Resonant excitations of the ’t Hooft-Polyakov monopole

Péter Forgács and Mikhail S. Volkov
Laboratoire de Mathématiques et Physique Théorique, CNRS-UMR 6083,
Université de Tours, Parc de Grandmont, 37200 Tours, FRANCE

The spherically symmetric magnetic monopole in an SU(2) gauge theory coupled to a massless Higgs field is shown to possess an infinite number of resonances or quasinormal modes. These modes are eigenfunctions of the isospin 1 perturbation equations with complex eigenvalues, \(E_n = \omega_n - i\gamma_n \), satisfying the outgoing radiation condition. For \(n \to \infty \), their frequencies \(\omega_n \) approach the mass of the vector boson, \(M_W \), while their lifetimes \(1/\gamma_n \) tend to infinity. The response of the monopole to an arbitrary initial perturbation is largely determined by these resonant modes, whose collective effect leads to the formation of a long living breather-like excitation characterized by pulsations with a frequency approaching \(M_W \) and with an amplitude decaying at late times as \(t^{-5/6} \).

PACS numbers: 03.65.Ge, 11.27.+d, 14.80.Hv

Magmetic monopoles – magnetically charged finite energy solutions in field theories with spontaneously broken gauge symmetries \(\mathbb{U}(1) \) – play an important role in a number of field theoretic considerations. They can account for the quantization of the electric charge, catalyze the formation of strings, and Rácz a breather-like excitation of the monopole resembling a quasinormal mode. For previous studies of the isospin 1 small fluctuation equations that are regular at spatial infinity, determine supersymmetric vacua, etc. – see \(\mathbb{R} \) for reviews.

In the present Letter we point out yet another interesting aspect of the monopole which seems to have gone unnoticed so far – the existence of its quasinormal modes (QNM) or resonant excitations. We show that the Bogomol’nyi-Prasad-Sommerfield (BPS) monopole admits an infinite number ofQNMs. They manifest themselves as resonance peaks in the low energy scattering cross section of isospin 1 scalar particles. The QNM can also be described as complex energy solutions of the isospin 1 small fluctuation equations that are regular at the origin and satisfy the outgoing radiation condition at spatial infinity. For previous studies of such small fluctuations around the monopole we refer to \(\mathbb{R}_2 \).

We shall demonstrate, in particular, that the QNM of the monopole lead to a universal late time behavior of the perturbed monopole by giving rise collectively to a quasiperiodic, long living excitation whose amplitude decays as \(t^{-5/6} \) at late times (\(t \) being the standard Minkowski time). In a recent numerical study of Fodor and Rácz a breather-like excitation of the monopole resembling a quasinormal mode has actually been observed \(\mathbb{R}_4 \). It has been one of our aims to explain their observations.

It is worth noting the striking analogy of the \(t^{-5/6} \) asymptotic behavior of the monopole with the late time evolution of massive fields in black hole spacetimes \(\mathbb{R}_3 \). Black holes also possess the QNM, which have been much studied recently (see e.g. \(\mathbb{R}_3 \)).

We consider a Yang-Mills-Higgs (YMH) theory with gauge group SU(2) defined by the Lagrangian

\[
\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} D_\mu \Phi^a D^\mu \Phi^a - \frac{\lambda}{4} \Phi^a \Phi^a - 1)^2. \tag{1}
\]

Here \(F_{\mu\nu} = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + \varepsilon_{abc} A_\mu^b A_\nu^c \) is the non-abelian field strength tensor, \(D_\mu \Phi^a = \partial_\mu \Phi^a + \varepsilon_{abc} A_\mu^b \Phi^c \) denotes the covariant derivative, and in our units the mass of the gauge bosons is equal to one, \(M_W = 1 \), while the mass of the Higgs particle is \(\sqrt{2} \lambda \). The energy-momentum tensor of the theory defined by Eq.(1) is \(T_{\mu\nu} = -F_{\nu\rho} F^{\mu\rho} + D_{\nu\rho} \Phi^a D_\rho \Phi^a - \delta_0^{\mu\nu} \mathcal{L} \).

We restrict our analysis to the ’minimal’ spherically symmetric sector, where the ansatz for the YMH fields is given by \(A_0^a = 0, \)

\[
A_i^a = \varepsilon_{abc} x_k \left(1 - W(t, r) \right) \left(t - H(t, r) \right), \tag{2}
\]

where \(a, i, k = 1, 2, 3 \) and \(r^2 = x^i x^i \). With \(\square = \partial_\mu \partial^\mu - \partial_\mu ^2 \partial_r \partial_r \) the YMH equations reduce to

\[
(r^2 \square + W^2 + H^2 - 1) W = 0, \tag{3}
\]

\[
(r^2 \square + 2W^2 + \lambda(H^2 - r^2)) H = 0. \tag{3}
\]

The static, finite energy solution of these equations is the ’t Hooft-Polyakov monopole \(\mathbb{R}_5 \). For the special case, \(\lambda = 0 \), the solution is analytically known – the BPS monopole,

\[
W(r) = \frac{r}{\sinh r}, \quad H(r) = r \coth r - 1. \tag{4}
\]

We shall consider small fluctuations around the static monopole background: \(W \to W(r) + w(t, r) \) and \(H \to H(r) + \sqrt{2} h(t, r) \). Linearizing Eqs. \(\mathbb{R}_6 \) with respect to \(w \) and \(h \), we obtain

\[
(r^2 \square + 3W^2 + H^2 - 1) w = -q 2 \sqrt{2} WH h, \tag{5}
\]

\[
(r^2 \square + 2W^2 + \lambda(3H^2 - r^2)) h = -q 2 \sqrt{2} WH w. \tag{6}
\]

Here an auxiliary parameter, \(q \), has been introduced, presently \(q = 1 \). In this Letter we concentrate on the case \(\lambda = 0 \), when \(W, H \) are given by Eq.(4).

Resonant scattering – First we shall demonstrate that Eqs. \(\mathbb{R}_4, \mathbb{R}_6 \) describe resonance phenomena indeed. Separating the variables as \(w = \Re(e^{-i\omega t} w_\omega (r)) \) and \(h = \Re(e^{-i\omega t} h_\omega (r)) \) with real \(\omega \), Eqs. \(\mathbb{R}_5, \mathbb{R}_6 \) become a standard two-channel Schrödinger system. As it will be...
clear from what follows, the frequency spectrum is continuous, \(w^2 \geq 0 \). Regular solutions of Eqs. (5), (6) have to satisfy the conditions \(w_\omega \sim h_\omega \sim r^2 \) for \(r \to 0 \), and they can be normalized for \(r \to \infty \) such that

\[
 h_\omega (r) \to \sin(\omega r + \delta(\omega)), \quad w_\omega (r) \to C(\omega) r^2 e^{-\nu r},
\]

where \(\nu = \sqrt{1 - w^2} \). The \(h \)-field is massless, so it oscillates as \(r \to \infty \) for any value of \(\omega \). The \(w \)-field is massive, and for \(w^2 < 1 \) it shows a bound state type behavior, with exponential decay as \(r \to \infty \). The fact that the \(w \)-field is non-radiative for \(w^2 < 1 \) plays the crucial role in our analysis, and below we shall concentrate to this frequency range. Eqs. (4), (5) describe in this case the scattering of a massless \(h \)-radiation on the monopole surrounded by a confined massive \(w \)-field. We note that for \(w^2 < 1 \) this is effectively a one-channel scattering problem, so that the scattering cross section is given by the standard formula

\[
 \sigma(\omega) = \frac{4\pi}{\omega^2} \sin^2(\delta(\omega)).
\]

It is worth noting that the interaction of the \(h \)-field with the monopole is in fact short range, so that the cross section is finite. We integrate Eqs. (4), (5) numerically to obtain \(w_\omega (r) \) and \(h_\omega (r) \) subject to the boundary conditions (7). The resulting cross section \(\sigma(\omega) \) shown in Fig. 1 exhibits a sequence of resonant peaks accumulating near the value \(\omega = 1 \). This can be so interpreted that for certain energies of the incident \(h \)-radiation the monopole core gets strongly excited.

QNMs – numerical results. The scattering resonances can be usually related to the quasinormal modes – complex energy solutions satisfying the purely outgoing wave condition at \(r = \infty \). To construct the QNMs, we integrate Eqs. (5), (6) with \(w = \Re(e^{-i\epsilon t} w_E(r)) \) and \(h = \Re(e^{-i\epsilon t} h_E(r)) \), where \(w_E \) and \(h_E \) are complex, the energy \(\epsilon = \omega - i\gamma \), and

\[
 A r^2 \leftarrow h_E(r) \to e^{i\epsilon r}, \quad B r^2 \leftarrow w_E(r) \to C r^2 e^{-\nu r}
\]

for \(0 \rightarrow r \rightarrow \infty \). With the ‘shooting to a fitting point’ numerical method we find a discrete family of global solutions \(w_E(r) \), \(h_E(r) \) subject to the boundary conditions (8) labeled by \(n = 1, 2, \ldots \), the number of nodes of \(\Im(w_E(r)) \) (see Fig. 2). Notice that \(h_E \sim e^{i\omega r + i\gamma r} \) grows at infinity – the QNMs are not physical solutions themselves, but only approximate such solutions for a fixed \(r \) and for \(t \to \infty \). The first 10 eigenvalues \(E_\nu = \omega_\nu - i\gamma_\nu \) are listed in Table I.

Table I clearly indicates that \(\omega_\nu \to 1 \) and \(\gamma_\nu \to 0 \) for growing \(n \). It seems that the QNM can be obtained for any \(n \), thus comprising an infinite family. The values of \(\omega_\nu \) coincide well with the positions of the resonance peaks shown in Fig. 1.

QNMs – qualitative analysis. The existence of the QNM of the BPS monopole can be qualitatively understood as follows. Let us consider \(q \) introduced in Eqs. (5), (6) as a free parameter, \(q \in [0, 1] \), and denote the corresponding solutions by \(w(q) \) and \(h(q) \). For \(q = 0 \) the equations decouple. Setting \(h_0(t, r) = e^{-i\omega t}(C_+ h_+ + C_- h_-) \) with constant \(C_{\pm} \), Eq. (8) is then solved by

\[
 h_{\pm}(r) = (\coth r \mp i\omega)e^{\pm i\omega r}.
\]

Eq. (8) with \(w_0(t, r) = e^{-i\omega t} w(r) \) reduces to the eigenvalue problem

\[
 \left(-\frac{d^2}{dr^2} + \frac{3W^2 + H^2 - 1}{r^2} \right) w(r) = \omega^2 w(r).
\]

The potential in this equation has an attractive Coulombian tail, since it behaves as \(1 - 2/r + O(e^{-r}) \) for \(r \to \infty \), thus there are infinitely many bound states, \(w(r) = w_n(r) \) for \(\omega^2 = \omega_n^2 \), \(n = 1, 2, \ldots \). Several low lying \(\omega_n \)'s are given in Table II. The \(n \)-th eigenfunction \(w_n(r) \) has \(n \) – 1 nodes in the interval \(r \in [0, \infty) \) and can be normalized by the condition \(\int_0^\infty w_n^2 dr = 1 \). For large \(n \) the \(w_n(r) \)'s extend to the asymptotic region where the potential is Coulombian. As a result, they can be well approximated by solutions of the hydrogen atom problem. This implies that for \(n \to \infty \) one has \(\omega_n^2 = 1 - 1/n^2 + O(n^{-3}) \) and also that \(w_n \sim n^{-3/2} \). More precisely, for \(\omega = 1 \) Eq. (10) admits a limiting solution with infinitely many nodes, \(w_{\infty}(r) \), which itself is not normalizable, but \(w_{\infty}(r) \) corresponds to the pointwise limit of \(w_n(r) \); i.e. for a fixed \(\bar{r} \)

\[
 \lim_{n \to \infty} w_n(r) = n^{-3/2} w_{\infty}(r) \quad \forall r < \bar{r}.
\]

Let us consider a solution of Eqs. (5), (6) given by \(h_0 = 0 \) and \(w_0 = \Re \left(A_n e^{-i\omega_n t} w_n(r) \right) \), where \(A_n \) is a constant. “Switching on” a small value of the coupling
between the channels, $q \ll 1$, the w-bound state will start loosing its energy to the h-channel, where this energy will be radiated to infinity. To find approximatively the corresponding solutions $h_{(q)}$ and $w_{(q)}$ by successive iterations, we solve first Eq.(6) for $w_{(q)}$ by replacing w by $w_{(q)}$ in its right hand side. The solution is regular at the origin and reduces to an outgoing wave at infinity: $h_{(q)} \sim q A_n e^{i \omega_n (r-t)}$ as $r \to \infty$.

Since there is now an outgoing flux of the h-radiation, the energy of the w-bound state will be slowly decreasing. In the adiabatic approximation this process is described by a decrease of the amplitude of the w-field by replacing $A_n \to A_n(t)$. To determine $A_n(t)$ we use the law of energy conservation, $\partial_t T^\mu_\nu = 0$, whose integral form is

$$\frac{d}{dt} \left(\int_0^\infty r^2 T^0_0 \, dr \right) = - \lim_{r \to \infty} r^2 T^0_r , \quad (12)$$

Expanding T^μ_ν up to terms quadratic in w and h, the expression on the left in Eq.(12) is proportional to $\frac{1}{T} A_2^2$ and determines the decrease of the bound state energy. The expression on the right is proportional to A_2^2 and gives the energy flux at infinity. Thus $A_n = -\gamma_n A_n$, from which $A_n(t) = c_n e^{-\gamma_n t}$ with a constant c_n. The coefficient γ_n is given by

$$\gamma_n = q^2 \frac{4}{\omega_n^2 (1+\omega_n^2)} \left(\int_0^\infty \omega_n^2 \, W H w_n \, dr \right)^2 . \quad (13)$$

Summarizing, upon switching on a small value of q, the stationary bound state of the w-field, $w_n(r)$, becomes quasistationary and is approximately given by

$$w_{(q)} = \Re(e^{-iE_n t} c_n w_n) , \quad h_{(q)} = q \Re(e^{-iE_n t} c_n h_n) , \quad (14)$$

where $E_n = \omega_n - i \gamma_n$ and $h_n(r)$ can be expressed by quadratures in terms of $w_n(r)$. Note the appearance of a complex energy, E_n, in Eq.(14). Evaluating the integral in Eq.(13) (see Table II) shows that γ_n decreases as n grows. This feature can be understood qualitatively by viewing the QNM as quasibound states of the massive w-field slowly decaying via an energy transfer to the h channel. For large n the coupling between the w and h channels becomes weaker and weaker, since it is proportional to $W H w_n \sim n^{-3/2}$, and so the decay becomes more and more unlikely. Using the asymptotic relation \[13\] in Eq.[13] yields $\gamma_n \sim n^{-3}$ for $n \to \infty$.

The approximative formulas derived above under the assumption $q \ll 1$ give in fact, when straightforwardly extrapolated to $q = 1$, a good approximation for $\omega_n - i \gamma_n$ (see Tables I, II). This approximation is actually getting better with growing n. We can therefore use the asymptotic relations derived above to obtain for $n \gg 1$

$$1 - \omega_n^2 = n^{-2} + O(n^{-3}) , \quad \gamma_n = bn^{-3} . \quad (15)$$

Using the results of Table I, $b \approx 0.2$.

Collective effect of the QNM.—The numerical simulations in Ref.[4] of the non-linear temporal dynamics of the BPS monopole hit by a strong spherically symmetric pulse have shown that a considerable fraction of the energy received from the pulse is not radiated away immediately. It gets ‘trapped’ by the monopole and forms a long living quasiperiodic excitation that radiates very slowly, and whose late time behavior is to a large extent independent of the structure of the initial perturbation pulse, i.e., it shows certain type of universality. We can now offer an explanation to these observations.

It is intuitively clear that, according to the decomposition of the eigenfunctions of the linearized problem, there is a ‘radiative’ sector containing the massless h-modes with $\omega^2 > 0$ and massive w-modes with $\omega^2 > 1$, and also a ‘non-radiative’ sector consisting of the w-modes with $\omega^2 < 1$. One expects that a part of the energy of the pulse received by the monopole will be distributed among the radiative modes and will be radiated away. However, as a generic perturbation will have a nonzero overlap also with the non-radiative modes, the remaining energy will get trapped in the non-radiative sector. Since it cannot be radiated away directly, a long living excitation on the monopole forms that will decay only due to a slow energy leakage to the radiative channels. In the terminology of black hole physics, the perturbed monopole keeps some of its ‘hair’ for a long time.

Although initially the dynamic of the system will be nonlinear, one expects the nonlinear effects to become negligible when a sufficient amount of the received energy is radiated away. The linear approximation will therefore give a good description of the late time behavior, providing also an explanation of the observed universality.

Let $t = 0$ be the starting point of linear regime, when the perturbed monopole is described by $w(0, r) = \delta W(r)$ and $h(0, r) = \delta H(r)$. The subsequent temporal evolution is determined to a large extent by the QNM, since they hold their energies for a long time. Using [14], we therefore approximate the general solution for $t > 0$ by

$$w(t, r) = \Re \left(\sum_{n=1}^\infty c_n e^{-i \omega_n t - \gamma_n w_n(r)} \right) , \quad (16)$$

and similarly for $h(t, r)$. Here $c_n = \int_0^\infty w_n(r) \delta W(r) dr$.

TABLE I: The eigenvalues of the first ten QNM

n	$\omega_n - i \gamma_n$
1	$0.8473 - i 0.5077 \times 10^{-4}$
2	$0.9332 - i 0.1384 \times 10^{-1}$
3	$0.9637 - i 0.5218 \times 10^{-2}$
4	$0.9774 - i 0.2488 \times 10^{-2}$
5	$0.9846 - i 0.1375 \times 10^{-2}$
6	$0.9956 - i 0.3030 \times 10^{-5}$
7	$0.9888 - i 0.8396 \times 10^{-5}$
8	$0.9915 - i 0.5499 \times 10^{-5}$
9	$0.9933 - i 0.3794 \times 10^{-5}$
10	$0.9946 - i 0.2731 \times 10^{-5}$

TABLE II: Values of ω_n and γ_n defined by Eqs.[10][13]

n	ω_n	γ_n/q^2
1	0.7988	0.057
2	0.9261	0.010
3	0.9610	0.0035
5	0.9840	0.00009
10	0.9953	0.0001
This sum of damped oscillations corresponds to a long living excitation with the following properties.

For a localized δW the overlap coefficients cₙ will be maximal for small n. Therefore terms with small n will dominate at first the sum in Eq.(10). They will soon be damped, however, since their damping rates, γₙ, are the largest. Terms with higher n will then become more important at later times. This ‘dying out’ of modes has indeed been observed in Ref.[4] (Fig.6), and the values of frequencies ωₙ measured there are in good agreement with those given in Table I.

For any t there is a number, k(t), determined by the condition γₖt ≈ 1, such that all terms with n ≪ k in Eq.(10) are already damped, while those with n ≫ k are not yet important, since their cₙ’s are small compared to cₖ. The sum will therefore be dominated by terms with n ≈ k(t). Considering for simplicity the sum of only two of these terms, with frequencies ωₖ, ωₖ₊₁, gives beats with the base frequency ω(t) = 1/2(ωₖ₊₁ + ωₖ) whose amplitude is modulated with the frequency Ω(t) = 1/2(ωₖ₊₁ − ωₖ). This explains qualitatively the behavior shown in Fig.3. Since γₖ decreases with k, the value of k(t) will grow with t, and so will do the base frequency ω(t). Since γₖ ∼ k⁻³ for large k, it follows that k(t) ∼ t¹/³ for large t. Using Eq.(10), we conclude that for large t one has 1 − ω²(t) ∼ t⁻²/³, which explains the feature observed in Ref.[4] (Fig.5). In a similar way we obtain for the modulation frequency Ω(t) ∼ t⁻¹.

Even though each term in the sum tends to zero exponentially fast, the sum as a whole decreases considerably slower. Since for large t only terms with large n are relevant in Eq.(10), we can use Eqs.(11, 15) to obtain ωₙ ≈ 1 − 1/2n² and wₙ(r) ≈ n⁻³/₂w₂∞(r) for r ≪ r = \int₀^∞ w₂³ dr ∼ n². For a localized δW this implies that cₙ ≈ Nn⁻³/₂ with N = \int₀^∞ w₂∞δW dr. As a result, for t → ∞ and for r < r(t) ∼ n(t)² ∼ t²/³ the solution Eq.(10) reduces to w(t,r) = Nw₂∞(r)R(G(t)), with

\[G(t) = e^{-it} \sum_{n>t^{2/3}} \frac{1}{n^3} \exp \left(\frac{it}{2n^2} - \frac{bt}{n^3} \right). \]

This shows that the late time dynamics is indeed universal, since changing the initial conditions affects only the normalization N. The final task is to determine the asymptotic behavior of G(t). Transforming the sum to a contour integral and using the saddle point method, we find that |G(t)| ∼ t⁻⁵/₆ for t → ∞. This t⁻⁵/₆ exponent explains the feature observed in Ref.[4] (Fig.5).

The perturbed monopole thus ends up in a long living breathing state dominated by the confined, slowly radiative massive modes of the gauge field. In the region r ≤ t²/³ this state is characterized by modulated pulsations whose base frequency approaches the vector boson mass, while the amplitude decreases as t⁻⁵/₆.

The total energy of the breather can be obtained by summing over the QNM, E = \sum cₙωₙe⁻²γₙt ∼ \sum n⁻³exp(−2bn⁻³t) ∼ t⁻²/³. This includes the energy of the confined massive w-modes and also that of the massless h-radiation emitted by these modes. E decreases, since there is a flux of the h-radiation at infinity, S = E ∼ t⁻⁵/₃. This value agrees with the result of Eq.(4). Specifically, Fig.2 in [4] shows the flux S ∼ T⁻⁵/₃ at future null infinity, with T ∼ t − r. By continuity, the flux through a 2-sphere of a very large but finite radius r is still S ∼ T⁻⁵/₃. But since t is finite then, for t ≫ r one has T ∼ t, which agrees with out result S ∼ t⁻⁵/₃.

In conclusion, we have found resonant excitations of the monopole and studied some of their applications. Although we have considered above only the BPS monopole, the existence of similar resonances can also be shown in the case of a non-zero Higgs self-coupling λ.

Acknowledgments.— We would like to thank Gyula Fodor and István Rácz for communicating to us their results prior to publication and stimulating discussions.

[1] G. ’t Hooft, Nucl.Phys., B 79 (1974) 276; A.M. Polyakov, JETF.Lett., 20 (1974) 430; M.K. Prasad and C.M. Sommerfield, Phys.Rev.Lett., 35 (1975) 760; E.B. Bogomol’nyi, Sov.J.Nucl.Phys., 24 (1976) 861.
[2] P. Goddard and D.I. Olive, Rep.Prog.Phys., 41 (1978) 1357; J. Preskill, Ann.Rev.Nucl.Part.Sci., 34 (1984) 461; M. Duff, R. Khuri, and J. Lu, Phys.Rep., 259 (1995) 213.
[3] F.A. Bais and W. Troost, Nucl.Phys., B 178 (1981) 125; H. Sonoda, Phys.Lett., B 143 (1984) 142; J. Baeke, Z.Phys., C 53 (1992) 399.
[4] G. Fodor and I. Rácz, hep-th/0311061.
[5] H. Koyama and A. Tomimatsu, Phys.Rev., D 65 (2002) 2084031; F. Finster, N. Kamran, J. Smoller, and S.T. Yau, Commun.Math.Phys., 230 (2002) 201.
[6] K. Kokkotas, B. Schmidt, Living.Rev.Rel., 2 (1999) 2; L. Motl, Adv.Theor.Math.Phys., 6 (2003) 1135.