Supporting Information

Indolylmaleimide derivative IM-17 shows cardioprotective effects in ischemia-reperfusion injury

Kosuke Dodo*,†,§, and Tadashi Shimizu,‡,§, Jun Sasamori,¶, Kazuyuki Aihara,§ Naoki Terayama,†,& Shuhei Nakao,†,§, Katsuya Iuchi,†,‡,|| Masahiro Takahashi,§ and Mikiko Sodeoka*,†,‡,§,&

*To whom correspondence should be addressed. Tel: +81-48-467-9373; Fax: +81-48-462-4666; e-mail: sodeoka@riken.jp and dodo@riken.jp

†RIKEN, Synthetic Organic Chemistry Laboratory, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
‡Sodeoka Live Cell Chemistry Project, ERATO, JST, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
§Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
&AMED-CREST, AMED, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
¶Drug Research Department, Fukushima Research Laboratories, Toa Eiyo Ltd., 1, Yuno-tanaka, Iizakamachi, Fukushima-shi, Fukushima 960-0280, Japan.

Present Addresses
#Advanced Medical Research Center, Hyogo University of Health Sciences, 1–3–6 Minatojima, Kobe 650–8530, Japan.
||Department of Materials and Life Science, Seikei University, Musashino, Tokyo 180-8633, Japan.

Table of Contents
Chemistry
- General...S2
- Synthesis of indolylmaleimide derivatives (Schemes S1 and S2) ..S2
- HPLC analysis for compound purities...S9
Biology
- Cell culture..S11
- AlamarBlue assay..S11
- LDH assay...S11
- Cell imaging..S11
- Cell death inhibitors and inducers...S12
- Analysis of stability to liver metabolism (Figure S1) ...S12
- Langendorff isolated rat heart model (Figure S2) ...S13
- Ischemia-reperfusion-induced arrhythmia model...S14
- KinaseProfiler assay of IM-54 (Table S1) ..S16
- KINOMEScan screening of IM-17 and IM-54 (Table S2) ...S16
References...S28
Chemistry

General

Melting points were determined with a Yanaco MP-J8 micro melting point apparatus. 1H and 13C NMR spectra were recorded on a JEOL JNM-LA400, JEOL JNM-AL400 or JNM-AL300 spectrometer. Chemical shifts were reported in the scale relative to CDCl$_3$ as an internal reference. FAB-MS was taken on a Hitachi M-80B or JEOL JMS-700. ESI-MS was taken on a Bruker Daltonics micrOTOF-QII-RSL. IR spectra were measured on Thermo Nicolet AVATAR 370 FT-IR. Column chromatography was performed with silica gel 60 (40-100 µm) purchased from Kanto Chemical Co. Dehydrated stabilizer-free tetrahydrofuran (THF), dehydrated dichloromethane, dehydrated dimethylformamide (DMF) were purchased from Kanto Chemical Co., and used as received. The purity of IM-17, 18, 19 was checked by HPLC. The purity of other IM derivatives was assessed by elemental analysis.

Synthesis of indolylmaleimide derivatives

The synthetic schemes of IM-20, 12, 13, 54, and 25 were shown in the previous report.1 IM-17, 18, 19, 27, 90, and 91 were similarly synthesized from IM-3 or IM-4 (Scheme S1). Typical synthetic procedures for IM-20, IM-12, and IM-17 are described below. The purity of indolylmaleimide derivatives was assessed by elemental analysis, except for IM-17, 18, 19.

Scheme S1

![Scheme S1](image_url)
1-Methyl-3-(1-methyl-1H-indol-3-yl)-4-(methylamino)-1H-pyrrole-2,5-dione (IM-20)

To a solution of IM-3 (54.2 mg, 0.197 mmol) in THF (1 mL) was added a 40% aqueous solution of methylamine (0.20 mL). The mixture was stirred for 24 h at room temperature, and then water was added. The aqueous layer was extracted with ethyl acetate, and the combined organic layers were washed with brine. The organic layer was dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate = 4/1 ~ 2/1) to give the title compound (50.3 mg, 95%) as a yellow solid: mp 195-198 °C (sub); IR (neat, cm⁻¹) 3312, 2962, 2931, 2848, 1753, 1701, 1652, 1608, 1547, 1508, 1442, 1416, 1385, 1333, 1298, 1245, 1219, 1184, 1153, 1122, 1101, 1048, 1004, 982, 734; ¹H NMR (400 MHz, CDCl₃) δ 2.83 (d, J = 5.5 Hz, 3H), 3.06 (s, 3H), 3.82 (s, 3H), 5.17 (br, 1H), 7.11 (s, 1H), 7.11 (dd, J = 7.1 and 7.8 Hz, 1H), 7.23 (dd, J = 7.1 and 8.3 Hz, 1H), 7.32 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 10.72, 23.18, 23.66, 32.74, 45.10, 93.43, 103.16, 109.19, 119.46, 119.96, 121.65, 128.76, 129.23, 136.37, 142.65, 168.39, 172.85; HRMS (ESI⁺) calcd. for C₁₅H₁₅N₃NaO₂ ([M+Na⁺]⁺) m/z 292.1056; found 292.1064; Anal calcd. for (C₁₅H₁₅N₃O₂): C, 66.90; H, 5.61; N, 15.60; found: C, 66.91; H, 5.72; N, 15.48.

1-Methyl-3-(1-methyl-1H-indol-3-yl)-4-(propylamino)-1H-pyrrole-2,5-dione (IM-12)

To a solution of IM-3 (200 mg, 0.73 mmol) in CH₂Cl₂ (8 mL) was added n-propylamine (600 µL, 7.3 mmol), and the mixture was stirred at room temperature for 4 days. After evaporation of the solvent, the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 4/1) to give IM-12 (178 mg, 82%) as an orange solid: mp 137-140 °C; IR (neat, cm⁻¹) 3330, 2960, 1691, 1653, 1533, 1440, 744; ¹H NMR (270 MHz, CDCl₃) δ 0.68 (t, J = 7.4 Hz, 3H), 1.35 (tq, J = 7.4 and 7.4 Hz, 2H), 3.04 (s, 3H), 3.09 (dt, J = 7.4 and 7.4 Hz, 2H), 3.79 (s, 3H), 5.17 (t, J = 7.4 Hz, 1H), 7.06-7.16 (m, 2H), 7.23 (dd, J = 8.0 and 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 10.72, 23.18, 23.66, 32.74, 45.10, 93.43, 103.16, 109.19, 119.46, 119.96, 121.65, 128.76, 129.23, 136.37, 142.65, 168.39, 172.85; HRMS (ESI⁺) calcd. for C₁₇H₁₉N₃NaO₂ ([M+Na⁺]⁺) m/z 320.1369; found 320.1375; Anal calcd. for (C₁₇H₁₉N₃O₂•0.1H₂O): C, 68.25; H, 6.47; N, 14.05; found: C, 68.24; H, 6.59; N, 13.85.
4-(Butylamino)-1-methyl-3-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (IM-13)

Synthesized from IM-3 (76%) as an orange solid; mp 144-147 °C; IR (neat, cm⁻¹) 3211, 2928, 1693, 1650, 1541, 1441, 742; ¹H NMR (270 MHz, CDCl₃) δ 0.69 (t, J = 6.8 Hz, 3H), 1.11 (tq, J = 6.8 and 6.8 Hz, 2H), 1.34 (tt, J = 6.8 and 6.8 Hz, 2H), 3.06 (s, 3H), 3.14 (dt, J = 6.8 and 6.8 Hz, 2H), 3.92 (s, 3H), 5.17 (t, J = 6.8 Hz, 1H), 7.08-7.16 (m, 2H), 7.23 (dd, J = 8.0 and 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃) δ 13.33, 19.44, 23.76, 32.05, 32.82, 43.25, 93.42, 103.23, 109.24, 119.53, 120.01, 121.74, 128.89, 129.28, 136.44, 142.73, 168.47, 172.93; HRMS (ESI⁺) calcd. for C₁₈H₂₁N₃O₂ ([M+Na]⁺) m/z 334.1526; found 334.1532; Anal calcd. for (C₁₈H₂₁N₃O₂): C, 69.43; H, 6.80; N, 13.49; found: C, 69.20; H, 6.87; N, 13.36.

1-Methyl-3-(1-methyl-1H-indol-3-yl)-4-(pentylamino)-1H-pyrrole-2,5-dione (IM-54)

Synthesized from IM-4 (59%) as an orange solid; mp 110-111 °C; IR (neat, cm⁻¹) 3330, 2962, 2931, 2853, 1753, 1692, 1648, 1613, 1543, 1512, 1442, 1385, 1328, 1293, 1232, 742; ¹H NMR (400 MHz, CDCl₃) δ 0.75 (t, J = 6.8 Hz, 3H), 0.96-1.17 (m, 4H), 1.35 (quintet, J = 7.0 Hz, 2H), 3.06 (s, 3H), 3.13 (dt, J = 6.8 and 7.0 Hz, 2H), 3.82 (s, 3H), 5.17 (br s, 1H), 7.11 (s, 1H), 7.12 (dd, J = 7.3 and 8.0 Hz, 1H), 7.23 (dd, J = 7.3 and 8.3 Hz, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.80, 22.08, 23.87, 28.50, 29.83, 32.96, 43.66, 93.56, 103.32, 109.32, 119.65, 120.11, 121.85, 128.98, 129.35, 136.55, 142.77, 168.58, 173.03; HRMS (ESI⁺) calcd. for C₁₉H₂₃N₃NaO₂ ([M+Na]⁺) m/z 348.1682; found 348.1672; Anal calcd. for (C₁₉H₂₃N₃O₂): C, 70.13; H, 7.12; N, 12.91; found: C, 70.07; H, 7.20; N, 12.82.
3-(Hexylamino)-1-methyl-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (IM-25)

Synthesized from IM-4 (83%) as a yellow solid; mp 60-63 °C; IR (neat, cm⁻¹) 3339, 3045, 2958, 2927, 2857, 1753, 1692, 1653, 1534, 1504, 1434, 1381, 1328, 1293, 1241, 1158, 1127, 1092, 1044, 1009, 978, 816, 781, 746, 650; ¹H NMR (270 MHz, CDCl₃): δ 0.79 (t, J = 7.3 Hz, 3H), 0.98-1.39 (m, 8H), 3.06 (s, 3H), 3.12 (dt, J = 7.3 and 7.3 Hz, 2H), 3.82 (s, 3H), 5.18 (t, J = 7.3 Hz, 1H), 7.11 (dd, J = 8.0 and 8.0 Hz, 1H), 7.12 (s, 1H), 7.23 (dd, J = 8.0 and 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H); ¹³C NMR (68 MHz, CDCl₃): δ 13.92, 22.37, 23.86, 26.03, 30.10, 31.14, 32.94, 43.66, 93.52, 103.32, 109.32, 119.65, 120.10, 121.85, 128.99, 129.34, 136.53, 142.78, 168.57, 173.03; HRMS (ESI⁺) calcd. for C₂₀H₂₅N₃O₂ ([M+Na]⁺) m/z 362.1839; found 362.1839; Anal calcd. for (C₂₀H₂₅N₃O₂): C, 70.77; H, 7.42; N, 12.38, found: C, 70.94; H, 7.64; N, 12.07.

3-(2-Aminoethylamino)-1-methyl-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (IM-17)

To a solution of IM-4 (389 mg, 1.21 mmol) in THF (12 mL) was added 1,2-diaminoethane (809 µL, 12.1 mmol). The mixture was stirred for 9 days at room temperature, and then saturated aqueous NaHCO₃ solution was added to it. The aqueous layer was extracted with ether and ethyl acetate, and the combined organic layer was washed with brine. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/ethyl acetate = 4/1) to give IM-17 (273 mg, 76%) as an orange solid; mp 137-140 °C; IR (neat, cm⁻¹) 3361, 3308, 1696, 1648, 1600, 1543, 1530, 1433, 1330, 1056, 732; ¹H NMR (400 MHz, CDCl₃) δ 1.35 (br s, 2H), 2.66 (t, J = 5.8 Hz, 2H), 3.06 (s, 3H), 3.19 (dt, J = 5.8 and 5.8 Hz, 2H), 3.82 (s, 3H), 5.64 (br s, 1H), 7.12 (dd, J = 7.9 and 8.1 Hz, 1H), 7.14 (s, 1H), 7.23 (dd, J = 7.9 and 8.3 Hz, 1H), 7.32 (d, J = 8.3 Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.85, 32.99, 41.53, 45.91, 94.20, 103.20, 109.42, 119.70, 120.06, 121.90, 128.82, 129.44, 136.55, 142.74, 168.50, 172.95; MS (FAB, mNBA) m/z 299 ([M+H]⁺); HRMS calcd. for C₁₆H₁₀N₃O₂ ([M+H]⁺) 299.1508; found 299.1506; purity >98% (HPLC).
3-(3-Aminopropylamino)-1-methyl-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (IM-18).

Red amorphous solid; IR (neat, cm\(^{-1}\)) 3363, 3310, 1705, 1656, 1543, 1530, 1442, 1381, 1056, 724; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.31 (br s, 2H), 1.47 (tt, \(J = 6.4\) and 6.4 Hz, 2H), 2.58 (t, \(J = 6.4\) Hz, 2H), 3.05 (s, 3H), 3.23 (dt, \(J = 6.4\) and 6.4 Hz, 2H), 3.81 (s, 3H), 6.04 (br s, 1H), 7.09-7.15 (m, 1H), 7.12 (s, 1H), 7.22 (dd, \(J = 7.8\) and 7.8 Hz, 1H), 7.31 (d, \(J = 7.8\) Hz, 1H), 7.49 (d, \(J = 7.8\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 23.79, 32.72, 32.92, 39.79, 42.34, 93.26, 103.34, 109.34, 119.59, 120.06, 121.83, 128.96, 129.39, 136.47, 142.94, 168.49, 173.02; MS (FAB, mNBA) m/z 313 ([M+H]+); HRMS calcd. for C\(_{17}\)H\(_{21}\)N\(_4\)O\(_2\) ([M+H]+) 313.1665; found 313.1664; purity >98% (HPLC).

3-(4-Aminobutylamino)-1-methyl-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (IM-19).

Red amorphous solid; IR (neat, cm\(^{-1}\)) 3317, 2927, 1700, 1656, 1609, 1578, 1547, 1438, 1385, 1367, 1236, 1091, 732; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.20 (tt, \(J = 6.8\) and 6.8 Hz, 2H), 1.27 (br s, 2H), 1.38 (tt, \(J = 6.8\) and 6.8 Hz, 2H), 2.45 (t, \(J = 6.8\) Hz, 2H), 3.08 (s, 3H), 3.15 (dt, \(J = 6.8\) and 6.8 Hz, 2H), 3.81 (s, 3H), 5.57 (br s, 1H), 7.09-7.15 (m, 1H), 7.11 (s, 1H), 7.22 (dd, \(J = 8.1\) and 8.1 Hz, 1H), 7.31 (d, \(J = 8.1\) Hz, 1H), 7.48 (d, \(J = 8.1\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 23.79, 27.48, 30.30, 32.91, 41.31, 43.43, 93.45, 103.28, 109.32, 119.60, 121.01, 121.83, 128.89, 129.35, 136.47, 142.81, 168.50, 172.97; MS (FAB, mNBA) m/z 327 ([M+H]+); HRMS calcd. for C\(_{18}\)H\(_{23}\)N\(_4\)O\(_2\) ([M+H]+) 327.1821; found 327.1827; purity >98% (HPLC).

3-(2-Hydroxyethylamino)-1-methyl-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (IM-27).
Red solid; mp 144-147 °C; IR (neat, cm⁻¹) 3509, 3479, 3457, 3439, 3413, 3365, 3339, 3063, 3001, 2927, 1749, 1705, 1653, 1609, 1543, 1442, 1385, 1355, 1328, 1298, 1237, 1162, 1127, 1101, 1053, 1013, 982, 750, 637; ¹H NMR (400 MHz, CDCl₃) δ 1.25 (s, 1H), 3.06 (s, 3H), 3.35 (m, 2H), 3.55 (d, J = 7.0 Hz, 2H), 3.83 (s, 3H), 5.50 (t, J = 7.0 Hz, 1H), 7.15 (dd, J = 7.8 and 7.8 Hz, 1H), 7.16 (s, 1H), 7.22-7.26 (m, 1H), 7.33 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H); HRMS(ESI⁺) calcd. for C₁₆H₁₇N₃NaO₃ ([M+Na⁺]⁺) m/z 322.1162; found 322.1156; Anal calcd. for (C₁₆H₁₇N₃O₃): C, 64.20; H, 5.72; N, 14.04; found C, 64.07; H, 5.81; N, 13.89.

![Image of IM-90](image-url)

3-(3-Hydroxypropylamino)-1-methyl-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (IM-90).

Red solid; mp 121-124 °C; IR (neat, cm⁻¹) 3514, 3457, 3356, 3330, 2923, 2874, 2848, 1753, 1696, 1648, 1613, 1543, 1512, 1447, 1385, 1328, 1289, 1232, 1153, 1123, 1101, 1048, 982, 816, 746, 676, 645; ¹H NMR (400 MHz, CDCl₃) δ 1.58 (s, 1H), 1.61 (tt, J = 6.3 and 6.3 Hz, 2H), 3.06 (s, 3H), 3.32 (dt, J = 6.3 and 6.3 Hz, 2H), 3.55 (dt, J = 6.3 and 6.3 Hz, 2H), 3.83 (s, 3H), 5.52 (t, J = 6.3 Hz, 1H), 7.13 (dd, J = 8.0 and 8.0 Hz, 1H), 7.14 (s, 1H), 7.24 (dd, J = 8.0 and 8.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.87, 32.42, 33.01, 41.31, 60.47, 94.01, 103.20, 109.50, 119.70, 120.03, 121.96, 128.80, 129.48, 136.56, 142.73, 168.54, 172.92; HRMS (ESI⁺) calcd. for C₁₇H₁₉N₃O₃ ([M+Na⁺⁺]⁺) m/z 336.1319; found 336.1320; Anal calcd. for (C₁₇H₁₉N₃O₃): C, 65.16; H, 6.11; N, 13.41; found C, 65.03; H, 6.18; N, 13.25.

![Image of IM-91](image-url)

3-(4-Hydroxybutylamino)-1-methyl-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (IM-91).

Red solid; mp 137-140 °C; IR (neat, cm⁻¹) 3549, 3514, 3444, 3326, 2997, 2927, 2866, 1753, 1692, 1657, 1613, 1539, 1508, 1438, 1381, 1328, 1289, 1241, 1149, 1131, 1096, 1048, 1026, 1009, 982, 812, 742, 658; ¹H NMR (400 MHz, CDCl₃) δ 1.33 (tt, J = 5.8 and 5.8 Hz, 2H), 1.46 (tt, J = 5.8 and 5.8 Hz, 2H), 1.58 (s, 1H), 3.06 (s, 3H), 3.19 (dt, J = 5.8 and 5.8 Hz, 2H), 3.39 (dt, J = 5.8 and 5.8 Hz, 2H), 3.83 (s, 3H), 5.33 (t, J = 5.8 Hz, 1H), 7.13 (dd, J = 7.8 and 7.8 Hz, 1H), 7.14 (s, 1H), 7.24 (dd, J = 7.8 and 7.8 Hz, 2H), 7.33 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H); HRMS (ESI⁺) calcd. for C₁₉H₂₁N₃O₅ ([M+Na⁺⁺]⁺) m/z 351.1531; found 351.1341; Anal calcd. for (C₁₉H₂₁N₃O₅): C, 66.32; H, 6.45; N, 13.04; found C, 66.31; H, 6.43; N, 13.03.
Hz, 1H), 7.33 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 24.02, 26.82, 29.47, 33.14, 43.54, 62.19, 93.92, 103.42, 109.58, 119.83, 120.22, 122.09, 129.06, 129.60, 136.68, 142.86, 168.70, 173.13; HRMS (ESI$^+$) calcd. for C$_{18}$H$_{22}$N$_3$O$_3$ ([M+H]$^+$) m/z 328.1656; found 328.1656; Anal calcd. for (C$_{18}$H$_{21}$N$_3$O$_3$): C, 66.04; H, 6.47; N, 12.84; found C, 65.82; H, 6.56; N, 12.68.

Scheme S2

3-(2-Aminoethylamino)-1-methyl-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione hydrochloride (IM-17•HCl)

To a solution of IM-17 (90 mg, 0.3 mmol) in CH$_2$Cl$_2$ (1.5 mL) was slowly added a saturated HCl diethylether solution (1 mL) at 0℃. The mixture was stirred for 15 min, and the resulting precipitate was collected by filtration, washed with diethylether, and dried to afford IM-17•HCl (95 mg, 95%) as an orange solid; 1H NMR (400 MHz, DMSO-d$_6$) δ 2.67-2.72 (m, 2H), 2.91 (s, 3H), 3.33-3.39 (m, 2H), 3.73-3.80 (m, 2H), 3.81 (s, 3H), 7.03 (dd, J = 7.2 and 7.2 Hz, 1H), 7.15-7.19 (m, 2H), 7.36-7.46 (m, 3H), 7.80 (br, 1H); HRMS (ESI$^+$) calcd. for C$_{16}$H$_{18}$N$_4$O$_2$ ([M+H]$^+$) m/z 299.1503; found 299.1506.
HPLC analysis of purity

The purity of indolylmaleimide derivatives **IM-17, 18, 19** was assessed by HPLC using a Waters HPLC system under two different conditions.

Condition 1: Type: TOSOH TSK-GEL ODS-100S; size: 4.6 mm (ID)–150 mm (L); flow rate 0.50 ml / min; detector: UV 254 nm; eluent: CH$_3$CN / H$_2$O with 0.2 % AcOH = 1 / 4; temperature 35 °C; run time 30 min.

Condition 2: Type: Nakarai tesque COSMOSIL 5C$_{18}$-PAQ; size: 4.6 mm (ID)–250 mm (L); flow rate 1.0 ml / min; detector: UV 254 nm; eluent: CH$_3$CN / H$_2$O with 0.2 % AcOH = 1 / 4; temperature 35 °C; run time 30 min.

IM-17: condition 1: 98.78 % ($t_R = 3.8$ min); condition 2: 99.14 % ($t_R = 3.5$ min)

IM-18: condition 1: 98.33 % ($t_R = 4.0$ min); condition 2: 98.62 % ($t_R = 3.2$ min)

IM-19: condition 1: 99.89 % ($t_R = 4.0$ min); condition 2: 98.66 % ($t_R = 3.6$ min)
IM-18

Condition 1

Condition 2

IM-19

Condition 1

Condition 2
Biology

Cell culture

HL-60 cells were maintained in RPMI 1640 medium supplemented with 100 U/mL penicillin, 100 µg/mL streptomycin, and 5% heat-inactivated fetal bovine serum (FBS). Jurkat cells were maintained in RPMI 1640 medium supplemented with 100 U/mL penicillin, 100 µg/mL streptomycin, and 10% heat-inactivated fetal bovine serum (FBS). H9c2 cells were maintained in Dulbecco's modified Eagle's medium supplemented with 100 U/mL penicillin, 100 µg/mL streptomycin, and 10% heat-inactivated fetal bovine serum (FBS). Cells were grown in a humidified incubator at 37 °C under 5% CO2/95% air.

AlamarBlue assay

HL-60 cells (3 x 10^4 cells/well for Fas ligand (FasL) and 4 x 10^4 cells/well for others) or Jurkat cells (2 x 10^4 cells/well for FasL/CHX/Z-VAD treatment or 3 x 10^4 cells/well for FasL treatment) were suspended in fresh medium in a 96-well plate. After 2 h incubation, the cells were treated with test compounds (DMSO solution, 0.5 µL/well) for 1 h and then cell death inducer (in medium, 4 µL/well) was added (final volume 100 µL/well). In all experiments, the final DMSO concentration was the same (0.5%). At 3 h later, 10 µL of AlamarBlue (Biosource International) was added to each well. The cell viability was determined based on the increase of fluorescence (excitation 560 nm/emission 590 nm) during 3-4 h incubation. Data are presented as mean ± S.D. (n = 4).

LDH assay

Lactate dehydrogenase (LDH) that leaked into the culture medium was measured with a Cytotoxicity detection kitPLUS (Roche Applied Science) according to the manufacturer’s protocol. HL-60 cells were treated with test compounds and H2O2 (100 µM) in a 96-well plate according to the same method as described for AlamarBlue assay (triplicate). H9c2 cells (1 x 10^4 cells/well) were treated with test compounds and TBHP (300 µM) for 4 h (triplicate). The change in absorbance at 490 nm was then measured to calculate the percentage of LDH release. IC50 values were calculated by Origin 8.0 software, and data are presented as mean ± S.D. (n = 3, three independent experiments).

Cell imaging

Phase-contrast images were taken with an Olympus IX71 microscope equipped with an Olympus DP70 cooled CCD camera.
Cell death inhibitors and inducers

Fas ligand was purchased from Enzo Life Sciences Inc. (SuperFasligand, cat. No. ALX-522-020-C005), Z-VAD was purchased from Peptide Institute Inc., and other reagents (actinomycin D, camptotecin, cycloheximide, CsA, DPQ, etoposide, H$_2$O$_2$, 3-MA, TBHP, Nec-1) were purchased from Sigma.

Analysis of stability to liver metabolism

To compare the drug-like properties of IM derivatives, stabilities of IM-12, IM-54, and IM-17 to liver metabolism were examined. Each compound in DMSO was mixed with 1 mL of rat liver S9 fraction containing cofactors (Ieda Trading Corporation, cat. No. S-9MIX) for a final concentration of 5 µM with 0.1% DMSO. The mixture was incubated at 37 °C for 0 min, 5 min, 15 min and 30 min. After the incubation, the mixture was moved to ice quickly. Then ethyl acetate (250 µL) was added to the mixture and the compound was extracted. The extraction was repeated 5 times. The organic layer was combined and concentrated in vacuo. The residue was diluted with MeOH (30 µL) and analyzed by HPLC. Residual compound was quantified based on the peak area detected by UV (n = 3, three independent experiments). As shown in figure S1, IM-12 and IM-54 were decreased rapidly and were not detected after 5 min incubation with S9 fraction. In contrast, IM-17 was detected even after 15 min incubation with 40% residual rate. These results demonstrated the higher stability of IM-17 to liver metabolism than IM-12 and IM-54.

Figure S1. Stabilities of IM-12, IM-17, IM-54 to liver metabolism.

IM-12, IM-17, and IM-54 (5 µM) were respectively incubated with rat S9 liver solution for 0, 5, 15, or 30 min at 37 °C. Then residual compound was extracted with ethyl acetate and quantified by HPLC. Data are presented as mean ± S.D. (n = 3, three independent experiments).

HPLC system: Thermo Fisher UltiMate 3000

Type: GL Sciences InertSustain C18; size: 1.0 mm (ID)–150 mm (L) 3 µm (particle size); flow rate 50 µl / min; detector: UV 230 nm; eluent: mobile phase A, H$_2$O with 0.1% trifluoroacetic acid; mobile phase B, CH$_3$CN with 0.1% trifluoroacetic acid; temperature 35 °C; injection volume 2 µL.
Analysis of IM-12: Gradient curve: 40% B (0–2 min), 40% to 60% B (2–6 min), 60% B (6–12.5 min), 60% to 40% B (12.5–13.5 min), 40% B (13.5–15 min); run time 15 min; $t_R = 11.3$ min.
Standard curve: $y = 0.7609x + 3.4515$, $R^2 = 0.9933$ (eight concentrations from 200 nM to 200 µM).

Analysis of IM-17: Gradient curve: 15% B (0–2 min), 15% to 35% B (2–12 min), 35% B (12–14 min), 35% to 15% B (14–16 min), 15% B (16–20 min); run time 20 min; $t_R = 12.6$ min.
Standard curve: $y = 0.3794x - 0.285$, $R^2 = 0.9994$ (seven concentrations from 200 nM to 100 µM).

Analysis of IM-54: Gradient curve: 40% B (0–2 min), 40% to 70% B (2–6 min), 70% B (6–12.5 min), 70% to 40% B (12.5–13.5 min), 40% B (13.5–15 min); run time 15 min; $t_R = 11.9$ min.
Standard curve: $y = 0.6997x + 2.2325$, $R^2 = 0.9949$ (eight concentrations from 200 nM to 200 µM).

Langendorff isolated rat heart model
The isolated rat heart preparations used in this study have been described previously\(^2\). The experiments were performed according to the Guide for the Care and Use of Laboratory Animals promulgated by the National Research Council. Briefly, male Sprague–Dawley rats (270–320 g) were anesthetized with sodium pentobarbital (30 mg/kg, i.p.) and heparinized (1000 IU/kg, i.v.). The hearts were rapidly removed and mounted on a Langendorff perfusion system (Technical Supply Co. Ltd., Tokyo). The environmental temperature was maintained at 37 °C with a heated glass water-bath throughout the experiments. Through the cannulated aorta, the hearts were perfused with warmed (37 °C) and gassed (95% O\(_2\) and 5% CO\(_2\), pO\(_2\)>600 mmHg) Krebs–Henseleit solution containing (in mM) NaCl 120, KCl 4.7, CaCl\(_2\) 1.25, MgSO\(_4\) 1.2, KH\(_2\)PO\(_4\) 1.2, NaHCO\(_3\) 25, glucose 11 at a constant perfusion pressure (70 ± 5 mm Hg). To measure the coronary flow (CF) continuously, a cannulating-type flow probe (FF-030T, Nihon Kohden, Tokyo) connected to an electro-magnetic blood flowmeter (MFV-3700, Nihon Kohden, Tokyo) was inserted into a perfusion line connected to the heart. The left ventricular pressure was measured through a water-filled latex balloon (LB-2, Technical Service Corporation, Miyagi, Japan) inserted into the left ventricle via the left atrium, with a pressure transducer (DX-360, Ohmeda, Tokyo) connected to an amplifier (AP-601G, Nihon Kohden, Tokyo). Left ventricular end-diastolic pressure (LVEDP) was adjusted to about 5 mm Hg by adjusting the volume of the balloon, and the left ventricular developed pressure (LVDP) was obtained by deducting LVEDP from left ventricular systolic pressure. The heart rate was measured by using a cardio-tachometer (AT-600G, Nihon Kohden, Tokyo) triggered by the pulse of left ventricular pressure. All hemodynamic parameters and CF were continuously recorded on a multi-channel recorder (WR3701, Graphtec, Tokyo). The hearts were paced at 300 beats/min using an electric stimulator (SEN-7103, Nihon Kohden, Tokyo), and an isolator unit (SS-104J, Nihon Kohden, Tokyo) with the bipolar electrode placed on the left atrium. After a 15-min period of
equilibration, vehicle, IM-12 (0.3 µM) or IM-17 (3 µM) was infused for 10 min with an infusion pump (Harvard Apparatus, U.S.A.) through a drug infusion line connected to the main perfusion line of the Langendorff system at a flow rate of 1/100 of the CF rate. Subsequent to drug treatment for 5 min, hearts were subjected to 30 min of global ischemia and 60 min of reperfusion. Global ischemia was induced by completely stopping the flow. LVDP, LVEDP and CF were measured before and 10 min after infusion of the drug, 10, 20 and 30 min after the induction of global ischemia, and 10, 20 and 30 min after reperfusion. Data are presented as mean ± S.D. (n = 3).

Measurement of CK activity: The coronary effluent was collected before ischemia and during reperfusion for measurement of the creatine kinase (CK) activity with a commercial assay reagent and a clinical chemistry analyzer (CL-8000, Shimadzu, Kyoto, Japan). Data are presented as mean ± S.D. (n = 3).

Figure S2. Cardioprotective effect of IM-12 in a Langendorff rat heart Ischemia-reperfusion injury model. IM-12 (0.3 µM) was added to the perfusion buffer 10 min before ischemia. No-flow ischemia was maintained for 30 min, and reperfusion was accomplished by restoring flow for 60 min. The cardioprotective effect of IM-12 was examined based on recovery of LVDP (left ventricular developed pressure) (a) and release of CK (creatine kinase) (b).

Ischemia-reperfusion-induced arrhythmia model

Male Sprague-Dawley rats were anesthetized with sodium pentobarbital. The experiments were performed according to the Guide for the Care and Use of Laboratory Animals promulgated by the National Research Council. The femoral vein was cannulated for intravenous test drug administration. Heart rate was measured by a cardiotachometer (AT-601G, Nihon Kohden). A left thoracotomy at the fifth intercostal space and pericardiectomy were performed and an ELP 5-0 nylon ligature (L14-50N, Akiyama Seisakusho, Tokyo) was placed around the left coronary artery about 2-3 mm from its origin.
Thereafter, both ends of the nylon ligature were passed through a small polyethylene tube to make a coronary snare. The standard limb lead II electrocardiogram (ECG) was monitored by a cardiograph (ECG-6303, Nihon Kohden). ECG, blood pressure and heart rate data were collected by an ECG processor (Softron, Tokyo) and stored on the MO disk for further data processing. Myocardial ischemia was initiated by tightening the coronary snare and successful ischemia was confirmed by typical elevation of the ST segment in the ECG. At 5 min after the start of ischemia, reperfusion was initiated by releasing the snare. Ventricular fibrillation (VF) after reperfusion was evaluated by ECG analysis based on the reported guideline. Total duration of VF was calculated as the sum of the duration of episodes that occurred within 10 min after reperfusion. 0.9% saline was used as a control. IM-17 was intravenously injected (1 ml/kg, over 1 min) at 5 min before ischemia (pre-ischemia treatment, 1 to 3 mg/kg) or at 1 min before reperfusion (post-ischemia treatment, 3 mg/kg).
KinaseProfiler assay of IM-54

As IM-54 was originally developed from ATP-competitive PKC inhibitor bisindolylmaleimide I (BM I), we previously analyzed its kinase-inhibitory activities against all PKC subtypes and confirmed that no PKC was inhibited by IM-54. We also evaluated its inhibitory activities against various kinases related to cell-death signaling pathways. Protein kinase inhibition assays were performed using the KinaseProfiler service (Upstate USA, Inc.). Briefly, protein kinases were assayed for their ability to phosphorylate the appropriate peptide/protein substrates in the presence of 50 µM IM-54 and 100 µM or 10 µM ATP. Activities are given as mean percentages of those in control incubations (averages of duplicate determinations). IM-54 did not inhibit more than half of any kinase activity, indicating that IC$_{50}$ values against all tested kinases were over 50 µM.

Table S1. KinaseProfiler assay of IM-54. The activity of various kinases was measured in the presence and absence of IM-54 (50 µM). ATP was present at 100 µM (left) or 10 µM (right).

kinase	kinase activity (% of control) with IM-54 (50 µM)
PKA	75
JNK1α1	91
JNK2α2	110
JNK3	87
MAPK1/ERK1	74
MAPK2/ERK2	91
MAPKAP-K2	89
MKK4	106
MKK6	99
MKK7β	100
SAPK2a/p38α	95
SAPK2b/p38β2	102
SAPK3/p38γ	100
SAPK4/p38δ	96
RIPK2	96

kinase	kinase activity (% of control) with IM-54 (50 µM)
ASK1	104
c-Raf	87
MEK1	102
PKBα	85
PKBβ	110
PKBγ	92
RSK1	57
RSK2	105
RSK3	108
RSK4	107
Src	69

KINOMEscan screening of IM-17 and IM-54

To examine the broad pattern of kinase inhibitory activities, KINOMEscan screening (DiscoverX Corp.) was applied for IM-54 and IM-17 at 10 µM. KINOMEscan evaluated the binding affinity to kinases, which was determined based on the ATP site-dependent competition for beads-immobilized kinase inhibitors. Activities are given as percentages of control values of bound kinases to beads-immobilized kinase inhibitors (averages of duplicate determinations). Less than 35 % of control at 10 µM indicates
significant inhibition of kinase. As shown in Table S2, no significant inhibition of 467 kinases by IM-17 or IM-54 was observed, supporting the view that these compounds do not have kinase-inhibitory activity.

Table S2. KINOMEscan screening of IM-17 and IM-54. Compounds were tested against 467 kinases at 10 µM (averages of duplicate determinations).

DiscoveRx Gene Symbol	Entrez Gene Symbol	IM-17	IM-54																																											
AAK1	AAK1	100	69																																											
ABL1(E255K)-phosphorylated	ABL1	90	69																																											
ABL1(F317I)-nonphosphorylated	ABL1	100	95																																											
ABL1(F317I)-phosphorylated	ABL1	97	93																																											
ABL1(F317L)-nonphosphorylated	ABL1	100	91																																											
ABL1(F317L)-phosphorylated	ABL1	91	98																																											
ABL1(H396P)-nonphosphorylated	ABL1	100	85																																											
ABL1(H396P)-phosphorylated	ABL1	89	77																																											
ABL1(M351T)-phosphorylated	ABL1	95	75																																											
ABL1(Q252H)-nonphosphorylated	ABL1	95	66																																											
ABL1(Q252H)-phosphorylated	ABL1	96	97																																											
ABL1(T315I)-nonphosphorylated	ABL1	100	69																																											
ABL1(T315I)-phosphorylated	ABL1	69	66																																											
ABL1(Y253F)-phosphorylated	ABL1	93	79																																											
ABL1-nonphosphorylated	ABL1	93	85																																											
ABL1-phosphorylated	ABL1	96	82																																											
ABL2	ABL2	99	100																																											
ACVR1	ACVR1	96	100																																											
ACVR1B	ACVR1B	91	100																																											
ACVR2A	ACVR2A	97	100																																											
ACVR2B	ACVR2B	100	100																																											
ACVR1L	ACVR1L	90	100																																											
ADCK3	CABC1	97	97																																											
ADCK4	ADCK4	100	100																																											
AKT1	AKT1	91	84																																											
AKT2	AKT2	86	100																																											
AKT3	AKT3	85	100																																											
ALK	ALK	96	98																																											
ALK(C1156Y)	ALK	93	54																																											
ALK(L1196M)	ALK	97	59																																											
AMPK-alpha1	PRKAA1	100	100																																											
AMPK-alpha2	PRKAA2	97	99																																											
ANKK1	ANKK1	91	98																																											
ARK5	NUAK1	78	100																																											
ASK1	MAP3K5	100	84																																											
ASK2	MAP3K6	100	90																																											
AURKA	AURKA	79	87																																											
Protein	Protein	96	92																																											
------------	------------	----	----																																											
AURKB	AURKB	96	92																																											
AURKC	AURKC	100	95																																											
Axl	AxL	95	91																																											
BIKE	BMP2K	99	91																																											
Blk	BlK	97	74																																											
BMPR1A	BMPR1A	100	100																																											
BMPR1B	BMPR1B	94	100																																											
BMPR2	BMPR2	69	72																																											
Bmx	Bmx	89	100																																											
Braf	Braf	93	89																																											
Braf(V600E)	Braf	100	86																																											
Brk	PTK6	100	97																																											
BRSK1	BRSK1	96	97																																											
BRSK2	BRSK2	99	88																																											
Btk	Btk	96	79																																											
Bub1	Bub1	83	72																																											
Camk1	Camk1	96	100																																											
Camk1B	PNCK	86	92																																											
Camk1D	Camk1D	100	100																																											
Camk1G	Camk1G	100	100																																											
Camk2A	Camk2A	100	96																																											
Camk2B	Camk2B	100	100																																											
Camk2D	Camk2D	89	100																																											
Camk2G	Camk2G	100	100																																											
Camk4	Camk4	95	100																																											
Camkk1	Camkk1	84	85																																											
Camkk2	Camkk2	100	98																																											
Cask	CasK	100	91																																											
Cdc2L1	CDK11B	98	100																																											
Cdc2L2	CDC2L2	92	99																																											
Cdc2L5	CDK13	99	90																																											
Cdk11	CDK19	93	100																																											
Cdk2	Cdk2	97	91																																											
Cdk3	Cdk3	100	94																																											
Cdk4-cyclinD1	Cdk4	82	89																																											
Cdk4-cyclinD3	Cdk4	98	100																																											
Cdk5	Cdk5	100	100																																											
Cdk7	Cdk7	92	84																																											
Cdk8	Cdk8	92	100																																											
Cdk9	Cdk9	97	100																																											
Cdk1L1	CDK1L1	100	78																																											
Cdk1L2	CDK1L2	99	84																																											
Cdk1L3	CDK1L3	95	100																																											
Cdk1L5	CDK1L5	92	93																																											
Protein	Protein	Percentage	Percentage																																											
-----------------	-----------------	------------	------------																																											
CHEK1	CHEK1	90	93																																											
CHEK2	CHEK2	82	95																																											
CIT	CIT	100	100																																											
CLK1	CLK1	100	77																																											
CLK2	CLK2	100	100																																											
CLK3	CLK3	100	89																																											
CLK4	CLK4	95	100																																											
CSF1R	CSF1R	100	100																																											
CSF1R-autoinhibited	CSF1R	98	100																																											
CSK	CSK	95	95																																											
CSNK1A1	CSNK1A1	90	70																																											
CSNK1A1L	CSNK1A1L	100	100																																											
CSNK1D	CSNK1D	96	100																																											
CSNK1E	CSNK1E	100	92																																											
CSNK1G1	CSNK1G1	100	99																																											
CSNK1G2	CSNK1G2	85	82																																											
CSNK1G3	CSNK1G3	100	81																																											
CSNK2A1	CSNK2A1	91	90																																											
CSNK2A2	CSNK2A2	82	74																																											
CTK	MATK	85	82																																											
DAPK1	DAPK1	100	77																																											
DAPK2	DAPK2	100	98																																											
DAPK3	DAPK3	100	94																																											
DCAMKL1	DCLK1	90	81																																											
DCAMKL2	DCLK2	94	100																																											
DCAMKL3	DCLK3	78	100																																											
DDR1	DDR1	100	91																																											
DDR2	DDR2	95	62																																											
DLK	MAP3K12	87	94																																											
DMPK	DMPK	100	98																																											
DMPK2	CDC42BPG	96	99																																											
DRAK1	STK17A	85	93																																											
DRAK2	STK17B	80	73																																											
DYRK1A	DYRK1A	90	100																																											
DYRK1B	DYRK1B	82	100																																											
DYRK2	DYRK2	89	100																																											
EGFR	EGFR	94	68																																											
EGFR(E746-A750del)	EGFR	100	100																																											
EGFR(G719C)	EGFR	99	86																																											
EGFR(G719S)	EGFR	100	90																																											
EGFR(L747-E749del, A750P)	EGFR	81	90																																											
EGFR(L747-S752del, P753S)	EGFR	100	100																																											
EGFR(L747-T751del,Sins)	EGFR	100	90																																											
EGFR(L858R)	EGFR	92	87																																											
Gene	% Expression	% Potential																																												
-------	--------------	-------------																																												
EGFR(L858R,T790M)	EGFR	100	86																																											
EGFR(L861Q)	EGFR	100	91																																											
EGFR(S752-I759del)	EGFR	97	99																																											
EGFR(T790M)	EGFR	100	73																																											
EIF2AK1	EIF2AK1	82	80																																											
EPHA1	EPHA1	93	93																																											
EPHA2	EPHA2	99	100																																											
EPHA3	EPHA3	100	100																																											
EPHA4	EPHA4	100	100																																											
EPHA5	EPHA5	100	100																																											
EPHA6	EPHA6	95	100																																											
EPHA7	EPHA7	100	98																																											
EPHA8	EPHA8	100	100																																											
EPHB1	EPHB1	100	92																																											
EPHB2	EPHB2	100	97																																											
EPHB3	EPHB3	100	97																																											
EPHB4	EPHB4	100	100																																											
EPHB6	EPHB6	85	97																																											
ERBB2	ERBB2	96	92																																											
ERBB3	ERBB3	98	100																																											
ERBB4	ERBB4	100	100																																											
ERK1	MAPK3	88	90																																											
ERK2	MAPK1	100	100																																											
ERK3	MAPK6	99	100																																											
ERK4	MAPK4	100	100																																											
ERK5	MAPK7	100	100																																											
ERK8	MAPK15	100	97																																											
ERN1	ERN1	90	90																																											
FAK	PTK2	100	100																																											
FER	FER	85	98																																											
FES	FES	99	100																																											
FGFR1	FGFR1	100	95																																											
FGFR2	FGFR2	100	100																																											
FGFR3	FGFR3	78	100																																											
FGFR3(G697C)	FGFR3	91	78																																											
FGFR4	FGFR4	97	94																																											
FGR	FGR	100	100																																											
FLT1	FLT1	94	100																																											
FLT3	FLT3	100	100																																											
FLT3(D835H)	FLT3	94	100																																											
FLT3(D835V)	FLT3	84	100																																											
FLT3(D835Y)	FLT3	95	100																																											
FLT3(ITD)	FLT3	85	94																																											
FLT3(ITD,D835V)	FLT3	76	95																																											
Protein	Gene	Normal	Abnormal																																											
-------------------------	--------	----------	----------																																											
FLT3(ITD,F691L)	FLT3	72	100																																											
FLT3(K663Q)	FLT3	91	100																																											
FLT3(N841I)	FLT3	99	87																																											
FLT3(R834Q)	FLT3	78	90																																											
FLT3-autoinhibited	FLT3	79	71																																											
FLT4	FLT4	97	97																																											
FRK	FRK	99	100																																											
FYN	FYN	100	90																																											
GAK	GAK	96	100																																											
GCN2(Kin.Dom.2,S808G)	EIF2AK4	100	100																																											
GRK1	GRK1	100	92																																											
GRK2	ADRBK1	77	94																																											
GRK3	ADRBK2	74	92																																											
GRK4	GRK4	97	100																																											
GRK7	GRK7	100	98																																											
GSK3A	GSK3A	100	70																																											
GSK3B	GSK3B	86	87																																											
HASPIN	GSG2	92	100																																											
HCK	HCK	99	98																																											
HIPK1	HIPK1	92	92																																											
HIPK2	HIPK2	94	83																																											
HIPK3	HIPK3	85	77																																											
HIPK4	HIPK4	88	92																																											
HPK1	MAP4K1	97	100																																											
HUNK	HUNK	100	94																																											
ICK	ICK	92	67																																											
IGF1R	IGF1R	93	88																																											
IKK-alpha	CHUK	81	78																																											
IKK-beta	IKBKB	91	84																																											
IKK-epsilon	IKBKE	86	87																																											
INSR	INSR	100	61																																											
INSRR	INSRR	100	92																																											
IRAK1	IRAK1	76	88																																											
IRAK3	IRAK3	86	100																																											
IRAK4	IRAK4	66	77																																											
ITK	ITK	100	100																																											
JAK1(JH1domain-catalytic)	JAK1	92	100																																											
JAK1(JH2domain-pseudokinase)	JAK1	86	86																																											
JAK2(JH1domain-catalytic)	JAK2	97	71																																											
JAK3(JH1domain-catalytic)	JAK3	82	100																																											
JNK1	MAPK8	67	90																																											
JNK2	MAPK9	86	85																																											
JNK3	MAPK10	97	67																																											
KIT	KIT	100	97																																											
Protein	Protein	Activity																																												
---------	---------	----------																																												
KIT(A829P)	KIT	80 90																																												
KIT(D816H)	KIT	70 100																																												
KIT(D816V)	KIT	100 100																																												
KIT(L576P)	KIT	95 83																																												
KIT(V559D)	KIT	100 95																																												
KIT(V559D,T670I)	KIT	99 100																																												
KIT(V559D,V654A)	KIT	89 87																																												
KIT-autoinhibited	KIT	96 88																																												
LATS1	LATS1	93 100																																												
LATS2	LATS2	100 94																																												
LCK	LCK	96 100																																												
LIMK1	LIMK1	96 100																																												
LIMK2	LIMK2	97 97																																												
LKB1	STK11	100 65																																												
LOK	STK10	100 97																																												
LRRK2	LRRK2	77 99																																												
LRRK2(G2019S)	LRRK2	100 91																																												
LTK	LTK	100 100																																												
LYN	LYN	98 100																																												
LZK	MAP3K13	77 98																																												
MAK	MAK	100 91																																												
MAP3K1	MAP3K1	79 80																																												
MAP3K15	MAP3K15	97 80																																												
MAP3K2	MAP3K2	91 95																																												
MAP3K3	MAP3K3	100 86																																												
MAP3K4	MAP3K4	88 100																																												
MAP4K2	MAP4K2	100 56																																												
MAP4K3	MAP4K3	100 100																																												
MAP4K4	MAP4K4	100 100																																												
MAP4K5	MAP4K5	100 100																																												
MAPKAPK2	MAPKAPK2	71 100																																												
MAPKAPK5	MAPKAPK5	94 100																																												
MARK1	MARK1	100 96																																												
MARK2	MARK2	93 100																																												
MARK3	MARK3	86 100																																												
MARK4	MARK4	92 100																																												
MAST1	MAST1	100 69																																												
MEK1	MAP2K1	97 88																																												
MEK2	MAP2K2	100 88																																												
MEK3	MAP2K3	98 79																																												
MEK4	MAP2K4	100 90																																												
MEK5	MAP2K5	97 86																																												
MEK6	MAP2K6	100 89																																												
MELK	MELK	100 86																																												
Protein	Annotation	Percent	Activity																																											
---------	------------	---------	----------																																											
MERTK	MERTK	100	68																																											
MET	MET	100	91																																											
MET(M1250T)	MET	88	100																																											
MET(Y1235D)	MET	100	98																																											
MINK	MINK1	94	100																																											
MKK7	MAP2K7	97	98																																											
MKNK1	MKNK1	94	80																																											
MKNK2	MKNK2	91	64																																											
MLCK	MYLK3	78	97																																											
MLK1	MAP3K9	100	92																																											
MLK2	MAP3K10	100	93																																											
MLK3	MAP3K11	100	100																																											
MRCKA	CDC42BPA	100	100																																											
MRCKB	CDC42BPB	100	100																																											
MST1	STK4	95	100																																											
MST1R	MST1R	100	98																																											
MST2	STK3	100	90																																											
MST3	STK24	100	100																																											
MST4	MST4	100	100																																											
MTOR	MTOR	93	91																																											
MUSK	MUSK	100	80																																											
MYLK	MYLK	73	95																																											
MYLK2	MYLK2	100	95																																											
MYLK4	MYLK4	99	99																																											
MYO3A	MYO3A	100	100																																											
MYO3B	MYO3B	91	93																																											
NDR1	STK38	100	100																																											
NDR2	STK38L	98	100																																											
NEK1	NEK1	95	99																																											
NEK10	NEK10	100	95																																											
NEK11	NEK11	55	99																																											
NEK2	NEK2	96	100																																											
NEK3	NEK3	87	77																																											
NEK4	NEK4	83	97																																											
NEK5	NEK5	96	94																																											
NEK6	NEK6	100	100																																											
NEK7	NEK7	99	100																																											
NEK9	NEK9	98	100																																											
NIK	MAP3K14	91	79																																											
NIM1	MGC42105	100	74																																											
NLK	NLK	99	100																																											
OSR1	OXSR1	93	84																																											
p38-alpha	MAPK14	100	100																																											
p38-beta	MAPK11	88	100																																											
Protein	Gene	p38-delta	p38-gamma	PAK1	PAK2	PAK3	PAK4	PAK6	PAK7	PCTK1	PCTK2	PCTK3	PDGFRA	PDGFRB	PDPK1	PFCDPK1(P.falciparum)	PFPK5(P.falciparum)	PFTAIRE2	PFTK1	PHKG1	PHKG2	PIK3C2B	PIK3C2G	PIK3CA	PIK3CA(C420R)	PIK3CA(E542K)	PIK3CA(E545A)	PIK3CA(E545K)	PIK3CA(H1047L)	PIK3CA(H1047Y)	PIK3CA(I800L)	PIK3CA(M1043I)	PIK3CA(Q546K)	PIK3CB	PIK3CD	PIK3CG	PIK4CB	PIKFYVE	PIM1	PIM2	PIM3	PIP5K1A	PIP5K1C	PIP5K2B	PIP5K2C	PIP4K2C
-----------------------------	------------	-----------	-----------	------	------	------	------	------	------	------	-------	-------	-------	---------	---------	-------	---------------------	---------------------	----------	-------	-------	--------	--------	--------	-------	----------	----------	-----------	----------	------------	-----------	----------	-----------	----------	---------	-------	-------	-------	--------	--------	--------	--------	--------			
gene	protein	ratio (new)	ratio (old)																																											
-----------------------	-----------	-------------	-------------																																											
PKAC-alpha	PRKACA	90	82																																											
PKAC-beta	PRKACB	100	100																																											
PKMYT1	PKMYT1	96	100																																											
PKN1	PKN1	95	88																																											
PKN2	PKN2	96	92																																											
PKNB(M. tuberculosis)	pknB	97	61																																											
PLK1	PLK1	100	91																																											
PLK2	PLK2	89	100																																											
PLK3	PLK3	91	85																																											
PLK4	PLK4	72	83																																											
PRKCD	PRKCD	100	87																																											
PRKCE	PRKCE	100	100																																											
PRKCH	PRKCH	96	100																																											
PRKCI	PRKCI	100	100																																											
PRKCQ	PRKCQ	70	100																																											
PRKD1	PRKD1	90	94																																											
PRKD2	PRKD2	100	100																																											
PRKD3	PRKD3	83	96																																											
PRKG1	PRKG1	98	100																																											
PRKG2	PRKG2	94	87																																											
PRKR	EIF2AK2	100	70																																											
PRKX	PRKX	100	100																																											
PRP4	PRPF4B	78	100																																											
PYK2	PTK2B	99	100																																											
QSK	KIAA0999	98	100																																											
RAF1	RAF1	99	99																																											
RET	RET	100	100																																											
RET(M918T)	RET	100	93																																											
RET(V804L)	RET	100	94																																											
RET(V804M)	RET	96	100																																											
RIOK1	RIOK1	83	66																																											
RIOK2	RIOK2	94	64																																											
RIOK3	RIOK3	81	100																																											
RIPK1	RIPK1	100	100																																											
RIPK2	RIPK2	98	97																																											
RIPK4	RIPK4	93	91																																											
RIPK5	DSTYK	95	78																																											
ROCK1	ROCK1	80	100																																											
ROCK2	ROCK2	99	96																																											
ROS1	ROS1	98	97																																											
RPS6KA4(Kin.Dom.1-N-terminal)	RPS6KA4	100	100																																											
RPS6KA4(Kin.Dom.2-C-terminal)	RPS6KA4	99	100																																											
RPS6KA5(Kin.Dom.1-N-terminal)	RPS6KA5	96	100																																											
RPS6KA5(Kin.Dom.2-C-terminal)	RPS6KA5	98	100																																											
Kinase	Reference Gene	% Phosphorylation																																												
--------	----------------	-------------------																																												
RSK1 (Kin.Dom.1-N-terminal)	RPS6KA1	96 100																																												
RSK1 (Kin.Dom.2-C-terminal)	RPS6KA1	100 100																																												
RSK2 (Kin.Dom.1-N-terminal)	RPS6KA3	86 83																																												
RSK2 (Kin.Dom.2-C-terminal)	RPS6KA3	100 100																																												
RSK3 (Kin.Dom.1-N-terminal)	RPS6KA2	99 100																																												
RSK3 (Kin.Dom.2-C-terminal)	RPS6KA2	100 96																																												
RSK4 (Kin.Dom.1-N-terminal)	RPS6KA6	86 83																																												
RSK4 (Kin.Dom.2-C-terminal)	RPS6KA6	91 100																																												
S6K1	RPS6KB1	95 100																																												
SBK1	SBK1	95 73																																												
SGK	SGK1	94 92																																												
SgK110	SgK110	89 100																																												
SGK2	SGK2	91 100																																												
SGK3	SGK3	91 100																																												
SIK	SIK1	98 100																																												
SIK2	SIK2	99 100																																												
SLK	SLK	95 100																																												
SNARK	NUAK2	97 94																																												
SNRK	SNRK	87 97																																												
SRC	SRC	91 100																																												
SRMS	SRMS	100 97																																												
SRPK1	SRPK1	100 100																																												
SRPK2	SRPK2	63 100																																												
SRPK3	SRPK3	94 100																																												
STK16	STK16	92 100																																												
STK33	STK33	100 95																																												
STK35	STK35	96 100																																												
STK36	STK36	100 100																																												
STK39	STK39	97 86																																												
SYK	SYK	100 77																																												
TAK1	MAP3K7	98 93																																												
TAOK1	TAOK1	100 78																																												
TAOK2	TAOK2	88 89																																												
TAOK3	TAOK3	98 94																																												
TBK1	TBK1	85 78																																												
TEC	TEC	96 100																																												
TESK1	TESK1	96 100																																												
TGFBR1	TGFBR1	92 100																																												
TGFBR2	TGFBR2	85 97																																												
TIE1	TIE1	100 74																																												
TIE2	TEK	97 100																																												
TLK1	TLK1	100 100																																												
TLK2	TLK2	100 97																																												
TNIK	TNIK	100 100																																												
Gene	Protein	%100	%90																																											
------------	------------	--------	-------																																											
TNK1	TNK1	95	100																																											
TNK2	TNK2	98	100																																											
TNN13K	TNN13K	90	99																																											
TRKA	NTRK1	100	99																																											
TRKB	NTRK2	100	100																																											
TRKC	NTRK3	90	90																																											
TRPM6	TRPM6	100	100																																											
TSSK1B	TSSK1B	84	100																																											
TSSK3	TSSK3	100	95																																											
TTK	TTK	100	98																																											
TXK	TXK	95	100																																											
TYK2(JH1domain-catalytic)	TYK2	98	88																																											
TYK2(JH2domain-pseudokinase)	TYK2	99	93																																											
TYRO3	TYRO3	90	80																																											
ULK1	ULK1	100	74																																											
ULK2	ULK2	74	76																																											
ULK3	ULK3	92	78																																											
VEGFR2	KDR	89	93																																											
VPS34	PIK3c3	92	97																																											
VRK2	VRK2	89	89																																											
WEE1	WEE1	100	100																																											
WEE2	WEE2	91	100																																											
WNK1	WNK1	94	97																																											
WNK2	WNK2	94	100																																											
WNK3	WNK3	97	50																																											
WNK4	WNK4	98	100																																											
YANK1	STK32A	99	100																																											
YANK2	STK32B	97	96																																											
YANK3	STK32C	96	100																																											
YES	YES1	97	100																																											
YSK1	STK25	90	99																																											
YSK4	MAP3K19	84	82																																											
ZAK	ZAK	95	100																																											
ZAP70	ZAP70	100	100																																											
References

(1) Dodo, K.; Katoh, M.; Shimizu, T.; Takahashi, M.; Sodeoka, M. Inhibition of hydrogen peroxide-induced necrotic cell death with 3-amino-2-indolylmaleimide derivatives. *Bioorg. Med. Chem. Lett.*, 2005, **15**, 3114-3118.

(2) Takeo, S.; Tanonaka, K.; Hayashi, M.; Yamamoto, K.; Liu, J. X.; Kamiyama, T.; Yamaguchi, N.; Miura, A.; Natsukawa, T. A possible involvement of sodium channel blockade of class-I-type antiarrhythmic agents in posts ischemic contractile recovery of isolated, perfused hearts. *J. Pharmacol. Exp. Ther.* 1995, **273**, 1403-1409.

(3) Aihara, K.; Hisa, H.; Sato, T.; Yoneyama, F.; Sasamori, J.; Yamaguchi, F.; Yoneyama, S.; Mizuno, Y.; Takahashi, A.; Nagai, A.; Kimura, T.; Kogi, K.; Satoh, S. Cardioprotective effect of TY-12533, a novel Na'/H' exchange inhibitor, on ischemia/reperfusion injury. *Eur. J. Pharmacol.*, 2000, **404**, 221-229.

(4) Walker, M. J.; Curtis, M. J.; Hearse, D. J.; Campbell, R. W.; Janse, M. J.; Yellon, D. M.; Cobbe, S. M.; Coker, S. J.; Harness, J. B.; Harron, D. W.; Higgins, A. J.; Julian, D. G.; Lab, M. J.; Manning, A. S.; Northover, B. J.; Parratt, J. R.; Riemersma, R. A.; Riva, E.; Russell, D. C.; Sheridan, D. J.; Winslow, E.; Woodward, B. The Lambeth Conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. *Cardiovasc. Res.*, 1988, **22**, 447-455.

(5) Katoh, M.; Dodo, K.; Fujita, M.; Sodeoka, M. Structure-activity relationship of N-methylbisindolylmaleimide derivatives as cell death inhibitors. *Bioorg. Med. Chem. Lett.* 2005, **15**, 3109-3113.

(6) Davis, M. I.; Hunt, J. P.; Herrgard, S.; Ciceri, P.; Wodicka, L. M.; Pallares, G.; Hocker, M.; Treiber, D. K.; Zarrinkar, P. P. Comprehensive analysis of kinase inhibitor selectivity. *Nat. Biotechnol.* 2011, **29** (11), 1046-1051.