Background. Omadacycline is a novel aminomethylcycline that recently completed Phase 3 clinical trials for the treatment of acute bacterial skin and skin structure infections (ABSSSI) and community-acquired bacterial pneumonia (CABP). This study evaluated the activity of omadacycline against a broad collection of recent (2016) clinical isolates with molecularly characterized tetracycline resistance mechanisms.

Methods. A total of 177 Gram-positive and -negative clinical isolates were identified as carrying acquired tetracycline resistance genes and were included in this study. Isolates were previously subjected to next-generation sequencing followed by screening of known tetracycline resistance mechanisms. Susceptibility testing and interpretation were performed according to CLSI methods.

Results. Omadacycline demonstrated MIC₅₀ values of 0.06–0.12 µg/mL against Gram-positive isolates carrying tet genes. Similar MIC results (0.06–0.12 µg/mL) were obtained against Gram-positive organisms carrying tet(K), tet(L), tet(M), or tet(T). Omadacycline (MIC₅₀ 0.12/0.25 µg/mL and tigecycline (MIC₅₀ 0.06/0.25 µg/mL) showed similar MIC results when tested against Staphylococcus aureus carrying tet(K). While tigecycline was less active (0.0–7.86% susceptible) than Tet(K)-producing S. aureus, doxycycline (MIC₅₀ 0.5/0.5 µg/mL; 100.0% susceptible) was active in vitro. Omadacycline (MIC₅₀ 0.25–1.25 µg/mL and tigecycline (MIC₅₀ 0.12–1 µg/mL) showed potent MIC results against Gram-positive isolates carrying tet(L) and/or tet(M). Tetracycline and doxycycline had MIC₅₀ values of 26 µg/mL. Omadacycline (MIC₅₀ 0.32 µg/mL) and tigecycline (MIC₅₀ 0.5–2 µg/mL) were active against Gram-negative isolates harboring tet(A), tet(B) or tet(D) or a combination of tet. Tetracycline (MIC₅₀ >16/16 µg/mL and doxycycline (MIC₅₀ >8/>8 µg/mL) had elevated MIC₅₀ results against these isolates.

Conclusion. Results presented here indicate that omadacycline is not adversely affected by tet genes present in contemporary Gram-positive and -negative clinical isolates, a characteristic that differs from the legacy tetracycline agents.

Disclosures. R. E. Mendes, Paratek Pharmaceuticals: Research Contractor, Research Support. M. Castanheira, Paratek Pharmaceuticals: Research Contractor, Research Support. E. S. Armstrong, Paratek Pharmaceuticals: Employee, Salary. J. N. Steenbergen, Paratek Pharmaceuticals: Employee and Shareholder, Salary. R. K. Flamm, Paratek Pharmaceuticals: Research Contractor, Research Support.

1378. Evaluation of the In vitro Activity of Meropenem-Vaborbactam Against Carbapenem-Resistant Enterobacteriaceae, Including Isolates Resistant to Cefazolin-Avibactam

William R. Wilson, PharmD¹, Ellen Kline, MS³; Chelsea Jones, BA³; Kristin Morder, BA³; Conelius T Flancy, MD³; M. Hong Nguyen, MD³ and Ryan K. Shields, PharmD³; Pharmacy, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Infectious Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Infectious Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania

Session: 144. Novel Agents
Friday, October 5, 2018: 12:30 PM

Background. Meropenem-vaborbactam (M-V) is a novel antibiotic for treatment of carbapenem-resistant Enterobacteriaceae (CRE) infections. Our objective was to determine the in vitro activity of meropenem-vaborbactam against genetically diverse CRE isolates, including those with the developed resistance to Cefazolin-Avibactam (C-A).

Methods. Minimum inhibitory concentrations (MICs) were determined for meropenem (M), V-C, and C-A by reference broth microdilution (BMD) methods in triplicate. Vaborbactam and avibactam were tested at fixed concentrations of 8 and 16 µg/mL. Minimum MICs were determined against a broad collection of recent (2016) clinical isolates with molecularly characterized carbapenemase production and/or acquired carbapenem resistance in Enterobacteriaceae. Minimum MICs were determined for meropenem (M), M-V, and C-A by reference broth microdilution (BMD) methods in triplicate. Vaborbactam and avibactam were tested at fixed concentrations of 8 and 16 µg/mL. Minimum MICs were determined against a broad collection of recent (2016) clinical isolates with molecularly characterized carbapenemase production and/or acquired carbapenem resistance in Enterobacteriaceae.

Results. A total of 117 CRE isolates were tested, including K. pneumoniae (Kp; n = 83), E. cloacae (n = 17), E. coli (n = 10), and E. aerogenes (n = 2). Seventy-nine percent harbored bl<sub>a<sub>Kp<sub>; KPC subtypes included KPC-2 (n = 32), KPC-3 (n = 41), KPC-3 variants (n = 16), and KPC [not typed] (n = 4), all E. coli). Among 74 K. pneumoniae, 95% had a premature stop codon in ompK35 and ompK36 genes inherited wild type in n = 1 (KPC-3 variant). Minimum MICs for meropenem were (µg/mL): M 8 (0.06 to 2128), K 1 (0.02 to 1216), and C-A 12 (0.0015–16), respectively. Corresponding rates of susceptibility were 90–97% for M and 85–96% for C-A. Among K. pneumoniae, C-A was more active than M-V for KPC-positive isolates, whereas M-V was more active for MDR. In contrast, M-V was more active than C-A for KPC-negative isolates.