ON CYCLES AND COVERINGS ASSOCIATED TO A KNOT

LILYA LYUBICH AND MIKHAIL LYUBICH.

Abstract. Let K be a knot, G be the knot group, K be its commutator subgroup, and x be a distinguished meridian. Let Σ be a finite abelian group. The dynamical system introduced by D. Silver and S. Williams in [S],[SW1] consisting of the set $\text{Hom}(K, \Sigma)$ of all representations $\rho : K \to \Sigma$ endowed with the weak topology, together with the homeomorphism

$$\sigma_x : \text{Hom}(K, \Sigma) \to \text{Hom}(K, \Sigma); \quad \sigma_x \rho(a) = \rho(xax^{-1}) \quad \forall a \in K, \rho \in \text{Hom}(K, \Sigma)$$

is finite, i.e. it consists of several cycles. In [L] we found the lengths of these cycles for $\Sigma = \mathbb{Z}/p$, p is prime, in terms of the roots of the Alexander polynomial of the knot, mod p. In this paper we generalize this result to a general abelian group Σ. This gives a complete classification of depth 2 solvable coverings over $S^3 \setminus K$.

Contents

1. Introduction
2. Case of a two-bridge knot
3. Linear matrix recurrence equations
4. Main result for a general knot
5. Least common multiple
6. Pullback τ^* on the space of coverings over X_{∞}
7. Coverings of finite degree
8. p-adic solenoids
9. References

1. Introduction

Let K be a knot, X be the knot complement in S^3, $X = S^3 \setminus K$, X_{∞} be the infinite cyclic cover of X, and X_d be the cyclic cover of X of degree d.

Let G be the knot group, K be its commutator subgroup, and Σ be a finite group. Let x be a distinguished meridian of the knot. The dynamical system introduced by D. Silver and S. Williams in [S] and [SW1] consisting of the set $\text{Hom}(K, \Sigma)$ of all representations $\rho : K \to \Sigma$ endowed with the weak topology, together with the homeomorphism σ_x (the shift map):

$$\sigma_x : \text{Hom}(K, \Sigma) \to \text{Hom}(K, \Sigma); \quad \sigma_x \rho(a) = \rho(xax^{-1}) \quad \forall a \in K, \rho \in \text{Hom}(K, \Sigma).$$

is a shift of finite type ([SW1]). Moreover, if Σ is abelian, this dynamical system is finite, i.e. it consists of several cycles ([SW2],[K]). In [L] we calculated the lengths of these cycles and their lcm (least common multiple) for $\Sigma = \mathbb{Z}/p$, p prime,

Date: December 11, 2013.
in terms of the roots of the Alexander polynomial of the knot, mod \(p \). Our goal is to
generalize these results to an arbitrary finite abelian group \(\Sigma \). This gives a complete
classification of solvable depth \(2 \) coverings of \(S^3 \setminus K \). (By a solvable covering of
depth \(n \) we mean a composition of \(n \) regular coverings \(M_0 \to M_1 \to \ldots \to M_n \) with
Corresponding groups \(\Gamma_i \), such that \(\Gamma_0 \triangleleft \Gamma_1 \triangleleft \ldots \triangleleft \Gamma_n \) and \(\Gamma_{i+1}/\Gamma_i \) is abelian.)

Let \(\Delta(t) = c_0 + c_1 t + \ldots + c_n t^n \) be the Alexander polynomial of the knot \(K \), and
\(B - tA \) its Alexander matrix of size, say, \(m \times m \), corresponding to the Wirtinger
presentation. From \([L]\) we know that

\[
(1.1) \quad \text{Hom}(K, \mathbb{Z}/p) \cong (\mathbb{Z}/p)^n \quad \text{where} \quad n = \deg(\Delta(t) \mod p).
\]

It turns out that the same result is true for a target group \(\mathbb{Z}/p^r \):

\[
(1.2) \quad \text{Hom}(K, \mathbb{Z}/p^r) \cong (\mathbb{Z}/p^r)^n \quad \text{where} \quad n = \deg(\Delta(t) \mod p).
\]

In section 2 we give a proof of (1.2) for two-bridge knots. In section 3 we prove a
general result about solutions of the recurrence equation

\[
(1.3) \quad Bx_j - Ax_{j+1} = 0,
\]

where \(x_j \in \mathcal{X}, \mathcal{X} \) and \(\mathcal{Y} \) are finite modules, and \(A, B : \mathcal{X} \to \mathcal{Y} \) are module homomorphisms. We then use this result in section 4 to prove (1.2) for an arbitrary
knot. In section 5 we describe the set of periods and calculate their lcm for target
group \(\mathbb{Z}/p^r \), based on similar results for the target group \(\mathbb{Z}/p \), obtained in \([L]\).
We then generalize these results for any finite abelian group \(\Sigma \).

In section 6 we describe the relation between the shift \(\sigma_x \) on \(\text{Hom}(K, \Sigma) \) and
the pullback map \(\tau^* \) corresponding to the meridian \(x \), on the space of regular
coverings over \(X_\infty \). In section 7 we construct a regular covering \(p : N \to X_\delta \) with
the group of deck transformations \(\Sigma \), corresponding to a surjective homomorphism
\(\rho \in \text{Hom}(K, \Sigma) \) with \(\sigma^d_x \rho = \rho \), and prove that any regular covering of \(X_\delta \) with
the group of deck transformations \(\Sigma \) can be obtained in this way. We conclude
the paper by formulating our results in terms of \(p \)-adic representations of \(K \) and
associated solenoids and flat principal bundles.

2. Case of a two-bridge knot

Let \(\Delta(t) \) be the Alexander polynomial of a two-bridge knot \(K \) and \(n \) be the degree of
\(\Delta(t) \) mod \(p \). Since the Alexander polynomial is defined up to multiplication by
\(t^k, k \in \mathbb{Z} \), and has symmetric coefficients, we can write

\[
\Delta(t) = pd_k t^{-k} + \ldots + pd_1 t^{-1} + c_0 + c_1 t + \ldots + c_n t^n + pd_1 t^{n+1} + \ldots + pd_k t^{n+k} = 0,
\]

where \(c_i, d_i \) are integers and \(c_0 = c_n \) is not divisible by \(p \). Similarly to the Theorem
9.1 in \([L]\), we can prove that \(\text{Hom}(K, \mathbb{Z}/p^r) \) is isomorphic to the space of bi-infinite
sequences \(\{ x_i \}_{i \in \mathbb{Z}}, x_i \in \mathbb{Z}/p^r \), satisfying the following recurrence equation mod \(p^r \):

\[
(2.1) \quad pd_k x_{-k+j} + \ldots + pd_1 x_{-1+j} + c_0 x_j + c_1 x_{j+1} + \ldots + c_n x_{n+j} + \ldots + pd_k x_{n+k+j} = 0
\]

From \([L]\) we know that \(\text{Hom}(K, \mathbb{Z}/p) \cong (\mathbb{Z}/p)^n \) where \(n = \deg(\Delta(t) \mod p) \). The
same is true for target groups \(\mathbb{Z}/p^r \).

Theorem 2.1. \(\text{Hom}(K, \mathbb{Z}/p^r) \cong (\mathbb{Z}/p^r)^n \) where \(n = \deg(\Delta(t) \mod p) \).
Proof. We will prove that $x_0, x_1, \ldots, x_{n-1} \in \mathbb{Z}/p^r$ uniquely determine the sequence \(\{x_i\}_{i \in \mathbb{Z}} \), \(x_i \in \mathbb{Z}/p^r \), satisfying equation (2.1). The proof is by induction. For \(r = 1 \), given \(x_0, x_1, \ldots, x_{n-1} \in \mathbb{Z}/p \), \(x_n \) is uniquely determined mod \(p \) by the equation
\[
0x_0 + c_1x_1 + \ldots + c_nx_n = 0 \mod p.
\]
So, \(x_0, x_1, \ldots, x_{n-1} \mod p \) uniquely determine the whole sequence \(\{x_i\}_{i \in \mathbb{Z}} \mod p \), satisfying (2.2). This proves the base of induction.

Suppose the statement is true for \(r \). Fix \(x_0, x_1, \ldots, x_{n-1} \mod p^{r+1} \) and let \(\{x_i\}_{i \in \mathbb{Z}} \) be the sequence satisfying equation:
\[
px_kx_{-k} + \ldots + pd_1x_{-1} + 0x_0 + c_1x_1 + \ldots + c_nx_n + \ldots + pd_kx_{n+k} = 0 \mod p^r.
\]
It is uniquely determined mod \(p^r \), by induction assumption. But then all the terms of (2.3) except \(c_nx_n \) are determined mod \(p^{r+1} \). So \(x_n \) and hence the whole sequence \(\{x_i\}_{i \in \mathbb{Z}} \) is uniquely determined mod \(p^{r+1} \) by \(x_0, x_1, \ldots, x_{n-1} \mod p^{r+1} \).

3. Linear matrix recurrence equations

Theorem 3.1. Let \(\mathcal{X}, \mathcal{Y} \) be two finite modules of the same order, over the same ring \(R \). Let \(A, B : \mathcal{X} \rightarrow \mathcal{Y} \) be modules homomorphisms such that \(\ker A \cap \ker B = 0 \).

Consider the following recurrence equation:
\[
Bx_j - Ax_{j+1} = 0
\]
Then \(\mathcal{X} = \mathcal{V} \oplus A \oplus B \), where \(\mathcal{V} = \{ v \in \mathcal{X} : \text{there exists a bi-infinite sequence } \ldots v_{-1}, v_0 = v, v_1, \ldots, \text{ satisfying equation (3.1)} \} \)
\(\mathcal{A} = \{ a \in \mathcal{X} : \text{there exists an infinite sequence } \ldots, a_{-1}, a_0 \text{ satisfying (3.1)} \} \) and \(a_{-1} = 0 \) for sufficiently large \(i \).
\(\mathcal{B} = \{ b \in \mathcal{X} : \text{there exists an infinite sequence } b_0 = b, b_1, b_2, \ldots, \text{ satisfying (3.1)} \} \) and \(b_1 = 0 \) for sufficiently large \(i \).

Proof. The proof is by induction in the order of \(\mathcal{X} \) and \(\mathcal{Y} \). Consider a diagram:

\[
\begin{array}{ccc}
\mathcal{X} & \xrightarrow{A} & \mathcal{Y} \\
\downarrow{\pi_1} & & \downarrow{\pi_2} \\
\mathcal{Y}/\ker A & \xrightarrow{A} & \mathcal{Y}/B(\ker A) \\
\end{array}
\]

where by definition, \(\pi_1 \) and \(\pi_2 \) are factorization maps; \([x] = \pi_1(x) \); and
\[
\bar{A}([x]) = \pi_2 \circ A(x), \quad \bar{B}([x]) = \pi_2 \circ B(x).
\]
This diagram is not commutative, but its left- and right-hand triangles are commutative. Note that \(\mathcal{X}/\ker A \) and \(\mathcal{Y}/B(\ker A) \) are modules over \(R \) of the same order, since \(B \) is injective on \(\ker A \).

Suppose that the statement of the theorem is true for \(\mathcal{X}/\ker A \) and operators \(\bar{A} \) and \(\bar{B} \):
\[
\mathcal{X}/\ker A = \bar{\mathcal{V}} \oplus \bar{A} \oplus \bar{B},
\]
where all the sequences in definition of \(\bar{\mathcal{V}} \), \(\bar{A} \), \(\bar{B} \) satisfy the equation:
\[
\bar{B}[x] - \bar{A}[x] = 0.
\]
Then we will prove that
\begin{equation}
\mathcal{X} = \mathcal{V} \oplus \mathcal{A} \oplus \mathcal{B},
\end{equation}

Take any \(u \in \mathcal{X} \). By induction assumption \([u] = [v] + [a] + [b] \), where \([v] \in \mathcal{V} \), \([a] \in \mathcal{A} \), \([b] \in \mathcal{B} \). We find lifts \(v, a, b \) of \([v], [a], [b] \) to \(\mathcal{V}, \mathcal{A}, \mathcal{B} \) respectively. Let \(\ldots, [v_{-1}], [v_0] = [v], [v_1], \ldots \) satisfy \(B[v_i] - A[v_{i+1}] = [0], i \in \mathbb{Z} \). Take any lift \(\ldots, y_{-1}, y_0, y_1, \ldots \) Then \(By_i - Ay_{i+1} = x_i \in B(\ker A) \). So \(x_i = Bw_i \) for some \(w_i \in \ker A \). Then
\[B(y_i - w_i) - A(y_{i+1} - w_{i+1}) = 0. \]

So \(v_i = y_i - w_i \) satisfy \((3.3) \) and \(v = v_0 \in \mathcal{V} \) is a desired lift of \([v] \).

Similarly, for \([a] \in \mathcal{A} \) there exists a sequence \(\ldots, [a]_{-1}, [a_0] = [a] \), satisfying \((3.3) \) with \([a]_{-1} = [0] \) for \(i \geq N \). As before, we can find a lift \(\{a_{-i}\}_{i \geq 0} \), satisfying \(Ba_{-i} - Aa_{-(i-1)} = 0 \). Note that \(a_{-i} \in \ker A \) for \(i \geq N \). We have
\[B \cdot 0 = Aa_{-N}. \]

But then the sequence \(\ldots, 0, 0, a_{-N}, a_{-(N-1)}, \ldots, a_0 \) also satisfies \((3.3) \), so \(a = a_0 \in \mathcal{A} \) is a desired lifting.

We repeat the same argument to prove that \([b] \) has a lift \(b \in \mathcal{B} \). If \(\{b_i\}_{i \geq 0} \) satisfies \((3.3) \) and \([b]_i = 0 \) for \(i \geq N \), we find a lift \(\{b_i\}_{i \geq 0} \) satisfying \((3.3) \). Since \(b_i \in \ker A \) for \(i \geq N \), and \(Bb_i - Ab_{i+1} = 0 \), we have also \(b_i \in \ker B \) for \(i \geq N-1 \), hence \(b_i = 0 \) for \(i \geq N-1 \), since by assumption \(\ker A \cap \ker B = 0 \). So \(b = b_0 \in \mathcal{B} \) is a desired lift. Since \(\pi_1(u) = \pi_1(v + a + b), u = v + a + b + \tilde{a} \), where \(\tilde{a} \in \ker A \) and so \(\tilde{a} \in \mathcal{A} \). The step of induction is done.

Since we can interchange the roles of \(A \) and \(B \), it remains to prove the statement of the theorem in the case when \(A \) and \(B \) are monomorphisms and hence are isomorphisms, since \(|\mathcal{X}| = |\mathcal{Y}| \). In this case any element \(x \in \mathcal{X} \) has a bi-infinite continuation \(x_i = (A^{-1}B)^i x \), satisfying \((3.3) \). The theorem is proven. \(\square \)

4. MAIN RESULT FOR A GENERAL KNOT

In this section we prove that the Theorem \(\ref{thm:main} \) holds for any knot. Let \(B - tA \) be the Alexander matrix of a general knot \(K \) arising from the Wirtinger presentation of the knot group \(G \). Here \(A, B \) are \(m \times m \) matrices with elements \(0, \pm 1 \).

Theorem 4.1. Dynamical system \((\text{Hom}(K, \Sigma), \sigma_x)\) is conjugate to the left shift in the space of bi-infinite sequences \(\{y_j\}_{j \in \mathbb{Z}} \), \(y_j \in (\Sigma)^m \) satisfying recurrence equation
\begin{equation}
B y_j - A y_{j+1} = 0.
\end{equation}

For the target group \(\mathbb{Z}/p \) this result is proven in \(\cite{L}, \) Theorem 4.2. For a general abelian group \(\Sigma \) the proof is identical.

We can apply theorem \(\ref{thm:main} \) for modules \((\mathbb{Z}/p^r)^m \) and linear operators \(A, B : (\mathbb{Z}/p^r)^m \to (\mathbb{Z}/p^r)^m \) given by matrices \(A \) and \(B \) to get
\begin{equation}
(\mathbb{Z}/p^r)^m = \mathcal{V}_r \oplus \mathcal{A}_r \oplus \mathcal{B}_r,
\end{equation}

where \(\mathcal{V}_r = \{y \in (\mathbb{Z}/p^r)^m : \text{there exists a bi-infinite sequence } \ldots, y_{-1}, y_0 = y, y_1, \ldots, \text{ satisfying equation (4.1)}\}, \)
\(\mathcal{A}_r = \{a \in (\mathbb{Z}/p^r)^m : \text{there exists an infinite sequence } \ldots, a_{-1}, a_0 = a, \text{ satisfying (4.1) and } a_{-i} = 0 \text{ for sufficiently large } i \}, \)
\(\mathcal{B}_r = \{b \in (\mathbb{Z}/p^r)^m : \text{there exists an infinite sequence } b = b_0, b_1, b_2, \ldots, \text{ satisfying (4.1) and } b_i = 0 \text{ for sufficiently large } i \} \).
We will use the uniqueness of continuation that follows from the finiteness of \(\text{Hom}(K, \Sigma) \) for a finite abelian group \(\Sigma \) (see Proposition 3.7 [SW2] and Theorem 1 (ii) [K]). If \(\{x_i\}_{i \in \mathbb{Z}} \) and \(\{y_i\}_{i \in \mathbb{Z}} \) satisfy (1.1), then \(x_0 = y_0 \) implies \(x_i = y_i \) \(\forall i. \) In particular, for \(a \in A_r, \ a \neq 0, \) there is no infinite continuation to the right, satisfying (1.1), and for \(b \in B_r, \ b \neq 0, \) there is no infinite continuation to the left, satisfying (1.1). (Otherwise we would have two bi-infinite sequences: \(\ldots, 0, 0, \ldots, a_0, a_1, \ldots \) and \(\ldots, 0, 0, \ldots. \) So \(\text{Hom}(K, \mathbb{Z}/p^r) \) being isomorphic to the space of be-infinite sequences satisfying (1.1), is isomorphic to \(\mathcal{V}_r. \)

Since the only decomposition of \((\mathbb{Z}/p^r)^m \) as a direct sum of three groups is:

\[
(\mathbb{Z}/p^r)^m \cong (\mathbb{Z}/p^r)^{nr} \oplus (\mathbb{Z}/p^r)^{l_r} \oplus (\mathbb{Z}/p^r)^{m_r}
\]

with \(n_r + l + m_r = m, \) it follows from (1.2) that \(\mathcal{V}_r \cong (\mathbb{Z}/p^r)^{n_r}. \) Consider the projection:

\[
\pi : (\mathbb{Z}/p^r)^m = \mathcal{V}_{r+1} \oplus A_{r+1} \oplus B_{r+1}
\]

\[
\pi : (\mathbb{Z}/p^r)^m = \mathcal{V}_r \oplus A_r \oplus B_r
\]

Clearly \(\pi(\mathcal{V}_{r+1}) \subset \mathcal{V}_r, \pi(A_{r+1}) \subset A_r, \pi(B_{r+1}) \subset B_r. \) It follows that \(n_r \) is the same for all \(r. \) Since from Theorem 5.5 [L] it immediately follows that \(n_1 = \deg(\Delta(t) \mod p), \) we have proven the following theorem:

Theorem 4.2. For any knot, \(\text{Hom}(K, \mathbb{Z}/p^r) \cong (\mathbb{Z}/p^r)^n, \) where \(n = \deg(\Delta(t) \mod p). \)

5. Least Common Multiple

Proposition 5.1. The dynamical system \(\text{Hom}(K, \mathbb{Z}/p^r), \sigma_x) \) is isomorphic to \((\mathcal{V}_r, T_r), \) where \(T_r = (A|\mathcal{V}_r)^{-1}(B|\mathcal{V}_r). \)

Proof. Restrictions \(A|\mathcal{V}_k \) and \(B|\mathcal{V}_k \) are isomorphisms, since \(\ker A \in A_k \) and \(\ker B \in B_k. \) Also \(A\mathcal{V}_k = B\mathcal{V}_k \) since every element \(v \in \mathcal{V}_k \) has continuation to the right and to the left: there exist \(v_{-1} \) and \(v_1 \) such that \(Bv_{-1} = Av, \) \(Bv = Av_1. \) So \(T_r : \mathcal{V}_r \to \mathcal{V}_r \) is well defined, and since \(T_r \) is conjugate to the left shift in the space of sequences satisfying equation (1.3), the formula \(T_r = (A|\mathcal{V}_r)^{-1}(B|\mathcal{V}_r) \) is obvious. \(\square \)

In [L] we calculated the set of periods of orbits and their lcm for dynamical system \((\text{Hom}(K, \Sigma), \sigma_x) \) with \(\Sigma = \mathbb{Z}/p \) in terms of orders and multiplicities of the roots of \(\Delta(t) \) \(\mod p. \) Now we find the lcm and the set of periods for \(\Sigma = \mathbb{Z}/p^r. \)

Theorem 5.2. Let \(d_r = \text{lcm of periods of orbits of } (\text{Hom}(K, \mathbb{Z}/p^r), \sigma_x). \) Then either \(d_i = d_1 \forall i, \) or \(\exists s \geq 1 \) such that \(d_1 = \ldots = d_s, \) and \(d_{s+i} = d_1 p^i. \)

Proof. The following diagram commutes:

\[
\begin{array}{ccccccccc}
\ldots & \xrightarrow{T_{k+1}} & \mathcal{V}_{k+1} & \xrightarrow{T_k} & \mathcal{V}_k & \xrightarrow{T_1} & \mathcal{V}_1 \\
\mathcal{V}_{k+1} & \xrightarrow{T_{k+1}} & \mathcal{V}_k & \xrightarrow{T_k} & \mathcal{V}_1 \\
\ldots & \xrightarrow{T_{k+1}} & \mathcal{V}_{k+1} & \xrightarrow{T_k} & \mathcal{V}_k & \xrightarrow{T_1} & \mathcal{V}_1 \\
\end{array}
\]

Let \(\mathcal{V} = \varprojlim \mathcal{V}_k, \ \mathcal{V}_k \subset (\mathbb{Z}_p)^m, \) where \(\mathbb{Z}_p \) is the set of \(p \)-adic numbers, and \(T : \mathcal{V} \to \mathcal{V}, \)

\(T = \varprojlim T_k. \) We will use the same notations for module homomorphisms and their matrices in the standard basis. Let \(E_r, \ E \) denote the identity isomorphisms of
(\mathbb{Z}/p^r)^n \text{ and } (\mathbb{Z}_p)^n \text{ respectively. We have } T_{d_1}^{d_1} = E_1, \text{ so either } T_{d_1}^{d_1} = E, \text{ and then } T_{d_1}^{d_1} = E, \forall r, \text{ or } T_{d_1}^{d_1} = E + p^r A \text{ for some } s \in \mathbb{Z}, s \geq 1, \text{ and not all elements of matrix } A \text{ are divisible by } p. \text{ In the later case } T_{d_1}^{d_1} = E_i, i = 1, \ldots, s. \text{ Since }
\begin{align*}
T_{d_1}^{d_1,k} = (E + p^s A)^k = E + kp^s A + C_k^2 p^{2s} A^2 + \ldots + p^{s-k} A^k,
\end{align*}
we have } T_{d_1}^{d_1} = E + p^{s+1} A_1, \text{ where not all elements of } A_1 \text{ are divisible by } p, \text{ and, by induction, } T_{d_1}^{d_1} = E + p^{s+i} A_i, \forall i \geq 1, \text{ where not all elements of } A_i \text{ are divisible by } p. \text{ Then } T_{d_1}^{d_1} = E_{s+i} \text{ and the statement of the theorem follows.} \tag*{□}

Proposition 5.3. Let } Q \subseteq \mathbb{N} \text{ be the set of all periods of } (\text{Hom}(K, \mathbb{Z}/p^r), \sigma_x). \text{ Then } Q_r \subseteq Q_{r+1}.

Proof. If } \{x_j\}_{j \in \mathbb{Z}}, x_j \in \mathbb{Z}/p^r \text{ is a sequence satisfying recurrence equation } \text{(4.1)} \mod p^r \text{ with period } d, \text{ then } \{px_j\}_{j \in \mathbb{Z}}, px_j \in \mathbb{Z}/p^{r+1} \text{ satisfies } \text{(4.1)} \mod p^{r+1} \text{ and has the same period.} \tag*{□}

Now we turn to a general finite abelian group } \Sigma, \text{ which is isomorphic to a direct sum of cyclic groups:
\begin{align*}
\Sigma = \bigoplus_{i \in I} \mathbb{Z}/p_i^{r_i}, \quad I \subseteq \mathbb{N}.
\end{align*}
Then
\begin{align*}
\text{Hom}(K, \Sigma) = \bigoplus_{i \in I} \text{Hom}(K, \mathbb{Z}/p_i^{r_i}) = \bigoplus_{i \in I} (\mathbb{Z}/p_i^{r_i})^{n_i}, \quad \text{where } n_i = \deg(\Delta(t) \mod p_i),
\end{align*}
and the original dynamical system is the product of dynamical systems:
\begin{align*}
(\text{Hom}(K, \Sigma), \sigma_x) = \bigoplus_{i \in I} (\text{Hom}(K, \mathbb{Z}/p_i^{r_i}), \sigma_x).
\end{align*}
Taking sums of orbits with different periods, we obtain the following proposition:

Proposition 5.4. (i) Let } d_i \text{ be lcm of periods of orbits of } (\text{Hom}(K, \mathbb{Z}/p_i^{r_i}), \sigma_x). \text{ Then lcm of periods of orbits of } (\text{Hom}(K, \Sigma), \sigma_x) \text{ is lcm}\{d_i, i \in I\}. \text{ (ii) Let } Q_i \text{ be the set of periods of orbits of } (\text{Hom}(K, \mathbb{Z}/p_i^{r_i}), \sigma_x). \text{ Then the set of periods for } (\text{Hom}(K, \Sigma), \sigma_x) \text{ is }
\begin{align*}
Q = \{\text{lcm}\{q_i, i \in I\}, q_i \in Q_i\}.
\end{align*}

6. **Pullback } \tau^* \text{ ON THE SPACE OF COVERINGS OVER } X_\infty

Let } p_\infty : X_\infty \longrightarrow \ X \text{ be the infinite cyclic covering over the complement of the knot, and let } \tau : X_\infty \longrightarrow X_\infty \text{ be the deck transformation corresponding to the loop } x. \text{ We will now give a geometric description of the transformation } \sigma_x \text{ earlier defined algebraically.

Let us remind the pullback construction. Let } P : E \rightarrow B \text{ and } f : Y \rightarrow B \text{ be two continuous maps. } \Gamma_P = \{(e, b) : e \in E, b \in B, P(e) = b\} \subseteq E \times B \text{ is the graph of } P. \text{ We have } \text{id} \times f : E \times Y \rightarrow E \times B. \text{ Then, by definition, the pullback of } P \text{ by } f, f^*(P) : (\text{id} \times f)^{-1} \Gamma_P \rightarrow Y \text{ is the projection onto the second coordinate. We have } (\text{id} \times f)^{-1} \Gamma_P = \{(e, y) : e \in E, y \in Y, P(e) = f(y)\}. \text{ The projection of this set}
onto the first coordinate, \(\tilde{f} \), is the lift of \(f \), since the following diagram commutes:

\[
\begin{array}{ccc}
(e, y) & \xrightarrow{\tilde{f}} & e \\
\downarrow{f^*(P)} & & \downarrow{p} \\
y & \xrightarrow{f} & f(y) = P(e)
\end{array}
\]

Note that if \(P \) is a (regular) covering then so is \(f^*(P) \).

Let \(a \in X_\infty \), \(p_\infty(a) = x(0) \) and let \(p : (M, y) \to (X_\infty, a) \) be the covering corresponding to a group \(\Gamma \subset \pi_1(X_\infty, a) \), so that \(p_*\pi_1(M, y) = \Gamma \). Let \(p' : (M', y') \to (X_\infty, \tau^{-1}a) \) be the pull back of \(p \) by \(\tau \). It is a covering corresponding to the group \(\tau_\infty^{-1}\Gamma \subset \pi_1(X_\infty, \tau^{-1}a) \). Then \(\tau : X_\infty \to X_\infty \) lifts to a homeomorphism \(\hat{\tau} : M' \to M \) such that \(p \circ \hat{\tau} = \tau \circ p' \).

Let \(\hat{x} \) be the lift of \(x \) to \(X_\infty \) connecting \(\tau^{-1}a \) to \(a \). If \(\hat{x} \) is the lift of \(\hat{x} \) to \(M' \) beginning at \(y' \) and ending at \(y'' \), then \(p' : (M', y'') \to (X_\infty, a) \) is the covering corresponding to the group \(\hat{x}^{-1}(\tau_\infty^{-1}\Gamma)\hat{x} \subset \pi_1(X_\infty, a) \).

Let \(C \) denote the space of all coverings of \(X_\infty \) up to the usual equivalence. Let \(\mathcal{G} \) be the space of conjugacy classes of subgroups of \(\pi_1(X_\infty, a) \equiv K \). There is one-to-one correspondence between \(C \) and \(\mathcal{G} \). In what follows we will not distinguish notationally between a covering and its equivalence class, and between a subgroup and its conjugacy class.

The pullback transformation \(\tau^* : C \to C \), corresponds to the map \(\hat{\gamma} : \mathcal{G} \to \mathcal{G} \), \(\hat{\gamma} : \Gamma \mapsto \hat{x}^{-1}(\tau_\infty^{-1}\Gamma)\hat{x} \subset \pi_1(X_\infty, a) \), \(\forall \Gamma \subset \pi_1(X_\infty, a) \), which turns into the map \(\gamma \) acting on the subgroups of \(K \subset \pi_1(X, x(0)) \): \(\gamma(\Gamma) = x^{-1}\Gamma x, \forall \Gamma \subset K \).

Regular coverings of \(X_\infty \) correspond to normal subgroups \(\Gamma \subset K \), which in turn correspond to representations \(\rho \in \text{Hom}(K, \Sigma) \) such that \(\ker \rho = \Gamma \), in various groups \(\Sigma \). The corresponding map on the space \(\text{Hom}(K, \Sigma) \) is \(\sigma_x \), where \(\sigma_x \rho(\alpha) = \rho(x\alpha x^{-1}) \). Indeed, if \(\Gamma = \ker \rho \), then \(x^{-1}\Gamma x = \ker \sigma_x \rho \). In summary we can say that the shift \(\sigma_x \) in the space \(\text{Hom}(K, \Sigma) \) defined algebraically corresponds to the pullback action of the deck transformation \(\tau \) in the space of regular coverings over \(X_\infty \).

7. Coverings of finite degree

Theorem 7.1. There is one-to-one correspondence between the surjective elements \(\rho \in \text{Hom}(K, \Sigma) \) such that \(\sigma_x^d = \rho \) and regular coverings \(p : N \to X_d \) with the group of deck transformations \(\Sigma \).

Proof. Let \(\rho \) satisfy the condition of the theorem. Take a covering \(p_\rho : M \to X_\infty \) corresponding to \(\ker \rho \). Since \(\sigma_x^d \rho = \rho \), this covering coincides with its \(d \)-time pullback: \(\tau^d p_\rho = p_{\sigma_x^d \rho} = p_\rho \). We can lift \(\tau^d \) to \(\zeta : M \to M \) so that the following
diagram commutes:

\[
\begin{array}{ccc}
(M, y') & \xrightarrow{\zeta} & (M, y) \\
\downarrow{p_\rho} & & \downarrow{p_\rho} \\
(X_\infty, \tau^{-d} a) & \xrightarrow{\tau^d} & (X_\infty, a) \\
\downarrow{p\infty} & & \downarrow{p\infty} \\
(X, x(0)) & & (X, x(0))
\end{array}
\]

If \(\rho : K \to \Sigma \) is onto then \(\Sigma \cong K/ \ker \rho \) acts on \(M \) in the standard way: if \(\alpha \in \pi_1(X_\infty, a) \) is a loop and \(\bar{\alpha} \) is its lift to \(M \) starting at \(y \), it ends at \(\rho(\bar{\alpha})(y) \). Clearly the action of \(\Sigma \) commutes with \(\zeta \). So \(\Sigma \) acts on the space of orbits of \(\zeta \), \(N = M/\zeta \). These orbits project onto orbits of \(\tau^d \). Since \(X_\infty/\tau^d = X_d \), we obtained a regular covering \(p : N \to X_d \).

Now we prove that any regular covering over \(X_d \) with the group of deck transformations \(\Sigma \) can be obtained in this way: namely, for any covering (that is convenient to denote by) \(p_2 : N \to X_d \) with \(\Sigma \) as the group of deck transformations, \(\exists \rho \in \text{Hom}(K, \Sigma) \) such that \(\sigma_2^d(\rho) = \rho \) and the covering \(\varepsilon_2 : M \to X_\infty \) corresponding to the subgroup \(\ker \rho \), such that \(N = M/\zeta \), \(\zeta \) being a lift of \(\tau^d \).

Consider a diagram

\[
\begin{array}{ccc}
N & \xrightarrow{p_2} & X_d \\
\downarrow{p_1} & & \downarrow{p_1} \\
X_\infty & \xrightarrow{p_1} & X_d
\end{array}
\]

where \(p_2 \) is a regular covering with a group of deck transformations \(\Sigma \), and \(p_1 \) is an infinite cyclic covering with the generator \(\tau^d \). Let us consider the pullback of \(p_2 \) by \(p_1 \). Let \(M \subset N \times X_\infty \), \(M = \{(a, x) \mid p_2a = p_1x\} \). Then we have two covering maps \(\varepsilon_1 \) and \(\varepsilon_2 \), \(\varepsilon_1(a, x) = a \), \(\varepsilon_2(a, x) = x \), such that the following diagram commutes:

\[
\begin{array}{ccc}
M & \xrightarrow{\varepsilon_1} & N \\
\downarrow{\varepsilon_2} & & \downarrow{p_2} \\
X_\infty & \xrightarrow{p_1} & X_d
\end{array}
\]

For \(y \in X_\infty \), \((a_1, y), (a_2, y), \ldots, (a_s, y) \) are all preimages of \(y \) under \(\varepsilon_2 \), where \(a_1, a_2, \ldots, a_s \) are all preimages of \(x = p_1(y) \) under \(p_2 \), and \((a, y_1), (a, y_2), \ldots \), are all preimages of \(a \in N \) under \(\varepsilon_1 \), where \(y_1, y_2, \ldots \) are all preimages of \(p_2(a) \) under \(p_1 \).

Since \(\tau^d \) is a generator of the group of deck transformations of \(p_1 \), \(\zeta = (\text{id}, \tau^d) \) is a generator of the group of deck transformations of \(\varepsilon_1 \), while \(\{(\sigma, \text{id}) \mid \sigma \in \Sigma\} \cong \Sigma \) is the group of deck transformations of \(\varepsilon_2 \).

For any \(\beta \in K \) let \(\beta \) be its lift to \(M \) starting at \((y_0, \beta(0)) \) and ending at \((y_1, \beta(0)) \), where \(y_0, y_1 \in N \). There exists a unique \(\sigma \in \Sigma \) such that \(\sigma y_0 = y_1 \). Take \(\rho(\beta) = \sigma \). It is easy to see that \(\beta \in \ker \rho \) iff \(x^d(\tau^d \circ \beta)x^{-d} \in \ker \rho \). So, \(\ker \rho = \ker \sigma^d_x(\rho) \).

Since we can think of \(\rho \) as the homomorphism \(\rho : K \to K/ \ker \rho \cong \Sigma \), we have \(\sigma^d_x(\rho) = \rho \). \(\square \)
8. *p*-adic solenoids

The above results can be summarized in terms of solenoids fibered over manifolds X and X_∞.

Let us have a family of coverings $p_n : S_n \to B$, $n = 0, 1, 2, \ldots$, over the same m-dimensional manifold B. We say that they form a tower if there is a family of coverings $g_n : S_n \to S_{n-1}$ such that $p_n = p_{n-1} \circ g_n$. In this case we can form the inverse limit $S = \varprojlim S_n$ by taking the space of sequences $z = \{z_n\}_{n=0}^\infty$, $z_n \in S_n$ such that $g_n(z_n) = z_{n-1}$. Endow S with the weak topology. It makes the natural projection $p_\infty : S \to B$, $z \mapsto z_0$, a locally trivial fibration with Cantor fibers (as long as $\deg p_n \to \infty$). Moreover, S has a “horizontal” structure of m-dimensional lamination. If it is minimal (i.e., if all the leaves are dense in S), it is called a solenoid over B.

If all the coverings p_n are regular with the group of deck transformations Σ_n, then S is a flat principal Σ-bundle over B with $\Sigma = \varinjlim \Sigma_n$. This means that

1. $p_\infty : S \to B$ is a locally trivial fibration with fiber Σ; $\forall b \in B$, $\exists U \subset B$, $U \ni b$ and a homeomorphism ϕ_U such that the following diagram commutes:

$$
\begin{array}{ccc}
p^{-1}(U) & \xrightarrow{\phi_U} & U \times \Sigma \\
p_\infty \downarrow & & \downarrow \\
U & & U
\end{array}
$$

2. If $U \cap V \neq \emptyset$ and $h_{U \cap V}$ is defined by commutative diagram

$$
\begin{array}{ccc}
p^{-1}(U \cap V) & \xrightarrow{\phi_U} & (U \cap V) \times \Sigma \\
h_{U \cap V} & & \xrightarrow{h_{U \cap V}} (U \cap V) \times \Sigma \\
(U \cap V) \times \Sigma & \xrightarrow{\phi_V} & \phi_V
\end{array}
$$

then $\exists a = a_{U \cap V} \in \Sigma$, such that $h_{U \cap V}(b, \sigma) = (b, \sigma + a)$.

In this case Σ acts on S preserving fibers, so that for all $\alpha \in \Sigma$ the following diagram commutes:

$$
\begin{array}{ccc}
p^{-1}(U) & \xrightarrow{\phi_U} & U \times \Sigma \\
T_\alpha \downarrow & & \downarrow (b, \sigma) \mapsto (b, \sigma + \alpha) \\
p^{-1}(U) & \xrightarrow{\phi_U} & U \times \Sigma
\end{array}
$$

(we consider the case of an abelian Σ).

Given a principal flat Σ-bundle and a point $b \in B$, we can consider the monodromy action of $K = \pi_1(B, b)$ on the fiber $p_{-1}^{-1}(b)$. Each element $\gamma \in K$ acts as a translation by some $\rho(\gamma) \in \Sigma$. (Let us cover the image of γ by neighborhoods U_0, U_1, \ldots, U_n from the definition of flat principal Σ-bundle, such that $U_i \cap U_{i+1} \neq \emptyset$, $U_n = U_0$. The monodromy action of γ on $p^{-1}(b)$ is the translation by $\rho(\gamma) = \sum_{i=0}^{n-1} \alpha_{U_i, U_{i+1}}$.) This action gives us a representation $\rho : K \to \Sigma$.

Vice versa, given a representation $\rho : K \to \Sigma$, we can construct a flat principal Σ-bundle over B by taking the suspension of the K-action. The suspension space S is defined as the quotient of $\Sigma \times B$, where B is the universal covering of B, by the diagonal action of $K : (\sigma, y) \sim (\sigma + \rho(\alpha), \alpha(y)) \forall \sigma \in \Sigma, y \in \hat{B}$ and $\alpha(y)$ being the application of $\alpha \in K \cong \pi_1(B, b)$ to y. Indeed, it is easy to see that if we choose...
a base point \(y \in \pi^{-1}b \subset \hat{B} \), then the elements of \(p^{-1}_b \subset S \) can be “enumerated” by elements of \(\Sigma \), and that conditions (i) and (ii) in the definition of a flat principal \(\Sigma \)-bundle are satisfied.

Thus, the space \(\mathcal{C}(\Sigma) \) of principal flat \(\Sigma \)-bundles over \(B \) (mod a natural equivalence) is identified with the space of representations \(\rho : K \rightarrow \Sigma \).

In the case of \(B = X_\infty \) and \(\Sigma = \mathbb{Z}_p \), where \(\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n \) is the group of \(p \)-adic numbers, the space \(\mathcal{C}(\mathbb{Z}_p) \) of flat principal \(\mathbb{Z}_p \)-bundles (mod natural equivalence) is identified with the space of \(p \)-adic representations \(\text{Hom}(K, \mathbb{Z}_p) \). To the bundle

\[
\begin{array}{c}
\mathbb{Z}_p \\
\downarrow p_{\infty}
\end{array} \quad \begin{array}{c}
S \\
\downarrow X_\infty
\end{array}
\]

corresponding to a representation \(\rho \), there are associated \(\mathbb{Z}/p^n \)-bundles

\[
\begin{array}{c}
\mathbb{Z}/p^n \\
\downarrow p_{\infty}
\end{array} \quad \begin{array}{c}
S_r \\
\downarrow X_\infty
\end{array}
\]

corresponding to homomorphisms \(\rho_r : K \rightarrow \mathbb{Z}/p^n \), where \(\rho_r \) is the composition

\[
\begin{array}{c}
K \\
\rho \downarrow \pi
\end{array} \quad \begin{array}{c}
\mathbb{Z}_p \\
\downarrow \mathbb{Z}/p^n
\end{array}
\]

\(\pi \) being the natural projection. Clearly, \(S_r \) form a tower of coverings and \(S = \varprojlim S_r \).

Note that \(S_r \) is connected iff \(\rho_r : K \rightarrow \mathbb{Z}/p^n \) is onto. In the case when all \(\rho_r \) are onto, \(S \) is a solenoid over \(X_\infty \). If for some \(r \), \(\rho_r \) is not onto, \(S_r \) is disconnected.

The pullback action of the deck transformation \(\tau \) on \(\mathcal{C}(\mathbb{Z}_p) \) corresponds to the \(\sigma_x \)-action in \(\text{Hom}(K, \mathbb{Z}_p) \).

The latter space is a finite dimensional \(\mathbb{Z}_p \)-module. Let us endow it with the sup-norm. Then any invertible operator \(A : \text{Hom}(K, \mathbb{Z}_p) \rightarrow \text{Hom}(K, \mathbb{Z}_p) \) becomes an isometry. Since \(\text{Hom}(K, \mathbb{Z}_p) \) is compact, \(A \) is almost periodic in the sense that the cyclic operator group \(\{ A^n \}_{n \in \mathbb{Z}} \) is precompact. The closure of this group is called the Bohr compactification of \(A \) (see [Lyu]). Theorem 5.2 provides us with a description of this group for \(\sigma_x \):

Theorem 8.1. The Bohr compactification of the operator

\[
\sigma_x : \text{Hom}(K, \mathbb{Z}_p) \rightarrow \text{Hom}(K, \mathbb{Z}_p)
\]

is the inverse limit of the cyclic groups \(\mathbb{Z}/d_n \) where the \(d_n \) are the least common multiples described by Theorem 5.2.

We can also consider solvable coverings over the knot complement \(X \) described in §7. Taking their inverse limits, we obtain various solenoids over \(X \).

References

[K] B.P. Kitchens, “Expansive dynamics on zero-dimensional groups,” Ergodic Theory and Dynamical Systems 7 (1987), 249-261. MR 88i:28039

[L] L. Lyubich, “Periodic orbits of a dynamical system related to a knot,” Knot theory and its ramifications, v.20 N3 (2011), p411-426.

[Lyu] Yu.I. Lyubich. Introduction to the theory of Banach representations of groups. Birkhäuser.
D.S. Silver, “Augmented group systems and n- knots,” Math.Ann. 296 (1993), 585-593. MR 94i:57039

D.S. Silver and S.G. Williams, “Augmented group systems and shifts of finite type,” Israel J. Math. 95, (1996), 231-251. MR 98b:20045

D.S. Silver and S.G. Williams, “Knot invariants from symbolic dynamical systems,” Trans.Amer.Math.Soc. V351 N8 (1999), p3243-3265,S 0002-9947(99)02167-4