A Kähler Einstein structure on the nonzero cotangent bundle of a space form

D.D. Poroșniuc

Abstract

We obtain a Kähler Einstein structure on the nonzero cotangent bundle of a Riemannian manifold of positive constant sectional curvature. The obtained Kähler Einstein structure cannot have constant holomorphic sectional curvature and is not locally symmetric.

MSC 2000: 53C07, 53C15, 53C55.

Keywords and phrases: cotangent bundle, Kähler Einstein metric.

Introduction

The differential geometry of the cotangent bundle $T^*M$ of a Riemannian manifold $(M, g)$ is almost similar to that of the tangent bundle $TM$. However, there are some differences, because the lifts (vertical, complete, horizontal etc.) to $T^*M$ cannot be defined just like in the case of $TM$.

In [8] V. Oproiu and the present author have obtained a natural Kähler Einstein structure $(G, J)$ of diagonal type induced on $T^*M$ from the Riemannian metric $g$. The obtained Kähler structure on $T^*M$ depends on one essential parameter $u$, which is a smooth function depending on the energy density $t$ on $T^*M$. If the Kähler structure is Einstein, they get a second order differential equation fulfilled by the parameter $u$. In the case of the general solution, they have obtained that $(T^*M, G, J)$ has constant holomorphic sectional curvature.

In this paper we study the singular case where the parameter $u = A\sqrt{t}$, $A \in \mathbb{R}$. The considered natural Riemannian metric $G$ of diagonal type on the nonzero cotangent bundle $T^*_0M$ is defined by using one parameter $v$ which is a smooth function depending on the energy density $t$. The vertical distribution $VT^*_0M$ and the horizontal distribution $HT^*_0M$ are orthogonal to each other with respect to the metric $G$. 
Next, the natural almost complex structure $J$ on $T^*_0 M$, that interchange the vertical and horizontal distributions, depends of one essential parameter $v$.

After that, we obtain that $G$ is Hermitian with respect to $J$ and it follows that the fundamental 2-form $\phi$, associated to the almost Hermitian structure $(G, J)$ is the fundamental form defining the usual symplectic structure on $T^*_0 M$, hence it is closed.

From the integrability condition of $J$, it follows that the base manifold $(M, g)$ must have positive constant sectional curvature $c$ and $A = \sqrt{2c}$. Moreover, if $v > -\sqrt{\frac{2}{n}}$ then we get a Kähler structure on $T^*_0 M$ and this structure depends on one essential parameter $v$.

In the case where the considered Kähler structure is Einstein we obtain a second order differential equation fulfilled by the parameter $v$ and we have been able to find the general solution of that equation:

$$v = \frac{(n-2)\sqrt{c}}{n\sqrt{2}}t^{\frac{1}{2}} + At^{\frac{n+1}{2}} + B, \quad A, B \in \mathbb{R}.$$ 

The obtained Kähler Einstein manifold cannot have constant holomorphic sectional curvature and is not locally symmetric.

In [7], by using a Lagrangian on the Riemannian manifold $(M, g)$, V. Oproiu and N. Papaghiuc have obtained the singular case where

$$v = u' = \frac{c}{\sqrt{2t}}.$$ 

They get a Kähler structure $(G, J)$ on the nonzero tangent bundle of $(M, g)$.

The manifolds, tensor fields and geometric objects we consider in this paper, are assumed to be differentiable of class $C^\infty$ (i.e. smooth). We use the computations in local coordinates but many results from this paper may be expressed in an invariant form. The well known summation convention is used throughout this paper, the range for the indices $h, i, j, k, l, r, s$ being always $\{1, ..., n\}$ (see [7], [11]). We shall denote by $\Gamma(T^*_0 M)$ the module of smooth vector fields on $T^*_0 M$.

1. Some geometric properties of $T^* M$

Let $(M, g)$ be a smooth $n$-dimensional Riemannian manifold and denote its cotangent bundle by $\pi : T^* M \rightarrow M$. Recall that there is a structure of a $2n$-dimensional smooth manifold on $T^* M$, induced from the structure of smooth $n$-dimensional manifold of $M$. From every local chart $(U, \varphi) = (U, x^1, \ldots, x^n)$
on $M$, it is induced a local chart $(\pi^{-1}(U), \Phi) = (\pi^{-1}(U), q^1, \ldots, q^n, p_1, \ldots, p_n)$, on $T^*M$, as follows. For a cotangent vector $p \in \pi^{-1}(U) \subset T^*M$, the first $n$ local coordinates $q^1, \ldots, q^n$ are the local coordinates $x^1, \ldots, x^n$ of its base point $x = \pi(p)$ in the local chart $(U, \varphi)$ (in fact we have $q^i = \pi^*x^i = x^i \circ \pi$, $i = 1, \ldots, n$). The last $n$ local coordinates $p_1, \ldots, p_n$ of $p \in \pi^{-1}(U)$ are the vector space coordinates of $p$ with respect to the natural basis $(dx^1(p), \ldots, dx^n(p))$, defined by the local chart $(U, \varphi)$, i.e. $p = p_i dx^i(p)$.

An $M$-tensor field of type $(r, s)$ on $T^*M$ is defined by sets of $n^{r+s}$ components (functions depending on $q^i$ and $p_i$), with $r$ upper indices and $s$ lower indices, assigned to induced local charts $(\pi^{-1}(U), \Phi)$ on $T^*M$, such that the local coordinate change rule is that of the local coordinate components of a $\Pi$-tensor field of type $(r, s)$ on the base manifold $M$ (see [2] for further details in the case of the tangent bundle). An usual tensor field of type $(r, s)$ on $M$ may be thought of as an $M$-tensor field of type $(r, s)$ on $T^*M$. If the considered tensor field on $M$ is covariant only, the corresponding $M$-tensor field on $T^*M$ may be identified with the induced (pullback by $\pi$) tensor field on $T^*M$.

Some useful $M$-tensor fields on $T^*M$ may be obtained as follows. Let $v, w : [0, \infty) \to \mathbb{R}$ be a smooth functions and let $\|p\|^2 = g^{-1}_p(p, p)$ be the square of the norm of the cotangent vector $p \in \pi^{-1}(U)$ ($g^{-1}$ is the tensor field of type $(2,0)$ having the components $(g^{kl}(x))$ which are the entries of the inverse of the matrix $(g_{ij}(x))$ defined by the components of $g$ in the local chart $(U, \varphi)$). The components $g_{ij}(\pi(p)), p_i, v(\|p\|^2)p_ip_j$ define $M$-tensor fields of types $(0, 2), (0, 1), (0, 2)$ on $T^*M$, respectively. Similarly, the components $g^{kl}(\pi(p)), g^{hi} = p_h g^{hi}, w(\|p\|^2)g^{0k} g^{0l}$ define $M$-tensor fields of type $(2, 0), (1, 0), (2, 0)$ on $T^*M$, respectively. Of course, all the components considered above are in the induced local chart $(\pi^{-1}(U), \Phi)$.

The Levi Civita connection $\nabla$ of $g$ defines a direct sum decomposition

$$(1) \quad TT^*M = VT^*M \oplus HT^*M.$$ 

of the tangent bundle to $T^*M$ into vertical distributions $VT^*M = \text{Ker } \pi_*$ and the horizontal distribution $HT^*M$.

If $(\pi^{-1}(U), \Phi) = (\pi^{-1}(U), q^1, \ldots, q^n, p_1, \ldots, p_n)$ is a local chart on $T^*M$, induced from the local chart $(U, \varphi) = (U, x^1, \ldots, x^n)$, the local vector fields \( \frac{\partial}{\partial p_1}, \ldots, \frac{\partial}{\partial p_n} \) on $\pi^{-1}(U)$ define a local frame for $VT^*M$ over $\pi^{-1}(U)$ and the local vector fields \( \frac{\delta}{\delta q^1}, \ldots, \frac{\delta}{\delta q^n} \) define a local frame for $HT^*M$ over $\pi^{-1}(U)$, where

\[
\frac{\delta}{\delta q^i} = \frac{\partial}{\partial q^i} + \Gamma^0_{ih} \frac{\partial}{\partial p_h}, \quad \Gamma^0_{ih} = p_h \Gamma^k_{ih}
\]
and $\Gamma^k_{ib}(\pi(p))$ are the Christoffel symbols of $g$.

The set of vector fields $\left(\frac{\partial}{\partial p_1}, \ldots, \frac{\partial}{\partial p_n}, \frac{\partial}{\partial q_1}, \ldots, \frac{\partial}{\partial q_n}\right)$ defines a local frame on $T^*M$, adapted to the direct sum decomposition (1).

We consider

\[ t = \frac{1}{2} \|p\|^2 = \frac{1}{2} g^{-1}_{\pi(p)}(p, p) = \frac{1}{2} g^{ik}(x)p_ip_k, \quad p \in \pi^{-1}(U) \]

the energy density defined by $g$ in the cotangent vector $p$. We have $t \in [0, \infty)$ for all $p \in T^*M$.

From now on we shall work in a fixed local chart $(U, \varphi)$ on $M$ and in the induced local chart $(\pi^{-1}(U), \Phi)$ on $T^*M$.

2. An almost Kähler structure on the $T^*_0M$

The nonzero cotangent bundle $T^*_0M$ of Riemannian manifold $(M, g)$ is defined by the formula: $T^*M$ minus zero section. Consider a real valued smooth function $v$ defined on $(0, \infty) \subset \mathbb{R}$ and a real constant $A$. We define the following $M$-tensor field of type $(0, 2)$ on $T^*_0M$ having the components

\[ G_{ij}(p) = A\sqrt{t}g_{ij}(\pi(p)) + v(t)p_ip_j. \]

It follows easily that the matrix $(G_{ij})$ is positive definite if and only if

\[ A > 0, \quad v > -\frac{A}{2\sqrt{t}}. \]

The inverse of this matrix has the entries

\[ H^{kl}(p) = \frac{1}{A\sqrt{t}}g^{kl}(\pi(p)) + w(t)g^{0k}g^{0l}. \]

where

\[ w(t) = \frac{-v}{At(A + 2\sqrt{tv})}. \]

The components $H^{kl}$ define an $M$-tensor field of type $(2, 0)$ on $T^*_0M$. 

Remark. If the matrix \((G_{ij})\) is positive definite then its inverse \((H^{kl})\) is positive definite too.

Using the \(M\)-tensor fields defined by \(G_{ij}, H^{kl}\), the following Riemannian metric may be considered on \(T^*_0M\):

\[
G = G_{ij} dq^i dq^j + H^{ij} Dp_i Dp_j,
\]

where \(Dp_i = dp_i - \Gamma^0_{ij} dq^j\) is the absolute (covariant) differential of \(p_i\) with respect to the Levi Civita connection \(\hat{\nabla}\) of \(g\). Equivalently, we have

\[
G(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}) = G_{ij}, \quad G(\frac{\partial}{\partial p_i}, \frac{\partial}{\partial p_j}) = H^{ij}, \quad G(\frac{\partial}{\partial p_i}, \frac{\delta}{\delta q^j}) = G(\frac{\delta}{\delta q^j}, \frac{\partial}{\partial p_i}) = 0.
\]

Remark that \(HT^*_0M, VT^*_0M\) are orthogonal to each other with respect to \(G\), but the Riemannian metrics induced from \(G\) on \(HT^*_0M, VT^*_0M\) are not the same, so the considered metric \(G\) on \(T^*_0M\) is not a metric of Sasaki type. Remark also that the system of 1-forms \((dq^1, \ldots, dq^n, Dp_1, \ldots, Dp_n)\) defines a local frame on \(T^*_0M\), dual to the local frame \((\frac{\delta}{\delta q^1}, \ldots, \frac{\delta}{\delta q^n}, \frac{\partial}{\partial p_1}, \ldots, \frac{\partial}{\partial p_n})\) adapted to the direct sum decomposition \((1)\).

Next, an almost complex structure \(J\) is defined on \(T^*_0M\) by the same \(M\)-tensor fields \(G_{ij}, H^{kl}\), expressed in the adapted local frame by

\[
J \frac{\delta}{\delta q^i} = G_{ik} \frac{\partial}{\partial p_k}, \quad J \frac{\partial}{\partial p_i} = -H^{ik} \frac{\delta}{\delta q^k}.
\]

From the property of the \(M\)-tensor field \(H^{kl}\) to be defined by the inverse of the matrix defined by the components of the \(M\)-tensor field \(G_{ij}\), it follows easily that \(J\) is an almost complex structure on \(T^*_0M\).

**Theorem 1.** \((T^*_0M, G, J)\) is an almost Kähler manifold.

**Proof.** Since the matrix \((H^{kl})\) is the inverse of the matrix \((G_{ij})\), it follows easily that

\[
G(J \frac{\delta}{\delta q^i}, J \frac{\delta}{\delta q^j}) = G(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}), \quad G(J \frac{\partial}{\partial p_i}, J \frac{\partial}{\partial p_j}) = G(\frac{\partial}{\partial p_i}, \frac{\partial}{\partial p_j}),
\]

\[
G(J \frac{\partial}{\partial p_i}, J \frac{\delta}{\delta q^j}) = G(\frac{\partial}{\partial p_i}, \frac{\delta}{\delta q^j}) = 0.
\]
Hence
\[ G(JX, JY) = G(X, Y), \quad \forall X, Y \in \Gamma(T^*_0 M). \]
Thus \((T^*_0 M, G, J)\) is an almost Hermitian manifold.

The fundamental 2-form associated with this almost Hermitian structure is \(\phi\), defined by
\[ \phi(X, Y) = G(X, JY), \quad \forall X, Y \in \Gamma(T^*_0 M). \]
By a straightforward computation we get
\[ \phi\left(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}\right) = 0, \quad \phi\left(\frac{\partial}{\partial p^i}, \frac{\partial}{\partial p^j}\right) = 0, \quad \phi\left(\frac{\partial}{\partial p^i}, \frac{\delta}{\delta q^j}\right) = \delta_{ij}. \]
Hence
\[ \phi = Dp^i \wedge dq^i = dp^i \wedge dq^i, \quad (9) \]
due to the symmetry of \(\Gamma^0_{ij} = p_h \Gamma^h_{ij}\). It follows that \(\phi\) does coincide with the fundamental 2-form defining the usual symplectic structure on \(T^*_0 M\). Of course, we have \(d\phi = 0\), i.e. \(\phi\) is closed. Therefore \((T^*_0 M, G, J)\) is an almost Kähler manifold.

3. A Kähler structure on \(T^*_0 M\)

We shall study the integrability of the almost complex structure defined by \(J\) on \(T^*_0 M\). To do this we need the following well known formulas for the brackets of the vector fields \(\frac{\partial}{\partial p^i}, \frac{\delta}{\delta q^i}\), \(i = 1, ..., n\):
\[ [\frac{\partial}{\partial p^i}, \frac{\partial}{\partial p^j}] = 0; \quad [\frac{\partial}{\partial p^i}, \frac{\delta}{\delta q^j}] = \Gamma^k_{ji} \frac{\partial}{\partial p^k}; \quad [\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}] = R^0_{kij} \frac{\partial}{\partial p^k}, \quad (10) \]
where \(R^h_{kij}(\pi(p))\) are the local coordinate components of the curvature tensor field of \(\nabla\) on \(M\) and \(R^0_{kij}(p) = p_h R^h_{kij}\). Of course, the components \(R^0_{kij}, R^h_{kij}\) define M-tensor fields of types \((0,3), (1,3)\) on \(T^*_0 M\), respectively.
**Theorem 2.** The Nijenhuis tensor field of the almost complex structure \( J \) on \( T^*_0 M \) is given by

\[
N\left( \frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j} \right) = \left\{ \frac{A^2}{2} (\delta_i^h g_{jk} - \delta_j^h g_{ik}) - R^h_{kij} \right\} p_h \frac{\partial}{\partial p_k},
\]

\[
N\left( \frac{\delta}{\delta q^i}, \frac{\partial}{\partial p_j} \right) = H^{kl} H^{ji} \left\{ \frac{A^2}{2} (\delta_l^h g_{rk} - \delta_r^h g_{lk}) - R^h_{klr} \right\} p_h \frac{\delta}{\delta p_k},
\]

\[
N\left( \frac{\partial}{\partial p_i}, \frac{\partial}{\partial p_j} \right) = H^{il} H^{jl} \left\{ \frac{A^2}{2} (\delta_l^h g_{rk} - \delta_r^h g_{lk}) - R^h_{klr} \right\} p_h \frac{\partial}{\partial p_k}.
\]

(11)

**Proof.** Recall that the Nijenhuis tensor field \( N \) defined by \( J \) is given by

\[
N(X, Y) = [JX, JY] - J[JX, Y] - J[X, JY] - [X, Y], \quad \forall \ X, Y \in \Gamma(T^*_0 M).
\]

Then, we have \( \frac{\delta}{\delta q^i} t = 0 \), \( \frac{\partial}{\partial p_k} t = g^{0k} \) and \( \hat{\nabla}_i G_{jk} = 0, \hat{\nabla}_i H^{jk} = 0 \), where

\[
\hat{\nabla}_i G_{jk} = \frac{\delta}{\delta q^i} G_{jk} - \Gamma^l_{ij} G_{lk} - \Gamma^l_{lk} G_{ij}
\]

\[
\hat{\nabla}_i H^{jk} = \frac{\delta}{\delta q^i} H^{jk} + \Gamma^l_{ik} H^{lk} + \Gamma^l_{jk} H^{lk}
\]

The above expressions for the components of \( N \) can be obtained by a quite long, straightforward computation.

**Theorem 3.** The almost complex structure \( J \) on \( T^*_0 M \) is integrable if and only if the base manifold \( M \) has positive constant sectional curvature \( c \) and

\[
A = \sqrt{2c}.
\]

(12)

**Proof.** From the condition \( N = 0 \), one obtains

\[
\left\{ \frac{A^2}{2} (\delta_i^h g_{jk} - \delta_j^h g_{ik}) - R^h_{kij} \right\} p_h = 0.
\]

Differentiating with respect to \( p_k \), it follows that the curvature tensor field of \( \hat{\nabla} \) has the expression

\[
R^l_{kij} = \frac{A^2}{2} (\delta_i^l g_{jk} - \delta_j^l g_{ik}).
\]

Thus \((M, g)\) has positive constant sectional curvature \( c = \frac{A^2}{2} \). It follows that \( A = \sqrt{2c} > 0 \).
Conversely, if \((M, g)\) has positive constant sectional curvature \(c\) and \(A\) is given by (11), one obtains in a straightforward way that \(N = 0\).

**Remark.** If \(A = \sqrt{2}c\) then the condition (4) is equivalent with

\[
v > -\sqrt{\frac{c}{2t}}.
\]

Then \((T^*_0 M, G, J)\) is a Kähler manifold.

The components of the Kähler metric \(G\) on \(T^*_0 M\) are

\[
\begin{align*}
G_{ij}(p) &= \sqrt{2ct}g_{ij} + v p_i p_j, \\
H^{kl}(p) &= \frac{1}{\sqrt{2ct}}g^{kl} - \frac{v}{2t(c + \sqrt{2ct}v)}g^{0k}g^{0l}.
\end{align*}
\]

4. The Levi Civita connection of the metric \(G\) and its curvature tensor field

The Levi Civita connection \(\nabla\) of the Riemannian manifold \((T^*_0 M, G)\) is determined by the conditions

\[
\nabla G = 0, \quad T = 0,
\]

where \(T\) is its torsion tensor field. The explicit expression of this connection is obtained from the formula

\[
2G(\nabla_X Y, Z) = X(G(Y, Z)) + Y(G(X, Z)) - Z(G(X, Y)) + \\
+G([X, Y], Z) - G([X, Z], Y) - G([Y, Z], X); \quad \forall X, Y, Z \in \Gamma(T^*_0 M).
\]

The final result can be stated as follows.

**Theorem 4.** The Levi Civita connection \(\nabla\) of \(G\) has the following expression in the local adapted frame \((\frac{\delta}{\delta q}, \ldots, \frac{\delta}{\delta q^n}, \frac{\partial}{\partial p^1}, \ldots, \frac{\partial}{\partial p^n})\):

\[
\begin{align*}
\nabla_{\frac{\delta}{\delta q_i}} \frac{\partial}{\partial p_j} &= Q^{ij}_{hk} \frac{\partial}{\partial p_h}, \\
\nabla_{\frac{\delta}{\delta q_i}} \frac{\partial}{\partial q^j} &= -\Gamma^i_{hk} \frac{\partial}{\partial p_h} + P^{hj}_{ik} \frac{\delta}{\delta q^h}, \\
\nabla_{\frac{\partial}{\partial p_i}} \frac{\delta}{\delta q^j} &= P^{hi}_{j} \frac{\delta}{\delta q^i}, \\
\nabla_{\frac{\delta}{\delta q_i}} \frac{\delta}{\delta q^j} &= \Gamma^h_{ij} \frac{\delta}{\delta q^h} + S_{hij} \frac{\partial}{\partial p_h},
\end{align*}
\]

8
where $Q_h^{ij}$, $P^hi_j$, $S_{hij}$ are $M$-tensor fields on $T_0^*M$, defined by

\[
\begin{align*}
Q_h^{ij} &= \frac{1}{2} G_{hk} \left( \frac{\partial}{\partial p_i} H^{jk} + \frac{\partial}{\partial p_j} H^{ik} - \frac{\partial}{\partial p_k} H^{ij} \right), \\
P^hi_j &= \frac{1}{2} H^{hk} \left( \frac{\partial}{\partial p_i} G_{jk} - H^{il} R^0_{ljk} \right), \\
S_{hij} &= -\frac{1}{2} G_{hk} \frac{\partial}{\partial p_i} G_{ij} + \frac{1}{2} R^0_{hij}.
\end{align*}
\]

In the case of the Kähler structure on $T_0^*M$, using by the relations (14), we obtain

\[
\begin{align*}
Q_h^{ij} &= -\frac{1}{4t} (\delta_h^i g^{0j} + \delta_h^j g^{0i}) + c - \frac{\sqrt{2ct} v}{4ct} g^{ij} p_h + \frac{v^2 - c \sqrt{2ct} v'}{4u(c + \sqrt{2ct} v)} g^{0i} g^{0j} p_h, \\
P^hi_j &= -Q^j_i h, \\
S_{hij} &= -c \frac{\sqrt{2ct} v}{2} (g_{ij} p_h + g_{hi} p_j) + c - \frac{\sqrt{2ct} v}{2} g_{hj} p_i - \frac{2v^2 + \sqrt{2ct} v'}{2} p_h p_i p_j.
\end{align*}
\]

The curvature tensor field $K$ of the connection $\nabla$ is obtained from the well known formula

\[K(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z, \quad \forall X, Y, Z \in \Gamma(T_0^*M).\]

The components of curvature tensor field $K$ with respect to the adapted local frame $(\frac{\partial}{\partial q^1}, \ldots, \frac{\partial}{\partial q^m}, \frac{\partial}{\partial p_1}, \ldots, \frac{\partial}{\partial p_n})$ are obtained easily:

\[
\begin{align*}
K\left(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}\right) \frac{\delta}{\delta q^k} &= QQQ_{ijh}^k \frac{\delta}{\delta q^k} = (P_{kij}^h - P_{k}^{hl} R^0_{lij} + P_{i}^{hl} S_{hij} - P_{h}^{li} S_{ijh}) \frac{\delta}{\delta q^k}, \\
K\left(\frac{\delta}{\delta q^i}, \frac{\delta}{\delta q^j}\right) \frac{\partial}{\partial p_k} &= QQP^k_{ijh} \frac{\partial}{\partial p_k} = -QQQ_{ijh}^k \frac{\partial}{\partial p_k}, \\
K\left(\frac{\partial}{\partial p_i}, \frac{\partial}{\partial p_j}\right) \frac{\delta}{\delta q^k} &= PPP^k_{ijh} \frac{\partial}{\partial p_k} = -PPP_{ijh}^k \frac{\partial}{\partial p_k}, \\
K\left(\frac{\partial}{\partial p_i}, \frac{\delta}{\delta q^j}\right) \frac{\partial}{\partial p_k} &= PQQ_{jkh}^i \frac{\partial}{\partial p_k} = (\frac{\partial}{\partial p_i} S_{hjk} + Q_h^{il} S_{ijh} - P_{k}^{li} S_{hij}) \frac{\partial}{\partial p_k}, \\
K\left(\frac{\partial}{\partial p_i}, \frac{\delta}{\delta q^j}\right) \frac{\delta}{\delta q^k} &= PQQ_{jikh}^k \frac{\delta}{\delta q^k} = (\frac{\partial}{\partial p_i} P_{hjk}^k + P_{h}^{li} P_{k}^{lj} - P_{j}^{li} Q_{lk}^{ik}) \frac{\partial}{\partial p_k},
\end{align*}
\]

where $QQQ_{ijh}^k$, $QQP^k_{ijh}$, $PPP_{ijh}^k$, $PQQ_{jkh}^i$, $PQQ_{jikh}^k$ are M-tensor fields on $T_0^*M$. The explicit expressions of these components are obtained after some quite long and hard computations, made by using the package RICCI.
The Ricci tensor field $\text{Ric}$ of $\nabla$ is defined by the formula:

$$\text{Ric}(Y, Z) = \text{trace}(X \rightarrow K(X, Y)Z), \quad \forall X, Y, Z \in \Gamma(T_0^*M).$$

It follows

$$\left\{
\begin{array}{l}
\text{Ric}(\frac{\partial}{\partial q^i}, \frac{\partial}{\partial q^j}) = \text{Ric}QQ_{jk} = QQ_{hjk}^h + PP_{jkh}^h, \\
\text{Ric}(\frac{\partial}{\partial q^i}, \frac{\partial}{\partial p_j}) = \text{Ric}PP_{jk} = PP_{hjk}^h - QQ_{hkk}, \\
\text{Ric}(\frac{\partial}{\partial p_i}, \frac{\partial}{\partial q^j}) = \text{Ric}(\frac{\partial}{\partial q^i}, \frac{\partial}{\partial q^j}) = 0.
\end{array} \right.$$ 

Doing the necessary computations, we obtain the final expressions of the components of the Ricci tensor field of $\nabla$

$$\left\{
\begin{array}{l}
\text{Ric}QQ_{jk} = \frac{a}{2} g_{jk} + \frac{\alpha}{4t^2} p_j p_k, \\
\text{Ric}PP_{jk} = \frac{a}{4c^2} g^{jk} + \frac{\beta}{8\sqrt{c^2(\sqrt{c}+\sqrt{2}tv')}} g^{0j}g^{0k},
\end{array} \right.$$ 

where the coefficients $a, \alpha, \beta$ are given by

$$\left\{
\begin{array}{l}
a = n\sqrt{c} (\sqrt{c} - \sqrt{2} t\frac{1}{2}v) - \sqrt{2c}(\sqrt{2c} + t\frac{1}{2}v + 2t^\frac{3}{2}v'), \\
\alpha = -n(c + 2tv^2 + 2\sqrt{2c} t\frac{1}{2}v' + 4tvv') + \\
+ 2(c - tv^2 - 3\sqrt{2c} t\frac{1}{2}v' - 8t^2vv' - 2\sqrt{2c} t^\frac{3}{2}v'' - 4t^3vv''), \\
\beta = -n(c + \sqrt{2c} t\frac{1}{2}v + 2tv^2 + 2\sqrt{2c} t^2v') + \\
+ 2(c + \sqrt{2c} t\frac{1}{2}v + tv^2 - 3\sqrt{2c} t\frac{1}{2}v' + 2t^2vv' - 2\sqrt{2c} t^2v'').
\end{array} \right.$$
5. A Kähler Einstein structure on $T^*_0M$

In order to find out the conditions under which the Kähler structure $(T^*_0M, G, J)$ is Einstein, we consider the differences

\[
\begin{align*}
\text{Diff}_{QQ}^{jk} &= Ric_{QQ}^{jk} - \frac{a}{2\sqrt{2ct}}G^{jk}, \\
\text{Diff}_{PP}^{jk} &= Ric_{PP}^{jk} - \frac{a}{2\sqrt{2ct}}H^{jk}.
\end{align*}
\]

Using by the relations (14), (15), (16) we obtain

\[
\begin{align*}
\text{Diff}_{QQ}^{jk} &= \sqrt{c} + \sqrt{2 t} (\gamma p_j p_k), \\
\text{Diff}_{PP}^{jk} &= \frac{1}{8 t^2(\sqrt{c} + \sqrt{2 t} v')} \gamma g^{0j} g^{0k},
\end{align*}
\]

where the factor $\gamma$ is given by

\[
\gamma = (2 - n) \sqrt{c} - 2(n + 3) \sqrt{2 t^3 v'} + 4 \sqrt{2 t^5 v''}.
\]

Our purpose is to solve the system

\[
\text{Diff}_{QQ}^{jk} = \text{Diff}_{PP}^{jk} = 0,
\]

which is equivalent with the equation

\[
\gamma = 0.
\]

Finally, we have to solve the following second order differential equation of Euler type

\[
t^2 v'' + \frac{n + 3}{2} t v' = \frac{(2 - n) \sqrt{c}}{4 \sqrt{2}} t^{-\frac{n}{2}}.
\]

The general solution of this equation is

\[
v = \frac{(n - 2) \sqrt{c}}{n \sqrt{2}} t^{-\frac{n}{2}} + At^{-\frac{n+1}{2}} + B, \quad A, B \in \mathbb{R}.
\]

The function $v$ must fulfill the condition $v > -\sqrt{\frac{c}{2t}}$ which is equivalent with

\[
A \geq 0, \quad B \geq 0; \quad n \geq 2.
\]
From the relations (15), (16), (17) we obtain
\[ \text{Ric} = -\frac{B(n+1)}{2}G. \]

Now we may state our main result.

**Theorem 4.** Assume that \((M, g)\) has positive constant sectional curvature \(c\), the almost complex structure \(J\) is given by (8), the components of the metric \(G\) are given by (14), the function \(v\) has the expression (17) and the conditions (18) are fulfilled. Then \((T_0^*M, G, J)\) is a Kähler Einstein manifold.

**Remark.** After some long and hard computations we have obtained that the Kähler Einstein manifold \((T_0^*M, G, J)\) cannot have constant holomorphic sectional curvature and is not locally symmetric.

**References**

[1] Lee, J.M., *Ricci. A Mathematica package for doing tensor calculations in differential geometry. User’s Manual, 1992, 2000.*

[2] Mok, K.P.; Patterson, E.M.; Wong, Y.C., *Structure of symmetric tensors of type (0,2) and tensors of type (1,1) on the tangent bundle*, Trans. Am. Math. Soc. 234 (1977), 253-278.

[3] Oproiu, V., *A generalization of natural almost Hermitian structures on the tangent bundles*. Math. J. Toyama Univ., 22 (1999), 1-14.

[4] Oproiu, V., *General natural almost Hermitian and anti-Hermitian structures on the tangent bundles*. Bull. Soc. Sci. Math. Roum. 43 (91), (2000), 325-340.

[5] Oproiu, V., *Some new geometric structures on the tangent bundle*, Public. Math. Debrecen. 55 (1999), 261-281.

[6] Oproiu, V., *A Kähler Einstein structure on the tangent bundle of a space form*, Int. J. Math. Math. Sci. 25 (2001), 183-195.

[7] Oproiu, V.; Papaghiuc, N., *A Kähler structure on the nonzero tangent bundle of a space form*, Differential Geom. Appl. 11 (1999), 1-12.
[8] Oproiu, V.; Poroşniuc, D.D., *A Kähler Einstein structure on the cotangent bundle of a Riemannian manifold*, to appear in An. Științ. Univ. Al. I. Cuza, Iași.

[9] Poroşniuc, D.D., *A locally symmetric Kähler Einstein structure on the cotangent bundle of a space form*, to appear.

[10] Poroşniuc, D.D., *A locally symmetric Kähler Einstein structure on a tube in the nonzero cotangent bundle of a space form*, to appear.

[11] Yano, K.; Ishihara, S., *Tangent and Cotangent Bundles*, M. Dekker Inc., New York, 1973.

D.D.Poroşniuc
Department of Mathematics
National College ”M. Eminescu”
Str. Octav Onicescu 52 RO-710096
Botoşani, Romania.
e-mail: dporoosniuc@yahoo.com
danielporosniuc@lme.ro