REVIEW

Silencing of Transposable Elements by piRNAs in *Drosophila*: An Evolutionary Perspective

Shiqi Luo 1,2,a, Jian Lu 1,+,b

1 State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
2 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

Received 11 November 2016; revised 2 January 2017; accepted 12 January 2017
Available online 8 June 2017

Handled by Mofang Liu

KEYWORDS
Transposable element; piRNA; Hybrid dysgenesis; Evolution; *Drosophila*

Abstract Transposable elements (TEs) are DNA sequences that can move within the genome. TEs have greatly shaped the genomes, transcriptomes, and proteomes of the host organisms through a variety of mechanisms. However, TEs generally disrupt genes and destabilize the host genomes, which substantially reduce fitness of the host organisms. Understanding the genomic distribution and evolutionary dynamics of TEs will greatly deepen our understanding of the TE-mediated biological processes. Most TE insertions are highly polymorphic in *Drosophila melanogaster*, providing us a good system to investigate the evolution of TEs at the population level. Decades of theoretical and experimental studies have well established “transposition-selection” population genetics model, which assumes that the equilibrium between TE replication and purifying selection determines the copy number of TEs in the genome. In the last decade, *P*-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) were demonstrated to be master repressors of TE activities in *Drosophila*. The discovery of piRNAs revolutionized our understanding of TE repression, because it reveals that the host organisms have evolved an adaptive mechanism to defend against TE invasion. Tremendous progress has been made to understand the molecular mechanisms by which piRNAs repress active TEs, although many details in this process remain to be further explored. The interaction between piRNAs and TEs well explains the molecular mechanisms underlying hybrid dysgenesis for the *I-R* and *P-M* systems in *Drosophila*, which have puzzled evolutionary biologists for decades. The piRNA repression pathway provides us an unparalleled system to study the co-evolutionary process between parasites and host organisms.

Introduction

Hybrid incompatibility often causes reproductive isolation between two subpopulations, which is important for speciation [1–3]. The classical genetic mechanism underlying hybrid
incompatibility is the Bateson–Dobzhansky–Muller model [4–7]. Under this model, when one ancestral population is divided into two subpopulations, the original two interacting genes, \(aa \) and \(bb \) in the ancestral population, evolve into \(AA \) and \(bb \), and \(aa \) and \(BB \) in the two subpopulations, respectively. If the alleles \(A \) and \(B \) are incompatible with each other, then the hybrids of the two subpopulations will die or become sterile, resulting in reproductive isolation between these two subpopulations [2]. Among various possible mechanisms that cause hybrid dysgenesis, one important form is intragenomic conflict [4–7]. Intragenomic conflict arises when genes inside a genome are transmitted by different rules, or when one gene increases its transmission by impairing the host genome. Then the host soon develops strategies to suppress the detrimental effects caused by the selfish genetic elements. The genomic conflicts often lead to hybrid incompatibility or hybrid dysgenesis [4–7].

Transposable elements (TEs) represent one type of selfish elements in the genomes of almost all species [8–15], whereas \(P \)-element-induced wimpy tests (PIWI)-interacting RNAs (piRNAs) represent one type of small RNAs (sRNAs) that repress TEs in animal germlines [16–24]. The discovery of piRNA pathway well explains some long-lasting evolutionary conflicts often lead to hybrid incompatibility or hybrid dysgenesis [4–7].

TEs

The content of TEs varies widely in eukaryotic genomes, ranging from 1% [31] to 80% [32]. According to the mechanisms of mobilization, TEs are classified as transposons and retrotransposons [13]. A transposon is a moveable DNA fragment in the genome that can be transposed to another location by “cut and paste”, while a retrotransposon is inserted into new locations by reverse transcription of RNA intermediates and replicates in the manner of “copy and paste” [13]. TEs can even be passed between species through horizontal transfer [33].

During long-term evolution, TEs have shaped the composition of the host genome through a variety of mechanisms [34–38]. First, copies of homologous TEs scattered across the genome can induce ectopic recombination [39–41]. Second, TEs could be domesticated into new domains of protein-coding genes [42–45]. Third, exaptation of TEs can provide new motifs to regulate gene expression [46–48]. TE insertions have been nicely demonstrated to contribute to the adaptive evolution of the host organisms by influencing expression of nearby genes [49–52]. Although TEs greatly influence the evolution of the genomes, they are generally detrimental to the host organisms because of: (1) destructing coding and regulatory regions of genes [53–57]; (2) depleting cellular energy and resources [58,59]; or (3) mediating deleterious chromosomal rearrangements through ectopic recombination [39,60–62].

TEs have been extensively studied in *Drosophila* for decades [63–65]. About 120 TE families have been identified in *D. melanogaster* [66], which make up at least 5% of the euchromatic genome [66–71]. There are \(\sim \)2000 inactive copies of the inactivation escape 1 (INE-1) gene family in *D. melanogaster*, although the copy number ranges from 1 to \(\sim \)300 for most TE families [72]. Based on the expression patterns, TEs could be classified into germline-specific, somatic, and intermediate groups [73,74]. Most TEs in *Drosophila* are active, and approximately 50%–80% of the mutations that generate observable phenotypes in *D. melanogaster* are attributable to TEs [54,75]. It is estimated that the TEs decrease the fitness of *D. melanogaster* by 0.4%–5% [62,76–78].

Argonaute proteins

The repertoire of sRNAs has been expanding since the RNA interference (RNAi) mechanism was discovered [79,80]. Argonaute (AGO) proteins bind to sRNAs and form the RNA-induced silencing complex (RISC), in which sRNAs recognize the target genes with complementary sequences and AGO proteins cleave and repress the targets. AGO proteins consist of four domains including the N-terminal domain, a PAZ domain that binds to RNAs, a MID domain that binds to the cap structure of mRNA, and a PIWI domain that is essential for target cleavage [81]. AGO proteins are ancient and can be found in nearly all eukaryotes except *Saccharomyces cerevisiae* [82,83]. The size of AGO family varies across species, with eight genes present in mammals [84], five in flies [23], and 27 in worms [85]. The AGO proteins are divided into three clades including AGO, PIWI, and worm-specific AGO (WAGO) clades [82]. Both the microRNAs (miRNAs) and small interfering RNAs (siRNAs) bind to AGO proteins and are involved in posttranscriptional gene silencing process in cytoplasm [81,86], whereas PIWI proteins are predominantly expressed in gonads and bind to piRNAs to silence TEs [87,88]. WAGO proteins are involved in the unique RNAi system in nematodes [85].

Drosophila genomes contain five AGO genes, including two members from AGO clade (ago1 and ago2) and three members from PIWI clade (piwi, aub, and ago3). The localization of the three PIWI proteins is different. Aub and Ago3 are located at the perinuclear electron-dense nuage in the germline cells, while the predominant localization of Piwi is the nucleus in both germline and somatic cells of ovary [23]. Piwi is also located in the cytoplasm during the development of eggs [23]. These three PIWI proteins show strand preference in binding to piRNAs. piRNAs antisense to TE transcripts are mainly bound by Piwi and Aub, whereas piRNAs sense to TEs are predominantly bound by Ago3 [23]. Since Drosha and Dicer are not involved in piRNA machinery, the biogenesis pathway of piRNAs is different from miRNAs and endogenous siRNAs [79,89]. piRNA biogenesis is very complicated and the detailed mechanisms need further elucidation, but it is well established that Piwi, Aub and Ago3 participate in piRNA biogenesis and target silencing through a “Ping-Pong” model [23,90].

piRNAs in Drosophila: a snapshot

In *Drosophila*, piRNAs are 23–29-nt sRNAs mainly expressed in germline cells [23]. The first identified piRNAs were repeat-associated siRNAs (rasiRNAs) from the Y-linked *Suppressor of Stellate* locus in *D. melanogaster* [16]. These piRNAs were uncovered to silence the X-linked tandem-repeated *stellate* genes [16,91]. Later on, piRNAs were discovered as master
regulators to repress TEs in Drosophila and other model organisms such as mice, rats, nematodes, and zebrafish [17–24]. The piRNA repertoire is very complex, with thousands of distinct piRNA sequences present in the genomes of Drosophila [23]. Moreover, there is no structural or sequence similarity between the sequences of different piRNAs, except for a strong bias for uracil in the first nucleotide [23]. In Drosophila, piRNAs recognize their targets, which are mainly mRNAs of active TEs, through perfect or nearly perfect antisense matching. piRNAs repress their target mRNAs through the “Ping-Pong” cycle [23,92–96].

piRNA clusters

Genome-wide mapping of piRNAs revealed that most piRNAs in D. melanogaster were derived from discrete loci, also known as piRNA clusters [23]. Only a small fraction of piRNAs were generated from genomic regions, such as from the 3’ UTR of tj [97,98]. At least 142 piRNA clusters were defined in the genome of D. melanogaster and these clusters are enriched in repetitive sequences or inactive TE fragments [23,74,99,100]. The piRNA clusters range up to 200 kb, and they are preferentially located in the heterochromatin regions [23] characterized by the marks of trimethylation at lysine 9 of histone H3 (H3K9me3) bound by heterochromatin protein 1 (HP1) [101–106]. These heterochromatic regions usually have low recombination rates and hence reduced efficiency of purifying selection, which putatively serves as “safe harbors” for TEs to accumulate and to develop into piRNA clusters [107]. Furthermore, it has been neatly demonstrated that heterochromatin formation is important for the proper production of piRNAs [102–106].

Based on the strand distribution of mature piRNAs, piRNA clusters are classified into “uni-strand” and “dual-strand” clusters. The “uni-strand” clusters have piRNAs mapped onto one genomic strand, such as the flamenco cluster located on the X chromosome and extending over 180 kb, which is responsible for the somatic piRNAs in the follicle cells located on the X chromosome and extending over 180 kb, mapped onto one genomic strand, such as the [94]. Furthermore, transcription of both strands of a piRNA cluster is required for proper production of piRNAs [94].

Maturation of primary piRNAs

In follicle cells, only Piwi, but not Aub or Ago3, is expressed [23]. The primary piRNA biogenesis is shown in Figure 1. The transcript of uni-strand piRNA cluster is first transported into the Yb body of the cytoplasm [109]. Zucchini (Zuc), which is located on mitochondrial outer membrane, cleaves the long single-stranded transcript and generates the piRNA intermediates [110,111]. Then the 5’ end of piRNA intermediates is loaded on Piwi in the Yb body of follicle cells [109]. The observed strong bias for 5’ uracil (termed 1U bias) of piRNAs is demonstrated to be related to the MID domain of Piwi [112]. Next, piRNA 3’ end is trimmed to the mature length by Nibbler (Nbr) [113,114] or Trimmer and its cofactor partner of PIWI (Papi) [115,116]. When the 3’ trimming stops at the piRNA intermediate region that is protected by Piwi, the 3’ end is methylated by Hen1 and forms a 2’-O-methylated (OME) modification of the mature primary piRNA [117,118]. In follicle cells, the mature primary piRNAs are able to recognize and destroy target transcripts in a posttranscriptional manner [74]. Many other proteins also participate in the primary piRNA maturation in the follicle cells. These include the Tudor protein Yb [119,120], Vreteno (Vret) [109,121], Minotaur (Mino) [122,123], Gasz [124], helicase Armitage (Armi) [125], chaperone Shutdown (Shu) [126], and heat shock protein 90 (Hsp90) [127], many of which are anchored in the outer membrane of mitochondria.

In germline cells, Vasa and UAP56 recognize the transcripts of piRNA clusters and transport them from nucleus into nuage in the cytoplasm [128]. The primary piRNA processing in germline cells is similar to that in follicle cells, except that Piwi, Aub, and Ago3 are all expressed, but only Piwi and Aub load the mature primary piRNAs. Aub-bound primary piRNAs, together with Ago3, generate secondary piRNAs through a “Ping-Pong” cycle (Figure 2). The production of primary piRNAs requires many effectors such as Armi, Zuc, Shu, and Hsp83. The 2’-O-methylation is finally formed at the 3’ end of a primary piRNA by Hen1 [126,129,130]. Interestingly, in both follicle and germline cells, the 3’ end formation of primary piRNA is either trimmed as described above, or further cleaved by Zuc to produce the Piwi-bound phased piRNAs [95,96] (Figures 1 and 2).

The “Ping-Pong” cycle amplifies secondary piRNAs and silences targets

Unlike the primary piRNA pathway, the “Ping-Pong” cycle generating the secondary piRNAs is restricted to the electron-dense nuage of Drosophila germline cells [23]. The “Ping-Pong” cycle (shown in Figure 2) is a well-established mechanism in TE suppression in germ cells (reviewed in [87,88,90,131–134]). Briefly, in the “Ping-Pong” cycle, an Ago3-associated piRNA recognizes a complementary transcript (usually from an active TE) and Ago3 cleaves the target at the site corresponding to the 10th nucleotide of the Ago3-bound piRNA, thereby generating a new piRNA loaded by Aub. Then the Aub-loaded piRNA in turn recognizes and cleaves a complementary TE transcript, generating a new piRNA identical to the initial Ago3-loaded piRNA. The piRNAs are amplified during these “Ping-Pong” cycles, leaving a
10-bp region overlapping between the sense and antisense piRNAs [23,74]. The “Ping-Pong” model also consumes transcripts of TEs and thus silences TEs. Several piRNA pathway-associated factors have been demonstrated to participate in this process, such as Spindle-E (Spn-E) [74], Krimper (Krimp) [135,136], Tejas [137], Tapas [138], Vasa [128,139], and Qin [140,141]. Notably, Piwi does not directly participate in the “Ping-Pong” cycle. The Piwi/piRNAs complex is imported into the nucleus to repress TEs by modifying chromatin [104,105,142,143], and Panoramix (Panx) is required in the piRNA-driven recognition of transposons to silence their transcription [144].

During the “Ping-Pong” cycle, Aub-associated piRNA intermediates can also be cleaved by Zuc in the downstream transcript regions, generating phased piRNAs that are bound by Piwi [95,96]. The spreading mechanism of phased piRNAs well explains the extremely high diversity of piRNA repertoire and provides the host versatility to defend against various invasive TEs.

Hybrid dysgenesis caused by interactions between TEs and piRNAs

The discovery of piRNA pathway elucidates the molecular mechanisms underlying hybrid dysgenesis for the P-M system [11,28–30,33] and the I-R [25,26,29] system.

P element is a DNA transposon that is transcribed in both soma and germline, whereas active transposase is only translated in germline cells [146]. The complete sequence of P element is 2.9 kb in length. Most P elements have internal deletions and do not encode transposase, thus relying on the complete P elements to transpose [146]. Some strains of *D. melanogaster* do not carry any P element (M strains), while other strains have multiple P elements in the genomes (P strains). When P males and M females are mated, the F1 offspring usually suffer from the syndromes of hybrid dysgenesis, such as recombination in male flies, higher mutation rates, dysgenic gonads, and frequent sterility [11,147]. However, the hybridization between P females and M males, between M females and M males, or between females and M males, does not generate hybrid dysgenesis. The mechanism for such a puzzling observation got fully appreciated.
after the piRNA pathway was discovered (Figure 3). In the P strains, piRNAs were developed to specifically repress P elements [29]. P element–corresponding piRNAs are maternally deposited in the F1 embryos by P females, therefore P elements, if present, are repressed in the embryos. However, in embryos from the crossing of M females and P males, there are no piRNAs repressing P elements, therefore P elements actively trans- pose and disrupt genes crucial for the normal development of the F1 offspring [29].

The functional I element is a non-long terminal repeat (non-LTR) retrotransposon that is 5.4 kb in length in Drosophila. I elements are specifically transcribed in female germline cells of Drosophila [25,26,148]. The functional I elements are polymorphic in D. melanogaster. The I (inducer) strains have functional I elements, whereas the R (reactive) strains lack functional I elements. I elements are very active in F1 females (called SF females, which are usually sterile) from the crossing of R females and I males. Nonetheless, when I females and R males are mated, I elements are less active in F1 females (called RSF females) [25,26,148]. It is also shown that in the I strains, piRNAs specifically repress I elements through the “Ping-Pong” cycle and the maternal I-specific piRNA deposition is important for silencing functional I elements in the F1 adults. In contrast, lack of maternal I-specific piRNAs in the F1 adults from the crossing of R females and I males would cause hybrid dysgenesis [29].

Taken together, the maternal deposition of TE-specific piRNAs neatly explains the reciprocal cross difference in hybrid dysgenesis between P and M strains, or between the I and R strains of D. melanogaster [29].

De novo piRNAs induced by TE insertions

How piRNAs are developed to repress a novel invasive TE is not well understood at this moment. However, several studies...
have demonstrated that de novo piRNAs could be rapidly produced after invasions of novel TEs. For example, P elements invaded D. melanogaster by horizontal transfer from Drosophila willistoni within the last 100 years, and they remain polymorphic in the populations of D. melanogaster [28,33]. Notably, abundant piRNAs specifically repressing P elements are readily detected in the P strains [29]. Furthermore, the adaptation to the novel P element insertion could even occur within the lifetime of a single fly [30]. Penelope is a member of the Penelope-like element (PLE) family and it remains polymorphic in Drosophila virilis [149]. After artificially transforming intact Penelope into D. melanogaster, piRNAs (mainly in ovary) and siRNAs (mainly in somatic cells) that specifically repressed Penelope transcripts were frequently detected in the transgenic strains even after 10 years [142]. Furthermore, some intact Penelope copies are inserted into pre-existing piRNA cluster of D. melanogaster, suggesting invasive TEs could be trapped by the established piRNA clusters to silence themselves and to generate piRNAs to repress the homologous TEs as well [107].

Other transgenic experiments demonstrate that TEs inserted outside of the pre-existing piRNA clusters can also trigger the production of de novo piRNAs. Such piRNAs were detected in the inserted TEs and the flanking regions that were bi-directionally transcribed [150]. Further analysis demonstrate that in Drosophila gonads, a considerable amount of TE insertions triggered the production of de novo piRNAs that are mapped on both strands of the inserted TEs and flanking regions [151,152]. Novel insertions of TEs would induce H3K9me3 modifications that are required for the production of de novo piRNAs around the insertion sites [150,153].

Interactions between TEs and piRNAs at the population level

The polymorphism of TE insertions among individuals of D. melanogaster provides a model system to investigate TE evolution at the population level [39,53,60-62]. Although TEs are deleterious and under strong negative selection, they reproduce fast in the genomes so that they persist in the populations. The traditional “transposition-selection” population genetics model assumes that the equilibrium between TE replication and purifying selection determines TE abundance in the genome [53,62]. By investigating patterns of TE insertion polymorphism in five populations from North American and one population from sub-Saharan Africa in D. melanogaster, it is shown that TEs are subject to purifying selection due to ectopic recombination [154]. The intensity of purifying selection varies with recombination rate of the inserted region, virulence of individual TEs, and the natural history of the TE families [154]. Similar results have also been reported in a Portugal population [155] and in an American population from the Drosophila Genetic Reference Panel (DGRP) [156].

However, for most population genomic analysis of TEs, the effect of piRNA repression has not been considered. Therefore, it remains unclear whether or not the possible arms-race process between TEs and piRNAs would affect the landscapes of TE insertions. For example, the flamenco locus has been known to regulate the retrotransposons Gypsy [157,158], ZAM, and Idefix [159] for a long time, and the repression efficiency differs across strains [159]. 79% of all the piRNAs matching ZAM are produced by flamenco cluster,
while 30% of all the piRNAs targeting Idefix and 33% targeting Gypsy are also from flamenco [23]. Although this piRNA cluster is ancient and generates primary piRNAs in both D. melanogaster and D. erecta [74], the fine-scale structure and composition of flamenco are quite different among three strains of D. melanogaster, which well explains their difference in TE repression [160].

Lu and Clark were among the first to incorporate piRNA emergence and repression into the population genetic framework of TEs [107]. By combining extensive evolutionary modelings and empirical TE polymorphism analysis, they showed that piRNAs significantly reduced the fitness costs of TEs and that the novel insertions generating piRNAs are favored by natural selection (Figure 4). Such piRNA-generating TE insertions will spread quickly in the populations or even reach fixation (Figure 4). However, the piRNA repression also provides a shelter for the TEs to accumulate, since the deleterious effects of TEs are alleviated in the presence of piRNAs. The fitness of the host depends on the continuous repression of TEs by piRNAs, and piRNA maintenance is therefore very important to the host organism [107]. Further studies indicate that the interactions between TEs and piRNAs are very complicated. It seems that there is no simple relationship between the copy number of TEs and the abundance of piRNAs [152,161].

Adaptive evolution of piRNA machinery

The effector proteins in piRNA pathway are important in piRNA generation and TE silencing. Many effector proteins exhibit signatures of adaptive evolution [162–165]. In *Drosophila*, Lee and Langley found more evidence of adaptive evolution for these effector genes than for the pathogen-

Figure 4 The interactions between piRNAs and TEs in the framework of population genetics

With the same parameter settings in the population genetics simulations, the number of TEs in one chromosome is significantly lower in the presence of piRNA repression (A) compared to the scenario that piRNAs do not repress TEs (B). The solid line represents the mean number of RTs in each chromosome, whereas the thin dashed lines represent the confidence intervals of 90%. C. A schematic illustration of the interaction between piRNAs and TEs. piRTs (RTs in the piRNA clusters, shown in red inverted triangle) refer to the RT that jump into piRNA loci and generate piRNAs to repress RTs of the same family, whereas targetRTs are RTs present outside of piRNA loci, whose activity is reduced by the expressed piRNAs. D. piRTs increase the fitness of the hosts. They are driven by positive selection and spread in the population rapidly, which is manifested by their higher frequencies in the population. E. The frequency of targetRTs is also skewed toward higher frequencies because their deleterious effects are alleviated by the repression of piRNAs. The figures are adapted from [107]. piRNA, P-element-induced wimpy testis (PIWI)-interacting RNA; RT, retrotransposon; TE, transposable element.
interacting immunity genes [166]. It was thus proposed that the changes in TE abundance between species caused the rapid evolution of piRNA pathway genes [167]. The arms race between TEs and the piRNA effector proteins would potentially cause the species with more TEs to have a higher rate of evolution in the amino acid sequences of piRNA effector proteins. However, such a model was not supported by empirical data [168]. Furthermore, the expression levels of piRNA pathway genes do not have correlations with novel TE abundance across strains in *D. melanogaster* [152] or in *Drosophila simulans* [169]. Taken together, the molecular mechanism underlying the adaptive evolution of the piRNA machinery remains a mystery. New models and further investigations are required.

Hsp90: piRNA pathway effector or canalization capacitor?

Hsp90 is involved in piRNA biogenesis in that it facilitates precursor piRNAs loading onto PIWI proteins accurately [127]. These discoveries call into question that Hsp90 functions as a canalization capacitor [170]. “Canalization” was coined by Waddington to describe the ability that organisms evolve to stabilize the phenotypes against genetic and environmental perturbations [171]. It was postulated that Hsp90, a chaperone and heat-shock protein, functions as a canalization capacitor to mask the deleterious effects of many pre-existing “cryptic variation” [170] (shown in Figure 5). This hypothesis was supported by the observations that there were many morphological abnormalities in the fly mutant of *Hsp83*, which encodes Hsp90 [170]. This hypothesis attracts tremendous interest from biologists, especially from evolutionary biologists, since it provides a new framework to investigate how genetic diversity is maintained. However, it was later demonstrated that Hsp90 was involved in biogenesis of piRNAs in *Drosophila*, and mutation of *Hsp83* failed to suppress novel mutations caused by the active TEs in the germline cells [172]. In other words, the phenotypic abnormalities observed in the *Hsp83* mutants are more likely to be caused by novel mutations due to TE insertions rather than the release of pre-existing cryptic mutations. Therefore, the hypothesis that Hsp90 functions as a canalization capacitor should be reconsidered [173].

Conclusions and perspectives

The genomes, transcriptomes, and proteomes of the host organisms have been greatly shaped by the genomic conflict between TEs and the host genome. Based on the theoretical and experimental studies from TE polymorphism in *D. melanogaster*, the traditional “transposition-seletion” population genetics model assumed that the TE abundance in the genome is determined by the equilibrium between TE replication and purifying selection. Over the last decades, the discovery of piRNAs has revolutionized our understanding of the molecular mechanisms in TE repression. The interaction between piRNAs and TEs well explains the hybrid dysgenesis for the *I-R* and *P-M* systems in *Drosophila*. The population genetic analysis also shows the importance of piRNA maintenance to the host organism.

However, several fundamental questions remain to be further investigated. First, what are the major mechanisms for the *Drosophila* hosts to adapt to novel TE insertions? Many detailed questions need to be explored. How soon are piRNAs generated after the invasion of TEs? How did piRNA clusters origin and evolve? What are the molecular mechanisms underlying the rapid evolution of the piRNA machinery? What are the major forces governing such an evolutionary process? Second, how does piRNA repression, coupled with natural selection, shape the landscape of TE insertions? What is the relative importance of piRNA pathway in preventing TE accumulation?

![Figure 5](image-url)
Figure 5 The possible role of Hsp90 in canalization vs. TE suppression

In the canalization model, Hsp90 might help the client proteins to fold correctly, even though they may carry deleterious mutations that would otherwise destabilize these proteins in the absence of Hsp90. In other words, Hsp90 masks the deleterious effects of the mutations. Abolition of Hsp90 releases the deleterious effects of the pre-existing mutations, thus resulting in the manifested phenotypes. In the piRNA pathway effector model, Hsp90 is involved in piRNA biogenesis. Hsp90 mutation results in active TE transposition, thus generating new mutations and abnormal phenotypes. piRNA, *P*-element-induced wimpy testis (PIWI)-interacting RNA; TE, transposable element; Hsp90, heat shock protein 90.
compared to other mechanisms such as purifying selection due to ectopic recombination? Third, what are the consequences of the arms-race between TEs and piRNAs in the host genome? Given the large and complex repertoire of piRNAs, how are they regulated to avoid interfering with the normal transcriptionomes of the germline cells? How frequently can we observe the arms-race processes between TEs and piRNAs? Do the interactions between piRNAs and TEs cause widespread weak hybrid dysgenesis that leads to the population differentiation? More investigations are needed to address these questions. Answers to these questions will undoubtedly help us better understand some fundamental questions in evolutionary biology.

Competing interests

The authors have declared that no competing interests exist.

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 91431101 and 31571333), the Ministry of Science and Technology of China (Grant No. 2016YFA0500800), and the Peking-Tsinghua Center for Life Science to JL.

References

[1] Mayr E. Animal species and evolution. Cambridge, Massachusetts: The Belknap; 1963.
[2] Wu CI, Ting CT. Genes and speciation. Nat Rev Genet 2004;5:114–22.
[3] Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, et al. Genomics and the origin of species. Nat Rev Genet 2014;15:176–92.
[4] Hurst LD, Atlan A, Bengtsson BO. Genetic conflicts. Q Rev Biol 1996;71:317–64.
[5] Werren JH. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci U S A 2011;108:10863–70.
[6] Rice WR. Nothing in genetics makes sense except in light of genomic conflict. Annu Rev Ecol Evol Syst 2013;44:217–37.
[7] Crespi B, Nosil P. Conflictual speciation: species formation via genomic conflict. Trends Ecol Evol 2013;28:48–57.
[8] Britten RJ, Kohne DE. Repeated sequences in DNA. Science 1968;161:529–40.
[9] Calos MP, Miller JH. Transposable elements. Cell 1980;20:579–95.
[10] Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet 1989;5:103–7.
[11] Kidwell MG, Lisch DR. Transposable elements and host genome evolution. Trends Ecol Evol 2000;15:220–2.
[12] Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 2007;8:272–85.
[13] Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Challoube B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007;8:973–82.
[14] Levin HL, Moran JV. Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 2011;12:615–27.
[15] Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 2012;46:21–42.
[16] Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 2001;11:1017–27.
[17] Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 2006;442:199–202.
[18] Grivna ST, Beyret E, Wang Z, Lin HF. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 2006;20:1709–14.
[19] Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, et al. Characterization of the piRNA complex from rat testes. Science 2006;313:363–7.
[20] Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 2006;127:1193–207.
[21] Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 2006;20:2214–22.
[22] Vagin VV, Sigova A, Li CJ, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 2006;313:320–4.
[23] Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007;128:1089–103.
[24] Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 2007;129:69–82.
[25] Cham Beyron S, Popkova A, Payen-Grosché G, Brun C, Lao Li Qi, Pelisson A, et al. piRNA-mediated nuclear accumulation of retrotransposon transcripts in the Drosophila female germline. Proc Natl Acad Sci U S A 2008;105:14964–9.
[26] Orsi GA, Joyce EF, Coule P, McCluskey KS, Luppin B. Drosophila IR hybrid dysgenesis is associated with catastrophic meiosis and abnormal zygot formation. J Cell Sci 2010;123:3515–24.
[27] Kidwell MG, Kidwell JF, Sved JA. Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 1977;86:813–33.
[28] Kidwell MG, Hybrid dysgenesis in Drosophila melanogaster: nature and inheritance of P element regulation. Genetics 1985;111:337–50.
[29] Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 2008;322:1383–92.
[30] Khurana JS, Wang J, Xu J, Koppepsch S, Thomson TC, Nowoselska A, et al. Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 2011;147:1551–63.
[31] Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Petro A, et al. The Fasariun graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 2007;317:1400–2.
[32] Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science 2009;326:1112–5.
[33] Clark JB, Kidwell MG. A phylogenetic perspective on P transposable element evolution in Drosophila. Proc Nat acad Sci U S A 1997;94:11428–33.
[34] Kidwell MG, Holojakee AJ. Transposon-induced hotspots for genomic instability. Genome Res 2001;11:1321–2.
Luo S and Lu J / Transposable Elements and piRNAs in Drosophila 173

[35] Kazazian Jr HH. Mobile elements: drivers of genome evolution. Science 2004;303:1626–32.
[36] Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapiio F, et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 2011;479:534–7.
[37] Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol 2013;15:R86–R91.
[38] Perrat PN, DasGupta S, Wang J, Theuerkauf W, Weng Z, Rosbash M, et al. Transposition-driven genomic heterogeneity in the Drosophila brain. Science 2013;340:91–5.
[39] Petrov DA, Aminetzach YT, Davis JC, Bensasson D, Hirsh AE. Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. Mol Biol Evol 2003;20:880–92.
[40] Biemont C, Vieira C. Genetics: junk DNA as an evolutionary force. Nature 2006;443:524–5.
[41] Casacuberta E, González J. The impact of transposable elements in environmental adaptation. Mol Ecol 2013;22:1503–13.
[42] Britten R. Transposable elements have contributed to thousands of human proteins. Proc Natl Acad Sci U S A 2006;103:1798–803.
[43] Yang S, Arguello JR, Li X, Ding Y, Zhou Q, Chen Y, et al. Repetitive element-mediated recombination as a mechanism for new gene origin in Drosophila. PLoS Genet 2008;4:e3.
[44] Kaessmann H, Vinckenbosch N, Long M. RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 2009;10:19–31.
[45] Joly-Lopez Z, Forczek E, Hoen DR, Juretic N, Bureau TE. A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana. PLoS Genet 2012;8:e1002931.
[46] Lowe CB, Bejerano G, Haussler D. Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci U S A 2007;104:8005–10.
[47] Lynch VJ, Leclerc RD, May G, Wagner GP. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 2011;43:1154–9.
[48] Notwell JH, Chung T, Heavner W, Bejerano G. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat Commun 2015;6:6444.
[49] González J, Lenkov K, Lipatov M, Macpherson JM, Petrov DA. High rate of recent transposable element-induced adaptation in Drosophila melanogaster. PLoS Biol 2008;6:e251.
[50] Gifford WD, Pfaff SL, Macfarlan TS. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol 2013;23:218–26.
[51] Li W, Prazak L, Chatterjee N, Grüninger S, Krug L, Theodorou D, et al. Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 2013;16:529–31.
[52] Mateo L, Ullastres A, González J. A transposable element insertion confers xenobiotic resistance in Drosophila. PLoS Genet 2014;10:e1004560.
[53] Charlesworth B, Charlesworth D. The population dynamics of transposable elements. Genet Res 1983;42:1–27.
[54] Finnegan DJ. Transposable elements. Curr Opin Dev Biol 1992;2:861–7.
[55] McDonald JF, Matyunina LV, Wilson S, Jordan IK, Bowen NJ, Miller WJ. LTR retrotransposons and the evolution of euchromatic enhancers. Genetica 1997;100:3–13.
[56] Puig M, Cáceres M, Ruiz A. Silencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced female sterile RNA. Proc Natl Acad Sci U S A 2004;101:9013–8.
[57] Sentmanat MF, Elgin SCR. Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements. Proc Natl Acad Sci U S A 2012;109:14104–9.
[58] Brookfield JF. Models of repression of transposition in PM hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins. Genetics 1991;128:471–86.
[59] Nuzhdin SV. Sure facts, speculations, and open questions about the evolution of transposable element copy number. Genetica 1999;107:129–37.
[60] Montgomery EA, Langley CH. Transposable elements in mendelian populations. II. Distribution of three COPIA-like elements in a natural population of Drosophila melanogaster. Genetics 1983;104:473–83.
[61] Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B. On the role of unequal exchange in the containment of transposable element copy number. Genet Res 1988;52:223–35.
[62] Charlesworth B, Langley CH. The population genetics of Drosophila transposable elements. Annu Rev Genet 1989;23:251–87.
[63] Karess RE, Rubin GM. Analysis of P transposable element functions in Drosophila. Cell 1984;38:135–46.
[64] O’Hare K, Rubin GM. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 1983;34:25–35.
[65] Pumpinelli S, Berloco M, Negri I, Dimitri P, Bonaccorsi S, Marchetti E, et al. Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci U S A 1995;92:3804–8.
[66] Quesneville H, Bergman CM, Andrieu O, Autard D, Nouaud D, Ashburner M, et al. Combined evidence annotation of transposable elements in genome sequences. PLoS Comp Biol 2005;1:166–75.
[67] Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, et al. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 2002;3:research0084.
[68] Kaplanov VV, Jurka J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci U S A 2003;100:6569–74.
[69] Bergman CM, Quesneville H, Ansolabehere D, Ashburner M. Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol 2006;7:R112.
[70] Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007;450:203–18.
[71] Smith CD, Shu S, Mungall CJ, Karpen GH. The release 5.1 annotation of Drosophila melanogaster heterochromatin. Science 2007;316:1586–91.
[72] Gonzalez J, Petrov DA. Evolution of genome content: population dynamics of transposable elements in flies and humans. Methods Mol Biol 2012;855:361–83.
[73] Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 2009;137:509–21.
[74] Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 2009;137:522–35.
[75] Ashburner M. Drosophila. A laboratory handbook; Cold Spring Harbor Laboratory Press; 1989.
[76] Eanes WF, Wesley C, Hey J, Houle D, Ajoka JW. The fitness consequences of P element insertion in Drosophila melanogaster. Genet Res 1988;52:17–26.
[77] Mackay TF, Lyman RF, Jackson MS. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics 1992;130:315–29.
[78] Pasyukova EG, Nuzhdin SV, Morozova TV, Mackay TF. Accumulation of transposable elements in the genome of Drosophila melanogaster is associated with a decrease in fitness. J Hered 2004;95:284–90.
Czech B, Hannon GJ. Small silencing RNAs: an expanding universe. Nat Rev Genet 2009;10:94–108.

[80] Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 2011;12:19–31.

[81] Hvitaggar G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 2008;9:22–32.

[82] Folia NH, Joshua-Tor L. Slice and the argonautes. Nat Chem Biol 2007;3:46–53.

[83] Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, Fink GR, et al. RNAi in budding yeast. Science 2009;326:544–50.

[84] Carmell MA, Xuan Z, Zhang MQ, Hannon GJ. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 2002;16:2733–42.

[85] Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH, et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 2006;127:747–57.

[86] Peters L, Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell 2007;26:611–23.

[87] Aravin AA, Hannon GJ, Brennecke J. The Pwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 2007;318:761–4.

[88] Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defense. Nat Rev Mol Cell Biol 2011;12:246–58.

[89] Siomi H, Siomi MC. Interactions between transposable elements and Argonautes have (probably) been shaping the evolution Drosophila genome throughout. Curr Opin Genet Dev 2008;18:181–7.

[90] Czech B, Hannon GJ. One loop to rule them all: the Ping-Pong cycle and piRNA-guided silencing. Trends Biochem Sci 2016;41:324–37.

[91] Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, et al. The small RNA profile during Drosophila melanogaster development. Dev Cell 2003;5:337–50.

[92] Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, et al. A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila melanogaster. Curr Biol 2007;17:1265–72.

[93] Mohn F, Sienski G, Handler D, Brennecke J. The Rhino-Deadlock-Cutoff Complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell 2014;157:1364–79.

[94] Zhang Z, Wang J, Schultz N, Zhang F, Parhad SS, Tu S, et al. The HPI homolog Rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell 2014;157:1353–63.

[95] Han BW, Wang W, Li C, Weng Z, Zamoore PD. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 2015;348:817–21.

[96] Mohn F, Handler D, Brennecke J. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science 2015;348:812–7.

[97] Robine N, Lau NC, Balla S, Jin Z, Okamura K, Kuramochi-Miyagawa S, et al. A broadly conserved pathway generates 3'-UTR-directed primary piRNAs. Curr Biol 2009;19:2066–76.

[98] Saito K, Ishizu H, Komai M, Kotani H, Kawamura Y, Nishida KM, et al. Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev 2010;24:2493–8.

[99] Ipsaro JJ, Haase AD, Knott SR, Joshua-Tor L, Hannon GJ. The 3'-to-5' RNA methyltransferase, DmHen1, modulates piRNA biogenesis. Nature 2012;491:279–83.

[100] Nishimatsu H, Ishizu H, Saito K, Fujuhara S, Kamatani MK, Bonnefond L, et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 2012;491:264–7.

[101] Cora E, Pandey RR, Xiol J, Taylor J, Sashidaranandam R, Mccarthy AA, et al. The MID-PW1 module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs. RNA 2014;20:773–81.

[102] Han B, Hung JH, Weng Z, Zamoore P, Amerce S. The 3'-to-5' exoribonuclease Nibbler shapes the 3' ends of microRNAs bound to Drosophila Argonaut1. Curr Biol 2011;21:1878–87.

[103] Liu N, Abe M, Sabin L, Hendriks GJ, Naqvi A, Yu Z, et al. The exoribonuclease Nibbler controls 3' end processing of microRNAs in Drosophila. Curr Biol 2011;21:1888–93.

[104] Liu L, Qi H, Wang J, Lin H. PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition. Development 2011;138:1863–73.

[105] Honda S, Kirino Y, Maragkakis M, Alexiou P, Ohtaki A, Murali R, et al. Mitochondrial protein BmPAPI modulates the length of mature piRNAs. RNA 2013;19:1405–18.

[106] Horwich MD, Li C, Matranga C, Vagin V, Farley G, Wang P, et al. The Drosophila RNA methyltransferase, DmHen1, modulates germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 2007;17:1265–72.

[107] Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC. Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi-interacting RNAs at their 3' ends. Genes Dev 2007;21:1603–8.

[108] Szakmary A, Reedy M, Qi H, Lin H. The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster. J Cell Biol 2009;185:613–27.

[109] Murota Y, Ishizu H, Nakagawa S, Iwasaki YW, Shibata S, Kamatani MK, et al. Yb integrates piRNA intermediates and processing factors into perinuclear bodies to enhance piRISC assembly. Cell Rep 2014;8:103–13.

[110] Zamparini AL, Davis MY, Malone CD, Vieira E, Vazdal J, Sashidaranandam R, et al. Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila. Development 2011;138:4039–50.
[122] Vagin VV, Yu Y, Jankowska A, Luo Y, Wasik KA, Malone CD, et al. Minotaur is critical for primary piRNA biogenesis. RNA 2013;19:1064–77.

[123] Shiromoto Y, Kuramochi-Miyagawa S, Daiba A, Chuma S, Katanaya A, Katsumata A, et al. GPAT2, a mitochondrion outer membrane protein, in piRNA biogenesis in germline stem cells. RNA 2013;19:803–10.

[124] Ma L, Bussfeld GM, Greenbaum MP, Roy A, Burns KH, Zhu H, et al. GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet 2009;5:e1000635.

[125] Olivieri D, Sykora MM, Sachidanandam R, Mechtler K, Brennecke J. An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J 2010;29:3301–17.

[126] Olivieri D, Senti KA, Subramanian S, Sachidanandam R, Brennecke J. The cochaperone Shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Mol Cell 2012;47:945–64.

[127] Izumi N, Kawaoka S, Yasuhara S, Suzuki Y, Sugano S, Katsura S, et al. Hsp90 facilitates accurate loading of precursor piRNAs into PIWI proteins. RNA 2013;19:896–901.

[128] Zhang F, Wang J, Xu J, Zhang Z, Koppetsch BS, Schultz N, et al. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 2012;151:871–84.

[129] Preall JB, Czech B, Guzzardo PM, Muerdter F, Hannon GJ. Shutdown is a component of the Drosophila piRNA biogenesis machinery. RNA 2012;18:1446–57.

[130] Xiol J, Cora E, Kogleruber R, Chuma S, Subramanian S, Hosokawa M, et al. A role for Fkb6 and the cochaperone machinery in piRNA amplification and transposon silencing. Mol Cell 2012;47:970–9.

[131] Lichtenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Development 2008;135:3–9.

[132] Malone CD, Hannon GJ. Small RNAs as guardians of the genome. Cell 2009;136:656–68.

[133] Thomson T, Lin HF. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 2009;25:355–76.

[134] Juliano C, Wang JQ, Lin HF. Uniting germline and stem cells: the function of PIwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet 2011;45:447–69.

[135] Sato K, Iwasaki Y, Shibuya A, Carinci P, Tsuzukiwa Y, Ishizu H, et al. Krimper enforces an antisense bias on piRNA pools by binding AO3 in the Drosophila germline. Mol Cell 2015;59:564–75.

[136] Webster A, Li S, Hur J, Wachsmuth M, Bois J, Perkins E, et al. Aub and Ago3 are recruited to nuage to couple two mechanisms to form a Ping-Pong complex assembled by Krimper. Mol Cell 2015;59:564–75.

[137] Patil VS, Kai T. Repression of retroelements in Drosophila germline via piRNA pathway by the Tudor domain protein Tejas. Curr Biol 2010;20:724–30.

[138] Patil VS, Anand A, Chakrabarti A, Kai T. The Tudor domain protein Tapas, a homolog of the vertebrate Tdrd7, functions in the piRNA pathway to regulate retrotransposons in germline of Drosophila melanogaster. BMC Biol 2014;12:1–15.

[139] Xiol J, Spinelli P, Laussmann M, Homolka D, Yang Z, Cora E, et al. RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts. Cell 2014;157:769–81.

[140] Zhang Z, Xu J, Koppetsch B, Wang J, Tippin C, Ma S, et al. Heterotypic piRNA Ping-Pong requires Qin, a protein with both E3 ligase and Tudor domains. Mol Cell 2011;44:572–84.

[141] Wang W, Han B, Tippin C, Ge DT, Zhang Z, Weng Z, et al. Slicing and binding by Ago3 or Aub trigger Piwi-bound piRNA production by distinct mechanisms. Mol Cell 2015;59:819–30.

[142] Rozhkov NV, Schostak NG, Zelentsova ES, Yushenova IA, Zatsenina OG, Evgen’ev MB. Evolution and dynamics of small RNA response to a retroelement invasion in Drosophila. Mol Biol Evol 2013;30:397–408.

[143] Klenov MS, Lavrov SA, Korbut AP, Stolyarenko AD, Yakushchev EY, Reuter M, et al. Impact of nuclear Piwi elimination on chromatin state in Drosophila melanogaster ovaries. Nucleic Acids Res 2014;42:2688–8.

[144] Yu Y, Gu J, Jin Y, Luo Y, Preall JB, Ma J, et al. Panoramix enforces piRNA-dependent cotranscriptional silencing. Science 2015;350:339–42.

[145] Siomi H, Siomi MC. Phased piRNAs tackle transposons. Science 2015;348:756–7.

[146] Castro JP, Cararetto CM. Drosophila melanogaster P transposable elements: mechanisms of transposition and regulation. Genetica 2004;121:107–18.

[147] Bingham PM, Kidwell MG, Rubin GM. The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell 1982;29:995–1004.

[148] Bucheton A. I transposable elements and I-R hybrid dysgenesis in Drosophila. Trends Genet 1990;6:16–21.

[149] Rozhkov NV, Aravin AA, Zelentsova ES, Schostak NG, Sachidanandam R, McCombie WR, et al. Small RNA-based silencing strategies for transposons in the process of invading Drosophila species. RNA 2010;16:1634–45.

[150] Olovnikov I, Ryazansky S, Shipiz S, Lavrov S, Abramov Y, Vaury C, et al. De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment. Nucleic Acids Res 2013;41:5757–68.

[151] Shipiz S, Ryazansky S, Olovnikov I, Abramov Y, Kalmykova A. Euchromatic transposon insertions trigger production of novel pi- and endo-siRNAs at the target sites in the Drosophila germline. PLoS Genet 2014;10:e1004138.

[152] Song J, Liu J, Schankenber S, Ha H, Xing J, Chen KC. Variation in piRNA and transposable element content in strains of Drosophila melanogaster. Genome Biol Evol 2014;6:2786–98.

[153] Lee YC. The role of piRNA-mediated epigenetic silencing in the population dynamics of transposable elements in Drosophila melanogaster. PLoS Genet 2015;11:e1005269.

[154] Petrov DA, Fiston-Lavir A, Lipatov M, Lenkov K, González J. Population genomics of transposable elements in Drosophila melanogaster. Mol Biol Evol 2011;28:1633–44.

[155] Kofler R, Betancourt AJ, Schlotterer C. Sequencing of pooled DNA samples (Pool-Seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster. PLoS Genet 2012;8:e1002487.

[156] Cridland JM, Macdonald SJ, Long AD, Thornton KR. Abundance and distribution of transposable elements in two Drosophila QTL mapping resources. Mol Biol Evol 2013;30:2311–27.

[157] Prud’homme N, Gans M, Masson M, Terzian C, Bucheton A. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 1995;139:697–711.

[158] Péllisson A, Song SU, Prud’homme N, Smith PA, Bucheton A, Corces VG. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J 1994;13:4401–11.

[159] Desset S, Meignin C, Dasituge B, Vaury C. COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster. Genetics 2003;164:501–9.

[160] Zanni V, Eymery A, Coiffet M, Zytnicki M, Luyten I, Quevreuil H, et al. Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters. Proc Natl Acad Sci U S A 2013;110:19842–7.
[161] Rahman R, Chirn GW, Kanodia A, Sytnikova YA, Brembs B, Bergman CM, et al. Unique transposon landscapes are pervasive across Drosophila melanogaster genomes. Nucleic Acids Res 2015;43:10655–72.

[162] Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh YP, Hahn MW, et al. Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol 2007;5:e310.

[163] Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND, Sturgill D, et al. Evolution of protein-coding genes in Drosophila. Trends Genet 2008;24:114–23.

[164] Obbard DJ, Gordon KH, Buck AH, Jiggins FM. The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 2009;364:99–115.

[165] Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, et al. The Drosophila melanogaster genetic reference panel. Nature 2012;482:173–8.

[166] Lee YCG, Langley CH. Long-term and short-term evolutionary impacts of transposable elements on Drosophila. Genetics 2012;192:1411–32.

[167] Kelleher ES, Edelman NB, Barbash DA. Drosophila interspecific hybrids phenocopy piRNA-pathway mutants. PLoS Biol 2012;10:e1001428.

[168] Castillo DM, Mell JC, Box KS, Blumenstiel JP. Molecular evolution under increasing transposable element burden in Drosophila: A speed limit on the evolutionary arms race. BMC Evol Biol 2010;11:1–16.

[169] Fablet M, Akkouche A, Braman V, Vieira C. Variable expression levels detected in the Drosophila effectors of piRNA biogenesis. Gene 2014;537:149–53.

[170] Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998;396:336–42.

[171] Waddington CH. Canalization of development and the inheritance of acquired characters. Nature 1942;150:563–5.

[172] Specchia V, Piacentini L, Tritto P, Fanti L, D’Alessandro R, Palumbo G, et al. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 2010;463:662–5.

[173] Sato K, Siomi H. Is canalization more than just a beautiful idea? Genome Biol 2010;11:109.