Deletion of WNK1 First Intron Results in Misregulation of Both Isoforms in Renal and Extrarenal Tissues
Céline Delaloy, Emilie Elvira-Matelot, Maud Clemessy, Xiao-ou Zhou, Martine Imbert-Teboul, Anne-Marie Houot, Xavier Jeunemaître and Juliette Hadchouel
Hypertension 2008;52;1149-1154; originally published online Oct 27, 2008; DOI: 10.1161/HYPERTENSIONAHA.108.120899
Hypertension is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association. All rights reserved. Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/cgi/content/full/52/6/1149
Data Supplement (unedited) at:
http://hyper.ahajournals.org/cgi/content/full/HYPERTENSIONAHA.108.120899/DC1

Subscriptions: Information about subscribing to Hypertension is online at http://hyper.ahajournals.org/subscriptions/
Permissions: Permissions & Rights Desk, Lippincott Williams & Wilkins, a division of Wolters Kluwer Health, 351 West Camden Street, Baltimore, MD 21202-2436. Phone: 410-528-4050. Fax: 410-528-8550. E-mail:
journalpermissions@lww.com
Reprints: Information about reprints can be found online at http://www.lww.com/reprints
Deletion of WNK1 First Intron Results in Misregulation of Both Isoforms in Renal and Extrarenal Tissues

Céline Delaloy, Emilie Elvira-Matelot, Maud Cлемessy, Xiao-ou Zhou, Martine Imbert-Teboul, Anne-Marie Houot, Xavier Jeunemaitre, Juliette Hadchouel

Abstract—Large deletions in intron 1 of the with-no-lysine kinase type 1 (WNK1) gene cause familial hyperkalemic hypertension. Alternative promoters generate functionally different isoforms: long ubiquitous isoforms (L-WNK1) and a kidney-specific isoform (KS-WNK1) lacking kinase activity. It remains unclear whether the disease-causing mutations selectively modify the synthesis of 1 or both types of isoforms. Using a transgenic mouse model, we found that intron 1 deletion resulted in the overexpression of L- and KS-WNK1 in the distal convoluted tubule and ubiquitous ectopic KS-WNK1 expression. Phylogenetic and functional analysis of the minimal 22-kb intron 1 deletion identified 1 repressor and 1 insulator, potentially preventing interactions between the regulatory elements of L-WNK1 and KS-WNK1. These results provide the first insight into the molecular mechanisms of WNK1-induced familial hyperkalemic hypertension. (Hypertension. 2008;52:1149-1154.)

Key Words: hypertension ■ WNK1 ■ FHHt ■ transgenic ■ insulator ■ repressor

Mutations in the WNK1 and WNK4 genes, encoding 2 members of the with-no-lysine (WNK) subfamily of serine threonine kinases, are responsible for familial hyperkalemic hypertension (FHHt), a rare form of human arterial hypertension, also known as pseudohypoaldosteronism type 2 or Gordon syndrome.1 In vivo and in vitro experiments have shown this new regulatory pathway to be important for ion handling and blood pressure regulation.2 Two functionally different WNK1 isoforms have been characterized: ubiquitous, full-length, catalytically active isoforms (L-WNK1) and a short kidney-specific isoform (KS-WNK1), catalytically inactive and present only in the renal distal tubule.3 The balance between L-WNK1 and KS-WNK1 seems crucial for sodium and potassium handling regulation.4

The molecular mechanisms controlling WNK1 expression are only partly understood. In humans, 2 proximal promoters (pP) control L-WNK1 transcription, and a third renal promoter (rP), in intron 4 and 98 kb away from pP, controls KS-WNK1 expression.5 The large overlapping deletions (41 kb and 22 kb) within intron 1 (i1) of WNK1 observed in FHHt kindreds highlight the importance of intron 1 in regulating WNK1 expression. WNK1 mRNA levels in leukocytes are ∼5 times higher in affected individuals than in controls.1 It remains unclear whether intron 1 deletions selectively modify the expression of 1 or both isoforms and the tissue specificity of these changes.

We have shown that the human and mouse WNK1 genes are similarly organized and expressed.6 We have also demonstrated the feasibility of a transgenic approach based on bacterial artificial chromosomes (BACs) for the detailed analysis of WNK1 expression.8 Here, we created a new BAC transgene for the qualitative and quantitative analyses of the pattern of L-WNK1 and KS-WNK1 expression in the presence and absence of intron 1. We also carried out a comparative, interspecies sequence analysis, together with in vitro functional analysis, and identified a repressor and an insulator potentially responsible for the misregulation of WNK1 isoforms.

Methods

Generation of the Transgene and Embryonic Stem Cell Clones

BAC RP24-212e14, spanning the mWNK1 locus, has been described elsewhere.4 This BAC was modified using the same techniques. LoxP and LoxP511 sites of the BAC backbone were replaced with a pgk-EM7-hygro and a pgk-puro selection cassette, respectively, flanked by recognition sites for the dC31 integrase to allow their deletion in embryonic stem (ES) cells.7 The nlacZ gene, encoding a nuclear β-galactosidase (β-gal), was inserted at the ATG of exon 4a. An IRES-luc (internal ribosome entry site-luciferase) cassette was inserted into exon 2. LoxP2272 sites were inserted 47 bp downstream from exon 1 and 95 bp upstream from exon 2.

BAC DNA was linearized with PstI-SceI, purified, and checked by pulse-field gel electrophoresis. CK35 ES cells9 were electroporated...
Results

Generation of the Transgenic Reporter Model

We used the Cre-loxP system to delete WNK1 intron 1 from the complete BAC transgene after its insertion into the mouse genome to prevent possible discrepancies in the expression pattern because of differences in the integration site. The detailed strategy that we used to generate the Tgi1 transgene, the corresponding ES cell clone, and the mouse line is described in Figure 1A. Briefly, luc and nlacZ reporter genes were inserted into mWNK1 exon 2 and at the ATG of exon 4a to monitor L-WNK1 or KS-WNK1 expression, respectively. LoxP2272 sites were inserted at the 5' and 3' ends of intron 1. Transgenic Tgi1 mouse chimeras were generated by injection of the selected ES clone into blastocytes, and TgΔi1 mice were obtained by crossing Tgi1 males with PGKCrem females\(^5\) (Figure 1A).

Consequences of the Deletion of WNK1 Intron 1 in Extrarenal Tissues

We first verified that the pattern of expression of luc and β-gal in Tgi1 mice was similar to that of WNK1. Like L-WNK1, luc activity was ubiquitously detected (Figure 1B). Significant β-gal activity was detected only in the kidney (Figure 1B), and quantitative real-time PCR on microdissected tubules showed that nlacZ transcripts are highly expressed in the distal convoluted tubule (DCT) and connecting tubule (see below), consistent with the pattern of endogenous KS-WNK1 expression.

Before analyzing the consequences of the deletion of intron 1 on reporter gene expression, we also measured the level of expression of the 1-copy transgene compared with endogenous WNK1. Real-time PCR on kidney extracts showed that the luciferase gene was 100 times less expressed than the endogenous gene despite the large regions included in the BAC upstream and downstream of the WNK1 gene (Figure

Figure 1. Extrarenal expression of L-WNK1 is unaffected by intron 1 deletion. A. Generation of Tgi1 and TgΔi1 animals. Tgi1 transgene carries the entire intron 1 of WNK1. Cre-mediated recombination leads to deletion of intron 1 in TgΔi1 animals, obtained by breeding the Tgi1 animals with PGKCrem mice. B. Transgene expression is similar to endogenous L-WNK1 and KS-WNK1 expression, as determined by quantitation of luciferase (Luc) and β-gal (β-gal) activity, respectively. C. Comparison of the expression level of L-WNK1 exon 1 in mRNA extracts from Tgi1 and TgΔi1 adult mouse tissues (n=4 to 5). Results are expressed as means±SEMs. Sk. m indicates: skeletal muscle; cereb, cerebellum; leuk, leukocytes.
Consequences of Intron 1 Deletion on Renal WNK1 Expression

We first showed that exon 1 expression is unchanged in extracts prepared from the whole kidney of Tgi1 and TgΔi1 animals, whereas β-gal activity was 4 times stronger in TgΔi1 kidneys (P=0.02; Figure 3A). We then used real-time RT-PCR on microdissected tubules to investigate the consequences of intron 1 deletion in each nephron segment. Exon 1 expression was not modified throughout all of the nephron segments of TgΔi1 except the DCT, in which expression level was 3 times higher than in Tgi1 mice (P=0.03; Figure 3B). This pattern of expression in TgΔi1 kidneys, therefore, resembles that of endogenous KS-WNK1. As expected, nlacZ expression was strong in the DCT of Tgi1 mice (Figure 3C). TgΔi1 mice displayed 4 times higher levels of nlacZ expression in this segment (P<0.05; Figure 3C). A smaller increase was also observed in other nephron segments but was difficult to interpret, because it was close to the background signal (data not shown).

Taken together, the analysis of transgene expression in renal and extrarenal tissues suggests that 2 types of regulatory elements could be present within the WNK1 first intron. First, 1 or several repressor elements could constitutively repress KS-WNK1 expression in all of the extrarenal tissues and the expression of both isoforms in the DCT. Second, an insulator could prevent illegitimate interactions between L-WNK1 regulatory elements and rP. Deletion of this element could lead
to ubiquitous expression of \textit{KS-WNK1} and overexpression of \textit{L-WNK1} and \textit{KS-WNK1} in the DCT.

Several Repressors in \textit{WNK1} Intron 1

We used a systematic approach to search for an intronic repressor. The transcriptional activity of ten 2.5-kb overlapping fragments covering the minimal 22-kb intron sequence deleted in FHHt patients was tested in vitro (F1 to F10, Figure 4, and Table S2). Because our in vivo model suggested that intron 1 contained a repressor affecting the activity of both \textit{pP} and \textit{rP}, we used the heterologous SV40 promoter (pSV40) to control \textit{luc} expression. Transient luciferase assays were carried out in renal human embryonic kidney, Madin-Darby canine kidney, and Chinese hamster ovary cells. The more distal fragment, F1, repressed pSV40 when inserted in sense or antisense orientation, resulting in a decrease in transcriptional activity by a factor of 2 to 14. To a lesser extent (25% to 50%), F7 repressed pSV40 in all 3 of the cell lines. F3 displayed strong repressor activity in human embryonic kidney and Chinese hamster ovary cells only. These analyses suggest that there are several repressor sequences within intron 1, with the major and most reproducible transcriptional effect being because of F1.

Five Potential Regulatory Elements Identified by Cross-Species Sequence Comparison

We also searched for the corresponding potential regulatory elements (repressor and/or insulator) by carrying out a database search using VISTA (http://www.gsd.lbl.gov/vista). Regulatory elements are usually composed of highly conserved (>70% identity) long sequences (>100 bp long).12 We identified 6 conserved noncoding sequences (CNSs, or Cs) among the human (gi: 89035948), mouse (gi: 94378178), and dog (gi: 54126074) genomes that met these criteria. The order of the 6 blocks is conserved among the 3 species. C1 through C5 are located within the minimal 22-kb human deletion responsible for FHHt (Figure 4). CNS6 is also excluded from the 41-kb \textit{WNK1} intron 1 deletion observed in the other FHHt kindred. The core sequences of the CNSs display a high degree of sequence similarity, exceeding 71% in mice and humans.

One of the CNSs Acts as a Repressor of \textit{rP}

In Vitro

We assessed the transcriptional activity of the 5 CNSs by subcloning each sequence downstream from the \textit{luc} gene under the control of pSV40, pP, or rP. The resulting constructs were used to transfect renal human embryonic kidney, Madin-Darby canine kidney, and Chinese hamster ovary cells to evaluate the cell specificity of the CNS activity (data not shown). C1 was the only one that displayed repressor activity. C1 decreased \textit{rP} promoter activity in Madin-Darby canine kidney cells by a factor of 2 to 3 (Figure 5A). This repressor effect was partly dependent on orientation, because placing C1 in the antisense orientation decreased \textit{rP} activity by 50%.
Our in vivo and in vitro results suggest that Transcriptional Regulation Model for Intron 1 Function in WNK1 in intron 4a.5 C1 through C5 were placed upstream from, insulator, blocking the activity of the renal enhancer, located in the DCT of nlacZ (KS-WNK1) observed in TgΔI1 mice.

We then investigated whether C1 was responsible for the repressor effect of F1. The repressor activity of F1 on rP was found to be similar to that of C1. F1 repressed rP activity by 50% to 60% in the antisense orientation but only by 20% to 30% in the sense orientation (Figure 5A). The deletion of C1 from F1 significantly decreased the repressor effect of F1: F1ΔC1 in the antisense orientation repressed rP activity by only 30% (Figure 5A). This effect was less significant in the sense orientation. These results confirm the repressor effect of C1 in a larger genomic context but suggest that F1 contains other repressor sequences.

Identification of an Insulator-Like Element In Vitro

We then investigated whether one of the CNSs could act as an insulator, blocking the activity of the renal enhancer, located in intron 4a.3 C1 through C5 were placed upstream from, downstream from, or on either side of the renal enhancer. Only C5 had an effect compatible with an insulator sequence (Figure 5B). A single copy of C5 did not decrease rP transcriptional activity. However, surrounding the enhancer with 2 copies of C5 decreased rP transcriptional activity by 55%, suggesting that the enhancer was no longer able to activate rP. No such decrease was observed if 2 copies of C5 were inserted downstream from the enhancer, so the decrease in transcriptional activity was because of enhancer-blocking activity rather than an additive effect of multiple copies of C5. The insulator effect of C5 was also seen on the SV40 promoter (Figure S4). C5 may, therefore, block the interaction between the renal enhancer and pP. Interestingly, C5 contains 4 consensus sequences for the CCCTC-binding Factor CTCF (Figure S3), the only identified transacting factor that confers enhancer-blocking insulator activity.13

Model for Intron 1 Function in WNK1 Transcriptional Regulation

Our in vivo and in vitro results suggest that WNK1 intron 1 contains at least several constitutive repressors acting on pP and rP to repress the expression of L-WNK1 and KS-WNK1 and/or one or several insulators limiting interactions between the regulatory elements of L-WNK1 and KS-WNK1. We can, thus, propose a model for the regulation of WNK1 isoform transcription by intron 1, accounting for the consequences of its deletion in patients with FHHt (Figure 6). Deletion of the repressor sequences leads to the overexpression of L-WNK1 and KS-WNK1 in the DCT (Figure 6A). Deletion of the insulator leads to illegitimate interactions between regulatory modules controlling L-WNK1 and KS-WNK1 expression, resulting in L-WNK1 overexpression in the DCT and KS-WNK1 ubiquitous expression (Figure 6B).

Discussion

Elucidation of the regulatory pathways involving the intron 1 of WNK1 is important to improve our understanding of the control of normal gene expression and of the way in which it is compromised in FHHt patients. Our transgenic model provides the first insight into the molecular mechanisms of FHHt mutations. Using an in vivo model and a combination of comparative genomic and functional analysis, we characterized the consequences of the deletion of WNK1 intron 1 on the expression of its isoforms and identified several intronic repressors and insulators.

In the DCT in particular, the deletion of WNK1 intron 1 leads to increased L-WNK1 and KS-WNK1 expression. Quantification of L-WNK1 exon 1 by real-time PCR on microdissected tubules showed that exon 1 expression is multiplied by 3 in the DCT after deletion of intron 1. This overexpression is consistent with the suspected role of L-WNK1 in the development of hyperkalemic hypertension. In vitro studies have, indeed, suggested that L-WNK1 prevents the WNK4-mediated inhibition of NCC14 and inhibits ROMK activity.15,16 The increase in L-WNK1 level over WNK4 and the relative increase of L-WNK1 level over KS-WNK1 induced by FHHt deletions may, therefore, prevent the NaCl cotransporter inhibition of the NCC by WNK4 and accentuate the inhibition of the Renal Outer Medullary potassium channel ROMK. Moreover, L-WNK1 has been shown to phosphorylate SGK-1, leading to the activation of the Epithelial sodium Channel EmCα, independent of WNK4 and KS-WNK1.17 An increase of L-WNK1 expression in the DCT could, therefore, lead to an increased activation of this channel, accentuating the hypervolemia because of increased sodium absorption by NCC.

Analysis of our transgenic model provides the first evidence that sequences in intron 1 may repress the transcription of L-WNK1 and KS-WNK1 and prevent illegitimate interactions between WNK1 isoforms regulatory elements. A comparative analysis of intron 1 sequences of the human, mouse, and dog WNK1 genes identified 6 CNSs, 5 of which were located within the FHHt deletions. One of these elements, C1, is located within a 2.5-kb fragment (F1) that decreased reporter gene expression to 40% to 65% of control levels,
without promoter specificity. C1 contains some of the elements required for this repression. C5 acted as an insulator in vitro, blocking renal enhancer activity. No functional activity was found for C2, C3, and C4. However, these sequences may represent regulatory elements, the activity of which is impaired by isolation from their normal genomic environment. It is also possible that some or all of the CNSs act in cooperation to regulate WNK1 expression.

Intron 1 of WNK1 is 60 kb long in humans and 30 kb long in mice. Two large overlapping fragments (22 and 41 kb) were deleted in 2 FHHt families. The intron 1 deletion that we generated in this study was, therefore, not identical to that found in humans. However, 5 of the 6 CNSs identified by comparative sequence analysis were found within the sequences corresponding with the human deletions. The increase in \(\beta \)-gal activity in the leukocytes of TgΔΔ1 paralleled the increased WNK1 expression in the leukocytes of FHHt patients, detected by real-time PCR with primers amplifying both L-WNK1 and KS-WNK1 but not with primers specific to L-WNK1. Moreover, an 8-kb deletion in the 5′ portion of intron 1 that did not overlap with FHHt deletions was identified in control subjects (estimated allelic frequency: 10%). indicating that this sequence is unlikely to play a major role in controlling WNK1 expression. These results suggest that the consequences of deleting the entire first intron of the mouse gene are probably similar to those of FHHt deletions.

Perspectives

Several pathophysiological hypotheses have been proposed for FHHt, all consistent with a major role for the kidney, and the distal tubule in particular.2,3 We can only speculate about the consequences of the ectopic expression of KS-WNK1. This isoform has been described as a dominant-negative form of L-WNK1.4 In vitro and in vivo studies showed that WNK4 can regulate ENaC activity in the colon,5 where L-WNK1 is expressed. L-WNK1 is also expressed in the cardiovascular system during development and adulthood.6 This expression may account for the early death of WNK1−/− embryos and the low blood pressure observed in WNK1−/− adults in the absence of metabolic disorders. However, it will, therefore, be important to determine the contribution of the ectopic expression of KS-WNK1 in the colon and cardiovascular system to sodium reabsorption and blood pressure regulation in FHHt patients.

Acknowledgments

We thank Jean-Marie Gasc for helpful technical advice and Julie Sappa for editing of the article.

Sources of Funding

This work was supported by grants from INSERM, Fondation de France, the Agence Nationale pour la Recherche (project no. ANR-05-MRAR-010-01), the Leducq Foundation (Transatlantic Network on Hypertension-Renal Salt Handling in the Control of Blood Pressure), and through the Coordination Theme 1 (Health) of the European Community’s 7th Framework Program, EUNERFRON. C.D. received a fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche and the Chancellerie des Universités. E.E.-M. received a fellowship from the MÉSR. X.Z. received a fellowship from INSERM.

Disclosures

None.

References

1. Wilson FH, Disse-Nicodeme S, Chatte KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MF, Dussol B, Berland Y, Unwin RJ, Mayhan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107–1112.

2. Kahle KT, Wilson FH, Lifton RP. Regulation of diverse ion transport pathways by WNK4 kinase: a novel molecular switch. Trends Endocrinol Metab. 2005;16:98–103.

3. Hadchouel J, Delaloy C, Faure S, Achard JM, Jeunemaitre X. Familial hyperkalemic hypertension. J Am Soc Nephrol. 2006;17:208–217.

4. McCormick JA, Yang CL, Ellison DH. WNK kinases and renal sodium transport in health and disease: an integrated view. Hypertension. 2008;51:588–596.

5. Delaloy C, Lu J, Houot AM, Disse-Nicodeme S, Gasc JM, Corvol P, Jeunemaitre X. Multiple promoters in the WNK1 gene: one controls expression of a kidney-specific kinase-defective isozyme. Mol Cell Biol. 2003;23:9208–9221.

6. Delaloy C, Hadchouel J, Imbert-Teboul M, Clemessy M, Houot AM, Jeunemaitre X. Cardiovascular expression of the mouse WNK1 gene during development and adulthood revealed by a BAC reporter assay. Am J Pathol. 2006;169:105–118.

7. Beltki G, Gertsenstein M, Ow DW, Nagy A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol. 2003;21:321–324.

8. Kress C, Vandomme-Pournin S, Baldacci P, Cohen-Tannoudji M, Babinet C. Nonpermissiveness for mouse embryonic stem (ES) cell derivation circumvented by a single backcross to 129/Sv strain: establishment of ES cell lines bearing the Omd conditional lethal mutation. Mamm Genome. 1998;9:998–1001.

9. Hogan B, Beddington R, Costantini F, Lacy E. Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1994.

10. Lallemend Y, Luria V, Haffner-Krause R, Lonai P. Maternally expressed PGK-Cre transgene as a tool for early and uniform activation of the Cre site-specific recombinase. Transgenic Res. 1998;7:105–112.

11. Davison RL, Nautininen M, Coleman ST, Sigmund CD. Inappropriate splicing of a chimeric gene containing a large internal exon results in exon Skipping in transgenic mice. Nucleic Acids Res. 1996;24:4023–4028.

12. Nobrega MA, Ovcharenko I, Afzal V, Rubin EM. Scanning human gene deserts for long-range enhancers. Nat Genet. 2003;30:413.

13. Bao L, Zhou M, Cui Y. CTCFBSDB: a CTCF-binding site database for vertebrate genomic insulators. Nucleic Acids Res. 2008;36(database issue):D83–D87.

14. Yang CL, Zhu X, Wang Z, Jeunemaitre X, Subramanyar A, Ellison DH. Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport. J Clin Invest. 2005;115:1379–1387.

15. Lazzar A, Liu Z, Huang CL. Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms. Proc Natl Acad Sci U S A. 2006;103:1615–1620.

16. Wade JB, Fang L, Liu J, Li D, Yang CL, Subramanyar A, Maouy D, Mason A, Ellison DH, Wellin PA, WNK1 kinase isoform switch regulates renal potassium excretion. Proc Natl Acad Sci U S A. 2006;103:8558–8563.

17. Xu BE, Stippec S, Chu PY, Lazzar A, Li XJ, Lee BH, English JM, Ortega B, Huang CL, Cobb MH. WNK1 activates SGK1 to regulate the epithelial sodium channel. Proc Natl Acad Sci U S A. 2005;102:13151–13156.

18. Disse-Nicodeme S, Corvol P, Jeunemaitre X, Achard JM. Two genes involved in human familial hypertension. M S-Med Sci. 2001;17:959–962.

19. Ring AM, Cheng SX, Leng Q, Kahle KT, Rinehart J, Lallioti MD, Volkman HM, Wilson FH, Hebert SC, Lifton RP. WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. Proc Natl Acad Sci U S A. 2007;104:4020–4024.

20. Zambrowicz BP, Abudin A, Ramirez-Solis R, Richter LJ, Piggett J, BrelandeRio H, Buxton EC, Edwards J, Finch RA, Fridle JD, Gupta A, Hansen G, Hu Y, Huang W, Jaing C, Key BW Jr, Kipp P, Kohlihauff B, Ma ZQ, Markesich D, Payne R, Potter DG, Qian N, Shaw J, Srich J, Shi ZZ, Sparks MJ, Van Sligtenhorst I, Vogel P, Walke W, Xu N, Zhu Q, Person C, Sands AT. Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci U S A. 2003;100:14109–14114.
Deletion of \(WNK1\) first intron results in misregulation of both isoforms in renal and extrarenal tissues

Céline Delaloy, Emilie Elvira-Matelot, Maud Clemessy, Xiao-ou Zhou, Martine Imbert-Teboul, Anne-Marie Houot, Xavier Jeunemaitre, and Juliette Hadchouel
Primer name	Location	Sequence
mE4abg-s	5’ exon 4a	CAAAGTCAAGGAGGCAGAGC
mWNK1-3’4a-as	3’ exon 4a	GAAAAGCATACTTCTCAAACAGAA
lac95-as	nlacZ	GTTTTCCCAGTCAGACGTT
414endex1-m-s	L-WNK1 exon 1	ACCTCACAGAGGAAAACCTTTGA
ex2bg-a	L-WNK1 exon 2	TTCTTTGAATCTCTGCCTTTCAG
mE1-for	L-WNK1 exon 1	CGCTTTCTCAAATTTGACATC
mE1-rev	L-WNK1 exon 1	AATTCACACCAGCGACTTC
luc-qPCR-s	luciferase	ACAATTGCTTTTACAGATGCACATA
luc-qPCR-as	luciferase	GTATTCAGCCCATATCGTTTCATAG

Tg1 genotyping

TgΔ1 genotyping

L-WNK1 exon 1 real-time RT-PCR

Luciferase real-time RT-PCR

Table S1. Sequence of the primers used to genotype Tg1 and TgΔ1 mice and to amplify the *L-WNK1* exon 1 in real-time RT-PCR assays.
Table S2. Functional analysis of 2.5 kb fragments covering the 22 kb FHHt deletion.

Intronic fragments (F) were cloned in the sense or antisense orientation in pGL3-Promoter. The positions are given relative to the first nucleotide of the human intron 1 sequence. Reporter plasmids were used to transfect HEK293, MDCK and CHO cells. The results presented are the mean luciferase activity of pSV40-F constructs normalized to that of pGL3-Promoter (minimum, maximum) from at least three experiments.

Construct	Position	HEK293	MDCK	CHO			
	Orientation	Sense	Antisense	Sense	Antisense	Sense	Antisense
pSV40	22049-24386	100	-	100	-	100	-
pSV40-F1	21949-24386	37 (27,42)	7 (6,9)	67 (63,72)	24 (17,27)	51 (44,61)	9 (7,9)
pSV40-F2	24333-26584	14 (10,20)	75 (65,95)	46 (42,51)	105 (98,114)	14 (13,16)	78 (68,87)
pSV40-F3	26523-28977	7 (6,7)	4 (4,5)	88 (69,100)	44 (33,51)	5 (4,6)	5 (4,8)
pSV40-F4	28868-31385	55 (49,64)	95 (86,113)	45 (39,53)	60 (55,66)	53 (38,67)	103 (100,106)
pSV40-F5	31270-33804	149 (137,169)	123 (104,150)	142 (109,169)	85 (76,100)	120 (113,127)	111 (96,123)
pSV40-F6	33716-36093	68 (57,76)	146 (95,211)	88 (74,115)	64 (52,77)	144 (126,169)	157 (135,165)
pSV40-F7	36009-35587	31 (26,34)	19 (19,20)	58 (41,75)	51 (42,63)	60 (45,82)	52 (46,56)
pSV40-F8	38417-40954	150 (96,200)	-	95 (84,101)	-	77 (75,81)	-
pSV40-F9	40865-42568	159 (143,184)	175 (137,239)	96 (78,123)	77 (65,87)	134 (124,146)	160 (151,169)
pSV40-F10	42519-44185	80 (75,95)	125 (113,132)	119 (110,129)	116 (77,147)	81 (71,95)	151 (124,178)
Figure S1. Strategy for studying normal and abnormal (after the deletion of intron 1) L- and KS-WNK1 expression in a transgenic model. A: Schematic diagram of the Tgi1 transgene. The sizes of genomic sequences included in the BAC, 5’ and 3’ of WNK1, are indicated. Exons are indicated by numbered vertical lines. The KS-WNK1-specific exon (exon 4a) is represented by a grey vertical line. The two alternative promoters (pP and rP) are shown (bent arrows). The BAC was modified by inserting the IRES-luc reporter cassette into exon 2 and the nuclear lacZ gene (nlacZ) at the ATG of exon 4a. Two LoxP 2272 sites (grey triangles) were inserted just downstream from exon 1 and upstream from exon 2, for the deletion of the intron 1 sequence by in vivo Cre-mediated recombination. Two positive selection cassettes were inserted into the backbone of the BAC such that digestion with PI-SceI gave a linear fragment flanked at each end by the pgk-hygro and pgk-puro cassettes. B: Schematic representation of exon 2 and exon 4a loci in the targeted BAC. pA: SV40 polyadenylation signal. Exon 2 and exon 4a modification was confirmed by Southern blotting of ES clone DNA digested with PstI (P), using exon 2 (ex2-probe) or 4a (ex4a-probe) as a probe. The expected size of the endogenous WNK1 gene (asterix) and that of the transgene (arrowhead) is indicated. Results for positive clones are shown. C: Analysis of transgene expression in ES cells. Luc activity of ES protein extracts was normalized according to total protein concentration.
Figure S2. Transcriptional effect of intron 1 sequence. A: Relative abundance of endogenous L-WNK1 exon 2 (L-WNK1 ex2) and luciferase (luc) mRNA in kidneys from Tgi1 and TgΔi1 mice as determined by real-time RT-PCR. Results (arbitrary units) are expressed as means ± maxima from three animals (log scale). Primers specific for exon 2 are used to quantify endogenous L-WNK1 expression and primers specific for luc are used to quantify luciferase expression from the transgene: luc is a hundred times less expressed than endogenous L-WNK1. B: Agarose gel electrophoresis of RT-PCR product from Tgi1 kidney RNA using forward primer in exon 1 and reverse primer in IRES-luc. The amplified fragment indicated by a black arrowhead corresponds to the splicing event between exon 1 and the modified exon 2 (ex2-IRESluc) of the BAC transgene. C: Agarose gel electrophoresis of RT-PCR products from kidney, heart and cerebellum RNAs from Tgi1 and TgΔi1 mice, with primers binding to L-WNK1 exon 1 and exon 3. The grey arrowheads indicate the splicing event corresponding to the skipping of the transgenic exon 2-IRESluc while black arrowheads indicate the endogenous L-WNK1 mRNA containing exon 2.
Figure S3. Comparison of human and mouse conserved non-coding sequence 1 (C1) and 5 (C5). Sequences were aligned with the EMBOSS-Align program. Sequences of the human (h) are shown in the top lines of each panel, and sequences of the mouse are shown in the bottom lines of each panel. Nucleotide position are given relative to the first nucleotide of the human intron 1. I, sequence identity; - , gaps. A. C1 sequences. Horizontal lines indicate consensus transcription factor binding sites known to act as transcriptional repressor and identified with the TESS program (0 or 1 mismatch allowed). The core sequence is in boldface. B. C5 sequences. Horizontal lines indicate sequences producing significant alignments with known insulator identified with BLASTN2.2.9 and dashed lines indicate putative CTCF binding sites identified with the CTCFBSDB prediction tool (PR_CTCFBS). The core sequence is in boldface.
Figure S4. Enhancer blocking activity of C5. One copy of C5 (red box) was inserted on each side of the renal enhancer (enh) or between the enhancer and the SV40 promoter (pSV40). In addition, two copies of C5 were also inserted between the enhancer and pSV40 as a control. Luciferase activity was normalized with respect to that of the construct containing the enhancer and pSV40. Histograms represent means +/- minima and maxima for three experiments. ns: non-significant and *: p<5x10^-4.