Transcriptional Profiling of Foam Cells Reveals Induction of Guanylate-Binding Proteins Following Western Diet Acceleration of Atherosclerosis in the Absence of Global Changes in Inflammation

Young-Hwa Goo, PhD; Se-Hee Son, PhD; Vijay K. Yechoor, MD; Antoni Paul, PhD

Background—Foam cells are central to two major pathogenic processes in atherogenesis: cholesterol buildup in arteries and inflammation. The main underlying cause of cholesterol deposition in arteries is hypercholesterolemia. This study aimed to assess, in vivo, whether elevated plasma cholesterol also alters the inflammatory balance of foam cells.

Methods and Results—Apolipoprotein E–deficient mice were fed regular mouse chow through the study or were switched to a Western-type diet (WD) 2 or 14 weeks before death. Consecutive sections of the aortic sinus were used for lesion quantification or to isolate RNA from foam cells of mice under prolonged hypercholesterolemia or to microarray and quantitative polymerase chain reaction analyses. WD feeding for 2 or 14 weeks significantly increased plasma cholesterol, but the size of atherosclerotic lesions increased only in the 14-week WD group. Expression of more genes was affected in foam cells of mice under prolonged hypercholesterolemia than in mice fed WD for 2 weeks. However, most transcripts coding for inflammatory mediators remained unchanged in both WD groups. Among the main players in inflammatory or immune responses, chemokine (C–X–C motif) ligand 13 was induced in foam cells of mice under WD for 2 weeks. The interferon-inducible GTPases, guanylate-binding proteins (GBP)3 and GBP6, were induced in the 14-week WD group, and other GBP family members were moderately increased.

Conclusions—Our results indicate that acceleration of atherosclerosis by hypercholesterolemia is not linked to global changes in the inflammatory balance of foam cells. However, induction of GBPs uncovers a novel family of immune modulators with a potential role in atherogenesis. (J Am Heart Assoc. 2016;5:e002663 doi: 10.1161/JAHA.115.002663)

Key Words: atherosclerosis • cholesterol • gene expression • inflammation • macrophages

Lipid-laden macrophages, or foam cells, are chief cellular components of atherosclerotic lesions through all stages of development.\(^1\) Circulating monocytes are recruited to the arterial wall in response to inflammatory stimuli induced, among other factors, by modified low-density lipoprotein (mLDL) particles deposited in the subendothelial space. Monocytes differentiate into macrophages that take up mLDL in an unfettered fashion and become heavily loaded with lipoprotein-derived cholesterol, while they also orchestrate the development of a local inflammatory process.\(^2\)–\(^4\) Given that, presumably, the amount of mLDL deposited in arteries is related to the concentration of circulating LDL, it might be inferred that, by promoting monocyte immigration, hypercholesterolemia directly contributes to vascular inflammation.\(^3\) However, it could also be possible that exposure to different lipoprotein concentrations alters the inflammatory balance of foam cells. The main LDL modifications related to atherosclerosis development involve lipid peroxidation.\(^5\) Transcriptional response of macrophages to exposure to oxidized (ox) LDL has been tested in cultured macrophages of different sources, with diverse results that, depending on the study, suggested predominantly proinflammatory or anti-inflammatory effects.\(^6\)–\(^9\) In some cases, the outcome was significantly affected by changes in experimental variables, such as the cell type, form of LDL modification and presentation to cells, or time of exposure to the lipoproteins. For example, Brand et al. found that short-term exposure of THP-1 macrophages to oxLDL induced activation of nuclear factor kappa B (NF-κB), whereas long-term exposure to oxLDL not only did not activate NF-κB, but actually prevented NF-κB activation by...
lipopolysaccharide; Hammad et al. observed different effects on inflammatory gene expression depending on whether U937 monocytic cells were treated with oxLDL or with oxLDL immune complexes; and Shiffman et al. identified gene clusters in THP-1 macrophages with different temporal patterns of expression in response to treatment with oxLDL. An added challenge that might contribute to the variability of studies on macrophages is the remarkable plasticity of these cells, which allows them to change their phenotype depending on the surrounding environment. Thus, given that the complex atherosclerotic milieu is difficult to reproduce in vitro, cell-culture approaches to characterize macrophages may not represent the functional relevance of the variables being studied as well as studies performed on macrophages resident within actual atherosclerotic lesions.

The apolipoprotein E-deficient (apoE) mouse is a widely used mouse model of atherosclerosis. From a molecular point of view, gene expression patterns in mouse aortas that define different stages of atherosclerosis development also correlated with severity of human coronary lesions. Like in humans, atherosclerosis development in apoE mice is driven by hypercholesterolemia, and plasma cholesterol levels and the extent of lesion development are directly related to the cholesterol content in their diet. Thus, to study the effect of hypercholesterolemia on the transcriptional response of lesional foam cells, here we have fed apoE mice regular chow through the study or have switched their diet to a Western-type diet (WD) for a short (2 weeks) or for a longer (14 weeks) time period. We have assessed the effects of the WD on atherosclerosis development in cross-sections of the aortic sinus, and we have used sections consecutive to the used for lesion quantification to selectively isolate RNA by laser-capture microdissection (LCM) from lesional macrophages to perform a broad analysis of gene expression, with an emphasis on the expression of genes that regulate inflammatory and immune responses.

Methods

Experimental Design

At 8 weeks of age, 15 female apoE mice in C57BL6/J background were divided into 3 groups with similar cholesterol levels. One group was maintained on regular mouse chow (2020X Teklad Global Soy Protein-Free Extruded Rodent Diet; Harlan Laboratories, Indianapolis, IN) until death at 22 weeks. This is a cholesterol-free diet that provides 3.5 kcal/g, including 16% of calories from fat. From 8 weeks of age to the end of the study, the diet of a second group of 5 mice was switched from regular chow to a WD (TD.88137; Harlan Laboratories). This diet provides 4.5 kcal/g and contains 20% (wt/wt) milk fat (42% of total calories) and 0.15% (wt/wt) cholesterol. The third group of mice remained on regular chow until the age of 20 weeks, when mice were fed WD for the remaining 2 weeks of the study. The study design is summarized in Figure 1A. Cholesterol measurements and lipoprotein fractionation by fast-performance liquid chromatography were performed as we previously described. Plasma oxLDL levels were determined by ELISA (USCN Life Science Inc., Wuhan, China), following the manufacturer’s instructions. Additional mice were used to obtain aortic arches for RNA isolation from whole artery, isolate thioglycollate-elicited peritoneal macrophages, and assess the rate of increase of plasma cholesterol upon introduction of the WD. All animal experiments were conducted following protocols approved by the institutional animal care and use committees at Albany Medical College (Albany, NY) and Baylor College of Medicine (Houston, TX).

Lesion Analysis

After death, mouse hearts were perfused with sterile PBS, bisected, and the upper half immediately embedded in OCT (Sakura, Torrance, CA) and stored at −80°C. Approximately 30 consecutive 7-μm cryosections of each aortic sinus were sequentially mounted on 3 slides. The first and third slides, which were used for macrophage isolation by LCM, were immediately fixed, cell nuclei were stained with toluidine blue, and sections were dehydrated with the HistoGene LCM Frozen Section Staining Kit (Applied Biosystems, Foster City, CA). The second slide was stained for macrophages with anti-Lamp2/Mac3 antibody (Santa Cruz Biotechnology, Santa Cruz, CA) and used as a template to identify macrophage-rich areas within the lesions. Images were acquired with a Zeiss AxioObserver.D1 microscope using an AxioCam MRc camera (Carl Zeiss, Jena, Germany), and analyzed with AxioVision software (Zeiss). Lesion area was measured by outlining the perimeter of the area between the vessel lumen and media layer of the arteries. The areas within lesions that stained positive for macrophages were determined using Image software (National Institutes of Health [NIH], Bethesda, MD), as we previously described.

LCM and RNA Amplification

LCM of macrophages and RNA processing were performed as we previously described. Briefly, ~2000 laser shots (power ~65 mV; pulse ~2500 μs) were performed with a Veritas Microdissection System (Applied Biosystems), and cells were collected on CapSure HS LCM Caps (Applied Biosystems). RNA was extracted with the PicoPure RNA Isolation Kit (Applied Biosystems). mRNA was submitted to 2 rounds of amplification with the RiboAmp HS RNA Amplification Kit (Applied Biosystems), each of which consisted of synthesis of
double-stranded cDNA using oligo(dT) primers tagged with the T7 promoter sequence, followed by in vitro transcription (IVT) with T7 polymerase.22 A260/A280 ratios and size distribution analysis of amplified cRNAs were assessed with an Agilent 2100 bioanalyzer (Agilent Technologies Inc., Santa Clara, CA).

Gene Expression Analysis

Fifteen micrograms of each cRNA were biotin-labeled with the TURBO Labeling Biotin kit (Applied Biosystems), fragmented, and hybridized to Mouse Genome 430 2.0 Arrays (Affymetrix, San Diego, CA), as we previously described.22 Data were filtered with dChip software to include probes with ≥50% presence call in the arrays and with expression levels of ≥25 in ≥50% samples. The filtered data were transferred to MeV software,23 log2 transformed, and differential gene expression in the 3 experimental groups was assessed by ANOVA. Welch’s t test (assuming unequal variances) was used for pairwise comparisons. Differences were considered significant when P≤0.01. To visualize the patterns of gene expression between data sets, volcano plots were generated by plotting significance versus fold change in the Y and X axes, respectively. Pathway Express was used to identify the most relevant pathways affected by the dietary manipulations.24 This software calculates P values based on the number of genes differentially expressed in each pathway in relationship to the number of genes expected to change by chance. It also produces a gamma P value that, in addition to classical statistics, takes into consideration parameters such as the fold change and the topology of genes within each given pathway.24 Thus, the gamma P value is influenced by biologically meaningful factors that are not usually captured by classic statistics.

Primers for quantitative real-time polymerase chain reaction (qPCR) were designed in the 3’-terminus region of mRNA, including the 3’ untranslated region (Table). Relative gene expression was determined from threshold cycle values normalized to cyclophilin A, as we previously described.22 For gene expression analyses in cultured primary macrophages, thioglycollate-elicited peritoneal macrophages were

Figure 1. A, Study design. Blue lines represent time periods in which mice were fed regular chow; periods of WD feeding are represented in orange. Red arrows indicate times of blood sampling. B, Time course of plasma cholesterol elevation after introduction of WD. Mice were not fasted for these plasma measurements (n=5). C, D, and E, Fasting plasma cholesterol (C), triglyceride (D), and oxLDL (E) levels at time of death in mice used for gene expression studies (n=5). F, Cholesterol distribution in different lipoprotein fractions in pooled plasmas obtained at week 22 under overnight fasting. *P<0.005 and **P<0.001 with respect to CHOW; #P<0.05 with respect to 2-week WD. HDL indicates high-density lipoprotein; IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; oxLDL, oxidized low-density lipoprotein; VLDL, very low-density lipoprotein; WD, Western-type diet.
Hypercholesterolemia and Foam Cell Inflammation

Table. Primer Sequences

Name	Sequence
Cyclophilin A	Forward 5'-TGCTTTTGGAGAGTCTGAA -3'
CD68	Forward 5'-TTCACGCTGGCTCTCAT -3'
CD14	Forward 5'-GTCGGCTTGTCAAGGAATCT -3'
SR-A1	Forward 5'-ATCGGTTGCAATGTGGT -3'
ABCA1	Forward 5'-GGGCAGATCTGCCGGTGA -3'
α-actin	Forward 5'-GGACAGGACGGCTATGGA -3'
SM22	Forward 5'-GACAGAGGACGGCTATGGA -3'
MYH11	Forward 5'-CTGAGAGGACGGCTATGGA -3'
VE-cadherin	Forward 5'-TGTATATGAAATGTTGGAC -3'
IL-6	Forward 5'-ATGACCAATATGAAATGTTGGAC -3'
CCL2	Forward 5'-TCCCTCTTGAGATGACCGA-3'
CXCL13	Forward 5'-CTGGGAGGAAACCTCCTAC -3'
TNF-α	Forward 5'-GTCTGGAGAGCCAGTGT-3'
IL-18	Forward 5'-GCAGCTGGATGTATCTGCTG-3'
GBP3	Forward 5'-ACATGGCCAATGAGGACACA-3'
GBP6	Forward 5'-TCATCGTTGGAAGGACAACA-3'
GBP8	Forward 5'-TGAGGTATTCATGAGAACA-3'
GBP4	Forward 5'-CTTCGTATATGAAATGTTGCA -3'
GBP2	Forward 5'-TGTCCTCTTGTCAGAGTACG-3'

ABCA1 indicates ATP binding cassette A1; CCL2 indicates chemokine (C-C motif) ligand 2; CXCL, chemokine (C-X-C motif) ligand 13; GBP, guanylate-binding protein; IL, interleukin; MYH11, myosin heavy chain 11; SM22, smooth muscle protein 22; SR-A1, scavenger receptor A1; TNF-α, tumor necrosis factor alpha.

cultured in DMEM/0.2% BSA containing oxLDL (1, 50 or 100 μg/mL; Alfa Aesar, Ward Hill, MA) for 4 or 24 hours. RNA was purified and digested with DNase using the Absolutely RNA miniprep kit (Agilent Technologies). Reverse transcription of 500 ng of total RNA was performed with SuperScript III (Invitrogen, Carlsbad, CA). The qPCR protocol was the same used for analysis of samples isolated by LCM.

Statistical Analysis

Statistical analysis of nonmicroarray data was carried out using parametric methods when the data followed a normal distribution and the samples had equal variances. Otherwise, nonparametric tests were used for the analysis. When parametric tests were used, multiple comparisons were analyzed by ANOVA, and post-hoc pair-wise comparisons were performed using the Holm–Sidak test. When nonparametric tests were used, multiple comparisons were performed with the Kruskal–Wallis test, followed by pair-wise comparisons with the Mann–Whitney U test. Statistical analysis involving comparisons between two groups were performed using a 2-tailed Student t test (parametric) or the Mann–Whitney U test (nonparametric). Differences were considered significant when P < 0.05. Values are presented as mean ± SEM.

Results

Effects of WD on Plasma Lipids and Atherosclerosis Development

To determine the adequate length of the study in which foam cells were exposed to hypercholesterolemia for a short time period, we performed a preliminary study to assess the rate of increase of plasma cholesterol in apoE−/− mice upon introduction of the WD. As seen in Figure 1B, plasma cholesterol was markedly higher at 24 hours of WD feeding, but levels continued to increase gradually to reach concentrations of ≈1000 mg/dL (under fed conditions) at day 11. Thus, in order to expose foam cells to plasma cholesterol levels similar to the achieved under prolonged WD, but for a period of time not long enough to affect atherosclerosis development, mice were fed WD for 2 weeks. Fasting plasma cholesterol levels measured at the time of death in mice used for gene expression studies were still moderately (≈10%) higher in mice fed WD for 10 weeks than in mice that were fed WD for only 2 weeks. Although these differences did not reach statistical significance. However, in both WD groups, cholesterol levels were significantly (≈2-fold) higher than in mice fed regular mouse chow (Figure 1C and 1F). As expected...
in apoE^{−/−} mice, plasma triglycerides did not increase in response to WD (Figure 1D). Although oxidative modifications are believed to take place mainly on apoB-containing lipoproteins retained at the arterial wall, oxLDL is also present in the circulation.^{25,26} Plasma oxLDL were very similar between mice fed chow through the study and mice fed WD for the last 2 weeks, whereas oxLDL levels were slightly reduced in mice fed WD for 14 weeks (Figure 1E). This observation is consistent with recent studies that showed that plasma oxLDL decreases concomitantly with increase in lesion size.²⁶ Indeed, the prolonged hypercholesterolemia in the 14-week WD group resulted in a very substantial (>3-fold) increase in atherosclerosis development at the aortic sinus: 696±32×10³ µm² in mice fed WD for 14 weeks versus 221±13×10³ µm² in mice fed regular chow through the study. However, the size of the lesions in the 2-week WD group was similar to that of mice fed regular chow: 263±37 µm² (Figure 2A and 2B). Next, we performed immunohistochemical analyses to quantify the areas of macrophages within lesions. The relative macrophage content was similar in mice fed chow through the study and in mice fed WD for 2 weeks (≈35–40%), but it was lower (≈25%) in mice fed WD for 14 weeks (Figure 2C). However, the total area of macrophages, calculated by multiplying the percentage of macrophages by the total lesion area, was higher in mice fed WD for 14 weeks (Figure 2D). Thus, WD feeding for either 2 or 14 weeks significantly increased plasma cholesterol levels. However, lesions in mice fed WD for 2 week were similar in size and contained a similar amount of macrophages than those of mice fed chow through the study, whereas the longer WD feeding protocol markedly increased the progression of atherosclerotic lesions.

Gene Expression Analyses of Lesional Foam Cells

RNA from lesional foam cells was isolated by LCM and amplified by IVT to obtain enough material for a broad gene expression analysis.²² First, to control the quality of the isolation and amplification processes, we assessed whether the gene expression patterns in the cRNA amplified from cells captured by LCM were the expected in macrophage/foam cell populations. Using qPCR, we compared expression of several macrophage markers between these cRNA samples and cRNA amplified from lysates of aortic arches (whole artery) of apoE^{−/−} mice. As seen in Figure 3A through 3D, levels of transcripts that are typically elevated in macrophage populations, including CD68, CD14, scavenger receptor A1 (SR-A1), and ATP binding cassette A1 (ABCA1), were enriched in LCM-cRNAs. Conversely, levels of transcripts coding for the smooth muscle cell (SMC) markers, α-actin, smooth muscle myosin heavy chain 11 (MYH11), and smooth muscle protein 22 (SM22), were significantly reduced in macrophages isolated by LCM (Figure 3E through 3G). Likewise, mRNA coding for the endothelial cell marker VE-cadherin, was also

![Figure 2. A, Representative images of sections of the aortic sinus in the 3 experimental groups stained with the macrophage marker, Mac-3 (Brown), and counterstained with hematoxylin. Bar=200 µm. B, Area of atherosclerosis involvement was determined by quantifying the area between the media layer and the vessel lumen. Dots represent individual values. Bars represent average±SEM. C, Percentage of lesion area occupied by macrophages and (D) absolute of macrophages at the aortic sinus. *P<0.05 and **P<0.001 with respect to CHOW. WD indicates Western-type diet.](image-url)
Reduced in LCM samples (Figure 3H). Importantly, both the enrichment in macrophage markers and the decrease in SMC markers and VE-cadherin were similar in LCM-cRNAs in the 3 experimental groups.

For broad gene expression profiling of foam cells, amplified cRNAs were biotinylated and hybridized to Affymetrix DNA chips. The microarray data have been deposited at the GEO (Gene Expression Omnibus) repository and can be accessed through the accession number GSE70619. Data was filtered to remove probes with low presence of call and/or low intensity across the board of arrays, and 15,433 targets satisfied the filtering criteria. Among them, ANOVA analysis at a P value of 0.01 followed by pair-wise comparisons against the “CHOW” group identified 52 targets significantly affected in the 2-week WD group and 366 targets in the 14-week WD group. Volcano plots summarizing these changes are shown in Figure 4A and 4B, and the genes affected by the dietary manipulations are listed in Table S1 (2-week WD vs CHOW) and Table S2 (14-week WD vs CHOW). To determine the main biological processes affected in response to hypercholesterolemia, the data were analyzed with Pathway Express. Two pathways, “antigen processing and presentation” and “ubiquitin-mediated proteolysis,” were commonly affected in both WD groups (Figure 4C). Changes in genes in the antigen processing and presentation pathway could be related to the increased uptake of modified lipoproteins by foam cells of mice under WD. The reasons for the over-representation of genes in the ubiquitin-mediated proteolysis pathway are not clear, though it was reported that protein ubiquitination was increased in atherosclerotic plaques, and ubiquitin-mediated proteolysis was the most over-represented pathway in plaques of diabetic patients.27,28 Whereas these two pathways were the only ones affected in the 2-week WD group, the higher number of genes differently expressed in the 14-week WD group was reflected in 11 additional pathways significantly affected in this group (Figure 4C). Given that lesions were more developed in response to prolonged WD, but the plasma lipid profiles were similar in both WD groups, it is likely that changes in the lesional microenvironment contributed to the more-robust changes in gene expression observed in the 14-week WD group. Indeed, the modest changes in gene expression observed in mice fed WD for only 2 weeks suggest that hypercholesterolemia is not a major determinant of transcriptional response of foam cells. However, whether the changes in gene expression were directly related to the plasma cholesterol concentrations, or were the result of other changes in the lesional milieu, neither WD feeding protocol affected the expression of the vast majority of genes in inflammatory and immune response categories. The most noteworthy exceptions were chemokine (C-X-C motif) ligand 13 (CXCL13), which was upregulated in the 2-week WD group by ~4.4-fold, and two members of the p65 guanylate-binding proteins (GBP) family of interferon-inducible GTPases, GBP3 and GBP6, which were induced in the 14-week WD group by ~3.2- and ~5.2-fold, respectively.

Analysis of Inflammatory Mediators

The inflammatory nature of atherosclerosis has been supported by numerous studies, including analysis of gene
expression in both clinical samples and animal models of atherosclerosis.2,4 Thus, to assess whether genes involved in inflammation could have been affected, but to an extent that did not meet the criteria of this analysis, we performed a similar analysis at a significance level of \(P < 0.05 \) instead of \(P < 0.01 \). As expected, the less-conservative analysis yielded a larger number of genes significantly affected by both dietary manipulations (78 targets significantly changed when comparing 2-week WD vs CHOW and 571 targets when comparing 14-week WD vs CHOW). However, the absence of immune and inflammatory mediators was still evident, and, accordingly, pathways related to the inflammatory and immune responses were not significantly affected (data not shown). Next, we focused the analysis on expression of transcripts coding for major cytokines and chemokines that had been related to progression of atherosclerosis or development of more-severe plaque phenotypes.16,28–31 As seen in Figure 5A, in both WD groups, the levels of most transcripts coding for interleukins or for CC or CXC cytokines were very close or within \(\approx 1 \)-fold change of the levels observed in the CHOW group. There were no obvious trends toward higher or lower ratios in any of the 2 WD groups that suggested an overall proinflammatory or anti-inflammatory effect. Among these players in inflammation, only CXCL13 (in the 2-week WD group) was significantly elevated. This result was confirmed by qPCR analysis (Figure 5B). Interleukin-6 (IL-6) was increased by \(\approx 5 \)-fold in the 14-week WD group, although the signal intensities for IL-6 were very variable and the differences did not reach statistical significance. Changes in IL-6 mRNA levels were not supported by qPCR analysis (Figure 5C). Other inflammatory mediators that displayed modest and nonstatistically significant increases in the microarray analyses, namely, chemokine (C-C motif) ligand 2 (CCL2) in the 2-week WD group or IL-18 in the 14-week WD group, also remained similar among groups.
by qPCR analysis (Figure 5D and 5E). Interestingly, whereas CXCL13 was induced by short-term hypercholesterolemia, it was not elevated in foam cells from chow-fed mice when compared to whole aortic arches. In contrast, levels of transcripts coding for IL-6, CCL2, and IL-18 were significantly higher in all 3 foam cell populations.

Induction of GBPs by Hypercholesterolemia

A remarkable observation in the microarray analyses was the induction of two p65-GBPs (GBP3 and GBP6) in foam cells of mice fed WD for 14 weeks. Several studies have shown that different GBPs are concomitantly induced.32 Thus, we asked whether in the 14-week WD group there would also be some degree of induction of other GBP family members. Interestingly, as seen in Figure 6A, levels of 5 of the 6 GBPs included in the microarray was higher in foam cells isolated from mice fed WD for 14 weeks than in mice fed regular chow. Intensity of GBP2, GBP7, and GBP8 was 2-fold higher, although these differences were not statistically significant. In general, GBPs were not elevated in mice fed WD for only 2 weeks, although GBP6 was relatively higher than in control CHOW-fed mice both in the microarray and qPCR analyses (Figure 6A and 6C).

Results of qPCR analyses were consistent with the microarray data (Figure 6B through 6F). Next, we asked whether the changes observed in vivo would also be observed in vitro in peritoneal macrophages treated with oxLDL. It was reported that oxLDL in human endarterectomy specimens was nearly 70 times higher than plasma oxLDL in the same patients.33 Thus, given that measurements of oxLDL concentrations within mouse atherosclerotic lesions are extremely challenging, we performed a dose-response study that included a low dose of oxLDL close to the circulating levels (1 \(\mu \)g/mL) and 2 higher doses of 50 and 100 \(\mu \)g/mL. Mouse peritoneal macrophages were exposed to these concentrations of oxLDL for 4 and 24 hours. None of the treatments altered the levels of the CXCL13 mRNA. However, as seen in Figure 7A, we observed significantly increased GBP3 and GBP6 mRNA in peritoneal macrophages cultured with 100 \(\mu \)g/mL of oxLDL. Overall, GBP6 seems to be the most responsive GBP family member both in vivo and in vitro. Next, we assessed whether expression of other GBP family members was also induced in response to oxLDL, and found that GBP2 and GBP7 were also increased upon treatment with oxLDL (100 \(\mu \)g/mL). Thus, whereas CXCL13 was not induced by oxLDL in vitro, several GBP family members were induced, suggesting that oxLDL
might be one of the factors involved in the induction of GBP in response to hypercholesterolemia.

Discussion

Hypercholesterolemia is a leading risk factor for development of atherosclerosis, an inflammatory disease of the arterial wall. There is compelling evidence supporting the notion that hypercholesterolemia enhances vascular inflammation, including gene expression profiles of aortic sinuses isolated from apoE−/− mice that showed increased expression of inflammatory mediators after the introduction of a Western diet. Upregulation of proinflammatory genes observed in these studies could be the logical consequence of the increased

![Figure 6](image)

Figure 6. A, Average signal intensity for GBPs present in the microarray. Bars represent the ratios (fold increase) with respect to LCM macrophages in the CHOW group (dashed line). B through F, qPCR analysis of expression of GBP3, GBP6, GBP2, GBP7, and GBP8 in aortas and LCM macrophages of the 3 experimental groups. *P<0.05 and **P<0.001 with respect to RNA isolated from aortic arches (Aorta); ^P<0.05 with respect to CHOW macrophages (MØ). GBP indicates guanylate-binding protein; LCM, laser-capture microdissection; qPCR, quantitative polymerase chain reaction; WD, Western-type diet.

![Figure 7](image)

Figure 7. A, qPCR analysis of expression of CXCL13, GBP3, and GBP6 in mouse peritoneal macrophages that remained untreated or were stimulated with oxLDL (1, 50, or 100 µg/mL) for 4 or 24 hours. B, Expression of other GBP family members in response to oxLDL (100 µg/mL for 4 or 24 hours; n=3). *P<0.05, **P<0.01 and ***P<0.001 with respect to untreated control. CXCL, chemokine (C-X-C motif) ligand; GBP, guanylate-binding protein; oxLDL, oxidized low-density lipoprotein; qPCR, quantitative polymerase chain reaction.
influx of inflammatory cells to the arterial wall during progression of the disease, but could also be related to other factors, such as the activation of lesional cells, in response to hypercholesterolemia. In this line, there is evidence that exposure to modified lipoproteins might regulate the inflammatory response of foam cells. For example, oxLDL was shown to activate NF-κB by binding to Toll-like receptors (TLRs) such as TLR2 and TLR4. Accumulation of cholesterol crystals in the cytoplasm of macrophages was also proposed to stimulate a proinflammatory cascade. Alternatively, lipoprotein-derived oxysterols are natural liver X receptor ligands, which can counter-regulate induction of inflammatory gene expression by NF-κB by recruiting corepressors to the promoters of inflammatory genes. Thus, we asked whether increases in plasma cholesterol that significantly accelerate atherosclerosis development would actually affect the inflammatory balance of lesional foam cells. Answering this question using complex heterogeneous samples, such as fragments of atheromatous plaques or diseased arteries, may be quite challenging, mainly because of the variable number of inflammatory cells that can be found in these specimens. To circumvent this challenge, here we have used LCM to specifically isolate and assess the inflammatory status of macrophages resident within atherosclerotic lesions. We fed apoE−/− mice for a period of time that was not long enough to affect the size of atherosclerotic lesions (2 weeks) or for a longer period that significantly enhanced the development of atherosclerosis (14 weeks). Whereas WD feeding resulted in a ∼2-fold elevation in plasma cholesterol, neither dietary manipulation affected expression of the vast majority of genes coding for inflammatory mediators. Thus, a first and foremost conclusion of this study is that accelerated development of atherosclerosis in response to hypercholesterolemia was not linked to major changes in the inflammatory balance of foam cells, as it would be expected if the activity of central regulators of inflammation, such as NF-κB, were affected.

Although we did not observe global changes in inflammation, we observed certain changes that might be relevant to the pathogenesis of the disease. Expression of the chemokine CXCL13, was elevated only in the short-term WD group. CXCL13 is a homeostatic chemokine that has been primarily linked to lymphocyte trafficking, but has also been shown to influence other key processes such as activation of T cells and macrophages. CXCL13 is produced by macrophages and is expressed in human atherosclerotic lesions. However, its role in atherogenesis remains poorly characterized, and it has actually been proposed to play a role both in plaque stabilization and plaque destabilization. It is noteworthy that the in vivo changes in CXCL13 expression were not recapitulated in peritoneal macrophages cultured with various doses of oxLDL. This may simply stress the importance of performing gene expression analyses on macrophages within actual atheroma, but could also indicate that CXCL13 expression is induced by other factors involved in the pathogenesis of atherosclerosis.

In the long-term WD group, we observed a significant induction of 2 GBPs, GBP3 and GBP6, as well as a more-moderate elevation of other GBP family members. The GBPs were among the first interferon (IFN)-inducible genes identified, and, like other interferon target genes, the function of GBPs has been primarily associated to protection against viral and bacterial infections. Although their mechanism of action is still under investigation, p65-GBPs have been shown to localize to vacuoles containing pathogens and play a role in transport of autophagic machinery, antimicrobial peptides, and NADPH oxidase (NOX) enzymes for assembly on phagosomal membranes. Interestingly, both the phagocytic clearance of apoptotic cells, known as efferocytosis, and the production of reactive oxygen species by NOX enzymes are processes associated with the development of atherosclerosis. Furthermore, similar to what happens during bacterial phagocytosis, efferocytosis was shown to induce an oxidative burst in macrophages in a NOX-dependent fashion. Importantly, in follow-up studies using cultured macrophages, we found that several GBPs were induced in vitro by oxLDL, which indicates that oxLDL may be one of the factors responsible for the induction observed in vivo. However, the reason for the specific upregulation of GBPs among the various players in inflammation and immunity is not clear. A possible explanation is that the genes coding for GBPs may be more sensitive to modest changes in inflammation that may take place in more-advanced lesions. Indeed, GBPs are known to be very strongly induced by IFN and other inflammatory stimuli, a fact that even facilitated the characterization of signaling pathways such as the Janus kinase/signal transducer and activator of transcription and the IFN-γ and IFN-α/β pathways. However, to our knowledge, this is the first report linking this family of IFN-induced GTPases with the pathogenesis of atherosclerosis. Thus, additional studies will be necessary to determine whether GBPs play a significant role in regulation of atherogenesis, whether it is through regulation of macrophage function during efferocytosis or by other mechanisms.

In conclusion, this study challenges the notion that acceleration of atherogenesis by hypercholesterolemia is linked to a global impact on the inflammatory balance of foam cells. Significant changes among inflammatory and immune mediators included induction of CXCL13 in response to short-term increases in plasma cholesterol, and induction of GBPs in foam cells resident within the more-advanced lesions that formed in response to prolonged hypercholesterolemia. Further research will be necessary to elucidate the role of these players in the development of atherosclerosis.
Acknowledgments
We thank the members of the Genomic and RNA Profiling Core at Baylor College of Medicine for their help in sample processing and discussion.

Sources of Funding
This work was supported by NIH grants HL104251 (to Paul) and R01DK097160 (to Yechoor). Goo was partly supported by an American Heart Association Scientist Development Grant (14SDG19690016).

Disclosures
None.

References
1. Glass CK, Wittum JL. Atherosclerosis: the road ahead. Cell. 2001;104:503–516.
2. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–126.
3. Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med. 2002;8:1211–1217.
4. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2045–2051.
5. Steinberg D. The LDL modification hypothesis of atherogenesis: an update. J Lipid Res. 2009;50:329–338.
6. Tuomisto TT, Riekkinen MS, Viita H, Levonen AL, Yla-Herttuala S. Analysis of gene and protein expression during monocyte-macrophage differentiation and cholesterol loading-cDNA and protein array study. Atherosclerosis. 2005;180:283–291.
7. Elgini S, Colli S, Basso F, Sironi L, Tremoli E. Oxidized low density lipoprotein suppresses expression of inducible cyclooxygenase in human macrophages. Arterioscler Thromb Vasc Biol. 1999;19:1719–1725.
8. Conway JP, Kinter M. Proteomic and transcriptomic analyses of macrophages with an increased resistance to oxidized low density lipoprotein (oxLDL)-induced cyto toxicity generated by chronic exposure to oxLDL. Mol Cell Proteomics. 2005;4:1522–1540.
9. Spann NJ, Gamrire LX, McDonald JG, Myers DS, Shibata N, Reichtart D, Fou JN, Shaked I, Heudobler D, Raetz CR, Wang EW, Kelly SL, Sullard RC, Murphy RC, Merrill AH Jr, Brown HA, Dennis EA, Li AC, Le Y, Kismas S, Fahy E, Subramanian S, Quehenberger G, Russell DW, Glass CK. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell. 2012;151:138–152.
10. Brand K, Eisele T, Kreusel U, Page M, Page S, Haas M, Gerling A, Kaltwitzsch C, Neumann F-J, Mackman N, Baeuerle PA, Walli AK, Neumeier D. Dysregulation of mononuclear cellular factor-xb by oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol. 1997;17:1901–1909.
11. Hammad SM, Twal WO, Barth JL, Smith KJ, Saad AF, Virella G, Argraves WS, Subramaniam B, Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116:1832–1844.
12. Itabe H, Obama T, Kato R. The dynamics of oxidized LDL during atherogenesis. J Lipids. 2011;2011:418313.
13. Wang Z, Guo D, Yang B, Wang J, Wang R, Wang X, Zhang Q. Integrad analysis of microarray data of atherosclerotic plaques: modulation of the ubiquitin-proteasome system. PLoS One. 2014;9:e110288.
14. King JF, Ferrara R, Tabas I, Spin JM, Chen MM, Kuchinsky A, Villaly A, Kincaid R, Tsalenko A, Deng DX, Connolly A, Zhang P, Yang E, Watt C, Yakhini Z, Ben-Dor A, Adler A, Bruhn L, Tsao P, Quehenberger T, Ashley EA. Pathway analysis of coronary atherosclerosis. Physiol Genomics. 2005;23:103–118.
15. Satterthwaite G, Francis SE, Suvarna K, Blakemore S, Ward C, Wallace D, Braddock M, Crossman D. Differential gene expression in coronary arteries from patients presenting with ischemic heart disease: further evidence for the inflammatory basis of atherosclerosis. Am J Heart. 2005;150:488–498.
16. Lutgens E, Faber B, Schapira K, Ekelo CT, van Haastert R, Heeneman S, Cleutjens KB, Bijnen AP, Beckers L, Porter JG, Mackay CR, Rennert P, Bally I, Janse M, Geijskes M, de Jongh RM, de Vos JC, Lammers GM, van der Wouden GH, van der Graaf Y, de Vos RWA. Gene profiling in atherosclerosis reveals a key role for small inducible cytokines: validation using a novel monoclonal chemotactant protein-monoclonal antibody. Circulation. 2005;111:3434–3452.
17. Cagnin S, Biscuola M, Patuzzo C, Trabetti E, Pasquali A, Laveder P, Faggian G, lafrancesco M, Mazzucco A, Pignatti PF, Lanfranchi G. Reconstruction and functional analysis of altered molecular pathways in human atherosclerotic arteries. BMC Genom. 2009;10:13.
18. Martins S, Howard J. The interferon-inducible GTPases. Annu Rev Cell Dev Biol. 2006;22:589–599.
19. Nishi K, Itabe H, Uno M, Kitazato KT, Hirouchi H, Shinnou K, Nagahiro S. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol. 2002;22:1649–1654.
20. Castro C, Campistol JM, Barettoni D, Andres V. Transcriptional profiling of early onset diet-induced atherosclerosis in apolipoprotein E-deficient mice. Front Biosci. 2005;10:1932–1945.
21. Miller YL, Viriyakosol S, Binder CJ, Feramisco JR, Kirkland TN, Wittum JL. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol Chem. 2003;278:1561–1568.
22. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12:204–212.
23. Im SS, Osborne TF. Liver X receptors in atherosclerosis and inflammation. Circ Res. 2011;108:996–1001.
38. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med. 2003;9:213–219.

39. Shibata N, Glass CK. Regulation of macrophage function in inflammation and atherosclerosis. J Lipid Res. 2009;50:S277–S281.

40. Smedbakken LM, Halvorsen B, Daissormont I, Ranheim T, Michelsen AE, Skjelland M, Sagen EL, Folkestad AL, Krogh-Sorensen K, Russell D, Holm S, Ueland T, Fevang B, Hedin U, Yndestad A, Gullestad L, Hansson GK, Biessen EA, Aukrust P. Increased levels of the homeostatic chemokine CXCL13 in human atherosclerosis—potential role in plaque stabilization. Atherosclerosis. 2012;224:266–273.

41. Carlsen HS, Baekkevold ES, Morton HC, Haraldsen G, Brandtzaeg P. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood. 2004;104:3021–3027.

42. van Dijk RA, Duinisveld AJ, Schaapherder AF, Mulder-Stapel A, Hamming JF, Kuijer J, de Boer Oj, van der Wal AC, Koelodje FD, Virmani R, Lindeman JH. A change in inflammatory footprint precedes plaque instability: a systematic evaluation of cellular aspects of the adaptive immune response in human atherosclerosis. J Am Heart Assoc. 2015;4:e001403 doi: 10.1161/JAHA.114.001403.

43. Carter CC, Gorbacheva Vy, Vestal Dj. Inhibition of VSV and EMCV replication by the interferon-induced GTPase, mGBP-2: differential requirement for wild-type GTP binding domain. Arch Virol. 2005;150:1213–1220.

44. Kim B-H, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD. A family of IFN-γ-inducible 65-kD GTPases protects against bacterial infection. Science. 2011;332:717–721.

45. Dupont CD, Hunter CA. Guanylate-binding proteins: niche recruiters for antimicrobial effectors. Immunity. 2012;37:191–193.

46. Thorp E, Subramanian M, Tabas I. The role of macrophages and dendritic cells in the clearance of apoptotic cells in advanced atherosclerosis. Eur J Immunol. 2011;41:2515–2516.

47. Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110:1364–1390.

48. Lee H-N, Surh Y-J. Resolvin D1-mediated NOX2 inactivation rescues macrophages undertaking efferocytosis from oxidative stress-induced apoptosis. Biochem Pharmacol. 2013;86:759–769.

49. Yvan-Charvet L, Pagler TA, Seimon TA, Thorp E, Welch CL, Witztum JL, Tabas I, Tall AR. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ Res. 2010;106:1861–1869.
Table S1. Genes differentially expressed in foam cells of mice fed WD for 2 weeks with respect to mice fed regular chow through the entire study.

Affymetrix Probe ID	Fold Change	Gene Symbol	Gene Name
1448859_at	4.38	Cxcl13	chemokine (C-X-C motif) ligand 13
1439276_at	3.89	Adar	adenosine deaminase, RNA-specific
1424436_at	3.60	Gart	phosphoribosylglycinamidase formyltransferase
1431028_a_at	3.56	Pank1	pantothenate kinase 1
1431544_at	2.85	4930524B17Rik	
1451381_at	2.76	1810020D17Rik	RIKEN cDNA 1810020D17 gene
1421290_at	2.62	Hspb7	heat shock protein family, member 7
1444328_at	2.37	Cita	clathrin, light polypeptide
1424713_at	2.06	Calml4	calmodulin-like 4
1424428_at	2.05	Ino80e	INO80 complex subunit E
1453320_at	2.04	1700027A23Rik	RIKEN cDNA 1700027A23 gene
1448104_at	1.69	Aldh6a1	aldehyde dehydrogenase family 6, subfamily A1
1420691_at	1.49	Il2ra	interleukin 2 receptor, alpha chain
1442004_at	1.40	Trim65	tripartite motif-containing 65
1435091_at	1.39	Zfp568	zinc finger protein 568
1432511_at	-1.32	Cnot1	CCR4-NOT transcription complex, subunit 1
1426446_at	-1.39	6430548M08Rik	RIKEN cDNA 6430548M08 gene
1431420_s_at	-1.47	Prelid1	PRELI domain containing 1
1428760_at	-1.54	Snapc3	small nuclear RNA activating complex, polypeptide 3
1433621_at	-1.60	Wdr41	WD repeat domain 41
1417226_at	-1.62	Fbxw4	F-box and WD-40 domain protein 4
1421888_x_at	-1.76	Aplp2	amyloid beta (A4) precursor-like protein 2
1440168_x_at	-1.82	Kctd7	potassium channel tetramerisation domain containing 7
1415911_at	-1.85	Impact	imprinted and ancient
1431716_at	-1.92	Herc4	heat domain and RLD 4
1435867_at	-1.92	Jhdm1d	jumonji C domain-containing histone demethylase 1 homolog D
1418971_x_at	-1.98	Bcl10	B-cell leukemia/lymphoma 10
1423899_at	-1.99	Trip12	thyroid hormone receptor interactor 12
1434660_at	-2.01	Alkbh1	alkB, alkylation repair homolog 1
1437361_at	-2.01	OTTMUSG00000002043	predicted gene, OTTMUSG00000002043
1450905_at	-2.06	Plxnc1	plexin C1
1423066_at	-2.07	Dnmt3a	DNA methyltransferase 3A
1452769_at	-2.07	Rnf145	ring finger protein 145
1417622_at	-2.08	Slc12a2	solute carrier family 12, member 2
1426227_s_at	-2.17	Vps37c	vacuolar protein sorting 37C
1449347_a_at	-2.24	Xlr4c	X-linked lymphocyte-regulated 4B
Probe ID	Value	Description	
-----------------	--------	--	
1437087_at	-2.29	2210408K08Rik major facilitator superfamily domain containing 1	
1424129_at	-2.32	Mfsd1 cell division cycle and apoptosis regulator 1	
1436157_at	-2.34	Ccar1 solute carrier family 20, member 1	
1448568_a_at	-2.49	Slc20a1 glycine amidinotransferase	
1423569_at	-2.59	Gatm potassium channel tetramerisation domain containing 20	
1416324_s_at	-2.85	Kctd20 serine palmitoyltransferase, long chain base subunit 2	
1460243_at	-2.87	Sptlc2 predicted gene, 100042616	
1439251_at	-2.87	100042616 exonuclease domain containing 1	
1416324_s_at	-2.85	Kctd20 potassium channel tetramerisation domain containing 20	
1460243_at	-2.87	Sptlc2 serine palmitoyltransferase, long chain base subunit 2	
1439251_at	-2.87	100042616 predicted gene, 100042616	
1435390_at	-3.08	Exod1 exonuclease domain containing 1	
1426894_s_at	-3.18	Fam102a family with sequence similarity 102, member A	
1451798_at	-3.35	Il1m interleukin 1 receptor antagonist	
1449363_at	-3.38	Atf3 activating transcription factor 3	
1448883_at	-3.40	Lgmn legumain	
1440342_at	-4.27	G530011O06Rik	
1422650_a_at	-4.90	Riok3 RIO kinase 3 (yeast)	
1435539_at	-6.28	N/A N/A	
Table S2. Genes differentially expressed in foam cells of mice fed WD for 14 weeks with respect to mice fed regular chow through the entire study.

Affymetrix Probe ID	Fold Change	Gene Symbol	Gene Name
1457566_at	12.40	Zfp677	zinc finger protein 677
1428600_at	6.53	Nin	ninein
1435422_at	5.85	4933433P14Rik	RIKEN cDNA 4933433P14 gene
1439363_at	5.63	1200014J11Rik	RIKEN cDNA 1200014J11 gene
1438676_at	5.28	Mpa2l	macrophage activation 2 like
1452833_at	4.67	Rapgef2	Rap guanine nucleotide exchange factor (GEF) 2
1422492_at	4.54	Cpox	coproporphyrinogen oxidase
1438643_at	4.28	Camk1d	calcium/calmodulin-dependent protein kinase ID
1439276_at	4.27	Adar	adenosine deaminase, RNA-specific
1445702_x_at	4.07	Ppapdc2	phosphatidic acid phosphatase type 2 domain containing 2
1452960_at	4.07	Scyl3	SCY1-like 3
1452232_at	4.03	Gaint7	UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 7
1416866_at	3.99	Bet1	blocked early in transport 1 homolog
1425327_at	3.98	Fam76a	family with sequence similarity 76, member A
1427990_at	3.96	Usp45	ubiquitin specific petidase 45
1460389_at	3.88	Cdk8	cyclin-dependent kinase 8
1427938_at	3.85	Mycbp	c-myc binding protein
1436736_x_at	3.84	DHO4S114	DNA segment, human D4S114
1423408_a_at	3.80	2500003M10Rik	RIKEN cDNA 2500003M10 gene
1435164_s_at	3.80	Uba3	ubiquitin-like modifier activating enzyme 3
1456060_at	3.75	Maf	avian musculoaponeurotic fibrosarcoma (v-maf) AS42 oncogene homolog
1460391_at	3.73	Ola1	Obg-like ATPase 1
1452593_a_at	3.72	Tceb1	transcription elongation factor B (SIII), polypeptide 1
1429519_at	3.68	Fpgt	fucose-1-phosphate guanylyltransferase
1424436_at	3.68	Gart	phosphoribosylglycinamide formyltransferase
1433730_at	3.68	Elmod2	ELMO domain containing 2
1437901_a_at	3.65	Vps41	vacuolar protein sorting 41
1451572_a_at	3.60	Mff	mitochondrial fission factor
1456319_at	3.60	N/A	N/A
1436048_at	3.58	Exoc8	exocyst complex component 8
1424360_at	3.56	BC019943	
1435694_at	3.53	Arhgap26	Rho GTPase activating protein 26
1428453_at	3.47	Nat12	N-acetyltransferase 12
1426669_at	3.43	Cpped1	Vcalcineurin-like phosphoesterase domain containing 1
1452047_at	3.43	Cacybp	calcyclin binding protein
1434853_x_at	3.38	Mkrn1	makorin, ring finger protein, 1
1424099_at	3.38	Gpx8	glutathione peroxidase 8
Gene Symbol	Log2 Fold Change		
------------------	------------------		
Kdelc2	3.35		
Lrrc58	3.35		
4921524J17Rik	3.27		
Rpl15	3.24		
Ppp1cb	3.21		
Ildr2	3.21		
Ptch1	3.21		
Lrrc58	3.20		
Gbp3	3.20		
Top2a	3.20		
Jag1	3.19		
Tatdn1	3.19		
4933421E11Rik	3.18		
Vwa5a	3.18		
Msh2	3.17		
Gapvd1	3.14		
Srrm1	3.13		
Adsl	3.10		
Dnajc2	3.06		
Kpna4	3.06		
Tnpo1	3.04		
LOCC100044979	3.04		
Cyld	3.01		
N/A	3.00		
Crls1	2.97		
E330009J07Rik	2.97		
Gapvd1	2.94		
Atp13α3	2.93		
Nipa2	2.90		
Brca2	2.90		
N/A	2.90		
Rcor1	2.90		
Gm608	2.89		
Hnrdpl	2.88		
Hnrrnpa0	2.87		
Pten	2.83		
Slc35a2	2.82		
Taf1d	2.82		
Ddit4l	2.80		
Hnrdpl	2.88		
Hnrrnpa0	2.87		
Slc35a2	2.77		
Tlk1	2.77		
LOC100044979	2.77		
Eid1	2.77		
Slc35a2	2.77		
Gene ID	Log2 Fold Change	Gene Symbol	Description
----------	-----------------	-------------	--
1419495_at	2.76	Imp2l	IMP2 inner mitochondrial membrane peptidase-like
1454846_at	2.76	Utp15	UTP15, U3 small nucleolar ribonucleoprotein, homolog
1455483_at	2.75	Zfp148	zinc finger protein 148
1454831_at	2.75	Foxn2	forkhead box N2
1418988_at	2.75	Pex7	peroxisomal biogenesis factor 7
1451649_a_at	2.74	Wdr75	WD repeat domain 75
1455513_at	2.74	Taf1	TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor
1424156_at	2.73	Rbl1	retinoblastoma-like 1 (p107)
1415863_at	2.73	Eif4g2	eukaryotic translation initiation factor 4, gamma 2
1429438_at	2.72	Bcor	BCL6 interacting corepressor
1440187_at	2.71	Taf3	TAF3 RNA polymerase II, TATA box binding protein (TBP)-associated factor
1424495_a_at	2.70	Cklf	chemokine-like factor
1429043_at	2.70	Smndc1	survival motor neuron domain containing 1
1429796_at	2.70	Kalrn	kalirin, RhoGEF kinase
1442757_at	2.70	Lrch1	leucine-rich repeats and calponin homology (CH) domain containing 1
1416860_s_at	2.70	Ing1	inhibitor of growth family, member 1
1415890_at	2.69	Papss1	3'-phosphadenosine 5'-phosphosulfate synthase 1
1451641_at	2.68	Dbr1	debranching enzyme homolog 1
1415791_at	2.67	Rnf34	ring finger protein 34
1449175_at	2.66	Gpr65	G-protein coupled receptor 65
1428087_at	2.64	Dnm1l	dynamin 1-like
1435821_s_at	2.63	Ppp1r8	protein phosphatase 1, regulatory (inhibitor) subunit 8
1417770_s_at	2.63	Psmc6	proteasome (prosome, macropain) 265 subunit, ATPase, 6
1422857_at	2.63	Trip4	thyroid hormone receptor interactor 4
1439994_at	2.63	1810013D10Rik	RIKEN cDNA 1810013D10 gene
1454998_at	2.63	1200011J18Rik	
1451374_x_at	2.63	Cklf	chemokine-like factor
1415737_at	2.62	Rfk	riboflavin kinase
1451745_a_at	2.62	Znhit1	zinc finger, HIT domain containing 1
1434418_at	2.62	Ces6	ceramide synthase 5
1426977_at	2.60	Usp47	ubiquitin specific peptidase 47
1438055_at	2.60	Rarres1	retinoic acid receptor responder (tazarotene induced) 1
1454938_at	2.59	Snx13	sorting nexin 13
1456886_at	2.59	N/A	N/A
1451000_at	2.59	Tmem126a	transmembrane protein 126A
1416653_at	2.58	Stxbp3a	syntaxin binding protein 3A
1448234_at	2.55	Dnajb6	Dnaj (Hsp40) homolog, subfamily B, member 6
1435901_at	2.55	Usp40	ubiquitin specific peptidase 40
1424782_at	2.55	Tmem77	transmembrane protein 77
1428552_at	2.54	2610001J05Rik	RIKEN cDNA 2610001J05 gene
1450012_x_at	2.53	Ywhag	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide
1418180_at	2.53	Sp1	trans-acting transcription factor 1
Probe ID	Log2 Fold Change	Gene ID/Name	
--------------	-----------------	---	
1416952_at	2.53	Atp6v1d, ATPase, H+ transporting, lysosomal V1 subunit D	
1448589_at	2.53	Ndufb5, NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5	
1459657_s_at	2.53	Polr1d, predicted gene, OTTMUSG00000008305	
1417564_at	2.53	Med7, mediator complex subunit 7	
1444328_at	2.52	Clta, clathrin light chain 3	
1429559_at	2.52	Gnaq, guanine nucleotide binding protein, alpha q polypeptide	
1423707_at	2.52	Tmem50b, transmembrane protein 50B	
1417507_at	2.51	Cyb561, cytochrome b-561	
1455915_at	2.51	Galnt4, UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 4	
1452130_at	2.50	Txndc14, thiorexin domain containing 14	
1425074_at	2.49	Wrn, Werner syndrome homolog	
1452152_at	2.48	Clint1, clathrin interactor 1	
1435093_at	2.48	Zfyve20, zinc finger, FYVE domain containing 20	
1440310_at	2.48	Runx1t1, runt-related transcription factor 1; translocated to, 1 (cyclin D-related)	
1441315_s_at	2.47	Slc19a2, solute carrier family 19 (thiamine transporter), member 2	
1436796_at	2.47	Matr3, matrin 3	
1451195_a_at	2.46	Tmx1, thioredoxin-related transmembrane protein 1	
1436227_at	2.45	Rab3gap2, RAB3 GTPase activating protein subunit 2	
1436945_x_at	2.45	Stim1, stromal interaction molecule 1	
1435754_at	2.45	Zyg11b, zyg-ll homolog B	
1419208_at	2.45	Map3k8, mitogen-activated protein kinase kinase kinase 8	
1426842_at	2.45	Ythdf3, YTH domain family 3	
1417365_a_at	2.43	Calm1, calmodulin 1	
1435284_at	2.43	Rtn4, reticulon-4	
1447776_x_at	2.43	Rab6, RAB6, member RAS oncogene family	
1434389_at	2.43	Sos1, son of sevenless homolog 1	
1415963_at	2.42	Hnrrph2, heterogeneous nuclear ribonucleoprotein H2	
1438306_at	2.42	Rnf180, ring finger protein 180	
1419453_at	2.41	Uchl5, ubiquitin carboxyl-terminal esterase L5	
1422748_at	2.41	Zeb2, zinc finger E-box binding homeobox 2	
1429436_at	2.40	Prpf40a, pre-mRNA processing factor 40 homolog A	
1455252_at	2.39	Tsc1, tuberous sclerosis 1	
1423994_at	2.38	Kif1b, kinesin family member 1B	
1455505_at	2.37	Gatad2a, GATA zinc finger domain containing 2A	
1416009_at	2.35	Tspan3, tetraspanin 3	
1454602_s_at	2.34	Cnot2, CCR4-NOT transcription complex, subunit 2	
1455658_at	2.33	Cggbp1, CGG triplet repeat binding protein 1	
1448733_at	2.32	Bmi1, Bmi1 polycomb ring finger oncogene	
1424147_at	2.32	Ahsa1, AHA1, activator of heat shock protein ATPase homolog 1	
1433898_at	2.32	N/A, N/A	
1433668_at	2.32	Pnrc1, proline-rich nuclear receptor coactivator 1	
1424111_at	2.32	Igf2r, insulin-like growth factor 2 receptor	
1434437_x_at	2.32	Rrm2, ribonucleotide reductase M2	
ProbeID	log2FC	Description	
-----------	--------	--	
1424043_at	2.31	Ppil4 peptidylprolyl isomerase (cyclophilin)-like 4	
1439345_at	2.31	Gpnmb glycoprotein (transmembrane) nmb	
1439463_x_at	2.31	LOC637733 predicted gene, EG665056	
1428252_at	2.31	Chmp2b chromatin modifying protein 2B	
1451971_at	2.30	Cul4a cullin 4A	
1422449_s_at	2.30	Rcn2 reticulocalbin 2	
1417478_a_at	2.30	Ppp2r3c protein phosphatase 2, regulatory subunit B'', gamma	
1451356_at	2.26	Anp32e acidic (leucine-rich) nuclear phosphoprotein 32 family, member E	
1437386_at	2.26	Lingo1 leucine rich repeat and Ig domain containing 1	
1434352_at	2.25	B630005N14Rik RIKEN cDNA B630005N14 gene	
1416267_at	2.24	Scoc short coiled-coil protein	
1423069_at	2.24	Adnp activity-dependent neuroprotective protein	
1437892_at	2.17	Zkscan3 zinc finger with KRAB and SCAN domains 3	
1434928_at	2.17	Gas2I1 growth arrest-specific 2 like 1	
1416637_at	2.16	Slc4a2 solute carrier family 4 (anion exchanger), member 2	
1436732_s_at	2.16	Fbxw8 F-box and WD-40 domain protein 8	
1458662_at	2.15	Daam1 RIKEN cDNA 1700008003 gene	
1453109_at	2.15	Arsk arylsulfatase K	
1421910_at	2.15	Tcf20 transcription factor 20	
1416247_at	2.14	Dctn3 dynactin 3	
1454863_at	2.12	Ankrd11 ankyrin repeat domain 11	
1417995_at	2.12	Ptnp22 protein tyrosine phosphatase, non-receptor type 22	
1418736_at	2.11	B3galnt1 UDP-GalNAc:betaGlcNAc beta 1,3-galactosaminyltransferase, polypeptide 1	
1433740_at	2.10	Tmem87b transmembrane protein 87B	
1455312_at	2.09	Phc3 polyhomeotic-like 3	
1416477_at	2.08	Ube2d2 ubiquitin-conjugating enzyme E2D 2	
1427134_at	2.08	Sfrs12 splicing factor, arginine/serine-rich 12	
1438769_a_at	2.07	Thyn1 thymocyte nuclear protein 1	
1425018_at	2.07	Mcts1 malignant T cell amplified sequence 1	
1457069_at	2.06	Ascc3 activating signal cointegrator 1 complex subunit 3	
1428949_at	2.05	Xpot exportin, tRNA (nuclear export receptor for tRNAs)	
EntrezGene ID	log2FoldChange	Description	
---------------	----------------	-------------	
1429588_at	2.04	RIKEN cDNA 2810474O19 gene	
1448509_at	2.04	Fam107b family with sequence similarity 107, member B	
1422675_at	2.03	Smarce1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1	
1448398_s_at	2.03	Rpl22 ribosomal protein L22	
1435988_x_at	2.02	Ik cytokine	
1417390_at	2.02	Gpn1 GPN-loop GTPase 1	
1448215_a_at	2.01	Dpp3 dipeptidylpeptidase 3	
1421965_s_at	2.01	Notch3 Notch gene homolog 3	
1424842_a_at	2.01	Arhgap24 Rho GTPase activating protein 24	
1434014_at	2.01	Atg4c autophagy-related 4C	
1435347_at	1.99	Stau1 staufen (RNA binding protein) homolog 1	
1421077_at	1.99	Sertad3 SERTA domain containing 3	
1428461_at	1.99	Ppp2r5e protein phosphatase 2, regulatory subunit B (B56), epsilon isoform	
1436165_at	1.98	Luc7l2 LUC7-like 2	
1452895_at	1.98	Fbxo45 F-box protein 45	
1455728_at	1.98	Pten phosphatase and tensin homolog	
1456617_a_at	1.97	Elf2s2 eukaryotic translation initiation factor 2, subunit 2	
1436977_at	1.97	N/A	
1448527_at	1.97	Pdcd10 programmed cell death 10	
1458414_at	1.96	D2Ertd93e DNA segment, Chr 2, ERATO Doi 93, expressed	
1420528_at	1.95	Gpatch2 G patch domain containing 2	
1460615_at	1.95	Nt5dc1 S'-nucleotidase domain containing 1	
1449085_at	1.95	Phf10 PHD finger protein 10	
1431694_a_at	1.95	Ctnnbip1 catenin beta interacting protein 1	
1416840_at	1.93	Mid1ip1 Mid1 interacting protein 1	
1449694_s_at	1.93	Commd5 COMM domain containing 5	
1455432_at	1.92	Taok1 TAO kinase 1	
1434561_at	1.92	Asxl1 additional sex combs like 1	
1426844_a_at	1.92	Pdcd2l programmed cell death 2-like	
1416998_at	1.91	Rrs1 RRS1 ribosome biogenesis regulator homolog	
1427156_s_at	1.88	Ascc2 activating signal cointegrator 1 complex subunit 2	
1424389_at	1.86	Nupl1 nucleoporin like 1	
1435389_at	1.86	Reps2 RALBP1 associated Eps domain containing protein 2	
1423167_at	1.86	Mobki3 MOB1, Mps One Binder kinase activator-like 3	
1453104_at	1.86	Mapk1 mitogen-activated protein kinase 1	
1455403_at	1.84	Manea mannosidase, endo-alpha	
1436346_at	1.82	Cd109 CD109 antigen	
1438771_at	1.81	LOC100045983 bromodomain containing 1	
1455644_at	1.80	Vps53 vacuolar protein sorting 53	
1424991_s_at	1.80	Tyms-ps thymidylate synthase	
1441942_x_at	1.80	Snupn snurportin 1	
1427317_at	1.79	Kin antigenic determinant of rec-A protein	
1428254_at	1.79	Purb purine rich element binding protein B	
1426840_at	1.78	Ythdf3 YTH domain family 3	
Gene Symbol	Ratio		
-------------	-------		
Msl2	1.77		
Ppp2r5c	1.77		
Ttc35	1.77		
Actr8	1.75		
Lrwd1	1.74		
Rab9	1.73		
Uba2	1.70		
Ggta1	1.66		
Rab9	1.64		
N/A	1.63		
Mtrr	1.62		
Hnrnpul2	1.61		
Grpel2	1.60		
Speg	1.59		
Gna13	1.56		
A930001N09Rik	1.55		
Cpsf3l	1.55		
Ctsl	1.54		
Lig1	1.53		
AI314976	1.52		
Trim65	1.51		
Ddx6	1.51		
LOC100046401	1.50		
1110003E01Rik	1.45		
4933433G19Rik	1.38		
Sec141l	1.36		
Cln6	1.36		
Ctsl	1.12		
Npc2	1.05		
Adcy3	-1.32		
Tmem20	-1.37		
Mup5	-1.37		
N/A	-1.38		
Sic35a5	-1.38		
Kank4	-1.39		
2900083I11Rik	-1.40		
Pou2f2	-1.40		
Zfp446	-1.45		
Agb13	-1.45		
N/A	-1.47		
N/A	-1.51		
Ern1	-1.51		

Gene Descriptions:
- **Msl2**: male-specific lethal 2 homolog
- **Ppp2r5c**: protein phosphatase 2, regulatory subunit B (B56), gamma isoform
- **Ttc35**: tetratricopeptide repeat domain 35
- **Actr8**: ARP8 actin-related protein 8 homolog
- **Lrwd1**: leucine-rich repeats and WD repeat domain containing 1
- **Rab9**: RAB9, member RAS oncogene family
- **Uba2**: ubiquitin-like modifier activating enzyme 2
- **Ggta1**: glycoprotein galactosyltransferase alpha 1, 3
- **Hnrnpul2**: heterogeneous nuclear ribonucleoprotein U-like 2
- **Mtrr**: 5-methyltetrahydrofolate-homocysteine methyltransferase reductase
- **Hnrnpul2**: heterogeneous nuclear ribonucleoprotein U-like 2
- **Grpel2**: GrpE-like 2, mitochondrial
- **Speg**: SPEG complex locus
- **Gna13**: guanine nucleotide binding protein, alpha 13
- **Cpsf3l**: cleavage and polyadenylation specific factor 3-like
- **Ctsl**: cathepsin L
- **Lig1**: ligase I, DNA, ATP-dependent
- **Al314976**: expressed sequence AI314976
- **Trim65**: tripartite motif-containing 65
- **Ddx6**: DEAD (Asp-Glu-Ala-Asp) box polypeptide 6
- **LOC100046401**: ferric-chelate reductase 1
- **1110003E01Rik**: RIKEN cDNA 1110003E01 gene
- **4933433G19Rik**: RIKEN cDNA 4933433G19Rik
- **Sec141l**: SEC14-like 1 (S. cerevisiae)
- **Cln6**: ceroid-lipofuscinosis, neuronal 6
- **Ctsl**: cathepsin L
- **Npc2**: Niemann Pick type C2
- **Adcy3**: adenylate cyclase 3
- **Tmem20**: transmembrane protein 20
- **Mup5**: major urinary protein 5
- **N/A**: Not available
- **Sic35a5**: solute carrier family 35, member A5
- **Kank4**: KN motif and ankyrin repeat domains 4
- **2900083I11Rik**: RIKEN cDNA 2900083I11 gene
- **Pou2f2**: POU domain, class 2, transcription factor 2
- **Zfp446**: zinc finger protein 446
- **Agb13**: ATP/GTP binding protein-like 3
- **N/A**: Not available
- **Ern1**: endoplasmic reticulum (ER) to nucleus signalling 1
| Probe ID | Ratio | Description |
|---------------|-------|--|
| 1446354_at | -1.53 | C130098B18Rik RIKEN cDNA C130098B18 gene |
| 1429560_at | -1.53 | 100043468 predicted gene, 100043468 |
| 1440722_at | -1.55 | D19Erd386e |
| 1459324_at | -1.58 | Fermt2 fermitin family homolog 2 |
| 1419214_at | -1.59 | Tnrsf11a tumor necrosis factor receptor superfamily, member 11a |
| 1438529_at | -1.60 | Tmem201 transmembrane protein 201 |
| 1445175_at | -1.61 | 100042940 predicted gene, 100042940 |
| 1443785_x_at | -1.62 | Pdlim7 PDZ and LIM domain 7 |
| 1438529_at | -1.63 | RIKEN cDNA 4933428L12 gene |
| 1452764_at | -1.65 | Socs6 suppressor of cytokine signaling 6 |
| 14458000_at | -1.66 | 2310061A09Rik RIKEN cDNA 2310061A09 gene |
| 1443785_x_at | -1.66 | Rnf32 ring finger protein 32 |
| 1458747_at | -1.67 | 4933425M03Rik RIKEN cDNA 4933425M03 gene |
| 1432260_at | -1.67 | Gpr39 G protein-coupled receptor 39 |
| 1432875_at | -1.68 | Tctn2 tectonic family member 2 |
| 1454294_at | -1.68 | Frap1 FK506 binding protein 12-rapamycin associated protein 1 |
| 1447789_x_at | -1.69 | Ddx6 DEAD (Asp-Glu-Ala-Asp) box polypeptide 6 |
| 1430373_at | -1.70 | Ctda3 cell division cycle associated 3 |
| 1459307_at | -1.71 | N/A N/A |
| 1432260_at | -1.72 | 4632409D06Rik RIKEN cDNA 4632409D06 gene |
| 1455961_at | -1.72 | Mme membrane metallo endopeptidase |
| 1447884_x_at | -1.73 | Fam134c family with sequence similarity 134, member C |
| 1458661_at | -1.73 | N/A N/A |
| 1430137_at | -1.74 | 1300002E11Rik RIKEN cDNA 1300002E11 gene |
| 1439515_at | -1.75 | Setd5 SET domain containing 5 |
| 1456045_at | -1.76 | 1700106N22Rik RIKEN cDNA 1700106N22 gene |
| 1439339_at | -1.76 | N/A N/A |
| 1432875_at | -1.77 | Ddx42 DEAD (Asp-Glu-Ala-Asp) box polypeptide 42 |
| 1432719_x_at | -1.78 | Tctn2 tectonic family member 2 |
| 1437594_x_at | -1.78 | Tctn2 tectonic family member 2 |
| 14458000_at | -1.78 | Tctn2 tectonic family member 2 |
| 1447789_x_at | -1.79 | N/A N/A |
| 1430373_at | -1.79 | N/A N/A |
| 1423224_at | -1.82 | Tctn2 tectonic family member 2 |
| 1437594_x_at | -1.82 | Ddx42 DEAD (Asp-Glu-Ala-Asp) box polypeptide 42 |
| 1457639_at | -1.83 | Gm428 |
| 1430996_at | -1.85 | Etnk1 ethanolamin kinase 1 |
| 1437594_x_at | -1.86 | Dhx58 DEXH (Asp-Glu-X-His) box polypeptide 58 |
| 1429560_at | -1.87 | Nfatc2 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 |
| 1453090_x_at | -1.88 | N/A N/A |
| 1421990_at | -1.90 | Syt1 synaptotagmin 1 |
| 1452920_a_at | -1.96 | Ppi2 peptidylprolyl isomerase (cyclophilin)-like 2 |
| 1423953_at | -1.96 | Cdkal1 CDK5 regulatory subunit associated protein 1-like 1 |
| 1432711_at | -1.96 | 4933425M03Rik RIKEN cDNA 4933425M03 gene |
| 1457629_at | -1.97 | Atmin ATM interactor |
| 1415748_a_at | -1.97 | Dctn5 polo-like kinase 1 |
| 1430358_at | -1.99 | Becn1 beclin 1 |
| 1430373_at | -1.99 | 5430427O19Rik RIKEN cDNA 5430427O19 gene |
| Gene ID | Ratio | Description |
|----------|-------|---|
| 1447820_x_at | -2.00 | Cpt2, carnitine palmitoyltransferase 2 |
| 1437762_at | -2.04 | Rab39, RAB39, member RAS oncogene family |
| 1416787_at | -2.07 | Acvr1, activin A receptor, type 1 |
| 1446422_at | -2.12 | A530081L18Rik, membrane-associated ring finger (C3HC4) 3 |
| 1447267_at | -2.14 | C8S319, expressed sequence C8S319 |
| 1454219_at | -2.15 | Dnajc2, DnaJ (Hsp40) homolog, subfamily C, member 2 |
| 1430772_at | -2.22 | 4932438H23Rik, RIKEN cDNA 4932438H23 gene |
| 1447768_at | -2.24 | Got2, glutamate oxaloacetate transaminase 2, mitochondrial |
| 1446001_at | -2.25 | N/A |
| 1442954_at | -2.33 | N/A |
| 1444873_at | -2.35 | Hip1, huntingtin interacting protein 1 |
| 1424595_at | -2.37 | F11r, F11 receptor |
| 1455284_x_at| -2.41 | Pigx, phosphatidylinositol glycan anchor biosynthesis, class X |
| 1420948_s_at| -2.42 | Atrx, alpha thalassemia/mental retardation syndrome X-linked homolog |
| 1441784_at | -2.46 | N/A |
| 1446211_at | -2.55 | Erbb4, v-erb-a erythroblastic leukemia viral oncogene homolog 4 |
| 1433020_at | -2.65 | 5830413G11Rik, RIKEN cDNA 5830413G11 gene |
| 1456808_at | -2.68 | 4933426M11Rik, RIKEN cDNA 4933426M11 gene |
| 1453534_at | -2.71 | 2810004i08Rik |
| 1446004_at | -2.95 | N/A |
| 1452240_at | -3.25 | Brunol4, bruno-like 4, RNA binding protein |