Cell Signaling Pathways Elicited by Asbestos

Brooke T. Mossman,1 Steven Faux,1 Yvonne Janssen,1 Luis A. Jimenez,1 Cynthia Timblin,1 Christine Zanella,1 Jonathan Goldberg,1 Eric Walsh,1 Aaron Barchowsky,2 and Kevin Driscoll3

1Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont; 2Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire; 3Procter and Gamble, Inc., Cincinnati, Ohio

In recent years, it has become apparent that minerals can trigger alterations in gene expression by initiating signaling events upstream of gene transactivation. These cascades may be initiated at the cell surface after interaction of minerals with the plasma membrane either through receptorlike mechanisms or integrins. Alternatively, signaling pathways may be stimulated by active oxygen species generated both during phagocytosis of minerals and by redox reactions on the mineral surface. At least two signaling cascades linked to activation of transcription factors, i.e., DNA-binding proteins involved in modulating gene expression and DNA replication, are stimulated after exposure of lung cells to asbestos fibers in vitro. These include nuclear factor κB (NFκB) and the mitogen-activated protein kinase (MAPK) cascade important in regulation of the transcription factor, activator protein-1 (AP-1). Both NFκB and AP-1 bind to specific DNA sequences within the regulatory or promoter regions of genes that are critical to cell proliferation and inflammation. Unraveling the cell signaling cascades initiated by mineral dusts and pharmacologic inhibition of these events may be important for the control and treatment of mineral-associated occupational diseases. — Environ Health Perspect 105(Suppl 5):1121–1125 (1997)

Key words: asbestos, gene expression, protein kinases, NFκB, transcription factors

Introduction

Asbestos fibers are a group of fibrogenic and carcinogenic minerals that have been extensively studied by toxicologists and biologists in an effort to understand the mechanisms of fiber-induced diseases [reviewed in (1–3)]. In recent years, the development of sophisticated techniques in molecular and cellular biology has allowed us to study gene expression in cells of the respiratory tract that are affected in asbestos-associated diseases in vivo and the pathways controlling regulation of gene expression in these cells in vitro.

Various types of asbestos have been assessed for their genotoxicity, using karyotypic and morphologic approaches in a number of rodent and human cell lines [reviewed in (1,4)]. These studies reveal differences in responses to asbestos in various cell types, and disparate results in that asbestos appeared to cause chromosomal and mutational changes in some, but not other cell lines examined. Alternate theories were advanced which suggest that asbestos fibers, particularly high iron-containing amphiboles such as crocidolite and amosite, damage DNA indirectly through release of active oxygen species (AOS) and formation of oxidative and mutagenic DNA lesions (5–8), or directly after penetration of the nuclear membrane by fibers during mitosis (9).

The discovery that asbestos and erionite fibers, but not a variety of other nonpathogenic particulates, cause increased and protracted mRNA levels of the early response protooncogenes, c-fos and c-jun and increased activator protein-1 (AP-1) binding to DNA in both tracheal epithelial and pleural mesothelial cells (10–12) and the knowledge that transactivation of these genes is regulated by upstream cell signaling events in other cell types (13,14) prompted us to examine the mechanisms of cell signaling in asbestos-exposed mesothelial, tracheal epithelial, and alveolar type II epithelial cells. Thus far, we have focused on two major pathways, the nuclear factor κB (NFκB) and mitogen-activated protein kinase (MAPK) cascades.

NFκB is a transcription factor important in regulation of a number of genes intrinsic to inflammation, proliferation, and lung defenses (15). Genes that contain the NFκB-binding cis-regulatory elements in their promoter or intronic regions include various interleukins, nitric oxide synthase, certain adhesion molecules, and the protooncogene c-myc. Protein subunits that bind to nuclear NFκB elements are members of the Rel family of genes, which may be differentially and specifically activated in various cell types. Members of the Rel proteins may occur in complexes found in cytosols with inhibitory proteins (IKB-α, IKB-β, and IκB-3). After proteolytic degradation of these inhibitory subunits, homodimeric or heterodimeric complexes then may bind to specific consensus DNA sequences for NFκB DNA. These protein complexes can be detected using electrophoretic mobility shift assays (EMSA).

AP-1 is a family of accessory transcription factors that interact with other regulatory DNA sequences called TPA (12-O-tetradecanoylphorbol-13-acetate)-response elements (referring to the active phorbol ester that classically induces the expression of AP-1 in a variety of cell types (14)) or AP-1 sites. The family of transcription factors that interact with AP-1 sites includes both homo- (Jun/Jun) and heterodimeric (Fos/Jun) complexes encoded by various members of the c-fos and c-jun families of protooncogenes. Although the functional

This paper is based on a presentation at The Sixth International Meeting on the Toxicology of Natural and Man-Made Fibrous and Non-Fibrous Particles held 15–18 September 1996 in Lake Placid, New York. Manuscript received at EHP 26 March 1997; accepted 7 May 1997.

The authors thank L. Sabens for preparation of this manuscript. This research was supported by grants from the National Institute of Environmental Health Sciences (ES06496, ES07038), National Heart, Lung and Blood Institute (HL39468), and National Institute for Occupational Safety and Health Special Emphasis Research Career Award.

Address correspondence to Dr. B.T. Mossman, Department of Pathology, University of Vermont College of Medicine, Soule Medical Alumni Building, Burlington, VT 05405. Telephone: (802) 656-0832, Fax: (802) 656-8892.

Abbreviations used: AOS, active oxygen species; AP-1, activator protein-1; BrdU, 5-bromodeoxyuridine; EGFR, epidermal growth factor receptor; EMSA, electrophoretic mobility shift assays; ERK1, ERK2, extracellular signal kinases; HTE, hamster tracheal epithelial; JNK1, JNK2, stress-related protein kinases; MAPK, mitogen-activated protein kinases; MEKK, mitogen-activated protein kinases; NAC, N-acetylcycteine; NFκB, nuclear factor κB; PGE2, rat alveolar type II epithelial cells; RPM, rat pleural mesothelial; TNF-α, tumor necrosis factor alpha; TPA, 12-O-tetradecanoylphorbol-13-acetate; UV, ultraviolet.

Environmental Health Perspectives • Vol 105, Supplement 5 • September 1997

1121
ramifications of c-fos and/or c-jun transactivation may be cell-type specific, Fos and Jun proteins are considered early-response gene products that may regulate the expression of other genes required for progression through the cell cycle (14), programmed cell death, i.e., apoptosis (16), or transformation of cells (17).

Activation of the MAPK cascade involving phosphorylation and dephosphorylation of a number of proteins leads to transactivation of c-jun and a number of interrelated transcription factors (18–20). The MAPK cascade includes the extracellular signaling-related kinases (ERK1, ERK2), the stress-activated protein kinases (JNK1, JNK2) and p38 (Figure 1). Selected arms of this cascade can either be induced by TPA, causing phosphorylation of the Raf protein through a Ras-dependent mechanism or a Ras-independent mechanism in the case of tumor necrosis factor alpha (TNF-α), or other cellular stresses including endotoxin and heat shock (21). A series of MAPK kinase kinase (MEKK) and MAPK kinases (MEK) may then become phosphorylated differentially dependent upon the stimulus. Most intriguing, the balance of activation between ERKs, JNKs and p38 may govern differentiation and apoptosis in malignant cells (PC12 neuroblastoma line) (22).

In our study we demonstrate that asbestos fibers cause induction of multiple signaling pathways. We first present data showing that crocidolite asbestos causes NFkB activation in hamster tracheal epithelial (HTE) cells (23). We then describe work showing activation of the ERK MAPK cascade by crocidolite asbestos after phosphorylation of the epidermal growth factor receptor (EGFR) (24). Last, we summarize how cell signaling events, particularly the balance between ERK and JNK activities in the MAPK pathway, may be important in induction of cell proliferation (25,26) or apoptosis (27), with phenotypic end points occurring in pulmonary epithelial and pleural mesothelial cells after exposure to asbestos.

Methods

Cell Cultures and Exposure to Asbestos

A diploid line of HTE cells previously isolated in our laboratory was maintained in Ham’s F-12 medium ( Gibco, Grand Island, NY) containing 10% newborn bovine serum, 50 units of penicillin, and 50 μg of streptomycin per ml (23). All cells were used at confluency at passages between 38 and 48, and growth medium was replaced with medium containing 2% serum to arrest cell growth at 24 hr before addition of test agents.

The National Institute of Environmental Health Sciences’ preparation of processed crocidolite asbestos was obtained from the Thermal Insulation Manufacturers Association Fiber Repository (Mountain View, CA) and weighed out in 5-mg aliquots before use. After heat sterilization in a dry oven overnight, samples were diluted in Hank’s balanced salt solution and added directly to medium at 1.25 or 5.0 μg/cm² dish. The latter concentration of crocidolite induces both c-jun expression and AP-1 DNA binding activity in HTE and rat pleural mesothelial (RPM) cells (10–13) and increased ERK MAPK phosphorylation and activity in the latter cell type (24). A variety of nonfibrous analogs of asbestos have been used routinely as negative controls in these assays and do not induce these events.

Electrophoretic Mobility Shift Assays

At periods from 2 to 24 hr after addition of asbestos, HTE cells were isolated for preparation of nuclear extracts as described by Staal et al. (28). Electrophoretic mobility shift assays (EMSA) were performed using 2 to 4 μg of nuclear protein (23). The DNA binding buffer consisted of 40 mM HEPES buffer, 4% Ficoll 400, 200 ng poly(dI)-poly(dC) per μl, 1 mM MgCl₂, 0.1 mM dithiothreitol, and 0.175 pmol of a 32P-end-labeled double-stranded oligonucleotide containing a DNA consensus NFkB site (23). Protein extracts were incubated in DNA-binding buffer for 20 min at room temperature before electrophoresis on a 5% polyacrylamide gel that was then dried and visualized by exposure to Kodak X-Omat film. Radioactivity in retarded binding complexes was quantitated using phosphorimaging (23).

To determine the identity and specificity of EMSA complexes, a 40-fold molar excess of unlabeled NFkB binding oligonucleotide or an unlabeled oligonucleotide containing a consensus AP-1 binding sequence (fat soluble element) was induced in the binding reactions. We also used antibodies specific to the p50 or p65 members of the NFκB family (SC-109 and SC-114, respectively, at 1 mg/ml from Santa Cruz Biotechnology, Santa Cruz, CA) to identify the proteins present in the retarded complexes. In these experiments, we added 2 μl of each antibody for an additional 30 min after incubating nuclear proteins in DNA-binding buffer.

Statistics

Data were analyzed by analysis of variance using Duncan’s procedure to correct for multiple comparisons.

Results and Discussion

Figure 2 shows a time-course study demonstrating increases in protein complexes that bind to the NFkB consensus sequence in HTE cells exposed to crocidolite asbestos, compared to sham control cells. Note that several gel-shift complexes are observed that increase in intensity in response to asbestos. In the experiments shown in Figure 3 the specificity of gel-shift complexes in HTE cells exposed to asbestos was determined. Lane 1 in Figure 3A represents nuclear proteins from HTE cells exposed to 5 μg/cm² asbestos after incubation in DNA-binding buffer. Lanes 2 and 3 show incubation of nuclear proteins in DNA-binding buffer containing a 40-fold molar excess of unlabeled NFkB-binding oligonucleotide or an oligonucleotide containing an AP-1 consensus binding site, respectively. The appearance of all complexes are abolished with use of excess cold NFkB. The two predominant
Figure 2. Crocidolite asbestos causes increases in p65/50 and p50 protein complexes binding to the NFκB-binding consensus DNA sequence in HTE cells. Reproduced with permission from Janssen et al. (23). *n = 2 duplicate lanes per group. All experiments were performed in duplicate. \*Significantly different from sham group (p < 0.05).

Asbestos may be important in increased binding of p65/p50 and p50 complexes to the NFκB consensus sequence. In all studies, NAC alone was added to cells for 18 hr and diminished both crocidolite-induced c-fos and c-jun mRNA levels and AP-1 to DNA-binding activity.

Figure 3. Specificity of binding to the NFκB consensus sequence in asbestos-exposed (5 μg/cm² dish) HTE cells. (A) Competitive inhibition of complex formation in presence of cold NFκB, but not AP-1 binding oligonucleotide. (B) Supershift assays using antibodies (Ab) recognizing p65 and p50 to identify proteins in complexes. Reproduced with permission from Janssen et al. (23). *n = 2 duplicate lanes per group. All experiments were performed in duplicate.

Figure 3. Specificity of binding to the NFκB consensus sequence in asbestos-exposed (5 μg/cm² dish) HTE cells. (A) Competitive inhibition of complex formation in presence of cold NFκB, but not AP-1 binding oligonucleotide. (B) Supershift assays using antibodies (Ab) recognizing p65 and p50 to identify proteins in complexes. Reproduced with permission from Janssen et al. (23). *n = 2 duplicate lanes per group. All experiments were performed in duplicate.
both RPM and rat alveolar type II epithelial (RLE) cells (35).

Silica, especially when freshly ground, also elaborates AOS (36), and activates the NFκB pathway in a manner similar to that in asbestos (Driscoll et al., unpublished data). Although this mineral has not been examined for its ability to stimulate the various arms of the MAPK cascade as diagrammed in Figure 1, it is likely that MAPK activation may occur in certain cell types of the respiratory tract (epithelial, fibroblasts) that are affected in silicosis (37). In view of observations in malignant cells indicating that ERK activation occurs selectively after mitogenic stimuli (38) whereas JNK/p38 activation governs apoptosis occurring in response to stress (21), we have developed dual labeling in situ cell-imaging techniques to quantitate both proliferation and apoptosis in RLE cells (39) after exposure to asbestos TPA or TNF (40). Preliminary data suggest that these morphologic end points may reflect patterns of ERK and JNK activation in epithelial cells of the respiratory tract. In brief, crocidolite asbestos at concentrations (5 µg/cm² dish) causing apoptosis but not cell proliferation as determined by labeling with an antibody to 5'-bromodeoxyuridine, selectively stimulates the ERK pathway in this cell type as does TPA, an agent inducing apoptosis that is classically used as a positive control for ERK activation in other cell types. In contrast, TNFα, an agent inducing JNK activation, also causes dramatic cell proliferation in RLE cells whereas asbestos (5 µg/cm²) fails to cause increases in JNK activity over a range of time points examined. These data are exciting in that they suggest that ERK activation is linked to apoptosis rather than to cell proliferation in this cell type. Moreover, this observation is supported by the fact that pretreatment of RPM cells with an MEK1,2 inhibitor compound, which selectively blocks ERK activation, inhibits the development of apoptosis by asbestos (29). Thus, manipulating different arms of the MAPK cascade using pharmacologic inhibitors may be feasible in controlling phenotypic outcomes of asbestos exposure in cells of the respiratory tract.

In summary, multiple cell-signaling pathways may be stimulated by mineral dusts. Probable mediators in these pathways are oxidants that phosphorylate either receptors on the cell surface or other signaling proteins occurring upstream of transcription factor interaction with DNA. AOS may also be important in the degradation of proteins in these capsules or in the initiation of lipid peroxidation cell signaling pathways yet to be characterized after exposure of cells to minerals (41). These experiments are fruitful areas for further investigation into how asbestos and other mineral dusts alter gene expression.

REFERENCES

1. Mossman BT, Bignon J, Corn M, Seaton A, Gee JBL. Asbestos: scientific developments and implications for public policy. Science 247:294–301 (1990).
2. Mossman BT, Gee JBL. Medical progress. Asbestos-related diseases. N Engl J Med 320:1721–1730 (1989).
3. Mossman BT, Kamp DW, Weitzman SA. Mechanisms of carcinogenesis and clinical features of asbestos-associated cancers. Cancer Invest 14:466–480 (1996).
4. Mossman BT. Carcinogenesis and related cell and tissue responses to asbestos: a review. Ann Occup Hyg 38:617–614 (1994).
5. Takeuchi T, Morimoto K. Crocidolite asbestos increased 8-hydroxydeoxyguanosine levels in cellular DNA of a human promyelocytic leukemia cell line, HL60. Carcinogenesis 15:635–639 (1994).
6. Fung H, Kow YW, Van Houten B, Mossman BT. Patterns of 8-hydroxydeoxyguanosine (8OHdG) formation in DNA and indications of oxidative stress in rat and human pleural mesothelial cells after exposure to crocidolite asbestos. Carcinogenesis 18:101–108 (1997).
7. Chen Q, Marsh J, Ames B, Mossman B. Detection of 8-oxo-2′-deoxyguanosine, a marker of oxidative DNA damage, in culture medium from human mesothelial cells exposed to crocidolite asbestos. Carcinogenesis 17:2525–2527 (1996).
8. Chao C-C, Park S-H, Aust AE. Participation of nitric oxide and iron in the oxidation of DNA in asbestos-treated human lung epithelial cells. Arch Biochem Biophys 326:152–157 (1996).
9. Hesterberg T, Barrett J. Induction of asbestos fibers of anaphase abnormalities: mechanisms for aneuploidy induction and possibly carcinogenesis. Carcinogenesis 6:473–475 (1985).
10. Heintz NH, Jansen YMW, Mossman BT. Persistent induction of c-fos and c-jun protooncogene expression by asbestos. Proc Natl Acad Sci USA 90:3299–3303 (1993).
11. Janssen YM, Heintz NH, Marsh JP, Borm PJ, Mossman BT. Induction of c-fos and c-jun protooncogenes in target cells of the lung and pleura by carcinogenic fibers. Am J Respir Cell Mol Biol 11:522–530 (1994).

12. Janssen YM, Heintz NH and Mossman BT. Induction of c-fos and c-jun protooncogene expression by asbestos is ameliorated by N-acetyl-L-cysteine in mesothelial cells. Cancer Res 55:2085–2089 (1995).

13. Ng L, Forrest D, Curran T. Differential roles for Fos and Jun in DNA-binding: redox-dependent and independent functions. Nucl Acids Res 21:5831–5837 (1993).

14. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1072:129–157 (1991).

15. Thanos D, Maniatis T. NF-kB: a lesson in family values. Cell 80:529–532 (1995).

16. Pandey S, Wang E. Cells en route to apoptosis are characterized by the upregulation of c-fos, c-myc, c-jun, cdc2, and RB phosphorylation, resembling events of early cell-cycle traverse. J Cell Biochem 58:135–150 (1995).

17. Timblin CR, Janssen YWM, Mossman BT. Transcriptional activation of the proto-oncogene c-jun, by asbestos and H2O2 is directly related to increased proliferation and transformation of tracheal epithelial cells. Cancer Res 55:2723–2726 (1995).

18. Hibi M, Lin A, Smeal T, Minden A, Karin M. Identification of an oncprotein- and UV-responsive protein kinase that binds and potentiatates the c-Jun activation domain. Genes Dev 7:2135–2148 (1993).

19. Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ. Integration of MAP kinase signal transduction pathways at the serum response element. Science 269:403–407 (1995).

20. Derijard B, Hibi M, Wu I-H, Barrett T, Su B, Deng T, Karin M, Davis RJ, JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037 (1994).

21. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160 (1994).

22. Xia Z, Dickens M, Raingeaud J, Davis R, Greenberg M. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1329 (1995).

23. Janssen YMW, Barchowsky A, Treadwell M, Driscoll KE and Mossman BT. Asbestos induces nuclear factor KB (NF-kB) DNA-binding activity and NF-kB-dependent gene expression in tracheal epithelial cells. Proc Natl Acad Sci USA 92:8458–8462 (1995).

24. Zanella CL, Posada J, Tritton TR, Mossman BT. Asbestos causes stimulation of the extracellular-signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor. Cancer Res 56:5334–5338 (1996).

25. Marsh JP, Mossman BT. Mechanisms of induction of ornithine decarboxylase activity in tracheal epithelial cells by asbestos fibers. Cancer Res 48:709–714 (1988).

26. Berube KA, Quinlan TR, Moulton G, Hemenway D, O'Shaughnessy P, Vacek P, Mossman BT. Comparative proliferative and histopathological changes in rat lungs after inhalation of chrysotile or crocidolite asbestos. Toxicol Appl Pharmacol 137:67–74 (1996).

27. Berube KA, Quinlan TR, Fung H, Magae J, Vacek P, Taatjes DJ, Mossman BT. Apoptosis is observed in mesothelial cells after exposure to crocidolite asbestos. Am J Respir Cell Mol Biol 14:141–147 (1996).

28. Staal FJ, Anderson MT, Staal GE, Herzenberg LA, Gitler C. Redox regulation of signal transduction: tyrosine phosphorylation and calcium influx. Proc Natl Acad Sci USA 91:3619–3622 (1994).

29. Jimenez LA, Zanella C, Fung H, Janssen YMW, Vacek P, Charland C, Goldberg J, Mossman BT. Role of extracellular signal-regulated protein kinases in apoptosis by asbestos and H2O2. Am J Physiol (Lung Cell Mol Physiol) (in press).

30. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H2O2. J Biol Chem 271:4138–4142 (1996).

31. Barchowsky A, Dudek EJ, Treadwell MD, Wetterhahn KE. Arsenic induces oxidant stress and NF-kB activation in cultured aortic endothelial cells. Free Radic Biol Med 21:783–790 (1996).

32. Liu Y, Guyton KZ, Gorospe M, Xu Q, Lee JC, Holbrook NJ. Differential activation of ERK, JNK/SAPK and P38/CSBP/RK MAP kinase family members during the cellular response to arsenite. Free Radic Biol Med 21:771–781 (1996).

33. Kim G, Yurkow EJ. Chromium induces a persistent activation of mitogen-activated protein kinases by a redox-sensitive mechanism in H4 rat hepatoma cells. Cancer Res 56:2045–2051 (1996).

34. Huang R-P, Wu J-X, Fan Y, Adamson ED. UV activates growth factor receptors via reactive oxygen intermediates. J Cell Biol 133:211–220 (1996).

35. Janssen YMW, Driscoll KE, Howard B, Quinlan TR, Treadwell M, Barchowsky A, Mossman BT. Asbestos increases translocation of p65 protein and NF-kB DNA binding activity in rat lung epithelial and pleural mesothelial cells. Am J Pathol (in press).

36. Vallyathan V, Shi X, Dalal NS, Irr W, Castranova V. Generation of free radicals from freshly fractured silica dust. Potential role in acute silica-induced lung injury. Am Rev Respir Dis 138:1213–1219 (1988).

37. Mossman BT, Jimenez LA, Berube K, Quinlan T, Janssen YMW. Possible mechanisms of crystalline silica-induced lung disease. Appl Occup Environ Hyg 10:1115–1117 (1995).

38. Luo W, Sharif TR, Sharif M. Substance P-induced mitogenesis in human astrocytoma cells correlates with activation of the mitogen-activated protein kinase signaling pathway. Cancer Res 56:4983–4991 (1996).

39. Driscoll KE, Carter JM, Jype PT, Kumari HL, Crosby LL, Aardema MJ, Isfort RJ, Cody D, Chestnut MH, Burns JL et al. Establishment of immortalized avelor type II epithelial cell lines from adult rats. In Vitro Cell Dev Biol 31:516–527 (1995).

40. Goldberg JL, Zanella CL, Janssen YMW, Timblin CR, Jimenez LA, Vacek P, Taatjes DJ, Mossman BT. Novel cell imaging approaches show induction of apoptosis and proliferation in mesothelial cells by asbestos. Am J Respir Cell Mol Biol (in press).

41. Grune T, Siems WG, Zollner H, Esterbauer H. Metabolism of 4-hydroxynonenal, a cytotoxic lipid peroxidation product, in Ehrlich mouse ascites cells at different proliferation stages. Cancer Res 54:5231–5235 (1994).