Case series
Outcomes of bowel resection following non-mechanical intestinal obstruction due to mesenteric vein thrombosis in Uganda: A case series

Dave Darshit a,⁎, Sanjanaa Srikant b, Daphne Kibanda a, Okello Michael a,c

a Department of Surgery, Uganda Martyrs Hospital Lubaga, Kampala City, Uganda
b Department of Surgery, Makerere University College of Health Sciences, Kampala City, Uganda
c Department of Anatomy, Makerere University College of Health Sciences, Kampala City, Uganda

A R T I C L E I N F O

Keywords:
Acute mesenteric ischemia
Mesenteric thrombosis
Bowel resection
Uganda

A B S T R A C T

Introduction and importance: Mesenteric venous thrombosis (MVT) is one of the common occlusive causes of compromised bowel perfusion. Contrast-enhanced CT angiography is the diagnostic imaging study of choice for MVT. In-hospital mortality following acute mesenteric infarction is 63 %. Surgical resection may be life saving for patients with peritoneal signs or refractory to conservative management.

Case presentation: We consecutively included records of five patients from Lubaga Hospital with intestinal obstruction who underwent bowel resection following intraoperatively confirmed acute mesenteric ischemia between May 2017 and November 2021. Three of the patients were female. Patients were between 21 and 45 years. One patient had comorbid conditions and an identifiable underlying etiology of polycythemia for MVT. Duration of symptoms ranged from 1 to 11 days. All patients underwent open laparotomy, the length of bowel resection ranged from 77 cm to 600 cm (mean length of 337 cm). Two patients developed short bowel syndrome (SBS) and one patient developed intestinal fistula. There was one in-hospital death due to multi-organ failure. Advanced intensive care and parenteral nutrition have improved survival rates over the years. 2-year and 5-year survival rates have been reported to be 70 % and 50 %.

Conclusion: Good outcomes are still possible for post-operatively optimized patients despite the high mortality and morbidity associated with bowel resection following extensive mesenteric thrombosis.

1. Introduction

Acute mesenteric ischemia (AMI) is the sudden interruption of blood supply to a segment of the small intestine that is insufficient to meet the metabolic demands resulting in compromised bowel perfusion through either non-occlusive (NOMI) or occlusive etiology. It is a rare cause of abdominal emergency with a low overall incidence (0.09–0.2 %). Nonetheless, the mortality rate is high (50–90 %) with a rapid disease progression, leading to intestinal necrosis, intestinal infarction and patient death if untreated owing to its non-specific clinical presentation resulting in delayed diagnosis [1–3]. Mesenteric arterial embolism is the most common cause (50 %), followed by mesenteric arterial thrombosis (15–25 %) and mesenteric venous thrombosis (5–15 %) [4].

Mesenteric venous thrombosis (MVT) is a blood clot that can be acute, subacute or chronic in one or more of the major vessels (superior or inferior mesenteric vein) that drain the gut or the tributaries [5,6]. The incidence of MVT has risen owing to the increased use of abdominal Computed Tomography (CT). MVT accounts for 5 to 15 % of all mesenteric ischemic events and usually involves the superior mesenteric vein (95 %) [7]. Age at presentation varies, depending on underlying pathogenesis, though it is most common in the fifth and sixth decade of life. MVT can either be due to primary or secondary causes. Primary MVT occurs in the absence of any identifiable predisposing factors. Secondary causes of MVT include prothrombotic states (like pregnancy, sickle cell disease, polycythemia vera and oral contraceptive use), venous trauma, intra-abdominal infections and portal hypertension [8].

Majority of the cases present as acute abdomen, though a few present late with features of portal hypertension [6]. Contrast-enhanced CT angiography (CTA) is the diagnostic imaging study of choice for AMI [3]. Despite advances in diagnostic modalities, most cases are identified
either at laparotomy or autopsy [9]. In-hospital mortality following acute mesenteric infarction has been reported to be 63% [10].

Treatment varies from conservative measures to surgical resection and revascularization depending on the stage of mesenteric ischemia. An aggressive approach in surgical treatment is advocated with the principle of re-vascularization over bowel resection. Nevertheless, bowel segments with irreversible ischemia and gangrene warrant immediate resection. Massive bowel resection (MBR) implies more than 200 cm (7 ft) of small bowel has been resected [11]. These patients suffer from massive bowel resection syndrome. The 5-year mortality rate is about 30%, primarily related to short bowel syndrome [12]. It is thus important to raise much needed awareness among clinicians to diagnose AMI timely and manage it promptly.

The patients were managed from Uganda Martyrs Hospital Lubaga, Surgery Department. Lubaga hospital found in Kampala, Uganda, is a private not for profit tertiary level hospital founded by the Catholic Church in 1899, with a bed capacity of 275.

This case series has been reported in line with the PROCESS 2020 criteria [13].

2. Case presentation

From May 2017 to November 2021, all patients with acute mesenteric ischemia, who underwent abdominal surgery were retrospectively reviewed in this case series. We consecutively included patients with intestinal obstruction (IO) who underwent bowel resection following intraoperative confirmed AMI and excluded patients who underwent bowel resection secondary to a mechanical cause.

Data on 5 patients across the time period of 5 years was obtained (Table 1). The parameters included patients’ demographics, comorbid diseases, overall survival, type of performed operative procedures, and time interval from symptomatology to surgery as well as laboratory chemistry. Three of the patients were female. All patients were middle aged between 21 and 45 years old (mean age of 21 years). Only one patient had comorbid conditions and an identifiable underlying etiology of polycthemia for MVT (mean Hb of 23.3 g/dl in three consequent full blood counts).

3. Discussion

AMI is a rare but life-threatening clinical entity owing to its non-specific symptomology in the beginning hence diagnosis of AMI is challenging. The duration of symptoms prior to admission to our hospital varied among the patients in this case series from 1 day to 11 days, with a diversity in signs and symptoms. Urgent imaging in case of suspected AMI is of paramount importance [14,15] however none of the patients had previous CTA scan done.

Morbidity and mortality are associated with delay to diagnose the condition. Hence early diagnosis with prompt surgical treatment is key for patient management. In this case series, leukocytosis and delay to surgery were associated with poor outcome, either morbidity (longer hospital stay) or mortality, as reported previously. Old age has also been significantly associated with a higher mortality rate previously. The mortality rate in our case series was 20% which was in contrast to previous studies with a high in-hospital mortality rate of 60–80%. The mean age of patients reported in literature has been 74–79 years old which is in contrast to our case series with all patients of young age with the mean of 21 years [16,17].

Immediate antibiotic therapy and anticoagulation are recommended to complement the surgical approach [18]. All patients had received pre-operative antibiotics (Intravenous Ceftriaxone 2 g and Intravenous Metronidazole 500 mg) however none of the patients had systemic intravenous anticoagulation administered prior to surgery.

Once the diagnosis of AMI is confirmed, the choice of therapy is open abdominal surgery. Revascularization is the primary goal, with interventional radiology for very early revascularization or open vascular surgery. Resection of all non-viable regions and preservation of all viable bowel [3,19,20]. All patients underwent open abdominal emergency surgery (types of operation shown in Table 1). Combination of both small and large bowel was found in 1 patient. Overall, intraoperatively verified complete and irreversible ischemia of small bowel was in 4 patients and both small and large bowel in 1 patient leading to complete bowel resection. The length of bowel resection in the 5 patients ranged from 77 cm to 600 cm (mean length of resected bowel: 337 cm (Fig. 1).

The complications of massive bowel resection include short bowel syndrome (SBS), electrolyte imbalance, intestinal obstruction, intestinal hemorrhage, renal or cardiac dysfunction, intestinal fistula and wound infection. Patients presenting with peritonitis and infarcted bowel have a prolonged and complicated course [21–25]. In this case series, 2 patients developed SBS and 1 patient developed an intestinal fistula.

30-day mortality rate has been found to be 13–15%. Abu-Daff et al. showed that the 30-day mortality in these patients is strongly linked to colonic involvement and short bowel syndrome. Five-year mortality is primarily related to short bowel syndrome [12]. With progress in intensive care medicine and parenteral nutrition over the years, survival rates have been improving. The 2-year and 5-year survival rates have been reported to be 70% and 50% [26]. In this case series only one in-hospital death occurred in the post-operative period on day 5, due to multi-organ failure. After a mean follow-up of 150.5 months (range, 5.5–60 months), 2 patients were alive.

Post operatively well-optimized AMI patients can have good outcomes, however we were limited by the small sample size and this needs to be evaluated in a larger study across other health centers in Uganda.

4. Conclusion

Good outcomes are still possible for post-operatively optimized patients despite the high mortality and morbidity associated with massive bowel resection following extensive mesenteric thrombosis.

Informed consent

Written informed consent was obtained from the patients/legal guardians for publication of this case series. A copy of the written consent is available for review by the Editor-in Chief of this journal on request.

Provenance and peer review

Not commissioned, externally peer-reviewed.

Ethical approval

Not applicable.

Funding

None.

Guarantor

Dr. Okello Michael.
Table 1: Socio-demographics and clinical findings of the patients.

Patient	1	2	3	4	5					
Age (years)	45	35	23	30	21					
Gender	Male	Female	Female	Female	Male					
Comorbidities	Hypertension	–	–	–	–					
	Transient ischemic attack	–	–	–	–					
	Polycythemia	–	–	–	–					
Duration of symptoms (days)	1	1	7	1	9					
Symptomatology	Diarrhea, Abdominal distension, Abdominal pain	Abdominal distension, Vomiting, Failure to pass stool but passed flatus	Abdominal distension, Colicky generalized abdominal pain, Vomiting	Colicky generalized abdominal pain, Failure to pass stool but passed flatus	Abdominal distension, Colicky generalized abdominal pain, Bloody stools	Dehydration, Abdominal distension, Moderate pallor, Generalized abdominal distension and tenderness, Guarding + rebound tenderness	Dehydration, Not pale, Generalized abdominal distension and tenderness, Guarding + rebound tenderness, Reduced bowel sounds	Dehydration, Generalized abdominal distension and tenderness, Guarding + rebound tenderness	Reduced bowel sounds, Reduced bowel sounds, Polycythemia, Transient ischemic attack	Reduced bowel sounds, Wasted
Temperature	36.5°C	36.0°C	36.3°C	36.4°C	35.5°C					
Blood pressure (mm Hg)	82/40	130/90	101/70	80/60	104/60					
Heart rate (beats/min)	118	100	82	120	130					
Pulse oximetry at ambient air	95%	95%	95%	98%	98%					
Laboratory results	White blood cell count (cells per 10³/l)	16	25.64	15.0	22.66					
Neutrophil (cells per 10³/l)	12	22.8	9.17	15.74						
Hb (g/dl)	23.3g/dl (in three consequent full blood counts)	6.9	17.7	9.0						
Sodium (mmol/l)	126	130	139	134						
Potassium (mmol/l)	4.8	4.0	3.4	4.9						
Urea (mg/dl)	62	105	29	123						
Creatinine (mg/dl)	2.0	2.3	0.7	1.6						
Erect abdominal x-ray	Multiple air fluid levels	Fecal impaction with positive mottling sign	–	–						
Provisional diagnosis	–	–	–	–						
Gastroenteritis	Partial IO	Acute abdomen	IO	Acute abdomen						
Hypovolemic shock	Gut perforation	Large bowel obstruction with fecal impaction	–	Extensive superior and inferior mesenteric thrombosis with intermittent bowel ischemia						
Inflammatory bowel disease	Acute appendicitis	R/O gut perforation	–	Jejunum, ileum, colon and sigmoid						
Intra-operative findings (Final diagnosis)	Superior mesenteric vein thrombosis with gangrenous ileum + jejunum	Superior mesenteric vein thrombosis with gangrenous ileum + jejunum	Jejunum + ileum	Jejunum + ileum	Jejunum + ileum					
Bilateral sigmoid	–	–	–	–						
Surgical intervention	160 cm of ileum on 4th day of admission	55 cm of terminal ileum plus 20 cm distal jejunum on day of admission	540 cm leaving only 60 cm of viable jejunum on 3rd day of admission	310 cm, distal jejunum plus ileum on 2nd day of admission	600 cm of intermittent bowel segments of jejunum, ileum, colon and sigmoid					
(gangrenous bowel resection)	–	–	–	–						
Type of anastomosis	Ileo-ileo end to end	Jejuno-ascending end to side	Jejuno-transverse end to side	–	Double barrel ileo-colostomy					
Length of hospital stay (days)	10	12	38	11	5					
In-hospital treatment	Hypertonic saline, Bowel rest, Nasogastric decompression	Bowel rest, Nasogastric decompression, TPN								
(daily dose)	–	–	–	–	–					
Table 1 (continued)

Patient	1	2	3	4	5
Outcome	Discharged	Discharged	Discharged	Expired	
Follow-up	3 years 5 months	5 years	167 days	3 years 8 months	
Additional comments	Alive	Alive	In-hospital death		
	Anti-hypertensive drugs	High protein diet			
	Subcutaneous Enoxaparin 80 mg immediate post-op	High protein diet	80 mg immediate post-op		
	IV Paracetamol 1 g tds	IV morphine 5 mg PRN	IV normal saline and Ringer’s lactate		
	FP 75	IV morphine 5 mg PRN	IV normal saline and Ringer’s lactate		
	IV Ceftriaxone 2 g o.d.	IV Metronidazole 500 mg tds	IV Ceftriaxone 2 g o.d.		
	IV Metronidazole 500 mg tds	Fentanyl patch 75 µg	IV Metronidazole 500 mg tds		
	Subcutaneous Enoxaparin 80 mg	Fentanyl patch 75 µg	IV Paracetamol 1 g tds		
	IV morphine 5 mg PRN	High protein diet	IV Paracetamol 1 g tds		

Fig. 1. Resected ischemic small bowel due to extensive mesenteric vein thrombosis from patient 3.

Research registration number

Not applicable.

Credit authorship contribution statement

Dave Darshit
Conceptualized, wrote the first draft, and reviewed the final manuscript.

Sanjanaa Srikant
Wrote the first draft, edited, and approved the final manuscript.

Daphne Kibanda
Wrote the first draft, edited, and approved the final manuscript.

Okello Michael
Chief surgeon, led and performed all surgeries, reviewed the manuscript, editing, supervision, and final approval of the case series.

Declaration of competing interest

None.

References

[1] M. Duran, E. Pohl, K. Grabitz, H. Schelzig, T. Sagban, F. Simon, The importance of open emergency surgery in the treatment of acute mesenteric ischemia, World J. Emerg.Surg. 10 (1) (2015) 1–6.
[2] F. Kühn, T.S. Schiergens, E. Klar, Acute mesenteric ischemia, Visc.Med. 36 (4) (2020) 256–263.
[3] M. Balza, J. Kudnuk, E.E. Moore, Y. Kluger, W. Biffl, C.A. Gomes, et al., Acute mesenteric ischemia: guidelines of the World Society of Emergency Surgery, World J.Emerg.Surg. 12 (1) (2017) 1–11.
[4] D.G. Clair, J.M. Beach, Mesenteric ischemia, N. Engl. J. Med. 374 (10) (2016) 959–968.
[5] C.E. Russell, R.K. Wadhera, G. Piazza, Mesenteric venous thrombosis, Circulation 131 (18) (2015) 1599–1603.
[6] B. Hmoud, A.K. Singal, P.S. Kamath, Mesenteric venous thrombosis, J.Clin.Exp. Hepatol. 4 (3) (2014) 257–263.
[7] S. Kumar, M.G. Sarr, P.S. Kamath, Mesenteric venous thrombosis, J. Clin. Gastroenterol. 345 (23) (2001) 1683–1688.
[8] E. Sulger, H.S. Dhalwil, A. Goyal, L. Gonzalez, Mesenteric venous thrombosis, N. Engl. J. Med. 345 (23) (2001) 1683–1688.
[9] S.S. Lee, H.K. Ha, S.H. Park, E.K. Choi, A.Y. Kim, J.C. Kim, et al., Usefulness of computed tomography in differentiating transmural infarction from nontransmural ischemia of the small intestine in patients with acute mesenteric venous thrombosis, J. Comput. Assist. Tomogr. 32 (5) (2008) 730–737.
[10] F. Adaba, A. Askari, J. Dastur, A. Patel, S.M. Gabe, C.J. Vaizey, et al., Mortality after acute primary mesenteric infarction: a systematic review and meta-analysis of observational studies, Color. Dis. 17 (7) (2015) 566–577.
[11] L.D. Gibson, R. Carter, D.B. Hinshaw, Segmental reversal of small intestine after acute primary mesenteric infarction: a systematic review and meta-analysis of observational studies, Color. Dis. 17 (7) (2015) 566–577.
[12] J.M. Schalamon, J.M. Mayr, M.E. Hocke, C.A. Gomes, et al., Clinical characteristics and outcome of patients with acute mesenteric venous thrombosis, Best Pract. Res. Clin. Gastroenterol. 21 (1) (2007) 1–8.
[13] J.M. Kärkkäinen, S. Acosta, Acute mesenteric ischemia (part I)-incidence, etiologies, and how to improve early diagnosis, Best Pract. Res. Clin. Gastroenterol. 31 (1) (2017) 15–25.
[14] J. Menke, Diagnostic accuracy of multidetector CT in acute mesenteric ischemia: a systematic review and meta-analysis, Radiology 256 (1) (2010) 93–101.
[15] R. Sumbal, M.M.A. Baig, A. Sumbal, Predictors of mortality in acute mesenteric ischemia: a systematic review and meta-analysis, J. Surg. Res. 175 (2020) 72–86.
[16] V. Martini, A.-K. Lederer, J. Fink, S. Chikhladze, S. Utzolino, S. Fichtner-Feigl, et al., Clinical characteristics and outcome of patients with acute mesenteric ischemia: a retrospective cohort analysis, Langenbecks Arch. Surg. 1–8 (2022).
[17] J. Tilsed, A. Casassamassima, H. Kuribara, D. Mariani, J. Martinez, J. Pereira, et al., ETIS guidelines: acute mesenteric ischaemia, Eur. J. Trauma Emerg. Surg. 42 (2) (2016) 253–270.
[18] J.T. Blauw, T. Bulut, G.S. Oderich, B.R. Geerkens, D.M.I.S. Group, Mesenteric vascular treatment 2016: from open surgical repair to endovascular revascularization, Best Pract.Res.Clin.Gastroenterol. 31 (1) (2017) 75–84.
[20] Y. Zhao, H. Yin, C. Yao, J. Deng, M. Wang, Z. Li, et al., Management of acute mesenteric ischemia: a critical review and treatment algorithm, Vasc. Endovasc. Surg. 50 (3) (2016) 183–192.

[21] F.-F. Chen, X.-N. Ye, H.-T. Jiang, G.-X. Zhu, S.-L. Miao, G.-F. Yu, et al., Role of frailty and comorbidity status in predicting morbidity and mortality in patients with acute mesenteric ischemia, Ann. Vasc. Surg. 67 (2020) 105–114.

[22] S. Yang, Y. Zhao, J. Chen, Q. Ni, X. Guo, X. Huang, et al., Clinical features and outcomes of patients with acute mesenteric ischemia and concomitant colon ischemia: a retrospective cohort study, J. Surg. Res. 233 (2019) 231–239.

[23] S.-L. Miao, X.-N. Ye, T.-T. Lin, Y.-H. Qiu, J.-Y. Huang, X.-W. Zheng, et al., The psoas muscle density as a predictor of postoperative complications and 30-day mortality for acute mesenteric ischemia patients, Abdom. Radiol. (2020) 1–10.

[24] M. Jagielski, J. Piątkowski, M. Jackowski, Challenges encountered during the treatment of acute mesenteric ischemia, Gastroenterol. Res. Pract. 2020 (2020).

[25] A. Zientara, A.-R. Domenghino, I. Schwegler, H. Bruijnen, A. Schneider, M. Weber, et al., Interdisciplinary approach in emergency revascularization and treatment for acute mesenteric ischemia, BMC Surg. 21 (1) (2021) 1–7.

[26] J. Klempnauer, F. Grohues, H. Bektaş, R. Pichlmayr, Long-term results after surgery for acute mesenteric ischemia, Surgery 121 (3) (1997) 239–243.