The PATCH Lab: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction

Tyler Kukla*1,2, Jeremy K. C. Rugenstein2, Elizabeth Driscoll2, Daniel E. Ibarra3, and C. Page Chamberlain1

1Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
2Department of Geosciences, Colorado State University, Fort Collins, CO 80523, USA
3Institute at Brown for Environment and Society and Department of Earth, Environmental, and Planetary Science, Brown University, Providence, RI 02912, USA

February 2022

Non-peer reviewed preprint article submitted to EarthArXiv.

Manuscript submitted to American Journal of Science

*contact: tykukla@colostate.edu
The PATCH Lab: A database and workspace for Cenozoic terrestrial paleoclimate and environment reconstruction

Tyler Kukla,1,2 Jeremy K. C. Rugenstein,2 Elizabeth Driscoll,2 Daniel E. Ibarra,3 and C. Page Chamberlain1

1Department of Geological Sciences
Stanford University
Stanford, CA 94305, USA

2Department of Geosciences
Colorado State University
Fort Collins, CO 80523, USA

3Institute at Brown for Environment and Society
Department of Earth, Environmental, and Planetary Science
Brown University
Providence, RI 02912, USA

ABSTRACT

In the last two decades, analytical advances and a growing interest in relevant research questions has brought a rapid increase in the amount of stable isotope data used for reconstructing terrestrial paleoclimates and environments. As the spatial and temporal resolution of proxy data continues to improve, the quantitative interpretation of these data is becoming increasingly common. These advances in data resolution and theory bring opportunities for multi-proxy comparisons, synthesis and modeling of large datasets, integration with paleoecological datasets, improved climate model benchmarking, and more. Here, in an effort to support these growing avenues of research, we present The PATCH Lab (Paleo-Analysis of Terrestrial Climate and Hydrology)—an online portal to discover, download, and quantitatively analyze Cenozoic terrestrial stable isotope data. The PATCH Lab portal includes a new database that currently includes 27009 stable isotope measurements from 211 publications spanning multiple terrestrial proxies, and quantitative models for interpreting water isotope and soil carbonate data. Data query, download, and modeling results are organized into user-friendly graphical interfaces that export datasets as .csv files. New data can be easily submitted to the PATCH Lab curators through the portal by completing a data submission template. The PATCH Lab, with the help of community engagement, serves as a resource for archiving terrestrial stable isotope data, building paleo “isoscapes”, and increasing accessibility to quantitative methods of investigating terrestrial stable isotopes in paleoclimate.

Keywords: Stable isotope, database, Cenozoic, terrestrial, oxygen, hydrogen, carbon

1. INTRODUCTION

Stable isotopes of oxygen, hydrogen, and carbon from terrestrial “proxy” materials are valuable tracers of water and climate on land throughout Earth history. In this paper, we will refer to these proxy data collectively as “terrestrial stable isotope data”, although we recognize these terms cast a broader net. The terrestrial stable isotope systems mentioned above are used to address a wide array of problems spanning the growth and death of mountain ranges (Criss & Taylor 1983; Horton and others, 2004; Mulch and others, 2006; Saylor and others, 2009; Hough and others, 2014; Cassel and others, 2018; Bershaw and others, 2019; Methner and others, 2021), patterns of past atmospheric circulation (Quade and others, 1989; Amundson and others, 1996; Zhisheng and others, 2005; Passey and others, 2009; Suarez and others, 2011; Winnick and others, 2013; Caves and others, 2015), changes in vegetation (Quade and others, 1989; Quade & Cerling 1995; Latorre and others, 1997; Fox & Koch 2003; Zhisheng and others, 2005; Passey and others, 2009; Mix and others, 2013; Caves and others, 2016), atmospheric pCO2 (Cerling 1999; Ekart and others, 1999; Breecker 2013; Breecker & Retallack 2014; Ji and others, 2018; Da and others, 2019), surface temperatures (Zanazzi and others, 2007; Hough and others, 2014; Mix & Chamberlain 2014; Fan and others, 2018), and more. As such,
terrestrial stable isotope tracers are some of the most widely used tools for reconstructing the history of climate, landscapes, and life.

Decades of research have generated a wealth of terrestrial stable isotope data, achieving impressive resolution over space and time and across numerous proxy systems. The publications generating these data represent immeasurable hours of field and laboratory work, and they help form the foundation of our current understanding of Cenozoic terrestrial climate, tectonics, and environments (Rowley & Garzione 2007; Strömberg 2011; Chamberlain and others, 2012). With advances in laboratory precision and higher throughput methods, new work is rapidly building on this foundation. The high pace of data output brings exciting opportunities for terrestrial stable isotope research, as well as the growing challenge of keeping up with new results. In order to preserve the existing knowledge base and ensure old and new data remain equally accessible into the future, dataset syntheses are a useful next step.

Synthesizing these stable isotope data in a curated database carries additional benefits beyond improving data accessibility. Specifically, a database helps investigators identify and target key gaps in existing records for future studies. Having a central data repository also makes it easier to determine which data gaps are likely to provide the most new information per sampling effort. Much like pieces of a puzzle, the amount of new information that any measurement can provide is limited, but it increases when there are complementary data nearby for comparison to further constrain the plausible interpretations. Research progresses faster when it is easier to find the gaps that likely contribute most to a given research question.

Databases also amplify the role of proxy data in climate model experiments by providing a source for model benchmarking or initialization (Botsyun & Ehlers 2021; Belem and others, 2022). Advances in the spatial and temporal resolution of data have been mirrored by theoretical advances with process-based models designed for paleo-reconstruction (Cerling 1999; Hendricks and others, 2000; Evans and others, 2013; Winnick and others, 2014; Dee and others, 2015a,b; Ibarra & Chamberlain 2015; Caves and others, 2016; Bailey and others, 2018; Dee and others, 2018; Keeble and others, 2019). These models simulate isotopic systems while limiting the number of assumptions and free parameters, bridging the gap between empirical data and complex General Circulation Models (GCMs) or Earth System Models (ESMs). As data coverage improves, so does the utility and potential application of these models. Lastly, databases make existing data accessible to a far wider community than has traditionally utilized such data. Given the increasing ease with which stable isotopes are measured, an increasing number of Earth science subdisciplines are utilizing these measurements to constrain their research question. By making existing data available, we increase the accessibility to related subdisciplines to utilize the full panoply of constraints that terrestrial stable isotope data have provided in understanding Earth’s past.

Here, we present The PATCH Lab (Paleo-Analysis of Terrestrial Climate and Hydrology)—an online platform that merges a multi-proxy terrestrial stable isotope database with quantitative models for analyzing data. Our platform is inspired by ongoing efforts in compiling large, paleo datasets such as in the SISAL database (Atsawawaramunt and others, 2018; Comas-Bru and others, 2020), Macrostrat (Peters and others, 2018), Neotoma (Williams and others, 2018), Iso2k (Konecky and others, 2020), and other compilations (Fox and others, 2018; Jolivet & Boulvais 2021), filling a gap in pre-Quaternary terrestrial proxy data availability. The PATCH Lab includes a portal to find and download the stable isotope data, graphical user interfaces (GUIs) for oxygen (Hendricks and others, 2000; Chamberlain and others, 2014; Winnick and others, 2014; Keeble and others, 2019) and carbon (Cerling 1999; Caves and others, 2016) isotope models, and submission pages for new data, data corrections, comments, and queries. The main goals of the database and workspace are twofold: (1) to make the spatial dimension (i.e., “isoscapes”) more accessible for Cenozoic terrestrial studies, and (2) to increase the accessibility of quantitative tools for paleoclimate data analysis.

2. DATABASE OVERVIEW

The database currently focuses on Cenozoic-age (~66 Ma-present) sediment in North America, Europe, and Asia (Fig. 1). Ongoing work is focused on compiling data from additional continents. Despite consisting of mostly Cenozoic data, the database includes some data from the Mesozoic. It is also missing much of the youngest, Quaternary data as these have been compiled in other places such as the SISAL database for cave records (Atsawawaramunt and others, 2018; Comas-Bru and others, 2020). While these oldest and youngest intervals are underrepresented in the database, we welcome new data from these or other points in geologic time. Broadly, any terrestrial stable isotope proxy dataset including oxygen, hydrogen, carbon, clumped, and triple-oxygen isotopes is eligible to be submitted to the database.

Data were compiled from 211 publications with a total of 27009 measurements including oxygen ($\delta^{18}O$), carbon ($\delta^{13}C$), and hydrogen (δD) isotopes, as well as triple-oxygen ($\Delta^{17}O$) and carbonate clumped measurements (Δ_{47})
when available (Table 1). Of these, 24,906 are $\delta^{18}O$ measurements, 22,114 are $\delta^{13}C$, and 978 are δD. About 59% of the non-biogenic data comes from paleosol strata, 27% from lacustrine sediments, 2% from ashes, and 1% from altered igneous or metamorphic rock. About 23% of the data comes from biogenic material such as shells and tooth enamel.

2.1. Proxy coverage case study: western North America

While it is challenging to quantify the completeness of the existing data record, in North America we have the unique opportunity to compare the density of stable isotope sampling to the estimated distribution of terrestrial sediment via the Macrostrat database (Peters and others, 2018). This exercise does not inform the global coverage of stable isotope data, but it does illustrate the regional density of sample coverage and how it has increased through time (Fig. 2).

The Macrostrat database includes geographic polygons that are fixed through time and represent interpolated lithological boundaries (Peters and others, 2018). Thus, the spatial coverage of a given column is not likely to accurately represent the spatial coverage of the lithology. Instead, we can consider the areal coverage of polygons as the upper bound on the true lithological extent. Using these polygons, we extract just the terrestrial sediment lithologies through the Cenozoic to approximate the maximum potential proxy coverage for a given point in time. We note that not all stable isotope proxies are restricted to terrestrial sediments—altered igneous and metamorphic rocks have been used to infer past meteoric water isotopes, for example—but sedimentary proxies make up the vast majority of data in our database (> 98%).

When analyzing Cenozoic sediments, more than half of the terrestrial sediment polygons in western North America have been sampled for stable isotope proxy data (Fig. 2b). Together, these polygons account for up to 75% of the total areal coverage of terrestrial sediment in the mid-to-late Cenozoic (Fig. 2a). Most of the sampling of individual polygons occurred by 2010, but the few additional polygons sampled from 2010 to present account for a large fraction of the total areal coverage. This result is somewhat sensitive to the time binning used, with the percent of polygons...
and area sampled increasing with bin duration. We bin the data in 5 million year intervals because this is similar to or greater than the age uncertainty for many terrestrial sections, and consistent with the timescales considered for the tectonic evolution of mountain ranges (Chamberlain and others, 2012). The extensive sample coverage of western North America demonstrates that climate and tectonics reconstructions on a regional (> 100km) scale have grown increasingly tractable as data coverage approaches the coverage of the sedimentary record.

Lacking sufficient Macrostrat coverage to repeat this analysis elsewhere, the western North America sample coverage emphasizes the utility of a terrestrial stable isotope database for the Cenozoic. With this expansive, multi-proxy coverage, studies that interpret spatial gradients in isotope ratios (Cassel and others, 2018; Chamberlain and others, 2012; Fan and others, 2014a; Mulch and others, 2006; Sjostrom and others, 2006), differences in isotope ratios between proxies (Tabor & Montañez 2005; Stern and others, 1997; Poage & Chamberlain 2002; Tabor and others, 2002), or other dimensions beyond the outcrop scale are becoming easier and more common. We anticipate that the database presented here will further contribute to this ongoing work to understand data spatially and across proxies.

3. DATA STRUCTURE

3.1. Balancing data grouping and data integrity

One challenge in synthesizing data is making data easy to extract based on a wide range of dimensions without grouping the data so broadly that useful information is lost. For example, it is not particularly helpful to group all paleosol data by paleosol depth horizon because the depth horizon is not commonly reported. However, it is important to keep the depth horizon information available for those that find it useful for modeling purposes (Caves and others, 2016; Gao and others, 2021). To address this problem, we constrain the inputs for each data entry column to one of three input categories—free, flexible, or fixed inputs. These three input types are designed for efficient data queries (with flexible and fixed inputs) and minimal data loss or compromise relative to the original publication (with free inputs).

Free input columns are those that accept any values (numeric, character, date, etc) usually related to notes or descriptions about the data, locality, sample, or sedimentary interpretation. For example, a free input column might note the specific name of a sample site, how the age model was constructed, or the accuracy of the listed coordinates. Due to the flexibility of free input columns, they are not very useful for querying data but are useful for contextualizing and understanding data once it is selected.

Flexible input columns require a specific type of input (like a numeric or character) but the value of the input is not constrained. We use two types of flexible input columns—alphanumeric and numeric flexible inputs. Alphanumeric
flexible inputs are publication references or codes that identify entities like a locality or sample. These inputs are flexible, rather than free, because they contain input restrictions such as following a reference format or disallowing spaces or certain characters. Numeric flexible inputs (restricted to numbers) include columns such as the age of the sample or its isotopic ratio. Numeric flexible input columns are useful for querying data based on quantitative characteristics such as geographic range (latitude and longitude) or age range (e.g. the Eocene, 56-34 Ma).

Fixed inputs columns allow only a fixed set of input values. Fixed input columns are used for broad grouping of data types by defining the sample material and its basic lithology or fossil source. They also include columns that accept binary values (yes or no) that are useful for data filtering (for example, to remove duplicated values that were published in one paper and compiled in a later paper). Fixed input columns are designed for querying qualitative data characteristics, such as data from a specific mineral or type of deposit (e.g. paleosol versus lacustrine carbonate).

Together, these three column input types are designed to meet a range of data query and post-processing goals while minimizing the amount of information that is lost or condensed.

Table 1. Papers included in the database. The data entries column refers to the number of unique sample IDs.

Reference	Sample type(s)	Data entries
1 Abels and others, (2012)	inorganic carbonate (paleosol + fluvial)	288
2 Abruzzese and others, (2005)	other, inorganic carbonate lacustrine	96
3 Alçiçek & Jiménez-Moreno (2013)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	38
4 Alonso-Zarza & Arenas (2004)	inorganic carbonate (paleosol + fluvial)	29
5 Amundson and others, (1996)	inorganic carbonate (paleosol + fluvial)	51
6 Anadón and others, (2015)	shell	101
7 Andrews and others, (1997)	other, inorganic carbonate (paleosol + fluvial), shell, inorganic carbonate lacustrine	78
8 Arehart & O’Neil (1993)	high temperature	16
9 Arenas and others, (1997)	inorganic carbonate lacustrine	137
10 Arppe & Karhu (2010)	mammal	120
11 Baczynski and others, (2013)	inorganic carbonate (paleosol + fluvial), organic	330
12 Bajnócz and others, (2006)	inorganic carbonate (paleosol + fluvial)	32
13 Ballato and others, (2016)	inorganic carbonate (paleosol + fluvial)	181
14 Bataille and others, (2006)	inorganic carbonate (paleosol + fluvial)	341
15 Bentaleb and others, (2006)	mammal	20
16 Bershaw and others, (2012)	inorganic carbonate (paleosol + fluvial)	13
17 Bershaw and others, (2019)	volcanic glass	13
18 Bill and others, (2018)	phyllosilicate	57
19 Boardman & Secord (2013)	mammal	114
20 Bougeois and others, (2018)	inorganic carbonate (paleosol + fluvial), other, inorganic carbonate lacustrine	91
21 Bowen & Beitel Bowen (2008)	inorganic carbonate (paleosol + fluvial)	47
22 Bowen and others, (2001)	inorganic carbonate (paleosol + fluvial)	354
23 Bowen and others, (2005)	inorganic carbonate (paleosol + fluvial)	145
24 Bowen and others, (2014)	inorganic carbonate (paleosol + fluvial)	290
25 Burgener and others, (2019)	inorganic carbonate (paleosol + fluvial)	53
26 Campani and others, (2012)	inorganic carbonate (paleosol + fluvial), phyllosilicate	209
27 Carroll and others, (2008)	inorganic carbonate lacustrine	136
28 Cassel and others, (2009)	volcanic glass	32
29 Cassel and others, (2012)	volcanic glass	18
30 Cassel and others, (2014)	volcanic glass	22
31 Cassel and others, (2018)	volcanic glass	85
32 Caves and others, (2014)	inorganic carbonate (paleosol + fluvial)	122
Table 1. Papers included in the database. The data entries column refers to the number of unique sample IDs.

Reference	Sample type(s)	Data entries
33	Caves and others, (2016) inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	94
34	Caves (2017) inorganic carbonate (paleosol + fluvial)	82
35	Chamberlain and others, (2012) inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine, phyllosilicate	674
36	Chamberlain and others, (2020) high temperature	45
37	Charreau and others, (2012) inorganic carbonate (paleosol + fluvial)	216
38	Clyde and others, (2010) inorganic carbonate (paleosol + fluvial)	78
39	Criss & Taylor (1983) high temperature	1
40	Crowley and others, (2008) mammal	147
41	Csonka and others, (2020) inorganic carbonate (paleosol + fluvial)	43
42	Currie and others, (2005) inorganic carbonate (paleosol + fluvial)	7
43	Currie and others, (2016) inorganic carbonate (paleosol + fluvial)	12
44	Cyr and others, (2005) inorganic carbonate lacustrine	39
45	Davis and others, (2008) inorganic carbonate lacustrine	205
46	Davis and others, (2009a) inorganic carbonate lacustrine	184
47	Davis and others, (2009b) inorganic carbonate lacustrine	209
48	Dean and others, (2015) inorganic carbonate lacustrine	1524
49	DeCelles and others, (2007) inorganic carbonate (paleosol + fluvial)	31
50	DeCelles and others, (2011) inorganic carbonate (paleosol + fluvial)	15
51	Dettman & Lohmann (2000) shell	618
52	Dettman and others, (2001) shell, mammal	401
53	Dettman and others, (2003) inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	141
54	Ding & Yang (2000) inorganic carbonate (paleosol + fluvial)	220
55	Ding and others, (2014) inorganic carbonate lacustrine, inorganic carbonate (paleosol + fluvial)	56
56	Doebbert and others, (2010) inorganic carbonate lacustrine	212
57	Domingo and others, (2013) mammal	298
58	Dong and others, (2018) inorganic carbonate (paleosol + fluvial)	384
59	Eren (2011) inorganic carbonate (paleosol + fluvial)	24
60	Fan & Dettman (2009) shell	981
61	Fan and others, (2011) inorganic carbonate (paleosol + fluvial)	32
62	Fan and others, (2014b) inorganic carbonate lacustrine, inorganic carbonate (paleosol + fluvial), shell	25
63	Fan and others, (2014a) volcanic glass	72
64	Fan and others, (2017) inorganic carbonate (paleosol + fluvial), shell	204
65	Fan and others, (2018) inorganic carbonate (paleosol + fluvial)	108
66	Fan and others, (2021) shell, inorganic carbonate (paleosol + fluvial)	426
67	Foreman and others, (2011) shell, inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine, fish	9
68	Foreman and others, (2015) inorganic carbonate (paleosol + fluvial), shell	94
69	Fox & Koch (2003) inorganic carbonate (paleosol + fluvial)	274
70	Fox & Koch (2004) inorganic carbonate (paleosol + fluvial)	28
71	Fox and others, (2012) inorganic carbonate (paleosol + fluvial)	194
72	Fricke & Wing (2004) fish, mammal	39
73	Fricke and others, (1998) mammal, fish	210
74	Fricke and others, (2008) fish, reptile, shell, inorganic carbonate (paleosol + fluvial)	157
75	Fricke and others, (2010) inorganic carbonate (paleosol + fluvial), shell	68
Table 1. Papers included in the database. The data entries column refers to the number of unique sample IDs.

Reference	Sample type(s)	Data entries
76 Fricke (2003)	mammal	47
77 Gallant and others, (2014)	inorganic carbonate (paleosol + fluvial)	26
78 Garzione and others, (2000)	inorganic carbonate (paleosol + fluvial)	34
79 Gébelin and others, (2012)	inorganic carbonate lacustrine, high temperature	68
80 Genty and others, (2003)	other	300
81 Ghosh and others, (2004)	inorganic carbonate (paleosol + fluvial)	64
82 Godfrey and others, (2018)	inorganic carbonate (paleosol + fluvial)	167
83 Harris and others, (2020)	mammal	227
84 Harzhauser and others, (2007)	shell	117
85 Harzhauser and others, (2012)	shell	164
86 Heitmann and others, (2017)	inorganic carbonate (paleosol + fluvial)	145
87 Hellwig and others, (2018)	inorganic carbonate (paleosol + fluvial)	78
88 Hofman-Kamińska and others, (2018)	mammal	116
89 Hoke and others, (2014)	inorganic carbonate (paleosol + fluvial)	118
90 Honegger and others, (2020)	inorganic carbonate (paleosol + fluvial)	149
91 Horton & Chamberlain (2006)	inorganic carbonate lacustrine, phyllosilicate	213
92 Horton and others, (2004)	inorganic carbonate lacustrine, other, phyllosilicate	134
93 Hough and others, (2011)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	218
94 Hren and others, (2010)	organic	20
95 Huntington and others, (2009)	inorganic carbonate lacustrine	7
96 Huntington and others, (2010)	inorganic carbonate lacustrine	70
97 Huntington and others, (2011)	shell, inorganic carbonate (paleosol + fluvial)	11
98 Huyge and others, (2017)	other	28
99 Hyland & Sheldon (2013)	inorganic carbonate (paleosol + fluvial), organic	58
100 Hyland and others, (2013)	inorganic carbonate (paleosol + fluvial), organic	32
101 Ibarra and others, (2021)	other, inorganic carbonate lacustrine	23
102 Ingalls and others, (2018)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	72
103 Jensen and others, (2020)	mammal	41
104 Jiang (2002)	inorganic carbonate (paleosol + fluvial)	73
105 Kaakinen and others, (2006)	inorganic carbonate (paleosol + fluvial)	96
106 Kelson and others, (2018)	inorganic carbonate (paleosol + fluvial)	35
107 Kent-Corson and others, (2006)	inorganic carbonate (paleosol + fluvial)	183
108 Kent-Corson and others, (2009)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine, other	1383
109 Kent-Corson and others, (2010)	inorganic carbonate (paleosol + fluvial)	91
110 Kent-Corson and others, (2013)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	134
111 Kluge & Affek (2012)	other	27
112 Koch and others, (1995)	inorganic carbonate (paleosol + fluvial), mammal	217
113 Koch and others, (2003)	inorganic carbonate (paleosol + fluvial), organic	460
114 Kocsis and others, (2014)	mammal	219
115 Kohn & Law (2006)	mammal, fish	337
116 Kohn and others, (2002)	mammal	207
117 Kovács and others, (2012)	mammal	36
118 Kovács and others, (2015)	mammal	57
119 Kovda and others, (2008)	inorganic carbonate (paleosol + fluvial)	44
120 Küçükuyusal & Kapur (2014)	inorganic carbonate (paleosol + fluvial)	11
Table 1. Papers included in the database. The data entries column refers to the number of unique sample IDs.

Reference	Sample type(s)	Data entries
121 Kukla and others, (2021b)	phyllosilicate	84
122 Lacroix & Niemi (2019)	inorganic carbonate lacustrine	32
123 Latorre and others, (1997)	mammal	46
124 Leary and others, (2017)	inorganic carbonate (paleosol + fluvial)	43
125 Lechler & Niemi (2011)	inorganic carbonate lacustrine	4
126 Leone and others, (2000)	inorganic carbonate (paleosol + fluvial), shell	126
127 Li and others, (2015)	inorganic carbonate lacustrine, shell	50
128 Li and others, (2016a)	inorganic carbonate (paleosol + fluvial)	288
129 Li and others, (2016b)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	128
130 Li and others, (2021)	volcanic glass	60
131 Licht and others, (2014)	mammal, shell	268
132 Licht and others, (2017a)	inorganic carbonate (paleosol + fluvial)	66
133 Licht and others, (2017b)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine, other	46
134 Licht and others, (2020)	inorganic carbonate (paleosol + fluvial), organic	438
135 Liu and others, (2014)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	1804
136 Lièdecke and others, (2013)	inorganic carbonate lacustrine	230
137 Lukens and others, (2017)	inorganic carbonate (paleosol + fluvial), other	69
138 Macaulay and others, (2016)	inorganic carbonate (paleosol + fluvial)	35
139 Mack & Cole (2005)	inorganic carbonate (paleosol + fluvial)	5
140 Mack and others, (1994)	inorganic carbonate (paleosol + fluvial)	31
141 Matson & Fox (2010)	mammal	181
142 Matson and others, (2012)	organic, inorganic carbonate (paleosol + fluvial)	66
143 McFadden and others, (2015)	high temperature	10
144 McLean & Bershaw (2021)	inorganic carbonate (paleosol + fluvial)	17
145 Meijers and others, (2016)	inorganic carbonate lacustrine	162
146 Meijers and others, (2018)	inorganic carbonate lacustrine	101
147 Metner and others, (2015)	high temperature, other	85
148 Metner and others, (2016b)	inorganic carbonate (paleosol + fluvial)	123
149 Metner and others, (2016a)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	161
150 Metner and others, (2020)	inorganic carbonate (paleosol + fluvial)	114
151 Mix & Chamberlain (2014)	phyllosilicate	231
152 Mix and others, (2013)	inorganic carbonate (paleosol + fluvial)	55
153 Mix and others, (2016)	phyllosilicate	34
154 Mix and others, (2019)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine, phyllosilicate	165
155 Mulch and others, (2006)	phyllosilicate	34
156 Mulch and others, (2007)	high temperature, other	39
157 Mulch and others, (2008)	volcanic glass	83
158 Mulch and others, (2015)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine, phyllosilicate	72
159 Mullin (2010)	inorganic carbonate (paleosol + fluvial)	31
160 Nehme and others, (2020)	other	4
161 Ortiz and others, (2006)	shell	424
162 Page and others, (2019)	inorganic carbonate (paleosol + fluvial)	20
163 Passey and others, (2009)	inorganic carbonate (paleosol + fluvial), mammal	293
Reference	Sample type(s)	Data entries
-----------	---	-------------
164	Peryam and others, (2011) inorganic carbonate (paleosol + fluvial)	47
165	Poage & Chamberlain (2002) inorganic carbonate (paleosol + fluvial), phyllosilicate, inorganic carbonate lacustrine	40
166	Poulson & John (2003) inorganic carbonate lacustrine	27
167	Quade and others, (1989) inorganic carbonate (paleosol + fluvial)	111
168	Quade and others, (1994) inorganic carbonate (paleosol + fluvial), organic, mammal	60
169	Quade and others, (1995) inorganic carbonate (paleosol + fluvial)	48
170	Retallack and others, (2004) inorganic carbonate (paleosol + fluvial)	355
171	Ring and others, (2020) mammal	41
172	Rothe and others, (1974) shell, other	76
173	Rowe and others, (2020) other	421
174	Rowley & Currie (2006) inorganic carbonate lacustrine, inorganic carbonate (paleosol + fluvial)	3
175	San Jose and others, (2020) inorganic carbonate (paleosol + fluvial), other, inorganic carbonate lacustrine, shell	274
176	Sanyal and others, (2005) inorganic carbonate (paleosol + fluvial)	64
177	Saylor and others, (2009) inorganic carbonate lacustrine	252
178	Scherler and others, (2014) mammal	92
179	Schlunegger and others, (2007) inorganic carbonate (paleosol + fluvial)	54
180	Schwartz and others, (2019) inorganic carbonate lacustrine, inorganic carbonate (paleosol + fluvial)	74
181	Sjostrom and others, (2006) phyllosilicate	62
182	Smith and others, (1993) inorganic carbonate (paleosol + fluvial)	52
183	Smith and others, (2017) volcanic glass	14
184	Spencer and others, (1996) shell	2
185	Stern and others, (1997) phyllosilicate, inorganic carbonate (paleosol + fluvial)	68
186	Sun and others, (2017) inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	176
187	Super (2010) phyllosilicate	18
188	Takeuchi & Larson (2005) phyllosilicate	17
189	Takeuchi and others, (2010) inorganic carbonate (paleosol + fluvial)	117
190	Takeuchi (2007) phyllosilicate	55
191	Tang and others, (2017) inorganic carbonate (paleosol + fluvial)	28
192	Ting and others, (2003) inorganic carbonate (paleosol + fluvial)	59
193	Torres & Gaines (2013) inorganic carbonate (paleosol + fluvial)	25
194	Tütken and others, (2008) mammal	49
195	Vasilyan & Carnevale (2013) inorganic carbonate (paleosol + fluvial)	24
196	Vögel & others, (2017) inorganic carbonate (paleosol + fluvial)	48
197	Wang & Deng (2005) mammal	126
198	Wang and others, (1993) inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine, mammal	59
199	Wang and others, (1996) inorganic carbonate (paleosol + fluvial)	3
200	Wei and others, (2016) inorganic carbonate lacustrine	58
201	White & Schiebout (2008) inorganic carbonate (paleosol + fluvial)	123
202	White and others, (2001) inorganic carbonate (paleosol + fluvial)	11
203	White and others, (2017) phyllosilicate	9
204	Winnick and others, (2013) inorganic carbonate (paleosol + fluvial)	106
205	Xu and others, (2013) inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	35
206	Xu and others, (2015) inorganic carbonate (paleosol + fluvial)	37
Table 1. Papers included in the database. The data entries column refers to the number of unique sample IDs.

Reference	Sample type(s)	Data entries
207 Xu and others, (2016)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	11
208 Zamarreno and others, (1997)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	111
209 Zanazzi and others, (2007)	mammal	548
210 Zanazzi and others, (2015)	mammal	19
211 Zhuang and others, (2011)	inorganic carbonate (paleosol + fluvial), inorganic carbonate lacustrine	107

3.2. Data fields hierarchy

Any given stable isotope value rests on a hierarchy of information designed to simplify data querying and post-processing steps (Fig. 3). The basic unit of this structure is the publication (or a dataset ID in cases where data is unpublished such as publicly available MS and PhD theses). While a more basic unit would be a given sample basin or locality, we use the publication because not all samples are linked to a given basin (e.g. altered igneous or metamorphic rock) and the publication unit simplifies the data entry step, especially in cases where the sampling basin is not reported and must be independently determined.

Within every publication, we define at least one section ID. Section IDs are flexible alphanumeric inputs that separate groups of samples by space and geologic time. Often, they are defined based on how the original publication grouped data. When no groupings are available, we define a single section ID as a group of data from a continuous or near-continuous sedimentary package, sampled within an areal range of tens of kilometers or less. This definition is not rigid (i.e. there is no strict geographic or temporal cut-off between section IDs) because we want to account for cases where nearby sections in space and time show distinct results. For example, if two outcrops of the same age a few kilometers apart have distinct isotope ratios, we will preserve this distinction by assigning separate section IDs, despite their close spatial and temporal proximity. Therefore, users that wish to group data by section ID do not lose this information.

After the section ID, the next delineations are the sample coordinates, sample grouping, and sample ID. Coordinates (latitude [-90, 90] and longitude [-180, 180]) are flexible numeric inputs reported in decimal degrees to the resolution of the original paper unless otherwise noted. In cases where the coordinates are not reported, we make an estimate based on the available information (often a map figure or survey systems such as the section, township and range survey location previously used in the United States) and note our approximation. The sample type and sample material are flexible alphanumeric inputs. There are two sample type columns recording similar information in more general and specific terms. The basic sample type defines a given sample based on its lithological, mineralogical, or fossil origin (e.g. “phylllosilicate” or “shell”) and the more specific sample type distinguishes between sub-categories (e.g. “altered ash” or “mollusc”). The sample material denotes the mineral or material measured (e.g. “smectite” or “aragonite”). Finally, the sample ID is a flexible alphanumeric identification code assigned by the original paper or, when none is available, generated by us. We deviate from the sample ID defined by the original paper if multiple sample types are measured for a given sample ID. In this case, we append a suffix to the sample ID that distinguishes the sample type (such as “XXorg” and “XXcarb” for organic and carbonate carbon measurements of the same hand sample).

The last two delineations, the replicate ID (flexible alphanumeric) and isotope ratio (flexible numeric), refer to individual measurements. The replicate ID distinguishes individual measurements of a single sample and is often defined based on the sample ID and some suffix (such as “1, 2, 3...”). In cases where the sample was not replicated, the replicate and sample IDs are identical or replicate IDs are left blank. In some cases, only the average isotope ratio of multiple samples is reported (and individual measurements are not available), and we enter the isotope ratio as if it were a single measurement and note that the value reflects the average of multiple measurements. Finally, the isotope ratio is the last level of the hierarchy, and is a numeric value assigned to one of 5 columns ($\delta^{18}O$, $\delta^{13}C$, δD, Δ_{47}, $\Delta^{17}O$). All data in a given column are reported relative to the same isotope standard.

All column names are grouped by their data input type (free, flexible, or fixed) and described in Table 2. Aside from the hierarchical inputs outlined in Figure 3, other columns provide sample-specific information like the outcrop height and age uncertainty as well as notes about the data or decisions made during data entry. For a full list of the column input restrictions by column, see the database user guide in the Supplementary Information.
Figure 3. Illustrated data hierarchy for flexible queries. Red arrow marks duplicating Sample IDs assigned by the original author if the same sample is run for more than one isotope proxy system.

Table 2. Name and description of all data entry columns in the database.

Data entry category	Column header	Description	Example input
Fixed	Sample_type_basic	General designation of sample type	inorganic carbonate, lacustrine
Fixed	Sample_type	Lithologic or fossil origin of sample	Altered ash
Fixed	Sample_material	Mineral or sample material measured	kaolinite
Fixed	Previously_published	Yes (Y) or no (N) denoting if the measurement was also published in an earlier paper (useful for papers that present compilations)	N
Fixed	Event	Name of climate or other event covered by the section or a set of samples	PETM
Fixed	Event_excursion?	Yes (Y) or no (N) denoting if the sample occurs during a transient excursion (for filtering with long-term data)	Y
Fixed	Author_upload	Yes (Y) if data was uploaded by the author or person generating the new data, no (N) if uploaded by PATCH Lab curators	N
Flexible (alphanumeric)	Reference	Original publication or data entry contact (for unpublished data)	Abels et al., 2012
Flexible (alphanumeric)	Reference_ID	Unique alphanumeric code for the reference	ABELS12
Flexible (alphanumeric)	Section_ID	Unique alphanumeric code for the section site	ABELS12_UDC
Flexible (alphanumeric)	Sample_ID	Unique alphanumeric code for the sample	UDC-1
Flexible (alphanumeric)	Replicate_ID	Unique alphanumeric code for replicated measurement	UDC-1a
Table 2. Name and description of all data entry columns in the database.

Data entry category	Column header	Description	Example input
Flexible (alpha-numeric)	PrevPublished_Ref	Reference for the paper where data was originally published (if Previously_published = Y, otherwise blank)	
Flexible (numeric)	Latitude	Sample latitude in decimal degrees	44.2
Flexible (numeric)	Longitude	Sample longitude in decimal degrees (range -180, 180)	-113.5
Flexible (numeric)	Height_m	Height (or depth, if core) of sample in meters	80
Flexible (numeric)	Age_Ma	Assigned sample age in million years ago (Ma)	55
Flexible (numeric)	Top_age_Ma	Youngest age uncertainty bound (stratigraphic top)	54
Flexible (numeric)	Bottom_age_Ma	Oldest age uncertainty bound (stratigraphic bottom)	58
Flexible (numeric)	d18O_smow	Oxygen isotope measurement (permille VSMOW)	20
Flexible (numeric)	d13C_pdb	Carbon isotope measurement (permille VPDB)	-4
Flexible (numeric)	dD_smow	Hydrogen isotope measurement (permille VSMOW)	-120
Flexible (numeric)	D17O_permille	Triple-oxygen isotope measurement	-0.20
Flexible (numeric)	D17O_lambda	Triple-oxygen isotope slope for calculation	0.528
Flexible (numeric)	D47_permille	Clumped isotope measurement	0.500
Flexible (numeric)	d18Oprecip_smow	Reported composition of meteoric water	-10
Flexible (numeric)	dDprecip_smow	Reported composition of meteoric water	-70
Flexible (numeric)	Other_data_value_X	Value of an additional data type relevant to isotope data (3 columns where X=1, 2, or 3)	65
Free	Other_data_type_X	Type of additional data noted in “Other_data_value_X” (3 columns where X=1, 2, or 3)	Percent carbonate
Free	Sample_notes	Most relevant additional information about sample	Carbonate root cast
Free	Notes_1	Relevant notes about sample or section	Upper Deer Creek section
Free	Notes_2	Relevant notes about sample or section	Bighorn Basin
Free	Data_entry_notes	Details about entry to database	Locations approximate using map in Fig. 1
Free	Published_wateriso_interpretation	Interpreted driver of water isotope value (blank if meteoric or primary fluid)	evaporative
Free	Published_carboniso_interpretation	Interpreted driver of carbon isotope value (blank if primary)	Contamination of young carbon

3.3. Integration with related data

In some cases, measurements beyond stable oxygen, hydrogen, and carbon isotopes are published with the isotope data that are useful for data interpretation. For example, strontium isotope data may be useful for constraining
drainage sources in lacustrine carbonates. Similarly, if multiple measurements are made from different locations on
a sample (such as mammal teeth) it can be useful to know the distance along the sample where the material was
taken. In order to include these complementary data we add six generic data entry columns—three to define data
types (“Other_data_type_X”) and three to define data values (“Other_data_value_X”). In these columns, the value “X”
can be either “1”, “2”, or “3”, and this number links the data type and value. While many publications include
data beyond terrestrial stable isotope data, we generally only include other data in these columns if they are directly
relevant for contextualizing the isotope data. However, new data entries do not need to follow this guideline and are
welcome to include any additional data in these generic columns.

3.4. Data entry decisions and data upload notebooks

While we strive to maintain as much of the original information from a given data entry as possible, the data
contributor or curator must make some decisions about how the data are entered. These include decisions about what
information is included versus omitted in the entry, as well as how to enter information that is unclear or not explicitly
defined by the authors. For example, some papers on the Paleocene Eocene Thermal Maximum report data by time
relative to the carbon isotope excursion or by stratigraphic height. This practice is useful for the original study, but
does not provide a clear path forward for correlating these data with data from other sections that are constrained
in time. Though these ages can be left blank, the data may not be queried when a user extracts data by time, thus
limiting the search result. A similar issue sometimes emerges for sample coordinates. In some papers, sample locations
are shown on a map, but coordinates are not reported in the data tables. The latitude and longitude can be left blank,
but at the risk of the data being omitted from geographic queries.

In order to make our data entry practices transparent, we document decisions such as these in Word documents or
text files referred to as data upload “notebooks”. Each data upload (publication or unpublished dataset entry) has
its own notebook and each notebook contains “General notes” and “Next steps”. The general notes section includes
decisions about data entry such as those discussed above. These decisions are usually also documented in a notes
column in the database itself. The next steps section includes updates that can be made to the data entry in the
future. These updates might be to ask the corresponding author for clarification in the case of a data entry question,
or for additional data if only average values of multiple replicates are reported. In some cases the next steps include
entering “other data” that is available in the manuscript but does not fall into any of the stable isotope data columns.
The next steps efforts do not involve changes to the data entry that are critical for the isotope data (in this case, the
isotope data are not made available in the database). Data upload notebooks are maintained offline as part of the data
entry workflow and are currently available upon request. Future versions of the PATCH Lab will permit automatic
downloading of these notebooks with the selected data.

4. THE PATCH LAB PORTAL

The PATCH Lab portal (https://geocentroid.shinyapps.io/PATCH-Lab/) is the web platform that hosts the database
and graphical user interface (GUI) models for simulating oxygen and carbon isotopes. While the models can be used
in any capacity, we anticipate they will be most useful for placing quantitative constraints on possible interpretations,
testing hypotheses, and constraining the sensitivity of stable isotope ratios to various forcings. Output from data
queries and model simulations can be downloaded in .csv format for offline analysis and plotting. Additional code for
database queries can also be downloaded from Github (https://github.com/tykukla/PATCH-Lab) for offline use.

4.1. Querying the isotope database

Database queries can be completed from the homepage of The PATCH Lab portal (Fig. 4). Here, users will find
a variety of filtering options. In the left column, all sample types represented in the database are listed and can be
selected for a given download. In the right column, samples can be further queried by time, data interpretation (“Filter
for meteoric interpretation”), and long-term conditions (“Filter out transient events”). The meteoric interpretation
filter removes any sample values that the original authors did not interpret as reflecting primary meteoric water
or fluids (e.g. samples affected by evaporation, diagenesis, etc.). The transient events filter removes local, transient
isotope excursions like the Paleocene Eocene Thermal Maximum. This feature is useful for studies looking at long-term
mean conditions, such as for stable isotope paleoaltimetry or for broadly-defined modeling experiments (e.g. “Eocene”
boundary conditions). Finally, users can select whether to average the output values based on “Measurement number”
(averages replicate measurements of a given sample) or “Measurement number & site” (averages replicates and then
all samples of a given site). The entire database can be downloaded by selecting all sample types, the full age range, and no filtering or averaging.

4.2. Soil respiration model overview

For nearly four decades, carbon isotopes in paleosols have been modeled using a 1-D production-diffusion equation (Cerling 1984). During that time, a substantial amount of work has refined the soil carbonate paleo-barometer and explored the importance of and controls on the various parameters in the model. For full derivations of the model, we refer the reader to Cerling (1984); Cerling and others, (1993); Davidson (1995); Cerling (1999) and Breecker (2013). Though the paleosol carbonate paleo-barometer has been most frequently used to estimate past atmospheric pCO_2—particularly for periods when there are few other proxies of pCO_2, such as in the Paleozoic and Mesozoic—recent workers have also inverted the paleo-barometer to quantitatively examine soil respiration rates (Caves and others, 2014, 2016; Rugenstein & Chamberlain 2018; Licht and others, 2020). Within The PATCH Lab, we include the ability to model both soil respiration rates and atmospheric pCO_2, as well as to forward model and thereby estimate paleosol carbonate $\delta^{13}C$. Using the equations presented in Cerling (1999) and Caves and others, (2016), the built-in soil respiration model includes four different outputs. Output 1 calculates soil respiration at a defined soil column depth given a range of paleosol carbonate $\delta^{13}C$ values as well as other necessary model inputs, such as atmospheric pCO_2 and its isotopic composition, the isotopic composition of respired soil carbon, and the carbonate formation temperature. The output data are $\delta^{13}C$ and soil respiration rate values for a given depth in the soil column. Output 2 solves for the $\delta^{13}C$ as a function of depth in the soil profile using similar inputs as output 1 as well as the soil respiration rate. Output 3 returns atmospheric pCO_2 based on the isotopic composition of soil carbonate and other necessary inputs such as the soil pCO_2 and its isotopic composition. Lastly, output 4 reads in carbon isotope data that is defined in age and uses the compilation of paleo-atmospheric pCO_2 from the Paleo-CO2 project (https://paleo-co2.org/) to solve for soil respiration rates, propagating the measurement and paleo-pCO_2 uncertainties through. We also remove paleosol-based estimates of past atmospheric pCO_2 to avoid circularity and impose an upper pCO_2 estimate limit of 3000 ppm so the highest values have less effect on both the mean atmospheric pCO_2 used and the estimated mean soil respiration.

4.3. Vapor transport model overview

The vapor transport model simulates oxygen isotopes in vapor, precipitation, and evapotranspiration over space along a 1-dimensional storm track (Fig. 5). The water balance and isotope ratios are solved simultaneously as a function of the balance of moisture transport (both advective and eddy diffusive), precipitation, and evapotranspiration fluxes. The model is based on the equations of Hendricks and others, (2000), with modifications for continental applications.
The PATCH Lab

5. COMMUNITY ENGAGEMENT

Community engagement is critical to The PATCH Lab’s goal of bringing robust data and modeling tools to a single, easy-to-access location. There are four main avenues for members of the research community to engage with this effort: (1) Data contribution; (2) Update requests; (3) Code contribution; and (4) Long-term project steering.

5.1. Data contribution

In addition to data and model downloads, The PATCH Lab portal includes the tools necessary to contribute new data (see Fig. 4). A basic workflow for the data contribution process is shown in Figure 6. Data contributors can begin by downloading the PATCH Lab template that includes all of the data entry columns listed in Table 2 in the correct order. Contributors will also fill out a brief contact sheet so that we can reach out if we have any questions about the data submission. Once the template is completed, the data contributor can test for compatibility with existing data using the “run diagnostics” button. The contributor is prompted to upload the completed spreadsheet using any filename with a “.csv” extension. At this point, each column is tested against the restrictions imposed on flexible and fixed input columns, and the result of the test is printed to the screen. Isotope ratios are also compared against the entire database to flag outliers that may reflect a data entry error such as a missing decimal point, negative sign, or incorrect isotope standard. The data contributor can upload the data regardless of the test result; however, we encourage contributors to address errors identified by the test and double-check outlier values or include a note about these errors with the data submission.

The PATCH Lab curators will continue to add data to the database and we strive to upload recent publications swiftly. We encourage community contributors to upload their own data to minimize the influence of curators on data entry decisions.
5.2. **Update requests**

Update requests are useful for a range of applications from fixing data entry errors to updating the broader format of the portal. For example, we recognize that the author of a dataset may not agree with decisions made by the data curators during the data entry process. In this case, we encourage the author to contact the curators directly or submit an update request. These requests can range from a message with update instructions to a completed data template to replace the existing entry. Update requests can also be used by data users that notice errors in existing entries. In this case, we will verify the correct data input from the original publication and make the appropriate changes.

We also welcome feedback and requests that are not related to the database. Users that would like to see new functionality, such as changes to model interfaces or the data query process, can contact the curators via The PATCH Lab portal.

5.3. **Code contribution**

The “Community Tools” page of The PATCH Lab portal hosts links to code developed by the research community that is of interest to other PATCH Lab users. These entries are not restricted to any specific functionality, but some helpful resources include code for processing or plotting data, for running other models, or for integrating other datasets like modern climate, topography, or water isotopes. We also encourage users to contact us about integrating new graphical user interface models into The PATCH Lab portal directly. The portal runs on code written in R, so resources written in R can be easily adapted to be featured on the portal.

Currently, this page includes links to R code to work with the database. There are a variety of scripts, including the same data query scripts used by The PATCH Lab portal, for users to build upon or modify. There are also some functions for statistical analysis that is useful for determining statistical power and possible data biases. Scripts like these can be sent to PATCH Lab curators to upload to the Community Tools alongside data from a given publication to improve transparency and reproducibility.

5.4. **Long-term steering committee**

The PATCH Lab is advised by a steering committee to help ensure its long-term success and to stay up to date with the needs of different research communities. The steering committee identifies areas of the resource that can be improved and advises on its long-term infrastructure. The committee includes two distinct groups—an advisory panel and regional editors. The primary role of advisory panel members is to identify long-term goals for the PATCH lab and provide feedback from relevant subdisciplines that frequently use terrestrial stable isotope data. In turn, regional editors handle data curation for certain continents or regions and act to identify new data trends that may impact data curation and archiving. Regional editors also identify and upload data that is missing from the database within
their region and serve as the point of contact for authors uploading data in their region. Members of the committee are listed in The PATCH Lab portal, and those interested in getting involved are encouraged to reach out via the portal’s contact page.

6. CONCLUDING REMARKS

The PATCH Lab is an online workspace that integrates terrestrial stable isotope data and models for efficient data download and analysis. Previous and ongoing research already leverages the rapid increase in data of the past two decades. However, synthesizing these data on a case-by-case basis will become more challenging and time intensive as the total amount of available data grows. The goal of this effort is to provide a long-term, curated database for research purposes, alongside tools that can assist in data interpretation.

We emphasize that community engagement in this effort is critical to its utility. The PATCH Lab is a tool developed for the terrestrial paleoclimate and environment community—a community that spans a wide range of disciplines and sub-disciplines, each of which may find the tool useful for different reasons. Feedback from, and engagement with, the research community are the most effective ways to ensure this resource remains useful as science progresses.

ACKNOWLEDGMENTS

We thank all of the researchers who generated the stable isotope data compiled in The PATCH Lab. We are also grateful to Hari Mix, Danielle Y. Moragne, and Sam Kramer for their contributions compiling data. We thank Katharina Methner for valuable conversations about the database structure, and Caitlin Mothes and Matthew Ross of the CSU Geospatial Centroid for assistance in hosting the PATCH Lab application. This work was funded by NSF EAR-1322084.

REFERENCES

Abels, H. A., Clyde, W. C., Gingerich, P. D., and others,. 2012, Nature Geoscience, 5, 326, doi: 10.1038/ngeo1427
Abruzzese, M. J., Waldbauer, J. R., & Chamberlain, C. P. 2005, Geochimica et Cosmochimica Acta, 69, 1377, doi: 10.1016/j.gca.2004.08.036
Aciçek, H., & Jiménez-Moreno, G. 2013, Sedimentary Geology, 291, 62, doi: 10.1016/j.sedgeo.2013.03.014
Alonso-Zarza, A., & Arenas, C. 2004, Sedimentary Geology, 167, 91, doi: 10.1016/j.sedgeo.2004.02.001
Amundson, R., Chadwick, O., Kendall, C., & Wang, Y. 1996, Geology, 24, 23, doi: 10.1130/0091-7613
Anadón, P., Oms, O., Riera, V., & Julià, R. 2015, Quaternary International, 389, 70, doi: 10.1016/j.quaint.2014.09.062
Andrews, J. E., Riding, R., & Dennis, P. F. 1997, Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 171, doi: 10.1016/S0031-0182(96)00120-4
Arehart, G. B., & O’Neil, J. R. 1993, in Geophysical Monograph Series, ed. P. K. Swart, K. C. Lohmann, J. Mckenzie, & S. Savin (Washington, D. C.: American Geophysical Union), 277–284, doi: 10.1029/CM078p0277
Arenas, C., Casanova, J., & Pardo, G. 1997, Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 133, doi: 10.1016/S0031-0182(96)00052-1
Arppe, L., & Karhu, J. 2010, Quaternary Science Reviews, 29, 1263, doi: 10.1016/j.quascirev.2010.02.013
Atsawawaranunt, K., Comnac-Bru, L., Mozadehi, S. A., and others,. 2018, Earth System Science Data, 10, 1687
Baczynski, A. A., McInerney, F. A., Wing, S. L., and others,. 2013, Geochemistry, Geophysics, Geosystems, 14, 4133, doi: 10.1002/ggge.20265
Bailey, A., Posmentier, E., & Feng, X. 2018, Geophysical Research Letters, 45, 7093, doi: 10.1029/2018GL078254
Bajnócz, B., Horváth, Z., Demény, A., & Mindszenty, A. 2006, Isotopes in Environmental and Health Studies, 42, 335, doi: 10.1080/10256010600901045
Ballato, P., Mulch, A., Landgraf, A., and others,. 2010, Earth and Planetary Science Letters, 300, 125, doi: 10.1016/j.epsl.2010.09.043
Bataille, C. P., Watford, D., Ruegg, S., Lowe, A., & Bowen, G. J. 2016, Palaeogeography, Palaeoclimatology, Palaeoecology, 457, 277, doi: 10.1016/j.palaeo.2016.06.023
Belem, A., Bell, T., Burdett, H. L., and others,. 2022, Earth and Space Science, 9, doi: 10.1029/2021EA002115
Bentaleb, I., Langlois, C., Martin, C., and others,. 2006, Comptes Rendus Geoscience, 338, 172, doi: 10.1016/j.crte.2005.11.007
Bershaw, J., Cassel, E. J., Carlson, T. B., Streig, A. R., & Streck, M. J. 2019, Journal of Volcanology and Geothermal Research, 381, 157, doi: 10.1016/j.jvolgeores.2019.05.021

Bershaw, J., Garzione, C. N., Schoenbohm, L., Gehrels, G., & Tao, L. 2012, Journal of Asian Earth Sciences, 44, 136, doi: 10.1016/j.jseaes.2011.04.020

Bill, N. S., Mix, H. T., Clark, P. U., and others., 2018, Earth and Planetary Science Letters, 482, 300, doi: 10.1016/j.epsl.2017.11.029

Boardman, G. S., & Secord, R. 2013, Palaeogeography, Palaeoclimatology, Palaeoecology, 375, 38, doi: 10.1016/j.palaeo.2013.02.010

Botsyun, S., & Ehlers, T. A. 2021, Frontiers in Earth Science, 9, 624542, doi: 10.3389/feart.2021.624542

Bougeois, L., Dupont-Nivet, G., de Rafélis, M., and others,. 2020, Earth and Planetary Science Letters, 485, 99, doi: 10.1016/j.epsl.2017.12.036

Bowen, G. J., & Beitler Bowen, B. 2008, Geology, 36, 379, doi: 10.1130/G24597A.1

Bowen, G. J., Koch, P. L., Gingerich, P. D., and others,. 2001, in Paleocene-Eocene Stratigraphy and Biotic Change in the Bighorn and Clarks Fork Basins, Wyoming No. 33 (University of Michigan Papers on Paleontology), 73–88

Bowen, G. J., Koch, P. L., Meng, J., Ye, J., & Ting, S. 2005, American Museum Novitates, 3474, 1, doi: 10.1206/0003-0082(2005)474[0001: AACOF]2.0.CO;2

Bowen, G. J., Maibauer, B. J., Kraus, M. J., and others,. 2014, Nature Geoscience, 8, 44, doi: 10.1038/ngeo2316

Breecker, D., & Retallack, G. 2014, Palaeogeography, Palaeoclimatology, Palaeoecology, 406, 1, doi: 10.1016/j.palaeo.2014.04.012

Breecker, D. O. 2013, Geochemistry, Geophysics, Geosystems, 14, 3210, doi: 10.1002/2013GC004589

Burgener, L., Hyland, E., Huntington, K. W., Kelson, J. R., & Sewall, J. O. 2019, Palaeogeography, Palaeoclimatology, Palaeoecology, 516, 244, doi: 10.1016/j.palaeo.2018.12.004

Campani, M., Mulch, A., Kempf, O., Schlunegger, F., & Mancktelow, N. 2012, Earth and Planetary Science Letters, 337–338, 174, doi: 10.1016/j.epsl.2012.05.017

Carolin, S. A., Ersek, V., Roberts, W. H. G., Walker, R. T., & Henderson, G. M. 2019, Geophysical Research Letters, 46, 14003, doi: 10.1029/2019GL084365

Carroll, A. R., Doebbert, A. C., Booth, A. L., and others,. 2008, Geology, 36, 791, doi: 10.1130/G34783A.1

Cassell, E. J., Breecker, D. O., Henry, C. D., Larson, T. E., & Stockli, D. F. 2014, Geology, 42, 1007, doi: 10.1130/G35924.1

Cassell, E. J., Graham, S. A., & Chamberlain, C. P. 2009, Geology, 37, 547, doi: 10.1130/G25572A.1

Cassell, E. J., Graham, S. A., Chamberlain, C. P., & Henry, C. D. 2012, Geosphere, 8, 229, doi: 10.1130/GES00671.1

Cassell, E. J., Smith, M. E., & Jicha, B. R. 2018, Geophysical Research Letters, 45, doi: 10.1029/2018GL079887

Caves, J. K. 2017, GSA Today, doi: 10.1130/GSATG305A.1

Caves, J. K., Sjostrom, D. J., Mix, H. T., Winnick, M. J., & Chamberlain, C. P. 2014, American Journal of Science, 314, 1171, doi: 10.2475/08.2014.01

Caves, J. K., Winnick, M. J., Graham, S. A., and others,. 2015, Earth and Planetary Science Letters, 428, 33, doi: 10.1016/j.epsl.2015.07.023

Caves, J. K., Moragne, D. Y., Ibarra, D. E., and others,. 2016, Geology, 44, in press, doi: 10.1130/G38267.1

Cerling, T. E. 1984, Earth and Planetary Science Letters, 71, 229, doi: 10.1016/0012-821X(84)90089-X

—. 1999, in Palaeoweathering, Palaeosurfaces and Related Continental Deposits, ed. M. Thiry & R. Simon-Connson (Oxford, UK: Blackwell Publishing Ltd.), 43–60, doi: 10.1002/9781444304190.ch2

Cerling, T. E., Wang, Y., & Quade, J. 1993, Nature, 361, 344, doi: 10.1038/361344a0

Chamberlain, C., Ibarra, D., Lloyd, M., and others,. 2020, Geochemical Perspectives Letters, 15, 6, doi: 10.7185/geochemlet.2026

Chamberlain, C. P., Mix, H. T., Mulch, A., and others,. 2012, American Journal of Science, 312, 213, doi: 10.2475/02.2012.05

Chamberlain, C. P., Winnick, M. J., Mix, H. T., Chamberlain, S. D., & Maher, K. 2014, Global Biogeochemical Cycles, 28, 992, doi: 10.1002/2014GB004822

Charreau, J., Kent-Corson, M. L., Barrier, L., and others,. 2012, Earth and Planetary Science Letters, 341–344, 158, doi: 10.1016/j.epsl.2012.05.033

Clyde, W. C., Ting, S., Snell, K. E., and others,. 2010, The Journal of Geology, 118, 131, doi: 10.1086/649893

Comas-Bru, L., Rehfeld, K., Roesch, C., and others,. 2020, Earth System Science Data, 12, 2579, doi: 10.5194/essd-12-2579-2020

Crowley, B. E., Koch, P. L., & Davis, E. B. 2008, Geological Society of America Bulletin, 120, 588, doi: 10.1130/B26254.1
Quade, J., Cerling, T. E., & Bowman, J. R. 1989, Nature, 342, 189, doi: 10.1038/340301a0
Quade, J., Solounias, N., & Cerling, T. E. 1994, Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 41, doi: 10.1016/0031-0182(94)90021-3
Retallack, G. J., Wynn, J. G., & Fremd, T. J. 2004, Geology, 32, 297, doi: 10.1130/G20247.1
Ring, S. J., Bocherens, H., Wings, O., & Rabi, M. 2020, Scientific Reports, 10, 3987, doi: 10.1038/s41598-020-60379-7
Rothe, P., Hoefs, J., & Sonne, V. 1974, Sedimentology, 21, 373, doi: 10.1111/j.1365-3091.1974.tb02066.x
Rowe, P., Wickens, L., Sahy, D., and others., 2020, Palaeogeography, Palaeoclimatology, Palaeoecology, 538, 109422, doi: 10.1016/j.palaeo.2020.109422
Rowley, D. B., & Currie, B. S. 2006, Nature, 439, 677, doi: 10.1038/nature04506
Rowley, D. B., & Garzione, C. N. 2007, Annual Review of Earth and Planetary Sciences, 35, 463, doi: 10.1146/annurev.earth.35.031306.140155
Rugenstein, J. K., & Chamberlain, C. P. 2018, Earth-Science Reviews, doi: 10.1016/j.earscirev.2018.09.003
San Jose, M., Caves Rugenstein, J. K., Cosentino, D., and others., 2020, American Journal of Science, 309, 1, doi: 10.2475/01.2009.01
Scherler, L., Tu¨ itken, T., & Becker, D. 2014, Quaternary Research, 82, 378, doi: 10.1016/j.yqres.2014.05.004
Schlunegger, F., Rieke-Zapp, D., & Ramseyer, K. 2007, Swiss Journal of Geosciences, 100, 383, doi: 10.1007/s00015-007-1238-9
Schwartz, T. M., Methner, K., Mulch, A., Graham, S. A., & Chamberlain, C. P. 2019, GSA Bulletin, 131, 1203, doi: 10.1130/B33268.1
Sjostron, D. J., Hren, M. T., Horton, T. W., Waldbauer, J. R., & Chamberlain, C. P. 2006, Geological Society of America Special Papers, 398, 309, doi: 10.1130/2006.2398(19).
Smith, G. A., Wang, Y., Cerling, T. E., & Geissman, J. W. 1993, Geology, 21, 691
Smith, M. E., Casel, E. J., Jicha, B. R., Singer, B. S., & Canada, A. S. 2017, Earth and Planetary Science Letters, 479, 156, doi: 10.1016/j.epsl.2017.09.023
Spencer, J. E., Harris, R. C., Dettman, D., & Patchett, P. J. 1996, Arizona Geological Survey, 23
Stern, L. A., Chamberlain, C. F., Reynolds, R. C., & Johnson, G. D. 1997, Geochimica et Cosmochimica Acta, 61, 731, doi: 10.1016/S0016-7037(96)00367-5
Str¨ omberg, C. A. E. 2011, Annual Review of Earth and Planetary Sciences, 39, 517, doi: 10.1146/annurev-earth-040809-152402
Suarez, M. B., Passey, B. H., & Kaakinen, A. 2011, Geology, 39, 1151, doi: 10.1130/G32350.1
Sun, J., Liu, W., Liu, Z., and others., 2017, Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 189, doi: 10.1016/j.palaeo.2017.06.012
Super, J. 2010, PhD thesis, Stanford University
Tabor, N. J., & Monta¨ niez, I. P. 2005, Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 127, doi: 10.1016/j.palaeo.2005.04.009
Tabor, N. J., Montanez, I. P., & Southard, R. J. 2002, Geochimica et Cosmochimica Acta, 66, 3093, doi: 10.1016/S0016-7037(02)00879-7
Takeuchi, A. 2007, PhD thesis, Washington State University
Takeuchi, A., Hren, M. T., Smith, S. V., Chamberlain, C. P., & Larson, P. B. 2010, Chemical Geology, 277, 323, doi: 10.1016/j.chemgeo.2010.08.015
Takeuchi, A., & Larson, P. B. 2005, Geology, 33, 313, doi: 10.1130/G21335.1
Tang, M., Liu-Zeng, J., Hoke, G. D., and others., 2017, Tectonophysics, 712–713, 170, doi: 10.1016/j.tecto.2017.05.018
Ting, S., Vowen, G. J., Koch, P. L., and others., 2003, Biostratigraphic, Chemostatigraphic, and Magnetostratigraphic Study across the Paleocene-Eocene Boundary in the Hengyang Basin, Hunan, China (Geological Society of America), doi: 10.1130/0-8137-2369-8.521
Torres, M. A., & Gaines, R. R. 2013, Journal of Sedimentary Research, 83, 591, doi: 10.2110/jsr.2013.48
Tu¨ itken, T., Vennemann, T., & Pfetzeschner, H.-U. 2008, Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 254, doi: 10.1016/j.palaeo.2008.03.037
Vasilyan, D., & Carnevale, G. 2013, Journal of Asian Earth Sciences, 62, 788, doi: 10.1016/j.jseaes.2012.11.033
Vogl, N., Najman, V., van der Beek, P., and others., 2017, Earth and Planetary Science Letters, 471, 1, doi: 10.1016/j.epsl.2017.04.037
Wang, F., Li, S., Shen, X., Jie, Z., & Yan, G. 1996, Science in China Series D, 39, 401
Wang, Y., Cerling, T. E., Quade, J., and others., 1993, Climate Change in Continental Isotopic Records, 78, 241
