Height estimates for constant mean curvature graphs in Nil_3 and $\text{P}SL_2(\mathbb{R})$

Antonio Bueno

Departamento de Geometría y Topología, Universidad de Granada, E-18071 Granada, Spain.
e-mail: jabueno@ugr.es

Abstract

In this paper we obtain height estimates for compact, constant mean curvature vertical graphs in the homogeneous spaces Nil_3 and $\widehat{\text{P}SL_2(\mathbb{R})}$. As a straightforward consequence, we announce a structure-type result for proper graphs defined on relatively compact domains.

1 Introduction

In the last decades, height estimates have become a powerful tool when studying the global behavior of a certain class of surfaces in some ambient space, see for instance [AEG, He, HLR, KKMS, KKS, Me, Ro, RoSa]. Heinz [He] proved that if M is a compact graph in the Euclidean space \mathbb{R}^3 with positive constant mean curvature H, (H-surface in the following), and boundary ∂M lying in a plane Π, then the maximum height that M can reach from the plane is $1/H$. This estimate is optimal, since it is achieved by the H-hemisphere intersecting orthogonally Π. Applying Alexandrov reflection technique with respect to parallel planes to Π yields that a compact embedded H-surface in \mathbb{R}^3 with boundary in Π has height from that plane at most $2/H$.

These height estimates for H-surfaces in \mathbb{R}^3 were the cornerstone for Meeks [Me] in his global study of H-surfaces in \mathbb{R}^3; for example, he showed that there do not exist properly embedded H-surfaces with one end in \mathbb{R}^3, and if a properly embedded H-surface has two ends, then the surface stays at bounded distance from a straight line. Later, Korevaar, Kusner and Solomon [KKS] proved that a properly embedded H-surface lying inside a solid cylinder, must be rotationally symmetric and hence a cylinder.

Mathematics Subject Classification: 53A10
or an onduloid. Moreover, they proved that each end of a properly embedded H-surface with finite topology in \mathbb{R}^3 is asymptotic to a cylinder or an onduloid. This study on properly embedded H-surfaces in \mathbb{R}^3 concludes in the so called structure Theorem.

As a straightforward adaptation from the Euclidean case, Korevaar, Kusner, Meeks and Solomon [KKMS] obtained optimal bounds for the height of compact H-graphs in the hyperbolic space \mathbb{H}^3 with boundary lying in a totally geodesic surface. The result is also extendible to compact embedded H-surfaces in \mathbb{H}^3, as a direct consequence of Alexandrov reflection technique with respect to totally geodesic surfaces in \mathbb{H}^3, the analogous to Euclidean planes. In the formulation of the problem in both \mathbb{R}^3 and \mathbb{H}^3 the plane where ∂M lies can be chosen without specifying its orthogonal direction, as \mathbb{R}^3 and \mathbb{H}^3 are isotropic spaces; in general, a riemannian manifold is isotropic if its isometry group acts transitively in the tangent bundle.

In this context, the product spaces $\Sigma^2 \times \mathbb{R}$ defined as the riemannian product of a complete riemannian surface Σ^2 and the real line \mathbb{R} are closely related to the space forms in the sense that they are highly symmetric. Following the ideas developed in [He], Hoffman, de Lira and Rosenberg [HLR] obtained height estimates for compact embedded H-surfaces with boundary in a slice $\Sigma^2 \times \{t_0\}$. This result in the product spaces was improved by Aledo, Espinar and Gálvez [AEG], exhibiting sharp bounds for the height of compact, embedded H-surfaces in $\Sigma^2 \times \mathbb{R}$ with boundary in a slice, improving the previous results by characterizing when equality held. As happened in \mathbb{R}^3 and \mathbb{H}^3, the H-graph in $\Sigma^2 \times \mathbb{R}$ with boundary in a slice $\Sigma^2 \times \{t_0\}$ attaining the maximum height over $\Sigma^2 \times \{t_0\}$, corresponds to the rotational H-hemisphere intersecting orthogonally $\Sigma^2 \times \{t_0\}$.

For the particular case when the base Σ^2 is a complete simply connected surface with constant curvature κ, the spaces arising are the product spaces $M^2(\kappa) \times \mathbb{R}$. Such product spaces belong to a two parameter family of homogeneous, simply connected 3-dimensional manifolds, the $E(\kappa, \tau)$ spaces. In Section 2, we will introduce these spaces and give a geometric sense to the constants κ and τ. For instance, the product spaces correspond to the case $\tau = 0$ in the $\mathbb{E}(\kappa, \tau)$ family. In the last decade, the theory of immersed surfaces in the $\mathbb{E}(\kappa, \tau)$ spaces, and more specifically constant mean curvature and minimal surfaces, have become a fruitful theory focusing the attention of many geometers. See [AbRo1, AbRo2, Da, DHM, FeMi] for an outline of the development of this theory.

Our objective in this paper is to obtain height estimates for vertical H-graphs in the spaces Nil$_3$ and $\widetilde{PSL}_2(\mathbb{R})$, which correspond to the particular choices in the $\mathbb{E}(\kappa, \tau)$ family of $\kappa = 0, \tau > 0$ and $\kappa < 0, \tau > 0$, respectively. We obtain the desired height estimates by means of well behavior of the stability of H-surfaces with respect of the limit of a sequence of H-surfaces with uniformly bounded second fundamental form. This well behavior of the stability of H-surfaces has been exploited widely in the literature; see the proof of the Main Theorem in [RST] for a global understanding of this technique in arbitrary complete 3-manifolds with bounded sectional curvature.
2 Homogeneous 3-dimensional spaces with 4-dimensional isometry group.

Let $\mathbb{M}^2(\kappa)$ be the complete, simply connected surface of constant curvature $\kappa \in \mathbb{R}$. The family of homogeneous, simply connected 3-dimensional manifolds E with a 4-dimensional isometry group, can be defined as a family of riemannian submersions $\pi : E \rightarrow \mathbb{M}^2(\kappa)$. The fibre that passes through a point $p \in \mathbb{M}^2(\kappa)$ is defined as $\pi^{-1}(p)$, and translations along these fibres are ambient isometries generated by the flow of a unitary Killing vector field, ξ. The Killing vector field is related to the Levi-Civita connection ∇ of E and the cross product by the formula

$$\nabla_X \xi = \tau X \times \xi,$$

where τ is a constant named the bundle curvature. Both κ and τ satisfy $\kappa - 4\tau^2 \neq 0$.

After a change of orientation of E, we can suppose that $\tau > 0$. These spaces are denoted by $E(\kappa, \tau)$, where κ, τ are the constants defined above. Depending on the value of κ and τ, we obtain the following geometries.

- If $\tau = 0$, then we recover the product spaces $\mathbb{M}^2(\kappa) \times \mathbb{R}$, i.e. up to scaling, the space $S^2 \times \mathbb{R}$ if $\kappa > 0$, and the space $H^2 \times \mathbb{R}$ if $\kappa < 0$.

- If $\tau > 0$ and $\kappa = 0$, the $E(\kappa, \tau)$ space arising is the Heisenberg group Nil_3, the Lie group of matrices

$$\left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} ; \ a, b, c \in \mathbb{R} \right\},$$

endowed with a one-parameter family of left-invariant metrics.

- When $\tau > 0$ and $\kappa < 0$, we obtain the space $\widetilde{\text{PSL}}_2(\mathbb{R})$, the universal cover of the positively oriented isometries of the hyperbolic plane \mathbb{H}^2, endowed with a one-parameter family of left-invariant metrics.

- When $\tau > 0$ and $\kappa > 0$, the $E(\kappa, \tau)$ spaces are the Berger spheres, a family of one-parameter metrics defined on the three dimensional sphere S^3. This metrics are obtained in such a way that the Hopf fibration is still a Riemannian fibration.

We can give a unified model for the $E(\kappa, \tau)$ spaces; when $\kappa \leq 0$ the model is global and when $\kappa > 0$ we get the universal cover of $E(\kappa, \tau)$ minus one fibre. We endow \mathbb{R}^3 (if $\kappa \geq 0$) and $(\mathbb{D}(2/\sqrt{-\kappa}) \times \mathbb{R})$ (if $\kappa < 0$) with the metric

$$ds^2 = \lambda^2(dx^2 + dy^2) + (dz + \tau \lambda(ydx - xdy))^2,$$

where λ is defined as

$$\lambda = \frac{4}{4 + \kappa(x^2 + y^2)}.$$
The riemannian submersion is given by the projection onto the first two coordinates, where we identify the basis $\mathbb{M}^2(\kappa)$ with $\{z = 0\} \subset \mathbb{E}(\kappa, \tau)$. The vector field ∂_z is the unitary Killing vector field whose flow generates the \textit{vertical translations}. The integral curves of this flow are the fibres of the submersion, and they are complete geodesics. The fields given by

$$E_1 = \frac{1}{\lambda} \partial_x - \tau y \partial_z, \quad E_2 = \frac{1}{\lambda} \partial_y + \tau x \partial_z, \quad E_3 = \partial_z,$$

are an orthonormal basis at each point. In this framework, the angle function of an immersed, orientable surface M is defined as $\nu = \langle \eta, \partial_z \rangle$, where η is a unit normal vector field defined on M.

Henceforth, we will denote simply by $(\mathbb{E}, \langle \cdot, \cdot \rangle)$ to any of the $\mathbb{E}(\kappa, \tau)$ spaces with the model given above. A \textit{horizontal plane} is a subset of \mathbb{E} of the form $\{z = z_0; \ z_0 \in \mathbb{R}\}$, where z_0 is called the height of the plane. Every horizontal plane is a minimal surface, and when $\tau = 0$ they are totally geodesic copies of $\mathbb{M}^2(\kappa)$ that differ one from the other by a vertical translation. A \textit{vertical graph} in \mathbb{E} is a surface M with the property that intersects each fibre of the submersion at most one. As a matter of fact, each vertical graph in \mathbb{E} can be parametrized as

$$M = \{(x, y, f(x, y)); \ (x, y) \in \Omega\},$$

for a certain smooth function f defined in a domain Ω contained in some horizontal plane $\{z = z_0\}, \ z_0 \in \mathbb{R}$. Note that after a vertical translation, the domain of a vertical graph can be contained in any horizontal plane. A graph is compact if Ω is compact and f extends to $\partial \Omega$ continuously. The \textit{boundary} of a compact graph is defined as $\partial M = f(\partial \Omega)$. A compact graph M has boundary in a horizontal plane if its boundary ∂M has constant height. This is equivalent to the fact that f restricted to $\partial \Omega$ is a constant function.

2.1 Stability of H-surfaces in the $\mathbb{E}(\kappa, \tau)$ spaces

It is a well known fact that an H-surface M immersed in an arbitrary riemannian 3-manifold, is a critical point for the area functional associated to compactly supported variations of the surface that preserve the enclosed volume constant. Equivalently, M is an H-surface if and only if it is a critical point for the functional Area-2HVol [BCE]. The second variation of this functional is given by the quadratic form

$$Q(f, f) = - \int_M \left(\Delta_M f + f(|\sigma|^2 + \text{Ric}(\eta)) \right) f dA, \ \forall f \in C_0^\infty(M) \quad (2.1)$$

where Δ_M is the Laplace-Beltrami operator of the surface M, $|\sigma|^2$ is the squared length of the second fundamental form of M, η is the unit normal of M and $\text{Ric}(\eta)$ is the \textit{Ricci curvature} along the direction η. Equation \((2.1)\) can be rewritten by defining the elliptic operator

$$\mathcal{L} = \Delta_M + |\sigma|^2 + \text{Ric}(\eta) \quad (2.2)$$

and thus (2.1) is equivalent to
\[Q(f,f) = -\int_M f \mathcal{L} f \, dA, \quad \forall f \in C^\infty_0(M). \] (2.3)

The operator \(\mathcal{L} \) is the Jacobi operator, or stability operator of \(M \). An orientable immersion \(M \) in an \(\mathbb{E}(\kappa, \tau) \) space is stable if and only if
\[-\int_M f \mathcal{L} f \, dA \geq 0, \quad \forall f \in C^\infty_0(M). \]

The non-vanishing functions \(f \in C^\infty(M) \) lying in the kernel of \(\mathcal{L} \) are called Jacobi functions. If \(M \) is an orientable immersed surface in an \(\mathbb{E}(\kappa, \tau) \) space and \(\nu \) denotes the angle function of \(M \), then \(\nu \) is a Jacobi function for the stability operator \(\mathcal{L} \) [Da], i.e. the elliptic equation \(\mathcal{L}\nu = 0 \) holds. This equation reads as
\[\Delta_M \nu + \nu \left((1 - \nu^2)(\kappa - 4\tau^2) + |\sigma|^2 + 2\tau^2 \right) = 0. \] (2.4)

A classical theorem due to Fischer-Colbrie [Fi] asserts that the existence of a positive Jacobi function defined on a surface \(M \) is equivalent to the stability of the surface. As a matter of fact, each vertical \(H \)-graph in an \(\mathbb{E}(\kappa, \tau) \) space is stable, since either the function \(\nu \) or \(-\nu \) is always positive.

3 Height estimates

In this section, \(H \) will denote a positive constant and \((\mathbb{E}, \langle \cdot, \cdot \rangle) \) will be either the space \(\text{Nil}_3 \) or \(\widetilde{PSL}_2(\mathbb{R}) \) with the corresponding metric. In particular, as in both spaces we have \(\kappa \leq 0 \), \(\mathbb{E} \) is given by the global model defined in Section 2. The theorem that we prove is the following:

Theorem 1 Let \(H \) be a positive constant and suppose that
\[4H^2 + \kappa > 0. \]
Then, there exists a constant \(C = C(H, \kappa, \tau) > 0 \), such that for every compact vertical \(H \)-graph \(M \) in \(\mathbb{E} \) with boundary in a horizontal plane, the height that \(M \) reaches over that plane is at most \(C \).

In the space \(\widetilde{PSL}_2(\mathbb{R}) \), the hypothesis \(4H^2 + \kappa > 0 \) has a relevant geometric sense, since this condition for \(H \) and \(\kappa \) ensures the existence of a rotationally symmetric \(H \)-sphere.

Before proving Theorem 1 we will prove a technical Lemma that guarantees a uniformly bound of the second fundamental form for \(H \)-graphs in \(\mathbb{E} \).
Lemma 2 Let \(\{M_n\} \) be a sequence of compact vertical \(H \)-graphs in \(\mathbb{E} \), with \(\partial M \subset \{z = 0\} \) and with heights to \(\{z = 0\} \) tending to infinity, and fix \(d > 0 \). Then, there exists a positive constant \(\Lambda \) such that the uniform estimate holds:

\[
|\sigma_n(p)| < \Lambda, \quad \forall p \in M^*_n, \quad \forall n \in \mathbb{N},
\]

where \(M^*_n \) is the subset of \(M_n \) defined as

\[
M^*_n = \{ p \in M_n; \; d(p, \partial M_n) > 2d \}.
\]

Proof: We define \(M^*_n := \{ p \in M_n; \; d(p, \partial M_n) > 2d \} \). As the heights of \(M_n \) over \(\{z = 0\} \) tend to infinity, and the ambient distance is always lower or equal than the intrinsic distance, it is clear that \(M^*_n \) is a non-empty, possibly non-connected, graph over \(\{z = 0\} \) for \(n \) large enough. Arguing by contradiction, suppose that such estimate does not hold. Then, there exists a sequence of points \(p_n \in M^*_n \) such that \(|\sigma_n(p_n)| \to \infty \). After passing to a subsequence, we may suppose that each \(p_n \in M^*_n \) satisfies \(|\sigma_n(p_n)| > n, \; \forall n \in \mathbb{N} \). We will follow the ideas exhibited in the proof of Theorem 1.1. in [MePR]. Consider the compact intrinsic ball \(D_n = B_{M_n}(p_n, d) \) in \(M_n \), which by construction lies at a positive distance from \(\partial M_n \). Let \(q_n \) be the maximum on \(D_n \) of the function

\[
g_n(x) = |\sigma_n(x)|d_{M_n}(x, \partial D_n).
\]

Clearly, \(q_n \) is an interior point as \(g_n \) vanishes on \(\partial D_n \). Define \(\lambda_n = |\sigma_n(q_n)| \) and \(r_n = d_{M_n}(q_n, \partial D_n) \). Then,

\[
\lambda_n r_n = g_n(q_n) \geq g_n(p_n) = |\sigma_n(p_n)|d_{M_n}(p_n, \partial D_n) > nd.
\]

(3.1)

In particular, \(\lambda_n r_n \to \infty \) as \(n \to \infty \).

Denote by \(\tilde{M}_n \) to the image of \(M_n \) under the isometry of \(\mathbb{E} \) that takes the point \(q_n \) to the origin of \(\mathbb{E} \) denoted by \(\sigma \). Now, we consider geodesic coordinates around \(\sigma \), and fix \(t > 0 \). As \(\lambda_n \to \infty \), the sequence \(\{\lambda_n B_\mathbb{E}(\sigma, t/\lambda_n)\} \) converges to the open ball \(\mathbb{B}(t) \) of \(\mathbb{R}^3 \) with its usual flat metric. For this fixed \(t \), let \(m(t) \in \mathbb{N} \) be large enough such that \(t/\lambda_m < r_m/2 \). For all \(n > m(t) \), we define \(\mathcal{B}_n(t) = \lambda_n B_{M_n}(\sigma, t/\lambda_n) \) which is a vertical graph and with angle function equal to \(\nu_n \). By construction, the distances from \(\sigma \) to \(\partial \mathcal{B}_n(t) \) converge to \(t \). Also, the mean curvature of \(\mathcal{B}_n \) is equal to \(H_n = H/\lambda_n \). Note that for every \(z_n \in B_{M_n}(q_n, r_n/2) \), a straightforward computation yields

\[
d_{M_n}(q_n, \partial D_n) \leq 2d_{M_n}(z_n, \partial D_n).
\]

(3.2)

According to \((3.2) \), and because \(t/\lambda_n < r_n/2 \), we have the following estimate for the second fundamental form of each \(\mathcal{B}_n(t) \)

\[
|\sigma_{\mathcal{B}_n(t)}(z_n)| = \frac{|\sigma_n(z_n)|}{\lambda_n} = \frac{g_n(z_n)}{\lambda_n d_{M_n}(z_n, \partial D_n)} \leq \frac{g_n(q_n)}{\lambda_n d_{M_n}(z_n, \partial D_n)} = \frac{d_{M_n}(q_n, \partial D_n)}{d_{M_n}(z_n, \partial D_n)} \leq 2.
\]

(3.3)

This implies that the length of the second fundamental form of each \(\mathcal{B}_n(t) \) is uniformly bounded. Also, each \(\mathcal{B}_n(t) \) is the graph of a solution to an elliptic PDE for \(H_n \), and the
sequence $H_n = H/\lambda_n$ converges to zero. Moreover, the graphs $\mathcal{B}_n(t)$ have uniform C^2 estimates (since the lengths of their second fundamental forms are uniformly bounded, by (3.3)), and the length of the second fundamental form of each $\mathcal{B}_n(t)$ at the origin is equal to 1. Finally, each $\mathcal{B}_n(t)$ is contained in $\lambda_n D(0, t/\lambda_n)$.

This uniformly bound on the length of the second fundamental forms of $\mathcal{B}_n(t)$ allows us to prove that a subsequence of the surfaces $\mathcal{B}_n(t)$ converges uniformly on compact sets to a minimal surface $M_\infty(t) \subset \mathbb{B}(t)$ in \mathbb{R}^3. First, Proposition 2.3 in [RST] ensures us that there exist positive constants δ, μ, only depending on the bound given by (3.3), with the property that a neighbourhood of the origin in $\mathcal{B}_n(t)$ can be seen as a graph of a function u_n defined in a disk $D_n(\delta)$ of its tangent plane, and such that $||u_n||_{C^2(D_n(\delta))} \leq \mu$. Denote by $\{(\eta_n)_\sigma\}$ to the image of the unit normal of $\mathcal{B}_n(t)$ at the origin. As all the images $(\eta_n)_\sigma$ lie in the unit sphere of the tangent space at σ, after passing to a subsequence we may assume that $\{(\eta_n)_\sigma\} \to \eta_\sigma$, with η_σ being a constant unitary vector in $T_0 \mathbb{E}$. After making δ smaller (resp. μ larger) if necessary, we ensure that for n large enough an open neighbourhood of the origin in $\mathcal{B}_n(t)$ is the graph of a function $z = u_n(x, y)$ over $D(0, \delta)$ and $||u_n||_{C^2(D(0, \delta))} \leq \mu$. As the mean curvatures of $\mathcal{B}_n(t)$ are uniformly bounded, they actually converge to zero, by Schauder estimates we conclude that the functions u_n are uniformly bounded in the $C^{2, \alpha}$ topology in any disk $D(0, \delta_0) \subset D(0, \delta)$. Now a similar diagonal argument as the one used in the last part of Theorem 2.17 in [BGM], applying Arzela-Ascoli theorem, ensures us that a subsequence of the graphs $\mathcal{B}_n(t)$ converges uniformly on compact sets in the C^2 topology to a minimal surface $M_\infty(t)$ contained in $\mathbb{B}(t)$. Notice that $\bigcup_{t \geq 1} \mathbb{B}(t) = \mathbb{R}^3$, with its usual flat metric. Now it is clear that $M_\infty = \bigcup_{t \geq 1} M_\infty(t)$ is a complete minimal surface in \mathbb{R}^3, passing through the origin and with $|\sigma_{M_\infty}(0)| = 1$. In particular, as the angle functions of the graphs $\tilde{\mathcal{B}}_n$ are negative functions, the angle function of M_∞ satisfies $\nu_\infty \leq 0$. This implies that if we denote by η_∞ the Gauss map of the minimal surface M_∞, then $\eta_\infty(M_\infty) \subset \mathbb{S}_2^2$, where \mathbb{S}_2^2 is the lower closed hemisphere of \mathbb{S}^2. By a classical result of Osserman, according to which the Gauss map image of a complete non-planar minimal surface in \mathbb{R}^3 is dense in \mathbb{S}^2., we deduce that M_∞ is a plane. This contradicts the fact that the norm of the second fundamental form of all the $\mathcal{B}_n(t)$ at the origin is equal to 1, which completes the proof of Lemma 2.

Now, we stand in position to prove Theorem 1.

Proof: Arguing by contradiction, suppose that the height estimate in the statement of the theorem does not hold. Then, there exist a sequence of compact vertical H-graphs M_n, whose boundaries are contained in horizontal planes $\{z = z_n\}$, and such that if we denote by h_n to the height of each M_n to $\{z = z_n\}$, then $\{h_n\} \to \infty$. After a vertical translation we can suppose that all the boundaries are contained in the plane $\Pi = \{z = 0\}$. By the mean curvature comparison principle, each graph is contained in one of the half-spaces $\{z \geq 0\}$ or $\{z \leq 0\}$. After a rotation of angle π around some horizontal geodesic contained in Π, we may assume that all the graphs M_n lie above the Π, i.e. they lie in the half-space $\{z \geq 0\}$. Let η_n be the unit normal to each M_n such
that the mean curvature with respect to η_n is H. In particular, each M_n is downwards oriented as a consequence again of the mean curvature comparison principle, and thus every angle function $\nu_n = \langle \eta_n, \partial_z \rangle$ is a negative function on M_n. Again, fix some positive number d and let us now denote $M_n^* := \{ p \in M_n : d(p, \partial M_n) > 2d \}$. As the heights of M_n over Π tend to infinity, it is clear that M_n^* is a non-empty, possibly non-connected, graph over Π for n large enough. In this situation, Lemma 2 ensures us that there exists a positive constant Λ in such a way that the second fundamental $\sigma_{M_n^*}$ form of each surface M_n^* satisfy $|\sigma_{M_n^*}| < \Lambda$.

Consider for each n the connected component M_n^0 of M_n^* of maximum height over Π. Let $x_n \in M_n^0$ be the point where this maximum height is attained, and consider Φ_n the isometry that sends x_n to the origin. Now, define $M_n^1 = \Phi_n(M_n^0)$. The length of the second fundamental form of each graph M_n^1 is uniformly bounded by $\Lambda > 0$, as they are obtained by translations of subsets of M_n^*. Moreover, the distances in M_n^1 of the origin to ∂M_n^1 diverge to ∞. By a similar compactness argument to the one we used in the proof of Lemma 2, we deduce that, up to a subsequence, there are compact sets $K_n \subset M_n^1$ that converge uniformly on compact sets in the C^2 topology to a complete, possibly non-connected, H-surface M_∞ that passes through the origin. From now on, we will consider the connected component of M_∞ that passes through the origin, and we will still denote this component by M_∞. Let $\nu_\infty := \langle \eta_\infty, \partial_z \rangle$ denote the angle function of M_∞, where here η_∞ is the unit normal of M_∞. Since M_∞ is a limit of the downwards-oriented graphs M_n^1, we see that ν_∞ is non-positive. We claim that ν_∞ cannot be bounded away from zero; indeed, assume that $\nu_\infty^2 \geq c > 0$ for some $c > 0$. Consider the projection $p : M_\infty \to \mathbb{M}^2(\kappa)$, let $\langle \cdot, \cdot \rangle_{\text{proj}}$ be the induced metric on M_∞ via p, and let $\langle \cdot, \cdot \rangle$ be the induced ambient metric on M_∞.

As $\langle \cdot, \cdot \rangle$ is complete and it is well-known that $\nu_\infty^2 \langle \cdot, \cdot \rangle \leq \langle \cdot, \cdot \rangle_{\text{proj}}$, we conclude by $\nu_\infty^2 \geq c > 0$ that $\langle \cdot, \cdot \rangle_{\text{proj}}$ is also complete. In particular, p is a local isometry from $(M_\infty, \langle \cdot, \cdot \rangle_{\text{proj}})$ onto $\mathbb{M}^2(\kappa)$. In these conditions, p is necessarily a (surjective) covering map over the simply connected surface $\mathbb{M}^2(\kappa)$, and thus M_∞ is an entire vertical graph. Let S be the sphere with constant mean curvature H; the condition $4H^2 + \kappa > 0$ ensures us the existence of such a sphere for the case $\kappa < 0$. Then, we can translate S by vertical translations until it touches M_∞ in a first contact point in such a way that the unit normals of S and M_∞ agree. However, this situation would yield to a contradiction with the maximum principle. Therefore, there must exist a sequence of $p_n \in M_\infty$ with $\nu_\infty(p_n) \to 0$.

Let Θ_n be an isometry in E that takes each point p_n to the origin, and define $M_n^\infty = \Theta_n(M_\infty)$, which is a sequence of complete, stable surfaces with constant mean curvature H passing through the origin and whose angle functions satisfy $\nu_n^\infty \leq 0$. Again, standard elliptic theory ensures that, up to a subsequence, the surfaces M_n^∞ converges to a stable H-surface M_∞^*, passing through the origin. As this convergence is C^2, the angle function ν_∞^* of M_∞^* satisfies $\nu_\infty^* \leq 0$ and $\nu_\infty^*(0) = 0$. Also, the stability operators \mathcal{L}_n converge to the stability operator \mathcal{L}_∞ of the limit surface M_∞^*.

The maximum principle for elliptic operators applied to \mathcal{L}_∞, ensures us that any non-zero solution to (2.4) changes sign around any of its zeros. As \mathcal{L}_∞ also admits the zero
function as a solution, and ν^*_∞ vanishes in a point, the condition $\nu^*_\infty \leq 0$ implies that ν^*_∞ is identically zero. Therefore the limit surface M^*_∞ is contained in a flat cylinder $\gamma \times \mathbb{R}$, for a planar curve γ in \mathbb{R}^2 or \mathbb{H}^2 (depending on whether $\kappa = 0$ or $\kappa < 0$, respectively). An analytic prolongation argument ensures that the maximal surface containing M^*_∞ has to be the complete flat cylinder $\gamma \times \mathbb{R}$. This cylinder is an H-cylinder as well, and thus the geodesic curvature of γ satisfies $\kappa_\gamma = 2H$. This implies that γ is a closed curve in \mathbb{R}^2 or \mathbb{H}^2 (depending if $\kappa = 0$ or $\kappa < 0$, respectively). In the cylinder $\gamma \times \mathbb{R}$, the operator L^*_∞ has the expression

$$L^*_\infty = \Delta_M + \kappa^2_\gamma + \kappa.$$

As all the surfaces M^n_∞ are stable, the limit cylinder M^*_∞ is also a stable surface. But a complete, vertical H-cylinder in an $E(\kappa, \tau)$ is stable if and only if $\kappa^2_\gamma + \kappa \leq 0$. Thus, the limit cylinder is stable if and only if $4H^2 + \kappa$ is a negative constant, which is a contradiction with the hypothesis $4H^2 + \kappa > 0$. This contradiction completes the proof of Theorem 1.

A straightforward consequence of Theorem (1) is the following structure-type result:

Corollary 3 Let H be a positive constant and suppose that

$$4H^2 + \kappa > 0.$$

Then, there do not exist proper vertical H-graphs defined on relatively compact domains $\Omega \subset \{z = z_0\}$ in the spaces Nil_3 and $\tilde{\text{PSL}}_2(\mathbb{R})$.

Proof: Let M be a proper H-graph over a relatively compact domain $\Omega \subset \{z = z_0\}$. After a vertical translation and a rotation of angle π around a horizontal geodesic, we can suppose that M lies in the halfspace $\{z \leq 0\}$, and intersects tangentially the plane $\{z = 0\}$. Let C be the constant appearing in Theorem 1. Then, as the height of M with respect to the plane $\{z = 0\}$ is unbounded, there exists some $d_0 > 0$ such that if we intersect M with the halfspace $\{z \geq -d_0\}$, we obtain a compact H-graph with boundary lying in the plane $\{z = -d_0\}$ and with height over the plane $\{z = -d_0\}$ greater than C, contradicting Theorem 1.

References

[AbRo1] U. Abresch, H. Rosenberg, A Hopf differential for constant mean curvature surfaces in $S^2 \times \mathbb{R}$ and $\mathbb{H}^2 \times \mathbb{R}$, *Acta Math.* 193 (2004), 141–174.
[AbRo2] U. Abresch, H. Rosenberg, Generalized Hopf differentials, *Mat. Contemp.* 28 (2005), 1–28.

[AEG] J. A. Aledo, J. M. Espinar, J. A. Gálvez, Height estimates for surfaces with positive constant mean curvature in $M^2 \times \mathbb{R}$, *Illinois J. Math.* 52 (2008), no. 1, 203–211.

[BCE] J. L. Barbosa, M. do Carmo, J. Eschenburg, Stability of hypersurfaces with constant mean curvature in Riemannian manifolds, *Math. Z.* 197 (1988), 123–138.

[BGM] A. Bueno, J.A. Gálvez, P. Mira, The global geometry of surfaces with prescribed mean curvature in \mathbb{R}^3, preprint, arxiv.org/pdf/1802.08146.

[Da] B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, *Comment. Math. Helv.* 82 (2007), 87–131.

[DHM] B. Daniel, L. Hauswirth, P. Mira, Constant mean curvature surfaces in homogeneous manifolds, Korea Institute for Advanced Study, Seoul, Korea, 2009.

[FeMi] I. Fernández, P. Mira, Constant mean curvature surfaces in 3-dimensional Thurston geometries. In *Proceedings of the International Congress of Mathematicians*, Volume II (Invited Conferences), pages 830–861. Hindustan Book Agency, New Delhi, 2010.

[Fi] D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, *Invent. Math.* 82 (1985), no. 1, 121–132.

[He] E. Heinz, On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary, *Arch. Rational Mech. Anal.* 35 (1969), 249–252.

[HLR] D. Hoffman, J. De Lira, H. Rosenberg, Constant mean curvature surfaces in $M^2 \times \mathbb{R}$, *Trans. Amer. Math. Soc.* 358 (2006), no. 2, 491–507.

[KKMS] N. Korevaar, R. Kusner, W. H. Meeks III, B. Solomon, Constant mean curvature surfaces in hyperbolic space, *Amer. J. Math.* 114 (1992), no. 1, 1–43.

[KKS] N. Korevaar, R. Kusner, B. Solomon, The structure of complete embedded surfaces with constant mean curvature, *J. Differential Geom.* 30 (1989), no. 2, 465–503.

[Me] W. H. Meeks III, The topology and geometry of embedded surfaces of constant mean curvature, *Bull. Amer. Math. Soc. (N.S.)* 17 (1987), no. 2, 315–317.

[MaPR] J.M. Manzano, J. Pérez, M. Rodríguez, Parabolic stable surfaces with constant mean curvature, *Calculus of Variations and Partial Differential Equations* 42 (2011), no. 1-2, 137–152.

[MePR] W. H. Meeks III, J. Pérez, A. Ros, The dynamics theorem for properly embedded minimal surfaces, *Math. Ann.* 365 (2016), no. 3-4, 1069–1089.
[Ro] H. Rosenberg, Hypersurfaces of constant curvature in space forms, *Bull. Sci. Math.* **117** (1993), 211–239.

[RoSa] H. Rosenberg, R. Sa Earp, The geometry of properly embedded special surfaces in \mathbb{R}^3, e.g., surfaces satisfying $aH + bK = 1$, where a and b are positive, *Duke Math. J.* **73** (1994), no. 2, 291–306.

[RST] H. Rosenberg, R. Souam, E. Toubiana, General curvature estimates for stable H-surfaces in 3-manifolds and applications, *J. Differential Geom.* **84** (2010), no. 3, 623–648.

The author was partially supported by MICINN-FEDER Grant No. MTM2016-80313-P, Junta de Andalucía Grant No. FQM325 and FPI-MINECO Grant No. BES-2014-067663.