Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction?

M L Wine and D Cadol
Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
E-mail: mlw63@me.com

Abstract
In recent years climate change and historic fire suppression have increased the frequency of large wildfires in the southwestern USA, motivating study of the hydrological consequences of these wildfires at point and watershed scales, typically over short periods of time. These studies have revealed that reduced soil infiltration capacity and reduced transpiration due to tree canopy combustion increase streamflow at the watershed scale. However, the degree to which these local increases in runoff propagate to larger scales—relevant to urban and agricultural water supply—remains largely unknown, particularly in semi-arid mountainous watersheds co-dominated by winter snowmelt and the North American monsoon. To address this question, we selected three New Mexico watersheds—the Jemez (1223 km²), Mogollon (191 km²), and Gila (4807 km²)—that together have been affected by over 100 wildfires since 1982. We then applied climate-driven linear models to test for effects of fire on streamflow metrics after controlling for climatic variability. Here we show that, after controlling for climatic and snowpack variability, significantly more streamflow discharged from the Gila watershed for three to five years following wildfires, consistent with increased regional water yield due to enhanced infiltration-excess overland flow and groundwater recharge at the large watershed scale. In contrast, we observed no such increase in discharge from the Jemez watershed following wildfires. Fire regimes represent a key difference between the contrasting responses of the Jemez and Gila watersheds with the latter experiencing more frequent wildfires, many caused by lightning strikes. While hydrologic dynamics at the scale of large watersheds were previously thought to be climatically dominated, these results suggest that if one fifth or more of a large watershed has been burned in the previous three to five years, significant increases in water yield can be expected.

1. Introduction
In the mid-1980s large wildfires in western North American forests increased markedly in spatial extent, duration, frequency, and severity in association with higher spring and summer temperatures, as well as reduced winter precipitation (Westerling et al 2006, Miller et al 2008, Williams et al 2010, Jolly et al 2015). This regional increase in large wildfires occurred in association with an unprecedented multi-year drought that may have been a consequence of climate warming and a harbinger of a prolonged intensification of aridity in this region (Cook et al 2004, Seager et al 2007). In addition to prolonged drought, another factor contributing to this increase in large wildfires is a history of fire suppression in the western United States that has resulted in a ‘fire deficit’ relative to long-term patterns (Marlon et al 2012). Examination of historical periods of climate warming implies that conditions conducive to large wildfires will continue as Earth’s climate warms further (Calder et al 2015).

In the intermountain region of the western US wildfires interact with the North American monsoon. This phenomenon brings thunderstorms accompanied by high intensity rainfall during mid to late summer (Underwood and Schultz 2004). Such high intensity convective precipitation may interact with post-wildfire conditions to produce flash flooding.
Wildfires combust live plant canopy cover and leaf litter and increase the severity of soil water repellency (Mataix-Solera and Doerr 2004, Granged et al. 2010, Versini et al. 2012). Canopy removal tends to increase throughfall, which—after combustion of the leaf litter layer—promotes surface sealing, and reduces infiltration (Shakesby et al. 2000, Savadogo et al. 2007, Larsen et al. 2009), thereby potentially modifying monsoon season hydrologic response by increasing runoff ratio, peak discharge, and flood frequency (Mataix-Solera and Doerr 2004, Granged et al. 2010, Versini et al. 2012). Commonly, the extent to which post-wildfire infiltration-excess overland flow increases is similar across burn severities (Cawson et al. 2013, Vieira et al. 2015).

In addition to effects of fire on soil hydraulic properties that influence partitioning of high intensity monsoonal precipitation between infiltration into the subsurface and infiltration-excess overland flow, fire may also reduce transpiration (Kinoshita and Hogue 2011, Ebel 2013, Cardenas and Kanarek 2014, Zhou et al. 2015). Kinoshita and Hogue (2015) examined dry season water yield in 14–51 km² southern California watersheds following wildfires that burned 87%–95% of the watershed area. They observed 118%–1090% increases in low flow volumes following the 2003 Old Fire and attributed this increased discharge to basin-wide reduction in transpiration resulting from plant canopy removal. Based on these results they suggest that such increases in baseflow may supplement regional water supplies that are often stressed in semi-arid regions.

The hydrologic effects of wildfire are, however, modified by spatiotemporal scale. At the point, hillside, and small watershed scales many effects of fire are well known. In contrast, at the scale of a large watershed, fire may be only one process modifying watershed function, particularly if only a portion of the watershed has been burned. Fire effects on fluxes measured at the watershed outlet may be modified by such processes as climatic anomalies, ‘extreme’ changes in geomorphology following the fire due to debris flows (Pelletier and Orem 2014, Orem and Pelletier 2015), channel routing, overbank flooding, flood wave attenuation, and the degree to which convective precipitation events within large watersheds coincide with burned areas. With regard to temporal scale, over long-term periods the hydrologic effects of wildfires represent only one potential influence on hydrological processes. Others include natural climate variability (Cook et al. 2007, Wine et al. 2012b, 2015), anthropogenic climate change (Cayan et al. 2010), and landcover change (Wilcox et al. 2008, Wine and Zou 2012).

Commonly hydrologic studies of wildfire effects adopt short time horizons and small spatial extents (Shakesby and Doerr 2006). Examples of such studies range from simulating rainfall on runoff plots for several minutes (Granged et al. 2010) to measuring postfire discharge from watersheds up to 100’s of square kilometers in area following individual fires for periods of up to seven years (Kinoshita and Hogue 2015, Bart 2016).

Therefore, this study aims to improve understanding of the importance of fire effects on hydrologic response of large semi-arid mountainous watersheds in the southwestern USA relative to long-term climate variability. Our long-term goal is to fulfill this aim through the use of coupled surface–subsurface, physically based hydrologic models. However, many commonly used hydrologic models are ill-suited to modeling post-fire hydrology in which infiltration rates may initially increase at early time during a rainfall event—as amphiphilic molecules within the topsoil transition from unwettable to wettable orientations—and subsequently decrease with time—as the soil approaches saturation (Imsen et al. 1992, Wine et al. 2012a). In this study we therefore adopt a statistically based approach to interrogate the relative importance of candidate controls on hydrologic response of large watersheds subjected to wildfires.

2. Methods

2.1. Site selection

To elucidate the relationship between wildfires and streamflow, we obtained geospatial wildfire occurrence data developed by the Monitoring Trends in Burn Severity (MTBS) project (Eidenshink et al. 2007) and available from the launch of Landsat 5 through the present (1984–2014). Since MTBS only extends back to 1984, we supplemented the MTBS data with federal wildland fire occurrence data compiled by the USGS starting in 1980. We then selected three watersheds in New Mexico that each experienced two or more large wildfires, were unaffected by manmade hydraulic control structures, and had continuously operating stream gages over the period of interest from 1982 to 2014 (figure 1).

2.2. Site characteristics

The Jemez watershed intersects two ecoregion divisions—tropical and subtropical regime mountains to the west and steppe regime mountains to the east—and two ecoregion provinces—Arizona-New Mexico mountains semi-desert-open woodland-coniferous forest-alpine meadow province to the west and southern Rocky Mountain steppe-open woodland-coniferous forest-alpine meadow province to the east (Omernik 1987). Spatially weighted mean monthly precipitation estimated from PRISM (1982–2014) typically reaches a low in June (20 mm) throughout the watershed, then peaks in July (75 mm) and August (90 mm). Of total annual precipitation (table 1), near the base of the Jemez Mountains 36% falls in early–afternoon convective events during July and August (Bowen 1996). Monthly mean temperatures averaged throughout the watershed typically start the year as...
low as \(-4\, ^\circ C\) in January and attain a peak of \(17\, ^\circ C\) in July. Averaging over the watershed, temperatures typically remain below freezing in December through February. However, the coldest (high elevation) locations typically remain below freezing from November through March. At the Quemazon SNOTEL site located on the eastern rim of Valles Caldera, snow may begin to accumulate at high elevations as early as October. Snow water equivalent (SWE) stored in the mountain snowpack typically peaks in March and
most snow melts before May. Median monthly streamflow from the perennial Jemez River peaks during spring snowmelt in April (13 mm) and May (10 mm) and drops to 1.5 mm by July.

Rocky Mountain Spruce-Fir Forest occurs at the highest elevations (2750–3430 m), dominated by Engelmann spruce (Picea engelmannii) and corkbark fir (Abies lasiocarpa). Partly below this ecosystem (2630–3110 m), lies moist Rocky Mountain Aspen Forest and Woodlands, dominated by quaking aspen (Populus tremuloides). Rocky Mountain Mixed Conifer Forest lies in a similar elevation range (2600–3050 m), dominated by Douglas-fir (Pseudotsuga menziesii), white fir (Abies concolor), blue spruce (Picea pungens), southwestern white pine (Pinus strobus), limber pine (Pinus flexilis), and ponderosa pine (Pinus ponderosa). Generally below aspen and mixed conifer forest ecosystems lies Rocky Mountain Ponderosa Pine Forest and Woodland (2450–2840 m), dominated by ponderosa pine. Typically, below these forest and woodland ecosystems lies shrubland. Rocky Mountain Montane Shrubland (2540–2870 m) is dominated by Gambel oak (Quercus gambelii) and New Mexico locust (Robinia neomexicana). Rocky Mountain Montane Riparian Shrubland occurs in the same elevation range along streams and is dominated by thimble alder (Alnus tenuifolia). Within a similar elevation range (2560–2870 m) Rocky Mountain Montane Grasslands dominated by upland bunch grasses occur (Muldavin et al. 2006).

The Gila and Mogollon watersheds follow similar climatic and ecological patterns to the Jemez, but with higher annual precipitation and temperature (table 1), reflecting their more southerly positions closer to the gulfs of California and Mexico. Both the Gila and Mogollon watersheds are located within the Arizona-New Mexico mountains semi-desert-open woodland-coniferous forest-alpine meadow province. The Gila region is characterized by unusually high occurrences of lightning-ignited typically low-severity fires, with five lightning-caused fires per 100 ha annually (Rollins et al. 1999, 2002). In this region hillslopes with north-eastern topographic aspect tend to experience less water-limitation, greater productivity, greater continuity of fine fuels, and as a consequence higher fire frequency relative to other aspects (Rollins et al. 2002). Historically, ponderosa pine and Douglas fir potential vegetation types have been most likely to burn relative to other land-cover types (Rollins et al. 2002). Potential vegetation types classify sites based on the climax community predicted for a site (Keane et al. 1999).)

2.4. Wildfire hydrologic assessment
Following selection of watersheds with natural flow regimes subjected to repeated catastrophic wildfires, regression analyses required additional information about the characteristics of fires in each watershed as they relate to watershed-scale hydrologic response. To this end we created two different predictors of wildfire impacts on hydrologic response for analysis of the monsoon season (June–September). The first predictor (INF3) interrogates the combined influence of increases in infiltration excess overland flow and decreases in transpiration. A meta-analysis by Vieira et al. (2015) suggested that significant increases in infiltration-excess overland flow are limited to the three years following a wildfire, but do not differ significantly with burn severity. Thus the first predictor quantifies the total watershed area burned in the previous three years. The second predictor (TRANSP6) interrogates the influence of reduced post-wildfire transpiration on streamflow. This predictor quantifies the total watershed area burned in the previous six years, the duration over which transpiration is reduced as found in this study. At an annual time step, we followed a similar scheme to determine which water years experience hydrologic effects associated with wildfires, but include only wildfires that burned during the previous two (INF2) and five years (TRANSP5), respectively. This decrement of the period over which fire areas were integrated reflects the fact that large wildfires typically burn after spring
runoff, which dominates annual streamflow in these watersheds.

2.5. Hydrologic time series derivation
Assessing the hydrologic relations associated with large wildfires first required isolating these effects by removing climatic influences on discharge. To this end we assessed the capacity of candidate predictor variables—precipitation, temperature, and SWE—to predict discharge metrics. We used Python functionality available through the arcpy site package at version 10.3 of ArcGIS to derive from existing monthly 4 km PRISM raster fields (Daly et al 1994) a time series of annual descriptive statistics for temperature and precipitation within each watershed by water year. PRISM is an algorithm specifically developed for spatial prediction of precipitation and temperature in mountainous areas subject to orographic precipitation and rain shadow effects that may not be appropriately captured in many conventional geostatistical approaches. To determine snowpack dynamics we calculated peak SWE at a representative SNOTEL (SNOW TELEmetry; operated by the Natural Resources Conservation Service) station proximal to each watershed (figure 1). Finally, we obtained discharge measured by the USGS at the outlet of each watershed.

2.6. Statistical analysis
The objective of the statistical analysis was to assess controls on annual total streamflow (mm), peak flow (mm d\(^{-1}\)), and low flow (mm d\(^{-1}\)) at both the annual time scale and during the monsoon season (June–September). Peak and low flow were determined as the highest and lowest flows of each year, respectively, at a daily time step for the perennial Jemez and Gila watersheds. To minimize zero-flow data in the intermittent Mogollon watershed, low flows were represented by the median daily flow during the monsoon season and the first quartile of daily flow at the annual time scale. For each continuous variable we assessed the normality of its statistical distribution using the Shapiro–Wilk test (Royston 1982) and transformed non-normally distributed variables to normality using the ‘Ladder of Powers’ concept (Helsel and Hirsch 2002) with the understanding that hydrological variables are commonly positively skewed due to large, rare, extreme events. To enhance model realism we also allowed for interactions between terms such as between mean temperature and peak SWE or precipitation and wildfire. Following any necessary transformations, we implemented stepwise regression to select a subset of candidate variables that minimize the Akaike information criteria (Akaike 1974). (To promote significance of terms at \(\alpha = 0.1\), we increased the multiple of the number of degrees of freedom used to calculate the penalty for adding additional terms to the model to 2.7.) To ensure that the regression models complied with applicable assumptions we assessed normality in the regression residuals via the Shapiro–Wilk normality test, the presence of outliers via the Bonferroni outlier test, constancy of error via the score test, autocorrelation of residuals via the Durbin–Watson test, and the acceptability of variance inflation factors. We required that climatic predictor variables have a known and expected physical relationship, either direct or inverse, with the response variables. Where wildfire terms emerged as significant we quantified the marginal contribution of the wildfire term (Gromping 2006). We used R 3.2.4 to implement all statistical analyses (R Core Team 2016).

3. Results

3.1. Post-wildfire vegetation recovery
Prior to wildfire, annual peak EVI averaged 0.26 ± 0.006 (standard error) in the 53 tested burn perimeters (figure 2). EVI decreased significantly in the year following fire (\(p < 0.001\)) to 0.22 ± 0.007. Thereafter, EVI gradually recovered through the fifth year following wildfire when it remained lower than pre-fire conditions (\(p < 0.001\)) with an annual peak value of 0.23 ± 0.005. Finally, six years after the initial fire recovery to 0.25 ± 0.006 was achieved as indicated by a spectral signature statistically indistinguishable (\(p = 1.0\)) from pre-fire conditions.

3.2. Jemez
From 1982 to 2014, seven wildfires burned 225 km\(^2\) (18%) of the Jemez watershed. The largest wildfires were the 2011 Las Conchas and 2013 Thompson Ridge wildfires, which burned 103 and 74 km\(^2\), respectively, within the Jemez watershed. Despite the large area burned during these two wildfires, the cumulative proportion of watershed area burned in the Jemez was the lowest of the three watersheds considered. After controlling for climatic and snowpack variability, wildfires were not correlated with any significant increases in total discharge or low flows during the monsoon season (table 2, figure 3). However, the interaction between precipitation and the proportion of the watershed burned in the previous three years (INF3) did aid in predicting peak flows (tables 2 and 4, figure 3). This significant increase in peak flows was associated with a positive precipitation anomaly in 2013 that coincided with a peak in the cumulative area burned in the previous three monsoon seasons. At the annual time step, significantly lower annual low flows from the Jemez watershed occurred in association with INF2 (table 3). These anomalously low flows occurred in late June (table 3; figure 4). Two of these low flows coincided with unusually low precipitation during June 2012 and 2014. The third low flow occurred while the Thompson Ridge fire actively burned in 2013.
3.3. Mogollon
From 1982 to 2014, eight wildfires burned 352 km² within the Mogollon watershed. (The total area of this watershed burned exceeds the watershed area because certain areas were burned more than once.) The largest wildfires were the 2012 Whitewater-Baldy complex, 1996 Lookout, and 2003 Dry Lake complex wildfires that burned 175, 56, and 46 km², respectively, within the Mogollon watershed. Of the three watersheds considered, the Mogollon watershed experienced the greatest proportion of area burned cumulatively. After controlling for climatic and snowpack variability, total, peak, and low flows from the Mogollon watershed during the monsoon season all increased significantly in association with INF3 (tables 2 and 4; figure 3). Total, peak, and low flows each peaked in 2013 when a positive precipitation anomaly followed the Whitewater-Baldy complex wildfire, which burned 92% of the watershed in the previous year. The model predicting monsoon season flow from the Mogollon watershed explained 64.6% of the total streamflow variance, of which 7% was attributed to wildfire effects (table 4). The model suggests that of the total 950 mm of measured discharge from the Mogollon watershed from 1982 to 2014 during the monsoon season, 200 mm of streamflow may have discharged due to the influence of wildfire. Of this 200 mm of monsoonal discharge associated with wildfire impacts 120 mm discharged during 2013. Following the Whitewater-Baldy complex wildfire runoff coefficients were 48% and 36% during the 2013 and 2014 monsoon seasons, respectively. These fire-affected runoff coefficient are 12–16 times higher than mean runoff coefficient during monsoon seasons unaffected by wildfire (3%).

At an annual timescale both total streamflow and peak flows increased significantly in association with INF2 (tables 3 and 4; figure 4). The model predicting streamflow explained 83% of the total variance of which 17% was associated with wildfire influence. Of the total annual discharge from the Mogollon watershed from 1982 to 2014 (4740 mm), 550 mm were associated with wildfire. Of this 170 and 100 mm discharged in 2013 and 2014, respectively. Annual runoff coefficients in 2013 and 2014 were 39% and 29%, respectively. The mean runoff coefficient in years unaffected by wildfire was 10%.

3.4. Gila
From 1982 to 2014 97 wildfires burned 3998 km² on the Gila watershed. The largest wildfires were the 2012 Whitewater-Baldy complex, 2003 Dry Lake complex, and 2011 Miller complex wildfires, which burned 559, 410, and 341 km², respectively within the Gila watershed. Of the three watersheds considered the greatest total cumulative area was burned within the Gila watershed. From 2003 to 2005 and in 2013 over 20% of the watershed area had been burned in the previous three years. After controlling for climatic and snowpack variability, total and peak monsoonal flows significantly increased in association with INF3 (table 2, figure 3). Record total and peak flows occurred in 2013 when a positive precipitation anomaly followed both
Table 2. Statistically significant predictors and associated *p*-values of monsoon season total streamflow (*q*), peak flow (*q*\textsubscript{peak}), and low flow (*q*\textsubscript{min}).

Site	Response	Year\(^a\)	\(P\)	\(P\textsubscript{min}\)	\(P\textsubscript{max}\)	SWE\textsubscript{peak}	SWE\textsubscript{May}	\(T\textsubscript{avg}\)	\(T\textsubscript{max}\)	\(T\textsubscript{min}\)	INF3	\(P\textsubscript{max} \cdot \text{INF3}^b\)	\(P \cdot \text{INF3}^b\)	\(R^2\)
Jemez	\(q\)	<0.001\(^c\)		0.02	<0.001	−0.001								84.0
	\(q\textsubscript{peak}\)	0.142	0.063											
	\(q\textsubscript{min}\)	0.046	0.004	0.003	−0.098									75.1
Mogollon	\(q\)	<0.001		0.02	0.022									64.6
	\(q\textsubscript{peak}\)	<0.001		0.023										48.9
	\(q\textsubscript{min}\)	<0.001	0.004	−0.028	−0.140	0.045								81.4
Gila	\(q\)	0.006		0.005	0.300	0.047								79.8
	\(q\textsubscript{peak}\)	<0.001		0.032										69.3
	\(q\textsubscript{min}\)	<0.001		−0.002										53.3

\(^a\) Predictors include total annual spatially-averaged precipitation (\(P\)), minimum monthly spatially averaged precipitation (\(P\textsubscript{min}\)), maximum monthly spatially averaged precipitation (\(P\textsubscript{max}\)), maximum spatially averaged temperature (\(T\textsubscript{max}\)), peak snow water equivalent (SWE\textsubscript{peak}), May 1st snow water equivalent (SWE\textsubscript{May}), minimum spatially averaged temperature (\(T\textsubscript{min}\)), and mean annual spatially average temperature (\(T\textsubscript{avg}\)).

\(^b\) Bullets denote interaction terms.

\(^c\) Tabulated values indicate the *p*-value of each regression term included in each model; *p*-values associated with negative regression coefficients are assigned corresponding signs.
the aforementioned Whitewater-Baldy and Miller complex fires, which together yielded INF3 of 20%. The monsoon season streamflow model predicted 79.8% of total streamflow variance of which 6% was attributed to wildfire (table 4). The model suggests that of the 290 mm of total monsoon season discharge from the Gila watershed from 1982 to 2014, 112 mm were associated with wildfires. Of this only 30 mm of wildfire-related flows occurred in 2013, reflecting a less episodic wildfire influence than on smaller watersheds, such as Mogollon.

At an annual timescale total discharge and peak flows increased significantly in association with TRANS5 and INF2, respectively (tables 3 and 4; figure 4). The streamflow model explained 81.8% of total annual streamflow, of which 9% was related to wildfires. Of total annual discharge (1982–2014) of 1130 mm, 250 mm was associated with wildfire.

4. Discussion

The present study provides early evidence of certain amplified post-wildfire hydrologic responses at the large watershed scale that are consistent with increased regional water supply. Results from the Mogollon watershed in the present study as well as past work have extensively documented increased groundwater recharge and peak flows at small scales. Past work suggests that hydrologic effects of wildfires may be undetectable on large watersheds such as the Gila because at the scale of large watersheds large-scale climatic patterns dominate hydrologic response (Blöschl et al. 2007). However, the present study demonstrates that in watersheds such as the Gila with high frequencies of large wildfires—associated with unusually high frequencies of lightning strikes—up to a third of the watershed may be affected by recent

Figure 3. Monsoon season measured (bars) and modeled (points) precipitation, streamflow, peak flow, and low flow anomalies from 1982 to 2014 for the Jemez (left), Mogollon (center) and Gila (right) watersheds. The orange line in the top panel indicates the cumulative proportion of the watershed burned in the previous three years.
Table 3. Statistically significant predictors of annual total streamflow (q), peak flow (q_{peak}), and low flow (q_{min}). Predictor abbreviations are given in table 2.

Site	Response	Year	P	P_{min}	P_{max}	SWE	T_{max}	T_{min}	SWE⋅T_{min}	P_{min}⋅P_{tot}	TRANSPO	INF2	R^2 (%)
Jemez	q	0.005	<0.001	−0.034									88.0
	q_{peak}		<0.001	−0.009									82.6
	q_{min}	−0.078	0.001	0.002							−0.053	76.9	
Mogollon	q	0.041	<0.001		0.002						0.003	83.0	
	q_{peak}		0.021										32.3
	q_{min}	0.009	0.071										53.5
Gila	q	<0.001	0.009		0.006								81.8
	q_{peak}	0.808	−0.019	0.005	0.054	−0.627	0.052	0.034		<0.001		80.4	
	q_{min}	<0.001											49.6
wildfires. In such large watersheds we demonstrate a direct relationship between wildfires and water yields. Whereas at the scale of small watersheds we observed large short-lived streamflow increases following wildfires, at the large watershed scale we observed proportionally smaller increases in streamflow that are sustained over time as new sites are regularly burned while previously burned sites recover. The smaller increases in streamflow at the scale of the Gila watershed relative to the Mogollon watershed reflect a smaller proportion of the watershed burned. The proportion of the watershed burned interacts with precipitation anomalies, especially anomalies during the monsoon season, to determine the marginal increase in streamflow each year.

Past work in Mediterranean climates has suggested increased regional water yield as a result of wildfires (Kinoshita and Hogue 2015, Bart 2016). Bart (2016) suggested that post-wildfire streamflow responses remain elevated during the seven years following a wildfire and that the magnitude of this effect is related to the proportion of area burned and precipitation. This California work was limited to a Mediterranean climate unaffected by snow and in which precipitation is out of phase with evaporative demand. Thus, the present study extends this work to demonstrate increases in post-wildfire water yield at yet a larger spatial scale, that of the 4807 km² Gila watershed.

Figure 4. Annual measured (bars) and modeled (points) precipitation, streamflow, peak flow, and low flow anomalies from 1982 to 2014 for the Jemez (left), Mogollon (center) and Gila (right) watersheds. Blue and red bars refer to positive and negative anomalies respectively. The orange line in the top panel indicates the cumulative proportion of the watershed burned in the previous two years; x's indicate the proportion of the watershed burned in the previous five years.
impacts on the hydrologic cycle, including the qualitative characteristics of post-wildfires. The precise small-scale response of each is not known, and the 20% threshold suggested by Bosch and Hewlett (1982) was not selected for best subset regression even when permitted.

The absence of a significant increase in water yields in the Jemez contrasts with the significant increase observed in the Gila and Mogollon watersheds. In fact, this result is more consistent with our understanding of scale based on the literature. There exists an extensive body of hydrologic literature showing that hydrologic effects measured at the point, hillslope, and small watershed scales are often negligible, undetectable, or masked at larger spatial scales relevant to water resources management (Wilcox et al. 2006, Wilcox and Huang 2010) because the importance of particular processes in controlling a hydrologic response is itself a function of scale (Dooge 1997, Blöschl 2006). Bosch and Hewlett (1982) suggest that vegetation treatments of less than 20% do not yield measurable changes in streamflow. This apparent 20% threshold could reflect some combination of limitations on measurement accuracy, increased transpiration by remaining plants, and increased evaporation. In any case, the 20% threshold suggested by Bosch and Hewlett (1982) reflected field to watershed scale measurements. The present study is consistent with a similar 20% threshold required to elicit hydrologic impacts of a disturbance at the large watershed scale.

Given that this study considered over 100 wildfires, measuring the small-scale hydrologic response of each would not likely be feasible. However, while the precise small-scale response of each is not known, the qualitative characteristics of post-wildfire impacts on the hydrologic cycle, including flooding, have been documented following certain wildfires such as the Las Conchas wildfire (Orem and Pellitteir 2015) and qualitatively documented in the Jemez in cases in which flames were washed out following wildfires. Furthermore, inclusion of the Mogollon watershed, 92% of which was burned by the White-water-Baldy complex wildfire, provides a template for the expected hydrologic responses caused by wildfire. This template includes reduced transpiration (Dore et al. 2010) and increased infiltration-excess overland flow following high intensity monsoon storms (McLin et al. 2001) resulting in increases in streamflow (tables 2–4, figures 2–4). The lack of small-scale measurements does mean that, for example, transmission losses between small and large scales are not known precisely and the precise streamflow contributions of areas burned at different severities are unknown.

Further research is needed in the form of a longer-term study that capitalizes on long-term wildfire atlases that span important changes in wildfire and land management paradigms. Such a study could test the hypothesis that increases in regional water yield are a peculiarity of the Anthropocene increase in wildfire frequency and were not detectable in earlier decades. Also, further research is necessary to better understand the 20% threshold suggested by Bosch and Hewlett, and supported by the present work. Specifically, numerical modeling is needed to better understand the extent to which the 20% threshold is related to measurement error versus increased ET in undisturbed areas. Finally, given that the present study considered burned area as area within wildfire perimeters, further research is necessary to address the role of burn severity in influencing changes in hydrologic response over time.

Acknowledgments

We wish to acknowledge funding from New Mexico EPSCoR WC-WAVE NSF award 1329470 and receipt of a 2015 New Mexico Geological Society grant-in-aid. We also acknowledge valuable critique of a draft of this manuscript by Dr Thomas W Swetnam and an anonymous reviewer.

References

Akaikhe H 1974 A new look at the statistical model identification IEEE Trans. Autom. Control 19 716–23
Bart R R 2016 A regional estimate of postfire streamflow change in California Water Resour. Res. 52 1465–78
Blöschl G 2006 Hydrologic synthesis: across processes, places, and scales Water Resour. Res. 42 W03S02
Blöschl G, Ardonin-Bardin S, Bonell M, Dorninger M, Goodrich D, Gutknecht D, Matamoros D, Merz B, Shand P and Szolgay J 2007 At what scales do climate variability and land cover change impact on flooding and low flows? Hydropl. Process. 21 1241–7
Bosch J M and Hewlett J D 1982 A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration J. Hydrol. 55 1–23
Bowen B M 1996 Rainfall and climate variation over a sloping New Mexico plateau during the North American monsoon J. Clim. 9 3432–42
Calder W J, Parker D, Stopka C J, Jimenez-Moreno G and Shuman B N 2015 Medieval warming initiated exceptionally

Table 4. Relative importance—proportion of variance explained—of wildfire term in regression model.

Site	Response	Period	Importance (%)
Jemez	q	Monsoon	—*
Jemez	q_{peak}	Monsoon	17.1
Jemez	q_{low}	Monsoon	—
Mogollon	q	Monsoon	10.9
Mogollon	q_{peak}	Monsoon	20.6
Mogollon	q_{low}	Monsoon	5.0
Gila	q	Monsoon	7.6
Gila	q_{peak}	Monsoon	6.9
Gila	q_{low}	Monsoon	—
Mogollon	q	Annual	21.7
Mogollon	q_{peak}	Annual	63.3
Mogollon	q_{low}	Annual	—
Gila	q	Annual	11.6
Gila	q_{peak}	Annual	9.4
Gila	q_{low}	Annual	—
Jemez	q	Annual	—
Jemez	q_{peak}	Annual	—
Jemez	q_{low}	Annual	—

* Indicates that wildfire term was not selected for best subset regression even when permitted.
large wildfire outbreaks in the Rocky Mountains Proc. Natl Acad. Sci. USA 112 13261–6
Campbell J B and Wynne R H 2011 Introduction to Remote Sensing (New York: Guilford)
Cardenas M B and Kanarek M 2014 Soil moisture variation and dynamics across a wildfire burn boundary in a loblolly pine (Pinus taeda) forest J. Hydrol. 519 490–502
Cawse-G, Sheridan G J, Smith H F and Lane P N 2013 Effects of fire severity and burn patchiness on hillslope-scale surface runoff, erosion and hydrologic connectivity in a prescribed burn Forest Ecology Manage. 310 219–33
Cayan D R, Das T, Pierce D W, Barnett T P, Tyree M and Gershunov A 2010 Future dryness in the southwestern US and the hydrology of the early 21st century drought Proc. Natl Acad. Sci. USA 107 21271–6
Cook E R, Seager R, Cane M A and Stahle D W 2007 North American drought: reconstructions, causes, and consequences Earth-Sci. Rev. 81 93–134
Cook E R, Woodhouse C A, Eakin C M, Meko D M and Stahle D W 2004 Long-term aridity changes in the western United States Science 306 1015–8
Daly C, Neilson R P and Phillips D L 1994 A statistical topographic model for mapping climatological precipitation over mountainous terrain J. Appl. Meteorol. 33 140–58
Dooge J I 1997 Searching for simplicity in hydrology Rev. Geophys. 18 311–43
Dore S, Kolb T E, Montes-Helu M, Eckert S E, Sullivan B W, Hungate B A, Kaye J P, Hart S C, Koch G W and Finkl A 2010 Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning Ecological Appl. 20 663–83
Ebel B A 2013 Simulated unsaturated flow processes after wildfire and interactions with slope aspect Water Resour. Res. 49 8090–107
Eidenshink J, Schwind B, Brewer K, Zhu Z-L, Quayle B and Howard S 2007 A project for monitoring trends in burn severity Fire Ecology 3 3–21
Grange A J P, Jordan A, Zavala L M and Bârcenas G 2010 Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire Hydrol. Process. 23 1614–29
Grømping U 2006 Relative importance for linear regression in r: the package relaimpo J. Stat. Softw. 17 1–27
Helsel D R and Hirsch R M 2002 Statistical Methods in Water Resources Techniques of Water-Resources Investigations (Reston, VA: USGS) p 510
Imeson A C, Verstraten J M, van Mulligen E J and Sevink J 2012 The effects of fire and water on infiltration and runoff in Mediterranean type forest Catena 19 345–61
Jolly W M, Cochrane M A, Freeborn P H, Holden Z A, Brown T J, Granged A J P, Jordán A, Zavala L M and Bárcenas G 2010 Fire ecology and fire occurrence in two large rocky mountain (USA) wildfires areas Landscape Ecology 17 539–57
Royston P 1982 Algorithm as 181: the w test for normality J. R. Stat. Soc. C31 176–80
Savadogo P, Sawadogo I and Tiveau D 2007 Effects of grazing intensity and prescribed fire on soil physical and hydrological properties and pasture yield in the savanna woodlands of Burkina Faso Agric. Ecosyst. Environ. 118 90–92
Seager R et al 2007 Model projections of an imminent transition to a more arid climate in southwestern North America Science 316 1181–4
Shakesly R and Doer 2006 Wildfire as a hydrological and geomorphic agent Earth-Sci. Rev. 74 269–307
Shakesly R A, Doer S H and Walsh R P 2000 The erosional impact of soil hydrophobicity: current problems and future research directions J. Hydrol. 231–232 178–91
Underwood S J and Schultz M D 2004 Patterns of cloud-to-ground lightning and convective rainfall associated with postwildfire flash floods and debris flows in complex terrain of the western United States J. Hydrometeorology 5 989–1003
Versini P A, Velasco M, Cabello A and Sempere–Torres D 2012 Hydrological impact of forest fires and climate change in a Mediterranean basin Nat. Hazards 66 609–28
Vieira D C S, Fernández C, Vega J A and Keizer J J 2015 Does soil water repellency and water repellency on in A Vegetation Science 80 31–43
Vieira D C S, Fernández C, Vega J A and Keizer J J 2015 Does soil water repellency and water repellency on in A Vegetation Science 80 31–43
Vieira D C S, Fernández C, Vega J A and Keizer J J 2015 Does soil water repellency and water repellency on in A Vegetation Science 80 31–43
Vieira D C S, Fernández C, Vega J A and Keizer J J 2015 Does soil water repellency and water repellency on in A Vegetation Science 80 31–43
Warming and earlier spring increase western US forest wildfire activity Science 313 940–3
Wilcox B P and Huang Y 2010 Woody plant encroachment paradox: rivers rebound as degraded grasslands convert to woodlands Geophys. Res. Lett. 37 L07402
Wilcox B P, Owens M K, Dugas W A, Heckert D N and Hart C R 2006 Shrubs, streamflow, and the paradox of scale Hydrolog. Process. 20 3245–59
Wilcox B P, Yun H and Walker J W 2008 Long-term trends in streamflow from semiarid rangelands: uncovering drivers of change Glob. Change Biol. 14 1676–89
Williams A P, Allen C D, Millar C I, Swetnam T W, Michaelsen J, Still C J and Leavitt S W 2010 Forest responses to increasing aridity and warmth in the southwestern United States Proc. Natl Acad. Sci. USA 107 21289–94
Wine M L, Hendrickx J M H, Cadol D, Zou C B and Ochsner T E 2015 Deep drainage sensitivity to climate, edaphic factors, and woody encroachment, Oklahoma, USA Hydrol. Process. 29 3779–89
Wine M L, Ochsner T E, Sutradhar A and Pepin R 2012a Effects of eastern redcedar encroachment on soil hydraulic properties along Oklahoma’s grassland-forest ecotone Hydrol. Process. 26 1720–8
Wine M L and Zou C B 2012 Long-term streamflow relations with riparian gallery forest expansion into tallgrass prairie in the Southern Great Plains, USA Forest Ecology Manage. 266 170–9
Wine M L, Zou C B, Bradford J A and Gunter S A 2012b Runoff and sediment responses to grazing native and introduced species on highly erodible Southern Great Plains soil J. Hydrol. 450–451 336–41
Zhou Y, Zhang Y, Vaze J, Lane P and Xu S 2015 Impact of bushfire and climate variability on streamflow from forested catchments in southeast Australia Hydrol. Sci. J. 60 1340–60