Supplementary Material of ‘msRepDB: a comprehensive repetitive sequence database of over 80,000 species’

Xingyu Liao1,2*, Kang Hu3*, Adil Salhi3, You Zou1*, Jianxin Wang3(*), and Xin Gao3(*)

1 Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
2 School of Computer Science and Engineering, Central South University, ChangSha, 410083, CHINA.
3 The latest version of the Dfam database (v3.4) only contains the specific data of 552 species (https://dfam.org/home), which can be further subdivided into unique data and the data fused with RepBase. In addition, the data of other species are directly inherited from RepBase (about 61,518 species). Compared with the latest version of the Dfam database, the msRepDB database currently collects the repetitive sequences of the data of other species are directly inherited from RepBase (about 61,518 species). Compared with the latest version of the Dfam database, the msRepDB database currently collects the repetitive sequences of the data of other species are directly inherited from RepBase (about 61,518 species).

1 Background

Repetitive sequences are prevalent in the genomes of all bacteria, plants and animals, and they cover nearly half of the human genome[1],[2]. Repetitive sequences play indispensable roles in the evolution, inheritance, variation, genomic instability, and serve as substrates for chromosomal rearrangements that include disease-causing deletions, inversions, and translocations[3],[4],[5],[6],[7]. For example, the number and types of repetitive sequences vary between organisms and may reflect how rapidly an organism evolves to changes in its environment[8],[9]. Comprehensive identification, classification and annotation of repetitive elements in genome sequences for research and drug discovery are important substrates for genome evolution[10] and Dfam[11] libraries are two most often used repeat databases, but they are not sufficiently complete. For instance, in the Glycine max genome when the combination of RepBase and Dfam is used as the repetitive sequence database, only 28.47% of bases can be annotated as LTR (Long Terminal Repeat) retrotransposons cannot be accurately annotated (Table S9). Due to the lack of a comprehensive repetitive sequence database of multiple species, the current research in this field is far from being satisfactory.

2 The importance of repetitive DNA detection in human health and disease research

Repetitive sequences are abundantly distributed in the genomes of all viruses, bacteria, plants and animals[13]. For example, they constitute up to 45% of the genome in mouse and 50%-70% in human[14]. The repetitive sequences of the genome play a central role in the stability of the chromosome, the cell cycle, and the regulation of gene expression, and they are also an important substrates for genome evolution[15],[16],[17],[18]. As an example, the number and types of repetitive sequences vary between organisms and may reflect how rapidly an organism evolves to changes in its environment[19],[20]. Moreover, they are fundamental to the cooperative molecular interactions which form nucleoprotein complexes[21], and have also been implicated in molecular and cellular dysfunction associated with human diseases[22]. For instance, the tandem repeat expansion has been associated with more than 40 monogenic disorder, which has has been shown to be a major genetic contributor to frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and autism spectrum disorder (ASD), the middle of which is the most common form of motor neuron disease[23],[24] and the latter of which is a group of neurodevelopmental disorders characterized by atypical social function, communication deficits, restricted interests and repetitive behaviors[25],[26],[27]. Besides, the expression of retrotransposition-competent transposable elements can lead to more insertions which can disrupt gene function or alter gene expression, contributing to complex diseases such as lung cancer, pancreatic cancer, ovarian cancer, neurological diseases, blood diseases[28],[29],[30], etc. RepBase and Dfam are two most frequently used repeat databases, but they are not sufficiently complete. For instance, in the Glycine max genome when the combination of RepBase and Dfam is used as the repetitive sequence database, only 28.47% of bases can be annotated as LTR (Long Terminal Repeat) retrotransposons cannot be accurately annotated, and in the Drosohila genome, when the combination of RepBase and Dfam is used as the repeat database, only about 20% (Table S9) of bases can be annotated as repeats, and the true proportion should be about 21-22% [31],[32]. Due to the lack of a comprehensive repeat database of multiple species, the current research in this field is far from being satisfactory.

Comprehensive identification, classification and annotation of repeats in genomes can provide accurate and targeted questions towards understanding and diagnosis of complex disorders, optimization of plant properties, development of new drugs, and individual health management. RepBase [10] and Dfam[11] libraries are two most often used repeat databases, but they are not sufficiently complete. For instance, in the Glycine max genome when the combination of RepBase and Dfam is used as the repetitive sequence database, only 28.47% of bases can be annotated as LTR (Long Terminal Repeat) retrotransposons cannot be accurately annotated (Table S9). Due to the lack of a comprehensive repetitive sequence database of multiple species, the current research in this field is far from being satisfactory.

3 The composition of database elements

The latest version of the Dfam database (v3.4) only contains the specific data of 552 species (https://dfam.org/home), which can be further subdivided into unique data and the data fused with RepBase. In addition, the data of other species are directly inherited from RepBase (about 61,518 species). Compared with the latest version of the Dfam database, the msRepDB database currently collects the repetitive sequences of 84,601 species which are obtained based on the corresponding detection results of LongRepMarker after the two processes of removing impurities and chimeras, and constructing the consensus sequences. For the partial information of the 84,601 specific species contained in msRepDB, please refer to Tables S1, S2 and S3. Furthermore, we have also constructed a tree structure-based species list on the ‘Search and download’ and ‘Online masking’ webpages of the new version of the msRepDB database. Partial display of the tree structure-based species list is shown in the Figure S1. From the point of view of data integrity, msRepDB completely covers Dfam and RepBase, while providing data on some previously unlisted species.
Fig. S1. Partial display of the tree structure-based species list.

Species Name	Taxonomy id	Common species name
Cyphellophora europaea CBS 101466	1220924	-
Fusarium proliferatum ET1	1227346	-
[Candida] duobushaemulonis	1231522	-
Plasmodium inui San Antonio 1	1237626	-
Acanthamoeba castellanii str. Neff	1257118	-
Fusarium fujikuroi IMI 58289	1279085	-
Kwoniella bestiolae CBS 10118	1296100	-
Kwoniella dejecticola CBS 10117	1296121	-
Kwoniella mangroviensis CBS 8507	1296122	-
Aspergillus campestris IBT 28561	1392248	-
Aspergillus steynii IBT 23096	1392250	-
Aspergillus novofumigatus IBT 16806	1392255	-
Aspergillus ochraceoroseus IBT 24754	1392256	-
Sporothrix schenckii 1099-18	1397361	-
Sporothrix brasiliensis 5110	1398154	-
Pneumocystis carinii B80	1408658	-
Fonsecaea pedrosoi CBS 271.37	1442368	-
Rhinocladiella mackenziei CBS 650.93	1442369	-
Cebus imitator 2715852 Panamanian white-faced capuchin		
Table S2. Partial list B of the specific species in the msRepDB database.

Species Name	Taxonomy id	Common species name
Trichosporon asahii var. asahii CBS 2479	1186058	Trichosporon species
Saprolegnia diclina VS20	1156394	Saprolegnia species
Plasmodium cynomolgi strain B	1120755	Plasmodium species
Phytophthora sojae strain P6497	1094619	Phytophthora species
Fusarium odoratissimum NRRL 54006	1089451	Fusarium species
Lactococcus lactis subsp. lactis IO-1	1046624	Lactococcus species
Kluyveromyces marxianus DMKU3-1042	1003335	Kluyveromyces species
Leptosphaeria maculans JN3	985895	Leptosphaeria species
Agaricus bisporus var. bisporus H97	936046	Agaricus species
Plasmodium sp. gorilla clade G2	880535	Plasmodium species
Exophiala dermatitidis NIH/UT8656	858893	Exophiala species
Sordaria macrospora k-hell	771870	Sordaria species
Phycomyces blakesleeanus NRRL 1555(-)	763407	Phycomyces species
Phytophthora parasitica INRA-310	761204	Phytophthora species
Rhizophagus irregularis DAOM 181602=DAOM 197198	747089	Rhizophagus species
Coniophora puteana RWD-64-598 SS2	741705	Coniophora species
Saprolegnia parasitica CBS 223.65	695850	Saprolegnia species
Aspergillus aculeatus ATCC 16872	690307	Aspergillus species
Batrachochytrium dendrobatidis JAM81	684364	Batrachochytrium species
Sclerotinia sclerotiorum 1980 UF-70	665079	Sclerotinia species
Bipolaris maydis ATCC 48331	665024	Bipolaris species
Cryphonectria parasitica EP155	660469	Cryphonectria species
Fusarium oxysporum NRRL 32931	660029	Fusarium species
Tuber melanosporum Mel28	656061	Tuber species
Spizellomyces punctatus DAOM BR117	645134	Spizellomyces species
Colletotrichum graminicola M1.001	645133	Colletotrichum species
Capsaspora owczarzaki ATCC 30864	595528	Capsaspora species
Myripristis murdjan 586833 pinecone soldierfish		
Table S3. Partial list C of the specific species in the msRepDB database.

Species Name	Taxonomy id	Common species name
Bacteria	2	eubacteria
Firmicutes	1239	
Lactococcus lactis	1358	
Citrus	2706	
Rhodophyta	2763	red algae
Chondrus	2768	
Chondrus crispus	2769	carragheen
Bangiophyceae	2797	
Florideophyceae	2806	
Haptophyta	2830	
Bacillariophyta	2836	diatoms
Phaeodactylum	2849	
Phaeodactylum tricornutum	2850	
Phaeophyceae	2870	brown algae
Ectocarpaceae	2878	
Emiliania	2902	
Emiliania huxleyi	2903	
Chlorophyta	3041	green algae
Chlamydomonadales	3042	
Chlamydomonas	3052	
Chlamydomonas reinhardii	3055	
Volvocaceae	3065	
Volvox	3066	
Volvox carteri	3067	
Chlorella	3071	
Chlorophyceae	3166	
Bryophyta	3208	mosses
Physcomitrium patens	3218	
Equisetaceae	3256	
Equisetum scirpoides	3261	
Ginkgoaceae	3309	
Ginkgo	3310	
Picea	3328	Norway spruce
Picea abies	3329	
Picea glauca	3330	white spruce
Magnoliopsida	3398	flowering plants
Moraceae	3487	
Morus	3497	mulberries
Spinacia oleracea	3562	spinach
Vitaceae	3602	
Vitis	3603	
Malvaceae	3629	
Theobroma	3640	
Theobroma cacao	3641	cacao
Malpighiales	3646	
Carica papaya	3649	papaya
Cucumis	3655	
Cucumis melo	3656	muskmelon
Cucumis sativus	3659	cucumber
Cucurbita maxima	3661	winter squash
Cucurbita pepo	3663	
Populus	3689	poplars
Populus trichocarpa	3694	black cottonwood
Arabidopsis thaliana	3702	thale cress
Brassica napus	3708	rape
Brassica rapa	3711	field mustard
Malus domestica	3750	apple
Prunus persica	3760	peach
Cajanus cajan	3821	pigeon pea
Cicer arietinum	3827	chickpea
Glycine max	3847	soybean
Medicago truncatula	3880	barrel medic
Phaseolus vulgaris	3885	
Manihot esculenta	3983	cassava
Ricinus communis	3988	castor bean
Capsicum annuum	4072	
Solanum lycopersicum	4081	tomato
Nicotiana sylvestris	4096	wood tobacco
Nicotiana tabacum	4097	common tobacco
Nicotiana tomentosiformis	4098	
Solanum tuberosum	4113	potato
Erythranthe guttata	4155	spotted monkey flower
Lactuca sativa	4236	
Nelumbo nucifera	4432	sacred lotus
Oryza sativa	4530	rice
Setaria italica	4555	foxtail millet
Sorghum bicolor	4558	sorghum
Zea mays	4577	
Ananas comosus	4615	pineapple
Schizosaccharomyces pombe	4896	fission yeast
Saccharomyces cerevisiae	4932	baker's yeast
Leptosphaeria	5021	
Ophiostomataceae	5152	
Ganoderma	5314	
Pleurotus ostreatus	5322	oyster mushroom
Candida albicans	5476	
[Candida] glabrata	5478	
Alternaria alternata	5599	
Leishmania donovani	5661	
Giardia intestinalis	5741	
Dictyostelium purpureum	5786	
Hydra vulgaris	6087	swiftwater hydra
Schistosoma mansoni	6183	
Caenorhabditis briggsae	6238	
Caenorhabditis elegans	6239	
Brugia malayi	6279	
Trichinella spiralis	6334	
Helobdella robusta	6412	
Aplysia californica	6500	California sea hare
Biomphalaria glabrata	6526	
Mytilus californianus	6549	California mussel
Ostreidae	6563	oysters
Crassostrea virginica	6565	eastern oyster
Mizuhopecten yessoensis	6573	Yesso scallop
Mactridae	6581	surf clams
Octopoda	6638	
Octopus vulgaris	6645	common octopus
Penaeus vannamei	6689	Pacific white shrimp
Merostomata	6844	horseshoe crabs
Limulus polyphemus	6850	Atlantic horseshoe crab
Rhipicephalus microplus	6941	southern cattle tick
Ixodes scapularis	6945	black-legged tick
Caledia	7013	
Stauroderus	7018	
Acyrthosiphon pisum	7029	pea aphid
Bemisia tabaci	7038	
Tenebrio	7066	
Tribolium castaneum	7070	red flour beetle
Bombyx mori	7091	domestic silkworm
Spodoptera frugiperda	7108	fall armyworm
Trichoplusia ni	7111	cabbage looper
Samia	7126	
Manduca sexta	7130	tobacco hornworm
Aedes aegypti	7159	yellow fever mosquito
Aedes albopictus	7160	Asian tiger mosquito
Anopheles albimanus	7167	
Anopheles arabiensis	7173	
Culex quinquefasciatus	7176	southern house mosquito
Loa loa	7209	eye worm
Ceratitis capitata	7213	Mediterranean fruit fly
Drosophila ananassae	7217	
Drosophila erecta	7220	
Drosophila grimshawi	7222	
Drosophila hydei	7224	
Drosophila mauritiana	7226	
Drosophila melanogaster	7227	fruit fly
Drosophila miranda	7229	
Drosophila mojavensis	7230	
Drosophila navojoa	7232	
Drosophila persimilis	7234	
Drosophila pseudoobscura	7237	
Drosophila sechellia	7238	
Drosophila simulans	7240	
Drosophila subobscura	7241	
Drosophila virilis	7244	
Drosophila yakuba	7245	
Drosophila athabasca	7248	
Drosophila willistoni	7260	
Drosophila arizonae	7263	
Drosophila guanche	7266	
4 The classes of repetitive DNA in the msRepDB database

According to the arrangement, the repetitive sequences contained in msRepDB database can be divided into two types: tandem repeats and scattered repeats (Fig. S2). Scattered repeats are commonly referred to transposons, which can also be divided into RNA transposons and DNA transposons these two categories. The RNA transposons can be roughly divided into three types according to the different transposon modes: long terminal repeat sequence (LTR), long interpersed nuclear element (LINE) and short interpersed nuclear element (SINE). The DNA transposons can be divided into four classes according to the different transposon modes: miniature inverted repeat transposable element (MITE), Crypton, Maverick and helitron. The tandem repeats commonly refer to sequences in which the repeating units are distributed in tandem, and their head and tail are connected together to form an aggregated region. The three most common types of tandem repeats in non-coding regions are satellite, minisatellite and microsatellite. The advantage of msRepDB is mainly reflected in its more complete collection of retrotransposons, especially LTRs and LINEs.

5 Approach and workflow

LongRepMarker[36] is a new framework developed recently by our group for comprehensive identification of genomic repetitive sequences. Comprehensive evaluations carried out in the study of LongRepMarker not only show that LongRepMarker can achieve more satisfactory results than the existing detection methods, but can also discover a large number of new repeat sequences and families.

1) Identification of overlap sequences.

The repetition relation is a special case of the overlap relation. Thus all possible repetition relationship can be found by searching overlap sequences. Overlap sequences occupy only a small portion of the overall sequences. By finding the overlap sequences between assemblies or chromosomes, the algorithm locates the repetitive sequences faster and more accurately.

2) Conversion of overlap sequences into unique k-mers.

The number and length of sequences will have a great impact on the efficiency of multiple sequence alignment. Generally, the more the number and the longer the length, the greater the computational resource consumption. The unique k-mers are much smaller than overlap sequences both in terms of number and length. Using unique k-mers instead of overlap sequences for mapping can greatly optimize the efficiency of multi-sequence alignment.

3) Generation of the multi-alignment unique k-mers and their coverage regions on overlap sequences.

The multi-alignment unique k-mers were first proposed in the paper of LongRepMarker, which refers to the unique k-mers that can be aligned to multiple different locations in the overlap sequences. Due to the sequencing bias, the high frequency threshold is often difficult to obtain accurately, which has a great impact on the range of the high frequency k-mers. However, the multi-alignment unique k-mers are not affected by these factors. By using the multi-alignment unique k-mers to identify repeats in overlap sequences, the algorithm can obtain the repeats in the genomes more comprehensively and stably.

4) Classification of regions on overlap sequences that can be covered by multi-alignment unique k-mers.

Due to the short size of unique k-mers, it is easy to form a coupling alignment (coupling alignment refers to the fusion of unique k-mers that should not be fused together). To eliminate the influence of the coupling alignment, the algorithm further classifies the regions on the overlap sequences covered by the multi-alignment unique k-mers into two categories, and filters out the false repetitive sequences, thereby improving the accuracy of the detection results.

5) Merging fragments with duplication or inclusion.

The results of detection methods based on the multiple sequence alignment will inevitably contain redundant elements. In order to make the detection results as pure as possible without any impurities and redundancy, the algorithm merges the detected repetitive fragments with duplication and inclusion relationships.

6) Classification and annotation of the obtained repetitive sequences.

When the repetitive sequences are obtained, the algorithm also needs to classify and annotate them, because the repeats without classification and annotation information are meaningless. In this step, a distributed RepeatClassifier developed by our group is used to classify and annotate the obtained repetitive sequences.

Note that LongRepMarker is different from RepeatScout[37] and RepeatModeler2[38] in detection targets. RepeatScout and RepeatModeler2 both focus on the discovery of repeated families. It is well known that a repeat family is an abstraction of a type of repeat sequence (a one-to-many relationship), and its acquisition must go through the two operations of merging the obtained repeat sequences and taking the consensus sequence. However, the detection goal of LongRepMarker is not to find repeated families, but to comprehensively mine all repeated sequences of the genome, and provide a basis for accurately identifying the mutations that exist between different copies. Therefore, in the detection results of LongRepMarker, we merged duplicate copies with high consistency, and saved the duplicate copies with differences as much as possible.
possible, and at the same time analyzed the structural variation that occurred in the duplicate copies with differences. Our purpose is to provide a method to study the effect of variations that exist between different duplicate copies on the genetic, evolution and variation of organisms.

Although there will be some redundancy and chimerism in the detection results of LongRepMarker, the repetitive sequences identified by it are still the most complete compared to other existing tools. In order to remove impurities and chimeras in the detection results and output purer repetitive sequences for the database construction, three steps of impurity removal, chimerism removal and consensus sequence construction are carried out after the detection results of LongRepMarker obtained. When the purified repetitive sequences are generated, RepeatClassifier is used to classify and annotate these sequences. After that, the algorithm needs to merge the repeated sequences with its classification and annotation information, and form a file in the FASTA format[39]. In this generated file in the FASTA format, the sequence composed of A/T/G/C characters is a repeating sequence, and the sequence starting with an angle bracket above the repeating sequence is the annotation sequence, which contains the corresponding classification and annotation information[40].

6 Implementation

The data processing and analysis functions of msRepDB database have been implemented using Python v.3.6.9 (https://www.python.org/getit/) coupled with the SpringBoot integrated framework (https://spring.io/projects/spring-boot). msRepDB runs on a Linux-based Maven server 3.8.1 (Maven is a build automation tool used primarily for java projects, https://maven.apache.org/download.cgi). The database was developed using MySQL 5.7.31 (https://www.mysql.com/), and the web interface was developed using html5 markup language (https://en.wikipedia.org/wiki/HTML5) combined with Bootstrap v.5.0.2 (https://v3.bootcss.com), layUI v.2.6.8 (https://www.layui.com/) and JQuery v.1.11.1 (http://jquery.com) (Fig. S3). In the process of online masking, two aligners, bwa[41] and minimap2[42] were used, in which the short sequence fragments were aligned using bwa, and the long sequence fragments were aligned using minimap2. The screenshots of the main interfaces of the msRepDB database are shown in Figures S4-S8.

Fig. S3. Flow chart of msRepDB.

Fig. S4. A screenshot of the tree structure-based species list.
Fig. S5. A screenshot of the "Search and download" interface.

Fig. S6. A screenshot of the "Online masking" interface.
Fig. S7. A screenshot of the "Submit" interface.

Fig. S8. A screenshot of the "Team" interface.
7 Test and performance results

7.1 Comparison of the improved LongRepMarker and existing tools in detection performance

RepBase and Dian libraries are the two most frequently used repeat databases, but they are not sufficiently complete, because most of the repetitive sequences collected in these two libraries are obtained through some existing detection methods (such as RepeatMasker, RepeatScout, RepeatModeler, and RepeatModeler2). Due to the limitations of sequencing data and the defects in design of the detection principle, existing detection methods cannot accurately and comprehensively obtain the repetitive sequences of species.

LongRepMarker (DOI:10.1093/nar/gkab563, https://github.com/BioinformaticsCSU/LongRepMarker) is a new framework developed recently by our group for comprehensive identification of genomic repetitive sequences. Note that LongRepMarker is different from RepeatScout and RepeatModeler2 in detection targets. RepeatScout and RepeatModeler2 both focus on the discovery of repeated families. It is well known that a repeat family is an abstraction of a type of repeat sequence (a one-to-many relationship), and its acquisition must go through the two operations of merging the obtained repeat sequences and taking the consensus sequence. However, the detection goal of LongRepMarker is not to find repeated families, but to comprehensively mine all repeated sequences of the genome, and provide a basis for accurately identifying the mutations that exist between different copies. Therefore, in the detection results of LongRepMarker, we merged duplicate copies with high consistency, and saved the duplicate copies with differences as much as possible, and at the same time analyzed the structural variation that occurred in the duplicate copies with differences. Our purpose is to provide a method to study the effect of variations that exist between different duplicate copies on the genetic, evolution and variation of organisms.

Although there will be some redundancy and chimerism in the detection results of LongRepMarker, the specific steps of the experiment are to use RepeatMasker sequence as the annotation sequence, which contains the corresponding classification and annotation information. A file in the FASTA format is generated after the detection results of LongRepMarker obtained. When the purified repetitive sequences are generated, RepeatClassifier is used to classify and annotate these sequences. After that, the algorithm needs to merge the repeated sequences with its classification and annotation information, and form a file in the FASTA format. In this generated file in the FASTA format, the sequence composed of A/T/G/C characters is a repeating sequence, and the sequence starting with an angle bracket above the repeating sequence is the annotation information, which contains the corresponding classification and annotation information.

In order to evaluate the performance of the improved LongRepMarker, we conducted experiments on two species of drosophila and glycine max. The specific steps of the experiment are to use RepeatMasker to acquire the two species of drosophila and glycine max, respectively, and save the duplicate copies with high consistency, and saved the duplicate copies with differences as much as possible, and at the same time analyzed the structural variation that occurred in the duplicate copies with differences. In addition, we have also evaluated the performance of the newly added three steps of impurity removal, chimerism removal and consensus sequence construction in the pipeline of the improved LongRepMarker.

The evaluation results are shown in Table S6 and Figures S9-S10.

Repeat Types	Num of bases masked: 3770909 bp (52.22%)	Num of bases masked: 3491131 bp (48.35%)	Num of bases masked: 3336440 bp (46.21%)
Simple repeats	18 7662 bp 0.11%	0 0bp 0.00%	0 0bp 0.00%
Satellites	0 0bp 0.00%	0 0bp 0.00%	0 0bp 0.00%
LTR elements	1153 75906 bp 1.05%	1172 76644 bp 1.06%	1224 80026 bp 1.11%
SINEs	0 0bp 0.00%	0 0bp 0.00%	0 0bp 0.00%
LINEs	227 144757 bp 2.00%	0 0bp 0.00%	0 0bp 0.00%
En-Spm	1021 1649979 bp 22.85%	0 0bp 0.00%	0 0bp 0.00%

Table S4. Comparison of the proportion of the detection results produced by the improved LongRepMarker and other two tools covering Drosophila RepBase library.
and chimeras into short repeats with higher accuracy. Added processing steps can reduce redundancy to a great extent, while cutting long fragments containing impurities after the above steps. Comparing the alignments shown in the first and second red boxes, we can see that the newly chimeras, and construction of consensus sequences. The second red box shows the alignment of repeated fragments after the above steps. Comparing the alignments shown in the first and second red boxes, we can see that the newly added processing steps can reduce redundancy to a great extent, while cutting long fragments containing impurities and chimeras into short repeats with higher accuracy.

Table S5. Comparison of the performance of the detection results produced by the improved LongRepMarker and other two tools covering Glycine max RepBase library.

Repeat Types	Improved LongRepMarker	RepeatScout	RepeatModeler2			
Total length: 1642293bp bases masked: 1632175 bp (99.45%)	Total length: 1642293bp bases masked: 1591794 bp (95.28%)	Total length: 1642293bp bases masked: 1592522 bp (98.56%)				
Repeats	Number	Percentage	Number	Percentage	Number	Percentage
--------------	--------	-----------	--------	-----------	--------	-----------
ALUs:	0	0.00%	0	0.00%	0	0.00%
ERLE/PELIE:	0	0.00%	0	0.00%	0	0.00%
LINE/SLATE:	0	0.00%	0	0.00%	0	0.00%
LTR:	512	78.82%	1030	75.23%	815	67.69%
Satellite:	0	0.00%	0	0.00%	2	0.01%
Simple repeats:	181	1.84%	215	1.96%	255	2.05%
DNA elements:	0	0.00%	0	0.00%	0	0.00%
Other class:	0	0.00%	0	0.00%	0	0.00%
Total interspersed repeats:	2789	2.69%	3530	2.75%	3753	2.95%
Small RNA:	27	0.45%	26	0.42%	2	0.32%
Simple repeats:	1	0.03%	0	0.00%	3	0.02%
Satellites:	0	0.00%	0	0.00%	2	0.01%
Other (Misc):	0	0.00%	0	0.00%	0	0.00%
Consensus sequence:	758	0.00%	758	0.00%	758	0.00%

Table S6. The performance evaluation of the three steps of removing impurities, removing chimerism and constructing a consensus sequence.

Step	Improved LongRepMarker	RepeatScout	RepeatModeler2						
Length occupied of sequence	Num of bases masked	Percentage	Num of bases masked	Percentage	Num of bases masked	Percentage			
Improved LongRepMarker	1,060	515,930bp	30.49%	0	0bp	0.00%	0	0bp	0.00%
RepeatScout	218	101,835bp	47.50%	0	0bp	0.00%	0	0bp	0.00%
RepeatModeler2	215	101,335bp	47.49%	0	0bp	0.00%	0	0bp	0.00%

Fig. S9. The first effect demonstration of removing impurities, removing chimerism and constructing common sequences. Comparison of sequences alignment before and after removal of impurities and chimeras, and construction of consensus sequences. The first red box shows the alignment of repeated fragments without removal of impurities and chimeras, and construction of consensus sequences. The second red box shows the alignment of repeated fragments after the above steps. Comparing the alignments shown in the first and second red boxes, we can see that the newly added processing steps can reduce redundancy to a great extent, while cutting long fragments containing impurities and chimeras into short repeats with higher accuracy.

Fig. S10. The second effect demonstration of removing impurities, removing chimerism and constructing common sequences. Comparison of sequences alignment before and after removal of impurities and chimeras, and construction of consensus sequences. The first red box shows the alignment of repeated fragments without removal of impurities and chimeras, and construction of consensus sequences. The second red box shows the alignment of repeated fragments after the above steps. Comparing the alignments shown in the first and second red boxes, we can see that the newly added processing steps can reduce redundancy to a great extent, while cutting long fragments containing impurities and chimeras into short repeats with higher accuracy.
We have conducted various experimental evaluations on the comprehensiveness of the msRepDB database. For example, we used the latest version of RepeatMasker (V.4.1.2) to classify and annotate the repeats of genomes Human, Mouse, Drosophila, Rice and Glycine max based on msRepDB and the combination of the latest RepBase (V.26.06) and Dfam (V.3.3).

The frequency and length distribution, the multiple alignment ratio, the proportion of coverage over the reference genome and the duplication ratio of the repetitive sequences contained in msRepDB and the combination of Dfam and RepBase databases are shown in Table S7. We can see that the repetitive sequences collected in the msRepDB database have a higher repetition frequency and larger size as a whole. Furthermore, from the perspective of multiple alignment ratio, coverage of the reference genome, and duplication ratio, the repetitive sequences contained in msRepDB are usually more accurate and less redundant than those contained in the combination of Dfam and RepBase databases. Here, the duplication ratio represents the total number of aligned bases in the repetitive sequences divided by the total number of those in the reference. If there are too many repetitive sequences that cover the same regions, the duplication ratio will be greatly increased. This occurs due to multiple reasons, including overestimating repeat multiplicities and overlaps between repetitive sequences.

The experimental results in Tables S8, S9, S10, S11, S12 and Figure S11 show that RepeatMasker annotated 3,852,568 Retroelements-type repeats (1,291,793,390bp in length) on the human genome based on msRepDB, as compared to 2,800,814 Retroelements-type repeats (1,236,215,277bp in length) for the combination of the two other databases (Table S11), and annotated 3,443,145 DNA-transposons-type repeats (42,789,484bp in length) on the rice genome based on msRepDB, as compared to 241,722 DNA-transposons-type repeats (41,514,301bp in length) for the combination of the two other databases (Table S10), and annotated 241,722 DNA-transposons-type repeats (69,072,660bp in length) on the rice genome based on msRepDB, as compared to 241,722 DNA-transposons-type repeats (68,736,938bp in length) for the combination of the two other databases (Table S9), and annotated 61,139 DNA-transposons-type repeats (42,789,484bp in length) on the glycine max genome based on msRepDB, as compared to 58,468 DNA-transposons-type repeats (41,514,301bp in length) for the combination of the two other databases (Table S8).

For example, we used the latest version of RepeatMasker (V.4.1.2) to classify and annotate the repeats of five genomes Human, Mouse, Drosophila, Rice and Glycine max based on msRepDB and the combination of Dfam and RepBase databases. Here, the duplication ratio represents the number of repetitive sequences contained in msRepDB have a higher repetition frequency and larger size as a whole.

Species	Database	Num	Max	Non-MAR	MAR	MAR(%)	Non-MAR(%)	Duplication ratio	Reference(%)
Human	msRepDB	1,743	2,018	1,268	449	33.85%	15.69%	31.11%	90.05%
Human	Dfam+RepBase	1,363	1,540	964	380	70.31%	29.69%	45.92%	71.11%
Mouse	msRepDB	1,340	1,521	974	346	72.17%	27.83%	43.14%	66.86%
Mouse	Dfam+RepBase	1,133	1,396	726	317	68.73%	31.27%	42.14%	87.86%
D.melanogaster	msRepDB	477	2,014	2,571	115	96.95%	3.05%	21.86%	2.40%
D.melanogaster	Dfam+RepBase	258	1,557	1,036	103	89.77%	10.22%	43.90%	5.11%
Glycine max	msRepDB	1,226	2,050	2,210	116	99.65%	0.35%	100.00%	94.41%
Glycine max	Dfam+RepBase	91	1,489	839	99	99.15%	0.85%	100.00%	95.68%
Table S9. Partial comparison of the proportion and detailed classification of detected repeats generated based on two databases of the Drosophila genome.

Repeat Type	Number of elements	Length occupied	Percentage of sequences
Simple repeats	88,676	3,867,177bp	1.03%
Satellites	426	1,368,174bp	0.37%
Small RNA	4,631	704,192bp	0.19%
Total interspersed repeats	165,842,275bp	44.29%	
++Gypsy/DTRS1	32,899	73,328,202bp	19.58%
++BEL/Pao	0	0bp	0.00%
+LINEs	11,557	5,568,202bp	1.49%
+SINEs	6,826	987,304bp	0.26%
Retroelements	65,791	95,531,185bp	25.51%
++Gypsy/DTRS1	126,690	195,309,037bp	19.95%
++BEL/Pao	2,326	3,123,105bp	2.17%
+LINEs	5,293	5,447,560bp	4.49%
+SINEs	0	0bp	0.00%
Retroelements	241,722	68,736,938bp	18.36%
++Gypsy/DTRS1	140,926	225,546,399bp	23.04%
++BEL/Pao	2,937	3,118,973bp	2.17%
+LINEs	6,134	6,416,652bp	4.46%
+SINEs	0	0bp	0.00%

The test results were obtained by using RepeatMasker based on the msRepDB database and the combination of Dfam and RepBase respectively under the default parameter settings.

Table S10. Partial comparison of the proportion and detailed classification of detected repeats generated based on two databases of the Glycine max genome.

Repeat Type	Number of elements	Length occupied	Percentage of sequences
Simple repeats	88,676	3,867,177bp	1.03%
Satellites	1,372	1,804,199bp	1.26%
Total interspersed repeats	22,997,746bp	16.00%	
++Gypsy/DTRS1	7,211	10,737,388bp	7.47%
++BEL/Pao	2,326	3,123,105bp	2.17%
+LINEs	5,293	5,447,560bp	4.49%
+SINEs	0	0bp	0.00%
Retroelements	56,791	95,531,185bp	25.51%
++Gypsy/DTRS1	13,243	12,190,939bp	8.48%
++BEL/Pao	2,937	3,118,973bp	2.17%
+LINEs	6,134	6,416,652bp	4.46%
+SINEs	0	0bp	0.00%

The test results were obtained by using RepeatMasker based on the msRepDB database and the combination of Dfam and RepBase respectively under the default parameter settings.

Table S11. Partial comparison of the proportion and detailed classification of detected repeats generated based on two databases of the Rice genome.

Repeat Type	Number of elements	Length occupied	Percentage of sequences
Simple repeats	82,139	4,344,053bp	0.44%
Satellites	1,372	1,804,199bp	1.26%
Total interspersed repeats	22,997,746bp	16.00%	
++Gypsy/DTRS1	7,211	10,737,388bp	7.47%
++BEL/Pao	2,326	3,123,105bp	2.17%
+LINEs	5,293	5,447,560bp	4.49%
+SINEs	0	0bp	0.00%
Retroelements	56,791	95,531,185bp	25.51%
++Gypsy/DTRS1	13,243	12,190,939bp	8.48%
++BEL/Pao	2,937	3,118,973bp	2.17%
+LINEs	6,134	6,416,652bp	4.46%
+SINEs	0	0bp	0.00%

The test results were obtained by using RepeatMasker based on the msRepDB database and the combination of Dfam and RepBase respectively under the default parameter settings.

Table S12. Partial comparison of the proportion and detailed classification of detected repeats generated based on two databases of the Mouse genome.

Repeat Type	Number of elements	Length occupied	Percentage of sequences
Simple repeats	89	567,100bp	0.26%
Satellites	1,214	2,404,268bp	0.98%
Total interspersed repeats	22,997,746bp	16.00%	
++Gypsy/DTRS1	7,211	10,737,388bp	7.47%
++BEL/Pao	2,326	3,123,105bp	2.17%
+LINEs	5,293	5,447,560bp	4.49%
+SINEs	0	0bp	0.00%
Retroelements	56,791	95,531,185bp	25.51%
++Gypsy/DTRS1	13,243	12,190,939bp	8.48%
++BEL/Pao	2,937	3,118,973bp	2.17%
+LINEs	6,134	6,416,652bp	4.46%
+SINEs	0	0bp	0.00%

The test results were obtained by using RepeatMasker based on the msRepDB database and the combination of Dfam and RepBase respectively under the default parameter settings.
The frequency of repetitive sequence in genome

There are several screenshots of the unique repetitive sequences of the human genome contained in msRepDB and the combination of Dfam and RepBase. There are some visual examples to illustrate the advantages of msRepDB database in terms of completeness of the repeated sequences (Figs S12-S26). These visualization examples are obtained by IGV (Integrative Genomics Viewer, https://software.broadinstitute.org/software/igv/) based on the genomes of human, mouse, rice, drosophila, and glycine max.

1) Human genome

There are several screenshots of the unique repetitive sequences of the human genome contained in msRepDB database (Figs S12-S14). The unique sequence means that the sequences only exists in msRepDB database.
Fig. S12. The first screenshot of the unique repetitive sequence of the human genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.

Fig. S13. The second screenshot of the unique repetitive sequence of the human genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.

Fig. S14. The third screenshot of the unique repetitive sequence of the human genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.
There are several screenshots of the unique repetitive sequences of the drosophila genome contained in msRepDB database (Figs S15-S17). The unique sequence means that the sequences only exists in msRepDB database.

Fig. S15. The first screenshot of the unique repetitive sequence of the drosophila genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.

Fig. S16. The second screenshot of the unique repetitive sequence of the drosophila genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.

Fig. S17. The third screenshot of the unique repetitive sequence of the drosophila genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.
3) Mouse genome

There are several screenshots of the unique repetitive sequences of the mouse genome contained in msRepDB database (Figs S18-S20). The unique sequence means that the sequences only exists in msRepDB database.

Fig. S18. The first screenshot of the unique repetitive sequence of the mouse genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.

Fig. S19. The second screenshot of the unique repetitive sequence of the mouse genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.

Fig. S20. The third screenshot of the unique repetitive sequence of the mouse genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.
4) Rice genome

There are several screenshots of the unique repetitive sequences of the rice genome contained in msRepDB database (Figs S21-S23). The unique sequence means that the sequences only exists in msRepDB database.

Fig. S21. The first screenshot of the unique repetitive sequence of the rice genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.

Fig. S22. The second screenshot of the unique repetitive sequence of the rice genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.

Fig. S23. The third screenshot of the unique repetitive sequence of the rice genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.
5) Glycine max genome

There are several screenshots of the unique repetitive sequences of the glycine max genome contained in msRepDB database (Figs S29-S31). The unique sequence means that the sequences only exists in msRepDB database.

Fig. S24. The first screenshot of the unique repetitive sequence of the glycine max genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.

Fig. S25. The second screenshot of the unique repetitive sequence of the glycine max genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.

Fig. S26. The third screenshot of the unique repetitive sequence of the glycine max genome contained in msRepDB database. The unique sequence means that the sequence only exists in msRepDB database.
7.2.2 The false positive evaluation of the detection results of LongRepMarker, RepeatScout and improved LongRepMarker

Following the respective reviewer’s previous suggestion, we conducted the experiments on the simulated sequencing data for Drosophila, and then we used RepeatMasker to annotate the repeats, and used the annotated set as the ground-truth set to compare with the annotation from RepeatScout and from LongRepMarker. The sequencing read simulator used in the study of PMID: 31890048 was ART (https://www.niehs.nih.gov/research/resources/software/bioinformatics/art/index.cfm), the aligners used in this study were bowtie2 and minimap2, and masking tool used in this study was RepeatMasker. In order to follow reviewer’s comments and evaluate the false positive rate of detection results generated by LongRepMarker, we have designed the following experiment.

1) Taking the Drosophila reference genome as input, and use the ART tool to generate Illumina short paired-end reads with the average coverage of 100 folds (-f 100). The average length of the reads is set to 100bp (-l 100), the average insert sizes of the paired-end reads is set to 350bp (-m 350), the standard deviation of insert sizes is set to ±30 (-o ±30), and the error rate is set to default (about 1%).

Command:
```
./art_illumina -ss HS25 -sam -i /data/Ref/Drosophila_melanogaster.BDGP6.32.dna.toplevel.fa -p -1 100 -l 100 -n 350 -s ±30 -o /data/Ref/Drosophila/read1
```

2) Taking the Illumina short paired-end reads generated in the first step as input, and use the de novo mode of LongRepMarker to obtain the repetitive sequences (Figure 9).

Command:
```
java LongRepMarker -k 49 -t 48 -q1 /data/Ref/Drosophila/read11.fq -q2 /data/Ref/Drosophila/read12.fq -o /data/Ref/Drosophila/LongRepMarker/
```

3) Taking the Drosophila reference genome as input, and use the RepeatMasker tool to get the annotation of the repetitive sequences.

Command:
```
./RepeatMasker -parallel 30 -lib /data/Ref/Drosophila/LongRepMarker/RepeatLibDrosophila.fa -html -gff -dir /data/Ref/Drosophila/RepeatMasker/ -species Drosophila
```

4) Extracting the masked repetitive sequences from the annotation results of RepeatMasker

5) Mapping the repetitive sequences obtained by the de novo mode of LongRepMarker to the masked repetitive sequences extracted in step 4).

Commands:
```
./minimap2 -d /data/Ref/Drosophila/LongRepMarker/masked.mmi /data/Ref/Drosophila/RepeatMasker/RepeatMasker-masked.fa
./minimap2 -a /data/Ref/Drosophila/LongRepMarker/RepeatLibDrosophila.fa > /data/Ref/Drosophila/LongRepMarker/masked.sam
./samtools fasta -f 4 -0 /data/Ref/Drosophila/LongRepMarker/unmapped.fa /data/Ref/Drosophila/LongRepMarker/masked.sam
./bowtie2-build /data/Ref/Drosophila/RepeatMasker/RepeatMasker-masked.fa /data/Ref/Drosophila/RepeatMasker/RepeatMasker-masked

./bowtie2 -x /data/Ref/Drosophila/LongRepMarker/RepeatMasker-masked -f -a -p 32 -U /data/Ref/Drosophila/LongRepMarker/unmapped.fa -S /data/Ref/Drosophila/LongRepMarker/RepeatScout-drosophila.sam
```

6) Generating the new detection results based on the detected fragments produced by the original LongRepMarker and the three steps of impurity removal, chimeras removal and consensus sequence construction.

7) Counting the false positive rates of the detection results produced by the original LongRepMarker, the detection results produced by RepeatScout and the new detection results generated based on the detected fragments produced by the original LongRepMarker and the three steps of impurity removal, chimeras removal and consensus sequence construction, respectively.

8) Results and analysis:

The improved LongRepMarker means that the three steps of impurity removal, chimeras removal and consensus sequence construction have been added to the pipeline of the original LongRepMarker.

In this experiment, using the masked sequences extracted from the results of RepeatMasker as the standard, the false positive rates of the results produced by the three tools were measured. There are 116,492 fragments extracted from the masking results of RepeatMasker based on the Drosophila reference genome. For the original LongRepMarker, its detection results contain 76,575 fragments, of which 59,783 fragments can be aligned to the sequences extracted from the masking results. Therefore, the false positive rate of the detection results produced by the original LongRepMarker is 21.92%. For the RepeatScout, its detection results contain 2,767 fragments, of which 1,897 fragments can be aligned to the sequences extracted from the masking results. Therefore, the false positive rate of the detection results produced by the RepeatScout is 31.44%. For the improved LongRepMarker, its detection results contain 556 fragments, of which 464 fragments can be aligned to the sequences extracted from the masking results. Therefore, the false positive rate of the detection results produced by the improved RepeatScout is 16.54% (Table S13).
Table S13. The false positive evaluation of the detection results of LongRepMarker, RepeatScout and improved LongRepMarker.

Method	Num	F1 Score	Recall	Precision	ACC
LongRepMarker	556	0.46	0.59	0.62	0.57
RepeatScout	76,575	0.59	0.72	0.70	0.64
Improved LongRepMarker	463	0.65	0.78	0.76	0.72

In the experiment, the tool RepeatMasker was used only once, and the library it used was only RepeatBase, not the results produced by RepeatScout and LongRepMarker. All the false positives are counted by comparing the ground-truth set of annotations with that of RepeatScout or LongRepMarker. Therefore, the length-bias issue in RepeatMasker will not affect the evaluation.

References

1. Kazazian, H.H. Jr. (2004) Mobile elements: drivers of genome evolution. Science, 303, 1626-1632.
2. Treangen,T.J. and Salzberg, S. L. (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature reviews. Genetics, 13, 36-46.
3. Lu,Q., Walrath,L.L., Granok,H. and Elgin,S.C. (1993) (CT)n(GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene. Molecular and cellular biology, 13, 2802-2814.
4. Kundu,T.K. and Rao,M.R. (1999) CpG islands in chromatin organization and gene expression. J. Biochem, 125, 217-222.
5. Shapiro J.A. and von Sternberg R. (2005) Why repetitive DNA is essential to genome function. Biol. Rev., 80, 227-50.
6. Kaltenegger,E., Leng,S. and HeylA. (2018) The effects of repeated whole genome duplication events on the evolution of cytokinin signaling pathway. BMC Evol. Biol., 18, 76-95.
7. Aguilera,A. and García-Muse T. (2013) Causes of genome instability. Annu. Rev. Genet., 47,1-32.
8. George,C.M. and Alani, E. (2012) Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Current reviews in biochemistry and molecular biology, 47,297-313.
9. Hall,A.C., Ostrowski,L.A., Pietrobon,V. and Mekhail,K. (2017) Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes. Nature, 8, 162-181.
10. Bao,W., Kojima,K.K. and Kohany,O. (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 6, 11-17.
11. Storer, J., Hubley, R., Rosen, J. et al. (2021) The Dfam community resource of transposable element families, sequence models, and genome annotations. Mobile DNA, 12, 2-16.
12. Schmutz J., Cannon S., Schlueter J., Ma J., Mitros T., Nelson W., Hyten D.L., Song Q., Thelen J.J., Cheng J. (2010) Genome sequence of the palaeopolyploid soybean. Nature, 463, 178–183.
13. Cox R. and S. M. Mirkin. (1997) Characteristic enrichment of DNA repeats in different genomes. Proceedings of the National Academy of Sciences of the United States of America, 94, 5237-5242.
14. J. Yuyang Lu, Wen Shao, Lei Chang, Yanfei Yin, Tong Li, Hui Zhang, Yantao Hong, Michelle Perchaude, Lerui Gao. Zhangwu Yang et al. (2020) Genomic Repetes Categorize Genes with Distinct Functions for Orchestration. Regulation. Cell Reports, 30, 3296-3311.e5.
15. Ahmad S. F., Singchat W., Jehangir M., Suntoppong A., Panthum T., Malaviyontinond S. and Srikulnath K. (2020) Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics. Cells, 9, 2714.
16. Shapiro J.A. and von Sternberg R. (2005) Why repetitive DNA is essential to genome function. Biol. Rev., 80, 227-250.
17. Kaltenegger E., Leng S. and Heyl A. (2018) The effects of repeated whole genome duplication events on the evolution of cytokinin signaling pathway. BMC Evol. Biol., 18, 76-95.
18. Hall,A.C., Ostrowski,L.A., Pietrobon,V. and Mekhail,K. (2017) Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes. Nature, 8, 162-181.
19. Shweta Mehrotra and Vinod Goyal. (2014) Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genomics, Proteomics & Bioinformatics, 12, 164-171.
20. Hall A.C., Ostrowski L.A., Pietrobon V. and Mekhail,K. (2017) Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes. Nature, 8, 162-181.
21. Shweta Mehrotra and Vinod Goyal. (2014) Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genomics, Proteomics & Bioinformatics, 12, 164-171.
22. Mariely DeJesus-Hernandez, Ian R. Mackenzie, Bradley F. Boeve, Adam L. Boxer, Matt Baker, Nicola J. Rutherford, Alexandra M. Nicholson, Nicole A. Finch, Heather Flynn, Jennifer Adamson et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72, 245-258.
23. Prokopy, Zhongyang Wu, Guo, Dov A. et al. (2020) Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature, 586, 80-95.
24. Belancio V. P., Roy-Engel A. M. and Deininger P. L. (2010) All y’all need to know ‘bout retroelements in cancer. Front. Cell Dev. Biol., 8, 246–250.
25. Young Bun Kim, Jung Hun Oh, Lauren J. et al. (2014) Divergence of Drosophila repeatomes in different genomes. Mobile DNA, 6, 3296-3311.e5.
26. Chenais B. (2013) Transposable elements and human cancer: a causal relationship? Biochim. Biophys. Acta, 1835, 28-35.
27. Mariely DeJesus-Hernandez, Ian R. Mackenzie, Bradley F. Boeve, Adam L. Boxer, Matt Baker, Nicola J. Rutherford, Alexandra M. Nicholson, Nicole A. Finch, Heather Flynn, Jennifer Adamson et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72, 245–258.
28. Trost B., Englandh W., Nguyen C.M., Thiruvahindrapuram B., Dolzenko E., Backstrom L., Mirceta M., Mojarad B. A., Y. Yin, Dov A. et al. (2020) Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature, 586, 80-95.
29. Citron, Journal of Molecular Evolution, 2010, 1-17.
30. Belancio V. P., Roy-Engel A. M. and Deininger P. L. (2010) All y’all need to know ‘bout retroelements in cancer. Semin. Cancer Biol., 20, 200-210.
31. Young Bun Kim, Jung Hun Oh, Lauren J. et al. (2014) Divergence of Drosophila melanogaster repeat expansion in C9ORF72 is the cause of chromosome 9p-linked FTD. Neuron, 72, 245-258.
32. Nature, 586, 80-95.
33. Zhang X., Zhang R. and Yu J. (2020) New Understanding of the Relevant Role of LINE-1 Retrotransposition in Human Disease and Immune Modulation. Front. Cell Dev. Biol., 8, 246–250.
34. Solomon S., Ewing A.D., Rahmnaan E.P., Doucet T., Nelson H.H. Burns M.B, Harris R.S., Sigmou D.F., Casella A., Erlanger B. et al. (2012) Extensive somatic Li retrotransposition in colorectal tumors. Genome Res, 22, 2328-2338.
35. Scott E.C., Gardner E.J., Masaood A., Chuaung N.T., Vertino P.M., Devine S.E. (2016) A hot Li retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res, 26, 745-755.

Num represents the number of fragments contained in detection results.
36. Xingyu Liao, Min Li, Kang Hu, Fang-Xiang Wu, Xin Gao and Jianxin Wang. (2021) A sensitive repeat identification framework based on short and long reads. Nucleic Acids Research, gkab563.
37. Price A.L., Jones N.C., Pevzner P.A. (2005) De novo identification of repeat families in large genomes. Bioinformatics, 21, i351-i358.
38. Jullien M. Flynn, Robert Hubley, Clément Goubert, Jeb Rosen, Andrew G. Clark, Cédric Feschotte and Arian F. Smit. (2020) RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences, 117, 9451-9457.
39. Page A.J., Taylor B., Delaney A.J., Soares J., Seemann T., Keane J.A. and Harris S.R. (2016) SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom, 2, e000056.
40. Bao Z. and Eddy SR. (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res, 12, 1269-1276.
41. Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25, 1754-60.
42. Li Heng. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34, 3094-3100.