NEARBY CYCLES AND COMPOSITION WITH A NON-DEGENERATE POLYNOMIAL

by

Gil Guibert, François Loeser & Michel Merle

1. Introduction

Let X_j be smooth varieties over a field k of characteristic zero, for $1 \leq j \leq p$. Consider a family f of p functions $f_j : X_j \to \mathbb{A}^1_k$. We shall denote also by f_j the function on the product $X = \prod_j X_j$ obtained by composition with the projection. We denote by $X_0(f)$ the set of common zeroes in X of the functions f_j. Let $P \in k[y_1, \ldots, y_p]$ be a polynomial, which we assume to be non-degenerate with respect to its Newton polyhedron. In the present note we shall compute the motivic nearby cycles $S_P(f)$ of the composed function $P(f)$ on $X_0(f)$ as a sum over the set of compact faces δ of the Newton polyhedron of P. For every such δ, let us denote by P_δ the corresponding quasi-homogeneous polynomial. We associate to such a quasi-homogeneous polynomial a convolution operator Ψ_P_δ, which in the special case where P_δ is the polynomial $\Sigma = y_1 + y_2$ is nothing but the operator Ψ_Σ considered in [9]. For such a compact face δ, one may also define generalized nearby cycles S^σ_δ, constructed as the limit, as $T \to \infty$, of certain truncated motivic zeta functions.

Our main result, Theorem 3.4, follows from additivity from the following statement, Theorem 3.5:

\[i^* S_{P(f), U} = \sum_{\delta \in \Gamma^\emptyset} \Psi_{P_\delta}(S^\sigma_\delta). \]

Here U denotes the complement of the locus where at least one function f_j vanishes, Γ^\emptyset denotes the set of compact faces of the Newton polyhedron of P not contained in any coordinate hyperplane, $S_{P(f), U}$ refers to the extension of $S_{P(f)}$ constructed in [11] and [9], and i^* denotes restriction to $X_0(f)$.

When $p = 2$ and $P = \Sigma$, one recovers the motivic Thom-Sebastiani, cf. [5], [10], and [6], in the way stated in [9]. When f is the set of coordinate functions on the affine space \mathbb{A}^p_k, our result is equivalent to recovers a result obtained by Guibert in [8].
This paper is a natural continuation of [9], from which part of the notation and several results are borrowed.

2. Preliminaries

2.1. Grothendieck rings. — Throughout the paper \(k \) will be a field of characteristic zero. By a variety over \(k \), we mean a separated and reduced scheme of finite type over \(k \). If a linear algebraic group \(G \) acts on a variety \(X \), we say the action is good if every \(G \)-orbit is contained in an affine open subset of \(X \). We denote by \(\text{Var}^{G,\text{eq}} \) the category of varieties with good \(G \)-action, morphisms being \(G \)-equivariant morphisms. If \(S \) is a variety with good \(G \)-action, we denote by \(\text{Var}^{G,\text{eq}}_S \) the category of objects over \(S \), that is the category whose objects are morphisms \(Y \to S \) in \(\text{Var}^{G,\text{eq}} \), morphisms in \(\text{Var}^{G,\text{eq}} \) being defined in the standard way. Let \(Y \) be a variety over \(k \) and let \(p : A \to Y \) be an affine bundle for the Zariski topology (the fibers of \(p \) are affine spaces and the transition morphisms between trivializing charts are affine). In particular the fibers of \(p \) have the structure of affine spaces. Let \(G \) be a linear algebraic group. A good action of \(G \) on \(A \) is said to be affine if it is a lifting of a good-action on \(Y \) and its restriction to all fibers is affine.

One defines \(K_0(\text{Var}^{G,\text{eq}}_S) \) as the free abelian group on isomorphism classes of objects \(Y \to S \) in \(\text{Var}^{G,\text{eq}}_S \), modulo the relations

\[
(2.1.1) \quad [Y \to S] = [Y' \to S] + [Y \setminus Y' \to S]
\]

for \(Y' \) closed \(G \)-invariant in \(Y \) and, for \(f : Y \to S \) in \(\text{Var}^{G,\text{eq}}_S \),

\[
(2.1.2) \quad [Y \times A^n_k \to S, \sigma] = [Y \times A^n_k \to S, \sigma']
\]

if \(\sigma \) and \(\sigma' \) are two liftings of the same \(G \)-action on \(Y \) to an affine action, the morphism \(Y \times A^n_k \to S \) being composition of \(f \) with projection on the first factor.

Fiber product over \(S \) induces a product in the category \(\text{Var}^{G,\text{eq}}_S \), which allows to endow \(K_0(\text{Var}^{G,\text{eq}}_S) \) with a natural ring structure. Note that the unit \(1_S \) for the product is the class of the identity morphism \(S \to S \).

2.2. — Let \(s \) denote a positive integer and let \(S \) be a \(k \)-variety. From now on, we will consider only \(G_m^s \)-actions on \(S \times G'_m \) which are trivial on the first factor.

Let us consider the category \(\mathcal{C} \) whose objects are finite morphisms \(\varphi : G_m^s \to G_m^r \), a morphism between \(\varphi : G_m^s \to G_m^r \) and \(\varphi' : G_m^s \to G_m^r \) being a finite morphism \(\varphi : G_m^s \to G_m^s \) such that \(\varphi \circ \varphi = \varphi' \).

We consider also the full subcategory \(\mathcal{C}' \) of \(\mathcal{C} \) the objects of which are finite morphisms \(\varphi : G_m^s \to G_m^s \). The subcategory \(\mathcal{C}' \) is final in \(\mathcal{C} \) in the language of [11].

A morphism \(\varphi : G_m^s \to G_m^r \) induces a natural functor

\[
(2.2.1) \quad \Phi : \text{Var}^{G_m^r,\text{eq}}_{S \times G_m^r} \to \text{Var}^{G_m^s,\text{eq}}_{S \times G_m^s}
\]

where an object \(Y \to S \times G_m^r \) with a good \(G_m^r \)-action is sent on the same underlying object of \(\text{Var}^{G_m^s,\text{eq}}_{S \times G_m^s} \) with the \(G_m^s \)-action induced via \(\varphi \).
The functor Φ induces a morphism

\[(2.2.2) \quad K_0(\varphi) : K_0(\text{Var}_{S \times G_m}^{G_{m}', \text{eq}}) \to K_0(\text{Var}_{S \times G_m}^{G_{m}'})\]

We will denote by $K_0(\text{Var}_{S \times G_m}^{G_{m}', \text{eq}})$ the image of the morphism $K_0(\varphi)$.

For every morphism ϑ between φ and φ' in \mathcal{C}, we get a morphism

\[(2.2.3) \quad K_0(\vartheta) : K_0(\text{Var}_{S \times G_m}^{G_{m}', \text{eq}}) \to K_0(\text{Var}_{S \times G_m}^{G_{m}', \text{eq}})\]

where a class of a good G_{m}'-action induced by a G_{m}''-action via φ' on an object of $\text{Var}_{S \times G_m}^{G_{m}'}$ is sent on the class of the same G_{m}'-action as induced by a G_{m}''-action via φ. As a particular case, taking $\varphi = \text{Id}$, we get the natural inclusion of $K_0(\text{Var}_{S \times G_m}^{G_{m}', \text{eq}})$ into $K_0(\text{Var}_{S \times G_m}^{G_{m}'}).$

We define the Grothendieck ring $K_0(\text{Var}_{S \times G_m}^{G_{m}'})$ as the colimit along \mathcal{C} (or along \mathcal{C}', which amounts to the same) of the rings $K_0(\text{Var}_{S \times G_m}^{G_{m}', \text{eq}})$. Note that we could also have defined the rings $K_0(\text{Var}_{S \times G_m}^{G_{m}', \text{eq}})$ and $K_0(\text{Var}_{S \times G_m}^{G_{m}'})$ as suitable Grothendieck rings of the essential image $\text{Var}_{S \times G_m}^{G_{m}', \text{eq}}$ of Φ and of the colimit $\text{Var}_{S \times G_m}^{G_{m}''}$ along \mathcal{C} (or \mathcal{C}') of the categories $\text{Var}_{S \times G_m}^{G_{m}', \text{eq}}$, respectively.

There is a natural structure of $K_0(\text{Var}_k)$-module on $K_0(\text{Var}_{S \times G_m}^{G_{m}'})$. We denote by $L_{S \times G_m} = L$ the element $L \cdot 1_{S \times G_m}$ in this module, and we set

\[(2.2.4) \quad \mathcal{M}_{S \times G_m}^{G_{m}'} := K_0(\text{Var}_{S \times G_m}^{G_{m}'})[L^{-1}]\]

Note that when $s = r$ the above definitions $K_0(\text{Var}_{S \times G_m}^{G_{m}'})$ and $\mathcal{M}_{S \times G_m}^{G_{m}'}$ coincide with that of 9 by 2.7.

A morphism $\vartheta : G_{m}' \to G_{m}''$ induces a morphism from $\mathcal{M}_{S \times G_m}^{G_{m}'}$ to $\mathcal{M}_{S \times G_m}^{G_{m}'}$. For example, the diagonal morphism $G_{m} \to G_{m}'$ yields a canonical morphism

\[(2.2.5) \quad \Delta : \mathcal{M}_{S \times G_m}^{G_{m}'} \to \mathcal{M}_{S \times G_m}^{G_{m}'}\]

Through this morphism, the class of a G_{m}'-action α on an object of $\text{Var}_{S \times G_m}^{G_{m}'}$ is sent on the class of G_{m}'-actions induced by α via a finite group morphism from G_{m} to G_{m}''. If $f : S \to S'$ is a morphism of varieties, composition with f leads to a push-forward morphism $f_! : \mathcal{M}_{S \times G_m}^{G_{m}'} \to \mathcal{M}_{S' \times G_m}^{G_{m}'}$, while fiber product leads to a pull-back morphism $f^* : \mathcal{M}_{S' \times G_m}^{G_{m}'} \to \mathcal{M}_{S \times G_m}^{G_{m}'}$.

2.3. — Let A be one of the rings $\mathbb{Z}[L, L^{-1}]$, $\mathbb{Z}[L, L^{-1}, (\frac{1}{1-L^i})_{i>0}]$, $\mathcal{M}_{S \times G_m}^{G_{m}'}$, etc. We denote by $A[[T]]_{sr}$ the A-submodule of $A[[T]]$ generated by 1 and by finite sums of products of terms $p_{e,i}(T) = \frac{L^{T^e}}{1-L^i}$, with e in \mathbb{Z} and i in $\mathbb{N}_{>0}$. There is a unique A-linear morphism

\[(2.3.1) \quad \lim_{T \to \infty} : A[[T]]_{sr} \to A\]
such that
\[(2.3.2) \lim_{T \to \infty} \left(\prod_{i \in I} p_{e_i j_i}(T) \right) = (-1)^{|I|}, \]
for every family \(\{(e_i, j_i)\}_{i \in I} \) in \(\mathbb{Z} \times \mathbb{N}_{>0} \), with \(I \) finite, maybe empty.

2.4. — We denote as usual by \(\mathcal{L}_n(X) \) the space of arcs of order \(n \), also known as the \(n \)-th jet space on \(X \). It is a \(k \)-scheme whose \(K \)-points, for \(K \) a field containing \(k \), is the set of morphisms \(\varphi : \text{Spec} \, K[t]/t^{n+1} \to X \). There are canonical morphisms \(\mathcal{L}_{n+1}(X) \to \mathcal{L}(X) \) and the arc space \(\mathcal{L}(X) \) is defined as the projective limit of this system. We denote by \(\pi_n : \mathcal{L}(X) \to \mathcal{L}_n(X) \) the canonical morphism. There is a canonical \(\mathbb{G}_m \)-action on \(\mathcal{L}_n(X) \) and on \(\mathcal{L}(X) \) given by \(a \cdot \varphi(t) = \varphi(at) \).

Let \(X \) be a smooth variety over \(k \) of pure dimension \(d \) and \(g : X \to A^1_k \). Set \(X_0(g) \) for the zero locus of \(g \), and define, for \(n \geq 1 \), the variety
\[(2.4.1) \mathcal{X}_n(g) := \left\{ \varphi \in \mathcal{L}_n(X) \mid \text{ord}_g(\varphi) = n \right\}. \]

Note that \(\mathcal{X}_n(g) \) is invariant by the \(\mathbb{G}_m \)-action on \(\mathcal{L}_n(X) \) and that furthermore \(g \) induces a morphism \(g_n : \mathcal{X}_n(g) \to \mathbb{G}_m \), assigning to a point \(\varphi \) in \(\mathcal{L}_n(X) \) the coefficient of \(t^n \) in \(g(\varphi) \), which we shall denote by \(\text{ac}(g)(\varphi) \). We have \(g_n(a \cdot \varphi) = a^n g_n(\varphi) \), hence with the terminology of \([9] \), \(g_n \) is diagonally monomial of weight \(n \) with respect to the \(\mathbb{G}_m \)-action on \(\mathcal{X}_n(g) \). In particular, we may consider the class \([\mathcal{X}_n(g)]\) of \(\mathcal{X}_n(g) \) in \(\mathcal{M}^\mathbb{G}_m \times \mathbb{G}_m \) and the motivic zeta function
\[(2.4.2) Z_g(T) := \sum_{n \geq 1} [\mathcal{X}_n(g)] \mathbf{L}^{-nd} T^n \]
in \(\mathcal{M}^\mathbb{G}_m \times \mathbb{G}_m \[[T]]\).

Denef and Loeser showed in \([3] \) and \([6] \), see also \([10] \) and \([9] \), that \(Z_g(T) \) is a rational series in \(\mathcal{M}^\mathbb{G}_m \times \mathbb{G}_m \[[T]\]_{\text{sa}} \) by giving a formula for \(Z_g(T) \) in terms of a resolution of \(f \) we shall recall in \([2.5] \).

2.5. Resolutions. — Let us introduce some notation and terminology. Let \(X \) be a smooth variety of pure dimension \(d \) and let \(F \) a closed subset of \(X \) of codimension everywhere \(\geq 1 \). By a log-resolution \(h : Y \to X \) of \((X,F)\), we mean a proper morphism \(h : Y \to X \) with \(Y \) smooth such that the restriction of \(h : Y \setminus h^{-1}(F) \to X \setminus F \) is an isomorphism, and \(h^{-1}(F) \) is a divisor with normal crossings. We denote by \(E_i, i \) in \(A \), the set of irreducible components of the divisor \(h^{-1}(F) \). For \(I \subset A \), we set
\[(2.5.1) E_I := \bigcap_{i \in I} E_i \]
and
\[(2.5.2) E_I^c := E_I \setminus \bigcup_{j \notin I} E_j. \]
We denote by \(\nu_{E_i} \) the normal bundle of \(E_i \) in \(Y \) and by \(\nu_{E_I} \) the fiber product of the restrictions to \(E_I \) of the bundles \(\nu_{E_i}, i \in I \). We will denote by \(U_{E_i} \) the complement of the zero section in \(\nu_{E_i} \) and by \(U_I \) the fiber product of the restrictions of the spaces \(U_{E_i}, i \in I \), to \(E_I \).

If \(\mathcal{I} \) is an ideal sheaf defining a closed subscheme of \(X \) and \(h^*(\mathcal{I}) \) is locally principal, we define \(N_i(\mathcal{I}) \), the multiplicity of \(\mathcal{I} \) along \(E_i \), by the equality of divisors

\[
(2.5.3) \quad h^{-1}(F) = \sum_{i \in A} N_i(\mathcal{I})E_i.
\]

If \(\mathcal{I} \) is principal generated by a function \(g \) we write \(N_i(g) \) for \(N_i(\mathcal{I}) \). Similarly, we define integers \(\nu_i \) by the equality of divisors

\[
(2.5.4) \quad K_Y = h^*K_X + \sum_{i \in A} (\nu_i - 1)E_i.
\]

2.6. — Assume again \(g \) is a function on a smooth variety \(X \) of pure dimension \(d \). Let \(F \) a reduced divisor containing \(X_0(g) \) and let \(h : Y \to X \) be a log-resolution of \((X, F)\). Let us explain how \(g \) induces a morphism \(g_I : U_I \to G_m \). Note that the function \(g \circ h \) induces a function

\[
(2.6.1) \quad \bigotimes_{i \in I} \nu_{E_i}^{\otimes N_i(g)}|_{E_i} \to \mathbf{A}_k^1,
\]

vanishing only on the zero section. We define \(g_I : \nu_{E_i} \to \mathbf{A}_k^1 \) as the composition of this last function with the natural morphism \(\nu_{E_I} \to \bigotimes_{i \in I} \nu_{E_i}^{\otimes N_i(g)}|_{E_i} \), sending \((u_i)\) to \(\otimes u_i^{\otimes N_i(g)} \). We still denote by \(g_I \) the induced morphism from \(U_I \) (resp. \(U_{E_i} \)) to \(G_m \).

We view \(U_I \) as a variety over \(X_0(g) \times G_m \) via the morphism \((h \circ \pi_I, g_I)\). The group \(G_m \) has a natural action on each \(U_{E_i} \), so the diagonal action induces a \(G_m \)-action on \(U_I \). Furthermore, the morphism \(g_I \) is monomial, in the terminology of \([9]\), hence \(U_I \to X_0(g) \times G_m \) has a class in \(\mathcal{M}_{X_0(g) \times G_m}^{G_m} \) which we will denote by \([U_I]\).

2.7. — We now assume that \(F = X_0(g) \), that is \(h : Y \to X \) is a log-resolution of \((X, X_0(g))\). In this case, \(h \) induces a bijection between \(\mathcal{L}(Y) \setminus \mathcal{L}(h^{-1}(X_0(g))) \) and \(\mathcal{L}(X) \setminus \mathcal{L}(X_0(g)) \).

One deduces from Lemma 3.4 in \([4]\), in a way completely similar to \([3]\) and \([6]\), the equality

\[
(2.7.1) \quad Z_g(T) = \sum_{\emptyset \neq I \subseteq A} [U_I] \prod_{i \in I} \frac{1}{T^{N_i(g)} - 1} \in \mathcal{M}_{X_0(g) \times G_m}^{G_m}[[T]].
\]

In particular, the function \(Z_g(T) \) is rational and belongs to \(\mathcal{M}_{X_0(g) \times G_m}^{G_m}[[T]]_{ad} \), with the notation of \(2.5\), hence we can consider \(\lim_{T \to \infty} Z_g(T) \) in \(\mathcal{M}_{X_0(g) \times G_m}^{G_m} \) and
set
\[(2.7.2) \quad S_g := - \lim_{T \to \infty} Z_{g(T)},\]
which by \((2.7.1)\) may be expressed on a resolution \(h\) as
\[(2.7.3) \quad S_g = - \sum_{\emptyset \neq I \subset A} (-1)^{|I|}[U],\]
in \(M_{X_{\phi(g)} \times G_m}^G\). The element \(S_g\) is called the motivic Milnor fiber or the motivic nearby fiber of \(f\). It was first considered by Denef and Loeser, cf. \([8], [6]\) and \([7]\). For recent results concerning \(S_g\), we refer the reader to \([8], [1]\) and \([9]\).

2.8. — Consider a family \(f\) of \(p\) functions \(f_j : X \to A^1_k, 1 \leq j \leq p\). We denote by \(X_0(f)\) the set of common zeros of the functions \(f_j, 1 \leq j \leq p\) and by \(F\) the product function \(f_1 \ldots f_p\).

Let us fix a rational polyhedral convex cone \(C\) in \(R^p_{>0}\) and an integral linear form \(\ell\) on \(Z^p\) which is positive on \(C \setminus \{0\}\), where \(\overline{C}\) denotes the closure of \(C\) in \(R^p\).

We will consider the modified zeta function \(Z^{C,\ell}_f\) defined as follows: for a vector \(n\) in \(N^p_{>0}\), we denote by \(s(n)\) the sum of its components and we consider, similarly as in \((2.4.1)\), the variety
\[(2.8.1) \quad X_n(f) := \left\{ \varphi \in L_{s(n)}(X) \mid \text{ord}(f_j(\varphi)) = n_j, 1 \leq j \leq p \right\}.\]
Note that \(X_n(f)\) is stable under the \(G_m\)-action on \(L_n(X)\) and that \(f\) induces a morphism
\[(2.8.2) \quad f_n : X_n(f) \to G_m^p,\]
whose components are \(ac(f_j), 1 \leq j \leq p\) defined similarly as in \((2.4.1)\). Since \(f_n(a \cdot \varphi) = a^n f_n(\varphi)\), we may consider the class \([X_n(f)]\) of \(X_n(f) \to X_0(f) \times G_m\) in \(M_{X_0(f) \times G_m}^{G_m}\). We set
\[(2.8.3) \quad Z^{C,\ell}_f(T) := \sum_{n \in C} [X_n(f)] L^{-s(n)d} T^{\ell(n)}\]
in \(M_{X_0(f) \times G_m}^{G_m}[[T]]\).

2.9. — Let \(h : Y \to X\) be a log-resolution of the set \(X_0(F)\). We keep the notations of \(2.5\). In particular we denote by \(A\) the set of irreducible components of \(h^{-1}(X_0(F))\). For \(i\) in \(A\) we will denote by \(N_i(f_j)\) the integral vector of the orders \(N_i(f_j)\) of the functions \(f_j, 1 \leq j \leq p\), along the divisor \(E_i\), and by \(N_I\) the linear map
\[(2.9.1) \quad N_I : \begin{cases} \mathbb{R}^p_{>0} \to \mathbb{R}^p_{>0} \\ k \to \sum_{i \in I} k_i N_i. \end{cases}\]

Similarly the set of integers \(v_i\) defines a linear integral form \(\nu : k \to \sum_{i \in I} k_i v_i\) on \(\mathbb{R}^p_{>0}\).
Using Lemma 3.4 in [4] similarly as for the proof of (2.7.1), see for example [6, 10], one gets the following formula for the zeta function $Z_{f}^{C,\ell}(T)$ in terms of the resolution:

\[(2.9.2)\]

\[Z_{f}^{C,\ell}(T) = \sum_{\emptyset \neq I \subset A} [U_I] \sum_{\{k \in \mathbb{N}_{>0} \mid N_I(k) \in C\}} \prod_{i \in I} (T^{\ell(N_i)} L^{-\nu_i})^{ki}.\]

Here $[U_I]$ stands for the class in $\mathcal{M}_{X_0(f) \times G_{m}^p}$ of the morphism $(h, f_I) : U_I \to X_0(f) \times G_{m}^p$.

It follows that $Z_{f}^{C,\ell}(T)$ belongs to $\mathcal{M}_{X_0(f) \times G_{m}^p}[[T]]_{sr}$, hence we may set

\[(2.9.3)\]

\[S_{f}^{C,\ell} := \lim_{T \to \infty} Z_{f}^{C,\ell}(T)\]

in $\mathcal{M}_{X_0(f) \times G_{m}^p}$. By section 2.9 of [9] we have:

\[(2.9.4)\]

\[S_{f}^{C,\ell} = \sum_{I} \chi(N^{-1}(C))[U_I],\]

where χ denotes Euler characteristic with compact supports. Note that this is independent of ℓ, so we may write S_{f}^{C} instead of $S_{f}^{C,\ell}$.

3. Composition with a non-degenerate polynomial

3.1. The generalized convolution Ψ_{P}.

Let P be a quasi-homogeneous polynomial function on G_{m}^p, that is P is homogeneous for a G_{m}-action α on G_{m}^p monomial of weight $w = (w_1, \ldots, w_p)$.

Let X be a smooth variety. We will denote by pr_1 the projection of $X \times G_{m}^p \times G_{m}$ on $X \times G_{m}$ (forgetting the G_{m}^p factor) and by i the inclusion of the complement of $X \times P^{-1}(0)$ into $X \times G_{m}^p$.

For a variety A of dimension e in $\text{Var}_{X \times G_{m}^p}$, the function P induces by composition with the second projection a function on A we still denote by P

\[(3.1.1)\]

\[P : A \to A_{k}.\]

We now define the (augmented) zeta function $Z_{f}^{0}(T)$ as

\[(3.1.2)\]

\[Z_{f}^{0}(T) = \sum_{n \geq 0} [X_n(P)] L^{-n} T^{n} = [X_0(P)] + Z_{f}(T),\]

where $X_n(P)$ is

\[(3.1.3)\]

\[X_n(P) := \left\{ \varphi \in L_n(A) \mid \text{ord}_{P}(\varphi) = n \right\},\]

for $n \geq 0$. It belongs to $\mathcal{M}_{X \times G_{m}^p \times G_{m}}[[T]]_{sr}$. We define $\Psi_{P}(A)$ as the limit, as $T \to \infty$, of the opposite $-Z_{f}^{0}(T)$. Thus, with the notations of [9], it is nothing but

\[(3.1.4)\]

\[-\lim_{T \to \infty} Z_{f}^{0}(T) = -[A \setminus P^{-1}(0)] + S_{P}([A]).\]
It is an object in $\mathcal{M}_{X \times G_m \times G_m}^G$, the G_m-action and the morphism to G_m being the usual ones. On $A \setminus P^{-1}(0)$ the G_m-action is trivial and the morphism to G_m is the restriction of P to $A \setminus P^{-1}(0)$. Taking the direct image by the projection pr_1 we get the following object in $\mathcal{M}_{X \times G_m}^{G_m}$:

\begin{equation}
\Psi_0^0(A) := \text{pr}_1([A \setminus P^{-1}(0)] + S_p(A)).
\end{equation}

One may then extend uniquely this construction to a \mathcal{M}_k-linear group morphism

\begin{equation}
\Psi_P : \mathcal{M}_{X \times G_m}^G \rightarrow \mathcal{M}_{X \times G_m}^{G_m}.
\end{equation}

If A is endowed with a G_m-action α for which the morphism to G_m^p is monomial of weight w, $A \setminus P^{-1}(0)$ is endowed with an additional action which is homogeneous with respect to the composed morphism to G_m. Hence we may attach to $A \setminus P^{-1}(0)$ a class $[A \setminus P^{-1}(0)]$ in $\mathcal{M}_{X \times G_m^p \times G_m}^{G_m^2}$. In [9], §3.10, we attached to such an A with the action α an element $S_p(A)$ in $\mathcal{M}_{X \times G_m \times G_m}^{G_m^2}$. Hence we can consider $\text{pr}_1([A \setminus P^{-1}(0)] + S_p(A))$ as an element of $\mathcal{M}_{X \times G_m}^{G_m^2}$.

Composing with the canonical morphism $\mathcal{M}_{X \times G_m}^{G_m^2} \rightarrow \mathcal{M}_{X \times G_m}^{G_m}$ induced by the diagonal action, we get an element of $\mathcal{M}_{X \times G_m}^{G_m}$ we shall denote by $\Psi_P(A)$. This construction extends uniquely to a \mathcal{M}_k-linear group morphism

\begin{equation}
\Psi_P : \mathcal{M}_{X \times G_m}^{G_m} \rightarrow \mathcal{M}_{X \times G_m}^{G_m}.
\end{equation}

3.2. **Remark.** — When P is the sum of coordinates Σ on G_m^2, then Ψ_Σ is nothing but the convolution product from [9]. More precisely, the convolution product Ψ_Σ defined in [9] is equal to the composition of the morphism Ψ_Σ defined in this paper with the morphism Δ defined in (2.2.5).

3.3. **Composed maps.** — For $1 \leq j \leq p$, let $f_j : X_j \rightarrow A^1_k$ be a function on a smooth k-variety X_j. By composition with the projection, f_j becomes a function on the product $X = \prod X_j$. We write d for the dimension of X. Define f as the family of the f_j on X, $1 \leq j \leq p$. The product of the log-resolutions of the $X_{j,0}(f_j)$ is a log-resolution $h : Y \rightarrow X$ of $X_0(F)$ (recall that $F = f_1 \ldots f_p$).

Let $P = \sum_{a \in \mathbb{N}^p} a_\alpha y^a$ be a polynomial in $k[y_1, \ldots, y_p]$. We denote by $\text{supp}(P)$ the set of exponents α in \mathbb{N}^p with $a_\alpha \neq 0$. The Newton polyhedron Γ of P is the convex hull of $\text{supp}(P) + \mathbb{R}_+^p$. For a compact face δ of Γ we denote by P_δ the sum of the monomials of P supported in δ:

\begin{equation}
P_\delta = \sum_{\alpha \in \delta} a_\alpha y^a.
\end{equation}

We say P is non-degenerate with respect to its Newton polyhedron Γ, if, for every compact face δ of Γ, the function P_δ is smooth on G_m^p. To the Newton polyhedron Γ one may associate a fan of rational polyhedral cones subdividing \mathbb{R}_+^p as follows. We consider the function ℓ_Γ assigning to a vector a in
\(R^p_\gamma \) the value \(\inf_{b \in \Gamma} \langle a, b \rangle \), with \(\langle , \rangle \) the standard inner product. For any \(a \) in \(R^p_\gamma \) we may consider the compact face

\[
\delta_a = \{ b \in \Gamma_c | \langle a, b \rangle = \ell_\gamma(b) \},
\]

with \(\Gamma_c \) the union of all compact faces of \(\Gamma \).

For a compact face \(\delta \) of the Newton polyhedron \(\Gamma \), we denote by \(\sigma(\delta) \) its dual cone \(\{ a \in R^n_\gamma | \delta_a = \delta \} \). The cones \(\sigma(\delta) \), for \(\delta \) running over the compact faces of \(\Gamma \), form a fan partitioning \(R^n_\gamma \) by rational polyhedral cones. The function \(\ell_\gamma \) is linear on each cone \(\sigma(\delta) \).

We write \(\Gamma_c \) for the set of compact faces of \(\Gamma \). For \(J \) a subset of \(\{1, \ldots, p\} \), we denote by \(\Gamma^J \) the set of compact faces of \(\Gamma \) contained in the coordinate hyperplanes \(x_i = 0 \) for \(i \) in \(J \), and in no other coordinate hyperplane, so that \(\Gamma_c \) is the disjoint union of the subsets \(\Gamma^J \). Note that \(\ell_i \) is positive on \(\sigma(\delta) \setminus \{0\} \) if and only if \(\delta \) is in \(\Gamma^0 \).

We denote by \(X_J \) the closed subset of \(S \) defined by the vanishing of the functions \(f_i, i \in J \), and by \(f_j : X_J \to A^{\{1, \ldots, p\} \setminus J} \) the morphism induced by the functions \(f_j, j \notin J \).

For every variety \(Z \) containing \(X_0(f) \) we denote by \(i^\ast \) the restriction morphisms

\[
\mathcal{M}_{Z \times G_m}^G \longrightarrow \mathcal{M}_{X_0(f) \times G_m}^G
\]

and

\[
\mathcal{M}_{Z \times G_m}^G[[T]] \longrightarrow \mathcal{M}_{X_0(f) \times G_m}^G[[T]].
\]

3.4. Theorem. — With the previous notations and hypotheses, we have the following formula for \(i^\ast \mathcal{S}_P(f) \) in \(\mathcal{M}_{X_0(f) \times G_m}^G \):

\[
i^\ast \mathcal{S}_P(f) = \sum_{J \subset \{1, \ldots, p\}} \sum_{\delta \in \Gamma^J} \Psi_P(\mathcal{S}_f^\delta, \ell_\gamma).
\]

Proof. — Following [9], for \(\gamma \) in \(\mathbb{N}_{>0} \), we consider the constructible set

\[
\mathcal{X}^\gamma_n := \{ \varphi \in L_\gamma (X) \mid \text{ord}_T P(f)(\varphi) = n, \text{ord}_F(\varphi) \leq \gamma n \}
\]

together with the morphism \(ac(P(f)) : \mathcal{X}^\gamma_n \to G_m \), giving rise to a class \([\mathcal{X}^\gamma_n] \) in \(\mathcal{M}_{X_0(F) \times G_m}^{G_m} \). By Proposition 3.8 in [9], for \(\gamma \gg 0 \), the corresponding zeta function

\[
Z_{P(f),X_\gamma_n}(T) := \sum_{n>0} [\mathcal{X}^\gamma_n] L^{-\gamma nd} T^n
\]

lies in \(\mathcal{M}_{X_0(F) \times G_m}^{G_m}[[T]] \) and its limit as \(T \to \infty \) is independent of \(\gamma \), so we may set

\[
\mathcal{S}_{P(f),X_\gamma_n}(T) := - \lim_{T \to \infty} Z_{P(f),X_\gamma_n}(T).
\]

Furthermore, by additivity of \(\mathcal{S}_{P(f)} \), cf. Theorem 3.11 of [9], we have

\[
\mathcal{S}_{P(f)} = \sum_{J \subset \{1, \ldots, p\}} \mathcal{S}_{P(f),X_J}(T).
\]
with X_0° the largest open in X_J, where no f_j, $j \notin J$, vanishes. Theorem 3.4 follows now directly from Theorem 3.3.

3.5. Theorem. With the previous notation the following holds:

\[i^* \mathcal{S}_{P(f), X \setminus X_0(F)} = \sum_{\delta \in \Gamma} \Psi_{P_{\delta}}(\mathcal{S}^{\sigma(\delta)}). \]

Proof. Let us fix a log-resolution $h : Y \to X$ of $X_0(F)$. We shall keep the notations of (2.5).

Fix a subset of I of A and $k = (k_i)_{i \in I}$ in $\mathbb{N}_{>0}^I$. For φ in $\mathcal{L}_{\gamma \eta}(Y)$ with $\varphi(0)$ in E_i, we set $\text{ord}_{E_i} \varphi := \text{ord}_{i} z_i(\varphi)$, for z_i any local equation of E_i at $\varphi(0)$. We denote by $X_{n,k}$ the set of arcs φ in $\mathcal{L}_{\gamma \eta}(Y)$ such that $\varphi(0)$ is in E_i° and $\text{ord}_{E_i} \varphi = k_i$ for $i \in I$. We also consider the subset $\mathcal{Y}_{n,k}$ of $X_{n,k}$ consisting of arcs φ such that $\text{ord}_{i}((P(f)) \circ h)(\varphi) = n$. The variety $\mathcal{Y}_{n,k}$ is stable by the usual \mathbb{G}_m-action on $\mathcal{L}_{\gamma \eta}(Y)$ and the morphism $\text{ac}(P(f)) \circ h$ defines a class $[\mathcal{Y}_{n,k}]$ in $\mathcal{M}_{X_0(F) \times \mathbb{G}_m}$. Note that $\mathcal{Y}_{n,k} = \emptyset$ if $n < \ell_{\Gamma}(N_I(k))$.

By a now standard calculation, using Lemma 3.6 in [2], $Z^\gamma_{P(f), X \setminus X_0(F)}$ may be expressed on the log-resolution Y, as

\[Z^\gamma_{P(f), X \setminus X_0(F)} = \sum_{\emptyset \neq I \subset A} \sum_{\substack{N_I(k) \subset \sigma(\delta) \cap (N_J(k), 1) \leq n \in \mathbb{N}_{>0}}} [\mathcal{Y}_{n,k}]_{\mathcal{L}} \sum_{i \in I} (\nu_i - 1) k_i \mathcal{L}^{-\gamma d} T^n. \]

We denote by B the set of all subsets I of A such that $h(E_i^\circ)$ is contained in $X_0(F)$. We fix I in B and $k = (k_i)_{i \in I}$ in $\mathbb{N}_{>0}^I$. Note that there is a unique compact face δ of Γ such that $N_I(k)$ lies in $\sigma(\delta)$.

To go further on, we shall use the following variant of the classical deformation to the normal cone already considered in [2]. We consider the affine line $A_{k_1} = \text{Spec} \ k[u]$ and the subsheaf

\[A_k := \sum_{n \in \mathbb{N}^I} \mathcal{O}_{Y \times A_{k_1}} \left(- \sum_{i \in I} n_i(E_i \times A_{k_1}^1) \right) \left(u - \sum_{i \in I} k_i n_i \right) \]

of $\mathcal{O}_{Y \times A_{k_1}}[u^{-1}]$. It is a sheaf of rings and we set

\[CY_k := \text{Spec} \ A_k. \]

The natural inclusion $\mathcal{O}_{Y \times A_{k_1}} \to A_k$ induces a morphism $\pi : CY_k \to Y \times A_{k_1}$, hence a morphism $p : CY_k \to A_{k_1}$. Via the same inclusion, the functions $P(f \circ h)$ and $F \circ h$ are, in A_k, divisible by $u^{k_i(N_I(k))}$ and by $u^{(N_I(k), 1)}$, where 1 denotes the vector with all coordinates equal to 1, and we denote the corresponding quotients by $\tilde{P}(f)_k$ and \tilde{F}_k, respectively.

We denote by \tilde{E}_i the strict transform of the divisor $E_i \times A_{k_1}$ by π, by D the divisor globally defined on CY_k by $u = 0$, and by CE_i the divisors $\tilde{E}_i - k_i D$, $i \in I$. We denote by CY_k° the complement in CY_k of the union of the divisors CE_i in I, and we denote by Y° the complement in Y of the union of the E_i, $i \in I$.

As proved in Lemma 5.12 of [9], the scheme CY_k is smooth, the morphism π induces an isomorphism over $A_1^k \setminus \{0\}$, the morphism p is a smooth morphism and its fiber $p^{-1}(0)$ may be naturally identified with the bundle ν_{E_1}. Furthermore, when restricted to CY_k^o, the fiber of p above 0 is naturally identified with U_1 and π induces an isomorphism between $CY_k^o \setminus p^{-1}(0)$ and $Y^o \times A_1^k \setminus \{0\}$. The restrictions of $\tilde{P}(f)_k$ and \tilde{F}_k to the fiber $U_1 \subset p^{-1}(0)$ are respectively equal to $P_\delta(f_I)$ and F_I.

The ring A_k being a graded subring of the ring $O_Y[u, u^{-1}]$, we may consider the G_m-action σ on CY_k, leaving sections of O_Y invariant and acting by $\lambda \mapsto \lambda^{-1}u$ on u. It restricts on U_1, to the diagonal action induced by the canonical G_m^I-action on U_1 via the finite morphism $\lambda \mapsto \lambda^{k_i}$. We have now two different G_m-actions on $\mathcal{L}_n(CY_k^o)$: the one induced by the standard G_m-action on arc spaces and the one induced by σ. We denote by $\tilde{\sigma}$ the action given by the composition of these two (commuting) actions.

Let us denote by $\tilde{L}_{\gamma}(CY_k^o)$ the set of arcs φ in $\mathcal{L}_{\gamma}(CY_k^o)$ such that $p(\varphi(t)) = t$ (in particular $\varphi(0)$ is in U_1). For such an arc φ, composition with π sends φ to an arc in $\mathcal{L}_{\gamma}(Y \times A_1^k)$ which is the graph of an arc in $\mathcal{L}_{\gamma}(Y)$ not contained in the union of the divisors E_i, i in I. Note that $\tilde{L}_n(CY_k^o)$ is stable by $\tilde{\sigma}$.

3.6. Lemma. — Let I be in B and k in $N_{\geq 0}$. Assume $n \geq k_i$ for i in I. The morphism $\tilde{\pi} : \tilde{L}_n(CY_k^o) \to \mathcal{X}_{n,k}$ induced by the projection $CY_k^o \to Y$ is an affine bundle with fiber $A_1^\sum_{i \in I} k_i$ induced by $\tilde{\sigma}$ and $\mathcal{X}_{n,k}$ with the standard G_m-action. Furthermore if $\tilde{L}_n(CY_k^o)$ is endowed with the G_m-action induced by $\tilde{\sigma}$ and $\mathcal{X}_{n,k}$ with the standard G_m-action, $\tilde{\pi}$ is G_m-equivariant and the action of G_m on the affine bundle is affine. Furthermore, if $n \geq \ell_\Gamma(N_I(k))$, then for every φ in $\tilde{L}_{\gamma}(CY_k^o)$

\[(3.6.1) \quad ac(P(f) \circ h)(\tilde{\pi}(\varphi)) = ac(\tilde{P}(f)_k(\varphi)).\]

When $P_\delta(f_I)(\varphi(0)) \neq 0$, hence $(\text{ord}_t(P(f)) \circ h)(\tilde{\pi}(\varphi)) = \ell_\Gamma(N_I(k))$, we have

\[(3.6.2) \quad ac(P(f) \circ h)(\tilde{\pi}(\varphi)) = P_\delta(f_I)(\varphi(0)).\]

Proof. — The first part statement is contained in Lemma 5.13 of [9] and the rest follows from its proof.\[\Box\]

We then define $\tilde{Y}_{n,k}$ as the inverse image of $\tilde{Y}_{n,k}$ by the fibration $\tilde{\pi}$. It is the subset of arcs φ in $\mathcal{L}_{\gamma}(CY_k^o)$ such that $\text{ord}_t(\tilde{P}(f)_k(\varphi)) = n - \ell_\Gamma(N_I(f))$. We denote by $[\tilde{Y}_{n,k}]$ the class of $\tilde{Y}_{n,k}$ in $\mathcal{M}_{\mathcal{X}_0(F) \times G_m}$, the morphism $\tilde{\gamma}_{n,k} : G_m$ being $ac(\tilde{P}(f)_k)$ and the G_m-action being induced by $\tilde{\sigma}$. We denote by $[U_I \setminus (P_\delta(f_I)^{-1}(0))]$ the class of $U_I \setminus (P_\delta(f_I)^{-1}(0))$ in $\mathcal{M}_{\mathcal{X}_0(F) \times G_m}$, the G_m-action being the natural diagonal action of weight k on $U_I \setminus (P_\delta(f_I)^{-1}(0))$ and the morphism to G_m being the restriction of $P_\delta(f_I)$. We also consider the class $[G_m \times F^{-1}_m]$ of $G_m \times P_\delta(f_I)^{-1}(0)$ in $\mathcal{M}_{\mathcal{X}_0(F) \times G_m}$, the G_m-action on the second factor being the diagonal one and the morphism to G_m being the first projection.
3.7. Lemma. — Let \(I \) be in \(B \) and \(k \) in \(\mathbb{N}_{>0} \). The following equalities hold in \(\mathcal{M}_{X_0(F) \times G}^m \):

\[
\begin{align*}
(1) \quad \mathcal{Y}_{n,k} &= L^{\gamma nd}[U_I \setminus (P_\delta(f_I)^{-1}(0))], \text{ if } n = \ell_\Gamma(N_I(k)), \\
(2) \quad \widetilde{\mathcal{Y}}_{n,k} &= L^{\gamma nd-m}[G_m \times P_\delta(f_I)^{-1}(0)], \text{ if } n - \ell_\Gamma(N_I(k)) = m > 0.
\end{align*}
\]

Proof. — As we assume \(P \) is non-degenerate with respect to its Newton polyhedron, \(P_\delta \) is smooth on \(G_m \) and the composed map \(P_\delta(f_I) \) is smooth on \(U_I \). It follows that the morphism \((\tilde{P}(F)_k, u) : CY_k^\circ \rightarrow A_k^2 \) is smooth on a neighborhood of \(U_I \) in \(CY_k^\circ \), so one can argue similarly as in the proof of Lemma 5.14 of [9].

From Lemma 3.6 and Lemma 3.7, we may rewrite (3.5.2)

\[
i^*Z_{P(f), X \setminus X_0(F)} = \sum_{\delta \in F(T)} Z_{\delta, I}(T),
\]

with

\[
Z_{\delta, I}(T) = ([U_I \setminus (P_\delta(f_I)^{-1}(0))] \Phi_{\delta, I}(T) + [G_m \times P_\delta(f_I)^{-1}(0)] \Psi_{\delta, I}(T),
\]

where

\[
\Phi_{\delta, I}(T) = \sum_{\mathcal{N} \in \sigma(\delta)} T^{\ell_\Gamma(N_I(k))} L^{-\sum_i \nu_i k_i},
\]

and

\[
\Psi_{\delta, I}(T) = \sum_{\mathcal{N} \in \sigma(\delta), n \geq 0} T^{\ell_\Gamma(N_I(k)) + n} L^{-\sum_i \nu_i k_i}.
\]

If \(\delta \) is not contained in a coordinate hyperplane, for \(\gamma \) large enough, the inequality

\[
\langle N_I(k), 1 \rangle \leq \gamma \ell_\Gamma(N_I(k)) + \gamma n
\]

holds for every \(N_I(k) \) in \(\sigma(\delta) \) and every \(n \geq 0 \). It follows that

\[
\lim_{T \rightarrow \infty} \Phi_{\delta, I}(T) = \lim_{T \rightarrow \infty} \Psi_{\delta, I}(T) = \chi(N_I^{-1}(\sigma(\delta))).
\]

If \(\delta \) is contained in some coordinate hyperplane, it follows from Lemma 2.10 of [9] that

\[
\lim_{T \rightarrow \infty} \Phi_{\delta, I}(T) = \lim_{T \rightarrow \infty} \Psi_{\delta, I}(T) = 0.
\]

The result follows now from the definition of \(\Psi_{P_\delta} \) and (2.9.3).

3.8. Example. — When \(p = 2 \) and \(P = \Sigma \), one recovers the motivic Thom-Sebastiani, cf. [5], [10], and [6], in the way stated in [9]. When \(f \) is the family of coordinate functions on the affine space \(A_k^p \), formula 3.5.1 specializes to the one given by Guibert [8], Proposition 2.1.6.
3.9. Remark. — Restricting to a given point x of $X_0(f)$ and applying the Hodge spectrum map Sp of §6 of $[9]$ to $[3.4.1]$, one gets a formula for the Hodge-Steenbrink spectrum (cf. $[12]$, $[13]$, $[15]$) of $P(f)$ at x. It is not immediately clear whether this formula coincides with the one obtained by Terasoma ($[14]$, Theorem 3.6.1).

References

[1] F. Bittner, On motivic zeta functions and the motivic Milnor fiber, Math. Z. 249 (2005), 63–83.
[2] J. Denef, On the degree of Igusa’s local zeta function, Amer. J. Math. 109 (1987), 991–1008.
[3] J. Denef, F. Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), 505–537.
[4] J. Denef, F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), 201–232.
[5] J. Denef, F. Loeser, Motivic exponential integrals and a motivic Thom-Sebastiani Theorem, Duke Math. J. 99 (1999), 285–309.
[6] J. Denef, F. Loeser, Geometry on arc spaces of algebraic varieties, Proceedings of 3rd European Congress of Mathematics, Barcelona 2000, Progress in Mathematics 201 (2001), 327–348, Birkhäuser.
[7] J. Denef, F. Loeser, Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology 41 (2002), 1031–1040.
[8] G. Guibert, Espaces d’arcs et invariants d’Alexander, Comment. Math. Helv. 77 (2002), 783–820.
[9] G. Guibert, F. Loeser, M. Merle, Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink, math. AG/03012203.
[10] E. Looijenga, Motivic Measures, Astérisque 276 (2002), 267–297, Séminaire Bourbaki exposé 874.
[11] S. MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5. Springer-Verlag, New York-Berlin, 1971.
[12] J. Steenbrink, Mixed Hodge structures on the vanishing cohomology, in Real and Complex Singularities, Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 525–563.
[13] J. Steenbrink, The spectrum of hypersurface singularities, in Théorie de Hodge, Luminy 1987, Astérisque, 179 -180 (1989), 163–184.
[14] T. Terasoma, Convolution theorem for non-degenerate maps and composite singularities, J. Algebraic Geom. 9 (2000), 265–287.
[15] A. Varchenko, Asymptotic Hodge structure in the vanishing cohomology, Math. USSR Izvestija 18 (1982), 469–512.
