Global existence of solutions to nonlinear Volterra integral equations.

Alexander G. Ramm
Department of Mathematics, Kansas State University,
Manhattan, KS 66506, USA
ramm@math.ksu.edu
http://www.math.ksu.edu/~ramm

Abstract

A new method is given for proving the global existence of the solution to nonlinear Volterra integral equations. A bound on the solution is derived. The results are based on a nonlinear inequality proved by the author earlier.

1 Introduction

Consider the equation:

\[u(t) = f(t) + \int_0^t a(t, s, u(s))ds, \quad t \geq 0. \]

(1)

The problem is:

Under what assumptions on \(f \) and \(a(t, s, u) \) equation (1) has a solution which is defined on \(\mathbb{R}_+ := [0, \infty) \)?

Many results on the theory of integral equations and many references one can find in [1]. Let us formulate the author’s result basic for our study (see [2], p. 105).

Let

\[g'(t) \leq -\gamma(t)g(t) + \alpha(t, g(t)) + \beta(t), \quad t \geq 0, \quad g \geq 0; \quad g' = \frac{dg}{dt}, \]

(2)

where \(\gamma \), \(\beta \) and \(\alpha \) are continuous functions of \(t \in \mathbb{R}_+ \), \(\alpha(t, g) \geq 0 \) is a continuous non-decreasing function of \(g \) on \(\mathbb{R}_+ := [t_0, \infty) \), \(t_0 \geq 0 \).

Lemma 1. Assume that there exists a function \(\mu = \mu(t) > 0 \), \(\mu \in C^1([t_0, \infty)) \) such that

\[\alpha(t, \mu^{-1}(t)) + \beta(t) \leq \mu^{-1}(t) (\gamma(t) - \mu'(t)\mu^{-1}(t)) , \quad \forall t \geq t_0; \]

(3)

MSC: 45D05, 45G10.
Key words: Nonlinear Volterra integral equations.
and
\[\mu(t_0)g(t_0) < 1. \] \hspace{1cm} (4)

Then any solution \(g \geq 0 \) to inequality (2) exists on \(\mathbb{R}_+ \) and
\[0 \leq g(t) < \mu^{-1}(t), \quad \forall t \geq t_0. \] \hspace{1cm} (5)

If \(\mu(t_0)g(t_0) \leq 1 \) then \(0 \leq g(t) \leq \mu^{-1}(t) \) for all \(t \geq t_0. \)

A proof of Lemma 1 is given in [2], pp. 105-107, see also [3].

A new idea in this paper is to use Lemma 1 with \(\gamma(t) = 0 \). In this case inequality (3) may hold only if \(\mu(t) \) decays as \(t \) grows, and estimate (5) becomes the estimate of the rate of growth of \(u \).

In [3] \(\mu(t) \) was growing to infinity as \(t \to \infty \) and estimate (5) gave results on the stability and long-time behavior of \(g(t) = \|u(t)\| \), where the norm was a Hilbert space norm.

Let us assume that \(t_0 = 0 \) and
\[|f(t)| + |f'(t)| \leq c_0 e^{-b_0 t}, \quad \forall t \geq 0, \] \hspace{1cm} (6)

\[|a(t, t, u)| \leq c_1 e^{-b_1 t}(1 + |u|^{2p}), \quad p > 0, \] \hspace{1cm} (7)

\[\int_0^t |a_t(t, s, u(s))|ds \leq c_2 e^{-b t}(1 + |u(t)|^{2p}), \quad a_u(t, s, u) \geq 0, \quad a_t = \frac{\partial a}{\partial t}. \] \hspace{1cm} (8)

Assume also that \(|a| + a_u \leq c(R_1, R_2) \) for \(t \leq R_1, s \leq R_1 \) and \(|u| \leq R_2, a \) and \(a_t \) are smooth functions of their arguments.

This assumption allows one to use the contraction mapping principle if \(t > 0 \) is sufficiently small and establish the existence and uniqueness of the local solution to equation (1).

Differentiate (11) with respect to \(t \) and get
\[u' = f' + a(t, t, u(t)) + \int_0^t a_t(t, s, u(s))ds. \] \hspace{1cm} (9)

Lemma 2. Let \(u(t) \in H \), where \(H \) is a Hilbert space, \(\|u\|^2 = (u, u) \), \(\|u\|' = \frac{d\|u\|}{dt} \). If \(u(t) \in C^1(\mathbb{R}_+; H) \) then
\[\|u\|' \leq \|u\|. \] \hspace{1cm} (10)

If \(u(t) \in C^1(\mathbb{R}_+) \), then
\[|u|' \leq |u|. \] \hspace{1cm} (11)

Proof of Lemma 2. One has \(\|u\|^2 = (u, u) \). Thus, \(2\|u\|'\|u\| = (u', u) + (u, u') \leq 2\|u\|'\|u\|. \)

Since \(\|u\| \geq 0 \), one gets (10).

If \(u(t) \in C^1(\mathbb{R}_+) \), then \(|u(t + h)| - |u(t)| \leq |u(t + h) - u(t)| \). Divide this inequality by \(h > 0 \) and let \(h \to 0 \). This yields (11). \(\square \)

Taking the absolute value of (11), using (10) and setting \(g(t) = |u(t)| \), one obtains
\[g' \leq c_0 e^{-b_0 t} + c_1 e^{-b_1 t}(1 + g^{2p}(t)) + c_2 e^{-b t}(1 + g^{2p}(t)). \] \hspace{1cm} (12)
Theorem 1. If (4) and (6)–(8) hold, then the solution to (1) exists on \(\mathbb{R}_+ \), is unique and
\[
|u(t)| \leq ce^{qt}, \quad q > 0,
\]
where \(q > 0 \) is a fixed number and \(c > 0 \) is a sufficiently large constant.

In Section 2 a proof of Theorem 1 is given. From this proof one can get an estimate for the constant \(c \).

2 Proof of Theorem 1

Let us apply to (12) Lemma 1. Choose
\[
\mu = c_3e^{-qt}, \quad q = \text{const} > 0.
\]
Since \(\mu(0) = c_3 \) inequality (4) holds if \(g(0)c_3 < 1 \).

Example 1. Let \(u = 1 + \int_0^tu^2(s)ds \). Then \(u' = u^2 \), \(u(0) = 1 \). A simple integration yields \(u = (1 - t)^{-1} \). So, the solution tends to infinity as \(t \to 1 \).

Remark 1. Without some assumptions on \(f \) and \(a(t, s, u) \) the solution to (1) may not exist globally.

Example 2. Let \(u = 1 + \int_0^tu^2(s)ds \). Then \(u' = u^2 \), \(u(0) = 1 \). A simple integration yields \(u = (1 - t)^{-1} \). So, the solution tends to infinity as \(t \to 1 \).

Remark 2. The method developed in this paper can be used for other decay assumptions, for example, power decay of \(f \) and \(a(t, s, u) \) as \(t \to \infty \).
References

[1] P.Zabreiko et al., *Integral equations*, Nauka, M., 1968

[2] A.G.Ramm, N.S. Hoang, *Dynamical Systems Method and Applications. Theoretical Developments and Numerical Examples*, Wiley, Hoboken, 2012.

[3] A.G.Ramm, *Large-time behavior of solutions to evolution equations*, In Handbook of Applications of Chaos Theory, Chapman and Hall/CRC, 2016, pp. 183-200 (ed. C.Skiadas).