Research Briefs

A Japanese Box Lunch Bento Comprising Functional Foods Reduce Oxidative Stress in Men: A Pilot Study

Hisamitsu Ide1, Shuhei Tsukada2, Hitomi Asakura3, Ayaka Hattori3, Kentaro Sakamaki4, Yan Lu5, Hiroshi Okada1, Mari Maeda-Yamamoto6, and Shigeo Horie5

Abstract
The elder population has increased, introducing the profound medical and social challenge of maintaining health in aging seniors and the need for a medical approach to sustaining physical and mental health. The relationship between diseases and lifestyle-related factors such as diet and exercise are important. A health-conscious lifestyle improves one’s health condition from a medical perspective, as indicated by new wellness monitoring using health devices and recent research into the efficacy of functional lunches incorporating utilitarian agricultural, forestry, and fishery products and foods. For a period of 3 months, and solely at lunchtime, 21 participants consumed the contents of a bento (Japanese box lunch), which incorporated functional (healthy) foods. A variety of factors were analyzed, including: weight, weight fluctuation rate, abdominal girth, triglycerides, total cholesterol value, and 8-OHdG (8-hydroxy-2’-deoxyguanosine). The bento comprising functional foods resulted in a reduction in both weight and abdominal girth without calorie restrictions. A reduction over time was observed in 8-OHdG, an oxidative stress marker, as compared to values prior to initiation of the study. Usage of a health device, exercise/dietary advice from a physician and nutritionist, and the availability of meals incorporating functional agricultural products might help prevent lifestyle disease and lead to improved health management.

Keywords
obesity, functional food, oxidative stress

Received June 29, 2021; revised December 24, 2021; accepted January 4, 2022

Introduction
A transformation in eating habits and a lack of exercise have led to metabolic syndrome and other lifestyle diseases which have intensified health concerns in Japan. The cancer has ranked as the leading cause of death in Japan since 1981, and the mortality rate increases annually. Prostate cancer disease and mortality rates are particularly notable; although low compared to those in Western countries, they have shown a remarkable increase. The high prostate cancer disease rate of Japanese who have migrated to the United States suggests a strong relationship between lifestyle and prostate cancer. The obesity rate of Japanese men doubled from 15% to 30% over a 30-year period (Tsugane, 2020). The impact of the Western diet rich in fatty foods

1Department of Urology, Saitama Medical Center, Dokkyo Medical University, Saitama, Japan
2Leave a Nest Co., Ltd., Tokyo, Japan
3Department of Nutrition, Teikyo University Hospital, Tokyo, Japan
4Center for Data Science, Yokohama City University, Yokohama, Japan
5Department of Urology, Juntendo University, Graduate School of Medicine, Tokyo, Japan
6Institute of Food Research, National Agriculture and Food Research Organization, Tsukuba, Japan

Corresponding Author:
Hisamitsu Ide, Department of Urology, Saitama Medical Center, Dokkyo Medical University, 2-1-50 Minamikoshigaya, Koshigaya, Saitama 343-8555, Japan.
Email: ihisamit@dokkyomed.ac.jp

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Materials and Methods

The current study targeted healthy males aged 30 to 65 familiar with the usage of mobile devices such as iPhones and who provided written consent for participation. Individuals taking dietary/health supplements or consuming government-approved “food for specified health use” were excluded. All participants were Japanese. Approval was obtained from the Hospital Research Ethics Board (Approval number: 14-1822). Participants consumed a bento (Japanese lunch box) planned by a certified nutritionist and incorporating functional foods at weekday lunchtime for a 3-month period. In order for the subjects to record their lifelogs on a daily basis, they used an activity meter linked with a mobile terminal and a meal recording application which uses a camera. Participants were surveyed regarding weight, abdominal girth, triglyceride values, total cholesterol value, and 8-hydroxy-2’-deoxyguanosine (8-OHdG) prior to the study, and at the 1-month, 2-month, and 3-month points. BMI was calculated as weight divided by height squared (kilograms per square meter). For detection of 8-OHdG, serum samples were prepared from whole blood samples, which were centrifuged at 1500 g for 10 min as soon as possible after collection from subjects and were kept at -80°C until used. The procedure for detecting 8-OHdG in serum by Highly Sensitive 8-OHdG Check ELISA (KOG-HS10E, Japan Institute For the Control of Aging, Shizuoka, Japan) followed the instructions of the kit. Briefly, 50 ul of samples were used per well, mixed with an equal volume of the primary antibody and incubated overnight at 4°C. After washing and addition of the second antibody, absorbance was measured at a wavelength of 450 nm, and concentrations were calculated with the 4-PL program.

Bento meals centered around amylase-rich rice, barley abundant in β-glucan, and partially abraded brown rice grain. Bento caloric content ranged from 700 to 800 calories. No dietary restrictions were placed on subjects’ breakfast and dinner meals. Functional agricultural products were utilized as bento ingredients in this study. Aside from essential nutrients, functional agricultural products also include chemical components which, when consumed in proper quantity, are anticipated to be effective in health promotion. They include

- Dietary fiber: β-glucan, arabinoxylan, and fucoidan
- Polyphenols: catechin, rutin, quercetin, procyanidin, anthocyanin, and isoflavone Carotenoids: lycopene, β-carotene, astaxanthin, and lutein
- Amino acids and peptides: allin, anserine, and carnosine

Other: allyl isothiocyanate, capsaicin, zinc, and so on.

Figure 1 indicated an example of Japanese lunch box. For most participants of the study, venous blood was obtained in the morning and serum was separated immediately. Weight, abdominal circumference, total cholesterol, luteinizing hormone (LH), testosterone, and free testosterone were surveyed and/or collected from laboratory data.
Table 1. Changes of Clinical Variables After Taking Functional Bento.

Variable	Mean ± SD	Mean difference	p value	95% confidence interval for difference	
	Initiation	Month 3			
Weight (kg)	83.38 ± 17.89	81.80 ± 17.97	-1.576	.018	-2.852 to -0.301
Waist circumference (cm)	98.67 ± 12.14	94.92 ± 12.58	-3.738	<0.001	-4.922 to -2.354
Hemoglobin (g/dL)	15.34 ± 1.18	15.43 ± 1.25	0.09	.438	-0.148 to 0.329
Total protein (g/dL)	7.41 ± 0.33	7.42 ± 0.26	0.005	.935	-0.116 to 0.126
Albumin (g/dL)	4.66 ± 0.27	4.69 ± 0.24	0.024	.600	-0.069 to 0.117
Total bilirubin (mg/dL)	1.01 ± 0.51	0.93 ± 0.42	-0.077	.290	-0.224 to 0.07
AST (U/L)	28.19 ± 20.02	24.52 ± 12.67	-3.667	.266	-10.348 to 3.015
ALT (U/L)	37.00 ± 30.84	35.24 ± 28.51	-1.762	.663	-10.063 to 6.54
LDH (U/L)	168.48 ± 19.76	171.14 ± 21.30	2.667	.378	-3.508 to 8.842
ALP (U/L)	218.00 ± 58.22	218.05 ± 54.13	0.048	.991	-8.924 to 9.019
γ-GTP (U/L)	48.05 ± 30.73	45.86 ± 28.61	-2.19	.623	-11.335 to 9.594
Cholinesterase (U/L)	394.71 ± 57.35	391.62 ± 54.20	-3.095	.569	-14.245 to 8.055
Amylase (U/L)	64.76 ± 22.83	65.86 ± 25.12	1.095	.682	-4.399 to 6.59
Total Cholesterol (mg/dL)	207.67 ± 32.27	207.71 ± 30.65	0.048	.992	-9.401 to 9.496
Triglyceride (mg/dL)	182.48 ± 111.69	222.10 ± 223.33	39.619	.271	-33.399 to 112.637
HDL (mg/dL)	46.19 ± 10.85	48.48 ± 11.17	2.286	.078	-0.282 to 4.853
LDL (mg/dL)	161.48 ± 33.32	159.24 ± 29.76	-2.238	.639	-12.045 to 7.569
BUN (mg/dL)	13.51 ± 2.60	12.87 ± 2.38	-0.638	.188	-1.615 to 0.339
Creatinine (mg/dL)	0.87 ± 0.10	0.86 ± 0.11	-0.009	.570	-0.042 to 0.024
Uric acid (mg/dL)	6.70 ± 1.38	6.55 ± 1.21	-0.152	.384	-0.51 to 0.205
Na (mmol/L)	141.43 ± 1.25	140.57 ± 1.40	-0.857	.002	-1.362 to -0.353
K (mmol/L)	4.3 ± 0.25	4.17 ± 0.25	-0.13	.700	-0.272 to 0.012
Cl (mmol/L)	104.81 ± 1.60	103.48 ± 1.63	-1.333	<0.001	-1.982 to -0.684
Ca (mg/dL)	9.41 ± 0.27	9.53 ± 0.32	0.119	.093	-0.022 to 0.26
P (mg/dL)	3.48 ± 0.44	3.59 ± 0.51	0.114	.320	-0.12 to 0.348
Glucose (mg/dL)	102.52 ± 19.76	102.71 ± 15.26	0.19	.968	-9.868 to 10.067
HbA1C (%)	5.67 ± 0.55	5.72 ± 0.49	0.048	.241	-0.035 to 0.13
Cortisol (mg/dL)	10.18 ± 3.54	11.06 ± 4.21	0.881	.375	-1.146 to 2.908
LH (mIU/mL)	4.51 ± 2.52	5.51 ± 1.62	1.005	.168	-0.461 to 2.471
FSH (mIU/mL)	5.53 ± 2.56	5.80 ± 2.59	0.276	.193	-0.152 to 0.704
Testosterone (ng/dL)	452.39 ± 167.40	415.30 ± 161.92	-37.086	.208	-96.524 to 22.352
Free testosterone (pg/mL)	16.15 ± 6.60	14.98 ± 7.05	-1.171	.127	-2.708 to 0.365

Data are expressed as mean ± SD. For analysis, we used repeated measures ANOVA (SPSS). A difference was considered significant at a value of *p < .05.

Results

Thirty individuals initially enrolled in the study, but once subjects who refused to consume bento meals or for whom blood samples could not be obtained at all time points were excluded, 21 remained to comprise the analysis set.

Study participants ranged in age from 24 to 64 years; the median age of all enrolled patients was 40 years. The mean age of participants was 41 years. The average BMI of all enrolled patients was 28.3 (±4.81). Baseline characteristics were summarized in Table 1.

Participants, weighed an average of 1.576 kg less at the end of the study compared to measurements taken prior to study initiation, showing a statistically significant decrease, p = .018, F(3, 60) = 4.593. Abdominal girth decreased by an average of 3.738 cm, p < .001, F(3, 60) = 24.499, (Table 1). Blood tests showed consuming bento lunches incorporating functional foods have statistically significant difference on Na value, p = .035, F(3, 60) = 3.047, and Cl value, p = .001, F(3, 60) = 6.434, among baseline, 1-month, 2-month, and 3-month points. Pairwise comparisons from 3-month and baseline from repeated measure ANOVA demonstrating a significant decline in Na (-0.857, p = .002) and Cl (-1.333, p < .001).

8-OHdG has a structure of hydroxylated deoxyguanosine (dG) which is one of the “bases” forming DNA, and
when oxidative stress occurs with active oxygen, the 8-OHdG is excreted in the healing process. Therefore, through the mechanism of active oxygen, 8-OHdG is a marker which keenly reflects influences on the body, and is measurable in blood, urine, and saliva. As a result of the functional bento, repeated measures ANOVA, $p = .001, F(3, 60) = 5.974$, revealed significant difference on 8-OHdG level. Pairwise comparisons test showed significant decline in 8-OHdG level was observed at the 2-month (-0.112, $p = .001$) and 3-month (-0.08, $p = .03$) points compared to values prior to the study. A significant change ($p = .007$) was also observed between the 1-month and 2-month points. 8-OHdG; 8-hydroxy-2'-deoxyguanosin.

Discussion

Lifestyle improvements are effective in prevention of cancer and other diseases, but the key lies in the degree of continuation. The use of lifelogs is anticipated to help individuals manage their own health in various circumstances. The current study targeted healthy men and employed health devices to gather and monitor physical data which were used, together with bento lunches planned by certified nutritionists and incorporating functional foods, to investigate weight reduction and an inhibitory effect on oxidative stress. Following consumption of bento incorporating functional foods, reductions were observed in weight, abdominal girth, and 8-OHdG, an oxidative stress marker. Oxidative stress is closely related to carcinogenesis and malignant progression. Reactive oxygen stress (ROS) has been implicated in prostate carcinogenesis, and repair of oxidative DNA damage may be defective in prostate tissues as a result of uncontrolled oxidative stress and increased oxidative DNA damage (Malins et al., 2003). An immunohistochemical study using 8-OHdG antibodies revealed positive staining in nuclei of prostate epithelial cells and prostate cancer cells (Ide et al., 2012). Our previous result indicated that the prostate may be particularly vulnerable to oxidative attack.

The incidence rate of prostate cancer is lower in Asian countries compared to Western nations, and dietary intake of polyphenols, which have a strong antioxidative action, may participate in the low incidence rate of prostate cancer (Horie, 2012). Guidance on prevention of cancer (and prostate cancer in particular) centers on appropriate exercise, avoidance of a high-fat diet, and foods rich in polyphenols such as vegetables (including tomatoes), fruits, soybeans, coffee, and green tea (Thapa & Ghosh, 2012). Results of the current study suggested that an intake of ingredients incorporating functional foods may help reduce oxidative stress on cells.

The bento comprising functional foods resulted in a reduction in both weight and abdominal girth without calorie restrictions. One of the reasons is the participants were consuming β-glucan daily. The intake of high β-glucan barley led to significant and safe reductions in body weight, BMI, and abdominal girth in individuals with visceral fat obesity (Aoe et al., 2017). Barley high β-glucan may contribute to loss the weight and abdominal girth in this study. Lower Na and Cl levels may indicate effective sodium restriction over the 3-month study period. These results show that functional food intake may help put the brakes on canceration with lower oxidative stress, and that weight loss may help prevent lifestyle disease such as metabolic syndrome and hypertension.

Attention is being increasingly paid to the relationship between telomeres, one factor determining cell longevity, and lifestyle factors such as exercise and diet. Telomeres, found in eukaryotes, are comprised of characteristic repetitive sequences of DNA at the chromosome ends and various proteins, and have the role of preserving these chromosome ends. Telomeres are essential to normal chromosome division during cell division, grow short in cell deterioration which occurs with aging as chromosome instability increases, and are responsible for cell death and carcinogenesis. When telomere length shortens, the risk of bladder and lung cancer increases, and there are reports suggesting implication of this process in prostate cancer and prostatic intraepithelial neoplasia (Mirabello et al., 2009). On the other hand, telomere maintenance is enabled by an enzyme known as a telomerase. Ornish et al. divided subjects in a study into an active surveillance, low-risk prostate cancer group as the control group, and a lifestyle change group, and conducted follow-up for 2 years. The lifestyle change group consumed a low-fat diet of fruits and vegetables, walked for 30 min, did yoga, and enjoyed...
the psychological care of social support. In the control group, 13 (27%) of the 49 subjects experienced progression of their prostate cancer requiring intervention (surgery, radiation treatment, etc.), while only 2 (5%) of the 43 subjects in the lifestyle change group required therapeutic intervention (Frattaroli et al., 2008). A comparative analysis of lifestyle changes using peripheral blood leukocytes reportedly reported significant improvements in elevated telomerase activity and controlled telomere length (Ornish et al., 2013). Exercise is known to yield physical and mental improvement in individuals, and at least 30 MET-hours/week of exercise reportedly cuts prostate cancer risk by about 40% (Patel et al., 2005). One report of a meta-analysis of 19 cohort studies and 24 case-control studies identified a weak inverse correlation between exercise and prostate cancer (Liu et al., 2011). There are some limitations to the design of this study. We could not monitor entire food intake. The system utilizing a wearable device to enable video recording of meals and caloric intake with real-time information sharing between the user and the monitor will contribute healthy longevity. However, we could not obtain enough data to analyze daily caloric intake and activity, because the subject did not record them continuously. Otherwise, the possibility of artificial effects due to the other confounding factors such as exercise cannot be excluded. This system has task to improve and promote health conditions by continuous action change without losing motivation. Another limitation of this study is its relatively small sample size. A future large-scale, long-term observational study is necessary, and usage of these health devices to gather further data including genetic information on what types of foods and exercise would aid in disease prevention might lead to development of strategic cancer prevention tools to partner with therapeutic exercise and targeted foods helpful in prevention of obesity and metabolic syndrome.

Our results demonstrated that ensuring healthy longevity for men requires an approach embracing disease prevention and anti-aging in addition to surgery and other forms of medical management.

The current study was supported by a grant from the Research Project on the Development of Agricultural Products and Foods with Health-promoting Benefits (NARO) in Japan (2013–2015; grant No. C2).

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The current study was supported by a grant from the Research Project on the Development of Agricultural Products and Foods with Health-promoting Benefits (NARO) in Japan (2013–2015; grant No. C2).

ORCID iD

Hisamitsu Ide https://orcid.org/0000-0001-6350-9814

References

Aoe, S., Ichinose, Y., Kohyama, N., Komae, K., Takahashi, A., Abe, D., Yoshioka, T., & Yanagisawa, T. (2017). Effects of high beta-glucan barley on visceral fat obesity in Japanese individuals: A randomized, double-blind study. Nutrition, 42, 1–6. https://doi.org/10.1016/j.nut.2017.05.002

Chan, J. M., Van Blarigan, E. L., & Kenfield, S. A. (2014). What should we tell prostate cancer patients about (secondary) prevention? Current Opinion in Urology, 24(3), 318–323. https://doi.org/10.1097/MOU.000000000000049

Frattaroli, J., Weidner, G., Dinistrian, A. M., Kemp, C., Daubenmier, J. J., Marlin, R. O., Crutchfield, L., Yglecias, L., Carroll, P. R., & Ornish, D. (2008). Clinical events in prostate cancer lifestyle trial: Results from two years of follow-up. Urology, 72(6), 1319–1323. https://doi.org/10.1016/j.urology.2008.04.050

Fujita, K., Hayashi, T., Matsushita, M., Uemura, M., & Nonomura, N. (2019). Obesity, Inflammation, and Prostate Cancer. Journal of Clinical Medicine, 8(2). https://doi.org/10.3390/jcm802201

Hankin, J. H., Zhao, L. P., Wilkens, L. R., & Kolonel, L. N. (1992). Attributable risk of breast, prostate, and lung cancer in Hawaii due to saturated fat. Cancer Causes Control, 3(1), 17–23. https://doi.org/10.1007/BF00051907

Horie, S. (2012). Chemoprevention of prostate cancer: Soy isoflavones and curcumin. Korean Journal of Urology, 53(10), 665–672. https://doi.org/10.4111/kju.2012.53.10.665

Ide, H., Lu, Y., Yu, J., China, T., Kumamoto, T., Koseki, T., Yamaguchi, R., Muto, S., & Horie, S. (2012). Testosterone promotes DNA damage response under oxidative stress in prostate cancer cell lines. Prostate, 72(13), 1407–1411. https://doi.org/10.1002/pros.22492

Liu, Y., Hu, F., Li, D., Wang, F., Zhu, L., Chen, W., Ge, J., An, R., & Zhao, Y. (2011). Does physical activity reduce the risk of prostate cancer? A systematic review and meta-analysis. European Urology, 60(5), 1029–1044. https://doi.org/10.1016/j.eururo.2011.07.007

Malins, D. C., Johnson, P. M., Barker, E. A., Polissar, N. L., Wheeler, T. M., & Anderson, K. M. (2003). Cancer-related changes in prostate DNA as men age and early identification of metastasis in primary prostate tumors. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5401–5406. https://doi.org/10.1073/pnas.0931396100

Mirabello, L., Huang, W. Y., Wong, J. Y., Chatterjee, N., Reding, D., Crawford, E. D., De Vivo, I. A., Hayes, R. B., & Savage, S. A. (2009). The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell, 8(4), 405–413. https://doi.org/10.1111/j.1474-9726.2009.00485.x

Ornish, D., Lin, J., Chan, J. M., Epel, E., Kemp, C., Weidner, G., Marlin, R., Frena, S. J., Magbanua, M. J. M.,
Daubenmier, J., Estay, I., Hills, N. K., Chainani-Wu, N., Carroll, P. T., & Blackburn, E. H. (2013). Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. *Lancet Oncology, 14*(11), 1112–1120. https://doi.org/10.1016/S1470-2045(13)70366-8

Patel, A. V., Rodriguez, C., Jacobs, E. J., Solomon, L., Thun, M. J., & Calle, E. E. (2005). Recreational physical activity and risk of prostate cancer in a large cohort of U.S. men. *Cancer Epidemiology Biomarkers & Prevention, 14*(1), 275–279. https://pubmed.ncbi.nlm.nih.gov/15668508/

Thapa, D., & Ghosh, R. (2012). Antioxidants for prostate cancer chemoprevention: Challenges and opportunities. *Biochemical Pharmacology, 83*(10), 1319–1330. https://doi.org/10.1016/j.bcp.2011.12.027

Tsugane, S. (2020). Why has Japan become the world’s most long-lived country: Insights from a food and nutrition perspective. *European Journal of Clinical Nutrition, 75*, 921–928. https://doi.org/10.1038/s41430-020-0677-5

Wilson, K. M., Giovannucci, E. L., & Mucci, L. A. (2012). Lifestyle and dietary factors in the prevention of lethal prostate cancer. *Asian Journal of Andrology, 14*(3), 365–374. https://doi.org/10.1038/aja.2011.142