CONNECTED SUM OF CR MANIFOLDS WITH POSITIVE CR YAMABE CONSTANT

JIH-HSIN CHENG, HUNG-LIN CHIU, AND PAK TUNG HO

Abstract. Suppose M_1 and M_2 are 3-dimensional closed (compact without boundary) CR manifolds with positive CR Yamabe constant. In this note, we show that the connected sum of M_1 and M_2 also admits a CR structure with positive CR Yamabe constant.

1. Introduction

In Riemannian geometry, the scalar curvature is the simplest curvature invariant of a Riemannian manifold. It was shown by Gromov-Lawson in [5] and independently by Schoen-Yau in [9] that the connected sum of two closed (that is, compact without boundary) manifolds of positive scalar curvature has a metric of positive scalar curvature. It was also shown by Schoen-Yau in [9] that the connected sum of two closed conformally flat manifolds of positive scalar curvature has a conformally flat metric of positive scalar curvature (see Corollary 5 in [9]). In view of the similarity between the scalar curvature in Riemannian geometry and the Tanaka-Webster scalar curvature in CR geometry, it would be natural to ask if the corresponding results hold for the Tanaka-Webster scalar curvature. It is the purpose of this note to answer this question.

For basic materials in CR geometry and pseudohermitian geometry, we refer the readers to [4], [6], [8] or [10], and the references therein. Let (M, J) be a closed, strictly pseudoconvex CR manifold of dimension $2n + 1$. For a contact form θ, one can define subgradient ∇_b and the Tanaka-Webster scalar curvature R or $R_{J, \theta}$ on the pseudohermitian manifold (M, J, θ). Take the volume form $dV_\theta := \theta \wedge (d\theta)^n$. We define the CR Yamabe constant $\lambda(M, J)$ (or
\(\lambda(M) \) if \(J \) is clear in the context) as follows: (see [6])

\[
\lambda(M, J) = \inf_{u > 0} \frac{E_\theta(u)}{\left(\int_M u^{2 + \frac{2}{n}} dV_\theta \right)^{\frac{n}{n+1}}},
\]

where

\[
E_\theta(u) = \int_M \left((2 + \frac{2}{n})|\nabla_b u|^2 + Ru^2 \right) dV_\theta.
\]

Similar to the Riemannian case, one can show that \(\lambda(M, J) > 0 \) if and only if there exists a contact form \(\tilde{\theta} \) conformal to \(\theta \) such that the Tanaka-Webster scalar curvature of \(\tilde{\theta} \) is positive.

In [1], the first and the second authors proved the following theorem, which is the CR version of Schoen-Yau’s result mentioned above (see also [7] for a different proof by O. Kobayashi).

Theorem 1.1. ([1]) Suppose \((M_1, J_1)\) and \((M_2, J_2)\) are two closed, spherical CR manifolds of dimension \(2n+1\) with \(\lambda(M_k, J_k) > 0 \) for \(k = 1, 2 \). Then their connected sum \(M_1 \# M_2 \) admits a spherical CR structure \(J \) with \(\lambda(M_1 \# M_2, J) > 0 \).

The idea of the proof of Theorem 1.1 was motivated by the work of O. Kobayashi in [7]. More precisely, we fix a point \(p_j \in M_j \) for \(j = 1, 2 \). We first take off two small balls around \(p_1 \) and \(p_2 \). Since \(M_j \) are spherical, we can attach the Heisenberg cylinder in each of punched neighborhood of \(p_j \). We then glue two Heisenberg cylinders together to get a spherical CR manifold.

In this note, we continue our study on the Tanaka-Webster scalar curvature of connected sum on CR manifolds. In particular, we prove the following theorem, which can be viewed as the analogous result of Gromov-Lawson and of Schoen-Yau mentioned above.

Theorem A. Suppose \((M_1, J_1)\) and \((M_2, J_2)\) are two 3-dimensional closed CR manifolds with \(\lambda(M_k, J_k) > 0 \) for \(k = 1, 2 \). Then their connected sum \(M_1 \# M_2 \) admits a CR structure \(J \) with \(\lambda(M_1 \# M_2, J) > 0 \).
Note that the above argument for the spherical case cannot be applied directly, since we cannot attach the Heisenberg cylinder to the punched neighborhood of a point. However, in this paper, we will mainly construct a new CR structure which outside a ball is the given CR structure and is spherical in a neighborhood contained in the ball. In addition, we can construct such a CR structure such that its Yamabe constant is as close as possible to the one of the given CR structure. Hence, together with Theorem 1.1, we obtain Theorem A.

Note added: While we were writing this paper, we were informed that Dietrich [3] has obtained the same result for all dimensions. In the case dim $M \geq 5$, since M is embeddable, Dietrich can construct such a CR structure in terms of defining functions. This method is not available in 3-dimensional case. The difficulty is that not every 3-dimensional CR structure is embeddable. He provided another approach to deal with the 3-dimensional case. On the contrary, in this paper, we use the deformation tensor to construct explicit CR structures we need in 3-dimensional case. In the higher dimensional situation, the difficulty of our approach is that we do not know if our CR structures in the construction are integrable.

Acknowledgments. J.-H. Cheng (H.-L. Chiu, resp.) would like to thank the Ministry of Science and Technology of Taiwan, R.O.C. for the support of the project: MOST 107-2115-M-001-011- (MOST 106-2115-M-007-017-MY3, resp.). J.-H. Cheng would also like to thank the National Center for Theoretical Sciences for the constant support.

2. Basic Material

For basic material in CR and pseudohermitian geometry, we refer the reader to [4], [6], [8] or [10]. Let (M^3, J, θ) be a pseudohermitian manifold. In [10], S. Webster showed that there is a natural connection in the bundle $\xi_{1,0}$ of all CR holomorphic vectors adapted to the pseudohermitian structure (J, θ). To define the connection, choose an orthonormal admissible coframe $\{\theta^1\}$ and dual frame $\{Z_1\}$ for $\xi_{1,0}$. Webster showed that there are uniquely
determined 1-forms θ^1, τ^1 on M satisfying the following structure equations

$$
\begin{align*}
 d\theta^1 &= \theta^1 \wedge \theta^1 + \theta \wedge \tau^1, \\
 0 &= \theta^1 + \theta^1, \\
 0 &= \tau^1 \wedge \theta^1,
\end{align*}
$$

(2.1)

in which $\tau^1 = \tau^1$. The forms θ^1, τ^1 are called the pseudohermitian connection form and torsion form, respectively. Recall that the Heisenberg group H_1 is the space \mathbb{R}^3 endowed with the group multiplication

$$(x_1, y_1, z_1) \circ (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 + y_1x_2 - x_1y_2),$$

which is a 3-dimensional Lie group. The space of all left invariant vector fields is spanned by the following three vector fields:

$$
\begin{align*}
 \hat{e}_1 &= \frac{\partial}{\partial x} + y \frac{\partial}{\partial z}, \\
 \hat{e}_2 &= \frac{\partial}{\partial y} - x \frac{\partial}{\partial z} \quad \text{and} \quad T = \frac{\partial}{\partial z}.
\end{align*}
$$

The standard contact bundle on H_1 is the subbundle $\hat{\xi}$ of the tangent bundle TH_1, which is spanned by \hat{e}_1 and \hat{e}_2. It can also be equivalently defined as the kernel of the contact form

$$
\Theta = dz + xdy - ydx.
$$

The CR structure on H_1 is the endomorphism $\hat{J} : \hat{\xi} \rightarrow \hat{\xi}$ defined by

$$
\hat{J}(\hat{e}_1) = \hat{e}_2 \quad \text{and} \quad \hat{J}(\hat{e}_2) = -\hat{e}_1.
$$

One can view H_1 as a pseudohermitian manifold with the standard pseudohermitian structure $(\hat{J}, \hat{\xi})$. In the Heisenberg group H_1, relative to the standard left invariant frame $\hat{Z}_1 = \frac{1}{2}(\hat{e}_1 - i\hat{e}_2)$ (dual coframe is $\hat{\theta}^1 = dx + idy$), it is easy to see that both forms θ^1 and τ^1 vanish.
2.1. The deformation tensor. Suppose \(J \) is a CR structure compatible with \(\Theta \) in the sense: it is defined on \(\xi \) and \(d\Theta(X, JX) > 0 \) for any nonzero vector \(X \in \xi \). Let \(Z_1 \) be a CR holomorphic vector field relative to \(J \). We express it as

\[
Z_1 = a_1^1 \tilde{Z}_1 + b_1^1 \bar{Z}_1,
\]

for some function \(a_1^1, b_1^1 \). We compute

\[
Z_1 \wedge Z_1 = (|a_1^1|^2 - |b_1^1|^2) \tilde{Z}_1 \wedge \bar{Z}_1.
\]

The compatibility of \(J \) with \(\Theta \) implies that \(|a_1^1|^2 > |b_1^1|^2 \). In particular, we have \(a_1^1 \neq 0 \).

Define

\[
\phi = (a_1^1)^{-1} b_1^1,
\]

where \(a_1^1, b_1^1 \) is the conjugate of \(a_1^1, b_1^1 \), respectively. We call \(\phi \) the deformation tensor of \(J \) (note that \(\phi \) depends on frames. It behaves as a tensor when changing frames. For notational simplicity, we suppress its tensor indices). The compatibility thus implies that \(|\phi| < 1 \). It is easy to see that any CR anti-holomorphic vector field \(Z_1 \) has the form \(Z_1 = a_1^1(\tilde{Z}_1 + \phi \bar{Z}_1) \), for some function \(a_1^1 \). Conversely, any function \(\phi \) with \(|\phi| < 1 \) defines a CR structure \(J \) compatible with \(\Theta \) by regarding \(Z_1 = a_1^1(\tilde{Z}_1 + \phi \bar{Z}_1) \) as its corresponding CR anti-holomorphic vector field.

3. Proof

Let \((M^3, J, \theta) \) be a pseudohermitian manifold. To prove Theorem A, first we would like to construct a sequence of pseudohermitian structures \(\{(J_i, \theta_i)\} \) such that \(\{(J_i, \theta_i)\} \) converges to \((J, \theta) \) in \(C^0 \) and the corresponding Webster curvature \(R_i \) also converges to the Webster curvature \(R \) of \((J, \theta) \) in \(C^0 \). In addition, each CR structure \(J_i \) is CR spherical around \(p \in M \).

We construct such a sequence as follows:

For each \(p \in M \), there exists a neighborhood \(U \) of \(p \in M \) which is contactomorphic to a neighborhood \(V \) of \(0 \in H_1 \). Let \(\Phi : U \rightarrow V \) be thus a contactomorphism and \(\Phi(p) = 0 \), we
identify U with V under Φ. Then, on U (or on V), the CR structure J can be represented by a deformation tensor ϕ with $|\phi| < 1$ such that $\hat{Z}_1 + \phi\bar{Z}_1$ is a CR anti-holomorphic vector field. In addition, it is easy to see that one can take a contactomorphism Φ with $\Phi(p) = 0$ such that the deformation function ϕ satisfies $\phi(0) = 0$ and $\phi_1(0) = \phi_1(0) = 0$, where $\phi_1 = \bar{Z}_1\phi$ and $\phi_1 = \bar{Z}_1\phi$. Thus, we can assume, without loss of generality, that

$$\theta|_U = \Theta,$$

$$\phi(0) = \phi_1(0) = \phi_1(0) = 0.$$

(3.1)

Relative to the contact form Θ,

$$Z_1 = \left(\frac{1}{1 - |\phi|^2}\right)^{1/2} (\bar{Z}_1 + \phi\bar{Z}_1),$$

(3.2)

is a unit vector field. The dual coframe is

$$\theta^1 = \left(\frac{1}{1 - |\phi|^2}\right)^{1/2} (\bar{\theta}^1 - \phi\bar{\theta}^1).$$

(3.3)

Proposition 3.1. Let θ^1 and $\tau^1 = A^1\bar{\theta}^1$ be the pseudohermitian connection form and torsion form relative to θ^1, respectively. Then we have

$$A^1 = -\frac{\phi_0}{1 - |\phi|^2};$$

$$\theta^1 = -d\ln\left(\frac{1}{1 - |\phi|^2}\right)^{1/2} + \left[\frac{\bar{\phi}\phi_0}{1 - |\phi|^2}\right] \Theta$$

$$+ \left[\frac{\phi_1 + \bar{\phi}\phi_1}{1 - |\phi|^2} + \bar{\phi}_1\right] \theta^1$$

$$- \frac{\phi_1 + \bar{\phi}_1}{1 - |\phi|^2} + |\phi|^2 \bar{\hat{Z}}_1 \left(\frac{1}{1 - |\phi|^2}\right) + \hat{Z}_1 \left(\frac{1}{1 - |\phi|^2}\right) \bar{\theta}^1,$$

(3.4)

where all the derivatives are computed on H_1; for example, $\phi_1 = \bar{Z}_1\phi$, $\phi_0 = T\phi$, and so on.

Proof. One can check directly that θ^1 and A^1 in (3.4) satisfy the structure equations (2.1). And by uniqueness, we complete the proof. □
Proposition 3.2. Let $R^{\phi,\Theta}$ and $\Delta_{b}^{\phi,\Theta}$ be the Webster curvature and (negative) sub-laplacian of (J,Θ) on U, respectively. Then we have

$$R^{\phi,\Theta} = -\hat{Z}_1 \left[\frac{\phi_1 + \bar{\phi} \phi_1}{1 - |\phi|^2} + \phi \hat{Z}_1 \left(\frac{1}{1 - |\phi|^2} \right) + \hat{Z}_1 \left(\frac{1}{1 - |\phi|^2} \right) \right]$$

$$+ \frac{\hat{\phi} \phi_0}{1 - |\phi|^2}.$$ (3.5)

and

$$\Delta_{b}^{\phi,\Theta} u = \left[\frac{1 + |\phi|^2}{1 - |\phi|^2} \right] \hat{\Delta}_b u - \left[\frac{2\phi}{1 - |\phi|^2} \right] u_{11} - \left[\frac{2\phi}{1 - |\phi|^2} \right] u_{11}$$

$$- \left[\frac{2\bar{\phi}_1 + |\phi|^2}{1 - |\phi|^2} + 2\phi \hat{Z}_1 \left(\frac{1}{1 - |\phi|^2} \right) + (1 + |\phi|^2) \hat{Z}_1 \left(\frac{1}{1 - |\phi|^2} \right) \right] u_1$$

$$- \left[\frac{2\phi_1 + |\phi|^2}{1 - |\phi|^2} + (1 + |\phi|^2) \hat{Z}_1 \left(\frac{1}{1 - |\phi|^2} \right) + 2\phi \hat{Z}_1 \left(\frac{1}{1 - |\phi|^2} \right) \right] u_1.$$ (3.6)

Proof. Recall that Webster showed that $d\theta_1^1$ can be written

$$d\theta_1^1 = R\theta^1 \wedge \theta^1, \text{ mod } \theta,$$ (3.7)

where R is the Webster curvature. Since θ^1 is an unit coframe, we have $\theta^1 \wedge \theta^1 = -id\Theta = \hat{\theta}^1 \wedge \hat{\theta}^1$. On the other hand, $d\hat{\theta}^1 = 0$. Therefore we have (3.5) immediately from (3.4). For (3.6), recall that

$$\Delta_{b}^{\phi,\Theta} u = -\left(Z_1 Z_1 u - \theta_1^1 (Z_1 Z_1 u) \right) + \text{conjugate},$$ (3.8)

and (3.6) is just a straightforward computation in terms of (3.4). \(\square\)

Remark 3.3. The first author and I H. Tsai deduced a more general formula for the Webster curvature (see (4.6) in [2]).

If we consider the new contact form $\theta^u = u^2 \Theta$ then, on U, we have the transformation law of the Webster curvatures (for the details, see [4, 6])

$$R^{\phi,\theta^u} = u^{-3} (4\Delta_{b}^{\phi,\Theta} u + R^{\phi,\Theta} u),$$ (3.9)
where $R^{\phi,\theta}$ is the Webster curvature with respect to $(J, u^2 \Theta)$.

On the other hand, the standard CR structure of the Heisenberg group on U is represented by the zero deformation function $\phi \equiv 0$, which is CR spherical. Let u be a positive function in a neighborhood of 0 such that $u(0) = 1$, $(\bar{Z}_1 u)(0) = (\bar{Z}_1 u)(0) = 0$ and

$$R^{0,\theta}(0) = R^{\phi,\Theta}(0).$$

Here

$$R^{0,\theta} = u^{-3}(4 \Delta_b u).$$

To prove Theorem A, we also need the following lemma which is a standard result in the literature (see [3, 7]).

Lemma 3.4. For any $\delta > 0$, there is a nonnegative function $\chi_\delta \in C^\infty(R)$ such that

(i) $0 \leq \chi_\delta \leq 1$, $\chi_\delta(t) \equiv 1$ in a neighborhood of 0 and $\chi_\delta(t) \equiv 0$ for $|t| \geq \delta$;

(ii) $|\chi'_\delta(t)| \leq \delta t^{-1}$ and $|\chi''_\delta(t)| \leq \delta t^{-2}$ for all t.

3.1. **Construction of a sequence** $(J^\delta, \theta^\delta)$. To construct a sequence of pseudohermitian structures we describe in the beginning of this section, we re-formulate (3.5) and (3.6) as what we need.

Proposition 3.5. Let $F = F(\phi) = \left(\frac{1}{1 - |\phi|^2}\right)^{\frac{1}{2}}$. We have

$$R^{\phi,\Theta} = -F^2(\phi_{11} + \bar{\phi}_{11}) + \sum_{a,b \in \{1,1\}} P_{ab} \phi_{ab} + \sum_{a,b \in \{1,1\}} Q_{ab} \bar{\phi}_{ab} + P,$$

$$\Delta_b^{\phi,\Theta} u = F^2 \Delta_b u + \sum_{a,b \in \{1,1\}} S_{ab} u_{ab} + Su_1 + \bar{S} u_1,$$

where $P_{ab}, Q_{ab}, P, S_{ab}$ and S are all polynomials in $F, \phi, \bar{\phi}, \phi_1, \bar{\phi}_1, \phi_{11}, \bar{\phi}_{11}$ such that

$$P_{ab}(0) = Q_{ab}(0) = P(0) = S_{ab}(0) = S(0) = 0.$$
Since $F(0) = 1$, condition (3.13) means that each polynomial does not include monomial terms F^k for some nonnegative integer k.

Now, for each δ, we define a pseudohermitian structure $(J^\delta, \theta^\delta)$ by

$$
\phi^\delta = (1 - \chi_\delta(\rho))\phi, \quad \text{which is the deformation function of } J^\delta;
$$

$$
\theta^\delta = (1 - \chi_\delta(\rho))\Theta + \chi_\delta(\rho)(\theta^u), \quad \theta^u = u^2\Theta,
$$

$$
= (v^\delta)\Theta, \quad (v^\delta)^2 = 1 + \chi_\delta(u^2 - 1).
$$

(3.14)

It is easy to see that $(\phi^\delta, \theta^\delta) = (\phi, \Theta)$ outside the δ-ball $B(\delta)$ centered at 0, and $(\phi^\delta, \theta^\delta) = (0, \theta^u)$ in a neighborhood of 0. Moreover, notice that

$$
R^{0, \theta^u}(0) = R^{\phi, \Theta}(0),
$$

(3.15)

$$
\phi(0) = \phi_1(0) = \phi_1(0) = 0,
$$

$$
u(0) = 1, \quad u_1(0) = u_1(0) = 0.
$$

Define

$$
F^\delta = \left(\frac{1}{1 - |\phi^\delta|^2}\right)^{\frac{1}{2}}.
$$

Since $|\phi^\delta| \leq |\phi|$, we have $1 \leq |F^\delta| \leq |F|$, and hence $|F^\delta|$ has an uniform bound. By a direct calculation, we have $(v^\delta)^2 - u^2 = (1 - \chi_\delta)(1 - u^2)$ which implies

$$
u^2 - |u^2 - 1| \leq (v^\delta)^2 \leq u^2 + |u^2 - 1|.
$$

(3.16)

This implies that v^δ has an uniform bound. For $a, b \in \{1, \bar{1}\}$,

$$
\phi^\delta_a = -(\chi_\delta)_a\phi + (1 - \chi_\delta)\phi_a
$$

$$
\phi^\delta_{ab} = -(\chi_\delta)_{ab}\phi - (\chi_\delta)_a\phi_b - (\chi_\delta)_b\phi_a + (1 - \chi_\delta)\phi_{ab}.
$$

(3.17)
Formulae (3.15), (3.17), together with Lemma 3.4, show that $|\phi_{ab}|$ has an uniform upper bound for each $a, b \in \{1, \bar{1}\}$. We also compute

\begin{align*}
(v^\delta)_a &= \frac{1}{2} \frac{(\chi\delta)_a(u^2 - 1) + \chi\delta(u^2)_a}{v^\delta}, \\
(v^\delta)_{ab} &= \frac{1}{2} \frac{(\chi\delta)_{ab}(u^2 - 1) + (\chi\delta)_a(u^2)_b + (\chi\delta)_b(u^2)_a + \chi\delta(u^2)_{ab}}{v^\delta} \\
&\quad - \frac{1}{4} \frac{((\chi\delta)_a(u^2 - 1) + \chi\delta(u^2)_a)((\chi\delta)_b(u^2 - 1) + \chi\delta(u^2)_b)}{(v^\delta)^3}.
\end{align*}

(3.18)

For the same reason, formulae (3.15), (3.18) together with Lemma 3.4 show that $|(v^\delta)_a|, |(v^\delta)_{ab}|$ has an uniform upper bound for each $a, b \in \{1, \bar{1}\}$.

Proposition 3.6. The sequence $\{(\phi^\delta, \theta^\delta)\}$ converges to (ϕ, Θ) in C^0. The corresponding Webster curvature $R^{\phi^\delta, \theta^\delta}$ also converges to $R^{\phi, \Theta}$ in C^0.

Proof. From the construction of $(\phi^\delta, \theta^\delta)$, and noting that $\phi(0) = 0$ and $u(0) = 1$, it is apparent that $\{(\phi^\delta, \theta^\delta)\}$ converges to (ϕ, Θ) in C^0. Therefore we only need to show that $R^{\phi^\delta, \theta^\delta}$ converges to $R^{\phi, \Theta}$ in C^0.

Let v^δ be the positive function such that $\theta^\delta = (v^\delta)^2\Theta$, i.e., $(v^\delta)^2 = 1 + \chi\delta(u^2 - 1)$. From the transformation law of Webster curvature, we have

\begin{align*}
|R^{\phi^\delta, \theta^\delta} - R^{\phi, \Theta}| &= \left| \frac{4 \Delta_b^{\phi^\delta, \Theta} v^\delta}{(v^\delta)^3} + \frac{R^{\phi^\delta, \Theta}}{(v^\delta)^2} - R^{\phi, \Theta} \right| \\
&\leq \left| \frac{4 \Delta_b^{\phi^\delta, \Theta} v^\delta}{(v^\delta)^3} + \frac{R^{\phi^\delta, \Theta}}{(v^\delta)^2} - R^{\phi, \Theta}(0) \right| + \left| R^{\phi, \Theta}(0) - R^{\phi^\delta, \Theta} \right|.
\end{align*}

(3.19)

Notice that v^δ has an uniform bound and all $|\phi_{ab}|, |(v^\delta)_a|, |(v^\delta)_{ab}|$ and $|F^\delta|$ has an uniform upper bound. Using formulae (3.12) with ϕ, u replaced by ϕ^δ, v^δ respectively, together with
by (3.15), (3.16) and Lemma 3.4, we have

\[
\left| \frac{4\Delta_{b}^\varphi_{\Theta, v^\delta}}{(v^\delta)^3} + \frac{R_{\varphi_{\Theta, v^\delta}}}{(v^\delta)^2} - R_{\varphi_{\Theta, 0}} \right| \leq (F^\delta)^2 \left(\frac{4\Delta_{b}^\varphi_{\Theta, v^\delta}}{(v^\delta)^3} - \frac{(\bar{\phi}_{\Omega}^\delta + \phi_{11}^\delta)}{(v^\delta)^2} - R_{\varphi_{\Theta, 0}} \right) + C\delta,
\]

(3.19)

\[
\leq C \left| \frac{4\Delta_{b}^\varphi_{\Theta, v^\delta}}{(v^\delta)^3} - \frac{(\bar{\phi}_{\Omega}^\delta + \phi_{11}^\delta)}{(v^\delta)^2} - R_{\varphi_{\Theta, 0}} \right| + C\delta, \text{ by (3.18) and Lemma 3.4.}
\]

(3.20)

\[
\leq C \left| \frac{4\Delta_{b}^\varphi_{\Theta, v^\delta}}{(v^\delta)^3} - (1 - \chi_{\delta})(\bar{\phi}_{\Omega}^\delta + \phi_{11}) - R_{\varphi_{\Theta, 0}} \right| + C\delta,
\]

(3.19)

\[
\leq C \left| \frac{4\Delta_{b}^\varphi_{\Theta, v^\delta}}{(v^\delta)^3} + \chi_{\delta}(\bar{\phi}_{\Omega}^\delta + \phi_{11}) \right| + \left| -\phi_{\Omega}^\delta + \phi_{11}^\delta - R_{\varphi_{\Theta, 0}} \right| + C\delta,
\]

(3.20)

\[
\leq C\delta, \text{ by (3.11), (3.11) and (3.12).}
\]

for some positive constant \(C \). Combining (3.19) and (3.20), we complete the proof of the proposition. \(\square \)

3.2. **Proof of Theorem A.** To prove Theorem A, it suffices to prove the following proposition.

Proposition 3.7. Let \(\lambda(M, J^\delta) \) is the Yamabe constant with respect to \(J^\delta \), we have

\[
(3.21) \quad \lim_{\delta \to 0} \lambda(M, J^\delta) = \lambda(M, J).
\]

Proof. Recall that we have constructed a sequence \((J^\delta, \theta^\delta)\) which converges to \((J, \theta)\) in \(C^0 \). In addition, \((J^\delta, \theta^\delta) = (J, \theta) \) outside the ball \(B(\delta) \), and

\[
\phi^\delta = (1 - \chi(\rho))\phi, \quad \theta^\delta = (v^\delta)^2\Theta, \text{ on } B(\delta).
\]

Notice that we have chosen the contact form \(\theta \) such that \(\theta|_{B(\delta)} = \Theta \). Let \(dV = \theta \wedge d\theta \) and \(dV^\delta = \theta^\delta \wedge d\theta^\delta = (v^\delta)^2 dV \). And let \(R = R_{J, \theta} = R_{\phi, \Theta} \) and \(R^\delta = R_{J^\delta, \theta^\delta} = R_{\phi^\delta, \theta^\delta} \). Since
\((J^\delta, \theta^\delta) \to (J, \theta)\) in \(C^0\), it is easy to see that for any \(\varepsilon > 0, \varepsilon \ll 1\), if \(\delta\) is small enough then we have

\[|v^\delta|_{\pm} - 1| \leq \varepsilon, \quad |R - R^\delta| \leq \varepsilon,\]

and hence \(|R^\delta|\) has an uniform bound. Next we need the following lemma

Lemma 3.8. Given \(\varepsilon > 0\), if \(\delta\) is small enough then we have

\[
(3.22) \quad \frac{1}{(1 + \varepsilon)}|\nabla_b^\delta u|_{\delta}^2 \leq |\nabla_b^\delta u|^2 \leq (1 + \varepsilon)|\nabla_b^\delta u|_{\delta}^2
\]

Proof of Lemma 3.8. First we have

\[
|\nabla_b^\delta u|^2 = 2F^2((1 + |\phi|^2)|u_1|^2 + \phi(u_1)^2 + \bar{\phi}(u_1)^2)
\]

\[
|\nabla_b^\delta u|_{\delta}^2 = 2(F^\delta)^2((1 + |\phi^\delta|^2)|u_1|^2 + \phi^\delta(u_1)^2 + \bar{\phi}(u_1)^2)(v^\delta)^{-2}
\]

Therefore, on \(u_1 \neq 0\), we have

\[
\frac{|\nabla_b^\delta u|^2}{|\nabla_b^\delta u|_{\delta}^2} = (v^\delta)^2 \frac{F^2((1 + |\phi|^2) + \phi(u_1)^2 + \bar{\phi}(u_1)^2)}{(F^\delta)^2((1 + |\phi^\delta|^2) + \phi^\delta(u_1)^2 + \bar{\phi}(u_1)^2)}
\]

\[
\leq (v^\delta)^2 \frac{F^2(1 + |\phi|^2 + 2|\phi|)}{(F^\delta)^2(1 + |\phi^\delta|^2 - 2|\phi^\delta|)}
\]

\[
= (v^\delta)^2 \frac{F^2(1 + |\phi|)^2}{(F^\delta)^2(1 - |\phi^\delta|)^2}
\]

\[
\leq (v^\delta)^2 \left(\frac{1 + |\phi|}{1 - |\phi|}\right)^2 \leq (1 + \varepsilon),
\]

if \(\delta\) is small enough (since \(\phi(0) = 0\)). Similarly, we have

\[
\frac{|\nabla_b^\delta u|_{\delta}^2}{|\nabla_b^\delta u|^2} \leq (1 + \varepsilon).
\]

We have thus completed the proof of Lemma 3.8. \(\square\)

Now for each \(\delta\), there exists a function \(u^\delta\) such that

\[
\int_M (u^\delta)^4 dV^\delta = 1,
\]

\[
\lambda(M, J^\delta) \leq E_{\theta^\delta}(u^\delta) \leq \lambda(M, J^\delta) + \varepsilon,
\]
With these materials above, we make the following estimate

\[
E_\theta(u^\delta) = \int_M (4|\nabla_bu^\delta|^2 + R(u^\delta)^2) \, dV
\]

\[
= E_{\theta^\delta}(u^\delta) + 4 \left(\int_M |\nabla_bu^\delta|^2 \, dV - \int_M |\nabla^\delta_bu^\delta|_\delta^2 \, dV^\delta \right)
\]

\[
+ \left(\int_M R(u^\delta)^2 \, dV - \int_M R^\delta(u^\delta)^2 \, dV^\delta \right),
\]

where, by Hölder inequality,

\[
\int_M R(u^\delta)^2 \, dV - \int_M R^\delta(u^\delta)^2 \, dV^\delta
\]

\[
= \int_M R(u^\delta)^2 (dV - dV^\delta) + \int_M (R - R^\delta)(u^\delta)^2 \, dV^\delta
\]

\[
= \int_M R(u^\delta)^2 ((v^\delta)^{-4} - 1) \, dV^\delta + \int_M (R - R^\delta)(u^\delta)^2 \, dV^\delta
\]

\[
\leq C\varepsilon, \quad \text{for some positive constant } C,
\]

and

\[
\int_M |\nabla_bu^\delta|^2 \, dV - \int_M |\nabla^\delta_bu^\delta|_\delta^2 \, dV^\delta
\]

\[
= \int_M (|\nabla_bu^\delta|^2(v^\delta)^{-4} - |\nabla^\delta_bu^\delta|_\delta^2) \, dV^\delta
\]

\[
\leq \int_M ((1 + \varepsilon)|\nabla^\delta_bu^\delta|_\delta^2(v^\delta)^{-4} - |\nabla^\delta_bu^\delta|_\delta^2) \, dV^\delta
\]

\[
= \int_M |\nabla^\delta_bu^\delta|_\delta^2 \left([(v^\delta)^{-4} - 1] + \varepsilon(v^\delta)^{-4} \right) \, dV^\delta
\]

\[
\leq C\varepsilon E_{\theta^\delta}(u^\delta), \quad \text{for some } C > 0,
\]

since \(|\int_M R^\delta(u^\delta)^2 \, dV^\delta| \) has an uniform upper bound. Substituting (3.24) and (3.25) into (3.23), we obtain

\[
E_\theta(u^\delta) \leq (1 + C\varepsilon) E_{\theta^\delta}(u^\delta) + C\varepsilon
\]

(3.26)
Similarly, we have

\[E_{\theta}(u^0) \leq (1 + C\varepsilon)E_{\theta}(u^0) + C\varepsilon, \]

\[\leq (1 + C\varepsilon)(\lambda(M, J) + \varepsilon) + C\varepsilon \]

(3.27)

where \(u^0 \) is a function such that

\[\int_M (u^0)^4 dV = 1, \]

\[\lambda(M, J) \leq E_{\theta}(u^0) \leq \lambda(M, J) + \varepsilon. \]

Since \(\int_M (u^0)^4 dV = 1 \), we have

\[1 - \varepsilon \leq \int_M (u^0)^4 dV^\delta \leq 1 + \varepsilon. \]

(3.28)

Similarly we have

\[1 - \varepsilon \leq \int_M (u^\delta)^4 dV \leq 1 + \varepsilon. \]

(3.29)

By means of (3.26), (3.27), (3.28) and (3.29), we get

\[\frac{(1 - \varepsilon)\lambda(M, J) - \varepsilon(1 + C\varepsilon) + C\varepsilon}{1 + C\varepsilon} \leq \lambda(M, J^\delta) \leq \frac{(1 + C\varepsilon)(\lambda(M, J) + \varepsilon) + C\varepsilon}{1 - \varepsilon} \]

(3.30)

This completes the proof of Proposition 3.7.

Therefore, if \(\delta \) is small enough, then \(\lambda(M, J^\delta) \) is positive. Notice that each \(J^\delta \) is spherical around a point. To complete the proof of Theorem A, we choose \(\delta_1, \delta_2 \) so that both Yamabe constants \(\lambda(M_1, J_1^{\delta_1}) \) and \(\lambda(M_2, J_2^{\delta_2}) \) are positive. Then using the argument in [1] (see the paragraph after Theorem 1.1) to glue \(M_1 \) and \(M_2 \) by a Heisenberg cylinder, we get a CR structure on the connected sum \(M_1 \# M_2 \) with positive Yamabe constant.
REFERENCES

[1] J. H. Cheng and H. L. Chiu, Connected sum of spherical CR manifolds with positive CR Yamabe constant. J. Geom. Anal. (2018), accepted.

[2] J. H. Cheng and I H. Tsai, Deformation of spherical CR structures and the universal Picard variety. Commun. in Anal. and Geom., 8 (2000), 301-346.

[3] G. Dietrich, Contact structures, CR Yamabe invariant, and connected sum. preprint.

[4] S. Dragomir and G. Tomassini, Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, Vol. 246, Birkhäuser, Boston, 2006.

[5] M. Gromov and H. B. Lawson, The classification of simply connected manifolds of positive scalar curvature. Ann. of Math. (2) 111 (1980), 423-434.

[6] D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds. J. Differential Geom. 25 (1987), 167–197.

[7] O. Kobayashi, Scalar curvature of a metric with unit volume. Math. Ann. 279 (1987) 253-265.

[8] J. M. Lee, The Fefferman metric and pseudo-Hermitian invariants. Trans. Amer. Math. Soc. 296 (1986), 411-429.

[9] R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28 (1979), 159-183.

[10] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), 25-41.

Institute of Mathematics, Academia Sinica and National Center for Theoretical Sciences, Taipei, Taiwan, ROC

E-mail address: cheng@math.sinica.edu.tw

Department of Mathematics, National Tsing-Hua University, Hsinchu, Taiwan, ROC

E-mail address: hlchiu@math.nthu.edu.tw

Department of Mathematics, Sogang University, Seoul, Korea

E-mail address: paktung@yahoo.com.hk, ptho@sogang.ac.kr