INTRODUCTION

Trichoderma spp. are soil-borne fungus to control biologically of plant pathogens especially resolved by soil-borne pathogens given much attention and play an important role in integrated diseases management (IDM). Genus *Trichoderma* is the most characteristic beneficial isolated soil fungi because of its competence to guard plants and maintain pathogen community under various soil circumstances. This antagonist has been either everywhere studied or marketable as biopesticides, biofertilizers, and soil amendments (Harman, 2006; Howell, 2003). *Trichoderma* spp. also provides abundant biologically active suspension, including enzymes to degrade pathogen cell wall and more secondary metabolites (Vinale et al., 2008).

Trichoderma spp. have been isolated and screened from several rhizospheres, that was ginger (Soesanto et al., 2005), shallot (Santoso, Soesanto, & Haryanto, 2007), banana (Haryono, Prihatiningsih, Wardhana, & Soesanto, 2009), and pineapple (L. Soesanto collection) rhizospheres. These isolates have been tested to suppress some soil-borne plant pathogens. *Trichoderma* spp. was used to manage *Fusarium oxysporum* (Probowo, Prihatiningsih, & Soesanto, 2006; Santoso, Soesanto, & Haryanto, 2007; Soesanto et al., 2005; Wardhana, Soesanto, & Utami, 2009), *Phytophthora* spp. (Karthikeyan, Kumar, & Kumar, 2003), *Sclerotium rolfsii* (Elad, Barak, & Chet, 1984; Henis, Adams, Lewis, & Papavizas, 1983; Jegathambigai, Wilson Wijeratnam, & Wijesundera, 2010), *Rhizoctonia solani* (Erper et al., 2013), and *Botrytis cinerea* (Barakat, Abada, Abou-Zeid, & El-...
Gammal, 2014; Zimand, Elad, & Chet, 1996). Study of inhibition mechanisms on Trichoderma spp. have been done, such as on competition ability (Bailey et al., 2008; Howell, 2003), antibiosis (Bailey et al., 2008; Benítez, Rincón, Limón, & Codón, 2004), mycoparasitism (Bailey et al., 2008; Reithner, Ibarra-Laclette, Mach, & Herrera-Estrella, 2011), enzyme activities (Benhamou & Chet, 1997; Haggag & Abo-Sedera, 2005), plant growth promoting fungi (Benítez, Rincón, Limón, & Codón, 2004), and organic waste decomposer (Haggag & Abo-Sedera, 2005; Soytong & Quyet, 2013). Synthetic pesticides are highly used in almost all agricultural systems especially IDM system to prevent and to control plant diseases. Pesticides are easily found in the market so that the establishment of pesticides in Indonesia market is highly increasing (Direktorat Pupuk dan Pestisida, 2016). The pesticides are tremendously and commonly utilized to improve plant productivity by combating plant pests and diseases (Aktar, Sengupta, & Chowdhury, 2009; Cooper & Dobson, 2007). The other benefits of pesticides are for protection of crop losses, control of vector disease, and quality of food. Besides their advantages, pesticides also have numerous disadvantages such as adverse impact to human health, to food, on environment, on water and soil contamination, and to non-target organisms (Aktar, Sengupta, & Chowdhury, 2009; Chowdhury, Pradhan, Saha, & Sanyal, 2008; Sengupta, Aktar, Alam, & Chowdhury, 2010). Integrated disease management combines biological, physical, cultural, and chemical component strategies applied to all plants and crops and many plant pathogens including fungi, bacteria, viruses, and nematodes. The pathogens can cause extremely harmful to crops from small to significant losses primarily in the tropical developing country. Application of single IDM component to the plant pathogens resulted in an insignificant result. The application of IDM has been proved to be more effective in the way of holistic manner than the use of single IDM component strategy (El Khoury & Makkouk, 2010). As a component of IDM, the antagonist Trichoderma spp. should be compatible with other IDM components in the agricultural system. The compatibility of Trichoderma spp. with the other components is needed to improve the performance of the plant disease management, so that the disease could be prevented and controlled, and the agricultural product could be saved and increased (Paret, Dufault, Momol, Marois, & Olson, 2015). The role of synthetic chemical pesticides in the agricultural system is still needed in the disease management, and the compatibility of both components need to be studied. The compatibility of Trichoderma spp. with the other components is required.

Trichoderma spp. has wide variability in controlling plant pathogens included its compatibility with chemical pesticides. This variability is caused by many influencing factors (Gómez, Chet, & Herrera-Estrella, 1997), especially the genetics factor. Exploration of Trichoderma spp. indicated some potential isolates that could control plant pathogens (Haryono, Prihatiningsih, Wardhana, & Soesanto, 2009; Santoso, Soesanto, & Haryanto, 2007; Soesanto et al., 2005). However, the compatibility of Trichoderma spp. isolates with general pesticides are not known yet. Therefore, this research was carried out to determine the compatibility of selected Trichoderma spp. isolates with commonly applied synthetic chemical pesticides including fungicides, insecticides, bactericide, and nematicides.

MATERIALS AND METHODS

The research was conducted at the Laboratory of Plant Protection, Agricultural Faculty, Jenderal Soedirman University, Purwokerto, from April to July 2014. Four Trichoderma spp. isolates and six pesticides used arranged split-plot design with three replicates.

Trichoderma spp. Isolates Preparation

Trichoderma spp. were prepared by plating on PDA (Tuïte, 1969), then incubated for 3 days at room temperature (26 ± 1°C) daylight. The Trichoderma isolates were derived from rhizosphere exploration on ginger (Soesanto et al., 2005), banana (Haryono, Prihatiningsih, Wardhana, & Soesanto, 2009), pineapple (L. Soesanto collection), and shallot (Santoso, Soesanto, & Haryanto, 2007). The isolates were identified as T. harzianum Rifai for ginger, banana, and shallot isolates, while the pineapple one had not been identified.

Synthetic Pesticides Preparation

The synthetic pesticides were mancozeb and propineb (fungicides), oxytetracycline and streptomycin sulfate (agrimycin, bactericides), carbofuran (nematicide), and deltamethrin and prefenophos (insecticides: synthetic pyrethroids
and chiral organophosphates, respectively). The choice of the pesticides was based on the frequency of their usage in Indonesia. All pesticides were prepared by mixing with sterile water according to label recommended.

Compatibility Test In Vitro

The compatibility test was conducted with food poisoning method (Khan & Shahzad, 2007) in completely randomized design with three replicates, by adding 1 droplet of the pesticides in Petri dish mixed with PDA just before plating. The Petri dish was homogenized and after solid, each Trichoderma spp. isolates were inoculated 5 mm discs of a seven-day-old culture of Trichoderma spp. isolates. After that, they were punched by sterilized cork borer and put a single disc in each Petri dish containing PDA and pesticide with the help of inoculating needle under an aseptic condition or PDA without pesticides as a control. Then, they were incubated at room temperature (26 ± 1°C) for 5 days or at least the growth of control reached the edge of Petri dish. Each treatment was repeated four times.

Observation and Measurements

Variables observed were discolouration, sporulation, colony diameter, conidia density, fungal growth at pesticides treatment compared to control with the formula.

\[I = 100 \left(\frac{C-T}{C} \right) \]

Where: \(I \) = inhibition percentage; \(C \) = Trichoderma spp. colony diameter at control; \(T \) = Trichoderma spp. colony diameter at pesticides treatment (Gowdar, Babu, Nagund, & Krishnappa, 2006). The mycelial dry weight of the antagonist was measured based on Lilly & Barnett (1951) and Sutton & Starzyk (1972).

Data Analysis

The data were analyzed by F test at 5 % significant level and continued by Duncan Multiple Range Test (DMRT) when there was a significant difference.

RESULTS AND DISCUSSION

Growth Inhibition

Some pesticides significantly affected colony discolouration (Tabel 1). The colony of all Trichoderma spp. isolates had discolouration from green to white after growing on PDA supplemented by mancozeb, propineb, and prefenophos, while on PDA supplemented by carbofuran, oxytetracycline and streptomycin sulphate (agrimycin), and deltamethrin, the colony was still green in colour as the control. Moreover, the spotted isolate of Trichoderma spp. which change colour to white, i.e., in the treatment of mancozeb, propineb, and prefenophos, is considered low, whereas green colony isolates produce more conidium. (Table 1 and Table 2).

Table 1. Discolouration of treated all Trichoderma spp. colony after three days incubation

Treatments	Colour
Control	Green
Carbofuran	Green
Mancozeb	White
Propineb	White
Oxytetracycline and streptomycin sulphate	Green
Deltamethrin	Green
Prefenophos	White

At Fig. 1, some pesticides resulted in higher growth inhibition of all Trichoderma spp., especially mancozeb, propineb, and prefenophos, although among isolates of Trichoderma spp. showed indifferent growth inhibition at similar pesticide. This result is in line with colony discolouration (Table 1). The highest growth inhibition was found at prefenophos in all Trichoderma spp. isolates by a range of 74.10 - 80.38 %, while mancozeb and propineb inhibited the growth as a range of 29.81 - 43.18 % and 27.27 - 33.21 %, respectively. The lowest growth inhibition was showed by bactericide (oxytetracycline and streptomycin sulphate or agrimycin), i.e., in a range of 0.38 - 4.55 %. Based on kinds of Trichoderma spp. isolate, the ginger isolate was the most sensitive isolate on prefenophos compared to other isolates, while different growth inhibition between prefenophos and mancozeb and propineb as high as 47.4 and 65.7 %, respectively.

Antagonists against plant pathogenic fungi have been applied to control plant pathogens, and 90 % of the applications have been done with various fungus Trichoderma strains (Benítez, Rincón, Limón, & Codón, 2004). The influence of fungicides toward the advantageous action of microbes is significant to understand due to its value of danger analogous by synthetic fungicide applied in agriculture. Maximized crop productiveness and economic profit will be
achieved with the utilise of the products to suppress the pathogens well, but sustaining beneficial organisms (Yang, Hamel, Vujanovic, & Gan, 2011). Research of the antagonist Trichoderma spp. on pesticides have escorted to a better comprehension of compatibility instrument to gain better-integrated application in an agricultural system, especially in IDM. Modes of action from fungicide have never been successfully demonstrated, and the auxiliary effects of the synthetic fungicides are not sufficiently perceived. Hence, the synthetic fungicide used may have contradictive impacts which are obscure to forecast (Lo, 2010). If the formulotions made by the recommended dose of insecticides with the bio-control agent Trichoderma spp. and used for the management of various plant pests, they will show a promising effect than the chemicals alone. It costs effectively and also environment-friendly (Mahfut, Joko, & Daryono, 2016; Singh, Srivastava, Shrivastava, & Singh, 2012).

Table 2. The effect of synthetic pesticides on colony diameter, conidia density, and mycelial dry weight of Trichoderma spp. isolates

Treatments	Colony diameter (mm)	Conidia density (x10^6 conidia ml^-1)	Mycelial dry weight (mg)
F cal.T	159.57 **	64.31 **	17.76 **
F tab 5 %	2.78	2.78	2.78
Trichoderma shallot			
Trichoderma ginger			
Trichoderma banana			
Trichoderma pineapple			
F cal.F	305.87 **	450.06 **	73.67 **
F tab 5 %	2.27	2.27	2.27
Control	80.0 a	123.0 b	0.0305 a
Carbofuran	72.6 b	102.0 d	0.0268 b
Mancozeb	48.8 d	14.0 f	0.0118 c
Propineb	56.2 c	14.8 f	0.0138 c
Agrimicyn	78.4 a	10.3 a	0.0258 b
Deltamethrin	58.4 c	112.5 c	0.0298 a
Prefenofos	18.3 e	61.5 e	0.0108 c
F cal. TF	5.28 **	36.12 **	19.68 **
F tab 5%	1.80	1.80	1.80
Shallot, Control	55.3 ef	160.0 b	0.031 c-e
Shallot, Carbofuran	51.0 fg	139.0 c	0.026 d-g
Shallot, Mancozeb	32.0 h	17.0 l	0.015 f-j
Shallot, Propineb	37.7 h	32.0 k	0.009 h-p
Shallot, Agrimicyn	54.3 ef	147.0 bc	0.029 c-f
Shallot, Deltamethrin		44.7 g	0.025 e-h
Shallot, Prefenofos	14.3 j	51.0 j	0.007 o-p
Ginger, Control	88.3 a	133.0 cd	0.020 g-j
Ginger, Carbofuran	83.3 abc	106.0 ef	0.016 j-n
Ginger, Mancozeb	51.0 fg	3.0 l	0.009 n-p
Ginger, Propineb	64.0 d	12.0 l	0.013 h-p
Ginger, Agrimicyn	88.7 a	160.0 b	0.019 h-k
Ginger, Deltamethrin	64.3 d	174.0 a	0.055 a
Ginger, Prefenofos	17.3 ij	17.0 l	0.007 o-p
Banana, Control	88.0 a	75.0 hi	0.032 cd
Banana, Carbofuran	80.0 bc	67.0 i	0.032 cd
Banana, Mancozeb	50.0 fg	5.0 l	0.012 l-p
Banana, Propineb	64.0 d	9.0 l	0.013 k-o
Banana, Agrimicyn	84.0 ab	92.0 fg	0.023 f-i
Banana, Deltamethrin	61.3 de	84.0 gh	0.018 l-i
Banana, Prefenofos	22.7 i	89.0 gh	0.006 p
Pineapple, Control	88.3 a	124.0 d	0.039 b
Pineapple, Carbofuran	76.0 c	96.0 efg	0.033 c
Pineapple, Mancozeb	62.0 de	31.0 k	0.011 m-p
Pineapple, Propineb	59.0 de	6.0 l	0.024 f-i
Pineapple, Agrimicyn	86.7 ab	138.0 cd	0.032 cd
Pineapple, Deltamethrin		63.3 d	82.0 gh
Pineapple, Prefenofos	18.7 ij	89.0 gh	0.023 f-i

Remarks: Numbers accompanied by the same letter at the same column are not significantly different at DMRT α %5
Loekas Soesanto et al.: Compatibility Test of Trichoderma spp. on Synthetic Pesticides

Fig. 1. Growth inhibition of Trichoderma spp. isolates due to pesticides

The growth and development of Trichoderma spp. isolates were influenced by given pesticides (Table 2). All isolates were affected by the pesticides in colony diameter, conidia density, and mycelial dry weight. Colony diameter of Trichoderma spp. shallot isolate was smaller than other isolates and in line with its mycelial dry weight. However, the highest conidia density was found in the isolate (93.7 × 10⁶ conidia ml⁻¹) and differ significantly with other isolates (p < 0.01). Trichoderma spp. pineapple isolate gave the highest colony diameter, and this was in line with its mycelial dry weight.

Based on the results, almost all chemical synthetic pesticides indicated a negative effect on colony diameter of all Trichoderma spp. isolates, which resulted in decreasing mycelial dry weight and conidia density. Prefenophos could decrease the highest colony diameter but not in conidia density and mycelial dry weight as high as 77.1, 50.0, and 64.6 %, respectively. The highest decreasing conidia density of Trichoderma spp. isolates were found in mancozeb and propineb, i.e. 88.6 and 88.0 %, respectively; while bactericide (oxytetracycline and streptomycine sulfate or agrimycin) seems to stimulate increasing conidia density only 8.4 %.

Deltamethrin is a synthetic pyrethroid insecticide widely used on fruits and vegetables to control the household, industrial, and veterinary pests. Deltamethrin is highly toxic to some aquatic organisms, such as Nile tilapia (Oreochromis niloticus L.) fingerlings (Yildirim et al., 2006), freshwater mussel (Köprüçü & Seker, 2008), and Daphnia magna (Day & Maguire, 1990). Oda & El-Maddawy (2012) point out that deltamethrin has danger effects for male reproductive systems and the protective effect of vitamin E and selenium combination on deltamethrin induced the deleterious effects of deltamethrin on male potency. However, deltamethrin has less effect on conidia density of Trichoderma spp. isolates.

Mancozeb and propineb inhibit conidia density of all Trichoderma spp. isolates wherein the highest inhibition happened. This result is contrast to Bagwan’s (2010) research which stated Trichoderma applied for seed coating or irrigation would be harmonious with several synthetic or non-synthetic chemical, such as synthetic fungicides (thiram, copper oxychloride, mancozeb); pesticides; herbicides; and botanical pesticides (neem oil, neem leaves extract, wild sorghum leaves extract, neem cake, castor cake and mustard cake extracts) for the IDM of soil-borne pathogens on peanut. Another activity of mancozeb fungicide affecting metabolism of target cells, can also influence bacteria included in both cycle of soil C and N (Černohlávková, Jarkovský, & Hofman, 2009; Cycoń, Piotrowska-Seget, & Kozdrój, 2010). These fungicides performance are widely applied in agronomic system because of the wide spectrum activity of plant pathogen control, but the synthetic fungicides may have side effects on other microbes due to their various sites impacts of biochemistry (Dwimartina, Arwiyanto, & Joko, 2017; Yang, Hamel, Vujanovic, & Gan, 2011).
Table 2 showed significant interaction between Trichoderma spp. isolates and pesticides for all parameters. Based on the isolates, ginger, banana, and pineapple isolates showed the highest colony diameter grown on media supplemented by carbofuran and agrimycin, and in line with mycelial dry weight and conidia density. The lowest inhibition of colony diameter and mycelial dry weight of these isolates was indicated on agrimycin treatment compared to other pesticides, but on ginger isolate, this bactericide could stimulate colony diameter growth though only 0.5 %. The lowest colony diameter of all Trichoderma spp. isolates were found at prefenophos, i.e., 74.1, 80.4, 74.2, and 78.8 %, respectively.

The combination between fungicide tolerant biological control agents and reduced levels of fungicide IDM strategies would increase the level of plant pathogens suppression identical to that obtained by the synthetic fungicides with full dosage (Monte, 2001). The effect of integration of Trichoderma with fungicides was reported by Sharma, Singh, & Sughra (1992) in controlling Sclerotinia sclerotiorum. When biocontrol agents Trichoderma harzianum and Aspergillus niger were incorporated with two synthetic fungicides, Foltaf 80W (Captanol 80 %) and Blue Copper-50, for protection from pigeon-pea wilt. The combination of biological agents and the fungicides was more suppressed the disease effectively than only the fungicides were used (Bhatnagar, 1995). Biopesticides can degrade more quickly than synthetic chemical pesticides and can supplement the synthetic pesticides used in integrated pest management (IPM) programs, which offer potentially higher crop yield and can reduce the use of conventional pesticides (Thakore, 2006). Trichoderma spp. are a soil microorganism. The soil microbial populations can influence plant growth and production in agricultural systems so that understanding the effects of synthetic fungicides on soil microbes can be important manner (Joko et al., 2012).

There were some isolates resulted in the highest conidia density and mycelial dry weight but gave the lowest colony diameter, such as shallot isolate on deltamethrin, ginger isolates on deltamethrin, and banana isolates on deltamethrin and prefenophos. In all isolates, all pesticides decreased conidia density compared to control except ginger, banana, and pineapple isolates showed increasing the density because of agrimycin, i.e., 16.9, 18.5, and 10.2 %, respectively, and deltamethrin and prefenophos could increase banana isolate conidia density, i.e., 10.7 and 15.7 %, respectively. The greatest decrease was found on mancozeb for shallot, ginger, and banana isolates, and propineb for pineapple isolate respectively 89.4, 97.7, 93.3, and 95.2 %. This result was in line with colour, sporulation, and inhibition level observation (Table 1 and Fig. 1).

CONCLUSION

Mancozeb for shallot, ginger, and banana isolates, and propineb for pineapple isolate decreased the growth of Trichoderma spp., respectively, 89.4, 97.7, 93.3, and 95.2 %. This result was in line with colour, sporulation, and inhibition level observation.

ACKNOWLEDGEMENT

This research was a part of the main study funded by the Competency Fund Batch I from Directorate of Higher Education, Indonesian Minister of Education and Culture; for that, I deeply thank for the financial support.

REFERENCES

Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12. http://doi.org/10.2478/v10102-009-0001-7

Bagwan, N. B. (2010). Evaluation of Trichoderma compatibility with fungicides, pesticides, organic cakes and botanicals for integerated management of soil borne diseases of soybean [Glycine max (L.) Merril]. International Journal of Plant Protection, 3(2), 206–209. Retrieved from https://pdfs.semanticscholar.org/5d06/16b3822e866d7d80f520b3176781785ae95.pdf

Bailey, B. A., Bae, H., Strem, M. D., Crozier, J., Thomas, S. E., Samuels, G. J., ... Holmes, K. A. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46(1), 24–35. http://doi.org/10.1016/j.biocontrol.2008.01.003

Barakat, F. M., Abada, K. A., Abou-Zeid, N. M., & El-Gammal, Y. H. E. (2014). Effect of volatile and non-volatile compounds of Trichoderma spp. on Botrytis fabae the causative agent of faba bean chocolate spot. American Journal of Life Sciences, 2(6–2), 11. http://doi.org/10.11648/j.
Loekas Soesanto et al.: Compatibility Test of Trichoderma spp. on Synthetic Pesticides

Benhamou, N., & Chet, I. (1997). Cellular and molecular mechanisms involved in the interaction between Trichoderma harzianum and Pythium ultimum. Applied and Environmental Microbiology, 63(5), 2095–2099. Retrieved from https://aem.asm.org/content/63/5/2095/article-info

Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260. Retrieved from https://www.im.microbios.org/0704/0704249.pdf

Bhatnagar, H. (1995). Integrated use of biocontrol agents with fungicides to control wilt incidence in pigeon-pea. World Journal of Microbiology & Biotechnology, 11(5), 564–566. http://doi.org/10.1007/BF00286374

Černohlávková, J., Jarkovský, J., & Hofman, J. (2009). Effects of fungicides mancozeb and dinocap on carbon and nitrogen mineralization in soils. Ecotoxicology and Environmental Safety, 72(1), 80–85. http://doi.org/10.1016/j.ecoenv.2008.07.001

Chowdhury, A., Pradhan, S., Saha, M., & Sanyal, N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian Journal of Microbiology, 48(1), 114–127. http://doi.org/10.1007/s12088-008-0011-8

Cooper, J., & Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26(9), 1337–1348. http://doi.org/10.1016/j.cropro.2007.03.022

Cycroń, M., Piotrowska-Seget, Z., & Kozdrój, J. (2010). Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soils. International Biodeterioration and Biodegradation, 64(4), 316–323. http://doi.org/10.1016/j.ibiod.2010.03.006

Day, K. E., & Maguire, R. J. (1990). Acute toxicity of isomers of the pyrethroid insecticide deltamethrin and its major degradation products to Daphnia magna. Environmental Toxicology and Chemistry, 9, 1297–1300. http://doi.org/10.1002/etc.5620091009

Direktorat Pupuk dan Pestisida. (2016). Pestisida pertanian dan kehutanan tahun 2016 [Pesticides of agriculture and forestry 2016]. Jakarta: Ditjen PSP. Retrieved from http://psp.pertanian.go.id/assets/file/2016/Pestisida_Pertanian_dan_Kehutanan_Tahun_2016.pdf

Dwimartina, F., Arwiyanto, T., & Joko, T. (2017). Potential of endophytic and rhizobacteria as an effective biocontrol for Ralstonia syzygii subsp. syzygii. Asian Journal of Plant Pathology, 11, 191–198. http://doi.org/10.3923/ajppaj.2017.191.198

El Khoury, W., & Makkouk, K. (2010). Integrated plant disease management in developing countries. Journal of Plant Pathology, 92(4, supplement), 35–42. Retrieved from https://www.researchgate.net/publication/268380542/download

Elad, Y., Barak, R., & Chet, I. (1984). Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum. Soil Biology and Biochemistry, 16(4), 381–386. http://doi.org/10.1016/0038-0717(84)90037-3

Erper, I., Turkkan, M., Atanasova, L., Druzhinina, I. S., Karaca, G. H., & Cebi-Kilicoglu, M. (2013). Integrated assessment of the mycoparasitic and phytostimulating properties of Trichoderma strains against Rhizoctonia solani. Bulgarian Journal of Agricultural Science, 19(4), 742–748. Retrieved from https://www.researchgate.net/profile/Guersel_Karaca/publication/257233286_Integrated_assessment_of_the_mycoparasitic_and PHYTOSTIMULATING_PROPERTIES_OF_TrichoDERMA.strains_AGAINST_RhIZOCtONIA.solani/links/00463537479445d716000000/Integrated-assessment-of-the-mycoparasitic-and-phytostimulating-properties-of-Trichoderma-strains-against-Rhizoctonia-solani.pdf

Gómez, I., Chet, I., & Herrera-Estrella, A. (1997). Genetic diversity and vegetative compatibility among Trichoderma harzianum isolates. Molecular and General Genetics, 256(2), 127–135. http://doi.org/10.1007/s004380050554

Gowdar, S. B., Babu, H. N. R., Nargund, V. B., & Krishnappa, M. (2006). Compatibility of fungicides with Trichoderma harzianum. Agricultural Science Digest, 26(4), 279–281. Retrieved from https://www.researchgate.net/file.PostFileLoader.html?fileId=50fa787ee5438f3a26000000e&assetKey=AS%3A271751534055425%4014418020 22498

Haggag, W. M., & Abo-Sedera, S. A. (2005). Characteristics of three Trichoderma species in peanut haulms compost involved in biocontrol
Loekas Soesanto et al.: Compatibility Test of Trichoderma spp. on Synthetic Pesticides

of cumin wilt disease. International Journal of Agriculture and Biology, 7(2), 222–229. Retrieved from http://www.fspublishers.org/published_papers/94350...pdf

Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190–194. http://doi.org/10.1094 PHYTO-96-0190

Haryono, J., Prihatiningsih, N., Wardhana, R. A., & Soesanto, L. (2009). Pengaruh pemasteuran tanah tunggal atau digabung agensia hayati terhadap pengelolaan penyakit busuk hati di pembibitan pisang [The effect of soil pasteurization alone or in combination with biological agents on heart rot disease management of banana seed]. Akta Agrosia, 12(1), 21–28. Retrieved from http://repository.unib.ac.id/214/1/joko_akta_Vol12No.1.pdf

Henis, Y., Adams, P. B., Lewis, J. A., & Papavizas, G. C. (1983). Penetration of sclerotia of Sclerotium rolfsii by Trichoderma spp. Phytopathology, 73, 1043–1046. Retrieved from https://www.apsnet.org/publications/phytopathology/backissues/Documents/1983Articles/Phyto73n07_1043.PDF

Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4–10. http://doi.org/10.1094/PDIS.2003.87.1.4

Jegathambigai, V., Wilson Wijeratnam, R. S., & Wijesundera, R. L. C. (2010). Effect of Trichoderma sp. on Sclerotium rolfsii, the causative agent of collar rot on Zamioculcas zamiifolia and an on farm method to mass produce Trichoderma species. Plant Pathology Journal, 9, 47–55. http://doi.org/10.3923/ppj.2010.47.55

Joko, T., Koentjoro, M. P., Somowiyarjo, S., Rohman, M. S., Liana, A., & Ogawa, N. (2012). Response of rhizobacterial communities in watermelon to infection with cucumber green mottle mosaic virus as revealed by cultivation-dependent RISA. Archives of Phytopathology and Plant Protection, 45(15), 1810–1818. http://doi.org/10.1080/03235408.2012.707526

Karthikeyan, A., Kumar, S., & Kumar, S. (2003). Trichoderma viride: A mycoparasite for the control of Phytophthora cinnamomi. Indian Forester, 129(5), 631–634. Retrieved from https://www.researchgate.net/publication/307546182_Trichoderma_viride_A_mycoparasite_for_the_control_of_Phytophthora_cinnamomi

Khan, M. O., & Shahzad, S. (2007). Screening of Trichoderma species for tolerance to fungicides. Pakistan Journal of Botany, 39(3), 945–951. Retrieved from http://www.pakbs.org/pjbot/PDFs/39(3)/PJB39(3)945.pdf

Köprücü, K., & Seker, E. (2008). Acute toxicity of deltamethrin for freshwater mussel, Unio elongatulus eucirrus bourguignat. Bulletin of Environmental Contamination and Toxicology, 80(1), 1–4. http://doi.org/10.1007/s00128-007-9254-z

Lilly, V. G., & Barnett, H. L. (1951). Physiology of the fungi. New York, Toronto, London: McGraw-Hill Book Company, Inc. Retrieved from https://www.cabdirect.org/cabdirect/abstract/19521603587

Lo, C.-C. (2010). Effect of pesticides on soil microbial community. Journal of Environmental Science and Health Part. B, 45(5), 348–359. http://doi.org/10.1080/10934520903467873

Mahfut, Joko, T., & Daryono, B. S. (2016). Molecular characterization of odontoglossum ringspot virus (ORSV) in Java and Bali, Indonesia. Asian Journal of Plant Pathology, 10(1–2), 9–14. http://doi.org/10.3923/ajppaj.2016.9.14

Monte, E. (2001). Understanding Trichoderma: between biotechnology and microbial ecology. International Microbiology, 4(1), 1–4. http://doi.org/10.1007/s101230100001

Oda, S. S., & El-Maddawy, Z. K. (2012). Protective effect of vitamin E and selenium combination on deltamethrin-induced reproductive toxicity in male rats. Experimental and Toxicologic Pathology, 64(7–8), 813–819. http://doi.org/10.1016/j.etp.2011.03.001

Paret, M., Dufaut, N., Momol, T., Marois, J., & Olson, S. (2015). Integrated disease management for vegetable crops in Florida. Florida: University of Florida. Retrieved from http://edis.ifas.ufl.edu/pdffiles/PP/PP11100.pdf

Probowo, A., Prihatiningsih, N., & Soesanto, L. (2006). Potensi Trichoderma harzianum dalam mengendalikan sembilan isolat Fusarium oxysporum Schlecht. f. sp. zingiberi Trujillo pada kencur [Potency of Trichoderma harzianum in
Loekas Soesanto et al.: Compatibility Test of Trichoderma spp. on Synthetic Pesticides ..

controlling nine isolates of Fusarium oxysporum Schlecht. f. sp. zingiberi Trujilo on galanga. Jurnal Ilmu-Ilmu Pertanian Indonesia, 8(2), 76–84. Retrieved from http://repository.unib.ac.id/47/1/76JIPI-2006.pdf

Reithner, B., Ibarra-Laclette, E., Mach, R. L., & Herrera-Estrella, A. (2011). Identification of mycoparasitism-related genes in Trichoderma atroviride. Applied and Environmental Microbiology, 77(13), 4361–4370. http://doi.org/10.1128/AEM.00129-11

Santoso, S. E., Soesanto, L., & Haryanto, T. A. D. (2007). Penekanan hayati penyakit moler pada bawang merah dengan Trichoderma harzianum, Trichoderma koningii, dan Pseudomonas fluorescens P60 [Biological suppression of moler disease on shallot by Trichoderma harzianum, Trichoderma koningii, and Pseudomonas fluorescens P60]. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 7(1), 53–61. Retrieved from http://journal.unila.ac.id/index.php/jhptrop/article/view/275

Sengupta, D., Aktar, M. W., Alam, S., & Chowdhury, A. (2010). Impact assessment and decontamination of pesticides from meat under different culinary processes. Environmental Monitoring and Assessment, 169(1–4), 37–43. http://doi.org/10.1007/s10661-009-1148-6

Sharma, B. K., Singh, B. M., & Sugha, S. K. (1992). Integrated effect of biological and chemical control on sclerotial viability of Sclerotinia sclerotiorum (Lib.) de Bary. Journal of Biological Control, 6(1), 29–34. Retrieved from http://www.informaticsjournals.com/index.php/jbc/article/viewFile/15197/12978

Singh, V. P., Srivastava, S., Shrivastava, S. K., & Singh, H. B. (2012). Compatibility of different insecticides with Trichoderma harzianum under in vitro condition. Plant Pathology Journal, 11(2), 73–76. http://doi.org/10.3923/ppj.2012.73.76

Soesanto, L., Sudarsono, Prihatiningsih, N., Manan, A., Irani, E., & Pramono, J. (2005). Potensi agensia hayati dan nabati dalam mengendalikan penyakit busuk rimpang jahe [Potency of biological and botanical agents in controlling ginger rhizome rot]. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 5(1), 50–57. Retrieved from http://jhptropika.fp.unila.ac.id/index.php/jhptropika/article/view/159

Soytong, K., & Quyet, N. T. (2013). Production of organic compost from mushroom producing substances waste and tested for Kangkong organic cultivation. International Journal of Agricultural Technology, 9(1), 115–123. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20133059295

Sutton, L. M., & Starzyk, M. J. (1972). Procedure and analysis of a useful method in determining mycelial dry weights from agar plates. Applied Microbiology, 24(6), 1011–1012. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC380718/

Thakore, Y. (2006). The biopesticide market for global agricultural use. Industrial Biotechnology, 2(3), 194–208. http://doi.org/10.1089/ind.2006.2.194

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40(1), 1–10. http://doi.org/10.1016/j.soilbio.2007.07.002

Wardhana, D. W., Soesanto, L., & Utami, D. S. (2009). Penekanan hayati penyakit layu Fusarium pada subang gladiol [Biological suppression of Fusarial Wilt on gladiolus corms]. Jurnal Hortikultura, 19(2), 199–206. Retrieved from http://ejurnal.litbang.pertanian.go.id/index.php/jhort/article/view/802

Yang, C., Hamel, C., Vujanovic, V., & Gan, Y. (2011). Fungicide: Modes of action and possible impact on nontarget microorganisms. ISRN Ecology, 2011, 1–8. http://doi.org/10.5402/2011/130289

Yildirim, M. Z., Benli, A. Ç. K., Selvi, M., Özkul, A., Erkoç, F., & Koçak, O. (2006). Acute toxicity, behavioral changes, and histopathological effects of deltamethrin on tissues (gills, liver, brain, spleen, kidney, muscle, skin) of Nile tilapia (Oreochromis niloticus L.) fingerlings. Environmental Toxicology, 21(6), 614–620. http://doi.org/10.1002/tox.20225

Zimand, G., Elad, Y., & Chet, I. (1996). Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology, 86, 1255–1260. http://doi.org/10.1094/Phyto-86-1255