Non-steroidal anti-inflammatory drugs and statins in relation to colorectal cancer risk

Mazyar Shadman, Polly A Newcomb, John M Hampton, Karen J Wernli, Amy Trentham-Dietz

AIM: To investigate the association between individual or combined use of non-steroidal anti-inflammatory drugs (NSAIDs) or statins and colorectal cancer risk.

METHODS: In a population-based case-control study in women, we examined the association between NSAIDs and statin use and the risk of colorectal cancers. We further investigated whether the use of statins modifies the protective effect of NSAIDs. Female cases ($n = 669$) of colorectal cancer aged 50-74 years were identified from a statewide registry in Wisconsin during 1999-2001. Community control women ($n = 1375$) were randomly selected from lists of licensed drivers and Medicare beneficiaries. Medication use and risk factor information were gathered during a structured telephone interview. A multivariable logistic regression model was used to calculate odds ratio (OR) and 95% confidence interval (CI).

RESULTS: Overall, NSAIDs users had a 30% reduction in risk of colorectal cancer (95% CI: 0.56-0.88). Statin use was not associated with colorectal cancer risk (OR = 1.17, 95% CI: 0.74-1.85), regardless of structural type (lipophilic or hydrophilic), duration of use, or recency. There was no evidence of an interaction between NSAIDs and statins and colorectal cancer risk (P-interaction = 0.28).

CONCLUSION: Although our results confirm the inverse association between NSAIDs use and colorectal cancer risk, they do not support a risk reduction in statin users, or an interaction effect of combined NSAIDs and statin use.

Abstract

AIM: To investigate the association between individual or combined use of non-steroidal anti-inflammatory drugs (NSAIDs) or statins and colorectal cancer risk.

METHODS: In a population-based case-control study in women, we examined the association between NSAIDs and statin use and the risk of colorectal cancers. We further investigated whether the use of statins modifies the protective effect of NSAIDs. Female cases ($n = 669$) of colorectal cancer aged 50-74 years were identified from a statewide registry in Wisconsin during 1999-2001. Community control women ($n = 1375$) were randomly selected from lists of licensed drivers and Medicare beneficiaries. Medication use and risk factor information were gathered during a structured telephone interview. A multivariable logistic regression model was used to calculate odds ratio (OR) and 95% confidence interval (CI).

RESULTS: Overall, NSAIDs users had a 30% reduction in risk of colorectal cancer (95% CI: 0.56-0.88). Statin use was not associated with colorectal cancer risk (OR = 1.17, 95% CI: 0.74-1.85), regardless of structural type (lipophilic or hydrophilic), duration of use, or recency. There was no evidence of an interaction between NSAIDs and statins and colorectal cancer risk (P-interaction = 0.28).

CONCLUSION: Although our results confirm the inverse association between NSAIDs use and colorectal cancer risk, they do not support a risk reduction in statin users, or an interaction effect of combined NSAIDs and statin use.
the increased activation of caspase-3, a pro-apoptotic protein, in combined statin and NSAIDs use\cite{2,3}, suggest a synergistic anti-cancer effect. These observations have also been supported by some observational data\cite{3}.

The purpose of this study was to investigate the effects of NSAIDs and statin use in relation to colorectal cancer in a population-based case-control study in women. We also investigated whether the use of statins modified the relationship between NSAIDs and statins.

MATERIALS AND METHODS

Female cases (\(n = 669 \)) of colorectal cancer aged 50-74 years were identified from the Wisconsin cancer reporting system, the statewide tumor registry, during 1999-2001. Registry reports included stage, histology and limited treatment information. Of the 1038 eligible cases, 170 (16.4%) were deceased, 19 (1.8%) were not contacted due physicians' disapproval, 22 (2.1%) could not be located and 154 (14.8%) declined to participate, resulting in a 65% response rate. We also excluded four cases with unreliable interviews. Community control (\(n = 1375 \)) women were randomly selected to match the age distribution of cases from two sampling frames: lists of licensed drivers (age < 65 years) and Medicare beneficiaries (age \(\geq 65 \) years). Women were ineligible as controls if they reported a history of colorectal cancer. The response rate for controls was 79%.

Structured telephone interviews were conducted to obtain information regarding medication use, including NSAIDs and statins, and other factors (Table 1). We considered the most commonly used statins that were approved by the Food and Drug Administration from 1995 through 2000. Having ever used NSAIDs or statins was confined to subjects who reported using the medications for at least 30 d. We defined the duration of each period of NSAIDs or statin use. Use of these preparations within one year before the reference year was considered as current use. We categorized statins according to whether they were lipophilic (simvastatin, lovastatin and fluvastatin) or hydrophilic (pravastatin), as it has been suggested that the anti-cancer activity of statins might be limited to the ones with lipophilic structure\cite{4}.

Odds ratios (OR) and 95% confidence intervals (CI) were calculated from multivariable logistic regression models to estimate the associations between NSAIDs and statins with the risk of colorectal cancer. We also evaluated possible interaction between NSAIDs and statin use by including a cross-product term of “ever use” of these medications in the regression model. We adjusted for the potential confounding factors (Table 1) by including them in the multivariate models.

RESULTS

Overall, 657 cases of colorectal cancer and 1342 controls were included in the analysis (Table 1). The prevalence of regular NSAIDs use in the sample was 33% (20% aspirin and 13% non-aspirin, 26% current users). The prevalence of statin use was 7% (6% current users, 5% lipophilic and 2% hydrophilic) (Table 2).

Those who had ever used NSAIDs had a 30% decrease in colorectal cancer risk (\(OR = 0.70; 95\% CI: 0.56-0.88 \)) compared to those who had never used NSAIDs. The risk reduction was statistically significant in current users but not in former users and there was no trend for increasing duration (\(P = 0.75 \)).

Having ever used statins was not associated with colorectal cancer risk (\(OR = 1.17; 95\% CI: 0.74-1.85 \)) regardless of the type of statin (lipophilic or hydrophilic). Neither long term (\(\geq 3 \) years) nor current statin use were associated with risk.

Having ever used both NSAIDs and statins was not associated with colorectal cancer risk (\(OR = 0.96; 95\% CI: 0.49-1.78 \)). The association between NSAIDs use and colorectal cancer risk was not modified by use of statins (\(P\)-interaction = 0.28) (data not shown).

DISCUSSION

Our finding of a 30% reduced risk of colorectal cancer with NSAIDs use is consistent with the current evidence. The observed colorectal cancer risk reductions range from 20% to 40%, possibly due to the heterogeneity of study designs\cite{5}.

In contrast to our findings on NSAIDs use, we did not observe an association between statin use and colorectal cancer risk. This association has been examined in secondary analyses of randomized controlled trials that

Table 1 Characteristics of women with colorectal cancer and controls \(n \) (%)

Characteristic	Cases (\(\eta = 657 \))	Controls (\(\eta = 1342 \))
Education		
No high school diploma	95 (14.8)	119 (11.8)
High school diploma	312 (48.7)	632 (40.9)
Some college	143 (22.3)	312 (20.7)
College degree	91 (14.2)	257 (17.6)
Type of postmenopausal hormone therapy		
Never	417 (65.2)	696 (55.7)
Estrogen only	73 (11.4)	145 (10.9)
Estrogen and progestin only	41 (6.4)	133 (7.2)
Other combination	109 (17.0)	344 (26.2)
Family history of colorectal cancer		
No	492 (78.0)	1060 (87.2)
Yes	116 (19.1)	171 (12.8)
Body mass index (kg/m\(^2\))		
< 25	273 (42.7)	538 (40.9)
25-30	206 (32.2)	465 (36.9)
> 30	160 (25.0)	314 (22.1)
History of colorectal cancer endoscopic screening (colonoscopy/sigmoidoscopy)		
No	429 (67.3)	816 (61.5)
Yes	208 (32.6)	455 (38.5)
Smoking history (pack-years)		
Never	311 (48.7)	677 (54.7)
< 10	101 (15.8)	208 (15.1)
10-20	53 (8.3)	127 (7.4)
> 20	174 (27.2)	308 (22.9)

\(^1\) Control percentages were age-adjusted to the cases age distribution. In this table, percentages are based on excluding unknowns in that category.
Table 2 Multivariable OR of colorectal cancer associated with statin and NSAIDs use

Cases n (%)	Controls n (%)	OR¹	95% CI¹	OR²	95% CI²	
NSAIDS						
Never	462 (71.9)	837	0.70	1.00	Reference	
Ever	181 (28.1)	480	0.69	0.55-0.86	0.70	0.56-0.88
Former	41	109	0.74	0.50-1.11	0.77	0.51-1.15
Current	140 (21.8)	371	0.68	0.53-0.86	0.70	0.53-0.88
Duration (yr)						
< 1	8	25	0.71	0.30-1.65	0.71	0.38-1.69
1-4	85	233	0.70	0.52-0.93	0.70	0.52-0.94
≥ 5	88	222	0.68	0.51-0.92	0.71	0.52-0.96
Lipophilic use						
Never use	453 (92.6)	1114	1.00	Reference	1.00	Reference
Ever use	36 (7.4)	81	1.03	0.66-1.60	1.17	0.74-1.85
Former	4	9	1.63	0.49-5.44	1.93	0.56-6.06
Current	32	72	0.97	0.60-1.55	1.09	0.67-1.78
Hydrophilic use						
Never use	30 (6.1)	64	0.96	0.51-1.80	1.07	0.56-2.03
Ever use	7	14	1.10	0.60-2.00	1.27	0.68-2.38
Type						
Never use	462 (71.9)	837	1.00	Reference	1.00	Reference
Ever use	181 (28.1)	480	0.69	0.55-0.86	0.70	0.56-0.88
Former	41	109	0.74	0.50-1.11	0.77	0.51-1.15
Current	140 (21.8)	371	0.68	0.53-0.86	0.70	0.53-0.88
Duration (yr)						
< 1	8	25	0.71	0.30-1.65	0.71	0.38-1.69
1-4	85	233	0.70	0.52-0.93	0.70	0.52-0.94
≥ 5	88	222	0.68	0.51-0.92	0.71	0.52-0.96

¹Adjusted for age and reference year. ²Adjusted for age, reference year, education, post menopausal hormone use, first degree family history of colorectal cancers, body mass index, history of colorectal cancer endoscopic screening, and smoking.

Statins are relatively new medications, therefore examining outcomes like adenomatous polyps as an intermediate step in colorectal cancer development might be a reasonable approach to evaluate both individual and combined effect of statins on colorectal cancer risk. Our study was restricted to women, but there are no reported gender effects on the association of drugs with colorectal cancer risk. The availability of detailed information, control for potential confounding factors, and reliable exposure measurements are the major strengths of our study.

In conclusion, these results support the inverse association between NSAIDs use and colorectal cancer risk in women, especially in current users. We did not detect an association between colorectal cancer risk and statin use, regardless of type (lipophilic vs hydrophilic), recency or duration of use. Further, there was no interaction effect of combined NSAIDs and statin use.

COMMENTS

Background
The use of non-steroidal anti-inflammatory drugs (NSAIDs) such as Aspirin is known to be inversely associated with risk of developing colorectal cancer. Some studies have suggested such an association with the use of the commonly used lipid lowering drugs, statins. There is also some experimental data suggesting a synergistic effect for these two popular drug families against colorectal cancer risk. Our study was restricted to women, but there are no reported gender effects on the association of drugs with colorectal cancer risk. Therefore, examining outcomes like adenomatous polyps as an intermediate step in colorectal cancer development might be a reasonable approach to evaluate both individual and combined effect of statins on colorectal cancer risk. Our study was restricted to women, but there are no reported gender effects on the association of drugs with colorectal cancer risk. The availability of detailed information, control for potential confounding factors, and reliable exposure measurements are the major strengths of our study.

In conclusion, these results support the inverse association between NSAIDs use and colorectal cancer risk in women, especially in current users. We did not detect an association between colorectal cancer risk and statin use, regardless of type (lipophilic vs hydrophilic), recency or duration of use. Further, there was no interaction effect of combined NSAIDs and statin use.

Research frontiers
While NSAIDs have some possible protective effect against colorectal cancer, they are not yet approved for routine use for this purpose, mainly because of their potentially fatal side effect, bleeding. Finding another protective agent that works synergistically with NSAIDs, allowing a decreased NSAIDs dose, could lower the incidence of the side effect whilst preserving the desired effect; cancer prevention. The promising evidence indicating such an effect for statins is exciting, because these drugs are a hot topic for different preventive strategies, especially in cardiovascular diseases.

Applications
The study results confirm the previously known inverse association between NSAIDs use and colorectal cancer risk.

www.wjgnet.com
Peer review
This is a retrospective case-controlled study investigating if NSAIDs or statins have chemopreventive effects in women with regard to colorectal cancer (CRC). It is well known that regular users of NSAIDs are at less risk of developing gastrointestinal cancers, including CRC. This paper supports this hypothesis.

REFERENCES
1 Chan A. NSAIDs (including aspirin): Role in prevention of colorectal cancer. Waltham, MA: UpToDate, 2007
2 Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K, Tang J, Rosenbloom SW, Wittes J, Corle D, Hess TM, Wolg JM, Boisserie F, Anderson WF, Viner J, Bagheri D, Burn J, Chung DC, Dewar T, Foley TR, Hoffman N, Macrae F, Pruitt RE, Saltzman JR, Sylvestrowicz T, Gordon GB, Hawk ET. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 2006; 355: 873-884
3 Coogan PF, Smith J, Rosenberg L. Statin use and risk of colorectal cancer. J Natl Cancer Inst 2007; 99: 32-40
4 Friis S, Poulsen AH, Johnsen SP, McLaughlin JK, Fryzek JP, Dalton SA, Sorensen HT, Olsen JH. Cancer risk among statin users: a population-based cohort study. Int J Cancer 2005; 114: 643-647
5 Hoffmeister M, Chang-Claude J, Brenner H. Individual and joint use of statins and low-dose aspirin and risk of colorectal cancer: a population-based case-control study. Int J Cancer 2007; 121: 1325-1330
6 Jacobs EJ, Rodriguez C, Brady KA, Connell CJ, Thun MJ, Calle EE. Cholesterol-lowering drugs and colorectal cancer incidence in a large United States cohort. J Natl Cancer Inst 2006; 98: 69-72
7 Welch HG. Statins and the risk of colorectal cancer. N Engl J Med 2005; 353: 952-954; author reply 952-954
8 Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E. The effect of pravastatin on coronary artery disease after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1998; 338-345
9 Vinogradova Y, Hippisley-Cox J, Coupland C, Logan R. Risk of colorectal cancer in patients prescribed statins, nonsteroidal anti-inflammatory drugs, and cyclooxygenase-2 inhibitors: nested case-control study. Gastroenterology 2007; 133: 393-402
10 Peyton JT, Gruber SB, Higgens PD, Almgro R, Bonner JD, Rennert HS, Low M, Greenson JK, Rennert G. Statins and the risk of colorectal cancer. N Engl J Med 2005; 352: 2184-2192
11 Strandberg TE, Pyorälä K, Cook TJ, Wilhelmsen L, Faergeman O, Thorgeirsson G, Pedersen TR, Kjekshus J. Mortality and incidence of cancer during 10-year follow-up of the Scandinavian Simvastatin Survival Study (4S). Lancet 2004; 364: 771-777
12 Agarwal B, Bhendwal S, Halmsob B, Moss SF, Ramey WG, Holt PR. Lovastatin augments apoptosis induced by chemotherapeutic agents in colon cancer cells. Clin Cancer Res 1999; 5: 2223-2229
13 Swamy MV, Patiolla JM, Steele VE, Kopelovich L, Reddy BS, Rao CV. Chemoprevention of familial adenomatous polyposis by low doses of atorvastatin and celecoxib given individually and in combination to APCMin mice. Cancer Res 2006; 66: 7370-7377
14 Shureiqi I, Chen D, Lee JJ, Yang P, Newman RA, Brenner DE, Lotan R, Fischer SM, Lippman SM. 15-LOX-1: a novel molecular target of nonsteroidal anti-inflammatory drug-induced apoptosis in colorectal cancer cells. J Natl Cancer Inst 2000; 92: 1136-1142
15 Yang W, Vechich A, Mariadason J, Nicholas C, Corner G, Houston M, Edelmann W, Kucherlapati R, Holt PR, Augenlicht LH. p21(WAF1/cip1) is an important determinant of intestinal cell response to sulindac in vitro and in vivo. Cancer Res 2001; 61: 6297-6302
16 Demiere MF, Higgins PD, Gruber SB, Hawk E, Lippman SM. Statins and cancer prevention. Nat Rev Cancer 2005; 5: 930-942
17 Reddy BS, Wang CX, Kong AN, Khor TO, Zheng X, Steele VE, Kopelovich L, Rao CV. Prevention of azoxymethane-induced colon cancer by combination of low doses of atorvastatin, aspirin, and celecoxib in F 344 rats. Cancer Res 2006; 66: 4542-4546
18 Swamy MV, Cooma I, Reddy BS, Rao CV. Lamin B, caspase-3 activity, and apoptosis induction by a combination of HMG-CoA reductase inhibitor and COX-2 inhibitors: a novel approach in developing effective chemopreventive regimens. Int J Oncol 2002; 20: 753-759
19 Dale KM, Coleman CI, Henyan NN, Kluger J, White CM. Statins and cancer risk: a meta-analysis. JAMA 2006; 295: 74-80
20 The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998; 339: 1349-1357
21 Blais L, Desgagné A, Le Lorier J. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors and the risk of cancer: a nested case-control study. Arch Intern Med 2000; 160: 2363-2368
22 Friis S, Sorensen HT, McLaughlin JK, Johnsen SP, Blot WJ, Olsen JH. A population-based cohort study of the risk of colorectal and other cancers among users of low-dose aspirin. Br J Cancer 2003; 88: 684-688
23 Graaf MR, Beiderbeck AB, Egberts AC, Richel DJ, Guchelaar HJ. The risk of cancer in users of statins. J Clin Oncol 2004; 22: 2388-2394
24 Kaye JA, Jick H. Statin use and cancer risk in the General Practice Research Database. Br J Cancer 2004; 90: 635-637
25 Setoguchi S, Glynn RJ, Avorn J, Mogun H, Schneeweiss S. Statins and the risk of lung, breast, and colorectal cancer in the elderly. Circulation 2007; 115: 27-33
26 Pocobelli G, Newcomb PA, Trentham-Dietz A, Titus-Ernstoff L, Hampton JM, Egan KM. Statin use and risk of breast cancer. Cancer 2008; 112: 27-33