Different Missions and Commitment Power in R&D Organizations: Theory and Evidence on Industry-University Alliances

Nicola Lacetera
Department of Economics, Weatherhead School of Management, Case Western Reserve University, Cleveland, Ohio 44106, nxl51@case.edu

This paper proposes a theory for why firms conduct some research activities in-house but outsource other projects to independent partners and for why firms retain different degrees of control over collaborative research projects. The focus is on the determinants of a company’s choice to outsource research projects to academic organizations. Because of the different institutional missions of academic organizations, outsourcing a project to a university allows a firm to commit not to terminate or alter a scientifically valuable project before it is complete. This commitment is potentially valuable for the firm in an environment where scientific value and economic value may not coincide, and scientific workers are responsive to the incentives defined by their community of peers. An economic model that formalizes these arguments is developed. Empirical hypotheses are then formulated about the kind of research activities firms will outsource to universities and activities on which they will exert stronger control. Evidence from a sample of industry-university research agreements, as well as from other large-sample and case studies, shows patterns consistent with the predictions of the model.

Key words: R&D organization; firm boundaries; industry-university relations
History: Published online in Articles in Advance September 17, 2008.

1. Introduction
Understanding firms’ organizational choices in the performance of R&D has long been a purpose of many scholars in organization theory, the economics of innovation, and strategic management. Despite the documented trend toward in-house R&D downsizing (Odlyzko 1995, Rosenbloom and Spencer 1996), there is vast evidence that firms still invest in scientific research and that they perform the bulk of it within their boundaries (NSF 2002). At the same time, companies are experimenting with multiple, alternative organizational forms in R&D. In particular, they outsource research projects to other organizations. An increasing trend is for companies to collaborate with universities, especially for the performance of more general-purpose research (Mowery and Teece 1996, NSF 2002, Geiger 2004).1

This paper studies what leads firms to choose different organizational arrangements to perform R&D. A theory is proposed for why firms conduct some research activities in-house and outsource other projects to independent partners, and for why firms retain different degrees of control over collaborative research projects. In particular, this paper analyzes the determinants of the choice of outsourcing research projects to academic organizations. The main insights of the analysis, however, are applicable beyond alliances with universities and can lead to a better understanding of the overall organization of R&D.

The focus of the analysis is on the different missions to which firms and universities are committed and on the contractual differences between different organizational arrangements, in terms of the allocation of decision power. Although firms aim to obtain economic profits, the objectives of academic organizations include the production and expeditious diffusion of scientifically valuable knowledge, regardless of strict considerations about the economic value of a given research project (Merton 1973, Dasgupta and David 1994). Moreover, outsourcing a project implies some delegation of decision power to an independent party, to a greater extent than when a project is developed in-house. Because of the different institutional missions and the formal delegation of power, outsourcing a project to an academic partner may allow a firm to make a commitment not to terminate a scientifically valuable project before completion. This commitment is potentially valuable for the firm, in an environment where the economic value of an invention is uncertain, the scientific and economic values of a project are not perfectly aligned, and scientific workers are responsive to the incentives defined by their community of peers. A scientist may be more motivated to supply productive effort for a project if she is more confident that the project will not change direction or be terminated before completion for reasons not related to the scientific value of the research. Such enhanced motivation is valuable for the firm if it also increases the probability of a positive economic return from a given project, therefore counterbalancing the uncertainty surrounding the economic attractiveness of the potential invention.
In contrast, by performing a project in-house, a firm has
greater discretion through its higher formal authority: for
example, it would be easier to terminate a project or to
gear it toward alternative, more profitable directions.

This theoretical framework is then translated into
empirical predictions. One prediction concerns the rela-
tion between the authority a firm retains over a research
project and the duration of the project. A longer research
program is arguably subject to higher uncertainty: better
opportunities can emerge on which the sponsoring party
and the researchers may not agree. Thus, all else being
equal, a firm might want to retain higher control over
the research agenda. Another prediction is that firms will
be more willing to delegate control over the conduct of
research when the research has a broader applicability.
If a research project is applicable to several areas, then
it is less likely that a firm wants to switch to a different
project with better economic prospects. Evidence from a
sample of research contracts between biotech companies
and academic organizations shows that companies retain
more power for longer projects and for projects whose
outcomes are applicable to a lower number of diseases.
The analysis of historical cases as well as of previous
large sample studies shows patterns consistent with the
model’s predictions.

The theoretical claims and empirical findings of this
paper have organizational and strategic relevance for
companies. Guaranteeing greater autonomy for scientific
workers over their activities, even when their objectives
and priorities differ from those of the top management
(and are closer to the objectives of their community
of peers), is a powerful device for increasing scienti-
stists’ incentives to supply productive effort. Among the
devices a firm can use to make its commitment to
research more credible, contracting out research to orga-
nizations whose main mission is aligned with that of the
overall scientific community is a particularly effective
one. It may be beneficial for a firm to let the university
partner “behave like a university,” and not to interfere
too much with its activities and the pursuit of its objec-
tives. The advantage of a stronger commitment needs to
be weighed against the cost of a loss of authority and
flexibility over the performance and direction of research
activities. The analysis is also relevant from a pub-
lic policy standpoint. It provides a foundation to those
who claim that universities should have research agen-
das of more actual, concrete relevance, but also stresses
that academic organizations should stick to their original
missions and should not transform into business orga-
nizations (Beckers 1984, Rosenberg and Nelson 1994,
Howitt 2003). Institutional diversity should be preserved
in order to reap the benefits of each institutional config-
uration and contractual arrangement.

Costs and benefits of different organizational arrange-
ments in R&D have been the subject of several previous
analyses. A few studies have stressed the importance
of having in-house research activities to better pro-
protect a company’s intellectual property (Scherer 1964,
Mansfield et al. 1977). Anecdotal evidence, surveys,
case studies, and large-sample statistical findings, how-
ever, show that firms tend to collaborate with universities
in more fundamental, general-purpose research. These
projects are likely to generate more serious appropriabil-
ity concerns. Veugelers and Cassiman (2005), further-
more, do not find evidence that appropriability problems
limit collaborations with universities. The emergence of
areas of research such as biotechnology, where intel-
lectual property can be protected more effectively, as
well as a series of legislative interventions (such as the
1980 Bayh-Dole Act) that increase IP protection within
universities, reduces the differences between perform-
ing research in-house and outsourcing it. Nonetheless,
we still see companies choosing different organizational
choices for different research activities. To the extent
that we see these behaviors by companies, we should
therefore look for explanations of these choices other
than appropriability concerns.

A further argument brought in favor of the presence of
an internal research force is that only through in-house
research can companies develop absorptive capacity.
Acquiring and exploiting external knowledge requires
the development of firm-specific knowledge, and this
is not possible only in-house (Cohen and Levinthal 1990).
This argument may rule out the viability of short-term
research contracts with external agents, but it does not
exclude the effectiveness of longer-term alliances. These
alliances are not infrequent. Besides, a number of studies
found that companies also develop absorptive capacity
through external channels, including collaborations with
academic scientists (Cockburn and Henderson 1998, Lim
2000, Markiewitz 2004). The framework of this paper
offers theoretical arguments that stand up to these cri-
tiques, because the difference in organizational choices
are characterized in terms of the level of authority each
party retains, not in terms of the type of knowledge that
is produced.

Other studies have instead stressed the advantages that
firms derive from collaborating with such partners as
universities and other research organizations. Academic
scientists are strongly motivated to produce high-quality
science, thus potentially raising also the likelihood of
economic success. The analysis in this paper assumes
that academic and company scientists respond to the
same incentives and motivations. It is the control struc-
ture and the mission of different organizations that
change. This approach is motivated by several studies
showing that innovative companies allow their scientists
to participate in the activities of the scientific community
and to gain reputation among peers for their scientific
record, for example, through publication (Nelson 1962,
Cockburn et al. 1999, Howitt 2003, and Stern 2004).
A claim of the superiority of academia in performing
some types of research, founded exclusively on the incentive systems, seems neither warranted nor satisfactory. It can also be argued that firms may also contract some research projects out to other firms and universities to overcome capacity constraints or to share risks. This argument may hold for small companies. However, large firms arguably have the human and financial resources to develop many of the projects that they instead outsource. Moreover, this argument tells us neither why companies choose to collaborate with academic organizations nor what is peculiar about the contribution that these organizations can offer.

The theory in this paper shares some aspects with a few other studies. Aghion et al. (2005) have independently and contemporaneously developed a closely related model. They assume that, in exchange for more freedom of inquiry, scientists accept lower wages in universities than in firms. A "social planner" would therefore assign earlier phase research to universities, because the expected economic value of the project would be low and it is therefore appropriate to save on wages. The planner would then move research to firms in later phases.

Unlike Aghion et al., the point of view in this paper is that of a company deciding how to organize its research activities. The focus, moreover, is on the trade-off between authority and effort instead of the wage-freedom trade-off. The empirical predictions and findings in this paper differ from Aghion et al. They are concerned with the phase of research, and this paper focuses on duration and breadth. Besides, for projects that are expected to last longer, the empirical analysis shows that firms retain more control. If we interpret these projects as taking longer because they start in earlier phases, then this result differs from Aghion et al. (their paper, in fact, does not analyze any empirical evidence). In a series of influential papers, Julio Rotemberg and Garth Saloner (Rotemberg and Saloner 1994, Saloner and Rotemberg 2000) derive that a firm may prefer to hire a CEO with a "vision," or consistently biased beliefs, or it may choose a narrow strategy and forego unrelated profit opportunities, as ways to commit to some actions. With reference to open-source projects and technology sharing, Lerner and Tirole (2005) suggest that a corporation may not be able to credibly commit to keep all source code in the public domain. Argyres and Mui (2007) analyze commitment problems that principals face when they try to stimulate agents to express their dissent, and dissent can be informative. Manso (2006) claims that a firm needs to commit not to terminate a scientific worker to provide him with incentives for "exploration" activities in addition to "exploitation" activities. However, it is not clear whether the worker is an employee or an independent contractor. If she is an employee, then it is unlikely that a firm can credibly commit not to terminate.

Section 2 of this paper develops a qualitative theory of the choice of different organizational structures in the performance of research activities. An economic model of R&D organizational choices is presented and solved in §3. Section 4 presents case-based and large sample evidence on the allocation of decision power in research collaborations between companies and academic organizations. Section 5 discusses the broader organizational implications of the analysis and also its insights for public policy. Section 6 summarizes and concludes.

2. Authority, Commitment, and the Role of Universities

The traditions of the scientific community are extremely strong where freedom to pursue research is concerned. To be told just what line of research to follow—to have it made clear that the goal of the research is company profit, not increased knowledge...—strikes hard at the traditions of science. (Nelson 1962, p. 573)

We should work together only when we don’t do violence to each other’s values and roles... There really are some projects that are probably inappropriate to do at the university. (Clifford Detz, Manager, Chevron Research and Technology Co., University of California President’s Retreat 1997)

2.1. Institutional and Contractual Differences

When a company outsources some of its activities to an independent contractor, the firm gives up some authority it would have if it performed the activities in-house. Moreover, the independent contractor may have objectives and priorities that do not coincide with the company's. For example, if the project is performed within the firm’s legal boundaries, a firm might be able to shut down or modify a project, irrespective of the opinion of the agent. If the project is outsourced, however, a firm would be much more constrained in its ability to exert these powers unilaterally.

Differing objectives and delegation of power generate fundamental differences between research activities performed in-house and those outsourced. This is particularly the case when research is outsourced to academic organizations. Academic organizations aim to produce and diffuse scientifically valuable knowledge, regardless of its economic return. In exchange for adherence to open-science principles concerning the diffusion of scientifically valuable knowledge, universities grant freedom of inquiry to their affiliates. Merton (1973) sees universities as repositories and institutional guardians of the CUDOS norms: communalism, universalism, disinterestedness, and organized skepticism (see also Dasgupta and David 1994, David 2004). Ben-David (1977) stresses how freedom of inquiry is at the very foundation of the modern research university. Argyres and Liebeskind (1998) argue that academia is bound by an implicit contract with society to pursue...
its peculiar mission. Masten (2006) provides evidence that the academic institutions with an organization most different from that of firms—e.g., distant from a hierarchical line of command—are those within which the promotion of leading-edge research is a priority. These characteristics of academic organizations put universities in marked contrast with profit-seeking companies, in terms of their missions and priorities. A firm may be able to provide high-powered incentive systems, potentially consistent with those of the scientific community, to its researchers. However, a firm cannot, by its nature, commit to the institutional objectives of the scientific community. The quest for knowledge may conflict with the quest for economic profits.

Evidence from several sources is consistent with the above claims. Lacetera (2006) analyzes research contracts between biotech companies and universities (or other nonprofit research entities). That study finds variation in the allocation of decision power over the conduct of the research. For example, although in some cases companies retain the exclusive right to terminate the research without cause (equivalent to what a firm would be able to do if the project were performed in-house), in other contracts the firm does not have this right. Strong control rights are granted to the firm only in a minority of contracts, and even in these contracts the firm still has several restrictions. For example, the firm can exercise the termination right only after some amount of time has passed since the beginning of the contractual relationship. Kenney (1986) summarizes the contractual provisions of several agreements between pharmaceutical and chemical companies and universities. The control power was shared among the parties, and academic partners had nonnegligible decision power. For example, in a deal between Exxon and MIT, 20% of funds had to be allocated according to the sole decision of MIT faculty members. In the 200 biotechnology research contracts (between companies) analyzed by Lerner and Merges (1998), termination rights are granted to the funding party in a minority of instances, and authority is formally distributed among the parties. Hall et al. (2000) find that research projects involving universities and companies are less likely to be aborted prematurely. Guedj (2004) finds that firms terminate in-house projects more frequently than outsourced projects. Private conversations and interviews conducted with practitioners in research-intensive companies revealed that firms strongly care about being able to promptly modify the direction of research in a given project, and this is easier if the research is directly performed by the company. University researchers expressed the belief that they would not have the same freedom to pursue scientifically relevant projects if employed by a company.

Finally, even companies known for their “science-friendly” environments do not seem to be able to commit to a complete adherence to scientific rules when research is in-house. The history of one such “science-friendly” company, 3M, reveals that R&D managers have always retained (and often exerted) the direction about the choices of scientists and engineers about which projects to pursue (Bartlett and Mohammed 1995). Griffiths (2005) gives the following quote from a manager at Genentech, another company known for the freedom given to its scientists:

It’s the scientist’s job to fight for her project, but as an organization we have to be pragmatic. Letting go is hard but we can’t let them hang on a failed drug. Mr. Levinson [Genentech’s CEO] can be brutal in killing projects he thinks are going nowhere.

2.2. Different Missions and Commitment Power
If scientific workers care about bringing a scientifically relevant project to completion to receive peer recognition for their findings, and if the scientific value is not strictly correlated with economic value, then a firm may find it profitable to “tie its hand” and delegate some decision power to an organization that, by its own institutional nature, is committed to the pursuit of scientific value. A scientist may be more motivated to give productive effort for a project if she is more confident that the project will not change direction or be terminated before completion. Such enhanced motivation is valuable for the firm as long as it also increases the probability of a positive economic return from a given project. Delegation of decision power to an academic organization may function as a commitment device for the firm. The higher discretion and flexibility gained by performing the project within the boundaries of the firm may come at the cost of a softened behavioral response by the scientists.

In the following section, a model is built that helps to clarify the informal arguments just made. This exercise will lead to the elaboration of empirical prediction and the analysis of several pieces of evidence, which will be the third step of this study.

3. Model
3.1. Environment
A firm has to start a potentially profitable research project, and it is also expected to advance scientific knowledge. The realization of economic profits from the project is uncertain and depends linearly on the amount of effort \(e \in [0, 1] \) a scientist supplies. Moreover, there is some chance that alternative projects, of equal or greater profit, can emerge as feasible at a later date. The firm can work on only one project at a time.

3.1.1. Scientist’s Effort. Think of effort \(e \) as a function of the intellectual investment or time spent by the scientist to improve her knowledge of the subject of
the research and to define the best way to conduct the project. The effort of the scientist has a cost of
\[C(e; \gamma) = \frac{e^2}{2\gamma}, \tag{1} \]
where \(\gamma > 0 \) is a scaling parameter. The effort choice is neither contractible nor observable. It is too complex to write in a contract what kind of activities the scientist is supposed to perform, and monitoring is very costly.

3.1.2. Economic Return. The project yields a return of \(R > 0 \) at completion, i.e., when the research is completed and the product is commercialized. Therefore, the expected economic return of the project is \(eR \). Such costs as salaries, materials, and equipment are normalized to zero.

3.1.3. Alternative Opportunities. With probability \(\pi \in (0, 1) \), and after the scientist has made her effort investment, new profitable opportunities can emerge. More precisely, assume that a new opportunity, with a return equal to \(\rho > R \), can emerge. The new opportunity emerges before the economic (and scientific, see below) value of the research are realized.\(^5\)

3.1.4. Scientific Value. Just like economic profitability, the scientific value of a project is realized only if the project is completed. The probability that the original project has scientific value at completion, is \(e \). The alternative project, if it emerges, is supposed not to have scientific value, at least from the point of view of the scientist. We can imagine that the specific investment of the scientist is not applicable to the new project and therefore would not generate scientific value for it.

3.1.5. Scientific and Economic Value. The parameter \(\pi \) can be interpreted as a measure of the sensitivity of the project’s profitability to a series of exogenous forces with economic relevance, and as a measure of the alignment between the realization of economic and scientific value, and therefore, as we will see, of the interests of the firm and of the scientist. With \(\pi \) close to zero, there is a high alignment between the realization of the highest economic and scientific value. A similar case of high alignment is when \(R \) is close to \(\rho \). For example, broader, more general-purpose projects can be characterized by a lower \(\pi \); the results of the research can be applied to a wider array of problems and potential markets, and therefore there will be fewer better alternatives. A higher alignment between economic and scientific value may better represent research areas in early stages of their evolution, when the firm is relatively more likely to obtain scientific credit and economic return for “any” discovery. Also, the parameter \(\rho \) (the return of the alternative project) plays a role in determining the discrepancy between scientific and economic value, because it affects the commercial attractiveness of alternative ways to use the invested capital that will not bring scientific value.

3.1.6. Examples. Consider genetic research, e.g., genetically modified plants and food, stem cells and cloning, or methods of assisted human reproduction. Legislative provisions may be introduced that provide incentives (e.g., through subsidies) for alternatives to the previous methods—e.g., incentives to traditional agriculture, major government purchase, incentives for research on adult stem cells rather than from ad hoc generated embryos, or provisions that facilitate adoption over assisted reproduction. These provisions would make alternative economic opportunities more appealing than the original ones a firm might have undertaken. However, the scientific relevance of the original projects might be higher than the scientific attractiveness of these alternatives.

A second example is a case in which, while a firm is working on a project, a substitute (and superior) product, using a different scientific base, is completed by another firm (though competition is not modeled here). The economic value of the competing product may be very high, and the firm can obtain a license to commercialize it. The economic value of the original project might in fact decline after the introduction of the other product. Moving to the production of the competing product is unlikely to be scientifically relevant because there is no novel research involved, as the novel research in the different scientific base has been conducted by other actors.

A third example can be given by a strategic change in a firm, say because the firm is taken over by another company or there is a change in the top management (which is predictable, with some probability \(\pi \), ex ante). The original project may not be consistent with the new management orientation, e.g., the top executives want to focus on marketing rather than on research and thus put higher value on marketing-oriented activities. Therefore, the firm may want to undertake a different direction, with potentially low scientific content (see Lawler 2003 for the case of Amgen, for instance). In pharmaceutical research, finally, clinical trials of a promising and scientifically novel drug may reveal that the drug is not effective or is toxic for a particular disease, but at the same time other paths can emerge from the trial, possibly commercially appealing. However, from a purely scientific standpoint, the original path of research could still be more novel and valuable than the alternative one—after all, negative results and investigations of the reasons of such failures could be a great advancement in science.\(^5\)

3.2. Organizational Structure and Authority

3.2.1. Organization. The firm chooses whether to perform the research project in-house, i.e., under a unified hierarchical structure, or to outsource it. In particular, the firm can outsource the research to a team employed by an academic organization, which acts as an independent contractor. Call the decision of the organizational structure \(\omega = \{ \text{in-house, outsource} \} \).
3.2.2. Authority. If the project is developed in-house, the firm has the power to change the direction of the research or to terminate it at any moment. That the ultimate, formal decision power stays with the boss is at the very nature of the definition of the firm and of the employment relation. The boss cannot commit not to overrule any proposal of the agent (Simon 1951, Baker et al. 1999). If the project is outsourced to a university, the parties are now in an independent contractor relationship, based on a formal contract. This contract implies some division of decision power. Specifically, it is assumed that the firm cannot unilaterally terminate the original project “without cause”; neither can it decide whether to undertake the alternative project (if available). This assumption is extreme, but it captures the essence of the contractual differences between the two possible organizational and contractual structures.

Define the project choice as a binary variable: \(d \in \{0, 1\} = \{\text{stay on old project}, \text{switch}\} \). The firm controls \(d \) when the project in done in-house. The decision \(d \) is noncontractible: once a party is given the right to choose \(d \), it is not possible to establish formally how this right will be used in any possible circumstance (Gibbons 2005). The discretion over \(d \) is lost when the project is outsourced.

3.3. Timing of Game

The game has five stages:

1. The firm chooses \(\omega \in \{\text{in-house}, \text{outsourcing}\} \).
2. The scientist chooses the effort level \(e \).
3. The value of the alternative opportunity (if it arises) is revealed.
4. If the project is carried in-house, the firm chooses \(d \in \{0, 1\} = \{\text{stay on old project}, \text{switch}\} \).
5. The project is completed and the payoffs of the parties are realized.

3.4. Payoffs

A scientist might delight in a research failure … because [it] eliminates a range of theories and leads to new pathways. But from an appropriator’s point of view, that does not look very attractive (Sharma and Norton 2004).

3.4.1. Firm. In either organizational structure, the firm is entitled to residual financial rights. If economic profits are generated from the project, they accrue to the firm; e.g., the firm obtains an option to (exclusively) license or the right to first refusal to any patentable invention. The firm’s ex ante profit function, if the project is carried in-house, is

\[
\Pi^\text{in} = (1 - \pi)(1 - d)eR + d^*0 + \pi[d^*0 + (1 - d)eR].
\]

If the project is outsourced, it will never be terminated before completion, nor will its direction be changed once the state of the world is realized, as the university has no interest in changing the original project. This is because, as we will see, the university (and the scientist) care about the realization of scientific value, which is higher in the original project. The firm’s profit function therefore is

\[
\Pi^\text{out} = eR. \quad (3)
\]

3.4.2. Scientist. Because she is affiliated with the scientific community (regardless of whether she works inside the firm or for another organization), the scientist cares about the scientific value of the project. If the original project gets successfully to completion (recall that the alternative project, if available, has no scientific value), the scientist receives a benefit equal to \(B \). This amount is received in addition to a fixed monetary wage, paid up front. \(B \) can include private benefits, such as recognition among peers in the scientific community, job satisfaction, public legitimacy, and future job opportunities. These benefits are either difficult to translate in monetary terms, or at least they are not directly paid by the firm. The benefits are private and noncontractible: they cannot be transferred to other agents (in particular to the firm) and cannot be reliably verified by a third party; therefore, they cannot be written down in a formal contract. Anecdotal and qualitative evidence shows that these components of utility are important for the scientific profession and for motivating researchers, both in companies and in academia (Nelson 1962, Rosenberg 1990, Stephan 1996). Because the alternative project has no scientific value, it gives a benefit of zero to the scientist. The scientist’s ex ante payoff functions can be expressed as follows:

\[
U^\text{in} = (1 - \pi)(1 - d)eB + \pi(1 - d)eB - \frac{e^2}{2\gamma} + (1 - d)eB - \frac{e^2}{2\gamma}; \quad (4)
\]

\[
U^\text{out} = (1 - \pi)eB + \pi eB - \frac{e^2}{2\gamma} = eB - \frac{e^2}{2\gamma}. \quad (5)
\]

\(U^\text{in} \) indicates the scientist’s utility if the project is performed in-house, and \(U^\text{out} \) indicates the utility if the project is outsourced. The institutional mission of the university allows the scientist to pursue such objectives without interference. The scientist and the university will not be willing to terminate the project and switch to the alternative one if there is an opportunity to do so.8

3.5. Analysis

The model is solved by backward induction, starting from the firm’s project choice.

3.5.1. Firm’s Project Choice. Recall that the project’s decision \(d \) is not contractible; therefore, the firm cannot commit to a given project. Besides, the decision is controlled by the firm unilaterally only when the project
is developed in-house. In this case, because the expected economic value of the new opportunity, ρ, is greater than the expected value of the original opportunity, switching to the new opportunity is a dominant strategy for the firm. The decision to switch projects may be socially inefficient ex post. If the parties could renegotiate, then ex post efficiency would be reached. Renegotiation is assumed away in the model. In particular, the scientist cannot bribe the firm to continue the project, for example, because she is cash constrained. In turn, if the scientist cares only about private benefits (e.g., not related to the monetary value of the project), the firm cannot induce renegotiation by proposing monetary payment in place of noncontrollable scientific rewards.9

3.5.2. Scientist’s Effort.

The scientist’s optimal choice of effort e^out and e^in, for the project done in-house and outsourced, respectively, is such that:

$$ e^* = \begin{cases} e^\text{out} \in \left\{ \arg \max_e \left[B e - \frac{e^2}{2\gamma} \right] \right\} \\ e^\text{in} \in \left\{ \arg \max_e \left[(1-\pi)eB - \frac{e^2}{2\gamma} \right] \right\} \end{cases} $$ \hspace{1cm} (6)

The firm does not have the authority to move to the alternative path if the project is outsourced. Therefore, there is no action at stage 4, whatever the realization of the state. When the project is done in-house, the scientist has to consider the likelihood of emergence of the new economic opportunity because, if it emerges, the original project will not be brought to completion. If the scientist shuts the original project down, the ex post benefit to the scientist is zero. Solving for the (necessary and sufficient) first-order conditions, we obtain

$$ e^\text{out} = \gamma B; \hspace{1cm} (7) $$
$$ e^\text{in} = \gamma B(1-\pi). \hspace{1cm} (8) $$

The choice of effort increases with the expected private benefit from the project. Furthermore, the absence of commitment by the principal to complete the project regardless of the state of the world weakens the scientist’s incentives.

3.5.3. Firm’s Organizational Choice.

The firm’s organizational choice ω is

$$ \omega = \begin{cases} \text{in-house} & \text{if } (1-\pi)e^\text{in}R + \pi \rho > e^\text{out}R \\ \text{outsource} & \text{otherwise} \end{cases} $$ \hspace{1cm} (9)

3.5.4. Solution.

We obtain the following result:

Proposition 1. Consider the choice of the organizational form for different values of π. Assume $B\gamma R < \rho < 2B\gamma R$. Then, $\exists \bar{\pi} \in (0,1)$ s.t. the project is performed in-house if $\pi \geq \bar{\pi}$, and the project is outsourced to a university otherwise. More precisely,

$$ \bar{\pi} = 2 - \frac{\rho}{B\gamma R}. $$ \hspace{1cm} (10)

In addition:

$$ \frac{\partial \bar{\pi}}{\partial B} > 0; \hspace{0.5cm} \frac{\partial \bar{\pi}}{\partial R} > 0; \hspace{0.5cm} \frac{\partial \bar{\pi}}{\partial \rho} < 0. $$ \hspace{1cm} (11)

Proof. Consider the following difference:

$$ \Delta \Pi = \frac{(\Pi^\text{in} - \Pi^\text{out})}{\gamma R} = B\pi^2 - \left[2B - \frac{\rho}{\gamma R} \right] \pi + (B-B). $$ \hspace{1cm} (12)

Now $\Delta \Pi \geq 0$ (i.e., the project is done in-house) if $\pi \in [\bar{\pi},1]$, where

$$ \bar{\pi} = 2 - \frac{\rho}{B\gamma R}. $$ \hspace{1cm} (13)

From the assumption that $B\gamma R < \rho < 2B\gamma R$, it follows that $\bar{\pi} \in (0,1)$. The comparative statics in (11) follow straightforwardly. □

Figure 1 reports some examples of optimal allocation of research projects for different values of the parameters. Each curve represents the difference $\Pi^\text{in} - \Pi^\text{out}$ for different values of π. When the curve is above the zero line, the firm prefers to perform the project in-house. Conversely, if the curve is below the zero line, then the firm outsources.

The model lends itself to a few empirical predictions. The following section is dedicated to these predictions and their validation.

4. Empirical Patterns

This section proposes some empirical predictions emerging from the discussion and the model above and assesses them against different sources of evidence: cases of research collaborations between companies and academic organizations, issues in the internal organization of R&D in research-oriented companies, patterns from large-sample studies, and trends in company funding of academic research over the past three decades. No single piece of evidence can be taken, in and of itself, as a conclusive test of the model. Nonetheless, the variety and the relevance of the evidence as a whole suggest that the issues on which this paper focusses are of broad empirical relevance and emerge as key variables in the organizational and strategic choices of companies.

4.1. Predictions

An empirical prediction of the above analysis is that firms prefer to perform research in-house, or to bargain for stronger control rights, when projects have longer duration. A longer research program is arguably subject
4.2. Cases and Examples

4.2.1. Novartis-Berkeley. In 1998, the agropharmaceutical company Novartis signed a $25 million, five-year nontargeted research deal with the Department of Microbial and Plant Biology at Berkeley for the development of several projects (Press and Washburn 2000, Lawler 2003). The parties formed a committee that would allocate funds to the research projects the academic researchers proposed. Of the five seats of the committee, Novartis was granted only two. This choice can be interpreted as a signal that the company would not entirely impose its logic over the decisions of which projects to promote. Because the type of research that was the object of the original agreement was of broad application, scientifically relevant, and economically very promising, it can be argued that the company cared more about providing the strongest possible incentives to the scientists than about being able to promptly stop a project. However, the growing popular to higher uncertainty; better opportunities can emerge on which the sponsoring party and the researchers may not agree. A second prediction is that firms will be more willing to delegate control over the conduct of research when the research has a broader applicability. If a project’s outcomes are expected to be applicable to several areas, then it is less likely that a firm wants to switch to a different project with better economic prospects.

4.2.2. Amgen-MIT. MIT and the biotech company Amgen agreed in 1994 to a multiyear research collaboration, with a financial commitment by Amgen of about $35 million over nine years (Lawler 2003). The research relations between Amgen and MIT were drastically downsized after some major changes in Amgen’s leadership reoriented the firm away from a major focus on R&D, toward increasing attention to marketing (Lawler 2003). These changes can be expressed, again, as a decrease in the alignment between scientific and economic value, given the new focus of the firm in generating value through marketing more than through research.

4.2.3. DuPont-MIT. In contrast, MIT and DuPont have recently renewed their 2000 alliance for five more years (with $25 million in addition to the original $35 million committed in 2000). Interestingly, the agreement has been extended to cover research areas beyond the original focus on biotechnology and biomaterials. These areas include nanotechnology, which is thought to have a vast range of applications (Brown 2005), and is...
in the very early stages. Scientific progress is therefore close to economic value, and the model above predicts that these areas of research are more likely to be the subject of collaborations between companies and academic research teams.

In the MIT-DuPont alliance, it is also possible to see several forms of delegation of power from DuPont to MIT. For example, each research proposal is initially screened by the MIT Internal Advisory Committee and then reviewed jointly by this committee and the DuPont Advisory Board. Moreover, decisions are then taken by the Steering Committee and composed by MIT faculty members and DuPont personnel, and the unanimous consensus rule applies. Finally, neither party can unilaterally terminate the agreement without cause.10

4.2.4. Internal Organization at 3M. This paper’s framework also contributes to understanding the internal organization of research activities in companies, not only the relations with academic organizations in the performance of R&D (see also §5.1). The evolution of the organization of R&D at 3M offers an illustration of the relevance of the issues at the core of the analysis. 3M had to deal, in different periods, with major challenges regarding how much freedom to guarantee to its scientists and engineers. The increasing diversification of the company’s product line, for example, led to a proliferation of labs, each focused on a narrow set of technologies. To keep such a focus, managers had to impose more discipline on the lab workers, thus limiting their discretion. Similarly, the increased competition in more recent times led the managers to strengthen their authority over the scientists and the direction of R&D effort to make it closer to the dynamics in the marketplace.

Bartlett and Mohammed (1995) offer a description of these challenges:

Previously innovation was driven by management asking researchers: what rabbit can you pull out of the hat to meet our targets? ... There were hundreds of initiatives—you could do anything. But as development became more expensive and riskier, we needed the focus and discipline of the new structure and processes. (a 3M VP in 1993)

Previously a scientist could work on a project for years. ... Today we try to do a lot more sorting out early. (Chuck Reich, VP of the Dental Product division)

The management was aware that an increase in authority over the scientists might negatively impact the effort the scientists made:

There is clearly less freedom in the labs than there was 10 or 15 years ago, and that means it’s less fun for the researchers. As a result, there are more motivation and morale issues to deal with today. (A division VP in the early 1990s)

A series of initiatives were undertaken to offset these motivation problems. They included the promotion of internal, recognition-based rewards, as well as keeping some research activities within large labs with multiple technologies. Consistent with the results of the model above, tensions over the granting of research freedom emerged as the research process became more risky and focused.

4.3. Evidence from Research Contracts

This section analyzes research contracts between biotech companies on the one hand and universities, hospitals, and other nonprofit organizations on the other. The contracts were downloaded from rDNA, the database of Recombinant Capital, a San Francisco-based consulting company. A detailed description of the data collection and variable construction process and of the specifications of the econometric analysis is provided in Appendix A. The main tests concern whether the strength of control of the sponsoring company over the research is related to the expected duration of the research project and to the breadth of applicability of the research. Note that, although the model above concerns “make-or-buy” decisions by companies, the data analyzed here all concern outsourced research, with different degrees of control by the sponsoring firm. The model can be easily extended to generate logically similar predictions when conditioning on outsourcing, as long as there is some positive cost of control.11 More generally, rather than a formal, conclusive test of the theory, this analysis should be interpreted only as descriptive and suggestive of whether the previous theoretical claims have empirical content. To be sure, further empirical work and statistical specifications are required to produce more compelling and tests.

Table 1 reports mean comparisons of the level of control exerted by companies for different project durations and scope. Three measures of control power by the firm are used. The first measure is a dichotomous variable for whether the firm has unilateral termination rights without cause. This right is the closest empirical variable to the switching/terminating decision in the model above. The second measure is the sum of four major control rights given to the sponsoring company: termination without cause, change to the research program, extension of the duration of the research, and duties of the research partner to periodically submit research proposals and budget, subject to the approval of the company. Based on this second variable, a third variable was created, taking a value of one if the firm has any of these control rights and zero otherwise. The breadth of applicability is defined in terms of the number of diseases (or disease areas) the research is reported to deal with. A higher number of diseases is a proxy for broader scope of the research. Table 1 shows that the share of contracts in which firms have more control is significantly higher for longer research projects.12 For projects expected to have broader applicability, the share of contracts with
stronger power by the firm is lower. In particular, in all instances where the number of diseases areas covered by the research is greater than two, the sponsoring firm does not retain any of the relevant control rights. Although there are only few such cases of very broad applicability, this is a particularly suggestive result.

Table 2 shows the results from probit and ordered probit regressions of the different proxies of firm authority on the measures of the breadth and duration of research. The control variables, and the relevance of including them in the analysis, are discussed in Appendix A. Duration is strongly and positively correlated with a firm’s authority. The scope of research and the firm’s authority show, in turn, a consistently and sizably negative correlation. Among the control variables, one that is worth mentioning here is a proxy for the principal investigator’s (PI) ability, expressed by the cumulative impact factor of his or her publication up to the year the contract is signed. This (admittedly crude) proxy for a PI’s ability is not significant in the regressions. The findings are instead suggestive of the impact of the breadth of applicability and duration of the research and are consistent with the theoretical predictions of the model.

4.4. Further Large-Sample Evidence
Some of the findings of Mansfield and Lee (1996) provide empirical validity for the model in this paper. They find that prestigious universities receive relatively less funding from firms than less prestigious universities. The authors conjecture that firms may find it more costly to fund these universities because the contractual conditions they will impose are more restrictive for a firm. These costs notwithstanding, firms appear to value the higher abilities of scientists in top universities for projects that are less narrow and specific and of a more fundamental nature. Broader projects are indeed those in which a firm would be willing to sacrifice some authority in order to enhance the effort of the scientists, which in turn is likely to be higher in broader and more fundamental projects, because peer recognition can be higher. The difficulties for firms in interacting with major research universities is implicit also in the findings of Masten (2006), who shows that research-oriented universities have an internal authority structure very different from that companies. Finally, Veugelers and Cassiman (2005) find that collaborations between companies and universities are more frequent when risk is not an important obstacle to innovation.

4.5. Explaining Trends in R&D Organization and Industry-University Relations
This study can also contribute to explaining some historical trends in formal relations between industry and academia. The 1970s, for example, witnessed a change of paradigm in the life sciences, with the emergence of molecular biology and biotechnology. Arguably, in its early stages a discipline tends to be characterized by broader, more general-purpose questions. In the case of biotech, moreover, basic science is generally said to be closer to economic profitability than in other fields. General purpose, richness of novel scientific results to be achieved, and the expectation of positive returns from basic research, in my model, predict that a higher share of projects will be outsourced to academic organizations. The bulk of industry participation in academic research is, indeed, in the life sciences. Lately, a similar pattern seems to be occurring in emerging fields such as nanoscience. In science-based sectors, moreover, some scholars have noticed a process in the collaboration with academic organizations in the very early stages of these industries, followed by an increase in the building of in-house research capacity (see, for example, Dalpé 2003). In mature stages of an industry, more competitors are present, and alternative paths of research with lower scientific content might become available. Therefore, a firm might prefer to exert stronger control over research in more mature fields rather than in younger fields.

The analysis of these different sources of evidence concludes the three-step approach—qualitative, formal, and empirical—to elaborating a theory of industry-university relations based on different institutional missions and authority. The following section is dedicated to exploring the broader implications of the framework for the organization of R&D and for public policy.

5. Organizational and Public Policy Insights
5.1. Organizational Issues
The trade-off between workers’ empowerment and authority over agents is a pervasive issue in business
Table 2 Regression Results

Regressors	1a	1b	2a	2b	3a	3b	4a	4b	5a	5b	6a	6b	7a	7b	8a	8b	9a	9b
Project duration	0.14	0.22	0.14	0.22	0.12	0.18	0.17	0.25	0.16	0.25	0.16	0.24	0.20	0.26	0.19	0.26	0.19	0.25
(0.07)	(0.08)	(0.07)	(0.08)	(0.06)	(0.07)	(0.06)	(0.06)	(0.06)	(0.05)	(0.06)	(0.08)	(0.08)	(0.07)	(0.08)	(0.07)	(0.07)	(0.07)	
No. of diseases	-0.67	-0.87	(0.24)	(0.30)	-0.29	-0.39	(0.19)	(0.19)	-0.20	-0.33	(0.20)	(0.24)	-0.21	-0.33	(0.22)	(0.25)		
(0.28)	(0.31)	(0.19)	(0.19)															
Dummy = 1	No	Yes																
if no. of diseases > 1	**	**	**	**	**	**	**	**	**	**	**	**						
Control vars	No	Yes																
Method	Probit	Probit	Probit	Probit	Probit	Probit	Ord. probit	Probit	Probit	Probit	Probit	Probit	Probit					
Pseudo R_square	0.07	0.16	0.04	0.08	0.04	0.08	0.04	0.08	0.05	0.09	0.05	0.10	0.03	0.09	0.04	0.08		
Chi-stat	9.6	27.6	8.4	29.2	3.6	19.3	10.2	25.9	8.9	24.6	**	**	8.16	19.5	6.7	17.9	6.4	17.1
Obs.	171	171	171	171	163	163	171	171	171	171	171	171	171	171	171	171	171	

Notes: The unit of analysis is the research contract. Estimates in bold types are significant at the 10% level or more. Estimates in italics are significant between 10% and 15% level. Robust standard errors are in parentheses. Control variables are listed and discussed in the text and in the appendix. A constant is present in all models. Appendix A further discusses the data sources, variable construction, the econometric specifications, and reports descriptive statistics.

*Sum of the following dichotomous variables expressing the rights of the firm to terminate without cause, extend the duration of the project, modify the direction of the research, and periodically receive (and approve) budget and research proposals submitted by the academic partner.

*Eight observations (all those for which the number of diseases is > 2) are dropped because they perfectly predict zero control rights to the firm in Models 3a, 3b, 9a, and 9b. In Models 6a and 6b, these same eight observations perfectly predict the dependent variable to be zero. Although estimates can be calculated and observations are not dropped in ordered probit, the estimates are inflated and the standard errors (as well as the chi-stat) are not reliable; hence, they are not reported.
organizations. Companies need to balance the provision of high-powered incentives through the delegation of power to their workers with the desire to keep flexibility and authority over their activities. Firms and workers might disagree over the best course of action for a given task. The model presented here shows that, if the interests and priorities of a worker are well aligned with those of the firm, then the degree of autonomy left to the worker becomes irrelevant: faced with a set of options on how to perform a given task, the worker and the company would make the same decision. Some level of disagreement is necessary to make a worker’s freedom of action beneficial for a firm as well. If a worker is guaranteed that, in some circumstances, her priorities will prevail over those of the principal, she might be more willing to work hard on a given task, thus increasing the likelihood that a project will succeed.

The performance of research activities on which this paper focuses is a major example of these dynamics, as companies and scientists are likely to disagree over the preferred course of action for a project. But a scientist’s effort is of major importance for research projects to succeed. Companies may commit to a greater autonomy to scientists, thus eliciting greater effort, by contracting for the services of researchers employed by universities, because the main mission of universities and other research organizations is aligned with that of the overall scientific community.

Although it appears as an increasingly adopted organizational form to perform R&D and to empower scientists, delegating projects to academic partners is not the only mechanism companies use to elicit strong motivation. Other mechanisms also show how crucial the trade-off between workers’ empowerment and firm authority is. Several companies, for example, have set up research labs in locations far from their headquarters. These labs are often near some major universities (consider, for example, the IBM’s Watson Lab at Columbia University and Siemens’ and NEC’s Labs at Princeton; see Buder 2000). This facilitates knowledge acquisition. Furthermore, a major reason for these location choices was that, being more isolated from the rest of the company, scientists would feel less “controlled” and more shielded from current market needs. Therefore, they would have had higher incentives. Also, a firm can decide to employ its own scientists in an independent, nonprofit research foundation created and funded by the company itself. The investor Wallace Steinberg in 1993, for example, jointly founded the biotech company Human Genome Science, and the Institute for Genome Research (TIGR), a research foundation. TIGR was granted freedom of research without interference from the investors of Human Genome science (Davies 2001). Novartis, similarly, has created a series of independent foundations. Through these foundations, the Novartis’ website says, the company “supports scientific research projects, particularly high-risk projects in areas of new technologies[...].”

5.2. Public Policy Considerations

A growing body of literature is warning against the increase in the relations between business companies and academic organizations. It is feared that these relations, and more generally a greater involvement of universities into “business-like” activities, will corrupt the rules and the mission of academia, and they could be detrimental in the long term because less fundamental, scientifically relevant research would be conducted (Dasgupta and David 1994, Powell and Owen-Smith 1998, Bok 2003). Other authors claim that industry-university relationships can be beneficial to both parties (see, for example, Gibbons et al. 1994). Others, finally, see industry-university relations as potentially beneficial but clarify that stronger ties do not imply that universities should become business organizations. On the contrary, universities have to stick to their original mission and rules, and institutional diversity should be preserved (Rosenberg and Nelson 1994, Howitt 2003, Nelson 2004). This paper offers an economic rationale for this third, “middle ground” view. It may be beneficial also for a firm (and not only for society) to let the university partner “behave like a university,” and not interfere too much with its activities and the pursuit of its objectives.

This paper also argued that, for the same reason outsourcing to an academic organization may be beneficial, it might also be costly because the firm has less discretion and flexibility. The consideration of these costs helps explain why the majority of company research is performed in-house, while industry participation in university research, though increasing, is still low. A consequence of this low participation is that the ability of companies to influence the behavior of academic scientists would be limited. Another consequence, however, is that, if industry participation remains at this relatively low level, public funding will remain the most important financial source for academic research and should not be made strictly contingent on economic returns. Providing financial resources not strictly tied to economic success might also be important to safeguard the credibility of universities’ commitment to their particular objectives. Similarly, social control and legitimacy may play an important role: universities may be socially sanctioned (e.g., by reduced donations from alumni) if they are perceived to give up on their original missions (see Argyres and Liebeskind 1998, Bok 2003).

6. Summary and Conclusion

This paper analyzed a firm’s choice of the organizational structure for the conduct of R&D and the decision by a firm to outsource research projects to academic and
other research organizations. Through a combined qualitative, formal theoretical, and empirical analysis, it was argued that outsourcing a project to a university allows a firm to commit not to terminate or alter a scientifically valuable project before completion. This commitment is potentially valuable for the firm in an environment where scientific value and economic value may not coincide, and scientific workers are responsive to the incentives defined by their community of peers. An economic model that formalizes these arguments is developed. Empirical predictions were derived about the kind of research activities firms will outsource to universities and activities on which they will exert stronger control. These hypotheses were corroborated with a body of evidence, including a novel analysis of industry-university research contracts, previous large sample studies, and several cases concerning industry-university alliances, as well as the internal organization of company R&D. The analysis also defines a framework to discuss and assess some policy positions on the desirability of stronger ties between industry and academia in the performance of research, the importance of public funding of academic research, and the role of social legitimation of the academic mission.

The theory in this paper can be the starting point for a series of further analyses. One such analysis would be a comparison among a “continuum” of organizational forms, from in-house research with tight control to outsourcing. This would make the model applicable to a broader set of R&D organizational problems. Similarly, accounting for a broader array of incentive mechanisms beyond delegation of control would enrich the model. These additional mechanisms include incentive pay as well as different designs for awarding research grants (Lahey 1997). It would be interesting to study whether and how the presence of multiple incentive instruments affects the trade-off between scientists’ motivation and company flexibility, and what the impact of any constraints universities may impose to their scientists is, such as the extent of royalty sharing. The theory, finally, could be applied beyond the case of industry-university relations. Many academic researchers receive grants from state and federal sources (e.g., the National Science Foundation, the National Institutes of Health, and the National Aeronautics and Space Administration). Some of these grants are for “directed” research, thus potentially leading to goal conflict between the researchers and the funding agencies (Goldfarb 2008).

Further empirical investigation is also in order. The ideal test of the model would include information both about projects performed in collaboration with research organizations and projects performed in-house, to compare their characteristics. Detailed information about the internal organization of research would be needed. A first step in this direction would be a series of case studies of a small set of companies, such as those described above that have relationships with an academic partner. The question would be: How do the research activities they instead carried out in house (or in collaboration with other companies as opposed to research organizations) differ from those performed through academic researchers?

The conceptual framework employed in this paper could be applied to other settings and activities beyond R&D. The trade-off between authority and motivation may also be a relevant one in other activities where creative individuals, possibly responding to an heterogeneous set of incentives, operate. An example is advertising activities (Von Nordenflycht 2007).

In addition to stimulating further theoretical and empirical work, the present study also offers a methodological contribution, in that it includes qualitative arguments, economic modeling, and a broad set of empirical evidence. Further works and extensions should share this multiple approach to complex organizational problems.

Acknowledgments

This is a revised version of Chapter 2 of the author’s MIT doctoral dissertation, which also circulated as MIT Sloan School Working Paper 4528-2005. The author is indebted to Francesco Lissoni and Gerard Padró i Miquel for many conversations on this study. He also thanks two anonymous referees, Philippe Aghion, Pierre Azoulay, Filippo Balestri, Kevin Boudreau, Rodrigo Canales, Martin Blume, Giovanni Bono, Kira Fabrizio, Bob Gibbons, Sue Helper, Rebecca Henderson, Josh Lerner, Scott Masten, Ramana Nanda, Isabel Pereira, Scott Shane, Andrew Von Nordenflycht, and Lorenzo Zipul for their feedback. Leila Agha and Kyle Napierkowski provided outstanding research assistance. Financial support from the MIT Sloan PIMO program and the Fondazione IRI is gratefully acknowledged. Finally, the author thanks the academic and company scientists and practitioners he interviewed for their time and insights.

Appendix A. Description of the Industry-University Contract Data and Analysis in §4.3

A.1. Main Data Source and Selection Criteria

The primary source of data is 550 research contracts downloaded from rDNA, the website of Recombinant Capital (ReCap), a San Francisco–based consulting company specializing in the biotechnology industry. One of the services ReCap offers is the collection of contracts between biotech companies, between biotech and large pharmaceutical companies, and between companies and university and other open-science research organizations. Previous studies have employed this database as the source of contract data (Lerner and Merges 1998, Higgins 2007, Lerner and Malmendier 2005).

Contracts in which one of the partners—more precisely the one performing the research—is a university or another non-profit research organization (hospital, foundation, etc.) were selected. The analysis here is limited to the contracts within the university-pharma and university-biotech categories that included some form of research activities as broadly defined (contract research, research collaboration, development and codevelopment agreements, joint ventures with
research purposes), therefore excluding, for example, “pure” license deals. A large percentage of the collected contracts, unfortunately, could not be used for the analysis because of missing information. Besides, within the university-pharma and university-biotech categories, ReCap includes also deals between companies and such federal and state agencies as the NIH or the U. S. Department of Agriculture. These contracts were excluded because they may be inherently different from those between “private” actors. There are 171 contracts for which all the relevant information for this study is available. Each contract was read at least twice, in different periods, in order to ensure some consistency in the coding.

A.2. Control Variable Construction and Additional Data Sources

The main dependent variables of the analysis and the independent variable of main interest and their constructions—duration and number of disease areas—have also been discussed above. Regarding the number of diseases as proxy for breadth of applicability of the research, a similar measurement choice has been made by Kocabiyik-Hansen (2004). Examples of disease areas are infection—AIDS, infection—antibiotics, central nervous system, wound care, and transplantation. The analysis also includes a series of control variables, most of which have been used in other studies on contractual provisions, including Lerner and Merges (1998), Lerner and Malmendier (2005), Robinson and Stuart (2007), and Lacetera (2006).

The front page generated by ReCap classifies the contracts according to the phase of the research with which they were concerned: from the discovery phase (e.g., before a lead molecule is identified) to studies on the lead molecule, to clinical trials. The phase was categorized by distinguishing the discovery phase from the later phases. The previous experience of the partners in similar deals was also recorded and accounted for. Using all of the downloaded contracts as the “universe,” variables were built that recorded whether the open-science partner had previous collaborations with companies, whether the companies had previous deals with research partners, and whether a given firm and research partner pair had previous deals with each other. Previous contractual relations may affect, for example, the degree of trust among the parties and therefore the necessity to have formal authority expressed in a contract. The year in which the contract was signed was also coded, distinguishing between contracts signed before and after 1990. In the 1980s, research agreements were much less frequent, and arguably of a potentially different type than more recent ones.

Additional information was obtained from several other sources. To define measures of the bargaining power of the open-science partner, proxies for the “prestige” of the whole organization as well as of the PIs for the specific project were collected. At the organizational level, data from the NIH about the annual overall ranking of each organization in terms of funds received by the NIH were used. At the individual level, the entire publication history of all the PIs mentioned in each contract was recorded. Information includes publication counts and the impact factor of each PI’s publications on a yearly basis. The calculation of the impact factor-weighted measures

Table 3 Descriptive Statistics	Variable	Obs.	Mean	Std.	Min	Max
1 Sum of major control rights	171 0.45 0.67 0 3					
2 Sum of major control rights > 0?	171 0.36 0.48 0 1					
3 Firm has unilateral termination right without cause?	171 0.23 0.42 0 1					
4 No. of diseases	171 1.36 0.39 1 4					
5 No. of diseases > 1?	171 0.31 0.46 0 1					
6 No. of diseases > 2?	171 0.05 0.21 0 1					
7 Research project longer than 2 years?	171 0.43 0.50 0 1					
8 Duration of the project (in years)	171 2.35 1.60 0.33 10					
9 Project is in early (discovery) phase?	171 0.57 0.50 0 1					
10 Research partner is a university (as opposed to hospitals, foundations, etc.)?	171 0.70 0.46 0 1					
11 Research partner is a private university?	171 0.29 0.46 0 1					
12 Research partner within a hospital?	171 0.23 0.42 0 1					
13 Research partner is among the 50 organizations receiving the highest dollar amount of NIH grants (in the year before the contract was signed)?	171 0.53 0.50 0 1					
14 PI is among the top 25% (in the sample) in terms of cumulative impact factor until the year before signing the contract?	171 0.25 0.44 0 1					
15 Year in which the contract was signed-1900	171 91.89 4.98 75 103					
16 Deal signed after 1990?	171 0.70 0.46 0 1					
17 Geographical distance among the partners (in miles)	171 1,119.51 1,732.80 0 10,372					
18 Distance between parties is equal to or less than 100 miles	171 0.35 0.48 0 1					
19 Distance between parties is more than 100 miles and no greater than 1,000 miles	171 0.29 0.46 0 1					
20 Distance between parties is more than 1,000 miles	171 0.36 0.48 0 1					
21 Past collaborations between the company partners and other research partners?	171 0.58 0.49 0 1					
22 Past collaborations between the research partners and other companies?	171 0.68 0.47 0 1					
23 Past collaborations between the same two partners?	171 0.13 0.34 0 1					
24 Both partners are U.S. based?	171 0.88 0.33 0 1					
25 Age of the company at contract signing (current year-foundation/incorporation year)	171 4.11 3.27 0 18					
26 Company founded at least 2 years before the contract is signed?	171 0.78 0.41 0 1					

Note. NIH = National Institutes of Health.
was limited to the publications in which the PI appeared as first or last author (the first author is normally the one who did most of the work, and the last author is the PI for the project that led to that specific publication) and excluded such publications as book reviews or letters, with no real scientific novelty content. The computations used PublicationHarvester software, based on the Medline publication database and the ISI impact factor (see Azoulay et al. 2006). The measure of high PI prestige is a dummy with value 1 if the PI is among the top 25% PIs (within the sample), with the highest cumulative impact factor of his or her publication up to the year the contract is signed. Obviously, better measures from other sources of data could be defined, and future inquiry to define other measures of quality and prestige is in order. Dummy variables for different types of research partners—teams within hospitals, universities, and private universities in particular—were also defined. The age of the companies (from incorporation to the signing of the research contract), taken as a measure of a firm’s bargaining power, with younger firms having less of it, was obtained from annual reports and SEC files. The geographical distance between the partners was also coded and controlled for, because one could imagine more distant companies wanting to detail their formal right more precisely, as they are less able to exert “informal” control. Tables 3 and 4 report descriptive statistics and the correlation coefficients among the variables of interest.

A.3. Specifications

The results in Table 2 are from probit and ordered probit regressions. The unit of observation is the single contract, and unconstrained heterogeneity in variances is allowed. Ordinary least squares, logit, and linear probability models convey similar results. Fixed-effects panel methods (with the cross-sectional unit being, for example, the research partner) would allow controlling for unobserved heterogeneity among research organizations. However, this would require further restricting the sample to those cases in which at least two contracts for a given organization are available. The sample size would reduce substantially, therefore reducing the power and precision of the tests. Fixed effects analyses were not performed for these reasons.

Endnotes

1Cohen et al. (1994), the National Science Foundation (NSF) (2002), and Geuna et al. (2003) provide evidence on the collaborations between companies and research institutions and the increasing trend over time. Kenney (1986), Press and Washburn (2000), and Lawler (2003) describe several research collaborations in detail.

2Mowery and Teece (1996), NSF (2002), Howitt (2003), Geiger (2004).

3Scientists working for companies and for universities are assumed to have the same capabilities. Several studies show that, especially in research-intensive industries, company scientists often are of a very high quality, to the point that some have received the highest honors, e.g., the Nobel Prize (Nelson 1962, Stephan 1996, Howitt 2003). One could also think of the model as studying the same scientist employed under different authority structures.

4The convexity of the cost function (together with a linear benefit function—see below) allows for internal solutions. More
general convex cost functions could be used, but the quadratic form allows for close (and easy-to-interet) solutions.

This characterization is equivalent to assuming that, at the moment the original project is undertaken, the alternative opportunity already exists but has a return of \(p_L = 0 \). At a future date, the return may increase to \(p \). Assuming \(p_L = 0 \) and \(p > R \) is actually more restrictive than what is necessary to obtain the results described below. However, relaxing these assumptions introduces complications (e.g., multiple equilibria) that do not add much insight.

See, for example, Saltus (2000) on the case of the biotech company Entremed, whose research on tumors turned out to be more useful to treat some eye diseases than to treat cancer.

The assumption of the private and noncontractible nature of some benefits is similar to that in other recent works, such as Hart and Holmstrom (2002) and Gautier and Wauthy (2007). These benefits cannot be traded, making the incentive problem more complex. The model can also extend to include the response of scientists to monetary incentives, with similar conclusions. The extension is available from the author upon request.

The interests of scientists and universities are perfectly aligned in this model. For detailed analyses of the relation between academic scientists and administrators, in particular technology transfer offices, see Jensen and Thursby (2001), Lazear (1997), Arora et al. (1998), and Goldfarb (2008) argue that goal and incentive misalignment can also occur between scientists and public funding agencies, and not only between companies and scientists. In these two papers, conflicts derive specifically for differences in preferences. Here, potential disagreement over the course of action can be said to be emerging either from preferences or from different institutional arrangements, because the goals of universities and scientists (regardless of their formal affiliations) coincide.

This assumption is clearly restrictive and would need to be relaxed in a less stylized model. This assumption however, while extreme, can represent a case in which an academic researcher is not allowed to undertake a research project, unless there is some novel scientific content in it, because this would not respect the mission of the university.

A conversation with Dr. Bruce Smart of DuPont on the features of this alliance was of great help. His collaboration is gratefully acknowledged. See the alliance’s website: http://www.web.mit.edu/dma/www.

Assume a firm has established a collaboration with a university. The firm decides how much control to retain over the research. Control over research, just as in the model of §3, gives the firm power to shut the current project down and move to a new one. The variable expressing control is called \(d \), as before, but now it assumes a continuum of values between 0 and 1, where 1 indicates “full” control. Taking decisions is costly, because the firm has to negotiate or put in place a monitoring structure. Define these costs as \(d^2/2\phi, \phi > 0 \). The firm decides how much control to retain. The remaining structure of the game is the same as above. It can be shown that the optimal degree of power is \(d^* = \phi \pi (p - 2RB\gamma) / (1 - 2RB\gamma \phi \pi^2) \). Note in particular that \(\partial d^*/\partial \pi > 0 \): the higher the probability that a new project emerges (or the lower the alignment between scientifically and economically optimal projects), the higher the degree of control retained by the firm. The main results and predictions of the model in §3 also hold in this case.

The cutoff for defining a long project has been set at two years. This is a reasonable cutoff to distinguish “long” and “short” research projects. One year appears too short, and three years would leave too few observations in the subset of long-term contracts. The firms signing these contracts are very young; therefore, a two-year commitment can be seen as long term.

The sample has 171 observations, i.e., the maximum number of data points for which information is available on all the variables, including the controls, out of an initial sample of 550 contracts. Regressions without control variables were also performed on a larger sample size, consisting of 229 observations, for which data on control rights, duration, and number of diseases are available. The results are unchanged for the duration variable. As for the number of diseases, the strong result of no control rights to the firm when the diseases are more than two is confirmed. As for the other proxies, although the signs of the estimated parameters are still negative, in some cases the estimates are attenuated and less significant (e.g., at the 15% level) than in the smaller sample. There are a few reasons for this to be the case. First, both the smaller and the larger sample are just a small subset of an already limited sample of an “unknown” population. As a consequence, one should expect estimates to bounce. Second, as can also be seen from Table 2, the parameter estimates in the uncontrolled regressions are smaller (in absolute values) than those in the controlled regressions, suggesting downward bias if controls are not added. Third, and especially concerning the breadth variable, errors in variables may be more likely to have occurred in the larger sample (even though the distribution of values of the number of diseases variable is similar in the 171 observations and in the remaining 58 observations). Unlike the duration of the research, which is explicitly expressed in the original contracts, the number of diseases the research is supposed to address is added on the front page of each contract by recombinant capital analysts. The errors, moreover, are more likely to occur (though it is not clear in which direction) for those contracts where less information is available about other relevant characteristics, i.e., the additional 58 contracts. As it turns out, the attenuation in the larger sample is greater for the coefficients on the breadth variables: the estimates related to the duration variables are unchanged as compared to the (uncontrolled) regression on the smaller sample. For these reasons, the results on the smaller, 171 observation sample are reported here.

Legislative changes, such as the 1980 Bayh-Dole act and the 1986 Cooperative R&D Agreements Act, and the decline in public spending for research are other determinants of the increase in industry participation into academic research. The increase of industry funding, however, is occurring in research areas in which federal funding has not declined (Bok 2003). Additional explanations are in order.

The model also implies that a firm has a bias toward “excessive” integration, i.e., it would opt for in-house research even when the overall (both monetary and non monetary) benefit to the parties would be greater under outsourcing. This result is available from the author upon request.

The contracts for which all of the relevant information is available may not be a representative sample of the original
550 contracts—which, in turn, might not be representative of the whole population of industry-university research deals. The ReCap data source has been used in other studies, too, such as Lerner and Merges (1998), Lerner and Malmendier (2005), and Robinson and Stuart (2007). In these previous studies, however, only firm-to-firm contracts are considered. Furthermore, the analysis is limited to the summaries of the contracts, or even only to the front pages. The summaries and the front pages are elaborated by ReCap analysts, not by the contracting parties. In this study, instead, the analysis is based on the readings of the actual contracts.

References

Adams, J., E. Chiang, K. Starkey. 2000. Industry-university cooperative research centers. Working Paper 7843, NBER, Cambridge, MA.

Aghion, P., M. Dewatripont, J. Stein. 2005. Academia, the private sector, and the process of innovation. Working Paper 11540, NBER, Cambridge, MA.

Argyres, N. S., J. P. Liebeskind. 1998. Privatizing the intellectual common. Universities and the commercialization of biotechnology. *J. Econom. Behav. Organ.* 35 427–454.

Argyres, N. S., V.-L. Mui. 2007. Rules of engagement, credibility and the political economy of organizational dissent. *Strategic Organ.* 5(2) 107–154.

Arora, A., P. David, A. Gambardella. 1998. Reputation and competence in publicly funded science: Estimating the effects on research group productivity. *Annales D’Economie Statistique* 49/50 163–198.

Azoulay, P., A. Stellman, J. G. Zivin. 2006. Publication harvester: An open-source software tool for science policy research. *Res. Policy* 35(7) 970–974.

Baker, G., R. Gibbons, K. J. Murphy. 1999. Informal authority in organizations. *J. Law, Econom. Organ.* 15 56–73.

Bartlett, C. A., A. Mohammed. 1995. 3M: Profile of an innovating company. Harvard Business School Case 9-365-016, Cambridge, MA.

Ben-David, J. 1977. *Centres of Learning: Britain, France, Germany, United States.* McGraw-Hill, New York.

Bok, D. 2003. *Universities in the Marketplace. The Commercialization of Higher Education.* Princeton University Press, Princeton, NJ.

Brown, E. S. 2005. DuPont MIT alliance stretches beyond biotech. *Tech. Insider* (June) 7–8.

Buderi, R. 2000. *Engines of Tomorrow: How the World’s Best Companies Are Using Their Research Labs to Win the Future.* Simon & Schuster, New York.

Cockburn, I., R. Henderson. 1998. Absorptive capacity, coauthoring behavior, and the organization of research in drug discovery. *J. Indus. Econom.* 46(2) 157–182.

Cockburn, I., R. Henderson, S. Stern. 1999. Balancing incentives: The tension between basic and applied research. Working Paper 6882, NBER, Cambridge, MA.

Cohen, W., D. Levinthal. 1990. Absorptive capacity: A new perspective on learning and innovation. *Admin. Sci. Quart.* 35(1) 128–152.

Cohen, W., R. Florida, W. Goe. 1994. *University-Industry Research Centers in the United States.* Carnegie Mellon University, Pittsburgh.

Dalpé, R. 2003. Interaction between public research organizations and industry in biotechnology. *Managerial Decision Econom.* 24 171–185.

Dasgupta, P., P. David. 1994. Towards a new economics of science. *Res. Policy* 23 487–521.

David, P. 2004. Understanding the emergence of “open science” institutions: Functionalist economics in historical context. *Indust. Corporate Change* 13(4) 571–589.

Davies, K., 2001. *Cracking the Genome.* Free Press, New York.

Gautier, A., X. Wauthy. 2007. Teaching versus research: A multitasking approach to multi-department universities. *Eur. Econom. Rev.* 51 273–295.

Geiger, R. L. 2004. *Knowledge and Money.* Stanford University Press, Stanford, CA.

Geuna, A., A. Salter, W. E. Steinmueller, eds. 2003. *Science and Innovation: Rethinking the Rationales for Funding and Governance.* Edward Elgar, Cheltenham, UK.

Gibbons, M., C. Limoges, H. Nowotny, S. Schwartzman, P. Scott. 1994. *The New Production of Knowledge.* Sage, London.

Gibbons, R. 2005. Four formal(izable) theories of the firm? *J. Econom. Behav. Organ.* 58 200–245.

Goldfarb, B. 2008. The effect of government contracting on academic research: Does the source of funding affect research output? *Res. Policy* 37(1) 41–58.

Griffiths, V. 2005. If the science looks good, I’ll go after it. *Financial Times* (February 11).

Guedj, I. 2004. Ownership versus contract: How does vertical integration affect investment decisions? Evidence from pharmaceutical R&D projects. Working paper, University of Texas at Austin, Austin.

Hall, B. H., A. N. Link, J. T. Scott. 2000. Universities as research partners. Working Paper 7643, NBER, Cambridge, MA.

Hart, O., B. Holmstrom. 2002. A theory of firm scope. Working Paper 02-42, MIT Department of Economics, Cambridge, MA.

Higgins, M. J. 2007. The allocation of control rights in pharmaceutical alliances. *J. Corporate Finance* 13 58–75.

Howitt, P. 2003. The economics of science and the future of universities. The Timlin Lecture, University of Saskatchewan.

IFAS (Institute for Food and Agricultural Standards). 2004. External review of the collaborative research agreement between Novartis Agricultural Discovery Institute, Inc. and the regents of the University of California. Michigan State University, East Lansing.

Jensen, R., M. Thursby. 2001. Proofs and prototypes for sale: The licensing of university inventions. *Amer. Econom. Rev.* 91(1) 240–259.

Kenney, M. 1986. *Biotechnology: The Industry-University Complex.* Yale University Press, New Haven, CT.

Kocabiyik-Hansen, Z. 2004. Effect of technological progress on contractual agreements: Empirical analysis of pharmaceutical and biotechnology collaborations. Working paper, Washington University in St. Louis, St. Louis.

Lacetera, N. 2006. Openness and authority in industry-university relations. Working paper, Case Western Reserve University, Cleveland.

Lazear, E. 1997. Incentives in basic research. *J. Labor Econom.* 15(1) S167–S197.
Lacetera: Different Missions and Commitment Power in R&D Organizations

Organization Science 20(3), pp. 565–582, © 2009 INFORMS

Lawler, A. 2003. Last of the big-time spenders? *Science* 299 330–333.

Lerner, J., R. Merges. 1998. The control of technology alliances: An empirical analysis of the biotechnology industry. *J. Indus. Econom.* 46(2) 125–156.

Lerner, J., U. Malmendier. 2005 Contractibility and the design of research agreements. Working paper, Harvard University, Cambridge, MA.

Lerner, J., J. Tirole. 2005. The economics of technology sharing: Open source and beyond. *J. Econom. Perspectives* 19(2) 99–120.

Lim, K. 2000. The many faces of absorptive capacity: Spillovers of copper interconnect technology for semiconductor chips. Working paper, MIT, Cambridge, MA.

Mansfield, E., J.-Y. Lee. 1996. The modern university: Contributor to industrial innovation and recipient of industrial R&D support. *Res. Policy* 25 1047–1058.

Mansfield, E., J. Rapoport, S. Wagner, G. Beardsley. 1977. Social and private rates of return from industrial innovation. *Quart. J. Econom.* 91(2) 221–240.

Manso, G. 2006. Motivating innovation. Working paper, MIT, Cambridge, MA.

Markiewitz, K. R. 2004. Firm capabilities and absorptive capacity: Implications for exploitation of public science and the pace of knowledge exploitation. Working paper, Duke University, Durham, NC.

Masten, S. E. 2006. Authority and commitment: Why universities, like legislatures, are not organized as firms. *J. Econom. Management Strategy* 15(3) 649–684.

Merton, R. K. 1973. *The Sociology of Science: Theoretical and Empirical Investigations*. N. W. Storer, ed. University of Chicago Press, Chicago.

Mowery, D., D. J. Teece. 1996. Strategic alliances industrial research. Rosenbloom, Spencer, eds. *Engines Innovation*. Harvard Business School Press, Cambridge, MA.

National Science Foundation. 2002. *Sci. Engr. Indicators*. NSF, Arlington, VA.

Nelson, R. 1962. The link between science and invention: The case of transistor. *The Rate and Direction of Inventive Activity: Economic and Social Factors*. NBER, Princeton University Press, Princeton, NJ.

Nelson, R. 2004. The market economy and the scientific commons. *Res. Policy* 33 455–471.

Odlyzko, A. M. 1995. The decline of unfettered research. Mimeo.

Powell, W. W., J. Owen-Smith. 1998. Universities and the market for intellectual property in the life science. *J. Policy Anal. Management* 17(2) 253–277.

Press, E., J. Washburn. 2000. The kept university. *The Atlantic Monthly* (March).

Robinson, D., T. Stuart. 2007. Financial contracting in biotech strategic alliances. *J. Law Econom.* 50(3) 559–596.

Rosenberg, N. 1990. Why do firms do basic research (with their own money)? *Res. Policy* 19(2) 165–174.

Rosenberg, N., R. R. Nelson. 1994. American universities and technical advance in industry. *Res. Policy* 23(3) 323–348.

Rosenbloom, R. S., W. J. Spencer, eds. 1996. *Engines of Innovation: US Industrial Research at the End of an Era*. Harvard Business School Press, Cambridge, MA.

Rotemberg, J., G. Saloner. 1994. The benefits of narrow business strategies. *Amer. Econom. Rev.* 84 1330–1349.

Saloner, G., J. Rotemberg. 2000. Visionaries, managers, and strategic direction. *RAND J. Econom.* 31(4) 693–716.

Saltus, R. 2000. Drug not as potent as many hoped. *The Boston Globe* (November 7) A17.

Scherer, F. 1964. *The Weapons Acquisition Process: Economic Incentives*. Harvard Business School Press, Cambridge, MA.

Sharma, A., S. Norton. 2004. Funding for basic science has little traction in Congress. *Congressional Quart.* (July 3).

Simon, H. A. 1951. A formal theory of the employment relationship. *Econometrica* 19(3) 293–305.

Stephan, P. 1996. The economics of science. *J. Econom. Literature* 34(3) 1199–1235.

Stern, S. 2004. Do scientists pay to be scientists? *Management Sci.* 50(6) 835–853.

University of California. 1997. The University of California’s relationships with industry in research and technology transfer. *Proceedings of the President’s Retreat*. University of California.

Veugelers, R., B. Cassiman. 2005. R&D cooperation between firms and universities. Some empirical evidence from Belgian manufacturing. *Internat. J. Indus. Organ.* 23 355–379.

Von Nordenflycht, A. 2007. Is public ownership bad for professional service firms? Ad agency ownership, performance and creativity. *Acad. Management J.* 50(2) 429–443.