Comparison of Methods for Estimating Unbound Intracellular-to-Medium Concentration Ratios in Rat and Human Hepatocytes Using Statins

Takashi Yoshikado, Kota Toshimoto, Tomohisa Nakada, Kazuaki Ikejiri, Hiroyuki Kusuhara, Kazuya Maeda, and Yuichi Sugiyama

ABSTRACT

It is essential to estimate concentrations of unbound drugs inside the hepatocytes to predict hepatic clearance, efficacy, and toxicity of the drugs. The present study was undertaken to compare predictability of the unbound hepatocyte-to-medium concentration ratios (Kp,uu) by two methods based on the steady-state cell-to-medium total concentration ratios at 37°C and on initial uptake rates (Kp,uu,V0). Poorly metabolized statins were used as test drugs because of their concentration uptake via organic anion-transporting polypeptides. Kp,uu,V0 values of these statins provided less interexperimental variation than the Kp,uu,V0 values, because only data at longer time are required for Kp,uu,V0 values for pravastatin, rosuvastatin, and pravastatin were 1.2- to 5.1-fold Kp,uu,V0 in rat hepatocytes; Kp,uu,V0 values in human hepatocytes also tended to be larger than corresponding Kp,uu,V0. To explain these discrepancies, theoretical values of Kp,uu,V0 and Kp,uu,V0 were compared with true Kp,uu (Kp,uu,true), considering the inside-negative membrane potential and ionization of the drugs in hepatocytes and medium. Membrane potentials were approximately –30 mV in human hepatocytes at 37°C and almost abolished on ice. Theoretical equations considering the membrane potentials indicate that Kp,uu,V0 values for the statins are 0.85- to 1.2-fold Kp,uu,true, whereas Kp,uu,V0 values are 2.2- to 3.1-fold Kp,uu,true, depending on the ratio of the passive permeability of the ionized to nonionized forms. In conclusion, Kp,uu,V0 values of anions are similar to Kp,uu,true when the inside-negative membrane potential is considered. This suggests that Kp,uu,V0 is preferable for estimating the concentration of unbound drugs inside the hepatocytes.

Abstract

It is essential to estimate concentrations of unbound drugs inside the hepatocytes to predict hepatic clearance, efficacy, and toxicity of the drugs. The present study was undertaken to compare predictability of the unbound hepatocyte-to-medium concentration ratios (Kp,uu) by two methods based on the steady-state cell-to-medium total concentration ratios at 37°C and on initial uptake rates (Kp,uu,V0). Poorly metabolized statins were used as test drugs because of their concentration uptake via organic anion-transporting polypeptides. Kp,uu,V0 values of these statins provided less interexperimental variation than the Kp,uu,V0 values, because only data at longer time are required for Kp,uu,V0 values for pravastatin, rosuvastatin, and pravastatin were 1.2- to 5.1-fold Kp,uu,V0 in rat hepatocytes; Kp,uu,V0 values in human hepatocytes also tended to be larger than corresponding Kp,uu,V0. To explain these discrepancies, theoretical values of Kp,uu,V0 and Kp,uu,V0 were compared with true Kp,uu (Kp,uu,true), considering the inside-negative membrane potential and ionization of the drugs in hepatocytes and medium. Membrane potentials were approximately –30 mV in human hepatocytes at 37°C and almost abolished on ice. Theoretical equations considering the membrane potentials indicate that Kp,uu,V0 values for the statins are 0.85- to 1.2-fold Kp,uu,true, whereas Kp,uu,V0 values are 2.2- to 3.1-fold Kp,uu,true, depending on the ratio of the passive permeability of the ionized to nonionized forms. In conclusion, Kp,uu,V0 values of anions are similar to Kp,uu,true when the inside-negative membrane potential is considered. This suggests that Kp,uu,V0 is preferable for estimating the concentration of unbound drugs inside the hepatocytes.

Introduction

According to the free drug hypothesis, only unbound drug is believed to interact with metabolic enzymes and pharmacological/toxicological target proteins. Knowing the intracellular unbound drug concentration is essential to estimate accurately the risk of drug–drug interactions involving drug-metabolizing enzymes and canalicular efflux transporters, and efficacy and toxicity of drugs when their targets are intracellular proteins. Extracellular unbound drug concentration is frequently assumed to be equivalent to the intracellular unbound concentration, especially when drugs are neutral or nonionized and freely permeable across the cytoplasmic membrane (Smith et al., 2010). However, this assumption cannot be applied to drugs whose tissue uptake is dominated by active transporters (Smith et al., 2005; Shugarts and Benet, 2009; Giacomini et al., 2010; Niemi et al., 2011; Shitara et al., 2013), in which their intracellular unbound concentration of drugs could be higher than the extracellular unbound concentration. For instance, unbound concentrations of pravastatin and rosuvastatin in the rat live are 11- to 16-fold (Yamazaki et al., 1993; Nezasa et al., 2003) and 15-fold higher than unbound plasma concentrations, respectively, because of organic anion-transporting polypeptide (OATP)-mediated uptake (Nezasa et al., 2003).

According to the free drug hypothesis, only unbound drug is believed to interact with metabolic enzymes and pharmacological/toxicological target proteins. Knowing the intracellular unbound drug concentration is essential to estimate accurately the risk of drug–drug interactions involving drug-metabolizing enzymes and canalicular efflux transporters, and efficacy and toxicity of drugs when their targets are intracellular proteins. Extracellular unbound drug concentration is frequently assumed to be equivalent to the intracellular unbound concentration, especially when drugs are neutral or nonionized and freely permeable across the cytoplasmic membrane (Smith et al., 2010). However, this assumption cannot be applied to drugs whose tissue uptake is dominated by active transporters (Smith et al., 2005; Shugarts and Benet, 2009; Giacomini et al., 2010; Niemi et al., 2011; Shitara et al., 2013), in which their intracellular unbound concentration of drugs could be higher than the extracellular unbound concentration. For instance, unbound concentrations of pravastatin and rosuvastatin in the rat live are 11- to 16-fold (Yamazaki et al., 1993; Nezasa et al., 2003) and 15-fold higher than unbound plasma concentrations, respectively, because of organic anion-transporting polypeptide (OATP)-mediated uptake (Nezasa et al., 2003).

Methods to estimate the unbound hepatocyte-to-medium concentration ratio (Kp,uu) are needed to predict the magnitude of drug–drug interactions involving drug-metabolizing enzymes, efflux transporters, and other intrahepatic target proteins in the liver. Brown et al. (2010) investigated the impact of transporters on the inhibition constant (Ki) values of cytochrome P450 inhibitors by comparing their inhibitory effects using rat liver microsomes and freshly isolated rat hepatocytes. Using the hepatocytes, Ki values of clarithromycin and enoxacin with known hepatic transporter involvement were markedly smaller than those using the microsomes, which was consistent with their high cell-to-medium total concentration ratios (C/M ratios). The International Transporter Consortium published a review summarizing strategies to estimate intracellular drug concentrations (Chu et al., 2013). Among these methods, the unbound hepatocyte-to-medium concentration ratio (Kp,uu) is commonly estimated by the unbound hepatocyte-to-medium concentration ratio based on initial uptake rate (Kp,uu,V0). This ratio is based on both the inside-negative membrane potential and ionization of the drugs in hepatocytes and medium. Membrane potentials were approximately –30 mV in human hepatocytes at 37°C and almost abolished on ice. Theoretical equations considering the membrane potentials indicate that Kp,uu,V0 values for the statins are 0.85- to 1.2-fold Kp,uu,true, whereas Kp,uu,V0 values are 2.2- to 3.1-fold Kp,uu,true, depending on the ratio of the passive permeability of the ionized to nonionized forms. In conclusion, Kp,uu,V0 values of anions are similar to Kp,uu,true when the inside-negative membrane potential is considered. This suggests that Kp,uu,V0 is preferable for estimating the concentration of unbound drugs inside the hepatocytes.

This work was supported by Grant-in-Aid for Scientific Research (S) and the Scientific Research on Innovative Areas HD-Physiology from the Ministry of Education, Culture, Sports, Sciences, and Technology in Japan [Grants 24229002 and 23136101]. T.Y., K.T., and T.N. contributed to this research equally.

https://doi.org/10.1124/dmd.116.074823.

This article has supplemental material available at dmd.aspetjournals.org.

ABBREVIATIONS: V_m, membrane potential; AFE, average fold error; CL uptake, uptake clearance by hepatocytes; C/M ratio, cell-to-medium total concentration ratio; f unbound, unbound fraction in liver homogenates; HBSS, Hank's balanced salt solution; Km, inhibition constant; Kp, Michaelis-Menten constant; Kp unbound hepatocyte-to-medium concentration ratio; Kp,V0 unbound hepatocyte-to-medium concentration ratio based on initial uptake rate; Kp,V0 true theoretically true hepatocyte-to-medium concentration ratio; Kp,V0,unbound hepatocyte-to-medium concentration ratio based on initial uptake rate; MRP, multidrug resistance-associated protein; OATP, organic anion-transporting polypeptide; PS, influx intrinsic clearance by passive diffusion through sinusoidal membrane; TPP*, tetrathenylphosphonium; V max, maximum transport rate.
them, a strategy to estimate $K_{p,uu}$ based on the initial uptake rate ($K_{p,uu,V0}$) calculated using active transport clearance (V_{max}/K_{m}), and passive diffusion clearance at various concentrations (Yabe et al., 2011) was introduced. In addition, we have proposed an alternative strategy to estimate $K_{p,uu}$ under steady-state conditions ($K_{p,uu,ss}$), which can be calculated by dividing the C/M ratio at $37^\circ C$ by that at a low temperature (on ice) or in the presence of ATP depletors, when active transport is stopped (Yamazaki et al., 1992; Shiitara et al., 2013). Yamazaki et al. (1993) demonstrated that the uptake of pravastatin by rat hepatocytes was more greatly reduced at a low temperature than by ATP depletion.

In the present study, steady-state uptake of typical OATP substrates, pitavastatin, rosuvastatin, and pravastatin in rat and human hepatocytes was investigated at $37^\circ C$ and on ice to evaluate their $K_{p,uu,ss}$. In general, $K_{p,uu}$ can be described by the C/M ratio of drugs in hepatocytes as follows:

$$C/M \text{ ratio} = \frac{C_{\text{cell}}}{C_{\text{medium}}} = \frac{C_{\text{cell, unbound}}/f_T}{C_{\text{medium, unbound}}/f_B} = K_{p,uu} \cdot \frac{f_B}{f_T} \quad (1)$$

where f_B is the unbound fraction of the drugs in the blood (in vivo) or in the incubation medium (in vitro), and f_T is the unbound fraction of the drugs in the hepatocytes. The unbound fraction in hepatocytes at the steady state ($f_T,cell,ss$) obtained using our method should be validated because intracellular binding to cytosolic proteins/cellular organelles might be altered at low temperatures. Therefore, $f_T,cell,ss$ were compared with the unbound fraction in liver homogenates ($f_T,\text{homogenate}$) measured by equilibrium dialysis using human liver samples. The $K_{p,uu,ss}$ obtained were then compared with $K_{p,uu,V0}$ in both rat and human hepatocytes. The difference between $K_{p,uu,ss}$ or $K_{p,uu,V0}$ and true $K_{p,uu}$ ($K_{p,uu,\text{true}}$) is discussed in the context of theoretical equations, considering the membrane potential ($\Delta \psi$) in hepatocytes and the fraction of ionized drugs at the designated pH. Finally, a method to predict $K_{p,uu,\text{true}}$ from $K_{p,uu,ss}$ and $K_{p,uu,V0}$ obtained experimentally is proposed.

Materials and Methods

Chemicals. [3H]Pitavastatin, [3H]rosuvastatin calcium, and [3H]pravastatin calcium were obtained from American Radiolabeled Chemicals (St. Louis, MO). Unlabeled diazepam, pitavastatin calcium, rosuvastatin calcium, and pravastatin sodium were obtained from Wako Pure Chemicals (Osaka, Japan). All other reagents and solvents were purchased from Invitrogen (Carlsbad, CA), Sigma-Aldrich (St. Louis, MO), and Wako Pure Chemicals.

Animals. Male Sprague-Dawley rats were purchased from Charles River Japan (Shiga, Japan) and acclimatized for 7 days before the experiments. The rats were housed under conditions of controlled temperature and humidity with a 12-hour light/dark cycle with free access to standard laboratory rodent food (CE-2; CLEA Japan, Tokyo, Japan) and water. All animal experiments were approved by the Experimental Animal Care and Use Committee of the Mitsubishi Tanabe Pharma (Saitama, Japan) and conducted in accordance with the Declaration of Helsinki and the guidelines of the ethics committee.

Isolation of Rat Hepatocytes. Hepatocytes were isolated from male Sprague–Dawley rats (7–9 weeks old) using a procedure described previously (Baur et al., 1975). Isolated hepatocytes were suspended in albumin-free Krebs–Henseleit buffer with 12.5 mM HEPES (pH 7.4), and cell viabilities were determined using a trypan blue exclusion test. Hepatocytes obtained from three independent preparations with >80% viability were used for the uptake studies described below.

Preparation of Human Hepatocytes. Human biologic samples were obtained ethically, and their research use was in accordance with the terms of informed consent. Cryopreserved human hepatocytes from a donor (Lot Hu8075) were purchased from Life Technologies (Carlsbad, CA). Pooled cryopreserved human hepatocytes from 20 mixed-sex donors (Lot TFF) were purchased from BioRelclamationVVT (Baltimore, MD). Pooled cryopreserved human hepatocytes from 50 mixed-sex donors (Lot HUE50C) were purchased from Thermo Fisher Scientific (Waltham, MA). These hepatocytes were suspended in albumin-free Krebs–Henseleit buffer with 12.5 mM HEPES (pH 7.4), and viabilities were determined using a trypan blue exclusion test. Hepatocytes obtained from three independent preparations with >80% viability were used for the uptake studies described below.

Determination of the Intracellular Volume of Hepatocytes. The intracellular volume of rat hepatocytes (3.68 ± 1.37 µL/106 cells) was estimated using published methods (Supplemental Table 1A) (Baur et al., 1975; Kletzien et al., 1975; Eaton and Klausen, 1978; Kristensen and Folke, 1984; Yamazaki et al., 1992; Miyachi et al., 1993; Reinoso et al., 2001; Halifax and Houston, 2006). In brief, to determine the intracellular volume of human hepatocytes, cryopreserved human hepatocytes (Lot Hu8075) were suspended in Krebs–Henseleit buffer (pH 7.4) at 6.0 ± 10 viable cells/mL and preincubated at 37°C for 5 minutes. A reaction was initiated by adding an equal volume of buffer containing [3H]water and [14C]destran at final concentrations of 2.5 µCi/mL and 0.5 µCi/mL, respectively. After incubation at 37°C for 10 minutes, during which the distribution of [3H]water and [14C]destran reached a steady state, aliquots were removed and added to a narrow tube containing silicone–mineral oil (density: 1.015; Sigma-Aldrich) over aqueous 2 M sodium hydroxide, followed by centrifugation through the silicione–mineral oil layer to separate the cells from the medium. After the basic bottom layer was neutralized with 2 M hydrochloric acid, radioactivities in both cells and medium were determined using a Tri-Carb liquid scintillation counter (PerkinElmer, Shelton, CT). Thereby, the intracellular volume of human hepatocytes was estimated to be 2.28 ± 0.33 µL/106 cells (Supplemental Table 1B).

Determination of $K_{p,uu,ss}$ and $f_T,cell,ss$ in Rat and Human Hepatocytes Based on Steady-State Uptake. To determine the incubation time for steady-state uptake into hepatocytes, transport studies were performed by an oil–spin method (Iga et al., 1979) using suspended hepatocytes. Hepatocytes were suspended in Krebs–Henseleit buffer (pH 7.4) at 2.0 ± 10 viable cells/mL and preincubated at 37°C for 5 minutes. A reaction was initiated by adding an equal volume of buffer containing each drug (pitavastatin, rosuvastatin, pravastatin, or diazepam previously used as a neutral drug with high membrane permeability for evaluating the uptake into isolated rat hepatocytes) (Ichikawa et al., 1992) at 1 µM. After incubation at 37°C for 0.5, 2, 5, 15, and 30 minutes (rat hepatocytes), 0.5, 1.5, 30, and 60 minutes (human hepatocytes, Lot Hu8075), or 0.5, 1.5, 30, and 60 minutes (human hepatocytes, Lot TFF), aliquots were removed and added to a narrow tube containing silicone–mineral oil over aqueous 2 M sodium hydroxide and centrifuged through the silicione–mineral oil layer to separate the cells from the medium. To provide low temperature values, the uptake studies were performed on ice. After the basic bottom layer was neutralized with 2 M hydrochloric acid, radioactivities in both cells and medium was measured using the liquid scintillation counter.

The unbound hepatocyte-to-medium concentration ratio ($K_{p,uu}$) based on the steady-state uptake ratio at 37°C and on ice ($K_{p,uu,ice}$) and the unbound fraction in hepatocytes at 37°C and on ice ($f_T,cell,ice$) were defined as described in eqs. 2 and 3, respectively, based on the C/M ratio at 37°C and on ice. A part of the method to obtain $f_T,cell,ss$ was reported previously (Yoshikado et al., 2016).

$$K_{p,uu,ss} = \frac{C/M \text{ ratio at } 37°C}{C/M \text{ ratio at ice}} = \frac{C_{\text{cell,37°C}}/C_{\text{medium,37°C}}}{C_{\text{cell,ice}}/C_{\text{medium,ice}}} \quad (2)$$

$$f_T,cell,ss = \frac{C_{\text{cell,unbound,37°C}}/C_{\text{medium,37°C}}}{C_{\text{cell,unbound,ice}}/C_{\text{medium,ice}}} = \frac{1}{C/M \text{ ratio at ice}} \quad (3)$$

The following assumptions were made in calculating $K_{p,uu,ss}$ and $f_T,cell,ss$ using eqs. 2 and 3: the active uptake in hepatocytes is abolished on ice (i.e., $C_{\text{cell,unbound,ice}}$ is equal to $C_{\text{medium,ice}}$), and $f_T,cell,ss$ is independent of temperature (i.e., $C_{\text{cell,unbound,37°C}}/C_{\text{medium,37°C}}$ is equal to $f_T,cell,37°C$).

Determination of $K_{p,uu,ss}$ and $f_T,cell,ss$ and Other Kinetic Parameters in Rat and Human Hepatocytes Based on Initial Uptake Rate. To evaluate the initial uptake rate in pooled human hepatocytes, hepatocytes were preincubated for 5 minutes and then incubated for 0.5–1.5 or 0.5–2 minutes, as shown in the transport studies described above.
The uptake clearance by hepatocytes (CL\text{uptake}) was determined by the slope of the plot of C/M ratio versus time, and the initial uptake rate (\(v \)) was calculated by multiplying CL\text{uptake} with the initial substrate concentration.

According to a method reported previously (Yabe et al., 2011), \(v \) can be calculated using eq. 4:

\[
v = \frac{V_{\text{max}} \cdot S}{K_m + S} + PS_{\text{dif}} \cdot S.
\]

where \(V_{\text{max}} \) is the maximum uptake rate, \(K_m \) is the Michaelis constant, \(PS_{\text{dif}} \) is the passive diffusion clearance, and \(S \) is the substrate concentration in the medium. These kinetic parameters were optimized by fitting the equation to observed data using Phoenix WinNonlin version 6.3 (Pharsight Certara, St. Louis, MO). Because CL\text{uptake} consists of active uptake clearance (\(PS_{\text{act}} \)) and passive diffusion clearance (\(PS_{\text{dif}} \)), assuming that \(PS_{\text{dif}} \) for the cellular uptake is equal to that for the efflux, \(K_{p,\text{uu}} \) and \(f_T,\text{cell} \) based on initial uptake rate (\(K_{p,\text{uu},V_0} \) and \(f_T,\text{cell},V_0 \)) can be calculated using eqs. 5 and 6 (Yabe et al., 2011):

\[
K_{p,\text{uu},V_0} = \frac{PS_{\text{act}} + PS_{\text{dif}}}{PS_{\text{act}}}
\]

\[
f_T,\text{cell},V_0 = \frac{K_{p,\text{uu},V_0}}{C/M \text{ ratio}_{37^\circ C}}
\]

where the C/M ratio\text{\textsubscript{37°C}} in rat hepatocytes was obtained at 30 minutes, and that in human hepatocytes was obtained at 60 minutes.

Determination of the Unbound Fraction in Human Liver Homogenates (\(f_{T,\text{homogenate}} \)) Using Equilibrium Dialysis

Human liver samples were obtained from the Human and Animal Bridging Research Organization (Tokyo, Japan) with approval of the Ethics Committees of University of Tokyo and Human and Animal Bridging Research Organization. Three lots of liver samples were pooled and homogenized in 66.7 mM isotonic phosphate buffer at 1:3 (w/v) producing 25% homogenates. By diluting these homogenates, 12.5% and 6.25% homogenates were also prepared. Diazepam, pitavastatin, pravastatin, and rosuvastatin (final concentrations: 0.2 \(\mu M \)) were added to the compartment containing homogenates in a Rapid Equilibrium Dialysis plate (Thermo Fisher Scientific) and incubated for 12 hours at 37°C, or on ice.

TABLE 1

Determination of \(\lambda^\prime \) based on the pH-dependent permeation data of statins observed in Caco-2 cells

Drug	\(f_{i,\text{ion}} \)	\(f_{i,\text{uni}} \)	\(f_{o,\text{ion}} \)	\(f_{o,\text{uni}} \)	pK\text{a}	\(PS_{\text{active,Caco-2}} \times 10^6 \)	\(\lambda' \)
Pitavastatin	0.857	0.143	0.905	0.095	4.46	3487 ± 1403	0.0282 ± 0.0204
Rosuvastatin	0.986	0.014	0.991	0.009	4.6	714 ± 68	0.0112 ± 0.0035
Pravastatin	0.986	0.014	0.991	0.009	4.6	111 ± 19	0.188 ± 0.038

\(^a \)The \(f_{i,\text{ion}} \) and \(f_{i,\text{uni}} \) were calculated based on Henderson-Hasselbalch equation assuming that intracellular pH and medium pH are 7.2 and 7.4, respectively. The \(f_{o,\text{ion}} \) and \(f_{o,\text{uni}} \) were subtracted \(f_{i,\text{ion}} \) and \(f_{i,\text{uni}} \) from one, respectively.

\(^b \)Fixed at values obtained from the manufacturer’s Interview Forms.

\(^c \)The PS\text{\textsubscript{active,Caco-2}} and \(\lambda' \) were determined by fitting eq. 9 to the pH-dependent permeation data of statins observed in Caco-2 cells (Supplemental Fig. 1).

Fig. 1. Uptake of diazepam (1 \(\mu M \); A), pitavastatin (1 \(\mu M \); B), rosuvastatin (1 \(\mu M \); C), and pravastatin (1 \(\mu M \); D) by rat hepatocytes measured after incubation at 37°C for 0.5–30 minutes. The data are presented as mean + S.D. (\(n = 3 \)).
The values are shown as the mean ± S.D. (n = 3).

TABLE 2

Drug	C/M Ratio	K_{ps,ion}	f_{cell,ion}		
Diazepam	37°C	58.9 ± 7.3	69.3 ± 9.7	0.851 ± 0.024	0.0147 ± 0.0022
	On ice				
Pitavastatin	37°C	324 ± 174	29.5 ± 11.5	10.8 ± 4.4	0.0381 ± 0.0167
Rosuvastatin	37°C	78.1 ± 37.1	7.80 ± 4.07	13.1 ± 7.7	0.149 ± 0.060
Pravastatin	37°C	12.5 ± 7.7	1.80 ± 0.56	6.69 ± 2.76	0.600 ± 0.0217

The values are shown as the mean ± S.D. (n = 3).

Calculation of the Ratio of Passive Diffusion Influx Clearance of Ionized Drug to That of Nonionized Drug (λ) Based on the pH-Dependent Permeability Examined in Caco-2 Cells. Caco-2 cells were obtained from American Type Culture Collection (Rockville, MD). Cells (passages 28–40) were cultivated, as previously described (Neuhoff et al., 2003), with some modifications. Briefly, Caco-2 cells were seeded onto a Millicell-96 Cell Culture Insert Plate (polycarbonate 0.4 μm; Merck Millipore, Billerica, MA) at 2.5 × 10^6 cells/well, and the culture medium was changed every second day. On day 10, transport experiments were performed; the incubation medium was Hank's balanced salt solution (HBSS) buffered with either 20 mM 4-morpholineethanesulfonic acid (pH = 5.5, 6.0, and 6.5), or 20 mM HBSS (pH = 7.4). Before the experiments, the apical side of the Caco-2 cell monolayer was washed four times with HBSS at the corresponding pHs (5.5, 6.0, 6.5, and 7.4). Then, both apical and basal sides of the monolayer were preincubated for 10 minutes at 37°C in the presence of rifamycin SV (100 μM), cyclosporin A (10 μM), and Ko143 (100 μM) as OATP2B1, P-glycoprotein, and breast cancer resistance protein inhibitors, respectively, at corresponding pHs (5.5, 6.0, 6.5, and 7.4 for the apical side, and 7.4 for the basal side). Subsequently, the monolayer was incubated for 10, 30, 60, and 90 minutes at 37°C in the presence of each radiolabeled statin (10 μM, apical side only) and the inhibitors (both sides). Lucifer yellow (300 μM) was used as a paracellular marker to examine the integrity of the monolayer. The radioactivity on the basal side was determined using a liquid scintillation counter.

The PS of the ionized and nonionized forms of a drug, respectively, and f_{cell,ion} and f_{cell,uion} are fractions of ionized and nonionized drug outside the cells, respectively. Subsequently, λ was defined as the ratio of passive diffusion influx clearance of the ionized drug to that of the nonionized drug, as follows:

\[\lambda = \frac{PS_{\text{diff,ion}}}{PS_{\text{diff,uion}}} \]

where the subscripts ion and uion represent the ionized and unionized (nonionized) form of a drug, respectively, and f_{ion} and f_{uion} are fractions of ionized and nonionized drug outside the cells, respectively. Subsequently, λ is the ratio of passive diffusion influx clearance of the ionized drug to that of the nonionized drug, as follows:

\[\lambda = \frac{PS_{\text{diff,ion}}}{PS_{\text{diff,uion}}} \]

It is assumed that the λ value is not changed by temperature: the effect of low temperature on PS_{\text{diff,ion}} is assumed to be the same as that on PS_{\text{diff,uion}} although these passive diffusion clearances should be affected by the change in membrane fluidity at low temperature (Kanduser et al., 2008). A part of the method to obtain λ was reported previously (Yoshikado et al., 2015). Using λ, eq. 7 can be converted as follows:

\[PS_{\text{diff,ion}} = (1 - f_{\text{ion}}) \cdot PS_{\text{diff,uion}} \cdot f_{\text{ion}} / f_{\text{uion}} \]

TABLE 3

Drug	V_{max}	K_{m}	V_{max}/K_{m}	PS_{A}	K_{p,ss}	f_{cell,ss}
	pmol/min/10^6 Cells	μM	μL/min/10^6 Cells	μL/min/10^6 Cells		
Pitavastatin	893 ± 124	5.43 ± 1.29	164 ± 45	3.00 ± 1.41	55.8 ± 29.9	0.172 ± 0.131
Rosuvastatin	250 ± 80	2.86 ± 1.82	87.4 ± 62.3	1.76 ± 1.15	50.7 ± 48.0	0.649 ± 0.688
Pravastatin	178 ± 11	20.3 ± 1.4	8.77 ± 0.81	1.16 ± 0.08	8.56 ± 0.87	0.685 ± 0.428

The values are shown as the mean ± S.D. (n = 3).

The initial uptake rate of pitavastatin in rat hepatocytes was calculated from the uptake of [^3]H[pitavastatin], [^3]H[rosuvastatin], and [^3]H[pravastatin] for 0.5–1.5 minutes. Kinetic parameters were obtained by fitting to data at seven concentrations (0.1, 0.3, 0.5, 1, 3, 10, 30, and 100 μM) for all statins: Supplemental Fig. 2 using eq. 4.
Determination of $K_{p,uu,ss}$ and $f_{cell,ss}$ in Rat Hepatocytes. The time-dependent uptake of diazepam (a lipophilic neutral compound) and pitavastatin, rosuvastatin, and pravastatin (substrates of hepatic OATPs) in rat hepatocytes was monitored. The uptake of diazepam in rat hepatocytes reached a steady state instantaneously because of its high permeability, whereas the uptake of pitavastatin, rosuvastatin, and pravastatin gradually increased over time and reached the steady state within 30 minutes (Fig. 1). On ice, C/M ratios of pitavastatin, rosuvastatin, and pravastatin were significantly smaller than the ratios at 37°C, whereas that for diazepam was not different from that at 37°C (Table 2). The $K_{p,uu,ss}$ for diazepam was 0.85, and the values for
pitavastatin, rosuvastatin, and pravastatin were approximately 11, 13, and 6.7, respectively (Table 2), confirming that these statins were concentrated in the hepatocytes by an active transport system. The obtained \(f_{T,cell,ss} \) values for pitavastatin, rosuvastatin, and pravastatin were approximately 0.038, 0.15, and 0.60, respectively.

Determination of \(K_{p,uu,ss} \) and \(f_{T,cell,ss} \) in Human Hepatocytes. We investigated the time-dependent uptake of diazepam, pitavastatin, rosuvastatin, and pravastatin by human hepatocytes prepared from single donor (Lot Hu8075) (Fig. 2, A–D) and pooled human hepatocytes from 20 mixed-sex donors (Lot TFF) (Fig. 2, E–H). The uptake of all these statins increased over time and reached a steady state within 60 minutes, whereas that of diazepam reached a peak instantaneously. On ice, the C/M ratios for pitavastatin, rosuvastatin, and pravastatin were reduced, whereas that for diazepam was not dependent on temperature (Table 4). Although the \(K_{p,uu,ss} \) for diazepam was approximately 1 (1.2 and 0.41), the values were 13 and 6.9 for pitavastatin, 12 and 6.4 for rosuvastatin, and 2.0 and 1.3 for pravastatin in cells from Lot Hu8075 and Lot TFF, respectively (Table 4). The obtained \(f_{T,cell,ss} \) values were approximately 0.028 and 0.046 for pitavastatin, 0.22 and 0.23 for rosuvastatin, and 0.55 and 0.48 for pravastatin in cells from Lot Hu8075 and Lot TFF, respectively.

TABLE 4

Drug	Lot	C/M Ratio \(\Delta t \)	\(K_{p,uu,ss} \) \(\mu M \)	\(f_{T,cell,ss} \) \(\mu L/min/10^6 \text{ Cells} \)
Diazepam	Hu8075\(^a \)	216 ± 20	1.19 ± 0.51	0.00553 ± 0.00115
	TFF\(^b \)	124 ± 53	0.409 ± 0.247	0.00330 ± 0.00024
Pitavastatin	Hu8075\(^a \)	471 ± 88	13.4 ± 2.7	0.0284 ± 0.00021
	TFF\(^b \)	150 ± 2.6	6.92 ± 1.02	0.0460 ± 0.0068
Rosuvastatin	Hu8075\(^a \)	52.2 ± 8.6	11.6 ± 2.2	0.222 ± 0.020
	TFF\(^b \)	27.2 ± 2.5	6.36 ± 1.06	0.234 ± 0.029
Pravastatin	Hu8075\(^a \)	3.73 ± 0.73	2.03 ± 0.54	0.545 ± 0.035
	TFF\(^b \)	2.65 ± 1.29	1.28 ± 0.89	0.484 ± 0.151

\(^a \) Isolated cryopreserved human hepatocytes (Lot Hu8075) were incubated with diazepam (0.2 \(\mu M \)), pitavastatin (0.1 \(\mu M \)), rosuvastatin (0.1 \(\mu M \)), and pravastatin (0.2 \(\mu M \)).

\(^b \) Pooled cryopreserved human hepatocytes from 20 mixed-sex donors (Lot TFF) were incubated with diazepam (1 \(\mu M \)), pitavastatin (0.5 \(\mu M \)), rosuvastatin (0.5 \(\mu M \)), and pravastatin (1 \(\mu M \)).

\(^c \) C/M ratios at 37°C and on ice were calculated using the uptake data at 30 minutes and 60 minutes, respectively (Fig. 2).

\(^d \) The \(K_{p,uu,ss} \) and \(f_{T,cell,ss} \) were calculated from C/M ratios using eqs. 2 and 3, respectively.

TABLE 5

Drug	Lot	\(V_{max} \) pmol/min/10^6 Cells	\(K_m \) \(\mu M \)	\(V_{max}/K_m \) \(\mu L/min/10^6 \text{ Cells} \)	\(PS_{diff} \) \(\mu L/min/10^6 \text{ Cells} \)	\(K_{p,uu,V0} \) \(\mu M \)	\(f_{T,cell,V0} \) \(\mu L/min/10^6 \text{ Cells} \)
Pitavastatin	Hu8075\(^a \)	403 ± 84	4.77 ± 1.80	84.5 ± 36.4	0.388 ± 0.912	219 ± 521	0.465 ± 1.110
	TFF\(^b \)	148 ± 66.1	1.78 ± 1.04	83.1 ± 61.1	4.36 ± 0.70	20.1 ± 14.4	0.134 ± 0.096
Rosuvastatin	Hu8075\(^a \)	198 ± 50	21.5 ± 7.8	9.21 ± 4.07	0.0462 ± 0.154	200 ± 673	3.83 ± 12.19
	TFF\(^b \)	23.0 ± 8.6	4.49 ± 1.72	5.12 ± 2.75	2.07 ± 0.27	3.47 ± 1.41	0.128 ± 0.053
Pravastatin	Hu8075\(^a \)	93.8 ± 56.0	127 ± 81	0.739 ± 0.645	0.0137 ± 0.0922	54.8 ± 363.7	14.7 ± 97.5
	TFF\(^b \)	Not determined\(^e \)	Not determined\(^e \)	Not determined\(^e \)	Not determined\(^e \)	Not determined\(^e \)	Not determined\(^e \)

\(^a \) The initial uptake rate in isolated cryopreserved human hepatocytes (Lot Hu8075) was calculated from the uptake of \(^{3}H \)-pitavastatin, \(^{3}H \)-rosuvastatin, and \(^{3}H \)-pravastatin for 0.5–2.0 minutes. Kinetic parameters are obtained by fitting to the data at several concentrations (0.1, 0.3, 1, 3, 10, 30, and 100 \(\mu M \)) for pitavastatin; 0.1, 0.3, 1, 3, 10, 30, and 300 \(\mu M \) for rosuvastatin; 1, 3, 100, and 300 \(\mu M \) for pravastatin; Supplemental Fig. 3, A–C) using eq. 4.

\(^b \) The initial uptake rate in pooled cryopreserved human hepatocytes from 20 mixed-sex donors (Lot TFF) was calculated from the uptake of \(^{3}H \)-pitavastatin and \(^{3}H \)-rosuvastatin for 0.5–1.5 minutes. Kinetic parameters are obtained by fitting to the data at several concentrations (0.1, 0.3, 1, 3, 10, 30, and 100 \(\mu M \)) for pitavastatin; 0.1, 0.3, 1, 3, 10, 30, and 300 \(\mu M \) for rosuvastatin; Supplemental Fig. 3, D and E) using eq. 4.

\(^e \) Not determined in Lot TFF because a concentration (0.5–30.0 \(\mu M \))-dependent saturation of the uptake of pravastatin was not observed clearly.

\(^f \) The \(K_{p,uu,V0} \) and \(f_{T,cell,V0} \) were calculated using eqs. 5 and 6, respectively. C/M ratios at 37°C (Table 4) were used for the calculation of the \(f_{T,cell,V0} \).
values of $K_{p,uu, V0}$ and $f_{T,cell, V0}$ exhibited greater differences between lots.

Comparison of $K_{p,uu}$ and $f_{T,cell}$ Obtained by Different Methods. In rat hepatocytes, $K_{p,uu, V0}$ values for pitavastatin, rosuvastatin, and pravastatin were, respectively, 5.1, 5.1, and 1.2 times those for $K_{p,uu, ss}$ (Fig. 3A). By contrast, in human hepatocytes (Lot Hu8075), $K_{p,uu, V0}$ values for pitavastatin, rosuvastatin, and pravastatin were, respectively, 16, 17, and 43 times those for $K_{p,uu, ss}$ (Fig. 3B). The differences between $K_{p,uu, V0}$ and $K_{p,uu, ss}$ in human hepatocytes from Lot TFF were smaller than those in Lot Hu8075: $K_{p,uu, V0}$ values for pitavastatin and rosuvastatin were, respectively, 2.9 and 0.55 times those for $K_{p,uu, ss}$ in cells from Lot TFF (Fig. 3B).

The $f_{T,cell, V0}$ values tended to be higher than $f_{T,cell, ss}$ in both rat (Fig. 3C) and human hepatocytes (Fig. 3D), except for rosuvastatin in human hepatocytes (Lot TFF). Both $K_{p,uu, V0}$ and $K_{p,uu, ss}$ in human hepatocytes from Lot TFF were smaller than those in Lot Hu8075: $K_{p,uu, V0}$ values for pitavastatin and rosuvastatin were, respectively, 2.9 and 0.55 times those for $K_{p,uu, ss}$ in cells from Lot TFF (Fig. 3B).

The $f_{T,cell, V0}$ values tended to be higher than $f_{T,cell, ss}$ in both rat (Fig. 3C) and human hepatocytes (Fig. 3D), except for rosuvastatin in human hepatocytes (Lot TFF). Both $K_{p,uu, V0}$ and $K_{p,uu, ss}$ in human hepatocytes from Lot TFF were smaller than those in Lot Hu8075: $K_{p,uu, V0}$ values for pitavastatin and rosuvastatin were, respectively, 2.9 and 0.55 times those for $K_{p,uu, ss}$ in cells from Lot TFF (Fig. 3B).

Comparison of $f_{T,cell}$ with the Measured Unbound Fraction in Human Liver Homogenates. For diazepam, pitavastatin, rosuvastatin, and pravastatin, the measured unbound fractions in human liver homogenates ($f_{T, homogenate}$) were measured using equilibrium dialysis (Table 6). The $f_{T, homogenate}$ values for these drugs obtained at 37°C ($f_{T, homogenate, 37°C}$) were close to those obtained on ice ($f_{T, homogenate, on ice}$). Moreover, the $f_{T, homogenate, on ice}$ values for pitavastatin and rosuvastatin were comparable to those for $f_{T,cell, ss}$ (Table 4); the difference between $f_{T, homogenate, on ice}$ and $f_{T,cell, ss}$ for pravastatin was within threefold, whereas there was a larger discrepancy between $f_{T, homogenate, on ice}$ and $f_{T,cell, ss}$ for diazepam.

Measurement of the $\Delta \Psi$ Using TPP⁺. To evaluate whether $\Delta \Psi$ might affect the ratio of $PS_{dif,inf}/PS_{dif,eff}$ and, accordingly, $K_{p,uu}$, the time-dependent uptake of TPP⁺ was examined in human hepatocytes under physiologic conditions and with amphotericin B, which is reported to abolish $\Delta \Psi$ specifically by 10-minute incubation with isolated rat hepatocytes (Saito et al., 1992). The C/M ratio of TPP⁺ gradually increased over time and reached the steady state between 30 and 60 minutes (Fig. 4). On ice, the C/M ratio of TPP⁺ was significantly smaller than that at 37°C. In addition, in the presence of amphotericin B, the C/M ratio of TPP⁺ was decreased significantly at 37°C compared with the condition without amphotericin B, whereas the C/M ratio on ice was not significantly changed with amphotericin B (Fig. 4). The C/M ratio (37°C) in the presence of amphotericin B at 60 minutes was lower than that at 30 minutes, suggesting some additional effects of amphotericin B (i.e., cytotoxicity) other than the loss of the $\Delta \Psi$. Therefore, based on the obtained data at 30 minutes and

Drug	$f_{T, homogenate}$ 37°C	$f_{T, homogenate}$ On Ice	$f_{T, homogenate}$ 37°C/On Ice Ratio
Diazepam	0.0259 ± 0.0018	0.0242 ± 0.0016	1.07 ± 0.10
Pitavastatin	0.0301 ± 0.0017	0.0344 ± 0.0018	0.875 ± 0.067
Rosuvastatin	0.237 ± 0.037	0.206 ± 0.025	1.15 ± 0.23
Pravastatin	0.183 ± 0.022	0.167 ± 0.020	1.10 ± 0.19
eq. 10, $\Delta \Psi$ values were calculated to be approximately -30 mV at 37°C and 5 mV on ice (Table 7).

Using $\Phi = [\exp(\pi F \Delta \Psi / RT)]$ calculated from $\Delta \Psi$ (Supplemental Equation 5) and physicochemical parameters calculated for statins (Table 1), theoretical values of $K_{p,uu,true}, K_{p,uu,V0}$, and $K_{p,uu,ss}$ were calculated by Supplemental Equations 6, 8, and 11, respectively (Table 8) and eqs. 14 and 15:

$$RV_0/true = K_{p,uu,V0}$$

$$RV_{ss/true} = K_{p,uu,ss}/true$$

Furthermore, we aimed to understand better the quantitative relationship between $K_{p,uu,true}$ and experimentally obtained $K_{p,uu,V0}$ and $K_{p,uu,ss}$, respectively. Based on theoretical equations that consider the inside-negative $\Delta \Psi$ and several physicochemical parameters of statins (Table 1), the ratios of $K_{p,uu,V0}/K_{p,uu,true}$ and $K_{p,uu,ss}/K_{p,uu,true}$ ($RV_{0/true}$ or $RV_{ss/true}$) can be described as follows:

$$RV_{0/true} = \frac{K_{p,uu,V0}}{K_{p,uu,true}} = \frac{\Phi \cdot \lambda \cdot f_{ion} + f_{uion}}{\lambda \cdot f_{ion} + f_{uion}}$$

$$RV_{ss/true} = \frac{K_{p,uu,ss}}{K_{p,uu,true}} = \frac{\Phi \cdot \lambda \cdot f_{ion} + f_{uion}}{\lambda \cdot f_{ion} + f_{uion}}$$

where f_{ion} and f_{uion} are fractions of the ionized and nonionized forms of the drug in hepatocytes, respectively, with the use of intracellular pH (7.2) and pKa. $RV_{0/true}$ was calculated to be 2.2–3.1 for statins, whereas $RV_{ss/true}$ was 0.85–1.2 (Table 8). Figure 5 also shows that simulated $RV_{ss/true}$ was closer to 1 than $RV_{0/true}$ when λ values for pitavastatin, rosuvastatin, and pravastatin were approximately 0.028, 0.011, and 0.19, respectively (Table 1). Furthermore, experimentally obtained $K_{p,uu,V0}$ and $K_{p,uu,ss}$ for statins were corrected using the calculated $RV_{0/true}$ and $RV_{ss/true}$ values (Table 8) and eqs. 14 and 15:

Table 8

Drug	Lot	$K_{p,uu,V0}$ a	$K_{p,uu,V0}$ b	$K_{p,uu,ss}$ a	$K_{p,uu,ss}$ b	$RV_{0/true}$ b	$RV_{ss/true}$ b
Pitavastatin	Hu8075	90.7	198	106	2.18	1.17	
	TFF	8.35	183	9.75	2.18	1.17	
Rosuvastatin	Hu8075	72.4	199	71.9	2.74	0.994	
	TFF	1.26	3.45	1.25	2.74	0.994	
Pravastatin	Hu8075	17.9	54.5	15.2	3.05	0.850	
	TFF	Not calculated					

a Theoretical values of $K_{p,uu,V0}$, $K_{p,uu,ss}$, and $K_{p,uu,true}$ were calculated by Supplemental Equations 6, 8, and 11, respectively. The f_{ion}, f_{uion}, c_{ion}, c_{uion}, λ, T, V, and $K_{p,uu,V0}$, and $RV_{0/true}$ (Table 1), $K_{p,uu,ss}$ (Table 5), and PS_{diff}, in each lot of human hepatocytes determined by c_{ion}, c_{uion}, λ, and PS_{t} (Table 5), according to eq. 7, were used for the calculation.

b $RV_{0/true} = K_{p,uu,V0}/K_{p,uu,true}$ and $RV_{ss/true} = K_{p,uu,ss}/K_{p,uu,true}$ were calculated by eqs. 14 and 15.

c Not calculated for Lot TFF because kinetic parameters ($K_{p,uu}$, V_{max}, and PS_{eff}) of pravastatin were not determined (Table 5).

$RV_{0/true} = K_{p,uu,V0}/K_{p,uu,ss}$ (eq. 14)

$RV_{ss/true} = K_{p,uu,ss}/K_{p,uu,ss}$ (eq. 15)

Theoretical calculation of $K_{p,uu,true}$, $K_{p,uu,V0}$, and $K_{p,uu,ss}$ using the calculated $\Delta \Psi$

Table 7

Temperature	C/M Ratio	$\Delta \Psi ^a$	$\Phi ^a$	
37°C	442.7 ± 31.1	142.4 ± 4.3	$-30.22 ± 2.04$	3.109 ± 0.237
On ice	9.5 ± 1.4	11.3 ± 0.5	4.97 ± 4.12	0.840 ± 0.128

a $\Delta \Psi$ and Φ were calculated using eq. 10 and Supplemental Equation 5, respectively.

Discussion

We previously proposed a method to estimate $K_{p,uu,true}$ for anions in hepatocytes based on their steady-state C/M ratio at 37°C and the C/M ratio after suppressing active transport (Yamazaki et al., 1992; Shitara et al., 2013). Another method reported by Yabe et al. (2011) is to estimate $K_{p,uu,ss}$ based on initial uptake rates at various concentrations. $K_{p,uu,ss}$ values for pitavastatin, rosuvastatin, and pravastatin in rat and human hepatocytes, which were obtained with less interexperimental variation compared with $K_{p,uu,V0}$ values in this study, tended to be smaller than the corresponding $K_{p,uu,V0}$ values in Fig. 3A and 6A. Similarly, $K_{p,uu,V0,corrected}$ in rat and human hepatocytes approached $K_{p,uu,ss,corrected}$ (Figs. 3B and 6B). The calculated AFEs are 7.6 in Fig. 3A and 4.4 in Fig. 6A. Similarly, $K_{p,uu,V0,corrected}$ in rat and human hepatocytes approached $K_{p,uu,ss,corrected}$ (Figs. 3B and 6B). However, $K_{p,uu,V0,corrected}$ in Lot Hu8075, a single donor lot selected because of its relatively high uptake ability, remained larger than $K_{p,uu,ss,corrected}$.

$K_{p,uu,V0,corrected}$ in rat hepatocytes approached $K_{p,uu,ss,corrected}$ (Fig. 6A) compared with uncorrected $K_{p,uu,V0}$ versus $K_{p,uu,ss}$ (Fig. 3A); the calculated AFEs are 7.6 in Fig. 3A and 4.4 in Fig. 6A. Similarly, $K_{p,uu,V0,corrected}$ in human hepatocytes approached corrected $K_{p,uu,ss,corrected}$ (Figs. 3B and 6B); the calculated AFEs are 132 in Fig. 3B and 41 in Fig. 6B. However, $K_{p,uu,V0,corrected}$ in Lot Hu8075, a single donor lot selected because of its relatively high uptake ability, remained larger than $K_{p,uu,ss,corrected}$.
(i) As PS_{act,inf} is estimated by initial uptake rate for the calculation for K_{p,uu,V0}, it may include not only active transport, but also facilitated diffusion, which is also transporter mediated, but not by active (concentrated) transport. Thus, in this case, K_{p,uu,V0} can be larger than K_{p,uu,ss}. However, in the case of statins, hepatic OATPs are thought to be major uptake transporters, and the impact of facilitated diffusion on their overall uptake may be negligible.

(ii) The existence of non-negligible metabolism during the measurement of steady-state uptake (30–60 minutes) of a drug may lead to smaller K_{p,uu,ss} than K_{p,uu,V0} values, because metabolism might be negligible during short incubation times (~2 minutes) for the measurement of initial uptake rates. Considering that pitavastatin, rosuvastatin, and pravastatin are generally classified as statins metabolized poorly in humans (Shitara and Sugiyama, 2006), it is unlikely that metabolism accounts for the overestimation of K_{p,uu,V0}. However, a recent report suggested that pitavastatin undergoes lactonization by uridine 5'-diphospho-glucuronosyltransferases more extensively than other statins (Schirris et al., 2015), which may explain, at least in part, the overestimation of K_{p,uu,V0} compared with K_{p,uu,ss}.

(iii) PS_{act,eff} and CL_{int,bile} cannot be fully estimated by the short-term uptake of drugs. Thus, if a drug is a substrate of basolateral/apical efflux transporters, K_{p,uu,V0} may be overestimated. The expression of apical efflux transporters [P-glycoprotein, multi-drug resistance-associated protein 2 (MRP2), and breast cancer resistance protein] and basolateral efflux transporters (MRP3 and MRP4) was partly retained in cryopreserved human hepatocytes compared with fresh liver biopsies (Lundquist et al., 2014), which might contribute, at least in part, to the drug efflux from hepatocytes and lead to a discrepancy between K_{p,uu,V0} and K_{p,uu,ss}.

(iv) In most work, PS_{diff,inf} and PS_{diff,eff} are conventionally assumed to be equal for kinetic consideration of the cellular transport (Yabe et al., 2011), although PS_{diff,eff} might be larger than PS_{diff,inf} in the case of anions because of the inside-negative ΔΨ in normal cells. We calculated K_{p,uu,ss} by taking our experiments using rat hepatocytes, the remaining amount of rosuvastatin after the 30-minute incubation was 87% of the initial amount, whereas little loss of rosuvastatin was observed after the 60-minute incubation in human hepatocytes. Therefore, the contribution of metabolism to the elimination of rosuvastatin in rats might be larger than that in humans, and the metabolism of rosuvastatin in rat hepatocytes might only slightly influence the estimation of its K_{p,uu,ss}.

Fig. 5. Theoretical simulation of K_{p,uu,V0}/K_{p,uu,true} (= R_{V0,true}/blue) and K_{p,uu,V0}/K_{p,uu,true} (= R_{V0,true}/red) using eqs. 12 and 13. (A) The solid line represents the simulation result for pitavastatin. (B) The broken line represents simulation results for rosuvastatin and pravastatin. Arrows represent the λ for statins estimated from our experiments with Caco-2 cells.

Fig. 6. Comparison of K_{p,uu,V0,corrected} and K_{p,uu,V0,corrected} corrected by eqs. 14 and 15 using R_{true} and R_{V0,true} (Table 8). (A) Closed symbols: original K_{p,uu,V0} in rat hepatocytes were obtained from a previous report (Yabe et al., 2011). Open symbols: original K_{p,uu,V0} Values were obtained in the present study. (B) Gray symbols: original K_{p,uu,V0} Values were obtained in human hepatocytes from a single donor (Lot Hu8075). Open symbols: original K_{p,uu,V0} Values were obtained in pooled human hepatocytes from 20 mixed-sex donors (Lot. TFF). 1, pitavastatin; 2, rosuvastatin; 3, pravastatin. Solid and dashed lines denote unity and threefold boundaries, respectively. The data are presented as mean ± S.D. for the x- and y-axis (n = 3).
asymmetric PS\textsubscript{diff} into consideration with the assumption that ΔV is almost abolished on ice, as we confirmed experimentally (Table 7). Conversely, to calculate Kp\textsubscript{uu,V0}, PS\textsubscript{diff,eff} is set to be the same as PS\textsubscript{diff,inf} as shown in Supplemental Equation 8. Therefore, theoretically, Kp\textsubscript{uu,V0} should be larger than Kp\textsubscript{uu,ss} in the case of anions, which might mostly explain the observed discrepancy between Kp\textsubscript{uu,ss} and Kp\textsubscript{uu,V0}.

In this study, two assumptions were made. First, f\textsubscript{T,cell,ss} is not affected by temperature; second, ΔV is abolished on ice. To investigate the first assumption, we sought to evaluate whether f\textsubscript{T,cell,ss} was largely dependent on temperature, as mentioned in previous reports (Sugano et al., 1993; Edmondson et al., 1985; Fitz and Scharschmidt, 1987; Wondergem and Castillo, 1988; Bradford et al., 1985). The use of transporter inhibitors is another approach to confirm whether the discrepancy of in vitro Ki values with regard to the medium concentration of inhibitors obtained with hepatocytes and recombinant enzymes can be well explained by in vitro Kp\textsubscript{uu} when target proteins are located inside the hepatocytes (e.g., inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase by statins, inhibition of metabolic enzymes and efflux transporters by inhibitor drugs). Such validations should strengthen our theoretical considerations for in vitro Kp\textsubscript{uu} estimation.

Authorship Contributions

Participated in research design: Yoshikado, Toshimoto, Nakada, Maeda, Sugiyama.

Conducted experiments: Yoshikado, Nakada, Ikejiri.

Performed data analysis: Yoshikado, Toshimoto, Nakada.

Wrote or contributed to the writing of the manuscript: Yoshikado, Toshimoto, Nakada, Kisahara, Maeda, Sugiyama.

References

Baur H, Kasperek S, and Pfaff E (1975) Criteria of viability of isolated liver cells. Hoppe Seylers Z Physiol Chem 356:827–838.

Bi Y, Aia X, Rotter CJ, Kimoto E, Pietrowski M, Varma MV, E-Attan AF, and Lay Y (2013) Quantitative assessment of the contribution of sodium-dependent taurocholate co-transporting polypeptide (NTCP) to the hepatic uptake of rosuvastatin, pitavastatin and flavastatin. Biopharm Drug Dispos 34:452–461.

Fitz JG and Scharschmidt BF (1987) Regulation of transmembrane electrical potential gradient in isolated rat hepatocytes. J Pharmacol Exp Ther 205:488–489.

Edmondson JW, Miller BA, and Lumeng L (1985) Effect of glucagon on hepatic taurocholate uptake: relationship to membrane potential. Am J Physiol 249:C427–C433.

Fitz JG and Scharschmidt BF (1987) Regulation of transmembrane electrical potential gradient in rat hepatocytes in situ. Am J Physiol 252:G56–G64.

Hallifax D and Houston JB (2006) Uptake and intracellular binding of lipophilic animal drugs by isolated rat hepatocytes and implications for prediction of in vivo metabolic clearance. Drug Metab Dispos 34:1829–1836.

He J, Yu Y, Prasad B, Link J, Miyaoka RS, Chen X, and Unadkat JD (2014) PET imaging of Oatp- and MRP mediated transporter substrates in vivo. J Nucl Med 55:830–836.

Ichikawa M, Tsao SC, Lin TH, Miyuchi S, Sawada Y, Iga T, Hanano M, and Sugiyama Y (1992) ‘Albumin-mediated transport phenomenon’ observed for ligands with high membrane permeability: effect of the unsterred water layer in the Dijse’s space of rat liver. J Hepatol 16:38–49.

Ito T, Eaton DL, and Klaassen CD (1979) Carrier-mediated transport of ouabain in isolated hepatocytes. J Exp Med 150:400–488.

Kanduser M, Sentjurc M, and Miklavcic D (2008) The temperature effect during pulse application on cell membrane fluidity and permeabilization. Bioelectrochemistry 74:52–57.

Klawitter JF, Patrick DW, Reeve MR, and Potter VR (1976) A method using 3-O-methyl-D-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Anal Biochem 51:255–258.

Kletzien RF, Pariza MW, Becker JE, and Potter VR (1975) A method using 3-O-methyl-D-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Anal Biochem 74:52–57.

Kläter H, Kasperek S, Pfaff E, Kletzien RF, Pariza MW, Becker JE, and Potter VR (1975) Criteria of viability of isolated liver cells. Hoppe Seylers Z Physiol Chem 356:827–838.

Kletzien RF, Pariza MW, Becker JE, and Potter VR (1975) A method using 3-O-methyl-D-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Anal Biochem 74:52–57.

Klawitter JF, Patrick DW, Reeve MR, and Potter VR (1976) A method using 3-O-methyl-D-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Anal Biochem 51:255–258.

Kristensen LO and Lolk M (1984) Volume-regulatory K+ efflux during concentative uptake of alanine in isolated rat hepatocytes. Biochem J 221:265–268.

Lundquist LG, Englund G, Skogastamierna C, Löf J, Johansson J, Hoogstraate J, Afzelius L, and Andersson TB (2016) Functional ATP-binding cassette drug efflux transporters in isolated human and rat hepatocytes significantly affect assessment of drug disposition. Drug Metab Rev 48:448–458.

Miyasushi S, Sawada Y, Iga T, Hanano M, and Sugiyama Y (1993) Comparison of the hepatic uptake clearances of fifteen drugs with a wide range of membrane permeabilities in isolated rat hepatocytes and perfused rat livers. Pharm Res 10:434–440.

Although our current approach should be valid from the viewpoint of kinetic theory, we will need to practically validate our method for the in vitro–in vivo extrapolation of Kp\textsubscript{uu}. One of the approaches is to compare the observed liver-to-blood total concentration ratio of positron emission tomography probes (e.g., $[^{11}C]$dehydropravastatin) (Ijunin et al., 2012) in humans with that predicted from experimentally estimated hepatic Kp\textsubscript{uu} and their unbound fractions in blood and hepatocytes. Another approach is to confirm whether the discrepancy of in vitro Kp\textsubscript{uu} values with regard to the medium concentration of inhibitors obtained with hepatocytes and recombinant enzymes can be well explained by in vitro Kp\textsubscript{uu} when target proteins are located inside the hepatocytes (e.g., inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase by statins, inhibition of metabolic enzymes and efflux transporters by inhibitor drugs). Such validations should strengthen our theoretical considerations for in vitro Kp\textsubscript{uu} estimation.
Neuhoff S, Ungell AL, Zamora I, and Artursson P (2003) pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug-drug interactions. *Pharm Res* **20**:1141–1148.

Nezasa K, Takao A, Kimura K, Takaichi M, Inazawa K, and Koike M (2002) Pharmacokinetics and disposition of rosuvastatin, a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, in rat. *Xenobiotica* **32**:715–727.

Niemi M, Pasanen MK, and Neuvonen PJ (2011) Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. *Pharmacol Rev* **63**:157–181.

Reinoso RF, Telfer BA, Brennan BS, and Rowland M (2001) Uptake of teicoplanin by isolated rat hepatocytes: comparison with in vivo hepatic distribution. *Drug Metab Dispos* **29**:453–459.

Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, and Sugiyama Y (2006) Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. *Pharmacol Ther* **112**:71–105.

Smith DA, Di L, and Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. *Nat Rev Drug Discov* **9**:929–939.

Smith NF, Figg WD, and Sparreboom A (2005) Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. *Expert Opin Drug Metab Toxicol* **1**:429–445.

Sugano K, Kamy M, Artursson P, Avdeef A, Bendts S, Di L, Ecker GF, Fuller B, Fischer H, Gerzofl G, et al. (2010) Coexistence of passive and carrier-mediated processes in drug transport. *Nat Rev Drug Discov* **9**:597–614.

Weinman SA, Graf J, and Beyer IL (1989) Voltage-driven, taurocholate-dependent secretion in isolated hepatocyte couplets. *Am J Physiol* **256**:G826–G832.

Wondergem R and Castillo LB (1988) Quinine decreases hepatocyte transmembrane potential and inhibits amino acid transport. *Am J Physiol* **254**:G795–G801.

Yabe Y, Galletin A, and Houston JB (2011) Kinetic characterization of rat hepatic uptake of 16 actively transported drugs. *Drug Metab Dispos* **39**:1808–1814.

Yamazaki M, Suzuki H, Hanano M, Tokui T, Komai T, and Sugiyama Y (1993) Nat(+)-independent multispecific anion transporter mediates active transport of pravastatin into rat liver. *Am J Physiol* **264**:G336–G44.

Yamazaki M, Suzuki H, Sugiyama Y, Iga T, and Hanano M (1992) Uptake of organic anions by isolated rat hepatocytes: a classification in terms of ATP-dependency. *J Hepatol* **14**:41–47.

Yoshikado T, Yoshida K, Kojima N, Nakada T, Asaumi R, Toshimoto K, Maeda K, Kusuhara H, and Sugiyama Y (2010) Quantitative analyses of hepatic OATP-mediated interactions between statins and inhibitors using PBPK modeling with a parameter optimization method. *Clin Pharmacol Ther* **100**:513–523.

Address correspondence to: Dr. Yuichi Sugiyama, Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 220-0045, Japan. E-mail: ychi.sugiyama@riken.jp

Unbound Hepatocyte-to-Medium Concentration Ratio

789

Smith DA, Di L, and Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. *Nat Rev Drug Discov* **9**:929–939.

Smith NF, Figg WD, and Sparreboom A (2005) Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. *Expert Opin Drug Metab Toxicol* **1**:429–445.

Sugano K, Kamy M, Artursson P, Avdeef A, Bendts S, Di L, Ecker GF, Fuller B, Fischer H, Gerzof G, et al. (2010) Coexistence of passive and carrier-mediated processes in drug transport. *Nat Rev Drug Discov* **9**:597–614.

Weinman SA, Graf J, and Beyer IL (1989) Voltage-driven, taurocholate-dependent secretion in isolated hepatocyte couplets. *Am J Physiol* **256**:G826–G832.

Wondergem R and Castillo LB (1988) Quinine decreases hepatocyte transmembrane potential and inhibits amino acid transport. *Am J Physiol* **254**:G795–G801.