Cerebroprotective effect of Aloe Emodin: In silico and in vivo studies

Praveen Kumar Pasala, Rizwaan Abbas Shaik, Mithun Rudrapal, Johra Khan, Mohammad A. Alaidarous, Shubham Jagdish Khairnar, Atul R. Bendale, Vaishali D. Naphade, Ranjan Kumar Sahoo, James H. Zothantluanga, Sanjay G. Walode

Santhiram College of Pharmacy, Nandyal 518501, Andhra Pradesh, India
Creative Educational Society’s College of Pharmacy, Kurnool 518003, Andhra Pradesh, India
Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, Maharashtra, India
Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
MET Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, Maharashtra, India
Sandip Institute of Pharmaceutical Sciences, Nashik 422213, Maharashtra, India
Department of Pharmacy, Oriental University, Indore 453553, Madhya Pradesh, India
School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar 752050, Odisha, India
Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India

Article info
Article history:
Received 19 August 2021
Revised 25 August 2021
Accepted 30 September 2021
Available online 8 October 2021

Keywords:
Aloe emodin
Cerebroprotective
Cerebrotoxic proteins
MO/RCA
Molecular docking
Antioxidants

Abstract
This study involved cerebroprotective potential of aloe emodin (AE) by in silico molecular docking analysis against various cerebrotoxic proteins followed by in vivo activity on multiple occlusions and reperfusion of bilateral carotid arteries (MO/RCA) induced cerebral injury in experimental rats. Molecular docking studies were carried out to evaluate the binding affinity (or binding interaction) between AE and various proteins involved in apoptosis such as caspase-3 (CASP3) and Bcl-2-associated X protein (BAX), and proteins involved in inflammation such as interleukin-6 (IL-6), tumor necrosis factor α (TNF α), nitric oxide synthase (NOS), acid-sensing ion channel (ASIC) and glutamate receptor (GR) involved in cerebral stroke, and results were compared with that of standard drugs, minocycline, quercetin, and memantine. Cerebral ischemic reperfusion induced by MO/RCA was assessed for 10 mins reperfusion period as one cycle, and the experiment was conducted for up to 3 cycles in rats. After completion of 3 cycles, the rats were subjected to ethically acceptable animal euthanasia followed by isolation of the brains which were studied for the size of cerebral infarction, and biochemical parameters such as glutathione (GSH), malondialdehyde (MDA), catalase (CAT) were estimated from the brain homogenate. Further, histological studies were done to study neuronal contact. Results of molecular docking indicated that the AE exhibited interaction with active sites of cerebrotoxic proteins usually involved in protein functions or cerebrotoxicity. Biochemical results showed that in the untreated brain, MDA levels increased significantly, and decreased GSH and CAT levels were observed when compared to MO/RCA group, while treated rats showed a decrease in the levels of MDA and an increase in GSH and CAT levels as compared to MO/RCA rats. In comparison with sham rats and normal rats, histopathological analysis revealed neuronal damage in MO/RCA surgery cats which manifested as decreased intact neurons. However, treatment with AE 50 mg/kg b.wt. restored contact between neuronal cells. It can be concluded that AE showed cerebroprotective effect on RO/RCA with promising inhibition of cerebrotoxic proteins (apoptotic and...
1. Introduction

Ischemic stroke is a common cerebrovascular disorder, and it commonly renders patients disabled or dead (Agarwal et al., 2000; Claijborne, 1985). It is among the commonest causes of disability, dementia, and death in the developed world. Among the different types of stroke, 87% of them were found to be a cerebral ischemic stroke. Acute brain injury or brain dysfunction is a result of cerebral ischemia which occurred due to impaired blood flow towards the brain. Despite advances in recent years with effective therapeutic techniques such as intravenous thrombolysis, anti-inflammatory, and neuroprotective medications, the majority of ischemic stroke patients still have a poor prognosis with severe neurological disability due to rapid neuronal destruction (Barnham et al. 2004; Bederson et al. 1986). An important role is played by mitochondria to regulate oxidative stress at the cellular level. Oxidative stress is the primary cause of ischemia/reperfusion (I/R) damage, according to various studies. As a result, decreasing cerebral I/R damage requires limiting mitochondrial malfunction produced by oxidative stress (Peter et al. 2005).

Aloe-emodin (AE) is an anthraquinone derivative that is naturally derived and is also an active ingredient of various medicinal plants like Rheum palmatum L., Cassia occidentalis, Aloe vera L., and Polygonum multiflorum Thunb. It has potential pharmacological activities including anticancer (George, 1959), antioxidant (George, 1959), anti-inflammatory (Farbiszewski et al. 1996), cardioprotective (Ginsberg et al. 1999; Guo et al. 2017), antifungal (Kang et al. 2021), antiviral (Vadivel et al. 2018), antibacterial (Hitoshi et al. 2020), antiplasmoidal (Yasuhsia, 1978), immunosuppressive (Kumar et al. 2017), neuroprotective (Lin and Wang, 2016), hepatoprotective effects (Li-Hua et al. 2005) and dementia (Wen et al. 2008). Thus, AE has the potential to either be used for prophylaxis or for the treatment of cancers, malaria, viral infections, inflammatory disorders, type 2 diabetes, Alzheimer’s disease and so on. In our current investigation, the cerebroprotective potential of AE was predicted by in silico molecular docking studies against proteins involved in apoptosis such as CASP3 and BAX and proteins involved in inflammation such as TNFα, IL-6, NOS, ASIC and GR. The cerebroprotective activity of AE was evaluated in vivo against MO/RCA induced cerebral injury in rats.

2. Materials and methods

2.1. Drugs, chemicals and reagents

Aloe emodin (Bimal Life Sciences, India), 2,3,5-Triphenyl tetrazolium chloride (TTC) (Sisco Research Laboratories Pvt. Ltd., India), Thiobarbituric acid (Loba Chem. Pvt. ltd., India), n-butanol, (Merck Ltd., India) and their purification was continued for up to 3 cycles. After 3 cycles were completed, the rats were then occluded for 10 mins followed by reperfusion for 10 mins. This entire process was considered as one cycle. The experiment was continued for up to 3 cycles. After 3 cycles were completed, the proteins were subjected to ethically acceptable animal euthanasia followed by isolation of the brains for the measurement of cerebral infarction size. The estimation of GSH (Inan and Ozyurt, 2012), SOD (Dong-Ju et al. 2020; Hait et al. 2013), MDA (Hait et al. 2013), quercetin, and memantine (Stefan and Gudrun, 1974). The DSV 2017 R2 software was used to visualize the proteins and the protein–ligand complexes, and the PyRx tool was used for the calculation of binding energies (kcal/mol) for the docked complexes (Oleg and Olson, 2010). Higher negative binding energy indicates higher binding affinity. Higher docked scored complexes were evaluated for the analysis of binding interactions using DSV.

2.2. Molecular docking simulation studies

The protein databank (PDB) (http://www.rcsb.org/) was used to retrieve the crystal structures of proteins, viz., BAX (PDB ID: 5 W60), TNFα (PDB ID: 5UUI), CASP3 (PDB ID: 2DK0), IL-6 (PDB ID: 1ALU), NOS (PDB ID: 6CIC), ASIC (PDB ID: 35X3) and GR (PDB ID: 5ZG2). Preparation of the proteins was carried out with the Biocia Discovery Studio Visualizer (DSV) 2017 (Prepare protein protocol) at a physiological pH of 7.4. After downloading the 3D structures of protein molecules from the PDB database, water molecules, heteroatoms, and inhibitors were removed from the structures and the force field was applied to the protein molecule using DSV. The PubChem database was used to retrieve the Structure Data Format (SDF) of AE, minocycline (PubChem Id: 54675783), quercetin (PubChem Id: 5280343), and memantine (PubChem Id: 4054) (www.pubchem.ncbi.nlm.nih.gov/). The DSV was used to prepare and protonate ligands at a physiological pH of 7.4, and minimization of their geometry was also carried out.

The proteins were energetically minimized and active sites were predicted with the selection of maximized GRID parameters using DSV. Protein–ligand docking studies were performed between AE and target proteins (as depicted above) with standard docking protocol using the AutoDock Vina of the PyRx virtual screening platform (Oleg and Olson, 2010). Docking results of AE were compared with that of standard molecules, minocycline, quercetin, and memantine (Stefan and Gudrun, 1974). The DSV 2017 R2 software was used to visualize the proteins and the protein–ligand complexes, and the PyRx tool was used for the calculation of binding energies (kcal/mol) for the docked complexes (Oleg and Olson, 2010). Higher negative binding energy indicates higher binding affinity. Higher docked scored complexes were evaluated for the analysis of binding interactions using DSV.

2.3. Cerebroprotective activity

The Institutional Animal Ethics Committee (IAEC/CESCOP/2019- OCT-06) approved the animal study protocol and animals were maintained as per CPCSEA guidelines. Wistar albino adult rats of either sex were categorized into groups of five wherein six rats were allocated to all the groups such as group I (normal control), group II (sham control), and group III (disease control). Group IV and Group V served as pre-treatment groups of AE for 10 days at a dose of 25 and 50 mg/kg b.wt. i.p., respectively which was followed by MO/RCA surgery. After 3 cycles were completed, the rats were subjected to ethically acceptable animal euthanasia followed by isolation of the brains for the measurement of cerebral infarction size. The estimation of GSH (Inan and Ozyurt, 2012), SOD (Dong-Ju et al. 2020; Hait et al. 2013), MDA (Hait et al. 2013), and CAT (Cristina et al. 2002) were carried out with the brain homogenate. MO/RCA surgery was performed under anesthetized condition using Ketamine and xylazine (60 and 10 mg/kg b.wt., respectively). Separation of common carotid arteries from all muscles, ligaments, their adventitial sheath, and vagus nerves was carried out. They were then occluded for 10 mins followed by reperfusion for 10 mins. This entire process was considered as one cycle. The experiment was continued for up to 3 cycles. After 3 cycles were completed, the parameters such as pupil dilation, locking of cornea reflex, limb reflexes, and temperature of rectal were observed (Emine et al. 2018). A heating lamp was used to prevent the development of hypothermia.

2.4. Histopathological study

A freshly prepared 10% neutral buffered formalin was used to fix the sagittal brain sections and these were fixed in paraffin. For histopathological examinations, paraffin sections with a...
thickness of 4 μm were prepared and hematoxylin and eosin (H&E) were used to stain these sections which were examined under 40 times magnification with a light microscope (Wen-yi et al. 2013).

2.5. Statistical analyses

Data were given as mean ± SEM for triplicate studies. A significant difference between groups was calculated by t-test and one-way analysis of variance (ANOVA) followed by the Dunnet comparison test. Mean values with \(p < 0.05 \) were considered statistically significant.

3. Results

3.1. Docking analysis

In the docking study, AE showed favorable binding affinities against BAX, TNF α, NOS, IL-6, and NOS as compared to the standard compound, minocycline, and against chain A of ASIC and GR compared to quercetin and memantine (Table 1).

For BAX, AE interacted with chain A of the protein. AE formed hydrogen bonds (H bonds) with ARG89 (bond distance = 2.50 Å) and pi-pi stacked with PHE93 (bond distance = 3.56 Å). AE has a binding affinity of \(-6.5 \text{ kcal/mol} \) towards BAX. Minocycline formed H bonds with ASP98 and ASP102 (bond distances = 1.90 Å and 2.03 Å, respectively), amide-pi stacked with GLY179 (bond distance = 3.89 Å), and pi-alkyl bond with VAL180 (bond distance of 4.05 Å). Minocycline has a binding affinity of \(-6.2 \text{ kcal/mol} \) towards BAX.

For TNF α, AE interacted with chain A of the protein. AE formed H bonds with VAL150 (1.74 Å), ALA33 (1.90 Å) and pi-pi stacked with PHE93 (bond distance = 3.56 Å). AE has a binding affinity of \(-6.5 \text{ kcal/mol} \) towards BAX. Minocycline formed H bonds with ASP98 and ASP102 (bond distances = 1.90 Å and 2.03 Å, respectively), amide-pi stacked with GLY179 (bond distance = 3.89 Å), and pi-alkyl bond with VAL180 (bond distance of 4.05 Å). Minocycline has a binding affinity of \(-6.2 \text{ kcal/mol} \) towards BAX.

For CASP3, AE formed H bonds with HIS A:121 (1.85 Å), ARG B:207 (2.23 Å), GLN A:161 (2.62 Å) and pi-pi bond with PHE93 (bond distance = 3.56 Å). AE has a binding affinity of \(-6.5 \text{ kcal/mol} \) towards BAX. Minocycline formed H bonds with ASP98 and ASP102 (bond distances = 1.90 Å and 2.03 Å, respectively), amide-pi stacked with GLY179 (bond distance = 3.89 Å), and pi-alkyl bond with VAL180 (bond distance of 4.05 Å). Minocycline has a binding affinity of \(-6.2 \text{ kcal/mol} \) towards BAX.

For IL-6, AE interacted with chain A of the protein. AE formed H bonds with ASN63 (1.80 Å) and pi-alkyl with ALA18, PRO20, VAL17, ARG32 (bond distances = 3.38 Å, 4.18 Å, 4.05 Å, and 4.35 Å, respectively). AE has a binding affinity of \(-7.6 \text{ kcal/mol} \) towards TNF α. Minocycline formed H bonds with ASP98 and ASP102 (bond distances = 1.90 Å and 2.03 Å, respectively), amide-pi stacked with GLY179 (bond distance = 3.89 Å), and pi-alkyl bond with VAL180 (bond distance of 4.05 Å). Minocycline has a binding affinity of \(-6.2 \text{ kcal/mol} \) towards BAX.

For CASP3, AE interacted with chain A of the protein. AE formed H bonds with HIS A:121 (1.85 Å), ARG B:207 (2.23 Å), GLN A:161 (2.62 Å) and pi-pi bond with PHE93 (bond distance = 3.56 Å). AE has a binding affinity of \(-6.5 \text{ kcal/mol} \) towards BAX. Minocycline formed H bonds with ASP98 and ASP102 (bond distances = 1.90 Å and 2.03 Å, respectively), amide-pi stacked with GLY179 (bond distance = 3.89 Å), and pi-alkyl bond with VAL180 (bond distance of 4.05 Å). Minocycline has a binding affinity of \(-6.2 \text{ kcal/mol} \) towards BAX.

For IL-6, AE interacted with chain A of the protein. AE formed H bonds with ASN63 (1.80 Å) and pi-alkyl with ALA18, PRO20, VAL17, ARG32 (bond distances = 3.38 Å, 4.18 Å, 4.05 Å, and 4.35 Å, respectively). AE has a binding affinity of \(-7.6 \text{ kcal/mol} \) towards TNF α. Minocycline formed H bonds with ASP98 and ASP102 (bond distances = 1.90 Å and 2.03 Å, respectively), amide-pi stacked with GLY179 (bond distance = 3.89 Å), and pi-alkyl bond with VAL180 (bond distance of 4.05 Å). Minocycline has a binding affinity of \(-6.2 \text{ kcal/mol} \) towards BAX.

For Quercetin, AE formed H bonds with ASP98 and ASP102 (bond distances = 1.90 Å and 2.03 Å, respectively), amide-pi stacked with GLY179 (bond distance = 3.89 Å), and pi-alkyl bond with VAL180 (bond distance of 4.05 Å). Minocycline has a binding affinity of \(-6.2 \text{ kcal/mol} \) towards BAX.

For Memantine, AE formed H bonds with ASP98 and ASP102 (bond distances = 1.90 Å and 2.03 Å, respectively), amide-pi stacked with GLY179 (bond distance = 3.89 Å), and pi-alkyl bond with VAL180 (bond distance of 4.05 Å). Minocycline has a binding affinity of \(-6.2 \text{ kcal/mol} \) towards BAX.

Table 1

Ligand	Target protein	Binding energyPyRx (-kcal/mol)	Hydrogen bond	pi-pi bond	pi-alkyl bond	pi-sigma bond	pi-anion bond	Amide-pi bond	Alkyl bond	
AE	BAX (Chain A)	6.5	ARG89 (2.50 Å)		PHE93 (3.56 Å)	ALA18 (3.38 Å)	PRO20 (4.18 Å)	VAL17 (4.05 Å)	ARG32 (4.35 Å)	
TNF α	BAX (Chain A)	7.6	VAL150 (1.74 Å), ALA33 (1.90 Å)							
CASP3		6.7	HIS A:121 (1.85 Å), ARG B:207 (2.23 Å), GLN A:161 (2.62 Å)		PHE B:256 (4.22 Å)	LEU147 (4.23 Å)	TRP414 (3.68 Å)	TRP414 (3.68 Å)	TRP414 (3.68 Å)	
IL-6 (Chain A)		6.8	ASN63 (1.80 Å)							
NOS (Chain A)		9.1	GLN162 (1.96 Å)							
ASIC		8.0	ARG B: 270 (1.63 Å), GLU A: 417 (1.75 Å), GLU B: 374 (1.85 Å), LYS C: 373 (2.22 Å), GLY B: 279 (2.65 Å), ARG C: 370 (2.69 Å)							
GR (Chain A)		8.4	THRS01 (1.56 Å), TYRTS3 (2.36 Å)		PHE471 (4.15 Å)	MET279 (4.45 Å)	GLU726 (3.16 Å), GLU432 (4.32 Å)	GLY179 (3.89 Å)		
Minocycline	BAX (Chain A)	6.2	ASP98 (1.90 Å), ASP102 (2.03 Å)		VAL180 (4.05 Å)					
TNF α	BAX (Chain A)	7.1	ASP140 (1.93 Å), LYS65 (1.95 Å), PHE144 (2.19 Å), PRO20 (2.35 Å)							
CASP3		7.4	HIS A: 121 (1.55 Å), ARG B: 207 (2.22 Å), GLU A: 163 (2.52 Å)							
IL-6 (Chain B)		6.6	TRPS09 (1.85 Å), GLUS07 (2.85 Å)		VAL B: 572 (3.98 Å), MET575 (4.25 Å),	PHE859 (4.32 Å), GLY240 (4.52 Å)				
NOS (Chain A)		8.8	ARG104 (1.95 Å), GLN156 (2.55 Å), GLU106 (3.98 Å)							
Quercetin	ASIC	9.3	GLU C: 98 (1.62 Å), ARG C: 191 (1.85 Å), GLU C: 154 (2.32 Å), ARG F: 28 (2.62 Å), SER C: 241 (2.74 Å), GLU C: 243 (2.82 Å)							
Memantine	GR (Chain B)	5.6	GLN663 (2.25 Å), SER661 (2.56 Å)							
towards IL-6. Minocycline formed H bonds with ARG104, GLN156, and GLU106 (bond distance = 1.95 Å, 2.55 Å, and 3.98 Å, respectively), pi-sigma bond with PHE105 (bond distance = 4.58 Å). Minocycline has a binding affinity of -6.6 Kcal/mol towards IL-6.

Against NOS, AE interacted with chain B of the protein. AE formed H bonds with CYS420 (bond distance = 1.12 Å), pi-pi bond with PHE589 (bond distance = 4.02 Å). AE has a binding affinity of -9.1 Kcal/mol towards NOS. Minocycline formed H bonds with TRP B:592, GLU B:597 (bond distances = 1.85 Å and 2.85 Å, respectively), pi-alkyl bond with VAL B:572, MET B:575 (bond distances = 3.98 Å and 4.25 Å, respectively), and alkyl bond with PHE B:589 (bond distance of 4.32 Å). Minocycline has a binding affinity of -8.8 kcal/mol towards NOS.

Against ASIC, AE formed H bonds with ARG B:270; GLU A: 417; GLU B: 374, LYS C:373, GLY B:279, ARG C:370 (bond distance = 1.63 Å, 1.75 Å, 1.85 Å, 2.22 Å, 2.65 Å, and 2.69 Å, respectively). AE has a binding affinity of -8.0 kcal/mol towards ASIC. Quercetin formed H bonds with GLU C:98, ARG C:191, GLU C:154, ARG F:28, SER C:241, GLU C:243 (bond distance of 1.62 Å, 1.85 Å, 2.32 Å, 2.62 Å, 2.74 Å and 2.82 Å, respectively). Quercetin has a binding affinity of -9.3 kcal/mol towards ASIC.

For GR, AE interacted with chain A of the protein. AE formed H bonds with TYR753 and THR501 (bond distances = 1.52 Å and 2.35 Å, respectively), pi-alkyl bond with TYR471, and MET279 (bond distances = 3.16 Å and 4.35 Å, respectively). AE has a binding affinity of -8.4 kcal/mol towards GR. Memantine formed H bonds with GLN B:663 and SER B:661 (bond distances = 2.25 Å and 2.56 Å, respectively), pi-alkyl bond with TYR B:694 and LYS B:690 (bond distances = 3.62 Å and 4.22 Å, respectively). Memantine has a binding affinity of -5.6 kcal/mol. Fig. 1 depicts detailed 2D interaction diagrams of AE-proteins complexes.
3.2. Cerebroprotective activity

In comparison to normal and sham rats, biochemical studies revealed that brain MDA levels increased significantly (10.28 ± 0.20 nmol/mg) in MO/RCA rats. In AE treated rats (25 and 50 mg/kg b.wt.), MDA levels decreased significantly \(p < 0.0001 \) (7.27 ± 0.20 nmol/mg, 6.48 ± 0.009 nmol/mg) in comparison to sham rats, respectively. In comparison to normal and sham rats, brain GSH levels was significantly decreased (0.10 ± 0.01 nmol/mg) in MO/RCA, while GSH levels significantly increased \(p < 0.1395 \) and \(p < 0.0004 \) in AE treated rats (25 mg/kg b.wt., 0.11 ± 0.01 nmol/mg and 50 mg/kg b.wt., 0.16 ± 0.01 nmol/mg). Brain CAT levels were significantly decreased (0.00022 ± 0.00005 nmol/mg) in MO/RCA rats, while CAT levels significantly increased \(p < 0.0001 \) in AE treated rats (25 mg/kg b. wt., 0.0024 ± 0.00011 and 50 mg/kg b.wt., 0.0028 ± 0.00014). In comparison to the normal group and control group, the percent cerebral infract was significantly increased in MO/RCA group. Results are shown in Fig. 2 and Table 2.

In comparison to the MO/RCA group, cerebral infarction volume was significantly decreased to 47.75 % and 63.12 % in AE (25 and 50 mg/kg b.wt., respectively) which indicated that AE treatment exerts cerebroprotective activity (Fig. 3). In comparison to the rest of the groups, the histopathological study revealed that MO/RCA rats showed decreased neuronal cell intensity, increased form of the shrunken and irregular shape of a neuronal cell in the hippocampus region of the brain. Decreased intact of neurons and neuronal in MO/RCA group was reverted in AE treated rats (Fig. 4).

Table 2: Effect of AE on the biochemical parameters of the hippocampus of the brain in rats injured by MO/RCA surgery.

Treatment	Infarction size (%)	GSH (nmol/mg)	MDA (nmol/mg)	CAT (nmol/mg)
Normal rats	0	0.2 ± 0.01 ***	5.4 ± 0.10 ***	0.0043 ± 0.00025 ***
Sham rats	0	0.13 ± 0.01 ***	7.41 ± 0.20 ***	0.0020 ± 0.00068 ***
MO/RCA	100 %	0.10 ± 0.01 ***	10.28 ± 0.20 ***	0.00022 ± 0.00005 ***
AE 25 mg/kg	47.75 %	0.11 ± 0.01 ***	7.27 ± 0.20 ***	0.0024 ± 0.00011 ***
AE 50 mg/kg	63.12 %	0.16 ± 0.01 ***	6.48 ± 0.09 ***	0.0028 ± 0.00014 ***

The data are expressed in the Mean ± Standard error of mean (SEM) of triplicate studies. Mean values of the difference between groups with \(p < 0.05 \), \(p < 0.01 \), \(p < 0.001 \) are considered to be statistically significant.
AE inhibits MO/RCA with an increase in the percentage of the volume of cerebral infarction of rats: (a) Normal group, (b) Sham group, (c) MO/RCA group, (d) MO/RCA + 25 mg/kg b. wt. of AE treated group, (e) MO/RCA + 50 mg/kg b. wt. of AE treated group.

Visualization of the hippocampus region of the brain of rats after MO/RCA surgery. 40 times magnification of the hippocampus region of the brain after cerebral stroke was induced: (a) Normal group, normal neuronal cell (black arrow), (b) Sham group, (c) MO/RCA group, (d) MO/RCA + 25 mg/kg b. wt. of AE treated group, (e) MO/RCA + 50 mg/kg b. wt. of AE treated group. The neuronal cells in the hippocampus region of the treated rats are less scattered (indicated by the black arrow). The thickness of the pyramidal cell layer was found to be increased in the treated rats while a decrease in apoptotic neurons with dystrophic changes was observed as shrunken and irregular (indicated by black arrows).
4. Discussion

Among the different types of stroke, high morbidity and mortality in humans are attributed to ischemic stroke. Ischemic stroke is marked by cerebral ischemia/reperfusion damage, which happens when blood flow is restored after a brief brain artery obstruction (Vesna et al. 2011). Stroke, ischemia, or inflammation can induce the release of glutamate or ATP that can further trigger different signaling cascades which can ultimately lead to neuronal injury and apoptotic cell death (Sharanya et al. 2020; Fengge et al. 2020; Marc et al. 2007; Tabassum et al. 2013; Li et al. 2014; Era and Probert, 2008; Wei et al. 2018). After cerebral ischemia/reperfusion, oxidative stress induced by increased production of ROS can result in the death of neurons, and several studies had reported the abnormality of oxidant enzymes, such as GSH, MDA, and CAT in ischemic stroke (Turley et al. 2005; Palo et al. 1988; Hwang et al. 1998). Neutralization of ROS (O$_2^-$, OH$, H_2O_2$, and lipoperoxides) occurs when GSH (an endogenous non-enzymatic antioxidant) reacts with ROS to be oxidized into GSSG (Song et al. 2020; Jingxian et al. 2013). The ratio of GSH/GSSG is regarded as a reliable indicator for the presence of ROS (Jingxian et al. 2013). The levels of GSH in MO/RCA rats were decreased in this study, whereas GSH levels were RCA rats. The authors would like to extend their sincere thanks to Dr. Sagarika Chandra for her kind help in editing images/figures incorporated in this manuscript.

5. Conclusion

The findings of our present investigation suggest a potential protective role of AE against MO/RCA assault, which might be linked to the antioxidant capacity of AE. The inhibitory potential of AE against cerebrotoxic (apoptotic and neuroinflammatory) proteins was demonstrated by in silico docking analysis. Further in vivo studies are required at the molecular level (identifying the exact biological target / biochemical pathways) to explore the therapeutic potential of AE as a neuroprotective in cerebral ischemic stroke.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project number (R-2021-234). The authors would like to extend their sincere thanks to Dr. Sagarika Chandra for her kind help in editing images/figures incorporated in this manuscript.

References

Agarwal, S.K., Singh, S.S., Verma, S., Kumar, S., 2000. Antifungal Activity of Anthraquinone Derivatives from Rheim Emodi. J Ethnopharmacol. 72 (1-2), 43–46.
Barnham, K.J., Masters, C.L., Bush, A.I. 2004. Neurodegenerative Diseases and Oxidative Stress. Nat Rev Drug Discov. 3 (3), 205–214.
Bederson, J.B., Pitts, J.L., Germano, S.M., Nishimura, M.C., Davis, R.L., Bartkowski, H. M., 1986. Evaluation of 2,3,5-Triphenyltetrazolium Chloride as a Stain for Detection and Quantification of Experimental Cerebral Infarction in Rats. J Stroke 17 (6), 1304–1308.
Claibonne, A., 1985. Handbook of Methods for Oxygen Free Radical Research. CBC Press: Boca Raton FL. 1985, 145–146.
Crustina, P.M., Cherubini, A., Stahl, W., Senin, U., Sies, H., Mecocci, P., 2002. Plasma Carotenoids and Malondialdehyde Levels in Ischemic Stroke Patients: Relationship to Early Outcome. Free Radic Res. 36, 265–268.
Dong-Ju, P., Kang, J.B., Shah, F.A., Jin, Y.B., Koh, P.O., 2020. Quercetin Attenuates Decrease of Thioredoxin Expression Following Focal Cerebral Ischemia and Glutamate-Induced Neuronal Cell Damage. Neurosci. 428, 38–49.
Emine, S., Solargru, J., Ozdemir, Y.G., 2018. Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options.Curr Neuropharmacol. 16, 1366–1415.
Era, T., Probert, L., 2008. Ischemic Neuronal Damage. Curr Pharm Des. 14, 3565–3573.
Farbiszewski, R., Bielawska, A., Szymanska, M., Skryjdlewiska, E., 1996. Spermine Partially Normalizes in Vivo Antioxidant Defense Potential in Certain Brain Regions in Transiently Hyperperfused Rat Brain. Neurochem Res. 21 (12), 1407–1503.
Fengge, S., Ge, C., Yuan, P., 2020. Aloe-Emodin Induces Autophagy and Apoptotic Cell Death in Non-Small Cell Lung Cancer Cells via Akt/MTOR and MAPK Signaling. Eur J Pharmacol. 173550.
Ginsberg, M.D., Belayev, L., ZhÅ, W., Huh, P.W., Busto, R., 1999. The Acute Ischemic Syndrome. Neurosci. 428, 38–49.
Ginsburg, M.D., Belayev, L., ZhÅ, W., Huh, P.W., Busto, R., 1999. The Acute Ischemic Syndrome. Neurosci. 428, 38–49.
Hwang, W., Chung, J., Ho, C., Wu, L., Chang, S., 1998. Aloe-Emodin Effects on 21 (12), 1497–
Hait, A.P., Ca, D., Gu, Z., Liu, G., Guo, Y., Lu, C., 2013. Bone Morphogenetic Protein-7 Ameliorates Cerebral Ischemia and Reperfusion Injury via Inhibiting Oxidative Stress and Neuronal Apoptosis. Int J Mol Sci. 14, 3441–3453.
Hatt, B.M., Ca, D., Gu, Z., Liu, G., Guo, Y., Lu, C., 2013. Bone Morphogenetic Protein-7 Ameliorates Cerebral Ischemia and Reperfusion Injury via Inhibiting Oxidative Stress and Neuronal Apoptosis. Int J Mol Sci. 14, 3441–3453.
Hitoshi, K., Ito, Y., Kitabayashi, C., Tanaka, A., Nishioke, R., Yamazato, M., Ishiawa, K., Nagai, T., Hirayama, M., Takahashi, K., Yamamoto, T., Araki, N., 2020. Effects of Edaravone on Nitric Oxide, Hydroxyl Radicals and Neuronal NitricOxide Synthase During Cerebral Ischemia and Reperfusion in Mice. J Stroke Cerebrovasc Dis. 29, 104531.
Hwang, W., Chung, J., Ho, C., Wu, L., Chang, S., 1998. Aloe-Emodin Effects on 21 (12), 1497–
Jingxian, X., Zhang, H., Li, X., 2013. The neuroprotective effects of Aloe-emodin against cerebral ischemia/reperfusion injury in rats. J Stroke Cerebrovasc Dis. 22, 735–742.
Jingxian, X., Zhang, H., Li, X., 2013. The neuroprotective effects of Aloe-emodin against cerebral ischemia/reperfusion injury in rats. J Stroke Cerebrovasc Dis. 22, 735–742.
Kato, T., Hisatsugu, K., Ono, M., 2008. Protective Effects of Aloe-emodin against Cerebral Ischemia/Reperfusion Injury in Rats. J Stroke Cerebrovasc Dis. 17, 215–221.
Kato, T., Hisatsugu, K., Ono, M., 2008. Protective Effects of Aloe-emodin against Cerebral Ischemia/Reperfusion Injury in Rats. J Stroke Cerebrovasc Dis. 17, 215–221.
Kato, T., Hisatsugu, K., Ono, M., 2008. Protective Effects of Aloe-emodin against Cerebral Ischemia/Reperfusion Injury in Rats. J Stroke Cerebrovasc Dis. 17, 215–221.
Kato, T., Hisatsugu, K., Ono, M., 2008. Protective Effects of Aloe-emodin against Cerebral Ischemia/Reperfusion Injury in Rats. J Stroke Cerebrovasc Dis. 17, 215–221.
Kato, T., Hisatsugu, K., Ono, M., 2008. Protective Effects of Aloe-emodin against Cerebral Ischemia/Reperfusion Injury in Rats. J Stroke Cerebrovasc Dis. 17, 215–221.
Kato, T., Hisatsugu, K., Ono, M., 2008. Protective Effects of Aloe-emodin against Cerebral Ischemia/Reperfusion Injury in Rats. J Stroke Cerebrovasc Dis. 17, 215–221.
Inan, O., Ozyurt, H., 2012. Reactive Oxygen Species and Ischemic Cerebrovascular Disease. Neurochem Int. 60, 208–212.

Jingxian, W., Li, Q., Wang, X., Yu, S., Li, L., Wu, X., Chen, Y., Zhá, J., Zhá, Y., 2013. Neuroprotection by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway. Plos One. 8.

Kang, J.-B., Park, D.-J., Shah, M.-A., Koh, P.-O., 2021. Retinoic Acid Exerts Neuroprotective Effects against Focal Cerebral Ischemia by Preventing Apoptotic Cell Death. Neurosci Lett. 757, 135979. https://doi.org/10.1016/j.neulet.2021.135979.

Kumar, S., Yadav, M., Yadav, A., Rohilla, P., Yadav, J.P., 2017. Antiplasmodial Potential and Quantification of Aloin and Aloe-Emodin in Aloe Vera Collected from Different Climatic Regions of India. BMC Complement Altern. 17, 369.

Lian, L.-H., Park, E.-J., Pao, H.-S., Zhao, Y.-Z., Sohn, D.H., 2005. H.Aloe Emodin-Induced Apoptosis in t-HSC/CI-b Cells Involves a Mitochondria-Mediated Pathway, Basic Clin Pharmacol Toxicol. 96 (6), 495–502.

Li, L., Xie, J., Wang, Y., Wang, S., Wu, S., Wang, Q., Ding, H., 2014. Protective Effects of Aloe-Emodin on Scopolamine-Induced Memory Impairment in Mice and H2O2-Induced Cytotoxicity in PC12 Cells. Bioorg Med Chem Lett. 24, 5385–5389.

Lin, L., Wang, X., 2016. Ischemia-Reperfusion Injury in the Brain: Mechanisms and Potential Therapeutic Strategies. Biochem Pharmacol. 5, 211.

Marc, S.J., Kent, T.A., Chen, M., Tarasov, K.V., Gerzanich, O., 2007. Brain Oedema in Oleg, T., Olson, A.J., 2010. AutoDock Vina: Improving the Speed and Accuracy of Multithreading. J Comput Chem. 35, 213.

Mavdzhuda, Z., Prosvirnina, M., Daineko, A., Simanenkova, A., Petrishchev, N., Sonin, D., Galagudza, M., Shantsyan, M., Juneja, LR., Vlasov, T., 2013. L-Theanine Administration Results in Neuroprotection and Prevents Glutamate Receptor Agonist-Mediated Injury in the Rat Model of Cerebral Ischemia-Reperfusion. Phytother Res. 27, 1282–1287.

Oleg, T., Olson, A.J., 2010. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Hydroxylamine and an Assay for Superoxide Dismutase. Arch Biochem. 186, 189–195.

Peter, C.J., Juliet, M., 2005. Taylor. Reactive Oxygen Species and the Modulation of Control of the Reaction Rate. Biochim Biophys Acta, Protein Struct Mol Enzymol. 952, 77–82.

Sharanya, C.S., Arun, K.G., Sabu, A., Haridas, M., 2020. Aloe Emodin Shows High Affinity to Active Site and Low Affinity to Two Other Sites to Result Consummately Reduced Inhibition of Lipoygenase. Prostag Oth Lipid M. 150, 106453. https://doi.org/10.1016/prostaglandins.2020.106453.

Song, W., Yan, W.W., He, M., Wei, D., Long, Z.J., TÁ, Y.M., 2020. Aloe Emodin Inhibits Telomerase Activity in Breast Cancer Cells: Transcriptional and Enzymological Mechanism. Pharm Rep. 72, 1383–1396.

Stefan, M., Gudrun, M., 1974. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur J Biochem. 47, 469–474.

Tabassum, R., Vaithav, K., Shivastava, P., Khan, A., Ejaiz Ahmed, M., Javed, H., Islam, F., Ahmad, S., Saeed Siddiqu, M., Safhi, M.M., Islam, F., 2013. Centella Asiatica Attenuates the Neurobehavioral, Neurochemical and Histological Changes in Transient Focal Middle Cerebral Artery Occlusion Rats. Neurol Sci. 34 (6), 925–933.

Tiansong, Y., Feng, C., Wang, D., Qu, Y., Yang, Y., Wang, Y., Sun, Z., 2020. Neuroprotective and Anti-Inflammatory Effect of Tangeretin Against Cerebral Ischemia-Reperfusion Injury in Rats. Inflammation. 43, 2312–2343.

Turley, K.R., Toledo-Pereyra, L.H., Kothari, R.U., 2005. Molecular Mechanisms in the Pathogenesis and Treatment of Acute Ischemic Stroke. J Invet Surg. 18 (4), 207–218.

Vadivel, K., Sitty, M.B., Periyannan, M., 2018. Design Synthesis in Silico in Vitro and in Vivo Evaluation of Novel L-Cysteine Derivatives as Multi-Target-Directed Ligands for the Treatment of Neurodegenerative Diseases. Beni-Suef Univ J Basic Appl Sci. 7, 452–460.

Wen, L.C., Wu, C.F., HsiÅ, N.W., Chang, C.Y., Li, S.W., Wan, L., Lin, Y.J., Lin, W.Y., 2008. Aloe-Emodin Is an Interferon-Inducing Agent with Antiviral Activity against Japanese Encephalitis Virus and Enterovirus 71. Int J Antimicrob Agents. 32, 355–359.

Wen-yi, Q., Luo, Y., Chen, L., TA, T., Li, Y., Cai, Y.L., Li, Y.H., 2013. Electroacupuncture Could Regulate the NF-κB Signaling Pathway to Ameliorate the Inflammatory Injury in Focal Cerebral Ischemia/Reperfusion Model Rats. Evid-Based Complement Altern Med. 9:24541, 1–15.

Wei, Z., Yuan, Y., Feng, B., Sun, Y., Jiang, H., Zhá, W., Zheng, Y., Zhá, L., Chen, T., Hang, P., Chen, Y., Dr, Z., 2021. Aloe-Emodin Relieves Zidovudine-Induced Injury in Neonatal Rat Ventricular Myocytes by Regulating the P90Rsk/p-Bad/Bcl-2 Signaling Pathway. Environ Toxicol Pharmacol. 81.

Wei, T., Chen, C., Lei, X., Zhá, J., Liang, J., 2018. CASTp 3.0: Computed Atlas of Surface Topography of Proteins. Nucleic Acids Res. 46, 363–367.

Yasuhisa, K., 1978. Generation of Superoxide Radical during Autoxidation of Hydroxylamine and an Assay for Superoxide Dismutase. Arch Biochem Biophys. 186, 189–195.

Yu, Y., Liu, H., Yang, D., He, F., Yuan, Y., Guo, J., Hu, J., Yu, J., Yan, X., Wang, S., Du, Z., 2019. Aloe-Emodin Attenuates Myocardial Infarction and Apoptosis via up-Regulating MiR-133 Expression. Pharmacol Res. 146, 104315.

Vesna, S., Korenic, A., Radenovic, L., 2011. Spatial and Temporal Patterns of Oxidative Stress in the Brain of Gerbils Submitted to Different Duration of Global Cerebral Ischemia. Int J Dev Neurosci. 29, 645–654.

Xiong, Z., Pignataro, G., Li, M., Chang, S., Simon, R., 2008. Acid-Sensing Ion Channels (ASICs) as Pharmacological Targets for Neurodegenerative Diseases. Curr Opin Pharmacol. 8, 25–32.