Research Paper

Protective Effects of Vitamin C Concomitant Treatment on Deferasirox-induced Renal Toxicity in Rats

Taha Fereydouni1, *Saeed Hajihashemi1, Parsa Yousefichaijan2, Ali Rahbari3

1. Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
2. Department of Children, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
3. Department of Pathology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.

Citation:
Fereydouni T, Hajihashemi S, Yousefichaijan P, Rahbari A. [Protective Effects of Co-treatment With Vitamin C on the Renal Toxicity Induced by Deferasirox in Rats (Persian)]. Journal of Arak University of Medical Sciences (JAMS). 2020; 23(6):926-943. https://doi.org/10.32598/JAMS.23.6.62.7

Background and Aim
Deferasirox (Exjade) is an iron-chelating drug used in patients with beta-thalassemia major. Oxidative stress is among the major causes of nephrotoxicity and its progression. Deferasirox, due to oxidative stress and increased cell apoptosis causes the dysfunction of renal tubules and renal toxicity. According to its antioxidant and anti-inflammatory properties, the present study explored the effect of vitamin C on deferasirox-induced kidney damage.

Methods & Materials
This study was performed on 30 Wistar rats in 3 groups of control, deferasirox, and deferasirox plus vitamin C. To induce the nephrotoxicity, the intra-peritoneum injection of deferasirox (75 mg/kg/day) was used. After taking plasma from the blood samples of the explored rats, we determined the values of Cr, Na+, K+, Mg+, osmolality, and BUN in the obtained plasma and urine samples. The creatinine clearance, as well as the relative and absolute excretion of sodium and potassium, were also calculated. After separating the two kidneys, they were used for the histologic study with Hematoxylin and Eosin (H&E) staining, as well as Malondialdehyde (MDA) and Ferric Reducing Antioxidant Power (FRAP) biochemical studies.

Ethical Considerations
This study was approved by the Research Ethics Committee of Arak University of Medical Sciences (Code: IR.ARAKMU.REC.1396.309).

Results
Cotreatment with deferasirox and vitamin C reduced renal tissue MDA and relative and absolute Na and K excretion and urine osmolarity; this method also increased creatinine clearance and renal tissue FRAP.

Conclusion
The co-administration of vitamin C presented a significant protective effect on the renal toxicity induced by deferasirox. The protective property of deferasirox is because of the antioxidant impacts of vitamin C in reducing oxidative stress and lipid peroxidation.

Extended Abstract

1. Introduction
Acute renal failure is a sudden decrease in renal function due to renal toxicity [2, 3]. Deferasirox or oxide can generate acute renal failure due to the oxidative stress and dysfunction of the renal tubules by increasing cell apoptosis.

Deferasirox is a selective iron chelator. It is used to treat chronic iron overload conditions caused by repeated blood transfusions in patients with beta-thalassemia major [5, 6].

* Corresponding Author:
Saeed Hajihashemi, PhD.
Address: Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
Tel: 98 (861) 34173502
E-mail: hajihashemi@arakmu.ac.ir
Vitamin C, as an essential coenzyme and antioxidant, prevents cell membrane damage caused by oxidative radicals [7]. Therefore, using antioxidants, like vitamin C can be effective for the treatment or prevention of deferasirox-induced kidney damage. This study investigated the effect of the concomitant use of vitamin C on the renal toxicity of deferasirox.

2. Materials and Methods

This experimental study was performed on 30 rats of Wistat breed in 3 groups of control, deferasirox, and deferasirox plus vitamin C. Deferasirox (75 mg/kg/day) was intraperitoneally injected for 8 days to induce renal toxicity. In the concomitant treatment group, in addition to deferasirox (75 mg/kg/day), vitamin C 200 mg/kg /day was intraperitoneally injected for 8 days. On the eighth day, the explored animals were placed in a metabolic cage for 6 hours; after collecting urine samples, they were anesthetized. Then, the required blood sample was obtained from the aorta using a heparin syringe.

After plasma extraction from the rat blood samples, the concentrations of Cr, Na, K, Mg, osmolality, and BUN in plasma and urine samples were determined. Accordingly, renal creatinine clearance (Cr), as well as the absolute and relative excretion of sodium and potassium were calculated. Kidney tissue was stained by Hematoxylin and Eosin (H&E) staining for histological study; antioxidant capacity was measured by FRAP and lipid peroxidation by MDA for biochemical study [12, 13].

The percentage of damage caused by the pathologist was determined and graded as follows: The lack of damage equivalent to zero degrees; damage between 1% to 25% equivalent to grade 1; damage between 25% to 50% equivalent to grade 2; damage between 50% to 75% equivalent to grade 3, and damage between 75% to 100% equivalent to grade 4 [15].

3. Results

The present research results revealed that creatinine clearance in the group treated with vitamin C (1.63±0.1 mL/min/100g) was significantly different, compared to that in the deferasirox group (0.59±0.1 mL/min/100g, P<0.001) (Figure 1).

The relative excretion of sodium and potassium was significantly different, compared with the deferasirox group (P<0.001). The absolute excretion of sodium was significantly different in the concomitant treatment group with vitamin C (2.46±0.087 mmol/min/kg), compared with the deferasirox group (0.01.15±0.04 mmol/min/kg, P<0.07). The absolute excretion of potassium was significantly higher in the deferasirox group (13.41±0.098 mmol/min/kg,) compared with the vitamin C group (2.986±0.163 mmol/min/kg) (P<0.001).

Figure 1. Comparing creatinine clearance between the research groups

*** P<0.001 compared to the control group; ****P<0.001 compared to the deferasirox group, one-way Analysis of Variance (ANOVA) and Tukey’s test (Mean±SEM). N=10, compared with the control group, creatinine clearance was significantly lower in the deferasirox group (P<0.001). There was a significant difference between the concomitant treatment group with vitamin C and the deferasirox group (P<0.001).
The obtained data revealed that urinary creatinine concentration in the deferasirox group (32.7±1.55 mg/dL) was significantly lower than that of the concomitant treatment group with vitamin C (69.8±6.7 mg/dL) (P<0.001). Urinary urea concentration in the concomitant treatment group with vitamin C (137±3.82 mg/dL) was significantly increased, compared to the deferasirox group (72±0.14 mg/dL) (P<0.001). Urinary sodium concentration signified that the concomitant treatment group with vitamin C (127.4±3.1 μmol/mL) had lower values than the deferasirox group (220.4±4.55 μmol/mL) (P<0.001). Urine osmolality in the concomitant treatment group with vitamin C (1681±60.9 mOsm/kgH2O) was significantly reduced, compared to the deferasirox group (612.5±18 mOsm/kgH2O) (P<0.001).

The level of tissue MDA in the concomitant treatment group with vitamin C (1.94±0.355 μmol/gkw) was significantly reduced, compared to the deferasirox group (4.31±0.5 μmol/gkw, P<0.001) (Figure 2).

Renal tissue FRAP level was significantly increased in the concomitant treatment with vitamin C (1.07±0.25 μmol/gkw) compared with the deferasirox group (0.01.75±0.61 μmol/gkw, P<0.0) (Figure 3).

In the concomitant treatment group with vitamin C, the amount of tubular cell necrosis, the formation of protein molds in the lumen of the tubule, the vacuolation of tubular cells, and the increase in the space of the Bowman capsule were significantly different, compared to the deferasirox group (P<0.001).

4. Discussion

The current study results indicated that vitamin C decreased renal toxicity due to deferasirox by reducing plasma urea and creatinine, the relative and absolute excretion of sodium and potassium and MDA, as well as increasing creatinine clearance and FRAP. The concomitant use of vitamin C plus deferasirox protects kidneys by reducing oxidative stress. Previous studies reported that vitamin C reduces oxidative stress during gentamicin nephrotoxicity [2].

An effective factor in causing deferasirox-induced kidney damage is oxidative stress, which increased MDA and decreased FRAP.

As in previous studies, mice treated with vitamin C had lower levels of MDA than the deferasirox group. Furthermore, the extent of FRAP in the tissue of all explored rats treated with vitamin C was much higher than that in the deferasirox group [9].

In the vitamin C concomitant treatment group, compared with the deferasirox group, a lower rate of relative excretion of sodium and potassium ions was observed; thus, such data indicated the prevention of kidney damage. The effect of vitamin C on the renal toxicity of deferasirox with decreasing creatinine and blood urea, and tissue MDA with decreasing

---

**Figure 2.** Comparing renal tissue MDA levels between the study groups

---

**Figure 3.** Comparing renal tissue FRAP levels between the study groups

---

***P<0.001 compared with the control group; ****P<0.001 compared with the deferasirox group. One-way ANOVA and Tukey’s test (Mean±SEM)(n=10) were significantly higher in the deferasirox group, compared to the control group (P<0.001). There was a significant difference between the vitamin C treatment groups, compared to the deferasirox group (P<0.001).
oxidative stress is similar to the effect of vitamin C on the renal toxicity of gentamicin [9]. Vitamin C reduces the renal toxicity induced by deferasirox administration by decreasing oxygen species. In this study, in line with the previous studies, administrating vitamin C significantly maintained creatinine clearance and significantly increased plasma creatinine concentration, compared to the deferasirox group [9, 17, 25].

Oxidative stress is a major factor in the development of the renal toxicity of deferasirox with the destruction of epithelial cells; increased necrosis and fibrosis of renal tissue; as well as tubular and glomerular atrophy on renal function [4, 22]. The kidney toxicity of deferasirox is believed to be due to the production of oxygen free radicals; the increased production of cytokines; as well as the induction of apoptosis and necrosis [23]. Apoptosis plays a crucial role in cell death and may be involved in the removal of damaged cells [16].

5. Conclusion

The concomitant administration of vitamin C in treatment with deferasirox presented a significant efficacy in maintaining renal function. The protective effect of vitamin C is due to its antioxidant properties and the trapping of free radicals. It prevented hemodynamic changes in the kidneys, impaired salt excretion, and tissue changes caused by deferasirox.

**Figure 3.** Comparing renal tissue FRAP levels between the research groups

***P<0.001 compared with the control group; **P<0.01 compared with the deferasirox group. One-way ANOVA and Tukey’s test (Mean±SEM) (n=10). Compared with the controls, the amount of FRAP was significantly lower in the deferasirox group (P<0.001). There was no significant difference between the vitamin C treatment groups and the deferasirox group (P>0.001).

**Ethical Considerations**

**Compliance with ethical guidelines**

This study was approved by the Research Ethics Committee of Arak University of Medical Sciences (code: IR.ARAKMU.REC.1396.309). All ethical codes approved by the Ministry of Health and Medical Education and Arak University of Medical Sciences were observed regarding maintenance and testing in this investigation.

**Funding**

This article was extracted from the PhD. dissertation of first author at the Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak.

**Authors’ contributions**

Methodology, validation, data analysis, and writing: Dr. Saeed Haji Hashemi; Conducting research experiments, resources, and drafts: Dr. Taha Fereydoni and Dr. Ali Rahbari; Conceptualization: Dr. Parsa Yousefi Chaijan.

**Conflicts of interest**

The authors declared no conflicts of interest.

**Acknowledgements**

The authors would like to thank the Vice-Chancellor for Research and Technology of Arak University of Medical Sciences for their support.
مقاله پژوهشی:

اثرات حفاظتی دارم هیپرمیزان پا/ویتامین C روی سمیت کلیوی ناشی از مصرف دفراسیروکس در رت

 revolves around protective effects of hypermagnesium on nephrotoxicity caused by fraxisirox, CSM, vitamin C.

پیشنهاد مقاله:

1. مقدمه
2. اثرات
3. پژوهشی
4. نتایج
5. گفتگوی

مطالب مقاله:

1. مقدمه
2. اثرات
3. پژوهشی
4. نتایج
5. گفتگوی

کلیدواژه ها: هیپرمیزاس، ویتامین C، رت

مراجع:

1. Acute Kidney Injury
2. Azotemia
با توجه به پیشرفت های گردشی در واحد کلیوی ایجاد شده، درمانی با ویتامین C (آسکوربیک اسید) بهبودی دراشتهاد کلیوی و افزایش کلیه‌سازی و فعالیت کلیه به دست آورده تا این که برای مصرف دفراسیروکس به عنوان یک آنتی اکسیدان حائز ارزش باشد. در نتیجه این دارو به عنوان یک آنتی اکسیدان قابل حل در آب است که در بدن ضروری است با نام علمی آسکوربیک اسید یک کوآنزیم ضروری در مسیرهای فشار اکسیداتیو نقش برآورده می‌کند که به ایجاد استرس اکسیداتیو می‌شود. افزایش می‌کند که بدن تا به پایین نیتریک اکساید را در سلول های اندوتلیال عروق تولید کند، که یک عامل درمانگر در درمان اختلالاتی که مربوط به افزایش فشار در عروق است. مهم ترین علل ایجاد یا پیشرفت سمیت کلیوی دفراسیروکس مطالعات قبلی نشان داده است که استرس اکسیداتیو جزء اصلی مسیر ایجاد یا پیشرفت سمیت کلیوی دفراسیروکس می‌باشد. و برای اتصال به آهن بخش بیانی‌های آهن شناخته شده است. دفراسیروکس، درمانی مفصل چهارهفته‌ای است که مصرف آن به دلیل استرس اکسیداتیو و منجر به نیاز به دیالیز و حتی مرگ شود می‌شود.

مواد و روش‌ها

1. V*(μl/min.gkw) = (1000× UFR)/(KW×720)

2. C₀ (ml/min.gkw) = (V*/1000×UC)/(Pcr)

3. Uₜ Na, V (μmol/min.gkw) = (V*/Uₜ Na) / 1000

4. Deferasirox

5. Exjade
آسیب بین درصد معادل آسیب درجه مشخص و به صورت زیر درجه بندی شد. فقدان آسیب معادل سلول‌های توبولی، نکروزه شدن سلول‌های توبولی و درصد کل لومین، ایجاد قالب‌های پروتئینی در داخل توبول، واکوئل دار شدن در بخش گلومرولی تغییرات فضای کپسول بومن، تعداد میکرومتری توسط میکروتوم درصد انجام قالب گیری پارافینی از بافت کلیه تهیه شد.

روش اندازه‌گیری فریتی Fe3+ با FRAP

بنا به خارج کردن مقدار کلیه به طور معناداری در گروه با گروه 100\(\pm\)75 بهای هر کیلوگرم (U/\text{min.gkg})

\[
\text{UKV} = \frac{(V\times U_c)}{1000}
\]

5.

\[
\text{Fe}_3 = \frac{(UNa\times P_c)}{(PNa\times U_c) \times 100}
\]

6.

\[
\text{Fe}_3 = \frac{(UK\times P_c)}{(PNa\times U_c) \times 100}
\]

بنا به خارج کردن مقدار کلیه به طور معناداری در گروه با گروه 100\(\pm\)75 بهای هر کیلوگرم (U/\text{min.gkg})

\[
\text{UKV} = \frac{(V\times U_c)}{1000}
\]

5.

\[
\text{Fe}_3 = \frac{(UNa\times P_c)}{(PNa\times U_c) \times 100}
\]

6.

\[
\text{Fe}_3 = \frac{(UK\times P_c)}{(PNa\times U_c) \times 100}
\]

بنا به خارج کردن مقدار کلیه به طور معناداری در گروه با گروه 100\(\pm\)75 بهای هر کیلوگرم (U/\text{min.gkg})

\[
\text{UKV} = \frac{(V\times U_c)}{1000}
\]

5.

\[
\text{Fe}_3 = \frac{(UNa\times P_c)}{(PNa\times U_c) \times 100}
\]

6.

\[
\text{Fe}_3 = \frac{(UK\times P_c)}{(PNa\times U_c) \times 100}
\]

بنا به خارج کردن مقدار کلیه به طور معناداری در گروه با گروه 100\(\pm\)75 بهای هر کیلوگرم (U/\text{min.gkg})

\[
\text{UKV} = \frac{(V\times U_c)}{1000}
\]

5.

\[
\text{Fe}_3 = \frac{(UNa\times P_c)}{(PNa\times U_c) \times 100}
\]

6.

\[
\text{Fe}_3 = \frac{(UK\times P_c)}{(PNa\times U_c) \times 100}
\]

بنا به خارج کردن مقدار کلیه به طور معناداری در گروه با گروه 100\(\pm\)75 بهای هر کیلوگرم (U/\text{min.gkg})

\[
\text{UKV} = \frac{(V\times U_c)}{1000}
\]

5.

\[
\text{Fe}_3 = \frac{(UNa\times P_c)}{(PNa\times U_c) \times 100}
\]

6.

\[
\text{Fe}_3 = \frac{(UK\times P_c)}{(PNa\times U_c) \times 100}
\]

بنا به خارج کردن مقدار کلیه به طور معناداری در گروه با گروه 100\(\pm\)75 بهای هر کیلوگرم (U/\text{min.gkg})

\[
\text{UKV} = \frac{(V\times U_c)}{1000}
\]

5.

\[
\text{Fe}_3 = \frac{(UNa\times P_c)}{(PNa\times U_c) \times 100}
\]

6.

\[
\text{Fe}_3 = \frac{(UK\times P_c)}{(PNa\times U_c) \times 100}
\]

بنا به خارج کردن مقدار کلیه به طور معناداری در گروه با گروه 100\(\pm\)75 بهای هر کیلوگرم (U/\text{min.gkg})

\[
\text{UKV} = \frac{(V\times U_c)}{1000}
\]

5.

\[
\text{Fe}_3 = \frac{(UNa\times P_c)}{(PNa\times U_c) \times 100}
\]

6.

\[
\text{Fe}_3 = \frac{(UK\times P_c)}{(PNa\times U_c) \times 100}
\]
نتایج نشان داد در گروه دفراسیروکس دفع نسبی پتاسیم (به ترتیب 15/18 ± 0/098) بیشتر بود. بین گروه های درمان با ویتامین C و ویتامین C در مقایسه با گروه کنترل تفاوت معنادار وجود نداشت (به ترتیب 1/58 ± 0/048 و 1/70 ± 0/087).

نتایج نشان داد در گروه دفراسیروکس میزان سدیم در مقایسه با گروه کنترل کمتر بود (به ترتیب 8/06 ± 0/041 در مقایسه با گروه کنترل تفاوت معناداری و بیشتر بود. بین گروه های درمان با ویتامین C و ویتامین C در مقایسه با گروه کنترل، کلیرانس کراتینین به طور معناداری در گروه دفراسیروکس تفاوت معنادار وجود داشت (به ترتیب 37/01 ± 0/087 و 37/00 ± 0/070).}

تصویر 2. مقایسه میزان MDA بالاتر کلیه بین گروه‌های: (1) گروه کنترل (2) گروه دفراسیروکس، آزمون آماری ANOVA و تست Tukey (ANOVA) و تست بانکرفلد (ANOVA).

نتایج نشان داد در مقایسه با گروه کنترل، کلیرانس کراتینین به طور معناداری در گروه دفراسیروکس تفاوت معنادار وجود داشت (به ترتیب 37/01 ± 0/087 و 37/00 ± 0/070).
اثرات ویتامین B6 در مقایسه با گروه دفراسیروکس بر سطوح پلاسمای کراتینین

نتایج نشان داد غلظت ادراری پتاسیم در گروه کنترل (میلی گرم در دسی لیتر) و درمان هم زمان با ویتامین به طور معناداری نداشت.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.

نتایج نشان داد فلاته ادرازی گروه درمان با ویتامین به طور معناداری بیشتری در مقایسه با گروه کنترل بوده است.
بهره و اصناف ۱۳۹۶، دوی ۲۳ شماره۴

**جدول ۱. تأثیرات درمانی C-پی کلرایس کراتینین، غلت فاسیلاپی و انتلایری کراتینین، اوره میکرویال بیلی و منیزیم**

| پارامترهای فلزه‌های میکرویال | گروه کنترل | گروه دفراسیروکس | گروه دفراسیروکس همراه با ویتامین C |
|-----------------------------|-------------|----------------|-----------------------------------|
| کلرایز گروه کراتینین (mg/dl) | ۱۷۲±۱۵ | ۱۷۱±۱۵ | ۱۷۵±۱۵ |
| غلت فاسیلاپی اوره (mg/dl) | ۲۹۵±۱۵ | ۲۹۶±۱۵ | ۲۹۷±۱۵ |
| غلت ادراری اوره (mg/dl) | ۲۸۵±۱۵ | ۲۸۶±۱۵ | ۲۸۷±۱۵ |
| غلت فاسیلاپی کراتینین (mg/dl) | ۹۸±۱۵ | ۹۹±۱۵ | ۹۹±۱۵ |
| غلت ادراری کراتینین (mg/dl) | ۹۳±۱۵ | ۹۴±۱۵ | ۹۴±۱۵ |
| غلت فاسیلاپی منیزیم (mg/dl) | ۳۴±۱۵ | ۳۴±۱۵ | ۳۴±۱۵ |
| غلت ادراری منیزیم (mg/dl) | ۳۵±۱۵ | ۳۵±۱۵ | ۳۵±۱۵ |
| غلت فاسیلاپی پتاسیم (µmol/ml) | ۵۵±۱۵ | ۵۵±۱۵ | ۵۵±۱۵ |
| غلت ادراری پتاسیم (µmol/ml) | ۵۵±۱۵ | ۵۵±۱۵ | ۵۵±۱۵ |
| غلت فاسیلاپی سدیم (µmol/ml) | ۱۳۴±۱۵ | ۱۳۴±۱۵ | ۱۳۴±۱۵ |
| غلت ادراری سدیم (µmol/ml) | ۱۳۴±۱۵ | ۱۳۴±۱۵ | ۱۳۴±۱۵ |

**نتایج تحقیق**

در گروه درمان هم‌زمان با ویتامین C، غلظت پلاسمایی پتاسیم و سدیم در مقایسه با گروه کنترل افزایش داد. به علاوه، در گروه درمان هم‌زمان با ویتامین C، غلظت اوره در مقایسه با گروه کنترل نداشت.

**نتایج تحقیق**

در گروه درمان هم‌زمان با ویتامین C، غلظت پلاسمایی پتاسیم و سدیم در مقایسه با گروه کنترل افزایش داد. به علاوه، در گروه درمان هم‌زمان با ویتامین C، غلظت اوره در مقایسه با گروه کنترل نداشت.

**نتایج تحقیق**

در گروه درمان هم‌زمان با ویتامین C، غلظت پلاسمایی پتاسیم و سدیم در مقایسه با گروه کنترل افزایش داد. به علاوه، در گروه درمان هم‌زمان با ویتامین C، غلظت اوره در مقایسه با گروه کنترل نداشت.

**نتایج تحقیق**

در گروه درمان هم‌زمان با ویتامین C، غلظت پلاسمایی پتاسیم و سدیم در مقایسه با گروه کنترل افزایش داد. به علاوه، در گروه درمان هم‌زمان با ویتامین C، غلظت اوره در مقایسه با گروه کنترل نداشت.

**نتایج تحقیق**

در گروه درمان هم‌زمان با ویتامین C، غلظت پلاسمایی پتاسیم و سدیم در مقایسه با گروه کنترل افزایش داد. به علاوه، در گروه درمان هم‌زمان با ویتامین C، غلظت اوره در مقایسه با گروه کنترل نداشت.

**نتایج تحقیق**

در گروه درمان هم‌زمان با ویتامین C، غلظت پلاسمایی پتاسیم و سدیم در مقایسه با گروه کنترل افزایش داد. به علاوه، در گروه درمان هم‌زمان با ویتامین C، غلظت اوره در مقایسه با گروه کنترل نداشت.
اثرات دفراسیروکس و نیز اثرات ویتامین C بر آسیب‌های کلیه دریافتگان میکرو مول در هر گرم وزن کلیه) در مقایسه با گروه کنترل نداشت. امیدواری تفاوت معناداری نداشت (جدول شماره 2).

نتایج این مطالعه نشان داد که میزان MDA در گروه درمان هم زمان با ویتامین C بیشتر بود (P < 0.001). میزان MDA در گروه دفراسیروکس همراه با ویتامین C نیز تنها در مقایسه با گروه درمان هم زمان با ویتامین C معناداری نداشت.

| Parameters | Necrotes | Protein formations | Tubular cell Vacuolization | Bowman's space | Decreased RBC in Bowman's space |
|------------|----------|--------------------|---------------------------|----------------|-------------------------------|
| Control    |          |                    |                           |                |                               |
| Exjade(Ex) |          |                    |                           |                |                               |
| Exjade(Ex) |          |                    |                           |                |                               |

نتایج این مطالعه نشان داد که میزان FRAP با ویتامین C بیشتر بود (P < 0.05). میزان FRAP در گروه دفراسیروکس همراه با ویتامین C نیز تنها در مقایسه با گروه کنترل معناداری نداشت (جدول شماره 2).

نتایج این مطالعه نشان داد که میزان Plasma Osmolality و Urinary osmolality (mOsm/kgH₂O) در گروه درمان هم زمان با ویتامین C بیشتر بود (P < 0.05). میزان Plasma Osmolality و Urinary osmolality (mOsm/kgH₂O) در گروه دفراسیروکس همراه با ویتامین C نیز تنها در مقایسه با گروه کنترل معناداری نداشت (جدول شماره 2).
میزان توان آنتی اکسیدانی بافت کلیه را یکی از عوامل مؤثر در ایجاد آسیب کلیوی ایجاد شده با بیشتر از سایر گروه‌ها بود. این مسئله تأیید کننده آسیب ایجادشده دفراسیروکس را به تنهایی دریافت بودند، تقریباً شانزده برابر و مطلق آن‌ها در ادرار و سرم ارزیابی شد. سطح کراتینین سرم MDA\textsuperscript{Ex} گروه دفراسیروکس. در این مطالعه تجویز اکسجید با دُز \textsuperscript{1} C\textsubscript{Exjade(Ex)} ایجاد کنند که این نتایج مشابه مطالعات قبلی بود. کاهش FRAP نشان می‌دهد. کاهش FRAP با کاهش اوره، تفاوت معناداری نسبت به گروه گروه کنترل نداشت (تصویر شماره 1 و جدول شماره 2).

بحث

نتایج این مطالعه نشان داد که ویتامین C با کاهش اوره، میزان MDA و کاهش آهن در مطالعات قبلی اثبات شده است. اکسیداسیون در بافت کلیه سلول‌ها به ویتامین C تأثیر قابل توجهی دارد. در این مطالعه، گروه ویتامین C نسبت به گروه کنترل و بسیار متفاوت داشت. در این مطالعه، تعداد سلول‌های توبولی با نواقش شدید از طیف‌های نمونه‌های کلیوی حاصل از گروه دفراسیروکس با ویتامین C تقلیل معناداری نسبت به گروه کنترل نداشت (تصویر شماره 1 و جدول شماره 2).

مطالعات قبلی نشان داد که ویتامین C میزان استرس‌های اکسیداسیون را هنگام ایجاد سیستم گلوپروتئین‌های شدید می‌پذیرد. این اثرات در مطالعات قبلی تأکید شده است. اکسیداسیون به ویتامین C تقلیل می‌یابد و در بافت کلیه سلول‌ها به ویتامین C تأثیر قابل توجهی دارد. در این مطالعه نشان داد که ویتامین C میزان استرس‌های اکسیداسیون را هنگام ایجاد سیستم گلوپروتئین‌های شدید می‌پذیرد. این اثرات در مطالعات قبلی تأکید شده است. اکسیداسیون به ویتامین C تقلیل می‌یابد و در بافت کلیه سلول‌ها به ویتامین C تأثیر قابل توجهی دارد. در این مطالعه نشان داد که ویتامین C میزان استرس‌های اکسیداسیون را هنگام ایجاد سیستم گلوپروتئین‌های شدید می‌پذیرد. این اثرات در مطالعات قبلی تأکید شده است. اکسیداسیون به ویتامین C تقلیل می‌یابد و در بافت کلیه سلول‌ها به ویتامین C تأثیر قابل توجهی دارد.
درمان میزان نشان دادند که داروی دفراسیروکس می‌تواند میزان کراتینین کلیوی را در سطح‌های مختلف با تنظیم یک ترکیب با ظرفیت یونی بالایی را با آهن ایجاد می‌کند. 

در این مطالعه، به‌منظور تعیین اثرات درمان دفراسیروکس بر میزان مولکول‌های بیماری‌زا در سطح‌های مختلف دفراسیروکس، کمپانی را با آهن ایجاد می‌کند. 

نتایج مطالعه نشان داد که داروی دفراسیروکس می‌تواند میزان کراتینین کلیوی را در سطح‌های مختلف با تنظیم یک ترکیب با ظرفیت یونی بالایی را با آهن ایجاد می‌کند. 

در این مطالعه، به‌منظور تعیین اثرات درمان دفراسیروکس بر میزان مولکول‌های بیماری‌زا در سطح‌های مختلف دفراسیروکس، کمپانی را با آهن ایجاد می‌کند.
نتیجه‌گیری
مطالعات بافت‌شناسی نشان داده که اکسجید باعث افزایش نکروز، واکوئل دار شدن، افزایش فضا بیومیکر و افزایش تشکیل قالب‌های پروتئینی نسبت به گروه کنترل می‌شود. این یافته‌ها مشابه گزارشات مطالعه گارسیا دیاز هستند که اهداف ما بررسی درمان هم زمان سمیت کلیوی بود؛ چراکه در صورت اثربخشی آن می‌توان از همان ابتدا تجویز دارویی ایجاد کننده سمیت کلیوی از آسیب پذیری پروتئین ها در دولاغی‌های پروتئین به عنوان یک روش مبتکر سنت به گروه کنترل تفاوت محسوسی از دیدگاه عملکرد کلیه و بافت‌شناسی در می‌آید. همچنین، این مطالعه نشان داد که اکسجید می‌تواند سبب تغییراتی در تلفن و بافت شناسی باشند که به ویژه در مدل‌های آزمایشی حیوانی می‌تواند به عنوان کلیه‌های دیستال و پروگزیمال مشاهده شود. مطالعه AKI نیز نشانگر ارتباط قوی بین تغییرات‌های بافتی و مورفولوژیک در ناشی از اکسجید بود.

نتیجه‌گیری به صورت درمان هم زمان با جلوگیری از اکسجید به طوری که سطوح کراتینین، اوره، یون‌های سالم و سایر متابولیتهای در سرم و ادرار گروه‌های درمانی به طوری که معنادار نبودند با گروه کنترل بسیار مشابه بوده و اکسجید باعث تغییرات همودینامیک، اختلال در دفع املاح و تغییرات بافتی ناشی از دفراسیروکس اثر محافظتی روابط کلیه‌ها دارد. منشأ این قابلیت محافظتی می‌تواند به دلیل خاصیت آنتی‌اکسیدانی و توانایی به دام‌اندازی رادیکال‌های آزاد باشد.

تعارض منافع
بنابر اظهار نویسندگان تعارض منافع ندارد.

ملاحظات اخلاقی
پیروی از اصول اخلاق بیماری‌ها

مطالعه با کد اخلاقی 309 در کمیته اخلاق در مؤسسه تحقیقات علوم پزشکی اراک به ثبت رسیده است.
References

[1] Hirschberg R, Bennett W, Scheinman J, Coppo R, Ponticelli C. Acute kidney injury due to deferoxamine in a renal transplant patient. Nephrol Dial Transplant. 2008; 23(8):2704-5. [DOI:10.1093/ndt/gfn278] [PMID]

[2] Al-Khabori M, Bhandari S, Al-Huneini M, Al-Farsi K, Panjwani V, Daar S. Side effects of deferasirox iron chelation in patients with beta thalassemia major or intermedia. Oman Med J. 2013; 28(2):121-4. [DOI:10.5011/om.2013.31] [PMID] [PMCID]

[3] Dubourg L, Laruan C, Ranchin B, Pondarré C, Hadji-Aissa A, Sigaud-Roussel D et al. Deferasirox-induced renal impairment in children: An increasing concern for pediatrics. Pediatr Nephrol. 2012; 27(11):2115-22. [DOI:10.1007/s00467-012-2170-4] [PMID]

[4] Brosnahan G, Golden N, Swaminathan S. Acute interstitial nephritis due to deferasirox: A case report. Nephrol Dial Transplant. 2008; 23(10):3356-8. [DOI:10.1093/ndt/gfn423] [PMID]

[5] Martin-Sanchez D, Gallegos-Villalobos A, Fontecha-Barriuso M, Carrasco J, Sanchez-Niño MD, Lopez-Hernandez FJ et al. Deferasirox-induced iron deplomation promotes Bcl2 downregulation and death of proximal tubular cells. Sci Rep. 2017; 7:41510. [DOI:10.1038/srep41510] [PMID]

[6] Kojima SN, Isoda NK, Ohkawa H, Komai-Horie M, Kuburovic G, Markovic-Lipkovski J et al. Comparative effects of deferoxamine and iron chelators on renal function in rats treated with ascorbate-deficient diets. Clin Biochem. 2017; 62:89-94. [DOI:10.1016/j.clinbiochem.2017.06.007] [PMID]

[7] Ohkawa H, Oishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95(2):351-8. [DOI:10.1016/0003-2697(79)90739-3]

[8] Ajdín G, Göökçmen A, Öncü M, Çöcek E, Karahan N, Gökalp O. Histopathologic changes in liver and renal tissues induced by different doses of diclofenac sodium in rats. Turk J Vet Anim Sci. 2003; 27(5):1131-40. [DOI:10.3109/0886022X.2011.560987] [PMID]

[9] Hajihashemi S, Safarian T, Ahmad M, Rahbari A, Ghanbari F. Ameliorative effects of zataria multiflora hydro-alcoholic extract on Gentamicin induced nephrotoxicity in rats. Drug Res (Stuttg). 2018; 68(7):387-94. [DOI:10.1055/s-0043-1424968] [PMID]

[10] Westenfelder C, Arovalo GL, Crawford PW, Zenwer P, Baranowski RL, Birch FM et al. Renal tubular function in glycerol-induced acute renal failure. Kidney Int. 1980; 18(4):432-44. [DOI:10.1016/0085-2539(80)90156-7] [PMID]

[11] Díaz-García JD, Gallegos-Villalobos A, Gonzalez-Espinoza L, Sánchez-Niño MD, Villarrubia J, Ortiz A. Deferasirox nephrotoxicity-the knowns and unknowns. Nat Rev Nephrol. 2014; 10(10):574-86. [DOI:10.1038/nrnef.2014.121] [PMID]

[12] Tataranni A, Agiesti F, Mazzoccoli C, Ruggieri V, Scrima R, Laurenzana I et al. The iron chelator deferasirox affects redox signalling in haematopoietic stem/progenitor cells. Br J Haematol. 2015; 170(2):236-46. [DOI:10.1111/bjh.13381] [PMID]

[13] Steiner RW. Interpreting the fractional excretion of sodium. Am J Med. 1984; 77(4):699-702. [DOI:10.1016/0002-9343(84)90368-1] [PMID]

[14] Hider RC. Charge states of deferasirox-ferric iron complexes. Am J Kidney Dis. 2009; 54(5):931-4. [DOI:10.1158/0003-2818/TPS-09-0176] [PMID]

[15] Stojiljkovic N, Stojiljkovic M, Randjelovic P, Veljkovic S, Mihailovic D. Cytoprotective effect of vitamin C against gentamicin-induced acute kidney injury in rats. Exp Toxicol Pathol. 2012; 64(2):620-9. [DOI:10.1016/j.etp.2012.06.008] [PMID]

[16] Patel Manali B, Deshpande S, Shah G. Evaluation of efficacy of vitamin E and N-acetyl cysteine in gentamicin-induced nephrotoxicity in rats. Exp Toxicol Pathol. 2012; 64(2):620-9. [DOI:10.1016/j.etp.2012.06.008] [PMID]
Arch Toxicol. 1997; 71(11):677-83. [DOI:10.1007/s002040050444] [PMID]

[31] Kim SW, Jeon YS, Lee JU, Kang DG, Kook H, Ahn KY, et al. Diminished adenylate cyclase activity and aquaporin 2 expression in acute renal failure rats. Kidney Int. 2000; 57(4):1643-50. [DOI:10.1046/j.1523-1755.2000.00008.x] [PMID]

[32] Lee J, Yoo KS, Kang DG, Kim SW, Choi KC. Gentamicin decreases the abundance of aquaporin water channels in rat kidney. Jpn J Pharmacol. 2001; 85(4):391-8. [DOI:10.1254/jjp.85.391] [PMID]

[33] Sohn EJ, Kang DG, Lee HS. Protective effects of glycyrrhizin on gentamicin-induced acute renal failure in rats. Pharmacol Toxicol. 2003; 93(3):116-22. [DOI:10.1034/j.1600-0773.2003.930302.x] [PMID]

[34] Grangé S, Bertrand DM, Guerrot D, Eas F, Godin M. Acute renal failure and Fanconi syndrome due to deferasirox. Nephrol Dial Transplant. 2010; 25(7):2376-8. [DOI:10.1093/ndt/gfq224] [PMID]
