Interferometer predictions with triangulated images: solving the multiscale problem

C. Brinch1,* and C. P. Dullemond2,3

1Centre for Star and Planet Formation (Starplan) and Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen \O, Denmark
2Institut für Theoretische Astrophysik Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
3Max-Planck-Institut für Astronomie Königstuhl 17, D-69117 Heidelberg, Germany

Accepted 2014 March 13. Received 2014 March 13; in original form 2014 January 17

ABSTRACT

Interferometers play an increasingly important role for spatially resolved observations. If employed at full potential, interferometry can probe an enormous dynamic range in spatial scale. Interpretation of the observed visibilities requires the numerical computation of Fourier integrals over the synthetic model images. To get the correct values of these integrals, the model images must have the right size and resolution. Insufficient care in these choices can lead to wrong results. We present a new general-purpose scheme for the computation of visibilities of radiative transfer images. Our method requires a model image that is a list of intensities at arbitrarily placed positions on the image-plane. It creates a triangulated grid from these vertices, and assumes that the intensity inside each triangle of the grid is a linear function. The Fourier integral over each triangle is then evaluated with an analytic expression and the complex visibility of the entire image is then the sum of all triangles. The result is a robust Fourier transform that does not suffer from aliasing effects due to grid regularities. The method automatically ensures that all structure contained in the model gets reflected in the Fourier transform.

Key words: techniques: image processing – techniques: interferometric.

1 INTRODUCTION

The technique of interferometry has a long history in radio astronomy and gains more and more popularity also at other wavelengths. In the millimetre and sub-millimetre domain arrays such as the SMA, Plateau de Bure and CARMA allow, for instance, young stellar objects and protoplanetary discs to be spatially resolved down to a few tens of au. And soon, atacama large millimeter/submillimeter array (ALMA) will achieve few-au resolution at wavelengths ranging from 0.3 to 3 mm. In the mid- and near-infrared optical interferometry is maturing as well and has provided new insights into the physics of protoplanetary discs and active galactic nuclei. The interpretation of these data, however, often requires detailed comparisons with theoretical models. Typically, a radiative transfer model is produced of the object of interest, and the results compared to the observations. This paper is about this process of comparing models to interferometric measurements.

Interferometers probe the image of the object on the sky in the Fourier plane. Rather than measuring pixel-by-pixel intensities and thus immediately yielding an image for the observer to interpret, in radio and millimeter interferometry each pair of telescopes measures the so-called complex visibility (the normalized correlation function between the signals measured by the two telescopes). In optical and infrared interferometers usually only the amplitude (not the phase) of the visibility is measured, which is in fact the ratio of the correlated flux density to the total flux density. According to the van Cittert-Zernike theorem the complex visibility as a function of baseline coordinates \((u,v)\) is equal to the Fourier transform of the image on the sky divided by its total flux density. For each combination of three telescopes, one can measure a ‘closure phase’ which also directly follows from the complex Fourier values belonging to each telescope pair. Interferometry measurements are thus measurements in Fourier space, usually called the \(uv\)-plane. If sufficient baselines are available, i.e. the \(uv\)-plane is sufficiently well covered, then the inverse Fourier transform can be carried out and an image reconstructed. However, often the \(uv\)-plane is sparsely covered and image reconstruction is non-unique. In such cases, any model comparison will have to take place in the \(uv\)-plane itself, and model images must be Fourier transformed to the \(uv\)-plane before comparison can take place. Also for the case of a high \(uv\)-coverage, this ‘forward method’ (adapting the model to the observations) can also be useful for predicting the feasibility of observing particular objects and phenomena.

In some cases where the astronomical source has a simple structure which can adequately be described by an algebraic expression
(e.g., point, sphere, disc, cylinder, ring, etc.), the complete Fourier transform is easily calculated analytically and used to model the data (Pearson 1999; Marti-Vidal et al. 2014). However, if a numerical model (typically the output from a radiative transfer code) is used to describe the source, the Fourier transform needs to be calculated numerically. The task of numerically calculating a Fourier transform of a model image may seem trivial. Algorithms such as fast Fourier transform (FFT) can do this with high precision and speed. It turns out, however, that for models that involve a large dynamic range in spatial scale this task can be difficult. For example, the problem of a collapsing molecular cloud core of 10³ au size, with a protostellar disc inside of 100 au size which surrounds a protostar of 0.1 au size covers already five orders of magnitude in spatial scale. Although current interferometers are not able to observe all of these scales simultaneously, it is still possible to cover 2–3 orders of magnitude in spatial scale with ALMA. Observations of a molecular line and the dust continuum will record large-scale emission in the line centre and small-scale emission in the line wings and surrounding continuum. Calculating the uv-plane image is then not trivial at all, and doing so without great care will inevitably lead to errors. For example, one would need to use sufficient padding with blank space around the source model in order to avoid mirror images in the Fourier transform. In this paper, we will describe a new method of computing synthetic uv-plane ‘observations’ which are extremely robust and yield proper results without much care.

The method we present can easily be implemented into existing radiative transfer codes or it can be made into a stand-alone subroutine that can post-process the output from ray-tracing codes. All examples of the method presented in this paper has been made using a customised parallel version of the public available LIME code (Brinch & Hogerheijde 2010).

2 UNSTRUCTURED IMAGES

The main idea of our method is to provide model images not as ‘raster images’ (Fig. 1, left) but as ‘unstructured grid images’ (Fig. 1, right).

Normally, when one makes model images one computes the intensity on a regular rectangular grid (a raster), like a normal digital photo. One thus obtains a list of intensities as a function of x- and y-integer positions: Iij with 1 ≤ i ≤ Ny, and 1 ≤ j ≤ Nx, where Nx,Ny is the total number of pixels. Each such intensity belongs to location (xi, yi) on the image where xi = x0 + iΔx and yi = y0 + jΔy, where Δx and Δy determine the spatial resolution. Usually, Δx = Δy. The largest spatial scale that can be sampled with such images is NxΔx in the x-direction and NyΔy in the y-direction. The smallest spatial scale is Δx in the x-direction and Δy in the y-direction. When making such an image for a model that covers a large dynamic range in spatial scale, one must choose Δx, Δy small enough and Nx and Ny large enough to encompass all these scales. In fact, when computing a meaningful Fourier transform for interferometry one must make sure that NxΔx and NyΔy are substantially larger than the largest scales you can pick up with your interferometer. This is because FFT assumes cyclic symmetry in x and y (leading to mirror copies of your image at regular intervals) whereas in reality this is not true. A proper Fourier transform thus always requires large enough Nx and Ny, even for a single baseline. If one wishes to make one image for multiple baselines, then this puts even stronger lower limits to Nx and Ny. In any event, one always has to take extreme care to choose Δx, Δy, Nx and Ny properly.

The idea we propose here is to produce images on an ‘unstructured grid’ in the image plane (Fig. 1, right). This sounds much more complex than it actually is. The user of our method must generate a set of points (xi, yi) on the image plane (Fig. 1, upper right), compute the intensity Iij corresponding to each of these points, and provide the set (xi, yi, Iij) for 1 ≤ i ≤ N, as well as a set of uv-spacings corresponding to the telescope baselines of interest. Our algorithm will then generate a proper triangulation (Fig. 1, lower right), and compute the complex visibility values for each baseline, as we shall describe in the next section. The only thing the user must take care of is to assure that the set of image grid points (xi, yi) properly map the entire model. Regions where there are small-scale structures require a denser sampling than regions of large-scale smooth structures. If we take the example of a collapsing molecular cloud core with a central star+disc again one should assure that there are sufficient points probing the very small (100 au) disc and an equally large number of points covering the large (10 000 au) scale infalling envelope. If one randomly places points with a probability distribution such that there are statistically as much points between 1 and 100 au as there are between 100 and 10 000 au, then one has presumably a proper sampling. An example of such a probability distribution is

\[P(r)dr \propto \frac{dr}{r} \]

(normalized such that

\[\int_{r_{min}}^{r_{max}} P(r)dr = 1. \]

In principle, one can also make more regular arrangements of pixels with this scheme which also resolve all spatial scales properly, see e.g. Fig. 2.

The optimal solution is to have a line of sight pass through each model grid cell. For a regular NxNy computational grid (in 2D), this would result in the traditional raster image. However, for an AMR style refined grid, the resulting intensity point distribution would be...
Throughout the remainder of this section, we refer the reader to Fig. 3, showing the geometry of a trixel.

The two-dimensional Fourier transformation of an intensity distribution \(I(x,y) \) is given by

\[
F(\mathbf{w}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I(x,y) e^{-i(\mathbf{w} \cdot \mathbf{r})} \, d\mathbf{r},
\]

where \(\mathbf{w} = u\hat{\mathbf{x}} + v\hat{\mathbf{y}} \) and \(\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} \). We can split the Fourier transform into a sum of Fourier transforms of the individual triangles because of the linearity of the transformation. Thus, the task is reduced to calculating the Fourier transform of a single three-sided polygon. If we at first make the simplifying assumption that \(I(x,y) \) is constant over the face of the triangle, e.g., by using the (weighted) mean of the three intensity values of the triangle vertices, we can follow the derivation in Houshmand, Chew & Lee (1991) to obtain the solution

\[
F_{\Delta}(\mathbf{w}) = \sum_{n=1}^{3} I_n \hat{z} \times (\mathbf{I}_{n+1} - \mathbf{I}_n) e^{-i(\mathbf{w} \cdot \mathbf{r}_n)},
\]

where \(\Delta \) denotes a single triangle with vertex coordinate vectors \(\mathbf{r}_n \) and \(\mathbf{I}_n = \mathbf{r}_{n+1} - \mathbf{r}_n \) is the vector along the \(n \)th edge. The vertices and edges are enumerated counter clockwise. We then obtain the Fourier transform of the entire image by summing over all triangles,

\[
F(\mathbf{w}) = \sum_{\Delta} F_{\Delta}(\mathbf{w}).
\]

This formula is simple to work with and gives a good representation of the image in \(uv \)-space, but it does assume a single averaged value for each triangle. If the underlying model gets properly sampled by a ray-tracer, the intensity can be assumed to vary linearly between the vertices of the triangles, and therefore, we can assume that the face of a triangle is described by a plane spanned by the intensity at each of the three vertices. Now in order to introduce a linear variation of the intensity over the face of a triangle, we note that the following distribution over the triangular patch describes the plane spanned by the intensity values at the vertices,

\[
I(\mathbf{r}) = \sum_{n=1}^{3} I_n \hat{z} \times (\mathbf{I}_{n+1} \cdot (\mathbf{r} - \mathbf{r}_{n+1}) / 2A) s(r),
\]

where \(A \) is the area and \(s(\mathbf{r}) \) is the shape function of the triangle,

\[
s(\mathbf{r}) = \begin{cases} 1, & \mathbf{r} \in \Delta \\ 0, & \text{otherwise}. \end{cases}
\]
By inserting equation (6) into equation (3), we get the expression for the Fourier transform of the triangular patch

\[
F(\mathbf{w}) = \sum_{n=1}^{3} I_n \frac{\hat{z} \times \mathbf{I}_{n+1}}{2A} \cdot \int_{\Delta} (\mathbf{r} - \mathbf{r}_{n+1}) e^{-i(\mathbf{w} \cdot \mathbf{r}_n)} dA,
\]

where the shape function has been eliminated by letting the domain of the integral be the support of triangular patch. The solution to the integral part of equation (8) is derived in McInturff & Simon (1991), and we will proceed to quote the resulting expression

\[
\int_{\Delta} (\mathbf{r} - \mathbf{r}_{n+1}) e^{-i(\mathbf{w} \cdot \mathbf{r}_n)} dA = \frac{1}{|\mathbf{w}|^2} \sum_{m=1}^{3} e^{-i(\mathbf{w} \cdot \mathbf{r}_{mn})} \left\{ \hat{z} \times \mathbf{I}_m + \frac{\mathbf{i} \mathbf{r}_{mn} - \mathbf{I}_{n+1}}{|\mathbf{w}|^2} \cdot \hat{z} \times \mathbf{I}_m \cdot \mathbf{w} \right\} j_0 \left(\frac{\mathbf{w} \cdot \mathbf{I}_m}{2} \right) - j_1 \left(\frac{\mathbf{w} \cdot \mathbf{I}_m}{2} \right) \}
\]

\(r_{mn} \) denotes the centre point of the \(m \)th edge and \(j_0 \) and \(j_1 \) are the Bessel functions of the first kind of the order of 0 and 1, respectively. Again, we obtain the Fourier transform of the entire image by summing over all individual triangles. Equation (8) gives us a complete set of visibilities from which we can select a subset that corresponds to a set of observed \(u, v \)-points or we can predict the interferometer response at different antenna configurations and integration times. This Fourier transform does not suffer from aliasing due to the regularity of the pixels since the triangles are randomly oriented (unless, of course, the triangle vertices are sampled at regular intervals) and we do not need a taper region to avoid mirror copies of the image which is needed when using FFT because FFT assumes periodic boundary conditions. The resulting Fourier components can easily be stored in the standard \(uv \)-FITS format (Hanisch et al. 2001). The drawback of the Fourier transform (8) is that it is not fast to compute. The method presented here takes \(O(N \times M) \) operations, where \(M \leq N \), while FFT can be carried out in \(O(N \log N) \) operations.

4 COMPARISON OF METHODS

First, we show the Fourier transform of two simple shapes, a circular annulus (Fig. 4) and an inclined rectangle (Fig. 5). Both shapes have been imaged on a 50 \(\times \) 50 (\(\approx 2500 \)) pixel raster map as well as on a 2500 point trixel map. The resulting images are shown in the left-hand column of Figs 4 and 5. The points for the trixel images have been chosen so that most of the points fall inside the shape and just across the edge. In fact, for the rectangle, only the edge has been mapped with a high density of points, whereas the constant inside and outside of the rectangle has a relatively low point density. The result is a very clearly defined shape for both the annulus and the rectangle as compared to the raster version where the edge appears

\[\text{Figure 4.} \]

The figure shows an image of an annulus (left) and the corresponding Fourier amplitudes (right). In the top row, a normal FFT algorithm has been applied to a regular pixel image, whereas in the bottom row, the method presented in this paper has been applied to an irregular triangulated image.
The Fourier transform of triangulated images

Figure 5. Similar to Fig. 4, but for a rectangular shape function. In this example, we have used anti-aliasing on the raster image in order to smooth out the sharp edges and minimize the artefacts due to the staircase effect of the square pixels.

We have furthermore used anti-aliasing with 16 rays per pixel in the raster version of the rectangle in order to smooth out the edges. This means that the pixels along the edges are coloured according to the fraction of rays that are randomly sampled within each pixel that falls inside the rectangle. This anti-aliasing requires an additional 800 rays. When deciding where to place the rays for the triangulated images, it is generally not possible to do emission weighted ray-tracing, since the regions of strong emission are not known a priori. However, if the source structure is known, at least to a certain degree (which is the case for the rectangle and annulus cases shown here), one can place rays accordingly. When using the LIME code, the positions of the grid points are already weighted by the source structure and the projection of the grid points can then be used as a proxy for the distribution of the rays. Many ray-tracing codes already make use of some sort of ‘clever’ ray placement (e.g., Dullemont & Turolla 2000; Pontoppidan et al. 2009) from which a triangulated image could be formed rather than remapping the rays on to a raster image.

The right-hand column of Figs 4 and 5 shows the corresponding Fourier transforms, FFT in the case of the raster images and the method derived above in the case of the trixel images. It is clear that for both cases, the two different Fourier transformation methods produce basically the same result, but because our method is not resolution limited, the resulting Fourier transform comes out in a much, much higher resolution (actually higher than what can be displayed in a raster contour plot). The FFT of the annulus shows clear asymmetric edge effects which are completely absent in trixel Fourier transform. The anti-aliasing which is used to smooth out the edges in the rectangle example of Fig. 5 does not improve the FFT significantly.

The next example is a more realistic case, an astronomical pseudo-model, based on a real protoplanetary disc model, with the addition of an arbitrary spiral density perturbation. The spiral was chosen in order to introduce spatial variations on all scales and is in no way assumed to describe any physical reality, hence pseudo-model. However, the underlying disc model is consistent with current models of the disc around the T Tauri star TW Hydra (as described in, e.g., Andrews et al. 2012) in terms of mass, mass distribution, size, distance, temperature, etc. The radiation transfer model has been calculated by the LIME code and the solution has been ray-traced to produce an image of the continuum at 1 mm. Fig. 6 shows the resulting raster image and trixel image. The resolution and image size of the raster image has been chosen to minimize the artefacts in the visibilities which can be measured by ALMA, given a source distance of 50 parsec, assuming a synthesized beam size of 0.1 arcsec and a maximum recoverable scale of 15 arcsec. The resulting raster image consists of $10^5 \times 10^5$ pixels. The trixel image is made out of as few as possible rays, and hence trixles, which still produces a Fourier transform which is as good as the FFT. In this case the number of rays are 5000 or a factor of 200 fewer rays than what is needed for the raster image. If we use fewer rays for the trixel image the Fourier transform no longer compares well to...
the FFT. This, however, is not due to a limitation of the method, but simply because we no longer describe the source structure well enough. An important thing to notice is that, despite the fewer rays used in the trixel image, we can trace the spirals in the Fourier transform to much greater \(uv \)-distances, although the spiral do tend to become noisier.

Comparing the Fourier transforms, we see that there is quite some difference between the FFT and our method. A test shows that if raster images are made in progressively higher resolution, the FFT approaches the Fourier transform produced by our method, and so the morphologic difference the two Fourier transforms shown here are only due to the inadequate resolution in the raster image.

Finally, we have made a small-resolution study of our method and compared this with the performance of the FFT. For this, we used a 2D unit disc which has the well-known analytic Fourier transform,

\[
F(u, v) = \frac{j_1(2\pi\sqrt{u^2 + v^2})}{\sqrt{u^2 + v^2}}. \tag{10}
\]

The unit disc has been mapped on to a regular pixel grid, using anti-aliasing, that is, with a fractional shading of pixels proportionally to the fraction of the pixel area that is covered by the disc. For the trixel version, the unit disc has been mapped similarly to the example in Fig. 4.

The result of the resolution study is shown in Fig. 7, where the full red curve shows the analytic solution and the dotted blue and dashed green curves show the trixel method and FFT, respectively. The left-hand panel shows the solutions at a resolution of \(30^2 \) pixels for the FFT version and \(30^2 \) rays for the trixel method. The right-hand panel in Fig. 7 shows the \(L^2 \) norm (the Euclidean distance between solutions) of both methods as a function of increasing resolution. Both methods seem to have converged at around \(N = 30 \). After convergence, the \(L^2 \) norm of FFT is slightly better than the trixel method, but judged by the fit in the main panel, both methods give very accurate results. The phase is slightly offset for larger \(uv \)-spacings in the trixel method, but on the other hand, the FFT overproduces the power by a small amount on the smallest spatial scales and obviously, the FFT method has a significantly lower resolution in \(uv \)-space than what can be achieved by the method presented here.

5 CONCLUSIONS

In this paper, we have presented a method to create radiative transfer model images in arbitrary resolution and very high dynamic range using a finite, and much smaller number of rays than is needed for a raster image in comparable resolution. The method uses an unstructured (possibly random) distribution of rays out of which a Delaunay triangulation is calculated. Each Delaunay triangle is easily Fourier transformed using equation (8).

Unfortunately, equation (8) becomes very time consuming for large or ‘complete’ sets of \(uv \)-spacings. The Fourier transformation method presented here requires \(O(N^2) \) operations which from a
The Fourier transform of triangulated images

Figure 7. The left-hand panel shows a comparison between the analytic Fourier transform of a unit disc (full red line) and the results of FFT (dashed green) and the trixel method (dotted blue). The right-hand panel shows the L^2 norm of both methods as function of resolution. N refers to the number of pixels in the case of FFT and the number of rays in the case of the trixel method.

Performance point of view is vastly outperformed, particularly for large N, by FFT which requires $O(N \log N)$ operations. However, like equation (8), ray-tracing in a 3D radiative transfer model is also an $O(N^2)$ process in the number of pixels per axis and so what is gained in speed from using FFT is quickly lost again from the increased ray-tracing time in order to reach high enough image resolution. One could consider taking an unstructured and therefore high resolution, set of rays and remap it on to a very high resolution raster in order to perform an FFT. Such a remapping, however, can potentially also be quite time consuming on its own and it still requires a somewhat arbitrary choice of minimum and maximum scale to be made. Increasing the number of pixels dramatically has the further disadvantages of producing very large FITS files, in particular when doing spectral line images, where the spectral axis can potentially hold hundreds of channels. For the example in Fig. 6, the FFT on the raster image is done in less than a few seconds (which means that the computation time is dominated by I/O and other overhead), whereas the Fourier transform on the trixel image takes a total of 1.5 min. However, this Fourier transform has about four times higher resolution than the FFT. In order to reach the same resolution in uv-space with FFT, the image has to be ray-traced at four times the resolution. The FFT operation on the higher resolution raster image does not take noticeable longer, but the ray-tracing time, in this example, goes from about 20 s to about 4 min and this does not include the additional time requirement when adding anti-aliasing in order to improve the image quality. It is also possible to lower the computation time significantly for the unstructured Fourier transform method, when comparing a model to interferometric data, by only calculating the uv-points which corresponds to the observed uv-spacings rather than calculating complete sets of uv-points. Equation (5) is also trivially parallelizable which helps to speed up the calculations since most modern computers have multiple cores.

There is currently no image container for unstructured triangulated images although the FITS format could in principle be used. One option would be to build the Fourier transformer directly into the ray-tracing code and let the code output a uv-FITS file rather than having the Fourier transformation be a post-processing tool that works on outputted images. Alternatively, trixels can be stored in standard FITS format as tabulated data.

ACKNOWLEDGEMENTS

CPD acknowledges support from the German Science Foundation (DFG) Priority Program 1573, Grant Du 414/10-1. The research of CB has been supported by the Lundbeck Foundation Junior Group Leader Fellowship program ‘The Earliest Phases of Circumstellar Disks’ (PI: Jes Jørgensen).

REFERENCES

Andrews S. M. et al., 2012, ApJ, 744, 162
Barber C. B., Dobkin D. P., Huhdanpaa H., 1996, ACM Trans. Math. Softw., 22, 469
Brinch C., Hogerheijde M. R., 2010, A&A, 523, 25
Dullemond C. P., Turolla R., 2000, A&A, 360, 1187
Hanisch R. J., Farris A., Greisen E. W., Pence W. D., Schlesinger B. M., Teuben P. J., Thompson R. W., Warnock A. I., 2001, A&A, 376, 359
Houshmand B., Chew W. C., Lee S.-W., 1991, IEEE Trans. Antennas Propag., 39, 252
Lee D. T., Schachter B. J., 1980, Int. J. Comput. Inf. Sci., 9, 219
McInturff K., Simon P., 1991, IEEE Trans. Antennas Propag., 39, 1441
Marti-Vidal I., Vlemmings W. H. T., Muller S., Casey S., 2014, Astrophysics Source Code Library, record ascl:1402.017
Pearson T. J., 1999, in Taylor G. B., Curilli C. L., Perley R. A., eds, ASP Conf. Ser. Vol. 180, Synthesis Imaging in Radio Astronomy II Non-Imaging Data Analysis. Astron. Soc. Pac., San Francisco, p. 335
Pontoppidan K. M., Meijerink R., Dullemond C. P., Blake G. A., 2009, ApJ, 704, 1482
Springel V., 2010, MNRAS, 401, 791

This paper has been typeset from a TeX/LATEX file prepared by the author.