Supporting Information for:

Removal of Heavy Metal Ions Using Modified Celluloses Prepared from Pineapple Leaf Fiber

Amphol Daochalermwong†, Napassorn Chanka†, Kriangsak Songsrirote‡,
Peerapan Dittanet†, Chalida Niamnuy†, Anusorn Seubsai*†

† Department of Chemical Engineering, Faculty of Engineering; Center of Excellence on Petrochemical and Materials Technology; and Research Network of NANOTEC–KU on NanoCatalysts and NanoMaterials for Sustainable Energy and Environment, Kasetsart University, Bangkok 10900, Thailand

‡ Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand

*Corresponding author: fengasn@ku.ac.th

The determination of PAL composition using the TAPPI standard test methods was carried out using the following methods:

1) Extractive in ethanol + benzene

Ethanol and benzene solutions for 200 ml with a ratio of 1:2 were used mix with PAL (10 g) for the extraction. The mixture was refluxed in water bath for 5
hours. After that, the sample was filtrated and rinsed by 100 ml of ethanol before drying at 65 °C overnight. The % extractive was calculated using equation (1).

\[
% \text{ Extractive} = \frac{\text{initial weight of PAL} - \text{weight of PAL after extraction}}{\text{initial weight of PAL}} \times 100
\]

(1)

2) Extractive in ethanol

95% of ethanol solution (150 ml) was mixed with all of the remaining extracted materials from step 1) (7.65 g) for the extraction. The mixture was refluxed in a water bath for 5 hours. After that, the sample was filtrated and rinsed by 100 ml of ethanol before drying at 65 °C overnight. The % extractive was calculated using equation (2).

\[
% \text{ Extractive} = \frac{\text{initial weight of extracted material} - \text{weight of PAL after extraction}}{\text{initial weight of PAL}} \times 100
\]

(2)

3) Extractive in hot water
All of the remaining extracted material from step 2) (7.19 g) was mixed with DI water (500 ml). Then, the mixture was refluxed for 5 hours. After that, the sample was filtrated and rinsed by 100 ml of ethanol before drying at 65 °C overnight. The % extractive was calculated using equation (3).

\[
\% \text{ Extractive} = \left(\frac{\text{initial weight of PAL} - \text{weight of PAL after extraction}}{\text{initial weight of PAL}} \right) \times 100 \quad (3)
\]

4) **Holo-cellulose**

All of the extracted material from step 3) (6.48 g) in 250 ml was mixed with 0.5 ml of glacial acetic acid and 1.5 g of sodium chlorite, and then heated to 70-80 °C for 1 hour. Then, the same volumes of glacial acetic acid and sodium chlorite were added one more time and the mixture was continued at that condition for 1 hour. The mixture was then put in an ice bath until its temperature of the solution was lower than 10 °C. The remaining cellulose was filtrated and rinsed by acetone before drying at 65 °C for overnight. % of holo-cellulose was calculated using equation (4).

\[
\% \text{ holo-cellulose} = \left(\frac{\text{weight of holo-cellulose}}{\text{initial weight of PAL}} \right) \times 100 \quad (4)
\]
5) *α-cellulose*

1.5 g of holo-cellulose was mixed with 75 ml of 17.5%w/w NaOH and stirred at room temperature for 1 hour. Then, 25 ml of 17.5%w/w NaOH was added and the mixture was kept stirring for 30 min. Then, 100 ml of DI water was added and it was kept stirring for 30 min. filtrate and rinse by DI water before drying at 65 ºC for overnight. % of *α-cellulose* was calculated using equation (5).

\[
\text{% } \alpha \text{-cellulose} = \frac{\text{weight of } \alpha \text{-cellulose}}{\text{initial weight of PAL}} \times 100
\]

(5)

6) *Hemicellulose*

Amount of hemicellulose was obtained using equation (6).

\[
\text{% hemicellulose} = (\text{% holo-cellulose}) - (\text{% } \alpha \text{-cellulose})
\]

(6)

7) *Lignin*

15 ml of 72% H₂SO₄ in a beaker was put in an ice bath. The extracted material from step 3) (1.5 g) was added in the cold H₂SO₄ solution and the mixture
was stirred for 2 hours. The mixture was transferred into a round bottom flask and added 130 ml of DI water. It was refluxed for 4 hours, and then left to cool down to room temperature for overnight. The remaining sample was filtrated and rinsed using hot water before drying at 65 °C for overnight. The % lignin was calculated using equation (7).

\[
\text{% lignin} = \frac{\text{weight of lignin after extraction}}{\text{initial weight of PAL}} \times 100 \quad (7)
\]

8) Ash

PAL (1.0 g) was put in a crucible and calcined at 525 °C for 6 hours. The % ash was calculated using equation (8).

\[
\text{% Ash} = \frac{\text{weight of dried ash}}{\text{initial weight of PAL}} \times 100 \quad (8)
\]
Table S1. Various modified cellulosic absorbents for adsorption studies for Pb\(^{2+}\) or Cd\(^{2+}\).

Functional group/chelating agent	Raw material	Metal ions	\(q_m\) (mg g\(^{-1}\))	Reference			
EDTA	Pineapple leaves	Pb\(^{2+}\)	41.2	This work			
		Cd\(^{2+}\)	33.2				
Carboxymethyl	Pineapple leaves	Pb\(^{2+}\)	63.4	This work			
		Cd\(^{2+}\)	23.0				
Polyglycidyl methacrylate	Commercial cellulose	Pb\(^{2+}\)	52.0	(1)			
		Cd\(^{2+}\)	53.4				
acetate/polyvinylpyrrolidone	Nanofiber membranes	Pb\(^{2+}\)	30.96	(2)			
modified with thiol groups		Cd\(^{2+}\)	34.70				
EDTA	Whatman grade 6 filter paper	Pb\(^{2+}\)	227.3	(3)			
		Cd\(^{2+}\)	102.0				
Guanyl-modified cellulose	Commercial cellulose	Pb\(^{2+}\)	52	(4)			
		Cd\(^{2+}\)	68				
Oxidized pineapple fruit peel	pineapple fruit peel	Pb\(^{2+}\)	28.55	(5)			
		Cd\(^{2+}\)	42.10				
Caboxylated cellulose	Cellulose (3MM,	Pb\(^{2+}\)	205.9	(6)			
	Whatman)		86.0				
Sulphur as anionic ligand	Medical cotton	Pb\(^{2+}\)	92	(7)			
(-SC(NH$_2$)$_2$)	Cellulose paper	Pb$^{2+}$	Cd$^{2+}$				(8)
	Sugarcane bagasse	Pb$^{2+}$	Cd$^{2+}$	232	112		
EDTA dianhydride		333	149				
	Succinylated mercerized cellulose	Pb$^{2+}$	Cd$^{2+}$	192.3	87.0		
	(9)						
	Sugarcane bagasse	Pb$^{2+}$	Cd$^{2+}$	500.0	256.4		
Triethylenetetramine				10)			
	Sugarcane bagasse	Pb$^{2+}$	Cd$^{2+}$	313	313		
	(11)						
	Rice husk	Pb$^{2+}$	Cd$^{2+}$	374.32	268.98		
	(12)						

References:

1. Barsbay, M.; Kavaklı, P. A.; Tilki, S.; Kavaklı, C.; Güven, O., Porous cellulosic adsorbent for the removal of Cd (II), Pb(II) and Cu(II) ions from aqueous media. *Radiat. Phys. Chem.* **2018**, *142*, 70–76.

2. Xiang, T.; Zhang, Z.; Liu, H.; Yin, Z.; Li, L.; Liu, X., Characterization of cellulose-based electrospun nanofiber membrane and its adsorptive behaviours using Cu(II), Cd(II), Pb(II) as models. *Sci. China Chem.* **2013**, *56* (5), 567–575.
(3) d’Halluin, M.; Rull-Barrull, J.; Bretel, G.; Labrugère, C.; Le Grognee, E.; Felpin, F.X., Chemically Modified Cellulose Filter Paper for Heavy Metal Remediation in Water. *ACS Sustainable Chem. Eng.* **2017**, *5*(2), 1965–1973.

(4) Kenawy, I. M.; Hafez, M. A. H.; Ismail, M. A.; Hashem, M. A., Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose. *Int. J. Biol. Macromol.* **2018**, *107*, 1538–1549.

(5) Ahmad, A.; Khatoon, A.; Mohd-Setapar, S.H.; Kumar, R.; Rafatullah, M., Chemically oxidized pineapple fruit peel for the biosorption of heavy metals from aqueous solutions. *Desalin. Water Treat.* **2016**, *57*(14), 6432–6442.

(6) Gurgel, L. V. A.; Júnior, O. K.; Gil, R. P. d. F.; Gil, L. F., Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. *Bioresour. Technol.* **2008**, *99*(8), 3077–3083.

(7) Abu-Danso, E.; Peräniemi, S.; Leiviskä, T.; Bhatnagar, A., Synthesis of S-ligand tethered cellulose nanofibers for efficient removal of Pb(II) and Cd(II) ions from synthetic and industrial wastewater. *Environ. Pollut.* **2018**, *242*, 1988–1997.

(8) Júnior, O. K.; Gurgel, L. V. A.; de Freitas, R. P.; Gil, L. F., Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). *Carbohydr. Polym.* **2009**, *77*(3), 643–650.
(9) Gurgel, L. V. A.; Gil, L. F., Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by succinylated mercerized cellulose modified with triethylenetetramine. *Carbohydr. Polym.* 2009, 77 (1), 142–149.

(10) Gurgel, L. V. A.; Freitas, R. P. d.; Gil, L. F., Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by sugarcane bagasse and mercerized sugarcane bagasse chemically modified with succinic anhydride. *Carbohydr. Polym.* 2008, 74 (4), 922–929.

(11) Karnitz, O.; Gurgel, L. V. A.; de Melo, J. C. P.; Botaro, V. R.; Melo, T. M. S.; de Freitas Gil, R. P.; Gil, L. F., Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. *Bioresour. Technol.* 2007, 98 (6), 1291–1297.

(12) Ma, J.; Li, T.; Liu, Y.; Cai, T.; Wei, Y.; Dong, W.; Chen, H., Rice husk derived double network hydrogel as efficient adsorbent for Pb(II), Cu(II) and Cd(II) removal in individual and multicomponent systems. *Bioresour. Technol.* 2019, 290, 121793.
Table S2. The total concentrations (gray color on the background) of Cd\(^{2+}\) + Pb\(^{2+}\) for the solutions that were used for studying the adsorption of binary system.

Concentration of Pb\(^{2+}\) (mg L\(^{-1}\))	0	20	40	60	80	100
0	0	20	40	60	80	100
20	20	40	60	80	100	120
40	40	60	80	100	120	140
60	60	80	100	120	140	160
80	80	100	120	140	160	180
100	100	120	140	160	180	200