Goodness of fit test for higher order binary Markov chain models

Mahboobeh Zangeneh Sirdari and M. Ataharul Islam

Abstract: When the interest is in making statements about change based on repeated measurements of discrete data, one way to do so is using Markov chain models. Goodness of fit test to find a good model is very important in analyzing the underlying patterns and relationships in the repeated measures data. To test for the various associations in the models, the likelihood ratio and Wald tests are used. However, it has been observed that the efficient score tests can provide equally good tests and can provide an easier alternative. In this paper, we provide an extension of Tsiatis method for goodness of fit test on higher order Markov chains. In our method, we follow the approach of Tsiatis goodness of fit test in logistic regression models. New method provided in this paper is applied to real-life data to examine the suitability of the techniques.

1. Introduction
Markov chain models are used in various applied fields, such as time series analysis, longitudinal studies, life data, environmental problems. The behavior of a Markov chain depends on the transition...
matrix, which contains transitional probabilities. In most practical studies, the transition matrix is unknown and needs to be estimated. Several methods are available for the estimation and test procedure of transition probabilities. However, most researchers have worked primarily on the estimation of parameters and only a few reports on test procedures. One of the most important tests on Markov chain models is the stationarity of transition probabilities and the goodness of fit of Markov chain models. This section presents a brief summary of the tests performed on Markov chain.

Anderson and Goodman (1957) obtained the maximum likelihood estimates and their asymptotic distribution for the transition probabilities in a Markov chain of arbitrary order with repeated observations of the chain. The likelihood ratio tests and chi-square tests used in contingency tables were obtained for testing these hypotheses. Billingsley (1961) used Whittle’s formula, chi-square, and maximum likelihood methods to test for stationarity and order of the higher order Markov chain. Mcqueen and Thorley (1991) used Markov chain to analyze annual stock returns. Albert (1994) proposed a class of Markov models for analyzing sequences of ordinal data from a relapsing-remitting disease, where the state space was expanded to include information about the ordinal severity score as well as the relapsing-remitting status. He proposed a parameterization that can reduce the number of parameters. It is noteworthy that most of these research works have been conducted for estimating parameters based on the first-order Markov chain. Recently, several new methods for higher order Markov chains have been reported, where the estimation and test procedures became quite complex due to the increased order of the models (Chowdhury, Islam, Shah, & Al-Enezi, 2005; Islam & Chowdhury, 2006; Islam, Chowdhury, & Briollais, 2012; Rahman & Islam, 2007).

However, less effort is given towards studying the field of covariate-dependent Markov models (Muenz & Rubinstein, 1985; Yi, He, & Liang, 2009). In this paper, a test procedure for the goodness of fit of a binary Markov chain model is proposed by extending Tsai’s procedure (Tsai, 1980). The proposed test was extended for the second- and higher order of the Markov chain model. The efficient score test was used for testing null hypotheses, which only required the estimate of parameters under true null hypothesis. The proposed model and test procedures were thoroughly examined using a set of data for the elderly population and employing simulations.

Sirdari, Islam, and Awang (2013) proposed the goodness of fit test for higher order binary Markov chain models based on marginal distribution. The problem with this proposal was that marginal distribution has limited assumptions because of the correlations between variables, which are not easy to estimate. Thus, the proposed model in this study was based on the conditional transition probabilities, which means that there is no correlation between variables.

2. A brief overview of the test proposed by Tsai (1980)

Tsai (1980) proposed a goodness of fit test for the logistic regression model. In terms of binary data analysis, this model relates the probability of a response to a set of covariates \(\{X_1, \ldots, X_p\} \) according to Equation (2.1):

\[
\log \left(\frac{p_x}{1 - p_x} \right) = \beta'X, \quad p_x = \frac{\exp (\beta'X)}{1 + \exp (\beta'X)},
\]

where \(p_x \) denotes the conditional probability of response given by the vector, \(X = \{X_1, \ldots, X_p\} \), \(X_0 = 1 \), and \(\beta = (\beta_0, \ldots, \beta_p) \) denotes the regression coefficients. The space of covariates \(\{X_1, \ldots, X_p\} \) is partitioned into \(k \) distinct region in \(p \)-dimensional space, denoted by \(R_1, \ldots, R_k \). The indicator functions, \(I^{(j)} \) (\(j = 1, \ldots, k \)), are defined by \(I^{(j)} = 1 \) if \(\{X_1, \ldots, X_p\} \in R_j \) and \(I^{(j)} = 0 \).

Tsai considered the following model in Equation (2.2):
\[
\log \left(\frac{p_x}{1 - p_x} \right) = \beta' \chi + y'I,
\]
(2.2)

where \(I' = (I^1, \ldots, I^{(k)}) \) and \(y' = (\gamma_1, \ldots, \gamma_k) \). The goodness of fit test consists of testing the hypothesis \(H_0: \gamma_1 = \cdots = \gamma_k = 0 \).

This test is based on the efficient score test, as represented by Equation 2.3:

\[
T = Z'V^{-1}Z,
\]
(3.2)

where \(Z' \) is the \(k \)-dimensional vector \((\partial l / \partial y_1, \ldots, \partial l / \partial y_k)\) and \(l \) denotes the log-likelihood. The \(k \times k \) matrix, \(V \) is equal to:

\[
V = A - BC^{-1}B',
\]

where

\[
A_{ij} = -\partial^2 l / \partial y_j \partial y_i \quad (j, j' = 1, \ldots, k),
\]

\[
B_{ij} = -\partial^2 l / \partial y_j \partial y_j \quad (j = 1, \ldots, k; j' = 0, \ldots, p),
\]

\[
C_{ij} = -\partial^2 l / \partial y_j \partial y_j \quad (j, j' = 0, \ldots, p)
\]

All previous terms were evaluated at \(y = 0 \) and \(\beta_j = \hat{\beta}_j \), where \(\hat{\beta}_j \) is the maximum likelihood estimate of the parameters when is true.

3. Goodness of fit test of first-order Markov chains

Consider the case of a single stationary process, \((Y_1, \ldots, Y_T)\), generated by a binary Markov chain that uses values of 0 and 1. The transition matrix is defined by:

\[
p = \begin{bmatrix}
 p_{00} & p_{01} \\
p_{10} & p_{11}
\end{bmatrix} = \begin{bmatrix}
 1 - p_{01} & p_{01} \\
 1 - p_{11} & p_{11}
\end{bmatrix}
\]

where \(p_{jt} = \Pr(Y_t = 1|Y_{t-1} = j) \) if \(j = 0, 1 \), \(t = 1, \ldots, T \).

The transition probabilities, \(p_{jt} \), can be modeled using logistic regression, as shown by Model (3.1):

\[
\text{logit}(p_{jt}) = \beta^T \chi_t, \quad p_{jt} = \frac{\exp(\beta^T \chi_t)}{1 + \exp(\beta^T \chi_t)}.
\]
(3.1)

Vector \(\chi_t \) contains covariates and it is equal to \(\chi_t = (1, x_{t1}, \ldots, x_{tp}) \). \(\beta_j \) is the vector of parameters, \(\beta_j = (\beta_{j0}, \beta_{j1}, \ldots, \beta_{jp}) \). The likelihood function that corresponds to Model (3.1) is:

\[
L = \prod_t \prod_{j=0}^{1} (1 - p_{jt})^{n_{jt}} p_{jt}^{n_{jt}}
\]

where \(n_{0jt}, n_{01t}, n_{10t}, \text{ and } n_{11t} \) are the number of transitions of each type observed at time \(t \). The log-likelihood is as shown by Equation (3.2):

\[
l = \sum_{t=1}^{T} \sum_{j=0}^{1} \left(n_{jt} \beta_j^T \chi_t - \left(n_{j0t} + n_{j1t} \right) \ln \left[1 + \exp\left(\beta_j^T \chi_t \right) \right] \right).
\]
(3.2)
The log-likelihood can be shown as, \(l = \ln L = \ln L_0 + \ln L_1 \), where

\[
\ln L_0 = \sum_{t=1}^{T} \left\{ n_{01t} \beta_0^T x_t - (n_{00t} + n_{01t}) \ln \left(1 + \exp \left(\beta_0^T x_t \right) \right) \right\},
\]

\[
\ln L_1 = \sum_{t=1}^{T} \left\{ n_{11t} \beta_1^T x_t - (n_{10t} + n_{11t}) \ln \left(1 + \exp \left(\beta_1^T x_t \right) \right) \right\}.
\]

It was assumed that the space of covariate \((x_{1t}, \ldots, x_{pt})\) was partitioned into \(G \) distinct regions in \(p \)-dimensional space, denoted by \(R_1, \ldots, R_G \). The indicator functions, \(I_i^{(k)} \) (\(k = 1, \ldots, G \)), are defined by \(I_i^{(k)} = 1 \) if \((x_{1t}, \ldots, x_{pt}) \in R_k\) and \(I_i^{(k)} = 0 \).

Then, for a binary Markov chain, the following Model (3.3) was considered:

\[
\text{logit}(p_{jk}) = \beta_j^T x_t + \gamma_j^T I_t,
\]

\[(3.3)\]

where \(I_t' = (I_1^{(1)}, \ldots, I_G^{(G)}) \) and \(\gamma_j' = (\gamma_{j1}, \ldots, \gamma_{jG}) \) is an arbitrary covariate vector. This test was performed by testing the null hypothesis, \(H_0: \gamma_{j1} = \cdots = \gamma_{jG} = 0 \). This hypothesis was proposed by partitioning the space of covariates into distinct regions and calculating a test statistic, which was a quadratic form of the observed counts, excluding the expected counts.

The efficient score test and the likelihood ratio test were also used. Both statistics have asymptotic chi-square distribution, with \(G \) degrees of freedom, as proven by Rao (1973). The current test used in this study was based on the efficient score test because it only requires an estimate of \(\beta_j \) under the null hypothesis, whereas the likelihood ratio statistics needs an estimate of \(\gamma_j \) under the alternative model. The test statistics is defined by Equation (3.4):

\[
T = Z'V^{-1}Z,
\]

\[(3.4)\]

where \(Z' = (Z'_0 \; Z'_1) \) and \(Z'_j, j = 0, 1 \) is the \(G \)-dimensional vector \((\partial l/\partial \gamma_{j1}, \ldots, \partial l/\partial \gamma_{jG})\). The matrix, \(V \), is equal to:

\[
V = \left(\begin{array}{cc}
V_0 & 0 \\
0 & V_1
\end{array} \right)
\]

and the \(G \times G \) matrix, \(V_j, j = 0, 1 \)

\[
V_j = A_j - B_j C_j^{-1} B_j',
\]

where

\[
A_{jk'} = -\partial^2 l/\partial \gamma_{j1} \partial \gamma_{k1} \quad (k, k' = 1, \ldots, G),
\]

\[
B_{jk'} = -\partial^2 l/\partial \gamma_{j1} \partial \beta_{k1} \quad (k = 1, \ldots, G; \; k' = 0, \ldots, p),
\]

\[
C_{jk'} = -\partial^2 l/\partial \beta_{j1} \partial \beta_{k1} \quad (k, k' = 0, \ldots, p).
\]
All previous terms were evaluated at $y_j = 0$ and $\beta = \hat{\beta}$, where $\hat{\beta}$ is the maximum likelihood estimate of the parameters when H_0 is true. Using the standard likelihood theory, a test could be extracted in the quadratic form of observed counts minus expected counts, and whose large sample properties are easily established.

It is evident that the log-likelihood for Model (3.3) can be achieved by inserting Equation (3.2), as follows:

$$l = \sum_{t=1}^{T} \sum_{j=0}^{1} \left[n_{j1t} (\beta_j^t x_t + y_j^t I_t) - (\eta_{j0t} + n_{j1t}) \ln \left\{ 1 + \exp \left(\beta_j^t x_t + y_j^t I_t \right) \right\} \right] = \ln L_0 + \ln L_1 = l_0 + l_1.$$

The kth element of vector x_t used in the computation of Equation (3.4) is the partial derivative of l_j, $j = 0, 1$, with respect to y_t at $y_j = 0$ and $\beta_j = \hat{\beta}_j$,

$$\sum_{t=1}^{T} n_{j1t} f_t^{(k)} - \sum_{t=1}^{T} (\eta_{j0t} + n_{j1t}) f_t^{(k)} \left[\frac{\exp (\beta_j^t x_t)}{\left\{ 1 + \exp (\beta_j^t x_t) \right\}} \right] = O_{jk} - E_{jk},$$

where O_{jk} and E_{jk} are the observed and expected numbers of responses in the kth region. Therefore, Equation (3.4) is the quadratic form of the vector of observed counts minus expected counts.

Quantities necessary for computing the covariance matrix, V_j, $j = 0, 1$ are as follows:

$$A_{jk'} = \begin{cases} \sum_{t} (\eta_{j0t} + n_{j1t}) \hat{\beta}_{jt} (1 - \hat{\beta}_{jt}) & k = k' \\ 0 & k \neq k'; \ k, k' = 1, \ldots, G \end{cases}$$

$$B_{jk'} = \sum_{t} (\eta_{j0t} + n_{j1t}) \chi_{kt} \hat{\beta}_{jt} (1 - \hat{\beta}_{jt}) \ (k = 1, \ldots, G; \ k' = 0, \ldots, p),$$

$$C_{jk'} = \sum_{t} (\eta_{j0t} + n_{j1t}) \chi_{kt} \chi_{kt} \hat{\beta}_{jt} (1 - \hat{\beta}_{jt}) \ (k, k' = 0, \ldots, p),$$

where, ξ_t denotes the set of indices t, such that

$$(x_{1t}, \ldots, x_{pt}) \in R_t, \ \hat{\beta}_{jt} = \exp \left(\hat{\beta}_j^t x_t \right) / \left\{ 1 + \exp \left(\hat{\beta}_j^t x_t \right) \right\}.$$

4. Extension of the model for higher-order Markov chains

Consider the nth-order Markov model for times, $t - n$, $t - (n - 1)$, \ldots, $t - 1$, and t, with transition matrix, P, and its components:

$$p_{r \rightarrow s} = \Pr (Y_t = 1| Y_{t-n} = r, \ldots, Y_{t-2} = s, Y_{t-1} = j; j, s, r = 0, 1, t = 1, \ldots, T).$$

The logistic regression model for $p_{r \rightarrow s}$ is:

$$\logit (p_{r \rightarrow s}) = \beta_{r \rightarrow i} x_t, \quad p_{r \rightarrow s} = \frac{\exp (\beta_{r \rightarrow s} x_t)}{1 + \exp (\beta_{r \rightarrow s} x_t)},$$
where vector, $\chi_t = (1, x_{t1}, \ldots, x_{tp})$, contains covariates and $\beta_{r,sj} = (\beta_{r,sj0}, \beta_{r,sj1}, \ldots, \beta_{r,sjp})$ is the vector of parameters.

The related null hypothesis is $H_0: \gamma_{r-sj} = \gamma_{r-sj0} = \gamma_{r-sj1} = \ldots = 0$, which can be written as shown by Equation (4.1):

$$
\text{logit}(p_{r-sj}) = \beta_{r-sj} \chi_t + \gamma_{r-sj} I_t; \quad r, s, j = 0, 1.
$$

The related null hypothesis is $H_0: \gamma_{r-sj} = \gamma_{r-sj0} = \gamma_{r-sj1} = \ldots = 0$, and the test statistic is shown by Equation (4.2):

$$
T = Z'V^{-1}Z,
$$

where Z is a 2^n-dimensional vector with elements of

$$
Z_{r-sj} = \left(\frac{\partial l}{\partial \gamma_{r-sj1}}, \ldots, \frac{\partial l}{\partial \gamma_{r-sjG}} \right), \quad r, s, j = 0, 1.
$$

The matrix, V is the $2^n \times 2^n$ diagonal matrix, with components of $G \times G$ matrix. $V_{r-sj}; r, s, j = 0, 1$;

$$
V_{r-sj} = A_{r-sj} - B_{r-sj} C_{r-sj}^{-1} B'_{r-sj},
$$

where

$$
A_{r-sjk} = -\frac{\partial^2 l}{\partial \gamma_{r-sjk} \partial \gamma_{r-sjk}} \quad (k, k' = 1, \ldots, G),
$$

$$
B_{r-sjk} = -\frac{\partial^2 l}{\partial \gamma_{r-sjk} \partial \beta_{r-sjk}} \quad (k = 1, \ldots, G; k' = 0, \ldots, p),
$$

$$
C_{r-sjk} = -\frac{\partial^2 l}{\partial \beta_{r-sjk} \partial \beta_{r-sjk}} \quad (k, k' = 0, \ldots, p), \quad (r, s, j = 0, 1).
$$

The log-likelihood based on Model (4.1) is as follows:
\[
l = \sum_{t=1}^{\infty} \sum_{j=0}^{1} \sum_{s=0}^{1} \left\{ n_{r,j,s,t} (\beta_{r,j} x_t + \gamma_{r,j}) - (n_{r,j,s,0} + n_{r,j,s,1}) \ln \left(1 + \exp \left(\beta_{r,j} x_t + \gamma_{r,j} \right) \right) \right\}
\]

\[
= \sum_{r,n,j=0}^{1} \ln L_{r,s,j} = \sum_{r,n,j=0}^{1} l_{r,s,j}
\]

The partial derivative of \(l_{r,s,j} \), \(l, s, j = 0, 1 \) with respect to \(\gamma_{r,s,j} \), \(r, s, j = 0, 1 \) at \(\gamma_{r,s,j} = 0 \) and \(\beta_{r,s,j} = \hat{\beta}_{r,s,j} \).

\[
\sum_{t=1}^{\infty} n_{r,s,j,t} I_{t}^{(k)} - \sum_{t=1}^{\infty} (n_{r,s,j,0} + n_{r,s,j,1}) I_{t}^{(k)} \left[\frac{\exp (\beta_{r,s,j} x_t)}{1 + \exp (\beta_{r,s,j} x_t)} \right] = O_{r,s,j} - E_{r,s,j}.
\]

5. Application

We applied the proposed test on the Health and Retirement Study (HRS) (2009) data to demonstrate its application. This is a longitudinal household survey data-set for the study of retirement and health among the elderly in the United States. The RAND Centre collected these data to study aging, with funding and support from the National Institute on Aging (NIA) and the Social Security Administration (SSA). These data were collected from 1992 to 2006 in eight waves for 30,405 people. We considered individuals who attended the program in 1992 and then, followed up until 2006. The study was about depression among individuals (0 for no depression and 1 for depression), and age (yearly), gender (0 for male and 1 for female), body mass index (BMI), and drinking (0 for not drinking and 1 for drinking), which were considered as covariates. The space of covariate \((X_{t1}, \ldots, X_{t9}) \) was partitioned into four distinct regions: (male and not drinking); (male and drinking); (female and not drinking); and (female and drinking). Some of these variables may contain missing values because the referenced person did not respond to the waves. Thus, we had to drop the ID of individuals from all waves if there were missing values for these covariates. There were 668 missing values in the covariates, which included 353 IDs, i.e. these individuals responded for the outcome variable, but not for the covariates. Thus, 353 IDs were dropped from the data in this work. Additionally, S-Plus functions modified by Chowdhury et al. (2005) were developed and used to estimate the parameters of the model. The Newton–Raphson method was used in this program for parameter estimation.

Table 1 shows the different types of transition counts for the first- and second-order transitions. Meanwhile, Table 2 shows the estimated values for the covariate-dependent Markov models for different types of transitions. The results are for the first- and second-order Markov models.

Billingsley’s chi-square statistics were computed using \(\sum (f_{ij} - \hat{f}_{ij})^2 / (\hat{f}_{ij}) \), and Tsiatis’ statistics were estimated using Equations (3.4) and (4.2). The results showed that the data satisfied the models for the first- and second-order Markov chains. Both Billingsley’s and Tsiatis’ statistics showed

Table 1. Transition counts of Markov chain of depression data for the first- and second-order
Transition time
First-order
Second-order
similar results. However, Billingsley’s test statistics does not depend on covariates. Thus, it was used in this study to compare the results with results of the extended test based on Tsiatis’ statistics.

Estimates of the parameters for the first-order transitions demonstrated negative association between the transitions from no depression to depression with age and drinking, while positive associations were obtained with BMI and sex (females have higher risks). Those who did not change their

Transition type	Covariates	Estimated value	s.e.	p-value
0→1	Constant	4.631	0.349	0.000
	Age	−0.096	0.005	0.000
	Sex	0.129	0.066	0.051
	BMI	0.011	0.006	0.078
	Drinking	−0.215	0.066	0.0011
1→1	Constant	8.378	0.825	0.000
	Age	−0.118	0.012	0.000
	Sex	0.019	0.148	0.896
	BMI	0.007	0.012	0.577
	Drinking	0.552	0.148	0.0002

Billingsley’s chi-square: 3.94E-13 (p-value = 0.999)
Proposed test statistics: 1.207 (p-value = 0.997)

Transition type	Covariates	Estimated value	s.e.	p-value
0→0→1	Constant	4.360	0.385	0.000
	Age	−0.090	0.005	0.000
	Sex	0.224	0.068	0.0011
	BMI	0.009	0.006	0.153
	Drinking	−0.282	0.067	0.0003
1→0→1	Constant	−2.996	0.999	0.003
	Age	0.020	0.015	0.178
	Sex	0.335	0.174	0.053
	BMI	0.026	0.016	0.104
	Drinking	−0.278	0.160	0.082
0→1→1	Constant	2.261	2.250	0.315
	Age	0.006	0.034	0.870
	Sex	0.195	0.423	0.646
	BMI	−0.015	0.036	0.682
	Drinking	−0.101	0.410	0.805
1→1→1	Constant	9.295	1.217	0.000
	Age	−0.142	0.019	0.000
	Sex	0.026	0.220	0.907
	BMI	0.007	0.015	0.670
	Drinking	0.513	0.222	0.021

Billingsley’s chi-square: 2.13E-08 (p-value = 0.999)
Proposed test statistics: 2.057 (p-value = 0.999)
status from depression were found to be associated negatively with age and positively with drinking. Both the Billingsley and the proposed tests showed that the first-order models can be accepted. Similarly, the second-order models indicated that age and drinking were negatively associated, while sex was positively associated for the 0-0-1 type of transition. Sex and BMI were positively associated and drinking was negatively associated for the 1-0-1 transition type, while age was negatively associated, but drinking was positively associated for the 1-1-1 transition type. Interestingly, the second-order models also appeared to have good fit in favor of the null hypothesis. These results demonstrated that both the first- and second-order models could be employed for the given set of data.

6. Simulation

Data generated by the techniques provided by Ghosh and Mukerjee, and Leisch et al. was used to examine the suitability of the proposed models. In these techniques, bindata package in R were employed for generating correlated binary data. First, data were generated from the multivariate normal random variables, and then, they were transformed into binary data. In this study, two variables were generated as the outcome variables at time \(t \) and \(t - 1 \) for the first-order Markov model, with various combinations of probabilities of occurring 1 and 0 to obtain different correlations. These results were used to compare the models under independent and selected values of measure of association. For models 1, 2, and 3, the data were generated based on correlation of 0.4 between the outcome variables at time \(t - 1 \) and \(t \) for the first-order, and at time \(t - 2, t - 1 \), and \(t \) for the second-order. Similarly, models 4, 5, and 6 were generated with correlation of 0, while models 7, 8, and 9 considered correlation of \(-0.4\). For each model, four covariates were also generated, corresponding to the correlated response variables by considering different correlations with the outcome variables. These estimates and tests were repeated 500 times for all models, and for sample sizes of 250, 500, and 1,000 for different correlations between outcome variables. The models that were used for this simulation study were different applications of the conditional model verified in Model (3.3). The extended Tsiatis’ test for the first-order Markov model, as shown by Equation (4.2), had involved covariate patterns. Nonetheless, Billingsley’s test, which was represented by

\[
\sum_{ij} \left(f_{ij} - f_{ij} \alpha \right) ^2 / \left(f_{ij} \right),
\]

was used to compare the obtained results, with and without covariates. In other words, the Markov models were estimated using covariates and were employed in this test.

Table 3 shows the simulation results for the first-order model, which included frequencies by transition type, correlation between outcome variables in the bivariate Bernoulli population, average estimates of the parameters, and the number of rejected hypotheses in 500 times of simulation for these models using Billingsley’s test and the proposed test as an extension of Tsiatis’ test. Acceptance of the null hypothesis, \(H_0 : \gamma_1 = \cdots = \gamma_g = 0 \), would indicate a good fit of Model (4.1) to the data. The percentage of rejection for Billingsley’s test was 0 because the test procedure did not consider any covariate. However, in the proposed extension, models with covariate dependence were used. Hence, it can be concluded that the proposed test statistics depended on the covariate-dependant transition probabilities, where the selection of appropriate variables in the model may influence the goodness of fit, to a large extent. This observation implied that the proposed test may display deviations for a good fit in some instances. In other words, the goodness of fit test proposed by this study, as an extension of the Tsiatis’ test, depended on the model’s specifications in terms of the explanatory power of the selected variables. Based on the estimated covariates for the first-order transition from 0 to 1, we observed a positive association with variable 1, and a transition from 1 to 1, which has negative association with variable 1 for all models, except with model 4 (sample size of 250, with correlation of 0). The rejection percentage had varied for the first-order model, mainly in the range of 4.6–6.6%. This result showed that the proposed test method was satisfactory for different sizes of samples, with different correlation of outcome variables based on the first-order Markov chain model.

The simulation results for the second-order model are given in Table 4. The table shows the number of transition types, correlation between outcome variables, average estimates of the parameters, and the number of rejected hypotheses, \(H_0 : \gamma_{r \cdots s} = \cdots = \gamma_{r \cdots s} = 0 \), in 500 times of simulations.
Table 3. Five hundred simulations for obtaining the estimates of associations based on the proposed first-order models

Transition type	Model 1—size 250	Model 2—size 500	Model 3—size 1000	Model 4—size 250	Model 5—size 500
00	61	121	243	50	100
01	65	129	257	50	100
10	14	29	58	75	150
11	110	221	442	75	150

Correlation of response variables

Estimates of Parameters	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value		
0 to 1										
Constant	-0.868	0.115	-0.843	0.025	-0.830	0.002	-0.916	0.130	-0.877	0.060
V1	1.472	0.001	1.386	0.000	1.360	0.000	0.972	0.143	0.962	0.043
V2	0.301	0.038	0.290	0.031	0.287	0.034	0.341	0.036	0.347	0.031
V3	0.093	0.482	0.109	0.469	0.101	0.464	0.517	0.321	0.469	0.237
V4	0.035	0.423	0.262	0.380	0.259	0.293	0.759	0.263	0.751	0.126
1 to 1										
Constant	-1.181	0.195	-1.114	0.084	-1.044	0.019	1.233	0.045	1.200	0.006
V1	-1.776	0.059	-1.696	0.005	-1.685	0.000	-0.914	0.072	-0.907	0.012
V2	-0.365	0.444	-0.257	0.453	-0.250	0.418	-0.364	0.352	-0.350	0.273
V3	-0.013	0.483	-0.037	0.483	-0.061	0.468	-0.496	0.292	-0.491	0.161
V4	-0.252	0.452	-0.253	0.448	-0.285	0.376	-0.693	0.157	-0.665	0.058

Billingsley: 0.008, 0.951

No. of tests accepting H₀	500	500	500	500	500					
Proposed test	8.646	0.462	8.267	0.481	8.172	0.481	8.159	0.486	8.403	0.470
Proportion of rejection of H₀	460	467	476	474	470					

Model 6—size 1000	Model 7—size 250	Model 8—size 500	Model 9—size 1000
10	300	75	148
11	300	50	101

Correlation of response variables

Estimates of Parameters	Estimate	p-value	Estimate	p-value	Estimate	p-value		
0 to 1								
Constant	-0.875	0.003	0.485	0.314	0.489	0.201	0.492	0.081
V1	0.926	0.004	1.797	0.028	1.707	0.002	1.688	0.000
V2	0.151	0.215	2.183	0.036	1.961	0.002	1.911	0.000
V3	0.470	0.112	0.709	0.274	0.666	0.017	0.635	0.066
V4	0.743	0.028	-0.715	0.269	-0.666	0.166	-0.653	0.063
1 to 1								
Constant	1.190	0.000	2.463	0.000	2.315	0.000	2.291	0.000
V1	-0.885	0.000	-1.731	0.013	-1.635	0.001	-1.613	0.000
V2	-0.242	0.154	-1.621	0.011	-1.546	0.000	-1.529	0.000
V3	-0.491	0.060	-0.645	0.242	-0.605	0.153	-0.611	0.042
V4	-0.664	0.007	0.666	0.247	0.642	0.116	0.657	0.024

Billingsley: 4.79E-06, 0.999

No. of tests accepting H₀	500	500	500	500
Proposed test	8.167	0.467	8.383	0.468
Proportion of rejection of H₀	472	471	475	473

Model 6—size 1000	Model 7—size 250	Model 8—size 500	Model 9—size 1000
0	28	50	25
1	29	50	27
Table 4. Five hundred simulations for obtaining the estimates of associations based on the proposed second-order models

Transition	Model 1—size 250	Model 2—size 500	Model 3—size 1000
000	67	132	262
001	15	31	61
100	22	44	88
101	22	43	88
010	22	43	87
011	22	44	88
110	15	31	62
111	65	132	264

| Correlation of response variables | 0.4 | 0.4 | 0.4 |

Estimates of parameters	Estimate	p-value	Estimate	p-value	Estimate	p-value	
0→0→1	Constant	-0.816	0.244	-0.724	0.136	-0.701	0.036
	V1	0.670	0.313	0.585	0.258	0.559	0.133
	V2	0.938	0.273	0.835	0.168	0.831	0.059
	V3	0.449	0.386	0.401	0.347	0.397	0.247
	V4	0.347	0.446	0.312	0.435	0.337	0.339

1→0→1	Constant	-1.015	0.232	-0.989	0.101	-0.951	0.031
	V1	0.605	0.334	0.601	0.242	0.582	0.116
	V2	0.861	0.272	0.855	0.117	0.796	0.036
	V3	0.425	0.404	0.397	0.369	0.419	0.235
	V4	0.335	0.438	0.295	0.411	0.268	0.353

0→1→1	Constant	1.035	0.235	0.990	0.101	0.938	0.031
	V1	-0.610	0.353	-0.595	0.240	-0.566	0.132
	V2	-0.902	0.262	-0.840	0.151	-0.806	0.049
	V3	-0.467	0.413	-0.432	0.341	-0.391	0.272
	V4	-0.348	0.446	-0.302	0.417	-0.304	0.364

1→1→1	Constant	1.333	0.244	1.255	0.116	1.235	0.027
	V1	-0.621	0.374	-0.613	0.255	-0.601	0.131
	V2	-0.814	0.263	-0.813	0.129	-0.781	0.032
	V3	-0.483	0.398	-0.418	0.356	-0.421	0.269
	V4	-0.341	0.437	-0.291	0.417	-0.293	0.353

| Billingsley | 2.86E-04 | 1.000 | 5.01E-05 | 1.000 | 1.66E-05 | 1.000 |

| No. of tests accepting H₀ | 500 | 500 | 500 |
| Proposed test | 16.913 | 0.445 | 16.650 | 0.459 | 15.804 | 0.503 |

| Proportion of rejection of H₀ | 25/500 | 28/500 | 18/500 |

Transition	Model 4—size 250	Model 5—size 500	Model 6—size 1000
000	31	63	126
001	31	62	125
100	32	63	124
101	31	62	125
010	31	63	125

(Continued)
Table 4. (Continued)

	011	31	62	125
	110	31	63	125
	111	32	62	125

Correlation of response variables

	Estimate	p-value
0→0→1	Constant	−0.771 0.266
	V1	0.615 0.343
	V2	0.912 0.288
	V3	0.412 0.040
	V4	0.381 0.441
1→0→1	Constant	−1.083 0.229
	V1	0.644 0.353
	V2	0.879 0.259
	V3	0.474 0.409
	V4	0.326 0.448
0→1→1	Constant	1.013 0.239
	V1	−0.580 0.359
	V2	−0.942 0.251
	V3	−0.434 0.409
	V4	−0.310 0.454
1→1→1	Constant	1.291 0.254
	V1	−0.611 0.377
	V2	−0.849 0.253
	V3	−0.450 0.434
	V4	−0.330 0.437
	Billingsley	3.38E-04 1.000
		7.01E-05 1.000
		2.14E-05 1.000
	No. of tests accepting H_0	500 500 500
	Proposed test	17.477 0.425
	No. of tests accepting H_0	559 476 473
	Proportion of rejection of H_0	41/500 24/500 27/500

Transition

	000	16	31	62
	001	59	119	237
	100	28	56	112
	101	22	44	88
	010	22	44	88
	011	28	56	112
	110	59	118	238
	111	16	32	63

Correlation of response variables

	Estimate	p-value
0→0→1	Constant	−0.704 0.144
	V1	0.577 0.260
	V2	0.847 0.163
	V3	0.378 0.362
	V4	0.120 0.422
1→0→1	Constant	−0.976 0.111
	V1	0.547 0.266
	V2	0.806 0.144
	V3	0.436 0.327
	V4	0.321 0.389
0→1→1	Constant	1.004 0.112
	V1	−0.639 0.222
	V2	−0.795 0.177
	V3	−0.427 0.339
	V4	−0.306 0.419
1→1→1	Constant	1.270 0.101
	V1	−0.605 0.264
	V2	−0.789 0.130
	V3	−0.440 0.360
	V4	−0.300 0.421

Estimates of parameters

(Continued)
Table 4. (Continued)	0→0→1	1→0→1	0→1→1	1→1→1		
Constant	0.068	0.479	-0.060	0.498	-0.063	0.468
V1	-0.051	0.487	-0.053	0.485	-0.066	0.456
V2	-0.053	0.466	-0.072	0.500	-0.061	0.472
V3	-0.024	0.500	-0.046	0.479	-0.012	0.501
V4	-0.091	0.498	-0.085	0.474	-0.092	0.479
Constant	-0.164	0.479	-0.173	0.456	-0.179	0.367
V1	-0.090	0.473	-0.045	0.505	-0.042	0.489
V2	-0.078	0.503	-0.061	0.494	-0.060	0.502
V3	-0.056	0.493	0.034	0.514	-0.011	0.494
V4	-0.096	0.477	-0.102	0.488	-0.085	0.481
Constant	0.041	0.489	0.082	0.492	0.092	0.501
V1	0.090	0.455	0.032	0.489	0.052	0.495
V2	0.139	0.489	0.096	0.476	0.053	0.511
V3	0.351	0.409	0.152	0.465	0.014	0.491
V4	0.418	0.459	0.219	0.489	0.131	0.496
Constant	0.326	0.484	0.183	0.504	0.185	0.460
V1	-0.004	0.403	0.346	0.449	0.179	0.500
V2	0.133	0.456	0.027	0.474	0.059	0.485
V3	-0.005	0.240	0.114	0.361	0.249	0.450
V4	0.289	0.361	0.212	0.452	0.272	0.477
Billingsley	9.51E-03	1.000	3.86E-03	1.000	1.12E-03	1.000
No. of tests accepting H_0	500	500	500	500		
Proposed test	15.810	0.508	17.039	0.442	16.388	0.478
No. of tests accepting H_0	479	469	473			
Proportion of rejection of H_0	21/500	31/500	27/500			
for the models. Results for the second-order models showed that there was no association between covariates and outcome variables, which was expected because of the higher order of the underlying Markov chain. Only two models, 3 and 6, with sample size of 1000 and correlations of 0 and 0.4, have negative associations with variable 2 in different types of transitions. The range of rejection percentage of the null hypothesis for the extended Tsiatis' test was 3.6–6.2% for models 1–9 in the second-order. Thus, these models were acceptable for different sizes of samples and different correlations between outcome variables. Results from Billingsley's test were compared with results from the proposed extension of Tsiatis' test; the number of rejected null hypothesis was zero for Billingsley's test because it does not depend on covariates. The number of rejected null hypothesis for model 3 was the lowest.

7. Conclusion

An extension of Tsiatis' test procedure was proposed in this study for first- and higher order binary Markov models by considering repeated measures. Most of the test procedures for stationarity and order of Markov chains were based on the likelihood ratio test and the usual chi-square test. We have shown a goodness of fit for the Markov chain by considering the efficient score test, which only requires estimated parameters under the null hypothesis. The utility of the proposed test has been examined, with an example for real-life data. The results indicated the suitability of these techniques. Additionally, simulation results demonstrated a Type-I error for the proposed test. In addition, the proposed test procedure was extended for higher order models and can be extended to test the order of binary Markov chains.

Funding

The authors are grateful to the HEQEP in project 3293, from the Department of Applied Statistics, East West University, and for the sponsorships by the UGC, Bangladesh and the World Bank.

Acknowledgments

We are thankful to Dr Rafiqul Islam Chowdhury for giving us permission to use the “kernopt markov.gen” program for parameter estimates. We would also like to thank the Health and Retirement Study (HRS) center for giving us permission to use RAND data in the application of the model.

Author details

Mahboobeh Zangeneh Sirdari1
E-mail: mahboobeh@utar.edu.my
ORCID ID: http://orcid.org/0000-0002-9215-1812
1 Department of Mathematics and Actuarial Sciences, Universiti Tunku Abdul Rahman, Sungai Long, Malaysia.
2 ISRT, University of Dhaka, Dhaka 1000, Bangladesh.

Citation information

Cite this article as: Goodness of fit test for higher order binary Markov chain models, Mahboobeh Zangeneh Sirdari & M. Ataharul Islam, Cogent Mathematics & Statistics (2018), 5: 1421003.

References

Albert, P. S. (1994). A Markov model for sequences of ordinal data from a relapsing-remitting disease. Biometrics, 50, 51–60. https://doi.org/10.2307/2533196
Anderson, T. W., & Goodman, L. A. (1957). Statistical inference about Markov chains. The Annals of Mathematical Statistics, 28, 89–110. https://doi.org/10.1214/aoms/1177707493
Billingsley, P. (1995). Statistical methods in Markov chains. The Annals of Mathematical Statistics, 32, 12–40. https://doi.org/10.1214/aoms/1177705136
Chowdhury, R. I., Islam, M. A., Shah, M. A., & Al-Enezi, N. (2005). A computer program to estimate the parameters of covariate dependent higher order Markov model. Computer Methods and Programs in Biomedicine, 77, 175–181. https://doi.org/10.1016/j.cmpb.2004.10.003
Health and Retirement Study (HRS). (2009). Produced and distributed by the University of Michigan with funding from the National Institute on Aging (Grant No. NIA U01 AG09740). Waves [1–8], Year [1992–2006] [Online], [Accessed 2009]. Retrieved from World Wide Web: http://hrsonline.isr.umich.edu/data/index.html
Islam, M. A., & Chowdhury, R. I. (2006). A higher order Markov model for analyzing covariate dependence. Applied Mathematical, 30, 477–488.
Islam, M. A., Chowdhury, R. I., & Briollais, L. (2012). A bivariate binary model for testing dependence in outcomes. Bulletin of the Malaysian Mathematical Sciences Society, 35(4), 845–858.
McQueen, G., & Thorley, S. (1991). Are stock returns predictable? A test using Markov chains The Journal of Finance, 46, 239–263. https://doi.org/10.1111/j.1540-6261.1991.tb03751.x
Muenz, L. R., & Rubenstein, L. V. (1985). Markov models for covariate dependence of binary sequences. Biometrics, 41, 91–101. https://doi.org/10.2307/2530646
Rahman Shafiqu, M., & Islam, M. A. (2007). Markov structure based logistic regression for repeated measures: An application to diabetes mellitus data. Statistical Methodology, 4, 448–460. https://doi.org/10.1016/j.stamet.2007.01.006
Rao, C. R. (1973). Linear statistical inference and its applications (2nd ed.). New York, NY: Wiley. https://doi.org/10.1002/SERIES1345
Sirdari, M. Z., Islam, M. A., & Awang, N. (2013). A stationarity test on Markov chain models based on marginal distribution. Statistical Methodology, 11, 68–76. https://doi.org/10.1016/j.stamet.2012.10.001
Tsiatis, A. A. (1980). A note on a goodness-of-fit test for the logistic regression model. Biometrika, 67, 250–251.
Yi, G. Y., He, W., & Liang, H. (2009). Analysis of correlated binary data under partially linear single-index logistic models. Journal of Multivariate Analysis, 100, 278–290. https://doi.org/10.1016/j.jmva.2008.04.012
