In silico transcriptomic analysis of ascending colon cancer uneartths known and novel genes and gene sets regard to characteristic features of colon cancer

Can Türk

Department of Medical Microbiology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey

Abstract

Objectives: Colon cancer emerges as a serious health problem in both men and women. Cancers in the colon have different genotypes and phenotypes according to the anatomical region. Tumors in ascending colon are usually diagnosed later, but it is more malignant than the descending and transverse colon, and the survival rates of patients are lower than other regions. The purpose of this study was to determine significantly high or low expressed genes in the ascending colon tumors by comparing all genome information obtained from cancer samples of ascending, transverse and descending colon. In concordance with all this information, another aim of the study was to identify the pathways to which the genes obtained from the colon in the large intestine and to determine their relationship with each other and to correlate them with the characteristics of cancer.

Methods: Gene expression values for three subtypes of colon cancer as ascending, transverse, and descending were obtained from GEO (Gene Expression Omnibus) (GSE41258). Data included a total of 47 ascending, 18 transverse and 31 descending colon cancer patient samples. Linear regression analysis was performed to determine differentially expressed genes. Gene Cluster 3.0 was used in order to cluster the genes hierarchically. In addition to linear regression and hierarchical clustering, network analysis with multivariable genes was performed in Cytoscape application 3.8.2 using GeneMANIA. GSEA 4.1.0 (Gene Set Enrichment Analysis) was performed to understand the different genes among the specified groups.

Results: As a result of these analyses, it was determined that there were 85 genes with high expression and 139 genes with low expression in the ascending colon tumor samples. It has been shown that these genes can differentiate tumor samples in the ascending colon better than tumor samples in other colon regions.

Conclusion: Our findings are important for understanding the genome of ascending colon tumors; if these findings are confirmed *in vitro* and clinically, it may have potential to be revealed that the identified genes also have biomarker properties for tumors in the ascending colon.

Keywords: ascending colon; descending colon; transcriptomic analysis; transverse colon

Introduction

The large intestine is approximately 1.5–2 meters long and consists of caecum, colons and rectum. The rectum is the last part before the anus and this part is also known as the area where feces is stored. On the other hand, the colon, forms the large part of the large intestine. Colon cancers basically occur as a result of an abnormality in this part. Studies carried out at the molecular level show that the formation of colon cancer occurs through a complex mechanism influenced by many factors. Genetic factors trigger the formation of colon cancer cells as well as the effects of lifestyle factors such as smoking and eating habits. Studies show that mainly CIMP (CpG island methylator phenotype), MSI (microsatellite instability), and additionally, CIN (chromosomal instability) mechanisms play a role in cancer development.
It has been shown that approximately 20% to 30% of patients with colon cancer have abnormalities in the CIMP pathway. Hypermethylation in the promotor sequences of the cell plays an essential role in the pattern of gene expression. Basically, CpG dinucleotide sequences are known to locate in this promotor region. The trigger for colon cancer cells is that sequences are not hypermethylated properly. In addition, this imprecision also affects critical cell mechanisms such as apoptosis, invasion, angiogenesis, cell cycle regulation, DNA adhesion and repair.\[1-4\]

According to statistical studies, MSI is responsible for 15% of colon cancers. MSI occurs due to DNA incompatibility, is involved in the process of DNA replication, mutations in some genes involved in the mechanism. These mutations generally inactivate the functions of genes. It plays an essential role in the protein synthesis of MMR genes. These proteins cause a decrease in polymerase function for to recognize and correct these defects, resulting in anomalies occurring on the microsatellite during replication. Mutations that arise because of the function of the recovery system accumulate and trigger formation of colon cancer cells.\[1-4,6\]

Colon cancer is a common type of cancer among gastrointestinal cancers worldwide. The prevalence of colon cancer varies depending on age. I.e., while it is 1.6% in the 50–60 age group, it is known that this rate increases up to 3% over the age of 70. In addition, studies show that the incidence of colon cancer may vary depending on gender. It has been shown that the incidence rate in women is higher than in men.\[7-10\]

Considering the mechanism of colon cancer, the importance can be seen more clearly. Basically; CIN, MSI, and CIMP play critical roles on colon cancer. Abnormalities caused by these mechanisms increase mutagenic activity in tumor suppressors and oncogenes. Critically, these mutations lead to an increase in the number of cancer stem cells, which play an important role in the onset of tumor formation. In addition, the acceleration of mutation accumulation also accelerates the epigenetic change of cells.\[7,7-10\]

Importantly, the characteristics and effects of colon cancer may vary according to anatomical regions. It consists of three main anatomical parts, respectively, ascending colon, transverse colon and descending colon. Generally, about 45% of colon cancer is located in the left colon region. However, in recent years, studies have showed that right colon (cecum and ascending colon) cancers have reached the rate of up to 25% and the reasons for this increase include the increase of the populatio

Materials and Methods
Data Collection and Normalization
Gene expression values for three subtypes of colon cancer as ascending, transverse, and descending, respectively, were obtained from (Gene Expression Omnibus) (GSE41258, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41258).\[15\]

GSE41258 data includes a total of 47 ascending, 18 transverse and 31 descending colon cancer patient samples. In the data gene expressions profiled by array-based. Sample codes and anatomic locations used within this data are shown in Appendix 1. The obtained raw data were normalized by RMA (Robust Multi-Array) normalization algorithm in R 3.6.1.\[18\]

Linear Regression Analysis
Linear regression analysis was performed to determine differentially expressed genes. Student’s t-test (p-value) was calculated among the ascending, and transverse and ascending, and descending groups, and as a result of this
analysis, genes with p<0.05 were selected. The analysis continued with the genes expressing these genes significantly in both groups.

Hierarchical Clustering

Gene Cluster 3.0 application\[^{19}\] was applied in order to cluster the determined statistically significant genes hierarchically. This clustering is based on Euclidean distance with a similarity metric limit for both genes and sequences, as well as the full link aggregation method. This methodology supports differentiating and distinguishing statistically highly variable genes.

Network and Pathway Analysis

In addition to linear regression and hierarchical clustering, network analysis with multivariable genes was performed in Cytoscape application 3.8.2\[^{20}\] using GeneMANIA.\[^{21}\] This app helps to better understand the correlation of statistically significant and highly variable genes by showing genetic interaction and their co-expression. Cytoscape also allows to illuminate the link between identified genes and even with each other.

In addition, the online DAVID: Bioinformatics Resources Tool was used to understand the respective pathways of these genes.\[^{22,23}\] This tool allows to show the proper pathway linked to these genes.

Gene Set Enrichment Analysis (GSEA)

GSEA 4.1.0 (Gene set enrichment analysis) was performed to understand the different genes among the specified groups.\[^{24}\] In this study, gene set enrichment analysis was performed among the ascending colon cancer patient groups and transverse colon cancer patient groups, ascending colon cancer patient groups and decreasing colon cancer patient groups. GSEA was performed by gene expression of GSE41258 data. As a result of gene set enrichment analysis, the enriched pathways and the most important and associated genes are determined by comparing the ascending and transverse and ascending and descending groups and their gene expression levels.

Results

After the normalization process of the data obtained was completed, the analyzes were continued with a total of 13,432 genes (21,225 Probe Sets). Ascending tumor samples were compared with transverse and descending tumor samples. When the genes belonging to ascending and transverse colon cancer were encountered, it was determined that a total of 1035 genes were expressed differently. This number was determined as 1531 when the increasing and decreasing subgroups were compared. 224 genes were found in common in these two groups (Figure 1). Appendix 2 includes t-test p-values (p<0.05), which expressed statistically significant.

Then, upregulated genes in the ascending cohort and downregulated in the transverse and descending cohorts, and vice versa, were identified. I.e., while MLH3 and APC genes have a higher expression value when compared to other subgroups (Figure 2a), and BAX and PMS2 genes are expressed lower (Figure 2b). The statistically significant genes cluster colon cancer subtypes (ascending, transverse and descending) in a hierarchical manner are shown in Figure 3.

Network analysis was performed to understand the network link between these 50 genes that are upregulated in ascending colon cancer and down-regulated in transverse and descending colon cancer, and vice versa. The connecting line between genes illuminates the network of these genes. The thickness of the binding line determines the binding strength of the respective genes. The thickest lines show that it has been determined that the connection between these genes has been determined by studying more precisely. In addition, the black nodes indicate the target genes given by the authors. On the other hand, gray nodes show genes associated with genes determined by GeneMANIA application in Cytoscape. The co-expression of genes is shown in Figure 4a and the genetic interaction between these genes is shown in Figure 4b. The genes that are available in the Online Mendelian Inheritance in Man (OMIM) database in the DAVID application and are statistically significantly up or down regulated in the ascending colon tumor subtype are shown in Table 1.
As a result of GSEA, it was determined that a total of 11 gene sets were enriched in the ascending tumor type, while 6 gene sets were not enriched in the same group (Appendix 3). Among these SPLICEOMAL_SNRNP_ASSEMBLY and TRANSITION_METAL_ION_HOMEOSTASIS contain the most gene sets. Therefore, they can be consid-

Table 1
The major 4 genes that are determined from OMIM database in the DAVID program and the diseases associated with these genes.

Gene symbols	OMIM disease
APC, WNT signaling pathway regulator (APC)	Colorectal cancer, somatic, Hepatoblastoma, somatic, Desmoid disease, hereditary, Adenomatous polyposis coli, Brain tumor-polyposis syndrome 2, Gardner syndrome, Gastric cancer, somatic, Adenoma, periampullary, somatic
BCL2 associated X, apoptosis regulator (BAX)	Colorectal cancer, somatic, T-cell acute lymphoblastic leukemia, somatic
PMS1 homolog 2, mismatch repair system component (PMS2)	Mismatch repair cancer syndrome, Colorectal cancer, hereditary nonpolyposis, type 4
mutL homolog 3 (MLH3)	Colorectal cancer, somatic, Endometriai cancer, susceptibility to, Colorectal cancer, hereditary nonpolyposis, type 7

Figure 2. (a) Expression profile of the MLH3, APC, BAX and PMS2 genes. (a) MLH3 and APC significantly upregulated in ascending colon cancer compared to transverse and descending colon cancers; (b) BAX and PMS2 genes significantly down-regulated in ascending colon cancer compared to transverse and descending colon cancers. Numbers near the genes are Probe Set IDs; (Probe Set ID: The identifier that refers to a set of probe pairs selected to represent expressed sequences on an array).
ered to have a more important roles. SPLICEOSOMAL_ SNRNP_ASSEMBLY is enriched in ascending colon tumor (Figure 5a), while the TRANSITION_METAL_ ION_HOMEOSTASIS gene set is enriched in transverse and descending colon cancer (Figure 5b).

Discussion

Studies have intensified in the early 2000s to reveal the molecular differences of tumors in the right and left colon regions. In a comprehensive study by Guinney et al. 25 4 subgroups with different biological behavior were identified, taking into account the many expression sequences belonging to both regions of the colon.

In the present study, high or low expressed genes were detected in tumors belonging to the ascending region compared to other colon tumors. The network between these genes as well as the pathways were determined. Accordingly, 4 genes with statistically different expression values in the ascending colon cancer samples are associated with colon cancer based on the OMIM database. These genes are *APC* (Adenomatous polyposis coli), *BAX*, *PMS2* and *MLH3*.

APC gene is one of the most critical genes that affect colon cancer formation. The *APC* gene is used as a negative regulator for the Wnt signaling pathway involved in colon cancer development. It also takes part in phosphorylation occurring in cells. Studies show that the *APC* gene increases the expression of the *MMP9* gene using the JNK signaling pathway. Importantly, this indicates that the

Figure 3. Hierarchical clustering of 224 statistically significant genes between groups. Genes highlighted in green represent genes with low expression, while red colored groups represent high expression.

Figure 4. Representation of the co-expression and interactions of 100 genes. (a) statistically significant co-expression of 100 genes both among themselves and between other genes; (b) Representation of the genetic interactions of 100 genes that have statistically significant expression, both among themselves and between other genes.
change in gene expression pattern is critical for the development of colorectal tumor cells. In other words, mutations in the APC gene play a role in the course of sporadic colorectal cancers, indicating that this gene is not only responsible for familial adenomatous polyposis (FAP). As a result of the researches, colorectal tumor formation occurs with the gradual occurrence of histological changes triggered by genetic changes and “adenoma-carcinoma” sequence as a result of mutation from tumor suppressor or oncogenic genes. These changes are known to occur as a result of loss of function resulting from mutation in the APC gene. In order to inactivate the critical function of the APC gene and trigger the formation of cancer cells, genetic instability and clonal expansion must basically occur. Because, these two changes can enable the activation of genes that support malignant transformation and tumor progression.

In parallel with the results we obtained, Du et al. showed that high expression of the APC gene is associated with poor prognosis in gastritis cancer. In our results, we determined that this gene has a higher expression in the ascending colon samples. This may be one of the reasons why colon cancers occurring in the right region have a worse prognosis than the left side.

In another study, it was shown that the APC gene is associated with a poor prognosis in microsatellite-stable proximal colon cancer supports the findings we obtained.

Our results show that the BAX gene has significantly less expression in colon tumors. Basically, BAX protein is known to promote cell death. Thus, it can inactivate the expression of cancer cells. Studies on the importance of the BAX gene have shown that mutations in the BAX gene reduce the apoptotic index of colorectal cancer cells. It has been determined that this situation is seen in 50% of colorectal cancer cases. In addition, in similar studies, high expression of the BAX gene shows that it can be a good prognostic marker for colon cancer patients, except for the ascending colon.

One of the four basic sensitivity genes in Lynch syndrome (LS), the most common cancer syndrome in the world, is the PMS1 Homologous 2, Mismatch Repair System Component (PMS2) gene. However, unfortunately it is not known whether the decrease in the gene expression value of the PMS2 gene has an effect on the repair mechanism and, critically, how this effect may occur.

The study by Kasela et al. shows that MMR activity is significantly reduced in cells in which the PMS2 gene is knocked out. These findings suggest that low expression of the PMS2 gene in colon tumors that rise in parallel with the findings we obtained as a result of our analysis causes a decrease in DNA mismatch repair (MMR), leading to poor prognosis of the colon.

Another gene that we found to have higher expression in the colon cancer samples compared to other types of colon cancer is the MLH3 gene. Although many studies show that descending colon cancer cases have a better survival rate, it is known that colon tumors in the right region have a worse prognosis than the left. Although not statistically significant, a study by Zhao et al. on ovarian can-
cancer showed that higher expression of the MLH3 gene is associated with lower survival. In addition, MLH3 (MutL homolog 3), MSH2 (MutS homolog 2) and MSH3 (MutS homolog 3) genes are also known to be frequently seen in colorectal cancer. These genes have also been identified as potential genetic markers for personalized therapy, showing that they are associated with chemoresistance.

As a result of GSE analysis, important gene sets associated with colorectal cancer progression and metastasis were determined. The enrichment of spliceosomal snRNP assembly gene sets in the ascending colon suggests that spliceostatin A, which has the capacity to target pladieno-lide compounds and spliceosome of these types of colon cancers, may be anticancer potential drugs. Based on the fundamental role of DNA methylation in colon cancer development, the application of DNMT inhibitors for the treatment of colon cancer patients, especially patients with DNA hypermethylation, is recommended as a result of studies.

Our results showed that the gene sets of Methyl transferase activity are enriched in ascending colon tumors. This suggests that such agents may be more effective in the treatment of this type of colon cancer subgroups especially. On the other hand, our analysis showed that Transition metal ion homeostasis gene sets enriched in other colon types except for ascending colon tumors. This suggests the use of drugs that target transition metal homeostasis such as ferristatin II, clioquinol, and omeprazole in colon cancers other than ascending colon cancers.

In addition to the characteristic features of tumors that occur in different parts of the colon, many studies have shown that their response to treatment can be very different. In this study, differently expressed genes and pathways were determined by comparing the whole genome profiles of tumors in different regions of the colon. A better understanding of the biology of the tumor allows more effective treatment. This may provide more effective treatment choices in the future. Importantly, it is crucial to validate the results of this study in vitro and clinically.

Conflict of Interest
No conflicts declared.

Ethics Approval
No ethics approval needed.

Funding
This research did not receive any specific grant from funding agencies in the public or commercial.
19. de Hoon MJL, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics 2004;20:1453–4.
20. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–504.
21. Franz M, Rodriguez H, Lopes C, Zuberi K, Montejo J, Bader GD, Morris Q. GeneMANIA update 2018. Nucleic Acids Res 2018;46:W60–W4.
22. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37:1–13.
23. Subramanian A, Tamayo P, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005;102:15545–50.
24. Guinney J, Dietmann R, Wang X, de Reyniès A, Schlicker A, Marisa L, Roepman P, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005;102:15545–50.
25. Zhang L, Shay JW. Multiple roles of Apc and its therapeutic implications in colorectal cancer. Nat Rev Cancer 2017;17:548–59.
26. Zhou X, Li S, Zhao M, Zhu H, Zhu X. Prognostic values of DNA mismatch repair genes in ovarian cancer patients treated with platinum-based chemotherapy. Archives Gynecol Obstet 2018;297:147–53.
27. van Alphen RJ, Wiemer EAC, Burger H, Eskens FALM. The spliceosome as target for anticancer treatment. Br J Cancer 2009;100:228–32.
28. Cervena K, Siskova A, Buchler T, Vodicka P, Vymetalkova V. Methylation-based therapies for colorectal cancer. Cells 2020;9:1540.
29. Turk C. In silico transcriptomic analysis of ascending colon cancer unearths known and novel genes and gene sets with characteristic features of colon cancer. Anatomy 2021;15(1):11–25.

ORCID ID: C. Türk 0000-0003-1514-7294

Conflict of interest statement: No conflicts declared.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported (CC BY-NC-ND4.0) Licence (https://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. How to cite this article: Türk C. In silico transcriptomic analysis of ascending colon cancer unearths known and novel genes and gene sets with characteristic features of colon cancer. Anatomy 2021;15(1):11–25.
Appendix 1

Sample codes and anatomic locations of colon cancer patients.

Sample code	Anatomic location	Sample code	Anatomic location
GSM1012286_00620AR1	Ascending colon	GSM1012591_C019AR1	Ascending colon
GSM1012308_02500AR1	Ascending colon	GSM1012592_C019HR1	Ascending colon
GSM1012320_03283AR1	Ascending colon	GSM1012627_C0323AR1	Ascending colon
GSM1012326_03519AR2	Ascending colon	GSM1012628_C0323H	Ascending colon
GSM1012327_03519HR2	Ascending colon	GSM1012631_C0330AR3	Ascending colon
GSM1012350_04276AR2	Ascending colon	GSM1012634_C0334AR3	Ascending colon
GSM1012351_04276HR2	Ascending colon	GSM1012645_C0487AR3	Ascending colon
GSM1012358_04800AR4	Ascending colon	GSM1012646_C0487HR3	Ascending colon
GSM1012359_04800HR4	Ascending colon	GSM1012307_02308AR1	Descending colon
GSM1012361_05025AR4	Ascending colon	GSM1012325_03465AR3	Descending colon
GSM1012366_05629AR4	Ascending colon	GSM1012336_03706AR2	Descending colon
GSM1012368_05786AR2	Ascending colon	GSM1012337_03706HR2	Descending colon
GSM1012369_05786HR3	Ascending colon	GSM1012346_04176AR2	Descending colon
GSM1012371_05885AR2	Ascending colon	GSM1012347_04176HR3	Descending colon
GSM1012384_06404AR2	Ascending colon	GSM1012374_06220AR2	Descending colon
GSM1012399_08018AR2	Ascending colon	GSM1012381_06706AR2	Descending colon
GSM1012416_09468AR2	Ascending colon	GSM1012385_06997AR3	Descending colon
GSM1012423_10194AR2	Ascending colon	GSM1012389_07427AR2	Descending colon
GSM1012426_10264AR3	Ascending colon	GSM1012408_09054AR2	Descending colon
GSM1012447_14475AR3	Ascending colon	GSM1012421_09811AR2	Descending colon
GSM1012461_A1516AR4	Ascending colon	GSM1012429_10630AR3	Descending colon
GSM1012463_A1716AR4	Ascending colon	GSM1012445_13321AR3	Descending colon
GSM1012468_A2367AR4	Ascending colon	GSM1012446_13357AR3	Descending colon
GSM1012494_A5135AR2	Ascending colon	GSM1012456_A0702AR4	Descending colon
GSM1012495_A5135AR2_ez	Ascending colon	GSM1012469_A2434AR3	Descending colon
GSM1012496_A5135DR2	Ascending colon	GSM1012474_A3536AR4	Descending colon
GSM1012499_A5320AR3	Ascending colon	GSM1012478_A4248AR4	Descending colon
GSM1012539_C0123AR3	Ascending colon	GSM1012544_C0128AR3	Descending colon
GSM1012540_C0123HR1	Ascending colon	GSM1012545_C0128BR1	Descending colon
GSM1012547_C0134AR1	Ascending colon	GSM1012565_C0151AR1	Descending colon
GSM1012548_C0134HR1	Ascending colon	GSM1012577_C0168AR3	Descending colon
GSM1012549_C0136AR1	Ascending colon	GSM1012580_C0172AR1	Descending colon
GSM1012550_C0136HR1	Ascending colon	GSM1012581_C0172HR1	Descending colon
GSM1012551_C0136KR1	Ascending colon	GSM1012595_C0200AR3	Descending colon
GSM1012552_C0136UR1	Ascending colon	GSM1012603_C0230BH	Descending colon
GSM1012572_C0157AR1	Ascending colon	GSM1012615_C0273A	Descending colon
GSM1012573_C0157H	Ascending colon	GSM1012617_C0283AR3	Descending colon
GSM1012589_C0193AR1	Ascending colon	GSM1012629_C0329AR1	Descending colon
GSM1012590_C0193HR1	Ascending colon	GSM1012630_C0329HR1	Descending colon
Appendix 1 [Continued]
Sample codes and anatomic locations of colon cancer patients.

Sample code	Anatomic location	Sample code	Anatomic location
GSM1012297_00990AR1	Sigmoid colon	GSM1012561_C0147AR1	Sigmoid colon
GSM1012303_02184AR2	Sigmoid colon	GSM1012562_C0147AR3	Sigmoid colon
GSM1012304_02184HR2	Sigmoid colon	GSM1012563_C0147HR1	Sigmoid colon
GSM1012310_02679AR1	Sigmoid colon	GSM1012569_C0154AR1	Sigmoid colon
GSM1012311_02679BR1	Sigmoid colon	GSM1012576_C0159AR3	Sigmoid colon
GSM1012314_02815AR1	Sigmoid colon	GSM1012578_C0170AR1	Sigmoid colon
GSM1012315_02815HR1	Sigmoid colon	GSM1012579_C0171AR1	Sigmoid colon
GSM1012317_03023AR1	Sigmoid colon	GSM1012584_C0180AR1	Sigmoid colon
GSM1012318_03023HR1	Sigmoid colon	GSM1012585_C0180HR1	Sigmoid colon
GSM1012319_03156AR1	Sigmoid colon	GSM1012586_C0181AR3	Sigmoid colon
GSM1012354_04494AR4	Sigmoid colon	GSM1012587_C0186AR3	Sigmoid colon
GSM1012355_04494HR4	Sigmoid colon	GSM1012588_C0192A	Sigmoid colon
GSM1012367_05708AR2	Sigmoid colon	GSM1012593_C0198AR1	Sigmoid colon
GSM1012375_06265AR2	Sigmoid colon	GSM1012594_C0198HR1	Sigmoid colon
GSM1012379_06657AR2	Sigmoid colon	GSM1012611_C0257AR3	Sigmoid colon
GSM1012380_06657HR3	Sigmoid colon	GSM1012618_C0285AR1	Sigmoid colon
GSM1012386_07061AR2	Sigmoid colon	GSM1012619_C0295AR3	Sigmoid colon
GSM1012387_07145AR2	Sigmoid colon	GSM1012620_C0297AR1	Sigmoid colon
GSM1012397_07939AR2	Sigmoid colon	GSM1012621_C0297HR1	Sigmoid colon
GSM1012401_08061AR2	Sigmoid colon	GSM1012624_C0312AR3	Sigmoid colon
GSM1012405_08168AR2	Sigmoid colon	GSM1012625_C03156H	Sigmoid colon
GSM1012407_08792AR2	Sigmoid colon	GSM1012631_02832AR1	Transverse colon
GSM1012409_09077AR2	Sigmoid colon	GSM1012632_03531AR2	Transverse colon
GSM1012411_09297AR2	Sigmoid colon	GSM1012633_03657AR2	Transverse colon
GSM1012413_09394AR2	Sigmoid colon	GSM1012633_03657HR2	Transverse colon
GSM1012424_10216AR3	Sigmoid colon	GSM1012634_03862AR2	Transverse colon
GSM1012428_10512AR3	Sigmoid colon	GSM1012634_03862HR2	Transverse colon
GSM1012439_12292AR3	Sigmoid colon	GSM1012635_04388AR2	Transverse colon
GSM1012442_12847AR3	Sigmoid colon	GSM1012636_05424AR4	Transverse colon
GSM1012462_A1644AR4	Sigmoid colon	GSM1012692_07632AR2	Transverse colon
GSM1012492_A4947AR4	Sigmoid colon	GSM1012393_07662AR2	Transverse colon
GSM1012502_A5627AR3	Sigmoid colon	GSM1012396_07925AR2	Transverse colon
GSM1012503_A5627BR3	Sigmoid colon	GSM1012410_09185AR2	Transverse colon
GSM1012526_C0101AR3	Sigmoid colon	GSM1012437_12237AR3	Transverse colon
GSM1012527_C0104AR3	Sigmoid colon	GSM1012467_A2226AR4	Transverse colon
GSM1012531_C0112AR1	Sigmoid colon	GSM1012507_A6141AR	Transverse colon
GSM1012535_C0115AR3	Sigmoid colon	GSM1012529_C0111AR1	Transverse colon
GSM1012541_C0124AR3	Sigmoid colon	GSM1012530_C0111HR1	Transverse colon
GSM1012553_C0137AR1	Sigmoid colon	GSM1012570_C0155AR3	Transverse colon
GSM1012554_C0137HR1	Sigmoid colon	GSM1012571_C0156AR3	Transverse colon

Sample code	Anatomic location	Sample code	Anatomic location
GSM1012570_C0156AR3	Transverse colon	GSM1012571_C0156AR3	Transverse colon
Appendix 2

T-test p-values which expressed statistically significant (p<0.05).

Probe set	Gene symbol	T-test of ascending vs transverse colon	T-test of ascending vs descending colon
201888_s_at	IL13RA1	0.00016271505536615	0.00521747486476386
205844_s_at	VNN1	0.000385136080291112	0.0077639644507052
47530_at	C9orf156	0.00081241732984075	0.0365888700564041
206122_at	SOX15	0.00093693288690665	0.0319002678319461
212665_at	TPARP	0.00109740862530723	0.0149345736824881
210219_at	SPI100	0.00129941458167625	0.02945112630853
216300_x_at	RARA	0.001510363838347	0.020880829302783
209397_at	TM4SF4	0.0015154586859597	0.0033539301875218
213664_at	SLC1A1	0.0015657003086825	0.00415570175875679
215427_s_at	ZCCHC14	0.00169179299291247	0.012950331872678
210651_s_at	EPHB2	0.00191836064227171	0.00348119288028227
213823_at	HOXA11	0.00207814621070703	0.0121059077242761
214191_at	KAT1	0.0022316379888523	0.0268164312486215
205730_s_at	ABUML3	0.00237677641741103	0.0110983916886486
209320_at	ADCY3	0.002429040211383	0.041325710012813
217415_at	POLR2A	0.00269575520034894	0.0443829653243419
219021_at	RNF121	0.00270128512746877	0.0241668884278377
204843_s_at	PRKAR2A	0.00270329662456024	0.02295623964002
202459_s_at	LPN2	0.00296373853260737	0.0195009066395492
203139_at	DAPK1	0.002985384623663	0.0081694250979891
217165_x_at	MT1F	0.00324876323465622	0.0039603427170252
218529_at	CD320	0.00351895978865357	0.018049949266918
210143_at	ANXA10	0.00361543881448043	0.0221704749647477
208559_at	PON1	0.00369666604226198	0.0122623122943415
221268_s_at	SGPP1	0.00378110101365417	0.010261200115258
202693_s_at	STK17A	0.00384950815651231	0.0039142818604062
206330_s_at	SHC3	0.00394389390077759	0.024575359746245
209415_at	FZR1	0.0040240242963556	0.0182118711074509
21961_at	GCNT3	0.00422343917924779	0.047898599928003
217661_x_at	SX5	0.00425011261288811	0.0137974636054946
220220_at	LRRC7A2	0.00439560705223552	0.0083602539543393
220017_x_at	CYP2C9	0.00444735128361806	0.0013430392341892
204326_s_at	MT1X	0.00519304170826272	0.0083477883935453
202631_at	OSGEP1	0.00526809738102296	0.00553805125320832
207245_at	UGT2B17	0.0055001172873036	0.0002070984407029
211837_s_at	PTCH1	0.0055415215804383	0.00671054670922654
208323_at	ANXA13	0.00558331241550818	0.00068902483317067
211612_s_at	IL13RA1	0.0056795911679234	0.00361028639239732
206396_at	SLC1A1	0.00595393858849176	0.00220879456756152
215536_at	HLA-DQB2	0.00630638945811806	0.0111442133130687
213629_at	MT1F	0.0063543566241856	0.006077958592024
218902_at	NOTCH1	0.00657731256094427	0.037335712580496
33304_at	ISG20	0.00679460592547953	0.0470076157248008
215741_x_at	AKAP8L	0.0068010240983979	0.0241477714028368
216671_at	MUC8	0.0068805329616361	0.0383618636348532
204487_s_at	KCNQ1	0.00695196777896742	0.0267287721809296
207392_x_at	UGT2B15	0.0070147429678188	0.000042079070386557
210126_at	PSG9	0.00708607742512625	0.0125502556385473
206461_x_at	MTP1H	0.0070990648227567	0.00664244458624349
216025_x_at	CYP2C9	0.0081014424105605	0.0027835975836334

Gene biomarker discovery for colon cancer by *in silico* approach

Anatomy • Volume 15 / Issue 1 / April 2021
Appendix 2 (Continued)

T-test p-values which expressed statistically significant (p<0.05).

Probe set	Gene symbol	T-test of ascending vs transverse colon	T-test of ascending vs descending colon
209150_s_at	IPO4	0.00813333467021513	0.0291253365640916
208478_s_at	BAX	0.00842647383645954	0.0180985713492701
208581_x_at	MT1X	0.008449808519362	0.0069586322696345
204745_x_at	MT1G	0.00878185719233833	0.0082522817999293
205945_at	l6R	0.009030501809093	0.015561832765579
209938_at	TADA2A	0.00945544955869718	0.0030902612562343
207484_s_at	EHMT2	0.00948494012139873	0.021989383206608
217144_at	UBBP1	0.00958596978462974	0.0145424696521897
212349_at	POPUT1	0.00973930667339722	0.0006175570793332
208141_s_at	DHH	0.00983615661677668	0.011910985340121
215481_s_at	PEX5	0.0098426572367347	0.0080466303700721
219705_at	QSER1	0.00984955869718	0.00676393361084865
213017_at	ABHD3	0.00984955869718	0.0047659965826437
222048_at	CRYBB2P1	0.00984955869718	0.0021989383206608
210267_at	NIPAL3	0.00984955869718	0.015561832765579
214509_at	HIST1H3I	0.00984955869718	0.0006175570793332
211165_x_at	EPHB2	0.0104459036229018	0.00676393361084865
200847_at	SARAF	0.0104459036229018	0.0047659965826437
216336_x_at	LOC440434	0.0104459036229018	0.0021989383206608
215090_x_at	LOC440434	0.0104459036229018	0.015561832765579
21269_at	NUDCD3	0.0104459036229018	0.0006175570793332
21285_x_at	MT2A	0.0104459036229018	0.0047659965826437
216661_x_at	CYPC2C9	0.0104459036229018	0.0021989383206608
220135_at	SLCTA9	0.0104459036229018	0.015561832765579
211217_x_at	KCNQ1	0.0104459036229018	0.0006175570793332
213235_x_at	KNOPI1	0.0104459036229018	0.015561832765579
210384_at	RPL23A	0.0104459036229018	0.0006175570793332
203178_at	GATM	0.0104459036229018	0.0047659965826437
202840_at	TAF15	0.0104459036229018	0.0021989383206608
206342_at	KS	0.0104459036229018	0.015561832765579
214421_x_at	CYPC2C9	0.0104459036229018	0.0047659965826437
206340_at	NR1H4	0.0104459036229018	0.0021989383206608
213880_at	LGR5	0.0104459036229018	0.015561832765579
218952_at	PCSK1N	0.0104459036229018	0.0047659965826437
207532_at	CRYGD	0.0104459036229018	0.0021989383206608
203525_s_at	APC	0.0104459036229018	0.015561832765579
203011_at	IMPA1	0.0104459036229018	0.0047659965826437
212859_x_at	MT1E	0.0104459036229018	0.0021989383206608
217540_at	NXPE3	0.0104459036229018	0.015561832765579
21256_at	GRM8	0.0104459036229018	0.0047659965826437
217476_at	NR1D1	0.0104459036229018	0.0021989383206608
208720_s_at	RBM39	0.0104459036229018	0.0047659965826437
211456_x_at	MT1H1L1	0.0104459036229018	0.0047659965826437
217696_at	FUT7	0.0104459036229018	0.0047659965826437
221270_s_at	QTRT1	0.0104459036229018	0.0047659965826437
212211_x_at	KS	0.0104459036229018	0.0047659965826437
216842_x_at	AC007967.3	0.0104459036229018	0.0047659965826437
216218_s_at	PLCL2	0.0104459036229018	0.0047659965826437
200051_at	SART1	0.0104459036229018	0.0047659965826437
207545_s_at	LOC101928143	0.0104459036229018	0.0047659965826437
Appendix 2 (Continued)

Gene biomarker discovery for colon cancer by *in silico* approach

T-test p-values which expressed statistically significant (p<0.05).

Probe set	Gene symbol	T-test of ascending vs transverse colon	T-test of ascending vs descending colon
205208_at	ALDH1L1	0.018366792138689	0.0041525032330587
205221_at	HGD	0.018404909852041	0.0027128594561777
221820_s_at	KAT8	0.0186851086363866	0.028753409045594
203655_at	XRCC1	0.0195552969036288	0.0400589045965037
212750_at	PPP1R16B	0.01956461833530	0.0492377107044371
221506_s_at	TNPO2	0.019618462756418	0.00174457407733694
209805_at	PM52	0.019825195471822	0.0048631699502379
215064_at	SC5D	0.0199954612067164	0.04009145857484
207849_at	IL2	0.0207176895788813	0.027646752952765
205906_at	FOXJ1	0.020756339586082	0.0179806461888217
219825_at	CYP26B1	0.0209583654715191	0.00881670973732324
214223_at	PTPA3	0.021973868580162	0.0479893913605289
208126_s_at	CYP2C18	0.0219738271609716	0.000177625442352609
219931_s_at	KLHL12	0.0219738271609716	0.0117095765515496
213829_x_at	RTE1	0.0219376081160701	0.00440303070999215
217520_s_at	NPYA	0.0221274789129413	0.0312121049147675
215152_at	MYB	0.02264495177855	0.00075685454908027
211526_s_at	RTE1	0.0233096492966428	0.028519092503584
213683_at	ACSL6	0.0243451736397553	0.0248146569085601
208918_s_at	NADK	0.0243821347655757	0.0399396874739623
211866_at	SAMD14	0.0243821347655757	0.0399396874739623
205633_s_at	ALAS1	0.0248146569085601	0.008214818634889686
202695_at	STK17A	0.0248146569085601	0.008214818634889686
206918_s_at	CPNE1	0.0248146569085601	0.008214818634889686
220143_x_at	LUC7L	0.0248146569085601	0.008214818634889686
208078_s_at	SK1	0.0248146569085601	0.008214818634889686
216255_s_at	GRM8	0.0249146761499734	0.0157547742656726
212057_at	GSE1	0.0249589897515221	0.048469812948672
204600_at	EPHB3	0.0253505027616503	0.0147809814079668
211207_s_at	ACSL6	0.0253505027616503	0.0147809814079668
200647_x_at	EF3C	0.0253505027616503	0.0147809814079668
208739_s_at	TMEM88	0.0259039361300557	0.019690503548056
213588_x_at	RPL14	0.0260872509286091	0.011147522187354
212486_at	FYN	0.0260872509286091	0.011147522187354
213052_at	PRKAR2A	0.0260872509286091	0.011147522187354
202453_s_at	GTF2H1	0.026509800665638	0.0346504801267993
211082_x_at	MARK2	0.0266829025992098	0.0425854689136332
216076_at	L3MBTL1	0.0272017509712494	0.0039832497474508
203692_s_at	EZF3	0.02724518843137	0.0156576760326496
203060_at	PAPSS2	0.02789514467807	0.0042850877172897
205316_at	SLC15A2	0.02789514467807	0.0042850877172897
220544_at	TSK5	0.028706492697387	0.005097903960052
221309_at	RBM17	0.02907254331826	0.026887155853216
201418_s_at	SOX4	0.029202338514225	0.012618525383067
206092_x_at	RTE1	0.0293869362376055	0.0011386086201966
78330_at	ZNF335	0.0294420246489318	0.0171741697532607
205272_s_at	PRH1	0.029922012935875	0.0369958217690242
217702_at	IL27RA	0.0299544046093803	0.0401086359899183
209589_s_at	EPHB2	0.0311842634624996	0.012365422902086
T-test p-values which expressed statistically significant (p<0.05).

Probe set	Gene symbol	T-test of ascending vs transverse colon	T-test of ascending vs descending colon
211955_at	IPO5	0.0315578723564607	0.0176122286833458
211682_x_at	UGT2B28	0.031835468805484	0.0064869431682457
204087_s_at	SLCSA6	0.032167092191126	0.0122490683721897
203526_s_at	APC	0.02952672600519	0.0091742281823984
200679_x_at	HMG81	0.03063253557303	0.0092290135374263
213435_at	SATB2	0.032268565076552	0.005791988193093
200680_x_at	HMG81	0.03259346934992	0.0327594672367312
204016_at	LARS2	0.03386627531322	0.007640142179958
201741_x_at	SRSF1	0.033976114866492	0.0072246332868078
219017_at	ETV1	0.034975156635643	0.0481914664756225
221803_s_at	NRB2	0.034042693873365	0.0008475659728556
207470_at	BC113958	0.034079924012714	0.0176655570248064
200721_s_at	ACTR1A	0.0341968526622086	0.0189529343666907
209130_at	SNAP23	0.0343722782076268	0.012460340970823
219471_at	KIAA0226	0.034664305671111	0.00420770437161399
208209_s_at	C4BPB	0.035103409245856	0.015300645553425
204109_at	NYFA	0.035467090518342	0.0188479934829926
216032_s_at	ERGIC3	0.036125187029235	0.01222202385168
205556_s_at	VAMP2	0.036315069181276	0.00326733016642112
205459_s_at	NAP52	0.036356820458499	0.027501096900155
201892_s_at	IMPDH2	0.03684193144478	0.0164254058840621
217809_at	B2ZV2	0.0370411672528593	0.0111530894359189
219316_s_at	FLVCR2	0.037152693664439	0.0182386046949649
215930_s_at	CTAGES5	0.037273894038448	0.009851487834859
201716_at	SNX1	0.0374101133631355	0.0390882393411317
205460_at	NAP52	0.0377153078107637	0.0043895592785321
212198_s_at	TM9SF4	0.037790018920065	0.031513580433592
201791_s_at	DHCR7	0.037839673838822	0.0105568685301129
220354_at	MCF2L-AS1	0.0382621296936618	0.019412214545149
212322_at	SGPL1	0.0382890186278431	0.026994879228522
215852_x_at	SOGAT	0.038432906234485	0.038601969455771
219447_at	SLC35C2	0.0390051865560509	0.00838972207178568
208506_at	HIST1H3F	0.039378750515056	0.0032765992657932
204183_s_at	ARKB2	0.039397370972733	0.00028760060211399
219764_at	FZD10	0.0394147921859214	0.0334876991598887
205639_at	AOAH	0.0395018637342232	0.0031126533171492
206407_s_at	CCL13	0.0397475278576177	0.043349304220237
213828_x_at	H3F3A	0.040145315327654	0.0353569437251339
205141_at	ANKEF1	0.040329905997115	0.015937278259481
206411_at	MOCS3	0.0404920863485373	0.0182634063304353
201795_at	LBR	0.040652479065725	0.0010026293123705
204838_s_at	M1H3	0.040972516233634	0.0104570300276411
220936_s_at	H2AFJ	0.0409742871898888	0.00740207154862594
209134_s_at	RPS6	0.0411455819895845	0.014310812135305
220144_s_at	ANKEF1	0.0412498731136823	0.0096902210987666
213053_at	HUSS5	0.0412932176220598	0.0150984897605612
41577_at	PPP1R1B	0.0414980406250487	0.0484377148658173
220211_at	FLJ13224	0.041685014369416	0.043598659600468
Appendix 2 (Continued)

T-test p-values which expressed statistically significant (p<0.05).

Probe set	Gene symbol	T-test of ascending vs transverse colon	T-test of ascending vs descending colon
204438_at	MRC1	0.0418464706452934	0.00992848027255271
40837_at	TLE2	0.0423156766188777	0.0062633011427297
215103_at	CYP2C18	0.042370724064298	0.00559948063703009
218579_s_at	DHX35	0.0427011211748617	0.0436691935495297
222251_s_at	GMEB2	0.0430124806537605	0.00725566828019381
210357_s_at	SMOX	0.0433172855060324	0.0338207181600041
205129_at	NPM3	0.0436309133780782	0.0384625268226612
205240_at	GPM52	0.0439793027972249	0.00063156133135152
202576_s_at	DDX19A	0.0440814208639885	0.018256407713014
206650_at	IQCC	0.0449944650713525	0.0121751394207934
214107_x_at	LOC440434	0.0450720367479637	0.0265633412274562
204613_at	PLCG2	0.0454915719075093	0.0229035737853801
216508_x_at	HMGB1P4	0.0461980573409067	0.0143328712291447
205865_at	ARID3A	0.0463046577532617	0.0029233588010168
203909_at	SLC9A6	0.046675287281775	0.0473501198587895
221741_s_at	YTHDF1	0.0473235099369472	0.0161402553890302
211603_s_at	ETV4	0.0473890117318017	0.0057997801630521
219653_at	LSM14B	0.0476370621810747	0.000580206292203339
206170_at	ADRB2	0.0476421322380342	0.0154418296902453
221922_at	GPM52	0.0476880997134143	0.0065707163768071
210393_at	LGR5	0.0490924051065539	0.0138545969031669
213975_s_at	LYZ	0.0496410825350101	0.021634858636666
209388_at	EPHB2	0.049829082972293	0.0316158601621646
205362_s_at	PFDN4	0.0498825908777403	0.000926938401448077

Appendix 3

Result of GSEA showed that a total of 11 gene sets were enriched in the ascending tumor type, while 6 gene sets were not enriched in the same group.

Enriched in ascending colon	Diminished in ascending colon
HP_POSTAXIAL_FOOT_POLYDACTYLY	GO_CARBONHYDRATE_BINDING
GO_REGULATION_OF_TELOMERE_CAPPING	GO_REGULATION_OF_EXOCYTOSIS
HP_ABNORMALITY_OF_THE_5TH_TOE	GO_NEGATIVE_REGULATION_OF_GLUCOSE_TRANSMEMBRANE_TRANSPORT
GO_N_METHYLTRANSFERASE_ACTIVITY	GO_DEAMINASE_ACTIVITY
GO_NEGATIVE_REGULATION_OF_GENE_EXPRESSION_EPIGENETIC	GO_POSITIVE_REGULATION_OF_BLOOD_CIRCULATION
GO_REGULATION_OF_GENE_EXPRESSION_EPIGENETIC	GO_TRANSITION_METAL_ION_HOMEOSTASIS
GO_TELOMERE_CAPPING	
GO_S_ADENOSYLMETHIONINE_DEPENDENT_METHYLTRANSFERASE_ACTIVITY	
GO_SPliceosomal_SNRNP.Assembly	
GO_SNRNA_PROCESSING	
GO_PROTEIN_DNA_COMPLEX	