We study some properties of $(\delta\text{-pre}, s)$-continuous functions. Basic characterizations and several properties concerning $(\delta\text{-pre}, s)$-continuous functions are studied. The general cases for the composition of functions under specific conditions which yield $(\delta\text{-pre}, s)$-continuous functions are also studied and we obtained some results.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

One of the important and basic topics in general topology and several branches of mathematics which have been researched by many authors is the continuity of functions. In this paper, we study $(\delta\text{-pre}, s)$-continuous functions as a new weaker form of continuity. In 1996, Dontchev [3] introduced contra-continuous functions, and Jafari and Noiri [10] introduced contra-precontinuous functions (in 2002). Ekici [8] studied the notion of almost contra-precontinuous functions. Recently, Ekici [7] introduced and studied the notion of $(\delta\text{-pre}, s)$-continuous functions as a new weaker form of almost contra-precontinuous functions. The aim of this paper is to study some properties of $(\delta\text{-pre}, s)$-continuous functions and modification of the results due to Ekici [7]. Basic characterizations concerning $(\delta\text{-pre}, s)$-continuous functions are investigated and some results are obtained. Moreover, we obtain some properties in general cases concerning composition of functions under specific conditions, where the composition would yield a $(\delta\text{-pre}, s)$-continuous function. Finally, if given a composition of functions, which are $(\delta\text{-pre}, s)$-continuous, we obtain the first function in the composition, which will be $(\delta\text{-pre}, s)$-continuous.

2. Preliminaries

Throughout this paper, all spaces X and Y (or (X, τ) and (Y, ν)) are always mean topological spaces. Let A be a subset of a space X. For a subset A of (X, τ), $\text{Cl}(A)$ and $\text{Int}(A)$ represent the closure and interior of A with respect to τ, respectively.
2 Some results on \((\delta\text{-pre, } s)\)-continuous functions

A subset \(A\) of a space \(X\) is said to be regular open (resp., regular closed) if \(A = \text{Int}(\text{Cl}(A))\) (resp., \(A = \text{Cl}(\text{Int}(A))\)). The family of all regular open (resp., regular closed) sets of \(X\) is denoted by \(\text{RO}(X)\) (resp., \(\text{RC}(X)\)). We put \(\text{RO}(X,x) = \{U \in \text{RO}(X) : x \in U\}\) and \(\text{RC}(X,x) = \{F \in \text{RC}(X) : x \in F\}\).

The \(\delta\)-interior [17] of a subset \(A\) of \(X\) is the union of all regular open sets of \(X\) contained in \(A\) and is denoted by \(\delta - \text{Int}(A)\).

Definition 2.1. A subset \(A\) of a space \(X\) is called
1. \(\delta\)-open [17] if \(A = \delta - \text{Int}(A)\),
2. preopen [13] if \(A \subseteq \text{Int}(\text{Cl}(A))\),
3. \(\delta\)-preopen [16] if \(A \subseteq \text{Int}(\delta - \text{Cl}(A))\),
4. semi-open [12] if \(A \subseteq \text{Cl}(\text{Int}(A))\).

The semiinterior [7] (resp., \(\delta\)-preinterior [16]) of \(A\) is defined by the union of all semiopen (resp., \(\delta\)-preopen) sets contained in \(A\) and is denoted by \(s - \text{Int}(A)\) (resp., \(\delta - p \text{Int}(A)\)). Note that \(\delta - p \text{Cl}(A) = A \cup \text{Cl}(\delta - \text{Int}(A))\) [7].

The complement of a \(\delta\)-open (resp., preopen, \(\delta\)-preopen, and semiopen) set is said to be \(\delta\)-closed [17] (resp., preclosed [9], \(\delta\)-preclosed [7], and semiclosed [2]). Alternatively, a subset \(A\) of \((X, \tau)\) is called \(\delta\)-closed if \(A = \delta - \text{Cl}(A)\) [17], where \(\delta - \text{Cl}(A) = \{x \in X : A \cap \text{Int}(\text{Cl}(U)) \neq \emptyset, \ U \in \tau \text{ and } x \in U\}\), and semiclosed if \(\text{Int}(\text{Cl}(A)) \subseteq A\) [6]. The intersection of all semiclosed (resp., \(\delta\)-preclosed) sets containing \(A\) is called the semiclosure [2] (resp., \(\delta\)-preclosure [16]) of \(A\) and is denoted by \(s - \text{Cl}(A)\) (resp., \(\delta - p \text{Cl}(A)\)). Note that \(\delta - p \text{Cl}(A) = A \cap \text{Cl}(\delta - \text{Int}(A))\) [7].

The family of all \(\delta\)-open (resp., preopen, \(\delta\)-preopen, \(\delta\)-preclosed, semiopen, and semiclosed) sets of \(X\) is denoted by \(\delta \text{O}(X)\) (resp., \(\text{PO}(X), \delta \text{PO}(X), \delta \text{PC}(X), \text{SO}(X), \text{SC}(X)\)).

The family of all \(\delta\)-open (resp., preopen, \(\delta\)-preopen, \(\delta\)-preclosed, semiopen, and semiclosed) sets of \(X\) containing a point \(x \in X\) is denoted by \(\delta \text{O}(X,x)\) (resp., \(\text{PO}(X,x), \delta \text{PO}(X,x), \delta \text{PC}(X,x), \text{SO}(X,x), \text{SC}(X,x)\)), that is, \(\delta \text{O}(X,x) = \{U \in \delta \text{O}(X) : x \in U\}\) (resp., \(\text{PO}(X,x) = \{U \in \text{PO}(X) : x \in U\}, \delta \text{PO}(X,x) = \{U \in \delta \text{PO}(X) : x \in U\}, \delta \text{PC}(X,x) = \{F \in \delta \text{PC}(X) : x \in F\}, \text{SO}(X,x) = \{U \in \text{SO}(X) : x \in U\}, \text{PC}(X,x) = \{F \in \text{PC}(X) : x \in F\}\).

Definition 2.2. A function \(f : X \rightarrow Y\) is said to be
1. perfectly continuous [14] if \(f^{-1}(V)\) is clopen in \(X\) for every open set \(V\) of \(Y\);
2. contra-continuous [3] if \(f^{-1}(V)\) is closed in \(X\) for every open set \(V\) of \(Y\);
3. regular set-connected [4] if \(f^{-1}(V)\) is clopen in \(X\) for every \(V \in \text{RO}(Y)\);
4. \(s\)-continuous [1] if for each \(x \in X\) and each \(V \in \text{SO}(Y,f(x))\), there exists an open set \(U\) in \(X\) containing \(x\) such that \(f(U) \subseteq V\);
5. almost \(s\)-continuous [15] if for each \(x \in X\) and each \(V \in \text{SO}(Y,f(x))\), there exists an open set \(U\) in \(X\) containing \(x\) such that \(f(U) \subseteq s - \text{Cl}(V)\);
6. contra-precontinuous [10] if \(f^{-1}(V)\) is \(\text{PC}(X)\) for each open set \(V\) of \(Y\);
7. almost contra-precontinuous [8] if \(f^{-1}(V)\) is \(\text{PC}(X)\) for each \(V \in \text{RO}(Y)\).

Definition 2.3. A function \(f : X \rightarrow Y\) is called \((\delta\text{-pre, } s)\)-continuous [7] if for each \(x \in X\) and each \(V \in \text{SO}(Y,f(x))\), there exists a \(\delta\)-preopen set \(U\) in \(X\) containing \(x\) such that \(f(U) \subseteq \text{Cl}(V)\).
Remark 2.4. The following diagram holds:

\[
\begin{array}{cccc}
\text{Perfectly continuous} & \iff & \text{Contra-continuous} & \iff \text{Contra-precontinuous} \\
\text{Regular set-connected} & \iff & \text{Almost contra-precontinuous} & \iff \text{(δ-pre, s)-continuous} \\
\text{Almost } s\text{-continuous} & \iff & s\text{-continuous} & \iff & \text{Int(Cl(Y \setminus F))} \\
\end{array}
\]

None of these implications is reversible as shown in [4–7, 10, 14].

3. Some results

In this section, the modification of results due to Ekici [7] is investigated. Basic characterizations and some properties of (δ-pre, s)-continuous functions are also investigated.

Lemma 3.1. Let \(\{A_\alpha\}_{\alpha \in \Delta} \) be a collection of δ-preopen sets in topological space \(X \). Then \(\bigcup_{\alpha \in \Delta} A_\alpha \) is δ-preopen in \(X \).

Proof. For each \(\alpha \in \Delta \), since \(A_\alpha \) is δ-preopen in \(X \), we have \(A_\alpha \subseteq \text{Int}(\delta - \text{Cl}(A_\alpha)) \). Then

\[
\bigcup_{\alpha \in \Delta} A_\alpha \subseteq \bigcup_{\alpha \in \Delta} \text{Int}(\delta - \text{Cl}(A_\alpha)) \subseteq \text{Int} \left(\bigcup_{\alpha \in \Delta} \delta - \text{Cl}(A_\alpha) \right) = \text{Int} \left(\delta - \text{Cl} \left(\bigcup_{\alpha \in \Delta} A_\alpha \right) \right). \quad (3.1)
\]

Therefore, \(\bigcup_{\alpha \in \Delta} A_\alpha \) is δ-preopen in \(X \). \(\square \)

The following theorem is obtained by modification and extending the results from [7, Theorem 1].

Theorem 3.2. The following are equivalent for a function \(f : X \to Y \):

1. \(f \) is (δ-pre, s)-continuous;
2. for each \(x \in X \) and each \(F \in SC(Y) \) noncontaining \(f(x) \), there exists a δ-preclosed set \(K \) in \(X \) noncontaining \(x \) such that \(f^{-1}(\text{Int}(\delta \text{−} \text{Cl}(F))) \subseteq K \);
3. \(f^{-1}(V) \in \delta PO(X) \) for every \(V \in RC(Y) \);
4. \(f^{-1}(V) \in \delta PC(X) \) for every \(V \in RO(Y) \);
5. \(f^{-1}(\text{Cl}(V)) \in \delta PO(X) \) for every \(V \in SO(Y) \);
6. \(f^{-1}(\text{Int}(V)) \in \delta PC(X) \) for every \(V \in SC(Y) \);
7. \(f^{-1}(\text{Int}(\text{Cl}(G))) \in \delta PC(X) \) for every open subset \(G \) of \(Y \);
8. \(f^{-1}(\text{Cl}(\text{Int}(F))) \in \delta PO(X) \) for every closed subset \(F \) of \(Y \).

Proof. (1) ⇔ (2): let \(F \) be any semiclosed set in \(Y \) not containing \(f(x) \). Then \(Y \setminus F \) is a semiopen set in \(Y \) containing \(f(x) \). By (1), there exists a δ-preopen set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq \text{Cl}(Y \setminus F) \). Hence, \(U \subseteq f^{-1}(\text{Cl}(Y \setminus F)) = X \setminus f^{-1}(\text{Int}(F)) \) and then
Some results on \((\delta \text{-pre, } s\text{-})\)-continuous functions

\(f^{-1}(\text{Int}(F)) \subseteq X \setminus U\). Take \(K = X \setminus U\). We obtain that \(K\) is a \(\delta\) -preclosed set in \(X\) noncontaining \(x\) such that \(f^{-1}(\text{Int}(F)) \subseteq K\).

The converse can be shown similarly.

(1) \(\Leftrightarrow\) (3): let \(V \in RC(Y)\) and \(f(x) \in V\). It follows that \(V \in SO(Y)\) containing \(f(x)\). By (1), there exists a \(\delta\)-preopen set \(U_x\) in \(X\) containing \(x\) such that \(f(U_x) \subseteq \text{Cl}(V)\). Then \(x \in U_x \subseteq f^{-1}(\text{Cl}(V))\) and \(f^{-1}(\text{Cl}(V)) = \bigcup_{x \in f^{-1}(\text{Cl}(V))} U_x\). This shows that \(f^{-1}(\text{Cl}(V)) \in \delta\text{PO}(X)\) by Lemma 3.1. Since \(V \in RC(Y)\), then also \(\text{Cl}(V) \in RC(Y)\). So, \(\text{Cl}(V) = V\) and we have \(f^{-1}(V) \in \delta\text{PO}(X)\).

Conversely, let \(V \in RC(Y)\) and \(f(x) \in V\). Then \(x \in f^{-1}(V)\) and by (3), \(f^{-1}(V) \in \delta\text{PO}(X)\). Since \(V \in RC(Y)\), it follows that \(V \in SO(Y)\) containing \(f(x)\). Take \(U = f^{-1}(V)\), then

\[x \in f^{-1}(V) = U, \quad f(U) = f(\delta^{-1}(V)) \subseteq V \subseteq \text{Cl}(V).\]

(3.2)

This shows that \(f\) is \((\delta \text{-pre, } s\text{-})\)-continuous.

(2) \(\Leftrightarrow\) (4): let \(V \in RO(Y)\) and \(f(x) \notin V\). It follows that \(V \in SC(Y)\) is noncontaining \(f(x)\). By (2), there exists a \(\delta\) -preclosed set \(K\) in \(X\) noncontaining \(x\) such that \(f^{-1}(\text{Int}(V)) \subseteq K\). Hence, \(X \setminus K\) is a \(\delta\)-preopen set in \(X\) containing \(x\), that is, \(x \in X \setminus K \subseteq X \setminus f^{-1}(\text{Int}(V))\). Thus, \(X \setminus f^{-1}(\text{Int}(V)) = \bigcup_{x \in X \setminus f^{-1}(\text{Int}(V))} K\). \(X \setminus f^{-1}(\text{Int}(V))\) is \(f^{-1}(V) = K\). We obtain that \(K\) is a \(\delta\)-preclosed set in \(X\) noncontaining \(x\) such that \(f^{-1}(\text{Int}(V)) \subseteq f^{-1}(V) = K\).

Conversely, let \(V \in RO(Y)\). Then \(Y \setminus V \in RC(Y)\). By (3), \(f^{-1}(Y \setminus V) = X \setminus f^{-1}(V) \in \delta\text{PO}(X)\). We have \(f^{-1}(V) \in \delta\text{PC}(X)\).

The converse can be obtained similarly.

(3) \(\Leftrightarrow\) (5): let \(V \in SO(Y)\). Then \(\text{Cl}(V) \in RC(Y)\). By (3), \(f^{-1}(\text{Cl}(V)) \in \delta\text{PO}(X)\).

Conversely, let \(V \in RC(Y)\). It follows that \(V \in SO(Y)\). By (5), \(f^{-1}(\text{Cl}(V)) \in \delta\text{PO}(X)\).

Since \(V \in RC(Y)\), then \(\text{Cl}(V) \in RC(Y)\). So \(\text{Cl}(V) = V\) and we have \(f^{-1}(V) \in \delta\text{PO}(X)\).

(4) \(\Leftrightarrow\) (6): let \(V \in SC(Y)\). Then \(\text{Int}(V) \in RO(Y)\). By (4), \(f^{-1}(\text{Int}(V)) \in \delta\text{PC}(X)\).

Conversely, let \(V \in RO(Y)\). It follows that \(V \in SC(Y)\). By (6), \(f^{-1}(\text{Int}(V)) \in \delta\text{PC}(X)\).

Since \(V \in RO(Y)\), then \(\text{Int}(V) \in RO(Y)\). So \(\text{Int}(V) = V\) and we have \(f^{-1}(V) \in \delta\text{PC}(X)\).

(1) \(\Leftrightarrow\) (5): let \(V \in SO(Y)\) and \(f(p) \in V\). Since \(f\) is \((\delta \text{-pre, } s\text{-})\)-continuous, there exists a \(U_p \in \delta\text{PO}(X)\) containing \(p\) such that \(f(U_p) \subseteq \text{Cl}(V)\). Then \(p \in U_p \subseteq f^{-1}(\text{Cl}(V))\) and \(f^{-1}(\text{Cl}(V)) = \bigcup_{p \in f^{-1}(\text{Cl}(V))} U_p\). This shows that \(f^{-1}(\text{Cl}(V)) \in \delta\text{PO}(X)\) by Lemma 3.1.

Conversely, let \(V \in SO(Y)\) and \(f(p) \in V\). Then \(p \in f^{-1}(V)\) and by (5), \(f^{-1}(\text{Cl}(V)) \in \delta\text{PO}(X)\). Let \(U = f^{-1}(\text{Cl}(V))\), then

\[p \in f^{-1}(V) \subseteq U, \quad f(U) = f(f^{-1}(\text{Cl}(V))) \subseteq \text{Cl}(V).\]

(3.3)

This shows that \(f\) is \((\delta \text{-pre, } s\text{-})\)-continuous.

(2) \(\Leftrightarrow\) (6): let \(V \in SC(Y)\) be a noncontaining \(f(x)\). By (2), there exists a \(\delta\) -preclosed set \(K\) in \(X\) noncontaining \(x\) such that \(f^{-1}(\text{Int}(V)) \subseteq K\). Hence, \(X \setminus K\) is a \(\delta\)-preopen
set in X containing x, that is, $x \in X \setminus K \subseteq X \setminus f^{-1}({\text{Int}(V)})$. Thus, $X \setminus f^{-1}({\text{Int}(V)}) = \bigcup_{x \in X} f^{-1}({\text{Int}(V)}) X \setminus K$ is a δ-preopen set in X containing x by Lemma 3.1. Therefore, $f^{-1}({\text{Int}(V)})$ is a δ-preclosed set in X noncontaining x.

Conversely, let $V \in SC(Y)$ and $f(x) \notin V$. Then $x \notin f^{-1}(V)$ and by (6), $f^{-1}(V) \in \delta PC(X)$. Take $K = f^{-1}(V)$. We obtain that K is a δ-preclosed set in X noncontaining x such that $f^{-1}({\text{Int}(V)}) \subseteq f^{-1}(V) = K$.

(5) \Rightarrow (6): let $V \in SC(Y)$. Then $Y \setminus V \in SO(Y)$. By (5), $f^{-1}({\text{Cl}(Y \setminus V)}) = X \setminus f^{-1}({\text{Int}(V)}) \in \delta PO(X)$. We have $f^{-1}({\text{Int}(V)}) \in \delta PC(X)$.

The converse can be obtained similarly.

(6) \Rightarrow (7): let G be any open subset of Y. Since $\text{Int}(\text{Cl}(G))$ is regular open, then it is semiclosed in Y. By (6), it follows that $f^{-1}({\text{Int}(\text{Cl}(G)))}$ is δ-preclosed, that is, $f^{-1}({\text{Int}(\text{Cl}(G)))} = \delta PC(X)$.

Conversely, let $V \in SC(Y)$. Then $\text{Int}(V) \in RO(Y)$ and $\text{Int}(V)$ is an open subset of Y. Hence, by (7), $f^{-1}({\text{Int}(\text{Cl}(V)))}$ is δ-preclosed. Since $\text{Int}(V) = \text{Int}(\text{Cl}(V)))$, it follows that $f^{-1}({\text{Int}(V)}) \in \delta PC(X)$.

(5) \Rightarrow (8): let F be any closed subset of Y. Since $\text{Cl}(\text{Int}(F)))$ is regular closed, then it is semiopen in Y. By (5), it follows that $f^{-1}({\text{Cl}(\text{Cl}(\text{Int}(F)))})$ is δ-preopen, that is, $f^{-1}({\text{Cl}(\text{Int}(F)))} = \delta PO(X)$.

Conversely, let $V \in SO(Y)$. Then $\text{Cl}(V) \in RC(Y)$ and $\text{Cl}(V)$ is a closed subset of Y. Hence, by (8), $f^{-1}({\text{Cl}(\text{Cl}(\text{Int}(V)))})$ is δ-preopen. Since $\text{Cl}(V) = \text{Cl}(\text{Cl}(\text{Int}(V)))$, it follows that $f^{-1}({\text{Cl}(V)}) \in \delta PO(X)$.

(7) \Rightarrow (8): this is obvious, by taking complement, respectively.

(3) \Rightarrow (8): let F be any closed subset of Y. Since $\text{Cl}(\text{Int}(F)))$ is regular closed subset of Y, then by (3), it follows that $f^{-1}({\text{Cl}(\text{Int}(F)))} \in \delta PO(X)$.

Conversely, let $V \in RC(Y)$. Then V is a closed subset of Y. By (8),

$$f^{-1}({\text{Cl}(\text{Int}(V)))} \in \delta PO(X).$$

(3.4)

Since $V = \text{Cl}(\text{Int}(V)))$, it follows that $f^{-1}(V) \in \delta PO(X)$.

(4) \Rightarrow (7): see [7, Theorem1], (4) \Rightarrow (6).

(7) \Rightarrow (2): let $x \in X$ and $F \in SC(Y)$ be noncontaining $f(x)$. Then $\text{Int}(F) \in RO(Y)$ and $\text{Int}(F)$ is an open subset of Y. By (7), it follows that

$$f^{-1}({\text{Int}(\text{Cl}(\text{Int}(F)))})$$

(3.5)

is a δ-preclosed set in X noncontaining x. Since $\text{Int}(\text{Cl}(\text{Int}(F))) = \text{Int}(F)$, it follows that $f^{-1}(\text{Int}(F))$ is a δ-preclosed set in X noncontaining x. Let $K = f^{-1}(\text{Int}(F))$. We obtain that K is a δ-preclosed set in X noncontaining x such that $f^{-1}(\text{Int}(F)) \subseteq K$.

Conversely, let $x \in X$ and let G be any open subset of Y noncontaining $f(x)$. Since $\text{Int}(\text{Cl}(G)))$ is regular open, then it is semiclosed in Y noncontaining $f(x)$. By (2), there exists a δ-preclosed set K in X noncontaining x such that

$$f^{-1}(\text{Int}(\text{Cl}(G))) \subseteq K,$$

(3.6)

that is, $f^{-1}(\text{Int}(\text{Cl}(G))) \subseteq K$. Hence, $X \setminus K$ is a δ-preopen set in X containing x, that is, $x \in X \setminus K \subseteq X \setminus f^{-1}(\text{Int}(\text{Cl}(G)))$. Thus, $X \setminus f^{-1}(\text{Int}(\text{Cl}(G))) = \bigcup_{x \in X} f^{-1}(\text{Int}(\text{Cl}(G))) X \setminus f^{-1}(\text{Int}(\text{Cl}(G)))$.

6 Some results on \((\delta\text{-pre}, s)\)-continuous functions

\(K\) is a \(\delta\text{-preopen set in } X\) containing \(x\) by Lemma 3.1. Therefore, \(f^{-1}(\text{Int}(\text{Cl}(G)))\) is a \(\delta\)-preclosed set in \(X\) noncontaining \(x\).

(8) \(\Leftrightarrow\) (1): let \(x \in X\) and \(V \in \text{SO}(Y, f(x))\). Then \(\text{Cl}(V) \in \text{RC}(Y)\) and clearly \(\text{Cl}(V)\) is a closed subset of \(Y\). By (8), it follows that \(f^{-1}(\text{Cl}(\text{Int}(\text{Cl}(V))))\) is a \(\delta\)-preopen set in \(X\) containing \(x\). Since \(\text{Cl}(V) = \text{Cl}(\text{Int}(\text{Cl}(V)))\), it follows that \(f^{-1}(\text{Cl}(V))\) is a \(\delta\)-preopen set in \(X\) containing \(x\). Let \(U = f^{-1}(\text{Cl}(V))\), then \(f(U) \subseteq \text{Cl}(V)\). This implies that \(f\) is \((\delta\text{-pre, } s)\)-continuous.

Conversely, let \(x \in X\) and let \(F\) be a closed subset of \(Y\) containing \(f(x)\). Since \(\text{Cl}(\text{Int}(F))\) is regular closed, then it is semiopen in \(Y\) containing \(f(x)\). By (1), there exists a \(\delta\)-preopen set \(U_x\) in \(X\) containing \(x\) such that

\[
\text{f}(U_x) \subseteq \text{Cl}(\text{Cl}(\text{Int}(F))) = \text{Cl}(\text{Int}(F)).
\]

(3.7)

Hence, \(x \in U_x \subseteq f^{-1}(\text{Cl}(\text{Int}(F)))\) and \(f^{-1}(\text{Cl}(\text{Int}(F))) = \bigcup_{x \in f^{-1}(\text{Cl}(\text{Int}(F)))} U_x\). This shows that \(f^{-1}(\text{Cl}(\text{Int}(F)))\) is \(\delta\text{PO}(X)\) by Lemma 3.1.

\(\square\)

Remark 3.3. It is known in [7, Theorem 1] that (1), (3), (4), (7), and (8) are all equivalent. Therefore, (1), (2), (5), and (6) are valuable in Theorem 3.2.

The following example shows that \((\delta\text{-pre, } s)\)-continuous function does not imply almost contraprecontinuous function.

Example 3.4. Let \(X = \{a, b, c\}\), let \(\sigma = \{X, \emptyset, \{a\}\}\), and let \(\tau = \{X, \emptyset, \{a\}, \{b, c\}\}\). Then the identity function \(f : (X, \sigma) \to (X, \tau)\) is \((\delta\text{-pre, } s)\)-continuous but not almost contraprecontinuous, since \(\{b, c\}\) is regular closed in \((X, \tau)\) but \(f^{-1}(\{b, c\}) = \{b, c\}\) is not preopen in \((X, \sigma)\), that is, \(\{b, c\} \not\subseteq \text{Int}(\text{Cl}(\{b, c\})) = \text{Int}(\{b, c\}) = \emptyset\).

Recall that for a function \(f : X \to Y\), the subset \(\{(x, f(x)) : x \in X\} \subseteq X \times Y\) is called the graph of \(f\). The following theorems are obtained in [7] and proved by using [7, Theorem 1(3)]. We prove here by using different technique, that is, by using Theorem 3.2(5) in this paper.

Theorem 3.5. Let \(f : X \to Y\) be a function and let \(g : X \to X \times Y\) be the graph function of \(f\), defined by \(g(x) = (x, f(x))\) for every \(x \in X\). If \(g\) is \((\delta\text{-pre, } s)\)-continuous, then \(f\) is \((\delta\text{-pre, } s)\)-continuous.

Proof. Let \(W \in \text{SO}(Y)\), then \(X \times W \subseteq X \times \text{Cl}(\text{Int}(W)) = \text{Cl}(\text{Int}(X)) \times \text{Cl}(\text{Int}(W)) = \text{Cl}(\text{Int}(X \times W))\). Hence, \(X \times W \in \text{SO}(X \times Y)\). Since \(g\) is \((\delta\text{-pre, } s)\)-continuous, it follows from Theorem 3.2(5) that

\[
f^{-1}(\text{Cl}(W)) = g^{-1}(\text{Cl}(X \times W)) \in \delta\text{PO}(X).
\]

(3.8)

Thus, \(f\) is \((\delta\text{-pre, } s)\)-continuous by Theorem 3.2.

\(\square\)

Lemma 3.6 (see [16]). Let \(A\) and \(X_0\) be subsets of a space \((X, \tau)\). If \(A \in \delta\text{PO}(X)\) and \(X_0 \in \delta\text{SO}(X)\), then \(A \cap X_0 \in \delta\text{PO}(X_0)\).
Lemma 3.7 (see [16]). Let $A \subseteq X_0 \subseteq X$. If $X_0 \in \delta O(X)$ and $A \in \delta PO(X_0)$, then $A \in \delta PO(X)$.

Theorem 3.8. If $f : X \to Y$ is a $(\delta$-pre, s)-continuous function and A is any δ-open subset of X, then the restriction $f|_A : A \to Y$ is $(\delta$-pre, s)-continuous.

Proof. Let $G \in SO(Y)$. Since f is $(\delta$-pre, s)-continuous, then $f^{-1}(\text{Cl}(G)) \in \delta PO(X)$ by Theorem 3.2(5). Since A is δ-open subset of X, it follows from Lemma 3.6 that $(f|_A)^{-1}(\text{Cl}(G)) = A \cap f^{-1}(\text{Cl}(G)) \in \delta PO(A)$. Therefore, $f|_A$ is a $(\delta$-pre, s)-continuous function by Theorem 3.2.

Theorem 3.9. Let $f : X \to Y$ be a function and let $\{U_\alpha : \alpha \in \Delta\}$ be a δ-open cover of X. If for each $\alpha \in \Delta$, $f|_{U_\alpha}$ is $(\delta$-pre, s)-continuous, then f is $(\delta$-pre, s)-continuous function.

Proof. Let $V \in SO(Y)$. Since $f|_{U_\alpha}$ is $(\delta$-pre, s)-continuous for each $\alpha \in \Delta$, $(f|_{U_\alpha})^{-1}(\text{Cl}(V)) \in \delta PO(U_\alpha)$ by Theorem 3.2(5). Since $U_\alpha \in \delta O(X)$, by Lemma 3.7, $(f|_{U_\alpha})^{-1}(\text{Cl}(V)) \in \delta PO(X)$ for each $\alpha \in \Delta$. Then

$$f^{-1}(\text{Cl}(V)) = \bigcup_{\alpha \in \Delta} [(f|_{U_\alpha})^{-1}(\text{Cl}(V))] \in \delta PO(X) \quad (3.9)$$

by Lemma 3.1. This gives that f is a $(\delta$-pre, s)-continuous function.

Theorem 3.10. Let $f : X \to Y$ be a function. If there exists $U \in \delta O(X)$ and the restriction of f to U is a $(\delta$-pre, s)-continuous, then f is $(\delta$-pre, s)-continuous function.

Proof. Suppose that $x \in X$ and $F \in SO(Y, f(x))$. Since $f|_U$ is $(\delta$-pre, s)-continuous, there exists a $V \in \delta PO(U, x)$ such that $f(V) = (f|_U)(V) \subseteq \text{Cl}(F)$ because $V \subseteq U$. Since $U \in \delta O(X, x)$, it follows from Lemma 3.7 that $V \in \delta PO(X, x)$. Since $x \in X$ is arbitrary, this shows that f is $(\delta$-pre, s)-continuous function.

Definition 3.11. A function $f : X \to Y$ is said to be

1. $(\theta$-irresolute) [11] if for each $x \in X$ and each $V \in SO(Y, f(x))$, there exists $U \in SO(X, x)$ such that $f(\text{Cl}(U)) \subseteq \text{Cl}(V)$,

2. $(\delta$-preirresolute) [7] if for each $x \in X$ and each $V \in \delta PO(Y, f(x))$, there exists a δ-preopen set U in X containing x such that $f(U) \subseteq V$.

In [7, Theorem 10], Ekici has proved that composition of two functions with specific condition would yield the $(\delta$-pre, s)-continuous function. For the composition of three functions, we have the following results.

Proposition 3.12. Let $f : X \to Y$, $g : Y \to Z$, and $h : Z \to W$ be functions. Then the following properties hold.

1. If f and g are $(\delta$-preirresolute, and h is $(\delta$-pre, s)-continuous, then $h \circ g \circ f : X \to W$ is $(\delta$-pre, s)-continuous.

2. If f is $(\delta$-pre, s)-continuous, and g and h are θ-irresolute, then $h \circ g \circ f : X \to W$ is $(\delta$-pre, s)-continuous.

3. If f is $(\delta$-preirresolute, g is $(\delta$-pre, s)-continuous, and h is θ-irresolute, then $h \circ g \circ f : X \to W$ is $(\delta$-pre, s)-continuous.
Some results on \((\delta, s)\)-continuous functions

Proof. (1) Let \(x \in X\) and \(V \in SO(W,(h \circ g \circ f)(x))\). Since \(h\) is \((\delta, s)\)-continuous, there exists a \(\delta\)-preopen set \(G\) in \(Z\) containing \((g \circ f)(x)\) such that \(h(G) \subseteq \text{Cl}(V)\). Since \(g\) is \(\delta\)-preirresolute, there exists a \(\delta\)-preopen set \(F\) in \(Y\) containing \(f(x)\) such that \(g(F) \subseteq G\). Since \(f\) is \(\delta\)-preirresolute, there exists a \(\delta\)-preopen set \(U\) in \(X\) containing \(x\) such that \(f(U) \subseteq F\). This shows that \((h \circ g \circ f)(U) \subseteq (h \circ g)(f) \subseteq h(G) \subseteq \text{Cl}(V)\). Therefore, \(h \circ g \circ f\) is \((\delta, s)\)-continuous.

(2) Let \(x \in X\) and \(V \in SO(W,(h \circ g \circ f)(x))\). Since \(h\) is \(\theta\)-irresolute, there exists \(G \in SO(Z,(g \circ f)(x))\) such that \(h(Cl(G)) \subseteq \text{Cl}(V)\). Since \(g\) is \(\theta\)-irresolute, there exists \(F \in SO(Y,f(x))\) such that \(g(Cl(F)) \subseteq Cl(G)\). Since \(f\) is \((\delta, s)\)-continuous, there exists a \(\delta\)-preopen set \(U\) in \(X\) containing \(x\) such that \(f(U) \subseteq Cl(F)\). This shows that \((h \circ g \circ f)(U) \subseteq (h \circ g)(Cl(F)) \subseteq Cl(V)\). Therefore, \(h \circ g \circ f\) is \((\delta, s)\)-continuous.

(3) Let \(x \in X\) and \(V \in SO(W,(h \circ g \circ f)(x))\). Since \(h\) is \(\theta\)-irresolute, there exists \(G \in SO(Z,(g \circ f)(x))\) such that \(h(Cl(G)) \subseteq Cl(V)\). Since \(g\) is \((\delta, s)\)-continuous, there exists a \(\delta\)-preopen set \(F\) in \(Y\) containing \(f(x)\) such that \(g(F) \subseteq Cl(G)\). Since \(f\) is \(\delta\)-preirresolute, there exists a \(\delta\)-preopen set \(U\) in \(X\) containing \(x\) such that \(f(U) \subseteq F\). This shows that \((h \circ g \circ f)(U) \subseteq (h \circ g)(f) \subseteq h(Cl(G)) \subseteq Cl(V)\). Therefore, \(h \circ g \circ f\) is \((\delta, s)\)-continuous.

Next, we obtained Corollaries 3.13 and 3.14 as general cases, obvious from [7, Theorem 10] and Propositions 3.12(1) and 3.12(2), by repeating application of \(\delta\)-preirresolute and \(\theta\)-irresolute functions, respectively.

Corollary 3.13. If \(f_i : X_i \to X_{i+1}, i = 1, 2, \ldots, n\), are \(\delta\)-preirresolute functions and \(g : X_{n+1} \to Y\) is \((\delta, s)\)-continuous, then \(g \circ f_n \circ \cdots \circ f_1 : X_1 \to Y\) is \((\delta, s)\)-continuous.

Corollary 3.14. If \(f : X \to Y_1\) is \((\delta, s)\)-continuous and \(g_i : Y_i \to Y_{i+1}, i = 1, 2, \ldots, n\), are \(\theta\)-irresolute functions, then \(g_n \circ \cdots \circ g_2 \circ g_1 \circ f : X \to Y_{n+1}\) is \((\delta, s)\)-continuous.

Observe that, in Corollary 3.13, the \((\delta, s)\)-continuous function lies at the beginning of the composition function, while in Corollary 3.14, the \((\delta, s)\)-continuous function lies at the end. How about, if the \((\delta, s)\)-continuous function lies inside of the composition function? We have the following results.

Proposition 3.15. Let \(f : X \to Y\), \(g : Y \to Z\), \(h : Z \to W\), and \(p : W \to V\) be functions. Then the following properties hold.

1. If \(f\) and \(g\) are \(\delta\)-preirresolute, \(h\) is \((\delta, s)\)-continuous, and \(p\) is \(\theta\)-irresolute, then \(p \circ h \circ g \circ f : X \to V\) is \((\delta, s)\)-continuous.

2. If \(f\) is \(\delta\)-preirresolute, \(g\) is \((\delta, s)\)-continuous, and \(h\) and \(p\) are \(\theta\)-irresolute, then \(p \circ h \circ g \circ f : X \to V\) is \((\delta, s)\)-continuous.

Proof. (1) Let \(x \in X\) and \(G \in SO(V,(p \circ h \circ g \circ f)(x))\). Since \(p\) is \(\theta\)-irresolute, there exists \(F \in SO(W,(h \circ g \circ f)(x))\) such that \(p(Cl(F)) \subseteq Cl(G)\). Since \(h\) is \((\delta, s)\)-continuous, there exists a \(\delta\)-preopen set \(N\) in \(Z\) containing \((g \circ f)(x)\) such that \(h(N) \subseteq Cl(F)\). Since \(g\) is \(\delta\)-preirresolute, there exists a \(\delta\)-preopen set \(M\) in \(Y\) containing \(f(x)\) such that \(g(M) \subseteq N\). Since \(f\) is \(\delta\)-preirresolute, there exists a \(\delta\)-preopen set \(U\) in \(X\) containing \(x\) such that
This shows that \((p \circ h \circ g \circ f)(U) \subseteq (p \circ h \circ g)(M) \subseteq (p \circ h)(N) \subseteq p(\text{Cl}(F)) \subseteq \text{Cl}(G)\). Therefore, \(p \circ h \circ g \circ f\) is \((\delta\text{-pre}, s)\)-continuous.

(2) Let \(x \in X\) and \(G \in \text{SO}(V,(p \circ h \circ g \circ f)(x))\). Since \(p\) is \(\theta\)-irresolute, there exists \(F \in \text{SO}(W,(h \circ g \circ f)(x))\) such that \(p(\text{Cl}(F)) \subseteq \text{Cl}(G)\). Since \(h\) is \(\theta\)-irresolute, there exists \(N \in \text{SO}(Z,(g \circ f)(x))\) such that \(h(\text{Cl}(N)) \subseteq \text{Cl}(F)\). Since \(g\) is \((\delta\text{-pre}, s)\)-continuous, there exists a \(\delta\)-preopen set \(M\) in \(Y\) containing \(f(x)\) such that \(g(M) \subseteq \text{Cl}(N)\). Since \(f\) is \(\delta\)-preirresolute, there exists a \(\delta\)-preopen set \(U\) in \(X\) containing \(x\) such that \(f(U) \subseteq M\). This shows that \((p \circ h \circ g \circ f)(U) \subseteq (p \circ h \circ g)(M) \subseteq (p \circ h)(\text{Cl}(N)) \subseteq p(\text{Cl}(F)) \subseteq \text{Cl}(G)\). Therefore, \(p \circ h \circ g \circ f\) is \((\delta\text{-pre}, s)\)-continuous.

Clearly, from Propositions 3.12(3) and 3.15, we obtain the following corollary.

Corollary 3.16. If for \(i = 1, 2, \ldots, n\), \(f_i : X_i \to X_{i+1}\) are \(\delta\)-preirresolute functions, \(g : X_{i+1} \to Y_1\) is \((\delta\text{-pre}, s)\)-continuous, and \(h_j : Y_j \to Y_{j+1}, j = 1, 2, \ldots, m\), are \(\theta\)-irresolute functions, then \(h_m \circ \ldots \circ h_1 \circ g \circ f_n \circ \ldots \circ f_1 : X_1 \to Y_{m+1}\) is \((\delta\text{-pre}, s)\)-continuous.

Definition 3.17. A function \(f : X \to Y\) is called \(\delta\)-preopen [7] if the image of each \(\delta\)-preopen set is \(\delta\)-preopen.

In [7, Theorem 11], Ekici has also proved that, given a composition of two functions with specific conditions where the \((\delta\text{-pre}, s)\)-continuous function would be yield, the first function in the composition is \((\delta\text{-pre}, s)\)-continuous. For the composition of three functions, we give the following proposition.

Proposition 3.18. If \(f : X \to Y\) and \(g : Y \to Z\) are surjective \(\delta\)-preopen functions and \(h : Z \to W\) is a function such that \(h \circ g \circ f : X \to W\) is \((\delta\text{-pre}, s)\)-continuous, then \(h\) is \((\delta\text{-pre}, s)\)-continuous.

Proof. Suppose that \(x, y,\) and \(z\) are three points in \(X, Y,\) and \(Z\), respectively, such that \(f(x) = y\) and \(g(y) = z\). Let \(V \in \text{SO}(W,(h \circ g \circ f)(x))\). Since \(h \circ g \circ f\) is \((\delta\text{-pre}, s)\)-continuous, there exists a \(\delta\)-preopen set \(U\) in \(X\) containing \(x\) such that \((h \circ g \circ f)(U) \subseteq \text{Cl}(V)\). Since \(f\) is \(\delta\)-preopen, \(f(U)\) is a \(\delta\)-preopen set in \(Y\) containing \(y\) such that \((h \circ g)(f(U)) \subseteq \text{Cl}(V)\). Since \(g\) is also \(\delta\)-preopen, \(g(f(U))\) is a \(\delta\)-preopen set in \(Z\) containing \(z\) such that \(h(g(f(U))) \subseteq \text{Cl}(V)\). This implies that \(h\) is \((\delta\text{-pre}, s)\)-continuous.

As in [7, Corollary 1], we obtained the following corollary.

Corollary 3.19. Let \(f : X \to Y\) and \(g : Y \to Z\) be surjective, \(\delta\)-preirresolute, and \(\delta\)-preopen functions and let \(h : Z \to W\) be a function. Then, \(h \circ g \circ f : X \to W\) is \((\delta\text{-pre}, s)\)-continuous if and only if \(h\) is \((\delta\text{-pre}, s)\)-continuous.

Proof. It can be obtained from Propositions 3.12(1) and 3.18.

The following corollaries are considered as general cases obtained from the above discussions.
Some results on \((\delta\text{-pre, }s)\)-continuous functions

Corollary 3.20. If \(f_i : X_i \to X_{i+1}, i = 1, 2, \ldots, n\), are surjective \(\delta\text{-preopen functions and } g : X_{n+1} \to Y\) is a function such that \(g \circ f_n \circ \cdots \circ f_2 \circ f_1 : X_1 \to Y\) is \((\delta\text{-pre, }s)\)-continuous, then \(g\) is \((\delta\text{-pre, }s)\)-continuous.

The proof of Corollary 3.20 is obvious from [7, Theorem 11] and Proposition 3.18.

Corollary 3.21. Let \(f_i : X_i \to X_{i+1}, i = 1, 2, \ldots, n\) be surjective, \(\delta\text{-preirresolute, and } \delta\text{-preopen functions and let } g : X_{n+1} \to Y\) be a function. Then \(g \circ f_n \circ \cdots \circ f_2 \circ f_1 : X_1 \to Y\) is \((\delta\text{-pre, }s)\)-continuous if and only if \(g\) is \((\delta\text{-pre, }s)\)-continuous.

The proof of Corollary 3.21 can be obtained from Corollaries 3.13 and 3.20.

Acknowledgment

This research has been partially supported by University Putra Malaysia under the Fundamental Grant 01-19-03-098J.

References

[1] D. E. Cameron and G. Woods, \(s\)-continuous and \(s\)-open mappings, preprint.
[2] S. G. Crossley and S. K. Hildebrand, Semi-closure, The Texas Journal of Science 22 (1971), 99–112.
[3] J. Dontchev, Contra-continuous functions and strongly \(S\)-closed spaces, International Journal of Mathematics and Mathematical Sciences 19 (1996), no. 2, 303–310.
[4] J. Dontchev, M. Ganster, and I. Reilly, More on almost \(s\)-continuity, Indian Journal of Mathematics 41 (1999), no. 2, 139–146.
[5] J. Dontchev and T. Noiri, Contra-semicoloncontinuous functions, Mathematica Pannonica 10 (1999), no. 2, 159–168.
[6] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Mathematica Hungarica 71 (1996), no. 1-2, 109–120.
[7] E. Ekici, \((\delta\text{-pre, }s)\)-continuous functions, Bulletin of the Malaysian Mathematical Sciences Society. Second Series 27 (2004), no. 2, 237–251.
[8] ________, Almost contra-precontinuous functions, Bulletin of the Malaysian Mathematical Sciences Society. Second Series 27 (2004), no. 1, 53–65.
[9] S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour, and T. Noiri, On \(p\)-regular spaces, Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie. Nouvelle Série 27(75) (1983), no. 4, 311–315.
[10] S. Jafari and T. Noiri, On contra-precontinuous functions, Bulletin of the Malaysian Mathematical Sciences Society. Second Series 25 (2002), no. 2, 115–128.
[11] F. H. Khedr and T. Noiri, On \(\theta\)-irresolute functions, Indian Journal of Mathematics 28 (1986), no. 3, 211–217 (1987).
[12] N. Levine, Semi-open sets and semi-continuity in topological spaces, The American Mathematical Monthly 70 (1963), no. 1, 36–41.
[13] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proceedings of the Mathematical and Physical Society of Egypt 53 (1982), 47–53 (1983).
[14] T. Noiri, Supercontinuity and some strong forms of continuity, Indian Journal of Pure and Applied Mathematics 15 (1984), no. 3, 241–250.
[15] T. Noiri, B. Ahmad, and M. Khan, Almost \(s\)-continuous functions, Kyungpook Mathematical Journal 35 (1995), no. 2, 311–322.
[16] S. Raychaudhuri and M. N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bulletin of the Institute of Mathematics. Academia Sinica 21 (1993), no. 4, 357–366.

[17] N. V. Velicko, H-closed topological spaces, American Mathematical Society Translation 78 (1968), 103–118.

Adem Kılıçman: Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
E-mail address: akilic@fsas.upm.edu.my

Zabidin Salleh: Institute for Mathematical Research, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
E-mail address: bidisalleh@yahoo.com
This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

Event	Date
Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru