Supporting Information

Photoinitiated Thiol–Ene Reactions of Various 2,3- Unsaturated O-, C- S- and N-Glycosides – Scope and Limitations Study

Viktor Kelemen, Magdolna Csávás, Judit Hotzi, Mihály Herczeg, Poonam, Brijesh Rathi, Pál Herczegh, Nidhi Jain, and Anikó Borbás* ©2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Figure S1. NOE connectivities of compounds 31, 32, 36, 37, 46, 48 and 49.................................2
X-Ray Crystallographic Data ... 3
1H and 13C NMR spectra of compounds .. 11
Figure S1. NOE connectivities of compounds 31, 32, 36, 37, 46, 48 and 49
X-Ray Crystallographic Data

Computing details

Data collection: Bruker APEX3; cell refinement: Bruker APEX3; data reduction: Bruker Saint; program(s) used to solve structure: SHELXL2016/4 (Sheldrick, 2016); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2016); molecular graphics: Mercury; software used to prepare material for publication: Bruker APEX3, WinGX.

(Compound 31)

Crystal data

C_{26}H_{38}O_{15}S	F(000) = 660
M_r = 622.62	D_x = 1.286 Mg m^{-3}
Monoclinic, P2_1	Cu Kα radiation, λ = 1.54178 Å
a = 15.8457 (9) Å	Cell parameters from 318 reflections
b = 5.5284 (4) Å	θ = 28.1–78.6°
c = 18.9922 (12) Å	µ = 1.48 mm^{-1}
β = 104.967 (5)^{\circ}	T = 280 K
V = 1607.30 (18) Å\(^3\)	Needle, colourless
Z = 2	0.11 × 0.04 × 0.02 mm

Data collection

Bruker D8 Venture diffractometer	3979 reflections with I > 2σ(I)
ω scan	R_{int} = 0.054
Absorption correction: multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10	θ_{max} = 66.6°, θ_{min} = 2.4°
T_{min} = 0.662, T_{max} = 0.753	h = -15→18
16876 measured reflections	k = -6→6
5664 independent reflections	l = -22→22

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
R[F^2 > 2σ(F^2)] = 0.049	H-atom parameters constrained
wR(F^2) = 0.134	w = 1/[σ^2(F_o^2) + (0.0582P)^2] where P = (F_o^2 + 2F_c^2)/3
S = 1.06	(Δσ)_{max} < 0.001
5664 reflections
386 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Absolute structure: Flack x determined using 1308 quotients \[(I^+)-(I^-)/[(I^+)+(I^-)]\] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).

Absolute structure parameter: 0.040 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²) for (31)

	x	y	z	\(U_{eq}\)										
C1	0.2891 (3)	0.4459 (12)	0.2850 (3)	0.0807 (15)										
H1	0.307276	0.338160	0.327207	0.097*										
C1'	0.5473 (3)	0.5753 (10)	0.3013 (2)	0.0657 (12)										
H1'	0.531963	0.734118	0.317256	0.079*										
C2'	0.6304 (3)	0.4814 (10)	0.3549 (2)	0.0636 (11)										
H2'	0.644919	0.320494	0.339836	0.076*										
C2	0.3684 (3)	0.5871 (11)	0.2762 (3)	0.0716 (13)										
H2	0.382340	0.708318	0.315123	0.086*										
C3	0.3484 (3)	0.7224 (10)	0.2037 (3)	0.0730 (13)										
H3A	0.314363	0.865292	0.207566	0.088*										
H3B	0.403031	0.776019	0.194807	0.088*										
C3'	0.7060 (3)	0.6532 (10)	0.3588 (3)	0.0664 (12)										
C4	0.7159 (3)	0.7140 (9)	0.2834 (3)	0.0678 (12)										
H4	0.277606	0.681902	0.097726	0.081*										
C5	0.2994 (3)	0.5746 (10)	0.1396 (3)	0.0678 (12)										
H5	0.607828	0.936060	0.247296	0.085*										
C6	0.2224 (3)	0.4427 (10)	0.1566 (3)	0.0715 (13)										
H6C	0.576571	0.833606	0.120903	0.093*										
Atom	X	Y	Z	Uiso										
-------	---------	---------	---------	-------										
H6D	0.668600	0.956179	0.149244	0.093*										
C6	0.1795 (3)	0.2673 (12)	0.0985 (3)	0.0814 (15)										
H6A	0.167605	0.344169	0.051037	0.098*										
H6B	0.217415	0.129588	0.098533	0.098*										
C11	0.1542 (5)	0.511 (2)	0.3172 (6)	0.169 (5)										
H11A	0.118427	0.428542	0.274808	0.203*										
H11B	0.173839	0.391332	0.355410	0.203*										
C12	0.1070 (8)	0.676 (4)	0.3394 (9)	0.268 (10)										
H12A	0.139335	0.739932	0.385439	0.402*										
H12B	0.053848	0.603786	0.344771	0.402*										
H12C	0.093289	0.803887	0.304178	0.402*										
C21'	0.6052 (4)	0.2534 (12)	0.4544 (3)	0.0802 (14)										
C22'	0.5982 (6)	0.2745 (18)	0.5310 (4)	0.125 (3)										
H22D	0.539302	0.315482	0.530817	0.187*										
H22E	0.637107	0.398508	0.555715	0.187*										
H22F	0.613703	0.122967	0.555609	0.187*										
C31'	0.8393 (4)	0.6425 (18)	0.4540 (4)	0.110 (2)										
C32'	0.9140 (5)	0.4819 (19)	0.4876 (5)	0.143 (4)										
H32D	0.894030	0.317459	0.485826	0.215*										
H32E	0.938187	0.528704	0.537358	0.215*										
H32F	0.957896	0.495581	0.461180	0.215*										
C41'	0.8523 (3)	0.8971 (12)	0.2800 (4)	0.0886 (16)										
C41	0.4099 (3)	0.4669 (10)	0.0812 (3)	0.0696 (12)										
C42	0.4686 (4)	0.2681 (11)	0.0716 (3)	0.0858 (16)										
H42A	0.495656	0.309454	0.033494	0.129*										
H42B	0.435259	0.122185	0.058846	0.129*										
H42C	0.512770	0.243693	0.116281	0.129*										
C42'	0.9022 (4)	1.1217 (14)	0.2899 (5)	0.115 (2)										
H42D	0.962771	1.086151	0.295047	0.172*										
H42E	0.895653	1.202604	0.332907	0.172*										
H42F	0.880934	1.224175	0.248291	0.172*										
C61	0.0629 (4)	-0.0100 (14)	0.0813 (3)	0.0908 (18)										
C61'	0.7319 (4)	0.6334 (11)	0.0919 (3)	0.0797 (15)										
C62	0.7702 (5)	0.4077 (13)	0.0759 (4)	0.104 (2)										
H62D	0.724969	0.303200	0.048948	0.156*										
H62E	0.799975	0.330435	0.120747	0.156*										
H62F	0.811102	0.440500	0.047604	0.156*										
C62	-0.0189 (4)	-0.076 (2)	0.1005 (4)	0.130 (3)										
H62A	-0.066616	-0.073624	0.057427	0.195*										
H62B	-0.029887	0.037106	0.135327	0.195*										
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----
H62C	-0.013238	-0.235967	0.121170	0.195*										
O1	0.2294 (3)	0.6170 (10)	0.2989 (2)	0.1044 (14)										
O2'	0.6189 (2)	0.4707 (7)	0.42777 (18)	0.0738 (9)										
O3'	0.7845 (2)	0.5303 (7)	0.3991 (2)	0.0809 (10)										
O4'	0.7719 (2)	0.9226 (6)	0.2891 (2)	0.0786 (10)										
O4	0.35493 (19)	0.3922 (6)	0.12043 (16)	0.0659 (8)										
O5'	0.5662 (2)	0.5972 (7)	0.23182 (17)	0.0710 (9)										
O5	0.2509 (2)	0.3054 (7)	0.22239 (18)	0.0747 (10)										
O6'	0.6748 (2)	0.6058 (7)	0.1321 (2)	0.0786 (9)										
O6	0.0992 (2)	0.1896 (10)	0.1134 (2)	0.0999 (14)										
O21'	0.5981 (3)	0.0681 (9)	0.4199 (3)	0.1032 (13)										
O31'	0.8285 (5)	0.8446 (16)	0.4710 (5)	0.193 (4)										
O41	0.4115 (3)	0.6684 (8)	0.0600 (2)	0.0905 (11)										
O41'	0.8782 (3)	0.7065 (11)	0.2649 (5)	0.168 (3)										
O61	0.0935 (3)	-0.1235 (11)	0.0398 (3)	0.1197 (16)										
O61'	0.7467 (5)	0.8279 (11)	0.0712 (4)	0.163 (3)										
S1	0.45800 (8)	0.3721 (3)	0.29321 (7)	0.0735 (3)										

Atomic displacement parameters (Å²) for (31)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
C1	0.067 (3)	0.107 (5)	0.069 (3)	0.004 (3)	0.019 (2)	-0.006 (3)
C1'	0.064 (3)	0.077 (3)	0.057 (2)	0.003 (2)	0.017 (2)	-0.001 (2)
C2'	0.071 (3)	0.066 (3)	0.054 (2)	0.000 (2)	0.016 (2)	-0.003 (2)
C2	0.068 (3)	0.085 (3)	0.064 (3)	-0.002 (3)	0.020 (2)	-0.013 (3)
C3	0.076 (3)	0.066 (3)	0.078 (3)	0.008 (2)	0.022 (2)	-0.009 (3)
C3'	0.064 (3)	0.068 (3)	0.064 (3)	0.003 (2)	0.009 (2)	-0.003 (2)
C4'	0.068 (3)	0.058 (3)	0.078 (3)	0.000 (2)	0.020 (2)	0.001 (2)
C4	0.076 (3)	0.064 (3)	0.064 (3)	0.017 (2)	0.020 (2)	0.003 (2)
C5	0.071 (3)	0.070 (3)	0.072 (3)	0.003 (2)	0.021 (2)	0.001 (2)
C5'	0.062 (3)	0.085 (4)	0.066 (3)	0.009 (2)	0.015 (2)	0.001 (2)
C6	0.068 (3)	0.103 (4)	0.073 (3)	-0.004 (3)	0.019 (2)	-0.009 (3)
C11	0.096 (5)	0.266 (15)	0.171 (8)	-0.005 (7)	0.081 (6)	-0.045 (9)
C12	0.152 (9)	0.37 (2)	0.33 (2)	0.007 (13)	0.150 (12)	-0.099 (19)
C21'	0.087 (4)	0.080 (4)	0.076 (3)	0.009 (3)	0.024 (3)	0.013 (3)
C22'	0.156 (6)	0.149 (7)	0.074 (4)	-0.008 (6)	0.036 (4)	0.025 (4)
C31'	0.088 (4)	0.126 (7)	0.096 (5)	-0.011 (4)	-0.010 (3)	-0.016 (5)
C32'	0.091 (4)	0.177 (9)	0.129 (6)	-0.013 (5)	-0.031 (4)	0.030 (6)
C41'	0.070 (3)	0.072 (4)	0.127 (5)	0.001 (3)	0.031 (3)	0.002 (4)
C41	0.076 (3)	0.072 (3)	0.063 (3)	-0.002 (3)	0.022 (2)	0.003 (2)
------	-----	-----	-----	-----	-----	
C42	0.090 (4)	0.081 (4)	0.096 (4)	-0.001 (3)	0.040 (3)	
C42'	0.094 (4)	0.090 (5)	0.159 (7)	-0.017 (4)	0.032 (4)	
C61	0.077 (3)	0.115 (5)	0.077 (4)	-0.008 (3)	0.012 (3)	
C61'	0.088 (3)	0.074 (4)	0.086 (4)	-0.005 (3)	0.037 (3)	
C62	0.135 (5)	0.087 (4)	0.106 (5)	0.000 (4)	0.057 (4)	
C62'	0.094 (4)	0.090 (5)	0.159 (7)	-0.017 (4)	0.032 (4)	
C61	0.077 (3)	0.115 (5)	0.077 (4)	-0.008 (3)	0.012 (3)	
C61'	0.088 (3)	0.074 (4)	0.086 (4)	-0.005 (3)	0.037 (3)	
C62	0.135 (5)	0.087 (4)	0.106 (5)	0.000 (4)	0.057 (4)	
C62'	0.094 (4)	0.090 (5)	0.159 (7)	-0.017 (4)	0.032 (4)	

Geometric parameters (Å, º) for (31)

C1—O1	1.410 (7)	C11—H11B	0.9700		
C1—O5	1.418 (7)	C12—H12A	0.9600		
C1—C2	1.525 (7)	C12—H12B	0.9600		
C1—H1	0.9800	C12—H12C	0.9600		
C1'—O5'	1.431 (5)	C21'—O21'	1.205 (8)		
C1'—C2'	1.532 (7)	C21'—O2''	1.343 (7)		
C1'—S1	1.782 (5)	C21'—C22'	1.492 (9)		
C1'—H1'	0.9800	C22'—H22D	0.9600		
C2'—O2'	1.443 (6)	C22'—H22E	0.9600		
C2'—C3'	1.516 (7)	C22'—H22F	0.9600		
C2'—H2'	0.9800	C31'—O31'	1.187 (11)		
C2—C3	1.526 (8)	C31'—O3'	1.326 (8)		
C2—S1	1.816 (5)	C31'—C32'	1.485 (12)		
C2—H2	0.9800	C32'—H32D	0.9600		
C3—C4	1.506 (7)	C32'—H32E	0.9600		
C3—H3A	0.9700	C32'—H32F	0.9600		
Bond	Distance (Å)	Bond	Distance (Å)		
----------------------	--------------	----------------------	--------------		
C3—H3B	0.9700	C41'—O41'	1.192 (8)		
C3'—O3'	1.450 (6)	C41'—O4'	1.337 (6)		
C3'—C4'	1.519 (7)	C41'—C42'	1.457 (10)		
C3'—H3'	0.9800	C41—O41	1.187 (6)		
C4'—O4'	1.442 (6)	C41—O4	1.349 (6)		
C4'—C5'	1.534 (7)	C41—C42	1.481 (6)		
C4'—H4'	0.9800	C42—H42A	0.9600		
C4—C5	1.526 (7)	C42—H42B	0.9600		
C4—H4	0.9800	C42—H42C	0.9600		
C5'—O5'	1.431 (6)	C42'—H42E	0.9600		
C5'—C6'	1.515 (7)	C42'—H42F	0.9600		
C5'—H5'	0.9800	C61—O61	1.204 (8)		
C5—O5	1.431 (6)	C61—O6	1.318 (8)		
C5—C6	1.494 (8)	C61—C62	1.480 (9)		
C5—H5	0.9800	C61'—O61'	1.188 (8)		
C6'—O6'	1.419 (7)	C61'—O6'	1.334 (6)		
C6'—H6C	0.9700	C61'—C62'	1.453 (9)		
C6'—H6D	0.9700	C62'—H62D	0.9600		
C6—H6A	1.438 (6)	C62'—H62E	0.9600		
C6—H6B	0.9700	C62—H62A	0.9600		
C11—C12	1.317 (16)	C62—H62B	0.9600		
C11—O1	1.450 (9)	C62—H62C	0.9600		
C11—H11A	0.9700				
O1—C1—O5	111.3 (4)	O1—C11—H11A	109.3		
O1—C1—C2	106.7 (5)	C12—C11—H11B	109.3		
O5—C1—C2	111.9 (4)	O1—C11—H11B	109.3		
O1—C1—H1	108.9	H11A—C11—H11B	108.0		
O5—C1—H1	108.9	C11—C12—H12A	109.5		
C2—C1—H1	108.9	C11—C12—H12B	109.5		
O5'—C1'—C2'	107.0 (3)	H12A—C12—H12B	109.5		
O5'—C1'—S1	109.0 (3)	C11—C12—H12C	109.5		
C2'—C1'—S1	111.8 (4)	H12A—C12—H12C	109.5		
O5'—C1'—H1'	109.7	H12B—C12—H12C	109.5		
C2'—C1'—H1'	109.7	O21'—C21'—O2'	123.9 (5)		
S1—C1'—H1'	109.7	O21'—C21'—C22'	125.1 (6)		
O2'—C2'—C3'	105.8 (4)	O2'—C21'—C22'	110.9 (6)		
O2'—C2'—C1'	110.6 (4)	C21'—C22'—H22D	109.5		
Bond	Angle (°)	Bond	Angle (°)		
------------	-----------	------------	-----------		
C3'—C2'—C1'	110.7 (4)	C21'—C22'—H22E	109.5		
O2'—C2'—H2'	109.9	H22D—C22'—H22E	109.5		
C3'—C2'—H2'	109.9	C21'—C22'—H22F	109.5		
C1'—C2'—H2'	109.9	H22D—C22'—H22F	109.5		
C1—C2—C3	111.5 (4)	H22E—C22'—H22F	109.5		
C1—C2—S1	105.9 (4)	O31'—C31'—O3'	122.9 (8)		
C3—C2—S1	116.9 (3)	O31'—C31'—C32'	126.9 (8)		
C1—C2—H2	107.4	O3'—C31'—C32'	110.2 (8)		
C3—C2—H2	107.4	C31'—C32'—H32D	109.5		
S1—C2—H2	107.4	C31'—C32'—H32E	109.5		
C4—C3—C2	114.0 (5)	H32D—C32'—H32E	109.5		
C4—C3—H3A	108.7	C31'—C32'—H32F	109.5		
C2—C3—H3A	108.7	H32D—C32'—H32F	109.5		
C4—C3—H3B	108.7	H32E—C32'—H32F	109.5		
C2—C3—H3B	108.7	O41'—C41'—O4'	121.5 (5)		
H3A—C3—H3B	107.6	O41'—C41'—C42'	125.1 (5)		
O3'—C3'—C2'	110.0 (4)	O4'—C41'—C42'	113.3 (6)		
O3'—C3'—C4'	108.5 (4)	O41'—C41—O4	123.2 (5)		
C2'—C3'—C4'	111.4 (4)	O41—C41—C42	125.8 (5)		
O3'—C3'—H3'	110.0	O4—C41—C42	110.9 (5)		
C2'—C3'—H3'	110.0	C41—C42—H42A	109.5		
C4'—C3'—H3'	110.0	C41—C42—H42B	109.5		
O4'—C4'—C3'	108.5 (4)	H42A—C42—H42B	109.5		
O4'—C4'—C5'	106.4 (4)	C41—C42—H42C	109.5		
C3'—C4'—C5'	111.8 (4)	H42A—C42—H42C	109.5		
O4'—C4'—H4'	110.0	H42B—C42—H42C	109.5		
C3'—C4'—H4'	110.0	C41'—C42'—H42D	109.5		
C5'—C4'—H4'	110.0	C41'—C42'—H42E	109.5		
O4—C4—C3	111.2 (4)	H42D—C42—H42E	109.5		
O4—C4—C5	107.0 (4)	C41'—C42'—H42F	109.5		
C3—C4—C5	111.2 (4)	H42D—C42—H42F	109.5		
O4—C4—H4	109.2	H42E—C42'—H42F	109.5		
C3—C4—H4	109.2	O61—C61—O6	122.5 (6)		
C5—C4—H4	109.2	O61—C61—C62	123.9 (7)		
O5'—C5'—C6'	107.9 (4)	O6—C61—C62	113.6 (7)		
O5'—C5'—C4'	108.6 (4)	O61'—C61'—O6'	120.8 (6)		
C6'—C5'—C4'	112.6 (4)	O61'—C61'—C62'	125.4 (5)		
O5'—C5'—H5'	109.2	O6—C61'—C62'	113.7 (5)		
C6'—C5'—H5'	109.2	C61'—C62'—H62D	109.5		
C4'—C5'—H5'	109.2	C61'—C62'—H62E	109.5		
Bond	Distance (Å)	Angle (°)			
-------	--------------	------------			
O5—C5—C6	106.4 (5)	H62D—C62'—H62E	109.5		
O5—C5—C4	110.4 (4)	C61'—C62'—H62F	109.5		
C6—C5—C4	112.9 (4)	H62D—C62'—H62F	109.5		
O5—C5—H5	109.0	H62E—C62'—H62F	109.5		
C6—C5—H5	109.0	C61—C62—H62A	109.5		
C4—C5—H5	109.0	C61—C62—H62B	109.5		
O6'—C6'—C5'	109.6 (4)	H62A—C62—H62B	109.5		
O6'—C6'—H6C	109.7	C61—C62—H62C	109.5		
C5'—C6'—H6C	109.7	H62A—C62—H62C	109.5		
O6'—C6'—H6D	109.7	H62B—C62—H62C	109.5		
C5'—C6'—H6D	109.7	C1—O1—C11	113.9 (7)		
H6C—C6'—H6D	108.2	C21'—O2'—C2'	118.0 (4)		
O6—C6—C5	107.8 (4)	C31'—O3'—C3'	119.6 (5)		
O6—C6—H6A	110.1	C41'—O4'—C4'	119.6 (4)		
C5—C6—H6A	110.1	C41—O4—C4	116.6 (4)		
O6—C6—H6B	110.1	C5'—O5'—C1'	112.4 (4)		
C5—C6—H6B	110.1	C1—O5—C5	114.3 (4)		
H6A—C6—H6B	108.5	C61—O6—C6'	119.3 (4)		
C12—C11—O1	111.5 (11)	C61—O6—C6	117.6 (5)		
C12—C11—H11A	109.3	C1'—S1—C2	99.8 (2)		

Hydrogen-bond geometry (Å, °) for (31)

D—H···A	D—H	H···A	D···A	D—H···A
C3'—H3'···O21'_1^i	0.98	2.38	3.249 (7)	148
C42—H42B···O41_S2^ii	0.96	2.54	3.428 (7)	154
C62F···O61_S3^iii	0.96	2.54	3.460 (8)	160

Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) -x+1, y+1/2, -z.

Document origin: *publCIF* [Westrip, S. P. (2010). *J. Appl. Cryst.*, 43, 920-925].

S10
1H and 13C NMR spectra of compounds

1H and 13C NMR spectra of compound 19
1H and 13C NMR spectra of compound 20
1H and 13C NMR spectra of compound 21
1H and 13C NMR spectra of compound 22
1H and 13C NMR spectra of compound 23
1H and 13C NMR spectra of compound 24
1H and 13C NMR spectra of compound 25
1H and 13C NMR spectra of compound 26

1H NMR [400 MHz, CDCl$_3$]

13C NMR [100 MHz, CDCl$_3$]
1H and 13C NMR spectra of compound 27
1H and 13C NMR spectra of compound 29
1H and 13C NMR spectra of compound 31
1H and 13C NMR spectra of compound 32
1H and 13C NMR spectra of compound 33
1H and 13C NMR spectra of compound 34
1H and 13C NMR spectra of compound 36
1H and 13C NMR spectra of compound 37
1H and 13C NMR spectra of compound 38
1H and 13C NMR spectra of compound 39
1H and 13C NMR spectra of compound 41

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 43

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
1H and 13C NMR spectra of compound 44

1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)
The "S59" page contains a section titled "\(^1\)H and \(^{13}\)C NMR spectra of compound 46". The page features two NMR spectra: one is labeled as "\(^1\)H NMR (CDCl\(_3\), 400 MHz)" and the other as "\(^1\)H-\(^{13}\)C NMR (CDCl\(_3\), 100 MHz)". The spectra include detailed chemical structures with various peak annotations.
1H and 13C NMR spectra of compound 48
^1H and ^{13}C NMR spectra of compound 49
