The subclonal structure and genomic evolution of oral squamous cell carcinoma revealed by ultra-deep sequencing

Supplementary Materials

Supplementary Figure 1: Graphical illustration of primary tumor sampling.

Supplementary Figure 2: Kaplan-Meier plots for loss compared to no loss.
Supplementary Figure 3:
- Green highlighted mutations are unique for that specific biopsy.
- Red highlighted mutations are shared by tumor front and tumor center.
- Blue highlighted mutations are shared by tumor center and tumor back.
- Yellow highlighted mutations are mentioned in the article.
- B: Loss of Heterozygosity. AB: diploid, 1 wildtype, 1 mutant allele. ABB: triploid, 1 wildtype, 2 mutant alleles. BB: 0 wildtype, 2 mutant alleles.
Supplementary Figure 4:

- **Green** highlighted mutations are unique for that specific biopsy.
- **Red** highlighted mutations are shared by tumor front and tumor center.
- **Blue** highlighted mutations are shared by tumor center and tumor back.
- **Yellow** highlighted mutations are mentioned in the article.
- **B**: Loss of Heterozygosity. AB: diploid, 1 wildtype, 1 mutant allele. ABB: triploid, 1 wildtype, 2 mutant alleles. BB: 0 wildtype, 2 mutant alleles.
Supplementary Figure 5:

- **Green** highlighted mutations are unique for that specific biopsy.
- **Red** highlighted mutations are shared by tumor front and tumor center.
- **Blue** highlighted mutations are shared by tumor center and tumor back.
- **Yellow** highlighted mutations are mentioned in the article.
- **B**: Loss of Heterozygosity. AB: diploid, 1 wildtype, 1 mutant allele. ABB: triploid, 1 wildtype, 2 mutant alleles. BB: 0 wildtype, 2 mutant alleles.
Supplementary Figure 6:
- **Green** highlighted mutations are unique for that specific biopsy.
- **Red** highlighted mutations are shared by tumor front and tumor center.
- **Blue** highlighted mutations are shared by tumor center and tumor back.
- **Yellow** highlighted mutations are mentioned in the article.
- **B**: Loss of Heterozygosity. AB: diploid, 1 wildtype, 1 mutant allele. ABB: triploid, 1 wildtype, 2 mutant alleles. BB: 0 wildtype, 2 mutant alleles.
Supplementary Figure 7:

Yellow highlighted mutations are mentioned in the article.

Supplementary Figure 8:

Yellow highlighted mutations are mentioned in the article.
Supplementary Figure 9:
- **Yellow** highlighted mutations are mentioned in the article.

Supplementary Figure 10:
- **Yellow** highlighted mutations are mentioned in the article.
Supplementary Figure 11:

- **Green** highlighted mutations are unique for that specific biopsy.
- **Pink** highlighted mutations are shared by tumor center, back and lymph node.
- **Yellow** highlighted mutations are mentioned in the article.
- **B:** Loss of Heterozygosity. AAB: triploid, 2 wildtype, 1 mutant allele.
Supplementary Figure 12:

- **Green** highlighted mutations are unique for that specific biopsy.
- **Pink** highlighted mutations are shared by tumor center, back and lymph node.
- **Yellow** highlighted mutations are mentioned in the article.
- **B**: Loss of Heterozygosity. AAB: triploid, 2 wildtype, 1 mutant allele.
Supplementary Figure 13:
- **Green** highlighted mutations are unique for that specific biopsy.
- **Pink** highlighted mutations are shared by tumor center, back and lymph node.
- **Yellow** highlighted mutations are mentioned in the article.
- **B**: Loss of Heterozygosity. AAB: triploid, 2 wildtype, 1 mutant allele.
Supplementary Figure 14:
- **Green** highlighted mutations are unique for that specific biopsy.
- **Pink** highlighted mutations are shared by tumor center, back and lymph node.
- **Yellow** highlighted mutations are mentioned in the article.
- B: Loss of Heterozygosity. AAB: triploid, 2 wildtype, 1 mutant allele.
Supplementary Figure 15:
- Yellow highlighted mutations are mentioned in the article.
- B: Loss of Heterozygosity. AAB: triploid, 2 wildtype, 1 mutant allele. ABB: triploid, 1 wildtype, 2 mutant alleles.
Supplementary Figure 16:
- **Yellow** highlighted mutations are mentioned in the article.
- **B**: Loss of Heterozygosity. AAB: triploid, 2 wildtype, 1 mutant allele. ABB: triploid, 1 wildtype, 2 mutant alleles.
Supplementary Figure 17:

- **Yellow** highlighted mutations are mentioned in the article.
- **B:** Loss of Heterozygosity. **AAB:** triploid, 2 wildtype, 1 mutant allele. **ABB:** triploid, 1 wildtype, 2 mutant alleles.
Supplementary Figure 18:
- **Yellow** highlighted mutations are mentioned in the article.
- B: Loss of Heterozygosity. AAB: triploid, 2 wildtype, 1 mutant allele. ABB: triploid, 1 wildtype, 2 mutant alleles.
Supplementary Figure 19:
- **Green** highlighted mutations are unique for that specific biopsy.
- **Pink** highlighted mutations are shared by tumor front, center and lymph node.
- **Yellow** highlighted mutations are mentioned in the article.
Supplementary Figure 20:
- **Green** highlighted mutations are unique for that specific biopsy.
- **Pink** highlighted mutations are shared by tumor front, center and lymph node.
- **Yellow** highlighted mutations are mentioned in the article.
Supplementary Figure 21:

- **Green** highlighted mutations are unique for that specific biopsy.
- **Pink** highlighted mutations are shared by tumor front, center and lymph node.
- **Yellow** highlighted mutations are mentioned in the article.
Supplementary Figure 22: Illustration of the visual interpretation method for the BAF vs copy number plot analysis in a situation with 90% tumor content and one subclone constituting 44% of the tumor. LogR is defined as Log2 copy number ratio. BAF: B-allele frequency. TC: Tumor content. AB: diploid, 1 wildtype (A-allele), 1 mutant allele (B-allele). B: 1 mutant allele, Loss of Heterozygosity. AAB: triploid, 2 wildtype, 1 mutant allele. ABB: triploid, 1 wildtype, 2 mutant alleles. BB: 2 mutant alleles.

Supplementary Table 1: Patient characteristics

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
Age	57	53	69	59	43
Gender	Female	Female	Male	Male	Male
Site	FOM	Glossus+FOM	FOM	Glossus	Buccal
TNM	T4N2M0	T4N1M0	T4N2M0	T3N2M0	T1N1M0
Smoking	Smoker	Non-smoker	Smoker	Smoker	Non-smoker
Alcohol	Alcoholic	Occasional	Alcoholic	Occasional	Occasional
HPV p16 Status	Negative	Negative	Negative	Negative	Positive

Site: primary site of the tumor. FOM: Floor of mouth. TNM: Tumor-Node-Metastasis staging = T: tumor size and invasion N: regional lymph node, M: distant metastasis.
Supplementary Table 2: Stats for ontarget sequence

Tissue	Duplication	Coverage	Bases > 20	Duplication	Coverage	Bases > 100
Whole exome sequencing (62 Mb)						
Blood	14.6%	62.0%	79.5%	57.6%	501.8%	90.9%
Lymph node	5.0%	73.9%	81.9%	20.4%	1386.0%	98.9%
Tumor back	5.9%	100.7%	83.4%	20.7%	2339.5%	99.2%
Tumor front	5.7%	94.6%	84.2%	20.8%	1431.6%	99.0%
Tumor center	5.1%	83.0%	83.2%	20.9%	2081.9%	99.1%
Patient 2						
Blood	5.1%	54.7%	80.4%	22.9%	2456.1%	99.0%
Lymph node	5.4%	93.0%	85.2%	22.7%	2222.0%	99.0%
Tumor back	5.2%	86.9%	85.1%	24.0%	2134.9%	99.0%
Tumor front	5.0%	67.7%	82.9%	22.5%	1405.5%	98.6%
Tumor center	5.0%	79.7%	84.7%	23.5%	1667.7%	98.8%
Patient 3						
Blood	7.8%	105.8%	84.3%	21.9%	1478.4%	98.7%
Lymph node	8.0%	136.0%	85.8%	21.2%	1486.5%	98.7%
Tumor front	7.2%	88.1%	83.3%	22.7%	2378.9%	99.2%
Tumor back	-	-	-	22.0%	1555.0%	98.9%
Tumor center	-	-	-	21.8%	1963.8%	99.1%
Patient 4						
Blood	11.2%	95.4%	84.0%	20.7%	1460.2%	98.2%
Lymph node	8.9%	103.4%	85.1%	40.8%	2041.0%	98.7%
Tumor back	8.9%	117.3%	86.1%	20.1%	1952.5%	98.7%
Tumor front	8.9%	101.6%	85.4%	21.6%	1244.1%	98.5%
Tumor center	8.9%	105.5%	84.9%	20.2%	1546.6%	98.7%
Patient 5						
Blood	8.6%	87.3%	82.7%	22.8%	622.6%	97.7%
Lymph node	9.0%	108.7%	85.1%	23.4%	1842.3%	98.9%
Tumor back	9.2%	88.5%	83.7%	24.4%	1472.0%	98.8%
Tumor front	9.2%	119.5%	85.6%	25.9%	1326.4%	98.8%
Tumor center	8.9%	117.9%	85.8%	25.8%	1697.8%	98.9%
Mean						
	95.1%	84.1%	1692.7%	98.5%		

Whole exome sequencing and validation. Statistics for whole exome sequencing and for the validation. Duplication: proportion of duplicated sequences. Bases > 20×: proportion of bases covered by at least 20 reads. Bases > 100×: proportion of bases covered by at least 100 reads.
Supplementary Table 3: Identified variants for patient 1. See Supplementary_Table_3

Supplementary Table 4: Identified variants for patient 2. See Supplementary_Table_4

Supplementary Table 5: Identified variants for patient 3. See Supplementary_Table_5

Supplementary Table 6: Identified variants for patient 4. See Supplementary_Table_6

Supplementary Table 7: Identified variants for patient 5. See Supplementary_Table_7
Patient	Gene	Category	RadialSVM	Phenolyzer	iCAGESGeneScore
1	TP53	Cancer Gene Census	1.013	1	0.999552976
	PIK3CB	KEGG Cancer Pathway	1.091	0.4551	0.933716985
	CBL	Cancer Gene Census	0.957	0.4165	0.819186365
	BRCA1	Cancer Gene Census	0.662	0.5705	0.806267597
	PTCH1	KEGG Cancer Pathway	0.986	0.326	0.681012686
	LRP2	Other Category	1.196	0.1681	0.58213936
	SPRY2	Other Category	0.928	0.2876	0.512107343
	CALML5	Other Category	1.002	0.2279	0.464321519
	CYP17A1	Other Category	1.101	0.1725	0.462072484
2	TP53	Cancer Gene Census	0	1	0.8891906
	MED12	Cancer Gene Census	0.972	0.1565	0.262994206
	SEC31B	Other Category	1.186	0.02672	0.240264112
	DMD	Other Category	0.966	0.06835	0.124153148
	DCAF5	Other Category	1.054	0.01117	0.114881114
	MYO16	Other Category	1.057	0.005691	0.111010461
3	SOS1	KEGG Cancer Pathway	0.96	0.5	0.91454541
	HLA-DRB5	Other Category	1.097	0.2392	0.622247095
	PLCB1	Other Category	0.93	0.3121	0.576123349
	AFP	Other Category	1.039	0.1588	0.346404933
	HSPA6	Other Category	0.967	0.1689	0.282301181
	FCRL2	Other Category	1.12	0.06316	0.24045582
	DGKG	Other Category	0.963	0.149	0.239359397
	USP8	Other Category	0.97	0.1401	0.230208282
4	APC	Cancer Gene Census	0.907	0.5143	0.902052488
	ERBB3	Other Category	1.017	0.3382	0.741518518
	JUP	KEGG Cancer Pathway	0.984	0.2604	0.521259365
	HIST4H4	Other Category	0.986	0.2423	0.478385997
	PPARC1A	Other Category	0.941	0.2276	0.381070952
	DSEL	Other Category	1.159	0.0896	0.339275912
	SPTBN4	Other Category	1.192	0.04753	0.287447983
	MAMLD1	Other Category	0.96	0.1444	0.228058879
	RPS6KA6	Other Category	0.947	0.1396	0.207508404
5	TP53	Cancer Gene Census	1.005	1	0.999532661
	TLN1	Other Category	1.049	0.2681	0.628098973
	PPP2R5D	Other Category	0.919	0.3152	0.568820692
	CXCR1	Other Category	0.98	0.2787	0.561584369
	CDC20	Other Category	1.021	0.2062	0.436243974
	GRM5	Other Category	0.96	0.1699	0.276501047
	DGCR8	Other Category	1.135	0.06617	0.261839228
	RYR2	Other Category	1.034	0.1198	0.25800392
	BMP7	Other Category	0.965	0.154	0.250752138
	TOP2A	Other Category	0.888	0.1941	0.246430302

Genes identified as driver genes by iCAGES based on missense mutations. RadialSVM: score measuring the driving potential of this missense mutation. Phenolyzer: score measuring its association with cancer based on prior knowledge and gene-gene interaction. iCAGESGeneScore: score measuring the final cancer driving potential.
Supplementary Table 9: Synonymous to nonsynonymous ratio

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Overall
Nonsynonymous (NS)	93	22	70	92	83	360
Synonymous (S)	41	3	33	31	21	129
NS + S	134	25	103	123	104	489
Ratio	2.27	7.33	2.12	2.97	3.95	2.79
P-value	0.280	0.015	0.440	0.032	0.002	0.0002
Total mutations	156	27	116	142	116	557

One would expect a ratio of 2:1 if the mutations were random passenger mutations. One-tailed binormal test was used.

Supplementary Table 10: Recurrent gene mutations. See Supplementary_Table_10
SUPPLEMENTARY NOTE 1

Construction of phylogenetic trees

The phylogenetic trees are based on the BAF vs copy number plots (Supplementary Figures 4–22) and the mutational data (Supplementarys Table 3–7). Detecting possible subclones was done by visual interpretation of the plots (Supplementary Figure 23). In a tumor, there are somatic point mutations and copy number mutations which are present in all of the cancer cells, these mutations are believed to be the earliest, and they are, in the figure, represented by grey colored circles. We expect that these early point mutations, which are still located in diploid regions \((A_B^{all} \text{ A being the wildtype allele and B being the mutated allele}) \), show a pronounced cluster at \(\text{BAF}^{all} \approx \frac{1}{2}\text{BAF}_{\text{max}} \) and \(\text{LogR} \approx 0 \). From this cluster the tumor content \((TC) \) can easily be derived: \(TC = 2\text{BAF}^{all} \).

Correspondingly, there will be LOH regions in all cancer cells \((B_B^{all}) \) in which the wildtype A-allele is lost, and the somatic point mutations in these regions are located at \(\text{BAF}^{2} \approx -TC \) and \(\text{LogR} \) between 0 and \(-1 \) dependent on \(TC \). Loss of wildtype and two copies of mutation allele \((BB) \) can be identified for all cancer cells at \(\text{LogR} = 0 \) and \(\text{BAF} \geq B_B^{all} \).

Likewise the A-allele or the B-allele can be duplicated in all tumor cells giving rise to the minor (grey) clusters marked \(A_B^{all} \) and \(A_B^{all} \) at \(\text{LogR} \approx 0.58 \).

With identification of the events in all cancer cells, subclonal events can be identified by locating clusters of mutations that differ from these patterns. Specific subclonal point mutations and subclonal copy number events that occur in subclonal specific mutations are represented by red colored circles. The \(A_B^{subclone} \) region will have a lower BAF than \(\frac{1}{2}TC \) (\(\text{LogR} \approx 0 \)), and its corresponding LOH region \((B_B^{subclone}) \) will be located to the right of \(A_B^{subclone} \) with a \(\text{LogR} \) value between 0 and \(\text{LogR} \) of \(B_B^{all} \). Loss of wildtype and two copies of mutation allele \((BB) \) for the subclone can be located at \(\text{LogR} = 0 \) and \(\text{BAF} \geq \text{AB}^{subclone} \) (not shown in figure). Duplication, of either the A-allele or B-allele, is shown to give a similar pattern for the subclone as for the early mutations in all tumor cells.

Interestingly, a subclone can alter the copy number of somatic point mutations present in all cancer cells, but the \(\text{LogR} \) will be characteristic of the subclone. Subclonal specific copy number events that occur in point mutations present in all cancer cells are represented by grey colored circles with a red outline. For a subclone that alters the copy number of somatic mutations present in all cells, \(B_B^{subclone} \) will be located diagonally between \(A_B^{all} \) and \(B_B^{all} \), and \(BB^{subclone} \) will have a \(\text{LogR} \) value between \(\text{LogR} \) of \(B_B^{all} \leq 0 \), and a \(\text{BAF} > B_B^{all} \).

Combining the approach detailed above with the use of color coding the mutations, based on which biopsy they appear in, we can determine the distribution of subclones. Mutations that characterize different subclones can be found in different biopsies with different distribution. The distribution of a clone is determined as the ratio between \(\text{BAF}(A_B^{subclone}) \) and \(\text{BAF}(A_B^{all}) \). Lastly, using the assumption that every clone inherits the ancestral clone’s somatic mutations, we can determine the tumor evolution. Mutations believed to be the earliest are present in all biopsies, as these mutations have been inherited by all clones. These mutations would characterize the ancestral clone; however, as described above, a subclone can also be characterized by copy number events. This means that mutations that are present in all biopsies but differ from the ancestral clone would be one or more subclones. Mutations that are not present in all biopsies characterize one or more subclones. It can be difficult to determine the lineage of parallel evolved subclones as they are derived from one ancestor, therefore we cannot determine which evolved first. In contrast, linearly evolved subclones have a clear lineage.

The phylogenetic trees are constructed with the assumption that each lymph node metastasis is derived from one cell of a clone in the primary tumor. The mutations that are seen in all cancer cells in the metastasis, determines which primary tumor clone it was derived from.