The impact of the molecular profile of the tumor microenvironment on the prognosis of NSCLC

Hangjie Ying
Zhejiang Cancer Hospital

Qingqing Hang (hangqq1210@163.com)
Zhejiang Cancer Hospital https://orcid.org/0000-0001-5736-1171

Guoping Cheng
Zhejiang Cancer Hospital

Shifeng Yang
Zhejiang Cancer Hospital

Jianan Jin
Zhejiang Cancer Hospital

Qixun Chen
Zhejiang Cancer Hospital

Youhua Jiang
Zhejiang Cancer Hospital

Qiang Zhao
Zhejiang Cancer Hospital

Xiaojing Lai
Zhejiang Cancer Hospital

Ming Chen
Zhejiang Cancer Hospital

Min Fang
Zhejiang Cancer Hospital

Research Article

Keywords: Non-small cell lung cancer, Tumor microenvironment, Tumor-associated macrophages, Tumor neo-vessels, Programmed cell death 1 ligand 1

DOI: https://doi.org/10.21203/rs.3.rs-293023/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose The present study was performed to clarify the correlation between macrophages, tumor neo-vessels and programmed cell death-ligand 1 (PD-L1) in the tumor microenvironment (TME) and the clinicopathological features of non-small cell lung cancer (NSCLC) and to explore the prognostic factors of stromal features in NSCLC.

Methods Tissue microarrays containing 92 NSCLC patients were studied with immunohistochemistry (IHC). The distribution and quantitative data of CD68- and CD206-positive tumor-associated macrophages (TAMs) in tumor islets and tumor stroma, and the expression of tumor neo-vessels and PD-L1, were analyzed by inverted microscopy and Image-Pro Plus 6.0 software. Prognostic analyses with the clinicopathological characteristics and tumor microenvironment features were performed.

Results The number of CD68-positive macrophages in each location of the tumor islets and tumor stroma was significantly higher than that of CD206-positive macrophages, and they were significantly correlated (P<0.0001). Survival analysis revealed that CD68- and CD206-positive TAMs in the tumor stroma and tumor islets were significant prognostic factors (P<0.05, respectively). Comprehensive analysis of CD206-positive stromal TAMs showed that CD105 and PD-L1 were significant prognostic factors (P=0.045). Moreover, CD68-positive TAMs in tumor islets and the expression of PD-L1 were independent predictors of poor prognosis for NSCLC.

Conclusion Thus, the key elements in the tumor microenvironment, including tumor neo-vessels, macrophages and PD-L1, were heterogenic in NSCLC tissues and had significant roles in cancer invasion and metastasis. The combined analysis of key components in the tumor microenvironment was an important prognostic factor.

Introduction

Lung cancer is the most common cause of cancer-related deaths, of which non-small cell lung cancer (NSCLC) comprises approximately 85-90% (Siegel et al. 2020). Despite the great progress of comprehensive treatment strategies based on surgery for resectable NSCLC in recent years, approximately 50% of early-stage NSCLC patients will relapse or develop distant metastases within 5 years after radical surgery (Asamura et al. 2008).

Paget's "seed-soil" theory makes people realize that the tumor microenvironment plays a vital role in tumor metastasis (Paget 1989). The tumor microenvironment (TME) is a complex and dynamic community that consists of extracellular matrix (ECM), tumor cells, inflammatory cells, immune infiltrating cells, vascular endothelial cells, fat cells, and fibroblasts (Catalano et al. 2013). Among them, immune infiltrating cells and vascular endothelial cells are the most representative factors in the tumor microenvironment. Macrophages, important representatives of immune infiltrating cells, act as vital components of the host's defense and antigen-preserving cells and effector cells (Mosser and Edwards 2008; Schmieder et al. 2012). They can be classified into two types: the classic M1 type and the alternative M2 type. M1 type macrophages are a tumor suppressor type that participate in the inflammatory response, pathogen removal and anti-tumor immunity, while M2 type macrophages promote the occurrence and development of tumors by inducing angiogenesis and anti-inflammation (Pollard 2004). Tumor-associated macrophages (TAMs) are thought to be more similar to M2 macrophages (Petty et al. 2019). Angiogenesis occurs in the normal and vital processes of growth and development, as well as in the tumor transition between benign and malignant states. In addition, studies have shown that TAMs can promote tumor angiogenesis and metastasis (Murdoch et al. 2008). TAMs and cancer cells can secrete various growth factors, angiogenic factors and enzymes, which play important roles in angiogenesis (Allavena et al. 2008; Ohba et al. 2005; Wu et al. 2014; Yeo et al. 2014). Thus, TAMs, as representatives of immune cell infiltration, can interact with cancer cells to promote cancer invasion and metastasis (Han et al. 2018). Immature and structural disorders of vascular endothelial cells are the main reason for tumor hypoxia, and their discontinuities are also the morphological basis for tumor cells entering the vasculature to metastasize (Kerbel 2008). However, many conflicting results have been reported regarding the prognostic significance of TAMs and tumor neo-vessels in NSCLC (Becker et al. 2014; Du et al. 2015; Keskin et al. 2019; Zhang et al. 2012).

Immune checkpoint inhibitors targeting the programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway have shown impressive clinical benefit in several cancers, including NSCLC (Anagnostou and Brahmer 2015). However, the relationship between PD-L1/PD-1 expression and patient prognosis is still unclear, although some studies have reported that high PD-L1 expression is related to worse prognosis (Mu et al. 2011; Zhang et al. 2014). Thus, it has not been proven to be adequately reliable as a single biomarker to evaluate the prognosis of NSCLC patients (Brahmer et al. 2015; Patel and Kurzrock 2015).

To confirm whether the molecular profile of the TME has a great effect on the prognosis of NSCLC, the distribution and quantitative expression of TAMs, tumor neo-vessels and PD-L1 were analyzed, as well as the relationship between the clinicopathological and prognostic impact of the above three components in 92 NSCLC cases. In addition, the relationship between the differential expression and distribution of CD68-positive and CD206-positive TAMs in different intratumoral infiltration sites (tumor islets and tumor stroma) was explored, and the correlation between TAMs, tumor neo-vessels and PD-L1 was analyzed.

Material And Methods

Case collection

A total of 92 paraffin-embedded NSCLC samples, including tumor and peritumor tissues, were collected from Zhejiang Cancer Hospital between April 2008 and January 2014. All patients underwent radical surgery and were diagnosed with NSCLC by histology. Patients did not receive any treatment before surgery, while most patients received chemotherapy after surgery. The clinical parameters evaluated for each patient included sex, age, tumor size, smoking status, differentiation, pathological typing, and tumor staging. The OS time was measured from the date of surgery to death due to NSCLC or the date when the patient was last recorded. The study protocol was approved by the Ethics Committee of Zhejiang Cancer Hospital.
Correlations between CD68- and CD206-positive TAMs, tumor neo L1, are heterogeneously expressed in the tumor microenvironment, in some cases with low expression and in other cases with high expression (Figure 1B-2A).

PD-L1-positive cells were significantly different in each location (of PD-L1-positive cells in tumor tissues was 9-493 (median: 103). The distributions of CD68-positive TAMs, CD206-positive TAMs, CD105-positive cells and however, there are also cases with high expression. The quantitative density of CD105-positive cells in tumor tissues was 19-368 (median: 156). The number

CD68 and CD105 were clearly expressed in the cytoplasm, and macrophages preferred to distribute along with tumor neovascularization (Figure. 3A). TAMs Coexpression analysis of CD105 and CD68 in NSCLC patients with multiplexed immunofluorescence

Distribution and expression of CD68-positive TAMs, CD206-positive TAMs, CD105 and PD-L1 in NSCLC

For the combined group, according to the expression levels of the three components, taking the median value of each component as the cutoff value, the expression of tumor neo-vessels, macrophages and PD-L1 could be divided into low- and high-density groups. For the combined group, according to the expression levels of the three key stromal components, patients were divided into three subgroups according to the density of TAMs, tumor neo-vessels and PD-L1: group 1, all components were expressed at a low level; group 2, one of components was expressed at a high level; and group 3, all components were expressed at a high level. The represented digital images were independently collected by two pathology investigators who were blinded to the clinicopathological characteristics of all tissue specimens.

Statistical analysis

Statistical analyses were performed with SPSS 25.0 (SPSS Inc., Chicago, IL, USA). For categorical data, y2 test was performed. Spearman rank correlation analysis was used to analyze the correlation between macrophages, tumor neo-vessels and PD-L1 expression. Differences in the CD68-positive TAMs and CD206-positive TAMs among the groups were analyzed by the Mann-Whitney test. The Kaplan-Meier method was used to estimate the survival curve for OS, and the log-rank test was used to assess the difference in survival between groups. The Cox regression model was used to perform univariate and multivariate analyses. A two-tailed P<0.05 was considered statistically significant.

Results

Distribution and expression of CD68-positive TAMs, CD206-positive TAMs, CD105 and PD-L1 in NSCLC

A series of 92 NSCLC specimens were examined for CD68- and CD206-positive TAMs in tumor islets and tumor stroma (Figure. 1B). The mean number of CD68-positive TAMs was significantly higher than that of CD206-positive TAMs in each area: in tumor islets, the mean numbers of CD68-positive TAMs and CD206-positive TAMs were 186 (median: 169, range: 23-412) and 103 (median: 81, range: 7-358), respectively (P< 0.001); in tumor stroma, the mean numbers of CD68-positive TAMs and CD206-positive TAMs were 146 (median: 131, range: 8-348) and 70 (median 52, range 2-220), respectively (P<0.001). The distributions of CD68- and CD206-positive TAMs were significantly different in each location, with a higher distribution in the tumor stroma (P<0.0001). In addition, significant correlations were found between the distributions of CD68-positive TAMs and CD206-positive TAMs in each area (tumor islets: r=0.5179; tumor stroma: r = 0.5081, P=0.0001, respectively) (Figure. 1C).

Coexpression analysis of CD105 and CD68 in NSCLC patients with multiplexed immunofluorescence

CD68 and CD105 were clearly expressed in the cytoplasm, and macrophages preferred to distribute along with tumor neovascularization (Figure. 3A). TAMs were positively correlated with blood vessel formation, and there was no obvious correlation between CD206 and CD105 in IHC (Spearman’s rho=0.109, P>0.05), but the two (CD68 and CD105) showed a certain positive correlation (Spearman’s rho= 0.241, P=0.021, Figure. 3B).

CD105 and PD-L1 staining were mainly located in the cytoplasmic or on the cell membrane of the tumor stroma. PD-L1 expression is low in most tumor tissues; however, there are also cases with high expression. The quantitative density of CD105-positive cells in tumor tissues was 19-368 (median: 156). The number of PD-L1-positive cells in tumor tissues was 9-493 (median: 103). The distributions of CD68-positive TAMs, CD206-positive TAMs, CD105-positive cells and PD-L1-positive cells were significantly different in each location (P<0.05). However, all of the above components, including tumor neo-vessels, TAMs, and PD-L1, are heterogeneously expressed in the tumor microenvironment, in some cases with low expression and in other cases with high expression (Figure 1B-2A).

Correlations between CD68- and CD206-positive TAMs, tumor neo-vessels, PD-L1 expression and clinicopathological features
In the low and high CD68-positive TAM subgroups, the high tumor neo-vessel density cases were 20 (43.5%) and 26 (56.5%), respectively. In the low and high PD-L1 expression subgroups, high densities of CD68-positive TAMs were observed in 18 cases (40.9%) and 26 cases (59.1%), respectively. In the low and high CD206-positive TAM subgroups, 21 (45.7%) and 25 (54.3%) patients had high tumor neo-vessel density, respectively. In the low and high PD-L1 expression subgroups, there were 15 (33.3%) and 30 (66.7%) cases with high CD68-positive TAM density, respectively. Of note, tumor neo-vessels, CD68-positive TAMs and PD-L1 expression were not significantly correlated with any of the clinicopathological characteristics, which indicated that these key components of the tumor microenvironment were independent of clinical features, including tumor size, tumor histological type, degree of differentiation, lymph node metastasis and tumor staging (Table 1a). Overall, CD206-positive TAMs in tumor islets and stroma were significantly correlated with lymph node metastasis. However, there was no significant correlation between TAMs, which were positive for both indicators in any part, and the other clinicopathological factors of NSCLC (Table 1b).

Table 1a. Relationship between CD68-positive TAMs, CD206-positive TAMs, CD105, PD-L1 and the clinical features of NSCLC

CD68-positive TAMs	Tumor islets	Tumor stroma	CD206-positive TAMs	Tumor islets	Tumor stroma	
	Low	High	P-value	Low	High	P-value
Gender	F	13 (61.9%)	10 (47.6%)	12 (57.1%)	0.193	
	M	38 (54.3%)	36 (51.4%)	33 (46.5%)	0.359	
Age (years)	60	21 (51.2%)	20 (48.8%)	21 (51.2%)	0.607	
	60	25 (50.0%)	26 (52.0%)	25 (49.0%)	0.941	
Smoking status	Never smoker	11 (42.3%)	14 (53.8%)	12 (46.2%)	0.691	
	Smoker	35 (53.8%)	32 (49.2%)	33 (50.8%)	0.962	
Histology	Adenocarcinoma	28 (52.8%)	23 (34.3%)	29 (53.7%)	0.549	
	Non-adenocarcinoma	18 (50.5%)	23 (50.2%)	18 (47.4%)	0.951	
Tumor size (cm)	5	28 (47.5%)	31 (52.5%)	31 (51.7%)	0.879	
	5	18 (56.3%)	15 (46.9%)	16 (50.0%)	0.432	
Differentiation	Low	5 (33.3%)	6 (40.0%)	11 (68.8%)	0.371	
	Moderate	18 (52.9%)	13 (38.2%)	17 (50.0%)	0.168	
	High	16 (51.6%)	19 (61.3%)	15 (48.4%)	0.820	
Lymph node metastasis	Negative	14 (46.7%)	15 (50.0%)	20 (66.7%)	0.038	
	Positive	32 (52.5%)	31 (50.0%)	27 (43.5%)	0.333	
Stage	I, II	5 (61.0%)	24 (58.5%)	22 (52.4%)	0.820	
	III	21 (42.0%)	22 (44.0%)	25 (50.0%)	22 (44.0%)	

Table 1b (follow Table 1a)
Prognostic significance of tumor stromal features in NSCLC

Among 92 NSCLC cases, the median OS was 22.5 months. A Kaplan-Meier analysis revealed that the degree of differentiation, the different parts of the CD68-positive, CD206-positive TAMs, and the expression of PD-L1 and combined features in tumor tissues were associated with the OS of NSCLC patients (P<0.05) (Figure 1B, 2D). Furthermore, CD68-positive TAMs and PD-L1 expression were negatively related to OS in tumor tissue (Spearman's rho= -0.342, P= 0.001 and Spearman's rho= -0.246, P= 0.018, respectively). In peritumor tissues, except for the expression of PD-L1 (Spearman's rho= -0.207, P= 0.05), the expression of the other three components was negatively correlated with OS, but the difference was not statistically significant (P>0.05). The combined analysis indicated that the OS of the third group was worse than that of the first and second groups of patients (P=0.016).

Cox proportional hazard models were used to test the prognostic significance of macrophage infiltration, tumor neo-vessels and the expression of PD-L1 when adjusted for known prognostic factors. In univariate analysis, differentiation degree, CD68-positive TAMs in tumor islets, CD68-positive TAMs and CD206-positive TAMs in tumor stroma and PD-L1-positive cells were related to OS. In addition, analysis of the combined key components of tumor neo-vessels, macrophages and PD-L1 indicated that the mortality risk in combined group 4 was significantly increased (P = 0.045, Figure 4D). As presented in Table 2, the factors with P ≤ 0.20 in the univariate analyses and the components of interest were entered into the multivariate analyses. Smoking status, differentiation degree, CD68-positive TAMs in tumor islets and PD-L1-positive cells were independent prognostic factors for OS (P<0.05 for all) (Table 2).

Table 2. Univariate and multivariate analyses of the clinicopathological factors for OS in non-small cell lung carcinoma
NSCLC and could be used as an independent prognostic factor for patients with NSCLC. PD-L1 mediates immunosuppressive signals. The results also confirmed that PD-L1 expression was highly correlated with the prognosis of the process of cancer invasion and metastasis. Macrophages can release a variety of factors, such as cytokines, chemokines, hormones and metabolites, to directly or indirectly promote tumor progression. TAMs are considered to be "angiogenesis switches" and a key factor leading to a proangiogenic environment. We found that CD68 and CD105 have a certain correlation based on multivariate analyses. However, in this study, tumor neo-vessel density was not significantly correlated with the prognosis of patients with NSCLC, and macrophages have a certain correlation with the prognosis of patients with NSCLC. We also found that there was a strong correlation between the distribution of TAMs, tumor neo-vessels and PD-L1 in NSCLC.

The analyzed results showed that the number of CD68-positive TAMs and CD206-positive TAMs was higher in the tumor stroma but lower in tumor islets, which was consistent with several previous reports. We also found that there was a strong correlation between the distribution of CD68-positive TAMs and CD206-positive TAMs in tumor islets and tumor stroma. Furthermore, the mean numbers of CD68-positive TAMs in each location of the tumor islets and tumor stroma were significantly higher than those of CD206-positive TAMs. Univariate analysis showed that a large number of CD68-positive TAMs and CD206-positive TAMs in the tumor stroma were associated with shorter OS, which was consistent with the results of Li Z et al. and showed that the tumor stroma is the most suitable intratumoral area for evaluating TAMs. This study also found that the comprehensive analysis of CD68-positive stromal TAMs, CD105 and PD-L1 had a certain relationship with prognosis. The number of positive cells in each part (tumor islets and tumor stroma) was summed, and CD68-positive TAMs or CD206-positive TAMs were combined with the other two key components to analyze the results, and no interesting results were obtained. The discrepant role and regulatory mechanism of TAMs in different interspaces of the tumor microenvironment merit further study.

A high density of macrophages is associated with poor prognosis and immune failure in cancer patients, suggesting that macrophages play an important role in assisting tumors in escaping immune surveillance. During tumorigenesis, macrophages produce a mutagenic inflammatory environment and promote the growth of tumors. As tumors develop into malignant tumors, macrophages stimulate angiogenesis, enhance tumor cell migration, invade and inhibit antitumor immunity. In tumors, new blood vessels are usually abnormal, immature, and leaky and show insufficient or excessive expression in tumor tissues depending on the tumor type. New blood vessels support rapid tumor tissue growth, providing nutrients and oxygen to thriving tumor cells. However, in this study, tumor neo-vessel density was not significantly correlated with the prognosis of patients with NSCLC, and macrophages have a certain correlation with the prognosis of patients with NSCLC. We found that CD68 and CD105 have a certain correlation based on multivariate analyses. The results also showed that PD-L1 expression was highly correlated with the prognosis of NSCLC and could be used as an independent prognostic factor for patients with NSCLC. PD-L1 mediates immunosuppressive signals. The results also demonstrated that CD68-positive TAMs in tumor islets (high vs. low) were associated with shorter OS, which was consistent with the results of Li Z et al.
showed that patients with low PD-L1 expression in tumor cells may have a longer OS. However, several studies suggest that PD-L1 overexpression achieves longer survival in early NSCLC (Cooper et al. 2015), breast carcinoma (Schalper et al. 2014), gastric cancer (Zheng et al. 2014) and colorectal cancer (Droeser et al. 2013). Other studies have shown that there is no correlation between PD-L1 expression and OS (Sorensen et al. 2014). Many recent studies have reported that PD-L1 is associated with poor prognosis in NSCLC (Igawa et al. 2017; Keller et al. 2018; Li et al. 2019). In different studies, the definition of PD-L1 positivity or high density was different, leading to difficulties in concluding the relationship between PD-L1 expression and NSCLC prognosis. Evidence suggests that PD-L1 expression is actually an adaptive mechanism and may be a response of tumor cells to host immune pressure (Taube et al. 2012). It can also be understood that the expression of PD-L1 is related to the endogenous immune response, such as tumor infiltrating lymphocytes (TILs) in NSCLC and indoleamine 2,3-dioxygenase-1 (IDO-1) expressed by dendritic cells (DCs) (Mandarano et al. 2019). Any possible prognostic significance is not directly related to a single immune signal but to the overall balance between the host's antitumor immune response and tumor-mediated immunosuppression.

It has been reported that tumor cells can induce increased expression of M2 macrophages and PD-L1 (Wen et al. 2018). Our study demonstrated that the expression of PD-L1 in cancer cells was correlated with the density of macrophages. A Japanese study suggested that M2 macrophages were associated with PD-L1 expression on NSCLC cytotoxic T cells (Sumitomo et al. 2019). There are also correlations in other solid tumors, such as gastric adenocarcinoma (Harada et al. 2018).

In conclusion, key components in the tumor microenvironment may interact with cancer cells and together accelerate cancer invasion and metastasis. The present study implied that the different molecular profiles of the tumor microenvironment were intimately linked with the prognosis of NSCLC patients. The combined analysis of key components in the tumor microenvironment was an independent prognostic factor, which showed the importance of comprehensively analyzing the tumor microenvironment.

Declarations

Funding

This research was supported by the grants of National Natural Science Foundation of China. (No.81703018) and Zhejiang Medical and Health Science and Technology Project (No.2020KY466) (both to Min FANG)

Conflict of interest

The authors have stated that they have no conflicts of interest.

Contributions

(I) Conception and design: HJ Ying, M Fan, M Chen; XJ Lai; (II) Administrative support: M Chen, GP Cheng, QX Chen, YH Jiang, Q Zhao; (III) Provision of study materials or patients: GP Cheng, SF Yang, QX Chen, YH Jiang, Q Zhao; (IV) Collection and assembly of data: M Fan, HJ Ying, QQ Hang; (V) Data analysis and interpretation: HJ Ying, QQ Hang, JN Jin; (VI) Manuscript writing: HJ Ying, QQ Hang; (VII) Final approval of manuscript: All authors.

Ethical approval

All procedures of this study were in accordance with the ethical standards of the Institutional Research Committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

This retrospective study was approved by the Ethics Committee of Zhejiang Cancer Hospital. Informed consent was waived owing to the retrospective nature of this study.

References

1. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9. doi:10.1016/j.critrevonc.2007.07.004
2. Anagnostou VK, Brahmer JR (2015) Cancer immunotherapy: a future paradigm shift in the treatment of non-small cell lung cancer. Clin Cancer Res 21:976–984. doi:10.1158/1078-0432.Ccr-14-1187
3. Asamura H et al (2008) A Japanese Lung Cancer Registry study: prognosis of 13,010 resected lung cancers. J Thorac Oncol 3:46–52. doi:10.1097/JTO.0b013e318158e577
4. Becker M, Muller CB, De Bastiani MA, Klamt F (2014) The prognostic impact of tumor-associated macrophages and intra-tumoral apoptosis in non-small cell lung cancer. Histol Histopathol 29:21–31. doi:10.14670/hh-29.21
5. Brahmer J et al (2015) Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer The New England. journal of medicine 373:123–135. doi:10.1056/NEJMoa1504627
6. Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G (2013) Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol 23:522–532. doi:10.1016/j.semcancer.2013.08.007
7. Cooper WA et al (2015) PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma Lung cancer (Amsterdam. Netherlands) 89:181–188. doi:10.1016/j.lungcan.2015.05.007
8. Dai F et al (2010) The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer. BMC Cancer 10:220. doi:10.1186/1471-2407-10-220
9. Droese RA et al (2013) Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer 49:2233–2242. doi:10.1016/j.ejca.2013.02.015
10. Du ZY, Shi MH, Ji CH, Yu Y (2015) Serum pleiotrophin could be an early indicator for diagnosis and prognosis of non-small cell lung cancer Asian. Pac J Cancer Prev 16:1421–1425. doi:10.7314/apjcp.2015.16.4.1421
11. Falini B et al (1993) PG-M1: a new monoclonal antibody directed against a fixative-resistant epitope on the macrophage-restricted form of the CD68 molecule The American. journal of pathology 142:1359–1372
12. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35. doi:10.1038/nri7978
13. Han B et al (2018) Anlotinib as a third-line therapy in patients with refractory advanced non-small-cell lung cancer: a multicentre, randomised phase II trial (ALTER0302. Br J Cancer 118:654–661. doi:10.1038/bjc.2017.478
14. Harada K et al (2018) Tumor-associated macrophage infiltration is highly associated with PD-L1 expression in gastric adenocarcinoma. Gastric Cancer 21:31–40. doi:10.1007/s10120-017-0760-3
15. Igawa S et al (2017) Impact of PD-L1 Expression in Patients with Surgically Resected Non-Small-Cell Lung Cancer Oncology 92:283–290. doi:10.1159/000458412
16. Keller MD, Neppel C, Irnak Y, Hall SR, Schmid RA, Langer R, Berezowska S (2018) Adverse prognostic value of PD-L1 expression in primary resected pulmonary squamous cell carcinomas and paired mediastinal lymph node metastases. Mod Pathol 31:101–110. doi:10.1038/modpathol.2017.111
17. Kerbel RS (2008) Tumor angiogenesis The New England. journal of medicine 358:2039–2049. doi:10.1056/NEJMra0706596
18. Keskin S, Kutluk AC, Tas F (2019) Prognostic and Predictive Role of Angiogenic Markers in Non- Small Cell Lung Cancer Asian. Pac J Cancer Prev 20:733–736. doi:10.31557/apjcp.2019.20.3.733
19. Komohara Y, Jinushi M, Takeya M (2014) Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 105:1–8. doi:10.1111/cas.12314
20. Li H et al (2019) The clinicopathological and prognostic significance of PD-L1 expression assessed by immunohistochemistry in lung cancer: a meta-analysis of 50 studies with 11,383 patients Transl. Lung Cancer Res 8:429–449. doi:10.21037/tlcr.2019.08.04
21. Li Z et al (2018) The intratumoral distribution influences the prognostic impact of CD68- and CD204-positive macrophages in non-small cell lung cancer Lung cancer (Amsterdam. Netherlands) 123:127–135. doi:10.1016/j.lungcan.2018.07.015
22. Mandarano M et al (2019) Assessment of TILs, IDO-1, and PD-L1 in resected non-small cell lung cancer: an immunohistochemical study with clinicopathological and prognostic implications. Virchows Arch 474:159–168. doi:10.1007/s00428-018-2483-1
23. Mazzieri R et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling reboinds of proangiogenic myeloid cells. Cancer Cell 19:512–526. doi:10.1016/j.ccr.2011.02.005
24. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969. doi:10.1038/nri2448
25. Mu CY, Huang JA, Chen Y, Chen C, Zhang XG (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells. maturation Med Oncol 28:682–688. doi:10.1007/s12032-010-9515-2
26. Murdoc M, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631. doi:10.1038/nrc2444
27. Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy Hypoxia. (Auckl) 3:83–92. doi:10.2147/hp.S93413
28. Ohba K, Miyata Y, Kanda S, Koga S, Hayashi T, Kanetake H (2005) Expression of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor and plasminogen activator inhibitors in patients with renal cell carcinoma: correlation with tumor associated macrophage and prognosis. J Urol 176:461–465. doi:10.1016/j.juro.2005.01.063
29. Paget S (1889) The distribution of secondary growths in cancer of the breast. 1889 Cancer Metastasis Rev 8:98–101
30. Patel SP, Kurzrock R (2015) PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther 14:847–856. doi:10.1158/1535-7163.Mct-14-0983
31. Petty AJ et al (2019) Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8 + T cell recruitment. J Clin Invest 129:5151–5162. doi:10.1172/jci128644
32. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78. doi:10.1038/nrc1256
33. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression. and metastasis Cell 141:39–51. doi:10.1016/j.cell.2010.03.014
34. Saylor J et al (2018) Spatial Mapping of Myeloid Cells and Macrophages by Multiplexed Tissue. Staining Front Immunol 9:2925. doi:10.3389/fimmu.2018.02925
35. Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztai L, Rimm DL (2014) In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res 20:2773–2782. doi:10.1158/1078-0432.Ccr-13-2702
36. Schmiede A, Michel J, Schonhaa K, Goerd S, Schledzewski K (2012) Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol 22:289–297. doi:10.1016/j.semcancer.2012.02.002
37. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics. 2020. CA Cancer J Clin 70:7–30. doi:10.3322/caac.21590
38. Sorensen S et al (2014) 1328ppd-L1 Expression and Survival among Advanced Non–Small Cell Lung Cancer (Nsclc) Patients Treated with Chemotherapy. Ann Oncol 25:iv467–iv467. doi:10.1093/annonc/mdu349.107

39. Sumitomo R, Hirai T, Fujita M, Murakami H, Otake Y, Huang CL (2019) PD-L1 expression on tumor-infiltrating immune cells is highly associated with M2 TAM and aggressive malignant potential in patients with resected non-small cell lung cancer Lung cancer (Amsterdam. Netherlands) 136:136–144. doi:10.1016/j.lungcan.2019.08.023

40. Taube JM et al (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:127ra137. doi:10.1126/scitranslmed.3003689

41. Weidner N et al (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84:1875–1887

42. Wen ZF et al (2018) Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1. J Immunother Cancer 6:151. doi:10.1186/s40425-018-0452-5

43. Wu TH et al (2014) Culture supernatants of different colon cancer cell lines induce specific phenotype switching and functional alteration of THP-1. cells Cell Immunol 290:107–115. doi:10.1016/j.cellimm.2014.05.015

44. Yeo EJ et al (2014) Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res 74:2962–2973. doi:10.1158/0008-5472.Can-13-2421

45. Zhang QW et al (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 7:e50946. doi:10.1371/journal.pone.0050946

46. Zhang Y et al (2014) Protein expression of programmed death ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Onco Targets Ther 7:567–573. doi:10.2147/ott.S59959

47. Zheng Z et al (2014) Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications Chin. J Cancer Res 26:104–111. doi:10.3978/j.issn.1000-9604.2014.02.08

Figures

Figure 1

![Figure 1](image-url)
(A) The evaluation of IHC staining. Representative CD68 IHC-stained slides scanned by a pathology digital imaging system at 4× (a). For each slide, 3 representative 0.1 mm² fields were separately selected for tumor islets marked with a red frame (b) and tumor stroma marked with a black frame (c). 20× (B) Immunostaining of TAMs in NSCLC with CD68 and CD206 antibodies. a-b: Cases with a high number of CD68+ TAMs and CD206+ TAMs in tumor islets. c-d: Cases with a low number of CD68+ TAMs and CD206+ TAMs in tumor islets. e-f: Cases with a high number of CD68+ TAMs and CD206+ TAMs in the tumor stroma. g-h: Case with a low number of CD68+ TAMs and CD206+ TAMs in the tumor stroma. 20× (C) The distributions of CD68+ TAMs and CD206+ TAMs in tumor islets and tumor stroma (above). The correlations between CD68+ TAMs and CD206+ TAMs in tumor islets and tumor stroma (below). (D) CD68+ TAMs and CD206+ TAMs in tumor islets and stroma with patient OS in NSCLC. P<0.05.

Figure 2

(A) IHC staining for CD105 and PD-L1 expression in NSCLC tissues. From left to right, respectively, low densities and high densities. Every panel shows low tumor neo-vessel density and low expression of PD-L1, magnifications ×4 and ×20, respectively. (B) Cumulative OS of patients with NSCLC. (a) Tumor neo-vessels were not associated with the OS of patients with NSCLC. (c) Patients in the high PD-L1 expression groups had a higher risk of death. HR, Hazard ratio. P<0.05.

Figure 3

The density of tumor neo-vessel in NSCLC tissue positively correlates with the density of macrophages. (A) Representative fluorescence pictures showing the signal for DAPI (blue), tumor neo-vessel (CD105, red) and macrophage (CD68, green) staining in NSCLC tissue. Bar=100 µm. (B) The density of tumor neo-
vessel in 92 NSCLC tissues positively correlated with the density of macrophages. P<0.05

Figure 4
Cumulative OS of patients with NSCLC. group 1, all components were expressed at a low level; group 2, one of components was expressed at a high level; and group 3, all components were expressed at a high level. (A) Combined CD68-positive TAMs in tumor islets, CD105 and PD-L1 comprehensive analysis with OS of patients with NSCLC. (B) Combined CD68-positive TAMs in the tumor stroma, CD105 and PD-L1 comprehensive analysis with OS of patients with NSCLC. (C) Combined CD206-positive TAMs in tumor islets, CD105 and PD-L1 comprehensive analysis with OS of patients with NSCLC. (D) Combined CD206-positive TAMs in the tumor stroma, CD105 and PD-L1 comprehensive analysis with OS of patients with NSCLC. In these combinations, group 3 had a higher risk of death. P<0.05