We investigate a two-level system in resonant contact with a larger environment. The environment typically is in a canonical state with a given temperature initially. Depending on the precise spectral structure of the environment and the type of coupling between both systems, the smaller part may relax to a canonical state with the same temperature as the environment (i.e. thermal relaxation) or to some other quasi equilibrium state (non thermal relaxation). The type of the (quasi) equilibrium state can be related to the distribution of certain properties of the energy eigenvectors of the total system. We examine these distributions for several abstract and concrete (spin environment) Hamiltonian systems, the significant aspect of these distributions can be related to the relative strength of local and interaction parts of the Hamiltonian.

I. INTRODUCTION

In a composite but closed quantum system in which a smaller central system S is weakly coupled to a larger environment C, most of the (pure) states of the total system for a given energy (and possibly some additional constraints) exhibit properties of thermal equilibrium states with respect to the smaller part \[^{1}\], i.e. there exists a so-called dominant region in Hilbert space in which the entropy of the central system is close to its maximum value under the given constraints. Therefore for most pure initial states of the total system, the state of the central system shows decoherence and some kind of thermalization; it typically approaches a quasi-equilibrium canonical state with a temperature given by the spectral properties of the environment \[^{2}\].

If the environment initially is in a thermal state with a given temperature and consists of many bands or of a broad continuum of levels, the central system typically relaxes to a thermal state with the same temperature. This type of relaxation will be called thermal relaxation in the following. Here we investigate to what extent certain structures of the total system influence the reached (quasi) equilibrium state. We will relate this equilibrium state to the distribution of the energy eigenvectors of the system, or rather certain important aspects of this distribution. We will show that there is a close relation between the two, and how this affects the equilibrium state for different system structures.

We particularly focus on a single spin-1/2 particle coupled to an environment of spin-1/2 particles. Recently, the properties of spin systems of different structure (rings, stars, and others) have been subject of extensive interest. A lot of work has been done on the question of entanglement \[^{3,4,7,8}\], their relaxation behavior has been addressed \[^{8}\] and various techniques were suggested to make any spin interact with any other spin \[^{11,12}\].

Here we extend our analysis form our previous paper \[^{13}\] regarding the controllability of relaxation behavior within these spin systems.

II. CANONICAL AND NON CANONICAL RELAXATION

Figure \[^{1}\] shows a two-level system (TLS) in resonant \((\delta_S = \delta_C = \delta)\) contact with an environment consisting of two “energy bands” \(k, k’\) of degeneracies \(g_k, g_{k’}\), respectively (for simplicity we use \(g = g_k, g’ = g_{k’}\) in the following, typically \(g’ > g\)). The coupling is assumed to be weak, the total system is described by the Hamiltonian

\[
\hat{H} = \hat{H}_S + \hat{H}_C + \hat{H}_{\text{int}}.
\]

A non equilibrium state \(|1\rangle_S \otimes |\phi_k\rangle_C\) is depicted (here \(|\phi_k\rangle\) denotes an arbitrary pure environmental state in band \(k\)).

If this state is taken as the initial state of a Schrödinger time evolution of the total system, a relaxation to an equilibrium situation is expected in which the time-averaged reduced state operator of S is given by \[^{1}\]

\[
\hat{\rho}_S = \frac{1}{g + g’} \left(g |0\rangle\langle 0| + g’ |1\rangle\langle 1| \right)
\]

which can be interpreted as a canonical state operator with inverse temperature

\[
\beta_S = \frac{1}{k_B T} = \frac{1}{\delta_S} \ln \frac{g’}{g}.
\]

PACS numbers: 05.30.-d, 03.65.Yz, 75.10.Jm

Non Thermal Equilibrium States of Closed Bipartite Systems

Harry Schmidt and Günter Mahler

Institut für Theoretische Physik 1, Universität Stuttgart

I. INTRODUCTION

In a composite but closed quantum system in which a smaller central system S is weakly coupled to a larger environment C, most of the (pure) states of the total system for a given energy (and possibly some additional constraints) exhibit properties of thermal equilibrium states with respect to the smaller part \(^{1}\), i.e. there exists a so-called dominant region in Hilbert space in which the entropy of the central system is close to its maximum value under the given constraints. Therefore for most pure initial states of the total system, the state of the central system shows decoherence and some kind of thermalization; it typically approaches a quasi-equilibrium canonical state with a temperature given by the spectral properties of the environment \(^{2}\).

If the environment initially is in a thermal state with a given temperature and consists of many bands or of a broad continuum of levels, the central system typically relaxes to a thermal state with the same temperature. This type of relaxation will be called thermal relaxation in the following. Here we investigate to what extent certain structures of the total system influence the reached (quasi) equilibrium state. We will relate this equilibrium state to the distribution of the energy eigenvectors of the system, or rather certain important aspects of this distribution. We will show that there is a close relation between the two, and how this affects the equilibrium state for different system structures.

We particularly focus on a single spin-1/2 particle coupled to an environment of spin-1/2 particles. Recently, the properties of spin systems of different structure (rings, stars, and others) have been subject of extensive interest. A lot of work has been done on the question of entanglement \(^{3,4,7,8}\), their relaxation behavior has been addressed \(^{8}\) and various techniques were suggested to make any spin interact with any other spin \(^{11,12}\).

Here we extend our analysis form our previous paper \(^{13}\) regarding the controllability of relaxation behavior within these spin systems.

II. CANONICAL AND NON CANONICAL RELAXATION

Figure \(^{1}\) shows a two-level system (TLS) in resonant \((\delta_S = \delta_C = \delta)\) contact with an environment consisting of two “energy bands” \(k, k’\) of degeneracies \(g_k, g_{k’}\), respectively (for simplicity we use \(g = g_k, g’ = g_{k’}\) in the following, typically \(g’ > g\)). The coupling is assumed to be weak, the total system is described by the Hamiltonian

\[
\hat{H} = \hat{H}_S + \hat{H}_C + \hat{H}_{\text{int}}.
\]

A non equilibrium state \(|1\rangle_S \otimes |\phi_k\rangle_C\) is depicted (here \(|\phi_k\rangle\) denotes an arbitrary pure environmental state in band \(k\)).

If this state is taken as the initial state of a Schrödinger time evolution of the total system, a relaxation to an equilibrium situation is expected in which the time-averaged reduced state operator of S is given by \(^{1}\)

\[
\hat{\rho}_S = \frac{1}{g + g’} \left(g |0\rangle\langle 0| + g’ |1\rangle\langle 1| \right)
\]

which can be interpreted as a canonical state operator with inverse temperature

\[
\beta_S = \frac{1}{k_B T} = \frac{1}{\delta_S} \ln \frac{g’}{g}.
\]

PACS numbers: 05.30.-d, 03.65.Yz, 75.10.Jm

Non Thermal Equilibrium States of Closed Bipartite Systems

Harry Schmidt and Günter Mahler

Institut für Theoretische Physik 1, Universität Stuttgart

I. INTRODUCTION

In a composite but closed quantum system in which a smaller central system S is weakly coupled to a larger environment C, most of the (pure) states of the total system for a given energy (and possibly some additional constraints) exhibit properties of thermal equilibrium states with respect to the smaller part \(^{1}\), i.e. there exists a so-called dominant region in Hilbert space in which the entropy of the central system is close to its maximum value under the given constraints. Therefore for most pure initial states of the total system, the state of the central system shows decoherence and some kind of thermalization; it typically approaches a quasi-equilibrium canonical state with a temperature given by the spectral properties of the environment \(^{2}\).

If the environment initially is in a thermal state with a given temperature and consists of many bands or of a broad continuum of levels, the central system typically relaxes to a thermal state with the same temperature. This type of relaxation will be called thermal relaxation in the following. Here we investigate to what extent certain structures of the total system influence the reached (quasi) equilibrium state. We will relate this equilibrium state to the distribution of the energy eigenvectors of the system, or rather certain important aspects of this distribution. We will show that there is a close relation between the two, and how this affects the equilibrium state for different system structures.

We particularly focus on a single spin-1/2 particle coupled to an environment of spin-1/2 particles. Recently, the properties of spin systems of different structure (rings, stars, and others) have been subject of extensive interest. A lot of work has been done on the question of entanglement \(^{3,4,7,8}\), their relaxation behavior has been addressed \(^{8}\) and various techniques were suggested to make any spin interact with any other spin \(^{11,12}\).

Here we extend our analysis form our previous paper \(^{13}\) regarding the controllability of relaxation behavior within these spin systems.

II. CANONICAL AND NON CANONICAL RELAXATION

Figure \(^{1}\) shows a two-level system (TLS) in resonant \((\delta_S = \delta_C = \delta)\) contact with an environment consisting of two “energy bands” \(k, k’\) of degeneracies \(g_k, g_{k’}\), respectively (for simplicity we use \(g = g_k, g’ = g_{k’}\) in the following, typically \(g’ > g\)). The coupling is assumed to be weak, the total system is described by the Hamiltonian

\[
\hat{H} = \hat{H}_S + \hat{H}_C + \hat{H}_{\text{int}}.
\]

A non equilibrium state \(|1\rangle_S \otimes |\phi_k\rangle_C\) is depicted (here \(|\phi_k\rangle\) denotes an arbitrary pure environmental state in band \(k\)).

If this state is taken as the initial state of a Schrödinger time evolution of the total system, a relaxation to an equilibrium situation is expected in which the time-averaged reduced state operator of S is given by \(^{1}\)

\[
\hat{\rho}_S = \frac{1}{g + g’} \left(g |0\rangle\langle 0| + g’ |1\rangle\langle 1| \right)
\]

which can be interpreted as a canonical state operator with inverse temperature

\[
\beta_S = \frac{1}{k_B T} = \frac{1}{\delta_S} \ln \frac{g’}{g}.
\]

PACS numbers: 05.30.-d, 03.65.Yz, 75.10.Jm
For a finite environment and weak random coupling, the
reduced state of the central system after relaxation still
fluctuates around (1), see \[2\].

If the central system relaxes to state (1) for any pure
state \(|\phi_k\rangle\) of the environment in band \(k\), it will relax to
the same state for an initial state in which the environ-
ment is completely mixed within band \(k\), \(\hat{\rho}_0 = |1\rangle \langle 1| \otimes \frac{1}{g}\). \(\hat{1}_k\) denotes the projector onto band \(k\) of the environment.

Assume now that the environment is given by a large
number \(N\) of two level systems with a homogeneous Zee-
man splitting, \(H_C = \sum_{\varepsilon=1}^{N} \delta \hat{\sigma}_z^{(\varepsilon)}\). The environment ini-
tially is taken to be in a thermal state of temperature \(\beta_C\),

\[
\hat{\rho}_0 = |1\rangle \langle 1| \otimes \frac{1}{Z} e^{-\beta_C H_C}.
\]

If each band of the environment separately leads to a
relaxation into a state (1), the equilibrium state of the
central system is given by the canonical state with \(\beta_S =
\beta_C\) for large \(N\). For finite \(N\), the population of the excited
state of S after relaxation is given by

\[
(\hat{\rho}_S)_{11} = \frac{N}{N+1} \frac{1}{1 + e^{\beta C}} + \frac{1}{N+1} \frac{1}{1 + e^{\beta C}}.
\]

Because of this we call the relaxation from an initial
state \(|1\rangle_S \otimes |\phi_k\rangle_C\) to the reduced equilibrium state (1)
canonical or thermal throughout this text.

However, not all environments lead to canonical relax-
ation of the central system. In [13] we examined sev-
eral types of spin environments and showed that many of
these lead to an equilibrium state that differs from (1).
We call these deviations non canonical or non thermal.
Figure 2, shows the relaxation behavior for different types
of environments. Obviously, not all relax to the same
quasi equilibrium state.

III. ENERGY EIGENVECTOR DISTRIBUTIONS

We now correlate deviations from canonical relaxation
with the distribution of the energy eigenvectors of the
total system. We only consider the situation depicted in
figure 2 since environments with more bands in a canoni-
cal state can simply be derived from these results. As
long as the interaction is weak relative to the band spli-
ting, the total system can be reduced to the subspace
consisting of the “cross states”

\[
\{ |0_S, \text{environment in band } k'\rangle, |1_S, \text{environment in band } k\rangle \}. \quad (2)
\]

In the following we will always refer only to this \((g + g')\)-
dimensional subspace.

Instead of the temperature we consider the population
inversion \(\text{Tr}(\hat{\sigma}_z \hat{\rho}_S)\) of the central system for mathemati-
cal convenience. The inversion of the canonical state (1)
is given by

\[
\langle \hat{\sigma}_z \rangle_{\text{can}} = \frac{g - g'}{g + g'}.
\]

The energy eigenvectors can be written in the form

\[
|\varepsilon\rangle \approx \alpha_{\varepsilon} |0, \chi_{\varepsilon}\rangle + \beta_{\varepsilon} |1, \eta_{\varepsilon}\rangle,
\]

where \(|\chi_{\varepsilon}\rangle\) is a state in band \(k'\), and \(|\eta_{\varepsilon}\rangle\) a state in band \(k\)
of the environment. In the following we will use \(\varepsilon\) as a
discrete index running from \(1\) to \(g + g'\) to number the
energy eigenvectors within the subspace of Hilbert space
spanned by the states (2).

We expand the initial state \(\hat{\rho}_0 = |1\rangle \langle 1| \otimes \frac{1}{g}\) in terms
of these eigenvectors, \(\hat{\rho}_0 = \sum_{\varepsilon, \varepsilon'} \rho_{\varepsilon, \varepsilon'} |\varepsilon\rangle \langle \varepsilon'|\).
Averaging over all times and tracing out the environment yields the
equilibrium state of the central system,

\[
\bar{\rho}_S = \sum_{\varepsilon} \rho_{\varepsilon, \varepsilon} \text{Tr}_{C} \{|\varepsilon\rangle \langle \varepsilon|\}
= \sum_{\varepsilon} |\beta_{\varepsilon}|^2 (|\alpha_{\varepsilon}|^2 |0}\langle 0| + |\beta_{\varepsilon}|^2 |1\rangle \langle 1|).
\]

The respective inversion is

\[
\langle \hat{\sigma}_z \rangle = \sum_{\varepsilon} |\beta_{\varepsilon}|^2 (|\beta_{\varepsilon}|^2 - |\alpha_{\varepsilon}|^2).
\]

We notice that

\[
\lambda_{\varepsilon} = |\beta_{\varepsilon}|^2 - |\alpha_{\varepsilon}|^2 \quad (4)
\]
is the inversion of \(|\varepsilon\rangle\). Since \(|\beta_{\varepsilon}|^2 + |\alpha_{\varepsilon}|^2 = 1\) we can rewrite the time-averaged inversion of the central system
completely in terms of the \(\lambda_{\varepsilon}\)'s,

\[
\langle \hat{\sigma}_z \rangle = \frac{1}{2} \left(\sum_{\varepsilon} \lambda_{\varepsilon} + \sum_{\varepsilon} \lambda_{\varepsilon}^2 \right).
\]
The first sum can be shown to be equal to $g - g'$, see appendix A. If we rewrite the second sum in terms of the variance $\Delta \lambda_c^2$ of the λ_c-distribution, we finally get

$$\langle \hat{\sigma}_z \rangle = \langle \hat{\sigma}_z \rangle_{\text{can}} + \frac{(g + g')}{2g} \Delta \lambda_c^2.$$

(5)

The average deviation from the canonical equilibrium state is thus mainly given by the distribution of the reduced states of the energy eigenvectors, in particular by its variance.

As long as the width of the distribution is finite, there is always a deviation from the canonical inversion and therefore also from the canonical temperature. For a finite environment this is always the case. We will now consider several types of environments and interactions.

IV. EIGENVECTORS DISTRIBUTION FOR DIFFERENT HAMILTONIANS

A. Random Hamiltonian

At first we assume that the two relevant bands in the environment are exactly degenerate and the transitions within S and C are exactly in resonance. In this case, $\hat{H}_S + \hat{H}_C \propto \hat{1}$ (within the relevant subspace spanned by the states $|2\rangle$), thus we only need to deal with \hat{H}_{int}.

If the coupling \hat{H}_{int} between system and environment is modeled by a random Hermitian matrix with a uniform Gaussian distribution $w(\hat{H}_{\text{int}}) = C \exp(-A \text{Tr}(\hat{H}_{\text{int}})^2)$ (i.e. taken from the GUE [14]), the state of the central system typically relaxes to the expected equilibrium state under Schrödinger dynamics for the total system [1, 2, 13]. The state fluctuates in time, the amplitude of these fluctuations decreases with the size of the environment.

Figure 3 shows the λ_c-distribution for these random Hermitian matrices. The histogram was obtained by choosing a number of random matrices with the given probability distribution and calculating the inversion of their eigenvectors. The parameters used are $g = 91$ and $g' = 364$.

The probability density for the λ_c‘s for random Hermitian matrices from the GUE can be calculated analytically and is given by

$$P(\lambda) \propto (1 - \lambda)^{g' - 1}(1 + \lambda)^{g - 1}.$$

(6)

This result is derived in appendix A. The solid line in figure 3 shows the distribution.

The mean value of λ_c for this distribution is given by

$$\bar{\lambda}_c = \frac{g - g'}{g + g'} = \langle \hat{\sigma}_z \rangle_{\text{can}},$$

as expected from the general result in appendix A. This is again the mean inversion of the equilibrium state for canonical relaxation.

The variance of this distribution is given by

$$\Delta \lambda_c^2 = 4\frac{g \cdot g'}{d^2(d + 1)}$$

with $d = g + g'$. Since this is finite, the reached steady state will typically deviate from the canonical equilibrium state.

For large systems, i.e. $d \to \infty$ (for constant ratio g/g'), both $\Delta \lambda_c^2$ and $\langle \hat{\sigma}_z \rangle - \langle \hat{\sigma}_z \rangle_{\text{can}}$ vanish. So in the thermodynamic limit, the quasi equilibrium reached equals canonical equilibrium.

B. Random interaction

1. Degenerate bands

We will now discuss a system that is not completely random, but has a random energy exchanging coupling between the central system and the environment. If the environmental bands are strictly degenerate, the Hamiltonian matrix has the form

$$
\begin{pmatrix}
-\Delta/2 & \\ . & \\ -\Delta/2 \\
\hline
\cdot & \cdot \\
\hline
\mathcal{V} & \\
\mathcal{V} & \\
\cdot & \cdot \\
\hline
\Delta/2 & \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{pmatrix}.
$$

(7)

where $\Delta = \delta^S - \delta^C$ is the detuning between system and environment. The upper left block corresponds to the ground state of the central system, its therefore of dimension g', the lower right block (of dimension g) corresponds to the excited level. These blocks are purely diagonal.

The off diagonal block \mathcal{V} (a $g \times g'$ matrix), corresponding to energy exchange (canonical) coupling, is chosen...
randomly with normalized Gaussian distributions for the real and imaginary parts of the matrix elements.

For $\Delta \neq 0$, system and environment are off resonance and the relaxation to the canonical equilibrium state is prohibited by energy conservation. So just $\Delta = 0$ is considered.

Figure 4 shows the λ_{ε}-distribution for a matrix of type (7), again for $g = 91$ and $g' = 364$. Instead of being single peaked, the distribution here is drastically different and consists of delta peaks at $\lambda_{\varepsilon} = -1$ and $\lambda_{\varepsilon} = 0$, respectively. For a given Hamiltonian, there are exactly $g' - g$ eigenstates with $\lambda_{\varepsilon} = -1$ and $2g$ eigenstates with $\lambda_{\varepsilon} = 0$ (assuming $g' > g$). The mean value still is $\lambda_{\varepsilon} = (g - g')/(g + g')$, as expected.

However, the variance of the distribution is obviously considerably bigger. For the given parameters $\Delta \lambda_{\varepsilon} = 0.24$ as opposed to $\Delta \lambda_{\varepsilon} \approx 0.0014$ for the completely random Hamiltonian. The deviation of the quasi equilibrium state for a Hamiltonian of type (7) from the canonical one is exactly

$$\langle \hat{\sigma}_z \rangle - \langle \hat{\sigma}_z \rangle_{\text{can}} = - \langle \hat{\sigma}_z \rangle_{\text{can}}$$

which is nicely demonstrated in figure 5. Since this result is independent of the system size, going to large environments will not change the relaxation behavior other than reducing the amplitude of the fluctuations. Even in the thermodynamic limit the canonical equilibrium state is never reached.

2. Non degenerate bands

The situation, again, changes if we introduce a finite spacing between the levels within each environmental band. For simplicity we will only consider equidistant levels and equal bandwidth $\delta \varepsilon$ for both bands here. The lowest (and highest) levels of each band in the environment are in resonance with the central system. This system is depicted in figure 6 ($\delta \varepsilon = \delta C$ is considered in the following). The Hamiltonian matrix in subspace (2) is given by:

$$\begin{pmatrix}
0 & \frac{\delta \varepsilon}{(g'-1)} & \cdots & \\
\frac{\delta \varepsilon}{(g'1)} & \ddots & \cdots & \\
\vdots & \ddots & \ddots & \ddots \\
\delta \varepsilon & \cdots & \cdots & \delta \varepsilon
\end{pmatrix} \begin{pmatrix}
V^\dagger \\
0 & \frac{\delta \varepsilon}{(g-1)} & \cdots & \\
\delta \varepsilon & \cdots & \cdots & \ddots \\
V^\dagger
\end{pmatrix}$$

By introducing a small level splitting in the environment (small compared to the interaction strength), the peaks in figure 4 get broader, especially the one at $\lambda_{\varepsilon} = 0$ gets flatter considerably and is stretched towards negative λ_{ε}. The variance of the distribution gets smaller. Figure 7 shows the λ_{ε}-distribution for a relatively small level spacing. When the level splitting is increased, the distributions becomes single peaked, with the peak close to its average and of similar height as the peak of the complete random Hamiltonian, see figure 8. A long tail towards higher λ_{ε} prevails, therefore the variance is still considerably larger.
C. Spin environments

We now consider a gapped spin or TLS as in figure 1 coupled to an array of spins, all with a Zeeman splitting equal to the central spin (or almost equal). Due to energy conservation, the system can be reduced to the situation shown in figure 1 for each pair of environmental bands. If the environment initially is in a canonical state, we can simply sum up over all bands, as long as the interaction between the environmental spins is small.

The λ_e-distributions of several spin-environments have been discussed in [13], so we will only discuss them briefly here.

1. Spin-star configuration

Figure 9 (left) shows schematically a spin-star configuration, i.e. a central spin coupled to an array of environmental spins without mutual interaction. A typical environment should of course consist of a lot more than 5 spins. The most general Hamiltonian describing the system-environment interaction is

$$\hat{H}_{\text{int}} = \sum_{i,j=1}^{N} \sum_{\nu=1}^{N} \gamma_{ij}^{(\nu)} \hat{\sigma}_i^{(S)} \otimes \hat{\sigma}_j^{(\nu)}$$

for N environmental spins.

It has been shown in [13] that if the coefficients $\gamma_{ij}^{(\nu)}$ are chosen randomly, the initial state depicted in figure 1 typically does not relax to the canonical equilibrium state. The Hamiltonian matrix in this case has the form (7), however with small fluctuations on the diagonal, and the interaction part of the Hamiltonian matrix is only sparsely populated. Nevertheless, the λ_e-distribution shows some similarity to the one described in section IV B 2 for small level splitting. Figure 10 shows the λ_e-distribution for this system.

2. Intra-environmental coupling

If mutual coupling between the environmental spins is introduced, the situation changes. Figure 9 (right) schematically shows next neighbor coupling in the environment (spin-ring configuration), but other configurations are possible as well. As long as this coupling is weak, the system can still be considered band wise.

The interaction typically leads to a level splitting within the bands which in turn leads to a λ_e-distribution similar to the one described in section IV B 2 with bigger level splitting. Figure 11 shows the λ_e-distribution for
of the environmental spectrum from zero to the minimal variance of the λ_ε-distribution. A similar transition can be observed for many different environmental spectra.

In order to relate different types of spectra we split the Hamiltonian matrix (in the considered subspace) in its respective diagonal and off diagonal parts. The off diagonal part H_{off} (V and V' of (11)) describes the interaction between central system and environment, while the diagonal part H_{diag} describes the environmental spectra alone, if system and environment are in resonance. The diagonal part is always taken to be traceless. The quantity we use to compare different spectra is the relative strength of the environmental part to the interaction part,

$$ V_R = \sqrt{\frac{\text{Tr}(H_{\text{diag}}^2)}{\text{Tr}(H_{\text{off}}^2)}}. $$

For a completely random matrix (GUE) this relation is given on average by

$$ V_{R,GUE} = \sqrt{\frac{g^2 + g'^2}{2gg'}} $$

which only depends on g/g', not on the actual size of the system.

Figure 13 shows the variance of the λ_ε-distribution for three different types of environmental spectra. In all three cases the environment consists of 14 spins, the 2nd and 3rd excited bands are considered, $g = 91$, $g' = 364$, as described in section IV C.

The solid line corresponds to the spin-ring configuration as described in section IV C 2. The intra-environmental interaction is taken as $\hat{\sigma}_x \otimes \hat{\sigma}_x + \hat{\sigma}_y \otimes \hat{\sigma}_y$ next neighbor coupling, the central system is randomly coupled to each environmental spin. The dashed line corresponds to the configuration described in section IV C 3. There is no mutual interaction between the spins in the environment, but their Zeeman splitting is inhomogeneous. The central system is again coupled randomly to each environmental spin. The environmental spectrum for the dotted line is the same as for the dashed line. However, the interaction between the central spin and each environmental spin is modeled by $\hat{\sigma}_x \otimes \hat{\sigma}_x + \hat{\sigma}_y \otimes \hat{\sigma}_y$. The corresponding average values for a random matrix from the GUE are $\Delta \lambda_\varepsilon^2 = 2/1425 \approx 0.0014$ and $V_{R,GUE} \approx 1.46$, respectively.

We notice that for each type of coupling and environmental spectrum there is a distinct minimum of $\Delta \lambda_\varepsilon^2$ for similar values of V_R close to, but not exactly at the average value for the GUE matrices.

V. WIDTH OF THE DISTRIBUTION AND SPECTRAL WIDTH

Figures 11 and 12 indicate that there is a continuous transition from a situation far from canonical to an almost canonical relaxation, depending on the environmental spectrum. What has been changed is the ‘strength’ of a spin-ring configuration. The shown distribution is for different kinds of coupling, e.g. Heisenberg coupling, are similar.

3. INHOMOGENEOUS ZEEMAN SPLITTING

If the individual environmental spins each have a different Zeeman splitting, the situation becomes similar to the one discussed in section IV B 2. Figure 12 shows the λ_ε-distribution when the Zeeman splittings of the environmental spins are homogeneously distributed within a certain range. The distribution again shows a peak around the mean value $\lambda_\varepsilon = \langle \hat{\sigma}_z \rangle_{\text{can}}$, although broader than in the previous case.

VI. CONCLUSION

We have characterized situations under which non-thermal states should result as quasi-equilibrium states.
APPENDIX A: TOWARDS EQ. (5)

Here we show that \(\sum \lambda_\varepsilon = g - g' \).

\[
\sum \lambda_\varepsilon = \sum_\varepsilon \text{Tr}_S \{ \sigma_\varepsilon^S \text{Tr}_C |\varepsilon\rangle \langle \varepsilon| \} = \sum_\varepsilon \text{Tr} \{ (\sigma_\varepsilon^S \otimes \hat{1}_C) |\varepsilon\rangle \langle \varepsilon| \} = \text{Tr} \{ (\sigma_\varepsilon^S \otimes \hat{1}_C) \},
\]

the last equality follows from the fact that the energy eigenvectors are a complete orthonormal basis in Hilbert space. If we now use the basis \(\{ 0, m' \}, \{ 1, m \} \) to calculate the trace (\(m \) and \(m' \) denote the levels in band \(k \) and \(k' \), respectively), we see that the \(g \) kets \(|1, m\rangle \) yield 1's, while the \(g' \) kets \(|0, m'\rangle \) yield -1's and the total trace equals \(g - g' \).

APPENDIX B: DERIVATION OF EQ. (6)

If we introduce the basis \(\{ |k; m\rangle \} (1 < m \leq g_k) \) for the band \(k \) and the basis \(\{ |k'; m\rangle \} \) for the band \(k' \), we can write the state of the total system as \((g = g_k, g' = g_{k'}) \)

\[
|\psi\rangle = \sum_{m=1}^{g'} \psi_{0m} |0\rangle \otimes |k'; m\rangle + \sum_{m=1}^{g} \psi_{1m} |1\rangle \otimes |k; m\rangle.
\]

The reduced state of the central system becomes

\[
\hat{\rho}_S = \text{Tr}_C \hat{\rho} = \sum_{m=1}^{g'} |\psi_{0m}|^2 |0\rangle \langle 0| + \sum_{m=1}^{g} |\psi_{1m}|^2 |1\rangle \langle 1|.
\]

We are interested in the distribution of the inversion of the energy eigenstates of certain Hamiltonians. Since the inversion is determined by the population of each level, we will derive the distribution for the population of the ground state, \(p_0 = \sum_{m=1}^{g}|\psi_{0m}|^2 \).

For simplicity we introduce a single index \(n \) to label the amplitudes instead of the double index \(0m \) or \(1m \). \(n \) runs from 1 to \(d = g + g' \) (the reduced Hilbert space dimension). In this notation \(p_0 = \sum_{n=1}^{g}|\psi_n|^2 \).

We now split the amplitudes into real and imaginary part, \(\psi_n = x_n + i x_{n+1} \), where \(1 \leq k \leq 2g' \) corresponds to \(|0\rangle \langle 0| \) and \(2g'+1 \leq k \leq 2d \) corresponds to \(|1\rangle \langle 1| \), therefore \(p_0 = \sum_{k=1}^{2g'} x_k \). The combined probability density of the first \(2g' \) amplitudes \(x_k \) for eigenvectors of random matrices from the GUE is given by [14]

\[
P_\lambda(x_1, \ldots, x_{2g'}) = \pi^{-1/2} \frac{\Gamma(d)}{\Gamma(d - g') \Gamma(d - g' + 1)} \left(1 - \sum_{k=1}^{2g'} x_k^2 \right)^{2d-g'-1}.
\]

The desired probability density for the population of the ground state \(p_0 \) is given by

\[
P_p(p_0) = \int d^{2g'} x \; P_\lambda(x_1, \ldots, x_{2g'}) \delta \left(p_0 - \sum_{k=1}^{2g'} x_k^2 \right),
\]

integrating over the unit sphere in \(2g' \)-dimensional space. The integral yields

\[
P_p(p_0) = \frac{\Gamma(d)}{\Gamma(d - g') \Gamma(g')} p_0^{g'-1} (1 - p_0)^{d-g'-1}.
\]

Transforming to \(\lambda = 1 - 2p_0 \) finally gives the probability density [6],

\[
P(\lambda) = \frac{1}{2^{d-1}} \frac{\Gamma(d)}{\Gamma(d - g') \Gamma(g')} (1 - \lambda)^{g'-1} (1 + \lambda)^{d-g'-1}.
\]
[1] J. Gemmer, M. Michel, and G. Mahler, *Quantum Thermodynamics: The Emergence of Thermodynamical Behaviour within Composite Quantum Systems* (Springer, Berlin, 2004).

[2] P. Borowski, J. Gemmer, and G. Mahler, Eur. Phys. J. B 35, 255 (2003).

[3] H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001).

[4] K. M. O’Connor and W. K. Wootters, Phys. Rev. A 63, 052302 (2001).

[5] X. Wang, Phys. Rev. A 66, 034302 (2002).

[6] A. Hutton and S. Bose, Phys. Rev. A 69, 042312 (2004).

[7] A. Hutton and S. Bose, quant-ph/0408077 (2004).

[8] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003).

[9] H.-P. Breuer, D. Burgarth, and F. Petruccione, Phys. Rev. B 70, 045323 (2004).

[10] J. Lages, V. V. Dobrovitski, and B. N. Harmon, quant-ph/0406001 (2004).

[11] A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).

[12] Y. Makhlin, G. Schön, and A. Shnirman, Nature 398, 305 (1999).

[13] H. Schmidt and G. Mahler, Phys. Rev. E 72, 016117 (2005).

[14] F. Haake, *Quantum Signatures of Chaos* (Springer, Berlin, 2001).