Molecular mechanisms and therapeutic interventions in sarcopenia

Sung Sup Park \(^a\), b, Eun-Soo Kwon \(^a\), Ki-Sun Kwon \(^a\), b, \(^*\)

\(^a\) Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
\(^b\) Korea University of Science and Technology, Daejeon, Korea

ABSTRACT

Sarcopenia is the degenerative loss of muscle mass and function with aging. Recently sarcopenia was recognized as a clinical disease by the International Classification of Disease, 10th revision, Clinical Modification. An imbalance between protein synthesis and degradation causes a gradual loss of muscle mass, resulting in a decline of muscle function as a progress of sarcopenia. Many mechanisms involved in the onset of sarcopenia include age-related factors as well as activity-, disease-, and nutrition-related factors. The stage of sarcopenia reflecting the severity of conditions assists clinical management of sarcopenia. It is important that systemic descriptions of the disease conditions include age, sex, and other environmental risk factors as well as levels of physical function. To develop a new therapeutic intervention needed is the detailed understanding of molecular and cellular mechanisms by which apoptosis, autophagy, atrophy, and hypertrophy occur in the muscle stem cells, myotubes, and/or neuromuscular junction. The new strategy to managing sarcopenia will be signal-modulating small molecules, natural compounds, repurposing of old drugs, and muscle-specific microRNAs.

© 2017 The Korean Society of Osteoporosis. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction to sarcopenia

The term sarcopenia was first described as an age-related decline in muscle mass using the cutting point of two standard deviations below the young adult mean [1]. The aging process represents the composition change of body components including skeletal muscle, fat, and bone mass. The osteopenosis in bone is strongly associated with the sarcopenia in skeletal muscle [2]. Moreover, according to the conditions related to musculoskeletal composition, the diseases have been precisely defined in terms such as sarcopenia, sarcopenic obesity, and osteosarcopenic obesity [3]. However, sarcopenia was considered as a description rather than a definition [4]. Sarcopenia was a reduced muscle mass with limited mobility, which excluded secondary conditions originated from a specific disease such as cancer [5]. It is an important step for the study and therapy of sarcopenia, since sarcopenia has been accepted as an independent disease by an International Classification of Disease, 10th revision, Clinical Modification code (M62.84) [6].

Although several definitions of clinical diagnosis of sarcopenia have been proposed [7–13], they still need to have worldwide consensus. The European Working Group on Sarcopenia in Older People (EWGSOP) has established a new clinical definition and developed consensus criteria for sarcopenia diagnosis [14]. The diagnostic method by EWGSOP uses three parameters including physical performance, muscle mass, and muscle strength. Recommended assessment methods for physical performance are 6-m usual gait speed (m/s). Muscle mass is measured by bioelectrical impedance analysis and dual energy X-ray absorptiometry, and is represented with relative appendicular skeletal mass/height (kg/m\(^2\)). Muscle strength is measured by handgrip strength (kg). The harmful outcomes including mortality, the rate of falls, and incidence of hospitalization were the consequence of sarcopenia defined by EWGSOP [15].

Currently, sarcopenia biomarkers include interleukin-6, C-terminal agrin fragment, follistatin, and transforming growth factor beta (TGFβ) family members such as myostatin, activin A, growth and differentiation factor (GDF)-15, bone morphologic proteins, brain-derived neurotrophic factor, and irisin [16–22].

2. Signaling pathways and molecular targets for pharmacological intervention

Understanding the mechanisms in sarcopenia could help in
designing intervention trials. The onset of sarcopenia may be the consequence of an imbalance between muscle protein synthesis and degradation, resulting in the skeletal muscle loss. The molecular and cellular mechanisms in sarcopenia include extrinsic changes in systemic environments and intrinsic changes within skeletal muscles [23]. The key molecules of signaling pathway in sarcopenia include Akt and Smad [24,25] (Fig. 1). Insulin-like growth factor 1 (IGF-1)-PtdIns-3-OH kinase (PI3K)-Akt signaling is responsible for muscle protein synthesis [26]. Muscle loss can be indicated by the decreased level of positive regulators of muscle growth such as follistatin and irisin [18,22], and/or increased level of negative regulators of muscle growth such as myostatin, activin A, and TGF-β [18,20]. There are myriad factors involved in the symptoms of sarcopenia. Sarcopenia can be categorized into primary and secondary sarcopenia [14]. Primary sarcopenia has no other evident cause except aging, which include reduced sex hormones, apoptosis, and mitochondrial dysfunction. Secondary sarcopenia is related to activity (disuse, bed rest, and zero-gravity conditions), disease (failures or diseases in heart, lung, liver, kidney, brain, inflammatory, and endocrine), and nutrition (inadequate dietary intake of protein and energy).

IGF-PI3K-Akt signaling promotes skeletal myotube hypertrophy by activating mammalian target of rapamycin (mTOR) and by inactivating glycogen synthase kinase 3 (GSK3) [26], mTOR subsequently phosphorylates the 70-kDa ribosomal protein S6 kinase, resulting in activating protein synthesis. Additionally, Akt inactivates GSK3β, which in turn enhances protein translation via the eIF-2B, while Akt inhibits protein degradation through Forkhead box O (FOXO)-mediated proteasome activity. The activation of mTOR complex 1 (mTORC1) in response to growth factors, feeding, and increased mechanical loading is a key step in inducing muscle hypertrophy by increasing protein synthesis [27].

Apoptosis is an indispensable process for maintaining tissue homeostasis in multicellular organisms. Apoptosis of satellite cells have contributed to the decline in muscle mass and function with aging [28]. Ablation of Nrf2, a redox-dependent transcription factor, leads to the activation of apoptosis pathways and decreased stem cell population, which result in impaired muscle regeneration in an oxidative stress condition [29]. The genetic deletion of peroxiredoxin 3, a major mitochondrial antioxidant enzyme, induces reactive oxygen species-mediated mitochondrial fragmentation and impaired mitochondrial membrane potential, leading to fatigue of muscle contraction in mice [30]. Denervation induces muscle atrophy through greater mitochondrial apoptotic susceptibility [31].

Proteolytic systems including calpain, proteasome, and lysosomes are responsible for the majority of protein degradation in muscle cells. Among the muscle-specific proteins, desmin and dystrophin are susceptible to these protease activities, but alpha-actinin, tropomyosin, and filamin are relatively insensitive to these protease activities [32]. E3 ubiquitin ligases such as atrogin-1 and muscle ring finger-1 (MuRF-1) have been known to promote protein degradation in sarcopenia. Myostatin-linked molecules have also demonstrated to be abundant in sarcopenic muscles [33]. Increased protein degradation and decreased protein synthesis in sarcopenia is attributed to the activity of the ubiquitin-proteasome system interconnected with autophagy [34].

Autophagy is a self-destructive mechanism by which cells remove unnecessary components from themselves in order to promote survival. Muscle-specific deletion of a major autophagy gene, Atg7, shows sarcopenia phenotype, suggesting autophagy plays a role in the maintenance of muscle mass and strength by removing abnormal mitochondria and inclusions [35]. A recent study has shown that autophagy maintains muscle mass as well as its function during muscle aging. Boosting autophagy has prevented from age-related muscle dysfunction by enhancing the selective degradation of misfolded proteins and dysfunctional organelles [36]. The presence of insoluble protein aggregates in
aged muscle may be due to the autophagic changes or defective autophagy signaling in aged skeletal muscles [37]. Sustained activation of mTORC1 in skeletal muscle cells reduces autophagy activity and leads to the accumulation of protein aggregates and myopathy [38]. Defective autophagy in aged satellite cells causes the cell cycle to exit into senescence, which consequently decreases the number and function of satellite cells. The cell cycle re-entering by re-establishment of autophagic activity can rejuvenate the aged satellite cells to some extent [39].

The function of neuromuscular system gradually deteriorates with age. Aged neuromuscular junctions exhibit elevated branches in presynaptic nerve terminals and increased distribution of receptor sites for neurotransmitters in the postsynaptic terminals [40]. Neuromuscular junctions deteriorate morphologically and show altered features in functional components therein, such as nicotinic acetylcholine receptor and agrin upon sarcopenia [41]. Low-density lipoprotein receptor-related protein 4 has acted bidirectionally and regulates synapse formation by forming a complex with muscle and skeletal receptor tyrosine-protein kinase (MuSK), binding agrin, and activating MuSK activity, thus leading to postsynaptic differentiation, while by functioning as a muscle-derived retrograde signals for the differentiation and stabilization of motor nerve terminals [42]. Loss of muscle strength is more relevant than loss of muscle mass in sarcopenia. Although loss of muscle mass contributes to the loss of muscle strength in older people, this loss of muscle strength precedes the associated loss of muscle mass. There are therapeutic concerns about maintaining or increasing muscle mass regardless of improvement in muscle strength [43].

Ca2+ signaling molecules have been associated with age-dependent muscle degeneration. In aged muscle, decreased expression of mitsugumin-29 induces abnormal interaction of dihydropyridine receptor with ryanodine receptor 1 (RyR1), which leads to compromised Ca2+ spark signaling [44]. Among the typical Ca2+- channels in muscles, RyR1 from aged mice is oxidized and cysteine-nitrosylated, resulting in leaky channels with increased open probability, which causes muscle weakness [45]. In addition, inositol 1,4,5-trisphosphate receptor expression was dramatically repressed in aged myoblasts, resulting in undetectable Ca2+ oscillation, which in turn modulated myogenic transcription factor such as myogenin. Thus, perturbation of Ca2+ homeostasis in aged muscle deteriorates not only excitation-contraction coupling but also myogenic potential, resulting in sarcopenia [46].

Satellite cells, skeletal muscle stem cells, are quiescent myogenic precursors found in the adult muscle between the basal lamina and the sarcolemma. Sarcopenia is developed by unbalanced protein synthesis and degradation as well as dysfunction of satellite cells. Studies investigating an age-related content of satellite cell contents in soleus muscle have revealed that the quality rather than quantity of satellite cells may be responsible for sarcopenia [47]. With aging, skeletal muscles lose their regenerative potential, in part due to deficiencies in satellite cells. The level of Smad4 proteins in satellite cells increases with aging, and suggestively restricts satellite cell amplification to enhance satellite cell differentiation during muscle regeneration [48]. Satellite cells lose their regenerative potential and self-renewal capacity by loss of their normal quiescent state with age. Derepression of p16(INK4a) in aged satellite cells causes the conversion from the reversible quiescence state to a senescence state. Silencing of p16(INK4a) restores the satellite cell self-renewal and muscle regenerative potential in aged muscle [49]. IGF-1 could enhance aged muscle regrowth by decreasing the cell cycle inhibitor, p27Kip1, in satellite cells through the PI3K/Akt signaling axis [50]. The changes in the environment of satellite cells (niche), attributed by the neighboring diverse cell types such as immune cells, fibroblasts, capillary cells, during disuse and exercise play an important role in self-renewal and regenerative potential of satellite cells [51].

3. Possible therapeutic intervention strategies

Sex hormones are required to maintain the muscle mass and strength [52,53]. Transdermal testosterone replacement has improved muscle strength and body compositions in hypogonadal men [54]. Meta-analyses of clinical trials provide evidence that testosterone treatment increases the skeletal muscle mass and also muscle strength to some degree [55]. Although the lack of significant changes in serum levels of prostate specific antigen has been demonstrated in testosterone administration, testosterone therapy has the concern of side effects involved in prostate [56]. An efficacious administration paradigm has proposed that testosterone replacement effects are fiber-type dependent, restricted to increases in cell size, and dependent on the treatment schedule [57]. In vitro studies have revealed that androgen increases local expression of IGF-1 levels [58] and inhibits FOXO, and activates both p38 mitogen-activated protein kinases and paxirosome proliferator-activated receptor-gamma coactivator 1 alpha [59]. Testosterone supplementation has reversed sarcopenia through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways [60].

Androgens have protective effects in skeletal muscle catabolism by inhibition of nuclear factor-xB-inducing kinase (NIK) accumulation [61]. In this report, the increase of NIK expression induced by glucocorticoid in skeletal muscle cells was prevented in the presence of testosterone. Selective androgen receptor modulators have been claimed to be beneficial for the treatment of sarcopenia [62]. Several reviews have described the therapeutic potential of selective androgen receptor modulators for skeletal muscle wasting [63–66].

Myostatin (growth differentiation factor-8, GDF8), a member of TGFβ superfamily, is a negative regulator of myogenesis, because the absence of myostatin increased muscle size in mice and cattle [67]. GDF11 is highly homologous to myostatin, both mediate downstream signaling via activin receptor and Smad complex [68]. It is known that follistatin binds and neutralizes activin, myostatin, and GDF11 [69]. However, the function of GDF11 in skeletal muscle is controversial. GDF11 was identified as a circulating rejuvenating factor from heterochronic parabiosis mice [70]. Recently the observation has revealed that GDF11 and myostatin both inhibit myoblast differentiation, GDF11 significantly inhibits muscle regeneration and decreased satellite cell expansion in mice [71]. GDF11 treatment has resulted in a significant increase in tissue fibrosis, accompanied by attenuated functional recovery in a complex rat model of skeletal muscle injury that mimics physiological injuries seen in human patients [72]. The considerable attention focused on the blockade of activin receptor signaling for the suppression of skeletal muscle loss by soluble receptors and monoclonal antibodies [73–75]. Small-molecule screening methods have been developed for inhibitors of cellular response to myostatin and activin A [76].

Satellite cells isolated from old human and rodents have more apoptotic signals than youngsters [77]. The reduced antioxidant activity of catalase and glutathione transferase in satellite cells isolated from the elderly individuals has been observed compared to those in cells derived from young people [78]. It is suggested that this decrease in the antioxidant capacity may reduce the regenerative ability of aged satellite cells. Green tea extract, a nutraceutical, increased satellite cell proliferation and differentiation, and decreased oxidative stress in aged rat [79]. Epigallocatechin-3-gallate supplementation reduced the apoptotic index and proapoptotic proteins, and improved muscle recovery after the atrophic stimulus [80]. However it is unlikely that nutraceuticals impact of
green tea are restricted in satellite cell function including apoptosis. Epigallocatechin-3-gallate has protected sarcopenic muscles, in part through suppressing protein degradation and the ubiquitin-proteasome pathway, together with increased expression of anabolic factors [81]. Many mammalian tissues, especially in skeletal muscle contain taurine as a natural amino acid [82]. The involvement and therapeutic potential of taurine have been discussed in pathophysiological conditions and skeletal muscle myopathy [83]. The screening systems to discover new therapeutic molecules and to evaluate compounds involved in satellite cell proliferation and fusion using human and mouse primary myoblast as well as mouse C2C12 cells are summarized in Table 1 [84–90].

The results from a randomized controlled trial of angiotensin-converting enzyme (ACE) inhibitors on physical function involving 130 older patients with impairment of daily activities suggest a beneficial effect of ACE inhibitors in sarcopenia [81]. In a recent study, leprosy survivors who had taken 4,4'-diaminodiphenyl sulfone showed greater skeletal muscle mass and strength than those who had not taken the drug [52]. This result suggests that drug repurposing is a new strategy for the therapeutic approach of sarcopenia.

The finding that the elimination of Dicer activity in the myogenic compartment during embryogenesis display decreased skeletal muscle mass accompanied by abnormal myofiber morphology has demonstrated the crucial roles for microRNAs (miRNAs) as critical components required for myogenesis [93]. Expression profiling analysis of miRNAs and messenger RNAs revealed the contribution of miRNAs to muscle aging through various fields such as transcription, metabolic process, and kinase activity [94]. The differential expression with aging in mouse skeletal muscle has shown that 15 miRNAs are up-regulated and 19 miRNAs are down-regulated in total 34 miRNAs including miR-206 and miR-434 [94]. In myoblasts, 118 miRNAs were differentially expressed (47 up- and 71 down-regulated) [95]. Comparative analysis and validation studies have revealed that miR-455-3p was significantly decreased in muscle of atrophy model, whereas miR-434-3p was decreased in serum [96]. In the comparative expression analysis of miRNAs between young and aged mouse muscles showed that miR-431, a novel age-associated miRNA, modulates the skeletal myogenesis via regulation of Smad4 expression [95]. The finding that the overexpression of miR-206 in Duchenne muscular dystrophy mouse muscle increased the levels of several muscle-specific proteins has expected to provide a therapeutic potential of miRNAs for Duchenne muscular dystrophy [97]. Chemicals, antibodies, and food supplements are also in clinical trials (Table 2).

4. Conclusions

Sarcopenia is well-defined as the gradual loss of muscle mass with aging due to unbalanced protein synthesis and degradation, which leads to a decline in muscle function. Multifactorial consequence of aging including chronic inflammation, neuromuscular junction dysfunction, and degenerative diseases contributes to the onset of sarcopenia. The detailed understanding of the molecular and cellular mechanisms in sarcopenia from the cell-based analysis and human/animal studies will shed lights on the developing the new therapeutic interventions. The new strategy to understanding and management of sarcopenia includes systemic approach to

Table 1
The screening systems to discover and evaluate enhancing compounds in myogenesis.

Gene & reporter	Cells	Reference
Viability/ATP	Mouse, myoblast	Kang et al. [84]
Myogenesis phenotype evaluation	Human, satellite	Nieroibz et al. [85]
Myogenesis (state-selective fluorophore	Mouse, C2C12	Wagner et al. [86]
Mitochondrial biogenesis (Tlam-luciferase)	Mouse, C2C12	Yoshino et al. [87]
Myofusion index	Mouse, C2C12	Yang et al. [88]
Myotube fusion rate (2 fragment of GFP)	Mouse, C2C12	Kodaka et al. [89]
E-box and MCK (luciferase, GFP)	Mouse, C2C12	Ozurt-Kaloglu et al. [90]
Myogenes (eMHC, InCell Elisa)	Mouse, myoblast/C2C12	Park SS unpublished

Table 2
Trends in drug development for sarcopenia.

Company or institute	Brand name	Component	Clinical trial
Abbott Nutrition	AN777	Medical food mixture	Phase III
Merck Sharp & Dohme	MK-677	GH releasing peptide	Phase III
Merck Sharp & Dohme	MK-0773	Anabolic steroid	Phase II
Novartis	BVM338 (Bimagrumbal)	Antibody (ActRIIB)	Phase II
Sanofi	RECN1033 (SAR391786)	Antibody (myostatin)	Phase II
Takeda Pharmaceuticals	Pioglitazone (Actos)	PPAR-γ agonist	Phase IV
Johns Hopkins University	Losartan	AT1R antagonist	Phase II
Mayo Clinic	Omega-3	Unsaturated fatty acids	Phase I
National Institute on Aging	Anastrozole	Estrogen synthesis inhibition	Phase II
Seoul National University	Cetrylpyridinium chloride	Catonic ammonium compound	Investigator trials
University of Colorado	Acetaminophen	NSAID	Investigator trials
University of Pennsylvania	Gshelin	Hunger hormone	Phase II
Washington University	Dehydroepiandrosterone	Androgen precursor	Phase III

ActRIIB, active receptor type IIIB; AT1R, angiotensin II receptor; GH, growth hormone; NSAID, nonsteroidal anti-inflammatory drug; PPAR-γ, peroxisome proliferator-activated receptor-gamma.

Adapted from https://clinicaltrials.gov/.
sarcopenia, signal modulating small molecules, drug repositioning (drug repurposing, new tricks for old drugs), and new finding of muscle-specific miRNAs.

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This work was supported by Bio & Medical Technology Development Program (2013M3A9B6076413, Ki-Sun Kwon) of the NRF granted by MSIP and KRIBB Research Initiative Program of South Korea.

References

[1] Rosenberg IH. Summary comments. Am J Clin Nutr 1989;50:1231–3.
[2] Sjølom S, Surenørn J, Rikkonen T, Honkanen R, Kroger H, Sirolo J. Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas 2013;75:175–80.
[3] Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ. Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Aging Res Rev 2014;15:51–60.
[4] Alchin DR. Sarcopenia: describing rather than defining a condition. J Cachexia Sarcopenia Muscle 2014;5:265–8.
[5] Morley JE, Abbatecola AM, Argiles J, Baracos V, Bauer JM, Bhasin S, et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 2011;12:403–9.
[6] Cao L, Morley JE. Sarcopenia is recognized as an independent condition by an international classification of disease, tenth revision, clinical modification (ICD-10-CM) code. J Am Med Dir Assoc 2016;17:675–7.
[7] Muscatelli M, Bohannon RB, Body MS, Biolo G, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 2010;29:154–9.
[8] Fielding RA, Vellas B, Evans WJ, Bauer JM, Bhasin S, et al. Sarcopenia: definition, prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 2011;12:403–9.
[9] Delmonico M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 2010;29:154–9.
[10] Fielding RA, Vellas B, Evans WJ, Bauer JM, Newmark AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition, prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 2011;12:249–56.
[11] Dam T, Peters KW, Fragala M, Cawkwell PM, Harris TB, McLean R, et al. An evidence-based comparison of operational criteria for the presence of sarcopenia. J Gerontol A Biol Sci Med Sci 2014;69:584–90.
[12] Studenski SA, Peters KW, Alley DE, Cawkwell PM, McLean RR, Harris TB, et al. The FNIIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 2014;69:547–58.
[13] Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1998;147:755–63.
[14] Cooper C, Dece W, Evans W, Fanis JA, Rizzoli R, Sayer AA, et al. Frailty and sarcopenia: definitions and outcome parameters. Osteoporos Int 2012;23:1839–48.
[15] Chen LK, Liu LK, Woo J, Assantachai P, Ayungew TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia. J Am Med Dir Assoc 2011;12:403–9.
[16] Hanaoka BY, Peterson CA, Horbinski C, Crofford LJ. Implications of glucocorticoid therapy in idiopathic inflammatory myopathies. Nat Rev Rheumatol 2012;8:448–57.
[17] Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. J Cell Biochem 2003;89:393–401.
[18] Ryall JG, Schertzer JD, Lynch GS. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biochemistry 2008;9:213–28.
[19] Hanaoka BY, Peterson CA, Horbinski C, Crofford LJ. Implications of glucocorticoid therapy in idiopathic inflammatory myopathies. Nat Rev Rheumatol 2012;8:448–57.
[20] Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. J Cell Biochem 2003;89:393–401.
[21] Greising SM, Ermilov LG, Sieck GC, Mantilla CB. Ageing and neurotrophic factors of interest relevant to this article were documented. J Cell Biochem 2003;136:393–401.
[22] Weissler N, Broto M, Komazaki S, Pan Z, Xao X, Nokes T, et al. Muscle aging is associated with compromised C2–C signaling and segregated intra-muscular C2–C release. J Cell Biochem 2006;107:319–45.
[23] Andressen DC, Bettenhauer MJ, Reiken S, Meli AC, Umanakaya A, Xie W, et al. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 2014;17:731–44.
[24] García-Prat L, Ruiz-Ortega S, Mammucari C, Blauw B, Loro E, Komatsu M, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 2006;61:1059–64.
[25] Weisleder N, Broto M, Komazaki S, Pan Z, Xao X, Nokes T, et al. Muscle aging is associated with compromised C2–C signaling and segregated intra-muscular C2–C release. J Cell Biochem 2006;107:319–45.
[26] Rudolf R, Khan MM, Labeit S, Deschenes MR. Degeneration of muscle in aging and dwarfishness: the molecular backgrounds of senescence. Nature 2012;502:379–82.
[27] Deschenes MR. Motor unit and neuromuscular junction remodeling with age. J Gerontol A Biol Sci Med Sci 2011;66:209–20.
[28] Custers P, Lin S, Roin N, Di Fulvia S, Romano K, Giri M, et al. Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy. Cell Metab 2016;7:80–90.
[29] Chakravarthy MV, Booth FW, Spangenburg EE. The molecular responses of skeletal muscle regeneration. Elife 2016;5.
[30] Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. J Cell Biochem 2003;89:393–401.
[31] Wang H, Lirat A, Menasier B, Gueugneau M, Coudy-Gandilhon C, Combaret L, et al. Apoptosis in capillary endothelial cells in ageing skeletal muscle. Free Radic Biol Med 2014;71:298–306.
[32] Adhikety P, O’Leary MF, Chakravarthy MV, Booth FW, Spangenburg EE. The molecular responses of skeletal muscle regeneration. Elife 2016;5.
[33] Chakravarthy MV, Booth FW, Spangenburg EE. The molecular responses of skeletal muscle regeneration. Elife 2016;5.
[34] Deschenes MR. Motor unit and neuromuscular junction remodeling with age. J Gerontol A Biol Sci Med Sci 2011;66:209–20.
[35] Rudolf R, Khan MM, Labeit S, Deschenes MR. Degeneration of muscle in aging and dwarfishness: the molecular backgrounds of senescence. Nature 2012;502:379–82.
for the rescue of induced muscular atrophy in aged rats. Int J Sport Nutr Exerc Metab 2001;11:544–8.

[51] Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA. Cellular dynamics in the muscle satellite cell niche. EMBO Rep 2013;14:1062–72.

[52] La Colla A, Pronsato L, Milanesi L, Vasconsuelo A. 17beta-Estradiol and testosterone in sarcopenia: role of satellite cells. Ageing Res Rev 2015;24:166–77.

[53] Finkelestein JS, Lee H, Burnett-Bowie SA, Pallais JC, Yu EW, Borges LF, et al. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med 2013;369:1011–22.

[54] Wang C, Swerdloff RS, Emanuelli A, Dobs A, Snyder PJ, Cunningham G, et al. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab 2000;85:2839–53.

[55] Starka L. Testosterone treatment of sarcopenia. Vnitr Lek 2006;52:909–11.

[56] Schneyer AL, Sidis Y, Gulati A, Sun JL, Keutmann H, Krasney PA. Differential pathways of FoxO1 and PGC-1alpha. Biochem Biophys Res Commun 2010;403: E223.

[57] Fakhfakh R, Lee SJ, Tremblay JP. Administration of a soluble activin type IIB receptor promotes skeletal muscle mass in older rats. J Appl Physiol 2015;119:831–9.

[58] Alway SE, Bennett BT, Wilson JC, Sperringer J, Mohamed JS, Edens NK, et al. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats. J Appl Physiol 2015;118:319–30.

[59] Alway SE, Bennett BT, Wilson JC, Edens NK, Pereira SL. Epigallocatechin-3-gallate improves plantaris muscle recovery after disuse in aged rats. Exp Gerontol 2014;50:86–94.

[60] Meador BM, Mirza KA, Tian M, Selding MB, Reaves LA, Edens NK, et al. The green tea polyphenol epigallocatechin-3-gallate (EGCG) attenuates skeletal muscle atrophy in a rat model of sarcopenia. J Frailty Aging 2015;4:209–15.

[61] Schaffer SW, Jong C, Ramila KC, Azuma J. Physiological roles of taurine in heart and muscle. J Biomed Sci 2010;17:11.

[62] De Luca A, Pierro S, Camerin DC. Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J Transl Med 2013;11:17.

[63] Yang Y, Tierney M, Ong E, Zhang L, Piermarocchi C, Sacco A, et al. Combinations of kinase inhibitors protecting myoblasts against hypoxia. PLoS One 2015;10:e0126718.

[64] Neriobisz LS, Cheatham B, Buehrer BM, Sexton JZ. High-content screening of human primary muscle satellite cells for new therapeutics for muscular atrophy/dystrophy. Curr Chem Genom Transl Med 2013;7:21–9.

[65] Wagner BK, Carrinska HA, Ahn YH, Kim YK, Gilbert TJ, Fomina DA, et al. Small-molecule fluorophores to detect cell-state switching in the context of high-throughput screening. J Am Chem Soc 2008;130:4208–9.

[66] Yoshino M, Naka A, Sakamoto Y, Shibasaki A, Toh M, Tsukamoto S, et al. Dietary isoflavone daidzein promotes TAM expression that increases mitochondrial biogenesis in C2C12 muscle cells. J Nutr Biochem 2015;26:1193–9.

[67] Yang Z, Nakagawa K, Sarkar A, Maruyama J, Iwasa H, Bao Y, et al. Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitates muscle repair in a muscle injury model. Mol Cell Biol 2014;34:1607–21.

[68] Kodaka M, Yang Z, Nakagawa K, Maruyama J, Xu X, Sarkar A, et al. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells. Exp Cell Res 2015;336:171–81.

[69] Ozturk-Kaloglu D, Hercher D, Heber P, Posa-Markaryan K, Spenger S, Zimmermann A, et al. ANA noninvasive in vitro monitoring system reporting skeletal muscle differentiation. Tissue Eng Part C Methods 2017;23:1–11.

[70] Sumukadas D, Witham MD, Struthers AD, McMurdo ME. ACE inhibitors as a therapy for sarcopenia—evidence and possible mechanisms. J Nutr Health Aging 2008;12:480–5.

[71] Lee SY, Kim W, Park HW, Park SC, Kim IK, Chung SG. Anti-sarcopenic effects of diaminodiphenyl sulfone observed in elderly female leprosy survivors: a cross-sectional study. J Cachexia Sarcopenia Muscle 2016;7:322.

[72] Jung HJ, Lee KP, Milholland B, Shin YJ, Kang SC, Kwon KS, et al. Comprehensive miRNA profiling of skeletal muscle and serum in induced and normal mouse muscle atrophy during aging. J Gerontol A Biol Sci Med Sci 2017 Mar 10. http://dx.doi.org/10.1093/gerona/glx025 [Epub].

[73] Amriouche A, Jahnke VE, Lunde J, Koulmann N, Freyssenet D, Gaschin B. Muscle-specific microRNA-206 targets multiple components in dystrophic skeletal muscle representing beneficial adaptations. Am J Physiol Cell Physiol 2017;312:C209–21.

[74] Sayer AA, Syddall H, Martin H, Patel H, Baylis H, Davies C, et al. The developmental origins of sarcopenia. J Nutr Health Aging 2008;12:437–2.

[75] Shaw SC, Dennis EM, Cooper C. Epidemiology of sarcopenia: determinants throughout the lifespan. Calcif Tissue Int 2017;101:229–47.