Barber, Jennifer and McKeever, Tricia M. and McDowell, Sarah E. and Clayton, Jennifer A. and Ferner, Robin E. and Gordon, Richard D. and Stowasser, Michael and O'Shaughnessy, Kevin M. and Hall, Ian P. and Glover, Mark (2015) A systematic review and meta-analysis of thiazide-induced hyponatraemia: time to reconsider electrolyte monitoring regimens after thiazide initiation? British Journal of Clinical Pharmacology, 79 (4). pp. 566-577. ISSN 1365-2125

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/31495/2/Online%20supplement_final_version.pdf

Copyright and reuse:
The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be reused according to the conditions of the licence. For more details see:
http://creativecommons.org/licenses/by/2.5/

A note on versions:
The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk
Online supplement

Table S1: Study characteristics and quality scores of single TIH case reports.

No.	Author et al.	Year	No. of TIH subjects	Study design	Country	Setting	Hyponatremia definition	Quality score	Reference
1	Achinger	2006	1	Case series	USA	Primary care	104 mM	3	16
2	Adrogue	2000	1	Review with case report	USA	Primary care	<136 mM	2	17
3	Al-Salman	2001	1	Case report	USA	Secondary care	115 mM	4	18
4	Ayus	2003	1	Case report	USA	Secondary care	116 mM	3	19
5	Benfield	1986	1	Case report	UK	Secondary care	124 mM	3	20
6	Berl	2010	1	Case report	USA	Primary care	96 mM	3	21
7	Cakir	2010	1	Case report	Turkey	Secondary care	119 mM	3	22
8	Coler	2012	1	Case Report	USA	Secondary care	120 mM	4	23
9	Collier	1987	1	Case report	UK	Secondary care	115 mM	5	24
10	Cundy	1981	1	Case report	UK	Primary care	99 mM	4	25
11	Eastell	1984	1	Case report	UK	Primary care	107 mM	5	26
12	Fadel	2009	1	Case report and rechallenge study	Belgium	Secondary care	113 mM	5	27
13	Fuisz	1962	1	Case report and rechallenge study	USA	Secondary care	121 mM	4	28
14	Gardner	2000	1	Case report	USA	Secondary care	110 mM	1	29
15	Ghose	1977	1	Case report	UK	Primary care	127 mM	3	30
16	Gossain	1976	1	Case series	USA	Secondary care	<132 mM	4	31
17	Hamburger	1981	1	Case report	USA	Primary care	107 mM	3	32
18	Handler	2008	1	Case report	USA	Secondary care	<135 mM	3	33
	Last name	Year	Study Type	Country	Setting	Baseline Blood Sugar (mM)	Follow-up Period	Reference	
---	------------	-------	---------------------	----------------	--------------------	---------------------------	-----------------	-----------	
19	Husby	1981	Case report	Denmark	Primary care	104 mM	4	34	
20	Hussain	2011	Case report	Ireland	Secondary care	99 mM	2	35	
21	Jen	2002	Case report	China	Secondary care	<137 mM	4	36	
22	Johnson	1983	Case report	USA	Primary care	108 mM	6	37	
23	Karp	1993	Retrospective study	USA	Primary care	104 mM	1	38	
24	Kennedy	1970	Case report	USA	Secondary care	≤108 mM	4	39	
25	Kone	1986	Case report	USA	Secondary care	118 mM	4	40	
26	Lin	2002	Case report	China	Secondary care	94 mM	2	41	
27	Luft	1998	Case report	Germany	Primary care	115 mM	2	42	
28	Lundbom	1993	Case report	Finland	Secondary care	<116 mM	2	43	
29	Mataverde	1974	Case report	USA	Secondary care	109 mM	3	44	
30	Menashe	2000	Case report	Israel	Primary care	106 mM	3	45	
31	Meuleman	1996	Case report	USA	Primary care	116 mM	4	46	
32	Miyasaka	2013	Case report	Japan	Secondary care	(Not specified)	4	47	
33	Mok	2008	Case report	China	Secondary care	111	3	48	
34	Mouallem	1983	Cohort study	Israel	Secondary care	(Not specified)	3	49	
35	Mount	2009	Case vignette	USA	Secondary care	113 mM	4	50	
36	Moussa	1998	Case report	United Arab Emirates	Secondary care	110 mM	3	51	
37	Mozes	1986	Case report	Israel	Secondary care	104 mM	4	52	
38	Onozaki	2001	Case report	Japan	Primary care	124 mM	3	53	
39	Orija	2001	Case report	USA	Secondary care	<136 mM	2	54	
40	Ponte	1982	Case report	USA	Secondary care	115 mM	2	55	
No.	Author et al.	Year	No. of TIH subjects	Study design	Country	Setting	Hyponatremia definition	Quality score	Reference
-----	--------------	------	---------------------	--------------	---------	---------	-------------------------	-------------	-----------
1	Aaseth	2001	3	Case series	Norway	Primary care	<125 mM	4	65
2	Adams	1988	2	Clinical survey	UK	Secondary care	<130 mM	4	66
3	Al Qahtani	2013	469	Case series	Saudi Arabia	Secondary care	≤135 mM	4	67
4	Ambrosi.	2004	3	Case reports	France	Secondary care	≤116 mM	3	68
5	Ashraf	1981	7	Case reports	USA	Primary care	≤116 mM	4	69
6	Bain	1986	2	Case report	UK	Secondary care	112 mM	3	70
7	Bayer AJ	1986	21	Case series	UK	Secondary care	<130 mM	5	71

Table S2: Characteristics and quality scores of studies included in the meta-analysis i.e. where more than one TIH patient was reported per study.
	Author	Year	Method	Country	Setting	Title	Blood glucose threshold	Total	N
8	Bissram	2007	Retrospective cohort study	USA	Secondary care	<134 mM	7	72	
9	Booker	1984	Case reports	Australia	Secondary care	<121 mM	6	73	
10	Canning G	1988	Case reports	UK	(Not specified)	≤125 mM	4	74	
11	Chapman MD	2002	Descriptive analysis using case reports	Australia	(Not specified)	(Not specified)	3	75	
12	Chow	2004	Case series	China	Secondary care	<130 mM	6	76	
13	Clayton	2006	Cross sectional observational study	UK	Primary care	<135 mM	4	77	
14	Coenraad	2003	Case series	The Netherlands	Secondary care	≤130 mM	5	78	
15	Cogan	1983	Case series	Belgium	Secondary care	<135 mM	3	79	
16	Donaldson	1983	Case-controlled clinical trial	Australia	Secondary care	<134 mM	3	80	
17	Fenske	2009	Prospective observational study	Germany	Secondary care	<130 mM	5	81	
18	Fichman	1971	Case series and rechallenge study	USA	Secondary care	≤118 mM	6	82	
19	Fourlanos	2003	Case reports	Australia	(Not specified)	(Not specified)	1	83	
20	Frenkel	2010	Controlled clinical trial	The Netherlands	(Not specified)	(Not specified)	4	84	
21	Friedman	1989	Prospective controlled study	Israel	Secondary care	<130 mM	7	85	
22	Ghose	1975	Case reports	UK	Secondary care	(Not specified)	2	86	
23	Hajjar	2004	Case reports	USA	Secondary care	≤130 mM	3	87	
24	Hoorn	2006	Prospective cohort study	The Netherlands	Secondary care	≤125 mM	7	88	
25	Hung	2002	Case series	China	Secondary care	≤113 mM	4	89	
26	Hwang	2010	Case series	Korea	Secondary care	≤128 mM	2	90	
27	Johnston	1989	Case series	UK	Secondary care	≤130 mM	3	91	
28	Jolobe	2003	Case series (letter)	UK	(Not specified)	<120 mM	2	92	
29	Kalksma	2002	Case reports	The Netherlands	Primary care	<120 mM	3	93	
30	Kinoshita	2011	Case series	Japan	National registry	(Not specified)	3	94	
	First name	Year	Case Type	Location	Setting	Reference	Statistic	n	ID
---	------------	------	-----------	----------	---------	-----------	-----------	---	----
31	Mackay	1983	Case series	New Zealand	Secondary care	≤132 mM	3	95	
32	Malin	1997	Case series	USA	Secondary care	<130 mM	6	96	
33	Mathew	1990	Case reports	Australia	Secondary care	≤130 mM	4	97	
34	McDowell	2010	Retrospective cohort study	UK	Primary care	≤130 mM	6	98	
35	Moualem	1991	Case reports	Israel	Secondary care	117 mM	4	99	
36	Musch	2001	Consecutive case series	Belgium	Secondary care	≤130 mM	5	100	
37	Oles	1984	Case reports	USA	Primary care	≤129 mM	2	101	
38	Pinnock	1978	Case series	Channel Islands	Secondary care	≤128 mM	2	102	
39	Rask	1996	Case reports	Sweden	Primary care	≤121 mM	3	103	
40	Rastogi	2012	Retrospective, case-controlled study	USA	Secondary care	<135 mM	8	104	
41	Rodenburg	2013	Population-based cohort study	Netherlands	Primary care	≤135 mM	4	105	
42	Rosner	2004	Case reports	USA	Secondary care	≤122 mM	4	106	
43	Shapiro	2010	Prospective, observational, non-interventional study	Israel	Secondary care	≤125 mM	6	107	
44	Sharabi	2002	Case series	USA	Secondary care	<135 mM	5	108	
45	Sonnenblick	1986	Case series	Israel	Clinical trial	<120 mM	4	109	
46	Sonnenblick	1989	Case reports	Israel	Secondary care	<115 mM	3	110	
47	Takeshita	2010	Case reports	Japan	Secondary care	≤118 mM	1	111	
48	Tarssanen	1980	Case reports	Finland	Secondary care	111 mM	5	112	
49	Thuesen	1980	Case reports	Denmark	Primary care	113 mM	2	113	
50	van Brummelen	1978	Case-controlled clinical trial	The Netherlands	Secondary care	(Not specified)	7	114	
51	Van Wijngaarden	2010	Case reports	The Netherlands	Primary care	<135 mM	2	115	
52	Yong	2011	Case series	Australia	Secondary care	<135 mM	5	116	
	Zalin	1984	8	Case reports	UK	Secondary care	≤129 mM	4	117
Table S3: Meta-analyses of demographic characteristics of patients with Thiazide-Induced Hyponatremia by analysis of quality score, year of publication and age of patient.

Symptoms	Quality Score high		Quality Score Low		Year of publication Later		Year of publication earlier		Age of population younger		Age of population older							
	Mean	95% CI	I² (%)															
Gender (Female)*	0.77	0.72 to 0.81	70	0.84	0.76 to 0.91	38	0.79	0.75 to 0.84	76	0.77	0.61 to 0.84	36	0.73	0.69 to 0.76	15	0.84	0.76 to 0.90	66
Age (years)	73.4	71.3 to 75.5	92	76.9	72.8 to 81.0	92	78.1	75.5 to 80.7	96	71.3	68.2 to 74.5	81	69.2	67.3 to 71.1	74	79.7	77.6 to 81.9	87
Time to TH (days)	23.5	3.1 to 44.0	96	12.0	2.6 to 21.4	79	81.3	20.5 to 142.1	81	6.9	9.5 to 62.8	47	27.2	8.1 to 46.3	98	9.5	-4.9 to 23.8	77

Prevalence estimates from meta-analysis and confidence intervals are all expressed as proportions.
Table S4: Meta-analyses of clinical characteristics of patients with Thiazide-Induced Hyponatremia by analysis of quality score, year of publication and age of patient. Prevalence estimates from meta-analysis and confidence intervals are all expressed as proportions.

Symptoms	Quality Score high	Quality Score Low	Year of publication Later	Year of publication earlier	Age of population younger	Age of population older												
	Prop	95% CI	Prop	95% CI	Prop	95% CI	Prop	95% CI	Prop	95% CI	Prop	95% CI						
	⍺ (%)				⍺ (%)		⍺ (%)		⍺ (%)		⍺ (%)							
Fatigue	0.54	0.32 to 0.75	66	0.19	0.002 to 0.65	*	0.36	0.39 to 0.41	96	0.50	0.15 to 0.85	74	0.58	0.24 to 0.89	73	0.49	0.42 to 0.55	*
Dizziness	0.31	0.14 to 0.51	93	1 study	-	-	0.39	0.11 to 0.72	97	0.18	0.11 to 1.00	*	0.72	0.18 to 1.00	96	0.17	0.13 to 0.23	66
Confusion	0.40	0.27 to 0.54	85	0.56	0.29 to 0.81	77	0.35	0.20 to 0.51	90	0.54	0.37 to 0.70	67	0.39	0.26 to 0.54	38	0.35	0.20 to 0.51	90
Vomiting	0.37	0.29 to 0.45	40	0.30	0.06 to 0.63	63	0.34	0.22 to 0.46	81	0.37	0.20 to 0.56	44	0.37	0.20 to 0.56	44	0.37	0.31 to 0.44	26
Falls	0.46	0.16 to 0.77	90	1 study	-	-	0.30	0.10 to 0.56	68	0.72	0.18 to 1.00	*	0.72	0.18 to 1.00	*	0.31	0.10 to 0.58	66
Nausea	0.35	0.21 to 0.49	78	0.23	0.15 to 0.32	77	0.25	0.19 to 0.32	17	0.44	0.21 to 0.68	84	0.41	0.17 to 0.68	82	0.28	0.22 to 0.34	0
Unconsciousness	0.26	0.06 to 0.53	78	0.40	0.10 to 0.74	77	0.40	0.04 to 0.85	83	0.29	0.10 to 0.52	73	0.35	0.10 to 0.65	82	0.43	0.19 to 0.68	0
Weakness	0.37	0.24 to 0.51	45	0.62	0.38 to 0.84	40	0.51	0.28 to 0.73	59	0.42	0.24 to 0.61	45	0.45	0.28 to 0.63	44	-	-	0
Neurological Symptoms	0.46	0.09 to 0.85	85	0.60	0.25 to 0.90	25	0.97	0.82 to 0.99	*	0.29	0.15 to 0.46	0	0.25	0.10 to 0.44	0	0.76	0.37 to 0.99	68
Seizures	0.16	0.05 to 0.32	81	0.40	0 to 0.97	91	0.06	0.01 to 0.15	74	0.32	0.13 to 0.56	70	0.34	0.13 to 0.58	71	0.12	0.0 to 0.42	81
Diabetes	0.26	0.09 to 0.47	99	0.43	0.11 to 0.78	*	0.30	0.12 to 0.52	99	0.18	0.03 to 0.41	*	0.18	0.03 to 0.41	96	0.22	0.19 to 0.27	0
CVD	0.30	0.20 to 0.41	42	0.79	0.56 to 0.95	25	0.39	0.21 to 0.60	79	0.56	0.31 to 0.79	61	0.51	0.22 to 0.80	66	0.47	0.28 to 0.67	77

CardioVascular Disease (CVD), Prop (proportion), Confidence Interval (CI). None of these factors explain the high levels of heterogeneity between these studies. Prevalence estimates from meta-analysis and Confidence intervals are all expressed as proportions, * denotes less than 3 studies and therefore not possible to assess heterogeneity.
Table S5: Meta-analyses of drug history of patients with Thiazide-Induced Hyponatremia by analysis of quality score, year of publication and age of patient. Prevalence estimates from meta-analysis and confidence intervals are all expressed as proportions.

Symptoms	Quality Score high	Quality Score Low	Year of publication Later	Year of publication earlier	Age of population younger	Age of population older												
	Proportion	95% CI	I² (%)															
Thiazide																		
HCTZ	0.76	0.63 to 0.87	93	0.59	0.14 to 0.96	97	0.67	0.46 to 0.85	98	0.69	0.50 to 0.86	43	0.63	0.61 to 0.65	0	0.73	0.45 to 0.94	78
Indapamide	0.53	0.13 to 0.91	99	0.54	0.49 to 0.58	93	0.47	0.23 to 0.72	99	-	-	-	1 study	-	-	0.83	0.51 to 0.99	62
Moduretic®	0.80	0.57 to 0.96	85	0.42	0.37 to 0.46	72	0.39	0.34 to 0.42	90	0.84	0.69 to 0.95	74	0.92	0.78 to 0.99	64	0.64	0.37 to 0.88	40
Bendroflumethiazide	0.56	0.11 to 0.95	97	0.37	0.21 to 0.54	*	0.83	0.34 to 0.59	97	0.27	0.10 to 0.50	63	0.61	0.10 to 0.99	97	1 study	-	*
Chlortalidone	0.04	0.01 to 0.09	87	0.43	0.11 to 0.78	*	0.02	0.002 to 0.05	73	0.24	0.11 to 0.40	*	0.04	0.009 to 0.09	87	0.43	0.11 to 0.79	*
Other Drugs																		
ACE inhibitor	0.35	0.12 to 0.67	98	0.83	0.44 to 1.00	*	0.42	0.17 to 0.68	97	1 study	-	*	0.76	0.34 to 0.99	*	0.28	0.16 to 0.41	25
NSAID	0.32	0.30 to 0.34	93	0.37	0.09 to 0.71	*	0.32	0.15 to 0.51	93	0.37	0.09 to 0.71	*	0.48	0.18 to 0.79	60	0.16	0.12 to 0.21	0
Non-thiazide diuretics	0.20	0.18 to 0.22	*	0.80	0.39 to 1.00	60	0.44	0.13 to 0.80	76	1 study	-	*	0.59	0.003 to 0.98	*	0.57	0.19 to 0.93	56
Antidepressants	0.29	0.16 to 0.44	75	0.50	0.18 to 0.82	*	0.38	0.16 to 0.63	64	-	-	-	0.53	0.002 to 1.00	*	0.33	0.23 to 0.43	0

HydroChloroThiaZide (HCTZ), AngioTensin Converting enzyme (ACE) inhibitor, Non-Steroidal AntiInflammatory Drug (NSAID), Prop (proportion), Confidence Interval (CI). None of these factors explain the high levels of heterogeneity between these studies. Prevalence estimates from meta-analysis and Confidence intervals are all expressed as proportions, * denotes less than 3 studies and therefore not possible to assess heterogeneity.
Table S6: Meta-analyses of laboratory characteristics of patients with Thiazide-Induced Hyponatremia by analysis of quality score, year of publication and age of patient.

Symptoms	Quality Score high	Quality Score Low	Year of publication Later	Year of publication earlier	Age of population younger	Age of population older												
	Mean	95% CI	I² (%)															
Serum sodium (mM)	116.2	112.2 to 120.3	99	116.8	112.8 to 120.7	96	117.1	113.1 to 121.1	98	115.9	112.3 to 119.5	98	116.0	110.5 to 121.6	99	115.6	112.4 to 118.8	96
Serum potassium (mM)	3.4	3.1 to 3.7	96	3.0	2.8 to 3.2	72	3.3	3.0 to 3.7	98	3.2	3.0 to 3.4	88	3.2	2.8 to 3.7	96	3.3	3.0 to 3.6	95
Serum creatinine (µmol/L)	79.5	57.4 to 91.0	95	79.9	64.7 to 91.0	97	71.7	53.9 to 89.5	95	80.7	62.1 to 99.4	99	80.7	55.5 to 102.9	99	72.0	60.5 to 83.5	96
Serum osmolality mosm/kg	239.2	234.1 to 244.4	85	242.0	237.8 to 246.1	51	236.3	231.7 to 240.9	70	244.2	237.3 to 251.0	75	241.9	230.8 to 253.1	75	239.3	234.7 to 243.9	81
Urine osmolality mosm/kg	392.4	364.7 to 420.1	69	415.9	377.6 to 500.2	74	399.2	362.6 to 435.8	87	402.8	329.3 to 476.3	89	420.8	365.6 to 476.1	88	377.9	341.7 to 414.1	51
Urine sodium (mM)	66.1	39.8 to 92.4	94	62.2	44.6 to 79.5	67	79.4	68.2 to 90.6	96	49.0	28.5 to 69.6	0	53.6	34.0 to 73.1	95	79.3	47.0 to 81.0	22

Prevalence estimates from meta-analysis and confidence intervals are all expressed as proportions. None of these factors explain the high levels of heterogeneity between these studies. Prevalence estimates from meta-analysis and Confidence intervals are all expressed as proportions.
Meta-analyses graphs

Clinical characteristics and symptoms

Figure S1 Proportion of patients with thiazide-induced hyponatremia who were female.
Proportion meta-analysis plot [random effects]

Study	Proportion	95% Confidence Interval
Asteth 2001	1.000	(0.292, 1.000)
Ambrosi 2004	1.000	(0.292, 1.000)
Ashraf 1981	0.714	(0.290, 0.963)
Bain 1986	1.000	(0.158, 1.000)
Bauer 1986	0.591	(0.364, 0.793)
Booker 1984	1.000	(0.541, 1.000)
Canning 1988	1.000	(0.398, 1.000)
Chapman 2002	0.826	(0.755, 0.883)
Chow 2004	0.700	(0.635, 0.759)
Clayton 2006	0.667	(0.299, 0.925)
Conrard 2003	0.667	(0.094, 0.992)
Cogan 1983	1.000	(0.398, 1.000)
Ferske 2009	0.889	(0.518, 0.997)
Fichman 1971	0.800	(0.593, 0.932)
Frenk 2010	0.615	(0.316, 0.861)
Friedman 1989	0.727	(0.390, 0.940)
Hajar 2004	1.000	(0.158, 1.000)
Hung 2002	0.429	(0.099, 0.816)
Hwang 2010	1.000	(0.768, 1.000)
Johnston 1989	1.000	(0.292, 1.000)
Jolobe 2003	0.846	(0.651, 0.955)
Kalkama 2002	0.667	(0.094, 0.992)
Kinoshita 2011	0.625	(0.458, 0.773)
Malin 1997	0.750	(0.349, 0.968)
Mathew 1990	0.759	(0.628, 0.881)
McDowell 2010	0.738	(0.688, 0.784)
Moulten 1983	0.250	(0.006, 0.806)
Musch 2001	0.632	(0.384, 0.837)
Nies 1984	1.000	(0.292, 1.000)
Pinnock 1978	1.000	(0.398, 1.000)
Rask 1996	1.000	(0.292, 1.000)
Rastogi 2012	0.708	(0.686, 0.728)
Rodenburg 2013	0.868	(0.807, 0.916)
Rosner 2004	1.000	(0.158, 1.000)
Shapiro 2010	0.923	(0.830, 0.975)
Sharabi 2002	0.828	(0.765, 0.880)
Takeshita 2010	1.000	(0.158, 1.000)
Tarssanen 1980	1.000	(0.292, 1.000)
Thuesen 1980	1.000	(0.158, 1.000)
Van Wijngaarden 2010	1.000	(0.158, 1.000)
Yong 2011	1.000	(0.715, 1.000)
Zalin 1984	0.625	(0.245, 0.915)
van Brummelen 1978	0.000	(0.000, 0.842)

Combined: 0.785 (0.744, 0.823)
Figure S2. Summary of mean age in patients with thiazide-induced hyponatremia.

Authorship	Year of publication	ES (95% CI)	% Weight
Aaseth	2001	75.00 (62.55, 87.45)	1.49
Ambrosi	2004	84.33 (80.36, 88.30)	3.47
Astraf	1981	68.29 (60.75, 75.83)	2.49
Booker	1984	67.00 (61.72, 72.28)	3.11
Canning	1988	75.00 (66.57, 83.43)	2.27
Chow	2004	76.00 (74.82, 77.19)	4.02
Clayton	2006	64.20 (55.03, 73.37)	2.10
Coenraad	2003	80.67 (75.22, 96.12)	1.11
Cogan	1983	76.50 (74.34, 78.66)	3.88
Fenske	2009	76.00 (68.16, 83.84)	2.42
Fichman	1971	60.96 (57.13, 64.79)	3.50
Friedman	1989	71.00 (65.50, 76.40)	3.08
Hajar	2004	80.50 (78.56, 83.44)	3.72
Hung	2002	76.71 (69.69, 83.73)	2.63
Hwang	2010	76.00 (72.86, 79.14)	3.67
Johnston	1989	65.67 (62.40, 68.94)	3.64
Kalksma	2002	86.00 (79.21, 92.79)	2.69
Kinoshita	2011	76.40 (73.83, 78.97)	3.80
Mackay	1983	69.09 (63.54, 74.64)	3.03
McDowell	2010	73.10 (71.97, 74.23)	4.02
Mouallem	1983	66.75 (52.21, 81.29)	1.21
Musch	2001	75.00 (70.50, 79.50)	3.33
Oles	1984	81.33 (70.82, 91.84)	1.82
Pinnock	1978	77.50 (70.57, 84.43)	2.65
Rask	1996	79.33 (72.14, 86.52)	2.58
Rastogi	2012	71.10 (70.53, 71.67)	4.07
Rosner	2004	73.50 (52.93, 94.07)	0.71
Shapiro	2010	82.10 (79.99, 84.21)	3.89
Sharabi	2002	76.40 (75.00, 77.80)	3.99
Sonnenblick	1986	77.30 (70.56, 84.04)	2.70
Takeshita	2010	71.00 (57.28, 84.72)	1.31
Tarssanen	1980	74.00 (62.24, 85.76)	1.80
Thuesen	1980	61.00 (49.25, 72.75)	1.60
Van Wijngaarden	2010	82.50 (73.69, 91.31)	2.18
Yong	2011	81.70 (78.27, 85.13)	3.81
Zalin	1984	65.12 (57.98, 72.26)	2.60
Overall	(I-squared = 92.6%, p = 0.000)	74.94 (73.03, 76.85)	100.00

NOTE: Weights are from random effects analysis

![Age Distribution Chart]
Figure S3. Summary of mean Body Mass Index in patients with thiazide-induced hyponatremia (Kg/m²).

Authorship	Year of publication	ES (95% CI)	Weight
Chow	2004	22.40 (21.91, 22.89)	49.92
Rastogi	2012	27.40 (27.10, 27.70)	50.08
Overall	(I² = 99.7%, p = 0.000)	24.90 (20.00, 29.80)	100.00

NOTE: Weights are from random effects analysis.
Figure S4. Summary of mean duration from thiazide initiation to presentation with thiazide-induced hyponatremia (days).

Authorship	Year of publication	ES (95% CI)	Weight
Ashraf	1981	5.67 (1.82, 9.52)	10.88
Bain	1986	4.00 (2.05, 5.95)	10.99
Booker	1984	7.60 (3.20, 12.00)	10.84
Clayton	2006	470.00 (145.30, 794.70)	0.11
Fichman	1971	17.43 (2.06, 32.80)	9.09
Friedman	1989	6.67 (3.46, 9.88)	10.92
Hung	2002	737.00 (–891.26, 2165.26)	0.01
Kalksma	2002	1095.00 (511.10, 1678.90)	0.04
McDowell	2010	64.88 (59.33, 70.43)	10.73
Mouallem	1983	172.00 (–48.50, 392.50)	0.25
Oles	1984	8.33 (–2.18, 18.84)	10.03
Rask	1996	16.00 (1.16, 30.84)	9.20
Sonnenblick	1989	9.50 (3.27, 15.73)	10.65
Takeshita	2010	45.00 (15.60, 74.40)	6.20
Zalin	1984	437.63 (59.71, 815.55)	0.08
Overall (I–squared = 96.9%, p = 0.000)		19.03 (7.97, 30.09)	100.00

NOTE: Weights are from random effects analysis.
Figure S5. Proportion of patients with thiazide-induced hyponatremia who reported fatigue.

Proportion meta-analysis plot [random effects]

Proportion meta-analysis plot [random effects]

Figure S6. Proportion of patients with thiazide-induced hyponatremia who reported dizziness.
Figure S7. Proportion of patients with thiazide-induced hyponatremia who reported confusion.

Proportion meta-analysis plot [random effects]

- Aaseth 2001: 0.333 (0.008, 0.906)
- Ambrosi 2004: 0.667 (0.094, 0.992)
- Ashraf 1981: 0.286 (0.037, 0.710)
- Bain 1966: 0.500 (0.013, 0.987)
- Bayer 1966: 0.636 (0.407, 0.828)
- Booker 1984: 0.833 (0.359, 0.996)
- Chapman 2002: 0.155 (0.085, 0.250)
- Chow 2004: 0.175 (0.127, 0.231)
- Friedman 1989: 0.545 (0.234, 0.833)
- Hung 2002: 0.143 (0.004, 0.579)
- Johnston 1989: 0.333 (0.008, 0.906)
- Kalikama 2002: 0.333 (0.008, 0.906)
- Mathew 1990: 0.241 (0.139, 0.372)
- Oles 1984: 1.000 (0.292, 1.000)
- Pinnock 1978: 1.000 (0.398, 1.000)
- Rask 1996: 0.667 (0.094, 0.992)
- Rosner 2004: 0.500 (0.013, 0.987)
- Shapiro 2010: 0.708 (0.582, 0.814)
- Sharabi 2002: 0.167 (0.115, 0.229)
- Van Wijngaarden 2010: 0.500 (0.013, 0.987)
- Yong 2011: 0.545 (0.234, 0.833)
- Zalin 1984: 0.250 (0.032, 0.651)
- combined: 0.443 (0.328, 0.561)
Figure S8. Proportion of patients with thiazide-induced hyponatremia who reported vomiting.

Figure S9. Proportion of patients with thiazide-induced hyponatremia who reported falls.
Figure S10. Proportion of patients with thiazide-induced hyponatremia who reported nausea.

Proportion meta-analysis plot [random effects]

Study	Proportion (95% confidence interval)
Aaseh 2001	0.667 (0.094, 0.992)
Astraf 1981	0.571 (0.184, 0.901)
Bayer 1986	0.636 (0.407, 0.828)
Booker 1984	0.667 (0.223, 0.957)
Chapman 2002	0.179 (0.104, 0.277)
Friedman 1989	0.182 (0.023, 0.518)
Hung 2002	0.429 (0.099, 0.816)
Johnston 1989	1.000 (0.292, 1.000)
Mathew 1990	0.069 (0.019, 0.167)
Rask 1996	0.333 (0.008, 0.906)
Sharabi 2002	0.267 (0.204, 0.338)
Van Wijngaarden 2010	0.500 (0.013, 0.987)
Yong 2011	0.273 (0.060, 0.610)
Zalin 1984	0.125 (0.003, 0.527)
combined	0.358 (0.244, 0.481)
Figure S11. Proportion of patients with thiazide-induced hyponatremia who were reported to be unconscious.

Proportion meta-analysis plot [random effects]

- Aaseth 2001: 0.333 (0.008, 0.906)
- Ashraf 1981: 0.143 (0.004, 0.579)
- Bain 1986: 0.500 (0.013, 0.987)
- Booker 1984: 0.667 (0.223, 0.957)
- Chapman 2002: 0.048 (0.013, 0.117)
- Friedman 1989: 0.273 (0.060, 0.610)
- Kalkama 2002: 0.333 (0.008, 0.906)
- Mathew 1990: 0.034 (0.004, 0.119)
- Rask 1996: 0.333 (0.008, 0.906)
- Takeshita 2010: 1.000 (0.158, 1.000)
- Van Wijngaarden 2010: 0.500 (0.013, 0.987)
- combined: 0.299 (0.148, 0.476)
Figure S12. Proportion of patients with thiazide-induced hyponatremia who reported weakness.

Proportion meta-analysis plot [random effects]

Study	Proportion (95% confidence interval)
Aaseth 2001	0.333 (0.008, 0.906)
Ambrosi 2004	1.000 (0.292, 1.000)
Bain 1986	0.500 (0.013, 0.987)
Bayer 1986	0.636 (0.407, 0.828)
Booker 1984	0.167 (0.004, 0.641)
Ghose 1975	1.000 (0.158, 1.000)
Hung 2002	0.143 (0.004, 0.579)
Kalima 2002	0.333 (0.008, 0.906)
Oles 1984	0.333 (0.008, 0.906)
Pinnock 1978	0.250 (0.006, 0.806)
Rosner 2004	0.500 (0.013, 0.987)
Sharabi 2002	0.394 (0.323, 0.470)
Van Wijngaarden 2010	1.000 (0.158, 1.000)
Zalin 1984	0.125 (0.003, 0.527)
combined	0.446 (0.321, 0.579)
Figure S13. Proportion of patients with thiazide-induced hyponatremia who reported neurological symptoms.

Proportion meta-analysis plot [random effects]

- Aaseth 2001: 0.333 (0.008, 0.906)
- Astraf 1981: 0.143 (0.004, 0.579)
- Bain 1986: 0.500 (0.013, 0.987)
- Booker 1984: 0.167 (0.004, 0.641)
- Oles 1984: 0.333 (0.008, 0.906)
- Tarssanen 1980: 0.333 (0.008, 0.906)
- Van Wijngaarden 2010: 1.000 (0.158, 1.000)
- Yong 2011: 1.000 (0.715, 1.000)
- combined: 0.510 (0.219, 0.797)
Figure S14. Proportion of patients with thiazide-induced hyponatremia who had seizures.

Proportion meta-analysis plot [random effects]

- Ashraf 1981: 0.286 (0.037, 0.710)
- Booker 1984: 0.167 (0.004, 0.641)
- Chapman 2002: 0.024 (0.003, 0.083)
- Chow 2004: 0.009 (0.001, 0.032)
- Johnston 1989: 1.000 (0.292, 1.000)
- Mathew 1990: 0.103 (0.039, 0.212)
- Oles 1984: 0.333 (0.008, 0.906)
- Rosner 2004: 0.500 (0.013, 0.987)
- Yong 2011: 0.182 (0.023, 0.518)
- Zalin 1984: 0.250 (0.032, 0.651)
- combined: 0.192 (0.083, 0.332)

Figure S15. Proportion of patients with thiazide-induced hyponatremia who had cardiovascular disease.

Proportion meta-analysis plot [random effects]

- Aaseth 2001: 0.667 (0.094, 0.992)
- Ashraf 1981: 1.000 (0.025, 1.000)
- Bain 1986: 1.000 (0.158, 1.000)
- Booker 1984: 0.167 (0.004, 0.641)
- Friedman 1989: 0.182 (0.023, 0.518)
- Hajjar 2004: 0.500 (0.013, 0.987)
- Kalkama 2002: 1.000 (0.292, 1.000)
- Mouallim 1983: 1.000 (0.398, 1.000)
- Pinrock 1978: 0.500 (0.068, 0.932)
- Shapiro 2010: 0.354 (0.239, 0.482)
- Sharabi 2002: 0.222 (0.164, 0.290)
- Tarssanen 1980: 0.333 (0.008, 0.906)
- combined: 0.487 (0.330, 0.647)
Figure S16. Proportion of patients with thiazide-induced hyponatremia who had diabetes mellitus.

Proportion meta-analysis plot [random effects]

- **Al Qahtani 2013** 0.723 (0.680, 0.763)
- **Chow 2004** 0.247 (0.192, 0.309)
- **Friedman 1989** 0.091 (0.002, 0.413)
- **Kalkama 2002** 0.333 (0.008, 0.906)
- **McDowell 2010** 0.042 (0.023, 0.069)
- **Rastogi 2012** 0.238 (0.219, 0.258)
- **Sharabi 2002** 0.200 (0.144, 0.266)
- **Takeshita 2010** 0.500 (0.013, 0.987)
- **Tarsanen 1980** 0.333 (0.008, 0.906)
- **combined** 0.279 (0.120, 0.475)
Figure S17. Proportion of patients with thiazide-induced hyponatremia who took hydrochlorothiazide.

Proportion meta-analysis plot [random effects]

- Asselth 2001: 0.333 (0.008, 0.906)
- Al Qahtani 2013: 0.501 (0.455, 0.547)
- Ambrosi 2004: 0.333 (0.008, 0.906)
- Ashraf 1981: 0.714 (0.290, 0.963)
- Chapman 2002: 0.013 (0.002, 0.048)
- Fenske 2009: 1.000 (0.664, 1.000)
- Fichman 1971: 0.640 (0.425, 0.820)
- Hajjar 2004: 0.500 (0.013, 0.987)
- Kalksma 2002: 0.667 (0.094, 0.992)
- Kinoshita 2011: 1.000 (0.912, 1.000)
- Lamis 2013: 1.000 (0.932, 1.000)
- Oes 1984: 1.000 (0.292, 1.000)
- Pinnock 1978: 0.250 (0.006, 0.806)
- Rosner 2004: 1.000 (0.158, 1.000)
- Sonnenblick 1989: 1.000 (0.398, 1.000)
- Takeshita 2010: 0.500 (0.013, 0.987)
- Van Wijngaarden 2010: 0.500 (0.013, 0.987)
- van Brummelen 1978: 1.000 (0.158, 1.000)
- combined: 0.683 (0.519, 0.826)
Figure S18. Proportion of patients with thiazide-induced hyponatremia who took indapamide.

Proportion meta-analysis plot (random effects)

Study	Proportion (95% confidence interval)
Al Qahtani 2013	0.4989 (0.4527, 0.5451)
Ambrosi 2004	0.6667 (0.5943, 0.9916)
Chapman 2002	0.5638 (0.4802, 0.6447)
Fourlanos 2003	0.5769 (0.5200, 0.6324)
Hung 2002	0.7143 (0.2904, 0.9633)
Jolobe 2003	0.0385 (0.0010, 0.1964)
McDowell 2010	0.0268 (0.0123, 0.0502)
Yong 2011	0.0000 (0.0000, 0.0000)
combined	0.4721 (0.2330, 0.7183)
Figure S19. Proportion of patients with thiazide-induced hyponatremia who took Moduretic® (hydrochlorothiazide with amiloride).

Proportion meta-analysis plot [random effects]

Aaseth 2001 0.333 (0.008, 0.906)
Adams 1988 0.500 (0.013, 0.987)
Bain 1986 0.500 (0.013, 0.987)
Bayer 1986 0.500 (0.282, 0.718)
Canning 1988 1.000 (0.398, 1.000)
Chapman 2002 0.423 (0.342, 0.506)
Donaldson 1983 1.000 (0.398, 1.000)
Fourlanos 2003 0.372 (0.318, 0.428)
Friedman 1989 1.000 (0.715, 1.000)
Hung 2002 0.286 (0.037, 0.710)
Johnston 1989 1.000 (0.292, 1.000)
Jolobe 2003 0.385 (0.202, 0.594)
Mackay 1983 0.727 (0.390, 0.940)
Mathew 1990 0.750 (0.194, 0.994)
Pinnock 1978 1.000 (0.938, 1.000)
Rask 1996 0.750 (0.194, 0.994)
Sonnenblick 1986 1.000 (0.292, 1.000)
Tarsanen 1980 1.000 (0.292, 1.000)
Zalin 1984 1.000 (0.631, 1.000)
combined 0.733 (0.572, 0.866)
Figure S20. Proportion of patients with thiazide-induced hyponatremia who took bendroflumethiazide (bendrofluazide).

Figure S21. Proportion of patients with thiazide-induced hyponatremia who took Dyazide® (hydrochlorothiazide with triamterene).
Figure S22. Proportion of patients with thiazide-induced hyponatremia who took chlortalidone.

Figure S23. Proportion of patients with thiazide-induced hyponatremia who were also taking an Angiotensin Converting Enzyme (ACE) inhibitor.
Figure S24. Proportion of patients with thiazide-induced hyponatremia who were also taking non-steroidal anti-inflammatory drugs.

Proportion meta-analysis plot [random effects]

- Asseth 2001: 0.333 (0.008, 0.906)
- Chow 2004: 0.152 (0.108, 0.206)
- Kalksma 2002: 0.333 (0.008, 0.906)
- Oles 1984: 0.333 (0.008, 0.906)
- Rastogi 2012: 0.339 (0.317, 0.361)
- Rosner 2004: 1.000 (0.158, 1.000)

Figure S25. Proportion of patients with thiazide-induced hyponatremia who were also prescribed a non-thiazide diuretic.

Proportion meta-analysis plot [random effects]

- Ambrosi 2004: 0.333 (0.008, 0.906)
- Coenraad 2003: 0.333 (0.008, 0.906)
- Kalksma 2002: 1.000 (0.292, 1.000)
- Mouallem 1983: 1.000 (0.398, 1.000)
- Rastogi 2012: 0.201 (0.183, 0.221)

combined: 0.576 (0.190, 0.913)
Figure S26. Proportion of patients with thiazide-induced hyponatremia who were also taking antidepressants.

Figure S27. Proportion of patients with thiazide-induced hyponatremia who were also taking potassium supplements.
Figure S28. Proportion of patients with thiazide-induced hyponatremia who were also taking angiotensin II receptor blockers.

Proportion meta-analysis plot [random effects]

- **Kinoshita 2011**: 1.000 (0.912, 1.000)
- **Rastogi 2012**: 0.112 (0.097, 0.127)
- **Takeshita 2010**: 0.500 (0.013, 0.987)
- **combined**: 0.589 (0.001, 0.955)

Proportion (95% confidence interval)
Laboratory characteristics

Figure S29. Summary of mean concentration of serum sodium in patients with thiazide-induced hyponatremia (mM).

Authorship	Year of publication	ES (95% CI)	% Weight
Aaseth	2001	110.00 (109.34, 110.66)	2.84
Ambrosi	2004	113.33 (110.72, 115.94)	2.78
Ashraf	1981	105.00 (99.91, 109.19)	2.62
Bain	1986	113.00 (110.06, 115.94)	2.77
Bayer	1986	126.00 (124.78, 127.22)	2.83
Booker	1984	111.17 (105.39, 116.95)	2.57
Canning	1988	116.00 (107.20, 124.80)	2.29
Chow (Female)	2004	114.00 (112.75, 115.25)	2.83
Chow (Male)	2004	117.00 (115.07, 118.93)	2.81
Clayton	2006	119.44 (118.09, 122.79)	2.75
Coenraad	2003	124.33 (117.05, 131.61)	2.44
Donaldson	1983	130.00 (128.90, 131.10)	2.76
Fenske	2009	121.00 (111.20, 130.80)	2.19
Fichman	1971	108.12 (106.08, 110.16)	2.80
Friedman	1989	119.18 (116.35, 122.01)	2.77
Hajjar	2004	129.00 (127.05, 130.95)	2.81
Hung	2002	108.90 (105.74, 112.06)	2.76
Hwang	2010	118.00 (114.86, 121.14)	2.76
Johnston	1989	106.66 (88.88, 124.44)	1.44
Kalksma	2002	111.00 (106.93, 115.07)	2.70
Kinoshita	2011	114.79 (112.30, 117.28)	2.79
Mackay	1983	126.73 (124.24, 129.22)	2.79
Mathow	1990	118.48 (116.35, 120.61)	2.90
McDowell	2010	128.06 (127.79, 128.33)	2.84
Musch	2001	126.00 (123.75, 128.25)	2.80
Oles	1984	119.67 (109.92, 129.42)	2.19
Pincock	1978	114.67 (111.21, 118.13)	2.74
Rask	1996	117.00 (113.55, 120.45)	2.74
Rosner	2004	115.00 (102.26, 127.74)	1.89
Sharabi	2002	120.00 (119.12, 120.88)	2.83
Sonnenblick	1986	109.40 (107.47, 111.33)	2.81
Sonnenblick	1989	109.50 (102.64, 116.36)	2.48
Takeshita	2010	117.00 (109.17, 124.83)	2.29
Tarssanen	1980	112.00 (104.46, 119.54)	2.42
Thulesen	1980	111.50 (108.56, 114.44)	2.77
VanWijngaarden	2010	110.00 (108.05, 111.95)	2.81
Yong	2011	110.90 (107.41, 114.39)	2.74
Zalin	1984	117.00 (112.71, 121.29)	2.69
Overall (I-squared = 99.1%, p = 0.000)	116.43 (113.40, 119.46)	100.00	

Note: Weights are from random effects analysis.
Figure S30. Summary of mean concentration of serum potassium in patients with thiazide-induced hyponatremia (mM).

Authorship	Year of publication	ES (95% CI)	% Weight
Asseth	2001	2.97 (2.30, 3.64)	3.52
Booker	1984	2.84 (2.37, 3.31)	4.06
Canning	1988	3.83 (3.61, 4.05)	4.63
Chow	2004	3.30 (3.20, 3.40)	4.76
Clayton	2006	3.69 (2.74, 4.64)	2.77
Fenske	2009	3.80 (3.28, 4.32)	3.93
Fichman	1971	2.88 (2.70, 3.06)	4.67
Hung	2002	3.40 (2.53, 4.27)	2.96
Hwang	2010	3.50 (3.19, 3.81)	4.44
Johnston	1989	3.00 (2.15, 3.85)	3.02
Kalksma	2002	2.73 (2.56, 2.90)	4.69
McDowell	2010	4.14 (4.07, 4.21)	4.78
Musch	2001	3.50 (3.23, 3.77)	4.53
Oles	1984	2.90 (2.32, 3.48)	3.76
Pinnock	1978	2.95 (2.85, 3.05)	4.77
Rask	1996	3.43 (2.81, 4.05)	3.85
Rosner	2004	3.30 (2.51, 4.09)	3.18
Sharabi	2002	3.80 (3.70, 3.90)	4.76
Sonnenblick	1986	3.70 (3.48, 3.92)	4.62
Takeshita	2010	2.55 (2.26, 2.84)	4.49
Tarssanen	1980	3.35 (2.46, 4.24)	2.93
Thuesen	1980	3.15 (2.07, 4.23)	2.46
Van Wilgaarden	2010	3.20 (2.42, 3.78)	3.76
Yong	2011	2.80 (2.45, 3.15)	4.36
van Brummelen	1978	2.85 (2.56, 3.14)	4.49
Overall (I-squared = 96.8%, p = 0.000)		3.26 (3.02, 3.51)	100.00

NOTE: Weights are from random effects analysis.
Figure S31. Summary of mean concentration of serum creatinine in patients with thiazide-induced hyponatremia (µmol/L).

Authorship	Year of publication	ES (95% CI)	Weight	%
Aaseth	2001	76.78 (64.14, 89.43)	5.48	7.20
Canning	1988	68.75 (53.18, 74.32)	7.35	7.36
Chow	2004	47.00 (44.11, 49.89)	7.42	7.42
Fenecke	2009	142.25 (137.15, 147.35)	2.30	7.34
Fichman	1971	69.08 (54.18, 75.78)	7.34	61.88
Heang	2010	61.88 (52.62, 71.14)	7.17	62.00
Johnston	1989	72.00 (48.48, 95.52)	5.92	97.24
Kalksma	2002	103.00 (91.23, 114.77)	7.00	69.98
Mouallem	1983	142.25 (137.15, 147.35)	7.35	61.33
Musch	2001	70.82 (58.93, 82.74)	6.99	61.33
Rask	1996	61.33 (59.60, 63.06)	7.44	57.24
Sharabi	2002	97.24 (84.33, 110.15)	6.91	48.02
Takeshita	2010	68.75 (53.56, 69.44)	7.42	68.75
Thuesen	1980	62.00 (45.46, 77.54)	6.70	62.00
Yong	2011	76.78 (64.14, 89.43)	100.00	76.78

Overall (I²-squared = 98.8%, p < 0.000)

NOTE: Weights are from random effects analysis
Figure S32. Summary of mean serum osmolality in patients with thiazide-induced hyponatremia (mosm/kg).

Authorship	Year of publication	ES (95% CI)	Weight	%
Aaseth	2001	253.00 (246.76, 259.24)	11.34	
Booker	1984	251.50 (245.06, 258.06)	7.03	
Chow	2004	238.00 (235.64, 240.36)	14.01	
Fidrmann	1971	242.00 (233.14, 250.86)	9.24	
Hung	2002	237.00 (236.84, 247.16)	8.93	
Hwang	2010	241.00 (235.34, 246.76)	11.72	
Rask	1996	254.00 (249.34, 264.66)	8.35	
Sonnenblick	1986	241.00 (237.00, 245.00)	13.05	
Sonnenblick	1989	239.50 (234.09, 245.01)	2.10	
Takeshita	2010	251.00 (240.65, 261.35)	1.77	
Yong	2011	236.50 (235.60, 234.40)	13.12	
Overall (I^2=squared = 80.3%, p = 0.000)		245.58 (235.64, 244.94)	108.00	

NOTE: Weights are from random effects analysis.
Figure S33. Summary of mean urinary osmolality in patients with thiazide-induced hyponatremia (mosm/kg).

Year of publication	ES (95% CI)	Weight
Booker 1984	437.00 (349.76, 524.20)	6.99
Choe 2004	260.00 (271.13, 413.87)	13.24
Fenske 2000	263.00 (215.71, 358.30)	8.93
Fichman 1971	337.00 (364.60, 408.37)	8.00
Hong 2002	404.00 (281.60, 526.40)	4.44
Heang 2010	261.00 (239.67, 453.33)	9.93
Johnston 1989	307.67 (178.19, 477.13)	3.32
Musch 2001	483.00 (421.85, 544.15)	9.13
Rask 1985	360.00 (141.91, 611.00)	1.42
Rosner 2004	260.00 (277.60, 407.00)	13.64
Takeshita 2010	490.00 (458.64, 524.41)	10.32
Yong 2011	401.47 (370.31, 432.62)	100.00

NOTE: Weights are from random effects analysis

| Overall (I² = 93.9%, p < 0.000) | 401.47 (370.31, 432.62) | 100.00 |

Figure S34. Summary of mean concentration of urinary sodium in patients with thiazide-induced hyponatremia (mM).

Year of publication	ES (95% CI)	Weight
Aaseth 2001	16.07 (11.38, 21.73)	11.04
Booker 1984	84.87 (83.91, 125.62)	8.16
Fenske 2000	54.00 (43.93, 64.07)	9.53
Fichman 1971	37.18 (18.99, 55.37)	9.88
Hong 2002	102.00 (88.56, 115.44)	6.45
Heang 2010	91.00 (84.29, 117.71)	8.74
Johnston 1989	43.00 (7.31, 78.78)	7.53
Musch 2001	64.00 (40.01, 84.00)	9.90
Rosner 2004	49.50 (40.45, 68.54)	5.36
Takeshita 2010	81.00 (63.88, 98.13)	2.53
Thuesen 1980	50.00 (45.59, 54.41)	11.03
Yong 2011	79.00 (52.35, 107.65)	9.95

**Overall (I² = 89.5%, p < 0.000) | 83.98 (46.07, 121.90) | 100.00 |
PRISMA statement for systematic reviews

Section/topic	Item No	Checklist item	Reported on page No
Title			
Title	1	Identify the report as a systematic review, meta-analysis, or both	0
Abstract			
Structured summary	2	Provide a structured summary including, as applicable, background, objectives, data sources, study eligibility criteria, participants, interventions, study appraisal and synthesis methods, results, limitations, conclusions and implications of key findings, systematic review registration number	2
Introduction			
Rationale	3	Describe the rationale for the review in the context of what is already known	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS)	4
Methods			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (such as web address), and, if available, provide registration information including registration number	5
Eligibility criteria	6	Specify study characteristics (such as PICOS, length of follow-up) and report characteristics (such as years considered, language, publication status) used as criteria for eligibility, giving rationale	5
Information sources	7	Describe all information sources (such as databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated	5
------------	---	--	---
Study selection	9	State the process for selecting studies (that is, screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis)	5
Data collection process	10	Describe method of data extraction from reports (such as piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators	5
Data items	11	List and define all variables for which data were sought (such as PICOS, funding sources) and any assumptions and simplifications made	5
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis	5-6
Summary measures	13	State the principal summary measures (such as risk ratio, difference in means).	6
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (such as I² statistic) for each meta-analysis	5-6
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (such as publication bias, selective reporting within studies)	5-6
Additional analyses	16	Describe methods of additional analyses (such as sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified	5-6
Results			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review,	6
with reasons for exclusions at each stage, ideally with a flow diagram

Study characteristics	18	For each study, present characteristics for which data were extracted (such as study size, PICOS, follow-up period) and provide the citations	6-9 and online supplement
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see item 12).	6-9 and online supplement
Results of individual studies	20	For all outcomes considered (benefits or harms), present for each study (a) simple summary data for each intervention group and (b) effect estimates and confidence intervals, ideally with a forest plot	6-9 and online supplement
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency	6-9 and online supplement
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see item 15)	6-9 and online supplement
Additional analysis	23	Give results of additional analyses, if done (such as sensitivity or subgroup analyses, meta-regression) (see item 16)	6-9 and online supplement
Discussion			
Summary of evidence	24	Summarise the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (such as health care providers, users, and policy makers)	10-11
Limitations	25	Discuss limitations at study and outcome level (such as risk of bias), and at review level (such as incomplete retrieval of identified research, reporting bias)	12-13
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research	14
Funding			
Funding	27	Describe sources of funding for the systematic review and other support (such as supply of data) and role of funders for the systematic review	14