The traditional agroforestry systems of Sierra del Rosario and Sierra Maestra, Cuba

Mauro Agnoletti1 · Yenia Molina Pelegrín2 · Alejandro González Alvarez3

Received: 6 July 2021 / Revised: 30 November 2021 / Accepted: 5 December 2021 / Published online: 15 February 2022 © The Author(s) 2022

Abstract
Traditional coffee cultivation in Cuba is the result of a complex interaction between different flora species creating agroforestry systems widely spread in mountainous area. The systems, product of local traditional knowledge, are mainly devoted to coffee production but, thanks to the interaction with other species, farmers provide different food products both for self-consumption and to be sold. Furthermore, the adoption of shade trees in order to reach a better quality of the coffee cultivated creates particular microclimate conditions favorable for microorganisms, fauna species and also for spontaneous flora species. According to this it is clear the relationships between traditional knowledge and biodiversity preservation which is fundamental also for improving the surrounding environment, avoiding floods or hydrogeological instability damages, concurring to climate change mitigation and carbon storage. Traditional agroforestry systems are one of the best example of coexistence and coevolution between man and nature, being an historical system adopted by local communities to satisfy their needs in total respect of the surrounding environment. Considering this, the promotion and maintenance of this kind of systems and knowledge related might constitute a valid example to actively preserve biodiversity while respecting human needs for food and livelihood security. These systems are also of particular importance considering the importance of coffee as a beverage served in many countries of the world, but often produced in intensive plantations. This paper shows the high sustainability of coffee production under the shade of trees and support a new concept of food quality contributing to preserve local cultures and environments.

Keywords Agroforestry · Coffee · Agrobiodiversity · Traditional knowledge · Agricultural heritage

Communicated by Antonio Santoro.

Mauro Agnoletti
mauro.agnoletti@unifi.it

Extended author information available on the last page of the article
Introduction

Agrobiodiversity is the synergy and interaction between living things, land, technology, and social systems (Long et al. 2003) and conserving it in farming systems could provide direct and indirect benefits necessary for livelihoods and ecosystem functioning (Chirwa et al. 2008). Agroforestry systems are characterized by important elements that can play a significant role in the adaptation to climate change including changes in microclimate structure, protection through provision of permanent cover and opportunities for diversification of the agricultural systems, improving efficiency of use of soil, water and climatic resources, contribution to soil fertility improvement, reducing carbon emissions and increasing sequestration, and promoting gender equity (Rao et al. 2007) while being characterized by high socioeconomic and ecological complexity (Troper et al. 2011). In addition, it has been exposed that agroforestry systems with greater structural complexity are capable of harboring high biodiversity (Santoro et al. 2020). The biodiversity associated to agroforestry is part of the wider concept of biocultural diversity (Agnoletti and Rotherham 2015) adopted by FAO in the criteria for the designation of agricultural heritage systems among the GIAHS sites (Globally Important Agricultural Heritage Systems).

Coffee cultivation is traditionally based on agroforestry systems considering that shade trees reduce the stress of coffee by ameliorating adverse climatic conditions and nutritional imbalances (Beer et al. 1997). Coffee is an extremely important agricultural commodity, produced in about 80 tropical countries, with an estimated 125 million people depending on it for their livelihoods in Latin America, Africa, and Asia (Krishnan 2017). Over the past 50 years, both production and consumption of coffee have risen considerably but, especially smallholders, who are the main producers, are facing growing challenges derived from climate change and more difficult natural growing conditions (FAO 2015). In Cuba, the culture of coffee has been important in many mountainous areas as a historically key element of the agricultural evolution of its landscapes (Ramírez and Paredes 2003). The first coffee plants were introduced in Cuba from 1748, having place in a farm of Wajay, a town located at the periphery of Havana city in the western geography of the country (Lapique and García 2014); but it is from the Revolution of Haiti that the coffee production in Cuba has had a particular increment (Fernandez 2012). Coffee plantations are predominant as coffee is a commercialized product in the majority of the island farms even if it is not the only species cultivated as it coexists with other cultivated species increasing the crops agricultural diversity being important repositories of biological richness for groups such as trees and epiphytes, mammals, birds, reptiles, amphibians, and arthropods (Moguel and Toledo 1999). Beside this, Cuba has the privilege of having a remarkable wealth of endemic or exclusive flora and fauna. Vales and Vilamajo (2001) highlight Cuba as the island of the Antilles with greater biological diversity, both in total species richness and in the degree of endemism, which considerably increases the value of Cuban biodiversity.

Considering this the present paper takes in consideration two traditional coffee production agroforestry systems located at the opposite extremes of Cuba with the aim of analyzing their structure and the agrobiodiversity related. The two systems considered are Sierra del Rosario and Sierra Maestra, both covering mountainous surfaces and still characterized by traditional practices related to coffee production. The paper aims to stress the importance of presence and maintenance of traditional agroforestry systems for local agrobiodiversity preservation. The agrobiodiversity linked to the presence of traditional practices, in fact, can be fundamental both from an economic and natural point of view providing multiple benefits. In addition, the maintenance of such systems is a valid example of a
sustainable alternative in order to satisfy social-economical needs while preserving the local environment and cultural heritage. The spatial scale chosen for this paper is also aimed at understanding “gamma” diversity, the one at landscape level, considering larger geographic regions compared to small sampling units, including human activity.

Material and Methods

The present study focused on two areas located at the two opposite extremes of the island of Cuba (Fig. 1): Sierra Maestra and Sierra del Rosario. The choice has been made mainly considering the importance of coffee production in both areas history. Furthermore, in both areas the coffee production has been maintained according to the traditional practices creating complex and sustainable agroforestry systems.

The area of Sierra del Rosario, in the north-west of Cuba, covers 80,000 hectares and it is located in Artemisa province. It is 70 km away from the capital, Havana and it is part of a mountainous area with maximum high of 560 m a.s.l.. The eastern portion of the site analyzed is also part of the Sierra del Rosario Biosphere Reserve, included in the official UNESCO list in 1984 and recognized as a reserve showing a complex geological structure, with a great diversity of rocks that produce different and special soils, which in part, determine flora endemism in its landscape (García and Castiñeiras 2006). Sierra del Rosario, according to the Koppen classification (Fig. 3), belongs to the tropical area including both the monsoon (Am) and the savannah (Aw) climate subcategories (Kottek et al. 2006).

Sierra Maestra is set in the opposite side of the island, in the south-east of Cuba. The area considered covers a surface of 494,889 hectares of which 59,066 hectares are characterized by coffee and cocoa cultivation (Fig. 2). It extends across 14 municipalities in Granma, Santiago de Cuba and Guantanamo provinces. The area is set along the Sierra Maestra massif from 240 to 1200 m a.s.l.. According to the Koppen climate classification it belongs to Tropical, both monsoon (Am) and savannah (Aw), and Temperate, no dry
season, warm summer (Cfb) classes (Fig. 3). Inside the study area boundaries there are also protected areas, part of the National System of Protected areas which are of as national or local significance (Fig. 2). Furthermore, as in the case of Sierra del Rosario even in this area there is a surface included in UNESCO Biosphere Reserve List from 1987: the Baconao Biosphere Reserve, located in the south of the provinces of Santiago de Cuba and Guantánamo, in the eastern region of Cuba.

The two areas choice has been made according to the recognized importance of traditional coffee cultivation in both of them and because they are, even in the present days, a good example of agroforestry systems sustainable management.

The study carried out is based on the comparison between the two sites. The analysis mainly focuses on the agroforestry systems structure characteristics, the ecological interactions created by the systems themselves and on the traditional practices and agrobiodiversity related. In particular: the first part of the study aims to provide a description of coffee agroforestry system structure, practices and traditional knowledge, focusing on their effects on the surrounding environment, while the second part provides a detailed assessment of coffee agroforestry system agrobiodiversity richness considering the different varieties of species both endemic and cultivated which are deeply related to the maintenance of the systems themselves.
The biodiversity inventories in Sierra del Rosario is the accumulative knowledge resulting of expeditions and field work jointly conducted over the last 35 years between Sierra del Rosario Ecological Station (EESR) and different institutions involved in systematics and taxonomy in Cuba, as is the case of the Cuban National Garden, the Institute of Ecology and Systematics and the National Museum of Natural History. Agricultural diversity has been compiled as the result of field works jointly conducted by INIFAT and EESR since 1999 and recently updated by COBARB project (2012–2019) due to expeditions and surveys conducted among 75 traditional farmers placed in agricultural landscapes.

Results

In Cuba, the introduction of agroforestry system and practices related dates back to the eighteenth century when French settlers introduced coffee cultivation (*Coffea arabica*) in the mountainous areas of the country, where by the first time trees were associated with permanent cultivation, with the goal of obtaining sustained yields in hillside conditions, not forgetting the “conucos” or family parcels, a traditional form of integrated production known as an agrosilvopastoral practice.

In traditional coffee plantations in the mountainous areas of the Sierra Maestra de Cuba, a multiple cultivation method is practiced, since they are established on the same surface, in addition to coffee trees and trees, *Dioscore alata* and *Xathosoma sp.* some varieties of banana are cultivated. Even if coffee is the main source of resources, fruit species are important supplements to the family’s daily diet. Currently 57 673.36 ha are dedicated to coffee cultivation in Sierra Maestra.

Sierra del Rosario traditional system is similar to the one of Sierra Maestra: the farms characterized by coffee cultivation of important extension see also the presence of other species also important for farmers livelihood like *Xanthosoma sagittifolium*, *Citrus*, *Pouteria sapota*, *Manhiot esculenta*, *Cucurbita moschata* and *Ipomoea batatas*. Coffee cultivation is in fact part of the system diversity being particularly valorized in polycultural systems as when it is mixed with fruit trees as plátano (*Musa spp.*), mamey colorado (*Pouteria sapota*) and aguacate (*Persea americana*) used as shade trees. In addition, the traditional coffee system is characterized by a series of herbaceous species used as food.

The traditional structure of traditional agroforestry system for coffee production is the result of a complex combination of species strongly influencing the agrobiodiversity richness of the system itself (Fig. 4). The farmers use to create shade with species like fruit trees that can contribute to their sustenance but it is also common the utilization of forestry species like *Ficus aurea* and *Trophis racemosa*. Among the species adopted to create shade farmers prefer *Gliricidia sepium* and *Samanea saman* (Gonzalez Alvarez et al. 2016).

From an ecological point of view, in agroforestry systems, nutrients enter through various sources such as rain and organic residues; these can be accumulated either in the shade trees cultivation, soil or litter. At the same time, interactions occur between crop layers such as residue deposition, infiltration, absorption and mineralization; likewise, outputs can occur by crops yields, leaching, runoff, and denitrification processes. The increase in litter shade trees promotes a diversity of decomposer organisms and other species can provide ecosystem services such as pest control (Petite Aldana et al. 2019) (Fig. 5) while protecting the soil from direct insolation, helping maintain organic matter, reducing evaporation and maintaining soil productivity (Siebert 2002).
Fig. 4 The traditional polyculture coffee garden is a complex combination of multiple species needed both from an economic and ecological point of view. It is important for farmers’ sustenance the presence of different species in the system that contributes to food security and good livelihood conditions but, at the same time, it results fundamental from an environmental point of view providing multiple ecological benefits while improving the agrobiodiversity richness (from Moguel and Toledo 1999).

Fig. 5 Ecological interactions in coffee agroforestry system (Petite Aldana et al., 2019)
Besides the ecological functions derived from the system complexity, agricultural diversification is promoted by local farmers as a way to increase options of keep economic inputs in face of extreme climatic impacts. In general, the traditional farms are featured in a high integration of crop production and animal breeding, which is highly desirable under the perspective of agroecology (Figs. 6 and 7).

Sierra del Rosario is recognized for its crop genetic resources with high levels of varietal diversity of coffee (*Coffea* sp), maize (*Zea mays*), lima bean (*Phaseolus lunatus*), common bean (*Phaseolus vulgaris*), chilli (*Capsicum* sp.), etc. (Castiñeiras et al. 2006). The multistate agroecosystems areas can include up to 500 plant species most of which are ornamental and medicinal, followed by fruit and timber species. There is also an amount of plants used and preserved by farmers because of its sacred conditions. Data base of the Ecological Station of RBSR reports a floristic diversity that reaches 889 upper and 281...
lower plants, of which 11% are endemic. The richness of Plant Genetic resources of Sierra del Rosario has been object of research and in situ conservation by INIFAT, in collaboration with international partners like Bioversity International (García and Castiñeiras 2006). In this sense, the last project conducted between this organizations (COBARB), budged by 7 GEF and implemented by UNEP, had actualize the inventories of the agrobiodiversity in many traditional systems placed inside or around the RBSR. The actions of this project have been also aware of the landscape peculiarities of the regions (Sánchez et al. 2015).

In the following tables are expressed the species characterizing the systems: the Table 3 is only dedicated to the Sierra del Rosario flora species, Supplementary Material Table 1 to Sierra Maestra species and the last one (Supplementary Material Table 2) contains the species that the two systems have in common.

The fauna diversity is also very rich, both for wild species and livestock. In Sierra del Rosario, among livestock species (Table 1), the most important in terms of number of individuals are pigs. In traditional farms the traditional race of pigs is named “creole”. The term “creole” is used academically in reference to the animals considered genetically descendants from those brought to Cuba by Spaniard conquerors. However, the farmers make a broader use of the term; many times they use the word “creole” to name the colored animals or those born in their farms without racial control.

Wild fauna reported at Sierra del Rosario, in studies also conducted at the RBSR, shows a high rate of endemics, among them the best represented groups are Birds (131 species identified including 12 endemics), Reptiles (33 species identified including 27 endemics), Amphibia (16 species identified including 13 endemics), Mammals: (including a remarkable number of bats, with 11 species and among there is very important the presence of two species of genus Capromys, commonly known as hutias).

Some of the most charismatic species are reported in the best-preserved areas, but is also possible to observed them in the mountains traditional systems. Ramírez y Paredes and Pupo (2005) remarks that in Sierra del Rosario is not very difficult to see the high flight of the “Gavilán del Monte” (rapacios bird: Buteo jamaicensis) or the hummingbird (Chlorostilbon ricordii), even in the home gardens, but also other birds like: the national one “Tocororo” (Plioterus temnurus), the “Cartacuba” (Todus multicolor), the colorful of the “Bijirita” (Dendroica discolor) and the Common Bijirita and the familiar and endemic

Livestock species	Scientific name	Common Name
1	Sus scrofa domestica	Pigs; Spanish: “cerdo”, “puercos”
2	Gallus gallus domesticus	Chickens; Spanish: “pollos”, “gallinas”
3	Ovis orientalis aries	Sheep; Spanish: “carneros”
4	Equus ferus caballus	Horses; Spanish: “caballos”
5	Bos primigenius taurus	Caws, Bulls and Oxen; Spanish: “Vacas”, “Toros” y “Bueyes”
6	Meleagris gallopavo	Turkeys; Spanish: “Pavos”
7	Ananas platyrhyncos domesticus	Ducks; Spanish: “Patos”
8	Oryctolagus cuniculus	Rabbit; Spanish: “Conejos”
9	Equus africanus x ferux	Mules; Spanish: “Mulos”
Tomeguín del Pinar (*Tiaris canora*), as well as the beautiful and laborious Carpenters: the “Scapular” (*Colaptes auratus*), the “Churroso” (*Colaptes fernandinae*), the “Jobado” (*Centurus superciliaris*) and the “Green” (*Xiphidiopicus percussus*). Population of butterflies such as: *Calisto herophile*, *Eurema larae*, the beautiful *Helicornius charithonius*, *Appias drucilla*, *Utetheisa ornatrix* and *Marpesia chiron*, among many others.

In the areas where calcareous rocks predominate, it is easy to find several species of mollusks, with showy shapes and colors, from the *Zachrycia rangelina*, the largest terrestrial mollusk in the region, but also the species *Emoda sagraiana* and *Emoda margi nata*, *Helicina adspersa*, *Plicathyrella assimilis*, and *Vianas regina* Morelet, among other twenty-three species reported. This diversity is consistent with the character of Cuba as a world center of diversity of mollusks.

In the case of Sierra del Rosario, as the result of the field visits conducted by COBARB project, there were observed examples of the use of wild animal used for feeding, as is the case of shrimps and hutias, which are endemic species. In the case of the Cuban majá (*Epi crates angulifer*) the biggest snake of the island, which is also an endemic, it is reported the use of its fats for medical purposes. In the case of bees, there are either the species “abeja europea” (*Apis mellifera*) and “abeja de la tierra” (*Melipona beecheii*) that can be managed. Even when both bees are considered as introduced, there are wild populations of these species which are present in the forest or agroforestry areas of the landscapes.

Also Sierra Maestra has a remarkable endemic fauna (Tables 2, 3 and 4).

Among all the species in particular the mollusks could be highlighted considering their multiple uses in Sierra Maestra where they have been used as jewels and personal ornaments, for their color and beauty, including the species: *Zachrysia bayamensis* and *Coryda lindoni*. In addition, also lepidopterans perform various functions such as forming part of food chains and participating in the pollination of many plants. In the ecosystems of the Sierra Maestra can be see *Greta cubana*, *Virbia heros* (restricted to the Nipe-Sagua-Baracoa and Sierra Maestra mountain ranges), *Calisto isnaeli*. In Sierra Maestra there is also a great diversity of amphibians and reptiles, in particular the species *Eleutherodactylus alipes*, *Eleutherodactylus cubanus*, *Eleutherodactylus jaumei* are endemic of the Sierra Maestra.

Discussion

Coffee culture, as part of mixed systems, tends to be more important in the south of Sierra del Rosario range system while livestock, mainly cows and pigs, tend to be predominant in the more rural farms at the northern side of the range system. The production of coffee seems to be not very high in traditional farms in terms of gross production or productivity. This is in concordance with the arguments of Ospina (2008) pointing that what is remarkable in these ecological coffee systems is the kaleidoscope of food products and ecosystems service. However, in the case of the traditional systems of Sierra del Rosario, there is a surplus of coffee production that is placed in the national markets by different ways, but mainly because of State´s purchases. In the traditional farms placed in Sierra del Rosario, agricultural typologies vary according to differences in topography. For example, is very notable the nonuse of the slopes for practicing the agriculture when the availability of cropping areas in valleys is enough for food requirements. This conducts to differences in the cultures of managing these areas diversifying the traditional practices.
Fauna list species	Apodidae	Parulidae
1. Chorostivon ricordis	20. Dendroica caeniulenscens	
2. Bubulcus ibis	21. Dendroica tigrina	
3. Butoride virescens	22. Mniotilta varia	
4. Columbina passerina Linnaeus	23. Seluris motacilla	
5. Patagioenas leucocephala	24. Setophaga ruticilla	
6. Patagioenas squamosa	7. Zenaida aseatica	
8. Cooyzus americanus	9. Crotophaga ani Linnaeus	
10. Aurothera merlini d’Orbigny	11. Accipiter striatus Vieillot	
12. Buteo platypterus	13. Cyrcus cyaneus	
14. Falco sparverius Linnaeus	15. Dives atroviolacea d’Orbigny	
16. Iterus dominicensis Linnaeus	17. Quiscalus niger	
18. Molothrus bonoriensis	19. Mimus polyglottos Linnaeus	
20. Dendroica caeniulenscens	21. Dendroica tigrina	
22. Mniotilta varia		
23. Seluris motacilla	24. Setophaga ruticilla	
25. Tyrannus caudacatus	26. Tyrannus dominicensis	
27. Tyrannus caudacatus	28. Tyrannus dominicensis	
29. Vireo antilogois	30. Melanerpes superciliaris Temminck	
31. Sphipyacus varius	32. Xiphidiopicus percussus Temminck	
33. Cathartes aura Linnaeus	34. Priotelus temnurus Temminck	
35. Bufo spp.	36. Eleutherodactylus varleyis Dunn	
37. Eleutherodactylus atkinsi Lynch	38. Eleutherodactylus simulans Díaz y Fong	
39. Eleutherodactylus rocdordii (Dumeril y Bibron)	40. Eleutherodactylus cuneatus (Cope)	
41. Eleutherodactylus auriculatus (Cope)	42. Eleutherodactylus ronaldi Schwartz	
43. Eleutherodactylus dimidiatus (Cope)	44. Osteopilus septentrionalis (Dumeril y Bibron)	
45. Anolis anfiloquiois	46. Anolis equestris	
47. Anolis porcatus	48. Anolis sagrei	
49. Anolis allogus	50. Anolis baracoe	
51. Anolis argenteuluis	52. Anolis angusticeps	
53. Ameiva auberi	54. Leyocephalus macropus	
55. Leyocephalus raviceps	56. Capromys piloridae Say	
As has been pointed out, there is a diversity of sources of incomes for the traditional farming systems, condition that can be considered a guarantee of resilience. It is hypothesized that shade promotes slower and more balanced filling and uniform ripening of berries, thus yielding a better-quality product than unshaded coffee plants (Muschler 2001). In addition, the multiplicity of agricultural activities and the traditional knowledge is an opportunity for keeping the functioning in the system itself when a stressing situation occurs. The multifunctionality of many biological resources is also a distinctive attribute of the traditional systems still present in Sierra del Rosario. A very iconic example is the case of Cuban national tree (Roystonea regia), a forest resource with multiple uses and cultural signification. The species is a source of traditional materials for buildings, food for humans and animals, and also row materials for packaging. In this sense the petioles of the royal palm are very demanded in the elaboration of boxes for transportation of tobacco leaves.

Even when coffee and fruits trees are very important components of the traditional systems of Sierra del Rosario, other crops species like annual crops are important as complement of the systems. As Brown and Hodgkin pointed (2007), there are three categories of plant species make up plant biodiversity in the rural landscape:

1. The plant species that are deliberately cropped or tended and harvested for food, fiber, fuel, fodder, timber, medicine, decoration, or other uses.
2. At the other extreme, wild species that occur in natural communities and benefit the agricultural environment by providing protection, shade, and groundwater regulation.
3. Between these extremes, the wild related species of domesticates that can interbreed with and contribute to the gene pool of their crop cousins, that survive autonomously, that share many of the pests and diseases of crops, and that sometimes are eaten to relieve famine.

Regarding the Sierra Maestra, it represents one of the main nucleus of biodiversity in Cuba. The system traditional structure, today maintained, results to be a tool for the conservation and management of biodiversity, inside or outside protected areas or where the habitat is very disturbed. The use of forest trees as a shadow of coffee and cocoa cultivation has proven to be sustainable over three centuries creating also a favorable scenario to increase biodiversity. Forest trees are not the only one used to create shade in coffee cultivation, it is, in fact, easy and common to find fruit trees that apart from the function as shade and crop protection, also provide additional food products so that coffee and cocoa systems in Sierra Maestra not only generate coffee and cocoa as a product, but also high quality wood, fruits and agricultural products. Moreover, diversified coffee and cocoa plantations that look like a natural forest are ideal for protecting the soil, conserving water and maintaining high biodiversity constituting excellent wildlife habitat sites.

As seen from the result of the present study traditional agroforestry systems, as the ones in Sierra del Rosario and Sierra Maestra, have the potential to hold high species richness and constitute a valuable tool that could be used to complement conservation effort while being designed to improve farmers’ livelihoods by generally increasing productivity, profitability and sustainability.

According to the World Bank (2008), improving these three aspects of small-scale agriculture is a key way out of poverty, emphasizing the potential of agroforestry practices to alleviate shortages. In addition, it has been exposed that agroforestry systems with greater structural complexity are capable of harboring high biodiversity and in particular the functional biodiversity, which can increase productivity and ecological resilience. For example,
Species	Common name	
Asclepias curassavica	Flor de la calentura	
Arachys hypogeae	Maní	
Arthrostylidium capillifolium	Tibisi	
Averrhoa bilimbi	Pepinillo	
Bahinia cumanensis	Bejuco de Tortuga	
Argemone mexicana	Cardo Santo	
Artemisia absinthium	Ajenjo	
Andropogon glomeratus	Rabo de zorra	
Andira jamaicensis	Yaba	
Amyris balsamifera	Cuaba	
Ambrosia artemisiifolia	Artemisa	
Alternanthera sp.	Tapón	
Allium tuberosum	Cebollino	
Allium sativum	Ajo criollo	
Allium cepa	Cebollino, Ajo de jardín	
Allium cepa var aggregatum	Cebolla corojo	
Allium cepa	Ajo porro	
Allium chinense	Ajo criollo	
Allium fistulosum	Cebollino	
Alternanthera sp.	Tapón	
Andropogon glomeratus	Rabo de zorra	
Arachys hypogeae	Maní	
Argemone mexicana	Cardo Santo	
Artemisia absinthium	Ajenjo	
Andropogon glomeratus	Rabo de zorra	
Ambrosia artemisiifolia	Artemisa	
Amyris balsamifera	Cuaba	
Andira jamaicensis	Yaba	
Allium tuberosum	Cebollino	
Allium sativum	Ajo criollo	
Allium cepa	Ajo porro	
Allium cepa var aggregatum	Cebolla corojo	
Allium chinense	Ajo criollo	
Allium fistulosum	Cebollino, Ajo de jardín	
Alternanthera sp.	Tapón	
Andropogon glomeratus	Rabo de zorra	
Ambrosia artemisiifolia	Artemisa	
Amyris balsamifera	Cuaba	
Andira jamaicensis	Yaba	
Alternanthera sp.	Tapón	
Andropogon glomeratus	Rabo de zorra	
Ambrosia artemisiifolia	Artemisa	
Species	Common name	
-----------------------------	---------------------------	
Bauhinia divaricata	Pata de Vaca	
Blechum browneii	Mazorquilla	
Boconia frutescens	Yagrumita	
Bourreria crassinifolia	Hierro de sabana	
Brassica juncea	Mostaza	
Byronima spicata	Peralejo de Pinar	
Caesalpinia pulcherrima	Guacamaya	
Caesalpinia vesicaria	Brasil	
Calophyllum pinetorum	Ocuje	
Calyptrantes capitulata	Guairaje	
Canavalia ensiformis	Nescafé	
Capsicum annuum	Ají angolano	
Capsicum chinense	Ají cachucha	
Capsicum frutescens	Ají chile	
Casearia hirsuta	Raspalengua	
Cassia diphylla	Maní cimarrón	
Catharanthus roseus	Vicaria	
Cayaponia racemosa	Brionia	
Celtis iguanea	Zarza Blanca	
Celtis trinervia	Hueso	
Cinnamomum aromaticum	Canela china	
Cissus verticillata	Bejuco ubí	
Citharexylum caudatum	Penda	
Citrullus lanatus	Melón de agua	
Citrus bergamia	Bergamota	
Species	Common name	
-------------------------------	---------------------------	
Cladium jamaicensis	Cortadera	
Clematis dioica	Cabello de Ángel	
Cidemia hirta	Cordobán peludo	
Clusia minor	Copecillo	
Coccoloba retusa	Uvilla	
Coix lacryma jobii	Santa Juana	
Colocasia esculenta	Malanga	
Colubrina ferruginosa	Bijaguara	
Cordia nitida	Ateje de Costa	
Costus sp.	Caña mexicana	
Costus speciosus	Caña americana, Cañuela santa	
Costus spicatus	Caña mexicana	
Cucumis melo	Melón de Castilla	
Cupania glabra	Guara de costa	
Cupania macrophylla	Guara macho	
Cymbopogon citratus	Caña santa	
Cynodon dactylon	Pasto bermuda	
Dalbergia ecastophyllum	Pendola	
Davilla rugosa	Bejuco colorado	
Deherainia cubensis	Contraguao cimarrón	
Dendropanax arbores	Vibona	
Dichrostachys cinerea	Marabú	
Didymopanax morototoni	Yagruma macho	
Diospyros caribae	Tagua	
Diospyros crassinervis	Ebano carbonero	
Number	Species	Common name
--------	-------------------------------	-----------------------------
76	Dovyalis hebecarpa	Aberia
77	Drypetes alba	Hueso
78	Drypetes serrata	Chicharrón de costa
79	Echinochloa colonum	Grama pintada
80	Echites umbellata	Caramagüey Blanco
81	Ehretia tinifolia	Roble prieto
82	Elephantopus scaber	Lengua de vaca
83	Enallagma latifolia	Güira de olor
84	Eryngium foetidum	Culanthro
85	Erythroxylon alternifolium	Arabo Prieto
86	Erythroxylon areolatum	Jibá Macho
87	Eucaliptus resinifera	Eucalipto
88	Eugenia glabra	Guairaje macho
89	Eugenia maleolens	Guairaje
90	Eugenia rigidifolia	Biriji
91	Eugenia rimosaa	Guairajillo
92	Eupatorium capillifolium	Copal
93	Eupatorium odoratum	Rompezaragüey de sabana
94	Eupatorium villosum	Albahaca de sabana
95	Faramea occidentalis	Nabaco
96	Ficus aurea	Jagüey Hembra
97	Ficus cassinervia	Jagüey
98	Ficus combissi	Jagüey Macho
99	Ficus laevigata	Jagüey
100	Ficus membranacea	Jagüey
Species	Common name	
-------------------------------	----------------------	
Ficus subscabrida	Jagüey Macho	
Flacourtia indica	Ciruela gobernadora	
Foeniculum vulgare	Hinojo	
Gaya occidentalis	Botón de Oro	
Genipa americana	Jaga	
Gerascanthus coloccocus	Ateje	
Gerascanthus gerascanthioides	Varía	
Gilibertia edulis	Vibona	
Gossypium sp	Algodón	
Guettarda cobsii	Hueso	
Guettarda lindeniana	Cuero	
Guettarda valenzuelana	Vigueta	
Guzmania monostachya	Curujey Bonito	
Gymnanthes lucida	Yaití	
Hamelia patens	Ponasí	
Hedychium coronarium	Mariposa blanca	
Helianthus annua	Girasol	
Heliotropium indicum	Alacrancillo	
Hibiscus costatus	Majaguilla	
Hibiscus pernambucensis	Majagua	
Hibiscus sabdariffa	Serení	
Hibiscus tiliaceus	Majagua	
Hura crepitans	Salvadera	
Hyphantria rufa	Jaragua	
Ilex cassine	Yanilla Blanca	
Species	Common name	
--------------------------	------------------------------	
126 Ilex repanda	Naranjo Blanco	
127 Imperata brasiliensis	Yaguna	
128 Ipomoea batatas	boniato	
129 Isora floribunda	Lengua de vaca	
130 Jacquinia brunnescens	Espuela de Caballero	
131 Jatropha multifida	Ceibilla	
132 Justicia pectoralis	Tilo, carpintero	
133 Khaya senegalensis	Caoba africana	
134 Krugiodendron ferreum	Carey de costa	
135 Lantana camara	Filigrana	
136 Lantana involucrata	Filigrana cimarrona	
137 Laplacea curtyana	Almendro	
138 Laurentia longiflora	Revienta caballos	
139 Licaria triandra	Laurel de la Loma	
140 Lippia alba	Flor de España	
141 Lippia dulcis	Orooz	
142 Lippia micromera	Oreganillo	
143 Lonchocarpus pentaphyllus	Guamá de Costa	
144 Lonchocarpus sericeus	Guamá	
145 Lysiloma sabicu	Sabicú	
146 Malpighia biflora	Palo bronco de Monte	
147 Malpighia glabra	Acerola	
148 Mammee americana	Mamey de Santo Domingo	
149 Manihot esculenta	Yuca	
150 Manilkara albescens	Acana	
	Species	Common name
---	---------------------------------	-------------------------
151	*Manilkara jaimiqui*	Jaimiquí
152	*Manilkara sapota*	Sapote
153	*Mappia racemosa*	Palo de Cana
154	*Margaritaria nobilis*	Azulejo
155	*Mastichodendron foetidissimum*	Jocuma
156	*Matayba apetala*	Macurije
157	*Matayba oppositifolia*	Macurije
158	*Matricaria recutita*	Manzanilla
159	*Melia azedarach*	Paraíso
160	*Mentha sp.*	Menta
161	*Mentha spicata*	Hierba buena
162	*Mentha x piperita*	Menta
163	*Miconia laeviagata*	Cordobancillo de arroyo
164	*Mikania cordifolia*	Guaco
165	*Mikania hastata*	Guaco
166	*Mikania ranunculifolia*	Guaco
167	*Morinda royoc*	Piñipiñi
168	*Mucuna pruriens*	Pica Pica
169	*Muntingia calabura*	Capulí
170	*Myrcia valenzuelana*	Pimienta cimarrona
171	*Myrica cerifera*	Arraiján
172	*Nectandra earlet*	Boniato amarillo
173	*Neobracea valenzuelana*	Meloncillo
174	*Neurolea lobata*	Victoriana
175	*Ocimum basilicum*	Albahaca
Species	Common name	
-------------------------------	---------------------------	
Ocimum gratissimum	Orégano cimarrón	
Ocimum sanctum	Albahaca morada	
Ocotea cuneata	Canelón	
Ocotea floribunda	Boniato Laurel	
Ocotea leucayxylon	Aguacatillo	
Olyra latifolia	Tibisí	
Origanum majorana	Mejorana	
Oryza sativa	Arroz	
Oxandra lanceolata	Algarrobo, Yaya	
Paspalum conjugatum	Cañamazo amargo	
Passiflora edulis	Maracuyá	
Passiflora sexflora	Pasionaria de cerca	
Passiflora suberosa	Huevo de Gallo	
Pavonia fruticosa	Tabano	
Peltophorum adnatum	Moruro Abey	
Pennisetum purpureum	King Grass	
Phaseolus lunatus	Frijol caballero	
Phaseolus vulgaris	Frijol comun	
Phoebe elongata	Boniatillo	
Picramnia pentandra	Aguedita	
Picramnia plumata	Palo amargo	
Piper auritum	Anísón	
Piscidia piscipula	Guamá candelón	
Pisonia aculeata	Medicinal	
Pithecellobium arboreum	Moruro Rojo	
Species	Common name	
--------------------------------------	--	
Moruro Rojo	Encinillo	
Pithecellobium saman	Algarrobo	
Plantago major	Llantén	
Platygine hexandra	Ortiga	
Plectranthus amboinicus	Orégano francés	
Plectranthus sp	Meprobamato, Mandelamina	
Pluchea carolinensis	Salvia	
Potomorphe peltata	Caisimón de Anís	
Potomorphe umbellata	Caisimón	
Pouteria chrysophyllifolia	Sapote culebra	
Pouteria dictyoneura	Vigueta peluda	
Pouteria dominicensis	Sapote culebra	
Pouteria sapota	Maney colorado	
Protium cubense	Copal	
Prunus myrtifolius	Almendrillo	
Prunus occidentalis	Cuiaján	
Prunus persica	Melocotón	
Pseudolmedia spuria	Macagua	
Psychotria grandis	Tapa caminos	
Psychotria horizontalis	Dagame cimarrón	
Psychotria revoluta	Lengua de vaca	
Psychotria undata	Árbol Plateado	
Punica granatum	Granada	
Pyrus malus	Pyrus malus	
Rauvolfia cubana	Vibona	
Number	Species	Common name
-------	--------------------------	-------------------
226	Rauvolfia nitida	Malambo
227	Renealmia aromatica	Cojate
228	Reynosia wrightii	Almendrillo
229	Rheedia aristata	Manajú
230	Rheedia fruticosa	Manajú
231	Rheedia roscifolia	Manajú
232	Richardiabrasiliensis	Garro
233	Rondeletia odorata	Clavellina
234	Rosmarinus officinalis	Romero
235	Ruta sp	Ruda
236	Sabal parviflora	Palma Cana
237	Saccharum officinarum	Caña de Azúcar
238	Sapindus saponaria	Jaboncillo
239	Savia bahamensis	Icaquillo macho
240	Savia clusiifolia	Icaquillo
241	Securidaca virgata	Medicinal
242	Senna alata	Guacamaya francesa
243	Senna occidentalis	Yerba hedionda
244	Sesamum orientale	Ajonjoli
245	Setaria geniculata	Rabo de gato
246	Simaruba laevis	Gavilán
247	Sinapis alba	Mostaza
248	Sloanea amygdalina	Cresta de Gallo
249	Smilax dominguensis	Raíz de China
250	Smilax havanensis Jacq.	Bejuco Ñame
Species	Common name	
--------------------------------------	-------------------	
Smilax lanceolata L.	Raíz de China	
Smilax mollis Willd.	Bejuco de Name	
Solanum torvum	Pendejera	
Sorghum bicolor	Millo, sorgo	
Spondias purpurea	Ciruela	
Sporobolus indicus	Espartillo	
Stachyctapheta jamaicensis	Verbena	
Stevia rebaudiana	Estevia	
Stygmaphyllum sagreanum	Bejuco San Pedro	
Suberanthus nerifolius	Caobilla	
Satureja brownei	Menta	
Symplocos strigillosa	Jibacoa	
Syzygium malaccense	Albaricoque, pera	
Tabebuia shaferi	Roble blanco	
Tabernaemontana ambliocarpa	Lechoso	
Tabernaemontana citriflora	Jazmín café	
Tagetes erecta	Carolá	
Tagetes lucida	Anís	
Tapura obovata	Cagada de aura	
Teloxys ambrosioides	Apasote	
Terminalia intermedia	Chicharrón	
Ternstroemia peduncularis	Copey Vera	
Tillandsia usneoides	Guajaca, Curujey	
Tillandsia valenzuelana	Curujey	
Tournefortia hirsotissima	Nigua	
Table 3 (continued)

Species	Common name
Trichilia havanensis	Siguaraya
Trichilia hirta	Cabo de hacha
Trichospermum grewiifolius	Guasimilla
Trophys racemosa	Ramón de Caballos
Turnera ulmifolia	Marilope
Ureca baccifera	Chicicate
Vernonia havanensis	rompezaragüey
Vigna umbellata	Frijol picolino, Frijol diablito, Frijol de Navidad
Vigna unguiculata	Péinate para atrás
Vitis tiliaeiflia	Parra Cimarrona
Vitis vinifera	Uva
Xanthium strumarium	Guizazo de caballo
Xanthosoma atrovirens	Malanga amarilla
Xiphidium caeruleum	Mandelamina
Zanthoxylon cubense	Ayúa blanca
Zanthoxylon fagara	Amoroso
Zea mays	Maíz
Zuelania guidonia	Guaguasí
Species	Flora species list in Sierra Maestra
---------	-------------------------------------
Acacia magniflora	1
Acacia alpinopectinata	2
Acacia retinonata	3
Adiantum latifolium	4
Adiantum tenuifolium	5
Adiantum tenerum	6
Aeschynomene americana	7
Alchornea falcata	8
Alchornea formosana	9
Alchornea glauca	10
Alchornea incana	11
Alchornea javanica	12
Alchornea glandulosa	13
Alchornea insignis	14
Alchornea krapfiana	15
Alchornea laeteviridis	16
Alchornea longipes	17
Alchornea macrodonta	18
Alchornea microphylla	19
Alchornea multiflora	20
Alchornea nuda	21
Alchornea obovata	22
Alchornea paniculata	23
Alchornea pilosa	24
Alchornea pubescens	25
Alchornea rigidula	26
Alchornea scoparia	27
Alchornea speciosa	28
Alchornea triplica	29
Alchornea undulata	30
Alchornea viable	31
Alchornea wightii	32
Alchornea zeylanica	33
Alchornea zizyphoides	34
Alchornea zygophylla	35
Alchornea zygophylla subsp. indica	36
Alchornea zygophylla var. indica	37
Alchornea zygophylla var. maxima	38
Alchornea zygophylla var. nuda	39
Alchornea zygophylla var. pubescens	40

Table 4: Flora species list in Sierra Maestra
Species	Number	Species	Number	Species
Borreria laveis	68	Dichanthium annulatum	108	Panicum maximum
Bouchea prismatica	69	Dichanthium caricasum	109	Panicum pilosum
Brachiaria extensa	70	Dieffebanchia seguine	110	Panicum reptans
Brachiaria fasciculata	71	Digitaria adscendens	111	Paspalum fimbriatum
Brachiaria subquadripara	72	Echinochloa colona	112	Pedilanthus angustopholium
Brassia caudata	73	Echinochloa cruzgalli	113	Petiveria alliacea L
Buherhavia erecta L	74	Eleusine indica	114	Philodendron consanguineum
Bursera simaruba	75	Emilia sonchifolia	115	Phyla nodiflora
Cajanus indicus	76	Epidendrum nocturnum Jacq	116	Pimenta dioica
Caladium bicolor	77	Epidendrum radicans	117	Plumeria montana
Calocarpum sapota	78	Eringium phoetidim	118	Poeppigia prest
Calycopillium candidissimum	79	Erythrina poeppigiana	119	Poeppigiana erythrina
Campyloneurum cubense	80	Erythrina vellutina	120	Polypodium astropelis

Table 4 (continued)
cross-pollination can increase coffee production by up to 50% compared to self-pollination (Tscharntke et al. 2011) and biological control can reduce outbreaks of plagues or herbivores (Kellerman et al. 2008; Perfecto et al. 2004). Interactions between woody and herbaceous plants in agroforestry systems usually improve the microclimate and nutrient availability in the soil. The belowground presence of trees affects moisture availability and soil temperature and these, in turn, affect transpiration and energy conversion of nearby plants (Rosenberg et al. 1983; Atangana et al. 2014). Biologically complex agroforestry systems often reveal greater ecosystem functioning and a reduced reliance on chemical inputs (Drinkwater and Snapp 2007; Malézieux et al. 2009; Martin and Isaac 2015). Such benefits have been observed from farm to landscape levels of integration, and across temperate and tropical agroecosystems. While these benefits are a key target in future food production landscapes, such success requires well developed diagnostics of the plant-soil continuum (Isaac and Borden 2019).

Conclusions

Agroforestry systems are recognized as an alternative for land use planning on farms and interfluvial areas being considered as a sustainable example for the management of tree, shrub, soil, crops and animals’ resources. The system must integrate the function and interaction between its components, otherwise it may be a good association, but hardly adequate to protect the soil-crop-tree and produce sustainably. Many of the alternatives improve soil conditions, others influence water production or relate to crop protection (World Vision 2005). The high diversity in terms of cultivated and spontaneous species characterizing the systems object of the present paper allows a strong resilience of the systems themselves, tested after the impact of devastating hurricanes, changes in rainfall patterns and droughts. In addition, at the genetic, species, and farming systems levels, biodiversity provides valuable ecosystems services and functions for agricultural production (Thrupp 2000).

“Agroforestry” is a relatively new term, the traditional knowledge and practices underpinning these land use systems is ancient, having originated in the ancestral "shifting cultivation" practices of African peoples and indigenous peoples of the Americas (and elsewhere). Landscape structure, field area and margins, and polycultures that are part of the indigenous agricultural strategy appear to increase the biodiversity of traditional agroecosystems (Altieri et al. 1987; Oldfield and Alcorn 1987; Parrotta et al. 2015). Thus, there is increasing evidence that the mosaic structure of landscapes under indigenous management maintains and even improves biodiversity (Gonzalez-Bernaldez 1991; Brown and Brown 1992; Reichhardt et al. 1994), as well as preserving the associated cultural values (Agnoletti 2014; Agnoletti et al. 2015).

Furthermore, the complex system created thanks to the introduction of shade trees and other cultivated species contribute to obtain multiple benefits from both an ecological and economic point of view. In fact, shade trees play an important role in erosion control and in maintaining soil productivity by stimulating the decomposition of residuals while generating additional products, such as wood, firewood and fruits, providing important contributions to farmers’ livelihoods, especially in seasons where productivity it is low. It is increasingly clear that shade trees provide direct and indirect benefits, so it is difficult to fully quantify the total benefits. However, these benefits are expected to improve farmers’ livelihoods by stabilizing their income and increasing their ability to recover in general. Considering this and the fact that being system with no chemical inputs and completely
sustainable they can mitigate the effects of climate change by propitiating a favorable microclimate and increasing carbon storage it is clear that results important their preservation and protection in order to provide multiple benefits to the environment sustaining local communities. The present study, in this sense, has contributed to give a framework of the traditional structure of agroforestry systems for coffee production in Cuba providing at the same time the list of all the flora and fauna species involved in the systems themselves. This turns to be fundamental to understand the importance of maintaining and promoting traditional knowledge which, in this particular case, is the key to preserve the agrobiodiversity, sustain local communities and implement sustainable economic strategies. These systems are also an important alternative to intensive plantations of coffee, especially when we relate this production to the worldwide market of coffee consumed in many countries, for their sustainability and as an expression of a wider concept of food quality.

Appendix 1: Complete list of the useful species at Sierra Del Rosario, with the botanical family of each species

List of species used for animal feeding.

Scientific name	Family
1 Commelina diffusa Burm. f	Commelinaceae
2 Cynodon dactylon (L.) Pers	Poaceae
3 Dendropanax arboreus (L.) Decne. & Planch	Araliaceae
4 Echinochloa colona (L.) Link	Poaceae
5 Gerasanthus coloccocus (L.) Borhidi	Boraginaceae
6 Guazuma ulmifolia Lam	Malvaceae
7 Helianthus annuus L.	Asteraceae
8 Hypharrenia rufa Nees	Poaceae
9 Pennisetum purpureum Schumacher	Poaceae
10 Roystonea regia (Kunth) O.F. Cook	Arecaceae
11 Saccharum officinarum L.	Poaceae
12 Samanea saman (Jacq.) Merr	Leguminosae
13 Sorghum bicolor (L.) Moench	Poaceae
14 Sporobolus indicus (L.) R.Br	Poaceae
15 Trophis racemosa (L.) Urb	Moraceae

List of species used for beverage elaboration.

Scientific name	Family
1 Canavalia ensiformis L.	Leguminosae
2 Cassia grandis L. f	Leguminosae
3 Citrus x aurantifolia (Christm.) Swingle	Rutaceae
4 Coffea arabica L.	Rubiaceae
5 Coffea canephora L.	Rubiaceae
6 Passiflora edulis Sims	Passifloraceae
7 Smilax dominguensis Willd	Smilacaceae
Scientific name	Family
---------------------------------	-----------------
8 \textit{Smilax havanensis}	Smilacaceae
9 \textit{Smilax lanceolata}	Smilacaceae
10 \textit{Smilax mollis}	Smilacaceae
11 \textit{Vitis tilifolia}	Vitaceae
12 \textit{Vitis vinifera}	Vitaceae

List of the species used as condiments.

Scientific name	Family
1 \textit{Allium cepa}	Amaryllidaceae
2 \textit{Allium cepa var. aggregatum}	Amaryllidaceae
3 \textit{Allium chinense}	Amaryllidaceae
4 \textit{Allium fistulosum}	Amaryllidaceae
5 \textit{Allium sativum}	Amaryllidaceae
6 \textit{Allium tuberosum}	Amaryllidaceae
7 \textit{Averrhoa bilimbi}	Oxalidaceae
8 \textit{Bixa orellana}	Bixaceae
9 \textit{Brassica juncea}	Brassicaceae
10 \textit{Capsicum annuum}	Solanaceae
11 \textit{Capsicum chinense}	Solanaceae
12 \textit{Capsicum frutescens}	Solanaceae
13 \textit{Cinnamomum cassia}	Lauraceae
14 \textit{Citrus x aurantium}	Rutaceae
15 \textit{Citrus limon}	Rutaceae
16 \textit{Eryngium foetidum}	Apiaceae
17 \textit{Foeniculum vulgare}	Apiaceae
18 \textit{Lippia micromera}	Verbenaceae
19 \textit{Ocimum gratissimum}	Lamiaceae
20 \textit{Plectranthus amboinicus}	Lamiaceae
21 \textit{Sinapis alba}	Brassicaceae

List of the species used as fruits.

Scientific name	Family
1 \textit{Anacardium occidentale}	Anacardiaceae
2 \textit{Ananas comosus}	Bromeliaceae
3 \textit{Annona muricata}	Annonaceae
4 \textit{Annona squamosa}	Annonaceae
5 \textit{Carica papaya}	Caricaceae
6 \textit{Chrysophyllum cainito}	Sapotaceae
7 \textit{Chrysophyllum oliviforme}	Sapotaceae
8 \textit{Citrullus lunatus}	Cucurbitaceae
9 \textit{Citrofortunella microcarpa}	Rutaceae
10 \textit{Citrus reticulata}	Rutaceae
11 \textit{Citrus x sinensis}	Rutaceae
Scientific name	Family
--------------------------------------	----------------------------------
Citrus x paradisi Macfad	Rutaceae
Cocos nucifera L.	Arecales
Cucumis melo L.	Cucurbitaceae
Dovyalis hebecarpa (Gardner) Warb	Salicaceae
Flacourtia indica (Burm. F.) Merr	Salicaceae
Malpighia emarginata DC	Malpighiaceae
Malus domestica L.	Rosaceae
Mammea americana L.	Calophyllaceae
Mangifera indica L.	Anacardiaceae
Manilkara zapota (L.) P. Royen	Sapotaceae
Melicocccus bijugatus Jacq	Sapindaceae
Muntingia calabura L.	Muntingiaceae
Musa x paradisiaca L.	Musaceae
Persea americana Mill	Lauraceae
Pouteria campechiana Baehni	Sapotaceae
Pouteria sapota (Jacq.) H.E. Moore & Stearn	Sapotaceae
Prunus persica (L.) Stokes	Rosaceae
Psidium guajava L.	Myrtaceae
Punica granatum L.	Lythraceae
Spondias purpurea L.	Anacardiaceae
Syzygium malaccense (L.) Merr. & L.M. Perry	Myrtaceae

List of the species used as grains.

Scientific name	Family
Arachys hypogaea L.	Leguminosae
Oryza sativa L.	Poaceae
Phaseolus lunatus L.	Leguminosae
Phaseolus vulgaris L.	Leguminosae
Sesamum indicum L.	Pedaliaceae
Vigna umbellata (Thunb.) Ohwi & H. Ohashi	Leguminosae
Vigna unguiculata L. Walp	Leguminosae
Zea mays L.	Poaceae

List of wood and timber species.

Scientific name	Family	
Abarema obovalis (A. Rich.) Barneby & J.W. Grimes	Leguminosae	
Acrocomia aculeata (Jacq.) Lodd. ex Mart	Arecales	
Alchornea latifolia Sw	Euphorbiaceae	
Amphitoca latifolia (Mill.) A. H. Gentry	Bignoniaceae	
Amyris balsamifera L.	Rutaceae	
Andira inermis (W. Wright) DC	Leguminosae	
Boconia frutescens L.	Papaveraceae	
Ehretia cassinifolia A. Rich	Boraginaceae	
	Scientific name	Family
---	----------------------------------	--------------------------
10	*Buchenavia capitata* (Aubl.) Howard	Combrataceae
11	*Calophyllum antillanum* Britton	Calophyllaceae
12	*Calyptrotes capitulata* C. Wright	Myrtaceae
13	*Casearia hirsuta* Sw	Salicaceae
14	*Cedrela odorata* L.	Meliaceae
15	*Celtis trinervia* Lam	Ulmaceae
16	*Citarexylum caudatum* L.	Verbanaceae
17	*Coelocula retusa* Griseb	Polygonaceae
18	*Cojoba arborea* (L.) Britton & Rose	Leguminosae
19	*Colubrina arborescens* (Mill.) Sarg	Rhamnaceae
20	*Comocladia dentata* Jacq	Anacardiaceae
21	*Cordia nitida* Vahl	Boraginaceae
22	*Cupania americana* L.	Sapindaceae
23	*Cupania glabra* Sw	Sapindaceae
24	*Cupania macrophylla* C. Mart	Sapindaceae
25	*Deherainia cubensis* (Radlk.) Mez	Primulaceae
26	*Dendropanax arboreus* (L) Decne. & Planch	Araliaceae
27	*Dichrostachys cinerea* (L.) Wight & Arn	Leguminosae
28	*Diospyros caribaea* (A. DC.) Standl	Ebenaceae
29	*Diospyros crassinervis* (Krug & Urb) Standl	Ebenaceae
30	*Drypetes alba* Poit	Euphorbiaceae
31	*Drypetes serrata* (Maycock) Krug & Urb	Euphorbiaceae
32	*Ehretia cassinifolia* A. Rich	Boraginaceae
33	*Ehretia tinifolia* L.	Boraginaceae
34	*Erythroxylon alternifolium* M. Gomez	Erythroxylaceae
35	*Erythroxylon areolatum* L.	Erythroxylaceae
36	*Eucaliptus resinifera* Sm	Myrtaceae
37	*Eugenia glabra* Alston	Myrtaceae
38	*Eugenia maleolens* Pers	Myrtaceae
39	*Eugenia rigidifolia* A. Rich	Myrtaceae
40	*Eugenia rimosana* C. Wright	Myrtaceae
41	*Ficus aurea* Nutt	Moraceae
42	*Ficus cassinervia* Desf. ex Wild	Moraceae
43	*Ficus citrifolia* Mill	Moraceae
44	*Ficus combissi* Warb	Moraceae
45	*Ficus maxima* Mill	Moraceae
46	*Ficus membranacea* C. Wright	Moraceae
47	*Garcinia aristata* (Griseb.) Borhidi	Clusiaceae
48	*Garcinia serpentinii* Borhidi	Clusiaceae
49	*Garcinia ruscifolia* (Griseb.) Borhidi	Clusiaceae
50	*Genipa americana* L.	Rubiaceae
51	*Geranacanthus geranacanthoides*	Boraginaceae
52	*Guarea guidonia* (L.) Sleumer	Meliaceae
53	*Guetarda combsii* Urb	Rubiaceae
54	*Guetarda lindeniana* A. Rich	Rubiaceae
55	*Guetarda valenzuelana* Rich	Rubiaceae
	Scientific name	Family
---	--	-------------------------
56	Gymnanthes lucida Sw	Euphorbiaceae
57	Hibiscus cordifolius Mill	Malvaceae
58	Hibiscus elatus Sw	Malvaceae
59	Hibiscus tiliaceus L. var. pernambucensis (Arruda) I.M. Johnst	Malvaceae
60	Hura crepitans L.	Euphorbiaceae
61	Ilex cassine L.	Aquifoliaceae
62	Ilex repanda Griseb	Aquifoliaceae
63	Juglans jamaicensis D. DC	Fagaceae
64	Khaya senegalensis (Desr.) A. Juss	Meliaceae
65	Krugiodendron ferreum (Vahl) Urb	Rhamnaceae
66	Laplacea curtyana A. Rich	Theaceae
67	Licaria triandra (Sw.) Kosterm	Lauraceae
68	Lonchocarpus pentaphyllus (Poir.) D.C	Leguminosae
69	Lonchocarpus sericeus (Poir.) Kunth ex DC	Leguminosae
70	Lysiloma sabicu Benth	Leguminosae
71	Malpighia urens L.	Malpighiaceae
72	Manilkara albescens (Griseb.) Cronquist	Sapotaceae
73	Manilkara jaimiqui (C. Wright ex Griseb.) Dubard	Sapotaceae
74	Mappia racemosa Jacq	Icacinaceae
75	Margaritaria nobilis L.f	Phyllantaceae
76	Matayba oppositifolia (A.Rich.) Britton	Sapindaceae
77	Melia azedarach L.	Meliaceae
78	Micropholis guayanesis (A. DC.) Pierre	Sapotaceae
79	Myrica valenzuelana (A. Rich.) Griseb	Rubiaceae
80	Myrica cerifera L.	Myricaceae
81	Nectandra coriacea (Sw.) Griseb	Lauraceae
82	Nectandra hihua (Ruiz & Pav.) Rohwe	Lauraceae
83	Nectandra minima Rohwer	Lauraceae
84	Neobracea valenzuelana (A. Rich.) Urb	Apocynaceae
85	Ocotea cuneata (Griseb.) Urb	Lauraceae
86	Ocotea floribunda (Sw.) Mez	Lauraceae
87	Ocotea leucoxylon (Sw.) Laness	Lauraceae
88	Peltophorum adnatum Griseb	Leguminosae
89	Phoebe elongata (Vahl) Nees	Lauraceae
90	Picramnia pentandra Sw	Leguminosae
91	Picramnia reticulata Griseb	Leguminosae
92	Piscidia pissipula (L.) Sarg	Leguminosae
93	Samanea saman (Jacq.) Merr	Leguminosae
94	Pouteria dictyoneura (Griseb.) Radlk	Sapotaceae
95	Pouteria dominigensis (C.F. Gaertn.) Baehni	Sapotaceae
96	Protium cubense (Rose) Urb	Burseraceae
97	Primus myrtifolia (L.) Urb	Rosaceae
98	Primus occidentalis Sw	Rosaceae
99	Pseudolmedia spuria (Sw.) Griseb	Moraceae
100	Psychotria horizontalis Sw	Rubiaceae
101	Psychotria undata Jacq	Rubiaceae
Scientific Name Family

1. **Rauvolfia cubana** A. DC
 Apocynaceae

2. **Rauvolfia nitida** Jacq
 Apocynaceae

3. **Reynosia wrightii** Urb
 Rhamnaceae

4. **Richardia brasiliensis** Gomes
 Rubiaceae

5. **Sabal parviflora** Becc
 Arecaceae

6. **Sapindus saponaria** L.
 Sapindaceae

7. **Savia bahamensis** Britt
 Euphorbiaceae

8. **Savia clusiifolia** Griseb
 Euphorbiaceae

9. **Schefflera morototoni** (Aubl.) Maguire, Steyerm. & Frodin
 Araliaceae

10. **Sideroxylon foetidissimum** Jacq
 Sapotaceae

11. **Simarouba glauca** DC
 Simaroubaceae

12. **Tabebuia shaferi** Britton
 Bignoniaceae

13. **Trichilia havanensis** Jacq
 Meliaceae

14. **Trichilia hirta** L.
 Meliaceae

15. **Trichospermum grewiifolius** (A.Rich.) Kosterm
 Malvaceae

16. **Zanthoxylon cubense** P. Wilson
 Rutaceae

17. **Zanthoxylon fagara** (L.) Sarg
 Rutaceae

18. **Zanthoxylon martinicense** (Lam.) DC
 Rutaceae

19. **Zuelania guidonia** (Sw.) Britton & Millsp.
 Salicaceae

List of medicinal species.

Scientific Name	Family
Abrus precatorius L.	Leguminosae
Adenoropium multifidum (L.) Poh	Euphorbiaceae
Adianthus capillus veneris L.	Adianthaceae
Agalinis albida Britton & Pennell	Orobancheaceae
Ageratum conyzoides L.	Asteraceae
Allophyllus cominia (L.) Sw	Sapindaceae
Aloe vera (L.) Burm.f	Xanthorrhoeaceae
Alternanthera caracasana Kunth	Amaranthaceae
Ambrosia artemisiifolia L.	Asteraceae
Andropogon glomeratus (Walter) Britton	Poaceae
Argemone mexicana L.	Papaveraceae
Scientific Name	Family
------------------------------	---------------------
12 Artemisa absinthium L.	Asteraceae
13 Arthrostylidium capillifolium Griseb	Poaceae
14 Asclepias curassavica L.	Asclepiadaceae
15 Asclepias nivea L.	Asclepiadaceae
16 Bahuinia cumanensis Kunth	Caesalpinaceae
17 Bahuinia divaricata L.	Caesalpinaceae
18 Banksea speciosa J. König	Proteaceae
19 Bidens pilosa L.	Asteraceae
20 Blechum pyramidatum (Lam.) Urb	Acanthaceae
21 Byrsonima spicata (Cav.) DC	Malpighiaceae
22 Caesalpinia vesicaria L.	Leguminosae
23 Caesalpinia pulcherrima (L.) Sw	Leguminosae
24 Cassia diphylla (L.) Greene	Leguminosae
25 Catharanthus roseus (L.) G. Don	Apocynaceae
26 Cayaponia racemosa (Mill.) Cogn	Cucurbitaceae
27 Cecropia schreberiana Miq	Urticaceae
28 Celtis iguanea (Jacq.) Sarg	Ulmaceae
29 Chromolaena odorata (L.) R.M. King & H. Rob	Asteraceae
30 Cissus verticillata (L.) Nicolson & C.E.Jarvis	Vitaceae
31 Citrus x bergamia Risso & Poit	Rutaceae
32 Cladium jamaicensis Crantz	Cyperaceae
33 Clematis dioica L.	Ranunculaceae
34 Clidemia hirta (L.) D.Don	Melastomataceae
35 Clusia minor L	Clusiaceae
36 Coix lacryma-jobi L.	Poaceae
37 Costus sp.	Costaceae
38 Costus scaber Ruiz & Pav	Costaceae
39 Crescencia cujete L.	Bignoniaceae
40 Cymbopogon citratus (DC) Stapf	Poaceae
41 Dalbergia ecastaphyllum (L.) Taubert	Leguminosae
42 Davilla rugosa Poir	Dilleniaceae
43 Echites umbellatus Jacq	Apocynaceae
44 Elephantopus scaber L.	Asteraceae
45 Erigeron quercifolius Lam	Asteraceae
46 Faramea occidentalis (L.) A.Rich	Rubiaceae
47 Gaya occidentalis (L.) Sweet	Malvaceae
48 Gossypium sp	Malvaceae
49 Guzmania monostachya Rusby ex Mez	Bromeliaceae
50 Hamelia patens Jacq	Rubiaceae
51 Hedychium coronarium J. Koening	Zingiberaceae
52 Heliotropium indicum L.	Asteraceae
53 Hibiscus sabdariffa L.	Malvaceae
54 Hippobroma longiflora (L.) Don	Campanulaceae
55 Hohenbergia penduliflora (A. Rich.) Mez	Bromeliaceae
56 Imperata brasiliensis Trin	Poaceae
57 Ixora floribunda (A. Rich.) Griseb	Rubiaceae
Scientific Name	Family
---------------------------------	-------------------------
Jacquinia brunnescens Urb	Primulaceae
Justicia pectoralis Jacq	Acanthaceae
Koanophyllum dolicholepis (Urb.) R.M. King & H. Rob	Asteraceae
Lantana camara L.	Verbenaceae
Lantana involucrata L.	Verbenaceae
Lepidium virginicum L.	Brassicaceae
Lippia alba (Mill.) N.E. Br. Ex Britton & Wilson	Verbenaceae
Matricaria recutita L.	Asteraceae
Mentha sp.	Lamiaceae
Mentha spicata L.	Lamiaceae
Mentha x piperita L.	Lamiaceae
Miconia laeviagata (L.) D.Don	Melastomataceae
Mikania cordifolia (L. f.) Wild	Asteraceae
Mikania hastata (L.) Wild	Asteraceae
Mikania ranunculifolia A. Rich	Asteraceae
Mimosa pudica L.	Leguminosae
Momordica charantia L.	Cucurbitaceae
Morinda royoc L.	Rubiaceae
Mucuna pruriens (L.) DC	Leguminosae
Neurolaena lobata (L.) R.Br. ex Cass	Asteraceae
Ocimum basilicum L.	Lamiaceae
Ocimum sanctum L.	Lamiaceae
Olyra latifolia L.	Poaceae
Origanum majorana L.	Lamiaceae
Oxandra lanceolata (Sw.) Baill	Lauraceae
Parthenium hysterophorus L.	Asteraceae
Paspalum conjugatum	Poaceae
Paspalum notatum Fluggé	Poaceae
Passiflora sexflora Juss	Passifloraceae
Passiflora suberosa L.	Passifloraceae
Pavonia fruticosa (Mill.) Fawc. & Rendle	Malvaceae
Petiveria alliacea L.	Phytolacaceae
Phylla scaberrima (Trevir.) Moldenke	Verbenaceae
Piper aduncum L.	Piperaceae
Piper auritum Kunth	Piperaceae
Piper peltatum L.	Piperaceae
Piper umbellatum L.	Piperaceae
Pisonia aculeata L.	Nyctaginaceae
Plantago major L.	Plantaginaceae
Platygine hexandra (Jacq)	Euphorbiaceae
Plectranthus sp	Lamiaceae
Pluchea carolinensis (Jacq.) G. Don	Asteraeae
Pleopeltis polypondioides (L.) E. G. Andrews & Windham	Poly podiaceae
Psychotria grandis Sw	Rubiaceae
Psychotria revoluta DC	Rubiaceae
Renealmia aromatica L.f	Zingiberaceae
Scientific Name	Family
---------------------	-------------------------
Rondeletia odorata	Rubiaceae
Rosmarinus officinalis	Lamiales
Ruta graveolens	Rutaceae
Securidaca virgata	Polygalaceae
Senna alata	Leguminosae
Senna occidentalis	Leguminosae
Setaria geniculata	Poaceae
Sida aculeata	Malvaceae
Sida rhombifolia	Malvaceae
Sloanea curatelifolia	Malvaceae
Solanum torvum	Solanaceae
Stachytarpheta jamaicensis	Verbenaceae
Stevia rebaudiana	Asteraeace
Stygmaphyllum sagreanum	Malpighiaceae
Satureja brownii	Lamiaceae
Tabernaemontana citrifolia	Apocynaceae
Tagetes erecta	Asteraeace
Tagetes lucida	Asteraeace
Dysphania ambrosioides	Amaranthaceae
Tillandsia usneoides	Bromeliaceae
Tillandsia valenzuelana	Bromeliaceae
Turneortia hirsutissima	Bromeliaceae
Tradescantia spathacea	Commelinaceae
Turnera ulmifolia	Passifloraceae

List of species used as roots and tubers.

Scientific Name	Family
Colocasia esculenta (L.) Schott	Araceae
Dioscorea alata L.	Dioscoraceae
Ipomoea batatas (L) Lam	Convolvulaceae
Manihot esculenta Crantz	Euphorbiaceae
Xanthosoma sagittifolium (L.) Schott	Araceae

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10531-021-02348-8.

Author contributions MA: conceptualization; YMP, AGA: methodology; YMP, AGA: investigation; MA: writing; MA: supervision.

Funding This research is part of the “GIAHS Building Capacity” project, funded by the Italian Agency for Development Cooperation (AICS) and by the Department of Agriculture, Food, Environment and Forestry (DAGRI) of the University of Florence.

Data availability Not applicable.
Code availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agnoletti M (2014) Rural landscape, nature conservation and culture: Some notes on research trends and management approaches from a (southern) European perspective. Landsc Urban Plan 126:66–73
Agnoletti M, Rotherham ID (2015) Landscape and biocultural diversity. Biodivers Conserv 24:3155–3165. https://doi.org/10.1007/s10531-015-1003-8
Agnoletti M, Tredici M, Santoro A (2015) Biocultural diversity and landscape patterns in three historical rural areas of Morocco, Cuba and Italy. Biodivers Conserv 24:3387–3404. https://doi.org/10.1007/s10531-015-1013-6
Altieri M, Merrick L, Anderson MK (1987) Peasant agriculture and the conservation of crop and wild plant resources. Conserv Biol 1(1):49–58
Atangana A, Khasa D, Chang S, Degrande A (2014) Ecological interactions and productivity in agroforestry systems. In: Atangana A (ed) Tropical agroforestry. Springer, Dordrecht
Beer J, Muschler R, Kass D, Somarriba E (1997) Shade management in coffee and cacao plantations. Agrofor Syst 38(1):139–164
Brown KS, Brown GG (1992) Habitat alteration and species loss in Brazilian forests. In: Whitmore TC, Sayer JA (eds) Tropical deforestation and species extinction. Chapman & Hall, New York
Brown AH, Hodgkin T (2007) Measuring, Managing and Maintaining crop genetic diversity on farm. In: Jarvis DJ, Padoch C, Cooper HD (eds) Managing biodiversity in agricultural ecosystems. Columbia University Press, New Yok, pp 13–33
Castiñeiras L, Barrios O, Fernández L, León N, Cristóbal R, Shagarodsky T, Fuentes V, Fundora Z, Moreno V (2006) Catálogo de cultivares tradicionales y nombres locales en fincas de las regiones occidental y oriental de Cuba. Agrinfor. La Habana, Cuba, 64 pp.
Drinkwater LE, Snapp SS (2007) Nutrients in agroecosystems: rethinking the management paradigm. Adv Agron 92:163–186
Fernández AH (2012) Sistema de asentamiento de las haciendas cafetaleras en la Sierra de Rosario (1790 1850), Artemisa. Cuba Cuba Arqueológica Año V 1:12–19
Food and Agriculture Organization (2015) FAO statistical pocketbook coffee 2015. Food and Agriculture Organization, Rome
García M, Castiñeiras L (2006) La diversidad agrícola en reservas de la biosfera de Cuba. Editorial Academia, La Habana, pp 10–20
Gonzalez-Bernaldez F (1991) Diversidad biológica, gestión de ecosistemas y nuevas políticas agrarias. In: Pineda FF, Casado MA, de Miguel JM, Montalvo J (eds) Diversidad biológica. Fundación R Areces, Madrid
Gonzalez Alvarez A, Rodriguez YS, Delgado DA, Zamora JL (2016) Agrobiodiversidad en La Sierra Del Rosario, Cuba: El Café (Coffea Arabica L.) y otras claves de su configuración, Agrotecnia de Cuba 40(2):3–8
Kellermann JL, Johnson MD, Stercho AM, Hackett SC (2008) Ecological and economic services provided by birds on Jamaican Blue Mountain coffee farms. Conserv Biol 22(5):1177–1185

Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263

Krishnan S (2017) Sustainable coffee production. Oxford research encyclopedia of environmental science. Oxford University Press, Oxford. https://doi.org/10.1093/acrefore/9780199389414.013.224

Isaac ME, Borden KA (2019) Nutrient acquisition strategies in agroforestry systems. Plant Soil 444:1–19. https://doi.org/10.1007/s11104-019-04232-5

Lapique Z, García L (2014) La Periferia Habanera. Rev Bimestre Cubana 41(2):89–102

Long CL, Li H, Ouyang Z, Yang X, Li Q, Tranngmar B (2003) Strategies for agrobiodiversity conservation and promotion: a case from Yunnan, China. Biodivers Conserv 12:1145–1156. https://doi.org/10.1023/A:1023085922265

Malézieux E, Crozet Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models: a review. Agron Sustain Dev 29:43–62

Martin AR, Isaac ME (2015) Functional traits in agroecology: a blueprint for research. J Appl Ecol 52:1425–1435

Muschler RG (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor Syst 51:131–139. https://doi.org/10.1023/A:1010603320653

Moguel P, Toledo VM (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13(1):11–21

Oldfield M, Alcorn J (1987) Conservation of traditional agroecosystems. Bioscience 37(3):199–208

Ospina A (2008) Aproximación a la conservación de especies vegetales nativas con bosque ecológico con sombrío. Cali, Colombia. Consulted at www.agroforesteriaecologica.com. Accessed 26 Aug, 2019

Parrota JA, Dey de Pryck J, Darko Obiri B, Padoch C, Powell B, Sandbrook C (2015) The Historical, Environmental and Socio-Economic Context of Forests and Tree-Based Systems for Food Security and Nutrition. Chapter 3 (pp. 71–134) In: Vira B, Mansourian S, Wildburger C (eds) forests and food: addressing hunger and nutrition across sustainable landscapes. Open Book Publishers, Cambridge, UK. http://dx.doi.org/https://doi.org/10.11647/OBP.0085

Chirwa PW, Akinnifesi FK, Sileshi G, Syampungani S, Kalaba FK, Ajayi OC (2008) Opportunity for conserving and utilizing agrobiodiversity through agroforestry in Southern Africa. Biodiversity 9(1–2):45–48. https://doi.org/10.1080/14888386.2008.9712881

Petit-Aldana J, Rahaman MM, Parraguirre-Lezama C, Infante-Cruz A, Romero-Arenas O (2019) Litter decomposition process in coffee agroforestry systems. J For Environ Sci 35(2):121–139. https://doi.org/10.7747/JFES.2019.35.2.121

Perfecto I, Vandermeer J, Bautista G, Nunez G, Greenberg R, Bichier P, Langridge S (2004) Greater predation in shaded coffee farms: The role of resident neotropical birds. Ecology 85:2677–2681

Thrupp LA (2000) Linking agricultural biodiversity and food security: the valuable role of agrobiodiversity for sustainable agriculture. Int Aff 6(2):265–281. https://doi.org/10.1111/1468-2346.00133

Trosper L, Parrota AJ, Agnoletti M et al (2011) The unique character of traditional forest-related knowledge; threats and challenges ahead. In: Parrota JA, Trosper RL (eds) Traditional forest-related knowledge. Springer, Dordrecht

Ramírez Pérez JF, Paredes Pupo FA (2005) Cuba, paisaje a la naturaleza. Las Terrazas. Pinar del Río, 29 pp.

Rao KPC, Verchot LV, Laarman J (2007) Adaptation to climate change through sustainable management and development of agroforestry systems. J SAT Agric Res 4(1):1–30

Rosenberg NJ, Blad BL, Verma DB (1983) Microclimate: the biological environment. Wiley and Sons, New York

Santoro A, Venturi M, Bertani R, Agnoletti M (2020) A review of the role of forests and agroforestry systems in the FAO Globally Important Agricultural Heritage Systems (GIAHS) programme. Forests 11:860. https://doi.org/10.3390/f11080860

Siebert SF (2002) From shade to sun-grown perennial crops in Sulawesi, Indonesia: implications for biodiversity conservation and soil fertility. Biodivers Conserv 11:1889–1902

Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Wanger TC (2011) Multifunctional ***shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48(3):619–629
Vales MA, Vilamajo D (2001) Biodiversidad biológica cubana, conservación y uso sostenile. Ciencia Innov y Desarro 6(1):39–44
World Vision International (2005). Annual report.
World Bank (2008) The World Bank annual report 2008: year in review. World Bank, Washington DC, USA. https://openknowledge.worldbank.org/handle/10986/7524.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Mauro Agnoletti1 · Yenia Molina Pelegrín2 · Alejandro González Alvarez3

Yenia Molina Pelegrín
yenia.molina@nauta.cu

Alejandro González Alvarez
alejandrotransito84@gmail.com

1 Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via San Bonaventura 13, 50145 Florence, Italy

2 Agroforestry Research Institute, Victorino Road, La Soledad Locality, Guisa, Granma, Cuba

3 Instituto de Investigaciones Fundamentales en Agricultura Tropical “Alejandro de Humboldt” (INIFAT), calle 188, Santiago de las Vegas, Boyeros, La Habana, Cuba