Возможности мониторинга вариабельности ритма сердца для дозирования дексмедетомидина у пациентов нейрореанимационного профиля

Ю. Ю. Кирячков1, М. В. Петрова1, Б. Г. Муслимов2, О. В. Гриднев2

1 Федеральный научно-клинический центр реаниматологии и реабилитологии, Россия, 141534, Московская область, Солнечногорский район, д. Лыткино, д. 777
2 Городская клиническая больница им. М. П. Конchalовского, Россия, 124489, г. Зеленоград, ул. Каштановая аллея, д. 2, стр. 1

Для цитирования: Ю. Ю. Кирячков, М. В. Петрова, Б. Г. Муслимов, О. В. Гриднев. Возможности мониторинга вариабельности ритма сердца для дозирования дексмедетомидина у пациентов нейрореанимационного профиля. Общая реаниматология. 2021; 17 (1): 16–26. https://doi.org/10.15360/1813-9779-2021-1-16-26 [На русс. и англ.]

For citation: Yuri Yu. Kiryachkov, Marina V. Petrova, Bagautdin G. Muslimov, Oleg V. Gridnev. Using Heart Rate Variability Monitoring for Dexmedetomidine Dosing in Neurointensive Care Patients. Obshchaya Reanimatologiya = General Reanimatology. 2021; 17 (1): 16–26. https://doi.org/10.15360/1813-9779-2021-1-16-26 [In Russ. and Engl.]

Резюме

Цель. Обоснование возможности применения мониторинга вариабельности ритма сердца при применении дексмедетомидина у пациентов с повреждением головного мозга различной этиологии.

Материал и методы исследования. В исследование включили 25 пациентов (мужчин — 14, женщин — 11, средний возраст — 58,2±1,81 лет), в период более 20-ти дней с последствиями: черепно-мозговой травмы (ЧМТ) (n=9; 36%); острого нарушения мозгового кровообращения (ОНМК) (n=4; 16%); аноксического повреждения головного мозга (n=6; 24%); субарахноидального кровоизлияния (САК) (n=6; 24%). Дексмедетомидин применяли при симпатической гиперактивности, исходя из показателей вариабельности ритма сердца (ВРС). Регистрировали следующие показатели: SI — стресс-индекс БаВева (индекс напряжения регуляторных систем — индекс напряжения) в нормализованных единицах (н. е.); SDNN — среднеквадратичное отклонение R-R кардиоинтервалов в мс; RMSSD — среднеквадратичное отклонение разности двух смежных отсчетов R-R кардиоинтервалов в мс; pNN50% — долю R–R кардиоинтервалов в процентах, отличающихся от предыдущего более чем на 50 мс; TP — общую мощность спектра частот в мсек². Параметры ВРС регистрировали до инфузии дексмедетомидина (исходно), на 1–3-и; 4–5-е; 9–10-е; 15–20-е сутки применения лекарственного препарата. Симпатическую гиперактивность принимали в пределах значений для SDNN < 13,31 мс; для RMSSD < 5,78 мс; для pNN50% < 0,110%; для SI > 900 н. е. (нормализованных ед.); для TP < 200 мс²; норму параметров ВРС принимали в пределах значений для SDNN [13,31–41,4мс]; для RMSSD [5,78–42,3 мс]; для pNN50% (0,110–8,1%); для SI (80–900 н. е.); для TP (200–2000 мс²).

Результаты. Стартовая доза дексмедетомидина при симпатической гиперактивности составила у пациентов от 0,12 до 0,24 мкг/кг/час (средняя доза 0,16±0,01; суммарно 200 мкг/сутки). По цифровым данным ВРС эффективная доза дексмедетомидина ЭД50 составила 0,26±0,03 мкг/кг/час (суммарно за сутки 353,8 ± 35,1мкг) и была достигнута на 9–10-й день применения дексмедетомидина.

Заключение. Электрофизиологический нейромониторинг выявления функционального состояния автономной нервной системы повышает эффективность применения дексмедетомидина у пациентов с повреждением головного мозга различной этиологии.

Ключевые слова: симпатическая гиперактивность; автономная нервная система; вариабельность ритма сердца; дексмедетомидин

Конфликт интересов.Авторы заявляют об отсутствии конфликта интересов.

Для цитирования: Ю. Ю. Кирячков, М. В. Петрова, Б. Г. Муслимов, О. В. Гриднев. Возможности мониторинга вариабельности ритма сердца для дозирования дексмедетомидина у пациентов нейрореанимационного профиля. Общая реаниматология. 2021; 17 (1): 16–26. https://doi.org/10.15360/1813-9779-2021-1-16-26 [На русс. и англ.]

For citation: Yuri Yu. Kiryachkov, Marina V. Petrova, Bagautdin G. Muslimov, Oleg V. Gridnev. Using Heart Rate Variability Monitoring for Dexmedetomidine Dosing in Neurointensive Care Patients. Obshchaya Reanimatologiya = General Reanimatology. 2021; 17 (1): 16–26. https://doi.org/10.15360/1813-9779-2021-1-16-26 [In Russ. and Engl.]

Резюме

Цель. Обоснование возможности применения мониторинга вариабельности ритма сердца при применении дексмедетомидина у пациентов с повреждением головного мозга различной этиологии.

Материал и методы исследования. В исследование включили 25 пациентов (мужчин — 14, женщин — 11, средний возраст — 58,2±1,81 лет), в период более 20-ти дней с последствиями: черепно-мозговой травмы (ЧМТ) (n=9; 36%); острого нарушения мозгового кровообращения (ОНМК) (n=4; 16%); аноксического повреждения головного мозга (n=6; 24%); субарахноидального кровоизлияния (САК) (n=6; 24%). Дексмедетомидин применяли при симпатической гиперактивности, исходя из показателей вариабельности ритма сердца (ВРС). Регистрировали следующие показатели: SI — стресс-индекс БаВева (индекс напряжения регуляторных систем — индекс напряжения) в нормализованных единицах (н. е.); SDNN — среднеквадратичное отклонение R-R кардиоинтервалов в мс; RMSSD — среднеквадратичное отклонение разности двух смежных отсчетов R-R кардиоинтервалов в мс; pNN50% — долю R–R кардиоинтервалов в процентах, отличающихся от предыдущего более чем на 50 мс; TP — общую мощность спектра частот в мсек². Параметры ВРС регистрировали до инфузии дексмедетомидина (исходно), на 1–3-и; 4–5-е; 9–10-е; 15–20-е сутки применения лекарственного препарата. Симпатическую гиперактивность принимали в пределах значений для SDNN < 13,31 мс; для RMSSD < 5,78 мс; для pNN50% < 0,110%; для SI > 900 н. е. (нормализованных ед.); для TP < 200 мс²; норму параметров ВРС принимали в пределах значений для SDNN [13,31–41,4мс]; для RMSSD [5,78–42,3 мс]; для pNN50% (0,110–8,1%); для SI (80–900 н. е.); для TP (200–2000 мс²).

Результаты. Стартовая доза дексмедетомидина при симпатической гиперактивности составила у пациентов от 0,12 до 0,24 мкг/кг/час (средняя доза 0,16±0,01; суммарно 200 мкг/сутки). По цифровым данным ВРС эффективная доза дексмедетомидина ЭД50 составила 0,26±0,03 мкг/кг/час (суммарно за сутки 353,8 ± 35,1мкг) и была достигнута на 9–10-й день применения дексмедетомидина.

Заключение. Электрофизиологический нейромониторинг выявления функционального состояния автономной нервной системы повышает эффективность применения дексмедетомидина у пациентов с повреждением головного мозга различной этиологии.

Ключевые слова: симпатическая гиперактивность; автономная нервная система; вариабельность ритма сердца; дексмедетомидин

Конфликт интересов.Авторы заявляют об отсутствии конфликта интересов.
Summary

Aim: to validate the use of heart rate variability monitoring during dexmedetomidine administration in patients with brain injury of various etiologies.

Material and methods. The study included 25 patients (14 male, 11 female, mean age 58.2±1.81 years) 20 and more days after traumatic brain injury (TBI) (n=9; 36%), acute stroke (n=4; 16%), anoxic brain injury (n=6; 24%), subarachnoid hemorrhage (SAH) (n=6; 24%). Dexmedetomidine was prescribed because of sympathetic hyperactivity as diagnosed by heart rate variability (HRV). The following indices were measured: SI (stress index, in normalized units [nu]), SDNN (standard deviation of all normal sinus RR intervals over 24 h, in ms), RMSSD (root-mean-square of successive normal sinus RR interval difference, in ms), pNN 50% (the percentage of successive normal sinus RR intervals >50 ms), TP (total power of the frequency spectrum, in ms²). HRV parameters were determined prior to dexmedetomidine infusion (baseline), on days 1–3, 4–5, 9–10, 15–20 of drug administration. Sympathetic hyperactivity was diagnosed by determining following values: SDNN <13.31 ms, RMSSD <5.78 ms, pNN 50% <0.110%, SI >900 nu, and TP <200 ms². Normal reference ranges for HRV parameters were as follows: SDNN (13.31–41.4 ms), RMSSD (5.78–42.3 ms), pNN50 % (0.110–8.1%), SI (80–900 nu), and TP (200–2000 ms²).

Results. The starting dose of dexmedetomidine for sympathetic hyperactivity was 0.12–0.24 µg/kg/hr (mean dose 0.16±0.01; total 200 µg/day). According to digital HRV data, the effective dose ED₅₀ of dexmedetomidine was 0.26±0.03 µg/kg/hour (353.8±35.1 µg total per day) that was achieved on day 9–10 of drug administration.

Conclusion. Electrophysiological neuromonitoring of the autonomic nervous system function increases the efficacy of dexmedetomidine administration in patients with brain injury of various etiologies.

Keywords: sympathetic hyperactivity; autonomic nervous system; heart rate variability; dexmedetomidine

Conflict of interest. The author declare no conflict of interest.

DOI:10.15360/1813-9779-2021-1-16-26

Introduction

The current indications for the use of dexmedetomidine are given in the Russian Registry of Medicines and include sedation in adult patients in the intensive care unit with the required depth, which does not exceed awakening in response to vocal stimulation (corresponding to a range from 0 to -3 points on the RASS [Richmond Agitation-Sedation Scale]). The use of the drug requires careful selection and titration of the dose because it is commonly (in 10% of cases and more) accompanied by adverse reactions such as hypotension, bradycardia, bradypnoea, etc. [1–4]. It should be noted that the use of the RASS scale is largely subjective and in some patients with a low level of consciousness (vegetative state, minimal consciousness state) the approved clinical criteria cannot be used to select the optimal dose of dexmedetomidine. These and other factors prompt the search for objective criteria for drug dosing based on the evaluation of reproducible physiological parameters [5, 6]. It is currently important to select clear indications for dexmedetomidine dose selection in intensive care.

The aim of the study was to validate the use of heart rate variability monitoring during dexmedetomidine administration in patients with brain injury of various etiologies.

Materials and Methods

The study included 25 patients (14 male, 11 female, mean age 58.2±1.81 years) 20 and more days after traumatic brain injury (TBI) (n=9; 36%), acute stroke (n=4;
бельности ритма сердца при применении дексмедетомидина у пациентов с повреждением головного мозга различной этиологии.

Материал и методы

В исследование включили 25 пациентов (мужчины — 14, женщины — 11, средний возраст — 58,2±1,81 лет), в период более 20-ти дней с последствиями: черепно-мозговой травмы (ЧМТ) (n=9; 36%); острого нарушения мозгового кровообращения (ОМК), (n=4; 16%); аноксического повреждения головного мозга (n=6; 24%); субарахноидального кровоизлияния (САК) (n=6; 24%).

Исследование выполняли согласно Хельсинкской Декларации; Конституции РФ; ст. 21; Основам законодательства Российской Федерации об охране здоровья граждан, приказам и инструкциям Минздрава РФ. Протокол исследования был рассмотрен этическим комитетом, который убедился в том, что уверенность в ожидаемой полной оправдана, риски минимизированы и разумны, а испытуемые или их официально утвержденные представители обеспечены достаточной и адекватной информацией.

Возрастной состав пациентов, включенных в исследование, представлен на рис. 1.

Критерии проведения в/в инфузии препарата дексмедетомидина (фирма Orion Pharma, Финляндия) основаны на показателях вариабельности ритма сердца (ВРС), характерных для симпатической гиперреактивности. Целевой задачей титрования дексмедетомидина являлось достижение нормы по показателям ВРС. Появление парасимпатической гиперреактивности являлось основанием уменьшения дозировки препарата или прекращения его применения (использовали 5-ти минутные записи кардиоинтервалов, прибор Полиспектр-8 EX, фирма Нейрософт, Россия).

Пациенты с электрофизиологической навигацией центральной нервной системы (САК) (stress index, in normalized units [nu]), SDNN (standard deviation of all normal sinus RR intervals over 24 h, in ms; rMSSD — среднеквадратичное отклонение двух смежных отсчетов R–R кардиоинтервалов в мс; pNN50% — долю R–R кардиоинтервалов в процентах, отличающихся от предыдущего более чем на 50 мс; TP — общую мощность спектра частот в мсек². Параметры ВРС регистрировали исходно до инфузии дексмедетомидина, на 1–3–й; 4–5–е; 9–10–е; 15–25–е сутки применения лекарственного препарата. Симпатическая гиперреактивность принимали в пределах значений для SDNN < 13,31 мс; для RMSSD < 5,78 мс; для pNN 50% < 0,110%; для SI > 900 н. е.; 16%), anoxic brain injury (n=6; 24%), subarachnoid hemorrhage (SAH) (n=6; 24%).

The study was performed in accordance with the Declaration of Helsinki, the Constitution of the Russian Federation (Article 21), the Basic Law on the Protection of the Citizens of the Russian Federation, orders and instructions of the Russian Ministry of Health. The study protocol was reviewed by the ethical committee, which determined that the research risks were minimized and reasonable in relation to the anticipated benefits, and complete adequate information was provided to the subjects or their officially approved representatives.

The age distribution of patients enrolled in the study is shown in Fig. 1.

The indication for intravenous infusion of dexmedetomidine (Orion Pharma, Finland) included heart rate variability (HRV) values typical for the sympathetic hyperactivity. The aim of dexmedetomidine dose titration was to achieve normal HRV values. The parasympathetic hyperactivity detection served as a rationale for a drug dose reduction or withdrawal (5-minute cardiac intervals recording on Polispectr-8 EX device, Neurosoft company, Russia, was used).

Group 1 consisted of patients with electrophysiological guidance of dexmedetomidine administration according to HRV data (n=17, 11 males and 6 females), of them 7 had prior TBI, 5 had SAH, 3 suffered from stroke, and 2 patients experienced consequences of brain anoxic injury. The mean age of patients was 45,7±3,46 years. Group 2 included patients administered with dexmedetomidine according to the standard clinical criteria (procedural sedation during ventilation) (n=8, 3 males and 5 females), of them 2 had prior TBI, 1 had SAH, 1 suffered from stroke, and 4 had brain anoxic injury. The mean age of patients in this group was 38,5±5,72 years.

The following HRV indices were determined: SI (stress index, in normalized units [nu]), SDNN (standard deviation of all normal sinus RR intervals over 24 h, in ms;
для TP < 200 мс². Норму параметров ВРС принимали в пределах значений для SDNN (13,31–41,4 мс; для RMSSD 5,78–42,3 мс; для pNN 50% 0,10–8,1%; для SI (80–900 н. е.); для TP (200–2000 мс²). Парасимпатическая гиперактивность принимали в пределах значений для SDNN > 41,4 мс; для RMSSD > 42,3 мс; для pNN 50% > 8,1%; для SI < 80 н. е.; для TP > 2000 мс². Для верификации симпатической гиперактивности, нормы или парасимпатической гиперактивности принимали значения 3-х из 5-и указанных параметров ВРС [7]. Регистрировали также следующие параметры ВРС: HF — спектр высоких частот в мс²; LF — спектр низких частот в мс² и %; VLF — спектр очень низких частот в н. е. (нормализованных ед.); VT — спектр очень низких частот в мс² и %. Расчет эффективной дозы (ЭД₅₀) проводили путем определения дозы дексмедетomidина, которая обеспечивала коррекцию симпатической гиперактивности у половины (50%) пациентов.

Для сравнительной оценки эффективности применения дексмедетomidина изучали частоту появления побочных эффектов (артериальная гипотензия, брадикардия, брадипноэ, отсутствие эффекта, отмена препарата) в группах. Оценку динамики состояния пациентов при применении дексмедетomidина на основании параметров ВРС провели по следующим параметрам: уровень сознания по шкалам FOUR; CRS-R (Coma Recovery Scale-Revised; частота выхода пациентов из вегетативного состояния; зависимость пациентов от искусственной вентиляции легких (ИВЛ)); статистическую обработку данных провели с использованием программы MedCalc Software, версия 18.10.2. Достоверными признавали различия при р<0,05. «Нулевую» гипотезу оценивали с применением критерия Пирсона (χ² — «хи-квадрат»), анализ дисперсий выборок (Anova-analysis of variance).

Результаты и обсуждение

Все пациенты 1-й группы, по данным электрофизиологического мониторинга ВРС, имели показатели, характерные для симпатической гиперактивности (SDNN < 13,31 мс; для RMSSD < 5,78 мс; для pNN 50% < 0,110%; для SI > 900 н. е.; для TP < 200 мс²). Средние значения показателей временного и спектрального анализа ВРС до начала и во время применения дексмедетomidина приведены в табл. 1.

При симпатической гиперактивности у пациентов 1-й группы стартовая доза дексмедетomidина составила от 0,12 до 0,24 мкг/кг/час (средняя доза 0,16±0,01; суммарно за сутки 200 мкг/сутки). На 1–3-и сутки после начала инфузии дексмедетomidина у пациентов провели контроль показателей ВРС (табл. 1). Значительное изменение параметров временного диапазона ВРС (увеличение SDNN и RMSSD; снижение SI) и увеличение спектра мощности частот ВРС (TP; VLF; LF; HF) на 1–3-и сутки постоянной инфузии дексмедетomidина характеризует начало снижения активности симпатической нервной

Results and Discussion

All the patients from group 1 had electrophysiological HRV parameters typical for sympathetic hyperactivity (SDNN < 13.31 ms, RMSSD < 5.78 ms, pNN50% < 0.110%, SI > 900 ms, TP < 200 ms²). The mean values for the time domain and spectral HRV analysis prior to and during dexmedetomidine administration are given in Table 1.

In patients with sympathetic hyperactivity (group 1), the starting dose of dexmedetomidine was 0.12–0.24 µg/kg/h (mean dose 0.16±0.01, total 200 µg/day). On days 1–3 after the start of dexmedetomidine infusions the HRV parameters were measured (Table 1). A significant change in time domain parameters (increased SDNN and RMSSD, reduced SI) and increased spectral HRV parameters (higher TR VLF; LF; HF) on days 1–3 of continuous dexmedetomidine infusion indicate early decrease in activity of sympathetic nervous system. However, the values of parameters assessed
Таблица 1. Изменения в течение временного и спектрального анализа вариабельности ритма сердца и доза дексмедетомидина (М±m).

Table 1. Changes in relationship between time domain and spectral analysis of heart rate variability parameters and the dose of dexmedetomidine (M±m).

Parameters	Timing of intravenous administration of dexmedetomidine
SDNN, ms	7.25±0.7 18.5±5.1** 21.6±4.2** 19.4.2.2*** 28.0±10.6***
RMSSD, ms	5.58±0.8 7.9±1.9 8.8±1.1* 10.8±3.5* 12.5±4.4*
pNN 50, %	0.19±0.1 0.21±0.1 0.16±0.09 0.43±0.2 1.22±1.1
SI (stress index), nu	1980±350 1440±637 732±144*** 61±167.3*** 52±183***
TP, ms	74.6±15.4 790.8±490 823±343** 504.7±441.2*** 521±177.1***
LF/HF, nu	3.06±0.9 3.28±0.7 2.8±0.9 5.2±1.9 2.9±0.7
VLF, %	60.6±4.4 70.5±6.3 77.9±4.2 68.5±7.5 71.1±2.5
LF, %	20.8±3.5 19.7±3.8 17.5±2.9 17.1±3.9 15.1±3.9
HF, %	18.1±3.9 18.9±2.2 9.3±1.3 13.8±5.6 7.16±2.0
Dose of dexmedetomidine, µg/kg/hour	0.16±0.01 0.23±0.02 0.26±0.03 0.27±0.04

Note. SDNN — standard deviation of R–R intervals; RMSSD — the square root of the mean squared differences of successive NN intervals; pNN50 — the number of interval differences of successive NN intervals greater than 50 ms; SI — stress index in nu (normalized units); VF — the very low frequency power in % and ms²; LF — the low frequency power in % and ms²; HF — the high frequency power in % and ms²; LF/HF — ratio of low and high powers in nu (normalized units); TP — total power of variance of all NN intervals; m²; LF/HF — соотношение спектра низких и высоких частот в % и мс²; TP — общая мощность спектра частот, (total power spectrum — TP), мс².

Примечание. Timing of intravenous administration of — сроки внутривенного введения; SDNN — среднеквадратичное отклонение R–R кардиоинтервалов в мс; rMSSD — среднеквадратичное отклонение разности двух смежных отсчетов R–R кардиоинтервалов в мс; pNN50% — доля R–R кардиоинтервалов в процентах; отличается от отсутствующего более чем на 50 мс; SI — стрессовый индекс Баевского в норм. единицах. HF — спектр высоких частот в % и мс²; LF — спектр низких частот в % и мс²; LF/HF — соотношение спектра низких и высоких частот в н. е.; VLF — спектр очень низких частот в % и мс²; TP — общая мощность спектра частот, (total power spectrum — TP), мс².

 sistemy. Значения регистрируемых параметров у большинства пациентов данной группы (у 15 из 17 пациентов из 17, 88,2%), в 1–3–и сутки от начала постоянной инфузии дексмедетомидина на еще оставались в диапазоне симпатической гиперактивности. Исходя из цитированных параметров BPC дозу дексмедетомидина после 3-х суток от начала его применения увеличили до средних значений 0,23±0,02 мкг/кг/час (от 0,12 до 0,38 мкг/кг/час, суммарно за сутки 337,5±38,3 мкг). На 4–5–е сутки по параметрам BPC (таблица 1) ликвидировать симпатическую активность удалось уже у 8–и пациентов из 17–и. Исходя из сохранения симпатической гиперактивности у 7–и пациентов (41,1%) дозу дексмедетомидина после 5–х суток от начала его применения увеличили до средних значений 0,26±0,03 мкг/кг/час (от 0,14 до 0,42 мкг/кг/час, суммарно за сутки 353,8±35,1 мкг). На 9–10–й день от начала инфузии дексмедетомидина симпатическую гиперактивность ликвидировали у более 50% пациентов (у 12–и пациентов из 17 — 70,6%). На 5–10–е сутки наблюдали значимые 2–8 — кратные изменения параметров временного диапазона BPC (увеличение SDNN и RMSSD; снижение SI) и увеличение спектра мощности частот BPC (TP; VLF; LF; HF) (табл. 1), что характеризовало ликвидацию симпатической гиперактивности. Скорость в мостах пациентов группы (15 из 17, 88,2%) были в пределах симпатической гиперактивности на дни 1–3–и по времени инфузии дексмедетомидина на фоне HRV. На днях 20–30 от начала инфузии дексмедетомидина инфузия была отменена в 15患者中17
Инфузии после 10 суток от начала применения лекарственного препарата не изменялась в сравнении с дозами после 5-ти суток его использования и составила в среднем 0,27±0,02 мкг/кг/час (от 0,14 до 0,42 мкг/кг/час, суммарно 353,8±35,1 мкг/сутки). На 20–30-й день от начала инфузии дексмедетomidина симпатическую гиперактивность ликвидировали у 15-ти пациентов из 17 (88,2%). Therefore, according to HRV data, the effective dose of dexmedetomidine (ED₅₀) was 0.26±0.03 μg/kg/hour (353.8±35.1 μg/day in total) and was reached on day 9–10 after beginning of drug administration.

The changes in SDNN and rMSSD values, being the main markers of time domain HRV analysis and indicating the presence or suppression of sympathetic hyperactivity during intravenous continuous infusion of dexmedetomidine, are presented in Fig. 2.

The rise in SDNN and rMSSD values was statistically significant starting from day 9–10 of dexmedetomidine administration. These trends persisted up to 20–30 days from the start of dexmedetomidine intravenous infusion, indicating the achievement of sustained sympathetic block.

The changes in SDNN, an essential electro-physiological HRV parameter, in relation to the rate and duration of the continuous dexmedetomidine infusion, are shown in Fig. 3.

The rise in SDNN was related to the dose and duration (days) of dexmedetomidine administration. Analysis of gradual dose-effect relationship curves showed that the most dramatic rise in SDNN was seen in the first 3 days of dexmedetomidine infusion. Later on, the SDNN increase persisted and associated with an increase in the dose of the drug and elimination of sympathetic hyperactivity.

When analyzing the incidence of side effects in the groups 1 and 2, we obtained the results summarized in Table 2.

The mean duration of continuous dexmedetomidine infusion in Group 1 patients was 26.07±7.63 days (ranging from 4 to 42 days), in Group 2 — 5.8±1.55 days (ranging from 1 to 9 days). This difference is due to the frequent development of side effects and lack of clinical efficacy of dexmedetomidine in Group 2 patients compared to Group 1. Thus, hypotension (systolic BP less than 90 mm Hg) in Group 1 was observed in only 2 patients (11.7%) compared to Group 2, where arterial hypotension developed in 6 patients (75%), (P<0.001). Sinus bradycardia (heart rate less than 60 min^{−1}) in Group 1 was observed in 1 patient (5.8%) compared to Group 2, where sinus bradycardia developed in 6 patients (75%), (P<0.001). Decrease in respiratory rate to 10 min^{−1} or less in Group 1 was observed in 1 patient (5.8%) compared to Group 2, where bradypnea developed in 3 patients (37.5%) (P<0.05). Failure to achieve the clinical endpoint (elimination of sympathetic hyperactivity signs such as agitation, hypertension, tachycardia, tachypnea, desynchronization with ventilator) was observed in 1 patient (5.8%) in the group 1 and in 4 patients (50%) from group 2.

The following parameters showed significant differences in Group 1 patients prior to and on days 30–60th day of dexmedetomidine administration:
increased level of consciousness according to FOUR and CRS-R scales, reduced number of patients in vegetative state, decreased dependence on ventilator with restoration of spontaneous breathing (P<0.05, Table 3).

Autonomic nervous system dysfunction with increased sympathetic drive is the leading factor underlying both acute and chronic critical illness in brain injury and many other conditions [8]. Persistent sympathetic overactivity in patients post traumatic brain injury, cerebral circulation disorders of vascular and other origins provokes increased blood flow abnormalities, secondary brain inflammation and prevents restoration of nutritional status and respiratory function along with increasing the risk of tachyarrhythmias and heart failure [9, 10]. Hence, the use of drugs eliminating autonomic dysfunction constitutes a new direction in intensive care medicine. Dexmedetomidine as a central alpha-2 receptor agonist has both experimentally and clinically proven effect on the correction of autonomic nervous system imbalance [11–20].

The use of dexmedetomidine guided by electrophysiological HRV assessment being a sensitive indicator of autonomic function has high prospects for accurate personalized adjustment of dexmedetomidine administration and dosing in intensive care. Several studies on the use of dexmedetomidine under HRV control have been...
Table 2. The frequency of adverse reactions and the duration of dexmedetomidine infusion in studied groups of patients.

Type of adverse reaction	Groups	χ²-dispersion	P value
Hypotension (systolic BP below 90 mmHg) requiring intervention with vasopressors	2, n=17	9.99	0.0015**
Sinus bradycardia (heart rate less than 60 min⁻¹)	1 (5.8%)	12.89	0.0003***
Bradypnea (respiratory rate less than 10 min⁻¹)	1 (5.8%)	4.04	0.044*
The frequency of drug withdrawal due to undesirable effects (hypotension, bradycardia)	1 (5.8%)	12.89	0.0003***
Lack of clinical effect (1)	1 (5.8%)	8.61	0.01**
Duration of dexmedetomidine administration, days	26.07±7.63 [4–42]	—	—

Note. Group 1 included patients with a continuous and prolonged infusion of dexmedetomidine with the efficacy assessed by heart rate variability parameters; Group 2 included patients with continuous infusion of dexmedetomidine, administered on clinical indications without monitoring of HRV parameters. (1) — lack of clinical effect was considered as one of the following: failure to achieve the target level of sedation on Richmond Agitation-Sedation Scale 0 to -3; persistent sympathetic drive (tachycardia above 100 min⁻¹, systolic BP above 140 mmHg, tachypnea more than 18 min⁻¹) [Godo S. et al., 2017]. * — P<0.05; ** — P<0.01; *** — P<0.001 vs. Group 2 by χ²-test.

Примечание. 1-я группа — пациенты с проведением постоянной длительной инфузии дексмедетомидина с навигацией эффективности по параметрам вариабельности ритма сердца; 2-я группа — пациенты с проведением постоянной инфузии дексмедетомидина по клиническим показаниям без навигации по параметрам вариабельности ритма сердца. Type of adverse reaction — побочная реакция; hypotension requiring intervention with vasopressors — снижение артериального давления, требующее введения вазопрессоров; sinus bradycardia (heart rate less than…); Bradypnea (respiratory rate…) — брадикардия (частота дыхания…); the frequency of drug withdrawal due to undesirable effects (hypotension, bradycardia, bradypnea); lack of clinical effect (1) — отсутствие клинического эффекта (отсутствие достижения целевого уровня седации Richmond Agitation-Sedation Scale 0 до -3; сохранение симпатикотонии — тахикардия выше 100 мин⁻¹, гипертензия — сист. АД выше 140 мм рт. ст, тахипноэ — частота дыхания более 18 мин⁻¹), [Godo S. et al., 2017]; duration of dexmedetomidine administration, days — продолжительность приема дексмедетомидина, дней. * — p<0.05; ** — p<0.01; *** — p<0.001 относительно 2-й группы с использованием χ².

Table 3. Level of consciousness and ventilator dependence in Group 1 patients.

Parameters	M±m / Number of cases (%)	P value
FOUR, points		0.0014
CRS-R, points		0.0349
Vegetative state	9 (24.3%)	0.05
On mechanical ventilation	7 (18.9%)	0.0434

Note. Group 1 included patients receiving continuous and prolonged infusion of dexmedetomidine with the efficacy assessed by heart rate variability parameters. FOUR — Full Outline of UnResponsiveness, CRS-R — Coma Recovery Scale — Revised (2004).
рата ИВЛ с восстановлением самостоятельного дыхания (табл. 3).

Ведущим патогенетическим фактором развития как острого, так и хронического критического состояния при повреждении головного мозга и многих других клинических состояниях является дисфункция автономной нервной системы, основным элементом которой является тоническое напряжение симпатического звена [8]. Постоянная симпатоадренальевая активация (симпатическая гиперактивность) у пациентов с последствиями ЧМТ, расстройствами мозгового кровообращения сосудистого и несосудистого генеза провоцирует дальнейшее расстройство мозгового кровообращения, вторичные воспалительные изменения ЦНС, не позволяет добиться нормализации нутритивного статуса, функции дыхания, усиливает риск развития тахикардий и сердечной недостаточности [9, 10]. В этой связи применение лекарственных препаратов, устраняющих дисфункцию АНС, формирует новое направление в реаниматологии. Дексмедетомидин как центральный агонист альфа-2 рецепторов, имеет как экспериментально, так и клинически доказанный эффект ликвидации дисбаланса автономной нервной системы [11–20].

Применение дексмедетомидина под контролем чувствительного индикатора функционального состояния АНС в виде электрофизиологической оценки ВРС имеет высокие перспективы точной навигации и применения стратегии подбора дозы данного лекарственного препарата в реаниматологии. Имеется ряд работ, посвященных применению дексмедетомидина под контролем ВРС [21–23]. Однако в данных работах на основании параметров ВРС (LF/HF, LF) не были разработаны диапазоны показателей нормы и дисфункции АНС. Разработанные и примененные в нашем исследовании диапазоны показателей симпатической гиперактивности по параметрам ВРС показали себя как надежные электрофизиологические навигационные критерии назначения и последующего титрования дозы дексмедетомидина при пролонгированном применении в интенсивной терапии. Несмотря на наличие симпатолизиса и нейропрофилактики — основных фармакологических свойств дексмедетомидина, его применение проводится без контроля целевых показателей снижения активности симпатического звена автономной нервной системы. Как мы показали в данном исследовании, индивидуальное, таргетированное использование дексмедетомидина позволяет избежать развития побочных эффектов препарата и существенно увеличивать эффективность лечения пациентов в критических состояниях.

used without monitoring the target indicators of reduction of autonomous sympathetic activity. As we have shown in this study, the personalized targeted administration of dexmedetomidine allows avoiding the development of side effects and significantly increases the efficacy of treatment of critically ill patients.

Conclusion

Electrophysiological digital parameters of heart rate variability reflecting sympathetic hyperactivity are the guiding parameters to start the intravenous dexmedetomidine therapy.

Electrophysiological assessment of autonomic function using heart rate variability parameters is an informative way of selecting and titrating the dose of dexmedetomidine.

The level of sympathetic hyperactivity serves as an indication for starting dexmedetomidine therapy. Reaching the normal values of autonomic function parameters is the target, while parasympathetic hyperactivity serves as a rationale for discontinuing the drug or reducing the dose of dexmedetomidine.

Electrophysiological neuromonitoring of autonomous nervous system as the main regulator of the body homeostasis increases the efficacy of dexmedetomidine in patients with brain injury of different etiologies.

Author contribution. Yuri Yu. Kiryachkov, DM, developed the aims, suggested the methodology of the study and was responsible for the statistical data analysis. Marina V. Petrova, DM, professor, refined the presentation of material and authored the «Discussion» section of the paper. Bagautdin G. Muslimov performed the literature search and contributed to categorization of materials. Oleg V. Gridnev, DM, professor, selected the patients for the study participation.

Заключение

Навигационными параметрами для начала внутривенного применения дексмедетомидина являются электрофизиологические цифровые параметры вариабельности ритма сердца, отражающие симпатическую гиперактивность. Электрофизиологическая оценка функции автономной нервной системы по параметрам вариабельности ритма сердца является информативным способом подбора и титрования дозы дексмедетомидина.

Уровень симпатической гиперактивности служит показанием к началу применения дексмедетомидина. Достижение диапазона нормы функционального состояния автономной нервной системы является целевой задачей, а показатели парасимпатической гиперактивно-
сти служат основанием для отмены или сниже-
ния дозы дексмедетомидина.

Электрофизиологический нейромонито-
ринг выявления функционального состояния
автономной нервной системы, как главного
регулятора гомеостаза организма, повышает
эффективность применения дексмедетоми-
дина у пациентов с повреждением головного
мозга различной этиологии.

Вклад авторов. Киричков Юрий Юрьевич, д. м. н., разработка цели, метода
исследования. Применение статистических
методов анализа данных; Петрова Марина
Владимировна, д. м. н., профессор — оптими-
зация подачи материала, формирование руб-
ники обсуждения полученных результатов;
Муслим Багаутдин Гусенич — работа с
литературными источниками, их перевод на
русский язык, систематизация материала;
Гридиев Олег Владимирович, д. м. н., профес-
сор — выборка пациентов для проведения
исследования.

参考文献
1. Mahmoud M., Mason K.P. Dexametomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. BJA: British Journal of Anaesthesia, 2015; 115 (2): 171–182. DOI: 10.1093/bja/aeu226.
2. Sharp D.B., Wang X., Mendelowitz D. Dexametomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neu-
rons in the nucleus ambiguus. Brain Res. 2014; 1574: 1–5. DOI: 10.1016/j.braine.2014.06.010. PMID 24953328.
3. Almuneer D., Dimitrius G., Cao Y.Y., Zhao G.Y., Zhao P. Dexametomidine preconditioning attenuates global cerebral ischemic injury follow-
ing cardiac arrest. Int J Neurosci. 2016; 126 (3): 249–256. DOI: 10.3109/00207454.2015.1050921. PMID 25565380.
4. Jin S., Zhou X. Influence of dexametomidine on cardiac complications in non-cardiac surgery: a meta-analysis of randomized trials. Int J Clin Pharm. 2017; 39 (4): 629–640. DOI: 10.1007/s11096-017-0493-8. PMID: 2860046.
5. Mahmoud M., Mason K.P. Dexametomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. BJA: British Journal of Anaesthesia, 2015; 115 (2): 171–182. DOI: 10.1093/bja/aeu226.
6. Peng Y., Haijeng Z., Haodong C., Zijin Z., Huahui Z., Shuguang Z., Lili G., Lei S., Xiaoliang L., Zhengqiang L. Dexametomidine attenuates acute parasympathetic sympathetic hyperactivity. Oncotarget. 2017; 8 (40): 69012–69019. DOI: 10.18632/oncotarget.16920. PMID 25620316.
7. Kanashiro A., Sônego F., Ferreira R.G., Castanheira F.V., Leite C.A., Godo S., Irino S., Nakagawa A., Kawazoe Y., Fujita M., Kudo D., No-
matsu-Locatelli M., Locatelli F.M., Yokoyama M. Acute Brain Injuries Using a Consensus-Based Diagnostic Tool: A Sin-
mology. 2016; 1574: 1–5. DOI: 10.1016/j.bjna.2016.12.014. PMID 27979625.
8. Esterow D., Greenland R.D. Autonomic dysfunction after mild traumatic brain injury. Brain Sci. 2017; 11 (7): 8. DOI: 10.3390/brains7080100.
9. Meyfroidt G., Baguley I.J., Menon D.K. Influence of dexmedetomidine on cardiac dysfunction following asphyxial cardiac arrest. Exp Ther Med. 2017; 13 (2): 69012–69019. DOI: 10.18632/oncotarget.16920. PMID 25620316.
10. Jin S., Zhou X. Influence of dexametomidine on cardiac complications in non-cardiac surgery: a meta-analysis of randomized trials. Int J Clin Pharm. 2017; 39 (4): 629–640. DOI: 10.1007/s11096-017-0493-8. PMID: 2860046.
11. Esterow D., Greenland R.D. Autonomic dysfunction after mild traumatic brain injury. Brain Sci. 2017; 11 (7): 8. DOI: 10.3390/brains7080100.

Clinical investigations and practice. Clinical investigations and practice. Interpretation and translation of the
literature sources, their translation into the

https://doi.org/10.15360/1813-9779-2021-1-16-26
totic Insults to Neuronal Cells Occurs Via an Intrinsic Mitochondria-Dependent Pathway. *J Cell Biochem.* 2017; 118 (9): 2635–2644. DOI: 10.1002/jcb.25847. PMID 28158247.

18. Endesfelder S., Makki H., von Haufen C., Spies C.D., Bührer C., Sifringer M. Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain. *PLoS One.* 2017; 12 (2): e0171498. DOI: 10.1371/journal.pone.0171498. PMID 28158247.

19. Akpınar O., Nazyroğlu M., Akpınar. Different doses of dexmedetomidine reduce plasma cytokine production, brain oxidative injury, PARP and caspase expression levels but increase liver oxidative toxicity in cerebral ischemia-induced rats. *Brain Res Bull.* 2017; 130: 1–9. DOI: 10.1016/j.brainresbull.2016.12.005. PMID 28007581.

20. Xu K.L., Liu X.Q., Yao Y.L., Ye M.R., Han Y.G., Zhang T., Chen G., Lei M. Effect of dexmedetomidine on rats with convulsive status epilepticus and association with activation of cholinergic anti-inflammatory pathway. *Biochem Biophys Res Commun.* 2018; 495 (1): 421–426. DOI: 10.1016/j.bbrc.2017.10.124. PMID 29080744.

21. Shin S., Lee J.W., Kim S.H., Jung Y.S., Oh Y.J. Heart rate variability dynamics during controlled hypotension with nicardipine, remifentanil and dexmedetomidine. *Acta Anaesthesiol Scand.* 2014; 58 (2): 168–176. DOI: 10.1111/aas.12233. PMID 24261345.

22. Cho J.S., Kim S.H., Shin S., Pak H.N., Yang S.J., Oh Y.J. Effects of Dexmedetomidine on Changes in Heart Rate Variability and Hemodynamics During Tracheal Intubation. *Am J Ther.* 2016; 23 (2): e369-76. DOI: 10.1097/MJT.0000000000000074. PMID 24832388.

23. Kim M.H., Lee K.Y., Bae S.J., Jo M., Cho J. Intraoperative dexmedetomidine attenuates stress responses in patients undergoing major spine surgery. *Minerva Anestesiol.* 2019; 85 (5): 468–477. DOI: 10.23736/S0375-9393.18.12992-0. PMID: 3026342.