Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations

V. N. Kolokoltsov1\textsuperscript,* M. A. Veretennikova2†
1Department of Statistics, 2Mathematics Institute
University of Warwick
Coventry, CV4 7AL, UK
1v.kolokoltsov@warwick.ac.uk, 2m.veretennikova@warwick.ac.uk
February 28, 2014

Abstract

The purpose is to study the Cauchy problem for non-linear in time and space pseudo-differential equations. These include the fractional in time versions of HJB equations governing the controlled scaled CTRW. As a preliminary step which is of independent interest we analyse the corresponding linear equation proving its well-posedness and smoothing properties.

Key Words and Phrases: fractional calculus, Caputo derivative, Mittag-Leffler functions, fractional Hamilton-Jacobi-Bellman type equations

*Partially supported by the IPI RAN grants RFBR 11-01-12026 and 12-07-00115, and by the grant 4402 of the Ministry of Education and Science of Russia
†Supported by EPSRC grant EP/HO23364/1 through MASDOC, University of Warwick, UK
Introduction

The purpose of this paper is to study well-posedness of the Cauchy problem for the fractional in time and space pseudo-differential equation

\[D_{0,t}^{\beta} f(t, y) = -a(-\Delta)^{\alpha/2} f(t, y) + H(t, y, \nabla f(t, y)) \]

(0.1)

where \(y \in \mathbb{R}^d, t \geq 0, \beta \in (0, 1), \alpha \in (1, 2], H(t, y, p) \) is a Lipschitz function in all of its variables, and \(f(0, y) = f_0(y) \) is known and bounded, and \(a \) is a constant, \(a > 0 \). Here \(\nabla \) denotes the gradient with respect to the spatial variable. For a function dependent on several spatial variables, say \(x, y \), we may occasionally indicate the variable with respect to which the gradient is taken, by a subscript, \(\nabla_x \). We denote by \(D_{0,t}^{\beta} \) the Caputo derivative:

\[D_{0,t}^{\beta} f(t, y) = \frac{1}{\Gamma(1-\beta)} \int_0^t \frac{df(s, y)}{ds} (t-s)^{-\beta} ds, \]

(0.2)

whilst \(-(-\Delta)^{\alpha/2}\) is the fractional Laplacian

\[-(-\Delta)^{\alpha/2} f(t, y) = C_{d,\alpha} \int_{\mathbb{R}^d} \frac{f(t, y) - f(t, x)}{|y - x|^{d+\alpha}} dx, \]

(0.3)

where \(C_{d,\alpha} \) is a normalizing constant. Extension of our results for (0.1) to the case where \(H = H(t, y, f(t, y), \nabla f(t, y)) \) is straightforward and we omit it here.

As a preliminary analysis we establish the regularity properties of the linear equations of the form

\[D_{0,t}^{\beta} f(t, y) = -a(-\Delta)^{\alpha/2} f(t, y) + h(t, y), \]

(0.4)

with a given function \(h \), an initial condition \(f(0, y) = f_0(y) \), \(\beta \in (0, 1) \), \(\alpha \in (1, 2] \), and a constant \(a > 0 \). This allows one to reduce the analysis of (0.1) to a fixed point problem. Section 3 is devoted to the linear problem (0.4) and in section 4 we formulate and prove our main results for equation (0.1).

In this section we present a literature review. Among researchers who studied solutions to fractional differential equations are Mainardi.
More results and reviews can be found in references therein. Fractional differential equations appear for example in modelling processes with memory, see Uchaikin [2012], Tarasov [2011, XV], J. A. Tenreiro Machado [2012], E. Scalas and Meerschaert [2004]. Several authors solve fractional differential equations using Laplace transforms in time, see Kexue and Jigen [2011], Kilbas et al. [2006] and Lizama and N’Guerekata [2011] for example.

The book Diethelm [2004] covers analysis for Caputo time-fractional differential equations with the parameter $\beta > 0$, for example

$$D_{0,t}^{\alpha,\beta} y(x) = -\mu y(x) + q(x),$$

with $y(0) = y^{(0)}, Dy(0) = y^{(1)}, \beta \in (1, 2), \mu > 0$. In Bajlekova [2001] the theory for fractional differential equations in L^p spaces is developed. Well-posedness of (0.4) in L^p may be deduced from there.

In Meerschaert et al. [2009] the authors consider classical solutions for fractional Cauchy problems in bounded domains $D \subset \mathbb{R}^d$ with Dirichlet boundary conditions.

In Zhou et al. [2013] one may find the analysis for the non-local Cauchy problem in a Banach space, where instead of $-(-\Delta)^{\alpha/2}$ there is a general infinitesimal generator of a strongly continuous semigroup of bounded linear operators. The authors present conditions that need to hold to ensure existence of mild forms of the fractional differential equation.

The paper Ma et al. [2013] establishes asymptotic estimates of solutions to the following fractional equation and its similar versions:

$$D_{0,t}^{\alpha} u(x, t) = a^2 \frac{d^2 u(x, t)}{dx^2},$$

for $t > 0, x \in \mathbb{R}, \alpha \in (0, 1), u(x, 0) = \phi(x), \lim_{|x| \to +\infty} u(x, t) = 0$, however the case of the fractional Laplacian is not included and there is no $h(x, t)$ term on the right hand side (RHS).
In [Kokurin 2013] the author studies the uniqueness of a solution to
\[D_{0,t}^\alpha u(t) = Au(t), \tag{0.7} \]
where \(t > 0, u(0) = u_0, \) and \(A \) is an unbounded closed operator in a Banach space, \(\alpha \in (0, 1). \) However there is no non-homogeneity term \(h(t) \) on the RHS. For solvability of linear fractional differential equations in Banach spaces one may see [Gorenflo et al. 1999], where
\[D_{0,t}^\alpha x(t) = Ax(t), \tag{0.8} \]
and \(\frac{d^k}{dt^k} x(t)|_{t=0} = \xi_k, \) for \(k = 0, \ldots, m - 1. \) The authors give sufficient conditions under which the set of initial data \(\xi_k \) for \(k = 0, \ldots, m - 1 \) provides a solution to (0.8) of the form \(\sum_{k=0}^{m-1} t^k E_{\alpha,k+1}(At^\alpha)\xi_k. \) In particular, these conditions depend on Roumieu, Gevrey and Beurling spaces related to the operator \(A. \)

In [Tao et al. 2012] the authors use fixed point theorems to prove existence and uniqueness of a positive solution for the problem
\[D_{0,t}^\alpha x(t) = f(t, x(t), -D_{0,t}^\beta x(t)), t \in (0, 1), \tag{0.9} \]
with non-local Riemann-Stieltjes integral condition
\[D_{0,t}^\beta x(0) = D_{0,t}^{\beta+1} x(0) = 0, \tag{0.10} \]
and \(D_{0,t}^\beta x(1) = \int_0^1 D_{0,t}^\beta x(s) dA(s), \) where \(A \) is a function of bounded variation, \(\alpha \in (2, 3], \beta \in (0, 1), \alpha - \beta > 2. \) In [Tao et al. 2012] there are references to papers where fractional differential equations are inspected with the help of various fixed point theorems. Our analysis also includes a fixed point theorem, however its use and the problem itself are different from the one in [Tao et al. 2012].

In [Eidelman and Kochubei 2004] there is a construction and investigation of a fundamental solution for the Cauchy problem with a regularised fractional derivative \(D_{0,t,reg}^\alpha, \) and \(\alpha \in (0, 1) \) defined by
\[D_{0,t,reg}^\alpha u(t, x) = \frac{1}{\Gamma(1-\alpha)} \left[\frac{\partial}{\partial t} \int_0^t (t-\tau)^{-\alpha} u(\tau, x) d\tau - t^{-\alpha} u(0, x) \right]. \tag{0.11} \]
Note that
\[D_{0,t}^\alpha u(t, x) = \frac{1}{\Gamma(1 - \alpha)} \frac{\partial}{\partial t} \int_0^t (t - \tau)^{-\alpha} u(\tau, x) d\tau \] (0.12)
is the definition of the Riemann-Liouville fractional derivative. Since
\[D_{0,t}^\alpha f(t, x) = D_{0,t}^\alpha u(t, x) - \frac{t^{-\alpha}}{\Gamma(1 - \alpha)} f(0, x), \]
the regularised derivative in (0.11) is in fact identical to our definition of the Caputo derivative in (0.2).
The problem studied in Eidelman and Kochubei [2004] is
\[D_{0,t,\text{reg}}^\alpha u(t, x) - B u(t, x) = f(t, x), \] (0.13)
t \in (0, T], x \in \mathbb{R}^n, where
\[B = \sum_{i,j=1}^n a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=1}^n b_j(x) \frac{\partial}{\partial x_j} + c(x) \] (0.14)
with bounded real-valued coefficients. Our analysis goes beyond to include \(B = -a(-\Delta)^{\alpha/2} \), with \(a > 0 \).
In Pskhu [2013] in particular the fundamental solution to the multi-time fractional differential equation
\[\sum_{k=1}^m \lambda_k D^{\beta_k} u(t, y) - \Delta_x u(t, y) = f(t, y), \] (0.15)
is presented, for \(t = (t_1, \ldots, t_n) \in \mathbb{R}^n, y = (y_1, \ldots, y_m) \in \mathbb{R}^m, \) and \(\lambda = (\lambda_1, \ldots, \lambda_m) \in \mathbb{R}^m, \) whilst \(\Delta_x \) is the standard Laplacian operator and \(\beta_k \in (0, 1) \) for all \(1 \leq k \leq m \). There is also the proof of that the fundamental solution for (0.15) is unique. The uniqueness result covers a more broad range of fractional differential equations involving Dzhrbashyan-Nersesyan fractional in time differential equations. In our case there are fractional operators with respect to both spacial and temporal variables.
Denote a bounded domain by \(D \). Taking \(\alpha \in (0, 2), \beta \in (0, 1) \) the paper Z. Q. Chen [2012] develops strong solutions to the equation
\[D_{0,t}^{s\beta} u(t, x) = \Delta^{\alpha/2}_x u(t, x), \] (0.16)
for $x \in D$, $t > 0$, $u(0,x) = f(x)$ for $x \in D$ and $u(t,x) = 0$ for $x \in D^c$, $t > 0$.

Our approach to the non-linear FDE seems to be different and includes the fractional Laplacian $-(\Delta)^{\alpha/2}$ instead of the standard one Δy. We extend to the scenario with the RHS term including $H(t, y, \nabla f(t, y))$, although we concentrate on the case with only one fractional time derivative $D_{0,t}^{\alpha} \beta$.

1 Regularity of linear fractional dynamics

Our analysis of equation (0.4) is based on the Fourier transform in space, where for a function $g(y)$ its Fourier transform will be defined in the following way

$$\hat{g}(p) = \int_{\mathbb{R}^d} e^{-ipy} g(y) dy. \quad (1.17)$$

Applying the Fourier transform to (0.4) yields

$$D_{0,t}^{\alpha} \beta \hat{f}(t,p) = -a|p|^{\alpha} \hat{f}(t,p) + \hat{h}(t,p). \quad (1.18)$$

This is a standard linear equation with the Caputo fractional derivative. For continuous h its solution is given by

$$f(t,p) = \hat{f}_0(p) E_{\beta,1}(-a|p|^{\alpha}, t^{\beta}) + \int_0^t (t-s)^{\beta-1} E_{\beta,\beta}(-a(t-s)^{\beta}|p|^{\alpha}) \hat{h}(s,p) ds, \quad (1.19)$$

where $E_{\beta,1}$ and $E_{\beta,\beta}$ are Mittag-Leffler functions, see formulas (7.3) – (7.4) in [Diethelm 2004].

Let us recall that the Mittag-Leffler functions are defined for $Re(\beta) > 0$, and $\gamma, z \in \mathbb{C}$:

$$E_{\beta,\gamma}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\beta k + \gamma)}. \quad (1.20)$$
We will use the following connection between $E_{\beta,\beta}$ and $E_{\beta,1}$:

\[x^{\beta-1}E_{\beta,\beta}(-a|p|^\alpha x^\beta) = -\frac{1}{a|p|^\alpha} \frac{d}{dx} E_{\beta,1}(-a|p|^\alpha x^\beta). \] (1.21)

To prove (1.21) one may use the representation of $E_{\beta,1}(-a|p|^\alpha x^\beta)$ in (1.20) and differentiate with respect to x term by term. Now we present two convenient notations for further analysis. Let us denote

\[S_{\beta,1}(t, y) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ipy} E_{\beta,1}(-a|p|^\alpha t^\beta) dp \] (1.22)

and

\[G_{\beta}(t, y) = \frac{t^{\beta-1}}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ipy} E_{\beta,\beta}(-a|p|^\alpha t^\beta) dp. \] (1.23)

Using (1.21) we can re-write it as

\[G_{\beta}(t, y) = -\frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ipy} \frac{1}{a|p|^\alpha} \frac{d}{dt} E_{\beta,1}(-a|p|^\alpha t^\beta) dp. \] (1.24)

Applying the inverse Fourier transform to (1.19) we obtain:

\[f(t, y) = \int_{\mathbb{R}^d} S_{\beta,1}(t, y - x) f_0(x) dx + \int_0^t \int_{\mathbb{R}^d} G_{\beta}(t-s, y - x) h(s, x) dxdx. \] (1.25)

It is natural to call this integral equation the mild form of the fractional linear equation (0.4). In particular we see that the function $S_{\beta,1}(t, y - y_0)$ is the solution of equation (0.4) with $f_0(y) = \delta(y - y_0)$ and $h(t, y) = 0$. On the other hand the function $G_{\beta}(t-t_0, y - y_0)$ is the solution of (0.4) with $f_0(y) = 0$ and $h(t, y) = \delta(t-t_0, y - y_0)$. Thus the functions $S_{\beta,1}$ and G_{β} may be called Green functions of the corresponding Cauchy problems. Notice the crucial difference with the usual evolution corresponding to $\beta = 1$ where G_{β} and $S_{\beta,1}$ coincide.

In order to clarify the properties of f in (1.25) we are now going to carefully analyse the asymptotic properties of the integral kernels $S_{\beta,1}(t, y)$ and $G_{\beta}(t, y).$
2 Asymptotic properties of $S_{\beta,1}$ and G_{β}

For $d \geq 1$ let us define the symmetric stable density g in \mathbb{R}^d as

$$g(y; \alpha, \sigma, \gamma = 0) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \exp(-ipy - a\sigma|p|^\alpha)\,dp,$$

(2.26)

where α is the stability parameter, σ is the scaling parameter and γ is the skewness parameter which is $\gamma = 0$ for symmetric stable densities. In $d = 1$ and $\alpha \neq 1$ we define the fully skewed density with $\gamma = 1$ and without scaling:

$$w(x; \alpha, 1) = \frac{1}{2\pi} \Re \int_{-\infty}^{\infty} \exp \left\{ -ipx - |p|^\alpha \exp \left\{ -\frac{i\pi}{2} K(\alpha) \right\} \right\} \,dp,$$

(2.27)

where $K(\alpha) = \alpha - 1 + \text{sign}(1 - \alpha)$. The function $w(x; \alpha, 1)$ is infinitely differentiable and vanishes identically for $x < 0$, see Zolotarev [1986], theorem C.3 and §2.2, equation (2.2.1a).

The starting point of the analysis of $S_{\beta,1}, G_{\beta}$ is the following representation of the Mittag-Leffler function due to Zolotarev [1986], see chapter 2.10, Theorem 2.10.2, equations (2.10.8 - 2.10.9). For $\beta \in (0, 1)$

$$E_{\beta,1}(-a\lambda) = \frac{1}{\beta} \int_0^\infty \exp(-a\lambda x)x^{-1-1/\beta}w(x^{-1/\beta}, \beta, 1)\,dx.$$

(2.28)

Substitute $\lambda = |p|^\alpha t^\beta$:

$$E_{\beta,1}(-a|p|^\alpha t^\beta) = \frac{1}{\beta} \int_0^\infty \exp(-a|p|^\alpha t^\beta x)x^{-1-1/\beta}w(x^{-1/\beta}, \beta, 1)\,dx.$$

(2.29)

So then

$$t^{\beta-1}E_{\beta,\beta}(-a|p|^\alpha t^\beta) = \frac{-1}{a|p|^\alpha} \frac{d}{dt}E_{\beta,1}(-a|p|^\alpha t^\beta)$$

$$= t^{\beta-1} \int_0^\infty x^{-1/\beta} \exp(-a|p|^\alpha t^\beta x)w(x^{-1/\beta}, \beta, 1)\,dx,$$

(2.30)
implying

\[G_\beta(t,y) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ipy} E_{\beta,\beta}(-a|p|^\alpha t^\beta) t^{\beta-1} dp \]

\[= \frac{t^{\beta-1}}{(2\pi)^d} \int_0^\infty \int_{\mathbb{R}^d} e^{ipy} \exp\{-a|p|^\alpha t^\beta x\} x^{-1/\beta} w(x^{-1/\beta}, \beta, 1) dpdx \]

\[= t^{\beta-1} \int_0^\infty x^{-1/\beta} w(x^{-1/\beta}, \beta, 1) g(-y, \alpha, t^\beta x) dx, \quad (2.31) \]

where \(g \) is as in (2.26) and \(w \) is as in (2.27).

Throughout this paper we shall denote by \(C \) various constants that may be different from formula to formula and line to line.

Theorem 1. For \(\beta \in (0, 1) \)

\[\int_{\mathbb{R}^d} |G_\beta(t,y)| dy \leq C t^{\beta-1}, \quad (2.32) \]

where \(C > 0 \) is a constant.

Proof. Let us split the integral representing \(G_{\beta,1}(t,y) \) in the sum of two, so that

\[G_\beta(t,y) = I_A + I_B, \quad (2.33) \]

where

\[I_A = \frac{t^{\beta-1}}{(2\pi)^d} \int_{|y|^{\alpha t^{-\beta}}}^\infty \int_{\mathbb{R}^d} e^{ipy} \exp\{-a|p|^\alpha t^\beta x\} x^{-1/\beta} w(x^{-1/\beta}, \beta, 1) dpdx \]

\[= t^{\beta-1} \int_{|y|^{\alpha t^{-\beta}}}^\infty x^{-1/\beta} w(x^{-1/\beta}, \beta, 1) g(-y, \alpha, t^\beta x) dx \quad (2.34) \]
and

$$I_B = \frac{t^{\beta - 1}}{(2\pi)^d} \int_0 ^{|y|^{\alpha} t^{\beta}} \int_{\mathbb{R}^d} e^{ipy} \exp \{-a|p|^{\alpha} t^{\beta} x\} x^{-1/\beta} w(x^{-1/\beta}, \beta, 1) dp dx$$

$$t^{\beta - 1} \int_0 ^{|y|^{\alpha} t^{\beta}} x^{-1/\beta} w(x^{-1/\beta}, \beta, 1) g(-y, \alpha, t^{\beta} x) dx.$$

(2.35)

To estimate $|I_A|$ and $|I_B|$, let us examine cases $|y| > t^{\beta / \alpha}$ and $|y| \leq t^{\beta / \alpha}$ and start with $|y| > t^{\beta / \alpha}$. Note that the asymptotic expansions for $g(y, \alpha, \sigma)$ and $g(-y, \alpha, \sigma)$, namely, (5.164) and (5.168) appearing in the Appendix, are the same, by inspection. Since $x > |y|^{\alpha} t^{\beta}$ in I_A we may use the asymptotic for $|y|/x^{1/\alpha} t^{\beta / \alpha} \rightarrow 0$, see (5.164). We also use that for $x \rightarrow \infty$, $x^{-1/\beta} \rightarrow 0$, so for $x \rightarrow \infty$ we have $w(x^{-1/\beta}, \beta, 1) \sim C$, where $C \geq 0$ is a constant. Thus we have

$$|I_A| \leq \left| \int_0 ^{\infty} x^{-1/\beta - d/\alpha} w(x^{-1/\beta}, \beta, 1) A_0 t^{\beta - 1 - d/\alpha} dx \right|$$

$$\leq C t^{\beta - 1 - d/\alpha} |A_0| \left(|y|^{\alpha} t^{\beta - 1 - 1/\beta - d/\alpha} \right)$$

$$\leq C t^{\beta - 1 - d/\alpha} \frac{|A_0|}{|1 - 1/\beta - d/\alpha|} (|y|^{\alpha} t^{\beta - 1 - 1/\beta - d/\alpha})$$

$$\leq C t^{\beta - 1 - d/\alpha} |y|^{\alpha - 1/\beta - d}. \quad (2.36)$$

Now, let’s study I_B in case $|y| > t^{\beta / \alpha}$. Here we use the asymptotic expansion for $|y|/x^{1/\alpha} t^{\beta / \alpha} \rightarrow \infty$ as it appears in (5.168) in the Appendix and take the first term only. Here we use the change of variables $z = x^{-1/\beta}$.

$$|I_B| \leq \left| A_1 t^{\beta - 1} \int_0 ^{|y|^{\alpha} t^{\beta}} x^{-1/\beta} w(x^{-1/\beta}, \beta, 1) |y|^{-d - \alpha} t^{\beta} x dx \right|$$

$$\leq C t^{\beta - 1} |y|^{-d - \alpha} \int_0 ^{\infty} z^{-2\beta} w(z, \beta, 1) dz. \quad (2.37)$$
We split this integral into two parts: $z \in [1, \infty)$ and $z \in (|y|^{-\alpha/\beta} t, 1)$. Firstly,

$$t^{2\beta-1} |y|^{-d-\alpha} \int_1^\infty z^{-2\beta} w(z, \beta, 1) dz \\
\leq t^{2\beta-1} |y|^{-d-\alpha} \int_1^\infty w(z, \beta, 1) dz \leq C t^{2\beta-1} |y|^{-d-\alpha}, \quad (2.38)$$

In case $z \in (|y|^{-\alpha/\beta} t, 1)$ we may use that z is small and so $z^{-2\beta} w(z, \beta, 1) < C z^{-2\beta+q-3}$, for any $q > 1$. So

$$t^{2\beta-1} |y|^{-d-\alpha} \int_{|y|^{-\alpha/\beta} t}^1 z^{-2\beta} w(z, \beta, 1) dz \leq C t^{2\beta-1} |y|^{-d-\alpha} \int_{|y|^{-\alpha/\beta} t}^1 z^{-2\beta+q-3} dz \\
= C t^{2\beta-1} |y|^{-d-\alpha} (1 - (|y|^{-\alpha/\beta} t)^{-2\beta+q-2}) \quad (2.39)$$

Now let’s study the case $|y| \leq t^{\beta/\alpha}$. For I_A we use that x is large, so $x^{-1/\beta}$ is small, and that for $q \geq 4$ we have $x^{-d/\alpha-1/\beta} w(x^{-1/\beta}) < C x^{-d/\alpha-(2q+3)}$. Here $|y|^\alpha \leq t^{\beta}$ and we obtain

$$|I_A| \leq C t^{\beta-1-d/\alpha} \left| \int_{|y|^\alpha t^{-\beta}}^\infty A_0 x^{-d/\alpha-1/\beta} dx \right| \\
\leq t^{\beta-1-d/\alpha} (y^\alpha t^{-\beta})^{-d/\alpha-1/\beta} C \\
\leq t^{\beta-1-d/\alpha} t^{-d/\alpha} t^{2/\alpha+q-2} C \\
\leq t^{\beta-1-d/\alpha} C \quad (2.40)$$

As for I_B in case $|y| \leq t^{\beta/\alpha}$,

$$|I_B| \leq C \int_0^{|y|^\alpha t^{-\beta} \frac{x^{1-1/\beta} w(x^{-1/\beta}, \beta, 1)}{t^{2\beta-1} |y|^{-d-\alpha} dx}} \\
\leq C |y|^{-d-\alpha} t^{2\beta-1} \int_0^{|y|^\alpha t^{-\beta}} \frac{x^{1-1/\beta} w(x^{-1/\beta}, \beta, 1)}{t^{2\beta-1} |y|^{-d-\alpha} dx} \leq C |y|^{2\alpha-d/\beta} t^{2-\beta}. \quad (2.41)$$
Integrating (2.36) in polar coordinates gives

\[\int_{|y|>t^{\beta/\alpha}} |I_A|dy \leq C \int_{|r|>t^{\beta/\alpha}} |r|^{\alpha-\beta-d+d-1}dr |r| \leq (t^{\beta/\alpha})^{\alpha-\beta}C = t^{\beta-1}C, \]
(2.42)

Integration of (2.39) in polar coordinates gives

\[\int_{|y|>t^{\beta/\alpha}} |I_B|dy \leq C t^{2\beta-1} \int_{|r|>t^{\beta/\alpha}} |r|^{-d+\alpha-d-1}dr + C t^{2\beta-1} \int_{|r|>t^{\beta/\alpha}} |r|^{d-1-d-\alpha} |r|^{2\alpha} t^{-2\beta}dr = C t^{2\beta-1}(t^{\beta/\alpha})^{-\alpha} + C t^{2\beta-1-2\beta}(t^{\beta/\alpha})^{\alpha} = C t^{\beta-1}. \]
(2.43)

Integration of (2.40) gives

\[\int_{|y|\leq t^{\beta/\alpha}} |I_A|dy \leq C t^{2\beta-1-d\beta/\alpha} \int_{|r|\leq t^{\beta/\alpha}} |r|^{d-1}dr |r| \leq t^{\beta-1-d\beta/\alpha} \frac{C|A_0|}{d} \leq t^{\beta-1-\beta/\alpha}C. \]
(2.44)

Integration of (2.41) yields

\[\int_{|y|\leq t^{\beta/\alpha}} |I_B|dy \leq C \int_{|r|\leq t^{\beta/\alpha}} t^{-\beta-1} |r|^{-d+2\alpha+d-1}dr \leq C t^{-\beta-1}(t^{\beta/\alpha})^{2\alpha} = C t^{\beta-1}. \]
(2.45)

Combining (2.42)–(2.45) yields (2.32).

\[\square \]

Theorem 2. For $\beta \in (0, 1)$ and for $\alpha \in (1, 2)$

\[\int_{\mathbb{R}^d} |\nabla G_\beta(t, y)|dy \leq t^{\beta-1-\beta/\alpha}C. \]
(2.46)
Proof. In case \(|y| > t^{\beta/\alpha}\), we have \(|y|^{-1} < t^{-\beta/\alpha}\) and so differentiation with respect to \(y\) yields

\[
|\nabla I_A| \leq Ct^{-\beta/\alpha}|I_A| \tag{2.47}
\]

and

\[
|\nabla I_B| \leq Ct^{-\beta/\alpha}|I_B|. \tag{2.48}
\]

In case \(|y| \leq t^{\beta/\alpha}\) we need to take into account the second term of the asymptotic expansion, since the first term is independent of \(|y|\). Consequently,

\[
|\nabla I_A| \leq C \int_{|y| < t^{\beta/\alpha}} x^{-d/\alpha} t^{-d\alpha/\beta} \frac{|y|}{|x|^\beta} |y|^{-2/\alpha} t^{-1/\beta} x^{-1/\beta} dx
\]

\[
\leq C \int_{|y| < t^{\beta/\alpha}} x^{-d/\alpha - 2/\alpha - 1/\beta} t^{-d\alpha/\beta - 2\beta/\alpha + \beta - 1} dx
\]

\[
\leq Ct^{-d\beta/\alpha} x^{-d\alpha/\beta} |y| - C(|y| t^{-\beta})^{-d/\alpha - 2/\alpha - 1/\beta + 1/\beta} = Ct^{-d\beta/\alpha} x^{-d\alpha/\beta} |y| - Ct^{-d\beta/\alpha} x^{-d\alpha/\beta} |y|^{-2/\alpha - 2\beta/\alpha + \alpha}. \tag{2.49}
\]

Integration of the first term in (2.49) yields

\[
C \int_{|r| < t^{\beta/\alpha}} t^{-d\beta/\alpha} x^{-d\alpha/\beta} |y|^{-1} |r|^{-2/\alpha - 2\beta/\alpha + \alpha} dr
\]

\[
\leq Ct^{-d\beta/\alpha} x^{-d\alpha/\beta} |y|^{-2/\alpha - 2\beta/\alpha + \alpha} \leq Ct^{\beta - 1/\beta}. \tag{2.50}
\]

Integration of the second term in (2.49) gives

\[
\int_{|y| < t^{\beta/\alpha}} t^{\beta/\alpha} |y|^{-d\alpha - 3\beta + \alpha} dy
\]

\[
\leq t^{\beta/\alpha} (t^{\beta/\alpha})^{-2/\beta + \alpha} \leq t^{\beta - 1/\beta}. \tag{2.51}
\]

Combining (2.50) and (2.51)
\[
\int_{|y| \leq t^{\beta/\alpha}} |\nabla I_A| dy \leq C t^{\beta-1-\beta/\alpha}.
\] (2.52)

As for \(I_B \) for \(|y| \leq t^{\beta/\alpha}\)

\[
|\nabla I_B| \leq C t^{2\beta-1}|y|^{-d-\alpha-1} \int_0^{|y|^\alpha t^{-\beta}} \xi^{1-1/\beta} w(\xi^{-1/\beta}, \beta, 1) d\xi \\
\leq C t^{2\beta-1}|y|^{-d-\alpha-1} \int_0^{|y|^\alpha t^{-\beta}} \xi^{1-1/\beta} (\xi^{-1/\beta})^{-1-\beta} d\xi \\
\leq C t^{2\beta-1}|y|^{-d-\alpha-1} (|y|^\alpha t^{-\beta})^3 \leq C t^{-\beta-1}|y|^{-d+2\alpha-1}.
\] (2.53)

Integration gives

\[
\int_{|y| \leq t^{\beta/\alpha}} |\nabla I_B| dy \leq C \int_{|y| \leq t^{\beta/\alpha}} t^{-\beta-1}|y|^{-d+2\alpha-2} dy \leq C t^{-\beta-1-\beta/\alpha}.
\] (2.54)

So

\[
\int_{|y| \leq t^{\beta/\alpha}} |\nabla I_B| dy \leq C t^{\beta-1-\beta/\alpha}.
\] (2.55)

Since

\[
\int_{\mathbb{R}^d} |\nabla G_\beta(t, y)| dy \leq \int_{\mathbb{R}^d} |\nabla I_A| dy + \int_{\mathbb{R}^d} |\nabla I_B| dy
\] (2.56)

combining results (2.47), (2.48), (2.52) and (2.55) we obtain

\[
\int_{\mathbb{R}^d} |\nabla G_\beta(t, y)| dy \leq C t^{\beta-1-\beta/\alpha}.
\] (2.57)

which proves (2.46). \(\square \)

Now let’s consider the case \(\alpha = 2 \).
Theorem 3. Let $G_{\beta,1}(t, y)$ be as in (1.23) and (2.31). For $\alpha = 2$ and any $\beta \in (0, 1)$:

- $\int_0^t \int_{\mathbb{R}^d} |G_\beta(t, y)| dy ds = O(t^\beta)$,
- $\int_0^t \int_{\mathbb{R}^d} |\nabla G_\beta(t, y)| dy ds = O(t^{\beta/2})$.

Proof. Note that

$$
\int_{\mathbb{R}^d} \exp\{-a\sigma p^2 - iyp\} dp = \left(\frac{\sqrt{\pi}}{\sqrt{\sigma}}\right)^d \exp\left\{-\frac{y^2}{4a\sigma}\right\}, \quad (2.58)
$$

where in our case $\sigma = xt^\beta$. Substitute this into (2.31) to obtain

$$
G_\beta(t, y) = \frac{t^{\beta-1}}{(2\pi)^d} \int_0^\infty x^{-1/\beta} w(x^{-1/\beta}, \beta, 1) \left(\frac{\sqrt{\pi}}{\sqrt{t^\beta x}}\right)^d \exp\left\{-\frac{y^2}{4at^\beta x}\right\} dx \quad (2.59)
$$

where $y^2 = y_1^2 + y_2^2 + \ldots + y_d^2$. We are interested in $\int_0^t \int_{\mathbb{R}^d} |G_\beta(t, y)| dy ds$. Integrating y-dependent terms in G_β with respect to y gives

$$
\int_{\mathbb{R}^d} \exp\left\{-|y|^2/4axt^\beta\right\} dy = (4\pi xt^\beta)^{d/2} = C x^{d/2} t^{\beta d/2}. \quad (2.60)
$$

The term $x^{d/2} t^{\beta d/2}$ cancels out with $\left(\frac{1}{\sqrt{t^\beta x}}\right)^d$ and we obtain

$$
\int_{\mathbb{R}^d} |G_\beta(t, y)| dy = I(t) = C \int_0^\infty x^{-1/\beta} w(x^{-1/\beta}, \beta, 1) t^{\beta-1} dx. \quad (2.61)
$$

Now we split the integral $I(t)$ into 2 parts: $I_a(t)$ for $x > 1$ and $I_b(t)$ for $0 \leq x \leq 1$. In $I_a(t)$, $x > 1$ and so $x^{-1/\beta} < 1$ and $w(x^{-1/\beta}, \beta, 1) \sim C$,
so we have

$$
I_a(t) = \int_1^\infty C t^{\beta-1} x^{-1/\beta} w(x^{-1/\beta}, \beta, 1) dx \\
\leq t^{\beta-1} \int_1^\infty x^{-1/\beta} C dx \leq C 1^{-1/\beta} t^{\beta-1} = C t^{\beta-1}. \quad (2.62)
$$
Integrating with respect to s gives

$$\int_0^t |I_a(t-s)|ds \leq \int_0^t C(t-s)^{\beta-1}ds = Ct^\beta. \quad (2.63)$$

For $I_b(t)$, $x \leq 1$, so $x^{-1/\beta} \geq 1$ and $w(x^{-1/\beta}, \beta, 1) \sim (x^{-1/\beta})^{-1-\beta} = x^{1+1/\beta}$ and

$$I_b(t) = \int_0^1 Cx^{-1/\beta}w(x^{-1/\beta}, \beta, 1)t^{\beta-1}dx \leq Ct^{\beta-1} \int_0^1 x^{-1/\beta+1/\beta+1}dx \leq C. \quad (2.64)$$

with a constant $C_2 > 0$. Now we integrate with respect to s

$$\int_0^t |I_b(t-s)|ds = \int_0^t C(t-s)^{\beta-1}ds = Ct^\beta. \quad (2.65)$$

Together with (2.62) and (2.63) this yields the first statement of the theorem.

Differentiating G_β with respect to y gives us

$$I_1(t) = \int_{\mathbb{R}^d} |\nabla G_\beta(t,y)|dy$$

$$= \int_0^\infty \int_{\mathbb{R}^d} t^{\beta-1-\beta/2}x^{-1-\beta-d/2}y\exp\{-|y|^2/4axt^\beta\}w(x^{-1/\beta}, \beta, 1)dydx. \quad (2.66)$$

Since

$$\int_{\mathbb{R}^d} |y|\exp\{-|y|^2/4axt^\beta\}dy = C_xt^\beta(\sqrt{xt^\beta})^{d-1} = C_xt^{d+1/2-\beta(d+1)/2}, \quad (2.67)$$

we have
\[I_1(t) = \int_0^\infty \int_{\mathbb{R}^d} t^{\beta-1/2-d/2} x^{-1/2-\beta-1/2} y \exp\{-|y|^2/4axt^\beta\} w(x^{-1/\beta}, \beta, 1) dy dx \]
\[= C \int_0^\infty t^{-1/2} x^{-1/2-1/\beta} w(x^{-1/\beta}, \beta, 1) dx. \]
(2.68)

Now we split the integral \(I_1(t) \) into parts corresponding to \(x \in (0, 1) \) and \(x \in [1, \infty) \):

\[I_2(t) = \int_0^1 t^{-1+\beta/2} x^{-1/2-1/\beta} w(x^{-1/\beta}, \beta, 1) dx \]
(2.69)

and

\[I_3(t) = \int_1^\infty t^{-1+\beta/2} x^{-1/2-1/\beta} w(x^{-1/\beta}, \beta, 1) dx. \]
(2.70)

Let’s examine \(I_2(t) \). Since \(x \in (0, 1) \), we have \(w(x^{-1/\beta}, \beta, 1) \sim (x^{-1/\beta})^{-1-\beta} \), so

\[I_2(t) = \int_0^1 t^{-1+\beta/2} x^{-1/2-1/\beta} w(x^{-1/\beta}, \beta, 1) dx \]
\[= \int_0^1 t^{-1+\beta/2} x^{-1/2-1/\beta+1+1/\beta} dx = 2t^{-1+\beta/2}/3. \]
(2.71)

Integrating

\[\int_0^t |I_2(t-s)| ds \leq \int_0^t (t-s)^{-1+\beta/2} ds = t^{\beta/2}. \]
(2.72)

Now, for \(I_3(t) \) we use that \(x^{-1/\beta} \leq 1 \) and so \(w(x^{-1/\beta}, \beta, 1) \sim C \).

\[|I_3(t)| \leq \left| \int_1^\infty t^{-1+\beta/2} x^{-1/2-1/\beta} w(x^{-1/\beta}, \beta, 1) dx \right| \]
\[\leq Ct^{-1+\beta/2} \left| \int_1^\infty x^{-1/2-1/\beta} dx \right| = Ct^{-1+\beta/2}. \]
(2.73)
Integrating with respect to s

$$\int_0^t |I_3(t-s)|ds \leq \int_0^t (t-s)^{\beta/2-1}ds = C_\beta t^{\beta/2}. \quad (2.74)$$

Note that $\beta/2 = \beta - \beta/\alpha$ for $\alpha = 2$. So for $\alpha = 2$ the form of the estimate is the same as for $\alpha \in (1, 2)$.

The following corollary is a consequence of the previous theorem.

Corollary 1. For $\alpha = 2$ and $\beta \in (0, 1)$

$$\int_0^t \int_{\mathbb{R}^d} (|\nabla G_\beta(t, y)| + |G_\beta(t, y)|) dyds = O(t^{\beta/2}). \quad (2.75)$$

Proof. Since $\beta/2 < \beta$, we take the minimum power, $\beta/2$, to write the common estimate of the terms $\int_{\mathbb{R}^d} |\nabla G_\beta(t, y)| dy$ and $\int_{\mathbb{R}^d} |G_\beta(t, y)| dy$, obtaining

$$\int_{\mathbb{R}^d} (|\nabla G_\beta(t, y)| + |G_\beta(t, y)|) dy = O(t^{\beta/2-1}), \quad (2.76)$$

substitute t by $t - s$ and we use that

$$\int_0^t (t-s)^{\beta/2-1}ds = C_\beta t^{\beta/2}, \quad (2.77)$$

which yields the result (2.75).

Here we present several theorems regarding $S_{\beta,1}(t, y)$ which are particularly useful for the well-posedness analysis of (0.4) and (0.1).

Theorem 4. The first term from the RHS of (0.4) satisfies

$$\left| \int_{\mathbb{R}^d} S_{\beta,1}(t, y-x)f_0(x)dx \right| = O(t^0). \quad (2.78)$$
Proof. Using (1.22) and (2.29) we represent $S_{\beta,1}(t,y)$ as

$$I = \frac{1}{\beta(2\pi)^d} \int_{\mathbb{R}^d} \int_0^\infty e^{ipy} \exp\{-a|p|^\alpha t^\beta\} \xi^{-1-1/\beta}w(\xi^{-1/\beta}, \beta, 1)d\xi dp$$

(2.79)

and use the assumption $|f_0(y)| < C$. We split the integral I into two parts: I_A for $\xi \in [|y|^{\alpha t^{-\beta}}, \infty)$ and I_B for $\xi \in (0, |y|^{\alpha t^{-\beta}})$. There are 2 cases for each of the integrals: $|y| \leq t^{\beta/\alpha}$ and $|y| > t^{\beta/\alpha}$. Let us study $|I_B|$ in the case $|y| \leq t^{\beta/\alpha}$.

$$|I_B| \leq C \int_{|y|^{\alpha t^{-\beta}}}^{|y|^{\alpha t^{-\beta}}} \xi^{-1-1/\beta}w(\xi^{-1/\beta}, \beta, 1)|y|^{-\alpha t^\beta} d\xi$$

$$\leq C \int_0^{|y|^{\alpha t^{-\beta}}} \xi^{-1/\beta}(\xi^{-1/\beta})^{-1-\beta}t^\beta|y|^{-\alpha t^\beta} d\xi$$

$$\leq C \int_0^{|y|^{\alpha t^{-\beta}}} \xi t^\beta|y|^{-\alpha t^\beta} d\xi$$

$$= C(|y|^{\alpha t^{-\beta}})^2|y|^{-\alpha t^\beta} = Ct^{-\beta}|y|^{-\alpha t^\beta}. \quad (2.80)$$

Now, integrating gives

$$\int_{|y| \leq t^{\beta/\alpha}} |I_B| dy \leq C \int_{|y| \leq Ct^{\beta/\alpha}} t^{-\beta}|y|^{-\alpha t^\beta} dy = Ct^{-\beta}(t^{\beta/\alpha})^\alpha = O(t^0). \quad (2.81)$$

Let's study $|I_B|$ in case $|y| > t^{\beta/\alpha}$. Here we split the integral I_B into 2 parts: when $\xi \in (0, 1]$ and when $\xi \in (1, |y|^{\alpha t^{-\beta}})$.

$$|I_B| \leq C \int_0^{|y|^{\alpha t^{-\beta}}} \xi^{-1/\beta}w(\xi^{-1/\beta}, \beta, 1)t^\beta|y|^{-\alpha t^\beta} d\xi,$$

(2.82)

so since for $\xi \leq 1$, $w(\xi^{-1/\beta}, \beta, 1) \sim (\xi^{-1/\beta})^{-1-\beta}$, we have

$$\int_0^1 \xi^{-1/\beta}w(\xi^{-1/\beta}, \beta, 1)t^\beta|y|^{-\alpha t^\beta} d\xi \leq C|y|^{-\alpha t^\beta}. \quad (2.83)$$
Integration yields
\[\int_{|y| > t^{\beta/\alpha}} t^\beta |y|^{-d-\alpha+d-1}dy = t^\beta (t^{\beta/\alpha})^{-\alpha} = O(t^0). \quad (2.84) \]

When \(\xi \in (1, |y|^{\alpha} t^{-\beta}) \)
\[\int_{|y|^{\alpha} t^{-\beta}} |y|^{-\alpha/\beta - q/\alpha} d\xi = t^{1+q+\beta-\beta} |y|^{-d-\alpha-\alpha/\beta-q\alpha/\beta+\alpha} - t^\beta |y|^{-d-\alpha}. \quad (2.85) \]
Integration gives
\[\int_{|y| > t^{\beta/\alpha}} t^{1+q} |y|^{-\alpha/\beta - q\alpha/\beta-1}dy = t^{1+q}(t^{\beta/\alpha})^{-\alpha/\beta-q\alpha/\beta} = t^0, \quad (2.86) \]
and
\[\int_{|y| > t^{\beta/\alpha}} |y|^{-d-\alpha+d-1}t^\beta dy = t^\beta (t^{\beta/\alpha})^{-\alpha} = O(t^0). \quad (2.87) \]
Combining (2.84), (2.86) and (2.87) gives
\[\int_{\mathbb{R}^d} |I_B|dy \leq Ct^0. \quad (2.88) \]
Let’s study \(|I_A|\) case \(|y| > t^{\beta/\alpha}\). Here \(\xi^{-1/\beta}\) is small, so \(w(\xi^{-1/\beta}, \beta, 1) \sim C\), where \(C\) is a constant.
\[|I_A| \leq C \int_{|y|^{\alpha} t^{-\beta}} \xi^{-1-1/\beta} w(\xi^{-1/\beta}, \beta, 1) t^{-d\beta/\alpha} \xi^{-d/\alpha} d\xi \]
\[= C \int_{|y|^{\alpha} t^{-\beta}} \xi^{-1-1/\beta} t^{-d/\alpha} \xi^{-d/\alpha} d\xi \]
\[\leq Ct^{-d/\alpha} (|y|^{\alpha} t^{-\beta})^{-1/\beta-d/\alpha} \leq C |y|^{-\alpha/\beta-d}, \quad (2.89) \]
Integrating gives
\[
\int_{|y| > t^\beta/\alpha} |I_A| dy \leq C \int_{|y| > t^\beta/\alpha} |y|^{-d-\alpha/\beta + d-1} dy = C t^{(\beta/\alpha) - \alpha/\beta} = O(t^0). \tag{2.90}
\]

Let’s study $|I_A|$, case $|y| \leq t^{\beta/\alpha}$. Here we need to split the integral I_A into 2 parts. The first one is
\[
\int_1^\infty \xi^{-d/\alpha} \xi^{-1-1/\beta} t^{-\beta d/\alpha} w(\xi^{-1/\beta}, \beta, 1) d\xi. \tag{2.91}
\]
Here ξ is large, so $\xi^{-1/\beta}$ is small, so $w(\xi^{-1/\beta}, \beta, 1) \sim (\xi^{-1/\beta})^q$, for all $q > 1$, which enables us to write
\[
\int_1^\infty \xi^{-d/\alpha} \xi^{-1-1/\beta} t^{-\beta d/\alpha} d\xi = t^{-\beta d/\alpha} \int_1^\infty \xi^{-d/\alpha - 1 - 1/\beta - q/\beta} d\xi
\leq t^{-\beta d/\alpha} \left(\lim_{K \to \infty} K^{-d/\alpha - 1 - 1/\beta - q/\beta - 1} \right) = t^{-\beta d/\alpha}. \tag{2.92}
\]

Integrating gives
\[
\int_{|y| \leq t^{\beta/\alpha}} t^{-\beta d/\alpha} |y|^{d-1} dy = t^{-\beta d/\alpha} (t^{\beta/\alpha})^d = O(t^0). \tag{2.93}
\]

The second part of I_A is
\[
\int_{|y| = t^{\beta/\alpha}} \xi^{-1-1/\beta} w(\xi^{-1/\beta}, \beta, 1) \xi^{-d/\alpha} t^{-\beta d/\alpha} d\xi. \tag{2.94}
\]
Since $\xi < 1$, $\xi^{-1/\beta} > 1$, so $w(\xi^{-1/\beta}, \beta, 1) \sim (\xi^{-1/\beta})^{-1-\beta}$, so we re-write (2.94) as
\[
\int_{|y| = t^{\beta/\alpha}} \xi^{-d/\alpha} t^{-\beta d/\alpha} \xi^{-1-1/\beta + 1+1/\beta} d\xi
\leq \int_{|y| = t^{\beta/\alpha}} \xi^{-d/\alpha} t^{-\beta d/\alpha} d\xi = C t^{-\beta d/\alpha} (1 - |y|^\alpha t^{-\beta}). \tag{2.95}
\]
Integrating (2.95) in polar coordinates

$$C \int_{|y| \leq t^{\beta/\alpha}} \left| y \right|^{d-1} \left(t^{-\beta d/\alpha} - \left| y \right|^{\alpha t^{-\beta} t^{-\beta d/\alpha}} \right) dy$$

$$\leq Ct^{-\beta d/\alpha} t^{3d/\alpha} - Ct^{\beta + d\beta/\alpha - \beta - \beta d/\alpha} = Ct^0.$$ \hspace{1cm} (2.96)

Combining (2.96) and (2.93) gives that for $|y| \leq t^{\beta/\alpha}$

$$\int_{\mathbb{R}^d} |I_A| dy \leq Ct^0. \hspace{1cm} (2.97)$$

Using the assumption $|f_0(y)| < C$ and putting together estimates (2.88) and (2.97) yields the theorem statement (2.78).

\[\Box \]

Theorem 5. For $\alpha \in (1, 2)$, $\beta \in (0, 1)$

$$\int_{\mathbb{R}^d} \nabla S_{\beta,1}(t, y) f_0(x - y) dy = O(t^{-\beta/\alpha}). \hspace{1cm} (2.98)$$

Proof. We differentiate $S_{\beta,1}(t, y)$ with respect to y

$$|\nabla S_{\beta,1}(t, y)| = \left| \frac{1}{\beta (2\pi)^d} \nabla \int_{\mathbb{R}^d} \int_0^\infty e^{ipy} \exp\{-a|p|^\alpha t^{\beta} x\} x^{-1-1/\beta} w(x^{-1/\beta}, \beta, 1) dx dp \right|$$

$$= \frac{1}{\beta (2\pi)^d} \int_{\mathbb{R}^d} \int_0^\infty |p| e^{ipy} \exp\{-a|p|^\alpha t^{\beta} x\} x^{-1-1/\beta} w(x^{-1/\beta}, \beta, 1) dx dp$$

$$= \frac{1}{\beta (2\pi)^d} \int_{\mathbb{R}^d} \int_0^\infty |p| e^{ipy} \exp\{-a|p|^\alpha t^{\beta} x\} x^{-1-1/\beta} w(x^{-1/\beta}, \beta, 1) dx dp. \hspace{1cm} (2.99)$$

Here we use the asymptotic expansions from Theorems 7.2.1 and 7.2.2 and Theorem 7.3.2, which are in the appendix as equations (5.161) and (5.168), and we use the inequality (7.40) in Kolokoltsov [2011], which also appears in the appendix for reader’s convenience, as (5.173) and (5.174). For I_A in case $|y| > t^{\beta/\alpha}$ we use that for $\xi > 1$, $\xi^{-1/\beta} < 1$ and $w(\xi^{-1/\beta}, \beta, 1) < (\xi^{-1/\beta})^q$, for any $q > 1$. Then
\[|\nabla I_A| \leq C \int_{|y| t^{-\beta}}^{\infty} \xi^{-1/\alpha - 1/\beta - d/\alpha} w(\xi^{-1/\beta}, \beta, 1) t^{-\beta/\alpha - d\beta/\alpha} \, d\xi \]
\[\leq C t^{-\beta/\alpha - d\beta/\alpha} (|y|^{\alpha t^{-\beta}})^{-1/\alpha - d/\alpha} \leq C t^{1+q} |y|^{-1-q\alpha/\beta - \alpha/\beta - d}. \quad (2.100) \]

Integrating gives
\[\int_{|y| > t^{\beta/\alpha}} |\nabla I_A| \, dy \leq C \int_{|y| > t^{\beta/\alpha}} t^{1+q} |y|^{-d+1-1-q\alpha/\beta - \alpha/\beta} \, dy \]
\[= C t^{1+q-\alpha-q-1} = C t^{-\beta/\alpha}. \quad (2.101) \]

Now, let’s look at \(I_B \) in case \(|y| > t^{\beta/\alpha}\). Proposition \(\square \) in the Appendix and the change of variables \(\xi^{-1/\beta} = z \) yield
\[|\nabla I_B| \leq C \int_{|y|^{\alpha t^{-\beta}}}^{\infty} \xi^{-1-1/\beta} w(\xi^{-1/\beta}, \beta, 1) t^{-\beta} \xi^{-1} |y|^{-\alpha-1} |y|^{-d-\alpha t\beta} \xi \, d\xi \]
\[\leq C |y|^{-d-1} \int_{|y|^{-\alpha/\beta t}}^{\infty} w(z, \beta, 1) \, dz \leq C |y|^{-d-1}. \quad (2.102) \]

Integration gives
\[\int_{|y| > t^{\beta/\alpha}} |\nabla I_B| \, dy \leq C \int_{|y| > t^{\beta/\alpha}} |y|^{-d+1-1} \, dy \leq C t^{-\beta/\alpha}. \quad (2.103) \]

Now, let’s look at \(I_A \) in case \(|y| < t^{\beta/\alpha}\).
\[|\nabla I_A| \leq C \int_{|y|^{\alpha t^{-\beta}}}^{\infty} \xi^{-1-1/\beta} w(\xi^{-1/\beta}, \beta, 1) t^{-\beta/\alpha} \xi^{-1/\alpha t^{-\beta} d/\alpha} \xi^{-d/\alpha} \, d\xi. \quad (2.104) \]

We split this integral into cases \(\xi \in (|y|^{\alpha t^{-\beta}}, 1) \) and \(\xi \in [1, \infty) \). For \(\xi \in (|y|^{\alpha t^{-\beta}}, 1) \), \(\xi^{-1/\beta} > 1 \) and we may use that \(w(\xi^{-1/\beta}, \beta, 1) \sim (x^{-1/\beta})^{-1-\beta} \). So
\[|\nabla I_A| \leq C \int_{|y|^{\alpha t^{-\beta}}}^1 \xi^{-1-1/\beta} w(\xi^{-1/\beta}, \beta, 1) t^{-\beta/\alpha} \xi^{-1/\alpha} t^{-\beta d/\alpha} \xi^{-d/\alpha} d\xi \]
\[\leq C \int_{|y|^{\alpha t^{-\beta}}}^\infty t^{-\beta/\alpha-\beta d/\alpha} \xi^{-1/\alpha-d/\alpha} d\xi \]
\[= Ct^{-\beta/\alpha-\beta d/\alpha} = Ct^{-\beta |y|^{-1-d+\alpha}}. \quad (2.105) \]

Integration yields
\[\int_{|y| \leq t^{\beta/\alpha}} |\nabla I_A| dy \leq C \int_{|y| \leq t^{\beta/\alpha}} y^{d-1} t^{-\beta/\alpha-\beta d/\alpha} dy \]
\[+ C \int_{|y| < t^{\beta/\alpha}} t^{-\beta} |y|^{-1-\alpha-1-d+d} dy \]
\[\leq Ct^{-\beta/\alpha} + Ct^{-\beta (t^{\beta/\alpha})^{-1+\alpha}} \leq Ct^{-\beta/\alpha}. \quad (2.106) \]

As for \(\xi \in [1, \infty) \), then \(\xi^{-1/\beta} < 1 \) and so \(w(\xi^{-1/\beta}, \beta, 1) \sim C \) and
\[\int_{1}^\infty \xi^{-2-1/\beta} C \xi^{-d/\alpha} t^{-\beta/\alpha-\beta d/\alpha} d\xi \]
\[\leq t^{-\beta/\alpha-\beta d/\alpha} C \int_{1}^\infty \xi^{-2-1/\beta-d/\alpha} d\xi \]
\[\leq t^{-\beta/\alpha-\beta d/\alpha} C \left(1 - \lim_{K \to \infty} \frac{1}{K} \right) = C t^{-\beta/\alpha-\beta d/\alpha}. \quad (2.107) \]

Integration yields
\[\int_{|y| < t^{\beta/\alpha}} t^{-\beta/\alpha-\beta d/\alpha} |y|^{d-1} dy \leq Ct^{-\beta/\alpha-\beta d/\alpha} t^{\beta d/\alpha} = Ct^{-\beta/\alpha}. \quad (2.108) \]

Finally, \(I_B \) in case \(|y| \leq t^{\beta/\alpha} \)
\[|\nabla I_B| \leq C \int_0^{|y|^{\alpha-t-\beta}} \xi^{-1-1/\beta} w(\xi^{-1/\beta}, \beta, 1) \xi^{-1-t-\beta} |y|^{\alpha-1} |y|^{-\alpha_t-\beta} \xi d\xi \]
\[\leq C \int_0^{|y|^{\alpha-t-\beta}} \xi^{-1-1/\beta} w(\xi^{-1/\beta}, \beta, 1) |y|^{-1-d} d\xi \]
\[\leq C \int_0^{|y|^{\alpha-t-\beta}} \xi^{-1-1/\beta} (\xi^{-1/\beta})^{-1-\beta} |y|^{-1-d} d\xi \]
\[\leq C |y|^{-1-d-\alpha_t-\beta}. \] (2.109)

Integration yields
\[\int_{|y| \leq t^{\beta/\alpha}} |\nabla I_B| dy \leq C \int_{|y| \leq t^{\beta/\alpha}} |y|^{\alpha-1-1/\beta-\alpha_t-\beta} dy \]
\[= C t^{-\beta} (t^{\beta/\alpha})^{\alpha-1} = C t^{-\beta/\alpha}. \] (2.110)

Hence (2.101), (2.103), (2.106), (2.108) and (2.110) together with the assumption \(|f_0(y)| < C\) yield (2.97).

\[\Box \]

THEOREM 6. For \(\alpha = 2\) and assuming \(|f_0(y)| < C\)
\[\int_{\mathbb{R}^d} S_{\beta,1}(t, y - x) f_0(x) dx = O(t^0). \] (2.111)

P r o o f. Using (2.60)
\[\int_{\mathbb{R}^d} S_{\beta,1}(t, y) dy = \int_0^\infty \int_{\mathbb{R}^d} (xt^\beta)^{-d/2} \exp\{-y^2/(4ax\kappa^\beta)\} x^{-1-1/\beta} w(x^{-1/\beta}, \beta, 1) dy dx \]
\[= C \int_0^\infty x^{-1-1/\beta} w(x^{-1/\beta}, \beta, 1) dx. \] (2.112)

We split this integral into two parts: \(x \in [0, 1]\) and \(x \in (1, \infty)\). In the first case \(x \leq 1\) and \(x^{-1/\beta} > 1\) so we may use \(w(x^{-1/\beta}, \beta, 1) \sim \)
$(x^{-1/\beta})^{-1-\beta}$. In case $x > 1$ we may use that $w(x^{-1/\beta}, \beta, 1) \sim C$. So we obtain

$$\int_0^1 x^{-1-1/\beta} w(x^{-1/\beta}, \beta, 1) dx = \int_0^1 dx = 1,$$

(2.113)

and

$$\int_1^\infty x^{-1-1/\beta} w(x^{-1/\beta}, \beta, 1) dx = \int_1^\infty x^{-1-1/\beta} C dx$$

$$= C \left(\lim_{K \to \infty} K^{-1/\beta} - 1^{-1/\beta} \right) = C.$$

(2.114)

Together with the assumption $|f_0(y)| < C$, the result (2.111) follows.

\[\Box \]

Theorem 7. For $\alpha = 2$, $\beta \in (0, 1)$ and assuming $|f_0(y)| < C$

$$\int_{\mathbb{R}^d} \nabla S_{\beta,1}(t, y)f_0(x - y) dy = O(t^{-\beta/2}).$$

(2.115)

Proof. We use the representation of $S_{\beta,1}(t, y)$ in (2.79) and write

$$\int_{\mathbb{R}^d} \nabla S_{\beta,1}(t, y) dy$$

$$= \int_0^\infty x^{-3/2-1/\beta} t^{-\beta/2} w(x^{-1/\beta}, \beta, 1) dx.$$

(2.116)

We split the above integral into two: for $x \in [0, 1]$ and for $x > 1$. In case $x \in [0, 1]$ we use that $w(x^{-1/\beta}, \beta, 1) \sim (x^{-1/\beta})^{-1-\beta}$. In case $x > 1$ we use that $w(x^{-1/\beta}, \beta, 1) \sim C$. So we get

$$t^{-\beta/2} \int_0^1 x^{-3/2-1/\beta} w(x^{-1/\beta}, \beta, 1) dx = t^{-\beta/2} \int_0^1 x^{-1/2} dx = t^{-\beta/2}/2$$

(2.117)

and
\[t^{-\beta/2} \int_{1}^{\infty} x^{-3/2-1/\beta} w(x^{-1/\beta}, \beta, 1) \, dx = t^{-\beta/2}. \tag{2.118} \]

So from (2.117) and (2.118) and that \(|f_0(y)| < C\) and we obtain (2.115).

\[\square \]

3. Smoothing properties for the linear equation

Let us denote by \(C^p(\mathbb{R}^d) \) the space of \(p \) times continuously differentiable functions. By \(C^1_{\infty} \) we shall denote functions \(f \) in \(C^1(\mathbb{R}^d) \) such that \(f \) and \(\nabla f \) are rapidly decreasing continuous functions on \(\mathbb{R}^d \), with the sum of sup-norms of the function and all of its derivatives up to and including the order \(p \) as the corresponding norm. The sup-norm is \(\| f \| = \sup_{s \in [0,t]} \| f(s) \| \). Let’s denote by \(H^p_1 \) the Sobolev space of functions with generalised derivative up to and including \(p \), being in \(L^1(\mathbb{R}^d) \). Here and in what follows we often identify the function \(f_0(y) \) with the function \(f(t,y) = f_0(y), \forall t \geq 0 \).

Theorem 8 (Solution regularity). For \(\alpha \in (1,2] \) and \(\beta \in (0,1) \) the resolving operator

\[
\Psi_t(f_0) = \int_{\mathbb{R}^d} S_{\beta,1}(t,y-x)f_0(x)\,dx + \int_0^t \int_{\mathbb{R}^d} G_\beta(t-s,y-x)h(s,x)\,dx\,ds
\tag{3.119}
\]

satisfies the following properties

- \(\Psi_t : C^p(\mathbb{R}^d) \mapsto C^p(\mathbb{R}^d) \), and \(\sup_{s \in [0,t]} \| \Psi_t \|_{C^p} < C(t) \),
- \(\Psi_t : H^p_1(\mathbb{R}^d) \mapsto H^p_1(\mathbb{R}^d) \) and \(\sup_{s \in [0,t]} \| \Psi_t \|_{C^p} < C(t) \).

Proof. We look at the \(C^p \) norm of \(f_0 \) and use Theorem 1.
\[\| \Psi_t(f_0) \|_{C^p(\mathbb{R}^d)} \leq \int_{\mathbb{R}^d} S_{\beta,1}(t, y) |f_0^{(p)}(y)| dy + t^\beta \sup_{t \in [0,T]} \| h(t, \cdot) \|_{C^p(\mathbb{R}^d)} \]

\[\leq \| f_0 \|_{C^p(\mathbb{R}^d)} + Ct^\beta \sup_{t \in [0,T]} \| h(t, \cdot) \|_{C^p(\mathbb{R}^d)}, \] \hspace{1cm} (3.120)

for some constant \(C > 0 \). Analogously,

\[\| f_0 \|_{H^p_1(\mathbb{R}^d)} \leq \int_{\mathbb{R}^d} S_{\beta,1}(t, y) |f_0^{(p)}(y)| dy + t^\beta \sup_{t \in [0,T]} \| h(t, \cdot) \|_{H^p_1(\mathbb{R}^d)} \]

\[\leq \| f_0 \|_{H^p_1(\mathbb{R}^d)} + Ct^\beta \sup_{t \in [0,T]} \| h \|_{H^p_1(\mathbb{R}^d)}. \] \hspace{1cm} (3.121)

\[\square \]

Theorem 9 (Solution smoothing). For \(\alpha \in (1, 2] \) and \(\beta \in (0, 1) \) the resolving operator \(\boxempty_{3.119} \) satisfies the following smoothing properties

- If \(f_0, h \in C^p(\mathbb{R}^d) \) uniformly in time, then \(f \in C^{p+1}(\mathbb{R}^d) \) and for any \(t \in (0, T] \)

\[\| \Psi_t(f_0) \|_{C^{p+1}(\mathbb{R}^d)} \leq t^{-\beta/\alpha} \| f_0 \|_{C^p(\mathbb{R}^d)} + Ct^{\beta-\beta/\alpha} \| h \|_{C^p(\mathbb{R}^d)}. \] \hspace{1cm} (3.122)

- If \(f_0, h \in H^p_1(\mathbb{R}^d) \) uniformly in time, then \(f \in H_1^{p+1}(\mathbb{R}^d) \) and for any \(t \in (0, T] \)

\[\| \Psi_t(f_0) \|_{H_1^{p+1}(\mathbb{R}^d)} \leq t^{-\beta/\alpha} \| f_0 \|_{H^p_1(\mathbb{R}^d)} + Ct^{\beta-\beta/\alpha} \| h \|_{H^p_1(\mathbb{R}^d)}. \] \hspace{1cm} (3.123)

In particular we may choose \(p = 0 \), when \(H^0_1(\mathbb{R}^d) = L^1(\mathbb{R}^d) \).

Proof. We study the \(C^{p+1}(\mathbb{R}^d) \) norm of \(\Psi_t(f_0) \) and use theorems \(\boxempty_{1} \) and \(\boxempty_{2} \).
\[\| \Psi_t(f_0) \|_{C^{p+1}} \leq \sup_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} \left| \nabla_x S_{\beta,1}(t, x - y) f_0^{(p)}(y) \right| dy \\
+ \sup_{x \in \mathbb{R}^d} \int_0^t \int_{\mathbb{R}^d} \left| \nabla_x G_{\beta}(t - s, x - y) h_y^{(p)}(s, y) \right| dy ds \\
\leq t^{-\beta/\alpha} \sup_{x \in \mathbb{R}^d} |f_0^{(p)}(x)| + \sup_{x \in \mathbb{R}^d} |h_y^{(p)}(s, x)| \int_0^t (t - s)^{\beta/\alpha - 1} ds \\
\leq t^{-\beta/\alpha} \| f_0 \|_{C^p} + t^{\beta - \beta/\alpha} \| h \|_{C^p}. \quad (3.124) \]

The proof for (3.123) is analogous. \(\square\)

Similar results apply for the non-linear equation (0.1).

4 Well-posedness

Now we study well-posedness of the full non-linear equation (0.1):

\[D_{0,t}^{*\beta} f(t, y) = -a(-\Delta)^{-\alpha/2} f(t, y) + H(t, y, \nabla f(t, y)), \quad (4.125) \]

with the initial condition \(f(0, y) = f_0(y), \) and \(a > 0 \) is a constant. This FDE has the following mild form:

\[f(t, y) = \int_{\mathbb{R}^d} f_0(x) S_{\beta,1}(t, y - x) dx + \int_0^t \int_{\mathbb{R}^d} G_{\beta}(t - s, y - x) H(s, x, \nabla f(s, x)) dx ds, \quad (4.126) \]

which follows from (1.19).

Lemma 1. Let’s define by \(C([0, T], C^1_{\infty}(\mathbb{R}^d)) \) the space of functions \(f(t, y), t \in [0, T], y \in \mathbb{R}^d \) such that \(f(t, y) \) is continuous in \(t \) and \(f(t, \cdot) \in C^1_{\infty}(\mathbb{R}^d) \) for all \(t \). Denote by \(B^T_{f_0} \) the closed convex subset of \(C([0, T], C^1_{\infty}(\mathbb{R}^d)) \) consisting of functions with \(f(0, \cdot) = f_0(\cdot) = S_0(\cdot) \) for some given function \(S_0 \). Let us define a non-linear mapping
$f \to \{\Psi_t(f)\}$ defined for $f \in B^T_{f_0}$:

$$\Psi_t(f)(y) = \int_{\mathbb{R}^d} f_0(x) S_{\beta,1}(t, y - x) dx + \int_0^t \int_{\mathbb{R}^d} G_\beta(t - s, y - x) H(s, x, \nabla f(s, x)) dx ds.$$ \hspace{1cm} (4.127)

Suppose $H(s, y, p)$ is Lipschitz in p with the Lipschitz constant L. Let's take $f_1, f_2 \in B^T_{f_0}$. Then for $K = \frac{1}{\beta - \beta/\alpha}$ and for any $t \in [0, T]$:

$$\|\Psi_t^n(f_1) - \Psi_t^n(f_2)\|_{C^1} \leq \frac{(\beta - \beta/\alpha)L^n(K t^{(\beta - \beta/\alpha)})^n}{n^{\beta - \beta/\alpha + 1}} \|f_1 - f_2\|_{C^1}. \hspace{1cm} (4.128)$$

Proof. Due to regularity estimates for $S_{\beta,1}$ and G_β:

$$\|\Psi_t(f_1) - \Psi_t(f_2)\|_{C^1} \leq C L t^{\beta - \beta/\alpha} \sup_{s \in [0, t]} \|f_1 - f_2\|_{C^1}. \hspace{1cm} (4.129)$$

and

$$\|\Psi_t^2(f_1) - \Psi_t^2(f_2)\|_{C^1} \leq C^2 L^2 \sup_{s \in [0, t]} \|f_1 - f_2\|_{C^1} \int_0^t (t - s)^{3 - \beta/\alpha - 1} s^{3 - \beta/\alpha} ds. \hspace{1cm} (4.130)$$

We calculate the integral above using the change of variables $z = s/t$:

$$\int_0^t (t - s)^{3 - \beta/\alpha - 1} s^{3 - \beta/\alpha} ds$$

$$= \int_0^1 t^{3 - \beta/\alpha - 1}(1 - z)^{3 - \beta/\alpha - 1} z^{3 - \beta/\alpha + 1} dz$$

$$= t^{2\beta - 2\beta/\alpha} B(\beta/\alpha + 1, \beta - \beta/\alpha). \hspace{1cm} (4.131)$$

Now, when we estimate $\|\Psi_t^3(f_1) - \Psi_t^3(f_2)\|_{C^1}$ we calculate

$$\int_0^t s^{2\beta - 2\beta/\alpha}(t - s)^{3 - \beta/\alpha - 1} ds$$

$$= t^{3 - \beta/\alpha - 1} \int_0^1 t^{2\beta - 2\beta/\alpha + 1} z^{2\beta - 2\beta/\alpha}(1 - z)^{3 - \beta/\alpha - 1} dz$$

$$= t^{3(\beta - \beta/\alpha)} B(2\beta - 2\beta/\alpha + 1, \beta - \beta/\alpha). \hspace{1cm} (4.132)$$
This yields

\[\| \Psi_t^3(f_1) - \Psi_t^3(f_2) \|_{C^1} \leq C^3 L^3 t^{3\beta - 3\beta/\alpha} B(2\beta - 2\beta/\alpha + 1, \beta - \beta/\alpha) \sup_{s \in [0,t]} \| f_1 - f_2 \|_{C^1}. \]

(4.133)

As the inductive step, assume that the following is true for some \(n \in \mathbb{N} \):

\[\| \Psi_t^n(f_1) - \Psi_t^n(f_2) \|_{C^1} \leq C^n L^n t^{n\beta - n\beta/\alpha} \left(\frac{\Gamma(\beta - \beta/\alpha)^{n-1} \Gamma(\beta - \beta/\alpha + 1)}{\Gamma(n\beta - n\beta/\alpha + 1)} \sup_{s \in [0,t]} \| f_1 - f_2 \|_{C^1} \right). \]

(4.134)

Let’s check that then (4.134) holds for \(k = n + 1 \).

\[\| \Psi_t^{n+1}(f_1) - \Psi_t^{n+1}(f_2) \|_{C^1} \]

\[= \left\| \int_0^t \int_{\mathbb{R}^d} G_\beta(t - s, x - y) (H(s, y, \nabla \Psi_t^n(f_1)) - H(s, y, \nabla \Psi_t^n(f_2))) \right\|_{C^1} \]

\[\leq C L \int_0^t (t - s)^{\beta - \beta/\alpha - 1} ds \| \Psi_t^n(f_1) - \Psi_t^n(f_2) \|_{C^1} \]

\[\leq C^{n+1} L^{n+1} t^{n\beta - n\beta/\alpha} M_n \int_0^t (t - s)^{\beta - \beta/\alpha - 1} s^{n\beta - n\beta/\alpha} ds \sup_{s \in [0,t]} \| f_1 - f_2 \|_{C^1} \]

\[\leq C^{n+1} L^{n+1} t^{n\beta - n\beta/\alpha} M_{n+1} \sup_{s \in [0,t]} \| f_1 - f_2 \|_{C^1}, \]

(4.135)

where

\[M_n = \frac{\Gamma(\beta - \beta/\alpha)^{n-1} \Gamma(\beta - \beta/\alpha + 1)}{\Gamma(n\beta - n\beta/\alpha + 1)}, \]

(4.136)

\(M_{n+1} \) is as in (4.136) with \(n \) replaced by \(n + 1 \), and \(B_n \) is the Beta function.
\[B_n = B(n\beta - n\beta/\alpha + 1, \beta - \beta/\alpha). \] (4.137)

The inequality (4.135) is (4.134) with \(k = n \) replaced by \(k = n + 1 \). We have shown (4.134) is true for \(k = 1 \) and \(k = 2 \). So by induction on \(k \) we obtain (4.134) for any \(k \in \mathbb{N} \). Using that \(g(x) = x^n \) is a convex function for \(n \in \mathbb{N} \), we have

\[(\Gamma(\beta - \beta/\alpha))^n \leq \frac{\Gamma(n\beta - n\beta/\alpha - n + 1)}{n^{n\beta - n\beta/\alpha - n + 1}}, \] (4.138)

and using Stirling’s formula to obtain the quotient approximation

\[\frac{\Gamma(n(\beta - \beta/\alpha) + B)}{\Gamma(n(\beta - \beta/\alpha) + A)} \approx (n(\beta - \beta/\alpha))^{B-A}. \] (4.139)

Let us substitute \(A = 1 \) and \(B = -n + 1 \). Then

\[
\leq \frac{\Gamma(1 + \beta - \beta/\alpha)t^{n\beta - n\beta/\alpha}}{n^{n\beta - n\beta/\alpha + 1}(\beta - \beta/\alpha)^n\Gamma(\beta - \beta/\alpha)} \sup_{s \in [0,t]} \|f_1 - f_2\|_{C^1}
\leq \frac{\Gamma(1 + \beta - \beta/\alpha)t^{n\beta - n\beta/\alpha}}{n^{n\beta - n\beta/\alpha + 1}(\beta - \beta/\alpha)^n\Gamma(\beta - \beta/\alpha)} \sup_{s \in [0,t]} \|f_1 - f_2\|_{C^1},
\] (4.140)

so (4.128) holds. \(\square \)

Theorem 10. Assume that

- \(H(s, y, p) \) is Lipschitz in \(p \) with the Lipschitz constant \(L \) independent of \(y \).
- \(|H(s, y, 0)| \leq h\), for a constant \(h \) independent of \(y \).
- \(f_0(y) \in C_\infty^1(\mathbb{R}^d) \).

Then the equation (4.126) has a unique solution \(S(t, y) \in C_\infty^1(\mathbb{R}^d) \).
Proof. Let’s denote by $C([0, T], C^1_\infty(\mathbb{R}^d))$ and $B^T_{f_0}$ as in Lemma 1. Let $\Psi_t(f)$ be defined as in (4.127). Take $f_1(s, x), f_2(s, x) \in B^T_{f_0}$. Note that due to our choice of f_1, f_2,

$$
\int_{\mathbb{R}^d} f_1(0, x)S_{\beta, 1}(t, y - x)dx = \int_{\mathbb{R}^d} f_2(0, x)S_{\beta, 1}(t, y - x)dx.
$$

(4.141)

We would like to prove the existence and uniqueness result for all $t \leq T$ and any $T \geq 0$. For this we use (4.128) in Lemma 1. As $n \to \infty$, n grows faster than m^n for any fixed $m > 0$. Hence for any $t \geq 0$

$$
\|\Psi^n_t(f_1) - \Psi^n_t(f_2)\|_{C^1} \leq \frac{L^n(t^{\beta - \beta/\alpha} (\beta - \beta/\alpha)^{-1})^n (\beta - \beta/\alpha)}{n^n \beta - n \beta/\alpha + 1} \sup_{s \in [0, t]} \|f_1 - f_2\|_{C^1}.
$$

(4.142)

The sum $\sum_{n=1}^\infty \frac{(t^{\beta - \beta/\alpha} (\beta - \beta/\alpha)^{-1})^n (\beta - \beta/\alpha)}{n^n \beta - n \beta/\alpha + 1}$ is convergent by the ratio test. By Weissinger’s fixed point theorem, see Diethelm [2004] Theorem D.7, Ψ_t has a unique fixed point f^* such that for any $f_1 \in B^T_{f_0}$

$$
\|\Psi^n_t(f_1) - f^*\|_{C^1} \leq \sum_{k=n}^\infty \frac{(t^{\beta - \beta/\alpha} (\beta - \beta/\alpha)^{-1})^n (\beta - \beta/\alpha)}{n^n \beta - n \beta/\alpha + 1} \|\Psi_t(f_1) - f_1\|_{C^1}.
$$

(4.143)

So $S(t, y) = f^*$ is the solution of (4.126) of class $C^1_\infty(\mathbb{R}^d)$. □

Theorem 11. Assume that

- $H(s, y, p)$ is Lipschitz in p with the Lipschitz constant L_1 independent of y.
- H is Lipschitz in y independently of p, with a Lipschitz constant L_2

$$
|H(s, y_1, p) - H(s, y_2, p)| \leq L_2 |y_1 - y_2| (1 + |p|)
$$

(4.144)

- $|H(s, y, 0)| \leq h$, for a constant h independent of y.
- $f_0(y) \in C^2_\infty(\mathbb{R}^d)$.

33
Then there exists a unique solution $f^*(t, y)$ of the FDE equation \((4.125)\) for $\beta \in (0, 1)$ and $\alpha \in (1, 2]$, and f^* satisfies

$$
\text{ess sup}_y |\nabla^2(f^*(t, y))| < C.
$$
\hfill (4.145)

Proof. First, we work with the mild form of the equation \((4.125)\). Let $B^{T,2}_{f_0}$ denote the subset of $B^T_{f_0}$ which is twice continuously differentiable in y and with $f_0(y) = f_0(x)$, for all $y \in \mathbb{R}^d$. Let the mapping Ψ_t on $B^{T,2}_{f_0}$ be defined as in \((4.127)\). Take $f_0 \in B^{T,2}_{f_0}$, which continues $f_0(y) = S_0(y)$ to all $t \geq 0$. Then

$$
\|\Psi_t(f_0)\|_{C^2} \leq t^{\beta - \beta/\alpha} \sup_{s \in [0,t]} \|H(s, x, \nabla f_0(x))\|_{C^1} + \left\| \int_{\mathbb{R}^d} S_{\beta,1}(t, y - x) f_0(x) dx \right\|_{C^2}
$$

$$
\leq t^{\beta - \beta/\alpha} L_1 \sup_{s \in [0,t]} \|f_0\|_{C^2} + t^{\beta - \beta/\alpha} L_2 \sup_{s \in [0,t]} \|f_0\|_{C^1} + Ct^{\beta - \beta/\alpha} \|\nabla f_0(x)\|_{C^0} + C_3
$$

$$
\leq Lt^{\beta - \beta/\alpha} \sup_{s \in [0,t]} \|f_0\|_{C^2} + Ct^{\beta - \beta/\alpha} \sup_{s \in [0,t]} \|f_0(x)\|_{C^1} + C_3
$$

$$
\leq Ct^{\beta - \beta/\alpha} \left(\sup_{s \in [0,t]} \|f_0\|_{C^2} + 1 \right) + C_3.
$$
\hfill (4.146)

Iterations and induction yield

$$
\|\Psi^n_t(f_0)\|_{C^2} \leq C_3 \sum_{m=1}^{n} t^{m(\beta - \beta/\alpha)} K_m + \sum_{m=1}^{n} t^{m(\beta - \beta/\alpha)} C_m \left(1 + \sup_{s \in [0,t]} \|f_0\|_{C^2} \right),
$$
\hfill (4.147)

for constants $K_m = B_2 \times \cdots \times B_{m-1}$ and $C_m = B_2 \times \cdots \times B_m$, where $B_k = B(k\beta - k\beta/\alpha + 1, \beta - \beta/\alpha)$, for any $k \in \mathbb{N}$. We use that for x large and y fixed $B(x, y) \sim \Gamma(y)x^{-y}$ to obtain that $B_{m+1} < B_m$, for all $m \in \mathbb{N}$ which yields that the sums $\sum_{m=1}^{n} t^{m(\beta - \beta/\alpha)} K_m$ and $\sum_{m=1}^{n} t^{m(\beta - \beta/\alpha)} C_m$ are convergent as $n \to \infty$. So for some constants
\[A_1, A_2, C_{f_0} > 0, \]
\[\| \Psi^n_y f_0 \|_{C^2} < A_1 + A_2 \sup_{s \in [0, t]} \| f_0 \|_{C^2} < C_{f_0}. \quad (4.148) \]

Hence, \(\forall n \in \mathbb{N} \)
\[\| \nabla (\Psi^n_t f_0) \|_{Lip} < C_{f_0}. \quad (4.149) \]

It is clear that if \(g_n(x) \to g(x) \), for all \(x \in \mathbb{R}^d \), for continuous functions \(g_n, g \) such that \(\| g_n \|_{Lip} \leq C \ \forall n \in \mathbb{N} \), then \(\| g \|_{Lip} \leq C \). Hence, with \(g_n = \nabla (\Psi^n_t f_0) \), we obtain
\[\| \lim_{n \to \infty} \nabla (\Psi^n_t f_0) \|_{Lip} < C_{f_0}. \quad (4.150) \]

By Rademacher’s theorem it follows that \(\lim_{n \to \infty} (\nabla^2 (\Psi^n_t f_1)) \) exists a.e. We invite the reader to see [Evans and Gariepy 1992] for the Rademacher’s theorem and its proof. From the previous theorem \(\lim_{n \to \infty} \Psi^n_t = f^* \). The limit is understood in the sense of convergence in \(C^1_{\infty}(\mathbb{R}^d) \). Therefore \(f^* \) satisfies (4.145).

\[\square \]

Theorem 12. Assume that

- \(H(s, y, p) \) is Lipschitz in \(p \) with the Lipschitz constant \(L \) independent of \(y \).

- \(H \) is Lipschitz in \(y \) independently of \(p \), with a Lipschitz constant \(L_2 \)
\[|H(s, y_1, p) - H(s, y_2, p)| \leq L_2 |y_1 - y_2| (1 + |p|) \quad (4.151) \]

- \(|H(s, y, 0)| \leq h \), for a constant \(h \) independent of \(y \).

- \(f_0(y) \in C^2_{\infty}(\mathbb{R}^d) \).
Then a solution to the mild form

\[f(t, y) = \int_{\mathbb{R}^d} S_{\beta, 1}(t, x - y) f_0(y) dy + \int_0^t \int_{\mathbb{R}^d} G_{\beta}(t - s, x - y) H(s, y, \nabla f(s, y)) ds dy \]

which satisfies (4.145), is a classical solution to

\[D_{0,t}^{\alpha} f(t, y) = -(-\Delta)^{\alpha/2} f(t, y) + H(t, y, \nabla f(t, y)). \]

(4.153)

Proof. Let us define \(\Psi_t(f) \) as in (4.127). Firstly, by Diethelm

\[\hat{\Psi}_t(f)(p) = \hat{f}_0(p) E_{\beta, 1}(-a|p|^\beta) + \int_0^t (t - s)^{\beta - 1} E_{\beta, \beta}(-a(t - s)^\beta |p|^\alpha) \hat{H}(s, y, p) ds, \]

(4.154)

is equivalent to

\[D_{0,t}^{\alpha} \hat{\Psi}_t(f)(p) = -a|p|^\alpha \hat{\Psi}_t(f)(p) + \hat{H}(t, y, \nabla f(t, y)), \]

(4.155)

which in turn is equivalent to (4.153) as its Fourier transform. Also, (4.152) is equivalent to (1.19) as its inverse Fourier transform. Therefore (4.152) is equivalent to (4.153). We may carry out these equivalence procedures when \(D_{0,t}^{\alpha} \Psi_t(f) \) and \(-(-\Delta)^{\alpha/2} f \) are defined for \(f \) satisfying (4.145).

Due to theorem assumptions:

\[|H(s, y, \nabla f(t, \cdot))| \leq h + L \sup_{s \in [0, t]} \|\nabla f(t, \cdot)\|_{C^1(\mathbb{R}^d)} < \infty. \]

(4.156)

So

\[D_{0,t}^{\alpha} \left(\int_0^t \int_{\mathbb{R}^d} G_{\beta}(t, y) H(s, y, \nabla f(t, y)) dy ds \right) \]

\[\leq \frac{C}{\Gamma(1 - \beta)} \int_0^t (t - s)^{-\beta} s^\beta ds \leq C_1 \int_0^1 (t - tz)^{-\beta} \beta(tz)^{\beta - 1} t dz \]

\[\leq C_1 \beta \int_0^1 (1 - z)^{1-\beta-1} z^{\beta-1} dz \leq C_1 \beta B(1 - \beta, \beta) < \infty. \]

(4.157)
Similarly

\[D_{0,t}^{\ast \beta} \int_{\mathbb{R}^d} S_{\beta,1}(t, x - y) f_0(y) dy \]

exists when \(f_0(y) \) gives dependence of \(\int_{\mathbb{R}^d} S_{\beta,1}(t, x - y) f_0(y) dy \) on \(t \) such as \(t^k \), where \(k > -1 \). This is because

\[
\int_0^t (t - s)^{-\beta} \left(\frac{d}{ds} s^k \right) ds = t^{k+1-\beta} \int_0^1 (1 - z)^{-\beta} z^{k-1} dz = t^{k+1-\beta} B(1 - \beta, k + 1),
\]

where for any \(\beta \in (0, 1) \) the Beta function \(B(1 - \beta, k + 1) \) is defined for \(k + 1 > 0 \). Hence, due to (4.156), (4.157) and (4.158), \(D_{0,t}^{\ast \beta} \Psi_t(f) \) is defined for the solution \(f \) for (4.153). For \(f \) satisfying (4.145), when \(\alpha \in (1, 2], (-\Delta)^{\alpha/2} f \) is defined. Now, let us study the solution \(f^\ast(t, y) \)

\[
f^\ast(t, y) = \int_0^t \int_{\mathbb{R}^d} G_\beta(t - s, y - x) H(s, x, \nabla f^\ast(t, x)) dx ds + \int_{\mathbb{R}^d} S_{\beta,1}(t, y - x) f_0(x) dx.
\]

Differentiating twice w.r.t. \(y \) gives:

\[
\nabla^2 \int_0^t \int_{\mathbb{R}^d} G_\beta(t - s, y - x) H(s, x, \nabla f^\ast(t, x)) dx ds = \int_0^t \int_{\mathbb{R}^d} \nabla_y G_\beta(t - s, y - x) \nabla_2 H(s, x, \nabla f^\ast(s, x)) dx ds.
\]

From the representations of \(G_\beta(t, y) \) and \(\nabla G_\beta(t, y) \) used in theorems (1), (2) it is clear that \(\nabla G_\beta(t, y) \) exists and is continuous in \(t \) and in \(y \). From theorem (1) we know \(\nabla f^\ast \) exists and is Lipschitz continuous. Since we assumed \(H \) to be Lipschitz, it follows from Rademacher’s theorem that \(\nabla_x H(s, x, \nabla f^\ast(s, x)) \) is almost everywhere defined and
bounded. Hence (4.161) represents a continuous function in y and in t. Since $f_0 \in C^2_\infty(\mathbb{R}^d)$ and due to theorem (4)
\[
\nabla^2 \int_{\mathbb{R}^d} S_{\beta,1}(t, y - x)f_0(x)dx = \int_{\mathbb{R}^d} S_{\beta,1}(t, x)\nabla^2 f_0(y - x)dx < \infty. \quad (4.162)
\]
Thus, $\nabla^2 f^*(t, y)$ exists and so $f^*(t, y) \in C^2_\infty(\mathbb{R}^d)$. This completes the necessary requirements for the solution of the mild form (4.152) to be the solution of (4.153) of class $C^2_\infty(\mathbb{R}^d)$, i.e. a solution in the classical sense. \qed

5 Appendix

Let us recall the asymptotic properties of stable densities defined in (2.26)
\[
g(y, \alpha, \sigma) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \exp\{-\sigma|p|\alpha\}e^{-ipy}dp, \quad (5.163)
\]
see Kolokoltsov [2011] for details. For $|y|/\sigma^{1/\alpha} \to 0$ the following asymptotic expansion for g holds
\[
g(y, \alpha, \sigma) \sim \frac{|S_{\beta,1}^{d-2}|}{(2\pi\sigma^{1/\alpha})^d} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} a_k \left(\frac{|y|}{\sigma^{1/\alpha}}\right)^{2k}, \quad (5.164)
\]
where
\[
a_k = \alpha^{-1}\Gamma\left(\frac{2k + d}{\alpha}\right)B\left(k + \frac{1}{2}, \frac{d - 1}{2}\right), \quad (5.165)
\]
where
\[
B(q, p) = \int_0^1 x^{p-1}(1 - x)^q dx = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p + q)} \quad (5.166)
\]
is the Beta function, and

\[|S^{d-2}| = 2 \frac{\pi^{(d-1)/2}}{\Gamma \left(\frac{d-1}{2} \right)} \]

and \(|S^0|=2\), see Kolokoltsov [2011] for the proof. For \(|y|/\sigma^{1/\alpha} \to \infty\) the following asymptotic expansion holds

\[g(y; \alpha, \sigma) \sim (2\pi)^{-(d+1)/2} \frac{2}{|y|^d} \sum_{k=1}^{\infty} \frac{a_k}{k!} (\sigma |y|^{-\alpha})^k \]

where

\[a_k = (-1)^{k+1} \sin \left(\frac{k \pi \alpha}{2} \right) \int_0^{\infty} \xi^{\alpha k+(d-1)/2} W_{0,\frac{d}{2}-1}(2\xi) d\xi \]

and \(W_{0,n}(z)\) is the Whittaker function

\[W_{0,n}(z) = \frac{e^{-z/2}}{\Gamma(n+1/2)} \int_0^{\infty} [t(1+t/z)]^{n-1/2} e^{-t} dt, \]

see Kolokoltsov [2011] for the proof.

In case \(d=1\) the stable density function \(w(x, \beta, 1)\) defined in (2.27) is infinitely smooth for \(x=0\) and \(w(x, \beta, 1) = 0\) for \(x < 0\). Hence \(w\) grows at 0 slower than any power. This gives rise to the inequalities such as \(w(x, \beta, 1) < C_q x^{q-1}\) for any \(q > 1\), for \(x < 1\). The property \(w(x) \sim x^{-1-\beta} \) for \(x >> 1\), may be found for example in Kolokoltsov [2011]. This may be deduced from the asymptotic expansions in equations 7.7 and 7.9 in Kolokoltsov [2011] with \(\gamma = 1\).

The following result is part of the proposition 7.3.2 from Kolokoltsov [2011]:

Proposition 1. Let
\[
\phi(y, \alpha, \beta, \sigma) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} |p|^\beta \exp \{-i(p, y) - \sigma|p|^{-\alpha}\} dp, \quad (5.171)
\]

so that
\[
\frac{\partial \phi}{\partial \beta}(y, \alpha, \beta, \sigma) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} |p|^\beta \log |p| \exp \{-i(p, y) - \sigma|p|^{-\alpha}\} dp.
\quad (5.172)
\]

Then if \(\frac{|y|}{\sigma^{1/\alpha}} \leq K \)
\[
|\phi(y, \alpha, \beta, \sigma)| \leq c\sigma^{-\beta/\alpha} g(y, \alpha, \sigma) \quad (5.173)
\]
and if \(\frac{|y|}{\sigma^{1/\alpha}} > K \)
\[
|\phi(y, \alpha, \beta, \sigma)| \leq c\sigma^{-1}|y|^{\alpha-\beta} g(y, \alpha, \sigma), \quad (5.174)
\]

where \(g \) is as in (5.163) and (2.26).

Acknowledgements

The authors would like to thank BCAM, G. Pagnini and E. Scalas for organizing the BCAM FCPNLO 2013 workshop where this work was discussed. This work is supported by the IPI RAN grants RFBR 11-01-12026 and 12-07-00115, and by the grant 4402 of the Ministry of Education and Science of Russia, and by EPSRC grant EP/HO23364/1 through MASDOC, University of Warwick, UK.

References

E. Bajlekova. Fractional evolution equations in banach spaces. PhD thesis, 2001.

K. Diethelm. The analysis of fractional differential equations. Springer, 2004.
F. Mainardi E. Scalas, R. Gorenflo and M.M. Meerschaert. Speculative option valuation and the fractional diffusion equation. In: A. Le Méhauté, J.A. Tenreiro Machado, J.C. Trigeassou and J. Sabatier (Editors). Fractional Differentiation and its Applications. U-Books (2005), pp. 265-274. [Selected papers of the First IFAC Workshop on Fractional Differentiation and Applications (FDA’04), Bordeaux (France) 19-21 July 2004], 2004.

S. E. Eidelman and A. N. Kochubei. Cauchy problem for fractional differential equations. Elsevier, Journal of differential equations 199, 211 - 255, 2004.

L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. CRC Press, Inc., 1992.

R. Gorenflo, Yu. F. Luchko, and P. P. Zabrejko. On solvability of linear fractional differential equations in banach spaces. Fract. Calc. Appl. Anal., 2, 163-176, 1999.

Alexandra M.S.F. Galhano J. A. Tenreiro Machado. Fractional order inductive phenomena based on the skin effect. Nonlinear Dynamics, vol. 68, Numbers 1-2, pp. 107-115, 2012.

L. Kexue and P. Jigen. Laplace transform and fractional differential equations. Elsevier, Applied Mathematics Letters 24, pp. 2019 - 2023, 2011.

A. A. Kilbas, M. Rivero, L. Rodriguez-Germa, and J. J. Trujillo. Caputo linear fractional differential equations. Proceedings of the 2nd FAC Workshop on Fractional Differentiation and Applications, Porto, Portugal, 2006.

M. M. Kokurin. The uniqueness of a solution to the inverse cauchy problem for a fractional differential equation in a banach space. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, No. 12, pp. 1935, 2013.

V. Kolokoltsov. Markov processes, semigroups and generators. De Gruyter, 2011.
C. Lizama and G. M. N’Guerekata. Mild solutions for abstract fractional differential equations. Preprint, 2011.

Y. Ma, F. Zhang, and C. Li. The asymptotics of the solutions to the anomalous diffusion equations. Elsevier, Computers and Mathematics with Applications 66 (2013) 682-692, 2013.

F. Mainardi. The time fractional diffusion-wave equation. Radio physics and quantum electronics, Volume 38, Issue 1-2, pp 13-24, January-February issue, 1995.

M. Matar. On existence and uniqueness of the mild solution for fractional semilinear integro-differential equations. Journal of integral equations and applications, 23, 3, 2011.

M. Meerschaert, E. Nane, and P. Vellaisamy. Fractional cauchy problems on bounded domains. The Annals of Probability, Vol. 37, No. 3, 979-1007, 2009.

I. Podlubny. Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, volume 198. Mathematics in Science and engineering, Science and Engineering series, 1999.

A. V. Pskhu. Multi-time fractional diffusion equation. The European Physical Journal Special topics, 222, 1939-1950, EDP Sciences, Springer-Verlag, 2013.

B. Ahmad R. P. Agarwal, S. K. Ntouyas and M. S Alhothuali. Existence of solutions for integro-differential equations of fractional order with nonlocal three-point fractional boundary conditions. Springer Open Journal, Advances in Difference Equations 2013, 2013.

H. Tao, M. Fu, and R. Qian. Positive solutions for fractional differential equations from real estate asset securisation via new fixed point theorem. Hindawi, Abstract and Applied Analysis, 2012.

V. E. Tarasov. Fractional Dynamics, Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Higher Education Press, 2011, XV.
V. V. Uchaikin. *Fractional Derivatives for Physicists and Engineers*. Springer, 2012.

C. C. Heyde V. V. Anh and N. N. Leonenko. Dynamic models of long-memory processes driven by lvy noise. *J. Appl. Probab. Volume 39, Number 4, 671-913*, 2002.

E. Nane Z. Q. Chen, M. M. Meerschaert. Space time fractional diffusion on bounded domains. *Elsevier, Journal of Mathematical Analysis and Applications, 393, 479-488*, 2012.

Y. Zhou, X. N. Shen, and L. Zhang. Cauchy problem for fractional evolution equations with caputo derivative. *The European Physical Journal Special topics, 222, 1749-1765, EDP Sciences, Springer-Verlag*, 2013.

V. M. Zolotarev. *One-dimensional stable distributions*. v. Translations of Mathematical Monographs, vol. 65, American Mathematical Society, Providence, 1986.