AN APPLICATION OF THE WIENER HERMITE EXPANSION TO THE NONLINEAR EVOLUTION OF DARK MATTER

N. S. Sugiyama and T. Futamase
Astronomical Institute, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan; sugiyama@astr.tohoku.ac.jp

Received 2012 June 19; accepted 2012 September 20; published 2012 November 14

ABSTRACT

We apply the Wiener Hermite (WH) expansion to the nonlinear evolution of the large-scale structure and obtain an approximate expression for the matter power spectrum in the full order of the expansion. This method allows us to expand any random function in terms of an orthonormal basis in the space of random functions in such a way that the first order of the expansion expresses the Gaussian distribution, and others are the deviations from Gaussianity. It is proved that the WH expansion is mathematically equivalent to the \(\Gamma \)-expansion approach in the renormalized perturbation theory (RPT). While exponential behavior in the high-\(k \) limit has been proved for the mass density and velocity fluctuations of dark matter in the RPT, we prove the behavior again in the context of the WH expansion using the result of the standard perturbation theory (SPT). We propose a new approximate expression for the matter power spectrum which interpolates the low-\(k \) expression corresponding to the 1-loop level in SPT and the high-\(k \) expression obtained by taking a high-\(k \) limit of the WH expansion. The validity of our prescription is specifically verified by comparing with the 2-loop solutions of the SPT. The proposed power spectrum agrees with the result of the \(N \)-body simulation with accuracy better than 1% or 2% in a range of baryon acoustic oscillation scales, where the wave number is about \(k = 0.2 \sim 0.4 \frac{\text{Mpc}}{\text{h}} \) at \(z = 0.5 \sim 3.0 \). This accuracy is comparable to or slightly less than the ones in the closure theory, the fractional difference of which from the \(N \)-body result is within 1%. One merit of our method is that the computational time is very short because only single and double integrals are involved in our solution.

Key words: dark matter – large-scale structure of universe

Online-only material: color figures

1. INTRODUCTION

Precise measurements of the matter power spectrum in the large-scale structure are a powerful tool not only to investigate the details of the structure formation, but also to estimate the cosmological parameters. For example, the precise measurements of the baryon acoustic oscillation (BAO) in the matter power spectrum observed by the Sloan Digital Sky Survey have emerged as a powerful tool to estimate cosmological parameters (Eisenstein et al. 1998, 2005; Matsubara 2004; Seo & Eisenstein 2003; Blake & Glazebrook 2003; Glazebrook & Blake 2005; Shoji et al. 2009; Padmanabhan & White 2008). Also the observation of cosmic shear in the near future is expected to give a useful constraint on the nature of dark energy. Obviously, proper understanding of the observed power spectrum becomes possible only if an accurate theoretical prediction is available which requires a good understanding of the nonlinear evolution of dark matter perturbation, the relation between dark matter and baryonic matter (bias effect), and the redshift distortion effect. There have been various studies and much progress on the theoretical calculations of the power spectrum, but it is still useful and necessary to have a more accurate theoretical treatment. In this paper, we give a new approach to describe the nonlinear evolution of dark matter. It is called the “Wiener Hermite (WH) expansion method,” where the stochastic nature of the cosmological density perturbation is manifestly used and the stochastic variables are expanded in terms of an orthonormal basis in the space of stochastic functions. The method was developed in the 1970s for application to turbulent theory in fluid dynamics, and has been applied to cosmological turbulent theory by one of the authors of this paper. The method gives us a coupled equation at each perturbative order, even at the first order, in such a way that the lower order quantities are modified by higher order quantities. This is totally different from the usual perturbation theory where lower order quantities are never influenced by higher order quantities. Thus, it gives us a prescription for the renormalization of higher order effects, and the precise meaning is described below. Each expansion coefficient has a clear statistical meaning; namely, the coefficients of the first, second, and third terms in the expansion express the amplitude of Gaussianity, the skewness, and kurtosis, respectively. Thus each term corresponds directly to an appropriate \(n \)-point correlation function.

We mention here some details of the previous approaches in relation to ours. It has been known for some time that the standard perturbation theory (SPT) of cosmological perturbation can be analytically solved in the Einstein–de Sitter universe in integral forms (Fry 1984; Goroff et al. 1986; Suto & Sasaki 1991; Makino et al. 1992; Jain & Bertschinger 1994; Scoccimarro & Frieman 1996; Bernardeau et al. 2002b). When it is considered up to the third order in SPT (1-loop level), the analytical predictions describe the nonlinearity well at sufficiently high redshifts (Jeong & Komatsu 2006, 2009). However, the predictions are still insufficient at the observable low redshifts (\(z = 0 \sim 3 \)), and we need to consider further nonlinear effects. Furthermore, it is computationally expensive to deal with the higher order corrections in the SPT. Therefore, various modifications of SPT have been proposed in the past. One of the main approaches is the “Renormalized Perturbation Theory” (RPT; Crocce & Scoccimarro 2006a, 2006b, 2008), where the basic equations for fluid describing matter perturbation are rewritten in a convenient compact form in order to use a diagrammatic technique developed in quantum field theory (Scoccimarro 1998). Further modifications have been considered, such as, e.g., the
“Closure Theory” (Taruya et al. 2009; Hiramatsu & Taruya 2009), the “Time Renormalization Group” approach (Pietroni 2008), and the “Γ-expansion approach” using Multi-Point Propagators (Bernardeau et al. 2008, 2010, 2012a, 2012b). Many other new methods have also been studied (McDonald 2007; Valageas 2004; Matarrese & Pietroni 2007). On the other hand, there is also an approach to the large-scale structure in the framework of the Lagrangian picture, called “Lagrangian Resummation Theory” (LRT; Matsubara 2008a, 2008b, 2011; Okamura et al. 2011).

It will be shown that our approach is mathematically equivalent to the Γ-expansion approach, but it still has the features described above and gives us a very convenient expression for the matter power spectrum described below. In almost all modified perturbation theories, the resummation of nonlinear effects, which means the partial summation of the infinite order in perturbation theory are well approximated by the ones in the high-\(k\) limit. In this way we obtain

\[
\rho_n(\tau, \mathbf{x}) + 3H(\tau)\rho(\tau, \mathbf{x}) + \nabla \cdot [\rho(\tau, \mathbf{x})u(\tau, \mathbf{x})] = 0,
\]

where \(\rho\) is the mass density, \(v\) and \(\phi\) denote the mass density, velocity, and gravitational potential, respectively, and \(H\) is the conformal Hubble parameter.

When we transform the spatial coordinates as \(\mathbf{x} \rightarrow a\mathbf{x}\) and redefine the velocity as \(v \equiv \ddot{a}\mathbf{x} + \mathbf{u}\), where \(a\) is the scale factor and \(\mathbf{u}\) is the peculiar velocity, we can express Equation (1) as

\[
\frac{\partial \rho}{\partial \tau} + \nabla \cdot [\rho \mathbf{v}] = 0,
\]

\[
\frac{\partial \mathbf{v}}{\partial \tau} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \phi,
\]

\[
\nabla^2 \phi + \Lambda c^2 = 4\pi G \rho,
\]

where \(\rho\), \(\mathbf{v}\), and \(\phi\) denote the mass density, velocity, and gravitational potential, respectively, and \(\Lambda\) is the cosmological constant.

Since low-\(k\) solutions can be safely computed using SPT, the derivation of more precise solutions of cosmological perturbations by interpolating between the 1-loop results and the high-\(k\) behavior (Croccce & Scoccimarro 2006a, 2006b; Bernardeau et al. 2012a) has been attempted. However, some arbitrariness has remained for this prescription. To resolve this problem, we propose a unique interpolation between the low-\(k\) and high-\(k\) limit. In this way we obtain an approximate full power spectrum, and the power spectrum shows very good agreement with N-body results up to rather high \(\mathbf{k}\) (about \(\lesssim 0.2\)–\(0.4\) \(h\) Mpc\(^{-1}\)) within 1% or 2% accuracy.

This paper is organized as follows. In Section 2, we first explain the stochastic properties which should be satisfied by the density and velocity perturbations of dark matter. In Section 3, we briefly review SPT, which will be used later. Then the WH expansion technique is explained in our context in Section 4. The relationship between the SPT and the WH expansion method is established there, and we also show the mathematical equivalence between the WH expansion and the Γ-expansion. In Section 5, we prove again the high-\(k\) limit behavior of cosmological perturbations in the context of SPT and propose an approximate full power spectrum, where the lower order corrections are calculated only up to 1-loop levels in SPT and the higher order corrections are replaced with the high-\(k\) solutions. In Section 6, we compare our result with some other analytic predictions and N-body simulations. We compute the two-point correlation function in Section 7. We summarize our work and discuss future works in Section 8.

2. THE STOCHASTIC NATURE OF COSMOLOGICAL PERTURBATIONS

After decoupling, baryon and dark matter fluctuations are tightly coupled by the gravitational force, and the evolution can then be described by pressureless fluid equations (continuity equation and Euler equation) with the Poisson equation for the Newtonian gravity. Thus our basic equations are as follows (Bernardeau et al. 2002b):

\[
\frac{\partial \rho}{\partial \tau} + \nabla \cdot [\rho \mathbf{v}] = 0,
\]

\[
\frac{\partial \mathbf{v}}{\partial \tau} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla \phi,
\]

\[
\nabla^2 \phi + \Lambda c^2 = 4\pi G \rho,
\]

where \(\rho\), \(\mathbf{v}\), and \(\phi\) denote the mass density, velocity, and gravitational potential, respectively, and \(\Lambda\) is the cosmological constant.

When we transform the spatial coordinates as \(\mathbf{x} \rightarrow a\mathbf{x}\) and redefine the velocity as \(v \equiv \ddot{a}\mathbf{x} + \mathbf{u}\), where \(a\) is the scale factor and \(\mathbf{u}\) is the peculiar velocity, we can express Equation (1) as

\[
\frac{\partial \rho}{\partial \tau} + 3H(\tau)\rho + \nabla \cdot [\rho(\tau, \mathbf{x})\mathbf{u}(\tau, \mathbf{x})] = 0,
\]

where the conformal time \(\tau\) is defined as \(ad\tau \equiv dt\), and the conformal Hubble parameter \(H\) is defined as \(H = aH\), where \(H\) is the Hubble parameter. We further define the cosmological gravitational potential as \(\Phi \equiv \phi + (1/2)H^2\mathbf{x}^2\).

In the standard cosmological perturbation theory, physical quantities are decomposed into the background part and the perturbative part. The background part of the mass density \(\bar{\rho}\) is defined as

\[
\bar{\rho}(t) \equiv \langle \rho(\mathbf{x}, t) \rangle = \langle \rho(0, t) \rangle,
\]

where \(\langle \cdots \rangle\) denotes the ensemble average and we use the translation symmetry of the ensemble average. On the other hand, the peculiar velocity \(\mathbf{u}\) has no background part because of rotation symmetry in the average sense. Therefore, the perturbative parts of the mass density and the peculiar velocity have the property that their ensemble averages are zero by definition:

\[
\langle \delta \rho \rangle = \langle \mathbf{u} \rangle = 0.
\]

Averaging the above set of equations, we obtain the following background equations:

\[
\frac{\partial \bar{\rho}}{\partial \tau} + 3H\bar{\rho} = 0,
\]

\[
\frac{\partial \bar{H}}{\partial \tau} = -\frac{4\pi G}{3} \bar{\rho} a^2 + \frac{1}{3} \Lambda c^2 a^2.
\]

Integrating Equation (8), we find the usual Friedman equation,

\[
H^2 + c^2K = \frac{8\pi G}{3} a^2 \bar{\rho} + \frac{1}{3} \Lambda c^2 a^2,
\]

where the integral constant \(K\) is interpreted as the spatial curvature.

By subtracting the background equations from Equations (2) and (3), we find our basic equations in Fourier space as follows:

\[
\delta' (\tau, \mathbf{k}) + \langle \delta(\mathbf{k}_1, \mathbf{k}_2) \delta(\tau, \mathbf{k}_1) \rangle = -i \int \frac{dk^3k}{(2\pi)^3} \int \frac{dk^3k}{(2\pi)^3} \delta_D(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}) \times a(\mathbf{k}_1, \mathbf{k}_2) \theta(\tau, \mathbf{k}_1) \delta(\tau, \mathbf{k}_2).
\]
\[\theta'(\tau, \mathbf{k}) + \mathcal{H}\theta(\tau, \mathbf{k}) + \frac{3}{2} \Omega_m \mathcal{H}^2 \delta(\tau, \mathbf{k}) = - \int \frac{dk_1^3}{(2\pi)^3} \int \frac{dk_2^3}{(2\pi)^3} \times (2\pi)^3 \delta_D(\mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}) \beta(\mathbf{k}_1, \mathbf{k}_2) \theta(\tau, \mathbf{k}_1) \theta(\tau, \mathbf{k}_2), \] (11)

where \(\delta \equiv \delta \rho / \bar{\rho} \) and \(\theta \equiv \theta \mathbf{u} \) denotes the divergence of velocity, and \(\delta_D \) denotes the three-dimensional Dirac delta distribution. We neglected the vorticity \(\mathbf{w} \equiv \nabla \times \mathbf{u} \) because the vorticity is zero if its initial value is zero, and even if its initial value is non-zero, it decays due to the expansion of the universe. The solutions in the case of an Einstein–de Sitter universe, where \(\Omega_m = 1 \) and \(\Omega_\Lambda = 0 \), can be described analytically by integral forms in SPT. However, we do not need to consider this prescription for perturbative variables in Equations (10) and (11). This is a special feature of Newtonian gravity. It will be interesting to see what the backreaction looks like in the case of general relativistic gravity in our approach.

3. REVIEW OF STANDARD PERTURBATION THEORY

We here explain SPT, which will be used later, very briefly. The solutions in the case of an Einstein–de Sitter universe, where \(\Omega_m = 1 \) and \(\Omega_\Lambda = 0 \), can be described analytically by integral forms in SPT. More explicitly, the solution may be written in the following perturbative form:

\[\delta(\tau, \mathbf{k}) = \sum_{n=1}^{\infty} a^n \delta_n(\mathbf{k}), \quad \theta(\tau, \mathbf{k}) = -\mathcal{H} \sum_{n=1}^{\infty} a^n \theta_n(\mathbf{k}), \] (15)

where the scale factor \(a \) is a growing mode solution in the linearized theory. When the scale factor \(a \) is small, the series are dominated by their first term, that is, by linearized theory. The relation between the time-independent coefficients \(\delta_1(\mathbf{k}) \) and \(\theta_1(\mathbf{k}) \) is shown by the continuity equation (10) as \(\delta_1(\mathbf{k}) = \theta_1(\mathbf{k}) \equiv \delta_L(\mathbf{k}) \), and the time-independent linear power spectrum for \(\delta_L(\mathbf{k}) \) is defined as

\[\langle \delta_L(\mathbf{k}) \delta_L(\mathbf{k}') \rangle = (2\pi)^3 \delta_D(\mathbf{k} + \mathbf{k}') P_L(k), \] (16)

where the amplitude of the wave vector is expressed as \(k \equiv |\mathbf{k}| \).

Then, the coefficients \(\delta_n(\mathbf{k}) \) and \(\theta_n(\mathbf{k}) \) are described as follows:

\[\delta_n(\mathbf{k}) = \int \frac{d^3q_1}{(2\pi)^3} \int \frac{d^3q_2}{(2\pi)^3} (2\pi)^3 \delta_D(\mathbf{k} - \mathbf{q}_1) \times F_n(\mathbf{q}_1, \ldots, \mathbf{q}_n) \delta_L(\mathbf{q}_1) \ldots \delta_L(\mathbf{q}_n), \] (17)

\[\theta_n(\mathbf{k}) = \int \frac{d^3q_1}{(2\pi)^3} \int \frac{d^3q_2}{(2\pi)^3} (2\pi)^3 \delta_D(\mathbf{k} - \mathbf{q}_1) \times G_n(\mathbf{q}_1, \ldots, \mathbf{q}_n) \delta_L(\mathbf{q}_1) \ldots \delta_L(\mathbf{q}_n), \] (18)

where \(\mathbf{q}_1 \equiv \mathbf{q}_1 + \mathbf{q}_2 + \ldots + \mathbf{q}_n \), and \(F_n \) and \(G_n \) are completely symmetrized functions for the wave vectors \(\{\mathbf{q}_1, \mathbf{q}_2, \ldots, \mathbf{q}_n\} \), and \(G_n \) is interpreted as the vacuum bubble diagram in the diagrammatic picture and contributes only in infinitely large scales. This means we really need to redefine the cosmological background. However, we do not need to consider this prescription for perturbative variables in Equations (10) and (11). This is a special feature of Newtonian gravity. It will be interesting to see what the backreaction looks like in the case of general relativistic gravity in our approach.

The stochastic property \(\langle \delta \rangle = \langle \theta \rangle = 0 \) is specifically shown from these solutions. When we consider the average of Equation (17), we only have to consider both coefficients \(\delta_n \) and \(\theta_n \) due to the linearity of the ensemble average. The ensemble average for \(\delta_n \) is

\[\langle \delta_n(\mathbf{k}) \rangle = \int \frac{d^3q_1}{(2\pi)^3} \int \frac{d^3q_2}{(2\pi)^3} (2\pi)^3 \delta_D(\mathbf{k} - \mathbf{q}_1) \times F_n(\mathbf{q}_1, \ldots, \mathbf{q}_n) \langle \delta_L(\mathbf{q}_1) \ldots \delta_L(\mathbf{q}_n) \rangle, \]

where \(B(\mathbf{q}_1, \ldots, \mathbf{q}_n) \) is defined as

\[\langle \delta_L(\mathbf{q}_1) \ldots \delta_L(\mathbf{q}_n) \rangle \equiv (2\pi)^3 \delta_D(\mathbf{q}_1)B(\mathbf{q}_1, \ldots, \mathbf{q}_n). \] (24)

When the function \(F_n \) in Equation (19) is substituted into Equation (23), \(k_1 + k_2 = q_{1n} = 0 \) is satisfied due to the Dirac
the Gaussian distribution. Second, the expansion scheme should satisfy the Gaussian distribution. Thus the first order in our expansion should express

\[\delta = 0. \]

A similar analysis can be applied to \(\theta \).

Note that this stochastic property is independent of the initial conditions of \(\delta_L \), that is, the initial condition can have primordial non-Gaussianity.

4. THE WIENER HERMITE EXPANSION

Now, we explain our expansion method for \(\delta \) and \(\theta \). Our expansion scheme should satisfy the following two properties. First, it is known observationally and theoretically that the cos-

\[\delta \text{ function in Equation (23), and the functions } \alpha(k_1, k_2) \text{ and } \beta(k_1, k_2) \text{ become zero from Equation (14). Then, it is shown that the function } F_n \text{ in Equation (23) becomes zero, and } \delta = 0. \]

\[A \text{ similar analysis can be applied to } \theta. \]

Thus they become an orthonormal basis in the space of stochastic functions, where the ensemble average of \(H^{(r)} \) is clearly zero:

\[\langle H^{(r)}(k_1, \ldots, k_r) \rangle = 0, \quad \{ r = 1, 2, 3, \ldots \}. \]

Therefore, the stochastic property in Equation (6) is satisfied by the definition of the WH expansion.

The coefficients of the WH expansion are derived by averaging \(\delta \) and \(\theta \) after multiplying by the stochastic variable \(H^{(r)} \):

\[\langle \delta(k) H^{(r)}(-k_1, \ldots, -k_r) \rangle = (2\pi)^3 \delta_D(k - k_{1r})! \delta_{\text{WH}}^{(r)}(z, k_1, \ldots, k_r), \]

\[\langle \theta(k) H^{(r)}(-k_1, \ldots, -k_r) \rangle = (2\pi)^3 \delta_D(k - k_{1r})! \theta_{\text{WH}}^{(r)}(z, k_1, \ldots, k_r). \]

\[\text{The power spectrum is described in the WH expansion by} \]

\[P(z, k) = \sum_{r=0}^{\infty} (r+1)! \int \frac{d^3 p_1}{(2\pi)^3} \cdots \int \frac{d^3 p_r}{(2\pi)^3} \times \left[\delta_{\text{WH}}^{(r+1)}(z, k, -p_{1r}, p_1, \ldots, p_r) \right]^2. \]

4.2. Relation between the Standard PT and Wiener Hermite Expansion

Since the solutions for any order of SPT are given analytically in an Einstein–de Sitter universe, any new expansion for \(\delta \) and \(\theta \) must be described in the context of SPT. For the linear order, we assume

\[\delta_L(k) = \delta_{\text{SPT}}^{(1)}(k) P_L(k) = \left[\delta_{\text{SPT}}^{(1)}(k) \right]^2, \]

where the superscript and subscript to \(\delta_{\text{SPT}}^{(1)} \) denote the order of the WH expansion and SPT, respectively. It is straightforward to include the intrinsic non-Gaussianities as higher order contributions in the WH expansion. From now on, we express \(\delta_{\text{SPT}}^{(1)}(k) \rightarrow \delta_L(k) \). Substituting the solutions in SPT Equations (15), (17), and (18) into Equation (31), we find the general relation of the solutions between SPT and the WH expansion as follows:

\[\delta_{\text{WH}}^{(r+1)}(z, k_1, \ldots, k_{r+1}) = \sum_{n=0}^{\infty} a_{2n+r+1} \delta_{\text{SPT}}^{(r+1)}(k_1, k_{r+1}), \]

\[\delta_{\text{WH}}^{(r+1)}(z, k_1, \ldots, k_{r+1}) = -\delta_L(k_{r+1}) \sum_{n=0}^{\infty} a_{2n+r+1} \delta_{\text{SPT}}^{(r+1)}(k_1, \ldots, k_{r+1}). \]

\[\text{where} \]

\[\delta_{\text{SPT}}^{(r+1)}(k_1, \ldots, k_{r+1}) = \frac{1}{(r+1)!} \frac{(2n + r + 1)!}{(2n)!} \cdot \]

\[\times \frac{(2n + 1)!}{(2n)!} \delta_L(k_1) \ldots \delta_L(k_{r+1}) \]

\[\times \int \frac{d^3 p_1}{(2\pi)^3} \cdots \int \frac{d^3 p_n}{(2\pi)^3} F_{2n+r+1} \]

\[\times \left(k_1, \ldots, k_{r+1}, p_1, -p_1, \ldots, p_n, -p_n \right) \]

\[\times P_L(p_1) \cdots P_L(p_n). \]
\[\delta^{(r+1)}_{2n+1}(k_1, \ldots, k_{r+1}) \equiv \frac{1}{(r+1)!} \frac{1}{(2\pi)^d} \int \delta_L(k_1) \ldots \delta_L(k_{r+1}) \times \left[\frac{d^3 p_1}{(2\pi)^3} \ldots \frac{d^3 p_n}{(2\pi)^3} G_{2n+1} \right. \\
\left. \times (k_1, \ldots, k_{r+1}, p_1, -p_1, \ldots, p_n, -p_n) \right] P_L(p_1) \cdots P_L(p_n). \] (36)

This expression means that the density fluctuation with order \(r + 1 \) in the WH expansion is the sum of all the density fluctuations with order \(2n + r + 1 \) in SPT.

We can understand the relation between SPT and the WH expansion through a diagrammatical representation, where there is no non-dimensional coupling constant and the order of the loop is determined by the order of the linear power spectrum \(P_L(k) \), that is, the \(n \)-loop contribution contains the terms proportional to \((P_L(k))^n \). Each order of the WH expansion includes all vertex loop contributions which come from the \(\delta^{(r)} \) coefficients themselves. The order of the vertex loop is expressed by \(n (n \geq 0) \). On the other hand, the loop contributions from irreducible diagrams, where the loop order is expressed by \(r (r \geq 0) \), arise only after calculating the power spectrum in Equations (32) and (33) (see Bernardeau et al. 2008, 2012a for details).

4.3. Relation between the \(\Gamma \)-expansion and Wiener Hermite Expansion

The relation given in Equation (31) corresponds to Equation (17) in Bernardeau et al. (2008). That is, the WH expansion method coincides with the \(\Gamma \)-expansion approach:

\[\Gamma^{(r+1)}(z, k_1, \ldots, k_{r+1}) = \delta^{(r+1)}_{\text{WH}}(z, k_1, \ldots, k_{r+1}) / \left(\delta_L(k_1) \ldots \delta_L(k_{r+1}) \right). \] (37)

For \(r = 0 \) in Equations (35), (36), and (37), we have

\[\Gamma^{(1)}(k) = \delta^{(1)}_{\text{WH}}(z, k) / \delta_L(k) = \sum_{n=0}^{\infty} a^{2n+1}(2n+1)! \int \frac{d^3 p_1}{(2\pi)^3} \ldots \frac{d^3 p_n}{(2\pi)^3} F_{2n+1} \times (k, p_1, -p_1, \ldots, p_n, -p_n) P_L(p_1) \cdots P_L(p_n). \] (38)

Thus, the first order of the WH expansion, \(\delta^{(1)}_{\text{WH}} \), corresponds to the propagator in RPT. Furthermore, \(\delta^{(r+1)}_{\text{WH}} \) denotes the irreducible diagrams, and this is expressed in the \(\Gamma \)-expansion as

\[\Gamma^{(r+1)}_{\text{tree}}(z, k_1, \ldots, k_{r+1}) = a^{r+1} \delta^{(r+1)}_{\text{WH}}(k_1, \ldots, k_{r+1}) / \left(\delta_L(k_1) \ldots \delta_L(k_{r+1}) \right). \] (39)

Note that since we focus only on the SPT, we consider only growing solutions, unlike RPT.

5. BEHAVIOR OF THE SOLUTIONS IN THE HIGH-\(k \) LIMIT

Although the WH expansion is defined and its interpretation is physically and mathematically useful for understanding the nonlinear evolution of dark matter, we need to truncate the expansion at some order, most probably at a lower order such as \(r = 2 \) or 3, in order to perform the actual calculation. However, the validity of the truncation is not guaranteed immediately. Furthermore, the computational difficulties for the power spectrum increase very rapidly when we increase the order of truncation. In order to resolve these difficulties, we propose in this section an approximate semi-analytic expression for the full power spectrum including all orders in the WH expansion by adopting the following assumption: the high-order solutions in the SPT become dominant in the high-\(k \) limit. Therefore, they are approximated well enough by the ones in the high-\(k \) limit. Here, we show the exponential behavior of the solutions using SPT, which have been proved in RPT (Crocce & Scoccimarro 2006a, 2006b; Bernardeau et al. 2012b).

5.1. Functions \(F_n \) and \(G_n \) in the High-\(k \) Limit

We prove that the functions \(F_{r+1}(k, k_1, \ldots, k_r, p_1, \ldots, p_n) \) and \(G_{r+1}(k, k_1, \ldots, k_r, p_1, \ldots, p_n) \) take the following expression in the high-\(k \) limit:

\[F_{r+1}(k, k_1, \ldots, k_r, p_1, \ldots, p_n) \rightarrow \frac{(r+1)!}{(r+n+1)!} F_{r+1}(k, k_1, \ldots, k_r) \gamma(p_1) \ldots \gamma(p_n), \]
\[G_{r+1}(k, k_1, \ldots, k_r, p_1, \ldots, p_n) \rightarrow \frac{(r+1)!}{(r+n+1)!} G_{r+1}(k, k_1, \ldots, k_r) \gamma(p_1) \ldots \gamma(p_n) \] (40)

with

\[\gamma(p) \equiv \frac{p \cdot k}{p^2}. \] (41)

Here, we define the high-\(k \) limit as

\[|k| \gg |p_i|, \ i = 1, 2, \ldots, n. \] (42)

From now on, we shall simplify the notations: \(F_{r+1}(k, k_1, \ldots, k_r, p_1, \ldots, p_n) = F_{r+1}(k, k_r, p_n) \) and \(G_{r+1}(k, k_1, \ldots, k_r, p_1, \ldots, p_n) = G_{r+1}(k, k_r, p_n) \).

We prove this by induction in \(n \) as follows. For \(n = 0 \), Equation (40) is clearly satisfied. For some \(n \), we assume

\[F_{r+1}(k, k_r, p_{n-1}) \rightarrow \frac{(r+1)!}{(r+n)!} F_{r+1}(k, k_r) \gamma(p_1) \ldots \gamma(p_{n-1}), \]
\[G_{r+1}(k, k_r, p_{n-1}) \rightarrow \frac{(r+1)!}{(r+n)!} G_{r+1}(k, k_r) \gamma(p_1) \ldots \gamma(p_{n-1}). \] (43)

Then we show that the \(n + 1 \) order satisfies the same limit.

The functions \(F_{r+1}(k, k_r, p_n) \) and \(G_{r+1}(k, k_r, p_n) \) are given by Equations (19) and (20). Then, let us examine which terms become dominant in the high-\(k \) limit in these recursion relations. From Equation (42), we keep only terms with scale dependence as \((k/p_i) \cdots (k/p_n) \). Then, we have the terms proportional to \(F_{r+1}(k, k_r, p_n) \) and \(G_{r+1}(k, k_r, p_n) \) for \(i \leq r \), and \(\gamma(p_n) F_{r+1}(k, k_r, p_{n-1}) \) and \(\gamma(p_n) G_{r+1}(k, k_r, p_{n-1}) \) in the high-\(k \) limit. This means that the recursion relation for \(F_{r+1}(k, k_r, p_n) \) and \(G_{r+1}(k, k_r, p_n) \)
in the high-\(k \) limit becomes:

\[
F_{r+1-n}(\mathbf{k}, \mathbf{k}_r, \mathbf{p}_n) \to \frac{1}{(2(r+n)+5)(r+n)} \left(2(r+n)+3 \right) \\
\times \frac{C(r, m)}{C(n + r + 1, m)} \left[\sum_{m=1}^{r} G_m(k_m) \alpha(k_{1m}, k + k_{(m+1)r} + \mathbf{p}_{1n}) \right. \\
\times \left. F_{r+1-m}(\mathbf{k}, \mathbf{k}_{m+1}, \ldots, \mathbf{k}_r, \mathbf{p}_n) \right] \\
+ \sum_{m=1}^{r} G_m(k_m) \alpha(k_{1m}, k + k_{(m+1)r} + \mathbf{p}_{1n}) \\
\times (k + k_{(m+1)r} + \mathbf{p}_{1n}, \mathbf{k}_{1m}) F_m(k_m) \\
+ 4 \frac{C(r, m)}{C(n + r + 1, m)} \left[\sum_{m=1}^{r} G_m(k_m) \beta(k_{1m}, k + k_{(m+1)r} + \mathbf{p}_{1n}) \right. \\
\times \left. G_{r+1-n}(\mathbf{k}, \mathbf{k}_{m+1}, \ldots, \mathbf{k}_r, \mathbf{p}_n) \right] \\
+ (2(r+n)+3) \left(\frac{n}{r + n + 1} \right) \alpha(\mathbf{p}_n, k + k_{1r} + \mathbf{p}_{1(n-1)}) \\
\times F_{r+1-n}(\mathbf{k}, \mathbf{k}_r, \mathbf{p}_{n-1}) \\
+ 4 \left(\frac{n}{r + n + 1} \right) \beta(\mathbf{p}_n, k + k_{1r} + \mathbf{p}_{1(n-1)}) \\
\times G_{r+1-n}(\mathbf{k}, \mathbf{k}_r, \mathbf{p}_{n-1}) \\
\right),
\]

where we denote \(k_{(m+1)r} \equiv k_{m+1} + \ldots + k_r \) and \(\mathbf{p}_{1(n-1)} \equiv \mathbf{p}_1 + \ldots + \mathbf{p}_{n-1} \), and define

\[
C(n, r) \equiv \frac{n!}{r!(n-r)!}.
\]

Furthermore, the behavior of \(\alpha \) and \(\beta \) in the high-\(k \) limit is

\[
\alpha(k_{1m}, k + k_{(m+1)r} + \mathbf{p}_{1n}) \to \alpha(k_{1m}, k + k_{(m+1)r}),
\]

\[
\alpha(k + k_{(m+1)r} + \mathbf{p}_{1n}, k_{1m}) \to \alpha(k + k_{(m+1)r}, k_{1m}),
\]

\[
\beta(k_{1m}, k + k_{(m+1)r} + \mathbf{p}_{1n}) \to \beta(k_{1m}, k + k_{(m+1)r}),
\]

\[
\beta(\mathbf{p}_n, k + k_{1r} + \mathbf{p}_{1(n-1)}) \to \gamma(\mathbf{p}_n),
\]

and Equation (44) becomes

\[
F_{r+1-n}(\mathbf{k}, \mathbf{k}_r, \mathbf{p}_n) \to \frac{1}{(2(r+n)+5)(r+n)} \left(2(r+n)+3 \right) \\
\times \left(\frac{(r+1)!}{(r+n+1)!} \right) \gamma(\mathbf{p}_1) \ldots \gamma(\mathbf{p}_n) \\
\times \left[F_{r+1-m}(\mathbf{q}_{m+1}, \ldots, \mathbf{q}_{r+1}) \right. \\
\times \left. G_{r+1-m}(\mathbf{q}_{m+1}, \ldots, \mathbf{q}_{r+1}) \right] \\
+ 2 \left[\sum_{m=1}^{r} G_m(q_m) \beta(\tilde{k}_1, \tilde{k}_2) G_{r+1-m}(\mathbf{q}_{m+1}, \ldots, \mathbf{q}_{r+1}) \right] \\
+ (2(r+n)+3) n F_{r+1-n}(\mathbf{k}, \mathbf{k}_r) + 2 n G_{r+1-n}(\mathbf{k}, \mathbf{k}_r)
\]

where \(\{q_1, \ldots, q_{r+1}\} = \{k, k_1, \ldots, k_r\} \) and \(\tilde{k}_1 = q_{1m}, \tilde{k}_2 \equiv q_{(m+1)r+1} \).

From Equations (19) and (20), we can show the following relations:

\[
\left[\sum_{m=1}^{r} G_m(\mathbf{q}_m) \alpha(\tilde{k}_1, \tilde{k}_2) F_{r+1-m}(\mathbf{q}_{m+1}, \ldots, \mathbf{q}_{r+1}) \right] \\
=(r+1) F_{r+1-n}(\mathbf{k}, \mathbf{k}_r) - G_{r+1-n}(\mathbf{k}, \mathbf{k}_r)
\]

(47)

\[
\left[\sum_{m=1}^{r} G_m(\mathbf{q}_m) \beta(\tilde{k}_1, \tilde{k}_2) G_{r+1-m}(\mathbf{q}_{m+1}, \ldots, \mathbf{q}_{r+1}) \right] \\
= -\frac{1}{2} (3 F_{r+1}(\mathbf{k}, \mathbf{k}_r) - (2r+3) G_{r+1}(\mathbf{k}, \mathbf{k}_r)).
\]

(48)

Substituting Equations (47) and (48) into Equation (46), we can finally derive the following relation in the high-\(k \) limit:

\[
F_{r+1-n}(\mathbf{k}, \mathbf{k}_r, \mathbf{p}_n) \to \frac{(r+1)!}{(r+n+1)!} \gamma(\mathbf{p}_1) \ldots \gamma(\mathbf{p}_n) G_{r+1-n}(\mathbf{k}, \mathbf{k}_r).
\]

(49)

Similarly, for \(G_{r+1-n} \) we can show the following relation:

\[
G_{r+1-n}(\mathbf{k}, \mathbf{k}_r, \mathbf{p}_n) \to \frac{(r+1)!}{(r+n+1)!} \gamma(\mathbf{p}_1) \ldots \gamma(\mathbf{p}_n) G_{r+1-n}(\mathbf{k}, \mathbf{k}_r).
\]

(50)

This ends the proof.

5.2. Power Spectrum in the High-\(k \) Limit

We calculate the coefficients of the WH expansion in the high-\(k \) limit,

\[
\delta_{\text{WH}}^{[r+1]}(z, \mathbf{k} - \mathbf{k}_{1r}, \mathbf{k}_r) = \sum_{n=0}^{\infty} a^{2n+r+1} \delta_{\text{WH}}^{[r+1]}(\mathbf{k} - \mathbf{k}_{1r}, \mathbf{k}_r) \\
\to \sum_{n=0}^{\infty} a^{2n+r+1} \delta_L(z, \mathbf{k} - \mathbf{k}_{1r}) \delta_L(\mathbf{k}_1) \ldots \delta_L(\mathbf{k}_r) \\
\times F_{r+1}(\mathbf{k} - \mathbf{k}_{1r}, \mathbf{k}_r) \frac{1}{2n!} \left[-\frac{k^2\sigma_z^2}{6\pi^2} \int dp P_L(p) \right]^n \\
= \exp \left(-\frac{k^2\sigma_v^2}{2} \right) \delta_L(z, \mathbf{k} - \mathbf{k}_{1r}) \\
\times \delta_L(z, \mathbf{k}_1) \ldots \delta_L(z, \mathbf{k}_r) F_{r+1}(\mathbf{k} - \mathbf{k}_{1r}, \mathbf{k}_r) \\
= \exp \left(-\frac{k^2\sigma_v^2}{2} \right) \delta_{\text{WH}}^{[r+1]}(z, \mathbf{k} - \mathbf{k}_{1r}, \mathbf{k}_1, \ldots, \mathbf{k}_r),
\]

(51)

where we have used Equations (36), (40), and (2n)!! = 2^n n!. We define \(\sigma_v^2 \) as

\[
\sigma_v^2 \equiv \frac{1}{6\pi^2} \int dp P_L(z, p).
\]

(52)

Note that we define the \(z \)-dependent quantities such as \(\delta_L(z, \mathbf{k}) \) and \(P_L(z, \mathbf{k}) \) by multiplying by the scale factor \(a \), but we assume that the scale factor can be replaced by the growth factor \(D(z) \) in the general cosmological models, for which \(\Omega_\Lambda \neq 0 \): \(\delta_L(z, \mathbf{k}) \equiv a \delta_L(k) \to D(z) \delta_L(k) \) and \(P_L(z, \mathbf{p}) \equiv a^2 P_L(p) \to D^2 P_L(p) \).
This relation in Equation (51) is equivalent to Equation (42) in Bernardeau et al. (2008) from the relation between δ_{r+1} and Γ_{inc} in Equation (39).

Then, we describe the full power spectrum in the high-k limit as

$$P(z, k) \rightarrow \exp(-k^2\sigma_v^2) \sum_{r=0}^{\infty} P^{(r+1)}_{\text{irr}}(z, k), \quad (53)$$

where

$$P^{(r+1)}_{\text{irr}}(z, k) \equiv (r + 1)! \int \frac{d^3k_1}{(2\pi)^3} \cdots \int \frac{d^3k_r}{(2\pi)^3}$$

$$\times \left[\delta^{(r+1)}(z, \mathbf{k} - \mathbf{k}_1, \mathbf{k}_2, \ldots, \mathbf{k}_r) \right]^2$$

$$= (r + 1)! \int \frac{d^3k_1}{(2\pi)^3} \cdots \int \frac{d^3k_r}{(2\pi)^3}$$

$$\times \left[F_{r+1}(\mathbf{k} - \mathbf{k}_1, \mathbf{k}_2) \right]^2 P_L(z, |\mathbf{k} - \mathbf{k}_1|)$$

$$\times P_L(z, k_1) \cdots P_L(z, k_r). \quad (54)$$

P_{irr} includes the contributions from all the irreducible diagrams. Here, we take further high-k limits in Equation (54):

$$k \gg \{ |\mathbf{k}_i|, i = 1, \ldots, r \}. \quad (55)$$

Using Equation (40), we show

$$P^{(r+1)}_{\text{irr}} \rightarrow (r + 1)! (r + 1) \int \frac{d^3k_1}{(2\pi)^3} \cdots \int \frac{d^3k_r}{(2\pi)^3}$$

$$\times \left[\delta^{(r+1)}(z, \mathbf{k}, \mathbf{k}_1, \ldots, \mathbf{k}_r) \right]^2$$

$$\rightarrow \frac{k^2\sigma_v^2}{r!} P_L(z, k). \quad (56)$$

Note that the limit of $k \gg k_r$ ($r \geq 1$) is equal to the approximation that the most effective region of k_r to each integral is around $k_r \rightarrow 0$. However, since k_r have an integral range of $0 \leq k_r \ll \infty$, there necessarily exists the case of $k_r \sim k$ in the integral. For $k_1 \sim k \gg k_2$, we have

$$P^{(r+1)}_{\text{irr}} = (r + 1)! \int \frac{d^3k_1}{(2\pi)^3} \cdots \int \frac{d^3k_r}{(2\pi)^3}$$

$$\times \left[\delta^{(r+1)}(z, \mathbf{k} - \mathbf{k}_1, \mathbf{k}_2, \ldots, \mathbf{k}_r) \right]^2$$

$$\rightarrow (r + 1)! \int \frac{d^3k_1}{(2\pi)^3} \cdots \int \frac{d^3k_r}{(2\pi)^3}$$

$$\times \left[\delta^{(r+1)}(z, \mathbf{q}, \mathbf{k}, \mathbf{k}_2, \ldots, \mathbf{k}_r) \right]^2. \quad (57)$$

where we define \mathbf{k} as $\mathbf{k} - \mathbf{k}_1 \sim |\mathbf{k} - \mathbf{k}_1| \equiv \mathbf{q}$. This is equal to the case of the high-k limit. The same analysis is applied to arbitrary k_r. Therefore, the factor $(r + 1)$ is multiplied in Equation (56).

From Equations (56) and (53), we finally derive

$$P(z, k) \rightarrow P_L(z, k) \exp(-k^2\sigma_v^2) \sum_{r=0}^{\infty} \frac{(k^2\sigma_v^2)^r}{r!}$$

$$= P_L(z, k). \quad (58)$$

Surprisingly, the solutions in the high-k limit cancel each other, and the full power spectrum reduces to the linear power spectrum. This fact is well known in the 1-loop level of SPT (Makino et al. 1992), but it is interesting that this cancellation also applies for the dominant terms in the high-k limit in the full power spectrum. Of course, it is really not that the full power spectrum becomes the linear power spectrum in the high-k limit, because we have chosen only dominant terms in the high-k limit in the proof of Equations (40) and (56), and the subleading terms can also affect the full power spectrum even in the high-k limit. This result implies that the nonlinear corrections for the power spectrum generally tend to cancel each other and result in small corrections as specifically known for the 1- and 2-loop cases of SPT.

5.3. Approximate Full Power Spectrum

We now propose an appropriate interpolation between the low-k and high-k solutions. The low-k solutions are the 1-loop solutions in SPT, while the high-k solutions are given by Equation (53) derived in the previous subsection.

In order to have an expression applicable for the case of $r = 0$, we use Equation (40) in the following form:

$$F_{2n+1}(\mathbf{k}, \mathbf{p}_1, -\mathbf{p}_1, \ldots, \mathbf{p}_n, -\mathbf{p}_n) \rightarrow \frac{3!}{(2n + 1)!}$$

$$\times F_2(\mathbf{k}, \mathbf{p}_1, -\mathbf{p}_1)\gamma(\mathbf{p}_2)\gamma(\mathbf{p}_3)\gamma(\mathbf{p}_n)\gamma(\mathbf{p}_n). \quad (59)$$

Then, for $n \geq 1$, we show

$$\delta_{2n+1}(z) \rightarrow \frac{2(2n + 1)!}{(2n + 1)!!} \int \frac{d^3p_1}{(2\pi)^3} F_3(\mathbf{k}, \mathbf{p}_1, -\mathbf{p}_1) P_L(p_1)$$

$$\times \left[\int \frac{d^3p}{(2\pi)^3} \gamma(-\mathbf{p}) P_L(p) \right]^{n-1}$$

$$= \delta_{2}^{(1)}(z) \frac{2}{2n!} \left[-\frac{k^2}{6\pi^2} \int dp P_L(p) \right]^{n-1}, \quad (60)$$

where we have denoted the 1-loop correction term in SPT as

$$\delta_{2}^{(1)}(z) = 3\delta_2(L) \int \frac{d^3p}{(2\pi)^3} F_3(\mathbf{k}, \mathbf{p}, -\mathbf{p}) P_L(p). \quad (61)$$

Then, we derive the approximate solution of $\delta_{2}^{(1)}$ as

$$\delta_{2}^{(1)}(z, k) = \sum_{n=0}^{\infty} D_{2n+1} \delta_{2n+1}^{(1)}(k)$$

$$\rightarrow \delta_L(z, k) + \delta_{3}^{(1)}(z, k) \left(\frac{2}{-k^2\sigma_v^2} \right) \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{k^2\sigma_v^2}{2} \right)^n$$

$$= \delta_L(z, k) - \frac{2\delta_3^{(1)}(z, k)}{k^2\sigma_v^2} \left[\exp\left(-\frac{k^2\sigma_v^2}{2}\right) - 1 \right], \quad (62)$$

where we have used the general growth factor D instead of the scale factor a. The contribution to the power spectrum $P_{\text{WH}}^{(1)}$ in Equation (33) is

$$P_{\text{WH}}^{(1)}(z, k) \rightarrow \delta_L(z, k) - \frac{2\delta_3^{(1)}(z, k)}{k^2\sigma_v^2} \left[\exp\left(-\frac{k^2\sigma_v^2}{2}\right) - 1 \right]^2. \quad (63)$$
For low k, we can expand the exponential term as $e^{-k^2\sigma_e^2/2} \sim 1 - k^2\sigma_e^2/2$, and this leads to the 1-loop correction,

$$\delta_{WH}^{(1)}(z, k) \rightarrow \delta_L(z, k) + \delta_{WH}^{(1)}(z, k),$$

(64)

while for the high-k limit $\delta_{WH}^{(1)}$ becomes coincident with $\delta_L e^{-k^2\sigma_e^2/2}$ due to the good convergence of $\delta_L + 2\delta_{WH}^{(1)}/(k^2\sigma_e^2) \rightarrow 0$.

Next, for $r \geq 1$, we use the approximation of Equation (53). Here, we further approximate $P^{(r+1)}_{\text{in}}$ because it is expensive to compute the terms in the case of $r > 2$ due to their large multiple integrals. Using the following approximation from Equation (40),

$$F_{r+1}(k - k_{ir}, k_1, \ldots, k_r) \rightarrow \frac{2!}{(r+1)!} 	imes \gamma(k_2) \ldots \gamma(k_r) P_2(k - k_1, k_1),$$

(65)

we derive the approximate solution of $P^{(r+1)}_{\text{WH}}$ as

$$P^{(r+1)}_{\text{WH}}(z, k) \rightarrow \exp(-k^2\sigma_e^2)(r+1)! \int \frac{d^3k_1}{(2\pi)^3} \ldots \frac{d^3k_r}{(2\pi)^3} \times \left[\delta_{r+1}^{(r+1)}(z, k - k_{ir}, k_1, \ldots, k_r) \right]^2$$

$$\rightarrow \exp(-k^2\sigma_e^2)(r+1)! \frac{2!}{(r+1)!} \frac{2!}{(r+1)!} \times \int \frac{d^3k_1}{(2\pi)^3} \left[\delta_{r+1}^{(r+1)}(z, k - k_{ir}, k_1, k_2) \right]^2 \frac{P_2(z, k_1)}{k^2\sigma_e^2} \frac{1}{r!} \left(k^2\sigma_e^2 \right)^r,$$

(66)

where we multiply by the factor $(r+1)/2$ for the same reason as in Equation (56). We have denoted another 1-loop correction term in the SPT as

$$P_{22}(z, k) = 2 \int \frac{d^3p}{(2\pi)^3} [P_2(k - p, p)]^2 P_L(z, |k - p|) P_L(z, p).$$

(67)

Indeed, if for $r = 1$ the exponential factor is expanded as $e^{-k^2\sigma_e^2} \sim 1$, the 1-loop correction, P_{22}, is reproduced in Equation (66).

Finally, we achieve the approximate full power spectrum,

$$P(z, k) = \sum_{r=0}^{\infty} P^{(r+1)}_{\text{WH}}(z, k)$$

$$\rightarrow \left[\delta_L(z, k) - \frac{2\delta_{WH}^{(1)}(z, k)}{k^2\sigma_e^2} \left(\exp(-k^2\sigma_e^2) - 1 \right) \right]^2 + \exp(-k^2\sigma_e^2) P_{22}(z, k) \frac{1}{k^2\sigma_e^2} \sum_{r=1}^{\infty} \frac{1}{r!} (k^2\sigma_e^2)^r,$$

$$P_{\text{AP}}(z, k) \equiv \left[\delta_L(z, k) - \frac{2\delta_{WH}^{(1)}(z, k)}{k^2\sigma_e^2} \left(\exp(-k^2\sigma_e^2) - 1 \right) \right]^2 + \frac{P_{22}(z, k)}{k^2\sigma_e^2} \left[1 - \exp(-k^2\sigma_e^2) \right].$$

(68)

This is the main result of this paper. This gives an appropriate interpolation between the low-k solutions and the high-k limit ones. We can derive the approximate solutions of each order in the WH expansion and SPT using approximations such as Equations (59) and (65), and therefore we call this method the “Approximate Full Wiener Hermite (AFWH)” expansion method or “Approximate Full Perturbation Theory.” We can easily compute the solution of Equation (68) numerically, because the solution has only single or double integrals.

6. Comparison with Other Analytic Predictions and N-body Simulations

We compare the approximate full power spectrum, P_{ap}, in Equation (68), with some other analytic predictions and N-body simulations. We mainly use N-body simulations presented in Taruya et al. (2009), but in Section 6.3 we also use other N-body results with higher resolutions from Valageas & Nishimichi (2011). It is plotted for the cosmological models with the Wilkinson Microwave Anisotropy Probe (WMAP) five year (Komatsu et al. 2009) cosmological parameters: $\Omega_m = 0.279, \Omega_k = 0.721, \Omega_b = 0.046, h = 0.701, n_s = 0.96, \sigma_8 = 0.817$.

The N-body simulation data with low resolutions and high resolutions in Taruya et al. (2009) and Valageas & Nishimichi (2011) were created by the public N-body code GADGET2 (Springel 2005). Their initial conditions were generated by the 2LPT code (Crocce et al. 2006) at $z_{ini} = 31$ and $z_{ini} = 99$, respectively. While the N-body simulations with low resolutions were computed with a cubic box of size $1 h^{-1}$ Gpc containing 5123 particles, the N-body results with high resolutions, called L11-N11 and L12-N11, contain 20483 particles and were computed by combining the results with different box sizes, 2048 h^{-1} Mpc and 4096 h^{-1} Mpc. Although the realization of the simulations with high resolutions is only 1, the simulations with low resolutions have the output data of 30 independent realizations, and consider the correction of the finite-mode sampling by Nishimichi et al. (2009). Therefore, the size of each error bar for N-body results with low resolutions becomes hard to see visually. For details of the N-body simulation used in this paper, see Taruya et al. (2009) and Okamura et al. (2011).

6.1. Comparison with Other Analytical Predictions: 1-loop Level

Bernardeau et al. (2012a) proposed a simple scheme to interpolate between the low-k and high-k solutions based on the Γ-expansion method. In the scheme, the solutions are regularized so that the low-k solutions become the ones in SPT and the high-k solutions become Equation (53). We call this scheme “regularized Γ-expansion.” From Equations (20) and (51) in Bernardeau et al. (2012a), the 1-loop solution for the power spectrum is given by

$$P_{\text{Reg}} = \exp(-k^2\sigma_e^2) \left[\left(\delta_L + \delta_3 + \frac{k^2\sigma_e^2 \delta_L}{2} \right)^2 + P_{22} \right].$$

(69)

Since the WH expansion and the Γ-expansion are completely equivalent to each other, we can understand this solution as the truncation up to the second order in the WH expansion and write
The Astrophysical Journal, 760:114 (14pp), 2012 December 1
Sugiyama & Futamase

Figure 1. Comparison between \(P_{\text{WH}}^{(1)} \) in Equation (63) (red line) and \([P_{\text{WH}}^{(1)}]_{\text{Reg}} \) in Equation (70) (black line) for \(P_{\text{WH}}^{(1)}/P_L \) at \(z = 1 \). The fractional difference, \((P_{\text{WH}}^{(1)} - [P_{\text{WH}}^{(1)}]_{\text{Reg}})/P_L \), is also plotted.
(A color version of this figure is available in the online journal.)

\[
P_{\text{WH}}^{(1)} \text{ using the regularized } \Gamma \text{-expansion as}
\]
\[
[P_{\text{WH}}^{(1)}]_{\text{Reg}} = \exp(-k^2 \sigma_\nu^2) \left[\delta_L + \delta_3 + \frac{k^2 \sigma_\nu^2}{2} \delta_L \right]^2. \tag{70}
\]

The difference between Equation (63) and Equation (70) is the manner of interpolating between the solutions. Since the regularized \(\Gamma \)-expansion method is a heuristic scheme, we have used the approximation of Equation (59).

When we ignore the contributions of \(P_{\text{WH}}^{(r+1)}(r > 2) \), we derive the solution of the approximate WH expansion corresponding to the regularized \(\Gamma \)-expansion in Equation (69) as

\[
P_{\text{WH}}^{(1)} + P_{\text{WH}}^{(2)} = \left[\delta_L(z, k) - \frac{2 \delta_3^{(1)}(z, k)}{k^2 \sigma_\nu^2} \left(\exp\left(-\frac{k^2 \sigma_\nu^2}{2}\right) - 1 \right) \right]^2 + \exp\left(-k^2 \sigma_\nu^2\right) P_{22}(z, k). \tag{71}
\]

We plot these two solutions, \(P_{\text{WH}}^{(1)}/P_L \) and \([P_{\text{WH}}^{(1)}]_{\text{Reg}}/P_L \), and their fractional difference, \((P_{\text{WH}}^{(1)} - [P_{\text{WH}}^{(1)}]_{\text{Reg}})/P_L \), at \(z = 1 \) in Figure 1. On BAO scales (~0.2 \(h \) Mpc\(^{-1}\)), the fractional difference is within 1%. At high \(k \), our solution becomes slightly larger than the regularized \(\Gamma \)-expansion. However, there is no means of investigating which results are more accurate in detail, because on such scales the amplitude of \(P_{\text{WH}}^{(1)} \) decays enough due to the exponential factor to not contribute greatly to the full power spectrum.

In Figure 2, we plot the various analytic solutions with the 1-loop level corrections and \(N \)-body simulation result (blue dashed: SPT; green dashed: regularized \(\Gamma \)-expansion; black solid: LRT; orange solid: \(P_{\text{WH}}^{(1)} + P_{\text{WH}}^{(2)} \) in Equation (71); red solid: AFWH expansion in Equation (68); and black symbols: \(N \)-body simulation result).

Figure 2. Comparison between \(N \)-body results and some analytical predictions in the case of WMAP five-year cosmological parameters. The results at redshifts \(z = 1 \) up to \(k = 0.4 \) \(h \) Mpc\(^{-1}\) are shown. We show the ratio of the predicted power spectra to the smoothed reference spectra, \(P(k)/P_{\text{ref}}(k) \) (blue dashed, green dashed, black solid, orange solid, red solid lines, and black symbols are, respectively, 1-loop SPT, regularized \(\Gamma \)-expansion, LRT, second order of the WH expansion in Equation (71) and AFWH expansion in Equation (68) predictions, and \(N \)-body simulation result), and the fractional difference between the \(N \)-body and analytic-predicted results, \([P_{\text{body}}(k) - P(k)]/P_{\text{ref}}(k) \) (blue, green, orange, black, and red symbols are the fractional difference between \(N \)-body and 1-loop, regularized \(\Gamma \)-expansion, second order of \(\Gamma \)-expansion, LRT, and AFWH).
(A color version of this figure is available in the online journal.)

9
Figure 3. Comparison between the approximate solutions and precise ones in the SPT 2-loop level in the case of WMAP five-year cosmological parameters at $z = 1$. We show the ratio of the power spectra to the smoothed reference spectra, P/P_{nw}, $[P_{\text{1-loop}}/P_{\text{nw}}]$, and the fractional difference, $[P_{\text{ap}} - P]/P_{\text{nw}}$ (top left: $P = P_{15}$; top right: P_{24}; bottom left: P_{33}; bottom right: $P_{2\text{loop}}$).

(A color version of this figure is available in the online journal.)

result) at $z = 1$. To easily see the BAO, we plot the ratio of the power spectrum to a smooth reference spectrum, $P(k)/P_{\text{nw}}(k)$, where the function $P_{\text{nw}}(k)$ is the linear power spectrum calculated from the smoothed transfer function neglecting the BAO feature in Eisenstein & Hu (1998). To investigate the agreement with N-body results in more quantitative ways, we also plot the fractional differences between N-body simulations and the predicted power spectrum $P(k)$, i.e., $[P_{\text{body}}(k) - P(k)]/P(k)$ (blue: N-body results versus 1-loop SPT; green: regularized Γ-expansion; black: LRT; orange: $P_{\text{WH}}^{(1)} + P_{\text{WH}}^{(2)}$; red: AFWH expansion in Equation (68)).

The regularized Γ-expansion, LRT, and $P_{\text{WH}}^{(1)} + P_{\text{WH}}^{(2)}$ are so similar that we can hardly see any difference. Their solutions improve the overestimation of SPT, but decay quickly at low k because of their exponential factor. On the other hand, we can find that the main difference between our result and previous works with the 1-loop level is the higher order of the WH expansion, $P_{\text{WH}}^{(r+1)}(r \geq 2)$. Because of these terms, the AFWH expansion in Equation (68) (red solid line) does not decay and keeps the values close to those from N-body simulations on BAO scales.

6.2. Comparison with 2-loop Solutions in the SPT

One merit of our interpolation is that we can directly compare our approximate solutions with the ones of each order in the perturbation theory. In previous works, the validity of the predicted power spectra has been verified only by comparing with the N-body results. However, we can verify the validity of our approximations, such as Equations (62) and (66), by comparing with the 2-loop solutions in SPT. The 2-loop corrections are given by

$$P_{2\text{loop}} = P_{15} + P_{24} + P_{33} + \left[\delta_z^{(1)}\right]^2,$$

where each term is calculated, respectively, as

$$P_{15}(z, k) = 30P_L(z, k)\int \frac{d^3p_1}{(2\pi)^3}\frac{d^3p_2}{(2\pi)^3} ~ F_3(k, \mathbf{p}_1, -\mathbf{p}_1, \mathbf{p}_2, -\mathbf{p}_2)P_L(z, p_1)P_L(z, p_2),$$

$$P_{24}(z, k) = 24\int \frac{d^3p_1}{(2\pi)^3}\frac{d^3p_2}{(2\pi)^3} ~ F_3(k - \mathbf{p}_1, 0, \mathbf{p}_1, -\mathbf{p}_2)P_L(z, |k - \mathbf{p}_1|) \times P_L(z, p_1)P_L(z, p_2),$$

$$P_{33}(z, k) = 6\int \frac{d^3p_1}{(2\pi)^3}\frac{d^3p_2}{(2\pi)^3} ~ [F_3(k - \mathbf{p}_1 - \mathbf{p}_2, 0, \mathbf{p}_1, \mathbf{p}_2)]^2 \times P_L(z, |k - \mathbf{p}_1 - \mathbf{p}_2|)P_L(z, p_1)P_L(z, p_2).$$

1. The power spectra of the standard PT and LRT (Matsubara 2008b) are given by

$$P_{1\text{loop}} = P_{15} + P_{13} + P_{22},$$

$$P_{\text{LRT}} = \exp\left(-k^2\sigma_s^2\right)(P_{15} + P_{13} + P_{22} + k^2\sigma_s^2 P_{15}).$$

where we denote $P_{15} = 2\delta_z^{(1)}$. Although LRT is very similar to the regularized Γ-expansion and our result, their complete correspondence (e.g., the origin of the exponential factor) is not trivial.
Figure 4. Same as Figure 2, but here we compare the predictions of the AFWH expansion (red solid) with those of closure theory (purple dashed) and N-body simulation results (green: high resolution; black: low resolution) at some redshifts ($z = 0.5, 1, 2, 3$). We also show the fractional difference between the predicted power spectra and N-body results. The red, green, and purple symbols are, respectively, N-body (low resolution) vs. AFWH, N-body (high resolution) vs. AFWH, and N-body (low resolution) vs. closure theory.

(A color version of this figure is available in the online journal.)

On the other hand, we show the corresponding approximate solutions using Equations (59) and (65) as follows:

$$P_{15} \rightarrow [P_{15}]_{\text{ap}} = \frac{1}{2} \left(-\frac{k^2 \sigma_v^2}{2} \right) P_{13},$$

$$P_{24} \rightarrow [P_{24}]_{\text{ap}} = -(k^2 \sigma_v^2) P_{22},$$

$$P_{33} \rightarrow [P_{33}]_{\text{ap}} = \left(\frac{k^2 \sigma_v^2}{2} \right) P_{22},$$

$$(74)$$

$$P_{2\text{loop}} \rightarrow [P_{2\text{loop}}]_{\text{ap}} = -\frac{k^2 \sigma_v^2}{4} P_{13} - \frac{k^2 \sigma_v^2}{2} P_{22} + [\delta_3^{(1)}]^2.$$

$$(75)$$

Here, we have not considered the approximation of the term $[\delta_3^{(1)}]^2$ because it is the square of the 1-loop term and we can easily compute it.

In Figure 3, we plot the correct 2-loop solutions, their approximate solutions, and their fractional difference, $[P]_{\text{ap}} = P_{\text{approx}} / P_{\text{true}}$, ($P = P_{15}, P_{24}, P_{33}$, and $P_{2\text{loop}}$), in each panel. We plot the solutions up to $0.2 \, h \, \text{Mpc}^{-1}$ at $z = 1$, because the 2-loop corrections give a good result up to about these scales (see Okamura et al. 2011).

For P_{15} and P_{24} in the top panels, the approximate solutions are, respectively, overestimated and underestimated by about 5% at $k = 0.2 \, h \, \text{Mpc}^{-1}$. On the other hand, for P_{33} in the bottom left panel, the approximate solution coincides very well with the precise solution within 1%. One may think that since there is a large difference between P_{15} and P_{24}, our approximation is not valid. However, remember that each correction term in the perturbation theory tends to cancel out, resulting in small corrections. Therefore, if the approximate solution for P_{15} is overestimated, it is natural that there is an underestimation in other solutions such as P_{24} to cancel out the overestimated solutions. As a result, for the full 2-loop corrections in the

11
than the 2-loop SPT solutions, as shown in Figure 3. There-
precisely. In fact, our approximate solutions are slightly larger
is due to the fact that we computed only the 1-loop level in SPT
and then begin to underestimate at high k. We
estimate the level of SPT, the predicted solution has the scale dependence
$P_{N,1}(k)$ at high k, because the approximate solutions of P_{13}
and P_{22} are proportional to $k^2 P_L(k)$. Therefore, the integrand
in Equation (76) has the scale dependence of $\sin(kr) \ln^2(k)$:

$$
\frac{k^2 \sin(kr)}{2\pi^2} P_{1\text{loop}}(z, k) \propto \frac{k^2 \sin(kr)}{2\pi^2} k^2 P_L(k) \\
\propto \sin(kr) \ln^2(k),
$$

(77)

where we have used the behavior of the linear power spectrum at high k, $P_L(k) \rightarrow \ln^2(k)/k^3$. This solution diverges at high k, and we are not able to evaluate the integration in the range of $0 \leq k \leq \infty$.

On the other hand, we are able to compute the correlation function for the AFWH expansion because the solution has the scale dependence of the linear power spectrum at high k:

$$
P_{AF}(z, k) \rightarrow \left[\delta_L(z, k) + \frac{2g_{11}((z, k))}{k^2 \sigma_v^2} \right]^2 + \frac{P_{22}(z, k)}{k^2 \sigma_v^2},
$$

(78)

In the first line, we dropped the terms including the exponential factor. The scale dependences of $g_{11}^{(1)}$ and P_{22} at high k are proportional to $k^2 \delta_L(k)$ and $k^2 P_L(k)$. As a result, P_{AF} (red line in the right panel of Figure 5) is proportional to P_L (black dashed in Figure 5), and the integrand of Equation (76) converges like the linear power spectrum.

Furthermore, as long as we focus on the BAO scales in real space ($60 \lesssim r \lesssim 140 \text{[Mpc h}^{-1}\text{]}$), the behavior of the power spectrum on small scales in Fourier space ($k \gtrsim 0.2$–$0.4 \text{[h Mpc}^{-1}\text{]}$) contributes very little to the result for the correlation function. Therefore, we may truncate the WH expansion up to the appropriate order so that the integrand converges to zero due to the exponential factor and we can easily compute the correlation

Figure 5. Left and right panels are the same as the bottom left panel in Figure 4. We compare the finite truncation of the WH expansion in Equation (79) (red dashed) with the AFWH expansion in Equation (68) (red line) at $z = 1$. In the right panel, we further plot the fifth, sixth, and seventh orders of the WH expansion up to $k = 1 \text{[h Mpc}^{-1}\text{]}$.

(A color version of this figure is available in the online journal.)

bottom right panel, the fractional difference becomes within
1%, up to 0.2 h Mpc^{-1}.

6.3. Comparison with Closure Theory

Finally, we compare with the closure theory (second Born) in Taruya et al. (2009), which is one of the best predictions at the moment. In addition, we plot high-resolution N-body simulations presented by Valageas & Nishimichi (2011).

In Figure 4, we plot the power spectra from closure theory (purple dashed), the AFWH expansion in Equation (68) (red solid), and N-body results with error bars (black symbols: low resolution; green symbols: high resolution) at some redshifts ($z = 3.0, 2.0, 1.0, 0.5$). The range of plotted scales is $k \leq 0.4 \text{ h Mpc}^{-1}$. We also plot the fractional differences (purple: N-body result with low resolution versus closure; red: AFWH; green: N-body result with high resolution versus AFWH).

Overall, the predictions of the AFWH expansion tend to overestimate the N-body simulations at low k (BAO scales) slightly, and then begin to underestimate at high k. The overestimation is due to the fact that we computed only the 1-loop level in SPT precisely. In fact, our approximate solutions are slightly larger than the 2-loop SPT solutions, as shown in Figure 3. Therefore, to derive more precise prediction on BAO scales, we need to calculate up to the 2-loop level corrections. The reason for the underestimation is either that the expression for the high-k limit does not apply perfectly to the range of calculation or the subleading contributions become effective on small scales. We would need to compute the higher order of the WH expansion without the approximation to derive the precise nonlinearity in the high-k range. Although our results certainly give slightly less accuracy than that of closure theory, the difference is controlled within 1% on BAO scales.

7. CORRELATION FUNCTION

We compute the two-point correlation function calculated from the power spectrum in Equation (68), which is given by

$$
\xi(z, r) = \int_0^\infty \frac{k^2 dk}{2\pi^2} \frac{\sin(kr)}{kr} P_{AF}(z, k).
$$

(76)
Figure 6. Comparison between the predicted correlation functions and N-body results (red line: AFWH; black dashed: linear theory; and black symbols: N-body simulations). The results at some redshifts (z = 0.5, 1.0, 2.0, 3.0) in the range of 70 \(\leq r [\text{Mpc} h^{-1}] \leq 135 \) are shown. We further plot the fractional difference between the predictions of the AFWH expansion and N-body results, \(\frac{\xi_{\text{Nbody}}(r) - \xi(r)}{\xi(r)} \).

(A color version of this figure is available in the online journal.)

function:

\[
P_{\text{AF}}(z, k) \rightarrow \left[\frac{2 \delta^{(1)}(z, k)}{k^2 \sigma_v^2} \left(\exp \left(-\frac{k^2 \sigma_v^2}{2} \right) - 1 \right) \right]^2 + \exp \left(-\frac{k^2 \sigma_v^2}{2} \right) P_{22} \left(1 + \frac{1}{2} (k^2 \sigma_v^2) + \frac{1}{3!} (k^2 \sigma_v^2)^2 \right) + \frac{1}{4!} (k^2 \sigma_v^2)^3 + \frac{1}{5!} (k^2 \sigma_v^2)^4, \tag{79} \]

where we have truncated the WH expansion up to the sixth order. We plot the solution of Equation (79) in Figure 5 at \(z = 1 \), where the difference between the AFWH expansion in Equation (68) (red line) and the solution of Equation (79) (red dashed) up to \(k \lesssim 0.25 \) [Mpc \(h^{-1} \)] is not visible, and the solution behaves like the ones of closure theory at high \(k \). In the right panel of Figure 5, we further plot the solutions of the fifth (orange line) and seventh (orange dashed) orders of the WH expansion.

Here, we adopt the sixth-order solution of the WH expansion to compute the correlation function in Equation (76). In Figure 6, we plot the analytic predictions of the correlation function, \(\xi(r) \) (red line: AFWH; black dashed: linear theory; black symbols: N-body results), and the fractional difference between the predicted correlation functions from AFWH and the N-body simulation results, \(\left[\frac{\xi_{\text{Nbody}}(r) - \xi(r)}{\xi(r)} \right] \).

Our predictions explain the displacement of the location of the BAO peaks and the smoothing of their amplitudes due to the nonlinear effects. As a result, the fractional difference against the N-body results is within 1%–3%. Almost the same results are derived even for the second order of the WH expansion in Equation (71), because on small scales there is very little contribution to the correlation function around the BAO peak. This fact is also been well known in other modified perturbation theories (e.g., Taruya et al. 2009; Okamura et al. 2011).

8. CONCLUSION

We have applied the WH expansion to the evolution equation of dark matter in Newtonian gravity. It diagrammatically corresponds to the classification of the power spectrum in which each order includes all of the vertex loop contributions. It is proved that the WH expansion is mathematically equivalent to the \(\Gamma \)-expansion approach in the Multi-Point Propagators method.
Even if the WH expansion method is physically and mathematically useful for understanding the nonlinearity of the evolution of dark matter, the validity of the finite truncation of the expansion is not clear and the difficulty in calculation will remain. To resolve these difficulties, we proposed a way to include the effect of all orders by assuming that the highly nonlinear solutions are well approximated by the ones in the high-k limit. Namely, we calculate only low-order terms precisely and replace the high-order solutions with the ones in the high-k limit.

It has been known in RPT that the matter density and velocity fluctuations of dark matter are exponential in the high-k limit. We proved this behavior again in the context of SPT using the WH expansion by proving that the kernel functions F and G take the form of Equation (40) in the high-k limit. Using the approximate kernel functions F and G, we proposed an appropriate interpolation between high-k and low-k solutions, and the approximate full power spectrum in Equation (68), which includes the full order of SPT approximately.

We compared our results with some other analytic predictions (e.g., regularized Γ-expansion, LRT, SPT, and closure theory) and N-body simulation results. Since the WH expansion is equivalent to the Γ-expansion and the regularized Γ-expansion based on the Γ-expansion, we can describe the first order of the WH expansion, $P_{\text{WH}}^{(1)}$, using the regularized Γ-expansion in Equation (70). One of the differences between our result and the regularized Γ-expansion is the manner of interpolating between the high-k and low-k solutions, but this difference only slightly affects the predicted power spectrum. Another difference is that we consider the higher orders of the WH expansion approximately. As a result, even for the 1-loop level, the predicted power spectrum in Equation (68) does not decay due to the exponential factor, as shown in Figure 2, and results in good agreement with the N-body simulation on BAO scales.

The validity of the various modified perturbation theory (e.g., LRT, RPT, closure theory, …) predictions is usually verified only by comparing with the N-body simulations. However, we can also verify our approximation by comparing with the solutions with the SPT 2-loop level. In Figure 3, we showed that the fractional difference between the approximate solutions and the precise solutions with SPT 2-loop level is within 1% on BAO scales ($\leq 0.2\ h\ MPc^{-1}$) for the WMAP five year cosmological parameters at $z = 1$.

We also compared with the closure theory which is one of the best predictions at the moment, and the accuracy of the AFWH expansion in Equation (68) is comparable to or slightly less than those of the closure theory, with the fractional difference within 1% on BAO scales.

Finally, we computed the two-point correlation function for the AFWH expansion. We can compute the correlation functions because the predicted power spectrum in AFWH converges like that from linear theory. Since the contributions on small scales do not affect the values of the correlation function, one may use Equation (79) to compute the correlation function. This solution has the same behavior as Equation (68) on BAO scales and decays on small scales due to the exponential factor in Figure 5. The predicted correlation functions from the AFWH expansion agree very well with the N-body simulation results, and the fractional difference is within 1%–3%.

We could use and apply our results to various studies of the nonlinear evolution of dark matter (e.g., redshift distortion effect, bias effect, bispectrum, etc.) because our prescription is easy and gives good results that are comparable to closure theory, and furthermore the computational time is very rapid.

We thank T. Nishimichi and A. Taruya for providing us with the numerical simulation results and useful comments, and Y. Itoh and T. Okamura for useful discussions. This work is supported in part by the GCOE Program “Weaving Science Web beyond Particle-matter Hierarchy” at Tohoku University and by a Grant-in-Aid for Scientific Research from JSPS (No. 24-3849 for N.S.S. and Nos. 18072001, 20540245 for T.F.) as well as by the Core-to-Core Program “International Research Network for Dark Energy.” T.F. thanks Luc Branchet and the Institute of Astronomical Observatory, Paris for warm hospitality during his stay in the last stage of the present work.

REFERENCES

Barnardou, F., Colombi, S., Gaztanaga, E., & Scoccimarro, R. 2002a, Phys. Rep., 367, 1
Barnardou, F., Colombi, S., Gaztanaga, E., & Scoccimarro, R. 2002b, Phys. Rep., 367, 1
Barnardou, F., Crocce, M., & Scoccimarro, R. 2008, Phys. Rev. D, 78, 103521
Barnardou, F., Crocce, M., & Scoccimarro, R. 2012a, Phys. Rev. D, 85, 123519
Barnardou, F., Crocce, M., & Sefusatti, E. 2010, Phys. Rev. D, 82, 083507
Barnardou, F., Van de Rijt, N., & Vernizzi, F. 2012b, Phys. Rev. D, 85, 063509
Blake, C., & Glazebrook, K. 2003, ApJ, 594, 665
Crocce, M., Puelbas, S., & Scoccimarro, R. 2006, MNRAS, 373, 361
Crocce, M., & Scoccimarro, R. 2006a, Phys. Rev. D, 73, 063519
Crocce, M., & Scoccimarro, R. 2006b, Phys. Rev. D, 73, 063520
Crocce, M., & Scoccimarro, R. 2008, Phys. Rev. D, 77, 023533
Eisenstein, D. J., & Hu, W. 1998, ApJ, 496, 605
Eisenstein, D. J., Hu, W., & Tegmark, M. 1998, ApJ, 504, L57
Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, ApJ, 633, 560
Fry, J. N. 1984, ApJ, 279, 499
Glazebrook, K., & Blake, C. 2005, ApJ, 631, 1
Goroff, M. H., Grinstein, B., Rey, S. J., & Wise, M. B. 1986, ApJ, 311, 6
Hiramatsu, T., & Tanury, A. 2009, Phys. Rev. D, 79, 103526
Jain, B., & Bertschinger, E. 1994, ApJ, 431, 495
Jeong, D., & Komatsu, E. 2006, ApJ, 651, 619
Jeong, D., & Komatsu, E. 2009, ApJ, 691, 569
Komatsu, E., Dunkley, J., Nolta, M. R., et al. 2009, ApJS, 180, 330
Makino, N., Sasaki, M., & Suto, Y. 1992, Phys. Rev. D, 46, 585
Matettree, S., & Pietroni, M. 2007, J. Cosmol. Astropart. Phys., JCAP06(2007)026
Matsubara, T. 2004, ApJ, 615, 573
Matsubara, T. 2008a, Phys. Rev. D, 78, 083519
Matsubara, T. 2008b, Phys. Rev. D, 77, 063530
Matsubara, T. 2011, Phys. Rev. D, 83, 083518
McDonald, P. 2007, Phys. Rev. D, 75, 043514
Nishimichi, T., Shirata, A., Tanury, A., et al. 2009, PASJ, 61, 321
Okamura, T., Tanury, A., & Matsubara, T. 2011, J. Cosmol. Astropart. Phys., JCAP08(2011)012
Padmanabhan, N., & White, M. J. 2008, Phys. Rev. D, 77, 123540
Pietroni, M. 2008, J. Cosmol. Astropart. Phys., ICAP10(2008)036
Scoccimarro, R. 1998, MNRAS, 299, 1097
Scoccimarro, R., & Frieman, J. 1996, ApJ, 473, 620
Seo, H.-J., & Eisenstein, D. J. 2003, ApJ, 598, 720
Shoji, M., Jeong, D., & Komatsu, E. 2009, ApJ, 693, 1404
Springel, V. 2005, MNRAS, 364, 1105
Suto, Y., & Sasaki, M. 1991, Phys. Rev. Lett., 66, 264
Tanury, A., Nishimichi, T., Saito, S., & Hiramatsu, T. 2009, Phys. Rev. D, 80, 123503
Valageas, P. 2004, A&A, 421, 23
Valageas, P., & Nishimichi, T. 2011, A&A, 532, A4