JACOB’S LADDERS, REVERSE ITERATIONS AND NEW INFINITE SET OF L_2-ORTHOGONAL SYSTEMS GENERATED BY THE RIEMANN $\zeta\left(\frac{1}{2} + it\right)$-FUNCTION

JAN MOSER

Abstract. It is proved in this paper that continuum set of L_2-orthogonal systems generated by the Riemann zeta-function on the critical line corresponds to every fixed L_2-orthogonal system on a fixed segment. This theorem serves as a resource for new set of integrals not accessible by the current methods in the theory of the Riemann zeta-function.

Dedicated to the 100th anniversary of G.H. Hardy’s fundamental theorem: the function $\zeta\left(\frac{1}{2} + it\right)$ has an infinite set of zeros, \[1\].

1. Introduction

1.1. In this paper we obtain new properties of the signal

$$Z(t) = e^{i\vartheta(t)}\zeta\left(\frac{1}{2} + it\right), \tag{1.1}$$

$$\vartheta(t) = -\frac{t}{2}\ln\pi + \text{Im} \ln \Gamma\left(\frac{1}{4} + \frac{t}{2}\right),$$

which is generated by the Riemann zeta-function. In connection with (1.1) we have introduced (see \[5\], (9.1), (9.2)) the formula

$$\tilde{Z}^2(t) = \frac{d\varphi_1(t)}{dt}, \tag{1.2}$$

where

$$\tilde{Z}^2(t) = \frac{Z^2(t)}{2\Phi'[\varphi(t)]} = \frac{|\zeta\left(\frac{1}{2} + it\right)|^2}{\omega(t)}, \tag{1.3}$$

$$\omega(t) = \left\{1 + \mathcal{O}\left(\frac{\ln\ln t}{\ln t}\right)\right\}\ln t.$$

The function $\varphi_1(t)$ that we call Jacob’s ladder (see our paper \[2\]) according to the Jacob’s dream in Chumash, Bereishis, 28:12, has the following properties:

(a) $$\varphi_1(t) = \frac{1}{2}\varphi(t),$$

(b) function $\varphi(t)$ is solution of the non-linear integral equation (see \[2\], \[5\])

$$\int_0^{\mu[T]} Z^2(t)e^{-\frac{\lambda(T)}{2}t}dt = \int_0^T Z^2(t)dt,$$

Key words and phrases. Riemann zeta-function.
where each admissible function $\mu(y)$ generates a solution

$$y = \varphi_\mu(T) = \varphi(T); \quad \mu(y) \geq 7y \ln y.$$

Remark 1. The main reason to introduce Jacob’s ladders in [2] lies in the following: the Hardy-Littlewood integral (1918)

$$\int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 \, dt$$

has – in addition to the Hardy-Littlewood (and other similar) expression possessing unbounded errors at $T \to \infty$ – the following infinite set of almost exact expressions

$$\int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 \, dt = \varphi_1(T) \ln \varphi_1(T) + (c - \ln 2\pi)\varphi_1(T) + c_0 + O \left(\frac{\ln T}{T} \right), \quad T \to \infty,$$

where c is the Euler’s constant, and c_0 is the constant from the Titchmarsh-Kober-Atkinson formula (see [7], p. 141).

Remark 2. Simultaneously with (1.4) we have proved that the following transcendental equation

$$\int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 \, dt = V(T) \ln V(T) + (c - \ln 2\pi)V(T) + c_0$$

has an infinite set of asymptotic solutions

$$V(T) = \varphi_1(T), \quad T \to \infty.$$

Remark 3. The Jacob’s ladder $\varphi_1(T)$ can be interpreted by our formula (see [2], (6.2))

$$T - \varphi_1(T) \sim (1 - c)\pi(T); \quad \pi(T) \sim \frac{T}{\ln T}, \quad T \to \infty,$$

where $\pi(T)$ is the prime-counting function, as an asymptotic complement function to the function

$$(1 - c)\pi(T)$$

in the sense

$$\varphi_1(T) + (1 - c)\pi(T) \sim T, \quad T \to \infty.$$

1.2. In the paper [3] we have proved that the following continuum set $S(T, 2l)$ of the systems

$$\left\{ |\tilde{Z}(t)|, |\tilde{Z}(t)| \cos \left[\frac{\pi}{T}(\varphi_1(t) - T) \right], |\tilde{Z}(t)| \sin \left[\frac{\pi}{T}(\varphi_1(t) - T) \right], \ldots, |\tilde{Z}(t)| \cos \left[\frac{\pi}{T}n(\varphi_1(t) - T) \right], |\tilde{Z}(t)| \sin \left[\frac{\pi}{T}n(\varphi_1(t) - T) \right], \ldots \right\},$$

$$t \in \left[\frac{1}{T}, \frac{1}{T} + 2l \right];$$

$$\varphi_1 \left\{ \left[\frac{1}{T}, \frac{1}{T} + 2l \right] \right\} = \left[T, T + 2l \right]$$

is the set of orthogonal system on the segment

$$\left[\frac{1}{T}, \frac{1}{T} + 2l \right]$$
for all
\[T \geq T_0[\varphi_1], \quad 2l \in \left(0, \frac{T}{\ln T}\right). \]

Next, in the paper \[4\] we have constructed corresponding continuum set of orthogonal systems generated by Jacobi’s polynomials.

In this paper we give essential generalization of above mentioned. Namely, to every fixed \(L_2 \)-orthogonal system
\[
\{f_n(t)\}_{n=1}^{\infty}, \quad t \in [0, 2l]
\]
we assign continuum set of \(L_2 \)-orthogonal systems
\[
\{F_n(t; T, k, l)\}_{n=1}^{\infty}, \quad t \in \left[\varphi_1(t), \varphi_2(t)\right], \quad T \to \infty, \quad k = 1, \ldots, k_0,
\]
\[l = o\left(\frac{T}{\ln T}\right); \]
\[
\varphi_1 \left\{\frac{k}{T}, \frac{k}{T + 2l}\right\} = \left[\frac{k - 1}{T}, \frac{k - 1}{T + 2l}\right],
\]
where \(k_0 \in \mathbb{N} \) is an arbitrary fixed number.

2. RESULT

2.1. Let us remind that (see \[6\])
\[
\varphi^r_1(t): \quad \varphi^0_1(t) = t, \quad \varphi^1_1(t) = \varphi_1(t), \quad \varphi^2_1(t) = \varphi_1(\varphi_1(t)), \ldots
\]
The following Theorem holds true.

Theorem. For every fixed \(L_2 \)-orthogonal system
\[
\{f_n(t)\}_{n=1}^{\infty}, \quad t \in [0, 2l], \quad l = o\left(\frac{T}{\ln T}\right), \quad T \to \infty
\]
there is continuum set of \(L_2 \)-orthogonal systems
\[
\{F_n(t; T, k, l)\}_{n=1}^{\infty} = \left\{f_n(\varphi^k_1(t) - T)\prod_{r=0}^{k-1} Z[\varphi^r_1(t)]\right\}_{n=1}^{\infty}, \quad t \in \left[\frac{k}{T}, \frac{k}{T + 2l}\right],
\]
where
\[
\varphi_1 \left\{\frac{k}{T}, \frac{k}{T + 2l}\right\} = \left[\frac{k - 1}{T}, \frac{k - 1}{T + 2l}\right], \quad k = 1, \ldots, k_0,
\]
\[
\left[\frac{k}{T}, \frac{k}{T + 2l}\right] = \left[\frac{k - 1}{T}, \frac{k - 1}{T + 2l}\right], \quad k = 1, \ldots, k_0,
\]
\[
and k_0 \in \mathbb{N} \) is arbitrary number, i.e. the following formula is valid
\[
\int_{\frac{k}{T}}^{\frac{k}{T + 2l}} f_m(\varphi^k_1(t) - T)f_n(\varphi^k_1(t) - T)\prod_{r=0}^{k-1} Z^2[\varphi^r_1(t)]dt =
\]
\[
\left\{ 0, \quad m \neq n, \quad A_n, \quad m = n, \quad A_n = \int_0^{2l} f_n^2(t)dt. \right.
\]
Next, we have the following properties

\[l = o \left(\frac{T}{\ln T} \right) \Rightarrow \]

\[\frac{k}{|T, T + 2l|} = \frac{k}{T + 2l - T} = o \left(\frac{T}{\ln T} \right), \]

(2.5)

\[\frac{k-1}{|[T, T + 2l]|} = \frac{k-1}{T - T + 2l} = (1 - c)\pi(T); \quad \pi(T) \sim \frac{T}{\ln T}, \]

(2.6)

\[[T, T + 2l] \prec [\frac{1}{T}, \frac{1}{T + 2l}] \prec \cdots \prec [\frac{k}{T}, \frac{k}{T + 2l}] \prec \cdots, \]

where \(\pi(T) \) stands for the prime-counting function.

2.2.

Remark 4. We obtain from (2.2) by (1.3) that

\[F_n(t; T, k, l) = f_n(\varphi^1(t) - T) \prod_{r=0}^{k-1} \left| \frac{\zeta \left(\frac{1}{2} + i \varphi^1_r(t) \right)}{\sqrt{\omega[\varphi^1_r(t)]}} \right|, \]

i. e. our formula (2.8) shows direct connection between the Riemann function

\[\zeta \left(\frac{1}{2} + it \right) \]

and an arbitrary \(L_2 \)-orthogonal system

\[\{f_n(t)\}_{n=1}^{\infty}, \quad t \in [0, 2l]. \]

Remark 5. Asymptotic behavior of the disconnected set (see (2.6), (2.7))

\[\Delta(T, k, l) = \bigcup_{r=0}^{k} [\frac{r}{T}, \frac{r}{T} + 2l] \]

is as follows: if \(T \to \infty \), then the components of the set recedes unboundedly each from other and all together are receding to infinity. Hence, if \(T \to \infty \) the set behaves as one dimensional Friedmann-Hubble expanding universe.

2.3. Since (see (2.4))

\[t \in \left[\frac{1}{T}, \frac{1}{T + 2l} \right] \Rightarrow \]

\[\varphi_1(t) \in [\varphi_1(T), \varphi_1(T + 2l)] = \left[\frac{1}{T}, \frac{1}{T + 2l} \right] \Rightarrow \]

\[\varphi_2(t) \in [\varphi_1(T), \varphi_1(T + 2l)] = \left[\frac{k-1}{T}, \frac{k-1}{T + 2l} \right] \Rightarrow \]

\[\vdots \]

we point-out the following...
Property 1. If

\[t \in \left[T, T + 2l \right], \ k = 1, \ldots, k_0 \]

then

\[(2.10) \quad \phi_1^r(t) \in \left[kT, k\dot{T} + 2l \right], \ r = 0, 1, \ldots, k \]

holds true for the arguments of the functions (see (2.2), (2.8))

\[f_n(\phi_1^r(t) - T), |\tilde{Z}[\phi_1^r(t)]|, \omega[\phi_1^r(t)], \left| \zeta \left(\frac{1}{2} + i\phi_1^r(t) \right) \right|. \]

3. Examples

3.1. For the classical Fourier orthogonal system

\[\left\{ 1, \cos \frac{\pi t}{l}, \sin \frac{\pi t}{l}, \ldots, \cos \frac{\pi nt}{l}, \sin \frac{\pi nt}{l} \right\} \]

(3.1)

\[t \in [0, 2l], \ l = o \left(\frac{T}{\ln T} \right) \]

we have as corresponding (see (2.2), (2.8)) continuous set of orthogonal systems the following

\[\left\{ \prod_{r=0}^{k-1} \left| \frac{\zeta \left(\frac{1}{2} + i\phi_1^r(t) \right)}{\sqrt{\omega[\phi_1^r(t)]}} \right|, \ldots, \right. \]

\[\left(\prod_{r=0}^{k-1} \left| \frac{\zeta \left(\frac{1}{2} + i\phi_1^r(t) \right)}{\sqrt{\omega[\phi_1^r(t)]}} \right| \right) \cos \left(\frac{\pi}{l} n(\phi_1^r(t) - T) \right), \]

\[\left(\prod_{r=0}^{k-1} \left| \frac{\zeta \left(\frac{1}{2} + i\phi_1^r(t) \right)}{\sqrt{\omega[\phi_1^r(t)]}} \right| \right) \sin \left(\frac{\pi}{l} n(\phi_1^r(t) - T) \right), \ldots \}

(3.2)

\[t \in \left[T, T + 2l \right], \ k = 1, \ldots, k_0, \ T \to \infty, \]

and, for example,

\[k_0 = S = 10^{10^{34}}, \ S^S, \ldots \]

where \(S \) is the Skewes constant.

3.2. For the system of Jacobi’s functions

\[\sqrt{(1 - t)^\alpha (1 + t)^\beta} P_n^{(\alpha, \beta)}(t), \ t \in [-1, 1], \ n = 0, 1, 2, \ldots ; \ \alpha, \beta > -1 \]

(3.3)

generated by the Jacobi’s polynomials \(P_n^{(\alpha, \beta)} \) we have that

\[\int_{-1}^{1} (1 - t)^\alpha (1 + t)^\beta P_n^{(\alpha, \beta)}(t) P_m^{(\alpha, \beta)}(t) dt = 0, \ m \neq n, \]

(3.4)

\[\int_{-1}^{1} (1 - t)^\alpha (1 + t)^\beta \left[P_n^{(\alpha, \beta)}(t) \right]^2 dt = \]

\[= \frac{2^{\alpha + \beta + 1} \Gamma(n + \alpha + 1) \Gamma(n + \beta + 1)}{2n + \alpha + \beta + 1} = A_n(\alpha, \beta). \]

Next, the substitution

\[x = t - T - 1 \]
in (3.3) yields (see (3.4)) the formulae

\[
\int_T^{T+2} (2 + T - t)^\alpha (t - T)^\beta P_m^{(\alpha,\beta)}(t - T - 1)P_n^{(\alpha,\beta)}(t - T - 1)dt = 0, \ m \neq n, \ldots
\]

Consequently, the following continuum set (for each fixed pair \(\alpha, \beta > -1\)) of orthogonal systems

\[
\left\{ P_n^{(\alpha,\beta)}(t - T - 1)\sqrt{(T + 2 - \varphi^k_1(t))^{\alpha} (\varphi^k_1(t) - T)^\beta} \times \prod_{r=0}^{k-1} \left| \frac{\zeta \left(\frac{1}{2} + i \varphi^r_1(t) \right)}{\sqrt{|\varphi^r_1(t)|}} \right| \right\}_{n=0}^\infty,
\]

\(t \in [T, T + 2], \ T \to \infty, \ k = 1, \ldots, k_0.\)

corresponds to the Jacobi’s orthogonal system (3.3) (see (2.2), (2.8)).

3.3. For the system of Bessel’s functions

(3.5)

\[
\left\{ \sqrt{\pi} J_n \left(\frac{\mu_{m_1}}{2t} \right) \right\}_{m=1}^\infty, \ t \in [0, 2l]
\]

generated by Bessel’s function \(J_n(t)\) we have that

\[
\int_0^{2l} tJ_n \left(\frac{\mu_{m_1}}{2t} \right) J_n \left(\frac{\mu_{m_2}}{2t} \right) dt = 0, \ m_1 \neq m_2,
\]

\[
\int_0^{2l} t \left[J_n \left(\frac{\mu_{m_1}}{2t} \right) \right]^2 dt = 2l^2 \left[J_n^2 \left(\mu_{m_1} \right) \right]^2,
\]

where

\(\{\mu_{m_1}\}_{m=1}^\infty\)

is the sequence of the roots of equation

\(J_n(\mu) = 0.\)

Consequently, the following continuum set (for each fixed \(n\)) of orthogonal systems

\[
\left\{ J_n \left(\frac{\mu_{m_1}}{2t} \right) (\varphi^k_1(t) - T) \sqrt{\varphi^k_1(t) - T} \prod_{r=0}^{k-1} \frac{\zeta \left(\frac{1}{2} + i \varphi^r_1(t) \right)}{\sqrt{|\varphi^r_1(t)|}} \right\}_{m=1}^\infty,
\]

\(t \in [T, T + 2l], \ T \to \infty, \ k = 1, \ldots, k_0.\)

corresponds to the Bessel orthogonal system (3.5) (see (2.2), (2.8)).

4. Formula (2.4) as a resource of new integrals containing multiples of \(|\zeta|^2\)

We consider the formula (see (2.4), (2.8))

\[
\int_k^{k+2l} f_n^2(\varphi^k_1(t) - T) \prod_{r=0}^{k-1} \frac{\zeta \left(\frac{1}{2} + i \varphi^r_1(t) \right)}{\sqrt{|\varphi^r_1(t)|}} dt = A_n,
\]

\(A_n = \int_0^{2l} f_n^2(t) dt, \ n = 1, 2, \ldots\)
4.1. Let (see (2.9))
\[t \in \Delta^0(T, k, l) = \bigcup_{r=0}^{k} \left(\frac{T}{r}, \frac{T}{r} + 2l \right), \quad k = 1, \ldots, k_0. \]

Of course
\[\Delta^0(T, k, l) \subset [T, T + 2l], \]
and (see (2.5) – (2.7))
\[\left| [T, T + 2l] \right| = k \sum_{r=0}^{k} \left| \left[\frac{T}{r}, \frac{T}{r} + 2l \right] \right| + k \sum_{r=1}^{k} \left| \left[\frac{T}{r-1}, \frac{T}{r} \right] \right| = \]
\[= (k + 1) o \left(\frac{T}{\ln T} \right) + k O \left(\frac{T}{\ln T} \right) = \]
\[= O \left(\frac{T}{\ln T} \right), \quad k = 1, \ldots, k_0. \]

Thus, we have the following: if
\[t \in [T, T + 2l], \]
then (see (4.2))
\[\ln t = \ln(t - T + T) = \ln T + \ln \left(1 + \frac{t - T}{T} \right) = \ln T + O \left(\frac{1}{\ln T} \right), \]
i. e.
\[\ln t \sim \ln T, \quad \forall t \in (T, T + 2l), \quad k = 1, \ldots, k_0. \]

4.2. It is sufficient to use, for example, the formula (4.1) in the case (see (3.1))
\[f(t) = 1, \quad \Rightarrow \quad A_1 = 2l, \]
i. e.
\[\int_{T}^{T + 2l} \prod_{r=0}^{k} \left| \zeta \left(\frac{1}{2} + i \varphi_1(t) \right) \right| \omega \left| \varphi_1(t) \right| dt = 2l. \]

Next, we obtain from (4.4) (see (1.3) – (4.3)) by the mean-value theorem that
\[\int_{T}^{T + 2l} \prod_{r=0}^{k} \left| \zeta \left(\frac{1}{2} + i \varphi_1(t) \right) \right|^2 dt \sim 2l \ln^k T, \quad T \to \infty. \]

Consequently, we obtain from (4.5) in the case
\[2l = \frac{\Omega}{\ln^k T} = o \left(\frac{T}{\ln T} \right), \quad \Omega > 0 \]
the following
Corollary.

\[\int_{\frac{T}{k} + \Omega \ln^{k-1} T}^{k} \prod_{r=0}^{k-1} \left| \zeta \left(\frac{1}{2} + i \phi_1(t) \right) \right|^2 \, dt \sim \Omega, \ T \to \infty, \]

where

\[0 < \Omega = o(T \ln^{k-1} T), \ k = 1, \ldots, k_0. \]

Remark 6. Let us notice explicitly that nor the first two formulae (see (4.6), \(k = 1, 2; \ \Omega = 1 \))

\[\int_{\frac{T}{k} + \Omega \ln^{k-1} T}^{k} \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 \, dt \sim 1, \]

(4.7)

\[\int_{\frac{T}{k} + \Omega \ln^{k-1} T}^{k} \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 \left| \zeta \left(\frac{1}{2} + i \phi_1(t) \right) \right|^2 \, dt \sim 1, \ T \to \infty \]

are not accessible by the current methods in the theory of the Riemann zeta-function.

Remark 7. The first formula in (4.7) gives us the answer to the question about a form of segments for which the following

\[[a(T), b(T)] \to \]

\[\int_{a(T)}^{b(T)} \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 \, dt \sim 1, \ T \to \infty \]

holds true. Namely, corresponding segments are as follows

\[[a(T), b(T)] = \left[T, T + \frac{1}{\ln T} \right] \leftrightarrow [T, T + \frac{1}{\ln T}]. \]

5. First lemmas

5.1. The sequence

\[\{T\}_{k=1}^{k} \]

is defined by the formula (comp. (2.3))

\[\phi_1(T) = T_0^{k-1}, \ k = 1, \ldots, k_0, \ T = T \]

for every \(T \geq T_0[\phi_1] \), where \(k_0 \in \mathbb{N} \) is an arbitrary fixed number. Since the function \(\phi_1(t), \ t \to \infty \)

increases to \(\infty \), then we have from (5.2) that

\[\left\{ T \to \infty \right\} \Leftrightarrow \left\{ T \to \infty \right\}, \]

i. e.

\[\left\{ T \to \infty \right\} \Leftrightarrow \left\{ T \to \infty \right\}. \]
Next, we have (see (1.5), (5.2), (5.3)) that
\[\frac{k}{T} - \frac{k-1}{T} \sim (1 - c) \frac{k}{\ln T} \Rightarrow \frac{1 - \frac{k-1}{k}}{\ln T} \sim \frac{1 - c}{\ln T}, \]
i. e.
\[\frac{k-1}{T} \sim \frac{k}{T}, \]
and, consequently,
\[\frac{k}{T} = \{1 + o(1)\}T, \quad T \to \infty, \quad k = 1, \ldots, k_0. \]

Since
\[\frac{k}{\ln k} \sim \frac{T}{\ln T}, \]
(see (5.3)) then we have (see (5.4)) for the sequence (5.1) that
\[\frac{k}{T} - \frac{k-1}{T} \sim (1 - c) \frac{T}{\ln T}, \quad T \to \infty, \quad k = 1, \ldots, k_0. \]

Consequently, we have
\[T < \frac{1}{T} < \cdots < \frac{k_0}{T} \]
and, of course, (see (2.1))
\[T + H < \frac{1}{T + H} < \cdots < \frac{k_0}{T + H}, \quad 0 < H = o\left(\frac{T}{\ln T}\right). \]

5.2. The following lemma holds true.

Lemma 1.
\[H = o\left(\frac{T}{\ln T}\right) \Rightarrow \]
\[||\frac{k}{T}, \frac{k}{T + H}|| = \frac{k}{T + H} - \frac{k}{T} = o\left(\frac{T}{\ln T}\right), \quad T \to \infty, \quad k = 1, \ldots, k_0, \]
i. e. (2.3) holds true.

Proof. First of all, it follows from (5.6) that
\[\frac{k}{T} - T \sim (1 - c)k \frac{T}{\ln T}, \]
i. e.
\[\frac{k}{T} - T = \{1 + o(1)\}(1 - c)k \frac{T}{\ln T} \]
and, simultaneously (see (5.8))
\[\frac{k}{T + H} - (T + H) = \{1 + o_2(1)\}(1 - c)k \frac{T}{\ln T}. \]
Then we have (see (5.9) – (5.11)) that
\[0 < \frac{k}{T + H - \bar{T}} = H + [o_2(1) - o_1(1)](1 - c)k \frac{T}{\ln T} = \]
\[= H + [o_4(1) - o_3(1)] \frac{T}{\ln T} = \]
\[= o \left(\frac{T}{\ln T} \right) + o(1) \frac{T}{\ln T} = \]
\[= o \left(\frac{T}{\ln T} \right), \quad T \to \infty. \]

\[\square \]

5.3. Next, the following lemma holds true

Lemma 2.
\[H = o \left(\frac{T}{\ln T} \right) \Rightarrow \]
\[k \frac{T}{T} - k^{-1} \frac{1}{T} + H \sim (1 - c) \frac{T}{\ln T}, \quad T \to \infty, \quad k = 1, \ldots, k_0, \]
\[\text{i. e. (2.6) holds true.} \]

Proof. We have from (5.6) by (5.8), (5.9) that
\[k \frac{T}{T} - k^{-1} \frac{1}{T} + H \sim (1 - c) \frac{T}{\ln T}, \quad T \to \infty, \quad k = 1, \ldots, k_0, \]
\[\sim (1 - c) \frac{T}{\ln T} + o \left(\frac{T}{\ln T} \right) \sim \]
\[\sim (1 - c) \frac{T}{\ln T}, \quad T \to \infty, \quad k = 1, \ldots, k_0. \]

\[\square \]

Remark 8. We have (see (5.12)) that
\[(5.13) \quad [T, T + H] \prec \left[T, \frac{1}{T} + H \right] \prec \cdots \prec [T, \frac{1}{k_0} + H], \]
\[\text{i. e. (2.7) holds true.} \]

6. **Reverse iterations**

6.1. First of all, we have (see (2.3), (5.2)) that
\[(6.1) \quad \varphi_1(T) = T \Rightarrow \cdots \Rightarrow \varphi_1^k(T) = T, \quad k = 1, \ldots, k_0. \]
Since
\[(6.2) \quad \varphi_1(T) = T \Rightarrow \frac{1}{T} = \varphi_1^{-1}(T) \]
then we may use the inverse function
\[\varphi_1^{-1}(T) \]
to generate reverse iterations. We have (see (6.2)) that

\[\varphi_1(T) = \frac{1}{T} \Rightarrow \frac{2}{T} = \varphi_1^{-1}(T) = \varphi_1^{-1}(\varphi_1^{-1}(T)) = \varphi_1^{-2}(T), \]

(6.3)

\[k \frac{T}{T} = \varphi_1^{-k}(T), \quad k = 1, \ldots, k_0. \]

Of course, we have (see (6.1), (6.3)) that

\[\varphi_k(t) \in [\varphi_1^{-k}(T), \varphi_1^{-k}(T + H)] = [\varphi_1^{-k}(T), \varphi_1^{-k}(T + H)] \]

(6.4)

(6.5)

Remark 9. Of course, the following holds true (see (5.13), (6.4))

\[[T, T + H] \prec [\varphi_1^{-k}(T), \varphi_1^{-k}(T + H)] \prec \ldots \]

\[\prec [\varphi_1^{-k}(T), \varphi_1^{-k}(T + H)], \quad k = 1, \ldots, k_0. \]

Let us remind for comparison that (see [6], (2.5), Remark 7)

\[[T, T + H] \succ [\varphi_1(T), \varphi_1(T + H)] \succ \cdots \succ \]

\[\succ [\varphi_1^{-k}(T), \varphi_1(T + H)], \quad k = 1, \ldots, k_0, \]

where the direct iteration \(\varphi_1^{-k}(T) \) is generated by the function \(\varphi_1(T) \).

Remark 10. The first two reverse iterations of the segments

\[[T, T + \frac{1}{\ln T}], \quad [T, T + \frac{1}{\ln^2 T}] \]

are included in integral formulae (4.7).
7. **Main lemma**

7.1. The following Lemma holds true.

Lemma 3. If

\[
H = o\left(\frac{T}{\ln T}\right), \quad T \to \infty
\]

then for every Lebesgue-integrable function

\[f(t), \quad t \in [T, T + H]\]

we have that

\[
\int_{T}^{T+H} f(t) dt = \int_{T}^{1} f[\varphi^k_1(t)] \prod_{r=0}^{k-1} \tilde{Z}^2[\varphi^r_1(t)] dt,
\]

\[T \to \infty, \quad k = 1, \ldots, k_0; \quad \varphi^0_1(t) = t,
\]

where \(k_0 \in \mathbb{N}\) is arbitrary fixed number.

Proof. In our paper [5], (9.2), (9.5) we have proved the following lemma: if (comp. (2.3))

\[\varphi_1\left[\frac{1}{1}, \frac{1}{T}, T + H\right] = [T, T + H]\]

then for every Lebesgue-integrable function

\[f(t), \quad t \in [T, T + H]\]

we have (comp. (1.2), (1.3))

\[
\int_{T}^{T+H} f(t) dt = \int_{T}^{1} f[\varphi_1(t)] \tilde{Z}^2(t) dt,
\]

\[T \geq T_0[\varphi_1], \quad \varphi_1 \in \left(0, \frac{T}{\ln T}\right).
\]

Another form of (7.3) is expressed by the formula (see (1.3))

\[
\int_{T}^{T+H} f(t) dt = \int_{T}^{1} f[\varphi_1(t)] \tilde{Z}^2(t) dt.
\]

Now, the repeated application of the formula (7.3) (see (1.3)) gives the following: if

\[H = o\left(\frac{T}{\ln T}\right)\]
then
\[
\int_{T}^{T+H} f(t)dt = \int_{T}^{T+H} f[\varphi_1(t)]\tilde{Z}^2(t)dt =
\]
\[
= \int_{T}^{T+H} f[\varphi_1^2(t)]\tilde{Z}^2[\varphi_1(t)]\tilde{Z}^2(t)dt = \cdots =
\]
\[
= \int_{T}^{T+H} f[\varphi_k^1(t)]\prod_{r=0}^{k-1} \tilde{Z}^2[\varphi_r^1(t)]dt,
\]
that is exactly (7.2). \(\Box\)

7.2.

Remark 11. The formula (7.2) can be expressed as follows (see (6.3))
\[
\int_{T}^{T+H} f(t)dt = \int_{T}^{T+H} f[\varphi_k^1(t)]\prod_{r=0}^{k-1} \tilde{Z}^2[\varphi_r^1(t)]dt, \quad T \to \infty.
\]

8. Proof of Theorem

Let
\[
\{f_n(t)\}_{n=1}^{\infty}, \quad t \in [0, 2l], \quad l = o\left(\frac{T}{\ln T}\right)
\]
be arbitrary fixed \(L_2\)-orthogonal system, i. e.
\[
(8.1) \quad \int_{0}^{2l} f_m(t)f_n(t)dt = \begin{cases} 0, & m \neq n, \\ A_n, & m = n, \end{cases} \quad A_n = \int_{0}^{2l} f_n^2(t)dt.
\]
Then we have for corresponding system (2.2) by (7.2), (8.1) that
\[
f(t) \to f_m(\varphi_k^1(t) - T)f_n(\varphi_1^k(t) - T),
\]
\[
\int_{T}^{T+2l} f_m(\varphi_k^1(t) - T)f_n(\varphi_1^k(t) - T)\prod_{r=0}^{k-1} \tilde{Z}^2[\varphi_r^1(t)]dt =
\]
\[
= \int_{T}^{T+2l} f_m(t-T)f_n(t-T)dt =
\]
\[
= \int_{0}^{2l} f_m(t)f_n(t)dt = \begin{cases} 0, & m \neq n, \\ A_n, & m = n, \end{cases}
\]
i. e. (8.2) holds true. Finally, the properties (2.5) – (2.7) follows from (5.9), (5.12),
(5.13).

I would like to thank Michal Demetrian for his help with electronic version of this paper.

References

[1] G.H. Hardy, ‘Sur les zeros de la fonction \(\zeta(s)\) de Riemann’, C. R. Acad. Sci., 158 (1914), 1012-1014.
[2] J. Moser, ‘Jacob’s ladders and the almost exact asymptotic representation of the Hardy-Littlewood integral’, Math. Notes 88, (2010) 414-422, arXiv: 0901.3937.
[3] J. Moser, ‘Jacob’s ladders and \hat{Z}^2-transformation of the orthogonal system of trigonometric functions’, arXiv: 1007.0108, (2010).

[4] J. Moser, ‘Jacob’s ladders and new orthogonal systems generated by Jacobi’s polynomials’, arXiv: 1010.3540, (2010).

[5] J. Moser, ‘Jacob’s ladders, the structure of the Hardy-Littlewood integral and some new class of nonlinear integral equations’, Proc. Stek. Inst. 276, (2011), 208-221, arXiv: 1103.0359.

[6] J. Moser, ‘Jacob’s ladders, their iterations and new class of integrals connected with parts of the Hardy-Littlewood integral of the function $|\zeta \left(\frac{1}{2} + it \right) |^2$', arXiv: 1209.4719, (2012).

[7] E.C. Titchmarsh, ‘The theory of the Riemann zeta-function’ Clarendon Press, Oxford, 1951.

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynska Dolina M105, 842 48 Bratislava, SLOVAKIA

E-mail address: jan.moser@fmph.uniba.sk