GELFAND–TSETLIN BASES FOR REPRESENTATIONS OF FINITE W-ALGEBRAS AND SHIFTED YANGIANS

VYACHESLAV FUTorny, ALEXANDER MOLEV, AND SERGE OVSIENko

Abstract. Remarkable subalgebras of the Yangian for \mathfrak{gl}_n called the shifted Yangians were introduced in a recent work by Brundan and Kleshchev in relation to their study of finite W-algebras. In particular, in that work a classification of finite-dimensional irreducible representations of the shifted Yangians and the associated finite W-algebras was given. We construct a class of these representations in an explicit form via bases of Gelfand–Tsetlin type.

1. Introduction

A striking relationship between the Yangians and finite W-algebras was first discovered by Ragoucy and Sorba [14]; see also Briot and Ragoucy [1]. This relationship was developed in full generality by Brundan and Kleshchev [4]. The finite W-algebras associated to nilpotent orbits in the Lie algebra \mathfrak{gl}_N turned out to be isomorphic to quotients of certain subalgebras of the Yangian $Y(\mathfrak{gl}_n)$. These subalgebras, called the shifted Yangians in [4], admit a description in terms of generators and relations. This leads to respective presentations of the finite W-algebras and thus provides new tools to study their structure and representations. The representation theory of the shifted Yangians and associated W-algebras was developed in a subsequent paper by Brundan and Kleshchev [5] where deep connections of the shifted Yangian representation theory were established. In particular, a classification of the finite-dimensional irreducible representations of the shifted Yangians and the finite W-algebras was given in terms of their highest weights. Moreover, in the case of the shifted Yangian associated to \mathfrak{gl}_2 all such representations were explicitly constructed.

Our aim in this paper is to construct in an explicit form a family of representations of the shifted Yangians and finite W-algebras via bases of Gelfand–Tsetlin type. Such bases for certain classes of representations of the Yangian $Y(\mathfrak{gl}_n)$ were constructed in different ways by Nazarov and Tarasov [12, 13] and Molev [10]. We mainly employ the approach of [12, 13] which turns out to be more suitable for the generalization to the case of the shifted Yangians. In more detail, following
2. Shifted Yangians and finite W-algebras

As in [4], given a pyramid $\pi = (p_1, \ldots, p_n)$ with $p_1 \leq \cdots \leq p_n$, introduce the corresponding shifted Yangian $Y_\pi(\mathfrak{gl}_n)$ as the associative algebra defined by generators

\begin{align*}
&d_i^{(r)}, \quad i = 1, \ldots, n, \quad r \geq 1, \\
&f_i^{(r)}, \quad i = 1, \ldots, n - 1, \quad r \geq 1, \\
&e_i^{(r)}, \quad i = 1, \ldots, n - 1, \quad r \geq p_{i+1} - p_i + 1,
\end{align*}

subject to the following relations:

\begin{align*}
[d_i^{(r)}, d_j^{(s)}] &= 0, \\
[e_i^{(r)}, f_j^{(s)}] &= -\delta_{ij} \sum_{t=0}^{r+s-1} d_i^{(t)} d_{i+1}^{(r+s-t-1)}, \\
[d_i^{(r)}, e_j^{(s)}] &= (\delta_{ij} - \delta_{i, j+1}) \sum_{t=0}^{r-1} d_i^{(t)} e_j^{(r+s-t-1)}, \\
[d_i^{(r)}, f_j^{(s)}] &= (\delta_{i, j+1} - \delta_{ij}) \sum_{t=0}^{r-1} f_j^{(r+s-t-1)} d_i^{(t)},
\end{align*}
natural subalgebra of \(Y(\mathfrak{g}l_{n}) \) providing a proof of the original result of Drinfeld \([6]\). Moreover, for an algebra \(Y(\pi) \) be defined for more general types of pyramids. However, in accordance to \([4]\), each of these algebras is isomorphic to \(Y(\pi) \). Note that the algebra \(Y(\pi) \) depends only on the differences \(p_{i+1} - p_{i} \). In the particular case of a rectangular pyramid \(\pi \) with \(p_{1} = \cdots = p_{n} \), the algebra \(Y_{\pi}(\mathfrak{g}l_{n}) \) is isomorphic to the Yangian \(Y(\mathfrak{g}l_{n}) \); see e.g. \([11]\) for the description of its structure and representations. The isomorphism with the RTT presentation of \(Y(\mathfrak{g}l_{n}) \) was constructed in \([3]\) providing a proof of the original result of Drinfeld \([6]\). Moreover, for an arbitrary pyramid \(\pi \), the shifted Yangian \(Y_{\pi}(\mathfrak{g}l_{n}) \) can be regarded as a natural subalgebra of \(Y(\mathfrak{g}l_{n}) \). Note also that the shifted Yangians can be found for more general types of pyramids. However, in accordance to \([4]\), each of these algebras is isomorphic to \(Y_{\pi}(\mathfrak{g}l_{n}) \) for an appropriate left-justified pyramid \(\pi \).

Introduce formal generating series in \(u^{-1} \) by

\[
[r]! \sum_{t=0}^{r} d_{i}^{(r)}(t) d_{i}^{(r-t)} = \delta_{r0}, \quad r = 0, 1, \ldots
\]

for all admissible \(i, j, r, s, t \), where \(d_{i}^{(0)} = 1 \) and the elements \(d_{i}^{(r)} \) are found from the relations

\[
[e_{i}^{(r)}, e_{j}^{(s+1)}] = e_{i}^{(r)} e_{j}^{(s)} + \text{if } |i - j| > 1,
\]

\[
[e_{i}^{(r)}, f_{j}^{(s)}] = 0 \quad \text{if } |i - j| > 1,
\]

\[
[e_{i}^{(r)}, [e_{j}^{(s)}, f_{k}^{(t)}]] = 0 \quad \text{if } |i - j| = 1,
\]

\[
[f_{i}^{(r)}, [f_{j}^{(s)}, f_{k}^{(t)}]] = 0 \quad \text{if } |i - j| = 1,
\]

and set

\[
a_{i}(u) = d_{1}(u) d_{2}(u - 1) \ldots d_{i}(u - i + 1)
\]

for \(i = 1, \ldots, n, \) and

\[
b_{i}(u) = a_{i}(u) e_{i}(u - i + 1), \quad c_{i}(u) = f_{i}(u - i + 1) a_{i}(u)
\]
for \(i = 1,\ldots,n - 1 \). It is clear that the coefficients of the series \(a_i(u) \), \(b_i(u) \) and \(c_i(u) \) generate the algebra \(Y_\pi(\mathfrak{gl}_n) \). It is not difficult to rewrite the defining relations in terms of these coefficients. We point out a few of these relations here which will be frequently used later on; see also [3]. We have

\begin{align*}
[&a_i(u), c_j(v)] = 0, \quad [b_i(u), c_j(v)] = 0, \quad \text{if } i \neq j, \\
&[c_i(u), c_j(v)] = 0, \quad \text{if } |i - j| \neq 1, \\
&(u - v)[a_i(u), c_i(v)] = c_i(u)a_i(v) - c_i(v)a_i(u).
\end{align*}

Let \(N \) be the number of bricks in the pyramid \(\pi \). Due to the main result of [4], the finite \(W \)-algebra \(W(\pi) \), associated to \(\mathfrak{gl}_N \) and the pyramid \(\pi \), can be defined as the quotient of \(Y_\pi(\mathfrak{gl}_n) \) by the two-sided ideal generated by all elements \(d_i^{(r)} \) with \(r \geq p_1 + 1 \). We refer the reader to [4, 5] for a discussion of the origins of the finite \(W \)-algebras and more references. Note that in the case of a rectangular pyramid of height \(p \), the algebra \(W(\pi) \) is isomorphic to the Yangian of level \(p \); this relationship was originally observed in [1] and [14].

We will use the same notation for the images of the elements of \(Y_\pi(\mathfrak{gl}_n) \) in the quotient algebra \(W(\pi) \). Set

\[A_i(u) = u^{p_1} (u - 1)^{p_2} \cdots (u - i + 1)^{p_i} a_i(u) \]

for \(i = 1,\ldots,n \), and

\[B_i(u) = u^{p_1} (u - 1)^{p_2} \cdots (u - i + 2)^{p_{i-1}} (u - i + 1)^{p_{i+1}} b_i(u), \]

\[C_i(u) = u^{p_1} (u - 1)^{p_2} \cdots (u - i + 1)^{p_{i+1}} c_i(u) \]

for \(i = 1,\ldots,n - 1 \). The following lemma is immediate from the results of Brown and Brundan [2]. Here we regard \(A_i(u) \), \(B_i(u) \), and \(C_i(u) \) as series with coefficients in \(W(\pi) \).

Lemma 2.1. All series \(A_i(u) \), \(B_i(u) \), and \(C_i(u) \) are polynomials in \(u \).

Proof. In terms of the RTT presentation of the Yangian, each of the series \(a_i(u) \in Y(\mathfrak{gl}_n)[[u^{-1}]] \) coincides with a quantum minor of the matrix of the generators; see [3, Theorem 8.6]. Therefore the statement for the \(A_i(u) \) follows from the results of [2, Section 3]. Note that the polynomial \(A_i(u) \) in \(u \) is monic of degree \(p_1 + \cdots + p_i \). Furthermore, the defining relations of \(Y_\pi(\mathfrak{gl}_n) \) imply \([f_i^{(1)}, a_i(u)] = c_i(u)\), and so \(C_i(u) = [f_i^{(1)}, A_i(u)] \) is a polynomial in \(u \) of degree \(p_1 + \cdots + p_{i-1} + 1 \). Similarly,

\[b_i(u) (u - i + 1)^{p_{i+1} - p_i} = [a_i(u), e_i^{(p_{i+1} - p_i + 1)}], \]

which gives

\[B_i(u) = [A_i(u), e_i^{(p_{i+1} - p_i + 1)}], \]
so that $B_i(u)$ is a polynomial in u of degree $p_1 + \cdots + p_i - 1$. □

Note that by [5, Theorem 6.10], all coefficients of the polynomial $A_n(u)$ belong to the center of $W(\pi)$ and these coefficients (excluding the leading one) are algebraically independent generators of the center.

For $i = 1, \ldots, n - 1$ define the elements $h_i^{(r)} \in Y_\pi(\mathfrak{gl}_n)$ by the expansion

$$1 + \sum_{r=1}^{\infty} h_i^{(r)} u^{-r} = d_i(u)^{-1} d_{i+1}(u)$$

and set

$$H_i^{(r)}(u) = u^r + u^{r-1} h_i^{(1)} + \cdots + h_i^{(r)}.$$

Lemma 2.2. For $i = 1, \ldots, n - 1$ in the algebra $W(\pi)$ we have

$$(u - v) [B_i(u), C_i(v)] = A_i^{(i+1)}(u) A_i(v) - A_i^{(i+1)}(v) A_i(u),$$

where $A_i^{(i+1)}(u)$ is the polynomial in u with coefficients in $W(\pi)$ given by

$$A_i^{(i+1)}(u) = u^{p_1} (u - 1)^{p_2} \cdots (u - i + 2)^{p_{i-1}} (u - i + 1)^{p_i+1}$$

$$(u - 1) a_i(u+1)^{-1} (a_i(u+1) a_{i-1}(u) + c_i(u+1) b_i(u))$$

$- H_i^{(p_i+1-p_1)}(u - i) A_i(u).$$

Moreover,

$$B_i(u) C_i(u-1) = A_i^{(i+1)}(u) A_i(u-1) - A_i^{(i+1)}(u) A_{i-1}(u-1)$$

$$+ H_i^{(p_i+1-p_1)}(u - i) A_i(u) A_i(u-1).$$

Proof. Observe that for any fixed $i \in \{1, \ldots, n - 1\}$ the elements $d_i^{(r)}, d_i^{(r+1)}, e_i^{(r)}$ and $f_i^{(r)}$ of $Y_\pi(\mathfrak{gl}_n)$ satisfy the defining relations of the shifted Yangian $Y_{\pi_i}(\mathfrak{gl}_2)$, where $\pi_i = (p_i, p_{i+1})$. Therefore, it suffices to prove the first relation in the case $i = 1$; the proof for the remaining values of i will then easily follow. Working in the Yangian $Y(\mathfrak{gl}_2)$, we can derive the relation

$$(u - v - 1) [d_1(u), e_1(v)] = (e_1(v) - e_1(u)) d_1(u);$$

see e.g. [3]. This allows us to calculate the commutators $[d_1(u), e_1^{(r)}]$ and leads to an equivalent expression for $b_1(u)$ in the subalgebra $Y_{\pi}(\mathfrak{gl}_2)$:

$$b_1(u) = d_1(u) e_1(u) = (1 - u^{-1})^{p_2-p_1} e_1(u-1) d_1(u).$$

Furthermore, starting from the relations

$$[e_1^{(r)}, f_1^{(s)}] = - \sum_{t=0}^{r+s-1} d_1^{(t)} d_2^{(r+s-t-1)}$$

6}}
in \(Y_\pi(\mathfrak{gl}_2) \), it is now straightforward to derive that

\[
(u - v) [b_1(u), c_1(v)] = a_1(u + 1)^{-1}(a_2(u + 1) + c_1(u + 1) b_1(u)) a_1(v)
- (u^{-1} v)^{p_2 - p_1} a_1(v + 1)^{-1}(a_2(v + 1) + c_1(v + 1) b_1(v)) a_1(u)
- u^{p_1 - p_2}(H_1^{(p_2 - p_1)}(u) - H_1^{(p_2 - p_1)}(v)) a_1(u) a_1(v).
\]

The desired relation in \(W(\pi) \) is then obtained by multiplying both sides by the product \(u^{p_2} v^{p_1} \). Furthermore, by the defining relations,

\[
u^{p_2} a_1(u + 1)^{-1}(a_2(u + 1) + c_1(u + 1) b_1(u))
= u^{p_2} (d_2(u) + f_1(u) d_1(u) c_1(u)).
\]

This is a polynomial in \(u \) due to \([5, \text{Theorem 3.5}]\). Hence, by Lemma 2.1, \(A'_2(u) \) is a polynomial in \(u \) too.

The second part of the lemma is implied by the first part by taking into account the relations in the shifted Yangian \(Y_\pi(\mathfrak{gl}_n) \),

\[
a_i(u)^{-1} c_i(u) = c_i(u - 1) a_i(u - 1)^{-1}
\]

and

\[
(u - i)^{p_i + 1 - p_i} a_i(u - 1)^{-1} b_i(u - 1) = (u - i + 1)^{p_i + 1 - p_i} b_i(u) a_i(u)^{-1},
\]

which are implied by the defining relations. \(\square \)

3. CONSTRUCTION OF BASIS VECTORS

Using the canonical homomorphism \(Y_\pi(\mathfrak{gl}_n) \to W(\pi) \) we can extend every representation of the finite \(W \)-algebra \(W(\pi) \) to the shifted Yangian \(Y_\pi(\mathfrak{gl}_n) \). In what follows we work with representations of \(W(\pi) \), and the results can be easily interpreted in the shifted Yangian context.

Let us recall some definitions and results from \([3] \) regarding representations of \(W(\pi) \). Fix an \(n \)-tuple \(\lambda(u) = (\lambda_1(u), \ldots, \lambda_n(u)) \) of monic polynomials in \(u \) with coefficients in \(\mathbb{C} \), where \(\lambda_i(u) \) has degree \(p_i \). We let \(L(\lambda(u)) \) denote the irreducible highest weight representation of \(W(\pi) \) with the highest weight \(\lambda(u) \). Then \(L(\lambda(u)) \) is generated by a nonzero vector \(\zeta \) (the highest vector) such that

\[
B_i(u) \zeta = 0 \quad \text{for} \quad i = 1, \ldots, n - 1, \quad \text{and}
\]

\[
u^{p_i} d_i(u) \zeta = \lambda_i(u) \zeta \quad \text{for} \quad i = 1, \ldots, n.
\]

Write

\[
\lambda_i(u) = (u + \lambda_i^{(1)}) (u + \lambda_i^{(2)}) \ldots (u + \lambda_i^{(p_i)}), \quad i = 1, \ldots, n.
\]
We will assume that the parameters $\lambda_i^{(k)}$ satisfy the conditions: for any value $k \in \{1, \ldots, p_i\}$ we have

$$\lambda_i^{(k)} - \lambda_{i+1}^{(k)} \in \mathbb{Z}_+, \quad i = 1, \ldots, n - 1,$$

where \mathbb{Z}_+ denotes the set of nonnegative integers. In this case the representation $L(\lambda(u))$ of $W(\pi)$ is finite-dimensional.

Denote by q_k the number of bricks in the column k of the pyramid π. We have $q_1 \geq \cdots \geq q_l > 0$, where $l = p_n$ is the number of the columns in π. If $p_{i-1} < k \leq p_i$ for some $i \in \{1, \ldots, n\}$ (taking $p_0 = 0$), then we set $\lambda^{(k)} = (\lambda_i^{(k)}, \ldots, \lambda_n^{(k)})$. Then $q_k = n - i + 1$. Let $L(\lambda^{(k)})$ denote the finite-dimensional irreducible representation of the Lie algebra \mathfrak{g}_{q_k} with the highest weight $\lambda^{(k)}$. The vector space

$$(6) \quad L(\lambda^{(1)}) \otimes \cdots \otimes L(\lambda^{(l)})$$

can be equipped with an action of the algebra $W(\pi)$, and $L(\lambda(u))$ is isomorphic to a subquotient of the module (6). In particular,

$$(7) \quad \dim L(\lambda(u)) \leq \prod_{k=1}^l \dim L(\lambda^{(k)}).$$

In what follows we will only consider a certain family of representations of $W(\pi)$ by imposing a \textit{generality condition} on the highest weights of the representations $L(\lambda(u))$. We will assume that

$$\lambda_i^{(k)} - \lambda_j^{(m)} \notin \mathbb{Z}, \quad \text{for all } i, j \text{ and all } k \neq m.$$

The \textit{Gelfand–Tsetlin pattern} $\Lambda(u)$ (associated with $\lambda(u)$) is an array of monic polynomials in u of the form

$$\begin{align*}
\lambda_{n1}(u) & \quad \lambda_{n2}(u) & \quad \cdots & \quad \lambda_{nn}(u) \\
\lambda_{n-1,1}(u) & \quad \lambda_{n-1,n-1}(u) \\
\cdots & \quad \cdots \\
\lambda_{21}(u) & \quad \lambda_{22}(u) \\
\lambda_{11}(u)
\end{align*}$$

where

$$\lambda_{ri}(u) = (u + \lambda_{ri}^{(1)}) \cdots (u + \lambda_{ri}^{(p_i)}), \quad 1 \leq i \leq r \leq n,$$

with $\lambda_{ri}^{(k)} = \lambda_i^{(k)}$ and the following conditions hold

$$\lambda_{r+1,i}^{(k)} - \lambda_{ri}^{(k)} \in \mathbb{Z}_+ \quad \text{and} \quad \lambda_{ri}^{(k)} - \lambda_{r+1,i+1}^{(k)} \in \mathbb{Z}_+.$$
for $k = 1, \ldots, p_i$ and $1 \leq i \leq r \leq n - 1$. We have $\lambda_{n_i}(u) = \lambda_i(u)$ for $i = 1, \ldots, n$, so that the top row coincides with $\lambda(u)$.

Most arguments in the rest of the paper will not be essentially different from [13, Section 3], so we only sketch the main steps in the construction of the basis. Given a pattern $\Lambda(u)$, introduce the corresponding element ζ_Λ of $L(\lambda(u))$ by the formula

$$\zeta_\Lambda = \prod_{i=1}^{n-1} \left\{ \prod_{k=1}^{p_i} \left(C_{n-1}(-l_{n-1,i}^{(k)} - 1) \cdots C_{n-1}(-l_i^{(k)}) \right) \right\} \times \prod_{k=1}^{p_i} \left(C_{n-2}(-l_{n-2,i}^{(k)} - 1) \cdots C_{n-2}(-l_i^{(k)}) + 1 \right) \times \cdots \times \prod_{k=1}^{p_i} \left(C_i(-l_{i,i}^{(k)} - 1) \cdots C_i(-l_i^{(k)}) + 1 \right),$$

where we have used the notation

$$l_i^{(k)} = \lambda_i^{(k)} - i + 1 \quad \text{and} \quad l_{ri}^{(k)} = \lambda_{ri}^{(k)} - i + 1.$$

Note that by (3) we have $[C_i(u), C_i(v)] = 0$, so that the order of the factors in the products over k is irrelevant.

Lemma 3.1. We have

$$A_r(u) \zeta_\Lambda = \lambda_{r1}(u) \cdots \lambda_{rr}(u - r + 1) \zeta_\Lambda,$$

for $r = 1, \ldots, n$.

Proof. When applying $A_r(u)$ to ζ_Λ, separating the first factor, we need to calculate $A_r(u) C_s(v) \eta$ for the respective value of v. By (3), the operator $A_r(u)$ commutes with $C_s(v)$ for $s \neq r$. Furthermore, by (3),

$$A_r(u) C_r(v) \eta = \frac{1}{u - v} C_r(u) A_r(v) \eta + \frac{u - v - 1}{u - v} C_r(v) A_r(u) \eta.$$

The calculation is completed by induction on the number of factors $C_i(v)$ in the expression for ζ_Λ, taking into account that $A_r(v) \eta = 0$. \qed

Lemma 3.2. For any $1 \leq i \leq r \leq n - 1$ and $k = 1, \ldots, p_i$ we have

$$B_r(-l_{ri}^{(k)}) \zeta_\Lambda = -\lambda_1(-l_{ri}^{(k)}) \cdots \lambda_i(-l_{ri}^{(k)} - i + 1)$$

$$\times \lambda_{r+1,i+1}(-l_{r+1,i+1}^{(k)} - i) \cdots \lambda_{r+1,r+1}(-l_{r+1}^{(k)} - r)$$

$$\times \lambda_1(-l_{r+1}^{(k)} - 1) \cdots \lambda_i(-l_{r}^{(k)} - i + 1)$$

$$\times \lambda_{r-1,i}(-l_{r-1,i}^{(k)} - i) \cdots \lambda_{r-1,r-1}(-l_{r-1}^{(k)} - r + 1) \zeta_{\Lambda + \delta_{ri}^{(k)}},$$
where $\zeta_{\Lambda^+}^{(k)}$ corresponds to the pattern obtained from $\Lambda(u)$ by replacing $\lambda_{ri}^{(k)}$ by $\lambda_{ri}^{(k)} + 1$, and the vector ζ_{Λ} is considered to be zero, if $\Lambda(u)$ is not a pattern.

Proof. The argument is based on Lemma 2.2. As in the proof of Lemma 3.1, separating the first factor, we need to calculate the image $B_r(-l_{ri}^{(k)}) C_s(v) \eta$ for the respective value of v. By (3), the operator $B_r(u)$ commutes with $C_s(v)$ for $s \neq r$. If $s = r$ then we consider two cases. If $-l_{ri}^{(k)} - v \neq 1$, then applying the first relation of Lemma 2.2 together with Lemma 3.1, we find that

$$B_r(-l_{ri}^{(k)}) C_r(v) \eta = C_r(v) B_r(-l_{ri}^{(k)}) \eta$$

and proceed by induction. If $v = -l_{ri}^{(k)} - 1$, then we apply the second relation of Lemma 2.2 together with Lemma 3.1 to get

$$B_r(-l_{ri}^{(k)}) C_r(-l_{ri}^{(k)} - 1) \eta = -A_{r+1}(-l_{ri}^{(k)} + 1) A_{r-1}(-l_{ri}^{(k)} - 1) \eta.$$

One more application of Lemma 3.1 leads to the desired formula. □

The following theorem provides a basis of the Gelfand–Tsetlin type for the representation $L(\lambda(u))$.

Theorem 3.3. The vectors ζ_{Λ} parameterized by all patterns $\Lambda(u)$ associated with the highest weight $\lambda(u)$, form a basis of the representation $L(\lambda(u))$ of the algebra $W(\pi)$.

Proof. It is easy to verify that if the array of monic polynomials obtained from $\Lambda(u)$ by increasing the entry $\lambda_{ri}^{(k)}$ by 1 is a pattern, then the coefficient of the vector $\zeta_{\Lambda+\delta_{ri}^{(k)}}$ in the formula of Lemma 3.2 is nonzero. This implies that each vector $\zeta_{\Lambda} \in L(\lambda(u))$ associated with a pattern $\Lambda(u)$ is nonzero.

Furthermore, by Lemma 3.1, ζ_{Λ} is an eigenvector for all operators $A_r(u)$ with distinct sets of eigenvalues. This shows that the vectors ζ_{Λ} are linearly independent.

Finally, for each $i \in \{1, \ldots, n\}$ and $p_{i-1} < k \leq p_i$ the set of parameters $(\lambda_{rj}^{(k)})$ with $i \leq j \leq r \leq n$ forms a Gelfand–Tsetlin pattern associated with the highest weight $\lambda^{(k)}$ of the irreducible representation $L(\lambda^{(k)})$ of the Lie algebra \mathfrak{gl}_{qk}. Hence, the number of patterns $\Lambda(u)$ coincides with the product of dimensions $\dim L(\lambda^{(k)})$ for $k = 1, \ldots, l$. Comparing this with (7), we conclude that the number of patterns coincides with $\dim L(\lambda(u))$. □
Note that by Theorem 3.3, we have the equality in (7), and thus we recover a result from [5] that the representation (6) of $W(\pi)$ is irreducible.

4. ACTION OF THE GENERATORS

We will calculate the action of the generators of $W(\pi)$ in a normalized basis of $L(\lambda(u))$. For any pattern $\Lambda(u)$ associated to $\lambda(u)$ set

$$N_{\Lambda} = \prod_{r=1}^{n} \prod_{i=1}^{m} \prod_{p_i} \prod_{j=1}^{n} (l_{ij}^{(m)} - l_{ij}^{(k)})(l_{ij}^{(m)} - l_{ij}^{(k)} + 1) \cdots (l_{ij}^{(m)} - l_{ij}^{(k)} - 1)$$

where the pairs (r, i) run over the set of indices satisfying the inequalities $1 \leq i \leq r \leq n - 1$. This constant is clearly nonzero for any pattern $\Lambda(u)$. Introduce normalized vectors $\xi_{\Lambda} \in L(\lambda(u))$ by

$$\xi_{\Lambda} = N_{\Lambda}^{-1} \zeta_{\Lambda}.$$

By Theorem 3.3, the vectors ξ_{Λ} form a basis of the representation $L(\lambda(u))$. The algebra $W(\pi)$ is generated by the coefficients of the polynomials $A_r(u)$ with $r = 1, \ldots, n$ and the coefficients of the polynomials $B_r(u)$ and $C_r(u)$ with $r = 1, \ldots, n - 1$. Since $B_r(u)$ and $C_r(u)$ are polynomials in u of degree less than $p_1 + \cdots + p_r$, it suffices to find the values of these polynomials at $p_1 + \cdots + p_r$ different values of u. The polynomial can then be calculated by the Lagrange interpolation formula. For these values we take the numbers $-l_{ri}^{(k)}$ with $i = 1, \ldots, r$ and $k = 1, \ldots, p_i$.

Theorem 4.1. We have

(8) $$A_r(u) \xi_{\Lambda} = \lambda_{r+1}(u) \cdots \lambda_{r+r}(u - r + 1) \xi_{\Lambda},$$

for $r = 1, \ldots, n$, and

(9) $$B_r(-l_{ri}^{(k)}) \xi_{\Lambda} = -\lambda_{r+1,1}(-l_{ri}^{(k)}) \cdots \lambda_{r+1,r+1}(-l_{ri}^{(k)} - r) \xi_{\Lambda + \delta_{ri}^{(k)}},$$

$$C_r(-l_{ri}^{(k)}) \xi_{\Lambda} = \lambda_{r-1,1}(-l_{ri}^{(k)}) \cdots \lambda_{r-1,r-1}(-l_{ri}^{(k)} - r + 2) \xi_{\Lambda - \delta_{ri}^{(k)}},$$

for $r = 1, \ldots, n - 1$, where $\xi_{\Lambda + \delta_{ri}^{(k)}}$ corresponds to the pattern obtained from $\Lambda(u)$ by replacing $\lambda_{ri}^{(k)}$ by $\lambda_{ri}^{(k)} \pm 1$.
Proof. The formulas for the action of $A_r(u)$ and $B_r(-l^{(k)}_{ri})$ follow respectively from Lemmas 3.1 and 3.2 by taking into account the normalization constant. Now consider the vector $C_r(-l^{(k)}_{ri})\xi_\Lambda$. Arguing as in the proof of Lemma 3.1 and using (8), we find that

$$A_s(u) C_r(-l^{(k)}_{ri})\xi_\Lambda = C_r(-l^{(k)}_{ri}) A_s(u)\xi_\Lambda$$

$$= \lambda_{s1}(u) \ldots \lambda_{ss}(u - s + 1) C_r(-l^{(k)}_{ri})\xi_\Lambda$$

for $s \neq r$, while

$$A_r(u) C_r(-l^{(k)}_{ri})\xi_\Lambda = \frac{u + l^{(k)}_{ri} - 1}{u + l^{(k)}_{ri}} C_r(-l^{(k)}_{ri}) A_r(u)\xi_\Lambda$$

$$= \frac{u + l^{(k)}_{ri} - 1}{u + l^{(k)}_{ri}} \lambda_r(u) \ldots \lambda_r(u - r + 1) C_r(-l^{(k)}_{ri})\xi_\Lambda.$$

If $\lambda^{(k)}_{ri} = \lambda^{(k)}_{r+1,i+1}$, then the vector $\xi_{\Lambda-\delta^{(k)}_{ri}}$ is zero and we need to show that $C_r(-l^{(k)}_{ri})\xi_\Lambda = 0$. Indeed, otherwise the vector $C_r(-l^{(k)}_{ri})\xi_\Lambda$ must be proportional to a certain basis vector of $L(\lambda(u))$. However, this is impossible because none of the basis vectors has the same set of eigenvalues as $C_r(-l^{(k)}_{ri})\xi_\Lambda$.

If $\lambda^{(k)}_{ri} - \lambda^{(k)}_{r+1,i+1} \geq 1$, then by the same argument we have

$$C_r(-l^{(k)}_{ri})\xi_\Lambda = \alpha \xi_{\Lambda-\delta^{(k)}_{ri}}$$

for a certain constant α. Its value is found by the application of the operator $B_r(-l^{(k)}_{ri} + 1)$ to the vectors on both sides with the use of (8), (9) and the second relation in Lemma 2.2. □

Note that in the particular case of a rectangular pyramid π the normalized basis $\{\xi_\Lambda\}$ coincides with the basis of [10] constructed in a different way.

Let us denote by π' the pyramid with the rows p_1, \ldots, p_{n-1}. Then the finite W-algebra $W(\pi')$ may be identified with the subalgebra of $W(\pi)$ generated by the elements (2), excluding all $h^{(r)}_n, e^{(r)}_n$ and $f^{(r)}_n$. Theorem 4.1 implies the following branching rule for the reduction $W(\pi) \downarrow W(\pi')$ and thus shows that the basis $\{\xi_\Lambda\}$ is consistent with the chain of subalgebras (1).

Corollary 4.2. The restriction of the $W(\pi)$-module $L(\lambda(u))$ to the subalgebra $W(\pi')$ is isomorphic to the direct sum of irreducible highest weight $W(\pi')$-modules $L'(\mu(u))$,

$$L(\lambda(u)) \downarrow_{W(\pi')} \cong \bigoplus_{\mu(u)} L'(\mu(u)),$$
where $\mu(u)$ runs over all $(n - 1)$-tuples of monic polynomials in u of the form $\mu(u) = (\mu_1(u), \ldots, \mu_{n-1}(u))$, such that

$$\mu_i(u) = (u + \mu_i^{(1)})(u + \mu_i^{(2)}) \ldots (u + \mu_i^{(p_i)}), \quad i = 1, \ldots, n - 1,$$

and the following conditions hold:

$$\lambda_i^{(k)} - \mu_i^{(k)} \in \mathbb{Z}_+ \quad \text{and} \quad \mu_i^{(k)} - \lambda_{i+1}^{(k)} \in \mathbb{Z}_+$$

for $k = 1, \ldots, p_i$ and $1 \leq i \leq r \leq n - 1$. □

For each $i = 1, \ldots, n - 1$ introduce the polynomials $\tau_{ni}(u)$ and $\tau_{in}(u)$ with coefficients in $W(\pi)$ by the formulas

$$\begin{align*}
\tau_{ni}(u) &= C_{n-1}(u) C_{n-2}(u) \ldots C_i(u), \\
\tau_{in}(u) &= B_i(u) B_{i+1}(u) \ldots B_{n-1}(u).
\end{align*}$$

(10)

Define the vector $\zeta_\mu \in L(\lambda(u))$ corresponding to the $(n - 1)$-tuple of polynomials $\mu(u) = (\mu_1(u), \ldots, \mu_{n-1}(u))$ by the formula

$$\zeta_\mu = \prod_{i=1}^{n-1} \prod_{k=1}^{p_i} \left(\tau_{ni}(-m_i^{(k)} - 1) \ldots \tau_{ni}(-l_i^{(k)} + 1) \tau_{ni}(-\lambda_i^{(k)}) \right) \zeta,$$

where the ordering of the factors corresponds to increasing indices i and k, and we used the notation

$$m_i^{(k)} = \mu_i^{(k)} - i + 1 \quad \text{and} \quad l_i^{(k)} = \lambda_i^{(k)} - i + 1.$$

Due to Theorem 4.1, the vector ζ_μ generates a $W(\pi')$-submodule of $L(\lambda(u))$, isomorphic to $L'(\mu(u))$. Moreover, the operators $\tau_{ni}(-m_i^{(k)})$ and $\tau_{ni}(-l_i^{(k)})$ take ζ_μ to the vectors proportional to $\zeta_{\mu-\delta_i^{(k)}}$ and $\zeta_{\mu+\delta_i^{(k)}}$, respectively. So, the polynomials (10) valued at appropriate points can be regarded as the lowering and raising operators for the reduction $W(\pi) \downarrow W(\pi')$; cf. [11, Chapter 5].

Acknowledgments

The authors acknowledge the support of the Australian Research Council. The first author is supported in part by the CNPq grant (processo 307812/2004-9) and by the Fapesp grant (processo 2005/60337-2). He is grateful to the University of Sydney for the warm hospitality during his visit.
References

[1] C. Briot and E. Ragoucy, RTT presentation of finite \(W \)-algebras, *J. Phys. A* **34** (2001), 7287–7310.

[2] J. Brown and J. Brundan, Elementary invariants for centralizers of nilpotent matrices, *J. Austral. Math. Soc.*, to appear; [arXiv:math/0611024](https://arxiv.org/abs/math/0611024).

[3] J. Brundan and A. Kleshchev, Parabolic presentations of the Yangian \(Y(\mathfrak{g}(n)) \), *Comm. Math. Phys.* **254** (2005), 191–220.

[4] J. Brundan and A. Kleshchev, Shifted Yangians and finite \(W \)-algebras, *Adv. Math.* **200** (2006), 136–195.

[5] J. Brundan and A. Kleshchev, Representations of shifted Yangians and finite \(W \)-algebras, *Memoirs AMS*, to appear; [arXiv:math/0508003](https://arxiv.org/abs/math/0508003).

[6] V. G. Drinfeld, A new realization of Yangians and quantized affine algebras, *Soviet Math. Dokl.* **36** (1988), 212–216.

[7] V. Futorny, A. Molev and S. Ovsienko, Gelfand–Kirillov conjecture and Harish-Chandra modules for finite \(W \)-algebras, in preparation.

[8] V. Futorny and S. Ovsienko, Galois orders, preprint [arXiv:math/0610069](https://arxiv.org/abs/math/0610069).

[9] V. Futorny and S. Ovsienko, Fibers of characters in Harish-Chandra categories, preprint [arXiv:math/0610071](https://arxiv.org/abs/math/0610071).

[10] A. I. Molev, Gelfand–Tsetlin basis for representations of Yangians, *Lett. Math. Phys.* **30** (1994), 53–60.

[11] A. Molev, *Yangians and classical Lie algebras*, Mathematical Surveys and Monographs, 143. American Mathematical Society, Providence, RI, 2007.

[12] M. Nazarov and V. Tarasov, Yangians and Gelfand–Zetlin bases, *Publ. Res. Inst. Math. Sci. Kyoto Univ.* **30** (1994), 459–478.

[13] M. Nazarov and V. Tarasov, Representations of Yangians with Gelfand–Zetlin bases, *J. Reine Angew. Math.* **496** (1998), 181–212.

[14] E. Ragoucy and P. Sorba, Yangian realisations from finite \(W \)-algebras, *Comm. Math. Phys.* **203** (1999), 551–572.

Department of Mathematics and Statistics, University of São Paulo, Caixa Postal 66281- CEP 05315-970, São Paulo, Brazil

E-mail address: futorny@ime.usp.br

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia

E-mail address: alexm@maths.usyd.edu.au

Faculty of Mechanics and Mathematics, Kiev Taras Shevchenko University, Vladimirskaya 64, 00133, Kiev, Ukraine

E-mail address: ovsienko@zeos.net