The correlation and role analysis of COL4A1 and COL4A2 in hepatocarcinogenesis

Yanli Liu1,2, Jiaye Zhang4,5, Yan Chen4,5, Hasan Sohel4,5, Xinrong Ke1,2, Jingqi Chen1,2,3, Yin-Xiong Li4,5,6,7,8

1Stem Cell Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
2Stem Cell Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
3Department of Medical Oncology, Guangzhou Medical University, Guangzhou, China
4Institute of Public Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
5Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
6Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
7Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
8University of Chinese Academy of Sciences, Beijing, China

Correspondence to: Jingqi Chen, Yin-Xiong Li; email: chenjingqi2002@163.com, li_yinxiong@gibh.ac.cn
Keywords: tumor microenvironment, COL4A1/A2, HCC, PI-3K pathway, PTK2
Received: July 25, 2019 Accepted: December 5, 2019 Published: January 5, 2020

ABSTRACT

Liver fibrosis biomarker, Type IV collagen, may function as hepatocarcinogenesis niche. However, among the six isoforms, the isoforms providing tumor microenvironment and their regulatory network are still unclarified. Based on bioinformatics analysis of hundreds of HCC transcriptome datasets from public databases, we found that COL4A1/2 expressions were significantly correlated with hepatocarcinogenesis, progression, and prognosis. The expressions of COL4A1/2 were significantly upregulated in the preneoplastic and HCC tissues compared with normal tissues. Moreover, the overexpression of COL4A2 was highly correlated with shorter progression-free survival in HCC patients. Bioinformatics analysis also generates an interactive regulatory network in which COL4A1/2 directly binding to integrin alpha-2/beta-1 initiates a sequentially and complicated signaling transduction, to accelerate cell cycle and promote tumorigenesis. Among those pathways, the PI3K-Akt pathway is significantly enriched in cooperative mutations and correlation analysis. This suggests that the key activated signaling is PI3K-Akt pathway which severing as the centerline linked with other pathways (Wnt and MAPK signaling) and cell behaviors signaling (cell cycle control and cytoskeleton change). Switching extracellular matrix collagen isoform may establish pro-tumorigenic and metastatic niches. The findings of COL4A1/2 and related signaling networks are valuable to be further investigated that may provide druggable targets for HCC intervention.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most prevalent malignancy in the liver with a high incidence and mortality rate globally [1]. It is the fifth most commonly diagnosed cancer in men, the ninth in women, and the second leading cause of cancer death worldwide in 2012 [2]. HCC had a poor prognosis as the ratio of mortality
to incidence is 0.95 [2] and the 5-year survival rate of advanced HCC was less than 5% [3]. The advanced fibrosis, mainly cirrhosis and hepatitis, caused by the Hepatitis B virus (HBV) and hepatitis C virus (HCV) were the most common cause for HCC [4–6]. Moreover, other factors such as alcohol consumption, obesity, aflatoxin exposure, and nonalcoholic fatty liver disease could also contribute to the development of HCC [4]. The understanding of the etiology and the molecular mechanisms of HCC leads to the development of drugs including sorafenib, regorafenib, nivolumab, and lenvatinib, which have been approved by the FDA in unresectable HCC treatment [7–10]. However, these drugs are not satisfying, due to the rapid drug resistance development and toxicities [9, 11–13]. Therefore, there is an urgent need for further understanding of the pathological mechanism of HCC and developing combination therapies that target different signaling mechanisms to reduce the drug resistance of HCC treatment.

The tumor microenvironment is an important part of tumor structure and function, and it plays a key role in the initiation and progression of carcinogenesis [14, 15]. Therefore, a better understanding of the molecular mechanism of the tumor microenvironment may provide new and valuable targets for cancer prevention, management, and risk assessment. As the major structural component of the tumor microenvironment, type IV collagen (Col IV) forms a ‘chicken-wire’ meshwork together with laminins, proteoglycans and entactin/nidogen. Also, Col IV has been found as a useful marker for evaluating liver preneoplastic lesions (fibrosis and cirrhosis), for its swift increase with fibrotic progression [16–18]. Moreover, the Col IV serum level was found to be a marker for evaluating primary and metastatic liver cancer, and recurrence risk of HCC after liver resection [19]. Recently, Col IV has shown the ability to promote liver metastasis of lung cancer by regulating the chemokine CCL7 signals [20, 21]. Therefore, Col IV may play a key role in hepatocarcinogenesis. However, the underlying mechanism still needs to be elucidated. Moreover, there are six Col IV isoforms, α1 (IV)-α6 (IV) which are encoded by COL4A1-COL4A6 genes, and the regulatory role of each isoform in HCC has yet to be discovered.

To address the above questions, the sequencing data of HCC were collected and analyzed from GEO and TCGA databases. The result showed that among the six Col IV isoforms, only COL4A1 and COL4A2 were significantly upregulated from liver preneoplastic lesions (cirrhosis and dysplasia) to HCC. Subsequently, the COL4A1 and COL4A2 network genomic alterations, biological function, and regulatory network in HCC were analyzed by using cBioPortal and LinkedOmics. Thus, this study revealed the expression and regulatory network of COL4A1 and COL4A2 in hepatocarcinogenesis, which might be novel targets for HCC diagnosis and treatment.

RESULTS

Transcriptional levels of COL4As in the carcinogenic process from preneoplastic lesions (cirrhosis and dysplasia) to HCC

Six COL IV isoforms (COL4As) have been identified in mammalian cells. We initially assessed the transcriptional levels of COL4As in multiple HCC studies from GEO and TCGA databases. The mRNA expression levels of COL4A1 and COL4A2 were significantly upregulated in patients with liver cirrhosis and HCC tissues in two datasets. In the Mas Liver (GSE14323), COL4A1 was overexpressed in liver cirrhosis (fold change = 4.233, p = 2.78E-13) and HCC (fold change = 3.759, p = 1.40E-12), while COL4A2 was higher expressed in liver cirrhosis (fold change = 2.487, p = 7.88E-14) and HCC (fold change = 3.492, p = 1.01E-10) versus normal tissues (Figure 1A and Supplementary Figure 1B). In the Wurmbach liver (GSE6764), COL4A1 was increased in cirrhosis (fold change = 2.997, p = 7.24E-6), liver cell dysplasia (fold change = 2.140, p = 7.46E-6), and HCC (fold change = 3.711, p = 1.16E-10). COL4A2 was also increased in cirrhosis (fold change = 3.412, p = 2.02E-6), liver cell dysplasia (fold change = 2.223, p = 1.35E-4), and HCC (fold change = 3.154, p = 7.07E-7) compared to normal tissues (Supplementary Figure 1A and 1C). Apart from this, COL4A1 and COL4A2 were in the top 5% overexpression gene rank of liver cirrhosis and HCC in both datasets (Supplementary Figure 1B, 1C). In comparison, COL4A3-COL4A6 were not significantly changed in HCC versus normal tissues (Figure 1A and Supplementary Figure 1A). Further analysis of 371 HCC patients in TCGA consistently showed different effects of COL4A1-COL4A6 in hepatocarcinogenesis (Figure 1B). Moreover, the mRNA levels of both COL4A1 and COL4A2 were significantly increased in subgroups of HCC patients classified by ethnicity, gender, age, tumor grade, and disease stages compared to normal people (Figure 2A–2L). Additionally, the expressions of COL4A1 and COL4A2 in HCC and normal individuals were evaluated by immunohistochemistry staining (The Human Protein Atlas). The COL4A1 and COL4A2 proteins were more highly expressed in HCC tissues than in the normal liver tissues, and were located especially in the HCC tissue lacunar (Figure 3). Thus, COL4A1 and COL4A2 expressions may serve as potential diagnostic indicators in HCC.
The cooperative genomic alterations of *COL4A1* and *COL4A2* networks in HCC

We then analyzed the cooperative genomic alterations of *COL4A1* and *COL4A2* networks by using cBioPortal for liver hepatocarcinoma (TCGA, provisional).

COL4A1 was altered in 41 of 371 (11%) HCC patients, and *COL4A2* was altered in 37 of 371 (10%) HCC patients (Figure 4A). The genomic alterations included amplification (3.8% for both *COL4A1* and *COL4A2*), mRNA up-regulation (5.6% for *COL4A1*, 4.6% for *COL4A2*), and mutation (2.1% for *COL4A1*, 1.6% for *COL4A2*) (Table 1). Thus, mRNA up-regulation and amplification are the most genomic alteration types for both *COL4A1* and *COL4A2* in HCC.

Moreover, the expression levels of *COL4A1* and *COL4A2* were highly correlated in 371 HCC patients (Figure 4A). Therefore, the correlation coefficient between *COL4A1* and *COL4A2* in HCC was calculated via cBioPortal. The results showed that *COL4A1* was strongly correlated with *COL4A2* ($r = 0.96$), possibly because they shared the same bidirectional promoter (Figure 4B, 4C).

![Figure 1. COL4As expression in hepatocellular carcinoma (HCC).](image)

The transcription levels of *COL4A1* and *COL4A2* were significantly upregulated in preneoplastic lesion (cirrhosis) and HCC tissues compared to normal tissues. (A) Dot plot showing the COL4As mRNA levels in GEO dataset (GSE14323). Normal (n=19): normal liver; Cirrhosis (n=41): HCV cirrhosis without HCC; Cirrhosis HCC (n=17): HCV cirrhosis with HCC; HCV-HCC (n=36): HCC by HCV infection. Data are mean ± SD. *, P < 0.05, **, P < 0.01, ***, P < 0.001 (Student’s t-test). (B) Box plot showing the COL4As mRNA levels in The Cancer Genome Atlas (TCGA) (GEPiA). Normal: n=160; Tumor: n=369. The significance test method was one-way ANOVA, using disease state (Tumor or Normal) as variable for calculating differential expression.
Further, to identify the altered biological function of \textit{COL4A1} and \textit{COL4A2} networks in HCC, the most frequently altered neighbor genes (a total of 50) were collected and evaluated by analyzing GO and KEGG in the DAVID database. The \textit{COL4A1}/\textit{COL4A2} neighboring genes with alteration frequencies >10% (16 out of a total of 94) in HCC were listed in Figure 4D and Table 1. Similar to \textit{COL4A1} and \textit{COL4A2}, mRNA

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Relationship between the mRNA levels of \textit{COL4A1}/2 and the clinic pathological features of patients with HCC, stratified based on ethnicity, gender, age, tumor grade, and disease stages (UALCAN). (A, G) Box plot showing the relative transcript level of \textit{COL4A1} and \textit{COL4A2} in normal and primary tumor (HCC) tissues. (B, H) Box plot showing the relative transcript level of \textit{COL4A1} and \textit{COL4A2} in normal samples of any ethnicity, and HCC tissues of Caucasian, African-American or Asian. (C, I) Box plot showing the relative transcript level of \textit{COL4A1} and \textit{COL4A2} in normal tissues of any gender, and HCC tissues of male or female. (D, J) Box plot showing the relative transcript level of \textit{COL4A1} and \textit{COL4A2} in healthy individuals of any age, and HCC tissues of 21–40, 41–60, 61–80, or 81–100 yrs. (E, K) Box plot showing the relative transcript level of \textit{COL4A1} and \textit{COL4A2} in normal tissues, and HCC tissues with grade 1, 2, 3 or 4. (F, L) Box plot showing the relative transcript level of \textit{COL4A1} and \textit{COL4A2} in normal tissues, and HCC tissues in stage 1, 2, 3 or 4. Data are mean ± SE. *, P < 0.05; **, P < 0.01; ***, P < 0.001, ****, P < 0.0001 (t-test).}
\end{figure}
up-regulation and amplification were the main alteration types for a majority of these neighboring genes. The most frequently altered neighbor genes of COL4A1/COL4A2 were PTK2 (46.4%), ACTN2 (24.1%), and THBS3 (20.1%). Analysis of significantly enriched GO results indicated that the proteins encoded by these genes localized primarily to the extracellular exosome, plasma membrane, and extracellular region (Figure 5A), where

Figure 3. The COL4A1 and COL4A2 proteins were expressed higher in HCC tissues than in the normal liver tissue. (A–B) Immunohistochemistry staining showing the protein expression of COL4A1 (A) and COL4A2 (B) in liver normal tissues and liver carcinoma.
they were mainly involved in the extracellular matrix organization, cell adhesion, and integrin-mediated signaling pathway (Figure 5B). These proteins also served as structural constituents of protein binding, integrin binding, protein complex binding, and collagen binding (Figure 5C). Moreover, KEGG analysis showed enrichment in focal adhesion, PI3K-Akt pathway, ECM-receptor interaction, and pathway in cancer (Figure 5D). Thus, the biological interaction network of COL4A1 and COL4A2 alterations is involved in the extracellular matrix (ECM) and several ECM-receptor activated pathways.

The biological function of COL4A1 and COL4A2 in HCC

Next, the genes which correlated with COL4A1 and COL4A2 and differentially expressed in HCC were collected and analyzed by LinkedOmics to further examine the biological function of COL4A1 and COL4A2 in HCC. COL4A1 displayed a positive correlation with 7111 genes and negative with 3128 genes; whereas 6680 genes were positively correlated with COL4A2, whereas 2714 genes in the opposite (FDR < 0.01, Figure 6A and 6B). The top 20 most positively and negatively correlated genes for COL4A1 and COL4A2 were exhibited in the heatmap (Figure 6C–6F). This result implied a similar effect of COL4A1 and COL4A2 in the transcriptome. Specially, COL4A1/COL4A2 were highly correlated with PXDN (r = 0.8937 / 0.8904) and SPARC (r = 0.8882 / 0.9124), reflecting significant changes in the extracellular matrix of HCC (Figure 6D). Further, GO term analysis indicated that the COL4A1 and COL4A2 correlated genes were located prominently in the extracellular matrix, membrane region, and cell-substrate junction, where they served as structural constituents in the extracellular matrix. They also involved in extracellular structure organization, angiogenesis, and cell-substrate adhesion (Figure 7A–7C). Moreover, KEGG analysis result showed that these genes took part in activating actin cytoskeleton, PI3K-Akt, cGMP-PKG, and cell adhesion pathway (Figure 7D). Thus, these results further demonstrated that the biological interaction network of COL4A1 and COL4A2 is involved in ECM-receptor activated pathways.
Table 1. The most frequently altered neighbor genes of COL4A1 and COL4A2 in HCC (cBioPortal).

Gene symbol	Amplification	Homozygous deletion	Up-regulation	Down-regulation	Mutation	Total alteration
COL4A1	3.80%	0.00%	5.60%	0.00%	2.10%	11.00%
COL4A2	3.80%	0.30%	4.60%	0.00%	1.60%	9.90%
PTK2	16.10%	0.30%	41.00%	0.50%	2.10%	46.40%
ACTN2	8.60%	0.00%	15.50%	0.00%	1.60%	24.10%
THBS3	13.70%	0.00%	13.70%	0.00%	1.60%	20.10%
COL22A1	16.40%	0.00%	1.10%	0.00%	3.20%	19.30%
P4HB	6.20%	0.30%	11.80%	0.30%	0.30%	15.80%
ACTG1	6.20%	0.00%	9.90%	0.00%	0.30%	15.30%
LAMB3	9.40%	0.00%	3.50%	0.00%	1.90%	13.90%
ITGA10	9.90%	0.00%	2.10%	0.00%	1.90%	13.10%
LAMC1	9.10%	0.00%	3.20%	0.00%	1.60%	12.90%
LAMC2	9.10%	0.00%	1.90%	0.00%	1.60%	12.60%
ITGB4	5.60%	0.00%	4.80%	0.00%	2.40%	12.60%
PLOD3	0.80%	0.00%	11.50%	0.50%	0.30%	12.60%
COLGALT2	9.40%	0.00%	0.50%	0.00%	1.30%	11.00%
MSR1	0.30%	7.00%	3.50%	0.00%	0.30%	10.20%

COL4A1 and COL4A2 network of kinase, miRNA, or transcription factor targets in HCC

To discover the specific targets network of COL4A1 and COL4A2 in HCC, the most correlated kinases, miRNA, and transcription factors were collected and analyzed by GSEA. As summarized in Table 2, for COL4A1 and COL4A2 in HCC, the most correlated kinase-targets network were PRKG1, PTK2B, MAPK7, and CAMK2A; the most correlated microRNA-targets network were MIR-140, MIR-204/MIR-211, MIR-7, MIR-23A/MIR-23B, MIR-130A/MIR-301/MIR-130B, MIR-519E, MIR-518C, and MIR-9; the most correlated transcript factor-target networks were VSRF_Q6, VSRFC4_Q2, CTGYNNCTYTAU_UNKNOWN, V$MEF2_01, V$AML1_Q6, V$HEN1_01 and V$EVI1_04 (v7.4 TRANSFAC). The target genes of these transcript factors, kinases, and microRNAs in HCC were listed in Supplementary Table 1. Furthermore, KEGG analysis showed that these genes involved in pathways in cancer, PI3K-Akt signaling pathway, focal adhesion, MAPK signaling pathway, regulation of actin cytoskeleton, and cGMP-PKG signaling pathway (Figure 8). Thus, COL4A1 and COL4A2 may involve in hepatocarcinogenesis by activating the above-mentioned transcript factors-target networks, the kinase-target networks, and the microRNA-target networks.

COL4A2 overexpression was positively correlated with shorter progression-free survival in HCC patients

To demonstrate the direct association of COL4A1 and COL4A2 with HCC, the COL4A1 and COL4A2 genomic altered or unaltered HCC patients were collected to evaluate their clinical features. As shown in Figure 9A, the mRNA level of COL4A1 and its associated genes, such as COL4A2, PXDN, and SPARC, were higher in the COL4A1-altered group than in the COL4A1-unaltered group. Similarly, the COL4A2 and its correlated genes, such as COL4A1, PXDN, and SPARC, were overexpressed in the COL4A2-altered patients compared to the COL4A2-unaltered patients (Figure 9B). Additionally, the overexpressed COL4A1 or COL4A2 could activate pathways in cancer including notch, platelet activation, cGMP-PKG, PI3K-Akt, focal adhesion, actin cytoskeleton, and ECM-receptor interaction (Figure 9C), which was consistent with the above biological pathways activated by COL4A1 and COL4A2 (Figure 7D). Furthermore, compared to the COL4A2-unaltered group, the COL4A2-altered group was significantly associated with shorter progression-free survival (P = 0.0271, Figure 9D). Therefore, it strongly suggested that COL4A2 overexpression might promote HCC progression after initial treatment.

DISCUSSION

Tumor microenvironment including inflammatory cells, stroma, and the extracellular matrix is critically important for tumor initiation and progression [15]. COL IV is a major structural component of the tumor microenvironment, which was steep increased during liver preneoplastic lesion, such as fibrosis and cirrhosis [18]. Thus, COL IV may involve initiating hepatocarcinogenesis. To investigate the different role of each isoform of COL IV in hepatocarcinogenesis, the HCC expression profile was analyzed using public...
sequencing data in GEO and TCGA, in which among the six COL IV isoforms, only \textit{COL4A1} and \textit{COL4A2} was significantly upregulated from preneoplastic lesions (cirrhosis and dysplasia) to HCC. Then, the \textit{COL4A1} and \textit{COL4A2} network genomic alterations, biological function, and regulatory network were further analyzed to provide deep insights into the function of COL IV in hepatocarcinogenesis.

In this study, the transcriptional levels of \textit{COL4A1} and \textit{COL4A2} in approximately 500 clinical samples from two GEO datasets and one TCGA dataset were significantly increased in cirrhosis and HCC. Both \textit{COL4A1} and \textit{COL4A2} were found in the top 5% of the over-expression-gene-rank of liver cirrhosis and the top 3% of HCC. Moreover, they were strongly correlated with clinic pathological features of patients with HCC.

![Biological function of COL4A1 and COL4A2 signaling network alterations in HCC.](image-url)

Figure 5. Biological function of \textit{COL4A1} and \textit{COL4A2} signaling network alterations in HCC. The histogram showing the biological function of the top 50 most frequently altered neighbor genes of \textit{COL4A1} and \textit{COL4A2} in HCC. (A) Cellular components. (B) Biological processes. (C) Molecular functions. (D) KEGG pathway analysis. (E) Network showing the KEGG pathway of Focal adhesion. The altered genes are highlight in red.
Figure 6. The genes correlated with COL4A1 and COL4A2 and differentially expressed in HCC (LinkedOmics). (A, B) The volcano plot showing the genes correlated with COL4A1 and COL4A2 and differentially expressed in HCC. (C, E) The heatmap showing the top 20 genes positively or negatively correlated with COL4A1 or COL4A2. (D, F) The same correlated genes for COL4A1 and COL4A2 in top 20 positively or negatively correlated genes.
based on ethnicity, gender, age, tumor grade, and disease stages. Thus, **COL4A1** and **COL4A2** may be helpful in the diagnose of HCC. As the detection of early HCC is still not systematic, more than 60% of patients are diagnosed with advanced HCC [22]. On the other hand, HCC patients have a better prognosis with a 5-year survival rate of more than 70% if diagnosed at an early stage [23]. Therefore, extensive researches have been conducted on identifying the makers for early HCC, many markers, such as AFP-L3 [24], DCP [25], GPC3 [26, 27], OPN [28], GP73 [29], SCCA [30], annexin A2 [31], suPAR [32], MDK [33], AXL [34], and TRX [35] were screened and undergoing further assessment in phase II studies. Considering the high heterogeneity in HCC patients, it is necessary to combine multiple markers for the detection of early HCC. Thus, combining the above markers with **COL4A1** and **COL4A2** will improve the diagnose reliability of early HCC.

The accumulation of cooperative genomic alterations enables the cells to grow rapidly and develop into tumors [36, 37]. The mRNA up-regulation and amplification were the most genomic alteration types for **COL4A1/COL4A2** network genes in HCC. Among the altered genes, PTK2, encoding a cytoplasmic protein tyrosine kinase which was found concentrated in the focal adhesions, was the most frequently altered in HCC (46.4%). Upon activation, PTK2 regulates a variety of cellular functions, including cell adhesion, survival, proliferation, and migration [38–41]. Multiple studies demonstrated that PTK2 was overexpression and hyperphosphorylation in HCC [42–44], and the recent studies described that PTK2 activated CSC properties and tumorigenicity of HCC cells, leading to HCC recurrence and sorafenib resistance [44]. Therefore, **COL4A1** and **COL4A2** may mediate the initiation and progression of HCC by activating PTK2. Moreover, the functional analysis of altered genes of **COL4A1/COL4A2** network showed that these genes involved in PI3K/Akt signaling pathway, which was the one classical downstream signal of PTK2. Accumulated evidence showed that overactivated PI3K/Akt/mTOR signaling pathway frequently occurs in HCC, which was highly correlated with poor prognosis and poor overall survival [45, 46]. All these evidences indicated that activation of PTK2-PI3K/Akt/mTOR pathway by **COL4A1** and **COL4A2** may contribute to hepatocarcinogenesis. This result was further confirmed by the significant correlation between **COL4A2** overexpression and shorter progression-free survival. However, due to the present insufficient data between **COL4A1** dominant mutations and progression-free survival, the correlation between **COL4A1** and hepatocarcinogenesis needs to be explored further.

![Figure 7. Biological function of **COL4A1** and **COL4A2** correlated genes in HCC. GO term and KEGG analysis by GSEA were conducted to clarify the biological function of **COL4A1** and **COL4A2** correlated genes. (A) Cellular components. (B) Biological processes. (C) Molecular functions. (D) KEGG pathway analysis. The column represents the Normalized Enrichment Score (NES), and the color of the column represents the FDR.](image-url)
Table 2. The transcript factor, microRNA, and kinase regulatory network of COL4A1 and COL4A2 in HCC (LinkedOmics).

Type	Gene Set	Size	Leading edge number	Enrichment Score (ES)	Normalized Enrichment Score (NES)	FDR
Transcript	V$SRF_Q6	231	94	0.55044	1.6597	0.00565
	V$RSRFC4_Q2	198	83	0.51218	1.5405	0.00674
	CTGYNCTYTAA_UNKNOWN	81	30	0.5617	1.6209	0.00698
	V$MEF2_01	134	51	0.54747	1.6178	0.00707
	V$AML1_Q6	248	110	0.49829	1.5057	0.00736
	V$HEN1_01	182	70	0.50724	1.5007	0.00739
	V$EVI1_04	218	101	0.49922	1.5135	0.00746
	GKCGCNNNNNNNTGAYG_UNKNOWN	52	17	-0.20659	-1.2159	0.44429
	V$PPARG_01	40	14	-0.21978	-0.96831	0.76375
microRNA	AAACCAC, MIR-140	100	55	0.51847	1.5346	0.01111
	ACCAAAG, MIR-9	458	210	0.49907	1.5234	0.01114
	AAAGGGGA, MIR-204, MIR-211	211	102	0.51606	1.5365	0.01145
	GTCTTCC, MIR-7	149	61	0.51346	1.5208	0.01147
	AATGTGA, MIR-23A, MIR-23B	389	198	0.50816	1.5423	0.01158
	TTGACT, MIR-130A, MIR-301, MIR-130B	365	220	0.5123	1.5697	0.01165
	GGCACCTT, MIR-519E	113	72	0.5321	1.5528	0.01183
	TCCAGAG, MIR-518C	138	65	0.53458	1.5672	0.01187
Kinase	Kinase_PRKG1	30	15	0.7136	1.9136	0.00000
	Kinase_PTK2B	6	3	0.87902	1.7424	0.03337
	Kinase_MAPK7	30	13	0.64928	1.7218	0.03881
	Kinase_CAMK2A	52	23	0.59432	1.6769	0.04961

Figure 8. The transcript factor, microRNA, and kinase targets network of COL4A1 and COL4A2 in HCC (LinkedOmics). COL4A1 and COL4A2 may involve in hepatocarcinogenesis by regulating the transcript factors-target networks (VSRF_Q6, VRSRFC4_Q2, CTGYNCTYTAA_UNKNOWN, V$MEF2_01, V$AML1_Q6, V$HEN1_01, V$EVI1_04), the kinase-target networks (PRKG1, PTK2B, MAPK7, and CAMK2A), and the microRNA-target networks (MIR-140, MIR-204/MIR-211, MIR-7, MIR-23A/MIR-23B, MIR-130A/MIR-301/MIR-130B, MIR-519E, MIR-518C, and MIR-9).
Furthermore, to get a systematic regulatory network of \textit{COL4A1}/\textit{COL4A2} in HCC, the GSEA was conducted to identify the networks of transcription factors, kinases, and miRNAs. The above networks showed a strong correlation between \textit{COL4A1}/\textit{COL4A2} and PI3K/Akt, cGMP-PKG, MAPK and other pathways in cancer. Among the networks of transcription factors, SRF was the most significant one with the highest enrichment score. Several studies indicated that dysregulated SRF could trigger HCC formation and progression, and SRF was also involved in EMT transition which led to sorafenib resistant in HCC [47–50]. Thus, \textit{COL4A1} and \textit{COL4A2} may involve in hepatocarcinogenesis via SRF transcript factor. Moreover, the other kinase networks including PRKG1, MAPK7, and CAMK2 were associated with \textit{COL4A1} and \textit{COL4A2}, which may also be the potential targets for HCC treatment. However, the studies focused on the relationship between these

Figure 9. Collagen VI mutation and overexpression positively correlated with the progression-free survival of HCC patients. (A–B) Scatter plot comparison of mRNA levels (\textit{COL4A1}, \textit{COL4A2}, PXDN, and SPARC) between genomic altered and unaltered groups (A: \textit{COL4A1}, B: \textit{COL4A2}). (C) Column plot illustration of activated signaling pathways in \textit{COL4A1}/\textit{COL4A2} genomic altered HCC samples. (D) Kaplan-Meier survival analysis of HCC patients with or without altered \textit{COL4A2} DNA sequences.
kinases and HCC are still insufficient, and further studies are needed. Among the networks of miRNAs, MIR-9, MIR-7, MIR-140, and MIR-204 displayed a role in inhibiting the proliferation, progression, metastasis, sorafench resistant of HCC [51–55], which may be promising targets for HCC management.

This study analyzed the expression and regulatory network of COL IV in hepatocarcinogenesis. Our finding suggested that the increased expression of COL4A1 and COL4A2 may involve in HCC initiation and progression by activating PTK2–PI3K/Akt signaling pathway. Last but not least, SRF, a tumor-associated transcription factor, may also involve in hepatocarcinogenesis induced by COL4A1 and COL4A2.

MATERIALS AND METHODS

Ethics statement

This study was approved by the Academic Committee of No. 2 Affiliated Hospital, Guangzhou Medical University, Guangzhou, China, and the investigation was conducted according to Declaration of Helsinki principles. All the datasets were collected from the publishing literature, so all written informed consent was obtained.

Analysis of gene expression profile in preneoplastic lesions and HCC using GEO data

To analyze the expression profile of six COL IV isoforms in preneoplastic lesions and HCC, GEO datasets (access #: GSE14323 and GSE6764) were downloaded, evaluated, and normalized by different R packages, such as GEOquery and limma [56, 57]. The expression profile was mapped by Graphpad Prism [58]. The mRNA levels of six COL IV isoforms in preneoplastic lesions and HCC tissues were compared with that in the normal tissues, using the Student’s t-test to calculate p-value. P < 0.05 were considered different significantly (*, P < 0.05, **, P < 0.01, *** P < 0.001, **** P < 0.0001).

Oncomine analysis

The mRNA expression fold change and Over-expression Gene Rank of COL4A1 and COL4A2 in HCC were analyzed by using the Oncomine database. Oncomine (www.oncomine.org) is the current world’s largest microarray database with 715 datasets (86733 samples) [59, 60]. The datasets used here were Mas Liver and Wurmbach Liver, which matched the GSE14323 and GSE6764 datasets in GEO [61, 62]. The mRNA levels of COL4A1 and COL4A2 in preneoplastic lesions (cirrhosis) and HCC tissues were compared with that in the normal tissues. Student’s t-test was performed to generate a p-value.

UALCAN analysis

The relationship between the mRNA levels of COL4A1/COL4A2 and the pathological clinic features of patients with HCC on ethnicity, gender, age, tumor grade, and disease stages was analyzed by using UALCAN. UALCAN (http://ualcan.path.uab.edu) is a web portal to facilitate gene expression analysis of cancer subgroups and cancer survival analyses [63]. The mRNA levels of COL4A1 and COL4A2 in HCC samples were compared with that in the normal tissues. P < 0.05 were considered different significantly (*, P < 0.05, **, P < 0.01, *** P < 0.001, **** P < 0.0001). Student’s t-test was performed to generate a p-value.

GEPIA (Gene Expression Profiling Interactive Analysis) database

The expression profile of six COL IV isoforms in HCC was further examined by using GEPIA database. GEPIA web provides a server to analyze the gene expression profiling between cancer and normal tissues [64]. The significance test method was one-way ANOVA, using disease state (Tumor or Normal) as variable for calculating differential expression.

cBioPortal for cancer genomics

The cooperative genomic alterations of COL4A1 and COL4A2 network were analyzed by using cBioPortal. The cBioPortal for Cancer Genomics (http://cbioportal.org) is an integrated website for analyzing complex cancer genomics and clinical profiles [37]. The liver hepatocellular carcinoma (TCGA, Provisional) including 373 samples with mRNA data was selected for further analysis. The genome profiles included mutations, putative CNA, and mRNA expression. The overview of COL4A1 and COL4A2 genomic alterations was shown in the tab OncoPrint. The 50 most frequently altered neighbor genes of COL4A1 and COL4A2 were visualized in the tab Network, GO and KEGG pathway of the 50 most frequently altered neighbor genes were analyzed by using DAVID [65].

LinkedOmics analysis

The correlated genes of COL4A1 and COL4A2 in HCC were analyzed by using LinkedOmics. The LinkedOmics database (http://www.linkedomics.org/login.php) is a web-portal for multi-omics and clinical data analysis of 32 cancer types with 11158 samples from TCGA [66]. The genes correlated with COL4A1 and COL4A2 in
HCC were visualized in the LinkFinder module. The GO (CC, BP and MF), KEGG pathways, kinase-target, miRNA-target and transcription factor-target analysis of the COL4A1 and COL4A2 correlated genes were visualized in the LinkInterpreter module.

Abbreviations

TCGA: The Cancer Genome Atlas; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology; GSEA: Gene Set Enrichment Analysis; GEO: Gene Expression Omnibus; ECM: Extracellular matrix; SRF: Serum response factor; AML1: RUNX1, RUNX family transcription factor 1; CNA: Copy-number alterations; AFP-L3: Alpha fetal protein binding fraction; DCP: Des-γ-carboxyprothrombin; GPC3: Glypican-3; OPN: Osteopontin; GP73: Golgi protein-73; SCCA: Squamous cell carcinoma antigen; SuPAR: Soluble urokinase plasminogen activator receptor; MDK: Midkine; TRX: Thioredoxins.

AUTHOR CONTRIBUTIONS

Y-X.L. and J.Q.C. performed literature searches and designed studies; Y.L.L. and X.R.K. collected data, interpreted data, and wrote the paper; J.Y.Z., H.S., and Y.C. revised and polished the language.

ACKNOWLEDGMENTS

Transcriptomic profiles of human HCC tissues (access #: GSE14323 and GSE6764) were downloaded from Gene Expression Omnibus. We appreciate Dr. Mas and Wurmbach’s team for sharing such valuable patient resources in the GEO database. We also appreciate researchers who have developed and maintained public databases such as Oncomine, cBioPortal, GEPIA, UALCAN, and LinkedOmics which will accelerate the understanding and treatment of human cancer.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

FUNDING

This work was supported by the National Nature Science Foundation of China (31871379), the National Basic Research Program of China 973 Program (2015CB964700), the Chinese Government Grant (ODCCC2268), the Guangdong Province Science and Technology Plan (2018A050506070, 2016B030301007, 2015B020230007, 2014B020225004), Guangzhou City Science and Technology Plan (201704020212), and the China Postdoctoral Science Fund (2018M643045).

REFERENCES

1. McGlynn KA, London WT. The global epidemiology of hepatocellular carcinoma: present and future. Clin Liver Dis. 2011; 15:223–43, vii–x. vii-x. https://doi.org/10.1016/j.cld.2011.03.006 PMID:21689610

2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136:E359–86. https://doi.org/10.1002/ijc.29210 PMID:25220842

3. Louafi S, Boige V, Dureux M, Bonyhay L, Mansourbakht T, de Baere T, Asnacios A, Hannoun L, Poynard T, Taieb J. Gemcitabine plus oxaliplatin (GEMOX) in patients with advanced hepatocellular carcinoma (HCC): results of a phase II study. Cancer. 2007; 109:1384–90. https://doi.org/10.1002/cncr.22532 PMID:17330837

4. Jindal A, Thadi A, Shailubhai K. Hepatocellular Carcinoma: Etiology and Current and Future Drugs. J Clin Exp Hepatol. 2019; 9:221–32. https://doi.org/10.1016/j.jceh.2019.01.004 PMID:31024205

5. Komindr A, Praditphol N, Suphanpayak S, Sae-Eaw R, Nussati A, Tujinda S, Kongteeraphap P, Intaraksa S, Rukchampong R, Deesawat T. Correlation of HBV and HCV with CH, LC, HCC in liver biopsied tissue at Rajavithi Hospital. J Med Assoc Thai. 2005; 88: 788–809. PMID:16083220

6. Chen XP, Long X, Jia WL, Wu HJ, Zhao J, Liang HF, Laurence A, Zhu J, Dong D, Chen Y, Lin L, Xia YD, Li WY, et al. Viral integration drives multifocal HCC during the occult HBV infection. J Exp Clin Cancer Res. 2019; 38:261. https://doi.org/10.1186/s13046-019-1273-1 PMID:31200735

7. Bruix J, Sherman M, and American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011; 53:1020–22. https://doi.org/10.1002/hep.24199 PMID:21374666

8. Bruix J, Tak WY, Gasbarrini A, Santoro A, Colombo M, Lim HY, Mazzaferro V, Wiest R, Reig M, Wagner A, Bolondi L. Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: multicentre, open-label, phase II safety study. Eur J Cancer. 2013; 49:3412–19. https://doi.org/10.1016/j.ejca.2013.05.028 PMID:23809766
9. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Wellin TH 3rd, Meyer T, Kang YK, Yeo W, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017; 389:2492–502. https://doi.org/10.1016/S0140-6736(17)31046-2 PMID:28434648

10. Yamamoto Y, Matsui J, Matsuhashi T, Obashi H, Miyazaki K, Nakamura K, Tohyama O, Semb a T, Yamaguchi A, Hoshi SS, Mimura F, Haneda T, Fukuda Y, et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc Cell. 2014; 6:18. https://doi.org/10.1186/2045-824X-6-18 PMID:25197551

11. Zhai B, Sun XY. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol. 2013; 5:345–52. https://doi.org/10.4254/wjh.v5.i7.345 PMID:23898367

12. Kim K, Jha R, Prins PA, Wang H, Chacha M, Hartley ML, He AR. Regorafenib in advanced hepatocellular carcinoma (HCC): considerations for treatment. Cancer Chemother Pharmacol. 2017; 80:945–54. https://doi.org/10.1007/s00280-017-3431-5 PMID:28932966

13. Personeni N, Pressiani T, Rimassa L. Lenvatinib for the treatment of unresectable hepatocellular carcinoma: evidence to date. J Hepatocell Carcinoma. 2019; 6:31–39. https://doi.org/10.2147/JHC.S168953 PMID:30775342

14. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature. 2001; 411:375–79. https://doi.org/10.1038/35077241 PMID:11357145

15. Mbeunkui F, Johann DJ Jr. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol. 2009; 63:571–82. https://doi.org/10.1007/s00280-008-0881-9 PMID:19083000

16. Mak KM, Chen LL, Lee TF. Codistribution of collagen type IV and laminin in liver fibrosis of elderly cadavers: immunohistochemical marker of perisinusoidal basement membrane formation. Anat Rec (Hoboken). 2013; 296:953–64. https://doi.org/10.1002/ar.22694 PMID:23596149

17. Rojkind M, Ponce-Noyola P. The extracellular matrix of the liver. Coll Relat Res. 1982; 2:151–75. https://doi.org/10.1016/S0174-173X(82)80031-9 PMID:7049553

18. Chen W, Rock JB, Yearsley MM, Ferrell LD, Frankel WL. Different collagen types show distinct rates of increase from early to late stages of hepatitis C-related liver fibrosis. Hum Pathol. 2014; 45:160–65. https://doi.org/10.1016/j.humpath.2013.08.015 PMID:24321525

19. Kawai S, Kubo S, Tsukamoto T, Tanaka H, Shuto T, Yamamoto T, Hirohashi K, Kinoshita H. Serum concentration of type IV collagen 7S domain as a marker for increased risk of recurrence after liver resection for hepatocellular carcinoma. Dig Surg. 2003; 20:201–08. https://doi.org/10.1159/000070386 PMID:12759499

20. Vaniotis G, Rayes RF, Qi S, Milette S, Wang N, Perrino S, Bourdeau F, Nyström H, He Y, Lamarche-Vane N, Brodt P. Collagen IV-conveyed signals can regulate chemokine production and promote liver metastasis. Oncogene. 2018; 37:3790–805. https://doi.org/10.1038/s41388-018-0242-z PMID:29651051

21. Burnier JV, Wang N, Michel RP, Hassainain M, Li S, Lu Y, Metrakos P, Antecka E, Burnier MN, Ponton A, Gallinger S, Brodt P. Type IV collagen-initiated signals provide survival and growth cues required for liver metastasis. Oncogene. 2011; 30:3766–83. https://doi.org/10.1038/onc.2011.89 PMID:21478904

22. Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol. 2009; 27:1485–91. https://doi.org/10.1200/JCO.2008.20.7753 PMID:19224838

23. Takayama T, Makucuchi M, Kojiro M, Lauwers GY, Adams RB, Wilson SR, Jang HJ, Charnsangavej C, Taouli B. Early hepatocellular carcinoma: pathology, imaging, and therapy. Ann Surg Oncol. 2008; 15:972–78. https://doi.org/10.1245/s10434-007-9685-0 PMID:18236118

24. Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta. 2001; 313:15–19. https://doi.org/10.1016/S0009-8981(01)00644-1 PMID:11694234

25. Naraki T, Kohno N, Saito H, Fujimoto Y, Ohhira M, Morita T, Kohgo Y. gamma-Carboxyglutamic acid content of hepatocellular carcinoma-associated des-gamma-carboxy prothrombin. Biochim Biophys Acta. 2002; 1586:287–98. https://doi.org/10.1016/S0925-4439(01)00107-7 PMID:11997080

26. Haruyama Y, Kataoka H. Glypican-3 is a prognostic factor and an immunotherapeutic target in
hepatocellular carcinoma. World J Gastroenterol. 2016; 22:275–83. https://doi.org/10.3748/wjg.v22.i1.275 PMID:26755876

27. Zhou F, Shang W, Yu X, Tian J. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev. 2018; 38:741–67. https://doi.org/10.1002/med.21455 PMID:28621802

28. Shang S, Plymoth A, Ge S, Feng Z, Rosen HR, Sangrajrang S, Hainaut P, Marrero JA, Beretta L. Identification of osteopontin as a novel marker for early hepatocellular carcinoma. Hepatology. 2012; 55:483–90. https://doi.org/10.1002/hep.24703 PMID:21953299

29. Kladney RD, Cui X, Bulla GA, Brunt EM, Fimmel CJ. Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hepatology. 2002; 35:1431–40. https://doi.org/10.1053/jhep.2002.32525 PMID:12029628

30. Giannelli G, Fransvea E, Trerotoli P, Beaugrand M, Marinosci F, Lupo L, Nkontchou G, Dentico P, Antonaci S. Clinical validation of combined serological biomarkers for improved hepatocellular carcinoma diagnosis in 961 patients. Clin Chim Acta. 2007; 383:147–52. https://doi.org/10.1016/j.cca.2007.05.014 PMID:17582392

31. Sun Y, Gao G, Cai J, Wang Y, Qu X, He L, Liu F, Zhang Y, Lin K, Ma S, Yang X, Qian X, Zhao X. Annexin A2 is a discriminative serological candidate in early hepatocellular carcinoma. Carcinogenesis. 2013; 34:595–604. https://doi.org/10.1093/carcin/bgs372 PMID:23188673

32. Chounta A, Ellinas C, Tzanetakou V, Pliarhopoulou F, Mplani V, Oikonomou A, Leventogiannis K, Giamarellos-Bourboulis EJ. Serum soluble urokinase plasminogen activator receptor as a screening test for the early diagnosis of hepatocellular carcinoma. Liver Int. 2015; 35:601–07. https://doi.org/10.1111/liv.12705 PMID:25348952

33. Shaheen KY, Abdel-Mageed AI, Safwat E, AlBreedy AM. The value of serum midkine level in diagnosis of hepatocellular carcinoma. Int J Hepatol. 2015; 2015:146389. https://doi.org/10.1155/2015/146389 PMID:25737783

34. Reichl P, Fang M, Starlinger P, Stauffer K, Nenutil R, Muller P, Greplova K, Valik D, Dooley S, Brostjan C, Gruenberger T, Shen J, Man K, et al. Multicenter analysis of soluble Axl reveals diagnostic value for very early stage hepatocellular carcinoma. Int J Cancer. 2015; 137:385–94. https://doi.org/10.1002/ijc.29394 PMID:25529751

35. Li J, Cheng ZJ, Liu Y, Yan ZL, Wang K, Wu D, Wan XY, Xia Y, Lau WY, Wu MC, Shen F. Serum thioredoxin is a diagnostic marker for hepatocellular carcinoma. Oncotarget. 2015; 6:9551–63. https://doi.org/10.18632/oncotarget.3314 PMID:25871387

36. Zhang H, Deng Y, Zhang Y, Ping Y, Zhao H, Pang L, Zhang X, Wang L, Xu C, Xiao Y, Li X. Cooperative genomic alteration network reveals molecular classification across 12 major cancer types. Nucleic Acids Res. 2017; 45:567–82. https://doi.org/10.1093/nar/gkw108 PMID:2789621

37. Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 2011; 63:610–15. https://doi.org/10.1016/j.addr.2010.11.001 PMID:21118706

38. Batista S, Maniati E, Reynolds LE, Tavora B, Lees DM, Fernandez I, Elia G, Casanovas O, Lo Celso C, Hagemann T, Hodiivala-Dilke K. Haematopoietic focal adhesion kinase deficiency alters haematopoietic homeostasis to drive tumour metastasis. Nat Commun. 2014; 5:5054. https://doi.org/10.1038/ncomms6054 PMID:25270220

39. Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 2011; 63:610–15. https://doi.org/10.1016/j.addr.2010.11.001 PMID:21118706

40. Itoh S, Maeda T, Shimada M, Aishima S, Shirabe K, Tanaka S, Maehara Y. Role of expression of focal adhesion kinase in progression of hepatocellular carcinoma. Clin Cancer Res. 2004; 10:2812–17. https://doi.org/10.1158/1078-0432.CCR-1046-03 PMID:15102689

41. Sulzmaier FJ, Jean C, Schlaeffer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 2014; 14:598–610. https://doi.org/10.1038/nrc3792 PMID:25098269

42. Williams KE, Bundred NJ, Landberg G, Clarke RB, Farnie G. Focal adhesion kinase and Wnt signaling regulate human ductal carcinoma in situ stem cell activity and response to radiotherapy. Stem Cells. 2015; 33:327–41. https://doi.org/10.1002/stem.1843 PMID:25187396
43. Chen JS, Huang XH, Wang Q, Chen XL, Fu XH, TanHX, Zhang LJ, Li W, Bi J. FAK is involved in invasion and metastasis of hepatocellular carcinoma. Clin Exp Metastasis. 2010; 27:71–82. https://doi.org/10.1007/s10585-010-9306-3 PMID: 20180147

44. Fan Z, Duan J, Wang L, Xiao S, Li L, Xiao S, Li L, Yan X, Yao W, Wu L, Zhang S, Zhang Y, Li Y, Zhu X, Hu Y, et al. PTK2 promotes cancer stem cell traits in hepatocellular carcinoma by activating Wnt/β-catenin signaling. Cancer Lett. 2019; 450:132–43. https://doi.org/10.1016/j.canlet.2019.02.040 PMID: 30849480

45. Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C, Tovar V, Roayaie S, Sole M, Battiston C, Van Laarhoven S, Fiel MI, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008; 135:1972–83, 1983.e1-11. https://doi.org/10.1053/j.gastro.2008.08.008 PMID: 18929564

46. Zhou L, Huang Y, Li J, Wang Z. The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol. 2010; 27:255–61. https://doi.org/10.1007/s12032-009-9201-4 PMID: 19301157

47. Ohrnberger S, Thavamani A, Braeuning A, Lipka DB, Kirilov M, Geffers R, Autenrieth SE, Römer M, Zell A, Bonin M, Schwarz M, Schütz G, Schirmacher P, et al. Dysregulated serum response factor triggers formation of hepatocellular carcinoma. HEPATOLOGY. 2015; 61:979–89. https://doi.org/10.1002/hep.27539 PMID: 25266280

48. Kwon CY, Kim KR, Choi HN, Chung MJ, Noh SJ, Kim DG, Kang MJ, Lee DG, Moon WS. The role of serum response factor in hepatocellular carcinoma: implications for disease progression. Int J Oncol. 2010; 37:837–44. https://doi.org/10.3892/ijo_00000734 PMID: 20811705

49. Park MY, Kim KR, Park HS, Park BH, Choi HN, Jang KY, Chung MJ, Kang MJ, Lee DG, Moon WS. Expression of the serum response factor in hepatocellular carcinoma: implications for epithelial-mesenchymal transition. Int J Oncol. 2007; 31:1309–15. https://doi.org/10.3892/ijo.31.6.1309 PMID: 17982656

50. Bae JS, No SJ, Kim KM, Jang KY, Chung MJ, Kim DG, Moon WS. Serum response factor induces epithelial to mesenchymal transition with resistance to sorafenib in hepatocellular carcinoma. Int J Oncol. 2014; 44:129–36. https://doi.org/10.3892/ijo.2013.2154 PMID: 24173109

51. Wu W, Liu S, Liang Y, Zhou Z, Liu X. MiR-7 inhibits progression of hepatocarcinoma by targeting KLF-4 and promises a novel diagnostic biomarker. Cancer Cell Int. 2017; 17:31. https://doi.org/10.1186/s12935-017-0386-x PMID: 28239300

52. Han Y, Liu Y, Fu X, Zhang Q, Huang H, Zhang C, Li W, Zhang J. miR-9 inhibits the metastatic ability of hepatocellular carcinoma via targeting beta galactoside alpha-2-6-sialyltransferase 1. J Physiol Biochem. 2018; 74:491–501. https://doi.org/10.1007/s13105-018-0642-0 PMID: 30006781

53. Li J, Zhao J, Wang H, Li X, Liu A, Qin Q, Li B. MicroRNA-140-3p enhances the sensitivity of hepatocellular carcinoma cells to sorafenib by targeting pregnenolone X receptor. Oncotargets Ther. 2018; 11:5885–94. https://doi.org/10.2147/OTT.S179509 PMID: 30271172

54. Chu Y, Jiang M, Du F, Chen D, Ye T, Xu B, Li X, Wang W, Qiu Z, Liu H, Nie Y, Liang J, Fan D. miR-204-5p suppresses hepatocellular cancer proliferation by regulating homeoprotein SIX1 expression. FEBS Open Bio. 2018; 8:189–200. https://doi.org/10.1002/2211-5463.12363 PMID: 29435409

55. Jiang G, Wen L, Zheng H, Jian Z, Deng W. miR-204-5p targeting SIRT1 regulates hepatocellular carcinoma progression. Cell Biochem Funct. 2016; 34:505–10. https://doi.org/10.1002/cbf.3223 PMID: 27748572

56. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007; 23:1846–47. https://doi.org/10.1093/bioinformatics/btm254 PMID: 17496320

57. Diboun I, Wernisch L, Orengo CA, Koltzenburg M. Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics. 2006; 7:252. https://doi.org/10.1186/1471-2164-7-252 PMID: 17029630

58. Berkman SJ, Roscoe EM, Bourret JC. Comparing self-directed methods for training staff to create graphs using Graphpad Prism. J Appl Behav Anal. 2019; 52:188–204. https://doi.org/10.1002/jaba.522 PMID: 30382580

59. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, Chinnaiyan AM. Oncomine 3.0: genes, pathways, and
networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 2007; 9:166–80.
https://doi.org/10.1593/neo.07112
PMID: 17356713

60. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaian AM. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004; 6:1–6.
https://doi.org/10.1016/S1476-5586(04)80047-2
PMID: 15068665

61. Mas VR, Maluf DG, Archer KJ, Yanek K, Kong X, Kulik L, Freise CE, Olthoff KM, Ghobrial RM, McIver P, Fisher R. Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular carcinoma. Mol Med. 2009; 15:85–94.
https://doi.org/10.2119/molmed.2008.00110
PMID: 19098997

62. Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, Fiel I, Thung S, Mazzaferro V, Bruix J, Bottinger E, Friedman S, Waxman S, Llovet JM. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 2007; 45:938–47.
https://doi.org/10.1002/hep.21622
PMID: 17393520

63. Chandrashekar DS, Bashel B, Balasubramanya SA, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BV, Varambally S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia. 2017; 19:649–58.
https://doi.org/10.1016/j.neo.2017.05.002
PMID: 28732212

64. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017; 45:W98–102.
https://doi.org/10.1093/nar/gkx247
PMID: 28407145

65. Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37:1–13.
https://doi.org/10.1093/nar/gkn923
PMID: 19033363

66. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018; 46:D956–63.
https://doi.org/10.1093/nar/gkx1090
PMID: 29136207
Supplementary Figure 1. COL4As expression in hepatocellular carcinoma (HCC). The transcription levels of COL4A1 and COL4A2 were significantly upregulated in preneoplastic lesions (cirrhosis and dysplasia) and HCC tissues compared to normal tissues. (A) Dot plot showing the COL4A4s mRNA levels in GEO dataset (GSE6764). Normal (n=10): normal liver; Cirrhosis (n=13): cirrhotic liver tissue; dysplasia1 (n=10): low-grade dysplastic liver tissue; dysplasia2 (n=7): high-grade dysplastic liver tissue; HCC1 (n=18): early HCC; HCC2 (n=8): advanced HCC; HCC3 (n=9): very advanced HCC. Data are mean ± SD. *, P < 0.05, **, P < 0.01, ***, P < 0.001 (Student’s t-test). (B) Box plot showing the fold change of COL4A1 and COL4A2 in preneoplastic lesion (cirrhosis) and HCC tissues compared to normal tissues in GSE14323 dataset (Mas Liver, Oncomine). (C) Box plot showing the fold change of COL4A1 and COL4A2 in preneoplastic lesion (cirrhosis) and HCC tissues compared to normal tissues in GSE6764 dataset (Wurmbach Liver, Oncomine). Student’s t-test was performed to generate a p-value.
Supplementary Table

Supplementary Table 1. Significantly enriched transcript factor, microRNA, and kinase networks of COL4A1 and COL4A2 in hepatocellular carcinoma (LinkedOmics).

Geneset	LeadingEdgeGene
VSSRF_Q6	COL1A2;COL1A1;FLNA;VCL;MYL9;KCNMB1;PLN;PPP1R12A;RARB;NFATC4;ZEB1;BDNF;SLC7A1;THBS1;FOS;ABL1;ACTN1;PCTH1;PPP2R3A;NR4A1;DUSP5;ITGA7;ATP1A2;MYLK;PLCB3
VSRSRFC4_Q2	THBS2;ZFPFM2;TGFB3;RASGRP3;TWIST1;PDGFRα;ATP2A3;ATP1B2;MIF;PKR3;PCTH1;NR4A1;ITGA7
CTGYNNCTYTAA	_UNKNOWN_
V$MEF2_01	MRVI1;MECOM;ITGA3;IRAK4
V$AML1_Q6	COL4A1;COL4A2;VIM;PGF;CBL;ITGA10;ANK3;NOTCH2;ATP2A2;NR4A1;PXM1;COL9A2;PTPN7
V$HEN1_01	PDGFBL4;CREB3L1;DLL1;HIF1A;BDNF;ANK1;PDGFA;ROCK1;ANK2;DUSP7;BCL2L2;MAPK3;STAT3
V$EVI1_04	CACNA1C;HSPB2;TWIST1;ITGA8;TGFB2;WNT2B;BMPR2;FZD2;NFATC4;BDNF;NOTCH2;PTCH2;P
PRKG1	MRVI1;ADCY3;PRKG1;PDE5A;TRPC6;ARHGEEF6;RGS2;RAP1B
PTK2B	NOS3
MAPK7	MEF2C;ETS1;RPS6KA2;HIF1A;RUNX1;NFKB1;FOS;SGK1;MEF2A;DAPK1;PML;NR4A1
CAMK2A	VIM;ADCY3;ETS1;FLNA;PLN;ITGB1;CD44;PLCB3;SMAD2
MIR-140	CACNA1C;PDGFRα;ANK2;BCL2L2;SOX4;ACTN4;GYS1;E2F3;GIT1;WNT1
MIR-9	COL4A2;PDGFRB;SLC9A1;MMP16;CXCR4;TNF1;MYH9;NFKB1;RALGDS;CREB5;NOTCH2;RET;ANK2;
	PTK3;COL9A1;VAV3;WNT4;KITLG;MAP3K3;CCDC6;NCOA1;PAK2;PDGFC;RP6KA4;ATP1B1
MIR-204, MIR-211	NTRK2;ITPR1;BCL2;ANGPT1;TGFRB2;CREB5;WNT4;KITLG;EZR;SOX4;MAP3K3;ATF2;RPS6
MIR-23A, MIR-23B	MEF2C;RUNX1T1;PLAU;PLCB4;PPP1R12A;CXCL12;PTGER4;ZEB1;PPP2R5E;GLS;SLC7A1;TGFRB2;
	TGFA;SGK1;KITLG;MAP3K5;SSH2;SPRY2;MAP3K3;PPP1CB;CCDC6;CRK;DUSP5;ADRA2B;NCOA1;
	MAP4K4;COL4A5;MARCKS;YWHA5;STK4;CASP7
MIR-519E	CACR4;DLL1;PPP2R2A;ARHGEF12;MYLK;SP1;FGD1;MAP3K7;RBL2
MIR-7	GLI3;DDIT4;PRKCB;PIK3CD;SP1;ERBB4;PFN2
MIR-518C	DLL4;PPP1R12B;TWIST1;ANK2;ITGB3;ATP2A2;SPRY2
MIR-130A, MIR-301, MIR-130B	ZFPFM2;ZEB2;MAP3K12;KIT;DLL1;ITPR1;PDGFRB;WNT2;BMPR2;TGFRB2;CREB5;ARHGEF12;
	SOX4;NCOA1;ERBB4;WNT1

www.aging-us.com 223 AGING