CASE REPORT

Very rare near-haploid acute lymphoblastic leukemia resistant to immunotherapy and CAR-T therapy in 19-year-old male patient

Tomas Arpas1 | Hana Jelinkova2 | Stepan Hrabovsky1 | Martina Orsulova1 | Zuzana Vrazilova2,3 | Veronika Navrkalova2 | Eva Brhelova2 | Lenka Bryjova2 | Alena Bulikova1,4 | Eva Ondrouskova2 | Marketa Sejnohova2 | Frantisek Folber1 | Petra Sedova1 | Jiri Mayer1 | Sarka Pospisilova2,3,5 | Marie Jarosova2,5 | Michael Doubek1,3,5

1Department of Internal Medicine, Hematology and Oncology, University Hospital and Faculty of Medicine, Brno, Czechia
2Center of Molecular Biology and Genetics, Department of Internal Medicine, Hematology and Oncology, University Hospital and Faculty of Medicine, Brno, Czechia
3Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
4Department of Clinical Hematology, University Hospital, Brno, Czechia
5Department of Medical Genetics and Genomics, University Hospital and Faculty of Medicine, Brno, Czechia

Correspondence
Michael Doubek, Department of Internal Medicine – Hematology and Oncology, University Hospital and Faculty of Medicine, Jihlavská 20, 62500 Brno, Czechia.
Email: doubek.michael@fnbrno.cz

Funding information
This work was supported by Ministry of Health of the Czech Republic, grant NU20-08-00137, TACR PerMed research grant TNO1000013, European Regional Development Fund-Project “A-C-G-T” (No. CZ.02.1.01/0.0/0.0/16_026/0008448), and Masaryk University grants (MUNI/A/1595/2020 and MUNI/11/SUP/22/2020). This work was also carried out with the support of research infrastructures NCMG research infrastructure (ID number LM2018132) and EATRIS-CZ (ID number LM2018133), funded by MEYS CR.

Abstract
Near-haploid acute lymphoblastic leukemia is rare subgroup of the disease, which is very important due to very poor prognosis and resistance to treatment including novel monoclonal antibodies and CAR-T therapy.

KEYWORDS
acute lymphoblastic leukemia, blinatumomab, CAR-T therapy, inotuzumab ozogamicin, near-haploid
1 | INTRODUCTION

Aneuploidy, the gain or loss of whole chromosomes, is recognized as one of the major genomic events in human cancers.1-3 Aneuploidy is found in ~60% of hematological malignancies.5 In acute lymphoblastic leukemia (ALL), aneuploidy with a modal number of <40 chromosomes (hypodiploidy) is represented by two subtypes: near-haploidy (24–30 chromosomes) and low hypodiploidy (31–39 chromosomes). Near-haploidy (NH) is genetically characterized by the presence of numerous monosomies and only a few disomies.5 The diagnosis of such NH ALL is a challenge because, at the time of diagnosis, most blasts can bear a doubled chromosomal content creating a subclone with 48–58 chromosomes (a phenomenon denoted “masked hypodiploidy”).5-7 This doubled clone contains tetrasomies for disomic chromosomes in the original hypodiploid clone, and uniparental disomies with complete loss of heterozygosity (LOH) for chromosomes that were initially monosomic. Chromosomal doubling is believed to occur via endoreduplication (i.e., replication of the genome without subsequent cytokinesis).8-12 Mistaking masked NH for hyperdiploidy could lead to erroneous risk classification and, hence, risk of treatment failure.5 The presence of LOH of all chromosomes that are not gained can confirm masked hypodiploidy by using SNP array or NGS analyses.

Thus far, the total number of registered cases in the Mitelman database with near-haploidy is 197 ALL cases.7 NH ALL cases are immunophenotypically B-cell precursors and morphologically distinguishable blasts of 2 different sizes, where small blasts harbor near-haploidy and larger ones hyperdiploidy. While NH is rare among children (<15 years) with ALL, it has virtually never been reported in adults.13 The prognosis is generally poor.6

2 | CASE REPORT

In our report, we describe a unique case of NH ALL. A 19-year-old male patient was diagnosed with ALL in June 2020. The patient was previously healthy and had no relevant medical history. Initially, the patient presented in the hospital with a 10-day history of weakness, musculoskeletal pain, frequent sweats, and nausea. A peripheral blood cell count revealed severe thrombocytopenia 22 × 10^9/L, normal hemoglobin level, and a leukocyte count of 6.13 × 10^9/L containing 31% morphologically unclassifiable blasts. A bone marrow smear showed 93.6% infiltration with myeloperoxidase negative and PAS-positive blasts of two different size (Figure S1), with a common B-ALL immunophenotype (CD10+19+20−34+38-/+DR+66c+304+73+22-/+24+9-/+81+c79a+/-

Neither extramedullary nor CNS infiltration were observed at the time of diagnosis.

The patient was recruited into the “Blina-CELL” clinical trial (NCT04554485) and treated with a short 7-day run-in phase chemotherapy containing dexamethasone, cyclophosphamide, daunorubicine, and vincristine, plus an induction therapy with one cycle of blinatumomab. Treatment response assessments after the run-in phase and induction showed a refractory disease and resulted in a treatment change. Two cycles of inotuzumab ozogamicin were applied as a salvage treatment without achieving a remission. A fulminant disease progression occurred immediately in October 2020. Autologous anti-CD19 chimeric antigen receptor T cells (CAR-T cells) tisagenlecleucel were manufactured and administered with a corticosteroid bridging therapy and fludarabine and cyclophosphamide as a lymphodepleting regimen. Grade 4 cytokine release syndrome (CRS) and grade 4 immune effector cell-associated neurotoxicity syndrome (ICANS) occurred as a complication of CAR-T. The patient was treated with corticosteroids and tocilizumab. The toxicity grades decreased; however, a response assessment 2 weeks after CAR-T therapy revealed refractory disease again, and the patient died a few days later. A timeline summarizing the patient’s treatment and karyotyping results at different time points are depicted in Figure 1A. Although all novel treatment options for ALL were utilized, the patient failed to achieve even a hematologic response.

At the time of diagnosis and subsequently during the disease course, flow cytometry, morphology, cytogenomics, and targeted next-generation sequencing (NGS)14 analyses were performed on bone marrow cells (Figure 1A). Cytogenomic examinations involved karyotyping, fluorescence in situ hybridization (FISH), and arrayCGH/SNPs (methods can be found in Appendix S1).

At diagnosis, cytogenetics revealed hyperdiploid karyotype 49,X,+X,-Y,+8,+21,+21 with the sole tetrasomy of chromosome 21 (Figure 1B). Chromosome 8 trisomy, additional chromosome X, and loss of chromosome Y were confirmed by using FISH. The arrayCGH/SNPs revealed cnLOH for all chromosomes except chromosomes 8 and 21 (Figure 1C). Moreover, this arrayCGH/SNPs showed three regions with biallelic deletion: 7p- including IKZF1 gene, 9p- involving CDKN2A/B and 13q-encompassing RBL1 gene, all considered to be negative prognostic factors in ALL.15-20 To confirm the presence of only duplicated clone at diagnosis, we performed iFISH analysis using an XL BCR/ABL1 probe (MetaSystems) on the bone marrow smear and revealed 97% of cells showed normal findings of two signals for both ABL1 and BCR genes. This finding confirmed a clone detected by karyotyping with partial duplication of chromosomes 21 and X and with trisomy of chromosome 8 (Figure S2). Chromosome 8 trisomy,
instead of the expected tetrasomy, could lead to cytogenetic misinterpretation of the “masked hypodiploidy.” This duplicated clone was present in follow-up samples taken from the patient (Table 1); however, conventional cytogenetics performed after CAR-T therapy revealed near-haploid clone only (Figure 1E). The loss of all chromosomes except for chromosomes 8, 18, and 21 was also confirmed by arryCGH/SNPs (Figure 1F).

Targeted NGS analysis\(^\text{14}\) focused on integrative detection of gene and chromosomal aberrations was performed in two consecutive samples collected at the diagnosis and during therapy. Based on this analysis, four gene variants associated with hematologic malignancies were identified in both samples with different variant allele frequency (VAF): *NF1* (NM_000267.3: c.1260+1G>A, VAF 61.3% and 15.7%), *NOTCH2* (NM_024408.3: c.3980A>G, VAF 17.3% and 41.4%), *TYK2* (NM_003331.4: c.211T>C, VAF 16.9% and 36.6%), and *FBXW7* (NM_033632.3, c.45_46insCCT, VAF 80.8% and 59.3%). The splicing *NF1* gene variant was classified as “probably pathogenic.”\(^\text{21}\) Mutations in *NF1* gene have been associated with Ph-like ALL subtype.\(^\text{22}\) The impact of *NOTCH2*, *FBXW7*, and *TYK2* variants was evaluated as well, and they were classified as variants of potential clinical significance. Detailed NGS results for gene variants are attached in Table S1. Moreover, NGS panel revealed an extensive cnLOH affecting all chromosomes except for chromosomes 8 and 21 and in diagnostic sample confirmed array results and shows deletions on chromosomes 7, 9, and 13, Y loss and also gains in chromosomes 8 and 21, and X (Figure 1D). See Table S2.

DISCUSSION

Near-haploid ALL is characterized by genetic alterations disrupting receptor tyrosine kinase signaling, Ras signaling, and the *IKZF3* gene.\(^\text{13}\) The study published by Pui et al.\(^\text{23}\) confirmed that patients with near-haploidy have activated Ras and phosphatidylinositol 3-kinase (PI3K) signaling. Inhibitors of PI3K and PI3K/mammalian target of rapamycin were demonstrated to inhibit proliferation of both near-haploid and low-hypodiploid cells ex vivo.\(^\text{24}\) Novel treatment options for B-cell ALL, including
monoclonal antibodies and CAR T cells, may also have therapeutic potential in these patients.24,25 However, our case does not confirm these observations. Considering patient’s refusal to given treatment, the chance for finding new possible drug sensitivities could lay in performing drug response profiling studies. This could be a potential way of finding alternative treatment options, although there is currently lack of experimental evidence in adult patients with ALL.

CONCLUSION

Our results showed high complexity of chromosomal changes in NH ALL and variability of the endoduplication which may not appear on all chromosomes in the haploid set. We demonstrated a great benefit of parallel analysis by arrayCGH/SNP and targeted NGS for the detection of the cell response to CAR-T therapy, which may not appear on all chromosomes in the haploid set. We demonstrated a great benefit of parallel analysis by arrayCGH/SNP and targeted NGS for the detection of the cell response to CAR-T therapy, which may not appear on all chromosomes in the haploid set. From a biological point of view, we lead to the interruption of endoduplication, as the only near-haploid clone was detected after this therapy. From the medical point of view, we have not confirmed the success of targeted therapy in this NH ALL case.
REFERENCES

1. Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci. 2008;121:1-84.

2. Ben-David U, Amon A. Context is everything: aneuploidy in cancer. Nat Rev Genet. 2020;21:44-62.

3. Gordon DJ, Resio B, Pellman D. Causes and consequences of aneuploidy in cancer. Nat Rev Genet. 2012;13:189-203.

4. Duijf PGH, Schultz N, Benezra R. Cancer cells preferentially lose small chromosomes. Int J Cancer. 2013;132:2316-2326.

5. Safavi S, Paulsson K. Near-haploid and low-hypodiploid acute lymphoblastic leukemia: two distinct subtypes with consistently poor prognosis. Blood. 2017;129(4):420-423.

6. Lundin-Ström KL, Ström K, Biloglav A, et al. Parental origin of monosomic chromosomes in near-haploid acute lymphoblastic leukemia. Blood Cancer J. 2020;10:51.

7. Mitelman F, Johansson B, Mertens F. Mitelman database of chromosomal abnormalities in cancer. Cancer Genet Cytogenet. 1985;16(2):137-143.

8. Callen DF, Raphael K, Michael PM, Garson OM. Acute lymphoblastic leukemia with a hypodiploid karyotype with less than 40 chromosomes: the basis for division into two subgroups. Leukemia. 1989;3(10):749-752.

9. Gibbons B, MacCallum P, Watts E, et al. Nearhaploid acute lymphoblastic leukemia: seven new cases and a review of the literature. Leukemia. 1991;5(9):738-743.

10. Oshimura M, Freeman AI, Sandberg AA. Chromosomes and causation of human cancer and leukemia. XXIII. Near-haploidy in acute leukemia. Cancer. 1977;40(3):1143-1148.

11. Ma SK, Chan GCF, Wan TSK, et al. Near-haploid common acute lymphoblastic leukemia of childhood with a second hyperdiploid line: a DNA ploidy and fluorescence in-situ hybridization study. Br J Haematol. 1998;103(3):750-755.

12. Misawa S, Oguma N, Testa JR. A case of acute lymphoblastic leukemia with severe hypodiploidy. Cancer Genet Cytogenet. 1985;16(2):137-143.

13. Moorman A. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev. 2012;26:123-135.

14. Navrkalova V, Plekova K, Hynst J, et al. LYNX (LYmphoid NeXt-generation sequencing) panel: a comprehensive capture-based sequencing tool for the analysis of prognostic and predictive markers in lymphoid malignancies. J Mol Diagnostics. 2021;23(8):959-974.

15. Zhang W, Kuang P, Liu T. Prognostic significance of CDKN2A/B deletions in acute lymphoblastic leukaemia: a meta-analysis. Ann Med. 2019;51(1):28-40.

16. Zhang W, Kuang P, Li H, Wang F, Wang Y. Prognostic significance of IKZF1 deletion in adult B cell acute lymphoblastic leukemia: a meta-analysis. Ann Hematol. 2017;96(2):215-225.

17. Stanulla M, Dagdan E, Zaliova M, et al. IKZF1plus defines a new minimal residual disease-dependent very-prognostic profile in pediatric B-cell precursor acute lymphoblastic leukaemia. J Clin Oncol. 2018;36(12):1240-1249.

18. Zaliova M, Stuchly J, Winkowska L, et al. Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort. Haematologica. 2019;104(7):1396-1406.

19. da Conceição BT, Mansur MB, Blunk CB, Emerenciano M, Pombo-de-Oliveira MS. Characterization of RB1 in pediatric TCF3-PBX1+ acute lymphoblastic leukemia. Blood. 2017;130(Supplement 1):3976.

20. Hrabovsky S, Vrzalova Z, Stika J, et al. Genomic landscape of B-other acute lymphoblastic leukemia in an adult retrospective cohort with a focus on BCR-ABL1-like subtype. Acta Oncol. 2021;22:1-11.

21. Laycock-van Spyk S, Thomas N, Cooper DN, Upadhya M. Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum Genomics. 2011;5(6):623-690. doi:10.1186/1479-7364-5-6-623

22. Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005-1015.

23. Pui HC, Rebora P, Schrappe M, et al. Outcome of children with hypodiploid acute lymphoblastic leukemia: a retrospective multinational study. J Clin Oncol. 2019;37(10):770-780.

24. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439-448.

25. Gökbüget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131:1522-1531.

26. Frismanantas V, Dobay MP, et al. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood. 2017;129(11):e26-e37.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Arpas T, Jelinkova H, Hrabovsky S, et al. Very rare near-haploid acute lymphoblastic leukemia resistant to immunotherapy and CAR-T therapy in 19-year-old male patient. Clin Case Rep. 2022;10:e05545. doi:10.1002/ccr3.5545