Unsupervised Explanation Generation via Correct Instantiations

Sijie Cheng1,2, Zhiyong Wu1, Jiangjie Chen2, Zhixing Li3, Yang Liu5, Lingpeng Kong1,4

1Shanghai Artificial Intelligence Laboratory
2Fudan University 3Full Truck Alliance
4The University of Hong Kong 5Tsinghua University

Email: sjcheng20@fudan.edu.cn
Table 1: Examples of three explanation types.

Instance	Explanation
Premise: A white race dog wearing the number eight runs on the track.	
Hypothesis: A white race dog runs around his yard.	
Label: contradiction	**(highlight) Premise:** A white race dog wearing the number eight runs on the track.
Hypothesis: A white race dog runs around his yard.	
(free-text) A race track is not usually in someone’s yard.	
Question: Who sang the theme song from Russia With Love?	
Paragraph: ...The theme song was composed by Lionel Bart of Oliver! fame and sung by Matt Monro...
Answer: Matt Monro | **(structured) Sentence selection:** (not shown)
Referential equality: “the theme song from russia with love” (from question) = “The theme song” (from paragraph)
Entailment: X was composed by Lionel Bart of Oliver! fame and sung by ANSWER. ⊥ ANSWER sung X |
Free-text Explanation for False Statements

False Statement	Explanation	Conflict Point
John put an elephant into the fridge.	An elephant is much bigger than a fridge.	Volume
He drinks apple.	Apple can not be drunk.	Function
Jeff ran 100,000 miles today.	No way can someone run 100,000 miles in a day.	Speed
A giraffe is a person.	A giraffe is an animal, not human.	Property
Europe is in France.	Europe is a continent but france is a country.	Geography

Table 2: Examples and their exact conflict points to explain in ComVE task.

- Find the **Conflict Point** where the false statement contradicts the commonsense knowledge.

Wang, C.; Liang, S.; Jin, Y.; Wang, Y.; Zhu, X.; and Zhang, Y. 2020. SemEval-2020 Task 4: Commonsense Validation and Explanation. In SEMEVAL.
Challenges

• **(Supervision)** Manually constructing a dataset with conflict points for training is labor-intensive and difficult to scale.

• **(Explicit Knowledge)** Exact triples of conflict points are rare in the external knowledge graph due to their tacitness and diversity.

Inspired by the line of work about the chain of thought.

Provide **guided hints** as prompts to **implicitly** elicit Pre-trained Language Models (PLMs) to reason the conflict point automatically.
Framework

- **Phase 1 (Correct Instantiations Generation)** → **Commonality**
- **Phase 2 (Explanation Generation)** → **Contrast**

The PLMs can implicitly induce the conflict point better to generate explanations.

![Diagram](image)

Figure 1: Our proposed two-phase framework NEON.
Phase 1: Correct Instantiations Generation

- **In-context Learning** (Few-shot)

- **Constrained Text Generation: CGMH** (Unsupervised)
 - Step 1: Where to Edit – Conflict Detection.
 \[
 S_{\text{PPL}}^i = \frac{\text{PPL}(x)}{\text{PPL}(x \setminus \{x^i\})}
 \]
 - Step 2: Edit with What – Modification Action.
 \[
 S_{\text{Fluency}} = \prod_{i=1}^{n} P_{\text{LM}}(h^i | h^{<i})
 \]

Task: Based on the incorrect statement, generate the correct statement.
/* Example 1 */
Incorrect statement: He drinks apple.
Correct statement: He drinks milk.
/* Test data */
Incorrect statement: John put an elephant into the fridge.
Correct statement:

Table 3: The prompt instances of in-context learning in the first phase.

Miao, N.; Zhou, H.; Mou, L.; Yan, R.; and Li, L. 2019. Cgmh: Constrained sentence generation by metropolis-hastings sampling. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, 6834–6842.
In-context Learning (Zero-shot)

To purely detect the ability of implicit induction in off-the-shelf PLMs, we explore the model performance without any signals rather than supervised setup.

Given the facts: 1. John put a turkey into the fridge, 2. John put a peach into the fridge, 3. John put a bowl into the fridge,

Explain the following statement based on its difference with the facts: John put an elephant into the fridge.

The explanation is:

Table 4: The prompt instances of in-context learning in the second phase.
Experiments

- **Model**: OPT-175B.
- **Datasets**: ComVE & e-SNLI.

Dataset	Preferred Explanation (%)	\(\kappa \)		
	Original	Tie	NEON	
ComVE	20.33	42.67	37.00	0.47
e-SNLI	18.67	41.67	39.67	0.39

Conflict Point (%)
ComVE
e-SNLI

Table 5: The results of manual evaluation.

Method	ComVE								
	BLEU	ROUGE	BERTScore	S-BERT		BLEU	ROUGE	BERTScore	S-BERT
Random	1.47	17.81	46.21	42.54	4.94	24.23	50.73	43.05	
Retrieval-BM25	1.51	17.23	45.18	38.68	4.29	23.31	49.80	42.09	
Retrieval-SBERT	1.69	18.55	46.64	45.47	4.64	24.45	51.16	48.22	
Original	1.88	20.21	48.68	51.82	4.71	25.38	50.92	46.39	
Ground-truth	2.48	21.25	49.66	**55.21**	5.57	25.62	51.96	49.19	
Top-1	2.42	21.42	49.86	55.03	6.03	25.87	51.97	48.51	
NEON w/ CGMH	3.37	20.10	48.92	49.50	4.67	26.04	51.04	48.42	
NEON w/ In-context	**3.39**	**22.50**	**51.50**	54.52	**6.20**	**27.28**	**53.87**	**51.69**	

Table 6: The results of automatic evaluation.
Analysis

- **Quality of Generated Instantiations**
 - **Automatic Evaluation:** fine-tune RoBERTa-Large on training datasets as binary classifiers with 88.97 and 84.25 accuracies.

Dataset	NEON	Human Generated
ComVE	70.28	89.60
e-SNLI	92.30	97.84

Table 7: The results of automatic evaluation.

- **Manual Evaluation:** i. Acceptability; ii. Grammaticality; iii. Factuality; iv. Diversity; v. Commonality.

Dataset	Acc.	Gram.	Fact.	Diver.	Common.
ComVE	72.80	2.97	2.66	2.63	2.56
e-SNLI	81.67	2.88	2.72	2.89	2.66

Table 8: The results of manual evaluation.
Analysis

• Effects on Instantiations Number.

#	BLEU	ROUGE	BERTScore	S-BERT
1	2.42	21.03	49.22	52.70
2	2.61	21.14	49.22	52.56
3	3.32	21.32	49.46	51.79
4	3.29	22.26	50.97	**54.74**
5	3.39	**22.50**	**51.50**	54.52
6	3.01	21.49	49.11	49.06
7	3.48	21.57	49.45	49.66
8	3.28	21.27	49.66	49.94
9	3.16	21.70	49.91	48.73
10	3.39	21.21	49.94	49.47

Table 9: Model performance with increasing number of ensemble instantiations in the ComVE task.

• Demonstration of Generality
 • Generate explanation for correct statements in the e-SNLI task.
 • Directly use the generated correct instantiations as guided hints.

Method	BLEU	ROUGE	BERTScore	S-BERT
Original	8.11	29.73	52.66	53.18
Top-1	9.22	28.64	52.64	50.81
NEON	**11.18**	**31.69**	**55.30**	**56.33**

Table 10: Model performance of generating explanations for correct statements in the e-SNLI task.
Thanks!

Sijie Cheng