Synthesis of imidazo and benzimidazo[2,1-a]-isoquinolines by rhodium-catalyzed intramolecular double C–H bond activation†

Vutukuri Prakash Reddy, Takanori Iwasaki and Nobuaki Kambe*

The rhodium-catalyzed intramolecular direct arylation of imidazo- and benzimidazo derivatives via double C–H bond activation is described. This approach provides new access to a wide range of imidazo and benzimidazo[2,1-a]isoquinoline derivatives in moderate to high yields. This reaction provides an alternative method to the known Pd-catalyzed intramolecular oxidative cross-coupling reactions.

Introduction

Nitrogen-containing heterocycles and their derivatives are often found in natural products and in pharmaceuticals and agrochemicals. Since imidazo and benzimidazo[2,1-a]isoquinoline derivatives show interesting biological activities such as anticancer, anti-HIV-1, antimicrobial and antiviral properties, a variety of synthetic protocols have been developed for the preparation of imidazo and benzimidazo[2,1-a]isoquinoline derivatives based on condensation reactions and the photocyclization of 1-styrylimidazoles. In addition, coupling reactions catalyzed by transition metals, such as palladium and copper, have recently been reported and successfully applied to the preparation of heterocyclic compounds through C–N and C–C cross-coupling. However, these protocols require the use of organohalides or boranes as starting materials. These prefunctionalized starting materials are not readily available from commercial sources and are often difficult to synthesize. Therefore, the development of more general and convenient processes using readily accessible and inexpensive substrates is an important theme. As a promising strategy for the synthesis of the imidazo and benzimidazo[2,1-a]isoquinoline derivatives, the intramolecular oxidative cross-coupling via cleavage of two C–H bonds would be a more straightforward and efficient route to these compounds.

It has long been known that Pd catalyzes the oxidative homo-coupling of arenes and cross-coupling between arenes and olefins. This transformation has been successfully applied to cyclization by intramolecular oxidative cross-coupling reactions. This successful Pd-catalyzed functionalization of C–H bonds prompted the study of Rh catalyzed systems leading to the recent remarkable development of useful transformations via C–H bond cleavage such as oxidative Heck-type reactions, oxidative aryl-aryl coupling, as well as addition to carbon–carbon or carbon–heteroatom unsaturated bonds.

During the course of our study on transition metal-catalyzed cross-coupling reactions, we developed a straightforward procedure for the synthesis of imidazo and benzimidazo[2,1-a]isoquinoline derivatives. The method involves a rhodium-catalyzed cross-coupling reaction via double C–H bond cleavage as the first example of the rhodium-catalyzed intramolecular oxidative cross-coupling of heteroarenes with arenes, although the corresponding aryl-aryl intramolecular coupling reactions are known (Scheme 1).†

![Scheme 1](image-url)

Known

![Diagram](image-url)

This Work

![Diagram](image-url)

Scheme 1 Rhodium-catalyzed intramolecular oxidative cross-coupling reaction.

1. Electronic supplementary information (ESI) available: Full experimental details, characterization data, and 1H and 13C NMR spectra for new products. See DOI: 10.1039/c3ob27396b
obtained when 3.0 mol% amount of \([\text{Cp*RhCl}_2]\) was the oxidant, no reaction occurred (entry 13). The best yield was obtained with \([\text{Cp*RhCl}_2]\) (entries 3, 4, 9, 10). PivOH was found to be an effective additive (entries 1, 2, 5, 8), whereas DMF and toluene gave lower yields (entry 11). Cu(OAc)\(_2\) was found to be an excellent oxidant (entry 6). Other oxidants such as Ag\(_2\)CO\(_3\), AgF, CuCl\(_2\), CuCO\(_3\), and Cu(OAc)\(_2\) (0.6 mmol), additive (0.5 mmol), solvent (1.0 mL), 24 h, 140 °C. The results are summarized in Table 1. Among the various solvents employed in combination with Cu(OAc)\(_2\) (2.4 equiv.) as the oxidant and PivOH (0.5 mmol) as the additive in mesitylene, \([\text{Cp*RhCl}_2]\) proved to be preeminent for this reaction (entries 5, 12–17). No reaction took place in the absence of the metal catalyst (entry 18). The reaction was very slow at 70 °C and the coupling product was produced in low yield (entry 19).

Table 1 Optimization of the rhodium-catalyzed intramolecular C–H arylation

Entry	Catalyst	Solvent	Additive	Yielda (%)
1	\([\text{Cp*RhCl}_2]\)	DMA	None	49
2	\([\text{Cp*RhCl}_2]\)	Mesitylene	None	56
3	\([\text{Cp*RhCl}_2]\)	DMF	None	18
4	\([\text{Cp*RhCl}_2]\)	Toluene	None	25
5	\([\text{Cp*RhCl}_2]\)	Mesitylene	PivOH	77
6	\([\text{Cp*RhCl}_2]\)	Mesitylene	None	65
7	\([\text{Cp*RhCl}_2]\)	Mesitylene	1-AdCO\(_2\)H	72
8	\([\text{Cp*RhCl}_2]\)	DMA	PivOH	63
9	\([\text{Cp*RhCl}_2]\)	DMA	PivOH	30
10	\([\text{Cp*RhCl}_2]\)	Toluene	PivOH	42
11	\([\text{Cp*RhCl}_2]\)	Toluene	None	26
12	\([\text{Rh(cod)Cl}_2]\)	Mesitylene	PivOH	71
13	\([\text{Rh(nbd)Cl}_2]\)	Mesitylene	PivOH	46
14	\([\text{Rh}_2(\text{OAc})_4]\)	Mesitylene	PivOH	49
15	\([\text{Rh}((\text{PPh}_3)_2]\)	Mesitylene	PivOH	42
16	\([\text{RhCl}_3]\)	Mesitylene	PivOH	36
17	\([\text{Cp*RhCl}_2]\)	Mesitylene	PivOH	48
18	None	Mesitylene	PivOH	0
19	\([\text{Cp*RhCl}_2]\)	Mesitylene	PivOH	31

a Reaction conditions: \(1\ a\) (0.25 mmol), \([\text{Cp*RhCl}_2]\) (3.0 mol%), Cu(OAc)\(_2\) (0.6 mmol), additive (0.5 mmol), solvent (1.0 mL), 24 h, 140 °C. Isolated yields. b Rh (10 mol%). c \([\text{RhCl}_3]\) (1.5 mol%). d At 70 °C. Cp*: pentamethylcyclopentadienyl; cod: 1,5-cyclooctadiene; nbd: bicyclo[2.2.1]hepta-2,5-diene.

Results and discussion

We carried out the reaction under different conditions using \(\text{Z-1-styryl-1H-benimidazole (1a)}\) as a model substrate and the results are summarized in Table 1. Among the various solvents tested, DMA and mesitylene afforded the best results (Table 1, entries 1, 2, 5, 8), whereas DMF and toluene gave lower yields (entries 3, 4, 9, 10). PivOH was found to be an effective additive (entry 5). Among the Rh complexes examined, \([\text{Cp*RhCl}_2]\) proved to be preeminent for this reaction (entries 5, 12–16). When the amount of \([\text{Cp*RhCl}_2]\) was reduced to half from 3.0 mol%, the yield decreased (entries 5 and 17). No reaction took place in the absence of the metal catalyst (entry 18). The reaction was slow at 70 °C and the coupling product was produced in low yield (entry 19).

Table 2 Screening of oxidants

Entry	Oxidant	Yielda (%)	Entry	Oxidant	Yielda (%)
1	AgOAc	21	8	AgOAc	47
2	AgClO\(_3\)	Trace	9	Cu(OAc)\(_2\)	65
3	AgF	0	10	(NH\(_4\))\(_2\)S\(_2\)O\(_8\)	0
4	CuCl\(_2\)	Trace	11	TBHP	0
5	CuCl\(_2\)	Trace	12	K\(_2\)S\(_2\)O\(_8\)	0
6	CuCl\(_2\)	Trace	13	Cu(OAc)\(_2\) (0.25 mmol)	0
7	CuCl\(_2\) (0.3 mmol)	14	Cu(OAc)\(_2\) (0.3 mmol)	2	

a Reaction conditions: \(1\ a\) (0.25 mmol), \([\text{Cp*RhCl}_2]\) (3.0 mol%), oxidants (0.6 mmol), PivOH (0.5 mmol), mesitylene (1.0 mL), 24 h, 140 °C. b Isolated yields. c \([\text{Cp*RhCl}_2]\) (5.0 mol%), Cu(OAc)\(_2\)H\(_2\O\) (0.3 mmol) and AgSbF\(_6\) (20 mol%) in mesitylene (1.0 mL) without using PivOH. d Cu(OAc)\(_2\) (0.3 mmol). e Cu(OAc)\(_2\) (0.45 mmol). f 2.0 equiv.

Similarly in the absence of PivOH to give a comparative yield of product \(2\ a\) (entry 7).

To explore the scope of this rhodium-catalyzed intramolecular oxidative cross-coupling, the reactions of \(1\ a\)–\(n\) were examined under optimized conditions. As shown in Table 3, the corresponding imidazo and benzimidazo[2,1-a]isoquinoline derivatives \(2\ a\)–\(1\ m\) were obtained in moderate to high yields. Alkyl and methoxy substituents exerted little effect on the yield, but substituents at the ortho position of the benzene ring slightly reduced the yields due to the steric effect (2e and 2j). When \(1\ h\) carrying a 1,2-diphenylyvinyl moiety was employed, the reaction proceeded efficiently to give the corresponding cyclized product \(2\ h\) in 62% yield, indicating that the phenyl group on the vinylc tether carbon did not affect the reaction. 16 However, \(1\ m\), having a thiophene ring, and \(1\ n\), having an (E)-styryl group, did not afford coupling products. The procedure using AgSbF\(_6\) and Cu(OAc)\(_2\)H\(_2\O\) in mesitylene gave slightly better results than the procedure using PivOH as the additive as shown in Table 3.

A plausible catalytic cycle for the reaction is illustrated in Scheme 2. The reaction starts from \([\text{Cp*Rh(OPic)}\]) or \([\text{Cp*Rh(OAc)}\]) which is derived from the ligand exchange between rhodium dimer and the pivalic acid or Cu(OAc)\(_2\). Thus formed \([\text{Cp*Rh(OAc)}\]) is coordinated with a nitrogen lone pair of imidazole to give intermediate II in Path A. Rh then undergoes insertion into the C–H bond at the C2 position assisted by the carboxylate ligand leading to the formation of intermediate III with the loss of carboxylic acid. 17 The subsequent C–H bond cleavage by Rh(n) generates a seven-membered rhodacyclic intermediate IV which undergoes reductive elimination to give product 2 and a Rh(i) species, and the latter is oxidized by Cu(n) to complete the catalytic cycle. A possible alternative pathway is shown by Path B, where the catalytic cycle is triggered by the coordination of the nitrogen lone pair of imidazole to Cu(OCOR)\(_2\) affording intermediate V. The insertion of

2250 | Org. Biomol. Chem., 2013, 11, 2249–2253

This journal is © The Royal Society of Chemistry 2013
Cu into a C–H bond followed by transmetalation with rhodium then gives intermediate III via VI.

Conclusions

We report herein on the rhodium-catalyzed synthesis of imidazo and benzimidazo[2,1-a]isoquinolines via the intramolecular oxidative cross-coupling reaction through double C–H bond cleavage. This protocol can be applied to the synthesis of various heterocyclic compounds. The scope of the reaction and further applications as well as mechanistic studies of the rhodium-catalyzed C–H activation reactions are currently under investigation.

Acknowledgements

This work was supported by a GCOE and Grant-in-Aid for Scientific Research (S) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Notes and references

1 Comprehensive Heterocyclic Chemistry, ed. A. R. Katritzky and C. W. Rees, Elsevier, New York, 1984, vol. 4, 1–38.
2 Z. Jin, Nat. Prod. Rep., 2005, 22, 196.
3 (a) R. L. Weinkauf, A. Y. Chen, C. Yu, L. Liu, L. Barrows and E. J. Lavoie, Bioorg. Med. Chem., 1994, 2, 781; (b) W. J. Houlihan, P. G. Munder, D. A. Handley, S. H. Cheon and V. A. Parrino, J. Med. Chem., 1995, 38, 234; (c) P. Molina, E. Aller, A. Lorenzo, C. Foces and A. L. J. Saiz, Tetrahedron, 1996, 52, 13671; (d) Z. X. Lu, N. H. Quazi, L. W. Deady and G. M. Polya, Biol. Chem. Hoppe-Seyler, 1996, 377, 373; (e) V. K. Pandey and A. Shukla, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 1999, 38, 1381; (f) L. W. Deady, T. Rodemann, G. J. Finlay, B. C. Baguley and W. A. Denny, Anti-Cancer Drug Des., 2000, 15, 339; (g) S. M. Rida, S. A. M. El-Hawash, A. A. Hazzaa and M. M. M. El-Meligy, Arch. Pharmacal Res., 2006, 29, 826.
4 I. Hayakawa, Y. Sugano, T. Agatsuma, H. Furukawa, S. Kurakata and S. Naruto, PCT Int. Appl., WO2002034748, 2002; Chem. Abstr., 2002, 136, 355236.
5 (a) A. R. Katritzky, G. Qiu, Q-H. Long, H. Y. He and P. J. Steel, J. Org. Chem., 2000, 65, 9201; (b) G. Dyker, W. Stirner and G. Henkel, Eur. J. Org. Chem., 2000, 1433; (c) L. W. Deady and S. M. Devine, J. Heterocycl. Chem., 2004,
For recent reviews on rhodium(III)-catalyzed C–H activation reactions see: (a) D. A. Colby, R. G. Bergman and J. A. Ellman, *Chem. Rev.*, 2010, 110, 624; (b) J. Bouffard and K. Itami, *Top. Curr. Chem.*, 2010, 292, 231; (c) T. Satoh and M. Miura, *Chem.–Eur. J.*, 2010, 16, 11212; (d) T. Satoh and M. Miura, *Synthesis*, 2010, 3395; (e) D. A. Colby, A.-S. Tsai, R. G. Bergman and J. A. Ellman, *Acc. Chem. Res.*, 2012, 45, 814.

(10) (a) T. Matsumoto and H. Yoshida, *Chem. Lett.*, 2000, 1064; (b) T. Matsumoto, R. A. Periana, D. Taube and H. Yoshida, *J. Catal.*, 2002, 206, 272; (c) K. Ueura, T. Satoh and M. Miura, *Org. Lett.*, 2007, 9, 1407; (d) J. Chen, G. Song, C.-L. Pan and X. Li, *Org. Lett.*, 2010, 12, 5426; (e) F. Wang, G. Song and X. Li, *Org. Lett.*, 2010, 12, 5430; (f) A. S. Tsai, M. Brasse, R. G. Bergman and J. A. Ellman, *Org. Lett.*, 2011, 13, 540; (g) F. W. Patureau, T. Besset and F. Glorius, *Angew. Chem., Int. Ed.*, 2011, 50, 1064; (h) S. Rakshit, C. Grohmann, T. Besset and F. Glorius, *J. Am. Chem. Soc.*, 2011, 133, 2350; (i) H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang and Z.-J. Shi, *J. Am. Chem. Soc.*, 2011, 133, 15244; (j) S. Mochida, K. Hirano, T. Satoh and M. Miura, *J. Org. Chem.*, 2011, 76, 3024; (k) X. Li and M. Zhao, *J. Org. Chem.*, 2011, 76, 8530; (l) S. H. Park, J. Y. Kim and S. Chang, *Org. Lett.*, 2011, 13, 2372; (m) F. Wang, G. Song, Z. Du and X. Li, *J. Org. Chem.*, 2011, 76, 2926; (n) J. Willwacher, S. Rakshit and F. Glorius, *Org. Biomol. Chem.*, 2011, 9, 4736; (o) S. Mochida, K. Hirano, T. Satoh and M. Miura, *J. Org. Chem.*, 2011, 76, 3024; (p) L. Zheng and J. Wang, *Chem.–Eur. J.*, 2012, 18, 9699; (q) P. Zhao, R. Niu, F. Wang and X. Li, *Org. Lett.*, 2012, 14, 4166; (r) Z. Shi, N. Schrder and F. Glorius, *Angew. Chem., Int. Ed.*, 2012, 51, 8092.

(11) (a) K. Morimoto, M. Itoh, K. Hirano, T. Satoh, Y. Shibata, K. Tanaka and M. Miura, *Angew. Chem., Int. Ed.*, 2012, 51, 5339; (b) J. Wencel-Delord, C. Nimphius, F. W. Patureau and F. Glorius, *Angew. Chem., Int. Ed.*, 2012, 51, 2247; (c) P. Wang, H. Rao, R. Hua and C.-J. Li, *Org. Lett.*, 2012, 14, 902; (d) N. Kuhl, M. N. Hopkinson and F. Glorius, *Angew. Chem., Int. Ed.*, 2012, 51, 8230; (e) J. Dong, Z. Long, F. Song, N. Wu, Q. Guo, J. Lan and J. You, *Angew. Chem., Int. Ed.*, 2013, 52, 580; (f) V. P. Reddy, R. Qiu, T. Iwasaki and N. Kambe, *Org. Lett.*, DOI: 10.1021/ol400230y.

(12) K. Ueura, T. Satoh and M. Miura, *J. Org. Chem.*, 2007, 72, 5362; (b) N. Umeda, H. Tsurugi, T. Satoh and M. Miura, *Angew. Chem., Int. Ed.*, 2008, 47, 4019; (c) T. Fukutani, N. Umeda, K. Hirano, T. Satoh and M. Miura, *Chem. Commun.*, 2009, 5141; (d) M. Shimizu, K. Hirano, T. Satoh and M. Miura, *J. Org. Chem.*, 2009, 74, 3478; (e) T. Hystier and T. Rois, *J. Am. Chem. Soc.*, 2010, 132, 10565; (f) P. C. Too, Y.-F. Wang and S. Chiba, *Org. Lett.*, 2010, 12, 5688; (g) K. Morimoto, K. Hirano, T. Satoh and M. Miura, *Org. Lett.*, 2010, 12, 2068; (h) N. Guimond, S. I. Gorelsky and K. Fagnou, *J. Am. Chem. Soc.*, 2011, 133, 6449; (i) T. Fukutani, K. Hirano, T. Satoh and M. Miura, *J. Org. Chem.*, 2011, 76, 2867; (j) N. Umeda, K. Hirano, T. Satoh, N. Shibata, H. Sato and M. Miura, *J. Org. Chem.*, 2011, 76, 13; (k) F. W. Patureau, T. Besset, N. Kuhl and F. Glorius, *J. Am. Chem. Soc.*, 2011, 133, 2154; (l) K. Morimoto, K. Hirano, T. Satoh and M. Miura, *J. Org. Chem.*, 2011, 76, 9548; (m) H. Wang and F. Glorius, *Angew. Chem., Int. Ed.*, 2012, 51, 7318.

(13) K. D. Hesp, R. G. Bergman and J. A. Ellman, *J. Am. Chem. Soc.*, 2011, 133, 11430; (b) Y. Li, B.-J. Li, W.-H. Wang, W.-P. Huang, X.-S. Zhang, K. Chen and Z.-J. Shi, *Angew. Chem., Int. Ed.*, 2011, 50, 2115; (c) L. Yang, C. A. Correia and C.-J. Li, *Adv. Synth. Catal.*, 2011, 353, 1269.

(14) (a) J. Terao, A. Oda and N. Kambe, *Org. Lett.*, 2004, 6, 3341; (b) Y. Minami, H. Kuniyasu and N. Kambe, *Org. Lett.*, 2008, 10, 2469; (c) M. Toyofuku, S.-I. Fujiwara, T. Shin-ike,
Recently, palladium-catalyzed intermolecular oxidative cross-coupling of imidazole and benzimidazole derivatives has been reported: ref. 8m. For Rh-catalyzed intramolecular aryl–aryl coupling, see: ref. 11a,c.

In ref. 8m, it was claimed that introduction of a Me substituent on an olefinic tether carbon resulted in lower yield (21%) in the case of the Pd/Cu catalytic system.

D. Lapointe and K. Fagnou, Chem. Lett., 2010, 39, 1118.

J.-R. Huang, L. Dong, B. Han, C. Peng and Y.-C. Chen, Chem.–Eur. J., 2012, 18, 8896.