INTRODUCTION

Sclerotinia stem rot, caused by the necrotrophic fungus *Sclerotinia sclerotiorum*, is a destructive plant disease that causes yield losses in vegetable and oilseed brassicas worldwide (Bolton et al., 2006). It is difficult to control *S. sclerotiorum* as it produces asexual, hard, resting sclerotia that can survive for many years in the soil. These germinate under favourable conditions to initiate a new cycle of the disease (Erental et al., 2007; Xu et al., 2018). Current methods of pathogen control do not provide reliable protection from the disease. It is thus important to develop new management strategies that offer sustainable disease control. Minimizing damage by deploying cultivars with a genetically inherited reduction in the susceptibility to pathogens is the preferred form of disease management. Pathogens in turn

Abstract

Sclerotinia sclerotiorum infects host plant tissues by inducing necrosis to source nutrients needed for its establishment. Tissue necrosis results from an enhanced generation of reactive oxygen species (ROS) at the site of infection and apoptosis. Pathogens have evolved ROS scavenging mechanisms to withstand host-induced oxidative damage. However, the genes associated with ROS scavenging pathways are yet to be fully investigated in *S. sclerotiorum*. We selected the *S. sclerotiorum* Thioredoxin1 gene (*SsTrx1*) for our investigations as its expression is significantly induced during *S. sclerotiorum* infection. RNA interference-induced silencing of *SsTrx1* in *S. sclerotiorum* affected the hyphal growth rate, mycelial morphology, and sclerotial development under in vitro conditions. These outcomes confirmed the involvement of *SsTrx1* in promoting pathogenicity and oxidative stress tolerance of *S. sclerotiorum*. We next constructed an *SsTrx1*-based host-induced gene silencing (HIGS) vector and mobilized it into *Arabidopsis thaliana* (HIGS-A) and *Nicotiana benthamiana* (HIGS-N). The disease resistance analysis revealed significantly reduced pathogenicity and disease progression in the transformed genotypes as compared to the nontransformed and empty vector controls. The relative gene expression of *SsTrx1* increased under oxidative stress. Taken together, our results show that normal expression of *SsTrx1* is crucial for pathogenicity and oxidative stress tolerance of *S. sclerotiorum*. **KEYWORDS**

host-induced gene silencing, oxidative stress, reactive oxygen species, RNAi, *Sclerotinia sclerotiorum*, thioredoxin
employ multiple strategies to undermine the defence responses of the host plants. \textit{S. sclerotiorum} secretes hydrolytic cell wall-degrading enzymes, such as endo-\textit{Ss}pg1, \textit{Ss}pg3, \textit{Ss}pg5, and \textit{Ss}pg6 and exo-\textit{Ss}pg1 and \textit{Ss}pg2 polygalacturonases (Bashi et al., 2012; Li et al., 2004; Yu et al., 2017). The pathogen also secretes oxalic acid (OA), which promotes pathogenicity by interfering with the redox environment and pH signalling in the host. \textit{S. sclerotiorum} mutants that fail to synthesize oxalates are nonpathogenic (Cessna et al., 2000). Revertants with restored oxalate biosynthesis regain their virulence (Godoy et al., 1990). OA promotes disease development by eliciting programmed cell death (Kim et al., 2008; Liang et al., 2015; Williams et al., 2011; Yu et al., 2017). Targeted mutagenesis and gene silencing experiments have confirmed the roles of genes encoding oxaloacetate acetylhydrolase (\textit{Ss}oah1) (Li et al., 2018; Liang et al., 2015; Xu et al., 2015), arabino furanosidase/\-xylanase precursor (\textit{Ss}axp), and an endo-\-1,4-\-xylanase (\textit{Ss}xy11) in \textit{S. sclerotiorum} virulence (Yajima et al., 2009; Yang et al., 2018). Functional analysis of \textit{S. sclerotiorum} secretomes has also shown the involvement of cell hydrolysis, oxidation–reduction processes, and the redox state in the processes associated with host infection (Heard et al., 2015).

Reactive oxygen species (ROS) such as superoxide (\(O_2^−\)), singlet oxygen (\(O_2\)), hydroxyl radical (\(-\text{OH}\)), hydroperoxyl radical (\(\text{HO}_2\)), and hydrogen peroxide (\(\text H_2\text{O}_2\)) are among the primary defence responses that are triggered by the plants in response to pathogen attack (Bolwell et al., 1995; Ding et al., 2020; Gill & Tuteja, 2010; Jones & Dangl, 2006; Mittler, 2017). A basal level of ROS is essential for cellular proliferation and other physiological functions in plants. In contrast, elevated ROS levels cause cellular injury, DNA damage, protein inactivation, fragmentation of macromolecules, and apoptosis (Aguirre et al., 2005; Foyer & Noctor, 2013; Mittler, 2017). ROS production is triggered by increased enzymatic activities of plasma membrane-bound NADPH oxidases, catalases, glutathione peroxidases, and thioredoxins (Trxs) (Aguirre et al., 2005; Lamb & Dixon, 1997). Both hosts and pathogens have evolved ROS scavenging systems to reduce cellular damage and sustain ROS balance (Ding et al., 2020). For instance, enzymes such as catalases, peroxidases, ascorbate peroxidase (APX), glutathione S-transferase (GST), superoxide dismutase (SOD), and tripeptide glutathione (GSH) are key ROS scavengers in plants (Ding et al., 2020; Pomposiello et al., 2001; Yan et al., 2008).

Trx, Trx reductase (TrrR), and nicotinamide adenine dinucleotide phosphate (NADPH) are key elements of the Trx system, which is associated with redox regulation and antioxidant defence in all living beings (Arnér & Holmgren, 2000; Zhang et al., 2019). These act at both intracellular and extracellular levels and are localized in the cytosol, mitochondrion, plastid, and nucleus (Hofmann, 2010; Liebthal et al., 2018). They are substrates for reductive enzymes such as peroxidases and ribonucleotide reductase (Arnér & Holmgren, 2000; Gelhaye et al., 2004; Montrichard et al., 2009). Trx is crucial for growth, development, stress sensing, repair, cellular redox homeostasis, enzymatic activation, and protection from oxidative stresses (Arnér & Holmgren, 2000; Holmgren, 1989; Liebthal et al., 2018; Meyer et al., 2005, 2008, 2009, 2012). The Trx system acts by reducing oxidized cysteine groups of proteins to form a disulphide bond that is reduced by TrrR and NADPH (Arnér & Holmgren, 2000; Zhang et al., 2019). Trxs are classified as \(m, f, x, y, o, \text{ and } h\) based on their function and localization within the plant cells (Gelhaye et al., 2004). Nuruzzaman et al. (2012) have identified various Trx genes based on genome-wide expression analysis under various biotic and abiotic stresses. Pathogens employ the Trx system to defend against oxidative stress imposed by the host. Many fungal TrrR genes have been functionally characterized (Fernandez & Wilson, 2014; Pedrajas et al., 1999). TrrR is crucial for sclerotial development and cellular redox regulation during \textit{S. sclerotiorum} infection (Zhang et al., 2019). Despite these studies, there is no published evidence for assigning functions and biological roles to the Trx gene, specifically in pathogenicity, virulence, and oxidative stress tolerance, in \textit{S. sclerotiorum}. RNA interference (RNAi) and host-induced gene silencing (HIGS) are also widely used for functional genomics (Baulcombe, 2015; Hu et al., 2015; Seilbarghi et al., 2017; Wang et al., 2019; Yu et al., 2017; Zhang et al., 2018). Movement of RNA between plant hosts and invading pathogens is an important step for RNAi-mediated HIGS and cross-kingdom RNAi (Hua et al., 2018; Wang & Dean, 2020; Weiberg et al., 2015).

Here, we report the functional validation of \textit{Ss}Trx1 for its role in \textit{S. sclerotiorum} pathogenicity and virulence through RNAi-mediated gene silencing and HIGS. Silencing of \textit{Ss}Trx1 adversely affected the progression of disease and sclerotial development in \textit{Arabidopsis thaliana} and \textit{Nicotiana benthamiana}. Our study improves our understanding of the \textit{S. sclerotiorum} pathosystem and also opens up the possibility of using HIGS as a method of choice for \textit{S. sclerotiorum} management in field crops.

Results

2.1 Characterization of the \textit{Ss}Trx1 gene and sequence analysis

\textit{Ss}Trx1 (\textit{SS}1\textit{G}–08\textit{S}3\textit{A}4), which encodes Trx1, has a nucleotide length of 794 bp, with two intronic regions. It has a mature transcript length of 441 bp and encodes a 146-amino-acid protein. Homologous Trx gene sequences from various fungal and plant species were retrieved using the BLAST function from NCBI (https://www.ncbi.nlm.nih.gov/gene/?term). Multiple sequence alignment and phylogenetic tree construction revealed 83.83% similarity (48% query coverage) with the previously reported \textit{Botrytis cinerea} \textit{Trx}1 gene (\textit{XM_001546556.2} sequence (Amselem et al., 2011; Kan et al., 2017). However, \textit{Ss}Trx1 showed low sequence identity and query coverage with the corresponding genes from other plant species and/or fungal species (Figure S2a,b). Similarity percentages and query coverages ranged from 74.03% similarity (17% query coverage) with \textit{A. thaliana} to 82.67% (17%) with \textit{Nicotiana sp.}, 74.68% (17%) with \textit{Brassica napus}, 73.19% (52%) with \textit{Aspergillus campes- tris}, 73.55% (69%) with \textit{Glarea lozoyensis}, and 74.89% (50%) with \textit{Sphaerulina musiva}. \textit{Ss}Trx1 shared no similarity with the previously reported \textit{S. sclerotiorum} \textit{TrR}1 gene (Zhang et al., 2019).
2.2 | The SsTrx1 gene is highly expressed at initial developmental stages of S. sclerotiorum

Quantitative reverse transcription PCR (RT-qPCR) of the SsTrx1 gene in advanced developmental stages of S. sclerotiorum growth on potato dextrose agar (PDA) revealed induction of SsTrx1 transcription at the hyphal stage (2 days postinoculation [dpi]). Gene expression was high at the sclerotial initiation stage (3 dpi). This was followed by a gradual decline in gene expression from 5 dpi (developing sclerotia). The lowest SsTrx1 expression levels were recorded at 7 dpi (mature sclerotia; Figure 1). Apparently, SsTrx1 is highly expressed in the initial development stages of growth.

2.3 | Involvement of SsTrx1 in pathogenicity of S. sclerotiorum

Several RNAi S. sclerotiorum transformants were raised on PDA fortified with hygromycin. Compared to the S. sclerotiorum wild-type (WT) strain 1980, the relative expression of the SsTrx1 gene was significantly lower in the SsTrx1 gene-silenced transformants designated as SsTrx1-01, SsTrx1-02, and SsTrx1-03 in the T2 generation (Figure 2). Only these transformants were retained for further experiments. For pathogenicity assays, we inoculated leaves and/or stems of A. thaliana, B. napus, and N. benthamiana with WT and strains SsTrx1-01, SsTrx1-02, and SsTrx1-03. Significant differences were recorded for the size of lesions produced on A. thaliana leaves (n = 27; df = 8, 3; p < .01), B. napus leaves (n = 60; df = 19, 3; p < .01), B. napus stems (n = 30; df = 9, 3; p < .01), and N. benthamiana leaves (n = 30; df = 9, 3; p < .01) inoculated with WT and SsTrx1 gene-silenced strains (Tukey post hoc test), where n represents the total number of observations and df represents the degrees of freedom (Figure 3a–h). At 24 hr postinoculation (hpi), the WT produced lesions with an average size of around 0.577 cm², while strains SsTrx1-01 to SsTrx1-03 produced lesions ranging in size from 0.140 to 0.180 cm² on A. thaliana detached leaves. At 48 hpi, WT produced lesions of approximately 0.249 and 8.569 cm² and strains SsTrx1-01 to SsTrx1-03 produced lesions ranging in size from 0.067 to 0.109 cm² and from 3.316 to 4.372 cm² on B. napus and N. benthamiana detached leaves, respectively. On B. napus detached stems, WT produced lesions with a mean length of approximately 3.44 cm, while strains SsTrx1-01 to SsTrx1-03 produced lesions ranging in size from 1.38 to 1.61 cm at 48 hpi (Figure 3a–h). These results clearly confirmed the role of SsTrx1 in the pathogenicity of S. sclerotiorum.

2.4 | Silencing of SsTrx1 is related to sclerotial development in S. sclerotiorum

The WT and strains SsTrx1-01 to SsTrx1-03 (T2 generation) were also inoculated into PDA to facilitate analysis of mycelial growth and morphology. The growth rates were significantly lower in SsTrx1 gene-silenced strains than in the WT, and mycelial morphology of SsTrx1-01, SsTrx1-02, and SsTrx1-03 was visibly different from that of the WT (Figure 4a,b). Moreover, significant differences were observed in the average number of sclerotia and sclerotial mass per plate (n = 3; df = 2, 3; p < .05) between

Figure 1 The relative gene expression level of SsTrx1 in different sclerotial developmental stages as quantified by quantitative reverse transcription PCR. The SsTrx1 cDNA was normalized to the SsTubulin cDNA. Bars indicate the standard error.

Figure 2 The gene expression of SsTrx1 in RNAi transformants as determined by quantitative reverse transcription PCR. The SsTrx1 cDNA was normalized to the SsTubulin cDNA. The amount of cDNA in Sclerotinia sclerotiorum strain 1980 was set as 1. Bars indicate the standard error.
SsTrx1 gene-silenced strains and WT at 25 dpi. The average number of sclerotia was around 25 for SsTrx1 gene-silenced strains, corresponding to a sclerotial mass of \(0.306 \pm 0.015\) g (SsTrx1-01), \(0.293 \pm 0.005\) g (SsTrx1-02), and \(0.300 \pm 0.010\) g (SsTrx1-03).

For WT, the number of sclerotia was around 36 per plate with a sclerotial mass of \(0.253 \pm 0.015\) g (Figure 4c,d). Apparently, SsTrx1 is associated with sclerotial growth and development in \textit{S. sclerotiorum}.

FIGURE 3 Pathogenicity analysis depicting detached (a) \textit{Arabidopsis thaliana} (Col-0) leaves, (b,c) \textit{Brassica napus} ‘Zhongshuang 11’ leaves and stems, and (d) \textit{Nicotiana benthamiana} leaves, inoculated with \textit{Sclerotinia sclerotiorum} strain 1980 (WT) and SsTrx1 RNAi transformants SsTrx1-01, SsTrx1-02, and SsTrx1-03. (e–h) Mean lesion area (cm²) in (e) \textit{A. thaliana} leaves (\(n = 27; df = 8, 3; p < .01\)), (f) \textit{B. napus} leaves (\(n = 60; df = 19, 3; p < .01\)), (g) \textit{B. napus} stems (\(n = 30; df = 9, 3; p < .01\)), and (h) \textit{N. benthamiana} leaves (\(n = 30; df = 9, 3; p < .01\)). The bars indicate standard deviation and asterisks (**) denote significant differences (one-way analysis of variance, Tukey post hoc test).
2.5 | HIGS in *N. benthamiana* and *A. thaliana* compromised pathogenicity of *S. sclerotiorum*

The HIGS-pBinGlyRed3-SsTrx1 vector was transformed into ecotype Columbia (Col-0) (WT) *A. thaliana* plants. All transformants were analysed for the presence of the SsTrx1 gene via PCR to rule out the possibility of gene silencing of the endogenous Trx gene in *A. thaliana*. Twenty-seven transgenic plants were confirmed positive. Significant differences in lesion sizes were also observed among 27 confirmed transgenic plants and WT in the T$_1$ generation (Figure S3). The lesion size in 27 transgenic plants varied from 0.016 to 0.557 cm2, whereas the lesion size of WT was 0.745 ± 0.055 cm2 at 24 hpi. In the T$_2$ generation, eight lines with single-copy inheritance were screened for virulence under both in vivo (intact leaf)
and in vitro (detached leaf) conditions at 24 hpi. Out of these, three transgenic lines (HIGS-Trx1-10, HIGS-Trx1-19, and HIGS-Trx1-48) were selfed to produce the T3 generation for further virulence assays and gene expression analysis. In both in vivo (intact leaf) and in vitro (detached leaf) virulence assays, significant differences in lesion area were detected between (a) HIGS transgenic lines and (b) WT and empty vector (EV) controls (n = 10; df = 4, 4; p < .01; Tukey post hoc test) (Figure 5a,b). In the case of in vivo virulence assays, the mean lesion areas of WT and EV were 1.10 and 1.04 cm², respectively (Figure 5a [A–E]). In contrast, the lesion areas of HIGS-Trx1-10, HIGS-Trx1-19, and HIGS-Trx1-48 varied from 0.26 to 0.49 cm² (Figure 5b).

For in vitro virulence assays, the mean lesion areas of WT and EV were 1.20 and 1.18 cm², respectively (Figure 5a: F–J). In contrast, the mean lesion areas of HIGS-Trx1-10, HIGS-Trx1-19, and HIGS-Trx1-48 varied from 0.33 to 0.48 cm² (Figure 5b). These results reconfirmed that SsTrx1 is required for pathogenicity of S. sclerotiorum. The gene expression level of SsTrx1 in the WT inoculated into HIGS transgenic lines was reduced by 93.42%–96.16% compared with those of WT and EV plants at 24 hpi (Figure 6a,b). There was a corresponding reduction (96.1%–96.3%) in the gene expression levels of SsTrx1 in transgenic leaves inoculated with S. sclerotiorum (Figure 6c). To rule out the effects of altered expression of SsTrx1 on the activities of other host defence genes, we analysed the gene expression of PR1, PR2, PR5, and PDF1.2 in HIGS-A transgenic plants in the T3 generation at 0 hpi. No significant difference was observed in HIGS transgenic lines HIGS-Trx1-10, HIGS-Trx1-19, and HIGS-Trx1-48 compared with WT and EV (Figure S4).

2.6 | SsTrx1 is associated with oxidative stress tolerance in S. sclerotiorum

The Trx system is strongly activated under oxidative stress. To investigate oxidative stress tolerance, we compared hyphal growth and inhibition rates between WT and gene-silenced strains grown on PDA supplemented with 0, 5, 10, and 15 mM H₂O₂. The data were recorded at 12, 24, 36, 48, 60, and 72 hpi. Hyphal growth was slower in SsTrx1 gene-silenced strains compared to the WT. Hyphal growth was completely subdued at 15 mM H₂O₂ in the SsTrx1 transformant (Figure 7a). Significant differences were also observed in the inhibition rates at H₂O₂ concentrations of 5, 10, and 15 mM (p < .01). The inhibition rates were on the higher side for SsTrx1 transformants compared with the WT (Figure 7b). The inhibition rates varied from 88.18% to 91.23% (15 mM H₂O₂) in SsTrx1-01, SsTrx1-02, and SsTrx1-03, compared to 64.12% in WT. The relative SsTrx1 gene expression levels were higher in hyphae treated with 10 mM H₂O₂ compared with those treated with 5 mM H₂O₂ (Figure 7c).

The histochemical detection of H₂O₂ and O₂⁻ was performed with 3,3′-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining at 0, 6, and 12 hpi in A. thaliana WT and transgenic lines HIGS-Trx1-10, HIGS-Trx1-19, and HIGS-Trx1-48. The NBT hyphal staining indicated dark stained hyphae in SsTrx1-01 gene-silenced transformants due to higher O₂⁻ accumulation compared to the lightly stained hyphae in S. sclerotiorum WT (Figure 7a). ROS detoxification was evident in A. thaliana HIGS-Trx1-10, HIGS-Trx1-19, and HIGS-Trx1-48 transgenic lines as these failed to produce at 0 and 6 hpi. However, dark staining was observed in close proximity to the inoculation column of gene-silenced transgenics compared with relatively light staining observed in WT at 12 hpi (Figure S5). These results confirmed that the SsTrx1 gene is related to O₂⁻ and H₂O₂ accumulation and plays a crucial role in oxidative stress tolerance in S. sclerotiorum.

3 | DISCUSSION

Necrotrophic pathogens infect plants by suppressing signalling pathways and optimizing nutrient acquisition through OA, ROS, and cell wall-degrading enzymes (Aguiarre et al., 2005; Annis & Goodwin, 1997; Pomposiello et al., 2001). OA suppresses the oxidative burst in the host plant (Cessna et al., 2000), while ROS induces cellular damage and programmed cell death (Gill & Tuteja, 2010; Kariola et al., 2005; Lamb & Dixon, 1997; Sharma et al., 2012). Plants are damaged if ROS produced by the pathogen overwhelm the ROS scavenging capacity of plants (Sharma et al., 2012). S. sclerotiorum overcomes the host defences by detoxifying secondary metabolites (Stotz et al., 2011) and modulating oxidative stress with the help of Trx-interacting proteins (Ding et al., 2020; Xu & Chen, 2013; Yu et al., 2015; Zhang et al., 2019). The Trx system is critical for maintaining the cellular redox balance and antioxidant function and controlling cell death (apoptosis) following interaction with Trx-interacting proteins (Lu & Holmgren, 2012; 2013; Michellet et al., 2006). Trxs, peroxiredoxins, and glutaredoxins (also known as thiol-oxidoreductases) are activated during oxidative stress. These reduce oxidized proteins via cysteine thiol-disulphide exchange (Hanschmann et al., 2013; Liebthal et al., 2018; Meyer et al., 2012; Montrichard et al., 2009).

Many fungal genes that encode TrrR have been cloned and functionally analysed in Saccharomyces cerevisiae (Pedrajas et al., 1999), Alternaria alternata (Ma et al., 2018), B. cinerea (Viefhues et al., 2014), and S. sclerotiorum (Zhang et al., 2019). Their suppression impaired the virulence and antioxidant capabilities of the host species. The SsTrx1 gene is up-regulated at early stages of infection, but it attains maximum expression levels at the sclerotial initiation stage (Willett & Bullock, 1992; Willets et al., 1980).

Most commercial cultivars of rapeseed-mustard are susceptible to S. sclerotiorum stem rot (Denton-Giles et al., 2018; Rana et al., 2017; Uloth et al., 2015). However, few sources of quantitative resistance have been reported (Atri et al., 2019; Boudhrioua et al.,...
The majority of these sources provide partial resistance and are isolate-specific (Garg et al., 2010; Sharma et al., 2018; Taylor et al., 2015). Diversity of pathogen isolates can be an issue for the wide applicability of a resistance source if it is isolate-specific. Population structure, haplotype diversity, and variation for aggressiveness have been widely reported for S. sclerotiorum isolates (Clarkson et al., 2017; Leyronas et al., 2018; Sharma et al., 2018; Yu et al., 2020). Canola hybrids with the Pioneer Protector S. sclerotiorum resistance are reported to provide moderate genetic resistance that can be used as a component of integrated disease management (https://intelseed.ca/uploads/Sclerotinia_Stem_Rot_of_Canola-2012.pdf). The nonavailability of plants with stable and complete resistance against S. sclerotiorum indicates the need for more directed approaches to develop new and possibly better sources of S. sclerotiorum resistance. It is possible to improve host resistance through recurrent selection, marker-assisted introgressive breeding, and genome editing or genetic modifications. We sought...
to create a novel source of resistance by selective editing of plant genes or by host-induced suppression of pathogenicity or virulence factors in the pathogen.

RNAi-based gene silencing allowed functional characterization of the SsTrx1 gene and investigation of HIGS to manage *S. sclerotiorum* in *A. thaliana* and *N. benthamiana*. This was evident from the reduced expression of this gene in *S. sclerotiorum* transformants (SsTrx1-01, SsTrx1-02, and SsTrx1-03). These transformants also produced low virulence following inoculation on detached leaves of *A. thaliana* and *N. benthamiana*. Similar results were obtained following the inoculation of detached leaves and stems of *B. napus*. In planta investigations were also supported by in vitro studies, which showed
significant reductions in mycelium growth rates and sclerotal production following PDA inoculations with \(\text{SsTrx1} \) transformants compared to inoculation with the WT strain. Mycelial morphology was also adversely impacted. These experiments clearly demonstrated that normal expression levels of \(\text{SsTrx1} \) are essential for the progression of infection and sclerotal development. The importance of the Trx system in maintaining redox balance in the pathogen has been emphasized earlier (Zhang et al., 2019).

HIGS is an RNAi technology where small RNAs made in the plant can silence specific genes of the pathogen. These small RNAs are produced through double-stranded RNA in transgenic plants and this technology has been used to create host resistance (Andrade et al., 2015; Derbyshire et al., 2019; Hu et al., 2015; Hua et al., 2018). HIGS is an efficient and sequence-specific technology that is a reversible and environmental-friendly approach to analyse gene function. Induced mutagenesis and CRISPR/Cas9 can be used for the same purpose, but outcomes of induced mutagenesis are random, while those of CRISPR/Cas9 are irreversible and complete gene knockouts are produced (Mao et al., 2019; Tuo et al., 2019; Wu et al., 2020). The only limitation of RNAi technologies is the likely binding of small interfering RNA to off-target genes showing high sequence homology with the gene of interest (Lundgren & Duan, 2013). Off-target binding can alter the experimental outcomes if it occurs in nontarget genes. Off-target binding at other sites of the genome of interest may have no impact. The present study had the advantage that the selected gene (\(\text{SsTrx1} \)) is relatively unique.

Multiple sequence alignment and phylogenetic tree construction showed it to be different from corresponding genes from other plant species or fungal species in terms of overall homology and query coverage. \(\text{SsTrx1} \) was also distinct from the previously reported \(S. \)
sclerotiorum TrrR1 gene (Zhang et al., 2019). Apparent distinctness of this gene allowed us to exploit the sequence-dependent nature of RNAi to design double-stranded RNA sequences to avoid binding to off-target sites in A. thaliana and N. benthamiana. HIGS-A and HIGS-N systems developed during the current study were able to reduce SsTrx1 expression. Down-regulation of the gene also resulted in reduced pathogenicity and virulence of the pathogen. Only small lesions were produced on detached leaves of A. thaliana and N. benthamiana following infection with a WT strain of S. sclerotiorum. In contrast, WT plants and transformants with EV were highly susceptible. A. thaliana lines HIGS-Trx1-10, HIGS-Trx1-19, and HIGS-Trx1-48 showed high H$_2$O$_2$ and O$_2^-$ accumulation, thereby confirming the role of SsTrx1 in ROS detoxification to protect against oxidative stress imposed by the host plant.

In conclusion, we report that the SsTrx1 gene in S. sclerotiorum aids pathogenicity, virulence, and sclerotial development. Our studies also suggested a key role of SsTrx1 in the antioxidant defence pathway to detoxify H$_2$O$_2$ and O$_2^-$. HIGS of the SsTrx1 gene can be used to engineer resistance against S. sclerotiorum in field crops.

4 | EXPERIMENTAL PROCEDURES

4.1 | Plant materials and fungal strain

A. thaliana ecotype Col-0 and an undesignated accession of N. benthamiana plants were used for transformation experiments. Plants were raised in pots containing autoclaved soil mix (Pindstrup) and maintained in growth chambers at 20 ± 4 °C with a 16/8-hr light/dark cycle and a relative humidity of 70% for about 5 weeks. The leaves of B. napus ‘Zhongshuang11’ were used for seedling stage virulence assays. The WT strain of S. sclerotiorum 1980 was used for transformation and inoculation. The fungal strain was cultured and maintained on PDA (200 g potato infusion, 20 g dextrose, and 20 g agar in 1 L water, pH 5.6 ± 0.2) at 20 °C with a 12/12 hr light/dark cycle (Clarkson et al., 2003; Godoy et al., 1990).

4.2 | RNAi and HIGS vector construction and transformation

We selected SsTrx1 for our studies as this gene has been shown to be strongly up-regulated in the resistant (R) pool of Brassica oleracea leaves and stems inoculated with S. sclerotiorum strain 1980 (Ding et al., 2019; Figure S1). Gene-specific primer pairs (Table S1) were designed to amplify the coding sequence of the SsTrx1 gene from the cDNA library of S. sclerotiorum strain 1980 using Primer Premier 5 software (http://www.premierbiosoft.com). A complete gene fragment was amplified and cloned into the pCIT vector (Yu et al., 2012). The sense and antisense fragments were ligated into a pCIT vector following the homologous recombination ligation method (Finnigan & Thorner, 2015; Jacobus & Gross, 2015). The hygromycin resistance gene cassette was also inserted into the pCIT vector (XbaI site) to generate the RNAi pCIT-SsTrx1 vector. The RNAi pCIT-SsTrx1 vector was then mobilized into S. sclerotiorum strain 1980 via a protoplast transformation method as devised by Rollins (2003). The RNAi S. sclerotiorum transformants were selected on PDA supplemented with hygromycin.

For HIGS vector construction, the complete RNAi gene cassette sense-intron-antisense from the RNAi pCIT-SsTrx1 vector was digested and inserted into plant expression vectors pBinGlyRed3 (GenScript) and pC2301M1B (Fu et al., 2017). The pBinGlyRed3 vector carries a gene encoding red fluorescent protein. The plasmids HIGS-pBinGlyRed3-SsTrx1 and HIGS-pC2301M1B-SsTrx1 were then incorporated into Agrobacterium tumefaciens GV3101 via separate electroporation events according to the protocol devised by Wise et al. (2006). The HIGS-pBinGlyRed3-SsTrx1 vector was transformed into A. thaliana (Col-0) plants at the flowering stage using the Agrobacterium-mediated floral-dip transformation protocol by Zhang et al. (2006). The HIGS-pC2301M1B-SsTrx1 vector was transformed into N. benthamiana using the agro-infiltration method as described by Li (2011). The recombinant culture was infiltrated into the underside of leaves of 1–2-month-old plantlets using a plastic syringe with a blunt tip. After infiltration, the plants were kept in the dark for 72 hr to induce transient gene expression. At 72 hr post-agro-infiltration, the plants were inoculated with S. sclerotiorum strain 1980.

4.3 | Screening of transformed plants and progeny analysis

The transformed A. thaliana plants were allowed to grow for 4–5 weeks in growth chambers under controlled conditions. The self-pollinated seeds were harvested and analysed by the red fluorescence screening method (Ali et al., 2012; Stuitje et al., 2003). The red-coloured seeds were sown and harvested. The same procedure was repeated until the T$_3$ generation. Segregation ratios were recorded among T$_2$ seeds and only the progenies consistent with a 3:1 Mendelian segregation ratio were retained for further analysis. Statistical analysis including the Tukey post hoc test was conducted using SAS software (SAS Institute Inc. [SAS], 2013). PCR amplification was carried out using gene-specific primers SsTrx1nF/SsTrx1nR for screening of transformed plants (Table S1).

4.4 | Inoculation and pathogenicity evaluation

For virulence analysis, the detached leaves of A. thaliana, B. napus, and N. benthamiana and detached stems of B. napus were inoculated with S. sclerotiorum strain 1980 and RNAi-transformed strains of S. sclerotiorum, SsTrx1-01, SsTrx1-02, and SsTrx1-03, using a standard inoculation technique (Mei et al., 2015; Taylor et al., 2018). The expanded leaves and stems were excised and inoculated with actively growing mycelial agar plugs (1 mm diameter for A. thaliana leaves...
and 6 mm diameter for *B. napus* leaves and stems and *N. benthamiana* leaves). Nine leaves of *A. thaliana*, 20 leaves and 10 stems of *B. napus*, and 10 leaves of *N. benthamiana* were inoculated in each replication. The experiments were replicated three times. The inoculated leaves and stems were incubated at 22 °C with 95%–100% relative humidity. The lesion size was noted and photographed at 24 hpi (*A. thaliana*) or 48 hpi (*B. napus* leaves and stems and *N. benthamiana* leaves). For HIGS experiments, transformed *N. benthamiana* plants were inoculated with *S. sclerotiorum* strain 1980, at 72 hr after agro-infiltration. Inoculated plants were first kept in the dark for 24 hr and then shifted to illuminated conditions for 48 hr at 20 ± 4 °C. Ten leaves from each transformed plant along with controls were inoculated into two replications. Lesion size was recorded at 72 hpi.

In the case of *A. thaliana* transformants (generations T1–T3), detached leaves (in vitro) and intact leaves in potted plants (in vivo) were inoculated with *S. sclerotiorum* strain 1980. *A. thaliana* WT Col-0 and EV plants were used as controls. Five leaves per transformed line along with control plants were inoculated in each replication. The experiment was repeated twice. Lesion size was recorded at 24 hpi. The mean lesion size (cm²) and standard error were calculated using SAS software (SAS Institute Inc. [SAS], 2013). The analysis largely involved the use of analysis of variance to establish the significance of differences between the groups. The Tukey post hoc test was used to determine the difference of each group compared to the control.

4.5 Morphological characterization of *S. sclerotiorum* RNAi transformants

The mycelium growth rates (cm) of WT and SsTrx1-01 were measured at 12, 24, 36, 48, 60, and 72 hpi in three replications. Mycelial morphology was examined at 1, 2, 3, 5, 7, 21, and 25 dpi in three replications. The average number of sclerotia produced per plate along with their dry weight (g) was measured at 25 dpi in three replications. Statistical analysis including the Tukey post hoc test was performed using SAS software (SAS Institute Inc. [SAS], 2013).

4.6 RNA extraction and RT-qPCR

The relative gene expression level of SsTrx1 was assayed with a CFX96 Real-Time RT-qPCR System (Bio-Rad) at various stages of *S. sclerotiorum* development. Total RNA was harvested from young mycelium of *S. sclerotiorum* strain 1980 at 1, 2, 3, 5, 6, and 7 dpi using the TRIzol method (TianGen) (Rio et al., 2010). RNA was also extracted from the mycelium of *S. sclerotiorum* RNAi transformants at 3 dpi to assess the relative SsTrx1 gene expression level in *S. sclerotiorum* transformants.

To analyse the interference with SsTrx1 expression, RNA was harvested from WT, EV, HIGS-Trx1-10, HIGS-Trx1-19, and HIGS-Trx1-48 transgenic *A. thaliana* plants inoculated with *S. sclerotiorum* strain 1980 at 24 hpi and from inoculated WT, EV, and SsTrx1 transgenic *N. benthamiana* plants inoculated with *S. sclerotiorum* strain 1980 at 48 hpi. To assess SsTrx1 gene expression under oxidative stress conditions, RNA was harvested from actively growing mycelium of *S. sclerotiorum* strain 1980 grown on PDA supplemented with 5 mM H$_2$O$_2$ and 10 mM H$_2$O$_2$ at 48 hpi. The RNA was used to synthesize the first-strand cDNA as a template for RT-qPCR according to the specifications of the iScript CDNA Synthesis Kit (Bio-Rad). The *S. sclerotiorum* gene Tubulin was used as an internal standard. The experiment was performed in a 10 µl reaction mixture using the iTaq Universal SYBR Green Supermix (Bio-Rad). The quantitative assays were repeated three times for each cDNA sample. The qPCR cycling conditions were as follows: 95 °C for 30 s, followed by 40 cycles of 95 °C for 5 s and 56–60 °C for 1 min and melting curve ramping from 65 °C to 95 °C at a rate of 0.5 °C after every cycle. The data were analysed with CFX Manager v. 3.0 and the relative transcript level was calculated using the 2$^{-ΔΔCt}$ method (Livak & Schmittgen, 2001). Primer sequences used for RT-qPCRs are available in Table S1.

4.7 Evaluation of H$_2$O$_2$ and O$_2^-$ accumulation

S. sclerotiorum strain 1980 and the RNAi transformant SsTrx1-01 were cultured on PDA plates supplemented with 5, 10, and 15 mM H$_2$O$_2$ to analyse the effects of oxidative stress. The mycelium growth inhibition rates were calculated at 12, 24, 36, 48, 60, and 72 hpi. The experiment was repeated twice in three replications for each concentration of H$_2$O$_2$. Statistical analysis was conducted using SAS software (SAS Institute Inc. [SAS], 2013). For qualitative analysis of O$_2^-$ accumulation, the actively growing hyphae (at 2 dpi) of *S. sclerotiorum* strain 1980 and SsTrx1-01 RNAi transformants were stained with NBT for 5 h followed by washing with distilled water. The stained hyphae were then examined under the microscope (Eclipse Ci-L; Nikon) and photographed (Kumar et al., 2014). Superoxide (O$_2^-$) and H$_2$O$_2$ accumulation was measured after inoculation with *S. sclerotiorum* strain 1980 from HIGS-Trx1-10, HIGS-Trx1-19, and HIGS-Trx1-48 A. thaliana transgenic leaves along with controls: WT (untransformed *A. thaliana*) and CK (untransformed *A. thaliana* without inoculation). The mycelial agar plugs were removed from leaves at 0, 6, and 12 hpi and dipped in Falcon tubes containing DAB or NBT staining solution. The tubes were then incubated in the dark for 5 hr. The staining solution was subsequently replaced with a bleaching solution (ethanol, acetic acid, and glycerol at a ratio of 3:1:1). The tubes were then kept in a boiling water bath (c. 95 °C) for 15 min. The leaves were photographed. The experiment was repeated twice for each of the three replications.

ACKNOWLEDGEMENTS

This research was financially supported by the National Science Foundation of China (NSFC; 31801395 and 31971978), the Natural Science Foundation of Chongqing (cstc2019jcyj-zdxmX0012 and cstc2019jcyj-msxmX0486), and the Fundamental Research Funds for the Central Universities (XDJK2018AA004, XDJK2018B022,......
Yang Yu
The data supporting the findings of this study are available from the corresponding author upon reasonable request.

DATA AVAILABILITY STATEMENT
The data supporting the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Kusum Rana https://orcid.org/0000-0003-4061-224X
Yijuan Ding https://orcid.org/0000-0001-7961-984X
Yang Yu https://orcid.org/0000-0002-3027-0461

REFERENCES
Aguirre, J., Rios-Momberg, M., Hewitt, D. & Hansberg, W. (2005) Reactive oxygen species and development in microbial eukaryotes. Trends in Microbiology, 13, 111–118.
Ali, M.A., Shah, K.H. & Bohlmann, H. (2012) pMAA-Red: a new pPZP-derived vector for fast visual screening of transgenic Arabidopsis plants at the seed stage. BMC Biotechnology, 12, 37.
Amselem, J., Cuomo, C.A., van Kan, J.A.L., Viaud, M., Benito, E.P., Couloux, A. et al. (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 7, e1002230.
Andrade, C.M., Tinoco, M.L.P., Rieth, A.F., Maia, F.C.O. & Aragão, F.J.L. (2015) Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Plant Pathology, 65, 626–632.
Annis, S.L. & Goodwin, P.H. (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. European Journal of Plant Pathology, 103, 1–14.
Arnér, E.S. & Holmgren, A. (1989) Thioredoxin and glutaredoxins systems. The Plant Cell, 22, 1423.
Arnér, E.S. & Holmgren, A. (2000) Physiological functions of thioredoxin and thioredoxin reductase. European Journal of Biochemistry, 267, 6102–6109.
Atri, C., Akhatar, J., Gupta, M., Gupta, N., Goyal, A., Rana, K. et al. (2019) Molecular genetic analysis of defensive responses of Brassica juncea-B. fruticulosa introgression lines to Sclerotinia infestation. Scientific Reports, 9, 17089.
Bashi, Z.D., Rimmer, S.R., Khachatourians, G.G. & Hegeduš, D.D. (2012) Factors governing the regulation of Sclerotinia sclerotiorum cutinase A and polygalacturonases 1 during different stages of infection. Canadian Journal of Microbiology, 58, 605–616.
Baulcombe, D.C. (2015) VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts. Current Opinion in Plant Biology, 26, 141–146.
Bolton, M.D., Thomma, B.P.H.J. & Nelson, B.D. (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7, 1–16.
Bolwell, G.P., Butt, V.S., Davies, D.R. & Zimmerman, A. (1995) The origin of the oxidative burst in plants. Free Radical Research, 23, 517–532.
Boudhrioua, C., Bastien, M., Torkamaneh, D. & Belzile, F. (2020) Genome-wide association mapping of Sclerotinia sclerotiorum resistance in soybean using whole-genome re-sequencing data. BMC Plant Biology, 20, 195–204.
Cessna, S.G., Sears, V.E., Dickman, M.B. & Low, P.S. (2000) Oxalid acid, a pathogenicity factor for Sclerotinia sclerotiorum suppresses the oxidative burst of the host plant. The Plant Cell, 12, 2191–2199.
Clarkson, J.P., Staveley, J., Phelps, K., Young, C.S. & Whippis, J.M. (2003) Ascospore release and survival in Sclerotinia sclerotiorum. Mycology Research, 107, 213–222.
Clarkson, J.P., Warmington, R.J., Walley, P.G., Denton-Giles, M., Barbetti, M.J., Brodal, G. et al. (2017) Population structure of Sclerotinia subarctica and Sclerotinia sclerotiorum in England, Scotland and Norway. Frontiers in Microbiology, 8, 490.
Denton-Giles, M., Derbyshire, M.C., Khenty, Y., Buchwaldt, L. & Kamphuis, L.G. (2018) Partial stem resistance in Brassica napus to highly aggressive and genetically diverse Sclerotinia sclerotiorum isolates from Australia. Canadian Journal of Plant Pathology, 40, 551–561.
Derbyshire, M., Mbengue, M., Barascud, M., Navaud, O. & Raffaele, S. (2019) Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. Molecular Plant Pathology, 20, 1279–1297.
Ding, Y., Mei, J., Chai, Y., Yang, W., Mao, Y.J., Yan, B. et al. (2020) Sclerotinia sclerotiorum utilizes host-derived copper for ROS detoxification and infection. PLoS Pathogens, 16, e1008919.
Ding, Y., Mei, J., Chai, Y., Yu, Y., Shao, C., Wu, Q. et al. (2019) Simultaneous transcriptomic analysis of host and pathogen highlights the interaction between Brassica oleracea and Sclerotinia sclerotiorum. Phytopathology, 109, 542–550.
Erental, A., Harel, A. & Yarden, O. (2007) Type 2A phosphor protein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. Molecular Plant-Microbe Interactions, 20, 944–954.
Fernandez, J. & Wilson, R.A. (2014) Characterizing roles for the glutathione reductase, thiorodoxin reductase and thiorodoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. PLoS One, 9, e87300.
Finnigan, G.C. & Thorner, J. (2015) Complex in vivo ligation using homologous recombination and high-efficiency plasmid rescue from Saccharomyces cerevisiae. BioProtocols, 5, e1521.
Foyer, C.H. & Noctor, G. (2013) Redox signaling in plants. Antioxidants Redox Signal, 18, 2087–2090.
Fu, C., Chai, Y.-R., Ma, L.-J., Wang, R., Hu, K., Wu, J.-Y. et al. (2017) Evening primrose (Oenothera biennis) Δ6 fatty acid desaturase gene family: cloning, characterization, and engineered GLA and SDA production in a staple oil crop. Molecular Breeding, 37, 83–100.
Garg, H., Kohn, L.M., Andrew, M., Li, H., Sivasithamparam, K., Barbetti, M.J. et al. (2010) Pathogenicity of morphologically different isolates of Sclerotinia sclerotiorum with Brassica napus and B. juncea genotypes. European Journal of Plant Pathology, 126, 305–315.
Gelhaye, E., Rouhier, N. & Jacquot, J.P. (2004) The thiorodoxin H system of higher plants. Plant Physiology and Biochemistry, 42, 265–271.
Gill, S.S. & Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.
Godoy, G., Steadman, J.R., Dickman, M.B. & Dam, R. (1990) Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiological and Molecular Plant Pathology, 37, 179–191.
Hanschmann, E.M., Godoy, J.R., Berndt, C., Hudemann, C. & Lillig, C.H. (2013) Thiorodoxins, glutaredoxins, and peroxiredoxins—molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxidants Redox Signal, 19, 1539–1605.
Heard, S., Neil, A.B. & Kim, H.K. (2015) An interspecies comparative analysis of the predicted secretomes of the necrotrophic plant pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS One, 10, e0130534.
Hofmann, N.B. (2020) A new thiorodoxin is involved in plastid gene expression. The Plant Cell, 22, 1423.
Holmgren, A. (1989) Thioredoxin and glutaredoxin systems. The Journal of Biological Chemistry, 264, 13963–13966.
Hu, Z.L., Parekh, U., Maruta, N., Trusov, Y. & Botella, J.R. (2015) Down-regulation of Fusarium oxysporum endogenous genes by host-delivered RNA interference enhances disease resistance. Frontiers in Chemistry, 3, 1.
Hua, C., Zhao, J.H. & Guo, H.S. (2018) Trans-kingdom RNA silencing in plant-fungal pathogen interactions. Molecular Plant, 11, 235–244.
Jacobs, A.P. & Gross, J. (2015) Optimal cloning of PCR fragments by homologous recombination in Escherichia coli. PLoS One, 10, e0119221.
SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.