INTRODUCTION

Chronic subdural hematoma (CSDH) represents one of the most frequent intracranial hemorrhages encountered in neurological department, with elderly citizens being more frequently affected. The reasons why this type of hematoma occurs frequently among the elderly include an increase in antithrombotic medications, venous fragility, augmentation of the subdural space, and an increased exposure to traumatic injury resulting from frequent falls. For the initial management of CSDH, numerous surgical treatments have been proposed. However, the extent of surgical treatment required for CSDH is still controversial, and the optimal treatment for CSDH is not well defined. The choice of surgical technique for CSDH must be dictated by the degrees of organization of the hematoma. Burr-hole with drainage is mandatory for non-septated and mostly liquefied CSDH. Conversely, craniotomy is generally accepted as the optimal approach for reaccumulation of a CSDH, existence of a solid hematoma, failure of brain reexpansion, or marked swelling subjacent to the hematoma. The purpose of this study was to analyze the efficacy of small or large craniotomy with membranectomy as the initial treatment for CSDH.

MATERIALS AND METHODS

A retrospective study was performed using the medical records retained by our hospital. Computed tomography (CT) scans were the primary imaging method for the evaluation of CSDH in all patients. The technique of a burr-hole with closed system drainage for 24 to 72 hours was chosen for cases of non-septated and mostly liquefied CSDH. However, on the basis of CT and/or magnetic resonance imaging (MRI) findings, cases of CSDH demonstrating either mixed density or hyperdense lesions (Fig. 1), intrahematomal membranes or web-like structures (Fig. 2), or an organized/calculated CSDHs (Fig. 3) were selected for craniotomy. We classified 317 patients with CSDH into three groups according to the extent of surgery required: group I, burr hole with drainage (n=259); group II, small crani-
Statistical analysis

SPSS software (version 18.0 for Windows, SPSS Inc., Chicago, IL, USA) was used for statistical analysis. The mean values±standard deviations among the three groups were analyzed with ANOVA, and those between two groups were evaluated using Student’s t-test. We also performed a multivariable statistical analysis to evaluate the relationship between the factors and groups using the χ² test with a logistic regression model. Statistical significance was assumed if p<0.05.

RESULTS

Clinical presentation

Of these 317 patients, 259 (82%) received one or two burr-holes with drainage, including 191 males and 68 females. The average age of these burr-hole patients was 63.7±16.9 years, and 167 cases had experienced minor head trauma. The leading symptoms were headache (n=113), disturbance of consciousness (n=89), motor weakness (n=68), and gait disturbance (n=37). Fifteen of these patients were chronic alcoholics. Reoperation was performed in 23 (8.9%) cases.

Of the remaining 58 patients undergoing craniotomy, there were 46 men and 12 women, and the mean ages was 59.4 years (69.4±12.1, and 55.6±9.3 years, groups II and III, respectively), with a range of 40 to 83 years. Thirty-five patients had a history of minor head trauma approximately three weeks prior to admission. The major symptoms at presentation were disturbance of consciousness (n=113), headache (n=89), motor weakness (n=68), and gait disturbance (n=37). Fifteen of these patients were chronic alcoholics. Reoperation was performed in 23 (8.9%) cases.

Of the remaining 58 patients undergoing craniotomy, there were 46 men and 12 women, and the mean ages was 59.4 years (69.4±12.1, and 55.6±9.3 years, groups II and III, respectively), with a range of 40 to 83 years. Thirty-five patients had a history of minor head trauma approximately three weeks prior to admission. The major symptoms at presentation were disturbance of consciousness (n=113), headache (n=89), motor weakness (n=68), and gait disturbance (n=37). Fifteen of these patients were chronic alcoholics. Reoperation was performed in 23 (8.9%) cases.

Patient selection for craniotomy in groups II and, III

Based on CT and/or MRI findings, non-liquefied hematomas within CSDH (n=19), multilayer intrahematomal loculations (n=31), or thickened calcified membranes with heterogeneous structures in the hematoma cavity (n=8) were selected for small or large craniotomies (Table 3).
Operative methods
In the craniotomy groups, under general anesthesia, the dura was reflected and the outer membrane of a solid hematoma was excised following craniotomy. The removal of the hematoma was carried out under direct visualization. Non-liquefied hematomas or multilayer loculations were only partially removed with a small craniotomy, though these were completely removed with a large craniotomy. If neovascularization existed in the hematoma capsule, it was coagulated. The inner membrane was removed as much as possible.

Outcomes
The postoperative percentages of the patients who achieved a grade 0 or 1 (no or only mild neurologic deficits) were 88% in group I, 88% in group II, and 90% in group III.

In group I, local postoperative complications, such as surgical wound infection, tension pneumocephalus, epidural hematoma, and seizure, occurred in nine patients. Systemic complications, including pneumonia and sepsis, occurred in 29 patients. An SDH recurred in 23 patients (8.9%), who required reoperation. The operative mortality rate in this group, defined as death within 30 days after surgery, was 8.1% (n=21).

In groups II and III, one patient had an intracerebral hemorrhage and two patients experienced seizures. Systemic complications comprised three cases of pneumonia. Reoperation, due to a recurrent SDH, was done in 12 patients. The operative mortality rate was 3.5% (n=2) in group III; no death was seen in group II. The mean hospital stay following the initial operation were 35.2±21.9 days (group I), 35.6±16.5 days (group II) and 33.1±14.5 days (group III).

Reoperation
The reoperation rate among the 317 patients with CSDH was 11.0% (n=35). The mean ages of reoperation (n=35) and non-reoperation groups (n=282) were 68.2±15.7, and 63.3±16.5 years, respectively, with no significant difference (p=0.100) (Table 5).

The average elapsed days before reoperation were 13 (group I), 16 (group II) and two (group III). The causes for reoperation after burr-hole with drainage (n=23) were acute rebleeding (n=4), an increased volume of residual subdural fluid within the hematoma cavity (n=15), and failure of brain re-expansion due to intrahematomal septations (n=4). Repeated burr-holes with drainage were performed in 15 patients, and a large craniotomy was required in eight patients. The causes for reoperation in the small craniotomy group (n=8) were recollection of...

Table 1. Surgical types in 317 patients with CSDH

Types of surgery	Number (%) (n=317)
Burr-hole with drainage	259 (82)
Small craniotomy	16 (5)
Large craniotomy	42 (13)

CSDH: chronic subdural hematoma

Table 2. Clinical data and CT findings in 317 patients with CSDH

Characteristics	Burr-hole (Group I) (n=259)	Small craniotomy (Group II) (n=16)	Large craniotomy (Group III) (n=42)
Male/Female	191/68	14/2	32/10
Alcohol abuse	15	6	11
Head injury	167	9	26
Symptoms and signs			
Disturbance of consciousness	89	12	34
Headache	113	8	26
Motor weakness	68	8	17
Dysphasia	14	5	8
Gait disturbance	37	3	7
Seizure	5	0	4
CT density			
Mixed	68	12	40
High	28	0	2
Iso	33	0	0
Low	101	0	0
Layed	29	4	0
Midline shift	212	15	35
Neurological grade by MGS			
Pre. op./Post. op.			
0	0/202	0/7	0/17
1	163/26	0/7	16/21
2	72/5	10/2	13/2
3	19/5	6/0	11/0
4	5/21	0/0	2/2

CT: computed tomography, CSDH: chronic subdural hematoma, MGS: Markwalder’s grade scale

Table 3. Criteria of patient’s selection for craniotomy in CSDH

Criteria	Small craniotomy (n=16)	Large craniotomy (n=42)	p-value
Non-liquefied hematoma within CSDH	8	11	0.157
Multilayer intrahematomal loculations	8	23	0.976
Organized/Calcified hematoma	0	8	

CSDH: chronic subdural hematoma
Table 4. Outcome assessment in 317 patients with CSDH

Type of assessment	Burr-hole (n=259)	Small craniotomy (n=16)	Large craniotomy (n=42)	p-value
Local postop. complicationsa	9 (1-29)	1	2	0.558
Other systemic complications1	29 (1)	1	2	0.566
Death	21 (0)	0	2	0.671
Reoperation for recurrence	23 (8)	8	4	<0.001
Duration of hospital stay (day)	35.2±21.9	35.6±16.5	33.1±14.5	0.827
MGS at the time of discharge	0.55±1.2	0.69±0.7	0.79±0.9	0.436
Age (year)	63.7±16.9	69.4±12.1	55.6±9.3	0.003

a. Cerebral hemorrhage, seizure, infection, epidural hematoma, pneumonia, sepsis; CSDH: chronic subdural hematoma, MGS: Markwalder’s Grade Scale

Table 5. Relation between age and reoperation in 317 patients with CSDH

Factors	No. of patients			
	RG	NRG	Total	p-value
Surgical method				
Burr-hole	23	236	259	
Small craniotomy	8	8	16	
Large craniotomy	4	38	42	
Mean age	68.2±15.7	63.3±16.5	0.100	

CSDH: chronic subdural hematoma, RG: recurrence group, NRG: non-recurrence group

Table 6. Reasons for reoperation in 35 patients with CSDH

Characteristics	Burr hole (n=23)	Small craniotomy (n=8)	Large craniotomy (n=4)
Interval between 1st & 2nd Op. (D)	13 (1-48)	16 (7-12)	2 (1-2)
Reasons for reoperation			
Small bleed with recollection of CSDH	15	8	2
Large amounts of acute rebleeding	4	0	2
Intrahematoma septations	4	0	0

CSDH: chronic subdural hematoma, D: days

Table 7. Statistical comparison study for reoperation in three groups

Category	Comparing group	p-value
Reoperation for recurrence		
I	II	<0.001
II	I	0.992
III	I	<0.001
III	II	0.992

Group I: burr-hole with drainage (n=259), Group II: small craniotomy (n=16), Group III: large craniotomy (n=42)

subdural fluid (n=4), and a small rebleed with recollection of the CSDH (n=4). The causes for reoperation in the large craniotomy group (n=4) were recollection of CSDH with a considerable amount of rebleeding (n=2), and significant rebleeding in the subdural space (n=2). Among the cases of reoperation in groups II and III, ten patients received burr-holes with drainage, and two patients (group III) underwent a large craniectomy due to significant rebleeding in the subdural space (Table 6).

In the craniotomy groups, the reoperation rate was 50% (n=8) in group II, and 10% (n=4) in group III. The p-value for the reoperation rate comparison between the small and large craniotomy groups was <0.001, indicating that the large craniotomy group had a lower reoperation rate than the small craniotomy group (Table 7). CT imaging studies were performed in 56 patients in groups II and III prior to discharge. In 34 (61%) of these patients, subdural fluid remained. CT scans were performed in 51 of these patients during follow-up, and a complete resolution of the subdural fluid collection occurred in 43 patients (84%). The remaining eight patients had minimal subdural fluid collections, but none required subsequent surgery.

DISCUSSION

Although CSDH is well known as a curable disease in the elderly and can be adequately managed with burr-holes with drainage, the initial treatment of CSDH can be ineffective; this results in a reoperation rate between 3 and 37%.[2,10,13,16,17] The causes of treatment failure include the presence of non-liquefied hematomas with various bleeding foci[22]; multilayer loculations within the hematoma, which produce non-communicating compartments[22]; and excessive formation of a solid membranes[15].

Occasionally, advanced age has been considered to be a risk factor for recurrence and reoperation.[9,20] However, most studies have demonstrated no relationship between recurrence rate and age.[9,11,17,23] In the current study of 317 surgically treated patients, the mean ages of patients in the reoperation and non-reoperation groups were not significantly different, implying no relationship between age and reoperation rate. However, many authors have reported that older patients may require a prolonged recovery time to restore the brain[23,12,25], and that unnecessary reoperation have been performed secondary to prolonged reaccumulations of blood within the hematoma cavity.[21] Jeong et al.[7] suggested that if complete brain re-expansion is not observed immediately after operation in elderly patients, a six-week trace-observation should be performed, and that reoperation should be performed only if neurologic symptoms reappeared or if the cerebral sulci were diffusely effaced by recurrence.[15].
MRI is not frequently used for the diagnosis of CSDH, but its superiority over CT has been well documented. MRI provides precise evidence for the extension of SDH, facilitates the detection of CT - isodense SDH, as well as detection of small clots near the skull base and vertex, and often provides an accurate estimation of the age of the SDH. Furthermore, contrast-enhanced MRI may demonstrate connective tissue reactions occurring during the maturation of SDH. Rocchi et al. recommended that preoperative MRI should always be performed in the following cases: 1) CSDH with an unusual appearance on CT scans, such as the presence of heterogeneous areas with high-density margins, multiple compartments, septations, and various bleeding foci, 2) cases of recurrent CSDH, and 3) enhancement of some portions of the hematoma and its membranes after contrast enhanced CT. Furthermore, they insisted that craniotomy should be performed primarily in these cases, without attempting other approaches.

In our craniotomy groups, MRI scans were performed in 29 cases. Of these, 12 cases showed irregular web-like structures within the CSDH, 11 demonstrated non-liquefied hematomas with various bleeding foci, and six had thickened, calcified inner membranes with heterogeneous structures within the hematoma cavity. In the past, when a CSDH displayed these radiologic features, we performed craniotomy with membranectomy to remove the hematoma only after one attempt of evacuation with burr-hole. Recently, we adopted craniotomy with membranectomy as the initial treatment.

Tanikawa et al. reported that a multilayer intrahematomal structure led to a high recurrence rate and that these structures were well visualized on T2-weighted MRI. They found that a significant number of these cases did not achieve complete recovery using initial burr-hole surgery. Therefore, they initially performed small craniotomies, and achieved more favorable results and a significantly shortened hospital stay. Lee et al. reported a reoperation rate of 6.7% in 30 cases of small craniotomies, and achieved more favorable recovery using initial burr-hole surgery. These patients collectively underwent four small craniotomies and two enlarged craniotomies. The authors emphasized that it was important to remove the organized SDH and the outer membrane in proportion to the hematoma expansion. Imazumi et al. reported five cases of an organized CSDH, and proposed that a large craniotomy was the best treatment for calcified or organized CSDH associated with progressive symptoms. In our eight cases of organized/calcified CSDH, we performed large craniotomy with extended membranectomy; these cases required no reoperation and postoperative results were excellent.

In our craniotomy cases, the choice of a small or large craniotomy for CSDH treatment depended on the surgeon's judgment. The mean age of patients undergoing a small craniotomy was older than that of large craniotomy patients. The p-value for non-liquefied hematomas between the large and small craniotomy groups was 0.157 and that for multilayer intrahematomal loculations was 0.976. These results indicate that non-liquefied hematomas and multilayer intrahematomal loculations are not important factors when deciding between either a small or large craniotomy. A large craniotomy was the treatment choice for calcified or organized CSDHs.

CONCLUSION

Among the 58 patients requiring craniotomy with membranectomy as the initial treatment, 16 underwent a small craniotomy (group II) and 42 patients underwent a large craniotomy (group III). There were no significant differences in the postoperative neurological status, complications, or days of hospital stay between these two groups. However, the large craniotomy
with extended membranectomy group had superior results in terms of rate of reoperation. Until a systemic evaluation of these techniques is undertaken, we feel that a large craniotomy re-

References
1. Asghar M, Adhiyaman V, Greenway MW, Bhownick BK, Bates A: Chronic subdural hematoma in the elderly-a north wales experience. J R Soc Med 95: 290-292, 2002
2. Ernestus R-I, Beldzinski P, Landermann H, Klug N: Chronic subdural hematoma: surgical treatment and outcome in 104 patients. Surg Neurol 48: 220-225, 1997
3. Fukuhara T, Gotob M, Araki S, Ohmoto T, Akoka T: The relationship between brain surface elasticity and brain re-expansion after evacuation of chronic subdural hematoma. Surg Neurol 45: 570-574, 1996
4. Hosoda K, Tamaki N, Masumura M, Matsumoto S, Maeda F: Magnetic resonance images of chronic subdural hematomas. J Neurosurg 67: 677-683, 1987
5. Imazum S, Onuma T, Kameyama M, Naganuma H: Organized chronic subdural hematoma requiring craniotomy—five case reports. Neurol Med Chir (Tokyo) 41: 19-24, 2001
6. Jee BC, Sato H, Murakami T, Kurokawa Y, Yamada G, Oki S: [Six cases of organized chronic subdural hematomas.] No Shinkei Geka 36: 1115-1120, 2008
6. Jeong CA, Kim TW, Park KH, Chi MP, Kim JC: Retrospective analysis of re-operated patients after chronic subdural hematoma surgery. J Korean Neurosurg Soc 38: 116-120, 2005
8. Kang MS, Koh HS, Kwon HJ, Choi SW, Kim SH, Youn YJ: Factors influencing chronic subdural hematoma after surgery. J Korean Neurosurg Soc 41: 11-15, 2007
9. Ko BS, Lee JK, Seo BR, Moon SJ, Kim JH, Kim SH: Clinical analysis of risk factors related to recurrent chronic subdural hematoma. J Korean Neurosurg Soc 43: 11-15, 2008
10. Lee JK, Choh JH, Kim CH, Lee HK, Moon JG: Chronic subdural hematoma: a comparative study of three types of operative procedures. J Korean Neurosurg Soc 46: 210-214, 2009
11. Lee JY, Ebel H, Ernestus RI, Klug N: Various surgical treatment of chronic subdural hematoma and outcome in 172 patients: is membranectomy necessary? Surg Neurol 61: 523-527, discussion 527-528, 2004
12. Lee SC, Kang JK, Jung HT, Dho JO: Factors affecting brain re-expansion after simple burr hole drainage in chronic subdural hematoma. J Korean Neurosurg Soc 27: 757-762, 1998
13. Markwalder TM, Steinisiepe KE, Rohrer M, Reichenbach W, Markwalder H: The course of chronic subdural hematomas after burr-hole craniostomy and closed-system drainage. J Neurosurg 55: 390-396, 1981
14. Mohamed EE: Chronic subdural hematoma treated by craniotomy, durocrrectomy, outer membranectomy and subgaleal suction drainage. Personal experience in 39 patients. Br J Neurosurg 17: 244-247, 2003
15. Mondor Y, Abu-Owainer M, Gaab MR, Oertel JM: Chronic subdural hematoma-craniotomy versus burr-hole trephination. Br J Neurosurg 23: 612-616, 2009
16. Muizzi VF, Bistazzoni S, Zalaffi A, Carangelo B, Mariotti A, Palma L: Chronic subdural hematoma: comparison of two surgical techniques. Preliminary results of a prospective randomized study. J Neurosurg Sci 49: 41-46; discussion 46-47, 2005
17. Nakaguchi H, Tanishima T, Yoshimatsu N: Factors in the natural history of chronic subdural hematomas that influence their postoperative recurrence. J Neurosurg 95: 256-262, 2001
18. Okada Y, Aki T, Okamoto K, Iida T, Takata H, Izuka H: A comparative study of the treatment of chronic subdural hematoma-burr hole drainage versus burr hole irrigation. Surg Neurol 57: 405-409; discussion 410, 2002
19. Probst C: Peritoneal drainage of the chronic subdural hematoma in older patients. J Neurosurg 68: 910-911, 1988
20. Robinson RG: Chronic subdural hematoma: surgical management in 133 patients. J Neurosurg 61: 263-268, 1984
21. Rocchi G, Caroli E, Salvati M, Delfini R: Membranectomy in organized chronic subdural hematomas: indications and technical notes. Surg Neurol 67: 374-380; discussion 380, 2007
22. Tanikawa M, Mase M, Yamada K, Yamashita N, Matsumoto T, Banno T, et al.: Surgical treatment of chronic subdural hematoma based on intra-hematoma membrane structure on MRI. Acta Neurochir (Wien) 143: 613-618; discussion 618-619, 2001
23. Tsutsumi K, Maeda K, Iijima A, Usui M, Okada Y, Kirino T: The relationship of preoperative magnetic resonance imaging findings and closed system drainage in the recurrence of chronic subdural hematoma. J Neurosurg 87: 870-875, 1997
24. Tyson G, Strachan WE, Newman P, Winn HR, Butler A, Jane J: The role of craniectomy in the treatment of chronic subdural hematomas. J Neurosurg 52: 776-781, 1980