Magnons and Excitation Continuum in XXZ triangular antiferromagnetic model: Application to \(Ba_3CoSb_2O_9 \)

E. A. Ghioldi\(^1\), A. Mezio\(^1\), L. O. Manuel\(^1\), R. R. P. Singh\(^2\), J. Oitmaa\(^3\), and A. E. Trumper\(^1\)

\(^1\)Instituto de Física Rosario (CONICET) and Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis, (2000) Rosario, Argentina

\(^2\)Department of Physics, University of California, Davis, California 95616, USA

\(^3\)School of Physics, The University of New South Wales, Sydney 2052, Australia

(Dated: November 20, 2014)

We investigate the excitation spectrum of the triangular-lattice antiferromagnetic XXZ model using series expansions and mean field Schwinger bosons approaches. The single-magnon spectrum computed with series expansions exhibits rotonic minima at the middle points of the edges of the Brillouin zone, for all values of the anisotropy parameter in the range \(0 \leq J^z/J \leq 1 \). Based on the good agreement with series expansions for the single-magnon spectrum, we compute the full dynamical magnetic structure factor within the mean field Schwinger boson approach to investigate the relevance of the XXZ model for the description of the unusual spectrum found recently in \(Ba_3CoSb_2O_9 \). In particular, we obtain an extended continuum above the spin wave excitations, which is further enhanced and brought closer to those observed in \(Ba_3CoSb_2O_9 \) with the addition of a second neighbor exchange interaction approximately 15\% of the nearest-neighbor value. Our results support the idea that excitation continuum with substantial spectral-weight are generically present in two-dimensional frustrated spin systems and fractionalization in terms of bosonic spinons presents an efficient way to describe them.

The study of two dimensional (2D) quantum spin liquids (QSL) has been one of the central topics in condensed matter physics. Aided by frustration and strong quantum fluctuations, novel quantum spin-liquid phases can emerge in quantum spin systems, which do not break any symmetry of the Hamiltonian and there is no local order parameter to unambiguously characterize them. Consequently, conventional paradigms of magnetism such as spin waves or Landau-Ginzburg-Wilson theories turn out to be inadequate. Several candidate materials showing such spin liquid behavior have been indirectly identified by specific heat or nuclear relaxation measurements, however, a direct experimental detection of QSL remains elusive.

Another signature of QSL is the emergence of spin-\(\frac{1}{2} \) fractional excitations, called spinons. They have been predicted\(^9\) in 1D AF’s and detected\(^2\) by means of inelastic neutron scattering (INS) experiments. Here, the spinon excitation is interpreted as a propagating domain wall; while the observed extended continuum in the spectrum is related to the different pairs of independently propagating spinons created in the AF system once spin-1 excitations are exchanged with the scattering of neutrons.

In 2D the physical origin of spinons and their quantum statistics is more complex and not fully understood. However, it is widely believed that the extended continuum observed with INS in certain 2D compounds may also correspond to the fractionalization phenomenon. Such a continuum has been observed in the inorganic compound\(^9\) \(Cs_2CuCl_4 \), the kagome-lattice Herbertsmithites \(ZnCu(OH)Cl_3 \) and recently\(^2\) in \(Ba_3CoSb_2O_9 \) which is an experimental realizations of the spin-\(\frac{1}{2} \) triangular antiferromagnet, with very little spatial distortion. In \(Cs_2CuCl_4 \) the superexchange interactions are spatially anisotropic\(^9\) while in \(Ba_3CoSb_2O_9 \) there is enough evidence of anisotropic spin spin interactions described by the XXZ model in the easy-plane regime but little deviation from the triangular-lattice geometry.\(^2\) While the Herbertsmithite materials remain disordered down to the lowest measured temperature, at sufficiently low temperatures, \(Cs_2CuCl_4 \) and \(Ba_3CoSb_2O_9 \) are magnetically ordered, showing helical and 120° long range Néel order, respectively. In the case of \(Cs_2CuCl_4 \) the spectrum shows well defined magnon signals at the Goldstone modes and a broad continuum with a dominant spectral weight at higher energies that persist even above the Néel temperature \(T_N = 0.62 K \). Due to the 2D character of the magnetic interactions this behavior was originally associated with the experimental realization of 2D spinons\(^9\) however, further theoretical work showed that spinons in \(Cs_2CuCl_4 \) are actually of 1D character that is, the combined effect of spatially anisotropic quantum fluctuations and frustration induce an unexpected dimensional reduction.\(^11-17\) In contrast, though anisotropic in spin space, the magnetic interactions in \(Ba_3CoSb_2O_9 \) are 2D spatially isotropic. Therefore, the unusual\(^2\) broad and dominant continuum above the spin wave dispersion recently found below \(T_N = 3.8K \) has been interpreted as a true 2D fractionalization, suggesting that the 120° Néel phase of this compound may be in close proximity to a spin liquid phase.\(^2\)

In this article we investigate the energy spectrum of the triangular AF XXZ model using series expansions (SE) and mean field Schwinger bosons (SBMF).\(^12\) Series expansions is used to study the dispersion relation of the single-magnon sector of the spectrum while a Schwinger bosons mean field allows us to study the whole energy spectrum with a spinon based theory through...
the dynamical magnetic structure factor. In order to take into account anisotropic exchange interactions within the SBMF approximation we have used four bond operators, as proposed by Burkov and Mac Donald within the context of quantum Hall bilayers. Our series expansion results show the presence of roton-like minima at the middle of the edges of the Brillouin zone that persist down to the XY model. Motivated by the good agreement obtained with series expansions for the dispersion relation of the XXZ model and based on the probable proximity of $B_{3}CoSb_{2}O_{9}$ to a spin liquid phase we study the effect of second neighbor exchange interactions on the whole spectrum using SBMF theory. In particular, we find that a 15% second neighbor interaction is enough to reproduce an extended continuum above the magnon excitations. For this frustration value there is a weakening of the attractive interaction between the two spinons building up the magnon excitation along with a strong reduction of the local magnetization. Therefore, our study provides a consistent calculation supporting the recently proposed idea of fractionalization of 2D magnon excitations in $B_{3}CoSb_{2}O_{9}$.

The antiferromagnetic XXZ model is defined as

$$H = \sum_{\langle ij \rangle} [J_{ij} (S_{i}^{x} S_{j}^{x} + S_{i}^{y} S_{j}^{y}) + J_{ij}^{z} S_{i}^{z} S_{j}^{z}],$$

(1)

where the sum is over the nearest neighbor sites $\langle ij \rangle$ of a triangular lattice. This Hamiltonian breaks the $SU(2)$ symmetry of the Heisenberg model down to a $U(1) \times Z_{2}$. In the easy plane case $0 \leq J_{ij}^{z}/J_{ij} \leq 1$ and in the thermodynamic limit the $U(1)$ symmetry is broken by the ground state, selecting a 120° Néel order state lying in the $x - y$ plane. This seems to be the case for the compound $B_{3}CoSb_{2}O_{9}$ below $T_{N} = 3.8K$.

To develop the series expansions, we first rewrite the Hamiltonian in a rotated basis, where the z axis points along the local spin direction of the 120° ordered phase. Then, the Hamiltonian is rewritten as $H_{0} + AV$, where H_{0} consists of only Ising terms, with simple eigenstates and a ground state that corresponds to the classical ground state. All other terms of the Hamiltonian are placed in V. The parameter λ is introduced artificially as an expansion parameter. The Hamiltonian of interest is realized at $\lambda = 1$. An additional ordering field term with coefficient $t(1 - \lambda)$, with arbitrary t is used to improve the convergence of the series. The one-particle effective Hamiltonian is calculated as a power-series in λ from which the spectra at any wavevector are readily obtained. These spectra are extrapolated to $\lambda = 1$ by Padé approximants. Calculations were done to order λ^{8}. We checked that the series for the Heisenberg model ($J_{ij}^{z} = J_{ij}$) agreed completely with those obtained before. The SE results are shown in Fig. 1 and discussed in the text below.

In this paper, we further extend the widely used Schwinger boson mean field theory to the XXZ model. In contrast to the isotropic case and previous extensions of the anisotropic case, we express the spin spin interaction in terms of four bond operators, as proposed by Burkov and Mac Donald, in order to get a mean field approximation that preserves the original $U(1) \times Z_{2}$ symmetry of the Hamiltonian. Then, the magnetically 120° Néel order state is manifested by a Schwinger boson condensation that naturally occurs in the theory without assuming it from the beginning.

Within the Schwinger bosons representation the spin operators components are written in terms of spin-$\frac{1}{2}$ bosons, b_{\uparrow} and b_{\downarrow} as

$$\hat{S}_{i}^{x} = \frac{1}{2} (\hat{b}_{\uparrow i}^{\dagger} \hat{b}_{\downarrow i} + \hat{b}_{\downarrow i}^{\dagger} \hat{b}_{\uparrow i}), \quad \hat{S}_{i}^{y} = \frac{1}{2i} (\hat{b}_{\uparrow i}^{\dagger} \hat{b}_{\downarrow i} - \hat{b}_{\downarrow i}^{\dagger} \hat{b}_{\uparrow i})$$

(2)

$$\hat{S}_{i}^{z} = \frac{1}{2} (\hat{b}_{\uparrow i}^{\dagger} \hat{b}_{\uparrow i} - \hat{b}_{\downarrow i}^{\dagger} \hat{b}_{\downarrow i}),$$

(3)

where the local constraint

$$\sum_{\sigma} \hat{b}_{\sigma i}^{\dagger} \hat{b}_{\sigma i} = 2s$$

(4)

must be imposed to fulfill the spin algebra. The relevant bond operators for the XXZ Hamiltonian Eq. (1) are,

$$\hat{A}_{ij} = \frac{1}{2} (b_{\uparrow i} b_{\downarrow j} - b_{\downarrow i} b_{\uparrow j}), \quad \hat{B}_{ij} = \frac{1}{2} \left(b_{\uparrow i} b_{\downarrow j}^{\dagger} + b_{\downarrow i} b_{\uparrow j}^{\dagger} \right)$$

(5)

$$\hat{C}_{ij} = \frac{1}{2} \left(b_{\uparrow i} b_{\downarrow j}^{\dagger} - b_{\downarrow i} b_{\uparrow j}^{\dagger} \right), \quad \hat{D}_{ij} = \frac{1}{2} \left(b_{\uparrow i} b_{\downarrow j} + b_{\downarrow i} b_{\uparrow j} \right).$$

(6)

where \hat{A}_{ij} and \hat{B}_{ij} are $SU(2)$ and time reversal invariant while \hat{C}_{ij} and \hat{D}_{ij} are $U(1)$ invariant (rotation around z axis) and change sign, $\hat{C}_{ij} \rightarrow -\hat{C}_{ij}$, $\hat{D}_{ij} \rightarrow -\hat{D}_{ij}$, under time reversal. Then, after writing down the spin operators in terms of Schwinger bosons, Eq. (1) results

$$H = \frac{1}{2} \sum_{\langle ij \rangle} \left[(J_{ij}^{z} + J_{ij}^{x}) (\hat{B}_{ij}^{\dagger} \hat{B}_{ij} - \hat{A}_{ij}^{\dagger} \hat{A}_{ij}) - (J_{ij}^{z} - J_{ij}^{x}) (\hat{C}_{ij}^{\dagger} \hat{C}_{ij} - \hat{D}_{ij}^{\dagger} \hat{D}_{ij}) \right].$$

(7)

Noticing that the inversion of S_{i}^{z} can be carried on as a time reversal operation followed by a π angle rotation around z axis, it is easy to check that the original $U(1) \times Z_{2}$ symmetry of the XXZ model is preserved by Eq. (7). Now a non trivial mean field decoupling of Eqs. (7) results can be implemented as,

$$\hat{X}_{ij} = (\hat{X}_{ij}^{\dagger} \hat{X}_{ij} + \hat{X}_{ij}^{\dagger} (\hat{X}_{ij}) - (\hat{X}_{ij}^{\dagger}) (\hat{X}_{ij}),$$

(8)
where \(\hat{X} = \hat{A} \), \(\hat{B} \), \(\hat{C} \), and \(\hat{D} \). From all the possible Ansätze we set translational invariant mean field parameters such as \(\langle \hat{A}_{ij} \rangle = iA_{ij}, \langle \hat{C}_{ij} \rangle = iC_{ij}, \langle \hat{B}_{ij} \rangle = B_{ij} \), and \(\langle \hat{D}_{ij} \rangle = D_{ij} \) with \(A_{ij} = -A_{ji} \), \(C_{ij} = -C_{ji} \), \(B_{ij} = B_{ji} \), and \(D_{ij} = D_{ji} \) all real. In principle, the resulting mean field Hamiltonian \(\hat{H}_{MF} \) breaks the time reversal symmetry which followed by the \(\pi \) angle rotation around \(z \) realizes the \(S_z \) inversion. So, the \(Z_2 \) symmetry seems to be broken. However, if \(H_{MF} \) is gauge transformed as \(G^T \) \(H_{MF} G_T = H'_{MF} \), where \(G_T : b_\sigma \rightarrow b_\sigma e^{-i\hat{\pi}} \), time reversal symmetry is restored by \(H'_{MF} \) and consequently the \(Z_2 \) symmetry is also preserved. Actually we choose the above Ansätze because in the thermodynamic limit it is compatible with the semiclassical 120° Néel state lying in the \(x-y \) plane.\(^{31}\) Replacing Eq. (8) in Eq. (7) and following the standard procedure\(^{22}\) we arrive to the diagonalized mean field Hamiltonian

\[
\hat{H}_{MF} = \sum_k \omega_{k\uparrow} \hat{a}_{k\uparrow} \hat{a}_{k\uparrow}^\dagger + \omega_{-k\downarrow} \hat{a}_{-k\downarrow} \hat{a}_{-k\downarrow} + E_{MF} \tag{9}
\]

with the spinon relation dispersion defined as

\[
\omega_{k\uparrow} = \omega_{-k\downarrow} = \omega_k = \sqrt{\Gamma^{BC}_k + \lambda^2 - [\Gamma^{AD}_k]^2}, \tag{10}
\]

with

\[
\Gamma^{BC}_k = \frac{1}{2} (1 + \frac{J^z}{J}) \Omega_k^B - \frac{1}{2} (1 - \frac{J^z}{J}) \Omega_k^C,
\]

\[
\Gamma^{AD}_k = \frac{1}{2} (1 + \frac{J^z}{J}) \Omega_k^A - \frac{1}{2} (1 - \frac{J^z}{J}) \Omega_k^D,
\]

and

\[
\gamma_k^A = \sum_{\delta > 0} J A_\delta \sin(k \cdot \delta), \quad \gamma_k^B = \sum_{\delta > 0} J B_\delta \cos(k \cdot \delta),
\]

\[
\gamma_k^C = \sum_{\delta > 0} J C_\delta \sin(k \cdot \delta), \quad \gamma_k^D = \sum_{\delta > 0} J D_\delta \cos(k \cdot \delta),
\]

where \(\delta = r_j - r_i \) are the vectors connecting the first neighbors of the triangular lattice; while \(J^z \) and \(J \) are the exchange interaction between them. The ground state mean field energy results

\[
E_{MF} = \frac{1}{2} \sum_k \omega_k - \lambda (2S + 1) N = \tag{11}
\]

\[
= 3N \left[(J + J^z) (B_3^2 - A_3^2) - (J - J^z) (C_3^2 - D_3^2) \right].
\]

Notice that \(\lambda \) is the Lagrange multiplier introduced to enforce, on average, the local constraint of Eq. (8). The self consistent mean field equations are

\[
S + \frac{1}{2} = \frac{1}{2N} \sum_k \frac{\Gamma^{BC}_k + \lambda}{\omega_k} \tag{12}
\]

\[
A_\delta = \frac{1}{2N} \sum_k \frac{\Gamma^{AD}_k}{\omega_k} \sin(\delta \cdot \omega), \tag{13}
\]

\[
B_\delta = \frac{1}{2N} \sum_k \frac{\Gamma^{BC}_k + \lambda}{\omega_k} \cos(\delta \cdot \omega), \tag{14}
\]

\[
C_\delta = \frac{1}{2N} \sum_k \frac{\Gamma^{BC}_k + \lambda}{\omega_k} \sin(\delta \cdot \omega), \tag{15}
\]

\[
D_\delta = \frac{1}{2N} \sum_k \frac{\Gamma^{AD}_k}{\omega_k} \cos(\delta \cdot \omega). \tag{16}
\]

As we have pointed out the present mean field approximation preserves the original \(U(1) \times Z_2 \) symmetry of the XXZ Hamiltonian. Nonetheless, it turns out that the minimum of the spinon dispersion at \(\omega = 0 \) behaves as \(\omega \rightarrow 1/N \), implying the occurrence of a Bose condensation of \(\hat{b}_\uparrow \) and \(\hat{b}_\downarrow \) at \(k = \frac{Q}{2} \) in the thermodynamic limit. This is interpreted as the rupture of the continuous \(U(1) \) symmetry\(^{20,21,33}\). In fact, by working out the static structure factor the local magnetization \(m \) is extracted from finite size systems as\(^{22}\)

\[
m = \frac{1}{2N} \sum_k \frac{\Gamma^{BC}_k + \lambda}{\omega_k}, \tag{17}
\]

where \(Q = (\frac{\pi}{3}, 0) \) is the magnetic wave vector of the 120° Néel order. Notice that in contrast to the isotropic case\(^{33}\) where the condensation of both flavors occurs at \(k = \pm \frac{Q}{2} \), in the XXZ model the condensation only occurs at \(k = \frac{Q}{2} \), opening an energy gap at \(k = -\frac{Q}{2} \). In table 1 is shown the local magnetization \(m \) predicted by the SBMF for several anisotropy values. The predictions of linear spin wave theory are also shown for comparison. It is worth to stress the enhancement of the zero point quantum fluctuations within the SBMF with respect to the LSWT as anisotropy is increased.

\(J^z/J \)	SBMF	LSWT
1	0.2739	0.2386
0.8	0.3402	0.3522
0.6	0.3663	0.3858
0.4	0.3862	0.4096
0.0	0.4204	0.4485

TABLE I: Local magnetization \(m \) of the 120° Néel ground state of the spin-1/2 antiferromagnetic XXZ model on the triangular lattice obtained within the present mean field Schwinger bosons (SBMF) and the linear spin wave theory (LSWT).

To study the spectrum we compute the phase component of the spin spin dynamical structure factor,
FIG. 1: Relation dispersion predicted by series expansion (magenta dots) and dynamical structure factor computed within the reconstructed SBMF theory (intensity curves), along the path of the Brillouin zone shown in the inset, for several anisotropy values. The LSWT results (thin green line) are shown for comparison. Inset: path of the Brillouin zone, O= (0, 0), P= (π, 0), A= (π, π√3), B= (π, 2π√3/3), C= (2π/3, π√3), Q= (4π/3, 0), and E= (0, π√3). The values of \(J_z\) are in units of \(J\).

\[S^{zz}(k, \omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \langle S^{z}_k(t)S^{z}_{-k}(0) \rangle \exp^{i\omega t} dt,\]

that is, the transversal spin-1 excitations above the 120° Néel order lying in the \(x-y\) plane. A little of algebra leads to

\[S^{zz}(k, \omega) = \sum_{q} (u_q v_{q-k} - u_q v_{k-q})^2 \delta(\omega - (\omega_{q+} + \omega_{k-q})),\]

(18)

where \(u_k = [\frac{1}{2}(1 + \frac{\Gamma_{BC} + \lambda}{\omega_k})]^{1/2}\) and \(v_k = \text{sgn}(\Gamma_{BC} D)\frac{1}{2}(-1 + \frac{\Gamma_{BC} + \lambda}{\omega_k})\) are the coefficients of the Bogoliubov transformation that diagonalizes \(\hat{H}_{MF}\). As the Schwinger boson is a spinon based theory the mean field \(S^{zz}(k, \omega)\) consists of two free spinon excitations that give rise to a continuum. For a magnetically ordered ground state, however, it is expected that the low energy sector of the spectrum is directly related to the magnon excitations. In particular, for the triangular Heisenberg model we have recently shown that the dominant spectral weight of the energy spectrum resulting from Eq. (18) reproduces quite well the magnon relation dispersion derived with the series expansion. There is, however, a remnant weak signal in the spectrum related to unphysical excitations coming from the relaxation of the local constraint. In fact, to recover the proper low temperature behavior of thermodynamic properties we have shown that such unphysical excitations must be discarded. So that, this simple procedure can be conceived as an approximate manner of carrying on the projection of the mean field ground state into the physical Hilbert space which, even numerically, is very difficult to implement in a calculation. We have called this procedure reconstructed mean field Schwinger bosons.

In Fig 1 is shown the dynamical structure factor (intensity curve) within the reconstructed SBMF theory for different anisotropy values \(J^2/J\) along with the relation dispersion predicted by series expansions (SE) and linear spin wave theory (LSWT). The SE results (magenta dots) predict a single-magnon spectrum with the expected Goldstone mode at \(k = (0, 0)\) (point O of Fig. 1), due to the rupture of the \(U(1)\) symmetry, along with the opening of gaps at momentum \(k = \pm (\frac{\pi}{2}, 0)\) (point Q and C of Fig. 1) respectively. Furthermore, the SE results exhibit roton-like minima at the middle points of the edges of the Brillouin zone, (point B of Fig. 1). Though not shown in the figure we found that the rotonic excitation persists down to the \(XY\) model case \((J_z/J = 0)\). Originally, for the isotropic Heisenberg case, the rotonic excitations were described in terms of pairs of spinons.
or vortex-antivortex excitations with fermionic character, or with conventional multi-magnon excitations in non-collinear antiferromagnets. Alternatively, it was shown that the high entropy values found with high temperature expansions could be reconciled by assuming a bosonic character for the rotonic excitations which within the Schwinger boson language can be interpreted as a pair of weakly bound spinon excitations (see below). On the other hand, the low energy sector of the spectra predicted by the reconstructed SBMF theory reproduces quite well, qualitatively and quantitatively, the series expansion results for the anisotropy range $0 < J_z/J \leq 1.0$. This means that the four bond operator structure used in the Schwinger boson theory describes very well the spectrum of the XXZ model.

In what follow we explore the possible relation between the present spectrum of the XXZ model and that found in the INS experiments of $\text{Ba}_3\text{CoSb}_2\text{O}_9$. One important difference is that within the reconstructed SBMF the dominant spectral weight is mostly located at the low energy sector of the spectrum. However, given the proximity to a spin liquid phase proposed in the literature it is important to investigate the spectrum once the ground state of the XXZ model is pushed near a spin liquid phase. In our approximation this situation can be induced by introducing exchange interactions to second neighbors. In fact, in the isotropic case, it is known that there is a spin liquid phase for moderate J_2 values, $0.1 \leq J_2/J \leq 0.14$. Around these J_2 values, and for small anisotropy $J_2^z/J_2 = J_z^2/J = 0.8$, we have checked that the local magnetization is still quite robust but it is proximate to a spin liquid phase since it vanishes abruptly at $J_2/J \sim 0.25$. In Fig. 2 is shown the dynamical structure factor (intensity curve) for several values of J_2. As J_2 increases there is an important spectral weight transfer from the low to the high energy sector of the spectrum. In particular, around $J_2/J = 0.15$ the extended continuum of two spinon excitations is recovered.

At the mean field level the spectrum corresponds to two free spinon excitations, so, it is important to get some insight about the spinon spinon interaction once corrections to the mean field theory are included. Effective gauge field theory predicts that for a commensurate spinon condensed phase there is a confinement of spinons, giving rise to spin-1 magnon excitations of the 120° Neel order. Within the context of the Schwinger bosons one should include Gaussian fluctuations of the mean field parameters which is beyond the scope of the present work. Instead, we adopt a simpler strategy that allows us to get a physical insight about the spinon spinon interactions once J_2 is included.

If the XXZ Hamiltonian is splitted as $H=H_{\text{MF}}+V$, the interaction term is given by $V=H-H_{\text{MF}}$. Then, the effect

\[H_{\text{MF}} = J \sum_{\langle i,j \rangle} S_i S_j + \text{const.}, \]

\[V = J_2 \sum_{\langle i,j \rangle} S_i S_j + \text{const.}, \]
with the appearance of the extended continuum, can be spectral weight transfer from low to high energies, along magnon excitation; whereas as soon as presence of tightly bound pairs of spinons building up the spinon spinon interaction for almost all momenta (dashed as \(J^z \)) within the context of the first order perturbation theory (Eq. \(19 \)) for differences of \(V \) on a two free spinon state \(|2s\rangle = |q \uparrow; p \downarrow\rangle = \frac{1}{\sqrt{2}} (|q \uparrow \rangle + |q \downarrow \rangle) |gs \rangle \) is computed, to first order in perturbation theory, as the energy of creating two spinons above the ground state as \(E_{2s} = \langle 2s | H | 2s \rangle - \langle gs | H | gs \rangle \). Therefore, the interaction between the two spinons results \(V_{int} = E_{2s} - E_{MF} \), where \(E_{MF} = \langle 2s | H_{MF} | 2s \rangle - \langle gs | H_{MF} | gs \rangle = \omega_{q \uparrow} + \omega_{p \downarrow} \). The spinon interaction thus calculated turns out,

\[
V_{int} = \frac{1}{N} \left[\gamma_{q+p} (u_q v_p + v_q u_p)^2 + \frac{J^z}{J} \gamma_{q-p} (v_q u_p - u_q v_p)^2 + \frac{J^z}{J} 3(J + J_2) \right],
\]

where \(\gamma_{k-p} = \frac{1}{4} \sum_\delta J_\delta e^{i(k-p)_\delta} \). In Fig. 3 is plotted the spinon spinon interaction \(V_{int} \) for a pair of spinons \(\frac{1}{\sqrt{2}} (|q \uparrow \rangle + |q \downarrow \rangle) \) building up the lowest magnon excitation of momentum \(k \), for \(J^z / J = 0.8, \ J_z = 0 \) (solid line), and \(J_z = 0.2 \) (dashed line). It is observed that the attraction between two spinons building up the magnon excitation at \(k = 0 \) is very strong while for \(k = \pm Q \) the attraction is still, relatively, important. On the other hand, for momenta outside the neighborhood of \(k = 0 \) and \(k = \pm Q \) the attraction of spinon excitations is much weaker. These results agree with the physical picture of tightly bound and weakly bound spinons building up the lower and higher energy magnon excitations, respectively, although within the context of the first order perturbation theory, it is not completely justified. Interestingly, as \(J_2 \) is introduced there is, in general, a weakening of the spinon spinon interaction for almost all momenta (dashed line of Fig. 3). These results give us a deeper insight of the mean field spectrum. For instance, the spectral weight concentrated at low energy around points C and Q (see \(J_z = 0 \) case of Fig. 2) can be correlated to the presence of tightly bound pairs of spinons building up the magnon excitation; whereas as soon as \(J_2 \) is increased the spectral weight transfer from low to high energies, along with the appearance of the extended continuum, can be consistently interpreted as the proliferation of nearly free pairs of spinons above the spin wave excitations.

In order to make a closer comparison with the INS experiments performed in \(Ba_3CoSb_2O_9 \), in the bottom panel of Fig. 4 is shown the spectrum predicted by the SBMF theory for \(J_z / J = 0.15 \) and \(J^z / J = 0.9 \) along the experimental path. If one compares with Fig. 4(d) of reference 12 there is a qualitative good agreement although the dominant high energy spectral weight with respect to the magnon excitation is not recover by the SBMF theory. However, if one separates the spectral weight contribution of the low energy magnon from the high energy continuum \(S^{cont}(k, \omega) \) it is possible to quantify the relative weight of the two spinon continuum in the spectrum by computing \(\int S^{cont}(k, \omega) d\omega / S(k) \), where \(S(k) = \int S(k, \omega) d\omega \) is the static structure factor. The top panel of Fig. 4 shows an important amount and \(k \)-dependence of the continuum contribution for \(J_z = 0.15 \).

In conclusion, we have performed a series expansion and a mean field Schwinger boson study of the antiferromagnetic \(XXZ \) model on the triangular lattice. The series expansion results reveal a roton-like excitation minima at the middle points of the edges of the Brillouin zone for all range of anisotropy \(0 \leq J^z / J \leq 1 \). On
the other hand, we have extended the Schwinger boson theory to four bond operators and fully computed static and dynamic properties at the mean field level. The good agreement between the mean field Schwinger boson and the series expansion for the spin wave dispersion relation encouraged us to extend the microscopic model by including exchange interaction to second neighbors in order to qualitatively reproduce the unusual spectrum of the $Ba_2CoSb_2O_9$ compound. By correlating the main features of the mean field spectrum with the spinon spinon interaction we provide a coherent continuum observed in the INS experiments in $Ba_2CoSb_2O_9$ can be interpreted as the fractionalization of magnon excitations in $2D$. Of course, it would be interesting to test the presence of exchange interaction to second neighbors in this compound. Another important issue would be to classify the possible spin liquid phases of the XXZ model within a projective symmetry group analysis.2,46,47 Interestingly, using the Schwinger fermions in the square lattice it has been recently found that the variety of spin liquid phases for a Hamiltonian with $U(1) \times Z_2$ symmetry is even richer than the $SU(2)$ symmetry case.

We thank C. Batista for the exchange of useful information regarding the $Ba_2CoSb_2O_9$ compound. This work was in part supported by CONICET (PIP2012) under grant No 1060, by the US National Science Foundation grant number DMR-1306048, and by the computing resources provided by the Australian (APAC) National facility.

1 P. W. Anderson, Mater. Res. Bull. 8, 153 (1973); P. Fazekas and P. W. Anderson, Philos. Mag. 30, 423 (1974).
2 X. G. Wen, Phys. Rev. B 65, 165113 (2002).
3 See, for example, G. Misguich and C. Lhuillier Frustrated Spin Systems, edited by H. T. Diep, World Scientific (2004); arXiv:cond-mat/0310405 and reference therein.
4 S. Sachdev, Nat. Phys. 4, 173 (2008).
5 L. Balents, Nature 464, 199 (2010).
6 T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, M. P. A. Fisher, Science 303, 1490 (2004).
7 B. J. Powell and R. H. McKenzie, Rep. Prog. Phys. 74, 056501 (2011).
8 L. D. Faddeev, L. A. Takhtajian, Phys. Lett. A 85, 375 (1981).
9 S. E. Nagler, D. A. Tennant, R. A. Cowley, T. G. Perring, S. K. Satija, Phys. Rev. B 44, 12361 (1991); D. A. Tennant, T. G. Perring, R. A. Cowley, and S. E. Nagler, Phys. Rev. Lett. 70, 4003 (1993); M. Mourigal, M. Enderle, A. Klipperpiejer, J. S. Caux, A. Stunault, and H. M. Ronnow, Nat. Phys. 9, 435 (2013).
10 R. Coldea, D. A. Tennant, A. M. Tsvelik, and Z. Tylczynski, Phys. Rev. Lett. 86, 1335 (2001).
11 T. H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-Rivera, C. Broholm, and Y. S. Lee, Nature 492, 406 (2012).
12 H. D. Zhou, C. Xu, A. M. Hallas, H. J. Silverstein, C. R. Wiebe, I. Umegaki, J. Q. Yan, T. P. Murphy, J. H. Park, Y. Qiu, J. R. D. Copley, J. S. Gardner, and Y. Takano, Phys. Rev. Lett. 109, 267206 (2012).
13 T. Suzuki, N. Kurita, T. Tanaka, H. Nojiri, A. Matsuo, K. Kindo, and H. Tanaka, Phys. Rev. Lett. 110, 267201 (2013).
14 G. Koutroulakis, T. Zhou, C. D. Batista, Y. Kamiya, J. D. Thompson, S. E. Brown, H. D. Zhou, arXiv:cond-mat/1308.6331.
15 M. Kohno, O. A. Starykh, and L. Balents, Nat. Phys. 3, 790 (2007).
16 D. Heidarian, S. Sorella, and F. Becca, Phys. Rev. B 80, 012404 (2009).
17 W. Zheng, J. O. Fjaerestad, R. R. P. Singh, R. H. McKenzie, and R. Coldea, Phys. Rev. Lett. 96, 057201 (2006).
18 M. Mourigal, W. T. Fuhrman, A. L. Chernyshev, and M. E. Zhitomirsky, Phys. Rev. B 88, 094407 (2013).
19 D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988). A. Auerbach and D. P. Arovas, Phys. Rev. Lett. 61, 617 (1988).
20 S. Sarker, C. Jayaprakash, H. R. Krishnamurthy, and M. Ma, Phys. Rev. B 40, 5028 (1989).
21 P. Chandra, P. Coleman, and A. I. Larkin, J. Phys. Condens. Matter 2 7093 (1990).
22 H. A. Ceccatto, C. J. Gazza, and A. E. Trumper Phys. Rev. B 47, 12329 (1993).
23 N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991); S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991).
24 A. A. Burkov and A. H. MacDonald, Phys. Rev. B 66, 115320 (2002).
25 W. Zheng, J. O. Fjaerestad, R. R. P. Singh, R. H. McKenzie, and R. Coldea, Phys. Rev. B 74, 224420 (2006).
26 J. Oitmaa, C. Hamer and W. Zheng, Series Expansion Methods for strongly interacting lattice models (Cambridge University Press, 2006).
27 M. P. Gelfand and R. R. P. Singh, Adv. Phys. 49, 93 (2000).
28 C. J. De Leone and G. T. Zimanyi, Phys. Rev. B 49, 1131 (1994).
29 Y. Fukumoto, J. Phys. Soc. Jpn. 65, 569 (1996).
30 Under time reversal the spinor transforms as $(b_\uparrow, b_\downarrow) \rightarrow (b_\downarrow, -b_\uparrow)$ in this case it is expected that the mean field parameters behaves as $\langle A_{ij} \rangle = iS \sin \frac{Q}{2}(r_j - r_i)$, $\langle B_{ij} \rangle = S \cos \frac{Q}{2}(r_j - r_i)$, $\langle C_{ij} \rangle = iS \cos \frac{Q}{2}(r_j - r_i)$, and $\langle D_{ij} \rangle = S \sin \frac{Q}{2}(r_j - r_i)$.
31 A. Mezio, C. N. Sposetti, L. O. Manuel, and A. E. Trumper Eur. Phys. Lett. 94, 47001 (2011).
32 A. Mezio, C. N. Sposetti, L. O. Manuel, and A. E. Trumper, J. Phys: Condens Matter 25, 465602 (2013).
33 F. Mila, Phys. Rev. B 42, 2677 (1990).
34 A. Mezio, L. O. Manuel, R. R. P. Singh, and A. E. Trumper, New J. Phys. 14, 123033 (2012).
35 T. Li, F. Becca, W. Hu, and S. Sorella, Phys. Rev. B 86, 075111 (2012).
36 A. L. Chernyshev and M. E. Zhitomirsky, Phys. Rev. B 79, 144416 (2009).
37 J. Alicea, O. I. Motrunich, and M. P. A. Fisher, Phys. Rev. B 73, 174430 (2006); A. L. Chernyshev and M. E.
Zhitomirsky, Phys. Rev. B 79, 144416 (2009).

39. O. A. Starykh, A. V. Chubukov, and A. G. Abanov, Phys. Rev. B 74, 180403(R) (2006).

40. N. Elstner, R. R. P. Singh, and A. P. Young, Phys. Rev. Lett. 71, 1629 (1993).

41. Using the identities $\hat{C}^\dagger_{ij} \hat{C}_{ij} + \hat{D}^\dagger_{ij} \hat{D}_{ij} = S^2$ and $\hat{B}^\dagger_{ij} \hat{B}_{ij} = S^2$ for $i \neq j$, the XXZ model can be written in terms of two, three, or four bond operator, being the latter the most appropriate one.

42. R. Kaneko, S. Morita, and M. Imada, J. Phys. Soc. Jpn. 83, 093707 (2014).

43. L. O. Manuel and H. A. Ceccatto, Phys. Rev. B 60, 9489 (1999).

44. A. E. Trumper, L. O. Manuel, C. J. Gazza, and H. A. Ceccatto, Phys. Rev. Lett. 78, 2216 (1997).

45. Here the xy part of E_{2s} is rescaled as $E_{2s}^{xy} = \frac{1}{2}E_{2s}^{xy}$ in order to compensate the difference, $\langle g_s | H^{xy} | g_s \rangle = 2\langle g_s | H_{MF}^{xy} | g_s \rangle$, between the application of Wick’s theorem and mean field decoupling.

46. F. Wang and A. Vishwanath, Phys. Rev. B 74, 174423 (2006).

47. L. Messio, C. Lhuillier, and G. Misguich, Phys. Rev. B 87, 125127 (2013).

48. J. Reuther, S. P. Lee, and J. Alicea, arXiv:cond-mat/1407.4124.