Medical Microbiology

Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi

Raimunda Sâmia Nogueira Brilhante a,b,*, Érica Pacheco Caetano a, Rita Amanda Chaves de Lima a, Francisca Jakelyne de Farias Marques a, Débora de Souza Collares Maia Castelo-Branco a, Charlline vládia Silva de Melo a, Glaucia Morgana de Melo Guedes a, Jonathas Sales de Oliveira a, Zoilo Pires de Camargo c, José Luciano Bezerra Moreira a, André Jalles Monteiro d, Tereza de Jesus Pinheiro Gomes Bandeira e, Rossana de Aguiar Cordeiro a,b, Marcos Fábio Gadelha Rocha a,j, José Júlio Costa Sidrim a,b

a Federal University of Ceará, Fortaleza, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, CE, Brazil
b Federal University of Ceará, Fortaleza, Postgraduate Program in Medical Sciences, CE, Brazil
c Federal University of São Paulo, Department of Microbiology, Immunology and Parasitology, Cellular Biology Division, São Paulo, SP, Brazil
d Federal University of Ceará, Fortaleza, Department of Statistics and Applied Mathematics, Fortaleza, CE, Brazil
e Christus College – Unichristus, Fortaleza, School of Medicine, Fortaleza, CE, Brazil
f State University of Ceará, Fortaleza, Postgraduate Program in Veterinary Sciences, Fortaleza, CE, Brazil

ARTICLE INFO

Article history:
Received 8 July 2015
Accepted 11 February 2016
Available online 26 July 2016
Associate Editor: Luis Henrique Souza Guimarães

Keywords:
Dimorphic fungi
Terpinen-4-ol
Tyrosol
β-Lapachone
Inhibitory effect

ABSTRACT

This study aimed to evaluate the in vitro antifungal activity of terpinen-4-ol, tyrosol, and β-lapachone against strains of Coccidioides posadasi in filamentous phase (n = 22) and Histoplasma capsulatum in both filamentous (n = 40) and yeast phases (n = 13), using the broth dilution methods as described by the Clinical and Laboratory Standards Institute, to determine the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of these compounds. The mechanisms of action of these compounds were also investigated by analyzing their effect on cell membrane permeability and ergosterol synthesis. The MIC and MFC these compounds against C. posadasi, mycelial H. capsulatum, and yeast-like H. capsulatum were in the following ranges: 350–5720 μg/mL, 20–2860 μg/mL, and 40–1420 μg/mL, respectively for terpinen-4-ol; 250–4000 μg/mL, 30–2000 μg/mL, and 10–1000 μg/mL, respectively, for tyrosol; and 0.48–7.8 μg/mL, 0.25–16 μg/mL, and 0.125–4 μg/mL, respectively for β-lapachone. These compounds showed a decrease in MIC when the samples were subjected to osmotic stress, suggesting that the compounds acted on the fungal membrane. All the compounds were able to reduce the ergosterol content of the fungal strains. Finally, tyrosol was able to cause a leakage of intracellular molecules.

© 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Coccidioidomycosis and histoplasmosis are systemic mycoses reported in the Americas, especially in the United States, Mexico, and Brazil. These diseases are caused by the dimorphic fungi Coccidioides spp. and Histoplasma capsulatum var. capsulatum, respectively. In Brazil, coccidioidomycosis caused by the species C. posadasii has only been reported in the Northeast, while histoplasmosis has been reported throughout the country with a 40% lethality rate when associated with AIDS.2,3 The treatment of these diseases involves azoles in cases with mild to moderate symptoms and amphotericin B in severe cases.3,4 Although the standard antifungal therapies are effective for treating these mycoses, some disadvantages have been observed for these therapies, such as nephrotoxicity caused by amphotericin B,5 the high cost of the lipid formulations of amphotericin B,6 and the fact that only 50–60% of patients with coccidioidomycosis respond to the treatment with fluconazole and itraconazole7 and 56–70% of patients with histoplasmosis respond to the treatment with ketoconazole.8 Hence, a search for new therapeutic strategies against these pathogens is of great importance.

Terpinen-4-ol is a terpene alcohol that exhibits in vitro antifungal properties against Candida spp., Cryptococcus neoformans, Malassezia spp., Rhodotorula spp., Trichosporon spp., Aspergillus spp., Penicillium spp., and dermatophytes.9–12 Tyrosol is a phenolic compound with antioxidant properties and an autoregulatory molecule of C. albicans13,14 which has in vitro antifungal properties against Candida spp.15 β-Lapachone is a quinone derived from lapachol with antifungal properties against Candida spp., Cryptococcus neoformans, and dermatophytes.16–19 In the light of the earlier studies, this investigation aimed at evaluating the in vitro inhibitory effects of these compounds and investigating the mechanism of action of these compounds against the fungal strains, C. posadasii and H. capsulatum.

Materials and methods

Microorganisms

Twenty-two strains of C. posadasii in the filamentous phase (18 clinical, 3 environmental, and 1 animal) and 40 strains of H. capsulatum in the filamentous stage (38 clinical and 2 animal) were used for this study. Among the H. capsulatum strains, 13 were also evaluated in the yeast phase. All the fungal strains were obtained from the fungal collection of the Specialized Medical Mycology Center (CEMM, Federal University of Ceará, Brazil). The procedures for identification of the fungi included the classic mycological analysis, as described by Brijhante et al.20 All the procedures were performed in a class II biological safety cabinet in a biosafety level 3 laboratory.

Antimicrobial agents

For the assays, terpinen-4-ol, tyrosol, and β-lapachone (all from Sigma Chemical Corporation, USA) were used. The traditional antifungal drugs, amphotericin B (AMB) (Sigma Chemical Corporation, USA) and itraconazole (ITC) (Janssen Pharmaceutica, Belgium) were used as control drugs. The stock solutions of terpinen-4-ol, ITC, and AMB were prepared in 100% dimethyl sulfoxide (DMSO); β-lapachone was dissolved in 80% DMSO; and tyrosol was dissolved in sterile distilled water.15,21,22 All the stock solutions were stored at −20 °C until use. Serial dilutions of each compound were prepared in RPMI 1640 medium (Sigma Chemical Corporation, USA), supplemented with L-glutamine, buffered to pH 7.0 using 0.156 M MOPS (Sigma Chemical Corporation, USA). DMSO was included in the assays as control to confirm that the DMSO used to dilute the compounds did not interfere with fungal growth.20

Preparation of inoculum for antifungal susceptibility assays

The strains of C. posadasii were grown on potato agar and incubated for 7 days at room temperature (25–28 °C). To prepare the inoculum, 2 mL of sterile saline were added to each culture, and the surface of the mycelium was scraped with a microbiological loop. The suspensions were transferred to sterile tubes and allowed to stand for 5 min. The supernatant was read in a spectrophotometer at a wavelength of 530 nm, and its transmittance was set to 95%. The suspensions containing arthroconidia and hyphal fragments were diluted to 1:10 with RPMI 1640 medium to obtain inocula containing approximately 1 × 10²–5 × 10⁵ CFU/mL.20

H. capsulatum strains in filamentous form were grown on brain heart infusion (BHI) agar (Himedia, India) at 28 °C for 7 days. The inoculum was prepared as described earlier. H. capsulatum strains in the yeast phase were grown in Sabouraud agar or BHI agar supplemented with 10% sheep blood and incubated for 7 days at 35 °C. Then, an aliquot of the fungal colony was transferred to 2 mL of sterile saline. The absorbance of supernatant was measured in a spectrophotometer at a wavelength of 530 nm, and its transmittance was set to 95%. The suspensions containing arthroconidia and hyphal fragments were diluted to 1:10 with RPMI 1640 medium to obtain inocula containing approximately 1 × 10²–5 × 10⁵ CFU/mL.20

Antifungal susceptibility test

The susceptibility of C. posadasii strains to the compounds being tested was determined through the broth macrodilution method, according to the M38-A2 protocol standardized by the CLSI.23 The susceptibility of H. capsulatum to the compounds was determined by the broth microdilution method, according to the M27-A3 protocol standardized by the CLSI.24 The concentrations of the tested compounds for C. posadasii strains were as follows: Terpinen-4-ol (350–5720 µg/mL), tyrosol (250–4000 µg/mL), β-lapachone (0.48–7.8 µg/mL), AMB (0.0625–1 µg/mL), and ITC (0.0625–1 µg/mL). The concentrations of the compounds being tested against H. capsulatum strains (in both phases) were as follows: Terpinen-4-ol (10–5720 µg/mL), tyrosol (3.9–2000 µg/mL), β-lapachone (0.0312–16 µg/mL), AMB (0.0039–2 µg/mL), and ITC (0.00195–1 µg/mL).
The MIC for AMB was defined as the lowest concentration of drug capable of inhibiting 100% of fungal growth, while for the other compounds, MICs were defined as the lowest concentration of compounds capable of inhibiting 80% of fungal growth, when compared to the drug-free growth control.20 All the tests were performed in duplicate. The results obtained were visually examined after 48 h (for C. posadasii), 4 days (for H. capsulatum in the yeast phase), and 7 days (for H. capsulatum in the filamentous phase) of incubation at 35 °C. For quality control of the antifungal susceptibility tests, Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258 were included.20

The minimum fungicidal concentration (MFC) of the compounds against C. posadasii and H. capsulatum was defined as the lowest concentration that completely inhibited fungal growth, after seeding 100 µL of the fungal suspension, at concentrations of compound just above the MIC, on potato agar and incubating for 6–7 days at 35 °C.

**Inhibitory effect of the compounds under osmotic stress**

The ability of the compounds to alter the permeability of the fungal membrane was also evaluated by macrodilution and microdilution. The assay was performed with 12 strains of C. posadasii (filamentous phase), 8 strains of H. capsulatum (filamentous phase), and 8 strains of H. capsulatum (yeast phase). Osmotic stress was induced by adding 0.1 M NaCl to RPMI 1640 medium (pH 7.0) as described by Brilhante et al.1 The compounds were used below inhibitory concentrations. The results were visually determined at the end of the above mentioned incubation period at 35 °C.3 The concentration of NaCl incorporated into RPMI broth was determined based on the results of susceptibility of fungal strain to salt, in which concentrations ≤0.175 M did not interfere with fungal growth for both species compared with the drug-free and salt-free growth control.

**Effect of the compounds on cell membrane permeability**

This test was performed, in order to determine the ability of these compounds to alter the permeability of the fungal membrane, causing leakage of intracellular molecules, as described by Cordeiro et al.2 Ten strains of C. posadasii (filamentous phase), eight strains each of the filamentous phase and yeast phase of H. capsulatum were used. These strains were exposed to different concentrations (MIC and MIC/2) of the compounds as previously determined in the macrodilution and microdilution assays. Growth control (without drugs) and blank solution (culture medium control) were also included in the tests. AMB (negative control) and izoniazid (positive control) were used as the controls.2 One milliliter from each tube containing the fungal inoculum exposed to the compound was transferred to sterile microcentrifuge tubes and centrifuged for 15 min (13,400 × g). Of the supernatant, 70 µL was removed from each tube and diluted 1:10 in sterile distilled water. The release of UV-absorbing molecules was analyzed by spectrometry at 260 nm for nucleic acids and 280 nm for proteins.

**Ergosterol quantification**

Cellular ergosterol was quantified as described by Brilhante et al.1 The extraction was performed using ten strains of C. posadasii strains (filamentous phase), eight strains each of the filamentous phase and yeast phase of H. capsulatum. Ergosterol was extracted after the exposure of the strains to inhibitory and subinhibitory concentrations of the compounds being tested, itraconazole (positive control drug), and amphotericin B (negative control drug), using macrolidation and microdilution techniques. Six different concentrations of the compounds were tested. The ranges of concentration tested against C. posadasii were as follows: Terpinen-4-ol (10–1420 µg/mL), tyrosol (15–2000 µg/mL), β-lapachone (0.03–3.9 µg/mL), AMB (0.003–0.5 µg/mL), and ITC (0.003–0.5 µg/mL). The ranges of concentration tested against H. capsulatum (in both phases) were as follows: Terpinen-4-ol (0.6–350 µg/mL), tyrosol (0.4–500 µg/mL), β-lapachone (0.003–1 µg/mL), AMB (0.001–1 µg/mL), and ITC (0.0006–0.5 µg/mL). The fungal pellet for each concentration was exposed to 0.5 mL of 20% (w/v) KOH, 60% (v/v) EtOH solution and incubated at 95 °C for 1 h in a water bath. Then, 0.6 mL of hexane was added to isolate the sterols. The solutions were centrifuged for 5 min (10,000 × g). Then, the top layer of hexane was transferred to microtubes, and 0.5 mL of hexane was added. The quantification of ergosterol was performed in a UV-visible spectrophotometer at λ = 295.10 nm and compared with a predetermined standard curve. Ergosterol extracted from the strains of C. posadasii and H. capsulatum grown in drug-free RPMI medium was quantified and treated as a positive control.1

**Statistical analysis**

The results of the assays performed in this study were analyzed using the Student’s t-test and ANOVA, using the post hoc Fisher’s LSD test. In all the cases, p < 0.05 was considered statistically significant.

**Results**

**In vitro susceptibility testing**

The MICs and MFCs of the compounds determined against C. posadasii were as follows: 350 ≤ MIC ≤ 1420 µg/mL and 1420 ≤ MFC ≤ 5720 µg/mL for terpinen-4-ol; 250 ≤ MIC ≤ 2000 µg/mL and 1000 ≤ MFC ≤ 4000 µg/mL for tyrosol; and 0.48 ≤ CÍM ≤ 3.9 µg/mL and 1.95 ≤ MFC ≤ 7.8 µg/mL for β-lapachone (Table 1).

The MICs and MFCs determined against H. capsulatum in the filamentous phase were as follows: 20 ≤ MIC ≤ 1420 µg/mL and 170 ≤ MFC ≤ 2860 µg/mL for terpinen-4-ol; 30 ≤ MIC ≤ 1000 µg/mL and 60 ≤ MFC ≤ 2000 µg/mL for tyrosol; and 0.25 ≤ MIC ≤ 1 µg/mL and 0.5 ≤ MFC ≤ 16 µg/mL for β-lapachone (Table 1).

For H. capsulatum in the yeast phase, the following MICs and MFCs were obtained: 40 ≤ MIC ≤ 350 µg/mL and 170 ≤ MFC ≤ 1420 µg/mL for terpinen-4-ol; 10 ≤ MIC ≤
250 μg/mL and 60 ≤ MFC ≤ 1000 μg/mL for tyrosol, and 0.125 ≤ MIC ≤ 1 μg/mL and 1 ≤ MFC ≤ 4 μg/mL for β-lapachone. The MIC values determined for the control drugs (AMB and ITC) were in agreement with the intervals found in previous tests against C. posadasii and H. capsulatum (Table 1). The standard strains, C. parapsilosis and C. krusei used as control exhibited MIC values for AMB and ITC that were in agreement with CLSI guidelines.

### Osmotic stress

The MICs determined for the compounds tested with RPMI + NaCl were statistically lower than those obtained using the standard RPMI against C. posadasii and H. capsulatum strains. There was a significant reduction in the range of 4–64 times in the MIC values of terpinen-4-ol (p = 0.0000), tyrosol (p = 0.0001), and β-lapachone (p = 0.0012) and the control drug, ITC (p = 0.0003) (Table 2).

### Cell membrane permeability

The results showed that despite the possible effects of all the compounds on the permeability of the fungal membrane, only tyrosol was able to cause leakage of intracellular molecules in C. posadasii and H. capsulatum strains. Tyrosol caused the leakage of nucleic acids leading to a significant increase in absorbance at 260 nm, reaching values significantly higher than those obtained for the fungal growth control (p = 0.0000) and the control drug AMB (negative control) (p = 0.0000), but similar to the absorbance values obtained for isoxazol (positive control) (p > 0.05) at MIC and MIC/2 (Fig. 1). Tyrosol also caused leakage of proteins with absorbance values (at 280 nm) significantly higher than those obtained for the fungal growth control (p = 0.0000), the control drug AMB (negative control) (p = 0.0000), but similar to the values obtained for the positive control drug isoxazol (p = 0.0000) at MIC and MIC/2 (Fig. 1). The

### Quantification of ergosterol

The results showed that the exposure of strains of C. posadasii and H. capsulatum to sub-inhibitory concentrations of terpinen-4-ol, tyrosol, and β-lapachone resulted in a decrease in the amount of ergosterol extracted from fungal cells compared to the fungal growth control (p = 0.0000) (Fig. 2). Higher the concentration of the compounds, lower is the amount of ergosterol extracted from the fungi. Similar results were observed for ITC (positive control), with no significant difference between the results obtained for the compounds and the control drug, ITC (p > 0.05) (Fig. 2).

### Discussion

The availability of a small number of antifungal drugs, the associated side effects of amphotericin B (i.e., nephrotoxicity), the high cost of the lipid formulations of amphotericin B, and the possible failure of some individuals to respond to the treatment with azoles may complicate the treatment of these mycoses. Hence, there is an urgent need to find new drugs or compounds possessing antifungal properties. Several studies have contributed to the development of new agents and to expand the list of antifungal drugs, such as terpinen-4-ol, tyrosol, and β-lapachone. The decision to include these compounds in the present work was motivated by their antimicrobial properties observed in other studies, especially against some species of yeasts and filamentous fungi. In addition, there are no reports available on the effects of these
Table 2 – MIC values (mean) for terpinen-4-ol, tyrosol and β-lapachone and the control drug itraconazole in the absence and presence of osmotic stress against C. posadasii and H. capsulatum strains.

| Species           | n  | Drugs (µg/mL) – mean of MIC values |
|-------------------|----|-----------------------------------|
|                   |    | Terpinen-4-ol | Tyrosol | β-Lapachone | Itraconazole |
|                   |    | RPMI | RPMI + NaCl |
| C. posadasii (F)  | 12 | 768  | 133        | 958  | 87          | 2    | 0.5         | 0.2  | 0.01        |
| H. capsulatum (F) | 8  | 65   | 9          | 253  | 32          | 0.6  | 0.1         | 0.1  | 0.009       |
| H. capsulatum (Y) | 8  | 176  | 22         | 89   | 9           | 0.4  | 0.06        | 0.02 | 0.001       |

F, filamentous phase; Y, yeast phase; n, number of strains; MIC, Minimum Inhibitory Concentration. Reduction of MIC values: Terpinen-4-ol (p = 0.0000), Tyrosol (p = 0.0001), β-lapachone (p = 0.0012) and Itraconazole (p = 0.0003).

Fig. 1 – Effect of terpinen-4-ol (TER), tyrosol (TIR), β-lapachone (B-LAP), amphotericin B (AMB, control drug), and isoniazid (INH, positive control drug) at MIC and MIC/2 (µg/mL) on the permeability of the cell membrane of the ten strains of C. posadasii strains (1a–b), eight strains of filamentous (f) H. capsulatum strains (1c–d) and eight yeast strains (Y) of H. capsulatum (1e–f) resulting in the leakage of nucleic acids (260 nm) (1a, 1c, 1e) and proteins (280 nm) (1b, 1d, 1f). These values represent the mean ± standard error of the absorbance values obtained for all tested strains. Control: fungal growth without drug.
compounds against the dimorphic fungi, C. posadasii and H. capsulatum.

It was observed that the MIC values obtained for terpinen-4-ol against C. posadasii and the filamentous and yeast phases of H. capsulatum were comparable to those reported by Hammer et al.\textsuperscript{3} against Candida spp., Saccharomyces cerevisiae, Rhodotorula mucilaginosa, Trichosporon spp., Aspergillus spp., Penicillium spp., and dermatophytes of the genera, Trichophyton, Epidermophyton, and Microsporum (MIC = 0.008–0.25%) and the findings of Marcos-Arias et al.\textsuperscript{15} against Candida spp. (MIC = 0.06–0.5%).

In the case of tyrosol, the MIC values obtained against C. posadasii and H. capsulatum were similar to the data reported in other studies with naphthoquinone derivatives, such as the findings of López et al.\textsuperscript{17} against Candida spp., Cryptococcus neoformans, and dermatophytes of the genera Trichophyton and Microsporum (MICs = 0.5–64 µg/mL).

It is possible that the tested compounds might exhibit a fungicidal effect because their MIC values are not much lower than their MFCs. According to Vila et al.\textsuperscript{26} when MFC values are lower than four-times the MIC values, a fungicidal effect is suggested, while a fungistatic effect is expected when MFC values are higher than four-times the MIC values.

Ergosterol is the predominant lipid molecule found in yeast cells. It regulates the fluidity and permeability of the membrane and the activity of many enzymes incorporated into this structure. Hence, it plays an important role in cell growth.\textsuperscript{27} Studies report that essential oils derived from plants and their monoterpenoid components such as terpinen-4-ol, which is a major component of the tea tree oil, have a lipophilic characteristic, likely presenting a direct action on the cell membrane structure and associated enzymes.\textsuperscript{10,15,27}

It has been reported that terpenes cross the fungal cell wall and are inserted between the fatty acid chains that constitute the lipid bilayer membrane, causing changes in its fluidity and permeability. These alterations may lead to the degradation of the cell wall, reduction in adherence to host surfaces, and other effects, such as the disruption of the plasma membrane, loss of cell content, coagulation of cytoplasm, and cell lysis.\textsuperscript{15} Cox et al.\textsuperscript{28} verified the capacity of tea tree oil and its components to alter the integrity of the cell membrane of Gram-negative bacteria and the yeast C. albicans. Parveen et al.\textsuperscript{29} found that a monoterpen affects the ergosterol and lipid biosynthesis and cell wall structure of Saccharomyces cerevisiae, leading to specific changes in gene expression. The results of the present study corroborates this report, by establishing the ability of terpinen-4-ol to inhibit the synthesis of ergosterol on the tested dimorphic fungi, as shown by the reduction in the amount of ergosterol extracted from fungal cells after exposure to subinhibitory concentrations of this compound.

Currently, little is known about the mechanism of action of tyrosol on fungal cell, with no reports in the literature. However, this study was able to show the effect of tyrosol on the permeability of the cell membrane of dimorphic fungi, including the reduction of MIC values after the exposure of fungal strains to high salinity. These findings suggest the degeneration of the cell membrane. In addition, tyrosol also caused leakage of protein and nucleic acids, suggesting the effect of
tyroso1 on both, cellular and nuclear membrane. The results also showed the property of tyrosol to inhibit the synthesis of ergosterol, as demonstrated by the reduction in the amount of ergosterol extracted from fungal strains after exposure to high concentrations of tyrosol.

The effect of β-lapachone on the plasma membrane might be due to its lipophilic nature, which may affect the metabolic pathways and functionalities of cellular processes. This fact was corroborated in this study that shows β-lapachone affects the permeability of the cytoplasmic membrane of C. posadasii and H. capsulatum, indicating that the effect is associated with the degeneration of the fungal membrane.

In addition, this compound interferes with the synthesis of ergosterol, reducing the amount of ergosterol extracted from fungal cells after exposure to high concentrations of β-lapachone. This compound also has the ability to induce oxidative stress in eukaryotic cells by intracellular formation of reactive oxygen species, such as hydrogen peroxide (H₂O₂), the superoxide anion radical (O₂⁻), and hydroxyl radical (OH), inducing apoptosis and cytotoxicity. Moreover, β-lapachone causes inhibition of the topoisomerase I and II in both prokaryotic and eukaryotic cells, which are important for the normal cellular operation, since they maintain the integrity of DNA. It is a well established fact that any functional alterations in these enzymes is sufficient to induce apoptosis.

This study demonstrates the antifungal activity of the synthetic compounds, terpenin-4-ol, tyrosol, and β-lapachone against the dimorphic fungi, C. posadasii and H. capsulatum. It also highlights their role as potential leads for new antifungal agents for the treatment of histoplasmosis and coccidiodomycosis.

**Conflicts of interest**

We have no conflict of interest to declare.

**Acknowledgements**

This research was supported by CNPq process (303396/2014-8; 552161/2011-0) and CAFES (AE1-0052-000630100/11).

**References**

1. Brilhante RSN, Lima RAC, Caetano EP, et al. Farnesol against Coccidioides posadasii: its effect on growth, ergosterol biosynthesis and cell permeability. Antimicrob Agents Chemother. 2013;57:2167–2170.
2. Cordeiro RA, Marques FJJ, Cordeiro RA, et al. Synthesis and antifungal activity in vitro of isoniazid derivatives against Histoplasma capsulatum var. capsulatum. Antimicrob Agents Chemother. 2014;58:2504–2511.
3. Kauffmann CA. Histoplasmosis. Clin Chest Med. 2009;30:217–225.
4. Cordeiro RA, Brilhante RSN, Rocha MFG, et al. In vitro synergistic effects of antituberculous drugs plus antifungals against Coccidioides posadasii. Int J Antimicrob Agents. 2009;34:278–280.
5. Royce HJ, Hans EE. Amphotericin B and coccidiodomycosis. Ann N Y Acad Sci. 2007;1111:434–441.
6. Mishra J, Dey A, Singh N, Somvanshi R, Singh S. Evaluation of toxicity and therapeutic efficacy of a new liposomal formulation of amphotericin B in a mouse model. Indian J Med Res. 2013;137:767–776.
7. Galgiani JN, Ampel NM, Blair JE, et al. Coccidioidomycosis. Clin Infect Dis. 2005;41:1217–1223.
8. Wheat LJ, Connolly P, Smedema M, Rogers PD. Antifungal drug resistance in histoplasmosis. In: Mayers DL, ed. Antimicrobial drug resistance. New York, USA: Humana Press; 2009:987–992.
9. Hammer KA, Carson CF, Riley TV. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol. 2003;95:853–860.
10. Hammer KA, Carson CF, Riley TV. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. J Antimicrob Chemother. 2004;53:1081–1085.
11. Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev. 2006;19:50–62.
12. Morcica M, Maltani M, Terzi V. In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit Contam. 2012;29:415–422.
13. Guimarães DO, Borges KB, Bonato PS, Pupo MT. A simple method for the quantitative analysis of tyrosol by HPLC in liquid Czapek cultures from endophytic fungi. J Braz Chem Soc. 2009;20:188–194.
14. Albuquerque P, Casadevall A. Quorum sensing in fungi: a review. Med Mycol. 2012;50:337–345.
15. Marcos-Arias C, Eraso E, Madriaga L, Quindós G. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement Altern Med. 2011;11:119.
16. Medeiros CS, Pontes-Filho NT, Camara CA, et al. Antifungal activity of the naphthoquinone beta-lapachone against disseminated infection with Cryptococcus neoformans var. neoformans in dexamethasone-immunosuppressed Swiss mice. Braz J Med Biol Res. 2010;43:345–349.
17. Lópezi, Leyva E, Cruz RFG. Las naftoquinonas: más que pigmentos naturales. Rev Mex Cienc Farm. 2011;42:6–17.
18. Guimarães TT, Pinto MCFR, Lanza JS, et al. Potent naphthoquinones against antimony-sensitive and -resistant Leishmania parasites: synthesis of novel a- and nor-a-lapachone based 1,2,3-triazole by copper-catalyzed azide-alkyne cycloaddition. Eur J Med Chem. 2013;63:523–530.
19. Aires AL, Ximenes ECPA, Barbosa VX, Goés AJS, Souza VMO, Albuquerque MCPA. β-Lapachone: a naphthoquinone with promising antischistosomal properties in mice. Phytomedicine. 2014;21:261–267.
20. Brilhante RSN, Caetano EP, Sidrim JIC, et al. Ciprofloxacin shows synergism with classical antifungals against Histoplasma capsulatum var. capsulatum and Coccidioides posadasii. Mycoses. 2012;56:397–401.
21. Alem MAS, Oteef MDY, Flowers TH, Douglas LJ. Production of tyrosol by Candida albicans biofilms and its role in Quorum Sensing and biofilm development. Eukaryot Cell. 2006;5:1770–1779.
22. Macedo L, Fernandes T, Silveira L, Mesquita A, Franchitti AA, Ximenes EA. β-Lapachone activity in synergy with conventional antimicrobials against methicillin resistant Staphylococcus aureus strains. Phytomedicine. 2013;21:25–29.
23. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard, M38-A2. Wayne, PA: CLSI; 2008.
24. Clinical and Laboratory Standards Institute. Método de referência para testes de diluição em caldo para determinação da sensibilidade de leveduras à terapia antifúngica. Approved standard, M27-A3. Wayne, PA: CLSI; 2008.
25. González GM. In vitro activities of isavuconazole against opportunistic filamentous and dimorphic fungi. Med Mycol. 2009;47:71–76.

26. Vila TVM, Ishida K, Souza W, Prousis K, Calogeropoulou T, Rozental S. Effect of alkylphospholipids on Candida albicans biofilm formation and maturation. J Antimicrob Chemother. 2013;68:113–125.

27. Parveen M, Hasan MK, Takahashi J, et al. Response of Saccharomyces cerevisiae to a monoterpen:e: evaluation of antifungal potential by DNA microarray analysis. J Antimicrob Chemother. 2004;54:46–55.

28. Cox SD, Mann CM, Markham JL, et al. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol. 2000;88:170–175.

29. Silva MN, Ferreira VE, Souza MCBV. Um panorama atual da química e da farmacologia de naftoquinonas, com ênfase na β-lapachona e derivados. Quim Nova. 2003;26:407–416.

30. Almeida ER. Preclinical and clinical studies of lapachol and beta-lapachone. Open Nat Prod J. 2009;2:42–47.