Order of precedence and age of Y-DNA haplotypes

M. Veselsky

Institute of Physics, Slovak Academy of Science, Bratislava, Slovakia

Abstract

A simple method, inspired by procedures used in physics of nuclear multifragmentation, allows to establish order of precedence and age of pairs of haplotypes separated by one mutation. For both haplotypes of the pair, searches for existing haplotypes, differing by increasing number of mutations, are carried out using a database. The resulting ratios of frequencies of haplotypes, found at given mutation distances, are compared to calculated probability ratios. The order of precedence and age of the pair of haplotypes can be deduced when the resulting ratios follow hyperbolic dependence. Method can be used with relatively small and not necessarily complete samples, using publicly accessible databases.

Introduction

The macromolecule DNA is a cornerstone of the life on Earth. The part of human DNA, contained in the Y chromosome, does not recombine and thus it transfers in the male line unchanged. However, it can mutate by spontaneous and irreversible changes in the order of individual nucleotides or their sequences, and one particular type of mutation leads to change of the number of repetitions of specific sections of the DNA in the locations called STR markers. The present knowledge on the subject implies that such mutation of DNA is a stochastic process which can be characterized by a rate of mutations per time and thus it can be described in analogy to physical phenomena such as the radioactive decay. Biological processes leading to such mutations are beyond the scope of this work and the term haplotype is restricted here to a set of numbers which can be changed as a result of mutations, according to quantitative laws described by a model introduced below.

Model

The frequency of mutations can be described by a constant called mutation rate, which is a direct equivalent of the decay rate in the radioactive decay. Mutation rate can be defined for each STR marker separately, however it is a common practice to define mutation rate for a set of STR markers called haplotype. We formulate initial condition that at the start of the process there exists \(N_0 \) copies of a unique haplotype within the studied population. In analogy to radioactive decay the number of copies of this initial haplotype in the population will evolve according to equation
\[N_0(t) = N_0(t = 0)e^{-\lambda t} \] (1)

where \(t \) is the time and \(\lambda \) is the mutation rate (per haplotype).

Since mutation rate is independent of the number of mutations, the number of haplotypes with one mutation \(N_1(t) \) can be determined using differential equation

\[\frac{dN_1(t)}{dt} + \lambda N_1(t) = \lambda N_0(t) \] (2)

which is an inhomogeneous linear differential equation and after substituting \(N_0(t) \) from equation (1) one obtains solution

\[N_1(t) = \lambda N_0(t=0)te^{-\lambda t} \] (3)

and in similar way one obtains solution for a number of haplotypes with \(m \) mutations \(N_m(t) \)

\[N_m(t) = \lambda^m N_0(t=0) \frac{t^m}{m!} e^{-\lambda t} \] (4)

for any \(m \geq 0 \). Obviously a probability can be obtained by dividing the equation (4) by a total number of haplotypes, which remains equal to initial number of haplotypes \(N_0(t=0) \)

\[P_m(t) = \frac{(\lambda t)^m}{m!} e^{-\lambda t} \] (5)

and one arrives to a Poissonian distribution of mutations at a given time \(t \) with mean and variance equal to \(\lambda t \). Thus in the present case the Poissonian distribution is not a statistical approximation but it represents analytical solution to the evolution of the system.

The Poissonian probabilities calculated using equation (5) are shown in Figure 1 as a family of lines representing probabilities of occurrence of \(m \) mutations in the sample at a given time. Time is expressed in units of \(t/\tau_\lambda \) where the average interval between two mutations is obtained as \(\tau_\lambda = 1/\lambda \).

One easily recognizes dependence for \(m = 0 \) (see equation (1)), an exponential which is represented by a straight line in the logarithmic scale. Other lines follow for increasing values of \(m \) and peak correspondingly at time \(t/\tau_\lambda = m \).

Since the most characteristic property of biological systems is their fast growth under favorable condition, it is worthwhile to note that while for simplicity the model was formulated for a population with constant total number of haplotypes it can be easily modified for exponential growth, even with time-dependent growth rate, and the resulting Poissonian distribution (5) will remain unchanged when the analogue of the expression for \(N_m(t) \) in equation (4) will be normalized by a total number of haplotypes at a given time.
Test with data

Test was performed with a single Y-DNA haplotype (originating in Slovakia, haplogroup determined as R1b), which is represented by a number of repetitions of nucleotide sequences in 17 specific locations on Y-chromosome (STR markers). Using this haplotype (referred as haplotype A), a search for haplotypes distanced by Δm mutations was performed using the database Ysearch.org [1], which contains around 90000 individual records. The distributions of discovered haplotypes with specific mutation distances integrated over the 17 STR markers are shown in Fig. 2.

Lines represent the Poissonian distributions, expressed by equation (5), for a given number of mutations at times increasing by a constant step of τ_λ. The five-pointed asterisks represent number of occurrences of haplotypes with a given mutation distance Δm, originating from the Slavic countries, while diamonds represent a number of occurrences without geographical restrictions, dominantly haplotypes from British Isles (mostly from Scotland and Ireland) and USA. Squares represent a number of occurrences without geographical restrictions, obtained using an alternative database Ybase.org [2], again dominated by haplotypes from British Isles and USA.

It appears that the results for the Slavic countries represent a lower mean number of mutations than the results without geographical restrictions, however more detailed analysis is difficult due to uncertainty in selection of proper normalization of incomplete distributions, which further can be convolutions of several components. The comparison of results obtained using different databases shows consistent agreement, demonstrating reproducibility of the procedure.
Figure 2: Distribution of mutation distances. Lines - distributions calculated using equation (5) for constant time step τ_λ. Five- and six-pointed asterisks - haplotypes from Slavic countries, distanced from haplotypes A and B by Δm mutations, found in database Ysearch.org, diamonds and squares - all haplotypes, distanced from the haplotype A by Δm mutations, found in databases Ysearch.org and Ybase.org, crosses - all haplotypes, distanced from the haplotype B by Δm mutations, found in database Ysearch.org.

For reference, analogous search was performed for a haplotype with mutation distance $\Delta m = 1$, discovered in the database YHRD.org [3] in six records distributed in countries with Slavic population (further referred as haplotype B). Results of search using the database Ysearch.org are shown for the Slavic countries and without geographical restrictions, as six-pointed asterisks and crosses, respectively. Comparison with the searches, performed using the haplotype A, indicates shorter mean mutation distance, however it is difficult to make unambiguous quantitative conclusions without proper normalization.

Probability ratios and hyperbolic scaling

The situation in Figure 2 illustrates how difficult is to make quantitative conclusions without proper normalization, due to incomplete mutation distributions and possible convolution of several components. Situation is quite similar to investigations of nuclear reactions, where reconstructed distributions of observables represent convolutions of collisions at various impact parameters evolving by different reaction mechanisms on various time scales. One possibility to circumvent these difficulties is to use relative observables such as yield ratios, between yields of various reaction products in a given reaction or between yields of identical products in two different reactions. An overview of methods
Figure 3: Left panel - Ratios of numbers of haplotypes with a given mutation distance Δm for pairs of haplotypes $A-B$ (asterisks) and $C-A$ (squares) found in the search restricted to Slavic countries, lines - calculated probability ratios P_m/P_{m+1} for $m = 0 - 8$, expressed as a function of the mean number of mutations. Right panel - As in the left panel except that the search is without geographical restrictions.

can be found in [4].

In the present case, one can attempt to introduce analogous procedure. As a starting point, the equation (5) can be used to calculate the ratios of Poissonian probabilities for $m + 1$ and m mutations at a given time t

$$\frac{P_{m+1}(t)}{P_m(t)} = \frac{\lambda t}{m+1} = \frac{\frac{\lambda t}{\tau_\lambda}}{m+1}$$

which leads to characteristic hyperbolic time dependences documented in Figure 3 by a set of lines. Such dependences reflect evolution of mutation distance distributions in an independent system starting from a single haplotype, described by equations (1) – (5), for a constant time step τ_λ. In principle one could consider also inverted ratios, leading to straight lines with decreasing slopes, nevertheless the representation via hyperboles is more sensitive especially for smaller samples and mutation distances.

A corresponding test with data can be performed by calculating ratios of mutation distance distributions, shown in Figure 2, obtained for a pair of haplotypes A and B, which differ by one mutation. The resulting dependences can be compared to model values calculated using equation (6) and the difficulties with proper normalization can thus be solved. This again reminds procedures often employed in nuclear physics, where conditions at specific stage of nuclear multifragmentation, or relativistic nucleus-nucleus collisions at the LHC, are reconstructed from final observables using the appropriate
model assumptions. The results of the procedure in the present case are shown in Figure 3. In the left panel of Figure 3, the asterisks represent the results for haplotypes A and B within Slavic countries. The squares represent analogous results for a pair of haplotypes, where the haplotype A is compared to the only other haplotype with mutation distance $\Delta m = 1$, found in the database YHRD.org in one record (further referred as C).

It is apparent that both dependences assume the expected hyperbolic shapes and thus represent the behavior described by the model described above. Specifically such hyperbolic scaling of the ratios $P_{m+1}(t)/P_m(t)$ means that these ratios are consistent with evolution from a single haplotype in an independent system. The dependence for the haplotype pair $A–B$ is located between two hyperboles representing the times 3 and 4 τ_λ, except for the last point, which will be discussed later. This indicates that within given R1b population the two haplotypes are at the initial stage of the haplotype tree which evolves independently during a time $3 – 4 \tau_\lambda$ since the moment when the haplotype A emerged or eventually when the population carrying this haplotype split from larger R1b population, as a result of migration. If the order of mutations would be opposite, the dependence would assume a corresponding straight line. The dependence for the haplotype pair $C–A$ is located close to the hyperbole representing the evolution time 5 τ_λ and it can be considered as representing the mutation preceding the mutation represented by the haplotype pair $A–B$. The difference of the two ”experimental” hyperboles appears by 50 % larger then a mean time gap between mutations, however one has to keep in mind that mutation is a stochastic process and thus it does not happen at equal time intervals.

On the right panel of the Figure 3, asterisks represent again the results for the haplotype pair $A–B$ while squares represent the results for the haplotype pair $C–A$, however in this case the search is carried out without geographical restrictions (dominated by haplotypes from British Isles). Interestingly, in this case the dependence for the haplotype pair $A–B$ is consistent with hyperbole representing the evolution time 6 τ_λ and it appears that the common ancestor of haplotypes found without geographical restrictions is older from the common ancestor of haplotypes found in searches restricted to Slavic countries by 2 – 3 τ_λ. This can be caused by admixture from the descendants of haplotypes closely related to haplotypes $A–B$, which at mutation distances $\Delta m = 3$ start to dominate the trend, as documented by the breakdown of the hyperbolic dependence without geographic restrictions at $\Delta m = 2$ where haplotypes from British Isles are not dominant. Thus common ancestor found at 6 τ_λ is not necessarily the haplotype pair $A–B$ but some related haplotype, differing by one mutation step early in the sequence, which evolved separately, most probably in Western Europe.

Reciprocally, the dependence for the haplotype pair $A–B$ obtained without geographical restrictions also appears to explain the fact that in the search restricted to Slavic countries hyperbolic scaling breaks down at $\Delta m = 5$, since apparently at this mutation distance the ratio reverts to the trend obtained in the search without geographical restrictions shown in the right panel.

The dependence for the haplotype pair $C–A$, obtained without geographical restrictions (squares), does not exhibit hyperbolic shape, instead it appears to initially grow and one can consider it as a mixture of its descendant haplotypes and descendants of preceding or contemporary haplotypes, as one would expect if the haplotype C was close to the center of haplotype distribution at the time of its emergence or separation from the
rest of population. Thus, the haplotype C appears to be a R1b haplotype, transferred by migration or emerging just thereafter and admixed into Slavic population, of which the haplotypes A and B appear to be subsequent descendants.

Using the literature [5], and assuming interval of 30 years per generation, the value of τ_λ can be estimated to approximately 830 years so the time of independent evolution of the sequence of R1b haplotypes starting by haplotype C among the predecessors of contemporary Slavs, determined as $5 \tau_\lambda$, can be estimated to 4150 years with uncertainty of about 400 years ($0.5 \tau_\lambda$). Furthermore, the age of the common ancestor of all considered R1b haplotypes within European population, determined as $6 \tau_\lambda$, can be estimated as 5000 years, again with uncertainty of about 400 years.

Since the available data are dominated by haplotypes from British Isles, one can try further analysis of this sample by selecting pairs of subsequent haplotypes from this area. Two such pairs were identified among the results of the searches performed using the haplotypes A–C, first one represented by the records N43KH and GXD83 and second one by YNGCV and SAHFV. Both pairs are relatively less frequent within the European R1b populations and thus can be rather old. Left panel of Figure 4 shows ratios of numbers of haplotypes with a given mutation distance Δm for these two pairs of haplotypes (squares and asterisks, respectively) found in the nonrestricted search at Ysearch.org and one can see a similar situation to the right panel of Figure 3. The pair represented by asterisks
appears to represent similar age as the common ancestor found in the search with pair of haplotypes A and B (5000 years), while the other pair is younger by approximately $2 \tau_\lambda$, which results in age 3300 years. Thus there can be some age structure in this population, possibly as a result of subsequent waves of migrations into British Isles. This possibility can be reflected by the structure of the haplotype distribution. A relatively distant haplotype from outside of the contemporary haplotype distribution can serve as a probe and possibly reveal such structure. Squares in the right panel of Figure 4 show distribution of mutation distances from a rather old haplotype C, obtained by search at Ysearch.org. Comparison with shapes of calculated distributions (lines) appears to demonstrate that the mutation distance distribution may be a convolution of at least two components with unequal total weights, of which the younger (more distant) one appears to dominate. This could also explain irregularity in the hyperbolic dependence represented by asterisks in the left panel of Figure 4 since the left part of the dependence is apparently older and possibly further from the centre of contemporary haplotype distribution.

Figure 5: Ratios of numbers of haplotypes with a given mutation distance Δm from two $\Delta m = 1$ pairs of R1b haplotypes, found in nonrestricted search at Ysearch.org. One haplotype of each pair belongs to historical person, Nikolai II Romanov and Tutankhamon (squares and asterisks), lines - calculated probability ratios P_m/P_{m+1} for $m = 0 - 9$, expressed as a function of the mean number of mutations.

Based on the above analysis, one can also try to investigate available R1b haplotypes, attributed to historical persons. In Figure 5 are shown ratios of numbers of haplotypes with a given mutation distance Δm from two $\Delta m = 1$ pairs of R1b haplotypes, found in nonrestricted search at Ysearch.org. One haplotype of each pair belongs to historical person, Nikolai II Romanov and Tutankhamon (squares and asterisks).
The haplotype of Nikolai II Romanov (GXK2B) is complemented by a nearest haplotype from a person of Russian origin, possibly a member of Romanov family (7UFPX), and the resulting dependence, obtained for this pair in geographically unrestricted search (dominated by haplotypes from Western Europe), is close to the one obtained using the younger of the two haplotype pairs from British Isles (squares in the right panel of Figure 4) and thus age of the pair of haplotypes can be estimated to 3300 years as a time of its existence within population of Western Europe. This is indeed consistent with German origin of the male line of Romanov family since 18th century.

Since the haplotype of Tutankhamon (ER7RQ) is rather distant from the distribution of existing R1b haplotypes in the database, it was complemented by a haplotype claimed to belong to remains found in archeological location in Lebanon, which is mentioned in the supplementary commentary to the record in the Ysearch.org database. Position on Figure 5 apparently means that common ancestor with the related haplotypes in the distribution of European R1b lived before up to $8 - 9 \tau_{\lambda}$ ($6500 - 7500$ years), which might be the time when the ancestors of Tutankhamon split from the ancestors of population, which now lives in Europe. Obviously, to claim that the haplotype of Tutankhamon is the haplotype of the common ancestor would be rather far reaching since data at smaller mutation distances are missing and thus accidental later closer approach of branches in the mutation tree can not be excluded. A larger systematics of R1b haplotypes from Middle East would be helpful in further analysis.

Concerning the method presented here, analogy of DNA mutation to radioactive decay and chemical kinetics was employed already by A. Klyosov [6]. His method uses equation (1) to determine age of common ancestor of the whole sample of haplotypes. This is achieved by comparison of the total number of haplotypes in the sample to the number of mutations within the sample, which is obtained by constructing detailed mutation trees for the whole sample. In mathematical sense such method relies on integral observables while the method presented here uses differential observables and can relate individual haplotypes to the bulk of the haplotype distribution or its subparts. Ultimately both methods are complementary. In his work [7], after applying his method separately to R1b populations in various countries, Klyosov arrives to conclusion that on its migration to Europe the R1b population split once at about 6000 years ago in the territory of Asia Minor while its final expansion into whole of Western and Central Europe, and separation into local populations occurred around 4000 years ago during expansion of the archeological Bell Beaker culture. These times of migrations, resulting in splitting of R1b population, are in principle consistent with the results obtained in this work. Both methods thus appear in mutual agreement. The method presented in this work is specific by its capability to perform quick age estimates for individual haplotypes. It is suitable specifically for unique haplotypes away from the centre of haplotype distributions, while for more common haplotypes proper choice of the $\Delta m = 1$ haplotype will be necessary.

Klyosov in his work [6] mentions occurrence of reverse mutations, which influence the mutation counting and thus distort the final time estimate. The model, presented in the present work, relies on comparison of observables of subsequent mutation stages and the results can not be dramatically influenced by this circumstance. One can still introduce a minor correction in the form of reduced mutation rate, for a set of 17 STR markers such correction will be less than 2 % per generation.
In summary, the method, inspired by analogous procedures used in physics of nuclear multifragmentation, allows to establish order of precedence and determine age of pairs of haplotypes separated by one mutation. For both haplotypes of the pair, searches for existing haplotypes, differing by increasing number of mutations, are carried out using a haplotype database and the resulting ratios of frequencies of haplotypes, found at given mutation distances, are compared to calculated probability ratios. The order of precedence and age of the pair of haplotypes can be deduced when resulting ratios follow hyperbolic dependence. The method provides a simple tool which can be used with relatively small and not necessarily complete samples, available in publicly accessible databases.

References

[1] http://www.ysearch.org/
[2] http://www.ybase.org/
[3] http://www.yhrd.org/
[4] M. Veselsky, Isotopic trends in nuclear multifragmentation, Physics of Elementary Particles and Atomic Nuclei 36 (2005) 213, http://www1.jinr.ru/Pepan/2005-v36/v-36-2/5-eng.html
[5] L. Gusmao et al., Mutation rates at Y chromosome specific microsatellites, Human Mutation 26 (2005) 520.
[6] A.A. Klyosov, DNA Genealogy, mutation rates, and some historical evidences written in Y-chromosome. I. Basic principles and the method, J. Genetic Genealogy, 5 (2009) 186.
[7] A. Klyosov, Proceedings of Russian Academy of DNA genealogy, Vol. 3 (2010) 2, in Russian.