Scaling Limits for Minimal and Random Spanning Trees in Two Dimensions

Michael Aizenman∗ Almut Burchard†
Charles M. Newman‡ David B. Wilson§

Submitted Aug. 29, 1998; revised March 30, 1999.

Abstract

A general formulation is presented for continuum scaling limits of stochastic spanning trees. A spanning tree is expressed in this limit through a consistent collection of subtrees, which includes a tree for every finite set of endpoints in \(\mathbb{R}^d \). Tightness of the distribution, as \(\delta \to 0 \), is established for the following two-dimensional examples: the uniformly random spanning tree on \(\delta \mathbb{Z}^2 \), the minimal spanning tree on \(\delta \mathbb{Z}^2 \) (with random edge lengths), and the Euclidean minimal spanning tree on a Poisson process of points in \(\mathbb{R}^2 \) with density \(\delta^{-2} \). In each case, sample trees are proven to have the following properties, with probability one with respect to any of the limiting measures: i) there is a single route to infinity (as was known for \(\delta > 0 \)), ii) the tree branches are given by curves which are regular in the sense of Hölder continuity, iii) the branches are also rough, in the sense that their Hausdorff dimension exceeds one, iv) there is a random dense subset of \(\mathbb{R}^2 \), of dimension strictly between one and two, on the complement of which (and only there) the spanning subtrees are unique with continuous dependence on the endpoints, v) branching occurs at countably many points in \(\mathbb{R}^2 \), and vi) the branching numbers are uniformly bounded. The results include tightness for the loop erased random walk (LERW) in two dimensions. The proofs proceed through the derivation of scale-invariant power bounds on the probabilities of repeated crossings of annuli.

AMS subject Classification: 60D05; 82B41.

∗Departments of Physics and Mathematics, Princeton University; Jadwin Hall, Princeton, NJ 08544.
†University of Virginia, Department of Mathematics, Kerchof Hall, Charlottesville, VA 22903. Research conducted while at Department of Mathematics, Fine Hall, Princeton, NJ 08544.
‡Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012.
§Microsoft, One Microsoft Way 31/3348, Redmond, WA 98052. Research conducted in large part while at the Institute for Advanced Study, Princeton.

Contents

1. Introduction .. 3
 1.a Three spanning tree processes 3
 1.b Statement of the main results 4
 1.c Outline of the paper 11

2. Collections of immersed graphs 12
 2.a Compactification of \mathbb{R}^d 12
 2.b The space of trees 12
 2.c Systems of immersed graphs 14

3. Criteria for regularity and roughness 15
 3.a Regularity criterion 15
 3.b Roughness criterion 17
 3.c H_1 under conformal maps 18

4. Free-wired bracketing .. 20

5. Crossing exponents .. 23
 5.a The exponents $\phi(k)$, $\gamma(k)$, and the geometric-decay property 23
 5.b Comparison of the exponents 25
 5.c A telescopic bound 27
 5.d Extension of the bounds to $\delta = 0$ 27

6. Verification of H1 in two dimensions 28
 6.a Uniformly random spanning tree 28
 6.b Minimal spanning tree 30
 6.c Euclidean spanning tree 35

7. Verification of H2 .. 39

8. Conclusion ... 41
 8.a Tightness, regularity, and roughness 41
 8.b Properties of scaling limits 42

Appendix ... 46

A. Quadratic growth of crossing exponents 46

References ... 52
1. Introduction

For various systems of many degrees of freedom, extra insight may be derived by combining methods of discrete mathematics with considerations inspired by the continuum limit picture (see e.g., [1, 2, 3, 4, 5]). The relation between the continuum and the discrete perspectives is through the scaling limit. In this limit the scale on which the system’s defining microscopic variables can be distinguished is sent to zero, while focus is kept on features manifested on a macroscopic scale. The first task addressed in this work is a general formulation of the continuum limit for stochastic spanning trees. The existence of limit measures (which may depend on the choice of subsequence) is then established for three examples of spanning trees, all in two dimensions. The arguments makes use of the general criteria developed for random systems of curves in Ref. [6]. We also derive some basic sample properties of the spanning trees in the scaling limit.

1.a Three spanning tree processes

Following are the three examples of random spanning trees on which we focus in this work. In each case, the tree connects a set of sites in \mathbb{R}^2 with typical nearest neighbor distance $\delta \ll 1$.

UST (Uniformly Random Spanning Tree)
The vertices to be connected are the sites of the regular lattice $\delta\mathbb{Z}^2$, and the spanning tree is drawn uniformly at random from the set of spanning trees whose edges connect nearest neighbors in the lattice.

MST (Minimal Spanning Tree)
The graph is again the regular lattice $\delta\mathbb{Z}^2$, with edges connecting nearest neighbors. The lengths associated with the edges are determined by call numbers, which are independent identically distributed continuous random variables. The spanning tree is the one that minimizes the total edge length (i.e. the sum of the call numbers).

EST (Euclidean (Minimal) Spanning Tree)
The vertices of the graph are given by a homogeneous Poisson process with density δ^{-2}. We let every pair of vertices be connected by an edge whose length is the usual Euclidean distance. The spanning tree is the one that minimizes the total edge length. It may be noted that this spanning tree forms a subgraph of the Voronoi graph of the Poisson process. (In the Voronoi graph, a pair of vertices is linked by an edge if and only if there is a point in \mathbb{R}^2 whose two closest vertices form the given pair.)

It is unclear whether our analysis can be extended to a fourth model, the uniformly random spanning tree on the Voronoi graph of a Poisson point process. Such an extension
would require a better understanding of random walks on the Poisson-Voronoi graph (see the remark at the end of this introduction).

The scaling limit $\delta \to 0$, can be taken either in fixed finite regions, $\Lambda \subset \mathbb{R}^d$, or in conjunction with the infinite volume limit $\Lambda \to \mathbb{R}^d$. The analysis of the volume dependence is made easier by the monotonicity structure which is discussed here in Section 4. It is known that for fixed $\delta > 0$ the limit $\Lambda \to \mathbb{R}^d$ exists for the spanning trees considered here with either the free (F) or the wired (W) boundary conditions. Furthermore, in any finite dimension the limits coincide for these two boundary conditions refs. [7, 8, 10, 11, 12]. The limiting graph, $\Gamma_\delta(\omega)$ (with ω representing the randomness inherent in the model), will be free of cycles but in general it need not be connected and may instead turn out to be a forest of infinite trees.

In our analysis of the spanning trees we use the fact that they can be drawn with the help of rather efficient algorithms, employing two processes of independent interest. The paths of UST obey the statistics of the loop-erased random walk (LERW) [7, 13], while those of MST are related to the invasion-percolation process [11]. Through the former correspondence our results return information on the scaling limit(s) (along subsequences) of the two dimensional LERW, which has the same distribution as the path from a predetermined origin to infinity along the spanning tree (UST).

The relations mentioned above were already employed to shed light on the question of unicity of the spanning tree. Through the relation with the LERW it was shown that for UST the infinite-volume limit a.s. consists of a single tree if $d \leq 4$ but of infinitely many trees if $d > 4$, and that in any dimension a.s. each tree has a single topological end (i.e., a single route to infinity) [7, 8, 9]. As Benjamini and Schramm have observed (private communication) the situation in $d = 4$ is noteworthy in that in the scaling limit ($\delta = 0$) there will typically be infinitely many trees, while there is only one tree as long as $\delta > 0$.

Less is proven about MST and EST in general, but it is known [14, 10, 12] (see also [11]) that in $d = 2$ dimensions $\Gamma_\delta(\omega)$ (at $\delta > 0$) a.s. consists of a single tree with a single topological end. Regarding the upper critical dimension, the situation is less clear. We think it is possible that the dimension at which the spanning tree is replaced by a forest is $d_c = 8$ for MST and EST with non-zero short-distance cutoff, $\delta > 0$, while the dimension at which the change occurs for scaling limits of these models (i.e., $\delta = 0$) is $d_c = 6$. The heuristics behind the first statement are discussed in refs. [15, 16] in a context relevant for MST, and essentially the same heuristics should apply to EST. The conjecture concerning the scaling limit is based on the analysis of percolation clusters above the upper critical dimension, discussed in [17].

1.b Statement of the main results

Let $\Gamma_\delta(\omega)$ be the infinite-volume limit of either one of the three spanning tree processes (UST, MST, or EST) in \mathbb{R}^d, with the “short-distance cutoff” δ. It is an interesting question how to describe the spanning tree/forest in terms which remain meaningful in the scaling limit.
where the set of vertices becomes dense in \mathbb{R}^d. The approach we take is to describe it through the collection, denoted below by $\mathcal{F}_\delta(\omega)$, of all the subtrees spanning finite sets of vertices. The benefits are:

i. the terminology makes sense even in the limit $\delta = 0$;

ii. by focusing on the connecting curves and finite subtrees one can see the tree’s “fractal structure”, which emerges in its clearest form in the scaling limit;

iii. the approach can, in principle, be applied in any dimension.

In two dimensions one could alternatively represent the spanning tree through its outer contour, i.e. the line separating it from the dual tree. The formulation of the scaling limit in terms of such a random “Peano curve” was recently suggested by Benjamini et al. [9]. Outer contours also play a fundamental role in the broader class of random cluster models, which includes UST as a limiting case ($Q \to 0$). The analysis of such contours played an important role in physicists’ derivation of the exact values for critical exponents [18, 19]. (Though not yet rigorously proven, such predictions appear to be correct. Recent extensions and applications are discussed in [20].) Let us add, therefore, that our analysis implies constructive results also for scaling limits of the outer contours of the spanning trees studied here.

Thus, we describe a spanning tree/forest by means of the closed collection of all the subtrees connecting finite collections of sites. In discussing the infinite volume limit it is convenient to formulate the curves and trees in the one-point compactification $\hat{\mathbb{R}}^d$ of \mathbb{R}^d, which we identify (via the stereographic projection) with the d-dimensional unit sphere. Since this may result in the blurring of the distinction between a spanning tree and a spanning forest, we shall formulate the difference in Definition 1.1 below. Our terminology is built up in the following way (a more complete discussion of the terms is given in Section 2).

1. A curve in $\hat{\mathbb{R}}^d$ is, for us, an equivalence class of continuous functions from the unit interval into $\hat{\mathbb{R}}^d$, modulo monotone reparametrizations. Extending this is:

2. A tree immersed in $\hat{\mathbb{R}}^d$ is an equivalence class of continuous functions from any of the standard reference trees (see Section 2), into $\hat{\mathbb{R}}^d$. It will be represented by the symbol $T^{(N)}(x_1, \ldots, x_N)$, where $x_1, \ldots, x_N \in \hat{\mathbb{R}}^d$ are the endpoints of the tree. A subscript δ may be added to indicate that the tree corresponds to a model with a short distance cutoff, and a parameter ω may be added to indicate the random nature of the object.

Remark: To avoid confusion let us alert the reader that for lack of terms, and our reluctance to coin non-intuitive ones, our terminology may brush against established usage. Thus, the continuous function defining an immersed tree need not be invertible, and the intersections which occur need not be transversal, i.e., the function need not be an immersion in the standard
sense. This notion is natural for our discussion of the scaling limit, since the trees may have branches which only appear to intersect, when viewed on the scale of the continuum, without there being an intersection on the fine scale.

Figure 1: A spanning tree on a 10×10 grid with free boundary conditions. Highlighted is the subtree $T^{(4)}(x_1, \ldots, x_4)$. The diagram on the left shows a reference tree τ that can be used to parametrize $T^{(4)}$ (see Section 2.b).

3. The space of all trees immersed in \mathbb{R}^d with N endpoints is denoted here by $\mathcal{S}^{(N)}$. Note that the restriction of a tree in $\mathcal{S}^{(N)}$ to \mathbb{R}^d may be a forest, if its branches pass through infinity. The spaces $\mathcal{S}^{(N)}$ are introduced explicitly in Section 2 along with a metric in which the distance between two immersed trees reflects their structure as objects based on curves. The distance between curves is defined there so that two curves (or trees) are close if they shadow each other in a metric on \mathbb{R}^d which shrinks at infinity. Thus convergence in $\mathcal{S}^{(N)}$ means in essence convergence within bounded subsets of \mathbb{R}^d.

4. The symbol $\mathcal{F}^{(N)}$ will denote a collection of immersed trees with N external vertices which forms a closed subset of $\mathcal{S}^{(N)}$. The space of all such closed collections is $\Omega^{(N)}$. (Under the induced Hausdorff metric it forms a complete and separable metric space.)

Finally, we are ready to present our full description of a spanning tree or forest as a closed collection of finite trees graded by N.

Definition 1.1
1. A spanning forest for a graph G, with vertices in \mathbb{R}^d (d fixed at a value which should be clear from the context), is represented by a graded collection $\mathcal{F} = \{\mathcal{F}^{(N)}\}_{N \geq 1}$ where:

i. for each $N < \infty$, the collection $\mathcal{F}^{(N)}$ includes a spanning tree $T^{(N)}(x_1, \ldots, x_n) \in \mathcal{S}^{(N)}$ for each N-tuple of vertices of G;
ii. the collection is inclusive in the sense that for any tree $T \in \mathcal{F}^{(N)}$ (with some $1 \leq N < \infty$), all the subtrees of T are also found in the suitable elements of the collection;

iii. for any two trees, $T_1 \in \mathcal{F}^{(N_1)}$ and $T_2 \in \mathcal{F}^{(N_2)}$, there is a tree in \mathcal{F} which contains (in the natural sense) both T_1 and T_2 and has no external vertices beyond those appearing in the two subtrees.

The symbol we use for the space of all such collections is Ω. [It forms a closed subset of the product space $\mathcal{X}_{N \geq 1} \Omega^{(N)}$ which we take here with the product topology.]

2. A spanning forest \mathcal{F} is said to consist of a single spanning tree in \mathbb{R}^d if every path $T^{(2)}(x, y) \in \mathcal{F}^{(2)}$ with finite end-points $x, y \in \mathbb{R}^d$ stays within some finite region of \mathbb{R}^d. [Equivalently (by ii): for every $2 \leq N < \infty$, each of the immersed trees $T^{(N)}(x_1, \ldots, x_n) \in \mathcal{F}^{(N)}$ with finite external sites $\{x_1, \ldots, x_N\} \subset \mathbb{R}^d$ is contained in some finite region of \mathbb{R}^d.]

3. The spanning forest \mathcal{F} is said to be quasilocal if for any bounded region $\Lambda \subset \mathbb{R}^d$ all the trees of \mathcal{F} whose external vertices lie in Λ are contained within some bounded domain $\tilde{\Lambda}(\mathcal{F}, \Lambda) \subset \mathbb{R}^d$.

The probability distribution of UST, MST, and EST, with the short distance cutoff δ as discussed earlier, correspond to probability measures $\mu_\delta(d\mathcal{F})$ on Ω (in the appropriate dimension). Statements concerning the scaling limits address limits for the measures $\mu_\delta(d\mathcal{F})$, for $\delta = \delta_n \to 0$. Needless to say, the existence of scaling limits even along suitable subsequences is a priori not obvious since the spaces discussed here are not even locally compact. E.g., the tree branches may, in the limit, cease to be describable by curves. Furthermore, in the continuum limit even the most elementary features could be lost, or appear to be lost: distinct branches may fuse, giving the appearance of loops (from the continuum perspective), a tree may turn into a forest, and multiple paths may open to infinity (via the stretching to infinity of some of the connecting paths). In general, concepts which are obvious or proven for finite graphs need to be re-examined.

Our main results may naturally be grouped in two parts. Following is the first.

Theorem 1.1 In $d = 2$ dimensions, the following is valid for each of the spanning tree processes presented above (UST and MST on $\delta \mathbb{Z}^2$, and EST of density δ^{-2} on \mathbb{R}^2):

i. (Existence of limit points) The collection of measures $\mu_\delta(d\mathcal{F})$ with $0 < \delta < 1$ is tight; every sequence of δ's tending to 0 includes a subsequence $\delta_n \to 0$ along which the measures $\mu_{\delta_n}(d\mathcal{F})$ converge, in the sense of weak convergence for measures on the product space $\mathcal{X}_{N \geq 1} \Omega^{(N)}$ to a limit $\mu(d\mathcal{F})$.
For any of the limiting measures, \(\mu \)-almost every spanning forest \(\mathcal{F}(\omega) \) has the following properties:

ii. (Locality and basic structure) \(\mathcal{F}(\omega) \) is quasi-local and describes a single spanning tree on \(\mathbb{R}^2 \).

iii. (Regularity) The branches of all the trees in \(\mathcal{F}(\omega) \) are random curves \(\mathcal{C} \) with Hausdorff dimensions bounded above,

\[
\dim_{\mathcal{H}} \mathcal{C} \leq d_{\text{max}} \tag{1.1}
\]

where \(d_{\text{max}} < 2 \) is non-random. Furthermore, for any \(\alpha < 1/2 \) all the curves in \(\mathbb{R}^2 \) can be simultaneously parametrized by functions \((g(t), 0 \leq t \leq 1) \) which are Hölder continuous of order \(\alpha \), i.e., each satisfying

\[
|g(t) - g(t')| \leq \kappa_\alpha(\omega) \left(1 + |g(t)|^2 + |g(t')|^2 \right) |t - t'|^\alpha \quad \text{for all} \quad 0 \leq t < t' \leq 1 \tag{1.2}
\]

with the continuity modulus \(\kappa_\alpha(\omega) \) common to all the branches of trees in \(\mathcal{F}(\omega) \).

iv. (Roughness) Almost surely, all the curves \((\mathcal{C} \in \mathcal{F}^{(2)}(\omega)) \) are non-rectifiable, and satisfy also the opposite bound:

\[
\dim_{\mathcal{H}} \mathcal{C} \geq d_{\text{min}} \tag{1.3}
\]

with a non-random \(d_{\text{min}} > 1 \). In particular, no branch can be parametrized Hölder continuously with an exponent less than \((d_{\text{min}})^{-1} \).

The convergence asserted for the measures \(\mu_{\delta_n} \) means that

\[
\int \psi(\mathcal{F}) \mu_{\delta_n}(d\mathcal{F}) \longrightarrow_{n\to\infty} \int \psi(\mathcal{F}) \mu(d\mathcal{F}) \tag{1.4}
\]

for all bounded continuous functions \(\psi \) which depend on \(\mathcal{F} \) only through \(\mathcal{F}^{(N)} \) for some \(N < \infty \) (for inclusive collections, the above is equivalent to permitting dependence on all \(\{\mathcal{F}^{(1)}, \ldots, \mathcal{F}^{(N)}\} \)). This statement may also be expressed by saying that there is a coupling, that is a sequence of probability measures \(\rho_n \) on \(\Omega \times \Omega \) whose marginal distributions satisfy

\[
\rho_n(d\mathcal{F}, \Omega) = \mu_{\delta_n}(d\mathcal{F}) , \quad \rho_n(\Omega, d\mathcal{F}) = \mu(d\mathcal{F}) , \tag{1.5}
\]

with

\[
\int_{\Omega \times \Omega} \min \left\{ 1, \text{dist}(\mathcal{F}^{(N)}, \mathcal{F}'^{(N)}) \right\} \rho_n(d\mathcal{F}, d\mathcal{F}') \longrightarrow_{n\to\infty} 0 , \tag{1.6}
\]
where \(\text{dist}(\cdot, \cdot) \) is the Hausdorff distance between closed subsets of \(S^{(N)} \) based on the metric defined on this space of trees in Section 2.

The proof of Theorem 1.1 utilizes the theory developed for systems of random curves in ref. [6]. The bulk of the analysis consists of the derivation of the required criteria, which need to be verified by model specific arguments. The criteria amount to scale invariant bounds on crossing probabilities, which are presented in the Section 3.

We believe that the limiting measure \(\mu \) of Theorem 1.1 does not depend on the choice of the subsequence \(\delta_n \), so that for each of the three processes there is a unique scaling limit. We further suspect that MST and EST share a common scaling limit, based on the accumulated evidence that the associated critical percolation models are indistinguishable in this limit, but that the limit for UST is different. UST can be presented as corresponding to the critical Fortuin-Kasteleyn random cluster model (related to the \(Q \)-state Potts spin models) with \(Q \to 0 \) along the critical line \([21, 22, 8]\), while MST is related to critical percolation, corresponding to \(Q = 1 \). The predicted values of characteristic exponents change with \(Q \) \(([18, 19, 22])\), although it should be said that the exact relation of the exponents of MST with percolation is not completely clear (to us).

The second set of results describes topological properties of the spanning trees which emerge in the scaling limit. To state the results we need some further terminology.

Definition 1.2 For a graded collection of trees \(F \in \Omega \) which describes a single spanning tree in \(\mathbb{R}^d \):

1. A point \(x \in \mathbb{R}^d \) is said to be a point of uniqueness, if \(F^{(2)} \) does not include a non-constant curve which starts and ends at \(x \).

2. The tree is said to have a single route to infinity if for any \(r > 0 \) there is \(R(r, F) < \infty \) such that \(F^{(2)} \) does not contain a curve spanned by two vertices outside the ball \(B(0; R(r, F)) \) which passes through \(B(0; r) \) [i.e., \(\infty \) is a point of uniqueness for \(F \)].

3. \(F \) branches at \(x \in \mathbb{R}^d \) (and \(x \) is called a branching point of \(F \)) if \(F \) includes a tree element for which \(x \) is a vertex of degree at least three, and the branches meeting at \(x \) are non-degenerate in the sense that they do not collapse to points (i.e., the curves are non-constant).

4. \(F \) exhibits pinching at \(x \in \mathbb{R}^d \) if \(F^{(2)} \) includes a curve which passes through \(x \) twice without terminating there.

It is easy to show (Lemma 8.1) that if \(F \) represents a single spanning tree in \(\mathbb{R}^d \) and \(x_1, \ldots, x_N \) are distinct points of uniqueness, then \(F \) includes exactly one subtree with external
vertices $\eta = \{x_1, \ldots, x_N\}$, and the corresponding $T^{(N)}$ (viewed as a tree-valued function of N-tuples in \mathbb{R}^d) is continuous at η.

We prove the following in the scaling limit.

Theorem 1.2 (Properties of the scaling limits) Let $\mu(dF)$ be a scaling limit of the measures μ_δ (on Ω) discussed in Theorem 1.1. Then μ-almost surely:

i. The spanning tree $F(\omega)$ has a single route to infinity;

ii. almost every $x \in \mathbb{R}^2$, in the sense of Lebesgue measure, is a point of uniqueness for $F(\omega)$;

iii. the set of exceptional points, of non-uniqueness for $F(\omega)$, is dense in \mathbb{R}^2, and its dimension satisfies

\[
2 > \dim_H \{x \in \mathbb{R}^2 | x \text{ is not a point of uniqueness for } F(\omega)\} > 1 ;
\]

(1.7)

iv. there exists a (non-random) integer k_o so that all non-degenerate trees in $F(\omega)$ (in the sense that no branches are collapsed to points) have only vertices of degree less than k_o (see Definition 8.1);

v. the collection of branching points is countable.

The above assertions follow directly from the power bounds whose derivation is the main technical part of this paper (and on which also Theorem 1.1 rests). In the proof of Theorem 1.2 we discuss also a related notion of the degree and degree type of F at a point $x \in \mathbb{R}^d$ (Definition 8.1).

Let us mention that related results were recently presented for UST by I. Benjamini [23], in a work focused on the large scale features of that spanning tree, seen by “looking up” from the lattice scale (while here we focus on the view seen “looking down” from the continuum scale). While the two works, which were carried out independently, differ in perspectives, there are similarities between some of the questions considered and in the means employed for their study within the context of UST.

Remarks

1) In two dimensions each spanning tree process has a dual which is also a spanning tree. Our results for one process imply similar results for the dual, even without the manifest self-duality which is present in the case of MST and UST.

2) We expect it also to be true that in typical configurations of scaling limits of UST, MST and EST in two dimensions there are no points of branching of order greater than three,
and no points of pinching. One may approach the proof of such statements through suitable bounds on the characteristic exponents (see Section 8), however the analysis presented here does not settle this issue. A different approach is being suggested by O. Schramm [24], and a partial result in this direction (for UST with a short distance “cutoff”) can also be found in ref. [23].

3) An essential ingredient in the analysis of MST and EST is the fact that with positive probability a given point is encircled on any given scale by a critical percolation cluster (see the discussion after Lemma 6.4). For UST, the corresponding fact is that Brownian motion in the plane creates loops on all scales (see the proof of Lemma 6.1). The extension of our analysis to the fourth model mentioned earlier would be facilitated by establishing that random walks on the Poisson-Voronoï graph resemble Brownian motion in that respect, as stated in the following conjecture (C). (Some further attention is needed for dealing with the two sources of randomness: random spanning trees, in a random graph.)

Conjecture (C) Let \(G(\omega) \) be the random Poisson-Voronoï graph of density one in \(d = 2 \) dimensions. For each \(x \in \mathbb{R}^2 \) and \(s \in (0, 1) \), let \(b_{x,s}(t) \) be the simple random walk process on \(G(\omega) \) which starts at the vertex closest to \(x \) and continues until the first exit from the annulus

\[
D_{x,s} = \{ y \in \mathbb{R}^2 : s|x| \leq |y| \leq s^{-1}|x| \}.
\]

Then there are some \(q(s), r_o(s) > 0 \) such that for all starting points with \(|x| \geq r_o(s) \):

\[
\text{Prob} \left(\text{the trajectory of } b_{x,s}(t) \text{ separates the inner and outer boundaries of } D_{x,s} \right) \geq q(s) > 0.
\]

(1.8)

(The probability refers here to the double average corresponding to a random walk on a random graph.)

1.c Outline of the paper

The organization of the work is as follows. In Section 2 we introduce the space of immersed trees. Section 3 contains a summary of the pertinent results from ref. [7]. We recall there two criteria for systems of random curves which permit to deduce regularity and roughness statements, as those seen in Theorem 1.1. The criteria require certain scale-invariant bounds on the probabilities of multiple traversals of annuli, and of lengthwise traversals of rectangles, by curves in the given random family. The criteria admit a conformally invariant formulation. The next two sections present some auxiliary results: Section 4 is dedicated to the very useful free-wired bracketing principle, and Section 5 to preliminary results on the crossing probabilities for annuli with various boundary conditions. In Section 6 we verify the regularity criterion, treating the three models separately; in each of the three cases the proof makes use of a convenient algorithm for generating the tree. The roughness criterion is
verified in Section 7 by means of an argument which applies to all the models discussed here. In Section 8, the results of the previous sections are combined for the proof of Theorems 1.1 and 1.2, followed by some further comments on the geometry of scaling limits. The discussion of crossing exponents is supplemented in the Appendix by deriving a quadratic lower bound $(\lambda(k) \geq \text{const.} (k - 1)^2)$ for the rate of growth of the exponent associated with the probability of k-fold traversals.

2. Collections of immersed graphs

Following is the construction of the spaces $\mathcal{S}^{(N)}$ on which we base the description of spanning forests in \mathbb{R}^d. As is mentioned at the end of the section, the concepts discussed here may be extended to more general immersed graphs.

2.a Compactification of \mathbb{R}^d.

A convenient way to encompass in our discussion the infinite volume limit is to formulate our concepts with the Euclidean metric replaced by the distance function $d(u, v)$ defined on $\mathbb{R}^d \times \mathbb{R}^d$ by

$$d(u, v) = \inf_\gamma \int_\gamma ds/(1 + |x|^2) ,$$

where the infimum is over all continuous paths $\gamma = x(\cdot)$ joining u with v, and ds denotes integration with respect to arclength. The useful features of the metric are: i) in bounded regions it is equivalent to the Euclidean metric, ii) with respect to it, \mathbb{R}^d is precompact. Adding a point at infinity yields the compact space $\hat{\mathbb{R}}^d$ which is (via stereographic projection) isometric to the d-dimensional unit sphere.

2.b The space of trees

For each $N < \infty$ the space of immersed trees with N external vertices, $\mathcal{S}^{(N)}$, will be constructed as a union of patches, each parametrized by a particular reference tree. This parametrization is used to define an initial distance within each patch. Next, the patches are connected, or sewn together, through an identification of boundary points, which typically correspond to trees with some degeneracy. The space $\mathcal{S}^{(N)}$ is then metrized through the imposition of the triangle inequality.
The case \(N = 2 \) corresponds to curves, which can be defined as equivalence classes of continuous functions \(f : [0, 1] \to \mathbb{R}^d \), modulo (monotone) reparametrizations. The distance between two curves, \(C_1 \) and \(C_2 \), is defined by

\[
\text{dist}(C_1, C_2) := \inf_{\phi_1, \phi_2} \sup_{t \in [0,1]} d(f_1(\phi_1(t)), f_2(\phi_2(t))),
\]

where \(f_1 \) and \(f_2 \) are particular parametrizations of \(C_1 \) and \(C_2 \), and the infimum is over the set of all monotone (increasing or decreasing) continuous functions from the unit interval onto itself.

For two curves to be close on \(\mathbb{R}^d \) means that the corresponding curves in \(\mathbb{R}^d \) shadow each other except possibly when they are far from the origin. Although a Cauchy sequence of curves in \(\mathbb{R}^d \) may, in general, converge to a curve connecting two finite points through infinity, no such curves occur in the scaling limits of the two-dimensional models discussed here. (Systems satisfying the condition \(H_1 \) with \(\lambda(2) > 0 \) are easily seen to be quasi-local, uniformly in \(\delta \).) On the other hand, we do encounter curves which at one end run off to infinity.

To extend this concept to \(N > 2 \), we replace the interval by a collection of reference trees. A reference tree \(\tau \) is a tree graph with finitely many vertices, labeled as external or internal, with the external vertices having degree one, and the internal vertices having degrees not less than three. The vertices are connected through links which are realized as linear continua (intervals) of unit length. We denote by \(N(\tau) \) the number of external vertices. The number of internal vertices cannot exceed \(N(\tau) - 2 \), and thus there is a finite catalog of topologically distinct reference trees for each given \(N < \infty \).

A reparametrization of a reference tree \(\tau \) is a continuous map \(\phi : \tau \to \tau \) which preserves the sets of internal and external vertices and is monotone (i.e., order preserving, though not necessarily strictly monotone) on each link.

Definition 2.1 For a given reference tree \(\tau \), a tree immersed in \(\mathbb{R}^d \) indexed by \(\tau \) is an equivalence class of continuous maps \(f : \tau \to \mathbb{R}^d \), with two maps \(f_1, f_2 \) regarded as equivalent if there are two reparametrizations \(\phi_1, \phi_2 \) of \(\tau \) such that \(f_1 \circ \phi_1 = f_2 \circ \phi_2 \).

The collection of immersed trees parametrizable by \(\tau \) is denoted by \(S_\tau \), and the collection of all immersed trees with a given number \((N)\) of external vertices is denoted by \(S^{(N)}_\tau = \bigcup_{\tau : N(\tau) = N} S_\tau \). Let us note that for each \(\tau \) there are elements of \(S_\tau \) for which one or more branches have collapsed to a point (i.e., \(f(\cdot) \) is constant on a link). Such degenerate immersed trees can be naturally parametrized by a smaller tree \(\tau' \), and we shall identify it, as an element of \(S^{(N)}_\tau \), with a point in the other collection \(S_{\tau'} \). In this fashion, the set \(S^{(N)} \) may be viewed as covered by a collection of patches, which are sewn together and form a connected set.

For each reference tree \(\tau \) (with at least two vertices), a metric \(\text{dist}_\tau(T_1, T_2) \) is given on \(S_\tau \), by a direct extension of eq. (2.2), in which \(\phi_i \) \((i = 1, 2)\) denote reparametrizations of \(\tau \). In
this metric S_τ is a complete separable metric space, since it is a closed subspace, defined by
the incidence relations, of the space of all $(2N(\tau) - 3)$-tuples of continuous curves (given by
the links – some of which may be degenerate).

The distance thus defined within each patch yields in a natural way a metric $\text{dist}(T_1, T_2)$
on $S^{(N)}$, defined as the infimum of the lengths of paths connecting the two points through
finite collections of segments each staying within a single patch. With this definition $S^{(N)}$ is a
complete separable metric space, and each S_τ is a closed subspace.

The spaces $S^{(N)}$ provide the basic building element for the space of tree configurations.
As explained in Section, we denote by $\Omega^{(N)}$ the space of all closed subsets of $S^{(N)}$, with the
Hausdorff metric, and by Ω the subspace of the product $\bigtimes_{N \geq 1} \Omega^{(N)}$ consisting of all spanning
forests in the sense of Definition. By construction, Ω is a complete separable metric space.
The following is a useful notion.

Definition 2.2 Let $F \in \Omega$ be an inclusive collection of trees (see Definition) which represents
a single spanning tree for a graph in \mathbb{R}^d, and let T_1, \ldots, T_k be a collection of trees in F.
The trees are said to be **microscopically disjoint** if there exists a tree T in F, parametrized as
$f : \tau \to \mathbb{R}^d$, which is non-degenerate in the sense that no links are collapsed to points, and a
collection of vertex-disjoint subtrees τ_1, \ldots, τ_k of the reference tree τ so that the restriction of
f to each τ_i is a parametrization of T_i.

Note that our choice of the collections $F_\delta(\omega)$ guarantees that for $\delta > 0$, microscopical
disjointness is equivalent to disjointness. In general, microscopically disjoint subtrees are
limits of disjoint subtrees.

2.c Systems of immersed graphs

Let us note that the concepts discussed above have a natural extension to systems of
immersed graphs which need not be trees. Such a generalization may, in fact, be useful for the
description of the configurations of percolation models (in any dimension).

For the more general system of random graphs one should repeat the construction in the
previous subsection, omitting the requirement that the graphs which provided the reference
index sets τ be connected and free of loops. The concepts which would be generalized through
this modification include:

i. $S^{(N)}$ — representing, in the modified definition, the space of graphs immersed in \mathbb{R}^d
 with N external vertices;

ii. $\Omega^{(N)}$ — the space of closed subsets of $S^{(N)}$.

14
With this modification \(F = \{F^{(N)}\}_{N \geq 1} \in X_{N \geq 1} \Omega^{(N)} \) represents a collection of immersed graphs, to which the notions of inclusive configuration and quasilocal configuration, introduced in Definition 1.1, also apply.

3. Criteria for regularity and roughness

Our proof of Theorem 1.1 employs the regularity and roughness criteria developed for systems of random curves in ref. [6]. Following is a summary of the pertinent results. We add here also a brief discussion of the behavior of the criteria under conformal invariance. The criteria were derived in the context of a system of random curves in a finite volume, which in the terminology used in the present work can be presented as follows.

Definition 3.1 A system of random curves with a short-distance cutoff \(\delta \) is given by a collection, \(\{\mu^{(2)}_\delta(dF^{(2)}(\omega))\}_{0 < \delta \leq \delta_{\text{max}}} \), of probability measures on \(\Omega^{(2)} \) which provide the probability distributions of random closed sets of polygonal curves. The parameter \(\delta \) indicates the order of magnitude of the polygonal steps – in a sense which ought to be clear in the given model.

Remarks:

1) **Motivation.** This terminology is of interest mainly when there is some consistency in the formulation of the probability measures for the different values of \(\delta \). In the examples considered here these represent scaled down versions of a common process, i.e., they are related by dilations. The term “cutoff” anticipates the possibility that the measures \(\mu^{(2)}_\delta(dF^{(2)}(\omega)) \) can be viewed as providing an approximate description of a process which is defined for \(\delta = 0 \), or possibly some family of such processes whose approximates are given by different sequences with \(\delta_n \rightarrow 0 \).

2) **Notation.** The random sets of curves will be denoted by \(F^{(2)}(\omega) \); and when it be deemed unambiguous the entire system will be represented by \(F^{(2)} \), or just \(F \). The probabilities evaluated with respect to \(\mu^{(2)}_\delta(\cdot) \) will also be referred to as \(\text{Prob}_\delta(\cdot) \).

The possibility raised in Remark 1) requires that the family of measures either converge to a limit or at least have accumulation points as \(\delta \rightarrow 0 \). Thus the first question is one of compactness. A key issue here is whether the curves satisfy some uniform regularity estimates. A useful tool for the derivation of an affirmative answer is the general result of ref. [6] which permits to deduce Hölder continuity bounds (valid simultaneously for all curves of a typical configuration \(F^{(2)}_\delta(\omega) \) in a given compact subset of \(\mathbb{R}^d \)) from estimates on the probability of multiple traversals of a spherical shell. The required estimate is formulated as a hypothesis which needs to be verified by model-specific arguments.

3.a Regularity criterion
Denoting the shells by
\[D(x; r, R) = \{ y \in \mathbb{R}^d \mid r \leq |y - x| \leq R \} , \]
and \(D(r, R) \equiv D(0; r, R) \), the required property is stated as follows.

H1 A system of random curves is said to satisfy the hypothesis **H1** if there is a sequence of exponents
\[\lambda(k) \xrightarrow{k \to \infty} \infty \]
such that for each \(k < \infty \) and each \(s > 0 \) the crossing probabilities of spherical shells with radii \(0 < r < R \leq 1 \) satisfy
\[\text{Prob}_\delta \left(D(x; r, R) \text{ is traversed by } k \text{ vertex-disjoint segments of a curve in } F_\delta^{(2)}(\omega) \right) \leq K(k, s) \left(\frac{r}{R} \right)^{\lambda(k) - s} \]
uniformly in \(\delta \leq \delta_o(r, s) \), with some constant \(K(k, s) < \infty \).

It may be noted that \(\lambda(1) \leq d - 1 \), unless the collection of curves is a.s. empty. The implication of **H1** is that with probability one all the curves of the random configuration within a compact set \(\Lambda \subset \mathbb{R}^d \) are uniformly equicontinuous, with a bound that is random but whose distribution does not deteriorate as \(\delta \to 0 \). To formulate the result precisely, call a family of random variables \(\kappa_\delta \) **stochastically bounded** as \(\delta \to 0 \) if
\[\lim_{u \to \infty} \sup_{0 < \delta \leq \delta_o} \text{Prob}_\delta \left(|\kappa_\delta(\omega)| \geq u \right) = 0 \]
for some \(\delta_o > 0 \). A family of random variables \(\tilde{\kappa}_\delta \) is called **stochastically bounded away from zero**, if the family \((\tilde{\kappa}_\delta)^{-1} \) is stochastically bounded.

Theorem 3.1 (Regularity and scaling limit [3]). Let \(F^{(2)} \) be a system of random curves in a compact region \(\Lambda \subset \mathbb{R}^d \), with short-distance cutoff \(\delta \), and let \(\{\mu_\delta^{(2)}\} \) be the associated family of probability measures on \(\Omega^{(2)} \). If the system satisfies hypotheses **H1**, then all the curves \(C \in F_\delta^{(2)}(\omega) \) can be parametrized (through an explicit algorithm) by functions \(f : [0, 1] \to \Lambda \) such that for each curve, for all \(0 \leq t_1 < t_2 \leq 1 \), and for every \(\varepsilon > 0 \)
\[|f(t_2) - f(t_1)| \leq \kappa_{\varepsilon;\delta}(\omega) \ g(\text{diam}(C))^{1+\varepsilon} \ |t_2 - t_1|^{-\frac{\lambda(1)}{d-\lambda(1)}} , \]
with a family of random variables \(\kappa_{\varepsilon;\delta}(\omega) \) (common to all \(C \in F_\delta^{(2)}(\omega) \)) which stays stochastically bounded as \(\delta \to 0 \). The second factor depends on the curve’s diameter through the function
\[g(r) = r^{-\frac{\lambda(1)}{d-\lambda(1)}} . \]
Moreover, there is a sequence $\delta_n \to 0$ for which the scaling limit
\[
\lim_{n \to \infty} \mu^{(2)}_{\delta_n}(dF^{(2)}) := \mu^{(2)}(dF^{(2)})
\] (3.7)
exists, in the sense of (weak) convergence of measures on $\Omega^{(2)}$. The limit is supported on curves with
\[
\dim_H(C) \leq d - \lambda(2),
\] (3.8)
whose parametrization (obtained with the algorithm mentioned above) satisfies (3.5) — i.e., it is Hölder continuous with any exponent less than $1/[d - \lambda(1)]$.

Remark Although the above theorem was formulated for compact subsets $\Lambda \subset \mathbb{R}^d$, the proof requires only that Λ is a compact metric space whose Minkowski (box) dimension is at most d. (The Hölder continuity condition is to be interpreted in terms of the corresponding metric.) In the present work we shall apply it to the Riemann sphere.

Note that for any spanning tree process
\[
\lambda(1) = 0
\] (3.9)
since each point is connected to infinity. However, we will see that for UST, MST, and EST, the criterion $H1$ is satisfied on \mathbb{R}^d, with
\[
\lambda(2) > 0
\] (3.10)
and $\lambda(k)$ growing at least quadratically with k.

3.b Roughness criterion

The criterion to be verified in order to prove roughness concerns simultaneous traversals of cylinders. We refer by this term to the solid body, not its boundary; i.e., a cylinder of length L and width ℓ in \mathbb{R}^d is a set congruent to $I \times B$, where I is an interval of length L, and B a $(d-1)$-dimensional ball of diameter ℓ. A collection of sets $\{A_j\}$ is regarded as well-separated if the distance of each set A_j to the others is at least twice the diameter of A_j. Following is the hypothesis which is relevant for the study of the scaling limit.

($H2^*$) A system of random curves is said here to satisfy the hypothesis $H2^*$ if there exist constants $\sigma \geq 1$, $\rho < 1$ and $K < \infty$ such that for every finite collection of well-separated cylinders, A_1, \ldots, A_k, of widths ℓ_i and lengths $\sigma \ell_i (i = 1, \ldots, k)$
\[
\lim_{\delta \to 0} \text{Prob}_\delta \left(\text{each } A_j \text{ is traversed (“lengthwise”) by a curve in } F^{(2)}_\delta(\omega) \right) \leq K \rho^k.
\] (3.11)
The asterisk on H^*_2 marks a minor modification of the condition H_2 formulated in Ref. [3], for which the bound on the probability is required to hold for all $\delta < \min_i \ell_i$. The pertinent result (which incorporates the comment made below) is:

Theorem 3.2 (Roughness, [3]) Assume that a system of random curves $F_\delta^{(2)}$ satisfies H^*_2. Then any measure $\mu_\delta^{(2)}$ obtained as a scaling limit $\delta \to 0$ of the measures $\mu_\delta^{(2)}$ on $\Omega^{(2)}$ is supported on configurations containing only curves with Hausdorff dimension satisfying

$$\dim_H C \geq d_{\min}$$

with some non-random $d_{\min} > 1$, which depends on the parameters in H^*_2.

Remark: Roughness in a random system of curves $F_\delta^{(2)}$ is expressed also on intermediate scales, and it does not require any assumption on the existence of scaling limits. The full condition H_2 permits to conclude lower bounds on the tortuosity of the curves which are simultaneously valid on all scales. Let $M(C, \ell)$ be the smallest number of segments in all the subdivisions of the curve C into segments of diameters $\leq \ell$. The hypothesis H_2 implies the existence of some $d_{\min} > 1$ such that for any fixed $r > 0$, $s > d_{\min}$, and compact $\Lambda \subset \mathbb{R}^d$, the random variables

$$\tilde{\kappa}_{s, r, \Lambda; \delta}(\omega) := \inf_{C \in F_\delta^{(2)}(\omega): \text{diam}(C) \geq r} \ell^s M(C, \ell)$$

stay stochastically bounded away from zero, as $\delta \to 0$. In particular, the minimal number of steps of size δ needed in order to advance distance L exceeds $\tilde{\kappa} (L/\delta)^s$. This complements Theorem 3.1, since under the condition (3.5), the random variables

$$\ell^{d - \lambda(1) + \varepsilon} M(C, \ell)$$

remain stochastically bounded as $\delta \to 0$. The general result in [3] which implies both roughness statements is a lower bound on the capacity of curves in $F_\Lambda^{(2)}$.

One may note that the slightly simpler condition H^*_2 implies that any scaling limit obeys the full H_2, and thus Theorem 3.2 follows from the statement derived in ref. [3].

For the systems considered here we shall establish the hypothesis H_2 in Section 7.

3.c **H1 under conformal maps**

In discussing infinite systems it is convenient for us to view \mathbb{R}^d as covered by two patches: the ball $B(R) = \{x \in \mathbb{R}^d \mid |x| \leq R\}$, with some radius $R > 1$, and the set where $|x| \geq 1/R$. The inversion $(x \to x/|x|^2)$ maps the second patch bijectively onto the compact region $B(R)$. The metric defined by (2.1) which we use on \mathbb{R}^d is invariant under this inversion, and so are the topologies we defined earlier for the spaces of curves, trees, and their collections. It is useful to know that H_1 is also stable under inversion:
Lemma 3.3 If a system of random curves on \mathbb{R}^d satisfies the hypothesis $\textbf{H1}$, then so does the system obtained under the inversion, with the exponents reduced by not more than a factor of 2. Furthermore, if in the original system the probabilities of simultaneous k crossings of pairs of disjoint annuli are also bounded by the products of the corresponding power bounds, then after the inversion $\textbf{H1}$ continues to hold with the original exponents $\lambda(k)$.

Proof: We need to estimate in powers of (r/R) the crossing probability in the pre-image of the system of curves in an annulus $D(x; r, R)$. The pre-image of any spherical shell is a set bounded by two spheres (which may degenerate to hyperplanes, if the boundary of the spherical shell meets the origin). Let us denote the distance between the two spheres as B, and their radii as $\tilde{r}_1 \leq \tilde{r}_2$. We need to distinguish now between two cases:

1) if the shell does not include the origin then the pre-image of $D(x; r, R)$ is compact — one of the spheres encloses the other,

2) otherwise ($r \leq |x| \leq R$), neither of the two spheres contains the other, and the pre-image of $D(x; r, R)$ is the unbounded set formed by the intersection of their exteriors.

In case (1), the probability of k traversals in the pre-image of $D(x; r, R)$ is smaller than the probability for the annulus whose inner boundary is the smaller of the two spheres and whose outer radius is $\tilde{R} = \tilde{r}_1 + B$. Since the system satisfies $\textbf{H1}$ this probability is bounded from above by $K(k, \varepsilon)(\tilde{r}_1/\tilde{R})^{\lambda(k) - \varepsilon}$ for any $\varepsilon > 0$ (see eq. (3.3)).

The ratio (\tilde{r}_1/\tilde{R}) may be related to (r/R) using the invariance of the cross-ratio $(z_1 - z_2)(z_3 - z_4)/[(z_1 - z_3)(z_2 - z_4)]$ of the four points at which the surface of $D(x; r, R)$ intersects the line through O and x. We find:

$$\frac{(2r)(2R)}{(R + r)^2} = \frac{(2\tilde{r}_1)(2\tilde{r}_2)}{(2\tilde{r}_1 + B)(2\tilde{r}_2 - B)}.$$ \hspace{1cm} (3.15)

It follows that

$$\frac{\tilde{r}_1}{\tilde{R}} = \frac{\tilde{r}_1}{\tilde{r}_1 + B} \leq 4 \frac{r}{R}.$$ \hspace{1cm} (3.16)

Thus, for such a spherical shell, the image of the system of curves under inversion still satisfies Eq. (3.3) with the original exponents and constants $\tilde{K}(k, \varepsilon) = 4^{\lambda(k)}K(k, \varepsilon)$.

In case (2), the invariance of the cross ratio yields:

$$\frac{(2r)(2R)}{(R + r)^2} = \frac{(2\tilde{r}_1)(2\tilde{r}_2)}{(2\tilde{r}_1 + B)(2\tilde{r}_2 + B)}.$$ \hspace{1cm} (3.17)
which implies
\[
\left(\frac{\tilde{r}_1}{\tilde{r}_1 + B/2} \right)^2 \leq \left(\frac{\tilde{r}_1}{\tilde{r}_1 + B/2} \right) \left(\frac{\tilde{r}_2}{\tilde{r}_2 + B/2} \right) \leq \frac{4r}{R}. \tag{3.18}
\]

To bound the crossing probability in \(D(x; r, R) \) we may look at two disjoint annuli in the pre-image: one of inner radius \(\tilde{r}_1 \) and outer radius \(\tilde{r}_1 + B/2 \), concentric with the first ball, and the other of inner radius \(\tilde{r}_2 \) and outer radius \(\tilde{r}_2 + B/2 \) concentric with the second ball. The H1-bound on the crossing probability within just the first annulus yields for the image system the upper bound \(K(k, \varepsilon)(4r/R)^{\lambda(k)/2-\varepsilon} \). Under the stronger assumption we recover the full power \(\lambda(k) \).

It may be interesting to note, though we shall not pursue this point here, that the above analysis allows us to deduce that under the stereographic projection of \(\mathbb{R}^d \) onto the \(d \)-dimensional sphere, the Hypothesis H1 lifts to conformally invariant bounds for the probabilities of \(k \) crossings between pairs of \((d-1)\)-dimensional spheres.

4. Free-wired bracketing

The free-wired bracketing principle is a useful monotonicity property of both uniform and minimal random spanning trees, which allows one to relate the spanning tree on a portion of a large or infinite graph \(G \) to the corresponding object defined in a subset. One of its implications is the existence of the infinite-volume limits with free as well as with wired boundary conditions. We shall encounter other uses below. In this section we shall briefly recall this known principle and conclude with a new observation, expressed here as the free-wired factorization property, which will be used in the study of the crossing exponents.

Let \(G \) be a graph with finite coordination number whose set of vertices is a locally finite subset \(\mathcal{V} \subset \mathbb{R}^d \), and let \(\Lambda \subset \mathbb{R}^d \) be a closed subset with piecewise smooth boundary (the reference to such sets is natural in our context, but it should be clear that the main concepts are not restricted to graphs immersed in \(\mathbb{R}^d \)). The subgraph of \(G \) with free boundary conditions in \(\Lambda \), denoted by \(G^F_\Lambda \), consists of the vertex set \(\mathcal{V}_\Lambda = \mathcal{V} \cap \Lambda \), with an edge between two vertices if and only if there is such an edge in \(G \). Each edge in \(G^F_\Lambda \) is assigned the length it had in \(G \).

The “subgraph” of \(G \) with wired boundary conditions \(G^W_\Lambda \) is defined similarly, except that rather than simply deleting all the vertices outside of \(\mathcal{V}_\Lambda \), they are merged together into one vertex \(\partial \Lambda \), called the boundary. In the case of UST and MST, any edge that had existed between a vertex \(x \in \mathcal{V}_\Lambda \) and a vertex \(y \not\in \mathcal{V}_\Lambda \) becomes an edge between \(x \) and the boundary \(\partial \Lambda \). For MST, the corresponding edge length is that of \((x, y)\). (Note that in \(G^W_\Lambda \) there may be more than one edge between a vertex \(x \) and \(\partial \Lambda \) so that \(G^W_\Lambda \) is really a multigraph. In the case of MST, all but the shortest of the multiple edges joining \(x \) to \(\partial \Lambda \) may be discarded.) In the
case of EST, the length of the (single) edge joining a vertex \(x \in \Lambda \) with \(\partial \Lambda \) is set to equal the Euclidean distance from \(x \) to the geometric boundary of \(\Lambda \).

Denote the trees generated by a spanning tree process on \(G^F_\Lambda \) and \(G^W_\Lambda \) by \(\Gamma^F_\Lambda \) and \(\Gamma^W_\Lambda \), respectively, with \(\Gamma^W_\Lambda \setminus \{\partial \Lambda\} \) the graph obtained by deleting the special boundary vertex and the edges linking to it. We slightly abuse the notation by referring to the restriction of the tree \(\Gamma \) to the subgraph spanned by the vertices in \(\Lambda \) as \(\Gamma \cap \Lambda \).

The bracketing principle can be stated as:

\[
\Gamma^W_\Lambda \setminus \{\partial \Lambda\} \preceq \Gamma \cap \Lambda \preceq \Gamma^F_\Lambda ,
\]

where \(A \preceq B \) means that the set of edges of the random graph \(A \) is stochastically dominated by the set of edges of \(B \), and where it should be noted that both the free and the wired boundary conditions on \(\Lambda \) decouple that region from the rest of the graph.

The stochastic domination can be expressed through the existence of a coupling between the two tree processes (in a sense analogous to that seen in eq. (1.5)) in which a.s. all the edges of \(A \) are also contained in \(B \). For MST, the coupling is provided by constructing spanning trees simultaneously on \(G^F_\Lambda \) and \(G^W_\Lambda \) using the same call numbers (Section 6.b), and for EST by using the same Poisson points (Section 6.c). For UST a coupling is known to exist, though a correspondingly simple explicit coupling remains unknown.

The bracketing principle implies in particular that the restriction of the tree \(\Gamma^W_\Lambda \) to a fixed “window” \(\Lambda_o \) is monotone increasing in \(\Lambda \), for \(\Lambda \supset \Lambda_o \), and that the similar restriction of \(\Gamma^F_\Lambda \) is monotone decreasing. Thus one derives the well-known fact that the infinite volume limit exists for both free and wired boundary conditions on \(\Lambda \) decouple that region from the rest of the graph.

We shall now add to the collection of monotonicity tools another useful observation. Consider the effect of subdividing a connected region by a surface which splits it into two sets \(C \) and \(D \), for which we then set the boundary conditions so that the cutting surface acts (in the natural sense) as a free boundary for \(C \) and as a wired boundary for \(D \). In the interior of \(C \) the introduction of the free boundary along the cut only enhances the spanning tree configuration. Within \(D \) the wired boundary along the cut diminishes the configuration. It follows
that the original random spanning tree may be monotonically coupled with either of the two separate spanning tree processes. We say that the system has the F/W factorization property if a simultaneous coupling of all these processes can be chosen so that the two separate trees in \(C \) and \(D \) are independent.

Lemma 4.1 (F/W factorization property) *On an arbitrary finite graph, or a finite region in case of EST, each of the spanning trees considered here – UST, MST, and EST, has the free-wired factorization property. I.e., the three tree processes \(\Gamma_{C\cup D}, \Gamma^F_C, \) and \(\Gamma^W_D \) can be realized on a single probability space so that:

i. \(\Gamma^F_C \) and \(\Gamma^W_D \) are independent spanning trees (with the indicated boundary conditions along the separating surface),

ii. within the interior of \(C \), \(\Gamma^F_C \) dominates \(\Gamma \), and

iii. within the interior of \(D \), \(\Gamma^W_D \) is dominated by \(\Gamma \).

Proof: The existence of such a coupling follows by model specific arguments. For MST and EST the argument is most direct, since the spanning tree is determined by the specified call numbers in the case of MST, or specified locations of the points in the case of EST, and the specified boundary conditions. For those two cases, the F-W factorization property is a direct implication of the F-W bracketing principle and the independence of the distributions of the variables relevant for the regions \(C \) and \(D \).

Another argument is needed for UST. As a starting point, we take a coupling between the restriction of the full tree \(\Gamma_{C\cup D} \) to \(D \), and the “subtree” \(\Gamma^W_D \). Since \(\Gamma_{C\cup D} \) dominates \(\Gamma^W_D \), the two measures may be coupled monotonically, so that claim (iii) holds. To construct the coupling with the other component, \(\Gamma^F_C \), we note that the conditional distribution in \(C \) of \(\Gamma_{C\cup D} \), conditioned on its restriction to \(D \), is just the distribution of UST in \(C \) with some partially wired boundary conditions. (This is not true for MST, so the argument makes use of the special structure of UST.) It follows that the conditional distribution of \(\Gamma_{C\cup D} \) within \(C \) is always dominated by \(\Gamma^F_C \). It is therefore possible to extend the measure so that (i) and (ii) also hold.

In the next section we shall see applications of the above property.
5. Crossing exponents

This section contains some general considerations regarding the probability of multiple traversals of spherical shells, and the exponents $\lambda(k)$ that appear in H1.

While $\lambda(k)$ relates to the event that there is a curve with multiple crossings, we find it useful to extend the considerations to the events of multiple traversals by disjoint curve segments – without requiring those to be strung along a common curve. Thus, modifying slightly the definition of $\lambda(k)$ given in eq. (3.3), we let $\lambda^*(k)$ be the supremum of all exponents s such that, for all spherical shells with radii $0 < r < R \leq 1$,

$$\text{Prob}_\delta \left(\frac{D(x; r, R)}{D(\omega)} \right) \leq K(k, s) \left(\frac{r}{R} \right)^s$$

holds uniformly in $\delta \leq \delta_o(r, s)$ with some constant $K(k, s)$. Since we relaxed here the condition seen in eq. (3.3), the exponents are related by

$$\lambda(k) \geq \lambda^*(k).$$

The regularity assumption H1 will be verified by establishing lower bounds on $\lambda^*(k)$.

In our discussion we shall make use of the free-wired bracketing principle and the F/W factorization property. The results of this section hold for any random spanning tree model to which these principles applies, regardless of the dimension.

5.a The exponents $\phi(k)$, $\gamma(k)$, and the geometric-decay property

In the study of the exponents it convenient to introduce two additional variants, which correspond to the crossing probabilities with different combinations of boundary conditions. The boundary conditions are indicated here in the superscript. For example, the graph $G_{r,R}^{F,W}$ is defined by placing on $D(r, R)$ the free boundary conditions at r and the wired boundary conditions at R, i.e., deleting the vertices inside $B(r)$ and outside $B(R)$, and adding a single vertex to the graph representing $\partial B(R)$.

Since traversing means reaching the boundary, or beyond, some adjustment in the definition is needed at the free boundary. We do that by defining boundary sites, and then saying that a path along the edges of $G_{r,R}^{F,W}$ traverses $D(r, R)$ if it connects a vertex on the free boundary at r with a vertex on the wired boundary at R. In the case of the lattice models (UST and MST), a vertex x in $D(r, R)$ is said to lie on the free boundary of $G_{r,R}^{F,W}$ at r if the original graph G contains an edge joining x to a vertex inside the ball $B(r)$. In the case of EST the defining condition is that the Voronoi cell of x touches the Voronoi cell of $\partial B(r)$, or equivalently, that there exists a disc which intersects $B(r)$ and contains x but no other vertex of G. The free boundary at R is defined analogously. Two traversals are disjoint, if they do not share
Figure 2: The tree depicted here has $k = 3$ disjoint crossings of the annulus $D(x; r, R)$ with free-wired boundary conditions. Note that each point is connected to the wired boundary by a unique path, while there are many paths to the free boundary. The exponents $\gamma(k)$ appear in bounds for the probability of such k-crossing events.

any vertices. (The alternative definition, based on edge disjointness would result in the same exponents.)

We now define two new families of exponents which play an auxiliary role. Let $\phi(k)$ be the supremum of all $s > 0$ such that for every shell $D(r, R)$

$$\text{Prob}_\delta \left(\Gamma_{r,R}^{F,F} \text{ includes at least } k \text{ disjoint traversals of } D(r, R) \right) \leq K(k, s) \left(\frac{r}{R} \right)^s$$

for $\delta \leq \delta_0(r, s)$, with some constant $K(k, s)$ which does not depend on δ.

Similarly, let $\gamma(k)$ be defined by the condition

$$\text{Prob}_\delta \left(\Gamma_{r,R}^{W,F} \text{ includes at least } k \text{ disjoint traversals of } D(r, R) \right) \leq K(k, s) \left(\frac{r}{R} \right)^s$$

interpreted as above (with independently defined constants). In eq. (5.4) it is required that the bound holds for both mixed boundary conditions.

All three families of crossing exponents are clearly nondecreasing with k. We expect that $\lambda(k) = \lambda^*(k) = \phi(k) = \gamma(k)$. It is shown below that

$$\lambda^*(k) \geq \phi(k) \geq \gamma \left(\left\lceil \frac{k + 1}{2} \right\rceil \right) ;$$

free-wired bracketing easily implies that $\gamma(k) \geq \phi(k)$.

The desired statement: $\lambda^*(k) \rightarrow \infty$, will be derived by showing that in the UST, MST, and EST models the crossing probabilities have the following geometric-decay property (in k)
for shells of fixed aspect ratio: There exist constants \(s > 0 \) and \(\sigma > 1 \) so that

\[
\text{Prob}_\delta \left(\text{\(\Gamma_{r,R}^{FW} \) contains at least \(k \) disjoint traversals of \(D(r, R) \) } \right) \leq \left(\frac{r}{R} \right)^{s(k-1)} \tag{5.6}
\]

holds for all \(R \geq \sigma r \), provided \(\delta \leq \delta_o(r) \). This implies:

\[
\gamma(k) \geq s(k-1), \tag{5.7}
\]

which suffices for our main purpose. However, note that eq. \((5.6) \) also implies more, since our definition of the exponents left room for some prefactors, i.e., it concerned only the asymptotic behavior of the crossing probability as \(R/r \to \infty \), at fixed \(k \). In the appendix we show, by an argument of more general applicability which uses the geometric-decay property, that the actual rate of growth of the exponents is even higher, with

\[
\gamma(k) \geq \beta(k-1)^2 \tag{5.8}
\]

with some \(\beta > 0 \).

5.b Comparison of the exponents

Lemma 5.1 \(\lambda^*(k), \gamma(k) \geq \phi(k) \).

Proof: Recall that \(\lambda^*(k) \) pertains to events involving a single tree containing multiple traversals of a spherical shell \(D(r, R) \). Imposing free boundary conditions on the inner and outer boundaries of the shell is a monotone operation which preserves the traversals. Thus, the first claim seems to be an immediate consequence of the bracketing principle (4.1). There is however one scenario which requires a bit more attention: Some of the traversals (appearing in the definition (5.1) of \(\lambda^*(k) \)) may be realized by an edge which crosses the annulus \(D(r, R) \) without “stepping” on a point in it. In the Poisson-Voronoi graph, the one case in which this warrants some attention, this event can occur only if within the region \(D(r, R) \), there is a disc of diameter at least \((R-r) \) which contains no Poisson points. The probability of that is not greater than approximately \(e^{-\text{const.} \cdot (R-r)^2/\delta^2} \). Such a correction term plays a negligible role and does not interfere with our ability to conclude that \(\lambda^*(k) \geq \phi(k) \).

The second claim, \(\gamma(k) \geq \phi(k) \), follows directly from the free-wired bracketing principle.

Lemma 5.2 \(\phi(k) \geq \gamma([((k+1)/2)]) \).
Proof: Assume $\Gamma^F_{r,R}$ contains k (or more) disjoint paths traversing $D(r, R)$. Label the traversing curves such that C_i connects a point p_i on the free boundary at r to a point q_i on the free boundary at R. Let T be the subtree of $\Gamma^F_{r,R}$ spanned by the points $p_1, q_1, \ldots, p_k, q_k$; it consists of C_1, \ldots, C_k and $k−1$ “joining paths”.

Divide $D(r, R)$ into m subshells of aspect ratio $(R/r)^{1/m}$. Assume that the p_i lie in the innermost, and the q_i in the outermost subshells – for UST and MST this happens with certainty if $\delta \leq \delta_o(r, m)$, and for EST the probability of it failing introduces a negligible correction which is exponentially small in δ^{-2}, as discussed above.

![Figure 3: A subtree consisting of $k = 3$ disjoint traversals and $k − 1 = 2$ joining curves.](image)

Wiring both boundaries of a subshell D_j divides $D(r, R)$ into an inner shell D_j^{in} (with free-wired boundary conditions), an outer shell D_j^{out} (with wired-free boundary conditions), and the middle (wired) subshell D_j. It is possible to choose j such that each of D_j^{in} and D_j^{out} contains at most $(k−1)/2$ of the joining paths in T. With this choice, the intersection of T with D_j^{in} consists of at least $(k + 1)/2$ disconnected subtrees, each of which contains at least one of the points p_i, and hence a traversal of D_j^{in}. Since wiring the middle shell only suppresses edges, but each p_i remains connected to the wired boundary of D_j, there are $(k + 1)/2$ traversals of D_j^{in} with free-wired boundary conditions. (If $(k + 1)/2$ is a half-integer, we may round up.) By the same reasoning, there are at least $(k + 1)/2$ paths traversing the outer shell D_j^{out} with wired-free boundary conditions. Summing over the possible positions of D_j, and using the independence of the tree processes on D_j^{in} and D_j^{out}, we find that for each $s < \gamma([((k + 1)/2])]$ (see the definition of $\gamma(k)$ in (5.4)) we have

$$\text{Prob}_\delta\left(\Gamma^F_{r,R} \text{ includes } k \text{ disjoint traversals of } D(r, R)\right) \leq \leq m \left[K\left([((k + 1)/2)], s\right)\right]^2 \left(\frac{r}{R}\right)^{(s−1)/m} + E_\delta,$$

where E_δ is a correction term of order $O(e^{−\text{const.} (R−r)^2/\delta^2})$. Since m was arbitrary, it follows that $\phi(k) \geq \gamma([((k + 1)/2])$.

\[\]
5.c A telescopic bound

A very useful consequence of the F/W factorization property is a telescopic bound of the crossing probabilities, which is expressed in the following lemma. It yields lower bounds on the exponents \(\gamma(k) \) from bounds on the crossing probabilities of spherical shells with a fixed aspect ratio.

Lemma 5.3 (Telescopic principle) For each of the spanning trees considered here (UST, MST, and EST), and in any dimension, the following is satisfied for any \(r_1 < r_2 < \cdots < r_m \) and any integer \(k \):

\[
\text{Prob}_\delta \left(\text{\Gamma}_{F,W}^{r_1,r_m} \text{ contains } k \text{ disjoint traversals of } D(r_1, r_m) \right) \leq \prod_{j=1}^{m-1} \text{Prob}_\delta \left(\text{\Gamma}_{r_j,r_{j+1}}^{F,W} \text{ contains } k \text{ disjoint traversals of } D(r_j, r_{j+1}) \right) + \text{Prob}_\delta \left(D(r_j, r_{j+1}) \text{ is crossed by an edge in } \text{\Gamma}_{F,W}^{r_1,r_m} \right).
\]

The analogous relations are also valid for the free-free and the wired-free boundary conditions.

Remark As mentioned before, the possibility of a “long edge” introduces a correction (the second term on the right) whose effect on the exponents discussed here is negligible.

Proof: Consider the effect of subdividing a spherical shell \(D(r, R) \) by a sphere of radius \(\tilde{r} \), with the boundary conditions placed so that the cutting surface acts as a free boundary for the outer shell \(D(\tilde{r}, R) \), and as a wired boundary for the inner shell \(D(r, \tilde{r}) \) (so that we end with free-wired boundary conditions on each subshell). As we saw in Lemma 4.1 there exist a coupling between the spanning tree in \(D(r, R) \) and the product measure of the spanning trees in the subshells, which is separately monotone in the two regions. On the outer subshell, introducing the free boundary along the cut only enhances the configuration. On the inner subshell, introducing the wired boundary along the cut diminishes the configuration; however, even in the diminished spanning tree, each site remains connected to the wired boundary. It follows that every traversal of \(D(r, R) \) of the original configuration which contains at least one vertex in each subshell is preserved as a traversal of both subshells in the final configuration. The independence of the two components, up to the correction which was mentioned explicitly above, implies the statement for \(m = 2 \). The rest is by induction.

5.d Extension of the bounds to \(\delta = 0 \)

Another important property of the exponents, which is valid in a great deal of generality, is their “lower semicontinuity”, in the following sense.
Theorem 5.4 Let \(\{ \mu_\delta (d F) \} \) be a system of random trees with a short distance cutoff \(0 < \delta \leq 1 \), for which some of the exponents \(\lambda^* (k) \), \(\lambda(k) \) and \(\gamma(k) \geq \phi(k) \) have strictly positive values. Then the corresponding upper bounds, expressed by equations (3.3), (5.1), (5.3), and (5.4), continue to apply also at \(\delta = 0 \) for any limiting measure \(\mu (\cdot) = \lim_{\delta_n \to 0} \mu_\delta (\cdot) \) (with respect to weak convergence of probability measures on \(\Omega \)). To be explicit: the above hold with unchanged values of the exponents \(\lambda(k), \ldots \), though the optimal exponent values for \(\mu \) (at \(\delta = 0 \)) may be even greater.

Proof: It is convenient to carry out the argument using the coupling formulation of convergence, as in eq. (1.6) (with the distance function evaluated between the finite volume configurations \(F^N \)). Let us first note that for each given annulus, or spherical shell, the set of tree configurations which satisfy the corresponding multiple crossing condition forms a closed subset of \(\Omega \). Therefore its measure under \(\mu_\delta \) would be upper semicontinuous, i.e., upward jumps (as \(\delta \to 0 \)) are not excluded. Such discontinuities occur if the approximating configurations exhibit curves which stretch and span \(D(r, R) \) in the limit. The probability of that can be bounded by the crossing events of the arbitrarily narrower shells (or annuli) \(D(r + \varepsilon, R - \varepsilon) \). This correction can be easily incorporated into the optimization parameter \(s \); the result being that the upper bounds continue to hold with the \(\delta > 0 \) value of the exponents \(\lambda^* (k), \ldots, \phi(k) \).

6. Verification of H1 in two dimensions

We verify the regularity criterion \(H1 \) for the three models separately, by reducing it in each case to a property of a well-studied random model. Specifically, for UST, we refer to known properties of random walks, and for MST and EST to properties of two independent percolation processes. Unlike the previous section, the discussion is now narrowed to \(d = 2 \).

6.a Uniformly random spanning tree

We find it useful to construct UST with the loop-erased random walk algorithm ([13]). The current tree starts out consisting of a single vertex, called the root. The algorithm runs loop-erased random walk (LERW), starting from any vertex, until the current tree is reached. At that point, the loop-erased trajectory is added to the current tree. This process continues until all vertices have been adjoined to the tree, which is then uniformly random, regardless of the choices of the root and the starting points for the LERW’s.

Lemma 6.1 Consider UST on an annulus \(D = D(r, R = 3r) \) with any (e.g. free-free, free-wired, or wired-free) boundary conditions, and let \(T \) be a connected subtree (of the appropriate graph for those boundary conditions) containing at least one traversal of the annulus.
Condition upon the edges of T being contained in UST. Then except with probability $3^{-\alpha}$ (uniformly in $\delta \leq \delta_o(r)$, with some $\alpha > 0$ which does not depend on r or T), UST contains also a choking surface, which is a collection of vertices that are connected within the spanning tree to T via paths that stay within the annulus (i.e. avoid the boundaries), and such that every path crossing the annulus intersects the choking surface.

Proof: To pick a random spanning tree conditioned to contain some set of edges (in this case the edges of T), we can contract the given edges, and take the remaining edges from a random spanning tree of the contracted graph. Since by assumption T is connected, we can implicitly contract the edges of T by initializing the current tree to be T and build up the rest of the tree via loop-erased random walks. Let x be a point approximately at radius $2r$ (i.e., far from both the inner and outer boundaries of the annulus). Let $x_1 = x, x_2, x_3, \ldots, x_n$ be the vertices which a random walk (unobstructed by T) visits, up to and including the time that either (1) it hits a boundary, or (2) its loop erasure makes a non-contractible loop, i.e. the loop-erasure of x_1, \ldots, x_{n-1} together with the edge (x_{n-1}, x_n) includes a loop \hat{C} winding around the inner circle. Recall that we start with T as the current tree. When we build the random spanning tree containing T, the first n “choices” that we make will be x_1, x_2, \ldots, x_n, in that the choices of where to start the loop-erased trajectories, and the random choices of where the trajectories go are, are determined by x_1, x_2, \ldots, x_n. I.e., the first segment adjoined to the current tree is the loop-erasure of x_1, x_2, \ldots, x_i, where x_i is the first vertex from the sequence already in the current tree T. The second segment adjoined to the tree is the loop erasure of $x_{i+1}, x_{i+2}, \ldots, x_j$, where x_j is the first vertex in the rest of the original RW sequence that is in the current tree at that point. We continue in this fashion; if constructing the tree requires more choices (steps) after the first n, then these are drawn from fresh coin flips.

Consider the random walk winding event described above (i.e., that (2) occurs before (1)), and let C denote the set of vertices in the noncontractible cycle \hat{C}. We claim that C is contained in the current tree by step n, and comprises a choking surface. To see this, note first that by planarity C meets every path connecting the inner and outer boundaries. Secondly note that every loop that is erased in the construction of the spanning tree by step $n-1$ must necessarily also be erased from the loop-erasure of x_1, \ldots, x_{n-1}. (This takes a moment’s thought, and the “cycle-popping” viewpoint of the LERW construction ([13]) may help.) Thus at step $n-1$ each vertex in the cycle \hat{C} is either contained in the current tree or the current loop-erased trajectory. In particular, x_n (visited at a previous time step) is in the current tree, since the cycle \hat{C} intersects the crossing of the annulus contained in T, and the portion of \hat{C} prior to this intersection will not be in the current loop-erased trajectory. When the walk again reaches x_n at step n, all the vertices in the current loop-erased trajectory are added to the tree. Since the walk never visited either boundary, each vertex in C is connected to the initial current tree T via a path that avoids the boundaries.

It follows from a standard fact about Brownian motion that there is some positive number p so that whenever $\delta \leq \delta_o(r)$, with probability at least p the loop-erased random walk
started from point x, if it is unobstructed by T, will wind around the inner circle and intersect itself before reaching either boundary. The assertion follows by choosing α so that $3^{-\alpha} = 1 - p$.

\textbf{Corollary 6.2} Let α be the exponent of Lemma 6.1. UST has the geometric-decay property (5.6) with $s = \alpha$ on shells with mixed boundary conditions (free-wired or wired-free) and aspect ratio 3.

We remark that this corollary is essentially contained in the proof of part 2 of Theorem 2 of Benjamini’s article ([23]).

\textbf{Proof:} We can construct the spanning tree on the spherical shell by starting LERW’s along each point on the free boundary, and only after all the free boundary vertices are in the current spanning tree, start the LERWs at other vertices. Suppose that the LERW from some vertex on the free boundary makes it to the wired boundary, making the kth ($k \geq 1$) disjoint traversal of the annulus. We can upper bound by $3^{-\alpha}$ the probability that eventually there is a $(k+1)$st disjoint traversal: By Lemma 6.1, with probability at least $1 - 3^{-\alpha}$ there is a choking surface relative to the tree built so far. But the tree built so far has only k connections to the wired boundary, so each vertex on the choking surface is connected to the wired boundary along one of these k connections. A $(k+1)$st traversal disjoint from the previous k traversals would add a second path from the wired boundary to some vertex in the choking surface.

\textbf{Corollary 6.3} (H1 for UST) For all $k \geq 1$,

$$\gamma(k+1) \geq \gamma(k) + \alpha,$$

with $\alpha > 0$ as in Lemma 6.1. In particular, H1 holds for UST with

$$\lambda(k) \geq \lambda^*(k) \geq \phi(k) \geq \frac{\alpha}{2}(k - 1).$$

\textbf{Proof:} The first claim is an immediate consequence of Corollary 6.2 and Lemma 5.3; the second claim also uses Lemma 5.1 and 5.2.

\textit{6.b Minimal spanning tree}

The arguments in this subsection are based on the relation between MST and critical Bernoulli percolation. We begin with the natural coupling between the two processes.
Let \(\{u_b\} \) (indexed by the edges \(b = \{x, y\} \) in \(\delta \mathbb{Z}^d \)) be a family of independent random variables which are uniformly distributed on \([0, 1]\). These are the call numbers which determine the edge lengths mentioned in the introduction; they already give a coupling to Bernoulli percolation for all parameter values \(p \), i.e., a way to realize the models for different \(p \)'s on the same probability space. To realize Bernoulli percolation for a parameter value \(p \in [0, 1] \), we simply call an edge \(b \) \(p \)-occupied if \(u_b < p \); then the \(p \)-occupied edges (and their associate \(p \)-clusters, \(p \)-paths, etc.) are a realization of density-\(p \) Bernoulli percolation.

For given values of the call numbers, MST can be constructed on a bounded region \(\Lambda \) by the following invasion process. Starting with any vertex as the root, the tree grows by adding at each step the neighboring edge with the lowest call number, provided no loop (and no loop through a wired boundary) is formed; if a loop would be formed, the edge is discarded. The construction terminates when the tree spans all vertices. The result is the unique edge-length minimizing spanning tree, regardless of the choice of the root, provided that no two edges were assigned the same call number.

Lemma 6.4 For MST on a finite graph, in any dimension and with any of the boundary conditions used here, if an edge \(b \) is vacant in a configuration, then almost surely its endpoints are connected with each other (possibly through a wired boundary) by a \(p = u_b \)-path.

Proof: Construct the tree as described above, with one of the endpoints of \(b \) as the root. With probability one, all edges other than \(b \) have call numbers different from \(u_b \). If \(b \) is vacant, then the subtree connects the root to the second endpoint of \(b \) using only edges with call numbers less than \(u_b \).

Denote by \(p_c = p_c(d) \) the Bernoulli percolation critical value (which for \(d = 2 \) is \(p_c = 1/2 \) [28]). It is an implication of the Russo-Seymour-Welsh theory [29, 30] that for critical Bernoulli percolation in \(\delta \mathbb{Z}^2 \)

\[
\text{Prob}_\delta \left(\frac{D(r, 3r)}{\text{by a } p_c\text{-path}} \right) \leq 3^{-\alpha} \quad (0 < \delta \leq \delta_\alpha(r)),
\]

(6.3)

with some \(\alpha > 0 \). Bounding the probability of crossings by disjoint \(p_c \)-paths by using the van den Berg-Kesten inequality [31] results in the geometric-decay property that

\[
\text{Prob}_\delta \left(\frac{D(r, 3r)}{\text{at least } k \text{ disjoint } p_c\text{-paths}} \right) \leq 3^{-\alpha k}.
\]

(6.4)

Since spatially separated events are independent, a telescopic argument analogous to Lemma 5.3 implies that \(H1 \) holds for critical Bernoulli percolation in two dimensions, with exponents \(\gamma_B(k) \) satisfying

\[
\gamma_B(k) \geq \alpha k > 0, \quad (0 < \delta < \delta_\alpha(r)).
\]

(6.5)
Note that the probability of crossing events for Bernoulli percolation does not depend on the boundary conditions placed on $D(r, R)$.

The object is to bound the probability that MST contains k paths traversing an annulus in terms of related events in critical Bernoulli percolation. For a given locally finite connected graph G embedded in the plane, consider the dual graph G^*. Its vertices are the cells of G (i.e., the connected components of the complement in \mathbb{R}^2 of the union of the embedded edges of G). There is a dual edge b^* joining two dual vertices for each common edge in the boundary of the corresponding two cells. In general, $G^{**} = G$, but note that G^* can be a multigraph. In particular, $\delta \mathbb{Z}^2$ can be drawn with vertex set $\delta \mathbb{Z}^{2*} = \delta \mathbb{Z}^2 + (\frac{1}{2}, \frac{1}{2})$, and each dual edge $b^* = \{x^*, y^*\}$ is the perpendicular bisector of some edge $b = \{x, y\}$. The dual of the graph $G_{r, R}^{F, W}$ contains a single vertex $\partial B(r)^*$ dual to the cell inside the free boundary at r which plays the role of a wired boundary for $G_{r, R}^{F, W*}$. A row of vertices dual to the cells touching the wired-in point $\partial B(R)$ plays the role of a free boundary for the dual. The analogous description holds for $G_{r, R}^{W, F*}$, with the roles of the boundaries at R and r interchanged.

A dual bond b^* is called p-occupied when b is p-vacant. In a potentially misleading but not uncommon usage, the terms p-dual-path, p-dual-cluster, etc. are taken here to mean the corresponding objects on the dual graph. The vacant edges of MST on a graph G form a random spanning tree model, which can be constructed as MST on G^* with call numbers $u_{b^*} = 1 - u_b$.

The next lemma relates the crossings of $D(r, R)$ by paths in MST to crossings of the annulus by curves pieced together from p_c-paths and p_c-dual paths. Define a p_c-semipath to be a (oriented) curve consisting of a p_c-dual path C^+ and a p_c-path C^- such that there is a pair of dual edges b and b^*, so that b^* contains the last vertex of C^+, and b contains the first vertex of C^- as an endpoint. We allow the special cases of a p_c-path (i.e. C^+ is empty) or a p_c-dual path (C^- is empty). We say a p_c-semipath traverses an annulus $D(r, R)$, if it connects a (dual) vertex on one boundary of $D(r, R)$ with a vertex on the other boundary. Two semipaths are disjoint if no edge or dual edge of the one is the same or dual to an edge or dual edge of the other.

Lemma 6.5 Suppose $C_1, \ldots C_k$ are disjoint curves in a realization of MST with mixed (free-wired or wired-free) boundary conditions on $D(r, R)$ which traverse $D(r, R)$, where $k \geq 2$. Then the corresponding realization of Bernoulli percolation contains k disjoint crossings of the annulus by p_c-semipaths.

Proof: To be specific, consider the case of free-wired boundary conditions (the other case is analogous). Orient the curves C_i to run from the free boundary at r to the wired boundary at R. If C_i is a p_c-path, then take $C_i^- = C_i$, $C_i^+ = \emptyset$. For each i such that C_i is not a p_c-path, let b_i be the last edge along C_i with $u_{b_i} \geq 1/2$. The portion of C_i between b_i and the wired boundary forms a p_c-path, which we take to be C_i^-. By Lemma 6.4 applied to the dual tree,
Figure 4: A p_c semipath consists of a p_c-dual path C^+ and a p_c-path C^- joined at a bond/dual bond pair.

The two endpoints of b^*_i are joined to each other by a p_c-dual path, which must pass through $\partial B(r)^*$ because it cannot cross C_i. Thus each of the sectors of the annulus cut out by the set of C_i's contains two of these p_c-dual paths, which may well intersect. To obtain a collection of disjoint p_c-semipaths (C^+_i, C^-_i), choose C^+_i to be the p_c-dual path joining $\partial B(r)^*$ to the endpoint of b^*_i in the sector immediately counterclockwise from C_i.

One consequence of the lemma is that for MST on an annulus of sufficiently large aspect ratio, the probability of k crossings decays geometrically in k:

Corollary 6.6 Let α be the exponent defined for critical Bernoulli percolation by (6.3). For every $s < \alpha/2$, there exists m large enough so that MST has the geometric-decay property (5.6) on annuli $D(r, R = 3^{2m}r)$.

Proof: We will show that for r and R as described in the assertion,

$$\text{Prob}_d\left(\Gamma_{r,R}^{F,W} \mid \Gamma_{r,R}^{W,F} \text{ contains } k \text{ disjoint traversals of } D(r, R) \right) \leq \left(\frac{r}{R} \right)^{sk} \text{ for all } k \geq 2, \ 0 \leq \delta \leq \delta_o(r) ,$$

which clearly implies the claim.

Consider the case of free-wired boundary conditions. By Lemma 6.5, there corresponds to a given collection of at least two tree crossings C_i ($i = 1, \ldots, k$) a disjoint collection of p_c-semipaths (C^+_i, C^-_i), joined at b_i. Let n be the number of crossings where either C_i is a p_c-semipath, or b_i lies in the inner annulus $D^{in} = D(r, 3^m r)$ or else b_i crosses the intermediate boundary at $3^m r$. Then the semipaths contain n p_c-paths traversing the outer annulus $D^{out} =$
and \(k-n \) \(p_c \)-dual paths traversing the inner annulus. We obtain

\[
\text{Prob}_\delta \left(\Gamma_{r,R}^{FW} \text{ contains } k \text{ disjoint traversals of } D(r, R) \right) \leq \sum_{n \leq k} \text{Prob}_\delta \left(D^{\text{in}} \text{ is traversed by at least } n \text{ disjoint } p_c \text{-paths} \right) \\
\times \text{Prob}_\delta \left(D^{\text{out}} \text{ is traversed by at least } k-n \text{ disjoint } p_c \text{-dual paths} \right) \\
\leq (k+1) 3^{-\alpha m k} \\
\leq \left(\frac{r}{R} \right)^{\left(\alpha/2 - 1/\log(R/r) \right) k},
\]

where we have used the independence of events in \(D^{\text{in}} \) and \(D^{\text{out}} \) gained from the decoupling boundary conditions in the first line, inequality (6.3), its dual, and the telescopic principle for Bernoulli percolation in the second line, and \((k+1) \leq e^k\) in the last line. The assertion follows by choosing \(R/r = 3^{2m} \) sufficiently large.

The corollary implies that \(\gamma(k) \geq \frac{2}{3} k \) for \(k \geq 2 \). The relation between the exponents for MST and Bernoulli percolation can be tightened:

Lemma 6.7 For MST on \(\delta \mathbb{Z}^2 \), the exponents \(\gamma(k) \) satisfy

\[
\gamma(k) \geq \min_{n \leq k} \left(\gamma_B(n) + \gamma_B(k-n) \right) \quad (k \geq 2).
\]

Proof: Consider, again, MST with free-wired boundary conditions on \(D(r, R) \). Subdivide \(D(r, R) \) into \(M \) annuli \(D_j \) of equal aspect ratio \((R/r)^{1/M} \). By Lemma 6.5, any collection of at least two disjoint traversals \(C_i \) of \(D(r, R) \) by \(\Gamma_{r,R}^{FW} \) gives rise to a collection of disjoint traversals by \(p_c \)-semipaths \((C_i^+, C_i^-) \). Hence each of the annuli \(D_j \) is traversed by a number \(n_j \) of \(p_c \)-paths and at least \(k-n_j \) \(p_c \)-dual paths, with the possible exception of at most \(k \) annuli which meet one of the special edges \(b_i \) (if \(b_i \) crosses the boundary between \(D_j \) and \(D_{j+1} \), we discard only \(D_j \)). Let \(A_j^- \) (resp. \(A_j^+ \)) denote the event that \(D_j \) is traversed by \(n_j \) disjoint \(p_c \)-paths (resp., by \(k-n_j \) disjoint \(p_c \)-dual paths). Then, by the FKG inequalities,

\[
\text{Prob}(A_j^- \cap A_j^+) \leq \text{Prob}(A_j^-) \text{ Prob}(A_j^+).
\]

Using this after summing over the possible positions of the \(b_i \), and using the independence of spatially separated events as in the proof of Corollary 6.6, we obtain

\[
\text{Prob}_\delta \left(\Gamma_{r,R}^{FW} \text{ contains } k \text{ disjoint traversals of } D(r, R) \right) \leq \text{Prob}_\delta \left(D(r, R) \text{ is traversed by at least } k \text{ } p_c \text{-semipaths} \right) \\
\leq M^k \left(\frac{r}{R} \right)^{(1-k/M) \min_{n \leq k} \left(\gamma_B(n) + \gamma_B(k-n) \right)}.
\]

Choosing \(M \) sufficiently large proves the claim. \(\blacksquare \)
Corollary 6.8 (H1 for MST) For all \(k \geq 2 \),
\[
\gamma(k) \geq \alpha k, \tag{6.10}
\]
where \(\alpha > 0 \) is the exponent defined for critical Bernoulli percolation by (2.3). In particular, H1 holds for MST with
\[
\lambda(k) \geq \lambda^*(k) \geq \phi(k) \geq \frac{\alpha}{2}(k-1). \tag{6.11}
\]

Proof: Just combine Lemma 6.7 with (6.5), and with the results of Lemmas 5.1 and 5.2.

6.c Euclidean spanning tree

The proof of H1 for EST follows the same general strategy as the proof for MST in the previous subsection. The basic idea is to relate the tree process to a percolation process, in this case droplet percolation (sometimes called continuum or lily-pad percolation). There are a few additional difficulties, related with the lack of self-duality, and the fact that events in disjoint, but neighboring regions need not be independent. As a consequence, the definition of disjointness for dual traversals becomes more complicated, and the relation we establish between crossing events in EST and droplet percolation is not so tight. But let us now turn to the details.

In the introduction, we defined EST in \(\mathbb{R}^2 \) as the minimal spanning subtree of the complete graph on a collection of Poisson points with density \(\delta^{-2} \), with the edge length given by Euclidean distance. In the droplet percolation model, the random objects of interest are the connected clusters formed by discs of a fixed radius \(p\delta \) (where \(p \) is a parameter) centered on the Poisson points. By construction, the Poisson process defines a coupling of EST to droplet percolation with any parameter value \(p > 0 \).

A \(p \)-path is a simple polygonal curve whose straight line segments join Poisson points with distance less than \(2p\delta \). A \(p \)-cluster is a maximal set of points that can be joined by \(p \)-paths. As in the case of Bernoulli percolation, there is a critical value \(p_c \) for the parameter. It follows from the results of [12] (see in particular the proof of Theorem 3.4 and Corollary 3.5 there) that for annuli of some fixed aspect ratio \(\sigma \),
\[
\text{Prob}_\delta \left(\text{D}(r, \sigma r) \text{ is traversed by a } p_c \text{-path} \right) \leq \sigma^{-\alpha} \quad (0 < \delta \leq \delta_\sigma(r)), \tag{6.12}
\]
with some \(\alpha > 0 \). Two \(p \)-paths or two paths in EST are regarded as disjoint, if they share none of their Poisson points. With this notion of disjointness, a van den Berg-Kesten inequality
holds for the probability of multiple disjoint \(p \)-crossings, and we obtain as in the case of Bernoulli percolation the geometric-decay property

\[
\text{Prob}_\delta \left(\text{D}(r, \sigma r) \text{ is traversed by at least } k \text{ disjoint } p_c\text{-paths} \right) \leq \sigma^{-\alpha k} .
\]

(6.13)

A telescopic argument as in Lemma 5.3 implies that H1 holds for droplet percolation in \(\mathbb{R}^2 \), with exponents \(\gamma_D(k) \geq \alpha k \).

One notable difference to Bernoulli percolation is that droplet percolation is not self-dual. A \(p \)-dual cluster is a vacant space inside which a disc of radius \(p\delta \) can be moved without touching any Poisson points. A \(p \)-vacant curve is a simple curve which keeps a distance of at least \(p\delta \) to all Poisson points. The results of [12] imply that

\[
\text{Prob}_\delta \left(\text{D}(r, \sigma r) \text{ is traversed by a } p_c\text{-vacant curve} \right) \leq \sigma^{-\alpha^*} \quad (0 < \delta \leq \delta_0(r)) ,
\]

(6.14)

with some \(\alpha^* > 0 \). (We have chosen \(\sigma \) large enough so that the same \(\sigma \) may be used in (6.12) and (6.14).) From this, a geometric-decay property can be obtained for multiple crossing events — if a van den Berg-Kesten inequality is available. In order to extend the van den Berg-Kesten inequality from Bernoulli random variables to the present context, we define a very strict notion of disjointness: Two \(p \)-vacant curves are spatially separated, if their \(p\delta \)-neighborhoods are disjoint, i.e., if any pair of points on the two curves has distance at least \(2p\delta \). Then

\[
\text{Prob}_\delta \left(\text{D}(r, \sigma r) \text{ is traversed by at least } k \text{ spatially separated } p_c\text{-vacant curves} \right) \leq \sigma^{-\alpha^* k} .
\]

(6.15)

so that H1 holds for vacant percolation with exponents \(\gamma^*_D(k) \geq k\alpha^* \), whose value may differ from the parameters for the droplet percolation model itself.

As mentioned in the introduction, EST is automatically a subgraph of the Poisson-Voronoi graph [32] with the natural Euclidean edge lengths. It can be constructed with the invasion algorithm of the previous subsection, with any vertex as the root. An edge of the Poisson-Voronoi graph will be called \(p \)-occupied if it joins a pair of Poisson points of distance at most \(2p\delta \), and \(p \)-vacant otherwise. Clearly, Lemma 6.4 continues to hold for EST in place of MST, with \(\delta \mathbb{Z}^2 \) replaced by the Poisson-Voronoi graph of density \(\delta^{-2} \) on \(\mathbb{R}^2 \), and Bernoulli percolation replaced by droplet percolation.

For any random spanning tree model on a planar graph \(G \), we can construct a dual tree model on the dual graph \(G^* \), as explained in the previous subsection. The dual of a Poisson-Voronoi graph in \(\mathbb{R}^2 \) can be represented with the corners of the Poisson-Voronoi cells as dual vertices, and the straight line segments of the cell boundaries as dual edges. A \(p \)-dual path is a simple polygonal curve consisting of the duals of \(p \)-vacant edges in \(G^* \), i.e., of boundaries of cells defined by Poisson points that are at least a distance \(2p\delta \) apart. (See the discussion
of MST for the effect of free and wired boundaries.) Since a \(p_c\)-dual path in \(G^\ast\) is clearly a \(p_c\)-vacant curve, Lemma 6.4 holds also for the dual of EST and vacant percolation (in place of MST and Bernoulli percolation, respectively).

In accordance with the previous definition, we define a \(p_c\)-semipath \((C^+, C^-)\) in the Poisson-Voronoi graph of density \(\delta^{-2}\) to be a (oriented) curve consisting of a \(p_c\)-dual path in \(G^\ast\), and a \(p_c\)-path \(C^-\) in \(G\) such that the last dual vertex of \(C^+\) lies in the boundary of the cell containing the first vertex of \(C^-\). (We allow the same special cases as before.) Tightening the previous definition, we say that two \(p_c\)-semipaths are disjoint if they share no vertices or dual vertices. Then Lemma 6.5 continues to hold for EST in place of MST.

Although a \(p_c\)-dual path in \(G^\ast\) always defines a \(p_c\)-vacant curve in the plane, and conversely, a \(p_c\)-vacant curve can be deformed to run along the boundaries of Voronoi cells, the notions of disjointness (of \(p_c\)-dual paths in \(G^\ast\)) and of spatial separation (of \(p_c\)-vacant curves in the plane) are different, and our proof of Corollary 6.6 has to be changed accordingly:

Corollary 6.9 Let \(\alpha, \alpha^\ast\), and \(\sigma\) be the parameters defined for droplet and vacant percolation in (6.12) and (6.14). For \(s \leq \min(\alpha, \alpha^\ast)/4\), EST has the geometric-decay property (5.6) on annuli \(D(r, R = \sigma^{2m}r)\) with a sufficiently large integer \(m\).

Proof: We will show that, for \(r\) and \(R\) as in the statement,

\[
\text{Prob}_\delta \left(\Gamma^{W,F}_{r,R} \left[\Gamma^{W,F}_{r,R} \right] \text{ contains } k \text{ disjoint traversals of } D(r, R) \right) \leq \left(\frac{r}{R} \right)^{2s[k/2]} \text{ for all } k \geq 2, \ 0 < \delta \leq \delta_\alpha(r). \tag{6.16}
\]

Subdivide \(D(r, R)\) into an inner annulus \(D^{\text{in}} = D(r, \sigma^{m}r)\) and an outer annulus \(D^{\text{out}} = D(\sigma^{m}r, \sigma^{2m}r)\), and consider the disjoint semipaths \((C^+_i, C^-_i)\) corresponding to the \(k\) traversals of the annulus by the tree. As in the proof of Corollary 6.6, we obtain \(n\) crossings of \(D^{\text{out}}\) by \(p_c\)-paths \(C^-_i\) in the Poisson-Voronoi graph, and \(k - n\) crossings \(D^{\text{in}}\) by \(p_c\)-dual paths \(C^+_i\).

By definition, each \(C^-_i\) is a \(p_c\)-path for droplet percolation, and disjoint \(p_c\)-semipaths lead to disjoint \(p_c\)-paths. Similarly, each of the paths \(C^+_i\) along the edges in \(G^\ast\) can be parametrized as a curve in the plane that keeps distance at least \(p_c\delta\) from all Poisson points. The complication here is that the \(p_c\)-vacant curves \(C^+_i\) need not be spatially separated according to our definition given above even for disjoint semipaths. However, by Lemma 6.10 proved below, we can use the way the \(C^+_i\) are confined to the sectors cut out of \(D(r, R)\) by the set of \(C_i\)’s, to find at least \(\lfloor (k - n)/2 \rfloor\) \(p_c\)-vacant paths among the \(C^+_i\)’s which are spatially separated, except possibly, for their first and last edges. (As usual, the possibility of long edges introduces a correction which is exponentially small in \(\delta^{-2}\).)

The proof is completed by using the independence of events in \(D^{\text{in}}\) and \(D^{\text{out}}\) (with the decoupling boundary conditions), and the geometric decay properties (6.13) and (6.15) for droplet and vacant percolation.
Lemma 6.10 Let $b = \{x, y\}$ be an edge of EST with density δ^{-2}, and let P be a p_c-dual path in G^* (the dual of the corresponding Poisson-Voronoi graph) with p_c the critical parameter value for droplet percolation. Assume that no edge of P is dual to b. Then the distance between b and all non-terminal segments of P is at least $p_c \delta / 2$.

Proof: The minimal distance between b and the non-terminal segments of P is realized for a pair of points involving either an endpoint of b or the endpoint of a segment of P. In the first case, we are done, since P has distance at least $p_c \delta$ from any Poisson point, and in particular from the vertices x and y. In the second case, the minimal distance is assumed somewhere between a point on b and a vertex z^* of G^* on P. We need to find a lower bound for the height h of the triangle xyz^*. Assume, without loss of generality, that z^* lies on the common boundary of the Voronoi cells of x and y with the cell of another point w (otherwise, the tree contains an edge that is closer to z^* than b). In other words, z^* is the center of the circle through x, y, and w.

Both $\{x, w\}$ and $\{y, w\}$ have length at least $2p_c \delta$, because P contains their duals. Moreover, one of them (say $\{x, w\}$) is longer than b, because EST contains b. If the triangle xyw has an obtuse angle at y, then $\{x, w\}$ has length at least $\sqrt{4(p_c \delta)^2 + \ell^2}$ (where ℓ is the length of b), so that the distance of z^* to both x and y exceeds half of that value. Since z^* lies on the perpendicular bisector of b, we see with the Pythagorean theorem that $h \geq p_c \delta$.

If the triangle xyw has acute angles at both x and y, we slide x and y apart in such a way that the line through x and y and their perpendicular bisector are preserved, until the lengths of $\{x, y\}$ and $\{x, w\}$ coincide. While this increases the lengths of all sides of the triangle xyw, it can only decrease h, since the intersection of the Voronoi cells of x and y with the bisector of b shrinks. Elementary geometric considerations show that $h^* \geq p_c \delta / 2$ (see Figure 5).

Lemma 6.7 and Corollary 6.8 have to be modified as well:

Figure 5: Two possible positions of an edge $b = \{x, y\}$ in the Poisson-Voronoi graph relative to a p_c-dual path P containing the boundaries of the Voronoi cells of x and y. The cells of x and y meet the cell of w at z^*, which is point on P closest to b.
Lemma 6.11 In the case of EST of density δ^{-2} on \mathbb{R}^2, the exponents $\gamma(k)$ satisfy
\[
\gamma(k) \geq \min_{n \leq k} \left[\gamma_D(n) + \gamma^*_D((k-n)/2) \right] \quad (k \geq 2) .
\]

(6.17)

Corollary 6.12 (H1 for EST) For all $k \geq 2$,
\[
\gamma(k) \geq \min(\alpha, \alpha^*) \left[\frac{k}{2} \right] ,
\]
with $\alpha, \alpha^* > 0$ as defined above. In particular, H1 holds for EST with
\[
\lambda(k) \geq \lambda^*(k) \geq \phi(k) \geq \min(\alpha, \alpha^*) \left[\frac{k-1}{4} \right] .
\]

(6.18) (6.19)

Proof: Combine Lemma 6.11 with the general inequalities between the exponents of Lemmas 5.1 and 5.2.

Remark In Corollary 6.12 and Lemma 5.11, the expression $\lfloor (k-n)/2 \rfloor$ can be replaced by 1 when $k-n = 1$.

7. Verification of H2

We shall now verify the roughness criterion. In contrast with the previous section, our arguments here will rely mostly on the tree structure, symmetry, and planarity. In particular, the result of this section also applies to the uniform spanning tree on the Poisson-Voronoi graph. The main idea is seen in the following lemma.

Lemma 7.1 Let $\Gamma(\omega)$ be a random tree model on \mathbb{R}^2, and let B be a rectangle in the plane. Suppose that the distribution of the model is symmetric under a group of transformations in the plane which is large enough so that some collection B_1, \ldots, B_n of images of B under these transformations can be positioned in such a way that any collection of n curves C_i traversing B_i $(i = 1, \ldots, n)$ forms a loop. Then
\[
\text{Prob} \left(B \text{ is traversed (in the long direction) by a path in } \Gamma \right) \leq 1 - \frac{1}{n} .
\]

(7.1)
Remark If the model has the symmetries of the square lattice, B can be any sufficiently long rectangle, and $B_i (i = 1, \ldots, 4)$ are the images of B under rotation by $\pi/2$ about a sufficiently close lattice point. For the hexagonal and triangular lattice, we would use rotations by $2\pi/3$ in the same way.

Proof: Since the random tree contains no loops, the probability that all B_i are traversed simultaneously must vanish. Thus, with probability one at least one of the B_i fails to be traversed. By our symmetry assumption, the probability of failure has to be at least $1/n$, which proves eq. (7.1).

The above observation will now be supplemented by a decoupling argument.

Lemma 7.2 Let $\Gamma_\delta(\omega)$ be one of the four spanning tree models on \mathbb{R}^2 described in the introduction, with cutoff parameter δ, and let $\{A_1, \ldots, A_k\}$ be a collection of well separated rectangles of common aspect ratio (length/width) $\sigma > 2$. Then

$$\lim_{\delta \to 0} \mathbb{P}_\delta \left(\text{each } A_j \text{ is traversed ("lengthwise") by a curve in } \mathcal{F}_\delta^{(2)}(\omega) \right) \leq \rho^k$$

(7.2)

with $\rho = 3/4$. Furthermore, with some other values of $\rho < 1$, and $\sigma < \infty$, the above bound on the probability applies for all $\delta < \min_j \ell_j$ (i.e., also the full hypothesis H2 holds).

Proof: Let us consider first the case of the spanning trees on \mathbb{Z}^2. For each of the A_j, we pick a lattice point x_j outside A_j, but as close as possible to the midpoint of one of the long sides. Let Λ_j be the disc of radius $\sigma \ell_j$ about x_j. Then Λ_j contains A_j. The discs are disjoint since the separation between A_j and the other rectangles is larger than $2\sigma \ell_j$. Introducing free boundary conditions on the Λ_j will only enhance the crossing probabilities, while decoupling the crossing events in disjoint discs. We next check the assumptions of Lemma 7.1. Clearly, in each of Λ_j the tree processes (with free boundary conditions) is symmetric under rotation by $\pi/4$ about x_j. If δ is small enough ($\delta \leq \frac{\sigma^2}{4\sqrt{2}} \min \ell_j$ will do), then the images of A_j under the four rotations by multiples of $\pi/2$ intersect in such a way that any simultaneous crossings would form a loop. By Lemma 7.1 the crossing probabilities are independently bounded by 3/4. This implies both claims for the UST and the MST.

An additional consideration is needed for the models on the Poisson-Voronoi graph. One may take here $\sigma = 2$, choose x_j to be the midpoint of a long side of A_j, and let Λ_j be the disc of radius $\sigma \ell_j$ about x_j. The probability that each A_j is crossed by the restriction of the tree to Λ_j is bounded by $(3/4)^k$, by the same argument as above. However, a small correction has to be added to allow for the possibility of an edge crossing A_j and the boundary of Λ_j. As discussed in Section 5, the probability of such a long edge can be dominated by $Be^{-(A/4\sqrt{2})^2}$, with suitable constants $0 < A, B < \infty$. The claim then easily follows also for that case.
8. Conclusion

The scale invariant bounds derived in Sections 6 and 7 will now be used to prove the two Theorems stated in the Introduction.

8.a Tightness, regularity, and roughness

The basic strategy for the proof of Theorem 1.1 is to apply the regularity and roughness results for random curves (Theorems 3.1 and 3.2, see Section 3) to the branches of the random trees to obtain the tightness of the family \(\{ \mu_2^{(\delta)} \} \), and then use the structure of the spaces \(\Omega^N \) and \(\Omega \) to obtain tightness of \(\{ \mu_\delta^{(N)} \} \) and \(\mu_\delta \). The statement about the locality and basic structure follows from the positivity of \(\lambda(2) \).

Proof of Theorem 1.1:

Existence of limit points: We verified that \(F_\delta^{(2)} \) satisfies the regularity criterion \(H1 \) in \(\mathbb{R}^2 \) for each of the systems of curves along UST, MST, and EST (Corollaries 6.3, 6.8, and 6.12, respectively). By Lemma 3.3, the corresponding bound on crossing probabilities holds (with the same exponents) also for the system on \(\dot{\mathbb{R}}^2 \) with the metric \(d(x, y) \) given by (2.1). Theorem 3.1 implies that the family of measures \(\mu_\delta^{(2)} \) is tight, and that subsequential scaling limits exist for the system of random curves \(F^{(2)} \). Since for \(N > 2 \) the spaces \(S^{(N)} \), constructed by patching together spaces \(S^r \), are closed subspaces of \(\left[S^{(2)} \right]^{2N-3} \) (see the discussion at the end of Subsection 2.a), the family of measures \(\mu_\delta^{(N)} \) on \(\Omega^{(N)} \) is tight also for each \(N > 2 \). (There is nothing to show for \(N = 1 \).) Tightness of the measures \(\mu_\delta \) on the product space \(\Omega \subset X_{N\geq1} \) now easily follows by an application of Tychonoff’s theorem.

The tightness described above guarantees the existence of a sequence \(\delta_n \to 0 \) for which the limit \(\lim_{n \to \infty} \mu_\delta_n(\cdot) \) exists in the sense of weak convergence of measures on \(X_{N\geq1} \Omega^{(N)} \), as described by eq. (1.4).

To see that a limiting configuration typically describes a single spanning tree in \(\mathbb{R}^2 \), we use that the exponent \(\lambda(2) \) is positive by Corollaries 6.3, 6.8, and 6.12. For \(r > 0 \) and \(\delta > 0 \), define the random variable \(R_{\delta,r}(\omega) \) to be the radius of the smallest ball containing all trees with endpoints in \(B(r) \), and let \(R_r(\omega) \) be the corresponding variable in a scaling limit. Condition \(H1 \) says that

\[
\text{Prob}_\delta \left(\frac{R_{\delta,r}(\omega)}{r} \geq u \right) \leq K(2, s)u^{-(\lambda(2)-s)} ,
\]

so that \(F_\delta \) is uniformly quasilocal in the sense that \(R_{\delta,r} \) is stochastically bounded as \(\delta \to 0 \). Moreover, (8.1) also holds for \(R_r(\omega) \) for any scaling limit of the system. In particular, \(\mu \)-almost every limiting configuration \(F(\omega) \) is quasilocal, and represents a single tree spanning \(\mathbb{R}^2 \).
Regularity: Theorem 3.1 guarantees furthermore that for every $\alpha < 1/2$, the curves in the limiting object $F(\omega)$ can be parametrized, by functions $g(t)$ which are H"older continuous (using the metric given by (2.1) on \dot{R}^2), with exponent α and a random prefactor whose distribution depends on α, that is,

$$d(g(t), g(t')) \leq K_\alpha(\omega) |t - t'|^\alpha \quad 0 \leq t, t' \leq 1 .$$

Rewriting equation (8.2) in terms of the original metric on \dot{R}^2, we obtain

$$|g(t) - g(t')| \leq K_\alpha(\omega) (1 + |g(t)|^2 + |g(t')|^2) |t - t'|^\alpha .$$

The last conclusion from Theorem 3.1 is that in μ-almost all configurations of any scaling limit, all the curves have Hausdorff dimension at most $2 - \lambda(2)$.

Roughness: Since $F_{\delta}^{(2)}$ also satisfies the roughness criterion H^{2*} by Lemma 7.2, Theorem 3.2 implies that the limiting measure $\mu^{(2)}$ is supported on collections containing only curves whose Hausdorff dimension is bounded below by some $d_{\min} > 1$, which depends on the parameters in H^{2*}. In particular, curves in scaling limits cannot be parametrized H"older continuously with any exponent $\alpha > d_{\min}^{-1}$. This concludes the proof of the convergence, regularity, and roughness assertions of Theorem 1.1.

8. Properties of scaling limits

The main tool for the proof of Theorem 1.2 is the fact that the limiting measure inherits the power bounds associated with the exponents $\lambda^*(k)$, as explained in Theorem 5.4. It is convenient to employ here the following notion of degree, which classifies the local behavior of a collection of trees near a given point $x \in \dot{R}^2$.

Definition 8.1 The degree of an immersed tree at a point x is given by

$$\deg_T(x) = \sum_{\xi : f(\xi) = x} \deg_\tau(\xi) ,$$

where $f : \tau \to \dot{R}^2$ is a parametrization of T which is non-constant on every link. Here $\deg_\tau(\xi)$ is the branching number of the reference tree τ at ξ if ξ is a vertex of τ, and it is taken to be 2 if ξ lies on a link of τ. For a collection of trees F immersed in \dot{R}^d, the degree at x is

$$\deg_F(x) = \sup_N \sup_{T \in F(N)} \deg_T(x) .$$

42
A more refined notion is that of the degree-type of T at x, which is the multiset of the summands in the above definition of degree. The notions in Definition 1.2 can be expressed in terms of degree-type. For instance, a point of uniqueness is one whose degree-type has one part for every tree T in \mathcal{F}. A branching point is one with degree-type (for some T in \mathcal{F}) containing a part that is at least 3, and a pinching point is one with two parts at least 2.

One may note that $\deg_{\mathcal{F}}(x) = 1$ implies that x is a point of uniqueness. Such points are also points of continuity, in the sense seen in the following statement.

Lemma 8.1 If \mathcal{F} is a closed inclusive collection of trees representing a single spanning tree in \mathbb{R}^d, and $\eta = \{x_1, \ldots, x_N\}$ is an N-tuple consisting of distinct points of uniqueness, then \mathcal{F} includes exactly one subtree, denoted $T^{(N)}(\eta)$, with the set of external vertices given by η.

Moreover, if the external vertices of a sequence of trees $\{T_n\}$ in $\mathcal{S}^{(N)}$ satisfy

$$\eta_n \xrightarrow{n \to \infty} \eta$$

in $(\mathbb{R}^d)^N$, then

$$T_n \xrightarrow{n \to \infty} T^{(N)}(\eta)$$

with respect to the metric on $\mathcal{S}^{(N)}$.

Proof: Assume that \mathcal{F} contains two trees, T_1 and T_2 with external vertices given by η. Since \mathcal{F} represents a single spanning tree, there exists a tree T (parametrized as $f : \tau \to \mathbb{R}^d$) containing both T_1 and T_2, with no external vertices beyond η. If $T_1 \neq T_2$, then at least one of the two trees (say T_1) is parametrized under f by a proper subset τ_1 of τ. Let ξ be an external vertex of τ not contained in τ_1; clearly $x = f(\xi)$ is one of the points x_1, \ldots, x_N in η. By assumption, there exists a point $\tilde{\xi}$ in τ_1 with $f(\tilde{\xi}) = x$. Since \mathcal{F} is inclusive, it contains the curve obtained by joining ξ to $\tilde{\xi}$ in τ and applying f. This is the desired curve which starts and ends at x.

To see the continuity statement, note that the closedness of \mathcal{F} implies that any limit of a sequence of trees whose external vertices satisfy the assumption (8.6) is certainly contained in \mathcal{F}, and has external vertices η. The uniqueness result implies the claim. \qed

The dimension of the set of the points of degree k can be estimated in terms of the exponents $\lambda^*(k)$.

Lemma 8.2 Let $\mu(d\mathcal{F})$ be a probability measure on Ω describing a random collection of trees in \mathbb{R}^d, and assume it satisfies the power-bound (5.1), on the probability of multiple disjoint crossings of annuli, with a family of exponents $\lambda^*(k)$. For each realization \mathcal{F}, let

$$A_k(\mathcal{F}) = \{x \in \mathbb{R}^d \mid \deg_{\mathcal{F}}(x) \geq k\}.$$

Then:
\[\dim H A_k(F) \leq (d - \lambda^*(k))^+ , \] (8.9)

in particular

\[\lambda^*(k) > 0 \implies A_k(F) \text{ is of zero Lebesgue measure} ; \] (8.10)

ii.

\[\lambda^*(k) > d \implies A_k(F) = \emptyset \text{ for } \mu \text{-almost every } F, \text{i.e.,} \]

\[\sup_{x \in \mathbb{R}^d} \deg_F(x) < k, \mu \text{-almost surely} . \] (8.11)

Proof: For \(R > 0 \), we denote by \(A_{k,R}(F) \) the set of all points \(x \in \mathbb{R}^d \) such that for all \(r \in (0,R) \) the tree configuration \(F \) exhibits at least \(k \) microscopically disjoint traversals of \(D(x,r,R) \). The definition of the degree implies

\[A_k(F) \subset \bigcup_{1 \geq R > 0} A_{k,R}(F) , \] (8.12)

where it suffices to take \(R = 2^{-j}, j = 1,2,\ldots \). By translation invariance (of \(\lambda^*(k) \) and \(\dim H \)), and the fact that the Hausdorff dimension of a countable union of sets of dimension \(\leq \nu \) does not exceed \(\nu \), it suffices to show that for any given \(R < 1 \)

\[\dim H A_{k,R}(F) \cap [0,1]^d \leq d - \lambda^*(k) . \] (8.13)

Let now \(N(k,r,R;F) \) be the number of balls of radius \(r \) needed to cover \(A_{k,R}(F) \cap [0,1]^d \). Covering the unit square by \(\text{const.} r^{-d} \) balls of radius \(r \), we see that for any \(s < \lambda^*(k) \), the expectation value satisfies

\[\mathbb{E} (N(k,r,R;F)) \leq \text{const.}(R,s) r^{s-d} . \] (8.14)

By Chebyshev’s inequality, the random variables \(r^{d-s} N(k,r,R) \) are stochastically bounded uniformly in \(r \). Equation (8.13) readily follows.

In case \(d - \lambda^*(k) < 0 \), the above covering argument implies that the set is almost surely empty. \(\blacksquare \)

We shall now use the above observations to complete the proof of the second set of results stated in the introduction.
Proof of Theorem 1.2:

Singly connected to infinity: Let $\mathcal{F}(\omega)$ be a scaling limit of one of the three random tree models considered here (UST, MST, or EST). Note that if \mathcal{F} was not singly connected to infinity, then, with positive probability, it would contain two microscopically disjoint paths traversing annuli $D(r, R)$ with arbitrary large aspect ratio. This contradicts the strict positivity of $\lambda^*(2)$.

Points of uniqueness and exceptional points: Points of degree one are automatically points of uniqueness. Thus, the claim that Lebesgue-almost all points are points of uniqueness is implied by the condition $\lambda^*(2) > 0$, through Lemma 8.2 with $k = 2$. This also shows that the set of exceptional points has dimension less than two.

To see that exceptional points are dense, it is instructive to consider the dual model, which in two dimensions is also a spanning tree. Any interior point of a curve in a scaling limit of the dual tree model is a point of non-uniqueness for the original spanning tree. In two dimensions, the exponents $\gamma(k)$ are shared by the model and its dual for all the models discussed here (because the graph $G^W_{r,R}$ is dual to $(G^*)_{r,R}$), even in the absence of the self-duality exhibited by UST and MST so that the dual models also satisfies the hypothesis H1 and H2*. That makes the roughness assertion (1.3) of Theorem 1.1 applicable also to the dual models, and hence almost surely the dimension of each dual curve is strictly larger than one. Also, since a scaling limit of the dual model is a single spanning tree, the set of interior points of its curves is clearly dense in \mathbb{R}^2.

Countable number of branching points: In order to establish that the collection of branching points is countable, it suffices to show that for every $\varepsilon > 0$ there are only countably many points at which branching occurs with three or more branches extending to a distance greater that 2ε. (The collection of branching points is a countable union of such sets, with $\varepsilon = 2^{-n}$.) We shall refer to such points as branching points of scale ε. As a further reduction, we note that it suffices to prove that in any finite region, there are typically only finitely many such points. Thus, the countability is implied by part (i) of the following claim.

Claim: Let $N_\varepsilon(\mathcal{F})$ be the number of points of branching of scale ε, within the unit cell $\Lambda = [0,1]^2$. Then

i. $\mu(d\mathcal{F})$ - almost surely

$$N_\varepsilon(\mathcal{F}) < \infty,$$

(8.15)

ii. for each integer k such that $\lambda^*(k) > 2$ (=d)

$$\text{Prob} \left(N_\varepsilon \geq m \right) \leq \frac{\text{const.}(k)}{\varepsilon^{\lambda^*(k)}} \left(\frac{k}{m} \right)^{\frac{\lambda^*(k)-2}{2}},$$

(8.16)

for all $m \geq k/\varepsilon^2$ (where Prob is with respect to the measure μ).
Proof of Claim: Part (i) is of course implied by (ii). To prove (ii), let us partition the unit square into square cells of diameter \(r \leq \varepsilon \), with \(r \) determined by
\[
m = \frac{k}{r^2}.
\]
(8.17)
This choice of \(r \) guarantees that if \(N_{\varepsilon}(F) \geq m \) then in at least one of the cells \(F \) has \(k \), or more, branching points of scale \(\varepsilon \). Now, if a given cell contains \(k \) such points, then \(F \) includes a subtree which within this cell has \(k \) branching points, with all branches extending further than \(2\varepsilon - r \geq \varepsilon \) from the cell’s center.

This implies that the annulus concentric with the cell, with inner radius \(r \) and outer radius \(\varepsilon \), is traversed by at least \(k+2 \) microscopically disjoint curves. (This topological fact was employed in a vaguely related context by Burton and Keane [33].) Adding our bounds for the probabilities for such events (\(\text{const.}(k)(r/\varepsilon)^{\lambda^*(k)} \) for each cell), we get
\[
\text{Prob} \left(N_{\varepsilon} \geq m \right) \leq \frac{1}{r^2} \text{const.}(k) \left(\frac{r}{\varepsilon} \right)^{\lambda^*(k)},
\]
(8.18)
which leads directly to eq. (8.16).

Non-random bound on the degree of branching points: The absence of branching points of arbitrary high degree is a direct consequence of \(\lambda^*(k) \to \infty \) \((k \to \infty) \) by Lemma 8.2 (ii).

Remark: We conjecture that the maximal branching number is actually \(k = 3 \). From the perspective of this work this is suggested by the countability of the branching points, which may be an indication that \(\lambda^*(3) = 2 \) (= \(d \)). If \(\lambda^*(k) \) is also strictly monotone in \(k \), then \(\lambda^*(4) > 2 \) (= \(d \)) and the suggested statement then follows by Lemma 8.2 (ii). However, neither of the two steps in this argument has been proven. We note that both are consistent with the exact predictions for UST, viewed as the \(Q \to 0 \) limit of critical Potts models [18, 19].

Appendix

A. Quadratic growth of crossing exponents

In Section 6 it was established that the crossing exponents \(\gamma(k) \) for UST, MST, and EST, grow at least linearly with \(k \), as \(k \to \infty \). We shall now prove that the growth is even faster: quadratic in \(k \). Our derivation extends the analysis of ref. [17] where a similar statement was proved for independent percolation in \(d = 2 \) dimensions. It was also suggested there (but not proved) that the proper generalization, for dimensions \(d \) where \(\gamma(k) \) does not vanish, should
be $\gamma \approx k^{d/(d-1)}$. The improved argument presented here yields such a lower bound for all dimensions $d \geq 2$.

Remark: It has been proposed for a number of related problems in two dimensions that exponents similar to $\gamma(k)$ are given exactly by a quadratic polynomial in k [18, 19]. In particular, the prediction for UST (viewed as the $Q = 0$ critical Potts model) is $(k^2 - 1)/4$. It would be of interest to see mathematical methods capable of resolving such issues.

We start by deriving an upper bound on the exponents, using reasoning analogous to that found in ref. [17].

Lemma A.1 The actual rate of growth of $\gamma(k)$ is not faster than order $k^{d/(d-1)}$ for UST. In $d = 2$ dimensions, that applies also to MST and EST.

Proof: We will show for each of the models that there exists a constant $\beta < \infty$ so that for all spherical shells $D(r, R)$ (with $0 < r < R$), and every integer k,

$$\text{Prob}_\delta \left(\Gamma_{r,R}^{F,W} \text{ contains } k \text{ disjoint crossings of } D(r, R) \right) \geq \left(\frac{r}{R} \right)^{\beta k^{d/(d-1)}} \quad (0 < \delta \leq \delta_o(r, R)). \quad (A.1)$$

To prove this, we show that with sufficiently high probability there are k crossing paths which occur separately within k disjoint conical sectors. The sectors may open at an angle of the order $\text{const.} k^{-1/(d-1)}$ (where the constant depends only on d). To decouple the events, we separate the different sectors by imposing the wired boundary conditions on the intra-sector boundaries. For UST the lower bound follows now from the statement that with probability at least $(r/R)^{\beta k^{1/(d-1)}}$ (for some $\beta < \infty$), a random walk, and hence also LERW, started at a point at the center of the sector’s inner (reflecting) spherical boundary ($|x| = r$) will leave the sector through its outer spherical boundary ($|x| = R$). The statement can be derived by a number of random walk techniques. For $d = 2$ dimensions a harmonic function argument yields such a decay with $\beta = 1/2 + o(r/R)$, i.e., $\gamma(k) \leq k^2/2$. The calculation can be adapted to higher dimensions, but instead of presenting it here let us outline a qualitative argument.

The desired random walk estimate can be obtained by noting that when $k \gg 1$ the region to be crossed looks like a narrow pencil, which may be subdivided into a series of $O(k^{1/(d-1)} \log(R/r))$ pairwise overlapping subregions of moderate aspect ratio. If the random walk makes it to the middle portion of the outer boundary of one of the subregions, it is near the center of the next subregion, and with probability bounded away from 0 will make it to the middle portion of the outer boundary of the next subregion without hitting the walls.

For MST and EST in $d = 2$ dimensions, we relate the claim to a crossing event in the associated critical Bernoulli and droplet percolation models. Cut $D(r, R)$ into $2k$ sectors of equal width. (In the case of EST the sectors need to be separated by a gap of width 2δ.) It was proved in [29, 30] that the probability of finding a p_c-crossing (or a p_c-dual crossing) in a
given sector is bounded below by \((r/R)^{\beta k}\) with some \(\beta > 0\). Suppose that the configuration of Bernoulli or droplet percolation has \(p_c\)-crossings and \(p_c\)-dual crossings in alternating sectors. (By independence of the sectors, this event occurs with probability \((r/R)^{\beta k^2}\).)

We can construct the tree (MST or EST) associated with the (Bernoulli or droplet) percolation model via the invasion process described in Subsection 6.b. If we start the invasion from any point where the \(p_c\)-crossing meets the boundary at \(r\), then the invasion will reach the outer wired boundary before crossing either of the flanking \(p_c\)-dual crossings. Therefore the tree contains a traversal for each of the \(k p_c\)-crossings, and these must be pairwise disjoint.

We proceed to derive a matching lower bound on the growth rate of the exponents.

Theorem A.2 Suppose a random tree model \(\Gamma\) in \(d\) dimensions satisfies the free-wired bracketing principle

\[
\Gamma^W_\Lambda \setminus \{\partial \Lambda\} \preceq \Gamma \cap \Lambda \preceq \Gamma^F_\Lambda, \tag{A.2}
\]

in a form which yields the telescopic principle with a negligible error, as in Lemma 5.3 and has the geometric decay property, in the form:

There exist \(\sigma > 1\) and \(t > 0\), such that the random variable \(M(r, \sigma; \omega)\) representing the number of disjoint crossings of the spherical shell \(D(r, R = \sigma r)\) with free-wired boundary conditions, has a finite moment generating function:

\[
E_\delta \left(e^{t M(r, \sigma)} \right) \leq e^{g(\sigma, t)} \quad (0 < \delta \leq \delta_o(r)) \tag{A.3}
\]

with some \(g(\sigma, t) < \infty\).

Then there exists \(\beta > 0\) such that for \(R/r\) sufficiently large

\[
\text{Prob}_\delta \left(\Gamma^F_{r, R} \text{ contains more than } k \text{ crossings of } D(r, R) \right) \leq K(k, \beta) \left(\frac{r}{R} \right)^{\beta k^{d/(d-1)}} \quad (0 < \delta \leq \delta_o(r, \beta, k)). \tag{A.4}
\]

Remarks: i) Elementary considerations show that the condition (A.3) is implied by the geometric-decay hypothesis (5.6), which was derived (for \(d = 2\)) in Section 5.

ii) It ought to be clear from the proof that the argument can be extended to other systems, in particular to independent percolation models and, more generally, to the Fortuin-Kasteleyn random-cluster models with \(Q \geq 0\) (of course the theorem stated here will be of
interest only for critical states). For those systems \(M(r, \sigma; \omega) \) will refer to the maximal number of crossings which can be realized disjointly in the configuration \(\omega \). The main adjustment needed in the analysis is to replace the free-wired bracketing principle by a suitable decoupling boundary condition which increases the state. For \(0 \leq Q \leq 1 \) that is provided by the free b.c., whereas for \(1 \leq Q \) that role is played by the wired b.c. Correspondingly, the assumption made in the theorem should in each case refer to the statistics of the variable \(M \) under the corresponding b.c.

Proof: For a given \(k \), let us subdivide the spherical shell \(D(r, R) \) into concentric subshells with a common aspect ratio:

\[
D_n = D(re^{(n-1)\alpha}, re^{n\alpha}), \quad \text{with} \quad \alpha = b^{-1}k^{-1/(d-1)}, \tag{A.5}
\]

where \(b > 0 \) is a parameter whose value will be specified below. By the telescopic principle, the probability of \(k \) disjoint traversals of \(D(r, R) \) is dominated (up to a negligible error) by the product of probabilities of such traversals of the \(\lfloor \log(R/r)/\alpha \rfloor \) subshells, \(D_n \), each taken with the decoupling free-wired boundary conditions. Thus, as is explained at the end of this proof, it suffices to establish the following bound:

Claim: There are constants \(m > 0 \) and \(a(b) \geq 0 \), where \(a(b) \) is strictly positive for small enough \(b \), so that with the above choice of \(\alpha \)

\[
\mathbb{P}_{\delta}(\Gamma_{D_1}^{F,W} \text{ contains more than } k \text{ disjoint traversals of } D_1 = D(r, re^\alpha)) \leq me^{-a(b)k}, \tag{A.6}
\]

for all \(k \geq k_o(b, \sigma, d) \) and \(0 < \delta < \delta_o(r, k) \).

Proof of Claim: We employ a covering of the sphere of radius \(\tilde{r} = re^{\alpha/2} \) by balls of radius \(r_o = r\alpha/(2\sigma) \) (see Figure 6), where \(\sigma \) is large enough so that the geometric decay property \(A.3 \) holds. Note that even when the balls are expanded concentrically by the factor \(\sigma \), they do not reach outside \(D_1 \). (This can be seen using \(1 < e^{\tilde{r}} - x \) and \(e^{\tilde{r}} + x < e^{2x} \) (for \(x > 0 \)) with \(x = \alpha/2 \).) Thus, each path crossing \(D(r, re^\alpha) \) produces a crossing from the surface of at least one ball in the cover to a sphere concentric with it, of radius \(r_o\sigma \). We shall estimate the probability that there are altogether at least \(k \) (or more) such traversals.

By Lemma \(A.3 \) proved below (with \(c = r_o/\tilde{r} \)), there exists a covering of the \(\tilde{r} \)-sphere by balls of radius \(r_o \),

\[
\tilde{r} S^{d-1} \subset \bigcup_{x \in A} B(x; r_o),
\]

which can be partitioned into \(A = \bigcup_{i=1}^m A_i \), in such a way that

\[
B(x; \sigma r_o) \cap B(y; \sigma r_o) = \emptyset \quad \text{whenever } x, y \in A_i, x \neq y.
\]
The important fact is that the partition can be chosen so that \(m = m(\sigma) \) depends only on \(\sigma \) and the dimension (and not on \(r_0 \) or \(\tilde{r} \)). The maximum number of balls in any of the \(A_i \)'s is bounded by

\[
\max_i \# A_i \leq a_o \left(\frac{\tilde{r}}{r_0} \right)^{d-1} \leq a_o (4b\sigma)^{d-1} k \quad \text{for} \quad k \geq k_o(b, \sigma, \delta) \quad (A.7)
\]

provided \(k_o \) is large enough so that \(\tilde{r}/r \leq 2 \), i.e., so that \(\sigma r_0/r \leq \log 2 \).

![Figure 6: Placement of a disjoint family of small shells \(D(x; r_o, \sigma r_o) \) within a large shell \(D(r, R) \). Of the two depicted crossings of the large shell, the left one gives rise to a crossing of a little shell. In this picture, we have chosen the aspect ratio \(\sigma = 3 \). Four families of eight disjoint little shells each are needed to capture all crossings of the big shells.](image)

In each configuration, let \(M_{i,j} \) be the number of lines touching the \(j \)th ball \(B(x_j; r_0) \) in \(A_i \) (see Figure 6), and let \(M_i = \sum_j M_{i,j} \). If there are \(k \) disjoint traversals of \(D_1 \), then at least one of \(M_i \) exceeds \(k/m \). Thus:

\[
\text{Prob}_\delta \left(\text{more than } k \text{ crossings of } D(r, re^\alpha) \right) \leq \sum_{i=1}^m \text{Prob}_\delta \left(M_i \geq \frac{k}{m} \right) \\
\leq \sum_{i=1}^m e^{-tk/m} E_\delta \left(e^{t \sum_j M_{i,j}} \right), \quad (A.8)
\]

using in the last step Chebyshev’s inequality. By the free-wired bracketing principle, each of the variables \(M_{i,j} \) is stochastically dominated by the corresponding crossing numbers \(M_{i,j}^{FW} \) of \(\Gamma_{r_o, \sigma r_o}^{FW} \). We get, for each \(i = 1, \ldots, m \):

\[
E_\delta \left(e^{t \sum_j M_{i,j}} \right) \leq E_\delta \left(e^{t \sum_j M_{i,j}^{FW}} \right) = \prod_j E_\delta \left(e^{t M_{i,j}^{FW}} \right) \leq e^{a_o (4b \sigma)^{d-1} k g(\sigma, t)}, \quad (A.9)
\]
where we used first the independence of events in disjoint shells due to the decoupling boundary conditions, and then the geometric-decay assumption eq. (A.3) and the bound (A.7) on the number of balls in the cover. Substituting inequality (A.9) into (A.8) yields

\[
\text{Prob}_\delta \left(\text{more than } k \text{ crossings of } D(r, re^{\alpha}) \right) \leq m \left[t/m - a_o (4b \sigma)^{d-1} g(\sigma,t) \right] \cdot k. \tag{A.10}
\]

The claim follows now by choosing \(\sigma\) and \(t\) so that \(g(\sigma, t)\) is finite, and adjusting the parameter \(b\), making it small enough so that

\[
a(b) = t/m(\sigma) - a_o (4b \sigma)^{d-1} g(\sigma,t) > 0. \tag{A.11}
\]

To make the best out of this argument, one should optimize in \(b, \sigma, \) and \(t\), maximizing \(b \times a(b)\).

The calculation yielding the assertion eq. (A.4) from the claim is (for \(b\) small enough but independent of \(k\))

\[
\text{Prob}_\delta \left(\text{more than } k \text{ disjoint traversals in } \Gamma_{F,W}^{F,W} \right) \leq e^{-a(b)k + \log m \left[b k^{1/(d-1)} \log(R/r) \right]} \leq e^{-a(b)k + \log m \left(\frac{R}{R} \right)^b \times a(b) \times k^{d/(d-1)} - b \times \log m \times k^{1/(d-1)}}.
\]

The floors give rise to the prefactor \(K(k, \beta)\), which grows exponentially in \(k\).

Let us remark that the bound (A.8) makes use of a standard method for large deviations estimates, known as Chernoff’s inequality (see e.g. [34]). For completeness, following is the covering lemma used in the analysis.

Lemma A.3 (Covering lemma) Let \(c < 1\) and \(\sigma > 0\). The unit sphere can be covered with balls of radius \(c\) (indexed by a finite set \(A\) of centers)

\[
S^{d-1} \subset \bigcup_{x \in A} B(x, c), \tag{A.12}
\]

which can be partitioned into \(m\) subcollections \(A = \bigcup_{i=1}^m A_i\) satisfying

\[
B(x, \sigma c) \cap B(y, \sigma c) = \emptyset \text{ if } x, y \in A_i, x \neq y. \tag{A.13}
\]

*Here, \(m\) depends on \(\sigma\) and the dimension, and the number of balls needed for the covering is bounded by

\[
\#A \leq a_o c^{1-d}, \tag{A.14}
\]

where \(a_o\) depends only on the dimension.*
Proof: In two dimensions, one reasonable choice for A is a set of evenly spaced points on the unit circle. In higher dimensions, take A to be the set of points in $c d^{-1/2} \mathbb{Z}^d$ that are at most distance $c/2$ from the unit sphere. Every point of the unit sphere is within distance $c/2$ of such a point. To bound $\#A$, consider the spherical shell of inner radius $1-c$ and outer radius $1+c$. This shell contains all cubes with side length $c d^{-1/2}$ centered about some point in A. Its volume is bounded above by $2^d \omega_d c$ (where ω_d is the volume of the unit ball in \mathbb{R}^d), so the shell can contain at most $2^d \omega_d d^{d/2} c^{1-d}$ cubes. This proves the claim on $\#A$.

By a similar argument we conclude that the number of lattice points in a ball of radius $2\sigma c$ is bounded above by a number m which depends only on σ and the dimension. We partition A into subsets A_1, \ldots, A_m so that any two points in A_i have distance at least $s = 2\sigma c$, by induction on m. If $m = 1$, that is, if the distance between any two points in A is at least s, choose $A_1 = A$. If $m > 1$, take any point and put it in A_m — this may make some of the other points ineligible for placement in A_m. Continue in any fashion until all the points are either in A_m, or else ineligible. Each ineligible point has distance less than s to some point in A_m, so there are at most $m - 1$ other ineligible points at a distance of less than s. Applying the inductive assumption completes the proof.

Acknowledgments
We thank I. Benjamini, B. Duplantier, G. Lawler, R. Lyons, Y. Peres, and O. Schramm, for stimulating discussions of topics related to this study. M.A. wishes to thank for the gracious hospitality accorded him at the School of Physics and Astronomy, Tel Aviv University, and at the Forschungsinstitut für Mathematik, ETH-Zurich, where some of his work was done. The work was supported in part by the NSF Grants PHY-9512729 (M.A.), MPS-9500868 and MPS-9803267 (C.M.N.), DMS-9626198 (A.B.), and an NSF postdoctoral fellowship (D.B.W.).

References

[1] R. Langlands, P. Pouliot, and Y. Saint-Aubin, “Conformal invariance in two-dimensional percolation,” Bull. AMS, 30, 1 (1994).

[2] J. Cardy, “Critical percolation in finite geometries,” J. Phys. A, 25, L201–206 (1992).

[3] M. Aizenman, “Scaling limit for the incipient spanning clusters,” in Mathematics of Multiscale Materials; the IMA Volumes in Mathematics and its Applications (K. Golden, G. Grimmett, R. James, G. Milton, and P. Sen, eds.), Springer, 1998. [http://xxx.lanl.gov/ps/cond-mat/9611040).

[4] H. Cohn, N. Elkies, and J. Propp, “Local statistics for random domino tilings of the Aztec diamond,” Duke Math. J, 85, 117 (1996).
[5] R. Kenyon, “Conformal invariance of domino tiling,” 1997 preprint. [http://topo.math.u-psud.fr/~kenyon/confinv.ps.Z]

[6] M. Aizenman and A. Burchard, “Hölder regularity and dimension bounds for random curves,” to appear in *Duke Math. J.* [http://xxx.lanl.gov/ps/math/9801027].

[7] R. Pemantle, “Choosing a spanning tree for the integer lattice uniformly,” *Ann. Probab.*, 19, no. 4, 1559–1574 (1991).

[8] O. Häggström, “Random-cluster measures and uniform spanning forests,” *Stoch. Proc. Appl.*, 59, 267–275 (1995).

[9] I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, “Uniform spanning forests,” 1998 preprint. [http://php.indiana.edu/~rdlyons/gz/usf.ps.gz]

[10] K. Alexander, “Percolation and minimal spanning forests in infinite graphs,” *Ann. Probab.*, 23, 87–104 (1995).

[11] J. Chayes, L. Chayes, and C. M. Newman, “The stochastic geometry of invasion percolation,” *Commun. Math. Phys.*, 101, 383–407 (1985).

[12] K. Alexander, “The RSW theorem for continuum percolation and the CLT for Euclidean minimal spanning trees,” *Ann. Probab.*, 6, 466, (1996).

[13] D. B. Wilson, “Generating random spanning trees more quickly than the cover time,” in *Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing*, 296, 1996.

[14] K. S. Alexander and S. A. Molchanov, “Percolation in two-dimensional random fields with lattice symmetry,” *J. Stat. Phys.*, 77, 627–643 (1994).

[15] C. M. Newman and D. L. Stein, “Spin-glass model with dimension-dependent ground state multiplicity,” *Phy. Rev. Lett.*, 72, 2286–2289 (1994).

[16] C. M. Newman and D. L. Stein, “Ground state structure in a highly disordered spin glass model,” *J. Stat. Phys.*, 82, 1113–1132 (1996).

[17] M. Aizenman, “On the number of incipient spanning clusters,” *Nuclear Phy. B*, 485 [FS], 551 (1997).

[18] B. Nienhuis, “Analytical calculation of two leading exponents of the dilute Potts model,” *J. Phys. A*, 15, 199–213 (1982).

[19] B. Duplantier and H. Saleur, “Exact determination of the percolation hull exponent in two dimensions,” *Phys. Rev. Lett.*, 58, 2325 (1987).
[20] M. Aizenman, B. Duplantier, and A. Aharony, “Connectivity exponents and the external perimeter in 2D independent percolation.”
http://xxx.lanl.gov/ps/cond-mat/9901018

[21] C. M. Fortuin and P. W. Kasteleyn, “On the random-cluster model. I. Introduction and relation to other models,” Physica, 57, 536–564 (1972).

[22] B. Duplantier, “Critical exponents of Manhattan Hamiltonian walks in two dimensions, from Potts and \(O(n)\) models”, J. Stat. Phys., 49, 411 (1987).

[23] I. Benjamini, “Large scale degrees and the number of spanning clusters for the uniform spanning tree ”, in Perplexing Probability Problems: Papers in Honor of Harry Kesten, M. Bramson and R. Durrett (Eds.), (Birkhauser, Progress in Probability Series), to appear.

[24] O. Schramm, “Scaling limits of loop-erased random walks and random spanning trees.” 1999 preprint.

[25] R. Lyons and Y. Peres, Probability on Trees and Networks. Book in preparation, http://php.indiana.edu/~rdlyons/prbtree/prbtree.html, 1998.

[26] C. Redmond and J. E. Yukich, “Limit theorems and rates of convergence for Euclidean functionals,” Ann. Appl. Probab., 4, 1057–1073 (1994).

[27] M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, “The phase boundary in dilute and random Ising and Potts ferromagnets ,” J. Phys. A, 20, (1987), L313-L318.

[28] H. Kesten, “The critical probability of the bond percolation on the square lattice equals 1/2,” Commun. Math. Phys., 74, 41 (1980).

[29] L. Russo, “A note on percolation,” Zeit. Wahr., 43, 39 (1978).

[30] P. Seymour and D. Welsh, “Advances in graph theory,” in Annals of Discrete Mathematics (B. Bollobás, editor), vol. 3, North Holland, 1978.

[31] J. van den Berg and H. Kesten, “Inequalities with applications to percolation and reliability,” J. Appl. Prob., 22, 556 (1985).

[32] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction. Springer, New York, 1985.

[33] M. Burton and M. Keane, “Density and uniqueness in percolation,” Commun. Math. Phys., 121, 501 (1989).

[34] C. McDiarmid, “On the method of bounded differences,” in Surveys in Combinatorics, 1989, 148–188, 1989.