^{-2} (t - s) \exp \left(-\frac{|\xi' - \eta'|^2}{c_2(t - s)} \right) \\
+ C_7 |\eta'| \eta_3^{-2} \xi_3^{-2} (t - s)^{1/2} \exp \left(-\frac{|\xi' - \eta'|^2}{c_2(t - s)} \right).
\] (4.12)

Noticing that
\[
\int_s' \, d\tau \int_{\partial Q_1} |z'| \left(\left| \tilde{R}_{(0,s)}(z, \tau) \right| + \left| \tilde{G}_{(0,s)}(z, \tau) \right| \right) |\tilde{G}_{(\xi,\delta)}(z, \tau)| \, dz'.
\]
has a less singularity than (4.12), we omit the estimate of this integral here.
In addition, the integral
\[
\int_s^t \, \mathrm{d} \tau \int_{\partial Q_t} \left(e_3 \cdot (M(z) - I) \nabla \tilde{R}(\eta, \tau) \cdot \tilde{G}(\xi, \tau) \right) \mathrm{d} \gamma(z)
\]
can be estimated in the same way as that for (4.12). As for the volume integral in (4.10), we have that
\[
\left| \int_s^t \, \mathrm{d} \tau \int_Q \left((M(z) - I) \nabla \tilde{R}(\eta, \tau) \cdot \nabla \tilde{G}(\xi, \tau) \right) \mathrm{d} z \right| \\
\leq C_3 \int_s^t \, \mathrm{d} \tau \int_Q \left| \nabla \tilde{R}(\eta, \tau) \cdot \nabla \tilde{G}(\xi, \tau) \right| \mathrm{d} z \\
\leq C_9 (t - s)^{-1} \exp \left(- \frac{\xi_3 + \eta_3^2}{c_4 (t - s)} \right) + C_{10} |\eta| (t - s)^{-3/2} \exp \left(- \frac{\xi_3 + \eta_3^2}{c_4 (t - s)} \right). \tag{4.13}
\]
Take $\xi = \eta$ with $|\eta| \leq cd$, $\xi_3 + \eta_3 = -d$, $t - s = d^2$. Then we finally get the following estimates for $d \to 0$:
\[
\left| \int_s^t \, \mathrm{d} \tau \int_{\partial Q_t} \left(P(\eta, \tau) \cdot \partial_3 \tilde{G}(\xi, \tau) - \partial_3 P(\eta, \tau) \cdot \tilde{G}(\xi, \tau) \right) \mathrm{d} z' \right| \leq C_{11} d^{-2}, \\
\left| \int_s^t \, \mathrm{d} \tau \int_Q \left((M(z) - I) \nabla \tilde{R}(\eta, \tau) \cdot \nabla \tilde{G}(\xi, \tau) \right) \mathrm{d} z \right| \leq C_{12} d^{-2},
\]
which lead to the estimate (4.7) by (4.10). The proof of this lemma is complete. \hfill \Box

Next we derive the expression of $W^+(\xi, t; \eta, s)$, and then show its asymptotic behavior.

Lemma 4.2. The solution $W^+(\xi, t; \eta, s)$ to (4.6) can be expressed by
\[
W^+(\xi, t; \eta, s) = \frac{1}{16 \pi^4} \int_{\sigma - i \infty}^{\sigma + i \infty} e^{\tau \sigma} \, \mathrm{d} \sigma \int_{\mathbb{R}^2} e^{\xi' \cdot \zeta'} \frac{\Theta + \lambda_0}{\Theta(\Theta - \lambda_0)} e^{-\left((t + i \eta') \zeta' \right)} \mathrm{d} \zeta', \tag{4.14}
\]
where $\xi' = (\xi_1, \xi_2), \eta' = (\eta_1, \eta_2), \lambda_0 = \lambda(0)$, and $\Theta = \sqrt{\tau + \xi'^2}$ with $\text{Re} \Theta \geq 0$.

Proof. Define $H(\xi, t; \eta, s) := W^+(\xi, t; \eta, s) + \tilde{G}(\xi, t; \eta, s)$. We know from (4.6) that $H(\xi, t; \eta, s)$ satisfies
\[
\begin{cases}
(\partial_t - \Delta_\xi) H(\xi, t; \eta, s) = \delta(t - s) \delta(\xi - \eta), & t \in (0, T), \ \xi_3 < 0, \\
(\partial_{\xi_3} - \lambda(0)) H(\xi, t; \eta, s) = 0, & t \in (0, T), \ \xi_3 = 0, \\
H(\xi, t; \eta, s) = 0, & t \leq s, \ \xi_3 < 0.
\end{cases} \tag{4.15}
\]
Denote by \hat{H} the Laplace transform of H with respect to t. Then we have
\[
\begin{cases}
(\tau - \Delta_\xi) \hat{H}(\xi, t; \eta, s) = e^{-\tau} \delta(\xi - \eta), & \xi_3 < 0, \\
(\partial_{\xi_3} - \lambda_0) \hat{H}(\xi, t; \eta, s) = 0, & \xi_3 = 0.
\end{cases} \tag{4.16}
\]
We now look for the solution to (4.16) in the form of
\[
\hat{H}(\xi, t; \eta, s) = \hat{H}^+ (\xi, t; \eta, s), \quad \pm(\xi_3 - \eta_3) > 0,
\]
where $\hat{H}^\pm(\xi; t; \eta, s)$ satisfy
\[
\begin{aligned}
&\left(\tau - \Delta_\xi\right)\hat{H}^\pm(\xi; t; \eta, s) = 0, \quad \pm(\xi - \eta_3) > 0, \\
&\hat{H}^+ - \hat{H}^- = 0, \quad \xi_3 = \eta_3, \\
&\partial_\xi(\hat{H}^+ - \hat{H}^-) = -e^{-\tau\xi}(\xi' - \eta'), \quad \xi_3 = \eta_3, \\
&\left(\partial_\xi - \lambda_0\right)\hat{H}^+(\xi; t; \eta, s) = 0, \quad \xi_3 = 0.
\end{aligned}
\] (4.17)

Denote by $\hat{\varphi}^\pm$ the Fourier transform of \hat{H}^\pm with respect to ξ, and let ξ' be the Fourier variable corresponding to ξ'. Then we have
\[
\begin{aligned}
&\left(\tau + \left|\xi'\right|^2 - \partial_\xi^2\right)\hat{\varphi}^\pm = 0, \quad \pm(\xi - \eta_3) > 0, \\
&\hat{\varphi}^+ - \hat{\varphi}^- = 0, \quad \xi_3 = \eta_3, \\
&\partial_\xi(\hat{\varphi}^+ - \hat{\varphi}^-) = -e^{-\tau\xi}e^{-i\xi'}, \quad \xi_3 = \eta_3, \\
&\left(\partial_\xi - \lambda_0\right)\hat{\varphi}^\pm = 0, \quad \xi_3 = 0.
\end{aligned}
\] (4.18)

Since the operator $\partial_\xi^2 - \Theta^2$ has the fundamental solutions $e^{\pm\Theta},$ we seek the solution to (4.18) in the form of
\[
\hat{\varphi}^+ = c_1^+ e^{i\xi'} + c_2^+ e^{-i\xi'}, \quad \hat{\varphi}^- = ce^{i\xi'}.
\]

From the transmission conditions at $\xi_3 = \eta_3$ and the boundary condition at $\xi_3 = 0$, we obtain that
\[
c_1^+ = \frac{1}{2}\Theta^{-1}e^{i\eta_3} + \frac{\lambda_0}{\Theta - \lambda_0} e^{-(\tau + i\xi')}, \quad c_2^+ = \frac{1}{2}\Theta^{-1}e^{i\eta_3} e^{-(\tau + i\xi')}.
\]

Thus, $\hat{\varphi}^+$ is expressed by
\[
\hat{\varphi}^+ = \frac{1}{2\Theta} e^{-(\tau + i\xi')} \left\{ e^{i(\xi_3 + \eta_3)} \left(\Theta + \frac{\lambda_0}{\Theta - \lambda_0} + e^{i(\xi_3 - \xi')} \right) \right\}.
\] (4.19)

We note that in the brace of (4.19) the second term comes from the fundamental solution, while the first term corresponds to the reflected solution W^+. So (4.14) is obtained by taking the inverse Fourier and Laplace transforms of (4.19). The proof is complete.

Finally, we show the pointwise asymptotic behavior of $W^+(\xi; t; \eta, s)$.

Lemma 4.3. Let $\eta = (\eta_1, \eta_2, \eta_3)^T$, where $\eta_3 = -d/2$ for small $d > 0$. Then we have
\[
W^+(\eta, s + d^2; \eta, s) = \frac{d^{-3}}{8e^{1/4\pi^3/2}} + O(d^{-3}) \sim \frac{d^{-3}}{8e^{1/4\pi^3/2}} \to \infty \quad \text{as } d \to 0.
\] (4.20)
Proof. To analyze the asymptotic behavior of W^+, let us first calculate

$$I = I(z', t, s) = \int_{\sigma - i \infty}^{\sigma + i \infty} e^{(t-s)\tau} \frac{\Theta + \lambda_0}{\Theta - \lambda_0} e^{i(\xi_3 + \eta_3)} d\tau, \quad \xi_3, \eta_3 < 0 \quad (4.21)$$

by converting the line integral from $\sigma - i \infty$ to $\sigma + i \infty$ into a closed contour so that we can apply the residue theorem. The contour used here is described in figure 1.

The contributions from the arcs ABC and FGH are negligibly small as $R \to \infty$ by Jordan’s lemma. Let Γ_ρ be the circle with radius \(\rho \) centered at $(-|\zeta'|^2, 0)$. Then, by setting $\tau + |\zeta'|^2 = \rho e^{i\theta}$, we can show that

$$\int_{\Gamma_\rho} e^{(t-s)\tau} \frac{\Theta + \lambda_0}{\Theta - \lambda_0} e^{i(\xi_3 + \eta_3)} d\tau$$

$$= \int_{\pi}^{\pi} e^{(t-s)(-|\zeta'|^2 + \rho e^{i\theta})} \frac{\sqrt{\rho} e^{i\theta/2} + \lambda_0}{\sqrt{\rho} e^{i\theta/2} - \lambda_0} e^{i(\xi_3 + \eta_3)} i\rho e^{i\theta} d\theta \to 0 \quad \text{as} \quad \rho \to 0. \quad (4.22)$$

Let R be the radius of the half circle in the contour. By taking $r = -|\zeta'|^2 - \tau$, we have

$$\int_{CD} e^{(t-s)r} \frac{\Theta + \lambda_0}{\Theta - \lambda_0} e^{i(\xi_3 + \eta_3)} d\tau$$

$$= \int_{R - |\zeta'|^2}^{0} e^{-u - i|\zeta'|^2} \frac{i\sqrt{r} + \lambda_0}{i\sqrt{r} - \lambda_0} e^{i\eta(\xi_3 + \eta_3)} (-dr)$$

$$- i e^{-(t-s)|\zeta'|^2} \int_{0}^{\infty} e^{-u - i|\zeta'|^2} \frac{r + 2i\lambda_0 \sqrt{r} + \lambda_0^2}{\sqrt{r} (r + \lambda_0^2)} e^{i\eta(\xi_3 + \eta_3)} dr \quad \text{as} \quad R \to \infty. \quad (4.23)$$
Similar to the derivation of (4.23), we also have
\[
\int_{\mathcal{C}_0} e^{i(t-s)r} \, d\tau \quad \Theta + \lambda_0 \quad \Theta(\Theta - \lambda_0)
\]
\[
\rightarrow i e^{-(t-s)|\zeta'|^2} \int_0^\infty e^{-(t-s)r} -2i\lambda_0 \sqrt{r} + \frac{\lambda_0^2}{\sqrt{r}} e^{-i\varphi(\xi + \eta)} \, dr \quad \text{as} \quad R \to \infty. \tag{4.24}
\]
Notice that \((\lambda_0^2 - |\zeta'|^2, 0)\) is contained in the interior of the contour. By the residue theorem, we get
\[
I = 8\pi \lambda_0 e^{i(t-s)(\lambda_0^2 - |\zeta'|^2)} e^{\lambda_0 (\xi + \eta)}
\]
\[
- 2i e^{-(t-s)|\zeta'|^2} \text{Re} \left(\int_0^\infty e^{-(t-s)r} -2i\lambda_0 \sqrt{r} + \frac{\lambda_0^2}{\sqrt{r}} e^{i\varphi(\xi + \eta)} \, dr \right). \tag{4.25}
\]
Define
\[
L = L(t, s, \xi, \eta; \lambda_0) := \text{Re} \left(\int_0^\infty e^{-(t-s)r} -2i\lambda_0 \sqrt{r} + \frac{\lambda_0^2}{\sqrt{r}} e^{i\varphi(\xi + \eta)} \, dr \right).
\]
Then \(W^+\) can be represented by
\[
W^+(\xi, \tau; \eta, s) = \frac{1}{16\pi^2} \int_{\mathbb{R}^2} e^{i(\zeta'-\eta') \cdot \zeta'} f d\zeta'
\]
\[
= \left(\frac{\lambda_0}{2\pi} e^{\lambda_0^2(t-s)+\lambda_0 (\xi + \eta)} - \frac{1}{8\pi^2} L \right) \int_{\mathbb{R}^2} e^{-(t-s)r} |\zeta'| e^{i(\zeta'-\eta') \cdot \zeta'} d\zeta'. \tag{4.26}
\]
By direct calculations, we have
\[
\int_{\mathbb{R}} e^{-(t-s)\zeta_1^2} e^{i(\xi - \eta_1) \cdot \zeta_1} d\zeta_1 = \sqrt{\pi} (\sqrt{t-s})^{-1} e^{-\frac{1}{4}(t-s)^{-1}(\xi - \eta_1)^2},
\]
\[
\int_{\mathbb{R}} e^{-(t-s)\zeta_2^2} e^{i(\xi - \eta_2) \cdot \zeta_2} d\zeta_2 = \sqrt{\pi} (\sqrt{t-s})^{-1} e^{-\frac{1}{4}(t-s)^{-1}(\xi - \eta_2)^2}.
\]
Therefore, it follows from (4.26) that
\[
W^+(\xi, \tau; \eta, s) = \left(\frac{\lambda_0}{2\pi} e^{\lambda_0^2(t-s)+\lambda_0 (\xi + \eta)} - \frac{1}{8\pi^2(t-s)} L \right) e^{-\frac{1}{4}(t-s)^{-1}|\zeta'-\eta'|^2}. \tag{4.27}
\]
In the sequel, we compute \(L\). By setting \(p = \sqrt{r}\), we have
\[
L = \text{Re} \int_{-\infty}^{+\infty} \frac{p^2 + \lambda_0^2 e^{-(t-s)p^2 + i\varphi(\xi + \eta)}}{p^2 + \lambda_0^2} dp - 2\lambda_0 \text{Im} \int_{-\infty}^{+\infty} \frac{p}{p^2 + \lambda_0^2} e^{-(t-s)p^2 + i\varphi(\xi + \eta)} dp. \tag{4.28}
\]
To compute the integrals in (4.28), we introduce the contour described in figure 2 so that the residue theorem can be applied.

Note that
\[
-(t-s)p^2 + i\varphi(\xi + \eta) = -\left(\sqrt{t-s} \frac{p}{2\sqrt{t-s}} (\xi + \eta) - \frac{1}{2} \sqrt{t-s} (\xi + \eta) \right)^2 - \frac{(\xi + \eta)^2}{4(t-s)},
\]
and define
\[\tilde{p} := \sqrt{t - s} \, p - \frac{1}{2} \frac{i}{\sqrt{t - s}} \left(\xi_3 + \eta_3 \right). \]

It holds that
\[-p^2 = A + i \lambda \tilde{p}, \]
where
\[A := \frac{1}{4} \left(\xi_3 + \eta_3 \right)^t (t - s)^{-2} - \tilde{p}^2 (t - s)^{-1}, \quad b := -\left(t - s \right)^{-3/2} \left(\xi_3 + \eta_3 \right). \]

Using the residue theorem and noticing that the integrals on \(\Re p = \pm R \) go to zero as \(R \to \infty \), we obtain from (4.28) that
\[L = 4 \pi \lambda_0 e^{\left(\xi + \eta \right)/\lambda} \int_{-\infty}^{\infty} e^{-\lambda \tilde{p}} \frac{-A^2 + \lambda_0^4 - b^2 \tilde{p}^2}{\left(-A + \lambda_0^2 \right)^2 + b^2 \tilde{p}^2} \, d\tilde{p}. \]

Now take \(\xi = \eta \) with \(\xi_3 = \eta_3 = -d/2 \) and \(t - s = d^2 \). Then \(b = d^{-2} \) and \(A = d^{-2} \left(\frac{1}{4} - \tilde{p}^2 \right) \).

By direct calculations, we have
\[\frac{-A^2 + \lambda_0^4 - b^2 \tilde{p}^2}{\left(-A + \lambda_0^2 \right)^2 + b^2 \tilde{p}^2} = \frac{1 + d^2}{\tilde{p}^4 + (1/2 + 2d \lambda_0^2) \tilde{p}^2 + (d^2 \lambda_0^2 - 1/4)^2}. \]

Hence, it can be easily seen that
\[\int_{-\infty}^{\infty} e^{-\lambda \tilde{p}} \frac{-A^2 + \lambda_0^4 - b^2 \tilde{p}^2}{\left(-A + \lambda_0^2 \right)^2 + b^2 \tilde{p}^2} \, d\tilde{p} = -\sqrt{\pi} + O(d^2), \]
\[\int_{-\infty}^{\infty} e^{-\lambda \tilde{p}^2} \frac{(A - \lambda_0^2) b + 2 b \tilde{p}^2 \left(t - s \right)^{-1}}{\left(-A + \lambda_0^2 \right)^2 + b^2 \tilde{p}^2} \, d\tilde{p} = O(1). \]
for \(d \to 0 \). Consequently, we have
\[
L = 4\pi\lambda_0 - e^{-1/4}\sqrt{\pi}d^{-1} + O(1) \quad \text{as} \ d \to 0.
\]
Thus, in terms of (4.27), we finally obtain
\[
W^+(\eta, s + d^2; \eta, s) = \frac{d^{-3}}{8e^{1/2}4\pi^{3/2}} + O(d^{-2}) \sim \frac{d^{-3}}{8e^{1/2}4\pi^{3/2}} \to \infty \quad \text{as} \ d \to 0.
\]
This completes the proof. \(\square \)

Based on the above lemmas, we conclude that \(W^+ \) is the dominant part of \(\tilde{R} \) as \(d \to 0 \). More explicitly, the pointwise asymptotic behavior of \(\tilde{R}(\xi, t; \eta, s) \) can be stated as follows.

Theorem 4.4. Let \(\eta = (\eta_1, \eta_2, \eta_3)^T \), where \(\eta_3 = -d/2 \) for small \(d > 0 \). Then we have
\[
\tilde{R}(\eta, s + d^2; \eta, s) = \frac{d^{-3}}{8e^{1/2}4\pi^{3/2}} + O(d^{-2}) \sim \frac{d^{-3}}{8e^{1/2}4\pi^{3/2}} \to \infty \quad \text{as} \ d \to 0. \tag{4.30}
\]

Remark 4.5. For any fixed discrepancy in (3.18), combining (4.4) with (4.30), we finally have the following asymptotic behavior
\[
(5g^\lambda)(y, s + d^2) = \frac{d^{-3}}{8e^{1/2}4\pi^{3/2}} + O(d^{-2}) \quad \text{as} \ d \to 0. \tag{4.31}
\]

5. Numerical results and discussions

In this section, we present some numerical results to show the performance of the linear sampling method for the heat equation. The asymptotic behavior of the reflected solution of the fundamental solution is also verified numerically. In our numerical implementations, the operator \(F = \Lambda_D - \Lambda_\partial \) is simulated by solving the forward problem via the boundary integral equation method. Then, taking the synthetic data as our measurements, the Neumann-to-Dirichlet map gap equation (3.1) is solved by the conjugate gradient method for the normal equation (CGNE) with a stopping rule [17].

Example. Let \(D = \{x = (1.2 \cos(\alpha), 1.0 \sin(\alpha)): \ \alpha \in [0, 2\pi]\} \) and \(\Omega \) be a circle with radius 3 centered at the origin. We set \(T = 1 \) and \(\lambda = 1 \).

Assuming that \(D \) and \(\lambda \) are known, we solve the forward problem (1.1) to simulate our measurements by the integral equation method. For the numerical solution to the resulting system of boundary integral equations, we apply a collocation method using piecewise constant interpolation with respect to the time variable on the equidistant grid \(t_n = nT/N, \ n = 0, \cdots, N \), and then employ the Nyström method using the trapezoidal rule with respect to the space variable on the equidistant grid \(\xi_j := j\pi/M, \ j = 0, \cdots, 2M - 1 \); see [8, 9] for the details. In our simulation, we take \(N = 100 \) and \(M = 32 \).

Using the synthetic data, we investigate the inverse problem from the following two aspects.

(i) **Reconstruction of the boundary \(\partial D \).** First, we reconstruct the boundary \(\partial D \) using the indicator function.
where g^y is the approximate solution to the Neumann-to-Dirichlet map gap equation (3.1). Here we would like to point out that in the numerical implementations we use the L^2 norm of g^y, instead of $H^{1/2}$ norm in the theoretical analysis. In our numerics, we take 20×32 sampling points in Ω specified by

$$y_{ij} = r_i (\cos(\alpha_j), \sin(\alpha_j)), \quad r_i = \frac{3}{20} i, \quad \alpha_j = \frac{\pi}{16} j, \quad i = 1, \cdots, 20, \quad j = 1, \cdots, 32.$$

For each sampling point y_{ij}, we solve (3.1) by CGNE and compute the indicator function $I(y_{ij})$. Theoretically, our reconstruction method works for any $s \in (0, T)$, but the choice of s...
may affect the numerical performance in practice. So we test our method for different values of \(s \). In figures 3, 4 and 5, we show the contour lines of the indicator function for \(s = 0.1, 0.3, 0.5 \), respectively. From the numerical results, we observe that \(\|g\|^1_{L^2} \) becomes larger as the sampling point \(y \) approaches to the boundary \(\partial D \) and keep large outside \(D \). This numerical behavior greatly supports our theoretical results given in theorems 3.4 and 3.6. By suitably choosing a cut-off constant, we can obtain an approximation of the boundary \(\partial D \).

(2) Asymptotic behavior of the reflected solution. In section 4, we showed the asymptotic behavior of the \(S[g'] \), which is essentially coming from that of the reflected solution of the fundamental solution. We note that in the two-dimensional case the asymptotic behavior of the reflected solution \(R(y, s + d^2; y, s) \) for small \(d = \text{dist}(y, \partial D) \) should be modified as

\[
R(y, s + d^2; y, s) = \frac{d^{-2}}{4e^{1/4\pi}} + O(d^{-1}) \sim \frac{d^{-2}}{4e^{1/4\pi}} \to \infty \quad \text{as} \quad d \to 0. \tag{5.1}
\]

To check this asymptotic behavior numerically, we assume that the boundary \(\partial D \) is known. Then we compare the reflected solution \(R(y, s + d^2; y, s) \) with the dominant part \(\frac{d^{-2}}{4e^{1/4\pi}} \). In figure 6, the red line denotes the reflected solution \(R(y, s + d^2; y, s) \) for \(y = (1.2 - d, 0) \), and the blue line stands for the function \(\frac{d^{-2}}{4e^{1/4\pi}} \) of \(d \). The numerical results verify our asymptotic analysis. In practical situations, it would be used to estimate the distance of the sampling point to the boundary \(\partial D \) when we approach the boundary from its inside. In principle, once we have the reflected solution for any sampling point \(y \in D \), we can estimate its distance to \(\partial D \) by solving the following equation with respect to \(d \):

\[
R(y, s + d^2; y, s) = \frac{d^{-2}}{4e^{1/4\pi}}. \tag{5.2}
\]

To numerically test it, we take \(s = 0.1 \) and \(y = (1.1, 0) \). In figure 7, we can easily see that the graphs of two functions \(h_1(d) = R(y, s + d^2; y, s) \) and \(h_2(d) = \frac{d^{-2}}{4e^{1/4\pi}} \) intersect at \(d = 0.13 \). So the distance determined by (5.2) is \(d = 0.13 \). This indicates that our technique estimating \(d \) in terms of the asymptotic analysis is efficient, noticing that the exact distant \(\text{dist}(y, \partial D) = 0.1 \). To yield better numerical results, we should improve (5.1) by carefully analyzing the lower order term.
Figure 6. Asymptotic behavior of the reflected solution: the horizontal axis is d. The red line denotes the reflected solution $R(y, s + d^2; y, s)$ for $y = (1.2 - d, 0)$, while the blue line denotes the function $\frac{d^{-2}}{4s^{2/d}}$.

Figure 7. Estimate the distance d via (5.2): the horizontal axis is d. The red line denotes the reflected solution $R(y, s + d^2; y, s)$ for the point y with the distant d to be determined, while the blue line denotes the function $\frac{d^{-2}}{4s^{2/d}}$.
In conclusion, we present here some preliminary numerical results to show the performance of the linear sampling method for the heat equation. Although this method has been extensively studied in the field of inverse scattering problems from both the theoretical and numerical aspects, our paper is the first attempt to numerically implement it for the heat equation case. It remains largely open from the numerical point of view. There are several issues to be addressed. First, we need to develop an efficient way of choosing the cut-off constant to yield a good approximation of the boundary. We should also use the freedom to choose s by combining with the advantage of measurement for active thermography due to the very fast decay of solutions. Second, we need to analyze the lower order term in (4.30) or (5.1) to get a more precise asymptotic expansion, which will lead to better reconstructions. Third, we should do numerical implementations for the inclusion case, where the integral equation method for solving the forward problem cannot be applicable, and the finite element method with discontinuous coefficients should be employed.

6. Concluding remarks

This paper investigated the inverse problem of identifying an unknown Robin-type cavity inside a heat conductor from boundary measurements. The so-called linear sampling method was established to reconstruct the shape and location of the cavity. Based on our well-posedness analysis of the corresponding forward problem, we gave rigorously a theoretical justification of this reconstruction scheme by using the layer potential argument. Further, we proved a short time asymptotic behavior of the reflected solution of the fundamental solution, and hence the asymptotic behavior of the indicator function used in this method was obtained. Since the reflected solution is the compensating term of the Green function for the related initial-boundary value problem, we actually provided a short time asymptotic behavior of the Green function. The asymptotic behavior naturally yields a pointwise reconstruction scheme for the boundary of the cavity. We would also like to emphasize that from the asymptotic behavior we can know the distance to the unknown cavity as we probe it from its inside. Some numerical results are presented to show the performance of the reconstruction scheme for the boundary. However, to establish a pointwise reconstruction formula for the Robin coefficient λ, we need to carefully examine the lower order term where the information about the Robin coefficient should be involved. This is one of our future works.

Acknowledgments

The authors would like to thank the referees for their careful reading and valuable suggestions, which greatly improve our paper. The first author is partially supported by National Research Foundation of Korea (No. 49771-01). The second author is supported by National Natural Science Foundation of China (Nos. 11301075, 91330109) and Natural Science Foundation of Jiangsu Province of China (No. BK20130594).

References

[1] Arens T and Lechleiter A 2009 The linear sampling method revisited J. Int. Eqn. Appl. 21 179–202
[2] Bacchelli V, Di Cristo M, Sincich E and Vessella S 2014 A parabolic inverse problem with mixed boundary data. Stability estimates for the unknown boundary and impedance Trans. Am. Math. Soc. 366 3965–95
[3] Bryan K and Caudill L 1997 Uniqueness for a boundary identification problem in thermal imaging *Electron. J. Diff. Eqns., Conf.* 1 23–39
[4] Bryan K and Caudill L 2005 Reconstruction of an unknown boundary portion from Cauchy data in n dimensions *Inverse Problems* 21 239–55
[5] Cal孔 F and Colton D 2006 *Qualitative Methods in Inverse Scattering Theory* (Berlin: Springer)
[6] Cal孔 F, Colton D and Monk P 2011 *The Linear Sampling Method in Inverse Electromagnetic Scattering* (Philadelphia: SIAM)
[7] Cantk €o W J and Morton J 1992 The significance of damage and defects and their detection in composite materials: a review *J. Strain Anal. Eng. Des.* 27 29–42
[8] Chapko R, Kress R and Yoon J R 1998 On the numerical solution of an inverse boundary value problem for the heat equation *Inverse Problems* 14 853–67
[9] Chapko R, Kress R and Yoon J R 1999 An inverse boundary value problem for the heat equation: the Neumann condition *Inverse Problems* 15 1033–46
[10] Colton D and Kirsch A 1996 A simple method for solving inverse scattering problems in the resonance region *Inverse Problems* 12 383–93
[11] Costabel M 1990 Boundary integral operators for the heat equation *Integral Equ. Operator Theory* 13 498–552
[12] Daido Y, Kang H and Nakamura G 2007 A probe method for the inverse boundary value problem of non-stationary heat equations *Inverse Problems* 23 1787–800
[13] Daido Y, Yi L, Liu J J and Nakamura G 2009 Numerical implementations of dynamical probe method for non-stationary heat equation *Appl. Math. Comput.* 211 510–21
[14] Di Cristo M, Rondi L and Vessella S 2006 Stability properties of an inverse parabolic problem with unknown boundaries *Ann. Math. Pura Appl.* 185 223–55
[15] Di Cristo M and Vessella S 2010 Stable determination of the discontinuous conductivity coefficient of a parabolic equation *SIAM J. Math. Anal.* 42 183–217
[16] Elayyan A and Isakov V 1997 On uniqueness of recovery of the discontinuous conductivity coefficient of a parabolic equation *SIAM J. Math. Anal.* 28 49–59
[17] Engl H W, Hanke M and Neubauer A 2000 *Regularization of Inverse Problems* (Dordrecht, New York: Kluwer, Academic)
[18] Friedman A 1964 *Partial Differential Equations of Parabolic Type* (Englewood Cliffs, NJ: Prentice-Hall)
[19] Greiner P 1971 An asymptotic expansion for the heat equation *Arch. Ration. Mech. Anal.* 41 163–218
[20] Hao D H, Thanh P X and Lesnici D 2013 Determination of the heat transfer coefficients in transient heat conduction *Inverse Problems* 29 095020
[21] Heck H, Nakamura G and Wang H B 2012 Linear sampling method for identifying cavities in a heat conductor *Inverse Problems* 28 075014
[22] Ibarra-Castanedo C et al 2009 Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures *Res. Nondestruct. Eval.* 20 1–31
[23] Ikehata M and Kawashita M 2009 The enclosure method for the heat equation *Inverse Problems* 25 075005
[24] Ikehata M and Kawashita M 2010 On the reconstruction of a heat conductive body from dynamical boundary data over a finite time interval *Inverse Problems* 26 095004
[25] Isakov V 2008 On uniqueness of obstacles and boundary conditions from restricted dynamical and scattering data *Inverse Problems Imaging* 2 151–65
[26] Isakov V, Kim K and Nakamura G 2010 Reconstruction of an unknown inclusion by thermography *Ann. Sc. Norm. Super. Pisa Cl. Sci.* (5) 9 725–58
[27] Isozaki H, Poisson O, Siltanen S and Tamminen J 2012 Probing for inclusions in heat conductive bodies *Inverse Problems Imaging* 6 423–46
[28] Jin B T and Lu X L 2012 Numerical identification of a Robin coefficient in parabolic problems *Math. Comput.* 81 1369–98
[29] Kawakami H 2015 Reconstruction algorithm for unknown cavities via Feynman–Kac type formula *Comput. Optim. Appl.* 61 101–33
[30] Kim K and Nakamura G 2011 Inverse boundary value problem for anisotropic heat operators *J. Phys. Conf. Ser.* 290 012007
[31] Kirsch A and Grinberg N 2008 *The Factorization Method for Inverse Problems* (Oxford: Oxford University Press)
[32] Li J Z, Liu H Y and Wang Q 2014 Enhanced multilevel linear sampling methods for inverse scattering problems J. Comput. Phys. 257 554–71 part A
[33] Li J Z, Liu H Y and Zou J 2009 Strengthened linear sampling method with a reference ball SIAM J. Sci. Comput. 31 4013–40
[34] Li J Z, Liu H Y and Zou J 2008 Multilevel linear sampling method for inverse scattering problems SIAM J. Sci. Comput. 30 1228–50
[35] Nakamura G and Sasayama S 2013 Inverse boundary value problem for the heat equation with discontinuous coefficients J. Inverse Ill-Posed Problems 21 217–32
[36] Nakamura G and Wang H B 2013 Linear sampling method for the heat equation with inclusions Inverse Problems 29 104015
[37] Patel P M, Lau S K and Almond D P 1992 A review of image analysis techniques applied in transient thermographic nondestructive testing Nondestruct. Test. Eval. 6 343–64
[38] Reulet P, Nortershauser D and Millan P 2003 Inverse method using infrared thermography for surface temperature and heat flux measurements 20th Int. Congress on Instrumentation in Aerospace Simulation Facilities, ICIASF’03 pp 118–126
[39] Saut J C 1987 Unique continuation for some evolution equations J. Differential Equations 66 118–139
[40] Thanh N T and Sini M 2010 An analysis of the accuracy of the linear sampling method for an acoustic inverse obstacle scattering problem Inverse Problems 26 015010
[41] Thanh N T and Sini M 2010 Accuracy of the linear sampling method for inverse obstacle scattering: effect of geometrical and physical parameters Inverse Problems 26 125004
[42] Wloka J 1987 Partial Differential Equations (Cambridge: Cambridge University Press)
[43] Yi L, Kim K and Nakamura G 2010 Numerical implementation for a 2-D thermal inhomogeneity through the dynamical probe method J. Comput. Math. 28 87–104