Modification by isolevuglandins, highly reactive γ-ketoaldehydes, deleteriously alters high-density lipoprotein structure and function

Linda S. May-Zhang§, Valery Yermalitsky¶, Jiasheng Huang§, Tiffany Pleasant†, Mark S. Borja∥, Michael N. Oda**, W. Gray Jerome‡‡, Patricia G. Yancey§, MacRae F. Linton‡§, and Sean S. Davies††

From the ††Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602, the §§Division of Cardiovascular Medicine, Department of Medicine, and the ‡‡Division of Pathology, Vanderbilt Medical Center, Nashville, Tennessee 37232, the ¶¶Meharry Medical College, Nashville, Tennessee 37208, the ‡Department of Chemistry and Biochemistry, California State University East Bay, Hayward, California 94542, and the **Children’s Hospital Oakland Research Institute, Oakland, California 94609

This work was supported by National Institutes of Health Grants HL116263 (to M. F. L. and S. D.) and HL138745 (to L. S. M.) and by American Heart Association Grant 17POST3366032 (to L. S. M.). S. S. D. and M. F. L. are inventors on a patent application for the use of PPM and related dicarbonyl scavengers for the treatment of cardiovascular disease. M. N. O. is a founder of and owns a significant stake in Seer Biologics, Inc., which could stand to benefit from the research described here. The content is solely the views of the authors and does not necessarily represent the official views of the National Institutes of Health.

Cardiovascular disease risk depends on high-density lipoprotein (HDL) function, not HDL-cholesterol. Isolevuglandins (IsoLGs) are lipid dicarbonyls that react with lysine residues of proteins and phosphatidylethanolamine. IsoLG adducts are elevated in atherosclerosis. The consequences of IsoLG modification of HDL have not been studied. We hypothesized that IsoLG modification of apoA-I deleteriously alters HDL function. We determined the effect of IsoLG on HDL structure-function and whether pentylpyridoxamine (PPM), a dicarbonyl scavenger, can preserve HDL function. IsoLG adducts in HDL derived from patients with familial hypercholesterolemia (n = 10, 233.4 ± 158.3 ng/mg) were found to be significantly higher than in healthy controls (n = 7, 90.1 ± 33.4 pg/mg protein). Further, HDL exposed to myeloperoxidase had elevated IsoLG-lysine adducts (5.7 ng/mg protein) compared with unexposed HDL (0.5 ng/mg protein). Preincubation with PPM reduced IsoLG-lysine adducts by 67%, whereas its inactive analogu pentylpyridoxine did not. The addition of IsoLG produced apoA-I and apoA-II cross-links beginning at 0.3 molar eq of IsoLG/mol of apoA-I (0.3 eq), whereas succinylaldehyde and 4-hydroxynonenal required 10 eq. IsoLG increased HDL size, generating a subpopulation of 16–23 nm. 1 eq of IsoLG decreased HDL-mediated [³H]cholesterol efflux from macrophages via ABCA1, which corresponded to a decrease in HDL–apoA-I exchange by 47.4% to only 24.8%. This suggests that IsoLG inhibits apoA-I from disassociating from HDL to interact with ABCA1. The addition of 0.3 eq of IsoLG ablated HDL’s ability to inhibit LPS-stimulated cytokine expression by macrophages and increased IL-1β expression by 3.5-fold. The structural–functional effects were partially rescued with PPM scavenging.

Numerous epidemiological studies show that HDL-C² is inversely correlated with CVD risk (1–4). However, pharmacological interventions that raise HDL-C have failed to reduce risk (5). Recent evidence suggests that risk for CVD is more closely linked to HDL function than to HDL-C levels (6). Risk factors for CVD, including obesity, hypercholesterolemia, hypertension, and chronic kidney disease, create an environment of high oxidative stress, generating oxidized lipid species that modify HDL and alter its functional properties (7–9). Because HDL possesses several anti-atherogenic functions, including transport of excess cholesterol from the peripheral cells to the liver for excretion, efflux of cholesterol from macrophage foam cells, anti-inflammation, and more (10), a loss of any of these functions would probably contribute to disease pathogenesis.

IsoLGs (also known as isoketals) are a family of lipid γ-ketoaldehydes that resemble prostaglandins and are generated both enzymatically by cyclooxygenases and nonenzymatically by lipid peroxidation in parallel to F₂-isoprostanes during oxidative stress (Fig. 1). F₂-isoprostanes are enriched in HDL, not LDL (11), and are considered the most reliable biomarker of oxidative damage (12), especially of lipid peroxidation (13). Whereas F₂-isoprostanes are chemically stable, IsoLGs are extremely unstable due to the reactivity of the 1,4-dicarbonyl moiety with primary amines such as the ε-amino groups of lysine residues of proteins as well as head-groups of phosphatidylethanolamines (PEs). The initial reaction of the IsoLG aldehyde forms a Schiff base, which undergoes a secondary reaction with the 4-keto group to form irreversible pyrrole adducts. These pyrrole adducts easily oxidize in the presence of oxygen to form stable lactam and hydroxalactam adducts. IsoLGs also react with multiple proteins to form pyrrole–pyrrole cross-links (Fig. 1). The reaction rate of IsoLG to proteins greatly exceeds that of...
4-hydroxyl-2(E)-nonenal (HNE) (14) and malondialdehyde (15).

Lipid peroxidation has long been postulated to play a critical role in the pathogenesis of atherosclerosis due to oxidative modification of LDL. Modifications of apoB of LDL by lipid-derived oxidation products lead to unregulated endocytosis of modified LDL, resulting in macrophage foam cells. IsoLG-lysine pyrrole adducts are present in oxidized LDL and in human atherosclerotic lesions (16). IsoLG-modified LDL induces macrophage uptake through the same receptor that recognizes oxidized LDL but not acetylated LDL (16). However, removal of lipoproteins containing apoB from plasma only decreases total plasma IsoLG-protein adducts by 20–22% (17), suggesting that most IsoLG adducts in plasma are not associated with LDL or very high-density lipoprotein. Importantly, IsoLG-protein adducts are increased 2-fold in patients with atherosclerosis or end-stage renal disease compared with healthy controls (17) and correlate more closely with cardiovascular disease risk than classical risk factors, including LDL and total cholesterol levels (18).

The potential contribution of oxidized HDL to atherogenesis has recently received attention, as HDL is not only more oxidizable than LDL (19, 20) but also the major acceptor of lipid peroxides in plasma, including isoprostanes (19). A consequence is that HDL may be exposed to decomposition products of these oxidized lipids. Once HDL is modified, it not only loses important protective functions but also acquires pro-atherosclerotic properties. Another important pathway of oxidative modification involves reactive intermediates produced by phagocytic white blood cells, the cellular hallmark of inflammation. One potent oxidative enzyme is MPO, which is expressed by activated phagocytes and is found in high levels in human atherosclerotic tissues. MPO uses hydrogen peroxide to generate reactive oxygen and nitrogen species that severely impair HDL function. Because MPO complexes with apoA-I on HDL (21), these impairments are probably due to oxidative targeting of apoA-I (22). We have previously shown that MPO generates IsoLG, which can adduct to HDL proteins as well as PEs (23). However, the structural and biological consequences of IsoLG modification of HDL have not been explored.

Because IsoLG is extremely reactive and cross-links proteins, we hypothesize that modification of HDL proteins (particularly cross-linking of its structural proteins apoA-I and apoA-II) by IsoLG generated under oxidative conditions of atherosclerosis would cause deleterious consequences to HDL particle structure and function. To assess the contribution of IsoLG to HDL function, we note that IsoLG is chemically reactive and cross-links proteins efficiently. We therefore hypothesize that IsoLG modification of HDL proteins (particularly cross-linking of its structural proteins apoA-I and apoA-II) by IsoLG generated under oxidative conditions of atherosclerosis would cause deleterious consequences to HDL particle structure and function.
Isolevuglandin causes HDL dysfunction and inflammation

Figure 2. IsoLG-protein adducts are increased in HDL isolated from plasma of patients with FH. Plasma was isolated from the blood of FH patients ($n = 10$), of whom four were heterozygous FH and six were homozygous FH, before undergoing LDL apheresis. Control plasma was isolated from blood of healthy volunteers ($n = 7$). HDL was isolated by DGUC. Levels of IsoLG-lysine adducts were determined by LC/MS/MS. Values are shown as mean ± S.D. (error bars). Statistical significance was calculated by Student’s t test. *, $p < 0.1$; ****, $p < 0.0001$.

Figure 3. A, MPO oxidation of HDL generates IsoLG-lysine adducts, which are reduced with 1 mM PPM treatment but not with PPO. B, MPO oxidation of HDL cross-links apoA-I, which is reduced with PPM treatment but not PPO. HDL isolated from normal healthy subjects by DGUC was subjected to ex vivo oxidation by MPO and a glucose oxidase/glucose/sodium nitrite system. Levels of IsoLG-lysine adducts were determined by LC/MS/MS. Protein cross-linking of apoA-I was determined by Western blot analysis. HDL was preincubated with PPM for 30 min before the addition of MPO and glucose oxidase/glucose/sodium nitrite. Experiments were performed three independent times. Results from individual experiments are plotted as mean ± S.D. (error bars). Western blots are representative of those from the three independent experiments. ****, $p < 0.0001$.

Results

IsoLG-HDL adducts are elevated in familial hypercholesterolemia

Whereas IsoLG-protein adducts were previously found in oxidized LDL, in human atherosclerotic lesions (16), and ~80% of all IsoLG-protein adducts in plasma were not associated with apoB-containing lipoproteins (17), we sought to determine the levels of IsoLG-protein adducts in HDL isolated from patients with hypercholesterolemia and atherosclerosis. We isolated HDL using density-gradient ultracentrifugation from plasma of familial hypercholesterolemic (FH) patients ($n = 10$) and from healthy volunteers ($n = 7$). Two of the FH patients had homozgyous FH, and eight of the subjects had severe heterozygous FH, with six of the patients (two homoygous FH and four severe heterozygous FH) undergoing regular LDL apheresis. From these patients, plasma was collected before LDL apheresis. Fig. 2A shows total plasma cholesterol levels of controls (189.1 ± 31.6 mg/dl) versus FH (298.6 ± 13.1 mg/dl) before HDL isolation. We found that IsoLG-protein adducts were significantly higher ($p < 0.05$) in FH (233.4 ± 158.3 pg/mg protein) than in controls (90.1 ± 33.4 pg/mg protein) (Fig. 2B). These results demonstrate that IsoLG-adducted HDL is increased in conditions associated with hypercholesterolemia and atherosclerosis.

PPM prevents the generation of IsoLG-protein adducts and apoA-I cross-linking by MPO

We previously showed that ex vivo oxidation of HDL by MPO (in the presence of glucose oxidase/glucose/sodium nitrate) generates IsoLG-protein adducts (23). We therefore examined the effects of the 1,4-dicarbonyl scavenger PPM on this MPO-mediated oxidation. We found that PPM, but not its inactive analogue pentylypyridoxine (PPO), significantly reduced IsoLG-protein adducts formed when HDL was exposed to MPO (Fig. 3A). PPM also dose-dependently inhibited MPO-mediated cross-linking of apoA-I (at 50 and 250 eq to apoA-I), whereas PPO did not (Fig. 3B). These data demonstrate that IsoLG contributes to MPO-mediated cross-linking and modification of HDL.

IsoLG cross-links HDL structural proteins, resulting in HDL of larger size

To further characterize the effects of IsoLG on HDL cross-linking, we exposed HDL to increasing concentrations of IsoLG starting from 0.1 molar eq of IsoLG/mol of apoA-I (0.1 eq) to 3 eq of IsoLG. This range of IsoLG concentrations yielded approximately the expected level of IsoLG-lysine adducts seen in vivo. Modification of HDL by 0.3 eq of IsoLG resulted in 242 ± 120 pg/mg IsoLG-lysine, which approximates adducts seen in HDL derived from human FH patients (Fig. 2B). Modification of HDL by 3 eq of IsoLG resulted in 1936 ± 509 pg/mg IsoLG-lysines, which is below the level produced by ex vivo modification by MPO (Fig. 3A). We also confirmed that even with the highest concentration of IsoLG used (3 eq), no unreacted IsoLG was present in the flow-through when the HDL preparation was filtered through a 10-kDa MWCO filter (Fig. S1A).
We found that IsoLG dose-dependently cross-linked proteins in HDL starting at −0.3 eq (Fig. 4A). 0.3 eq of IsoLG produced apoA-I immunoreactive bands with molecular weight higher than that of apoA-I monomer and consistent with possible apoA-I dimers and trimers. Higher IsoLG concentrations produced high-molecular weight bands that would be consistent with apoA-I cross-linking to additional proteins. PPM blocked cross-linking, but the inactive analog PPO did not (Fig. 4B). The higher-molecular weight bands are seen in Coomassie Blue–stained protein gels of IsoLG-modified HDL as well as IsoLG-modified synthetic apoA-I particles containing only recombinant apoA-I as the protein (Fig. S2A). That the apoA-I antibody detects higher-molecular weight bands in the synthetic apoA-I particles strongly supports the notion that the higher-weight bands in native HDL modified by IsoLG represent apoA-I oligomers as well as apoA-I cross-links to other proteins (Fig. S2B).

Examination of HDL by transmission EM to quantify particle size showed that IsoLG modification produced larger HDL particles (Fig. 4, C and D). Unmodified control HDL consisted of small round HDL with mean diameters of 9.50 ± 2.91 nm. At 3 eq of IsoLG, HDL particles consisted of two size distributions: 5–13 and 15–23 nm, which was significantly different from unmodified HDL (p < 0.0001). These results show that IsoLG modification increases HDL particle size as well as cross-linking its structural proteins.

IsoLG is more reactive than other lipid aldehydes in adducting to lysine residues and cross-linking HDL apolipoproteins

To assess to what extent the structural features of IsoLG uniquely contributed to its effect on HDL, we compared it with two other related lipid aldehydes: 4-hydroxynonenal (HNE; a widely studied α,β-unsaturated aldehyde) and succinaldehyde (a 1,4-dicarbonyl lacking the alkyl and carboxylate tails present in IsoLG) (Fig. 5A). We compared the ability of these three lipid aldehydes to modify lysine residues on HDL using o-phthalaldehyde (OPA) to detect available lysines. OPA also detects the headgroups of PEs, but these are in much lower abundance than lysyl residues. Significantly lower molar equivalents of IsoLG than HNE or succinaldehyde were required to modify HDL (Fig. 5B). For example, 10 eq of IsoLG modified ~50% of the available lysines of HDL, whereas 10 eq of succinaldehyde only modified ~20% of available lysines, and 10 eq of HNE failed to modify HDL.

J. Biol. Chem. (2018) 293(24) 9176–9187 9179
Furthermore, IsoLG cross-links HDL at 10–30 times lower concentrations than HNE and succinylaldehyde (Fig. 5C). Similar to its effects in purified HDL, the addition of IsoLG to plasma resulted in cross-linked apoA-I at a much lower concentration (10⁻²⁻¹ M) relative to other lipid aldehydes (0.6 mM for acrolein; 5 mM for HNE) (25). These data demonstrate that IsoLG is far more potent than α,β-unsaturated aldehydes or nonsubstituted 1,4-dicarbonyls at modifying lysines and cross-linking HDL proteins.

IsoLG-modified HDLs have lower HDL–apoA-I exchange (HAE) and cholesterol efflux to macrophages

ApoA-I exchanges freely with HDL, but not with very high-density lipoprotein, LDL, or albumin. Reduced exchangeability of apoA-I on HDL is associated with atherosclerosis in animal models and in acute coronary syndrome patients (26). Oxidation of apoA-I by MPO also reduces the rate of HAE concomitantly with diminished cholesterol efflux capacity (26). Because MPO produced IsoLG (Fig. 3A), which heavily cross-linked HDL proteins such as apoA-I (Fig. 4A), we examined whether IsoLG modification altered the exchangeability of apoA-I from HDL using the method of Borja et al. (26). Whereas unmodified HDL had an HAE rate of 47.4 ± 1.6%, IsoLG dose-dependently decreased HAE, so that HDL exposed to 1 eq of IsoLG had an HAE rate of 28.9 ± 7.6% (p < 0.01) (Fig. 6A).

With the dramatic decrease in HAE in IsoLG-modified HDL, we speculated that HDL with IsoLG-modified apoA-I would be less efficient in cholesterol mobilization from macrophages. Thus, we examined cholesterol efflux using apoE⁻/⁻ macrophages (27). The use of apoE⁻/⁻ macrophages, rather than WT macrophages, provides strict assessment of the effect of IsoLG modification on HDL-dependent efflux, as the apoE endogenously produced by WT macrophages promotes some cholesterol efflux even in the absence of acceptors, such as HDL or apoA-I (28–30). IsoLG modification dose-dependently decreased the ability of HDL to efflux cholesterol (Fig. 6B) with the same concentration of IsoLG that cross-linked HDL apolipoproteins and decreased HAE. 30 μM PPM (100-fold excess) prevented the decrease in cholesterol efflux induced by 3 eq of IsoLG (Fig. 6B).

IsoLG modification and cross-linking of HDL can potentially affect proteins involved in promoting cholesterol efflux, such as lecithin:cholesterol-acyltransferase (LCAT) (31). Immunoblotting of IsoLG-modified HDL did not reveal significant changes in the molecular weight of LCAT immunoreactive bands, suggesting that IsoLG does not cross-link LCAT (Fig. S3A). However, it may be that anti-LCAT antibody does not recognize cross-linked proteins. We therefore measured LCAT activity and found that IsoLG modification of HDL dose-dependently decreases phospholipase A2 activity, but not LCAT activity (Fig. S3B). Thus, IsoLG modification of LCAT does not appear to significantly contribute to the changes in cholesterol efflux seen in our experiments.
To assess whether IsoLG modification primarily disrupted ABCA1-mediated cholesterol efflux to HDL, we employed probucol, an inhibitor of ABCA1-mediated cholesterol efflux that does not interfere with ABCG1- or SR-BI–mediated efflux (32). The efflux capacity of IsoLG-modified HDL was only 78.2 ± 9.4% of that of unmodified HDL (Fig. 6C). Control HDL efflux capacity was reduced to 55.4 ± 10.9% of original capacity in the presence of probucol, and IsoLG modification of HDL did not further reduce efflux capacity (56.7 ± 11.4%) (Fig. 6C). This suggests that IsoLG modification of HDL predominately inhibits the ABCA1-mediated pathway. This is further supported by experiments examining cholesterol efflux to lipid-poor apoA-I, which promotes macrophase cholesterol efflux mainly through ABCA1. IsoLG-modified apoA-I had significantly reduced cholesterol efflux capacity (31.3 ± 10.3%) compared with unmodified apoA-I (Fig. 6D). Probucol reduced efflux in unmodified apoA-I to 27.4 ± 9.8%, and IsoLG modification did not further reduce efflux (27.3 ± 10.9%) (Fig. 6D). Taken together, the results indicate that IsoLG modification predominantly impairs ABCA1-mediated cholesterol efflux rather than that of other pathways, such as ABCG1 or SRBI.

Isosuglucan modifies HDL induces a synergistic pro-inflammatory phenotype with LPS in macrophages

HDL serves various anti-inflammatory functions, including inhibiting the Toll-like receptor–induced pro-inflammatory cytokine response in macrophages at a transcriptional level (33). We therefore tested whether IsoLG would inhibit HDL’s ability to prevent LPS-induced inflammatory response in apoE−/− macrophages. ApoE−/− macrophages were used in these studies to allow direct comparison with efflux studies of the concentrations of IsoLG that altered effects. Coincubation of unmodified HDL with LPS resulted in an 85.5 ± 10.3, 54.9 ± 21.3, and 43.6 ± 20.1% inhibition of the LPS-induced expression of Tnf, Il-1β, and Il-6, respectively (Fig. 7A). Preincubation of macrophages with unmodified HDL, followed by subsequent removal of this HDL and then exposure to LPS, did not result in inhibition of LPS-induced Tnf, Il-1β, and Il-6 expression, consistent with previous observations (34) and the concept that concurrent interaction with macrophages is needed for HDL to inhibit these effects of LPS (Fig. S4A). Coincubation of LPS with

Figure 6. Modification of HDL by IsoLG inhibits the exchangeability of apoA-I on HDL and reduces ABCA1-mediated cholesterol efflux from apoE-deficient murine macrophages. HDL isolated from normal healthy subjects by DGUC was subjected to ex vivo modification of IsoLG. A, HDL–apoA-I exchange was analyzed by EPR as described under “Experimental procedures.” Reactions were performed at a constant apoA-I concentration of 1 mg/ml. Experiments were performed three independent times with triplicate readings of each sample. B, macrophage cholesterol efflux was assessed using thioglycollate-induced macrophages harvested from the peritoneum of apoE-deficient mice and loaded with 3H cholesterol and acetylated LDL. Vehicle, cell culture medium with no HDL added to the cells. Efflux of 3H to unmodified and modified HDL was calculated based on radioactive counts in the supernatant after 4 h and normalized to HDL control. PPM was preincubated with HDL for 30 min before the addition of 3 eq of IsoLG. ABCA1-mediated cholesterol efflux was assessed similarly to the experimental design in B but with the addition of 10 μM probucol treatment to the cells 1 h before HDL (C) or lipid-poor apoA-I (D) treatment. Efflux experiments were performed three independent times with replicate wells per treatment. Results from individual experiments are plotted as mean ± S.D. (error bars). Statistical significance was determined by one-way ANOVA with multiple comparisons compared with unmodified HDL (control), *, p < 0.05; **, p < 0.01; ***, p < 0.005; ****, p < 0.0001.

Figure 7. Modification of HDL by IsoLG induces a proinflammatory phenotype in murine macrophages. HDL isolated from normal healthy subjects by DGUC was subjected to ex vivo modification of IsoLG. Cells were treated with LPS along with IsoLG-modified HDL (A) and with LPS along with HDL modified by other lipid aldehydes for 4 h (B). C, effect of PPM on preventing IsoLG modification of HDL and macrophage inflammatory response. PPM was preincubated with HDL for 30 min before the addition of IsoLG. Vehicle, cell culture medium with no HDL or LPS added to the cells. Gene expression by quantitative PCR was assessed after mRNA extraction. Experiments were performed independently three times with three wells per treatment. Results from individual experiments are plotted as mean ± S.D. (error bars). Statistical significance was determined by one-way ANOVA with multiple comparisons compared with LPS plus unmodified HDL (control). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.
Isolevuglandin causes HDL dysfunction and inflammation

HDL modified with 0.3 eq of IsoLG ablated its ability to prevent Tnf expression and even induced a greater expression of Il-1β and Il-6 than LPS activation alone (365.8 ± 184 and 255.8 ± 90.9%, respectively) (Fig. 7A). This pro-inflammatory phenotype was not seen with treatments with HNE or succinyldehyde-modified HDL (Fig. 7B). These results show that IsoLG-modified HDL induces a pro-inflammatory phenotype at a concentration of IsoLG that is much lower than that needed to invoke cross-linking of HDL apolipoproteins. Inclusion of PPM completely eliminated the loss of HDL’s inhibitory effect on LPS that is seen when HDL is incubated with IsoLG (Fig. 7C).

The augmentation in cytokine release seen during co-incubation of LPS and IsoLG–HDL raised the possibility that IsoLG modification not only disrupted the ability of HDL to inhibit LPS signaling, but that IsoLG–HDL independently stimulated cytokine signaling. Previous studies found that MPO-oxidized HDL activates pro-inflammatory signaling in endothelial cells, with its effects largely attributed to modified apoA-I protein (35) and that IsoLG-modified PEs induce proinflammatory signaling in macrophages in the absence of LPS (36). However, in the absence of LPS, IsoLG–modified HDL does not induce Tnf, Il-1β, or Il-6 expression (Fig. S4B). Furthermore, priming macrophages with IsoLG-modified HDL followed by removal of the HDL and subsequent LPS stimulation did not augment cytokine response (Fig. 4A). Therefore, IsoLG-modified PEs in HDL are unlikely to be responsible for the proinflammatory effect of IsoLG-modified HDL, because IsoLG-modified PEs can induce inflammatory signaling even in the absence of LPS. Taken together, the data demonstrate that IsoLG-modified HDL is not only dysfunctional in preventing LPS-induced macrophage activation, but also synergizes with LPS to induce a more significant inflammatory response.

Discussion

Growing evidence supports the notion that modifications of HDL proteins play a major role in the pathogenesis of atherosclerosis (8, 37). Elevated IsoLG protein adducts had been shown in atherosclerosis, but their formation on HDL and resulting consequences have not been studied. In the present study, we demonstrate for the first time that IsoLG protein adducts are elevated in HDL derived from patients with hypercholesterolemia compared with healthy controls, indicating that significant IsoLG adduct formation on HDL occurs in conditions that promote atherosclerosis. We also show that the cross-linking of HDL that is induced when MPO associates with HDL can be blocked by a dicarbonyl scavenger. Low concentrations of IsoLG can cross-link apoA-I, the major structural protein of HDL; generate an HDL subpopulation of larger size; impair HDL remodeling, cholesterol efflux, and its anti-inflammatory function; and further augment the inflammatory response of activated macrophages. In addition, we demonstrate the potential of dicarbonyl scavengers such as PPM as an anti-atherosclerotic strategy to preserve the HDL particle and prevent HDL dysfunction.

MPO participates in direct protein oxidation, nitration, or chlorination as well as initiating lipid peroxidation in vivo (38–40). Elevated levels of MPO are present in patients with angiographic evidence of CVD (41) and predict risk for myocardial infarction, revascularization, and cardiac death in subjects presenting with chest pain or acute coronary syndrome (42, 43). MPO binds to apoA-I and thus directly targets HDL within the human atheroma (44). We verified that IsoLG-protein adducts form in HDL with MPO oxidation, which probably contributes to MPO-mediated cross-linking of HDL proteins. The fact that PPM can prevent IsoLG-protein adduct formation and protein cross-linking, as detected by our MS analyses and by our immunobLOTS, illustrates the contribution of IsoLG in MPO-mediated oxidation events within the atherosclerotic lesion.

In human plasma, HDL is a heterogeneous collection of particles ranging from 7 to 12 nm in diameter and from 1.063 to 1.21 g/ml in density. Mass spectrometry identifications report up to 204 different proteins that associate with HDL (45). Approximately 70% of total HDL protein is apoA-I, a 28-kDa apolipoprotein associated with essentially every HDL particle. The second most abundant protein is apoA-II, which comprises 15–20% total HDL protein but is not present in all HDL particles. ApoA-I and apoA-II are the scaffold proteins of HDL that primarily determine particle structure. We demonstrate that IsoLG at very low concentrations (0.3 molar eq to apoA-I) cross-links apoA-I to produce dimers and trimers, which can be prevented by PPM. Modification of HDL by >1 eq of IsoLG produces multimers of apoA-I/apoA-II and probably cross-links with other proteins in the HDL proteome.

Concomitant to protein cross-linking, IsoLG modification increased the size of HDL, from an average size range of what is designated to be “medium” to “large” HDL (8.3–10.2 nm) to the appearance of “very large” HDL particles (10.3–13.5 nm). An increase in discoidal HDL particle diameter beyond 10 nm is associated with incorporation of more apoA-I molecules (46). The presence of apoA-II in discoidal apoA-I/A-II–containing HDL has been reported to alter the conformation of apoA-I in a site-specific manner (47), which could potentially hinder the remodeling of the HDL particles (48). It is likely that the extensive cross-linking of apoA-I and apoA-II by IsoLG caused apolipoprotein aggregates and therefore particle fusion. Cross-linking of apoA-II to apoA-I may also hinder HDL remodeling. These perturbations to HDL remodeling and the formation of very large particles have detrimental consequences, such as the inability to mobilize intracellular cholesterol deposits (49) or interact with macrophage ABCA1 (50) to promote cholesterol efflux.

When we measured the rate of HDL–apoA-I exchange, we found that IsoLG dose-dependently reduced the conformational adaptability of apoA-I and thus inhibited HDL remodeling. Previously, decreases in HAE were observed in atherosclerotic animal models as well as human subjects with acute coronary syndrome and metabolic syndrome (26), type I diabetes (51), metabolic syndrome (52), sickle cell anemia (53), and HIV (54). The decrease in HAE appears to be linked to oxidative damage to HDL and sometimes correlated with loss of other HDL functions, such as cholesterol efflux, because the ability of apoA-I to exchange between lipid-associated and lipid-free states is critical for efficient cholesterol efflux via ABCA1 (55).

We found that IsoLG modification of HDL dose-dependently decreased cholesterol efflux from cholesterol-loaded apoE−/− macrophages. The use of apoE−/− macrophages in our studies
Isolevuglandin causes HDL dysfunction and inflammation

allowed us to strictly measure HDL-dependent efflux, because apoE endogenously produced by WT macrophages promotes ABCA1-dependent cholesterol efflux even in the absence of HDL (28–30). The concentration of IsoLG needed to cause a significant decrease in efflux correlated with apolipoprotein cross-linking as well as the decrease in HDL–apoA-I exchange. These observations support the notion that cross-linking of HDL scaffold proteins alters their conformational adaptability, probably impairing the ability of lipid-free/poor apoA-I to exchange off HDL particles, which is required to elicit efflux of cholesterol via ABCA1 (56, 57). Indeed, that probucol (which blocks ABCA1- but not ABCG1-mediated efflux) did not further inhibit efflux in the presence of IsoLG modification supports the notion that the main pathway of cholesterol efflux affected by IsoLG modification of HDL is via ABCA1. The association between HDL protein cross-linking by oxidative modifications and defects in cholesterol efflux has been previously reported in HDL exposed to copper (58, 59), modified by malondialdehyde (58), or exposed to MPO (44, 60, 61). However, not all endogenous cross-linkers of HDL proteins impair function, as HDL apolipoproteins cross-linked by exposure to peroxidase-generated tyrosyl radicals appear to enhance the ability of HDL to facilitate cholesterol efflux (62), which is mediated by apoA-I/apoA-II heterodimers (63).

In addition to cholesterol efflux functions, HDL also protects against infection and inflammation (64). One of the key defense functions of HDL is its ability to neutralize toxic effects of LPS and other bacterial products, which in turn inhibit inflammatory responses in atherosclerosis (65–67). Presumably, modifications of apoA-I or HDL would result in a decrease in function, such as loss of binding ability to LPS (68). We found that modification of HDL at concentrations that were insufficient to induce cross-linking was nevertheless sufficient to render it unable to protect against LPS-stimulated inflammatory cytokine response in apoE−/− macrophages. Interestingly, cytokine expression of IL-1β and IL-6 were dramatically higher than LPS induction alone, suggesting that IsoLG modification of HDL did not simply disrupt the neutralization ability of HDL but synergized with LPS to produce a greater pro-inflammatory phenotype. IsoLG has been previously shown to exert potent inflammatory effects, particularly in activating endothelial cells (69), macrophages (36), and dendritic cells (70). IsoLG-modified PE has recently been shown to induce proinflammatory signaling in macrophages in the absence of LPS (36). The observation that IsoLG-modified HDL did not induce an increase in pro-inflammatory cytokine expression in the absence of LPS suggested that IsoLG-modified PE in HDL was not responsible for the effect. However, IsoLG modification of various HDL components using reconstituted HDL systems will be studied in the future.

The low level of modification by IsoLG needed to promote HDL protein cross-linking, structural and morphological changes, and changes in HDL function (especially compared with other known reactive lipid aldehydes) demonstrates that minor lipid peroxidation events in atherosclerosis are sufficient to significantly reduce the levels of functional HDL particles. The ability of scavengers such as PPM to block the ability of 1,4-dicarbonyls, including IsoLG, to modify proteins and to preserve the HDL particle demonstrates the therapeutic potential of these scavengers in the treatment of atherosclerosis.

Experimental procedures

Materials

Chemicals required for the synthesis of HNE and succinylaldehyde were purchased from Aldrich (Milwaukee, WI). Reagents for SDS-PAGE and immunoblotting were from Novex by Life Technologies (Carlsbad, CA). Materials used for cell culture were from Gibco by Life Technologies, Inc. OPA reagent was purchased from Thermo Scientific (Rockford, IL). [1,2-3H]cholesterol was purchased from PerkinElmer Life Sciences. ApoA-I mouse/human (5F4) monoclonal antibody was purchased from Cell Signaling Technology (Danvers, MA). ApoA-II human (EPR2913) monoclonal antibody was purchased from Abcam (Cambridge, MA). The RNEasy minikit was purchased from QiaGen (Hilden, Germany). iQ SYBR Green Supermix and the iScript cDNA synthesis kit were purchased from Bio-Rad.

Plasma from FH patients and healthy controls

EDTA plasma was isolated from the blood of FH patients (n = 10), of whom eight had heterozygous FH and two had homozygous FH. The two homozygous FH patients and four of the heterozygous FH patients underwent regular LDL apheresis, and blood was collected before LDL apheresis. The study was approved by the Vanderbilt University institutional review board, and all participants gave their written informed consent.

Animals

Breeding pairs of homozygous ApoE−/− mice on a C57BL/6J background (strain 002052) were purchased from Jackson Laboratories (Bar Harbor, ME) at 12 weeks old and housed in a 12-h light/12-h dark cycle. The animals were maintained on standard rodent chow (LabDiet 5001) with free access to water. Progeny of the breeding pairs were at least 8 weeks of age before harvest of macrophages (described below). All procedures were approved by the Vanderbilt University institutional animal care and use committee.

Chemical synthesis of IsoLG, 4-HNE, and succinylaldehyde

15-E2-IsoLG was synthesized as described previously by organic synthesis (71). 15-E2-IsoLG is one of eight regioisomers potentially generated by peroxidation of arachidonic acid. The 15- and 5-series of IsoLGs are expected to form in greater abundance than the 8- or 12-series. 15-E2-IsoLG is also chemically identical to levuglandin E2 formed nonenzymatically from prostaglandin H2. For these reasons, 15-E2-IsoLG is the most widely used regioisomer of IsoLG for studies. 4-HNE was synthesized using the procedure of Gardner et al. (72). Both carbonyls were dissolved in DMSO and prepared as a 10 mM stock and stored as small aliquots at −80 °C until use. Fresh succinylaldehyde was synthesized before each experiment from 2,5-dimethylytetrahydrofurran, as described previously (73). Fresh
Isolevuglandin causes HDL dysfunction and inflammation

working solutions were prepared before each assay and diluted in water to appropriate concentrations.

MPO oxidation of purified human HDL and measurement of IsoLG

HDL obtained from fasting healthy subjects was isolated by density gradient ultracentrifugation and dialyzed into PBS to eliminate residual Tris buffer or other primary amines that would react with the lipid aldehydes and/or their protein adducts. HDL was oxidized by MPO as described previously (23, 74). Briefly, HDL was incubated at 37 °C in 50 mm sodium phosphate (pH 7.4), 200 μM diethylenetriaminepentaacetic acid, 57 nm MPO, 100 μg/ml glucose, 20 mg/ml glucose oxidase, and 0.05 mM NaNO2 overnight. Scavenger PPM and its inactive precursor PPO were synthesized as described (23, 74). Briefly, HDL was incubated at 37 °C in 50 mm sodium phosphate (pH 7.4), 200 μM diethylenetriaminepentaacetic acid, 57 nm MPO, 100 μg/ml glucose, 20 mg/ml glucose oxidase, and 0.05 mM NaNO2 overnight. Scavenger PPM and its inactive precursor PPO were synthesized as described (23, 74) and solubilized in water. HDL was incubated for 30 min at 37 °C before the addition of MPO. Quantitation of lysine modification of HDL by IsoLG was performed by first subjecting an aliquot of the preparation to proteolysis with Pronase and aminopeptidase M and then measuring the amount of IsoLG-lysyl-lactam (the most prominent species of IsoLG modification generated under these conditions) by stable isotope dilution LC/MS/MS as previously described (76).

Lipid aldehyde modification of HDL and the use of scavengers

HDL was exposed to various concentrations of lipid aldehydes at 37 °C overnight to guarantee a complete reaction to form a stable end product. Control HDL was treated similarly in the absence of aldehydes. HDL preparations were diluted with DMEM for incubation with the macrophages. For experiments involving the use of scavengers, PPM and PPO solubilized in water were incubated with HDL for 30 min at 37 °C before the addition of IsoLG.

Characterization of apolipoprotein cross-linking of modified HDL

HDL apolipoprotein cross-linking was assessed by SDS-PAGE performed under reducing conditions with Invitrogen’s gel electrophoresis and transfer system. 4–20% Tris gradient gels were used. Western blotting analyses were carried out using polyclonal antibodies specific for human apoA-I and apoA-II.

Characterization of lysine adduction

OPA is a primary amine-reactive fluorescent detection reagent that is used to detect free lysines in HDL (77, 78). The procedure was performed according to the manufacturer’s instructions (Thermo Scientific) using HDL modified by lipid aldehydes as described above and adapted to 96-well plates. The percentage of lysine adduction was calculated as fluorescence of modified HDL/unmodified HDL × 100.

Measurement of HDL morphology and size

Negative stain preparations were prepared from suspensions of particles. The particles were adhered to Formvar/carbon-coated grids by floating the grids on top of a drop of the suspension for 45 s to 1 min. The grid was removed from the drop, and excess fluid was wicked away with filter paper. The particles were then negatively stained by floating the grid with particles on a drop of 1% phosphotungstic acid at pH 5.0 for 45 s. Excess stain was removed by wicking with filter paper. The negatively stained particles were imaged by EM using an FEI T-12 (ThermoFisher) electron microscope operated at 100 keV. For quantitation, 100 particles for each condition were arbitrarily chosen using an unbiased sampling scheme. The particles were chosen from at least three separate preparations for each condition. The diameters were measured from the two-dimensional images using an unbiased algorithm that arbitrarily selected a different angle for each measurement.

HDL–apoA-I exchange

HDL samples prepared by adding 15 μl of 3 mg/ml spin-labeled apoA-I probe to 45 μl of 1 mg/ml HDL and drawn into an EPR-compatible capillary tube (VWR) (26). EPR measurements were performed using a Bruker eScan EPR spectrometer outfitted with temperature controller (Noxxygen). Samples were incubated for 15 min at 37 °C and then scanned at 37 °C. The peak amplitude of the nitroxide signal from the apoA-I probe in the sample (3462–3470 Gauss) was compared with the peak amplitude of a proprietary internal standard (3507–3515 Gauss) provided by Bruker. The internal standard is contained within the eScan spectrometer cavity and does not contact the sample. Because the y axis of the EPR spectrometer is measured in arbitrary units, measuring the sample against a fixed internal standard facilitates normalization of the response. HAE activity represents the sample/internal standard signal ratio at 37 °C. The maximal percentage of HAE activity was calculated by comparing HAE activity with a standard curve ranging in the degree of probe lipid-associated signal. Experiments were repeated two times. All samples were read in triplicate and averaged.

Cell culture

Male and female apoE−/− mice (C57/BL genetic background) were injected intraperitoneally with 3% thioglycolate, and the macrophages were harvested by peritoneal lavage after 4 days. Cells were maintained in 24-well plates in DMEM with 10% (v/v) fetal bovine serum and penicillin-streptomycin at 100 units/ml and 100 μg/ml, respectively.

Cholesterol efflux

Efflux was assessed by the isotopic method (79). Loading medium was prepared to consist of DMEM containing 100 μg/ml acetylated LDL with 6 μCi of [3H]cholesterol/ml. After equilibration for 30 min at 37 °C, loading medium was added to cells for 48 h. After 48 h, the cells were incubated for 1 h with DMEM containing 0.1% BSA so that surface-bound acetylated LDL was internalized and processed. Cells were washed and incubated with efflux medium, which contained DMEM with 35 μg/ml HDL samples. Experiments involving probucol followed the same procedure except that 10 μM probucol was added to the cells 1 h before treatment with HDL samples. After a 4-h incubation, supernatants were collected, vacuum-filtered, and prepared for β-scintillation counting.
Macrophage inflammation

Cells derived from female mice were incubated overnight in DMEM containing 0.5% FBS and 1% penicillin-streptomycin. The cells were washed two times with Hanks’ balanced salt solution and then incubated for 4 h with DMEM alone or containing 100 ng/ml LPS with or without the HDL preparations (50 μg/ml). The cells were lysed, mRNA was harvested, and the cDNA was synthesized. Quantitative PCR was performed with the following primer pairs: Thf forward (5′-CCATTCTCGAGTTCTGCAAAG-3′); Thf reverse (5′-GCAATATAAATAGAGGGGGGC-3′); II-β forward (5′-TCCAGGATGGGATGAGCA-3′); II-β reverse (5′-GAACTCACACACAGCA-3′); II-6 forward (5′-TAGTCCTCTACCCCTAATT-TCC-3′); II-6 reverse (5′-TTGTCCTTAGCCACTCCT-TCC-3′).

Author contributions—L. S. M.-Z., P. G. Y., M. F. L., and S. S. D. assisted in study concept and design of the studies. L. S. M.-Z. collected and interpreted experimental data. V. Y. performed the mass spectrometry analyses and provided technical support. J. H. collected experimental data related to cholesterol efflux and provided technical support. T. P. assisted in experimental data collection and analysis involving western blotting. M. S. B. collected and interpreted data, whereas M. N. O. provided reagents and instrumentation support involving HAE experiments. W. G. J. performed data collection and analysis involving TEM measurements. L. S. M.-Z. prepared the figures and drafted and revised the manuscript. V. Y., M. S. B., M. N. O., W. G. J., P. G. Y., M. F. L., and S. S. D. assisted in analysis and interpretation of data and provided critical reviews of the manuscript. M. F. L. and S. S. D. obtained project funding, provided technical and material support, and supervised all aspects of the study, design, and execution. All authors reviewed the results and approved the final version of the manuscript.

Acknowledgments—We acknowledge Dr. Amarnath Venkataaraman (Vanderbilt University) for providing the small-molecule scavengers, Dr. Zhongyi Chen (Vanderbilt University) for providing technical guidance, and the Lipoprotein Analysis and HDL Function Core for providing the purified human HDL.

References

1. Wilson, P. W., Abbott, R. D., and Castelli, W. P. (1988) High density lipoprotein cholesterol and mortality: the Framingham Heart Study. *Arteriosclerosis* 8, 737–741 CrossRef Medline
2. Gordon, T., Castelli, W. P., Hjortland, M. C., Kannel, W. B., and Dawber, T. R. (1977) High density lipoprotein as a protective factor against coronary heart disease: the Framingham Study. *Am. J. Med.* 62, 707–714 CrossRef Medline
3. Gordon, D. J., Probstfield, J. L., Garrison, R. J., Neaton, J. D., Castelli, W. P., Knoke, J. D., Jacobs, D. R., Jr., Bangdiwala, S., and Tyrold, H. A. (1989) High-density lipoprotein cholesterol and cardiovascular disease: four prospective American studies. *Circulation* 79, 8–15 CrossRef Medline
4. Assmann, G., and Schulte, H. (1992) Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience): Prospective Cardiovascular Munster study. *Am. J. Cardiol.* 70, 733–737 CrossRef Medline
5. Joy, T., and Hegele, R. A. (2008) Is raising HDL a futile strategy for athero-protection? *Nat. Rev. Drug. Discov.* 7, 143–155 CrossRef Medline
6. Tan, K. (2016) Re-examining the high-density lipoprotein hypothesis. *J. Diabetes Investig.* 7, 445–447 CrossRef Medline
7. Van Lenten, B. J., Hama, S. Y., de Beer, F. C., Stafforini, D. M., McIntyre, T. M., Prescott, S. M., La Du, B. N., Fogelman, A. M., and Navab, M. (1995) Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response: loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. *J. Clin. Invest.* 96, 2758–2767 CrossRef Medline
8. Rosenson, R. S., Brewer, H. B., Jr, Ansell, B. J., Barter, P., Chapman, M. J., Heinecke, J. W., Kontush, A., Tall, A. R., and Webb, N. R. (2016) Dysfunctional HDL and atherosclerotic cardiovascular disease. *Nat. Rev. Cardiol.* 13, 48–60 CrossRef Medline
9. Fisher, E. A., Feig, J. E., Hewing, B., Hazen, S. L., and Smith, J. D. (2012) High-density lipoprotein function, dysfunction, and reverse cholesterol transport. *Arterioscler. Thromb. Vasc. Biol.* 32, 2813–2820 CrossRef Medline
10. Navab, M., Reddy, S. T., Van Lenten, B. J., and Fogelman, A. M. (2011) HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. *Nat. Rev. Cardiol.* 8, 222–232 CrossRef Medline
11. Proudfoot, J. M., Barden, A. E., Loke, W. M., Croft, K. D., Puddey, I. B., and Mori, T. A. (2009) HDL is the major lipoprotein carrier of plasma F2-isoprostanates. *J. Lipid Res.* 50, 716–722 CrossRef Medline
12. Janero, D. R. (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. *Free Radic. Biol. Med.* 9, 515–540 CrossRef Medline
13. Montuschi, P., Barnes, P. J., and Roberts, L. J., 2nd. (2004) Isoprostanates: markers and mediators of oxidative stress. *FASEB J.*, 18, 1791–1800 CrossRef Medline
14. Brame, C. J., Salomon, R. G., Morrow, J. D., and Roberts, L. J., 2nd. (1999) Identification of extremely reactive gamma-ketoadaldehydes (isolevuglandins) as products of the isoprostane pathway and characterization of their lysyl protein adducts. *J. Biol. Chem.* 274, 13139–13146 CrossRef Medline
15. Esterbauer, H., Schaur, R. J., and Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. *Free Radic. Biol. Med.* 11, 81–128 CrossRef Medline
16. Hoppe, G., Subbanagounder, G., O’Neill, J., Salomon, R. G., and Hoff, H. F. (1997) Macrophage recognition of LDL modified by levuglandin E2, an oxidation product of arachidonic acid. *Biochim. Biophys. Acta* 1344, 1–5 CrossRef Medline
17. Salomon, R. G., Batyreva, E., Kaur, K., Sprecher, D. L., Schreiber, M. J., Crabb, J. W., Penn, M. S., DiCorleto, A. M., Hazen, S. L., and Podrez, E. A. (2000) Isolevuglandin-protein adducts in humans: products of free radical-induced lipid oxidation through the isoprostane pathway. *Biochim. Biophys. Acta* 1485, 225–235 CrossRef Medline
18. Salomon, R. G., Kaur, K., and Batyreva, E. (2000) Isolevuglandin-protein adducts in oxidized low density lipoprotein and human plasma: a strong connection with cardiovascular disease. *Trends Cardiovasc. Med.* 10, 53–59 CrossRef Medline
19. Bowry, V. W., Stanley, K. K., and Stocker, R. (1992) High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. *Proc. Natl. Acad. Sci. U.S.A.* 89,10316–10320 CrossRef Medline
20. Solakivi, T., Jaakola, O., Salomäki, A., Peltonen, N., Metso, S., Lehtimäki, T., Jokela, H., and Nikkari, S. T. (2005) HDL enhances oxidation of LDL in vitro in both men and women. *Lipids Health Dis.* 4, 25 CrossRef Medline
21. Huang, Y., Wu, Z., Riwanto, M., Gao, S., Levison, B. S., Gu, X., Fu, X., Wagner, M. A., Besler, C., Gerstenecker, G., Zhang, R., Li, X. M., DiDonato, A. J., Gogonea, V., Tang, W. H., Smith, J. D., Plow, E. F., Fox, P. L., Shih, D. M., Lusis, A. J., Fisher, E. A., DiDonato, J. A., Landmesser, U., and Hazen, S. L. (2013) Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. *J. Clin. Invest.* 123, 3815–3828 CrossRef Medline
22. Shao, B., Pennathur, S., and Heinecke, J. W. (2012) Myeloperoxidase targets apolipoprotein A-I, the major high density lipoprotein protein, for site-specific oxidation in human atherosclerotic lesions. *J. Biol. Chem.* 287, 6375–6386 CrossRef Medline
23. Guo, L., Chen, Z., Amarnath, V., and Davies, S. S. (2012) Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation. *Free Radic. Biol. Med.* 53, 1226–1238 CrossRef Medline
24. Davies, S. S., Brantley, E. J., Voziyan, P. A., Amarnath, V., Zagol-Ikappite, I., Boutaud, O., Hudson, B. G., Oates, J. A., and Roberts, L. J., 2nd. (2006) Pyridoxamine analogues scavenge lipid-derived γ-ketoaldehydes and pro-

Isolevuglandin causes HDL dysfunction and inflammation
Isolevuglandin causes HDL dysfunction and inflammation

tect against \(\text{H}_2\text{O}_2\)-mediated cytotoxicity. *Biochemistry* 45, 15756–15767 *CrossRef Medline*

25. McCall, M. R., Tang, J. Y., Bielicki, J. K., and Forte, T. M. (1995) Inhibition of lecithin-cholesterol acyltransferase and modification of HDL apolipoproteins by aldehydes. *Arterioscler. Thromb. Vasc. Biol.* 15, 1599–1606 *CrossRef Medline*

26. Borja, M. S., Zhao, L., Hammerson, B., Tang, C., Yang, R., Carson, N., Fernando, G., Liu, X., Budamagunta, M. S., Genest, J., Shearer, G. C., Duclos, F., and Oda, M. N. (2013) HDL-apoA-I exchange: rapid reaction and association with atherosclerosis. *PLoS One* 8, e71541 *CrossRef Medline*

27. Matsuura, F., Wang, N., Chen, W., Jiang, X. C., and Tall, A. R. (2006) HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. *J. Clin. Invest.* 116, 1435–1442 *CrossRef Medline*

28. Yancey, P. G. Y., Hu, L., Linton, M. F., and Fazio, S. (2007) A pathway-dependent on apoE, ApoAI, and ABCA1 determines formation of buoyant high-density lipoprotein by macrophage foam cells. *Arterioscler. Thromb. Vasc. Biol.* 27, 1123–1131 *CrossRef Medline*

29. Lin, C. Y., Duan, H., and Mazzone, T. (1999) Apolipoprotein E-dependent cholesterol efflux from macrophages: kinetic study and divergent mechanisms for endogenous versus exogenous apolipoprotein E. *J. Lipid Res.* 40, 1618–1627 *CrossRef Medline*

30. Dove, D. E., Linton, M. F., and Fazio, S. (2005) ApoE-mediated cholesterol efflux from macrophages: separation of autocrine and paracrine effects. *Am. J. Physiol. Cell Physiol.* 288, C586–C592 *CrossRef Medline*

31. Akanuma, Y., and Glomset, J. (1968) In vitro incorporation of cholesterol-14C into very low density lipoprotein cholesterol esters. *J. Lipid Res.* 9, 620–626 *Medline*

32. Favari, E., Zanotti, I., Zimetti, F., Ronda, N., Bernini, F., and Rothblat, G. H. (2004) Probucol inhibits ABCA1-mediated cellular lipid efflux. *Arterioscler. Thromb. Vasc. Biol.* 24, 2345–2350 *CrossRef Medline*

33. De Nardo, D., Labzin, L. I., Kono, H., Seki, R., Schmidt, S. V., Beyer, M., Xu, D., Zimmer, S., Lahmann, C., Schildberg, F. A., Vogelhuber, J., Kraut, M., Ulas, T., Kerkies, A., Krebs, W., et al. (2014) High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. *Nat. Immunol.* 15, 152–160 *CrossRef Medline*

34. Suzuki, M., Pritchard, D. K., Becker, L., Hoofnagle, A. N., Taninura, N., Bammmler, T. K., Beyer, R. P., Bumgarner, R., Vaisar, T., de Beer, M. C., de Beer, F. C., Miyake, K., Oka, J. F., and Heinecke, J. W. (2010) High-density lipoprotein suppresses the type I interferon response, a family of potent antiviral immunoregulators, in macrophages challenged with lipopolysaccharide. *Circulation* 122, 1919–1927 *CrossRef Medline*

35. Undurti, A., Huang, Y., Lupica, J. A., Smith, J. D., DiDonato, J. A., and Hazen, S. L. (2009) Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. *J. Biol. Chem.* 284, 30825–30835 *CrossRef Medline*

36. Guo, L., Chen, Z., Amarnath, V., Yancey, P. G., Van Lenten, B. J., Savage, J. R., Fazio, S., Linton, M. F., and Davies, S. S. (2015) Isolevuglandin-type lipid aldehydes induce the inflammatory response of macrophages by modifying phosphatiyldethanolamines and activating the receptor for advanced glycation endproducts. *Antioxid. Redox Signal.* 22, 1633–1645 *CrossRef Medline*

37. Norata, G. D., Pirillo, A., and Catapano, A. L. (1996) Modified HDL: biochemical and physiopathological consequences. *Natur. Metab. Cardiovasc. Dis.* 16, 371–386 *CrossRef Medline*

38. Brennan, M. L., Wu, W., Fu, X., Shen, Z., Song, W., Frost, H., Vadveth, C., Narine, L., Lenkiewicz, E., Borchers, M. T., Lusis, A. J., Lee, J. J., Lee, N. A., Abu-Soud, H. M., Ischiropoulos, H., and Hazen, S. L. (2002) A tale of two controversies: defining both the role of peroxides in nitrosytromine formulation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxides-generated reactive nitrogen species. *J. Biol. Chem.* 277, 17415–17427 *CrossRef Medline*

39. Zhang, R., Brennan, M. L., Shen, Z., MacPherson, J. C., Schmitt, D., Molenda, C. E., and Hazen, S. L. (2002) Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. *J. Biol. Chem.* 277, 46116–46122 *CrossRef Medline*

40. Gauthamadasa, K., Vaitinadin, N. S., Dressman, J. L., Macha, S., Homan, R., Greis, K. D., and Silva, R. A. (2012) Apolipoprotein A-II-mediated conformational changes of apolipoprotein A-I in discoidal high density lipoproteins. *J. Biol. Chem.* 287, 7615–7625 *CrossRef Medline*

41. Colvin, P. L., Moriguchi, E., Barrett, P. H., Parks, J. S., and Rudel, L. L. (1999) Small HDL particles containing two apoA-I molecules are precursors in vivo to medium and large HDL particles containing three and four apoA-I molecules in nonhuman primates. *J. Lipid Res.* 40, 1782–1792 *Medline*

42. Shah, A. S., Tan, L., Long, J. L., and Davidson, W. S. (2013) Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. *J. Lipid Res.* 54, 2575–2585 *CrossRef Medline*

43. Gonzalez, M. C., Toledo, J. D., Tricerri, M. A., and Garda, H. A. (2008) The central type Y amphiphatic alpha-helices of apolipoprotein AI are involved in the mobilization of intracellular cholesterol depots. *Arch. Biochem. Biophys.* 473, 34–41 *CrossRef Medline*

44. Akinkuolie, A. O., Paynter, N. P., Padmanabhan, L., and Mora, S. (2014) High-density lipoprotein particle subclass heterogeneity and incident coronary heart disease. *Circ. Cardiovasc. Qual. Outcomes* 7, 55–63 *CrossRef Medline*

45. Heier, M., Borja, M. S., Brunborg, C., Seljeflot, L., Margreidsdottir, H. D., Hanssen, K. F., Dahl-Jørgensen, K., and Oda, M. N. (2017) Reduced HDL function in children and young adults with type 1 diabetes. *Cardiovasc. Diabetol.* 16, 85 *CrossRef Medline*

46. Soupe, E., Borja, M. S., Borda, M., Larkin, S. K., and Kypersus, F. A. (2016) Featured article: alterations of lecithin cholesterol acyltransferase activity and apolipoprotein A-I functionality in human sickle blood. *Exp. Biol. Med.* 241, 1933–1942 *CrossRef Medline*

47. Kelesidis, T., Oda, M. N., Borja, M. S., Yee, Y., Ng, K. F., Huynh, D., Elshoff, D., and Currier, J. S. (2017) Predictors of impaired HDL function in HIV-1 infected compared to uninfected individuals. *J. Acquir. Immune Defic. Syndr.* 75, 354–363 *CrossRef Medline*

48. Cavigiolio, G., Geier, G. E., Shao, B., Heinecke, J. W., and Oda, M. N. (2010) Exchange of apolipoprotein A-I between lipid-associated and lipid-free states: a potential target for oxidative generation of dysfunctional high density lipoproteins. *J. Biol. Chem.* 285, 18847–18857 *CrossRef Medline*
Isolevuglandin causes HDL dysfunction and inflammation

56. Wang, N., and Tall, A. R. (2003) Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. *Arterioscler. Thromb. Vasc. Biol.* **23**, 1178–1184 CrossRef Medline

57. Yancey, P. G., Bortnick, A. E., Kellner-Weibel, G., de la Llera-Moya, M., Phillips, M. C., and Rothblat, G. H. (2003) Importance of different pathways of cellular cholesterol efflux. *Arterioscler. Thromb. Vasc. Biol.* **23**, 712–719 CrossRef Medline

58. Salmon, S., Mazière, C., Auclair, M., Theron, L., Santus, R., and Mazière, J. C. (1992) Malondialdehyde modification and copper-induced autooxidation of high-density lipoprotein decrease cholesterol efflux from human cultured fibroblasts. *Biochim. Biophys. Acta* **1125**, 230–235 CrossRef Medline

59. Nagano, Y., Arai, H., and Kita, T. (1991) High density lipoprotein loses its effect to stimulate efflux of cholesterol from foam cells after oxidative modification. *Proc. Natl. Acad. Sci. U.S.A.* **88**, 6457–6461 CrossRef Medline

60. Bergt, C., Pennathur, S., Fu, X., Byun, J., O’Brien, K., McDonald, T. O., Singh, P., Anantharamaiah, G. M., Chait, A., Brunzell, J., Geary, R. L., Oram, J. F., and Heinecke, J. W. (2004) The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. *Proc. Natl. Acad. Sci. U.S.A.* **101**, 13032–13037 CrossRef Medline

61. Shao, B., Bergt, C., Fu, X., Green, P., Voss, J. C., Oda, M. N., Oram, J. F., and Heinecke, J. W. (2005) Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. *J. Biol. Chem.* **280**, 5983–5993 CrossRef Medline

62. Francis, G. A., Mendez, A. J., Bierman, E. L., and Heinecke, J. W. (1993) Oxidative tyrosylation of high density lipoprotein by peroxidase enhances cholesterol removal from cultured fibroblasts and macrophage foam cells. *Proc. Natl. Acad. Sci. U.S.A.* **90**, 6631–6635 CrossRef Medline

63. Wang, W. Q., Moses, A. S., and Francis, G. A. (1998) Enhanced cholesterol efflux by tyrosyl radical-oxidized high density lipoprotein is mediated by apolipoprotein AI-AII heterodimers. *Proc. Natl. Acad. Sci. U.S.A.* **95**, 2809–2812 CrossRef Medline

64. Yu, B. L., Wang, S. H., Peng, D. Q., and Zhao, S. P. (2010) HDL and immunomodulation: an emerging role of HDL against atherosclerosis. *Immunol. Cell Biol.* **88**, 285–290 CrossRef Medline

65. Ulevitch, R. J., Johnston, A. R., and Weinstein, D. B. (1979) New function for high density lipoproteins: their participation in intravascular reactions of bacterial lipopolysaccharides. *J. Clin. Invest.* **64**, 1516–1524 CrossRef Medline

66. Ulevitch, R. J., Johnston, A. R., and Weinstein, D. B. (1981) New function for high density lipoproteins: isolation and characterization of a bacterial lipopolysaccharide-high density lipoprotein complex formed in rabbit plasma. *J. Clin. Invest.* **67**, 827–837 CrossRef Medline

67. Levine, D. M., Parker, T. S., Donnelly, T. M., Walsh, A., and Rubin, A. L. (1993) *In vivo* protection against endotoxin by plasma high density lipoprotein. *Proc. Natl. Acad. Sci. U.S.A.* **90**, 12040–12044 CrossRef Medline

68. Cavaillon, J. M., Fitting, C., Haefner-Cavaillon, N., Kirsch, S. J., and Warren, H. S. (1990) Cytokine response by monocytes and macrophages to free and lipoprotein-bound lipopolysaccharide. *Infect. Immun.* **58**, 2375–2382 Medline

69. Guo, L., Chen, Z., Cox, B. E., Amarnath, V., Epand, R. F., Epand, R. M., and Davies, S. S. (2011) Phosphatidylethanolamines modified by γ-ketoaldehyde (γkA) induce endoplasmic reticulum stress and endothelial activation. *J. Biol. Chem.* **286**, 18170–18180 CrossRef Medline

70. Kirabo, A., Fontana, V., de Faria, A. P., Loperena, R., Galindo, C. L., Wu, J., Bikineyeva, A. T., Dikalov, S., Xiao, L., Chen, W., Saleh, M. A., Trott, D. W., Itani, H. A., Vinh, A., Amarnath, V., et al. (2014) DC isoketal-modified proteins activate T cells and promote hypertension. *J. Clin. Invest.* **124**, 4642–4656 CrossRef Medline

71. Amarnath, V., Amarnath, K., Masterson, T., Davies, S., and Roberts, L. J. (2005) A simplified synthesis of the diastereomers of levuglandin E2. *Synth. Commun.* **35**, 397–408 CrossRef Medline

72. Gardner, H., Bartelt, R., and Weisleder, D. (1992) A facile synthesis of 4-hydroxy-2(E)-nonenal. *Lipids* **27**, 686–689 CrossRef Medline

73. Enkisch, C., and Schneider, C. (2009) Sequential Mannich-Aza-Michael reactions for the stereodivergent synthesis of highly substituted pyrrolidine. *Eur. J. Org. Chem.* **2009**, 15

74. Podrez, E. A., Poliakov, E., Shen, Z., Zhang, R., Deng, Y., Sun, M., Finton, P. J., Shan, L., Gugiu, B., Fox, P. L., Hoff, H. F., Salomon, R. G., and Hazen, S. L. (2002) Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. *J. Biol. Chem.* **277**, 38503–38516 CrossRef Medline

75. Zagol-Ikapitte, I. A., Matafonova, E., Amarnath, V., Bodine, C. L., Boutaud, O., Tirona, R. G., Oates, J. A., Roberts, L. J., 2nd, and Davies, S. S. (2010) Determination of the pharmacokinetics and oral bioavailability of salicylamine, a potent γ-ketoaldehyde scavenger, by LC/MS/MS. *Pharmaceutics* **2**, 18–29 CrossRef Medline

76. Davies, S. S., Amarnath, V., Brame, C. J., Boutaud, O., and Roberts, L. J., 2nd (2007) Measurement of chronic oxidative and inflammatory stress by quantification of isoketal/levuglandin γ-ketoaldehyde protein adducts using liquid chromatography tandem mass spectrometry. *Nat. Protoc.* **2**, 2079–2091 CrossRef Medline

77. Peng, D. Q., Brubaker, G., Wu, Z., Zheng, L., Willard, B., Kinter, M., Hazen, S. L., and Smith, J. D. (2008) Apolipoprotein A-I tryptophan substitution leads to resistance to myeloperoxidase-mediated loss of function. *Arterioscler. Thromb. Vasc. Biol.* **28**, 2063–2070 CrossRef Medline

78. Peng, D. Q., Wu, Z., Brubaker, G., Zheng, L., Settle, M., Cross, E., Kinter, M., Hazen, S. L., and Smith, J. D. (2005) Tyrosine modification is not required for myeloperoxidase-induced loss of apolipoprotein A-I functional activities. *J. Biol. Chem.* **280**, 33775–33784 CrossRef Medline

79. Low, H., Hoang, A., and Sviridov, D. (2012) Cholesterol efflux assay. *J. Vis. Exp.* e3810 CrossRef Medline