Analysis of Economic Inequality in Indonesia

by Dr. Fitrawaty, S.p., M.si
Analysis of Economic Inequality in Indonesia

Khairani Alawiyah¹, Fitrawaty², Randeska Manulang³
¹ Universitas Negeri Medan, Medan and Indonesia, khairani_1404@yahoo.com
² Universitas Negeri Medan, Medan and Indonesia, fitra53@gmail.com
³ Universitas Negeri Medan, Medan and Indonesia, randeskanmanulang4504@gmail.com

Abstract
Development is carried out to improve the welfare of the community, so that increased economic growth and equitable income distribution are needed. Rapid economic growth that is not matched by equity, will lead to regional disparity. The purpose of this study is to: (1) analyze the factors causing the development imbalance and economic growth in all provinces in Indonesia; (2) analyzing the biggest contributors to development inequality between provinces in Indonesia, (3) forming a model of development inequality and economic growth in each province and Indonesia (4) raising ideas or ideas for solutions to controlling development inequality and economic growth in Indonesia. The variables studied were williamson index, human development index, unemployment and General Allocation Funds for each province in Indonesia in 2010-2017. The data observed were primary data and secondary data from various related agencies, such as BI, BPS, BAPPENAS and Ministry of Finance. Before being analyzed, the data will pass the next classical assumption assumption stage with the Panel Data Model. From the results of the study found that the unemployment rate has a negative and significant effect, while the DAU and HDI have a positive and significant effect on the level of inequality in Indonesia.

Keywords: williamson index, unemployment, DAU, human development index, panel data model

Introduction
The Indonesian people since the early days of independence have had great attention towards creating a just and prosperous society as contained in the fourth paragraph of the opening of the 1945 Constitution. Development programs carried out so far have always paid great attention to efforts to reduce poverty because basically development conducted aimed to improve community welfare. Nevertheless, the problem of poverty until now continues to be a prolonged problem. Actually there have been many poverty alleviation programs carried out by the government, but it hasn’t brought any meaningful changes. The development strategy developed by the Indonesian people so far is based on high economic growth. The high economic growth was apparently not followed by equitable distribution of income among all groups of people. So there is a trade-off between growth and equity which is then known as inequality (Prawoto, 2009).

One way to measure the level of regional economic disparity between districts or cities is the Williamson Index. Williamson in (Kuncoro, 2003) examined the relationship between regional disparities with the level of economic development, using economic data from developed and developing countries. Regional economic disparities are becoming greater and development is concentrated in certain regions. At a more ‘mature’ stage, as seen from economic growth, there appears to be a balance between regions and the disparity decreases significantly.

Various efforts have been made by the government to reduce the level of inequality, but it has not been fully resolved. Table 1 provides an overview of development inequality and economic growth using the Williamson index and several factors that influence it.
Table I Development of the Williamson Index, HDI, Unemployment, GRDP and Provincial General Allocation Funds in Indonesia in 2017

Province	IW	HDI	Unemployment	General Allocation Fund (thousand rupiah)
ACEH	0.241228	70.6	6.98	1,930,152.204
SUMUT	0.356276	70.87	6.005	2,493,484.717
SUMBAR	0.228882	71.24	5.69	1,953,594.421
BABEL	0.17971	69.99	4.12	969,535.866
KEPRI	0.276648	74.45	6.8	1,043,954.307
JABAR	0.492105	70.69	8.355	2,879,143.808
JATENG	0.456534	70.52	4.36	3,528,364.822
DIY	0.337916	78.89	2.93	1,312,215.989
BALI	0.188633	74.3	1.38	1,234,481.776
NTB	0.264798	66.58	3.59	1,416,022.952
SULBAR	0.283176	64.3	3.095	977,903.640
MALUKU	0.212898	68.19	8.53	1,465,641.669
PAPUA	0.864547	59.09	3.79	2,570,118.273

Source: Statistics Indonesia (2018), Ministry of Finance (2018)

From Table 1, only Papua Province has high inequality criteria, provinces that have moderate inequality are; North Sumatra, West Java, Central Java, Banten, East Kalimantan and South Sulawesi, while provinces that have low levels of inequality are; Aceh, West Sumatra, Babylon, Riau Islands, DIY, Bali, NTB, Kaltara, North Sulawesi, West Sulawesi, Gorontalo and Maluku. The provinces of Papua and Central Java which have the highest level of inequality actually get a relatively high DAU compared to other provinces in Indonesia. The overview of these two indicators at a glance explains that the administration of DAU, which is expected to reduce inequality, has not succeeded in reducing inequality.

Inequality in development and economic growth is also influenced by population growth, both in terms of quantity and also the quality of the population. The quality of an area is very dependent on the quality of human resources (HR). The indicator used to measure HR quality is the Human Development Index (HDI). HDI can also be interpreted as building one's ability through improving the level of health, knowledge or education and skills. In summary, Ranis and Stewart (2002) interpret human development as an improvement in a person's condition so that it allows for a longer and healthier and more meaningful life.

According to UNDP (2013), Maipita (2013) human development index (HDI) is a comparative measurement of life expectancy, literacy, education and living standards for all countries throughout the world.

Methods

This study will observe the Williamson index, the unemployment rate, general allocation funds and the Human Development Index between provinces in Indonesia during 2010-2017. This study uses documentation techniques in collecting data, gathering data from various related sources. Because this study uses secondary data, the data was taken from the Bank of Indonesia, the Central Bureau of Statistics, the Department of National Development and Planning, and the Government of Medan City, and other relevant sources of research.

Analysis of the data in this study uses panel data regression (pooled data). Panel data was chosen because it has a great combination of time series and cross-section data, then in the panel data model, the same cross-section units are surveyed for several time-series (Gujarati, 2003). The Data Analysis panel is used to analyze the impact of population fluctuations, regional minimum wages, rice prices, the level of economic growth at
the inflation rates of districts and cities in North Sumatra. From those variables, the research model can be formed as follows:

$$Y_t = \alpha_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + e_t$$

Information:
- Y_t = Williamson Index
- X_1 = Unemployment rate (%)
- X_2 = Human Development Index
- X_3 = General Allocation Funds (Rp Million)
- $\beta_1, \beta_2, \beta_3, \beta_4$ = Coefficient of Regression
- α_0 = Intercept

![Figure 1 research design](Image)

This study uses the Chow Test to determine which are the more appropriate model between Fixed Effect and Common Effect in estimating a panel data (Gujarati, 2003). Next, the Hausman test is used to compare the Fixed Effect model with a random effect (Widaryono, 2009). And finally, the Lagrange Multiplier test is used to compare the Random Effect and Common Effect models as the best to used to estimate panel data. Furthermore, the statistical test was carried out with the F test to test the significance of the model and the t-test to test the significance of the influence between the independent and dependent variables. However, before a regression analysis is conducted, this study first tests the classical assumptions to ensure that the data used meets the statistical rules of thumbs to be analyzed (Gujarati, 2003)

Results and Discussion

Test of Assumption

The result of classical assumption test in table 1 show that all coefficients of the independent variables are significant, then it can be concluded that there is no violation of the heteroscedasticity assumption. Then, the result of multicollinearity test shows that $R^2_1 = 0.553429 > R^2_2 = 0.185851; \ R^2_3 = 0.287442; \ R^2_4 = 0.185182$, thus the fixed effect model does not contain multicollinearity.
Table 2 The Result of Heteroscedasticity test
Dependent Variable: LOG(ABS(RESID?))
Method: Pooled Least Squares
Date: 10/06/19 Time: 13:50
Sample: 2010 2017
Included observations: 8
Cross-sections included: 33
Total pool (balanced) observations: 264

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-15.26597	5.03383	-3.032843	0.0027
LNTK?	-0.003907	0.025905	-0.170559	0.8647
LNIPM?	2.496005	1.172479	2.128828	0.0342
LNDAU?	0.712740	0.206682	3.448480	0.0007

Fixed Effects (Period)
2010—C -0.232442
2011—C 0.042421
2012—C 0.256999
2013—C 0.188590
2014—C 0.215340
2015—C 0.291620
2016—C -0.096001
2017—C -0.050256

Effects Specification
Period fixed (dummy variables)
R-squared 0.111196 Mean dependent var -3.500165
Adjusted R-squared 0.076065 S.D. dependent var 1.085445
S.E. of regression 1.043346 Akaike info criterion 2.953516
Sum squared resid 275.4083 Schwarz criterion 3.112514
Log likelihood -300.1841 Hannan-Quinn criterion 3.023398
F-statistic 3.165221 Durbin-Watson stat 0.549500
Prob(F-statistic) 0.000768

Source: Result of data analysis using EViews 8.1

The Model of Inflation
Chow-test
The result of the chow test, in Table 2, shows that the value of Prob. cross-section F equal to 0.000001 which means that the value obtained is <0.05, then it can be concluded that the Fixed Effect model is more appropriate than the Common Effect model.

The Estimation of Panel Data Regression with Fixed Effect Model
Researchers using the Eviews 8.1 software to estimate the model. This study aims to analyze the level of inequality in Indonesia annual observation of time during 2010-2017. Table 3 presents the results of data processing using the Fixed Effect method. From the estimation results of the model, researchers will further analyze the statistical significance test and the a priori economic test analysis (direction and meaningfulness). A priori economic test explains how the independent variable influences the dependent variable by observing the probability of the t-statistic value to investigate the significance level and also the direction of the regression coefficient of each independent variable.
Table 3 Chow Test Results

Redundant Fixed Effects Tests
Pool: DATAPANEL
Test period fixed effects

Effects Test	Statistic	d.f.	Prob.
Period F	2.404452	(7.253)	0.0213

Period fixed effects test equation:
Dependent Variable: LNIV
Method: Panel EGLS (Period weights)
Date: 10/06/19 Time: 13:24
Sample: 2010-2017
Included observations: 8
Cross-sections included: 33
Total pool (balanced) observations: 264
Use pre-specified GLS weights

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.091268	0.250572	-4.355101	0.0000
LNTKT?	-0.013196	0.001072	-12.30945	0.0000
LNIPM?	0.322540	0.058406	5.522323	0.0000
LINDAU?	0.041172	0.011246	3.661001	0.0000

8

Weighted Statistics

R-squared	Adjusted R-squared	S.E. of regression	F-statistic	Prob(F-statistic)
0.523721	0.518225	0.063002	95.29639	0.000000

8

Unweighted Statistics

R-squared	Sum squared resid	Durbin-Watson stat
0.466447	1.081150	0.338492

Source: Result of data analysis using EViews 8.1

Table 4 presents the result of the analysis of Panel Data Regression. We can formulate the Williamson Index with Equation Model in Indonesia as follows:

\[
\text{LOG (IW)} = -0.628645 - 0.014962 \times \text{LOG (unemployment rate)} + 0.216385 \times \text{LOG (IPM)} + 0.055369 \times \text{LOG (DAU)}.
\]

The intercept value of the regression model is -0.63. It means that if the independent variables, that is unemployment rate, Human Development Index, and General Allocation Funds are assumed to be null, then the level of Williamson index in Indonesia will decrease by 62.8%.

According to table 4, it can be seen that unemployment rate, Human Development Index, and General Allocation Funds have a significant effect on inflation at α = 5%. Interestingly, Table 4 also shows that the Prob (F-statistic) value is 0.00000 (<0.05) which means that the independent variables simultaneously have a significant impact on inflation rate. Furthermore, Table 3 also presents the value of R-squared equal to 0.553. It indicates that the variation of Williamson index can be explained simultaneously by the independent variables of 55.3% while the other 44.7% is explained by other factors not included in the model.
Table 4 Results of Estimation of the Panel Data Equation Model (Fixed Effect Model)
Dependent Variable: LNIP
Method: Pooled EGLS (Period weights)
Date: 10/06/19 Time: 13:23
Sample: 2010-2017
Included observations: 8
Cross-sections included: 33
Total pool (balanced) observations: 264
Linear estimation after one-step weighting matrix

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.628645	0.280467	-2.217703	0.0275
LNTKT?	-0.014962	0.001153	-1.298163	0.0000
LNIFM?	0.216383	0.066046	3.762268	0.0012
LNDAU?	0.053569	0.011720	4.570848	0.0000

Fixed Effects (Period)

Year	Coefficient	Std. Error	t-Statistic	Prob.
2010	-0.023703			
2011	-0.007072			
2012	0.003254			
2013	0.005178			
2014	0.005180			
2015	-0.021000			
2016	0.019542			
2017	0.018641			

Period fixed (dummy variables)

Weighted Statistics	Unweighted Statistics
R-squared	0.553429
Mean dependent var	0.078752
Adjusted R-squared	0.535778
S.D. dependent var	0.031608
S.E. of regression	0.061843
Sum squared resid	96.7628
F-statistic	31.35397
Durbin-Watson stat	0.344341
Prob(F-statistic)	0.000000
Sum squared resid	0.488039
Durbin-Watson stat	0.075485

Source: Result of data analysis using EViews 8.1

Discussion
The estimation model produces a negative coefficient for the unemployment rate variable equal to -0.014962 with a probability value of 0.0000 (<0.05). This indicates that the unemployment rate has a negative and significant effect on the Williamson rate index in Indonesia. The higher the unemployment rate, the lower the Williamson rate index in Indonesia. An increase in unemployment will reduce the level of inequality measured by the Williamson index, and vice versa. This condition illustrates that unemployment in Indonesia is generally in the lower middle class, which has wage levels below the minimum wage, so if unemployment is absorbed instead of reducing inequality because generally this unemployment group is in the informal sector with low wage rates, because the income received is not able to improve their welfare, so that in the aggregate is not able to reduce inequality. A different matter was conveyed by Dorcas, et al. 2018 that simultaneously investment, government spending, agglomeration and labor had a significant simultaneous effect, but partially labor did not significantly influence the level of inequality in South Sumatra in 2011-2015.

The estimation model produces a negative coefficient for the variable unemployment rate equal to -0.014962 with a probability value of 0.0000 (<0.05). This indicated that the unemployment rate has a negative and significant effect on the Williamson rate index in Indonesia. The higher the unemployment rate, the
lower the Williamson rate index in Indonesia. An increase in unemployment will reduce the level of inequality measured by the Williamson index, and vice versa. This condition illustrates that unemployment in Indonesia is generally in the lower middle class, which has wage levels below the minimum wage, so if unemployment is absorbed instead of reducing inequality, because generally this unemployment group is in the informal sector with low wage rates, because the income received is not able to improve their welfare, so that in the aggregate is not able to reduce inequality. A different matter was conveyed by Dorcas, et al, 2018 that simultaneously investment, government spending, agglomeration and labor had a significant simultaneous effect, but partially labor did not significantly influence the level of inequality in South Sumatra in 2011-2015.

Conclusions
The Conclusion of this research are: (1) The unemployment rate has a negative and significant effect on inequality in Indonesia, this illustrates that the policies undertaken have not been fully able to improve the welfare of the community, even though in aggregate unemployment is reduced; (2) The Human Development Index has a positive effect on the level of inequality in Indonesia, the quality of resources is increasing, but inequality is still high. Development is still not evenly distributed throughout the region, the accumulation of quality resources in urban areas, as a result rural areas are still a granary of poverty; (3) The general allocation fund has a positive and significant effect on the level of inequality in Indonesia, so that the allocation of DAU must be appropriate to the regions, because the purpose of DAU is to reduce inequality; (4) In general, the level of inequality in Indonesia is in the medium category, it needs regulations that support the distribution of income evenly throughout the provinces in Indonesia.

Acknowledgments
This study was funded by Unimed’s internal research grant on the Scheme of Lecturer Group of Expertise (in Bahasa: KDBK). Researchers are grateful for the funding and support that has been given.

References
Capello, R. (2007). Regional economics. Routledge.
Andhian, K. D., Erfit, E., & Bhakti, A. (2018). Analisis pertumbuhan ekonomi dan ketimpangan pembangunan di Wilayah Sumatera. e-Jurnal Perspektif Ekonomi dan Pembangunan Daerah, 7(1), 26-34.
Gujarat, D. (2003). Ekonometrika Dasar (terjemahan). Jakarta: Erlangga.
Kemenkeu. 2018.http://www.kemenkeu.go.id/apbn.2018
Kuncoro, M. (2002). Analisis spasial dan regional: studi aglomerasi & klaster industri Indonesia. UPP AMP YKPN.
Majita, I. (2014). Mengukur kemiskinan & distribusi pendapatan. UPP STIM YKPN.
Nurhuda, dkk, 2015, Analisis Ketimpangan Pembangunan, Jurnal Administrasi Publik (JAP), Vol. 1, Nomor 4, Hal. 110-11.
Prawoto, N. (2008). Memahami kemiskinan dan strategi penanggulangannya. Jurnal Ekonomi & Studi Pembangunan, 9(1), 56-68.
Ranis, G., & Stewart, F. (2002). Economic Growth and Human Development in Latin America. Cepal No. 78.
The UN Economic Commission for Latin America and the Caribbean (ECLAC). Diakses dari.
Sjafrizal, 2008, Pertumbuhan Ekonomi dan Ketimpangan Regional Wilayah Indonesia Bagian Barat, Jakarta, Jurnal Buletin Prisma.
United nation Development Programme (UNDP). 2013. Human Development Report 2012/2013. New York City: United Nations Development Programme.
Widarjono, A. (2007). Ekonometri: Teori dan Aplikasi untuk Ekonomi dan Bisnis, edisi kedua. Yogyakarta: Ekonisia FE Universitas Islam Indonesia.
Analysis of Economic Inequality in Indonesia

ORIGINALITY REPORT

similarity_index	internet_sources	publications	student_papers
30%	27%	20%	21%

PRIMARY SOURCES

Primary Source	Percentage			
1 www.sysrevpharm.org	3%			
2 Submitted to Padjadjaran University	2%			
3 etd.iain-padangsidimpuan.ac.id	2%			
4 Submitted to Universitas Negeri Padang	2%			
5 www.atlantis-press.com	2%			
6 digilib.unimed.ac.id	2%			
7 Submitted to Sriwijaya University	2%			
8 open.uct.ac.za	2%			
9 www.scitecresearch.com	2%			
---	---	---		
10	mpra.ub.uni-muenchen.de	Internet Source		
11	dspace.uii.ac.id	Internet Source		
12	www.iosrjournals.org	Internet Source		
13	Submitted to Universiti Tunku Abdul Rahman	Student Paper		
14	Rya Lugyarsi, Bahtiar Usman. "The Effect Of Board Size And Research And Development On Financial Performance In Computer And Service Sector Companies Listed On The Indonesia Stock Exchange", ijd-demos, 2022	Publication		
15	www.ijicc.net	Internet Source		
16	www.eprajournals.com	Internet Source		
17	pubmed.ncbi.nlm.nih.gov	Internet Source		
18	www.asianinstituteofresearch.org	Internet Source		
19	www.abacademies.org	Internet Source		
---	---	---	---	---
	download.atlantis-press.com Internet Source	<1%		
	jurnal.uii.ac.id Internet Source	<1%		
	www.ijstr.org Internet Source	<1%		
23	**Submitted to City University** Student Paper	<1%		
24	Meiryani Meiryani, Boby Ikhsan, Titik Indrawati, Edwin Hendra, Hugo Prasetyo. *The Influence of Client Company Size and Audit Opinion Switching Auditors*, 2021 5th International Conference on E-Education, E-Business and E-Technology, 2021 Publication	<1%		
25	**Submitted to University College London** Student Paper	<1%		
26	Sjamsul Arief, Ujianto, Djohan Mashudi. *"SUSTAINABILITY ECONOMIC AND ECONOMIC GROWTH: THE MODERATING EFFECT OF DISPARITY REGION AND INCOME ON SOCIETY WELFARE",* International Journal of Research -GRANTHAALAYAH, 2018 Publication	<1%		
	en.mesp.fe.uns.ac.id Internet Source	<1%		
No.	Source Details	Title	Publication Details	
-----	----------------	-------	---------------------	
28	saurashtrauniversity.edu	Rini Dwi Astuti, Didit Welly Udjianto. "Determinants of Economic Growth in ASEAN-4 Countries (Indonesia, Malaysia, Philippines, and Thailand)"	Proceeding of LPPM UPN “Veteran” Yogyakarta Conference Series 2020 – Economic and Business Series, 2020	
30	ijiset.com	Dhea Suci Fauziyyah, Sutrisno. "Capital Structure and Its Determinants Study on Consumer Goods Sector Companies on the Indonesian Stock Exchange"	International Journal of Economics, Business and Management Research, 2022	
32	www.researchgate.net			
33	Banking Academy			