DNA Barcode Identification of Freshwater Snails in the Family Bithyniidae from Thailand

Jutharat Kulsantiwong1, Sattrachai Prasopdee1, Jiraporn Ruangsittichai2, Wipaporn Ruangjirachuporn1, Thidarut Boonmars1, Vithoon Viyanant3, Paola Pierossi4, Paul D. N. Hebert4, Smarn Tesana1*

1 Food-Borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, 2 Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, 3 Center of Excellence for Research in Biomedical Sciences, and Thailand Center of Excellence on Drug Discovery and Development, Thammasat University, Klongluang, Pathumthani, Thailand, 4 Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada

Abstract

Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini), the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5′ region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %), whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %). Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy.

Introduction

Molecular taxonomic methods have been used extensively to complement morphological approaches for species identification, and for establishing phylogenetic relationships [1-10]. Particularly, species identification through DNA barcoding has seen rapid adoption over the past decade. Prior DNA barcode studies have clearly established their effectiveness in the delimitation of animal species, and also contributed several advantages [11-13]. The ability of DNA barcoding to identify all life stages has particular importance in medical parasitology, where it is not only important to identify the parasite and its final host, but also all its life stages and its intermediate hosts. Thus, a multidisciplinary method of classification that includes morphological, molecular and distributional data is an essential prerequisite for understanding the epidemiology of any parasite-induced disease [7].

Freshwater snails of the family Bithyniidae serve as intermediate hosts for the liver fluke, Opisthorchis viverrini, and related species common in the Greater Mekong subregion (Cambodia, Lao People’s Democratic Republic, Vietnam, and Thailand). The infection of this parasite has been associated with several hepatobiliary diseases, including opisthorchiasis, cholangitis, obstructive jaundice, hepatomegaly, cholecystitis, and biliary lithiasis [14-18]. Furthermore, both experimental and epidemiological evidence suggest that liver fluke infections can be an etiological factor of cholangiocarcinoma [19-25]. Three taxa of Bithynia are involved in the transmission of this parasite [26-28] with different species reported as intermediate hosts in different parts of Thailand. B. siamensis goniomphalos is a dominant host in the northeast, while B. funiculata and B. siamensis siamensis serve as hosts in the north and B. siamensis siamensis in the central region [26,29]. Taxonomic keys for differentiation to species in the family Bithyniidae utilized size, shape, color, and sculpture on the shell surface,
operculum structure, and shape and arrangement patterns of radular teeth. Because these characters often demonstrate both geographic variation and phenotypic plasticity, morphological characters used to separate species are difficult to score and identifications require expert malacologists [30]. DNA barcoding has effectively identified snail species in other settings [31-34], therefore we decided to test its effectiveness on Bithyniidae.

The present study is the first to explore the application of DNA barcoding in species identification in the family Bithyniidae. We analyzed variation of the COI barcode region within 10 species/subspecies of Bithyniidae using pairwise sequence comparisons. We then examined the effectiveness of DNA barcoding in differentiating among these species.

Materials and Methods

Snail collections and preparation

Adult snails of the family Bithyniidae (superfamily Rissoacea) were collected with wire-mesh scoops or by hand in 2009 and 2010 from four regions of Thailand: north, northeast, south, and central (Figure 1, Table 1). These regions were selected based on results from previous studies [26,28,35]. Each collection site was recorded and its GPS coordinates were determined using a Garmin® nuvi 203 (Garmin (Asia) Co., Taiwan). The specimens for this study were collected mostly from public water reservoirs where no permits were required. Owners of the private localities (a rice paddy and a waterfall) were asked for their permission. The owners gave their verbal consent for samples to be collected. All species of those snails are not endangered or protected. The snails were sorted and identified following the protocols in Brandt [26], Chitramvong [36], and Upatham et al. [37]. In addition two subspecies (B. s. siamensis and B. s. goniomphalos) were categorized by geographic distribution.

Each snail was subsequently examined for trematode infections by testing for cercarial shedding twice within a week. Prior to cercarial shedding, the snails were cleaned with dechlorinated tap-water. Shedding was induced under 25 W electric light bulbs for 2 hours at room temperature during the day. For species that shed cercaria at night, black covers were used to achieve total darkness and snails were allowed to shed overnight. Uninfected snails were soaked in phosphate buffered saline (PBS) containing antibiotics (200 unit/ml of penicillin and 100 µg/ml of streptomycin) for 3 to 4 hours before extraction of DNA to ensure that bacterial contamination was minimized.

Each snail was dissected to remove its soft body parts, and kept at -20 °C until further analysis. Each specimen was labeled, databased and imaged. All specimen records are in the project ‘JUT- Mitochondrial DNA barcodes identification for snail in family Bithyniidae in Thailand’ on BOLD, the Barcode of Life Data Systems [38].

DNA extraction

Total genomic DNA was extracted from whole snail tissue using methods similar to those in Winnepenninckx et al. [39]. Snail tissue was first homogenized in lysis buffer (2% w/v Cetyltri-ammonium bromide; CTAB, 1.4 M NaCl, 0.2% v/v β-mercaptoethanol, 20 mM EDTA, 100 mM TrisHCl pH 8, 0.2 mg/ml proteinase K), and then incubated at 55 °C for 6 hours. Subsequently, proteins were precipitated using phenol/ chloroform (1:1) once, followed by phenol/ chloroform/ isoamylalcohol (25:24:1), centrifuged at 13,000 g for 10 min (4 °C) twice, and finally washed with chloroform (1:1). The upper aqueous layer was removed, and DNA was precipitated in isopropanol (2:3 v/v), mixed gently by inverting the tube a few times, put on ice for 15 min, and then spun in a microcentrifuge at 13,000 g for 5 min. After centrifugation, the supernatant was discarded; the DNA pellets were washed in 75% absolute ethanol, and centrifuged at 13,000 g for 5 min. After air-drying, the DNA pellet was re-suspended in TE buffer (10 mM Tris, 1mM EDTA, pH 8.0) and stored at -20 °C until analysis. The DNA concentration and purity were estimated by spectrophotometer (NanoVue, GE Healthcare UK limited,......
Table 1. Collection sites for each species from Thailand.

Species	Collection Date	Country	State/Province	Region¹	Latitude	Longitude
Bithynia funiculata (Walker, 1827)	09-May-2009	Thailand	Chiang Mai	Mae Rim1	18.66800029	98.97660065
	09-May-2009	Thailand	Chiang Mai	Mae Rim2	18.91769981	98.97499821
	09-May-2009	Thailand	Chiang Mai	Saraphi3	18.68889999	98.9596972
	09-May-2009	Thailand	Chiang Mai	Mae Rim4	18.91139984	98.9600232
Bithynia siamensis gonionmphalos (Morelet, 1866)	13-Oct-2010	Thailand	Nong Khai	Sangkhom5	18.09330009	102.2419968
	13-Oct-2010	Thailand	Nong Khai	Tha Bo6	17.78840065	102.6009979
	04-Jun-2010	Thailand	Roi Et	Muang Roi E7	15.90060043	103.7320023
	03-May-2008	Thailand	Maha Sarakham	Barabue8	16.03829956	103.1190033
	11-May-2008	Thailand	Khon Kaen	Chium Phe9	16.54809952	102.0940016
	04-Apr-2008	Thailand	Khon Kaen	Ubolratana10	16.75279999	102.6330032
	10-May-2008	Thailand	Nong Bua Lamphu	Non Sang11	16.86380005	102.5680008
	04-Apr-2008	Thailand	Khon Kaen	Ban Phai12	16.16609955	102.6829987
	04-Apr-2008	Thailand	Khon Kaen	Waeng No13	15.80589962	102.4110031
	09-Dec-2008	Thailand	Khon Kaen	Ubolratana14	16.75300026	102.6330032
	04-Apr-2008	Thailand	Khon Kaen	Ban Phai15	16.16609955	102.6829987
	10-May-2010	Thailand	Buriram	Nong K16	14.6600037	102.5439967
	12-May-2008	Thailand	Khon Kaen	Muang K Kaen17	16.44829941	102.8499985
Bithynia siamensis siamensis (Morelet, 1866)	26-Feb-2011	Thailand	Songkhla	Hat Yai18	7.013070107	100.4520035
	10-Oct-2009	Thailand	Khon Kaen	Muang K Kaen19	16.44799995	102.8499985
	10-May-2009	Thailand	Bangkok	Kasertsat University20	13.85270023	100.5699997
	10-May-2009	Thailand	Bangkok	Kasertsat University21	13.8494997	100.5680008
	08-May-2009	Thailand	Phitsanulok	Bang Rakam22	16.67480087	100.1600037
	08-May-2009	Thailand	Phichit	Bueng Na Rang23	16.17670059	102.1279984
	09-May-2009	Thailand	Chiang Mai	Muang Chiang Ma24	18.80529976	98.95020249
	09-May-2009	Thailand	Chiang Mai	Muang Chiang Ma25	18.79179995	98.94629669
	10-May-2009	Thailand	Suphan Buri	Si Pranchan26	14.6697998	100.1159973
	10-Jun-2010	Thailand	Lop Buri	Chai Bada27	15.20429993	101.137001
	26-Feb-2011	Thailand	Songkhla	Hat Yai28	7.013070107	100.4520035
	10-May-2009	Thailand	Sing Buri	Muang Sing Bur29	14.8604002	100.3939972
Filotapiona (Morelet, 1866)	10-Jun-2010	Thailand	Lop Buri	Patthana Nikhom30	14.85579967	100.9899979
Gabbia erawanensis (Prayoonhong, Chitramvong& Unpattanapatthanakul)	11-May-2009	Thailand	Kanchanaburi	Erawan32	14.3679899	99.14369965
	17-May-2009	Thailand	Kanchanaburi	Erawan33	14.3690003	99.14399719
Upatham 19900 (Morelet, 1866)	11-May-2009	Thailand	Kanchanaburi	Erawan34	14.3690003	99.145401
Gabbia pygmaea (Preston, 1908)	09-May-2009	Thailand	Chiang Mai	Mae Rim35	18.91339984	98.9600232
Gabbia wykoffi (Brandt 1868)	09-May-2009	Thailand	Chiang Mai	Saraphi36	18.68560028	99.04979706
	04-Apr-2010	Thailand	Loei	Chiang Khan37	17.90600014	101.6880035
	04-Apr-2010	Thailand	Loei	Chiang Khan38	17.89599991	101.6899982
	04-Apr-2010	Thailand	Loei	Chiang Khan39	17.89489937	101.6709976
	12-Oct-2009	Thailand	Saraburi	Muang Saraburi40	14.53129959	100.9260025
	10-May-2009	Thailand	Suphan Buri	Muang Sing Bur41	14.85379982	100.3779984
	09-May-2009	Thailand	Chiang Mai	Saraphi42	18.68560028	99.04979706
	09-May-2009	Thailand	Chiang Mai	Hang Dong43	18.68889999	98.9536972
	09-May-2009	Thailand	Chiang Mai	Hang Dong44	18.68280029	98.97660065
	09-May-2009	Thailand	Bangkok	Kasertsat University45	13.8494997	100.5680008
	20-Oct-2009	Thailand	Khon Kaen	Ubolratana46	16.75279999	102.6330032
	20-Oct-2009	Thailand	Khon Kaen	Muang K Kaen47	16.45019913	103.0270004
	10-Aug-2009	Thailand	Chaiyaphum	Chuttara48	15.56820011	101.8430023
	10-May-2009	Thailand	Bangkok	Kasertsat University49	13.8494997	100.5680008
	11-May-2009	Thailand	Kanchanaburi	Erawan50	14.36789989	99.14369965
Table 1 (continued).

Species	Collection Date	Country	State/Province	Region	Latitude	Longitude
Bithyniidae DNA Barcode						
*						
*						
*						
*						
Buckinghamshire, UK) at an absorbance of 260 and 280 nm wavelengths. The extracted genomic DNA was then diluted to a working concentration of 10 ng/µl.						

Amplification and sequencing

PCR protocols followed those used by the Canadian Centre for DNA Barcoding [40], with slight modifications. The PCR reaction was performed on a GeneAmp® PCR System 9700 Thermo Cycler (Applied Biosystem, Foster City, CA). The partial mitochondrial COI gene was amplified using the primers shown in Table 2 [41,42] in a total reaction volume of 50 µl. The amplification reaction consisted of 10x PCR buffer for 5 µl, 10 mM dNTP for 0.25 µl, 50 mM MgCl₂ for 2.5 µl, forward primer for 0.5 µl, reverse primer for 0.5 µl, Platinum Taq polymerase for 0.24 µl, H₂O for 36.01 µl and template for 5 µl. Standard conditions for COI gene amplification included initial denaturation at 94 °C for 1 min, five cycles of 94 °C for 30 sec, annealing at 45-50 °C for 40 sec, and extension at 72 °C for 1 min, following by 30 to 35 cycles of 94 °C for 30 sec, 51 to 54 °C for 40 sec, and 72 °C for 1 min, with a final extension at 72 °C for 10 min, followed by an indefinite hold at 4 °C [43-45].

PCR products were visualized on a 1.5% agarose gel and the sequences ≥ 350 bp were included in the analysis. A BLAST search was performed on NCBI (www.ncbi.nlm.nih.gov) [38], but only sequences ≥ 350 bp were included in the analysis. A

Data analysis

Forward and reverse DNA sequences were assembled, and edited using Chromas version 2.23 [46], BioEdit v. 5.0.6 [47] and CodonCode v.3.01 (CodonCode Corporation, Dedham, MA). Alignment and homology analysis were performed using CLUSTAL X v. 1.8 [48] and MEGA 4 [49] with pairwise nucleotide sequence divergences calculated using the Kimura 2-parameter (K2P) model [50]. Base composition and distance summaries were obtained using the tools provided on the BOLD workbench (www.boldsystems.org) [38], but only sequences ≥ 350 bp were included in the analysis. A
neighbour-joining (NJ) tree was also created using BOLD to provide a preliminary display of the sequence divergences.

Results and Discussion

Ten species/subspecies of Bithyniidae were collected from sites across Thailand (Figure 1 and Figure 2). A total of 217 individuals of these species/subspecies were analyzed for COI, and Neotricula aperta gamma strain (family Hydrobiidae, superfamily Rissoacea) from GenBank (Accession: AF188222.1 GI: 11493624 and AF188220.1 GI: 11493620) was used as outgroup. All 217 specimens were identified using morphological characteristics of the adult shells, radular patterns, geographic distribution [35-37], and confirmed by a malacologist. From 1-6 individuals of each species/subspecies from each of the five regions were analyzed, as shown in the neighbour-joining tree (Figure S1). The sequences, and trace files, are available on BOLD (project: JUT).

The pairwise sequence divergences were different among species/subspecies (Table S1). Intraspecific K2P distances averaged 2.3±0.001% (range 0-9.2 %), 4-fold less than the mean congeneric sequence divergence of 8.7±0.002% (range 0-22.2 %). The highest mean intraspecific sequence divergence for an individual species was 4.93±0.22% (range 0-9.2%) for Wattebledia crosseana reflecting the fact that members of this species fell into two distinct sequence clusters (Table 3). The mean sequence divergence across the family was also high, averaging 17.1% (range 13.0-21.3%). The distributions of intraspecific and interspecific divergences showed limited overlap (Figure 3), because most (65.4%) intraspecific sequences showed less than 2% divergence while 83.4% of the interspecific sequences possessed more than 3%

Table 2. Primers used for PCR amplification and sequencing [41,42].

Primer name	Sequence	Forward or Reverse
LCO1490	5’ GGTCAACAAATCATAAAGATATTGG 3’	Forward
HC02198	5’ TAAACTTCAGGGTGACCCAAAAATCA 3’	Reverse
GasF1_t1	5’ TGTAAAACGACGGCCAGTTTTCAACAACTTATCG 3’	Forward
GasF2_t1	5’ TGTAAAACGACGGCCAGTTCTACAAAAGAGATCGG 3’	Forward
GasF3_t1	5’ TGTAAAACGACGGCCAGTTTCTCACAACAGATTTGG 3’	Forward
GasR1_t1	5’ CAGGAAACAGCTATGACCTWGCGTGGCCARAAATACAA 3’	Reverse
MGasF1_t1	5’ TGTAAAACGACGGCCAGTATAAGATTTCTCGWTRAAATA 3’	Forward
MGasR1_t1	5’ CAGGAAACAGCTGTGCTTGWCWCCWCCCTTC 3’	Reverse

Remark Degenerate base; R = A or G, W = A or T, H = C or A or T

doi: 10.1371/journal.pone.0079144.g002

![Figure 2. The shell morphology of bithyniid snails (A) B. funiculata; (B) B. siamensis goniomphalos; (C) B. siamensis siamensis; (D) H. nassa; (E) W. crosseana; (F) W. siamensis; (G) W. baschi; (H) G. wykoffi; (I) G. pygmaea; (J) G. erawanensis. Scale bars: A-J = 1 mm.](http://www.plosone.org/doi/abs/10.1371/journal.pone.0079144.g002)
Table 3. Species with nearest neighbour and intraspecific and interspecific divergence.

Species	Nearest Neighbor (NN)	Intraspecific	Interspecific									
	Nearest Neighbor	Distance to	Mean	SE	Max	Min	Count	Mean	SE	Max	Min	
		Comparisons										
B. funiculata (13)	B. siamensis siamensis	7.11	78	1.08	0.10	2.17	0					
B. siamensis goniomphalos (30)	B. siamensis siamensis	1.49	435	2.39	0.04	3.95	0					
B. siamensis siamensis (40)	B. siamensis goniomphalos	1.49	780	0.62	0.50	1.81	0	2110	2.27	0.13	10.77	0
W. baschi (26)	W. baschi	6.00	330	4.93	0.22	9.11	0					
W. siamensis (8)	W. baschi	11.39	28	0.32	0.44	0.82	0					
W. baschi (7)	W. crosseana	6.00	28	0.05	0.35	0.35	0	446	6.02	0.32	14.19	6.33
Gabbia wykoffi (59)	G. pygmaea	0	1761	3.14	0.05	6.69	0					
G. pygmaea (3)	G. wykoffi	0	3	0.00	0.00	0.00	0					
G. erawanensis (8)	B. siamensis goniomphalos	15.73	28	0.30	0.07	0.82	0	673	6.62	0.29	22.16	0
Hydrobioides nassa (23)	W. crosseana	14.13	253	0.47	0.03	2.20	0	0	0	0	0	0
Total (217)		63.34	3724	13.30	1.81	27.91	0	3229	14.91	0.74	47.12	0

doi: 10.1371/journal.pone.0079144.t003

Figure 3. Pairwise distances (K2P) for COI sequences from snail species in the family Bithyniidae separated into two categories: (a) intraspecific; (b) interspecific.
doi: 10.1371/journal.pone.0079144.g003

divergence. As a result, sequence divergences for these snails are similar to those in previous barcoding reports on other organisms [2,12]. Hebert et al. [12] reported that COI sequence divergences among animal species from interspecific COI divergences within the phylum Mollusca averaged 11.1±5.1%.

The high intraspecific divergences in W. crosseana and G. wykoffi could indicate the presence of previously unrecognized cryptic species. DNA barcoding has proven invaluable at detecting cryptic species, which in many cases, are subsequently corroborated by life history, morphological or other character sets [51-54]. For these two snail species, the clusters represent allopatric populations with no apparent morphological differences, so it is currently unclear if they represent merely isolated populations or separate entities with differences yet to be revealed. Conversely, the sharing of identical barcode sequence in G. pygmaea and one northern Thailand population of G. wykoffi may be indicative of introgressive hybridization, incomplete lineage sorting, misidentification, or a previously unrecognized synonymy. Further investigations into these groups are necessary to untangle and confirm these predictions and the use of more holistic approaches to delimit species boundaries will be beneficial.

An important finding in the present study is that the three first intermediate hosts (B. s. siamensis, B. s. goniomphalos and B. funiculata) of Southeast Asian liver fluke can all be distinguished by COI barcodes. All three taxa of Bithynia sp. form monophyletic clusters, with 1.5% divergence between the two subspecies of B. siamensis and both subspecies had 7.1% divergence from B. funiculata (Table 3). Because the two subspecies of B. siamensis are morphologically indistinguishable, the capacity of DNA barcoding to discriminate them is significant. Moreover, morphological similarity has created taxonomic confusion and difficulties in the accurate identification of B. s. siamensis and B. s. goniomphalos which are currently believed to be distributed in the north, central, south and northeast of Thailand [26,29,36-38]. As well, the capacity to rapidly diagnose all stages of the host’s life cycle is essential for better understanding of the epidemiology of this parasite-induced disease.

The barcoding success for the Bithyniidae species examined in this project was 80%, with nearly all taxa forming discrete monophyletic clusters (Figure 4). The two exceptions are G. pygmaea and one population of G. wykoffi, which share an identical COI sequence (see above). These two taxa might possibly be cryptic species. However, the adult size of G. wykoffi is double that of G. pygmaea. Distinct paralogy was found in W. crosseana. The results indicated that W. crosseana samples from different localities may well represent cryptic species because they are morphologically similar but genetically distinct. Cryptic species of W. crosseana might be resulted from some factors such as different localities which would develop to different genotype. G. wykoffi was separated into more than one geographically-restricted cluster respectively comprising collection localities from the central,
north or northeast regions of Thailand. These clusters might be cryptic species according to this analysis as same as W. crosseana. However, more comprehensive analyses of the systematics of these taxa using more specimens, representing their known geographic distribution, as well as more evidence from independent biological investigations, are required before this hypothesis can be verified.

Similar studies which have also been reported in other organisms [52-59], yet over all DNA barcoding has proven reliable in identifying species in more than 90% of the organisms investigated [60]. The neighbour-joining tree and ME analysis also revealed that in general, individuals tended to cluster in accordance with collection localities (Supporting Information, Figure S1, S2). The results from ME analysis were very similar to the neighbor-joining analysis so the latter was used to generate diagrams.

The genera Wattebledia and Bithynia formed monophyletic clusters as well, but Gabbia did not. The selection of Neotricula aperta gamma strain (in the same superfamily) from GenBank as the outgroup appeared legitimate as it clustered separately from other snails in family Bithyniidae. Increased taxon, geographic, and gene sampling would be worthwhile to further explore the two ‘barcode outliers’ and the ability of COI to infer geographic provenance and phylogenetic affinities in this group.

In summary, the present study has studied genetic-variation in ten species/subspecies of Bithyniidae from Thailand using COI. Sequence divergences were lower for intraspecific than congeneric comparison. Using COI, 80% of the studied snail taxa could accurately identified. In comparison with other methods for identifying snails in this family, DNA barcoding is quicker, easier and more applicable, it is suitable for young snail identification which will be beneficial for understanding the epidemiology of opisthorchiasis transmission.
Supporting Information

Table S1. Genetic distances for all specimens in family Bithyniidae.

(F XL S)

Figure S1. Neighbour-joining tree (Distance model: Kimura-2-Parameter) of profile and test taxa; includes a list of BOLD with Process ID, taxa names, length of sequence and locality.

(JPG)

Figure S2. Minimum Evolution tree (ME) of 218 COI sequences of 10 species/subspecies of snails in the family Bithyniidae. The number of individuals for each branch is given in parentheses.

(TIF)

Acknowledgements

We thank the staffs of the Biodiversity Institute of Ontario, University of Guelph, Ontario, Canada, especially Mr. Sean Prosser for providing technical advice. Dr. Jeff Webb aided with data analysis, while Dr. Jeremy R. deWaard provided valuable comments on the manuscript. We also thank Assistant Professor Dr. Pairoj Tarbsripair, the Malacologist who confirmed our identification species of the specimens. Fieldwork that provided the basis for this work would not have been completed without the gracious support from Dr. Pairoj Tarbsripair, Dr. Supawadee Piratae, Dr. Panita Khampaosa, Charlemmap Donthaisong, Patpicha Arunsan, Dr. Apiporn Suwannatral, and Kulwadee Suwannatral.

Author Contributions

Conceived and designed the experiments: JK ST WR TB VV JR. Performed the experiments: JK. Analyzed the data: JK SP JR TP PP. Contributed reagents/materials/analysis tools: JK SP PP PDNH. Wrote the manuscript: JK ST VV PP PDNH. Collected specimens: SP. Commentation: WR TB.

References

1. Thomas W, Davis GM, Chen CE, Zhou XN, Zeng PX et al. (2000) Oncomelania hupensis (Gastropoda: Rissioidea) in eastern China: molecular phylogeny, population structure, and ecology. Acta Trop 77: 215-227. doi:10.1016/S0001-706X(00)00143-1. PubMed: 11080513.

2. Carvalho OS, Caldeira RL, Simon AJG, THDA Vidal (2001) Genetic variability and molecular identification of Brazilian Biomphalaria species (Mollusca: Planorbidae). Parasitology 123: S197-S209. PubMed: 11769284.

3. Jones CS, Rollison D, Mimpfoundi R, Ouma J, Kariuki HC et al. (2001) Molecular evolution of freshwater snail intermediate hosts within the Bulinus forskali group. Parasitology 7: 277-292. PubMed: 11769290.

4. Davis GM, Wilke T, Spolesy CM, Qiu CP, Qiu DC et al. (1998) Cytochrome oxidase I-based phylogenetic relationships among the Pomatiopsidae, Hydrobiidae, Rissoidae and Truncatellidae (Gastropoda: Caenogastropoda: Rissacea). Malacologia 40: 251-266.

5. Delicado D, Ramos MA (2012) Morphological and molecular evidence for cryptic species of springsnails [genus Pseudamnicola (Mollusca, Caenogastropoda, Hydrobiidae)]. Zokeys 190: 55-79. PubMed: 22639531.

6. Kodcharin P (2006) Genetic variation of Bithynia siamensis goniomphalos, first intermediate host of Opisthorchis viverrini in the basin of Mun and Chi River, Thailand by RAPD. M.Sc. Thesis: The Graduate School, Khon Kaen University, Khon Kaen, Thailand.

7. Duangprompo W (2007) Genetic variation of snails in the family Bithyniidae in Thailand and identification of Bithynia siamensis goniomphalos by PCR. M.Sc. Thesis: The Graduate School, Khon Kaen University, Khon Kaen, Thailand.

8. Jorgensen A, Kristensen TK, Stothard JR (2007) Phyllogy and biogeography of African Biomphalaria (Gastropoda: Planorbidae), with emphasis on endemic species of the Great East African lakes. Zool J Linn Soc 151: 337-349. doi:10.1111/j.1096-3642.2007.00330.x.

9. Caldeira RL, Jannotti-Passos LK, Carvalho OS (2009) Molecular epidemiology of Brazilian Biomphalaria: A review of the identification of species and the detection of infected snails. Acta_Trop 111: 1-6. PubMed: 19426566.

10. Kiatnopit S, Sithithaworn P, Boonmars T, Tesana S, Chanawong A et al. (2011) Genetic markers for studies on the systematics and population genetics of snails. Bithynia spp., the first intermediate hosts of Opisthorchis viverrini in Thailand. Acta Trop 118: 136-141. doi:10.1016/j.actatropica.2011.02.002. PubMed: 21352793.

11. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270: 313-321. doi:10.1098/rspb.2002.2218.

12. Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270: 96-99. doi:10.1098/rspb.2003.0025. PubMed: 12952648.

13. Ferri E, Barbuto M, Bain O, Galimberti A, Uni S et al. (2009) Integrated taxonomy: traditional approach and DNA barcoding for the identification of filarioid worms and related parasites (Nematoda). Front Zool 6: 1-12. doi:10.1186/1742-9994-6-1. PubMed: 19128479.

14. Harinasuta T, Riganti M, Bunnag D (1984) Opisthorchis viverrini infection: pathogenesis and clinical features. Arzneimittel Forschung 34: 1167-1169. PubMed: 6542384.

15. Osman M, Lausten SB, El-Sell T, Bghodadi I, Rashed MY et al. (1998) Biliary parasites. Dig Surg 15: 287-296. doi:10.1159/000018640. PubMed: 9845601.

16. Maiwang E, Maingar P (2003) Clinical manifestation of opisthorchiasis and treatment. Acta Trop 88: 221-227. doi:10.1016/j.actatropica.2003.03.001. PubMed: 14611876.

17. Sripha B, Leungwatananawat S, Nitta T, Wongkham C, Bhudhisawadi V et al. (2005) Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). World J Gastroenterol 11: 3392-3397. PubMed: 15948244.

18. Sripha B, Kaewkes S, Sithithaworn P, Maiwang E, Laha T et al. (2007) Liver fluke induces cholangiocarcinoma. PLOS Med: 7: 1148-1155. PubMed: 17622191.

19. Thamavit W, Bhamarapravati N, Sahaphong S, Vajrasthira S, Angsubhakom S (1978) Effects of dimethylnitrosamine on induction of cholangiocarcinoma in Opisthorchis viverrini infected Syrian golden hamsters. Cancer Res 38: 4634-4639. PubMed: 214229.

20. Haswell-Elkins MR, Sithithaworn P, Elkins D (1992) Opisthorchis viverrini and cholangiocarcinoma in Northeast Thailand. Parasitol Today 8: 86-89. doi:10.1016/1076-7519(92)00241-S. PubMed: 15463576.

21. IARC (1994) Infection with liver flukes (Opisthorchis viverrini, Opisthorchis felineus and Clonorchis sinensis). IARC Monogr Eval Carcinog Risks Hum 61: 121-175. PubMed: 7715069.

22. Sithithaworn P, Haswell-Elkins MR, Maiwang E, Satrup S, Maiwang E et al. (1994) Parasite-associated morbidity: liver fluke infection and bile duct cancer in northeast Thailand. Int J Parasitol 24: 833-843. doi:10.1016/0020-7519(94)90009-4. PubMed: 7982745.

23. Vatanasapat V, Parkin DM, Sriamorn S (2000) Epidemiology of liver cancer in Thailand. In: V Vatanasapat Sripa, Liver cancer in Thailand: Epidemiology, diagnosis and control. Khon Kaen, Thailand: Siriphan Press, pp. 3-6.
24. Watanapa P, Watanapa WB (2002) Liver fluke-associated cholangiocarcinoma. Br J Surg 89: 962-970. doi:10.1016/j.bjsurg.2011.02.014.
25. Honjo S, Srivatanakul P, Siripung H, Kikukawa H, Hanai S et al. (2005) Genetic and environmental determinants of risk for cholangiocarcinoma via Opisthorchis viverrini in a densely infested area in Nakhon Phanom, northeast Thailand. Int J Cancer 117: 854-860. doi:10.1002/ijc.21146. PubMed:15957169.
26. Brandt R (1974) The non-marine aquatic Mollusca of Thailand. Archiv Mollusken 105: 1-423.
27. TROPMED Technical Group (1986) Snails of medical importance in Southeast Asia. Southeast Asian J Trop Med Public Health 17: 262-322. PubMed:3787310.
28. Sri-Aroon P, Butraporn P, Limsoomboon J, Kerdpuech Y, Kaewpoolsri M et al. (2005) Freshwater mollusks of medical importance in Kalasin Province, Northeast Thailand. Southeast Asian J Trop Med Public Health 36: 653-657. PubMed:16124433.
29. Wykoff DE, Harinasuta C, Juttijuda P, Winn MM (1965) Opisthorchis viverrini in Thailand: the life cycle and comparison with O. felineus. J Parasitol 51: 207-214. doi:10.2307/2476093. PubMed:14275209.
30. Rollinson D, Stothard JR, Jones CS, Lockyer AE, de Souza CP et al. (1998) Molecular characterization of intermediate snail hosts and the search for resistance genes. Mem Inst Oswaldo Cruz 93: 111-116. doi:10.1590/S0074-02761998000100020.
31. Miller KB, Alarie Y, Wolfe GW, Whiting MF (2005) Association of insect life stages using DNA sequences: the larvae of Philodyte sumbrinus (Motschulsky) (Coleoptera: Dytiscidae). Syst Entomol 30: 499-509. doi:10.1111/j.1471-8286.2007.01748.x. PubMed:17486036.
32. Helm PT, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101: 14812-14817. doi:10.1073/pnas.0406166101. PubMed:15465915.
33. Hall T (2008) BioEdit Sequence Alignment Editor for Windows 95/98/NT/XP. Available: http://www.mbio.ncsu.edu/bioedit/bioedit.html. Accessed 3 Oct 2009.
34. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294-299. PubMed:7881515.
35. Ivanova NV, deWaard JR, Hajibabaei M, Hebert PDN (2005) Protocols for high volume DNA barcoding. Available: http://www.dnabarcoding.ca/. Accessed 5 November 2008.
36. Ivanova N, Grainger C (2006) Pre-made frozen PCR and sequencing plates. CCDB Advances, Methods Release No. 4. Available: http://www.ccdb.ca/pa/ge/research/protocols/ccdb-advances. Accessed 30 Nov 2008.
37. Ivanova N, Grainger C, Hajibabaei M (2006) Increased DNA barcode recovery using Platinum® Taq. CCDB Advances, Methods Release. Retrieved unpublished at whilst December year 1111 from No. 2Available.http://www.ccdb.ca. Retrieved unpublished at whilst December year 1111 from /pa/ge/research/protocols/ccdb-advances. Accessed 30 Nov 2008.
38. McCarthy C. (2008) Chromas. Available: http://technelysium.com.au/. Accessed 3 November 2009.
39. Rollinson D, Stothard JR, Jones CS, Lockyer AE, de Souza CP et al. (1998) Molecular characterization of intermediate snail hosts and the search for resistance genes. Mem Inst Oswaldo Cruz 93: 111-116. doi:10.1590/S0074-02761998000100020.
40. Miller KB, Alarie Y, Wolfe GW, Whiting MF (2005) Association of insect life stages using DNA sequences: the larvae of Philodyte sumbrinus (Motschulsky) (Coleoptera: Dytiscidae). Syst Entomol 30: 499-509. doi:10.1111/j.1471-8286.2007.01748.x. PubMed:17486036.
41. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599. Available: http://www.megasoftware.net/. Accessed 3 November 2009. doi:10.1093/molbev/msm092. PubMed:17486378.
42. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111-120. doi:10.1007/BF01731581. PubMed:7463489.
43. Locks MC, Soto-Calderon ID, Lees DC, Anthony NM (2009) High mitochondrial diversity in geographically widespread butterflies of Madagascar: A test of the DNA barcoding approach. Mol Phylogenet Evol 50: 485-495. doi:10.1016/j.ympev.2008.11.008. PubMed:19056502.