TOTAL DIFFERENCE LABELINGS OF GRAPHS

RANJAN ROHATGI AND YUFEI ZHANG

Abstract. Inspired by graceful labelings and total labelings of graphs, we introduce the idea of total difference labelings. A k-total difference labeling of a graph G is a set of vertex labels from $\{1, 2, \ldots, k\}$, which induces a set of edge labels by taking the absolute difference of incident vertex labels, requiring that the sets of vertex labels and edge labels together form a total labeling of G. The minimum positive integer k for which G has a k-total difference labeling is its total difference chromatic number, $\chi_{td}(G)$. We determine the total difference chromatic number of paths, cycles, stars, wheels and related graphs. We also provide bounds for total difference chromatic numbers of caterpillars, lobsters, and trees.

1. Introduction

Graph labelings have been widely studied for over half a century, as evidenced by the sheer quantity of results contained in Gallian’s regularly-updated survey [2] of the subject. In this paper we define the total difference chromatic number of a graph, inspired by graceful and graceful-like labelings (see, for example, [1] for some recent work on the subject) and total colorings.

A graph labeling is an assignment of integers to the vertices and/or edges of a graph which follows certain conditions. For example, in a graceful labeling (introduced as a “β-valuation” by Rosa in [4] and first referred to as a “graceful labeling” by Golomb in [3]) of a graph with m edges, each vertex is assigned an integer from the set $\{0, 1, 2, \ldots, m\}$ and each edge gets as its label the absolute value of the difference of the labels on its incident vertices. If the resulting edge labels are distinct, the graph is said to have a graceful labeling.

A (proper) k-coloring of a graph is an assignment of labels (also called colors) to the vertices of a graph so that adjacent vertices receive different labels. Similarly, a (proper) k-edge-coloring is an assignment of k labels to the edges of a graph so that incident edges receive different labels. Combining both ideas, a (proper) k-total-coloring is an assignment of k labels to the edges and vertices of a graph so that adjacent vertices, incident
edges, and an edge and its incident vertices receive different labels. The minimum number of labels for which a \(k\)-coloring (respectively, \(k\)-edge-coloring, \(k\)-total-coloring) of a graph \(G\) exists is called the chromatic number (respectively, edge chromatic number, total chromatic number) and is denoted \(\chi(G)\) (respectively, \(\chi'(G)\), \(\chi''(G)\)). We will use “labeling” rather than “coloring” throughout this paper.

Combining the mechanism of labeling the edges of a graph from graceful labelings with total labelings, we define a \(k\)-total difference labeling and the total difference chromatic number of a graph in Section 2, along with some preliminary observations. In Sections 3, 4, and 5 we determine the total difference chromatic number for arbitrary paths, cycles, stars, and wheels. In the final three sections, we prove lower and upper bounds for the total difference chromatic numbers of caterpillars (Section 6), lobsters (Section 7), and trees (Section 8).

2. Preliminaries

For integers \(a < b\), we denote by \([a, b]\) the set of integers from \(a\) to \(b\). Given a graph \(G\), we properly label the vertices of \(G\) with integers from the set \([1, k]\). (If \(k\) is not used, we redefine \(k\) as the maximum vertex label given to a vertex of \(G\).) Then, as in the case of graceful labelings, we assign to each edge the absolute value of the difference of the incident vertices. If the vertex and edge labels, taken together, form a total labeling of \(G\), we call the set of vertex labels a \(k\)-total difference labeling of \(G\).

Definition 2.1. We may view a \(k\)-total difference labeling of a graph \(G\) as a proper labeling \(c : V(G) \to [1, k]\) that induces a function \(c' : E(G) \to [1, k-1]\) defined by \(c'({u, v}) = \left|c(u) - c(v)\right|\) such that the resulting vertex and edge labeling is a total labeling.

Definition 2.2. The total difference chromatic number of a graph \(G\), denoted \(\chi_{td}\), is the smallest integer \(k\) for which \(G\) has a \(k\)-total difference labeling.

We first prove that the total difference chromatic number is well-defined.

Proposition 2.3. Given a graph \(G\) with \(n\) vertices, \(\chi''(G) \leq \chi_{td}(G) \leq 3^{n-1}\).

Proof. The first inequality follows from the observation that a total difference labeling is precisely a total labeling with an additional condition specifying how the edges are labeled.

To show that \(\chi_{td}(G) \leq 3^{n-1}\), arbitrarily label the \(n\) vertices with distinct elements from the set \(\{3^0, 3^1, 3^2, \ldots, 3^{n-1}\}\). All edge labels will be of the form \(3^i - 3^j\) for distinct integers \(i, j \in [0, n-1]\) with \(i > j\). Notice that \(3^i - 3^j = 3^j(3^{i-j} - 1)\), which implies that all edges labels will be distinct and different from every vertex label. \(\square\)

Example 2.4. As an example to show that the total chromatic number and total difference chromatic number are different, we consider the complete
Figure 1. Upper bounds for $\chi''(K_3)$ (left) and $\chi_{td}(K_3)$ (right).

Figure 2. In a double, an induced edge label is equal to the label on an incident vertex.

graph K_3. As shown in Figure 1, $\chi''(K_3) \leq 3$. It is impossible to use only two labels as adjacent vertices would have the same label; hence $\chi''(K_3) = 3$.

On the other hand, $\chi_{td}(K_3) = 4$. Figure 1 gives 4 as an upper bound. Notice that only one of 1 and 2 can be used as a vertex label since all vertices are adjacent and the edge between the two vertices with these labels would also have label 1. Therefore, 4 is also a lower bound for $\chi_{td}(K_3)$.

The following definitions and propositions help us construct k-total difference labelings of several graphs.

Definition 2.5. Let $c : V(G) \rightarrow [1, k]$ be a k-labeling of a graph G. A double is a pair of adjacent vertices u and v such that $c(u) = 2c(v)$. We write $(c(u), c(v))$-double if we want to specify the labels of the vertices that form the double. See Figure 2 for an example of a $(2a, a)$-double.

Definition 2.6. Let $c : V(G) \rightarrow [1, k]$ be a k-labeling of a graph G. A 3-sequence is a triple of vertices u, v, w with $\{u, v\}, \{v, w\} \in E(G)$ such that $|c(u) - c(v)| = |c(v) - c(w)|$. We write $(c(w), c(v), c(u))$-sequence if we want to specify the labels of the vertices that form the the 3-sequence. See Figure 3 for an example of an $(a + 2b, a + b + a)$-sequence and an (a, b, a)-sequence.

Proposition 2.7. If a graph G with n vertices has $\text{diam}(G) \leq 2$, then $\chi_{td}(G) \geq n$ and in any k-total difference labeling of G all vertices must have different labels.

Proof. Assume that a graph G with n vertices has $\text{diam}(G) \leq 2$ and $\chi_{td}(G) = k < n$. Then any k-total difference labeling must have two vertices, u and v, with $c(u) = c(v)$. Clearly, u and v cannot be adjacent otherwise Definition 2.1 is violated as adjacent vertices would have the same label. Therefore, there is a vertex w adjacent to both u and v. But then u, v, w form a 3-sequence as $|c(u) - c(w)| = |c(v) - c(w)|$. \qed
Proposition 2.8. Let \(c \) be a \(k \)-labeling of a graph \(G \). Then \(c \) and \(c' \), taken together, form a \(k \)-total difference labeling of \(G \) if and only if \(c \) does not contain a double or a 3-sequence.

Proof. By Definitions 2.5 and 2.6, if \(c \) has either a double or 3-sequence then \(c \) and \(c' \) together cannot form a \(k \)-total difference labeling of \(G \).

By our assumption that \(c \) is a \(k \)-labeling of \(G \), no adjacent vertices have the same label. If \(c \) does not contain a double, then no edge receives the same label as any of its incident vertices. If \(c \) does not have a 3-sequence, then no incident edges get the same label. Hence, \(c \) and \(c' \) together form a \(k \)-total difference labeling of a graph \(G \).

Remark 2.9. Proposition 2.8 provides a method of determining if a proposed \(k \)-total difference labeling actually is one only by looking at the vertex labels. Therefore, when constructing \(k \)-total difference labelings of families of graphs throughout this paper, we only provide a (proper) vertex labeling and check that it does not contain doubles or 3-sequences.

Proposition 2.10. If \(G' \) is a subgraph of \(G \), then \(\chi_{td}(G') \leq \chi_{td}(G) \).

Proof. Let \(c \) be a \(k \)-total difference labeling of \(G \). As we are removing vertices or edges from \(G \) to get \(G' \), the restriction of \(c \) to \(G' \) is an \(\ell \)-total difference labeling of \(G' \) for some \(\ell \leq k \).

3. Paths and cycles

We first determine the total difference chromatic number of paths.

Theorem 3.1. For any path \(P_n \) with \(n \geq 4 \), \(\chi_{td}(P_n) = 4 \).

Proof. We denote the vertices in \(P_n \) by \(v_1, v_2, \ldots, v_n \) from left to right as in Figure 4. We label \(v_i \) with 1 if \(i \equiv 1 \) (mod 3), with 4 if \(i \equiv 2 \) (mod 3), and with 3 if \(i \equiv 0 \) (mod 3). It is straightforward to see that this labeling does not create any doubles or 3-sequences, and hence \(\chi_{td}(P_n) \leq 4 \).

We now show that \(\chi_{td}(P_n) \geq 4 \) by contradiction. Assume we can 3-total difference label \(P_n \). To avoid (2,1)-doubles, we must label every other vertex with 3, in which case we form a (3,2,3)- or (3,1,3)-sequence.
We now turn our attention to cycles. The total difference chromatic number of a cycle is given by
\[\chi_{td}(C_n) = \begin{cases}
4 & \text{if } n \equiv 0 \pmod{3} \\
5 & \text{otherwise.}
\end{cases} \]

Proof. Note that \(C_n \) is constructed by adding an edge between the two vertices of degree 1 in \(P_n \). Therefore, by Proposition 2.10, \(\chi_{td}(C_n) \geq \chi_{td}(P_n) = 4 \).

We denote the vertices by \(v_1, v_2, \ldots, v_n \) in this cyclic order.

If \(n \equiv 0 \pmod{3} \) we can label each vertex \(v_i \) exactly as we labeled \(v_i \) in \(P_n \), and hence \(\chi_{td}(C_n) = 4 \) in this case.

If \(n \equiv 1 \pmod{3} \), we label all vertices except \(v_n \) as in the case in which \(n \equiv 0 \pmod{3} \). We label \(v_n \) with 5. See Figure 5 for an example. To show \(\chi_{td}(C_n) \geq 5 \), we assume \(\chi_{td}(C_n) = 4 \) by contradiction. First notice that if any vertex gets label 2, then in avoiding (4,2)- and (2,1)-doubles, we form a (3,2,3)-sequence. Therefore, all vertices must have labels 1, 3, and 4. Without loss of generality, suppose we label \(v_1 \) with 1. Then the label on \(v_2 \) is either 3 or 4 and \(v_3 \) gets the remaining label. To avoid doubles and 3-sequences, this sequence of labels must repeat, ending with vertex \(v_{n-1} \).

But then \(v_n \) is forced to have a label greater than 4, completing the proof that \(\chi_{td}(C_n) = 5 \) when \(n \equiv 1 \pmod{3} \).

If \(n \equiv 2 \pmod{3} \), we label vertices \(v_1, v_2, \ldots, v_{n-5} \) as in the previous two cases. We then label \(v_{n-4}, v_{n-3}, v_{n-2}, v_{n-1}, v_n \) with 5, 1, 4, 3, 5 respectively. The argument that shows \(\chi_{td}(C_n) \geq 5 \) for \(n \equiv 2 \pmod{3} \) is similar to that in the \(n \equiv 1 \pmod{3} \) case. \(\square \)

4. Stars

We now consider stars, denoted \(K_{1,m} \). After determining the total difference chromatic number for an arbitrary star, we explicitly determine the different labels that the maximum degree vertex of a star can receive in a \(k \)-total difference labeling for certain \(k \). For all stars \(K_{1,m} \) throughout this paper, we denote the vertex of degree \(m \) by \(v_0 \) and the remaining vertices by \(v_1, v_2, \ldots, v_m \).

Theorem 4.1. Let \(K_{1,m} \) be a star. Then
\[\chi_{td}(K_{1,m}) = \begin{cases}
m + 1, & m \text{ is even} \\
m + 2, & m \text{ is odd}
\end{cases} \]
Figure 5. A construction that shows $\chi_{td}(C_n) \leq 5$ when $n \equiv 1 \pmod{3}$.

Proof. Consider the star $K_{1,m}$. Since $\text{diam}(K_{1,m}) = 2$, by Proposition 2.7, $\chi_{td}(K_{1,m}) \geq m + 1$.

We first consider the case where m is even. Give v_0 the label $m + 1$ and v_i the label i for $1 \leq i \leq m$. Since v_0 has the greatest label and is odd and v_1, \ldots, v_m have distinct labels, $K_{1,m}$ has no doubles or 3-sequences.

If m is odd, then $\chi_{td}(K_{1,m}) \leq m + 2$ if we label v_0 with $m + 2$ and the rest as in the even case. Note that there are no doubles or 3-sequences using the same argument as before. (See Figure 6 for the construction.)

To prove $\chi_{td}(K_{1,m}) \geq m + 2$, we assume $\chi_{td}(K_{1,m}) = m + 1$ by contradiction. In this case, each label in $[1, m + 1]$ appears on exactly one v_i. Note that we cannot use any integer in $[2, m]$ to label v_0: in this case there must be two leaves whose labels, along with the label for v_0, will form a $(\ell + 1, \ell, \ell - 1)$-sequence for some $\ell \in [2, m]$. We also cannot use 1 or $m + 1$ to label v_0 because we get a $(2, 1)$- or $(m + 1, \frac{m + 1}{2})$-double. Thus, when m is odd, $\chi_{td}(K_{1,m}) = m + 2$.

□

We now determine the number of k-total difference labelings of $K_{1,m}$ when $k = \chi_{td}(K_{1,m})$ and the possible labels for v_0, the maximum degree vertex.

Proposition 4.2. A star $K_{1,m}$ with maximum degree vertex v_0 has
(a) exactly one $(m + 1)$-total difference labeling up to isomorphism if m is even, and
(b) exactly $m + 2$ $(m + 2)$-total difference labelings up to isomorphism if m is odd.

Further, if m is even then v_0 must have label $m + 1$ and if m is odd then v_0 must have label 1 or $m + 2$.

Proof. We begin by proving part (a). Since we are considering only $(m + 1)$-total difference labelings of a graph with diameter 2, Proposition 2.7 implies that the vertex labels on the $m + 1$ vertices of $K_{1,m}$ must be distinct integers.
Figure 6. If m is even then $\chi_{td}(K_{1,m}) \leq m + 1$, and if m is odd then $\chi_{td}(K_{1,m}) \leq m + 2$.

Analogously to Proposition 4.2, we determine the possible labels for v_0 in an $(m + r)$-total difference labeling of $K_{1,m}$ for $1 \leq r \leq m$.

Lemma 4.3. Consider an $(m + r)$-total difference labeling of the star $K_{1,m}$ with $1 \leq r \leq m$. Then v_0 can have any label in the set $[1, r-1] \cup [m+2, m+r]$. If m is even or if m is odd and $r = \frac{m+3}{2}$, v_0 can additionally receive the label $m + 1$.

Proof. Throughout this proof, we let ℓ be the label given to v_0. The greatest label on a vertex in $K_{1,m}$ must be $m + r$ since we are considering $(m + r)$-total difference labelings of $K_{1,m}$. Since $K_{1,m}$ has $m + 1$ vertices, which require $m + 1$ distinct labels from $[1, m + r]$, we must use all but $r - 1$ integers in $[1, m + r - 1]$. We look at four cases, based on the possible values of ℓ, namely: $\ell \in [1, r-1]$, $\ell = r$, $\ell \in [r + 1, m]$, and $\ell \in [m + 1, m + r]$. Note that if $r = 1$, we have only three distinct cases.
If $1 \leq \ell \leq r - 1$, then ℓ could be the middle value in the $\ell - 1$ 3-sequences of the form $(\ell + i, \ell, \ell - i)$ where $1 \leq i \leq \ell - 1$. Additionally, ℓ could form a double with 2ℓ or with $\frac{\ell}{2}$ if ℓ is even. Therefore there are ℓ doubles and 3-sequences which include ℓ but are disjoint otherwise. (Notice that the (ℓ, ℓ)-double is not disjoint with the $(\frac{3\ell}{2}, \ell, \frac{\ell}{2})$-sequence). Since $\ell \leq r - 1$, we must avoid using at most $r - 1$ integers, as desired. Therefore, v_0 can be labeled with any integer in $[1, r - 1]$.

Suppose $\ell = r$, then again ℓ could be the middle value in the same $\ell - 1$ 3-sequences (of the form $(\ell + i, \ell, \ell - i)$ as above) with the integers in $[1, m + r]$, and a double with $2\ell = 2r \leq m + r$. Therefore, we have $\ell = r$ labels that cannot be used, giving us only m possible labels for $m + 1$ vertices. So, r cannot be used to label v_0.

Assume $r + 1 \leq \ell \leq m$. Then ℓ could be the middle value in r 3-sequences (and perhaps more) with the integers in $[1, m + r]$, namely, $(\ell + i, \ell, \ell - i)$ where $1 \leq i \leq r$. As in the previous case, v_0 cannot be labeled using any element of $[r + 1, m]$.

If $m + 1 \leq \ell \leq m + r$ there are $m + r - \ell$ 3-sequences possible: $(\ell + i, \ell, \ell - i)$ for $i \in [1, m + r - \ell]$. Therefore, if $\ell = m + j$ for $j \in [1, r]$, there are $r - j$ possible 3-sequences. In addition to these 3-sequences, ℓ may also be part of a double. Therefore we must avoid $r - j + 1$ labels for $j \in [1, r]$. If $j > 1$ then we are able to label v_0 with $m + j$ as there are at most $r - 1$ forbidden labels. If $j = 1$ and m is even, ℓ could not be part of a double as it is odd, and hence ℓ could be $m + 1$. If m is odd we could have up to r forbidden labels ($r - 1$ 3-sequences and a double) and so ℓ could not be $m + 1$. In all of these cases except when $r = \frac{m + 1}{2}$, the 3-sequences and double are disjoint and hence ℓ cannot be $m + 1$. The exception is described in the next paragraph.

Consider the case where m is odd and $r = \frac{m + 3}{2}$. Then for $\ell = m + 1$, we will have $r - 1$ 3-sequences of the form $(\ell + i, \ell, \ell - i)$ with i in $[1, r - 1]$, or equivalently in $[1, \frac{m + 1}{2}]$. We now consider doubles. Notice that the (ℓ, ℓ)-double (equivalently, $(m + 1, \frac{m + 1}{2})$-double) and the 3-sequence $(\ell + i, \ell, \ell - i)$ with $i = \frac{m + 1}{2}$ both contain the label $\frac{m + 1}{2}$. We can avoid both the double and 3-sequence simply by not using the label $\frac{m + 1}{2}$, hence the possible double does not give us an additional label that must be avoided. It is also easy to check that the $(2\ell, \ell)$-double is not possible since $2\ell = 2m + 2 > \frac{3m + 3}{2} = m + \frac{m + 3}{2} = m + r$ exceeds our bound. Hence, v_0 can have label $m + 1$ as there are only $r - 1$ possible violations of Proposition 2.8. \(\square\)

5. Wheels and related graphs

We create the wheel, W_n, from the cycle C_{n-1} by adding a vertex adjacent to all other vertices in the cycle. We use Theorem 4.1 to help determine the total difference chromatic number of wheels.
Figure 7. A construction that shows $\chi_{td}(W_4) \leq 8$ and $\chi_{td}(W_5), \chi_{td}(W_6), \chi_{td}(W_7) \leq 7$.

Theorem 5.1. For $n \geq 4$, $\chi_{td}(W_n) = \chi_{td}(K_{1,n})$ except when n is 4 or 5. Explicitly,

$$
\chi_{td}(W_n) = \begin{cases}
8 & n = 4 \\
7 & n = 5 \\
n + 1 & n \text{ is even and } n \geq 6 \\
n & n \text{ is odd and } n \geq 7.
\end{cases}
$$

Proof. We denote by v_0 the vertex with degree $n - 1$ and the remainder of the vertices by v_1, \ldots, v_{n-1} in this cyclic order. Notice that $K_{1,n-1}$ is a subgraph of W_n so Proposition 2.10 implies $\chi_{td}(W_n) \geq \chi_{td}(K_{1,n-1})$.

Suppose $n = 4$. Note that in W_4, all vertices are adjacent to each other, so $W_4 = K_4$. We obtain a total difference labeling of W_4 by labeling the vertices with 1, 5, 7, 8 (see the graph in the top left in Figure 7). It is straightforward to show that $\chi_{td}(W_4) \geq 8$ by case analysis.

For W_5, we label v_0 with 7 and v_1, v_2, v_3, v_4 with 1, 3, 2, 5, respectively. The graph in the top right in Figure 7 shows this construction.

Since W_5 has diameter 2, we use Proposition 2.7 to see that $5 \leq \chi_{td}(W_5) \leq 7$. We will now show that it cannot be 5 or 6. Suppose that $\chi_{td}(W_5) = 5$. If v_0 is labeled with 2, 3, or 4, then a 3-sequence must be formed. If v_0 gets the label 1, it must be adjacent to the vertex that gets labeled with 2. Finally, if v_0 is labeled with 5, one of the vertices with label 1 or 4 must be adjacent to the vertex with label 2. We can show similarly that $\chi_{td}(W_5) \neq 6$ by ruling out possible labels for v_0.
Figure 8. A construction that shows $\chi_{td}(W_n) \leq n$ when n is odd and $n \geq 7$.

For $\chi_{td}(W_6)$ and $\chi_{td}(W_7)$, constructions are provided in the bottom two graphs in Figure 7. Notice that we do indeed get that $\chi_{td}(W_6) = \chi_{td}(W_7) = 7$ due to Theorem 4.1 about the total difference chromatic number of stars and Proposition 2.10.

We construct total difference labelings of W_n for the general case, in which $n \geq 8$. If n is odd, we label v_0 with n and the vertices $v_1, v_3, v_5, \ldots, v_{n-2}$ with the consecutive odd integers $1, 3, 5, \ldots, n-2$, respectively. We label $v_2, v_4, v_6, \ldots, v_{n-1}$ with $n-1, 2, 4, 6, \ldots, n-3$, respectively. It is straightforward to check that no doubles or 3-sequences are created. See Figure 8 for the construction.

If n is even, our construction is nearly identical: vertices $v_1, v_3, v_5, \ldots, v_{n-1}$ are labeled with $1, 3, 5, \ldots, n-1$, respectively and $v_2, v_4, v_6, \ldots, v_{n-2}$ with $n-2, 2, 4, 6, \ldots, n-4$. The only difference is that v_0 gets the label $n+1$. Appealing again to Theorem 4.1 and Proposition 2.10 completes the proof.

We turn our attention to two families of graphs related to wheels: gears and helms. For $n \geq 4$, the gear G_n is formed by subdividing each edge on the outer circuit of W_n into two edges. The helm H_n is created from W_n by appending a leaf to each vertex on the outer circuit of W_n. See Figure 9 for several examples of gears and Figure 11 for an example of a helm.

Theorem 5.2. For gears G_n with $n \geq 4$,

$$\chi_{td}(G_n) = \begin{cases}
6 & n = 4, 5 \\
n + 1 & n \text{ is even and } n \geq 6 \\
n & n \text{ is odd and } n \geq 7.
\end{cases}$$

Proof. The constructions in Figure 9 show that the theorem holds when $4 \leq n \leq 7$. Observe that $K_{1,n-1}$ is a subgraph of G_n, so that $\chi_{td}(G_n) \geq \chi_{td}(K_{1,n-1})$ by Proposition 2.10. Theorem 4.1 implies that $\chi_{td}(K_{1,n-1}) = n$ if n is odd and $\chi_{td}(K_{1,n-1}) = n + 1$ if n is even so it remains to show
Figure 9. Constructions that show $\chi_{td}(G_4), \chi_{td}(G_5) \leq 6$ and $\chi_{td}(G_6), \chi_{td}(G_7) \leq 8$.

by construction that $\chi_{td}(G_n) \leq \chi_{td}(K_{1,n-1})$ for $n \geq 8$. We break up the construction into two cases based upon the parity of n.

First suppose that n is even and $n \geq 8$. We let v_0 be the vertex of degree $n-1$ in G_n. We denote the remaining vertices by $v_1, v_2, \ldots, v_{2n-2}$ in cyclic order, choosing v_1 to be any vertex adjacent to v_0. Notice that v_{2i} has degree 2 while v_{2i-1} has degree 3 for $1 \leq i \leq n-1$. We label v_0 with $n+1$ and $v_1, v_3, \ldots, v_{2n-3}$ with $1, 2, \ldots, n-1$, respectively. We then label $v_2, v_4, \ldots, v_{2n-2}$ with $n-2, n-1, 5, 6, \ldots, n-1, 2, 3$, respectively. It is straightforward to check that this does indeed give an $(n+1)$-total difference labeling of G_n when $n \geq 8$ is even. This construction is shown in Figure 10.

If n is odd and $n \geq 9$, we use a similar construction to show that $\chi_{td}(G_n) = n$: the only difference is that v_0 gets label n rather than $n+1$.

□

Theorem 5.3. For $n \geq 4$, $\chi_{td}(H_n) = \chi_{td}(W_n)$ except when n is 6 or 7. In these cases, $\chi_{td}(H_6) = \chi_{td}(H_7) = 8$.

We do not prove Theorem 5.3 in detail. By Proposition 2.10 it is clear that $\chi_{td}(H_n) \geq \chi_{td}(W_n)$. For $n \geq 8$, a construction that shows $\chi_{td}(H_n) \leq \chi_{td}(W_n)$ can be obtained from the total difference labelings for W_n described in Theorem 5.1 by determining labels for the leaves of H_n that avoid doubles and 3-sequences.
Figure 10. Vertices v_0 and v_1 (with labels n and 1, respectively) are named in the figure. Vertex v_2 has label $n - 2$ and is adjacent to v_1, and $v_3, v_4, \ldots, v_{2n-2}$ continue clockwise. This construction shows $\chi_{td}(G_n) \leq n + 1$ when n is even and $n \geq 8$.

Figure 11. A construction that shows $\chi_{td}(H_7) \leq 7$.

6. CATERPILLARS

We now determine the total difference chromatic numbers of caterpillars.

Definition 6.1. A *caterpillar* is a tree in which all vertices are at most distance 1 from a central path.

We recall that any central path contains exactly two vertices of degree 1.

Theorem 6.2. If G is a caterpillar with maximum degree Δ, then $\Delta + 1 \leq \chi_{td}(G) \leq \Delta + 3$.

Proof. Let G be a caterpillar with maximum degree Δ. Notice that $K_{1,\Delta}$ is a subgraph of G so Proposition 2.10 and Theorem 4.1 imply $\chi_{td}(G) \geq \chi_{td}(K_{1,\Delta}) \geq \Delta + 1$. If Δ is 1 or 2, then note that G is a path and we can
refer to Theorem 3.1 to determine \(\chi_{td}(G) \). Therefore, we assume \(\Delta \geq 3 \) throughout the proof.

If there are multiple options for the choice of central path in \(G \), choose one arbitrarily and call it \(P \). We denote the vertices on \(P \) by \(v_1, v_2, \ldots, v_n \) consecutively, so that \(\deg(v_1) = \deg(v_n) = 1 \) and \(\deg(v_i) > 1 \) for \(i \neq 1, n \). We label \(v_i \) on \(P \) with 1 if \(i \equiv 1 \pmod{3} \), with \(\Delta + 3 \) if \(i \equiv 2 \pmod{3} \), and with \(\Delta + 2 \) if \(i \equiv 0 \pmod{3} \). We now consider labelings of the neighbors of an arbitrary vertex on \(P \) based upon its label.

Suppose the vertex \(v_i \) on \(P \) gets label 1 so that \(v_{i-1} \) and \(v_{i+1} \) (if they exist) have labels \(\Delta + 2 \) and \(\Delta + 3 \), respectively. Then, since the subgraph induced by \(v_i \) and its neighbors is a star \(K_{1,d} \) for some \(d \leq \Delta \), the remaining vertices adjacent to \(v_i \) can be labeled with distinct integers from \([3, \Delta + 1]\) without creating a double or 3-sequence.

Similarly, if \(v_i \) gets label \(\Delta + 3 \), then the neighbors of \(v_i \) not on \(P \) (of which there are at most \(\Delta - 2 \)) can be labeled arbitrarily with distinct integers from \([2, \Delta + 1]\), excluding the use of \(\Delta + 1 \) as a label.

Hence, by looking at all possible constructions we have proven that \(\Delta + 1 \leq \chi_{td}(G) \leq \Delta + 3 \). \(\square \)

In fact, we can classify caterpillars according to their total difference chromatic numbers, though the proofs are omitted here.

Theorem 6.3. If \(G \) is a caterpillar, then \(\chi_{td}(G) = \Delta + 1 \) if and only if

1. \(\Delta \) is even,
2. the distance between vertices of degree \(\Delta \) is at least 3,
3. no three consecutive vertices have degrees at least \(\Delta - 1 \), and
4. there are no five consecutive vertices with first and last having degree \(\Delta \) and second and fourth having degree \(\Delta - 1 \).

Theorem 6.4. For caterpillar \(G \), \(\chi_{td}(G) = \Delta + 3 \) if and only if \(\Delta \) is odd and there are at least 3 vertices with degree \(\Delta \) in a row.

Using Theorems 6.2, 6.3, and 6.4 we can determine the total difference chromatic number of any caterpillar.

7. Lobsters

We now provide upper and lower bounds for the total difference chromatic number of lobsters.

Definition 7.1. A lobster is a tree in which all vertices are at most distance 2 from a central path.

In other words, removing the leaves of a lobster forms a caterpillar graph. We call the vertices on the central path the primary vertices. Vertices adjacent to primary vertices which are not themselves primary are called
Table 1. The values of $m_{8,7}(r, s)$ for all $(r, s) \in R \times S$. The table entries for invalid (r, s) pairs are left blank.

r	2	3	4	5	6	7	8	9
1	11	12	13	14	15	12	7	
10	9	11	12	14	15	12		
11	9	10	12	13	14	15	12	6

secondary vertices, and leaves adjacent to secondary vertices are called tertiary vertices. We define Δ_1 to be the maximum degree of the primary vertices and Δ_2 to be the maximum degree of the secondary level vertices. A maximal lobster is one in which every primary vertex with degree at least 2 has degree Δ_1 and every secondary vertex has degree Δ_2. We will prove an upper bound on the total difference chromatic number of maximal lobsters and hence, by Proposition 2.10, all lobsters.

The first step in determining our upper bound for the total difference chromatic number of an arbitrary maximal lobster is to label the central path, P, in the same way we labeled it for a caterpillar. Namely, we label v_i on P with 1 if $i \equiv 1 \pmod{3}$, with $\Delta_1 + 3$ if $i \equiv 2 \pmod{3}$, and with $\Delta_1 + 2$ if $i \equiv 0 \pmod{3}$. Let $R = \{1, \Delta_1 + 2, \Delta_1 + 3\}$ By Theorem 6.2 we know that all of the secondary vertices can have labels from $[1, \Delta_1 + 3]$. To avoid 3-sequences involving two primary and one secondary vertex, we restrict our possible secondary vertex labels to the set $S = [2, \Delta_1 + 1]$.

For each possible pair $(r, s) \in R \times S$ we consider the set of tertiary vertices adjacent to a secondary vertex with label s and degree s adjacent to a primary vertex with label r. We greedily label this set of vertices and record the maximum label used. For given values of Δ_1 and Δ_2, we call this value $m_{\Delta_1, \Delta_2}(r, s)$. (See Table 1 for an example with $\Delta_1 = 8$ and $\Delta_2 = 7$.) Notice that $m_{\Delta_1, \Delta_2+1}(r, s) \geq m_{\Delta_1, \Delta_2}(r, s) + 1$.

Definition 7.2. We call the least value of Δ_2 at which all subsequent unit increases of Δ_2 cause unit increases of $m_{\Delta_1, \Delta_2}(r, s)$ the stabilization point of (r, s).

Lemma 7.3. Let G be a lobster and let $r \in R = \{1, \Delta_1 + 2, \Delta_1 + 3\}$ and $s \in S = [2, \Delta_1 + 1]$.

(a) If $2 \leq s < \frac{\Delta_1 + 4}{2}$, then $m_{\Delta_1, \Delta_1+3-s}(r, s) = \Delta_1 + 4$, and the stabilization point of (r, s) is at most $\Delta_1 + 3 - s$.

(b) If $\frac{\Delta_1 + 4}{2} \leq s \leq \Delta_1 + 1$, then $m_{\Delta_1, s}(r, s) = 2s + 1$, and the stabilization point of (r, s) is at most s.

Proof. We first prove part (b). Suppose that $\frac{\Delta_1 + 4}{2} \leq s \leq \Delta_1 + 1$, and consider a secondary vertex, v, with label s and degree s adjacent to a primary vertex with label $r \in \{1, \Delta_1 + 2, \Delta_1 + 3\}$. We can label $s - 1$ of the s vertices adjacent to v by using exactly one element from each set $\{i, 2s - i\}$.
for \(1 \leq i \leq 2s - 1\). Notice that the primary vertex adjacent to \(v\) has a label from one of these sets, since \(1, \Delta_1 + 2,\) and \(\Delta_1 + 3\) are all less than \(2s\). The remaining tertiary vertex adjacent to \(v\) cannot be labeled with any unused positive integer less than \(2s\) since that would create a \((2s - i, s, i)\)-sequence, and labeling it with \(2s\) would create a double. Hence, the least possible label for this one remaining vertex is \(2s + 1\), so \(m_{\Delta_1}(r, s) = 2s + 1\). Notice that tertiary vertices adjacent to \(v\) can be labeled with any integer \(2s + k\) for \(k > 0\): these labels are larger than \(2s\), and hence cannot form a double, and larger than \(2s - 1\) and hence cannot form a 3-sequence involving \(s\). Therefore, the stabilization point of \((r, s)\) is at most \(s\).

We prove part (a) similarly to the part (b). Again consider a secondary vertex \(v\) with label \(s\) and degree \(\Delta_1 + 3 - s\), for some \(s\) with \(2 \leq s < \frac{\Delta_1 + 4}{2}\). We can label \(s - 1\) of the vertices adjacent to \(v\) as before: by using exactly one element from each set \(\{i, 2s - i\}\) for \(1 \leq i \leq s - 1\). We still must label \(\Delta_1 + 3 - s - (s - 1) = \Delta_1 + 4 - 2s\) vertices adjacent to \(v\), but this can be done using all integers in \([2s + 1, \Delta_1 + 4]\) (if \(r \neq 1\) then \(r\) is part of this set).

Observe that \(\Delta_2 = \Delta_1 + 3 - s\) is greater than or equal to the stabilization point of \((r, s)\) since if \(\Delta_2 > \Delta_1 + 3 - s\) we can label additional tertiary vertices with integers greater than or equal to \(\max\{2s, r\}\).

Corollary 7.4. Assume \(\Delta_2 \geq \Delta_1 + 1\). Then

(a) \(m_{\Delta_1}(r, s) \geq m_{\Delta_1}(r, s')\) if \(s \geq s'\), and

(b) \(m_{\Delta_1}(r, s) = m_{\Delta_1}(r', s)\) for any \(r, r' \in R\), when these values exist.

Proof. By Lemma 7.3, we know that \(\Delta_2 = \Delta_1 + 1\) is greater than or equal to the stabilization points of all \((r, s) \in R \times S\), and hence we can compute each \(m_{\Delta_1}(r, s)\) exactly when \(\Delta_2 \geq \Delta_1\). It is then straightforward to check that both parts of the claim hold. \(\Box\)

Theorem 7.5. For any non-degenerate lobster \(G\) (i.e. \(\Delta_1 \geq 3, \Delta_2 \geq 2\)),

\(\Delta + 1 \leq \chi_{td}(G) \leq \Delta_1 + \Delta_2 + 1\).

Proof. To prove that the claimed lower bound holds, we observe that a lobster contains as an induced subgraph the star \(K_{1, \Delta}\) and then appeal to Proposition 2.10.

Consider a maximal lobster in which all primary vertices (except the two of degree 1) have degree \(\Delta_1\) and all secondary vertices have degree \(\Delta_2\). First assume \(\Delta_2 = \Delta_1 + 1\). By Lemma 7.3 and Corollary 7.4(a), when \(\Delta_2 = \Delta_1 + 1\), the largest tertiary vertex label occurs when \(s = \Delta_1 + 1\) and \(r = 1, \Delta_1 + 3\) and is \(2 \cdot (\Delta_1 + 1) + 1 = \Delta_1 + \Delta_2 + 2\). By Lemma 7.3, all pairs \((r, s)\) have reached their stabilization points. Therefore, when \(\Delta_2 \geq \Delta_1 + 1\) and \(k \geq 0\), \(m_{\Delta_1, \Delta_2 + k}(r, s) = m_{\Delta_1, \Delta_2}(r, s) + k\) and \(m_{\Delta_1, \Delta_2 - k}(r, s) \leq m_{\Delta_1, \Delta_2}(r, s) - k\). Hence for any value of \(\Delta_2\), the largest tertiary vertex label is at most \(\Delta_1 + \Delta_2 + 2\). We now show that we can decrease this upper bound by 1.

For the primary vertices with degree greater than 1, we know, by our construction, the labels of the two adjacent primary vertices. Therefore
need only $\Delta_1 - 2$ distinct secondary vertex labels (i.e., values of s), and hence, for each $r \in \{1, \Delta_1 + 2, \Delta_1 + 3\}$ we can choose the least $\Delta_1 - 2$ values of $s \in [2, \Delta_1 + 1]$ that do not create any doubles or 3-sequences.

We check all possible pairs $(r,s) \in R \times S$ for doubles and 3-sequences. If $r = 1$, s cannot be 2, or we would have a double. If $r = \Delta_1 + 2$, then s cannot be $\Delta_1 + 1$ otherwise we would have a $(\Delta_1 + 3, \Delta_1 + 2, \Delta_1 + 1)$-sequence involving two primary vertices. Finally, depending on the parity of Δ_1, we must avoid either $s = \frac{\Delta_1 + 2}{2}$ (for $r = \Delta_1 + 2$) or $s = \frac{\Delta_1 + 3}{2}$ (for $r = \Delta_1 + 3$). See the empty boxes in Table 1 for (r,s) pairs that create doubles or 3-sequences in the case where Δ_1 is even.

For each value of r, we need only the least possible $\Delta_1 - 2$ values of s as secondary vertex labels. If $r = 1$, since the only forbidden value of s is 2, we can use all of the integers in $[3, \Delta_1]$. For one of the remaining two possible values of r we cannot have $s = \frac{\Delta_1}{2}$. For this value of r, we use as our secondary labels all integers in $[2, \Delta_1]$ except $\frac{\Delta_1}{2}$. For the other value of r, we can use all integers in $[2, \Delta_1 - 1]$. Notice that we need not label any of the secondary vertices in our maximal lobster with $\Delta_1 + 1$.

Hence, when $\Delta_2 = \Delta_1 + 1$, the largest relevant secondary vertex label is $s = \Delta_1$ and $m_{\Delta_1, \Delta_1 + 1}(r, \Delta_1) = 2 \cdot \Delta_1 + 2 = \Delta_1 + \Delta_2 + 1$ by Lemma 7.3. As all pairs (r,s) have reached their stabilization points we know that for any value of Δ_2, and for any lobster, the largest tertiary vertex label is at most $\Delta_1 + \Delta_2 + 1$. \square

8. Trees

In this section, we provide an upper bound for the total difference chromatic number for any tree.

We first define a maximal rooted tree, denoted $T_{\Delta,h}$. For any integer $\Delta \geq 2$, $T_{\Delta,1}$ is defined to be the star $K_{1, \Delta}$. We let v_0 be the vertex in $T_{\Delta,1}$ with maximal degree, and each other vertex is a leaf. For each integer $h \geq 2$ we define $T_{\Delta,h}$ to be the tree obtained from $T_{\Delta,h-1}$ by appending $\Delta - 1$ new leaves to each leaf of $T_{\Delta,h-1}$. Therefore, $T_{\Delta,h}$ is a rooted tree in which the distance from the root v to every other vertex is at most h. It is maximal in the sense that every vertex whose distance from v is less than h has degree Δ, while those at distance h have degree 1.

Notice that every tree is a subgraph of $T_{\Delta,h}$ for some choice of Δ and h. Therefore, if we find an upper bound for $\chi_{td}(T_{\Delta,h})$ the same bound works for an arbitrary tree T with maximum degree Δ and appropriately-chosen h.

Before providing such a bound, we determine the total difference chromatic number for maximal rooted trees with height 2.

Lemma 8.1. For a maximal rooted tree with height 2,

$$\chi_{td}(T_{\Delta,2}) = \left\lfloor \frac{3\Delta + 3}{2} \right\rfloor.$$
The root v_0 of $T_{\Delta, 2}$ is adjacent to Δ vertices, which we denote by $v_1, v_2, \ldots, v_\Delta$, each of which is adjacent to a further Δ vertices (including v_0). First assume Δ is odd. By Lemma 4.3, for any $1 \leq r \leq \Delta$ with $r \neq \frac{\Delta + 3}{2}$, there are exactly $2r - 2$ possible labels for each v_i so that the maximum label on each $K_{1, \Delta}$ is exactly $\Delta + r$.

Notice that $v_0, v_1, \ldots, v_\Delta$ all must have different labels since they are most distance 2 apart. Therefore, we must choose r so that $2r - 2 \geq \Delta + 1$. In particular we must have that $r \geq \frac{\Delta + 3}{2}$. (In the exceptional $r = \frac{\Delta + 3}{2}$ case, this inequality is still satisfied.)

If we label v_0 with $\Delta + r$, then each of these $\Delta + 1$ copies of $K_{1, \Delta}$ will have maximum label $\Delta + r$ and therefore it is possible to give the entire $T_{\Delta, 2}$ a $(\Delta + r)$-total difference labeling.

To minimize $\Delta + r$, we choose $r = \frac{\Delta + 3}{2}$. By construction, we cannot choose a smaller value of r as there would not be enough distinct labels for $v_0, v_1, \ldots, v_\Delta$. Therefore, for odd Δ, $\chi_{td}(T_{\Delta, 2}) = \Delta + \frac{\Delta + 3}{2} = \frac{3\Delta + 3}{2}$.

If Δ is even, Lemma 4.3 implies that there are $2r - 1$ options for the labels of $v_0, v_1, \ldots, v_\Delta$. Therefore $2r - 1 \geq \Delta + 1$, or, equivalently, $r \geq \frac{\Delta + 2}{2}$. A similar argument to the one in the previous case implies that, for even Δ, $\chi_{td}(T_{\Delta, 2}) = \Delta + \frac{\Delta + 2}{2} = \frac{3\Delta + 2}{2}$. Combining the two cases gives us the desired result.

Theorem 8.2. For any maximal rooted tree $T_{\Delta, h}$ with $h \geq 2$, $\lfloor \frac{3\Delta + 3}{2} \rfloor \leq \chi_{td}(T_{\Delta, h}) \leq 2\Delta + 1$.

Proof. The lower bound is a result of Lemma 8.1 and Proposition 2.10.

To prove the upper bound, first consider the subgraph T' induced by the root v_0 and its neighbors (which we denote $v_1, v_2, \ldots, v_\Delta$). The labels on these vertices must all be distinct by Proposition 2.7. Choose arbitrarily a label $\ell \in [1, 2\Delta + 1]$ for v_0. We show that for any choice of ℓ, at most Δ numbers in $[1, 2\Delta + 1]$ cannot be labels of other vertices of T', which leave the remaining numbers, of which there are at least Δ, free to label the Δ neighbors of v_0.

First, suppose $\ell < \Delta + 1$. Then, to avoid 3-sequences, we may use at most one element from each set $\{\ell - i, \ell + i\}$ for $1 \leq i \leq \ell - 1$ (though, if ℓ is even we must not use the element ℓ from the set $\{\ell, 2\ell\}$ to avoid a double). Further, we may not use the number 2ℓ as a label. All other numbers are valid for labeling vertices of T' and, as we have only ruled out $\ell \leq \Delta$ options, there are at least enough to label the remaining Δ vertices of T'. An analogous argument shows that if $\ell > \Delta + 1$ we also have enough numbers to label all vertices of T'.

If $\ell = \Delta + 1$ then, to avoid 3-sequences, we again may use at most one element from each set $\{\ell - i, \ell + i\}$ for $1 \leq i \leq \ell - 1$ (and again, one of these includes ℓ if ℓ is even). In this case, however, $2\ell \notin [1, 2\Delta + 1]$ so we still have enough numbers to label the remaining vertices of T'.
In each case, all vertices of T' can be labeled; suppose that vertex v_j gets label ℓ_j for $1 \leq j \leq \Delta$. By the same argument as above, there are enough available numbers in $[1, 2\Delta + 1]$ to label all neighbors of each v_j. We can give these vertices labels and then repeat the process until the vertices of the entire tree $T_{\Delta,h}$ have been labeled with integers in $[1, 2\Delta + 1]$. □

The following corollary follows directly from Theorem 8.2.

Corollary 8.3. For any tree T, $\Delta + 1 \leq \chi_{td}(T) \leq 2\Delta + 1$.

References

[1] Zhenming Bi, Alexis Byers, Sean English, Elliot Laforge, and Ping Zhang. Graceful colorings of graphs. *J. Combin. Math. Combin. Comput.*, 101:101 – 119, 2017.

[2] Joseph A. Gallian. A dynamic survey of graph labeling. *Electronic J. Combin.*, DS6, 2018.

[3] Solomon W. Golomb. How to number a graph. In R. C. Read, editor, *Graph Theory and Computing*, pages 23–37. Academic Press, New York, 1972.

[4] Alexander Rosa. On certain valuations of the vertices of a graph. In *Theory of Graphs (Internat. Symposium, Rome, July 1966)*, pages 349–355. Gordon and Breach, New York, 1967.