Accurate Estimation of Context-Dependent False Discovery Rates in Top-Down Proteomics

Authors
Richard D. LeDuc, Ryan T. Fellers, Bryan P. Early, Joseph B. Greer, Daniel P. Shams, Paul M. Thomas, and Neil L. Kelleher

Correspondence
richard.leduc@northwestern.edu; n-kelleher@northwestern.edu

In Brief
For top-down proteomics, the search context includes the observed MS data, the database and search engine used, and the search parameters. For accuracy, FDR estimation should be determined for each search context. Further, FDR depends on the molecular level reported; PrSM, proteoform or protein. Failure to consider context resulted in FDRs in error by ~24-fold from the stated level for four contexts we examined. TDCD_FDR_Calculator is a free tool to perform Context Dependent FDR calculations to enhance top-down proteomics.

Highlights
- To correctly estimate FDR, search context should be considered.
- FDR is computed at the molecular level reported; e.g., proteoform or protein.
- Failure to correctly estimate FDR results in >20-fold errors for the data we studied.
- TDCD_FDR_Calculator is a free tool providing accurate, conservative FDR estimation.
Accurate Estimation of Context-Dependent False Discovery Rates in Top-Down Proteomics*†

Richard D. LeDuc‡**, Ryan T. Fellers‡, Bryan P. Early‡§, Joseph B. Greer‡, Daniel P. Shams¶, Paul M. Thomas‡§, and Neil L. Kelleher‡§

Within the last several years, top-down proteomics has emerged as a high throughput technique for protein and proteoform identification. This technique has the potential to identify and characterize thousands of proteoforms within a single study, but the absence of accurate false discovery rate (FDR) estimation could hinder the adoption and consistency of top-down proteomics in the future. In automated identification and characterization of proteoforms, FDR calculation strongly depends on the context of the search. The context includes MS data quality, the database being interrogated, the search engine, and the parameters of the search. Particular to top-down proteomics—there are four molecular levels of study: proteoform spectral match (PrSM), protein, isoform, and proteoform. Here, a context-dependent framework for calculating an accurate FDR at each level was designed, implemented, and validated against a manually curated training set with 546 confirmed proteoforms. We examined several search contexts and found that an FDR calculated at the PrSM level under-reported the true FDR at the protein level by an average of 24-fold. We present a new open-source tool, the TDCD_FDR Calculator, which provides a scalable, context-dependent FDR calculation that can be applied post-search to enhance the quality of results in top-down proteomics from any search engine. Molecular & Cellular Proteomics 18: 796–805, 2019. DOI: 10.1074/mcp.RA118.000993.
Fig. 1. Molecular Levels Explained. Within a cell, a gene is transcribed, spliced, translated, and modified. This results in proteoforms that are the observable molecular entities for top-down. Therefore, spectral matches returned from a search engine reports on the existence of a complete proteoform. When controlling FDR at the proteoform level, all PrSMs reporting on the proteoform must be aggregated together in order to put confidence on the existence of the proteoform in the material under investigation. Likewise, all proteoforms of a given isofrom must be considered when establishing confidence in the existence of the isofrom. Lastly, all supporting proteoforms from all isofroms must be considered when drawing conclusions on the existence of the protein.

accelerate the field of discovery top-down proteomics, it will also require calculating a reliable FDR.

In the usage of proteomics, proteoforms are not the same thing as proteins; (18) see Fig. 1. Proteins represent a collection of expressed proteoforms, and although the proteoform is a form of a given protein, a protein is usually expressed as multiple proteoforms. Each measured proteoform results from a series of molecular processing events starting with transcription and ending with post-translational modifications. Each gene typically is associated with a canonical amino acid sequence. This sequence is often different from that observed in biological samples: there may be different alleles or coding SNPs creating sequence variants, transcripts from a given gene can be alternatively spliced to form multiple isofroms (19) which also translate into different amino acid sequences, and proteoforms can have covalently-attached, site-specific features enzymatically added to form post-translational modifications (PTMs). The sum of these events leads to a population of multiple molecules, each being a unique proteoform (18). An expressed protein is the population, or family, of its expressed proteoforms (20). This is further complicated by isoforms. Some proteins, such as the human high mobility group protein (P17096–1 and P17096–2) come in multiple isoforms. These isoforms have differing amino acid sequences and different modifications (21). In systems where a confidence metric specifically at the isofrom level is desired, FDRs can now be calculated for this purpose. However, we expect that most studies will focus mainly on protein and proteoform-level FDR values.

The concept of an expressed protein exists to help us simplify the complexity associated with understanding biological function at the molecular level and has worked well for bottom-up proteomics. But, the presence of multiple proteoforms arising from a single gene makes the concept of an expressed protein more complex, as it is the proteoforms that are expressed. Although unmodified protein sequence as directly encoded by a gene are frequently expressed in bacteria, in eukaryotes this appears to occur less often than the expression of modified sequences. (For example, in one study (21) only 106 of 1046 or 10.1% of the discovered proteoforms are unmodified, whereas the Catherman data set presented below has only 4.5% unmodified proteoforms.) This duality, that the protein entity encoded by a gene is rarely expressed, while modified proteoforms more commonly occur in the physical world, complicates FDR determination in top-down proteomics.

Observing proteoforms is further complicated by issues of identification and characterization. To avoid confusion, the term Protein Identification is simply the act of assigning a gene product to a gene, or in practice to a protein accession in a gene-centric protein knowledgebase. It should be noted that there may or may not be data that allow the exact determination of proteoforms with complete molecular specificity. Thus, a protein may be identified as present in a sample even if no proteoforms are fully characterized. In contrast, full characterization only occurs when the molecular specificity of a proteoform can be determined within the context of the search. Proteoforms containing unknown mass shifts, or incompletely localized PTMs are said to be partially characterized. In top-down proteomics, it is less useful to discuss characterizing an isofrom or protein, except in the case of very simple systems where there is only a single proteoform produced by a given gene.

Identification can occur at three independent molecular levels (Fig. 1). The protein entry is a gene-level identification and is denoted with an accession number to a gene-centric database like UniProtKB (22–23), whereas a proteoform identification refers to one combination of modifications with a single primary structure. A proteoform should be reported with an accession number from a proteoform-centric database like the one maintained by the Consortium for Top-Down Proteomics (24). Between the protein entry and proteoform level, there exists an isofrom entry level. Identifying an isofrom means that there is evidence for the presence of a given

The abbreviations used are: CD FDR, Context-dependent false discovery rate; CSV, Comma separated value file; Decoy PrSM, Proteoform spectral match to a decoy database; FDR, False discovery rate; mzML, An XML file format; PrSM, Proteoform spectral match; PTM, Post-translational modification; SNP, Single nucleotide polymorphism.
sequence arising from alternative splicing or translational start site in the sample, independent of which PTMs might be present.

Top-down search engines assign a numeric score to the degree of matching between a Spectrum and a candidate proteoform. ProSight (11) uses the P-score (12). This score is a nonlinear transformation of the number of fragment ions matching between the candidate proteoform and the PrSM, where the non-linear response is governed by the search parameters. Well-suited for targeted studies, this score allows gene-level identification but cannot automatically distinguish partial characterizations, a shortcoming alleviated by the C-score (25). Other search engines use other scoring approaches (e.g. TopPIC reports p values and E-values, Informed Proteomics reports Probabilities (sic) and E-values) (16–17, 26).

The fundamental problem, regardless of search engine, is determining when a continuous score (i.e. one that can have continuous values over a given range) is sufficiently good to allow the assertion that the Spectrum represents a specific proteoform. The search engine returns a set of putative discoveries which can be ranked by score from best to worst, and a cutoff can be found which determines the so called “selected discoveries.” Ideally, the cutoff separates true discoveries from false discoveries. The level of this cutoff must be determined by the needs of the individual experiment. For example, studies interested in biomarker discovery (27) may set a more permissive proteoform level FDR, whereas studies looking for protein expression differences in specific brain regions (28) may set a more stringent 1% protein level FDR. Burger has recently reviewed this process in the context of bottom-up proteomics (6).

The distribution of scores will vary with the context of the search. The context is defined here as the set of the Spectra searched, the database searched against, the search engine, and parameters used. To determine if a score is enough to allow identification, for a given context, we need to infer the null distribution of the score within that context (6). The null distribution is an unknown probability distribution associated with a context that reports the probability of a given score (or better) occurring by chance alone.

One approach to inferring the null distribution is to reverse or scramble the searched database such that none of the candidate proteoforms in the new decoy database could represent real ions measured by the observed Spectra. Then, by duplicating the search context against this decoy database, any PrSMs returned are known to be false, and are called Decoy PrSMs. The distribution of these false scores can then be used as a surrogate for the null distribution (29).

Two approaches, parametric and non-parametric, have been used to determine the PrSM-level FDR from a decoy distribution. With a non-parametric approach, for a given list of PrSMs, the FDR is a function of the number of Decoy PrSMs scoring equal to or better than the observed Forward PrSM (29–30). A parametric FDR attempts to model the distribution of Decoy PrSMs. This can be done by itself (31), or coupled with expert-driven manual validation (21, 32). Both parametric and non-parametric approaches have their strengths and weaknesses. Non-parametric approaches are more robust against irregularities in the decoy distribution but fail to provide any information about the FDR associated with Forward PrSMs scoring above the best Decoy PrSM. Likewise, parametric solutions suffer from errors in correctly modeling the null distribution but provide FDR information about all Forward PrSMs.

Tools using non-parametric approaches are available (17, 26). These tools use a model-free approach to empirically estimate null distributions and control the FDR at the PrSM level. Such a non-parametric system has been used by early versions of the TDPortal, a customized Galaxy search portal (33) available through the National Resource for Translational and Developmental Proteomics (27, 34–35). The TDPortal is the first top-down tool to control FDR at not just the PrSM level, but also at the proteoform, isoform, and protein levels.

Here we present a logical structure for calculating an identification FDR at the proteoform, isoform, and protein level using PrSMs from their given search context. We supply software for performing this calculation, and a large set of curated spectral results as training data. We show that the FDR functions and scales correctly on the training data and on previously published results.

EXPERIMENTAL PROCEDURES

Overview—An algorithm for calculating the context-dependent FDR (CD FDR) associated with PrSM, proteoform, isoform, and protein identification was developed. This algorithm uses a non-parametric FDR for identification but enhances this with a parametric FDR for all those molecular entities identified with a score better than the best decoy score. The algorithm calculates a separate decoy distribution at each molecular level encountered in top-down proteomics. A training dataset with 546 manually validated PrSMs was built from data from two representative publications from two different laboratories (25–26) TDCD_FDR_Calculator, software to implement the algorithm on search engine output, was developed and tested against the training dataset. Both the training datasets and the TDCD_FDR_Calculator tool are made available and described in detail below.

Non-parametric Estimation of FDR—Prior to FDR calculation, each spectral data file was deconvoluted and deisotoped. Here the algorithm was tested on ProSight Absolute Mass (36), ProSight Biomarker (36), and Informed Proteomics MSPathFinder (26), and was designed to work with results from any top-down search engine. Following the specifications for TDCD_FDR_Calculator, comma separated value (CSV) files were used for input, one for each LC-MS/MS run.

The following outline of the method for calculating CD FDR was implemented.

1. **Search Spectra and Pool Resulting PrSMs**—All Spectra from a given run are searched separately within a single context and the resulting PrSMs are pooled across the entire experiment. The Spectra are searched against both a forward and a decoy database. Here, a decoy database was created by scrambling each isoform sequence in the forward database and then shotgun annotating all encoded PTMs at the amino acid residue of their original location. Other database
scrambling strategies are possible, and the system presented here will accept any user-defined strategy.

PrSMs are defined as Spectra that match a proteoform with at least one MS2 fragment ion. Each ProSight PrSM is returned from the search engine with two scores; a P-score (12) that uses a Poisson model to estimate the probability that the Spectrum derives from a proteoform associated with a given gene-level entry, and a characterization score (25) that measures the uniqueness of the Spectrum’s match relative to the other entries in the database. Each Informed Proteomics PrSM is returned with an E-value, and an FDR value, q, which we refer to as the PrSM-level FDR.

From here forward, different calculations are performed depending on the molecular entity under consideration (Fig. 1); thus, when calculating a proteoform CD FDR, only proteoforms associated with PrSMs are considered, and for protein CD FDRs only protein entries associated with PrSMs are considered.

1. Determine Context-Dependent Score for each Entity—Multiple PrSMs can support the existence of a given molecular entity within a run. However, each entity must be assigned a single score to represent it for downstream processing. This algorithm uses the best score from the set of PrSM scores. For example, at the proteoform level, multiple PrSMs may report on the same proteoform, but the PrSM with the best score (with the lowest score in the case of the P-score) is selected as the proteoform’s score. The same follows at the protein level. The best score represents the protein from all the PrSMs that report on it. The same logic is used on both forward and decoy results.

2. Estimate Posterior Probability for each Forward Entity using Decoys—The scores from decoy entities are used to estimate the corresponding null distribution. Using a non-parametric approach, a posterior probability is derived for each molecular entity (PrSM, proteoforms, isoforms, and proteins) by counting the proportion of decoy to forward entities scoring better than the forward entity in question (37–38). This proportion is taken as the probability of a false identification. Note that one is added to both the rank (r) and total (n) of the decoy entity when calculating the posterior probability (30), giving r + 1/n + 1.

3. Filter Forward Entities before Multiple Testing Correction—The posterior probability determined from the decoy null distribution is an estimate of the probability of the Forward entity scoring as well as it did or higher because of chance alone. Yet, this probability does not consider the multiple hypothesis testing issue associated with testing a set of forward entities. As more forward entities are interrogated, the standard of evidence required for each entity increases. For this reason, it is useful to filter obviously incorrect results from the forward entity list. We require the best supporting PrSM for an Absolute Mass search to have at least 3 matching fragments, 6 for a Biomarker search, and an E-value less than 1 for MSPathFinder. This represents a heuristic rule for the minimum amount of supporting evidence required to accept an identification, regardless of its PrSM-level FDR.

4. Apply Multiple Testing Correction to obtain q values—The posterior probability scores for each molecular entity are then corrected for multiple testing (39). The critical p values derived from the Benjamini and Hochberg calculation are converted algebraically to q values (q) by multiplying the posterior probability (p) by the total number of forward entities (n) and dividing by the entity’s rank (r), giving q = p × n/r. This value is the q value and represents the FDR for the entire study set at each molecular level.

5. Take Characterization into Account when Reporting Proteoforms—To avoid misrepresenting proteoform discoveries, some care should be taken to separate instances of partial characterizations from fully characterized proteoforms. Here, proteoforms from ProSight searches with a C-score greater than 40 are considered characterized and included in characterized proteoform counts (25). It should be remembered that with all search engines, proteoforms are only characterized within the context of the search. There is always the possibility that there exists another proteoform that could explain the observed data.

Aggregation to higher molecular levels: Note that Steps 2 to 6 are performed separately for each molecular level. Thus, the list of proteoforms with a CD FDR of 1% is different from the list of proteins with a CD FDR of 1%. Care must always be taken to refer correctly to each list. As a default, we anchor proteoform reporting to those that map to identifications matching a 1% CD FDR at the protein level (27–28).

Enhanced FDR: Parametric Estimation of FDR—The non-parametric estimate of the q value is robust and can estimate the FDR even in the presence of any unknown issues within the search context. Unfortunately, it provides no estimation of the q value for entities where the best scoring PrSM is better than the best decoy. In this case, the posterior probability is simply less than the reciprocal of the total number of decoy PrSMs considered. For example, if there is one thousand decoy PrSMs, any forward PrSM scoring better than the best decoy PrSM can only be said to have a posterior probability less than one in one thousand. This is enough for generating lists of identified proteoforms, but it fails to show increasing support for forward PrSMs with better scores.

If desired, a parametric model can be fit to the null distribution, and an FDR estimate calculated for entities scoring beyond the highest scoring PrSM. TDCD_FDR_Calculator fits a gamma distribution to the null data and uses the area under the curve from the forward PrSM to infinity as the parametric estimate of the posterior probability. The tool only provides these for entities scoring better than the best decoy PrSM. These scores are reported as the Enhanced FDR. Note, that even if the parameterized model is skewed, these best forward results will preserve their relative rankings (e.g. a result with a q value of 10^{-40} has superior information content than one with 10^{-40}) and can be used for downstream processing such as gene-set enrichment analysis.

Manual Spectral Validation—Training data sets with known results are a useful approach to validating FDR calculations (40). With sufficiently large datasets, validating an FDR requires nothing more than verifying that the number of false and true positives are in the correct ratio. To build such a training dataset, the ProSight and MSPathFinder search engines were used to generate a list of candidate proteoforms (detailed below). Each spectra supporting each proteoform was then compared with theoretical isotopic distributions (both MS1 and MS2) generated using Mercury7 (41). A set of experts in top-down mass spectrometry then confirmed the matching PrSM using experience and a set of standardized metrics (Table I). This involves a careful examination of the averaged precursor spectrum, the averaged fragmentation spectrum, and plausibility of the proteoform candidate itself in a given biological context (e.g. the protein and proteoform levels). TDAValidator (Proteaceous Inc., Evanston, IL) was used to assist with most of the expert driven validation (42).

Construction of Training Set—The training set was constructed using data acquired from two laboratories and using different search engines. For each Spectrum in the set, an mzML file was generated that contains all the MS1 and MS2 scans involved. There is also a summary CSV file for each result set that maps the mzML files to the proteoform found, and a copy of the RAW data files.

From Catherman et al. 2013: Tandem MS data were acquired in the course of a previously published study on human proteins (32, 43) Briefly, in that study mitochondrial membrane proteins were isolated from H1299 cells and separated using a GELFtEE 8100 Fractionation system (Expeendo). Data from a single GELFtEE fraction containing ~15–20 kDa proteins (with 846 MS1 and 889 MS2 spectra) were selected and Spectra were manually created by combining multiple MS1 and MS2 scans. Each Spectrum was then searched against
Accurate FDR for Top-Down Proteomics

Table I

Section	Metric	Heuristic
Precursor	Number of charge states	More charge states are better
	Abundance	Higher is somewhat better
	m/z Shifts	Check for the isotopic envelope shifts, either consistently or randomly
Fragments	Number of fragments	More is better
	Location of fragments	Consecutive fragments and "golden" pairs (e.g. B and Y ions at the same position) carry more weight
	Preferred fragmentation	Certain fragmentation methods have preferred sites (e.g. d-P for HCD)
	% Ion current explained	Higher is better, but not required (co-isolation)
	Consistent m/z shifts	Matching error of fragments from a single spectrum should be normally, not uniformly, distributed
Candidate	Number of modifications	Generally, less is better
	Types of modifications	There are tiers of modifications, where some are just more common than others
	Other hits, same search	Seeing the same candidate elsewhere lends support
	Known homology	If the candidate belongs to a family with many similar sequences (e.g. histones) ensure that another family member isn't better
	Family of modified forms	If one sees a highly modified form, there should also be other modified forms

ProSight Warehouses (.pwf files) originally built from UniProt release 2012.0.2 of the human proteome. *Spectra* with a single MS\(^1\) precursor and a single, unambiguous "correct" proteoform result were selected and verified by at least two practitioners trained in top-down proteomics data analysis, to be considered as true answers. This process resulted in 429 *Spectra* that show evidence for 193 unique proteoforms and 164 unique protein entries, all of which were considered true positives.

Park *et al.* Validated Results: Park *et al.* (2017) provide an ovarian tumor replicate run containing 1147 MS\(^1\) and 6882 MS\(^2\) spectra. Of the 359 protein entries (3042 *Spectra*) identified at 1% FDR in the manuscript (Fig. 6 of Park *et al.* [26]), 117 were unique to Informed Proteomics when compared with the TDPortal. These 117 protein entries and their corresponding *Spectra* were manually validated as above. This yielded 95 true positive and 22 true negative protein entries. In addition, further manual validation was done to generate Fig. 3A to 2% FDR.

Included with the training set, but not used here, are 2705 mzML files with corresponding protein identifications which are the *Spectra* from the ovarian tumor replicate from Park *et al.* (2017) that were also found by the TDPortal v3.0. These results represent a 1% FDR, with the TDPortal using the CD FDR described here.

TDCD_FDR_CALCULATOR Software Tool—The top-down context-dependent FDR calculator application, TDCD_FDR_Calculator, and source code perform the FDR calculation detailed here. It was implemented in C# 7.0 using Microsoft Visual Studio 2017 Update 4 and run with a .NET Core 2.0 console application. The Gamma fitting portion depends on version 3.20 of the MathNet.Numerics Nuget package. Three arguments are required: a path to the sorted forward data, a path to the sorted decoy data, and a path to write the output. The input files must be CSV files where the first column is a generic text tag and the second column is a score (where larger is better, sorted ascending). The output CSV will be the same as the forward input file, but with two additional columns: non-parametric q value and Enhanced q value. The source code for this open source tool is available at: https://github.com/NRTDP/TDCD_FDR_Calculator.

RESULTS

In discovery top-down proteomics, each context (the combination of spectra, database, and search parameters) has a unique search space. Further, each molecular level in this search space has its own decoy distribution of scores (Fig. 2). Within a given context, the silhouette of a decoy distribution will be similar between proteins and proteoforms, but they are not identical. This difference comes from multiple PrSMs supporting a single proteoform, and multiple proteoforms supporting a single protein. There is always more decoy information available to estimate the null distribution of proteoforms than for isoforms, and more information on the null distribution of isoforms than proteins.

The consideration immediately above implies that it is best practice to generate an FDR calculation specific to each molecular level shown in Fig. 1 (i.e., protein, isoform, etc.). The list of proteins discovered with a 1% FDR is not the same list as the list of proteins resulting from PrSMs discovered at a 1% FDR. The latter list will have a higher FDR at the protein-level than the former, and this difference can be quite striking. For example, the data used in the training set from Park *et al.* yields 298 proteins when aggregated with a 1% protein level CD FDR, but there 324 proteins when aggregated at the PrSM level and naïvely merged. The latter would yield an effective 8.0% FDR while appearing to have a 1%, an 8.0-fold error in FDR.

A training set with known correct answers was created from two recently published manuscripts. This allowed the magnitude of the loss of control on FDR to be observed. The training dataset contains 546 mzML files where each file containing a single *Spectrum*, and a spreadsheet of correct proteoform iden-
Decoy Distributions by Context

Fig. 2. Decoy Distributions by Context. Every Context yields a unique distribution of decoy scores. Shown here are protein-level (in green) and proteoform-level (in gray) decoy distributions for three search Contexts using the Park et al. training data set. A shows the distribution from MSPathFinder searching the Human FASTA dataset used in Park et al. (downloaded from SwissProt 2015–10–14). This contains 20,197 unannotated protein sequences with no isoform or PTM information. B shows a ProSightPC Biomarker search against the same FASTA file as A. Notice the overall lower decoy density and the presence of a single high-scoring decoy hit. This causes the decoy distribution to appear to be shifted to the left. C shows the distribution of decoy scores for a ProSightPC Absolute Mass search against a highly annotated human database (Downloaded from Swissprot 4/2016, with 20,155 proteins, 42,317 isoforms, and 319,264 annotated isoform features such as PTMs and cSNPs). Both the PrSM and Protein-level decoy distributions from three search engines run on the same spectral input from validated Park et al. data are shown. Light gray background is the PrSM-level decoy distribution compared with the corresponding Protein-level decoy distribution in green. Each search engine provides a different range of values on the X-axis, so scores are scaled from lowest to highest value in that search context. Notice that each search context provides a different distribution.

Given the uncorrelated nature of single spectrum proteins (supplemental Fig. S1), the number of false positives will increase when merging search results from multiple runs. Fig. 4 shows the increase in proteins and proteoforms supported by a multiple spectrum in the ten runs reported in the quantitative study in Park et al. (26). Unfortunately, one should not simply disregard proteins supported by a single PrSM as even at ten runs only 62% of the proteoforms are supported by multiple PrSMs. Discarding the single PrSM proteoforms needlessly excludes many true positives. For example, in the qualitative study reported by Park et al., no less than 44 manually-validated, true positive protein identifications were supported by only one PrSM each.

The CD FDR outperforms a naïve interpretation of PrSM-level FDR, though there is a generally monotonic relationship between the two (supplemental Fig. S2). To visualize the relationship between CD FDR and PrSM-level FDR, 1,173 putative protein identifications from the validated data in Park et al. were ranked by FDR. Fig. 5 shows the 200 proteins that span the transition from true to false discoveries. To the left on this figure are the true positives (accept) and to the right are true negatives (reject). Unfortunately, when ranked by either CD FDR or PrSM FDR the transition from true positive to true negative is not sharp, but rather the true and false positives mix together. The goal of automated proteomics is to pick a cutoff value that separates the true positives in the sample from the true negatives while controlling the FDR (and without requiring manually verification). In this case, the CD FDR is consistently conservative. As shown in Fig. 5, the CD FDR places the cutoff to the left, or below, of the true cutoff, while the PrSM-based approach used by MSPathFinder has the opposite behavior.
phenomena has been reported before with Big Mascot (44), and it occurs when no decoy PrSMs score high enough to differentiate the top-scoring discovered proteins. This failure to differentiate top-scoring proteins creates a rank-ordered list with hundreds of ties for first place, even though there is a noticeable difference in spectral support among the tied proteins. Increasing the number of decoy PrSM results can potentially alleviate this problem, but that is usually impractical given computational constraints. The Enhanced FDR uses a parameterized model to estimate the FDR for all molecular entities scoring above the top decoy hit. These optional data are provided in a separate column in the TDCD_FDR_Calculator output and can be used whenever finer detail and striation of the top scoring hits in a run is desired.

FIG. 3. Loss of Control on Protein-level FDR with Naïve PrSM-level FDR Calculation. A, Relationship between PrSM-level FDR and Protein-level FDR for ProSight Absolute Mass search (AM) and MSPathFinder (PF) on two datasets. For each point, the x axis is the PrSM level FDR and the y axis is the corresponding protein level FDR that is achieved if the PrSM FDR is used for the study. For example, when MSPathFinder is searched against the “golden” dataset, and a 1% FDR is accepted at the PrSM level, nearly 30% of the discovered proteins are false. ProSightPC does not offer an FDR calculation, so the purple lines represent the protein-level FDR that would be achieved had ProSightPC naively calculated protein-level FDR as a PrSM-level FDR. B, The effect on protein-level FDR with interrogating increasing numbers of LC-MS/MS runs. Loss of FDR control for random subsets of increasing numbers of LC-MS/MS runs was estimated as described in the text. Either two or four files were selected at random at treated as if they were the entire dataset for the study. Error bars represent the Standard Error of the Mean from 5 replicate samples drawn from 10 runs in the Quantitative study of Park et al. As the number of LC-MS/MS files in a study increases, the loss of control on protein level FDR also increases.

FIG. 4. Percent of Multiple PrSM-Supported Proteins and Proteoforms by Number of Runs Merged. Using the 10 raw files from the quantitative study in Park et al., the presence of proteoforms and proteins supported by a multiple Spectra was explored. For the given number of runs, the average number of proteins and proteoforms supported by more than one PrSM is shown. The error bars show the maximum and minimum percent from all possible combinations at the level (e.g. 10 values for one run, one value for all 10 runs, and 10 choose 3 values for combining 3 Runs). This growth to a constant value is expected (See supplemental Fig. S1).

DISCUSSION

In top-down proteomics, search context is critical for estimating FDRs. The context includes the MS data searched and the database search against, but it also includes the search engine used, the parameters of the search, and the molecular level (proteoform, isoform, or protein) of interest. Naïve PrSM-level FDR estimation loses control of the true FDR when
reporting at the Proteoform, Isoform, and Protein level. This problem gets worse at higher molecular levels, and at the protein level the problem is significant; we found an average loss of control of 24-fold over four contexts (Fig. 3A). Therefore, it is not enough to report top-down proteomic results with a simple PrSM FDR, instead they must be calculated at the level for which they are being reported. We recommend a conservative reporting standard for discovered proteins be those with a 1% protein level FDR supported by at least one proteoform at the 1% proteoform FDR.

We have manually validated two publicly available datasets; one published by our laboratory and the other from Park et al. We have identified the correct proteoforms associated with 546 spectra. Additionally, 2705 spectra representing the proteins identified in common from two independent search engines are identified, curated, and made publicly available in a large dataset. While we have used this training set to explore the role of search context on FDR calculations, these data are available to be used to train and calibrate other search algorithms for top-down proteomics.

In our training set, the loss of control of FDR comes from proteins and proteoforms supported by a single PrSM FDR, instead they must be calculated at the level for which they are being reported. We recommend a conservative reporting standard for discovered proteins be those with a 1% protein level FDR supported by at least one proteoform at the 1% proteoform FDR.

We have manually validated two publicly available datasets; one published by our laboratory and the other from Park et al. We have identified the correct proteoforms associated with 546 spectra. Additionally, 2705 spectra representing the proteins identified in common from two independent search engines are identified, curated, and made publicly available in a large dataset. While we have used this training set to explore the role of search context on FDR calculations, these data are available to be used to train and calibrate other search algorithms for top-down proteomics.

In our training set, the loss of control of FDR comes from proteins and proteoforms supported by a single PrSM FDR, instead they must be calculated at the level for which they are being reported. We recommend a conservative reporting standard for discovered proteins be those with a 1% protein level FDR supported by at least one proteoform at the 1% proteoform FDR.

We have manually validated two publicly available datasets; one published by our laboratory and the other from Park et al. We have identified the correct proteoforms associated with 546 spectra. Additionally, 2705 spectra representing the proteins identified in common from two independent search engines are identified, curated, and made publicly available in a large dataset. While we have used this training set to explore the role of search context on FDR calculations, these data are available to be used to train and calibrate other search algorithms for top-down proteomics.

In our training set, the loss of control of FDR comes from proteins and proteoforms supported by a single PrSM FDR, instead they must be calculated at the level for which they are being reported. We recommend a conservative reporting standard for discovered proteins be those with a 1% protein level FDR supported by at least one proteoform at the 1% proteoform FDR.

We have manually validated two publicly available datasets; one published by our laboratory and the other from Park et al. We have identified the correct proteoforms associated with 546 spectra. Additionally, 2705 spectra representing the proteins identified in common from two independent search engines are identified, curated, and made publicly available in a large dataset. While we have used this training set to explore the role of search context on FDR calculations, these data are available to be used to train and calibrate other search algorithms for top-down proteomics.

In our training set, the loss of control of FDR comes from proteins and proteoforms supported by a single PrSM FDR, instead they must be calculated at the level for which they are being reported. We recommend a conservative reporting standard for discovered proteins be those with a 1% protein level FDR supported by at least one proteoform at the 1% proteoform FDR.

We have manually validated two publicly available datasets; one published by our laboratory and the other from Park et al. We have identified the correct proteoforms associated with 546 spectra. Additionally, 2705 spectra representing the proteins identified in common from two independent search engines are identified, curated, and made publicly available in a large dataset. While we have used this training set to explore the role of search context on FDR calculations, these data are available to be used to train and calibrate other search algorithms for top-down proteomics.

In our training set, the loss of control of FDR comes from proteins and proteoforms supported by a single PrSM FDR, instead they must be calculated at the level for which they are being reported. We recommend a conservative reporting standard for discovered proteins be those with a 1% protein level FDR supported by at least one proteoform at the 1% proteoform FDR.

We have manually validated two publicly available datasets; one published by our laboratory and the other from Park et al. We have identified the correct proteoforms associated with 546 spectra. Additionally, 2705 spectra representing the proteins identified in common from two independent search engines are identified, curated, and made publicly available in a large dataset. While we have used this training set to explore the role of search context on FDR calculations, these data are available to be used to train and calibrate other search algorithms for top-down proteomics.
Accurate FDR for Top-Down Proteomics

In addition, multiple searches are frequently pooled to create a final list of molecular entities. This analysis provides no guidance on how to correctly pool searches while maintaining overall control on the FDR.

It is possible that statistical dependences exist within the CD FDR. Intuitively, fragment ions can belong to multiple proteins or proteoforms and therefore affect multiple scores. This violates the independence assumption of the Benjamini and Hochberg FDR analysis. The FDR analysis can be modified to account for such dependences (46). Not all dependence affects the Benjamini and Hochberg FDR analysis, specifically positive regression dependence (PRD) (46). Analyzing the role of dependence is a likely next-step in improving the CD FDR.

In conclusion, an FDR on a protein or proteoform identification is dependent on the context of the search. The entire context must be considered, including all identifications inferred from the data. We advocate a conservative approach to FDR estimation in which all data are pooled from a given study, and separate inferences made depending on the molecular level in question. Thus, the Context Dependent solution described here is accurate, designed to scale without loss of FDR control and provides conservative control regarding the inclusion of proteoforms supported by a single PrSM. This approach is suitable for use in future top-down proteomic studies run at very large scale (e.g. millions of tandem mass spectra (47)). To improve the general and perceived value of such future studies, the inclusion of less false discoveries is more desirable than the cost of excluding a few true discoveries.

REFERENCES

1. Ntai, I., and Toby, T. K. (2016); LeDuc, R. D., Kelleher, N. L., A method for label-free, differential top-down proteomics. *Methods Mol. Biol.* 1410, 121–133

2. Ntai, I., LeDuc, R. D., Fellers, R. T., Erdmann-Gilmore, P., Davies, S. R., Rumssey, J., Early, B. P., Thomas, P. M., Li, S., Compton, P. D., Ellis, M. J., Ruggles, K. V., Fenyo, D., Boja, E. S., Rodriguez, H., Townsend, R. R., and Kelleher, N. L. (2016) Integrated bottom-up and top-down proteomics of patient-derived breast tumor xenografts. *Mol. Cell. Proteomics* 15, 45–56

3. Serang, O., and Kall, L. (2015) Solution to statistical challenges in proteomics is more statistics, not less. *J. Proteome Res.* 14, 4099–4103

4. Wilhelm, M., Schlegel, J., Hahne, H., Moghaddas Gholami, A., Lieberenz, M., Savitski, M. M., Ziegler, E., Buttzmann, L., Gessulat, S., Marx, H., Mathieson, T., Lemeer, S., Schnatbaum, K., Reimer, U., Wenschuh, M., Mollenhauer, M., Slotta-Huspenina, J., Boese, J. H., Bantschaff, M., Gerstmaier, A., Faerber, F., and Kuster, B. (2014) Mass-spectrometry-based draft of the human proteome. *Nature* 509, 582–587

5. Savitski, M. M., Wilhelm, M., Hahne, H., Kuster, B., and Bantschaff, M. (2015) A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets. *Mol. Cell. Proteomics* 14, 2394–2404

6. Burger, T. (2018) Gentle Introduction to the Statistical Foundations of False Discovery Rate in Quantitative Proteomics. *J. Proteome Res.* 17, 12–22

7. Noble, W. S., and MacCoss, M. J., (2012) Computational and statistical analysis of protein mass spectrometry data. *PLoS Comput. Biol.*, 8, e1002296

8. Benjamini, Y., Hochberg, Y., (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J. Roy. Statistical Soc.* 57, 289–300

9. Hather, G., Higdon, R., Bauman, A., van Haller, P. D., and Kolker, E. (2010) Estimating false discovery rates for peptide and protein identification using randomized databases. *Proteomics* 10, 2369–2376

10. Higdon, R., Hogan, J. M., Kolker, N., van Belle, G., and Kolker, E. (2007) Experiment-specific estimation of peptide identification probabilities using a randomized database. *Omics* 11, 351–365

11. LeDuc, R. D., Taylor, G. K., Kim, Y. B., Januszky, T. E., Bynum, L. H., Sola, J. V., Garavelli, J. S., and Kelleher, N. L., (2004) ProSight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. *Nucleic Acids Res.* 32 (Web Server issue), W340–W345

12. Meng, F., Cargile, B. J., Miller, L. M., Forbes, A. J., Johnson, J. R., and Kelleher, N. L. (2014) Accurate FDR for Top-Down Proteomics. *J. Proteome Res.* Discovery Rate in Quantitative Proteomics. *J. Proteome Res.* 15, 45–56

13. LeDuc, R. D., and Kelleher, N. L., (2007) Using ProSight PTM and related tools for targeted protein identification and characterization with high mass accuracy tandem MS data. *Current Protocols Bioinformatics* Chapter 13, Unit 13.6

14. Frank, A. M., Pesavento, J. J., Mitten, C. A., Kelleher, N. L., and Pevzner, P. A. (2008) Interpreting top-down mass. Spectra using spectral alignment. *Anal. Chem.* 80, 2499–2505

15. Horn, D. M., Zubarev, R. A., and McLafferty, F. W. (2000) Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. *J. Am. Soc. for Mass Spectrom.* 11, 320–332

16. Kou, Q., Xun, L., and Liu, X. (2016) TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization. *Bioinformatics* 32, 3299–3307

17. Xu, X., Sirotkin, Y., Shen, Y., Anderson, G., Tsai, Y. S., Ting, Y. S., Goodlett, D. R., Smith, R. D., Bafna, V., and Pevzner, P. A. (2012) Protein identification using top-down spectra. *Mol. Cell. Proteomics* 11, M111.008524

18. Smith, L. M., and Kelleher, N. L. (2013) Proteoform: a single term describing protein complexity. *Nat. Methods* 10, 186–187

19. Yang, X., Coulombe-Huntington, J., Kang, S., Sheynkman, G. M., Hao, T., Richardson, A., Sun, S., Yang, F., Shen, Y. A., Murray, R. R., Spirohn, K., Beinlich, A., Duran-Frigola, M., MacWilliams, A., Pevzner, S. J., Zhong, Q., Trigg, S. A., Tam, S., Ghamarsi, L., Sahni, N. Y., Shi, R., Rodriguez, M. D., Balcha, D., Tan, G., Costanzo, M., Andrews, B., Boone, C., Zhou, X., Salehi-Ashtiani, K., Charlebois, B., Chen, A. A., Calderwood, M. A., Aloy, P., Roth, F. P., Hill, D. E., Iakoucheva, L. M., Xia, Y., and Vidal, M. (2016) Widespread expansion of protein interaction capabilities by alternative splicing. *Cell* 164, 805–817

DATA AVAILABILITY

A training set with known correct answers can be downloaded from MassIVE: https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=bcadem79f849c3bd87a10e08c929fb. The source code for the TDCD_FDR_Calculator is available at: https://github.com/NRTDP/TDCD_FDR_Calculator.

* Financial Conflict of Interest: Computational tools described in this work are available as either open-source, freeware or commercially so a financial conflict of interest is declared.

* This research was supported by NIDA P30DA018310 and the Paul G. Allen Family Foundation (Award #11715). The work was also supported by the Sherman Fairchild Foundation and performed in collaboration with the National Resource for Translational and Developmental Proteomics under Grant P41 GM108569 from the National Institute of General Medical Sciences, National Institutes of Health.

* This article contains supplemental material.

* To whom correspondence may be addressed: E-mail: richard.leduc@northwestern.edu; Tel.: 217-493-9885; FAX: 847-467-3276.

* To whom correspondence may be addressed: E-mail: n-kelleher@northwestern.edu; Tel.: 217-493-9885; FAX: 847-467-3276.

* Author contributions: R.D.L., R.T.F., B.P.E., D.P.S., P.M.T., and N.L.K. designed research; R.D.L., R.T.F., B.P.E., J.B.G., and D.P.S. analyzed data; R.D.L., R.T.F., D.P.S., P.M.T., and N.L.K. wrote the paper; R.T.F., B.P.E., J.B.G., and D.P.S. performed research.
20. Shortreed, M. R., Frey, B. L., Scalf, M., Knoener, R. A., Cesnik, A. J., and Smith, L. M., (2016) Elucidating Proteofam. Families from proteofom intact-mass and lysine-count measurements. J. Proteome Res. 15, 1213–1221
21. Tran, J. C., Zamdborg, L., Ahlf, D. R., Lee, J. E., Catherman, A. D., Durbin, K. R., Tipton, J. D., Vellaichamy, A., Kelleher, J. F., Li, M., Wu, C., Sweet, S. M., Early, B. P., Siuti, N. LeDuc, R. D., Compton, P. D., Thomas, P. M., and Kelleher, N. L. (2011) Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480, 254–258
22. The UniProt Consortium, UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017, 45 (Database Issue), D158–D169
23. Junker, V. L., Apweiler, R., and Barroch, A. (1999) Representation of functional information in the SWISS-PROT data bank. Bioinformatics 15, 1086–1087
24. Proteomics, C. f. T.-D. TopDownProteomics.org. (accessed 12/6/2017).
25. Davis, R. G., Park, H.-M., Kim, K., Greer, J. B., and Fellers, R. T. LeDuc, R. D., Blakney, G. T., Thomas, P. M., Kelleher, N. L., and Hendrickson, C. L. (2017) Identification and characterization of human proteoforms by top-down LC-21 Tesla FT-ICR mass spectrometry. J. Proteome Res. 16, 1087–1096
26. Zamdborg, L., LeDuc, R. D., Glowacz, K. J., Kim, Y. B., Viswanathan, V., Spaulding, I. T., Early, B. P., Bluhm, E. J., Babai, S., and Kelleher, N. L. (2007) ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res. 35 (Web Server issue), W701–W706
27. Jeong, K., Kim, S., and Bandeira, N. (2012) False discovery rates in spectral identification. BMC Bioinformatics 13, S2
28. Storey, J. D., and Tibshirani, R. (2003) Statistical significance for genome-wide studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440–9445
29. Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statistical Soc. 57, 289–300
30. Agarwal, S., Yadav, A. K. False Discovery Rate Estimation in Proteomics. In Statistical Analysis in Proteomics, Jung, K., Ed. Springer New York: New York, NY, 2016; pp 119–128
31. North, B. V., Curtis, D., and Sham, P. C. (2002) A note on the calculation of empirical P values from Monte Carlo procedures. Am. J. Hum. Genet. 71, 439–441
32. Catherman, A. D., Zamdborg, L., Ahlf, D. R., Lee, J. E., Catherman, A. D., Durbin, K. R., Tipton, J. D., Vellaichamy, A., Kelleher, J. F., Li, M., Wu, C., Sweet, S. M. M., Early, B. P., Siuti, N. LeDuc, R. D., Compton, P. D., and Thomas, P. M. (2011) Kelleher, N. L., Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480, 254–258
33. Catherman, A. D., Durbin, K. R., Ahlf, D. R., Early, B. P., Fellers, R. T., Tran, J. C., Thomas, P. M., and Kelleher, N. L. (2013) Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence. Mol. Cell. Proteomics 12, 3465–3473
34. Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Cech, M.; Chilton, J., Clements, D., Coraor, N., Eberhard, C., Grüning, B., Guerler, A., Hillman-Jackson, J., Von Kuster, G., Rasche, E., Sonarzo, N., Tunaga, N., Taylor, J., Nekrutenko, A., and Göecks, J. (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44 (Web Server issue), W3–W10
35. Fornelli, L., Durbin, K. R., Fellers, R. T., Early, B. P., Greer, J. B. LeDuc, R. D., Compton, P. D., and Kelleher, N. L. (2017) Advancing top-down analysis of the human proteome using a benchtop quadrupole-orbitrap mass spectrometer. J. Proteome Res. 16, 609–618
36. Anderson, L. C., DeHart, C. J., Kaiser, N. K., Fellers, R. T., Smith, D. F., Greer, J. B. LeDuc, R. D., Blakney, G. T., Thomas, P. M., Kelleher, N. L., and Hendrickson, C. L. (2017) Identification and characterization of human proteoforms by top-down LC-21 Tesla FT-ICR mass spectrometry. J. Proteome Res. 16, 1087–1096
37. Zamdborg, L., LeDuc, R. D., Glowacz, K. J., Kim, Y. B., Viswanathan, V., Spaulding, I. T., Early, B. P., Bluhm, E. J., Babai, S., and Kelleher, N. L. (2007) ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res. 35 (Web Server issue), W701–W706
38. Rockwood, A. L., and Haimi, P. (2006) Efficient calculation of accurate masses of isotopic peaks. J. Am. Soc. Mass Spectrom. 17, 415–419
39. Fornelli, L., Szrenti, K., Huguet, R., Mullen, C., Sharma, S., Zabrouskov, V., Fellers, R. T., Durbin, K. R., Compton, P. D., and Kelleher, N. L. (2018) Accurate sequence analysis of a monoclonal antibody by top-down and middle-down orbitrap mass spectrometry applying multiple ion activation techniques. Anal. Chem. 90, 8421–8429
40. Catherman, A. D., Li, M., Tran, J. C., Durbin, K. R., Compton, P. D., Early, B. P., Thomas, P. M., and Kelleher, N. L. (2013) Top down proteomics of human membrane proteins from enriched mitochondrial fractions. Anal. Chem. 85, 1880–1888
41. Kisabačak, N. M., Li L., Tiwari, A., Hayward, L. J., Hong, P., Easterling, M. L., and Agar, J. N. (2009) Sensitive and specific identification of wild type and variant proteins from 8 to 669 kDa using top-down mass spectrometry. Mol. Cell. Proteomics 8, 846–856
42. Elias, J. E., and Gygli, S. P. (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214
43. Benjamini, Y., and Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency. Ann. Statistics 29, 1165–1188
44. Wilhelm, M., Schlegl, J., Hahne, H., Gholami, A. M., Lieberenz, M., Savitski, M. M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., Mathieson, T., Lemeer, S., Schnatbaum, K., Reimer, U., Wenschuh, H., Mollenhauer, M., Slotta-Huspenina, J., Boese, J.-H., Bantscheff, M., Gerstmaier, A., Faerber, F., and Kuster, B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509, 582