Abnormal alpha band power in the dynamic pain connectome is a marker of chronic pain with a neuropathic component

Lee B. Kisler, Junseok A. Kim, Kasey S. Hemington, Anton Rogachov, Joshua C. Cheng, Rachael L. Bosma, Natalie R. Osborne, Benjamin T. Dunkley, Robert D. Inman, Karen D. Davis

ARTICLE INFO

Keywords:
Chronic pain
Neuropathic pain
Magnetoencephalography
Default mode network
Salience network
Somatosensory cortex

ABSTRACT

We previously identified alpha frequency slowing and beta attenuation in the dynamic pain connectome related to pain severity and interference in patients with multiple sclerosis-related neuropathic pain (NP). Here, we determined whether these abnormalities, are markers of aberrant temporal dynamics in non-neuropathic inflammatory pain (non-NP) or when NP is also suspected. We measured resting-state magnetoencephalography (MEG) spectral density in 45 people (17 females, 28 males) with chronic back pain due to ankylosing spondylitis (AS) and 38 age/sex matched healthy controls. We used painDETECT scores to divide the chronic pain group into those with only non-NP (NNP) and those who likely also had a component of NP in addition to their inflammatory pain. We also assessed pain severity, pain interference, and disease activity with the Brief Pain Inventory and Bath AS Disease Activity Index (BASDAI). We examined spectral power in the dynamic pain connectome, including nodes of the ascending nociceptive pathway (ANP), default mode (DMN), and salience (SN) networks. Compared to the healthy controls, the AS patients exhibited increased theta power in the DMN and decreased low-gamma power in the DMN and ANP, but did not exhibit beta-band attenuation or peak-alpha slowing. The NNP patients were different from HCs. Compared to both healthy controls and NNP, NP patients had increased alpha power in the ANP. Increased alpha power within the ANP was associated with reduced BASDAI in the NNP group, and increased pain in the mixed-NP group within the DMN, SN, and ANP. Thus, high theta and low gamma activity may be markers of chronic pain but high alpha-band activity may relate to particular features of neuropathic chronic pain.

1. Introduction

People who have chronic pain exhibit functional abnormalities in brain areas that are associated with attention, salience, and pain processing and modulation (Baliki et al., 2008; Davis and Maayedi, 2013; Hemington et al., 2016; Kaplan et al., 2019; Kim et al., 2019; Porreca et al., 2002). These areas are collectively known as the dynamic pain connectome (DPC) and include nodes in the ascending (ANP) and descending nociceptive pathways, the default mode (DMN) and salience (SN) networks (Kucyi and Davis, 2015, 2017). Findings of abnormal activity in the DPC in chronic pain is mostly based on data acquired using slow, hemodynamic-based fMRI that has a temporal resolution of seconds and so cannot capture faster occurring brain activity (Kucyi and Davis, 2015, 2017). However, aberrant activity within the DPC that...
occurs in the frequency range of 1–100 Hz that is associated with chronic pain can be examined using techniques that have a temporal resolution of milliseconds, such as EEG or magnetoencephalography (MEG). Using these methods, slower resting peak alpha frequency (PAF) in healthy individuals predicted greater pain sensitivity during pain (Furman et al., 2018). Beta and gamma power has also been shown to be related to the intensity of ongoing chronic pain (May et al., 2019). Beta and gamma power has also been shown to be related to the intensity of ongoing chronic pain (May et al., 2019).

Furthermore some studies have reported that patients with chronic pain exhibit PAF slowing (Boord et al., 2008; Vries et al., 2013; Lim et al., 2016; Sarnthein et al., 2005; Stern et al., 2006; Wydenkeller et al., 2009) and increased alpha and theta power oscillations (Pietro et al., 2018; Kim et al., 2019; Lim et al., 2016; Meneses et al., 2016; Pinheiro et al., 2016; Sarnthein et al., 2005; Stern et al., 2006; Broeke et al., 2013; Walton et al., 2010) that can normalize following treatment (Sarnthein et al., 2005; Stern et al., 2006). Reduced beta (Kim et al., 2019) and increased gamma (Lim et al., 2016) brain activity have also been found in chronic pain conditions and in some cases increased band power was linked to pain (Pietro et al., 2018; Kim et al., 2019; Lim et al., 2016; Schmidt et al., 2012).

Despite the evidence that there can be aberrant brain activity in patients with chronic pain, it is unclear whether these dysfunctions are ubiquitous across pain conditions. Notably, one EEG study failed to identify any temporal abnormalities in chronic pain (Schmidt et al., 2012) and in another study, abnormalities were only seen in patients with neuropathic pain (NP) (Schmidt et al., 2012) and in another study, abnormalities were only seen in patients with neuropathic pain (NP) (Vuckovic et al., 2014). Our recent MEG study of multiple sclerosis (MS) (Kim et al., 2019) also showed that abnormalities in activity differed between the patients who had non-NP and those with mixed-NP. As a chronic pain group, these MS patients had increased alpha power in nodes of the ANP and the SN. However, the subgroup of patients with mixed-NP had slowing of the PAF in various DPC nodes and reduced beta-band power in nodes of the ANP and these abnormalities were associated with pain interference. Thus, temporal abnormalities seem to be more evident when NP is likely (Boord et al., 2008; Pietro et al., 2018; Sarnthein et al., 2005; Stern et al., 2006; Walton et al., 2010; Wydenkeller et al., 2009), which occurs in up to 20% of the general population (Bouhassira, 2019; Bouhassira et al., 2008; Fayaz et al., 2016; Harifi et al., 2013; Toth et al., 2009). These findings raise the question of how aberrant neural dynamics relate to disease and pain measures and whether these relationships are a general marker of chronic pain or if they are specific to certain attributes such as NP.

Thus, the aim of this study was to determine whether abnormalities in resting state MEG spectral density and their association with disease activity and clinical pain differ for those with only inflammatory pain (non-NP, NNP) and those who are also likely to have a NP component. We hypothesized that abnormalities would be specific to the ankylosing spondylitis (AS) patients who have a component of NP. Towards this goal, we focussed on patients with AS because this patient population has relatively few co-morbidities and affects adults much younger than most other types of chronic pain (Braun and Sieper, 2007). These patients suffer from spondyloarthritides that mostly affects the spine and causes chronic pain that can be mixed neuropathic and inflammatory pains (Pathan and Inman, 2017; Wu et al., 2013), which allowed us to examine the effect of a NP component.

2. Methods

2.1. Participants

Participants with AS were recruited from Toronto Western Hospital Spondylitis clinic in collaboration with staff rheumatologists. Age/sex-matched healthy control (HCs) participants were recruited through advertisements that were posted at the University Health Network and through word of mouth. The study was approved by the Research Ethics Board of the University Health Network and all participants signed an informed consent form. Participants were asked to refrain from caffeine and alcohol for at least 1 and 8 h, respectively, before testing.

The inclusion criteria for participants with AS was a diagnosis of AS based on the modified New York criteria (Van Der Linden et al., 1984), that includes low back pain that improves with exercise, impaired mobility of the spine and sacroiliitis finding at radiography. This was verified in the Spondylitis clinic at the Toronto Western Hospital. Exclusion criteria for all participants were: (1) the presence of acute pain or a history of chronic pain (other than AS in the patient group), (2) any diagnosis of neurological or psychiatric disorder, (3) any diagnosis of a major health issue (e.g. diabetes), and (4) taking medications on a regular basis, except for the AS-related treatments.

There were 83 (45 AS, 38 HCs) participants in this study that were included in different analyses: The main analysis of the AS vs HCs groups comprised 38 AS and 38 age/sex-matched HCs. However, we also performed analyses on several subgroups. We selected participants to ensure age/sex-matching between groups and for subgroup analyses (see Section 2.2) that resulted in: (1) 12 AS and 12 age/sex-matched HC (for the comparison of mixed-NP vs HCs groups), (2) 26 AS and 26 age/sex-matched HCs (for the comparison of NNP vs HCs groups), and (3) 12 NP and 12 age/sex-matched NNP (for the comparison of mixed-NP vs NNP groups).

2.2. Clinical assessment and questionnaires

Key AS symptoms were evaluated by the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) (Garrett et al., 1994), obtained at the most recent visit of the patient to the AS clinic. The BASDAI index includes 6 items that assess fatigue, joint swelling and pain, local tenderness and morning stiffness. The composite BASDAI score ranges from 0 to 10, with 10 indicative of high disease activity. Patients were also asked to verbally rate their current pain (typically localized to the lower back/buttock area) and the average general pain in the last 4 weeks, on a scale that ranged from 0 (“none”) to 10 (“max”) using the painDETECT questionnaire that also asses pain severity (Freynhagen et al., 2006). AS can include a NP component (Wu et al., 2013), and to assess this we used the painDETECT questionnaire (Freynhagen et al., 2006). The painDETECT scores range from 0–38 and patients rate how much they suffer from different neuropathic components (e.g. burning, tingling, electric shocks). Scores of 12 and under indicate that NP is unlikely; patients with these scores were deemed to have inflammatory non-neuropathic pain (NNP). Scores of 19 and greater indicate a high likelihood of NP. A score of 13–18 indicates that there is a likelihood of some NP and so patients with these scores were categorized as having mixed inflammatory-NP. In this study we considered patients with a score of 13 or higher as having mixed inflammatory-NP (NP) to be consistent with our previous studies (Bosma et al., 2018; Cheng et al., 2018; Kim et al., 2019; Wu et al., 2013). All participants also completed the Beck Depression Inventory (BDI) questionnaire. The BDI evaluates the cognitive and affective symptoms of depression in the past week and consists of 21 questions, each rated from 0 to 3. The total score thus ranges from 0 to 63; scores of 0–9 classified as none to minimal depression, and scores of 10–18, 19–29, and 30–63 considered as mild-moderate, moderate-severe, and severe depression, respectively (Beck et al., 1988).

2.3. Magnetoencephalography and MRI acquisition

All participants underwent a 5 min resting state MEG scan acquired with a 306 channel Elekta Neuromag TRIUX system, with a sampling rate of 1000 Hz and a DC bandpass of 330 Hz. Prior to the MEG scan, the nasion and bilateral pre-auricular positions were marked for each participant. These locations were used as fiducial reference points that later served for motion correction and registration to the MRI anatomical scan (Velmurugan et al., 2014). Participants were scanned sitting in an upright position with their eyes open and fixated on a cross on a screen in front of them with the room lights off. Participants were
instructed to avoid structured thinking and to let their mind wander. The position of the participant’s head was monitored continuously through head position indicator coils affixed to the participant’s head. The spatiotemporal signal space separation (tSSS) algorithm (Gonzalez-Moreno et al., 2014; Taulu and Simola, 2006), implemented in the MaxFilter program, was used for artifact and head movement correction. Following the MEG scan, a 3T MRI (GE) high resolution T1 anatomical image was obtained with the following acquisition parameters: voxel size = 1 mm³, matrix = 256 × 256, 180 axial slices, TR = 7.8 s, TE = 3 ms, inversion time = 450 ms.

2.4. Magnetoencephalography data preprocessing, region of interest and beamforming

We preprocessed the MEG data using the same approach we previously described (Kim et al., 2019). Briefly, to analyze the resting state data we used the FieldTrip toolbox, run on MATLAB software (ver R2015b). The first and last 10 s of the recorded data were removed, leaving 280 s of resting state data for each participant. Data were bandpass-filtered between 1 and 150 Hz and a notch filter was applied at 60 Hz. Down sampling to 300 Hz was then performed and Independent component analysis (ICA) used ("runica" function) to remove artifacts associated with cardiac artifacts, eye blinks, breathing and muscle activity. This was done by visually inspecting the different components and removing components that appear to be noise and periodic signals. The procedure for visual ICA removal varied for each subject as some subjects had more noise than others. Thus there was a range of components that were removed but it was not more than 15 out of 204 components in each subject. To register the resting state MEG data to the participant’s anatomical image, the fiducial points of the nasion and bilateral pre-auricular were first identified on the anatomical image and these were used to co-register the MEG data to the anatomical image. After each person’s MEG data is registered to their own MRI by using fiducial points previously defined before the MEG scan, each individuals preprocessed data is then warped into a template brain. The anatomical image was then segmented using statistical parametric mapping (SPM), resulting in a geometrical representation of the brain which was then used in a single-shell forward model.

We used a linearly constrained minimum variance beamformer (Veen et al., 1997) to extract a continuous time series for nodes of the dynamic pain connectome. The beamformer technique assumes that there is no long term perfect correlation in the local field potentials of different sources and uses spatial filtering to maximize the signal in an area of interest while suppressing it in sources of no interest (Hillebrand and Barnes, 2005; Hillebrand et al., 2005). This is accomplished by applying a weighted vector of linear combination of sensor outputs that yield a separate time course for each source that can then be used for further analysis (Dymond et al., 2014; Engels et al., 2016; Hillebrand and Barnes, 2005; Kim et al., 2019). Thus, 14 regions of interest (ROI) were defined and used as “virtual sensors”. These ROIs coordinates (x, y, z) in MNI space, were defined based on previous publications (Hemington et al., 2016; Kim et al., 2019; Kucyi et al., 2013; Rogachov et al., 2016) and included areas of the ANP: bilateral thalamus (+/−12, −18, 8), left (−34, −30, 54) and right (34, −28, 54) primary somatosensory cortex (S1), left (−60, −30, 20) and right (60, −22, 18) secondary somatosensory cortex (S2), bilateral (+/−34, −20, 18) posterior insula (pINS); SN: right temporoparietal junction (TPJ) (50, −32, 28), right anterior insula (aINS) (34, 18, 4), mid-cingulate cortex (2, 12, 34, MCC) and the right dorsolateral prefrontal cortex (34, 46, 22, DLPFC); DMN: posterior cingulate cortex (−2, −46, 28, PCC) and medial prefrontal cortex (−2, 50, 2, mPFC). The SN included only regions within the right hemisphere because the SN is a right-lateralized network and these area show higher activity when participants attend to pain (Kucyi and Davis, 2015).

2.5. Power spectra analysis

The output time series from beamforming analysis was normalized (z-score) within subject and as previously described (Kim et al., 2019). Specifically, after obtaining each individual’s resting state time-series from beamforming (a “virtual electrode”), the power spectrum density (PSD) was obtained using Welch’s Power Density. The PSD values were then normalized because each individual will have different raw magnitude of relative power spectra thus it must be normalized before group level inferences could be made. Thus z-scoring was used to normalize each individual’s resting state timer-series before calculating the PSD used for group level statistics. The Welch power spectral density (pwelch function in MATLAB R2015b) method was used to estimate the power spectral density for each frequency point in each of the 14 ROIs (i.e. sources). The Welch method divides the time series into 8 or less overlapping segments (50% overlap), computes the power spectral density of each segment using a fast Fourier transform with a Hamming window and then averages the power spectral density of all segments (Welch, 1967). This process reduces the variance of the estimated power spectral density and resulted in a power spectral density value for each frequency in the 1–150 Hz range, for each of the ROIs.

2.6. Statistical analysis

Statistical analysis was performed in GraphPad Prism (version 7.03 for Windows, GraphPad Software, La Jolla California USA, www.graphpad.com). Our analyses focused on the theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz) and low gamma (31–59 Hz) range. For each frequency point, within each ROI, we calculated the spectral power mean and standard deviation (SD) for HCs, the entire group of AS patients and also the NP and NNP sub-groups. Because of a previous report of a shift in the PAF in chronic neuropathic pain patients (Kim et al., 2019), we also calculated the mean and SD of the individual PAF within each group by identifying the maximal power value within the alpha band for each participant.

2.6.1. Demographic characteristics

Differences in age, BDI score and sex between HCs and AS patients were tested using Student t-tests (age and BDI) and Chi-square (sex) tests. Because of the small number of NP patients, nonparametric Mann–Whitney U test was used to examine differences between NP and NNP subgroups in age, BDI, the number of years in pain, average pain and BASDAI. Sex differences were tested using Chi-square.

2.6.2. Spectral power

To examine group differences that were related to chronic pain, we first compared the entire group of AS patients with the group of HCs. Thereafter, to examine abnormalities that were specific to the likelihood of a neuropathic pain component, we compared NP and NNP subgroups to age/sex-matched HCs in a separate analysis. As NP patients were significantly older than NNP patients, we compared our NP patients with a subgroup of the NNP patients, who were age/sex-matched. As the spectral power was normalized these group comparisons were examined using parametric tests as follows: These were performed for the power spectra of each frequency point in the range 4–60 Hz as well as the individual PAF. We used multiple student t-tests for group comparisons and corrected for the number of ROIs with a false discovery rate (FDR, P < 0.05) using the Benjamini Hochberg method (Benjamini and Hochberg, 1995). We repeated the analysis for regions with significant results, correcting for the multiple frequencies with a false discovery rate (FDR, P < 0.05) using the Benjamini Hochberg method. The effect size for statistically significant differences is reported using Cohen’s d, as calculated using the effect size calculator at: https://www.uccs.edu/lbecker/. It should be noted that although we examined individual frequency bins, we also divided them into bands in order to interpret the results with the existing knowledge (see Results
and Discussion). We then performed Spearman’s correlation analysis
between AS clinical measures (BASDAI, average pain in the last 4 weeks
– i.e. trait-pain) and the power spectra of areas and frequencies that
significantly differed between NP and NNP subgroups. We chose the
BASDAI and trait-pain as two measures that reflect different aspects of
the AS disease. The BASDAI includes multiple factors other than pain
(e.g., fatigue, swelling and stiffness) and the trait-pain reflect the
overall experience of pain, not limited to the current moment
(Davis and Cheng, 2019). As this analysis was exploratory and based on
the results of the previous step, it was not corrected for multiple com-
parisons and was considered statistically significant for \(p < 0.05 \).

3. Results

3.1. Demographics

Our main analysis compared the data from 38 AS patients to 38 age/
sex-matched HCs (23 M, 15F in each group). In most cases, patients
were matched within 3 years to a HC. However, given the difficulty in
recruiting older HCs, in some instances we accepted a difference of 4
years (5 patients) and 5 years (1 patient). Demographic characteristics
of both HCs and chronic pain patients and the patients’ disease charac-
teristics (AS patients, NP and NNP subgroups) are provided in
Table 1. Individual PainDETECT scores are presented in Fig. 1. The AS
group included 12 inflammatory pain patients with a likelihood of NP
(PainDETECT score \(\geq 13 \)) and 26 inflammatory pain patients with
NNP. There were no significant differences in age or sex between HCs
and AS patients (age and sex: \(p > 0.917 \)), nor between the HCs matched
to each AS subgroup (age and sex: \(p > 0.831 \)). Between NP and NNP subgroups, there were no significant differences in sex (Chi-square:
\(p = 0.367 \)), the number of years in pain (Mann–Whitney \(U: p = 0.097 \)),
current (Mann–Whitney \(U: p = 0.231 \)) and average (Mann–Whitney \(U: p = 0.311 \)) pain, or BASDAI scores (Mann–Whitney \(U: p = 0.224 \)).
However, since the NP group was significantly older than the NNP
group (Mann–Whitney \(U: p = 0.002 \)), we also examined group differ-
ences between NP patients and 12 age/sex-matched NNP patients (i.e.
restricted group). This analysis included an additional 7 patients with
NNP that were not included in the main analysis between patients with
AS and HCs. Of note, these 7 NNP patients were not included in the
group comparison to HCs because we could not age/sex match them to
HCs. There were no differences between the NP and the restricted group
of NNP patients in age, current and average pain, BASDAI or years with
pain (Mann–Whitney: \(U: p = 0.966 \); current pain \(p = 0.877 \); average
pain \(p = 0.984 \); BASDAI \(p = 0.247 \); years with pain \(p = 0.139 \)). The BDI
scores were higher in the AS group (\(t \)-test: \(p < 0.001 \)) and the NP subgroup (Mann–Whitney \(U: p = 0.009 \)) but not in the
NNP subgroup (the 26 NNP that were compared to HCs) (Man-
n–Whitney \(U: p = 0.082 \)) compared to the HC group. There was no
significant difference in BDI scores between the NP and NNP

Table 1

Demographic and disease characteristics	HC Group	AS Chronic pain group	NP	NNP	NNP age/sex-matched to NP
N	38	38	38	12	12
Age (years)	31.5±9.8	31.7±9.9	39.0±9.1	28.4±8.5	38.8±1.1
Sex	23 M,15F	23 M,15F	6 M,6F	17 M,9F	6 M,6F
BASDAI	n/a	3.4±2.3	4.3±2.4	2.9±2.2	3.3±2.9
PainDetect	n/a	9.0±5.4	15.3±2.5	6.1±3.6	5.9±3.2
Current pain	n/a	2.7±2.4	3.3±2.4	2.4±2.4	3.2±2.6
Average pain (0–10 NPS)	n/a	3.6±2.4	4.0±2.0	3.4±2.6	4.3±2.8
Years with pain	n/a	13.7±9.4	17.2±8.8	12.2±9.4	22.8±10.1
BDI*	3.7±3.3a	8.2±7.1b	11.3±7.2a	6.7±6.7	7.4±8.2

Group data are shown as mean +/- standard deviation.
Attributes that have significant group differences are indicated by *, with the specific groups that are significantly different from one another indicated by a,b. The Bath AS Disease Activity Index (BASDAI) and average pain scores were missing for 3 NNP and 1 NNP patients, respectively. NPS-numerical pain scale.

Fig 1. PainDETECT scores in the inflammatory non-neuropathic (NNP) and mixed inflammatory and neuropathic (NP) pain subgroups – The NP subgroup had a PainDETECT score of 13 or higher and the NNP subgroup had a PainDETECT score of 12 or less. The graph also indicates the mean and 95% confidence interval for each subgroup.

(Mann–Whitney \(U: p = 0.085 \)) nor between the NP and the restricted
NNP subgroup (Mann–Whitney \(U: p = 0.155 \)).

3.2. Increased theta and decreased gamma resting state power in chronic pain

The whole group analysis indicated that AS chronic pain patients’
hibit abnormal resting state activity in the theta and gamma bands
within several nodes of the DMN, ANP, and SN of the DPC (Fig. 2), but
there were no significant group differences in the PAF for any of the
ROIs (\(p \geq 0.878 \)). Specifically, the AS chronic pain group exhibited
significantly increased resting state activity power in the theta (4, 6 Hz;
max effect size: \(d = 0.74 \)) but not between the NP and the restricted
NNP group (Mann–Whitney \(U: p = 0.009 \)) but not in the
NNP subgroup (the 26 NNP that were compared to HCs) (Man-
n–Whitney \(U: p = 0.082 \)) compared to the HC group. There was no
significant difference in BDI scores between the NP and NNP
Fig 2. AS chronic pain patients have increased theta power and decreased gamma power in the dynamic pain connectome. Average resting state MEG activity in the
A. default mode network (left medial prefrontal cortex (mPFC)), B. the salience network (right anterior insula (aINS), mid-cingulate cortex (MCC), dorsolateral
prefrontal cortex (DLPFC)), and the C. ascending nociceptive pathway (right primary somatosensory cortex (S1), secondary somatosensory cortex (S2), bilateral
posterior insula (pINS)) is shown for the ankylosing spondylitis (AS) chronic pain group (red) and healthy control (HC) group (blue). Increased power in the theta
(4−7 Hz) band and decreased power in the low gamma (31–60 Hz) band in the AS compared to HC group is shown. Lines indicate mean ± SE. Significant group
differences (indicated by *) was set using false discovery rate (FDR, p < 0.05) corrected for the number of regions. Regions that survived correction for the multiple
frequencies are marked in a red frame. Brain images are displayed using the radiological convention. d – the maximal effect size of significant differences within the
region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
3.4. Associations with clinical pain and disease activity

The power spectra in areas and frequencies that showed significant differences between the NP and NNP subgroups were further examined to identify Spearman correlations with disease activity (BASDAI score) and clinical trait-pain (average pain in the last 4 weeks). The BASDAI score was missing for 2 NNP patients so that the analysis for association with the BASDAI score was done for 10 NNP and 12 NP patients. For all significant correlations in this restricted group of NNP patients, we also examined the association in the larger group of 33 NNP (i.e. full NNP subgroup) patients to determine whether the finding was present across a broader age span. As the BASDAI score was missing for 3 NNP patients, this analysis was done for 30 NNP patients.

We found that the alpha band power spectra in nodes of the ANP were negatively correlated with the BASDAI score in the restricted group of NNP patients but not in the NP patients. These associations were identified in the right S1 and bilaterally in the thalamus, and pINS. These associations remained significant in the full NNP subgroup in the left thalamus, S2 and pINS (see Fig. 9 and Supplemental Table 4).

We also identified significant positive correlations between clinical pain in NP, but not in NNP, with the alpha (9–10 Hz) power in nodes of the ANP, SN and DMN. Specifically, this relationship was found in the right thalamus, S1, and pINS of the ANP, the right aINS of the SN, and in the mPFC of the DMN (see Fig. 9, Supplemental Table 5).

4. Discussion

A brain signature of chronic pain that is consistently present across different types of pain has been elusive, partly due to the complexities and heterogeneity of chronic pain conditions. Identifying these abnormalities can help guide the development of new treatments for pain relief such as neurofeedback (Mayaud et al., 2019; Vuckovic et al., 2019). A promising approach towards identifying chronic pain markers is to use a technique such as MEG that is capable of both identifying the location and temporal characteristics of such a brain signature. In this MEG study, our aim was to determine whether aberrant temporal dynamics in the DPC and their association with disease activity and clinical pain is a marker of chronic pain in general, or whether these abnormalities are only present when there may be a component of NP. We found that the AS patients who had a mix of inflammatory and neuropathic pains did not exhibit PAF slowing or beta attenuation compared to NNP patients. However, detailed analyses of the NP and NNP subgroups revealed several prominent findings that indicate...
particular abnormalities in the DPCs networks and pathways: (1) Patients with AS chronic pain had increased theta (4–7 Hz) power in the DMN and decreased gamma (31–60 Hz) power in the ANP and DMN compared to healthy controls. (2) A subgroup analysis revealed that the theta and gamma band abnormalities along with increased alpha (8–13 Hz) power are specific to patients who are likely to have NP. (3) Increased alpha power throughout the DPC was associated with increased trait-pain in the NP group. Interestingly, alpha power was negatively associated with AS disease activity in the NNP group.

EEG has identified abnormalities in chronic pain (Pinheiro et al., 2016); usually increased theta and alpha power but there is variability across studies and pain conditions. For example, increased theta power was reported in orofacial NP, chronic neurogenic pain, complex regional pain syndrome (CRPS) and central NP (Pietro et al., 2018;}

![Figure 4](image-url)

Fig 4. NP patients have increased alpha power and decreased gamma power in the ascending nociceptive pathway. Average resting state MEG activity in the bilateral primary somatosensory cortex (S1), secondary somatosensory cortex (S2), and posterior insula (pINS) of the ascending nociceptive pathway is shown for the mixed inflammatory and neuropathic pain (NP) subgroup (pink), inflammatory none-neuropathic pain (NNP) subgroup (green) and healthy control (HC) subgroups (blue). Increased power in the alpha (8–13 Hz) band and decreased power in the low gamma (31–60 Hz) band in the NP compared to HC group is shown. Lines indicate mean ± SE. Significant group differences (indicated by *) was set using false discovery rate (FDR, p < 0.05) corrected for the number of regions. Regions that survived correction for the multiple frequencies are marked in a red frame. Brain images are displayed using the radiological convention. d – the maximal effect size of significant differences within the region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
Increased alpha power was found in orofacial NP, rheumatoid arthritis, post cancer persistent pain and central NP (Pietro et al., 2018; Meneses et al., 2016; Broeke et al., 2013; Vuckovic et al., 2014). Decreased alpha power was also reported for central NP (Sarnthein et al., 2005; Stern et al., 2006). Decreased beta power was reported for neurogenic pain and MS-related NP (Kim et al., 2019; Sarnthein et al., 2005; Stern et al., 2006), while increased beta and gamma was reported in fibromyalgia (Lim et al., 2016). PAF slowing was reported for central NP, NP following spinal cord injury (SCI), chronic pancreatitis, fibromyalgia and MS-related NP (Boord et al., 2008; Vries et al., 2013; Kim et al., 2019; Lim et al., 2016; Sarnthein et al., 2005; Stern et al., 2006; Broeke et al., 2013; Vanneste et al., 2018; Walton et al., 2010) or a large group of patients from multiple pain conditions (Dinh et al., 2019) or a large group of patients from multiple pain conditions (Dinh et al., 2019; Vanneste et al., 2018). This likely led to the variability in findings across studies and suggests that there is no consistent brain activity marker of chronic pain per se. However, temporal abnormalities in brain activity are reported more often in NP than in NNP and these may also be different for peripheral versus central NP.

Different frequency bands of resting state brain activity are associated with multiple and distinct functions (Buzsaki, 2006). Understanding these associations can provide insight into the temporal abnormalities that are often reported in chronic pain. In healthy conditions, alpha power is typically associated with a relaxed state, while beta and gamma power are linked to more active cognitive processes. The Variability across studies is likely due to differences in patient populations, pain conditions, and methodologies.

Fig 5. NP patients have increased alpha power and decreased gamma power in the salience network. Average resting state MEG activity in the right temporoparietal junction (TPJ), anterior insula (aINS), and dorsolateral prefrontal cortex (DLPFC) of the salience network is shown for the mixed inflammatory and neuropathic pain (NP) subgroup (pink), inflammatory none-neuropathic pain (NNP) subgroup (green) and healthy control (HC) subgroups (blue). Increased power in the alpha (8–13 Hz) band and decreased power in the low gamma (31–60 Hz) band in the NP compared to HC group is shown. Lines indicate mean ± SE. Significant group differences (indicated by *) was set using false discovery rate (FDR, p < 0.05) corrected for the number of regions. Regions that survived correction for the multiple frequencies are marked in a red frame. Brain images are displayed using the radiological convention. d – the maximal effect size of significant differences within the region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
individuals, alpha and beta band activity is high at rest and decreases when a sensory stimulus is presented, whereas gamma and theta activity show the opposite pattern (Hanslmayr et al., 2011).

Our finding of increased alpha and theta power and decreased gamma power in NP could be attributed to several factors related to the temporal features and location of the aberrant activity. In our study, compared to HCs, patients who were also likely to have a NP component showed increased theta power. As suggested by others (Pietro et al., 2018; Llinas et al., 1999), increased cortical theta power in chronic pain may be due to thalamocortical dysrhythmia, resulting from increased thalamic theta firing activity. As the thalamic activity was not elevated in our cohort, this explanation is less likely. Nonetheless, this controversial model (Dinh et al., 2019) is supported by studies (Pietro et al., 2018; Sarnthein and Jeannodon, 2008; Sarnthein et al., 2003; Vanneste et al., 2018) showing a therapeutic lesion to the thalamus reduces excessive theta activity in neurogenic

Fig 6. Compared to NNP, NP patients have increased alpha power in the ascending nociceptive pathway. Average resting state MEG activity in the bilateral thalamus, primary somatosensory cortex (S1), secondary somatosensory cortex (S2), and posterior insula (pINS) of the ascending nociceptive pathway is shown for the mix inflammatory and neuropathic pain (NP) subgroup (pink) and inflammatory noneuropathic pain (NNP) subgroup (green). Increased power in the alpha (8–13 Hz) band in the NP compared to NNP subgroup is shown. Lines indicate mean ± SE. Significant group differences (indicated by *) was set using false discovery rate (FDR, p < 0.05) corrected for the number of regions. Regions that survived correction for the multiple frequencies are marked in a red frame. Brain images are displayed using the radiological convention. d – the maximal effect size of significant differences within the region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
pain (Sarnthein et al., 2005; Stern et al., 2006). This is also supported by pain models in animal studies (LeBlanc et al., 2017; Leblanc et al., 2014).

We identified increased alpha power in the NP patients within multiple nodes of the DPC compared to HCs, and in the ANP when compared to the NNP patients. This suggests that increased alpha activity is unique to patients who also show signs of NP, at least AS-related NP. Additionally, the NP patients showed decreased gamma power. Alpha band activity is associated with attention (Palva and Palva, 2011), but alpha and gamma activity may have different roles in attention and executive function (Doesburg et al., 2008). A review paper on the role of alpha oscillation suggested that high alpha activity may point towards an ‘internal attentive state’ where the attention is oriented inward rather than outward. In this case, the appearance of an external stimulus is more likely to be missed (Hanslmayr et al., 2011; O’Connell et al., 2009). Notably, gamma activity is elevated when we attend to an external stimulus (Doesburg et al., 2008). Specifically, in pain, gamma oscillations were observed in response to tonic (Nickel et al., 2017; Schulz et al., 2015) and brief (Gross et al., 2007; Hauck et al., 2007) pain stimuli. Notably, increase in gamma oscillation was also reported in relation to ongoing chronic pain intensity, but this effect disappeared when the effect of time was considered (May et al., 2019). Together, we suggest that both increased alpha and decreased gamma power seem to support an inward attentive state in patients that are likely to have NP. As chronic pain patients show increased attention to pain-related stimuli (Schoth et al., 2012) and alpha activity is also associated to pain expectation and negative pain-related affect (Albu and Meagher, 2016), the increased alpha power might reflect pain vigilance as well as rumination and magnification. In line, alpha power in the NP subgroup was positively associated to higher trait-pain. This association was not observed in the inflammatory-NNP patients, in which alpha power was negatively associated with disease activity. Given the abnormal alpha activity in NP, increased alpha in this population may be associated with detrimental symptoms (e.g. increased...
Increased alpha power in the ascending nociceptive pathway is associated with lower disease activity in NNP patients and with higher clinical pain in NP patients. Spearman correlation between the alpha power and disease activity (i.e., BASDAI) is shown for the left secondary somatosensory cortex (S2) of the ascending nociceptive pathway. Spearman correlation between the alpha power and trait clinical pain intensity (average pain over the last 4 weeks) is shown for the right primary somatosensory cortex (S1) of the ascending nociceptive pathway. Associations are shown in the entire ankylosing spondylitis (AS) chronic pain group (left), in the mixed inflammatory and neuropathic pain (NP) subgroup (pink, middle), and in the matched inflammatory none-neuropathic pain (NNP, right). Significant correlation is indicated by *. The lines are only meant to visually show treadlines to demonstrate the direction of the Spearman relationship and do not indicate a linear relationship. Brain images are displayed using the radiological convention. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
for multiple comparisons. Finally, MEG findings from deep subcortical areas should be considered with care as signal extraction from deep sources is less reliable with MEG, although we employed a source reconstruction method (beamforming) that increases the signal from the ROI and supresses it from the surrounding areas (Hillebrand and Barnes, 2005). Nonetheless, the thalamus results only represent a minor aspect of our findings and methods such as beamforming were shown to locate signals in deep structures (Attal et al., 2012; Attal and Schwartz, 2013; Bardouille and Ross, 2008; Cornwell et al., 2007; Cornwell et al., 2008; Cornwell et al., 2008; Dumas et al., 2013; Hamada et al., 2004; Quraan et al., 2011; Roux et al., 2013; Tewarie et al., 2013).

In conclusion, we propose that high theta and low gamma activity in the dynamic pain connectome may be general markers of chronic inflammatory pain but high alpha-band activity may only be present when neuropathic pain is likely.

Funding

This work was supported by the Canadian Institute of Health Research (PJT 162347, and SCA-145102 Strategy for Patient-Oriented Research (SPOR) funding of the Canadian Chronic Pain Network), and The Mayday Fund. J.A. Kim was supported by an MS Society of Canada endMS Doctoral Stundentship Award, K.S. Hemington, A. Rogachov and J.C. Cheng were supported by CIHR Doctoral Research Award and R.L. Bosma was a recipient of a CIHR Post-doctoral Research Award.

CRediT authorship contribution statement

Lee B. Kisler: Conceptualization, Methodology, Software, Formal analysis, Investigation, Writing - original draft, Writing - review & editing, Visualization. Junseok A. Kim: Conceptualization, Methodology, Software, Investigation, Writing - review & editing. Kasey S. Hemington: Investigation, Writing - review & editing. Anton Rogachov: Investigation, Writing - review & editing. Joshua C. Cheng: Investigation, Writing - review & editing. Rachael L. Bosma: Investigation, Writing - review & editing. Natalie R. Osborne: Investigation, Writing - review & editing. Benjamin T. Dunkley: Conceptualization, Methodology, Writing - review & editing. Robert D. Inman: Resources, Writing - review & editing. Karen D. Davis: Conceptualization, Methodology, Software, Formal analysis, Investigation, Writing - review & editing, Visualization, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

All authors declare no conflict of interest.

Acknowledgments

The authors thank the late Eugen Hlasny, Keith Ta and Brian Li for expert technical assistance in MRI acquisition, Drs Luis Garcia Dominguez and Richard Wennberg for technical assistance in MEG acquisition. They also thank Renise Ayearst for clinical data retrieval, Daeria Lawson and Ammpea Anton for patient recruitment.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.nicl.2020.102241.

References

Albu, S., Meagher, M.W., 2016. Expectation of nocebo hyperalgesia affects EEG alpha-activity. Int. J. Psychophysiol. 109, 147–152.

Attal, Y., Maens, B., Friederici, A., David, O. 2012. Head models and dynamic causal modeling of subcortical activity using magnetoencephalography/electroencephalographic data. Rev. Neurosci. 23 (1), 85–95.

Attal, Y., Schwartz, D., 2013. Assessment of subcortical source localization using deep brain activity imaging model with minimum norm operators: a MEG study. PLoS ONE 8 (5), e69856.

Bakri, M.N., Gheb, Y., Aghgar, A., Chialvo, D.R., 2008. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J. Neurosci. 28 (6), 1398–1403.

Bardouille, T., Ross, B., 2008. MEG imaging of sensorimotor areas using inter-trial coherence in vibrotactile steady-state responses. Neuroimage 42 (1), 323–331.

Beck, A.T., Steer, R.A., Carbin, M.G., 1988. Psychometric properties of the Beck depression inventory: twenty-five years of evaluation. Clin. Psychol. Rev. 8 (7), 77–100.

Benjamin, V., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57 (1), 289–300.

Berrymon, C., Stanton, T.R., Bowering, K.J., Tabor, A., McFarlane, A., Moseley, G.L., 2014. Do people with chronic pain have impaired executive function? A meta-analytical review. Clin. Psychol. Rev. 34 (7), 563–579.

Boord, P., Siddall, P., Tran, Y., Herbert, D., Middleton, J., Craig, A., 2008. Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord 46 (2), 118.

Bosma, R.L., Kim, J.A., Cheng, J.C., et al., 2018. Dynamic pain connectome functional connectivity and oscillations reflect multiple sclerosis pain. Pain 159 (1), 2267–2276.

Bouhassira, D., 2019. Neuropathic pain: definition, assessment and epidemiology. Rev. Neurol. (Paris) 175 (1–2), 16–25.

Bouhassira, D., Lanteri-Minet, M., Attal, N., Laurent, B., Touboul, C., 2008. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 136 (3), 380–387.

Braun, J., Sieper, J., 2007. Ankylosing spondylitis. Lancet 369 (9570), 1379–1390.

Button, K.S., Ioannidis, J.P., Mokrysz, C., et al., 2013. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14 (5), 365–376.

Buzsaki, G., 2006. Rhythms of the Brain. Oxford University Press.

Cheng, J.C., Rogachov, A., Hemington, K.S., et al., 2018. Multivariate machine learning distinguishes cross-network dynamic functional connectivity patterns in state and trait neuropathic pain. Pain 159 (9), 1764–1776.

Cornwell, B.R., Carver, F.W., Coppola, R., Johnson, L., Alvarez, R., Grillon, C., 2008a. Evoked amygdala responses to negative faces revealed by adaptive MEG beamformer. Brain Res. 1244, 103–112.

Cornwell, B.R., Johnson, L.L., Holroyd, T., Carver, F.W., Grillon, C., 2008b. Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. J. Neurosci. 28 (23), 5983–5990.

Davis, K.D., Cheng, J.C., 2019. Differentiating trait pain from state pain: a window into brain mechanisms underlying how we experience and cope with pain. Pain Rep. 4 (4), e735.

Davis, K.D., Moayedi, M., 2013. Central mechanisms of pain revealed through functional and structural MRI. J. Neuroimmunopharmacol. 8 (3), 518–534.

Dwyer, M., Wilder-Smith, D.H., Jongema, M.L.L., et al., 2013. Altered resting state EEG in chronic pancreatitis patients: toward a marker for chronic pain. J. Pain Res. 6, 815.

Di Pietro, F., Macey, P.M., Rae, C.D., et al., 2018. The relationship between thalamic GABA content and resting cortical rhythm in neuropathic pain. Hum. Brain Mapp. 39 (5), 1945–1956.

Dinh, S.T., Nickel, M.M., Tiemann, L., et al., 2019. Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography. Pain.

Doebsch, S.M., Roggeveen, A.B., Kitajo, K., Ward, L.M., 2008. Large-scale gamma-band phase synchronization and selective attention. Cereb. Cortex 18 (3), 386–396.

Dumas, T., Dubal, S., Attal, Y., et al., 2013. MEG evidence for dynamic amygdala modulation by gaze and facial emotions. PLoS ONE 8 (9), e71415.

Dymond, S., Lawrence, N.S., Dunkley, B.T., et al., 2014. Almost winning: induced MEG theta power in insula and orbitofrontal cortex increases during gambling near-misses and is associated with Bold signal and gambling sensitivity. Neuroimage 91, 210–219.

Engels, M., Hillebrand, A., van der Flier, W.M., Stam, C.J., Scheltens, P., van Straaten, E.C., 2016. Slowing of hippocampal activity correlates with cognitive decline in early onset Alzheimer’s disease. An MEG study with virtual electrodes. Front. Hum. Neurosci. 10, 238.

Fayaz, A., Croft, P., Langford, R., Donaldson, L., Jones, G., 2016. Prevalence of chronic pain in the UK: a systematic review and meta-analysis of population studies. BMJ Open 6 (6), e010364.

Frynhagen, R., Baron, R., Gockel, U., Tolle, T.R., 2006. Opinion. Pain DETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr. Med. Res. Opin. 22 (10), 1911–1920.

Furnar, A.J., Meeker, T.J., Rietsema, J.C., et al., 2018. Cerebral peak alpha frequency predicts individual differences in pain sensitivity. Neuroimage 167, 203–210.

Garrett, S., Jenkinson, T., Kennedy, L.G., Whitehead, H., Gaisford, P., Galin, A., 1994. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J. Rheumatol. 21 (12), 2286–2291.

Giaquinto, S., Nolfe, G., 1986. The EEG in the normal elderly: a contribution to the interpretation of aging and dementia. Electroencephalogr. Clin. Neurophysiol. 63 (4), 331.

Gonzalez-Moreno, A., Arentytes, S., Lopez-Garcia, M.-E., del Pozo, F., Maesta, F., 2014. Signal-to-noise ratio of the MEG signal after preprocessing. J. Neurosci. Methods 222, 56–61.

Gross, J., Schnitzler, A., Timmermann, L., Ploner, M. 2007. Gamma oscillations in human
primary somatosensory cortex reflect pain perception. PLoS Biol. 5 (5), e133.
Hamada, Y., Sugino, K., Kado, H., Suzuki, R. 2004. Magnetic fields in the human hip-
occa: a somatosensory oddball task. Hippocampus 14 (4), 426–433.
Handlmaier, S., Gross, J., Klimesch, W., Shapiro, K.L. 2011. The role of alpha oscillations in temporal attention. Brain Res. Rev. 67 (1–2), 331–343.
Harifi, G., Amine, M., Ait Ouazar, M., et al., 2013. Prevalence of chronic pain with neuropsychiatric characteristics in the Moroccan general population: a national survey. Pain Med. 14 (2), 287–292.
Hashemi, A., Pino, L.J., Moffat, G., et al., 2016. Characterizing population EEG dynamics throughout adulthood. eNeuro 3 (6).
Hashmi, A.J., Davis, K.D., 2014. Deconstructing sex differences in pain sensitivity. Pain 155 (1), 10–13.
Hauck, M., Lorenz, J., Engel, A.K. 2007. Attention to painful stimulation enhances gamma-band activity and synchronization in human sensorimotor cortex. J. Neurosci. 27 (35), 9270–9277.
Hemington, K.S., Wu, Q., Kucyi, A., Inman, R.D., Davis, K.D., 2016. Abnormal cross-net-
work functional connectivity in chronic pain and its association with clinical symp-
toms. Brain Struct. Funct. 221 (8), 4203–4219.
Hillebrand, A., Barnes, G.R., 2005. Beamformer analysis of MEG data. Int. Rev. Neurobiol. 68, 149–171.
Hillebrand, A., Singh, K.D., Holliday, I.E., Furlong, P.L., Barnes, G.R., 2005. A new ap-
proach to neuroimaging with magnetoencephalography. Hum. Brain Mapp. 25 (2), 199–211.
Jausovec, N., Jausovec, K., 2010. Resting brain activity: di-

Kuchinad, A., Schweinhardt, P., Seminowicz, D.A., Wood, P.B., Chizh, B.A., Bushnell, M.C., 2007. Accelerated brain gamma matter loss in fibromyalgia patients: a pre-
ference of aging brain. J. Neurosci. 27 (15), 4004–4007.
Kucyi, A., Davis, K.D., 2015. The dynamic pain connectome. Trends Neurosci. 38 (2), 86–95.
Kucyi, A., Davis, K.D., 2017. The neural code for pain: from single-cell electrophysiology to large-scale cortical networks. Front. Psychol. 8, 204.
Pathan, E.M.I., Inman, R.D., 2017. Pain in spondyloarthropathy: a neuro-immune interaction. Best Pract. Res. Clin. Rheumatol. 31 (6), 850–865.
Pinheiro, E.S., de Queirós, F.C., Montoya, P., et al., 2016. Electroencephalographic pat-
terns in chronic pain: a systematic review of the literature. PLoS ONE 11 (2), e0149085.
Porreca, F., Ossipov, M.H., Gehrl, G., 2002. Chronic pain and medullary descending facilitation. Trends Neurosci. 25 (6), 319–325.
Quraan, M.A., Moses, S.N., Hung, Y., Mills, T., Taylor, M.J., 2011. Detection and locali-
ization of hippocampal activity using beamformers with MEG: a detailed investigation using simulations and empirical data. Hum. Brain Mapp. 32 (5), 812–827.
Rogachov, A., Cheng, J.C., Erdélyi, N., Hemington, K.S., Crawley, A.P., Davis, K.D., 2016. Regional brain signal variability: a novel indicator of pain sensitivity and coping. Pain 157 (11), 2483–2492.
Roux, F., Wiberal, M., Singer, W., Aru, J., Ulhassa, P.J., 2013. The phase of thalamic alpha activity modulates cortical gamma-band activity: evidence from resting-state MEG recordings. J. Neurosci. 33 (45), 17827–17835.
Sarntobin, J., Jeanmonod, D., 2008. High thalamocortical theta coherence in patients with neuropogenic pain. Neuroimage 39 (4), 1910–1917.
Sarntobin, J., Morel, A., Von Stein, A., Jeanmonod, D., 2003. Thalamic theta field po-
tentials and EEG: high thalamocortical coherence in patients with neuropgenic pain, epilepsy and movement disorders. Thalamus Relat. Syst. 2 (3), 231–238.
Sarntobin, J., Sorn, J., Auenberg, C., Rousson, V., Jeanmonod, D., 2005. Increased EEG power and slowed dominant frequency in patients with neuropenic pain. Brain 129 (1), 55–64.
Schmidt, S., Naranjo, J.R., Brenneisen, C., et al., 2012. Pain ratings, psychological func-
tional connectivity and quantitative EEG in a controlled study of chronic back pain patients. PLoS ONE 7 (3), e31138.
Schotz, D.E., Nemes, V.D., Lissis, C., 2012. Attentional bias towards pain-related in-
formation in chronic pain: a meta-analysis of visual-probe investigations. Clin. Psychol. Rev. 32 (1), 13–25.
Schulz, E., May, E.S., Postorino, M., et al., 2015. Preferential gamma oscillations encode tonic pain in humans. Cereb. Cortex 25 (11), 4407–4414.
Stern, J., Jeanmonod, D., Sarntobin, J., 2006. Persistent EEG overactivity in the cortical pain matrix of neuropenic pain patients. Neuroimage 31 (2), 721–731.
Taula, S., Simola, J., 2006. Biology. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys. Med. Biol. 51 (7), 1759.
Tewarie, P., Schoonheim, M.M., Stam, C.J., et al., 2013. Cognitive and clinical dysfunc-
tion, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis. PLoS ONE 8 (7), e69318.
Toth, C., Lander, J., Wiebe, S., 2009. The prevalence and impact of chronic pain with
neuropathic pain symptoms in the general population. Pain Med. 10 (5), 918–929.
van den Broeke, E.A., Wilder-Smith, O.H., van Goor, H., Vissers, K.C., van Rijn, C.M., 2013. Patients with persistent pain after breast cancer treatment show enhanced alpha activity in spontaneous EEG. Pain Med. 14 (12), 1893–1899.
Van Der Linden, S., Valkenburg, H.A., Cats, A., 1984. Evaluation of diagnostic criteria for ankylodystrophy. Arthritis Rheum. 27 (4), 361–368.
Van Veen, B.D., Van Dren根, W., Yuchtman, M., Suzuki, A., 1997. Localization of brain
electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44 (9), 867–880.
Vanneste, S., Song, G.J., De Ridder, D., 2018. Thalamocortical dysrhythmia detected by machine learning. Nat. Commun. 9 (1), 1103.
Velumurugan, J., Sinha, S., SatiScheidhara, P., 2014. Magnetoencephalography recording analysis. Ann. Indian Acad. Neurol. 17 (Suppl 1), S113.
Vuckovic, A., Alkaeli, M.K.H., Fraser, M., McGeady, C., Purcell, M., 2019. EEG correlates of thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Neuroimage 102, 1–19.
Vuckovic, A., Altaleb, M.K.H., Fraser, M., McGeady, C., Purcell, M., 2019. EEG correlates of thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Neuroimage 102, 1–19.
Vuckovic, A., Hasan, M.A., Fraser, M., Conway, B.A., Nasseroleslami, B., Allan, D.B., 2014. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. J. Neurosci. 34 (13), 4979–4986.
Walton, K., Dubois, M., Llinas, R., 2010. Abnormal thalamocortical activity in patients
with Complex Regional Pain Syndrome (CRPS) type I. Pain 150 (1), 41–51.
Wang, G., Erdélyi, N., Davis, K.D., 2014. Sex differences in connectivity of the sub-

cortex po-

64.
Wu, Q., Inman, R.D., Davis, K.D., 2013. Neurophysiological pain mechanisms in ankylosing spondylitis: a psychophysiological and brain imaging study. Ann. Rheum. Dis. 72 (4), 650–655.
Wu, Q., Inman, R.D., Davis, K.D., 2013. Neurophysiological pain mechanisms in ankylosing spondylitis: a psychophysiological and brain imaging study. Ann. Rheum. Dis. 72 (4), 650–655.
Wu, Q., Inman, R.D., Davis, K.D., 2013. Neurophysiological pain mechanisms in ankylosing spondylitis: a psychophysiological and brain imaging study. Ann. Rheum. Dis. 72 (4), 650–655.