Decline in subarachnoid haemorrhage volumes associated with the first wave of the COVID-19 pandemic

Thanh N Nguyen,1 Diogo C Haussen,2 Muhammad M Qureshi,3 Hiroshi Yamagami,4 Toshiyuki Fujinaka,5 Ossama Y Mansour,6 Mohamad Abdalkader, 7 Michael Frankel, 2 Zhongming Qiu,4 Allan Taylor,6 Pedro Lylyk,10 Omer F Eker,11 Laura Mecthouff,12 Michel Piotin,13 Fabricio Oliveira Lima,14 Francisco Mont’Alverne,15 Wazim Izzath,16 Nobuyuki Sakai,17 Mahmoud Mohammad,2 Alhamza R Al-Bayati,2 Leonardo Renieri,18 Salvatore Mangiafico,18 David Ozretic,19 Vanessa Chalumeau,20 Saima Ahmad,21 Umair Rashid,21 Syed Iriteza Hussain,22 Seby John,22 Emma Griffin,23 John Thornton,23 Jose Antonio Fiorot,24 Rodrigo Rivera,25 Nadia Hammami,26 Anna M Cervantes-Arslanian,27 Hormuzdiyar H Dasenbrock,28 Huynh Le Vu,29 Viet Qyu Nguyen,29 Steven Hetts,30,31 Romain Bourcier,32 Romain Guile,32 Melanie Walker,32 Malveeka Sharma,34 Don Frei,35 Pascal Jabbour,36 Nabeel Herial,36 Fawaz Al-Mufti,37 Atilla Ozcan Ozdemir,38 Ozlem Ayakc,38 Dheeraj Gandhi,39 Chandril Chugh,40 Charles Matouk,41 Pascale Lavoie,42 Randall Edgell,43 Andre Beer-Furlan,44 Michael Chen,44 Monika Killer-Oberpfalzer,45 Vitor Mendes Pereira,46 Patrick Nicholson,46 Vikram Huded,47 Nobuyuki Ohara,48 Daisuke Watanabe,49 Dong Hun Shin,50 Pedro SC Magalhaes,51 Raghid Kikano,52 Santiago Ortega-Neto,53 Adrinne Weeks,54 Elena A Cora,55 Rotem Sivan-Oz,56 Nadia C Atole,57 Elena A Cora,58 Ruchir Shah,58 Thomas G Devlin,59 Tatsuo Amano,60 Mamoru Murakami,61 Markus Möhlenbruch,61 Simon Nagel,62 Hosam Al-Jehani,63 Sunil A Sheth,64 Victor S Lopez Rivera,64 James E Siegel,65 Achmad Fidaus Sani,66 Ajit S Pur,67 Anna Luisa Kuhn,68 Gianmarco Bernava,68 Paolo Machi,68 Daniel G Abud,69 Octavio M Pontes-Neto,70 Ajay K Wakhloo,71 Barbara Voetsch,72 Eytan Raz,73 Shadi Yaghi,74 Brijesh P Mehta,75 Naoto Kimura,76 Mamoru Murakami,77 Maria Martinez-Galdamez,85 Jordi Blasco,86 Alejandro Rodriguez Vasquez,87 Luis Fonseca,88 M Luis Silva,89 Teddy Y Wu,90 Simon John,91 Alex Brehm,92 Marios Psychogios,92 William J Mack,93 Matthew Tenser,93 Tatemi Todaka,94 Miki Fujimura,95 Roberta Novakovic,96 Jun Deguchi,97 Yuki Sugiura,98 Hiroshi Tokimura,99 Rakesh Khatri,100 Michael Kelly,101 Lissa Peeling,101 Yuichi Murayama,102 Hugh Stephen Winters,103 Johnny Wong,104 Mohamed Teleb,105 Jeremy Payne,105 Hiroki Fukuda,106 Kosuke Miyake,107 Junsuke Shimbo,108 Yusuke Sugimura,109 Masaaki Uno,110 Yohei Takenobu,111 Yuji Matsumaru,112 Satoshi Yamada,113 Ryuei Kono,114 Takuya Kanamaru,115 Masafumi Morimoto,116 Junichi Iida,117 Vasu Saini,118 Dileep Yavagal,118 Saif Bushnack,119 Wenguo Huang,120 Italo Linfante,121 Jawad Kirmani,122 David S Liebeskind,123 Viktor Szeder,124 Ruchir Shah,125 Thomas G Devlin,125 Lee Birnbaum,126 Jun Luo,127 Anirudh Kulkarni,128 Pablo M Lavados,128 Veronica V Olavarria,129 Kenichi Todo,145 Yuki Yamamoto,146
Early regional or single-centre reports from Paris and Toronto suggest a decrease in aneurysmal SAH volumes, whereas no changes were seen in Berlin. We evaluated the impact of COVID-19 on the volumes of SAH admissions and embolisation treatments for patients with ruptured intracranial aneurysms during the height of the first 3 months of the pandemic, defined from 1 March to 31 May 2020.

Study objectives and hypothesis

Our primary hypothesis was that there would be a reduction in SAH hospitalisations and endovascular coil embolisation procedures for ruptured aneurysms during the pandemic, compared with the immediate 3 months prior to the pandemic. Our secondary hypothesis was that there would be a reduction in these volumes compared with a similar calendar period in 2019. The third hypothesis was that the reduction in SAH volume would occur in most centres, including those with low or non-existent COVID-19 hospitalisation burden, but would be more significant in centres with high COVID-19 hospitalisation burden. The fourth hypothesis was that high procedural coiling volume centres would be less impacted by procedural volume changes than low procedural volume centres.

METHODS

Study design

This was a cross-sectional, observational, multicentre, retrospective study of consecutive patients hospitalised with SAH, aneurysmal SAH, non-traumatic SAH and ruptured intracranial aneurysm embolisations.

Setting and participants

Of 175 invited sites, 140 comprehensive stroke centres submitted data from 37 countries across six continents with 5571 patients with SAH and 3473 ruptured aneurysm embolisations across the three different study periods. Monthly and weekly volume of SAH, ruptured aneurysm embolisations and COVID-19 admission volume data were collected over three periods of time: 1 March–31 May 2020 (pandemic months), 1 November 2019–29 February 2020 (immediately preceding the pandemic months) and 1 March–31 May 2019 (equivalent period 1 year prior to the pandemic). The period of recruitment was conducted between 26 May and 30 July 2020. The data were collected on Excel (version 16.45) documents.
Table 1 SAH hospitalisation volumes immediately before and during the COVID-19 pandemic

Overall volume	Monthly volume									
	N	n1	n2	% (95% CI)	P value	N	n1	n2	% (95% CI)	P value
Overall	118	2044	1585	−22.5 (−24.3 to −20.7)	<0.0001	124	4.5 (2.5–7.1)	3.3 (1.3–6.3)	−0.88 (−1.1 to −0.58)	<0.0001
Hospital COVID-19 volume†										
Low	32	432	367	−15.1 (−18.7 to −12.0)	0.014	33	3.5 (2.5–6.5)	3.3 (1.7–6.0)	−0.83 (−1.9 to 0.50)	0.076
Int	32	589	458	−22.2 (−25.8 to −19.1)	<0.0001	34	4.9 (3.5–6.8)	3.7 (1.7–6.0)	−0.83 (−1.9 to −0.17)	0.001
High	33	731	513	−29.8 (−33.2 to −26.6)	<0.0001	36	6.0 (3.0–8.4)	4.2 (2.2–7.2)	−1.0 (−2.0 to −0.67)	<0.0001
Hospital SAH coil embolisation volume‡										
Low	42	370	293	−20.8 (−25.2 to −17.0)	0.002	45	2.5 (1.3–3.8)	2.0 (1.0–3.3)	−0.25 (−0.75 to 0.08)	0.141
Int	35	490	385	−21.4 (−25.3 to −18.0)	0.0002	36	4.4 (2.9–5.6)	3.0 (1.5–4.7)	−1.0 (−1.5 to −0.17)	0.007
High	35	1014	783	−22.8 (−25.5 to −20.3)	<0.0001	36	7.3 (5.9–11.6)	6.7 (4.0–9.3)	−2.0 (−3.1 to −0.75)	<0.0001

n1 is based on 3 months before the pandemic (December 2019–February 2020). n2 and during COVID-19 are based on March 2020–May 2020. P value is from Poisson means test (overall volume analysis) and Wilcoxon signed-rank test (monthly volume analysis).

†Difference denotes the median difference between the two time periods.
‡P value: low versus Int=0.004, low versus high=<0.0001, Int versus high=0.002.

Subgroup analysis of confirmed aneurysmal SAH hospitalisations and non-traumatic SAH were performed. Aneurysmal SAH was defined as SAH related to a ruptured intracranial aneurysm. Non-aneurysmal SAH was defined as SAH unrelated to traumatic causes but could include SAH secondary to aneurysmal, arteriovenous malformation (AVM), perimesencephalic or other causes. The volume of embolisations of ruptured intracranial aneurysms was also retrieved.

COVID-19 hospitalisation was defined as a patient admitted with COVID-19 diagnosis, inclusive of non-neurological diagnosis. Monthly and weekly volumes of COVID-19 hospitalisation were collected from 1 March to 31 May 2020.

Low, intermediate and high procedural volume centres were categorised according to monthly coiling of ruptured aneurysm volume data received of the 4 months immediately preceding the pandemic (1 November 2019–29 February 2020, inclusive) and divided into tertiles: low volume, >1.25–<3.0; and high volume, >3 coiling cases per month. COVID-19 hospitalisation volumes were based on mean monthly volume data received and were divided into tertiles: low volume, <10.6; intermediate volume, >10.6–<103.6; and high volume, >103.6 hospitalisations per month.

Bias

A second control period (1 March–31 May 2019) was included to account for seasonal variation. To reduce the risk of bias, centres with incomplete data were excluded from the subgroup analysis in which the data were missing.
Statistical analysis
The monthly volumes for the ruptured aneurysm coil embolisation procedure and SAH admissions were compared for the period before (1 year and immediately before) and during the COVID-19 pandemic. The normality of the data was tested with the Shapiro-Wilk test. The data were determined to be non-normal and were therefore presented as median (IQR). The non-parametric Wilcoxon signed-rank test was applied to compare differences in monthly volume between two time periods. The analyses were repeated in the setting of low, intermediate and high COVID-19 and procedural volume hospitals.

We further looked at the percentage change in the number of procedures and SAH admissions, aneurysmal SAH admissions, and non-traumatic SAH admissions before and during the COVID-19 pandemic. For this analysis, we restricted the immediately before group to 3 months before the pandemic (1 December 2019–29 February 2020) to keep it consistent with the COVID-19 group. The 95% CIs for percentage change were calculated using the Wilson procedure without correction for continuity. The differences in the number of procedures and admissions across the two periods were assessed for significance using the Poisson means test. The relative percentage decrease in volume between low-volume, intermediate-volume and high-volume hospitals was tested using the z-test of proportion.

We performed a supplementary analysis comparing monthly volumes and percentage change in the number of ruptured aneurysm coiling procedures and SAH hospitalisations across different world regions. All data were analysed using SAS V.9.4, and the significance level was set at a p value of <0.05.

This study is reported in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology guidelines.19

FINDINGS
A total of 1088, 2044 and 1585 SAH hospitalisations (overall n=4717) and 719, 1170 and 1035 coiling procedures for ruptured aneurysms (overall n=2924) were included across the 3-month prior year periods, 3 months immediately prepandemic and 3 months of the pandemic, respectively. These were distributed across 140 comprehensive stroke centres, 37 nations and 6 continents. The Shapiro-Wilk test revealed that the normality of the data was non-normal.

Subarachnoid hemorrhage hospitalisation volumes
In the primary analysis, 118 centres submitted data on SAH volume with a total of 2044 admissions in the 3 months immediately before and 1585 admissions during the 3 months of the pandemic, representing a relative volume decline of 22.5% (95% CI −24.3% to −20.7%, p<0.0001). Monthly SAH admission volumes also demonstrated a relative decline before and during the pandemic months (median, 4.5 (IQR 2.5–7.1) vs 3.3 (IQR1.3–6.3); p<0.0001) (table 1 and figure 1).

In the secondary analysis, 75 centres contributed data with SAH monthly volumes 1 year prior (table 2). There were 1088 before, compared with 900 SAH admissions during the pandemic, representing a 17.3% relative decline (95% CI, −19.6 to −15.2, p<0.0001). The

Nguyen TN, et al. Stroke & Vascular Neurology 2021;6:e000695. doi:10.1136/svn-2020-000695

Figure 1 Peak of 1235 COVID-19 hospitalisations in the second week of February, predominantly from one hospital in Wuhan, China. SAH, subarachnoid haemorrhage.
median monthly SAH admission volume declined from a median of 3.0 [IQR, 2.0–6.3] in the corresponding period of the prior year to 2.7 [IQR, 1.3–5.7, p=0.001] over the first 3 months of the pandemic.

In subgroup analysis, 56 centres confirmed aneurysmal SAH admissions data in the 3 months immediately before and during the pandemic. There was a relative decline from 834 to 626 hospitalisations, representing a 24.9% relative decline (95% CI −28.0% to −22.1%, p<0.0001). Additionally, 37 centres confirmed aneurysmal SAH admissions data in the 1-year prior control period, also noted for a relative decline from 435 to 370 hospitalisations, representing a 14.9% relative decline (95% CI −18.6 to −11.9, p=0.022) (table 3).

Non-traumatic SAH admissions had parallel relative declines both in the immediately before (-24.6%, 95% CI −26.9% to −22.5%, p<0.0001, n=85 centres) and 1-year before periods (-15.6%, 95% CI −18.4% to −13.1%, p=0.002, n=53 centres) (table 3).

Declines in SAH hospitalisation volumes were significant in Asia, with a relative decrease of 24.7% (95% CI −28.0% to −21.7%, p<0.0001, n=47 centres); North America, with a relative decrease of 21.0% (95% CI −24.0% to −18.3%, p<0.0001, n=46 centres); Europe, with a relative decrease of 29.0% (95% CI −35.3% to −23.5%, p=0.001, n=11 centres); South America, with a relative decrease of 21.5% (95% CI −27.4% to −16.6%, p=0.012, n=8 centres). In contrast, no significant change was noted in Oceania or Africa. (online supplemental table 1). Country-specific relative changes in SAH hospitalisation volumes are represented in online supplemental table 3 and online supplemental figure 1).

Table 2

Overall volume	SAH volumes 1 year before and during the COVID-19 pandemic			
N	n1	n2	Relative (% change)	P value
SAH coil embolisation	165	728	−3.3 (IQR −16.2 to −15.2)	0.071
SAH coil embolisation	165	655	−9.3 (IQR −11.7 to −7.4)	0.0001
SAH coil embolisation	165	728	−3.3 (IQR −16.2 to −15.2)	0.071

SAH aneurysm embolisation volumes

In the primary analysis, 125 centres submitted data on ruptured aneurysm embolisation volumes with a total of 1170 procedures in the 3 months immediately before and 1035 procedures performed during the 3 months of the pandemic, representing a relative drop of 11.5% (95% CI −13.5% to −9.8%, p=0.002). Median monthly embolisation volumes demonstrated a relative decline compared with the same periods immediately preceding (median, 1.8 (IQR 1–4) vs 1.7 (IQR 0.67–3.3); p=0.0004) (table 4 and figure 1).

In the secondary analysis, 83 centres contributed data for ruptured aneurysm coiled volumes during the pandemic and 1 year previously. Ruptured aneurysm embolisations also declined numerically between the calendar year, 719 vs 652 procedures, with a 9.3% (95% CI −11.7% to −7.4%, p=0.07) relative drop in volumes (table 2). No significant change was noted in the median monthly volume (p=0.197).

During the pandemic, ruptured aneurysm coiling volume was decreased in Asia with a 20.5% relative decline (95% CI −24.9% to −16.6%, p=0.003, n=52 centres), decreased in Europe with a 15.3% relative decline (95% CI −20.4% to −11.3%, p=0.06, n=14 centres).
centres) and increased in Oceania by 77.8% (95% CI 54.8 to 91.0, p=0.06, n=4 centres), whereas no significant change in volume was noted in North America, South America nor Africa (online supplemental table 2). Country-specific relative changes in ruptured aneurysm coiling volumes are represented in online supplemental table 3 and online supplemental figure 2.

COVID-19 hospitalisation volume, SAH hospitalisation and ruptured aneurysm embolisation volumes in relation to the pandemic

Figure 1 depicts the weekly number of SAH hospitalisations, ruptured aneurysm coiling and COVID-19 hospitalisation volumes. Across the tertiles of COVID-19 hospitalisation volume, high-volume COVID-19 centres (−29.8%, 95% CI −33.2% to −26.6%) were significantly more vulnerable to declines in SAH hospitalisation volumes than low-volume COVID-19 centres (−15.1%, 95% CI −18.7% to −12.0%, p<0.001) (table 1).

Similarly, there was a gradient for greater decrease in ruptured aneurysm embolisation in high-volume COVID-19 centres (−22.2%, 95% CI −27.0% to −18.0%) compared with intermediate-volume (−10.0%, 95% CI −13.8% to −7.2%, p<0.001) and low-volume (−1.5%, 95% CI −3.7% to −0.6%, p<0.001) COVID-19 centres (table 4).

Ruptured aneurysm procedural volumes, SAH hospitalisation and ruptured aneurysm embolisation volumes in relation to the pandemic

There were declines in SAH hospitalisation volume across the three tertiles of high (−22.8%, 95% CI −25.5% to −20.3%, p<0.001), intermediate (−21.4%, 95% CI −25.3% to −18.0%, p=0.002) and low (−20.8%, 95% CI −25.2% to −17.0%, p=0.002) SAH procedural volume centres, with no differences in decline seen between the three tertiles (table 1).

Similarly, ruptured aneurysm embolisation volume declines were noted in high (−18.2%, 95% CI −20.9% to −15.8%, p<0.0001) procedural volume centres. However, in hospitals with low tertile procedural volumes, there was an increase noted in the coiling of the ruptured aneurysm during the pandemic of 41% (95% CI 32.3% to 50.6%, p=0.008) (table 4).

DISCUSSION

We noted a decrease in the volume of SAH hospitalisations, aneurysmal SAH hospitalisations and embolisation of ruptured aneurysms during the first 3 months of the COVID-19 pandemic compared with the immediate prior months. Compared with the corresponding period in the prior year, there was a significant reduction in SAH hospitalisation volume, but no change was noted in the number of embolisation procedures for ruptured aneurysms. To our knowledge, this is the first report of a multicentre decrease in volumes for SAH hospitalisations, aneurysmal SAH hospitalisations and embolisation procedures for ruptured intracranial aneurysm during the COVID-19 pandemic.
	Overall volume		Monthly volume							
	N	n1	n2	Relative (%) change	P value	N	n=1670	During COVID-19	Difference* (95% CI)	P value
Overall	125	1170	1035	−11.5 (−13.5 to −9.8)	0.002	133	1.8 (1.0–4.0)	1.7 (0.67–3.3)	−0.25 (−0.58 to −0.08)	0.0004
Hospital COVID-19 volume†										
Low	39	270	266	−1.5 (−3.7 to −0.58)	0.764	40	1.5 (0.88–2.5)	1.0 (0.50–2.8)	−0.29 (−0.67 to 0.08)	0.294
Int	33	319	287	−10.0 (−13.8 to −7.2)	0.151	35	2.5 (1.0–3.8)	2.0 (1.0–3.0)	−0.25 (−0.75 to 0.0)	0.041
High	31	329	256	−22.2 (−27.0 to −18.0)	0.002	34	2.0 (1.3–5.0)	2.0 (1.0–4.0)	−0.63 (−1.2 to 0.0)	0.007
Hospital SAH Coil embolisation volume‡										
Low	46	107	151	41.1 (32.3 to 50.6)	0.008	49	0.75 (0.25–1.0)	0.67 (0.33–1.7)	0.0 (0.0 to 0.33)	0.044
Int	37	217	192	−11.5 (−16.5 to −7.9)	0.178	39	2.0 (1.8–2.5)	1.3 (0.67–2.7)	−0.75 (−1.1 to −0.08)	0.015
High	42	846	692	−18.2 (−20.9 to −15.8)	<0.0001	45	5.3 (4.0–8.8)	4.7 (2.7–6.3)	−1.8 (−2.3 to −0.67)	<0.0001

n1 is based on 3 months before the pandemic (December 2019–February 2020). Immediately before is based on 4 months before the pandemic (November 2019–February 2020). n2 and during COVID-19 are based on March 2020–May 2020.

P value is from Poisson means test (overall volume analysis) and Wilcoxon signed-rank test (monthly volume analysis).

*Difference denotes the median difference between the two time periods.

†P value: low versus Int=0.0001; low versus high=0.0001; Int versus high=0.0001.

‡P value: low versus Int=n/a; low versus high=n/a; Int versus high=0.019.

Int, intermediate; N, number of hospitals; n, number of procedures; n/a, not applicable; SAH, subarachnoid haemorrhage.
Our findings are similar to reported decreases in SAH city-wide in Paris during a 2-week period of the pandemic and decreases in a Toronto hospital, whereas Berlin and Joinville, South Brazil, reported no decreases in SAH during the COVID-19 pandemic.

As expected, hospitals with higher tertiles of COVID-19 hospitalisation burden were more vulnerable to the decline in SAH admissions and ruptured aneurysm coiling volume. However, hospitals with lower COVID-19 hospitalisation burden also demonstrated decreases in SAH admissions, suggesting that access to hospital care was likely not a principal factor to explain the decrease.

High and intermediate procedural volume centres were more affected by declines in SAH hospitalisations and ruptured aneurysm embolisation than low-volume SAH coiling centres during the pandemic. In contrast, hospitals with low SAH coiling volumes at baseline demonstrated an increase in the coiling of ruptured aneurysms during the pandemic despite a significant decrease in total SAH admissions within this tertile of hospitals. An increase in ruptured aneurysm embolisations was observed in another recent multicentre study during the COVID-19 pandemic. This suggests a shift towards treating more patients with ruptured aneurysms with endovascular techniques during the pandemic, possibly to mitigate risks of perioperative infection to the patient and/or provider.

These findings of decreases in SAH volumes, including embolisation of ruptured aneurysms, are similar to reports of decreases in stroke admissions, intravenous thrombolysis, MT and acute ST-elevation myocardial infarction (STEMI) activations during the COVID-19 pandemic. As postulated with reasons for the decline in stroke admissions in the stroke literature, patients with milder presentations of aneurysmal SAH may be afraid to present to a hospital due to fear of contracting SARS-CoV-2 infection.

This analysis’s strength is the aggregate volume of data worldwide across diverse geography, allowing a high volume or sample size. We used two control periods for comparison; the immediately preceding 3 months and the same 3 months a year ago, to account for potential seasonal variations that may occur in the presentation of SAH.

Study limitations

This study’s limitations are that while our cohort of centres inform an international, multicentre experience, it is not comprehensive without source data from national databases to account for regional differences in health systems of care. The diagnosis of SAH was obtained using ICD-10 codes in some centres. We cannot exclude the possibility of traumatic SAH. To differentiate from this possibility, we performed a subgroup analysis of confirmed aneurysmal SAH and non-traumatic SAH admissions and found similar relative declines in both control periods. Most centres contributing to these data have systems in place to track SAH admissions and coiling volumes; hence, the relative changes in volume from this analysis are likely robust. Details on patient SAH presentation grade, clinical outcomes and clipping volume were not collected as they were outside the scope of the study.

Our study definition of the beginning of the pandemic relates to the WHO designation on 11 March 2020. However, regions affected by the pandemic earlier, such as China, met the nadir of their SAH volumes prior to starting our defined pandemic period. As endovascular coiling remains unavailable in many low-income and lower-income to middle-income countries, specific geographical regions were not well represented (ie, Central Africa) in our study. Another shortcoming in selection bias is that several countries in which endovascular coiling is available were not represented in this study (ie, Eastern Europe, South America, Central America and Asia).

INTERPRETATION

In conclusion, there was a relative decrease in the volume of SAH hospitalisations, aneurysmal SAH hospitalisations and ruptured aneurysm embolisation treatments during the first 3 months studied of the COVID-19 pandemic. There were steeper relative declines in SAH hospitalisations and SAH coiling volume in hospitals with higher COVID-19 volume. Among low-volume coiling SAH hospitals, there was a shift towards an increase in ruptured aneurysm coiling. These findings can inform regional neuroscience centres’ preparedness in the face of a potential second wave or resurgence of COVID-19.

Author affiliations

1Neurology, Radiology, Boston Medical Center, Boston, Massachusetts, USA
2Neurology, Marcus Stroke & Neuroscience Center, Grady Memorial Hospital, Emory University School of Medicine, Atlanta, GA, USA
3Radiology, Neuroangiography, Boston University School of Medicine, Boston, Massachusetts, USA
4Neurology, National Hospital Organization Osaka National Hospital, Osaka, Japan
5Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
6Neurology, Alexandria University, Alexandria, Egypt
7Radiology, Boston Medical Center, Boston, Massachusetts, USA
8Department of Neurology, Xijing Hospital, Chongqing, China
9Neurosurgery, University of Cape Town, Cape Town, South Africa
10Neurosurgery, Interventional Neuroradiology, Clinic La Sagrada Familia, Buenos Aires, Argentina
11Neuroradiologie, Neurologie Vasculaire, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
12Neurolgie Vasculaire, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
13Interventional Neuroradiology, Fondation Ophthalmologique Adolphe de Rothschild, Paris, Île-de-France, France
14Neurology, Hospital Geral de Fortaleza, Fortaleza, Brazil
15Interventional Neuroradiology, Hospital Geral de Fortaleza, Fortaleza, Brazil
16Neuroangiography, Nottingham University Hospitals Trust, Nottingham, UK
17Department of Neurosurgery, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
18Interventional Neurovascular Unit, University Hospital Careggi, Firenze, Toscana, Italy
19Neuroangiography, University Hospital Centre Zagreb, Zagreb, Croatia
20Interventional Neuroradiology, Hospital Bicêtre, La Cremlin-Bicêtre, France
21Stroke and Interventional Neuroradiology, Lahore General Hospital, Lahore, Pakistan
22Neurological Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE

Nguyen TN, et al. Stroke & Vascular Neurology 2021;6:e000695. doi:10.1136/svn-2020-000695
REFERENCES

1 Emanuel EJ, Persad G, Upshur R, et al. Fair allocation of scarce medical resources in the time of Covid-19. N Engl J Med Overseas

2 Nguyen TN, Jadhav AP, Dasenbrock HH, et al. Subarachnoid hemorrhage guidance in the era of the COVID-19 pandemic - An
opinion to mitigate exposure and conserve personal protective equipment. J Stroke Cerebrovasc Dis 2020;29:105010.

3 Nguyen TN, Abdalkader M, Jovin TG, et al. Mechanical thrombectomy in the era of the COVID-19 pandemic: emergency preparedness for neurosurgery teams: a guidance statement from the Society of vascular and Interventional Neurology. Stroke 2020;51:1896–901.

4 Nogueira RG, Qureshi M, Abdalkader M. Global impact of COVID-19 on stroke care and intravenous thrombolysis. American Academy of Neurology; April 17-22, 2021.

5 Alonso de Leceñana M, Castellanos M, Ayo-Martín Óscar, et al. Stroke care during the COVID-19 outbreak in Spain: the experience of Spanish stroke units. Stroke Vasc Neurol 2020. doi:10.1136/svn-2020-000678. [Epub ahead of print: 04 Dec 2020].

6 Ortega-Gutierrez S, Farooqui M, Zha A, et al. Decline in mild stroke presentations and intravenous thrombolysis during the COVID-19 pandemic: the Society of vascular and Interventional Neurology multicenter collaboration. Clin Neurol Neurosurg 2020;201:106436.

7 Hajdu SD, Pittet V, Puccinelli F, et al. Acute stroke management during the COVID-19 pandemic: does confinement impact eligibility for endovascular therapy? Stroke 2020;51:2593–6.

8 Kerleroux B, Fabacher T, Bricout N, et al. Mechanical thrombectomy for acute ischemic stroke amid the COVID-19 pandemic: does confinement impact eligibility for endovascular therapy? Stroke 2020;51:2593–6.

9 Pop R, Quenardelle V, Hasiu A, et al. Impact of the COVID-19 outbreak on acute stroke pathways - insights from the Alsace region in France. Eur J Neurol 2020;27:1783–7.

10 Seifert M, Brunner FJ, Remmel M, et al. Temporal trends in the presentation of cardiovascular and cerebrovascular emergencies during the COVID-19 pandemic in Germany: an analysis of health insurance claims. Clin Res Cardiol 2020;109:1540–8.

11 Zhao J, Li H, Kung D, et al. Impact of the COVID-19 epidemic on stroke care and potential solutions. Stroke 2020;51:1996–2001.

12 Diegoli H, Magalhães PSC, Martins SCO, et al. Decrease in hospital admissions for transient ischemic attack, mild, and moderate stroke during the COVID-19 era. Stroke 2020;51:2315–21.

13 Siegler JE, Heslin ME, Thau L, et al. Falling stroke rates during COVID-19 pandemic at a comprehensive stroke center. J Stroke Cerebrovasc Dis 2020;29:104953.

14 Hsiao J, Sayles E, Antzoulatos E, et al. Effect of COVID-19 on emergent stroke care: a regional experience. Stroke 2020;51:e2111–4.

15 Nogueira R, Abdalkader M, Qureshi MM, et al. Global impact of the COVID-19 pandemic on stroke hospitalizations and mechanical thrombectomy volumes. Int J Stroke 2021;17:4743002199165.

16 Bernat AL, Giammattelli L, Abbritti R, et al. Impact of COVID-19 pandemic on subarachnoid hemorrhage. J Neurosurg Sci 2020;64:409–10.

17 Dietro JD, Li YM, Parra-Fariñas C, et al. Letter to the Editor ‘Aneurysmal Subarachnoid Hemorrhage. Collateral Damage of COVID?’. World Neurosurg 2020;139:744–5.

18 Hecht N, Wessels L, Werft F-O, et al. Need for ensuring care for neuro-emergencies-lessons learned from the COVID-19 pandemic. Acta Neurochir 2020;162:1795–801.

19 von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med 2007;147:573–7.

20 Qureshi AI, Agunbiade S, Huang W, et al. Changes in neuroendovascular procedural volume during the COVID-19 pandemic: an international multicenter study. J Neuroimaging 2021;31:171–9.

21 De Filippo O, D’Ascenzo F, Angelini F, et al. Reduced rate of hospital admissions for ACS during Covid-19 outbreak in northern Italy. N Engl J Med 2020;383:88–9.

22 Ishihara H, Kunitsugu I, Nomura S, et al. Seasonal variation in the incidence of aneurysmal subarachnoid hemorrhage associated with age and gender: 20-year results from the Yamaguchi cerebral aneurysm registry. Neuroepidemiology 2013;41:7–12.

23 Abdalkader M, Sathyia A, Malek AM, et al. Roadmap for Resuming elective neuroendovascular procedures following the first COVID-19 surge. J Stroke Cerebrovasc Dis 2020;29:105177.

24 Eskey CJ, Meyers PM, Nguyen TN, et al. Indications for the performance of intracranial endovascular Neurointerventional procedures: a scientific statement from the American heart association. Circulation 2018;137:e561–89.