Explicit error bounds for
Markov chain Monte Carlo

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der
Fakultät für Mathematik und Informatik
der Friedrich-Schiller-Universität Jena

von Dipl.-Math. Daniel Rudolf
geboren am 09.11.1982 in Rudolstadt
Contents

1. Introduction and results
 2. Finite state spaces
 2.1. Markov chains
 2.2. Error bounds
 2.3. Burn-in
 2.4. Examples
 2.5. Notes and remarks
2. General state spaces
3. Applications
 4. Integration with respect to log-concave densities
 4.2. Integration over a convex body
 4.3. Notes and remarks
A. Appendix
 A.1. Spectral Theorem
 A.2. Interpolation Theorem
 A.3. Conductance and the Cheeger inequality
Bibliography
Acknowledgement

I want to thank Aicke Hinrichs, Thomas Müller-Gronbach, Erich Novak, Klaus Ritter and Mario Ullrich for several suggestions and helpful hints. The research was supported by DFG Priority Program 1324 and the DFG Research Training Group 1523.
1. Introduction and results

In numerous applications one wants to compute the expectation of a function \(f : D \to \mathbb{R} \) with respect to a probability measure \(\pi \) defined on a measurable space \((D, \mathcal{D})\). The goal is to approximate

\[
S(f) = \int_D f(x) \, \pi(dx),
\]
(1.1)

where we assume that it is not possible to sample \(\pi \) directly with reasonable cost. In other words, we assume that there is no random number generator which generates a sample with respect to \(\pi \) reasonably fast. This might happen if the available information on \(\pi \) is incomplete or one has a complicated measurable space. However, many applications have in common that one knows enough about \(\pi \) to design a Markov chain which approximates the desired distribution. Hence we assume that we cannot sample \(\pi \) directly, but we can run a Markov chain to get close to \(\pi \).

Let us briefly illustrate such problems:

- Let \(A \subset \mathbb{R}^d \) be an arbitrary convex body\(^1\). Suppose that we can sample the uniform distribution on \(A \cap \ell \) for an arbitrary line \(\ell \).

 The goal is to simulate the uniform distribution on \(A \), say \(\mu_A \). For a complicated \(A \) it might be impossible to generate a uniformly distributed sample with reasonable cost. But the hit-and-run algorithm (see Section 4.2) provides a Markov chain which has the limit distribution \(\mu_A \).

- Let \(D \subset \mathbb{R}^d \) be a convex body. Suppose that \(f : D \to \mathbb{R} \) is an integrable function with respect to \(\pi_\varrho \), where \(\varrho \) is an unnormalized positive density and

\[
\pi_\varrho(A) = \frac{\int_A \varrho(x) \, dx}{\int_D \varrho(x) \, dx}, \quad A \subset D.
\]

 The goal is to approximate

\[
S(f, \varrho) = \int_D f(x) \pi_\varrho(dx) = \frac{\int_D f(x) \varrho(x) \, dx}{\int_D \varrho(x) \, dx}.
\]

By the Metropolis algorithm based on the ball walk (see Section 4.1) one can construct a Markov chain which has the limit distribution \(\pi_\varrho \). It might be impossible to sample \(\pi_\varrho \) directly, in particular if \(\varrho \) is a complicated density function.

One can ask the following questions. How does the error of numerical integration based on Markov chains behave? And, how long does the Markov chain need to get close to the limit distribution?

The thesis deals with the first question and, because of the close relation, touches briefly the second one. The Markov chain Monte Carlo method for approximating the expectation plays a crucial role in computer science, in statistical physics, in statistics, and in

\(^1\)A convex body is a bounded convex set with non-empty interior.
financial mathematics, see e.g. [GRS96, Mar99, Liu08, Dia09, BGJM11]. Suppose that the function \(f: D \to \mathbb{R} \) is given by an oracle which provides function values of \(f \). The goal is to approximate \(S(f) \). The integral simplifies to a sum if the state space \(D \) is finite, such that
\[
S(f) = \sum_{x \in D} f(x) \pi(x). \tag{1.2}
\]

We assume that the distribution \(\pi \) can be simulated by a Markov chain \((X_n)_{n \in \mathbb{N}} \) with transition kernel \(K \) and initial distribution \(\nu \). The distribution \(\pi \) is the limit distribution, in particular it is stationary, i.e.
\[
\pi(A) = \int_D K(x, A) \pi(dx), \quad A \in \mathcal{D}.
\]
Under weak assumptions on the Markov chain we obtain that after sufficiently many steps \(m \geq n_0 \), the distribution of \(X_m \) is close to \(\pi \). The number \(n_0 \) determines the number of steps to get close to \(\pi \), it is called the burn-in or the warm up period. Afterwards, we approximate \(S(f) \) by
\[
S_{n,n_0}(f) = \frac{1}{n} \sum_{j=1}^{n} f(X_{j+n_0}).
\]

It is well known that an ergodic theorem\(^2\) holds which says that
\[
\lim_{n \to \infty} S_{n,n_0}(f) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} f(X_{j+n_0}) = \int_D f(x) \pi(dx) = S(f) \text{ almost surely.}
\]
This means that the algorithm is well defined but does not imply an error bound. It is a qualitative rather than a quantitative result. We study the mean square error of \(S_{n,n_0} \). For a function \(f \), integrable with respect to \(\pi \), it is given by
\[
e_{\nu}(S_{n,n_0}, f) = \left(\mathbb{E}_{\nu,K} |S_{n,n_0}(f) - S(f)|^2 \right)^{1/2},
\]
where \(\mathbb{E}_{\nu,K} \) denotes the expectation of a Markov chain with transition kernel \(K \) and initial distribution \(\nu \).

The main topic of the thesis is the presentation of old and new explicit error bounds for computing the expectation by Markov chain Monte Carlo. These bounds are in terms of the \(\| \cdot \|_p \)-norm of the integrand \(f \),
\[
\|f\|_p = \begin{cases} \left(\int_D |f(x)|^p \pi(dx) \right)^{1/p}, & p \in [2, \infty), \\ \pi \text{-ess sup}_{x \in D} |f(x)|, & p = \infty. \end{cases}
\]
The kernel \(K \) of the Markov chain determines the Markov operator
\[
Pf(x) = \int_D f(y) K(x, dy), \quad x \in D.
\]

\(^2\)Suppose that \((D, \mathcal{D}) \) is countably generated. Let the Markov chain \((X_n)_{n \in \mathbb{N}} \) be \(\varphi \)-irreducible (\(\varphi \) is a non-trivial \(\sigma \)-finite measure, for all \(A \in \mathcal{D} \) and for all \(x \in D \) there exists an \(n \in \mathbb{N} \) such that \(\varphi(A) > 0 \) implies \(K^n(x, A) > 0 \)). We assume that \(\pi \) is a stationary distribution. Furthermore for all \(A \in \mathcal{D} \) and for all \(x \in D \) we have \(\mathbb{P}_x(X_n \in A \text{ infinitely often} \mid X_1 = x) = 1 \). Then \(\lim_{n \to \infty} S_{n,n_0}(f) = S(f) \) almost surely. For a proof of the fact see [MT09, Theorem 17.1.7, p. 427]. For a simple approach of a similar ergodic theorem we refer to [AG10]. For a central limit theorem and fixed-width asymptotics of Markov chain Monte Carlo see [Gey92, JHCN06].
and \(S(f) = \int_D f(x) \pi(dx) \) can be considered as operator mapping into the constant functions. If \(P \) is self-adjoint acting on \(L^2 \), then the Markov chain is called reversible. The asymptotic error is completely known if the underlying Markov chain is reversible, the initial distribution has a bounded density with respect to \(\pi \) and one has \(\| P - S \|_{L^1 \to L^1} \leq M \alpha^\nu \) for an \(\alpha \in (0, 1) \) and \(M < \infty \), see Corollary 3.37. One obtains

\[
\lim_{n \to \infty} n \cdot \sup_{\| f \|_2 \leq 1} e_\nu(S_{n,n_0}, f)^2 = \frac{1 + \Lambda}{1 - \Lambda} \leq \frac{2}{1 - \Lambda}, \tag{1.3}
\]

and

\[
\lim_{n_0 \to \infty} \sup_{\| f \|_2 \leq 1} e_\nu(S_{n,n_0}, f)^2 = \frac{1 + \Lambda}{n(1 - \Lambda)} - \frac{2 \Lambda(1 - \Lambda^n)}{n^2(1 - \Lambda)^2} \leq \frac{2}{n(1 - \Lambda)}, \tag{1.4}
\]

where \(\Lambda = \sup \{ \alpha \mid \alpha \in \text{spec}(P - S) \} \). Similar asymptotic estimates are shown in [Sok97, Mat99, Bre99, Mat04, RR08]. However, we want to have explicit error bounds. The desired error estimate should behave asymptotically as described in (1.3) and (1.4). For \(\Lambda \) close to 1 the right hand sides of the equalities of the asymptotic error can be very well estimated by \(\frac{2}{1 - \Lambda} \) and \(\frac{2}{n(1 - \Lambda)} \). The main goal is to prove non-asymptotic, explicit error bounds with respect to \(\| f \|_p \) of the form

\[
\sup_{\| f \|_p \leq 1} e_\nu(S_{n,n_0}, f)^2 \leq \frac{2}{n(1 - \Lambda)} + \frac{C_{\nu,\gamma}^\nu \gamma^{\gamma_{n_0}}}{n^2(1 - \gamma)^2},
\]

where \(C_{\nu,\gamma} \) and \(\gamma < 1 \) should be known. If the initial distribution \(\nu \) of the Markov chain is the stationary one, say \(\pi \), then the influence of the initial part resulting from \(\nu \) should vanish, i.e. \(C_{\nu,\gamma} = 0 \). We give more details in the following.

First we consider the special case where the state space is finite. Let the cardinality of \(D \) be astronomically large, say for example \(|D| = 10^{30} \), such that an exact computation of the sum (1.2) might be practically impossible. Suppose that we have a Markov chain with transition matrix \(P \) and initial distribution \(\nu \). All definitions, such as stationarity, irreducibility, aperiodicity and all relevant facts of Markov chains on finite state spaces are provided in Section 2.1. The Markov chain is reversible if the transition matrix \(P = (p(x,y))_{x,y \in D} \) fulfills for a probability measure \(\pi \) that

\[
\pi(x)p(x,y) = \pi(y)p(y,x), \quad x, y \in D.
\]

If the Markov chain is reversible, then let us define

\[
\beta = \| P - S \|_{\ell_2 \to \ell_2} = \max \{ \beta_1, |\beta|_{|D^{-1}} \},
\]

where \(\beta_1 \) is the second largest and \(\beta_{|D^{-1}} \) the smallest eigenvalue of \(P \). We consider reversible and ergodic Markov chains, i.e. \(\beta \), the second largest absolute eigenvalue of \(P \), is less than 1. Hence also \(\beta_1 \), the second largest eigenvalue of \(P \), is less than 1. Section 2.2 contains the first error estimate. The explicit error bound is developed with respect to the \(\ell_2 \)-norm of the integrand \(f \in L^p \). For

\[
C = \sqrt{\frac{1}{\pi} \| \nu - 1 \|_2}
\]

we obtain in Theorem 2.20 that

\[
\sup_{\| f \|_2 \leq 1} e_\nu(S_{n,n_0}, f)^2 \leq \frac{2}{n(1 - \beta_1)} + \frac{2C\gamma_{n_0}}{n^2(1 - \beta)^2}. \tag{1.5}
\]
Obviously C is 0 if ν is π and the asymptotic estimates of (1.3) and (1.4) hold true. However, the factor $\frac{1}{\pi}$ is unsatisfactory for an extension to general state spaces. Furthermore we also provide a lower bound of the error, see Remark 2.24. In Section 2.3 we suggest a choice of the burn-in. The main result is as follows.

Theorem 2.25. Suppose that

$$n_0 = \max \left\{ \log \left(\frac{\log \left(\frac{1}{\pi} \| \frac{1}{\pi} - 1 \|_2 \right)}{\log(\beta^{-1})} \right), 0 \right\}.$$

Then

$$\frac{1 + \beta_1}{n(1 - \beta_1)} - \frac{4}{n^2(1 - \beta)^2} \leq \sup_{\|f\|_2 \leq 1} \epsilon_\nu(S_n, n_0, f)^2 \leq \frac{2}{n(1 - \beta)} + \frac{2}{n^2(1 - \beta)^2}.$$

The suggestion of the burn-in is optimal in the following sense. For $\eta > 0$ let the number of steps $N = n + n_0$ of the Markov chain be large enough, let $\beta = \beta_1$ and assume that C and β obey an additional less restrictive condition. Then the burn-in n_{opt}, which minimizes the upper error bound of (1.5), satisfies $n_{opt} \in [n_0, (1 + \eta)n_0]$. In many examples an estimate for β is available. In Section 2.4 we consider some illustrating examples where all eigenvalues and eigenvectors are known, so that the exact error is computable. Then we compare the lower and upper estimates with the exact error. It turns out that the estimates are sharp depending on the available information of the eigenvalues. Similar estimates can be found in [Ald87] and [NP09]. However, the suggestion of the burn-in and the lower bound seem to be new.

After the study of Markov chains on finite state spaces let us introduce the general state space setting. Assume that the measurable space $(\mathcal{D}, \mathcal{D})$ is given. Then the desired expectation becomes an integral, see (1.1). Suppose we have a Markov chain with transition kernel K and initial distribution ν. Let us recall that the transition kernel K defines the Markov operator $Pf(x) = \int_{\mathcal{D}} f(y) K(x, dy), \ x \in \mathcal{D},$ and $S(f) = \int_{\mathcal{D}} f(x) \pi(dx)$ can be considered as operator mapping into the constant functions. It is well known that reversibility of K is equivalent to self-adjointness of P acting on L_2. In Section 3.1 we provide all definitions such as stationarity and reversibility in detail. Furthermore it contains all relevant convergence properties of Markov chains. Mainly the two convergence properties of Definition 3.14 and Definition 3.10 are essential:

- Let $\alpha \in [0, 1)$ and $M < \infty$. The Markov chain is called L_1-exponentially convergent with (α, M) if
 $$\|P^j - S\|_{L_1} \leq M \alpha^j, \ j \in \mathbb{N}.$$
 For reversible Markov chains L_1-exponential convergence with $(\alpha, 2M)$ is equivalent to π-a.e. uniform ergodicity with (α, M), see Proposition 3.24.

- The Markov operator has an L_2-spectral gap if
 $$\beta = \|P - S\|_{L_2} \leq 1,$$
 where the gap is given by $1 - \beta$. The existence of an L_2-spectral gap implies an exponential convergence of P^j to S with respect to the L_2-operator norm for $j \to \infty$.

4
Section 3.2 contains the error estimates for S_{n,n_0}. We explain the main results in the following. Let Λ be the largest element of the spectrum of $P - S$ acting on L_2, i.e.

$$\Lambda = \sup \{ \alpha \mid \alpha \in \text{spec}(P - S) \}.$$

Suppose that the Markov chain is reversible and L_1-exponentially convergent with (α, M). Furthermore assume that there exists a bounded density $\frac{d\nu}{d\pi}$ of the initial distribution ν with respect to π. For

$$C = M \left\| \frac{d\nu}{d\pi} - 1 \right\|_{\infty}$$

we show in Theorem 3.34 that the error obeys

$$\sup_{\| f \|_2 \leq 1} e_{\nu}(S_{n,n_0}, f)^2 \leq \frac{2}{n(1 - \Lambda)} + \frac{2Cn_0}{n^2(1 - \alpha)^2}.$$

Note that the error bound is of the same form as for finite state spaces except for the fact that α of the L_1-exponential convergence appears. If the transition kernel is reversible one has $\Lambda \leq \beta$ and in Proposition 3.24 it is shown that $\beta \leq \alpha$. Hence one can further estimate the leading term of the error bound by using $(1 - \Lambda)^{-1} \leq (1 - \alpha)^{-1}$. Then a reasonable choice of the burn-in can be obtained by the same arguments as for finite state spaces. In Section 3.3 we also justify the choice of the burn-in by numerical experiments, which confirm the theoretical result.

Theorem 3.45 (i). Suppose that we have a Markov chain which is reversible with respect to π and L_1-exponentially convergent with (α, M). Let

$$n_0 = \max \left\{ \frac{\log(M \left\| \frac{d\nu}{d\pi} - 1 \right\|_{\infty}}{\log(\alpha^{-1})}, 0 \right\}.$$

Then

$$\sup_{\| f \|_2 \leq 1} e_{\nu}(S_{n,n_0}, f)^2 \leq \frac{2}{n(1 - \beta)} + \frac{2}{n^2(1 - \alpha)^2}.$$

The condition that the Markov chain is L_1-exponentially convergent with (α, M) is rather restrictive. This motivates the study of Markov chains which fulfill a weaker convergence property, namely we assume that there is an L_2-spectral gap. Let us provide the main result.

Theorem 3.45 (ii). Suppose that we have a Markov chain with Markov operator P which has an L_2-spectral gap, $1 - \beta > 0$. For $p \in (2, 4)$ let $n_0(p)$ be the smallest natural number (including zero) which is greater than or equal to

$$\frac{1}{\log(\beta^{-1})} \cdot \left\{ \begin{array}{ll}
\frac{p}{\pi(\beta^{-2})} \log \left(\frac{32\pi}{p^{-2}} \left\| \frac{d\nu}{d\pi} - 1 \right\|_{p^{-2}} \right), & p \in (2, 4), \\
\log \left(64 \left\| \frac{d\nu}{d\pi} - 1 \right\|_2 \right), & p \in [4, \infty].
\end{array} \right.$$

Then

$$\sup_{\| f \|_p \leq 1} e_{\nu}(S_{n,n_0(p)}, f)^2 \leq \frac{2}{n(1 - \beta)} + \frac{2}{n^2(1 - \beta)^2}.$$
The problem of integration on a convex body is as follows. Let $W_{\mathrm{zniakowski}}\ [NW08, NW10].$

The last chapter deals with applications. The problem of integration with respect to log-concave densities is the following. For a function $f : D \to \mathbb{R}$ and a convex body $D \subset \mathbb{R}^d$ the goal is to approximate

$$S(f, \varrho) = \frac{\int_D f(x) \varrho(x) \, dx}{\int_D \varrho(x) \, dx},$$

where ϱ is an unnormalized density. The problem is linear in f but not in ϱ. Suppose that the domain D is the d-dimensional Euclidean unit ball B^d. Furthermore assume that ϱ is log-concave and $\log \varrho$ is Lipschitz continuous with Lipschitz constant L. Hence we consider the class of densities

$$\mathcal{R}^L(B^d) = \{ \varrho > 0 \mid \varrho \text{ is log-concave, } |\log \varrho(x) - \log \varrho(y)| \leq L \|x - y\|_E \},$$

where $\|\cdot\|_E$ denotes the Euclidean norm. We analyze the Metropolis algorithm based on a δ ball walk, see Algorithm 1 on page 81 and for the Procedure Ball-Walk see page 80. The algorithm generates the desired sample. The sample, say $(X_{\delta n_0+1}^d, \ldots, X_{\delta n_0+n}^d)$, is used to compute

$$S_{n,n_0}^\delta(f, \varrho) = \frac{1}{n} \sum_{j=1}^{n} f(X_{\delta j+n_0}^d).$$

For an adapted $\delta = \min \{(d+1)^{-1}, L^{-1}\}$ Mathé and Novak showed in [MN07] that the Markov chain which is defined by the Metropolis algorithm based on a δ ball walk has an L_2-spectral gap. This result is used to get an explicit error bound. We state the result for the unit ball and for simplicity we consider integrands f with $\|f\|_3 \leq 1$. For

$$n_0 \leq d L \max \{d, L^2\}$$

the error obeys

$$\sup_{\|f\|_3 \leq 1} e(S_{n,n_0}^\delta(f, \varrho)) \leq \sqrt{\frac{d}{n}} \max \left\{ \sqrt{n} L, L \right\} + \frac{d}{n} \max \left\{d, L^2\right\},$$

where $d \in \mathbb{N}$ and $L \geq 0$. The geometry of the unit ball is essential for the estimate of the L_2-spectral gap of [MN07], since the ball walk might get stuck on domains which have corners. However, the results of Section 4.1 are slightly more general. There we treat balls with arbitrary radius $r > 0$ and the result is with respect to $\|f\|_p$ for $p > 2$. We refer to Theorem 4.8 for the details. The number of function evaluations to obtain an error smaller than ε is polynomially bounded in the dimension d and the Lipschitz constant L. Hence the problem of integration with respect to a log-concave density is tractable, see Novak and Woźniakowski [NW08, NW10].

The problem of integration on a convex body is as follows. Let $A \subset \mathbb{R}^d$ be a convex body. The goal is to compute

$$S(f, A) = \frac{1}{\operatorname{vol}_d(A)} \int_A f(x) \, dx,$$

We use the notation \prec and \asymp as follows. Let $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ be positive sequences. We write $a_n \prec b_n$ if there exists an absolute constant c such that $a_n \leq c b_n$ for all $n \in \mathbb{N}$. We write $a_n \asymp b_n$ if $a_n \prec b_n$ and $b_n \prec a_n$. 6
where $\text{vol}_d(A)$ denotes the d-dimensional volume of A. In other words the goal is to approximate the expectation of f with respect to the uniform distribution, say μ_A, on A. The problem is linear in f but not in A. Let $B^d \subset A \subset rB^d$ where rB^d is the Euclidean ball with radius r around 0. We assume that there is an oracle $\text{Or}_A(\ell)$ which returns a uniform distributed state on $A \cap \ell$ for an arbitrary line ℓ. Hence we consider state spaces from the class

$$S_d(r) = \{ A \subset \mathbb{R}^d \text{ convex} \mid B^d \subset A \subset rB^d \}$$

and we assume that $\text{Or}_A(\ell)$ is available for any $A \in S_d(r)$. We analyze the hit-and-run algorithm, see Algorithm \ref{hit-and-run} on page 87 and for the Procedure Hit-and-Run see page 85. It generates the desired sample, say $(X_{\text{har}}^{n_0+1}, \ldots, X_{\text{har}}^{n_0+n})$. Afterwards we compute

$$S_{n, n_0}(f, A) = \frac{1}{n} \sum_{j=1}^{n} f(X_{\text{har}}^{j+n_0}).$$

The Markov chain generated by the hit-and-run algorithm has the right stationary distribution, see Lemma 4.10 or \cite{Smi84}. A result of Lovász and Vempala presented in \cite{LV06} provides an estimate of $1 - \beta$. Hence there exists an L_2-spectral gap and we can apply the error bound of Theorem 3.45(ii). For simplicity suppose that $\|f\|_3^3 \leq 1$. For

$$n_0 \geq d^3 r^2 \log(r)$$

the error obeys

$$\sup_{\|f\|_3 \leq 1, A \in S_d(r)} e(S_{n, n_0}(f, A)) \approx \frac{dr}{\sqrt{n}} + \frac{d^2 r^2}{n}.$$

For the general result with respect to $\|f\|_p$ with $p > 2$ we refer to Theorem 4.12. The number of function evaluations to obtain an error smaller than ε is polynomially bounded in the dimension d and the radius r. Hence the problem of integration on a convex body is tractable, see \cite{NW08, NW10}.

7
2. Finite state spaces

In the following we study the mean square error of Markov chain Monte Carlo methods on finite state spaces. In Section 2.1 the basic definitions and properties of Markov chains on finite state spaces are stated. The estimate of the mean square error is shown in Section 2.2. We suggest and justify a recipe how to choose the burn-in. Afterwards the error bound is applied to illustrating examples and finally we discuss how the results fit into the published literature.

2.1. Markov chains

In this section the basics of Markov chains on finite state spaces are provided. Let D be a finite set and $\mathcal{P}(D)$ the power set of D such that the measurable state space $(D, \mathcal{P}(D))$ is given.

Definition 2.1 (Markov chain). A sequence of random variables $(X_n)_{n \in \mathbb{N}}$ on a probability space $(\Omega, \mathcal{F}, \Pr)$ mapping into $(D, \mathcal{P}(D))$ is called a Markov chain with transition matrix $P = (p(x,y))_{x,y \in D}$ if for all $n \in \mathbb{N}$, all $x, y \in D$ and for all x_1, \ldots, x_{n-1} with

$$\Pr(X_1 = x_1, \ldots, X_{n-1} = x_{n-1}, X_n = x) > 0$$

one has

$$\Pr(X_{n+1} = y \mid X_1 = x_1, \ldots, X_{n-1} = x_{n-1}, X_n = x) = \Pr(X_{n+1} = y \mid X_n = x) = p(x,y).$$

All entries of the transition matrix P are non-negative and the rows sum up to 1. For $x, y \in D$ the value $p(x,y)$ is the probability of jumping from state x to state y in a single step of the chain. The distribution

$$\nu(x) = \Pr(X_1 = x), \quad x \in D,$$

is called the initial distribution.

Suppose that we have a transition matrix P and a probability measure ν. Any transition matrix P has a random mapping representation, see [LPW09, Proposition 1.5, p. 7]. A random mapping representation of P on state space D is a function $\Phi : D \times [0,1] \to D$, which satisfies

$$\Pr(\Phi(x, Z) = y) = p(x,y), \quad x, y \in D,$$

where $Z : (\Omega, \mathcal{F}, \Pr) \to ([0,1], \mathcal{B}([0,1]))$ is a uniformly distributed random variable, where $\mathcal{B}([0,1])$ denotes the Borel σ-algebra. Then a Markov chain can be constructed as follows. If $(Z_n)_{n \in \mathbb{N}}$ is a sequence of i.i.d. random variables with uniform distribution, and X_1 has distribution ν, then it is easy to see that $(X_n)_{n \in \mathbb{N}}$ defined by

$$X_n = \Phi(X_{n-1}, Z_n), \quad n \geq 2,$$

is a Markov chain with transition matrix P and initial distribution ν.
In the following assume that we have a Markov chain \((X_n)_{n \in \mathbb{N}}\) with transition matrix \(P\) and initial distribution \(\nu\). The expectation \(\mathbb{E}_{\nu, P}\) is taken with respect to the joint distribution of \((X_n)_{n \in \mathbb{N}}\), say \(W_{\nu, P}\), which is defined on \((D^N, \sigma(A))\) where

\[
D^N = \{\omega = (x_1, x_2, \ldots) \mid x_i \in D \text{ for all } i \geq 1\} \quad \text{and} \quad \mathcal{A} = \bigcup_{k \in \mathbb{N}} \{A_1 \times A_2 \times \cdots \times A_k \times D \times \cdots \mid A_i \in \mathcal{P}(D), \ i = 1, \ldots, k\}.
\]

For \(k \in \mathbb{N}\) one has with \(A_1 \times \cdots \times A_k \subset D^k\) that

\[
W_{\nu, P}(A_1 \times \cdots \times A_k \times D \times \cdots) = \sum_{x_1 \in A_1} \cdots \sum_{x_k \in A_k} \mathbb{P}(X_1 = x_1, \ldots, X_k = x_k).
\]

If the initial distribution \(\nu\) is \(\delta_x\), the point mass at \(x \in D\), we say that the Markov chain starts at \(x\). By

\[
Pf(x) = \sum_{y \in D} f(y) p(x, y) = \sum_{y \in D} f(y) \mathbb{P}(X_2 = y \mid X_1 = x) = \mathbb{E}_{\delta_x, P}[f(X_2)]
\]

one has the expectation of \(f \in \mathbb{R}^D\) after a single step of the chain which starts at \(x \in D\). The probability to get from \(x\) to \(y\) in \(k \geq 2\) steps is

\[
\mathbb{P}(X_{k+1} = y \mid X_1 = x) = \sum_{x_2 \in D} \cdots \sum_{x_{k} \in D} p(x, x_2)p(x_2, x_3)\cdots p(x_{k-1}, y) = p^k(x, y),
\]

where \(p^k = (p^k(x, y))_{x,y \in D}\) denotes the \(k\)th power of \(P\). Then

\[
P^k f(x) = \sum_{y \in D} f(y) p^k(x, y) = \sum_{y \in D} f(y) \mathbb{P}(X_{k+1} = y \mid X_1 = x) = \mathbb{E}_{\delta_x, P}[f(X_{k+1})]
\]

is the expectation after \(k\) steps of the Markov chain which starts at \(x\). Similarly we consider the application of \(P\) to a probability measure \(\nu\), i.e.

\[
\nu P(x) = \sum_{y \in D} \nu(y) p(y, x) = \sum_{y \in D} \mathbb{P}(X_2 = x \mid X_1 = y) \nu(y) = \mathbb{P}(X_2 = x).
\]

This is the distribution which arises after a single transition where the initial state is chosen by \(\nu\). The distribution which arises after \(k \geq 1\) steps is given by

\[
\nu P^k(x) = \sum_{y \in D} \nu(y) p^k(y, x) = \sum_{y \in D} \mathbb{P}(X_{k+1} = x \mid X_1 = y) \nu(y) = \mathbb{P}(X_{k+1} = x).
\]

In the following we present properties of transition matrices.

Definition 2.2 (irreducibility, aperiodicity, periodicity). A transition matrix \(P\) is called **irreducible** if for all \(x, y \in D\) there exists a \(k \in \mathbb{N}\) such that

\[
p^k(x, y) > 0, \quad \text{where} \quad P^k = (p^k(x, y))_{x,y \in D}.
\]

A transition matrix \(P\) is called **aperiodic** if we have for all \(x \in D\) that

\[
\gcd(\{k \in \mathbb{N} \mid p^k(x, x) > 0\}) = 1,
\]

where \(\gcd\) denotes the greatest common divisor. If \(P\) is not aperiodic we call it **periodic**.
If a transition matrix is irreducible, then one can reach every state y from every state x in finitely many steps. Aperiodicity ensures that the number of steps to return to an arbitrary state is not in $\{m, 2m, 3m, \ldots \}$ for $m > 1$.

Definition 2.3 (stationarity). Let π be a probability measure on D. Then π is called a stationary distribution of a transition matrix P if

$$\pi P(x) = \pi(x), \quad x \in D.$$

If the initial distribution of a Markov chain with transition matrix P is a stationary one, say π, then after a single transition the same distribution as the initial one appears, i.e.

$$\Pr(X_1 = x) = \pi(x) = \pi P(x) = \Pr(X_2 = x), \quad x \in D.$$

Definition 2.4 (reversibility). Let π be a probability measure on D. A transition matrix P is called reversible with respect to π if

$$\pi(x)p(x, y) = \pi(y)p(y, x), \quad x, y \in D.$$

If a transition matrix P is reversible with respect to a probability measure π, then π is a stationary distribution (see [LPW09, Proposition 1.19, p.14]). If the initial distribution of a Markov chain with transition matrix P is π, then reversibility with respect to π is equivalent to

$$\Pr(X_1 = x, X_2 = y) = \Pr(X_1 = y, X_2 = x), \quad x, y \in D.$$

Definition 2.5 (lazy version). Let π be a stationary distribution of a transition matrix P, then π is also stationary with respect to \tilde{P}.

Then we call

$$\tilde{P} = \frac{1}{2}(I + P),$$

the lazy version of P.

Let π be a stationary distribution of a transition matrix P, then π is also stationary with respect to \tilde{P}. If P is irreducible, reversible with respect to π and periodic, then one can pass over to the lazy version \tilde{P} and obtains that \tilde{P} is irreducible, reversible with respect to π and aperiodic.

A Markov chain is called irreducible, periodic, aperiodic and reversible with respect to π if the corresponding transition matrix is irreducible, periodic, aperiodic and reversible with respect to π, respectively.

Let us state some well known implications of the different properties. For proofs or more details see [Bre99, Str05, LPW09]. For every transition matrix there exists a stationary distribution and if the matrix is irreducible then there exists a unique stationary distribution, which is positive ([LPW09, Proposition 1.14, p. 12 and Corollary 1.17, p. 14]). Note that if ξ is an eigenvalue of a transition matrix P, then $|\xi| \leq 1$ ([LPW09, Lemma 12.1(i), p. 153]). Furthermore, for irreducible transition matrices 1 is a simple eigenvalue ([LPW09, Lemma 12.1(ii), p. 153]). If the Markov chain is aperiodic and irreducible, then -1 is not an eigenvalue of P ([LPW09, Lemma 12.1(iii), p. 153] or [Str05, Theorem 5.1.14, p. 113]). These eigenvalue results are also known as results of the Perron-Frobenius Theorem, see [Sen06].

In the following we always assume that the Markov chains are irreducible, aperiodic and reversible with respect to a probability measure π. Hence π is the stationary distribution.
Aperiodicity is not essential. For a Markov chain with periodic transition matrix P and initial distribution ν we may consider a lazy Markov chain, i.e. a chain with aperiodic transition matrix \tilde{P}, the lazy version of P, and initial distribution ν.

Let us define a weighted scalar product for $f, g \in \mathbb{R}^D$ by

$$\langle f, g \rangle = \sum_{x \in D} f(x) g(x) \pi(x)$$

and let $\|f\|_2 = \langle f, f \rangle^{1/2}$. By considering the scalar product it is easy to see that reversibility is equivalent to P being self-adjoint. Applying the spectral theorem for self-adjoint transition matrices and the fact that the Markov chain is irreducible one obtains that P has real eigenvalues

$$1 = \beta_0 > \beta_1 \geq \beta_2 \geq \cdots \geq \beta_{|D|-1} \geq -1.$$

If the transition matrix is aperiodic, then $\beta_{|D|-1} > -1$. There exists a basis of orthonormal eigenfunctions (vectors) $\{u_0, u_1, \ldots, u_{|D|-1}\}$, i.e. for $i, j \in \{0, \ldots, |D|-1\}$ one has

$$Pu_i = \beta_i u_i, \quad \langle u_i, u_j \rangle = \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

Clearly, $u_0(x) = 1$ for all $x \in D$ and $S(u_i) = \langle u_i, u_0 \rangle = 0$ for $i \in \{1, \ldots, |D|-1\}$. By the spectral structure of the transition matrix one has

$$P^k = (p^k(x, y))_{x,y \in D} = \sum_{i=0}^{|D|-1} \beta_i^k (u_i(x)u_i(y)\pi(y))_{x,y \in D}, \quad (2.1)$$

see [Bré99, p. 203] for details.

For $p \in [1, \infty]$ let

$$\|f\|_p = \begin{cases} \left(\sum_{x \in D} |f(x)|^p \pi(x)\right)^{1/p}, & p \in [1, \infty), \\ \sup_{x \in D} |f(x)|, & p = \infty. \end{cases}$$

The weighted vector space $\ell_p = \ell_p(D, \pi)$ is defined by the normed space $(\mathbb{R}^D, \|\cdot\|_p)$. Furthermore let

$$\ell_p^0 = \ell_p^0(D, \pi) = \{f \in \ell_p \mid S(f) = 0\}.$$

Then

$$\ell_2 = \ell_2^0 \oplus (\ell_2^0)^\perp, \quad \text{with} \quad (\ell_2^0)^\perp = \{f \in \mathbb{R}^D \mid f \equiv c, \ c \in \mathbb{R}\} = \text{Eig}(P, 1),$$

where Eig($P, 1$) is the eigenspace of P with respect to the eigenvalue 1. Note that for the next well known result it is not assumed that the transition matrix is reversible with respect to π.

Lemma 2.6. Let $p \in [1, \infty]$ and $f \in \mathbb{R}^D$. For any transition matrix P with stationary distribution π one obtains

$$\|Pf\|_p \leq \|f\|_p \quad \text{and} \quad \|P\|_{\ell_p \to \ell_p} = 1.$$
Proof. By the Jensen inequality (J) and stationarity (stat.) one has

\[\sum_{x \in D} |Pf(x)|^p \pi(x) \leq \sum_{x \in D} \left(\sum_{y \in D} |f(y)| p(x, y) \right)^p \pi(x) \]

\[\leq \left(\sum_{x \in D} \sum_{y \in D} |f(y)|^p p(x, y) \pi(x) \right) \pi(x) = \sum_{x \in D} |f(x)|^p \pi(x). \]

If \(p = \infty \) then

\[\|Pf\|_{\infty} = \sup_{x \in D} |Pf(x)| \leq \sup_{x \in D} \sum_{y \in D} |f(y)| p(x, y) = \|f\|_{\infty}. \]

Since \(\|Pf\|_p \leq \|f\|_p \) and \(Pu_0 = u_0 \) with \(\|u_0\|_p = 1 \) we have \(\|P\|_{\ell_p \rightarrow \ell_2} = 1. \)

Let us briefly explain how to quantify the difference of two distributions. For any measure \(\nu \) let

\[\|\nu - \pi\|_2 = \left(\sum_{x \in D} \left(\frac{\nu(x)}{\pi(x)} \right)^2 \pi(x) \right)^{1/2}. \]

If \(\nu \) is a probability measure on \(D \), then the quantity \(\|\nu - \pi\|_2 \) is related to the \(\chi^2 \)-contrast, defined as follows.

Definition 2.7 (\(\chi^2 \)-contrast). The \(\chi^2 \)-contrast of a distribution \(\nu \) and a positive distribution \(\mu \) is defined by

\[\chi^2(\nu, \mu) = \sum_{x \in D} \frac{(\nu(x) - \mu(x))^2}{\mu(x)}. \]

The \(\chi^2 \)-contrast is not symmetric and therefore no distance. By a simple calculation one obtains

\[\chi^2(\nu, \pi) = \left\| \frac{\nu}{\pi} - 1 \right\|_2^2. \]

The functional \(S \) can be interpreted as operator which maps into the constant functions, consequently one can see

\[S = (\pi(y))_{x, y \in D} \]

as a matrix. Furthermore let

\[\beta = \max \{ \beta_1, |\beta_{|D|-1} | \} \]

be the second largest absolute value of the eigenvalues of \(P \). Now we state a property of the matrix \(P - S \).

Lemma 2.8. Let \(P \) be a reversible transition matrix with respect to \(\pi \). Then

\[\|P^n - S\|_{\ell_2 \rightarrow \ell_2} = \|P^n\|_{\ell_2 \rightarrow \ell_2} = \beta^n, \quad n \in \mathbb{N}. \]
Moreover, if Lemma 2.10. Then let us present a helpful result. and as approximation for π

\begin{equation*}
\|P^n\|_{\ell_2^2} = \max \{\beta_1, |\beta_{i,j}|^{1/2} \} = \beta, \text{ consequently } \|P^n\|_{\ell_2^2} = \beta^n. \text{ By}
\end{equation*}

\begin{equation*}
\|P^n - S\|_{\ell_2^2} = \sup_{\|f\|_{\ell_2^2}} \|P^n(f - S(f))\|_2 = \sup_{\|f\|_{\ell_2^2}} \|P^n(f - S(f))\|_2
\end{equation*}

and

\begin{equation*}
\|P^n\|_{\ell_2^2} = \sup_{\|g\|_{\ell_2^2}, S(g) = 0} \|P^n g\|_2 = \|P^n g - S(g)\|_2
\end{equation*}

\begin{equation*}
\text{claim (2.2) is shown.}
\end{equation*}

This section is finished by stating a well known fact which shows that \(\nu P^k\) converges to \(\pi\) for increasing \(k\) exponentially fast if \(\beta < 1\).

Corollary 2.9. Let \(P\) be a transition matrix and \(\nu\) a probability measure on \(D\). Let \(P\) be reversible with respect to \(\pi\). Then

\begin{equation*}
\|\frac{\nu P^k}{\pi} - 1\|_2 \leq \beta^k \|\frac{\nu}{\pi} - 1\|_2, \quad k \in \mathbb{N}.
\end{equation*}

Proof. The assertion is proven by

\begin{equation*}
\|\frac{\nu P^k}{\pi} - 1\|_2 = \|P^k \left(\frac{\nu}{\pi} - 1\right)\|_2 \leq \beta^k \|\frac{\nu}{\pi} - 1\|_2.
\end{equation*}

\(\square\)

2.2. Error bounds

In this section explicit error bounds are proven. Let us repeat the idea of Markov chain Monte Carlo. Suppose we have a Markov chain \((X_n)_{n \in \mathbb{N}}\) with transition matrix \(P\) and initial distribution \(\nu\), where \(\pi\) is a stationary distribution, and we compute

\begin{equation*}
S_{n,n_0}(f) = \frac{1}{n} \sum_{j=1}^{n} f(X_{j+n_0})
\end{equation*}

as approximation for \(S(f) = \sum_{x \in D} f(x) \pi(x)\). The error is measured in the mean square sense, i.e.

\begin{equation*}
e_{\nu}(S_{n,n_0}, f) = \left(\mathbf{E}_{\nu, P} |S_{n,n_0}(f) - S(f)|^2 \right)^{1/2}.
\end{equation*}

Now let us present a helpful result.

Lemma 2.10. Let \((X_n)_{n \in \mathbb{N}}\) be a Markov chain with transition matrix \(P\) and initial distribution \(\nu\). Then for \(i, j \in \mathbb{N}\) with \(j \leq i\) it follows that

\begin{equation*}
\mathbf{E}_{\nu, P}[f(X_i) f(X_j)] = \sum_{x \in D} P^j(f P^{i-j} f)(x) \nu(x).
\end{equation*}

Moreover, if \(\pi\) is a stationary distribution and \(\nu = \pi\) then

\begin{equation*}
\mathbf{E}_{\pi, P}[f(X_i) f(X_j)] = \langle f, P^{i-j} f \rangle.
\end{equation*}

13
Proof. The calculation
\[E_{\nu,P}[f(X_i)f(X_j)] = \sum_{x_i \in D} \ldots \sum_{x_j \in D} f(x_j)f(x_i) p(x_{i-1},x_i) \ldots p(x_1,x_2) \nu(x_1) \]
\[= \sum_{x_i \in D} \ldots \sum_{x_j \in D} f(x_j)P^{i-j} f(x_j) p(x_{j-1},x_j) \ldots p(x_1,x_2) \nu(x_1) \]
\[= \sum_{x \in D} P^j(f P^{i-j} f)(x) \nu(x) \]
proves (2.3) and by using \(\pi P(x) = \pi(x) \) one can see (2.4). \qed

In the following a special case of the method \(S_{n,n_0} \) is considered. In this case the initial distribution is a stationary one, thus, the distribution after a single transition does not change. Hence it is not necessary to do any burn-in, i.e. \(n_0 = 0 \). Afterwards the error representation of the special case is set in relation to the error where the initial distribution might differ from a stationary one. The techniques which are used are adapted from [Rud09] and [Rud10].

In the following \(S_{n,n} \) is always denoted as \(S_n \). Let us start with a result stated in [BD06, Proposition 2.1, p. 3].

Proposition 2.11. Let \(f \in \mathbb{R}^D \) and let \((X_n)_{n \in \mathbb{N}} \) be a Markov chain with transition matrix \(P \) and initial distribution \(\pi \). Let \(P \) be reversible with respect to \(\pi \). Then
\[
e^2(S_n,f)^2 = \frac{1}{n^2} \sum_{k=1}^{\lfloor D \rfloor - 1} a_k^2 W(n, \beta_k),
\]
(2.5)

where
\[
a_k = \langle f, u_k \rangle \quad \text{and} \quad W(n, \beta_k) = \frac{n(1 - \beta_k^2) - 2\beta_k(1 - \beta_k^n)}{(1 - \beta_k)^2}.
\]

Proof. Let us consider \(g = f - S(f) \in \mathbb{R}^D \). The error obeys
\[
e^2(S_n,f)^2 = \mathbb{E}_{\pi,P} \left| \frac{1}{n} \sum_{j=1}^n g(X_j) \right|^2 = \frac{1}{n^2} \mathbb{E}_{\pi,P} \left(\sum_{j=1}^n g(X_j) \right)^2
\]
\[= \frac{1}{n^2} \sum_{j=1}^n \mathbb{E}_{\pi,P} [g(X_j)^2] + \frac{2}{n^2} \sum_{j=1}^{n-1} \sum_{i=j+1}^n \mathbb{E}_{\pi,P} [g(X_j)g(X_i)].
\]

By using the orthonormal basis \(\{ u_0, u_1, \ldots, u_{\lfloor D \rfloor - 1} \} \) we have \(g(x) = \sum_{k=1}^{\lfloor D \rfloor - 1} a_k u_k(x) \). For \(j \leq i \) one obtains
\[
\mathbb{E}_{\pi,P} [g(X_i)g(X_j)] = \sum_{k=1}^{\lfloor D \rfloor - 1} \sum_{l=1}^{\lfloor D \rfloor - 1} a_k a_l \mathbb{E}_{\pi,P} [u_k(X_i)u_l(X_j)]
\]
\[= \sum_{k=1}^{\lfloor D \rfloor - 1} \sum_{l=1}^{\lfloor D \rfloor - 1} a_k a_l \langle u_k, P^{i-j} u_l \rangle
\]
(2.4)
\[= \sum_{k=1}^{\lfloor D \rfloor - 1} \sum_{l=1}^{\lfloor D \rfloor - 1} a_k a_l \beta_k^{i-j} \langle u_k, u_l \rangle = \sum_{k=1}^{\lfloor D \rfloor - 1} a_k^2 \beta_k^{i-j}.
\]
The last two equalities follow from the orthonormality of the basis of the eigenvectors. Altogether this gives

\[e_\pi(S_n, f)^2 = \frac{1}{n^2} \sum_{k=1}^{\lfloor D \rfloor - 1} a_k^2 \left[n + 2 \sum_{j=1}^{n-1} \sum_{i=j+1}^{n} \beta_k^{i-j} \right] \]

\[= \frac{1}{n^2} \sum_{k=1}^{\lfloor D \rfloor - 1} a_k^2 \left[n + 2 \frac{(n-1)\beta_k - n\beta_k^2 + \beta_k^{n+1}}{(1-\beta_k)^2} \right] = \frac{1}{n^2} \sum_{k=1}^{\lfloor D \rfloor - 1} a_k^2 W(n, \beta_k). \]

Let us consider \(W(n, \beta_k) \) to simplify and interpret Proposition 2.11.

Lemma 2.12. For all \(n \in \mathbb{N} \) and \(k \in \{1, \ldots, \lfloor D \rfloor - 1\} \) it follows that

\[W(n, \beta_k) \leq W(n, \beta_1) \leq \frac{2n}{1-\beta_1}. \] (2.6)

Proof. We will show that the mapping \(x \mapsto W(n, x) \) is increasing on \([-1, 1]\), so that \(W(n, \beta_k) \leq W(n, \beta_1) \). For \(i \in \{0, \ldots, n\} \) we have

\[x^{n-i} \leq 1 \quad \iff \quad (1-x^i)x^{n-i} \leq 1 - x^i \quad \iff \quad x^{n-i} + x^i \leq 1 + x^n. \]

This implies

\[x^j + x^{j+1} + x^{n-j-1} + x^{n-j} \leq 2(1 + x^n), \quad j \in \{0, \ldots, n-1\} \]

and

\[(1+x) \sum_{j=0}^{n-1} x^j = \frac{1}{2} \sum_{j=0}^{n-1} (x^j + x^{j+1} + x^{n-j-1} + x^{n-j}) \leq n(1+x^n). \]

Now

\[\frac{dW}{dx}(n, x) = -2 \frac{(1+x)\sum_{j=0}^{n-1} x^j - n(1+x^n)}{(1-x)^2} \geq 0 \]

and the first inequality of the assertion is proven. By

\[W(n, x) \leq \begin{cases} \frac{n(1+x) - 2n}{n} \leq \frac{2n}{1-x}, & x \in [-1, 0], \\ \frac{n(1+x)}{1-x} \leq \frac{2n}{1-x}, & x \in (0, 1), \end{cases} \]

everything is shown. \(\square \)

An explicit formula of the error is established if the initial state is chosen by a stationary distribution. Let us consider the maximal error of \(S_n \) for \(f \) which satisfy \(\|f\|_2 \leq 1 \).

Corollary 2.13. Let \((X_n)_{n \in \mathbb{N}} \) be Markov chain with transition matrix \(P \) and initial distribution \(\pi \). Let \(P \) be reversible with respect to \(\pi \). Then

\[\sup_{\|f\|_2 \leq 1} e_\pi(S_n, f)^2 = \frac{1 + \beta_1}{n(1-\beta_1)} \frac{2\beta_1(1-\beta_1^n)}{n^2(1-\beta_1)^2} \leq \frac{2}{n(1-\beta_1)}. \] (2.7)

Proof. The individual error of \(f \) is

\[e_\pi(S_n, f)^2 = \frac{1}{n^2} \sum_{k=1}^{\lfloor D \rfloor - 1} a_k^2 W(n, \beta_k) \leq \frac{\|f\|_2^2}{n^2} \max_{k=1, \ldots, \lfloor D \rfloor - 1} W(n, \beta_k) \]

\[\leq \frac{\|f\|_2^2}{n^2} W(n, \beta_1) = \frac{1 + \beta_1}{n(1-\beta_1)} \frac{2\beta_1(1-\beta_1^n)}{n^2(1-\beta_1)^2} \|f\|_2^2, \]
where \(a_k\) is chosen as in Proposition 2.11 and therefore \(\sum_{k=1}^{[D]} a_k^2 \leq \|f\|_2^2\). From the preceding analysis of the individual error we have for \(\|f\|_2 \leq 1\) the right upper error bound. Now we consider \(f = u_1\), where \(\|u_1\|_2 = 1\). By applying (2.5) we have
\[
e(\pi(S_n, u_1))^2 = \frac{1 + \beta_1}{n(1 - \beta_1)} - \frac{2\beta_1(1 - \beta_1)}{n^2(1 - \beta_1)^2}.
\]
Thus the equality of (2.7) is proven and by (2.6) the inequality is shown.

In Corollary 2.13 an explicit error bound with respect to \(\|\cdot\|_2\) is shown. Notice that the first part of (2.7) is an equality, which means that the integration error is completely known if the initial distribution is stationary.

Suppose that the distribution \(\pi\) can be simulated directly, i.e. we can apply a Monte Carlo method with an i.i.d. sample. Then an i.i.d. sequence \(X_n\), where every \(X_n\) is distributed with respect to \(\pi\), is a Markov chain with transition matrix \(S = (\pi(y))_{x, y \in D}\) and initial distribution \(\pi\). In this setting one has
\[
e(\pi(S_n, f))^2 = \frac{1}{n} \|f - S(f)\|_2^2.
\]
This corresponds to \(\beta_i = 0\) for all \(i > 0\). In some artificial cases other Markov chain Monte Carlo methods can do better. For example if there is a Markov chain where \(\beta_i < 0\) and the target is to approximate \(S(u_i)\) or if all eigenvalues are smaller than zero. A simple transition matrix which satisfies this eigenvalue condition is given by
\[
P = \begin{pmatrix}
0 & \frac{1}{[D] - 1} & \cdots & \frac{1}{[D] - 1} \\
\frac{1}{[D] - 1} & 0 & \cdots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
\frac{1}{[D] - 1} & \cdots & \frac{1}{[D] - 1} & 0
\end{pmatrix},
\]
where \(\pi(x) = 1/|D|\) for all \(x \in D\), see [FHY92, Remark 3, p. 617]. It turns out that \(\beta_1 = \cdots = \beta_{[D] - 1} = -\frac{1}{[D] - 1}\). For large \([D]\) it is unfortunately not possible to construct a transition matrix where \(\beta_1\) is close to \(-1\).

Proposition 2.14. Let \(P\) be an irreducible transition matrix. Then
\[
\beta_1 \geq -\frac{1}{|D| - 1}.
\]

Proof. Since \(\beta_0 = 1\) one has
\[
1 + \sum_{i=1}^{[D] - 1} \beta_i = \sum_{i=0}^{[D] - 1} \beta_i = \text{trace}(P) = \sum_{x \in D} p(x, x) \geq 0.
\]
Then
\[
-1 \leq \sum_{i=1}^{[D] - 1} \beta_i \leq ([D] - 1)\beta_1.
\]
The error estimates under the assumption that the initial distribution is a stationary one seem to be very restrictive. If we could sample \(\pi \) directly we would approximate \(S(f) \) by Monte Carlo with an i.i.d. sample. However, even if it is possible it might happen that the sampling procedure is computationally expensive. It can be reasonable to generate only the initial state by sampling from \(\pi \) and afterwards run a Markov chain with stationary distribution \(\pi \). Perfect sampling might be helpful for the construction of such direct sampling procedures, see [PW96, Häg02].

In the following we consider the case, where the initial distribution is not necessarily stationary. Let \(\nu \) be a distribution on \(D \) and \(k \in \mathbb{N} \). Then we define

\[
d_k(x) = \sum_{y \in D} \frac{\nu(y)}{\pi(y)} (p^k(x, y) - \pi(y)) = P^k(\frac{\nu}{\pi})(x) - 1 = (P^k - S)(\frac{\nu}{\pi} - 1), \quad x \in D.
\]

If \(P \) is reversible with respect to \(\pi \), then we obtain

\[
\|d_k\|_2 = \left\| \frac{\nu P^k}{\pi} - 1 \right\|_2, \quad k \in \mathbb{N},
\]

thus \(d_k \) determines the difference between \(\nu P^k \) and the stationary distribution \(\pi \). Additionally by the spectral representation of \(P^k \) (see (2.1)) one obtains

\[
d_k(x) = \sum_{i=1}^{\|D\|-1} \beta_i \sum_{y \in D} u_i(y) \nu(y) u_i(x) = \sum_{i=1}^{\|D\|-1} \beta_i \left(\frac{\nu}{\pi} \right) u_i(x), \quad x \in D.
\]

The next statement gives a relation between \(e_\nu(S_{n,0}, f) \) and \(e_\pi(S_{n,0}, f) \).

Proposition 2.15. Let \(f \in \mathbb{R}^D \) and \(g = f - S(f) \). Let \((X_n)_{n \in \mathbb{N}} \) be a Markov chain with transition matrix \(P \) and initial distribution \(\nu \). Let \(P^i \) be reversible with respect to \(\pi \). Then

\[
e_\nu(S_{n,0}, f)^2 = e_\pi(S_{n,0}, f)^2 + \frac{1}{n^2} \sum_{j=1}^{n} L_j + n_0 (g^2) + \frac{2}{n^2} \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} L_j + n_0 (gP^{k-j}g),
\]

where

\[
L_i(h) = \langle d_i, h \rangle = \langle (P^i - S)(\frac{\nu}{\pi} - 1), h \rangle, \quad h \in \mathbb{R}^D, \ i \in \mathbb{N}.
\]

Proof. It is easy to see that

\[
E_{\nu, P} [S(f) - S_{n,0}(f)]^2 = \frac{1}{n^2} \sum_{j=1}^{n} \sum_{i=1}^{n} E_{\nu, P} [g(X_{n+j})g(X_{n+i})]
\]

(2.8)

\[
= \frac{1}{n^2} \sum_{j=1}^{n} \sum_{x \in D} P^{n_0+j} (g^2)(x) \nu(x) + \frac{2}{n^2} \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \sum_{x \in D} P^{n_0+j} (gP^{k-j}g)(x) \nu(x).
\]

Recall that reversibility with respect to \(\pi \) is equivalent to self-adjointness (s-a) of \(P \). For every function \(h \in \mathbb{R}^D \) and \(i \in \mathbb{N} \) the following calculation holds

\[
\sum_{x \in D} (P^i h)(x) \nu(x) = \langle P^i h, \frac{\nu}{\pi} \rangle = \langle P^i h, 1 \rangle + \langle P^i h, \frac{\nu}{\pi} - 1 \rangle
\]

(2.9)

\[
= \langle P^i h, 1 \rangle + \langle P^i (\frac{\nu}{\pi} - 1), h \rangle = \langle P^i h, 1 \rangle + \langle (P^i - S)(\frac{\nu}{\pi} - 1), h \rangle
\]

\[
= \sum_{x \in D} (P^i h)(x) \pi(x) + \langle d_i, h \rangle.
\]

17
Formula (2.9) is shown by using the previous calculation for \(h = g^2 \) and \(h = gP^{k-j}g \).

Corollary 2.16. Under the same assumptions as in Proposition 2.15 we obtain for \(i \in \{1, \ldots, |D| - 1\} \) that

\[
C_{\nu, \pi, \beta} = \frac{1 + \beta_i}{n(1 - \beta_i)} - \frac{2\beta_i(1 - \beta_i^n)}{n^2(1 - \beta_i)^2} + \frac{1}{n^2} \sum_{j=1}^{n} \left(\frac{1 + \beta_i - 2\beta_i^{n-j+1}}{1 - \beta_i} \right) L_{j+n_0}(u_i^2),
\]

where

\[
L_k(u_i^2) = \sum_{l=1}^{|D|-1} \beta_l^k \langle \frac{\nu}{\pi}, u_l \rangle \langle u_l, u_i^2 \rangle = \sum_{l=1}^{|D|-1} \beta_l^k \langle u_l, u_i^2 \rangle \sum_{x \in D} u_l(x) \nu(x).
\]

Proof. By substituting

\[
e_{\pi}(S_n, u^2) = \frac{1 + \beta_i}{n(1 - \beta_i)} - \frac{2\beta_i(1 - \beta_i^n)}{n^2(1 - \beta_i)^2},
\]

and

\[
\sum_{j=1}^{n-1} \sum_{k=j+1}^{n} L_{j+n_0}(u_i P^{k-j}u_i) = \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \beta_i^k L_{j+n_0}(u_i^2) = \sum_{j=1}^{n-1} L_{j+n_0}(u_i^2) (\beta_i - \beta_i^{n-j+1})
\]

into (2.9) one obtains the error formula. The equality of \(L_k(u_i^2) \) is an implication of (2.8).

Equation (2.9) and the result of Corollary 2.16 are still exact error formulas. To get an upper bound for the error, we estimate the functional \(L_k(\cdot) \). This estimate depends on the speed of convergence of \(\nu P^k \) to \(\pi \).

Lemma 2.17. Let \(h \in \mathbb{R}^D \), \(k \in \mathbb{N} \) and recall that \(\beta = \max \{ \beta_1, |\beta|_{|D|-1} \} \). Then

\[
|L_k(h)| \leq \beta^k \parallel \frac{\nu}{\pi} - 1 \parallel_2 \parallel h \parallel_2 \leq \beta^k \parallel \frac{\nu}{\pi} - 1 \parallel_2 \sqrt{\frac{1}{\pi^2}} \parallel h \parallel_1.
\]

Proof. After applying Cauchy-Schwarz inequality (CS) to \(L_k(h) = \langle d_k, h \rangle \) one obtains

\[
|L_k(h)| \leq \langle d_k, h \rangle \parallel h \parallel_2 \leq \parallel P^k - S \parallel_{\ell_2 \rightarrow \ell_2} \parallel \frac{\nu}{\pi} - 1 \parallel_2 \parallel h \parallel_2.
\]

By Lemma 2.13 the first inequality is proven and the rest is shown by using \(\parallel h \parallel_2 \leq \sqrt{\parallel \frac{1}{\pi} \parallel_\infty \parallel h \parallel_1} \). The last lemma ensures an exponential decay of \(L_k(\cdot) \) for increasing \(k \in \mathbb{N} \). This fact is used to show that there exists a constant \(C_{\nu, \pi, \beta} \), which is independent of \(n \) and \(n_0 \), such that

\[
|e_{\nu}(S_n, n, f)^2 - e_{\pi}(S_n, f)^2| \leq C_{\nu, \pi, \beta} \parallel f \parallel_2^2 \frac{\beta n_0}{n^2}.
\]

An immediate consequence of the inequality is an explicit error bound. The following two lemmas imply such an inequality and provide \(C_{\nu, \pi, \beta} \) explicitly.
Lemma 2.18. Let \((X_n)_{n \in \mathbb{N}}\) be a Markov chain with transition matrix \(P\) and initial distribution \(\nu\). Let \(P\) be reversible with respect to \(\pi\). Let \(f \in \mathbb{R}^D\) and

\[
U(\beta, n) = \sum_{j=1}^{n} \beta^j + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \beta^k.
\]

Then

\[
|e_\nu(S_{n,n_0}, f)^2 - e_\pi(S_n, f)^2| \leq U(\beta, n) \sqrt{\|1/\pi\|_\infty \|\nu/\pi - 1\|_2} \frac{2^n}{n^2} \beta^{n_0} \quad (2.12)
\]

Proof. Let \(g = f - S(f)\). The equation (2.9) implies

\[
|e_\nu(S_{n,n_0}, f)^2 - e_\pi(S_n, f)^2| \leq \frac{1}{n^2} \sum_{j=1}^{n} |L_{j+n_0}(g^2)| + \frac{2}{n^2} \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} |L_{j+n_0}(g^{P^{k-j}}g)|.
\]

Then by (2.11) one gets

\[
|L_{j+n_0}(g^2)| \leq \beta^{j+n_0} \sqrt{\|1/\pi\|_\infty \|\nu/\pi - 1\|_2} \|g\|_2^2,
\]

\[
|L_{j+n_0}(g^{P^{k-j}}g)| \leq \beta^{j+n_0} \sqrt{\|1/\pi\|_\infty \|\nu/\pi - 1\|_2} \|\nu P^{k-j}g\|_1.
\]

By the Cauchy-Schwarz inequality (CS) and \(\|P^{k-j}\|_2 \rightarrow \infty = \beta^{k-j}\) it follows that

\[
\|\nu P^{k-j}g\|_1 \leq \|g\|_2 \|P^{k-j}g\|_2 \leq \|g\|_2^2 \|P^{k-j}g\|_\infty \rightarrow \infty = \beta^{k-j} \|g\|_2^2.
\]

Let \(\varepsilon_0 = \sqrt{\|1/\pi\|_\infty \|\nu/\pi - 1\|_2} \beta^{n_0}\). Then

\[
\sum_{j=1}^{n} |L_{j+n_0}(g^2)| + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} |L_{j+n_0}(g^{P^{k-j}}g)|
\]

\[
\leq \varepsilon_0 \|g\|_2^2 \sum_{j=1}^{n} \beta^j + 2 \varepsilon_0 \|g\|_2^2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \beta^k
\]

\[
= \varepsilon_0 \|g\|_2^2 \left(\sum_{j=1}^{n} \beta^j + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \beta^k \right)
\]

\[
\leq U(\beta, n) \cdot \varepsilon_0 \|f\|_2^2.
\]

The last inequality follows from \(\|f - S(f)\|_2 \leq \|f\|_2\). \(\square\)

Note that one can also get a similar estimate as in (2.12) with respect to \(\|f\|_4\) by using the first inequality of (2.11) instead of the second one. In the resulting estimate the factor \(\sqrt{\|1/\pi\|_\infty}\) does not appear.

Let us consider \(U(\beta, n)\). If \(\beta < 1\), then the mapping \(n \mapsto U(\beta, n)\) is bounded.
Lemma 2.19. Let $\beta < 1$. For all $n \in \mathbb{N}$ we have

$$U(\beta, n) \leq \frac{2}{(1 - \beta)^2}.$$

Proof. By the infinite geometric series one obtains

$$U(\beta, n) \leq \sum_{j=1}^{n} \beta^j + \frac{2\beta}{1 - \beta} \sum_{j=1}^{n-1} \beta^j \leq \left(\frac{1 + \beta}{1 - \beta} \right) \sum_{j=1}^{n} \beta^j \leq \frac{2}{(1 - \beta)^2}. \quad \square$$

From Lemma 2.18 and Lemma 2.19 it follows that

$$e_{\nu}(S_{n,n_0}, f)^2 \leq e_{\pi}(S_n, f)^2 + \frac{2\beta^{n_0}}{n^2(1 - \beta)^2} \|f\|_2^2.$$

If the initial distribution ν is π then the error can be represented as in Proposition 2.11 and bounded as in Corollary 2.13.

The next theorem summarizes the main result of this section.

Theorem 2.20. Let $f \in \mathbb{R}^D$ and let $(X_n)_{n \in \mathbb{N}}$ be a Markov chain with transition matrix P and initial distribution ν. Let P be reversible with respect to π and let $\beta < 1$. Then

$$e_{\nu}(S_{n,n_0}, f)^2 \leq \frac{2}{n(1 - \beta_1)} \|f\|_2^2 + \frac{2\beta^{n_0}}{n^2(1 - \beta)^2} \|f\|_2^2. \quad (2.13)$$

For $a_k = \langle f, u_k \rangle$ one has

$$\lim_{n \to \infty} n \cdot e_{\nu}(S_{n,n_0}, f)^2 = \lim_{n \to \infty} n \cdot e_{\pi}(S_n, f)^2 = \sum_{k=1}^{\lceil |D| \rceil - 1} a_k^2 \frac{1 + \beta_k}{1 - \beta_k}. \quad (2.14)$$

Proof. By Lemma 2.18 Corollary 2.13 and Lemma 2.19 the estimate of (2.13) is proven. By Lemma 2.18 and Lemma 2.19 the first equality of (2.14) holds. Then, by Proposition 2.11

$$\lim_{n \to \infty} n \cdot e_{\pi}(S_n, f)^2 = \sum_{k=1}^{\lceil |D| \rceil - 1} a_k^2 \frac{1 + \beta_k}{1 - \beta_k}. \quad \square$$

Remark 2.21. The error bound (2.13) can be interpreted as follows: The burn-in n_0 is necessary to eliminate the influence of the initial distribution ν, while n must be large to decrease $e_{\nu}(S_n, f)$. Unfortunately the dependence of the initial distribution on the estimate is disillusioning for an extension to general state spaces, because of the factor $\sqrt{\|\pi\|_\infty}$. One can avoid this factor if one considers error bounds with respect to $\|f\|_p$ with $p > 2$, see Section 3.2.

Another consequence of Lemma 2.18 and Lemma 2.19 is the following result concerning the asymptotic error for $\|f\|_2 \leq 1$.

Corollary 2.22. Under the same assumptions as in Theorem 2.20 it follows that

$$\lim_{n \to \infty} n \cdot \sup_{\|f\|_2 \leq 1} e_{\nu}(S_{n,n_0}, f)^2 = \frac{1 + \beta_1}{1 - \beta_1},$$

and

$$\lim_{n_0 \to \infty} \sup_{\|f\|_2 \leq 1} e_{\nu}(S_{n,n_0}, f)^2 = \frac{1 + \beta_1}{n(1 - \beta_1)} - \frac{2\beta_1(1 - \beta_1^n)}{n^2(1 - \beta_1)^2}.$$
Proof. Let us define
\[c_{n,n_0} = \frac{2^{\beta n} \sqrt{\| f \|_\infty^2 \| f \|_\pi^2 - 1}}{n^2(1 - \beta)^2}. \]

One has \(\lim_{n \to \infty} n \cdot c_{n,n_0} = 0 \) and \(\lim_{n_0 \to \infty} c_{n,n_0} = 0 \). For \(\| f \|_2 \leq 1 \) we obtain by Lemma 2.18 and Lemma 2.19 that
\[|e_\nu(S_{n,n_0}, f)^2 - e_\pi(S_n, f)^2| \leq c_{n,n_0}. \]

Hence
\[
\sup_{\| f \|_2 \leq 1} e_\pi(S_n, f)^2 - c_{n,n_0} \leq \sup_{\| f \|_2 \leq 1} e_\nu(S_{n,n_0}, f)^2 \leq \sup_{\| f \|_2 \leq 1} e_\pi(S_n, f)^2 + c_{n,n_0}. \tag{2.15}
\]

By Corollary 2.13 we have
\[
\sup_{\| f \|_2 \leq 1} e_\xi(S_{n,n_0}, f)^2 = \frac{1 + \beta_1}{n(1 - \beta_1)} - \frac{2 \beta_1 (1 - \beta_1^\nu)}{n^2(1 - \beta_1)^2}.
\]

By taking the limits in (2.15) the assertions are proven. \(\square \)

Remark 2.23. The number
\[\tau = \frac{1 + \beta_1}{1 - \beta_1} \]

is called an autocorrelation time of \(P \), see [Sok97, Mat99]. If one could sample from \(\pi \) then \(\beta_1 = 0 \) so that \(\tau = 1 \). Hence \(\tau \) is the factor of computing time which quantifies the asymptotic difference of Markov chain Monte Carlo compared to Monte Carlo with an i.i.d. sample from the distribution \(\pi \).

Remark 2.24. Observe that one obtains from (2.15) a lower error bound for \(S_{n,n_0} \). We have
\[
\frac{1 + \beta_1}{n(1 - \beta_1)} - \frac{2}{n^2(1 - \beta_1)^2} \leq c_{n,n_0} \leq \sup_{\| f \|_2 \leq 1} e_\nu(S_{n,n_0}, f)^2 \leq \frac{2}{n(1 - \beta_1)} + c_{n,n_0}
\]

with \(c_{n,n_0} \), defined as in the proof of Corollary 2.22. For a reasonable burn-in of the Markov chain the error can be effectively approximated by these estimates. We apply these estimates to illustrating examples, see Section 2.4. Now let us discuss which burn-in is reasonable.

2.3. Burn-in

Assume that computer resources for \(N \) steps of the Markov chain are available, i.e. \(N = n + n_0 \). The goal is to choose the burn-in \(n_0 \) and the number \(n \) such that the upper error bound is as small as possible. There is obviously a trade-off between the choice of \(n \) and \(n_0 \). In the next statement the error for an explicitly given burn-in is stated.

Theorem 2.25. Suppose that
\[
n_0 = \max \left\{ \left\lfloor \frac{\log(\sqrt{\| f \|_\infty^2 \| f \|_\pi^2 - 1} \| f \|_2)}{\log(\beta^{-1})} \right\rfloor, 0 \right\}.
\]
Then
\[
\frac{1 + \beta_1}{n(1 - \beta_1)^2} \leq \frac{4}{n^2(1 - \beta)^2} \leq \sup_{\|f\|_2 \leq 1} e_\nu(S_n, n, f)^2 \leq \frac{2}{n(1 - \beta_1)} + \frac{2}{n^2(1 - \beta)^2}.
\]

Proof. The assertion follows from Theorem 2.20 and Remark 2.24.

Note that \(\log(\beta - 1) = (1 - \beta) + \sum_{j=2}^{\infty} \frac{(1 - \beta)^j}{j!}\) and \(\log(\beta - 1) \geq 1 - \beta\). One might use this observation to estimate the suggested burn-in. The choice of the burn-in of Theorem 2.25 is justified by the following.

Let us define
\[
C = \sqrt{\|\pi\|_\infty} \pi - 1 \|\pi\|_2
\]
and assume that \(\beta_1 = \beta\). If the assumption does not hold we may estimate the error bound of Theorem 2.20 by using \((1 - \beta_1)^{-1} \leq (1 - \beta)^{-1}\). For \(\|f\|_2 \leq 1\) we want to minimize the error estimate
\[
\text{est}(n, n_0) = \sqrt{\frac{2}{n(1 - \beta)} + \frac{2C\beta n_0}{n^2(1 - \beta)^2}}
\]
under the constraint that \(N = n + n_0\).

Lemma 2.26. For \(\eta > 0\) let
\[
C > \left(\frac{\log(\beta - 1)}{1 - \beta}\right)^{1/\eta},
\]
\[
N > (1 + \eta) \frac{\log(C)}{\log(\beta - 1)} + 2[\log(\beta - 1) - (1 - \beta)]^{-1}.
\]

Then there exists an
\[
n_{opt} \in \left[\frac{\log(C)}{\log(\beta - 1)}, (1 + \eta) \frac{\log(C)}{\log(\beta - 1)}\right],
\]
which minimizes the mapping \(n_0 \mapsto \text{est}(N - n_0, n_0)\).

If \(\eta = 10^{-3}\), then (2.16) implies for \(\beta = 0.99\) that \(C > 152\) and for \(C = 10^{30}\) that \(\beta > 0.87\). Hence the assumptions are not restrictive, since \(\beta\) is usually close to 1, \(C\) is large and the computational resources \(N\) should be sufficiently large.

Proof. Let
\[
a = N - (1 + \eta) \frac{\log(C)}{\log(\beta - 1)} \quad \text{and} \quad b = N - \frac{\log(C)}{\log(\beta - 1)}.
\]
Note that (2.17) gives that \(b > a > 0\). It is enough to show that there exists an \(m_{opt} \in [a, b]\) which minimizes \(n \mapsto \text{est}^2(n)\) given by
\[
\text{est}^2(n) = (\text{est}(n, N - n))^2 = \frac{2}{n(1 - \beta)} + \frac{2C\beta N - n}{n^2(1 - \beta)^2}.
\]
We have
\[
\text{est}^2(n)' = \frac{d}{dn} \text{est}^2(n) = \frac{2}{n^2(1 - \beta)} \left[\frac{C\beta N - n}{(1 - \beta)} \left(\log(\beta - 1) - \frac{2}{n}\right) - 1 \right].
\]
\footnote{The constant \(C\) might depend exponentially on additional parameters, see the example “Random walk on the hypercube” in Section 2.4 or see Section 4.}
We will show for any \(\tilde{a} \leq a \) and \(\tilde{b} \geq b \) that
\[
\text{est}^2(\tilde{a})' < 0 \quad \text{and} \quad \text{est}^2(\tilde{b})' > 0,
\]
consequently there exists an \(m_{\text{opt}} \in [a, b] \) which minimizes \(\text{est}^2(n) \). Let \(\tilde{b} \geq b \). Then the inequality \(\text{est}^2(\tilde{b})' > 0 \) follows by (2.17) and
\[
N > \frac{\log(C)}{\log(\beta^{-1})} \left(\frac{2}{\log(C)} + \frac{1 - \frac{1 - \beta}{\log(\beta^{-1})}}{1 - \frac{1 - \beta}{\log(\beta^{-1})}} \right)
\]
\[
\iff N > \frac{(1 - \frac{1 - \beta}{\log(\beta^{-1})}) \log(C) + 2}{\log(\beta^{-1}) - (1 - \beta)}
\]
\[
\iff N(\log(\beta^{-1}) - (1 - \beta)) + \log(C) \left(\frac{1 - \beta}{\log(\beta^{-1})} - 1 \right) > 2
\]
\[
\iff \left(N - \frac{\log(C)}{\log(\beta^{-1})} \right) \log(\beta^{-1}) - \left(N - \frac{\log(C)}{\log(\beta^{-1})} \right)(1 - \beta) > 2
\]
\[
\iff \log(\beta^{-1}) - \frac{2}{b} > (1 - \beta)
\]
\[
\iff \frac{1}{1 - \beta} \left(\log(\beta^{-1}) - \frac{2}{b} \right) - 1 = \frac{C\beta^{-\tilde{b}}}{1 - \beta} \left(\log(\beta^{-1}) - \frac{2}{b} \right) - 1 > 0
\]
\[
\Rightarrow \frac{C\beta^{-\tilde{b}}}{1 - \beta} \left(\log(\beta^{-1}) - \frac{2}{b} \right) - 1 > 0.
\]

On the other hand for \(\tilde{a} \leq a \) we obtain \(\text{est}^2(\tilde{a})' < 0 \). This is shown by the following calculation. By (2.16) one has
\[
C^\eta \overset{\text{(2.16)}}{>} \frac{\log(\beta^{-1})}{1 - \beta}
\]
\[
\iff \log(\beta^{-1}) - (1 - \beta)C^\eta < 0
\]
\[
\Rightarrow \log(\beta^{-1}) - (1 - \beta)C^\eta < \frac{2}{a}
\]
\[
\iff \log(\beta^{-1}) - \frac{2}{a} < (1 - \beta)C^\eta
\]
\[
\iff \frac{C^{-\eta}}{(1 - \beta)} \left(\log(\beta^{-1}) - \frac{2}{a} \right) - 1 = \frac{C\beta^{N-a}}{(1 - \beta)} \left(\log(\beta^{-1}) - \frac{2}{a} \right) - 1 < 0
\]
\[
\Rightarrow \frac{C\beta^{N-a}}{(1 - \beta)} \left(\log(\beta^{-1}) - \frac{2}{a} \right) - 1 < 0.
\]

Altogether this implies that there is an
\[
n_{\text{opt}} \in \left[\frac{\log(C)}{\log(\beta^{-1})}, \frac{\log(C)}{\log(\beta^{-1})} \right]
\]
which minimizes the mapping \(n_0 \mapsto \text{est}(N - n_0, n_0) \).

If an error of at most \(\epsilon \in (0, 1) \) is desired, then the suggested choice of the burn-in \(n_0 \) is
independent of the precision ε, we choose
\[
n_0 = \max \left\{ \left[\log(\sqrt{\| \frac{1}{\pi} \|_\infty \| v \|_2} - 1) / \log(\beta^{-1}) \right], 0 \right\}
\]
and
\[
n \geq 1 + \sqrt{1 + 4\varepsilon^2} / (1 - \beta^2) \varepsilon^2 \quad \text{to achieve} \quad e_n(S_{n,n_0}, f) \leq \varepsilon.
\]

2.4. Examples

The goal is to compare the upper bounds of Theorem 2.20 and Theorem 2.25 with the exact error for a given function $f \in \mathbb{R}^D$. It is not known which f with $\| f \|_2 \leq 1$ maximizes $e_n(S_{n,n_0}, f)^2$. But by Corollary 2.22 one has
\[
\lim_{n_0 \to \infty} \sup_{\| f \|_2 \leq 1} e_n(S_{n,n_0}, f)^2 = e_n(S_n, u_1)^2,
\]
where u_1 is the eigenfunction corresponding to β_1. This motivates the study of the individual error for u_1, which gives the maximal error for integrands f with $\| f \|_2 \leq 1$ if n_0 goes to infinity. In this section illustrating examples are considered, where the eigenvalues and the eigenfunctions are available. The Markov chains are very well studied in the literature, see [Mei99, SC04, Str05, BD06, LPW09].

Random walk on a circle

Let $T \geq 3$ be an odd natural number. Let $D = \mathbb{Z}_T$ be the underlying state space, where $\mathbb{Z}_T = \mathbb{Z} \mod T$ denotes the cyclic group of order T. The $T \times T$ transition matrix of the random walk is determined by
\[
p(x, y) = \begin{cases} \frac{1}{T}, & y = x \pm 1 \mod T, \\ 0, & \text{otherwise}. \end{cases}
\]
The transition matrix is reversible with respect to the uniform distribution given by $\pi(x) = 1/T$ for $x \in D$. Since T is an odd number we obtain that the transition matrix is aperiodic, for even T it would be periodic. The eigenvalues of the transition matrix are
\[
\beta_0 = 1, \quad \beta_{2j-1} = \beta_{2j} = \cos \left(\frac{2\pi j}{T} \right), \quad j = 1, \ldots, \frac{T-1}{2},
\]
and the orthonormal eigenfunctions $\{u_0, u_1, \ldots, u_{T-1}\}$ are
\[
u_0(x) = 1, \quad u_{2j-1}(x) = \sqrt{2} \cos \left(\frac{2\pi j x}{T} \right), \quad u_{2j}(x) = \sqrt{2} \sin \left(\frac{2\pi j x}{T} \right),
\]
where $j = 1, \ldots, \frac{T-1}{2}$ and $x \in D$. Clearly $\beta = |\beta_{T-1}| = \cos \left(\frac{\pi}{T} \right)$, thus $\beta \neq \beta_1$.

24
Let us consider $f = u_1$. The initial distribution is chosen as $\nu = \delta_0$, so that the initial state is $0 \in D$. By $(u_1)^2 = u_0 + \frac{1}{\sqrt{2}} u_3$ it is

$$\langle u_i, (u_1)^2 \rangle = \langle u_i, u_0 \rangle + \frac{1}{\sqrt{2}} \langle u_i, u_3 \rangle = \begin{cases} 1, & i = 0, \\ \frac{1}{\sqrt{2}}, & i = 3, \\ 0, & \text{otherwise}. \end{cases}$$

Hence by (2.10) we obtain

$$L_k((u_1)^2) = \sum_{i=1}^{T-1} \beta_k^i \langle u_i, (u_1)^2 \rangle u_i(0) = \beta_3^k.$$

Additionally with $\beta_1 = \cos\left(\frac{2\pi}{T}\right)$ it is

$$e_\pi(S_n, u_1)^2 = \frac{1 + \cos\left(\frac{2\pi}{n}\right)}{n(1 - \cos\left(\frac{2\pi}{n}\right))} - \frac{2 \cos\left(\frac{2\pi}{n}\right)(1 - \cos^n\left(\frac{2\pi}{n}\right))}{n^2(1 - \cos\left(\frac{2\pi}{n}\right))^2}.$$

The exact error is determined by Corollary 2.16 with $\beta_3 = \cos\left(\frac{4\pi}{T}\right)$ so that

$$e_\nu(S_{n_0}, u_1) = e_x(S_n, u_1)^2 + \frac{n}{n^2} \sum_{j=1}^{n} \left(\frac{1 + \cos\left(\frac{2\pi}{n}\right) - 2 \cos^{n-j+1}\left(\frac{2\pi}{n}\right)}{1 - \cos\left(\frac{2\pi}{n}\right)} \cos^{j+n_0}\left(\frac{4\pi}{T}\right) \right)^{1/2}. \quad (2.18)$$

We apply Theorem 2.25 to get a lower error bound and (2.13) of Theorem 2.20 to get an upper error bound, since $\beta \neq \beta_1$. Hence the burn-in is chosen as suggested in Theorem 2.25 i.e.

$$n_0 = \left\lceil \frac{\log(T^2 - T)}{2 \log(\cos^{-1}(\frac{2\pi}{T}))} \right\rceil.$$

Then

$$e_\nu(S_{n_0}, u_1) \leq \left(\frac{2}{n(1 - \cos\left(\frac{2\pi}{n}\right))} + \frac{2}{n^2(1 - \cos\left(\frac{2\pi}{n}\right))^2} \right)^{1/2} \quad (2.19)$$

and

$$\left(\frac{1 + \cos\left(\frac{2\pi}{n}\right)}{n(1 - \cos\left(\frac{2\pi}{n}\right))} - \frac{4}{n^2(1 - \cos\left(\frac{2\pi}{n}\right))^2} \right)^{1/2} \leq e_\nu(S_{n_0}, u_1). \quad (2.20)$$

We have an explicit exact error formula (2.18), a lower error bound (2.20) and an upper error bound (2.19).

In Figure 2.1 the different bounds of (2.19), (2.20) and the exact error of (2.18) are plotted for $T = 999$. The curves start at $N = n_0$, since the computational resources must be larger than the burn-in $n_0 = 1396699$. The lower error bound gives a non-trivial estimate if $N \geq n_0 + 1617911 = 3014610$, since for $n \geq \frac{4(1 - \beta_3)}{(1 + \beta_3)(1 - \beta_3)} = 1617911$ one obtains a lower bound larger as zero.
Figure 2.1.: Random walk on a circle: Exact error and error bounds, $T = 999$ and $n_0 = \left\lceil \frac{\log(T^2 - T)}{\log(\cos^{-1}(\frac{1}{2}))} \right\rceil = 1396699.$

Random walk on the hypercube

Let d be a natural number. Let $D = \{0, 1\}^d$ be the state space and $|\tilde{x}| = \sum_{i=1}^{d} |\tilde{x}_i|$ for $\tilde{x} \in \{-1, 0, 1\}^d$. The $2^d \times 2^d$ transition matrix is given by

$$p(x, y) = \begin{cases} \frac{1}{2}, & x = y, \\ \frac{1}{2^d}, & |x - y| = 1, \\ 0, & \text{otherwise}. \end{cases}$$

The transition matrix is reversible with respect to $\pi(x) = 2^{-d}$ for $x \in D$. Furthermore, it is aperiodic and irreducible. We use a different notation for the index of the eigenvalues and orthonormal eigenfunctions, for $z \in \{0, 1\}^d$ one has

$$\beta_z = 1 - \frac{|z|}{d} \quad \text{and} \quad u_z(x) = (-1)^{\sum_{i=1}^{d} z_i x_i}, \quad x \in D.$$

Set $[0] = (0, \ldots, 0)$ and set $[1] = (1, 0, \ldots, 0)$ so that

$$\beta_{[0]} = 1, \quad \text{and} \quad u_{[0]}(x) = 1, \quad x \in D,$$

$$\beta_{[1]} = 1 - \frac{1}{d}, \quad \text{and} \quad u_{[1]}(x) = (-1)^{x_1}, \quad x \in D.$$

Obviously for all indizes $z \in \{0, 1\}^d$ the eigenvalue $\beta_z \geq 0$ so that $\beta_{[1]} = \beta$.

26
Let us choose the initial state of the Markov chain deterministically in \((0, \ldots, 0) \in D\), i.e. \(\nu = \delta_{[0]}\). By \((u_{[1]})^2 = u_{[0]}\) one has for index \(z \in \{0, 1\}^d\) that

\[
\langle u_z, (u_{[1]})^2 \rangle = \begin{cases} 1, & z = [0], \\ 0, & \text{otherwise}. \end{cases}
\]

This implies

\[
L_k((u_{[1]})^2) = 0, \quad k \in \mathbb{N}.
\]

The error of \(S_n\), if the initial state is chosen by \(\pi\), obeys

\[
e_\pi(S_n, u_{[1]})^2 = 2d - \frac{2(d^2 - d)}{n} \left(1 - \left(1 - \frac{1}{d}\right)^n\right).
\]

Then by Corollary 2.16 it is

\[
e_\nu(S_{n_0}, u_{[1]}) = e_\pi(S_n, u_{[1]}). \tag{2.21}
\]

The burn-in and the error bounds are determined by Theorem 2.25. One obtains

\[
n_0 = \left\lceil \frac{1}{2} \log(\frac{2d}{2d - 2n(1 - \theta)}) \right\rceil
\]

such that

\[
e_\nu(S_{n_0}, u_{[1]}) \leq \sqrt{\frac{2d}{n} + \frac{2d^2}{n^2}}, \tag{2.22}
\]

and

\[
\sqrt{\frac{2d - 1}{n} - \frac{4d^2}{n^2}} \leq e_\nu(S_{n_0}, u_{[1]}). \tag{2.23}
\]

In Figure 2.2 for \(d = 50\) the exact error (2.21), the upper error bound (2.22) and the lower error bound (2.23) are plotted. It can be seen that after the burn-in the curves are close to each other. The error bounds are polynomial in \(d\) which is of the magnitude of \(\log(|D|)\).

Random walk on the star

Let \(T \geq 2\) be an even natural number. Let the state space \(D = \{0, 1, \ldots, T\}\). The \((T + 1) \times (T + 1)\) transition matrix is given by

\[
p(x, y) = \begin{cases} \theta, & x = y = 0, \\ \frac{1}{T - 1}, & x = 0, \ y \in D \setminus \{0\}, \\ 1, & x \in D \setminus \{0\}, \ y = 0, \\ 0, & \text{otherwise,} \end{cases}
\]

with a parameter \(\theta \in (0, 1)\). The transition graph is star shaped since every state is connected solely with the center 0. The transition matrix is reversible with respect to \(\pi\), for \(x \in D\) given by

\[
\pi(x) = \begin{cases} \frac{1}{x + \theta}, & x = 0, \\ \frac{1}{\pi(x-\theta)}, & \text{otherwise}. \end{cases}
\]
One obtains $\beta_0 = 1$, $\beta_T = \theta - 1$ and for $x \in D$ one has

$$u_0(x) = 1, \quad u_T(x) = \sqrt{1 - \theta} \begin{cases} 1, & x = 0, \\ \frac{1}{\sqrt{1 - \theta}}, & \text{otherwise}. \end{cases}$$

The eigenvalue $\beta_i = 0$ for $i \in \{1, \ldots, T-1\}$ is of multiplicity $T - 1$. Without loss of generality we may assume that for any $x \in D$ one has

$$u_1(x) = \begin{cases} 0, & x = 0, \\ \sqrt{\frac{2 - \theta}{1 - \theta}}, & x = 1, \ldots, T/2, \\ -\sqrt{\frac{2 - \theta}{1 - \theta}}, & x = T/2 + 1, \ldots, T. \end{cases}$$

The remaining eigenvectors u_2, \ldots, u_{T-1} are arbitrarily chosen such that we get an orthonormal basis $\{u_0, u_1, \ldots, u_T\}$. One has an aperiodic and irreducible transition matrix where $\beta_1 = 0$ and $\beta = \max \{\beta_1, |\beta_T|\} = 1 - \theta$. We consider the error for $f = u_1$. The initial state is given as the center of the star, i.e. 0. Then $\nu = \delta_0$. From $(u_1)^2 = u_0 - \frac{1}{\sqrt{1 - \theta}}u_T$ one gets

$$\langle u_i, (u_1)^2 \rangle = \begin{cases} 1, & i = 0, \\ -\frac{1}{\sqrt{1 - \theta}}, & i = T, \\ 0, & \text{otherwise}. \end{cases}$$
By (2.10) this implies
\[L_k((u_1)^2) = \sum_{i=1}^{T} \beta_k^i \langle u_i, (u_1)^2 \rangle u_i(0) = -\beta_T^k = -(\theta - 1)^k. \]

The error where the Markov chain is initialized by the stationary distribution obeys
\[e_{\pi}(S_n, u_1)^2 = \frac{1}{n}. \]

Then by Corollary 2.16 it follows that
\[e_{\nu}(S_{n,n_0}, u_1) = \left(\frac{1}{n} - \frac{(\theta - 1)^{n_0+1} ((\theta - 1)^n - 1)}{(\theta - 2)n^2} \right)^{1/2}. \]

Recall that $\beta_1 \neq \beta$. However, we only use the error bounds of Theorem 2.25. The burn-in is chosen as
\[n_0 = \left\lceil \frac{\log((2 - \theta)T)}{2 \log(1 - \theta)} \right\rceil. \]

Then the upper bound is
\[e_{\nu}(S_{n,n_0}, u_1) \leq \sqrt{\frac{2}{\theta n} + \frac{2}{\theta^2 n^2}}, \]

and the lower bound is given as
\[\sqrt{\frac{1}{n} - \frac{4}{\theta^2 n^2}} \leq e_{\nu}(S_{n,n_0}, u_1). \]

In Figure 2.3 for $\theta = 0.1$ and $T = 10^5$ the exact error (2.24), the upper error bound (2.25) and the lower bound (2.26) are plotted. For $n \geq \frac{1}{\theta}$ we get a nontrivial estimate by the lower bound. The upper error bound is shifted down since $\beta \neq \beta_1$. One could improve this by using (2.13) of Theorem 2.20 directly. In the present setting one losts asymptotically a factor of $\sqrt{2/\theta}$.

Let us summarize the important facts of this section. The error was considered for the eigenfunction u_1 corresponding to β_1. If n_0 goes to infinity, then u_1 is the function which maximizes the error for integrands f with $\|f\|_1 \leq 1$. The bound of Theorem 2.25 applied in this setting gives tight results if $\beta_1 = \beta$. Otherwise Theorem 2.20 achieves the right asymptotic coefficient if β_1 and β are known. For the considered examples one has the eigenvalues and the eigenfunctions explicitly. In applications it is usually difficult to estimate β_1 or β, but there are different auxiliary tools, e.g. canonical path technique, condactance (see [JS89] and [DS91]), log-Sobolev inequalities and path coupling, see [LPW09]. However, if the eigenvalues β_1 and $|\beta|_{D,-1}$ are available, then the error can be approximated by the lower and upper bound.

2.5. Notes and remarks

Let us comment how the results fit into the published literature. An elementary and powerful technique how to bound the error for S_{n,n_0} or S_n is based on Doeblin’s theory, see [Str05, pp. 27]. Let $A_k = (a_k(x,y))_{x,y \in D}$ be the kth Cesàro sum given by
\[A_k = \frac{1}{k} \sum_{j=0}^{k-1} P^j. \]
Figure 2.3.: Random walk on the star: Exact error and error bounds, \(\theta = 0.1, T = 10^5 \) and \(n_0 = \lceil \frac{\log((2^{\frac{1}{2}}-\theta)T)}{2\log(1-\theta)} \rceil = 58 \).

Assume that

\[\exists M \in \mathbb{N} \setminus \{1\}, y_0 \in D \text{ and } \gamma > 0 \text{ such that } \forall x \in D : a_M(x, y_0) \geq \gamma. \quad (2.27) \]

Then for any \(n_0 \) the error obeys

\[e_{\nu}(S_{n,n_0}, f)^2 \leq \frac{8(M-1)}{n\gamma} \| f \|_{\infty}^2. \]

Condition (2.27) states that there is a state \(y_0 \) where the expected value of visiting it, in average, until \(M \) from every other state is uniformly bounded from below by rate \(\gamma \). If the transition matrix is irreducible then there exists an \(M \) such that \(A_M > 0 \) and one has that (2.27) is satisfied (see for example [Beh00, Lemma 7.3, p. 50]). It is difficult to obtain \(\gamma \) and \(M \). Let us state a toy example where one can compute \(\gamma \) and \(M \) explicitly. Let \(D = \{0, 1\}^d \). We consider a Markov chain, which independently samples with respect to \(\pi \), with \(\pi(x) = 2^{-d} \) for \(x \in D \). This is Monte Carlo with an i.i.d. sample. Consequently we get as best possible parameters \(\gamma = 2^{-d+1} \) and \(M = 2 \). The error estimate behaves exponentially bad in terms of \(d \). In contrast, the estimate of Theorem 2.20 is independent of \(d \). In general, even if one can get \(\gamma \) and \(M \), then these constants are often exponentially bad in terms of some other parameters. Usually \(\gamma \) is close to zero and \(M \) is huge. However, with this bound even the periodic case is covered and reversibility is not necessary. But on the other hand the optimal coefficient \(\frac{1}{|D|} \) of the leading term of Corollary 2.13 is not reached and the burn-in cannot be used to tune the algorithm.
The approach to use the spectral representation of reversible transition matrices is not new. In [BD06] the result of Proposition 2.11 is presented. By the same arguments a slightly worse bound is shown in [Ald87, Proposition 4.1, p. 40]. It applies if \(\beta_1 \geq 0 \) and gives

\[
e_\varepsilon(S_n, f)^2 \leq \frac{2}{n(1 - \beta_1)} \|f\|_2^2 + \frac{2 \exp \{-n(1 - \beta_1)\}}{n^2(1 - \beta_1)^2} \|f\|_2^2.
\]

(2.28)

Furthermore if the initial distribution \(\nu \) is not the stationary one, a different algorithm is considered. Namely, the burn-in \(n_0^* \) is randomly chosen, independent of \((X_n)_{n \in \mathbb{N}} \), by the Poisson distribution with parameter \(n_0 \), and

\[
S_{n,n_0}^* (f) = \frac{1}{n} \sum_{j=1}^{n} f(X_{j+n_0}^*).
\]

Then it is proven in [Ald87, Proposition 4.2, p. 41] that

\[
e_\nu(S_{n,n_0}^*, f)^2 \leq e_\varepsilon(S_n, f)^2 \left(1 + \frac{1}{n} \right) \exp \{-n_0(1 - \beta_1)\}.
\]

This bound applies also for periodic Markov chains and after applying (2.28) it gives an estimate with respect to \(\|\cdot\|_2 \). The optimal coefficient \(\frac{1 + \beta}{2} \) of the leading term, see Corollary 2.22, is not reached, also if Corollary 2.13 instead of (2.28) is applied. The burn-in \(n_0^* \) is randomly chosen rather than deterministically, since then one can translate the discrete time Markov chain into a continuous time Markov chain and avoids discussions of negative eigenvalues. This technique is similar to the idea of considering a lazy Markov chain.

In [NP09] an explicit error bound is published which holds also for non-reversible Markov chains with an absolute \(\ell_2 \)-spectral gap, i.e. \(\beta = \|P\|_{\ell_2^* \rightarrow \ell_2} < 1 \). In the proof of the error bound the multiplicative reversibilization \(PP^* \) of \(P \) is used, where \(P^* \) is the adjoint operator of \(P \) acting on \(\ell_2 \). It follows from [NP09, Corollary 4.2, p. 320] that

\[
e_\nu(S_{n,n_0}^*, f)^2 \leq \frac{1 + \beta}{n(1 - \beta)} \|f\|_2^2 + \frac{2 \beta}{(1 - \beta)n^2} \|f\|_2^2 + \frac{2(1 + \beta)\beta^{n_0}}{(1 - \beta)n^2} \|f\|_\infty \|f\|_2.
\]

One obtains an error bound uniformly with respect to \(\|f\|_2 \) by using \(\|f\|_\infty \leq \frac{1}{\beta} \|f\|_\infty^{1/2} \|f\|_2 \). The spectral gap can be implied by aperiodicity and irreducibility of the Markov chain, see [LPW09, Lemma 12.1, p. 153]. But it is remarkable that the chain can be non-reversible. If \(\beta = \beta_1 \) then the error bound has the right coefficient of the leading term. Then it is essentially the same bound as in Theorem 2.20.

Also confidence estimates of \(S_{n,n_0} \) are of interest. The goal is to achieve for given precision \(\varepsilon \in (0, 1) \) and confidence parameter \(\alpha \in (0, 1) \) that

\[
\Pr(|S_{n,n_0} - S(f)| \geq \varepsilon) \leq \alpha.
\]

(2.29)

Such approximations for confidence intervals can be implied by the mean square error.

Lemma 2.27. Let \((X_n)_{n \in \mathbb{N}} \) be a Markov chain with transition matrix \(P \) and initial distribution \(\nu \) and let \(\varepsilon \in (0, 1) \). Then

\[
\Pr(|S_{n,n_0} - S(f)| \geq \varepsilon) \leq \frac{e_\nu(S_{n,n_0}, f)^2}{\varepsilon^2}.
\]
Proof. The result is an application of the Markov inequality. Suppose that \(\| f \|_2 \leq 1 \). If one applies Lemma 2.27 and the burn-in is chosen as in Theorem 2.25 then it follows for

\[
 n_0 \geq \frac{\log(\sqrt{\frac{1}{\pi}} \| \pi - 1 \|_2)}{\log(\beta^{-1})}
\]

and

\[
 n \geq \frac{4\alpha^{-1} \varepsilon^{-2}}{1 - \beta}
\]

that (2.29) is true. Note that the burn-in is chosen independently of \(\alpha \). In [LPW09, Theorem 12.19, p. 165] a similar bound is deduced by coupling arguments. It implies a slightly worse result if the initial state is deterministically chosen. If

\[
 n_0 \geq \frac{\log(2\alpha^{-1} \| \pi \|_{\infty})}{1 - \beta}
\]

and

\[
 n \geq \frac{4\alpha^{-1} \varepsilon^{-2}}{1 - \beta}
\]

then (2.29) is true. The main difference is the dependence of \(\alpha \) in the choice of the burn-in. One can essentially boost this confidence level by using a median of independent runs of the Markov chain Monte Carlo method. This is explained in [NP09]. However, both presented results are far away from well known Chernoff bounds. These exponential inequalities for finite Markov chains are shown in [Gil98] for random walks on graphs. In [Lez98], this Chernoff bound was extended and refined for Markov chains on finite and general state spaces, furthermore for discrete and continuous time. For irreducible and reversible Markov chains on finite \(D \) and \(\| f \|_{\infty} \leq 1 \) one obtains from [Lez98, Theorem 1.1, p. 850] that

\[
 \Pr(\{|S_{n,n_0}(f) - S(f)| \geq \varepsilon\}) \leq 3 \left\| \frac{\nu P^{n_0}}{\pi} \right\|_2 \exp \left\{ -n(1 - \beta_1) \frac{\varepsilon^2}{12} \right\}.
\] (2.30)

In other words, if

\[
 n_0 \geq \frac{\log(\| \pi - 1 \|_2)}{\log(\beta^{-1})}
\]

and

\[
 n \geq \frac{12\varepsilon^{-2} \log(6\alpha^{-1})}{1 - \beta_1}
\]

then (2.29) holds true. This is better than using Lemma 2.27 in [LP04] Hoeffding bounds for reversible Markov chains are presented.

Such exponential inequalities also imply an error bound of the mean square error by the following well known formula, see for example [Kal02, Lemma 2.4, p. 26].

Lemma 2.28. Let \((X_n)_{n \in \mathbb{N}} \) be a Markov chain with transition matrix \(P \) and initial distribution \(\nu \). Then

\[
 e_{\nu}(S_{n,n_0}, f)^2 = \int_0^{\infty} \Pr(|S_{n,n_0}(f) - S(f)| \geq \sqrt{\varepsilon}) \, d\varepsilon.
\]

By Lemma 2.28 and by (2.30) one obtains the following error bound

\[
 \sup_{\| f \|_{\infty} \leq 1} e_{\nu}(S_{n,n_0}, f)^2 \leq \frac{36(1 + \beta^{n_0} \| \pi - 1 \|_2)}{n(1 - \beta_1)}.
\]

The asymptotic coefficient as described in Corollary 2.13 and Corollary 2.22 is not reached. However, the error bound applies also for periodic Markov chains.
Let us provide a conclusion. Different explicit error bounds for finite state spaces are known. The results presented in Section 2.2 are not entirely new. In the literature one can find similar estimates where some of the assumptions like aperiodicity or reversibility are weakened. The justification and discussion of the burn-in in Section 2.3 and the lower bound of Theorem 2.25 seem to be new. In the following we will extend the results to general state spaces.
3. General state spaces

In the following we study the mean square error of Markov chain Monte Carlo methods on general state spaces. The state space can be countable or uncountable. In Section 3.1 we provide the basic definitions and properties of Markov chains on general state spaces. The estimates of the mean square error are shown in Section 3.2. We suggest and justify a recipe how to choose the burn-in in Section 3.3. Afterwards the error bound is applied to illustrating examples and finally we discuss how the results fit into the published literature.

3.1. Markov chains

In this section facts and definitions of Markov chains on general state spaces are stated. The paper [RR04] of Rosenthal and Roberts surveys various results about Markov chains on general state spaces. For further reading we refer to [Rev84, Num84, MT09].

Let \((D, \mathcal{D})\) be a measurable space. In most examples \(D\) is contained in \(\mathbb{R}^d\) and \(\mathcal{D}\) is given by \(\mathcal{B}(D)\), where \(\mathcal{B}(D)\) denotes the Borel \(\sigma\)-algebra over \(D\). In the following we provide the definition of a transition kernel and a Markov chain.

Definition 3.1 (Markov kernel, transition kernel). The function \(K: D \times \mathcal{D} \rightarrow [0, 1]\) is called a Markov kernel or a transition kernel if

(i) for each \(x \in D\) the mapping \(A \in \mathcal{D} \mapsto K(x, A)\) is a probability measure on \((D, \mathcal{D})\),

(ii) for each \(A \in \mathcal{D}\) the mapping \(x \in D \mapsto K(x, A)\) is a \(\mathcal{D}\)-measurable real-valued function.

Definition 3.2 (Markov chain). A sequence of random variables \((X_n)_{n \in \mathbb{N}}\) on a probability space \((\Omega, \mathcal{F}, \text{Pr})\) mapping into \((D, \mathcal{D})\) is called a Markov chain with transition kernel \(K\) if for all \(n \in \mathbb{N}\) and \(A \in \mathcal{D}\) one has

\[
\text{Pr}(X_{n+1} \in A \mid X_1, \ldots, X_n) = \text{Pr}(X_{n+1} \in A \mid X_n) = K(X_n, A) \quad \text{almost surely.}
\]

The distribution

\[
\nu(A) = \text{Pr}(X_1 \in A), \quad A \in \mathcal{D}
\]

is called the initial distribution.

Suppose that we have a transition kernel \(K\) and a probability measure \(\nu\). For simplicity let us assume that \(D \subset \mathbb{R}^d\) and \(\mathcal{D} = \mathcal{B}(D)\). For any transition kernel there exists a random mapping representation, see for example Kallenberg [Kal02, Lemma 2.22, p. 34]. A random mapping representation is a measurable function \(\Phi: D \times [0, 1] \rightarrow D\), which satisfies

\[
\text{Pr}(\Phi(x, Z) \in A) = K(x, A), \quad x \in D, A \in \mathcal{D},
\]

where the random variable \(Z: (\Omega, \mathcal{F}, \text{Pr}) \rightarrow ([0, 1], \mathcal{B}([0, 1]))\) is uniformly distributed. Then a Markov chain can be constructed as follows. Let \((Z_n)_{n \in \mathbb{N}}\), with \(Z_n: (\Omega, \mathcal{F}, \text{Pr}) \rightarrow [0, 1]\)
([0,1],[B([0,1])]), be a sequence of i.i.d. random variables with uniform distribution, and assume that \(X_1\) has distribution \(\nu\), then one can see that \((X_n)_{n\in\mathbb{N}}\) defined by

\[X_n = \Phi(X_{n-1}, Z_n), \quad n \geq 2,
\]
is a Markov chain with transition kernel \(K\) and initial distribution \(\nu\).

The transition kernel \(K\) of a Markov chain describes the probability of getting from state \(x \in D\) to \(A \in \mathcal{D}\) in one step, i.e. for all \(k \in \mathbb{N}\) one has

\[K(x,A) = \Pr(X_{k+1} \in A \mid X_k = x).
\]
The \(n\) step transition kernel is inductively given by

\[K^n(x,A) = \int_D K^{n-1}(y,A) K(x,dy) = \int_D K(y,A) K^{n-1}(x,dy).
\]
The first equality of the previously stated equation is the definition and for a proof of the second equality see [Rev84, Proposition 1.6, p. 11] or [MT09, Theorem 3.4.2, p. 61]. The function \(K^n\) again constitutes a transition kernel. The \(n\) step transition probability from state \(x \in D\) to \(A \in \mathcal{D}\) is

\[\Pr(X_{k+n} \in A \mid X_k = x) = K^n(x,A).
\]

This is seen by integrating over the conditional distribution of the previous step:

\[
\begin{align*}
\Pr(X_{k+1} \in A \mid X_k = x) &= K(x,A), \\
\Pr(X_{k+2} \in A \mid X_k = x) &= \int_D \Pr(X_{k+2} \in A \mid X_{k+1} = y, X_k = x) \Pr(X_{k+1} \in dy \mid X_k = x) \\
&= \int_D \Pr(X_{k+2} \in A \mid X_{k+1} = y) K(x,dy) = K^2(x,A), \\
&\vdots \\
\Pr(X_{k+n} \in A \mid X_k = x) &= \int_D \Pr(X_{k+n} \in A \mid X_{k+n-1} = y, X_k = x) \\
&\quad \times \Pr(X_{k+n-1} \in dy \mid X_k = x) \\
&= \int_D \Pr(X_{k+n} \in A \mid X_{k+n-1} = y) K^{n-1}(x,dy) = K^n(x,A).
\end{align*}
\]

In the following let us assume that we have a Markov chain \((X_n)_{n\in\mathbb{N}}\) with transition kernel \(K\) and initial distribution \(\nu\). The expectation \(E_{\nu,K}\) is taken with respect to the joint distribution of \((X_n)_{n\in\mathbb{N}}\), say \(W_{\nu,K}\), which is defined on \((D^\mathbb{N}, \sigma(A))\) where

\[D^\mathbb{N} = \{\omega = (x_1, x_2, \ldots) \mid x_i \in D \text{ for all } i \geq 1\}\]

and

\[A = \bigcup_{k \in \mathbb{N}} \{A_1 \times A_2 \times \cdots \times A_k \times D \times \cdots \mid A_i \in \mathcal{D}, i = 1, \ldots, k\},
\]

see [MT09, Theorem 3.4.1, p. 60] or [Rev84, Theorem 2.8, p. 17]. For \(k \in \mathbb{N}\) one has with \(A_1 \times \cdots \times A_k \subset D^k\) that

\[
W_{\nu,K}(A_1 \times \cdots \times A_k \times D \times \cdots) = \Pr(X_1 \in A_1, \ldots, X_k \in A_k)
= \int_{A_1} \int_{A_2} \cdots \int_{A_{k-1}} K(x_k-1, A_k) K(x_{k-2}, dx_{k-1}) \cdots K(x_1, dx_2) \nu(dx_1).
\]
Now we present properties of transition kernels. These properties have finite state space counterparts, see Section 2.1.

By $\mathcal{M}(D)$ denote the set of real-valued signed measures on (D, \mathcal{D}). For any $\nu \in \mathcal{M}(D)$ let us define

$$
\nu P^m(A) = \int_D K^m(x, A) \nu(dx), \quad A \in \mathcal{D}, \; m \in \mathbb{N}.
$$

Note that the mapping $\nu \mapsto \nu P^m$ defines a linear operator on $\mathcal{M}(D)$. If ν is a probability measure then νP^m is the distribution of X_{m+1} for a Markov chain $(X_n)_{n \in \mathbb{N}}$ with transition kernel K and initial distribution ν.

Definition 3.3 (stationarity). Let π be a probability measure on (D, \mathcal{D}). Then π is called a stationary distribution of a transition kernel K if

$$
\pi P(A) = \pi(A), \quad A \in \mathcal{D}.
$$

Roughly spoken that means: Choosing the initial state with respect to a stationary distribution π, then, after a single transitions the same distribution as before arises, i.e.

$$
\Pr(X_1 \in A) = \pi(A) = \pi P(A) = \Pr(X_2 \in A), \quad A \in \mathcal{D}.
$$

Definition 3.4 (reversibility). Let π be a probability measure on (D, \mathcal{D}). A transition kernel K is called reversible with respect to π if

$$
\int_B K(x, A) \pi(dx) = \int_A K(x, B) \pi(dx), \quad A, B \in \mathcal{D}.
$$

If a transition kernel K is reversible with respect to a distribution π, then π is a stationary distribution of K. If the initial distribution of a Markov chain with transition kernel K is π, then reversibility with respect to π is equivalent to

$$
\Pr(X_1 \in A, X_2 \in B) = \Pr(X_1 \in B, X_2 \in A), \quad A, B \in \mathcal{D}.
$$

A Markov chain is called reversible with respect to π, if the corresponding transition kernel is reversible with respect to π.

Definition 3.5 (lazy version). Let K be a transition kernel and let $1_A(x)$ be the indicator function of $A \in \mathcal{D}$ for $x \in D$. Then we call

$$
\tilde{K}(x, A) = \frac{1}{2}(1_A(x) + K(x, A)), \quad x \in D, \; A \in \mathcal{D},
$$

the lazy version of K.

If π is a stationary distribution of K, then π is also a stationary distribution of \tilde{K}. If K is reversible with respect to π, then \tilde{K} is also reversible with respect to π. For a Markov chain with transition kernel K and initial distribution ν we may define a lazy Markov chain, a Markov chain with transition kernel \tilde{K} and initial distribution ν.

1 The set function $\mu : \mathcal{D} \rightarrow \mathbb{R}$ is a real-valued signed measure if $\mu(\emptyset) = 0$ and for pairwise disjoint A_1, A_2, \ldots, with $A_k \in \mathcal{D}$ for $k \in \mathbb{N}$, one has $\mu(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$.

36
Assume that π is a stationary distribution of a transition kernel K and let $f : D \to \mathbb{R}$ be an integrable function with respect to π. Let us define

$$P_m f(x) = \int_D f(y) K^m(x, dy), \quad x \in D, \ m \in \mathbb{N}.$$

We call P Markov operator or transition operator. If a Markov chain $(X_n)_{n \in \mathbb{N}}$ with transition kernel K and initial distribution δ_x, the point mass at $x \in D$, is given, then $P_m f(x)$ is the expectation of $f(X_{m+1})$.

Let us state some well known properties of the operator P acting on functions and on signed measures.

Lemma 3.6. Let π be a stationary distribution of transition kernel K and let $f : D \to \mathbb{R}$ be an integrable function with respect to π. Then one obtains for $\nu \in \mathcal{M}(D)$ that

$$\int_D f(x) (\nu P_m)(dx) = \int_D (P_m f)(x) \nu(dx), \quad m \in \mathbb{N}, \tag{3.2}$$

whenever one of the integrals exist. In particular

$$S(f) = \int_D f(x) \pi(dx) = \int_D (P_m f)(x) \pi(dx), \quad m \in \mathbb{N}. \tag{3.3}$$

Proof. Equation (3.3) is an immediate consequence of (3.2) and stationarity. Hence one has to prove (3.2). The equality holds for indicator functions and for simple functions. Then by the standard procedure of integration theory the equality can be extended to positive and afterwards to general integrable functions.

Note that if a Markov chain $(X_n)_{n \in \mathbb{N}}$ with transition kernel K and initial distribution ν is given, then (3.2) can be rewritten as

$$E_{\nu,K}[f(X_{m+1})] = E_{\nu,K}[E_{\nu,K}[f(X_{m+1}) \mid X_1]].$$

The following result is well known, see for example [LS93, equation (1.2), p. 365].

Lemma 3.7. Let the transition kernel K be reversible with respect to π and let $F : D \times D \to \mathbb{R}$. Then

$$\int_D \int_D F(x,y) K^m(x, dy) \pi(dx) = \int_D \int_D F(y,x) K^m(x, dy) \pi(dx), \quad m \in \mathbb{N}, \tag{3.4}$$

whenever one of the integrals exist.

Proof. The reversibility of the transition kernel K implies reversibility of the m step transition kernel K^m. Hence it is sufficient to show the assertion for $m = 1$. By using the reversibility one has

$$\int_D \int_D 1_{A \times B}(x,y) K(x, dy) \pi(dx) = \int_D \int_D 1_{A \times B}(y,x) K(x, dy) \pi(dx), \quad A, B \in \mathcal{D}.$$

The equality of the integrals can be extended to arbitrary sets $C \in \mathcal{D} \otimes \mathcal{D}$, where $\mathcal{D} \otimes \mathcal{D}$ is the product σ-algebra of \mathcal{D} with itself. This is an application of the Dynkin’s Theorem. Then it is straightforward to consider the cases where F is a simple function, a positive function and finally an integrable one.

37
For \(p \in [1, \infty) \) let us define
\[
L_p = L_p(D, \pi) = \left\{ f : D \to \mathbb{R} \mid \| f \|_p^p = \int_D |f(x)|^p \pi(dx) < \infty \right\}.
\]

For \(p = \infty \) the essential-supremum norm with respect to \(\pi \) is defined by
\[
\| f \|_\infty = \text{ess sup}_{y \in \mathcal{D}} |f(y)| = \inf_{N \in \mathcal{D}, \pi(N)=0} \sup_{y \in D \setminus N} |f(y)|,
\]
so that
\[
L_\infty = L_\infty(D, \pi) = \left\{ f : D \to \mathbb{R} \mid \| f \|_\infty < \infty \right\}.
\]

Sometimes it is convenient to consider bounded functions on \(D \), not \(\pi \)-a.e. bounded ones, thus we define
\[
L_B = L_B(D) = \left\{ f : D \to \mathbb{R} \mid |f| = \sup_{x \in D} |f(x)| < \infty \right\}.
\]

The next result is standard, see for example [BR95, Lemma 1, p. 334].

Lemma 3.8. Let \(p \in [1, \infty] \). For any transition kernel \(K \) with a stationary distribution \(\pi \) it follows that
\[
\| Pf \|_p \leq \| f \|_p \quad \text{and} \quad \| P \|_{L_p \to L_p} = 1.
\]

Proof. If \(p < \infty \), then by Jensen inequality (\(J \)) and (3.3) one obtains
\[
\int_D |Pf(x)|^p \pi(dx) \leq \int_D \left(\int_D |f(y)| K(x, dy) \right)^p \pi(dx)
\]
\[
\leq \left(\int D \right)^p \int_D |f(y)|^p K(x, dy) \pi(dx) = \int_D |f(x)|^p \pi(dx).
\]

Since \(\pi \) is a stationary distribution of the transition kernel one has for \(N \in \mathcal{D} \) that
\[
\pi(N) = 0 \quad \iff \quad K(\cdot, N) = 0 \quad \pi\text{-a.e.}
\]

Null sets with respect to \(\pi \) are the same as null sets with respect to \(K(x, \cdot) \) for almost all \(x \in D \). Hence
\[
|Pf(x)| \leq \int_D |f(y)| K(x, dy) \leq \| f \|_\infty
\]
\(\pi\text{-a.e.} \)

and we have \(\| Pf \|_p \leq \| f \|_\infty \) for \(p \in [1, \infty] \). Let \(u(x) = 1 \) for all \(x \in D \). Then \(Pu = u \) with \(\| u \|_p = 1 \) and we obtain \(\| P \|_{L_p \to L_p} = 1 \).

The closed subspace
\[
L_p^0 = \{ f \in L_p \mid S(f) = 0 \}
\]
of \(L_p \) is important. Note that \(L_2 \) and \(L_2^0 \) are Hilbert spaces with scalar product
\[
\langle f, g \rangle = \int_D f(x)g(x) \pi(dx).
\]

Then
\[
L_2 = L_2^0 \oplus (L_2^0)^\perp, \quad \text{where} \quad (L_2^0)^\perp = \{ f \in L_2 \mid \forall c, c \in \mathbb{R} \}.
\]
On the Hilbert spaces L_2 and L_0^2 there exists the adjoint operator P^* such that
\[\langle Pf, g \rangle = \langle f, P^* g \rangle. \]

Furthermore
\[\|P\|_{L_2^0 \to L_2^0} = \|P^*\|_{L_2^0 \to L_2^0} \quad \text{and} \quad \|P - S\|_{L_2 \to L_2} = \|P^* - S\|_{L_2 \to L_2}. \]

The following facts about adjoint operators are helpful. Let $T : L_p \to L_p$, with $p \in [1, \infty)$, be a linear bounded operator. Then the adjoint operator $T^* : L_q \to L_q$, with $q \in (1, \infty]$, is defined as follows. Suppose that p and q are chosen such that $p^{-1} + q^{-1} = 1$. It is well known that L_q is isometrically isomorphic to the dual space $(L_p)'$, where the isomorphism is given by
\[A : L_q \to (L_p)', \quad A(g)(f) = \langle f, g \rangle, \quad f \in L_p. \]

Then there exists the dual operator $T^* : (L_p)' \to (L_q)'$ and the adjoint operator acting on L_q can be defined as $T^* = A^{-1}T^*A$. Figure 3.1 illustrates the construction by a diagram.

![Figure 3.1: Illustration of the definition of the adjoint operator $T^*: L_q \to L_q$ of $T: L_p \to L_p$.](image)

Furthermore, for all $f \in L_p$ and for all $g \in L_q$ one has
\[\langle f, T^* g \rangle = \langle f, A^{-1}T^* A g \rangle = A(A^{-1}T^* A g)(f) = (T^*A)(g)(f) = A(g)(Tf) = \langle Tf, g \rangle. \]

Then
\[\|T\|_{L_p \to L_p} = \|T^*\|_{(L_p)'} = \sup_{\|Ag\|_{(L_p)'} \leq 1} \|T^* A g\|_{(L_p)'}, \]
\[= \sup_{\|g\|_q \leq 1} \|A^{-1}T^* A g\|_q = \|T^*\|_{L_q \to L_q}. \]

If $T = P - S$, then it follows that
\[\|P - S\|_{L_p \to L_p} = \|P^* - S\|_{L_q \to L_q}. \]

Let $\nu \in M(D)$. If there exists a density of ν with respect to π then we denote it by $\frac{d\nu}{d\pi}$ and for $q \in [1, \infty]$ let
\[\|\nu\|_q = \begin{cases} \left\| \frac{d\nu}{d\pi} \right\|_q, & \nu \ll \pi, \\ \infty, & \text{otherwise}. \end{cases} \]

Set
\[M_q = M_q(D, \pi) = \left\{ \nu \in M(D) \mid \|\nu\|_q < \infty \right\}. \]
The function space L_q is isometrically isomorphic to the space of signed measures \mathcal{M}_q, in symbols $L_q \cong \mathcal{M}_q$. The space of signed measures \mathcal{M}_2 is a Hilbert space and the scalar product is the L_2 scalar product of the densities, one has

$$\langle \nu, \mu \rangle = \int_D \frac{d\nu}{d\pi} (x) \frac{d\mu}{d\pi} (x) \pi(dx) = \left\langle \frac{d\nu}{d\pi}, \frac{d\mu}{d\pi} \right\rangle, \quad \nu, \mu \in \mathcal{M}_2.$$

Furthermore set

$$\mathcal{M}_q^0 = \{ \nu \in \mathcal{M}_q \mid \nu(D) = 0 \}.$$

Then

$$\mathcal{M}_2 = \mathcal{M}_2^0 \oplus \mathcal{M}_2^\perp,$$

where $\mathcal{M}_2^\perp = \{ \nu \in \mathcal{M}_2 \mid \nu = c \cdot \pi, \ c \in \mathbb{R} \}$.

Clearly, \mathcal{M}_q^0 is also a Hilbert space. We have $L_q^0 \cong \mathcal{M}_2^0$ and $(L_q^0)^\perp \cong (\mathcal{M}_2^0)^\perp$. Let us recall that the transition kernel applies to signed measures $\nu \in \mathcal{M}_q$ as

$$\nu P(A) = \int_D K(x,A) \nu(dx), \quad A \in \mathcal{D}.$$

Lemma 3.9. Let K be a transition kernel and let π be a stationary distribution of K.

(i) Let $q \in (1, \infty]$ and $\nu \in \mathcal{M}_q$. Then

$$\frac{d(\nu P)}{d\pi}(x) = P^*\left(\frac{d\nu}{d\pi}\right)(x) \quad \pi\text{-a.e.}$$

and

$$\left\| P \right\|_{L_2^0 \to L_2^0} = \left\| P \right\|_{\mathcal{M}_2^0 \to \mathcal{M}_2^0}.$$

(ii) Reversibility with respect to π is equivalent to P being self-adjoint acting on L_2 and \mathcal{M}_2, i.e.

$$\langle Pf, g \rangle = \langle f, Pg \rangle \quad \text{and} \quad \langle \nu P, \mu \rangle = \langle \nu, \mu P \rangle.$$

Proof. First, let us prove assertion (i). For all $f \in L_p$ with p chosen such that $p^{-1} + q^{-1} = 1$ one has

$$\left\langle f, \frac{d(\nu P)}{d\pi}\right\rangle = \int_D f(x) (\nu P)(dx) = \int_D (Pf)(x) \nu(dx) = \left\langle Pf, \frac{d\nu}{d\pi}\right\rangle = \left\langle f, P^*\left(\frac{d\nu}{d\pi}\right)\right\rangle.$$

Hence we have π-a.e.

$$\frac{d(\nu P)}{d\pi}(x) = P^*\left(\frac{d\nu}{d\pi}\right)(x).$$

By using the previous equation one obtains

$$\left\| P \right\|_{\mathcal{M}_2^0 \to \mathcal{M}_2^0} = \sup_{\left\| \frac{d\mu}{d\pi} \right\|_{L_2^0} = 1, \mu(D) = 0} \left\| \frac{d(\mu P)}{d\pi} \right\|_2 = \sup_{\left\| \frac{d\mu}{d\pi} \right\|_{L_2^0} = 1, S(\frac{d\mu}{d\pi}) = 0} \left\| P^*\left(\frac{d\mu}{d\pi}\right) \right\|_2$$

$$= \left\| P^* \right\|_{L_2^0 \to L_2^0} = \left\| P \right\|_{L_2^0 \to L_2^0}.$$

Let us turn to assertion (ii). It is clear that self-adjointness implies reversibility. The other direction follows by

$$\langle Pf, g \rangle = \int_D \int_D f(y)g(x) K(x,dy) \pi(dx) = \int_D \int_D f(x)g(y) K(x,dy) \pi(dx) = \langle f, Pg \rangle.$$

The result with respect to \mathcal{M}_2 is shown by using (i) and the self-adjointness of P on L_2. \qed
In the following we introduce several convergence properties of a Markov chain \((X_n)_{n \in \mathbb{N}}\) with transition kernel \(K\) and initial distribution \(\nu\). We assume that \(\pi\) is a stationary distribution of \(K\). The goal is to quantify the speed of convergence of \(\nu^n\) to \(\pi\) for increasing \(n \in \mathbb{N}\). For further details let us refer to [RR97a], [RR04] or [Che05].

Definition 3.10 \((L_2\)-spectral gap). Let \(P\) be the Markov operator with corresponding transition kernel \(K\). Then there exists an (absolute) \(L_2\)-spectral gap, if

\[
\beta = \|P\|_{L_2^2 \to L_2^2} < 1,
\]

where the \(L_2\)-spectral gap is given by \(1 - \beta\).

Let us briefly explain what this means for reversible transition kernel. If the transition kernel \(K\) is reversible with respect to \(\pi\), then let \(\text{spec}(P|L_2)\) be the spectrum of the self-adjoint operator \(P\) acting on \(L_2\) and \(\text{spec}(P|L_2^0)\) be the spectrum of \(P\) acting on \(L_2^0\). Since \(\|P\|_{L_2 \to L_2} \leq 1\) the spectrum \(\text{spec}(P|L_2)\) is contained in \([-1, 1]\). Let us define

\[
\lambda = \inf \{ \alpha \mid \alpha \in \text{spec}(P|L_2^0) \} \quad \text{and} \quad \Lambda = \sup \{ \alpha \mid \alpha \in \text{spec}(P|L_2^0) \}.
\]

Since \(P\) is self-adjoint, it is well known that

\[
\lambda = \inf_{\|g\|_2 = 1, g \in L_2^0} \langle Pg, g \rangle \quad \text{and} \quad \Lambda = \sup_{\|g\|_2 = 1, g \in L_2^0} \langle Pg, g \rangle.
\]

Then we have

\[
\text{spec}(P|L_2^0) \subset [\lambda, \Lambda] \quad \text{and} \quad \beta = \|P\|_{L_2^2 \to L_2^2} = \max\{\Lambda, |\lambda|\}.
\]

The existence of an \(L_2\)-spectral gap implies that \(-1 < \lambda \leq \Lambda < 1\), consequently there is a gap between \(1 \in \text{spec}(P|L_2)\) and \(\beta\), the second largest absolute value of \(\text{spec}(P|L_2)\).

Definition 3.11 \((L_2\)-geometric ergodicity). A transition kernel \(K\) with stationary distribution \(\pi\) is called \(L_2\)-geometrically ergodic, if for all probability measures \(\nu \in \mathcal{M}_2\) there exists an \(\alpha \in [0, 1)\) and \(C_\nu < \infty\) such that

\[
\|\nu^n \pi - \pi\|_2 \leq C_\nu \alpha^n, \quad n \in \mathbb{N}.
\]

An \(L_2\)-spectral gap implies \(L_2\)-geometric ergodicity.

Proposition 3.12. Let \(K\) be a transition kernel with stationary distribution \(\pi\). Assume that the Markov operator \(P\) has an \(L_2\)-spectral gap, i.e. \(1 - \beta > 0\). Then the transition kernel \(K\) is \(L_2\)-geometrically ergodic.

Proof. If \(\nu \in \mathcal{M}_2\) and \(\nu(D) = 1\), then one obtains \((\nu - \pi)(D) = 0\) and the proof is completed by

\[
\|\nu P^n - \pi\|_2 = \|(\nu - \pi)P^n\|_2 \leq \|P\|_{L_2^0 \to L_2^0} \|\nu - \pi\|_2 = \beta^n \|\nu - \pi\|_2.
\]

If the transition kernel is reversible with respect to \(\pi\), then \(L_2\)-geometric ergodicity and the existence of an \(L_2\)-spectral gap are equivalent. This result is shown in [RR97a].

Proposition 3.13. Let the transition kernel \(K\) be reversible with respect to \(\pi\). Then the following statements are equivalent:

(i) The transition kernel is \(L_2\)-geometrically ergodic.
(ii) The Markov operator P has an L_2-spectral gap.

Proof. See [RR97a, Theorem 2.1, p. 17].

For further details and even more equivalences of L_2-geometric ergodicity, see [RR97a, RT01]. The next definition is similar to L_p-exponential convergence in [Che05].

Definition 3.14 (L_p-exponential convergence). Let $p \in [1, \infty]$, let $\alpha \in [0, 1)$ and $M < \infty$. Then the transition kernel K with stationary distribution π is called L_p-exponentially convergent with (α, M) if

$$\|P^n - S\|_{L_p \to L_p} \leq M \alpha^n, \quad n \in \mathbb{N}.$$

The transition kernel is called L_p-exponentially convergent if there exist an $M < \infty$ and an $\alpha \in [0, 1)$ such that it is L_p-exponentially convergent with (α, M).

The Markov chain is called L_2-geometrically ergodic or L_p-exponentially convergent if the corresponding transition kernel K is L_2-geometrically ergodic or L_p-exponentially convergent.

Let p and q be chosen such that $p^{-1} + q^{-1} = 1$. The condition of L_p-exponential convergence implies convergence of νP^n to the stationary distribution π for increasing $n \in \mathbb{N}$ in M_q.

Corollary 3.15. Let $p \in [1, \infty)$ and $\nu \in M_q$ with $p^{-1} + q^{-1} = 1$. Let the transition kernel K with stationary distribution π be L_p-exponentially convergent with (α, M). Then

$$\|\nu P^n - \pi\|_q \leq M \|\nu - \pi\|_q \alpha^n, \quad n \in \mathbb{N}.$$

Proof. The assertion is proven by

$$\|\nu P^n - \pi\|_q = \|(\nu - \pi) P^n\|_q = \left\| \frac{d((\nu - \pi) P^n)}{d\pi} \right\|_q = \left\| (P^n)^* \left(\frac{d\nu}{d\pi} - 1 \right) \right\|_q \leq \left\| ((P^n)^* - S) \left(\frac{d\nu}{d\pi} - 1 \right) \right\|_q \leq \|P^n - S\|_{L_p \to L_p} \left\| \frac{d\nu}{d\pi} - 1 \right\|_q \leq M \|\nu - \pi\|_q \alpha^n.$$

In the following we consider relations between the existence of an L_2-spectral gap and L_p-exponential convergence. First, let us add some helpful inequalities.

Lemma 3.16. Let π be a stationary distribution of transition kernel K. Then

$$\|P^n\|_{L_2^0 \to L_2^0} = \|P^n - S\|_{L_2 \to L_2} \leq \beta^n, \quad n \in \mathbb{N}. \quad (3.5)$$

If $p \in [1, \infty]$ then

$$\|P^n\|_{L_p^0 \to L_p^0} \leq \|P^n - S\|_{L_p \to L_p} \leq 2 \|P^n\|_{L_p^0 \to L_p^0}, \quad n \in \mathbb{N}. \quad (3.6)$$

Proof. Note that if P is a normal operator, i.e. $PP^* = P^*P$, then $\|P^n\|_{L_2^0 \to L_2^0} = \beta^n$, otherwise one has $\|P^n\|_{L_2 \to L_2} \leq \|P^n\|_{L_2^0 \to L_2^0} = \beta^n$. By

$$\|P^n - S\|_{L_2 \to L_2} = \sup_{\|f\|_2 \leq 1} \|(P^n - S)f\|_2 = \sup_{\|f\|_2 \leq 1} \|P^n(f - S(f))\|_2 \leq \sup_{\|g\|_2 \leq 1, S(g) = 0} \|P^n g\|_2 = \|P^n\|_{L_2^0 \to L_2^0}$$
and

\[\|P^n\|_{L^q_p \to L^q_p} = \sup_{\|g\|_{L^q_p} \leq 1, S(g) = 0} \|P^n g\|_p = \sup_{\|g\|_{L^q_p} \leq 1, S(g) = 0} \|P^n g - S(g)\|_p \]

\[\leq \sup_{\|f\|_{L^q_p} \leq 1} \|(P^n - S)f\|_p = \|P^n - S\|_{L^q_p \to L^q_p} \]

claim (3.5) and the first part of (3.6) are shown. Furthermore one obtains

\[\|P^n - S\|_{L^q_p \to L^q_p} = \sup_{\|f\|_{L^q_p} \leq 1} \|P^n f - Sf\|_p = 2 \sup_{\|f\|_{L^q_p} \leq 1} \left\|P^n \frac{1}{2}(f - Sf)\right\|_p \]

\[\leq 2 \sup_{\|g\|_{L^q_p} \leq 1, S(g) = 0} \|P^n g\|_p = 2 \|P^n\|_{L^q_p \to L^q_p}, \]

which finishes the proof.

In a general setting it follows that an \(L_2 \)-spectral gap implies \(L_p \)-exponential convergence for all \(p \in (1, \infty) \).

Proposition 3.17. Let \(p \in (1, \infty) \). Let \(\pi \) be a stationary distribution of transition kernel \(K \) and \(n \in \mathbb{N} \). The existence of an \(L_2 \)-spectral gap, \(1 - \beta > 0 \), implies \(L_p \)-exponential convergence. We obtain

\[\|P^n - S\|_{L^q_p \to L^q_p} \leq \begin{cases} 2^{2/p} \beta^{2n/p}, & p \in (1, 2), \\ 2 \beta^{2n/p}, & p \in [2, \infty). \end{cases} \]

(3.7)

Proof. Let \(p \in (1, 2) \). Lemma 3.16 gives

\[\|P^n - S\|_{L^q_p \to L^q_p} \leq \beta^n \quad \text{and} \quad \|P^n - S\|_{L^q_1 \to L^q_1} \leq 2. \]

We apply Proposition A.4 (Interpolation Theorem of Riesz-Thorin), where \(T = P^n - S \) and \(q_1 = 2, q_2 = 1 \) such that \(\theta = \frac{2}{p} \). The case where \(p \in (2, \infty) \) follows by the same interpolation argument, since by Lemma 3.16 one has

\[\|P^n - S\|_{L^q_2 \to L^q_2} \leq \beta^n \quad \text{and} \quad \|P^n - S\|_{L^q_\infty \to L^q_\infty} \leq 2. \]

From Proposition 3.17 and actually already from (3.5) it follows that an \(L_2 \)-spectral gap implies \(L_2 \)-exponential convergence. With the additional assumption of normality of \(P \) one can prove the reverse direction.

Proposition 3.18. Let \(\pi \) be a stationary distribution of transition kernel \(K \). Let the Markov operator \(P \) be normal, i.e. \(P^* P = P \). Then the following statements are equivalent:

(i) There exists an \(L_2 \)-spectral gap, i.e. \(1 - \beta > 0 \).

(ii) There exist an \(\alpha \in [0, 1) \) and \(M < \infty \) such that the transition kernel \(K \) is \(L_2 \)-exponentially convergent with \((\alpha, M)\).

In particular (ii) implies

\[\beta = \|P - S\|_{L^2 \to L^2} \leq \alpha, \]

so that

\[\beta = \min \{ \alpha \mid \exists M < \infty \text{ with } \|P^n - S\|_{L^2 \to L^2} \leq M \alpha^n, \; n \in \mathbb{N} \} \].
Proof. By (3.5) of Lemma 3.16 one has that (i) implies (ii) with \((\alpha, M) = (\beta, 1)\). Now we show that (ii) implies (i). One has
\[
\|P\|_{L^2_\infty \rightarrow L^2_\infty}^2 = \|PP^*\|_{L^2_\infty \rightarrow L^2_\infty},
\]
where \(PP^*\) is self-adjoint and \((P^*)^n = (P^n)^*\) for all \(n \in \mathbb{N}\). Then
\[
\|P^n - S\|_{L^2_\rightarrow L^2_}^2 = \|P^n\|_{L^2_\rightarrow L^2_}^2 = \|P^n(P^n)^*\|_{L^2_\rightarrow L^2_} = \|P^n(P^*)^n\|_{L^2_\rightarrow L^2_} = \|PP^*\|_{L^2_\rightarrow L^2_}^n \text{ (normality)} = \|PP^*\|_{L^2_\rightarrow L^2_}^n
\]
such that
\[
\|P^n - S\|_{L^2_\rightarrow L^2_} \leq M\alpha^n \iff \|PP^*\|_{L^2_\rightarrow L^2_}^n \leq M^2\alpha^{2n}. \tag{3.8}
\]
By the spectral radius formula and the self-adjointness (s-a) of \(PP^*\) one obtains
\[
\lim_{n \to \infty} \|PP^*\|_{L^2_\rightarrow L^2_}^n \leq \alpha^2 \lim_{n \to \infty} (M^n)^{1/n} \leq \alpha^2.
\]
Hence the proof is completed. \(\square\)

By an interpolation argument we get that \(L_\infty\)-exponential convergence or \(L_1\)-exponential convergence imply an \(L_2\)-spectral gap if the Markov operator is normal.

Proposition 3.19. Let \(\pi\) be a stationary distribution of transition kernel \(K\). Let \(K\) be \(L_1\)-exponentially convergent or \(L_\infty\)-exponentially convergent with \((\alpha, M)\). Suppose that the Markov operator \(P\) is normal, i.e. \(PP^* = P^*P\). Then there exists an \(L_2\)-spectral gap, in particular one obtains
\[
\beta = \|P - S\|_{L^2_\rightarrow L^2_} \leq \sqrt{\alpha}. \tag{3.9}
\]

Proof. We show that \(L_1\)-exponential convergence with \((\alpha, M)\) implies \(\beta \leq \sqrt{\alpha}\). For \(L_\infty\)-exponentially convergent Markov chains the claim follows by the same arguments, where the roles of \(L_\infty\) and \(L_1\) are interchanged.

By the assumptions of the proposition and Lemma 3.16 one has
\[
\|P^n - S\|_{L^1_\rightarrow L^1_} \leq \alpha^n M, \quad \text{and} \quad \|P^n - S\|_{L^\infty_\rightarrow L^\infty_} \leq 2.
\]
By Proposition A.4 (Interpolation Theorem of Riesz-Thorin), where \(T = P^n - S\) and \(q_1 = 1, q_2 = \infty, \theta = \frac{1}{2}\) one obtains \(L_2\)-exponential convergence with \((\sqrt{\alpha}, 2^{3/2}M^{1/2})\). Then Proposition 3.18 implies \(\beta \leq \sqrt{\alpha}\) and the proof is completed. \(\square\)

Another way to measure the convergence of \(\nu P^n\) to \(\pi\) for increasing \(n \in \mathbb{N}\) is provided by using the total variation distance, defined as follows.

Definition 3.20 (total variation distance). The total variation distance between two probability measures \(\nu, \mu \in \mathcal{M}(D)\) is defined by
\[
\|\nu - \mu\|_{tv} = \sup_{A \in \mathcal{D}} |\nu(A) - \mu(A)|.
\]
The total variation distance can be considered as an \(L_1\)-norm.
Lemma 3.21. Let $\nu, \mu \in \mathcal{M}(D)$ be probability measures. Then
\[
\|\nu - \mu\|_{tv} = \frac{1}{2} \sup_{|f| \leq 1} \left| \int_D f(x)(\nu(dx) - \mu(dx)) \right|, \tag{3.10}
\]
where $|f| = \sup_{x \in D} |f(x)|$. If $\nu, \mu \in \mathcal{M}_1$, then $\|\nu - \mu\|_{tv} = \frac{1}{2} \|\nu - \mu\|_1$.

Proof. See [RR04, Proposition 3, p. 28].

Now we can define uniform ergodicity of a transition kernel K.

Definition 3.22 (uniform ergodicity, π-a.e. uniform ergodicity). Let $M < \infty$ and $\alpha \in [0, 1)$. Then the transition kernel K with stationary distribution π is called uniformly ergodic with (α, M) if one has for all $x \in D$ that
\[
\|K^n(x, \cdot) - \pi\|_{tv} \leq M \alpha^n, \quad n \in \mathbb{N}. \tag{3.11}
\]
If the inequality of (3.11) holds π-a.e, rather than for all $x \in D$, then the transition kernel K is called uniformly ergodic or π-a.e uniformly ergodic if there exist an $M < \infty$ and an $\alpha \in [0, 1)$ such that K is uniformly ergodic or π-a.e uniformly ergodic with (α, M).

Obviously, if the transition kernel is uniformly ergodic then it is also π-a.e. uniformly ergodic. Note that in other references, e.g. [Che05], uniform ergodicity is called strong ergodicity.

Uniform ergodicity is closely related to L_∞-exponential convergence. An important relation is presented in the following proposition. Recall that $L_B = L_B(D)$ denotes the class of bounded functions on D.

Proposition 3.23. Let $\alpha \in [0, 1)$ and $M < \infty$. Let π be a stationary distribution of transition kernel K. Then the following statements are equivalent:

(i) The transition kernel K is uniformly ergodic with (α, M).

(ii) The transition operator P satisfies
\[
\|P^n - S\|_{L_B \rightarrow L_B} \leq 2M \alpha^n, \quad n \in \mathbb{N}.
\]

Furthermore (i) and (ii) imply the following equivalent statements:

(i) The transition kernel K is π-a.e. uniformly ergodic with (α, M).

(ii) The transition kernel K is L_∞-exponentially convergent with $(\alpha, 2M)$.

Proof. By Lemma 3.21 the equivalence of (i) and (ii) holds true. The equivalence of (i) and (ii) remains to prove. First, let us show that π-a.e.
\[
\sup_{\|f\|_{\infty} \leq 1} |P^n f(x) - S(f)| = \sup_{\|f\|_{\infty} \leq 1} |P^n f(x) - S(f)|.
\]

Note that
\[
\pi(N) = 0 \iff K^n(\cdot, N) = 0 \quad \pi\text{-a.e.}
\]
for all $N \in \mathcal{D}$ and $n \in \mathbb{N}$, since π is the stationary distribution. Suppose that $f \in L_\infty$. Obviously, if $N \in \mathcal{D}$ and $\pi(N) = 0$ then π-a.e.

$$|P^n f(x) - S(f)| = |P^n(1_N \cdot f)(x) - S(1_N \cdot f)|.$$

Let $\|f\|_\infty \leq 1$, i.e. $\pi(\{x \in D : f(x) > 1\}) = 0$. Define

$$g(x) = \begin{cases} f(x), & f(x) \leq 1, \\ 1, & f(x) > 1, \end{cases}$$

such that $f(x) = g(x)$ holds π-a.e. and $|g| \leq 1$. Thus, π-a.e.

$$|P^n f(x) - S(f)| = |P^n g(x) - S(g)| \leq \sup_{|g| \leq 1} |P^n g(x) - S(g)|,$$

so that π-a.e.

$$\sup_{\|f\|_\infty \leq 1} |P^n f(x) - S(f)| \leq \sup_{|g| \leq 1} |P^n g(x) - S(g)|.$$

The inequality in the other direction is clearly also correct, i.e. π-a.e.

$$\sup_{\|f\|_\infty \leq 1} |P^n f(x) - S(f)| = \sup_{|g| \leq 1} |P^n g(x) - S(g)|.$$

By applying the essential-supremum on both sides of the previous equation and (3.10) one obtains

$$\|P^n - S\|_{L_\infty \to L_\infty} = 2 \text{ess sup}_{x \in D} \|K^n(x, \cdot) - \pi\|_{tv}.$$

Hence the proof is completed. \hfill \Box

It is known that there are transition kernels where the Markov operators have an L_2-spectral gap and the transition kernels are not uniformly ergodic, see [MT96]. Furthermore, uniform ergodicity implies an L_2-spectral gap, see [RR97a]. In this sense uniform ergodicity is a stronger property than the existence of an L_2-spectral gap.

Proposition 3.24. Let $\alpha \in [0, 1)$ and $M < \infty$. Let the transition kernel K be reversible with respect to π. Then the following statements are equivalent:

(i) The transition kernel K is L_1-exponentially convergent with $(\alpha, 2M)$.

(ii) The transition kernel K is L_∞-exponentially convergent with $(\alpha, 2M)$.

(iii) The transition kernel K is π-a.e. uniformly ergodic with (α, M).

Each of the conditions imply that the Markov operator has an L_2-spectral gap. We have

$$\beta = \|P\|_{L_2 \to L_2} \leq \alpha.$$

Proof. First we prove the equivalence of (i) and (ii). By reversibility one can see for $f \in L_1$ and $h \in L_\infty$ that

$$\langle (P^n - S)f, h \rangle = \langle f, (P^n - S)h \rangle.$$

The adjoint operator of $P^n - S$ acting on L_1 is $P^n - S$ acting on L_∞. Then, one has

$$\|P^n - S\|_{L_1 \to L_1} = \|P^n - S\|_{L_\infty \to L_\infty}.$$

46
and the equivalence is obvious. By Proposition A.4 one has that (ii) is equivalent to (iii).

The last implication follows by an interpolation argument. Proposition A.4 (Interpolation Theorem of Riesz-Thorin) with \(q_1 = \infty, q_2 = 1 \) and \(\theta = 1/2 \) is applied. Then,

\[
\|P^n\|_{L_2^q \rightarrow L_2^q} \leq 4M\alpha^n, \quad n \in \mathbb{N}. \tag{3.12}
\]

Because of the self-adjointness (s-a) of \(P \) one can apply the spectral radius formula and one obtains

\[
\beta = \|P\|_{L_2 \rightarrow L_2^q} = r[P] = \lim_{n \to \infty} (\|P^n\|_{L_2^q \rightarrow L_2^q})^{1/n} \leq \alpha \cdot \lim_{n \to \infty} (4M)^{1/n} = \alpha. \tag{3.12}
\]

In Figure 3.2 we present a survey of the discussed relations between the terms of convergence and ergodicity.

3.2. Error bounds

In this section we prove error bounds on general state spaces. We assume that we have a Markov chain \((X_n)_{n \in \mathbb{N}}\) with transition kernel \(K\) and initial distribution \(\nu\), where \(\pi\) is a stationary distribution, and compute

\[
S_{n,n_0}(f) = \frac{1}{n} \sum_{j=1}^{n} f(X_{j+n_0})
\]

as approximation for \(S(f) = \int_D f(x) \pi(dx)\). The error is measured in the mean square sense, i.e.

\[
eu(S_{n,n_0}, f) = \left(\mathbb{E}_{\nu, K} |S_{n,n_0}(f) - S(f)|^2\right)^{1/2}.
\]

Now let us present a helpful result.
Lemma 3.25. Let \((X_n)_{n \in \mathbb{N}}\) be a Markov chain with transition kernel \(K\) and initial distribution \(\nu\). Then for \(i, j \in \mathbb{N}\) with \(j \leq i\) it follows that
\[
E_{\nu,K}[f(X_i)f(X_j)] = \int_D P_i(f P^{i-j} f)(x) \nu(dx). \tag{3.13}
\]
Moreover, if \(\pi\) is a stationary distribution and \(\nu = \pi\) then
\[
E_{\pi,K}[f(X_i)f(X_j)] = \langle f, P^{i-j} f \rangle. \tag{3.14}
\]

Proof. The calculation
\[
E_{\nu,K}[f(X_i)f(X_j)] = \int_D \ldots \int_D f(x_i)f(x_j) K(x_i-1, dx_i) \ldots K(x_1, dx_2) \nu(dx_1)
\]
\[
= \int_D \ldots \int_D f(x_j) P^{i-j} f(x_j) K(x_j-1, dx_j) \ldots K(x_1, dx_2) \nu(dx_1)
\]
\[
= \int_D P_j(f P^{i-j} f)(x) \nu(dx)
\]
proves (3.13) and by (3.3) one can see (3.14).

First we assume that the initial distribution of the Markov chain is a stationary one. Hence it is not necessary to do any burn-in, i.e. \(n_0 = 0\). The resulting method is denoted by \(S_n\) instead of \(S_{n,0}\). Afterwards we turn to the general method \(S_{n,n_0}\) where the initial distribution might differ from a stationary one.

In the next statement we assume that the transition kernel is reversible with respect to \(\pi\). Then we can apply the Spectral Theorem for linear, bounded and self-adjoint operators, see Theorem A.2.

Proposition 3.26. Let \(f \in L_2\) and \(g = f - S(f)\). Let \((X_n)_{n \in \mathbb{N}}\) be a Markov chain with transition kernel \(K\) and initial distribution \(\pi\), let \(K\) be reversible with respect to \(\pi\) and let
\[
\lambda = \inf \{\alpha \mid \alpha \in \text{spec}(P|L_2^0)\}, \quad \Lambda = \sup \{\alpha \mid \alpha \in \text{spec}(P|L_2^0)\}.
\]
Suppose that \(\Lambda < 1\). Then
\[
c_\pi(S_n, f)^2 = \frac{1}{n^2} \int_\Lambda^\Lambda W(n, \alpha) d \langle E(\alpha) g, g \rangle = \frac{1}{n^2} \langle W(n, P) g, g \rangle, \tag{3.15}
\]
where \(E\) denotes the spectral measure\(^2\) which corresponds to \(P : L_2^0 \rightarrow L_2^0\) and recall that
\[
W(n, \alpha) = \frac{n(1 - \alpha^2) - 2\alpha(1 - \alpha^n)}{(1 - \alpha)^2}, \quad \alpha \in [-1, 1).
\]

Proof. Since \(f \in L_2\) we have \(g \in L_2^0\). The error obeys
\[
c_\pi(S_n, f)^2 = E_{\pi,K} \left[\frac{1}{n} \sum_{j=1}^{n} g(X_j) \right]^2 = \frac{1}{n^2} E_{\pi,K} \left[\sum_{j=1}^{n} g(X_j) \right]^2
\]
\[
= \frac{1}{n^4} \sum_{j=1}^{n} E_{\pi,K} [g(X_j)^2] + \frac{2}{n^2} \sum_{j=1}^{n-1} \sum_{i=j+1}^{n} E_{\pi,K} [g(X_j)g(X_i)].
\]

\(^2\)The definition of a spectral measure and the Spectral Theorem for linear, bounded self-adjoint operators are stated in Section A.1.

48
For \(i, j \in \mathbb{N} \) with \(j \leq i \) we obtain
\[
E_{\pi,K}[g(X_i)g(X_j)] = \langle g, P^{i-j}g \rangle = \int_\Lambda^n \alpha^{i-j} \, d \langle E(\alpha)g, g \rangle,
\]
where the last equality is an application of Theorem A.2. Altogether this gives
\[
e_\pi(S_n, f)^2 = \frac{1}{n^2} \int_\Lambda^n \left[n + 2 \sum_{j=1}^{n-1} \sum_{i=j+1}^n \alpha^{i-j} \right] \, d \langle E(\alpha)g, g \rangle
= \frac{1}{n^2} \int_\Lambda^n \left[n + 2 \frac{(n-1)\alpha - n\alpha^2 + \alpha^{n+1}}{(1-\alpha)^2} \right] \, d \langle E(\alpha)g, g \rangle
= \frac{1}{n^2} \int_\Lambda^n W(n, \alpha) \, d \langle E(\alpha)g, g \rangle = \frac{1}{n^2} \langle W(n, P)g, g \rangle.
\]

By the Spectral Theorem we have a representation of the error depending on the Markov operator \(P \). In this setting one can show a relation between the operator norm of \(W(n, P) : L^0_2 \to L^0_2 \) and the maximal error of \(S_n \) for integrands \(f \) which satisfy \(\|f\|_2 \leq 1 \). This is stated in the next corollary.

Corollary 3.27. Let \((X_n)_{n \in \mathbb{N}} \) be a Markov chain with transition \(K \) and initial distribution \(\pi \), let \(K \) be reversible with respect to \(\pi \) and suppose that \(\Lambda < 1 \). Then
\[
\sup_{\|f\|_2 \leq 1} e_\pi(S_n, f)^2 = \frac{1}{n^2} \|W(n, P)\|_{L^0_2 \to L^0_2} = \frac{1 + \Lambda}{n(1-\Lambda)} - \frac{2\Lambda(1-\Lambda^n)}{n^2(1-\Lambda)^2} \leq \frac{2}{n(1-\Lambda)}.
\]

Proof. The last inequality of the assertion follows by Lemma 2.12. The mapping \(\alpha \mapsto W(n, \alpha) \) of Proposition 3.26 is increasing, see also Lemma 2.12. For \(g = f - S(f) \) we have
\[
e_\pi(S_n, f)^2 = \frac{1}{n^2} \int_\Lambda^n W(n, \alpha) \, d \langle E(\alpha)g, g \rangle \leq \frac{1}{n^2} W(n, \Lambda) \int_\Lambda^n d \langle E(\alpha)g, g \rangle
= \frac{1}{n^2} W(n, \Lambda) \langle g, g \rangle = \left(\frac{1 + \Lambda}{n(1-\Lambda)} - \frac{2\Lambda(1-\Lambda^n)}{n^2(1-\Lambda)^2} \right) \|g\|_2^2.
\]
The assertion is proven by
\[
W(n, \Lambda) = \max_{\alpha \in \text{spec}(P|L_2^0)} |W(n, \alpha)| = \|W(n, P)\|_{L^0_2 \to L^0_2} = \sup_{\|g\|_2 \leq 1, g \in L_2^0} (W(n, P)g, g)
= \sup_{\|g\|_2 \leq 1, g \in L_2^0} n^2 \cdot e_\pi(S_n, g)^2 \leq n^2 \sup_{\|f\|_2 \leq 1} e_\pi(S_n, f)^2.
\]

If the transition kernel \(K \) is reversible with respect to \(\pi \) and the Markov operator has an \(L_2 \)-spectral gap, then
\[
\beta = \|P\|_{L^0_2 \to L^0_2} = \max\{\Lambda, |\lambda|\} < 1.
\]

Note that Proposition 3.26 holds already if \(\Lambda < 1 \). Hence an \(L_2 \)-spectral gap is not necessary. If the transition kernel \(K \) is not reversible but one has an \(L_2 \)-spectral gap, then the following error bound can be shown.
\textbf{Proposition 3.28.} Let \((X_n)_{n \in \mathbb{N}}\) be a Markov chain with transition kernel \(K\) and initial distribution \(\pi\). Let \(\pi\) be a stationary distribution of \(K\). Let \(f \in L_2\) and assume that there exists an \(L_2\)-spectral gap \(1 - \beta > 0\). Then

\[
e_{\pi}(S_n,f)^2 \leq \frac{2}{n(1 - \beta)} \|f\|_2^2. \tag{3.16}
\]

\textbf{Proof.} Let \(g = f - S(f)\). The error obeys

\[
e_{\pi}(S_n,f)^2 = \frac{1}{n^2} \sum_{j=1}^n E_{\pi,K}[g(X_j)^2] + \frac{2}{n^2} \sum_{j=1}^{n-1} \sum_{i=j+1}^n E_{\pi,K}[g(X_j)g(X_i)].
\]

For \(i,j \in \mathbb{N}\) with \(j \leq i\) we have by the Cauchy-Schwarz inequality (CS) that

\[
E_{\pi,K}[g(X_i)g(X_j)] = \langle g, P_{\pi}^{i-j} g \rangle \leq \|P_{\pi}^{i-j}\|_{L_2 \to L_2} \|g\|_2^2.
\]

Then, with \(W(n,\beta)\) from Proposition 3.26 one has

\[
e_{\pi}(S_n,f)^2 \leq \frac{W(n,\beta)}{n^2} \|g\|_2^2 \leq \frac{2}{n(1 - \beta)} \|f\|_2^2. \tag{3.16}
\]

The estimates of the error under the assumption that the initial distribution is a stationary one seem to be restrictive. If we could sample \(\pi\) directly we would approximate \(S(f)\) by Monte Carlo with an i.i.d. sample. However, even if it is possible it might happen that the direct sampling procedure is computationally expensive, such that it is reasonable to generate only the initial state by sampling from \(\pi\) and afterwards run a Markov chain with stationary distribution \(\pi\).

The error of a Markov chain Monte Carlo method with stationary initial distribution is related to the error with not necessarily stationary initial distribution.

\textbf{Proposition 3.29.} Let \(r \in [1,2]\), let \(f \in L_2\), and let \(\nu \in \mathcal{M}_{\pi_\nu,(r-1)}\) be a probability measure. Let \((X_n)_{n \in \mathbb{N}}\) be a Markov chain with transition kernel \(K\) and initial distribution \(\nu\) and let \(\pi\) be a stationary distribution of \(K\). Then

\[
e_{\nu}(S_{n,n_0},f)^2 = e_{\pi}(S_n,f)^2 + \frac{1}{n^2} \sum_{j=1}^n L_{j+n_0}(g^2) + \frac{2}{n^2} \sum_{j=1}^{n-1} \sum_{k=j+1}^n L_{j+n_0}(gP_{\pi}^{k-j}g), \tag{3.17}
\]

where \(g = f - S(f)\) and

\[
L_i(h) = \left\langle (P^i - S)h, \left(\frac{d\nu}{d\pi} - 1\right) \right\rangle, \quad h \in L_r, \ i \in \mathbb{N}.
\]

\textbf{Proof.} The proof is adapted from [Rud09, Lemma 6, p. 17]. One has

\[
E_{\nu,K}[S(f) - S_{n,n_0}(f)]^2 = \frac{1}{n^2} \sum_{j=1}^n \sum_{i=1}^n E_{\nu,K}[g(X_{n_0+j})g(X_{n_0+i})]
\]

\[
= \frac{1}{n^2} \sum_{j=1}^n \int_D P^{n_0+j}(g^2)(x) \nu(dx) + \frac{2}{n} \sum_{j=1}^{n-1} \sum_{k=j+1}^n \int D P^{n_0+j}(gP_{\pi}^{k-j}g)(x) \nu(dx).
\]

50
Lemma 3.30. Let \(n \) be such that \(e^{-n} \) is integrable with respect to \(\nu \). Then the following transformation holds true

\[
\int_D (P^n h)(x) \nu(dx) = \left\langle P^n h, \frac{d\nu}{d\pi} \right\rangle = \left\langle P^n h, 1 \right\rangle + \left\langle P^n h, \left(\frac{d\nu}{d\pi} - 1 \right) \right\rangle
\]

Note that if \(n \) is an integer \(n \geq 1 \), then one has

\[
|L_k(h)| \leq \frac{2^{2r} \beta^{2r}}{2^{2r} \beta^{2r}} \left\| \frac{d\nu}{d\pi} - 1 \right\| \|h\|_r, \quad k \in \mathbb{N}. \tag{3.18}
\]

Equation (3.17) is still an exact error formula. The next lemma provides an estimate of the functional \(L_k(\cdot) \) for \(k \in \mathbb{N} \).

Lemma 3.30. Let \(r \in [1, 2] \), \(\nu \in \mathcal{M}_{r/(r-1)} \) and \(h \in L_r \). Recall that \(\beta = \|P\|_{L^2 \rightarrow L^2} \).

(i) If \(r \in (1, 2] \), then

\[
|L_k(h)| \leq M \beta^k \left\| \frac{d\nu}{d\pi} - 1 \right\| \|h\|_r, \quad k \in \mathbb{N}. \tag{3.19}
\]

(ii) If \(r = 1 \) and the transition kernel is \(L_1 \)-exponentially convergent with \((\alpha, M) \), then

\[
|L_k(h)| \leq M \alpha^k \left\| \frac{d\nu}{d\pi} - 1 \right\| \|h\|_1, \quad k \in \mathbb{N}. \tag{3.20}
\]

Proof. After applying Hölder’s inequality (H1) with conjugate parameter \(r \) and \(s = \frac{r}{r-1} \) to \(L_k(h) = \langle (P^k - S)h, \left(\frac{d\nu}{d\pi} - 1 \right) \rangle \) one has

\[
|L_k(h)| \leq \left\| (P^k - S)h \right\| \left\| \frac{d\nu}{d\pi} - 1 \right\|_s \leq \left\| P^k - S \right\|_{L^r \rightarrow L^r} \left\| \frac{d\nu}{d\pi} - 1 \right\|_s \|h\|_r.
\]

By equation (3.7) the claim of (i) is proven and by the \(L_1 \)-exponential convergence the inequality of (ii) holds.

Note that if \(r = 2 \) then one has \(|L_k(h)| \leq \beta^k \left\| \frac{d\nu}{d\pi} - 1 \right\|_2 \|h\|_2, \) see (3.5). This is by a factor of two better than (3.18), but not essentially different.

In Lemma 3.30 we have seen that under suitable assumptions one can ensure an exponential decay of \(L_k(\cdot) \) for increasing \(k \in \mathbb{N} \). This fact is used to show for reversible Markov chains which are \(L_1 \)-exponentially ergodic with \((\alpha, M) \) that there exists a constant \(C_{\nu, \alpha, M} \), which is independent of \(n \) and \(n_0 \), such that

\[
|e_\nu(S_{n,n_0},f)^2 - e_\pi(S_{n},f)^2| \leq C_{\nu, \alpha, M} \|f\|_2^2 \alpha_n^{n_0} / \pi^2.
\]

An immediate consequence of the inequality is an explicit error bound. The following lemma and remark imply such an inequality and provide \(C_{\nu, \alpha, M} \) explicitly.
Lemma 3.31. Let \((X_n)_{n \in \mathbb{N}}\) be a Markov chain with transition kernel \(K\) and initial distribution \(\nu\), where \(\nu \in \mathcal{M}_\infty\). Let \(K\) be reversible with respect to \(\pi\) and \(L_1\)-exponentially convergent with \((\alpha, M)\). Let \(f \in L_2\) and

\[
U(\alpha, n) = \sum_{j=1}^{n} \alpha^j + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \alpha^k.
\]

Then

\[
|e_\nu(S_{n,n_0}, f)^2 - e_\pi(S_n, f)^2| \leq \frac{U(\alpha, n)}{n^2} M \left\| \frac{d\nu}{d\pi} - 1 \right\|_\infty \alpha^{n_0} \|f\|_2^2. \tag{3.20}
\]

Proof. Let \(g = f - S(f)\). The equation (3.17) implies

\[
|e_\nu(S_{n,n_0}, f)^2 - e_\pi(S_n, f)^2| \leq \frac{1}{n^2} \sum_{j=1}^{n} |L_{j+n_0}(g^2)| + \frac{2}{n^2} \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \left|L_{j+n_0}(gP^{k-j}g)\right|.
\]

By (3.19) of Lemma 3.30 one obtains

\[
|L_{j+n_0}(g^2)| \leq M\alpha^{j+n_0} \left\| \frac{d\nu}{d\pi} - 1 \right\|_\infty \|g\|_2^2,
\]

\[
|L_{j+n_0}(gP^{k-j}g)| \leq M\alpha^{j+n_0} \left\| \frac{d\nu}{d\pi} - 1 \right\|_\infty \|gP^{k-j}g\|_1.
\]

By the reversibility and \(L_1\)-exponential convergence of \(K\) we get from Proposition 3.24 that \(\beta = \|P\|_{L_2 \to L_2} \leq \alpha\). Then by applying the Cauchy-Schwarz inequality (CS) one has

\[
\|gP^{k-j}g\|_1 \leq \|g\|_2 \|P^{k-j}g\|_2 \leq \|g\|_2 \|P^{k-j}\|_{L_2 \to L_2} \leq \alpha^{k-j} \|g\|_2^2.
\]

Let \(\varepsilon_0 = \alpha^{n_0} M \left\| \frac{d\nu}{d\pi} - 1 \right\|_\infty\). Then

\[
\sum_{j=1}^{n} |L_{j+n_0}(g^2)| + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} |L_{j+n_0}(gP^{k-j}g)|
\]

\[
\leq \varepsilon_0 \|g\|_2^2 + 2\varepsilon_0 \|g\|_2^2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \alpha^k
\]

\[
= \varepsilon_0 \|g\|_2^2 \left(\sum_{j=1}^{n} \alpha^j + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \alpha^k \right)
\]

\[
= \varepsilon_0 \cdot U(\alpha, n) \cdot \|g\|_2^2 \leq \varepsilon_0 \cdot U(\alpha, n) \cdot \|f\|_2^2.
\]

Thus the proof is completed. \(\square\)

Remark 3.32. The function \(U(\alpha, n)\) is already studied in Lemma 2.19. For convenience let us repeat the result. For all \(n \in \mathbb{N}\) we have

\[
U(\alpha, n) \leq \frac{2}{(1-\alpha)^2}.
\]
Then, from Lemma 3.31 it follows that
\[e_\nu(S_{n,n_0}, f)^2 \leq e_\pi(S_n, f)^2 + 2M \left\| \frac{d\nu}{d\pi} - 1 \right\|_\infty \alpha^{n_0} \left\| f \right\|_2^2. \]

If the initial distribution \(\nu \) is \(\pi \) then one has the error formula of Proposition 3.26.

Remark 3.33. Note that in Lemma 3.31 reversibility of \(K \) was essentially used to apply Proposition 3.24. If the Markov operator is normal, i.e. \(PP^* = P^*P \), then one has by Proposition 3.19 that \(\beta = \left\| P \right\|_{L^2_\infty \to L^2} \leq \sqrt{\alpha} \). By this observation we get a very similar estimate as in Lemma 3.31 for normal Markov operators which are not necessarily reversible. The only difference to (3.20) is that \(\alpha \) has to be substituted by \(\sqrt{\alpha} \).

The next theorem summarizes the main result for a Markov chain with a reversible and \(L_1 \)-exponentially convergent transition kernel.

Theorem 3.34. Let \((X_n)_{n \in \mathbb{N}}\) be a Markov chain with transition kernel \(K \) and initial distribution \(\nu \). Let \(K \) be reversible with respect to \(\pi \) and \(L_1 \)-exponentially convergent with \((\alpha, M)\). Let \(f \in L_2 \) and assume that the probability measure \(\nu \in \mathcal{M}_\infty \). Then
\[e_\nu(S_{n,n_0}, f)^2 \leq \frac{2}{n(1-\Lambda)} \left\| f \right\|_2^2 + \frac{2M}{n^2(1-\alpha)^2} \left\| \alpha^{n_0} \right\| \left\| f \right\|_2^2 \quad (3.21) \]
and for \(g = f - S(f) \) we have
\[\lim_{n \to \infty} n \cdot e_\nu(S_{n,n_0}, f)^2 = \lim_{n \to \infty} n \cdot e_\pi(S_n, f)^2 = \langle (I + P)(I - P)^{-1} g, g \rangle. \quad (3.22) \]

Proof. By Lemma 3.31 and Lemma 2.19 the first equality of (3.22) holds true. By the reversibility of the transition kernel Proposition 3.26 applies, so that
\[\lim_{n \to \infty} n \cdot e_\pi(S_n, f)^2 = \lim_{n \to \infty} \frac{1}{n} \langle W(n, P)g, g \rangle = \langle (I + P)(I - P)^{-1} g, g \rangle. \]
The rest follows via Lemma 3.31, Corollary 3.27 and Lemma 2.19.

Remark 3.35. Under the assumptions of Theorem 3.34 one has by Proposition 3.24 that \(\pi \)-a.e. uniform ergodicity with \((\alpha, M)\) is equivalent to \(L_1 \)-exponential convergence with \((\alpha, 2M)\). Hence one can restate Theorem 3.34 for uniformly ergodic Markov chains and obtains the same result with \(M = 2M \). This is the general state space counterpart to Theorem 2.20 where \(M \) is of the magnitude of \(\left\| \frac{1}{n} \right\|_\infty \) and \(\beta = \alpha \).

Furthermore note that if the Markov operator is normal and not necessarily reversible, then one can get a similar error bound by using Remark 3.33.

3 The Bernoulli inequality with real exponent \(r \in [0, 1] \) states for any real number \(x > -1 \) that \((1+x)^r \leq 1+rx \).
Remark 3.36. The error bound of (3.21) might be interpreted as follows: The burn-in \(n_0 \) is reasonable to eliminate the influence of the initial distribution, while \(n \) has to decrease \(\pi(S_n, f) \). For large \(n \) the error behaves exactly as the error where one started by the stationary distribution. Hence the bias of the initial distribution disappears after sufficiently many steps. If the initial distribution falls together with the stationary one, then the bias of the initial part vanishes completely.

Another consequence of Lemma 3.31 and Lemma 2.19 is the following result concerning the asymptotic error for \(\|f\|_2 \leq 1 \).

Corollary 3.37. Under the same assumptions as in Theorem 3.34 it follows that

\[
\lim_{n \to \infty} n \cdot \sup_{\|f\|_2 \leq 1} e_v(S_{n,n_0}, f)^2 = \frac{1 + \Lambda}{1 - \Lambda}
\]

and

\[
\lim_{n_0 \to \infty} \sup_{\|f\|_2 \leq 1} e_v(S_{n,n_0}, f)^2 = \frac{1 + \Lambda}{n(1 - \Lambda)} - \frac{2\Lambda(1 - \Lambda^n)}{n^2(1 - \Lambda)^2}.
\]

Proof. Let us define

\[
e_{n,n_0} = \frac{2\alpha M_v \|\pi \|_\infty - 1}{n^2(1 - \alpha)^2}
\]

One has \(\lim_{n \to \infty} n \cdot e_{n,n_0} = 0 \) and \(\lim_{n_0 \to \infty} e_{n,n_0} = 0 \). For \(\|f\|_2 \leq 1 \) we obtain by Lemma 3.31 and Lemma 2.19 that

\[
|e_v(S_{n,n_0}, f)^2 - \pi(S_n, f)^2| \leq e_{n,n_0}.
\]

Hence

\[
\sup_{\|f\|_2 \leq 1} \pi(S_n, f)^2 - e_{n,n_0} \leq \sup_{\|f\|_2 \leq 1} e_v(S_{n,n_0}, f)^2 \leq \sup_{\|f\|_2 \leq 1} \pi(S_n, f)^2 + e_{n,n_0}.
\]

(3.23)

Recall that \(\Lambda = \sup \{\alpha | \alpha \in \text{spec}(P|L_2^0)\} \). Then by Corollary 3.27 we have

\[
\sup_{\|f\|_2 \leq 1} e_{v}(S_n, f)^2 = \frac{1 + \Lambda}{n(1 - \Lambda)} - \frac{2\Lambda(1 - \Lambda^n)}{n^2(1 - \Lambda)^2}.
\]

By taking the limits in (3.23) the assertions are proven. \(\Box \)

In many examples it is known that the transition kernel is \(L_1 \)-exponentially convergent or \(\pi \)-a.e. uniformly ergodic, but it is very difficult to obtain reasonable values of \((\alpha, M)\) explicitly. Then at least the asymptotic result can be used. This is similar to results of [Sok97, Bré99, Mat99].

Remark 3.38. Observe that we have a lower and an upper bound of the error of \(S_{n,n_0} \). Exactly as in Remark 2.24 one obtains by (3.23) that

\[
\frac{1 + \Lambda}{n(1 - \Lambda)} - \frac{2}{n^2(1 - \Lambda)^2} = e_{n,n_0} \leq \sup_{\|f\|_2 \leq 1} e_v(S_{n,n_0}, f)^2 \leq \frac{2}{n(1 - \Lambda)} + e_{n,n_0}.
\]
We showed an error bound of S_{n,n_0} with respect to $\|\cdot\|_2$ for Markov chains which are reversible and L_1-exponentially convergent. The condition of the L_1-exponential convergence is rather restrictive. This motivates the study of Markov chains which satisfy a weaker convergence property, namely we assume that there is an L_2-spectral gap, i.e. $1 - \beta > 0$. This is enough to obtain error bounds for integrands $f \in L_p$ with $p \in (2, \infty]$. The following lemmas lead to the fact that there exists a constant $C_{\nu,\beta,p}$, independent of n_0 and n, such that

$$|e_\nu(S_{n,n_0}, f) - e_\pi(S_n, f)| \leq C_{\nu,\beta,p} \|f\|_p^2 \frac{\beta^{n_0}}{n^2}.$$

Note that it is not assumed that the Markov chain is reversible with respect to π.

Lemma 3.39. Let $(X_n)_{n \in \mathbb{N}}$ be a Markov chain with transition kernel K and initial distribution ν. Let π be a stationary distribution of K. Let $f \in L_p$, let $\nu \in \mathcal{M}_{\max\{2, \frac{r}{\beta - 1}\}}$ with $p \in (2, \infty]$ and

$$V(\beta, n, p) = 4 \left\{ \begin{array}{ll}
2 \sum_{j=1}^n \beta^j n - \frac{2}{r} & + \frac{3p - 2}{p} \sum_{j=1}^{n-1} \beta^{j+1} \sum_{k=j+1}^n \beta^{k-j} p, \quad p \in (2, 4), \\
2 \sum_{j=1}^n \beta^{j+1} & + \frac{3p - 2}{p} \sum_{j=1}^{n-1} \beta^{j+1} \sum_{k=j+1}^n \beta^{k-j} n, \quad p \in [4, \infty] \end{array} \right.$$

(i) If $p \in (2, 4)$, then

$$|e_\nu(S_{n,n_0}, f) - e_\pi(S_n, f)| \leq \frac{V(\beta, n, p)}{n^2} \frac{\beta^{2n_0} n^2}{n^2} \left\|\frac{d\nu}{d\pi} - 1\right\|_2 \left\|f\right\|_p^2.$$

(ii) If $p \in [4, \infty]$, then

$$|e_\nu(S_{n,n_0}, f) - e_\pi(S_n, f)| \leq \frac{V(\beta, n, p)}{n^2} \beta^{n_0} \left\|\frac{d\nu}{d\pi} - 1\right\|_2 \left\|f\right\|_p^2.$$

Proof. First, let $g = f - S(f)$ and observe that for $p \geq 1$ one obtains

$$\|g\|_p \leq \|f\|_p + \|S(f)\| \leq \|f\|_p + \|f\|_1 \leq 2\|f\|_p.$$

(3.24)

The equation of (3.17) implies

$$\left|e_\nu(S_{n,n_0}, f) - e_\pi(S_n, f)\right| \leq \frac{1}{n^2} \sum_{j=1}^n |L_j + n_0 (g^2)| + \frac{2}{n^2} \sum_{j=1}^{n-1} \sum_{k=j+1}^n |L_j + n_0 (g^{P^{k-j}}g)|.$$

(3.25)

Let $p \in (2, 4)$. Then it follows by (3.18) with $r = \frac{p}{2}$ and $r/(r-1) = \frac{p}{2p-2}$ that

$$\left|L_j + n_0 (g^2)\right| \leq 2^{2/p} \beta^{2j n_2} \left\|\frac{d\nu}{d\pi} - 1\right\|_p^2 \left\|g\right\|_p^2,$$

$$\left|L_j + n_0 (g^{P^{k-j}}g)\right| \leq 2^{2/p} \beta^{2j n_2} \left\|\frac{d\nu}{d\pi} - 1\right\|_p^2 \left\|g^{P^{k-j}}g\right\|_{p/2}.$$

By applying the Cauchy-Schwarz inequality (CS) and (3.7) one obtains

$$\left\|g^{P^{k-j}}g\right\|_{p/2} \leq (CS) \left\|g\right\|_p \left\|g^{P^{k-j}}g\right\|_p \leq \left\|g\right\|_p \left\|P^{k-j}\right\|_{L_p \rightarrow L_p} \left\|g\right\|_p^2 \leq 2^{\frac{2n_2}{p-1}} \beta^{\frac{2n_2}{p-1}} \left\|g\right\|_p^2.$$
Lemma 3.40. Let \(\varepsilon_0(p) = \beta^{2n_0} \frac{\| \frac{d\nu}{dx} - 1 \|_2}{p} \). Then
\[
\sum_{j=1}^{n} |L_{j+n_0}(g^2)| + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} |L_{j+n_0}(gK^{-j}g)| \\
\leq \varepsilon_0(p) \|g\|_p^2 \sum_{j=1}^{n} \beta^{2j/p} + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \beta^{2k/p} \beta^{2k-2/p} \\
= \varepsilon_0(p) \|g\|_p^2 \left(\sum_{j=1}^{n} \beta^{2j/p} + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \beta^{2k/p} \right) \\
\leq V(\beta, n, p) \cdot \varepsilon_0(p) \|f\|_p^2.
\]

Thus, claim \((i)\) is shown.
Let us turn to \((ii)\), i.e. \(p \in [4, \infty]. \) Equation (3.18) with \(r = 2 \) is used to get
\[
|L_{j+n_0}(g^2)| \leq 2\beta^{j+n_0} \left| \frac{d\nu}{dx} - 1 \right|_2 \|g\|_4^2, \\
|L_{j+n_0}(gK^{-j}g)| \leq 2\beta^{j+n_0} \left| \frac{d\nu}{dx} - 1 \right|_2 \|gK^{-j}g\|_2.
\]
By Hölder's inequality (HI) with conjugate parameters \(\frac{2}{r} \) and \(\frac{p}{p-2} \) one obtains
\[
\|gK^{-j}g\|_2 \leq \|g\|_p \|K^{-j}g\|_{p/p} \leq \|K^{-j}\|_{L_{2p/(p-2)}^0 \rightarrow L_{2p/(p-2)}^0} \|g\|_p \|g\|_{2p/(p-2)} \\
\leq \|K^{-j}\|_{L_{2p/(p-2)}^0 \rightarrow L_{2p/(p-2)}^0} \|g\|_p^2 \leq 2^{\frac{p}{p-2} + \frac{1}{p}} \beta^{(k-j) \frac{p}{p-2}} \|g\|_p^2.
\]
Note that in the third inequality of the last estimation it was essential that \(p \in [4, \infty] \) for using \(\|g\|_{2p/(p-2)} \leq \|g\|_p. \) Thus, for \(\varepsilon_0 = \beta^{n_0} \left| \frac{d\nu}{dx} - 1 \right|_2 \) one has
\[
\sum_{j=1}^{n} |L_{j+n_0}(g^2)| + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} |L_{j+n_0}(gK^{-j}g)| \\
\leq \varepsilon_0 \|g\|_p^2 \left(2 \sum_{j=1}^{n} \beta^j + \varepsilon_0 \|g\|_p^2 2^{\frac{p}{p-2} + \frac{1}{p}} \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \beta^{2k/p} \beta^{2k-2/p} \right) \\
\leq \varepsilon_0 \|g\|_p^2 \left(2 \sum_{j=1}^{n} \beta^j + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \beta^{2j/p} \beta^{2k-2/p} \right) \leq V(\beta, n, p) \cdot \varepsilon_0 \|f\|_p^2.
\]
Finally by substituting this in equation (3.25) everything is shown.

Let us consider \(V(\beta, n, p). \) If \(p \in (2, \infty] \) and \(1 - \beta > 0, \) then we show that the mapping \(n \mapsto V(\beta, n, p) \) is bounded.

Lemma 3.40. Let \(p \in (2, \infty] \) and \(1 - \beta > 0. \) For all \(n \in \mathbb{N} \) we obtain
\[
V(\beta, n, p) \leq \frac{64p}{(p-2)(1-\beta)^2}.
\]
Proof. The inequalities indicated by (*) follow from $1 - \beta^r \geq r(1 - \beta)$ for $r \in [0, 1]$. First, let $p \in (2, 4)$. By the geometric series one can estimate

\[
\frac{V(\beta, n, p)}{4} = 2^{4/p} \sum_{j=1}^{n} \beta^{2j} \frac{p}{p+j} + 2^{\frac{3p+2}{p}} \sum_{j=1}^{n-1} \beta^{2j} \frac{p}{p+j} \sum_{k=j+1}^{n} \beta^{2k/p}
\]

\[
= 2^{4/p} \sum_{j=1}^{n} \beta^{2j} \frac{p}{p+j} + 2^{\frac{3p+2}{p}} \beta^{2/p} \beta^{2j} \frac{p}{p+j} \sum_{k=0}^{n-j-1} \beta^{2k/p}
\]

\[
\leq 2^{4/p} \sum_{j=1}^{n} \beta^{2j} \frac{p}{p+j} + 2^{\frac{3p+2}{p}} \beta^{2/p} \sum_{j=1}^{n-1} \beta^{2j} \frac{p-2}{p}
\]

\[
\leq \left(\frac{2^{4/p} + \beta^{2/p} 2^{4/p} (2^{3-2/p} - 1)}{1 - \beta^{2/p}} \right) \sum_{j=1}^{n} \beta^{2j} \frac{p-2}{p} \leq \left(\frac{2^{3+2/p} \beta^{2/p} (2^{3-2/p} - 2)}{1 - \beta^{2/p}} \right) \sum_{j=1}^{n} \beta^{j} \frac{p-2}{p}
\]

\[
\leq \frac{8\sqrt{2}}{1 - \beta^{2/p}} \sum_{j=1}^{n} \beta^{j} \leq \frac{8\sqrt{2}}{1 - \beta^{2/p}} \leq \frac{8\sqrt{2} p}{(p-2)(1-\beta)^2}.
\]

For $p \in [4, \infty]$, again by the geometric series, we can estimate

\[
\frac{V(\beta, n, p)}{4} = 2 \sum_{j=1}^{n} \beta^{j} + 2^{\frac{3p+2}{p}} \sum_{j=1}^{n-1} \beta^{j} \sum_{k=j+1}^{n} \beta^{k/p}
\]

\[
= 2 \sum_{j=1}^{n} \beta^{j} + 2^{\frac{3p+2}{p}} \beta^{(2^{3-2/p} - 2)} \sum_{j=1}^{n} \beta^{j} \sum_{k=0}^{n-j-1} \beta^{k/p}
\]

\[
\leq 2 \left(2^{\frac{3p+2}{p}} \beta^{(2^{3-2/p} - 2)} \right) \sum_{j=1}^{n} \beta^{j} \leq \left(\frac{2 + \beta^{2/p} (2^{3-2/p} - 2)}{1 - \beta^{2/p}} \right) \sum_{j=1}^{n} \beta^{j} \frac{p-2}{p}
\]

\[
\leq \frac{8\sqrt{2}}{1 - \beta^{2/p}} \sum_{j=1}^{n} \beta^{j} \leq \frac{8\sqrt{2} p}{(p-2)(1-\beta)^2} \leq \frac{8\sqrt{2} p}{(p-2)(1-\beta)^2}.
\]

This completes the proof.

The main error bound of S_{n,n_0} for Markov chains with an L_2-spectral gap is presented in the next theorem.

Theorem 3.41. Let $(X_n)_{n \in \mathbb{N}}$ be a Markov chain with transition kernel K and initial distribution ν. Let $\pi \in \mathcal{P}^+$ be a stationary distribution of K. For $p \in (2, \infty]$ let $f \in L_p$ and $\nu \in \mathcal{M}_{\max}$. Suppose that the Markov operator has an L_2-spectral gap, i.e. $1 - \beta > 0$. Then we have

\[
\| e_\nu(S_{n,n_0}, f) \|_p^2 \leq e_\pi(S_{n}, f) + \frac{64p}{n^2(p-2)(1-\beta)^2} \left\{ \begin{array}{lc}
\beta^{2n(\frac{p-2}{p})} \| f \|_p^2, & p \in (2, 4), \\
\beta^{n} \| f \|_p^2, & p \in [4, \infty],
\end{array} \right.
\]

\[
where
\]

\[
e_\pi(S_{n}, f) \leq \left\{ \begin{array}{lc}
\frac{n^2}{n^2(1-\beta)^2} \| f \|_p^2, & \text{if } K \text{ is reversible with respect to } \pi, \\
\frac{n}{n(1-\beta)} \| f \|_p^2, & \text{otherwise}.
\end{array} \right.
\]

57
Furthermore

\[
\lim_{n \to \infty} n \cdot e_\nu(S_{n,n_0}, f)^2 = \lim_{n \to \infty} n \cdot e_\pi(S_n, f)^2
\]

(3.27)

and if \(K \) is reversible with respect to \(\pi \) then \((3.27) \) is equal to

\[
\langle (I + P)(I - P)^{-1} g, g \rangle, \quad \text{where} \quad g = f - S(f).
\]

Proof. By Lemma 3.39 and Lemma 3.40 the equality of (3.27) is true. If the transition kernel is reversible, then by Proposition 3.26 the asymptotic result holds since

\[
\lim_{n \to \infty} n \cdot e_\pi(S_n, f)^2 = \lim_{n \to \infty} \frac{1}{n} \langle W(n, P)g, g \rangle = \langle (I + P)(I - P)^{-1} g, g \rangle.
\]

By Lemma 3.39 and Lemma 3.40 one obtains the estimate of \(e_\nu(S_{n,n_0}, f)^2 \). The estimate of \(e_\pi(S_n, f)^2 \) follows by Proposition 3.28 and for reversible transition kernel by Corollary 3.27. \(\square \)

Remark 3.42. A large burn-in \(n_0 \) guarantees that the influence of the initial distribution disappears and a large \(n \) makes \(e_\pi(S_n, f) \) small. The condition of the \(L_1 \)-exponential convergence could be substituted by the existence of an \(L_2 \)-spectral gap by paying the price of considering error bounds in terms of \(L_p \)-norms of the integrand for \(p \in (2, \infty) \). If \(p \) converges to 2, then the bound goes to infinity. However, for \(p > 2 \) one has an explicit error bound. If the initial and stationary distribution is the same, then the influence of the initial part vanishes for all \(p \in (2, \infty) \).

Remark 3.43. Let

\[
c_{n,n_0}(p) = \begin{cases}
\frac{64p}{n^2(p-2)(1-\beta)^2} \beta^{2n_0 \frac{p-2}{p}} \| \frac{d\nu}{d\pi} - 1 \|_{L_p^2}, & p \in (2, 4), \\
\beta^{n_0} \| \frac{d\nu}{d\pi} - 1 \|_{L_2}, & p \in [4, \infty).
\end{cases}
\]

For \(\| f \|_p \leq 1 \) we have by Lemma 3.39 and Lemma 3.40 that

\[
|e_\nu(S_{n,n_0}, f)^2 - e_\pi(S_n, f)^2| \leq c_{n,n_0}(p).
\]

Observe that this implies a lower error bound for \(S_{n,n_0} \). We do not use it because of the lack of a general lower bound of \(\sup_{\| f \|_p \leq 1} e_\pi(S_n, f)^2 \) for \(p \in (2, \infty) \).

Remark 3.44. Let \(K \) be a transition kernel which is reversible with respect to \(\pi \). We use the notation \(\beta_K = \beta \) and \(\Lambda_K = \Lambda \) to indicate the transition kernel. The lazy version of \(K \) is given by \(\bar{K} \). Then one has

\[
\beta_{\bar{K}} = \Lambda_{\bar{K}} = \frac{1}{2}(1 + \Lambda_K).
\]

If one has an estimate of \(\Lambda_K \), then one also has an estimate of \(\beta_{\bar{K}} \) and one can apply Theorem 3.41. There are some techniques, e.g. canonical paths (see [Yue00]) and the conductance concept (see [LS88], [LS93] and [JS89], [DS91]) which are helpful to estimate \(\Lambda_K \). However, in general it is a challenging task.
3.3. Burn-in

Assume that computational resources for \(N = n + n_0\) steps of the Markov chain are available. The burn-in \(n_0\) and the sample size \(n\) should be chosen such that the error bound is as small as possible. One encounters the same trade-off as for finite state spaces. In the next statement the error bound for an explicit burn-in is stated.

Theorem 3.45.

(i) Suppose that we have a Markov chain which is reversible with respect to \(\pi\) and \(L_1\)-exponentially convergent with \((\alpha, M)\). Let

\[
n_0 = \max \left\{ \left\lceil \frac{\log(M \| \frac{d\nu}{d\pi} - 1 \|_\infty)}{\log(\alpha^{-1})} \right\rceil, 0 \right\}.
\]

Then

\[
sup_{\|f\|_2 \leq 1} e_\nu(S_{n,n_0}, f)^2 \leq \frac{2}{n(1 - \beta)} + \frac{2}{n^2(1 - \alpha)^2} \leq \frac{2}{n(1 - \alpha)} + \frac{2}{n^2(1 - \alpha)^2}.
\]

(ii) Suppose that we have a Markov chain with Markov operator \(P\) which has an \(L_2\)-spectral gap \(1 - \beta > 0\). For \(p \in (2, \infty]\) let \(n_0(p)\) be the smallest natural number (including zero) which is greater than or equal to

\[
\frac{1}{\log(\beta^{-1})} \left(\frac{p - 2}{2} \log \left(\frac{64}{32} \| \frac{d\nu}{d\pi} - 1 \|_2^p \right) \right), \quad p \in (2, 4),
\]

\[
\log \left(\frac{64}{32} \| \frac{d\nu}{d\pi} - 1 \|_2^p \right), \quad p \in [4, \infty].
\]

Then

\[
sup_{\|f\|_p \leq 1} e_\nu(S_{n,n_0(p)}, f)^2 \leq \frac{2}{n(1 - \beta)} + \frac{2}{n^2(1 - \beta)^2}.
\]

Proof. Assertion (i) follows from Theorem 3.34 and Proposition 3.24. Claim (ii) is an application of Theorem 3.41. \(\square\)

Note that \(\log(\beta^{-1}) = (1 - \beta) + \sum_{j=2}^{\infty} \frac{(1 - \beta)^j}{j}\) and \(\log(\beta^{-1}) \geq 1 - \beta\). This can be used to estimate the suggestion of the burn-in. The suggestions of the burn-in are justified in the following.

For simplicity we assume that \(\alpha = \beta\). Let us define

\[
C(p) = \begin{cases}
M \| \frac{d\nu}{d\pi} - 1 \|_\infty, & p = 2, \\
\frac{2p}{p-2} \| \frac{d\nu}{d\pi} - 1 \|_p^2, & p \in (2, 4), \\
64 \| \frac{d\nu}{d\pi} - 1 \|_2^p, & p \in [4, \infty].
\end{cases}
\]

We consider numerical experiments under the following conditions. Suppose that

- the computational resources are either \(N = 10^5\) or \(N = 10^6\).
- \(\beta = 0.9\) or \(\beta = 0.99\) or \(\beta = 0.999\).
- \(C = C(p) = 10^{30}\), independent of \(p\).
Then the suggestion of the burn-in of Theorem 3.45 for \(p = 2 \) and \(p \in [4, \infty] \) has the form
\[n_0^{(2) \cup [4, \infty]} = \left\lceil \frac{\log(C)}{\log(\beta^{-1})} \right\rceil, \]
whereas for \(p \in (2, 4) \) it still depends on \(p \), such that
\[n_0^{(2,4)} = \left\lceil \frac{p \log(C)}{2(p-2) \log(\beta^{-1})} \right\rceil. \]
The error for \(\|f\|_p \leq 1 \) where \(p \in \{2\} \cup [4, \infty) \) is bounded by
\[\text{est}_{(2) \cup [4, \infty]}(n, n_0) = \sqrt{\frac{2}{n(1-\beta)} + \frac{2C\beta^{n_0}}{n^2(1-\beta)^2}}, \]
whereas for \(p \in (2, 4) \) we have the upper estimate
\[\text{est}_{(2,4)}(n, n_0) = \sqrt{\frac{2}{n(1-\beta)} + \frac{2C\beta^{2n_0} \log(n)}{n^2(1-\beta)^2}}. \]

With the restriction \(N = n + n_0 \) one can numerically compute a burn-in, which approximates the minimal upper error bound. This is a 1-dimensional minimization problem with different parameters. Let us denote the numerically computed values of the burn-in by \(n_{\text{opt}}^{(2) \cup [4, \infty]} \) for \(p \in \{2\} \cup [4, \infty) \) and \(n_{\text{opt}}^{(2,4)} \) for \(p \in (2, 4) \) respectively.

\(N \)	\(\beta \)	\(n_{\text{opt}}^{(2) \cup [4, \infty]} \) (by Maple)	\(n_0^{(2) \cup [4, \infty]} = \left\lceil \frac{\log(C)}{\log(\beta^{-1})} \right\rceil \) (suggested above)	\(n_{\text{opt}}^{(2,4)} \) (by Maple)	\(n_0^{(2,4)} = \left\lceil \frac{p \log(C)}{2(p-2) \log(\beta^{-1})} \right\rceil \) (suggested above, \(p = 2.1 \))
\(10^5 \)	0.9	656	656	6655	6885
\(10^6 \)	0.9	656	656	6655	6885
\(10^7 \)	0.99	6873	6874	69642	72169
\(10^8 \)	0.99	6874	6874	69715	72169
\(10^9 \)	0.999	68977	69043	79011	724952
\(10^{10} \)	0.999	69041	69043	699520	724952

Table 3.1.: For \(C = 10^{30} \) and \(p = 2.1 \). The numerically computed value \(n_{\text{opt}}^{(2) \cup [4, \infty]} \) which approximately minimizes the mapping \(n_0 \mapsto \text{est}_{\text{int}}(N - n_0, n_0) \), either \(\text{Int} = \{2\} \cup [4, \infty) \)
or \(\text{Int} = (2, 4) \).

Table 3.1 gives a collection of \(n_{\text{opt}}^{(2) \cup [4, \infty)} \) and \(n_{\text{opt}}^{(2,4)} \) where \(p = 2.1 \). The suggested \(n_0 \) of Theorem 3.45 is close to the numerically computed values of the burn-in, which approximately minimize the error bound. For \(N = 10^5 \) and \(\beta = 0.999 \) the difference between \(n_{\text{opt}}^{(2,4)} \) and \(n_{\text{opt}}^{(2,4)} \) is large. In this situation Theorem 3.41 gives for no choice of \(n \) and \(n_0 \) with \(N = 10^5 \) an error smaller than 1. The available resources \(N = n + n_0 \) are too small, such that the suggested burn-in cannot be reached. If the computational resources are large enough, then, the computed values \(n_{\text{opt}}^{(2) \cup [4, \infty]} \) and \(n_{\text{opt}}^{(2,4)} \) are of the same magnitude as the suggested \(n_0^{(2) \cup [4, \infty]} \) and \(n_0^{(2,4)} \).
If an error of at most \(\varepsilon \in (0, 1) \) is desired, then the suggested choice \(n_0^{(2, 4)} \) or \(n_0^{(2, 4)} \), depending on \(p \), of the burn-in is independent of the precision \(\varepsilon \). We choose \(n_0 \) as suggested in Theorem 3.45 and
\[
n \geq \frac{1 + \sqrt{1 + 4\varepsilon^2}}{(1 - \beta)\varepsilon^2}
\]
to achieve \(e_\nu(S_{n_0}, f) \leq \varepsilon \).

Let the Markov chain be reversible with respect to \(\pi \) and let \(\Lambda = \beta \). For different fixed values \(n_0 \) a plot of
\[
\text{est}_{(2, 4, \infty)}(N - n_0, n_0) \quad \text{and} \quad \sup_{\|f\|_2 \leq 1} e_{\pi}(S_n, f) = \sqrt{\frac{1 + \Lambda}{N(1 - \Lambda)}} \frac{2\Lambda(1 - \Lambda N)}{N^2(1 - \Lambda)^2}
\]
is presented in Figure 3.3. Roughly spoken one can see that if the burn-in is chosen too small a vertical shifting takes place and if the burn-in is chosen too large a horizontal shifting takes place. Summarized one can say, if \(\beta, C \) and \(p \) are given, then choose the

\[
\begin{align*}
n_0 &= \frac{\log(C)}{\log(\beta^{-1})} \\
n_0 &= 0.88\frac{\log(C)}{\log(\beta^{-1})} \\
n_0 &= 3\frac{\log(C)}{\log(\beta^{-1})} \\
n_0 &= 0, \text{ init by } \pi
\end{align*}
\]

Figure 3.3.: For \(\beta = \Lambda = 0.99 \) and \(C = 10^{30} \) the mapping \(N \mapsto \text{est}_{(2, 4, \infty)}(N - n_0, n_0) \) is plotted for different values of \(n_0 \). The dotted curve is a plot of the mapping
\[
N \mapsto \sup_{\|f\|_2 \leq 1} e_{\pi}(S_N, f).
\]

burn-in as suggested above. If there is an estimate of \(\log(C)/\log(\beta^{-1}) \), then one should ensure that it is not smaller than the real quotient. As seen in Figure 3.3 if it is slightly smaller there is already a strong influence. By choosing the burn-in too large the influence is less heavy.

61
If there is nothing known about β or C another strategy is to choose $n = n_0 = N/2$ for even N. This has the advantage that no information about β or C is needed. In Figure 3.4 we plotted

$$\text{est}_{(2),[4,\infty)}(N/2, N/2), \text{est}_{(2),[4,\infty)}(N - n_0^2,[4,\infty), n_0^2,[4,\infty)) \quad \text{and} \quad \sup_{\|f\|_2 \leq 1} e_\epsilon(S_N, f)$$

where $N \in [10^4, 10^5]$. Asymptotically the price of a factor of $\sqrt{2}$ is paid, i.e. asymptotically

$$\text{est}_{(2),[4,\infty)}(N/2, N/2), \text{est}_{(2),[4,\infty)}(N - n_0^2,[4,\infty), n_0^2,[4,\infty)) \quad \text{and} \quad \sup_{\|f\|_2 \leq 1} e_\epsilon(S_N, f)$$

the error is $\sqrt{2}$ times worse than $\sup_{\|f\|_2 \leq 1} e_\epsilon(S_N, f)$, see Figure 3.4. This strategy works well and reaches the same rate of convergence as in Theorem 3.45.

3.4. Examples

For the examples in Section 2.4 one can provide all eigenfunctions and eigenvalues. Usually it is a challenging task to obtain the necessary information of the spectral structure of the Markov operator, in particular on general state spaces. This section contains examples to illustrate the error bounds. The literature provides some tools which can be applied to estimate the quantities of interest, e.g. Λ, β. These tools are briefly introduced. For further details we refer to the literature. Note that the initial distributions of the Markov chains of the following examples are chosen to demonstrate the error bounds and not chosen to minimize the burn-in.
Bounded state spaces

Suppose that the state space \(D \) is a measurable subset of \(\mathbb{R}^d \). The \(\sigma \)-algebra \(\mathcal{D} \) is given by \(\mathcal{B}(D) \). We say a transition kernel \(K \) has a transition density with respect to a positive measure \(\mu \) if there is a non-negative function \(k: D \times D \rightarrow [0, \infty] \), such that

\[
K(x, A) = \int_A k(x, y) \mu(dy), \quad x \in D, \ A \in \mathcal{B}(D).
\]

We write \(k^n \) for the transition density of \(K^n \).

Let \(D \) be a bounded set and let the function \(\varrho: D \rightarrow [0, \infty] \) be integrable with respect to the Lebesgue measure, with \(\int_D \varrho(x) \, dx > 0 \). Then

\[
\pi_\varrho(A) = \frac{\int_A \varrho(x) \, dx}{\int_D \varrho(x) \, dx}, \quad A \in \mathcal{B}(D),
\]

is a probability measure on \((D, \mathcal{B}(D)) \). We say \(\varrho \) is an unnormalized density with respect to the Lebesgue measure if \(\int_D \varrho(x) \, dx \neq 1 \). Let \(K \) be a transition kernel with transition density \(k \) with respect to the Lebesgue measure and assume that \(\pi_\varrho \) is a stationary distribution of \(K \). Furthermore, let \(s \in [0, 1] \) and let us define

\[
K_s(x, A) = (1 - s)K(x, A) + s 1_A(x), \quad x \in D, \ A \in \mathcal{B}(D).
\]

The transition kernel \(K_s \) is called the \(s \)-modified transition kernel of \(K \). If \(s = \frac{1}{2} \) then the lazy version of \(K \) is given and if \(s = 0 \) then one has \(K \). For all \(s \in [0, 1] \) we have that \(\pi_\varrho \) is a stationary distribution of \(K_s \). The goal is to approximate

\[
S(f) = \int_D f(x) \pi_\varrho(dx).
\]

One obtains for \(n \in \mathbb{N} \) that

\[
K^*_n(x, A) = \sum_{i=0}^n s^{n-i}(1-s)^i \binom{n}{i} K^i(x, A) + s^n 1_A(x), \quad x \in D, \ A \in \mathcal{B}(D). \tag{3.28}
\]

The case \(s = 0 \) is reasonable if we define \(0^0 = 1 \). The following lemma determines a condition which implies \(L_1 \)-exponential convergence of the \(s \)-modified transition kernel.

Lemma 3.46. If there exist an \(\alpha \in [0, 1) \) and \(M < \infty \) such that

\[
2s^n + \int_D \mathop{\text{ess sup}}_{y \in D} \left| \sum_{i=1}^n s^{n-i}(1-s)^i \binom{n}{i} \frac{k^i(x, y)}{\varrho(y)} - (1 - s^n) \varrho(x) \right| \, dx \leq \alpha^n M, \quad n \in \mathbb{N},
\]

then the transition kernel \(K_s \) is \(L_1 \)-exponentially convergent with \((\alpha, M) \).
Proof. The Markov operator of K_s is denoted by P_s. Then

$$
\| (P^n_s - S)f \|_1 = \int_D \int_D f(y)\left| \sum_{i=1}^n s^n(i)(1-s)^i \left(\frac{n}{i} \right) k^n(x,y) \, dy \right| \varphi(x) \, dx
$$

\[\leq \int_D \int_D |f(y)| \left| \sum_{i=1}^n s^n(i)(1-s)^i \left(\frac{n}{i} \right) k^n(x,y) \varphi(y) - (1 - s^n) \right| \varphi(y) \, dy \varphi(x) \, dx

+ s^n \int_D |f(x) - S(f)| \varphi(x) \, dx

\leq \| f \|_1 \int_D \text{ess sup}_{y \in D} \left| \sum_{i=1}^n s^n(i)(1-s)^i \left(\frac{n}{i} \right) k^n(x,y) \varphi(y) - (1 - s^n) \right| \varphi(x) \, dx

+ s^n \| f - S(f) \|_1

\leq \| f \|_1 (2s^n + \int_D \text{ess sup}_{y \in D} \left| \sum_{i=1}^n s^n(i)(1-s)^i \left(\frac{n}{i} \right) k^n(x,y) \varphi(y) - (1 - s^n) \right| \varphi(x) \, dx)

proves the assertion.

For $n = 1$ and $s = 0$ one has a criterion for L_1-exponential convergence with $(\alpha, 1)$ for the transition kernel K.

Corollary 3.47. If there exists an $\alpha \in [0, 1)$ such that

$$
\int_D \text{ess sup}_{y \in D} \left| \frac{k^n(x,y)}{\varphi(y)} - 1 \right| \varphi(x) \, dx \leq \alpha,
$$

then the transition kernel K is L_1-exponentially convergent with $(\alpha, 1)$.

Example 1

Let us present an easy example borrowed from [Ros95] p. 402]. Let $D = [0, 1]$ and $\mathcal{D} = B([0, 1])$. The transition kernel is defined by

$$
K(x, A) = \int_A \frac{1 + x + y}{x + \frac{1}{2}} \, dy, \quad x \in [0, 1], \ A \in B([0, 1]).
$$

The stationary distribution is given by

$$
\pi(A) = \frac{1}{2} \int_A (x + \frac{3}{2}) \, dx, \quad A \in B([0, 1]).
$$

The transition kernel K is reversible with respect to π. These properties can be checked straightforward. We have

$$
\int_0^1 \text{ess sup}_{y \in [0, 1]} \left| \frac{k^n(x,y)}{\varphi(y)} - 1 \right| \varphi(x) \, dx = \int_0^1 \text{ess sup}_{y \in [0, 1]} \left| \frac{x + y - 2xy - \frac{1}{2}}{2(y + \frac{1}{2})(x + \frac{1}{2})} \right| \varphi(x) \, dx

= \int_0^1 \text{ess sup}_{y \in [0, 1]} \left| \frac{x + y - 2xy - \frac{1}{2}}{4(y + \frac{1}{2})} \right| \, dx = \frac{1}{6} \int_0^1 \left| x - \frac{1}{2} \right| \, dx = \frac{1}{24}.
$$

Hence Corollary 3.47 gives that the transition kernel is L_1-exponentially convergent with $(1/24, 1)$. Because of the reversibility one can apply Proposition 3.24 and has that the
transition kernel is \(\pi \)-a.e. uniformly ergodic with \((1/24, 1/2)\). Furthermore there exists an \(L_2 \)-spectral gap, one has \(\beta \leq \alpha = 1/24 \).

Let \(\delta \in (0, 2/3) \) and let the initial distribution \(\nu \) be given by

\[
\nu(A) = \frac{1}{\delta} \int_A \text{1}_{[0, \delta]}(x) \, dx, \quad A \in \mathcal{B}([0, 1]).
\]

Hence the initial state is chosen uniformly distributed in \([0, \delta]\). Then

\[
\left\| \frac{d\nu}{d\pi_\varnothing} - 1 \right\|_\infty = \text{ess sup}_{x \in [0, 1]} \left| \frac{4 \cdot \text{1}_{[0, \delta]}(x)}{\delta (2x + 3)} - 1 \right| = \frac{4}{3\delta} - 1.
\]

Theorem 3.45 suggests the choice

\[
n_0 = \left\lceil \frac{\log(\frac{4\delta}{3\delta} - 1)}{\log(24)} \right\rceil
\]

such that

\[
\sup_{\|f\|_2 \leq 1} \epsilon_n(S_{n, n_0}, f)^2 \leq \frac{48}{23n} + \frac{1152}{529n^2} < \frac{5}{n}.
\]

Example 2

It is taken from [Ros03, p. 172]. Let \(D = [-1, 1] \) and \(\mathcal{D} = \mathcal{B}([-1, 1]) \). The transition kernel is defined by

\[
K(x, A) = \int_A \text{1}_{[-1, 0]}(x) \text{1}_{(0, 1]}(y) + \text{1}_{(0, 1]}(x) \text{1}_{[-1, 0]}(y) \, dy, \quad x \in [-1, 1], A \in \mathcal{B}([-1, 1]).
\]

For \(x \in [-1, 0] \) the next state is uniformly distributed in \((0, 1]\) and for \(x \in (0, 1] \) the next state is uniformly distributed in \([-1, 0)\). The transition kernel is reversible with respect to the uniform distribution on \(D \), thus \(\pi_\varnothing \) is given by \(\rho(x) = 1/2 \) for \(x \in D \). For \(n \in \mathbb{N} \) we have

\[
K^n(x, A) = \begin{cases}
K(x, A), & n \text{ odd,} \\
K^2(x, A), & n \text{ even,}
\end{cases}
\]

where

\[
K^2(x, A) = \int_A \text{1}_{[-1, 0]}(x) \text{1}_{[-1, 0]}(y) + \text{1}_{(0, 1]}(x) \text{1}_{(0, 1]}(y) \, dy, \quad x \in [-1, 1], A \in \mathcal{B}([-1, 1]).
\]

The spectrum of \(P \) is completely known, one has \(\text{spec}(P|L_2) = \{1, 0, -1\} \) with

\[
\begin{align*}
\text{Eig}(P, 1) &= \{ f \in L_2 \mid f \equiv c, c \in \mathbb{R} \}, \\
\text{Eig}(P, 0) &= \{ f \in L_2 \mid \int_{-1}^0 f(x) \, dx = \int_0^1 f(x) \, dx = 0 \}, \\
\text{Eig}(P, -1) &= \{ f \in L_2 \mid f(x) = c (\text{1}_{[-1, 0]}(x) - \text{1}_{(0, 1]}(x)), c \in \mathbb{R} \},
\end{align*}
\]

where \(\text{Eig}(P, \lambda) \) denotes the eigenspace of the eigenvalue \(\lambda \). Clearly \(\text{spec}(P|L_2^0) = \{0, -1\} \). To apply the error bounds one has to pass over to \(\tilde{K} \), the lazy version of \(K \). Let \(\tilde{P} \)
be the transition operator which corresponds to \tilde{K}. We denote $\beta = \beta_{\tilde{K}}$ and $\Lambda = \Lambda_{\tilde{K}}$ to indicate the transition kernel \tilde{K}. We have $\text{spec}(\tilde{P}|L_{2}) = \{1, \frac{1}{\beta}, 0\}$ and $\text{spec}(\tilde{P}|L_{2}^{0}) = \{\frac{1}{\beta}, 0\}$.

The operator \tilde{P} has an L_{2}-spectral gap, one obtains

$$\beta_{\tilde{K}} = \Lambda_{\tilde{K}} = \left\| \tilde{P} \right\|_{L_{2}^{0} \rightarrow L_{2}^{0}} = \frac{1}{2}.$$

Note that $\tilde{K} = K_{\frac{1}{2}}$. By the special structure of K^{n} one obtains for $x, y \in D$ that

$$\frac{1}{2^{n}} \sum_{i=1}^{n} \binom{n}{i} k^{i}(x, y) \frac{\varrho(y)}{\varrho(y)} = \frac{1}{2^{n-1}} \left(\sum_{i=0}^{\frac{n}{2}} \binom{n}{2i+1} k(x, y) + \sum_{i=1}^{\frac{n}{2}} \binom{n}{2i} k^{2}(x, y), \quad n \text{ odd}, \right.$$

$$\left. = (k(x, y) + k^{2}(x, y)) - \frac{k^{2}(x, y)}{2n-1} = 1 - \frac{k^{2}(x, y)}{2n-1}. \right.$$

It follows that

$$\int_{-1}^{1} \text{ess sup}_{y \in [-1, 1]} \left| \frac{1}{2^{n}} \sum_{i=1}^{n} \binom{n}{i} \frac{k^{i}(x, y)}{\varrho(y)} - 1 + \frac{1}{2^{n}} \right| \varrho(x)dx$$

$$= \int_{-1}^{1} \text{ess sup}_{y \in [-1, 1]} \left| \frac{1}{2^{n}} \frac{k^{2}(x, y)}{2n-1} - \frac{1}{2} \right| dx = \frac{1}{2^{n}}.$$

By Lemma 3.46 we get with $s = 1/2$ that the kernel \tilde{K} is L_{1}-exponentially convergent with $(1/2, 3)$, i.e.

$$\left\| \tilde{P}^{n} - S \right\|_{L_{1} \rightarrow L_{1}} \leq \frac{3}{2^{n}}, \quad n \in \mathbb{N}.$$

The parameter $\alpha = 1/2$ of the L_{1}-exponential convergence is optimal, since $\beta_{\tilde{K}} = 1/2$ and in general for reversible, L_{1}-exponentially convergent transition kernel with (α, M) one has $\beta \leq \alpha$.

Let $\delta \in (0, 1)$. Assume that the initial distribution is given by

$$\nu(A) = \frac{1}{\delta} \int_{A} 1_{[0, \delta]}(x) dx, \quad A \in \mathcal{B}([-1, 1]),$$

i.e. the initial state is chosen with respect to the uniform distribution in $[0, \delta]$. Then

$$\left\| \frac{d\nu}{d\pi_{\varrho}} - 1 \right\|_{\infty} = \text{ess sup}_{x \in [-1, 1]} \left| \frac{2 \cdot 1_{[0, \delta]}(x)}{\delta} - 1 \right| = \frac{2}{\delta} - 1.$$

Theorem 3.45(1) suggests the choice

$$n_{0} = \left\lceil \frac{\log(3(\frac{\delta}{2} - 1))}{\log(2)} \right\rceil$$

such that for $S_{n, n_{0}}$, which uses a Markov chain with transition kernel \tilde{K} and initial distribution ν, one has

$$\sup_{\left\| f \right\|_{L_{2}} \leq 1} e_{\nu}(S_{n, n_{0}}, f) \leq \sqrt{\frac{4}{n} + \frac{8}{n^{2}}}.$$

(3.29)
By Remark 3.38, by the L^1-exponential convergence of \tilde{K} with $(1/2, 3)$ and $\Lambda_{\tilde{K}} = \beta_{\tilde{K}}$ one obtains the lower bound
\[
\sqrt{\frac{3}{n} - \frac{16}{n^2}} \leq \sup_{\|f\|_2 \leq 1} e_{\nu}(S_{n,n_0}, f).
\] (3.30)

By Corollary 3.37 one has for all $u \in \text{Eig}(\tilde{P}, \frac{1}{2}) = \text{Eig}(P, 0)$ with $\|u\|_2 = 1$ that
\[
e_{\pi}(S_n, u)^2 = \sup_{\|f\|_2 \leq 1} e_{\pi}(S_n, f)^2 = \lim_{n_0 \to \infty} \sup_{\|f\|_2 \leq 1} e_{\nu}(S_{n,n_0}, f)^2.
\]

This motivates the comparison of the lower error bound, the upper error bound and the exact error for a specific $u \in \text{Eig}(\tilde{P}, \frac{1}{2})$. Namely, let
\[
u = \left\{
\begin{array}{ll}
-1, & x \in [-1, -\frac{1}{2}] \cup [0, \frac{1}{2}), \\
1, & x \in (-\frac{1}{2}, 0) \cup (\frac{1}{2}, 1].
\end{array}
\right.
\]

By $u^2 = 1$ we get
\[
L_j(u^2) = 0 \quad \text{and} \quad L_j(uP^k u) = \frac{1}{2k}L_j(u^2) = 0, \quad \text{for} \; j, k \in \mathbb{N}.
\]

By Proposition 3.29 one has
\[
e_{\nu}(S_{n,n_0}, u) = e_{\pi}(S_n, u) = \sqrt{\frac{3}{n} \frac{4(1 - 2^{-n})}{n^2}}.
\] (3.31)

In Figure 3.5 for $\delta = 10^{-3}$ the exact error (3.31), the upper error bound (3.29) and the lower bound (3.30) are plotted. The lower bound leads to a non-trivial estimate if $N \geq n_0 + 6 = 19$. The curve of the upper error estimate is shifted down, because the coefficient of the leading term is worse than the coefficient of the leading term of the exact error $e_{\nu}(S_{n,n_0}, u)$.

Lemma 3.46 provides a tool which can be used to show L^1-exponential convergence for several examples. Unfortunately it is rather difficult to apply for more sophisticated applications. Next let us present the Metropolis-Hastings algorithm.

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm, suggested in [MRR+53] and extended in [Has70], is widely used in applications. The following introduction is based on Mengersen and Tweedie [MT96]. Suppose that the state space D is contained in \mathbb{R}^d and equipped with $B(D)$. Let π_0 be a probability measure on $(D, B(D))$ given by a possibly unnormalized density ϱ with respect to the Lebesgue measure, one has
\[
\pi_0(A) = \frac{\int_A \varrho(x) \, dx}{\int_D \varrho(x) \, dx}, \quad A \in B(D).
\]

Let $q: D \times D \to [0, \infty]$ be a function which satisfies that $q(x, \cdot)$ is integrable with respect to the Lebesgue measure for all $x \in D$ and assume that
\[
Q(x, A) = \int_A q(x, y) \, dy + 1_A(x) \left(1 - \int_D q(x, y) \, dy\right), \quad x \in D, \; A \in B(D),
\]
Figure 3.5.: Example 2: Exact error and error bounds, $\delta = 10^{-3}$ and $n_0 = \left\lceil \frac{\log(3(\frac{\delta}{2}-1))}{\log(2)} \right\rceil = 13$.

is a transition kernel. It might happen that for some $x \in D$ one has $Q(x, \{x\}) > 0$. If $Q(x, \{x\}) = 0$ for all $x \in D$ then q is a transition density of Q. The question is how to modify Q to get a transition kernel with stationary distribution π_ϵ. For $x, y \in D$ let

$$\theta(x, y) = \begin{cases} \min \left\{ \frac{q(y)q(x,y)}{q(x)q(x,y)}, 1 \right\}, & q(x)q(x,y) > 0, \\ 1, & q(x)q(x,y) = 0, \end{cases}$$

be the acceptance probability. Then the Metropolis-Hastings transition kernel K_ϵ is defined by

$$K_\epsilon(x, A) = \int_A \theta(x, y) Q(x, dy) + 1_A(x) \left(\int_D (1 - \theta(x, y)) Q(x, dy) \right)$$

$$= \int_A \theta(x, y)q(x, y) dy + 1_A(x) \left(\int_D (1 - \theta(x, y))q(x, y) dy + Q(x, \{x\}) \right),$$

where $x \in D$ and $A \in B(D)$. In this setting Q is called the proposal transition kernel of K_ϵ. If $q(x, y) = q(y, x)$ for all $x, y \in D$, then we call K_ϵ the Metropolis transition kernel. By the construction one can see that the transition kernel K_ϵ is reversible with respect to π_ϵ, thus one has the desired stationary distribution.

Lemma 3.48. The Metropolis-Hastings transition kernel K_ϵ is reversible with respect to π_ϵ.

68
Proof. It is enough to show that
\[\int_A K_\varrho(x, B) \pi_\varrho(dx) = \int_B K_\varrho(x, A) \pi_\varrho(dx) \]
for disjoint \(A, B \in \mathcal{B}(D) \). Then the assertion follows by the symmetry \(\theta(x, y) q(x, y) \varrho(x) = \theta(y, x) q(y, x) \varrho(y) \) and Fubini’s Theorem.

The Metropolis-Hastings algorithm, which simulates a transition of the Metropolis-Hastings transition kernel, works as follows: Let \(x \in D \) be the current state. Choose a proposal state \(y \) with respect to \(Q(x, \cdot) \). Toss a coin, whose probability that “head” occurs is \(\theta(x, y) \). If it is “head” then accept the proposal state, i.e. return \(y \). Otherwise reject the proposal, i.e. return \(x \). The Procedure [Metropolis-Step] \(x, Q, \varrho \) returns the state \(y \).

Procedure Metropolis-Step\((x, Q, \varrho) \)

\[
\begin{align*}
\text{input:} & \text{ current state } x, \text{ proposal kernel } Q, \text{ unnormalized density } \varrho. \\
\text{output:} & \text{ next state } y.
\end{align*}
\]

Choose \(y \) with respect to \(Q(x, \cdot) \);
Compute
\[
\theta(x, y) = \begin{cases}
\min \left\{ \frac{\varrho(y q(y, x))}{\varrho(x q(x, y))}, 1 \right\}, & \varrho(x) q(x, y) > 0, \\
1, & \varrho(x) q(x, y) = 0;
\end{cases}
\]

\[\text{if } \text{rand}() \geq \theta(x, y) \text{ then} \]
\[y := x; \]
\[\text{end} \]

Return \(y \).

If \(\tilde{q}(y) = q(x, y) \) for all \(x, y \in D \) then the proposal transition kernel samples independently of \(x \). In this situation one can apply the following result.

Theorem 3.49. Let \(\tilde{q}: D \to [0, \infty] \) be a function with \(\int_D \tilde{q}(x) dx = 1 \). Let the proposal transition kernel of the Metropolis-Hastings transition kernel \(K_\varrho \) be \(Q(x, A) = \int_A \tilde{q}(y) dy \) for \(x \in D \) and \(A \in \mathcal{B}(D) \). If there exists a \(\gamma > 0 \) such that
\[
\frac{\tilde{q}(y)}{\varrho(y)} \geq \gamma, \quad y \in D,
\]
then \(K_\varrho \) is uniformly ergodic. We obtain
\[
\|K_\varrho^n(x, \cdot) - \pi\|_{tv} \leq (1 - \gamma)^n, \quad x \in D, \ n \in \mathbb{N}.
\]

Proof. See [MT95] Theorem 2.1, p. 105.

Remark 3.50. The proof is based on the well known equivalence that a transition kernel \(K \) is uniformly ergodic if the whole state space \(D \) is a small set. A set \(R \in \mathcal{B}(D) \) is called small if there exists a \(\gamma > 0 \), an \(m \in \mathbb{N} \) and a probability measure \(\psi \) such that
\[
K_\psi^m(x, A) \geq \gamma \psi(A), \quad x \in R, \ A \in \mathcal{B}(D).
\]
The result of Theorem 3.49 will be demonstrated for a toy example, stated in [MT96, p. 107].

Let $D = \mathbb{R}$ and $\mathcal{D} = B(\mathbb{R})$. Note that the state space is unbounded. The desired distribution is given by the density

$$
\varrho(y) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{y^2}{2}\right), \quad y \in \mathbb{R},
$$

i.e. π_ϱ is an $N(0, 1)$ distribution. By $N(\mu, \xi^2)$ we denote the normal distribution with mean μ and variance ξ^2. Furthermore, assume that the proposal transition kernel samples independently from $N(0, \xi^2)$ so that

$$
\tilde{q}(y) = \frac{1}{\sqrt{2\pi\xi}} \exp\left(-\frac{y^2}{2\xi^2}\right), \quad y \in \mathbb{R}.
$$

Let $\xi^2 > 1$. Then

$$
\frac{\tilde{q}(x)}{\varrho(x)} \geq \xi^{-1},
$$

which implies that

$$
\left\| K^n_\varrho(x, \cdot) - \pi_\varrho \right\|_{L^1} \leq (1 - \xi^{-1})^n, \quad x \in D, \ n \in \mathbb{N}.
$$

By the reversibility with respect to π_ϱ of the Metropolis-Hastings transition kernel an immediate consequence is that uniform ergodicity implies L_1-exponential convergence, since π-a.e. uniform ergodicity is equivalent to L_1-exponential convergence. Hence we have a transition kernel which is L_1-exponentially convergent with $(1 - \xi^{-1}, 1)$. This implies that the Markov operator P which corresponds to the transition kernel K_ϱ has an L_2-spectral gap, we have $1 - \beta \geq \xi^{-1}$.

Let $\delta \in (0, 1)$ and $x_0 \in [0, \infty)$. The initial state is chosen uniformly distributed in $[x_0 - \delta, x_0 + \delta]$. Then

$$
d\nu/d\pi(x) = \sqrt{\frac{\pi}{2}} \cdot \frac{1}{\delta} \cdot \frac{1}{\delta} \exp\left(\frac{x^2}{2}\right), \quad x \in D.
$$

We obtain

$$
\left\| \frac{d\nu}{d\pi} - 1 \right\|_{L^\infty} = \sqrt{\frac{\pi}{2}} \cdot \frac{\exp\left(\frac{(x_0 + \delta)^2}{2}\right)}{\delta} - 1 \leq \sqrt{\frac{\pi}{2}} \cdot \frac{\exp\left(\frac{(x_0 + \delta)^2}{2}\right)}{\delta}.
$$

The method S_{n,n_0} uses a Markov chain with transition kernel K_ϱ and initial distribution ν. The burn-in is almost chosen as suggested in Theorem 3.45. We use $\log(1 - \xi^{-1}) \geq \xi^{-1}$ to estimate the burn-in, such that we set

$$
n_0 = \left\lfloor \xi \left(\log(\delta^{-1}) + \frac{(x_0 + \delta)^2}{2} + 0.23 \right) \right\rfloor.
$$

Then

$$
\sup_{\|f\|_2 \leq 1} e_{\nu}(S_{n,n_0}, f)^2 \leq \frac{2\xi}{n} + \frac{2\xi^2}{n^2}.
$$
Contracting Normals

The next example is described in [Bax05], see also [RR97b, RT99]. Let \(D = \mathbb{R}, D = B(\mathbb{R}) \) and \(\theta \in (-1, 1) \). Note that the state space is unbounded. The transition kernel is given by

\[
K(x, A) = \frac{1}{\sqrt{2\pi(1-\theta^2)}} \int_A \exp \left(-\frac{(\theta x - y)^2}{2(1-\theta^2)} \right) \, dy, \quad x \in \mathbb{R}, A \in B(\mathbb{R}),
\]

so that \(K(x, \cdot) \) is an \(N(\theta x, 1-\theta^2) \) distribution. By some elementary calculation one can see that a stationary distribution is

\[
\pi(A) = \frac{1}{\sqrt{2\pi}} \int_A \exp \left(-\frac{y^2}{2} \right) \, dy, \quad A \in B(\mathbb{R}),
\]

i.e. \(\pi \) is an \(N(0, 1) \) distribution. The transition kernel \(K \) is reversible with respect to \(\pi \). Suppose that \(\theta \in (0, 1) \). Then the Markov operator is positive semi-definite, i.e. \(\langle Pf, f \rangle \geq 0 \), for all \(f \in L^2 \). The next result is an application of [Bax05, Theorem 1.3, p. 702] where the Markov operator is self-adjoint and positive semi-definite. The same example is considered in [Bax05, p. 728] and [ŁN11, p. 33].

Lemma 3.51. Let \(\theta \in (0, 1), c \in (1, \infty) \) and set

\[
\begin{align*}
\lambda &= \theta^2 + \frac{2(1-\theta^2)}{1+c^2}, \\
K &= 2 + \theta^2(c^2-1), \\
B &= 2 \left[\Phi \left(\frac{(1+\theta)c}{\sqrt{1-\theta^2}} \right) - \Phi \left(\frac{\theta c}{\sqrt{1-\theta^2}} \right) \right], \quad \text{where} \quad \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z \exp(-\frac{y^2}{2}) \, dy, \\
\alpha &= 1 + \frac{\log(K-B)}{\log(\lambda^{-1})}, \\
\beta &= \max \left\{ \lambda, (1-B)^{1/\alpha} \right\} < 1.
\end{align*}
\]

Then

\[
\beta = ||P||_{L^2_2 \rightarrow L^2_2} \leq \hat{\beta}.
\]

Proof. See [Bax05, Theorem 1.3, p. 702 and p. 728].

Let us illustrate the last lemma. For any fixed \(\theta \) one can numerically minimize the upper estimate \(\hat{\beta} \) of \(\beta \), depending on \(c \). For example let \(\theta = 0.5 \). Then, one gets \(\beta = 0.8946 \) for \(c = 1.6041 \).

It exists an \(L_2 \)-spectral gap, thus we can apply Theorem 3.45 for \(p \in (2, \infty] \). Let \(\delta \in (0, 1) \) and \(x_0 \in [0, \infty) \). The initial state is chosen uniformly distributed on \([x_0 - \delta, x_0 + \delta]\). The density of the initial distribution with respect to \(\pi \) is given by

\[
\frac{d\nu}{d\pi}(x) = \sqrt{\frac{\pi}{2}} \frac{1_{[x_0-\delta,x_0+\delta]}(x)}{\delta} \exp \left(\frac{x^2}{2} \right).
\]

Then for all \(q \in [1, \infty] \) it follows that

\[
\left\| \frac{d\nu}{d\pi} - 1 \right\|_q \leq \left\| \frac{d\nu}{d\pi} - 1 \right\|_\infty = \sqrt{\frac{\pi}{2}} \frac{\exp\left(\frac{(x_0+\delta)^2}{2} \right)}{\delta} - 1 \leq \sqrt{\frac{\pi}{2}} \frac{\exp\left(\frac{(x_0+\delta)^2}{2} \right)}{\delta}.
\]
The burn-in is chosen as suggested in Theorem 3.45, where we use the previously stated estimate of \(\| \frac{d}{dx} - 1 \|_{\nu} \). Suppose that the burn-in \(n_0(p) \) is the smallest natural number (including zero) which is greater than or equal to

\[
\frac{1}{\log(\beta^{-1})} \left\{ \frac{p^p}{4p^2 - 2} \left[\log\left(\frac{\log p}{p - 2}\right) \right] + \frac{2(\log p \delta^{-1})}{p} + 4.39, \quad p \in (2, 4), \right. \\
\log(\delta^{-1}) + \frac{2(\log p \delta^{-1})}{p} + 4.39, \quad p \in [4, \infty].
\]

Then

\[
\sup_{\|f\|_{\nu} \leq 1} \epsilon_{\nu}(S_{n,n_0}, f)^2 \leq \frac{2}{n(1 - \beta)} + \frac{2}{n^2(1 - \beta)^2}.
\]

In Table 3.2 one can see how much resources \(N \) are sufficient to obtain an error less than \(\varepsilon = 0.01 \).

\(\theta \)	\(c \)	\(\hat{\beta} \)	\(n_0 \)	\(n \)	\(N \)
0.91	1.12845	0.999664	2.82241 \cdot 10^5	5.94614 \cdot 10^7	5.97437 \cdot 10^7
0.92	1.11691	0.999816	5.16275 \cdot 10^5	1.08759 \cdot 10^8	1.09275 \cdot 10^8
0.93	1.10499	0.999912	1.08257 \cdot 10^6	2.28043 \cdot 10^8	2.29126 \cdot 10^8
0.94	1.09260	0.999966	2.76738 \cdot 10^6	5.82923 \cdot 10^8	5.85690 \cdot 10^8
0.95	1.07964	0.999990	9.60536 \cdot 10^6	2.02337 \cdot 10^9	2.03297 \cdot 10^9
0.96	1.06599	0.999998	5.85578 \cdot 10^7	1.17624 \cdot 10^{10}	1.18183 \cdot 10^{10}

Table 3.2.: Contracting Normals: The initial distribution \(\nu \) is chosen with \(x_0 = 0 \) and \(\delta = 0.1 \). The burn-in of Theorem 3.45 is computed for \(p = 2.1 \) and \(n \) is computed such that one obtains an error less than \(\varepsilon = 0.01 \). The estimate \(\hat{\beta} \) of \(\beta \) is computed by a minimizing procedure of Maple for \(\varepsilon = 0.01 \).

3.5. Notes and remarks

In the last decades explicit error bounds and confidence estimates of Markov chain Monte Carlo methods on general state spaces attracted more and more attention. In the following let us present how the results fit into the published literature.

In the seminal work of Lovász and Simonovits [LS93] an estimate of \(e_{\nu}(S_n, f)^2 \) is shown. The paper deals with the computation of the volume of a convex body by a randomized algorithm based on Markov chains. Let us explain the result of [LS93, Theorem 1.9, p. 375] in detail. Let \((X_n)_{n \in \mathbb{N}} \) be a Markov chain with transition kernel \(K \) and initial distribution \(\nu \) and let \(K \) be reversible with respect to a probability measure \(\pi \). Then let us define the conductance as

\[
\varphi(K, \pi) = \inf_{0 < \pi(A) \leq \frac{1}{2}} \frac{\int_A K(x, A') \pi(dx)}{\pi(A)}.
\]

Assume that the Markov operator is positive semi-definite, i.e. \(\langle Pf, f \rangle \geq 0 \) for all \(f \in L_2 \). Then

\[
e_{\nu}(S_n, f)^2 \leq \frac{4}{\varphi(K, \pi)^2 \cdot n} \|f\|_2^2. \tag{3.32}
\]
The result is slightly worse than the result of Proposition 3.26. In Proposition 3.26 one has an exact error formula for \(e_\pi(S_n, f)^2 \). Mainly the spectral structure of the Markov operator is used. In Corollary 3.27 this exact error formula is further estimated and one obtains

\[
e_\pi(S_n, f)^2 \leq \frac{2}{(1 - \Lambda)n} \|f\|_2^2, \quad \text{where} \quad \Lambda = \sup \{ \alpha \mid \alpha \in \text{spec}(P|\mathcal{L}_0^2) \}.
\] (3.33)

The Cheeger inequality\(^4\), given by \(1 - \Lambda \geq \frac{\varphi(K, \pi)^2}{\varphi(K, \pi)^2} \), provides a relation between \(\Lambda \) and \(\varphi(K, \pi) \), so that (3.33) implies (3.32). Note that in Proposition 3.26 and Corollary 3.27 it is not assumed that the Markov operator is positive semi-definite, such that the assumptions are slightly less restrictive. But if one has a transition kernel \(K \) which determines a not necessarily positive semi-definite transition operator, then one can pass over to the lazy version of \(K \) and obtains positive semi-definiteness. However, the estimate of (3.32) covers the important facts and it seems that the refinement of Proposition 3.26 is well known.

The paper of Mathé [Mat99] contains results concerning the asymptotic integration error for uniformly ergodic Markov chains which are reversible with respect to \(\pi \). For example it is shown that for any initial distribution \(\nu \in \mathcal{M}_\infty \) one has

\[
\lim_{n \to \infty} n \cdot \sup_{\|f\|_2 \leq 1} e_\nu(S_n, f)^2 = \frac{1 + \Lambda}{1 - \Lambda},
\]

and for \(f \in L_2 \) it is proven that

\[
\lim_{n \to \infty} n \cdot e_\nu(S_n, f)^2 = \langle (I - P)^{-1} (I + P) g, g \rangle, \quad \text{where} \ g = f - S(f).
\]

The same result is part of Corollary 3.37 and for individual \(f \) part of Theorem 3.34. In [Mat04] the asymptotic integration error is studied for not necessarily reversible and not necessarily uniformly ergodic Markov chains. It is assumed that the transition kernel is \(V \)-uniformly ergodic, see (3.36). For further details let us refer to [Mat04].

In [Rud09, Theorem 8, p. 19] an explicit upper error bound of \(e_\nu(S_{n_0}, f)^2 \) for general state spaces is provided. The result is based on [LS93, Theorem 1.9, p. 375] and the assumptions are the same. Namely, the transition kernel \(K \) is reversible with respect to \(\pi \) and the transition operator \(P \) is positive semi-definite. After a burn-in

\[
n_0 \geq \frac{\log(\|\#\pi\|_\infty)}{\varphi(K, \pi)^2} \quad \text{the error obeys} \quad e_\nu(S_{n_0}, f)^2 \leq \frac{100}{\varphi(K, \pi)^2} \cdot n_0 \|f\|_\infty^2.
\] (3.34)

The proof of the result is based on Proposition 3.29 which provides the crucial relation between \(e_\nu(S_{n_0}, f)^2 \) and \(e_\pi(S_{n_0}, f)^2 \). By Theorem 3.41 and Theorem 3.45 one obtains a refined error estimate and a refined recipe for the choice of \(n_0 \). Note that positive semi-definiteness and reversibility is not needed in Theorem 3.41. It is enough that there exists an \(L_2 \)-spectral gap, i.e. \(1 - \beta > 0 \).

Independently of [Rud09, Theorem 8, p. 19] in the work of Belloni and Chernozhukov [BC09, Theorem 3, p. 2031] a similar error bound for \(S_{n_0} \) is proven. It is also based on [LS93, Theorem 1.9, p. 375] such that again the transition kernel is assumed to be

\(^4\) The Cheeger inequality is stated in Section A.3.
reversible with respect to \(\pi \) and the Markov operator must be positive semi-definite. Then it is shown that

\[
e_{\nu}(S_{n,n_0}, f)^2 \leq e_{\pi}(S_{n}, f)^2 + 8 \| f \|_{\infty}^2 \| \nu P^{n_0} - \pi \|_{tv}.
\]

Let the initial distribution \(\nu \) be \(R \)-warm, i.e. \(\sup_{A \in D, \pi(A) > 0} \frac{\nu(A)}{\pi(A)} \leq R \). Then one obtains by [LS93, Corollary 1.5, p. 372] that

\[
\| \nu P^{n_0} - \pi \|_{tv} \leq \sqrt{R} \left(1 - \frac{\nu(K, \pi)^2}{2} \right)^{n_0}.
\]

Hence by [LS93, Theorem 1.9, p. 375] one has

\[
e_{\nu}(S_{n,n_0}, f)^2 \leq \frac{4}{\nu(K, \pi)^2} \| f \|_{n}^2 + 8 \sqrt{R} \left(1 - \frac{\nu(K, \pi)^2}{2} \right)^{n_0} \| f \|_{\infty}^2.
\]

The result of an explicit error bound for \(S_{n,n_0} \), when the initial distribution is not the stationary one, is the same as in [Hud09, Theorem 8, p. 19]. Note that the burn-in depends on the desired precision. We can choose \(R = \| \nu \|_{\infty} \) and if one uses \(\| f \|_{2} \leq \| f \|_{\infty} \), then the upper bound of (3.35) can be further estimated and one obtains an estimate with respect to \(\| \cdot \|_{\infty} \).

Another result due to Łatuszyński and Niemiro is presented in [LN11]. The integration error for \(V \)-uniformly ergodic Markov chains is estimated, where \(V: D \to [1, \infty) \) is a drift function. The weighted class of functions

\[
L_V = L_V(D) = \left\{ f: D \to \mathbb{R} \mid |f|_V = \sup_{x \in D} \frac{|f(x)|}{V(x)} < \infty \right\}
\]

is studied. Let \(\alpha \in [0, 1) \) and \(M < \infty \). A transition kernel \(K \) is called \(V \)-uniformly ergodic with \((\alpha, M)\) if

\[
\| P^n - S \|_{L_V \to L_V} \leq M \alpha^n, \quad n \in \mathbb{N}.
\]

One can substitute the drift function \(V \) by \(V^\frac{1}{r} \) for all \(r \geq 1 \). Then there exist an \(\alpha(r) \in [0, 1) \) and an \(M(r) < \infty \) such that

\[
\| P^n - S \|_{L_{V^\frac{1}{r}} \to L_{V^\frac{1}{r}}} \leq M(r) \alpha(r)^n, \quad n \in \mathbb{N}.
\]

This is justified by an interpolation argument in [Mat04] and by different assumptions stated in [Bax05]. Now let us state a less general version of the main result of [LN11, Theorem 3.1, p. 28]. For \(r = 2 \) and \(g = f - S(f) \) one has

\[
e_{\nu}(S_{n,n_0}, f)^2 \leq \frac{|g|^2_{V}}{n} \left(1 + \frac{2M(2)\alpha(2)}{1 - \alpha(2)} \right) \left(\| V \|_1 + \frac{M^2 \alpha^{n_0} \| \nu - \pi \|_{V}}{n(1 - \alpha)} \right),
\]

where \(\| \nu - \pi \|_{V} = \sup_{|g|_{V} \leq 1} |\int_{D} g(x)(\nu(dx) - \pi(dx))| \). This seems to be the first explicit error bound of \(S_{n,n_0} \) for integrands \(f \) which belong to \(L_V \). If the transition kernel is reversible, then \(V \)-uniform ergodicity with \((\alpha, M)\) is equivalent to the existence of an \(L_2 \)-spectral gap, see [RR97a, RT01]. Furthermore if \(V \in L_p \) for some \(p > 2 \) then \(L_V \subset L_p \) and the error bound of Theorem 3.4.1 can also be applied. However, in general Theorem 3.4.1 cannot be used in this setting.
The paper of Joulin and Ollivier [JO10] based on [Oll09] follows a new idea. Let \((D, \text{dist})\) be a metric, complete, separable state space, with metric \text{dist}, and let \(K\) be a transition kernel with stationary distribution \(\pi\) on \((D, B(D))\). Let \(\mathcal{P}_{\text{dist}}(D)\) be the set of probability measures \(\mu\) on \((D, B(D))\) for which there exists an \(x_0 \in D\) such that \(\int_D \text{dist}(x_0, y) \mu(dy) < \infty\). Then let us define the Wasserstein distance between \(\mu_1, \mu_2 \in \mathcal{P}_{\text{dist}}(D)\) by

\[
W_1(\mu_1, \mu_2) = \inf_{\xi \in \Pi(\mu_1, \mu_2)} \int_D \int_D \text{dist}(x, y) \xi(dx, dy),
\]

where \(\Pi(\mu_1, \mu_2)\) is the set of probability measures \(\xi\) on \((D^2, B(D^2))\) with marginals \(\mu_1\) and \(\mu_2\). If there exists a \(\kappa > 0\) such that

\[
W_1(K(x, \cdot), K(y, \cdot)) \leq (1 - \kappa) \text{dist}(x, y), \quad x, y \in D,
\]

then we say that the transition kernel \(K\) has **positive Ricci curvature** \(\kappa\). Let the function \(f : D \to \mathbb{R}\) be integrable with respect to \(\pi\) and let

\[
\|f\|_{\text{Lip}} = \sup_{x, y \in D, x \neq y} \frac{|f(x) - f(y)|}{\text{dist}(x, y)}.
\]

The **coarse diffusion constant** \(\sigma(x)\) for \(x \in D\) of the transition kernel is defined by

\[
\sigma(x) = \frac{1}{2} \int_D \int_D \text{dist}(y, z)^2 K(x, dy) K(x, dz),
\]

and the **local dimension** \(n_x\) for \(x \in D\) is defined by

\[
n_x = \inf_{\|f\|_{\text{Lip}} = 1} \int_D \int_D |f(y) - f(z)|^2 K(x, dz) K(x, dy).
\]

If the transition kernel has positive Ricci curvature, then by [JO10], Proposition 1, p. 2423, and Theorem 2, p. 2424] one obtains that

\[
e_{\delta_n}(S_n, n) \leq \left(\frac{1}{\kappa^2 n} + \frac{1}{\kappa^4 n^2} \right) \|f\|_{\text{Lip}}^2 \sup_{x \in D} \frac{\sigma(x)^2}{n_x} \left(2 \|f\|_{\text{Lip}}^2 \left(\int_D \text{dist}(x, y) K(x, dy) \right)^2 \right).
\]

The estimate is reasonable for any deterministic initial state \(x \in D\), the initial distribution is \(\delta_x\). For further estimates and details let us refer to [JO10]. Let \(p \in (2, \infty]\), let \(\|f\|_{\text{Lip}} < \infty\) and assume that there exists an \(x_0 \in D\) such that \(\|\text{dist}(\cdot, x_0)\|_p < \infty\) then one obtains \(f \in L_p\), in particular

\[
\|f\|_p \leq 2^{\frac{p}{2} - 1} (\|f\|_{\text{Lip}} \|\text{dist}(\cdot, x_0)\|_p + |f(x_0)|).
\]

If the transition kernel is reversible with respect to \(\pi\) and \(\|\sigma\|_2 < \infty\), then one can show that a positive Ricci curvature \(\kappa > 0\) of \(K\) implies an \(L_2\)-spectral gap of \(P\), it follows that \(1 - \beta \geq \kappa\), see [Oll09], Proposition 30, p. 831]. In this setting Theorem [3.41] can be applied when the initial distribution \(\nu\) belongs to \(\mathcal{M}_{\max\{2, \frac{p+1}{2}\}}\).

A regenerative Markov chain Monte Carlo algorithm for the approximation of \(S(f)\) is studied in [LMNO9]. Roughly spoken, if one has certain information of a small set, then one
can explicitly estimate the mean square error of this regenerative estimator for uniformly
and \(V \)-uniformly ergodic Markov chains, see [ŁMN09] for details.

The literature provides also confidence estimates for \(S_{n,n_0} \). One can apply Lemma 2.27
if an upper bound of \(e^\nu(S_{n,n_0},f)^2 \) is available. These estimates can be boosted by a
median trick explained in [NP09] and applied in [EN11]. However, exponential inequali-
ties such as Hoeffding or Chernoff bounds for Markov chain Monte Carlo are better, see
[Kru98, Lez01, Go02, Jo10, Mia10]. Asymptotic confidence estimates are discussed in
[FJ11].

Let us provide a conclusion. There are different explicit error bounds of the mean square
error for \(S_{n,n_0} \) on general state spaces. In some situations these estimates could be
improved. It seems that the error bound with respect to \(\|\cdot\|_2 \) is not known so far. Let us
recall that we assumed that the used Markov chain is \(L_1 \)-exponentially convergent and
reversible with respect to \(\pi \). If we only assume that the Markov chain has an \(L_2 \)-spectral
gap, then we showed an estimate of the error uniformly with respect to \(\|\cdot\|_p \) for \(p \in (2, \infty] \).
Upper error bounds with respect to \(\|\cdot\|_\infty \) are known but with respect to \(\|\cdot\|_p \) seem to be
new. In this setting it is not assumed that the Markov chain is reversible with respect
to \(\pi \), we require that \(\pi \) is the stationary distribution. The suggestion of the burn-in \(n_0 \)
of Theorem 3.45 performs well and also appears to be new. All error bounds hold for
bounded and unbounded state spaces whenever estimates of the crucial parameters, for
example \(\Lambda, \beta \) or \((\alpha,M) \), are available.
4. Applications

In numerous applications one wants to compute for \(D \subset \mathbb{R}^d \) an integral of the form
\[
\int_D f(x) \cdot c \varrho(x) \, dx
\]
(4.1)
with density \(c \varrho \), where the number \(c \) is unknown. Of course \(c \) can be defined by
\[
\frac{1}{c} = \int_D \varrho(x) \, dx.
\]
However, it is desirable to have algorithms that are able to compute (4.1) without any pre-computation of \(c \). Let \(\mathcal{F}(D) \) be a class of tuples of the form \((f, \varrho)\), where \(\varrho : D \rightarrow [0, \infty) \) is a possibly unnormalized density with \(\int_D \varrho(x) \, dx > 0 \) and for \(f \) we assume that \(f \cdot \varrho \) is integrable with respect to the Lebesgue measure. Then the goal is to compute
\[
S(f, \varrho) = \frac{\int_D f(x) \varrho(x) \, dx}{\int_D \varrho(x) \, dx}, \quad \text{for } (f, \varrho) \in \mathcal{F}(D).
\]
(4.2)
The solution operator \(S \) is linear in \(f \) but not in \(\varrho \). Hence \(S \) is a nonlinear functional.

We assume that there are two procedures, \(\text{Or}_f \) and \(\text{Or}_\varrho \), which provide information of \(f \) and \(\varrho \), respectively. These procedures are considered as “black boxes” and we call them oracles. Let the oracle \(\text{Or}_f \) be a procedure which returns for an input \(x \in D \) the function value \(f(x) \), i.e. \(\text{Or}_f(x) = f(x) \). Unless stated otherwise we also assume that the oracle \(\text{Or}_\varrho \) provides for \(x \in D \) the function value of \(\varrho(x) \), i.e. \(\text{Or}_\varrho(x) = \varrho(x) \). We assume that the cost of an oracle call is much more expensive than the cost of arithmetic operations. Hence we count the total number of oracle calls which are needed to approximate \(S(f, \varrho) \).

Let \(\text{Alg}_n \) be the class of all randomized algorithms which at most use \(n \) calls of the oracle \(\text{Or}_f \) and \(n \) calls of the oracle \(\text{Or}_\varrho \). More precisely \(A_n \in \text{Alg}_n \) is a mapping described by a function \(\varphi_{2n} : \mathbb{R}^{2n} \rightarrow \mathbb{R} \) such that
\[
A_n(f, \varrho) = \varphi_{2n}(\text{Or}_f(X_1), \ldots, \text{Or}_f(X_n), \text{Or}_\varrho(X_1), \ldots, \text{Or}_\varrho(X_n)).
\]
The sample \((X_1, \ldots, X_n) \in D^n\) is determined as follows: Let \(\omega = (\omega_1, \ldots, \omega_n) \) be a random element with some distribution \(W \). Then
\[
X_1 = X_1(\omega_1),
X_i = X_i(\text{Or}_f(X_1), \ldots, \text{Or}_f(X_{i-1}), \text{Or}_\varrho(X_1), \ldots, \text{Or}_\varrho(X_{i-1}), \omega_i), \quad i = 2, \ldots, n.
\]
The individual error of \(A_n \in \text{Alg}_n \) applied to \((f, \varrho) \in \mathcal{F}(D)\) is, as in the previous chapters, measured in the mean square sense, such that
\[
e(A_n, (f, \varrho)) = \left(\mathbb{E} \left| S(f, \varrho) - A_n(f, \varrho) \right|^2 \right)^{1/2},
\]
where the expectation is taken with respect to \(W \). The overall error on \(\mathcal{F}(D) \) is
\[
e(A_n, \mathcal{F}(D)) = \sup_{(f, \varrho) \in \mathcal{F}(D)} e(A_n, (f, \varrho)).
\]
The complexity of the problem (4.2) on \(F(D) \) is given by

\[
\text{comp}(\varepsilon, d, F(D)) = \min \{ n | \text{there exists } A_n \in \text{Alg}_n \text{ with } e(A_n, F(D)) \leq \varepsilon \}.
\]

Note that \(d \) is the dimension of the domain \(D \). We want to quantify the complexity of a problem with respect to the dimension \(d \). The integration problem (4.2) for the class \(F(D) \) is called polynomially tractable if there exist non-negative numbers \(c, q_1 \) and \(q_2 \) such that

\[
\text{comp}(\varepsilon, d, F(D)) \leq c \varepsilon^{-q_1} d^{q_2}
\]

for all \(d \in \mathbb{N}, \varepsilon \in (0, 1) \).

Roughly spoken it says that the complexity for computing (4.2) increases at most polynomially in the precision \(\varepsilon^{-1} \) and the dimension \(d \). For details of the concept of tractability let us refer to Novak and Woźniakowski [NW08, NW10].

Let us provide a result which motivates an additional term of tractability. We consider the following class of functions

\[
F_C(D) = \{(f, \rho) | \|f\|_\infty \leq 1, \sup \rho \inf \rho \leq C\}.
\]

In some applications \(C \) can be very large, such as \(C = 10^{20} \). Observe that always \(S(F_C(D)) = [-1, 1] \), hence the problem is scaled properly. In [MN07] Mathé and Novak proved a lower error bound, see [MN07, Theorem 1, p. 678].

Theorem 4.1. For any \(A_n \in \text{Alg}_n \) one obtains

\[
e(A_n, F_C(D)) \geq \frac{\sqrt{2}}{6} \begin{cases} \sqrt{\frac{C}{2n}}, & 2n \geq C - 1, \\ \frac{3C}{2n - 1}, & 2n < C - 1. \end{cases}
\]

For an upper error bound Mathé and Novak consider the simple Monte Carlo algorithm: Evaluate the enumerator and denominator on a common independent sample according to the uniform distribution, say \((X_1, X_2, \ldots, X_n) \in D^n\), and compute

\[
A_n^{\text{simple}}(f, \rho) = \frac{\sum_{j=1}^n f(X_j) \rho(X_j)}{\sum_{j=1}^n \rho(X_j)}.
\]

Note that every \(X_j \) is uniformly distributed. It is essential that one can sample with respect to the uniform distribution on \(D \). This might be a restrictive assumption. In [MN07, Theorem 2, p. 680] the following upper error bound is proven.

Theorem 4.2. For all \(n \in \mathbb{N} \) we have

\[
e(A_n^{\text{simple}}, F_C(D)) \leq 2 \min \left\{ 1, \sqrt{\frac{2C}{n}} \right\}.
\]

From Theorem 4.1 and Theorem 4.2 one obtains that the complexity \(\text{comp}(\varepsilon, d, F_C(D)) \) of (4.2) is linear in \(C \) and \(A_n^{\text{simple}} \) is almost optimal, for all \(\varepsilon \in (0, \frac{1}{2\sqrt{2}}) \) it follows that

\[
0.02 C \varepsilon^{-2} \leq \text{comp}(\varepsilon, d, F_C(D)) \leq 8 C \varepsilon^{-2}.
\]

Hence all algorithms are bad if \(C = 10^{20} \). Mathé and Novak suggest to consider a smaller class of densities. The main goal is to have also tractability with respect to \(C \) on a class of functions, say \(F_C(D) \), where the possibly unnormalized densities satisfy \(\sup \rho \inf \rho \leq C \). More
The integration problem (4.2) is called *tractable also with respect to* C if there exist non-negative numbers c, q_1, q_2 and q_3 such that
\[
\text{comp}(\varepsilon, d, \tilde{F}_C(D)) \leq c \varepsilon^{-q_1} d^{q_2} [\log C]^{q_3}
\]
for all $\varepsilon \in (0, 1)$, $d \in \mathbb{N}$ and $C > 1$, see [NW10, p. 541].

With Markov chain Monte Carlo algorithms one can achieve this goal on certain classes of functions. Let $(X_n)_{n \in \mathbb{N}}$ be a Markov chain with transition kernel K and initial distribution ν. Assume that the transition kernel has stationary distribution π_ϱ, where
\[
\pi_\varrho(A) = \int_A \varrho(x) \, dx, \quad A \in B(D),
\]
so that
\[
S(f, \varrho) = \int_D f(x) \pi_\varrho(dx).
\]
Under suitable assumption on the Markov chain and on $(f, \varrho) \in \tilde{F}_C(D)$ one has that the algorithm
\[
S_{n, n_0}(f, \varrho) = \frac{1}{n} \sum_{j=1}^n f(X_{j+n_0})
\]
is an approximation of $S(f, \varrho)$. Suppose that for each step of the Markov chain we use a single oracle call of Or_ϱ. Then it follows that S_{n, n_0} needs $n + n_0$ oracle calls of Or_ϱ and n oracle calls of Or_f. Consequently $S_{n, n_0} \in \text{Alg}_{n+n_0}$.

4.1. Integration with respect to log-concave densities

Let $r > 0$ and let $B(x, r)$ be the d-dimensional Euclidean ball with radius r around $x \in \mathbb{R}^d$. Furthermore let $B^d = B(0, 1)$ and $rB^d = B(0, r)$. The goal is to compute
\[
S(f, \varrho) = \frac{\int_{x \in B^d} f(x) \varrho(x) \, dx}{\int_{x \in rB^d} \varrho(x) \, dx},
\]
for (f, ϱ) which belong to a certain class of functions. Let us define the class of functions on a convex body $D \subset \mathbb{R}^d$ rather than on rB^d. We assume that the state space D is equipped with the Borel σ-algebra $B(D)$. We consider functions (f, ϱ) with the following properties:

- Let ϱ be strictly positive and log-concave, i.e. for all $x, y \in D$ and $0 < \lambda < 1$ one has
 \[
 \varrho(\lambda x + (1 - \lambda)y) \geq \varrho(x)^\lambda \cdot \varrho(y)^{1-\lambda}.
 \]
- The logarithm of ϱ is Lipschitz continuous, i.e. there exists an $L \geq 0$ such that
 \[
 |\log \varrho(x) - \log \varrho(y)| \leq L \|x - y\|_E, \quad x, y \in D,
 \]
 where $\|\cdot\|_E$ denotes the Euclidean norm.
- The integrand f satisfies $\|f\|_p \leq 1$.

For $D = rB^d$ one obtains that $\sup_{x \in D} \varrho \leq e^{2Lr}$. Hence $C = e^{2Lr}$ and to have tractability also with respect to C, see (4.3), the goal is to show an error bound which depends polynomial on Lr. In general one has the following classes of functions
\[
\mathcal{F}_p^L(D) = \left\{ (f, \varrho) \mid \varrho \in \mathcal{R}_L^p(D), \|f\|_p \leq 1 \right\},
\]
where
\[\mathcal{R}^1(D) = \{ \varrho > 0 \mid \varrho \text{ is log-concave, } | \log \varrho(x) - \log \varrho(y) | \leq L \| x - y \|_E \} . \]

The idea is to apply the Metropolis algorithm to obtain a Markov chain with stationary distribution \(\pi_\varrho \), see Section 3.4. The proposal transition kernel on \((D, B(D)) \) is given by the ball walk. This random walk is used in [MN07, Rud09] and studied in different references of volume computation, see e.g. [LS93, Vem05].

The transition kernel of the \(\delta \) ball walk is given by
\[Q_\delta(x, A) = \frac{\text{vol}_d(B(x, \delta) \cap A)}{\text{vol}_d(\delta B^d)} + \left(1 - \frac{\text{vol}_d(B(x, \delta) \cap D)}{\text{vol}_d(\delta B^d)} \right) 1_A(x), \quad x \in D, \ A \in B(D), \]
where \(\delta > 0 \) and \(\text{vol}_d(A) \) denotes the Lebesgue measure of \(A \in B(D) \). Schematically, a single step of the \(\delta \) ball walk from state \(x \) may be viewed as in the procedure \text{Ball-Walk}(x, \delta).

Procedure Ball-Walk

```
Procedure Ball-Walk(x, \delta)
  input : current state x, radius \delta.
  output: next state y.

  Choose y uniformly distributed in B(x, \delta);
  if y \in D then
    Return y;
  else
    Return x;
  end
```

Let us state some well known properties.

Lemma 4.3. The transition kernel \(Q_\delta \) is reversible with respect to the uniform distribution on \(D \).

Proof. See [MN07, Proposition 1, p. 685].

The local conductance of the ball walk is defined by
\[l(x) = \frac{\text{vol}_d(B(x, \delta) \cap D)}{\text{vol}_d(\delta B^d)}, \quad x \in D. \]

We call \(l \) a lower bound of the local conductance, if \(l(x) \geq l \) for all \(x \in D \). Note that \(l \) might be very small. For \(D = [0, 1]^d \), the \(d \)-dimensional unit cube, one obtains even for small \(\delta \) that \(l = 2^{-d} \). However, one can show for \(D = r B^d \) and \(\delta \leq r/\sqrt{d+1} \) that \(l = 0.3 \) is a lower bound of the local conductance.

Lemma 4.4. Let \(Q_\delta \) be the transition kernel of the ball walk on \(D = r B^d \) for \(r > 0 \). If \(\delta \leq r/\sqrt{d+1} \), then \(l = 0.3 \) is a lower bound of the local conductance of the ball walk.

Proof. The assertion follows by the same arguments as in [MN07, Lemma 7, p. 687], see also [Rud07]. The only difference is that \(r B^d \) is a ball with radius \(r \) instead of being the unit ball.
The Metropolis transition kernel based on the δ ball walk is

$$K_\delta(x, A) = \int_A \theta(x, y) Q_\delta(x, dy) + 1_A(x) \left(\int_D (1 - \theta(x, y)) Q_\delta(x, dy) \right),$$

where the acceptance probability is $\theta(x, y) = \min \left\{ 1, \frac{\rho(y)}{\rho(x)} \right\}$ for $x, y \in D$ and $A \in B(D)$.

The lazy version of K_δ is denoted by \tilde{K}_δ. The transition kernel \tilde{K}_δ is reversible with respect to π_δ. In Algorithm 1 we present the integration algorithm S_{n,n_0}^δ which uses the lazy version of the Metropolis transition kernel with proposal transition kernel Q_δ.

Algorithm 1: S_{n,n_0}^δ

input: $n, n_0, \delta, (f, \rho)$.

output: $S_{n,n_0}^\delta(f, \rho)$.

Choose X_1 uniformly distributed in D;

for $k = 1$ to $n + n_0$ do

if rand() > 0.5 then

$X_{k+1} := X_k$;

else

$Y := \text{Ball-Walk}(X_k, \delta)$;

if $\rho(Y)/\rho(X_k) \geq \text{rand()}$ then

$X_{i+1} := Y$;

else

$X_{i+1} := X_i$;

end

end

end

Compute

$$S_{n,n_0}^\delta(f, \rho) := \frac{1}{n} \sum_{i=1}^n f(X_{i+n_0}).$$

It is convenient to use the notation $P_K = P$, $\beta_K = \beta$ and $\Lambda_K = \Lambda$ to indicate the transition kernel K. The following lemma provides a lower bound of the L^2-spectral gap of $P_{\tilde{K}_\delta}$.

The lemma follows from a result of Mathé and Novak presented in [MN07, Theorem 4, p. 690], where an estimate of the conductance of K_δ is shown.

Proposition 4.5. For $r > 0$ let $D \subset \mathbb{R}^d$ be a convex body with

$$\text{diam}(D) = \sup \{ \|x - y\|_E \mid x, y \in D \} \leq 2r.$$

Let l be a lower bound of the local conductance of the δ ball walk. Then, for all $\rho \in \mathcal{R}^L(D)$ one has for the lazy version of the Metropolis transition kernel based on a δ ball walk, given by \tilde{K}_δ, that

$$1 - \beta_{\tilde{K}_\delta} \geq \frac{l^2 e^{-2L_\delta}}{256} \min \left\{ \pi, \frac{l^2 \delta^2}{r^2(d + 1) + 1} \right\}.$$
Proof. One has \(\beta_{K_{\rho,\delta}} = \Lambda_{K_{\rho,\delta}} = \frac{1}{2}(1 + \Lambda_{K_{\rho,\delta}}) \). The conductance of \(K_{\rho,\delta} \) is defined by

\[
\varphi(K_{\rho,\delta}, \pi_\rho) = \inf_{0 < \pi_\rho(A) \leq \frac{1}{2}} \int_A K_{\rho,\delta}(x, A^c) \frac{\pi_\rho(dx)}{\pi_\rho(A)}.
\]

One can use the Cheeger inequality, see Proposition A.7. It states that

\[
1 - \Lambda_{K_{\rho,\delta}} \geq \frac{\varphi(K_{\rho,\delta}, \pi_\rho)^2}{2}.
\]

Altogether one obtains

\[
1 - \beta_{K_{\rho,\delta}} \geq \frac{1}{2} (1 - \Lambda_{K_{\rho,\delta}}) \geq \frac{\varphi(K_{\rho,\delta}, \pi_\rho)^2}{4}.
\]

In \[MN07\] Theorem 4, p. 690 it is shown that

\[
\varphi(K_{\rho,\delta}, \pi_\rho) \geq \frac{L e^{-L \delta}}{8} \min \left\{ \sqrt{\frac{\pi}{8 \sqrt{d+1}}} , 1 \right\}.
\]

This lower bound is plugged into (4.5) and the assertion is proven.

In the previous result one can see that the lower bound of the local conductance is crucial. This motivates that we consider \(D = rB^d \), since by Lemma 4.4 a lower bound of the local conductance is provided. An immediate consequence of the last proposition follows.

Corollary 4.6. For \(r > 0 \) let \(D = rB^d \), assume that \(\rho \in \mathcal{R}^L(rB^d) \) and choose \(\delta^* = \min \left\{ \frac{1}{L}, \frac{r}{\sqrt{d+1}} \right\} \). Then we have

\[
1 - \beta_{K_{\rho,\delta^*}} \geq \frac{1.69 \cdot 10^{-6}}{d + 1} \min \left\{ \frac{1}{r^2 L^2}, \frac{1}{d + 1} \right\}.
\]

Proof. The assertion is implied by Proposition 4.5 and Lemma 4.4.

In particular one obtains that the lazy version of the ball walk has an \(L_2 \)-spectral gap, since one can consider constant densities where \(L = 0 \).

Corollary 4.7. For \(r > 0 \) let \(D = rB^d \) and let \(\delta = \frac{1}{\sqrt{d+1}} \). Then the lazy version \(\tilde{Q}_\delta \) of the transition kernel of the ball walk obeys

\[
1 - \beta_{\tilde{Q}_\delta} \geq \frac{1.69 \cdot 10^{-6}}{(d + 1)^2}.
\]

Now we can apply the error bounds of Section 3.2. The next theorem states an error bound for \(S_{n,\rho_0}^\delta(f, \varrho) \) where \((f, \varrho) \in F_p^L(rB^d) \).

Theorem 4.8. For \(r > 0 \) let \(D = rB^d \) and let \(\nu \) be the uniform distribution on \(rB^d \). Let \(\rho \in \mathcal{R}^L(rB^d) \) and \(\delta^* = \min \left\{ \frac{1}{L}, \frac{r}{\sqrt{d+1}} \right\} \). Let \((X_n)_{n \in \mathbb{N}} \) be a Markov chain with transition kernel \(\tilde{K}_{\rho,\delta^*} \) and initial distribution \(\nu \). The approximation of \(S(f, \varrho) \) is

\[
S_{n,\rho_0}^\delta(f, \varrho) = \frac{1}{n} \sum_{i=1}^{n} f(X_{i+n_0}).
\]
For $p \in (2, \infty]$ recall that
\[
F^L_p(r B^d) = \left\{ (f, \varrho) \mid \varrho \in R^L(r B^d), \|f\|_p \leq 1 \right\}.
\]

Let $n_0(p)$ be the smallest natural number (including zero) greater than or equal to
\[
5.92 \cdot 10^6 (d + 1) \max \left\{ r^2 L^2, d + 1 \right\} \cdot \begin{cases} \frac{p}{(p-2)} (L r + 0.5 \log \frac{32p}{p-2}), & p \in (2, 4), \\ 2L r + 4.16, & p \in [4, \infty]. \end{cases}
\]

Then
\[
e(S_n^{\rho}, F^L_p(r B^d)) \leq \frac{1089}{\sqrt{n}} \sqrt{d + 1 \max \{ r L, \sqrt{d + 1} \} + 8.38 \cdot 10^6 (d + 1) \max \{ r^2 L^2, (d + 1) \}}.
\]

Proof. The initial distribution obeys
\[
\nu(A) = \frac{\text{vol}_d(A)}{\text{vol}_d(r B^d)} = \frac{1}{\text{vol}_d(r B^d)} \int_A \int_{r B^d} \frac{\varrho(y)}{\varrho(x)} \, dy \, \pi_d(\,dx), \quad A \in B(r B^d).
\]

Since $\log \varrho$ is Lipschitz continuous with Lipschitz constant L we obtain
\[
e^{-2Lr} \leq \frac{\varrho(y)}{\varrho(x)} \leq e^{2Lr}, \quad x, y \in r B^d,
\]
so that
\[
\left\| \frac{d\nu}{d\pi_d} - 1 \right\|_p \leq \left\| \frac{d\nu}{d\pi_d} - 1 \right\|_{\infty} \leq \max \left\{ 1, e^{2Lr} \right\} = e^{2Lr}.
\]

By Corollary 4.6 we have the crucial lower bound for the spectral gap $1 - \beta_{K_{\varrho,d}}$, and consequently Theorem 3.45(ii) can be applied which proves the assertion. \square

Note that $p \in (2, \infty]$ is necessary to apply Theorem 3.45(ii). An essential consequence of the last theorem is the following result concerning the tractability of (4.4).

Theorem 4.9. For the integration problem $S(f, \varrho)$ defined over $F^L_p(r B^d)$ with $r > 0$ and $p > 2$ we have
\[
\text{comp}(\varepsilon, d, F^L_p(r B^d)) \leq (d + 1) \max \left\{ r^2 L^2, d + 1 \right\} \cdot \begin{cases} 4.8 \cdot 10^6 \varepsilon^{-2} + 1.2 \cdot 10^6, & p \in (2, 4) \\ \frac{p}{(p-2)} (L r + 0.5 \log \frac{32p}{p-2}), & p \in (2, 4) \\ 2L r + 4.16, & p \in [4, \infty]. \end{cases}
\]
for all $\varepsilon \in (0, 1)$ and $d \in \mathbb{N}$.

The last theorem states that the problem (4.4) is polynomially tractable. Roughly spoken, for fixed p one obtains
\[
\text{comp}(\varepsilon, d, F^L_p(r B^d)) < d \max \left\{ r^2 L^2, d \right\} (\varepsilon^{-2} + L r),
\]
sO that the dependence on L, on the precision ε, dimension d and r is polynomial. We have tractability also with respect to L. For $p \in [4, \infty]$ the complexity is bounded independently of p. If p converges to 2 the result is restrictive. However, for fixed $p \in (2, \infty]$, ε we showed that the integration problem on $F^L_p(r B^d)$ is polynomially tractable in the sense of (4.3).
4.2. Integration over a convex body

The goal is to compute

$$S(f, A) = \frac{1}{\text{vol}_d(A)} \int_A f(x) \, dx,$$

with $A \subset \mathbb{R}^d$. In other words, $S(f, A)$ is the expectation of f with respect to the uniform distribution, say μ_A, on $A \subset \mathbb{R}^d$. The domain A and the function f are the input quantities. It fits in the class of problems described by (4.2) if we assume that $A \subset D$. Then μ_A might be considered as given by a density which is an indicator function.

For some domains A it is indeed simple to generate uniformly distributed random points, e.g. the Euclidean unit ball or the unit cube. Then one can approximate $S(f, A)$ by Monte Carlo methods with an i.i.d. sample. However, here A is part of the input to the algorithm, thus the problem $S(f, A)$ shall be solved uniformly for a class of state spaces, where we do not assume that sampling with respect to the uniform distribution is possible.

Let $r \geq 1$ and let

$$S_d(r) = \{ A \subset \mathbb{R}^d \text{ convex} \mid B^d \subset A \subset rB^d \}.$$

If $A \in S_d(r)$ then A is a convex bounded set with non-empty interior which contains the origin. The class of input parameters is given by

$$\mathcal{F}_p(r, d) = \{ (f, A) \mid \| f \|_p \leq 1, A \in S_d(r) \}.$$

We assume that for any $A \in S_d(r)$ there exists an oracle $\text{Or}_A(\ell)$ which returns for an arbitrary line ℓ a uniformly distributed random point on $A \cap \ell$.

Let us comment this assumption, since it seems restrictive. Assume that we have a membership oracle of $A \in S_d(r)$ which is given by $\text{Or}_A(x) = 1_A(x)$ for any $x \in rB^d$. The oracle Or_A can be implemented by using the membership oracle. Let $[x, y] = \{ x + ty \mid t \in [0, 1] \}$ be the segment of $x, y \in \mathbb{R}^d$ with Euclidean distance $\| x - y \|_E$. By the convexity of A it follows that $A \cap \ell$ is a single segment, hence there exist $a_1, a_2 \in \mathbb{R}^d$ such that $[a_1, a_2] = A \cap \ell$. Suppose that $\ell = \{ \bar{x} + t \text{dir} \mid t \in \mathbb{R} \}$ with $\bar{x} \in A$ and assume that there is a positive number ε_0 such that $\| a_1 - a_2 \|_E \geq \varepsilon_0$. We use that $A \in S_d(r)$ and $\bar{x} \in A$. By a bisection method one can find with at most $3 \log \left(\frac{2\varepsilon_0}{\varepsilon_0} \right) + 2$ calls of the membership oracle Or_A, a segment $[b_1, b_2]$ with $b_1, b_2 \in \mathbb{R}^d$ and $[a_1, a_2] \subset [b_1, b_2]$ such that

$$\left| \frac{1}{6} \| b_1 - b_2 \|_E \leq \| a_1 - a_2 \|_E \leq \| b_1 - b_2 \|_E. \right.$$

Then, choose a uniformly distributed random point in $[b_1, b_2]$ and accept it, if it is in A, otherwise reject it and repeat the acceptance rejection procedure. This procedure gives a uniformly distributed random point in $A \cap \ell$ and works reasonably fast, since the acceptance probability is $1/6$. Altogether an oracle call of Or_A requires at most an expected number of $3 \log \left(\frac{2\varepsilon_0}{\varepsilon_0} \right) + 8$ oracle calls of Or_A. In the analysis of the error we count the calls of the oracle Or_A and the function evaluations of f, i.e. the calls of the oracle Or_f.

Now let us provide a Markov chain on the measurable space $(A, \mathcal{B}(A))$ with stationary distribution μ_A. We consider the classical hit-and-run algorithm, also called hypersphere directions algorithm, see [Smi84]. The algorithm is studied and analyzed in [Lov99, LV08].
The work of Vempala [Vem05] provides an introduction to geometric random walks. The algorithm is as follows. Suppose that the current position is \(X_i \in A\) with \(i \in \mathbb{N}\). Then choose a uniformly distributed direction, say \(\text{dir}_i\), and consider the line which is defined by \(\ell(i) = \{X_i + t \text{dir}_i \mid t \in \mathbb{R}\}\). Apply \(\text{Or}_A(\ell(i))\), which gives the next state \(X_{i+1}\) chosen uniformly distributed in \(\ell(i) \cap A\). Then, again, a uniformly distributed direction, say \(\text{dir}_{i+1}\), is generated and the next state is chosen uniformly distributed on \(\ell(i+1) \cap A\) by \(\text{Or}_A(\ell(i+1))\). Two consecutive steps of the hit-and-run algorithm are illustrated in Figure 4.1. Recall that the Euclidean unit ball is denoted by \(B^d\) and its boundary is denoted by \(\partial B^d\). Schematically, a single step of the hit-and-run algorithm from \(x \in A\) may be viewed as in the procedure [Hit-and-Run](x).

Procedure Hit-and-Run(x)

input: current state \(x\).

output: next state \(y\).

Choose a direction \(\text{dir}\) uniformly distributed on \(\partial B^d\);

Choose \(y\) uniformly distributed on \(A \cap \{x + t \text{dir} \mid t \in \mathbb{R}\}\);

Return \(y\).

The transition kernel of the hit-and-run algorithm follows. For any \(x, y \in \mathbb{R}^d\) let

\[
\text{Int}(x, y) = \left\{ \lambda \in \mathbb{R} \mid x + \lambda \frac{y - x}{\|y - x\|_E} \in A \right\}.
\]

Since \(A\) is convex, \(\text{Int}(x, y)\) is an interval. Let

\[
\lambda_1(x, y) = \min \{\alpha \mid \alpha \in \text{Int}(x, y)\} \quad \text{and} \quad \lambda_2(x, y) = \max \{\alpha \mid \alpha \in \text{Int}(x, y)\},
\]

which implies that \(\text{Int}(x, y) = [\lambda_1(x, y), \lambda_2(x, y)]\). The length of the chord \(\text{Int}(x, y)\) is given by \(\ell(x, y) = \lambda_2(x, y) - \lambda_1(x, y)\). Let \(U(x, y)\) be a uniformly distributed random variable in the interval \(\text{Int}(x, y)\). Then the hit-and-run transition kernel \(H\) of the hit-and-run algorithm
is

$$H(x, C) = \int_{\partial B^d} \frac{\Pr[x + U(x, x + \theta) \theta \in C]}{\text{vol}_{d-1}(\partial B^d)} d\theta$$

$$= \frac{1}{\text{vol}_{d-1}(\partial B^d)} \int_{\partial B^d} \int_{\lambda_1(x, x + \theta)}^{\lambda_2(x, x + \theta)} \frac{1_C(x + \lambda \theta)}{\ell(x, x + \theta)} d\lambda d\theta$$

$$= \frac{1}{\text{vol}_{d-1}(\partial B^d)} \int_{\partial B^d} \int_{\lambda_1(x, x + \theta)}^{0} \frac{1_C(x + \lambda \theta)}{\ell(x, x + \theta)} d\lambda d\theta + \frac{1}{\text{vol}_{d-1}(\partial B^d)} \int_{\partial B^d} \int_{0}^{\lambda_2(x, x + \theta)} \frac{1_C(x + \lambda \theta)}{\ell(x, x + \theta)} d\lambda d\theta$$

$$= \frac{2}{\text{vol}_{d-1}(\partial B^d)} \int_C \ell(x, y) \|x - y\|_E^{-1} d\lambda d\theta$$

(4.7)

where $x \in A$ and $C \in B(A)$. The last equality follows by the integral transformation formula

$$\int_{\mathbb{R}^d} f(y) dy = \int_{\partial B^d} \int_0^\infty f(g(\lambda, \theta)) \lambda^{d-1} d\lambda d\theta$$

with

$$f(y) = \frac{1_C(y)}{\ell(x, y) \|x - y\|_E^{-1}}$$

and either $g(\lambda, \theta) = x + \lambda \theta$ or $g(\lambda, \theta) = x - \lambda \theta$.

Lemma 4.10. The hit-and-run transition kernel H, given by (4.7), is reversible with respect to μ_A on A.

Proof. Let $k(x, y)$ be a symmetric transition density of a transition kernel K, i.e. $k(x, y) = k(y, x)$ for all $x, y \in A$. Then it follows by Fubini’s theorem that

$$\int_B K(x, C) \mu_A(dx) = \int_B \int_C k(x, y) \mu_A(dy) \mu_A(dx) = \int_C \int_B k(x, y) \mu_A(dx) \mu_A(dy)$$

$$= \int_C \int_B k(y, x) \mu_A(dx) \mu_A(dy) = \int_C K(x, B) \mu_A(dx), \ B \in B(A).$$

Hence the transition kernel K is reversible with respect to μ_A. Since $\ell(x, y) = \ell(y, x)$, one obtains that the transition kernel H has a symmetric density and this implies that it is reversible with respect to μ_A. □

The lazy version of H is denoted by \tilde{H}. In Algorithm 2 we present the integration algorithm S_{har}, which uses the lazy version of the hit-and-run transition kernel. We use the notation $P_K = P$, $\beta_K = \beta$ and $\Lambda_K = \Lambda$ to indicate the transition kernel K. The following lemma provides a lower bound of the L_2-spectral gap of $P_{\tilde{H}}$. The lemma is a straightforward implication of a result of Lovász and Vempala presented in [LV06, Theorem 4.2, p. 993]. Lovász and Vempala show an estimate of the conductance of H.

Proposition 4.11. Let $r \geq 1$. Then, for all $A \in S_d(r)$ one has for the lazy version of the hit-and-run transition kernel, given by \tilde{H}, that

$$1 - \beta_{\tilde{H}} \geq 2^{-52}(dr)^{-2}.$$
Algorithm 2: $\mathcal{S}_{n,n_0}^{\text{har}}$

input: $n, n_0, (f, A)$.

output: $\mathcal{S}_{n,n_0}^{\text{har}}(f, A)$.

1. choose X_1 uniformly distributed in B^d;
2. for $k = 1$ to $n + n_0$ do
 a. if $\text{rand}() > 0.5$ then
 i. $X_{k+1} := X_k$;
 b. else
 i. $X_{k+1} := \text{Hit-and-Run}(X_k)$;
 end
3. Compute
 $$\mathcal{S}_{n,n_0}^{\text{har}}(f, A) := \frac{1}{n} \sum_{i=1}^{n} f(X_{i+n_0}).$$

Proof. In [LV06, Theorem 4.2, p. 993] it is proven that
 $$\varphi(H, \mu_A) \geq 2^{-25}(d r)^{-1}.$$
Then the proof follows by the same arguments as the proof of Lemma 4.5. \hfill \square

Now we can apply the error bounds of Section 3.2 and obtain the following.

Theorem 4.12. Let ν be the uniform distribution on B^d. Let $(X_n)_{n \in \mathbb{N}}$ be a Markov chain with transition kernel \bar{H} and initial distribution ν. The approximation of $S(f, A)$ is

$$S_{n,n_0}^{\text{har}}(f, A) := \frac{1}{n} \sum_{i=1}^{n} f(X_{i+n_0}).$$

Let $r \geq 1$ and $p > 2$ recall that

$$\mathcal{F}_p(r, d) = \left\{ (f, A) \mid \|f\|_p \leq 1, \ A \in \mathcal{S}_d(r) \right\}.$$

Let $n_0(p)$ be the smallest natural number (including zero) greater than or equal to

$$4.51 \cdot 10^{15} d^2 r^2 \cdot \left\{ \begin{array}{ll}
\frac{p}{2(p-2)}(d \log r + \log \frac{32d}{p-2}), & p \in (2, 4), \\
 d \log r + 4.16, & p \in [4, \infty].
\end{array} \right.$$

Then

$$e(S_{n,n_0(p)}^{\text{har}}, \mathcal{F}_p(r, d)) \leq 9.5 \cdot 10^7 \frac{d r}{\sqrt{n}} + 6.4 \cdot 10^{15} \frac{d^2 r^2}{n}.$$

Proof. Note that the initial distribution ν is well defined, since for $A \in \mathcal{S}_d(r)$ one has $B^d \subset A \subset r B^d$. Furthermore, it follows that

$$\nu(C) = \frac{1}{\text{vol}(B^d)} \int_C 1_{B^d}(x) \, dx = \frac{1}{\text{vol}(A)} \int_C 1_{B^d}(x) \frac{\text{vol}(A)}{\text{vol}(B^d)} \, dx, \quad C \in \mathcal{B}(A).$$
One obtains
\[\left\| \frac{d\nu}{d\mu_A} - 1 \right\|_p \leq \left\| \frac{d\nu}{d\mu_A} - 1 \right\|_{\infty} \leq \frac{\text{vol}_d(rB^d)}{\text{vol}_d(B^d)} = r^d. \]

By Lemma 4.11 we have the crucial lower bound for the spectral gap \(1 - \beta_{\tilde{H}}\) and consequently Theorem 3.45 can be applied. Hence the assertion is proven.

Note that \(p > 2\) is necessary to apply Theorem 3.45. A consequence of the last theorem is the following result concerning the tractability of the integration problem (4.6).

Theorem 4.13. For the integration problem \(S(f, A)\) defined over \(\mathcal{F}_p(r, d)\) with \(r \geq 1\) and \(p > 2\) we have
\[
\text{comp}(\varepsilon, \mathcal{F}_p(r, d)) \leq d^2 r^2 \left[4 \cdot 10^{16} \varepsilon^{-2} + 5 \cdot 10^{15} \begin{cases} \frac{p}{2p-2} (d \log r + \log \frac{32p}{p-2}), & p \in (2, 4) \\ d \log r + 4.16, & p \in [4, \infty) \end{cases} \right]
\]
for all \(\varepsilon \in (0, 1)\) and \(d \in \mathbb{N}\).

The last theorem states that (4.6) is polynomially tractable. Roughly spoken for fixed \(p\) one obtains
\[
\text{comp}(\varepsilon, \mathcal{F}_p(r, d)) \asymp d^2 r^2 (\varepsilon^{-2} + d \log r),
\]
so that the dependence on the precision \(\varepsilon\), dimension \(d\) and \(r\) is polynomial. For \(p \in [4, \infty]\) the complexity can be bounded independently of \(p\). If \(p\) converges to 2 the result is restrictive. However, for fixed \(p > 2\) we showed that the integration problem is polynomially tractable on \(\mathcal{F}_d(r, p)\).

4.3. Notes and remarks

Let us briefly summarize the features of the last sections and provide additional results of the literature. In Section 4.1 elementary state spaces were considered, namely balls, and the distribution \(\pi_\mathbf{\rho}\) determined by \(\mathbf{\rho}\) could be complicated. In Section 4.2 the distribution of interest was simple, namely the uniform one, and the state space was possibly complicated.

The problem of integration 4.1, stated in the form
\[
S(f, \varrho) = \frac{\int_D f(x) \varrho(x) \, dx}{\int_D \varrho(x) \, dx}
\]
is formulated as in the work of Mathé and Novak [MN07]. There the authors also proved an asymptotic error bound of the Metropolis algorithm based on the ball walk on \(\mathcal{F}_2^{L}(B^d)\). They studied the algorithm \(S^*_{n,0}\) and for \(\delta^* = \min \{(d+1)^{-1/2}, L^{-1}\}\) it is shown in [MN07, Theorem 5, p. 693] that
\[
\lim_{n \to \infty} n \cdot e(S^*_{n,0}, \mathcal{F}_2^{L}(B^d))^2 \leq 594700 \cdot (d+1) \max \{d+1, L^2\}.
\]

The first non-asymptotic error bound is proven in [Rud09] for the class \(\mathcal{F}_\infty^{L}(B^d)\). It states that for \(n_0 \geq 1.28 \cdot 10^6 \cdot L(d+1) \max \{d+1, L^2\}\) the error obeys
\[
e(S^*_{n,n_0}, \mathcal{F}_\infty^{L}(B^d)) \leq \frac{8000}{\sqrt{n}} \sqrt{d+1} \max \{\sqrt{d+1}, L\}.
\]
Theorem 4.8 extends the result. The integrands f belong to L_p where $p > 2$ and we considered the domain rB^d. The constants in the error bound are of the same magnitude and the dependence on the dimension d, the Lipschitz constant L and the precision ε is the same. The problem is tractable in the sense of (4.3).

Apart of the asymptotic result of [MN07, Theorem 5, p. 693] it is always assumed that the integrand f belongs to L_p for $p > 2$. The case of $f \in L_2$ is not covered so far. To apply Theorem 3.34 it is sufficient to have a transition kernel which is reversible with respect to the desired distribution and uniformly ergodic with (α, M). It is well known that the ball walk, the Metropolis algorithm based on the ball walk and the hit-and-run algorithm are uniformly ergodic, see [Sm84, KS98, MN07]. However, as far as we know there is no estimate of the numbers $\alpha \in [0, 1)$ and $M < \infty$, of the uniform ergodicity with (α, M), to obtain polynomial tractability. We get polynomial tractability if there exist non-negative numbers c and q, such that $(1 - \alpha)^{-1} \leq c d^q$. One can prove the following. Let $D = B^d$ and $\delta = 2/\sqrt{d+1}$. Then the ball walk Q_δ is uniformly ergodic with (α, M), where

$$\alpha = 1 - \frac{0.15}{\sqrt{d+1}(d+1)^{2d+1}d^{d+1}} \quad \text{and} \quad M = 100.$$

Unfortunately the crucial quantity $(1 - \alpha)^{-1}$ is exponentially bad in d. Hence, this is not enough to prove polynomial tractability. It is not clear if one can get a significantly better α.

The hit-and-run algorithm is studied in different references of volume computation and optimization. However, as far as we know it was not yet applied to integration problems of the form of (4.6). There is an immediate generalization of the hit-and-run algorithm which can be used to sample a distribution given by a log-concave density, see for example [LV06, p. 987]. This might be used to obtain further error bounds for other classes of functions.
A. Appendix

Some aspects of Functional Analysis are fundamental for the understanding of the error of Markov chain Monte Carlo. We present the Spectral Theorem for linear, bounded and self-adjoint operators. Then we state the Interpolation Theorem of Riesz-Thorin for operators acting on L_p. Afterwards the conductance and the Cheeger inequality is introduced.

A.1. Spectral Theorem

We state the Spectral Theorem for linear, self-adjoint and bounded operators. For further reading, proofs and details we refer to [KG82, Rud91, Tri92]. For an introduction see [Kre89].

Let H be a real or complex Hilbert space and let $L(H)$ be the space of all linear and bounded operators mapping from H to H. Let $\mathcal{B}(\mathbb{R})$ be the Borel σ-algebra over \mathbb{R}.

Definition A.1 (spectral measure). A spectral measure or a projection-valued measure is a mapping $E : \mathcal{B}(\mathbb{R}) \to L(H)$ with the following properties:

(i) for all $A \in \mathcal{B}(\mathbb{R})$ the operator E_A is an orthogonal projection,

(ii) $E_{\emptyset} = 0$, $E_{\mathbb{R}} = I$, where I is the identity,

(iii) for pairwise disjoint $A_1, A_2, \ldots \in \mathcal{B}(\mathbb{R})$ we have for any $g \in H$ that

$$\sum_{i=1}^{\infty} E_{A_i}(g) = E_{\bigcup_{i=1}^{\infty} A_i}(g).$$

If there exists a compact set $K \in \mathcal{B}(\mathbb{R})$ with $E_K = I$, then we say that the spectral measure has compact support.

For $f, g \in H$ a signed measure is defined on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ by

$$\omega(A) = \langle E_A f, g \rangle, \quad A \in \mathcal{B}(\mathbb{R}).$$

If $f = g$, then the measure ω is non-negative. Let $P \in \mathcal{L}(H)$ be a self-adjoint operator and let us denote the spectrum of $P : H \to H$ by $\text{spec}(P|H)$. Furthermore let

$$\lambda = \inf_{\|g\|=1} \langle Pg, g \rangle \quad \text{and} \quad \Lambda = \sup_{\|g\|=1} \langle Pg, g \rangle.$$

The spectrum of P is closed and $\text{spec}(P|H) \subset [\lambda, \Lambda]$. Additionally one has $\lambda, \Lambda \in \text{spec}(P|H)$, thus

$$\lambda = \inf \{ \alpha \mid \alpha \in \text{spec}(P|H) \} \quad \text{and} \quad \Lambda = \sup \{ \alpha \mid \alpha \in \text{spec}(P|H) \}.$$

Now we state the Spectral Theorem for linear bounded self-adjoint operators. It is an analogon to the finite dimensional Spectral Theorem for matrices.
Proposition A.2 (Spectral Theorem). Let $P \in \mathcal{L}(H)$ be self-adjoint and $k \in \mathbb{N}$. Then there exists a uniquely determined spectral measure E with compact support $\text{spec}(P|H)$ such that
\[\langle P^k f, g \rangle = \int_{\lambda} \lambda^k \, d \langle E(\lambda) f, g \rangle, \quad f, g \in H. \] (A.1)

Let $F : [\lambda, \Lambda] \to \mathbb{R}$ be a continuous function. Then one has by the continuous functional calculus a self-adjoint operator $F(P) \in \mathcal{L}(H)$ with
\[\langle F(P) f, g \rangle = \int_{\lambda} F(\lambda) \, d \langle E(\lambda) f, g \rangle, \quad f, g \in H, \] (A.2)
and
\[\| F(P) \|_{H \to H} = \max_{\alpha \in \text{spec}(P|H)} |F(\alpha)|. \]

Remark A.3. Mostly in the literature the case where H is a complex Hilbert space is considered. In [KG82] they handle both, real and complex Hilbert spaces. Note that the integral in (A.1) and (A.2) is defined with respect to a signed measure.

A.2. Interpolation Theorem

We state a version of the Theorem of Riesz-Thorin. For a proof and further details let us refer to [BL76, BS88]. Let $L_p = L_p(D, \pi)$ for a probability measure π on a measurable space (D, \mathcal{D}).

Proposition A.4 (Theorem of Riesz-Thorin). Let $1 \leq p, q_1, q_2 \leq \infty$. We assume that $\theta \in (0, 1)$ and
\[\frac{1}{p} = \frac{1 - \theta}{q_1} + \frac{\theta}{q_2}. \]
Further let T be a linear operator from L_{q_1} to L_{q_1} and at the same time from L_{q_2} to L_{q_2} with
\[\| T \|_{L_{q_1} \to L_{q_1}} \leq M_1 \quad \text{and} \quad \| T \|_{L_{q_2} \to L_{q_2}} \leq M_2. \]
Then
\[\| T \|_{L_p \to L_p} \leq 2M_1^{1-\theta}M_2^\theta. \]

Remark A.5. We can substitute the function spaces L_p, L_{q_1}, L_{q_2} in the last proposition by the sequence spaces $\ell_p, \ell_{q_1}, \ell_{q_2}$ and the result remains the same.

Remark A.6. Note that we consider real-valued functions. If we would study functions which map into the complex numbers, then the same result holds true. In particular, the additional factor of two in the assertion is not needed.

A.3. Conductance and the Cheeger inequality

Let (D, \mathcal{D}) be a measurable space. Assume K is a transition kernel defined on (D, \mathcal{D}) which is reversible with respect to a probability measure π. The conductance of the transition kernel K is defined by
\[\varphi(K, \pi) = \inf_{0 < \pi(A) \leq \frac{1}{2}} \frac{\int_A K(x, A^c) \pi(dx)}{\pi(A)}. \]
Let \((X_n)_{n \in \mathbb{N}}\) be a Markov chain with transition kernel \(K\) and initial distribution \(\pi\). Then the enumerator of the ratio within the definition of the conductance is the probability of \(X_1 \in A\) and \(X_2 \in A^c\). Hence one has
\[
\Pr(X_2 \in A^c \mid X_1 \in A) = \frac{\int_A K(x, A^c) \pi(dx)}{\pi(A)}.
\]
The conductance of \(K\) is the infimum over sets \(A \in \mathcal{D}\) with \(0 < \pi(A) \leq 1/2\) of the probability that \(X_2 \in A^c\) under the condition that \(X_1 \in A\).

The Markov operator \(P\), given by \(Pf(x) = \int_D f(y) K(x, dy)\), is self-adjoint on \(L_2 = L_2(D, \pi)\). For \(f \in L_2\) let \(S(f) = \int_D f(x) \pi(dx)\) and let
\[
L_2^0 = \{ f \in L_2 \mid S(f) = 0 \}.
\]
Furthermore we define
\[
\Lambda = \sup \{ \alpha \mid \alpha \in \text{spec}(P|L_2^0) \}.
\]
The Cheeger inequality provides a relation between \(\Lambda\) and the conductance \(\varphi(K, \pi)\).

Proposition A.7 (Cheeger inequality). Let the transition kernel \(K\) be reversible with respect to a probability measure \(\pi\). Then
\[
1 - \Lambda \geq \frac{\varphi(K, \pi)^2}{2}.
\]
(A.3)

For a proof of the inequality on finite state spaces we refer to [Beh00, Theorem 11.3, p. 93]. The Cheeger inequality for general state spaces is proven by Lawler and Sokal in [LS88, Theorem 3.5, p. 570] and by Lovász and Simonovits in [LS93, Lemma 1.7, p. 374]. Lawler and Sokal provide different types of inequalities for Markov chains and Markov processes.
Bibliography

[AG10] S. Asmussen and P. Glynn, *Harris recurrence and MCMC: A simplified approach*, submitted (2010). [2]

[Ald87] D. Aldous, *On the Markov chain simulation method for uniform combinatorial distributions and simulated annealing*, Probability in the Engineering and Informational Sciences 1 (1987), no. 1, 33–46. [4, 31]

[Bax05] P. Baxendale, *Renewal theory and computable convergence rates for geometrically ergodic Markov chains*, Ann. Appl. Probab. 15 (2005), no. 1B, 700–738. [71, 74]

[BC09] A. Belloni and V. Chernozhukov, *On the computational complexity of MCMC-based estimators in large samples*, Ann. Statist. 37 (2009), no. 4, 2011–2055. [73]

[BD06] F. Bassetti and P. Diaconis, *Examples comparing importance sampling and the Metropolis algorithm*, Illinois J. Math. 50 (2006), no. 1-4, 67–91. [14, 24, 31]

[Beh00] E. Behrends, *Introduction to Markov chains with special emphasis on rapid mixing*, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 2000. [30, 92]

[BGJM11] S. Brooks, A. Gelman, G. Jones, and X. Meng, *Handbook of Markov Chain Monte Carlo*, Chapman & Hall, 2011. [2]

[BL76] J. Bergh and J. Löfström, *Interpolation spaces. An introduction*, Springer-Verlag, Berlin, 1976, Grundlehren der Mathematischen Wissenschaften, no. 223. [91]

[BR95] J. Baxter and J. Rosenthal, *Rates of convergence for everywhere-positive Markov chains*, Statist. Probab. Lett. 22 (1995), no. 4, 333–338. [38]

[Bré99] P. Brémaud, *Markov chains: Gibbs fields, Monte Carlo simulation, and queues*, Texts in Applied Mathematics, vol. 31, Springer-Verlag, New York, 1999. [3, 10, 11, 54]

[BS88] C. Bennett and R. Sharpley, *Interpolation of operators*, Pure and Applied Mathematics, vol. 129, Academic Press Inc., Boston, MA, 1988. [91]

[Che05] M. Chen, *Eigenvalues, inequalities, and ergodic theory*, Probability and its Applications (New York), Springer-Verlag London Ltd., London, 2005. [41, 42, 45]

[Dia09] P. Diaconis, *The Markov chain Monte Carlo revolution*, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 2, 179–205. [2]

[DS91] P. Diaconis and D. Stroock, *Geometric bounds for eigenvalues of Markov chains*, Ann. Appl. Probab. 1 (1991), no. 1, 36–61. [29, 58]
[FHY92] A. Frigessi, C. Hwang, and L. Younes, Optimal spectral structure of reversible stochastic matrices, Monte Carlo methods and the simulation of Markov random fields, Ann. Appl. Probab. 2 (1992), no. 3, 610–628. [16]

[FJ11] M. Flegal and G. Jones, Implementing MCMC: Estimating with confidence, in Handbook of Markov chain Monte Carlo, Chapman & Hall (2011), 175–197. [76]

[Gey92] C. Geyer, Practical Markov chain Monte Carlo, Statist. Sci. 7 (1992), no. 4, 473–483. [2]

[Gil98] D. Gillman, A Chernoff bound for random walks on expander graphs, SIAM J. Comput. 27 (1998), no. 4, 1203–1220. [32]

[GO02] P. Glynn and D. Ormondeit, Hoeffding's inequality for uniformly ergodic Markov chains, Statist. Probab. Lett. 56 (2002), no. 2, 143–146. [76]

[GRS96] W. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo in practice, Chapman & Hall, 1996. [2]

[Häg02] O. Häggström, Finite Markov chains and algorithmic applications, London Mathematical Society Student Texts, vol. 52, Cambridge University Press, Cambridge, 2002. [17]

[Has70] W. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1970), no. 1, 97–109. [67]

[JHCN06] G. Jones, M. Haran, B. Caffo, and R. Neath, Fixed-width output analysis for Markov chain Monte Carlo, J. Amer. Statist. Assoc. 101 (2006), no. 476, 1537–1547. [2]

[JO10] A. Joulin and Y. Ollivier, Curvature, concentration and error estimates for Markov chain Monte Carlo, Ann. Probab. 38 (2010), no. 6, 2418–2442. [75, 76]

[JS89] M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput. 18 (1989), no. 6, 1149–1178. [29, 58]

[Kal02] O. Kallenberg, Foundations of modern probability, Second ed., Probability and its Applications, Springer-Verlag, New York, 2002. [32, 34]

[KG82] A. Kirillov and A. Gvishiani, Theorems and problems in functional analysis, Problem Books in Mathematics, Springer-Verlag, New York, 1982. [90, 91]

[Kre89] E. Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, Inc., 1989. [90]

[Krü98] R. Krüger, Gleichmäßige Ergodizität von Markovketten Monte Carlo Verfahren, Herbert Utz Verlag, München, 1998, in German. [76]

[KS98] D. Kaufman and R. Smith, Direction choice for accelerated convergence in hit-and-run sampling, Oper. Res. 46 (1998), no. 1, 84–95. [89]

[Lez98] P. Lezaud, Chernoff-type bound for finite Markov chains, Ann. Appl. Probab. 8 (1998), no. 3, 849–867. [32]

94
[Lez01] ______, Chernoff and Berry-Esséen inequalities for Markov processes, European Series in Applied and Industrial Mathematics. Probab. Statist. 5 (2001), 183–201. [76]

[Liu08] J. Liu, Monte Carlo strategies in scientific computing, Springer Series in Statistics, Springer, New York, 2008. [2]

[ŁMN09] K. Łatuszyński, B. Miasojedow, and W. Niemiro, Nonasymptotic bounds on the estimation error for regenerative MCMC algorithms, ArXiv e-prints (2009). [75, 76]

[ŁN11] K. Łatuszyński and W. Niemiro, Rigorous confidence bounds for MCMC under a geometric drift condition, J. Complexity 27 (2011), no. 1, 23–38. [71, 74, 76]

[Lov99] L. Lovász, Hit-and-run mixes fast, Math. Program. 86 (1999), no. 3, Ser. A, 443–461. [84]

[LP04] C. León and F. Perron, Optimal Hoeffding bounds for discrete reversible Markov chains, Ann. Appl. Probab. 14 (2004), no. 2, 958–970. [32]

[LPW09] D. Levin, Y. Peres, and E. Wilmer, Markov chains and mixing times, American Mathematical Society, Providence, RI, 2009. [8, 10, 24, 29, 31, 32]

[LS88] G. Lawler and A. Sokal, Bounds on the L^2 spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality, Trans. Amer. Math. Soc. 309 (1988), no. 2, 557–580. [58, 92]

[LS93] L. Lovász and M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Structures and Algorithms 4 (1993), no. 4, 359–412. [37, 58, 72, 73, 74, 80, 92]

[LV06] L. Lovász and S. Vempala, Hit-and-run from a corner, SIAM J. Comput. 35 (2006), no. 4, 985–1005. [7, 84, 86, 87, 89]

[Mar99] F. Martinelli, Lectures on Glauber dynamics for discrete spin models, Lectures on probability theory and statistics (Saint-Flour, 1997), Lecture Notes in Math., vol. 1717, Springer, Berlin, 1999, pp. 93–191. [2]

[Mat99] P. Mathé, Numerical integration using Markov chains, Monte Carlo Methods Appl. 5 (1999), no. 4, 325–343. [3, 21, 54, 73]

[Mat04] ______, Numerical integration using V-uniformly ergodic Markov chains, Journal of Applied Probability 41 (2004), no. 4, 1104–1112. [3, 73, 74]

[Mei99] C. Meise, On spectral gap estimates of a Markov chain via hitting times and coupling, J. Appl. Probab. 36 (1999), no. 2, 310–319. [24]

[Mia10] B. Miasojedow, Bounds on the estimation error for MCMC algorithms, Ph.D. thesis, University Warsaw, 2010, in Polish. [76]

[MN07] P. Mathé and E. Novak, Simple Monte Carlo and the Metropolis algorithm, Journal of Complexity 23 (2007), no. 4-6, 673–696. [6, 78, 80, 81, 82, 88, 89]

[MRR+53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of state calculations by fast computing machines, Journal of Chemical Physics 21 (1953), no. 6, 1087–1092. [67]
K. Mengersen and R. Tweedie, *Rates of convergence of the Hastings and Metropolis algorithms*, Ann. Statist. **24** (1996), no. 1, 101–121. [46, 67, 69, 70]

S. Meyn and R. Tweedie, *Markov chains and stochastic stability*, second ed., Cambridge University Press, 2009. [2, 34, 35]

W. Niemiro and P. Pokarowski, *Fixed precision MCMC estimation by median of products of averages*, J. Appl. Probab. **46** (2009), no. 2, 309–329. [4, 31, 32, 76]

E. Nummelin, *General irreducible Markov chains and non-negative operators*, Cambridge University Press, 1984. [34]

E. Novak and H. Woźniakowski, *Tractability of multivariate problems. Vol. 1: Linear information*, EMS Tracts in Mathematics, vol. 6, European Mathematical Society (EMS), Zürich, 2008. [6, 7, 78]

E. Novak and H. Woźniakowski, *Tractability of multivariate problems. Vol. 2: Standard information for functionals*, EMS Tracts in Mathematics, vol. 12, European Mathematical Society (EMS), Zürich, 2010. [6, 7, 78, 79]

Y. Ollivier, *Ricci curvature of Markov chains on metric spaces*, J. Funct. Anal. **256** (2009), no. 3, 810–864. [75]

J. Propp and D. Wilson, *Exact sampling with coupled Markov chains and applications to statistical mechanics*, Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995), vol. 9, 1996, pp. 223–252. [17]

D. Revuz, *Markov chains*, second ed., North-Holland Mathematical Library, vol. 11, North-Holland Publishing Co., Amsterdam, 1984. [34, 35]

J. Rosenthal, *Convergence rates for Markov chains*, SIAM Review **37** (1995), no. 3, 387–405. [64]

J. Rosenthal, *Asymptotic variance and convergence rates of nearly-periodic Markov chain Monte Carlo algorithms*, J. Amer. Statist. Assoc. **98** (2003), no. 461, 169–177. [65]

G. Roberts and J. Rosenthal, *Geometric ergodicity and hybrid Markov chains*, Electron. Comm. Probab. **2** (1997), no. 2, 13–25. [41, 42, 46, 74]

G. Roberts and J. Rosenthal, *Shift-coupling and convergence rates of ergodic averages*, Comm. Statist. Stochastic Models **13** (1997), no. 1, 147–165. [71]

G. Roberts and J. Rosenthal, *General state space Markov chains and MCMC algorithms*, Probability Surveys **1** (2004), 20–71. [34, 41, 45]

G. Roberts and J. Rosenthal, *Variance bounding Markov chains*, Ann. Appl. Probab. **18** (2008), no. 3, 1201–1214. [3]

G. Roberts and R. Tweedie, *Bounds on regeneration times and convergence rates for Markov chains*, Stochastic Process. Appl. **80** (1999), no. 2, 211–229. [71]
Geometric L^2 and L^1 convergence are equivalent for reversible Markov chains, J. Appl. Probab. 38A (2001), 37–41. [42, 74]

[RT01] W. Rudin, Functional analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991. [90]

[Rud91] W. Rudin, Functional analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991. [90]

[Rud07] D. Rudolf, Monte-Carlo-Integration mit einer unbekannten Dichte, Diplomarbeit, University Jena, 2007. [80]

[Rud09] D. Rudolf, Explicit error bounds for lazy reversible Markov chain Monte Carlo, J. Complexity 25 (2009), no. 1, 11–24. [14, 50, 73, 74, 80, 88]

[Rud10] D. Rudolf, Error bounds of computing the expectation by Markov chain Monte Carlo, Monte Carlo Methods Appl. 16 (2010), 323–342. [14]

[SC04] L. Saloff-Coste, Random walks on finite groups, Encyclopaedia Math. Sci., vol. 110, Springer, Berlin, 2004. [24]

[Sen06] E. Seneta, Non-negative matrices and Markov chains, Springer Series in Statistics, Springer, New York, 2006, Revised reprint of the second (1981) edition. [10]

[Smi84] R. Smith, Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions, Oper. Res. 32 (1984), no. 6, 1296–1308. [7, 84, 89]

[Sok97] A. Sokal, Monte Carlo methods in statistical mechanics: foundations and new algorithms, Functional integration (Cargèse, 1996), NATO Adv. Sci. Inst. Ser. B Phys., vol. 361, Plenum, New York, 1997, pp. 131–192. [3, 21, 54]

[Str05] D. Stroock, An introduction to Markov processes, Graduate Texts in Mathematics, vol. 230, Springer-Verlag, Berlin, 2005. [10, 24, 29]

[Tri92] H. Triebel, Higher analysis, Hochschulbücher für Mathematik. Leipzig: Johann Ambrosius Barth., 1992. [90]

[Vem05] S. Vempala, Geometric random walks: A survey, Combinatorial and computational geometry 52 (2005), 573–612. [80, 85]

[Yue00] W. Yuen, Applications of geometric bounds to the convergence rate of Markov chains on \mathbb{R}^n, Stochastic Process. Appl. 87 (2000), no. 1, 1–23. [58]