Kernel of Trace Operator of Sobolev Spaces on
Lipschitz Domain

I-Shing Hu

Abstract

We are going to show that on bounded Lipschitz domain D: both
$C^\infty_c(D)$, the set of smooth functions on D with compact support, and
$C^\infty_0(D)$, the set of smooth functions on D with (extension) zero boundary,
are dense in $W^{1,p}(D)$, $p \in [1, \infty)$. A proof can be found in Nečas's
monograph [2], Theorem 4.10, §2.4.3.

Our main result in this note is that: we find another proof by showing
that both closures is the same as kernel of trace operator

$T : W^{1,p}(D) \to L^p(\partial D)$.

via some change of variables formulas from Evans and Gariepy’s text-
book [4] for Lipschitz coordinate transformation, to exten-
d the proof of Theorem 2 in §5.5 of Evans’ widespread PDE textbook [3], from C^1 to
Lipschitz domain.

Firstly we review some analysis on Lipschitz domain. Let $C^\infty_c(D)$ be the set of
smooth functions on D with compact support, and $C^\infty_0(D)$ be the set of smooth
functions on D with (extension) zero boundary. It is worth to note that in
Grisvard’s classic [1], Corollary 1.5.1.6 in §1.5.1, states without proof a much
more general result which covers above.

1 Preliminary: Lipschitz Domain

1.1 Lipschitz homeomorphism

Let $D \subset \mathbb{R}^d$ be a Lipschitz domain. First we state the usual coordinate transfor-
mation from Appendix C.1 in [3]. Fix $a \in \partial D$, there exist $r > 0$ and Lipschitz
map $\gamma : \mathbb{R}^{d-1} \to \mathbb{R}$ such that (upon relabeling and reorienting coordinates axes
if necessary)

$D \cap B(a, r) = \{ x \in B(a, r) \mid x_d > \gamma(x_1, \ldots, x_{d-1}) \}$.

Let $F : \mathbb{R}^d \to \mathbb{R}^d$ be Lipschitz coordinate transformation

$F(x_1, \ldots, x_{d-1}, x_d) := (x_1, \ldots, x_{d-1}, x_d - \gamma(x_1, \ldots, x_{d-1}))$.
and obviously it has inverse F^{-1} as

$$F^{-1}(y_1, \ldots, y_{d-1}, y_d) = (y_1, \ldots, y_{d-1}, y_d + \gamma(y_1, \ldots, y_{d-1})),$$

which is also continuous. Hence D is homeomorphic to an open subset of $\mathbb{R}^d_+ := \{(y_1, \ldots, y_{d-1}, y_d) \in \mathbb{R}^d \mid y_d > 0\}$, and obviously ∂D is homeomorphic to a closed subset of $\{(y_1, \ldots, y_{d-1}, y_d) \in \mathbb{R}^d \mid y_d = 0\}$. To calculate functions on (an open subset of) \mathbb{R}^d_+ instead of D, we let $\{f_i : U_i \subset D \to \mathbb{R}^d_+\}$ be an atlas of Lipschitz coordinate maps on D as above with U_i compact, and write $\{\rho_i : D \to [0, 1]\}_i$ for a partition of unity associated to $\{U_i\}_i$. Then $\forall \phi \in W^{1,p}(D)$, we can map ϕ as

$$\phi \mapsto \sum_i \rho_i \phi \circ f_i \in W^{1,p}(\mathbb{R}^d_+).$$

It is not difficult to show that this form is invariant under partitions of unity. For any $a \in \partial D$ and $r > 0$, let $\{B(a, r) \mid a \in \partial D\}_{r>0}$ be an open cover, then there exists finite sub-cover $\{B_i\}_{i=1}^\nu$. Then let $D_i := D \cap B_i$, $D_0 := D - \left(\bigcup_{i=1}^\nu D_i \right)$, $\varphi_i \in C_\infty^\infty(D_i)$ be a partition of unity on D, i.e.,

$$1_D = \sum_{i=0}^\nu \varphi_i.$$

Since our estimate is local (on D_i), we are going to show local estimate can be extended to global (on D). Let $f \in C^\infty_0(D)$, $h_i \in C^\infty_0(D_i)$, then

$$\|f - h\|_{W^{1,2}(D)}^2 \leq c_1 \sum_{i=0}^\nu \varphi_i^2 \|f - h_i\|^2 + \|Df - Dh_i\|^2 + c_2 \sum_{i=0}^\nu \int |f - h_i|^2 (D\varphi_i)^2.$$

The only remaining obstacle to prove

$$C_0^\infty(D) = C_\infty^\infty(D)$$

in $W^{1,p}(D)$, is to integrate under change of variables. Thereby we need some auxiliary change of variables formulas below. By Rademacher theorem (see §3.1.2 of [4]), Jacobi matrix DF exists a.e. and Jacobian $JF = 1$ a.e.

1.2 Change of variables formulas

We state without proofs two auxiliary change of variables formulas. They are based on area or co-area formula.

Theorem 1 (Theorem 3.9 in [4]). Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be Lipschitz, $n \leq m$. Then for each $g \in L^1(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} g(x) Jf(x) \, dx = \int_{\mathbb{R}^m} \left[\sum_{x \in f^{-1}(w)} g(x) \right] d\mathcal{H}^n(w).$$
Theorem 2 (Theorem 3.11 in [4]). Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be Lipschitz, \(n \geq m \).

1. For a.e. \(y \in \mathbb{R}^m \) in Lebesgue measure, \(g \in L^1(f^{-1}\{y\}) \) in \((n-m)\) dimensional Hausdorff measure \(H^{n-m} \), and

\[
\int_{\mathbb{R}^n} g \, Jf \, dx = \int_{\mathbb{R}^m} \left[\int_{f^{-1}\{w\}} g \, dH^{n-m} \right] \, dw.
\]

2. Trace Operator

Remark that a proof of trace Theorem on Lipschitz domain can be found in §4.3 of [4]. Adopting from §5.5 of [3], we can show the existence of trace operator on Lipschitz domain via Theorem 1.

2.1 Trace operator on Lipschitz domain

Theorem 3 (Trace Theorem on Lipschitz domain). Let \(D \subset \mathbb{R}^d \) be a Lipschitz domain. Then for each \(p \in [1, \infty) \), there exists a bounded operator,

\[
T : W^{1,p}(D) \rightarrow L^p(\partial D)
\]

such that

1. \(Tu = u|_{\partial D} \) if \(u \in W^{1,p}(D) \cap C(\overline{D}) \); and
2. \(\|Tu\|_{L^p(\partial D)} \leq C\|u\|_{W^{1,p}(D)} \), where \(C \) is independent of \(u \).

Proof: Fix \(a \in \partial D \). Then there exist \(r > 0 \) and Lipschitz map \(\gamma \) as in §1.1. Let \(f(x) = (x, \gamma(x)) \), \(x \in \mathbb{R}^{d-1} \) and

\[
g(x) = 1_{f^{-1}(D \cap B(a, \frac{r}{2}))}|u(f(x))|^p.
\]

Remark that we need \(p < \infty \). Obviously \(f \) is injective and Jacobian (cf. [4], §3.3.4) \(Jf = 1 + |D\gamma|^2 \leq c \), where \(c \) equals to one plus square of the Lipschitz constant of \(\gamma \). Then

\[
\int_{B(a, \frac{r}{2}) \cap \partial D} |u|^p \, dH^{d-1} = \int_{\mathbb{R}^d} \left[\sum_{x \in f^{-1}\{w\}} g(x) \right] \, dH^{d-1}(w).
\]

By Theorem 1,

\[
\int_{\mathbb{R}^{d-1}} \left[\sum_{x \in f^{-1}\{w\}} g(x) \right] \, dH^{d-1}(w) = \int_{\mathbb{R}^{d-1}} g(x) \, Jf(x) \, dx \leq c \int_{\mathbb{R}^{d-1}} g(x) \, dx.
\]

3
Let $\zeta \in C^\infty_c(B(a, r))$ with $0 \leq \zeta \leq 1$, $\zeta = 1$ on $B(a, \frac{r}{2})$. Since \mathbb{R}^{d-1} can be seen as $\{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid x_d = 0\}$,

$$
\int_{\mathbb{R}^{d-1}} g(x) dx \leq - \int_{B(a, r)\cap \{x_d \geq 0\}} (\zeta|u|^p)_{x_d} dx.
$$

Expand

$$
- \int_{B(a, r)\cap \{x_d \geq 0\}} (\zeta|u|^p)_{x_d} dx = - \int_{B(a, r)\cap \{x_d \geq 0\}} |u|^p \zeta_{x_d} + p|u|^{p-1} sgn(u)u_{x_d} \zeta dx.
$$

Since ∂D is compact, for any open cover as above, there exists a finite sub-cover. For such finite sub-cover, $\sup |D\zeta|$ is uniformly bounded on this finite sub-cover. Hence we have

$$
\int_{\partial D} |u|^p d\mathcal{H}^{d-1} \leq C \int_D |u|^p + |Du|^p dx,
$$

where constant C does not depend on u. Write $T : W^{1,p}(D) \to L^p(\partial D)$ as

$$
Tu := u|_{\partial D},
$$

and this is well-defined since it is a continuous linear operator between Banach spaces.

2.2 Kernel of trace operator on Lipschitz domain

Now we are going to complete the proof by using change of variables formulas into the proof of Theorem 2 in §5.5 of [3].

Theorem 4 (Theorem 4.10, §2.4.3 in [2]). Let $D \subset \mathbb{R}^d$ be a Lipschitz domain and $u \in W^{1,p}(D)$, $p \in [1, \infty)$. Then $u \in C^\infty_c(D)$ if and only if $Tu = 0$ on ∂D.

Proof: One side is trivial. To show the converse, firstly we establish a priori estimate.

Let $Tu = 0$ on ∂D and $a \in \partial D$. Then there exist $r > 0$, Lipschitz map γ, $F : \mathbb{R}^d \to \mathbb{R}^d$, $F(x) = y$ be Lipschitz coordinate transformation as in §1.1, and $u_m \in C^1(D)$ such that $u_m \to u$ in $W^{1,p}(D)$ and $Tu_m \to 0$ in $L^p(\partial D)$ as $m \to \infty$. If $y' \in \mathbb{R}^{d-1}$, $y_d > 0$, and $(y', y_d) \in F(B(a, r) \cap \partial D)$, then

$$
|u_m(y', y_d)| \leq |u_m(y', 0)| + \int_0^{y_d} |\partial_{y_d} u_m(y', s)| ds. \quad (1)
$$

We use Theorem 2 (or just ordinary change variables) by taking $m = n = d - 1$,

$$
g(y', y_d) = |u_m(y', y_d)|^p 1_{F(B(a, r) \cap \partial D)}(y'),
$$
and \(f(x') = y' \), thus \(Jf = 1 \). Then

\[
\int_{B(a,r) \cap \partial D} |u_{m}(x', x_d)|^p \, dx' = \int_{F(B(a,r) \cap \partial D)} |u_{m}(y', 0)|^p \, dH^{d-1}(y').
\]

Taking \(p \) power (so we need \(p < \infty \)) on equation (1), we have

\[
|u_{m}(y', y_d)|^p \leq C(|u_{m}(y', 0)|^p + (\int_0^{y_d} |\partial_{y_d} u_{m}(y', s)| \, ds)^p),
\]

and then

\[
(\int_0^{y_d} |\partial_{y_d} u_{m}(y', s)| \, ds)^p \leq y_d^{p-1} (\int_0^{y_d} |\partial_{y_d} u_{m}(y', s)|^p \, ds)
\]

by Jensen’s inequality. Then integrate with respect to \(y' \), on \(B := \{y' \in \mathbb{R}^{d-1} \mid (y', \cdot) \in F(B(a, r)) \} \)

\[
\int_{B} |u_{m}(y', y_d)|^p \, dy' \leq C(\int_{B} |u_{m}(y', 0)|^p \, dy' + y_d^{p-1} (\int_{B} |Du_{m}(y', s)|^p \, dy') \, ds).
\]

Let \(m \to \infty \), and then we have a priori estimate

\[
\int_{B} |u(y', y_d)|^p \, dy' \leq Cy_d^{p-1} (\int_{B} |Du(y', s)|^p \, dy') \, ds,
\]

(2)

for a.e. \(y_d > 0 \).

Now we are going to approximate \(u \) under Lipschitz coordinate transformation. Let \(\zeta \in C^\infty_0(\mathbb{R}_+) \) such that \(0 \leq \zeta \leq 1 \), \(\zeta|_{[r, 1]} = 0 \), \(\zeta|_{[0, 1]} = 1 \), \(\zeta_k(y) := \zeta(ky_d) \), \(\forall y \in \mathbb{R}_+^d \), and \(w_k := u(1 - \zeta_k) - u \) in \(L^p(\mathbb{R}_+^d) \) as \(k \to \infty \). Note that \(\sup |\zeta'| < \infty \).

The remainder is to estimate

\[
|Du_k - Du|^p = |\zeta_k Du + ku \zeta'|^p \leq C(|\zeta_k|^p|Du|^p + k^p|\zeta'(ky_d)|^p|u|^p).
\]

Since \(\text{supp} \zeta_k \subset [0, \frac{2}{k}] \), \(\int |\zeta_k|^p|Du|^p \to 0 \) as \(k \to \infty \) by Lebesgue’s dominated convergence Theorem. Since \(\text{supp} \zeta' \subset [0, 2] \), to integrate the last term on \(F^{-1}(B \times [0, 2]) \), we use Theorem 2 again by taking \(m = n = d \),

\[
g(y', y_d) = |u(y', y_d)|^p 1_{B(y')(1, 2/k)}(y_d),
\]

and \(F(x', x_d) = (y', y_d) \), thus \(JF = 1 \) a.e. And then the priori estimate (2) shows

\[
Ck^p (\int_{B} |u(y', y_d)|^p \, dy')^{2/k} dy_d \leq Ck^p (\int_0^{y_d} dy_d)^{2/k} (\int_{B} |Du(y', s)|^p \, dy') \, ds,
\]

(3)
therefore
\[
(3) \leq \int_0^{2/k} \int_B |Du(y', s)|^p dy'ds \to 0
\]
as \(k \to \infty \). By partition of unity as in §1.1 above, we deduce \(w_k \to u \) in \(W^{1,p}(\mathbb{R}^d_+) \), and \(w_k = 0 \) if \(0 < y_d < 1/k \). To conclude, we can mollify \(w_k \) to produce \(u_k \in C_\infty_c(\mathbb{R}^d_+) \) such that \(u_k \to u \) in \(W^{1,p}(\mathbb{R}^d_+) \), i.e., \(u \in C_\infty_c(\mathbb{R}^d_+) \). This completes the proof.

3 Concluding Remark

The only difference between the Theorem 2 in §5.5 of [3], and this Theorem 4, is that we use change of variables formulas for Lipschitz coordinate transformation. Recall that we need a topological condition: boundary of Lipschitz domain \(\partial D \) is compact, to make sure that the trace operator is bounded. However we have no idea what would happen, if \(D \) is not bounded, or \(p = \infty \), even in smooth domain.

e-mail: 81040001s@ntnu.edu.tw

References

[1] Pierre Grisvard, Elliptic Problems in Nonsmooth Domains, Classics in Applied Mathematics, SIAM, 2011.
[2] Jindřich Nečas, Direct Methods in the Theory of Elliptic Equations, Springer Monographs in Mathematics, 2012.
[3] Lawrence C. Evans, Partial Differential Equations, second edition, Graduate Studies in Mathematics, Volume: 19, AMS, 2010.
[4] Lawrence C. Evans and Ronald F. Gariepy, Measure Theory and Fine Properties of Functions, revised edition, Chapman and Hall/CRC, 2015.
[5] Zhonghai Ding, A proof of the trace theorem of Sobolev spaces on Lipschitz domains, Proc. Amer. Math. Soc. 124 (1996), 591-600.
[6] Emilio Gagliardo, Rendiconti del Seminario Matematico della Università di Padova, Tome 27 (1957), 284-305.