MOLECULAR WEIGHT DISTRIBUTION
GENERATED ON INITIATION OF FREE RADICAL
POLYMERIZATION BY SEQUENCE OF
LASER PULSES

A. V. EVSEEV and A. N. NIKITIN

Research Centre for Technological Lasers, Russian Academy of
Sciences, Shatura, Moscow Region, 140700, Russia

(Received 5 September 1994)

An investigation of molecular weight distributions (MWDs) resulting from initiation of free radical polymerization by an arbitrary sequence of short laser pulses has been undertaken. The analytical expressions have been derived to calculate MWDs for a polymerization scheme that contains reactions of chain initiation, propagation and termination by recombination or disproportionation. The MWDs produced by pulse-periodic irradiation have been calculated for a wide range of initiating pulses repetition rates \(f = 0.05 - 100 \text{ Hz} \). The MWD dynamics in the act of polymerization and the influence of the duration of polymerization quasi-stationary regime establishment upon the MWD have also been studied. The suitability of the derived expressions for describing the MWD generated by CW radiation before and after the establishment of polymerization quasi-stationary regime has been considered.

KEY WORDS: Photopolymerization; pulsed laser polymerization; radical polymerization; molecular weight distribution; pseudostationary regime.

INTRODUCTION

Polymerization of vinyl monomers and oligomers photoinduced by pulsed laser radiation is an intensively studied process.\(^1\)\(^-\)\(^11\) The interest in this way of polymerization initiation is due both to the possibility of exerting easily control over energy input to the polymerization medium and, consequently, to some extent over the polymerization process in itself, and to a principal opportunity of extracting some information on this process kinetic parameters from the experiments on pulsed polymerization. The set of reaction constants that describe the polymerization process eventually governs molecular weight distribution (MWD).\(^12\)\(^-\)\(^14\) The estimated MWD enables to qualitatively describe the significant characteristics of polymer systems, i.e. static moments, polydispersity factor, etc.\(^13\)\(^,\)\(^14\). Alternatively, the MWD features under pulsed irradiation allow in a number of cases to immediately evaluate the rate constants of polymerization \(k_p \) and a polymer chain termination \(k_t \) in the same experiment\(^4\)\(^-\)\(^6\),\(^15\)\(^-\)\(^18\) which is not feasible under polymerization by CW radiation. Though, the calculation of MWD and, especially, the analysis of MWD dynamics during polymerization involve severe difficulties and require numerical techniques.
At the present time, several papers2,15,19,20 are available that consider the features of MWDs resulting from medium irradiation by pulsed laser. A polymerization scheme was studied that comprised the reactions of polymer chains initiation, propagation and termination by recombination of growing polymer chains or their disproportionation. The MWDs under pseudostationary polymerization15 with small degree of monomer-to-polymer conversion were calculated on the assumption that the Flory principle13 is satisfied and growing radicals are instantaneously generated. It was shown that under pseudostationary regime of polymerization the equidistant peaks exist in the MWD spectrum, the heights of them falling rapidly with chain length increase. For the same polymerization scheme the MWD was obtained under single-pulse irradiation by method of generating functions, and the MWD dynamics in the polymerization process was studied.19 The same problem, but with allowance for inhibition action of radicals resulting from photoinduced decomposition of non-symmetrical initiator by laser pulse, was solved too.20

The present paper studies theoretically the MWDs resulting from polymerization initiation by an arbitrary sequence of short laser pulses.

SCHEME AND KINETIC MODEL OF POLYMERIZATION

Consideration was given to the pulsed-laser-initiated free radical polymerization of monomers (M) having a single reactive double bond. Polymerization of such compounds produces linear macromolecules differing in the number of elementary links (i). It was supposed that with radiation absorption the initiator (I) instantaneously dissociates into two radicals similar in reactivity:

\[I \xrightarrow{hv} 2X \] \hspace{1cm} (1)

The X radicals react with monomer (M)

\[X + M \xrightarrow{k_p} XM_1 \] \hspace{1cm} (2)

and initiate the polymerization reaction

\[XM_i + M \xrightarrow{k_p} XM_{i+1} \] \hspace{1cm} (3)

Termination of growing chains may occur as a result of recombination of radicals with rate constant k_t^b

\[XM_j + XM_{i-j} \xrightarrow{k_t^b} XM_iX \] \hspace{1cm} (4)

and disproportionation reaction with rate constant k_t^d

\[XM_j + XM_i \xrightarrow{k_t^d} XM_jX + M_i \] \hspace{1cm} (5)

At any arbitrary moment $t > 0$, the polymerization products are growing radicals XM_i, "dead" macromolecules XM_iX devoid of double bonds, and macromolecules M_i having a reactive group and capable of participating in polymerization reaction.
Though, as a probability of M_i involvement in the chain propagation reaction (3) is slight at the small degree of monomer-to-polymer conversion, M_i were regarded as dead polymer. It was supposed that the Flory principle13 was satisfied, whereby the rate constants of propagation k_p and those of chain termination k_t^b and k_t^d are not functions of chain length i. An option to simplification of the model is equality of rate constants of initiation (2) and chain propagation (3) reactions.

The discussed polymerization model was described by the following set of kinetic equations for initiating radicals concentrations $[X] = A_0$, growing radicals $[XMi] = A_i$ and dead macromolecules $[XM_iX] + [Mi] = B_i$:

\[
\frac{dA_0}{dt} = -k_p A_0 [M] - k_t A_0 \sum_{j=0}^{\infty} A_j, \quad (6)
\]

\[
\frac{dA_i}{dt} = k_p A_{i-1} [M] - k_p A_i [M] - k_t A_i \sum_{j=0}^{\infty} A_j, \quad (7)
\]

\[
\frac{dB_i}{dt} = 0.5 k_t^b \sum_{j=0}^{i} A_j A_{i-j} + k_t^d A_i \sum_{j=0}^{\infty} A_j, \quad (8)
\]

where $k_t = k_t^b + k_t^d$.

GENERAL SOLUTION OF THE SET OF KINETIC EQUATIONS

Let the initiating radicals concentration $A_0^{(1)} = W_1$ be produced in the medium at a moment $t = 0$ as a result of single-pulse irradiation. The temporal dynamics of growing radicals and dead macromolecules distribution along the chain length on termination of chains by radicals recombination is already known from.10 With these results it can be shown that if chain termination by disproportionation is allowed for too, time dependencies of $A_i^{(1)}$ and $B_i^{(1)}$ have the form:

\[
A_i^{(1)} = W_1 (1 + V_1 t)^{-1} \left(\frac{(U_1 t)^i \exp(-Ut)}{i!} \right), \quad (9)
\]

\[
B_i^{(1)} = 0.5 k_t^b W_1^2 \int_0^t (1 + V_1 p)^{-2} \left(\frac{(2Up)^i \exp(-2Up)}{i!} \right) dp + k_t^d W_1^2 \int_0^t (1 + V_1 p)^{-2} \left(\frac{(Up)^i \exp(-Up)}{i!} \right) dp, \quad (10)
\]

where $U = k_p[M]$ and $V_1 = k_t W_1$.

Let the initiating radicals with W_2 concentration be generated in the medium at T_1 interval after the first pulse. Shift now the time origin to the moment of these radicals appearance. Then, for the initial concentration of radicals $A_i^{(2)}$ we can write:

\[
A_i^{(2)} = W_2 \delta_{0,i} + W_1 (1 + V_1 T_1)^{-1} \left(\frac{(UT_1)^i \exp(-UT_1)}{i!} \right), \quad (11)
\]
Function

\[F_z^{(2)} = \sum_{i=0}^{\infty} Z^iA_i^{(2)}, \]

(12)

was used as a generating one. With \(Z = 1 \) eq. (12) gives a summary concentration of radicals in the polymerization medium after the action of two laser pulses. As the kinetic equations (6)–(8) are valid for \(A_i^{(2)} \) as well, then, differentiating (12), we obtain

\[\frac{dF_z^{(2)}}{dt} = ZUF_z^{(2)} - UF_z^{(2)} - k_iF_z^{(2)}F_i^{(2)}. \]

(13)

When integrating (13) at \(Z = 1 \), we find that

\[F_i^{(2)}(0) = \frac{F_i^{(2)}(0)}{1 + k_iF_i^{(2)}(0)t} = \frac{F_i^{(2)}(0)}{1 + V_2t}, \]

(14)

and, allowing for (11) and (12), obtain

\[F_i^{(2)}(0) = \sum_{i=0}^{\infty} A_i^{(2)}(0) = W_2 + W_1(1 + V_1T_1)^{-1}, \]

(15)

\[V_2 = k_iW_2 + V_1(1 + V_1T_1)^{-1}. \]

(16)

The general solution of (13) has the form

\[F_z^{(2)} = F_z^{(2)}(0)(1 + V_2t)^{-1}\exp(-Ut)\exp(-ZUt), \]

(17)

where

\[F_z^{(2)}(0) = W_2 + W_1(1 + V_1T_1)^{-1}\sum_{j=0}^{\infty} Z^j(UT_1)^j\frac{\exp(-UT_1)}{j!}. \]

(18)

Relying on the expansion

\[\exp(-UZt) = \sum_{k=0}^{\infty} Z^k(Ut)^k \]

(19)

and regarding (18) \(F_z^{(2)} \) can be represented as

\[F_z^{(2)} = (1 + V_2t)^{-1}\left[W_2\sum_{i=0}^{\infty} Z^i(UT_1)^i\frac{\exp(-UT_1)}{i!} \right] \]

\[+ W_1(1 + V_1T_1)^{-1}\exp(-U(T_1 + t))\sum_{k,j=0}^{\infty} Z^{x+j}(UT_1)^j(UT)^k \frac{1}{j!k!}. \]

(20)
As

\[
\sum_{k,j=0}^{\infty} Z^{k+j} \frac{(UT_i)^j(Ut)^k}{j!k!} = \sum_{i=0}^{\infty} Z^i \frac{(U(T_1 + t))^i}{i!},
\]

then

\[
F_{Z}^{(2)} = \sum_{i=0}^{\infty} Z^i (1 + V_2 t)^{-1} \left[W_2 \frac{(UT_i)^i \exp(-UT_i)}{i!}
+ W_1 (1 + V_1 T_1)^{-1} \frac{(U(T_1 + t))^i \exp(-U(T_1 + t))}{i!} \right].
\]

Comparing this expression with (12) for distribution of growing radicals concentrations, we obtain:

\[
A_i^{(2)} = (1 + V_2 t)^{-1} \left[W_2 \frac{(UT_i)^i \exp(-UT_i)}{i!}
+ W_1 (1 + V_1 T_1)^{-1} \frac{(U(T_1 + t))^i \exp(-U(T_1 + t))}{i!} \right].
\]

Distribution of dead macromolecules concentrations is found by integrating (8). With allowance for (14) and (21), we obtain:

\[
B_i^{(2)} = B_i^{(1)}(T_1) + 0.5 k_b \int_0^t (1 + V_2 p)^{-2} \left[W_2 \frac{(2Up)^i \exp(-2Up)}{i!} + 2 W_1 W_2 (1 + V_1 T_1)^{-1} \frac{(U(T_1 + 2p))^i \exp(-U(T_1 + 2p))}{i!}
+ W_1^2 (1 + V_1 T_1)^{-2} \frac{(2U(T_1 + p))^i \exp(-2U(T_1 + p))}{i!} \right] dp
+ \frac{k_b}{k_i} \int_0^t V_1 (1 + V_2 p)^{-2} \left[W_2 \frac{(Up)^i \exp(-Up)}{i!} + W_1 (1 + V_1 T_1)^{-1} \frac{(U(T_1 + p))^i \exp(-U(T_1 + p))}{i!} \right] dp.
\]

Performing the same mathematics, as used in calculating $A_i^{(2)}$ and $B_i^{(2)}$ distributions after the N-pulse that produces initiating radicals with W_N concentration in the
medium, we derive:

\[A_j^{(N)} = (1 + V_N t)^{-1} \sum_{j=1}^{N} S_j^{U(Q_j^N + t)} \exp\left(-\frac{U(Q_j^N + t)}{i!}\right) \]

\[B_j^{(N)} = 0.5 k_t \sum_{k=1}^{N-1} \int_0^{T_k} (1 + V_k p)^{-2} \times \]
\[\times \sum_{j,m=1}^N S_j^{k} S_m^{k} (U(Q_k^m + Q_j^k + 2p))^i \exp\left(-\frac{U(Q_k^m + Q_j^k + 2p)}{i!}\right) dp \]
\[+ 0.5 k_t \int_0^t (1 + V_N p)^{-2} \times \]
\[\times \sum_{j,m=1}^N S_j^{N} S_m^{N} (U(Q_m^N + Q_j^N + 2p))^i \exp\left(-\frac{U(Q_m^N + Q_j^N + 2p)}{i!}\right) dp \]

\[+ \frac{k_d}{k_t} \sum_{k=1}^{N-1} \int_0^{T_k} V_k (1 + V_k p)^{-2} \sum_{j=1}^k S_j^{k} (U(Q_j^p + p))^i \exp\left(-\frac{U(Q_j^p + p)}{i!}\right) dp \]

\[+ \frac{k_d}{k_t} \int_0^t V_N (1 + V_N p)^{-2} \sum_{j=1}^N S_j^{N} (U(Q_N^p + p))^i \exp\left(-\frac{U(Q_N^p + p)}{i!}\right) dp + , \]

where

\[Q_j^k = \sum_{r=1}^{j-1} T_{k-r} \]

\[V_k = k_t W_k + V_{k-1} (1 + V_{k-1} T_{k-1})^{-1}, V_1 = k_t W_1, k = 2, 3, \ldots, N - 1, N \]

\[S_j^k = W_{k-j+1} \prod_{r=1}^{j-1} (1 + V_{k-r} T_{k-r})^{-1} \]

Thus, on medium irradiation, with an arbitrary sequence of N pulses at any moment t after the N pulse, distribution of growing radicals comprises a sum of N particle groups having Poisson distribution. Coefficients \(S_j^k \) present the remaining by the moment of k-pulse concentration of radicals produced by (k – j + 1) pulse. \(Q_j^k \) is the time interval between the (k – j + 1) and k pulses. There exists a simple relation between \(V_k \) parameters and summary concentration of radicals \(F_1^{(k)} (0) \) immediately after the k pulse:

\[V_k = k_t F_1^{(k)} (0) \]

The degree of monomer-to-polymer conversion can be determined by integrating

\[\frac{d[M]}{dt} = -k_p [M] \sum_{j=0}^{\infty} A_j, \]
With small degree of monomer-to-polymer conversion after the N-pulse, concentration of monomer \([M^{(N)}]\) is

\[
[M^{(N)}] = [M^{(N-1)}] - \frac{U}{k_t} \ln(1 + V_N t)
\]

\[
= [M^{(0)}] - \frac{U}{k_t} \sum_{i=1}^{N-1} \ln(1 + V_i T_i) - \frac{U}{k_t} \ln(1 + V_N t).
\] (32)

This expression was used to verify whether the degree of monomer-to-polymer conversion is small.

CALCULATION RESULTS AND DISCUSSION

The derived above expressions for \(A_1^{(N)}\) and \(B_1^{(N)}\) were used in the study of distributions produced by pulse-periodic irradiation and by irradiation with a periodic sequence of pulses packets. Before the calculation results are cited, we shall consider the question of the transition period duration, i.e. the time of polymerization pseudostationary regime establishment. This regime features a periodic variation in the summary concentration of radicals \((R(t))\) with frequency equal to pulse repetition rate.\(^{15}\) By this, the values of maximum and minimum radicals concentration does not vary with time.

Pseudostationary Polymerization Attainment

As the radicals concentration after the N-pulse action is \(F_1(0)\), then with pulse-periodical irradiation the \(R(t)\) relationship represents a piece-smooth function

\[
R(t) = F_1^{(N)}(0)(1 + V_N t)^{-1}
\] (33)

where \((N-1)T \leq t \leq NT, N = 1, 2, \ldots, T = \gamma^{-1}, F_1(0)\) and \(V_N\) are correlated through (30), and \(V_N\) are found with (28).

Figure 1 depicts time dependencies of \(R(t)/W\) (\(W\) is radicals concentration immediately generated by a single laser pulse), calculated for \(k_t = 10^6, 10^7, 10^8\) 1/(mol·s) for \(W = 10^{-7}\) mol/1 and \(T = 0.2\) s. With \(k_t = 10^6\) 1/(mol·s) \((k_t W T > 1)\), pseudostationary regime of polymerization is set just following the second pulse. For lesser values of \(k_t\) satisfying the \(k_t W T < 1\) condition, this regime is attained only following a number of pulses \(N^p\). If \(k_t = 10^6\) 1/(mol·s), the amplitude of radicals concentration vibrations accounts for \(W\) and is much lower than average value of \(R\). The reduction of \(k_t W T\) causes the decrease in vibration amplitude, and polymerization regime approaches the quasi-stationary state. With quasi-stationary polymerization, the initiation velocity \(v_{in}\) is equal to that of chain termination \(v_r\). So, for
Figure 1 Dependencies of relative concentrations of radicals R/W on time t. Calculated for $k_1 = 10^6(1), 10^7(2), 10^8(3)$ 1/(mol·s), $W = 10^{-7}$ mol/1 and $T = 0.2$ s.

the average concentration of radicals R_{av} under

$$v_1 \approx k_1 R_{av}^2 \approx \frac{V}{kT} \approx W/T$$ \hspace{1cm} (34)

Then,

$$R_{av} \approx \left(\frac{W}{k_1 T} \right)^{1/2}$$ \hspace{1cm} (35)

If $k_1 W T \ll 1$, this expression agrees with that for maximum concentration of radicals R_m^{ps} under pseudostationary polymerization:

$$R_m^{ps} = 0.5W + 0.5W (1 + 4/k_1 W T)^{1/2}$$ \hspace{1cm} (36)

Fulfillment of the condition

$$\frac{R_m^{ps} - F_1^{(N)}(0)}{R_m^{ps}} \leq \epsilon$$ \hspace{1cm} (37)

can serve as a criterion for attainment of pseudostationary regime of polymerization. Figure 2 shows the $k_1 W T$-dependence of the number of pulses N_e^{ps} required for establishment of pseudostationary regime in the medium. The relation has been calculated for $\epsilon = 10^{-3}$. For small $k_1 W T$, $k_1 W T$-dependence of N_e^{ps} is well described by the expression

$$N_e^{ps} \approx a_\epsilon/(k_1 W T)^{1/2},$$ \hspace{1cm} (38)

where a_ϵ is the ϵ-dependent coefficient. For example, at $\epsilon = 0.1$ $a_\epsilon \approx 1.5$, at $\epsilon = 0.01$ $a_\epsilon \approx 2.7$ and at $\epsilon = 0.001$ $a_\epsilon \approx 3.8$.
Thus, with pulse-periodical irradiation, duration of the transition period runs $T N_{ps}^{ps}$. Through this time, leveling of concentrations takes place, which are initiated and disappear within one period as a result of radicals termination; average concentration of radicals and, consequently, average polymerization rate are increased.

MWD Dynamics on Pulse-Periodical Initiation

Figure 3 presents the distributions of concentrations of growing radicals A_i (Figure 3a) and dead polymer molecules B_i (Figure 3b) calculated for $t = 0.1$ s after the considered N-pulse for the case of chain termination by recombination. The distributions were obtained for $U = 300$ s$^{-1}$, $T = 0.2$ s, $k_r = 10^7$ 1/(mol·s) and $W = 10^{-8}$ mol/1. As $k_r W T = 0.02$, then, in accordance with (38), $N_{ps}^{ps} \approx 20$ for $\varepsilon = 0.01$. So the distributions generated after $N = 1$, 5 and 10 pulses can be referred to the period of pseudostationary polymerization attainment, and those after $N = 25$ and 50 pulses involve the case when this regime has already been achieved.

The A_i spectra present a aggregate of radical groups, each having Poisson distribution. A radical group with the shortest chain lengths i (the first one in the spectrum) corresponds to the last pulse of N-sequence. With time, the number of radicals in the group reduces, the group maximum shifts to large i-values ($\sim t$) and the group width increases ($\sim t^{1/2}$). So, at large N (for $N = 25$ and 50 in Figure 3a) only groups produced by the last pulses show up in A_i spectra. The radical groups generated by earlier pulses shift to the region of large i and broaden, thus forming the continuous spectrum.
Figure 3 Distributions of concentrations of growing A_i (a) and dead B_i (b) macromolecules along chain lengths i in 0.1 s after the N-pulse for the case of chain termination by recombination of radicals. Calculated for $k_p [M] = 300$ s$^{-1}$, $k_r = 10^7$ 1/(mol s) and $W = 10^{-8}$ mol/l and $T = 0.2$ s.

The reduction of radicals number in the group is due both to recombination of them with each other and, more substantially, to their interaction with the radicals of other groups, the summary concentration of which increases within the period of pseudostationary state attainment. As follows from (35) and (38), the effective lifetime of radicals approximates $N_p^* T$ and the pattern of A_i distribution is governed mainly by interaction of radical groups produced by the last N_p^* pulses. The radicals spectrum in the pseudostationary state is a periodic function of t ($A_i(t) \approx A_i(t + T)$).

The distribution of dead macromolecules along the chain length varies significantly as well at the period of pseudostationary state attainment and slightly changes after this regime has been established (Figure 3b). The abrupt termination of B_i spectrum at $N = 1$ depends upon the fact that it has been calculated for $t = 0.1$ s, and by this moment only macromolecules with chain length $i \leq 2 Ut$ have managed to
appear. At the period of pseudostationary regime establishment, the general maximum of \(B_i \) distribution is shifted to large \(i \)-values with \(N \) growth, and the width of distribution increases. The abrupt increase in dead macromolecules concentrations with \(i \approx k_p[M]T_n \) \((n \leq N - 1) \) is a consequence of recombination of a radical group produced by the last pulse with those generated by earlier pulses. As by the moment of the \(N \)-pulse onset the concentration of radicals produced by the \((N-1) \) pulse is the largest, then the contribution of these radical groups recombination to a dead polymer formation is the greatest. In the pseudostationary state, \(N \) growth is responsible for the linear increase in the summary number of dead macromolecules (by \(\approx W/2 \) after each pulse). In this case, location of \(B \) maximum and the distribution pattern do not practically change \((B_i^{(N)}(t)/N \approx B_i^{(N+1)}(t+T)/(N+1)) \).

At the period of pseudostationary state attainment, the major contribution to the summary distribution \(A_i + B_i \) is made by growing radicals \((N \leq 5, 10) \). By the moment of the regime establishment, the concentration of dead macromolecules turns essential \((N = 25) \); with \(N \) further increase this contribution will grow and the portion of growing radicals will reduce.

Let us consider now in greater detail the effect of parameters of initiating pulses (\(T \) and \(W \)) and polymerizing medium (\(k_p \) and \(k_t \)) upon MWD.

Influence of Irradiation Period upon MWD Pattern

Figure 4 depicts \(B_i \) distributions produced at the moment \(t = 30 \) s following the last pulse on polymerization initiated by a sequence of 50 pulses. The calculation was performed for the case of chain termination by radicals recombination for \(U = k_p[M] = 300 \) s\(^{-1} \), \(k_t = 10^7 \) 1/(mol·s) and \(W = 10^{-8} \) mol/1. With this parameters and \(\varepsilon = 10^{-2} \) for \(T = 0.01 - 10 \) s, \(N_{ps} < 50 \).

For \(T = 0.01 \) s (\(f = 100 \) Hz) in dead macromolecules distribution, pulse-periodical nature of irradiation does not exhibit itself. The dashed line in Figure 4 illustrates the distributions generated in the case of quasi-stationary polymerization with initiating rate \(v_{in} = W/T \). These distributions were calculated with the formula

\[
B_i^q = \frac{k_t^b v_{in}^a (i + 1)t^2}{2(U + k_t^b R_{av})^2}
\]

where \(\alpha = U/(U + k_t R_{av}) \), \(R_{av} \) was found by formula (35), \(t = TN \). The \(B_i \) distribution for \(N = 50 \) and \(T = 0.01 \) differs little from the distribution \(B_i^q \) generated under quasi-stationary polymerization. The increase in \(N \) reduces the distinction between them (Figure 6a). It follows from (39) that

\[
i_{max} = (-1na)^{-1} - 1
\]

where \(\alpha = U/[U + (k_tW/T)^{1/2}] \), and with \(i_{max} \gg 1 \) and \(U \gg (k_tW/T)^{1/2} \), \(i_{max} \approx U(k_tW/T)^{1/2} \).

Thus, the analysis of distributions produced by pulse-periodical irradiation with high pulse repetition rate is evidence that the formulae to calculate the distributions under pulsed irradiation, reported in this work, can be used to study the
distributions produced by continuous irradiation; for example, in calculating of MWD in the case that the condition of quasi-stationarity is not met. The relation \(UT = k_p[M]T = 10 \) approximately determines the boundary separating the region where pulse-periodical irradiation has practically no effect upon the MWD pattern (\(UT < 10 \)) from that with the strong effect of this kind (\(UT > 10 \)). This relation was found from the condition of absence of local extremums in \(B_i \) distribution.

In the case of large \(T \) values favoring the fulfillment of the \(k_rWT \gg 1 \) condition, the spectrum \(B_i \) features a comparatively small number of peaks, the amplitudes of which decrease with \(i \) growth (Figure 4 for \(T = 10 \) s). Here, the pseudostationary regime of polymerization is virtually attained after the second pulse. The distance between maxima, as well as between minima in \(B_i \) spectrum is

\[
\Delta i_{\text{max}} \approx \Delta i_{\text{min}} \approx UT = k_p[M]T
\]

Figure 4 Distribution of \(B_i \) concentrations of dead macromolecules along chain lengths \(i \) in 20 s after the 50th pulse for different irradiation periods \(T \) in the case of chain termination by recombination of radicals. Calculated for \(k_p[M] = 300 \text{ s}^{-1}, k_r = 10^7 \text{ 1/(mol \cdot s)} \) and \(W = 5 \times 10^{-8} \text{ mol/l} \). The dashed line illustrates the distributions for quasi-stationary regime of polymerization (see the text).
In15 this simple relation was first used to calculate the absolute value of the rate constant of chain propagation k_p on polymerization of styrene. It should be noted that if $T < 10/(k_p[M])$ then (41) cannot be used because no separate peaks will be visible in B_i spectrum.

With $k_tW_T \leq 1$ and $UT > 10$, a structure induced by pulse-periodical nature of polymerization initiation appears in B_i spectrum on the background of distribution approximating that under quasi-stationary regime (B_i distributions for $T \geq 0.1$ s in Figure 4). The comparison between the distributions for $T = 0.3$, 0.8 and 2.0 s alludes to the fact that the technique of k_p evaluation benefits much from polymerization with $k_tW_T \leq 1$. In this case both the number of maxima and the amplitudes of some peaks in B_i spectrum exceed essentially those existing with $T = 10$s.

Effect of Polymerizing Medium and Radiation Parameters upon MWD

Constant k_p defines peak widths in distributions of growing radicals and dead macromolecules, as it enters into the parameter of Poisson distribution (see (9), (10), (25), (26)) and the distance between peaks (39). The number of peaks distinguishable in A_i and B_i distributions grows with k_p, as the distance between the peaks extends faster than their width. By this, both i_{max} for separate peaks and width of distributions are increased.

The pattern of growing radicals and dead molecules distribution does not change with k_t and W, if $V = k_tW_T = \text{const}$. Reduction of V extends the period of polymerization pseudostationary regime attainment (Figure 2). The absolute and relative amplitudes of peaks vary with V; therewith, location and width of peaks in spectra A_i and B_i are retained. With increase in V, the relative amplitude of each subsequent peak in A_i and B_i spectra is lowered with i growth, and the general maximum B_i is shifted to lesser i-values.

Chain Termination by Disproportionation

Figure 5 shows B_i distributions for the case of chain termination by disproportionation, calculated for various pulse repetition rates. In calculations, values parameters were used, for which B_i distributions presented in Figure 4 were found. All the distributions in Figure 5 correspond to the attained pseudostationary regime of polymerization. With small T, B_i has the pattern close to the distribution formed as the result of chain termination by disproportionation under quasi-stationary polymerization. The distributions for quasistationary polymerization were calculated by the formula

\[
B_i^q = \frac{k_i^d v_i^2 a^t}{R_{av}(U + k_i^d R_{av})} \tag{42}
\]

where the relevant parameters are determined in the same way as for (39). With increase in T on the background of monotonically decreasing distribution, the peaks appear, the spacings between them being found from (41). The key regularities of variation in A_i and B_i with k_t, k_p, and W are the same as in the case of chain
termination by recombination. Though it should be noted that in the absence of pseudostationary regime under chain termination by disproportionation, distributions can be produced approximating in pattern those presented in Figure 4 for $k_1 W T \leq 1$.

MWD on Irradiation with Sequence of Pulses Packets

At now let's consider the features of distributions generated by polymerization induced with the same number of pulses broken variously down into packets. Here, a case is considered when pulse repetition rate in a packet exceeds much that of the packets on their own.

Figure 6 illustrates the dead macromolecules distributions on polymerization initiated with pulse packets, the spacing between then $t = 20$ s, for the cases of chain
Figure 6 Distributions of B_i concentrations of dead macromolecules along chain lengths i on irradiation with 100 pulses broken down into packets of n_p pulses for the case of chain termination by recombination of radicals (a) and disproportionation (b). Calculated for the moment $t = 20$ s after the last pulse for $k_p[M] = 300$ s$^{-1}$, $k_i = 10^7$ 1/(mol·s) and $W = 5 \times 10^{-8}$ mol/l, pulse repetition period in the packet $T = 0.01$ s and packet repetition rate $f = 0.05$ Hz. The dashed line illustrates the distributions for quasi-stationary regime of polymerization.

With $n_p < N_{ps}^p$ (for $T = 0.01$ s, $N_{ps}^p = 22$), B_i differ greatly from the distribution formed under quasi-stationary polymerization. In the case of chain termination by recombination (Figure 6a) i_{max} diminishes with n_p and is within the range $n_p U_T \leq i_{max} \leq i_{p, q}$ ($i_{p, q}$ is a maximum for distribution under quasi-stationary regime of polymerization). With decrease in n_p, distribution narrowing in i_{max} region and broadening in the region of large i take place. In the case of chain termination by
disproportionation, n_p reduction leads to qualitative change of the distribution itself. A monotonically decreasing distribution is transformed to that typical for chain termination by radicals recombination. The growing radicals with chain length $0 < i < n_p U T$ interact for a time $\approx n_p T - i/U$ with the summary concentration of radicals gradually increasing from $\approx W_i/TU$ to $\approx W_{n_p}$ (if variation in concentration because of disproportionation reaction is neglected), and for a time $\approx i/U$ they interact with concentration $\approx W_{n_p}$. This gives rise to maximum origination in distribution B_i.

CONCLUSIONS

In the present paper the expressions have been derived that enable to study the distributions of polymer molecules along the chain length on initiation of linear polymerization by an arbitrary sequence of short pulses. These expressions are valid if the constants of chain propagation and termination do not depend on the chain length; the constant of initiation is equal to or much greater than k_p; the degree of monomer-to-polymer conversion is not large ($\langle M \rangle = \text{const}$) the processes of chain inhibition and transfer are lacking. On these assumptions, a computer investigation of MWD produced on pulse-periodical initiation of polymerization has been undertaken for a broad range of initiating pulses repetition rates and durations. The computing results have brought out that the derived expressions can be applied to study MWD on initiation of polymerization both by arbitrary-duration pulses and by CW beam.

The research into the temporal dynamics of MWD has disclosed that the pattern of distribution of growing radicals and dead macromolecules greatly varies in the process of pseudostationary state attainment, and under pseudostationary state $A_i(t) \approx A_i(t + T)$ and $B^{(N)}(t)/N \approx B^{(N+1)}(t + T)/(N + 1)$. Consideration of MWD with $k_p W T \lesssim 1$ regardless of the period of pseudostationary regime establishment gives a false idea of the pattern of polymer molecules concentrations distribution under the pseudostationary state. Only with the constraint $k_p W T \gg 1$, when pseudostationary state is virtually achieved following the second pulse, the period of its attainment need not be accounted for.

Initiating of polymerization by pulsed radiation allows to substantially govern the pattern of MWD formed in the process of polymerization and to gain fractions of polymer molecules with certain average weight by appropriate selection of beam parameters. Thus, for example, when conducting polymerization by pulse packets, it is possible to obtain distributions typical for the period of establishment of polymerization pseudo-or quasistationary regime.

And finally, results of calculations (see Figure 4 and Figure 5) directly indicate the range of repetition rate of initiating pulses in which the more contrast MWD spectrum may be obtained.

Acknowledgement

The authors are grateful to E. N. Sobol and N. G. Taganov for helpful discussions.
References

1. A. N. Orayevsky, V. P. Pimenov, A. A. Stepanov and V. A. Sheglov, *Kvantovaya Elektronika* 4, 711 (1974).
2. A. P. Alexandrov, V. N. Genkin, M. S. Kitai, I. M. Smirnova and V. V. Sokolov, *Kvantovaya Elektronika* 7, 547 (1977).
3. C. Decker, *ACS Symp. Ser.*, N 266, 207 (1984).
4. O. F. Olaj, I. Bitai and G. Gleixner, *Macrom. Chem.* 186, 2569 (1985).
5. H. Brackmann, M. Buback and H. P. Vogele, *Macrom. Chem.* 187, 1977 (1986).
6. M. Buback, H. Hipppler, J. Schwer and H. P. Vogele, *Macrom. Chem., Rapid Commun.* 7, 261 (1986).
7. C. Decker and K. Moussa, *Macromolecules* 22, 4455 (1989).
8. C. Decker, *SPIE* 1279, 50 (1990).
9. C. Carre, C. Decker, J. P. Fouassier and D. J. Lougnot, *Laser Chem.* 10, 349 (1990).
10. C. E. Hoyle, C. H. Chang and M. A. Trapp, *Macromolecules* 22, 3607 (1989).
11. A. V. Evseev and A. N. Nikitin, *Izvestia AN (ser. fiz.)* 57, N12, 132 (1993).
12. H. S. Bagdasarian, *Theory of radical polymerization* (in Russian), M., Nauka, 1966.
13. S. I. Kuchanov, *Methods of kinetic calculations in chemistry of polymers* (in Russian), M., Khimia, 1978.
14. V. P. Gowariker, N. V. Viswanathan and J. Sreedhan, *Polymer Science*, New Delhi, India, 1986.
15. O. F. Olaj, I. Bitai and F. Hinkelmann, *Macrom. Chem.* 188, 1689 (1987).
16. M. Buback, B. Huckestein and U. Leinhos, *Macrom. Chem., Rapid Commun.* 8, 473 (1987).
17. O. F. Olaj and I. Bitai, *Macrom. Chem., Rapid Commun.* 9, 275 (1988).
18. M. Buback, B. Huckestein and B. Ludwig, *Macrom. Chem., Rapid Commun.* 13, 1 (1992).
19. K. W. McLaughlin, D. D. Latham, C. E. Hoyle and M. A. Trapp, *J. Phys. Chem.*, 93, 3643 (1989).
20. C. E. Hoyle, M. A. Trapp, C. H. Chang, D. D. Latham and K. W. McLaughlin, *Macromolecules* 22, 3866 (1989).