Lactobacillus paracasei metabolism of rice bran reveals metabolome associated with Salmonella Typhimurium growth reduction

N.J. Nealon*, C.R. Worcester* and E.P. Ryan

Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA

Keywords
L. paracasei subsp. paracasei, metabolomics, prebiotic, probiotic, rice bran. S. Typhimurium, synbiotic.

Abstract

Aims: This study aimed to determine the effect of a cell-free supernatant of Lactobacillus paracasei ATCC 27092 with and without rice bran extract (RBE) on Salmonella Typhimurium 14028s growth, and to identify a metabolite profile with antimicrobial functions.

Methods and Results: Supernatant was collected from overnight cultures of L. paracasei incubated in the presence (LP+RBE) or absence (LP) of RBE and applied to S. Typhimurium. LP+RBE reduced 13-1% more S. Typhimurium growth than LP after 16 h (P<0.05). Metabolite profiles of LP and LP+RBE were examined using nontargeted global metabolomics consisting of ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. A comparison of LP and LP+RBE revealed 84 statistically significant metabolites (P<0.05), where 20 were classified with antimicrobial functions.

Conclusions: LP+RBE reduced S. Typhimurium growth to a greater extent than LP, and the metabolite profile distinctions suggested that RBE favourably modulates the metabolism of L. paracasei. These findings warrant continued investigation of probiotic and RBE antimicrobial activities across microenvironments and matrices where S. Typhimurium exposure is problematic.

Significance and Impact of the Study: This study showed a novel metabolite profile of probiotic L. paracasei and prebiotic rice bran that increased antimicrobial activity against S. Typhimurium.

Introduction

Globally, Salmonella enterica serovar Typhimurium accounts for the majority of human Salmonellosis cases each year. Salmonella Typhimurium causes widespread disease because of zoonotic transmission from cattle, poultry, swine, sheep, rodents and horses (Tsolis et al. 1999). An emerging strategy against S. Typhimurium involves the use of probiotics and prebiotics. As defined by the World Health Organization and Food and Drug Administration, probiotics are live micro-organisms that, when administered in adequate amounts, confer a health benefit to the host (Anon 2006). Many widely investigated probiotic species belong to the bacterial genus Lactobacillus, which has a natural ability to reduce the growth of S. Typhimurium (Heredia-Castro et al. 2015). In particular, Lactobacillus paracasei strains have been shown to effectively reduce the growth of enteric pathogens including S. Typhimurium, Listeria monocytogenes and Escherichia coli O157:H7 (Caridi 2002; Chiang and Pan 2012; Valerio et al. 2013).

Rice bran, the outer layer of the rice grain, is a natural and rich source of prebiotics that can be metabolized by the gut microbiome to modulate mucosal immune responses, reduce intestinal colonization of enteric pathogens (Kumar et al. 2012) and increase numbers of native probiotic lactobacilli (Henderson et al. 2012; Goodyear et al. 2015). Rice bran was also shown to support...
probiotic *E. coli* Nissle and *Lactobacillus rhamnosus* GG growth in gnotobiotic piglets (Yang et al. 2015).

Molecular mechanisms by which *Lactobacillus* sp. utilize and metabolize prebiotics are not well understood. Metabolomics has been minimally used to elucidate the functional significance of probiotics via identification and quantification of small molecules (Ryan et al. 2011). Past investigations evaluated small-molecule profiles produced by the microbiome *in vitro* and *in vivo*, including probiotics (Vitali et al. 2010; Mozzi et al. 2013; Weir et al. 2013). Metabolite profiles have been determined for an increasing number of foods fermented by lactic acid bacteria including yoge, yogurt and wine (Settachaimongkon et al. 2014; Arbulu et al. 2015; Koistinen et al. 2016).

It was hypothesized that a combination of *L. paracasei* and rice bran extract (RBE) would result in a unique profile of metabolites with antimicrobial activity that more effectively reduce the growth of *S. Typhimurium* compared to *L. paracasei* alone. This study aimed to compare the effectiveness of *L. paracasei* alone and *L. paracasei* with RBE supernatants at reducing *S. Typhimurium* growth and to evaluate their metabolomic profiles. The small molecule changes that occur in the presence and absence of RBE illustrate how *L. paracasei* and rice bran synergistically promote *S. Typhimurium* growth reduction.

Materials and methods

Bacterial strains and culture reagents

Lactobacillus paracasei ATCC 27092 was purchased from ATCC (Manassas, VA), and *S. enterica* subsp. *enterica* serovar Typhimurium 14028s KanR (*rPSM::GFP*) was a generous gift from Dr Andres Vazquez-Torres (University of Colorado). All bacterial cultures were stored at -80°C as 1-ml aliquots supplemented with 20% glycerol in Luria–Bertani (LB) broth (MO BIO Laboratories, Inc. Carlsbad, CA) for *S. Typhimurium*, and deMan Rogosa Sharpe broth (MRS) (Becton, Dickinson, and Company Difco Laboratories, Franklin Lakes, NJ) for *L. paracasei*. MRS broth and agar, LB broth and MacConkey agar (Becton, Dickinson, and Company Difco Laboratories) were prepared and sterilized according to the manufacturer. To prepare MRS broth supplemented with RBE, 100 μg ml$^{-1}$ RBE was added to the broth. The media was autoclaved with an 18-min sterilization time, then stored at 4°C until use.

Rice bran extraction

RBE was prepared as described previously (Kumar et al. 2012). Briefly, 4 g of finely ground, heat-stabilized Calrose rice bran (USDA-ARS Rice Research Unit, Stuttgart, AK) was extracted in 42-6 ml of 80% methanol. The mixture was vortexed (232 Vortexer Fisher Scientific, Pittsburgh, PA, USA) on a high power setting for 5 min, incubated at -80°C overnight and centrifuged (Beckman Coulter Allegra X-14R, Indianapolis, IN, USA) at 3724 g for 5 min. The supernatant was collected, and kept at -80°C until it could be dried in a speedvac concentrator (SPD1010; Thermo Scientific, Pittsburgh, PA, USA) at 45°C, with the heating time for 5 min, and a vacuum pressure of 7.5 torrs.

L. paracasei cell-free supernatant preparation

The cell-free supernatant (CFS) preparation was modified from a published procedure (Wang et al. 2012). Briefly, *L. paracasei* isolates were thawed from storage in -80°C, suspended in MRS broth and grown at 37°C until mid/late logarithmic phase. Approximately 1 \times 107 cells were inoculated into 15 ml of MRS or MRS + 100 μg ml$^{-1}$ RBE. The RBE concentration was determined based on dose–response experiments that observed 100 μg ml$^{-1}$ of RBE, when added to fixed amounts of *S. Typhimurium*, reduced growth compared to a RBE-free control culture of *S. Typhimurium*, as evidenced by differences in optical density at 600 nm (OD600) over 12 h (Fig. S1a). Each treatment was incubated at 37°C for 24 h. *Lactobacillus paracasei* supernatant (LP) and *L. paracasei* supernatant with RBE (LP+RBE) was collected by centrifuging two times at 3724 g for 10 min. The pH of the supernatant was adjusted using a pH meter (Corning Pinnacle 530, Cole-Parmer, Vernon Hills, IL, USA) with 1 mol l$^{-1}$ NaOH (Sigma Aldrich) until a pH of 4.5 was reached. CFS was filter-sterilized through a 0.2-μm pore (Pall Corporation LifeSciences Acrodisc syringe filters, Port Washington, NY, USA) into 1-ml aliquots before being stored at -80°C. Sterility of all CFS was confirmed by plating the treatment on MRS agar and confirming the absence of any bacterial growth after 48 h. Three independent batches of CFS were used in this study.

S. Typhimurium growth reduction assay

Salmonella Typhimurium was thawed from storage in -80°C and suspended in sterile LB. Stocks were grown in a 24-well plate at 37°C until early/mid logarithmic phase, and were assessed using the Cytation3 plate reader (BioTek Instruments Inc., Winooski, VT, USA). In a 96-well plate, 20 μl of *S. Typhimurium* (approx. 2 \times 106 cells) was diluted 10-fold into 180 μl of sterile LB. To determine an appropriate treatment volume for the growth reduction assay, a dose curve analysis using LP was performed on *S. Typhimurium* (Fig. S1b). In brief, 100, 50 and 25 μl doses of 100% LP were added to approx. 2 \times 105 *S. Typhimurium* cells, and growth was evaluated for 24 h at OD600. Fifty microlitres of treatment was the lowest dose at which
a difference was observed in the inhibitory capacity of LP compared to a volume-adjusted control.

To evaluate the effect of CFS on *S. Typhimurium* growth, a 50 µl of treatment with different percentages of CFS were added to each well: 0% vehicle control, 20, 40, 60, 80 and 100%. A negative control of *S. Typhimurium* inoculated with 50 µl LB broth was included on each well plate. To control for pH differences between treatments, all media was adjusted to a pH of 4.5 using 1N of NaOH or HCl before use. The plate was read on an automatic plate reader, incubated at 37°C for approx. 16 h, and individual wells were read at OD600 every 20 min. To evaluate differences between all treatments, OD600 was plotted over time. To further quantify growth reduction, *S. Typhimurium* was inoculated with 50 µl of a 50% LP and 100% CFS were added to each well: 0% vehicle control, 20, 40, 60, 80 and 100%. A negative control of 0% vehicle control, 20, 40, 60, 80 and 100% was established from OD600 values using the following equation:

\[
\text{per cent growth reduction} = \frac{100\% \text{ supernatant} - \text{vehicle control}}{\text{vehicle control}} \times 100\%
\]

Experiments were repeated four times for all CFS concentrations, eight times for 100% LP and nine times for 100% LP+RBE using the same three batches of supernatant as described previously.

Probiotic supernatant agar well diffusion assay

The agar well diffusion assay was modified from a published procedure (Aminnezhad et al. 2015). Briefly, Mueller–Hinton agar (Hardy Diagnostics, Santa Maria, CA) was inoculated with *S. Typhimurium* suspended in normal saline (0.89% g NaCl ml\(^{-1}\)), equivalent to a 0.5 McFarland Standard (Hardy Diagnostics). Wells (8.0 mm) were punched into the agar and filled with 100 µl of the following treatments adjusted to a final pH of 4.5: vehicle control, vehicle control+RBE, LP and LP+RBE. Non-pH-adjusted normal saline was included as a negative control on each plate. Plates were incubated at 37°C overnight, and inhibition zone diameters were measured in millimetres. Measurements were collected from seven different plates and included supernatant collected from three independent cultures of LP and LP+RBE.

Supernatant extract preparation for metabolomics

Metabolomics was performed by Metabolon Inc © (Durham, NC). Briefly, 1 ml of supernatant samples were stored at −80°C in microcentrifuge tubes, and sent on dry ice to Metabolon in triplicate. The samples sent for analysis included vehicle control, vehicle control+RBE, LP and LP+RBE. Upon arrival, samples were stored at −80°C in liquid nitrogen until processing. To improve recovery of small molecules prior to detection, the protein fraction was removed by extracting the sample with a 5 : 1 methanol : water solution, using vigorous shaking at room temperature for 2 min followed by centrifugation at 680 g for 3 min. The extracted samples were split into four parts for analysis via ultra-high-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) including two separate reverse phase UPLC-MS/MS with positive ion mode electrospray ionization (ESI), reverse phase UPLC-MS/MS with negative ion mode ESI and one sample for high liquid chromatography UPLC-MS/MS-negative ion mode ESI.

UPLC-MS/MS analysis

Metabolite profiling was performed using a Waters ACQUITY UPLC, a Thermo Scientific (Waltham, MA, USA) Q-Exactive heated electrospray ionization (HESI-II) source, and an Orbitrap mass analyser operated at 35 000 mass resolution. For UPLC analysis, the sample extracts were dried and reconstituted in solvents appropriate for each of the four detection methods, and standards were included to ensure experimental consistency. Acidic positive ion conditions were optimized for either hydrophobic or hydrophilic compounds and were eluted from a C18 column (Waters UPLC BEH C18-2.1 × 100 mm, 1.7 µm) using water and methanol (hydrophilic optimization) or methanol, acetonitrile and water (hydrophobic optimization) containing 0.05% perfluoropentanoic acid (PFPA) (hydrophilic optimization) or 0.5% PFPA (hydrophobic optimization) and 0.1% formic acid. Two aliquots were analysed using basic negative ion conditions; one was eluted on a separate C18 column using methanol and water with 6.5 mmol l\(^{-1}\) of ammonium bicarbonate at pH 8, and the other was eluted from a HILIC column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 µm) using a water–acetonitrile gradient with 10 mmol l\(^{-1}\) of ammonium formate, pH 10.8. The total scan range covered 70–1000 m/z.

Data extraction and compound identification

Raw data were extracted, peak-identified and quality-control processed as previously described (Brown et al. 2016) and compounds were then identified by comparison to library entries of purified standards or recurrent unknown entities, including over 3300 commercially available purified standard compounds. Identifications were made based on retention time/index with a narrow window of identification, mass to charge ratio (m/z) ±10 parts per million and chromatographic data including MS/MS forward and reverse scores between the experimental data and authentic standards. The raw counts of both supernatant profiles were converted into relative abundances and then median-scaled to one. For each metabolite, fold difference (FD) was calculated by dividing the scaled relative abundance of LP+RBE by LP.
Metabolic pathway analysis
Pathway analysis was conducted as described previously (Brown et al. 2016). For selected lipids and amino acids/peptides, metabolite FD between LP+RBE and LP were visualized using Cytoscape 2.8.3 software. For each metabolite, node colour was determined by the direction of FD when comparing LP+RBE to LP, and node diameter was determined by the magnitude of the FD. The value on each node represents a pathway enrichment score, which was calculated by dividing the number of significant metabolites in pathway \(k \) by the total number of detected metabolites in pathway \(n \). This value was then divided by the fraction of the total number of significant metabolites in the data set \(m \) over the total number of detected metabolites in the complete data set \(N \):

\[
\frac{k}{n/N}
\]

Pathway enrichment scores greater than one indicated that a given pathway contained more metabolites with statistically significant FD between LP+RBE and LP compared to all pathways in the study.

Statistical analysis
All statistical analyses for the S. Typhimurium growth reduction and well diffusion assays were performed using GraphPad Prism 6.07 (San Diego, CA). For the S. Typhimurium growth reduction assays, treatments were analysed using a two-way repeated measures ANOVA with a Bonferroni post-test to compare treatment means. For the agar well diffusion assay, treatments were compared using a one-way ANOVA with a Tukey post-test to compare treatment means. Significance was determined at the level of \(P < 0.05 \). For metabolomic data, statistical analysis was performed by Metabolon Inc using ArrayStudio (Omniscipsoft, Cary, NC) R ver. 2.142 and/pr SAS ver. 9.4. The relative abundance of each metabolite from LP and LP+RBE was scaled to that metabolite’s median relative abundance and each scaled relative abundance was compared between LP and LP+RBE using a Welch’s two-sample t test. Statistical significance was determined at the level of \(P < 0.05 \).

Results

S. Typhimurium growth reduction by L. paracasei and rice bran extract
The dose-dependent effects of LP and LP+RBE on S. Typhimurium growth were determined with increasing percentages of supernatant that were added and compared to a fixed volume of a vehicle control or vehicle control+RBE respectively. In both the LP and LP+RBE treatments, S. Typhimurium growth was reduced in a dose-dependent manner (Fig. 1). By 5·0 h, all LP doses (20–100%) significantly reduced S. Typhimurium growth compared to the vehicle control. The average percent difference between LP and the vehicle control included: 22·2% for the 20% LP dose, 35·9% for 40% LP, 47·4% for 60% LP, 55·3% for 80% LP and 60·6% for the 100% LP (Fig. 1a). By the study endpoint of 16 h, two LP concentrations continued to show increased growth reduction compared to the vehicle control and included: 40% LP (41·7%) and 100% LP (68·4%) (Fig. 1a).

LP+RBE treatments significantly reduced S. Typhimurium growth by 3·7 h. The average per cent difference for LP+RBE over RBE alone was 8·9% for the 20% LP+RBE dose, 16·1% for 40% LP+RBE, 21·6% for 60% LP+RBE, 25·5% for 80% LP+RBE and 37·0% for 100% LP+RBE (Fig. 1b). At 16 h, all LP+RBE doses showed increasing growth reduction: 38·8% for 20% LP+RBE, 43·9% for 40% LP+RBE, 55·2% for 60% LP+RBE, 67·6% for 80% LP+RBE and 82·0% for 100% LP+RBE (Fig. 1b). At 16 h, the 100% CFS dose showed highest S. Typhimurium growth reduction compared to the vehicle control: 68·4% for 100% LP and 82·0% for 100% LP+RBE (Fig. 1)

Next, 100% LP and 100% LP+RBE were compared to each other. At 9·0 h, LP+RBE was more effective than LP at reducing S. Typhimurium growth \((P < 0·05) \) and became increasingly effective through 16 h \((P < 0·0001) \) (Fig. 2a). The 100% LP+RBE reduced S. Typhimurium growth 13·1% more than 100% LP at 16 h \((P < 0·05) \) (Fig. 2b). All LP+RBE doses (20, 40, 60, 80%) were more effective than LP at reducing S. Typhimurium growth by 16 h (data not shown).

Probiotic supernatant agar well diffusion assay against S. Typhimurium
To further assess the ability of CFS to reduce S. Typhimurium growth, the inhibitory zone diameters of LP, LP+RBE, vehicle control, vehicle control+RBE and normal saline (negative control) treatments were compared in an agar well diffusion assay where all treatments were pH adjusted to 4·5 prior to use. The mean inhibitory zone diameter (millimetres) and standard error are displayed for each treatment in Table 1 and represent seven independent experiments: normal saline \((8·00 ± 0·00) \), vehicle control \((8·93 ± 0·468) \), vehicle control+RBE \((9·43 ± 0·517) \), LP \((10·86 ± 0·261) \) and LP+RBE \((12·07 ± 0·277) \). The diameters of the wells themselves were 8·0 mm, and normal saline did not create an inhibitory zone in any replicate. LP+RBE had a larger inhibitory zone diameter than all treatments: LP+RBE vs
normal saline, vehicle control and vehicle control + RBE (P < 0.001), LP+RBE vs LP (P < 0.05).

Metabolomics of probiotic *L. paracasei* supernatant and rice bran extract

Metabolome analysis of LP and LP+RBE led to identification of 362 metabolites that were organized by chemical class and summarized in Table 2. Of the 362 metabolites, 138 were classified as amino acids, 29 peptides, 29 carbohydrates, 11 TCA cycle, 54 lipids, 54 nucleotides, 20 cofactors and vitamins and 27 phytochemicals. There were a total of 84 metabolites with a FD that significantly differed between LP+RBE and LP (Table 3). Of these, 58 metabolites that had a higher and 26 had a lower relative abundance in LP+RBE compared to LP. Amino acid and lipid metabolite classes represented ~55% of metabolites differentially expressed between LP and LP+RBE. The relative abundance distributions for lipids and amino acids/small peptides across groups are depicted in Fig. 3.

The lipid metabolite changes included, but were not limited to medium-chain, branched chain, long-chain and other fatty acids (Fig. 4a). FD between lipids, when comparing LP+RBE to LP included: linoleate (3:18 FD), 13-HODE + 9-HODE (2:11 FD), eicosenoate (1:65 FD), 10-hydroxystearate (1:49 FD), maleate (1:44 FD), oleate/vaccenate (1:26 FD), azelate (1:18 FD), glycerol 3-phosphate (1:05 FD), alpha-hydroxyisocaproate (0:86 FD), alpha-hydroxyisovalerate (0:85 FD), trimethylamine N-oxide (0:82 FD), 3-hydroxyoctanoate (0:74 FD), 3-hydroxydecanoate (0:70 FD), 3-hydroxylaurate (0:65 FD), pinitol (0:61 FD) and 5-dodecenoate (0:58 FD).
Fold differences between amino acids/peptides when comparing LP+RBE to LP included: methionine sulfone (8.29 FD), 3-sulfo-L-alanine (2.34 FD), indole-3-carboxylic acid (1.94 FD), kynurenate (1.44 FD), 1-methylguanidine (1.34 FD), imidazole propionate (1.28 FD), cysteine s-sulphate (1.24 FD), succinimide (1.22 FD), 4-guanidinobutanoate (1.19 FD), N-formylphenylalanine (1.18 FD), asparagine (1.17 FD), N-acetylhistidine (1.13 FD), N6-formyllysine (1.13 FD), 4-imidazoleacetate (1.12 FD), phenethylamine (1.07 FD), creatinine (1.08 FD), carnitine (1.03 FD), proline (1.03 FD), leucine (1.03 FD), histamine (0.94 FD), acetylarnitine (0.90 FD), N-acetyltryptophan (0.88 FD), N-acetylsersine (0.87 FD), spermine (0.70 FD), indolelactate (0.68 FD), cystathionine (0.67 FD), methionine (0.64 FD), hypotaurine (0.46 FD) and S-adenosylhomocysteine (0.39 FD) (Fig. 4b). A literature search of the significant metabolites in the comparison of LP+RBE to LP revealed metabolites with established antimicrobial activities, many of which included the above lipids and amino acids/peptides (Table 4).

Visualization of metabolic pathways between LP+RBE and LP supernatant treatments

The Cytoscape software visualization tool in MetaboLync was used to highlight lipids (Fig. 4a) and amino acids/peptides (Fig. 4b) in LP+RBE and LP that contained metabolites with reported antimicrobial functions from Table 4. For a given metabolite, node colour indicated the direction and statistical significance, and node diameter indicated the magnitude of the FD. A pathway enrichment score was calculated for each metabolic pathway as described in the methods. Lipid metabolic pathways visualized in descending order of pathway enrichment score.
Table 1 Agar well diffusion of Lactobacillus paracasei supernatant against Salmonella Typhimurium in the presence and absence of rice bran extract

Treatment	Zone of Inhibition (mm)*
Normal saline (negative control)	8.00 ± 0.00
Vehicle control	8.93 ± 0.468
Vehicle control + RBE	9.43 ± 0.517
LP	10.86 ± 0.261
LP + RBE	12.07 ± 0.277

*Inhibitory zone diameters (millimetres) against S. Typhimurium were determined for supernatants and control media. Results are reported as (mean ± standard error) and were collected from seven independently measured plates. Measurements were analysed using a one-way ANOVA, and pairs of treatments were compared using a Tukey post-test, where statistical significance was determined as P < 0.05. LP + RBE had a significantly larger zone of inhibition compared to all other treatments: Normal saline (P < 0.0001), vehicle control (P < 0.0001), vehicle control + RBE (P < 0.0001), LP (P < 0.05).

Table 2 Number of metabolites across classes that show a higher or lower fold change in Lactobacillus paracasei supernatant cultured in the presence or absence of rice bran extract

Metabolite classification	Number of metabolites (P < 0.05)
Amino acids	138 (191, 91)
Peptides	29 (27)
Carbohydrates	29 (77)
TCA cycle	11 (27, 14)
Lipids	54 (81, 91)
Nucleotides	54 (121, 34)
Cofactor and vitamins	20 (11, 14)
Other phytochemicals	27 (71, 34)
Total number of identified metabolites	362 (581, 264)

Metabolite profiles of L. paracasei (LP) and L. paracasei + rice bran extract (LP + RBE) supernatant. For each metabolite, fold difference was calculated by dividing the scaled relative abundance in LP + RBE by LP. Fold differences were analysed using a Welch’s two-sample t-test, and metabolites with a fold difference at statistically different (P < 0.05) levels between LP + RBE and LP are marked with ↑ or ↓ to denote the direction of change when comparing LP + RBE to LP.

were: hydroxy fatty acids (3-4), long-chain fatty acids (3-2), dicarboxylic fatty acid (1-7) and inositol (1-1) (Fig. 4a). Amino acid/peptide metabolic pathways visualized, in descending order of pathway enrichment score were: carnitine (2-2), tryptophan (1-7), methionine, cysteine, S-adenosyl methionine and taurine (1-5), polyamine (0-6), and glycine, serine and threonine (0-4) (Fig. 4b).

Discussion

This study demonstrated that a symbiotic of L. paracasei and RBE contains small molecules with the capacity to reduce S. Typhimurium growth, and appeared to function through pH-independent mechanisms (Figs 1 and 2). The metabolome of LP and LP + RBE identified 84 small molecules that could explain how LP + RBE reduced S. Typhimurium growth more effectively than LP (Table 3). The presence of MRS components did not contribute to treatment differences between LP and LP + RBE because each treatment contained identical amounts of MRS media. The MRS and MRS + RBE media had similar compounds identified from both LP and LP + RBE treatments, respectively, and therefore the differential effects of LP and LP + RBE were distinguished by FD in the compounds measured between the two treatment groups. The metabolite differences were measured by the relative abundances for each metabolite, and were attributed to L. paracasei metabolism of RBE. Given that these metabolites identified had antimicrobial activities against a variety of pathogens (Table 4), there is promising potential for these supernatants to be used with a broad spectrum of pathogen protection applications relevant to food safety as well as human and animal health.

RBE-mediated alterations to L. paracasei lipid metabolism, primarily fatty acid production, may explain how LP + RBE can reduce S. Typhimurium growth more than L. paracasei alone. Bacterial production of fatty acids may occur through fermentation of complex carbohydrates, catabolism of complex lipids with fatty acid moieties, de novo fatty acid synthesis or via the bioconversion of amino acids into fatty acids (Buccioni et al., 2012). Malate, azelate, alpha-hydroxyisocaproate, lineolate, oleate/vaccenate and 13-HODE were abundant in LP + RBE compared to LP and had reported antimicrobial activity. Malate is commonly used as a bacteriostatic agent against S. Typhimurium on frankfurters (Gadang et al. 2008). Azelate is used as a topical dermatosis agent to reduce the growth of Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes (Charnock et al. 2004). Both maleate and azelate are present in the rice plant (Kim et al., 2014; Agarwal et al., 2016), and L. paracasei metabolism increases their bioavailability. Lineolate is also detected at high levels in rice bran (Kaur et al., 2012). Multiple species of lactobacilli have the capability to produce linoleic acid, as well as catabolize linoleic acid into oleate/vaccenate and 13-HODE (Black et al. 2013; Druart et al. 2014; Pessione, 2012). Collectively, these fatty acids in LP + RBE demonstrated to have bacteriostatic functions against multiple pathogenic micro-organisms, including S. Typhimurium, and this may be mediated in part due to interference with bacterial fatty acid synthesis (Hinton and Ingram 2000; Zheng et al. 2005; Martin-Arjol et al. 2010).

In addition to lipids, RBE amino acids and small peptides serve as another metabolite source that reduce S. Typhimurium growth, and appeared to function through pH-independent mechanisms (Figs 1 and 2). The metabolome of LP and LP + RBE identified 84 small molecules that could explain how LP + RBE reduced S. Typhimurium growth more effectively than LP (Table 3). The presence of MRS components did not contribute to treatment differences between LP and LP + RBE because each treatment contained identical amounts of MRS media. The MRS and MRS + RBE media had similar compounds identified from both LP and LP + RBE treatments, respectively, and therefore the differential effects of LP and LP + RBE were distinguished by FD in the compounds measured between the two treatment groups. The metabolite differences were measured by the relative abundances for each metabolite, and were attributed to L. paracasei metabolism of RBE. Given that these metabolites identified had antimicrobial activities against a variety of pathogens (Table 4), there is promising potential for these supernatants to be used with a broad spectrum of pathogen protection applications relevant to food safety as well as human and animal health.

RBE-mediated alterations to L. paracasei lipid metabolism, primarily fatty acid production, may explain how LP + RBE can reduce S. Typhimurium growth more than L. paracasei alone. Bacterial production of fatty acids may occur through fermentation of complex carbohydrates, catabolism of complex lipids with fatty acid moieties, de novo fatty acid synthesis or via the bioconversion of amino acids into fatty acids (Buccioni et al., 2012). Malate, azelate, alpha-hydroxyisocaproate, lineolate, oleate/vaccenate and 13-HODE were abundant in LP + RBE compared to LP and had reported antimicrobial activity. Malate is commonly used as a bacteriostatic agent against S. Typhimurium on frankfurters (Gadang et al. 2008). Azelate is used as a topical dermatosis agent to reduce the growth of Staphylococcus aureus, Staphylococcus epidermidis and Propionibacterium acnes (Charnock et al. 2004). Both maleate and azelate are present in the rice plant (Kim et al., 2014; Agarwal et al., 2016), and L. paracasei metabolism increases their bioavailability. Lineolate is also detected at high levels in rice bran (Kaur et al., 2012). Multiple species of lactobacilli have the capability to produce linoleic acid, as well as catabolize linoleic acid into oleate/vaccenate and 13-HODE (Black et al. 2013; Druart et al. 2014; Pessione, 2012). Collectively, these fatty acids in LP + RBE demonstrated to have bacteriostatic functions against multiple pathogenic micro-organisms, including S. Typhimurium, and this may be mediated in part due to interference with bacterial fatty acid synthesis (Hinton and Ingram 2000; Zheng et al. 2005; Martin-Arjol et al. 2010).

In addition to lipids, RBE amino acids and small peptides serve as another metabolite source that L. paracasei
Table 3 (Continued)

Metabolite	HMDB*	Fold difference†	P-value‡
Maleate	00176	11.44	0.017
Oleate/Vaccenate (18:1)	–	11.26	0.041
Azelaic (nonanedioate)	00784	11.18	0.024
Glycerol 3-phosphate	00126	11.05	0.031
Alpha-hydroxyisocaproate	00746	7.96	0.016
Alpha-hydroxyisovalerate	00407	5.85	0.025
Trimethylamine N-oxide	00925	4.74	0.014
3-hydroxyoctanoate	01954	4.74	0.015
3-hydroxydecanoate	02203	4.74	0.015
3-hydroxylaurate	00387	4.74	0.015
Pantothenic acid	34219	4.74	0.015
5-carboxycaproate (12:1n7)	00529	4.74	0.015

Nucleotide			
Hypoxanthine	00157	4.74	0.046
Cytidine	00089	4.74	0.035
β-glucosylglycinuronate (2’-GMP)	–	4.74	0.036
β-deoxyuridine	00012	4.74	0.043
Cytidine 3’-monophosphate (3’-CMP)	–	4.74	0.015
Cytidine 5’-monophosphate (5’-CMP)	00095	4.74	0.0071
Adenosine	00050	4.74	0.0015
Cofactor and vitamin			
Pyridoxine	00017	4.74	0.020
Pyridoxaline	01431	4.74	0.026

Phytochemicals/Other			
Beta-gluconolactone	13222	4.74	0.00042
Harmine	96.21	7.51	0.00029
Nicotianamine	96.21	7.51	0.00029
4-hydroxybenzoate	00050	7.51	0.00062
Salicylate	01895	7.51	0.019
Pyrrolidine	00012	7.51	0.057
2-oxindole-3-carboxylic acid	7.51	7.51	0.019
Daidzein	03312	7.51	0.040
2-keto glutonate	7.51	7.51	0.066
1,3-dioxygenol neurenimine	00833	7.51	0.011

*Human metabolome database (HMDB) numbers are given when available.
†For each metabolite, fold difference is expressed as the scaled relative abundance in LP or RBE over LP. Arrows indicate the direction of change between treatments.
‡Each metabolite presented has a statistically significant (P < 0.05) fold difference, as determined by a Welch’s two-sample t-test.
§Indicates compounds that have not been officially confirmed based on a standard, but second-order identity in Metabolon Inc. library.
Rice bran extract alters the lipid, amino acid and peptide metabolite profiles of *Lactobacillus paracasei* supernatant. LP and LP+RBE were profiled using UPLC-MS/MS. Each bar represents three independent samples and depicts the metabolite scaled relative abundance. Error bars depict standard error and *P* < 0.05, and **P* < 0.01. Metabolites were classified into metabolic pathways of (a) lipids and (b) amino acids/peptides based on their biochemical properties and/or physiological functions. Light grey bars represent LP and dark grey bars represent LP+RBE. FA indicates fatty acid and SAM indicates S-adenosyl methione.
Figure 3 Continued.
can bioconvert into different compounds or catabolize into free amino acids with antimicrobial functions (Neis et al. 2015). Alterations to methionine and tryptophan metabolism may serve as major mechanisms by which RBE enhances the antimicrobial activity of *L. paracasei* against *S. Typhimurium*. Methionine sulfoxide (8.29-fold increase in LP+RBE), which forms during methionine oxidation, has been shown to inhibit *S. Typhimurium* growth by blocking glutamate synthesis (Hentchel and Escalante-Semerena 2015). Lactobacilli modulate the oxidative state of their environment by producing hydrogen peroxide (Pessione 2012). The supernatant environment created by LP+RBE, coupled with normal hydrogen peroxide production by *L. paracasei*, may facilitate methionine oxidation into methionine sulfoxide. Although methionine sulfoxide is typically considered a marker of oxidative damage (Hoshi and Heinemann 2001), its presence in controlled amounts may be beneficial as an antimicrobial defence. Multiple studies have investigated the roles of *Lactobacillus* sp. in tryptophan metabolism, which have linked the production of tryptophan-derived metabolites to modulations of the mucosal immune and enteric nervous systems (Zelante et al. 2013; Clarke et al. 2014). Indole-3-carboxylic acid was increased and is synthesized from tryptophan by both plant and microbial species (Kavitha et al. 2010; Böttcher et al. 2014). As an antimicrobial agent, indole-3-carboxylic acid has been shown to inhibit the growth of a variety of bacterial and fungal pathogens, including multidrug-resistant bacteria (Zutz et al. 2016). In the presence of RBE, *L. paracasei* may increase its production or the bioavailability of indole-3-carboxylic acid during tryptophan metabolism.

Figure 3 Continued.
Figure 4 Cytoscape visualization illustrates the metabolic pathways most differentially regulated between treatments. Cytoscape visualization of (a) lipid and (b) amino acid metabolic pathways that differ between LP and LP+RBE. For each metabolite, node diameter is proportional to the fold difference in LP+RBE compared to LP. Node colours indicate the direction of a metabolite’s fold difference, where red indicates metabolites with a higher scaled abundance in LP+RBE (P < 0.05), blue indicates lower abundance in LP+RBE (P < 0.05), pink indicates trending higher in LP+RBE (0.05 < P < 0.10), and light blue indicates trending lower in LP+RBE (0.05 < P < 0.10). Black nodes indicate metabolites with fold differences that were not significantly altered between treatments. The pathway enrichment score is the number in the circles for each subclassification.

Table 4 Metabolites from Lactobacillus paracasei supernatant prepared in the presence and absence of rice bran extract with reported antimicrobial activities

Amino acids/peptides	Fold difference*	P value†	Functions	References
Methionine sulfone	18.29	3.16 × 10⁻⁶	Inhibits S. Typhimurium growth by blocking glutamate synthesis	Hentchel and Escalante-Semerena (2015)
Indole-3-carboxylic acid	11.94	0.00065	Inhibited the growth of Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Escherichia coli, Klebsiella pneumoniae and multidrug resistant strains of these species	Hinton and Ingram (2000)
Carnitine	11.03	0.034	Inhibited the growth of Streptococcus agalactiae in vitro.	Atrosi et al. (1998)
N-acetylseryne	↓ 0.87	0.037	May increase the susceptibility of S. Typhimurium to methicillin in vitro by modifying cysteine metabolism	Oppezzo and Anton (1995)
Spermine	↑ 0.70	0.044	May increase susceptibility of S. Typhimurium and other bacteria to Beta-lactam antibiotics	Kwon and Lu (2007)
5-adenosylhomocysteine (SAH)	↑ 0.39	0.001	In high enough concentrations it can inhibit bacterial 5-adenosyl methionine metabolism, which is important for quorum sensing and polyamine synthesis	Simms and Subbaraaiah (1991), Parveen and Cornell (2011)
TCA cycle				
Tricarballylate	11.79	6.83 × 10⁻⁵	Toxic to S. enterica if accumulated to high levels.	Boyd et al. (2012)
3-hydroxyoctanoate	↑ 0.74	0.0015	It and its derivatives inhibited the growth of S. Typhimurium, E. coli, S. aureus, L. monocytogenes, P. aeruginosa, C. albicans and Microsporum gypseum.	Radiivojevic et al. (2016)
Linoleate (18:2n6)	13.18	0.0075	Bactericidal and bacteriostatic against S. aureus, Streptococcus pyogenes and E. coli by inhibiting fatty acid synthesis	Zheng et al. (2005)
13-Hydroxoyctadecadienoate and 9-Hydroxy-10, 12-octadecadienoate Maleate	12.11	0.0082	Detected in an oxylipin extract that inhibited growth of Penicillium funiculosum and Enterococcus hirae in vitro	Martin-Arjoel et al. (2010)
3oleate/vaccenate (18:1)	↑ 11.44	0.017	Reduced the growth of S. Typhimurium on refrigerated turkey frankfurters	Gadang et al. (2008)
Azelate (nonanedioate)	↑ 11.18	0.024	Reduced growth of S. aureus, Staphylococcus epidermidis, and Propionibacterium acnes in vitro	Charnock et al. (2004)
Metabolism of RBE by *L. paracasei* may have increased the bioavailability of other rice bran phytochemicals, including harmane and 4-hydroxybenzoate (Table 3). Harmane is a beta-carboline alkaloid present in plants, and has been shown to have growth inhibitory and bactericidal effects against some *Salmonella* sp. (Arshad et al. 2008), as well as intercalate DNA (Cowan 1999). 4-hydroxybenzoate, a derivative of benzoic acid produced by plants and some species of bacteria, has been demonstrated to reduce the growth of a variety of Gram-positive and -negative bacteria, yeasts and moulds (Peng et al. 2006; Kosová et al. 2015). Increased expression of both hypoxanthine and tricarballylate in LP+RBE suggested that RBE modulations to *L. paracasei* nucleotide and TCA cycle metabolism are important to its *S. Typhimurium* growth-inhibitory properties (Table 3). Tricarballylate was reported to inhibit citric acid cycle enzymes and was reported to have toxic effects on *S. enterica* when it was accumulated intracellularly at high levels (Boyd et al. 2012). Past investigations have associated tricarballylate production with the metabolic activity of healthy intestinal and rumen flora (McDevitt and Goldman 1991; Cook et al. 1994), suggesting that in the presence of RBE, *L. paracasei* may increase the production of tricarballylate to levels that *S. Typhimurium* cannot tolerate so that it has a decreased ability to replicate and/or invade host cells.

Four of the lipid and three of the amino acid groups had pathway enrichment scores greater than one, indicating these pathways contribute to LP+RBE effects on growth.

Table 4 (Continued)

Metabolites	Fold difference	*P* value	Functions	References
Alpha-hydroxyisocaproate	↓0.86	0.016	Bactericidal against several strains of both Gram-negative and Gram-positive bacteria *in vitro*	Sakko et al. (2012)
Pinitol	↓0.61	0.015	Synergistically enhances the potency of beta-lactam antimicrobials by lowering the effective dose eightfold. As part of an *Ademisia aegiceras* extract, it had bacteriostatic and/or bactericidal effects against *S. aureus*, *E. coli*, *Proteus mirabilis* and *Pseudomonas aeruginosa*	Ahmad et al. (2016)

Nucleotides

| Hypoxanthine | ↑1.08 | 0.046 | Inhibits *Salmonella enteriditis* and *Escherichia coli* growth when added to breast milk | Al-Shehri et al. (2015) |

Other phytochemicals

Harmane	↑1.62	7.51 × 10⁻⁵	Inhibits the growth of and functions as a bactericidal agent against *Salmonella* spp. and other pathogens *in vitro* by intercalating with DNA	Cowan (1999), Arshad et al. (2008)
4-hydroxybenzoate	↑1.40	0.00062	Inhibited the growth of *S. aureus*, *E. coli*, *Saccharomyces cerevisiae* and *Fusarium culmorum* *in vitro*	Kosová et al. (2015)
Daidzein	↓0.86	0.040	Extracted from soy milk, where it inhibited the growth of *S. Typhimurium*, and a variety of enteric pathogens	Chin et al. (2012)
2-ketogluconate	↓0.68	0.0066	Reduced the growth of a variety of micro-organisms in studies evaluating secondary metabolites produced by *Pseudomonas fluorescens*	Cheng et al. (2015)

*For each metabolite, fold difference is expressed as the scaled relative abundance in LP+RBE over LP. Arrows indicate the direction of change between treatments.
†All metabolites presented have a statistically significant (*P* < 0.05) fold difference as determined by a Welch’s two-sample t-test.
‡Indicates compounds that have not been officially confirmed based on a standard, but second-order identity in Metabolon Inc. library.
inhibition. For example, spermine and pinitol decreased 0.70-fold and 0.61-fold in LP+RBE, yet in past investigations they increased the function of methicillin and beta-lactam antimicrobials respectively (Kwon and Lu 2007; Lievin-Le Moal et al., 2011; Ahmad et al. 2016). These studies suggest that regardless of absolute or relative metabolite abundance, the mere presence or absence of metabolites within the supernatant influence the functions of other metabolites present in the supernatant. The level of inhibition, antagonism, additive or synergistic functions for a given combination of metabolites in the supernatant is complex to investigate as a bioactive mixture, and the reductionist approaches needed may yield conflicting results. Thus, the relationships between metabolites, for inhibition of pathogen growth, remains an area of ongoing investigation that can be further explored with targeted metabolite profile analyses and merits consideration of bioactivity-guided fractionation methods. The metabolomics investigation conducted herein compared the mechanisms of LP+RBE and LP alone by looking at levels of metabolite abundance and metabolic pathway activity. In order to distinguish the unique mechanisms by which RBE modulates L. paracasei metabolism, the metabolome could be compared with gene expression levels obtained from metatranscriptomics and genomics analyses of LP+RBE and LP. This approach would seek to determine direct changes to L. paracasei gene expression of metabolic enzymes in the presence of RBE. Evaluating the small-molecule profiles of a symbiotic should integrate information from metabolites, overlapping pathways and metabolic networks to provide a comprehensive understanding of overall function.

The experiments described herein illustrated the in vitro efficacy of LP+RBE over LP alone in reducing S. Typhimurium growth, and warrant investigation for the efficacy of LP+RBE against other enteric pathogens. These data, demonstrating enhanced antimicrobial activity of LP+RBE, support results from various animal models (Kumar et al. 2012; Yang et al. 2015). In mice, rice bran simultaneously reduced S. Typhimurium shedding and promoted Lactobacillus growth (Kumar et al. 2012), and in pigs, there was less diarrhoea from Rotavirus (Yang et al. 2015), suggesting that LP+RBE may benefit the host for prevention of pathogen colonization, and for the host immune system to mount a protective response before the onset of extensive disease. The dose of RBE used in these studies has influenced the observable levels of pathogen inhibition, and future investigations merit attention to RBE dose with an intact and varied microbiome composition and structure for demonstrating antimicrobial activities with L. paracasei. Given the growing concern for antimicrobial resistance in S. Typhimurium, alternative treatments and preventive measures are needed. Understanding the metabolite profile of a symbiotic can lead to a comprehensive understanding for how food components enhance the natural antimicrobial activity of L. paracasei. In an era of multidrug resistance, symbiotics of Lactobacillus and rice bran have strong potential to provide broad-spectrum protection against many pathogens by serving as viable, natural alternatives or by applications in combination with standard antimicrobial drugs to reduce the dosages needed to be efficacious.

Acknowledgements

This work was funded by the Bill and Melinda Gates Foundation (OPP1015267). Furthermore, we thank Dr Anna McClung from the USDA-ARS Dale Bumpers Rice Research Unit (Stuttgart, AK) for supplying rice bran, and Dr Irfan A. Ghazi, from the University of Hyderabad, for assistance with the preliminary RBE dose curve analyses.

Conflict of Interest

No conflict of interest declared.

References

Agarwal, R., Padmakumari, A.P., Bentur, J.S. and Nair, S. (2016) Metabolic and transcriptomic changes induced in host during hypersensitive response mediated resistance in rice against the Asian rice gall midge. J. Rice 9, 5.

Ahmad, F., Misra, L., Gupta, V.K., Darokar, M.P., Prakash, O., Khan, F. and Shukla, R. (2016) Synergistic effect of (+)-pinitol from Saraca asoca with beta-lactam antibiotics and studies on the in silico possible mechanism. J Asian Nat Prod Res 18, 172–183.

Al-Shehr, S.S., Knox, C.L., Liley, H.G., Cowley, D.M., Wright, J.R., Henman, M.G., Hewavitharana, A.K., Charles, B.G., et al. (2015) Breastmilk-saliva interactions boost innate immunity by regulating the oral microbiome in early infancy. PLoS ONE 10, e0135047.

Aminnerhad, S., Kermanshahi, R.K. and Ranjbar, R. (2015) Evaluation of synergistic interactions between cell-free supernatant of lactobacillus strains and amikacin and genetamicin against Pseudomonas aeruginosa. Jundishapur J. Microbiol 8, e16592.

Anon (2006) Probiotics in food: health and nutritional properties and guidelines for evaluation. FAO Food Nutr Pap 85, 2.

Arbulo, M., Sampredo, M.C., Gómez-Caballero, A., Goicolea, M.A. and Barrio, R.J. (2015) Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines. Anal Chim Acta 858, 32–41.
Arshad, N., Zitterl-Egglek, K., Hasnain, S. and Hess, M. (2008) Effect of Peganum harmala or its beta-carboline alkaloids on certain antibiotic resistant strains of bacteria and protozoa from poultry. *Phytother Res* 22, 1533–1538.

Atrosi, F., Rizzo, A., Westermarck, T. and Ali-vehmas, T. (1998) Effects of tamofoxifen, melatonin, coenzyme Q10, and L-carnitine supplementation on bacterial growth in the presence of mycotoxins. *Pharmacol Res* 38, 289–295.

Black, B.A., Zannini, E., Curtis, J.M. and Gänzle, M.G. (2013) Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. *Appl Environ Microbiol* 165, 1866–1873.

Böttcher, C., Chapman, A., Fellermeier, F., Choudhary, M., Scheel, D. and Glawischnig, E. (2014) The biosynthetic pathway of indole-3-carboxaldehyde and indole-3-carboxylic acid derivatives in *Arabidopsis*. *Plant Physiol* 165, 841–853.

Boyd, J.M., Treoh, W.P. and Downs, D.M. (2012) Decreased transport restores growth of a *Salmonella enterica* apbC mutant on tricarboxylate. *J Bacteriol* 194, 576–583.

Brown, D.G., Rao, S., Weir, T.L., O’malia, J., Bazan, M., Brown, R.J. and Ryan, E.P. (2016) Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. *Cancer Metab* 4, eCollection 2016.

Buccioni, A., Decandia, M., Minieri, S., Molle, G. and Cabiddu, A. (2012) Lipid metabolism in the rumen: new insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. *Anim Feed Sci Technol* 174, 1–25.

Caridi, A. (2002) Selection of Escherichia coli-inhibiting strains of *Lactobacillus paracasei* subsp. paracasei. *J Ind Microbiol Biotechnol* 29, 303–308.

Charnock, C., Brudeli, B. and Klaveness, J. (2004) Evaluation of the antibacterial efficacy of diesters of azelaic acid. *Eur J Pharm Sci* 21, 589–596.

Cheng, X. and van deervort, M. and Raaijmakers, J.M., (2015) Gac-mediated changes in pyrroquinoline quinone biosynthesis enhance the antimicrobial activity of Pseudomonas fluorescens SBW25. *Environ Microbiol Rep* 7, 139–147.

Chiang, S.S. and Pan, T.M. (2012) Beneficial effects of *Lactobacillus paracasei* subsp. *paracasei* NTU 101 and its fermented products. *J Appl Microbiol and Biotechnol* 93, 903–916.

Chin, Y.P., Tsui, K.C., Chen, M.C., Wang, C.Y., Yang, C.Y. and Lin, Y.L. (2012) Bactericidal activity of soy milk fermentation broth by in vitro and animal models. *J Med Food* 15, 520–526.

Clarke, G., Stilling, R.M., Kennedy, P.J., Stanton, C., Cryan, J.F. and Dinan, T.G. (2014) Minireview: Gut microbiota: the neglected endocrine organ. *Mol Endocrinol* 28, 1221–1238.

Cook, G.M., Wells, J.E. and Russell, J.B. (1994) Ability of *Acidaminococcus fermentans* to oxidize trans-aconitate and decrease the accumulation of tricarboxylate, a toxic end product of ruminal fermentation. *Appl Environ Microbiol* 60, 2533–2537.

Cowan, M.M. (1999) Plant products as antimicrobial agents. *Clin Microbiol Rev* 12, 564–582.

Druart, C., Alligier, M., Salazar, N., Neyrinck, A.M. and Delzenne, N.M. (2014) Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. *Adv Nutr* 5, 6245–6335.

Gadang, V.P., Hettiarachchy, N.S., Johnson, M.G. and Owens, C. (2008) Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a turkey frankfurter system. *J Food Sci* 73, M389–M394.

Goodyear, A., Kumar, A., Ehrhart, E.J., Swanson, K.S., Grusak, M.A., Leach, J.E., Dow, S.W., Mcclung, A. et al. (2015) Dietary rice bran supplementation prevents *Salmonella* colonization differentially across varieties and by priming intestinal immunity. *J Funct Foods* 18, Part A, 653–664.

Henderson, A.J., Kumar, A., Barnett, B., Dow, S.W. and Ryan, E.P. (2012) Consumption of rice bran increases mucosal immunoglobulin A concentrations and numbers of intestinal *Lactobacillus* spp. *J Med Food* 15, 469–475.

Hentchel, K.L. and Escalante-Semerena, J.C. (2015) In *Salmonella enterica*, the Gcn5-related acetyltransferase MddA (formerly YncA) acetylates methionine sulfoximine and methionine sulfone, blocking their toxic effects. *J Bacteriol* 197, 314–325.

Heredia-Castro, P.Y., Mendez-Romero, J.I., Hernandez-Mendoza, A., Acedo-Felix, E., Gonzalez-Cordova, A.F. and Vallejo-Cordoba, B. (2015) Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances produced by *Lactobacillus* spp. isolated from artisanal mexican cheese. *J Dairy Sci* 98, 8285–8293.

Hinton, A. Jr and Ingram, K.D. (2000) Use of oleic acid to reduce the population of the bacterial flora of poultry skin. *J Food Prot* 63, 1282–1286.

Hoshi, T. and Heinemann, S.H. (2001) Regulation of cell function by methionine oxidation and reduction. *J Physiol (Lond)* 531, 1–11.

Kaur, A., Jassal, V., Thind, S.S. and Aggarwal, P. (2012) Rice bran oil an alternate bakery shortening. *J Food Sci Technol* 49, 110–114.

Kavitha, A., Prabhakar, P., Vijayalakshmi, M. and Venkateswarlu, Y. (2010) Purification and biological evaluation of the metabolites produced by *Streptomyces* sp. TK-VL_333. *Res Microbiol* 161, 335–345.

Kim, G.R., Jung, E.S., Lee, S., Lim, S.H., Ha, S.H. and Lee, C.H. (2014) Combined mass spectrometry-based metabolite profiling of different pigmented rice (*Oryza sativa L.*) seeds and correlation with antioxidant activities. *Molecules* 19, 15673–15686.

Koistinen, V.M., Katina, K., Nordlund, E., Poutanen, K. and Hanhineva, K. (2016) Changes in the phytochemical
Kosová, M., Hrádková, I., Mátlová, V., Kadlec, D., Šmidrkal, J. and Filip, V. (2015) Antimicrobial effect of 4-hydroxybenzoic acid ester with glycerol. J Clin Pharm Ther 40, 436–440.

Kumar, A., Henderson, A., Forster, G.M., Goodyear, A.W., Weir, T.L., Leach, J.E., Dow, S.W. and Ryan, E.P. (2012) Dietary rice bran promotes resistance to Salmonella enterica serovar Typhimurium colonization in mice. BMC Microbiol 12, 1–9.

Kwon, D.H. and Lu, C.D. (2007) Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob Agents Chemother 51, 2070–2077.

Lievin-Le Moal, V., Amsellem, R. and Servin, A.L. (2011) Impairment of swimming motility by antiarrheic Lactobacillus acidophilus strain LB retards internalization of Salmonella enterica serovar Typhimurium within human enterocyte-like cells. Antimicrob Agents Chemother 55, 4810–4820.

Martin-Arjol, I., Bassas-Galia, M., Bermudo, E., Garcia, F. and Manresa, A. (2010) Identification of oleylins with antifungal activity by LC-MS/MS from the supernatant of Pseudomonas 42A2. Chem Phys Lipids 163, 341–346.

McDevitt, J. and Goldman, P. (1991) Effect of the intestinal flora on the urinary organic acid profile of rats ingesting a chemically simplified diet. Food Chem Toxicol 29, 107–113.

Mozfi, F., Ortiz, M.E., Bleckwedel, J., De Vuyst, L. and Pescuma, M. (2013) Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Res Int 45, 1152–1161.

Ryan, E.P., Heuberger, A.L., Weir, T.L., Barnett, B., Broeckling, C.D. and Prenni, J.E. (2011) Rice bran fermented with Saccharomyces boulardii generates novel metabolite profiles with bioactivity. J Agric Food Chem 59, 1862–1870.

Sakko, M., Tjäderhane, L., Sorsa, T., Hietala, P., Järvinen, A., Bowyer, P. and Rautema, R. (2012) 2-Hydroxyisocaproic acid (HICA): a new potential topical antibacterial agent. Int J Antimicrob Agents 39, 539–540.

Pessione, E. (2012) Lactic acid bacteria contribution to gut flora on the urinary organic acid profile of rats ingesting a chemically simplified diet. J Clin Pharm Ther 37, 161–167.

v}
Zheng, C.J., Yoo, J.S., Lee, T.G., Cho, H.Y., Kim, Y.H. and Kim, W.G. (2005) Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett 579, 5157–5162.

Zutz, C., Bacher, M., Parich, A., Kluger, B., Gacek-Matthews, A., Schuhmacher, R., Wagner, M., Rychli, K. et al. (2016) Valproic acid induces antimicrobial compound production in doratomyces microspores. Front Microbiol 7, eCollection 2016.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1 Dose–response studies were performed for selection of (a) RBE concentration and (b) vehicle control volume to use in the *S. Typhimurium* growth reduction assay.