Relative contribution of PECAM-1 adhesion and signaling to the maintenance of vascular integrity

Jamie R. Privratsky1,2, Cathy M. Paddock1, Oliver Florey3, Debra K. Newman1,2,4, William A. Muller3 and Peter J. Newman1,2,5,6,*

1Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53201, USA
2Department of Pharmacology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
3Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
4Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
5Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
6The Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA

*Author for correspondence (peter.newman@bcw.edu)

Summary

PECAM-1 (CD31) is a cellular adhesion and signaling receptor that is highly expressed at endothelial cell–cell junctions in confluent vascular beds. Previous studies have implicated PECAM-1 in the maintenance of vascular barrier integrity; however, the mechanisms behind PECAM-1-mediated barrier protection are still poorly understood. The goal of the present study, therefore, was to examine the pertinent biological properties of PECAM-1 (i.e. adhesion and/or signaling) that allow it to support barrier integrity. We found that, compared with PECAM-1-deficient endothelial cells, PECAM-1-expressing endothelial cell monolayers exhibit increased steady-state barrier function, as well as more rapid restoration of barrier integrity following thrombin-induced perturbation of the endothelial cell monolayer. The majority of PECAM-1-mediated barrier protection was found to be due to the ability of PECAM-1 to interact homophilically and become localized to cell–cell junctions, because a homophilic binding-crippled mutant form of PECAM-1 was unable to support efficient barrier function when re-expressed in cells. By contrast, cells expressing PECAM-1 variants lacking residues known to be involved in PECAM-1-mediated signal transduction exhibited normal to near-normal barrier integrity. Taken together, these studies suggest that PECAM-1–PECAM-1 homophilic interactions are more important than its signaling function for maintaining the integrity of endothelial cell junctions.

Key words: PECAM-1, CD31, Vascular permeability, Adhesion molecules

Introduction

Platelet endothelial cell adhesion molecule (PECAM)-1 (CD31) is a 130 kDa type I transmembrane glycoprotein that is expressed on most cells of the hematopoietic lineage including platelets, monocytes, neutrophils and certain lymphocyte subsets (Newman, 1997; Newman, 1999; Newman and Newman, 2003). Endothelial cells also express PECAM-1, and at 1×10^6 to 2×10^6 copies/cell (Newman, 1994), PECAM-1 is a primary constituent of endothelial cell–cell junctions in confluent vascular beds (Albelda et al., 1990; Muller et al., 1989; Newman et al., 1990; Newman, 1994), where it has been shown to have an important role in supporting transendothelial migration of leukocytes (Muller et al., 1993; O’Brien et al., 2003; Vapourciyan et al., 1993; Wakelin et al., 1996). The extracellular domain of PECAM-1 is comprised of six Ig-like homology domains, followed by a 19-residue transmembrane domain and a 118-residue cytoplasmic tail (Newman et al., 1990). N-terminal extracellular Ig domain-I contains residues that are important for mediating homophilic PECAM-1–PECAM-1 interactions that direct PECAM-1 to cell–cell junctions (Bergom et al., 2008; Newton et al., 1997; Sun et al., 2000; Sun et al., 1996), whereas Cys595, which lies immediately inside the plasma membrane, has been shown to become post-translationally palmitoylated and targets PECAM-1 to membrane microdomains, where it regulates both cell signaling and apoptosis (Gratzinger et al., 2003; Lee et al., 2006; Sardjono et al., 2006). The PECAM-1 cytoplasmic domain contains two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) centered around Tyr663 and Tyr686 that become phosphorylated in response to a variety of cellular activation events, after which they are able to recruit a number of Src homology 2 (SH2) domain-containing cytosolic signaling molecules, the best known of which is the protein-tyrosine phosphatase SHP-2 (Newman and Newman, 2003). Other SH2 domain-containing proteins that have been reported to associate with PECAM-1 include SHP-1 (Cao et al., 1998; Henshall et al., 2001; Hua et al., 1998; Pumphrey et al., 1999; Sagawa et al., 1997), Src family kinases (Lu et al., 1997; Masuda et al., 1997; Pumphrey et al., 1999, 2001; Hua et al., 1998; Pumphrey et al., 1999), Src family kinases (Lu et al., 1997; Masuda et al., 1997; Osawa et al., 1997), the inositol 5′-phosphatase SHIP-1 (Pumphrey et al., 1999) and phospholipase Cγ1 (Henshall et al., 2001; Pumphrey et al., 1999).

Breach of vascular integrity results in the accumulation of plasma, proteins and cells in the interstitial space, and is one of the cardinal signs of the inflammatory response (Kumar et al., 2004). Tight regulation of the vascular permeability barrier is required to hold both acute and chronic inflammatory disease in check, and failure to restore barrier function in a timely manner can result in a catastrophic loss of vascular volume, as in septic shock (Cohen, 2002), or contribute to the development of chronic inflammatory diseases such as atherosclerosis (Sima et al., 2009; Vandenbroucke, 2002), or contribute to the development of chronic inflammatory diseases such as atherosclerosis (Sima et al., 2009; Vandenbroucke, 2002). Vascular permeability is regulated by the coordinated opening and closing of endothelial cell–cell junctions and relies on
a complex interplay of junctional adhesion components, cytoskeletal rearrangements, and cellular adhesive and counter-adhesive forces (Mehta and Malik, 2006). Consequently, molecules or proteins that hasten these processes, or that strengthen adhesive bonds between cells or the extracellular matrix, have the potential to prevent the increase in permeability that ultimately leads to tissue and organ dysfunction.

Ferrero and colleagues reported more than 15 years ago that PECAM-1-specific F(ab')2 antibody fragments augment transit of 125I-labelled albumin across endothelial cell junctions, both in cultured cells and in mice (Ferrero et al., 1995). Conversely, they also found that cultured NIH/3T3 and ECV304 cells could be made less permeable to albumin if the cells were transfected with cDNA encoding PECAM-1, and were the first to suggest that PECAM-1 contributes to endothelial cell barrier function. It was therefore somewhat surprising to discover that vascular development and function is overtly normal in PECAM-1-deficient mice (Duncan et al., 1999). However, a number of studies have since shown that the stability of endothelial cell junctions is more easily compromised in the blood vessels of PECAM-1-deficient mice subjected to physiological stress. For example, tail vein bleeding times are prolonged in PECAM-1-deficient versus wild-type (WT) mice; a phenotype that segregates with the vascular endothelium rather than with circulating platelets (Mahooti et al., 2000). Further support for a role for PECAM-1 in the barrier function of endothelial cells in vivo was provided by the studies of Graesser and colleagues (Graesser et al., 2002), who observed that re-establishment of a vascular permeability barrier is delayed in the vessels of PECAM-1-deficient mice in skin exposed to histamine, and in the brain microvasculature of mice suffering from experimental autoimmune encephalomyelitis. The most dramatic consequence of the absence of PECAM-1 from endothelial cell junctions, however, becomes evident during septicemia: two different groups have found that PECAM-1-deficient mice are much more susceptible to lipopolysaccharide (LPS)-induced septic shock than are their wild-type counterparts (Carrithers et al., 2005; Maas et al., 2005). When challenged with LPS, the blood vessels of PECAM-1-deficient mice exhibit increased permeability, and have an exaggerated loss of blood volume with a concomitant fatal drop in blood pressure. Similarly to the bleeding time phenotype described above, this could be corrected by expressing PECAM-1 solely on endothelial cells. Taken together, these data support the notion that PECAM-1-mediated adhesion and/or signaling contributes appreciably to vascular integrity and maintenance of a stable vascular permeability barrier, especially following disrupting stimuli.

Despite compelling evidence for a role for PECAM-1 as a prominent functional component of the endothelial cell–cell junction, the specific mechanism by which PECAM-1 functions to maintain or repair vascular barrier integrity is still poorly understood. The observation that PECAM-1 becomes highly concentrated at endothelial cell–cell junctions via diffusion trapping (Sun et al., 2000) suggests that PECAM-1–PECAM-1 homophilic interactions might be required for PECAM-1-mediated barrier protection. Alternatively, signaling mediated by PECAM-1 cytoplasmic ITIMs has been suggested to have a role in maintaining the vascular barrier because PECAM-1 expression has been reported to modulate β-catenin phosphorylation and enhance vascular barrier stability through ITIM-mediated recruitment of SHP-2 (Biswas et al., 2006). Two other groups, however, found that ITIM-mediated recruitment of SHP-2 by endothelial cell PECAM-1 is not required for leukocyte transmigration through cell monolayers (Dasgupta et al., 2009; O’Brien et al., 2003), a process that involves the coordinated opening and closing of cell–cell junctions, which is very similar to the process occurring during regulation of vascular permeability. Finally, a role for raft-localized PECAM-1 is suggested by a report that PECAM-1 modulates signaling from the sphingosine-1-phosphate (SIP) receptor (Gratzinger et al., 2003) – a G-protein-coupled receptor that promotes barrier protection by enhancing junctional assembly via signaling in lipid rafts (Komarova et al., 2007).

Because it is currently not known which, if any, of these properties are important to enable PECAM-1 to contribute to endothelial cell junctional stability, we sought to identify the pertinent biological properties of PECAM-1 (i.e. homophilic adhesion, localization to membrane microdomains, ITIM-mediated signaling) that allow it to establish and maintain vascular integrity. Using electric cell-substrate impedance sensing (ECIS) technology as a measure of endothelial cell junctional integrity, we found that endothelial cell monolayers expressing PECAM-1 exhibited significantly increased resistance to current flow at rest, as well as more rapid restoration of barrier integrity following thrombin-induced barrier disruption when compared with values for PECAM-1-deficient cells. In addition, cells that expressed a homophilic binding-crippled mutant form of PECAM-1 were unable to efficiently establish or restore the vascular barrier, whereas cells expressing variant forms of PECAM-1 lacking key residues known to be involved in PECAM-1-mediated signal transduction and lipid raft localization exhibited normal to near-normal barrier function, both at rest and following thrombin stimulation. Taken together, these results suggest that the ability of PECAM-1 to engage homophilically and localize to endothelial cell–cell borders is more important than its signaling function in conferring vascular barrier protection.

Results

PECAM-1 contributes to endothelial cell–cell junctional integrity

Previous in vitro and in vivo studies have shown that PECAM-1 promotes vascular barrier integrity (Biswas et al., 2006; Carrithers et al., 2005; Ferrero et al., 1995; Graesser et al., 2002; Maas et al., 2005). The biological mechanisms behind PECAM-1-mediated barrier protection, however, are still poorly understood. To confirm a role for PECAM-1 in both the steady-state maintenance of endothelial cell barrier function, as well as restoration of vascular integrity following its perturbation, we used ECIS technology as a measure of barrier integrity and cell–cell interactions because of its ability to quantitatively measure changes in monolayer resistance and cell micromotion in real time at the nanometer level (Giaever and Keese, 1991; Tirruppathi et al., 1992). In addition, through the use of established formulas, ECIS is able to model the amount of current that is passing between cells (reported as the derived parameter Rb, resistance of the barrier), which is a robust reporter of barrier function (see the Materials and Methods) (Giaever and Keese, 1991). Primary human pulmonary artery endothelial cells (HPAECs) and human aortic endothelial cells (HAECs) were transiently transfected with pools of control or PECAM-1-specific siRNA oligonucleotides to silence endogenous levels of PECAM-1 (Fig. 1A,B), and then subjected to ECIS measurements. As shown in Fig. 1D,E, PECAM-1-expressing endothelial monolayers exhibited significantly increased steady-state barrier function.
compared with PECAM-1Low monolayers. These results were also seen in immortalized human umbilical vein endothelial cells (iHUVECs), in which PECAM-1 had been stably silenced by lentivirally introduced siRNA (Fig. 1C,F). These results confirm and extend previous observations that PECAM-1 contributes to the maintenance of vascular barrier homeostasis in quiescent, non-challenged monolayers in which it is expressed.

To determine whether PECAM-1 also functions to restore vascular barrier integrity following perturbation of endothelial cell monolayers, we stimulated PECAM-1High and PECAM-1Low HPAECs, HAECs and iHUVECs with thrombin and measured the rate of recovery of barrier integrity. As shown in Fig. 1G-I, PECAM-1High monolayers displayed higher resistance to current flow at 4000 Hz – a value previously determined to be the optimal frequency at which to determine changes in barrier integrity (Giaever and Keese, 1991; Tiruppathi et al., 1992). Modeling of these thrombin-stimulated monolayers (Fig. 1J-L) revealed that recovery of barrier function following thrombin challenge was significantly delayed in PECAM-1Low versus PECAM-1High endothelial cells. These results demonstrate that, in addition to steady-state barrier maintenance, expression of PECAM-1 also contributes importantly to the restoration of vascular barrier integrity after it has been compromised.

PECAM-1–PECAM-1 homophilic interactions are required to maintain steady-state endothelial cell barrier function

To identify the cellular mechanisms by which PECAM-1 maintains and restores vascular integrity, we created vectors expressing WT and variant forms of PECAM-1 that are deficient in its known adhesive and signaling properties (Fig. 2), expressed them in cells, and measured both their relative capacity to maintain steady-state barrier integrity, as well as their ability to restore barrier function after it had been perturbed. Two complementary approaches were used. In the first, we silenced endogenous PECAM-1 in primary HPAECs using the PECAM-1-specific siRNA PEC02 (Bergom et al., 2006), and then reconstituted expression with WT and variant forms of PECAM-1 containing silent mutations that rendered them resistant to silencing by PEC02 siRNA (Florey et al., 2010). As shown in Fig. 3A, HPAECs reconstituted with these variant forms of PECAM-1 expressed similar levels of PECAM-1.
displayed a markedly decreased baseline barrier function, which was similar to that of PECAM-1low HPAECs (pWPT control plasmid transfected). By contrast, HPAECs expressing signaling-deficient ITIM-less (Y663,686F) or raft-localization-deficient (C595S) PECAM-1 displayed normal baseline barrier functions that were comparable to that of HPAECs expressing WT PECAM-1 (Fig. 3B). Similar results were observed in REN mesothelioma cells expressing WT and variant forms of PECAM-1 (Fig. 3C,D). Taken together, these results demonstrate that homophilic adhesive interactions of PECAM-1, but not ITIM-mediated signaling or localization to membrane microdomains, have a significant role in both establishing and maintaining endothelial cell–cell junctional integrity.

Homophilic adhesive properties of PECAM-1 are required to re-establish vascular barrier integrity after thrombin stimulation

To determine whether the adhesive and/or signaling properties of PECAM-1 are required for restoration of vascular integrity, we stimulated HPAECs expressing the different forms of PECAM-1 with thrombin and measured their recovery using ECIS. As shown in Fig. 4A,B, cells expressing ITIM-less and C595S PECAM-1 responded to thrombin much like WT PECAM-1-reconstituted cells, whereas cells expressing K89A PECAM-1 displayed tracings that were similar to that of pWPT-transfected, PECAM-1low HPAECs. As an additional measure, we determined the slope of recovery in the tracings between the low point of barrier function and its return to baseline. As shown in Fig. 4C, K89A PECAM-1-expressing HPAECs were the only cells to exhibit a significantly decreased rate of recovery. These results demonstrate that, in addition to establishing and maintaining steady-state junctional stability, PECAM-1–PECAM-1 homophilic interactions are required for optimal restoration of vascular integrity following perturbation of endothelial cell–cell junctions.

Discussion

PECAM-1 is a well-studied adhesion and signaling receptor that has been shown to have reciprocal roles during the inflammatory response (Privratsky et al., 2010). PECAM-1 promotes inflammation by facilitating leukocyte transendothelial migration (Muller et al., 1993; Vaporciyan et al., 1993; Wakelin et al., 1996) and by serving as a mechanosensor for fluid shear stress (Tzima et al., 2005), but dampens inflammation via its ability to: (1) inhibit cellular activation (Falati et al., 2006; Newman et al., 2001; Newton-Nash and Newman, 1999; Patil et al., 2001; Rui et al., 2007; Wilkinson et al., 2002; Wong et al., 2002); (2) reduce pro-inflammatory cytokine levels (Carrithers et al., 2005; Goel et al., 2007; Maas et al., 2005; Tada et al., 2003); (3) decrease leukocyte accumulation at sites of inflammation (Carrithers et al., 2005; Goel et al., 2007; Goel et al., 2008; Maas et al., 2005; Tada et al., 2003); and (4) maintain and restore vascular integrity (Biswas et al., 2006; Carrithers et al., 2005; Ferrero et al., 1995; Graesser et al., 2002; Maas et al., 2005). Consequently, elucidating the mechanisms by which PECAM-1 mediates both its pro- and anti-inflammatory effects has the potential to improve our understanding of how cells and tissues integrate these seemingly opposing biological signals.

In the present investigation, we used ECIS technology to further characterize the properties of PECAM-1 that enable it to contribute to vascular barrier integrity. Two complementary approaches – siRNA-mediated silencing of PECAM-1-expressing endothelial cells and introduction of PECAM-1 into PECAM-1-negative endothelial-like cells – provided independent confirmation that PECAM-1low monolayers exhibit lower resistance to current flow than do PECAM-1high monolayers, both at steady-state and following thrombin-induced vascular permeability (Figs 1, 3). These data demonstrate that PECAM-1 not only contributes to the maintenance of vascular integrity in resting, non-challenged cells, but also to its restoration following barrier disruption. These results correlate well with, and probably explain, previous observations...
that PECAM-1-deficient mice exhibit compromised vascular integrity following (1) vascular injury (Mahooti et al., 2000), (2) LPS-induced endotoxic challenge (Carrithers et al., 2005; Maas et al., 2005), (3) induction of EAE in the brain (Graesser et al., 2002), and (4) histamine challenge in the skin (Graesser et al., 2002).

To establish the functional properties of PECAM-1 necessary for its barrier function, we introduced mutant forms of PECAM-1 lacking key function-determining residues into PECAM-1-deficient endothelial cell lines and examined their contribution to barrier integrity, both at rest and following disruption, using ECIS technology. Interestingly, HPAECs expressing a homophilic binding-crippled K89A mutant form of PECAM-1 exhibited poor barrier function under both conditions, whereas cells expressing ITIM-less and C595S forms of PECAM-1 were able to maintain and restore barrier integrity similarly to that of HPAECs expressing wild-type PECAM-1 (Figs 3, 4). The inability of K89A PECAM-1 to become concentrated at endothelial cell–cell junctions (supplementary material Fig. S1) (Bergom et al., 2008; Sun et al., 2000), probably contributes to the inefficiency with which it is able to maintain or restore vascular barrier integrity, and confirms the importance of PECAM-1–PECAM-1 homophilic interactions in controlling both the subcellular location and vascular function of this adhesion and signaling receptor. Because engagement of PECAM-1 results in activation of integrin on leukocytes (Berman et al., 1996; Berman and Muller, 1995; Dangerfield et al., 2002; Tanaka et al., 1992; Vernon-Wilson et al., 2006; Vernon-Wilson et al., 2007), platelets (Varon et al., 1998) and endothelial cells (Chiba et al., 1999), and because integrins enable endothelial cells to bind to extracellular matrix proteins at focal adhesions, which are crucial determinants of cell shape and permeability (Mehta and Malik, 2006), it will be interesting in future studies to determine whether integrin activation downstream of homophilic PECAM-1 engagement has a role in PECAM-1-mediated maintenance of vascular barrier integrity. If it does, then PECAM activation of integrins in this case does not involve the traditional signaling through its ITIM domains (Figs 3, 4).

The PECAM-1 cytoplasmic domain has previously been implicated in the regulation of endothelial cell junctional permeability via its ability to form a ternary complex with the protein tyrosine phosphatase SHP-2 (Biswas et al., 2006) and tyrosine phosphorylated β-catenin (Biswas et al., 2005). In this proposed mechanism, the SH2 domains of SHP-2 associate with phosphorylated ITIM tyrosines in PECAM-1, encoded by exons 13 and 14, whereas β-catenin binds PECAM-1 at a nearby downstream site encoded by exon 15, facilitating dephosphorylation of β-catenin. Dephosphorylated β-catenin would then be free to rebind VE-cadherin, reconstitute the adherens junction and stabilize the permeability barrier. Despite the attractiveness of this proposed mechanism, our finding (Figs 3, 4) that ITIM-less PECAM-1 was as effective as wild-type PECAM-1 in both maintaining and restoring endothelial cell junction integrity following exposure to thrombin makes it likely that ITIM-independent mechanisms are

Fig. 3. Homophilic adhesive properties of PECAM-1 are required to establish barrier function at rest. (A) HPAECs were first transduced with lentivirus encoding PEC02 siRNA, sorted, and then transduced again with lentivirus encoding WT or mutant forms of PECAM-1 that were resistant to PEC02 siRNA or with pWPT (Control vector). Expression of PECAM-1 was assessed by flow cytometry and is indicated by the lines in the representative histograms. The PECAM-1 MFI for each cell type is as follows: Isotype, 118; pWPT, 483; WT, 2909; K89A, 2977; ITIM-less, 2706; C595S, 2527. (B) Baseline Rb from the indicated number of wells analyzed for each group. HPAECs reconstituted with K89A PECAM-1 and pWPT displayed significantly lower baseline Rb compared with HPAECs transduced with WT PECAM-1 as determined by one-way ANOVA. (C) REN mesothelioma cells were transfected with pcDNA3 control plasmid (Control vector), or plasmids encoding WT or mutant forms of PECAM-1, and expression of PECAM-1 was assessed by flow cytometry. The MFI of PECAM-1 expression is as follows: pcDNA3, 3; WT, 497; K89A, 419; ITIM-less, 400; C595S, 398. (D) Baseline resistance of the monolayers from C to current flow at 4000 Hz was assessed by ECIS, and bars in the graphs report the mean ± s.d. of the baseline resistance in Ω from the indicated number of wells for each group. Cells expressing K89A PECAM-1 again had significantly lower baseline resistance to current flow as determined by one-way ANOVA. ***P<0.001 vs WT PECAM-1.

To establish the functional properties of PECAM-1 necessary for its barrier function, we introduced mutant forms of PECAM-1 lacking key function-determining residues into PECAM-1-deficient endothelial cell lines and examined their contribution to barrier integrity, both at rest and following disruption, using ECIS technology. Interestingly, HPAECs expressing a homophilic binding-crippled K89A mutant form of PECAM-1 exhibited poor barrier function under both conditions, whereas cells expressing ITIM-less and C595S forms of PECAM-1 were able to maintain and restore barrier integrity similarly to that of HPAECs expressing wild-type PECAM-1 (Figs 3, 4). The inability of K89A PECAM-1 to become concentrated at endothelial cell–cell junctions (supplementary material Fig. S1) (Bergom et al., 2008; Sun et al., 2000), possibly contributes to the inefficiency with which it is able to maintain or restore vascular barrier integrity, and confirms the importance of PECAM-1–PECAM-1 homophilic interactions in controlling both the subcellular location and vascular function of this adhesion and signaling receptor. Because engagement of PECAM-1 results in activation of integrin on leukocytes (Berman et al., 1996; Berman and Muller, 1995; Dangerfield et al., 2002; Tanaka et al., 1992; Vernon-Wilson et al., 2006; Vernon-Wilson et al., 2007), platelets (Varon et al., 1998) and endothelial cells (Chiba et al., 1999), and because integrins enable endothelial cells to bind to extracellular matrix proteins at focal adhesions, which are crucial determinants of cell shape and permeability (Mehta and Malik, 2006), it will be interesting in future studies to determine whether integrin activation downstream of homophilic PECAM-1 engagement has a role in PECAM-1-mediated maintenance of vascular barrier integrity. If it does, then PECAM activation of integrins in this case does not involve the traditional signaling through its ITIM domains (Figs 3, 4).

The PECAM-1 cytoplasmic domain has previously been implicated in the regulation of endothelial cell junctional permeability via its ability to form a ternary complex with the protein tyrosine phosphatase SHP-2 (Biswas et al., 2006) and tyrosine phosphorylated β-catenin (Biswas et al., 2005). In this proposed mechanism, the SH2 domains of SHP-2 associate with phosphorylated ITIM tyrosines in PECAM-1, encoded by exons 13 and 14, whereas β-catenin binds PECAM-1 at a nearby downstream site encoded by exon 15, facilitating dephosphorylation of β-catenin. D Dephosphorylated β-catenin would then be free to rebind VE-cadherin, reconstitute the adherens junction and stabilize the permeability barrier. Despite the attractiveness of this proposed mechanism, our finding (Figs 3, 4) that ITIM-less PECAM-1 was as effective as wild-type PECAM-1 in both maintaining and restoring endothelial cell junction integrity following exposure to thrombin makes it likely that ITIM-independent mechanisms are
ANOV A. ***
slope of recovery compared with the other cell types as assessed by one-way
that were reconstituted with K89A PECAM-1 had a significantly decreased
normalized slope of recovery between the indicated time periods. HPAECs
from the indicated number of wells are reported as the mean ± s.d. of the
regression to assess the rate of recovery. Each well that was analyzed was
from the lowest point to a point near full recovery was obtained by linear
resistance in
stimulated with thrombin, and lines in the graph display the mean ± s.d. of the
HPAECs
PECAM-1 that were resistant to PEC02 siRNA (representative expression is
Fig. 3A). ECIS measurements at 4000 Hz were obtained on cells
were first transduced with lentivirus containing PEC02 siRNA, sorted, and
transduced again with lentivirus encoding WT and mutant forms of
PECAM-1 that were resistant to PEC02 siRNA (representative expression is
shown in Fig. 3A). ECIS measurements at 4000 Hz were obtained on cells
stimulated with thrombin, and lines in the graph display the mean ± s.d. of the
resistance in Ω versus time for three wells in one representative experiment.
Similar results were obtained in a four other independent experiments.
(B) ECIS measurements were modeled to obtain the Rb of monolayers, and
lines in the graph displays the mean ± s.d. of the Rb in Ω cm² versus time for
three wells in the representative experiment in A. (C) The slope of Rb curves
from the lowest point to a point near full recovery was obtained by linear
regression to assess the rate of recovery. Each well that was analyzed was
normalized to the well expressing WT PECAM-1 with the highest slope within
its respective independent experiment (five independent experiments). Results
from the indicated number of wells are reported as the mean ± s.d. of the
normalized slope of recovery between the indicated time periods. HPAECs
that were reconstituted with K89A PECAM-1 had a significantly decreased
slope of recovery compared with the other cell types as assessed by one-way
ANOVA. ***P<0.001 vs WT PECAM-1.

Fig. 4. Homophilic adhesive properties of PECAM-1 are required to
restore vascular barrier integrity after thrombin challenge. (A) HPAECs
were first transduced with lentivirus containing PEC02 siRNA, sorted, and
then transduced again with lentivirus encoding WT and mutant forms of
PECAM-1 that were resistant to PEC02 siRNA (representative expression is
shown in Fig. 3A). ECIS measurements at 4000 Hz were obtained on cells
stimulated with thrombin, and lines in the graph display the mean ± s.d. of the
resistance in Ω versus time for three wells in one representative experiment.
Similar results were obtained in a four other independent experiments.
(B) ECIS measurements were modeled to obtain the Rb of monolayers, and
lines in the graph displays the mean ± s.d. of the Rb in Ω cm² versus time for
three wells in the representative experiment in A. (C) The slope of Rb curves
from the lowest point to a point near full recovery was obtained by linear
regression to assess the rate of recovery. Each well that was analyzed was
normalized to the well expressing WT PECAM-1 with the highest slope within
its respective independent experiment (five independent experiments). Results
from the indicated number of wells are reported as the mean ± s.d. of the
normalized slope of recovery between the indicated time periods. HPAECs
that were reconstituted with K89A PECAM-1 had a significantly decreased
slope of recovery compared with the other cell types as assessed by one-way
ANOVA. ***P<0.001 vs WT PECAM-1.

also involved. Further studies will be required to characterize the
ITIM-independent regions of the PECAM-1 cytoplasmic domain
that are involved in PECAM-1-mediated barrier-promoting
activities.

S1P is a bioactive lipid that stabilizes endothelial cell junctions
via its binding to the G-protein-coupled receptor S1P1 (Komarova
et al., 2007; Rosen and Goetzl, 2005). A number of potentially
interesting links have been reported to exist between PECAM-1
and S1P biology. First, PECAM-1 has been reported to both bind to
(Fukuda et al., 2004) and modulate the function of (Limaye et
al., 2005) sphingosine-1-kinase, a lipid-raft-localized enzyme that
phosphorylates sphingosine to yield S1P (Rosen and Goetzl, 2005).
S1P, in turn, appears to be able to induce phosphorylation of
PECAM-1 ITIMs (Huang et al., 2008). Finally, the fraction of
PECAM-1 that is localized to lipid rafts has been found to influence
the ability of S1P1 to signal (Gratzinger et al., 2003). Taken
together, these data suggest that the fraction of PECAM-1 that
exists in lipid rafts might function to stabilize endothelial cell–cell
junctions via its ability to localize sphingosine-1-kinase to rafts,
where the S1P generated can bind to proximal raft-localized S1P1,
thereby increasing barrier function. Our finding (Figs 3, 4) that the
C595S PECAM-1 mutant form of PECAM-1 is as efficient at
stabilizing endothelial cell–cell junctions as is wild-type PECAM-
1, however, suggests that PECAM-1-mediated coordination of S1P
signaling, if it occurs, does not require its raft localization. Owing
to the importance of S1P in vascular barrier function and the
ability of S1P and PECAM-1 to regulate each other, greater clarity
is needed as to how and/or whether PECAM-1 promotes barrier
maintenance via its effects on S1P signaling.

In conclusion, we have demonstrated that homophilic PECAM-
1–PECAM-1 interactions and its localization to cell–cell junctions
are primarily responsible for PECAM-1-mediated barrier protection.
By contrast, PECAM-1-mediated signaling through cytoplasmic
ITIMs, and its localization to membrane microdomains, appear to
be dispensable for its barrier protective properties. Expression of
PECAM-1 has been shown to influence disease outcomes in model
systems that demonstrate changes in permeability, either acutely as
in endotoxic shock (Carrithers et al., 2005; Maas et al., 2005), or
chronically as in atherosclerosis (Goel et al., 2008; Harry et al.,
2008). The barrier protective properties of PECAM-1 have also
been implicated in the accumulation of leukocytes at inflammatory
sites (Graesser et al., 2002), which influences tissue and organ
damage during inflammatory responses. Consequently, elucidation
of the mechanisms by which PECAM-1 regulates barrier function
will have important implications for understanding the pathological
processes in both acute and chronic inflammatory diseases.

Materials and Methods

Cell lines

All cell culture reagents were obtained from Mediatech (Manassas, VA), unless
otherwise specified. HPAECs and HAECs were obtained from In VitroGen
(Carlshad, CA) and maintained in Medium 200 (In VitroGen) supplemented with low serum
growth supplement (In VitroGen) and 400 µg/ml gentamycin. iHUVECs were
generated by transducing HUVECs with the recombinant retrovirus LXSN16 E6/E7
as previously described (Moses et al., 1999). iHUVECs were maintained in human
endothelial serum-free medium (Invitrogen), 10% FBS (Sigma, St Louis, MO), 5%
endothelial cell growth supplement (BD Biosciences, San Jose, CA).
REN mesothelioma cells (Smyle et al., 1994) were maintained in RPMI 1640, 10% FBS,
2 mM L-glutamine, and 500 µg/ml gentamycin. Stable REN cell lines
expressing WT and K89A PECAM-1 have been previously described (Sun et al.,
2000). REN cells expressing ITIM-less (Y663,686F) and C595S PECAM-1 were
generated by transfecting REN cells (Lipofectamine 2000, Invitrogen) with a pcDNA3
plasmid encoding human PECAM-1 with the tyrosines at 663 and 686 mutated to
phenylalanine, and the cysteine residue at 595 mutated to serine, respectively.
CD31 adhesion enhances vascular integrity

References

Albeda, S. M., Oliver, P. D., Romer, L. H. and Buck, C. A. (1990). EndoCAM: a novel endothelial cell-cell adhesion molecule. J. Cell Biol. 110, 1227-1237.

Bergom, C., Goel, R., Paddock, C., Gao, C., Newman, A., Katiyar, S. M., Matsuyma, S. and Newman, P. J. (2006). The cell-adhesion and signaling molecule PECAM-1 is a molecular mediator of resistance to genotoxic chemotherapy. Cancer Biol. Ther. 5, 1699-1707.

Bergom, C., Paddock, C., Gao, C., Holst, Y., Newman, D. K. and Newman, P. J. (2008). An alternatively spliced isoform of PECAM-1 is expressed at high levels in human and murine tissues, and suggests a novel role for the C-terminus of PECAM-1 in cytoprotective signaling. J. Cell Sci. 121, 1235-1242.

Berman, M. E. and Muller, W. A. (1995). Ligation of platelet/endothelial cell adhesion molecule 1 (PECAM-1/CD31) on monocytes and neutrophils increases binding capacity of leucocyte CR3 (CD11b/CD18). J. Immunol. 154, 299-307.

Berman, M. E., Xie, Y. and Muller, W. A. (1996). Roles of platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31) in natural killer cell transendothelial migration and beta 2 integrin activation. J. Cell Biol. 135, 1515-1519.

Biswas, P., Zhang, J., Schoenfeld, J. D., Schoenfeld, D., Gratzinger, D., Canosa, S. and Madri, J. A. (2005). Identification of the regions of PECAM-1 involved in β3- and γ2-catenin associations. Biochem. Biophys. Res. Commun. 329, 1225-1233.

This work was supported by Predoctoral Fellowship Award 08101672 (to J.R.P.) from the Midwest Affiliate of the American Heart Association, and by grant HL-40926 (to P.J.N.) and HL-46849 (to W.A.M.) from the National Heart, Lung, and Blood Institute of the National Institutes of Health. The authors are grateful to Drs Premanand Sundivakkam, Chinnaasamy Tiruppathi and Arsar Malik (University of California, Los Angeles) and Christopher Canosa (Applied Biophysics) for helpful insights and for providing established protocols for ECIS measurements. Deposited in PMC for release after 12 months.
Tada, Y., Koarada, S., Morito, F., Ushiyama, O., Haruta, Y., Kanegae, F., Ohta, A., Ho, A., Mak, T. W. and Nagasawa, K. (2003). Acceleration of the onset of collagen-induced arthritis by a deficiency of platelet endothelial cell adhesion molecule 1. *Arthritis Rheum.* **48**, 3280-3290.

Tanaka, Y., Albelda, S. M., Horgan, K. J., van Seventer, G. A., Shimizu, Y., Newman, W., Hallam, J., Newman, P. J., Buck, C. A. and Shaw, S. (1992). CD31 expressed on distinctive T cell subsets is a preferential amplifier of β-1 integrin-mediated adhesion. *J. Exp. Med.* **176**, 245-253.

Tiruppathi, C., Malik, A. B., Del Vecchio, P. J., Keese, C. R. and Giaever, I. (1992). Electrical method for detection of endothelial cell-shape change in real time: assessment of endothelial barrier function. *Proc. Natl. Acad. Sci. USA* **89**, 7919-7923.

Tzima, E., Irani-Tehrani, M., Kiosses, W. B., Dejana, E., Schultz, D. A., Engelhardt, B., Cao, G., DeLisser, H. and Schwartz, M. A. (2005). A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. *Nature* **437**, 426-431.

Vandenbroucke, E., Mehta, D., Minshall, R. and Malik, A. B. (2008). Regulation of endothelial junctional permeability. *Annu. N. Y. Acad. Sci.* **1123**, 134-145.

Vaporciyan, A. A., Delisser, H. M., Yan, H. C., Mendiguren, I. I., Thom, S. R., Jones, M. L., Ward, P. A. and Albelda, S. M. (1993). Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. *Science* **262**, 1580-1582.

Varon, D., Jackson, D. E., Shenkman, B., Dardik, R., Tamarin, I., Savion, N. and Newman, P. J. (1998). Platelet/endothelial cell adhesion molecule-1 serves as a costimulatory agonist receptor that modulates integrin-dependent adhesion and aggregation of human platelets. *Blood* **91**, 500-507.

Vernon-Wilson, E. F., Aurade, F. and Brown, S. B. (2006). CD31 promotes beta integrin-dependent engulfment of apoptotic Jurkat T lymphocytes opsonized for phagocytosis by fibronectin. *J. Leukoc. Biol.* **79**, 1260-1267.

Vernon-Wilson, E. F., Aurade, F., Tian, L., Rowe, I. C., Shipston, M. J., Savill, J. and Brown, S. B. (2007). CD31 delays phagocyte membrane repolarization to promote efficient binding of apoptotic cells. *J. Leukoc. Biol.* **82**, 1278-1288.

Wakelin, M. W., Sanz, M. J., Dewar, A., Albelda, S. M., Larkin, S. W., Boughton-Smith, N., Williams, T. J. and Nourshargh, S. (1996). An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. *J. Exp. Med.* **184**, 229-239.

Wilkinson, R., Lyons, A. B., Roberts, D., Wong, M. X., Bartley, P. A. and Jackson, D. E. (2002). Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) acts as a regulator of B-cell development, B-cell antigen receptor (BCR)-mediated activation, and autoimmune disease. *Blood* **100**, 184-193.

Wong, M. X., Roberts, D., Bartley, P. A. and Jackson, D. E. (2002). Absence of platelet endothelial cell adhesion molecule-1 (CD31) leads to increased severity of local and systemic IgE-mediated anaphylaxis and modulation of mast cell activation. *J. Immunol.* **168**, 6455-6462.