Electronic Supplementary Information

Synthesis and biological evaluation of 2-aryl-benzimidazole derivatives of dehydroabietic acid as novel tubulin polymerization inhibitors

Ting-Ting Miao,¹ Xu-Bing Tao,¹ Dong-Dong Li, Hao Chen, Xiao-Yan Jin, Yi Geng, Shi-Fa Wang and Wen Gu *

Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China

* Corresponding author.
 E-mail address: njiguwen@163.com
¹ These two authors contributed equally to this study.

Table of Content:

Fig. S1 ~ Fig. S22 ¹H and ¹³C NMR spectra of compounds 6a-k.

Fig. S23 ~ Fig. S44 ¹H and ¹³C NMR spectra of compounds 7a-k.
Fig. S1 1H NMR spectrum of compound 6a (300 MHz, CDCl$_3$)

Fig. S2 13C NMR spectrum of compound 6a (75 MHz, CDCl$_3$)
Fig. S3 1H NMR spectrum of compound 6b (500 MHz, CDCl$_3$)

Fig. S4 13C NMR spectrum of compound 6b (75 MHz, CDCl$_3$)
Fig. S5 ¹H NMR spectrum of compound 6c (500 MHz, CDCl₃)

Fig. S6 ¹³C NMR spectrum of compound 6c (75 MHz, CDCl₃)
Fig. S7 1H NMR spectrum of compound 6d (300 MHz, CDCl$_3$)

Fig. S8 13C NMR spectrum of compound 6d (75 MHz, CDCl$_3$)
Fig. S9 1H NMR spectrum of compound 6e (300 MHz, CDCl$_3$)

Fig. S10 13C NMR spectrum of compound 6e (75 MHz, CDCl$_3$)
Fig. S11 ¹H NMR spectrum of compound 6f (300 MHz, CDCl₃)

Fig. S12 ¹³C NMR spectrum of compound 6f (75 MHz, CDCl₃)
Fig. S13 1H NMR spectrum of compound 6g (300 MHz, CDCl$_3$)

Fig. S14 13C NMR spectrum of compound 6g (75 MHz, CDCl$_3$)
Fig. S15 1H NMR spectrum of compound 6h (300 MHz, CDCl$_3$)

Fig. S16 13C NMR spectrum of compound 6h (75 MHz, CDCl$_3$)
Fig. S17 1H NMR spectrum of compound 6i (500 MHz, CDCl$_3$)

Fig. S18 13C NMR spectrum of compound 6i (75 MHz, CDCl$_3$)
Fig. S19 1H NMR spectrum of compound 6j (500 MHz, CDCl$_3$)

Fig. S20 13C NMR spectrum of compound 6j (75 MHz, CDCl$_3$)
Fig. S21 1H NMR spectrum of compound 6k (300 MHz, DMSO-d$_6$)

Fig. S22 13C NMR spectrum of compound 6k (75 MHz, CDCl$_3$)
Fig. S23 1H NMR spectrum of compound 7a (500 MHz, CDCl$_3$)

Fig. S24 13C NMR spectrum of compound 7a (75 MHz, CDCl$_3$)
Fig. S25 ¹H NMR spectrum of compound 7b (500 MHz, CDCl₃)

Fig. S26 ¹³C NMR spectrum of compound 7b (75 MHz, CDCl₃)
Fig. S27 1H NMR spectrum of compound 7c (500 MHz, CDCl$_3$)

Fig. S28 13C NMR spectrum of compound 7c (75 MHz, CDCl$_3$)
Fig. S29 1H NMR spectrum of compound 7d (300 MHz, CDCl$_3$)

Fig. S30 13C NMR spectrum of compound 7d (125 MHz, CDCl$_3$)
Fig. S31 1H NMR spectrum of compound 7e (500 MHz, CDCl$_3$)

Fig. S32 13C NMR spectrum of compound 7e (125 MHz, CDCl$_3$)
Fig. S33 1H NMR spectrum of compound 7f (500 MHz, CDCl$_3$)

Fig. S34 13C NMR spectrum of compound 7f (75 MHz, CDCl$_3$)
Fig. S35 1H NMR spectrum of compound 7g (500 MHz, CDCl$_3$)

Fig. S36 13C NMR spectrum of compound 7g (75 MHz, CDCl$_3$)
Fig. S37 1H NMR spectrum of compound 7h (300 MHz, CDCl$_3$)

Fig. S38 13C NMR spectrum of compound 7h (75 MHz, CDCl$_3$)
Fig. S39 1H NMR spectrum of compound 7i (500 MHz, CDCl$_3$)

Fig. S40 13C NMR spectrum of compound 7i (75 MHz, CDCl$_3$)
Fig. S41 1H NMR spectrum of compound 7j (500 MHz, CDCl$_3$)

Fig. S42 13C NMR spectrum of compound 7j (75 MHz, CDCl$_3$)
Fig. S43 1H NMR spectrum of compound 7k (500 MHz, CDCl$_3$)

Fig. S44 13C NMR spectrum of compound 7k (75 MHz, CDCl$_3$)