HAMMING DISTANCES FROM A FUNCTION TO ALL CODEWORDS OF A GENERALIZED REED-MULLER CODE OF ORDER ONE

MIRIAM ABDÓN AND ROBERT ROLLAND

Abstract. For any finite field \(\mathbb{F}_q \) with \(q \) elements, we study the set \(\mathcal{F}_{(q,m)} \) of functions from \(\mathbb{F}_q^m \) into \(\mathbb{F}_q \). We introduce a transformation that allows us to determine a linear system of \(q^m+1 \) equations and \(q^m+1 \) unknowns, which has for solution the Hamming distances of a function in \(\mathcal{F}_{(q,m)} \) to all the affine functions.

1. Introduction

1.1. Generalized Reed-Muller codes of order 1. Let \(\mathbb{F}_q \) be the finite field with \(q \) elements. For any integer \(m \geq 1 \), we will identify \(\mathbb{F}_q^m \) with \(\mathbb{F}_q^m \) as follows: consider a basis \(\{ e_1, \ldots, e_m \} \) of \(\mathbb{F}_q^m \) over \(\mathbb{F}_q \), then an element \(u \in \mathbb{F}_q^m \) will be identified with the vector \((u_1, \ldots, u_m) \in \mathbb{F}_q^m \) if and only if, \(u = \sum_{i=1}^m u_i e_i \).

If \(u = (u_1, \ldots, u_m) \) and \(v = (v_1, \ldots, v_m) \), are two elements of \(\mathbb{F}_q^m \) we will denote by \(u \cdot v \) their product in the field \(\mathbb{F}_q^m \) and by \(\langle u, v \rangle \) their scalar product

\[
\langle u, v \rangle = \sum_{i=1}^m u_i v_i.
\]

We denote by \(\mathcal{F}_{(q,m)} = \{ f : \mathbb{F}_q^m \to \mathbb{F}_q \} \) the set of functions from \(\mathbb{F}_q^m \) to \(\mathbb{F}_q \). Each function \(f \in \mathcal{F}_{(q,m)} \) can be identified with its image \(\{ f(u) \}_{u \in \mathbb{F}_q^m} \). We know that these functions are polynomial functions of \(m \) variables. The kernel of the map which associates to any polynomial the corresponding polynomial function is the ideal \(I \) generated by the \(m \) polynomials \(X_i^q - X_i \). The reduced polynomials are the polynomials \(P(X_1, \ldots, X_m) \) such that for each \(i \), the partial degree \(\deg_i(P(X_1, \ldots, X_m)) \) of \(P(X_1, \ldots, X_m) \) with respect to the variable \(X_i \) is \(\leq q - 1 \). Then for any \(f \in \mathcal{F}_{(q,m)} \) there exists an unique reduced
polynomial \(P(X_1, \ldots, X_m) \) for which \(f \) is the associated polynomial function. The total degree of \(P(X_1, \ldots, X_m) \) is called the degree of \(f \) and denoted by \(\deg(f) \).

With these notations, the Generalized Reed-Muller code of order 1 is the set
\[
RM^{(1)}_{(q,m)} = \{ (g(u))_{u \in \mathbb{F}_q^m} \mid g \in \mathcal{F}_{(q,m)} \text{ and } \deg(g) \leq 1 \}.
\]

If \(f, g \in \mathcal{F}_{(q,m)} \), the Hamming distance between these two functions is defined by
\[
d(f, g) = \text{card} \left(\{ u \in \mathbb{F}_q^m \mid f(u) \neq g(u) \} \right).
\]

1.2. Organization of the article

In this article we study the Hamming distances from a function \(f \in \mathcal{F}_{(q,m)} \) to all the codewords \(g \in \mathcal{R}M^{(1)}_{(q,m)} \).

2. An adapted transform

It is known that every codeword \(g \in \mathcal{R}M^{(1)}_{(q,m)} \) can be characterized by a pair \((v, t) \in \mathbb{F}_q^m \times \mathbb{F}_q\) in the following sense:
\[
g(u) = \langle u, v \rangle + t \quad \forall u \in \mathbb{F}_q^m.
\]

If \(f \in \mathcal{F}_{(q,m)} \) and \(g \) as above, we have that
\[
d(f, g) = \text{card} \left(\{ u \in \mathbb{F}_q^m \mid f(u) \neq \langle u, v \rangle + t \} \right) = q^m - N_{v,t}(f),
\]
where \(N_{v,t}(f) = \text{card} \left(\{ u \in \mathbb{F}_q^m \mid f(u) = \langle u, v \rangle + t \} \right) \).

Now the problem is to study the integer numbers \(N_{(v,t)}(f) \). In order to do that, we will introduce a transform on the group algebra \(\mathbb{C}F_q \) of the additive group \(\mathbb{F}_q \) over the complex field \(\mathbb{C} \) which is quite similar to a Fourier Transform.

More precisely, \(\mathbb{C}F_q \) is the algebra of formal linear combinations with coefficients in \(\mathbb{C} \)
\[
\sum_{t \in \mathbb{F}_q} \alpha_t Z^t
\]
where the operations are defined by
\[
\sum_{t \in \mathbb{F}_q} \alpha_t Z^t + \sum_{t \in \mathbb{F}_q} \beta_t Z^t = \sum_{t \in \mathbb{F}_q} (\alpha_t + \beta_t) Z^t;
\]
\[
\lambda \left(\sum_{t \in \mathbb{F}_q} \alpha_t Z^t \right) = \sum_{t \in \mathbb{F}_q} (\lambda \alpha_t) Z^t;
\]
\[
(\sum_{t \in \mathbb{F}_q} \alpha_t Z^t)(\sum_{t \in \mathbb{F}_q} \beta_t Z^t) = \sum_{t \in \mathbb{F}_q} \left(\sum_{r+s=t} (\alpha_r \beta_s) \right) Z^t.
\]
Let \(G_{(q,m)} \) be the algebra of functions from \(\mathbb{F}_q^m \) (or from \(\mathbb{F}_q^m \)) into \(\mathbb{C}\mathbb{F}_q \). It is a vector space of dimension \(q^{m+1} \) over \(\mathbb{C} \). Let us define an order on \(\mathbb{F}_q^m \times \mathbb{F}_q \) and define the family \((e_{u,t})_{(u,t) \in \mathbb{F}_q^m \times \mathbb{F}_q} \) of elements of \(G_{(q,m)} \) where

\[
e_{u,t}(v) = \begin{cases}
0 & \text{if } v \neq u \\
Z^t & \text{if } v = u
\end{cases}
\]

This family is a basis of \(G_{(q,m)} \) and has \(q^{m+1} \) elements.

Define the operator \(T_{(q,m)} \) of the \(\mathbb{C} \)-vector space \(G_{(q,m)} \) by

\[
T_{(q,m)}(\phi)(v) = \sum_{u \in \mathbb{F}_q^m} \phi(u)Z^{-\langle u,v \rangle}.
\]

Remark 2.1. In the case where the function \(\phi \) is given by \(\phi(v) = Z^f(v) \) for some \(f \in \mathcal{F}_{(q,m)} \), then the transform introduced above is the same that the one introduced by Ashikhmin and Litsyn (see [1]). We recall here some basic properties of this transform, for more details see [2].

Lemma 2.2. The transform of \(e_{u,t} \) by \(T_{(q,m)} \) is given by

\[
e_{u,t}(v) = T_{(q,m)}(e_{u,t})(v) = \sum_{w \in \mathbb{F}_q^m} e_{u,t}(w)Z^{-\langle w,v \rangle} = Z^t\delta_{(u,v)},
\]

then

\[
\epsilon_{u,t} = \sum_{(v,\tau) \in E_{-u,t}} \epsilon_{v,\tau},
\]

where \(E_{-u,t} \) is the hyperplane of \(\mathcal{F}_{(q,m)} \times \mathcal{F}_q \) defined by

\[
E_{-u,t} = \{ (v, \tau) \in \mathbb{F}_q^m \times \mathbb{F}_q \mid \tau = t - \langle u, v \rangle \}.
\]

Lemma 2.3. Let \(\gamma_a \in G_{(q,m)} \) be defined by \(\gamma_a(u) = Z^{(a,u)} \), then the transform of \(\gamma_a \) is given by

\[
T_{(q,m)}(\gamma_a)(v) = \begin{cases}
q^m Z^0 & \text{if } v = a \\
q^{m-1} \sum_{t \in \mathbb{F}_q} Z^t & \text{if } v \neq a.
\end{cases}
\]

Proof. We have successively

\[
T_{(q,m)}(\gamma_a)(v) = \sum_{u \in \mathbb{F}_q^m} \gamma_a(u)Z^{-\langle u,v \rangle}
\]

\[
= \sum_{u \in \mathbb{F}_q^m} Z^{(a,u)}Z^{-\langle u,v \rangle}
\]

\[
= \sum_{u \in \mathbb{F}_q^m} Z^{(a-v,u)}.
\]
If \(v = a \) we have that \(T_{(q,m)}(\gamma_a)(v) = q^m Z^0 \) and then, when \(v \neq a \), for each \(t \in \mathbb{F}_q \), the equation \(\langle a - v, u \rangle = t \) defines a hyperplane and consequently has \(q^{m-1} \) solutions.

Let \(\phi \) be an element of \(\mathcal{G}_{(q,m)} \), we denote by \(\psi = T_{(q,m)}(\phi) \) its transform, and by \(\theta = T_{(q,m)}(\psi) \) its double transform.

Theorem 2.4. With the previous notations we have

\[
\theta(w) = q^{m-1} \sum_{t \in \mathbb{F}_q} (Z^0 - Z^t) \phi(-w) + \left(q^{m-1} \sum_{t \in \mathbb{F}_q} Z^t \right) \psi(0).
\]

Proof. We have that

\[
\theta(w) = \sum_{v \in \mathbb{F}_q^m} \left(\sum_{u \in \mathbb{F}_q^m} \phi(u) Z^{-(u,v)} \right) Z^{-(v,w)}
\]

\[
= \sum_{v \in \mathbb{F}_q^m} \left(\sum_{u \in \mathbb{F}_q^m} \phi(u) Z^{-(u+w,v)} \right)
\]

\[
= \sum_{u \in \mathbb{F}_q^m} \phi(u) \sum_{v \in \mathbb{F}_q^m} Z^{-(u+w,v)}
\]

From Lemma 2.3 we obtain

\[
\theta(w) = q^m \phi(-w) + \left(q^{m-1} \sum_{t \in \mathbb{F}_q} Z^t \right) \sum_{u \in \mathbb{F}_q^m \setminus \{-w\}} \phi(u).
\]

The Lemma follows from the equality above and from the fact that:

\[
\sum_{u \in \mathbb{F}_q^m \setminus \{-w\}} \phi(u) = \sum_{u \in \mathbb{F}_q^m} \phi(u) - \phi(-w) = \psi(0) - \phi(-w).
\]

We want to characterize the kernel of \(T_{(q,m)} \), in order to do that, we need the following lemma:

Lemma 2.5. A function \(\phi \in \mathcal{G}_{(q,m)} \) verifies

\[
\phi(w) \cdot \left(q - \sum_{t \in \mathbb{F}_q} Z^t \right) = 0
\]

for each \(w \in \mathbb{F}_q^m \) if, and only if,

\[
\phi(w) = \lambda(w) \sum_{t \in \mathbb{F}_q} Z^t,
\]
where λ is a function from \mathbb{F}_q^m into \mathbb{C}.

Proof. Let ϕ be given by $\phi(w) = \sum_{t \in \mathbb{F}_q} C_t(\phi)(w)Z^t$, then we have

$$\phi(w) \cdot \left(q - \sum_{t \in \mathbb{F}_q} Z^t\right) = q\phi(w) - \left(\sum_{t \in \mathbb{F}_q} C_t(\phi)(w)\right)\left(\sum_{t \in \mathbb{F}_q} Z^t\right).$$

If this product is equal to zero, then

$$\phi(w) = \left(1/q\right) \left(\sum_{t \in \mathbb{F}_q} C_t(\phi)(w)\right)\left(\sum_{t \in \mathbb{F}_q} Z^t\right).$$

On the other hand a direct computation of

$$\left(\lambda(w) \sum_{t \in \mathbb{F}_q} Z^t\right) \cdot \left(q - \sum_{t \in \mathbb{F}_q} Z^t\right)$$

does the converse. \hfill \Box

Now we can determine the kernel of $T_{(q,m)}$.

Theorem 2.6. The kernel of $T_{q,m}$ is the subspace of the functions ϕ such that for each $w \in \mathbb{F}_q^m$ \n
$$\phi(w) = \lambda(w) \sum_{t \in \mathbb{F}_q} Z^t$$

where λ is any function from \mathbb{F}_q^m into \mathbb{C} verifying \n
$$\sum_{u \in \mathbb{F}_q^m} \lambda(u) = 0.$$

The dimension of the kernel is $q^m - 1$.

Proof. Note that if the transform of ϕ is the zero function, then using the Proposition 2.4 we get

$$\phi(w) \cdot \left(q - \sum_{t \in \mathbb{F}_q} Z^t\right) = 0,$$

and by Lemma 2.5

$$\phi(w) = \lambda(w) \sum_{t \in \mathbb{F}_q} Z^t.$$

Hence, for each $t \in \mathbb{F}_q$ we must have

$$C_t(\phi)(w) = \lambda(w).$$
If we denote by ψ the transform of ϕ we know that

$$C_t(\psi)(w) = \sum_{u \in \mathbb{F}_q^m} C_{(u,w)+t}(\phi)(u)$$

$$= \sum_{u \in \mathbb{F}_q^m} \lambda(u)$$

The result follows. Let us remark that the functions λ such that

$$\sum_{u \in \mathbb{F}_q^m} \lambda(u) = 0,$$

defines an hyperplane of the space of functions from \mathbb{F}_q^m into \mathbb{C} and then, the dimension of the kernel is $q^m - 1$. □

Proposition 2.7. The functions

$$\delta_a = \sum_{t \in \mathbb{F}_q} (e_{0,t} - e_{a,t})$$

with $a \in \mathbb{F}_q^m \setminus \{0\}$ are a basis of the kernel $\text{Ker}(T_{(q,m)})$, where

$$e_{u,t}(v) = \begin{cases} Z^t & \text{if } v = u \\ 0 & \text{otherwise} \end{cases}$$

The functions $e_{a,t}$ with

$$(a \neq 0 \text{ and } t \neq 0) \text{ or } (a = 0)$$

is a basis of a complement of $\text{Ker}(T_{q,m})$.

Proof. For any $a \in \mathbb{F}_q^m \setminus \{0\}$ the following holds:

$$\delta_a(v) = \lambda(v) \sum_{t \in \mathbb{F}_q} Z^t,$$

with $\lambda(0) = 1$, $\lambda(a) = -1$ and $\lambda(v) = 0$ for the other values of v, then by Theorem 2.6 δ_a is in the kernel of $T_{(q,m)}$. As the $e_{a,t}$ are linearly independent, the δ_a are linearly independent. We conclude that the δ_a constitute a basis of $\text{Ker}(T_{q,m})$.

Let I be the set

$$I = \{(v, t) \mid (v \neq 0 \text{ and } t \neq 0) \text{ or } (v = 0)\}$$

and ϕ the function

$$\phi = \sum_{(v,t) \in I} \lambda_{v,t} e_{v,t}.$$
The following holds:

\[T_{(q,m)}(\phi)(v) = \sum_{\{t|(v,t)\in I\}} \lambda_{v,t} Z^t. \]

If \(v \neq 0 \) then

\[T_{(q,m)}(\phi)(v) = \sum_{t \in \mathbb{F}_q} \lambda_{v,t} Z^t. \]

Then \(T_{(q,m)}(\phi)(v) \) cannot be a multiple of \(\sum_{t \in \mathbb{F}_q} Z^t \) unless all the \(\lambda_{v,t} \)
are zero for \(v \neq 0 \) and in this case the coefficient of \(\sum_{t \in \mathbb{F}_q} Z^t \) is 0. Now if \(v = 0 \) then

\[T_{(q,m)}(\phi)(0) = \sum_{t \in \mathbb{F}_q} \lambda_{0,t} Z^t. \]

Then \(T_{(q,m)}(\phi)(0) \) cannot be a multiple of \(\sum_{t \in \mathbb{F}_q} Z^t \) unless all the \(\lambda_{0,t} \) have the same value \(\lambda_0 \) and in this case the coefficient of \(\sum_{t \in \mathbb{F}_q} Z^t \) is \(\lambda_0 \). Hence, if \(T_{(q,m)}(\phi)(v) \) can be written \(\lambda(v) \sum_{t \in \mathbb{F}_q} Z^t \), we have \(\sum_{v \in \mathbb{F}_q} \lambda(v) = \lambda_0 \). Then, if \(\phi \in \text{Ker}(T_{(q,m)}) \), for any \((v,t) \in I \) we have \(\lambda_{v,t} = 0 \). We conclude that the \(q^{m+1} - (q^m - 1) \) linearly independent vectors \((e_{v,t})_{(v,t)\in I} \) constitute a basis of a complement of \(\text{Ker}(T_{(q,m)}) \).

Corollary 2.8. The vectors \(\epsilon_{v,t} = T_{(q,m)}(e_{v,t}) \) with \((v,t) \in I \) are linearly independent. They constitute a basis of the image \(T_{(q,m)}(G_{(q,m)}) \).

3. **Application to the Hamming distances from a function to all codewords of a Generalized Reed-Muller code of order 1**

3.1. **System of equations satisfied by the distances of a function to all codewords.** Coming back to our problem, if \(f \in \mathcal{F}_{(q,m)} \) let us associate to it the function \(F \in \mathcal{G}_{(q,m)} \) defined by

\[F(u) = Z^{f(u)}. \]

The transform \(T_{(q,m)}(F) \) is given by

\[T_{(q,m)}(F)(v) = \sum_{u \in \mathbb{F}_q^m} Z^{f(u)-\langle u,v \rangle} = \sum_{t \in \mathbb{F}_q} N_{v,t}(f) Z^t, \]

where \(N_{v,t}(f) = \# \{ u \in \mathbb{F}_q^m | f(u) - \langle u, v \rangle = t \} \) as defined before.

Lemma 3.1. Pour any \(v \in \mathbb{F}_q^m \) the following formula holds:

\[\sum_{t \in \mathbb{F}_q} N_{v,t}(f) = q^m. \]
Proof. It is a direct consequence of the equalities (2). Indeed the total sum of coefficients in the first expression is q^m and in the second one it is $\sum N_{v,t}$.

As one can see, the numbers $N_{v,t}(f)$ are exactly the coefficients of $T_{(q,m)}(F)$ where F is associated to f as above.

For each $w \in \mathbb{F}_{q^m}$ we consider the linear form L_w defined over $\mathbb{F}_{q^m} \times \mathbb{F}_q$ by

$$L_w(v, t) = -\langle w, v \rangle + t,$$

and for each $w \in \mathbb{F}_{q^m}$ and each $\tau \in \mathbb{F}_q$ we consider the hyperplane $E_{w,\tau}$ of $\mathbb{F}_{q^m} \times \mathbb{F}_q$ defined by

$$E_{w,\tau} = \{ (v, t) \in \mathbb{F}_{q^m} \times \mathbb{F}_q \mid L_w(v, t) = \tau \}.$$

Theorem 3.2. Let $f \in \mathcal{F}_{(q,m)}$, then $N_{v,t}(f)$ are solutions of the following linear system with $q^m + 1$ equations on $q^m + 1$ variables where the equation numbered (w, τ) is:

$$(w, \tau) \sum_{(v, t) \in E_{w,\tau}} x_{v, t} = \begin{cases} q^{2m-1} - q^{m-1} & \text{if } f(-w) \neq \tau \\ q^{2m-1} - q^{m-1} + q^m & \text{if } f(-w) = \tau \end{cases}$$

Proof. Computing $T^2_{(q,m)}(F)$, where $F = Z^f$ and by using the result of Theorem 2.4 we obtain

$$T^2_{(q,m)}(F)(w) = q^{m-1}(q - \sum_{t \in \mathbb{F}_q} Z^t)F(-w) + q^{m-1} \sum_{t \in \mathbb{F}_q} Z^t \sum_{u \in \mathbb{F}_{q^m}} F(u).$$

Denoting $K(Z) = \sum_{t \in \mathbb{F}_q} Z^t$ and observing that

$$K(Z) \sum_{t \in \mathbb{F}_q} \alpha_t Z^t = (\sum_{t \in \mathbb{F}_q} \alpha_t)K(Z),$$

we obtain

$$T^2_{(q,m)}(F)(w) = q^m Z f(-w) + K(Z)(q^{2m-1} - q^{m-1})$$

$$= (q^{2m-1} - q^{m-1} + q^m) Z f(-w)$$

$$+ (q^{2m-1} - q^{m-1}) \sum_{t \neq f(-w)} Z^t.$$

On the other hand, if we compute $T^2_{(q,m)}(F)$ using that

$$T_{(q,m)}(F)(v) = \sum_{t \in \mathbb{F}_{q^m}} N_{v,t} Z^t,$$
we obtain

\[T_{(q,m)}^2(F)(w) = \sum_{\tau \in F_q} \left(\sum_{(v,t) \in E_{w,\tau}} N_{v,t} \right) Z^\tau. \]

The theorem follows by comparing the two expressions obtained for \(T_{(q,m)}^2(F) \).

Remark 3.3. The system presented in Theorem 3.2 has the following structure: it is constituted by \(q^m \) blocks \(B_w \) of \(q \) equations. The block \(B_w \) contains the \(q \) equations numbered \((w,\tau)\) where \(w \) is fixed and \(\tau \) takes the \(q \) possible values in \(F_q \). Each equation of a block involves \(q^m \) variables, namely the variables indexed by the points \((v,t)\) of the hyperplane \(E_{w,\tau} \) of \(F_q^m \times F_q \). The \(q \) hyperplanes \(E_{w,\tau} \) (\(w \) fixed, \(\tau \in F_q \)) are parallel, then each variable \(x_{v,t} \) is in one and only one equation of each block \(B_w \).

Let us consider the basis defined in section 2 by (1). Remark that the matrix of the system (3.2) is the matrix \(T_{(q,m)} \) of \(T_{(q,m)} \) with respect to the considered basis. Namely by construction (see the proof of Theorem 3.2), the system can be written

\[T_{(q,m)}X = B, \]

where \(X \) is the column

\[X = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & x_{v,t} & \vdots \end{pmatrix}, \]

and \(B \) the column

\[B = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & b_{w,\tau} & \vdots \end{pmatrix}, \]

where

\[b_{w,\tau} = \begin{cases} q^{2m-1} - q^{m-1} & \text{if } f(-w) \neq \tau \\ q^{2m-1} - q^{m-1} + q^m & \text{if } f(-w) = \tau \end{cases}. \]

The system has a solution because we know that the values \(N_{v,t}(f) \) constitute a solution. But, as the linear map \(T_{(q,m)} \) has a kernel, the system has not a unique solution. However, if we add some “normalization” conditions we obtain the desired solution.
Theorem 3.4. The numbers $N_{v,t}(f)$ are the unique solution of the system that appears on the Theorem 3.2 if we join the following q^m equations

$$\sum_{t \in \mathbb{F}_q} x_{v,t} = q^m , \quad \forall v \in \mathbb{F}_{q^m}.$$

Proof. We know that any other solution is obtained from the previous solution $(N_{v,t})_{v,t}$ by adding an element in the kernel of the transformation, that is any other solution has the form $(N_{v,t} + \lambda(v))_{v,t}$ with $\sum v \lambda(v) = 0$. For any v fix, we have that $\sum_{t \in \mathbb{F}_q} N_{v,t} = q^m$ and the result follows from it. \qed

3.2. Transformation into a Cramer linear system.

Theorem 3.5. The system (S) constructed in the following way:

1. suppress from the system (3.2) the $q^m - 1$ lines numbered $(w,0)$ with $w \neq 0$,
2. replace these equations by the $q^m - 1$ equations $\sum_{t \in \mathbb{F}_q} x_{w,t} = q^m$, where $w \neq 0$,

is a Cramer linear system and has $(N_{v,t}(f))_{v,t}$ for unique solution.

Proof. Let $T_{(q,m)}$ the matrix of the original system. The columns are the vectors $T_{(q,m)}(e_{v,t}) = e_{v,t}$ decomposed on the basis $(e_{v,t})_{(v,t) \in \mathbb{F}_q \times \mathbb{F}_q}$.

Let us consider the columns (v,t) for which one of the two following conditions holds:

1. $v = 0$;
2. $v \neq 0$ and $t \neq 0$.

Denote by I these indexes. We know by Lemma 2.8 that these $q^{m+1} - (q^m - 1)$ columns are linearly independent.

Denote by $a_{(w,\tau),(v,t)}$ the coefficient of $T_{(q,m)}$ which is at the line indexed by (w,τ) and the column indexed by (v,t). This coefficient is the component of $\delta_{v,t}$ on $e_{w,\tau}$, namely by Lemma 2.2

$$a_{(w,\tau),(v,t)} = \begin{cases} 1 & \text{if } (w, \tau) \in E_{v,t} \\ 0 & \text{if } (w, \tau) \notin E_{v,t} \end{cases}.$$

But as the relation $(w, \tau) \in E_{v,t}$ is equivalent to $(v,t) \in E_{w,\tau}$ we have

$$a_{(w,\tau),(v,t)} = a_{(v,t),(-w,\tau)}.$$

Then the elements of line $((w, \tau)$ are the elements of the column $(-w, \tau)$ By Proposition 2.7 the $q^{m+1} - (q^m - 1)$ lines indexed by (w, τ) where $w \neq 0$ and $t \neq 0$, or $w = 0$, are linearly independent.
Remark that the original system has a vector space of dimension $q^m - 1$ of solutions $(x_{v,t})_{(v,t) \in \mathbb{F}_q^m \times \mathbb{F}_q}$. Adding all equations of the system gives the following equality:

$$\sum_{v,t} x_{v,t} = q^{2m}.$$

Then if we suppose that the $q^m - 1$ conditions

$$\sum_{t \in \mathbb{F}_q} x_{v,t} = q^m,$$

where $v \neq 0$, are satisfied, the last condition

$$\sum_{t \in \mathbb{F}_q} x_{0,t} = q^m$$

is also satisfied. Now, using Theorem 3.4, we conclude that (S) is a Cramer linear System. □

Remark 3.6. From the definition it follows that

$$N_{v,t} = \text{card}\left(\{ w \in \mathbb{F}_q^m \mid (v,t) \in E_{w,f(-w)} \} \right).$$

So, it would be interesting to consider the arrangement of hyperplanes $A(f)$, consisting of the q^m hyperplanes $E_{w,f(-w)}$ and to relate the geometric and combinatorial properties of $A(f)$ to the properties of the distance between f and the affine functions. A very simple example is the following: if the arrangement $A(f)$ is centered, then there is a (v,t) such that $N_{v,t} = q^m$ and consequently the function f is affine.

REFERENCES

[1] Alexei Ashikhmin and Simon Litsyn. Fast decoding of non-binary first order reed-muller codes. AAECC, 7:299–308, 1996.

[2] Robert Rolland. Fonction maximalement non linéaires sur un corps fini. Technical Report 25, Institut de Mathématiques de Luminy, 2000.

IME, UNIV. FEDERAL FLUMINENSE, RUA MARIO SANTOS BRAGA S/N, CEP 24.020-140, NITEROI, BRAZIL

E-mail address: miriam@mat.uff.br

Université d’AIX-MARSEILLE, INSTITUT DE MATHEMATIQUES DE MARSEILLE, case 907, F13288 MARSEILLE CEDEX 9, FRANCE

E-mail address: robert.rolland@acrypta.fr