On Properties of Generalized Bi-Γ-Ideals of Γ-Semirings

Teerayut Chomchuen and Aiyared Iampan

Abstract — The notion of Γ-semirings was introduced by Murali Krishna Rao [10] as a generalization of the notion of Γ-rings as well as of semirings. We have known that the notion of Γ-semirings is a generalization of the notion of semirings. In this paper, extending Kaushik, Moin and Khan’s work, we generalize the notion of generalized bi-Γ-ideals of Γ-semirings and investigate some related properties of generalized bi-Γ-ideals.

Keywords — Γ-semiring, bi-Γ-ideal, generalized bi-Γ-ideal.

I. INTRODUCTION AND PRELIMINARIES

The notion of Γ-semirings was introduced and studied in 1995 by Murali Krishna Rao [10] as a generalization of the notion of Γ-rings as well as of semiring, and the notion of generalized bi-Γ-ideals was first introduced for rings in 1970 by Szász [12], [13] and then for semigroups by Lajos [8]. Many types of ideals on the algebraic structures were characterized by several authors such as: In 2000, Dutta and Sardar [3] studied the characterization of semiprime ideals and irreducible ideals of Γ-semirings. In 2004, Sardar and Dasgupta [11] introduced the notions of primitive Γ-semirings and primitive ideals of Γ-semirings. In 2008, Kaushik, Moin and Khan [7] introduced and studied bi-Γ-ideals in Γ-semirings, Pianskool, Sangwirotjanapat and Chinram [1] gave some properties of quasi-ideals in Γ-semirings and valuation Γ-ideals of a Γ-semiring, and Chomchuen and Aiyared Iampan [9] introduced and studied valuation Γ-semirings and valuation Γ-ideals.

To present the main results we first recall the definition of a Γ-semiring which is important here and discuss some elementary definitions that we use later.

Definition I.1. [10] Let M and Γ be two additive commutative semigroups. Then M is called a Γ-semiring if there exists a mapping $\cdot : M \times \Gamma \times M \to M$ (the image of (a, α, b) to be denoted by $a\alpha b$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$) satisfying the following conditions:

1. $a\alpha (b + c) = a\alpha b + a\alpha c,$
2. $(a + b)\alpha c = a\alpha c + b\alpha c,$
3. $a(\alpha + \beta)b = a\alpha b + a\beta b,$
4. $a\alpha (b\beta c) = (a\alpha b)\beta c$

for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$.

Let M be a Γ-semiring, A and B nonempty subsets of M, and Λ a nonempty subset of Γ. Then we define $A + B := \{a + b \mid a \in A \text{ and } b \in B\}$ and

$A\Lambda B := \left\{ \sum_{i=1}^{n} \lambda_i a_i b_i \mid n \in \mathbb{Z}^+, a_i \in A, b_i \in B \text{ and } \lambda_i \in \Lambda \text{ for all } i \right\}.$

If $A = \{a\}$, then we also write $\{a\} + B$ as $a + B$, and $\{a\}\Lambda B$ as $a\Lambda B$, and similarly if $B = \{b\}$ or $\Lambda = \{\lambda\}$.

Example I.2. [6] Let Q be set of rational numbers. Let $(S, +)$ be the commutative semigroup of all 2×3 matrices over Q and (Γ, \cdot) commutative semigroup of all 3×2 matrices over Q. Define $W\circ Y$ usual matrix product of W and Y for all $W, Y \in S$ and for all $\alpha \in \Gamma$. Then S is a Γ-semiring but not a semiring.

Example I.3. [6] Let \mathbb{N} be the set of natural numbers and $\Gamma = \{1, 2, 3\}$. Then (\mathbb{N}, \max) and (Γ, \max) are commutative semigroups. Define the mapping $\mathbb{N} \times \Gamma \times \mathbb{N} \to \mathbb{N}$, by $a\alpha b = \min\{a, \alpha, b\}$ for all $a, b \in \mathbb{N}$ and $\alpha \in \Gamma$. Then \mathbb{N} is a Γ-semiring.

Example I.4. [6] Let Q be set of rational numbers and $\Gamma = \mathbb{N}$ the set of natural numbers. Then $(Q, +)$ and (\mathbb{N}, \cdot) are commutative semigroups. Define the mapping $Q \times \Gamma \times Q \to Q$, by $a\alpha b$ usual product of a, α, b; for all $a, b \in Q$ and $\alpha \in \Gamma$. Then Q is a Γ-semiring.

Example I.5. [2] For consider the additively abelian groups $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and $\Gamma = \{2, 4, 6\}$. Let $\cdot : Z_8 \times \Gamma \times Z_8 \to Z_8, (y, \alpha, s) = y \cdot s$. Then Z_8 is a Γ-semiring.
Definition I.6. A nonempty subset A of a Γ-semiring M is called
(1) a sub-Γ-semiring of M if $(A, +)$ is a subsemigroup of $(M, +)$ and $a\gamma b \in A$ for all $a, b \in A$ and $\gamma \in \Gamma$.
(2) a Γ-ideal of M if $(A, +)$ is a subsemigroup of $(M, +)$, and $x\gamma a \in A$ and $a\gamma x \in A$ for all $a \in A, x \in M$ and $\gamma \in \Gamma$.
(3) a quasi-Γ-ideal of M if A is a sub-Γ-semiring of M and $\mathcal{A}M \cap \mathcal{M}A \subseteq A$.
(4) a bi-Γ-ideal of M if A is a sub-Γ-semiring of M and $\mathcal{A}M \cap \mathcal{M}A \subseteq A$.
(5) a generalized bi-Γ-ideal of M if $\mathcal{A}M \cap \mathcal{M}A \subseteq A$.

Lemma II.1. Let M be a Γ-semiring. We have the following:
(1) Every quasi-Γ-ideal of M is a bi-Γ-ideal.
(2) Every bi-Γ-ideal of M is a generalized bi-Γ-ideal.

Definition I.8. A Γ-semiring M is called a GB-simple Γ-semiring if M is the unique generalized bi-Γ-ideal of M.

II. MAIN RESULTS

Before the characterizations of generalized bi-Γ-ideals of Γ-semirings for the main results, we give some auxiliary results which are necessary in what follows. By Lemma I.7 (2) and [7], we have the following lemma.

Lemma II.1. Let M be a Γ-semiring and $a \in M$. Then $a\Gamma M$ and $M\Gamma a$ are generalized bi-Γ-ideals of M.

Lemma II.2. Let M be a Γ-semiring and $\{B_i \mid i \in I\}$ a nonempty family of generalized bi-Γ-ideals of M with $\bigcap_{i \in I} B_i \neq \emptyset$. Then $\bigcap_{i \in I} B_i$ is a generalized bi-Γ-ideal of M.

Proof: For all $i \in I$, we have
$$\left(\bigcap_{i \in I} B_i\right)\Gamma M \left(\bigcap_{i \in I} B_i\right) \subseteq B_i \Gamma M B_i \subseteq B_i.$$
Thus
$$\left(\bigcap_{i \in I} B_i\right)\Gamma M \left(\bigcap_{i \in I} B_i\right) \subseteq \bigcap_{i \in I} B_i.$$
Hence $\bigcap_{i \in I} B_i$ is a generalized bi-Γ-ideal of M.

Lemma II.3. Let M be a Γ-semiring and $\emptyset \neq A \subseteq M$. Then
$$A \cup \mathcal{A}M \cap \mathcal{M}A$$
(1)
is the smallest generalized bi-Γ-ideal of M containing A.

Proof: Let $B = A \cup \mathcal{A}M \cap \mathcal{M}A$. Then $A \subseteq B$. Therefore
$$B\Gamma M B = (A \cup \mathcal{A}M \cap \mathcal{M}A)\Gamma M (A \cup \mathcal{A}M \cap \mathcal{M}A) \subseteq \mathcal{A}(\mathcal{A}M \cap \mathcal{M}A)\Gamma M (A \cup \mathcal{A}M \cap \mathcal{M}A) \subseteq \mathcal{A}M \cap \mathcal{M}A \subseteq A.$$
Hence C is a sub-Γ-semiring of M.

Proposition II.7. Let M be a Γ-semiring and T a Γ-ideal of M. Then every subset of T containing $MT \cup TM$ is a Γ-ideal of M.

Proof: Let B be a subset of T such that $MT \cup TM \subseteq B$. Then
\[
MT \subseteq MT \cup TM \subseteq B
\]
and
\[
TM \subseteq TM \cup MT \subseteq B.
\]
Hence B is a Γ-ideal of M.

Proposition II.8. Let M be a Γ-semiring and T a quasi-Γ-ideal of M. Then every subset of T containing $TTM \cap MTT$ is a quasi-Γ-ideal of M.

Proof: Let C be a subset of T such that $TTM \cap MTT \subseteq C$. Then
\[
CTC \subseteq TTM \cap MTT \subseteq C
\]
and
\[
CTM \cap MTC \subseteq TTM \cap MTT \subseteq C.
\]
Hence C is a quasi-Γ-ideal of M.

Proposition II.9. Let M be a Γ-semiring and T a Γ-ideal of M. Then every subset of T containing $TTMT$ and all of its images is a Γ-ideal of M.

Proof: Let D be a subset of T such that $TTMT \subseteq D$ and $DG \subseteq D$. Then
\[
TGM \subseteq TTM \subseteq D.
\]
Hence D is a Γ-ideal of M.

Proposition II.10. Let M be a Γ-semiring and T a generalized γ-ideal of M. Then every subset of T containing $TTMT$ is a generalized γ-ideal of M.

Proof: Let E be a subset of T such that $TTMT \subseteq E$. Then
\[
TGM \subseteq TTM \subseteq E.
\]
Hence E is a generalized γ-ideal of M.

Theorem II.11. Let M be a Γ-semiring. Then the following statements are equivalent.

1. M is a GB-simple γ-semiring.
2. $a \Gamma MTa = M$ for all $a \in M$.
3. $(a) = M$ for all $a \in M$.

Proof: (1) \Rightarrow (2) Assume that M is a GB-simple γ-semiring and $a \in M$. By Lemma II.5, we have $a \Gamma MTa$ is a generalized γ-ideal of M. Since M is a GB-simple Γ-semiring, we have $a \Gamma MTa = M$.

(2) \Rightarrow (3) Assume that $a \Gamma MTa = M$ for all $a \in M$ and let $a \in M$. Then, by (2), we have
\[
(a) = \{a\} \cup a \Gamma MTa = \{a\} \cup M = M.
\]

(3) \Rightarrow (1) Assume that $(a) = M$ for all $a \in M$, and let A be a generalized γ-ideal of M and $a \in A$. Then $(a) \subseteq A$. By assumption, we have
\[
M = (a) \subseteq A \subseteq M.
\]

Thus $M = A$. Therefore M is a GB-simple γ-semiring.

Lemma II.12. Let B be a generalized γ-ideal of a Γ-semiring M and T a sub-Γ-semiring of M. If T is a GB-simple γ-semiring such that $T \cap B \neq \emptyset$, then $T \subseteq B$.

Proof: Assume that T is a GB-simple γ-semiring such that $T \cap B \neq \emptyset$ and let $a \in T \cap B$. By Lemma II.3, we have $\{a\} \cup a \Gamma TMa$ is a generalized γ-ideal of T. Since T is a GB-simple γ-semiring, we have $\{a\} \cup a \Gamma TMa = T$. Thus
\[
T = \{a\} \cup a \Gamma TMa \subseteq B \cup B \Gamma M TB \subseteq B \cup B \subseteq B.
\]
Hence $T \subseteq B$.

Theorem II.13. Let M be a γ-semiring. B a generalized γ-ideal of M and $\emptyset \neq A \subseteq M$. Then $B \Gamma A$ and $A \Gamma B$ are generalized γ-ideals of M.

Proof: Since B is a generalized γ-ideal of M, we have
\[
(B \Gamma A) \Gamma M \Gamma (B \Gamma A) = (B \Gamma (A \Gamma M) \Gamma B) \Gamma A \subseteq (B \Gamma M \Gamma B) \Gamma A \subseteq B \Gamma A
\]
and
\[
(A \Gamma B) \Gamma M \Gamma (A \Gamma B) = A \Gamma (B \Gamma (M \Gamma A) \Gamma B) \subseteq A \Gamma (B \Gamma M \Gamma B) \subseteq A \Gamma B.
\]
Therefore $B \Gamma A$ and $A \Gamma B$ are generalized γ-ideals of M.

Theorem II.14. Let M be a γ-semiring and B a γ-ideal of M. Then B is a minimal generalized γ-ideal of M if and only if B is a GB-simple γ-semiring.

Proof: Assume that B is a minimal generalized γ-ideal of M. By assumption, B is a γ-semiring. Let C be a generalized γ-ideal of B. Then
\[
CTBC \subseteq C \subseteq B.
\]
Since B is a generalized γ-ideal of M and by Theorem II.13, we have $CTBC$ is a generalized γ-ideal of M. Since B is a minimal generalized γ-ideal of M, we get $CTBC = B$. Thus, by (3), we have $B = C$. Hence B is a GB-simple γ-semiring.

Conversely, assume that B is a GB-simple γ-semiring. Let C be a generalized γ-ideal of M such that $C \subseteq B$. Then
\[
CTBC \subseteq C \subseteq B.
\]
Thus C is a generalized γ-ideal of B. Since B is a GB-simple γ-semiring, we have $B = C$. Hence B is a minimal generalized γ-ideal of M.

Theorem II.15. Let M be a γ-semiring having a proper generalized γ-ideal. Then every proper generalized γ-ideal of M is minimal if and only if the intersection of any two distinct proper generalized γ-ideals is empty.
Proof: Assume that every proper generalized bi-Γ-ideal of M is minimal and let B_1 and B_2 be two distinct proper generalized bi-Γ-ideals of M. By assumption, we have B_1 and B_2 are minimal. We shall show that $B_1 \cap B_2 = \emptyset$. Suppose that $B_1 \cap B_2 \neq \emptyset$. By Lemma II.2, we have $B_1 \cap B_2$ is a proper generalized bi-Γ-ideal of M. Since $B_1 \cap B_2 \subseteq B_1$ and $B_1 \cap B_2 \subseteq B_2$, we get $B_1 \cap B_2 = B_1$ and $B_1 \cap B_2 = B_2$, thus $B_1 = B_2$ which is a contradiction. Hence $B_1 \cap B_2 = \emptyset$.

Conversely, assume that the intersection of any two distinct proper generalized bi-Γ-ideals is empty. Let B be a proper generalized bi-Γ-ideal of M and C a generalized bi-Γ-ideals of M such that $C \subseteq B$. Suppose that $C \neq B$. Then C is a proper generalized bi-Γ-ideal of M. Since $C \subset B$ and by assumption, we have $C = C \cap B = \emptyset$ which is a contradiction. Therefore $C = B$, so B is minimal.

ACKNOWLEDGMENT

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

REFERENCES

[1] R. Chinram, A note on quasi-ideals in Γ-semirings, International Mathematical Forum 26 (2008), 1253–1259.
[2] O. Bektas¸, N. Bayrak, and A. Ersoy, Soft Γ-semirings, arXiv:1202.1496 [math.RA], 7 Feb 2012.
[3] T. K. Dutta and S. K. Sardar, Semiprime ideals and irreducible ideals of Γ-semirings, Novi Sad Journal of Mathematics 30 (2000), 97–108.
[4] T. K. Dutta, S. K. Sardar, and S. Goswami, Operations on fuzzy ideals of Γ-semirings, arXiv:1101.4791 [math.RA], 25 Jan 2011.
[5] J. Ghosh and T. K. Samanta, Fuzzy ideals in Γ-semiring, arXiv:1010.2469 [math.GM], 12 Oct 2010.
[6] R. D. Jagatap and Y. S. Pawar, Quasi-ideals and minimal quasi-ideals in Γ-semirings, Novi Sad Journal of Mathematics 39 (2009), 79–87.
[7] J. P. Kaushik, M. A. Ansari, and M. R. Khan, On bi-Γ-ideal in Γ-semirings, International Journal of Contemporary Mathematical Sciences 3 (2008), 1255–1260.
[8] S. Lajos, Notes on generalized bi-ideals in semigroups, Soochow Journal of Mathematics 10 (1984), 55–59.
[9] S. Pianskool, S. Sangwirojjanapat, and S. Tipyota, Valuation Γ-semirings and valuation Γ-ideals, Thai Journal of Mathematics Special Issue (Annual Meeting in Mathematics) (2008), 93–102.
[10] M. Murah Krishna Rao, Γ-semiring I, Southeast Asian Bulletin of Mathematics 19 (1995), 49–54.
[11] S. K. Sardar and U. Dasgupta, On primitive Γ-semirings, Novi Sad Journal of Mathematics 34 (2004), 1–12.
[12] F. A. Szász, Generalized bideals of rings I, Mathematische Nachrichten 47 (1970), 355–360.
[13] F. A. Szász, Generalized bideals of rings II, Mathematische Nachrichten 47 (1970), 361–364.

Teerayut Chomchuen was born in Nakhon Sawan, Thailand, in 1990. He received his M.S. from University of Phayao, Thailand, under the independent study advisor of Asst. Prof. Dr. Aiyared Iampan.

Aiyared Iampan was born in Nakhon Sawan, Thailand, in 1979. He received his M.S. and Ph.D. from Naresuan University, Thailand, under the thesis advisor of Assoc. Prof. Dr. Manoj Siripitukdet.