Experimental studies of correction propulsion system elements for small space vehicles manufactured due to additive method

V N Blinov¹, V V Shalay¹, V I Kuznetsov¹, A B Yakovlev¹, P S Yachmenev¹, A I Luyanchik¹, V V Kositsin²
¹Omsk State Technical University, Omsk, Russian Federation
²Federal State Unitary Enterprise "Federal Scientific and Production Centre "Progress", Omsk, Russian Federation

Abstract. Producing ammonia correction propulsion system (CPS) elements for maneuvering satellite platforms (MSP) of small space vehicles (SSV) is a relevant problem. The investigation is devoted to the solution of the named problem with the use of direct metal laser sintering (DMLS) method. The research objective is to confirm the feasibility of manufacturing ETMT and CPS evaporator with autonomous heating elements (AHE) by DMLS method, based on the prototypes experimental testing. During the research the following tasks were solved: creating 3D models for ETMT and double-threaded evaporator and producing experimental prototypes by DMLS method. 3D models of ETMT and evaporator casings were developed following the prototypes produced by the conventional methods of turning and milling. 3D models of ETMT and evaporator casings represent complex integral parts with multiple passages for working medium flow. Experimental studies of ETMT and the evaporator were performed with nitrogen as a working medium. ETMT and evaporator temperature characteristics were determined during the experiments. The investigation was made of ETMT with nominal thrust of 30 mN and power consumption in the range of 5-60 W with and without heat insulation. AHE with embedded thermocouples, having the diameter of 6 mm and power consumption of 60 W, was used. AHE temperature was limited by 973 K. A double-threaded evaporator was investigated for power consumption of 5-30 W, the evaporator casing temperature limited by 393 K. The maximal increase in the gas temperature equaled no more than 8.6 % at the nozzle exit in the power consumption range of 10-60 W for ETMT with heat insulation. At ETMT power consumption of 5–50 W, the build-up time for ETMT was 400–600 s. While at power consumption of 50–60 W, it was 200–400 s. At power consumption of 10–30 W, the evaporator casing temperature reached 393 K in 100–340 s, AHE temperature being 400–460 K and the gas temperature at the evaporator throttle exit being no more than 290 K. At power consumption of 5 W, the maximum evaporator casing temperature of 375 K was reached in 1200 s, AHE temperature being 370 K and the gas temperature at the evaporator throttle exit being no more than 302 K.

1. Introduction
Currently the significance of developing MSP with ammonia CPS and ETMT is becoming increasingly important, since the modern SSV call for completing a wide range of orbital maneuvering challenges: error correction of injection by launch vehicles, maintaining orbital parameters, interorbital maneuvering, construction of SSV orbit groups, injection of SSV into utilization orbit, inspection of other SSV and orbital objects, near-space surveillance and etc. [1–3].
Applying ammonia CPS in SSV is possible due to high specific burst of power for ETMT being achievable at minimal energy consumption. It results in decreased fuel weight necessary to realize target characteristic speed of CPS in SSV during orbital maneuvering, as well as the weight of CPS itself and its means of adaptation in SSV.

Recently constructed ammonia CPS with ETMT were a part of SSV "Ugatusat" (Russia, 2008) with 35 kg weight and SSV "VH-2" (China, 2016) with 47 kg weight. Ammonia CPS were created in Ukraine for SSV "SICH - 2M" (2011–2012) and SSV "Microsat".

In such CPS the ammonia becomes gaseous due to its preliminary gasification in the evaporator and final heating in ETMT.

The developed ammonia ETMT with 30 mN thrust are characterized by the cost of thrust up to 2 W/mN and are used as components in SSV with weight of 30–400 kg. The specific burst of power for such ETMT at energy consumption of 60 W is not higher than 250 s. Due to their structure, they can be classified as ETMT with tubular heating element (THE) and ETMT with AHE (figures 1,2) [1–3,10].

![Figure 1. Schematics of ETMT with AHE.](image1)

![Figure 2. Schematics of ETMT with THE.](image2)

The known ETMT represent complex constructions with inner cavities and gas ducts, for example, as shown in figure 3 [1–9].
In terms of design ETMT with AHE can be divided into AHE and ETMT casing, that are manufactured separately (figures 1, 4, 5).

1 - AHE; 2 - fuel inlet and attachment node; 3 - casing with nozzle and gas flow conditioner (located inside).

Figure 3. J3 concentric tubular resistojet schematics.

Figure 4. Mark-III, Mark-IY microthrusters schematics.

Figure 5. ETMT with AHE, manufactured by turning and milling.

The conventional method of manufacturing ETMT casing consists of milling and turning its individual parts and forming various cavities and gas ducts. The components are sealed by welding after the casing assembly. Stainless steel 12X18H10T is used as a constructional material. All this results in additional flange joints appearance and ETMT casing walls thickening due to technological characteristics and incorporated equipment limitations. Moreover, technological constraints preclude one from manufacturing inner gaseous cavities and flanges necessary for ETMT optimal performance.
A liquefied ammonia evaporator used in ammonia CPS production also includes AHE and a separate casing (figure 6).

Figure 6. Double-threaded liquefied ammonia evaporator.

The example setups for ETMT and the evaporator with AHE as a part of CPS automatic equipment are given in figure 7.

Figure 7. ETMT and liquefied ammonia evaporator with AHE as a part of CPS reserved automatic equipment (a) and unreserved one (b).

Manufacturing AHE and ETMT casing separately allows modern additive methods to be applied to ETMT casing production, this casing being a complex construction with gas ducts and inner cavities.

2. Problem statement
The research objective is to determine whether it is possible to produce ETMT with AHE and the evaporator with AHE, both being a part of the ammonia CPS, following the additive technique based on direct metal laser sintering (DMLS) method.

To solve the task at hand:

- 3D models of ETMT and the evaporator were developed;
- ETMT and the evaporator were produced by DMLS method;
- experimental tests on ETMT and the evaporator with AHE were performed in a vacuum chamber during operation on nitrogen.

Electrical testing of ETMT in the power consumption range of 5-60 W was carried out to study:
- ETMT heating dynamics at working medium feeding in the vacuum chamber (cold starting method) without heat insulation;
- ETMT heating dynamics at working medium feeding in the vacuum chamber (cold starting method) with heat insulation.

A cylindrical electric heater with two thermocouples was used as AHE, its specifications are:
- nominal power capacity, 60 W;
- working voltage, 12 W;
- diameter, 6.0 mm;
- length, 80 mm;
- weight, 0.03 kg.

To lower heat loss in ETMT, multi-layer heat insulation was used. It was placed into a cylindrical jacket made of composite material, consisting of fabrics HVK-0.05, foil, alloy BD3D, 8 μm.

Evaporator electrical testing was conducted to study the temperatures of AHE, the evaporator casing and the gas at the exit for power consumption of 5–30 W. The maximum temperature of the evaporator casing was maintained at 393 K. This constraint was introduced following the temperature limitations of the pressure controller.

3. Theory

When producing ETMT casing and the evaporator, direct metal laser sintering (DMLS) method was used, this method being widespread in 3D printing of metal products. DMLS is an additive process allowing ETMT casing and the evaporator to be built up gradually layer by layer.

Usually DMLS calls for production of supporting elements which are deleted after the printing. These elements provide the precision of ETMT and evaporator casing and no rigid component parts, considering the thermal processes during melting. All surfaces with the ground plane angle less than 45° are supported. Moreover the ratio of the walls height to their thickness should be maintained within 8:1.

To avoid unnecessary supports, smooth transitions are introduced in 3D model of ETMT and the evaporator. Sharp edges were also rounded at the joints of the walls and inner elements.

3D model of ETMT is constructed in such a way that a single casing includes nozzle, outer casing, inner casing with gas ducts in the double-start thread form, gas flow conditioner and microthruster attachment point (figures 8, 9). 3D model of the evaporator casing (figure 10) is constructed in a similar way.

Figure 8. 3D model of ETMT casing.

Figure 9. Production prototype of ETMT with AHE.
1 - gas ducts; 2 - crosscut working medium inlets/outlets (two variants are provided); 3, 4 - axial working medium inlets/outlets; 5 - AHE

Figure 10. 3D model and production prototype of evaporator.

Production prototype of the evaporator assembled with the pressure controller is shown in figure 11.

Figure 11. Production prototype of evaporator with pressure controller.

Technological characteristics of manufacturing ETMT casing by the additive technique compared to manufacturing ETMT casing by turning and milling component parts are given in table 1. The evaporator has similar technological characteristics.

Table 1. Technological characteristics of manufacturing ETMT casing.
Characteristics of Manufacturing Technique for ETMT Casing

№	Description	Turning, milling	Additive, DMLS
1	The number of parts in ETMT casing		
2	Gas ducts, fittings and joints sealing provision	Gas migration is possible among cavities	Is provided
3	The possibility of manufacturing any inner cavities, flanges	Is not provided	Is provided
4	The possibility of manufacturing thin-walled shells	Technological constraints are available	Technological constraints are minimal
5	The possibility of machining inner cavities	Is available	Is not available, except nozzle part
6	The achieved ETMT casing weight	25	22
7	The possibility of lowering ETMT casing weight	Technological constraints are available	Technological constraints are minimal

ETMT experimental studies were performed in the vacuum chamber (figure 11). To document the outflowing gas temperature, a thermocouple was installed at ETMT nozzle exit.

Figure 11. Installing ETMT in the vacuum chamber (a) without heat-protective cover (b) and with it (c).

Pneumatic-hydraulic diagram of the experimental installation with the vacuum chamber in ETMT testing is given as shown in figure 12.

Figure 12. Pneumatic-hydraulic diagram of the experimental installation.

ETMT electrical tests were performed with heat insulation as well as without one. To lower heat loss in ETMT, multi-layer heat insulation was used, placed in a heat-protective cover from composite material, consisting of fabrics HVK-0.05 TU 6-48-05-786904-151-95, foil, alloy BD3D, 8 μm TU 48-21-151-84.
Cold starting method was used at ETMT (and evaporator) testing, which means that voltage supply and working medium feeding to ETMT (and evaporator) were performed simultaneously. When testing the evaporator, pneumatic-hydraulic diagram similar to the one in figure 12 was used. The evaporator was connected to the pressure controller, and the throttle imitating ETMT was installed instead of ETMT. The thermocouples measured the temperatures of the gas at the throttle exit and of the evaporator casing. AHE temperature was measured by the embedded thermocouples.

![Figure 13. Installing the evaporator in the vacuum chamber.](image)

4. Experimental results
The study subjects were ETMT and the evaporator, produced by DMLS method. More than 12 evaporator and ETMT casings were manufactured. All resulting casing samples were characterized by geometric shapes stability, the nozzle included. All minor shape roughness was removed by machining (figure 14).

![Figure 14. Production prototypes of the evaporator and ETMT casings.](image)

The inner nozzle surface can be refined as well, if necessary. All ETMT and evaporator casings were inspected for integrity and gas permeability. Deviations in integrity and throats were not found. When welding was used during ETMT and the evaporator assembly, the material resulting from DMLS method possessed good weld ability.

The experimental testing results for the temperatures of AHE and the gas at ETMT nozzle exit during cold starting method (without preheating) are given in figures 15–18 and tables 2–5.
Figure 15. The dependence of AHE temperature on the heating time for ETMT without a heat-protective cover at various values of supplied power with AHE heating temperature limited by 973 K.

Figure 16. The dependence of the gas temperature at the nozzle exit on the heating time for ETMT without a heat-protective cover at various values of supplied power with AHE heating temperature limited by 973 K.

Figure 17. The dependence of AHE temperature on the heating time for ETMT with a heat-protective cover at various values of supplied power with AHE heating temperature limited by 973 K.
Figure 18. The dependence of the gas temperature at the nozzle exit on the heating time for ETMT with a heat-protective cover at various values of supplied power with AHE heating temperature limited by 973 K.

Table 2. The temperature of AHE and the gas at the nozzle exit for ETMT without heat insulation with AHE heating temperature limited by 973 K.

τ, s	The temperature of AHE (1) and the gas at the nozzle exit (2), K for various values of power, W													
	W =5 W	W =10 W	W =20 W	W =30 W	W =40 W	W =50 W	W =60 W							
0	291	287	290	287	289	286	284	282	291	288	297	289	298	289
100	343	295	388	306	475	323	551	337	623	352	704	366	787	379
200	363	307	424	327	544	361	646	385	738	406	841	424	941	442
300	375	315	446	341	584	384	702	413	797	435	905	454		
400	384	321	461	351	610	399	734	429	831	449	933	467		
500	390	325	471	358	626	408	752	438	850	457	946	472		
600	394	328	478	362	637	413	763	442	859	460	952	474		
700	397	330	483	366	644	417	769	445	865	462	955	475		
800	399	332	487	368	649	419	773	446	868	463	956	475		
900	401	333	490	369	653	420	776	447	870	463	955	475		
1000	403	334	493	371	656	421	778	447	872	463	954	475		
1100	404	335	494	372	658	422	779	448	873	464	953	475		
1200	405	335	496	373	659	423	780	449	874	465	954	476		
Table 3. The temperature of AHE and the gas at the nozzle exit for ETMT with heat insulation with AHE heating temperature limited by 973 K.

\(\tau \), s	\(W = 5 \) W	\(W = 10 \) W	\(W = 20 \) W	\(W = 30 \) W	\(W = 40 \) W	\(W = 50 \) W	\(W = 60 \) W							
0	297	291	296	292	300	291	295	292	299	291	285	289	300	291
100	339	297	380	308	474	334	556	353	634	369	703	379	793	394
200	356	307	413	329	540	372	650	401	756	423	852	438	956	458
300	368	315	435	343	581	395	705	429	830	455	930	472		
400	375	320	450	352	608	41	743	447	874	475				
500	381	324	461	359	627	421	771	460	901	488				
600	385	327	469	365	642	429	786	468	916	496				
700	389	329	476	369	652	435	799	474	923	501				
800	391	331	481	372	660	439	807	478	927	505				
900	394	332	484	374	666	442	811	481	929	507				
1000	395	334	487	376	673	445	812	483	934	508				
1100	397	334	491	378	675	447	811	483	939	509				
1200	400	335	495	379	675	448	817	484	940	509				

Table 4. The temperature of AHE for ETMT without heat insulation and with it with AHE heating temperature limited by 973 K.

\(\tau \), s	\(W = 5 \) W	\(W = 10 \) W	\(W = 20 \) W	\(W = 30 \) W	\(W = 40 \) W	\(W = 50 \) W	\(W = 60 \) W							
0	291	297	290	296	289	300	284	295	291	299	285	298	300	
100	343	339	388	380	475	474	551	556	623	634	704	703	787	793
200	363	356	424	413	544	540	646	650	738	756	841	852	941	956
300	375	368	446	435	584	581	702	705	797	830	905	930		
400	384	375	461	450	610	608	734	743	831	874				
500	390	381	471	461	626	627	752	771	850	901				
600	394	385	478	469	637	642	763	786	859	916				
700	397	389	483	476	644	652	769	799	865	923				
800	399	391	487	481	649	660	773	807	868	927				
900	401	394	490	484	653	666	776	811	870	929				
1000	403	395	493	487	656	673	778	812	872	934				
1100	404	397	494	491	658	675	779	811	873	939				
1200	405	400	496	495	659	675	780	817	874	940				
Table 5. The temperature of the gas at the nozzle exit for ETMT without and with heat insulation with AHE heating temperature limited by 973 K.

τ, s	1	2	1	2	1	2	1	2	1	2	1	2	
	W =5 W	W =10 W	W =20 W	W =30 W	W =40 W	W =50 W	W =60 W						
0	287	291	287	292	286	291	282	292	288	291	289	291	
100	295	297	306	308	323	334	337	353	352	369	366	379	379
200	307	307	327	329	361	372	385	401	406	423	424	438	442
300	315	315	341	343	384	395	413	429	435	455	454	472	
400	321	320	351	352	399	41	429	447	449	475			
500	325	324	358	359	408	421	438	460	457	488			
600	328	327	362	365	413	429	442	468	460	496			
700	330	329	366	369	417	435	445	474	462	501			
800	332	331	368	372	419	439	446	478	463	505			
900	333	332	369	374	420	442	447	481	463	507			
1000	334	334	371	376	421	445	447	483	463	508			
1100	335	334	372	378	422	447	448	483	464	509			
1200	335	335	373	379	423	448	449	484	465	509			

Experimental testing results for the evaporator are given in figures 19–21.

Figure 19. The dependence of AHE temperature on the heating time for various values of supplied power with the casing heating temperature limited by 393 K.
5. Results and discussion

Applying DMLS method to ETMT manufacturing allowed the following components to be incorporated in one part: outer casing, inner casing with gas ducts in double-start thread form, gas flow conditioner and microthruster attachment point. Therefore, the number of the parts manufactured for ETMT was reduced from 5 to 1, and for the evaporator from 3 to 1. In addition, it is possible to manufacture any inner cavities and flanges.

The analysis of the diagrams in figures 15–18 as well as tables 2–5 showed that at the limited heating temperature for ETMT AHE of 973 K:

- the effect of heat insulation on AHE temperature increase starts at ETMT power consumption of 20 W;
- the maximal increase in AHE temperature in power consumption range of 20–60 W for ETMT with heat insulation is no more than 7 %;
- the effect of heat insulation on the gas temperature increase at the nozzle exit starts at ETMT power consumption of 10 W;
- the maximal increase in the gas temperature equaled no more than 8.6 % at the nozzle exit in the power consumption range of 10–60 W for ETMT with heat insulation;
- the dynamics of ETMT entering the stationary mode largely depends on ETMT power consumption;
- at ETMT power consumption of 5–50 W, the build-up time for ETMT was 400–600 s;
- at power consumption of 50–60 W, the build-up time for ETMT was 200–400s.

The analysis of the diagrams in figures 19–21 showed that at the evaporator casing heating temperature limited by 393 K:

![Figure 20](image.png)

Figure 20. The dependence of the gas temperature at the evaporator throttle exit on the heating time for various values of supplied power with the casing heating temperature limited by 393 K.

![Figure 21](image.png)

Figure 21. The dependence of the evaporator casing temperature on the heating time at various values of supplied power with AHE heating temperature limited by 973 K.
at power consumption of 10–30 W the evaporator casing temperature of 393 K is reached in 100-340 s, in addition AHE temperature is 400–460 K and the gas temperature at the evaporator throttle exit is no more than 290 K;

at power consumption of 5 W, the maximum evaporator casing temperature of 375 K is reached in 1200 s, AHE temperature being 370 K and the gas temperature at the evaporator throttle exit being no more than 302 K.

The comparison of the resulting temperature characteristics for ETMT and the evaporator manufactured due to the additive technique with the similar characteristics for ETMT and the evaporator manufactured by the conventional method detected no key differences.

6. Conclusion
1. The possibility of producing ETMT and evaporator casings for SSV CPS by direct metal laser sintering (DMLS) method was experimentally proved, moreover:
 - ETMT and evaporator casings are manufactured as an individual part with gas ducts inside;
 - all manufactured casing prototypes feature stable geometric shapes;
 - the casing material is characterized by integrity and weldability.
2. The results of the undertaken experimental testing point out full operational capability of ETMT and the evaporator. ETMT and evaporator temperature characteristics correspond to the prototypes manufactured by the conventional method (turning and milling).
3. Direct metal laser sintering (DMLS) method allows one to create new designs for ETMT and the evaporator with optimal parameters of gas ducts in terms of quantity and geometry, including the passages to measure pressure (temperature), these being hard or impossible to make with conventional manufacturing methods (turning and milling) (figure 22).

![Figure 22. Resulting experimental ETMT with a passage to measure pressure (temperature) at the entry of the nozzle throat.](image-url)

References
[1] Blinov V N, Shalay V V, et al. 2014 The Researches of Correcting Power Units Electro-Thermal Micromotors of Maneuverable Small Space Vehicles (Omsk: OmSTU Press) p 264
[2] Blinov V N, Vavilov I S, Kositin V V, Ruban V I, Khodoreva E V and Shalay V V 2015 Indian J Sci Technol 8(27) DOI:10.17485/ijst/2015/v8i27/82937
[3] Blinov V N, Vavilov I S, Kositin V V, Ruban V I, Khodoreva E V and Shalay V V 2015 Mod Appl Sci 9(5) 337 DOI: 10.5539/mas.v9n5p337
[4] Coxhill I, Gibbon D and Drube M 2008 Proc. 5th Int. Spacecraft Propulsion Conf. (Heraklion) pp 1-9
[5] Romei F, Grubišić A and Gibbon D 2017 35th Int. Electric Propulsion Conf. (Atlanta) (Atlanta: Georgia Institute of Technology) p 463
[6] Cifali G, Gregucci S, Andreussi T and Andrenucci M 35th *Int. Electric Propulsion Conf.* (Atlanta) (Atlanta: Georgia Institute of Technology) p 371

[7] Passaro A and Buit A 2013 *33rd Int. Electric Propulsion Conf.* (Washington) (Washington: The George Washington University)

[8] Makled A and Othman M 2016 *Proc. of the 17th Int. AMME Conf.* (Cairo)

[9] Romei F, Grubišić A, Lasagna D and Gibbon D 2017 *7th European Conference for Aeronautics and Space Sciences (EUCASS)* DOI: 10.13009/EUCASS2017-378

[10] Blinov V N, Shalay V V and Khodoreva E V 2012 *Omsk Scientific Bulletin* 1 p 62-67