Mouse models of ciliopathies: the state of the art

Dominic P. Norris¹,* and Daniel T. Grimes¹

The ciliopathies are an apparently disparate group of human diseases that all result from defects in the formation and/or function of cilia. They include disorders such as Meckel-Gruber syndrome (MKS), Joubert syndrome (JBTS), Bardet-Biedl syndrome (BBS) and Alström syndrome (ALS). Reflecting the manifold requirements for cilia in signalling, sensation and motility, different ciliopathies exhibit common elements. The mouse has been used widely as a model organism for the study of ciliopathies. Although many mutant alleles have proved lethal, continued investigations have led to the development of better models. Here, we review current mouse models of a core set of ciliopathies, their utility and future prospects.

Introduction

Over the past decade it has emerged that a diverse and overlapping spectrum of human diseases share a common origin in the cilium, a microtubule-based organelle templated from the centriole (Satir and Christensen, 2007). These diseases have collectively become known as the ciliopathies (Table 1) and have been the subject of many recent reviews (Badano et al., 2006; Fliegauf et al., 2007; Baker and Beales, 2009; Oh and Katsanis, 2012). In addition, the complex biology of making the cilium and its resulting structure are topics that have been well reviewed by others (Rosenbaum and Witman, 2002; Satir and Christensen, 2007; Pedersen et al., 2008). In brief, the cilium comprises nine microtubule doublets, describing a ring, surrounded by a membrane; this 9+0 structure is seen in all primary cilia (Fig. 1). Motile cilia, such as in the trachea, have an additional central pair of microtubules, giving a 9+2 structure (Fig. 1). As the cilium grows, proteins are added at the tip, requiring active transport along the cilium through a process known as intraflagellar transport (IFT). A kinesin-based anterograde IFT motor carries cargo outwards, whereas a cytoplasmic dynein 2 retrograde motor transports cargo back towards the cell body (Fig. 1). These cargos are associated with IFT proteins that facilitate this translocation. Defects in any of these processes impact ciliogenesis (Rosenbaum and Witman, 2002; Satir and Christensen, 2007; Pedersen et al., 2008).

Given the limitations of studying patients, research with mice has proved invaluable for understanding the roles of cilia in health and disease. The designation 'mouse model' has, in recent times, become a catch-all term used to describe any genetic variant, whether or not it truly models a human disorder. These so-called models include mice with spontaneous or chemically derived mutations, or carrying engineered alleles; current technology allows almost any mutation that can be envisaged to be incorporated into the mouse genome. Furthermore, conditional mutations, whereby gene function can be abrogated in a spatially and temporally controlled manner, are also being used widely. Although we discuss all kinds of mouse mutants in this review, for the purpose of lucidity we refer to changes in DNA sequence as 'mutations' (resulting in mutant mice), and reserve the term 'model' to refer to a mouse that closely reflects at least some aspects of human disease. By contrast, we use the term 'tool' to refer to mutations that do not model a disease, but still provide biological insight (Sive, 2011).

In this Perspective, we provide a brief overview of ciliary function, and then set out to address how well the ciliopathies have been modelled in the mouse, reflecting areas in which better models are required and how existing models can be and are being applied. We limit our central discussion to a core subset of ciliopathies, excluding primary ciliary dyskinesia (PCD) and polycystic kidney disease (PKD), which are briefly described in Boxes 1 and 2, respectively.

Roles of cilia: signalling and sensory

For many decades it was thought that the primary cilium was a purely vestigial organelle without function (Bloodgood, 2009). However, in parallel with the discovery of ciliopathies, crucial roles for primary cilia in development and physiology have emerged. Indeed, the numerous requirements for cilia are reflected in the broad spectrum of phenotypes associated with ciliopathies (Fig. 2; Table 1). The immotile 9+0 primary cilium is argued to be primarily a sensory and signalling organelle that is required for the ‘outside-in’ transduction of external stimuli (Marshall and Nonaka, 2006; Christensen et al., 2007; Berbari et al., 2009). By contrast, motile cilia are required for lung clearance, establishment of left-right (L-R) patterning during development, male and female fertility, and cerebrospinal fluid circulation (see Box 1). Recently, it has emerged that motile cilia might also have sensory functions (Bloodgood, 2010).

The role of cilia in cell-cell signalling, although initially controversial, has become increasingly evident. Primary amongst cilia-associated signalling pathway is Hedgehog (Hh); pathway elements are shuttled into and out of the cilium in response to ligand, resulting in changes in the levels of processed and un-
processed Gli signal-transducing proteins (Eggerschwiler and Anderson, 2007; Goetz and Anderson, 2010; Murdoch and Copp, 2010). Individual ciliary mutants exhibit phenotypes that apparently reflect both loss and gain of Hh signalling, owing to the fact that cilia are involved in the processing of both activator and repressor Gli proteins. The role of cilia in both canonical Wnt and non-canonical Wnt/planar cell polarity (PCP) signalling is controversial (Wallingford and Mitchell, 2011). Although some studies suggest that embryos lacking cilia demonstrate neither canonical nor non-canonical Wnt defects, other studies strongly argue that there is a requirement for cilia in Wnt signalling (reviewed in Wallingford and Mitchell, 2011). Indeed, Wnt defects have been specifically linked to ciliopathies. Other signalling pathways have also been linked with cilia, although the full significance of these associations remains to be elucidated. Receptors for both fibroblast growth factor (FGF) and Notch localise to the cilium (Tanaka et al., 2005; Baly et al., 2007), and cilia have also been strongly implicated in linked with cilia, although the full significance of these associations remains to be elucidated. Receptors for both fibroblast growth factor (FGF) and Notch localise to the cilium (Tanaka et al., 2005; Baly et al., 2007), and cilia have also been strongly implicated in linked with cilia, although the full significance of these associations remains to be elucidated. Receptors for both fibroblast growth factor (FGF) and Notch localise to the cilium (Tanaka et al., 2005; Baly et al., 2007), and cilia have also been strongly implicated in

**Mechanistic insights from global and conditional cilia loss**

Given the numerous requirements for cilia in diverse cellular processes, it is unsurprising that complete loss of cilia is devastating to a mouse or a human being. It was through analysis of the most severe ciliogenesis mouse mutants that we gained initial insight into the cellular roles of cilia. Such mutants fulfill Sive’s definition of a tool and cannot be considered models (Sive, 2011).

Mutants lacking the anterograde IFT motor components Kif3a and Kif3b were initially reported to lack nodal cilia (resulting in defective L-R patterning) and to arrest by mid-gestation during development; cilia outside of the node were not examined (Nonaka et al., 1998; Marszalek et al., 1999; Takeda et al., 1999). Only subsequently did it become evident that this lethality resulted from a requirement for IFT in Hh signalling, and that this was impacting tissues beyond the node (Huangfu et al., 2003). In the same analysis Huangfu, Anderson and colleagues demonstrated similar early-lethal phenotypes for the N-ethyl N-nitrosourea (ENU)-derived IFT mutants Ift172<sup>trim</sup> and Ift88<sup>fox</sup> (Huangfu et al., 2003). Mice carrying mutations in Dyn2<sup>ch1</sup>, which encodes a dynein molecule required for retrograde IFT, also demonstrate early embryonic lethality resulting from morphologically abnormal cilia (Huangfu and Anderson, 2005). These catastrophic abnormalities in embryogenesis have been attributed to defective Hh signalling; cilia-derived defects in other pathways simply do not get the opportunity to manifest. As such, major defects in ciliogenesis appear as Hh signalling defects. The existence of such abnormalities in humans is more difficult to assess than is immediately obvious. The equivalent developmental stage at which these defects are lethal in mice is only a few weeks of age in humans; the normal frequency of early miscarriage makes assessing such embryonic deaths challenging, so we cannot completely rule out that these mutants model human defects. Nevertheless, weaker alleles must be used to model the human ciliopathies that we do see.

Owing to the essential requirement for cilia during development, it has been problematic to assess the function of cilia postnatally using conventional mouse mutants. However, when cilia were globally deleted postnatally (>8 weeks of age) by Cre-mediated methods, the resulting mice showed only very slow-onset PKD (Davenport et al., 2007). Strikingly, postnatal cilia loss was shown to result in hyperphagia-induced obesity; this was linked to hypothalamic cilia function (Davenport et al., 2007). Deleting the Pkd1 locus postnatally shed light on the reason why a strong cystic kidney phenotype was not observed following Cre-mediated deletion of cilia. Severe cystic kidney disease was evident with Pkd1

---

**Table 1. Hallmarks of human ciliopathies**

|                          | Alström | BBS   | JBTS  | Jeune | MKS | NPHP | OFD |
|--------------------------|---------|-------|-------|-------|-----|------|-----|
| Cleft palate             | ✔       | ✔     | ✔     | ✔     |     | ✔    |     |
| Cognitive defects        | ✔       | ✔     | ✔     | ✔     | ✔   | ✔    | ✔   |
| Deafness                 |         | ✔     | ✔     | ✔     | ✔   | ✔    | ✔   |
| Encephalocoe             | ✔       | ✔     | ✔     | ✔     | ✔   | ✔    | ✔   |
| Liver disease            | ✔       | ✔     | ✔     | ✔     | ✔   | ✔    | ✔   |
| Obesity                  | ✔       | ✔     | ✔     | ✔     | ✔   | ✔    | ✔   |
| Polydactyly              | ✔       | ✔     | ✔     | ✔     | ✔   | ✔    | ✔   |
| Renal cysts              | ✔       | ✔     | ✔     | ✔     | ✔   | ✔    | ✔   |
| Retinopathy              | ✔       | ✔     | ✔     | ✔     | ✔   | ✔    | ✔   |
| Situs inversus           | ✔       | ✔     | ✔     | ✔     | ✔   | ✔    | ✔   |
| Skeletal defects         | ✔       | ✔     | ✔     | ✔     | ✔   | ✔    | ✔   |

Tick marks indicate presence of a hallmark feature in human ciliopathy patients. BBS, Bardet-Biedl syndrome; JBTS, Joubert syndrome; MKS, Meckel-Grüber syndrome; NPHP, nephropthisis; OFD, orofaciodigital syndrome.
Mouse models of ciliopathies

As for most human diseases, researchers have sought to specifically model the ciliopathies. Although studies have been conducted in various model organisms, the mouse has provided an excellent model system owing to the similarity of its anatomy, physiology and genetics to the human. To date, a large number of mutant ciliopathy alleles have been created and analysed (Table 2), whereas others exist as mutant embryonic stem (ES) cell lines. Given that they are primarily recessive genetic disorders, it might seem that modelling ciliopathies would be relatively simple. However, the hypomorphic nature of many human mutations, probably in combination with copy number variation, impacts human disease phenotypes and therefore makes the generation of accurate models a challenge. The current progress of modelling individual ciliopathies is discussed below.

**Meckel-Gruber syndrome**

Meckel-Gruber syndrome (MKS; OMIM: 249000) is one of the most severe human ciliopathies, consistently resulting in neonatal
PERSPECTIVE

Box 2. The polycystin proteins: ADPKD and links to L-R asymmetry

Autosomal dominant polycystic kidney disease (ADPKD; OMIM: 173900) is characterised by the development of fluid-filled cysts in the kidney and by defects in other tissues (Harris and Torres, 2009), including cystic liver and pancreas, cerebral aneurysms, and cardiac abnormalities. The causative genes were identified as PKD1 and PKD2, which encode polycystin-1 (PC1; also known as PKD1) and polycystin-2 (PC2; also known as PKD2), respectively. Both PC1 and PC2 are large multi-pass transmembrane proteins. Several mouse Pkd1 and Pkd2 mutants have been used for the study of ADPKD. Both homozygous Pkd1- and Pkd2-null mice die between 15.5 dpc and birth, exhibiting severe kidney cysts and vascular defects (Wilson, 2008). Heterozygotes are adult viable and demonstrate a mild phenotype, with low level cysts appearing with age. Pkd1<sup>−/−</sup>, Pkd2<sup>−/−</sup> double heterozygotes are also viable but exhibit accelerated renal cyst appearance compared with single heterozygotes of either gene (Wu et al., 2002).

A model explaining the roles of PKD1 and PKD2 during renal development posits that these proteins are components of a stress-sensing cation channel complexes localised to sensory cilia that project into the kidney lumen. The ectodomain of PKD1 is thought to sense membrane stress caused by fluid flow (Nauli et al., 2003; Praetorius and Spring, 2003). PKD1 contains 15 extracellular PKD domains that have been specifically implicated in stress sensing (Forman et al., 2005; Ma et al., 2009); indeed, PKD domains are ‘hotspots’ for human ADPKD mutations (http://pkdb.mayo.edu). However, to our knowledge, no mouse line harbouring point mutations in any PKD domains of PKD1 has been generated. PKD2 is known to be a nonselective cation channel that binds, via intracellular coiled coil domains, to PKD1 (Hanaoka et al., 2000). Some models posit that stress sensing by PKD1 elicits an intracellular Ca<sup>2+</sup> spike via PKD2 channel activity, resulting in the regulation of intracellular pathways that have anti-growth, and thereby anti-cystic, effects (Harris and Torres, 2009). The polycystin family of proteins also seems to have a role in the breaking of L-R symmetry during embryogenesis (Drummond, 2012). Situs defects and ectopic or absent expression of key L-R genes are evident in mice harbouling mutations in Pkd2 or the Pkd1-related gene Pkd1<sup>II</sup> (Pennekamp et al., 2002; Ermakov et al., 2009; Field et al., 2011); Pkd1 itself seems to have no role in the L-R pathway (Karcher et al., 2005). It could be that a similar mechanism as in the kidney is also in operation in situs determination, namely the sensation of fluid flow by polycystin complexes. Indeed, an intracellular Ca<sup>2+</sup> spike on the left side of the embryo occurs in a flow- and PKD2-dependent manner (McGrath et al., 2003). These observations support the ‘two cilia hypothesis’, which argues that embryo symmetry is broken by motile nodal cilia generating a leftward fluid flow that is then perceived by PKD1<sup>II</sup>-PKD2 complexes in peripheral sensory cilia, thereby eliciting downstream chemical asymmetries.

Mouse models of ciliopathies

Disease Models & Mechanisms - DMM

lethality. Common MKS symptoms and signs include cystic kidneys, liver fibrosis and occipital encephalocele (Table 1). Other ciliopathy-associated defects are also occasionally reported, including neural tube (NT) defects, polydactyly, hydrocephalus, laterality defects, congenital heart malformations, cleft lip and palate, and underdeveloped male genitalia (reviewed in Logan et al., 2011). Ten human MKS loci have been identified (Table 2) and the proteins that they encode have all been associated functionally with the cilium. Notably, phenotypic (Table 1) as well as genotypic overlap exists between MKS and other ciliopathies, particularly lobeur syndrome (JBTS). For example, TMEM216 mutations cause both MKS and JBTS (Valente et al., 2010), whereas mutations in MKS1, TMEM67 and CEP290 also underlie Bardet-Biedl syndrome (BBS). Although it is tempting to speculate that variation in allele strength underpins the syndromic outcome, clear evidence also exists for genetic modification of syndromes (Khan et al., 2009). Mice carrying mutations in Mks1, Mm967, Cep290, Cc2d2a, Nphp3, Tctn2, B9d1 and B9d2 now exist (Table 2). Some of these mutants seem to closely mirror human MKS. However, in most cases, more phenotypic analysis is required to fully assess whether they model the human syndrome.

To date, two of the best mouse models for human MKS are those carrying mutations in the Mks1 gene. The ENU-derived Mks1<sup>bck</sup> allele, a splice-site mutation, results in the loss of detectable Mks1 transcript and presumably the protein (Weatherbee et al., 2009); intriguingly, an equivalent homologous mutation has been reported in humans with MKS (Frank et al., 2007). On a mixed genetic background, homozygotes arrested between 18.5 days post coitum (dpc) and shortly after birth, displaying a plethora of phenotypes highly similar to those observed in individuals with MKS: polydactyly, multiple bile duct formation, neural defects (including exencephaly), defects in supraoccipital bone formation, cystic kidneys, L-R patterning defects, pulmonary hypoplasia, hydrocephalus, genitourinary defects and, in one case, cleft palate (Weatherbee et al., 2009). Mks1<sup>bck</sup> mutants also displayed ovarian defects and a reduced presphenoid bone; for this reason, the authors of that study suggest that a detailed analysis of Mks1<sup>bck</sup> might define novel features of MKS. A second ENU-derived mutation (Mks1<sup>del64-323</sup>), which deletes the probably important B9 domain of Mks1, prevents the protein from localising to its normal domain at the basal body and centrosome (Cui et al., 2011). Homozygous mutants demonstrated cleft lip, eye defects, polydactyly, heart malformations, L-R patterning defects including polycystin or asplenia, kidney enlargement with cysts, liver cysts, and several skeletal abnormalities, which are all hallmarks of human MKS. The defects demonstrated by Mks1<sup>del64-323</sup> were stronger than those of Mks1<sup>bck</sup> mutants, perhaps implying that Mks1<sup>del64-323</sup> is a dominant-negative allele (Cui et al., 2011). Recently, a B9d1-null mouse has been described that exhibits MKS-like phenotypes, including large cystic kidneys, ductal plate malformations, polydactyly, occasional exencephaly and other hallmarks of ciliopathies, including dextrocardia (indicative of L-R patterning defects), holoprosencephaly and eye defects (Dowdle et al., 2011). Phenotypically, these mutants are all relatively good models of human MKS.

Mks1<sup>bck</sup>, Mks1<sup>del64-323</sup> and B9d1-null mutants were all found to exhibit very few cilia on the embryonic node, NT and limb bud mesenchyme, whereas tracheal and bile duct cilia numbers were unaffected (Weatherbee et al., 2009; Cui et al., 2011; Dowdle et al., 2011). The node cilia defects probably underpin the L-R patterning abnormalities, whereas disrupted Hh signal transduction probably underlies both NT and limb patterning defects. Analysis in human cells showed that MKS1 is required for docking the basal body to the apical actin cytoskeleton (Dawe et al., 2007). However, basal body docking proved to be normal in Mks1<sup>del64-323</sup> mutants (Weatherbee et al., 2009). The reason for this discrepancy is not clear, but might reflect differences between mouse and human cells, or perhaps differences in the cell types assessed. Embryonic fibroblasts isolated from B9d1-null mice possess structurally normal cilia but still demonstrate reduced Hh signalling capacity, and a number of proteins that normally localise to cilia failed to localise to B9d1-deficient cilia (Dowdle et al., 2011). Thus, B9d1 is not only required for ciliogenesis in some contexts but also for proper protein localisation to the ciliary compartment. Similar findings have recently been made for Tctn2 (also known as MKS8), Tmem67
Disease Models & Mechanisms

(MKS3) and Cc2d2a (MKS6) (Garcia-Gonzalo et al., 2011), implying that MKS-associated proteins might have roles in ciliary protein import as well as in promoting ciliogenesis.

Orofaciodigital syndrome

Orofaciodigital syndrome (OFDS; OMIM: 311200), as its name suggests, encompasses oral, facial and digital defects. Oral and facial malformations include lingual hamartomas, accessory oral frenula, cleft palate, bifid or trifid tongue, telecanthus or hypertelorism, cleft lip, and alar hypoplasia or notching. Poly- and syndactyly, as well as camptodactyly, are evident both pre- and postnatally, reflecting alterations in neurodevelopment. Hypothalamic cilia in the brain play a role in appetite and obesity. Kidney cilia defects result in polycystic kidney disease (PKD; Box 2), a phenotype that is most severe when the defects are present embryonically or immediately postnatally. Similar cystic phenotypes are reported in both the pancreas and liver, often seen together with fibrosis. PKD is believed to result from a requirement for cilia in flow detection within kidney tubules. A similar mechanism of cilia-dependent flow detection is argued to act during embryogenesis, during which it influences situs (L-R patterning); defective situs is a common indicator of ciliopathies.

X-inactivation (de Conciliis et al., 1998), meaning that variability cannot be attributed to the randomness of X-inactivation. As well as the standard triad of defects, brain malformation and polycystic kidneys are also commonly seen in OFDS (Toriello, 2009).

An Ofd1-null mouse has been engineered. However, both hemizygous male and heterozygous female embryos or pups fail to survive, meaning that it cannot be bred. This has been overcome by use of a conditional allele that is deleted preimplantation, permitting analysis of both heterozygous females and hemizygous males (Ferrante et al., 2006). Male embryos (completely lacking gene function) were small, did not turn and died by ~11.5 dpc, although development had arrested 1-2 days earlier. A striking pericardial oedema was evident, accompanied by randomisation or failure of heart looping, suggesting defective L-R patterning. These effects were mediated in part through defective Hh signalling, as assayed by NT, bone and limb patterning; absence of nodal cilia underlies the L-R patterning defects (Ferrante et al., 2006; Bimonte et al., 2011). In contrast to the situation in humans, the mouse Ofd1 locus undergoes random X-inactivation, resulting in clones of cells with activity and others lacking activity (Ferrante et al., 2003). Heterozygous Ofd1°/− females died at birth, demonstrating what might be argued to be an extreme version of the human syndrome. The pups were small, with craniofacial defects including cleft palate, which possibly underlies the lethality. Brain disorganisation, reduced lung size, cardiac great vessel defects and cystic kidneys were also reported (Ferrante et al., 2006). In female mutants, cilia were missing from the cells within kidney cysts, whereas adjacent cells were ciliated; it seems likely that this reflects X-inactivation clones (Ferrante et al., 2006). However, this loss of cilia phenotype is not shared by all cell types, because the node remained ciliated in mutant embryos; close inspection of the published images did suggest that some of these cilia might be dysmorphic. However, the incidence of many aspects of the human syndrome have not been explicitly investigated, meaning that the quality of this mouse as a model of OFDS remains unclear.

**Joubert syndrome**

First described by Marie Joubert, Joubert syndrome (JBTS; OMIM: 213300) is an autosomal recessive disorder that comprises mental retardation, abnormal breathing, atypical eye movements and ataxia in association with agenesis of the cerebellar vermis (Sattar and Gleeson, 2011). Central to its identification has become the ‘molar tooth sign’, identifiable through brain imaging (Paris, 2009). This reflects the neurodevelopmental defects that underlie this condition. Both retinal dystrophy and renal anomalies are also associated with a proportion of JBTS cases (Sattar and Gleeson, 2011). Genetically, 15 loci have been identified that are argued to cause JBTS (Table 2); as for MKS, many of these have also been identified in other ciliopathies.

In the mouse, homozygous loss of Inpp5e, the JBTS1 locus, resulted in lethality late in development, associated with polydactyly, cystic kidneys, anophthalmia, decreased bone ossification and exencephaly (Jacoby et al., 2009); all are indications of a severe ciliopathy. This was accompanied not by cilia loss but by deformation. Postnatal deletion of an Inpp5e conditional allele resulted in obesity and low-level cystic kidneys (Jacoby et al., 2009), similar to the effects of postnatal cilia loss through other loci (Davenport et al., 2007). Although it is possible that a very specific
### Table 2. Mouse mutants of ciliopathy genes

| Locus (protein) | Mutants | Type | Viability | Key references |
|-----------------|---------|------|-----------|----------------|
| **Alström**     |         |      |           |                |
| Alms1 (Alms1)   | Alms1Gfo | Spontaneous | AV | Arsov et al., 2006b |
|                 | Alms1L2131X | ENU – truncation at exon 10 | AV | Li et al., 2007 |
|                 | Alms1QD001T2Drys | Gene trap – hypomorph | AV | Collin et al., 2005 |
| **BBS**         |         |      |           |                |
| Bbs1 (Bbs1)     | Bbs1GfX | Gene trap – probably null | EL, AV | Kulaga et al., 2004 |
|                 | Bbs1IV (M390R) | Targeted knock-in | AV | Davis et al., 2007 |
| Bbs2 (Bbs2)     | Bbs2L2131X | Targeted – null | AV | Nishimura et al., 2004 |
| Bbs3 (Arl6)     | Arl6IV | Targeted deletion – transcript specific | AV | Pretorius et al., 2010 |
| Bbs4 (Bbs4)     | Bbs4GfX | Gene trap | EL, birth, AV | Kulaga et al., 2004 |
|                 | Bbs4IV | Targeted – null | EL, birth, AV | Mykytyn et al., 2004 |
| Bbs5 (Bbs5)     | None |      |           |                |
| Bbs6 (Mks)      | MksGfX | Gene trap | EL, AV | Ross et al., 2005 |
|                 | MksIV | Targeted – null | EL, AV | Fath et al., 2005 |
| Bbs7 (Bbs7)     | Bbs7null | Targeted | ND | Zhang et al., 2012 |
| Bbs8 (Tct8)     | Tct8IV | Targeted reporter – null | AV | Tadenev et al., 2011 |
| Bbs9 (Bbs9)     | None |      |           |                |
| Bbs10 (Bbs10)   | None |      |           |                |
| Bbs11 (Trim32)  | Trim32IV | Targeted knock-in – hypomorph | AV | Kulagashova et al., 2009 |
|                 | Trim32GfX | Gene trap – probably null | AV | Kulagashova et al., 2011 |
| Bbs12 (Bbs12)   | None |      |           |                |
| Bbs13 (Mks1)    | MksIV | ENU – probably null | EL | Weatherbee et al., 2009 |
|                 | MksIV | ENU – possible dominant negative | EL | Cui et al., 2011 |
| Bbs14 (Cep290)  | Cep290null | Spontaneous | AV | Chang et al., 2006 |
|                 | Cep290IV | Targeted – null | AV | Lancaster et al., 2011 |
| Bbs15 (Dmdpc)   | None |      |           |                |
| Bbs16 (Sdccg8)  | None |      |           |                |
| **JBTS**        |         |      |           |                |
| Jbts1 (Inpp5e)  | Inpp5eIV | Targeted conditional – null | EL (global KO) | Jacoby et al., 2009 |
| Jbts2 (Tmem216 and Tmem138) | None | | | |
| Jbts3 (Jouberin) | AhjIV | Targeted – null | PNL (80%) | Lancaster et al., 2009; Lancaster et al., 2011 |
|                 | AhjIV | Targeted reporter – null | ND | Hsiao et al., 2009; Westfall et al., 2010 |
| Jbts4 (Nphp1)   | Nphp1IV | Targeted – null | AV | Jiang et al., 2008 |
|                 | Nphp1IV | Targeted – null | AV | Louie et al., 2010 |
| Jbts5 (Cep290)  | Cep290null | Spontaneous | AV | Chang et al., 2006 |
|                 | Cep290IV | Targeted – null | AV | Lancaster et al., 2011 |
| Jbts6 (Tmem67)  | Tmem67null | Targeted reporter | PNL | Garcia-Gonzalo et al., 2011 |
| Jbts7 (Rppgril) | Rppgrilnull | Targeted – null | Birth | Vierkotten et al., 2007 |
| Jbts8 (Aril3b)  | Aril3bnull | ENU – null | EL | Caspary et al., 2007 |
| Jbts9 (Cc2d2a)  | Cc2d2aIV | Gene trap – null | EL | Garcia-Gonzalo et al., 2011 |
| Jbts10 (Ofd1)   | Ofd1null | Targeted conditional – null | Male: EL; female: birth | Ferrante et al., 2006 |
| Jbts11 (Tct21b) | Tct21bIV | ENU – probably null | EL | Tran et al., 2008 |
| Jbts12 (Kif7)   | Kif7null | Targeted – null | Birth | Cheung et al., 2009 |
|                 | Kif7IV | ENU – null | EL (late) | Liem et al., 2009 |
| Jbts13 (Tctn1)  | Tctn1null | Gene trap – null | EL | Reiter and Skarnes, 2006 |
| Jbts14 (Tmem237) | None | | | |
| Jbts15 (Cep41)  | Tsga1null | Gene trap – null | EL | Lee et al., 2012 |
deletion at a certain time or in certain tissues might accurately model JBTS, it seems more likely that a hypomorphic allele would be required. Quite strikingly, most null alleles for JBTS loci follow this same pattern: they are embryonic lethal and result in classic, severe ciliopathy phenotypes (Table 2).

By contrast, targeted deletion of the JBTS3 locus in mice (Ahi1; encoding the Jouberin protein) more closely models aspects of the human syndrome. Importantly, homozygous null mice survive to birth, although they show runting and the majority (80%) do not survive to adulthood. Those that do survive develop

---

**Table 2. Continued**

| Locus (protein) | Mutants | Type | Viability | Key references |
|----------------|---------|------|-----------|----------------|
| Jeune          |         |      |           |                |
| Atd1 (Atd1)    | None    |      |           |                |
| Atd2 (IFT180)  | Ift80<sup>tm1OtpK</sup>Wev | Gene trap – strong hypomorph | Mostly EL; some AV | Rix et al., 2011 |
| Atd3 (Dyn2h1)  | Dyn2h1<sup>I<sub>Giemsa2Lig394</sub></sup> | Gene trap | EL | Garcia-Garcia et al., 2005 |
|                | Dyn2h1<sup>Cre</sup> | ENU | EL | Huangfu and Anderson, 2005 |
| Atd4 (Ttc21b)  | Ttc21b<sup>wt</sup> | ENU – probably null | EL | Tran et al., 2008 |
| Atd5 (Wdr19)   | Ift144<sup>wt</sup> | ENU – hypomorph | EL | Ashe et al., 2012 |
| MKS            |         |      |           |                |
| Mks1 (Mks1)    | Mks1<sup>1<sub>del</sub>2<sub>del</sub></sup> | ENU – dominant negative | EL | Cui et al., 2011 |
|                | Mks1<sup>1<sub>del</sub>2<sub>del</sub></sup> | ENU – probably null | EL | Weatherbee et al., 2009 |
| Mks2 (Tmem216) | None    |      |           |                |
| Mks3 (Tmem67)  | Tmem67<sup>1<sub>del</sub>2<sub>del</sub></sup> | Targeted reporter | PNL | Garcia-Gonzalo et al., 2011 |
| Mks4 (Cep290)  | Cep290<sup>wt</sup> | Spontaneous | AV | Chang et al., 2006 |
| Mks5 (Rpgrip11)| Rpgrip11<sup>wt</sup> | Targeted – null | AV | Lancaster et al., 2011 |
| Mks6 (Cc2d2a)  | Cc2d2a<sup>tm1OtpK</sup> | Gene trap – null | EL | Garcia-Gonzalo et al., 2011 |
| Mks7 (Nphp3)   | Nphp3<sup>3<sub>del</sub>3</sup> | Hypomorphic | AV | Olbrich et al., 2003 |
|                | Nphp3<sup>3<sub>del</sub>3</sup> | Targeted – null | EL | Bergmann et al., 2008 |
| Mks8 (Tctn2)   | Tctn2<sup>2<sub>del</sub>2<sub>del</sub></sup> | Targeted – null | EL | Garcia-Gonzalo et al., 2011; Sang et al., 2011 |
| Mks9 (B9d1)    | B9d1<sup>1<sub>del</sub>2<sub>del</sub></sup> | Gene trap – null | EL | Dowdle et al., 2011 |
| Mks10 (B9d2)   | B9d2/Tgfb1<sup>tm1.1Reit</sup> | Targeted deletion | ND | Town et al., 2008 |
| NPHP           |         |      |           |                |
| Nphp1 (Nphp1)  | Nphp1<sup>1<sub>del</sub>2<sub>del</sub></sup> | Targeted – null | AV | Jiang et al., 2008 |
|                | Nphp1<sup>1<sub>del</sub>2<sub>del</sub></sup> | Targeted – null | AV | Louie et al., 2010 |
| Nphp2 (Invs)   | Invs<sup>wt</sup> | Random insertion | AV | Yokoyama et al., 1993 |
| Nphp3 (Nphp3)  | Nphp3<sup>3<sub>del</sub>3</sup> | Hypomorphic | AV | Olbrich et al., 2003 |
|                | Nphp3<sup>3<sub>del</sub>3</sup> | Targeted – null | EL | Bergmann et al., 2008 |
| Nphp4 (Nphp4)  | Nphp4<sup>1<sub>del</sub>2<sub>del</sub></sup> | ENU | AV | Won et al., 2011 |
| Nphp5 (Iqc1b1) | None    |      |           |                |
| Nphp6 (Cep290) | Cep290<sup>wt</sup> | Spontaneous | AV | Chang et al., 2006 |
| Nphp7 (Glis2)  | Glis2<sup>1<sub>del</sub>2<sub>del</sub></sup> | Targeted – null | AV | Lancaster et al., 2011 |
| Nphp8 (Rpgrip11)| Rpgrip11<sup>1<sub>del</sub>2<sub>del</sub></sup> | Targeted reporter | AV | Attanasio et al., 2007 |
| Nphp9 (Nek8)   | Nek8<sup>1<sub>del</sub>2<sub>del</sub></sup> | Possible hypomorph | AV | Liu et al., 2002 |
| Nphp10 (Sdc2a1) | None    |      |           |                |
| Nphp11 (Tmem67)| Tmem67<sup>1<sub>del</sub>2<sub>del</sub></sup> | Targeted reporter | PNL | Garcia-Gonzalo et al., 2011 |
| Nphp12 (Ttc21) | Ttc21b<sup>wt</sup> | ENU – probably null | EL | Tran et al., 2008 |
| OFD            |         |      |           |                |
| Otf1 (Otf1)    | Otf1<sup>1<sub>del</sub>2<sub>del</sub></sup> | Targeted conditional – null | Male: EL Female: birth | Ferrante et al., 2006 |

<sup>88</sup> mutants are reported in Zhang et al., 2012; the nature of the allele is not clear.

BBS, Bardet-Biedl syndrome; JBTS, Joubert syndrome; MKS, Meckel-Gruber syndrome; NPHP, nephronophtisis; OFD, orofaciodigital syndrome; EL, embryonic lethal; AV, adult viable; PNL, postnatal lethal; ND, not determined; KO, knock out; blue, gene traps and targeted alleles; red, chemical mutagenesis; green, spontaneous.
nephronophthisis (NPHP) (Lancaster et al., 2009). In addition, between 2 to 4 weeks of age they demonstrate defects in retinal outer segment development and photoreceptor apoptosis, resulting from abnormal opsin distribution (Louie et al., 2010), a phenotype associated with NPHP. This is in part explained by the fact that Jouberin and Nphp1 proteins interact (Eley et al., 2008), a finding supported by evidence of genetic interactions in the eye (Louie et al., 2010). A second targeted Ahi1-null allele has been studied and is reported to exhibit reduced levels of Rab8a in photoreceptors (Hsiao et al., 2009; Westfall et al., 2010); Rab8a is required for vesicle trafficking from post-Golgi membranes to the plasma membrane near the ciliary transition zone. Some outer segment proteins are also reduced in Ahi1-null mice, suggesting that the retinal degeneration phenotype results from defective transport and protein stabilisation in photoreceptors (Westfall et al., 2010). Perhaps the most significant element of JBTS is the neural defects. Re-analysis of the Ahi1-null mouse revealed a reduced cerebellum and underdeveloped vermis, which is similar but much less severe than observed in individuals with JBTS (Lancaster et al., 2011). Cell-based assays supported a role for Jouberin in Wnt signalling (Lancaster et al., 2009). Subsequent analysis in the Ahi1-null using an in vivo reporter revealed reduced midline Wnt signalling. Reduced cell proliferation, consistent with the known role of Wnt proteins as mitogens, was also detected. Rescue of both the morphological and proliferative defects, using a Wnt agonist, provided strong evidence for the role of Wnt signalling in JBTS (Lancaster et al., 2011).

Two mouse mutants for Cep290 (Jbts5) have been characterised. The first carries the retinal degeneration 16 (Cep290<sup>tm1jgg</sup>) allele, an in-frame deletion of 298 residues of the 2472 amino acid protein (Chang et al., 2006). The second mutant, Cep290<sup>tm1ljo</sup>, carries an engineered null allele (Lancaster et al., 2011). Both mutations are adult viable, but demonstrate early-onset retinal degeneration in addition to some degree of runting. Anosmia is reported for Cep290<sup>tm1ljo</sup> mice (McEwen et al., 2007), a phenotype not discussed in the Cep290<sup>tm1ljo</sup> analysis. Strikingly, mice carrying the null but not the Cep290<sup>tm1ljo</sup> allele also demonstrate cerebellar hypoplasia, with midline-vermis fusion, highly similar to the Ahi1-null phenotype (Lancaster et al., 2011).

The degree to which all aspects of JBTS have or even can be modelled in mouse is difficult to assess. The molar tooth sign itself might prove specific to humans, but of course this is a diagnostic indicator, so its absence might not be significant in modelling the syndrome. Differences in the nature of the normal human and mouse cerebellum could be more significant, with the far more complex nature in humans providing greater scope for defects and phenotypes. Further phenotypic analysis of behavioural phenotypes could prove fruitful in beginning to answer such questions.

**Jeune syndrome**

Jeune syndrome (OMIM: 208500), also known as asphyxiating thoracic dysplasia (ATD), is a chondrodysplasia that results in a constricted rib cage, polydactyly, short limbs and short stature. A high level of infant mortality is seen, resulting from respiratory insufficiency. Children that survive usually develop kidney cysts and liver defects including fibrosis (Oberklaid et al., 1977). Retinal degeneration and pancreatic cysts are also seen (Keppler-Noreuil et al., 2011). Five human ATD loci have been identified (Table 2). Hypermorphic alleles of the IFT-associated genes IFT80, TTC21B, DYN2CH1 and WDR19 (also known as IF144) underlie ATD2, 3, 4 and 5, respectively, whereas the locus mutated in ATD1 remains to be identified. Notably, TTC21B mutations also underlie some NPHP cases (Table 2).

Mouse mutants exist for Ift80, Ttc21b, Dyn2c1 and Wdr19. A gene-trap allele of Ift80 is argued to be a strong hypomorph, showing low levels of wild-type transcript (Rix et al., 2011). This allele results in a high level of embryonic lethality, but on rare occasions mice survive past birth. These survivors demonstrate shortening of the long bones, rib-cage constriction and polydactyly; situs inversus, kidney cysts and retinal degeneration were explicitly screened for but not detected. Examination of ciliation and Hh signalling in fibroblasts revealed apparently normal cilia but reduced signalling (Rix et al., 2011). This mutant models many aspects of ATD, but is difficult to analyse owing to high rates of lethality. The presence of some survivors raises the question of whether random segregation of genetic background might contribute to the variability, but these details are not published.

Mice carrying ENU-derived point-mutant and gene trap Dyn2c1h alleles have been analysed (Table 2). Both mutants exhibit a very severe ciliopathy phenotype with early lethality resulting from abnormal ciliogenesis and the associated defects in Hh signalling (Garca-Garcia et al., 2005; Huangfu and Anderson, 2005). Similarly, the ENU-derived Ttc21h<sup>tm5</sup> point mutant shows a severe ciliopathy, dying mid-gestation (Tran et al., 2008). This is a presumed null allele, because protein is undetectable in mutants. Ttc21h<sup>tm5</sup> embryos exhibit cili abnormalities caused by defective retrograde IFT that results in faulty Hh signalling. The cilia themselves show a bulb-like thickening at the tip and accumulation of IF188 protein (Tran et al., 2008). Clearly, these mutants do not model Jeune syndrome, and it seems reasonable to speculate that a first step towards generating a model would be to engineer weaker alleles – global hypomorphs, patient-associated point mutations or specific conditional deletions.

**Bardet-Biedl syndrome**

Bardet-Biedl syndrome (BBS; OMIM: 209900) is characterised by features that include cognitive impairment, obesity, retinal degeneration, anosmia, cystic kidneys and polydactyly; abnormal situs is also occasionally seen (Tobin and Beales, 2007; Zaghloul and Katsanis, 2009). BBS is genetically heterogeneous, with 16 loci having been identified in humans (Table 2). Initially argued to be genetically recessive, evidence of triallelic inheritance or strong genetic modification of penetrance has been reported (Burghes et al., 2001; Katsanis et al., 2001). However, this remains controversial, as evidenced by a recent study of 29 families that found no evidence of complex genetic inheritance (Abu-Safieh et al., 2012). Similarly to loci associated with MKS and JBTS, BBS loci can underlie multiple ciliopathies (Table 2). Proteins encoded by the BBS loci localise primarily to the ciliary basal body and axoneme (Zaghloul and Katsanis, 2009); many of them are components of the so-called BBSome, a protein complex argued to be involved in ciliary targeting (Jin and Nachury, 2009; Jin et al., 2010).

Mouse mutants exist for a number of BBS loci (Table 2). Two Bbs1 alleles have been analysed. The gene-trap Bbs1<sup>1<sup>GT</sup>NK</sup> results in loss of detectable mRNA (Kulaga et al., 2004). Approximately half of the homozygotes die in utero, with the remainder demonstrating runting at birth. By 10 weeks of age, 10% are obese.
and 30% exhibit retinal degeneration, clearly modelling aspects of the human syndrome. However, polydactyly, and renal, liver and situs defects were not reported for Bbs1<sup>GTm2</sup> mutants (Kulaga et al., 2004). Defects were evident in olfactory protein localisation (Kulaga et al., 2004), but olfaction itself has not been tested in these mice. Subsequently, it has emerged that there are also defects in neuronal migration in Bbs1<sup>GTm2</sup> mice (Ishizuka et al., 2011). The second allele (Bbs1<sup>M390R</sup>) specifically models the common M390R human mutation (Davis et al., 2007). Aspects of the human syndrome exhibited by this mutant include retinal degeneration, male infertility and obesity resulting from hyperphagia; obese mice were hyperleptinaemic and demonstrated reduced locomotor activity. Ependymal cell cilia maintained a normal 9+2 ultrastructure, but some were elongated and abnormally swollen at the distal ends (Davis et al., 2007).

An engineered null allele of Bbs2 (Bbs2<sup>2<sup>tm1Vcs</sup></sup>) is adult viable, but also results in small pups at birth, and retinal degeneration and obesity (with hyperphagia) by a few weeks of age (Nishimura et al., 2004). In addition, cystic kidneys were evident in Bbs2<sup>2<sup>tm1Vcs</sup></sup> mice, a BBS phenotype not reported in Bbs1 mutants. Defective sperm flagellation, resulting in male infertility, was also reported. Olfaction, when examined, was found to be defective (Nishimura et al., 2004).

Two Bbs4 alleles have been analysed (Table 2). Mice carrying a gene-trap (Bbs4<sup>2<sup>tm1Vcs</sup></sup>) or an engineered null (Bbs4<sup>tm1Vcs</sup>) allele both showed pre- or perinatal lethality (Kulaga et al., 2004; Mykytyn et al., 2004). Pups were runted at weaning, but became obese with age, demonstrating aspects of metabolic disease including fatty liver in the engineered null (Kulaga et al., 2004; Mykytyn et al., 2004). Retinal degeneration was also evident in mutants, with greater loss of cone than rod function (Mykytyn et al., 2004; Eichers et al., 2006). Furthermore, Bbs4<sup>2<sup>tm1Vcs</sup></sup> and Bbs4<sup>M390R</sup> exhibited reduced social dominance (Eichers et al., 2006; Davis et al., 2007). Although no renal defects were initially reported, subsequent analysis has revealed cystic kidneys in Bbs4<sup>2<sup>tm1Vcs</sup></sup> mice (Guo et al., 2011), but polydactyly was not exhibited (Mykytyn et al., 2004; Eichers et al., 2006).

Recently, various studies have examined multiple Bbs mutants in parallel for additional phenotypes. It has thus emerged that mice null for Bbs2, Bbs4 or Bbs6 (Table 2) are resistant to leptin activity, suggesting a putative mechanism underlying obesity in BBS (Seo et al., 2009). When tracheal cilia were examined in Bbs1, Bbs2, Bbs4 and Bbs6 mutant mice, they exhibited terminal bulges and abnormal beat frequencies (Shah et al., 2008); it remains unknown to what extent this models a phenotype seen in humans with BBS. Similarly, morphological evaluation of brain neuroanatomy revealed ventriculomegaly of the lateral and third ventricles, thinning of the cerebral cortex, and reduced volume of the corpus striatum and hippocampus (Davis et al., 2007). Again, the relevance of this phenotype to individuals with BBS is presently unclear.

**Alström syndrome**

Alström syndrome (ALMS; OMIM: 203800) is a rare ciliopathy (~50 diagnosed cases in the UK) characterised by cone-rod dystrophy leading to blindness, childhood obesity, hearing loss, hyperinsulinaemia, type 2 diabetes and dilated cardiomyopathy, together with pulmonary, renal, urological and hepatic dysfunction and chronic respiratory tract infections (reviewed in Marshall et al., 2011a). This autosomal recessive disorder is caused by **ALMS1** mutations, of which ~100 are known (Marshall et al., 2011b). **ALMS1** is a 23 exon gene that is thought to be transcribed as multiple splice variants that might have different cellular functions. The gene is expressed widely in the tissues that are affected in ALMS, including photoreceptors, liver, pancreatic islet cells, organ of Corti, renal tubules and the hypothalamus. Disease-causing **ALMS1** mutations are typically nonsense and frameshift mutations.

There are a multitude of **Alms1** mouse mutants, including ENU mutants, gene-trapped alleles and spontaneous mutations (Table 2). The **Alms1<sup>fat</sup]** (fat aussie) mutant, harbouring a spontaneous 11 bp deletion in exon 8, displays impaired hearing in aged mice, obesity (probably caused by hyperphagia), type 2 diabetes, dilated renal tubules and fibrotic liver (Arsov et al., 2006a; Arsov et al., 2006b; Larter et al., 2009). Male **Alms1<sup>bdo</sup>** mice are sterile owing to germ cell loss and spermatid flagellation deficiencies. Furthermore, cilia in renal tubules are lost in aged **Alms1<sup>bdo</sup>** mice. An ENU-induced mutation (**Alms1<sup>L213I</sup>**), causing a nonsense mutation in exon 10 is a weaker allele but still causes renal cilia loss with aging, as well as obesity, type 2 diabetes, defective sperm formation and steatosis. Hearing was not assessed in **Alms1<sup>L213I</sup>** mutants, but vision was found to be impaired, with defects in rhodopsin transport (Li et al., 2007). An **Alms1** gene-trapped mouse model, **Alms1<sup>G3XH152</sup>** (Table 2), also exhibits some classical ALMS features (Collin et al., 2005; Jagger et al., 2011), including progressive photoreceptor degeneration, obesity, hyperglycaemia, hypogonadism in males, enlarged kidneys and hepatic fibrosis (Collin et al., 2005). ALMS1 localises to the basal body of the kinocilium in the cochlea, and **Alms1<sup>G3XH152</sup>** mutants exhibit abnormalities of the stereociliary bundles as well as lesions in the stria vascularis, and progressive loss of sensory and intermediary cells (Jagger et al., 2011). Intriguingly, **ALMS1** remains localised to the centrosome in cells lacking cilia, perhaps indicating non-ciliary roles for the protein (Jagger et al., 2011).

**Nephronophthisis**

Nephronophthisis (NPHP; OMIM: 256100) is an autosomal recessive nephropathy and the most prevalent genetic disorder causing end-stage renal disease (ESRD) in juveniles. Individuals with NPHP type 1 develop polyuria, polydipsia, anaemia and secondary enuresis; ESRD manifests at an average age of 13 years, although symptoms rarely become apparent before 6 years. A rare infantile form of the disease causes ESRD by 5 years. Many individuals with NPHP exhibit extra-renal symptoms, including retinitis pigmentosa, oculomotor apraxia, coloboma, polydactyly, skeletal dysplasia, short ribs, encephalocoele and liver fibrosis, as well as occasional situs inversus, cardiac malformations and bronchiectasis (Wolf and Hildebrandt, 2011). To date, twelve loci have been implicated in NPHP, many of which also underlie other ciliopathies (Table 2). Mouse mutants are available for ten of the loci; only **Iqcb1** and **Sdecag8** have not been mutated, although mutant ES cell lines are available.

The **Nlph1** locus has been mutated (Jiang et al., 2008; Jiang et al., 2009; Louie et al., 2010), although mice carrying the alleles produced (null alleles) exhibit retinitis and defects in spermato genesis, but not cystic kidneys. This difference in phenotype might be due to more complex genetics in human NPHP (Louie et al., 2010) or to species-specific differences in gene
function. The NPHP9 locus encodes the serine-threonine kinase gene NEK8. The Nek8<sup>esk</sup> mouse, a putative hypomorph (Liu et al., 2002), develops cystic kidney disease, progressively worsening to renal failure and death at ~6 months of age. The missense mutation encoded by Nek8<sup>esk</sup> is a glycine-to-valine change in an RCC repeat; missense mutations in RCC8 RCC repeats have also been found in humans with NPHP (Otto et al., 2008), suggesting that Nek8<sup>esk</sup> might model some cases of human NPHP at the sequence level as well as phenotypically.

An Nphp3 loss-of-function mutation in mouse (Nphp3<sup>tm1Cbe</sup>; Table 2) results in congenital heart defects, situs inversus and mid-gestation embryonic lethality; this probably models severe truncating NPHP3 mutations, which cause a spectrum of early patterning defects in humans that resemble those seen in MKS (Bergmann et al., 2008). The phenotype of the Nphp3<sup>gr5</sup> cystic kidney mouse model (probably a hypomorphic Nphp3 allele) closely resembles the renal pathology of adolescent NPHP patients (Olbrich et al., 2003; Bergmann et al., 2008). Interestingly, the Nphp3<sup>gr5</sup> mouse has been used in cystic kidney treatment studies; it is responsive to treatment by a vasopressin V2 receptor antagonist (Gattone et al., 2003).

Infantile NPHP, caused by mutations in NPHP2 (INVS), is characterised by ESRD by 5 years, and has been associated with situs inversus and cardiac malformations (Salomon et al., 2009). Retinitis pigmentosa is also occasionally associated with NPHP2 mutations (O’Toole et al., 2006). The Inv<sup>inv</sup> mutation, generated by random insertional mutagenesis, causes situs inversus (Yokoyama et al., 1993) owing to defective fluid flow at the embryonic node (Okada et al., 1999). Additional roles in cardiac morphogenesis, independent of global L-R asymmetry determination, have also been argued (McQuinn et al., 2001). Furthermore, kidneys of Inv<sup>inv</sup> mutant mice exhibit defects including cyst formation and a delay in tubular maturation (Yokoyama et al., 1993; Sugiyama and Yokoyama, 2006). The early lethality of this mouse mutant detracts from its utility as a model, although it has proven to be an excellent tool.

The ENU-derived mutant Nphp4<sup>tm192</sup>, containing a nonsense mutation in exon 4, has proven a useful tool in understanding the eye defects of individuals with NPHP. Homozygous mutants develop photoreceptor degeneration by 9 weeks of age; outersegments fail to develop properly, whereas synaptic ribbons seem to degenerate at postnatal day 14 (Won et al., 2011). These defects manifest in the presence of a structurally normal connecting cilium in mutants. However, homozygous Nphp4<sup>tm192</sup> mutants exhibit no renal phenotypes; thus, this mouse should be viewed as a valuable tool for elucidating the role of Nphp4 in the retina, but not as a model of human NPHP.

Translational prospects

The obvious utility of mouse ciliopathy models is in understanding the cellular and molecular basis of the defects. Moreover, models allow the progression of diseases to be systematically followed in a highly controlled manner, both pre- and postnatally, an analysis that is not possible to assess in humans. It is hoped that applying knowledge gained through the study of mouse models will reveal targeted approaches to treatment using existing or novel therapies. Where human defects can be rescued postnatally through gene therapy, treating models will present an important stepping stone in therapy development. Human mutations that introduce premature stop codons, leading to protein truncation, could in theory be treatable using readthrough-inducing drugs (Zingman et al., 2007), a strategy that can also be successfully explored in models.

The search for novel therapies to treat ciliopathies will also progress through more standard drug discovery methods. For example, high-throughput assays using cultured cells or simpler organisms maintained in multi-well systems allow libraries of putative drugs to be screened. Although it is possible that cell lines derived from mouse models of ciliopathies could be used for such approaches, this is by no means required for drug development. The main use of mouse models will be in subsequent whole animal testing of putative drugs that emerge from any approach. Such models represent an important stage in therapy development, providing a proof of principle of true efficacy as well as safety in vivo.

Perspectives

It is clear from the mutants we have discussed that a null allele is not necessarily a good model of a disease. Exceptions do exist, however; for example, the B9d1-null mouse models many aspects of human MKS (Dowdle et al., 2011). However, in most cases, complete loss of a ciliopathy-associated gene leads to early lethality in the mouse. Human ciliopathy symptoms lie on a spectrum related to the strength and nature of the genetic mutation. The fact that mutations in CEP290 underlie BBS, MKS and NPHP underscores the fact that different mutations at the same locus can result in distinctive syndromic outcomes (Table 2). Thus, to model most ciliopathies, we will need hypomorphic alleles with a range of strengths (although a minority will also require the development of dominant-negative alleles). A range of alleles from various sources is now available to the community or can be readily generated. Many gene traps are simple null alleles, but a proportion have proved to be hypomorphic (Lee et al., 2007). The engineering of human point mutations in the mouse (e.g. Bbs1<sup>M<sub>390R</sub></sup> (Davis et al., 2007)) is technically demanding but has proved successful and has the advantage of explicitly modelling specific patient mutations. The use of ENU mutagenesis, which randomly incorporates point mutations into the genome, has been successful in generating various allele types (Acevedo-Arozena et al., 2008). Largely, identification of these mutants has resulted from phenotype-driven screens, although the systematic screening of banks of ENU-mutagenised DNA linked to parallel frozen sperm archives presents the opportunity to screen large numbers of mutant mice in potential (Quwailid et al., 2004; Acevedo-Arozena et al., 2008). The systematic sequencing and databasing of such mutagenised genomes will ultimately make this approach simpler and quicker (Gondo, 2008). In combination, these tools will allow isolation of a series of mutations of differing strengths and types. However, it must be remembered that mice and humans have anatomical, physiological and genetic differences, and that simple models might not always be achievable. The molar tooth sign of individuals with JBTS, for instance, seems unlikely to be recreated in the mouse.

Conditional mutagenesis is used more often as a tool to understand gene function than for the development of human disease models. Deleting a locus postnatally, or in a particular tissue, allows severe defects that are otherwise not survivable to be overcome. In the case of the Ofd1 mouse, this approach has permitted transmission of the mutation (Ferrante et al., 2006) and
therefore its analysis. In other studies, conditional mutagenesis has been used to assess the role of ciliopathy loci postnatally (Davenport et al., 2007; Haycraft et al., 2007; Song et al., 2007; Jacoby et al., 2009). Although it is not currently obvious whether and how such techniques might elicit a disease model, conditional gene inactivation can nevertheless provide significant insight into molecular mechanisms and disease aetiology through the production of tools.

The importance of genetic background on the expressivity of ciliopathy mutant alleles is becoming increasingly evident. For example, homozygous embryos of the ENU mutant Mks1Lph die at around 13.5 dpc on a C3H background but survive up to 18.5 dpc on a mixed CD1/C3H background (Weatherbee et al., 2009). In our own analyses, we discovered that the gasping mutants (Ermakov et al., 2009) show differing timing of embryonic death on different background strains, with earlier death on B6J than C3H (D.P.N., Alexander Ermakov and Paraskevi Goggolidou, unpublished data).

However, high-impact studies continue to be published that fail to reveal information on genetic background, a situation that needs to be rectified. With full sharing of background strain data on publication, together with greater systematic phenotypic analysis, it might be the case that particular genetic backgrounds will emerge as ciliopathic or anti-ciliopathic, either globally or for certain phenotypes. Such insight might allow targeted breeding to weaken or strengthen a phenotype. Indeed, it has already emerged that certain ciliopathic phenotypes manifest specifically on certain background strains, as illustrated by the Tctn2mm1.Bal1 mutant (Sang et al., 2011).

The systematic broad-spectrum phenotyping of mouse mutants is becoming increasingly important as geneticists seek to fully characterise gene function. This is epitomised by projects including the German Mouse Clinic (EU-MODIC) and the International Mouse Phenotyping Consortium (IMPC) (Fuchs et al., 2011; Gates et al., 2011), which are examples of large international endeavours aimed at high-throughput phenotyping of mouse mutants. Hand in hand with phenotyping, databases have been established that catalogue results as well as the specific assays performed; importantly, negative data are also made available (Morgan et al., 2010). Complete broad-spectrum phenotyping for every mutant is practically and financially beyond the capability of most individual labs. However, in smaller projects, there is a clear group of phenotypes that should be scored for putative ciliopathies (Fig. 2); whether or not such phenotypes have been analysed needs to be made clear to the community when studies are published. Examples provided in this review illustrate how multiple papers have slowly built complex phenotypes over time, aspects of which were either initially missed or not reported. Similarly, negative data are often not mentioned in published studies, leading others to question whether a phenotype was absent, missed or not assessed. Increased transparency and disclosure in the literature are imperative in more clearly defining the phenotypes of ciliopathy models and their similarities to the human diseases.

In conclusion, the continued improvement in modelling ciliopathies seems most likely to come from the combination of novel hypomorphic mutations and the careful control of genetic background. Systematic phenotyping, in combination with making all results available – be it in published studies or from large-scale phenotyping projects – will allow for an increasingly nuanced understanding of the contributions of different mutations to syndromic outcomes.

ACKNOWLEDGEMENTS
We wish to apologise to those whose work is not mentioned owing to size constraints and the extraordinary body of work in this field. We wish to thank Steve Thomas for producing the artwork in Fig. 2.

COMPETING INTERESTS
The authors declare that they do not have any competing or financial interests.

FUNDING
This work was supported by the UK Medical Research Council.

REFERENCES
Abu-Saffieh, L., Al-Anazi, S., Al-Abdi, L., Hashem, H., Alkuraya, H., Alamr, M., Sirelkhatim, M. O., Al-Hassan, Z., Alkuraya, B., Mohamed, J. Y. et al. (2012). In search of triallelic mutations in Bardet-Biedl syndrome. Eur. J. Hum. Genet. 20, 420-427.

Acevedo-Arozena, A., Wells, S., Potter, P., Kelly, M., Cox, R. D. and Brown, S. D. (2008). ENU mutagenesis, a way forward to understand gene function. Ann. Rev. Genet. Hum. Genet. 9, 49-69.

Arsov, T., Larter, C. Z., Nolan, C. J., Petrovsky, N., Goodnow, C. C., Teoh, N. C., Yeh, M. M. and Farrell, G. C. (2006a). Adaptive failure to high-fat diet characterizes retinal dystrophy in Alms1 mutant mice. Biochem. Biophys. Res. Commun. 342, 1152-1159.

Arsov, T., Silva, D. G., O’Bryan, M. K., Sainsbury, A., Lee, N. J., Kennedy, C., Manji, S. S., Nelsms, K., Liu, C., Vinuesa, C. G. et al. (2006b). Fat aussy-a new Alstrome syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol. Endocrinol. 20, 1610-1622.

Asher, A., Butterfield, N. C., Town, L., Courtenay, A. D., Cooper, A. N., Ferguson, C., Barry, R., Olsson, F., Liem, K. F., Jr, Parton, R. G. et al. (2012). Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies. Hum. Mol. Genet. 21, 1808-1823.

Attanasio, M., Uhenhaut, N. H., Sousa, V. H., O’Toole, J. F., Otto, E., Anlag, K., Klugmann, C., Treier, A. C., Helou, J., Sayer, J. A. et al. (2007). Loss of GUS2 causes nephropathies in humans and mice by increased apoptosis and fibrosis. Nat. Genet. 39, 1018-1024.

Badano, J. L., Mitsuma, N., Beales, P. L. and Katsanis, N. (2006). The ciliopathies: an emerging class of human genetic disorders. Ann. Rev. Genom. Hum. Genet. 7, 125-148.

Baker, K. and Beales, P. L. (2009). Making sense of cilia in disease: the human ciliopathies. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 281-295.

Baly, C., Alouj, J., Badonnel, K., Lacroix, M. C., Durieux, D., Schlegel, C., Salesse, R. and Caillol, M. (2007). Leptin and its receptors are present in the rat olfactory mucosa and modulated by the nutritional status. Brain Res. 1129, 130-141.

Berbari, N. F., O’Connor, A. K., Haycraft, C. J. and Yoder, B. K. (2009). The primary cilia as a complex signaling center. Curr. Biol. 19, R526-R535.

Bergmann, C., Fliegauf, M., Bruchle, M. E., Frank, V., Olbrich, H., Kirschner, J., Schermer, B., Schmedding, I., Kispert, A., Kranzlin, B. et al. (2008). Loss of nephrocystin-3 function can cause embryonic lethality. Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am. J. Hum. Genet. 82, 959-970.

Birsoy, S., De Angelis, A., Quagliata, L., Giusti, F., Tammaro, R., Dallai, R., Ascenzi, M. G., Diez-Roux, G. and Franco, B. (2011). Ofd1 is required in limb bud patterning and endochondral bone development. Dev. Biol. 349, 179-191.

Bloodgood, R. A. (2009). From central to rudimentary to primary: the history of an underappreciated organelle whose time has come. The primary cilium. Methods Cell Biol. 94, 3-52.

Bloodgood, R. A. (2010). Sensory reception is an attribute of both primary cilia and motile cilia. J. Cell Sci. 123, 505-509.

Burghes, A. H., Vaessen, H. E. and de la Chapelle, A. (2001). Genetics. The land between Mendelian and multifactorial inheritance. Science 293, 2213-2214.

Caspari, T., Larkins, C. E. and Anderson, K. V. (2007). The graded response to sonic hedgehog depends on cilia architecture. Dev. Cell 12, 787.

Chang, B., Khanna, H., Hawes, N., Jimeno, D., He, S., Lillo, C., Paruparm, S. K., Cheng, H., Scott, A., Hurd, R. E. et al. (2006). In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 15, 1847-1857.

Cheung, H. O., Zhang, X., Ribeiro, A., Mo, R., Makino, S., Puvvindran, V., Law, K. K., Briscoe, J. and Hui, C. C. (2009). The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signalling. Sci. Signal. 2, na29.

Chivlers, M. A., Rutman, A. and O’Callaghan, C. (2003). Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J. Allergy Clin. Immunol. 112, 518-524.
Mouse models of ciliopathies

Christensen, S. T., Pedersen, L. B., Schneider, L. and Satir, P. (2007). Sensory cilia and integration of signal transduction in human health and disease. Traffic 8, 97-109.

Collin, G. B., Cyn, E., Bronson, R., Marshall, J. D., Gifford, E. J., Hicks, W., Murray, S. A., Zheng, Q. Y., Smith, R. S., Nishina, P. M. et al. (2005). Alms1-disrupted mice recapitulate human Alstrom syndrome. Hum. Mol. Genet. 14, 2323-2333.

Cui, C., Chatterjee, B., Francis, D., Yu, Q., SanGustin, J. T., Francis, R., Tansey, T., Henry, C., Wang, B., Lemley, B. et al. (2011). Disruption of Mks1 localisation to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Dis. Model. Mech. 4, 43-56.

Davenport, J. R., Watts, A. J., Roper, V. C., Croyle, M. J., van Groen, T., Wyss, J. M., Christensen, S. T., Pedersen, L. B., Schneider, L. and Satir, P. (2003). Characterization of the OFD1/Ofd1 genes on the human and mouse sex chromosome. Hum. Mol. Genet. 12, 97-109.

Dawh, H. R., Smith, U. M., Cullinan, A. R., Gerrelli, D., Cox, P., Badano, J. L., Blair, S., Siram, N., Katan, J., Attie-Bitach, T. et al. (2007). The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilia formation. Am. J. Hum. Genet. 84, 94-110.

Dowdle, W. E., Robinson, J. F., Kneist, A., Sirel-Piquer, M. S., Frints, G. S., Corbit, K. C., Zhaglou, N. A., van Lijnshoten, G., Mulders, L., Verver, D. E. et al. (2011). Disruption of a ciliary B9 protein complex causes Meckel syndrome. Am. J. Hum. Genet. 89, 94-110.

Drummond, I. A. (2012). Cilia functions in development. Curr. Opin. Cell Biol. 24, 24-30.

Eggenschwiler, J. T. and Anderson, K. V. (2007). Cilia and developmental signaling. Annu. Rev. Dev. Biol. 23, 345-373.

Eichers, E. R., Abd-El-Barr, M. M., Paylor, R., Lewis, R. A., Bi, W., Lin, X., Meehan, T. D., Riley, K. L., Grimes, D. T., Hilton, H., Simon, M., Powles-Glover, N., Siggers, E. R., Selicorni, A., Gammaro, L., Scolari, F., Woolf, A. S. et al. (2008). Intraflagellar transport and the sensory outer coat that traffics membrane proteins to cilia. Development 135, 2385-2397.

Fuchs, W., Gailus-Durner, V., Adler, T., Aguilar-Pimentel, J. A., Becker, L., Calzada-Durner, I., Seidel, H., Senderek, J., Besbas, N. et al. (2011). Alstrom Syndrome protein ALMS1 acts as a coiled-coil alpha-helical domain. Proc. Natl. Acad. Sci. USA 108, 5395-5400.

Garcia-Garcia, M. J., Eggenschwiler, J. T., Caspary, T., Alcorn, H. L., Wyler, M. R., Huangfu, D., Rakeman, A. S., Lee, J. J., Feindinger, E. H., Timmer, J. R. et al. (2005). Analysis of mouse embryonic patterning and morphogenesis by forward genetics. Proc. Natl. Acad. Sci. USA 102, 5913-5919.

Garcia-Gonzalo, F. R., Corbit, K. C., Sirel-Piquer, M. S., Ramaswami, G., Otto, E. A., Noriega, T. R., Seol, A. D., Robinson, J. F., Bennett, C. L., Josifova, D. J. et al. (2011). A transition zone complex regulates mammalian ciliogenesis and cilary membrane composition. Nat. Genet. 43, 776-784.

Gates, H., Mallon, A. M. and Brown, S. D. (2011). High-throughput mouse phenotyping. Methods 53, 394-404.

Gondo, Y. (2008). Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat. Rev. Genet. 9, 803-810.

Guo, D. F., Beyer, A. M., Yang, B., Nishimura, D. Y., Sheffield, V. C. and Ramhoomun, K. (2011). Inactivation of Bardet-Biedl syndrome genes causes kidney defects. Am. J. Physiol.Renal Physiol. 300, F574-F580.

Hanna, K., Cian, F., Boletta, A., Bhunia, A. K., Piontek, K., Tsikos, L., Sukhmathe, V. P., Guggino, W. B. and Germino, G. G. (2000). Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408, 990-994.

Harris, P. C. and Torres, V. E. (2009). Polycystic kidney disease. Annu. Rev. Med. 60, 321-337.

Haycraft, C. J., Zhang, Q., Song, R., Jackson, W. S., Detloff, P. J., Serra, R. and Yoder, B. K. (2007). Intracellular transport is essential for endochondral bone formation. Development 134, 307-316.

Hsiao, Y. C., Tong, J. Z., Westfall, J. E., Ault, J. G., Page-McCaw, P. S. and Ferland, R. J. (2009). Ahh, whose human ortholog is mutated in Joubert syndrome, is required for Rabla localization, ciliogenesis and vesicle trafficking. Hum. Mol. Genet. 18, 3926-3941.

Huangfu, D. and Anderson, K. V. (2005). Cilia and Hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci. USA 102, 11325-11330.

Huangfu, D., Liu, A., Rakeman, A. S., Murcia, N. S., Niswander, L. and Anderson, K. V. (2003). Hedgehog signalling in the mouse requires intracellular transport protein Ift88. Nature 426, 83-87.

Ibanez-Tallon, I., Gorokhova, S. and Heintz, N. (2002). Loss of function of axonemal dynein Mdnl5 causes primary cilary dyskinesia and hydrocephalus. Hum. Mol. Genet. 11, 715-721.

Insinna, C. and Besharse, J. C. (2008). Intracellular transport and the sensory outer segment of vertebrate photoreceptors. Dev. Dyn. 237, 1982-1992.

Ishizuka, K., Kamiya, A., Oh, E. C., Kanki, H., Seshadri, S., Robinson, J. F., Murdoch, H., Dunlop, A. J., Kudo, K., Furukuri, K. et al. (2011). DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature 473, 92-96.

Jin, H., White, S. R., Shida, T., Schulz, S., Aguiar, M., Gygi, S. P., Bazan, J. F. and Huang, F. (2009). The conserved Bardet-Biedl syndrome proteins assemble a primary cilium: a signalling centre during vertebrate development. Nat. Cell Biol. 11, 2256-2259.

Jacoby, M., Cox, J. J., Gayral, S., Hampshire, D. J., Ayub, M., Blockmans, M., Pernot, A. H., Dunlop, A. J., Kubo, K., Furukuri, K. et al. (2011). DisC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature 473, 92-96.

Jiang, S. T., Chioi, Y. Y., Wang, E., Lin, H. K., Lee, S. P., Lu, H. Y., Wang, C. K., Tang, M. J. and Li, H. (2008). Targeted disruption of Nphp1 causes male infertility due to defects in the later steps of sperm morphogenesis in mice. Hum. Mol. Genet. 17, 3368-3379.

Jiang, S. T., Chioi, Y. Y., Wang, E., Chien, Y. L., Ho, H. H., Tsai, F. J., Lin, C. Y., Tsai, S. P. and Li, H. (2009). Essential role of nophcin in photoreceptor intracellular transport in mouse. Hum. Mol. Genet. 18, 1566-1577.

Jin, H. and Nachury, M. V. (2009). The BBSome. Curr. Biol. 19, R472-R473.

Jin, H., White, S. R., Shida, T., Schulz, S., Aguilar, M., Gygii, S. P., Bazan, J. F. and Nachury, M. V. (2010). The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208-1219.

Karcher, C., Fischer, A., Schweickert, A., Blitzer, E., Horde, S., Wittgall, R. and Blum, M. (2005). Lack of a larynx phenotype in Pkd1 knock-out embryos correlates with absence of polycystin-1 in nodal cilia. Differentiation 73, 425-432.

Katsanis, N., Ansley, S. J., Badano, J. L., Eichers, E. R., Lewis, R. A., Hoskins, B. E., Scambler, P. J., Davidson, W. S., Beales, P. L. and Lupski, J. R. (2001). Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 293, 2256-2259.
Kepper-Noreuil, K. M., Adam, M. P., Welch, J., Mullenburg, A. and Willing, M. C. (2011). Clinical insights gained from eight new cases and review of reported cases with Jeune syndrome (asphyxiating thoracic dystrophy). Am. J. Med. Genet. 155A, 1021-1032.

Khanna, H., Davis, E. E., Murga-Zamalloa, C. A., Estrada-Cuzcano, A., Lopez, I., den Hollander, A. I., Zonneveld, M. N., Othman, M. I., Waseem, N., Chakarova, C. F. et al. (2009). A common allele in RPGPIP1 is a modifier of retinal degeneration in ciliopathies. Nat. Genet. 41, 739-745.

Kim, Y. S., Kang, H. S., Herbert, R., Beak, J. Y., Collins, J. B., Grissom, S. F. and Jetten, A. M. (2008). Kruppel-like zinc finger protein Gli2 is essential for the maintenance of normal renal function. Mol. Cell. Biol. 28, 2358-2367.

Kudryashova, E., Wu, J., Hatton, L. A. and Spencer, M. J. (2009). Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Hum. Mol. Genet. 18, 1335-1347.

Kudryashova, E., Shryk, A., Mokhono, E., Cannon, S. C. and Spencer, M. J. (2011). The common missense mutation D489N in TRIM32 causing limb-girdle muscular dystrophy 2H leads to loss of function of mutated protein in knock-in mice resulting in a Trim32-null phenotype. Hum. Mol. Genet. 20, 3925-3932.

Kulaga, H. M., Leitch, C. C., Eichers, E. R., Badano, J. L., Lesemann, A., Hoskins, B. E., Lupski, J. R., Beales, P. L., Reed, R. R. and Katsanis, N. (2004). Loss of BBS proteins causes anosmia in humans and defects in olfactory cilium structure and function in the mouse. Mol. Gen. Genet. 266, 994-998.

Lancaster, M. A., Louie, C. M., Silhavy, J. L., Sintasath, L., Decambre, M., Nigam, S. K., Willert, K. and Gleeson, J. G. (2009). Impaired Wnt-beta-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat. Med. 15, 1046-1054.

Lancaster, M. A., Gopal, D. J., Kim, J., Saleem, S. N., Silhavy, J. L., Louie, C. M., Thacker, B. E., Williams, Y. L., Zaki, M. S. and Gleeson, J. G. (2011). Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Proc. Natl. Acad. Sci. USA 108, 14957-14962.

Larson, C. Z., Ye, H., Van Rooyen, D. M., Teoh, N. C., Brooling, J., Hou, J. Y., Marshall, J. D., Maffei, P., Collin, G. B. and Naggert, J. K. (2009). Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extracellular fluid in mice lacking KIF3B motor protein. Cell 95, 829-837.

O’Toole, J. F., Otto, E. A., Frishberg, Y. and Hildebrandt, F. (2006). Retinitis pigmentosa and renal failure in a patient with mutations in INVS. Nephrol. Dial. Transplant. 21, 1989-1991.

Oberklaid, F., Danks, D. M., Mayne, V. and Campbell, P. (1977). Asphyxiating thoracic dysplasia. Clinical, radiological, and pathological information on 10 patients. Arch. Dis. Child. 52, 758-765.

Oh, E. C. and Katsanis, N. (2012). Cilia in vertebrate development and disease. Development 139, 443-448.

Okada, Y., Nonaka, S., Tanaka, Y., Saigo, H., Yamada, H. and Hirokawa, N. (1999). Abnormal nodal flow precedes situs inversus in inv and inv mice. Mol. Cell. 4, 459-468.

Olbrich, H., Fliegauf, M., Hoefele, J., Kispert, A., Otto, E., Volz, A., Wolf, M. T., Samsz, G., Trauer, U., Reinhardt, R. et al. (2003). Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat. Genet. 34, 455-459.

Ostroowski, L. E., Yin, W., Rogers, T. D., Busalacchi, K. B., Chua, M., O’Neil, W. K. and Grubb, B. R. (2010). Conditional deletion of dhncl in a murine model of primary ciliary dyskinesia causes chronic respiratory disease. Am. J. Respir. Cell Mol. Biol. 43, 65-73.

Otto, E. A., Trapp, M. L., Schultheiss, U. T., Helou, J., Quarmby, L. M. and Hildebrandt, F. (2008). NEXK2 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. Am. J. Nephrol. 29, 387-392.

Parisi, M. A. (2009). Clinical and molecular features of Joubert syndrome and related disorders. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 326-340.

Pedersen, L. B., Veland, I. R., Schroder, J. M. and Christensen, S. T. (2008). Assembly of primary cilia. Dev. Dyn. 237, 1993-2006.

Pennekamp, P., Karcher, C., Fischer, A., Schweikert, A., Skryabin, B., Horst, J., Blum, M. and Dvoronicka, B. (2002). The ion channel polycystin-2 is required for left-right axis determination in mice. Curr. Biol. 12, 938-943.

Piontek, K., Menezes, L. F., Garcia-Gonzalez, M. A., Huso, D. L. and Germino, G. G. (2007). A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat. Med. 13, 1490-1495.

Pretorius, H. A. and Spring, K. R. (2003). Removal of the MDCK cell primary cilium abolishes flow sensing. J. Membr. Biol. 191, 69-76.

Prevotius, P. R., Baye, L. M., Nishimura, D. Y., Searby, C. C., Bugge, K., Yang, B., Mullins, R. F., Stone, E. M., Sheffield, V. C. and Slusarski, D. C. (2010). Identification and functional analysis of the vision-specific BBS3 (ARL6) long isoform. PLoS Genet. 6, e1000884.

Quwailid, M. M., Hugill, A., Dear, N., Vizor, L., Wells, S., Horner, E., Fuller, S., Weeden, J., McMath, H., Woodman, P. et al. (2004). A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm. Genome 15, 585-591.

Reiter, J. F. and Skarnes, W. C. (2006). Tectonic, a novel regulator of the Hedgehog pathway required for both activation and inhibition. Genes Dev. 20, 22-27.
Rix, S., Calmont, A., Scambler, P. J. and Beales, P. L. (2011). An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia. *Hum. Mol. Genet.* 20, 1306-1314.

Rosenbaum, J. L. and Witman, G. B. (2002). Intraflagellar transport. *Nat. Rev. Mol. Cell Biol.* 3, 813-825.

Ross, A. J., May-Simera, H., Eichers, E. R., Kai, M., Hill, J., Jagger, D. J., Leitch, C. C., Chappell, J. P., Munro, P. M., Fisher, S. et al. (2005). Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. *Nat. Genet.* 37, 1135-1140.

Salomon, R., Saunier, S. and Niaudet, P. (2009). Nephronophthisis. *Pediatr. Nephrol.* 24, 2333-2344.

Satir, P. and Christensen, S. T. (2007). Overview of structure and function of mammalian cilia. *Annu. Rev. Physiol.* 69, 377-400.

Sattar, S. and Gleeson, J. G. (2011). The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. *Dev. Med. Child Neurol.* 53, 793-798.

Schneider, L., Clement, C. A., Teilmann, S. C., Pazeur, G. J., Hoffmann, E. K., Satir, P. and Christensen, S. T. (2005). PDGF-Ralpha expression is regulated during the primary ciliogenesis in fibroblasts. *Curr. Biol.* 15, 1861-1866.

Seo, S., Guo, D. F., Bugge, K., Morgan, D. A., Rahmouni, K. and Sheffield, V. C. (2009). Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. *Hum. Mol. Genet.* 18, 1323-1331.

Shah, A. S., Farmen, S. L., Nonenberg, T. O., Businga, T. R., Andrews, M. P., Bugge, K., Searby, C. C., Nishimura, D., Brodgen, K. A., Kline, J. N. et al. (2008). Loss of Bardet-Biedl syndrome proteins alters the morphology and function of motile cilia in airway epithelia. *Proc. Natl. Acad. Sci. USA* 105, 3380-3385.

Sive, H. (2011). ‘Model’ or ‘tool’? New definitions for translational research. *Dis. Model. Mech.* 4, 137-138.

Song, B., Haycraft, C. J., Seo, H. S., Youder, B. K. and Serra, R. (2007). Development of the post-natal growth plate requires intraflagellar transport proteins. *Dev. Biol.* 305, 202-216.

Sugiyama, N. and Yokoyama, T. (2006). Sustained cell proliferation of renal epithelial cells in mice with inv mutation. *Genes Cells* 11, 1213-1224.

Tabin, C. J. and Vogan, K. J. (2003). PDGFRalpha signaling is regulated through the andromedas and developing species, retrograde intraflagellar transport in cilia. *Cell Biol. Med.* 285, 403-410.

Valente, E. M., Logan, C. V., Mougou-Zerelli, S., Lee, J. H., Silhavy, J. L., Brancati, F., Iannicelli, M., Travaglini, L., Romani, S., Illis, B. et al. (2010). Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. *Nat. Genet.* 42, 750-755.

Vickerten, J., Dildorp, R., Peters, T., Wang, B. and Ruther, U. (2007). Ftm is a novel basal body protein of cilia involved in Shh signalling. *Development* 134, 2569-2577.

Wallingford, J. B. and Mitchell, B. (2011). Strange as it may seem: the many links between Wnt signalling, planar cell polarity, and cilia. *Genes Dev.* 25, 201-213.

Waters, A. M. and Beales, P. L. (2011). Ciliopathies: an expanding disease spectrum. *Pediatr. Nephrol.* 26, 1039-1056.

Weatherbee, S. D., Niswander, L. A. and Anderson, K. V. (2009). A mouse model for Meckel syndrome reveals Mk61 is required for ciliogenesis and Hedgehog signaling. *Hum. Mol. Genet.* 18, 4565-4575.

Westfall, J. E., Hoyt, C., Liu, Q., Hsiao, Y. C., Pierce, E. A., Page-McCaw, P. S. and Ferland, R. J. (2010). Retinal degeneration and failure of photoreceptor outer segment formation in mice with targeted deletion of the Joubert syndrome gene, Ahil. *J. Neurosci.* 30, 8759-8768.

Wilson, P. D. (2008). Mouse models of polycystic kidney disease. *Curr. Top. Dev. Biol.* 84, 311-350.

Wolf, M. T. and Hildebrandt, F. (2011). Nephronophthisis. *Pediatr. Nephrol.* 26, 181-194.

Won, J., Marin de Evsikova, C., Smith, R. S., Hicks, W. L., Edwards, M. M., Longo-Guess, C., Li, T., Naggett, J. K. and Nishina, P. M. (2011). NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. *Hum. Mol. Genet.* 20, 482-496.

Wu, G., Tian, X., Nishimura, S., Markowitz, G. S., D’Agiati, V., Park, J. H., Yao, L., Li, L., Geng, L., Zhao, H. et al. (2002). Trans-heterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. *Hum. Mol. Genet.* 11, 1845-1854.

Yokoyama, T., Copeland, N. G., Jenkins, N. A., Montgomery, C. A., Elder, F. F. and Overbeek, P. A. (1993). Reversal of left-right asymmetry: a situs inversus mutation. *Science* 260, 679-682.

Zaghloul, N. A. and Katsanis, N. (2009). Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. *J. Clin. Invest.* 119, 428-437.

Zarivc, M. A., Ovman, H. and Ferkol, T. W. (2011). The emerging genetics of primary ciliary dyskinesia. *Proc. Am. Thorac. Soc.* 8, 430-433.

Zhang, Q., Seo, S., Bugge, K., Stone, E. M. and Sheffield, V. C. (2012). BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. *Hum. Mol. Genet.* doi: 10.1093/hmg/ddd004

Zingman, L. V., Park, S., Olson, T. M., Alekseev, A. E. and Terzic, A. (2007). Aminoglycoside-induced translational read-through in disease: overcoming nonsense mutations by pharmacogenetic therapy. *Clin. Pharmacol. Ther.* 81, 99-103.