1. Introduction

The physical processes of accretion onto galactic and supermassive black holes and the accretion flow geometry in the innermost regions are key features for modeling relativistic spectral lines and for estimates of the black hole spin. Observations in recent years with the Chandra X-ray Observatory, the X-ray Multi-Mirror Mission-Newton and Suzaku reveal for some AGN broad, often relativistic iron emission lines from the innermost regions close to the black hole. Iron emission lines are the most obvious response of an accretion disk to irradiation by an external source of hard X-rays. When X-rays from a hot coronal flow fall on a geometrically thin, radiatively efficient Shakura-Sunyaev accretion disk reaching inward to the innermost stable circular orbit (ISCO), or on the other hand for low accretion rates (lower than the critical rate of spectral state transition m_{crit}), a more spherical optically thin, hot advection-dominated flow fills the inner region (ADAF; Narayan & Yi 1994, 1995, Abramowicz et al. 1995; see Narayan 2005, Yuan 2007, Narayan & McClintock 2008 for reviews). At larger distance an outer Shakura-Sunyaev disk exists, whose truncation radius recedes as the mass accretion rate decreases. These “high” and “low” states are documented by a soft and hard spectrum. The critical accretion rate m_{crit} lies around a few to 10 percent of the Eddington accretion rate (Esin et al. 1997).

For supermassive black holes, especially low-luminosity AGN, truncated thin disks were found, along with a hard spectrum (Narayan et al. 1998). The power-law spectrum arising from the coronal emission is scale-invariant (accretion rate in units of Eddington accretion rate), while the disk emission of AGN peaks in the UV range, in contrast to the emission in soft X-rays from disks around stellar mass black holes. Vasudevan & Fabian (2007) discuss the similarity of accretion states in AGN and galactic black hole sources and point out that the radiation in the UV is an important contribution to the bolometric luminosity. They derived bolometric corrections for AGN using recent
results from the Far Ultraviolet Spectroscopic Explorer (FUSE), together with data from the Optical Monitor (OM) archives and X-ray data from the XMM-Newton archive. They expanded the investigation and for the first time took into account simultaneous observations (Vasudevan & Fabian 2009).

The accretion geometry in the two spectral states, either an ADAF (or one of its variants) in the inner regions or a disk reaching inward to the ISCO, seemed to exclude each other for a long time. But the recent observations of LMXBs seem to indicate that during in intermediate state, the brightest hard state (after soft/hard transition in outburst decay), an ADAF in the inner region and a weak innermost disk can both be present at the same time (see Figure 1). These co-existing hot and cool gas flows inward toward the black hole clearly interact. The interaction causes mass and angular momentum exchange between disk and ADAF, either a mass flow from the disk into the ADAF, evaporation of the disk, or a reverse mass flow, re-condensation of gas from the ADAF onto the disk (Liu et al. 2006, Meyer et al. 2007). The re-condensation model allows us to understand the observed mass flow rates in the inner disk (Liu et al. 2007, Taam et al. 2008). Observational evidence for the possible presence of a thermal component during the hard state in eight sources, broad skewed Fe Kα lines in half of the sample, were shown in the recent work by Reis et al. (2010). The authors interpret the reflection features as caused by illumination of a more-or-less permanent disk by the hard, power-law component of a jet.

We note that an extremely skewed relativistic Fe Kα emission line was also found in the spectrum of GX 339-4 during the bright phase of its 2002-2003 outburst, in a “very high” state. As Miller (2007) pointed out, this observation is of interest for understanding the relativistic ion lines observed in Seyfert 1 AGN. We discuss these observations in connection with the detection of broad iron K and L line emission in the narrow-line galaxy 1H0707-495.

The existence (at least for some time) of a weak disk in the innermost region around stellar mass black holes during the hard spectral state strengthens the expectation to find the same phenomenon for accreting supermassive black holes as well. Seyfert 1 AGN are the class of supermassive black holes that o...
2. Evaporation leading to a truncated disk

The process of evaporation of matter from an accretion disk via a siphon flow to a hot corona/ADAF was generally proposed for disks surrounding a compact object (Meyer & Meyer-Hofmeister 1994). For the interaction between accretion disk and corona/ADAF around compact objects of different mass the physics is the same from neutron stars and black holes in LMXBs to supermassive black holes in AGN (Meyer et al. 2000, Liu et al. 2002). It is always the interaction between a coronal hot gas and a cool disk below: frictional heat released in the corona flows down into cooler and denser transition layers; there it is radiated away if the density is sufficiently high; if the density is too low, cool matter is heated and evaporates into the corona until an equilibrium density is established. Compton cooling adds to thermal conduction (Liu et al. 2007). Modeling allows us to investigate the effects of the chosen parameters, e.g. the viscosity value, or the inclusion of a magnetic pressure (Qiao & Liu 2010) and to take into account hard and soft irradiation. Exact values for disk truncation and transition luminosity are difficult to obtain because of this freedom in the parameter choice and the limitations of a one-zone model used for describing the complex situation.

The surface temperatures in the disks around massive black holes do not change the situation, as was questioned in the work by McHardy (2009), because disk surface temperatures are much below the temperatures of the decisive radiating layers at the bottom of the coronae. Evaporation and disk truncation in AGN were investigated by Liu & Meyer-Hofmeister (2001). In recent work Liu & Taam (2009) suggest that the existence/non-existence of the so-called broad line region of type 1 AGN is related to disk truncation.

3. Distinct spectral states of LMXBs - analogous situation in AGN?

For LMXBs a wealth of information on spectral states and transitions between them is available, because of the short timescales (shorter than for AGN - the dynamical time scales with the central mass, a factor of \(10^6\) to \(10^8\) difference) and the large number of objects in our vicinity. Chen et al. (1997) collected all available data at that time, 66 recorded outbursts already. The two review papers of McClintock & Remillard (2006) and Remillard & McClintock (2006) give a compilation of the large number of observations and their theoretical interpretations. Accretion flows in black hole X-ray binaries and neutron star binaries are investigated by Done et al. (2007). The recent study by Dunn et al. (2010y) includes additional recent observations.

What is the situation for AGN? Theoretically we expect the same properties of the accretion flow, distinct states in response to changes of the mass accretion rate, for all compact objects of different mass (Narayan et al. 1998). Observations for AGN seem to confirm this situation. In analogy to LMXBs in hard spectral state, low-luminosity accretion and truncated disks were found for AGN already many years ago (Narayan 2005). Ho (2009a) recently concluded that the massive black holes in most nearby galaxies reside in a low or quiescent state.

For LMXBs we know the clear change of spectra during the hard/soft and soft/hard transitions of Cyg X-1 in 1996 (Esin et al. 1998), the change of the photon index \(\Gamma\). But for AGN the situation is not as clear, we can only draw some parallels from average spectral energy distributions. Vasudevan & Fabian (2007) compared the slopes in the spectral energy distribution for sources in the ranges \(0.0012 < L_{bol}/L_{Edd} < 0.032\) and \(0.27 < L_{bol}/L_{Edd} < 2.7\) and found a harder spectral shape for the lower luminosities, and softer X-ray spectra for the higher luminosities. Done & Gierliński (2005) argued that complex absorption from a disk wind might affect the spectra, so that these could appear as being harder. Shenmer et al. (2006) studied the hard X-ray spectral slope as an accretion rate indicator for luminous AGN and found a dependence on the accretion rate for their sample.

Similarity between accretion in galactic and supermassive black holes is also found by comparing X-ray and optical variability. Measuring the X-ray variability power spectral density (PSD) of six Seyfert 1 galaxies Markowitz et al. (2003) pointed out a physical similarity with X-ray binaries. But Uttley & McHardy (2005) found, e.g. for NGC 3227, an intrinsically hard X-ray spectrum (photon index \(\Gamma \sim 1.6\)), yet a broad-band X-ray variability PSD reminiscent of black hole X-ray binaries in the high/soft state, and argued that the current nomenclature for the various states may be inappropriate. More Seyfert galaxies were investigated by Uttley & McHardy (2005), McHardy et al. (2005) and Arévalo et al. (2006).

Because mass flow changes are a basic element in the consideration of spectral states in AGN as well, we add to our analysis a discussion of disk instabilities in the Appendix, which can produce these changes and trigger spectral transitions. We show that a new picture of the possible importance of the ionization instability arises from the truncation of inner disk regions, which can lead to an elimination of the instability. But the instability is expected to be present for black hole masses of \(10^7 M_\odot\) to about \(10^9 M_\odot\).

4. A cool disk in the innermost region?

4.1. The re-condensation model

Observations of LMXBs indicate cool gas in the neighborhood of the accreting black hole. Most observations were made at a time shortly after the soft/hard spectral state transition, which points to an intermediate state connected with the transition process.

During phases of decreasing mass flow rate, as in outburst decline, a gap opens between the outer disk and the inner region at the distance where the evaporation is most efficient, which is filled by an ADAF (Fig.1). Within the short diffusion time the inner disk would disappear, if it were not sustained by a continuous supply of gas from the ADAF above. The observations indicate that the inner disk can survive. The re-condensation model (Liu et al. 2006, Meyer et al. 2007) allows us to understand the interaction: the ADAF is affected by thermal conduction to a cool accretion disk underneath. Such a model takes into account the exchange of energy and mass between the tenuous, inefficiently radiating, hot two-temperature corona and the uppermost layers of the disk. The re-condensation rate becomes a function of the mass flow rate in the ADAF, \(\dot{m}_{\text{ADAF}}\) (in Eddington accretion rate units), and the ratio of the distance to the ISCO and the distance of the outer edge of the inner disk, \(R_i\), which depends on \(\dot{m}_{\text{ADAF}}\):.

\[
\dot{m}_{\text{cond}}/\dot{m}_{\text{ADAF}} = 3.23 \times 10^{-3} \alpha^{-7} \dot{m}_{\text{ADAF}}/(R_{\text{ISCO}}/R_i)
\]

(1)

with the function

\[
f(x) = 1 - 6x^{1/2} + 5x^{3/5}.
\]

(2)

The process works best at distances from 30 to 100 Schwarzschild radii, and suitable condensation rates are typically 10% of \(\dot{m}_{\text{ADAF}}\) (strongly dependent on the viscosity parameter \(\alpha\)). All condensed gas flows inward to the ISCO. As
m_{ADAF} decreases, the inner disk becomes smaller and the re-condensation rate decreases. This inner disk can exist for a long time during the low/hard state, as long as the accretion rate is not too low, $\lesssim m \approx 10^{-3}$ (Taam et al. 2008), and could still be present during the rise to the next outburst.

The model was applied to X-ray observations of the black hole sources GX 339-4 and SWIFT J1753 and is able to explain the effective temperature of the thermal component (Liu et al. 2007). Compton cooling was found to be an important element in the re-condensation process (Taam et al. 2008).

The physics of the re-condensation process is the same for stellar mass and supermassive black holes. The disks in AGN have lower temperatures, thermal conduction occurs as in LMXB disks. The diffusion time for AGN disks close to the black hole is also short compared to the time within which the mass flow rate from the outer regions can change. This means that re-condensation is needed in AGN as well to sustain a cool innermost disk underneath the ADAF.

4.2. Cool disks around stellar mass black holes. The observational evidence

For investigating inner disks in AGN, the observations of stellar-mass black hole sources are of interest. Besides the mostly cited observations of GX 339-4 and SWIFT J1753-5.0-0127 (Miller et al. 2006a, 2006b, Reis et al. 2008, Tomskick et al. 2008), indications for the presence of weak inner disks are also found in several other sources (for the strength of the thermal components see Meyer-Hofmeister 2009), very recently also in the new X-ray transient XTE J1652-453 (Hiemstra et al. 2010). These thermal components were found in connection with outbursts, in outburst decline, usually during the brightest phases of the hard state (with the exception of Cyg X-1). Recently Reis et al. (2010) presented a study of eight stellar-mass black hole sources in the low/hard state and confirmed the existence of a thermal component for all of them, with iron Kα line emission in half of the sources. All observations of thermal components close to the ISCO document the presence of cool material close to the black hole (i.e. for dynamical reasons an inner disk) during the hard state. Unfortunately we cannot yet derive from this whether such an inner disk continues all the way out or if a gap exists at the distance where (according to the modeling) evaporation is most efficient.

Interestingly, a skewed relativistic Fe Kα emission line was also observed for XTE J1650-500 and for GX 339-4 in “very high” state (Miller et al. 2002, 2004), probably originating in a different accretion flow geometry for a high accretion rate, an untruncated disk in a very bright state.

4.3. Mass flow rates appropriate for inner disks around supermassive black holes

For AGN the situation should be similar to that for stellar mass black holes (for a definition of states see Remillard & McClintock 2006): (1) a low/hard state, an ADAF in the inner region, accretion rates below a few percent to $0.1 \dot{M}_{\text{Eddington}}$ (spectrum hard); (2) a standard high/soft state (“thermal”), disk inward to the ISCO, accretion rates about 0.05 to 0.5 $\dot{M}_{\text{Eddington}}$ (spectrum soft); (3) a very high state (“steep power law”), disk inward to the ISCO and an additional coronal layer above the disk, accretion rates just sub-Eddington (spectrum soft + hard component). During a decrease from the high/soft state to the low/hard state for some time a weak inner disk can be present (spectrum hard + weak thermal component).

We here focus on the situation shortly after the transition from the soft to the hard state, with an additional weak inner disk, as a relict of a former disk that reached inward to the ISCO in a preceding high/soft state. This means the accretion rates should lie between $\dot{m}_{\text{crit}} \approx 0.05$ to 0.1 and about \dot{m} of this rate (based on the evidence of such inner disks in LMXBs). This predicts accretion rates appropriate to allow inner disks in Seyfert 1 galaxies of $0.1\dot{M}_{\text{Eddington}}$ black hole, one tenth of this rate for a $10^3\dot{M}_{\text{Eddington}}$ black hole (in our discussion of mass flow rate changes caused by the ionization instability these rates correspond to the dashed lines in Fig.B1, Appendix).

5. Broad iron lines in Seyfert 1 galaxies as indicators of an inner accretion disk

5.1. Observations

Our search for inner disks in AGN was motivated by the observation of broad iron lines in Seyfert galaxies, as described in the review of relativistic disk lines by Miller (2007) and confirmed by recent observations with Chandra, XMM-Newton and Suzaku, and also discussed in the analysis of spectra by Nandra et al. (2007). These emission lines are the most obvious reaction of an accretion disk to irradiation by an external source of hard X-rays, which is true whenever a corona lies above a disk. The first clear example of relativistic dynamics affecting the line shape, that is a line originating in the innermost region, was found in the Seyfert 1 AGN MCG-6-30-15 by Tanaka et al. (1995), at that time using ASCA/SIS.

Miller (2007) compares how frequent detections of relativistic disk lines in LMXBs and Seyfert 1 AGN are: (1) in 75-85% of the stellar sources relativistic disk lines were found. (2) For the sample of AGN with broad iron emission lines chosen by Nandra et al. (2007) the authors found that 45% of the sources are best fit with a relativistically blurred reflection model. But the comparison is difficult. For LMXBs inner weak disks were preferentially observed after the soft/hard transition, during a phase of accretion rate decrease, an only transient phenomenon. That phase lasts only a short time of the full outburst cycles, including quiescence. The detections in AGN refers to the sample of sources selected because of their iron line emission.

5.2. The accretion rates of the best candidates

We take the information from two samples of Seyfert galaxies. Group (1) are sources with “very strong relativistic disk line detections”, Tier 1 of the census of Miller (2007). Group (2) are sources with “acceptable model fits including a broad Gaussian emission line component or a relativistically blurred line added to the spectrum” from the analysis of Nandra et al. (2007). We have not tried to exclude sources that might be in a high/soft spectral state.

Considering our sample of sources some special features need be commented. For some sources in group (2) differing results were found in multiple observations. The authors argued that non-detection of broad emission lines may be due to a low signal-to-noise ratio. The Nandra sample contains most of the sources in Millers Tier 1, his best candidates, but the judgment on the emission lines is not always the same: for NGC 3783 and MCG-6-30-15 the model fits of Nandra et al. were classified as poor. We kept these sources in our chosen sample. Despite its
E. Meyer-Hofmeister and F. Meyer: Inner disks in Seyfert Galaxies

For this evaluation the bolometric luminosities (from X-ray luminosities and X-ray bolometric corrections) and reliable black hole masses are needed. Recently Vasudevan & Fabian (2007, 2009) determined X-ray bolometric corrections using spectral energy distributions (SED) in different wavebands (possible errors are between 10 and 100 % in the first work, but only 1 to 10% in the second). We take the values for X-ray luminosity, black hole mass, bolometric correction and L_{bol}/L_{Edd} from these investigations (where available the newer values). For sources not included in this investigation we take the X-ray luminosity from Nandra et al. (2007), together with a constant bolometric correction as used by Ho (2009a), and the black hole mass from O’Neill et al. (2005). For a few sources in our sample X-ray luminosities are also listed in the investigation of Ho et al. (2009b), estimates differ by up to a factor of three (even larger for NGC 4051). In Table 1 we list the derived values. For 10 sources the Eddington-scaled accretion rates are ≤0.1. This value can be considered an upper limit for the transition between hard and soft spectral state). (Because the theoretically derived transition luminosity depends on parameters whose exact values are not determined by the simple modeling, but have to be assumed, one has to resort to observations for estimating the critical values; see also the values for the transition luminosity derived by Gierliński & Newton (2006)). For six sources rates clearly above 0.1 are found (possibly erroneously high values, see error bars).

The uncertainty of black hole masses affects the values of the Eddington-scaled luminosity. The values of black hole masses in the literature (also in Vasudevan & Fabian 2007, 2009) largely go back to the compilation of Peterson et al. (2004), based on broad emission-line reverberation-mapping data with a typical uncertainty of 33%. Comparing with black hole masses evaluated by other methods, e.g. the often used relation between black hole mass and central stellar velocity dispersion, a similar uncertainty is found. Nikolajuk et al. (2006) compared black hole masses determined from reverberation and the X-ray excess variance method and found large differences. For sources included in the recent catalog of central stellar velocity dispersions of nearby galaxies (Ho et al. 2009b), the black hole masses evaluated from the velocity dispersion values using the relation determined by Tremaine (2002) differ by a factor of ≤3.

poor fit we included Ark 120 (sample of Nandra) in our sample because it is in Tier 3 of Miller (sources with detections that need to be confirmed and investigated more deeply). Because of heavy contamination with light from the galaxy (according to Vasudevan & Fabian 2007), IC 4329A was not included.

For some sources a different X-ray luminosity is found from observations at different time, e.g. for NGC 4151 a change in L_X from 10^{42} to about $10^{42.8}$ erg/s between December 2000 and May 2003. For this observation in May 2003 from spectral fits Nandra et al. (2007) derived the value $10^{42.8}$ erg/s, Vasudevan & Fabian (2009) the value $10^{42.64}$ erg/s. For NGC 3783 the luminosity found from observations on 2001 December 19 is 50% higher than that of December 17 (the difference maybe caused by an outflowing warm absorber). As the derivation of luminosity values for the same observations by different authors shows, the results of spectral fits occasionally differ by about 30% (in NGC 3783 and NGC 3516) and even more for NGC 4051 as observed in May 2001.

The samples of Miller (2007) and Nandra et al. (2007) were also used in a recent analysis of Brennan & Reynolds (2009) who selected eight candidates to investigate the relativistic broadening of iron emission lines for spin diagnostics. In half of the sources they found an improvement in their goodness-of-fit parameters when relativistic effects from an inner disk were taken into account.

The sources we finally consider are 3C 120, NGC 3516, NGC 3783, NGC 4051, Mrk 766, and MCG-6-30-15 from Miller (2007) and in addition Mrk 590, Mrk 110, NGC 4395, NGC 5506, NGC 5548, Mrk 509, Ark 564, NGC 7469, and Ark 120 from Nandra et al. (2007). To clarify whether the broad iron emission lines of the sources in this sample could originate in a weak inner accretion disk that is surrounded by the ADAF carrying the main part of the accretion flow, we determine L_{bol}/L_{Edd} and take this ratio as an approximate measure for the scaled accretion rate M/M_{Edd}.

For this evaluation the bolometric luminosities (from X-ray luminosities and X-ray bolometric corrections) and reliable black hole masses are needed. Recently Vasudevan & Fabian (2007, 2009) determined X-ray bolometric corrections using spectral energy distributions (SED) in different wavebands (possible errors are between 10 and 100 % in the first work, but only 1 to 10% in the second). We take the values for X-ray luminosity, black hole mass, bolometric correction and L_{bol}/L_{Edd} from these investigations (where available the newer values). For sources not included in this investigation we take the X-ray luminosity from Nandra et al. (2007), together with a constant bolometric correction as used by Ho (2009a), and the black hole mass from O’Neill et al. (2005). For a few sources in our sample X-ray luminosities are also listed in the investigation of Ho et al. (2009b), estimates differ by up to a factor of three (even larger for NGC 4051). In Table 1 we list the derived values. For 10 sources the Eddington-scaled accretion rates are ≤0.1. This value can be considered an upper limit for the transition between hard and soft spectral state). (Because the theoretically derived transition luminosity depends on parameters whose exact values are not determined by the simple modeling, but have to be assumed, one has to resort to observations for estimating the critical values; see also the values for the transition luminosity derived by Gierliński & Newton (2006)). For six sources rates clearly above 0.1 are found (possibly erroneously high values, see error bars).
5.3. Interpretation of the accretion rates

For Seyfert galaxies NGC 3516, NGC 3783, NGC 4051, NGC 4151, Mrk 590, Ark 120, NGC 4395, NGC 4593, NGC 5506, and NGC 5548 the Eddington-scaled accretion rates are below 0.1. This can be theoretically interpreted as a low spectral state, with an ADAF in the innermost region. The disk from which the emission lines come should then be a weak inner disk, separated by a gap from the outer truncated accretion disk, an accretion flow geometry similar to that in LMXBs.

In Fig. 2 we show the distribution of obtained accretion rates, given in \(\dot{M}_{\text{Edd}}/\text{yr} \). The bolometric luminosities vary from \(4 \times 10^{35} \) to \(0.367 \dot{M}_{\odot}/\text{yr} \). Error bars owing to uncertainty in black hole mass are widely given in the literature and are indicated in our figure. Errors in unscaled X-ray luminosity are difficult to judge (compare our discussion in Sect. 5.2). According to Vasudevan and Fabian (2009, Table 2) these errors are small. Error bars owing to uncertainty in bolometric correction are small for the sources examined in the work of Vasudevan and Fabian (2009), a few percent only.

For six sources rates above 0.1 are found. This might be owing to errors because uncertainties enter in several ways. In the picture of a thin disk reaching all the way inward or an inner ADAF plus a truncated outer disk, depending on the accretion rate, one expects that these sources are in a standard high/soft spectral state with an untruncated disk reaching inward to the ISCO. But the photon index \(\Gamma \) listed by Vasudevan & Fabian (2009, Table 2) for these sources is \(\leq 1.95 \), or even lower, \(\leq 1.5 \). (For X-ray binaries Remillard & McClintock (2006) chose 1.4 \(\leq \Gamma \leq 2.1 \) for their definition of the hard/soft state.) One of these sources, MCG-6-30-15, was classified as in high/soft state based on the comparison of the PSD (Uttley & McHardy 2005), but the same was found for NGC 4051, for which a low accretion rate (scaled to the Eddington rate) was found. These examples show that it is more difficult to confirm the spectral state for AGN than for LMXBs.

For LMXBs an interesting observation is that e.g. GX 339-4 at one time was found in low/hard spectral state and at another time in the very high state with an extremely skewed relativistic Fe Kα emission line (Miller et al. 2004).

It is conspicuous that in the distribution of accretion rates of the systems with Fe Kα emission lines a dichotomy between low and very high values is found for LMXBs, but not for Seyfert galaxies with the same reflection features. For Seyfert galaxies we find sources with rates in between the low and very high rates of LMXBs. Theory would predict continuous accretion disks inward toward the ISCO for these sources. If irradiation seems to be present this would mean that the innermost coronae in these AGN would be significantly stronger than those in LMXBs at comparable accretion rates. What could cause these differences between AGN and LMXBs? LMXBs are accreting binary systems, AGN accrete gas that has fallen in at large distances. That could in principle make a difference in the accretion of magnetic flux through their accretion disks, and this flux is possibly closely related to coronal dissipation and jet formation. These are interesting and challenging questions, but more theoretical work and probably also more observations are needed to make progress.

Table 1. Accretion rates deduced for Seyfert 1 galaxies with broad iron emission lines

source	\(\log L_X \)	\(\log M_{\text{BH}} \)	\(\kappa_{2-10\text{keV}} \)	\(\frac{\dot{L}_{\text{bol}}}{\dot{L}_{\text{Edd}}} \)	\(\dot{M} \)
(1) 3C 120	44.0	7.74	20.6	0.305 \(\times \)	0.367
(2) NGC 3516	42.3	7.63	15.3	0.006	0.006
(3) NGC 3783	42.9	7.47	17.3	0.036 \(\times \)	0.023
(4) NGC 4051	40.8	6.28	26.7	0.016	0.001
(5) NGC 4151	42.8	7.12	17.4	0.062	0.002
(6) Mrk 766	42.88	6.54	15.8	0.275 \(\times \)	0.012
(7) MCG-6-30-15	42.65	6.19	15.8	0.362 \(\times \)	0.123
(8) Mrk 590	43.0	7.68	7.0	0.010	0.011
(9) Mrk 110	43.9	7.40	18.4	0.433 \(\times \)	0.238
(10) NGC 4395	40.02	5.56	22.5	0.005 \(\times \)	4.10^{-5}
(11) NGC 5506	42.80	7.94	15.8	0.009	0.017
(12) NGC 5548	43.3	7.83	10.1	0.024	0.035
(13) Mrk 509	44.0	8.16	16.2	0.095	0.301
(14) Ark 564	43.25	6.90	9.2	0.162 \(\times \)	0.028
(15) NGC 7469	43.2	7.09	42.5	0.369 \(\times \)	0.099
(16) Ark 120	43.82	8.27	15.7	0.044	0.180

References: for sources 1-5, 8, 9, 12, 13, and 15Cols. [1] to [4] from Vasudevan & Fabian (2009); for sources 10, 14, and 16Cols. [1] to [3] from Vasudevan & Fabian (2007), for sources 6, 7, and 11Lx from Nandra et al. (2007), \(M_{\text{BH}} \) from O’Neill et al. (2005), assumed constant bolometric correction 15.8 (Ho 2009a); crosses mark sources with an Eddington-scaled mass flow rate \(\geq 0.1 \).

6. Broad iron emission lines from untruncated disks: the narrow-line Seyfert 1 galaxy 1H0707-495

For 1H0707-495, a narrow-line Seyfert 1 galaxy (NLS1), broad iron K and L emission lines were recently found (Fabian et al. 2009). The bright Fe-L emission allows us to detect a reverberation lag of 30s between the direct X-ray continuum and its reflection from matter falling into the black hole, indicating that we obtain information from matter within a gravitational radius.

The accretion rate is estimated to be (just) sub-Eddington. The observations point to an untruncated disk reaching inward to the ISCO and Comptonization of the irradiating X-rays by the disk (for a discussion of the very high state see Done, Gierliński, and Kubota (2007)). These observations prove that Fe Kα emission lines can be present in quite different geometries, always from disks in the innermost region, but possibly of two different kinds, weak inner disks in the hard spectral state or strong untruncated disks in a very high state. Spectral energy distributions from contemporaneous optical, UV and X-ray observations are needed to distinguish between these spectral states.

Some of the Seyfert 1 galaxies investigated for their broad iron emission lines by Miller (2007) and Nandra et al. (2007) might have similarity with 1H0707-495, but are not as bright as this source. Actually Ark 564 is known as a narrow line Seyfert 1 galaxy (Arévalo et al. 2006).
7. Conclusions

For LMXBs broad iron emission lines found in an intermediate hard spectral state were interpreted as originating from a weak inner disk, which is left over from a disk reaching inward to the ISCO at earlier time. The accretion flow geometry in the thin disk+ADAF model scales with the black hole mass. We discussed whether such a model for the interpretation of iron emission lines is also applicable to Seyfert galaxies.

We used recent observations and interpretations of broad, partly relativistically blurred iron emission lines in Seyfert 1 AGN. We considered sources in a hard spectral state. For the best candidates in the samples of Miller (2007) and Nandra et al. (2007) we evaluated accretion rates (scaled to the Eddington accretion rate) to see whether these rates point to a hard spectral state. As a limiting Eddington-scaled upper accretion rate for sources in the hard spectral state we chose the value 0.1, taking into account the observational results for the state transition luminosities of LMXBs. It is difficult to judge the uncertainty of the accretion rates evaluated for the Seyfert galaxies. Therefore we cannot definitely determine the spectral state. As discussed in Sect.3, it is not possible to derive firm information on the spectral state from the photon index of the spectral energy distribution.

For the majority of the sources considered here we found accretion rates \(\leq 0.1 \) (see Table 1), agreeing with the theoretical expectation of a weak inner accretion disk below the ADAF during the low/hard state for AGN as well. The appearance of iron Kα lines signifies the presence of cool material close to the accreting black hole, irradiated by a power-law continuum from a corona above. In this state the inner disk carries only a fraction of the total accretion flow, the major part flows through the corona and provides the hard luminosity. This situation is described in the modeling of the “truncated disk + corona + re-condensed inner disk” geometry. Disk truncation is an inherent feature of disk evaporation that explains the appearance of the hot, optically thin flow for low accretion rates (and also the hysteresis in transition luminosity between soft and hard spectral states).

Besides the Seyferts with accretion rates below the critical value there is a significant number of sources in our sample (40%) that show accretion rates above this limit, though not as high as in some LMXBs in high state with iron emission lines (a significant fraction of the Eddington value). These LMXB sources probably are related to the so-called “very high” state, where the disk material is illuminated by a strong corona on top of an inner disk (Done, Gierliński and Kubota 2007). In the LMXB case a clear gap exists in the accretion rate distribution between the two groups with low and high rates, no sources with rates slightly above 0.1 are known. The galactic sources XTE J1650-500 and GX 339-4 were observed in such a very high state, and extremely skewed relativistic Fe Kα emission lines were detected (Miller et al. 2002a, Miller et al. 2004). Miller (2007) pointed out that the spectral and variability phenomena in Seyfert 1 galaxies with 10^{-8} M_/yr seem specially suited to display this weak inner disk accretion flow geometry.

Acknowledgments. For helpful discussions and suggestions we thank Bifang Liu.

References

Abramowicz, A., Chen, X., Kato, S. et al. 1995, Apl 438, L37
Arévalo, P., Papadakis, I.E., Uttley, P. 2006, MNRAS 372, 401
Boller, Th., Balestra, I., & Kollatschny, W. 2007, A&A 465, 87
Bremerman, L.W. & Reynolds, C.S. 2009, ApJ 702, 1367
Cabacan, C., Fender, R.P., Dunn, R.J.H. et al. 2009, MNRAS 396, 1415
Cannizzo, J.K. 1992, ApJ 385, 94
Cannizzo, J.K. 1993, In: Accretion Discs in Compact Stellar Systems, ed. J.C. Wheller, p.6
Chen, W., Shrader, C.R. & Livio, M. 1997, ApJ 491, 312
Di Matteo, T., Quataert, E., Allen, S.W. et al. 2000, MNRAS 311, 507
Di Matteo, T., Allen, S.W., Fabian, A.C. et al. 2003, ApJ 582, 133
Done, C. & Gierliński, M. 2005, Astrophys Space Science 300, 167
Done, C. & Gierliński, M. & Kubota, A. 2007, Astron. Astrophys. Review Vol. 15, p.1
Dubus, G., Hameury, J.-M. & Lasota, J.-P. 2001, A&A 373, 251
Dunn, R.J.H., Fender, R.P., & Körding, T. 2010, MNRAS 403, 61
Esin, A.A., McClintock, J.E., & Narayan, R. 1997, ApJ 489, 1
Esin, A.A., Narayan, R., Cui, W. et al. 1998, ApJ 505, 854
Fabian, A.C., Zoghbi, A., Ross, R.R. et al. 2009,
Falcke, H. & Biermann, P.L. 1999, A&A 342, 49
Falcke, H. & Markoff, S. 2000, A&A 362,113
Falcke, H., Nagar, N.M., Wilson, A.S. et al. 2000, ApJ 542, 197
Gierliński, M., & Newton, J. 2006, MNRAS 370, 837
Hirniesta, B., Mendez, M., Done, C. et al. 2010, arXiv:1004.4442
Ho, L. C., 2009a, ApJ 699, 626
Ho, L. C., Greene, J.E., Filippenko, A.V. et al. 2009b, ApJ Suppl 183, 1
Iwasawa, K., Minautti, G. & Fabian, A.C. 2004, MNRAS 353, 107
Lin, D.N.C. & Shields, G.A. 1986, ApJ 305, 28
Liu, B. F. & Meyer-Hofmeister, E. 2001, A&A 372, 386
Liu, B. F. & Mine, Y., Meyer, F. et al. 2002, ApJ 575, 117
Liu, B. F., Meyer, F. & Meyer-Hofmeister, E. 2006, A&A 442, 555
Liu, B. F., Taam, R.E., Meyer-Hofmeister, E. et al. 2007, ApJ 671, 695
Liu, B. F. & Taam, R.E. 2009, ApJ 707, 233
Markowitz, A., Edelson, R., Vaughan, S. et al., 2003, ApJ 593, 96
Markowitz, A., Papadakis, I., Arévalo, P. 2007, ApJ 656, 116
McClintock, J.E., & Remillard, R.A., 2006, In: Compact Stellar X-ray Sources, eds. W.H.G. Lewin, M. van der Klus, Cambridge Astrophysics Series, No. 39, Cambridge University Press, 2006, p. 157
McHardy, I.M. 2009, In: The Jet Paradigm - From Microquasar to Quasars, ed. T. Belloni, Lect. Notes Phys. 794, 203
McHardy, I.M., Uttley, P. & Vaughan, S. 2005, MNRAS 359, 345
Menou, K. & Quataert, E. 2001, ApJ 552, 204
Meyer, F. & Meyer-Hofmeister, E. 1981, A&A, 104, L10
Meyer, F. & Meyer-Hofmeister, E. 1994, A&A 288, 175
Meyer, F., Liu, B.F., & Meyer-Hofmeister, E. 2000, A&A 354, L67
Meyer, F., Liu, B.F., & Meyer-Hofmeister, E. 2007, A&A 463, 1
Meyer-Hofmeister, E., Liu, B.F., Meyer, F. 2005, A&A 432, 181
Meyer-Hofmeister & Meyer, F. 2006, A&A 449, 443
Meyer-Hofmeister, E., Liu, B.F., Meyer, F. 2009, A&A 508, 329
important in the framework of our analysis. Transients (Dubus et al. 2001 and references therein). The ionization instability is also the cause of the outbursts of soft X-ray transients, the gas remains well coupled to the magnetic field even on the cold branch of the limit cycle and consequently the parameter describing the viscosity should remain the same in hot and cold state. Siemiginowska et al. (1996) had evaluated the lightcurves for this case as well. Then the luminosity changes during the outburst cycle are not large, rather a “flickering” appears. In Fig. B1 we show the situation for different black hole masses and different accretion rates. For a $10^8 M_\odot$ black hole: (1) for a high accretion rate $\dot{M} = 1 M_\odot / yr$ the disk reaches inward to the ISCO; (2) for a low accretion rate $\dot{M} = 10^{-2} M_\odot / yr$ the disk is truncated at about $10^{17.1}$ cm (Meyer-Hofmeister & Meyer 2006), far outside the instability strip. (3) For the rate $\dot{M} = 10^{-4} M_\odot / yr \approx \dot{m}_{\text{crit}} \approx 0.045$, which is the critical rate for the spectral state transition where we expect a disk truncation at a distance of about 1000 R_g, lying within the instability strip. For $10^7 M_\odot$ and $10^8 M_\odot$ black holes the temperature distribution is only shown for the critical accretion rate. As a consequence of disk truncation the unstable regions are partly eliminated, as can be seen from Fig. B1. For instance an unstable region as described by Menou & Quataert (2001, Fig. 1) could not be present at the distance of 30R_g from a $10^7 M_\odot$ black hole.

Appendix B: A new aspect of AGN disk instabilities as a consequence of disk truncation

Disk truncation as an additional feature in the accretion flow geometry can eliminate the occurrence of the ionization instability. Evaporation (discussed in Sect.2) is expected to lead to the disappearance of inner regions, if the accretion rate in Eddington units lies below the critical value \dot{m}_{crit}. The truncation then occurs at a distance of $R \geq 300 R_g$. For lower accretion rates the truncation might be far out, at thousands of Schwarzschild radii, e.g. in low-luminosity AGN (see Narayan 2005, Fig. 3).

In Fig. B1 we show the situation for different black hole masses and different accretion rates. For a $10^8 M_\odot$ black hole: (1) for a high accretion rate $\dot{M} = 1 M_\odot / yr$ the disk reaches inward to the ISCO; (2) for a low accretion rate $\dot{M} = 10^{-2} M_\odot / yr$ the disk is truncated at about $10^{17.1}$ cm (Meyer-Hofmeister & Meyer 2006), far outside the instability strip. (3) For the rate $\dot{M} = 10^{-4} M_\odot / yr \approx \dot{m}_{\text{crit}} \approx 0.045$, which is the critical rate for the spectral state transition where we expect a disk truncation at a distance of about 1000 R_g, lying within the instability strip. For $10^7 M_\odot$ and $10^8 M_\odot$ black holes the temperature distribution is only shown for the critical accretion rate.

As a consequence of disk truncation the unstable regions are partly eliminated, as can be seen from Fig. B1. For instance an unstable region as described by Menou & Quataert (2001, Fig. 1) could not be present at the distance of 30R_g from a $10^7 M_\odot$ black hole.

For the question whether a weak inner disk could be expected (accretion rate close to the critical rate for state transition, dashed lines in Fig. B1), two conclusions can be drawn: (1) the “flickering” (instead of large luminosity variation) supports the existence of an inner disk if the accretion rate is close to the critical one for state transition; (2) for these rates (dashed lines in Fig. B1) for black hole masses of $10^7 M_\odot$ to $10^8 M_\odot$ the disk instability can be present, for higher masses it may be eliminated, that is, the mass flow can be stable.

For large black holes of $10^8 M_\odot$ the ionization instability may occur as a special feature in a weak inner accretion disks, if the temperature there does not allow a stable structure.
Fig. A.1. Effective temperatures of the disk, ionization instability strip (grey area), and disk truncation (inside ADAF). Truncation depends on the accretion rate (compare Fig. 1), in the figure solid lines for thin disk, dashed and dotted lines for ADAF; situation for a $10^8 M_⊙$ BH: with $\dot{M} = 1 M_⊙/yr$ disk reaches inward to the last stable orbit (solid line); for $0.01 M_⊙/yr$ the disk is truncated far out, beyond the range shown, inside ADAF only (dotted line); in between these two rates lies the critical accretion rate for spectral transition, of interest here, $0.1 M_⊙/yr = 0.05 M_{\text{Edd}}$ with disk truncation at about $1000 R_\odot$ (R_\odot Schwarzschild radius) (dashed line/solid line); For $10^9 M_⊙$ and $10^7 M_⊙$ BHs: only curves for the critical accretion rate are shown.