The asymptotic evolution of the stellar merger V1309 Sco: a Blue Straggler in the making?*

Thiago Ferreira¹†, Roberto K. Saito¹, Dante Minniti²³⁴, María Gabriela Navarro²⁵³, Rodrigo Contreras Ramos⁶³, Leigh Smith⁷⁸, Philip W. Lucas⁷

¹ Departamento de Física, Universidade Federal de Santa Catarina, 88.040-908, Florianópolis, Brazil
² Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Fernandez Concha 700, Las Condes, Santiago, Chile
³ Millennium Institute of Astrophysics, Av. Vicuna Mackenna 4860, 782-0436, Santiago, Chile
⁴ Vatican Observatory, V00120 Vatican City State, Italy
⁵ Departamento de Fisica, Universidade degli Studi di Roma “La Sapienza”, P.le Aldo Moro, 2, 100185 Rome, Italy
⁶ Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
⁷ Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
⁸ Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Stellar mergers are estimated to be common events in the Galaxy. The best studied stellar merger case to date is V1309 Sco (= Nova Scorpii 2008) which was originally misclassified as a Nova event. Later identified as the merger of the components of a cool overcontact binary system with 1.52 M⊙ and 0.16 M⊙, V1309 Sco showed an initial period of P = 1.4 days before the merger. Post-outburst evolution demonstrated that V1309 Sco was unlike the typical Classical Novae and Symbiotic Recurrent Novae with significant dust production around it, and indicated that the system may become a post-AGB (or pre-PN) soon. Here we present a study of V1309 Sco about ten years after the outburst, based on near-IR variability and colour data from the ESO surveys VISTA Variables in the Vía Láctea (VVV) and VVV eXtended (VVVX). We find that reasonable equilibrium in this stellar merger is being reached and that the star has settled into a nearly constant magnitude. A dramatic change in its near-IR colours from (J − Ks) = 1.40 in 2010 to (J − Ks) = 0.42 in 2015 and a possible low amplitude periodic signal with P = 0.49 days in the post-outburst data are consistent with a “blue straggler” star, predicted to be formed from a stellar merger.

Key words: ephemerides — infrared: stars — surveys — (stars:) novae, cataclysmic variables — techniques: photometric

1 INTRODUCTION

Stellar mergers have been estimated to be luminous and common events, however, those phenomena have somehow not been efficiently probed by previous Galactic surveys (e.g. Kochanek et al. 2014). Due to a great variety of binary systems configurations (e.g. Paczynski 1971), it is equally expected a wide variety of possible stellar mergers scenarios.

* Based on observations taken within the ESO Public Surveys VVV and VVVX, Programme IDs 179.B-2002 and 198.B-2004, respectively.
† E-mail: t.ferreira@astro.ufsc.br

Furthermore, the detailed study of specific cases may lead to the discovery of even new classification of not previously identified objects as such Pietrukowicz et al. (2017).

V1309 Sco, also known as Nova Scorpii 2008¹, is the best studied stellar merger case to date, which has been originally discovered as a Nova event by Nakano et al. (2008) and later identified as the merger of the components of a cool overcontact binary system by Tylenda et al. (2011), where their critical Roche lobe is filled out and they share a common envelope. Making use of the OGLE photometry

¹ http://simbad.u-strasbg.fr/simbad/sim-id?Ident=v1309+sco&
(see Udalski et al. 2008), they showed that the progenitor of V1309 Sco was an eclipsing contact binary system with an initial period of $P = 1.4$ days. Afterwards, Nandez et al. (2014) demonstrated the high mass ratio of the system, with components of 1.52 M$_\odot$ and 0.16 M$_\odot$.

Analysing the post-outburst absorption and emission lines of V1309 Sco’s spectra evolution, Mason et al. (2010) demonstrated that the system was unlike the typical Classical Novae and Symbiotic Recurrent Novae. ALMA observations at the V1309 Sco region indicated that the system may become a post-AGB (or pre-PN) soon, moreover, yield a kinematic distance of 2.1 kpc for this object (Kamiński et al. 2018). Besides this, there is a significant dust production around V1309 Sco, originated by the merger of the contact binary progenitor, and the later evolution of the merger was found to be peculiar (Nichols et al. 2012; McCollum et al. 2014; Tylenda et al. 2016; Zhu et al. 2016). As the evolution of stellar merger systems is not well known yet, V1309 Sco has become an ideal specific example to conduct a detailed study about ten years after the outburst.

The near-IR light curves of the ESO survey VISTA Variables in the Vía Láctea (VVV Survey; Minniti et al. 2010; Saito et al. 2012), and of its complementary survey VVV eXtended (VVVX Survey, Minniti 2018), reach typical magnitude $K_S = 17-18$ mag, which offers a new way to probe luminous stellar merger throughout the Milky Way’s bulge and its adjacent disk. Indeed we are starting to unveil interesting high amplitude variable objects, such as the VVV-WIT-06 (Minniti et al. 2017; Banerjee et al. 2018), that has been proposed to be either a supernova, red nova or a merger event. Here we present a study of V1309 Sco about ten years after the outburst, based on near-IR variability and colour data from the VVV Survey.

2 THE VVV NEAR-IR OBSERVATIONS

V1309 Sco is located in the Galactic Bulge, at coordinates RA, DEC (J2000): 269.38724, −30.71945 deg., corresponding to Galactic coordinates l, b: 359.7854$, -3.1346$, within the VVV tile b291. The V1309 Sco’s field was observed by VVV in five near-IR filters in 2010 (JHK_s) and 2015 ($ZYHK_s$) plus a variability campaign in K_s-band carried out with a total of 163 epochs spanning from July 08 2010 to March 28 2017, where 2016 and 2017 observations were provided by the VVVX Survey. The extinction towards the region of V1309 Sco is $A_K = 0.29 \pm 0.11$ mag according to VVV extinction maps (Gonzalez et al., 2012). The extinction law. Other estimates for the extinction on the V1309 Sco area centred on the object position.

Filter	A_e [µm]	PSF-mag [mag]	Epoch [JD]	Date [dd.mm.yyyy]
J	1.254	13.849 ± 0.007	2455437	29.08.2010
H	1.646	12.973 ± 0.008	2455437	29.08.2010
K_s	2.149	12.449 ± 0.011	2455437	29.08.2010
Z	0.878	17.266 ± 0.050	2457282	15.09.2015
Y	1.021	16.629 ± 0.032	2457282	15.09.2015
J	1.254	15.080 ± 0.025	2457255	21.08.2015
K_s	2.149	14.659 ± 0.044	2457255	21.08.2015

Figure 1. VVV JHKs near-IR false colour image of the V1309 Sco’s. The FoV is \sim1.5$''$x1.0$''$ oriented in equatorial coordinates and centred on the object position.

Table 1. VVV $ZYJHK_s$ magnitudes for V1309 Sco. The Z and JK_s data are quasi-simultaneous. Epochs for the JHK_s observations are marked in Fig. 2.
Figure 2. VVV K_S-band light curve of V1309 Sco (black dots). There is a total of 163 epochs spanning from July 08 2010 to March 28 2017. SMARTS K-band observations are also shown in red dots. The K and K_S passbands are close enough to allow the data-points be plotted in the same frame. Those green dots represents the K_S PSF magnitude in the years of 2010 and 2015 as demonstrated on Table 1.

reason for this difference, because very small photometric differences are expected in the mean ($\Delta K \leq 0.03$ mag). Due to the presence of a slightly brighter star near V1309 Sco, we suggest that it was possibly blended with this source in some of the SMARTS observations, which would interfere at the shape of the aperture photometry light curve of the SMARTS project, as presented in Figure 2. We used in this study PSF photometry, considerably more accurate than the aperture photometry, therefore, the VVV data-set collected at the 4-meter VISTA Telescope should describe better its late behaviour.

3 DATA ANALYSIS

The VVV K_S-band light curve (see Fig. 2) shows a smooth late behaviour for the V1309 Sco stellar merger remnant, with a small scatter in the K_S-band, and also a slow decline in magnitude is presently levelling off, which does not match the behaviour from McCollum et al. (2014), as expected for a merger event.

When comparing our VVV K_S-filter light curve with the OGLE I-band light curve presented by Tylenda et al. (2011) and later observations, we also observe that the source is steadily getting bluer. The colour in the year 2010 showed that the source was very red, with $(I - K_S) = 3.54$ mag and $(J - K_S) = 1.40$ mag, and changing to $(I - K_S) = 2.75$ mag and $(J - K_S) = 0.42$ mag in the year of 20153. Assuming the reddening for this field as $E(I - K_S) = 1.48$ mag from Schlafly & Finkbeiner (2011) yield unreddened colours $(I - K_S) = 2.1$ and 0.3 mag for the years of 2010 and 2015, respectively. Similarly, $E(J - K_S) = 0.50$ mag from Schlafly & Finkbeiner (2011) yields to $(J - K_S) = 0.9$ and −0.1 mag for 2010 and 2015. Those values imply either that the remnant star is changing its effective temperature, getting hotter with time, or that the dust column density is decreasing fast, as one would expect for an expanding dust shell for example.

3.1 Searching for periodic variations

Pre-outburst optical data of V1309 Sco present a periodic signal of $P_0 \sim 0.7$ days with $\Delta K_0 \sim 0.15$ mag (Tylenda et al. 2011). In order to search for periodic variations in our post-outburst data we applied a polynomial regression to our light curve to remove the long term variation (top panel of Figure 3). Thereafter, the residual light curve was calculated subtracting the original light curve by the polynomial, following K_S–FIT.

3 I-band magnitudes during year 2015 from SMARTS (http://www.astro.sunysb.edu/fwalter/SMARTS/NovaAtlas/v1309sco/v1309sco.html)
Figure 3. Top panel: post-outburst VVV K_S-band light-curve (black dots) and the polynomial curve used to remove the long term variation (red curve). Central panel: the residual light curve calculated by subtracting the original light curve by the polynomial. Bottom panel: phase-folded light curve for the residual for a period of $P = 0.498$ days (corresponding to $P \sim 12.35$ hours) and a modulation amplitude of $\Delta K_S = 0.030$ mag (see Section 3).

Our search for a periodic component on the V1309 Sco post-outburst data was carried out using the Generalised Lomb-Scargle (GLS) method, also known as float mean periodogram (Zechmeister & Kürster 2009), which provides a straightforward solution based on a Fourier-like power spectrum in order to detect and fit a sine-like periodic component at an unevenly-sampled data-set. Given a frequency grid spanning from two to fifty hours, the resultant period calculated with the method was $P = 0.498194 \pm 0.000014$ days, corresponding to $P \sim 12.35$ hours with a modulation amplitude of $\Delta K_S = 0.030$ mag, notably smaller than $P_0 \sim 0.7$ days and $\Delta K_S = -0.15$ mag presented by Tylenda et al. (2011). Even with a simple false alarm test estimating a good significance of this signal, the resultant period along with the relatively small amplitude must be seen with caution and can be interpreted as no longer the existence of a binary system post-2008 outburst. The phased light-curve of V1309 Sco for the period of $P = 0.49$ days is presented on the bottom panel of Figure 3.

4 RESULTS AND DISCUSSION: THE ASYMPTOTIC BEHAVIOUR OF V1309 SCO

The asymptotic near-IR magnitude and colours of V1309 Sco are $K_S = 14.9 \pm 0.1$, $(J-K_S)_0 = -0.10 \pm 0.05$ mag and $(I-K_S)_0 = 1.30 \pm 0.05$ mag, respectively. While the colour are based on 2015 observations, the magnitude of $K_S = 14.9$ mag refers to the latest data-point observed by the VVVX Survey, on March 28 2017. Regarding its asymptotic behaviour, our VVV K_S-band observations during years 2016–2017 shows a very slow decline rate with slope $\Delta K_S = +0.12$ mag/yr. Interestingly, there are some stellar sources in the VVV Survey database that show long-term variability, declining slowly and steadily with time, mimicking the late behaviour of the VVV Sco stellar merger.

Adopting the kinematic distance of $d = 2.1$ kpc from Kamiński et al. (2018), and the field absorption of $A_K = 0.37$ mag from Schlafly & Finkbeiner (2011), yields an absolute near-IR magnitude as $M_{K_S} = 2.72$ mag. The error in this magnitude is estimated to be $\sigma_{K_S} = 0.2$ mag. We note that this is unlike a very luminous supergiant, and more consistent with a normal blue star. Figure 4 presents a colour-magnitude diagram from 15 arcmin radius region around the V1309 Sco position, made from PSF photometry of the VVV Survey data (Alonso-García et al. 2018). Overlaid to the CMD is an isochrone representing the Bulge population. It is based on PARSEC release v1.2S + COLIBRI S35 tracks (Pastorelli et al. 2019) for a stellar age of 10 Gy, solar metallicity, an extinction of $A_V = 2.46$ mag (see Section 2) and scaled for the distance of the Galactic centre (e.g. Rich 2001; Madrid 2018; Binney & Merrifield 1998). It’s important to note that V1309 Sco has changed its colour

\[\text{http://stev.oapd.inaf.it/cgi-bin/cmd}\]
at a relatively high rate, going from (J-Ks) = 1.40 mag in 2010 to (J-Ks) = 0.42 mag in 2015. This significant colour change in a relatively short period of time shows that V1309 Sco was getting bluer and hotter with time, behaving as a blue straggler star (Sandage 1953).

There have been alternative explanations for the formation of the blue stragglers published in the past years, for example the mass transfer increasing in a binary system (e.g. McCrea 1964), the internal mixing of a single star due to fast rotation or the presence of a strong magnetic field (e.g. Wheeler 1979). The merger hypothesis should describe the nature of V1309 Sco. This states that blue stragglers spend a long lifetime as low-q binaries and result from the merger between two main sequence stars in dynamical interaction (e.g. Mateo et al. 1990; Lombardi et al. 2002). As the majority of blue stragglers are easily to identify in stellar clusters, both mass transfer and the collisional hypothesis seems to be equally possible (Mapelli et al. 2019). However, as pointed out by Leonard (1989), the collisional scenario fails to explain how those objects remain in the stellar cluster as the recoil velocity, in this case, should exceed the cluster escape point. Therefore, V1309 Sco is an unique case where its path from a field star point is not precisely defined in a field CMD. Therefore, blue stragglers because the main sequence turnoff (MSTO) velocity. Field stars like V1309 Sco are difficult to discover as the recoil velocity, in this case, should exceed the cluster escape velocity. Field stars like V1309 Sco are difficult to discover as the recoil velocity, in this case, should exceed the cluster escape velocity.

In conclusion, we find that reasonable equilibrium in a long lifetime as low-q binaries and result from the merger between two main sequence stars in dynamical interaction (e.g. Mateo et al. 1990; Lombardi et al. 2002). As the majority of blue stragglers are easily to identify in stellar clusters, both mass transfer and the collisional hypothesis seems to be equally possible (Mapelli et al. 2019). However, as pointed out by Leonard (1989), the collisional scenario fails to explain how those objects remain in the stellar cluster as the recoil velocity, in this case, should exceed the cluster escape velocity. Field stars like V1309 Sco are difficult to discover as the recoil velocity, in this case, should exceed the cluster escape velocity.

ACKNOWLEDGEMENTS

We gratefully acknowledge the use of data from the ESO Public Survey program IDs 179.B-2002 and 198.B-2004 taken with the VISTA telescope, and data products from the Cambridge Astronomical Survey Unit (CASU). This publication makes use of VOSA, developed under the Spanish Virtual Observatory project supported from the Spanish MINECO through grant AyA2017-84089. T.F. acknowledges support from PIBIC@UFSC and CNPq-Brazil. R.K.S. acknowledges support from CNPq/Brazil through projects 308968/2016-6 and 421687/2016-9. Support for the authors is provided by the BASAL CONICYT Center for Astrophysics and Associated Technologies (CATA) through grant AF1-170002, and the Ministry for the Economy, Development, and Tourism, Programa Iniciativa Científica Milenio through grant IC120009, awarded to the Millennium Institute of Astrophysics (MAS). D.M. acknowledges support from FONDECYT through project Regular #1170121.

REFERENCES

Alonso-Garcia, J., Saito, R. K., Hempel, M., et al. 2018, A&A, 619, 4A
Angeloni, R., Contreras Ramos, R., Catelan, M., et al. 2014, A&A, 567, A100
Banerjee, D. P. K., Haio, E. Y., Diamond, T., et al. 2018, ApJ, 867, 99
Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134
Binney, J., & Merrifield, M. 1998, Galactic astronomy / James Binney and Michael Merrifield. Princeton, NJ : Princeton University Press, 1998. (Princeton series in astrophysics) QB857 .B522 1998
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Contreras Ramos, R., Zoccali, M., Rojas, F., et al. 2017, A&A, 608, A140
Gillessen, S., Eisenhauer F., Trippe S., Alexander T., Genzel R., Martins F., Ott T., 2009, ApJ, 692, 1075
Gonzalez, O. A., Rojkuba, M., Zoccali, M., et al. 2012, A&A, 543, A13
González-Fernández, C., Hodgkin, S. T., Irwin, M. J., et al. 2018, MNRAS, 474, 4549
Kamiński, T., Steffen, W., Tylden, R., et al. 2018, A&A, 617, A129
Klicic, M., Munn, J. A., Harris, H. C., et al. 2017, ApJ, 837, 162
Kochanek, C. S., Adams, S. M., & Belczynski, K. 2014, MNRAS, 443, 1319
Leonard, P. J. T. 1989, AJ, 98, 217
Lombardi, J. C., Jr., Warren, J. S., Rasio, F. A., Sills, A., & Warren, A. R. 2002, ApJ, 568, 939
Madrid, F. R. S. 2018 PhD Thesis, Ludwig-Maximilians-Universität Adt.
Mapelli, M., Giacobbo, N., Santoliquido, F., & Artale, M. C. 2019, arXiv:1902.01419
Mason, E., Diaz, M., Williams, R. E., Preston, G., & Bensby, T. 2010, A&A, 516, A108
Mateo, M., Harris, H. C., Nemec, J., & Olszewski, E. W. 1990, AJ, 100, 469
McCollum, B., Laine, S., Väisänen, P., et al. 2014, AJ, 147, 11 McCrea, W. H. 1964, MNRAS, 128, 147
Minniti, D. 2018, In The Vatican Observatory, Castel Gandolfo: 80th Anniversary Celebration (ed. G. Gionti, S., & J.-B. Kikwaya Eluo, S. J). Astrophysics and Space Science Proceedings, 51, 63
Minniti, D., Lucas, P. W., Emerson, J. P., et al. 2010, New Astron., 15, 433
Minniti, D., Saito, R. K., Forster, F., et al. 2017, ApJ, 849, L23
Nakano, S., Nishiyama, K., Kabashima, F., et al. 2008, IAU Circ., 8972, 1
Nandez, J. L. A., Ivanova, N., & Lombardi, J. C., Jr. 2014, ApJ, 786, 39
Nicholls, C. P., Melis, C., Sozzynski, I., et al. 2013, MNRAS, 431, L33
This paper has been typeset from a \TeX/\LaTeX\ file prepared by the author.