Abstract

This paper presents an Artificial Neural Network (ANN) model for online profile voltage estimation to aim distribution network voltage regulation with consideration of Distributed Generation (DG). Arrival of DG to the distribution network affects the feeder voltages. Commonly, the On-Load Tap Changer (OLTC) transformer with a line drop compensation (LDC) that monitors the voltage along the feeder is used to regulate the voltage within allowable limits. But with the presence of DG because of multi-directional power flow, there are complications for the operation of the LDC to detect the correct amount of voltage profile along the feeder. The proposed estimation method employs Artificial Neural Network (ANN) concept and eliminates utilization of power flow calculations, resulting in low computational burden and online operation especially in case of systems with high order of complexity. Proposed technique is tested on a 13 bus distribution network and simulation outcomes validate the effectiveness and efficiency of the suggested scheme.

Keywords: Artificial Neural Network (ANN), Distributed Generation, On-Load Tap Changer

1. Introduction

A Distributed Generation (DG) as, “an electric power generation source connected directly to the distribution network or on the customer side of the meter” has been defined. Voltage regulation in distribution systems is performed with the help of several voltage regulating devices, such as on-load tap changer (OLTC) and step voltage regulators. Previously, the distribution networks were considered to act without any DG. Arrival of DG to the distribution systems affects the voltages of feeder and also changed the power flow from unidirectional to multi-directional. On the other hand, solar and wind DGs, have uncertain output power and therefore as a result of these, fluctuations of the voltage profile have been observed. When the voltage profile of the system is disturbed, the network should find that status and take adequate means to restore allowable voltage limit.

Commonly, the OLTC transformer with a LDC that monitors the voltage along the feeder is used to regulate the voltage within allowable limits. The OLTC can regulate voltage about ±10%. But with the presence of DG because of multi-directional power flow, there are complications for the operation of the LDC to detect the correct amount of voltage profile along the feeder. Indeed, it has become obvious more than any time that the adoption of smart grid is essential. The extension of the Smart Grid meets many challenges. Some of the technical challenges are the need for new “smart” tools, like the Remote Terminal Units (RTU).

In order to find the optimal tap setting with the DG is formulated an optimization problem. In terms of real-time, this method cannot be feasible, as it is not potential to read the data of all the busses of the grid. In a method was presented to authorize the voltage regulator controller to consider the effect of DG. Although, this
design cannot deal with several DG on the same feeder. In\(^6\) used a coordinated voltage control method to enable the determination of lowest and highest voltages of the feeder in the presence of DGs and to act the voltage regulator according to that. In\(^7\), a local, intelligent and auto-adaptive voltage regulator for DG is proposed. This regulator is able to coordinate in real time the control of several DGs. In\(^8\) for small scale synchronous generators with unbalanced loads used a fuzzy based digital automatic voltage regulator. In\(^9\), a voltage control strategy is proposed for DG using the voltage control mode and the power factor control mode. In\(^10\) used an optimization technique for coordinated voltage control in distribution networks using DG. In\(^11\) proposes an online voltage control strategy for a realistic distribution system containing a based renewable DG unit and other voltage regulating devices.

In this paper proposed a method is based on the ANN concepts to calculate online voltage for all busses. The first step is based locating a Remote Terminal Unit (RTUs) at each line capacitor and each DG. The ANN to be employed the voltage of RTUs as input of network. The outputs of the algorithm are the voltage magnitudes of all busses along feeders.

The paper is organized as follows: Section 2 provides Artificial Neural Network definition. Section 3 provides case studies, and Voltage Estimation and Result are represented in Section 4. Section 5 presents outlines conclusions.

2. Artificial Neural Network

A Multi-Layer Perceptron (MLP) is a feed forward artificial neural network model that maps sets of input data onto a category of suitable outputs as shown in Figure 1. Each node gathers all input nodes after multiplying each input value by a weight\(^12\). A MLP contains of multiple layers of models in a directed graph, with each layer totally joined to the subsequent. Each node is a neuron with a nonlinear activation function but the input nodes not included\(^13\).

3. Case Study

The studied distribution network is a distribution system with the total load of 10536kW and 5992kVAR, 13 bus and 12 branches as it has been shown in Figure 1.

Line	R(ohm)	X(ohm)
1-2	0.176	0.138
2-3	0.176	0.138
3-4	0.045	0.035
4-5	0.089	0.069
5-6	0.045	0.035
5-7	0.116	0.091
7-8	0.073	0.073
8-9	0.074	0.058
8-10	0.093	0.093
7-11	0.063	0.05
11-12	0.068	0.053
7-13	0.062	0.053

Bus Number	P(KW)	Q(KVAR)
1	0	0
2	890	468
3	628	470
4	1112	764
5	1638	1378
6	474	344
7	766	498
8	920	292
9	690	186
10	1662	480
11	690	186
12	1292	554
13	1124	1480

Figure 1. Feed forward network.
Figure 2. Single line diagram of the case study system.

Figure 3. Locating a RTUs each line capacitor and at each DG Bus.
Bus and line information of 13-bus test system are listed in Tables 1 and 2, respectively.

This 13-bus test system 63/20kV has obtained from Khoda-Bande-Loo Substation of Tehran distributed network.

4. Voltage Estimation and Result

The scheme of voltage control offered in this paper is intended to be utilized as an online function, for online voltage approximation. Hence, and in order to accelerate the voltage control algorithm, an ANN capable to mimic the behavior of the network (or micro grid) was included. This option empowered the utilization of the meta-heuristic algorithm employed in real-time operation, decreasing the Long times to simulate that were needed until compute successive network power flows. In point of fact, the ANN is utilized to prepare a steady-state equivalent of the grid, avoiding in this way the spread of the load flow analysis to the distribution level. In this paper proposes a technique is utilized the ANN concepts.

4.1 First Scenario

At the first scenario, it is assumed that the capacitor banks at bus 9 can inject reactive power of 2.5p.u and DG1 & 2 at bus 6 and bus 12 can inject 0.1 p.u and 5p.u, respectively. After running Algorithm voltage profile generated from load flow algorithm versus voltage profile obtained from the proposed procedure as shown in Figure 4.
4.2 The Second Scenario

At the first scenario, it is assumed that the capacitor banks at bus 9 can inject reactive power of 9 p.u and DG1&2 at bus 6 and bus 12 can inject 6 p.u and 12 p.u, respectively. After running Algorithm voltage profile generated from load flow algorithm versus voltage profile obtained from the proposed method as shown in Figure 5.

5. Conclusion

The main aim of this paper was to develop a novel online voltage estimation method for the distribution systems in the presence of smart grid. As was seen with the use of RTUs that were put on the specific buses, the information of these buses through a communication channel sent to a central computer. Here, there is an estimation voltage algorithm based on ANN that calculate voltage profile with high accuracy. Then, the calculated values sent to a master system to aim regulate tap setting of OLTC in order to modify the voltage profile.

6. References

1. Ackermann GAT, Soder L. Distributed generation: A definition. Elect Power Syst Res. 2001; 57:195–204.
2. Elavarasi R, Saravanan P. Impact of Distributed Generation on Distribution Systems and its Protection. Indian Journal of Science and Technology. 2014; 7(57):85–90.
3. Mohamed E. Novel decentralized operation schemes for smart distribution systems. Diss. University of Waterloo; 2012.
4. Nodushan M, Mohammadi, A, Ghadimi A, Salami A. Voltage Sag Improvement in Radial Distribution Networks Using Reconfiguration Simultaneous with DG Placement. Indian Journal of Science and Technology. 2013; (6.7):4862–9.
5. Liew SN, Strbac G. Maximising penetration of wind generation in existing distribution networks. IEEE Proceedings-Generation, Transmission and Distribution. 2002; 149(3):256–62.
6. Fila M, Taylor GA, Hiscock J, et al. Flexible voltage control to support Distributed Generation in distribution networks. 1–5.
7. Tran-quoc T, Monnot E, Rami G, Almeida A, Kieny C, Hadjsaid N. Intelligent Voltage Control in Distribution Network with Distributed Generation. Proc. 2007 19th Electricity Distribution International Conf; 2007. pp. 1–4.
8. Darabi A, Soleamani SA, Hassannia A. Fuzzy Based Digital Automatic Voltage Regulator of a Synchronous Generator with Unbalanced Loads. American Journal of Engineering and Applied Sciences. 2008; 1:280–6.
9. Vovos PN, Kiprakis AE, Wallace AR, Harrision GP. Centralized and Distributed Voltage Control: Impact on Distributed Generation Penetration. IEEE Trans. on Power Systems. 2007 Feb; 22:476–83.
10. Richardot O, Viciu A, Besanger Y, Hadjsaid N, Kieny C. Coordinated Voltage Control in Distribution Networks Using Distributed Generation. Proc. 2006 IEEE/PES Transmission and Distribution Conf; 2006. pp. 1196–201.
11. Ranamuka D, Agalgaonkar AP, Muttaqi KM. Online Voltage Control in Distribution Systems With Multiple Voltage Regulating Devices. IEEE Transactions on Sustainable Energy. 2014 Apr; 5(2):617–28.
12. Londhe SN, Panchang V. One Day wave forecasts based on Artificial Neural Networks. Department of Maritime Systems Engineering; 2006 Nov.
13. Kermanshahi B. Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities. Neurocomputing. 1998; 23(1-3):125–33.
14. Baghipour R, Hosseini SMN. Placement of DG and capacitor for loss reduction, reliability and voltage improvement in distribution networks using BPSO. IJ intelligent systems and applications. 2012; 12:57–64.