Measurement of Organophosphate Metabolites in Postpartum Meconium as a Potential Biomarker of Prenatal Exposure: A Validation Study

Robin M. Whyatt1 and Dana B. Barr2

1Columbia Center for Children’s Environmental Health, Division of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA; 2Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Experimental data have linked exposure to prenatal organophosphates to adverse neurocognitive sequelae. However, epidemiologic research has been hampered by lack of reliable dosimeters. Existing biomarkers reflect short-term exposure only. Measurements of pesticides in postpartum meconium may yield a longer-term dosimeter of prenatal exposure. As the initial step in biomarker validation, this research determined background levels, detection limits, and stabilities of six organophosphate metabolites in meconium: diethylphosphate (DEP), diethylthiophosphate (D E T P), diethyldithiophosphate (D E D T P), dimethylphosphate (D M P), dimethyldithiophosphate (D M D T P), and dimethyldithiophosphate (D M T P). Calibration curves were also constructed. The meconium was collected from 20 newborns at New York Presbyterian Hospital; analyses were undertaken at the Centers for Disease Control and Prevention (CDC). DEP was detected in 19/20 samples (range 0.8–3.2 µg/g) and DETP was detected in 20/20 (range 2.0–5.6 µg/g). DMP and DEDTP were each detected in 1/20 (at 16 and 1.8 µg/g, respectively). DMDTP and DMTP were not detected. Detection limits were comparable to or lower than those in urine; levels were similar to those seen in adult urine in population-based research. Meconium was stable at room temperature over 12 hr. Calibration curves were linear over the range tested (0.5–400 µg/g); recoveries ranged from 18% to 66%. Using isotope dilution, recoveries of each analyte in individual samples can be corrected automatically based on the recovery of the respective stable isotope-labeled analogue, making this method fully quantitative. Results indicate that measurements of organophosphate metabolites in meconium have promise as biomarkers of prenatal exposure. Further research is needed to determine the time frame of exposure represented by pesticide levels in meconium and to evaluate the dose–response relationship. Key words: biomarkers, meconium, organophosphates, pesticides, prenatal exposures. Environ Health Perspect 109:417-420 (2001). [Online 29 March 2001] http://ehpnet1.niehs.nih.gov/docs/2001/109p417-420whyatt/abstract.html

Residential use of organophosphate insecticides is widespread in the United States (1). Resultant exposures can be appreciable and have been shown to approach or even exceed health-based standards (2–6). Many organophosphate compounds are lipophilic and readily cross the placenta (7). Experimental evidence has linked organophosphate exposure during gestation or the early postnatal period to adverse neurodevelopmental sequelae in offspring (1,8). Exposures during the spurt in brain growth (which in humans begins during the third trimester) may be particularly deleterious (9–14). However, epidemiologic research on this relationship is limited and has been hampered partly because of uncertainties in exposure estimates. Although biologic markers can be useful in understanding the role of environmental contaminants during fetal development (15–17), research on the effects of prenatal organophosphate exposure has been limited by the lack of biomarkers reflecting cumulative exposures. Available biomarkers, including blood and urine measurements, provide short-term dosimeters only (half-lives range from 10 to 30 hr) (18–20).

Residential pesticide exposures are episodic, with high peaks after application and decreasing levels over time (3). Thus use of available biomarkers as dosimeters can lead to exposure misclassification if sample collection is not timed to pesticide application. Although erythrocyte acetylcholinesterase is a good biomarker for acute organophosphate exposure, large intra-individual (13%–25%) and inter-individual (10%–40%) variability makes it unreliable as a dosimeter in low-level exposure settings unless pre-exposure values have been determined on each subject (21–23).

Measurements of organophosphates in meconium may yield a longer-term dosimeter of prenatal exposure. In human fetuses, meconium begins to accumulate in the bowel at approximately 16 weeks gestation and is generally not excreted until after delivery (24). M. econdorimontes the intestinal contents of the fetus and is a complex matrix, consisting mainly of water but also containing mucopolysaccharides, lipids, proteins, bile acids and salts, epithelial cells, cholesterol and sterol precursors, blood-group substances, squamous cells, residual amniotic fluid, and enzymes (25). Prior research on a broad range of xenobiotics indicates that metabolites of compounds to which the fetus has been exposed can be detected in meconium. These include metabolites of illicit drugs (25–32), nicotine (33), alcohol (34), analgesics, antihistamines, anesthetics, the food additive butylated hydroxytoluen (BHT), and heavy metals (25). One study has also measured pesticide levels in meconium (26). The xenobiotics appear to enter the meconium as a consequence of bile excretion into the intestines and/or of swallowing by the fetus of amniotic fluid (35). Other mechanisms may be operating as well; drugs injected directly into the amniotic fluid of pregnant ewes were detected in meconium in significant concentrations even after the fetuses had undergone esophageal ligation to prevent swallowing (36). The authors reasoned that the drugs reached the fetal circulation by absorption across the umbilical cord or diffusion across the placental surface. Evidence suggests that the half-life of xenobiotics in meconium can be protracted and that measured levels may reflect exposures from the second trimester of pregnancy through delivery (26,28,34,35,37).

Materials and Methods

After obtaining Institutional Review Board approval, we collected meconium samples from the diapers of 20 newborns without knowledge of prenatal pesticide use. Sample collection was conducted over a 3-week period by the postpartum staff at New York...
Presbyterian Hospital. Samples were transported to the Molecular Epidemiologic Laboratory at Columbia University and frozen within 8 hr of collection in all cases. At the end of the collection period, the samples were shipped on dry ice to the Centers for Disease Control and Prevention (CDC) for analysis.

Before analysis, samples were thawed and homogenized to ensure that the pesticides were distributed evenly throughout the meconium, and then lyophilized to remove residual water. Approximately 0.5–1 g dried meconium was suspended in 5 mL methanol. After the addition of a stable isotope-labeled internal standard, the suspension was mixed by rotation and centrifuged to separate the solids from the supernatant. The supernatant was removed, evaporated to dryness, and reconstituted in acetonitrile. The analytes in the acetonitrile were chemically derivatized to form their chloropropyl esters to make the analytes more suitable for analysis by isotope dilution gas chromatography–tandem mass spectrometry (ID GC–MS/MS). Analyses were undertaken by ID GC–MS/MS to evaluate background levels of six organophosphate metabolites: diethylphosphate (DEP), diethylthiophosphate (DETP), dimethylthiophosphate (DMTP), dimethyldithiophosphate (DMDTP), and dimethyldithiophosphate (DMDTP).

These metabolites are common to 1 or more of 28 different organophosphates, as shown in Table 1, and have been measured extensively in biological samples as specific indicators of both occupational and environmental exposure to organophosphate pesticides (38–43).

To determine stability of the metabolites in meconium, aliquots of meconium from the 20 newborns were thawed, pooled, and kept at room temperature for 0–12 hr, with analyses performed every hour. For analyses to construct calibration curves and to determine recoveries, we spiked 0.5 g meconium with an appropriate concentration of standard and analyzed as described above. To evaluate the meconium matrix effects, we compared the calibration curve slopes and intercepts and the reconstructed ion chromatograms from the analysis of spiked meconium samples to those of pure standards analyzed using the same technique.

Results

Table 2 shows the levels of the six organophosphate metabolites in postpartum meconium samples collected from 20 newborns (µg/g). We verified that the measured metabolites were not present in the diapers themselves. DEP was detected in 19/20 (95%) of the samples (range 0.8–3.2 µg/g), and DETP was detected in 20/20 (100%; range 2.0–5.6 µg/g). DMTP and DEDTP were each detected in 1/20 (5%) of the samples at levels of 1.8 µg/g and 1.0 µg/g, respectively. DMTP and DEDTP were not detected.

Table 3 shows the stability of the organophosphate metabolites in meconium at room temperature from 0 and 12 hr. Concentrations of DEP and DETP were stable over the entire period, with <1.5% variability. Concentrations of DMTP were more variable, but there was no trend with time. Levels of DEDTP were too low to determine stability.

Figure 1 shows calibration curves for the six metabolites, and Table 4 shows the R² of

Pesticides	Metabolites	Insecticidal uses
Azinphos-methyl	DEP	Crops, trees, ornamentals
Chlorethoxyphos	DMTP	Crops (com)
Chlorpyrifos	DETP	Crop, lawn/turf, residential, termicide, ornamentals, pet collars, pasture, livestock
Chlorpyrifos-methyl	DMDTP	Stored grain
Coumarofos	X	Livestock
Diazinon	X	Crop, lawn/turf, commercial/industrial
Dichlorvos (DDVP)	X	Pest strips, residential, food, storage
Dicrotophos	X	Crops (cotton)
Dimethoate	X	Crops, ornamentals
Disulfoton	X	Crops, ornamentals
Ethion	X	Crops (citrus), livestock
Fenithion	X	Residential/commercial antroach bait
Fenitrothion	X	Livestock, mosquito control (Florida)
Isazofos-methyl	X	Registrations canceled
M alathion	X	Crops, livestock, lawn/turf, mosquito
M ethidathion	X	Crops
M ethyl parathion	X	Crops
Naled	X	Crops, greenhouse, flea collars, mosquito, fly
Oxydemeton-methyl	X	Crops
Parathion	X	Cropsa
Phorate	X	Crops
Phosmet	X	Crops, ornamental, forestry, livestock
Pirimiphos-methyl	X	Stored corn, seed, grain, livestock, bulbs
Sulfotepp	X	Greenhouses, ornamentals
Temephos	X	Mosquito larva
Terbufos	X	Crops
Trichlorphos	X	Livestock, domestic animals (dogs/cats)
Trichlorfon	X	Ornamentals, turf, agricultural premises, nurseries, ants

*Sources on insecticidal uses from U.S. EPA (47). Indoor uses being phased out. Crop uses being phased out.

Table 2. Levels of six organophosphate metabolites in postpartum meconium samples collected from 20 newborns (µg/g).

Sample	DEP	DETP	DMTP	DMTP	DMTP	DMTP
1	1.90	2.10	ND	ND	ND	ND
2	1.40	3.80	ND	ND	ND	ND
3	1.70	4.30	ND	ND	ND	ND
4	2.00	2.30	ND	ND	ND	ND
5	3.20	3.50	1.80	ND	ND	ND
6	1.20	2.40	ND	ND	ND	ND
7	1.00	2.80	ND	ND	ND	ND
8	1.10	2.00	ND	ND	ND	ND
9	1.00	2.20	ND	ND	ND	ND
10	1.30	2.30	ND	ND	ND	ND
11	1.40	3.00	ND	ND	ND	ND
12	1.30	2.50	ND	ND	ND	ND
13	0.80	2.00	ND	ND	ND	ND
14	2.50	5.60	ND	ND	ND	ND
15	2.80	5.20	ND	ND	ND	ND
16	0.90	2.50	ND	ND	ND	ND
17	1.00	2.40	ND	16.00	ND	ND
18	ND	2.00	ND	ND	ND	ND
19	1.80	5.00	ND	ND	ND	ND
20	0.90	2.40	ND	ND	ND	ND

ND, not detected.
the calibration lines and the detection limits and percent recovery of the pesticides in meconium. All calibrations were linear over the entire range tested (Table 4). All R^2 values were > 0.99, and the standard error about the slope was < 4%. Minimal matrix effects were observed. Due to fewer interfering coextractants, limits of detection were comparable to or better than those observed previously in urine samples from population-based studies that have been analyzed at the CDC. As Table 4 shows, the recoveries of the dialkylphosphate metabolites from the CDC are comparable to or better than those observed in umbilical cord blood samples (usually nanograms per liter) (46) and are similar to levels seen in adult urine in population-based studies (45). In addition, the pesticide metabolites appear stable in meconium over 12 hr at room temperature, which should facilitate ease of incorporation of meconium measurements into research protocols. Although recoveries of the metabolites in meconium varied, low or variable recoveries will not compromise analyses. Using isotope dilution, recoveries of each analyte in each individual sample can be corrected based on the recovery of its respective stable isotope-labeled analogue. Chemically, the isotopically labeled analogues behave identically to the analytes measured, but they can be distinguished according to their mass differences. Given these initial promising findings, further research is needed to determine the time frame of exposure represented by pesticide levels in meconium and to evaluate the dose-response relationship.

Table 3. Concentrations of analytes in meconium stored at room temperature.

Time (hr)	DEP (µg/g)	DETP (µg/g)	DMP (µg/g)
0	0.81	2.6	6.7
1	0.82	2.6	—
2	0.82	2.6	6.4
3	0.82	2.6	4.0
4	0.83	2.6	6.9
5	0.82	2.6	7.4
6	0.83	2.6	5.8
7	0.83	2.7	8.7
8	0.83	2.6	5.5
9	0.83	2.6	7.2
10	0.81	2.7	4.4
11	0.82	2.6	6.4
12	0.83	2.6	8.2

Notes: — Measurement not taken.

Table 4. Specifications of the analytic method.

Analyte	R^2 of calibration lines	Percent error about calibration slope	Percent recovery from meconium	Limit of detection (µg/g)
DEP	0.9929	3.0	26	0.2
DETP	0.9908	3.4	55	0.09
DEDTP	0.9969	2.0	62	0.05
DMP	0.9963	2.2	18	0.51
DMTP	0.9998	0.5	63	0.18
DM DTP	0.9995	0.8	66	0.08

Notes: RSD, relative standard deviation.
EVERYTHING YOU READ care about such as:

you make decisions about your health credible information available to help to provide you with the most current and the National Institutes of Health–National draws on more than 25 years of scientific So you'd better know who you can environmental products and services 1-800-315-3010 http://ehis.niehs.nih.gov/ Environmental Health Perspectives 13. Slotkin SM. Developmental cholinotoxicants: nicotine and environmental conditions. Brain Res Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol Appl Pharmacol 124:53–62 (1995).

19. Nolan RJ, Rick DL, Freshour NL, Saunders JH. Chlorpyrifos: Potential exposure and health risk of infant from indoor residential pesticide application. Am J Public Health 85:689–690 (1995).

5. Davis DL, Ahmed AK. Exposures from indoor spraying of chlorpyrifos pose greater health risks to children than currently estimated. Environ Health Perspect 106:299–301 (1998).

7. Richardson RJ. Assessment of the neurotoxic potential of chlorpyrifos relative to other organophosphorus compounds: a critical review of the literature. J Toxicol Environ Health 44:135–165 (1995).

11. Whitney KD, Sielder FJ, Slotkin TA. Developmental neurotoxicity by of environmental agents in the neonate. Neurotoxicology 18:719–726 (1997).

10. Ahlbom J, Fredriksson A, Ericksson P. Exposure to an organophosphate (DFP) during a defined period in neonatal life induces permanent changes in brain muscarinic receptors and behavior in adult mice. Brain Res 677:13–19 (1995).

12. Whitby KD, Sielder FJ, Slotkin TA. Developmental neurotoxicity of chlorpyrifos: delayed targeting of DNA synthesis after repeated administration. Brain Res Dev Brain Res 108:39–45 (1998).

13. Slotkin SM. Developmental cholinotoxicants: nicotine and chlorpyrifos. Environ Health Perspect 107(suppl 3):409–419 (1999).

14. Johnson DE, Seidler FJ, Slotkin TA. Early biochemical detection of delayed neurotoxicity resulting from developmental exposure to chlorpyrifos. Brain Res Bull 45:143–147 (1998).

15. Whyatt RM, Perera FP. Application of biologic markers to studies of environmental risks in children and the developing fetus. Environ Health Perspect 103(suppl 6):105–110 (1995).

16. Perera FP, W Hyatt RM, J edrychowski W, Rauch V, M anchester D, Santella RM, Ottman R. Recent developments in molecular epidemiology: a study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland. Am J Epidemiol 147:309–314 (1998).

17. Whyatt RM, Santella RM, J edrychowski W, Garte SJ, Bell DA, Ottman R, Gladek-Yarborough A, Cosma G, Young TL, Cooper TB, et al. Relationship between ambient air pollution and DNA damage in Polish mothers and newborns. Environ Health Perspect 106(suppl 3):821–826 (1998).

18. Durham WJ, Wolfe HR, Elliott J, Absorption and excretion of parathion by spraymen. Arch Environ Health 24:381–387 (1972).

19. Nolan RJ, Ricks DL, Freshour NL, Saunders JH. Chlorpyrifos: pharmacokinetics in human volunteers. Toxicol Appl Pharmacol 73:4–15 (1984).

20. van Sittert NJ, Dumas EP. Field study on exposure and health effects of an organophosphate pesticide for maintaining registration in the Philippines. Med Lav 61:463–472 (1980).

21. Lotti M. Cholinesterase inhibition: complexities in interpretation. Clin Chem 41:1814–1818 (1995).

22. He F. Biological monitoring of occupational pesticide exposure. Int Arch Occup Environ Health 62:569–76 (1993).

23. Costa LG. Biochemical and molecular neurotoxicology: relevance to biomarker development, neurotoxicity testing and risk assessment. Toxicology Lett 102–103:417–421 (1998).

24. Moriya F, Chan KM, Noguchi TT, Wu PY. Testing for drugs of abuse in meconium of newborn infants. J Anal Toxicol 18:41–45 (1994).

25. Moore C, Negruz A, Lewis D. Determination of drugs of abuse in meconium. J Chromatogr 713:137–146 (1994).

26. Ostrea EM. Testing for exposure to illicit drugs and other agents in the neonate: a review of laboratory methods and the role of meconium analysis. Curr Probi Pediatr 29:37–56 (1999).

27. Brown S, M ore C, Negruz A, Tebbett I, Covert R, Dusick A. Detection of cocaine, norcocaine, and cocaethylene in the meconium of premature neonates. J Forensic Sci 39:1515–1519 (1994).

28. Lewis DE, Moore CM, Leikin JB, Koller M. Meconium analysis for cocaine: a validation study and comparison with drug exposure. Am J Dis Child 151:456–459 (1997).

29. Ryan RM, Wagner CL, Schultz JM, Varley D, DiPreta J, Sherer DM, Phelps DL, Kwong T. Meconium analysis for improved identification of infants exposed to cocaine in newborns. Pediatr J Pediatr 122:435–440 (1999).

30. Callahan CM, Grant TM, Philips P, Clark G, Novack AH, Streissguth AP, Raisys VA. Measurement of gestational cocaine exposure: sensitivity of infants’ hair, meconium, and urine. J Pediatr 120:765–768 (1992).

31. Clark GD, Rosenzweig RB, Lioy PJ, Callahan CM, Grant TM, Streissguth AP. The analysis of cocaine and benzoylcgonine in meconium. J Anal Toxicol 16:261–263 (1992).

32. Maynard EC, Amurao LP, OH W, M. ecgonine for drug testing. J Dis Child 145:608–652 (1991).

33. Dempsey D, Moore C, Deitersmann D, Lewis D, Feeley B, Neildasa RS. The detection of cotinine in hydrolyzed meconium samples. Forensic Sci Int 102:167–171 (1999).

34. Bearer CF, Lee S, Salvator AE, M innes S, Slick A, Yamashita T, Singer LT. Ethyl linoleate in meconium: a biomarker for prenatal ethanol exposure. Alcohol Clin Exp Res 23:487–493 (1999).

35. Ostrea EM, Romero A, Yee H. Adaptation of the meconium drug test for mass screening. J Pediatr 122:152–154 (1993).

36.Mahon PR, Scott K, Seggs G, D’Antoni T, Woods J. Cocaine and metabolites in amniotic fluid may prolong fetal drug exposure. Am J Obstet Gynecol 171:465–469 (1994).

37. Nueslein TG, Beckers D, Rieger CH. Cotinine in meconium indicates risk for early respiratory tract infections. Hum Exp Toxicol 18:285–300 (1999).

38. Shafik MT, Bradoway D, Enos HF. A cleanup procedure for the determination of low levels of alkyl phosphates, thiophosphates, and dithiophosphates in rat and human urine. J Agric Food Chem 39:885–889 (1991).

39. Aprea C, Sciarra G, Osrl D, Baccian P, Sartorelli P, Sartorelli E. Urinary excretion of alkylphosphates in the general population (Italy). Sci Total Environ 177:37–41 (1996).

40. Davies E, Peterson C. Surveillance of occupational, accidental, and incidental exposure to organophosphate pesticides using urine alkyl phosphate and phenolic metabolite measurements. Ann NY Acad Sci 837:257–268 (1997).

41. Aprea C, Sciarra G, Lanterni L. Analytical method for the determination of urinary alkylphosphates in subjects occupationally exposed to organophosphorus pesticides and in the general population. J Anal Toxicol 20:559–563 (1996).

42. Reid SJ, Watts RR. A method for the determination of diaethyl phosphate residues in urine. J Anal Toxicol 5:126–132 (1981).

43. Loewenherz C, Fenske RA, Simcox NJ, Bellamy G, Kalmann D. Biological monitoring of organophosphorus pesticide exposure among children of agricultural workers in central Washington State. Environ Health Perspect 105:1344–1353 (1997).

44. Thier A, Enck J, Klossner C. Plagued by Pesticides: An Analysis of New York State and New York City’s 1997 Pesticide Use and Sales Data. New York Public Interest Research Group, 1998.

45. Centers for Disease Control. Unpublished data.

46. Barr DB, Barr JR, Driskell WJ, Hill RH, Ashley DL, Needham LL. Strategies for biological monitoring of exposure to contemporary-use pesticides. Toxicol Ind Health 15 (1–2):168–179 (1999).

47. U.S. EPA. Pesticide summaries and quantitative usage analyses. Washington, DC.U.S. Environmental Protection Agency, Office of Pesticide Programs. Available: http://www.epa.gov/pesticides/op (cited 10 October 2000).