Orbital moment of a single Co atom on a Pt(111) surface—a view from correlated band theory

Alexander B Shick1 and Alexander I Lichtenstein2

1 Institute of Physics ASCR, Na Slovance 2, Prague, Czech Republic
2 University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany

E-mail: shick@fzu.cz

Received 27 August 2007, in final form 7 November 2007
Published 29 November 2007
Online at stacks.iop.org/JPhysCM/20/015002

Abstract

The orbital magnetic moment of a Co adatom on a Pt(111) surface is calculated in good agreement with experimental data making use of the LSDA + U method. It is shown that both electron correlation induced orbital polarization and structural relaxation play essential roles in orbital moment formation. The microscopic origins of the orbital moment enhancement are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

According to Hund’s rules, gas phase transition metal atoms possess large spin M_S and orbital M_L moments mediated by intra-atomic Coulomb interactions. In a solid, where electron delocalization and crystal field effects compete with Coulomb interactions, there is a substantial decrease in M_S and partial or total quenching of M_L.

Recent x-ray magnetic circular dichroism (XMCD) measurements \cite{1} report M_S and M_L of Co adatoms and small Co clusters on Pt(111) in an ultra-high-vacuum. $M_L = 1.1 \pm 0.1 \mu_B$ and $M_S + 7M_D = 1.8 \pm 0.1 \mu_B$ (where M_D is a spin dipole moment) were evaluated from XMCD spectra using the conventional sum rules \cite{2}. The number of holes in the Co atom 3d-manifold $n_d = 2.4$ was taken from local spin-density calculations (LSDA). The XMCD experiments are complemented by spin-polarized-relativistic Korringa–Kohn–Rostocker (KKR) Green’s function LSDA theoretical calculations, and $M_S = 2.14 \mu_B$ and $M_L = 0.60 \mu_B$ for Co site were obtained. No structural relaxation of the Co atom position over the Pt surface was considered, and the atomic-sphere approximation was employed.

The authors of \cite{1} assumed that the M_L discrepancy between the KKR–LSDA theory and the XMCD experiments originates from the lack of orbital polarization (OP) in LSDA. They used the well known orbital polarization correction of Brooks \cite{3}, adding to the LSDA total energy functional an ad hoc term $\frac{1}{2}B_R M_F^2$ with the LSDA calculated Racah parameter B_R. This form of OP correction was widely used in the past to improve upon M_L in the bulk transition d- and f-metals where sometimes it works well \cite{4}.

For a Co atom on a Pt surface, Gambardella \textit{et al} found out that the Brooks OP yields an M_L which substantially exceeds the experimental value. They had to reduce the LSDA calculated B_R by 50\% in order to obtain a $M_L = 1.50 \mu_B$ comparable with the experimental XMCD data. It is assumed in \cite{1} that the reduction of B_R compensates for a lack of structural relaxation.

In this work we explore another avenue for the orbital polarization correction to LSDA which is based on the correlated band theory LSDA + U method \cite{5}. It consists of LSDA augmented by a correcting energy of a multiband Hubbard type and a ‘double-counting’ subtraction term which accounts approximately for an electron–electron interaction energy already included in the LSDA. Minimization of the LSDA + U functional generates not only the ground state total energy, but also one-electron band structure energies and spin–orbital states. The basic difference between the LSDA + U method and the LSDA is its explicit dependence on on-site spin and orbitally resolved occupation matrices. The LSDA + U method creates in addition to the spin-only dependent LSDA potential, the spin and orbitally dependent on-site ‘$+U$’ potential which gives OP beyond that given by the LSDA (where it comes from the spin–orbit coupling only).

It was shown by Solovyev \textit{et al} \cite{6} that LSDA + U produces the correct OP for insulating 3d-oxides. Recent
2. Results and discussion

We performed supercell calculations to model a Co adatom at a Pt(111) surface. The supercell consists of three Pt(111) layers with a doubled (p(2 × 2)) 2-dimensional unit cell, and the Co atom on the top is taken to be in the fcc position (see figure 1). The vacuum is modeled by the equivalent of two empty Pt layers. All in-plane interatomic distances are adopted to be those of pure Pt. The distance between the Co atom and the Pt surface was varied in the calculations. We note that while the chosen supercell is quite small, it provides separation of Co atoms beyond the second nearest neighbor distance and includes interaction of Co with first and second Pt nearest neighbors. Herein we assume that the given supercell is sufficient for Co M_L calculations, which is mainly a local quantity.

We use the LSDA + U method implemented in the full-potential linearized augmented plane-wave (FP-LAPW) method including spin–orbit coupling (SOC) [9, 10]. When SOC is taken into account, the spin is no longer a good quantum number, and the LSDA + U total-energy functional contains additional spin off-diagonal elements of the on-site occupation matrix $n_{m_1\sigma_1, m_2\sigma_2}$ [6]. The LSDA contributions to the effective potential (and corresponding terms in the total energy) are corrected to exclude the non-spherical interaction off the d-states. It helps to avoid the non-spherical Coulomb and exchange energy ‘double counting’ of d-states in LSDA and ‘+U’ parts of the effective potential and also corrects the non-spherical self-interaction of the d-states.

In the self-consistent calculations we used 48 special k-points in combination with a Gaussian smearing for the k-point weighting. A quasi-2D Brillouin zone (BZ) with $k_z = 0$ was adopted in order to simulate the 2D character of the problem, notwithstanding that the supercell calculations themselves are inherently three-dimensional. The ‘muffin-tin’ radii used are $R_{MT} = 2.2$ au for Co and 2.5 au for Pt and $R_{MT}^C \times K_{max} = 7.7$, with K_{max} the cut-off for the LAPW basis. The Coulomb $U = 2$ eV and exchange $J = 0.9$ eV were chosen which are in the range of commonly accepted values for 3d-metals. In principle, U can be calculated by a linear-response LSDA procedure [11] or from GW [7], both yielding the values ~ 2 eV. As for exchange J, it is not affected by solid-state screening and is equal to the LSDA calculated Stoner exchange parameter. The spin quantization axis is fixed along the out-of-plane z-direction.

First let us make a comparison with the results of KKR for unrelaxed geometry (see table 1). The LSDA calculated values for M_S and M_L agree quite well. However, the M_L per d-hole is somewhat bigger in KKR than in FP-LAPW calculations since d-shell occupation is greater in KKR (7.6) than in FP-LAPW (7.2). This is probably due to the difference in the radius of atomic sphere approximation (ASA) spheres used in KKR and the MT radius in FP-LAPW. Since in KKR calculations [1] they use the same radius of ASA sphere for the ‘big’ Pt atom and the ‘smaller’ Co atom, this difference can become significant and affect both the charge and spin density distributions.

The XMCD experiments measure not the M_L itself but the M_L per d-hole ratio M_L / n_h. The M_L / n_h calculated in KKR and FP-LAPW for unrelaxed geometry and making use of LSDA is a factor of two smaller than one measured by XMCD. It was already mentioned above that reference [1] proposed the use of the Brooks OP with reduced B_R in order to improve the agreement with experimental data. Here we show that the B_R reduction alone does not solve the problem. Rather it attempts to compensate for limitations of the calculations without taking account of structural relaxation in open systems including an important class of 3d-adatoms and clusters.

Next, we turn to the salient aspect of our investigation, the LSDA + U calculations. When the same Co–Pt interatomic
distance as for pure Pt is used, the calculated \(M_L \) and \(M_{L/n_h} \) are quite big (see table 1). By varying \(d_{Co-Pt} \) and minimizing the total energy we find the equilibrium \(d_{Co-Pt} \approx 3.48 \) au, i.e. reduced by almost 20%. Since we do not perform a full relaxation and the amount of Pt in our supercell is relatively small, we cannot claim that this will be the correctly optimized \(d_{Co-Pt} \). Nevertheless it is reasonable to assume that the calculated \(d_{Co-Pt} \) distance is approximately correct\(^3\).

The change in \(d_{Co-Pt} \) has a strong effect on \(M_L \) and \(M_{L/n_h} \) (shown in table 1). \(M_{L/n_h} \) becomes fairly close to the experimental value and the agreement for \(M_L \) is also substantially improved. We should keep in mind that the ‘experimental’ value is given as a product of the measured \(M_{L/n_h} \) ratio times the KKR calculated \(n_h \) of 2.4. Making use of the LSDA + \(U \) calculated \(n_h = 2.9 \), we obtain the ‘experimental’ \(M_L \) of 1.34 ± 0.12 \(\mu_B \), which is in good agreement with the LSDA + \(U \) calculated value.

To understand how the enlargement of the Co \(M_L \) in the LSDA + \(U \) approach comes about we consider the spin and orbitally resolved 3d densities of states (dDOS), which are orbitally resolved 3d densities of states (dDOS), which are used of the LSDA agreement with the LSDA + \(U \)

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Co adatom/Pt(111) & KKR [1] & & \\
\hline
LSDA & 2.14 & 0.60 & 0.25 \\
LSDA + OP/2 & 2.14 & 1.50 & 0.63 \\
\hline
CoPt\textsubscript{12} & FP-LAPW & & \\
\hline
LSDA & 2.18 & 0.57 & 0.20 \\
LSDA + \(U \) & & & \\
Unrelaxed & \(d_{Co-Pt} = 4.27 \) au & & \\
Relaxed & \(d_{Co-Pt} = 3.48 \) au & & \\
\hline
Experiment & XMCD [1] & & \\
\hline
\(n_h = 2.4 \) & & & \\
Experiment & XMCD (\(n_h = 2.92 \)) & & 1.34 ± 0.12 \\
\hline
\end{tabular}
\end{table}

Coulomb \(U \). Herein we make use of a ‘commonly used’ value of \(U = 2 \) eV while it can be at least in principle obtained from constrained LSDA calculations [11]. With increase of \(U \) the \(M_L \) value will increase, and with decrease of \(U \) it will decrease. Nevertheless our results show quantitatively the role of the Coulomb \(U \) in \(M_L \) formation.

Also, we did not consider here the magneto-crystalline anisotropy (MAE) induced by Co adatom. In contrast to \(M_L \), which is mostly a local property of the Co atom, the MAE will consist of contributions from the Co atom as well as the Pt neighbors due to strong Pt atom SOC [8]. Most probably, quantitative studies of the MAE will require a bigger supercell; this is the subject of further work.

Still we can make a rough estimate of the contribution of the Co adatom to the MAE. When spin is rotated from the \(z \)-axis (out-of-plane) to the \(x \)-axis (in-plane) direction there is only a little change in the value of the Co atom \(M_S \), from 2.14 \(\mu_B \) (\(z \)-axis) to 2.16 \(\mu_B \) (\(x \)-axis). The change in \(M_S \) is substantially greater, from 1.58 \(\mu_B \) (\(z \)-axis) to 1.42 \(\mu_B \) (\(x \)-axis). Indeed, this strong anisotropy in \(M_L \) paves the way for the strong MAE. Qualitatively, the contribution of the Co atom to the MAE can be estimated by making use of Bruno’s relation [13] \(\text{MAE} = (E_x - E_z) \approx -\xi/4(M^2_S - M^2_L) \), where \(\xi \) is the SOC constant (76 meV for a Co adatom). In the LSDA + \(U \) calculations, we obtain a MAE of \(\approx 3.2 \) meV/Co which is smaller than the experimental value of 9.3 ± 1.6 meV. A similar estimate for the LSDA calculations yields a MAE of 2.0 meV/Co. While our estimate gives a MAE which is smaller than the experimental data, it is exceptionally large compared with other Co-based materials: a few tenths of a meV for Co/Pt and Co/Au multilayers, and 2.0 meV for Co monatomic wire [14].

We note that the orbital moment enhancement has been recently investigated in [14] for the case of the Co monatomic wire on the Pt(111) surface step edge. Making use of XMCD an experimental value for the Co atom, \(M_S = 0.68 ± 0.05 \mu_B \), was found, which is somewhat smaller than for the Co adatom case. Also, it was shown that LSDA yields the Co monatomic wire \(M_S \approx 0.16 \mu_B \) which is substantially smaller than the XMCD experimental value (see e.g. [15]). Using Coulomb \(U \) increases the \(M_L \) value to 0.45 \(\mu_B \) [16], substantially improving the agreement with the experimental data.

In conclusion, employing correlated band theory LSDA + \(U \) calculations we have provided a microscopic picture of the anomalous enhancement of the Co adatom orbital moment.

\(^3\) GGA calculations using scalar-relativistic VASP code for bigger supercells and allowing out-of-plane relaxation for Pt atoms yield \(d_{Co-Pt} \) of about 3.1–3.2 au, even smaller than in the present calculations [12].
It is found that two major effects need to be included in order to essentially improve the Co orbital moment: (i) a correct LSDA + U orbital polarization due to the Coulomb U and (ii) structural relaxation of the Co–Pt interatomic distance. The calculated value of M_L is found to be in fairly good agreement with experimental XMCD data \[1\] when those effects are taken into account.

Acknowledgments

We gratefully acknowledge discussions with W Wurth, P M Oppeneer and O N Mryasov. Financial support was provided by the Grant Agency of the Academy of Sciences (project A100100530), Deutsche Forschungsgemeinschaft grant SFB668-A3 (Germany) and German-Czech collaboration program (project 436TSE113/53/0-1, GACR 202/07/J047).

References

[1] Gambardella P, Rusponi S, Veronese M, Dhesi S S, Grazioi C, Dallmeyer A, Cabria I, Zeller R, Dederichs P H, Kern K, Carbone C and Brune H 2003 Science 300 1130
[2] Thole B T, Carra P, Sette F and van der Laan G 1992 Phys. Rev. Lett. 68 1943
Carra P, Thole B T, Altarelli M and Wang X 1993 Phys. Rev. Lett. 70 694
[3] Brooks M S S 1985 Physica B 130 6
[4] Trygg J, Johansson B, Eriksson O and Wills J M 1995 Phys. Rev. Lett. 75 2871
[5] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767
[6] Solovyev I V et al 1998 Phys. Rev. Lett. 80 5758
[7] Solovyev I V 2005 Phys. Rev. Lett. 95 267205
[8] Shick A B and Mryasov O N 2003 Phys. Rev. B 67 172407
[9] Shick A B, Liechtenstein A I and Pickett W E 1999 Phys. Rev. B 60 10763
[10] Shick A B, Janis V, Drchal V and Pickett W E 2004 Phys. Rev. B 70 134506
[11] Cococcioni M and de Gironcoli S 2004 Phys. Rev. B 69 035105

[12] Binder F 2007 private communication
[13] Bruno P 2004 Phys. Rev. B 39 865
[14] Gambardella P et al 2002 Nature 416 301
[15] Baud S, Bildmayer G, Bluegel S and Ramseyer Ch 2006 Surf. Sci. 600 4301 and references therein
[16] Shick A B, Maca F and Oppeneer P M 2004 Phys. Rev. B 69 212410