Measurement of the production fraction times branching fraction
\[f(b \to \Lambda_b) \cdot B(\Lambda_b \to J/\psi \Lambda) \]

V.M. Abazov, B. Abbott, B.S. Acharya, M. Adams, T. Adams, G.D. Alexeev, G. Alkhazov, A. Alton, G. Alversen, G.A. Alves, L.S. Aucu, M. Aoki, M. Arov, A. Askew, B. Ásman, O. Atramentov, C. Avila, J. Backus-Mayes, F. Badau, L. Bagby, B. Baldin, D.V. Bandurin, S. Banerjee, E. Barberis, P. Baringer, J. Barreto, J.F. Bartlett, U. Bassler, V. Bazterra, S. Beale, A. Bean, M. Begalli, M. Begel, C. Belanger-Champagne, L. Bellantoni, S.B. Beri, G. Bernardi, R. Bernhard, I. Bertram, M. Besonan, R. Beuselinck, V.A. Bezzubov, P.C. Bhat, V. Bhatnagar, G. Blazej, S. Blessing, K. Bloom, A. Boehnlein, D. Boline, J.E. Boos, G. Borisov, T. Bose, A. Brandt, O. Brandt, R. Brock, G. Brooijmans, A. Bross, D. Brown, J. Brown, X.B. Bu, M. Buehler, V. Buescher, V. Bunichev, S. Burdin, T.H. Burnett, C.P. Buszello, B. Calpas, E. Cumacho-Pérez, M.A. Carrasco-Lizaraga, B.C.K. Casey, H. Castilla-Valdez, S. Chaokarbarti, D. Chaokarabuty, K.M. Chan, A. Chandra, H. Chen, S. Chevalier-Thiéry, D.K. Cho, S.W. Cho, S. Choi, B. Choudhary, S. Cihangir, D. Claes, J. Chutter, M. Cooke, W.E. Cooper, M. Corcoran, F. Cordier, M.-C. Cousinou, A. Croc, D. Cutts, A. Das, G. Davies, K. Diehl, S.J. de Jong, E. De La Cruz-Burelo, F. Déliot, M. Demarteau, R. Demina, D. Denisov, S.P. Denissenov, S. Desai, C. Deterre, K. DeVaughan, H.T. Diehl, M. Diesburg, A. Dominguez, T. Dorland, A. Dubey, L.V. Dudko, D. Duggan, D. Duperrin, S. Dutt, D. Dyshkant, M. Eads, A. Edmunds, J. Ellison, V.D. Elvira, Y. Enari, H. Evans, A. Evdokimov, V.N. Evdokimov, F. Facini, T. Ferbel, F. Fiedler, F. Fillihaout, W. Fisher, H.E. Fisk, M. Fortner, H. Fox, S. Fues, A. Garcia-Bellido, V. Gavrilov, P. Gay, W. Geng, D. Gerbaudo, C.E. Gerber, Y. Gershtein, G. Ginther, G. Golovanno, A. Goussiou, P.D. Grannis, S. Greder, H. Greenlee, Z.D. Greenwood, E.M. Gregores, G. Grenier, Ph. Gris, J.-F. Grivaz, A. Grohsjean, S. Grünendahl, M.W. Grünewald, T. Guillemin, F. Guo, G. Gutierrez, P. Gutierrez, J.-F. Haas, H. Hsgopian, J. Haley, L. Han, K. Harder, A. Harel, J.M. Hauptman, J. Hays, T. Head, T. Hebbeker, H. Hedlin, D. Hedlin, H. Hegab, J.P. Heinman, U. Heintz, C. Hensel, I. Heredia-De La Cruz, K. Herner, G. Hesketh, M.D. Hildreth, R. Hirosky, T. Hoang, J.D. Hobbs, B. Hoeineisen, M. Hohlfeld, Z. Hubacek, N. Huske, V. Hynke, F. Iashvili, R. Illingworth, A.S. Ito, S. Jabeen, M. Jaffer, D. Jamian, A. Jayasinghe, R. Jesik, K. Johns, M. Johnson, D. Johnston, A. Jonckheere, P. Jonsson, J. Jishi, A.W. Jung, A. Juste, K. Kaadze, L. Kajfasz, D. Karmanov, P.A. Kasper, I. Katsanos, R. Kehoe, K. Kerniche, N. Khalatyan, A. Khanov, A. Kharchilava, Y.N. Kharchzeev, D. Khatchidze, M.H. Kirby, J.M. Kohli, A.V. Kozelov, J. Krauss, S. Kulikov, A. Kumar, A. Kupco, T. Kurca, V.A. Kuzmin, J. Kvi¢a, S. Lammers, G. Landsberg, H.S. Lee, S.W. Lee, W.M. Lee, J. Lellouch, L. Li, Q.Z. Li, S.M. Lietti, J.K. Lim, D. Lincoln, J. Linnemann, D.V. Lipaev, R. Lipton, Y. Liu, Z. Liu, A. Lobodenko, M. Lokajicek, R. Lopes de Sa, H.J. Lubatti, R. Luna-Garcia, A.L. Lyon, A.K.A. Maciel, D. Mackin, R. Madar, R. Magaña-Villalba, S. Malik, V.L. Malyshov, Y. Maravin, J. Martínez-Ortega, R. McCarthy, C.L. McGivern, M.M. Meijer, A. Mehnitchouk, D. Menezes, P.G. Mercadante, M. Merkin, A. Meyer, M. Mekhfi, N.K. Mondal, G.S. Muanza, M. Mulhearn, E. Nagy, M. Naimuddin, M. Narain, R. Nayyar, H.A. Neal, J.P. Negret, P. Nenstroev, S.F. Novaes, T. Nunemann, G. Obrant, J. Orduña, N. Osman, J. Osta, G.J. Otero y Garzón, M. Padilla, A. Pal, N. Parashar, V. Parihar, S.K. Park, J. Parsons, R. Partridge, N. Parua, A. Patwa, B. Penning, M. Perifol, K. Peters, Y. Peters, K. Petridis, G. Pettroli, P. Péroué, R. Piegua, J. Piper, M.-A. Pleier, P.L.M. Postema-Lerma, V.M. Podstavkov, P. Polozov, A.V. Popov, M. Prewitt, D. Price, N. Prokopchenko, S. Protopopescu, J. Qian, A. Quadt, B. Quinn, M.S. Rangel, K. Ranjan, P.N. Ratoff, I. Razumov, P. Renkel, M. Rijssenbeek, I. Ripp-Baudot, F. Rizatdinova, M. Rominsky, A. Ross, C. Royon, P. Rubinov, R. Ruchti, G. Safronov, G. Sajot, P. Salcido, A. Sánchez-Hernández, M.P. Sanders, B. Sanghi, A.S. Santos, G. Savage, L. Sawyer, T. Scanlon, R.D. Schamberger, Y. Scheglov, M. Schellman, T. Schliefke, S. Schlobohm, C. Schwanenberger, R. Schwienhorst, J. Sekaric, H. Seyeverini, E. Shabalina, V. Shary, A.A. Shchukin, R.K. Shivpuri, V. Simak, V. Sirotenko, P. Skubic, P. Slattery, D. Smirnov, J.K. Smith, G.R. Snow, J. Snow,
S. Snyder, S. Söldner-Rembold, L. Sonnenschein, K. Soustruznik, J. Stark, V. Stolin, D.A. Stoyanova, M. Strauss, D. Strom, L. Stutte, L. Suter, P. Sovoisky, M. Takahashi, A. Tanasijczuk, W. Taylor, M. Titov, V.V. Tokmenin, Y.-T. Tsai, D. Tsyplyatev, B. Tuchming, C. Tully, L. Uvarov, S. Uvarov, S. Uzunyan, R. Van Kooten, W.M. van Leeuwen, N. Varelas, E.W. Varnes, I.A. Vasilyev, P. Verdier, L.S. Vertogradov, M. Verzocchi, M.R.J. Williams, Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada

J. Warchol, G. Watts, M. Wayne, M. Weber, L. Welty-Rieger, A. White, M.R.J. Williams, G.W. Wilson, M. Wobisch, D.R. Wood, T.R. Wyatt, Y. Xie, C. Xu, S. Yacoob, R. Yamada, W.-C. Yang, G.W. Wilson, M. Verzocchi, II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

University of Science and Technology of China, Hefei, People’s Republic of China

Universidad de los Andes, Bogotá, Colombia

Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic

Czech Technical University in Prague, Prague, Czech Republic

Center for Particle Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Universidad San Francisco de Quito, Quito, Ecuador

Université Blaise Pascal, CNRS/IN2P3, Clermont, France

Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France

Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Université Paris-Sud, CNRS/IN2P3, Orsay, France

Université Paris VI and VII, CNRS/IN2P3, Paris, France

CEA, Ifeu, SPP, Saclay, France

IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France

CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France

III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany

Physikalisches Institut, Universität Freiburg, Freiburg, Germany

Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

Institut für Physik, Universität Mainz, Mainz, Germany

Ludwig-Maximilians-Universität München, München, Germany

Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Panjab University, Chandigarh, India

Delhi University, Delhi, India

Tata Institute of Fundamental Research, Mumbai, India

University College Dublin, Dublin, Ireland

Korea Detector Laboratory, Korea University, Seoul, Korea

CINVESTAV, Mexico City, Mexico

FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands

Joint Institute for Nuclear Research, Dubna, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow State University, Moscow, Russia

Institute for High Energy Physics, Protvino, Russia

Petersburg Nuclear Physics Institute, St. Petersburg, Russia

Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain

Stockholm University, Stockholm and Uppsala University, Uppsala, Sweden

Lancaster University, Lancaster LA1 4YB, United Kingdom

Imperial College London, London SW7 2AZ, United Kingdom

The University of Manchester, Manchester M13 9PL, United Kingdom

University of Arizona, Tucson, Arizona 85721, USA

University of California Riverside, Riverside, California 92521, USA

Florida State University, Tallahassee, Florida 32306, USA

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

(The D0 Collaboration)
The study of b hadron decays, in particular $b \to s$ decays, offers good opportunities to search for physics beyond the standard model (BSM). For this reason, these decays have been the subject of intensive experimental and theoretical work. Studies of b baryons at the Fermilab Tevatron Collider and the CERN Large Hadron Collider are a natural extension of these studies which have been mostly performed on B mesons [10–13]. The experimental knowledge of b baryons is currently limited [14]. For the $\Lambda_b(udb)$, the lightest b baryon, only a few decay channels have been studied, and the uncertainties on its branching fractions are large \sim(30–60)%. For higher mass b baryon states, even less information is available. Due to its relative abundance, the Λ_b baryon has been used to investigate production and decay properties of heavier b baryons, to search for possible polarization effects [15], for violation of discrete symmetries in the decay (CP violation [16] and T violation [17]), and to search for BSM effects [18]. There are several models (PQCD [19], relativistic and non-relativistic quark models based on factorization approximations [20–25] are examples) to describe b baryon decays such as $\Lambda_b \to J/\psi \Lambda$. Increasingly precise measurements of $f(b \to \Lambda_b) \cdot B(\Lambda_b \to J/\psi \Lambda)$ (where $f(b \to \Lambda_b)$ is the fraction of b quarks which hadronize to Λ_b baryons) will allow better tests of these models. Moreover, these measurements could help in the study of $b \to s$ decays such as $\Lambda_b \to \mu^+ \mu^- \Lambda$ [26–27].
which are topologically similar to $\Lambda_b \rightarrow J/\psi \Lambda$, where J/ψ decays to dimuons.

This Letter reports an improved measurement with respect to the previous Tevatron result \cite{25} of the production fraction multiplied by the branching fraction of the $\Lambda_b \rightarrow J/\psi \Lambda$ decay relative to that of the decay $B^0 \rightarrow J/\psi K^0_S$. From this measurement we can obtain $f(b \rightarrow \Lambda_b) \cdot B(\Lambda_b \rightarrow J/\psi \Lambda)$ with significantly improved precision compared to the current world average \cite{13}. The J/ψ, Λ, and K^0_S are reconstructed in the $\mu^+\mu^-$, $p\pi^-$, and $\pi^+\pi^-$ modes, respectively. Throughout this Letter, the appearance of a specific charge state also implies its charge conjugate. The study is performed using 6.1 fb$^{-1}$ of $p\bar{p}$ collisions collected with the D0 detector between 2002–2009 at $\sqrt{s} = 1.96$ TeV at the Fermilab Tevatron Collider.

A detailed description of the D0 detector can be found in \cite{29}. The components most relevant to this analysis are the central tracking system and the muon spectrometer. The central tracking system consists of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT) that are surrounded by a 2 T superconducting solenoid. The SMT is optimized for tracking and vertexing for the pseudorapidity region $|\eta| < 3.0$ (where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle), while the CFT has coverage for $|\eta| < 2.0$. Liquid-argon and uranium calorimeters in a central and two end-cap cryostats cover the pseudorapidity region $|\eta| < 4.2$. The muon spectrometer is located outside the calorimeter and covers $|\eta| < 2.0$. It comprises a layer of drift tubes and scintillator trigger counters in front of 1.8 T iron toroids followed by two similar layers after the toroids.

We closely follow the data selection for $J/\psi \rightarrow \mu^+\mu^-$, $\Lambda \rightarrow p\pi^-$ and $K^0_S \rightarrow \pi^+\pi^-$ used in the measurement \cite{30} of the ratio of the lifetimes, $\tau(\Lambda_b)/\tau(B^0)$, that used the same decay products of the Λ_b and B^0. Events satisfying muon or dimuon triggers are used. At least one $p\bar{p}$ interaction vertex must be identified in each event, determined by minimizing a χ^2 function that depends on all reconstructed tracks in the event and a term that represents the average beam position constraint. We begin by searching for $J/\psi \rightarrow \mu^+\mu^-$ decays reconstructed from two oppositely charged muons that have a common vertex with a χ^2 probability greater than 1%. Muons are identified by matching tracks reconstructed in the central tracking system with track segments in the muon spectrometer. The requirements of transverse momentum $p_T > 2.0$ GeV/c and $|\eta| < 2.0$ are imposed on these matched tracks, and each of them must be associated to at least two hits in the SMT and two hits in the CFT. In addition, at least one muon track must have segments in the muon system both inside and outside the toroid. The dimuon transverse momentum $p_T(\mu^+\mu^-)$ is required to be greater than 3.0 GeV/c, and its invariant mass $M_{\mu^+\mu^-}$ must be in the range $2.8 - 3.35$ GeV/c2. In these dimuon events we search for $\Lambda \rightarrow p\pi^-$ and $K^0_S \rightarrow \pi^+\pi^-$ candidates formed from two oppositely charged tracks with a common vertex with a χ^2 probability greater than 1% and invariant mass between $1.102 < M_\Lambda < 1.130$ GeV/c2 and $0.466 < M_{K^0_S} < 0.530$ GeV/c2. To reduce the contribution from fake vertices reconstructed from random track crossings, the two tracks are required to have at most two hits associated to them in the tracking detectors located between the reconstructed $p\bar{p}$ interaction vertex and the common two-track vertex. The impact parameter significance (the impact parameter with respect to the $p\bar{p}$ vertex divided by its uncertainty) for the tracks forming Λ or K^0_S candidates must exceed 3 for both tracks and 4 for at least one of them. To reconstruct Λ candidates, the track with the higher p_T is assumed to be a proton. Monte Carlo studies show that this is always the correct assignment, given the track p_T detection threshold. To suppress contamination from cascade decays of more massive baryons such as $\Sigma^0 \rightarrow \Lambda \gamma$ and $\Xi^0 \rightarrow \Lambda \pi^0$, we require the cosine of the angle between the p_T of the Λ and the vector from the J/ψ vertex to the Λ decay vertex in the plane perpendicular to the beam direction to be larger than 0.999. For Λ candidates coming from Λ_b decays, the cosine of this angle is typically greater than 0.999.

The Λ_b (B^0) is reconstructed by performing a constrained fit to a common vertex for the Λ (K^0_S) candidate and the two muon tracks, with the muons constrained to the nominal J/ψ mass of 3.097 GeV/c2 \cite{14}. The p_T of the Λ_b or B^0 candidate is required to be greater than 5 GeV/c. The invariant mass of the J/ψ and the two additional tracks is required to be within the range 5.0–6.2 GeV/c2 for Λ_b candidates and within 4.8–5.8 GeV/c2 for B^0 candidates.

To determine the final selection criteria, we maximize $N_S/\sqrt{N_S+N_B}$, where N_S is the number of signal (Λ_b or B^0) candidates determined by Monte Carlo and N_B is the number of background candidates estimated by using data events in the sidebands of the expected signal. For the Monte Carlo, we use PYTHIA \cite{31} and EVTGEN \cite{32} for the production and decay of the simulated particles, respectively, and GEANT3 \cite{33} to simulate detector effects. As a result of this optimization, for the Λ (K^0_S) we require the transverse decay length to be greater than 0.8 (0.4) cm, the p_T to be greater than 1.6 (1.0) GeV/c and the significance of its transverse proper decay length (transverse decay length corrected by the boost in the transverse plane) to be greater than 4.0 (9.0). For the Λ_b (B^0) candidate, the significance of the proper decay length is required to be greater than 2.0 (3.0). In addition, the Λ_b and B^0 vertices must be well reconstructed.

A track pair can be simultaneously identified as both Λ and K^0_S due to different mass assignments to the same tracks. Events containing such track pair ambiguities are removed. Finally, if more than one candidate is found in the event, the candidate with the best vertex χ^2 probability is selected as the Λ_b (B^0).

The invariant mass distributions of the final Λ_b and B^0 candidates passing our selection criteria are shown in Fig. 1. To extract the yields of the observed Λ_b and B^0 hadrons, we perform an unbinned likelihood fit to each
yields, (ii) the determination of the relative efficiency \(\sigma_{rel} \)
and (iii) contamination from \(\Lambda \) baryon on the relative efficiency is studied following
the formalism of \([15, 34]\). The main effect of the polarization is observed through \(\Theta \),
the emission angle of the \(\Lambda \) baryon with respect to the polarization direction
in the \(\Lambda_b \) rest frame. This angle follows the distribution
\(I(\Theta) \propto 1 + \alpha_{L_b} P_{L_b} \cos(\Theta) \), where \(\alpha_{L_b} \) and \(P_{L_b} \) are
the asymmetry parameter and polarization of the \(\Lambda_b \) baryon.
We study the extreme cases \(\alpha_{L_b} P_{L_b} = \pm 1 \) in simulations.
The maximum deviation found in \(\sigma_{rel} \) is 7.2\%, which is
included as a systematic uncertainty due to the unknown \(\Lambda_b \) polarization.
All of these systematic uncertainties are combined assuming no correlations,
giving a total systematic uncertainty of 9.6\%.

We study the stability of the measurement by performing
cross checks on the two main inputs to the computation of \(\sigma_{rel} \): the ratio between
the numbers of observed \(\Lambda_b \) and \(B^0 \) candidates extracted from data and the relative
efficiency determined from Monte Carlo. We
investigate the possibility that the number of \(\Lambda_b \) and \(B^0 \) candidates
is affected by time or kinematics dependent changes in the detection and selection efficiency.
We divide the data in subsamples and determine the value of \(\sigma_{rel} \) in each individual subsample without observing any
significant deviation from the measurement based on the full
sample. We split the sample based on different data
taking periods, in different \(p_T, \eta \) regions, \(\Lambda \) and \(K^0_s \) decay
lengths and also investigated differences between \(\Lambda_b \) and \(\Lambda \) rates. To test for any mismodeling of the detector
efficiency that could affect the determination of \(\sigma_{rel} \),
deal region distributions are compared between data and
Monte Carlo, as well as proper decay length signficance,
\(\chi^2 \) vertex distributions, and other variables used in the
selection. In all these comparisons, the data and Monte
Carlo distributions are found to be in good agreement.
One such example is Fig. 2 which shows the proper decay
depth of \(K^0_s \) candidates. As a final
cross-check, lifetime measurements are performed for the
FIG. 2: Proper decay length distributions for K_S^0 candidates in the decay $B^0 \rightarrow J/\psi K_S^0$ for background subtracted signal compared to the full Monte Carlo (MC) simulation. The ratio Signal/MC is given in the bottom panel.

Λ and K_S^0 with results in agreement with the world average values [14].

In summary, using an integrated luminosity of 6.1 fb$^{-1}$ collected with the D0 detector, we measure the production fraction multiplied by the branching fraction for the decay $\Lambda_b \rightarrow J/\psi \Lambda$ relative to that for the decay $B^0 \rightarrow J/\psi K_S^0$,

$$\sigma_{rel} = \frac{\sigma(B \Lambda_b \rightarrow J/\psi \Lambda)}{\sigma(B \rightarrow J/\psi K_S^0)} = 0.345 \pm 0.034 \text{ (stat.)} \pm 0.033 \text{ (syst.)} \pm 0.003 \text{ (PDG).}$$

Combining the uncertainties in quadrature, we obtain $\sigma_{rel} = 0.345 \pm 0.047$. Our measurement is the most precise to date and exceeds the precision of the current value reported as the world average, 0.27 ± 0.13 [14]. Using the PDG value $f(b \rightarrow B^0) \cdot B(B^0 \rightarrow J/\psi K_S^0) = (1.74 \pm 0.08) \times 10^{-4}$ (from [14]), we obtain

$$f(b \rightarrow \Lambda_b) \cdot B(\Lambda_b \rightarrow J/\psi \Lambda) = [6.01 \pm 0.60 \text{ (stat.)} \pm 0.58 \text{ (syst.)} \pm 0.28 \text{ (PDG)}] \times 10^{-5} = (6.01 \pm 0.88) \times 10^{-5},$$

which can be compared directly to the world average value of $(4.7 \pm 2.3) \times 10^{-5}$ [14]. This result represents a reduction by a factor of ~ 3 of the uncertainty with respect to the previous measurement [28].

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDEUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyt (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).
[29] V.M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Meth. Phys. Res. A 565, 463 (2006).
[30] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 99, 142001 (2007).
[31] T. Sjöstrand et al., Comp. Phys. Commun. 135, 238 (2001).
[32] D.J. Lange, Nucl. Instrum. Meth. Phys. Res. A 462, 152 (2001).
[33] R. Brun and F. Carminati, CERN Program Library Long Writeup No. W5013, 1993 (unpublished).
[34] M. Biglietti et al., Nucl. Phys. B 156 (Proc. Suppl.), 151 (2006).
[35] The event-by-event value of the proper decay length is defined as \(L_{xy} M/p_T \), where \(p_T \) and \(M \) are the transverse momentum and mass of the \(b \) hadron, respectively, and \(L_{xy} \) is the distance between the \(pp \) interaction vertex and the \(b \) hadron decay vertex in the transverse plane.