Efficacy and Safety of Lenalidomide in the Treatment of Multiple Myeloma: A Systematic Review and Meta-analysis of Randomized Controlled Trials

Shu-Kai Qiao¹, Xiao-Nan Guo¹, Jin-Hai Ren¹, Han-Yun Ren²
¹Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
²Department of Hematology, Peking University First Hospital, Beijing 100034, China

Background: Lenalidomide has emerged as an important treatment for patients with multiple myeloma (MM). However, its role in the management of MM is still controversial and requires further clarification. The aim of this study was to evaluate efficacy and safety of lenalidomide for MM using a meta-analysis.

Methods: We searched the electronic databases including: PubMed, EMBASE and the Cochrane Center Register of Controlled Trials. Seven randomized clinical trials were identified, which included a total of 2357 patients with MM who received lenalidomide-containing, non-containing lenalidomide regimens or placebo as induction therapy or maintenance therapy. The outcomes included overall response (OR) rate, complete response (CR) rate, 3-year progression-free survival (PFS) rate, 3-year overall survival (OS) rate, and different types of treatment-related adverse events. We calculated the risk ratios (RRs) as well as their 95% confidence intervals of these outcomes and pooled the results using RevMan 5.2 software.

Results: For patients with previously untreated MM, OR rate and CR rate was significantly higher in lenalidomide-containing group than the control group. For relapsed or refractory MM patients, lenalidomide-containing regimens significantly improved the OR rate, CR rate, 3-year PFS rate and 3-year OS rate. With regard to MM patients after autologous stem cell transplantation, lenalidomide maintenance therapy significantly improved 3-year PFS rate but did not result in improved 3-year OS rate. In terms of toxicities, lenalidomide therapy has a higher rate of Grade 3–4 grade cytopenias, infection, deep-vein thrombosis, and diarrhea. Furthermore, the incidence of second primary malignancies was significantly higher in the lenalidomide group.

Conclusions: The lenalidomide-containing regimens as induction therapy clearly increased response rates and improved intervals of survival with acceptable toxicity rates for patients with MM. However, when physicians choose to use the lenalidomide as maintenance therapy, whether the benefits outweigh the risks should be taken into account.

Key words: Lenalidomide; Meta-analysis; Multiple Myeloma
immunity. Lenalidomide-containing therapy has been shown to improve the outcomes of patients with newly diagnosed or previously treated MM.\cite{11-16} In addition, lenalidomide maintenance therapy, significantly improve the progression-free survival (PFS) of both young patients after ASCT and old patients after conventional induction chemotherapy, but the effect on overall survival (OS) was controversial.\cite{12,17,18} In addition, lenalidomide has been shown to further increase the risk of adverse events (AEs), especially when combined with glucocorticoids and/or cytotoxic drugs.\cite{12,15,16,19,20}

Therefore, we conducted a systematic meta-analysis in order to assess the efficacy and safety of lenalidomide in the treatment of patients with MM and specifically to elucidate whether lenalidomide-containing regimens offer a survival advantage over nonlenalidomide-containing regimens.

Methods

Search stratery

Electronic databases including PubMed, EMBASE and the Cochrane Center Register of Controlled Trials were searched using the following search terms: “Randomized,” “myeloma” and “lenalidomide.” Other potentially eligible studies were also manually searched according to the reference lists from the trials identified. All the data retrieved were updated to May 2013.

Selection of studies and data extraction

Clinical trials were selected if they met the following criteria: (1) Study design: Prospective randomized controlled trial (RCT); (2) study object: Patients with newly diagnosed or previously treated MM; (3) acceptable comparisons: Lenalidomide-containing regimens versus nonlenalidomide-containing regimens for newly diagnosed or relapsed/refractory MM treated with standard chemotherapy (other drugs of these regimens must be the same), or lenalidomide maintenance therapy versus placebo for MM after ASCT; and (4) the study recorded the necessary data about therapy efficacy and safety. To avoid publication bias, we included trials regardless of publication status and language. When more than one of the same or overlapping publications was reported in several studies, only the most complete data were used for further combined analysis.

The following data were extracted from each eligible study: The name of the first author, year of publication, study design, patient details, intervention received, number of subjects, age, overall response (OR), complete response (CR), PFS, OS, and Grade 3 or 4 toxicities associated with lenalidomide treatment (neutropenia, febrile neutropenia, anemia, thrombocytopenia, infection, fatigue, nausea, diarrhea constipation, deep-vein thrombosis (DVT) and second primary malignancies [SPMs]). When the data required for the analysis could not be extracted, attempts were made to contact the investigators who conducted the studies.

Outcome measures

Outcomes assessed by this meta-analysis included OR, CR, 3-year OS, 3-year PFS and different types of treatment-related AEs. OS was defined as the time from the date of randomization until death from any cause. PFS was defined as the time from the date of randomization until disease progression or death. As for AEs, we analyzed Grade 3 or 4 hematological and nonhematological toxicity, as well as SPMs.

Responses to treatment and disease status were assessed with the use the European Group for Blood and Marrow Transplantation criteria,\cite{21} and a very good partial response (VGPR) was defined according to the International Uniform Response Criteria for Multiple Myeloma.\cite{22} National Cancer Institute Common Toxicity Criteria was used to assess AEs.\cite{23}

Quality assessment

To avoid bias in the data abstraction process, the two hematologist investigators (Shu-Kai Qiao and Han-Yun Ren) independently abstracted the data from all identified trials and subsequently screened search results. All data were checked for internal consistency, and disagreements were resolved by discussion. Methodological quality of each clinical trial was evaluated using the modified Jadad quality scores,\cite{24} including the presence of randomization, allocation concealment, blinding, and withdrawal/dropout. A general quality score was assigned to each study as follows: Non-RCTs (0), low quality studies (1–3), and high quality studies (4–7).

Statistical analysis

Statistical analyses were performed using Review Manager 5.2 statistical software (Cochrane Collaboration, Denmark). Dichotomous data were expressed as risk ratio (RR) and 95% confidence intervals (CIs). We assessed the heterogeneity in the results of the trials using Cochrane Q statistic and the I^2 value. If a $P < 0.10$ or $I^2 >50\%$, the assumption of homogeneity was deemed invalid and the Mantel–Haenszel random-effects model was used after exploring the causes of heterogeneity. Otherwise, we conducted a meta-analysis using a fixed-effect model. We defined a $P < 0.05$ as statistically significant for all outcomes.

Results

Search results

The search strategy identified 993 potentially relevant studies, of which 965 were excluded after screening titles and abstracts. Full text or further details were retrieved for the remaining 28 studies. Of those, 8 non-RCT studies, 5 duplicate data, 5 control not suitable studies, and 3 other inclusion criteria not met studies were excluded. Eventually, seven RCTs that included 2357 patients were identified for the meta-analysis.\cite{12,15-18,25,26} Figure 1 shows the studies selection process. The k statistic for the agreement between the two reviewers for study selection was excellent ($K = 0.78$). The basic characteristics and quality scores of included studies were listed in Table 1.
Table 1: Characteristics of included studies in the meta-analysis

Study, year	Study design	Patient details	Intervention	Number of patients	Ages (years)	Outcomes	Jadad score
Dimopoulos et al. 2007	RCT	Relapsed or refractory	Experiment: L-DEX	176	63 (33–84)	OS, PFS, AEs	5
		Control: P-DEX	Control: P-DEX	175	64 (40–82)		
Weber et al. 2007	RCT	Relapsed	Experiment: L-DEX	177	64 (36–86)	OS, PFS, AEs	6
		Control: P-DEX	Control: P-DEX	176	62 (37–85)		
Zonder et al. 2010	RCT	Newly diagnosed	Experiment: R-DEX	97	48	OS, PFS, AEs	6
		Control: P-DEX	Control: P-DEX	95	45		
Kumar et al. 2012	RCT	Previously untreated	Experiment: VDCR	48	61.5 (41–81)	OS, PFS, AEs	5
		Control: VDC	Control: P-DEX	33	62 (40–75)		
Palumbo et al. 2012	RCT	Newly diagnosed	Experiment: MPR + R	152	71 (65–87)	OS, PFS, AEs	6
		Control: MP + P	Control: P-DEX	154	72 (65–91)		
Attal et al. 2012	RCT	ASCT	Experiment: L	307	55 (22–67)	OS, PFS, AEs	6
		Control: P	Control: L	307	55 (32–66)		
McCarthy et al. 2012	RCT	ASCT	Experiment: L	231	59 (29–71)	OS, PFS, AEs	6
		Control: P	Control: P	229	58 (40–71)		

RCT: Randomized clinical trial; ASCT: Autologous stem cell transplantation; OS: Overall survival; PFS: Progression-free survival; AEs: Adverse events.

Figure 1: Study selection for meta-analysis. RCTs: randomized clinical trials.

Three RCTs reported the results of the patients with previously untreated MM,[12,25,26] two RCTs reported the results of patients with refractory or relapsed MM,[15,16] the other two RCTs reported the results of lenalidomide maintenance therapy in MM patients after ASCT.[17,18]

Previous untreated multiple myeloma

Three RCTs, with a total of 544 patients, suggested that lenalidomide-containing regimens achieved a statistically significant higher OR rates (pooled RR: 2.76; 95% CI: 2.23–3.42; P < 0.00001; incidence, 60.6% vs. 21.9%; Figure 3a) and CR rates (pooled RR: 8.61; 95% CI: 1.59–46.60; P = 0.01; incidence, 15.0% vs. 2.0%; Figure 3b) compared with the no lenalidomide-containing group. There was no significant heterogeneity among the reported OR (P_heterogeneity = 0.36; F = 0%), but heterogeneity was found with respect to the reported CR (P_heterogeneity = 0.11; F = 62%), and hence the random-effects model was used. In terms of PFS and OS, patients treated with the lenalidomide-containing regimens had significantly longer 3-year PFS (pooled RR: 1.48; 95% CI: 1.24–1.75; P < 0.00001; Figure 4) and 3-year OS (pooled RR: 1.12; 95% CI: 1.01–1.24; P = 0.03; Figure 5) than no lenalidomide-containing regimens. There was no significant heterogeneity between the reported 3-year PFS (P_heterogeneity = 0.90; F = 0%) and 3-year OS (P_heterogeneity = 0.92; F = 0%), and the fixed effects model was used.

Maintenance therapy for multiple myeloma postautologous stem cell transplantation

Two RCTs reported the data of a total of 1074 patients with MM after ASCT, who received lenalidomide or placebo as maintenance therapy. We did not perform meta-analyses for OR and CR in MM patients post-ASCT because the relevant data could not be obtained from the study by McCarthy et al.[17] Lenalidomide maintenance therapy significantly improved 3-year PFS (pooled RR: 1.43; 95%...
CI: 1.28–1.60; \(P < 0.00001 \); \(P_{\text{heterogeneity}} = 0.43; F = 0\% \); Figure 6) among patients post-ASCT, but not significantly improved OS (pooled \(RR \): 1.02; 95\% CI: 0.89–1.18; \(P = 0.75; P_{\text{heterogeneity}} = 0.01; F = 84\% \); Figure 7). There was a significant heterogeneity with respect to the reported OS rate, so the random-effects model was used.

Toxicities

The data of major AEs were extracted from the seven RCTs and analyzed by a meta-analysis. As for hematological AEs, patients treated with lenalidomide had a significantly higher rate of Grade 3–4 neutropenia, febrile neutropenia, anemia, and thrombocytopenia. Of those, neutropenia was the most common (48.9\% vs. 14.7\%; \(P < 0.00001 \)), followed by thrombocytopenia (17.4\% vs. 7.4\%; \(P < 0.00001 \)). The results of major hematological AEs were described in Table 2. With regard to nonhematological AEs, lenalidomide treatment was associated with a significantly higher rate of grade 3/4 infection, DVT and diarrhea. Of those, infection is the most common (14.3\% vs. 7.7\%; \(P < 0.0001 \)), followed by DVT (6.2\% vs. 2.3\%; \(P = 0.0001 \)). The results of major nonhematological AEs were listed in Table 3. Also, three trials\(^{[8,13,14]}\) and a second analysis of two trials\(^{[15,16]}\) by Dimopoulos et al.\(^{[27]}\) reported data on SPMs. There were 75 and 25 SPMs, respectively, observed in a sample of 1042 patients with lenalidomide therapy and 1035 patients with placebo. Lenalidomide therapy had a significantly higher risk of SPMs (pooled \(RR \): 2.92; 95\% CI: 1.87–4.56; \(P < 0.00001 \); incidence, 7.2\% vs. 2.4\%; Figure 8). Heterogeneity was found for some AEs, which was possibly because of the use of different agents at various dosages in these studies.

Discussion

Although the treatment of MM had undergone significant development during the past decades, MM was still difficult to cure and require a long-term disease control. Some clinical trials showed that the most of MM patients often had a good respond to initial standard therapy, but the disease ultimately recurs and became refractory to further treatment over the course of time. Richardson et al. first reported a phase I clinical study of lenalidomide in relapsed and refractory MM, 71\% patients (90\% CI: 52–85\%) demonstrated benefit from treatment, suggesting significant anti-MM activity of lenalidomide.\(^{[7]}\) Subsequently, a multicenter randomized phase II study evaluated 2 dose regimens of lenalidomide (30 mg once-daily or 15 mg twice-daily oral) for relapsed and refractory MM.\(^{[14]}\) OR rate to lenalidomide alone was 25\% (24\% for once-daily and 29\% for twice-daily). Recently, two multicenter, double-blind, phase III RCTs (MM009 and MM010) also observed both the safety and efficacy of lenalidomide in the relapse or refractory setting.\(^{[15,16]}\) The results showed that patients with lenalidomide plus dexamethasone therapy, who achieved a

![Figure 2: Forest plot of response rates comparing lenalidomide with control for previous untreated multiple myeloma. (a) Overall response; (b) Complete response.](image-url)
CR or VGPR, had a significantly longer PFS and OS than those in whom treatment resulted in only a PR. Therefore, the aim of induction therapy was as quickly as possible to the achievement of the deepest response.

The results of this meta-analysis demonstrated that lenalidomide-containing regimens used as induction therapy in previously treated MM patients had produced a significant improvement in terms of both response rate and overall survival.
rates and the intervals of survival. Similar to the former, lenalidomide-based regimens for relapsed or refractory MM patients also significantly increased the OR and CR rate. Importantly, lenalidomide was associated with better 3-year PFS rate (53.0% vs. 35.9%; \(P < 0.00001 \)) and 3-year OS rate (72.8% vs. 65.0%; \(P = 0.03 \)).

Despite the positive results with lenalidomide maintenance therapy has been reported in the post-ASCT setting, many open questions remain. These included the optimal dose, schedule, and duration of therapy as well as the treatment-related toxicities. In addition, whether all patients or only those with a suboptimal response to ASCT should receive lenalidomide maintenance after ASCT needed to clarify. Our pooled data suggested that lenalidomide maintenance therapy in MM patients after ASCT significantly prolonged 3-year PFS (65.2% vs. 45.5%; \(P < 0.00001 \)), but did not improve 3-year OS (82.2% vs. 81.0%; \(P = 0.75 \)) when compared with placebo control. PFS could be useful as a valid regulatory end point when evaluating a new drug for the treatment of MM, because it was a reasonable marker of clinical benefit. However, a statistically significant improvement of OS was still essential to the assessment of lenalidomide maintenance therapy. In fact, our pooled data did not demonstrate a convincing and meaningful increase of OS and no clear evidence supports a benefit of maintenance therapy for patients after ASCT. Currently, lenalidomide maintenance therapy could not be advised for MM patients in

![Image 1](https://example.com/image1)
![Image 2](https://example.com/image2)
![Image 3](https://example.com/image3)
With regards to toxicities, previous studies reported that lenalidomide therapy was quite well tolerated for most of the MM patients,[11,12,14] Cytopenias, infection, fatigue, and other some common adverse effects were rather easily controlled. Unlike thalidomide, single-agent lenalidomide was rarely associated with an increased risk of peripheral neuropathy and DVT,[7] but lenalidomide combined with dexamethasone had been associated with an increased risk of DVT.[15,16] Lenalidomide was a complex immunomodulatory drug, whether other serious adverse effects would be recognized only with long-term use. Our pooled results indicated that cytopenias were the most frequent manifestation of hematological toxicities after lenalidomide therapy. Grade 3–4 neutropenia, thrombocytopenia, anemia and febrile neutropenia were significantly higher in lenalidomide therapy group than control group, but the incidence of anemia and febrile neutropenia was relatively low, only 9.5% and 3.9%, respectively. In terms of nonhematological toxicities, lenalidomide therapy produced a higher rate of Grade 3–4 fatigue, nausea and constipation were not significantly increased. Although our results showed an increased risk of DVT (6.2% vs. 2.3%; P = 0.0001) after lenalidomide-containing regimen therapy, statistically significant difference disappeared if excluded the studies of lenalidomide in combination with dexamethasone (2.0% vs. 0.8%; P = 0.18). In addition, patients with lenalidomide therapy had a significantly higher risk of SPMs (7.2% vs. 2.4%; P < 0.00001) compared with placebo control. There were some limitations to this meta-analysis. First, the major problem was that the characteristics of patient population varied across studies in terms of duration of treatment, dosages, and the follow-up, resulting in heterogeneity. Second, our analysis was limited to the available published data, which may lead to the possibility of omission unpublished or ongoing trials at the time of the writing of this paper. Third, formal test of publication bias was not conducted because of a relatively small number of RCTs included. Finally, the differences in consolidation/maintenance therapy after induction therapy or post-ASCT might attribute to a potential heterogeneity of PFS and OS. These defects may reduce the credibility of the results to some extent, and increased the numbers of trials with larger sample sizes will be necessary to confirm our findings in future studies.

CONCLUSION

This meta-analysis demonstrates that lenalidomide-containing regimens were associated with better response rates and survival rates with acceptable toxicity rates for the induction treatment of MM. However, lenalidomide maintenance therapy does not improve OS at the price of the increased AEs. Continued studies are needed to ascertain whether lenalidomide maintenance therapy is beneficial to MM patients after ASCT.

References

1. Kyle RA, Rajkumar SV. Multiple myeloma. N Engl J Med 2004;351:1860-73.
2. Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003;348:1875-83.
3. Kyle RA, Rajkumar SV. Multiple myeloma. Blood 2008;111:2962-72.
4. Kumar SK, Rajkumar SV, Dispensieri A, Lacy MQ, Hayman SR,
1222

Chinese Medical Journal | May 5, 2015 | Volume 128 | Issue 9

Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008;111:2516-20.

5. Brenner H, Gondos A, Pulte D. Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood 2008;111:2521-6.

6. Galustian C, Dalgleish A. Lenalidomide: A novel anticancer drug with multiple modalities. Expert Opin Pharmacother 2009;10:125-33.

7. Richardson PG, Schlossman RL, Weller E, Hideshima T, Mitsiades C, Davies F, et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002;100:3063-7.

8. Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001;98:210-6.

9. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: Therapeutic implications. Blood 2002;99:4525-30.

10. Dredge K, Horsfall R, Robinson SP, Zhang LH, Lu L, Tang Y, et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc Res 2005;69:56-63.

11. Rajkumar SV, Jacobus S, Callander NS, Fonseca R, Vesole DH, Williams ME, et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: An open-label randomised controlled trial. Lancet Oncol 2010;11:29-37.

12. Palumbo A, Hajek R, Delforge M, Kropff M, Petrucci MT, Catalano J, et al. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med 2012;366:1759-69.

13. Dimopoulos MA, Chen C, Spencer A, Niesvizky R, Attal M, Stadtmauer EA, et al. Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. Leukemia 2009;23:2147-52.

14. Richardson PG, Blood E, Mitsiades CS, Jagannath S, Zeldenrust SR, Alsina M, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 2006;108:3458-64.

15. Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau JL, Dmoszynska A, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007;357:2123-32.

16. Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007;357:2133-42.

17. McCarthy PL, Ozwar K, Hofmeister CC, Hurd DD, Hassoun H, Richardson PG, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med 2012;366:1770-81.

18. Attal M, Laursen-Cances V, Marit G, Caillot D, Moreau P, Facon T, et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med 2012;366:1782-91.

19. Palumbo A, Rajkumar SV, Dimopoulos MA, Richardson PG, San Miguel J, Barlogie B, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 2008;22:414-23.

20. Musallam KM, Dahaaleh FS, Shamseddine AI, Tahir AT. Incidence and prophylaxis of venous thromboembolic events in multiple myeloma patients receiving immunomodulatory therapy. Thromb Res 2009;123:679-86.

21. Bladé J, Samson D, Reecce D, Apperley J, Björkstrand B, Gahrton G, et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol 1998;102:1115-23.

22. Durie BG, Harousseau JL, Michel JS, Bladé J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia 2006;20:1467-73.

23. National Cancer Institute: Common terminology criteria for adverse events, v3.0. Available from: http://www.ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_v3.0.

24. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control Clin Trials 1996;17:1-12.

25. Zonder JA, Crowley J, Hussein MA, Bolejack V, Moore DF Sr, Whittenberger BF, et al. Lenalidomide and high-dose dexamethasone compared with dexamethasone as initial therapy for multiple myeloma: A randomized Southwest Oncology Group trial (S0232). Blood 2010;116:5838-41.

26. Kumar S, Flinn I, Richardson PG, Hari P, Callander N, Noga SJ, et al. Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood 2012;119:4375-82.

27. Dimopoulos MA, Richardson PG, Brandenburg N, Yu Z, Weber DM, Niesvizky R, et al. A review of second primary malignancy in patients with relapsed or refractory multiple myeloma treated with lenalidomide. Blood 2012;119:2764-7.

Received: 20-01-2015 Edited by: Yi Cui

How to cite this article: Qiao SK, Guo XN, Ren JH, Ren HY. Efficacy and Safety of Lenalidomide in the Treatment of Multiple Myeloma: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Chin Med J 2015;128:1215-22.

Source of Support: Nil. Conflict of Interest: None declared.