Quantum Structure in Human Perception

Diederik Aerts and Jonito Aerts Arguèlles

Center Leo Apostel
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium
E-Mails: diraerts@vub.be
diederik.johannes.aerts@vub.be

Abstract

We wish to investigate the ways in which the quantum structures of superposition, contextuality, and entanglement have their origins in human perception itself, given how they are successfully used to model aspects of human cognition. Our analysis takes us from a simple quantum measurement model, along how human perception incorporates the warping mechanism of categorical perception, to a quantum version of the prototype theory for concepts, which allows for dynamic contextuality when concepts are combined. Our study is rooted in an operational quantum axiomatics that leads to a state context property system for concepts. We illustrate our quantum prototype model and its interference when combining concepts with two examples worked out in detail.

Keywords: human perception, quantum structures, categorical perception, quantum measurement, quantum cognition, operational quantum axiomatics, prototype theory, graded pattern, interference pattern, contextuality

1 Introduction

The identification of the presence of quantum structures in human cognition, and its importance for the development of performant quantum structure-based models for bounded rationality situations and human decisions, led to a field of research now called ‘quantum cognition’ (Aerts & Aerts, 1995; Gabora & Aerts, 2002; Bruza & Cole, 2005; Aerts & Gabora, 2005a; Busemeyer et al., 2006; Bruza & Gabora, 2009; Aerts, 2009a; Aerts & Sozzo, 2011; Aerts et al., 2012; Busemeyer & Bruza, 2012; Haven & Khrennikov, 2013; Dalla Chiara et al., 2015; Pothis et al., 2015; Blutner & beim Graben, 2016; Moreira & Wichert, 2016; Gabora & Kitto, 2017; Surov, 2021; Pothis & Busemeyer, 2022). Parallel to the emergence of the research field of quantum cognition, quantum structures were identified in computer science, their use especially in information retrieval and natural language processing leading to important results, and also bringing a new research domain to life called ‘quantum information science’ (Aerts & Czachor, 2004; Van Rijsbergen, 2004; Widdows, 2004; Piwowarski et al., 2010; Song et al., 2010; Melucci, 2015; Aerts et al., 2019).

One of the authors, using an approach that belongs to this field of research ‘quantum information science’, studied the presence and importance of two quantum structures, namely ‘superposition’ and ‘entanglement’, in human visual perception, by using ‘Google Images’ as a data set (Aerts Arguelles, 2018). More specifically, the following was demonstrated. When collecting the Google Images that appear with the search term ‘child’, and also collecting the Google Images that appear with the search term ‘mother’, and then collecting the Google Images that appear with the two search terms ‘child’ and ‘mother’, an emergence takes place. Indeed, many
images appear of a mother holding a child in her arms. These specific images are much less present in the first two collections. A similar emergence occurs with another example, Google Images are collected that turn up with the search term ‘glass’, and then Google Images that turn up with the search term ‘bottle’, and then Google Images that turn up with the two search terms ‘glass’ and ‘bottle’. The emergence that takes place here are images in which the glass contains drink from the bottle and in which possibly drinking itself also takes place. It is the quantum structure of ‘superposition’ that is at work here, bringing about this emergence as an interference effect. We know this because the situation is very similar to the ‘pet-fish problem’, or the ‘guppy effect’, in concept theory (Osherson & Smith, 1981). That guppy effect is well expressed in the following statement, “a guppy is neither a typical pet nor a typical fish, but it is a typical pet-fish.” The similarity can be easily understood as follows, “a mother with child or her arm is neither a typical image of a mother nor a typical image of a child, but it is a typical image of a mother and a child.” And equally, “a glass with drink in it from a bottle is not a typical image of a glass, nor is it a typical image of a bottle, but it is a typical image of a glass and a bottle.” That the guppy effect can be modeled using the quantum structure we call superposition and the data then appear in the model as a result of interference has been demonstrated by one of the authors and his collaborators and analyzed in various ways in past publications (Gabora & Aerts, 2002; Aerts & Gabora, 2005a,b; Aerts et al., 2012). The same method can be used to model these experimental results about mother and child, and glass and bottle, in Aerts Arguelles (2018).

These are the results regarding ‘superposition’, but also ‘entanglement’ is identified in visual perception using Google Images as a data set in Aerts Arguelles (2018). For this, the sentence ‘the animal acts’ is used, which was originally considered to demonstrate ‘entanglement’ in quantum cognition using a psychological experiment (Aerts & Sozzo, 2011). More specifically, the Clauser Horne Shimony Holt inequalities (Clauser et al., 1969), a version of Bell’s inequalities (Bell, 1964), are violated by fitting the fractions in specific collections of Google Images that turn up for specific search terms into these inequalities in the prescribed way (Aerts Arguelles, 2018).

These results, obtained by data originating in human visual perception, namely Google Images, demonstrate the presence of quantum structures in human visual perception. However, the connections within the considered elements of human visual perception, namely Google Images, is likely to be located more in the cognitive and meaning-bearing phase of visual perception than in the first-line perceptual phase. Hence our interest in investigating the presence of quantum structures in this first-line phase of human visual perception. Nevertheless, in this paper we focus on an investigation of the presence of quantum structures in human perception more generally, hence not specifically on visual perception. The reason is, as will become apparent from the remainder of this article, that an investigation of ‘perception’ in its general and basic form, contains elements that invite, as it were, the presence of quantum structures to be connected to it. Although we would like to add at the outset that this is, as far as we know, a first attempt to frame the cause of the presence of quantum structures in human cognition within the nature of human perception itself, so we are well aware of the ‘still to further investigate’ character of the connections we will be pointing out. We do so, therefore, in all modesty, with the main intention of inviting and stimulating further research along these lines.

We already mentioned how the research in Aerts Arguelles (2018) was inspired by earlier research about the guppy effect in concept theory in which one of the authors was directly involved (Gabora & Aerts, 2002; Aerts & Gabora, 2005a,b; Aerts et al., 2012). In the present article, we will also partly rely on insight obtained in this earlier research. In this respect, we mention that ‘the guppy effect’ in concept theory is very similar to well-specified effects that appear in human decisions. We think here of the phenomena that were widely studied by Amor Tversky and collaborators in the 1980s and the 1990s, such as the conjunction fallacy and the disjunction effect (Tversky & Kahneman, 1983; Tversky & Shafir, 1992). It has been one of the important undertakings in quantum cognition to show that the effects studied by Tversky and collaborators can be modeled by quantum decision approaches with better results than this is the case by classical decision approaches (Aerts, 2009a; Busemeyer & Bruza, 2012; Haven & Khrennikov, 2013; Pothos & Busemeyer, 2022).
In Section 2, we introduce a quantum measurement model, using only elements that allow one to easily imagine what is happening in a quantum measurement. We show that quantum probabilities can be derived from the simple geometry of the model itself. We wish to use the model for the simple insight it provides into aspects of the quantum measurement process, for example the presence of fluctuations on the interactions between measuring apparatus and the entity being measured on, which are not easy to grasp.

In Section 3, we introduce the quantum mechanical description in a two dimensional complex Hilbert space for the measurement model. We show that it is a model for a qubit in the Bloch sphere with appended measurement facility. We analyze the contextuality and the purity and mixedness of states and their von Neumann entropy. We also introduce the basic experiment on the nature of human perception and make a preliminary connection to quantum superposition.

In Section 4, we introduce the mechanism of categorical perception, and describe the way it produces a warping of the space of perceptions. This warping leads to a form of quantization to finally culminate in the structural proposal of the prototype theory. We analyze how this prototype theory runs into problems when composite concepts are examined, and how the underlying quantum structure puts forward a solution to this in the form of interference. The quantum prototype theory we develop is dynamically contextual, and rooted in the operational quantum axiomatics, and is therefore able to model the combination of concepts with interference as a manifestation of this underlying quantum structure. We illustrate this with two examples worked out in detail, the concepts ‘Fruits’ and ‘Vegetables’ being composed into the concept ‘Fruits or Vegetables’, and the concepts ‘Furniture’ and ‘Household Appliances’ being composed into the concept ‘Furniture and Household Appliances’.

2 Fluctuations on Measurement Interactions

In non-relativistic quantum mechanics, there are two types of change of state. There is the continuous change in time that describes the evolution of a quantum entity when not interacting directly with it, well modeled by the Schrödinger equation. And in addition, there is the discrete change of state, which represents what happens when interacting directly with the quantum entity, such as when a measurement is being performed. The first type of change is deterministic while the second type of change is probabilistic. The existence of these two types of change of state has been considered problematic by many physicists and philosophers, and through time, not unrelated to the context in which it was being reflected upon, has been referred to as ‘the measurement problem in quantum mechanics’. Many different interpretations of quantum mechanics originate at this intersection of what is called ‘the measurement problem’ of quantum mechanics, representing different views on this problem (Howard, 2004; Camilleri, 2009; Bassi et al., 2013; Ball, 2013; Goldstein, 2022).

In the years before the period arrived where the testing of Bell’s inequalities prepared the physics community for accepting the reality of the quantum phenomenon of entanglement, one of the authors was working on an axiomatic approach to quantum mechanics (Aerts, 1982, 1992), and from that vantage point also elaborated a model for a measurement in quantum mechanics (Aerts, 1986). In the model, the quantum probabilities are caused by the presence of fluctuations on the interactions of the measuring apparatus with the quantum entity on which is measured. More specifically, this means that repeating the same measurement is more complicated than is generally thought, namely, every time a measurement is supposedly repeated, there is nevertheless a difference in the interactions that take place between the measuring apparatus and the entity on which is measured. In this model, it is the presence of these differences between supposedly identical measurements, and the statistics with which these differences occur in the realm of the interactions between the measuring apparatus and the quantum entity on which is measured, that is the origin of the quantum probabilities.

What we are writing here seems complicated at first sight, and since it is important to understand it well given what we wish to put forward in this article, we include a simple example, where each aspect is illustrated. The example is shown in Figure 1 and consists of a piece of elastic stretched between points A_{down} and A_{up}.

on the centerline of a sphere. On the surface of the sphere is a small ball that sticks to the sphere at a point A. This ball in a point represents the state of the quantum entity in our example. The measurement occurs as follows. First, the ball falls orthogonally on the elastic and sticks to it at the point A' where this orthogonal fall brings it. Then the elastic breaks randomly in one of its points. If the breaking point is below the point A', then the unbroken part of the elastic pulls the ball up so that it ends up in the point A_{up}. However, if the breaking point is above the point A', then the ball is pulled down by the unbroken part of the elastic, and ends up in the point A_{down}. Thus, the whole of the measurement results in the ball from the point A ending up in one of two points A_{up} or A_{down}. Now suppose that the elastic possesses a uniform break pattern, which means that the point at which the elastic breaks randomly will lie in a certain interval of the elastic, proportional to the length of that interval. We can then calculate the probabilities $P(A \mapsto A_{\text{up}})$ and $P(A \mapsto A_{\text{down}})$ with which

\[P(A \mapsto A_{\text{up}}) = \frac{r + r \cos \theta}{2r} = \frac{1}{2}(1 + \cos \theta) = \frac{\cos \frac{\theta}{2}}{2} \]

\[P(A \mapsto A_{\text{down}}) = \frac{r - r \cos \theta}{2r} = \frac{1}{2}(1 - \cos \theta) = \frac{\sin \frac{\theta}{2}}{2} \]

Some have probably understood by now that this elastic sphere model is a model for a quantum qubit, the probabilities (1) and (2) indeed match the quantum probabilities of the spin of a spin 1/2 quantum particle. The ball in point A is then in a state for the spin of an angle θ with the z-axis, and the elastic lies on this z-axis. In Figure 2, we provide a three-dimensional representation of the situation. Some have probably also

\[\begin{align*}
A_{\text{up}} \quad & \quad L_1 \\
A' \quad & \quad \theta \\
L_2 \quad & \quad A_{\text{down}}
\end{align*} \]
seen that the sphere and the points on its surface where A can be located is none other than the so-called Bloch sphere, a well-known model for the spin of a spin 1/2 quantum particle or a qubit. However, we have extended this Bloch sphere to include a model for the measurement itself, and that is where the elastic comes in, on the one hand, with the orthogonal fall of the ball from the point A to the point A' and, on the other hand, with the uniform random breaking of the elastic at one of its points.

At the time when one of the authors developed this model (Aerts, 1986), the focus in connection with quantum mechanics was different than it is today. One asked fundamental questions of a more structural nature, in connection with e.g. ‘the structure of the set of properties of a quantum entity with respect to a classical entity’ – this structure being non-Boolean for the quantum entity while Boolean for the classical entity – or ‘the structure of the quantum probability model with respect to a classical probability model’ – this structure being non-Kolmogorovian for a quantum entity while Kolmogorovian for a classical entity. As such, this model was conceived in the 1980s to answer questions posed at that time. Let us briefly elaborate on one of these questions, because the answer we can formulate to it is interesting and important for the problem we are dealing with here, and even for the research domain of quantum cognition in itself, and more specifically its scientific status. In connection with probabilities, for example, one may ask whether they can be due to a lack of knowledge about an underlying structure that may even be deterministic. Since, if this were the case for the probabilities occurring in quantum mechanics, one could then introduce additional variables, which would eliminate this lack of knowledge, by better and even fully describing that underlying reality. This structural question was called ‘the hidden variable problem’ of quantum mechanics. Several proofs existed in the 1980s of the impossibility of obtaining the probabilities of quantum mechanics as a consequence of the presence of hidden variables, among which von Neumann’s proof was probably the best known (von Neumann, 1932). In other words, these no-go theorems for hidden variables showed that the quantum probabilities were not due to a lack of knowledge about an underlying and not (yet) known reality.

In the qubit model of our example in Figures 1 and 2, we can note that if we allow the point where the elastic breaks to be introduced as an additional variable, what takes place during the measurement process no longer contains probabilities, and thus is deterministic, when this variable is known. But, we have clearly stated that our entity is determined by the location on the sphere of the ball, i.e., by the location of point A, and variables that describe where the elastic breaks are thus not variables that give us more knowledge about the state of the entity, and thus are not variables of the entity. That means our model escapes the no-go theorems about hidden variables and demonstrating that was the main goal in the 1980s of the measurement model we present here. Indeed, each of the points where the elastic can break corresponds to a well-defined interaction between the entity at point A, and the measuring device, which is the whole of the sphere, and the elastic. It is these various possible interactions between the entity and the measuring apparatus that we have called, in the more abstract formulation above, ‘fluctuations on the interactions between measuring apparatus and entity’. For the present article we are less interested in the significance of this model for structural questions concerning e.g. the nature of the quantum probabilities, although, as we already mentioned, they will play a role further on in our analysis, which is why we have already brought them up here. What we are particularly interested in for our present article is the fine structure of the mechanism in the measurement in the example shown in Figures 1 and 2. And before we continue our analysis, we wish to note the following. The example depicts a quantum measurement with two final states A_{up} and A_{down}, and thus a quantum measurement with two outcomes. However, in later years, in collaboration of one of the authors with Massimiliano Sassoli de Bianchi, it was shown that a similar model can be built for a quantum mechanical measurement with an arbitrary number n of final states, and thus an arbitrary number n of outcomes (Aerts & Sassoli de Bianchi, 2014, 2016). We will not explicitly describe these higher dimensional extended Bloch sphere quantum measurement models in the present article, but mention that the simple geometric properties of the configurations lead to exactly the quantum probabilities in a completely similar way than this is the case for this two dimensional quantum measurement model. The details of the analysis that we will now make for the two dimensional quantum
measurement model can also be made for the higher dimensional quantum measurement models without any problem and in a totally similar way.

Now, before continuing our analysis of this measurement model, let us come to that general statement about the scientific status of quantum cognition, as we promised. It is frequently argued by other researchers in quantum cognition that we are not interested in finding the presence of 'quantum in cognition' that would be due to the somehow microscopic activity of quantum physics in the human brain (e.g., as sometimes microtubules are put forward as a possible seat of such microscopic quantum physics activity by researchers who are in search of this ([Hameroff & Penrose, 2014]). We completely agree with this attitude within the researchers in quantum cognition, and want to explicitly reflect on this using the quantum model for a qubit that we just introduced. Now suppose for a moment that we hide the ‘elastic sphere model’ in a black box, and then have a technician place the elastic and the ball in ever-changing directions and angles, and for each of these setup the data is collected, i.e. either an outcome in A_{down} of that particular setup or an outcome in A_{up} of that particular setup. The technician may see the interior of the black box, because he has to place the different setups, but for the researcher who will analyze the data, the entire apparatus, which is the elastic sphere model that we just introduced, is hidden inside the black box. It is clear that the data, after a thorough analysis, will show that they are equivalent to data obtained after quantum measurements on a qubit in states corresponding to the different setups. There is no doubt that a material realization of the elastic sphere model, i.e., with true elastics, and a sphere made of a substance that allows the experiments to be truly performed, is macroscopic. This means that the actual possibility of the existence of such a material elastic sphere model, demonstrates that the quantum probability model of a qubit can realize itself in the macroscopic world. There is no need of the presence of a microscopic element in the human brain where the probability model of a qubit would realize itself from quantum physics applicable to this microscopic element of the human brain. The analysis developed in this section, in addition to being directed toward the researchers who are looking for such a microscopic element in the human brain, is even more and more importantly directed toward the skeptics about ‘quantum and human cognition’. Indeed, it is primarily these skeptics who believe that ‘quantum and human cognition’ are only meaningful to even consider from a scientific perspective ‘if’ there is such a microscopic element in the human brain that causes the quantum structure to emerge. The elastic sphere model of a qubit, which is also a model of the spin of a spin 1/2 quantum particle, and the fact that a material realization can be made of it, on which hidden in a black box, data can be collected, shows to these skeptics that there is no problem in macroscopically realizing the full probability model of a qubit, including the set of states and its quantum structure. Some skeptics will note that it is primarily the entanglement-style quantum mechanical assembly of several qubits that is important, and may be willing to be convinced that a single loose qubit is indeed realized with this elastic sphere model. This is then where the violation of Bell inequalities comes in, and indeed, this is as important an aspect of quantum as the dynamics and probability structure of a single qubit. That such a violation of Bell’s inequalities occurs when one combines concepts is then interesting for them to look at more closely, and elastic more dimensional macroscopic quantum models can also realize this ([Aerts & Sassoli de Bianchi, 2016]).

3 Quantum Measurement and Human Perception

What we wish to analyze now, in the example of Figures 1 and 2, is ‘how this example, and the way it describes a measurement in detail’, invites to be used for measurements in psychology. First, we want to distinguish the two phases of the measurement more precisely than we already did. The first phase consists of the point A falling orthogonally to the elastic between the two points A_{down} and A_{up}. The entity in state A changes as a result and ends up in state A'. We note that, observing the Bloch representation, the state of the quantum entity in point A is a ‘pure state’, while the state of the quantum entity in point A' is a ‘mixed state’. A pure state means, among other things, that the von Neumann entropy is equal to zero. The mixed state in point
A' is not just any mixed state, it is a convex combination of the states in points A_{down} and A_{up}. This means that the specific mixed state in point A' is a ‘classical’ mixture of the two possible final states, this one in A_{up} and this one in A_{down}, which are both pure states. Before we forget to mention this, the pure state in A is a quantum superposition of the two pure states in A_{down} and A_{up}. Let us make this explicit with the standard calculations of the spin of a spin 1/2 quantum particle, or a qubit.

The Hilbert space we consider is \mathbb{C}^2. The state of the spin of the spin 1/2 quantum particle in the space direction (θ, ϕ), hence represented by the point $(\sin \theta \sin \phi, \sin \theta \cos \phi, \cos \theta)$, and that is also where in Figure 2 the ball is located in point A. In the two dimensional complex Hilbert space this point A is now represented by the vector $|\theta, \phi\rangle = (\cos \frac{\theta}{2} e^{-i\frac{\phi}{2}}, \sin \frac{\theta}{2} e^{i\frac{\phi}{2}}) \in \mathbb{C}^2$, the angles θ and ϕ are indicated in Figure 2 and are actually the angles of the classical spherical coordinates (ρ, θ, ϕ) of the point A, with hence coordinates in the three dimensional real space given by $(\rho \sin \theta \sin \phi, \rho \sin \theta \cos \phi, \rho \cos \theta)$. The sphere in Figure 2 has radius 1, and hence $\rho = 1$ for A which is situated on the surface of the sphere.

Points of the interior of the Bloch sphere correspond to density operators, hence let us calculate the density operator corresponding to the point A'. A pure state corresponding to the point A_{up}, with coordinates $(0,0,1)$, is $|0, \phi\rangle = (e^{-i\frac{\phi}{2}}, 0)$, and a pure state corresponding to the point A_{down}, with coordinates $(0,0,-1)$, is $|\pi, \phi\rangle = (0, e^{i\frac{\phi}{2}})$. We will denote a density operator corresponding to the point with spherical coordinates (ρ, θ, ϕ), $\rho \in [0,1]$, $\theta \in [0,\pi]$, $\phi \in [0,2\pi]$ as $D(\rho, \theta, \phi)$. Let us first calculate the density operators corresponding to the three pure states A, A_{up} and A_{down}. We have

\[
D_{(1,0,\phi)} = |\theta, \phi\rangle \langle \theta, \phi| = \begin{pmatrix} \cos \frac{\theta}{2} e^{-i\frac{\phi}{2}} \\ \sin \frac{\theta}{2} e^{i\frac{\phi}{2}} \end{pmatrix} \begin{pmatrix} \cos \frac{\theta}{2} e^{-i\frac{\phi}{2}} & \sin \frac{\theta}{2} e^{i\frac{\phi}{2}} \end{pmatrix} = \begin{pmatrix} \cos^2 \frac{\theta}{2} & \frac{\cos \theta \sin \theta e^{i\phi}}{2} \\ \frac{\cos \theta \sin \theta e^{-i\phi}}{2} & \sin^2 \frac{\theta}{2} \end{pmatrix}
\]

\[
D_{(1,\pi,\phi)} = \begin{pmatrix} \cos^2 \frac{\theta}{2} & \frac{\cos \theta \sin \theta e^{i\phi}}{2} \\ \frac{\cos \theta \sin \theta e^{-i\phi}}{2} & \sin^2 \frac{\theta}{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
\]

\[
D_{(1,\theta,\phi+\pi)} = \begin{pmatrix} \cos^2 \frac{\theta}{2} & \frac{\cos \theta \sin \theta e^{i(\phi+\pi)}}{2} \\ \frac{\cos \theta \sin \theta e^{-i(\phi+\pi)}}{2} & \sin^2 \frac{\theta}{2} \end{pmatrix} = \begin{pmatrix} \cos^2 \frac{\theta}{2} & -\frac{\cos \theta \sin \theta e^{i\phi}}{2} \\ -\frac{\cos \theta \sin \theta e^{-i\phi}}{2} & \sin^2 \frac{\theta}{2} \end{pmatrix}
\]

Let us now calculate the density operator D_A' representing the state of the entity when it is in the point A' as in Figure 2. We remark that A' lies on the line between A_{down} and A_{up} sticking on the elastic which is stretched between A_{down} and A_{up} on this line. Making use of a general property of the set of all density operators, i.e. that it is a set closed by convex combination, we know that D_A' is a convex combination of $D_{(1,\pi,\phi)}$ and $D_{(1,0,\phi)}$, which gives

\[
D_A' = \lambda \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + (1 - \lambda) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 - \lambda & 0 \\ 0 & \lambda \end{pmatrix}
\]

for $\lambda \in [0,1]$.

From Figure 2 given that A' is obtained by projecting orthogonally to the line between A_{down} and A_{up}, we have that A' lies on the line between A and the point with spherical coordinates $(1, \theta, \phi + \pi)$, to which corresponds the density operator

\[
D_{(1,\theta,\phi+\pi)} = \begin{pmatrix} \cos^2 \frac{\theta}{2} & \frac{\cos \theta \sin \theta e^{i(\phi+\pi)}}{2} \\ \frac{\cos \theta \sin \theta e^{-i(\phi+\pi)}}{2} & \sin^2 \frac{\theta}{2} \end{pmatrix} = \begin{pmatrix} \cos^2 \frac{\theta}{2} & -\frac{\cos \theta \sin \theta e^{i\phi}}{2} \\ -\frac{\cos \theta \sin \theta e^{-i\phi}}{2} & \sin^2 \frac{\theta}{2} \end{pmatrix}
\]

This means that we have

\[
D_A' = \mu D_{(1,\theta,\phi)} + (1 - \mu)D_{(1,\theta,\phi+\pi)}
\]
for $\mu \in [0, 1]$. From (6) and (8) follows that we must have

$$\mu \cos \frac{\theta}{2} \sin \frac{\theta}{2} e^{-i\phi} - (1 - \mu) \cos \frac{\theta}{2} \sin \frac{\theta}{2} e^{-i\phi} = 0$$

$$\iff \mu - (1 - \mu) = 0$$

$$\iff \mu = \frac{1}{2}$$

and

$$\lambda = \sin^2 \frac{\theta}{2}$$

This gives us

$$D_{A'} = \begin{pmatrix} \cos^2 \frac{\theta}{2} & 0 \\ 0 & \sin^2 \frac{\theta}{2} \end{pmatrix} = \cos^2 \frac{\theta}{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \sin^2 \frac{\theta}{2} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \cos^2 \frac{\theta}{2} D_{A_{up}} + \sin^2 \frac{\theta}{2} D_{A_{down}}$$

Let us interpret the results of these calculations. First, we note again that the states in which the entity, the ball, is in, in points A, A_{down} and A_{up}, are pure states. This means that the von Neumann entropy of these states is equal to zero. The state in which the entity, the ball, is in point A', is not a pure state. Let us calculate its von Neumann entropy $S_{A'}$. To do so we use the following equality

$$S_{A'} = \text{tr} \log D_{A'} = -\lambda_+ \log \lambda_+ - \lambda_- \log \lambda_-$$

where $\lambda_+ = \cos^2 \frac{\theta}{2}$ and $\lambda_- = \sin^2 \frac{\theta}{2}$ are the two eigenvalues of $D_{A'}$. Hence we get

$$S_{A'}(\theta) = -\cos^2 \frac{\theta}{2} \log \cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} \log \sin^2 \frac{\theta}{2}$$

Figure 2: A three dimensional representation of the Elastic Sphere Model, revealing it to be a Quantum Bloch Sphere model extended with an explicitation of the measurement procedure. The little ball is in point A with spherical coordinates (ρ, θ, ϕ) and Hilbert space density operator coordinates $D_{(\rho, \theta, \phi)}$. The process of measurement proceeds like described in detail in Figure 1 by the ball falling orthogonally to the elastic and sticking to it in point A'. Then the elastic breaks uniformly in one of its points an pulls the ball upwards to end in A_{up} or downwards to end in A_{down}. The state in which the entity, the ball, is in point A', is not a pure state. Let us calculate its von Neumann entropy $S_{A'}$. To do so we use the following equality

$$S_{A'} = \text{tr} \log D_{A'} = -\lambda_+ \log \lambda_+ - \lambda_- \log \lambda_-$$

where $\lambda_+ = \cos^2 \frac{\theta}{2}$ and $\lambda_- = \sin^2 \frac{\theta}{2}$ are the two eigenvalues of $D_{A'}$. Hence we get

$$S_{A'}(\theta) = -\cos^2 \frac{\theta}{2} \log \cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} \log \sin^2 \frac{\theta}{2}$$

8
We now have all the elements to get to the core of this section of the article. Each point \((\rho, \theta, \phi)\), we have \(A'\) coinciding respectively with \(A_{up}\) and \(A_{down}\), that for these two values \(S_{A'}(\theta) = 0\), because the states of the ball in these points, namely \(D_{(1,0,\phi)}\) and \(D_{(1,\pi,\phi)}\) are pure states (see (4) and (5)). When we investigate the values of (13) for other values of \(\theta \in [0, \pi]\), we see that the value increases for increasing values of \(\theta\), reaches a maximum for \(\theta = \frac{\pi}{2}\), which is when \(A'\) is located in the center of the sphere in Figure 2 and in the middle point of the elastic stretched between \(A_{down}\) and \(A_{up}\) in Figures 1 and Figure 2 and its maximum value is

\[
S_{A'}\left(\frac{\pi}{2}\right) = -(\frac{1}{\sqrt{2}})^2 \log((\frac{1}{\sqrt{2}})^2) - (\frac{1}{\sqrt{2}})^2 \log((\frac{1}{\sqrt{2}})^2) = -2\frac{1}{2} \log \frac{1}{2} = \log 2 \tag{14}
\]

which is the maximum possible value able to be reached by the von Neumann entropy in quantum mechanics, and the density operator presenting this state of maximum entropy is given by

\[
D_{\rho=0} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \tag{15}
\]

We now have all the elements to get to the core of this section of the article. Each point \((\rho, \theta, \phi), \ rho \in [0, 1], \theta \in [0, \pi], \phi \in [0, 2\pi]\), within the sphere shown in Figure 2 corresponds to a density operator \(D_{(\rho,\theta,\phi)}\), and the points of the sphere surface, i.e. \(\rho = 1\), correspond to pure states of the quantum entity. The points of the interior of the sphere correspond to density states of the quantum entity. With a measurement corresponds a convex subspace of the interior of the sphere, in the case of the measurement with possible final states after the measurement, \(A_{up}\) and \(A_{down}\) this convex subspace is given by the line segment from \((1, \pi, \phi)\) to \((1, 0, \phi)\), where the elastic is stretched. But all lines passing through the center of the sphere in Figure 2 harbor such an equivalent measurement. The points on the line all correspond to a density state, except for the end points, which are indeed part of the surface of the sphere, and thus correspond to a pure state. When a measurement commences, on an entity that is in a pure state, such as this one in the point \(A\), a construction is first made of what this state in the point \(A\) means to the measuring apparatus located on a line between two diametrical points of the sphere surface, such as the points \(A_{down}\) and \(A_{up}\). That is the meaning of the orthogonal projection which brings the state in \(A\) to a state in \(A'\). Once the state has become the one corresponding to the point \(A'\), then the entity is in a mixed state. The transformation from the state corresponding to \(A\) to the state corresponding to \(A'\) can be read on the matrix representation, namely it is the non-diagonal terms of the matrix of the density state that disappears to arrive at the state corresponding to \(A'\).

In 1995, one of the authors used the put forward properties of the quantum measurement model developed in Aerts (1986), to model the decision process of an opinion poll (Aerts & Aerts 1995). The underlying reasoning that led to modeling the decision process of an opinion poll was that, once one has properly understood the internal dynamics of the elastic sphere model that we analyzed in detail above, it is quite natural that in experiments with participants who are human beings, the same kind of fluctuations will be present in many cases. In 2002, we began to study in a more specific way a well-known problem in human cognition in concept theory, namely the pet-fish problem, containing an effect called the ‘guppy effect’ (Gabora & Aerts, 2002; Aerts & Gabora 2005a,b). The effect is well explained by the following description, “a guppy is not a typical example of a pet, nor is it a typical example of a fish, but it is a typical example of a pet-fish.” The aspect we used of the elastic measurement model for the guppy effect was the way it allowed context to be explicitly modeled. The measurement context, expressed mathematically by the convex space of density states, and the way a measurement changes an original non-contextualized pure state to a contextualized density state, or, what we called above the change from the state belonging to \(A\) to the state belonging to \(A'\). In a later phase, we also described the interference that could be modeled with more extensive data on the combinations
of concepts, by describing this combination with a state that is a quantum superposition of the states that describe the concepts separately (Aerts, 2009a), see for example the interference of ‘Fruits’ and ‘Vegetables’ with data obtained in experiments conducted by James Hampton in the 1980s (Section 3 of (Aerts, 2009b)).

To introduce our study of ‘human perception’, we will use an experiment and its analysis by Jerome Bruner (Bruner & Postman, 1949). Note that Bruner, considered to be one of the most important psychologists of the twentieth century, worked on perception in the 1940’s, an era where cognitive science was not yet defined as a subdiscipline in psychology. In the experiment we will describe in detail here, Bruner’s intention was to confront participants with stimuli he called ‘incongruent’. To make clear what this term ‘incongruent’ means, we outline the view on perception in which Bruner framed this experiment. Bruner works within a view of ‘perception’ in which the hypothesis is advanced that, a perception corresponding to a stimulus, is an event in which there is always, what he calls, a ‘construction-defense’ balance at work. From a pattern of expectations, a structure present in the mind of the one who perceives, ‘construction’ takes place when a stimulus meets an expectation, while ‘defense’ takes place when a stimulus counters an expectation. In the experiment we will now describe, participants are confronted with stimuli that confirm but also contradict the structure of expectations with which participants’ minds take part in the experiment. The purpose of the experiment is to distinguish and analyze different phases of dealing with this contradiction, which Bruner names ‘incongruity’. In our search for the presence of quantum structures, we are particularly interested in one of the phases, which he calls ‘dominance reaction’. Let us now first describe the experiment in (Bruner & Postman, 1949) and then further on specify in which way we proceed in identifying a primitive, possibly further to emerge quantum structure.

Twenty-eight participants, students at Harvard and Radcliffe, were shown successively by tachistoscopic exposure five different playing cards. From one to four of these cards were incongruous – color and suit were reversed. Order of presentation of normal and incongruous cards was randomized. The normal and ‘trick’ cards used were the following. Normal cards (printed in their proper color) five of hearts, ace of hearts, five of spades, seven of spades. Trick cards (printed with color reversed). three of hearts (black), four of hearts (black), two of spades (red), six of spades (red), ace of diamonds (black), six of clubs (red). Fourteen orders of presentation were worked out, and two subjects were presented the cards in each of these orders. There were three types of stimulus series (1) a single trick card embedded in a series of four normal cards, (2) a single normal card embedded in a series of four trick cards, (3) mixed series in which trick and normal cards were in the ratio of 3 2 or 2 3. Each card was presented successively until correct recognition occurred, three times each at 10 ms, 30 ms, 50 ms, 70 ms, 100 ms, 150 ms, 200 ms, 250 ms, 300 ms, 400 ms, 450 ms, 500 ms, and then in steps of 100 ms to 1000 ms. If at 1000 ms. recognition did not occur, the next card was presented. In determining thresholds, correct recognition was defined as two successive correct responses. At each exposure, the subject was asked to report everything he saw or thought he saw. The cards were mounted on medium gray cardboard and were shown in a Dodge-Gerbrands tachistoscope. The pre-exposure field was of the same gray color and consistency as the exposure field save that it contained no playing card. The light in the tachistoscope was provided by two G E. daylight fluorescent tubes.

For those readers who would like more details about the experiment and his analysis and conclusions, we refer to (Bruner & Postman, 1949), we are particularly interested in the different reactions of the participants, and especially this one that Bruner called the ‘dominant reaction’. This dominant reaction to the cards shown in swift consists of providing a response that is entirely within the expectation pattern of the participant, namely that these are standard cards that have not been tricked. With respect to the tricked cards, this reaction consists, essentially, of a ‘perceptual denial’ of the incongruous elements in the stimulus pattern. Faced with a red six of spades, for example, a subject may report with considerable assurance, ‘the six of spades’ or the ‘six of hearts’, depending upon whether he is color or form bound. In the one case the form dominates and the color is assimilated to it, in the other the stimulus color dominates and form is assimilated to it. In both instances the perceptual resultant conforms with past expectations about the ‘normal’ nature of playing cards. While it
is still very ad hoc here, and thus rather in preparation with the additional explanations that follow in Section 4 of this article, the intention is to consider this ‘red six of spades’ as a quantum superposition of a ‘six of spades’ and of a ‘six of hearts’, both from a regular deck of cards. Reasoning further in this provisionally rather ad hoc introduction of the notion of quantum superposition, one can argue that the experiment in Bruner & Postman (1949) causes a collapse to one of two, a ‘six of spades’ or a ‘six of hearts’, states of the cards that exist within a standard deck of cards, with a specific probability, which could possible be measured in case the experiment would be repeated sufficiently to get enough data. We will not describe the other possible reactions further, as we are concerned with this one, incidentally, most common reaction. With longer times of showing the cards, and repeating the experiment with the same participants, a different pattern does develop, with the participants eventually finding out that tricked cards are being used – a real repetition of the experiment, to calculate e.g. the collapse probabilities, should always invite other participants. Our proposal to connect this basic situation of ‘perception’ with ‘quantum superposition’ and ‘quantum collapse’ might seem premature, and indeed we will gather arguments in the remainder of this article that will give us evidential support for our proposal. Let us already note here, that if we return to our previous analysis of the quantum measurement model, we can already mention some points. The points on the line between \(A_{down}\) and \(A_{up}\) are a classic ‘lack of knowledge’ space, which makes the state associated with the point \(A'\), entail a lack of knowledge about which of the two, within the context of the one who measures, \(A_{up}\) or \(A_{down}\) is the case. That, by the way, is also the reason why the von Neumann entropy of the state associated with \(A'\) is different from zero, which stands for that state carrying a lack of knowledge. From the moment \(A\) is changed to \(A'\) the classical human decision process begins, choosing between \(A_{down}\) or \(A_{up}\). And no choice can be made for a state that is out of context, i.e. outside the points that lie on the line from \(A_{down}\) to \(A_{up}\). Thus, if we interpret the quantum measurement model in this way, there is not even a way to step ‘out of the context’, the points on line between \(A_{down}\) and \(A_{up}\). The further part of the experiment, where eventually the cards are shown to the participants with so much time that they come to know that there are tricked cards in play, needs a different description. We will return to this later.

In the next section we bring forward additional evidence pointing to the hypothesis we wish to put forward, namely that perception in itself contains the root for an emergent quantum structure. Following Bruner’s work which we proposed on the basis of one of his experiments, we introduce the notion of ‘categorical perception’. In Bruner’s work, perception is considered a phenomenon that, in addition to the influence of the stimulus, is also determined by the presence of the expectation pattern of the one who perceives. There is, however, structurally much more to it, partly as a consequence of this basic structure of ‘perception’, the coming about of the conceptual in itself, as a form of quantization, was experimentally identified, step by step admittedly. How this developed gradually we bring out in the next section.

4 Categorical Perception and Quantum Structure

In this section, we consider the phenomenon of ‘categorical perception’. That phenomenon is rooted in the experimental finding that our perception is ‘warped’ so that differences between stimuli we classify in different categories are magnified, while differences between stimuli we classify in the same category are reduced. The first example of categorical perception occurred not so much time after Bruner’s work on perception, namely in 1957. A continuum of evenly distributed consonant-vowel syllables with endpoints reliably identified as ‘b’, ‘d’ and ‘g’ was then generated by Liberman and his collaborators. It was observed that there was a point where there was a rapid decrease in the probability of hearing the sound as a ‘b’ to hearing it as ‘d’. At a later point, there was a rapid switch from ‘d’ to ‘g’ (Liberman et al., 1957). Liberman was also at the origin of what is now called ‘the motor theory of speech perception’. It is interesting to elaborate on this briefly. This theory of speech perception found its origin in work on a speech device developed in the 1950s called the ‘pattern playback machine’, and intended to make it possible to automatically convert texts into spoken form so that,
for example, blind people could read with it. For this it was necessary to analyze speech very thoroughly, and Liberman stumbled upon the phenomenon that would become known as ‘categorical perception’. The theory rests on the basic hypothesis that people perceive spoken words by recognizing the gestures in the speech channel with which they are uttered, rather than by identifying the sound patterns that produce the speech (Liberman et al., 1967). So more specifically, the reason why people perceive an abrupt change between ‘b’ and ‘p’ in the way we hear speech sounds is determined by the way people produce these sounds as they speak. Unlike what happens with a synthetic morphing device, people’s natural vocal apparatus is unable to pronounce anything between ‘b’ and ‘p’. So when someone hears a sound from the synthetic morphing device, that person tries to compare that sound to what he or she would have to do with his or her vocal apparatus to produce this sound. Since a human vocal apparatus can only produce ‘b’ or ‘p’, all continuous synthetic stimuli will be perceived as ‘b’ or ‘p’, whichever is closest.

The theory came under criticism when it was shown that ‘identification’ and ‘discrimination’ of stimuli not connected to speech at all behave in a similar way to those connected to speech, when measured in a similar way (Lane, 1965). Also, it was found that before children could speak they already exhibited the specific categorical perception effect associated with speech perception that had been identified in adults (Eimas et al., 1971). It started to become clear that categorical perception was a phenomenon much more general than simply associated with speech, and the connection was put forward with earlier findings related to the way stimuli are organized. Specifically, Lawrence’s experiments and the theory of ‘acquired distinctiveness’ that he formulated from them, which happened in the same year as Bruner’s experiment, had revealed what turned out to be a very basic effect of perception. The theory of acquired distinctiveness states that stimuli for which is learned to give a different response to it become more distinct, while stimuli for which is learned to give the same response to it become more similar (Lawrence, 1949). Both effects are at work in humans across a multitude of perceptions, stimuli that fall within the same category are perceived as more similar, while stimuli that fall into different categories are perceived as more different. What happens with ‘colors’ is a good example of the phenomenon of categorical perception. We see a discrete set of colors, namely the colors of the rainbow, while from the physical reality there is a continuum of different frequencies offered to us as stimuli. The warping effect of the categorical perception of colors consists in that two stimuli that both fall within the category of ‘green’ are perceived more similarly than two stimuli of which one falls within the category of green and the second within the category of blue, even if from a physics perspective the both pairs of stimuli have the same difference in frequencies. The cooperation of these two effects, a contraction within an existing category, and a dilation between different categories, causes a clustering together into clumps of colors, which in the end gives rise to the seven colors of the rainbow.

Words too are such clumps formed in one way or another from perceptions, with simultaneous contraction and dilation as the warping mechanism of the stimuli. Categorical perception suggests in that sense at least a weak form of the so-called Sapir-Whorf hypothesis, namely that there is an influence of ‘how we name categories with language’ and ‘the perception of stimuli belonging to these categories’. In a first phase it was believed that this is not the case for colors, colors were found to be universal, and not subject to how they were named in different languages. Not only do most cultures divide the clumps of colors in a similar way, and give them separate names, but also for the few cultures where this is not the case, the regions of compression and dilation were believed to be the same. We all see blue and green in a similar way, with a fuzzy part in between, even if the naming is not the same (Berlin & Kay, 1969). This view was however contested by studies that nonetheless identified effects of the words that denote colors. Comparative research on colors between speakers of Setswana, a Bantu language spoken in South Africa by about 8.2 million people, and speakers of English, found many similarities but also identified differences that are relevant in terms of the Sapir-Whorf hypothesis (Davies et al., 1998). Speakers of Berinmo, an indigenous language in Papua New Guinea, have only one word, ‘nol’, for what English speakers call ‘green’ and ‘blue’. The difference they made compared to speakers of English in color discrimination tasks related to shades between green and blue was examined.
and determined (Davidoff, 2001). Later also evidence was found that linguistic categories affect categorical perception mainly in the right visual field. Since the right visual field is controlled by the left hemisphere, this finding was explained by the fact that language skills are also located in the left hemisphere (Regier & Kay, 2009). Recent sophisticated experiments, meanwhile, have demonstrated very thoroughly that language and the names given have a fundamental influence on the categorization that takes place across very primitive visual percepts. Nine-month-old infants were shown a continua of novel creature-like objects. There was a learning phase, where infants were shown that objects from one end of the perceptual continuum moved left and objects from the other end moved right. For one group of infants, the objects were always named with the same name, while for another group of infants, two different names were used to name the objects according to whether they belonged to one end of the continuum or the other. The test consisted of showing all infants new objects from the same continuum, and then seeing if a difference occurred between the two groups. What was found is that infants in the one-name condition formed one overarching category and looked for new test objects in either location. Infants in the two-name condition distinguished two categories and correctly anticipated the likely location of the test objects, even if they were near the poles or near the center of the continuum (Havy & Waxman, 2016). Even if this kind of experiments show that the phenomenon of categorical perception, i.e. the warping of stimuli, contracting toward sameness for those that will begin to form a category, and dilating toward distinctiveness for those that will belong to different categories, is always at work at all times of learning, there are indeed elements of it that already exist at birth. Our sensory perception of stimuli for both color and speech sounds have already been largely warped by evolution in the compression dilation manner inherent in categorical perception. Before we move on to a deeper analysis of what categorical perception may now mean in terms of the presence of quantum structures, let us briefly add to the rich experimental evidence base for the phenomenon by considering the categorical perception of emotions. Emotions are often studied by considering the seeing of facial expressions as stimuli, and it turns out that, like colors and speech sounds, these facial expressions are categorical, and across cultures consist of six basic categories, happiness, disgust, sadness, surprise, anger, and fear (Hess et al., 2009; Disa et al., 2011).

Is categorical perception merely the mechanism that produces a warping in the collection of stimuli? In the examples of the situations we considered, we left out an important aspect, namely, that the mechanism of forming a category often also involves stimuli that if one analyzes them purely physically are totally different. Thus, there is a ‘similarity’ in ‘difference’ present at a very fundamental level that we must make explicit. For example, all experiments whose intention is to start from basic stimuli in order to identify and quantify the mechanism of warping, actually start from a situation in which major important categorical choices already exist, and are without any doubt innate, namely those connected with the various senses of human beings. Indeed, the senses already make a very fundamental categorization, to which practically speaking, all others are subordinate. All the senses, in very fine and deep coordination and agreement, represent to us, among other things, a world in which objects are present and can move, in a space that is three-dimensional, and in which these objects can also interact. In this world, other people are also present, with bodies like our own, and minds like our own. Communicating with those others can be done through language. Because we are born with these different senses, a large part of the categorizing of stimuli as ‘belonging to the same category’ consists of stimuli which when analyzed in themselves are of a totally different nature, just think already of ‘sounds’ and ‘visual stimuli’, which from the everyday experience of the world are ‘grouped together’ in a category. If we want to understand more deeply the role of ‘contracting’ stimuli that belong to the same category, and dilating stimuli that belong to different categories, we have to introduce a more general way to consider ‘similarity’. It was crucial in terms of survival for our ancestors in the African savanna that they placed ‘the roar of a lion’ as a stimulus in the same category as ‘the sight of a lion’, whereas the former is a sound and the latter a visual stimulus, and thus as stimuli very different in themselves. It was also important that the sound of ‘the roar of a lion’ was considered different from the sound of ‘the roar of thunder’ in a specific way, different, for example, from the difference between ‘the roar of the lion’ and ‘the sight of the lion’. But, it is not just being born
with different senses that makes it necessary to broaden the notion of ‘similarity’. In Goldstone & Hendrickson (2010) a good example is given of how far the ‘similarity’ for essentially different stimuli extends when it comes to forming categories. For the category ‘things to be rescued from a burning house’, ‘children’ and ‘jewelry’ are ‘similar’ and member of this category. Introducing, mainly under the influence of the psychologist Murray Sidman, who applied it in his work with mentally retarded children to teach them basic skills, the notion of ‘equivalence relation’ for ‘similarity’, was theoretically a major step forward in understanding what ‘categorical perception’ structurally produces (Sidman, 1994). An equivalence relation is one which is ‘reflexive’ (\(x \sim x\)), ‘symmetrical’ (\(x \sim y \Rightarrow y \sim x\)), and ‘transitive’ (\(x \sim y, y \sim z \Rightarrow x \sim z\)), and if we say that ‘children’ and ‘jewels’ are similar, then it is better to speak rather of ‘equivalence’, specifying at the same time the category with respect to which this equivalence applies, namely ‘with respect to ‘things to be saved from a burning house’. This approach which consists of focusing on equivalence relations relative to categories, has already been used to describe aspects of animal social and communicative interactions such as kinship, friendship, coalitions, territorial behavior, and referential calling. In this way, this approach offers a new experiment-based understanding of how animals without language interact with categories in their environment, and more specifically, this has been investigated for sea lions (Schusterman et al., 2000).

After this passage along the notion of ‘equivalence relation’, and thus a theoretical modeling of what psychologists who study perceptions might call ‘the collection of stimuli’ by means of ‘the structure of categories’, we want to put forward two next steps of further development. The coming into existence of prototype theory as a modelization for concepts is the first step we want to mention (Rosch, 1973). The basic idea of prototype theory is that for a concept there is a central element, which we call the prototype, relative to which the exemplars of the concept can be placed within a graded structure. Rosch put forward the idea that would develop into the primary model for concepts by studying the categorical structure among the Dani for colors and basic shapes. The Dani are a people living in Papua New Guinea, with the specificity of possessing only two words designating colors, one meaning ‘bright’ and the other ‘dark’. The Dani also do not possess words in their language for basic shapes such as circle, square, and triangle. Rosch investigated whether there was a difference in learning between two groups of Dani volunteers, where one group was taught colors and basic shapes, starting with stimuli that are prototype colors and prototype basic shapes, while the other group was taught starting with stimuli that are distinct warping of these prototypes. In a significant way, it appeared that for both colors and basic shapes, learning was more qualitative for the group who was taught starting from the prototype stimuli. This evaluation of ‘more qualitative learning’ took into account the three characteristics of how this can be measured, i.e. by ease of learning sets of form categories when a particular type was the prototype, by ease of learning individual types within sets, and by rank order of judgment of types as best example of categories, when the prototypes of both, colors and shapes, were the stimuli in the learning process. Mathematical prototype models based on fuzzy sets were developed for concepts and tested experimentally and it seemed that the way in which by warping, i.e. contracting when stimuli fall into the same category and dilating when they fall into different categories, concepts emerge and grow from stimuli, had finally found a form in which to understand what is taking place in a fundamental theoretical level (Collier at al., 1973; Rosch, 1975; Rosch et al., 1976; Smith & Medin, 1981; Medin at al., 1984; Geeraerts et al., 2001; Johanden & Kruschke, 2005).

However, what was fundamentally wrong with prototype theory, at least in terms of the idea that a prototype, with a possibly very complex gradual structure of associated exemplars, could really serve as the basic type for any concept, became clear when the composition of two concepts was considered. As we mentioned in the introduction to this article, it was the guppy effect that revealed this problem of the combination of concepts (Osherson & Smith, 1981). For one of the authors, this guppy effect was also the trigger to try to identify quantum structures in human concepts (Gabora & Aerts, 2002; Aerts & Gabora, 2005a,b). Let us reframe the results of that time taking into account the knowledge gained in the meantime, also taking into account the work on the ‘equivalence relation’ that we mentioned above, and especially also taking into account
the basic approach of the present article, namely ‘to start from the stimuli’, along the ‘perceptions’, and then
but to the ‘concepts’, but also back to the ‘perceptions’.

One of the authors worked on the elaboration of an axiomatic quantum mechanics, in which ‘states’ of
entities, and ‘properties’ of those entities, are the basic elements, and the basic mathematical structure of
this axiomatic theory is thus a ‘state properties system’ ([Aerts] 1982, 1992, 2002). This axiomatic quantum
mechanics is also an operational theory, meaning that all elements, both states and properties, are operationally
defined and introduced. It is true that the theory is intended to ultimately describe quantum entities, but since
all the elements, ‘states’ and ‘properties’, are introduced operationally, ‘the nature of what the entities are
plays no role whatsoever in this axiomatic theory. This therefore means that the entities considered from this
axiomatic structure can also be ‘concepts’, since nowhere is it explicitly assumed that the quantum entities
intended to be described by this axiomatic theory would be ‘objects’. It is only assumed that they are ‘entities’
that are in a specific state under a specific context. This structural similarity was our inspiration to introduce
the notion of ‘state context property system’, or SCoP as an axiomatic theory for the description of concepts
([Aerts & Gabora] 2005a,b). It was also our first finding at the time, of a deep structural nature, regarding the
idea that a general quantum formalisms, such as what was built in this axiomatic approach ([Aerts] 2002), would
be able to provide a satisfactory description of human concepts. It was also our motivation for introducing the
notion of the ‘state of a concept’, and it also seemed to us to be the right generalization with respect to the
old idea that a concept, and one rather calls it then a category, would be a ‘collection of exemplars’. Rather
conversely, ‘exemplars are specific states of the concept of which they are an exemplar’.

It is important to note that the ‘introduction of the notion of state’ for a concept, actually goes back further
in the history of how humans make progress in describing reality. Indeed, this ‘notion of state’ is also already
used in classical mechanics. It was a deep insight that grew in the period between Galileo and Newton that
when describing a material object, the velocity of that object is as important when it comes to grasping its
deep reality as it is for the position of that object. We know this intuitively, if we are crossing a busy street
with heavy traffic we need to monitor the velocity at which we cross that street as much as our position if
we are to do so safely. Later came the more subtle insight, and it was more specifically Descartes who came
up with that proposal, that not velocity, but momentum, was the more relevant variable complemetary to
position. That it is rather the momentum, equal in non-relativistic mechanics to m, the mass, multiplied by
v, the velocity that is important, we also know intuitively. If we cross that busy street while carrying a heavy
weight, e.g., a child on our shoulders, we have to extra monitor our velocity along with our position, because
the extra weight makes our movement very different. And this is because it is the momentum, to which the
weight of our own body plus that of the child we are carrying on our shoulders contributes, that determines
how we can move. In the more profound classical mechanics theories, the state of a material object is described
by the couple (x,p), where x is the position of the object, and p is the momentum of that object. The set of all
these couples (x,p) for a material object is called its phase space, and the more abstract theories of classical
mechanics, e.g. Hamilton’s theory, describes any material object with as its state space its phase space. It is
also, in the context we are considering in this article, interesting to note that classical mechanics knowledge of
this Hamiltonian description of material objects in their phase space was crucial to the emergence of quantum
mechanics. It is no coincidence that ‘the Hamiltonian’ is a basic concept in Hilbert space quantum mechanics,
it is the operator that represents energy, and describes the evolution of the quantum system over time.

In ([Aerts & Gabora] 2005a) we studied how concepts change under different contexts. In doing so, we gave
the name ‘ground state’ to what is called ‘the prototype’ in prototype theory, while the exemplars in our SCoP
formalism are ‘excited states’ of the same concept, which is considered ‘an entity’ that can be in different states.
Take the concept ‘pet’, which given the known guppy effect as an archetypal problem in concept theory, we give
special attention. We then considered different contexts, two of which we give here as examples, the context
‘the pet is chewing a bone’ and the context ‘did you see the type of pet he has? This explains that he is a
weird person’. For the first context, ‘dog’ turned out to be the most typical pet, while for the second context
this most typical pet was ‘spider’. The intention of the SCoP modelization is to allow for dynamic change under the influence of context, following the example of a material object that moves and is also influenced by context, e.g. the gravitational field of the earth, the inertia of mass, the nature of space, but especially also the moving cars on the street, in the example of someone crossing a busy street that we mentioned above. The static picture in which a basic version of the prototype theory falls short would, if we applied it to the example of the person crossing a busy street, consist of one, or several, photographs, of the dynamic scene, and then assuming that these photographs could form the basis for a theory of what is happening. But, the contexts present in the situations described in what we call classical mechanics, such as the gravitational field of the earth, the inertia of material entities, space, are always very global, and little changing. The cars on the street are contexts that within classical mechanics are already very difficult to grasp in theory, only if special ad hoc models are made, because even each car of these driving on the street is still a classical context. A context like ‘the pet is chewing a bone’, or ‘did you see the type of pet he has? This explains that he is a weird person’, like we considered in Aerts & Gabora (2005a), is of a much more immediate and intrinsic nature. It is a context built from concepts while the entity whose state it changes is itself a concept. This immediacy and intrinseness is reminiscent of the contextuality that appears in quantum mechanics. And so it was an interesting avenue of research to try out whether the quantum formalism would be able to model the contextual dynamics that is clearly and very measurably present in human concepts as entities in a SCoP formalism.

The path taken with the ScoP formalism as inspiration, and thus a concept as a cloud of different states, the exemplars of the prototype theory, in a graded structure around the central element, the most typical state, the prototype, in ScoP language the ground state, proved very fruitful. For those who know the wave mechanics formalism of quantum mechanics, let us start from a Schrödinger wave function. Then we know that the absolute value squared of this wave function is the probability distribution of localization of the quantum particle described by that Schrödinger wave. The typical graded structure, the cloud of exemplars around a prototype, which is traditionally mathematically modeled using fuzzy set theory, can always also be modeled by such a probability distribution derived from a Schrödinger wave function, fuzzy sets and these probability distributions are indeed mathematically isomorphic structures. However, why is the quantum formalism essentially richer than a fuzzy set theory? Well, the probability distribution belonging to a Schrödinger wave is ‘the square of the absolute value’ of the Schrödinger wave, and this ‘square of absolute value’ makes, what is called the phase of the wave, disappear, since the absolute value of any phase is equal to 1. This unique fact, namely that the fuzzy aspect of quantum mechanics is only obtained ‘after’ an absolute value of the Schrödinger wave function is squared, also determines the intrinsic nature of quantum mechanics, for the superposition principle, the heart of quantum mechanics, is an operation of summation performed on the Schrödinger wave function itself, and ‘not’ on the square of the absolute value of this wave function.

A quantum model was worked out for the guppy effect in such a way with the Schrödinger wave function, and the intrinsic structure of quantum mechanics, and where it is fundamentally different from a fuzzy set theory (Aerts, 2009b; Aerts et al., 2012), using data on the combination of concepts collected by James Hampton in the 1980s (Hampton, 1988a, b). In Aerts (2009b), data are used from Hampton (1988b), for the concepts ‘Fruits’ and ‘Vegetables’, and their combination ‘Fruits or Vegetables’. In each case, participants in the experiment provide estimates on a Likert scale of the extent to which a considered exemplar ‘is’ or ‘is not’ a member of one of the three concepts. The data as they were used in Aerts (2009b) are represented in Table II. Hence concretely, the \(\mu(A)^7 = 0.1138 \) in the first column of Table II is the membership weight the participants attributed to the exemplar ‘Elderberry’ for ‘Fruits’, \(\mu(B)^{14} = 0.0545 \) in the second column of Table II is the membership weight the participants attributed to the exemplar ‘Mushroom’ for ‘Vegetables’, and \(\mu(A or B)^{4} = 0.0415 \) is the membership weight the participants attributed to the exemplar ‘Olive’ for ‘Fruits or Vegetables’. Note that the numbers in Table II are not the same as the ones Hampton measured. To represent the weights in a Hilbert space requires a renormalization, such that the sum of all the weights equals 1. These weights could also be measured directly in an experiment, but one would not use a Likert scale to do so, one would repeatedly pick
one of the exemplars as the preferred member. The experiment would be much more cumbersome, but from an experimental standpoint closer to measuring the nature of membership. We used Hampton’s Likert scale values to calculate these renormalized membership weights.

The next step consists in representing these data as the squares of the absolute value of three Schrödinger wave functions, of which the Schrödinger wave function describing the situation for ‘Fruits or Vegetables’ is the superposition of the two Schrödinger wave functions, this one describing the situation of ‘Fruits’, and this one describing the situation of ‘Vegetables’. To visualize this quantum model in a 25-dimensional Hilbert space,

![Figure 3: The membership weight \(\mu(A)_k \) of exemplar \(k \) for ‘Fruits’ are fitted into a two-dimensional quantum wave function \(\psi_A(x,y) \). The numbers are placed at the locations of the different exemplars with the membership weight corresponding to the probability distribution \(|\psi_A(x,y)|^2 \). This can be seen as a light source shining through a hole centered on the origin, where ‘Apple’ is located. The brightness of the light source in a specific region corresponds to the membership weight of this exemplar for ‘Fruits’.](image)

and to compare it with a situation that has been much studied in quantum physics, namely the double-slit experiment situation, we have given the exemplars a place in a plane, which, in this comparison with quantum physics, represents a detection plate. Figure 3 represents the situation for ‘Fruits’. The 24 exemplars are all states of ‘Fruits’, and we designate ‘places’ on the detection plate for each of them. Thus, these are the places where quantum particles would be detected when a slit is open, which we can call the ‘Fruits-slit’. A quantum particle flying through the ‘Fruits-slit’ is, say from a bundle of ‘Food’ selected as being ‘Fruits’. Further down the detection plate, it is then much more narrowly specified as being one of the exemplars. Figure 3 clearly shows the graded structure typical of a prototype model, and indeed, we show here the square of the absolute value of the Schrödinger wave function describing the situation of ‘Fruits’ using Hampton’s data. We see that ‘Apple’ is at the center of the light source, thus is the prototype for ‘Fruits’, or the ground state of the concept ‘Fruits’. The further away an exemplar is from ‘Apple’, the less the participants have estimated this exemplar on the Likert scale in terms of membership. This square of the absolute value of the Schrödinger wave function is also equal to the light intensity when a light source shines through the ‘Fruits-slit’. Underlying this, however, is the Schrödinger wave function itself, which possesses a phase that will play a fundamental role when another Schrödinger wave function is encountered. And we find this other Schrödinger wave function in Figure 4, where the data collected by Hampton for the concept of “Vegetables” are depicted. This time the same participants are asked to estimate on a Likert scale how much the same exemplars tested for the concept ‘Fruits’ ‘are’ or ‘are not’ members of the concept ‘Vegetables’.

![Figure 4: The membership weight \(\mu(A)_k \) of exemplar \(k \) for ‘Vegetables’ are fitted into a two-dimensional quantum wave function \(\psi_A(x,y) \). The numbers are placed at the locations of the different exemplars with the membership weight corresponding to the probability distribution \(|\psi_A(x,y)|^2 \). This can be seen as a light source shining through a hole centered on the origin, where ‘Brussels Sprout’ is located. The brightness of the light source in a specific region corresponds to the membership weight of this exemplar for ‘Vegetables’.](image)
Again, this figure clearly shows the graded structure of the prototype model, and indeed, just as was the case for ‘Fruits’, the square of the absolute value of the Schrödinger wave function for ‘Vegetables’ is used to model Hampton’s data. Again as is the case for ‘Fruits’, we can view this figure as light shining through a ‘Vegetable-slit’, whose particles are then detected on the detection plate. This time ‘Broccoli’ is the center of the light source, in prototype model language, the prototype of ‘Vegetables’, or, in SCoP language, the ground state of ‘Vegetables’. The further away an exemplar is from ‘Broccoli’, the less participants have rated this exemplar on the Likert scale in terms of membership. Again the Schrödinger wave function is underlying, with a phase that disappears by squaring the absolute value, but a phase that will play a crucial role if a superposition with another Schrödinger wave function is made. Figure 5 depicts Hampton’s data obtained for the concept ‘Fruits or Vegetables’, the combination that is a disjunction of the two concepts ‘Fruits’ and ‘Vegetables’. This time we use a Schrödinger wave function that is a superposition of the Schrödinger wave functions for ‘Fruits’ and the Schrödinger wave function for ‘Vegetables’. We see that this time we no longer get a simple graded structure, but a figure representing an interference pattern. Indeed, for this composite concept, there is no longer a center of the light source, and it is the situation where both slits, the ‘Fruits-slit’ and the ‘Vegetable-slit’ are open to the ‘Food’ particles.

	$\mu(A)_k$	$\mu(B)_k$	$\mu(A \lor B)_k$	$\frac{1}{2}(\mu(A)_k + \mu(B)_k)$	ϕ_k	
1	Almond	0.0359	0.0133	0.0269	0.0246	83.8854°
2	Acorn	0.0425	0.0108	0.0249	0.0266	-94.5520°
3	Peanut	0.0372	0.0220	0.0269	0.0296	-95.3620°
4	Olive	0.0586	0.0269	0.0415	0.0428	91.8715°
5	Coconut	0.0755	0.0125	0.0604	0.0440	57.9533°
6	Raisin	0.1026	0.0170	0.0555	0.0598	95.8648°
7	Elderberry	0.1138	0.0170	0.0480	0.0654	-113.2431°
8	Apple	0.1184	0.0155	0.0688	0.0670	87.6039°
9	Mustard	0.0149	0.0250	0.0146	0.0199	-105.9806°
10	Wheat	0.0136	0.0255	0.0165	0.0195	99.3810°
11	Root Ginger	0.0157	0.0323	0.0385	0.0240	50.0889°
12	Chili Pepper	0.0167	0.0446	0.0323	0.0306	-86.4734°
13	Garlic	0.0100	0.0301	0.0293	0.0200	-57.6399°
14	Mushroom	0.0140	0.0545	0.0604	0.0342	18.6744°
15	Watercress	0.0112	0.0658	0.0482	0.0385	-69.0705°
16	Lentils	0.0095	0.0713	0.0338	0.0404	104.7126°
17	Green Pepper	0.0324	0.0788	0.0506	0.0556	-95.6518°
18	Yam	0.0533	0.0724	0.0541	0.0628	98.0833°
19	Tomato	0.0881	0.0679	0.0688	0.0780	100.7557°
20	Pumpkin	0.0797	0.0713	0.0579	0.0755	-103.4804°
21	Broccoli	0.0143	0.1284	0.0642	0.0713	-99.6048°
22	Rice	0.0140	0.0412	0.0248	0.0276	-96.6635°
23	Parsley	0.0155	0.0266	0.0308	0.0210	-61.1698°
24	Black Pepper	0.0127	0.0294	0.0222	0.0211	86.6308°

Table 1: Interference data for concepts A, ‘Fruits’ and B, ‘Vegetables’. The membership weight of an exemplar k for ‘Fruits’ (‘Vegetables’, respectively) is given by $\mu(A)_k$ ($\mu(B)_k$, respectively). The membership weight of an exemplar k for ‘Fruits or Vegetables’ is given by $\mu(A \lor B)_k$. ϕ_k is the quantum interference angle.

Now let us work out the above mathematically. Let is choose the Schrödinger wave functions for ‘Fruits’, ‘Vegetables’ and ‘Fruits or Vegetables’ as functions of two variables x and y, which describe the locations on the detection plate by means of a coordinate system (x, y), and call them $\psi_A(x, y)$, $\psi_B(x, y)$ and $\psi_{A \lor B}(x, y)$ respectively. We choose $\psi_A(x, y)$ and $\psi_B(x, y)$ such that the real part for both wave functions is a Gaussian in
two dimensions, such that the top of the first Gaussian is in the origin, and the top of the second Gaussian is located in the point \((a, b)\). Hence
\[
\psi_A(x, y) = \sqrt{D_A} e^{-\frac{x^2}{4\sigma^2_{Ax}} + \frac{y^2}{4\sigma^2_{Ay}}} e^{iS_A(x, y)}
\]
\[
\psi_B(x, y) = \sqrt{D_B} e^{-\frac{(x-a)^2}{4\sigma^2_{Bx}} + \frac{(y-b)^2}{4\sigma^2_{By}}} e^{iS_B(x, y)}
\]

The squares of these Gaussians – also Gaussians – represent the membership weights and are graphically represented in Figures 3 and 4, and the different exemplars of Table 1 are located in spots such that the Gaussian distributions \(|\psi_A(x, y)|^2\) and \(|\psi_B(x, y)|^2\) properly model the membership weights \(\mu(A)_k\) and \(\mu(B)_k\) in Table 1 for each one of the exemplars. This is always possible, taking into account the parameters of the Gaussians, \(D_A, D_B, \sigma_{Ax}, \sigma_{Ay}, \sigma_{Bx}, \sigma_{By}, a, b\) and the necessity to fit 24 values, namely the values of \(\mu(A)_k\) and \(\mu(B)_k\) for each of the exemplars of Table 1. Remark that the constraint comes from the exemplars having to be located in exactly the same points of the plane for both Gaussians. Although the solution is an elaborate mathematical calculation, it is also straightforward, so that we leave its elaboration to the interested and exploring reader. It is not unique, but different solutions are topologically stretched versions of the one we use in this article, which means that the interference pattern of other solutions is topological isomorphic to the one we present here. For the Schrödinger wave function \(\psi_{A\otimes B}(x, y)\) we take the superposition of \(\psi_A(x, y)\) and \(\psi_B(x, y)\), hence the renormalized sum of these two functions.
\[
\psi_{A\otimes B}(x, y) = \frac{1}{\sqrt{2}}(\psi_A(x, y) + \psi_B(x, y))
\]

The square of the absolute value of this function needs to correspond now with the data that Hampton measured for the membership weights for ‘Fruits or Vegetables’. Let us calculate the square of the absolute
value of $\psi_{AorB}(x, y)$. We have
\begin{equation}
|\psi_{AorB}(x, y)|^2 = \frac{1}{2}(|\psi_A(x, y)|^2 + |\psi_B(x, y)|^2) + |\psi_A(x, y)\psi_B(x, y)| \cos \phi(x, y) \tag{19}
\end{equation}
where $|\psi_A(x, y)\psi_B(x, y)| \cos \phi(x, y)$ is the interference term and
\begin{equation}
\phi(x, y) = S_A(x, y) - S_B(x, y) \tag{20}
\end{equation}
is the quantum phase difference at (x, y). We calculated a solution for the function $\phi(x, y)$ as a linear combi-

Figure 5: The membership weight $\mu(A \text{ or } B)_k$ of exemplar k for ‘Fruits or Vegetables’ are fitted into a two-dimensional quantum wave function $\psi_{AorB}(x, y) = \sqrt{2}(\psi_A(x, y) + \psi_B(x, y))$. The numbers are placed at the locations of the different exemplars with the membership weight corresponding to the probability distribution $|\psi_{AorB}(x, y)|^2 = \frac{1}{2}(|\psi_A(x, y)|^2 + |\psi_B(x, y)|^2) + |\psi_A(x, y)\psi_B(x, y)| \cos \phi(x, y)$, where $\phi(x, y)$ is the quantum phase difference at (x, y). The values of $\phi(x, y)$ are given in Table 1 for the locations of the different exemplars. This can be seen as a light source shining with both the ‘Fruits-slit’ and the ‘Vegetable-slit’ open, and an interference pattern is clearly visible.

Figure 5: The membership weight $\mu(A \text{ or } B)_k$ of exemplar k for ‘Fruits or Vegetables’ are fitted into a two-dimensional quantum wave function $\psi_{AorB}(x, y) = \sqrt{2}(\psi_A(x, y) + \psi_B(x, y))$. The numbers are placed at the locations of the different exemplars with the membership weight corresponding to the probability distribution $|\psi_{AorB}(x, y)|^2 = \frac{1}{2}(|\psi_A(x, y)|^2 + |\psi_B(x, y)|^2) + |\psi_A(x, y)\psi_B(x, y)| \cos \phi(x, y)$, where $\phi(x, y)$ is the quantum phase difference at (x, y). The values of $\phi(x, y)$ are given in Table 1 for the locations of the different exemplars. This can be seen as a light source shining with both the ‘Fruits-slit’ and the ‘Vegetable-slit’ open, and an interference pattern is clearly visible.

In [Aerts et al. 2012] we modeled Hampton’s data for the concepts ‘Furniture’, ‘Household Appliances’ and ‘Furniture and Household Appliances’ in a very similar way as this was the case for ‘Fruits’, ‘Vegetables’ and ‘Fruits or Vegetables’. While the data for ‘Fruits’ and ‘Vegetables’ involved a composition that is the ‘disjunction’, this time it involves a composition that is a ‘conjunction’. We see the graded pattern for ‘Furniture’, or the light patterns with the ‘Furniture-slit’ open, in Figure 7 the graded pattern for ‘Household Appliances’ is shown, hence the light pattern with the ‘Household Appliances-slit’ open. and in Figure 8 the interference pattern is shown, hence the pattern that results from both slits open. Instead of describing in detail the images as we did for the combination of ‘Fruits’ and ‘Vegetables’, this time we will ask ‘whether we can understand why this kind of interference occurs’. By the way, there are two ‘guppies’ among the considered exemplars in Hampton’s data, namely ‘Hifi’ and ‘TV’. We can easily see this in Table 2. Indeed, the weight for ‘Hifi’ is equal to 0.056, 0.076, and 0.090 for ‘Furniture’, ‘Household Appliances’, and ‘Furniture and Household Appliances’,
respectively. Thus, this means that the participants in the experiment found that Hifi is more a member of ‘Furniture and Household Appliances’, than it is a member of ‘Furniture’ and than it is a member of ‘Household Appliances’.

$$\mu(A)_k \mu(B)_k \mu(A \text{ and } B)_k \frac{1}{2}(\mu(A)_k + \mu(B)_k) \phi_k$$

	$\mu(A)_k$	$\mu(B)_k$	$\mu(A \text{ and } B)_k$	$\frac{1}{2}(\mu(A)_k + \mu(B)_k)$	ϕ_k
A=Furniture, B=Household Appliances					
1 Filing Cabinet	0.079	0.040	0.062	0.059	87.614
2 Clothes Washer	0.026	0.118	0.078	0.072	84.013
3 Vacuum Cleaner	0.017	0.118	0.051	0.068	112.21
4 Hifi	0.056	0.079	0.090	0.067	70.575
5 Heated Waterbed	0.089	0.050	0.082	0.070	79.28
6 Sewing Chest	0.075	0.058	0.061	0.067	94.74
7 Floor Mat	0.052	0.023	0.031	0.037	100.87
8 Coffee Table	0.100	0.025	0.050	0.062	104.78
9 Piano	0.084	0.020	0.043	0.052	101.67
10 Rug	0.056	0.019	0.028	0.037	106.58
11 Painting	0.057	0.014	0.021	0.035	120.16
12 Chair	0.099	0.030	0.047	0.065	109.41
13 Fridge	0.042	0.117	0.085	0.079	85.23
14 Desk Lamp	0.066	0.079	0.085	0.072	79.85
15 Cooking Stove	0.037	0.118	0.088	0.078	81.57
16 TV	0.065	0.092	0.099	0.078	61.89

Table 2: Interference data for concepts A, ‘Furniture’ and B, ‘Household Appliances’. The membership weight of an exemplar k for ‘Furniture (or ‘Household Appliances’, respectively), is given by $\mu(A)_k \mu(B)_k$, respectively. The membership weight of an exemplar k for ‘Furniture and Household Appliances’ is given by $\mu(A \text{ and } B)_k$. The quantum phase angle ϕ_k provokes the quantum interference effect.

This is really similar to the Pet-Fish problem, or the guppy effect. In Figure 6 This is equivalent to ‘guppy’ being more typical of ‘pet-fish’ than it is typical of ‘pet’ or it is typical of ‘fish’. A similar guppy effect found Hampton for ‘TV’, with values 0.065, 0.092, 0.099 respectively. So, can we understand why this interference takes place?

Consider how interference takes place for example with water waves. If one throws two pebbles into the water, one notices for each pebble how an expanding wave is created in the water. A pebble, where it touches the water, pushes the water molecules into a downward and then upward movement as a reaction. And this oscillation of downward and upward motion swirls out in a circle over the water around each of the two pebbles. Where the two expanding ripples of water molecules meet, the typical interference of two water waves occurs. And we can easily and intuitively understand what is happening. If the water that was pushed down from one pebble meets the water that is moving up from the other pebble, the two movements cancel each other out, resulting in water that no longer moves. However, if water from the two pebbles meets water from both pebbles that has been pushed down or up, then these movements reinforce each other, and one gets a double downward or upward movement in those places. That pattern of annihilating movements on the one hand and amplifying movements on the other is the typical interference pattern.

Can we imagine how a similar phenomenon takes place when concepts are combined? Consider again the example of the ‘guppy effect’. If ‘guppy’ is confronted with ‘pet’ alone as a concept, and a human mind estimates the size of its membership, a slight upward movement occurs, and likewise if that estimate is made for the membership of ‘fish’ alone. If the same estimate is made for the combination ‘pet-fish’, then clearly a much greater upward movement takes place. This is a typical ‘amplifying’ case of interference. For the ‘pet-fish’ case, the phenomenon is very easy to sense intuitively. The data that Hampton collected show that similar interference patterns arise that are nevertheless more difficult to sense intuitively. For example, that
‘Hifi’ and ‘TV’ emerge as the two exemplars with the greatest ‘guppy’ effect is harder to sense intuitively. If one

types in ‘Furniture’ on Google Images, there is neither a Hifi nor a TV among the images presented, and this
is equally true if one types in ‘Household Appliances’ on Google Images. They are odd ducks in the collection

of exemplars Hampton tested in his experiment. And examining Hampton’s other data, one can note this as
a repeated phenomenon, if an exemplar does not fit well with any of the two concepts, there appears to be a tendency to see that exemplar fit better with a conjunction, but also with a disjunction, of these concepts.

We have already mentioned how ‘words’ of human language, likewise, like colors, can be seen as ‘clumps’ resulting from the warping by the mechanism of categorical perception. We wish to elaborate on the situation of words as elements of human language from recent work in which one of the authors was involved. In this more recent work it became clear that we can consider these words structurally as ‘quanta’ of human language. Indeed, we were able to show that an energy scheme can be constructed for texts of stories, and that this scheme then satisfies the energy distributions of the radiation of black bodies, the so-called Planck radiation law (Planck, 1900). And more so, that this Planck radiation law for human language had already been noted,

Figure 8: The membership weight \(\mu(A \cup B)_k \) of exemplar \(k \) for ‘Furniture and Household Appliances’ are fitted into a two-dimensional quantum wave function \(\psi_{A \cup B}(x,y) = \frac{1}{\sqrt{2}}(\psi_A(x,y) + \psi_B(x,y)) \). The numbers are placed at the locations of the different exemplars with the membership weight corresponding to the probability distribution \(|\psi_{A \cup B}(x,y)|^2 = \frac{1}{4}(|\psi_A(x,y)|^2 + |\psi_B(x,y)|^2) + |\psi_A(x,y)\psi_B(x,y)| \cos \phi(x,y) \), where \(\phi(x,y) \) is the quantum phase difference at \((x,y)\). The values of \(\phi(x,y) \) are given in Table 2 for the locations of the different exemplars. This can be seen as a light source shining with both the ‘Furniture-slit’ and the ‘Household Appliances-slit’ open, and an interference patterns is clearly visible.

purely empirically – without introducing the notion of ‘energy’ admittedly, but bringing in something similar called ‘ranking’ – and called Zipf’s law (Aerts & Beltran, 2020, 2022a,b). Let us consider the following thought experiment. The sentence: “I have already prepared the coffee, and also the cups are ready, shall we drink it together in the garden at the wooden table?” is a combination of 24 concepts, as each word represents a concept. One can imagine a fictional human culture where this sentence would be represented by ‘one word’, and in order to make this thought experiment more concrete, let’s come up with a word for the whole sentence, ‘bumoda’. So, what we mean is that in this fictional human culture, when someone says ‘bumoda’, it literally means ‘I have already prepared the coffee, and also the cups are ready, shall we drink it together in the garden at the wooden table?’. Of course, the reason that in this fictional culture there would be ‘one word’ for this phrase, which in our culture requires 24 words to express, is likely to be rooted in that ‘drinking coffee together in the garden at a wooden table’ is a common and rather in detail determined ritual within this fictional culture. Using this thought experiment, we can advance the hypothesis that the words in existing human languages stand for common fairly clear and easily recognizable experiences of importance to the human culture in which these languages exist.

If we consider the word ‘horse’, there are a multitude of possible experiences where this word will be chosen
to stand for these experiences. One such experience can be when walking by farmhouses where one passes by horses grazing in the meadow. If one stops for a moment to look at one of the animals, then the word ‘horse’ is appropriate to stand for that part of the experience. But for some people the word ‘horse’ can stand for very other types of experiences, for example an experience of riding a horse, or seeing a horse on TV or in a movie, or on the streets of a city at a parade, or being mounted by police, and so on ... The word ‘horse’ is, of course, also related to a distilling of a sameness in all these possible experiences that the animal that is a horse has as its main protagonist. In this sense, it is an immensely complex ordering of human experiences that is at the origin of the creation of the various words that constitute a human language. Human experiences that are not important enough, or that are too infrequent, or that are too complex, because there is no protagonist to identify – and we forget a lot of other possible reasons here – are not blessed with ‘one word’ standing for it. But human language has found a way to still have those experiences presented by a conceptual entity built from its words, a sentence being the shortest official example of it. Similarly, a paragraph, a conversation, a chapter of a book, and more generally a story, are primarily meant to stand for experiences for which not one word was reserved. The mechanism, the dynamics, and the structure, by which different words together in turn stand for such an experience for which not one word was reserved is very complex. However, from the broad perspective we are aiming at here, that mechanism, this dynamic, and this structure, is still largely scientifically unknown in its essence. Like we just analysed in some detail, even the shortest non-existent just ‘one word’ conceptual part of human language, namely the ‘combination of two words’, already contains great complexity. What we are interested in the approach we are proposing is the insight that any combination of words, be it a sentence, a paragraph, a chapter in a book, or an entire story, as a basic intention wishes to stand for an experience for which no one word was foreseen. This explains, in our view, the enormous contextuality, and interference, that takes place when words combine to form sentences, paragraphs and stories, again and again there is also the attempt to match with this long concatenated collection of words a well-defined experience, and to structure, order, contain, understand the stimuli and perceptions associated with that experience, which are in themselves a total chaos.

In addition to the Schrödinger wave function prototype theory, the ScoP formalism, and the quantum superposition and associated interference to describe the combination of concepts, there is an insights related to ‘words’ and ‘human language’ that we have additionally gained from these recent studies ([Aerts & Beltran 2020], [2022a,b]). For classical mechanics situations the ‘energy’ is a conserved quantity, and this is connected with the Hamiltonian being the mathematical representation of this energy, both in classical and in quantum mechanics, and likewise being the originator of the translation in time - it would take us too long to elaborate on this in our present article, but a Lie group theory based construction of the dynamics explains this. In [Aerts & Beltran] (2020), [2022a,b] we introduced the notion of energy for words. In this sense, it is interesting to note that words generally stand for conceptual entities that persist over time. A sentence, or a collection of sentences, uttered during a conversation with a friend, and thus a concatenated string of words, is generally intended to exist only during that brief period when the sentence carries meaning. We are working on this at the moment, but wish to mention it anyway already, we can see a typical quantum structure in time emerging here. Words superpose, just as plane waves superpose mathematically in a Fourier calculus and therefore cause short-lived phenomena. In this sense, we think that for the study of language as concatenated words, deeply contextual, and full of interference, a global quantum formalism in high dimensional Fock spaces is the way to go, and build a performative mathematical formalism.

5 Conclusions

We start from a quantum measurement model in which the quantum probabilities arise as a consequence of the existence of fluctuations on the interactions during the measurement itself of the measuring apparatus with the entity to be measured. We have noted how a basic event in human perception, namely the stimulus
against which a perception stands, represents a pure state by a mixture in the context of the expectation pattern of the one who perceives. It is this duality, on the one hand a mixture, within the context of the pattern of expectation, and that is the perception, and on the other hand a pure superposition state, outside the context of the pattern of expectation, and the stimulus existing there, that is captured in its entirety in the measurement model we introduced. From this basis we investigated how the mechanism of categorical perception, which, we believe emerges from this basic duality, mixture and perception, and pure state and stimulus, gives rise to a systematic structuring in a form of perceptual quantization. The most stable concepts can be described in a prototype theory that, however, is unable to capture the fiercely contextual dynamics of even simply compounded concepts in a satisfying way. By introducing an underlying quantum structure, motivated to do so from operational quantum axiomatics, it becomes possible to describe these contextual dynamics of composition using quantum superposition and interference. Our hypothesis is that the duality stimulus versus perception, pure superposition state versus mixed state in the expectation space of the one who perceives, is the ground on which this quantum version of a contextual dynamic prototype theory rests. In future research, we wish to bring forward additional evidence for this hypothesis.

References

Aerts, D. (1982). Description of many physical entities without the paradoxes encountered in quantum mechanics. *Foundations of Physics* 12, pp. 1131-1170. doi: [10.1007/BF00729621](https://doi.org/10.1007/BF00729621)

Aerts, D. (1986). A possible explanation for the probabilities of quantum mechanics. *Journal of Mathematical Physics* 27, pp. 202-210. doi: [10.1063/1.527362](https://doi.org/10.1063/1.527362)

Aerts, D. (1992). The construction of reality and its influence on the understanding of quantum structures. *International Journal of Theoretical Physics* 31, pp. 1815-1837. doi: [10.1007/BF00678294](https://doi.org/10.1007/BF00678294)

Aerts, D. (2002). Being and change: foundations of a realistic operational formalism. In D. Aerts, M. Czachor and T. Durt (Eds.), *Probing the Structure of Quantum Mechanics: Nonlinearity, Nonlocality, Probability and Axiomatics* (pp. 71-110). Singapore: World Scientific.

Aerts, D. (2009a). Quantum structure in cognition. *Journal of Mathematical Psychology* 53, pp. 314-348. doi: [10.1016/j.jmp.2009.04.005](https://doi.org/10.1016/j.jmp.2009.04.005)

Aerts, D. (2009b). Quantum particles as conceptual entities: A possible explanatory framework for quantum theory. *Foundations of Science* 14, pp. 361-411. doi: [10.1007/s10699-009-9166-y](https://doi.org/10.1007/s10699-009-9166-y)

Aerts, D. and Aerts, S. (1995). Applications of quantum statistics in psychological studies of decision processes. *Foundations of Science* 1, pp. 85-97. doi: [10.1007/BF00208726](https://doi.org/10.1007/BF00208726)

Aerts, D. and Beltran, L. (2020). Quantum structure in cognition: Human language as a Boson gas of entangled words. *Foundations of Science* 25, pp. 755-802. doi: [10.1007/s10699-019-09633-4](https://doi.org/10.1007/s10699-019-09633-4)

Aerts, D. and Beltran, L. (2022a). Are words the quanta of human language? Extending the domain of quantum cognition. *Entropy* 24, 6. doi: [10.3390/e24010006](https://doi.org/10.3390/e24010006)

Aerts, D. and Beltran, L. (2022b). A Planck radiation and quantization scheme for human cognition and language. *Frontiers in Psychology* 13, 50725. doi: [10.3389/fpsyg.2022.850725](https://doi.org/10.3389/fpsyg.2022.850725)

Aerts, D., Broekaert, J., Gabora, L. and Veloz, T. (2012). The guppy effect as interference. *Quantum Interaction. Lecture Notes in Computer Science* 7620, pp. 36-47. doi: [10.1007/978-3-642-35659-9_4](https://doi.org/10.1007/978-3-642-35659-9_4)

Aerts, D. and Czachor, M. (2004). Quantum aspects of semantic analysis and symbolic artificial intelligence. *Journal of Physics A: Mathematical and Theoretical* 37, L123-L132. doi: [10.1088/0305-4470/37/12/L01](https://doi.org/10.1088/0305-4470/37/12/L01)

Aerts, D. and Gabora, L. (2005). A theory of concepts and their combinations I: The structure of the sets of contexts and properties. *Kybernetes* 34, pp. 167-191. doi: [10.1108/03684920510575799](https://doi.org/10.1108/03684920510575799)

Aerts, D and Gabora, L. (2005). A theory of concepts and their combinations II: A Hilbert space representation. *Kybernetes* 34, pp.192-221. doi: [10.1108/03684920510575807](https://doi.org/10.1108/03684920510575807)

Aerts, D., Khrennikov, A., Mehucci, M., Bourama, T. (Eds.). (2019). *Quantum-Like Models for Information Retrieval and Decision-Making*. Cham, Switzerland: Springer.
Aerts, D. and Sassoli de Bianchi, M. (2014). The extended Bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. *Annals of Physics* 351, pp. 975-1025. doi: [10.1016/j.aop.2014.09.020]

Aerts, D. and Sassoli de Bianchi, M. (2016). The extended Bloch representation of quantum mechanics. Explaining superposition, interference and entanglement. *Journal of Mathematical Physics* 57, 122110. doi: [10.1063/1.4973356].

Aerts, D. and Sozzo, S. (2011). Quantum structure in cognition: Why and how concepts are entangled. *Quantum Interaction*. QI 2011. Lecture Notes in Computer Science 7052, pp. 116-127. doi: [10.1007/978-3-642-24971-6_12].

Aerts, D. and Sozzo, S. (2014). Quantum entanglement in concept combinations. *International Journal of Theoretical Physics* 53, pp. 3587-3603. doi: [10.1007/s10773-013-1946-z].

Aerts Arguelles, J. (2018). The heart of an image: Quantum superposition and entanglement in visual perception. *Foundations of Science* 23, pp 757-778. doi: [10.1007/s10699-018-9547-1].

Ball, P. (2013). Experts still split about what quantum theory means. *Nature*. doi: [10.1038/nature.2013.12198].

Bassi, A., Lochan, K., Satin, S., Singh, T. P. and Ulbricht, H. (2013). Models of wave-function collapse, underlying theories, and experimental tests. *Reviews of Modern Physics* 85, pp. 471-527. doi: [10.1103/RevModPhys.85.471].

Bell, J.S. (1964). On the Einstein Podolsky Rosen Paradox. *Physics* 1, pp. 195-200. doi: [10.1103/PhysicsPhysiqueFizika.1.195].

Berlin, B. and Kay, P. (1969). *Basic Color Terms: Their Universality and Evolution*. Berkeley: University of California Press.

Blutner, R. and beim Graben, P. (2016). Quantum cognition and bounded rationality. *Synthese* 193, pp. 3239-3291. doi: [10.1007/s11229-015-0928-5].

Bruner, J. S. and Postman, L. (1949). On the perception of incongruity: A paradigm. *Journal of Personality* 18, pp. 206-223. doi: [10.1111/j.1467-6494.1949.tb01241.x].

Bruza, P., and Cole, R. (2005). Quantum logic of semantic space: An exploratory investigation of context effects in practical reasoning. In S. Artemov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb and J. Woods (Eds.), *We Will Show Them: Essays in Honour of Dov Gabbay* (pp. 339-361), volume 1. London: College Publications.

Bruza, P. and Gabora, L. (Eds.) (2009). Special Issue: Quantum Cognition. *Journal of Mathematical Psychology* 53, pp. 303-452.

Busemeyer, J. R., Wang, Z. and Townsend, J. T. (2006). Quantum dynamics of human decision making. *Journal of Mathematical Psychology* 50, pp. 220-241. doi: [10.1016/j.jmp.2006.01.003].

Busemeyer, J. and Bruza, P. (2012). *Quantum Models of Cognition and Decision*. Cambridge: Cambridge University Press.

Camilleri, K. (2009). Constructing the myth of the Copenhagen Interpretation. *Perspectives on Science* 17, pp. 26-57. doi: [10.1162/posc.2009.17.1.26].

Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. (1969). Proposed experiment to test local hidden-variable theories. *Physical Review Letters* 23, pp. 880-884. doi: [10.1103/PhysRevLett.23.880]

Collier, G. A., Berlin, B. and Kay, P. (1973). Basic color terms: Their universality and evolution. *Language* 49, pp. 245-248. doi: [10.2307/412128.ISSN0097-8507].

Dalla Chiara, M. L., Giuntini, R., Leporini, R., Negri, E. and Sergioli, G. (2015). Quantum information, cognition, and music. *Frontiers in Psychology* 6, 1583. doi: [10.3389/fpsyg.2015.01583].

Davidoff, J. (2001). Language and perceptual categorisation. *Trends in Cognitive Sciences* 5 pp. 382-387. doi: [10.1016/s1364-6613(00)01726-5].

Davies, I. R. L., Bowden, P. T., Jerrett, D. T., Jerrett, T. and Corbett, G. G. (1998). A cross-cultural study of English and Setswana speakers on a colour triads task: A test of the Sapir-Whorf hypothesis. *British Journal of Psychology*. 89, pp. 1-15. doi: [10.1111/j.2044-8295.1998.tb02669.x].
Disa, S., LeGuen, O. and Haun, D. (2011). Categorical perception of emotional facial expressions does not require lexical categories. *Emotion* 11, pp. 1479-1483. doi: 10.1037/a0025336

Eimas, P. D., Siqueland, E. R., Jusczyk, P. W. and Vigorito, J. (1971). Speech perception in infants. *Science* 171, pp. 303-306. doi: 10.1126/science.171.3968.303

Gabora, L. and Aerts, D. (2002). Contextualizing concepts using a mathematical generalization of the quantum formalism. *Journal of Experimental and Theoretical Artificial Intelligence* 14, pp. 327-358. doi: 10.1080/09528130210162253

Gabora, L. and Kitto, K. (2017). Toward a quantum theory of humor. *Frontiers of Physics* 4, 53. doi: 10.3389/fphy.2016.00053

Geeraerts, D., Dirven, R., Taylor, J. R. and Langacker, R. W. (Eds.), (2001). *Applied Cognitive Linguistics, II, Language Pedagogy*. doi: 10.1515/9783110866254

Goldstein, S. (2022). Bohmian Mechanics. In E. N. Zalta (Ed.), *The Stanford Encyclopedia of Philosophy* (Summer 2022 Edition), URL = https://plato.stanford.edu/entries/qm-bohm/

Goldstone, R. L. and Hendrickson, A. T. (2010). Categorical perception. *Wires Cognitive Science* 1, pp. 69-78. doi: 10.1002/wcs.26

Hameroff, S. and Penrose, R. (2014). Consciousness in the universe: A review of the ‘Orch OR’ theory. *Physics of Life Reviews* 11, pp. 39-78. doi: 10.1016/j.plrev.2013.08.002

Hampton, J. A. (1988a). Overextension of conjunctive concepts: Evidence for a unitary model for concept typicality and class inclusion. *Journal of Experimental Psychology: Learning, Memory, and Cognition* 14, pp. 12-32.

Hampton, J. A. (1988b). Disjunction of natural concepts. *Memory & Cognition* 16, pp. 579-591. doi: 10.3758/BF03197059

Haven, E. and Khrennikov, A. (2013). *Quantum Social Science*. Cambridge: Cambridge University Press.

Howard, D. (2004). Who Invented the ‘Copenhagen Interpretation’? A study in mythology. *Philosophy of Science* 71, pp. 669-682. doi: 10.1086/425941

Johansen, M. K. and Kruschke, J. K. (2005). Category representation for classification and feature inference. *Journal of Experimental Psychology: Learning, Memory, and Cognition* 31, pp. 1433-1458. doi: 10.1037/0278-7393.31.6.1433

Lawrence, D. H. (1949). Acquired distinctiveness of cues: I. Transfer between discriminations on the basis of familiarity with the stimulus. *Journal of Experimental Psychology* 39, pp. 770-784. doi: 10.1037/h0058097

Liberman, A. M., Harris, K. S., Hoffman, H. S. and Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. *Journal of Experimental Psychology* 54, pp. 358-368. doi: 10.1037/h0044417

Liberman, A. M., Cooper, F. S., Shankweiler, D. P., Studdert-Kennedy, M. (1967). Perception of the speech code. *Psychological Review* 74, pp. 431-461. doi: 10.1037/h0020279

Medin, D. L., Altom, M. W. and Murphy, T. D. (1984). Given versus induced category representations: Use of prototype and exemplar information in classification. *Journal of Experimental Psychology: Learning, Memory, and Cognition* 10, pp. 333-352. doi: 10.1037/0278-7393.10.3.333

Melucci, M. (2015). *Introduction to Information Retrieval and Quantum Mechanics*. Berlin Heidelberg:
Moreira, C. and Wichert, A. (2016). Quantum probabilistic models revisited: the case of disjunction effects in cognition. *Frontiers in Physics* 4, 26. doi: [10.3389/fphy.2016.0026].

Osherson, D. N. and Smith, E. E. (1981). On the adequacy of prototype theory as a theory of concepts. *Cognition* 9, pp. 35-58. doi: [10.1016/0010-0277(81)90013-5].

Piwowarski, B., Frommholz, I., Lalmas, M. and van Rijsbergen, K. (2010). What can quantum theory bring to information retrieval. CIKM ’10: Proceedings of the 19th ACM international conference on Information and knowledge management. pp. 59-68. doi: [10.1145/1871437.1871450].

Planck, M. (1900). Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandlungen der Deutschen Physikalischen Gesellschaft 2, pp. 237-245. Leipzig: Johann Ambrosius Barth.

Pothos, E. M., Barque-Duran, A., Yearsley, J. M., Trueblood, J. S., Busemeyer, J. R. and Hampton, J. A. (2015). Progress and current challenges with the quantum similarity model. *Frontiers in Psychology* 6, 205. doi: [10.3389/fpsyg.2015.00205].

Pothos, E. and Busemeyer, J. (2022). Quantum Cognition. *Annual Review of Psychology* 73, pp. 749-778. doi: [10.1146/annurev-psych-033020-123501].

Regier, T. and Kay, P. (2009). Language, thought, and color: Whorf was half right. *Trends in Cognitive Sciences* 13, pp. 439-447. doi: [10.1016/j.tics.2009.07.001].

Schusterman, R. J., Reichmuth, C. J. and Kastak, D. (2000). How animals classify friends and foes. *Current Directions in Psychological Science* 9, pp. 1-6. doi: [10.1111/1467-8721.00047].

Sidman, M. (1994). *Equivalence Relations and Behavior: A Research Story*. Boston, MA: Authors Cooperative.

Rosch, E. H. (1973). Natural categories. *Cognitive Psychology* 4, pp. 328-350. doi: [10.1016/0010-0285(73)90017-0].

Rosch, Eleanor (1975). Cognitive representations of semantic categories. *Journal of Experimental Psychology: General* 104, pp. 192-233. doi: [10.1037/0096-3445.104.3.192].

Rosch, E., Mervis, C. B, Gray, W. D, Johnson, D. M and Boyes-Braem, P. (1976). Basic objects in natural categories. *Cognitive Psychology* 8, pp. 382-439. doi: [10.1016/0010-0285(76)90013-X].

Smith, E. E. and Medin, D. L. (1981). *Categories and Concepts*. Cambridge MA: Harvard University Press.

Song, D., Lalmas, M., van Rijsbergen, K., Frommholz, I., Piwowarski, B., Wang, J., Zhang, P., Zuccon, G., Bruza, P., Arafat, S., Azzopardi, L., Huertas-Rosero, A., Hou, Y., Melucci, M. and Rüger, S. (2010). How quantum theory is developing the field of information retrieval. In P. Bruza, W. Lawless, K. van Rijsbergen and D. Sofge (Eds.), *Proceedings of the AAAI Fall Symposium on Quantum Informatics for Cognitive, Social and Semantic Processes 2010*, AAAI Press, Arlington, VA, 2010, pp.105-108.

Surov, I. A. (2021). Quantum cognitive triad: Semantic geometry of context representation. *Foundations of Science volume* 26, pp. 947-975. doi: 'url10.1007/s10699-020-09712-x'.

Tversky, A. and Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. *Psychological Review* 90, pp. 293-315. doi: [10.1037/0033-295X.90.4.293].

Tversky, A. and Shafir, E. (1992). The disjunction effect in choice under uncertainty. *Psychological Science* 3, pp. 305-309.

von Neumann, J. (1932). *Mathematische Grundlagen der Quantenmechanik*. Berlin: Springer.

Van Rijsbergen, C. J. (2004). The Geometry of Information Retrieval. Cambridge University Press: Cambridge, United Kingdom.

Widdows, D. (2004). *Geometry and Meaning*. Stanford: CSLI publications.