Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration

Nafiseh Baheiraei (n.baheiraei@modares.ac.ir)
Tarbiat Modares University Faculty of Medical Sciences
https://orcid.org/0000-0002-8760-5971

Hossein Eyni
Tarbiat Modares University Faculty of Medical Sciences

Bita bakhshi
Tarbiat Modares University Faculty of Medical Sciences

Raziyeh Najafloo
Tarbiat Modares University

Research article

Keywords: Bioactive glass; Bone tissue engineering; Strontium; Osteogenesis

Posted Date: June 2nd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-18054/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Scientific Reports on April 22nd, 2021. See the published version at https://doi.org/10.1038/s41598-021-88058-1.
Abstract

Background: Bioactive glasses (BGs) have attracted added attention in the structure of the scaffolds for bone repair applications. Different metal ions could be doped in BGs to induce specific biological responses. Among these ions, strontium (Sr) is considered as an effective and safe doping element with promising effects on bone formation and regeneration.

Methods: In this experiment, we evaluated the antibacterial activities of the gelatin-BG (Gel-BG) and Gel-BG/Sr scaffolds *in vitro*. The osteogenic properties of the prepared scaffolds were also assessed in rabbit calvarial bone defects for 12 weeks. Alizarin Red, Hematoxylin & Eosin (H&E) and Masson's Trichrome staining were performed to assess bone regeneration and the obtained results were compared with those without Sr. Also, histomorphometric data were obtained to evaluate the new bone, residual graft, and connective tissue.

Results: Both scaffolds showed *in vivo* bone formation during 12 weeks with the newly formed bone area in Gel-BG/Sr scaffold was higher than that in Gel-BG scaffolds after the whole period. Based on the histological results, Gel-BG/Sr exhibited acceleration of early-stage bone formation *in vivo*. The results of antibacterial investigation showed that although both Gel-BG/Sr and Gel-BG effectively inhibited the growth of *Escherichia coli* (*E. coli*) but, only Gel-BG/Sr structure could lead to a 3 log reduction in *Staphylococcus aureus* (*S. aureus*). **Conclusions**: Our results confirmed that Sr doped BG is a favorable candidate for bone tissue engineering with superior antibacterial activity and bone regeneration capacity compared with similar counterparts having no Sr ion.

Background

Almost 1.3 million people experience bone graft surgeries due to the skeletal defects made by either accidents or diseases annually in the United States [1]. Obesity, genetic abnormalities, increased rate of accidents as well as the aging population are all considered as reasons which increase the number of bone lesions around the world[2]. Osteoporosis generated by decreased bone mineral density influences more than 200 million people worldwide, with half of this population undergoing a minimum one fracture during their lifetime[3]. Bone grafting either autografts or allografts are associated with limitations such as additional surgery, potential risk of transmitting diseases, immunological response, and long period issues[4]. Therefore, there is still a demand for developing safer and more effective alternatives. Bone tissue engineering is a promising strategy that aims to fabricate interconnected porous graft substitutes for bone defects reconstruction. Among material used for synthetic bone scaffolds, bioactive glasses (BGs) have attracted more attention in the structure of bone repair scaffolds in many investigations due to the properties such as osteogenesis, high level of bioactivity as well as the ability to bond with soft and hard tissues[5, 6] The synergistic effects of Si, Ca and P ions released from BG, could promote differentiation of osteoblasts via activation of osteogenesis-related signaling pathways[7]. Interestingly, BGs have been clinically used to treat damages made by periodontal disease[8] as well as for ocular surgery applications[9]. Bioactive ceramics scaffolds based on BGs have been utilized for clinical
applications. Examples include commercial 45S5 for healing of long bone fracture, femoral repair, filler and grafting implants, alveolar ridge augmentation [10], S53P4 bioactive glass for craniofacial surgery and treatment of osteomyelitis [11], and other type of BGs for healing of intra-bony defects [12, 13] and maxillary sinus floor augmentation [14].

Different metal ions could be doped in BGs to induce specific biological responses. Among these ions, strontium (Sr) is an alkaline earth metal which is presently utilized for the treatment of osteoporosis[15]. Strontium Renelate has also been stated to decrease the rate of fractures in elderly patients having osteoporosis[16] and has been clinically used to treat osteoporosis in postmenopausal patients[17]. Biomaterials containing Sr have been proved to enhance bone formation or/and remodeling[18]. Also, Sr is considered as an effective and safe doping element which its effect on bone formation and remodeling becomes more noticeable and different over time depending on the applied concentration[18]. This ion is reported to accelerate osteogenesis[19] and mineralization, as well[20]. The effects of Sr on bone healing and regeneration have been extensively studied in vitro and in vivo [21-23]. For example, Sr containing BG microspheres (Sr-BGM) have been shown to significantly improve early angiogenesis via modulating macrophages towards the M2 phenotype expressing a great value of platelet-derived growth factor-BB (PDGF-BB). The authors assumed that this early vascularization could efficiently promote new tissue regeneration, including bone formation[24]. Also, osteogenic capability of thermosensitive p (N-Isopropylacrylamide-co-butyl Methylacrylate) hydrogel (PIB nanogel) was increased significantly following the addition of mesoporous bioactive glass containing Sr (Sr-MBG). Scaffolds were inserted in rat femur defect two months after making the osteoporosis model. PIB nanogel was considered an excellent carrier for primary osteoblasts, which, together with Sr-MBG, improved the regeneration of the produced femur defects synergistically[3]. Addition of Sr and, or Li have also been shown to alter physicochemical properties of BG porous scaffolds, promoting osseointegration and bone remodeling in a rabbit femoral defect model[6]. The simultaneous effect of applying Sr and Co ions on the acceleration of bone healing and vascularization was further confirmed by implanting Sr-Co-BG seeded with human umbilical cord perivascular cells (HUCPVCs) in the knee defect of the rabbits for 12 weeks. The results revealed significant improved angiogenic and regeneration potential of BGs after being doped with Sr and Co[25]. Previously, our group demonstrated that BG/Sr containing scaffolds promote proliferation and osteogenic differentiation of Mesenchymal Stem Cells (MSCs) as well as angiogenesis[21]. Here, we further evaluated the osteogenic properties of the gelatin-BG/Sr scaffolds in rabbit calvarial bone defects as well as their antibacterial features. The obtained results were compared with those without Sr.

Materials And Methods

Materials

All materials were purchased from Sigma-Aldrich (Germany) unless otherwise is specified.

Scaffold fabrication
Bioglass (BG) based on the CaO– SiO$_2$– Na$_2$O–P$_2$O$_5$ system and BG having strontium (BG/Sr) in a SiO$_2$-CaO-SrO-P$_2$O$_5$ system was fabricated according to our previous protocol by sol-gel method with Sr was substituted for Ca at the percentage of 5 wt %[21]. Scaffolds were prepared via freeze drying method, as previously explained[21]. Briefly, 15 % w/v of the synthesized BG powder was added to the 5 % (w/v) aqueous solution of gelatin (Gel) and the obtained solution was then cast in a Teflon mold and frozen at -20°C and -80°C for 5 and 12 h, respectively. The frozen samples were then lyophilized in a freeze drier (Alpha 1-4 LDplus, Martin Christ, Germany) for 48 h to fabricate porous scaffolds. The same instructions were used with BG/Sr powder to make the Gel- BG/Sr scaffolds (15 % w/v). Samples were cross linked using 0.5 % glutaraldehyde for 24 h, followed by excessive washing in deionized water for three days and further lyophilization.

Investigational animals and surgical procedures

Animal investigations were approved by the Ethics Committee of Tarbiat Modares University, Iran (IR.MODARES.REC.1398.070). Twelve New Zealand white rabbits of 2.6-3 kg in weight were used and randomly divided into three investigational groups (n=4/group). A standard environment such as humidity, temperature, 12/12 hours light/dark, and standard food and water were applied before and after surgery. General anesthesia was accomplished with Xylazine (10 mg/Kg, 2%, Alfasan, Woerden-Holland) and Ketamine (90 mg/Kg, 10%, Alfasan, Woerden-Holland). Rabbits were prepared and draped using povidone iodide to sterilize the area. The calvaria were exposed by a skin incision (3 cm incision along the midline of the scalp) and then, muscle and periosteum were resected. Three standardized defects (8 mm in diameter) were formed in the parietal bones with low rotation speed of surgical trephine using sterile saline buffer to cool while clearing any residual debris. Two defects were filled with Gel-BG/Sr and Gel-BG scaffold, and the third one was left unfilled as a control group. Attention was taken to avoid displacement of the scaffolds into the other defects. At the end of the surgery, periosteum, muscle, and skin were repositioned and closed with absorbable VICRYL® (Johnson & Johnson Co., USA) sutures and Tetracycline (Iran Darou, Iran) was sprayed on calvaria. Amoxicillin (0.1 ml/kg, 15%, Tolide Darou, Iran) was also administrated intramuscularly to avoid infections. Animals were safe and kept warm in separate cages until recovery. They were then guided to the holding room and ordered Ketorolac Tromethamine (Tarasyn, Korea) for three days to control postoperative pain.

Histological analysis

Rabbits were sacrificed at four, eight, and 12 weeks after surgery, and calvaria were taken for macroscopic and microscopic studies. Samples were fixed in 10% neutral buffered formalin followed by decalcification via immersing in 10% v/v nitric acid for 14 days (being refreshed every 48 h). Then, dehydration was performed in a graded series of ethanol (80–100%). Each sample was embedded in paraffin and sectioned (5 microns) by microtome (Leica Microsystems SP 1600, Nussloch, Germany) for Alizarin Red, Hematoxylin & Eosin (H&E) and Masson's Trichrome staining evaluations. At least, three histological sections were selected and investigated using a light microscope (Leica Microsystems AG,
All histomorphometric data were obtained from Image J software (NIH, Maryland, USA) to evaluate the new bone, residual graft, and connective tissue (n=6 sections/each group).

In vitro antibacterial activity assay

Scaffolds were powdered, sterilized with Ultra Violet (UV) and added to 2 ml Nutrient Broth (NB) bacterial culture medium at a final concentration of 175mg/ml. Each sample suspension was incubated at 37°C for 48 hours under aerobic conditions, after which the samples were centrifuged (for 5 min at 15000 rpm). One ml from the supernatant was transferred to sterilized tubes, and separate tubes were inoculated with each of the test microorganisms (*Staphylococcus aureus* ATCC28923 and *Escherichia coli* ATCC28922) at a final concentration of 10^6 CFU. Free NB served as negative control, and bioglass free NB culture of *S. aureus* and *E. coli* were used as positive controls. The inoculated samples were incubated at 37°C under aerobic conditions for an overnight after which samples were serially diluted and an aliquot of 100 µl was cultured on Mueller-Hinton agar (MH) at 37 °C for 24h. The total viable count was performed and the Colony Forming Unit (CFU) was determined on MH plates. The inhibition of growth was calculated as the logarithmic reduction in colony counts on MH plates.

Statistical analysis

All data were evaluated using the ANOVA test of SPSS (version 12.0.1, Chicago, USA). Differences were considered significant at P values ≤ 0.05.

Results

Macroscopic and Histologic Evaluation

The osteogenic capability of the prepared scaffolds was investigated by implanting Gel-BG/Sr and Gel-BG disks into 8 mm full-thickness calvarial defects after four, eight and 12 weeks. To do this experiment, rabbits were sacrificed with an overdose of anesthetics and the cranial was carefully removed. Macroscopically, the entire defect area was covered with the fibrous scar and no inflammation was observed in all experimental groups. Defects treated with scaffolds appeared thinner than the surrounding bone 12 weeks after implantation. However, those that had Gel-BG/Sr were contiguous, being hardly detectable from the nearby bone tissue with no movement (Fig. 1). For H&E staining investigation, the samples were studied with a light microscope at magnifications of ×40 and ×100. Defects filled with the Gel-BG/Sr scaffolds presented immature bone development for four weeks. New bone creation was noted to begin bridging the defects at eight weeks, with noticeable cell migration. The border of the defects was hardly distinguishable from the nearby bone tissue. Although no noticeable cell permeation or new bone formation was observed in Gel-BG treated defects at four weeks, cell impregnation, new bone formation, and bridging in this group was started at eight weeks, which then were increased after twelve weeks. The unfilled defects (control group) did not heal completely, and the new bone was only noted at the defect margin with the fibrous tissue covered the rest of the defect (Fig. 2). Additionally, Masson's trichrome staining was used to confirm new bone formation (Fig. 3). For Gel-BG/Sr scaffolds, the
displacement of the mature collagen at the new bone formation zone was detected. Immature bone formation was observed at four weeks, followed by the newly bone creation after eight and 12 weeks. Unlikely, in defects contained Gel-BG scaffolds as well as the control group, immature bone formation was not detected at four weeks. In defects treated with scaffolds, the newly produced bone was observed on each lateral of the margin defects as well as between the implanted scaffolds. Although in all experimental groups, the Masson's trichrome images showed the development of new collagen fibers (blue color), in the defects filled with Gel/BG-Sr, the number of synthesized collagen fibers was higher compared to other groups following 12 weeks post-implantation.

Mineralization stages of the formed tissue were observed by Alizarin Red staining at specific time points. As can be seen in figure 4, immature bone development was detected in Gel-BG/Sr at four weeks, followed by considerable new bone formation and bridging at eight and 12 weeks. For the Gel-BG scaffold, newly bone development was little, and most of the defects were clear. The new bone was only noted at the margin with fibrous tissue was observed in the rest of the defect for the unfilled defect. Our findings showed that implantation of Gel-BG/Sr could upgrade bone regeneration more successfully than Gel-BG in this model.

Histomorphometric analysis

The results of the histomorphometric analysis is presented in table 1 during four, eight, and 12 weeks. As can be seen, the percentage of new bone was 49.10±1.03%, 33.88±0.35%, and 17.32±0.36% for Gel-BG/Sr, Gel-BG, and control groups at 12 weeks, respectively (Table 1). Bone healing was significantly increased in Gel-BG/Sr compared with other groups at 12 weeks (*P ≤05). The residual graft was, also, gradually decreased in Gel-BG/Sr and Gel-BG groups reaching 41.50±0.20% and 51.34±0.06%, respectively. Also, the amount of connective tissue of composite scaffolds (Gel-BG/Sr and Gel-BG) was gradually decreased during 12 weeks, while the corresponding data changes were not apparent for the unfilled groups.

Antibacterial investigations

The growth of *E.coli* was completely inhibited by each of the bioglass containing powder with no bacterial growth on MH plates. *S.aureus* was partially inhibited by Gel-BG/Sr, which resulted in 1000 colony-forming units (CFU)/mL on MH plates, equivalent to 3 log reductions in growth index. However, Gel-BG revealed no antibacterial effect on *S.aureus* as detected by more than 10⁶ (CFU)/mL growth on MH agar. Considering the more rigid structure of S. aureus cell was (as a representative of Gram-positive bacteria), makes Gel-BG/Sr an achievement toward development of structures with wide-range antimicrobial efficacy.

Table 1 Histomorphometric analysis of new bone, connective tissue and residual graft during 4, 8 and 12 weeks. **NB:** The percentage of New Bone; **RG:** The percentage of Residual Graft; **CT:** The percentage of Connective Tissue.
	Gel-BG/Sr	Gel-BG	Control	
NB (%)	4 weeks	11.71±0.84^a	7.1±0.7 ^b	4.2±0.42^c
	8 weeks	30.2±3.3 ^a	21.02±0.88 ^b	14.15±0.27 ^c
	12 weeks	49.1±3.73 ^a	33.88±0.35 ^b	17.32±0.36 ^c
RG (%)	4 weeks	60.68±1.62 ^a	69.8±0.54 ^b	0.00 ^c
	8 weeks	53.56±1.64 ^a	58.43±1.41 ^b	0.00 ^c
	12 weeks	41.50±1.94 ^a	51.34±0.98 ^b	0.00 ^c
CT (%)	4 weeks	28.15±0.73 ^a	25.10±0.30 ^b	95.08±0.21 ^c
	8 weeks	16.23±0.41 ^a	20.55±0.68 ^b	85.85±0.56 ^c
	12 weeks	9.4±0.18 ^a	14.78±0.09 ^b	82.68±0.38 ^c

Data are represented as mean ±SD. Different letters in each row show P<0.001

Discussion

Aiming to enhance bone formation with less adverse systemic side effects, Sr has been recently included in many bone substitutes[18]. This ion is a trace element which induces bone development and hinders bone resorption, simultaneously[26-28]. The safety and efficacy of Sr-doped biomaterials for inducing bone formation and remodeling have significantly been reviewed[18]. In our earlier study, we also proved that Sr substitution for Ca in Gel/BG scaffolds improves the mechanical, biological, and angiogenic properties of the scaffold[21]. Here, we additionally investigated the osteogenic potential of Gel-BG and Gel-BG/Sr scaffolds in critically sized rabbit calvarial defects. Gelatin has been used in clinic as a filler for bone regeneration [29] or even as drug delivery carrier [30] and wound dressing [31, 32]. Other clinical applications of this material involve biological glue in acute aortic dissection [33], hemostatic matrix sealant in many type of orthopedic, cardiovascular and liver surgeries [34].

In this experiment, histological assessments completed on the harvested scaffolds four, eight, and 12 weeks’ post-surgery. No chronic inflammation was observed following implantation of the scaffolds, which confirms tissue compatibility of BG containing scaffolds[35, 36]. Analysis of decalcified samples with Alizarin red staining presented much more new bone in defects filled with Gel/BG-Sr compared to those contained Gel/BG and the control groups. This indicates that Sr substitution in BG could remarkably increase bone regeneration capacity.

One reason that Sr promotes bone formation and remodeling could be its impact on the expression of genes, including cytokine IL-6. This cytokine, a pro-inflammatory stimulator that recruits osteoclast and induces bone reabsorption, is decreased by Sr effect[37]. Also, Sr induces genes and proteins involved in the bone formation, such as bone morphogenetic proteins and osteocalcin [38]. It has been shown that Sr ions can increase MSCs response as well as to hinder the differentiation of osteoclasts via inhibiting the expression of receptor activator of nuclear factor Kappa-B (RANK) ligand in MSCs [27, 39]. Besides, this ion can stimulate osteoprotegerin expression, which in turn stops the RANK and its ligand interaction, inhibiting osteoclast activity[40, 41]. It has been demonstrated that the acceleration of osteoprogenitor
cells differentiation into osteoblasts could be due to the activation of membrane-bound calcium sensing receptor (CaSR) and the Wnt/β-Catenin signaling pathway[42, 43].

Interestingly, Sr has emerged to induce angiogenic factors expression, including vascular endothelial growth factor[40]. Enhanced neovascularization caused by Sr substitution could also provide more nutrients for bone-forming cells in bone defects[23]. Therefore, activation of osteogenesis and angiogenesis could be considered as improving features for Sr containing scaffolds, as has been previously confirmed[23]. Apart from contributing factors mentioned above, the synergistic effect of the released bioactive Sr and Si ions from BG is possibly another factor enhancing bone regeneration ability of the Gel/BG-Sr scaffold[23]. In a study, it was confirmed that Sr and Si in the structure of BG could synergistically activate the NFATC and Wnt/βCatenin signaling pathways, respectively, which in turn mediate osteogenesis[44]. Zhao et al. assessed the osteogenic capability of Sr-MBG fabricated by three dimensional (3D) printing method in critical-sized defects made in rat calvarial. Sr-MBG scaffolds exhibited superior osteocunductivity and more new vessel formation compared to MBG scaffolds for eight weeks[23].

The process of bone healing can be delayed due to the bacterial infection, which can subsequently lead to surgical failure by replacement or removal of the implanted biomaterials[45, 46]. Therefore, biomaterials with anti-infective properties are required in line with the specific clinical application[47]. Many studies have indicated that BGs, even without ionic additions, have growth-inhibitory influence against several important pathogens[48, 49]. Although the exact antibacterial mechanisms for the BGs remain unclear, one possible reason could be the fact that the glass sodium is being released, which is unfavorable for bacteria and increases the pH level. In fact, increased osmotic pressure caused by dissolution of ions, including silicon, calcium, sodium, and phosphate provides an undesirable environment for the bacteria growth. Besides, several activities in the bacterial cell, including glycolysis, trans membrane proton translocation and acid tolerance can be inhibited by dissolution ions such as zinc form BGs depending on the concentration[50, 51].

Antibacterial studies of this experiment suggest that strontium substitution could increase the bactericidal effectiveness against *S. aureus* and *E. coli*. The outcome was more pronounced against *S. aureus*. It has been reported that Sr-BGs antibacterial activity could be a result of the higher concentration of Ca, P and Sr ions being released in the simulated body fluid (SBF) solutions and the higher pH values compared to the BG samples[52]. In a study by Liu et al., strontium-substituted BGs significantly inhibited the growth of sub-gingival bacteria depending on the ratio of strontium in the glasses[53]. Interestingly, the authors stated that even the base glass with no Sr displays an apparent antibacterial activity, which may be due to the increased amount of phosphate to 4 mol% compared to the Bioglass®45S5 with 2.5 mol% P₂O₅[53].

Significant antimicrobial properties of strontium and silver-containing BG powder has also been formerly confirmed against *S. aureus* and *E. coli* bacteria. Previously, antibacterial test results have shown that the strontium substituted 58S BG could exhibit the antibacterial effect against methicillin-resistant
staphylococcus aureus (MRSA) bacteria which are resistant to methicillin and other associated antibiotics of the penicillin class. Bacterial activities, including growth and reproduction, cell wall synthesis, cell metabolism as well as chromosomal replication can be inhibited by the release of Sr\(^{2+}\) ions, as well[52, 54-56].

While Sr doped materials are safe and effective for stimulating bone formation and remodeling, this effect may be more noticeable over time under the concentration applied[18]. Possible factors that could affect the potential evaluation of results for Sr-enriched biomaterials activity are the rate in which Sr is being released, Sr content, experimental animal models, size, location, type of the defects, as well as the applied methods to evaluate the final response[18]. However, despite the good results, more information is required about the safety and effectiveness of local Sr usage[18]. Precautions still need to be considered as the safety of oral Strontium Renelate for the cardiovascular system could be a matter of concern [57, 58].

Conclusion

Bioactivity of biomaterial is an important factor to be considered as it can influence the scaffold effectiveness to induce bone formation[22]. Inclusion of 15wt% of BG-Sr into a polymer bulk improved its osteogenic ability compared with that containing only BG. While retaining antimicrobial efficacy against *E. coli*, Sr incorporation effectively improved antibacterial activity against *S. aureus*, as well. However, more detailed analysis is still required to elucidate the mechanisms of Sr dopant on improved bone healing for clinical applications.

Abbreviations

strontium :Sr; gelatin-BG :Gel-BG; gelatin-BG- strontium :Gel-BG/Sr; bioactive glasses :BGs; platelet-derived growth factor-BB (PDGF-BB); p (N-Isopropylacrylamide-co-butyl Methylacrylate) :PIB; mesoporous bioactive glass containing Sr :Sr-MBG; human umbilical cord perivascular cells :HUCPVCs; Mesenchymal Stem Cells :MSCs; gelatin :Gel; Hematoxylin & Eosin :H&E;Staphylococcus aureus: S. aureus; Escherichia coli : E. coli ;Ultra Violet :UV;Nutrient Broth :NB;Mueller-Hinton :MH; Colony Forming Unit :CFU;receptor activator of nuclear factor Kappa-B :RANK;calcium sensing receptor :CaSR;three dimensional :3D;methicillin-resistant staphylococcus aureus :MRSA.

Declarations

Ethics approval and consent to participate

Animal investigations were approved by the Ethics Committee of Tarbiat Modares University, Iran (IR.MODARES.REC.1398.070).

Consent for publication
This paper is approved by all authors for publication.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was partially supported by Iran National Science Foundation (INSF) (Grant number: 96011120).

Author's contributions

R. Najafloo and H. Eyni analyzed and interpreted the *in vivo* data. B. Bakhshi implemented the antibacterial experiment. N. Baheiraei designed the study and was a major contributor in writing and conducting the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Not applicable

Author details

1 Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. 2 Department of Anatomical Science, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran. 3 Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. 4 Department of bio-informatics, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.

References

1. Langer, R. and J.P. Vacanti. Tissue engineering. Science. 1993:920–926.
2. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. CRIT REV BIOTECHNOL. 2012, 40(5).
3. Zhang Q, Chen X, Geng S, Wei L, Miron RJ, Zhao Y, et al. Nanogel-based scaffolds fabricated for bone regeneration with mesoporous bioactive glass and strontium: In vitro and in vivo characterization. J BIOMED MATER RES A. 2017;105(4):1175-1183.
4. Marquis M-E, Lord E, Bergeron E, Drevelle O, Park H, Cabana F, et al. Bone cells-biomaterials interactions. Front. Biosci. 2009;14:1023-1067.

5. Krishnan V, Lakshmi T. Bioglass: A novel biocompatible innovation. JAPTR. 2013;4(2):78.

6. Khan PK, Mahato A, Kundu B, Nandi SK, Mukherjee P, Datta S, et al. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Sci. Rep. 2016;6:32964.

7. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta biomater. 2013;9(1):4457-4486.

8. Nicholson J. The Use of Bioactive Glasses in Periodontology. In: Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses. Elsevier. 2019:251-271.

9. Baino F. How can bioactive glasses be useful in ocular surgery? J BIOMED MATER RES A. 2015;103(3):1259-1275.

10. Hench LL. Chronology of Bioactive Glass Development and Clinical Applications. NJGS. 2013;3(2):7.

11. van Gestel NA, Geurts J, Hulsen DJ, van Rietbergen B, Hofmann S, Arts JJ. Clinical Applications of S53P4 Bioactive Glass in Bone Healing and Osteomyelitic Treatment: A Literature Review. Biomed Res. Int. 2015:684-826.

12. Blaker JJ, Gough JE, Maquet V, Notingher I, Boccaccini AR. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds. J BIOMED MATER RES A. 2003;67(4):1401-1411.

13. Demir B, Sengün D, Berberoğlu A. Clinical evaluation of platelet-rich plasma and bioactive glass in the treatment of intra-bony defects. J. Clin. Periodontol. 2007;34(8):709-715.

14. Cordioli G, Mazzocco C, Schepers E, Brugnolo E, Majzoub Z. Maxillary sinus floor augmentation using bioactive glass granules and autogenous bone with simultaneous implant placement. Clinical and histological findings. Clin. Oral Implants Res. 2001;12(3):270-278.

15. O'Donnell S, Cranney A, Wells GA, Adachi JD, Reginster JY. Strontium ranelate for preventing and treating postmenopausal osteoporosis. Cochrane Database Syst. Rev. 2006;(3).

16. Reginster JY, Felsenberg D, Boonen S, Diez-Perez A, Rizzoli R, Brandi ML, et al. Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: Results of a five-year, randomized, placebo-controlled trial. ARTHRITIS RHEUMATOL. 2008;58(6):1687-1695.

17. Tenti S, Cheleschi S, Guidelli GM, Galeazzi M, Fioravanti A. What about strontium ranelate in osteoarthritis? Doubts and securities. Mod. Rheumatol. 2014;24(6):881-884.

18. Neves N, Linhares D, Costa G, Ribeiro C, Barbosa M. In vivo and clinical application of strontium-enriched biomaterials for bone regeneration: a systematic review. BONE JOINT RES. 2017;6(6):366-375.

19. Pilmane M, Salma-Ancane K, Loca D, Locs J, Berzina-Cimdina L. Strontium and strontium ranelate: Historical review of some of their functions. Mater. Sci. Eng. C. 2017;78:1222-1230.
20. Molino G, Bari A, Baino F, Fiorilli S, Vitale-Brovarone C. Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass–ceramic scaffolds for bone tissue regeneration. J. Mater. Sci. 2017;52(15):9103-9114.

21. Jalise SZ, Baheiraei N, Bagheri F. The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: In vitro and in vivo characterization. Ceram. Int. 2018;44(12):14217-14227.

22. Poh PS, Hutmacher DW, Holzapfel BM, Solanki AK, Stevens MM, Woodruff MA. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Acta biomater. 2016;30:319-333.

23. Zhao S, Zhang J, Zhu M, Zhang Y, Liu Z, Tao C, et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta biomater. 2015; 12:270-280.

24. Zhao F, Lei B, Li X, Mo Y, Wang R, Chen D, et al. Promoting in vivo early angiogenesis with submicrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials. 2018;178:36-47.

25. Kargozar S, Lotfibakhshaiesh N, Ai J, Mozafari M, Milan PB, Hamzehlou S, et al. Strontium-and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. Acta biomater. 2017;58:502-514.

26. Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 2008;42(1):129-138.

27. Marie P, Felsenberg D, Brandi M. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. OSTEOPOROSIS INT. 2011;22(6):1659-1667.

28. Baron R, Tsouderos Y. In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur. J. Pharmacol. 2002;450(1):11-17.

29. Jin DD. Bone matrix gelatin. Clinical application in 38 cases. Zhonghua Wai Ke Za Zhi. 1991;29(5):312-314, 335.

30. Beaujeux R, Laurent A, Wassef M, Casasco A, Gobin YP, Aymard A, et al. Trisacryl gelatin microspheres for therapeutic embolization, II: preliminary clinical evaluation in tumors and arteriovenous malformations. AJNR. 1996;17(3):541-548.

31. Takahashi H, Miyoshi T, Boki K. Study on hydrophilic properties of gelatin as a clinical wound dressing. II. Water-absorbing property and hemostatic effect of gelatin. Tokushima J Exp Med. 1993;40(3-4):169-175.

32. Hasatsri S, Yamdech R, Chanvorachote P, Aramwit P. Physical and biological assessments of the innovative bilayered wound dressing made of silk and gelatin for clinical applications. J. Biomater. Appl. 2015;29(9):1304-1313.

33. Bachet J, Gigou F, Laurier C, Bical O, Goudot B, Guilmet D. Four-year clinical experience with the gelatin-resorcine-formol biological glue in acute aortic dissection. J Thorac Cardiovasc Surg.
34. Galarza M, Morabito M, Alfieri A. Clinical Use and Hemostatic Application of Gelatin. Elsevier. 2018:53-96.
35. Fialkov JA, Holy CE, Shoichet MS, Davies JE. In vivo bone engineering in a rabbit femur. J CRANIOFAC SURG. 2003;14(3):324-332.
36. Moimas L, Biasotto M, Di Lenarda R, Olivo A, Schmid C. Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds. Acta biomater. 2006;2(2):191-199.
37. Christoffersen J, Christoffersen MR, Kolthoff N, Bärendholdt O. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone. 1997;20(1):47-54.
38. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. BONE RES. 2015;3:15005.
39. Peng S, Zhou G, Luk KD, Cheung KM, Li Z, Lam WM, et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. CELL PHYSIOL BIOCHEM. 2009;23(1-3):165-174.
40. Li Y, Li Q, Zhu S, Luo E, Li J, Feng G, et al. The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials. 2010;31(34):9006-9014.
41. Saidak Z, Marie PJ. Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. PHARMACOL THERAPEUT. 2012;136(2):216-226.
42. Fromigué O, Haï E, Barbara A, Petrel C, Traiffort E, Ruat M, et al. Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med. 2009;13(8b):2189-2199.
43. Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem cells. 2011;29(6):981-991.
44. Zhang W, Huang D, Zhao F, Gao W, Sun L, Li X, et al. Synergistic effect of strontium and silicon in strontium-substituted sub-micron bioactive glass for enhanced osteogenesis. Mater. Sci. Eng. C. 2018;89:245-255.
45. Yuan K, Chan Y-J, Kung K-C, Lee T-M. Comparison of osseointegration on various implant surfaces after bacterial contamination and cleaning: a rabbit study. INT J ORAL MAX IMPL. 2014;29(1).
46. Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27(11):2331-2339.
47. Coraça-Huber DC, Fille M, Hausdorfer J, Putzer D, Nogler M. Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titanium discs in vitro. J ORTHOP RES. 2014;32(1):175-177.
49. Gergely I, Zazgyva A, Man A, Zuh S, Pop T. The in vitro antibacterial effect of S53P4 bioactive glass and gentamicin impregnated polymethylmethacrylate beads. ACTA MICROBIOI IMM H. 2014;61(2):145-160.

50. Echezarreta-López M, Landin M. Using machine learning for improving knowledge on antibacterial effect of bioactive glass. Int. J. Pharm. 2013;453(2):641-647.

51. Phan TN, Buckner T, Sheng J, Baldeck J, Marquis R. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. ORAL MICROBIOI IMMUN. 2004; 19(1):31-38.

52. Moghanian A, Firoozi S, Tahriri M. Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass. Ceram. Int. 2017;43(17):14880-14890.

53. Liu J, Rawlinson SC, Hill RG, Fortune F. Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dent. Mater. J. 2016;32(3):412-422.

54. Ranga N, Poonia E, Jakhar S, Sharma AK, Kumar A, Devi S, et al. Enhanced antimicrobial properties of bioactive glass using strontium and silver oxide nanocomposites. J. Asian Ceram. Soc. 2019;7(1):75-81.

55. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). PNAS. 2002; 99(11):7687-7692.

56. Brauer DS, Karpukhina N, Kedia G, Bhat A, Law RV, Radecka I, et al. Bactericidal strontium-releasing injectable bone cements based on bioactive glasses. J R SOC INTERFACE. 2013;10(78):20120647.

57. Samadikuchaksaraei A, Gholipourmalekabadi M, Erfani Ezadyar E, Azami M, Mozafari M, Johari B, et al. Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. J BIOMED MATER RES A. 2016;104(8):2001-2010.

58. Johari B, Ahmadzadehzarajabad M, Azami M, Kazemi M, Soleimani M, Kargozar S, et al. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds. J BIOMED MATER RES A. 2016;104(7):1770-1778.

Figures

Figure 1

Macroscopic vault appearance of the defects, showing Gel-BG/Sr and Gel-BG Scaffolds and Control (unfilled) after A) 4; B) 8 and C) 12 weeks.
Figure 2

Histological examination (H&E staining) at 4, 8 and 12 weeks. IB (Intact Bone), NB (New Bone) (magnification ×40).

Groups	4W	8W	12W
Control			
Gel-BG/Sr			
Gel-BG			

Groups	4W	8W	12W
Control			
Gel-BG/Sr			
Gel-BG			
Figure 3

Histological examination (Trichorm-Masson staining) at 4, 8 and 12 weeks. IB; Intact Bone, NB; New Bone (magnification ×40).

	4W	8W	12W
Control	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)
Gel-BG/Sr	![Image](image4.png)	![Image](image5.png)	![Image](image6.png)
Gel-BG	![Image](image7.png)	![Image](image8.png)	![Image](image9.png)

Figure 4

Histological examination (Alizarin red staining), showing the stages of mineralization of formed tissue after implantation of scaffolds at 4, 8 and 12 weeks. The dotted line indicates the border between intact bone and scaffolds (Scale bar: 10 mm).