INTRODUCTION

The smartphones are containing multiple sophisticated features and became an inherent part of human life. It allows users to keep personal information, health and financial data, pictures and memories. Smartphones also became an integral part of modern telecommunications facilities, knowledge and multiple learning options to users, and becomes source of daily activities. The use of smart phone has increased in the last decade, and there is a great debate among people that
whether smart phones have facilitated their daily
tasks and have made every day life’s needs more
convenient.1,2

The literature shows that mobile phones can
negatively affect the human health.3,4 The World
Health Organization (WHO) revealed that exposure
to Radiofrequency Electromagnetic Field Radiation
(RF-EMFR) generated from mobile phones
increases body core temperature and can cause
cognition functions impairment.5 The children who
are exposed to RF-EMF radiation exhibit decreased
motor skills as well as attention span and working
memory,6 poor attention and concentrations.7,8
Moreover, literature also acknowledge the adverse
effects of smartphone.9-13

Although limited research has been conducted
concerning the potential cognitive impacts of
smartphone use in the Saudi society, the present
study aim was to determine the association of use
of smart mobile phone with cognitive function
impairment in Saudi adult population.

METHODS

The present cross-sectional study was conducted
in the Department of Physiology, College of
Medicine, King Saud University, Riyadh, Saudi
Arabia during September 2019 to January 2020.
A total of 251 Saudi adult volunteers aged from
15-65 years using mobile phones were invited
to participate in this study. Knowledge, attitude
and practices were assessed by interview using
a specially designed questionnaire in Arabic or
English languages. Three questions were designed
to determine the awareness of participants about
mobile phone hazards. The Montreal Cognitive
Assessment (MOCA) was used to assess cognition.
From all the participants, a written consent was
obtained who voluntarily agreed to join the
research project, where they have the opportunity
to read the research objectives and join or
withdraw from the research at any time, without
any profits or penalties. Subjects were recruited
through convenience sampling technique. MOCA
scores range between 0 and 30, score of 26 or over
was considered normal, lower scores <26 indicate
mild cognitive impairment (MCI).14

Selection Criteria: Mobile phone users with
history of known psychiatric disorders, central
nervous system disorders, living near high voltage
electricity towers, and subjects with chronic
debilitating disorder such as diabetes mellitus,
cardiac failure, malignancy were not included
in the study. Participants who were below 15 or
above 65 were excluded. Mobile phone users who
smoke cigarette, shisha were also excluded. One
investigator interviewed 251 volunteer male and
female mobile phone users and a detailed clinical
history was obtained, participant demographic and
other characteristics were obtained (Table-I and II).

Ethics Statement: This study was executed in
harmony with the “Declaration of Helsinki,” and
the protocol was approved by the “Institutional
Review Board, Ethics Committee,” College of
Medicine Research Centre, King Saud University
(E-19-4232).

Statistical Analysis: The data were entered into
the computer, SPSS V. 22 and Microsoft Windows
was used. Continuous variables were expressed
as the mean ± standard deviation and descriptive
data were expressed as percentages (%). Variables
were compared between different groups by one-
way ANOVA regarding all variables of knowledge,
attitude and different practices of smart mobile
phone users. Proportions were compared between
different groups using Chi-square test. A p value
<0.05 was considered significant.

RESULTS

More than 61% of the participants used the mobile
phone for more than 10 years Table-I. More than 80%
of the participants used the mobile phone for more

Table-I: Demographic characteristics of all
participants and MOCA Scores (n=251).

Characteristics of participants	Mean	SD	Minimum	Maximum
Age	32.43	12.80	15	65
Starting age for use	19.71	9.16	7	53
Age at using reading glasses	32.73	14.95		
Educational Level: n(%)			97 (38.6)	
Secondary	97 (38.6)			
Bachelor	134 (53.4)			
Higher	20 (8.0)			
Type of mobile phone: n(%)			159 (63.3)	
Iphone	159 (63.3)			
Samsung	45 (17.9)			
Huawei	44 (17.5)			
Other	3 (1.2)			
Years of usage: n(%)			36 (14.3)	
1-5	36 (14.3)			
6-10	60 (23.9)			
>10	154 (61.4)			
MOCA	25.02	2.49	17	30

MOCA: Montreal cognition assessment.
Values are expressed in mean and standard deviation.
than two hours daily. Table-II. In addition, more than 61% of participants used handheld mode for calling rather than placing the mobile phone away from body in order to minimize the radiation effect (Table-III). About 54% of the participants placed their mobile phone near their heads while sleeping. About 61% of the participants were not aware of the side effect of the radiation of the mobile phone.

Table-II: Attitude and practices of mobile phone users.

Categories	Number (%)
Daily usage	
<1 hour	12(4.8)*
1-2 hour	36(14.3)
>2 hours	203(80.9)
How do you use your mobile?	
Handheld	155(61.8)*
Earphone	47(18.7)
Speaker	39(15.5)
Bluetooth	10(4.0)
Do you live near mobile tower?	
Yes	46(18.3)*
No	205(81.7)
Do you live near high voltage tower?	
Yes	
No	251(100)
Do you use reading glasses?	
Yes	62(24.7)*
No	189(75.3)
Where do you put your mobile while sleeping?	
Near pillow	136(54.2)*
Inside bedroom	99(39.4)
Outside bedroom	16(6.4)
What is your dominant hand?	
Right	228(90.8)*
Left	23(9.2)
Where do you put the mobile while calling?	
Right ear	178(70.9)*
Left ear	39(15.5)
Variable	34(13.5)
Where do you put the mobile when not used?	
Upper pocket	8(3.2)*
Lower pocket	126(50.2)
Away from pocket	66(26.3)
Variable	51(20.3)
Do you think you are dependent on mobile?	
Yes	141(56.2)*
To some extent	81(32.3)
No	29(11.6)
Do you want to quit using mobile?	
Yes	30(12)*
To some extent	62(24.7)
No	159(63.3)

ANOVA comparison *P <0.001.

Table-III: Awareness of mobile phone side effects in all participants.

Categories	Number (%)
Aware of putting the mobile 5 CM away from your body reduces the radiation effect four times	
Do not know	154 (61.4)
To some extent	47 (18.7)
Know	50 (19.9)
WHO announcement (mobile phone is a possible cause of cancer)	
Do not know	158 (62.9)
To some extent	59 (23.5)
Know	34 (13.5)
ACS announcement (mobile phone is a possible cause of brain cancer)	
Do not know	173 (68.9)
To some extent	50 (19.9)
Know	28 (11.2)

WHO: world health organization. ACS: American cancer society.
The participants who exceeded two hours of daily usage, in them MOCA score decreased below normal (Fig. 1). It also showed a significant difference between groups in the MOCA score except between those who used the mobile less than one hour and two hours.

The association of placement of the mobile phone while sleeping on cognition scores was also assessed (Fig. 2). It was noticed that MOCA score was higher while users placed the mobile phone away while sleeping. Even though the effect of the placement of the mobile phone during sleep did not bring the scores to the normal level, but there was a significant effect on the scores. Fig. 2 also shows significant difference between the effect of the placement of the mobile phone near the pillow and placing it inside the bedroom or outside on the MOCA score, but there was no significant difference between placing the mobile phone near the pillow and inside the bedroom versus outside the bedroom. However, there was no effect of the placement of the mobile phone while not calling on the scores (Table-IV).

DISCUSSION

Exposure to Radiofrequency Electromagnetic Field Radiation (RF-EMFR) has various effects on human health including fatigue, headache, tension, sleep disturbance, hearing and vision complaints, and risk of type 2 diabetes mellitus. Extensive fixing of mobile phone base station towers (MPBSTs) in densely populated commercial, residential areas, and school buildings has started community concerns about adverse effects on human health, mainly on brain functions.

To the best of our knowledge, this is the first study that investigate the relation between the knowledge, attitude and practices of mobile phone usage with cognitive impairment in Saudi adult population. In this study, it was identified that the cognitive functions were deteriorated with the increase daily usage of mobile phone. The present study results are in line with the results of other studies published in different countries. In the present study, the deterioration of cognitive function due to mobile usage was consistent with the conclusion of earlier published literature.

Arns et al. reported that decrease in brain activity was associated with the use of mobile phone. In addition, Kalafatak et al. found that mobile phone usage has a significant negative impact on working memory performance. The effect was noticed even after the 5-minutes use of mobile phone.

It has also been reported that continuous using or checking of the smart phone screen was associated with cognitive function impairment. The present study has explored how performance was affected among individuals who use their phones to take

MOCA	Mean	Std. Deviation
Upper Pocket	8(3.2)*	23.38
Lower Pocket	126(50.2)	25.01
Away	66(26.3)	24.88
Variable	51(20.3)	25.08
Total	24.94	2.853
a break from job tasks. The data showed that individuals who took break on their phones have shown cognition decline which was evident on their weak performance.21 Moreover, sleep disorders have been associated with excessive use of smart phones.22 Consequently, less sleep duration can lead to impairments in cognition functions. In addition to the daily usage, deterioration of cognition was associated with placement of mobile phone while sleeping and subsequently cognitive deterioration. The present study results are in consistent with other studies which concluded that mobile phones can affect cognition functions as a result of sleep disturbance.23,24

The general population need to be educated and counselled on the proper usage and practices of mobile phones. They need to be compelled to ensure mobile phone usage only for essential tasks and should be organized so it will not affect the performance of the students and the employees. Paul et al.25 suggested that it is highly needed to teach people to be educated and structured, to know when to have the cell phone on, and to avoid becoming the slave of technology instead of its mastery. In addition, media has to come to frontline to educate the public about the side effects of the improper usage of such device.

Strengths of the study: This is the first study to investigate the effect of mobile phone usage on cognition functions in Saudi adult population. The study exclusion criteria were highly standardized.

Limitations of the study: It includes its cross-sectional design and small number of sample size. It was very difficult to find participants who use mobile phone less than one hour daily which reflected that it has become a known habit in the society. The reason to find more participants who used mobile phone for less than two hours was the attempt to increase the sample size. The difficulties to find non-smoking participants, without any debilitating disorders or central nervous systems disorders, and not living near high voltage electricity towers to eliminates the effects of these factors on the results should be countered. Further studies with larger sample size are essential to confirm the current evidence of the role of mobile related disturbance to cognition.

CONCLUSIONS

Excessive use of mobile phone is associated with cognitive function impairment assessed by Montreal cognitive Assessment (MOCA) score. The health authorities should employ strict policies regarding mobile phones in order to minimize their hazardous effects on human health including cognitive functions impairment. The media has to be on the forefront in educating the public about the proper usage of mobile phone.

Acknowledgments: Thankful to the “Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia for supporting the work through research project (RGP-VPP-181).

Declaration of Conflicting Interests: The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

REFERENCES

1. Alhazmi AA, Alzahrani S, Baig M, Salawati E, Alkatheri A. Prevalence and factors associated with smartphone addiction among medical students at King Abdulaziz University, Jeddah. Pak J Med Sci. 2018;34(4):984–988. doi: 10.12669/pjms.34.4.15294.

2. Alosaimi FD, Alyahya H, Alshahwan H, Al Mahyijari N, Shaik SA. Smartphone addiction among university students in Riyadh, Saudi Arabia. Saudi Med J. 2016;37:675–683. DOI: 10.15537/smj.2016.6.14430

3. Kim JH, Lee JK, Kim HG, Kim KB, Kim HR. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol Ther (Seoul). 2019;27(3):265-275. doi:10.4062/biomolther.2018.152.

4. Meo S, Arif M, Rashied S, Khan MM, Vohra MS, Usmani A, Muhammad Babar Imran, Al-Drees AM. Hypopermatogenesis and spermatozoa maturarion arrest in rats induced by mobile phone radiation. J Coll Physicians Surg Pak. 2011;5:262-265.

5. Beaglehole R, Bonita R, Kjellstrom, T. Basic Epidemiology. World Health Organization (WHO). WHO report: chapter 7, Switzerland, Geneva, 1993. Pp-23-34.

6. Meo SA, Almahmoud M, Alsultan Q, Alotaibi N, Alnajashi I, Hajjar WM. Mobile Phone Base Station Tower Settings Adjacent to School Buildings: Impact on Students’ Cognitive Health. Am J Men’s Health. 2018:155798831881691. doi: 10.1177/1557988318816914.

7. Deniz O, Kaplan S, Selcuk M, Terzi M, Altun G, Yurt K, et al. Effects of short and long term electromagnetic fields exposure on the human hippocampus. J Microsc Ultrastruc. 2017;5(4):191. doi: 10.1016/j.jmau.2017.07.001

8. Kalafatak F, Bekiari-dis moschou D, Gkiota E, Tsolaki M. Mobile phone use for 5 minutes can cause significant memory impairment in humans. Hellenic J Nuclear Med. 2017;20(Suppl):146-154.

9. He J, Tu Z, Xiao L, Su T, Tang Y. Effect of restricting bedtime mobile phone use on sleep, arousal, mood, and working memory: A randomized pilot trial. PLoS One. 2020;15(2):e0228756. doi:10.1371/journal.pone.0228756

10. Schoeni A, Roser K, Roosli M. Memory performance, wireless communication and exposure to radiofrequency electromagnetic fields: a prospective cohort study in adolescents. Environ Int. 2015;85:343-351. doi: 10.1016/j.envint.2015.09.025
11. Foerster M, Thielens A, Joseph W, Eeftens M, Roosli M. A prospective cohort study of adolescents’ memory performance and individual brain dose of microwave radiation from wireless communication. Environ Health Perspect. 2018;126(7):077007. doi: 10.1289/ehp2427

12. Deshmukh PS, Nasare N, Megha K, Banerjee BD, Ahmed RS, Singh D, et al. Cognitive Impairment and Neurogenotoxic Effects in Rats Exposed to Low-Intensity Microwave Radiation. Int J Toxicol. 2015;834(3):284-290. doi: 10.1177/1091581815574348

13. Forouharmajd F, Ebrahimi H, Pourabadian S. Mobile phone distance from head and temperature changes of radio frequency waves on brain tissue. Int J Prev Med. 2018;9:61. doi: 10.4103/ijpvm.IJPVM_70_17

14. Milani SA, Marsiske M, Cotter LB, Chen X, Striley CW. Optimal cutoffs for the Montreal Cognitive Assessment vary by race and ethnicity. Alzheimers Dement (Amst). 2018;10:773-781. doi:10.1016/j.dadm.2018.09.00

15. Al-Khlaiwi T, Meo SA. Association of mobile phone radiation with fatigue, headache, dizziness, tension and sleep disturbance in Saudi population. Saudi Med J. 2004;25(6):732-736.

16. Meo SA, Al-Drees AM. Mobile phone related hazards and subjective hearing and vision symptoms in the Saudi population. Int J Occupat Med Env Health. 2005;18(1):53-57.

17. Meo SA, Alsulabie Y, Almubarak Z, Almutawwa H, AlQasem Y, Hasanat RM. Association of exposure to Radio-Frequency Electromagnetic Field Radiation (RF-EMFR) generated by mobile phone base stations with Glycated Hemoglobin (HbA1c) and risk of type 2 diabetes mellitus. Int J Environ Res Pub Health. 2015;12(11):14519-14528. doi: 10.3390/ijerph121114519

18. Saikhedkar N, Bhatnagar M, Jain A, Sukhwal P, Sharma C, Jaiswal N. Effects of mobile phone radiation (900 MHz radiofrequency) on structure and functions of rat brain. Neurolog Res. 2014;36(12):1072-1079. doi: 10.1179/1743132814Y.0000000392

19. Extremera N, Quintana-Orts C, Sanchez-Alvarez N, Rey L. The role of cognitive emotion regulation strategies on problematic smartphone use: Comparison between problematic and non-problematic adolescent users. Int J Environ Res Public Health. 2019;16(17). pii:E3142. doi: 10.3390/ijerph16173142

20. Arns M, Van Luijtelaar G, Sumich A, Hamilton R, Gordon E. Electroencephalographic, personality, and executive function measures associated with frequent mobile phone use. Int J Neurosci. 2007;117(9):1341-1360.

21. Kang S, Kurtzberg TR. Reach for your cell phone at your own risk. The cognitive costs of media choice for breaks. J Behav Addic. 2019;8(3):395-403. doi: 10.1556/2006.8.2019.21

22. Sahin S, Ozdemir K, Unsal A, Temiz N. Evaluation of mobile phone addiction level and sleep quality in university students. Pak J Med Sci. 2013;29:913-918. doi:10.12669/pjms.294.3686

23. Dewi RK, Efendi F, Has EMM, Gunawan J. Adolescents’ smartphone use at night, sleep disturbance and depressive symptoms. Int J Adolescent Med Health. 2018:2018. doi: 10.1515/jamh-2018-0095

24. Ferguson SA, Appleton SL, Reynolds AC, Gill TK, Taylor AW, McEvoy RD, et al. Making errors at work due to sleepiness or sleep problems is not confined to non-standard work hours: results of the 2016 Sleep Health Foundation national survey. Chronobiol Int. 2019:1-12. doi:10.1080/07420528.2019.157

25. Paul B, Saha I, Kumar S, Samim Ferdows SK, Ghose G. Mobile phones: time to rethink and limit usage. Indian J Public Health. 2015;59(1):37-41. doi: 10.4103/0019-557X.152856

Authors’ Contribution:

TA, SS conceived, designed, statistical analysis, editing of manuscript, accuracy and responsivity of the work.

MA, AO data collection.

SAM critical review and manuscript editing.

Authors:

1. Thamir M. Al-Khlaiwi
2. Syed Shahid Habib
3. Sultan Ayoub Meo
4. Mohammed S Alqhtani
5. Abeer A. Ogailan

Medical Student, College of Medicine, King Saud University,

Abeer A. Ogailan Independent Researcher

1-3: Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.