Supplement of

Downscaling probability of long heatwaves based on seasonal mean daily maximum temperatures

Rasmus E. Benestad et al.

Correspondence to: Rasmus E. Benestad (rasmus.benestad@met.no)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Supporting Material for Probability of long heatwaves

Rasmus Benestad
February 7, 2017

The supporting material (SM) for the paper ‘Downscaling probability for long heatwaves based on seasonal mean temperatures’ by Benestad et al.

The paper has been submitted to Advances in Statistical Climatology, Meteorology and Oceanography (Copernicus) https://www.advances-statistical-climatology-meteorology-oceanography.net

About the CixPAG project

CiXPAG will investigate the complex interactions between climate extremes, air pollution and agricultural ecosystems. Climate extremes (e.g., droughts, floods, heatwaves) and air pollution events often co-occur causing substantial losses in agricultural productivity. We do not yet fully understand how these stresses interact and what the impacts of the combined climate - air pollution effects may be for agricultural ecosystems in some of the most vulnerable parts of the world. This lack of knowledge is particularly challenging considering the threats that climate change and food security pose to society.

The novel research proposed in CiXPAG will collect new experimental data and develop new modelling techniques to integrate knowledge on changes in climate extremes and air pollution to assess effects on agricultural productivity. Integration of farmers’ knowledge will enable the results to be translated into agricultural adaptation options within the particular socio-economic and political context.

R Markdown

This script uses the R computing environment that runs on all platforms and is freely available from http://cran.r-project.org. You can also run it in the R-studio environment that also offers a free version from http://rstudio.com. You would need to install a few extra packages and libraries, e.g for developing code for reading/writing netCDF files https://www.unidata.ucar.edu/software/netcdf/.

This is an R Markdown document to assess the duration of warm spells in Indian maximum temperature (tmax) data. The objective of this R-markdown document is to provide an exact recipe for the analysis presented in the main paper: rerunning this script will replicate the exact steps taken. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

The following lines are of technical nature to do some magic: to extract the R-code from this script (this chunk with lines is usually not implemented - eval=FALSE):

```r
## Extract just the R-code for the generation of the graphics used for the figures seperately.
## Check if you need to get the devtools-package:
install.knitr <- (!"knitr" %in% rownames(installed.packages()) == FALSE)

if (install.knitr) {
  print("Need to install the knitr package")
  ## You need online access.
  install.packages("knitr")
}
library(knitr)
purl("~/git/esd_Rmarkdown/CixPAG/spell-statistics.Rmd", output="~/git/esd_Rmarkdown/CixPAG/spell-statistics.R")
```
And to knit the final document:

The ‘esd’ analysis tool

This analysis relies on the R-packages esd (‘extreme simple data’, formerly ‘empirical-statistical downscaling’) that is available from http://github.com/metno/esd. See its GitHub wikipage for more informationhttp://github.com/metno/esd/wiki. The following chunk of R code installs the ‘esd-package automatically.

```r
## Check if you need to get the devtools-package:
install.devtools <- ("devtools" %in% rownames(installed.packages()) == FALSE)

if (install.devtools) {
  print("Need to install the devtools package")
  ## You need online access.
  install.packages("devtools")
}

## Use the devtools-package for simple facilitation of installing.
library("devtools")
install_github("metno/esd")

## Skipping install of 'esd' from a github remote, the SHA1 (74e57b3a) has not changed since last install.
## Use "force = TRUE" to force installation
library(esd)

## Loading required package: ncdf4
## Loading required package: zoo

## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##     as.Date, as.Date.numeric

## Attaching package: 'esd'
## The following object is masked from 'package:base':
##     subset.matrix

library(MASS)

## Attaching package: 'MASS'
## The following object is masked from 'package:esd':
##     select
```

Additional R-packages

The analysis also makes use of the LatticeKrig package for the interpolation of large spatial datasets. The following code will automatically install this package if it is missing.
Check if you need to get the devtools-package:

```r
install.latticekrig <- (!"LatticeKrig" %in% rownames(installed.packages()) == FALSE)
```

```r
if (install.latticekrig) {
  print('Need to install the LatticeKrig package')
  ## You need online access.
  install.packages('LatticeKrig')
}
```

If you passed this point, you sucessfully managed to install and load `esd` and additional packages. The analysis can now proceed.

Daily Indian temperatures

The following lines extracts daily temperature records for India from the Global Historic Climate Network (GHCND) through the R-package `esd` (open code and available from http://github.com/metno/esd).

Get the daily maximum temperature and check the number of valid data points `nv`:

```r
if (!file.exists("tmax.india.rda")) {
  ss <- select.station(param="tmax", src='GHCND', cntr='India', nmin=50)
  tmax <- station(ss)
  map(tmax,FUN='nv',new=FALSE)
  save(tmax,file="tmax.india.rda")
} else load("tmax.india.rda")
```

Get the daily minimum temperature:

```r
library(esd)
if (!file.exists("tmin.india.rda")) {
  ss <- select.station(param="tmin", src='GHCND', cntr='India', nmin=50)
  tmin <- station(ss)
  map(tmin,FUN='nv',new=FALSE)
  save(tmin,file="tmin.india.rda")
} else load("tmin.india.rda")
```

Data quality

There is a need to check the data quality: show gaps of missing data and weed out stations with lots of missing values.

```r
diagnose(tmax)
```
GHCND

Remove periods with mostly missing data and stations with few valid data

Y <- subset(tmax,it=c(1970,2015))

nv <- apply(coredata(Y),2,FUN='nv')

##nv = number of valid data points

Y <- subset(Y,is=nv > 10290)

There were some stations with little data or short records which have been omitted here. We have only kept records with plenty of valid data (more than 10290 data points) between 1970 and 2015.

Spell statistics for heatwaves

For all Indian wheat varieties, the main challenge is the high temperatures in the final growing phase, late in the season from February to April. All temperatures above optimal decrease the yield. Here the upper temperature threshold was set to \(T > 35\,^\circ C \) for 5 days;

\[
d <- \text{dim}(Y)
\]

\[
n.yrs <- \text{diff(range(year(Y)))}+1
\]

\[
f.g.t.5 <- \text{rep(NA,d[2])}
\]

The portion of hot days with duration longer than five days

\[
f.g.t.5 <- \text{rep(NA,d[2])}
\]

The portion of seasons with a 5-day or longer 35\text{C} heatwave

\[
Pr.Tmax.gt.35<- \text{rep(NA,d[2])}
\]

The probability of temperatures greater than 35\text{C}

for (i in 1:d[2]) {

\[
sds <- \text{spell(subset(Y,is=i),threshold=35,upper=30)}
\]

if (i==1) lws <- subset(sds,is=1) else

lws <- combine.stations(lws,subset(sds,is=1))

Example of the spell statistics

if (i==4) hist(sds,new=FALSE)

Heatwaves in February-March-April

heatwave <- subset(sds,is=1,it=month.abb[2:4])
The fraction of events lasting more than 5 days

\[
f_{\text{gt.5}}[i] \leftarrow \frac{\text{sum}(\text{heatwave} > 5)}{\text{sum}(\text{is.finite}(\text{heatwave}))}
\]

#f_{\text{gt.5}}[i] \leftarrow \frac{\text{sum}(\text{subset}(sds, is=1) > 5)}{\text{sum}(\text{is.finite}(\text{subset}(sds, is=1)))}

#f_{\text{gt.5}}[i] \leftarrow \frac{\text{sum}(\text{subset}(sds, is=1) > 5)}{\text{count}(\text{subset}(Y, is=i), \text{threshold}=35)}

cc \leftarrow \text{coredata}(\text{heatwave}); cc[cc <= 5] \leftarrow \text{NA}; cc[\text{is.finite}(cc)] \leftarrow 1

hw \leftarrow \text{zoo}(cc[\text{is.finite}(cc)], \text{order.by} = \text{index}(\text{heatwave})[\text{is.finite}(cc)])

The portion of seasons with a 5-day or longer 35C heatwave

\[
f_{\text{n.f.gt.5}}[i] \leftarrow \frac{\text{length}(\text{rownames}(\text{table}(\text{year}(hw))))}{\text{n.yrs}}
\]

Probability of a 5-day or longer 35C heatwave in February–March–April

\[
\text{Pr.Tmax.gt.35}[i] \leftarrow 1 - \text{pnorm}(35, \text{mean} = \text{mean}(\text{subset}(Y, \text{it=month.abb}[2:4], \text{is}=i), \text{na.rm}=\text{TRUE}),
\]

\[
\text{sd} = \text{sd}(\text{subset}(Y, \text{it=month.abb}[2:4], \text{is}=i), \text{na.rm}=\text{TRUE})
\]

\[
\text{print}(c(f_{\text{gt.5}}[i], \text{Pr.Tmax.gt.35}[i]))
\]

Warning for PBO ANANTAPUR - 2524 missing values (16.1 %) filled by interpolation

Warning for MACHILIPATNAM - 2585 missing values (17 %) filled by interpolation

Warning for NELLORE - 2711 missing values (17.3 %) filled by interpolation

Warning for GAUHATI - 2437 missing values (15.5 %) filled by interpolation
The printout from the analysis of spell duration (consecutive days with more than 35 degrees) reveals that a
number of stations still had gaps of missing data. To deal with this in an ad hoc manner (it’s difficult to estimate the heatwave durations with missing data), a linear interpolation in time was used to fill those gaps. This is a step that will introduce errors and an additional layer of uncertainties that will affect the whole analysis.

```r
## The mean statistics for the winter-spring, February-March-April

# Warning in sqrt(coredata(n) - 1): NaNs produced

tmax.fma <- aggregate(subset(Y,it=month.abb[2:4]),year,FUN='mean')

lws.fma <- aggregate(subset(lws,it=month.abb[2:4]),year,FUN='mean')

## Warning in sqrt(coredata(n) - 1): NaNs produced

rng.tmax.fma <- range(c(tmax.fma),na.rm=TRUE) ## Sanity check

rng.lws.fma <- range(c(lws.fma),na.rm=TRUE) ## Sanity check

## Test geometric distribution for 1 day - same as the frequency of hot days?

y <- 1-pgeom(0,1/apply(lws.fma,2,'mean',na.rm=TRUE))

x <- apply(coredata(subset(Y,it=month.abb[2:4])),2,function(x) sum(x > 35,na.rm=TRUE)/sum(is.finite(x)))

plot(x,y,xlim=c(0,1),ylim=c(0,1),
     xlab=expression(sum(T > 35)/n),ylab=expression(Pr(L > 1)),main='Test probability for 1 hot day')

grid()
```

The results of the test for the probability for one day or more with maximum daily temperature exceeding 35°C against the observed frequency of such hot days suggests that the estimated probability assuming a geometric distribution gives higher values that are less sensitive to the location differences. The probabilities here are the probability of heatwaves per season. The two estimates differ because the former takes heatwaves greater than 1 day as one case where the length is greater than zero, and therefore the two are not entirely comparable. However, based on this, the observed frequency on the x-axis is expected to be higher than the probability on the y-axis.
Seasonal aggregates

We want to use seasonal statistics of the temperature and duration of hot spells for downscaling the hot spell statistics. Here \(lws.fma \) (also referred to as \(L_H \) in the main paper) refers to the mean length of warm spells for February-March-April, and the probability of five-day spells are estimated from this using the geometric distribution. Aggregates over seasons are expected to be more resistant to errors in the data and caused by the interpolation than for the individual events.

```r
## There are some missing data which will cause some technical problems in the analysis
## but these are only a few data points, and we can interpolate their values in order to
## get around the stumbling blocks that the missing values cause. The function 'pcafill' makes
## use of a spatio-temporal covariance matrix for filling in the gaps.
tmax.fma <- pcafill(tmax.fma)
lws.fma <- pcafill(lws.fma)
```

There were gaps of missing data also for the aggregated data, and the PCA required complete datasets with no missing data. We used a PCA-based strategy to fill in the gaps through the use of PCA applied to subsets (blocks of the data matrix) of the data with complete coverage, and regression to fill in the gaps. This is explained in Benestad et al (2015) ‘On using principal components to represent stations in empirical–statistical downscaling’ https://www.tandfonline.com/doi/full/10.3402/tellusa.v67.28326.

We need to assess the frequency of ‘heatwaves’ - defined events with \(T_{\text{max}} > 35^\circ \text{C} \).

```r
## Use without pcafill - the number of hot events
lws5d <- subset(lws,it=month.abb[2:4]); x <- coredata(lws5d); x[x < 5] <- NA; x -> coredata(lws5d)
nh <- aggregate(lws5d,year,FUN=\'count\')
attr(nh,'variable') <- \'heatwave-frequency\'
attr(nh,'unit') <- \'count\'
map(nh,FUN='mean',new=FALSE)
```
mnh <- round(apply(coredata(nh),2,'mean',na.rm=TRUE),2)
mTx <- round(apply(coredata(tmax.fma),2,'mean',na.rm=TRUE),2)
write.table(cbind(loc(lws),alt(lws),mTx,mnh),sep=' & ',eol=' \\

& & mTx & mnh &
PBO ANANTAPUR & 364 & 37.23 & 0.95 &
MACHILIPATNAM & 3 & 33.26 & 1.16 &
NELLORE & 20 & 35.33 & 1.88 &
GAUHATI & 54 & 29.38 & 0.19 &
DIBRUGARH/MOHANBAR & 111 & 26.41 & 0.02 &
PATNA & 60 & 32.37 & 1.7 &
AHMADABAD & 55 & 35.28 & 1.09 &
VERAVAL & 8 & 31.37 & 0.44 &
BHUJ-RUDRAMATA & 80 & 35.07 & 1.23 &
SURAT & 12 & 35.01 & 3.3 &

10
We see that there is typically one or less five-day heatwave per February-March-April season in most locations. One exception is Surat with an average of 6 events each season. There is also a tendency of higher numbers along the southeastern coast, however, none of these are important places for wheat crops. The mean frequency is about 2 in the interior northern part on our map.

Compare the number of events with the mean temperature, which is expected to approximately follow a Poisson distribution.

```r
mtmax <- colMeans(coredata(tmax.fma),na.rm=TRUE)
srt <- order(mtmax)

## Use GLM and assume a Poisson distribution
cal.nevents <- data.frame(y=c(coredata(nh)),x=c(coredata(tmax.fma)))
fit.nh.glm <- glm(y ~ x, data=cal.nevents,family="poisson")
plot(cal.nevents$x,cal.nevents$y,
     xlab=expression(bar(T[\text{max}])),ylab=expression(n[h5]))
#lines(cal.nevents$x,exp(predict(fit.nh.glm)),col='red')
## OLR and not GLM:
srt <- order(cal.nevents$x)
lines(cal.nevents$x[srt],exp(predict(fit.nh.glm))[srt],col='red')
```
```r
print(summary(fit.nh.glm))

## Call:
## glm(formula = y ~ x, family = "poisson", data = cal.nevents)
##
## Deviance Residuals:
##     Min       1Q   Median       3Q      Max
##  -2.0311  -1.3817  -0.1929  0.6382  3.1772
##
## Coefficients:
##            Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.66468   0.37212  -9.848  <2e-16 ***
## x            0.11412   0.01094   10.432  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 2035.0  on 1504  degrees of freedom
## Residual deviance: 1920.2  on 1503  degrees of freedom
## AIC: 4293.3

## Number of Fisher Scoring iterations: 5
```

Compare the \{mean number\} of events \bar{n}_{h5} with the mean temperature, which is expected to converge to a normal distribution with increasing sample size according to the central limit theorem.

```r
mtmax <- colMeans(coredata(tmax.fma), na.rm=TRUE)
srt <- order(mtmax)

## The scatter seems to work as well with an ordinary linear model (OLR)
## Use an ordinary linear model since it's simpler than the GLM making use of
## the mean number of events rather than an integer number.
```
```r
# Define data frame with cal.nevents
# cal.nevents is a data frame with columns y (coredata(mnh)[srt]) and x (mtmax[srt])
# Calculating linear model fit.nh
# Plotting scatter plot with
# x-axis as cal.nevents$x, y-axis as cal.nevents$y
# lm(formula = y ~ x, data = cal.nevents)
fit.nh <- lm(y ~ x, data = cal.nevents)
plot(cal.nevents$x, cal.nevents$y,
     xlab = expression(bar(T[max])),
     ylab = expression(bar(n[h5])))

# OLR and not GLM
lines(cal.nevents$x, predict(fit.nh), col = 'red')

# Print summary of fit.nh
print(summary(fit.nh))

# Print summary of fit.nh
```

```
## Call:
## lm(formula = y ~ x, data = cal.nevents)
##
## Residuals:
##    Min      1Q  Median      3Q     Max
## -1.10498 -0.34546 -0.02757  0.27351  1.87473
##
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.51602    1.60581  -2.190  0.03573 *
## x             0.14113    0.04802   2.939  0.00597 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6127 on 33 degrees of freedom
## Multiple R-squared:  0.2074, Adjusted R-squared:  0.1834
## F-statistic:  8.636 on 1 and 33 DF,  p-value: 0.005974
```
We see that there is an indication that the mean number of five-day heatwaves n_{h5} is influenced by the mean daily maximum temperature for the same season T_{max}.

Estimate the probability (%) of at least one heatwave, assuming it is a stochastic process:

```r
pr.heatwave <- 1 - ppois(0, lambda=coredata(mnh))
print(round(100*pr.heatwave, 2))
```

City	PBO	ANANTAPUR	MACHILIPATNAM	NELLORE
Heatwave Probability				
61.33	68.65	84.43	84.74	
17.30	1.98		81.73	
66.38	35.60		70.77	
96.31	62.47		80.80	
KOZHIKODE	30.93		75.83	
THIRUVANANTHAPURAM				
JABALPUR	70.77		65.70	
BHOPAL/BAIRAGARH	67.37		34.30	
JODHPUR	65.01		55.51	
BHUBANE	92.42		66.38	
AGARTALA	68.02		83.63	
TIRUCHCHIRAPALLI	79.81		68.02	
CALCUTTA/DUM				

14
Relationship between the mean temperature and duration of heat waves

The following chunks of R-code show how we calibrated the regression model to quantify the statistical link between the mean temperature and the mean duration.

```r
## Figure 2.
print('Figure 2')

## [1] "Figure 2"

## Synchronise the two records: mean spell length and mean temperature
xy <- merge(round(zoo(lws.fma)), zoo(tmax.fma), all=FALSE)
## In this data.frame, x is the mean heatwave duration and y is the mean temperature
cal.tmax.lws <- data.frame(x=c(coredata(tmax.fma)), y=c(coredata(lws.fma)))
#cal.tmax.lws <- data.frame(y=c(coredata(xy[,1:35])), x=c(coredata(xy)[,36:70]))
ok <- is.finite(cal.tmax.lws$x) & is.finite(cal.tmax.lws$y) & (cal.tmax.lws$y >= 0)
cal.tmax.lws <- cal.tmax.lws[ok,]
cal.tmax.lws.log <- data.frame(y=log(c(coredata(xy[,1:35 ]))), x=log(c(coredata(xy)[,36:70 ])))
ok <- is.finite(cal.tmax.lws.log$x) & is.finite(cal.tmax.lws.log$y)
cal.tmax.lws.log <- cal.tmax.lws.log[ok,]
summary(lm(y ~ x, data=cal.tmax.lws.log))

##
## Call:
## lm(formula = y ~ x, data = cal.tmax.lws.log)
##
## Residuals:
##     Min      1Q  Median      3Q     Max
## -1.91434 -0.32214  0.05976  0.36594  2.39297
##
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)  -7.4517     0.6808  -10.95  <2e-16 ***
## x             2.5769     0.1942   13.27  <2e-16 ***
## ---
## Signif. codes:  < 0.001 ***  0.01 **  0.05 *  0.1 .  1
##
## Residual standard error: 0.5485 on 1503 degrees of freedom
## Multiple R-squared:  0.1049, Adjusted R-squared:  0.1043
## F-statistic: 176.1 on 1 and 1503 DF,  p-value: < 2.2e-16

fit <- glm(y ~ x, data=cal.tmax.lws, family='poisson')
#dev.new()
par(mar=c(5.1,5.1,4.1,2.1))
plot(cal.tmax.lws$x, cal.tmax.lws$y, xlab=expression(bar(T[max])), ylab=expression(bar(L[H])))
pre <- data.frame(x=seq(min(tmax,na.rm=TRUE), max(tmax,na.rm=TRUE), by=0.1))
lines(pre$x, exp(predict(fit, newdata=pre)), col=rgb(1,0,0,0.4), lwd=3)
grid()
Try the suggestion from reviewer:

```r
#dev.copy2pdf(file='fig2.pdf')

Figure 2.
print('Figure 2z')

[1] "Figure 2z"

Synchronise the two records: mean spell length and mean temperature

```r
cal.tmax.lws <- data.frame(x=c(coredata(tmax.fma)), y=1/c(coredata(lws.fma)))
```

```r
fit <- glm(y ~ x, data=cal.tmax.lws, family=negative.binomial(1))
print(summary(fit))
```

```
##
## Call:
## glm(formula = y ~ x, family = negative.binomial(1), data = cal.tmax.lws)
##
## Deviance Residuals:
##     Min       1Q   Median       3Q      Max
## -0.9656  -0.7952  -0.7526   0.8326  1.2618
##
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)
## (Intercept)  2.009330   0.213234   9.423  <2e-16 ***
##           x   -0.103313   0.006464  -15.982  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for Negative Binomial(1) family taken to be 0.0770043)
##
## Null deviance: 1002.47 on 1504 degrees of freedom
## Residual deviance:  982.73 on 1503 degrees of freedom
```
Figure 2.

Figure 2x

Assuming a negative binomial (1) distribution

```
# AIC: 1842.9
## Number of Fisher Scoring iterations: 4

dev.new()
par(mar=c(5.1,5.1,4.1,2.1))
plot(cal.tmax.lws$x,1/cal.tmax.lws$y,xlab=expression(bar(T[max])),ylab=expression(bar(L[H])),
     main='Assuming a negative binomial (1) distribution')
pre <- data.frame(x=seq(min(tmax,na.rm=TRUE),max(tmax,na.rm=TRUE),by=0.1))
lines(pre$x,1/exp(predict(fit,newdata=pre)),col=rgb(1,0,0,0.4),lwd=3)
grid()
```

Also try the relation using the average numbers for each for each site instead of average for each season (i.e. fewer data points, but more aggregated data):

```r
## Synchronise the two records: mean spell length and mean temperature
xy <- merge(round(zoo(lws.fma)),zoo(tmax.fma),all=FALSE)
## In this data.frame, x is the mean heatwave duration and y is the mean temperature
cal.tmax.lws1 <- data.frame(x=apply(coredata(tmax.fma),2,'mean',na.rm=TRUE),
    y=apply(coredata(lws.fma),2,'mean',na.rm=TRUE))
#cal.tmax.lws <- data.frame(y=c(coredata(xy[,1:35])),x=c(coredata(xy)[,36:70]))
ok <- is.finite(cal.tmax.lws1$x) & is.finite(cal.tmax.lws1$y) & (cal.tmax.lws1$y >= 0)
cal.tmax.lws1 <- cal.tmax.lws1[ok,]
fit1 <- lm(y ~ x, data=cal.tmax.lws1)
print(summary(fit1))
```

[1] "Figure 2x"
```r
### Call:
### lm(formula = y ~ x, data = cal.tmax.lws1)
### ### Residuals:
###   Min 1Q Median 3Q Max
### -3.9968 -1.0496 0.1583 1.3451 2.7677
### ### Coefficients:
### Estimate Std. Error t value Pr(>|t|)
### (Intercept) -4.5504  4.5246  -1.006 0.3219
###   x          0.3053  0.1353   2.256 0.0308 *
### ---
### Signif. codes:  0 '\*'\tsinglequote{tsinglequote}***' 0.001 '\*'\tsinglequote{tsinglequote}**' 0.01 '\*'\tsinglequote{tsinglequote}0.05 '\.'\tsinglequote{tsinglequote}0.1 '\'' 1
### ### Residual standard error: 1.726 on 33 degrees of freedom
### Multiple R-squared: 0.1337, Adjusted R-squared: 0.1074
### F-statistic: 5.091 on 1 and 33 DF, p-value: 0.0308

# dev.new()
par(mar=c(5.1,5.1,4.1,2.1))
plot(cal.tmax.lws1$x,cal.tmax.lws1$y,zlab=expression(bar(T[\text{max}])),ylab=expression(bar(L[H])),
     main='Average duration for location v.s. average temperature')
pre1 <- data.frame(x=seq(min(tmax,na.rm=TRUE),max(tmax,na.rm=TRUE),by=0.1))
lines(pre1$x,exp(predict(fit1,newdata=pre1)),col=rgb(1,0,0,0.4),lwd=3)
grid()
```

Average duration for location v.s. average temperature

![Graph showing the relationship between average duration and average temperature](image)
Preparing the predictand

The next part describes how we set up the empirical-statistical downscaling. We used PCA to represent the predictands for several reasons. Because the station records contained redundant information, we could get away with downscaling a few PCs rather than all the stations, and hence save time. It’s more efficient. Furthermore, the PCA maintains the observed covariance structure and the correlation between temperatures at different locations. Another reason for using PCA was that it emphasizes the common signal in the data records and suppresses noise and errors, which benefits the downscaling that tries to identify the connection to the large-scale conditions. More details about using PCAs to represent the predictands in empirical-statistical downscaling can be found in Benestad et al. (2015) http://dx.doi.org/10.3402/tellusa.v67.28326.

The nature of heatwave duration

The following figure shows what the leading PCA looks like for the mean heatwave duration $\overline{L_H}$, however, this was not used as predictand in the downscaling - it’s shown just to get an idea of where there are large year-to-year variations in the duration of heatwaves with temperatures greater than 35°C:

```r
##PCA for the mean length of warm spells:
pca.lws <- PCA(lws.fma,n=5)
plot(pca.lws,new=FALSE)
```
The sites in the interior northern India are associated with greater weights for the leading PCA in connection with interannual variations in the mean spell duration. The five leading modes accounted for 100% of the variance in the seasonal mean heatwave duration.

A sanity check is to look at the maximum and minimum values of the mean lengths of heatwaves:

```r
print(summary(coredata(lws)))
```

	PBO	ANANTAPUR	MACHILIPATNAM	NELLORE	GAUHATI
Min.	1.000	1.000	1.000	1.000	1.000
1st Qu.	1.000	1.000	1.000	2.000	1.000
Median	2.000	2.000	3.000	1.000	1.000
Mean	3.921	4.456	6.082	1.923	

20
Location	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Dibrugarh/Mohanbar	1.000	1.000	1.000	1.962	2.000	7.000
Patna	1.000	1.000	1.000	1.553	2.000	7.000
Ahmadabad	1.000	1.000	1.000	4.428	5.000	28.000
Veraval	1.000	1.000	1.000	4.608	5.000	29.000
Bhuban	1.000	1.000	1.000	4.651	5.000	29.000
Rudramata	1.000	1.000	1.000	6.512	8.000	30.000
Surat	1.000	1.000	1.000	6.589	8.000	30.000
Hissar	1.000	1.000	1.000	6.647	8.000	30.000
Gadag	1.000	1.000	1.000	6.569	8.000	30.000
Kozhikode	1.000	1.000	1.000	6.528	8.000	30.000
Thiruvananthapuram	1.000	1.000	1.000	6.512	8.000	30.000
Jagdalpur	1.000	1.000	1.000	6.589	8.000	30.000
Pendra Road	1.000	1.000	1.000	6.569	8.000	30.000
Gwalior	1.000	1.000	1.000	6.528	8.000	30.000
Indore	1.000	1.000	1.000	6.512	8.000	30.000
Jabalpur	1.000	1.000	1.000	6.589	8.000	30.000
Bhopal/Bairagarh	1.000	1.000	1.000	6.569	8.000	30.000
Bombay/Santacruz	1.000	1.000	1.000	6.528	8.000	30.000
Nagpur Sonega	1.000	1.000	1.000	6.512	8.000	30.000
Poona	1.000	1.000	1.000	6.589	8.000	30.000
Sholapur	1.000	1.000	1.000	6.569	8.000	30.000
Bikaner	1.000	1.000	1.000	6.528	8.000	30.000
Jodhpur	1.000	1.000	1.000	6.512	8.000	30.000
Madras/Minambakkam	1.000	1.000	1.000	6.589	8.000	30.000
Tiruchirapalli	1.000	1.000	1.000	6.569	8.000	30.000
Agartala	1.000	1.000	1.000	6.589	8.000	30.000
Cuddalore	1.000	1.000	1.000	6.569	8.000	30.000
Madras/Minambakkam TIRUCHIRAPALLI AGARTALA	1.000	1.000	1.000	6.569	8.000	30.000
Median : 3.000 Median : 3.000 Median : 4.000 Median : 2.000
Mean : 5.107 Mean : 5.015 Mean : 6.706 Mean : 2.844
3rd Qu.: 6.000 3rd Qu.: 6.000 3rd Qu.: 9.000 3rd Qu.: 3.000
Max. :30.000 Max. :29.000 Max. :30.000 Max. :22.000

NA's :7535 NA's :7429 NA's :7659 NA's :7956
NEW DELHI/S Lucknow/Amausi CALCUTTA/Dum Dum
Min. : 1.000 Min. : 1.00 Min. : 1.000
1st Qu.: 1.000 1st Qu.: 2.00 1st Qu.: 1.000
Median : 3.000 Median : 3.00 Median : 2.000
Mean : 5.162 Mean : 5.35 Mean : 4.256
3rd Qu.: 6.000 3rd Qu.: 7.00 3rd Qu.: 5.000
Max. :30.000 Max. :30.00 Max. :28.000

print(summary(coredata(lws.fma)))

PBO ANANTAPUR MACHILIPATNAM NELLORE GAUHATI
Min. : 3.631 Min. : 2.021 Min. : 1.948 Min. :1.854
1st Qu.: 4.469 1st Qu.: 3.207 1st Qu.: 1.887
Median :5.031 Median : 6.067 Median :2.121
Mean : 5.166 Median : 6.190 Mean :2.109
3rd Qu.:5.652 3rd Qu.: 7.444 3rd Qu.:2.172
Max. :30.000 Max. :14.148 Max. :2.261

DIBRUGARH/MOHANEVAR PATNA AHMADABAD VERAVAL
Min. : 1.000 Min. : 2.753 Min. :3.289 Min. :1.184
1st Qu.: 1.000 1st Qu.: 6.654 1st Qu.:5.280
Median :7.265 Median :4.630 Median :2.145
Mean : 7.171 Mean :4.830 Mean :2.284
3rd Qu.:8.057 3rd Qu.:5.869 3rd Qu.:2.499
Max. :30.000 Max. :17.115 Max. :4.688

BHUJ-RUDRAMATA SURAT HISSAR GADAG
Min. : 4.623 Min. : 4.447 Min. :3.508 Min. :1.184
1st Qu.: 5.150 1st Qu.: 5.280 1st Qu.:5.557
Median :6.199 Median :5.979 Median :8.795
Mean : 6.491 Mean :5.905 Mean :8.989
3rd Qu.:8.324 3rd Qu.:5.869 3rd Qu.:2.499
Max. :11.715 Max. :17.115 Max. :4.688

KOZHIKODE ThIRUVANANTHAPURAM JAGDALPUR PENDRA ROAD
Min. : 1.000 Min. : 1.190 Min. : 4.781 Min. :1.000
1st Qu.: 2.576 1st Qu.: 7.917 1st Qu.:6.052
Median :3.144 Median : 8.744 Median :6.741
Mean : 3.270 Mean : 8.554 Mean :7.179
3rd Qu.:3.810 3rd Qu.: 8.776 3rd Qu.:8.376
Max. :11.061 Max. :13.340 Max. :13.340

GWALIOR INDORE JABALPUR BHOPAL/BAIRAGARH
Min. : 3.815 Min. : 1.000 Min. : 1.282 Min. :2.871
1st Qu.: 4.253 1st Qu.: 5.629 1st Qu.:5.986
Median :4.993 Median :6.614 Median :4.709
Mean : 5.605 Mean : 6.883 Mean :4.868
3rd Qu.:7.463 3rd Qu.:8.776 3rd Qu.:5.592
Max. :14.481 Max. :13.372 Max. :8.354

BOMBAY/SANTACRUZ NAGPUR SONEGA POONA SHOLAPUR
Min. : 1.271 Min. : 4.388 Min. : 1.918 Min. :1.000
1st Qu.: 6.112 1st Qu.: 4.712 1st Qu.:4.606
Median :2.182 Median : 7.484 Median :7.337
City	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
BHUBANE	1.802	3.977	6.003	7.302	8.576	24.827
BIKANER	4.357	5.483	5.874	5.845	6.264	8.222
JAIPUR/SA	4.591	5.802	6.900	5.838	7.223	8.593
JODHPUR	4.471	4.991	5.802	5.838	6.255	8.617
CUDDALO	1.000	1.711	3.749	4.893	5.956	24.892
MADRAS/MINAMBKAM	3.689	4.696	5.168	5.168	6.264	8.331
TIRUCHCHIRAPALLI	2.087	4.843	6.883	6.883	8.481	11.617
AGARTALA	1.787	3.526	3.953	3.953	4.250	5.948
NEW DELHI/S	2.939	5.268	5.912	5.912	6.541	7.039
LUCKNOW/AMAUSI	2.939	5.268	5.912	5.912	6.541	7.039
CALCUTTA/DUM	3.006	5.268	5.912	5.912	6.541	7.039
DUM	3.006	5.268	5.912	5.912	6.541	7.039

```r
map(lws.fma, FUN = 'max', new = FALSE)
```
max of (days)

map(lws.fma,FUN='min',new=FALSE)
One site has negative minimum values for the mean length, but all spell lengths are positive. This is what the time series looks like:

```r
plot(lws.fma, errorbar=FALSE, new=FALSE, map.show=FALSE)
```
The reason for negative values in L_H is gaps of missing data and the use of `pcafill` to fill in the gaps. Similar inaccuracies can be expected for the mean temperature T_{max}. This interpolation, however, does not add any new information and does not affect the PCAs used for the downscaling much other than weighting the internal information slightly differently - it merely makes the PCA possible by removing the stumbling blocks of missing data.

Evaluation of the predictand data:

The next figure shows the leading PCA for the February-March-April mean daily maximum temperature T_{max} which was used as predictand in the downscaling.

```r
## PCA for the mean daily maximum temperature:
pca.tmax <- PCA(tmax.fma, n=5)
plot(pca.tmax, new=FALSE)
```
The five leading PCAs account for 100% of the variance and the leading PCA reveals a pattern with strongest weights in the interior northern India.

Downscaling seasonal mean of the daily maximum temperature

The following chunks of R-code apply empirical-statistical downscaling to large multi-model ensembles. The first chunk downscales the simulations for the intermediate emission scenario RCP4.5 where total radiative forcing is stabilized before 2100:

```r
print('Downscaling')
```

[1] "Downscaling"
The results are saved locally, so the downsampling (which takes some time) needs to be done only once. Repeated runs with this script will be faster.

Downscale the simulations for the high emission scenario RCP8.5:

```r
if (!file.exists("dse.tmax.india.rcp85.rda")) {
  T2m <- retrieve("~/data/air.mon.mean.nc", lon=c(65,95), lat=c(5,27))
  T2m <- aggregate(subset(T2m, it=month.abb[2:4]), year)
  dse.tmax.india.rcp85 <- DSensemble.pca(pca.tmax, predictor=T2m, rcp='rcp85', biascorrect = TRUE, ip=1:4, it=month.abb[2:4], year)
  save(dse.tmax.india.rcp85, file="dse.tmax.india.rcp85.rda")
} else load("dse.tmax.india.rcp85.rda")
```

Downscale the simulations for the low emission scenario RCP2.6:

```r
if (!file.exists("dse.tmax.india.rcp26.rda")) {
  T2m <- retrieve("~/data/air.mon.mean.nc", lon=c(65,95), lat=c(5,27))
  T2m <- aggregate(subset(T2m, it=month.abb[2:4]), year)
  dse.tmax.india.rcp26 <- DSensemble.pca(pca.tmax, predictor=T2m, rcp='rcp26', biascorrect = TRUE, ip=1:4, it=month.abb[2:4], year)
  save(dse.tmax.india.rcp26, file="dse.tmax.india.rcp26.rda")
} else load("dse.tmax.india.rcp26.rda")
```

The downscaled results are stored in a compact and efficient way, making use of redundancy to save space. To make sense of these results, some postprocessing is needed to ‘recover’ information that resemble the original station records. For more information about data strategies, see Benestad et al (2017) ‘A strategy to effectively make use of large volumes of climate data for climate change adaptation’ https://www.sciencedirect.com/science/article/pii/S2405880717300043.

Evaluation of the downscaled results

The downscaled results are for multi-model simulations with global climate models that have been subject to empirical-statistical downsampling. Since the downsampling was based on PCAs, it is necessary to convert the data back to the station format using as.station.

```r
# Plot the ensemble mean for all stations
plot(as.station(as.station(dse.tmax.india.rcp45)), new=FALSE, map.show=FALSE)
```
The picture of the ensemble mean for all sites in this case suggests a small number of sites with unrealistic outcomes: too weak variance and unrealistic trends.

```r
map(as.station(as.station(dse.tmax.india.rcp45)), FUN='trend', new=FALSE)
```
trend.coef of (degree°C)

map(as.station(as.station(dse.tmax.india.rcp45)), FUN='sd', new=FALSE)
trends <- apply(as.station(as.station(dse.tmax.india.rcp45)),2,FUN='trend.coef')
sds <- apply(as.station(as.station(dse.tmax.india.rcp45)),2,FUN='sd')

names(trends) <- loc(dse.tmax.india.rcp45$pca)
names(sds) <- loc(dse.tmax.india.rcp45$pca)

print('Ensemble mean trends')

[1] "Ensemble mean trends"

print(trends)

PBO ANANTAPUR MACHILIPATNAM NELLORE
0.042396096 0.065087516 0.023157649
GAUHATI DIBRUGARH/MOHANBAR PATNA
0.055960474 0.052446884 0.149482933
AHMADABAD VERAVAL BHUJ-RUDRAMATA
0.179966763 0.117512745 0.105432506
The projected trends for RCP4.5 were in the range 0.20-0.25°C/decade in the interior and northern parts of India, and weaker in the south and east. The locations with suspicious trend estimates (less than 0.05°C/decade) were: PBO ANANTAPUR, NELLORE, GADAG, THIRUVANANTHAPURAM, CUDDALO, MADRAS, and TIRUCHCHIRAPALLI. The same sites also showed low variability (<0.3°C). These were also sites with low weights in the leading PCA shown above. # KPA 2018-05-31: The PCA didn't reflect much variance for the southern sites because the underlying observations had low variance in these stations.
Compare `map(restation,FUNC="sd")` and `map(tmax.fma) and you will see that it is exactly the same. Shouldn’t we then expect low variance in the downscaled results for these stations too?

We can also check the station data individually and see that the PCA didn’t reflect much variance for the southern sites:

```r
#restation <- as.station(dse.tmax.india.rcp45$pca)
#attr(restation,'variable') <- 'tmax' #attr(restation,'unit') <- 'degC'
#plot(restation,new=FALSE,map.show=FALSE) #map(restation,FUN="sd",new=FALSE)
#sds <- apply(restation,2,FUN="sd") #print('Std of tmax represented by the PCA')
```

Some of the same stations do have slightly less variance than the others, but one explanation for the different performance in the empirical-statistical downscaling is that the variability of the cited stations is mostly represented by different PCs than for the sites which were well reproduced.

Diagnosis and evaluation of the downscaled ensembles

The skill of simulating the trend and inter-annual variability for the different sites can be summarised in the following figure:

```r
diagnose(dse.tmax.india.rcp45,new=FALSE)
```
The plot shows how well the trend for the common interval (1970-2015) corresponded between the downscaled projections and the actual observations (x-axis) and how well the magnitude of the interannual variability was reproduced (y-axis). The colours of the symbols correspond with those in the map, and the locations performing less well are those in the southern part of India which had lower weights in the leading PCA. The points in upper right corner represent the locations where the downscaled results were associated with weaker trends and weaker interannual variations than seen in the observations. The points within the ‘target’ represent sites with skillful downscaling for the entire ensemble, and include sites more relevant for sites with wheat-crops.

We can also evaluate the downscaling of the different GCMs by examining the cross-validation correlations for each PC. In this case, it involved a five-fold cross-validation, meaning that the records were divided into five segments and four were used to calibrate the models whereas the last one was used for independent evaluation.

crossval(dse.tmax.india.rcp45,plot=TRUE)
par(mfcol=c(1,1))
The results from the cross-validation indicate that the leading PCA for the stations was skillfully simulated, and that modes 2-4 could be described as moderately skillful. PCA 5, which carries lowest weights, was associated with negative skill.

Example of downscaled results

There is an abundance of information hidden in the compact downscaled results, and we provide some examples of what it contains in the following chunks of R-code. For instance we can plot the downscaled results for anyone randomly selected site. Here, the different downscaled simulations (different models or runs) are shown in different colours.

```r
plot(zoo(subset(as.station(dse.tmax.india.rcp45), is=6), plot.type='single', col=rainbow(108, alpha=0.3))
grid()
```
The same results can be plotted in terms as ensemble statistics such as the 90% confidence interval and compared with the observations:

\[
\text{plot(subset(as.station(dse.tmax.india.rcp45), is=6), new=FALSE, map.show=FALSE)}
\]
The figure shows the observed Feb-Apr mean daily maximum temperature T_{max} as a black time series and the ensemble statistics in red. The light central line is the ensemble mean and the gray-dashed lines mark the 90% confidence region. The map insert shows the site of the observations. This plot also presents diagnostics for this particular site, and the ‘target diagram’ indicates that the downscaled simulations were associated with stronger trends than observations (which probably is erroneous due to the suspect data point in the start of the observations) but reasonable range of interannual variability.

This evaluation suggests that the downscaled results are reasonably well estimated.

The connection between the mean temperature and the mean duration of heat waves.

We have now some useful projections for the Feb-Apr mean daily maximum temperature T_{max} for locations in India relevant for wheat crops, and need to make use of these projections to infer the consequence for heatwaves with temperatures exceeding 35°C. We can build this analysis on empirical information as presented below:

```r
## Re-calibrate the model for Indian data
print('Re-calibrate')

## [1] "Re-calibrate"

i1 <- is.element(loc(tmax.fma),loc(lws.fma))
i2 <- is.element(loc(lws.fma),loc(tmax.fma))
calfit <- data.frame(z=colMeans(tmax.fma,na.rm=TRUE)[i1],y=round(colMeans(lws.fma,na.rm=TRUE)[i2]))
checkfit <- data.frame(z=colMeans(tmax.fma,na.rm=TRUE)[i1],y=apply(tmax.fma,2,FUN='sd',na.rm=TRUE)[i2])
ok <- is.finite(calfit$x) & is.finite(calfit$y) & (calfit$y >= 0)
calfit <- calfif[ok,]
```
We used a generalised linear model (GLM) to quantify the relation between T_{max} and L_H. There is not a tight and strong fit between these two parameters in the Indian data, but similar calibration for a larger sample of European data that we consider to have higher quality suggest a stronger relationship (below). This quantified relation can nevertheless provide a crude and realistic scaling of the effect on the heatwave duration.

Test assumption that variance does not vary with the mean

If the pdf is merely shifted with the changing means, i.e. that the variance is constant, then this provides an explanation for why the

Test assumption: the variance is not systematically affected by the mean:

```r
plot(checkfit$z,checkfit$y,xlab=expression(mu),ylab=expression(sigma),
     main='Check for dependency between mean and variance')
abline(lm(y ~ x,data=checkfit),col='red',lty=2)
grid()
```
Summary of regression analysis between the seasonal mean temperature and seasonal standard deviation

```
print(summary(lm(y ~ x, data=checkfit)))
```

```
##
## Call:  
## lm(formula = y ~ x, data = checkfit)
##
## Residuals:  
## Min 1Q Median 3Q Max  
## -0.40200 -0.24397 -0.06696 0.16280 0.90377  
##
## Coefficients:  
## Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 3.44374 0.84725 4.065 0.00028 ***  
## x -0.07719 0.02534 -3.047 0.00453 **  
## ---  
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
##
## Residual standard error: 0.3233 on 33 degrees of freedom  
## Multiple R-squared: 0.2195, Adjusted R-squared: 0.1959  
## F-statistic: 9.281 on 1 and 33 DF, p-value: 0.004529  
```

There is a scatter in the mean-stdv points, and even a systematic dependency that can be considered statistically significant at the 5%-level. However the slope $|m|$ is small compared to the intercept $|c|$: $|b| \ll |c|$ and the best fit is strongly influenced by outliers.

Probabilities associated with 5-day heatwaves

We also need to account for how the probability for at least one heatwave occurring in a season may change with changing mean February–April mean temperature. Here we estimate the probabilities for one or more
5-day heatwaves for a randomly selected site (the sixth on the list):

```r
## Use the ensemble mean for each station (hence repeat 'as.station' twice) for best estimate of the future temp.
dse.tmax.is6.45 <- data.frame(x = c(t(coredata(subset(as.station(as.station(dse.tmax.india.rcp45)),is=6)))))
mnh.is6.45 <- predict(fit.nh, newdata = dse.tmax.is6.45)
pr.heatwave.is6.45 <- 1 - ppois(0, lambda = coredata(mnh.is6.45))
print(pr.heatwave.is6.45)
```

```
# 1 2 3 4 5 6 7
## 0.6234068 0.6251134 0.6257333 0.6006614 0.6107867 0.6260682 0.6254169
# 8 9 10 11 12 13 14
## 0.6226346 0.6335872 0.6331013 0.6274405 0.6308304 0.6348719 0.6219434
# 15 16 17 18 19 20 21
## 0.6257774 0.6233334 0.6315101 0.6302644 0.6309274 0.6374432 0.6354325
# 22 23 24 25 26 27 28
## 0.6268215 0.6239633 0.6367154 0.6382667 0.6384281 0.6351669 0.6374715
# 29 30 31 32 33 34 35
## 0.6454569 0.6378791 0.6369922 0.6462475 0.6496055 0.6386953 0.6502342
# 36 37 38 39 40 41 42
## 0.6369605 0.6301399 0.6350230 0.6363456 0.6218618 0.6425819 0.633488
# 43 44 45 46 47 48 49
## 0.6407249 0.6363091 0.6261179 0.6337774 0.6360657 0.6337014 0.633563
# 50 51 52 53 54 55 56
## 0.6383620 0.6294013 0.6385463 0.6411785 0.6529256 0.6260037 0.6416698
# 57 58 59 60 61 62 63
## 0.633755 0.6400477 0.6369922 0.6462475 0.6496055 0.6386953 0.6563226
# 64 65 66 67 68 69 70
## 0.6461227 0.6399176 0.6420595 0.6257406 0.6365635 0.6437844 0.6290744
# 71 72 73 74 75 76 77
## 0.6420682 0.6406132 0.6425091 0.6441549 0.6502342 0.6378373 0.6479079
# 78 79 80 81 82 83 84
## 0.6502489 0.6575539 0.6449803 0.6452382 0.6527899 0.6386263 0.6271688
# 85 86 87 88 89 90 91
## 0.6394807 0.6542745 0.6552929 0.6468565 0.6537893 0.6547380 0.651142
# 92 93 94 95 96 97 98
## 0.6551553 0.6251645 0.6265965 0.636536 0.6558211 0.6620315
# 99 100 101 102 103 104 105
## 0.6513388 0.6624384 0.6586589 0.6615242 0.6701644 0.6615091 0.668911
# 106 107 108 109 110 111 112
## 0.6591368 0.6721843 0.6587937 0.6659380 0.6684672 0.669849 0.6621712
# 113 114 115 116 117 118 119
## 0.6642499 0.6811109 0.6783728 0.6707454 0.6843415 0.6785089 0.6748899
# 120 121 122 123 124 125 126
## 0.680852 0.6765464 0.6853259 0.6779022 0.6849486 0.6804841 0.689603
# 127 128 129 130 131 132 133
## 0.686272 0.6911290 0.6930872 0.6893940 0.6885517 0.6873173 0.6956685
# 134 135 136 137 138 139 140
## 0.6938482 0.6979950 0.6958097 0.6908494 0.7056244 0.6968070 0.7109012
# 141 142 143 144 145 146 147
## 0.7048700 0.7002290 0.7046211 0.6982428 0.7085360 0.7068360 0.7076944
# 148 149 150 151 152 153 154
## 0.7100973 0.7134338 0.7128531 0.7113338 0.7136800 0.7055864 0.7125981
# 155 156 157 158 159 160 161
## 0.7098014 0.7125207 0.7222028 0.721219 0.7274693 0.7229741 0.7251897
# 162 163 164 165 166 167 168
```
0.7219779 0.7255859 0.7275138 0.7269526 0.7256416 0.7276885 0.7225436
169 170 171 172 173 174 175
0.7307507 0.7348242 0.7235471 0.7270954 0.7294934 0.7314013 0.7324393
176 177 178 179 180 181 182
0.7303491 0.7290678 0.7315623 0.7368742 0.7364742 0.7431009 0.7344222
183 184 185 186 187 188 189
0.7354063 0.7388330 0.7380945 0.7381678 0.7383425 0.7318891 0.7404761
190 191 192 193 194 195 196
0.7423497 0.7327551 0.7366916 0.7409276 0.7371648 0.7428062 0.7355909
197 198 199 200
0.7380014 0.7463115 0.7433093 0.7414168
dse.tmax.is6.26 <- data.frame(x = c(t(coredata(subset(as.station(as.station(dse.tmax.india.rcp26)),is=6)))))
mnh.is6.26 <- predict(fit.nh,newdata=dse.tmax.is6.26)
pr.heatwave.is6.26 <- 1 - ppois(0,lambda=coredata(mnh.is6.26))
dse.tmax.is6.85 <- data.frame(x = c(t(coredata(subset(as.station(as.station(dse.tmax.india.rcp85)),is=6)))))
mnh.is6.85 <- predict(fit.nh,newdata=dse.tmax.is6.85)
pr.heatwave.is6.85 <- 1 - ppois(0,lambda=coredata(mnh.is6.85))

These calculations are used below in Figure 4.

Figure 4

Make use of the geometric distribution

Here we estimate the probabilities for 5-day heatwaves ($T>35^\circ C$) based on the downscaled ensembles. For the geometric distribution of number of failures until first success, we use the formula $Pr(Y = k) = (1 - p)^{k-1}p$ for which the mean is $\mu = (1 - p)/p$ and $p = 1/\mu$ and $k = 1,2,...$. This framework is used to estimate the probability that a hot day ($T>35^\circ C$) turns into a heat wave longer than five days.

```r
print('example station')
## [1] "example station"
dse.is6 <- subset(as.station(dse.tmax.india.rcp45),is=6)
mwl.is6 <- dse.is6; pdf.is6 <- dse.is6;
for (i in 1:dim(pdf.is6)[2]) {
  mwl.is6[,i] <- exp(predict(fit,newdata=data.frame(z=dse.is6[,i])))
  pdf.is6[,i] <- pgeom(q=5,prob=1/(mwl.is6[,i]),lower.tail=FALSE)
}
attr(mwl.is6,'variable') <- 'heatwave-duration'
attr(mwl.is6,'unit') <- 'days'
```

```r
## The probability of a 5-day long hot episode given the mean temperature (divide by 2 since q50 has been used)
pbad <- zoo(100*apply(coredata(pdf.is6),1,FUN=quantile,probs=0.5),order.by=index(dse.is6)) * 0.5
class(pbad) <- class(Y)
pbad <- attrcp(subset(Y,is=6),pbad)
attr(pbad,'variable') <- 'Pr(L > 5 days)'
attr(pbad,'unit') <- '%'
```

The calculations are repeated for the high emission scenario:

```r
# High scenario RCP8.5:
dse.is6h <- subset(as.station(dse.tmax.india.rcp85),is=6)
mwl.is6h <- dse.is6h; pdf.is6h <- dse.is6h
```
for (i in 1:dim(pdf.is6h)[2]) {
 mwl.is6h[,i] <- exp(predict(fit,newdata=data.frame(x=dse.is6h[,i])))
 pdf.is6h[,i] <- pgeom(q=5,prob=1/(mwl.is6h[,i]),lower.tail=FALSE)
}

Plot the probability of a 5-day long hot episode (divide by 2 since q50 has been used)
pbadh <- zoo(100*apply(coredata(pdf.is6h),1,FUN=quantile,probs=0.5),order.by=index(dse.is6h)) * 0.5
class(pbadh) <- class(Y)
pbadh <- attrcp(subset(Y,is=6),pbadh)
attr(pbadh,'variable') <- 'Pr(L > 5 days)'
attr(pbadh,'unit') <- '%'

The calculations are repeated for the low emission scenario:

Low scenario RCP 2.6:
dse.is6l <- subset(as.station(dse.tmax.india.rcp26),is=6)
mwl.is6l <- dse.is6l; pdf.is6l <- dse.is6l
for (i in 1:dim(pdf.is6l)[2]) {
 mwl.is6l[,i] <- exp(predict(fit,newdata=data.frame(x=dse.is6l[,i])))
 pdf.is6l[,i] <- pgeom(q=5,prob=1/(mwl.is6l[,i]),lower.tail=FALSE)
}

Plot the probability of a 5-day long hot episode (divide by 2 since q50 has been used)
pbadl <- zoo(100*apply(coredata(pdf.is6l),1,FUN=quantile,probs=0.5),order.by=index(dse.is6l)) * 0.5
class(pbadl) <- class(Y)
pbadl <- attrcp(subset(Y,is=6),pbadl)
attr(pbadl,'variable') <- 'Pr(L > 5 days)'
attr(pbadl,'unit') <- '%'

The results are plotted in Figure 4 for a random site. The first plot (4a) shows the probability of one or more heatwaves in a season:

Figure 4a
Plot the probability of one or more events with daily maximum temperature above 35 degrees C lasting more than five days in the February-April season
pr.heatwave.is6.45 <- zoo(pr.heatwave.is6.45,order.by=index(pbadh))
pr.heatwave.is6.26 <- zoo(pr.heatwave.is6.26,order.by=index(pbadh))
pr.heatwave.is6.85 <- zoo(pr.heatwave.is6.85,order.by=index(pbadh))
plot(100*pr.heatwave.is6.45,main='Pr(x>0 | L > 5 days,T > 35C)',
col=rgb(0.5,0,0,0.2),ylim=c(50,100),ylab='%',lwd=2,new=FALSE)
text(index(pbadh)[10],23.5,loc(pbadh))
lines(100*pr.heatwave.is6.26,lwd=2,col=rgb(0,0.5,0.2))
lines(100*pr.heatwave.is6.85,lwd=2,col=rgb(0,0.5,0.2))
grid()

Add trend models
lines(trend(100*pr.heatwave.is6.85,model="y ~ I(t) + I(t^2) + I(t^3) + I(t^4)"),col=rgb(0.5,0),lwd=3)
lines(trend(100*pr.heatwave.is6.26,model="y ~ I(t) + I(t^2) + I(t^3) + I(t^4)"),col=rgb(0.5,0.5,0),lwd=3)
lines(trend(100*pr.heatwave.is6.45,model="y ~ I(t) + I(t^2) + I(t^3) + I(t^4)"),col=rgb(0,0.05),lwd=3)
The second panel (4b) shows the probability that a hot day turns into a heatwave.

Figure 4b

Plot the probability that a hot day (>35 degrees C) turns into a heatwave lasting more than five days in the February-April season.

```r
plot(pbadh, main='Pr(L > 5 days | T > 35C)', map.show=FALSE, 
col=rgb(0.5,0,0.2), lwd=2, new=FALSE)

text(index(pbadh)[10],23.5, loc(pbadh))

lines(pbadl, lwd=2, col=rgb(0,0.5,0.2))

lines(pbad, lwd=2, col=rgb(0,0.5,0.2))

grid()

# Add trend models

lines(trend(pbadh, model="y ~ I(t) + I(t^2) + I(t^3) + I(t^4)"), col=rgb(0.5,0,0), lwd=3)

lines(trend(pbadl, model="y ~ I(t) + I(t^2) + I(t^3) + I(t^4)"), col=rgb(0.5,0.5,0), lwd=3)

lines(trend(pbad, model="y ~ I(t) + I(t^2) + I(t^3) + I(t^4)"), col=rgb(0,0.05), lwd=3)
```

#dev.copy2pdf(file='fig4a.pdf')
Table 1 and 2 - Predicted and observed frequency of heatwaves

In Table 1 we quantify and summarise the probabilities for at least one heatwave ($T > 35^\circ C$ over more than 5 consecutive days) during the February-April season for all sites, emission scenarios and for a selection of time slices. We also compare the projected probabilities with the observed frequency of hot events.

Table 2 shows the probabilities that a warm day ($T > 35^\circ C$) in February-April turns into a heatwave (i.e., that it lasts more than 5 consecutive days) for all sites, emission scenarios and for a selection of time slices. Here we include for comparison the fraction of hot days that last more than five days.

The following chunks of code were used to generate the contents of the tables, first for the present:

```r
# Calculations for Table 1 - probability of at least one heatwave in a season
## Use the ensemble mean for each station (hence repeat 'as.station' twice) for best estimate of the future

dse.tmax.2010.45 <- data.frame(x = c(t(coredata(subset(as.station(as.station(dse.tmax.india.rcp45)),it=2010)))))
mnh.2010.45 <- predict(fit.nh,newdata=dse.tmax.2010.45)
pr.heatwave.2010.45 <- 1 - ppois(0,lambda=coredata(mnh.2010.45))
dse.tmax.2010.26 <- data.frame(x = c(t(coredata(subset(as.station(as.station(dse.tmax.india.rcp26)),it=2010)))))
mnh.2010.26 <- predict(fit.nh,newdata=dse.tmax.2010.26)
pr.heatwave.2010.26 <- 1 - ppois(0,lambda=coredata(mnh.2010.26))
dse.tmax.2010.85 <- data.frame(x = c(t(coredata(subset(as.station(as.station(dse.tmax.india.rcp85)),it=2010)))))
mnh.2010.85 <- predict(fit.nh,newdata=dse.tmax.2010.85)
pr.heatwave.2010.85 <- 1 - ppois(0,lambda=coredata(mnh.2010.85))
```

```
# Calculations for Table 2 - probability of a hot day turning into a heatwave

dse.2010.rcp45 <-
    subset(as.station(as.station(dse.tmax.india.rcp45,FUN='quantile',probs=0.5)),it=c(2008,2012))
```

44
newdata <- data.frame(x=c(coredata(dse.2010.rcp45)))
mlength <- exp(predict(fit,newdata=newdata))
zzz <- 100*pgeom(q=5,prob=1/mlength,lower.tail=FALSE) * 0.5
coreda(dse.2010.rcp45) <- zzz

dse.2010.rcp26 <-
 subset(as.station(as.station(dse.tmax.india.rcp26,FUN='quantile',probs=0.5)),it=c(2008,2012))
newdata <- data.frame(x=c(coredata(dse.2010.rcp26)))
mlength <- exp(predict(fit,newdata=newdata))
zzz <- 100*pgeom(q=5,prob=1/mlength,lower.tail=FALSE) * 0.5
coreda(dse.2010.rcp26) <- zzz

dse.2010.rcp85 <-
 subset(as.station(as.station(dse.tmax.india.rcp85,FUN='quantile',probs=0.5)),it=c(2008,2012))
newdata <- data.frame(x=c(coredata(dse.2010.rcp85)))
mlength <- exp(predict(fit,newdata=newdata))
zzz <- 100*pgeom(q=5,prob=1/mlength,lower.tail=FALSE) * 0.5
coreda(dse.2010.rcp85) <- zzz

Then for the near future 2050:

Table 1

dse.tmax.2050.45 <- data.frame(x = c(t(coredata(subset(as.station(as.station(dse.tmax.india.rcp45)),it=c(2008,2012)))
pr.heatwave.2050.45 <- 1 - ppois(0,lambda=coreda(mnh.2050.45))
dse.tmax.2050.26 <- data.frame(x = c(t(coredata(subset(as.station(as.station(dse.tmax.india.rcp26)),it=c(2008,2012)))
pr.heatwave.2050.26 <- 1 - ppois(0,lambda=coreda(mnh.2050.26))
dse.tmax.2050.85 <- data.frame(x = c(t(coredata(subset(as.station(as.station(dse.tmax.india.rcp85)),it=c(2008,2012)))
pr.heatwave.2050.85 <- 1 - ppois(0,lambda=coreda(mnh.2050.85))

Table 2

dse.2050.rcp45 <-
 subset(as.station(as.station(dse.tmax.india.rcp45,FUN='quantile',probs=0.5)),it=c(2058,2052))
newdata <- data.frame(x=c(coredata(dse.2050.rcp45)))
mlength <- exp(predict(fit,newdata=newdata))
zzz <- 100*pgeom(q=5,prob=1/mlength,lower.tail=FALSE) * 0.5
coreda(dse.2050.rcp45) <- zzz

dse.2050.rcp26 <-
 subset(as.station(as.station(dse.tmax.india.rcp26,FUN='quantile',probs=0.5)),it=c(2058,2052))
newdata <- data.frame(x=c(coredata(dse.2050.rcp26)))
mlength <- exp(predict(fit,newdata=newdata))
zzz <- 100*pgeom(q=5,prob=1/mlength,lower.tail=FALSE) * 0.5
coreda(dse.2050.rcp26) <- zzz

dse.2050.rcp85 <-
 subset(as.station(as.station(dse.tmax.india.rcp85,FUN='quantile',probs=0.5)),it=c(2058,2052))
newdata <- data.frame(x=c(coredata(dse.2050.rcp85)))
mlength <- exp(predict(fit,newdata=newdata))
zzz <- 100*pgeom(q=5,prob=1/mlength,lower.tail=FALSE) * 0.5
coreda(dse.2050.rcp85) <- zzz
Then for the far future 2100:

Table 1

```r
dse.tmax.2100.45 <- data.frame(x = c(t(coredata( subset(as.station(as.station(dse.tmax.india.rcp45)),it=2095,2100)),
pr.heatwave.2100.45 <- 1 - ppois(0,lambda=coredata(mnh.2100.45))
dse.tmax.2100.26 <- data.frame(x = c(t(coredata( subset(as.station(as.station(dse.tmax.india.rcp26)),it=2095,2100)),
pr.heatwave.2100.26 <- 1 - ppois(0,lambda=coredata(mnh.2100.26))
dse.tmax.2100.85 <- data.frame(x = c(t(coredata( subset(as.station(as.station(dse.tmax.india.rcp85)),it=2095,2100)),
pr.heatwave.2100.85 <- 1 - ppois(0,lambda=coredata(mnh.2100.85))
```

Table 2

```r
dse.2100.rcp45 <-
subsets(as.station(as.station(dse.tmax.india.rcp45,FUN='quantile',probs=0.5)),it=c(2095,2100))
newdata <- data.frame(x=c(coredata(dse.2100.rcp45)))
mlength <- exp(predict(fit,newdata=newdata))
zzz <- 100*pgeom(q=5,prob=1/(mlength),lower.tail=FALSE) * 0.5
coredata(dse.2100.rcp45) <- zzz
```

Now we set up the contents of Table 1 and print the table so that it can be copied straight into the \LaTeX\ manuscript:

```r
## Table 1
r1 <- round(apply(100*pr.heatwave.2010.45,100*pr.heatwave.2050.45,100*pr.heatwave.2100.45))
colnames(r1) <- paste(rep("RCP 4.5",3),c('2010', '2050', '2100'))
```

```r
## Table 2
r2 <- round(apply(100*pr.heatwave.2050.26,100*pr.heatwave.2100.26))
colnames(r2) <- paste(rep("RCP 2.6",2),c('2050', '2100'))
```

```r
## Table 3
r3 <- round(apply(100*pr.heatwave.2050.85,100*pr.heatwave.2100.85))
colnames(r3) <- paste(rep("RCP 8.5",2),c('2050', '2100'))
```

```r
tab1 <- cbind(round(apply(r1,nf.gt.5)),r1,r2,r3)
colnames(tab1)[1] <- 'obs.freq'
ownames(tab1) <- substr(loc(apply(dse.2010.rcp45),1),9)
write.table(tab1,sep=' & ',eol=' \ \ \ \n',quote=FALSE)
```

```r
## obs.freq & RCP 4.5 2010 & RCP 4.5 2050 & RCP 4.5 2100 & RCP 2.6 2050 & RCP 2.6 2100 & RCP 8.5 2050 & RCP 8.5 2100 & PBO ANANT & MACHILIPA
```
Then we set up the contents of Table 2 and print the table so that it can be copied straight into the LaTeX manuscript:

```r
## Table 2
colnames(dse.2010.rcp45) <- loc(dse.2010.rcp45)
pr.45.2010 <- apply(dse.2010.rcp45,2,'mean')
colnames(dse.2050.rcp45) <- loc(dse.2050.rcp45)
pr.45.2050 <- apply(dse.2050.rcp45,2,'mean')
colnames(dse.2100.rcp45) <- loc(dse.2100.rcp45)
pr.45.2100 <- apply(dse.2100.rcp45,2,'mean')
r1 <- round(cbind(pr.45.2010,pr.45.2050,pr.45.2100))
colnames(r1) <- paste(rep("RCP 4.5",3),c('2010','2050','2100'))

colnames(dse.2010.rcp26) <- loc(dse.2010.rcp26)
pr.26.2010 <- apply(dse.2010.rcp26,2,'mean')
colnames(dse.2050.rcp26) <- loc(dse.2050.rcp26)
pr.26.2050 <- apply(dse.2050.rcp26,2,'mean')
colnames(dse.2100.rcp26) <- loc(dse.2100.rcp26)
pr.26.2100 <- apply(dse.2100.rcp26,2,'mean')
r2 <- round(cbind(pr.26.2010,pr.26.2050,pr.26.2100))
colnames(r2) <- paste(rep("RCP 2.6",2),c('2050','2100'))
```
colnames(dse.2010.rcp85) <- loc(dse.2010.rcp85)
pr.85.2010 <- apply(dse.2010.rcp85,2,'mean')
colnames(dse.2050.rcp85) <- loc(dse.2050.rcp85)
pr.85.2050 <- apply(dse.2050.rcp85,2,'mean')
colnames(dse.2100.rcp85) <- loc(dse.2100.rcp85)
pr.85.2100 <- apply(dse.2100.rcp85,2,'mean')
r3 <- round(cbind(pr.85.2050,pr.85.2100))
colnames(r3) <- paste(rep('ts1 RCP 8.5',2),c('ts1 2050','ts1 2100'))

tab2 <- cbind(round(100*(f.gt.5)),r1,r2,r3)
colnames(tab2)[1] <- 'obs.freq'
rownames(tab2) <- substr(rownames(tab1),1,9)
write.table(tab2,sep=' & ','eol=' \\ \n',quote=FALSE)

obs.freq & RCP 4.5 2010 & RCP 4.5 2050 & RCP 4.5 2100 & RCP 2.6 2050 & RCP 2.6 2100 & RCP 8.5 2050 & RCP 8.5 2100
PBO ANANT & 32 & 20 & 20 & 21 & 20 & 20 & 21 & 21
MACHILIPA & 21 & 15 & 16 & 16 & 16 & 16 & 16 & 17
NELLORE & 34 & 18 & 18 & 18 & 18 & 18 & 18 & 18
GAUHATI & 5 & 11 & 12 & 11 & 11 & 12 & 13
DIBRUGARH & 14 & 8 & 8 & 9 & 8 & 8 & 9 & 9
PATNA & 42 & 15 & 16 & 17 & 16 & 15 & 17 & 19
AHMADABAD & 30 & 18 & 19 & 20 & 19 & 19 & 20 & 23
VERIVAL & 3 & 13 & 14 & 15 & 14 & 14 & 15 & 17
BHUJ-RUDR & 30 & 18 & 19 & 19 & 18 & 18 & 19 & 21
SURAT & 36 & 18 & 18 & 18 & 18 & 18 & 18 & 20
HISSAR & 32 & 15 & 16 & 16 & 16 & 16 & 17
GADAG & 45 & 18 & 18 & 18 & 18 & 18 & 19
KOZHIKODE & 13 & 16 & 16 & 16 & 16 & 16 & 17
THIRUVANA & 1 & 15 & 16 & 16 & 16 & 16 & 16 & 16
JAGDALPUR & 45 & 17 & 18 & 18 & 18 & 18 & 19
PENDRA RO & 32 & 15 & 17 & 18 & 16 & 16 & 18 & 21
GWALIOR & 23 & 15 & 17 & 16 & 16 & 16 & 17 & 21
INDORE & 27 & 17 & 18 & 18 & 18 & 19 & 21 & 21
JABALPUR & 27 & 16 & 17 & 16 & 16 & 16 & 17 & 20
BHOPAL/BA & 29 & 16 & 17 & 18 & 17 & 17 & 18 & 21
BOMBAY/SA & 4 & 15 & 15 & 16 & 15 & 15 & 16 & 17
NAGPUR SO & 37 & 18 & 19 & 20 & 19 & 19 & 20 & 22
POONA & 40 & 18 & 19 & 18 & 18 & 18 & 19 & 20
SHOLAPUR & 35 & 20 & 21 & 21 & 21 & 21 & 21 & 23
BHUBANE & 38 & 18 & 19 & 20 & 19 & 19 & 19 & 22
BIKANER & 38 & 15 & 17 & 18 & 16 & 16 & 18 & 21
JAIPUR/SA & 38 & 14 & 16 & 17 & 16 & 15 & 17 & 21
JODHPUR & 38 & 16 & 18 & 19 & 17 & 17 & 19 & 22
CUDDALO & 22 & 14 & 15 & 15 & 15 & 15 & 15 & 16
MADRAS/MI & 30 & 16 & 16 & 16 & 16 & 16 & 16 & 17
TIRUCHCHI & 40 & 18 & 18 & 18 & 18 & 18 & 18 & 18
AGARTALA & 22 & 14 & 14 & 15 & 14 & 14 & 15 & 16
NEW DELHI & 33 & 12 & 14 & 15 & 14 & 14 & 15 & 19
LUCKNOW/A & 41 & 15 & 16 & 17 & 16 & 16 & 17 & 21
CALCUTTA/ & 34 & 15 & 16 & 17 & 16 & 16 & 17 & 19

48
Region for wheat crops

Define regions for wheat crops that are used in maps.

\[
\begin{align*}
\text{west_lat} & \leftarrow (28.50, 31.82, 33.19, 34.05, 29.80, 25.81, 28.50) \\
\text{west_lon} & \leftarrow (71.86, 74.08, 72.68, 73.72, 78.45, 74.82, 71.86) \\
\text{cent_lat} & \leftarrow (25.81, 29.80, 27.56, 22.05, 25.81) \\
\text{cent_lon} & \leftarrow (74.82, 78.45, 83.24, 80.89, 74.82) \\
\text{east_lat} & \leftarrow (22.05, 27.56, 26.95, 24.10, 22.13, 22.05) \\
\text{east_lon} & \leftarrow (80.89, 83.24, 88.00, 87.94, 84.83, 80.89)
\end{align*}
\]

Identify locations with questionable results

Identify locations with large differences between observed and estimated frequency of 5-day heatwaves.

The first map shows a comparison between the observed seasonal frequency of heatwaves and the projected probability of at least one heatwave ($T>35^\circ\text{C}$ more than 5 days). The locations with an orange triangle are those with a poor match in Table 1.

\[
\begin{align*}
\text{err} & \leftarrow |100*(nf.gt.5) - 100*(pr.heatwave)| \\
\text{print(err)}
\end{align*}
\]

\[
\begin{align*}
\text{## PBO ANANTAPUR MACHILIPATNAM NELLORE} \\
\text{## 0.8607814 5.8606842 5.6712220} \\
\text{## GAUHATI DIBRUGARH/MOHANBAR PATNA} \\
\text{## 8.0017610 0.3454487 1.9892826} \\
\text{## AHMADABAD VERAVAL BHUJ-RUDRAMATA} \\
\text{## 3.5876530 23.9684509 3.3288818} \\
\text{## SURAT HISSAR GADAG} \\
\text{## 3.6883167 2.0037738 6.3764045} \\
\text{## Kozhikode Thiruvananthapuram Jagdalpur} \\
\text{## 14.6474972 4.4350366 0.9155877} \\
\text{## PENDRA ROAD GWALIOR INDORE} \\
\text{## 1.0033004 9.6844995 0.5828692} \\
\text{## JABALPUR BHOPAL/BAIRAGARH BOMBAY/SANTACRUZ} \\
\text{## 13.8836848 9.7236838 13.3650855} \\
\text{## NAGPUR SONEGA POONA SHOLAPUR} \\
\text{## 0.1100540 3.9393561 4.9509229} \\
\text{## BHUBANE BIKANER JAIPUR/SA} \\
\text{## 2.9262376 1.8886195 8.2388157} \\
\text{## JODHPUR Cuddalo Madras/Minambakkam} \\
\text{## 9.8785629 1.1258178 7.0630881} \\
\text{## TIRUCHCHIRAPALLI AGARTALA NEW DELHI/S} \\
\text{## 0.7405808 17.8871125 0.5762374} \\
\text{## LUCKNOW/AMAUSI CALCUTTA/DUM DUM} \\
\text{## 5.6544632 0.4362321}
\end{align*}
\]

\[
\begin{align*}
\text{ile} & \leftarrow \text{err}/(100*(nf.gt.5)) > 0.5 \quad \# \text{identify the locations with large error} \\
\text{pch} & \leftarrow \text{rep}(19,\text{length(err)}); \text{col} \leftarrow \text{rep}('\text{darkgreen}',\text{length(err)}) \\
\text{pch[ile]} & \leftarrow 17; \text{col[ile]} \leftarrow '\text{orange}' \\
\text{plot(lon(lws),lat(lws),pch=pch,} \text{col=col,xlab=''},\text{ylab=''}) \\
\text{text(lon(lws),lat(lws),substr(loc(lws),1,7),cex=0.7,} \text{col='grey'}) \\
\text{data(geoborders)} \\
\text{lines(geoborders)}
\end{align*}
\]
The second map shows the differences between the observed portion of hot days with a duration longer than five days and the projected probability that a hot day turns into a more than five day long heatwave. The locations with an orange triangle are those with a poor match in Table 2.

```r
err <- abs((100*(f.gt.5) - pr.45.2010))
print(err)
```

PBO ANANTAPUR MACHILIPATNAM NELLORE
11.582458 5.935178 15.898645
GAUHATI DIBRUGARH/MOHANBAR PATNA
6.462610 6.350828 27.463362
AHMADABAD VERAVAL BHUJ-RUDRAMATA
11.840918 10.163485 12.769283
SURAT HISSAR GADAG
18.772630 18.287543 27.267425
KOZHIKODE THIRUVANANTHAPURAM JAGDALPUR
2.764765 14.582536 27.271363
PENDRA ROAD GWALIOR INDORE
17.079353 8.030975 10.614898
JABALPUR BHOPAL/BAIRAGARH BOMBAY/SANTACRUZ
11.510658 12.690190 10.234796
NAGPUR SONEGA POONA SHOLAPUR
18.383399 22.494378 14.733388
BHUBANE BIKANER JAIPUR/SA
20.522896 23.315233 23.405940
JODHPUR CUDDALO MADRAS/MINAMBKKAM
21.451554 7.075977 14.388534
TIRUCHCHIRAPALLI AGARTALA NEW DELHI/S
21.692976 8.774780 20.070394
LUCKNOW/AMAUSI CALCUTTA/DUM DUM
25.680906 19.096666
ile <- err/(100*(f.gt.5)) > 0.5 ## identify the locations with large error
pch <- rep(19,length(err)); col <- rep('darkgreen',length(err))
pch[ile] <- 17; col[ile] <- 'orange'
plot(lon(lws),lat(lws),pch=pch,col=col,xlab='',ylab='')
text(lon(lws),lat(lws),substr(loc(lws),1,7),cex=0.7,col='grey')
data(geoborders)
lines(geoborders)

lines(west_lon,west_lat,lwd=3,col=rgb(0,0,0.05))
lines(cen_lon,cent_lat,lwd=3,col=rgb(0,0,0.05))
lines(east_lon,east_lat,lwd=3,col=rgb(0,0,0.05))

The maps above highlight the sites with a difference greater than 50% between observed and projected probabilities for the present. Based on these results, it looks like the approach to estimate the probability of one or more heatwaves in a season (Table 1, top map) is somewhat more successful than calculating the probability that a hot day will turn into a heatwave (Table 2, lower map), although it may be related to the short data series rather than the underlying statistical assumptions. It is important to keep in mind that the frequency of observed heatwaves are uncertain due to problems with data availability and quality. We nevertheless get some crude results for probabilities despite sparse data of questionable quality for some sites. These results may be some of the best information there is for the probability of future heatwaves in India.

Figure 5

Based on the estimated probabilities for 5-day heatwaves at station levels, maps of probabilities for 5-day heatwaves in the far future 2100 were generated though gridding. Here a kriging method was used (based on work done at iMAGE/NCAR) that used elevation as a covariate.

Figure 5a Map of the probability of at least one event per season at 2100 RCP4.5
demo(gridmap,ask=FALSE)

##
##
demo(gridmap)
---- ~~~~~~~
##
##
##
##
##
gridmap <- function(Y,FUN=mean,colbar=NULL,project='lonlat',xlim=NULL,ylim=NULL,zlim=NULL,verbose=FALSE,plot=FALSE) {
 if (verbose) print(paste('gridmap',FUN))
 if (is.null(xlim)) xlim <- range(lon(Y))
 if (is.null(ylim)) ylim <- range(lat(Y))
 if (!is.null(dim(Y))) {
 y <- apply(Y,2,FUN,na.rm=TRUE)
 } else {
 y <- Y ## single specific date
 }
 ## Get data on the topography on the 5-minute resolution
 if (verbose) print('Use etopo5 elevation data')
 data(etopo5)
 etopo5 <- subset(etopo5,
 is=list(lon=range(lon(Y))+c(-1,1),
 lat=range(lat(Y))+c(-1,1)))
 ## Mask the sea: elevations below 1m below sea level is masked.
 etopo5[etopo5<=-1] <- NA
 if (is.null(zlim)) {etopo5[(etopo5<min(zlim)) | ((etopo5>max(zlim)))] <- NA}
 ## Set the grid to be the same as that of etopo5:
 if (verbose) print('Use same structure as etopo5')
 grid <- structure(list(x=lon(etopo5),y=lat(etopo5)),class='gridList')
 ## Flag duplicated stations:
 if (verbose) print('Check for duplicates')
 ok <- !(duplicated(lon(Y)) & duplicated(lat(Y)))
 ## Kriging
 if (verbose) print(paste('Apply kriging to',sum(ok),'locations'))
 ## KMP 2017-08-07: moved require(LatticeKrig) down here because
 ## it interfered with function unit which is used in subset.pattern
 require(LatticeKrig)
 obj <- LatticeKrig(x=cbind(lon(Y)[ok],lat(Y)[ok]),
 y=y[ok],Z=alt(Y)[ok])
 ## obj <- LatticeKrig(x=cbind(lon[ok],lat[ok]), y=z[2,ok],Z=alt[ok])
 if (verbose) print('Predict surface')
 w <- predictSurface(obj, grid.list = grid,Z=etopo5)
 w$z[is.na(etopo5)] <- NA
 ## Get rid of packages that have functions of same name:
 detach("package:LatticeKrig")
 detach("package:fields")
 detach("package:spam")
 detach("package:grid")
 detach("package:maps")
 ## Convert the results from LatticeKrig to esd:
 W <- w$z
 attr(W,'variable') <- varid(Y)[1]
 attr(W,'unit') <- esd::unit(Y)[1]
```r
## Make the graphics
if (verbose | plot) print("make the map")
map(W,xlim=xlim,ylim=ylim,zlim=zlim,colbar=colbar,project=project)
## invisible(W)
}

attr(pr.heatwave.2100.45, 'longitude') <- lon(dse.2100.rcp45)
attr(pr.heatwave.2100.45, 'latitude') <- lat(dse.2100.rcp45)
attr(pr.heatwave.2100.45, 'altitude') <- alt(dse.2100.rcp45)
attr(pr.heatwave.2100.45, 'unit') <- esd::unit(dse.2100.rcp45)
attr(pr.heatwave.2100.45, 'variable') <- varid(dse.2100.rcp45)
print(summary(pr.heatwave.2100.45))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2789 0.7199 0.7658 0.7433 0.7958 0.8560
prng0 <- gridmap(Y=100*pr.heatwave.2100.45,zlim=c(0,max(alt(tmax))+100),verbose=TRUE)

## "gridmap mean"
## "Use etopo5 elevation data"
## "Use same structure as etopo5"
## "Check for duplicates"
## "Apply kriging to 35 locations"
## "Predict surface"
## "make the map"

attr(prng0, 'variable') <- 'Pr(x.gt.0|L.gt.5.days,T.gt.35C)'
attr(prng0, 'unit') <- '%%'
map(prng0,new=FALSE)
par(fig=c(0,1,0.1,1))
points(lon(dse.2100.rcp45),lat(dse.2100.rcp45),pch=19,col='white',cex=0.5)
points(lon(dse.2100.rcp45),lat(dse.2100.rcp45),cex=0.5)
```

The code snippet above is performing the following tasks:

1. **Loading and Transforming Data**: The script loads data and performs various transformations and calculations on it. This includes the calculation of probabilities and the use of kriging to interpolate data.

2. **Graphics Creation**: The script generates a map using the `gridmap` function, which is used to visualize the transformed data. The map includes points marked with specific symbols and colors to represent different data points or regions.

3. **Plotting and Printing**: The code prints summary statistics of the transformed data and uses a `gridmap` function to create a map that visually represents the data. This map includes a legend and various color coding to differentiate between different data intervals or conditions.

This script is an example of data visualization and analysis, demonstrating how to manipulate and present data in a map format using R.
```r
# Figure 5b Map of the probability of a hot day (Tmax>35°C) turning into a heat wave lasting more than 5 days at 2100 RCP4.5

## Figure 5b Map of the probability of a hot day (Tmax>35°C) turning into a heat wave lasting more than 5 days at 2100 RCP4.5

```

```r
text(lon(dse.2100.rcp45),lat(dse.2100.rcp45),substr(loc(dse.2100.rcp45),1,5),cex=0.7,pos=1)
lines(west_lon,west_lat,lwd=3,col=rgb(0,0,0,0.05))
lines(cen_lon,cen_lat,lwd=3,col=rgb(0,0,0,0.05))
lines(east_lon,east_lat,lwd=3,col=rgb(0,0,0,0.05))
```

```r
attr(prgt5d,'variable') <- 'Pr(L.gt.5.days|T.gt.35C)'
attr(prgt5d,'unit') <- "%"
```
More supporting material

For completeness, we present maps of gridded daily Indian maximum/minimum temperatures for the present.

Temperature maps for the present.

Maps of the annual mean observed daily maximum and minimum temperatures from GHCN for the period 1960-2015.

##

```r
ztmax <- gridmap(tmax)
```

Loading required package: LatticeKrig

Loading required package: spam

Loading required package: grid

##

```r
#dev.copy2pdf(file='fig5b.pdf')
```
The following object is masked from 'package:esd':
##
Spam version 2.1-4 (2018-04-12) is loaded.
Type 'help(Spam)' or 'demo(spam)' for a short introduction
and overview of this package.
Help for individual functions is also obtained by adding the
suffix '.spam' to the function name, e.g. 'help(chol.spam)'.

Attaching package: 'spam'

The following objects are masked from 'package:base':
##
backsolve, forwardsolve

Loading required package: fields

Loading required package: maps

Attaching package: 'maps'

The following object is masked from 'package:esd':
##
map

See www.image.ucar.edu/~nychka/Fields for
a vignette and other supplements.

Attaching package: 'fields'

The following objects are masked from 'package:esd':
##
image.plot, imageplot.info, imageplot.setup, poly.image

```r
map(ztmax, colbar=list(breaks=seq(5,45,by=1)), new=FALSE)
par(fig=c(0,1,0.1,1))
```
```r
points(lon(tmax), lat(tmax), pch=19, col='white', cex=0.5)
points(lon(tmax), lat(tmax), cex=0.5)
text(lon(tmax), lat(tmax), substr(loc(tmax), 1, 5), cex=0.7, pos=1)
```

```
## Attaching package: 'grid'

## The following object is masked from 'package:esd':
## unit

## Spam version 2.1-4 (2018-04-12) is loaded.
## Type 'help(Spam)' or 'demo(spam)' for a short introduction
## and overview of this package.
## Help for individual functions is also obtained by adding the
## suffix '.spam' to the function name, e.g. 'help(chol.spam)'.

## Attaching package: 'spam'

## The following objects are masked from 'package:base':
## backsolve, forwardsolve
```

Loading required package: maps

Attaching package: 'maps'

The following object is masked from 'package:esd':

map

See www.image.ucar.edu/~nychka/Fields for a vignette and other supplements.

Attaching package: 'fields'

The following objects are masked from 'package:esd':

image.plot, imageplot.info, imageplot.setup, poly.image

```r
map(ztmin, colbar=list(breaks=seq(5, 45, by=1)), new=FALSE)
par(fig=c(0, 1, 0.1, 1))
points(lon(tmin), lat(tmin), pch=19, col='white', cex=0.5)
points(lon(tmin), lat(tmin), cex=0.5)
text(lon(tmin), lat(tmin), substr(loc(tmin), 1, 5), cex=0.7, pos=1)
```
We also produced maps for projected Feb-April mean T_{max} for the sake of completeness. They are based on the downcaled results for the PCA. The station structure of results was recovered before the griding, and below is a map of downcaled daily maximum temperature for 2099 assuming the RCP8.5 emission scenario.

```r
dsetmax.2099 <- gridmap(subset(as.station(as.station(dse.tmax.india.rcp85)),it=2099))
```

Loading required package: LatticeKrig
Loading required package: spam
Loading required package: grid
##
Attaching package: 'grid'
The following object is masked from 'package:esd':
##
unit
##
Spam version 2.1-4 (2018-04-12) is loaded.
Type 'help(Spam)' or 'demo(spam)' for a short introduction
and overview of this package.
Help for individual functions is also obtained by adding the
suffix '.spam' to the function name, e.g. 'help(chol.spam)'.
##
Attaching package: 'spam'
The following objects are masked from 'package:base':
##
backsolve, forwardsolve
##
Loading required package: fields
##
Loading required package: maps
Attaching package: 'maps'

The following object is masked from 'package:esd':

map

See www.image.ucar.edu/~nychka/Fields for
a vignette and other supplements.

Attaching package: 'fields'

The following objects are masked from 'package:esd':

image.plot, imageplot.info, imageplot.setup, poly.image

```r
map(dsetmax.2099, colbar=list(breaks=seq(5, 45, by=1)), new=FALSE)
par(fig=c(0, 1, 0.1, 1))
points(lon(tmax), lat(tmax), pch=19, col='white', cex=0.5)
points(lon(tmax), lat(tmax), cex=0.5)
text(lon(tmax), lat(tmax), substr(loc(tmax), 1, 5), cex=0.7, pos=1)
```
Map of temperature change between 2010 and 2099:

dsetmax.2010 <- gridmap(subset(as.station(as.station(dse.tmax.india.rcp85)),it=2010))

Loading required package: LatticeKrig
Loading required package: spam
Loading required package: grid

Attaching package: 'grid'

The following object is masked from 'package:esd':

unit

Spam version 2.1-4 (2018-04-12) is loaded.
Type 'help(Spam)' or 'demo(spam)' for a short introduction
and overview of this package.
Help for individual functions is also obtained by adding the
suffix '.spam' to the function name, e.g. 'help(chol.spam)'.

Attaching package: 'spam'

The following objects are masked from 'package:base':

backsolve, forwardsolve

Loading required package: fields
Loading required package: maps

Attaching package: 'maps'
The following object is masked from 'package:esd':

map

See www.image.ucar.edu/~nychka/Fields for a vignette and other supplements.

Attaching package: 'fields'

The following objects are masked from 'package:esd':

image.plot, imageplot.info, imageplot.setup, poly.image

dsetmax.2010 <- dsetmax.2099 - dsetmax.2010
map(dsetmax.2010, new = FALSE)
par(fig = c(0, 1, 0.1, 1))
points(lon(tmax), lat(tmax), pch = 19, col = 'white', cex = 0.5)
points(lon(tmax), lat(tmax), cex = 0.5)
text(lon(tmax), lat(tmax), substr(loc(tmax), 1, 5), cex = 0.7, pos = 1)
Supporting analysis

Some supporting material is presented below, based on similar calculations applied to European data (ECA&D) that provide larger samples and better control of the data quality, i.e. less missing data and less need to fill in data voids.

Function: autocorrelation

\[
AR \leftarrow function(n, mean=1, sd=1, a1=0.8) {
 rn \leftarrow rnorm(n, mean=mean, sd=sd)
 for (i in 2:n) rn[i] \leftarrow (a1*rn[i-1] + (1-a1)*rn[i])
 invisible(rn)
}
\]

Compare the mean temperature and spell length statistics for data in Europe to see if similar dependencies exist outside India. This is a supporting analysis which can lend some confidence to the results for India. The quality of the Indian data is unknown, whereas the European observational time series have gone through some quality control and homogeneity checks and have less missing data points. We use different temperature thresholds for the European data and look at both cold and warm spells.

Script that reads European temperature data and explores the connection between
the seasonal mean temperature and the mean length of the warm/cold spells

\[
for (it in c('djf', 'jja')) {
 if (it == 'djf') {
 cold <- TRUE
 threshold <- 0
 is <- 2
 } else {
 cold <- FALSE
 }
\]
threshold <- 20
is <- 1
}

ss <- select.station(src='ecad', param='ts', nmin=75)
d <- dim(ss)
x <- rep(NA,d[1]); y <- x; std <- y
q.spell <- rep(NA,d[1]*10); dim(q.spell) <- c(d[1],10); q.geom <- q.spell

if (!file.exists(paste('ecad.tg.',it,'.rda',sep=''))) {
 for (i in seq(d[1])) {
 z <- station(ss[i,])
 print(loc(z))
 ## Make sure that there are values above and below the given threshold - otherwise
 ## spell will not work.
 if ((sum(z > threshold,na.rm=TRUE)>1000) & (sum(z < threshold,na.rm=TRUE) > 1000)) {
 s <- spell(z,threshold=threshold)
 ## Quality check: durations longer than a season (100 days) are not credible
 sc <- coredata(s); sc[sc > 100] <- NA; sc -> coredata(s)
 y[i] <- mean(subset(subset(s,is=is),it=it),na.rm=TRUE)
 ## Compare the spell-distribution with a geometric distribution
 q.spell[i,] <- quantile(subset(subset(s,is=is),it=it),probs=seq(0.05,0.95,by=0.1),na.rm=TRUE)
 q.geom[i,] <- qgeom(p=seq(0.05,0.95,by=0.1),prob=1/(y[i]))
 std[i] <- sd(subset(z,it=it),na.rm=TRUE)
 x[i] <- mean(subset(z,it=it),na.rm=TRUE)
 }
 }
 save(x,y,s,std,q.spell,q.geom,file=paste('ecad.tg.',it,'.rda',sep=''))
} else load(paste('ecad.tg.',it,'.rda',sep=''))

Plot results
x[x > 50] <- NA ## Removestations with crazy values
if (it=='djf') x[x>10] <- NA ## Remove stations with warm climate for the freezing analysis
plot(x,y,main=paste('Mean L & mean',toupper(it),' L '),
 c('below','above')[c(cold,!cold)],threshold,'C'),
 sub='source: ECA&D',pch=19,col=rgb(0.5,0,0,0.3),
 zlab=expression(bar(T)),ylab=expression(bar(L))
grid()

Monte-Carlo simulations to compare spell length with
z <- station(ss[1,])
mstd <- 1.5*quantile(std,0.99,na.rm=TRUE)
if (!cold) mx <- mean(z,na.rm=TRUE) else mx <- 0
nmc <- 300
ymc <- rep(NA,nmc); zmc <- ymc
for (i in 1:nmc) {
 m <- seq(mx-mstd,mx+mstd,length=nmc)[i]
coredata(z) <- AR(length(z),mean=m, sd=mstd, a1=0.7)
s <- spell(z,threshold=threshold)
 if (length(s) > 0) {
 ymc[i] <- mean(subset(subset(s,is=is),it=it),na.rm=TRUE)
 zmc[i] <- m
 }
_points(zmc,ymc,pch=19,col='grey75')
}
}

points(x,y,pch=19,col=rgb(0.5,0,0,0.3))

ix <- order(x); x <- x[ix]; y <- y[ix]
ok <- is.finite(x) & is.finite(y)
x <- x[ok]; y <- y[ok]; std <- std[ok]
calfit <- data.frame(x=x[(x > -20) & (x < 35)],y=y[(x > -20) & (x < 35)]) ## Exclude the noisy tails
calfit2 <- data.frame(x=x[(x > -20) & (x < 35)],y=1/y[(x > -20) & (x < 35)]) ## Exclude the noisy tails
attr(calfit, 'max(x)') <- max(x,na.rm=TRUE)
#fit <- lm(y ~ I(x) + I(x^2),data=calfit)
fit <- glm(y ~ x,data=calfit,family=poisson)
fit2 <- glm(y ~ x, data=calfit2,family=negative.binomial(1))
print(summary(fit))
lines(calfit$x,exp(predict(fit)),col='red')
lines(calfit2$x,exp(predict(fit2)),col='red',lty=2)
#lines(1/calfit$x,exp(predict(fit)),col='red')
#dev.copy2pdf(file=paste('fig1','c('a','b')[c(cold,!cold)],'.pdf',sep=''))

attr(x, 'description') <- paste(it,'mean temperature (degC)')
if (cold) attr(y, 'description') <- 'mean cold spell length (days)'
else attr(y, 'description') <- 'mean warm spell length (days)'
attr(x, 'label') <- expression(bar(T))
attr(x, 'Monte-Carlo') <- xmc
attr(y, 'label') <- expression(bar(tau[T < T0]))
attr(y, 'Monte-Carlo') <- ymc
meanspell <- data.frame(meanT=x,meanL=y,std=std)
attr(meanspell, 'fit') <- fit
attr(meanspell, 'geometric.fit') <- data.frame(q.spell=q.spell,q.geom = q.geom)
save(meanspell,file=paste('meanspell',it,c('below','above')[c(cold,!cold)],threshold,'.rda',sep=''))

Test if the spell length statistics is close to geometric
plot(c(q.spell),c(q.geom),main='Spell length statistics',
 xlim=range(0,90),ylim=range(0,90),pch=19,col=rgb(0,0,0,0.2),
 xlab=expression(p[q]),ylab='qgeom(p,1/mean)')
grid()
lines(range(q.spell,q.geom,na.rm=TRUE),range(q.spell,q.geom,na.rm=TRUE),col='red')
#dev.copy2pdf(file=paste('fig3','c('a','b')[c(cold,!cold)],'.pdf',sep=''))
}
[1] "Retrieving data from 1 records ..."
[1] "1 TMAX 100010 STENSELE SWEDEN ECAD"
##
Call:
glm(formula = y ~ x, family = "poisson", data = calfit)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-7.2225 -0.8126 -0.4765 0.5969 9.5870
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.006530 0.019382 103.53 <2e-16 ***
x -0.098594 0.001551 -63.58 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 6158.8 on 608 degrees of freedom
Residual deviance: 1602.5 on 607 degrees of freedom
AIC: Inf
##
Number of Fisher Scoring iterations: 4
Spell length statistics

Mean L & mean JJA T above 20 C

source: ECA&D

[1] "Retrieving data from 1 records ..."
[1] "1 TMAX 100010 STENSELE SWEDEN ECAD"
Call:
glm(formula = y ~ x, family = "poisson", data = calfit)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-13.0036 -0.6427 -0.3200 0.1469 4.7300
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.402910 0.067149 -35.780 < 2e-16 ***
x 0.202483 0.002515 80.515 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 7919.7 on 706 degrees of freedom
Residual deviance: 1488.6 on 705 degrees of freedom
AIC: Inf
##
Number of Fisher Scoring iterations: 5

Spell length statistics