CASE REPORT

Anti-NMDAR encephalitis with bilateral basal ganglia MRI lesions at a distance of time: a case report

Dong Keun Son1†, Seong Min Cho1†, Han Uk Ryu2, Byoung-Soo Shin2 and Hyun Goo Kang2*©

Abstract
Background: Approximately half (55%) of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is known to show abnormal brain images, including high signal intensity in T2 or fluid attenuated inversion recovery (FLAIR) images. In a minority of anti-NMDAR encephalitis cases, high signal intensity on diffusion-weighted imaging (DWI) has been reported, a finding that is highly suggestive of a stroke.

Case presentation: We present the case of a 66-year-old man who experienced two separate focal seizure events, which involved first the right and then the left upper extremity in a short period of time. The patient showed focal clonic seizures involving right arm and hand, which sometimes evolved to bilateral tonic-clonic seizures on his first admission. Brain magnetic resonance imaging (MRI) showed high signal intensity on DWI and low signal intensity on the apparent diffusion coefficient (ADC) map of the left caudate nucleus and putamen. The patient was discharged symptom-free with anti-epileptic drugs for 2 weeks. The second admission occurred 4 days after the discharge. He exhibited a new symptom of focal clonic seizures involving left arm and hand while showing a brain lesion on the opposite side which is hyperintense on DWI image and hypointense on ADC map. The patient was eventually diagnosed with anti-NMDAR encephalitis according to the cerebrospinal fluid (CSF) antibody test.

Conclusions: This is the case of anti-NMDAR encephalitis patient whose DWI/ADC images revealed sequential involvement on the left and right basal ganglia with a short time interval. When stroke-like brain lesions on DWI are found in a patient with a focal seizure, a CSF study could help rule out autoimmune encephalitis. We also suggest that DWI/ADC map images may be useful for the early detection of anti-NMDAR encephalitis.

Keywords: Anti-N-methyl-D-aspartate receptor encephalitis, Magnetic resonance imaging, Basal ganglia, Seizure

Background
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common type of autoimmune encephalitis. The major clinical features of the disease include psychosis, speech disorder, seizure, dyskinesia, decreased level of consciousness, and autonomic dysfunction. Patients can be diagnosed with anti-NMDAR encephalitis when meeting the following three criteria: 1) The patient presents with at least one of these symptoms. 2) Alternative causes are excluded. 3) Anti-NMDAR antibodies are detected in the cerebrospinal fluid (CSF) studies.

Approximately half (55%) of patients with anti-NMDAR encephalitis show abnormal brain images [1]. In most cases, increased signal intensity of the medial temporal lobe or cerebral cortex is reported in T2 images. Some case reports have shown hypermetabolism in...
18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET) images involving the insular cortex, hippocampus, basal ganglia, cerebellum, and brainstem, suggesting acute inflammation when correlative to MRI [2]. However, brain abnormalities are rarely found on diffusion-weighted imaging (DWI).

Here, we report a case of anti-NMDAR encephalitis with rare MRI findings. In this case, the patient was admitted twice for focal seizure events, first on the right side and second on the left. At each time of the seizure event, the contralateral basal ganglia showed high signal intensity on DWI and low signal intensity on apparent diffusion coefficient (ADC), which was indicative of acute ischemic stroke. However, the CSF antibody test revealed anti-NMDA receptor antibody and finally confirmed anti-NMDAR encephalitis.

Case presentation
A 66-year-old man presented to our emergency department with a clonic seizure on his right arm and hand. The seizure lasted for 15 s at 30 s intervals, which then progressed to bilateral tonic-clonic seizures. He was diagnosed with hypertension 16 years prior, and there was no history of recent head trauma or infection. On his first admission, he was drowsy but well oriented, and his vital signs were stable except for his blood pressure (172/92 mmHg). He had signs of acute inflammation, as leukocytosis (24.82 × 10^3 /μl) and increased level of hs-CRP (71.20 mg/L) were observed in the blood test. The blood test also revealed hyperglycemia (298 mg/dL). The results of the routine CSF study did not show any evidence of central nervous system infections.

Electroencephalography (EEG) results were normal, with no epileptic discharges. Brain magnetic resonance imaging (MRI) showed left caudate nucleus and putamen lesions, hyperintense on DWI, and hypointense on the ADC map (Fig. 1A, B). Furthermore, high-signal intensity lesions were detected on fluid attenuated inversion recovery (FLAIR) image, including the left caudate nucleus, putamen, and medial frontal lobe (Fig. 1C, D). However, the patient’s MR angiography results were normal.

Based on the brain MRI findings, we suspected acute ischemic stroke in the left basal ganglia. Anti-platelet and anti-epileptic agents (levetiracetam 1500 mg/day) were administered for ischemic stroke and focal seizure, respectively. On the seventh day of admission, he experienced hallucinations. He described that “something floats on the ceiling” and that “cartoon-like image pops-up”. We changed his drugs to sodium valproate and levetiracetam 3000 mg/day, for his symptoms did not improve. As his

![Fig. 1 Brain MRI findings at 1st (A-D) and 2nd admission (E-H). On the first admission, the left caudate nucleus and putamen showed high signal intensity on DWI (A) and low signal intensity on the ADC map (B). Hyperintense lesions on FLAIR were detected in the left caudate nucleus and putamen (C). Acute lesions on the contralateral side were detected on the second admission (E, F, G). A slightly high signal intensity (arrow) on FLAIR was detected in the left medial frontal lobe (D, H).](image)
seizure occurred at a lower frequency, we reduced the
dose of levetiracetam to 1500 mg/day, and he was dis-
charged on the 14th day of admission.

Four days after discharge, the patient visited our emer-
gency room again for another clonic seizure event. This
time, the seizure involved his left upper extremity. In the
emergency room, he was drowsy, but his vital signs were
stable. Blood test results showed low levels of serum val-
proic acid (1.9μg/mL) and high levels of serum glucose
(263 mg/dL). Brain MRI showed lesions in the caudate
nucleus and putamen with a similar pattern to that of
the last admission on DWI, ADC, and FLAIR, but on the
opposite side (Fig. 1E, F, G). In addition, the same lesion
previously observed on the left medial frontal lobe was
identified on FLAIR image (Fig. 1H). The EEG did not
reveal any abnormalities, while his tonic-clonic seizure
with left eye deviation and left head turn continued. He
also had symptoms of lip smacking and orofacial dyskine-
sia, which he was not aware of.

Given the suspicion of autoimmune encephalitis, we
administered methylprednisolone 250 mg/day for 3 days.
Also, the patient received anti-epileptic drugs (sodium
valproate 1800 mg/day, levetiracetam 500 mg/day) to
manage status epilepticus. As his symptoms improved
after 3 weeks of medication, the patient was discharged.
After discharge, his CSF test revealed the presence of
anti-NMDA receptor antibodies, which confirmed anti-
NMDAR encephalitis.

Discussion and conclusions

This is a case of anti-NMDAR encephalitis with two
separate focal seizures and stroke-like brain lesions on
an MRI DWI/ADC map. The first event occurred on the
right arm and hand, which then evolved into bilateral
tonic-clonic seizures. Four days after he was discharged
symptom-free, he had another seizure event involving
his left arm and hand. On each admission, brain MRI
showed caudate nucleus and putamen lesions on the
contralateral side of the seizure. As DWI hyperintensity
with decreased intensity on ADC map lesions was found
on each admission, we suspected acute ischemic stroke
followed by an acute symptomatic seizure. However, not
only is focal seizure alone uncommon in stroke patients,
but his symptoms recurred on the opposite side shortly
after his original discharge. Therefore, stroke was less
likely in this patient. Since anti-NMDA receptor antibod-
ies were detected in the CSF, the patient was eventually
diagnosed with anti-NMDAR encephalitis.

The caudate nucleus and putamen play roles in adjust-
ing movements. When these areas are damaged, a patient
exhibits symptoms of seizure and dyskinesia as our
patient did [3–5]. When brain MRI shows high signal
intensity on DWI and low signal intensity on the ADC
map, it mostly suggests acute ischemic stroke and about
6% of the patients experience post-stroke seizures [6]. A
study of 3050 stroke patients reported that the incidence
of caudate nucleus stroke was 1% of all patients and only
12% of them showed bilateral involvement [7]. In addi-
tion, in some cases, a few patients with bilateral caudate
nucleus stroke have variants of Circle of Willis [8]. In
this case, the patient showed bilateral basal ganglia brain
lesions on brain MRI without any vascular abnormalities.
Furthermore, the fact that the brain lesion did not occur
simultaneously, but consecutively with a short time inter-
val, is also incompatible with past reports.

A variety of conditions can occur in bilateral basal
ganglia lesions, such as genetic disorders, metabolic
disorders, infections, intoxication, and autoimmune
encephalitis [9]. As the patient did not have any his-
tory of genetic disorders, infections, or intoxications, we
sought other causes. It was also less likely that hypergly-
cemia provoked the brain lesions, for his serum glucose
was measured lower than 300 mg/dL and hyperglycemic
encephalopathy usually causes unilateral brain lesion [9].
On the other hand, some autoimmune encephalitis affect
bilateral basal ganglia on MRI and accompany seizure
and dyskinesia [9]. As the patient showed similar mani-
festations above, we assumed that he was afflicted with
autoimmune encephalitis. His CSF tested positive for
anti-NMDA receptor antibodies.

According to the largest case series, approximately half
(55%) of anti-NMDAR encephalitis patients have brain
abnormalities on MRI, and only 5% of them were in the
basal ganglia [1]. Recently, some reports have revealed
the involvement of the basal ganglia by T2-weighted
imaging, PET-computed tomography (CT), and single-
positron emission computerized tomography (SPECT)
[2, 5]. There were even cases that affected the bilateral
discal ganglia [10, 11]. This case was clinically significant
in two aspects. First, the bilateral basal ganglia lesions did
not develop simultaneously but developed with a short
time interval. Second, the abnormalities were discovered
using the DWI/ADC map.

In previous studies, the basal ganglia were not con-
considered the original seizure focus. Rather, it is largely
understood to be involved in the propagation circuit of
seizures. However, a recent study identified that cau-
date nucleus can generate seizure. The patient com-
plained symptom of seizures with head turn to the left
and hyperkinetic movements of trunk and limbs [3]. In
another study, an anti-NMDAR encephalitis patient with
seizure showed hyperperfusion on the basal ganglia on
SPECT image, indicative of a focal seizure arising from
the basal ganglia [5]. We assumed that the basal ganglia
was the primary seizure focus as our patient showed
similar semiologies to the cases above. Furthermore,
cortico-striatal synchronization is thought to be responsible for the high signal intensity of the left medial frontal lobe found on the FLAIR image [12].

In conclusion, when a patient with focal seizure develops bilateral brain lesions sequentially as described above, autoimmune encephalitis should be considered, and CSF antibody testing may help with the diagnosis. In addition, we believe that the DWI/ADC map could help diagnose patients in the early course of autoimmune encephalitis.

Abbreviations
NMDAR: N-methyl-D-aspartate receptor; MRI: Magnetic resonance imaging; FLAIR: Fluid-attenuated inversion recovery; DWI: Diffusion-weighted imaging; ADC: Apparent diffusion coefficient; CSF: Cerebrospinal fluid; 18F-FDG-PET: 18F-fluorodeoxyglucose-positron emission tomography; EEG: Electroencephalography; CT: Computed tomography; SPECT: Single-positron emission computed tomography.

Acknowledgments
Not applicable.

Authors’ contributions
DKS, SMC, HUR, BSS and HGK participated in the study design. DKS and SMC performed the computational studies and wrote the manuscript. HUR and HGK reviewed and edited the manuscript. All authors have read and approved the final manuscript.

Funding
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (No. 2021R1I1A3056006). The funding body played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
All data and material supporting our findings are contained within the manuscript.

Declarations

Ethics approval and consent to participate
Ethics approval is not needed for case reports in our institution, as per their instructions.

Consent for publication
Written informed consent was obtained from the patient for the publication of this case report and accompanying images.

Competing interests
The authors declare that they have no competing interests.

Author details
1Jeonbuk National University Medical School, Jeonju, South Korea. 2Department of Neurology & Research Institute of Clinical Medicine of Jeonbuk National University – Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonji-ro, Desajin-gu, Jeonju-si, Jeonbuk-do 54907, South Korea.

Received: 9 December 2021 Accepted: 22 March 2022
Published online: 28 March 2022

References
1. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7:1091–8. https://doi.org/10.1016/s1474-4422(08)70224-2.
2. Guerin J, Watson RE, Carr CM, Liebo GB, Kotsenas AL. Autoimmune epilepsy: findings on MRI and FDG-PET. Br J Radiol. 2019;92:20170869. https://doi.org/10.1259/bjr.20170869.
3. Aupy J, Kheder A, Balacio J, Chauvel P, Gonzalez-Martinez J. Is the caudate nucleus capable of generating seizures? Evidence from direct intracerebral recordings. Clin Neurophysiol. 2018;129:951–3. https://doi.org/10.1016/j.clinph.2018.01.076.
4. Park MC, Baik MS, Lee JH, Cho JH, Lee J, Kim GS. Status Epilepticus after catheter drainage of basal ganglia hemorrhage. J Neurol Sci. 2017;10:49–52. https://doi.org/10.1007/jnc.160092.
5. Matsumoto H, Hashida H, Takahashi Y. Dystonic seizures and intense hyperperfusion of the basal ganglia in a patient with anti-N-methyl-D-aspartate receptor encephalitis. Case Rep Neurol. 2017;9:272–6. https://doi.org/10.1159/000484200.
6. Ferreira-Atuesta C, Döhler N, Erdélyi-Canavese B, Belbecker A, Siebel P, Scherrer N, et al. Seizures after ischemic stroke: a matched multicenter study. Ann Neurol. 2021;80:888–20. https://doi.org/10.1002/ana.26212.
7. Kumral E, Eyapalan D, Balkir K. Acute caudate vascular lesions. Stroke. 2009;30:100–4. https://doi.org/10.1161/01.STR.0000333082.01525.7d.
8. den Heijer T, Ruitenberg A, Bakker J, Hertzberger L, Kerkhoff H. Bilateral caudate nucleus infarction associated with variant in circle of Willis. BMJ Case Rep. 2009;2009:bcr2006112656. https://doi.org/10.1136/bcr.2006.112656.
9. Van Cauter S, Severino M, Ammendola R, Van Berkel R, Vavoo H, van den Hauwe L, et al. Progressive striatal necrosis associated with anti-NMDA receptor antibodies. BMC Neurol. 2013;13:55. https://doi.org/10.1186/1471-2377-13-55.
10. Tzoulis C, Vedeler C, Haugen M, Stormstein A, Tuong Tran G, Otto Gjerde I, et al. Progressive striatal necrosis associated with anti-NMDA receptor antibodies. BMC Neurol. 2013;13:55. https://doi.org/10.1186/1471-2377-13-55.
11. Tobin WO, Strand EA, Clark HM, Lowe VJ, Robertson CE, Pittock SJ. NMDA receptor encephalitis causing reversible caudate changes on MRI and PET imaging. Neurol Clin Pract. 2014;4:470–3. https://doi.org/10.1212/CPJ.0000000000000074.
12. Aupy J, Wendling F, Taylor K, Balacio J, Gonzalez-Martinez J, Chauvel P. Cortico-striatal synchronization in human focal seizures. Brain. 2019;142:1282–5. https://doi.org/10.1093/brain/awz026.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.