Long non-coding RNAs in hepatocellular carcinoma: Potential roles and clinical implications

Zhao-Shan Niu, Xiao-Jun Niu, Wen-Hong Wang

Abstract

Long non-coding RNAs (lncRNAs) are a subgroup of non-coding RNA transcripts greater than 200 nucleotides in length with little or no protein-coding potential. Emerging evidence indicates that lncRNAs may play important regulatory roles in the pathogenesis and progression of human cancers, including hepatocellular carcinoma (HCC). Certain lncRNAs may be used as diagnostic or prognostic markers for HCC, a serious malignancy with increasing morbidity and high mortality rates worldwide. Therefore, elucidating the functional roles of lncRNAs in tumors can contribute to a better understanding of the molecular mechanisms of HCC and may help in developing novel therapeutic targets. In this review, we summarize the recent progress regarding the functional roles of lncRNAs in HCC and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for HCC.

Key words: Hepatocellular carcinoma; Long non-coding RNAs; Function; Biomarker; Therapeutic target
roles of lncRNAs in HCC and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for HCC.

INTRODUCTION

Hepatocellular carcinoma (HCC), a major type of primary liver cancer, is the second leading cause of cancer death worldwide[1]. Unfortunately, the incidence and mortality rates of HCC have continued to increase globally. The high mortality of HCC patients is mainly due to late diagnosis, leading to limited therapeutic options. Accordingly, there is an urgent need to elucidate the molecular mechanisms involved in the initiation and progression of HCC to identify reliable biomarkers for early diagnosis and therapeutic targets to improve the survival of these patients. Recent data have demonstrated that the complexity of human carcinogenesis cannot be accounted for by genetic alterations alone and that epigenetic changes may also be involved[2]. In fact, it is becoming increasingly evident that dysregulated epigenetic regulatory processes play a central role in cancer onset and progression[3]. In human HCC, for example, epigenetic changes in various cancer-related genes are more frequently observed than genetic changes[4], suggesting the crucial impact of epigenetic alterations in hepatocarcinogenesis.

Epigenetic alterations include changes in DNA methylation, histone modifications, and non-coding RNA-mediated gene silencing[5]. Recent studies have revealed that the vast majority of the human genome is actively transcribed into non-coding RNAs (ncRNAs), only 1%-2% of which encode proteins[6,7]. As most cancer studies to date have principally focused on protein-coding genes, the function of ncRNAs in cancer remains largely unknown. Nonetheless, accumulating evidence is shedding light on the functional importance of ncRNAs in cancer biology, and these molecules are emerging as new regulators of diverse biological functions, with important roles in oncogenesis and tumor progression[8]. NcRNAs can be roughly classified into the following two groups based on length: small ncRNAs (< 30 nucleotides) and long ncRNAs (lncRNAs; > 200 nucleotides)[9]. Small ncRNAs, especially microRNAs (miRNAs), have been studied extensively. In contrast,IncRNAs are the least studied transcripts and their functions remain largely unknown, even though they constitute the majority of ncRNAs.

IncRNAs were initially regarded as “transcriptional noise” of the transcriptome. However, the recent application of next-generation sequencing, particularly RNA-sequencing (RNA-Seq), has broadened and deepened our knowledge of IncRNAs related to various types of diseases, including cancer. It is clear that IncRNAs act as critical regulators of multiple cellular processes, especially gene expression. It has been well documented that many IncRNAs are frequently aberrantly expressed in human cancers in which they may serve as oncogenes or tumor suppressors[10-12], suggesting that they may act as novel drivers of tumorigenesis. Compared with protein-coding genes, IncRNA alterations are highly tumor- and cell line-specific[13], and this characteristic of specificity makes IncRNAs promising biomarkers for diagnosis. Importantly, IncRNAs play critical regulatory roles in the pathogenesis and progression of cancers, including cell proliferation, differentiation, apoptosis, tumorigenesis, and metastasis[14-17]. All of these findings point to IncRNAs as promising diagnostic or prognostic biomarkers and potential therapeutic targets for cancer.

Given the critical roles of IncRNAs in the initiation and progression of cancer, it is not surprising that IncRNAs have aroused considerable interest in HCC research. To date, multiple HCC-related IncRNAs have been identified. *In vitro* and *in vivo* functional experiments have shown that in HCC cells, IncRNAs are involved in the regulation of diverse biological processes, such as proliferation, migration, apoptosis, the cell cycle, tumorigenesis, and metastasis. Moreover, increasing evidence indicates that IncRNAs may play irreplaceable roles in the initiation and progression of HCC. As IncRNAs may serve as diagnostic or prognostic biomarkers and therapeutic targets for HCC, elucidating the roles of IncRNAs in tumors can contribute to a better understanding of the molecular mechanisms of HCC and assist in the development of novel therapeutic targets. In this review, we summarize the recent progress regarding the functions of IncRNAs in HCC and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets.

CLASSIFICATION OF LncRNAs

As they can be categorized according to their various properties, such as transcript length, genomic location and context, sequence and structure conservation, effects on DNA sequences, functional mechanisms and targeting mechanisms, association with protein-coding genes or subcellular structures, many different classifications of IncRNAs have been proposed[18,19]. For example, according to their genomic location relative to neighboring protein-coding genes, IncRNAs have generally been categorized into five classes: sense, antisense, intronic, intergenic, and bidirectional IncRNAs[20]. LncRNAs may also be classified according to their targeting mechanisms: signal, decoy, guide,
and scaffold21.

However, there has been no systematic and unambiguous classification of IncRNAs to date, and many existing IncRNA classifications are conflicting and overlapping. Different criteria (databases, projects, and methodologies) used to classify IncRNAs may be primarily responsible for the classification overlap. In reality, IncRNAs are not a homogeneous class of molecules but rather a mixture of multiple functional classes with distinct biological mechanisms and/or roles22. Many IncRNAs are not easily classified into any particular category, and it is likely that the same IncRNAs may be listed in different groups in all classifications23,24. In addition, the vast majority of IncRNAs remain functionally uncharacterized, which hampers their functional classification.

Given their complexity, from biogenesis to function, these overlapping and conflicting classifications would inevitably add another layer of difficulty to our understanding of IncRNA biology. Interestingly, the authors of a recent review highlight the roles of large systems biology-based datasets as conceptual guidelines for IncRNA classification and functional annotation25,26. Specifically, advances in high-throughput transcriptome sequencing technologies will contribute to uncovering previously unknown functions of IncRNAs, and as such, the arbitrary classifications will need to be redefined.

SUBCELLULAR LOCALIZATION PATTERNS OF LncRNAs

LncRNAs have diverse subcellular localization patterns, ranging from bright sub-nuclear foci to almost exclusive cytoplasmic localization; some IncRNAs are found in both compartments25,26, with the majority preferentially localized to the nucleus and chromatin20,27-29. Importantly, it is becoming increasingly clear that the function of IncRNAs depends on their subcellular localization30. In general, nuclear IncRNAs are recognized as important transcriptional and epigenetic modulators of nuclear functions31,32, whereas cytoplasmic IncRNAs have been described as modulating mRNA stability and translation32,33. Compared with the mostly highly abundant cellular RNAs, the vast majority of IncRNAs that are typically less abundant in a population of cells can be highly abundant in individual cells25,34. To more precisely locate and confirm the sub-cellular localization of IncRNAs, two recent reports have suggested that rather than using conventional RNA fluorescence in situ hybridization (FISH) techniques that have a relatively low sensitivity, it may be more effective to study IncRNAs by applying single-molecule RNA FISH25,35.

MECHANISMS OF LncRNA-MEDIATED GENE EXPRESSION

To date, the biological functions and molecular mechanisms of most IncRNAs remain largely elusive, with only very few being partially characterized. Nevertheless, existing evidence demonstrates that these molecules play critical roles in the regulation of specific cellular processes, specifically in protein-coding gene expression at the epigenetic, transcriptional and post-transcriptional levels36-40.

Epigenetic regulation

Epigenetic regulatory mechanisms can act at genomic (DNA methylation or demethylation) or nucleosomal and chromatin (post-translational histone modifications and chromatin remodeling complexes) levels41. As stated above, the majority of IncRNAs localize preferentially to the nucleus and chromatin, and increasing evidence indicates that some nuclear IncRNAs epigenetically regulate gene expression by altering chromatin structure42. There are two underlying mechanisms by which IncRNAs mediate changes in chromatin and gene expression. First, they can directly interact with chromatin-modifying enzymes, functioning as guides in cis or trans by recruiting chromatin modifiers to specific genomic loci to mediate DNA methylation or histone modification, thereby modulating chromatin states and impacting gene expression32,43-47. Second, IncRNA functions as adaptors that link specific chromatin loci with ATP-dependent chromatin-remodeling complexes48,49, serving as guides to target these complexes to regulate nucleosome remodeling and gene expression47,50,51.

In addition, IncRNAs have been identified as crucial regulators of epigenetic processes such as X-chromosome inactivation52,53, genomic imprinting53,54, cellular differentiation determination55,56, and cell identity maintenance57. Thus, IncRNAs play crucial roles in the epigenetic regulation of gene expression. In particular, investigation of the interrelationships between IncRNAs and epigenetic modifications will provide new insight into cancer diagnosis and therapy.

Transcriptional regulation

At the level of transcriptional regulation, IncRNAs regulate gene expression by (1) recruiting and guiding transcription factors to the promoter region of target genes to regulate their transcription; (2) functioning as transcriptional activators or repressors to mediate gene transcription; (3) interacting with RNA polymerase II to regulate gene transcription; (4) interfering with transcription of adjacent genes in cis; (5) forming IncRNA-DNA hybrids to repress transcription of a target; and (6) affecting protein localization to regulate gene expression24,58-63.

Post-transcriptional regulation

LncRNAs regulate the expression of genes responsible for biological functions at the post-transcriptional level by modulating messenger RNA (mRNA) stability, translation, degradation, and pre-mRNA alternative
LncRNAs can disrupt multiple cellular oncogenic pathways by exerting oncogenic and/or tumor suppressive functions. LncRNAs also drive many important cancer phenotypes through interactions with other cellular macromolecules, including DNA, protein, and RNA.[76]. In brief, the role of lncRNAs in cancer initiation and progression is evident, yet the detailed mechanisms of their involvement in this process need to be clarified.

To date, researchers have elucidated genetic, epigenetic, and transcriptional regulatory mechanisms responsible for dysregulation of lncRNAs in cancer.[77]. For instance, genetic regulatory factors, such as genetic instability and single-nucleotide polymorphisms, can be found in lncRNAs and might contribute to their aberrant expression in cancer.[77]. Additionally, aberrant expression of lncRNAs with oncogenic properties can be caused by gene amplifications and point mutations.[78]. Epigenetic regulation, such as DNA methylation or histone acetylation in the promoter region of lncRNAs, can alter their expression in cancer[79,80], and expression of some cancer-associated lncRNAs can also be initiated by some key transcription factors, such as Myc and p53[81,82], or signaling cascades such as Notch[83]. Taken together, these distinct molecular mechanisms allow dysregulated lncRNAs to up-regulate or down-regulate gene expression, thereby determining their regulatory functions in various biological processes. Nevertheless, the complicated mechanisms underlying such regulatory behaviors need further investigation. The biological functions and molecular mechanisms of action of lncRNAs are presented in Figure 1.

FUNCTIONAL ROLES OF LncRNAs AND MECHANISMS UNDERLYING LncRNAs DYSREGULATION IN CANCER

Numerous investigations have indicated that aberrantly expressed lncRNAs play critical roles in cancer initiation and progression. However, the biological functions and mechanisms of the majority of lncRNAs in cancer remain largely unknown. In general, lncRNAs regulate gene expression in cancer at the epigenetic, transcriptional, and post-transcriptional levels. Consequently, lncRNAs affect cell proliferation, survival, migration, or genomic stability[72], thereby contributing to tumor development. Specifically, evidence to date demonstrates that lncRNAs are frequently aberrantly expressed in human cancers in which they may serve as oncogenes or tumor suppressors[73,74]. These lncRNAs can mediate several cancer-associated processes, including epigenetic regulation, the DNA damage response, cell cycle control, and miRNA silencing[75]. Furthermore, dysregulated lncRNAs can disrupt multiple cellular oncogenic pathways by exerting oncogenic and/or tumor suppressive functions. LncRNAs also drive many important cancer phenotypes through interactions with other cellular macromolecules, including DNA, protein, and RNA[76].

Figure 1 The regulatory mechanisms of long non-coding RNAs. LncRNAs: Long non-coding RNAs; RNA PII: RNA polymerase II; ceRNAs: Competing endogenous RNAs; mRNA: Messenger RNA; miRNAs: MicroRNAs.
dysregulated IncRNAs have been identified as participating in the initiation and progression of HCC. Here, we briefly summarize seven well-documented IncRNAs in HCC: H19, HOTAIR, HULC, HOTTIP, MALAT1, MVIH, and MEG3. FTX, a novel IncRNA associated with HCC, is also discussed. Up-regulated expression of IncRNAs in HCC is thought to have an oncogenic function, whereas a few IncRNAs exhibiting down-regulated expression in HCC may act as tumor suppressors (Table 1).

H19

The human H19 gene (H19) is a paternally imprinted gene located on human chromosome 11p15.5, a locus that contains several imprinted genes, such as insulin-like growth factor 2 (IGF2) and H19. Although H19 has been investigated for years, its role in tumorigenesis is still controversial. Increasing evidence suggests that H19 is highly expressed in many human cancers,

Regardles, current evidence supports a role of H19 as a tumor suppressor. A study investigating the effect and mechanism of H19 and miR-675 on HCC cell migration and invasion reported that inhibition of H19 and miR-675 expression can promote the migration and invasion of HCC cells via the AKT/GSK-3β/Cdc25A signaling pathway. This finding suggests that H19 acts a tumor suppressor in HCC cells. Intriguingly, recent data indicate that H19 is down-regulated in intratumoral HCC tissues compared with peritumoral tissues. Additionally, H19 plays a role in promoting tumor initiation but exerts its tumor-suppressive effect on subsequent tumor progression and metastasis in HCC. These findings suggest a tumor-promoting mechanism for H19 in peritumoral HCC tissues and also indicate that H19 has distinct roles at different stages of HCC development. Given the complexity of H19 function in HCC, there is a need for further investigation to resolve the discrepancy.

In particular, H19 is a precursor of miR-675, and H19 and miR-675 are increasingly described as having key roles in the progression and metastasis of cancers of different tissue origins. Recent data indicate that H19-derived miR-675 favors tumor progression in HCC by repressing expression of twist-related protein 1 and miR-675 up-regulates H19 by activating EGR1 in human liver cancer. These findings suggest that the oncogenic role of H19 is mediated through miR-675. Aflatoxin B1 (AFB1) presents another mechanism related to the oncogenic function of H19. AFB1 induces expression of transcriptional factor E2F1 (E2F1), and AFB1-induced E2F1 up-regulates the expression of H19 in HCC HepG2 cells, thereby promoting cellular growth and invasion.

Table 1 Hepatocellular carcinoma associated long non-coding RNAs in this review

LncRNA	Chromosomal location	Dysregulation	Biological roles	Ref.
H19	11p15.5	Up-regulated	Promotes HCC growth	Matouk et al[60]
HOTAIR	12q13.13	Down-regulated	Inhibits migration and invasion of HCC cells	Lv et al[64]
HOTTIP	7p15.2	Up-regulated	Promotes HCC growth	Geng et al[67]
HULC	6p24.3	Up-regulated	Promotes proliferation of HCC cells	Quaglialta et al[62]
MALAT1	11q13.1	Up-regulated	Promotes proliferation and cell cycle progression of HCC cells	Zhang et al[67]
MVIH	10q22-q23	Up-regulated	Promotes HCC growth, microvascular invasion, and intrahepatic metastasis	Lai et al[66]
MEG3	14q32.2	Down-regulated	Inhibits cell growth	Shi et al[68]
Lnc-FTX	Xq13.2	Up-regulated	Promotes proliferation and cell cycle progression of HCC cells	Li et al[67]

HCC: Hepatocellular carcinoma; LncRNA: Long non-coding RNA; H19: H19, imprinted maternally expressed transcript; HOTAIR: HOX antisense intergenic RNA; HOTTIP: HOXA transcript at the distal tip; HULC: Highly up-regulated in liver cancer; MALAT1: Metastasis-associated lung adenocarcinoma transcript 1; MEG3: Maternally expressed gene 3; MVIH: Microvascular invasion in HCC; FTX: Five prime to Xist.
better performance in HCC management.

HOTAIR
HOX transcript antisense intergenic RNA (HOTAIR) is a human gene located on chromosome 12q13.13 that is co-expressed with HOXC genes. HOTAIR has been identified as regulating chromatin silencing of the adjacent HOX locus[100]. Recent studies have revealed that HOTAIR functions as a molecular scaffold to link polycomb repressive complex 2 (PRC2) and lysine-specific demethylase 1/REST corepressor 1/REST complexes and direct them to specific gene sites, leading to altered histone H3 lysine 27 (H3K27) methylation and H3K4 demethylation and ultimately resulting in epigenetic gene silencing[106,107]. Accumulating evidence demonstrates that HOTAIR is dysregulated in a variety of human cancers and that overexpression of HOTAIR is associated with cancer cell proliferation, apoptosis, invasion, progression, and metastasis as well as poor survival[102-105].

It has been reported that HOTAIR expression in HCC tissues is significantly higher than that in adjacent non-cancerous tissues[106,107]. In addition, the expression levels of HOTAIR in liver cancer cell lines were found to be higher than those in normal liver cell lines[106]. These findings suggest that HOTAIR exhibits oncogenic activity in HCC. Thus far, several studies have investigated the clinical implications of HOTAIR in HCC. Patients with HCC that overexpress HOTAIR have an increased risk of recurrence following hepatectomy, and there is also a correlation between HOTAIR overexpression and increased risk of lymph node metastasis[108]. A high level of HOTAIR expression has potential as a candidate biomarker for predicting HCC recurrence in liver transplantation (LT) patients[108]. Furthermore, patients with high expression of HOTAIR have a significantly shorter recurrence-free survival than patients with low expression of HOTAIR[109]. Taken together, these findings support the role of HOTAIR as a metastatic biomarker. Indeed, just as in most other types of cancer, HOTAIR is considered most valuable as a prognostic indicator in HCC, particularly as a metastatic biomarker rather than as a diagnostic biomarker[110].

Various mechanisms have been proposed for the oncogenic activity of HOTAIR in HCC. For example, a regulatory network between mir-218 and HOTAIR was elucidated, whereby HOTAIR inactivates P16 (Ink4a) and P14 (ARF) signaling by down-regulating mir-218 expression in HCC via EZH2 targeting of the mir-218-2 promoter regulatory axis and enhancing Bmi-1 expression, resulting in hepatocarcinogenesis[111]. In addition, up-regulation of HOTAIR promotes proliferation, migration, and invasion of human HCC cells by activating autophagy[112], by inhibiting RNA binding motif protein 38 (RBMB38)[113], or in part by modulating mir-1[114].

HOTTIP
HOXA transcript at the distal tip (HOTTIP), which is transcribed from the 5’ tip of the HOXA locus, has been observed to be up-regulated in various cancers, including HCC[115]. For example, a recent meta-analysis demonstrated that a higher expression level of HOTTIP is correlated with positive lymph node metastasis (LNM) and poor overall survival (OS) in patients with diverse cancers[116], suggesting that HOTTIP might be a potentially promising predictor of LNM and survival in human cancer.

Another recent study showed that HOTTIP expression is significantly up-regulated in HCC tissues compared with adjacent non-neoplastic tissues[117]. Patients with higher levels of HOTTIP and homeobox protein Hox-A13 (HOXA13) showed increased metastasis formation and decreased OS. Moreover, knockdown of HOTTIP inhibited the proliferation of liver cancer-derived cell lines[115]. These findings indicate that HOTTIP might serve as a potential predictor of LNM and survival in patients with HCC. Intriguingly, these authors have also observed marked up-regulation of HOXA13 in HCC, with HOTTIP and HOXA13 having a highly positive correlation. In addition, knock-down of HOTTIP expression led to a reduction in HOXA13 expression in HCC cell lines[115], suggesting that HOTTIP may serve as a transcriptional regulator of HOXA13 in HCC cells. HOTTIP is located at the 5’ end of the HoxA cluster, and can enhance expression of upstream HoxA genes, most prominently HOXA13[117]. Furthermore, HOXA13 has been shown to play a critical role in hepatocarcinogenesis. In a recent study, HOXA13 expression was found to be significantly up-regulated in HCC tissues compared with corresponding paracarcinomatous tissues, and all HOXA13-positive paracarcinomatous tissues exhibited different levels of atypical hyperplasia. Moreover, HOXA13 overexpression may be associated with tumor angiogenesis in HCC[118]. These findings indicate that HOXA13 may play a crucial role in hepatocyte carcinogenesis. Another study found that HOXA13 was the only Hox network gene to be constitutively overexpressed in all tested HCCs, independently of stage[119], suggesting its involvement in the tumorigenic process of HCC. These authors speculated that HOXA13 deregulation is involved in HCC, possibly through nuclear export of eIF4E-dependent transcripts[119]. In addition, overexpression of HOXA13 was shown to rescue the phenotype of HOTTIP knockdown HCC cells, further supporting that up-regulation of HOTTIP in HCC may enhance expression of HOXA13 and eventually mediate HCC carcinogenesis[120]. Overall, HOTTIP exerts its oncogenic functions in hepatocarcinogenesis at least partly by modulating HOXA13. Additionally, the HOTTIP/HOXA13 axis may represent a predictor of prognosis in patients with HCC and a potential therapeutic target for this fatal disease.

Increasing evidence reveals that IncRNAs can
interact with miRNAs. Indeed, IncRNAs can act as miRNA sponges, reducing their regulatory effect; in turn, miRNAs may directly interact with IncRNAs and silence their expression\cite{121,122}. \textit{miR-125b} has been shown to be a post-transcriptional regulator of \textit{HOTTIP} in HCC, whereby loss of \textit{miR-125b} expression might contribute to the frequent up-regulation of \textit{HOTTIP}120. In another recent study, the authors found that both \textit{miR-192} and \textit{miR-204} function as tumor suppressors to reduce \textit{HOTTIP} expression via the Argonaute2-mediated RNA interference pathway in HCC. Furthermore, glutaminase has been identified as a potential downstream target of the \textit{mir-192/-204-HOTTIP} axis in HCC123.

In summary, the afore-mentioned results suggest the existence of a complex regulatory interaction between \textit{HOTTIP} and HoxA genes or miRNAs. Up-regulation of \textit{HOTTIP} contributes to hepatocarcinogenesis at least partly by regulating expression of HoxA genes, especially \textit{HOXA13}, and interacting with miRNAs. Further studies are required to determine whether the regulatory loop between \textit{HOTTIP} and \textit{HOXA13} or miRNAs may serve as potential therapeutic targets for HCC.

\textbf{HULC}

Expression of the highly up-regulated in liver cancer (\textit{HULC}) gene, which is located on chromosome 6p24.3, is increased in HCC124, and several recent studies have helped shed light on the factors that contribute to its aberrant up-regulation. For example, research has found that expression of \textit{HULC} can be enhanced by the transcription factor CREB (cAMP response element-binding protein) through interaction with \textit{miR-372}125. In addition, up-regulation of \textit{HULC} by the hepatitis B virus (HBV) X protein promotes the proliferation of hepatoma cells through down-regulation of the tumor suppressor p18126. Furthermore, it has been shown that \textit{HULC} might function as an miRNA sponge for \textit{miR-372} in HCC and may thereby regulate gene expression at the post-transcriptional level125.

As an oncogene, \textit{HULC} is implicated in hepatocarcinogenesis via regulation of multiple biological processes. \textit{HULC} promotes the proliferation of HCC cells by regulating tumor cell proliferation-associated genes, especially cell cycle-related genes to alter the cell cycle in HCC cells127. \textit{HULC} also contributes to HCC growth by acting mechanistically to deregulate lipid metabolism through a signaling pathway involving \textit{miR-9}, peroxisome proliferator-activated receptor alpha (\textit{PPARA}), and acyl-CoA synthetase long chain family member 1 (\textit{ACSL1})128. In addition, \textit{HULC} is responsible for perturbations in the circadian rhythm by up-regulating the circadian oscillator \textit{CLOCK} (clock circadian regulator) in hepatoma cells, resulting in the promotion of hepatocarcinogenesis129. Other biological processes, such as angiogenesis, alterations in cell metabolism, activation of a precursor cell compartment, and tissue remodeling, as well as survival, invasion and migration124,130, may also contribute to hepatocarcinogenesis. Furthermore, \textit{HULC} functions as a ceRNA to activate the epithelial-mesenchymal transition, stimulating HCC progression and metastasis through the \textit{miR-200a-3p/ZEBl} signaling pathway130. A recent study provides new insight into the molecular mechanisms underlying the functions of \textit{HULC} in hepatocarcinogenesis. The authors demonstrate that \textit{HULC} specifically binds to Y-box protein-1 (\textit{YB-1}) to promote its phosphorylation through ERK kinase and in turn regulates the interaction of \textit{YB-1} with certain oncogenic miRNAs, consequently accelerating the translation of these oncogenic miRNAs in hepatocarcinogenesis131. All of these findings indicate that \textit{HULC} might be involved in the pathogenesis and progression of HCC.

However, there are conflicting data in the literature regarding whether \textit{HULC} in HCC is associated with a favorable or an unfavorable prognosis. According to a recent study from China, high \textit{HULC} expression is significantly associated with higher clinical stage and probability of intrahepatic metastasis, and HCC patients with high expression of \textit{HULC} had worse survival than those with low or no \textit{HULC} expression130. Conversely, two recent studies from South Korea and Germany, propose that high \textit{HULC} expression is significantly associated with a low stage and grade and less vascular invasion and that HCC patients with high \textit{HULC} expression have better survival than those with low or no \textit{HULC} expression132,133. These conflicting findings might be largely due to the inclusion of different racial and regional groups. Future studies with larger patient cohorts and various geographic and etiologic backgrounds are needed to confirm the prognostic value of \textit{HULC} in HCC.

Compared with healthy controls, the plasma level of \textit{HULC} was found to be dramatically increased in a large cohort of HCC patients, and higher \textit{HULC} expression was significantly associated with larger tumor size, and no tumor encapsulation134, as well as higher Edmondson grades and HBV-positive status135. Therefore, plasma \textit{HULC} might act as a potential noninvasive biomarker for predicting the growth, progression and metastasis in HCC.

In summary, the afore-mentioned findings suggest that \textit{HULC} may contribute to the carcinogenesis and progression of HCC. Therefore, \textit{HULC} may act as a potential noninvasive biomarker for predicting the growth, progression, metastasis, and prognosis of HCC.

\textbf{MALAT1}

Metastasis-associated lung adenocarcinoma transcript 1 (\textit{MALAT1}) is also known as non-coding nuclear-enriched abundant transcript 2. The \textit{MALAT1} locus at 11q13.1 has been reported to harbor chromosomal translocation breakpoints, deletions, translocations, and
point mutations linked to cancer\cite{136,137}. These studies have suggested that patients with these phenotypes are more susceptible to cancer.

Nonetheless, the molecular mechanism of MALAT1 in cancer is currently uncertain. Previous cell culture studies have shown that MALAT1 is specifically retained in nuclear speckles to regulate alternative splicing of pre-mRNAs by modulating the functional levels of serine/arginine (SR) splicing proteins\cite{138,139}. Moreover, a recent study suggests that MALAT1 function is only apparent in particular cell types, such as metastatic cancer cells\cite{140}. These studies indicate that aberrant MALAT1 expression promotes tumor metastasis by modulating alternative pre-mRNA splicing. However, another study has suggested a mechanism of gene regulation\cite{141}. Two molecular functions of MALAT1 in cell-based models, contributing to its association with tumor metastasis, have been proposed: regulation of gene expression and alternative splicing\cite{142-144}. For example, regulation of expression of metastasis-associated genes, rather than alternative splicing, is the critical function of MALAT1 in lung cancer metastasis\cite{145}. Although alternative splicing is critical for regulating gene expression, it may not be a major mechanism for modulating gene expression, and alternative splicing alone cannot explain the role of MALAT1 in some cancer cell lines or tissues. Overall, MALAT1 functions as a regulator of alternative splicing or gene expression, governing the hallmarks of cancer metastasis.

Increasing evidence shows that MALAT1 is frequently up-regulated in both liver cancer cell lines and human HCC tissue samples\cite{146}, suggesting that it plays an oncogenic role in HCC. A few studies to date have investigated the roles and clinical implications of MALAT1 in HCC. In one study, MALAT1 expression was found to be significantly up-regulated in HCC tumor tissues compared with corresponding non-tumor tissues. Furthermore, MALAT1 was found to act as a marker with high sensitivity for human HCCs at both early and late stages\cite{147}, suggesting that the gene can serve as a potential diagnostic tool for HCC. In another study, patients with high expression levels of MALAT1 had a significantly increased risk of tumor recurrence after LT, and silencing MALAT1 with siRNA in HepG2 cells effectively reduced cell viability, motility, and invasiveness and also increased susceptibility to apoptosis\cite{148}. These findings suggest that MALAT1 may play a critical role in HCC progression and serve as a potential predictor of HCC recurrence after LT. Importantly, inhibition of MALAT1 may be a potential therapeutic target for treatment of HCC.

A recent study investigated the role of specificity protein 1/3 (Sp1/3) in the regulation of MALAT1 transcription in HCC cells, and the authors found that Sp1 and Sp3 play roles in up-regulating MALAT1 expression\cite{149}. Several potential mechanisms linking MALAT1 with HCC oncogenesis have been proposed. For instance, MALAT1 was found to be up-regulated in HCC and to act as a proto-oncogene to promote HCC cell growth through Wnt pathway activation and induction of oncogenic serine/arginine-rich splicing factor 1 (SRSF1). In addition, inhibition of SRSF1 expression or mTOR activity abolished the oncogenic properties of MALAT1, and the authors concluded that MALAT1 promotes HCC development through SRSF1 up-regulation and mTOR activation\cite{150}. Nevertheless, the molecular mechanisms underlying the biological functions of MALAT1 in HCC remain largely elusive and require further investigation.

MVIH

The lncRNA microvascular invasion in hepatocellular carcinoma (MVIH) is located in the intron of the RPS24 gene, which encodes a protein belonging to the S24E family of ribosomal proteins\cite{151}. MVIH functions as a tumor promoter and is thus up-regulated in many human cancers. Furthermore, MVIH has been shown to activate angiogenesis\cite{152}. Thus far, only a few studies have shown that MVIH is involved in the pathogenesis and progression of HCC, and the function and mechanism of MVIH in HCC still need to be fully investigated.

A recent study found that MVIH expression was significantly increased in HCC tissues and cells and that MVIH promoted HCC cell growth and inhibited apoptosis by inhibiting miR-199a expression in vitro and in vivo\cite{153}. Taken together, these findings provide evidence that MVIH acts as an miR-199a sponge, linking regulation of gene expression in HCC pathogenesis. In addition to its role in HCC pathogenesis, MVIH has also been shown to activate angiogenesis. A previous study demonstrated that MVIH is generally overexpressed in HCC and plays a key role in activating angiogenesis; consequently, dysregulation of MVIH might serve as a predictor of poor recurrence-free survival of HCC patients after hepatectomy\cite{154}. It is well-known that pathological angiogenesis is essential for oncogenesis, tumor invasion and metastasis. The above-mentioned results suggest that blocking MVIH function might inhibit tumor angiogenesis. Thus, MVIH might serve as a promising therapeutic target for HCC antiangiogenic therapy.

MEG3

Maternally expressed gene 3 (MEG3) is an imprinted gene located at chromosome 14q32.3; imprinting of this gene is controlled by the upstream intergenic differentially methylated region (IG-DMR)\cite{155}. Although MEG3 is expressed in many normal tissues, its expression is lost in various human cancers or cancer cell lines. Numerous studies have verified the functional role of MEG3 as a tumor suppressor in many human cancers\cite{156-158}. Therefore, loss of MEG3 expression may contribute to tumor pathogenesis in
a wide range of tissues of different origin. In recent years, hypermethylation of the MEG3 promoter or the MEG-3IG-DMR has been shown to contribute to loss of MEG3 expression in human cancer cells159-161, and increasing evidence shows that hypermethylation of the MEG3 promoter plays an important role in loss of MEG3 expression in tumors156,159,162-165. Overall, hypermethylation in specific MEG3 regions might result in permanent gene transcriptional silencing and the consequent loss of its antiproliferative function, thus contributing to oncogenesis159.

MEG3 expression was found to be markedly reduced in HCC tissues and cell lines compared with that in adjacent normal liver tissues and normal hepatocytes79,166. Furthermore, ectopic expression of MEG3 in hepatoma cells significantly inhibits proliferation and induces apoptosis166,167, and forced expression of MEG3 in HCC cells significantly decreases both anchorage-dependent and -independent growth and induces apoptosis79,160. These data therefore indicate that MEG3 functions as a tumor suppressor in hepatoma cells and plays an important role in hepatocarcinogenesis. Several studies have investigated the mechanism underlying loss of or reduction in MEG3 expression in HCC. Similar to many other cancers, it has been revealed that loss of MEG3 expression in HCC is associated with hypermethylation of its promoter region79,160,167,168.

It has been proven that MEG3 can inhibit cell proliferation and promote apoptosis through a p53-related pathway169. Several studies have also confirmed that overexpression of MEG3 results in an increase in p53 protein and stimulates its transactivational activity in HCC cells166,170,171. Further investigation showed that MEG3 functions as a tumor suppressor in hepatoma cells by interacting with p53 to enhance p53-mediated transcriptional activity and influence the expression of partial p53 target genes166. In addition, dysregulated tissue-specific expression of miR-29a in HCC epitogenetically modulates MEG3 expression through promoter hypermethylation79.

Kaplan-Meier analysis demonstrated that patients with low MEG3 expression have worse overall and relapse-free survival compared with those with high expression of MEG3, and Cox proportional hazard analyses showed MEG3 expression to be an independent prognostic factor for HCC patients171. These findings suggest that decreased expression of MEG3 contributes to HCC development and progression. Overall, MEG3 may serve as a useful molecular diagnostic marker and a potential therapeutic target for HCC.

FTX

The gene five prime to XIST (FTX) is located upstream of XIST, within the X-inactivation center (XIC). FTX is thought to positively regulate the expression of XIST, which is essential for the initiation and spread of X-inactivation172, and recent studies have indicated the pro-oncogenic potential of FTX in several types of cancer, including renal cell carcinoma173 and glioma174.

Surprisingly, there are two opposite findings regarding the role of FTX in HBV-related HCC in a Chinese population. In one study, FTX and FTX-derived miR-545 were found to be up-regulated in HCC tissues compared with matched tumor-adjacent tissues, and patients with high FTX expression exhibited poor survival175, indicating that FTX functions as an oncogenic lncRNA in HCC. Conversely, in another study, FTX was found to be significantly down-regulated in HCC tissues compared with that in normal liver tissues, and patients with higher FTX expression exhibited longer survival, suggesting that FTX acts as a tumor suppressor in HCC176. There are several possible explanations for these two contradictory findings. First, FTX might play distinct roles in HCC because it can function as a precursor for miRNAs and as an endogenous miRNA sponge (also termed ceRNA). FTX can encode a related cluster of miRNAs (miR-374a and miR-545) in most mammalian species177. Accordingly, in HCC, FTX can function as an oncogene when it serves as the precursor of miR-545, with which it is co-transcribed, or as a tumor suppressor when it acts as a microRNA sponge for miR-374a to inhibit the binding of miR-374a to its targets. Second, in two studies, FTX was either up-regulated or down-regulated in HCC compared with non-tumor liver samples, suggesting a high FTX variability across different cohorts of patients. Third, different levels of FTX distribution at different sites of the HCC nodule may exist, and inadequate tumor sampling may also be a factor. Fourth, different methods were used to detect FTX in these two studies, with the former using quantitative reverse transcription-quantitative polymerase chain reaction, and the latter in situ hybridization.

PROBLEMS AND PERSPECTIVES

In this review, we summarize the recent progress regarding the functional roles of lncRNAs associated with HCC, including H19, HOXAIR, HULC, HOTTIP, MALAT1, MVIH, MEG3, and FTX. As potent gene regulators, these HCC-related lncRNAs are involved in diverse biological functions, such as cell proliferation, apoptosis, migration, invasion, metastasis, and angiogenesis, thereby contributing to the initiation and progression of HCC. In addition, these HCC-related lncRNAs may serve as potential diagnostic or prognostic biomarkers and also as therapeutic targets for HCC.

Intriguingly, due to their highly specific expression patterns in particular types of cancer178, efficient detection in the bodily fluids of patients (e.g., blood, plasma, and urine) and relatively stable local secondary structures, lncRNAs have the potential to serve as novel noninvasive biomarkers13. For example, HULC is detected with a higher frequency in the
plasma of HCC patients than in healthy controls125, suggesting the possibility of using HULC as a potent circulating biomarker to facilitate early diagnosis of HCC. Nevertheless, further investigations in larger patient cohorts are necessary to validate the diagnostic effectiveness of circulating HULC in HCC.

Despite the importance of IncRNAs in HCC, our current understanding of HCC-related IncRNAs remains rather limited. First, the behavioral characteristics and mechanisms underlying HCC-related IncRNAs contributing to HCC remain largely unclear. Second, “driver IncRNAs” associated with tumorigenesis and progression of HCC have not yet been identified. To gain insight into IncRNA functions and mechanisms of action in HCC, several major issues need to be addressed: (1) technological advances in high-throughput RNA-Seq and high-resolution imaging of RNAs are required. In addition, computational algorithm analysis and integrated datasets are also essential; (2) rather than acting alone, the regulatory role of IncRNAs typically occurs through a large complex network that involves mRNAs, miRNAs, DNA, and proteins170. Therefore, it is critical to understand how IncRNAs interact with RNA, DNA, and proteins and how aberrant crosstalk may be regulated in HCC; and (3) most of the previous studies concerning IncRNAs have been retrospective single-center analyses with a relatively small sample size. Thus, a multicenter prospective cohort study with a large sample is needed to gain a deeper understanding of the explicit roles of IncRNAs in HCC in various ethnic populations88.

REFERENCES

1 Petrick JL, Braulin M, Laversanne M, Valery PC, Bray F, McGlynn KA. International trends in liver cancer incidence, overall and by histologic subtype, 1978-2007. Int J Cancer 2016; 139: 1534-1545 [PMID: 27244487 DOI: 10.1002/ijc.32011]
2 Taby R, Issa JP. Cancer epigenetics. CA Cancer J Clin 2010; 60: 376-392 [PMID: 20959400 DOI: 10.3322/caac.20085]
3 Morera I, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 2016; 8: 57 [PMID: 27222667 DOI: 10.1186/s13148-016-0223-4]
4 Nishida N, Kudo M. Clinical Significance of Epigenetic Alterations in Human Hepatocellular Carcinoma and Its Association with Genetic Mutations. Dig Dis 2016; 34: 708-713 [PMID: 27750242 DOI: 10.1159/000448863]
5 Toiyama Y, Okugawa Y, Goel A. DNA methylation and microRNA biomarkers for noninvasive detection of gastric and colorectal cancer. Biochim Biophys Acta 2014; 1845: 43-57 [PMID: 25128825 DOI: 10.1016/j.bbr.2014.08.011]
6 Hanaji H, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME. Keeping abreast with long non-coding RNAs in mammary gland development and breast cancer. Front Genet 2014; 5: 379 [PMID: 25400658 DOI: 10.3389/fgene.2014.00379]
7 Boon RA, Jaë N, Holdt L, Dimmelre S. Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? J Am Coll Cardiol 2016; 67: 1214-1226 [PMID: 26965544 DOI: 10.1016/j.jacc.2015.12.051]
8 Majem B, Rigau M, Reventós J, Wong DT. Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics. Int J Mol Sci 2015; 16: 8676-8698 [PMID: 25989412 DOI: 10.3390/ijms16048676]
9 Ragausa M, Barbagallo C, Statello L, Contorelli AG, Battaglia R, Tamburello L, Barbagallo D, Di Pietro C, Purrello M. Non-coding landscapes of colorectal cancer. World J Gastroenterol 2015; 21: 11709-11739 [PMID: 26559998 DOI: 10.3748/wjg.v21.i41.11709]
10 Amicone L, Citarella F, Cicchini C. Epigenetic regulation in hepatocellular carcinoma requires long noncoding RNAs. Biomed Res Int 2015; 2015: 473942 [PMID: 25861629 DOI: 10.1155/2015/473942]
11 Kobayashi R, Miyagawa R, Yamashita H, Morikawa T, Okuma K, Fukuyama M, Ohtomo K, Nakagawa K. Increased expression of long non-coding RNA XIST predicts favorable prognosis of cervical squamous cell carcinoma subsequent to definitive chemoradiation therapy. Oncol Lett 2016; 12: 306-3074 [PMID: 27899965 DOI: 10.3892/ol.2016.5054]
12 Takenaka K, Chen BJ, Modesitt SC, Byrne FL, Hoehn KL, Janitz M. The emerging role of long non-coding RNAs in endometrial cancer. Cancer Genet 2016; 209: 445-455 [PMID: 27810073 DOI: 10.1016/j.cancergen.2016.09.005]
13 Yan X, Hu Z, Feng Y, Hu X, Yuan J, Zhao SD, Zhang Y, Yang L, Shan W, He Q, Fan L, Kandalaft LE, Tanyi JL, Li C, Yuan CX, Zhang D, Yuan H, Hua K, Lu Y, Katsaros D, Huang Q, Montone K, Fan Y, Coukos G, Boyd J, Sood AK, Rebbeck T, Mills GB, Dang CV, Zhang L. Comprehensive Genomic Characterization of Long Non-coding RNAs across Human Cancers. Cancer Cell 2015; 28: 529-540 [PMID: 26461095 DOI: 10.1016/j.ccell.2015.09.006]
14 Isin M, Dalay N. IncRNAs and neoplasia. Clin Chim Acta 2015; 444: 280-288 [PMID: 25748036 DOI: 10.1016/j.cca.2015.02.046]
15 Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 2014; 15: 7-21 [PMID: 24296535 DOI: 10.1038/nrg3806]
16 Serviss JT, Johnsson P, Grandè D. An emerging role for long non-coding RNAs in cancer metastasis. Front Genet 2014; 5: 234 [PMID: 25101115 DOI: 10.3389/fgene.2014.00234]
17 Liyanarachchi S, Li W, Yan P, Bunschuch R, Brock P, Senter L, Ringel MD, de la Chapelle A, He H. Genome-Wide Expression Screening Discloses Long Noncoding RNAs Involved in Thyroid Carcinogenesis. J Clin Endocrinol Metab 2016; 101: 4005-4013 [PMID: 27459529 DOI: 10.1210/jc.2016-1991]
18 Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10: 925-933 [PMID: 23696037 DOI: 10.4161/ma.24604]
19 St Laurent G, Wahlstedt C, Kapranov P. The Landscape of long non-coding RNA classification. Trends Genet 2015; 31: 239-251 [PMID: 25869999 DOI: 10.1016/j.tig.2015.03.007]
20 Derrien T, Johnsson R, Bussotti G, Tanzer A, Djebali S, Tilgner T, Davis CA, Shiekhattar R, Gingeras TR, Botstein D, Ringwald M, de la Chapelle A, He H. Genome-Wide Expression Analysis of Long Non-coding RNAs. PLoS ONE 2011; 6: e26568 [PMID: 21990068 DOI: 10.1371/journal.pone.0026568]
21 Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43: 904-914 [PMID: 21925379 DOI: 10.1016/j.molcel.2011.08.018]
22 Chen J, Shishkin AA, Zhu X, Kadi M, Gutmann M, Hanna JH, Regev A, Garber M. Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs. Genome Biol 2016; 17: 19 [PMID: 26838501 DOI: 10.1186/s13059-016-0880-9]
23 Chen Y, Li G, Pan Y, Han S, Feng B, Gao Y, Chen J, Zhang K, Wang R, Chen L. The Emerging Role and Promise of Long Non-coding RNAs in Lung Cancer Treatment. Cell Physiol Biochem 2016; 38: 2194-2206 [PMID: 27183839 DOI: 10.1159/000445575]
24 Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10: 155-159 [PMID: 19188922 DOI: 10.1038/nrm2521]
25 Cabili MN, Dunagin MC, McClanahan PD, Baisch E, Padovan-Merhar O, Regev A, Rinn JL, Raj A. Localization and abundance
analysis of human lncRNAs at single-cell and single-molecule resolution. *Genome Biol* 2015; 16: 20 [PMID: 25630241 DOI: 10.1186/s13059-015-0586-4]

26 Lennox KA, Behlke MA. Cellular localization of long non-coding RNA affects stability by RNAi more than by antisense oligonucleotides. *Nucleic Acids Res* 2016; 44: 863-877 [PMID: 26578588 DOI: 10.1093/nar/gkv1206]

27 Clark MB, Mattick JS. Long noncoding RNAs in cell biology. *Semin Cell Dev Biol* 2011; 22: 366-376 [PMID: 21256239 DOI: 10.1016/j.scbdb.2011.01.001]

28 Zong X, Huang L, Tripathi V, Peralta R, Guo S, Prasanth KV. Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides. *Methods Mol Biol* 2015; 1262: 321-331 [PMID: 25555591 DOI: 10.1007/978-1-4939-2253-6_20]

29 Singh DK, Prasanth KV. Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells. *Chromosome Res* 2013; 21: 695-711 [PMID: 24233053 DOI: 10.1007/s10577-013-9391-7]

30 Chen LL, Huang L, Tripathi V, Peralta R, Guo S, Prasanth KV. Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides. *Methods Mol Biol* 2015; 1262: 321-331 [PMID: 25555591 DOI: 10.1007/978-1-4939-2253-6_20]

31 Liu SJ, Niu ZS, Rinn JL. lncRNAs in the context of chromatin. *Nature* 2011; 470: 284-288 [PMID: 21307942 DOI: 10.1038/nature09701]

32 Deirigniuci E, Lei S. Role of lncRNAs in Cellular Aging. *Front Endocrinol (Lausanne)* 2016; 7: 151 [PMID: 27999563 DOI: 10.3389/fendo.2016.00151]

33 Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. *Nat Struct Mol Biol* 2013; 20: 300-307 [PMID: 23463315 DOI: 10.1038/nsmb.2480]

34 Gong C, Maquer LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. *Nature* 2011; 470: 284-288 [PMID: 21307942 DOI: 10.1038/nature09701]

35 Liu SJ, Nowakowski TJ, Pollen AA, Lui JH, Horlbeck MA, Attelanno FJ, He D, Weissman JS, Kriegstein AR, Diaz AA, Lim DA. Single-cell analysis of long non-coding RNAs in the developing human neocortex. *Genome Biol* 2016; 17: 67 [PMID: 27081004 DOI: 10.1186/s13059-016-0932-1]

36 Donaghy M, Cahill MN, Rinn J, Raj A. Visualization of IncRNA by single-molecule fluorescence in situ hybridization. *Methods Mol Biol* 2015; 1262: 3-19 [PMID: 25555572 DOI: 10.1007/978-1-4939-2253-6_1]

37 Cao J. The functional role of long non-coding RNAs and epigenetics. *Biol Proc Online* 2014; 16: 11 [PMID: 25276098 DOI: 10.1186/1480-2229-16-11]

38 Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. *Genetics* 2013; 193: 651-669 [PMID: 23437905 DOI: 10.3389/genes.2012.146704]

39 Ulitsky I, Bartel DP. lncRNAs: genomics, evolution, and mechanisms. *Cell* 2013; 154: 26-46 [PMID: 23827673 DOI: 10.1016/j.cell.2013.06.020]

40 Saayman S, Ackley A, Turner AM, Famiglietti M, Bosque A, Clemson M, Planelles V, Morris KV. An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. *Mol Ther* 2014; 22: 1164-1175 [PMID: 24576854 DOI: 10.1038/mt.2014.209]

41 Iyer MK, Nkinfas YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, Polakov A, Cao X, Dhanasekaran SM, Wu YM, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM. The landscape of long noncoding RNAs in the human transcriptome. *Nat Genet* 2015; 47: 199-208 [PMID: 25599403 DOI: 10.1038/ng.3192]

42 Martinez SR, Gay MS, Zhang L. Epigenetic mechanisms in heart development and disease. *Drug Discov Today* 2015; 20: 799-811 [PMID: 25572405 DOI: 10.1016/j.drudis.2014.12.018]

43 Zhang R, Xia LQ, Lu WW, Zhang J, Zhu JS. lncRNAs and cancer. *Oncoled* 2016; 12: 1233-1239 [PMID: 27446422 DOI: 10.3892/ol.2016.4770]

44 Han P, Chang CP. Long non-coding RNA and chromatin remodeling. *RNA Biol* 2015; 12: 1094-1098 [PMID: 26177256 DOI: 10.1080/15476286.2015.1063770]

45 Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. *Annu Rev Biochem* 2012; 81: 145-166 [PMID: 22663078 DOI: 10.1146/annurev-biochem-051410-092902]

46 Rinn JL, Hui K, Huang L, Tripathi V, Peralta R, Guo S, Prasanth KV. Knockdown of nuclear-retained long noncoding RNAs using modified DNA antisense oligonucleotides. *Methods Mol Biol* 2015; 1262: 321-331 [PMID: 25555591 DOI: 10.1007/978-1-4939-2253-6_20]

47 Wang X, Ariai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R. Induced lncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. *Nature* 2008; 454: 126-130 [PMID: 18509338 DOI: 10.1038/nature06992]

48 Bergmann JH, Spector DL. Long non-coding RNAs: modulators of nuclear structure and function. *Curr Opin Cell Biol* 2014; 26: 347-354 [PMID: 24610408 DOI: 10.1016/j.jci.2015.07.002]
The emerging role of lncRNAs in cancer.

Sánchez Y, Huarte M. Expanding the p53 regulatory network by lncRNAs.

Babaian A, Grossi E. LncRNA: a link between RNA and cancer.

Braconi C. LncRNA H19 interacts with miR-140 to modulate glioma growth by targeting iASPP.

Cancello L, Guo YY, Wang K. Overexpression of lncRNA H19/miR-675 promotes tumorigenesis in head and neck squamous cell carcinoma.

Chang HY. Long Noncoding RNAs in Cancer.

Chen J, Li J, Jia S, Wu M, An J, Zheng Q, Zhang W, Lu D. miR-675 regulates the non-coding transcriptome.

Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA. Post-transcriptional regulation of gene expression in innate immunity.

Cribier C, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Zheleva T, Tafuri A. The H19 non-coding RNA is essential for human tumor suppressor activity of H19 RNA.

Ding F, Zhang K. Inactivation of H19, an imprinted and putative tumor repressor gene, is a preneoplastic event during Wilms’ tumorigenesis.

Fukuzawa R, Umegawa A, Ochi K, Urano F, Ikeda H, Hata J. Suppression of human hepatocellular carcinoma cells through AKT/GSK-3β signaling.

Galun E. The H19 non-coding RNA is essential for human tumor suppressor activity.

Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B. Tumor-suppressor activity of H19 RNA.

Hao Y, Cribier C, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Zheleva T, Tafuri A, Fabbri G. LncRNA H19 interacts with miR-140 to modulate glioma growth by targeting iASPP.

Hao Y, Cribier C, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Zheleva T, Tafuri A, Fabbri G. LncRNA H19 interacts with miR-140 to modulate glioma growth by targeting iASPP. Arch Biochem Biophys 2016; 570: 1-7 DOI: 10.1016/j.jbmb.2016.09.014.

Hao Y, Cribier C, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Zheleva T, Tafuri A, Fabbri G. LncRNA H19 interacts with miR-140 to modulate glioma growth by targeting iASPP. Arch Biochem Biophys 2016; 570: 1-7 DOI: 10.1016/j.jbmb.2016.09.014.

Heo J, Shin S, Lee J. LncRNA: a link between RNA and cancer.

Li B, Sun D, Chen W, Zhang M, Liu Q, Gao W, Zhang Y, Xiong Y, Wang L. LncRNA H19 interacts with miR-140 to modulate glioma growth by targeting iASPP.

Maizels DM, Fabbri G, LeBoeuf F, Bostock A, Pfeifer-Ohsn S, Ohsson R. Inactivation of H19, an imprinted and putative tumor repressor gene, is a preneoplastic event during Wilms’ tumorigenesis.

Oliveira M, Magalhães MA, Ferreira A, Simões P, Carvalho J, Veiga J, Teixeira G. High frequency of inactivation of the imprinted H19 gene in “sporadic” hepatoblastoma.

Ohlsson S, Ohlsson R. Inactivation of H19, an imprinted and putative tumor repressor gene, is a preneoplastic event during Wilms’ tumorigenesis.

Saha B, Dhaka D, Dhakshinamoorthy A, Samadder S, Chakraborti S, Sen D, Paul A, Banerjee A, Banerjee A, Bhattacharya A. High frequency of inactivation of the imprinted H19 gene in “sporadic” hepatoblastoma.

Shi ZM, Chang YN, Hu ZM, Qi HX, Hong W. The role of long non-coding RNAs in cancer.

Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition.

Tuijdsma L, Anco ML, Voulgaris E, Vartholomatos G. The crosstalk between miRNAs and long non-coding RNA regulates the non-coding transcriptome.

Voulgaris E, Vartholomatos G. The crosstalk between miRNAs and long non-coding RNA regulates the non-coding transcriptome.
Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071-1076 [PMID: 20393566 DOI: 10.1038/nature08975]

Bayram S, Sümübl AT, Batmacı CY, Genç A. Effect of HOATIR rs920778 polymorphism on breast cancer susceptibility and clinicopathologic features in a Turkish population. Tumour Biol 2015; 36: 3863-3870 [PMID: 25586347 DOI: 10.1007/s13277-014-0308-0]

Hajjari M, Salavaty A. HOATIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med 2015; 12: 1-9 [PMID: 25859406 DOI: 10.7497/j.issn.2095-3941.2015.0006]

Zhou L, Wu J, Zheng S. Long non-coding RNA HOTAIR promotes cell migration and invasion via down-regulation of RNA H. Mol Sci 2016; 12: 2870-2884 [PMID: 27004265 DOI: 10.1039/c6mb00114a]

Yang Z, Jia WD, Yao QY, Sun QK, Ren WH, Huang M, Ma JS. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis 2013; 34: 577-586 [PMID: 23222811 DOI: 10.1093/carcin/bgs381]

Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129: 1311-1323 [PMID: 17664720 DOI: 10.1016/j.cell.2007.05.022]

Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071-1076 [PMID: 20393566 DOI: 10.1038/nature08975]

Wang KC, Yang YW, Liu B, Sanay A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472: 120-124 [PMID: 21423168 DOI: 10.1038/nature09819]

Pan TT, Jia WD, Yao QY, Sun QK, Ren WH, Huang M, Ma J, Li JS, Ma JL, Yu JH, Ge YS, Liu WB, Zhong CH, Xu GL. Overexpression of HOXA13 as a potential marker for diagnosis and poor prognosis of hepatocellular carcinoma. Tohoku J Exp Med 2014; 234: 209-219 [PMID: 25341685]

Cillo C, Schiavo G, Cantile M, Bihl MP, Sorrentino P, Carafa V, D’ Armiento M, Roncalli M, Sansano S, Vecchione R, Tornillo L, Mori D, Leiber G, Zucman-Rossi J, Terracciano L. The HOX gene network in hepatocellular carcinoma. Int J Cancer 2011; 129: 2577-2587 [PMID: 21626505 DOI: 10.1002/ijc.29541]

Su DN, Wu SP, Chen HT, He JH. HOATIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol Lett 2016; 12: 4061-4067 [PMID: 27895772 DOI: 10.3892/ol.2016.5277]

Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, Chen Y, Sun F, Fan Q. CREB up-regulates long non-coding RNA, HULC expression via interaction with microRNA-372 in liver cancer. Nucleic Acids Res 2010; 38: 5366-5383 [PMID: 20423907 DOI: 10.1093/nar/gkq285]

Du Y, Kong G, You X, Zhang S, Zhang T, Gao Y, Ye L, Zhang X. Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem 2012; 287: 26302-26311 [PMID: 22685290 DOI: 10.1074/jbc.M112.342113]

Zhang L, Li Z, Zhang Y, Zhong Q, Chen Q, Zhang L. Molecular mechanism of H19-mediated metastasis suppression in hepatocellular carcinoma. Mol Biosyst 2013; 9: 3752-3759 [PMID: 23655691 DOI: 10.1039/c3mb35095d]

Zhang Y, He A, Wang D, Liu Y, Huang W. Long non-coding RNA HOTTIP as a novel predictor of lymph node metastasis and survival in human cancer: a systematic review and meta-analysis. Oncotarget 2017; 8: 14126-14132 [PMID: 28706342 DOI: 10.18632/oncotarget.12981]

Wong CM. Long non-coding RNA HOTTIP is frequently up-regulated in hepatocellular carcinoma and is targeted by tumour suppressive miR-125b. Liver Int 2015; 35: 1597-1606 [PMID: 25427444 DOI: 10.1111/liv.12746]

Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, Zheng SS. Overexpression of long non-coding RNA HOATIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 2011; 18: 1243-1250 [PMID: 21327457 DOI: 10.1245/s10434-011-158-y]

Wu Y, Zhang L, Wang Y, Li H, Ren X, Wei F, Yu W, Wang X, Zhang L, Yu J, Hao X. Long noncoding RNA HOATIR involvement in cancer. Tumour Biol 2014; 35: 9531-9538 [PMID: 25186386 DOI: 10.1007/s13277-014-2523-7]

Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, Zheng SS. Overexpression of long non-coding RNA HOTAIR promotes tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann Surg Oncol 2011; 18: 1243-1250 [PMID: 21327457 DOI: 10.1245/s10434-011-158-y]

Geng YJ, Xie SL, Li Q, Ma J, Wang YG. Large intervening non-RNA is associated with hepatocellular carcinoma progression. J Int Med Res 2011; 39: 2119-2128 [PMID: 22289527 DOI: 10.1177/0300060510380068]

Gao JZ, Li J, DU JL, Li XL. Long non-coding RNA HOATIR is a marker for hepatocellular carcinoma progression and tumor recurrence. Oncol Lett 2016; 11: 1791-1798 [PMID: 26998078 DOI: 10.3892/ol.2016.4130]

Xu ZY, Yu QM, Du YA, Yang LT, Dong RZ, Huang L, Yu PF, Cheng XD. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int J Biol Sci 2013; 9: 587-597 [PMID: 23844741 DOI: 10.7150/ijbs.6339]

Cai B, Wu Z, Liao K, Zhang S. Long noncoding RNA HOATIR can serve as a common molecular marker for lymph node metastasis: a meta-analysis. Tumour Biol 2014; 35: 8445-8450 [PMID: 25017366 DOI: 10.1007/s13277-014-2314-4]

Fu WM, Zhu X, Wang WM, Lu YF, Hu BG, Wang H, Liang WC, Wang SS, Ko CH, Wave MM, Kunf HG, Li G, Zhang JF. Hotair mediates hepatocarcinogenesis through suppressing miRNA-218 expression and activating P14 and P16 signaling. J Hepatol 2015; 63: 886-893 [PMID: 26024833 DOI: 10.1016/j.jhep.2015.05.016]

Yang L, Zhang X, Li H, Liu J. The long noncoding RNA HOATIR activates autophagy by upregulating ATG3 and ATG7 in hepatocellular carcinoma. Mol Biosyst 2016; 12: 2605-2612 [PMID: 27301338 DOI: 10.1039/c6mb00114a]

Ding C, Cheng S, Yang Z, Lv Z, Xiao H, Du C, Peng C, Xie H, Zhou L, Wu J, Zhang S. Long non-coding RNA HOTAIR promotes cell migration and invasion via down-regulation of RNA binding motif protein 38 in hepatocellular carcinoma cells. Int J Mol Sci 2014; 15: 4060-4067 [PMID: 24663081 DOI: 10.3390/ijms15034060]
LncRNA as a Therapeutic Target for Long Non-coding RNA Function in Cancer.

June 28, 2017 • Volume 23 • Issue 32

Niu ZS et al., LncRNAs in HCC
imprinting on the maternal and paternal chromosomes at the Dlk1-Dio2 imprinted cluster on mouse chromosome 12. Nat Genet 2003; 33: 97-102 [PMID: 12937418 DOI: 10.1038/ng1233]

156 Zhang J, Lin Z, Gao Y, Yao T. Downregulation of long noncoding RNA MEG3 is associated with poor prognosis and promoter hypermethylation in cervical cancer. J Exp Clin Cancer Res 2017; 36: 5 [PMID: 28057015 DOI: 10.1186/s13046-016-0472-2]

157 Krueger TL, Dougherty SM, Reynoldson L, Long E, de Silva T, Lockwood WW, Clem BF. Expression of the lncRNA Maternally Expressed Gene 3 (MEG3) Contributes to the Control of Lung Cancer Cell Proliferation by the Rb Pathway. PLoS One 2011; 11: e0166363 [PMID: 27832204 DOI: 10.1371/journal.pone.0166363]

158 Modali SD, Parekh VI, Kebebew E, Agarwal SK. Epigenetic regulation of the lncRNA MEG3 and its target c-MET in pancreatic neuroendocrine tumors. Mol Endocrinol 2015; 29: 224-237 [PMID: 25565142 DOI: 10.1210/mec.2014-1304]

159 Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinting gene contribution in tumorigenesis. Int J Cancer 2011; 129: 773-779 [PMID: 21400503 DOI: 10.1002/ijc.26052]

160 Anwar SL, Krecht T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, Kreipe H, Lehmann U. Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma. J Exp Clin Cancer Res 2016; 35: 93 [PMID: 2654194 DOI: 10.1002/mc.22270]

161 Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET, Kibbalki A. Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 2008; 93: 4119-4125 [PMID: 18625275 DOI: 10.1210/jc.2007-2633]

162 Chak WP, Lung RW, Tong JH, Chan SY, Lun SW, Tsao SW, Lo CM. Downregulation of long non-coding RNA MEG3 in nasopharyngeal carcinoma. Mol Carcinog 2015; 54: 1041-1054 [PMID: 27597634 DOI: 10.1002/mc.22269]

163 Sheng X, Li J, Yang L, Chen Z, Zhao Q, Tan L, Zhou Y, Li J. Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer. Oncol Rep 2014; 32: 277-285 [PMID: 24859196 DOI: 10.3892/or.2014.2208]

164 Sun M, Xia R, Jin F, Xu T, Liu Z, De W, Liu X. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol 2014; 35: 1065-1073 [PMID: 24060224 DOI: 10.1007/s13277-013-1142-z]

165 Gao Y, Lu X. Decreased expression of MEG3 contributes to retinoblastoma progression and affects retinoblastoma cell growth by regulating the activity of Wnt/β-catenin pathway. Tumour Biol 2016; 37: 1461-1469 [PMID: 26662307 DOI: 10.1007/s13277-015-4564-y]

166 Zhu J, Liu S, Ye F, Shen Y, Tie Y, Zhu J, Wei L, Jin Y, Fu H, Wu Y, Zheng X. Long Noncoding RNA MEG3 Interacts with p53 Protein and Regulates Partial p53 Target Genes in Hepatoma Cells. PLoS One 2015; 10: e0139790 [PMID: 26444285 DOI: 10.1371/journal. pone.0139790]

167 Liu LX, Deng W, Zhou XT, Chen RP, Xiang MQ, Guo YT, Pu ZJ, Li R, Wang GF, Wu LF. The mechanism of adenosine-mediated activation of lncRNA MEG3 and its antimtumor effects in human hepatoma cells. Int J Oncol 2016; 48: 421-429 [PMID: 26647875 DOI: 10.3892/ijo.2015.3248]

168 Zamani M, Sadeghizadeh M, Behmanesh M, Najafi F. Dendrosomal curcumin increases expression of the long noncoding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. Phytomedicine 2015; 22: 961-967 [PMID: 26321746 DOI: 10.1016/j.phymed.2015.05.071]

169 Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Kibbalki A. Activation of p53 by MEG3 non-coding RNA. J Biol Chem 2007; 282: 24731-24742 [PMID: 17569660 DOI: 10.1074/jbc.M700292200]

170 Chang L, Wang G, Jia T, Zhang L, Li Y, Han Y, Zhang K, Lin G, Zhang R, Li J, Wang L. Armored long non-coding RNA MEG3 targeting EGFR based on recombinant MS2 bacteriophage virus-like particles against hepatocellular carcinoma. Oncotarget 2016; 7: 23988-24004 [PMID: 26992211 DOI: 10.18632/oncotarget.8115]

171 Zhuo H, Tang J, Lin Z, Jiang R, Zhang X, Ji J, Wang P, Sun B. The aberrant expression of MEG3 regulated by UHRF1 predicts the prognosis of hepatocellular carcinoma. Mol Carcinog 2016; 55: 209-219 [PMID: 2564194 DOI: 10.1002/mc.22270]

172 Chureau C, Chantalt S, Romito A, Galvani A, Duret L, Avner P, Rougeulle C. Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 2016; 20: 705-718 [PMID: 21118898 DOI: 10.1093/hmg/ddg516]

173 Zhang W, Bi Y, Li J, Peng F, Li H, Li C, Wang L, Ren F, Xie C, Wang P, Liang W, Wang Z, Zhu D. Long noncoding RNA FTX is upregulated in gliomas and promotes proliferation and invasion of glioma cells by negatively regulating miR-342-3p. Lab Invest 2017; 97: 447-457 [PMID: 28112756 DOI: 10.1038/labinvest.2016.152]

174 He X, Sun F, Guo F, Wang K, Gao Y, Feng Y, Song B, Li W, Li Y. Knockdown of Long Noncoding RNA FTX Inhibits Proliferation, Migration, and Invasion in Renal Cell Carcinoma Cells. Oncol Res 2016; 25: 157-166 [PMID: 27983937 DOI: 10.3727/096504016X1 4719078133203]

175 Liu Z, Dou C, Yao B, Xu M, Ding L, Wang Y, Jia Y, Li Q, Zhang H, Tu K, Song T, Liu Q. Ftx non coding RNA-derived miR-545 promotes cell proliferation by targeting RIG-I in hepatocellular carcinoma. Oncotarget 2016; 7: 25350-25365 [PMID: 26992218 DOI: 10.18632/oncotarget.8129]

176 Liu F, Yuan JH, Huang JF, Yang F, Wang TT, Ma JZ, Zhang L, Zhou CC, Wang G, Jia T, Zhang L, Li Y, Han Y, Zhang K, Lin G, Bi Y, Li J, Peng F, Li H, Li C, Wang L, Ren F, Xie C, Wang P, Liang W, Wang Z, Zhu D. Long noncoding RNA FTX inhibits proliferation, migration, and Invasion in Renal Cell Carcinoma Cells. Oncol Res 2016; 25: 157-166 [PMID: 27983937 DOI: 10.3727/096504016X1 4719078133203]

177 Romito A, Rougeulle C. Origin and evolution of the long noncoding genes in the X-inactivation center. Biochimie 2011; 93: 1935-1942 [PMID: 21820484 DOI: 10.1016/j.biochi.2011.07.009]

178 Yarmishyn AA, Kurochkin IV. Long noncoding RNAs: a potential novel class of cancer biomarkers. Front Genet 2015; 6: 145 [PMID: 25954300 DOI: 10.3389/fgene.2015.00145]

179 Ernst C, Morton CC. Identification and function of long noncoding RNA. Front Cell Neurosci 2013; 7: 168 [PMID: 24106460 DOI: 10.3389/fncel.2013.00168]

P-Reviewer: Chiu KW S- Editor: Gong ZM L- Editor: Wang TQ E- Editor: Zhang FF
