A patient with Hepatitis A virus (HAV) infection was notified to the public health authority. The identical HAV was found at a water dispensing outlet at the groundwater facility and the toilet close to the facility. Serosurveillance in the community was conducted. Suspicious individuals were asked to visit city public health center and had a serologic test for anti-HAV Ig M. Overall, 100 individuals were tested, and all were negative for the anti-HAV Ig M. In our study cohort, we could not identify additional case of HAV infection.

Keywords: Hepatitis A; Serosurveillance; Water wells; Korea

Hepatitis A virus (HAV), a non-enveloped RNA virus, causes hepatitis A infection, which is a vaccine-preventable infectious disease in humans [1]. HAV can be transmitted via the fecal to oral route and through direct contact with infected patients or drinking contaminated water with fecal matter [1]. HAV is stable in water with low pH level and moderate temperature; thus, it can survive in a normal environment for months [2]. Previous studies demonstrated that water contaminated by sewage was associated with hepatitis A outbreak [3,4]. Epidemics of HAV often evolve slowly due to the long incubation period (range: 15–50 days) and the course of the unrecognized symptoms of the patient [5].

On February 2, 2017, a patient with HAV was reported to the Yeoju City Department of Public Health in Gyeonggi Province, Korea. This patient, a 29-year-old man, presented jaundice on January 31, 2017, and had no history of HAV vaccination. Because he had been studying for the exam for a few months, he rarely went outside to eat during that period. However, the only fresh food he consumed frequently was ground-well water in the neighborhood park near his house within two months. On February 3, 2017, an epidemiologic investigation was conducted to identify the source of the infection, and on February 17, 2017, the HAV genotype IA was found with identical characteristics between the specimens of the patient and the water dispensing outlet of the groundwater facility which water from the facility was recently certified as drinkable from public health authority and the tap at the washstand in the toilet.
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest
No conflicts of interest.

Author Contributions
Conceptualization: SR. Data curation: SR, SAW. Formal analysis: SR, SAW. Investigation: SR, JU. Supervision: SR. Validation: SR, JYS. Writing - original draft: SR, SAW, JU, JYS. Writing - review & editing: SR, SAW, JYS.

Nearby the facility, according to the phylogenetic analysis conducted by Korea Centers for Disease Control and Prevention [6],

In this study, we describe the result of community-based surveillance for those who had been used the groundwater facility and/or the toilet in the neighborhood park.

On February 17, 2017, active case finding in the city was implemented to find additional cases by putting notification boards around the groundwater facility and toilet asking to visit the designated city public health center to get a laboratory test for those of suspected individual of HAV infection. As a case definition, a suspected individual or suspected patient was defined as a person with fever, fatigue, jaundice, or gastrointestinal symptoms including nausea, vomiting, abdominal discomfort, or diarrhea from 1 December 2016 (two-months prior to the symptom presentation by first patient) and had visited the groundwater facility and/or toilet in the park. A suspected individual was further classified as confirmed by identifying a positive level of anti-HAV Ig M in a serum. Communication to the public in the community was conducted through the newspapers and televisions, and official letter was sent to the medical institutions in the city where the groundwater facility located.

After providing all of the relevant information orally, written consent was obtained, and a serum specimen was collected from all the suspected individuals visited the city public health center.

The amounts of Anti–HAV Ig M and Ig G in a serum were measured by immunoassay for the in vitro qualitative detection of total antibodies (Ig M and Ig G) for hepatitis A virus using Cobas e411 analyzer (Roche Diagnostics GmbH, Penzberg, Germany) according to the manufacturer's instruction [7]. The measured values of anti-HAV Ig M below the 1.00 IU/mL and Ig G below 30 IU/mL were considered as negative for presence of Anti-HAV Ig M and Ig G.

Overall, 100 individuals using the groundwater facility and/or the toilet were notified to the City Department of Public Health. The mean age of study cohort was 48 years (range 16 – 92), and 52 was male. Thirty-six people were classified as suspected patients; 64 had been used well-water facility, but had not presented any symptoms. Seventy-five showed positive for the Anti–HAV IgG, and all samples were negative for the Anti-HAV Ig M (Table 1). The median titer of anti HAV Ig M was 0.35 IU/mL (range 0.23 – 0.99; mean 0.34). For the median titer of anti–HAV Ig G for those who showed negative for anti–HAV Ig G was 7.9 IU/mL (range 3.6 –12.0; mean 8.0) (Supplementary Table 1).

All suspected cases were screened by serological test; however, no HAV infection was identified. The environmental specimens including groundwater, water dispensing outlet of the groundwater pump, water at the toilet and the tap at washstand in the toilet near the groundwater facility, and patient’s blood samples were tested as described elsewhere [9].

https://doi.org/10.3947/ic.2019.51.1.62
HAV was identified from the water dispensing outlet at the washstand in the toilet and the ground water pump, but was not detected from the water at the facility and toilet. Therefore, because the confirmed patient had not been used the toilet in this park, the infection of this confirmed patient was likely transmitted through the water outlet of the groundwater facility.

As control measures, the groundwater facility was temporally closed, and environmental disinfection for the toilet and the groundwater facility was conducted by using alcohol and

**Table 1.** Demographics of study population and result of the sero-survey of hepatitis A virus infection (n = 100)

| Age     | Number (%) |
|---------|------------|
| <20     | 9 (9)      |
| 20 – 50 | 31 (31)    |
| 50 – 60 | 31 (31)    |
| >60     | 29 (29)    |

| Sex  | Number (%) |
|------|------------|
| Male | 52 (52)    |
| 36 (36) |

| Presenting symptoms* | Number (%) |
|----------------------|------------|
| Yes                  | 36 (36)    |

| Seropositivity of anti HAV | Number (%) |
|----------------------------|------------|
| IgM                        | 0          |
| IgG                        | 75 (75)    |

*Presenting symptoms include systematic (fever and fatigue) and gastrointestinal symptoms (nausea, vomiting, abdominal discomfort, and diarrhea).

HAV, hepatitis A virus.
chlorine. The groundwater facility and the toilet were re-opened three month later when follow-up evaluation of the facility was reported as negative for HAV. Massive administration of hepatitis A vaccine was not considered, due to the delay (≥ two weeks) of the finding of infection sources.

In our study population of sero-survey, age-group 10–20s have lower sero-positivity of anti HAV IgG (25.0%) than other age groups (94.4%). This is consistent with findings in previous Korean literature in which 20s are vulnerable to HAV infection [10, 11].

In South Korea, 6% of the population accesses groundwater or springs [12]. A previous study demonstrated that the pathogens can be transmitted by a drinking cup at the groundwater facility [13], which is similar to the transmission route of our study. Despite the Korean public health authority have examined the water dispensing outlet of the groundwater facility on a quarterly basis, the test has been conducted only to detect the presence of coliform bacteria, not including viruses such as enteroviruses, rotavirus, and HAV [14].

To keep the public drinking facility such as drinking fountain in hygienic condition, Hong Kong public health authority provides public advice not come into direct contact with the water outlet, and this advice commonly displays at the public drinking facility to improve the public awareness of hygiene and to avoid contamination of the public facility [15].

There are several limitations to this study. First, the symptoms of HAV infections are varied; thus, the number of patient with HAV might be underestimated. However, there were no additional patients notified from medical institutions in the city nor had any patient who had visited the park been recommended to have further laboratory examination for HAV. Second, follow-up serologic tests for measuring the increment of Anti-HAV Ig M among people who were negative for anti-HAV Ig G were not performed. However, all those negative for anti Ig M, had been exposed to the well-water facility from more than two months before, which was a sufficient period for anti-HAV Ig M to be detectable (5–10 days after exposure) [1]. Third, the surveillance of this study was focused on the population currently residing in the city. Thus, the person who had subsequently moved out of the city or who was temporary resident of the city may have not been noticed in this sero-survey.

This study demonstrated the serosurveillance of HAV for the individuals who had contacted a HAV contaminated water dispensing outlet of groundwater facility or toilet. Although there was no additional HAV cases identified, our findings indicate that 20s are most vulnerable adult population of HAV infection. Furthermore, continuing health advice to the public to avoid direct contact with the water outlet of groundwater facility should be considered to prevent future HAV outbreak through the public groundwater facility.

**ACKNOWLEDGEMENTS**

The need for ethical approval for this study was waived based on the Korean Infectious Disease Control and Prevention Act. No. 4 and the Enforcement rule of Bioethics and Safety Act. No. 33. We would like to thank the team at the Yeouju City Department of Public Health for their help with this sero-survey, as well as the Korea Centers for Disease Control and Prevention for technical assistance.
SUPPLEMENTARY MATERIAL

Supplementary material can be found with this article on-line https://icjournal.org/src/sm/ic-51-62-s001.xls.

Supplementary Table 1

Seropositivity of anti HAV IgG by age group during hepatitis A virus sero-survey in Yeoju-City 2017.

Click here to view

REFERENCES

1. Heymann DL. Control of communicable diseases manual. 19th ed. New York, USA: American Public Health Association; 2008, 278-9.

2. McCaustland KA, Bond WW, Bradley DW, Ebert JW, Maynard JE. Survival of hepatitis A virus in feces after drying and storage for 1 month. J Clin Microbiol 1982;16:957-8.  

3. Bergeisen GH, Hinds MW, Skaggs JW. A waterborne outbreak of hepatitis A in Meade County, Kentucky. Am J Public Health 1985;75:161-4.

4. Serres GD, Theresa LC, Benoit L, Nicole B, Christine B, Marc D, Prud’homme H, Paradis D, Shapiro CN, Nainan OV, Margolis HS. Molecular confirmation of hepatitis A virus from well water: epidemiology and public health implications. J Infect Dis 1999;179:37-43.

5. Korea Centers for Disease Control and Prevention (KCDC). Infectious Disease Surveillance Yearbook, 2016. Osong: KCDC; 2017.

6. Korea Centers for Disease Control and Prevention. Detection of hepatitis A virus in a water supply facility in Yeongwol Neighborhood Park, Yeoju City. Available at: http://www.cdc.go.kr/CDC/notice/CdcKrIntro0201.jsp?menuIds=HOME001-MNU1154-MNU0005-MNU0011&fid=21&q_type=title&q_value=%EC%97%AC%EC%A3%Bck&cid=73195&pageNum=. Accessed 23 June, 2018.

7. Roche Diagnostics. Total antibodies (IgM and IgG) to the hepatitis A virus. Available at: https://usdiagnostics.roche.com/products/05524261160/PARAM973/overlay.html. Accessed 23 June, 2018.

8. Noh DN, Park HJ, Cheong JY, Hamm SY. Groundwater recharge analysis and comparison using hybrid water-table fluctuation method and groundwater modeling: a case of Gangcheon basin in Yeoju City. J Geol Soc Korea 2018;54:169-81.

9. Shin E, Kim JS, Oh KH, Oh SS, Kwon M, Kim S, Park J, Kwak HS, Chung GT, Kim CJ, Kim J. A waterborne outbreak involving hepatitis A virus genotype IA at a residential facility in the Republic of Korea in 2015. J Clin Virol 2017;94:63-6.

10. Park II, Lee WG, Lim YA, Lee PO. Sero-positivity of anti-HAV IgG in young hospital workers. Korean J Blood Transfus 2010;21:43-9.

11. Park SH. Hepatitis A: past and present. J Korean Med Assoc 2009;52:996-1004.

12. Korean Statistical Information Service. Population by type of use of drinking water. Available at: http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_JPH1008. Accessed 23 June, 2018.

13. Jo AH, Choi HN, Heo DB, Kwon SM, Kim JB. Prevalence and toxin characteristics of Bacillus cereus isolated from drinking cups in spring. J Food Hyg Saf 2017;32:50-6.

14. Ministry of Government Legislation. Regulations on water quality standards and inspection for drinking water Article No. 4. Available at: http://www.law.go.kr/%EB%82%95%EB%A0%89%EB%88%98%EB%9D%8C%EC%9B%88%EA%B8%B0%EC%A4%80%ED%8A%B8%EA%B2%80%ED%82%AC%EB%89%9B%EC%97%90%EA%B4%80%ED%95%9C%EA%B7%9C%EC%B9%99. Accessed 23 June, 2018.

15. Centre for Health Protection. Health advice on using drinking fountains. Available at: https://www.chp.gov.hk/files/pdf/guidelines_on_use_of_drink_fountain_public.pdf. Accessed 2 December, 2018.