The Sandor-Smarandache function with a prime factor
Abdullah-Al-Kafi Majumdar, Hary Gunarto and Abul Kalam Ziauddin Ahmed

Yamanote-cho, Beppu-shi, Japan

ARTICLE INFO

Received: 15 May 2022
Revised: 9 June 2022
Accepted: 12 June 2022

Keywords: Sandor-Smarandache function, Diophantine equation, arithmetic function, prime factor.

ABSTRACT

The Sandor-Smarandache function, denoted by SS(n), is a newly-introduced Smarandache-type arithmetic function. This paper focuses on the functions SS(30p), SS(60p), SS(210p), SS(420p) and SS(840p), where p (≥ 2) is a prime. At the end of the paper, four tables, giving the values of SS(30p), SS(60p), SS(210p) and SS(420p) for the first 200 primes, calculated on a computer, are given.

Introduction

The Sandor-Smarandache function, proposed by Sandor (2001), is denoted by SS(n) and is defined as follows: For n ≥ 7,

$$SS(n) = \max \left\{ k \in \mathbb{N} : 1 \leq k \leq n-2, \ n \text{ divides } \binom{n}{k} \right\}, \quad (1)$$

where by convention,

$$SS(1) = 1, \ SS(2) = 1, \ SS(6) = 1. \quad (2)$$

Let, for 0 ≤ k ≤ n,

$$C(n, k) = \binom{n}{k} = \frac{n(n-1)(n-2) \ldots (n-k+1)}{k!}. \quad (3)$$

Then, the problem of finding SS(n) may be stated as follows: Given an integer n (≥ 7), find the minimum integer k such that k! divides the number \((n-1)(n-2)\ldots(n-k+1)\), where 1 ≤ k ≤ n - 2. With this minimum k, SS(n) = n−k.

Thus, to find SS(8), note that 2! does not divide 7, but 3! = 2 × 3 divides 7 × 6. Hence, the minimum k such that k! divides 7 × 6 is 3; consequently, SS(8) = 8−3= 5.

An extensive study of the function was made by Majumdar (2018). Later, the problem was studied, to some extent, by Majumdar (2019), Islam et al. (2021), Majumdar and Ahmed (2021), Islam et al. (2021), and Islam et al. (2022). The following properties are known about SS(n).

Lemma 1: SS(n) = n − 2 if and only if n (≥ 3) is an odd integer.

Lemma 2: SS(n) = n − 3 if and only if n (≥ 4) is an even integer, not divisible by 3.

From Lemma 1 and Lemma 2, it follows that SS(n) ≤ n − 4 if n is of the form n = 6m, m ≥ 1 being any integer.

This paper considers functions of the forms SS(30p), SS(60p), and SS(210p), where p is a prime. This is done in the next section. In the analysis of the problem, the following results would be needed.

Lemma 3: Let a, b, and c be any three integers. The linear Diophantine equation \(ax + by = c\) has a solution if and only if \(d = \gcd(a, b)\) divides c. Moreover, if \((x_0, y_0)\) is a solution, then the general solution is given parametrically by \(x = x_0 + \left(\frac{b}{d}\right)t\), \(y = y_0 + \left(-\frac{a}{d}\right)t\) for any integer t.

Proof: See, for example, Gioia (2001, Theorem 12.2).

Lemma 4: For any integer m (≥ 1), the product of m consecutive integers is divisible by m!.

Proof: See Hardy and Wright (2002, Theorem 74).
Lemma 3 gives the complete solution of the linear Diophantine equation of the form \(ax + by = c \). Recall that a Diophantine equation involves two or more variables for which positive integer solutions are required.

Main results
First, the following result is proved, which gives an explicit form of \(SS(30p) \).

Lemma 5: Let \(p \geq 2 \) be a prime. Then,

\[
SS(30p) = \begin{cases}
30p - 4, & \text{if } p = 4s + 3, \ s \geq 0 \\
30p - 7, & \text{otherwise}
\end{cases}
\]

Proof: Consider the following expression:

\[
C(30p, 4) = 30p \left[\frac{(30p-1)(15p-1)(10p-1)}{4} \right].
\]

Now, the problem is to find the condition such that the term inside the square bracket is an integer. In other words, the problem is to find the condition on \(p \) such that the term inside the square bracket is an integer. Now, \(p \) may be of one of the two forms, namely, \(p = 4s + 3 \) (for some integer \(s \geq 0 \)), and \(p = 4t + 1 \) (for some integer \(t \geq 1 \)). If \(p = 4s + 3 \), then

\[
15p - 1 = 4(15s + 11),
\]

This shows that 4 divides \(15p - 1 \), so the term inside the square bracket is an integer.

To complete the proof, consider the case when \(p = 4t + 1 \). Note that, in this case, 4 does not divide \(15p - 1 \). The expression

\[
C(30p, 5) = 30p \left[\frac{(30p-1)(15p-1)(10p-1)(15p-2)}{2 \times 5} \right]
\]

shows \(SS(30p) \neq 30p - 5 \) for any prime \(p \geq 2 \). Also, from the expression for \(C(30p, 6) \)

\[
C(30p, 6) = 30p \left[\frac{(30p-1)(15p-1)(10p-1)(15p-2)(6p-1)}{3 \times 4} \right]
\]

it follows that \(SS(30p) \neq 30p - 6 \) for any prime \(p \geq 3 \).

Now, consider the expression

\[
C(30p, 7) = 30p \left[\frac{(30p-1)(15p-1)(10p-1)(15p-2)(6p-1)(5p-1)}{2 \times 7} \right].
\]

Here, one of the numbers, \(15p - 2 \) and \(15p - 1 \), is even, depending on whether \(p = 2 \) or \(p \) is odd. Also, \(p \neq 7 \) (since by part (1) of the lemma, \(SS(210) = 206 \)). Thus, the term inside the square bracket is an integer by virtue of Lemma 4. All these establish the lemma.

The lemma below finds \(SS(60p) \).

Lemma 6: Let \(p \geq 2 \) be a prime. Then,

\[
SS(60p) = \begin{cases}
30p - 6, & \text{if } p = 6s + 5, \ s \geq 0 \\
60p - 7, & \text{if } p = 6t + 1, \ t \geq 2
\end{cases}
\]

Proof: Consider the following expression:

\[
C(60p, 4) = 60p \left[\frac{(60p-1)(30p-1)(20p-1)}{4} \right].
\]

Clearly, the numerator of the term inside the square bracket is not divisible by 4. Also, the expression

\[
C(60p, 5) = 60p \left[\frac{(60p-1)(30p-1)(20p-1)(15p-1)}{5} \right]
\]

shows that the term inside the square bracket cannot be an integer. Thus, for any prime \(p \),

\(SS(60p) \neq 60p - 4 \), \(SS(60p) \neq 60p - 5 \). Now, consider the expression:

\[
C(60p, 6) = 60p \left[\frac{(60p-1)(30p-1)(20p-1)(15p-1)(12p-1)}{6} \right].
\]

Note that, \(p \) is either of the form \(p = 6s + 5 \) (for some integer \(s \geq 0 \)), or it is of the form \(p = 6t + 1 \) (for some integer \(t \geq 0 \)). With \(p = 6s + 5 \),

\[
20p - 1 = 3(40s + 33),
\]

so that \(20p - 1 \) is divisible by 3; also, with this \(p \), \(15p - 1 \) is even. Thus, the term inside the square bracket is an integer.

Next, consider the following expression:

\[
C(60p, 7) = 60p \left[\frac{(60p-1)(30p-1)(20p-1)(15p-1)(12p-1)(10p-1)}{7} \right].
\]

Here, by Lemma 4, the term inside the square bracket is an integer if and only if \(p \neq 7 \). All these complete the proof of the lemma.

It may be mentioned here that, in Lemma 6, \(p \) can be any prime except 7. Thus, Lemma 6 is supplemented by the value \(SS(420) = 412 \).

The next lemma deals with \(SS(210p) \).

Lemma 7: Let \(p \geq 2 \) be a prime. Then,
Next, consider the expression below:

$$C(210p,4) = 210p \left[\frac{(210p-1)(105p-1)(70p-1)}{4} \right]$$.

Note that, if $p = 4s + 1$, then $105p - 1 = 4(105s + 26)$, this shows that $105p - 1$ is divisible by 4, so the term inside the square bracket is an integer. This establishes part (1) of the lemma.

Next, let $p = 4t + 3$. The expression

$$C(210p,5) = 210p \left[\frac{(210p-1)(105p-1)(70p-1)(105p-2)}{2\times5} \right]$$

shows that $SS(210p) \neq 210p - 5$ for any prime p, from the expression

$$C(210p,6) = 210p \left[\frac{(210p-1)(105p-1)(70p-1)(105p-2)(42p-1)}{2\times6} \right]$$

(since 4 divides neither $105p - 1$ nor $105p - 2$) it follows that $SS(210p) \neq 210p - 6$ for any prime p, and the expression

$$C(210p,7) = 210p \left[\frac{(210p-1)(105p-1)(70p-1)(105p-2)}{2\times7} \times \frac{(105p-2)(42p-1)(35p-1)}{16} \right]$$

shows that $SS(210p) \neq 210p - 7$ for any prime p, since by Lemma 4, the numerator of the term inside the square bracket is not divisible by 7. So, consider

$$C(210p,8) = 210p \left[\frac{(210p-1)(105p-1)(70p-1)}{16} \times \frac{(105p-2)(42p-1)(35p-1)(30p-1)}{16} \right]$$.

If $p = 8s + 3$, then $105p - 1 = 2(420s + 157), 35p - 1 = 8(35s + 13)$, so that, the term inside the square bracket is an integer if $p = 8s + 3$.

Next, consider the expression:

$$SS(210p) = \begin{cases} 210p - 4, & \text{if } p = 4s + 1, \ s \geq 1 \\ 210p - 8, & \text{if } p = 8t + 3, \ t \geq 0 \\ 210p - 9, & \text{if } p = 72u + 31, \ u \geq 0 \\ 210p - 11, & \text{otherwise} \\ \end{cases}$$

Proof: Consider the expression below:

$$C(210p,9) = 210p \left[\frac{(210p-1)(105p-1)(70p-1)}{8\times9} \times \frac{(105p-2)(42p-1)(35p-1)(30p-1)(105p-4)}{16} \right]$$.

Now, the problem is to find the condition such that the term inside the square bracket is an integer. Looking at the terms in the numerator, it is clear that, one possibility is that 4 divides $35p - 1$ (in which case, $105p - 1$ is divisible by 2) and 9 divides $70p - 1$.

By inspection, it is found that, when $p = 72s + 31$, then

$$35p - 1 = 4(630s + 271),$$

$$70p - 1 = 9(560s + 241),$$

so that $(105p - 1)(35p - 1)(70p - 1)$ is divisible by 72. The second possibility is that 36 divides $35p - 1$.

With $p = 72s + 71$,

$$35p - 1 = 36(70r + 69),$$

so that $(105p - 1)(35p - 1)$ is divisible by 72. All these prove part (2) of the lemma.

Next, consider the expression below:

$$C(210p,10) = 210p \left[\frac{(210p-1)(105p-1)(70p-1)(105p-2)}{3\times5\times6} \times \frac{(42p-1)(35p-1)(30p-1)(105p-4)(70p-3)}{16} \right]$$.

Here, in order that the term inside the square bracket is an integer, a necessary condition is that $42p - 1$ must be divisible by 5. This leads to the Diophantine equation $42p - 1 = 5x, \ x \geq 0$ (see Lemma 3). The second condition that must be satisfied is that $35p - 1$ must be divisible by 8.

Since, $35p - 1 = 175s + 104$, it follows that $x = 8$, so that $p = 40s + 3$, which violates part (2) of the lemma.

Finally, consider the following expression for $C(210p,11)$:

$$210p \left[\frac{(210p-1)(105p-1)(70p-1)(105p-2)(42p-1)}{8\times3\times41} \times \frac{(35p-1)(30p-1)(105p-4)(70p-3)(21p-1)}{16} \right]$$.

Now, by Lemma 4, $(70p - 1)(35p - 1)(70p - 3)$ is divisible by 3. Also, it may easily be verified that $(105p - 1)(35p - 1)(21p - 1)$ is divisible by 8 if p is either of the form $p = 4s + 1$ or of the form $p = 4t + 3$.

Moreover, \(p \neq 11 \). Hence, the term inside the square bracket is an integer, which was intended to prove.

The lemma below deals with \(SS(420p) \).

Lemma 8: Let \(p \geq 2 \) be a prime. Then

\[
420p - 6, \quad \text{if } p = 6s + 5, \ s \geq 0 \\
420p - 8, \quad \text{if } p = 8t + 1, \ t \neq 3x + 2 \\
SS(420p) = \begin{cases}
420p - 9, & \text{if } p = 18u + 13, \ u \neq 4y + 2 \\
420p - 10, & \text{if } p = 40v + 29, \ v \neq 3a, v \neq 9b + 5 \\
420p - 11, & \text{otherwise}
\end{cases}
\]

Proof: The expressions

\[
C(420p, 4) = 420p \left\lfloor \frac{(420p-1)(210p-1)(140p-1)}{4} \right\rfloor \\
C(420p, 5) = 420p \left\lfloor \frac{(420p-1)(210p-1)(140p-1)(105p-1)}{5} \right\rfloor
\]

show that, for any prime \(p \),

\[SS(420p) \neq 420p - 4, \ SS(420p) \neq 420p - 5. \]

So, consider the expression:

\[
C(420p, 6) = 420p \left\lfloor \frac{(420p-1)(210p-1)(140p-1)(105p-1)(84p-1)}{6} \right\rfloor
\]

Here so that the term inside the square bracket is an integer, \(p \) must be odd, and 3 must divide \(140p - 1 \). Now, the solution of the Diophantine equation \(140p - 1 = 3 \alpha \) is \(p = 3x + 2 \). To guarantee that \(p \) is odd, \(x \) must be odd. Therefore, by writing \(x = 2t + 1 \), the desired expression of \(p \) is obtained.

The expression

\[
C(420p, 7) = 420p \left\lfloor \frac{(420p-1)(210p-1)(140p-1)}{7} \right\rfloor \times \\
(105p-1)(84p-1)(70p-1)
\]

shows \(SS(420p) \neq 420p - 7 \) for any prime \(p \). So, consider

\[
C(420p, 8) = 420p \left\lfloor \frac{(420p-1)(210p-1)(140p-1)}{8} \right\rfloor \times \\
(105p-1)(84p-1)(70p-1)(60p-1)
\]

Here, the term inside the square bracket is an integer if and only if 8 divides \(105p - 1 \). Thus, \(p \) must satisfy the equation \(105p - 1 = 8 \alpha \), with the solution \(p = 8t + 1 \ (t \geq 2 \text{ being any integer}) \). Now, considering the Diophantine equation \(8t + 1 = 6a + 5 \), using Lemma 3, the solution is found to be \(t = 3x + 2 \ (x \geq 0 \text{ being any integer}) \).

Next, consider the expression:

\[
C(420p, 9) = 420p \left\lfloor \frac{(420p-1)(210p-1)(140p-1)}{9} \right\rfloor \times \\
(105p-1)(84p-1)(70p-1)(60p-1)(105p-2)
\]

Now, note that, one of 105p - 1 and 105p - 2 is even. Thus, the term inside the square bracket is an integer if and only if 9 divides 70p - 1. This leads to the Diophantine equation \(70p - 1 = 9 \alpha \), whose solution is \(p = 9x + 4 \). In order to guarantee that \(p \) is odd, \(x \) is replaced by \(2u + 1 \), to get \(p = 18u + 13 \). To exclude common values, the Diophantine equations \(18u + 13 = 6a + 5 \), and \(18u + 13 = 8b + 1 \) are to be considered.

By Lemma 3, the first equation has no solution, while the solution of the second equation is \(u = 4x + 2 \ (x \geq 0 \text{ being any integer}) \).

Now, consider the expression:

\[
C(420p, 10) = 420p \left\lfloor \frac{(420p-1)(210p-1)(140p-1)(105p-1)}{10} \right\rfloor \times \\
(84p-1)(70p-1)(60p-1)(105p-2)(140p-3)
\]

Here, in order that the term inside the square bracket is an integer, the only possibility is that 5 divides \(84p - 1 \) and 4 divides \(105p - 1 \). Thus, for some integers \(\alpha \) and \(\beta \),

\[84p - 1 = 5 \alpha, \ 105p - 1 = 4 \beta, \]

with the solutions \(p = 5x + 4 \) and \(p = 4y + 1 \) respectively. Now, the combined equation is \(5x + 4 = 4y + 1 \), whose solution is \(x = 4z + 1 \), so that, finally, \(p = 5(4z + 1) + 4 = 20z + 9 \). Next, the equation \(20z + 9 = 8b + 1 \). This shows that \(z \) must be even. Therefore, writing \(z = 2v + 1 \), finally, \(p = 20(2v + 1) + 9 = 40v + 29 \). Considering the equations \(40v + 29 = 6a + 5 \) and \(40v + 29 = 18c + 13 \), the solutions are found to be \(v = 3a \) and \(v = 9b + 5 \) respectively, \(a \geq 0 \) and \(b \geq 0 \) being any integers.

Finally, consider the expression:

\[
C(420p, 11) = 420p \left\lfloor \frac{(420p-1)(210p-1)(140p-1)(105p-1)}{11} \right\rfloor \times \\
(84p-1)(70p-1)(60p-1)(105p-2)(42p-1)
\]

Here, \(p \neq 11 \). Hence, the term inside the square bracket is an integer.

The lemma below finds \(SS(840p) \).
Lemma 9: Let \(p \geq 2 \) be a prime. Then,
\[
SS(840p) = \begin{cases}
840p - 9, & \text{if } p = 9s + 1, s \geq 0 \\
840p - 10, & \text{if } p = 10s + 7, s \geq 0 \\
840p - 11, & \text{otherwise}
\end{cases}
\]

Proof: From the expressions of \(C(840, 4), C(840, 5), C(840, 6), C(840, 7), \) and \(C(840, 8), \) it can be seen that, for any prime \(p, \)
\[
SS(840p) \neq 840p - 4, SS(840p) \neq 840p - 5, \\
SS(840p) \neq 840p - 6, SS(840p) \neq 840p - 7, \\
SS(840p) \neq 840p - 8.
\]

So, consider the expression
\[
C(840p, 9) = 840\left[\frac{(840p-1)(420p-1)(280p-1)}{9} \times \\
(210p-1)(168p-1)(140p-1)(120p-1)(105p-1)\right].
\]

Clearly, the term inside the square bracket is an integer if and only if either \(9 \) divides \(280p - 1 \) or \(9 \) divides \(140p - 1 \). The resulting equations are \(280p - 1 = 9\alpha \) and \(140p - 1 = 9\beta \), whose solutions are \(p = 9s + 1 \) and \(p = 9t + 2 \) respectively.

Next, consider
\[
C(840p, 10) = 840\left[\frac{(840p-1)(420p-1)(280p-1)(210p-1)}{2 \times 3 \times 5} \times \\
(168p-1)(140p-1)(120p-1)(105p-1)(280p-3)\right].
\]

Here, so that the term inside the square bracket is an integer, \(5 \) must divide \(168p - 1 \); moreover, \(p \) must be odd. Now, the solution of the Diophantine equation \(168p - 1 = 5\alpha \) is \(p = 5x + 2 \). In order to guarantee that \(p \) is odd, \(x \) is replaced by \(2s + 1 \) to get the desired result.

Finally, consider
\[
C(840p, 11) = 840\left[\frac{(840p-1)(420p-1)(280p-1)(210p-1)}{3 \times 11} \times \\
(168p-1)(140p-1)(120p-1)(105p-1)(280p-3)(84p-1)\right].
\]

Here, since \(p \neq 11 \), it follows that the term inside the square bracket is an integer.

Conclusions
This paper derives the explicit forms of \(SS(30p), SS(60p), SS(210p) \) and \(SS(420p), \) where \(p \) is a prime. It is found that, surprisingly, \(SS(30p) \) and \(SS(60p) \) behave differently. For example, in \(SS(30p) \), the minimum integer \(k \) such that \(30p \) divides \((30p, k) \) can be 4 and 7 only (depending on \(p \)), while the only possible values of the minimum \(k \) in \(SS(60p) \) are 6 and 7. Again, in \(SS(210p) \) (depending on \(p \)), the minimum \(k \) can only be one of the four possible values, namely, 4, 8, 9, and 11, whereas the minimum \(k \) in \(SS(420p) \) is five in number, namely, 6, 8, 9, 10, and 11.

The accompanying tables give the values of \(SS(30p), SS(60p), SS(210p), \) and \(SS(420p) \) for the first 200 primes, calculated on a computer, using the formula (3) for the binomial coefficients.

Conflict of interest
The authors declare that there is no conflict of interest regarding the publication of this article.

References
Gioia AA. The Theory of Numbers: An Introduction, Dover Publications Inc., USA, 2001.

Hardy GH and Wright EM. An Introduction to the Theory of Numbers, Oxford Science Publications, 5th Edition, 2002.

Islam SMS and Majumdar AAK. On some values of the Sandor- Smarandache function. J. Sci. Res. 2022; 14(1): 45-65.

Islam SMS and Majumdar AAK. Some results on the Sandor-Smarandache function. J. Sci. Res. 2021; 13(1): 73-84.

Islam SMS, Gunarto H and Majumdar AAK. On the Sandor-Smarandache function. J. Sci. Res. 2021; 13(2): 439-454.

Majumdar AAK and Ahmed AKZ. A note on the Sandor-Smarandache function. J. Bangladesh Acad. Sci. 2021; 45(2): 255-258 (Short Communication).

Majumdar AAK. On some values of the Sandor-Smarandache function. Ganit: J. Bangladesh Math. Soc. 2019; 39: 15-25.

Majumdar, AAK. Smarandache Numbers Revisited, Pons Publishing House, Belgium, 2018.

Sandor J. On a new Smarandache type function, Smarandache Notions J. 2001; 12: 247-248.
Table 1. Values of $SS(30p), p$ is a prime

p	SS(n)	p	SS(n)	p	SS(n)	p	SS(n)	
1	23	173	5183	409	12263	659	19766	941
2	53	179	5366	419	12566	661	19823	947
3	86	181	5423	421	12623	673	20183	953
5	143	191	5726	431	12926	677	20303	967
7	206	193	5783	433	12983	683	20486	971
11	326	197	5903	439	13166	691	20726	977
13	383	199	5966	443	13286	701	21023	983
17	503	211	6326	449	13463	709	21263	991
19	566	223	6686	457	13703	719	21566	997
23	686	227	6806	461	13823	727	21806	1009
29	863	229	6863	463	13886	733	21983	1013
31	926	233	6983	467	14006	739	22166	1019
37	1103	239	7166	479	14366	743	22286	1021
41	1223	241	7223	487	14606	751	22526	1031
43	1286	251	7526	491	14726	757	22703	1033
47	1406	257	7703	499	14966	761	22823	1039
53	1583	263	7886	503	15086	769	23063	1049
59	1766	269	8063	509	15263	773	23183	1051
61	1823	271	8126	521	15623	787	23606	1061
67	2006	277	8303	523	15686	797	23903	1063
71	2126	281	8423	541	16223	809	24263	1069
73	2183	283	8486	547	16406	811	24326	1087
79	2366	293	8783	557	16703	821	24623	1091
83	2466	307	9206	563	16886	823	24686	1093
89	2663	311	9326	569	17063	827	24806	1097
97	2903	313	9383	571	17126	829	24863	1103
101	3023	317	9503	577	17303	839	25166	1109
103	3086	331	9926	587	17606	853	25583	1117
107	3206	337	10103	593	17783	857	25703	1123
109	3263	347	10406	599	17966	859	25766	1129
113	3383	349	10463	601	18023	863	25886	1151
127	3806	353	10583	607	18206	877	26303	1153
131	3926	359	10766	613	18383	881	26423	1163
137	4103	367	11006	617	18503	883	26486	1171
139	4166	373	11183	619	18566	887	26606	1181
149	4463	379	11366	631	18926	907	27206	1187
151	4526	383	11486	641	19223	911	27326	1193
157	4703	389	11663	643	19286	919	27566	1201
163	4886	397	11903	647	19406	929	27863	1213
167	5006	401	12023	653	19583	937	28103	1217
Table 2. Values of $SS(60p)$, p is a prime

p	$SS(n)$	p	$SS(n)$	p	$SS(n)$	p	$SS(n)$																																																																																																																																																																																																																																																																																																																																																																																																								
1	53	173	10374	409	24533	659	39534	941	56454																																																																																																																																																																																																																																																																																																																																																																																																						
2	113	179	10734	419	25134	661	39653	947	56814																																																																																																																																																																																																																																																																																																																																																																																																						
3	173	181	10853	421	25253	673	40373	953	57174																																																																																																																																																																																																																																																																																																																																																																																																						
5	294	191	11454	431	25854	677	40614	967	58013																																																																																																																																																																																																																																																																																																																																																																																																						
7	412	193	11573	433	25973	683	40974	971	58254																																																																																																																																																																																																																																																																																																																																																																																																						
11	654	197	11814	439	26333	691	41453	977	58614																																																																																																																																																																																																																																																																																																																																																																																																						
13	773	199	11933	443	26574	701	42054	983	58974																																																																																																																																																																																																																																																																																																																																																																																																						
17	1014	211	12653	449	26934	709	42533	991	59453																																																																																																																																																																																																																																																																																																																																																																																																						
19	1133	223	13373	457	27413	719	43134	997	59813																																																																																																																																																																																																																																																																																																																																																																																																						
23	1374	227	13614	461	27654	727	43613	1009	60533																																																																																																																																																																																																																																																																																																																																																																																																						
29	1734	229	13733	463	27773	733	43973	1013	60774																																																																																																																																																																																																																																																																																																																																																																																																						
31	1853	233	13974	467	28014	739	44333	1019	61134																																																																																																																																																																																																																																																																																																																																																																																																						
37	2213	239	14334	479	28734	743	44574	1021	61253																																																																																																																																																																																																																																																																																																																																																																																																						
41	2454	241	14453	487	29213	751	45053	1031	61854																																																																																																																																																																																																																																																																																																																																																																																																						
43	2573	251	15054	491	29454	757	45413	1033	61973																																																																																																																																																																																																																																																																																																																																																																																																						
47	2814	257	15414	499	29933	761	45654	1039	62333																																																																																																																																																																																																																																																																																																																																																																																																						
53	3174	263	15774	503	30174	769	46133	1049	62934																																																																																																																																																																																																																																																																																																																																																																																																						
59	3534	269	16134	509	30534	773	46374	1051	63053																																																																																																																																																																																																																																																																																																																																																																																																						
61	3653	271	16253	521	31254	787	47213	1061	63654																																																																																																																																																																																																																																																																																																																																																																																																						
67	4013	277	16613	523	31373	797	47814	1063	63773																																																																																																																																																																																																																																																																																																																																																																																																						
71	4254	281	16854	541	32453	809	48534	1069	64133																																																																																																																																																																																																																																																																																																																																																																																																						
73	4373	283	16973	547	32813	811	48653	1087	65213																																																																																																																																																																																																																																																																																																																																																																																																						
79	4733	293	17574	557	33414	821	49254	1091	65454																																																																																																																																																																																																																																																																																																																																																																																																						
83	4974	307	18413	563	33774	823	49373	1093	65573																																																																																																																																																																																																																																																																																																																																																																																																						
89	5334	311	18654	569	34134	827	49614	1097	65814																																																																																																																																																																																																																																																																																																																																																																																																						
97	5813	313	18773	571	34253	829	49733	1103	66174																																																																																																																																																																																																																																																																																																																																																																																																						
101	6054	317	19014	577	34613	839	50334	1109	66534																																																																																																																																																																																																																																																																																																																																																																																																						
103	6173	331	19853	587	35214	853	51173	1117	67013																																																																																																																																																																																																																																																																																																																																																																																																						
107	6414	337	20213	593	35574	857	51414	1123	67373																																																																																																																																																																																																																																																																																																																																																																																																						
109	6533	347	20814	599	35934	859	51533	1129	67733																																																																																																																																																																																																																																																																																																																																																																																																						
113	6774	349	20933	601	36053	863	51774	1151	69054																																																																																																																																																																																																																																																																																																																																																																																																						
127	7613	353	21174	607	36413	877	52613	1153	69173																																																																																																																																																																																																																																																																																																																																																																																																						
131	7854	359	21534	613	36773	881	52854	1163	69774																																																																																																																																																																																																																																																																																																																																																																																																						
137	8214	367	22013	617	37014	883	52973	1171	70253																																																																																																																																																																																																																																																																																																																																																																																																						
139	8333	373	22373	619	37133	887	53214	1181	70854																																																																																																																																																																																																																																																																																																																																																																																																						
149	8934	379	22733	631	37853	907	54413	1187	71214																																																																																																																																																																																																																																																																																																																																																																																																						
151	9053	383	22974	641	38454	911	54654	1193	71574																																																																																																																																																																																																																																																																																																																																																																																																						
157	9413	389	23334	643	38573	919	55133	1201	72053																																																																																																																																																																																																																																																																																																																																																																																																						
163	9773	397	23813	647	38814	929	55734	1213	72773																																																																																																																																																																																																																																																																																																																																																																																																						
167	10014	401	24054	653	39174	937	56213	1217	73014																																																																																																																																																																																																																																																																																																																																																																																																						
p	SS(n)																																																																																																																																																																																																																																																																																																																																																																																																														
----	-------	----	-------	----	-------	----	-------	----	-------																																																																																																																																																																																																																																																																																																																																																																																																						
1	206	173	36326	409	85886	659	138382	941	197606																																																																																																																																																																																																																																																																																																																																																																																																						
2	412	179	37582	419	87982	661	138806	947	198862																																																																																																																																																																																																																																																																																																																																																																																																						
3	622	181	38006	421	88406	673	141326	953	200126																																																																																																																																																																																																																																																																																																																																																																																																						
4	1046	191	40099	431	90501	677	142166	967	203061																																																																																																																																																																																																																																																																																																																																																																																																						
5	1459	193	40526	433	90926	683	143422	971	203902																																																																																																																																																																																																																																																																																																																																																																																																						
6	2302	197	41366	439	92179	691	145102	977	205166																																																																																																																																																																																																																																																																																																																																																																																																						
7	2726	199	41779	443	93022	701	147206	983	206419																																																																																																																																																																																																																																																																																																																																																																																																						
8	3566	211	44302	449	94286	709	148886	991	208099																																																																																																																																																																																																																																																																																																																																																																																																						
9	3982	223	46819	457	95966	719	150981	997	209366																																																																																																																																																																																																																																																																																																																																																																																																						
10	4819	227	47662	461	96806	727	152659	1009	211886																																																																																																																																																																																																																																																																																																																																																																																																						
11	6086	229	48086	463	97221	733	153926	1013	212726																																																																																																																																																																																																																																																																																																																																																																																																						
12	6501	233	48296	467	98062	739	155182	1019	213982																																																																																																																																																																																																																																																																																																																																																																																																						
13	7766	239	50179	479	100579	743	156019	1021	214406																																																																																																																																																																																																																																																																																																																																																																																																						
14	8606	241	50606	487	10259	751	157701	1031	216499																																																																																																																																																																																																																																																																																																																																																																																																						
15	9022	251	52702	491	103102	757	158966	1033	216926																																																																																																																																																																																																																																																																																																																																																																																																						
16	9859	257	53966	499	104782	761	159806	1039	218181																																																																																																																																																																																																																																																																																																																																																																																																						
17	11126	263	55219	503	105621	769	161486	1049	220286																																																																																																																																																																																																																																																																																																																																																																																																						
18	12382	269	56486	509	106886	773	162326	1051	220702																																																																																																																																																																																																																																																																																																																																																																																																						
19	12806	271	56899	521	109406	787	165262	1061	222806																																																																																																																																																																																																																																																																																																																																																																																																						
20	14062	277	58166	523	109822	797	167366	1063	223219																																																																																																																																																																																																																																																																																																																																																																																																						
21	14901	281	59006	541	113606	809	169886	1069	224486																																																																																																																																																																																																																																																																																																																																																																																																						
22	15326	283	59422	547	114862	811	170302	1087	228259																																																																																																																																																																																																																																																																																																																																																																																																						
23	16579	293	61526	557	116966	821	172406	1091	229102																																																																																																																																																																																																																																																																																																																																																																																																						
24	17422	307	64462	563	118222	823	172821	1093	229526																																																																																																																																																																																																																																																																																																																																																																																																						
25	18686	311	65299	569	119486	827	173662	1097	230366																																																																																																																																																																																																																																																																																																																																																																																																						
26	20366	313	65726	571	119902	829	174086	1103	231619																																																																																																																																																																																																																																																																																																																																																																																																						
27	21206	317	66566	577	121166	839	176179	1109	232886																																																																																																																																																																																																																																																																																																																																																																																																						
28	21621	331	69502	587	123262	853	179126	1117	234566																																																																																																																																																																																																																																																																																																																																																																																																						
29	22462	337	70766	593	124526	857	179966	1123	235822																																																																																																																																																																																																																																																																																																																																																																																																						
30	22886	347	72862	599	125779	859	180382	1129	237086																																																																																																																																																																																																																																																																																																																																																																																																						
31	23726	349	73286	601	126206	863	181221	1151	241701																																																																																																																																																																																																																																																																																																																																																																																																						
32	26659	353	74126	607	127461	877	184166	1153	242126																																																																																																																																																																																																																																																																																																																																																																																																						
33	27502	359	75381	613	128726	881	185006	1163	244222																																																																																																																																																																																																																																																																																																																																																																																																						
34	28766	367	77059	617	129566	883	185422	1171	245902																																																																																																																																																																																																																																																																																																																																																																																																						
35	29182	373	78326	619	129982	887	186259	1181	248006																																																																																																																																																																																																																																																																																																																																																																																																						
36	31286	379	79582	631	132499	907	190462	1187	249262																																																																																																																																																																																																																																																																																																																																																																																																						
37	31699	383	80419	641	134606	911	191299	1193	250526																																																																																																																																																																																																																																																																																																																																																																																																						
38	32966	389	81686	643	135022	919	192979	1201	252206																																																																																																																																																																																																																																																																																																																																																																																																						
39	34222	397	83366	647	135861	929	195086	1213	254726																																																																																																																																																																																																																																																																																																																																																																																																						
40	35059	401	84206	653	137126	937	196766	1217	255566																																																																																																																																																																																																																																																																																																																																																																																																						
p	SS(n)																																																																																																																																																																																																																																																																																																																																																																																																														
----	-------	----	-------	----	-------	----	-------	----	-------	----	-------	----	-------	----	-------	----	-------	----	-------	----	-------	----	-------	----	-------	----	-------	----	-------																																																																																																																																																																																																																																																																																																																																																																																		
1	412	173	72654	409	171772	659	276774	941	395214	2	831	179	75174	419	175974	661	277611	947	397734	3	1249	181	76009	421	176809	673	282652	953	400254	5	2094	191	80214	431	181014	677	284334	967	406131	7	2929	193	81052	433	181852	683	286854	971	407814	11	4614	197	82734	439	184369	691	290209	977	410334	13	5451	199	83569	443	186054	701	294414	983	412854	17	7134	211	88611	449	188574	709	297770	991	416209	19	7969	223	93649	457	191932	719	301974	997	418729	23	9654	227	95334	461	193614	727	305329	1009	423772	29	12174	229	96171	463	194451	733	307851	1013	425454	31	13011	233	97854	467	196134	739	310369	1019	427974	37	15529	239	100374	479	201174	743	312054	1021	428811	41	17214	241	101212	487	204529	751	315411	1031	433014	43	18049	251	105414	491	206214	757	317929	1033	433852	47	19734	257	107934	499	209571	761	319614	1039	436371	53	22254	263	110454	503	211254	769	322972	1049	440574	59	24774	269	112974	509	213774	773	324654	1051	441409	61	25609	271	113809	521	218814	787	330531	1061	445614	67	28131	277	116329	523	219649	797	334734	1063	446449	71	29814	281	118014	541	227209	809	339774	1069	448970	73	30652	283	118851	547	229729	811	340609	1087	456529	79	33169	293	120504	557	233934	821	344814	1091	458214	83	34854	307	128929	563	236454	823	345651	1093	459051	89	37374	311	130614	569	238974	827	347334	1097	460734	97	40732	313	131452	571	239811	829	348170	1103	463254	101	42414	317	133134	577	242332	839	352374	1109	465774	103	43251	331	139009	587	246534	853	358249	1117	469129	107	44934	337	141532	593	249054	857	359934	1123	471649	109	45770	347	145734	599	251574	859	360771	1129	474172	113	47454	349	146570	601	252412	863	362454	1151	483414	127	53329	353	148254	607	254931	877	368331	1153	484252	131	55014	359	150774	613	257449	881	370014	1163	488454	137	57534	367	154129	617	259134	883	370849	1171	491809	139	58371	373	156651	619	259969	887	372534	1181	496014	149	62574	379	159169	631	265009	907	380929	1187	498534	151	63409	383	160854	641	269214	911	382614	1193	501054	157	65931	389	163374	643	270051	919	385969	1201	504412	163	68449	397	166729	647	271734	929	390174	1213	509449	167	70134	401	168414	653	274254	937	393532	1217	511134