DIMENSION INVARIANTS FOR GROUPS SATISFYING PROPERTIES (M) AND (NM)

LUIS JORGE SÁNCHEZ SALDAÑA

Abstract. We prove that the Bredon cohomological dimension and the virtual cohomological dimension coincide for groups that admit a cocompact model for EG and satisfy properties (M) and (NM). Among the examples of groups satisfying these hypothesis are cocompact and arithmetic Fuchsian groups, one relator groups, the Hilbert modular group and 3-manifold groups.

1. Introduction

For a group G consider the following properties:

(M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup of G.

(NM) If M is a non-trivial maximal finite subgroup of G then $N_G(M) = M$, where $N_G(M)$ denotes the normalizer of M in G.

In this paper \mathcal{F} will always denote the family of finite subgroups of G. A model for the classifying space EG (usually denoted EG), is a G-CW-complex X such that every isotropy group is finite and the fixed point set X^H is contractible for every finite subgroup H of G. Equivalently, X is a model for EG if for every G-CW-complex Y with finite isotropy groups, there exists a map, unique up to G-homotopy, $Y \to X$. In particular any two models for EG are G-homotopy equivalent. We say G is of type \mathcal{F} if G admits a cocompact model for EG.

The orbit category $\mathcal{O}_\mathcal{F}G$ of G with respect to \mathcal{F} is the category of homogeneous G-sets G/F, where $F \in \mathcal{F}$, and morphisms are given by G-maps. A Bredon module is a contravariant functor from $\mathcal{O}_\mathcal{F}G$ to the category of abelian groups, and a morphism of Bredon modules is a natural transformation. The category of Bredon modules, for G and \mathcal{F} choosen, is abelian with enough projectives. The Bredon cohomological dimension (or proper cohomological dimension) $\text{cd}(G)$ of G is the length of the shortest projective resolution of the constant module $\mathbb{Z}_\mathcal{F}$. If G is torsion free then $\text{cd}(G)$ is the classical cohomological dimension $cd(G)$ of G.

On the other hand, provided that G is a virtually torsion free group, the virtual cohomological dimension $\text{vcd}(G)$ of G is, by definition, the cohomological dimension of a finite index torsion free group. By a well-known theorem due to Serre $\text{vcd}(G)$ does not depend on the finite index subgroup of G that we choose, hence $\text{vcd}(G)$ is a well-defined invariant of G.

For every group G we have the following inequality $\text{vcd}(G) \leq \text{cd}(G)$. This inequality can be strict due to examples constructed in [LN03, LP17, DS17].

2010 Mathematics Subject Classification. Primary 20J05; Secondary 57M27.

Key words and phrases. Properties (M) and (NM), classifying spaces, virtual cohomological dimension, Bredon cohomological dimension.
factors [Lac19], and groups acting chamber transitively on a Euclidean building [DMP16].

In this note we prove \(\text{vcd}(G) = \text{cd}(G) \) for groups of type \(F \) that satisfy properties (M) and (NM). This implies, due to the main theorem of [LM00], the existence of a cocompact model for \(E_G \) of dimension max\(\{3, \text{vcd}(G)\} \). Among the examples of groups that satisfy these properties we have: cocompact Fuchsian groups and arithmetic Fuchsian groups, one relator groups, the Hilbert modular group, and 3-manifold groups. It is worth noticing that the class of groups for which our main theorem applies is closed under taking free products, this is a particular case of Theorem 3.1.

The proof is very short and relies on [ADMPS17, Corollary 3.4] (Theorem 2.1 below), which reduces the proof of the main theorem (Theorem 2.5) to computing the dimension of certain fixed point sets of a cocompact \(X \) model for \(E_G \). For groups satisfying properties (M) and (NM) we prove that \(X \) can be chosen in such a way that the relevant fixed point sets are one-point spaces (Lemma 2.4), hence they have dimension 0.

Acknowledgements. The author wishes to thank Jean-François Lafont for feedback on a draft of this paper. This work was funded by the Mexican Council of Science and Technology via the program Estancias postdoctorales en el extranjero, and by the NSF, via grant DMS-1812028.

2. Preliminaries and main theorem

We have the following criterion that we will use to prove \(\text{vcd}(G) = \text{cd}(G) \) under the hypothesis of our main theorem.

If \(G \) acts on a space \(X \), and \(A \) is an element of \(G \), we denote \(X^A \) the set consisting of all elements of \(X \) fixed by \(A \). In a similar way we define \(X^H \) for a subgroup \(H \) of \(G \).

Theorem 2.1. [ADMPS17 Corollary 3.4] Let \(G \) be a virtually torsion-free group of type \(F \) with a cocompact model \(X \) for \(E_G \). Let \(K \) be the kernel of the \(G \)-action on \(X \). If \(\dim(X^A) < \text{vcd}(G) \) for every finite order element \(A \) of \(G \setminus K \), then \(\text{vcd}(G) = \text{cd}(G) \).

Remark 2.2. Note that if \(G \) is as in Theorem 2.1 then \(\text{vcd}(G) \) is finite. Let \(H \) be a finite index torsion-free subgroup of \(G \). Then a cocompact model \(X \) for \(E_G \) is, by restriction, a cocompact model for \(E_H = E_H \). Therefore \(\text{vcd}(G) = \text{cd}(H) = \dim(X/H) < \infty \).

Our next lemma characterizes properties (M) and (NM) in terms of the existence of a model for \(E_G \) with small fix point sets. Recall that \(F \) is the family of finite subgroups of \(G \).

Lemma 2.3. Let \(G \) be a group. Then the following to conditions are equivalent

1. There exists a model \(X \) for \(E_G \) with the property that \(X^H \) consists of exactly one point for every non-trivial finite subgroup \(H \) of \(G \).
2. Properties (M) and (NM) are true for \(G \).

Proof. Assume \(X \) is a model for \(E_G \) such that \(X^H = \{x_H\} \) for every non-trivial finite subgroup \(H \) of \(G \). Let \(K \) be a non-trivial finite subgroup of \(G \). Then \(K \) is contained in the stabilizer \(S \) of \(x_H \) for a unique \(H \in F \). Note that \(S \) is a maximal finite subgroup of \(G \). In fact, if \(S \) is contained in \(F \in F \), then \(F \) must fix a unique point \(y \) of \(X \) since \(X^F \) consists of a point. In particular, \(S \) fixes \(y \). Hence by uniqueness \(F \) and \(S \) fix the same point of \(X \). Therefore \(F \leq S \). This proves that the stabilizer of any \(x_H \) is a finite maximal subgroup of \(G \), for all \(H \in F \). Hence \(G \)
satisfies (M). The normalizer $N_G(S)$ acts on X^H, hence $N_G(S) \leq S$. Therefore G satisfies (NM).

Assume that G satisfies (M) and (NM). Let Y by any model for EG. Let I be the set of finite maximal subgroups of G. Note that G acts on I by conjugation. Moreover, the stabilizer of $M \in I$ is $N_G(M) = M$, since G satisfies (NM). Then, the join $X = Y * I$ is a model for EG, where the G–action on X is the diagonal action. In fact, X is contractible since it can be seen as the union of copies cones of Y glued all together by their common base. Let $H \in \mathcal{F}$, then X^H consists of the conic point represented by the unique finite maximal subgroup that contains H.

Our next lemma tells us that we can collapse down to a point the fixed point sets of any cocompact model for EG.

Lemma 2.4. Let G be a group of type Σ that satisfies properties (M) and (NM). Then G admits a cocompact model X for EG such that X^H consists of exactly one point for every non-trivial finite subgroup H of G.

Proof. Let Y be any cocompact model for EG. Given a point $y \in Y$, we denote by Gy the G-orbit of y. Denote by Y_{sing} the subspace of Y consisting of points with non-trivial isotropy. Note that Y_{sing} is a G-CW-subcomplex of Y.

We claim that there exist a finite number of points y_1, \ldots, y_m of Y such that the disjoint union $Gy_1 \sqcup \cdots \sqcup Gy_m$ is a G-deformation retract of Y_{sing}.

By Lemma 2.3 there is a model Z for EG such that Z^H consists of exactly one point for every non-trivial finite subgroup H of G. On the other hand we have unique (up to G-homotopy) G-maps $f: Y \to Z$ and $g: Z \to Y$ such that $f \circ g$ and $g \circ f$ are G-homotopic to the corresponding identity functions. These functions induce G-maps $f': Y_{sing} \to Z_{sing}$ and $g': Z_{sing} \to Y_{sing}$, and also, by restriction $f' \circ g'$ and $g' \circ f'$ are G-homotopic to the corresponding identity functions. By construction of Z, Z_{sing} is of the form $\bigsqcup_{M \in \mathcal{M}} Gz_M$, where \mathcal{M} is the set of representatives of conjugacy classes of maximal finite subgroups of G and the isotropy of z_M is M.

Since G admits a cocompact model for EG, by [Lie00] Theorem 4.2 G has a finite number of conjugacy classes of finite subgroups. Therefore $Z_{sing} = Gz_1 \sqcup \cdots \sqcup Gz_m$ for certain points z_1, \ldots, z_m of Z. Define $y_i = f'(z_i)$ for $i = 1, \ldots, m$. We can conclude that $Gy_1 \sqcup \cdots \sqcup Gy_m$ is a G-deformation retract of Y_{sing}. Moreover, if $r: Y_{sing} \to Gy_1 \sqcup \cdots \sqcup Gy_m$ is the mentioned retraction, then $r^{-1}(gy_i)$ is contractible and consists of all points x of Y_{sing} such that $G_x \leq G_{gy_i} = gy_i, g^{-1}$. Hence the setwise stabilizer of $r^{-1}(gy_i)$ is $N_G(G_{gy_i}) = G_{gy_i}$.

Define X to be the G-CW-complex defined by Z/\sim, where \sim is the relation generated by $x \sim y$ if and only if $r(x) = r(y)$. Hence X is G-homotopically equivalent to Z. Therefore X is a model for EG. Clearly X is cocompact and by construction X^H consists of exactly one point if H is a non-trivial finite subgroup of X.

Now we are ready to prove our main theorem.

Theorem 2.5. Let G be a virtually torsion-free group of type Σ that satisfies properties (M) and (NM). Then vcd(G) = cd(G).

Proof. If G is finite then there is nothing to prove. From now on we assume G is infinite.

By Lemma 2.4 there exists a cocompact model X for EG satisfying that X^H consists of exactly one point for every non-trivial finite subgroup H of G.

On the other hand, since G is infinite and virtually torsion free, we conclude that $vcd(G) > 0$. Hence we have $\dim(X^F) = 0 < vcd(G)$ for every non-trivial finite subgroup F of G. Therefore by Theorem 2.4 we have $vcd(G) = cd(G)$. □

3. Examples

Next, we will describe some examples of groups satisfying the hypothesis of Theorem 2.5.

3.1. Groups in the literature.

1. Extensions $1 \to \mathbb{Z}^n \to G \to F \to 1$ such that F is finite and the conjugation action of F on \mathbb{Z}^n is free outside $0 \in \mathbb{Z}^n$, and G is of type \mathbb{F}. Properties (M) and (NM) for this groups are stablished in [DL03]. We do not know if in general these groups are of type \mathbb{F}.

2. Cocompact Fuchsian groups and arithmetic Fuchsian groups. Let G be a Fuchsian group, i.e. G acts properly discontinuously and by orientation-preserving isometries on the hyperbolic plane \mathbb{H}. A subgroup of G is finite and non-trivial if and only if it fixes a unique point in \mathbb{H}. Also any element of infinite order does not fix any point of \mathbb{H} because the action is proper. This implies that \mathbb{H} is a model for EG such that the point set \mathbb{H} consists of one point for every non-trivial finite subgroup H of G. Thus by Lemma 2.3 we have that G satisfies properties (M) and (NM). If additionally G acts cocompactly on \mathbb{H}, then clearly satisfies the hypothesis of Theorem 2.5. If G is an arithmetic Fuchsian group, then the Borel-Serre bordification of \mathbb{H} is a cocompact model for EG with X^H is a one-point space for H finite non-trivial. For more information about Fuchsian groups see [Fre90].

3. One relator groups admiting a cocompact model for EG. Properties (M) and (NM) are verified in [DL03].

4. The Hilbert modular group. A totally real number field K is an algebraic extension of \mathbb{Q} such that all its embeddings $\sigma_i : K \to \mathbb{C}$ have image contained in \mathbb{R}. Let k denote a totally real number field of degree n and O_k its ring of integers. The Hilbert modular group is by definition $PSL_2(O_k)$. If $K = \mathbb{Q}$ we recover the classical modular group $PSL_2(\mathbb{Z})$. Properties (M) and (NM) are verified for the Hilbert modular group in [BSSn16, Lemma 4.3]. Since the Hilbert modular group is a lattice in $PSL_2(\mathbb{R}) \times \cdots \times PSL_2(\mathbb{R})$, then it is an arithmetic group acting diagonally in the symmetric space $\mathbb{H} \times \cdots \times \mathbb{H}$. Hence the Borel-Serre bordification again provides a cocompact model for EG. See [Fre90] for more information of the Hilbert modular group.

3.2. Groups acting on trees and properties (M) and (NM). Let us quickly recall the notation of graph of groups from [Ser03]. A graph of groups \mathcal{Y} consists of a graph Y (in the sense of Serre), one group Y_y for every edge y of Y, one group Y_P for each vertex P of Y, and injective homomorphism $Y_e \to Y_P$ of P is a vertex of the edge e. Recall that associated to Y we have the fundamental group $\pi_1(\mathcal{Y})$ and the Bass-Serre tree T, in such a way that $\pi_1(\mathcal{Y})$ acts on T by simplicial automorphism and the quotient graph is isomorphic to Y. Denote by $f : T \to Y$ the quotient projection.

We will be able to construct more examples using the following theorem.

Theorem 3.1. Let \mathcal{Y} be a graph of groups in the sense of Serre with compact underlying graph. Assume that the vertex groups are of type \mathbb{F} and satisfy properties (M) and (NM), and assume that the edge groups are torsion free. Then the fundamental group $\pi_1(\mathcal{Y})$ of Y is of type \mathbb{F} and satisfies properties (M) and (NM).
Proof. Let T be the Bass-Serre tree of Y. Denote $G = \pi_1(Y)$. Choose cocompact models X_y and X_P for EY_y and EY_P respectively. Then we can construct a model X for EG as follows. Replace each vertex v of T by the corresponding $X_{f(v)}$, and each edge e of T by $X_{p(e)} × [0,1]$. Next if v is a vertex of e glue one one of the $X_{p(e)} × 0$ to X_v using map induced by the homomorphism $X_{f(v)} → X_{p(e)}$ (and $X_{p(e)} × 1 → X_{p(v)}$ where v' is the other vertex of e). Hence X inherits a G-action and we can easily verify that it is a model for EG (compare with [JLSU] Proposition 4.8]). Moreover, the orbit space X/G can be constructed using a similar construction using instead Y, X_P/Y_P and X_y/Y_y. Therefore, since Y is compact and each X_P/Y_P and X_y/Y_y are compact, we have that X/G is also compact. This proves that G admits a cocompact model for EG.

Assume now that each X_y and X_P are models satisfying the conclusion of Lemma 2.3. Let H be a non-trivial finite subgroup of G. Then H cannot fix any edge of T, because every edge group of Y is torsion free. But, since H is finite, has to fix one vertex of T. Hence H fixes a unique vertex v of T. Hence H acts on $X_{p(v)}$, so H fixes a unique point of $X_{p(v)}$. Therefore every non-trivial finite subgroup of G fixes a unique point of X, and by Lemma 2.3 we conclude that G satisfies properties (M) and (NM). □

Our final example are 3-manifold groups. For more information about 3-manifold groups, JSJ-decomposition, and the geometrization theorem see [Mor05].

3.3. 3-manifold groups. Let M be a closed, orientable, connected 3-manifold with fundamental group G. We claim that G is of type F and satisfies properties (M) and (NM). The prime decomposition $M = N_1 \# \cdots \# N_m$ induces a splitting of $G = G_1 * \cdots * G_m$. By Theorem 3.1 it is enough to prove that each G_i is of type $\overline{\mathbb{F}}$ and satisfies properties (M) and (NM).

From now on assume M is prime. Using the Perelman-Thurston geometrization theorem we can chop off M along tori to obtain pieces that are either hyperbolic or Seifert fibered. This is the so-called JSJ-decomposition. More explicitly, we can find a collection of tori (possibly empty) T_1, \ldots, T_r embedded in M such that (abusing of notation) $M - \bigcup_i T_i$ is a disjoint union of manifolds (with boundary if the collection of tori is not empty) such that each piece is either hyperbolic or Seifert fibered. Hence G is the fundamental group of a graph of groups Y with vertex groups the fundamental groups of Seifert fibered manifolds or hyperbolic manifolds, and edge group isomorphic to \mathbb{Z}^2. Again, by Theorem 3.1 it is enough to prove that all vertex groups in Y are of type $\overline{\mathbb{F}}$ and satisfy properties (M) and (NM). If the collection of tori is empty, then M itself is either hyperbolic or Seifert fibered. If M is hyperbolic, then G is torsion free since M is aspherical, thus G satisfies properties (M) and (NM). Additionally the universal cover of M is a cocompact model for EG. If M is Seifert fibered, then M is aspherical unless is covered by the three sphere S^3 or by $S^2 \times \mathbb{R}$. In the S^3 case G is finite, while in the $S^2 \times \mathbb{R}$ case G is either isomorphic to \mathbb{Z} or to the infinite dihedral subgroup D_{∞}. In both cases G satisfies properties (M) and (NM) and is of type $\overline{\mathbb{F}}$. Finally, we have to deal with the case of a non-trivial JSJ-decomposition. In this case we can verify case by case that every hyperbolic and Seifert fibered manifold in the JSJ-decomposition is an aspherical manifolds, and therefore their fundamental groups are torsion free. Hence all vertex and edge groups of Y are torsion free, thus $G = \pi_1(Y)$ is torsion free. Also, we have that M is a cocompact model for G.

We can conclude that the fundamental group of every prime manifold is of type $\overline{\mathbb{F}}$ and satisfies properties (M) and (NM). Therefore every 3-manifold group is of type $\overline{\mathbb{F}}$ and satisfies properties (M) and (NM).
References

[ADMPS17] Javier Aramayona, Dieter Degrijse, Conchita Martínez-Pérez, and Juan Souto. Geometric dimension of lattices in classical simple Lie groups. J. Topol., 10(2):632–667, 2017.

[AMP14] Javier Aramayona and Conchita Martínez-Pérez. The proper geometric dimension of the mapping class group. Algebr. Geom. Topol., 14(1):217–227, 2014.

[Ash84] Avner Ash. Small-dimensional classifying spaces for arithmetic subgroups of general linear groups. Duke Math. J., 51(2):459–468, 1984.

[BSS16] Mauricio Bustamante and Luis Jorge Sánchez Saldaña. On the algebraic K-theory of the Hilbert modular group. Algebr. Geom. Topol., 16(4):2107–2125, 2016.

[DL03] James F. Davis and Wolfgang Lück. The p-chain spectral sequence. K-Theory, 30(1):71–104, 2003. Special issue in honor of Hyman Bass on his seventieth birthday. Part I.

[DMP16] Dieter Degrijse and Conchita Martínez-Pérez. Dimension invariants for groups admitting a cocompact model for proper actions. J. Reine Angew. Math., 721:233–249, 2016.

[DS17] Dieter Degrijse and Juan Souto. Dimension invariants of outer automorphism groups. Groups Geom. Dyn., 11(4):1469–1495, 2017.

[Fre90] Eberhard Freitag. Hilbert modular forms. Springer-Verlag, Berlin, 1990.

[JLS19] Kyle Joecken, Jean-François Lafont, and Luis Jorge Sánchez Saldaña. Virtually cyclic dimension for 3-manifold groups. To appear in Groups, Geometry, and Dynamics.

[KMPN09] P. H. Kropholler, C. Martínez-Pérez, and B. E. A. Nucinkis. Cohomological finiteness conditions for elementary amenable groups. J. Reine Angew. Math., 637:49–62, 2009.

[Lac19] Cyril Lacoste. Dimension rigidity of lattices in semi-simple Lie groups. Groups Geom. Dyn., 13(1):149–189, 2019.

[LM00] Wolfgang Lück and David Meintrup. On the universal space for group actions with compact isotropy. In Geometry and topology: Aarhus (1998), volume 258 of Contemp. Math., pages 293–305. Amer. Math. Soc., Providence, RI, 2000.

[LN03] Ian J. Leary and Brita E. A. Nucinkis. Some groups of type $V F$. Invent. Math., 151(1):135–165, 2003.

[LP17] Ian J. Leary and Nansen Petrosyan. On dimensions of groups with cocompact classifying spaces for proper actions. Adv. Math., 311:730–747, 2017.

[Lück00] Wolfgang Lück. The type of the classifying space for a family of subgroups. J. Pure Appl. Algebra, 149(2):177–203, 2000.

[Mor05] John W. Morgan. Recent progress on the Poincaré conjecture and the classification of 3-manifolds. Bull. Amer. Math. Soc. (N.S.), 42(1):57–78, 2005.

[Ser03] Jean-Pierre Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation.

[Vog02] Karen Vogtmann. Automorphisms of free groups and outer space. In Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), volume 94, pages 1–31, 2002.