Isolation of Bacteria with Potential of Producing Extracellular Enzymes (Amylase, Cellulase and Protease) from Soil Samples

Samuel Adedayo Fasiku¹, Olaolu Fikayo Ogunsola¹, Adeola Fakunle¹ and Afolake Atinuke Olanbiwoninu¹

¹Department of Biological Sciences, Ajayi Crowther University, Oyo Town, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors SAF and AAO designed and supervised the research. Authors OFO and AF carried out the research. Author SAF wrote the manuscript. All the authors participated in the review of the manuscript and approve it.

Article Information

DOI: 10.9734/JAMB/2020/v20i30224
Editor(s):
(1) Prof. Hung-Jen Liu, National Chung Hsing University, Taiwan.
Reviewers:
(1) Syed A. Jamal, Haskell Indian Nations University, USA.
(2) Kulvinder Bajwa, Chaudhary Devi Lal University, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/55344

Received 03 January 2020
Accepted 09 March 2020
Published 17 March 2020

ABSTRACT

Introduction: Amylase, cellulase and protease are known for hydrolyzing starch, cellulose and protein respectively and these enzymes can be produced by microorganisms. A single bacterium with potential of producing amylase, cellulase and protease will be an organism of high industrial value.

Aims: This work aimed at isolating bacteria that will be able to produce three extracellular enzymes (amylase, cellulase and protease).

Methodology: Soil samples were collected from eight different locations within Ajayi Crowther University, Oyo Town, Nigeria. Bacteria were isolated from these soil samples and were identified using morphological and biochemical characteristics. Isolated bacteria were screened for their ability to produce amylase, cellulase and protease on plate and enzymes’ relative activities on plate were determined.

Results: Forty two bacteria were isolated from soil samples and identified to belong to the Genera Bacillus (30), Enterobacter (6), Klebsiella (3) and Staphylococcus (3). Eight (19%), Eleven (26%)
and Nineteen (45%) out of 42 isolated bacteria were able to produce amylase, cellulase and protease on plate with relative activities ranging from 1.25 – 2.88, 1.39 – 4.50 and 1.13 – 5.17 respectively. All the eight amylolytic isolates (Bacillus species (5) and Enterobacter species (3)) were able to produce the three enzymes (amylase, cellulase and protease).

Conclusion: Eight bacteria with ability to produce three enzymes (amylase, cellulase and protease) were isolated from soil samples and could be further employed in enzyme-producing industries.

Keywords: Amylase; cellulose; protease; extracellular enzymes; soil samples.

1. INTRODUCTION

Soil harbours many microorganisms with better advantages over other sources for industrial use [1]. Among bacteria often isolated from soil are Bacillus species, Pseudomonas species, Enterobacter species, Staphylococcus species, Klebsiella species and others [2-4]. Amylase breaks down starch to simple sugar while cellulose is hydrolysed by cellulase and protease degrades protein [5]. Amylases are used in biofuel industries to break starch to fermentable sugar [5,6]. Amylases are used in the production of fruit juices and cakes, in brewing and baking and other processed foods [6].

Cellulases are used in textile industry and are usually added to washing powder and detergents in laundry [7]. They are used to release antioxidant from food in food industry [7]. Cellulases aid in conversion of cellulosic materials to simple sugar during ethanol production from lignocellulose [8,9]. They play vital roles in wine industry like improvement in filtration rate and wine stability [7].

Protease used in food industry could hydrolyse proteins thereby improving the organoleptic properties of the food and could also reduce food protein allergy [10]. Proteases regulate diverse metabolic processes and are used to develop effective therapeutic agents in pharmaceutical industry [11]. They are used in the conversion of wastes to feeds and foods in waste management and are relevant and popularly used in leather industry [11]. Ability of a bacterium isolated from soil samples to produce these extracellular enzymes (amylase, cellulase and protease) will make the organism relevant and important in enzymes-producing industries. This study was designed to isolate bacteria that are able to produce amylase, cellulase and protease together.

2. MATERIALS AND METHODS

2.1 Sample Collection, Isolation and Identification of Bacteria

Soil samples deposited with waste materials were collected from eight different locations in Ajayi Crowther University, Oyo Town, Nigeria (7.8430° N, 3.9364° E). The samples were diluted and appropriate dilution was inoculated into Nutrient agar using pour plate technique. They were incubated at 37°C for 24 to 48 hours. Distinct colonies from plates were streaked out on Nutrient agar until pure cultures were obtained. Isolated bacteria were stored in Nutrient agar slant for further use. The isolates were identified using their morphological and biochemical characteristics with reference to Bergey Manual of Systematic Bacteriology [12].

2.2 Extracellular Enzymes Screening

Amylolytic property of the isolated bacteria was screened using Nutrient agar supplemented with 1% starch. Clear zone around the organism after flooding with Gram’s iodine indicates the ability of the bacterium to produce amylase [5].

Nutrient agar supplemented with 1% carboxy methyl cellulose (CMC) was used to screen ability of the isolated bacteria for cellulase production. Appearance of a clear zone against red colour of Congo red shows that the organism has ability to produce cellulase [5].

Proteolytic ability of isolates were screened using nutrient agar supplemented with 1% skimmed milk. A clear halo along the line of streak indicates ability of the bacterium to produce protease.

Relative activities of enzymes were determined using the method of Adesina and Onilude [13].

\[
\text{Relative activities} = \frac{\text{Diameter of halo on plate}}{\text{Diameter of the bacterium on plate}}
\]
3. RESULTS

A total of 42 bacteria were isolated from soil samples collected from eight different locations within Ajayi Crowther University, Oyo Town, Nigeria. Table 1 shows the total number of bacteria count which ranged from 1.62×10^6 (Soil Sample E) to 8.70×10^6 cfu/g (Soil sample H).

An amylase-producing bacterium is shown in Plate 1A. There was a clear zone around the line of streak of the bacterium which was due to its ability to hydrolyse starch. Plate 1B shows a bacterium with the ability to produce cellulase. The bacterium hydrolysed Carboxy Methyl Cellulose (CMC) agar around the line of streak as indicated by clear zone. A protease-producing bacterium is shown in Plate 1C. There was a clear halo along the line of streak which is as a result of the ability of the bacterium to hydrolyse skimmed milk agar.

Table 1. Bacterial count of different soil samples

Soil sample	Total bacterial count (cfu/g)
A	2.40×10^6
B	1.72×10^6
C	2.58×10^6
D	5.80×10^6
E	1.62×10^6
F	2.52×10^6
G	2.59×10^6
H	8.70×10^6

The isolated bacteria belong to the Genera *Bacillus* (30), *Enterobacter* (6) *Staphylococcus* (3) and *Klebsiella* (3) as shown in Table 2. The highest relative amylase activities (2.88) was recorded in isolate SPD13 (*Enterobacter* sp.) which was followed by 2.86 in isolate SPD24 (*Bacillus* sp.). All the eight isolates that were able to produce amylase on plate were *Bacillus* spp. with the exception of isolates SPD13, SPD25 and SPD211 which were *Enterobacter* spp. Amylase-producing bacteria were isolated from four (B, D, F and H) out of the eight soil samples. Eleven of 42 isolated bacteria were able to produce cellulase on plate with relative activities ranging from 1.39 in isolate SBU12 (*Bacillus* sp.) to 4.50 in isolate SID21 (*Bacillus* sp.). Out of the eleven (11) cellulase-producing bacteria, eight (8) were *Bacillus* spp. while three (3) were *Enterobacter* spp. Cellulolytic bacteria were not isolated from soil sample A, C and G. Almost half (19 out of 42) of the isolated bacteria were able to produce protease on plate with relative activities of 1.21 (isolates SFK11 and SG11) to 5.17 (isolate SPD211). The nineteen proteolytic bacteria are made up of one *Staphylococcus* sp. (isolate SBU13), one *Klebsiella* sp. (isolate SFK11), three *Enterobacter* spp. (isolates SPD13, SPD25 and SPD211) and fourteen *Bacillus* spp. Eight (isolates SBU14, SBU18, SFK14, SID21, SPD13, SPD24, SPD25 and SPD211) out of 42 isolates were able to produce three extracellular enzymes (amylase, cellulase and protease) on plate. The eight amylolytic, cellulolytic and proteolytic bacteria are five (5) *Bacillus* spp. and three (3) *Enterobacter* spp. None of the bacteria isolated from soil samples A and C was able to produce any of the three enzymes (amylase, cellulase and protease) on plate.

4. DISCUSSION

The most frequent of all the bacteria isolated from soil samples in this study was *Bacillus* species which is in line with the work of Wang et al. [2] who reported that 80% of bacteria isolated from soil samples was *Bacillus* species. The
Table 2. Relative extracellular enzymes activities of bacteria isolated from soil samples

Soil samples	Isolates	Relative enzymes activities	Probable organisms		
		Amylase	Cellulase	Protease	
A	SAP211	0.00	0.00	0.00	Bacillus sp.
	SAP212	0.00	0.00	0.00	Bacillus sp.
B	SBU12	0.00	1.39	1.68	Bacillus sp.
	SBU13	0.00	0.00	2.40	Staphylococcus sp.
	SBU14	1.25	1.40	1.50	Bacillus sp.
	SBU16	0.00	0.00	0.00	Bacillus sp.
	SBU18	2.50	1.88	3.78	Bacillus sp.
C	SCA13	0.00	0.00	0.00	Staphylococcus sp.
	SCA14	0.00	0.00	0.00	Bacillus sp.
	SCA15	0.00	0.00	0.00	Staphylococcus sp.
	SCA16	0.00	0.00	0.00	Bacillus sp.
	SCA17	0.00	0.00	0.00	Staphylococcus sp.
	SCA22	0.00	0.00	0.00	Entrobacter sp.
D	SFK11	0.00	0.00	1.21	Klebsiella sp.
	SFK12	0.00	0.00	1.38	Bacillus sp.
	SFK13	0.00	0.00	0.00	Bacillus sp.
	SFK14	1.75	1.67	3.38	Bacillus sp.
	SFK15	0.00	0.00	0.00	Bacillus sp.
	SFK21	0.00	0.00	0.00	Bacillus sp.
	SFK22	0.00	0.00	3.27	Bacillus sp.
	SFK23	0.00	0.00	0.00	Bacillus sp.
E	SG11	0.00	1.88	1.21	Bacillus sp.
	SG21	0.00	0.00	0.00	Bacillus sp.
	SG23	0.00	0.00	0.00	Bacillus sp.
F	SID12	0.00	0.00	0.00	Bacillus sp.
	SID13	0.00	0.00	3.75	Bacillus sp.
	SID21	1.88	4.50	3.38	Bacillus sp.
	SID23	0.00	0.00	3.44	Bacillus sp.
	SID24	0.00	0.00	1.60	Bacillus sp.
G	SMU11	0.00	0.00	0.00	Bacillus sp.
	SMU12	0.00	0.00	1.46	Bacillus sp.
	SMU13	0.00	0.00	0.00	Klebsiella sp.
	SMU21	0.00	0.00	0.00	Bacillus sp.
H	SPD12	0.00	0.00	0.00	Entrobacter sp.
	SPD13	2.88	3.00	2.00	Entrobacter sp.
	SPD14	0.00	1.50	1.31	Bacillus sp.
	SPD22	0.00	0.00	0.00	Entrobacter sp.
	SPD23	0.00	0.00	0.00	Bacillus sp.
	SPD24	2.86	1.50	4.29	Bacillus sp.
	SPD25	2.20	2.00	4.17	Entrobacter sp.
	SPD211	1.23	2.00	5.17	Entrobacter sp.
	SPD212	0.00	0.00	0.00	Bacillus sp.

predominant feature of *Bacillus* species could be as a result of endospores of *Bacillus* spp. which gave them better ability to survive under harsh environment. *Bacillus* species was also isolated from soil samples by some researchers [2,14,15]. Ability of Amylase-producing bacteria were observed with their ability to hydrolyse starch agar which is in line the work of Olanbiwoninu and Fasiku [5]. Bacteria with cellulolytic properties degraded carboxymethylcellulose in carboxymethylcellulose agar which corroborates with the findings of Olanbiwoninu and Fasiku [5]. Proteolytic bacteria obtained in this work degraded skimmed milk agar as reported by Cui et al. [16].

In this research, bacteria that produce extracellular enzymes (amylase, cellulase and protease) were isolated from soil samples. Begum et al. [17] reported that soil bacteria have
potential of being unique and exploited for commercial and industrial use. Production of protease by Bacillus, Enterobacter, Klebsiella and Staphylococcus observed in this study has been reported [18-20]. Tondo et al. [18] utilized Klebsiella oxytoca isolated from milk sample for production of protease, Vandecandelaere et al. [19] produced protease using Staphylococcus epidermidis and Luang-In et al. [20] used Bacillus, Staphylococcus and Enterobacter species to produce protease.

Two Genera of bacteria (Bacillus and Enterobacter) were observed to have produced amylase, cellulase and protease together in this work. de Veras et al. [21] reported production of amylase, cellulase and protease by a single bacterium (Bacillus subtilis SR60). JadHAV et al. [22] reported amylase-producing Enterobacter, Kanchana et al. [23] obtained protease-producing Enterobacter and Akintola et al. [24] had cellulolytic Enterobacter but none of the Enterobacter used by these researchers was able to produce amylase, protease and cellulase together as obtained in this research. All bacteria with amylolytic properties were also able to produce cellulase and protease. Similar result was observed by Olanbiwoninu and Fasiku [5] who reported that all their amylolytic bacteria were also able to produce cellulase.

5. CONCLUSION

Bacteria with ability to produce amylase, cellulase and protease were isolated from soil samples. All amylase-producing bacteria were also able to produce cellulase and protease. Ability of a single bacterium to produce three enzymes could make such a bacterium relevant and important in enzymes and ethanol-producing industries.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Saha A, Santra SC. Isolation and characterization of bacteria isolated from municipal solid waste for production of industrial enzymes and waste degradation. Journal of Microbiology and Experimentation. 2014;1(1):12-9.
2. Wang P, Liu Y, Yin Y, Jin H, Wang S, Xu F, Zhao S, Xiaoli G. Diversity of microorganisms isolated from the soil sample surround Chroogomphus rutilus in the Beijing Region. International Journal of Biological Sciences. 2011;7(2):209-220.
3. Marimuthu K. Isolation and characterization of Staphylococcus hominis JX961712 from oil contaminated soil. Journal of Pharmacy Research. 2013;7:252-256.
4. Akita H, Matsushika A, Kimura Z. Enterobacter oligotrophica sp. nov., a novel oligotroph isolated from leaf soil. Microbiology Open. 2019;8:e843.
5. Olanbiwoninu AA, Fasiku S. Production of bacterial amylases and cellulases using sweet potato (Ipomoea batatas. (L.) Lam.) peels. African Journal of Biochemistry Research. 2015;9(9):104-109.
6. Mobini-Dehkordi M, Javan FA. Application of alpha-amylase in biotechnology. Journal of Biology and Today’s World. 2012;1(1):39-50.
7. Kuhad RC, Gupta R, Singh A. Microbial cellulases and their industrial applications. Enzyme Research; 2011. [Article ID: 280696]
8. Onilude AA, Adekoya AO, Wakil SM, Fasiku SA, Ja’a’faru IM. Isolation and identification of thermophilic cellulolytic yeast from cassava waste dump. Journal of Science Research. 2015;14:131-143.
9. Sajith S, Prij P, Sreedevi S, Benjamin S. An overview on fungal cellulases with an industrial perspective. Journal of Nutrition and Food Sciences. 2016;6:461. DOI: 10.4172/2155-9600.1000461
10. Tavano OL, Berenguer-Murcia A, Secundo F, Fernandez-Lafuente R. Biotechnological applications of proteases in food technology. Comprehensive Reviews in Food Science and Food Safety. 2018;17(2):412-436.
11. Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, Ashraf M. Microbial protease application. Frontiers in Bioengineering and Biotechnology. 2019;7. [Article 110]
12. Sneath PH, Nair NA, Sharpe ME. Bergeys manual of systematic bacteriology. The Williams and Wilkin Co., Baltimore. 1986;2.
13. Adesina FC, Onilude AA. Isolation, identification and screening of xylanase and gluconase-producing microfungi from degrading wood in Nigeria. African Journal of Agricultural Research. 2013;8(34):4414-4421.
14. Amin M, Rakhisi Z, Ahmady AZ. Isolation and identification of Bacillus species from...
14. Oyewole OA, Zobeashia SL, Oladoja OE, Musa IO, Terhemba IT. Isolation of bacteria from diesel contaminated soil for diesel remediation. Journal of Biosciences. 2020;28:33-41.
15. Cui H, Wang L, Yu Y. Production and characterization of alkaline protease from a high yielding and moderately halophilic strain of SD11 marine bacteria. Journal of Chemistry. 2015;798305.
16. Begum K, Mannan SJ, Rezwan R, Rahman MM, Rahman MS, Nur-E-Kamal A. Isolation and characterization bacteria with biochemical and pharmacological importance from soil samples of Dhaka City. Dhaka University Journal of Pharmaceutical Sciences. 2017;16(1):129-136.
17. Tondo EC, Lakus FR, Oliveiera FA, Brandelli A. Identification of heat stable protease of Klebsiella oxytoca isolated from raw milk. Letters in Applied Microbiology. 2004;38:146-150.
18. Vandecandelaere I, Depuydt P, Nelis HJ, Coenye T. Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms. Pathogens and Disease. 2014;70:321-331.
19. Luang-In V, Yotchaisarn M, Saengha W, Udomwong P, Deeseenthum S, Maneewan K. Protease-producing bacteria from soil in Naisinuan Community Forest, Mahasarakham Province, Thailand. Biomedical and Pharmacology Journal. 2019;12(2):587-595.
20. de Veras B, dos Santos YQ, Diniz KM, Carelli GS, dos Santos EA. Screening of protease, cellulase, amylase and xylanase from the salt-tolerant and thermotable marine Bacillus subtilis strain SR60. F1000Research. 2018;7:1704.
21. Jadhav UU, Chavan SB, Dawkar VV, Chougale AD, Padul MV. Isolation and identification of amylase producing psychrotrophic Enterobacter SP. NACASA2. Trends in Biotechnology Research. 2016;5(1):9-17.
22. Kanchana R, Jadhav S, Goletikar Y, Manerekar G. Production of Alkaliphilic protease(s) by Enterobacter sp for application in biodetergent formulation. Industrial Biotechnology. 2012;8(1):31-35.
23. Akintola AI, Oyedeji O, Bakare MK, Adewale IO. Purification and characterization of thermostable cellulase from Enterobacter cloacae IP8 isolated from decayed plant leaf litter. Biocatalysis and Biotransformation; 2017. DOI: 10.1080/10242422.2017.1349761