Carbon radioactivity of 223Ac and a search for nitrogen emission

A Guglielmetti1, D Faccio1, R Bonetti1*, S V Shishkin2, S P Tretyakova2*, S V Dmitriev3, A A Ogloblin3, G A Pik-Pichak3, N P van der Meulen4, G F Steyn4, T N van der Walt4, C Vermeulen4 and D McGee4

1- Istituto di Fisica Generale Applicata and INFN, Milano, Italy
2- JINR, Dubna, Russia
3- Kurchatov Institute, Moscow, Russia
4- iThemba LABS, Somerset West 7129, South Africa

Alessandra.Guglielmetti@mi.infn.it

Abstract. A very intense 227Pa source was produced in order to study the possible 14C and 15N spontaneous emission from 223Ac. After the irradiation of a hemispherical, highly efficient array of nuclear track detectors, about 350 Carbon events were found leading to a branching ratio with respect to alpha decay $B = 3.2 \times 10^{-11}$. Comparison with other 14C emitters allows the study of the influence of even-odd effects on cluster radioactivity.

1. Introduction

After more than 20 years from its discovery, due to the pioneering work of Rose and Jones [1], cluster radioactivity of heavy nuclei is now a well established phenomenon, both from the experimental and the theoretical side [2]. Twenty-three spontaneous emissions of neutron-rich clusters ranging from 14C up to 34Si have been measured and the typical, most important characteristics of the phenomenon have been established. Nevertheless, some aspects of the decay mode still remain to be clarified, among these the dependence of the decay probability on the microscopic properties of the involved nuclei, which can be better investigated by studying emissions from odd-A nuclei. In fact, in strict analogy with what happens for alpha decay, while for even-even nuclei the transitions are always favoured ground state to ground state ones, in the case of odd-A emitters the states to which the unpaired particle belongs before and after the radioactive decay can play a role, giving rise to favored or unflavored transitions according to the overlapping degree between such states [3,4].

In this context, we decided to study the possible cluster decay of 223Ac by 14C and 15N emission which could allow us to investigate the effect of the unpaired odd particle, both in the heavy residual nucleus in the case of 14C emission and in the cluster in the case of 15N decay. The last decay mode is expected to be on one side a particularly favored one, the residual nucleus being the tightly bound double magic 208Pb, and, on the other side, an extremely interesting one since, among the emissions

* Deceased
discovered to date, only a single case of odd-A cluster is known, measured with the very low statistics of only one event [5].

2. The experiment
One of the most important features of cluster decay is its extremely low decay probability: partial half-lives for the emissions measured up to now range from 10^{11} up to 10^{30} s. Such a feature demands for the availability of a huge number of atoms of the decaying isotope. This is why, even if the idea of studying cluster radioactivity of 223Ac came to our mind already in 1990, we had to wait until 2005 to perform the experiment, in order to find out the best possible way to produce 223Ac.

2.1. Source Production
As the half-life of 223Ac is very short (2.1 min), we decided to produce its precursor 227Pa which has a much longer half life (38.3 min) and would continuously feed 223Ac (in secular equilibrium with its precursor) by means of alpha decay. We therefore irradiated a number of thick (4.7 g/cm2 and nominally 8 g each) Th targets with a 66 MeV proton beam (I= 80 µA) delivered by the separated sector cyclotron of iThemba LABS for 2 hours: 227Pa was obtained through the reaction 232Th(p,6n)227Pa. The chemical separation of 227Pa from the Th target material had to be completed within approximately 70 min from the end of bombardment (EOB), i.e. two half-lives of the precursor radioisotope: this was achieved by ion exchange chromatography. The chemical procedure is described in details in Ref. [6]. After the separation from the bulk material, the Pa was evaporated onto a 28mm diameter gold plated copper support and this constituted our source. The duration of the whole procedure took 71 min after EOB.

2.2 Detectors
The source was put in an irradiation chamber where it was exposed to a 23.5 cm diameter hemisphere, covered inside with BP-1 solid state nuclear track detectors (SSNTD), for 2 hours. The choice of SSNTD for measuring cluster radioactivity is almost compulsory: in fact, the branching ratios with respect to alpha decay are always very low - from 10^{-9} down to 10^{-17} for the known emissions- therefore detectors with a lower charge threshold are necessary. In the case of BP-1 glasses, this threshold is exactly 6, therefore the enormous flux of alpha particles accompanying the eventual 14C or 15N emission is not seen. The geometrical efficiency of the detecting apparatus was very high, about 84% of 2π. The BP-1 glasses were subsequently etched in 50% HBF$_4$ at 65°C for about 2 days in order to enlarge the latent tracks eventually produced by the ionizing clusters and make them visible under an optical microscope.

After the irradiation of the track detectors, the alpha activity of the Pa source was measured with a 300 mm2 commercial silicon detector, placed at about 30 cm from the source. In front of both the detector and the source, two collimators of 8 and 5 mm diameter were placed, respectively, in order to better define the geometrical efficiency of the measurement. The 5 mm collimator was put in different positions on the source to overcome the ambiguity due to a possible non-uniform distribution of the source material. The alpha activity measurement was performed by doing four short (a few minutes each) acquisitions with the Si detector at different times, from about 6 to about 8 h after EOB, in order to have, on one side, a reasonable counting rate on the detector and, on the other side, a good statistics for the two more energetic alpha lines due to the 227Pa decay chain.

3. Analysis and Results
The whole surface of the irradiated track detectors (about 730 cm2) was investigated under an optical microscope (at 200x magnification) with an automated system [5], based on an Elbek (Siegen, Germany) image analyzer, which allowed for a faster search of “good” candidates. Afterwards, all the automatically found events were manually inspected and track parameters were measured for those events whose identification was uncertain. This allowed the calculations of sensitivity (S) and residual range (R_r), two characteristic parameters of track detectors that are proportional to specific energy loss
and energy, respectively. Then a comparison with calibration curves obtained irradiating similar samples of BP-1 glasses with ions of known mass, charge and energy delivered by a Tandem accelerator finally allowed for the charge and energy identification of the events. This comparison is shown in figure 1 for some of the found events, each identified by three couples of \((R_r, S)\) measured at different etching stages of the track development, i.e. in different positions along the particle total range in the track detector.

A still preliminary analysis of the results, based on chi-square criteria, allows the attribution of about 350 events to \(^{14}\text{C}\) clusters, with energy compatible with that expected on the basis of the decay Q-value. No event was attributed, at this stage of the analysis, to the emission of a \(^{15}\text{N}\) cluster.

![Figure 1: Comparison of detected events with accelerator calibration curves. Each event is identified by three couples of \((R_r, S)\). The solid (dashed) line is the calibration curve for \(^{14}\text{C}\) (\(^{15}\text{N}\)).](image)

The analysis of the alpha spectra was much more challenging than expected. In fact, the source was not only non-uniform but also rather thick, due to a substrate of about 5-10 \(\mu\text{m}\) of FeCl\(_3\).3H\(_2\)O. It also contained a large number of isotopes with all their decay products. The substrate was a residue of the chemical procedure while the isotopes were produced during the thick Th target proton bombardment via \((p, xn)\), \((p, pyn)\), \((p, azn)\) reactions. This finally resulted in 51 elements giving rise to about 250 alpha transitions, most of which contributed to some energy spread due to the source thickness. A simple analysis of the most energetic alpha transitions due to \(^{219}\text{Fr}\) and \(^{215}\text{At}\) belonging to the \(^{227}\text{Pa}\) chain was not possible. A much more complicated analysis procedure was then undertaken, taking into account all the 250 alpha transitions. A simulation of the alpha spectrum with different substrates and different thickness distribution in the source was performed to allow a comparison with the experimental data. In the end, the number of \(^{223}\text{Ac}\) alpha particles emitted from the source during the track detectors irradiation was determined with an uncertainty not yet finalized (probably of the order of 30\% or even more) due to all the above mentioned ambiguities. From this number, the number of \(^{14}\text{C}\) clusters and the geometrical efficiency of the detecting array, it is possible to calculate the
experimental branching ratio for 14C emission, $B(^{14}$C) = $3.2 \cdot 10^{-11}$. In the case of 15N emission, only an upper limit on the branching ratio can be inferred: $B(^{15}$N) $\leq 2.2 \cdot 10^{-13}$, with a 90% confidence level.

4. Discussion

A more refined analysis of the track parameters and chi-square criteria for the charge attribution of the detected events is still in progress. Nevertheless, on the basis of our preliminary results some conclusions may be drawn. In the case of 14C emission, our result for 223Ac can be compared with other already measured cases of 14C radioactivity from even-even or odd-A emitters. This can be done in the form of a Geiger Nuttal plot, where the partial half-life T is given as a function of the barrier penetrability P, in a Log-Log scale. This is represented in figure 2, where the results for even-even emitters are represented as circles and lie on a straight line while those for odd-A emitters are represented as squares and are above the line. For 223Ra, the decays to both the ground state and the first excited state of the heavy residual nucleus have been measured. The vertical distance of the odd-A LogT value from the line, for a fixed $-\log P$, is a simple measurement of the so-called Hindrance Factor (HF), i.e. of the lower decay probability associated only with nuclear structure effects. A more formal evaluation of the HF for 223Ac, according to the relations described in [3,4], gives about 5, not very far from unity. This means that 14C emission from this odd-A isotope is not much unfavoured but, on the contrary, resembles emissions from even-even nuclei.

![Figure 2. Geiger Nuttal plot for 14C emitters: the line interpolates the results for even-even nuclei (circles). See text for details.](image-url)
This can shed some light on the 223Ac ground state configuration which, in analogy with what happens in the decays of even-even nuclei, is expected to be similar to the ground state configuration of the heavy residual nucleus, 209Bi. A possible population of the first (0.9 MeV) excited state of 209Bi would be hindered by a factor 40 due only to energetic considerations, therefore the decay can be interpreted as a ground state-to-ground state favoured one.

In the case of 15N emission, the nonobservance of any event is compatible with an unfavoured transition: here the unpaired odd particle goes from the heavy nucleus 223Ac to the much lighter cluster 15N, whose ground state configurations are anyhow very much different.

A more detailed spectroscopic discussion of these results, once finalized, together with a comparison with the more accredited theoretical predictions will be published soon [7].

In the course of this long work, two of the authors unfortunately and tragically passed away. A.G. is particularly grateful to one of them for his precious teaching and unforgettable friendship.

References

[1] Rose H J and Jones G A 1984 Nature 307 245
[2] Bonetti R and Guglielmetti A 1999 in Heavy Elements and Related New Phenomena, vol. II, ed. by W Greiner and R K Gupta (Singapore, World Scientific)
[3] Bonetti R, Chiesa C, Guglielmetti A, Matheoud R and Migliorino C 1993 Nucl. Phys A 562 32
[4] Bonetti R, Chiesa C, Guglielmetti A, Migliorino C, Monti P, Pasinetti A L and Ravn H V 1994 Nucl. Phys. A 576 21
[5] Price P B, Bonetti R, Guglielmetti A, Chiesa C, Matheoud R, Migliorino C and Moody K J 1992 Phys. Rev C 46 1939
[6] van der Meulen N P, Steyn G F, van der Walt T N, Shishkin S V, Vermeulen C, Tretyakova S P, Guglielmetti A, Bonetti R, Ogloblin A A and McGee D 2006 Czech J. Phys 56 D357
[7] Guglielmetti A, Faccio D, Bonetti R, Shishkin S V, Tretyakova S P, Dmitriev S V, Ogloblin A A, Pik-Pichak G A, van der Meulen N P, Steyn G F, van der Walt T N, Vermeulen C and McGee D to be published