Some aspects of large- N_c heavy baryon chiral perturbation theory

To cite this article: Rubén Flores-Mendieta 2016 J. Phys.: Conf. Ser. 761 012085

View the article online for updates and enhancements.

Related content

- A Pedagogical Introduction to Electroweak Baryogenesis: The baryon asymmetry
 G A White

- A Pedagogical Introduction to Electroweak Baryogenesis: Introduction
 G A White

- Implementation of a Multi-threaded Framework for Large-scale Scientific Applications
 E Sexton-Kennedy, Patrick Gartung, C D Jones et al.
Some aspects of large-N_c heavy baryon chiral perturbation theory

Rubén Flores-Mendieta
Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
E-mail: ruben@ifisica.uaslp.mx

Abstract. Large-N_c chiral perturbation theory is a calculational scheme for baryons that simultaneously exhibits both the m_q and $1/N_c$ expansions, where N_c is the number of colors of quarks. In this work an outline of the calculation of one-loop corrections to the leading baryon axial-vector and vector form factors in baryon semileptonic decays to order $O(p^2)$ in the chiral expansion is provided in order to show how the expansion works.

1. Introduction
Chiral perturbation theory [1, 2] is a framework for studying strong-interaction processes at low energies. The global chiral symmetry $SU(3)_L \times SU(3)_R$ in QCD is spontaneously broken down to the vector subgroup $SU(3)_V$ by the vacuum expectation value which yields eight massless and spinless Goldstone bosons. Those bosons correspond to the spontaneously broken internal symmetry generators, which have negative parity, baryon number zero, and transform as an octet under $SU(3)_V$. The pseudoscalar octet mesons (π, K, η) qualify as candidates for Goldstone bosons. The finite masses of the physical mesons are interpreted as a consequence of the explicit symmetry breaking due to the finite masses of the light quarks m_q in the QCD Lagrangian [3].

The effective Lagrangian is structured in terms of a simultaneous expansion in powers of covariant derivatives and m_q terms so physical observables can be expanded order by order in powers of p^2/Λ^2 and m_q^2/Λ^2, where p and m are the meson momentum and mass, respectively, and $\Lambda \sim 1$ GeV is the scale of chiral symmetry breaking.

When chiral perturbation theory is extended to include baryons, it is convenient to introduce velocity-dependent baryon fields, so that the expansion of the baryon chiral Lagrangian in powers of m_q and $1/M$ (where M is the baryon mass) is manifest [4]. This approach is called heavy baryon chiral perturbation theory. It was used to compute the corrections to the axial-vector coupling defined in baryon semileptonic decays (BSD) due to meson loops [4]. While these corrections are large when only octet baryon intermediate states are retained, the inclusion of decuplet baryon intermediate states yields large cancellations [4].

Large-N_c QCD is the generalization of QCD from three colors $N_c = 3$ to $N_c \gg 3$ [5, 6]. The baryon sector in the large-N_c limit exhibits an exact $SU(2N_f)$ spin-flavor symmetry, where N_f is the number of light quark flavors. The difference between the SU(3) invariant masses of the decuplet and octet baryons is $\Delta \propto 1/N_c$ so decuplet and octet baryon states become degenerate in the large-N_c limit. The spin-flavor symmetry allows one to classify large-N_c baryon states and matrix elements and to compute static properties of baryons in an expansion in $1/N_c$, for example masses [7, 8], axial-vector couplings, magnetic moments [9] and vector couplings [10].
Next, large-\(N_c\) heavy baryon chiral perturbation theory is a calculational scheme that simultaneously exhibits both the \(m_q\) and \(1/N_c\) expansions. The \(1/N_c\) chiral Lagrangian was introduced in Ref. [11] and used to compute flavor-27 baryon mass splittings at leading order in chiral perturbation theory. Other baryon properties also computed are axial-vector couplings [12, 13, 14], magnetic moments [15, 16], vector couplings [17] and charge radii [18].

The aim is to provide an overview of the calculation of corrections to form factor of BSD.

2. The chiral Lagrangian for baryons in the \(1/N_c\) expansion

The \(1/N_c\) baryon chiral Lagrangian that implements nonet symmetry and contracted spin-flavor symmetry for baryons in the large-\(N_c\) limit is written as [11]

\[
\mathcal{L}_{\text{baryon}} = i\mathcal{D}^0 - \mathcal{M}_{\text{hyperfine}} + \text{Tr} \left(A^k \lambda^c \right) A^{kc} + \frac{1}{N_c} \text{Tr} \left(A^k \frac{2I}{\sqrt{6}} \right) A^k + \ldots ,
\]

(1)

where \(\mathcal{D}^0 = \partial^0 \mathbb{I} + \text{Tr} \left(\mathcal{V}^0 \lambda^c \right) \mathcal{T}^c\).

The baryon operators contained in Eq. (1) have well-defined 1\(N_c\) flavor representations. The vector and axial vector combinations of the meson fields, \(J^k\) and \(T^c\), run from one to nine to account for the full meson nonet \(\pi\), \(K\), \(\eta\) and \(\eta'\).

\[\mathcal{M}_{\text{hyperfine}}\] denotes the spin splittings of the tower of baryon states with spins \(1/2, \ldots, N_c/2\) in the flavor representations. The vector and axial vector combinations of the meson fields,

\[
\mathcal{V}^0 = \frac{1}{2} \left(\xi \partial^0 \xi^\dagger + \xi^\dagger \partial^0 \xi \right), \quad \mathcal{A}^k = \frac{i}{2} \left(\xi \nabla^k \xi^\dagger - \xi^\dagger \nabla^k \xi \right),
\]

(3)

couple to baryon vector and axial-vector currents, respectively, \(\xi = \exp[i\Pi(x)/f]\), where \(\Pi(x)\) is the nonet of Goldstone boson fields and \(f \approx 93\) MeV is the meson decay constant. The \(\ell = 1\) flavor octet axial-vector pion combination couples to the baryon axial-vector current, \(A^{kc}\). It is a spin-1 object, an octet under SU(3), and odd under time reversal. Its \(1/N_c\) expansion is [8]

\[
A^{kc} = a_1 \mathcal{G}^{kc} + \sum_{n=2,3} b_n \frac{1}{N_n-1} \mathcal{D}^{kc}_n + \sum_{n=5,7} c_n \frac{1}{N_n-1} \mathcal{O}^{kc}_n.
\]

(4)

The first terms in expansion (4) are

\[
\mathcal{D}_2^{kc} = J^k T^c, \quad \mathcal{D}_3^{kc} = \{J^k, \{J^r, G^{rc}\}\}, \quad \mathcal{O}_3^{kc} = \{J^2, G^{kc}\} - \frac{1}{2} \{J^k, \{J^r, G^{rc}\}\},
\]

(5)

and higher order terms are obtained as \(\mathcal{D}_n^{kc} = \{J^k, \mathcal{D}^{kc}_{n-2}\}\) and \(\mathcal{O}_n^{kc} = \{J^2, \mathcal{O}^{kc}_{n-2}\}\) for \(n \geq 4\). The unknown coefficients \(a_1, b_n,\) and \(c_n\) have expansions in powers of \(1/N_c\) and are order unity at leading order. At the physical value \(N_c = 3\) the series can be truncated as

\[
A^{kc} = a_1 \mathcal{G}^{kc} + b_2 \frac{1}{N_c} \mathcal{D}_2^{kc} + b_3 \frac{1}{N_c^2} \mathcal{D}_3^{kc} + c_3 \frac{1}{N_c^2} \mathcal{O}_3^{kc}. \tag{6}
\]

The matrix elements of the space components of \(A^{kc}\) in Eq. (6) between SU(6) states give the tree-level values of the axial-vector couplings.
Similarly, the $1/N_c$ expansion for the baryon mass operator M can be written as [7, 8]

\[M = m_0 N_c I + \sum_{n=2,4} m_n \frac{1}{N_c^{n-1}} J^n, \]

where m_n are unknown coefficients. The first term on the right-hand side of Eq. (7) is the overall spin-independent mass of the baryon multiplet and is removed from the chiral Lagrangian by the heavy baryon field redefinition [4]. The additional spin-dependent terms define $M_{\text{hyperfine}}$.

3. One-loop corrections to the baryon axial-vector current

A^{kc} is renormalized by the one-loop diagrams displayed in Fig. 1, which are given by the product of a group theoretic structure times a loop integral [12, 13].

![Figure 1](image)

Figure 1. One-loop corrections to the baryon axial-vector current.

Specifically, the correction arising from the sum of the diagrams of Figs. 1(a,b,c) reads [12]

\[
\delta A^{kc} = \frac{1}{2} [A^{ja}, [A^{jb}, A^{kc}]] \Pi^{ab}_{(1)} - \frac{1}{2} (A^{ja}, [A^{kc}, [M, A^{jb}]] \Pi^{ab}_{(2)}
\]

\[
+ \frac{1}{6} \left([A^{ja}, [M, [M, A^{jb}], A^{kc}]] - \frac{1}{2} [[M, A^{ja}], [[M, A^{jb}], A^{kc}]] \right) \Pi^{ab}_{(3)} + \ldots
\]

Here, A^{ja} and A^{jb} are used at the meson-baryon vertices and $\Pi^{ab}_{(n)}$ is a symmetric tensor which contains meson loop integrals $F^{(n)}(m, \Delta, \mu)$ with the exchange of a single meson. It decomposes into flavor singlet, flavor 8, and flavor 27 representations as [11]

\[\Pi^{ab}_{(n)} = F^{(n)}_1 \delta^{ab} + F^{(n)}_8 d^{ab8} + F^{(n)}_{27} \left[\delta^{a8} \delta^{b8} - \frac{1}{8} \delta^{ab} - \frac{3}{5} d^{ab8} d^{888} \right], \]

where $F^{(n)}_k$ are linear combinations of $F^{(n)}(m, \Delta, \mu)$ [12].

δA^{kc} contains n-body operators, with $n > N_c$, which are complicated commutators and/or anticommutators of the one-body operators J^k, T^c, and G^{kc}. All these structures should be reduced and rewritten as linear combinations of the operator basis, with $n \leq N_c$. Although the operator basis is complete and independent, the reduction could be rather difficult.

\[^1 \text{An} \ n \text{-body operator is one with} \ n \ \text{q}'s \text{ and } n \ \text{q}^\dagger \text{'s and can be written as a polynomial of order } \ n \text{ in } J^i, T^a, \text{ and } G^{ia} [8]. \]
The N_c dependence of the matrix elements of J^i, T^a, and G^{ia} is nontrivial [8]. A simplified counting rule for baryons with spins of order unity is [12]

$$T^a \sim N_c, \quad G^{ia} \sim N_c, \quad J^i \sim 1. \quad (10)$$

Similarly, $f \propto \sqrt{N_c}$, so the functions $F^{(n)}(m \Pi, \Delta, \mu)$ introduce a $1/N_c$ suppression.

Naively, the double commutator would be $\mathcal{O}(N_c^2)$: one factor of N_c from each A^{kc}. However, there are large-N_c cancellations between the diagrams of Figs. 1(a,b,c), provided all baryon states in a complete multiplet of the large-N_c spin-flavor symmetry are included in the sum over intermediate states [12]. The terms with one and two baryon mass insertions also contain large-N_c cancellations [12]. Thus, the correction δA^{kc} is $\mathcal{O}(1)$, or $1/N_c$ times the tree level value.

In a similar way, the one-loop correction to A^{kc} from the diagram of Fig. 1(d) is given by

$$\delta A^{kc} = -\frac{1}{2} [T^a, [T^b, A^{kc}]] \Pi^{ab}, \quad (11)$$

where Π^{ab} is a tensor similar to the one in Eq. (9) with a different loop integral [12].

The double commutator in Eq. (11) is proportional to A^{kc} [12] so the correction is at most $\mathcal{O}(1)$ and is of the same order as the one arising from the sum of Figs. 1(a,b,c).

Finally, in the limit $\Delta/m \Pi = 0$ the one-loop correction to A^{kc} becomes

$$\delta A^{kc} = \frac{1}{2} [A^{ja}, [A^{ib}, A^{kc}]] \Pi^{ab} - \frac{1}{2} [T^a, [T^b, A^{kc}]] \Pi^{ab}. \quad (12)$$

The matrix elements between spin-$\frac{1}{2}$ baryon states of the space components of the renormalized baryon axial-vector current, $A^{kc} + \delta A^{kc}$, give the actual value of g_1, as defined in BSD, with a normalization such that $g_1 \approx 1.27$ for neutron decay.

A comparison can be done between the g_1 obtained in the combined formalism and the one obtained in heavy baryon chiral perturbation theory [4] through the relations between the SU(3) invariant couplings D, F, C and \mathcal{H} and the operator coefficients of the expansion (6),

$$D = \frac{1}{2} a_1 + \frac{1}{6} b_3, \quad F = \frac{1}{3} a_1 + \frac{1}{6} b_2 + \frac{1}{9} b_3, \quad C = -a_1 - \frac{1}{2} c_3, \quad \mathcal{H} = -\frac{3}{2} a_1 - \frac{3}{2} b_2 - \frac{5}{2} b_3. \quad (13)$$

Both approaches yield the same results.

4. One-loop corrections to the baryon vector current

The baryon vector current V^{0c} is a spin-0 object and an octet under SU(3). At $q^2 = 0$, V^{0c} is the generator of SU(3) symmetry transformations, so to all orders in the $1/N_c$ expansion [10]

$$V^{0c} = T^c. \quad (14)$$

The matrix elements of V^{0c} of Eq. (14) between SU(6) baryon states yield the form factors f_1 in the limit of exact SU(3) symmetry, $f_1^{SU(3)}$. One-loop corrections to these form factors for $|\Delta S| = 1$ processes arise from the diagrams displayed in Fig. 2. Due to the Ademollo-Gatto theorem, these corrections appear to order $e^2 \sim (m_s - \bar{m})^2$. Details can be found in Ref. [17].

For instance, the contribution to V^{0c} arising from Fig. 2(a) can be written as

$$\delta V^{0c}_{(a)} = \sum_j A^{ia} P_j A^{ib} P^{abc}(\Delta_j). \quad (15)$$

Here P_j is the baryon propagator for spin $J = j$ [11]

$$\frac{iP_j}{k^2 - \Delta_j}. \quad (16)$$
which satisfies by definition $P_j^2 = P_j$ and $P_j P_{j'} = 0$ for $j \neq j'$. Similarly, Δ_j stands for the difference of the hyperfine mass splitting between the intermediate baryon with spin $J = j$ and the external baryon. The remaining corrections can be obtained without difficulty in the combined expansion in m_q and $1/N_c$. Details can be found in Ref. [17].

The one-loop corrections to order $O(p^2)$ in the chiral expansion to f_1 for Λp process is [17]

$$\left[\frac{f_1}{f_1^{SU(3)}} \right]_{\Lambda p} = 1 + \left[\frac{3}{8} + \frac{17}{32} a_1^2 + \frac{3}{16} a_1 b_2 + \frac{17}{48} a_1 b_3 + \frac{1}{32} b_2^2 + \frac{1}{16} b_2 b_3 + \frac{17}{288} b_3^2 \right] H(m_\pi, m_K)$$

$$+ \left[\frac{3}{8} + \frac{9}{32} a_1^2 + \frac{3}{16} a_1 b_2 + \frac{3}{16} a_1 b_3 + \frac{1}{32} b_2^2 + \frac{1}{16} b_2 b_3 + \frac{1}{32} b_3^2 \right] H(m_K, m_\eta)$$

$$+ \left[-\frac{1}{4} a_1^2 - \frac{1}{4} a_1 c_3 - \frac{1}{16} c_3^2 \right] K(m_\pi, m_K, \Delta), \quad (17)$$

where $H(m_1, m_2)$ and $K(m_1, m_2, \Delta)$ arise from loop integrals. When relations (13) are used in Eq. (17), the expression obtained in heavy baryon chiral perturbation theory [19] is recovered.

The chiral corrections to the vector form factor can be parametrized as

$$f_1 = f_1^{SU(3)} (1 + \delta^{(2)} + \ldots), \quad (18)$$

where $\delta^{(2)}$ is the leading SU(3)-breaking loop correction $O(p^2)$ and the dots stand for higher chiral corrections not computed yet within the present formalism.

5. Fit to data
A comparison of the theoretical expressions with the available experimental data [20] through a least-squares fit can be performed. For octet baryons the data are the decay rates R, the ratios g_1/f_1, the angular correlation coefficients α_{ce}, and the spin-asymmetry coefficients α_e, α_p, α_B, A and B. For decuplet baryons, the axial couplings g for the processes $\Delta \to N \pi$, $\Sigma^* \to \Lambda \pi$, $\Sigma^* \to \Sigma \pi$, $\Xi^* \to \Xi \pi$ are determined. The free parameters are the operator coefficients of A^{kc} plus a set of parameters d_i which are introduced by explicit SU(3) symmetry breaking Ref. [17].

The fit yields [17]

$$a_1 = 0.95 \pm 0.14, \quad b_2 = -1.10 \pm 0.19, \quad b_3 = 1.10 \pm 0.09, \quad c_3 = 1.07 \pm 0.15,$$

$$d_1 = 0.62 \pm 0.13, \quad d_2 = -0.57 \pm 0.24, \quad d_3 = 0.39 \pm 0.05, \quad d_4 = -0.06 \pm 0.08. \quad (19)$$

with $\chi^2 = 5.5/4$ dof. With the best-fit parameters, the predicted values of observables in BSD as well as the pattern of SU(3) symmetry breaking in f_1 are listed in Table 1 for completeness.
Table 1. Predicted observables in BSD. R is given in 10^{-3}s^{-1} for np process and 10^{6}s^{-1} for the rest.

	np	$\Sigma^+\Lambda$	$\Sigma^-\Lambda$	Λp	$\Sigma^- n$	$\Xi^-\Lambda$	$\Xi^-\Sigma^0$	$\Xi^0\Sigma^+$
R	1.128	0.232	0.387	2.949	6.284	2.844	0.454	0.820
$\alpha_{\pi'}$	-0.079	-0.406	-0.414	-0.026	0.340	0.559		
α_{π}	-0.087			0.014	-0.627			
α_{ν}	0.987			0.977	-0.357			
α_B				-0.586	0.668			
A				0.049	0.583			
B				0.888				
g_1/f_1	1.270			0.718	-0.340	0.254	1.217	1.217
$f_1/f_1^{SU(3)}$				0.952	0.966	0.953	0.962	0.962

To order $O(p^2)$ in the chiral expansion, corrections to the form factors f_1 produce a systematic decrease of around 5% with respect to their SU(3) symmetric values. Also, the values of the predicted observables are consistent with the measured ones.

6. Conclusions
The combined formalism in m_q and $1/N_c$ expansions is an outstanding approach to analyze the static properties of baryons in a systematic way. Here the analysis of leading axial-vector and vector form factors that appear in BSD has been presented to exemplify how the method works. A number of baryon properties can be studied with it, which constitutes an important advancement in our understanding of the low-energy consequences of QCD.

6.1. Acknowledgments
This work was supported in part by CONACYT and FAI (UASLP), Mexico.

References
[1] Weinberg S 1979 Physica A 96 327
[2] Gasser J and Leutwyler H 1984 Annals Phys. 158 142
[3] Gasser J and Leutwyler H 1982 Phys. Rept. 87 77
[4] Jenkins E and Manohar A V 1991 Phys. Lett. B 255 558; Phys. Lett. B 259 353
[5] ’t Hooft G 1974 Nucl. Phys. B 75 461
[6] Witten E 1979 Nucl. Phys. B 160 57
[7] Dashen R, Jenkins E, and Manohar A V 1994 Phys. Rev. D 49 4713
[8] Dashen R, Jenkins E, and Manohar A V 1995 Phys. Rev. D 51 3697
[9] Dai J, Dashen R, Jenkins E and Manohar A V 1996 Phys. Rev. D 53 273
[10] Flores-Mendieta R, Jenkins E, and Manohar A V 1998 Phys. Rev. D 58 094028
[11] Jenkins E 1996 Phys. Rev. D 53 2625
[12] Flores-Mendieta R, Hofmann C P, Jenkins E and Manohar A V 2000 Phys. Rev. D 62 034001
[13] Flores-Mendieta R and Hofmann C P. 2006 Phys. Rev. D 74 094001
[14] Flores-Mendieta R, Hernández-Ruiz M A, and Hofmann C P 2012 Phys. Rev. D 86 094041
[15] Flores-Mendieta R 2009 Phys. Rev. D 80 094014
[16] Ahuatzin G, Flores-Mendieta R, Hernández-Ruiz M A and Hofmann C P 2014 Phys. Rev. D 89 034012
[17] Flores-Mendieta R and Goity J L 2014 Phys. Rev. D 90 114008
[18] Flores-Mendieta R and Rivera-Ruiz A 2015 Phys. Rev. D 92 094026
[19] Anderson J and Luty M A 1993 Phys. Rev. D 47 4975
[20] Olive K A et al. [Particle Data Group Collaboration] 2014 Chin. Phys. C 38 090001