Metallfreie Katalyse
Triarylboran-katalysierte Alkenylierungen von Arylestern mit Diazo-verbindungen
Ayan Dasgupta*, Katarína Stefkova*, Rasool Babaahmadi, Lukas Gierlichs, Alireza Ariafard* und Rebecca L. Melen*

Abstract: Wir berichten hier von einer einfachen und milden Reaktion zur Knüpfung von Kohlenstoff-Kohlenstoff-Bindungen in Abwesenheit von Übergangsmetallkatalysatoren. Wir zeigen, dass die metallonfreie Alkenylierungsreaktion von Arylestern mit α-Diazoestern zu hochfunktionalisierten En- und Dienprodukten führt. Es werden katalytische Mengen an Tris(pentafluorphenyl)boran (10–20 Mol-%) eingesetzt, um die C=C-gekoppelten Produkte (31 Beispiele) in guten bis ausgezeichneten Ausbeuten (36–87%) zu erhalten. DFT-Studien wurden zur Aufklärung des Mechanismus dieser Alkenylierungsreaktion durchgeführt.

Diazo- oder N-Tosylhydrazone als Diazoverbindungen haben eine Vielzahl von Anwendungen in der Syntheschemie gefunden und sind vielseitige Zwischenprodukte, die organische Verbindungen in einem einzigen Schritt schnell funktionalisieren können. Insbesondere Diazoverbindungen und N-Tosylhydrazone als Diazoverläufe haben als Carbonyl-equivalente für den Bau von Kohlenstoff-Kohlenstoff-Doppelbindungen viel Aufmerksamkeit auf sich gezogen. Übergangsmetallkatalysatoren wie Palladium werden typischerweise in Reaktionen mit Diazoverbindungen zur Synthese von Doppelbindungen verwendet. Zwei mechanistische Ansätze werden allgemein akzeptiert: i) die migratorische Insertion einer Palladium-carbenspezies (erzeugt aus der Diazoverbindung), gefolgt von β-Hydrid-Eliminierung oder ii) ein nukleophiler Angriff einer Diazoverbindung auf eine Übergangsmetall-Carben-Spezies, gefolgt von β-Eliminierung (Abbildung 1 a). In jüngster Zeit wurden häufig Metalle der ersten Übergangsmetallperiode wie Palladium in Reaktionen mit Diazoverbindungen eingesetzt. Von besonderer Bedeutung ist ein aktueller Bericht über die FeCl2-katalysierte Alkenylierung von benzylischen C(sp 3)-H-Bindungen unter Verwendung von Tris(pentafluorphenyl)boran [B(C₆F₅)₃] als Katalysator (Abbildung 1 d) als neuen Weg zur Erzeugung konjugierter organischer Verbindungen. In den letzten zehn Jahren hat die Verwendung von B(C₆F₅)₃ sowie verwandter Triarylborane als Katalysatoren für eine Reihe von Umwandlungen an Beliebtheit gewonnen. Die bei der Reaktion erzeugten estersubstituierten En- und Dienprodukte werden üblicherweise durch metallkatalysierte Sonogashira-Kreuzkupplungen hergestellt. Die bei der Reaktion erzeugten estersubstituierten En- und Dienprodukte werden üblicherweise durch metallkatalysierte Sonogashira-Kreuzkupplungen hergestellt. Diese Verbindungen sind übliche Ausgangsmaterialien für die Synthese von Heterocyclen wie Pyran-2-on durch eine einfache Metall- oder Boran-katalysierte Cyclisierungsreaktion.

Zuschriften

Angew. Chem. Int. Ed. 2020, 59, 15492–15496
Internationale Ausgabe: doi.org/10.1002/anie.202007176
Deutsche Ausgabe: doi.org/10.1002/ange.202007176

Angew. Chem. 2020, 132, 15621–15626 /© 2020 Die Autoren. Veröffentlicht von Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library 15621

Für die Übersetzung sei der angewandten Chemie gedankt. (Die Übersetzungstexte wurden mit dem Übersetzungstool \(\text{Deutsche} \rightarrow \text{Englisch} \text{und} \text{Englisch} \rightarrow \text{Deutsche}\) durchgeführt.)
mitten Trifluortoluol (TFT; Tabelle 1). In Abwesenheit eines Borankatalysators konnte nach 22 h bei 65 °C keine Reaktion festgestellt werden (Tabelle 1, Nr. 1). Die Zugabe von 20 Mol-% eines fluorierteren Triarylborans führte jedoch zum Verlust von N₂, aus 1a und zur Benzylalkylenylidierung des Arylalkynylesters 2a zu einem Verlust von 4-Fluorbenzoester (Tabelle 1), einschließlich eines gewünschten Produktes (Tabelle 1, Nr. 1–12). Während Toluol, Dichlormethan und Hexan eine niedrigere erweisen sich als das beste Lösungsmittel für die Reaktion, unter Bildung des C-C-gekoppelten Eninprodukts Dimethyl-(1-(4-fluorphenyl)-3-(trimethylsilyl)prop-2-in-1-yliden)malonat (3a). Eine Reihe von Borankatalysatoren wurde in der Reaktion getestet, einschließlich B(2,4,6-F₃C₆H₂)₃, B(3,4,5-F₃C₆H₂)₃ und B(C₆F₅)₃, was bei Verwendung einer Katalysatorbedingung von 20 Mol-% zu isolierten Produktausbeuten von 41%, 25% und 78% führte (Tabelle 1, Nr. 2–4). Andere Lewis-Säuren wie BF₃·OEt₂ zeigten dagegen nach 18 h bei von 41%, 25% und 78% führte (Tabelle 1, Nr. 2–4). Andere Lewis-Säuren wie BF₃·OEt₂ zeigten dagegen nach 18 h bei 65 °C keine Reaktion (Tabelle 1, Nr. 5). Ebenso ergab die Brønsted-Säure TSS (p-Toluolsulfonsäure) kein gewünschtes Produkt (Tabelle 1, Nr. 6). Eine Verringerung der katalytischen Beladung auf 10 Mol-% ergab nur eine Ausbeute von 42% (Tabelle 1, Nr. 7–8).

Das Erhöhen der Temperatur auf 100 °C unter Verwendung von 10 und 5 Mol-% B(C₆F₅)₃ führte zu Nebenprodukten und geringeren isolierten Ausbeuten des Produkts 3a, während das Verringern der Temperatur auf Raumtemperatur auch zu geringeren Ausbeuten bei Verwendung von 20 Mol-% B(C₆F₅)₃ führte (Tabelle 1, Einträge 9–11). TFT erwies sich als das beste Lösungsmittel für die Reaktion, während Toluol, Dichlormethan und Hexan eine niedrigere Ausbeute des Produkts zeigten und THF dazu führte, dass kein gewünschtes Produkt gebildet wurde (Tabelle 1, Nr. 11–15). Schließlich untersuchten wir die Wirkung verschiedener Abgangsgruppen R₁ auf den Ester (Tabelle 1), einschließlich 4-FC₆H₄, CF₃, Me, Ph und Bu. Die Reaktion verlief außer für R = Bu in allen Fällen erfolgreich. Die Reaktionsschwindigkeit war jedoch bei elektronenziehenden Gruppen schneller, daher entschieden wir uns für die Verwendung von Ether 2 mit R¹ = 4-FC₆H₄ oder CF₃.

Unter den optimierten Reaktionsbedingungen (10 Mol-% B(C₆F₅)₃, 65 °C, 18–22 h, Lösungsmittel: TFT) wurde der Umfang der Reaktion untersucht. Reaktionen verschiedener 2-Diazomalonate (1a–c) mit Arylalkynylestern (2a–g) ergaben die Produkte 3a–n in guten bis sehr guten isolierten Ausbeuten (63–87%) (Schema 1). Die Reaktion funktionierte mit mehreren symmetrischen Diazoebern 1 sowie p-F-, p-Cl-, p-Br- und p-CF₃-Substituenten an der Arylgruppe des Arylalkynylestes 2 gut. Zusätzlich konnten Trimethylsilyl-(TMS) und Phenylsubstituenten an dem Alkin 2 toleriert werden. Reaktionen mit elektronenschiebenden (p-OMe) oder stark elektronenziehenden (2,6-F₂-) Substituenten an der Arylgruppe von 2h und 2i waren erfolglos und ergaben eine komplexe Mischung untrennbarer Produkte. Ebenso war die Reaktion mit Di tert-butyl-2-diazomalonat (1d) erfolglos und zeigte nur eine Zersetzung der Diazoverbindung. Einkristalle von 3a und 3n, die für die Röntgenbeugung geeignet sind, konnten durch langsames Verdampfen einer gesättigten CH₂Cl₂-Lösung gezüchtet werden (Abbildung 2).

Wir haben die Anwendungsbreite dieser Methode bei Reaktionen mit den unsymmetrischen α-Aryldiazoestern Methyl-2-(4-chlorphenoxy)-2-diazocetat (1e) und Methyl-2-diazo-2-phenylacetat (1f) mit 2a und 2e weiter untersucht. Die Produkte 3o–q wurden alle in geringeren Ausbeuten (36–46%) als die der symmetrischen Diazoester isoliert. Alle Produkte wurden in einem Diastereomerenverhältnis von 1:0.4 (E:Z) gebildet, was mittels 1H-NMR-Spektroskopie des rohen Reaktionsgemisches bestimmt wurde. Ein Grund für die niedrigere Ausbeute des C-C-gekoppelten Produkts war die Beobachtung, dass neben Nebenprodukten 4a–b etwa im Verhältnis 1:1 mit dem gewünschten Produkt 3 gebildet wurden. Wir führen die Erzeugung der Nebenprodukte auf die erhöhte Reaktivität der α-Aryldiazoester 1e und 1f zurück, die schnell mit der bei der Reaktion erzeugten 4-Fluorbenzoester (5) reagieren. Es ist zu beachten, dass bei Verwendung von Diphenylidazomethan nur eine Homokupplung der Diazoverbindung beobachtet wurde. Reaktionen mit dem Arylalkynylester 2j erwiesen sich ebenfalls als möglich, wobei die Dienprodukte 3r und 3s in 71 % bzw. 77 % Ausbeute erhalten wurden. Das zufriedenstellende Ergebnis dieser Reaktionen veranlasste uns, unsere Arbeit zu erweitern, um einen breiteren Substratbereich für dieses Protokoll aufzuzeigen. An-
stelle von Alkyl- oder Alkenylestern wurden Diarylester in den Alkenylierungsreaktionen untersucht. Unter Verwendung der optimierten Reaktionsbedingungen reagierten die Diarylester mit den Diazoestern und ergaben die Doppelbindungsprodukte in guten bis ausgezeichneten Ausbeuten von 67–87% (Schema 2). Diese Reaktionen erwiesen sich mit symmetrischen Diarylestern, die sowohl elektronenziehende (p-F) als auch elektronenschiebende (p-OMe) Funktionalitäten am Arylring enthielten, als erfolg-
durch den Borankatalysator gibt, entweder i) die Aktivierung der Carbonylgruppe am Ester 2, was zur Erzeugung eines Carbeniumions führt[10] oder ii) die Aktivierung der Diazo-verbindung 1 durch das Boran.[13,14]

Um festzustellen, wie das Substrat aktiviert wird, und um den gesamten Reaktionsmechanismus zu untersuchen, führten wir DFT-Berechnungen unter Verwendung der Methodik SMD/M06-2X-D3/def2-TZVP/CPCM/B3LYP/6-31G(d) mit Toluol als Lösungsmittel durch. Abbildung 4 zeigt den durch die DFT-Berechnungen vorgeschlagenen Katalysezyklus für den in Abbildung 5 gezeigten Reaktionsweg. Es wurde gefunden, dass die Koordination des Borans an den Ester 2 der erste Schritt der Reaktion ist, um das Addukt II über einen 3.6 kcal mol⁻¹ hohen Übergangszustand zu ergeben (TS₂). Es wurde berechnet, dass dies ein um 13.0 kcal mol⁻¹ niedrigerer Energiepfad ist als die Koordination des Borans an die Diazo-verbindung, eine Umwandlung, die um etwa 13.6 kcal mol⁻¹ endergonisch berechnet wurde (Hintergrundinforma-

Abbildung 3. Festkörperstruktur der Verbindung 6e. Thermische Ellipsode gezeigt mit einer Wahrscheinlichkeit von 50%. Kohlenstoff: schwarz; Sauerstoff: rot.

Abbildung 4. Durch DFT-Berechnungen vorgeschlagener Katalysezyklus.

Abbildung 5. Durch DFT berechnetes Energieprofil der Reaktion. Die relativen freien Energien sind in kcal mol⁻¹ und die ausgewählten Bindungsabstände (in rosa) in Å angegeben.
tionen, Abbildung S144). Es wurde gefunden, dass \textbf{I1} eine verlängerte CO-Bindungslänge von 1.502 Å aufweist, was zur Spaltung der Bindung und zur Bildung eines elektrophilen Carbeniumions in Salz \textbf{I2} führt, das mit einer AktivierungsbARRIERE von 13.4 kcal/mol über \textbf{TS1} auftritt. Die Erzeugung des Carbeniumions bestätigt die Beobachtung, dass Ester, die eine positive Ladung wie \textbf{I2} p stabilisieren können, bei diesen Reaktionen nicht erfolgreich waren. \textbf{I2} liegt als enges Ionenpaar vor und reagiert mit dem Diazosubstrat \textbf{1} als Nukleophil über \textbf{TS3} (AktivierungsbARRIERE: 13.8 kcal/mol) zum Salz \textbf{I3}. Die Reaktion zwischen \textbf{I2} und \textbf{I} führt dazu, dass die CN-BINDUNG im Diazosubstrat gebrochen wird, was durch die verlängerte CN-BINDUNG in \textbf{I3} belegt wird. Das resultierende Intermediat (\textbf{I3}) liegt auch als enges Ionenpaar mit einem kurzen OH-KONTAKT (1.945 Å) vor.

Schließlich setzt eine E2-Eliminierungsreaktion durch \textbf{TS4}, mit einer AktivierungsbARRIERE von nur 3.7 kcal/mol für die Bildung eines elektrophilen C-Doppelbindungsprodukts in guten bis ausgezeichneten Ausbeuten er-scheint. Insbesondere sind die erzeugten Produkte wichtige Vorläufer zur Herstellung biologisch aktiver heterocyclischer Moleküle.\footnote{Für Review-Artikel siehe: a) D. Zhu, L. Chen, H. Fan, Q. Yao, S. Zhu, \textit{Chem. Soc. Rev.} 2020, 49, 908 – 950; b) Q.-Q. Cheng, Y. Deng, M. Lankelma, M. P. Doyle, \textit{Chem. Soc. Rev.} 2017, 46, 5425 – 5443; c) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A. McKervey, Chem. Rev. 2015, 115, 9981 – 10080; d) H. M. L. Davies, J. R. Denton, Chem. Soc. Rev. 2009, 38, 3061 – 3071; e) D. M. Hodgson, F. Y. T. M. Pierard, P. A. Stupple, Chem. Soc. Rev. 2001, 30, 50 – 61; f) T. Ye, A. McKervey, Chem. Rev. 1994, 94, 1091 – 1160.}

Danksagung

A.D., K.S., und R.L.M. bedanken sich bei EPSRC für ein Early Career Fellowship zur Finanzierung (EP/ R026912/ 1). A.A. und R.B. danken dem Australian Research Council (ARC) für die Projektfinanzierung (DP180100904) sowie der Australian National Computational Infrastructure und der University of Tasmania für die großzügige Zuweisung von Rechenzeit.

Interessenkonflikt

Die Autoren erklären, dass keine Interessenkonflikte vorlie- gen.

Stichwörter: Alkenyllierung · Diazoester · metallofreie Katalyse · Tris(pentafluorophenyl)boran
[12] S. Fang, L. Chen, M. Yu, B. Cheng, Y. Lin, S. L. Morris-Natschke, Q. Gu, J. Xu, Org. Biomol. Chem. 2015, 13, 4714 – 4726.
[13] M. Santi, D. M. C. Ould, J. Wenz, Y. Soltani, R. L. Melen, T. Wirth, Angew. Chem. Int. Ed. 2019, 58, 7861 – 7865; Angew. Chem. 2019, 131, 7943 – 7947.
[14] a) H. H. San, S.-J. Wang, M. Jiang, X.-Y. Tang, Org. Lett. 2018, 20, 4672 – 4676;b) C. Tang, Q. Liang, A. R. Jupp, T. C. Johnstone, R. C. Neu, D. Song, S. Grimme, D. W. Stephan, Angew. Chem. Int. Ed. 2017, 56, 16588 – 16592; Angew. Chem. 2017, 129, 16815 – 16819; c) R. C. Neu, C. Jiang, D. W. Stephan, Dalton Trans. 2013, 42, 726 – 736; d) R. C. Neu, D. W. Stephan, Organometallics 2012, 31, 46 – 49; e) R. L. Melen, Angew. Chem. Int. Ed. 2018, 57, 880 – 882; Angew. Chem. 2018, 130, 890 – 892.
[15] Information about the data that underpins the results presented in this article, including how to access them, can be found in the Cardiff University data catalogue at under:http://doi.org/10.17035/d.2020.0109448471.

Manuskript erhalten: 18. Mai 2020
Akzeptierte Fassung online: 2. Juni 2020
Endgültige Fassung online: 15. Juli 2020