Genetic Diversity Analysis in Chilli (Capsicum annuum L.) Found in Manipur Using RAPD Markers

Atom Annupama Devi1*, Naorem Brajendra2 and Mutum Dinachandra3

1Department of Plant Molecular Genetics and Genomics, Institute of Bioresources and Sustainable Development, Takyel, Manipur, India
2Department of Genetics and Plant Breeding, Central Agricultural University, CAU, Imphal, India
3Department of Horticulture, Central Agricultural University, CAU, Imphal, India

*Corresponding author

A B S T R A C T

The present study was undertaken to understand the genetic diversity of Chilli found in Manipur using RAPD primers. Twenty (20) primers were screened, out of which 9 primers gave polymorphic bands which were used for further analysis. The polymorphic information content (PIC) values ranged from 0.2 (OPB15) to 0.45 (OPW04) with an average of 0.35. The resolving power was found highest in OPW04 with value of 7.44 and lowest in OPA11 (2.10). Overall, it was found that OPW04 is a good primer which produced 100% polymorphism with high discriminating power. Cluster analysis using Un-weighted Pair Group Method with Arithmetic Averages (UPGMA) grouped all the chilli samples into three major clusters at a distance coefficient of 0.50, major cluster 1 consist of 4 cultivars (CAU 1, CAU 4, CAU 9, CAU 10). The 2nd major clusters consist of 6 cultivars-(CAU 2, CAU 5, CAU 7, CAU 6, CAU 8, CAU 3. The 3rd major cluster consist of only 1 cultivar (CAU 11).The results showed that RAPD can be effectively used to analysed genetic diversity of chilli found in Manipur.

Fitness

Introduction

Chilli (capsicum sp.) belongs to solanaceae family, originated in Mexico, with secondary centres in Guatemala and Bulgaria (Salvador, 2002). Columbus introduced chilli in India in 15th century (Basu and Krishna, 2003). Now, India is the world’s largest producer, consumer and exporter of chillies. India is the largest producer of chillies with a total production of 26,804,941 tonnes (FAOSTAT, 2015). Several interspecific hybrids/derivatives of chilli originated in North-east, India (Daliwal, 2014). Chilli cultivars in India are famous for its pungency (hotness) and colour. Bhut jolokia, cultivated in Assam is the world’s hottest chilli pepper (Bosland and Baral, 2007).

Characterization using morphological markers have been successfully used in different plants (Cong-Ying Yuan et al., 2015; Fang et al., 2017; Warnakula et al., 2017) but due to environmental factors, it suffer certain
limitations. So, the molecular markers proven to be more effective than morphological and biochemical markers. RAPD are useful markers as it does not need of prior knowledge about the genome (Williams et al., 1990). RAPD markers have been successfully used in genetic diversity studies of chilli (Makari et al., 2009; Peeraullee et al., 2013; Mullianathan et al., 2014; Ferniah et al., 2018; Laldzuahala et al., 2018).

Materials and Methods

Plant Material

In the present study, seeds from 11 (eleven) chilli cultivars were procured which was maintained at germplasm of CAU (Central agricultural university) Imphal. Details of chillis given in Table 1. The seeds were thoroughly rinsed with distilled water, allowed to germinate using paper towel method and transplanted to small pot after 10 days.

Genomic DNA

The genomic DNA was extracted from leaf tissues of 20 days old young chilli plant using modified CTAB method (Doyle and Doyle, 1990). The leaves were grounded in 600μL extraction buffer (1M Tris HCl, pH 8.0; 5M NaCl; 0.5M EDTA; 10% SDS) and the mixture was treated with 5μL of Proteinase K (20mg/mL) for 1h at 36°C. To this cell lysate, 500μL of CTAB buffer (10% CTAB; 1M Tris HCl pH 8.0; 0.5M EDTA; 5M NaCl; 5% PVP was added and incubated for 2h at 65°C. The suspension was extracted thrice with equal volume of phenol: chloroform: isooaethyl alcohol (24: 25:1). The DNA was precipitated using isopropanol, 3M sodium acetate and 70% ethanol, 10μL RNase (10µg/mL) was added to each 50 μL DNA and incubated for 30 m at 37°C. DNA quantification was carried out using UV spectrophotometer (Cary 60 UV-Vis, Agilent Technology) by measuring the DNA concentration at 260 nm and 280 nm. Purity of DNA was determined by calculating the ratios of absorbance at ratios 260 nm to that of 280 nm. The isolated DNA were run on 0.8% agarose gel electrophoresis to check the quality of DNA along with DNA ladder and photographed using gel documentation system (Biorad universal hood, USA).

RAPD-PCR amplification

A total of 20 decamer primers were initially screened, out of which 9 primers showed clear and polymorphic bands. RAPD-PCR was carried out in 25 μL containing 50 ng of genomic DNA, 2.5 mM MgCl₂, 0.5 mM dNTP mix, 2.5 mM buffer, IUTaq polymerase and 10 pmol of each primer with the cycling condition at 94°C for 4m, followed by 40 cycles of 94°C for 1m, 36°C for 45s and 72°C for 2m and final extension of 72°C for 7m. Amplified PCR products were separated by electrophoresis along with 100bp DNA ladder on a 1.8 % agarose gel prepared in 1X TAE buffer.

Scoring and PCR analysis

Photographed Gel was scored as a binary matrix, where 1 represent band present and 0 represent band absent and dendrogram for cluster analysis using UPGMA (Unweighted Pair group Method with Arithmetic average) and genetic similarity matrix using NTSYS - pc version 2.02 (Rohlf, 1998) software were generated. Polymorphism information content (PICᵢ) of a band was calculated according to Anderson et al., (1993) as follow:

$$PICᵢ = 1 - \sum_{j} f_{ij}^2$$

Where fᵢⱼ is the frequency of the jᵗʰ pattern of the iᵗʰ band.
Resolving power (Rp) was calculated according to Prevost and Wilkinson, 1999 formula

\[Rp = \sum_{i=1}^{n} IB_i \]

Where Informativeness of a band (BI_i) was calculated as:

\[BI_i = 1 - (2 \times |0.5 - p|) \]

where \(p \) is the proportion of all accessions containing the band.

Results and Discussion

A total of 20 RAPD primers were initially screened for their amplification, out of which only 9 primers (OPA11, OPB-01, OPC03, OPL11, OPW04, OPB-15, OPC03, OPL05 and OPL13) produced a clear and reproducible banding pattern in all the samples. A total of 76 bands were produced from 9 RAPD primers, out of which 60 were polymorphic (78.9%). The average band per primer was 8.4. The PIC values range from 0.28 (OPB-15) to 0.45(OPW04). The percent polymorphism ranged from 70% (OPC0B) to 100% (OPW04). The resolving power was found highest in OPW04 with value of 7.44 and lowest in OPA11 (2.10). Overall, it was found that OPW04 is a good primer which produced 100% polymorphism with high discriminating power (Table 2). The amplification using RAPD primer (OPB 11) is shown in Figure 1.

The similarity data generated by NTSYS-pc version 2.02 (Rohlf, 1998) using simple matching matrix showed the highest similarity value (0.85) found between cultivars (CAU 5 – CAU 7), (CAU 6 –CAU 7) and (CAU 9 – CAU 10). And the lowest value of 0.5, found in cultivars (CAU 1 –CAU 11) (Table 3).

At a distance coefficient of 0.55, the dendrogram divided 11 cultivars in three major cluster (Fig. 2). Major cluster 1 consist of 4 cultivars (CAU 1, CAU 4, CAU 9, CAU 10). The 2nd major cluster consist of 6 cultivars- (CAU 2, CAU 5, CAU 7, CAU 6, CAU 8, CAU 3. The 3rd major cluster consist of only 1 cultivar (CAU 11).

The dendrogram, is again divided into 5 major groups at a distance coefficient of 0. 30. Group I consist of 4 cultivars – (CAU 1, CAU 4, CAU 9 and CAU 10). Group II consist of 1 cultivar (CAU 2), Group III consist of 4 cultivars (CAU 5, CAU 7, CAU 6, CAU 8), Group IV consist of only 1 cultivar (CAU 3) and the last Group V consist of cultivar CAU 11.

Fig.1 RAPD gel profile of 11 chilli cultivars using OPB-11 primer
Fig. 2 Dendrogram obtained from 11 chilli cultivars using RAPD data

Table 1 Details of 11 chilli samples used in present studies

Sl.no.	Voucher no.	Cultivars	Source
1.	CAU-1	Crispy long chilli	Central agricultural university germplasm, Imphal
2.	CAU-2	Morok Asangbi	Central agricultural university germplasm, Imphal
3.	CAU-3	Colour xanadu	Central agricultural university germplasm, Imphal
4.	CAU-4	Meitei morok asabi	Central agricultural university germplasm, Imphal
5.	CAU-5	Yensang morok	Central agricultural university germplasm, Imphal
6.	CAU-6	Morok macha	Central agricultural university germplasm, Imphal
7.	CAU-7	Churachandpur morok	Central agricultural university germplasm, Imphal
8.	CAU-8	Fireball	Central agricultural university germplasm, Imphal
9.	CAU-9	Meitei morok	Central agricultural university germplasm, Imphal
10.	CAU-10	Meitei morok macha	Central agricultural university germplasm, Imphal
11.	CAU-11	Xanadu	Central agricultural university germplasm, Imphal

Table 2 Details of RAPD –PCR amplification obtained from 11 chilli cultivars

Sl.no.	Primer name	Primer sequence (5’ – 3’)	Total band	PMB	MMB	% PM	PIC	Resolving power
1.	OPA11	CAA TCG CCG T	10	9	1	90	0.31	2.10
2.	OPB-01	GTTTCCGCTCC	7	6	1	85.7	0.4	4.52
3.	OPC03	GGGGGGTCTTT	9	5	4	55.5	0.36	6.22
4.	OPB11	GTAGACCCCGT	9	7	2	77.7	0.4	6.9
5.	OPW04	CAGAAGCGGGA	7	7	0	100	0.45	7.44
6.	OPB-15	GGAGGGTTGTT	5	4	1	80	0.28	4.36
7.	OPC03	GGGGGGTCTTT	10	7	3	70	0.31	5.48
8.	OPL05	ACCCAGGCAC	10	8	2	80	0.34	3.86
9.	OPD13	GGGGTGACGA	9	7	2	77.7	0.32	3.7
			76	60		78.9		

PMB – Polymorphic band; %PM – Percentage of polymorphic band; PIC- Polymorphic information content; MMB- Monomorphic band; Rp – Resolving power.
Table 3 Simple matching (SM) matrix using RAPD data from 11 chilli cultivars

	CAU-1	CAU-2	CAU-3	CAU-4	CAU-5	CAU-6	CAU-7	CAU-8	CAU-9	CAU-10	CAU-11
CAU-1	1.00										
CAU-2	0.65	1.00									
CAU-3	0.52	0.63	1.00								
CAU-4	0.80	0.69	0.58	1.00							
CAU-5	0.62	0.68	0.55	0.61	1.00						
CAU-6	0.55	0.77	0.60	0.63	0.83	1.00					
CAU-7	0.61	0.76	0.61	0.64	0.85	0.85	1.00				
CAU-8	0.51	0.62	0.58	0.60	0.75	0.82	0.71	1.00			
CAU-9	0.71	0.61	0.52	0.77	0.62	0.62	0.58	0.65	1.00		
CAU-10	0.73	0.67	0.58	0.81	0.58	0.63	0.67	0.60	0.85	1.00	
CAU-11	0.50	0.61	0.50	0.58	0.67	0.64	0.63	0.73	0.57	0.54	1.00

From this dendogram, we can conclude that, among 11 cultivars, the cultivar which is closely related is cultivars (CAU 9 and CAU 10) and the most diverse one is CAU 3 and CAU 11.

This finding supports molecular genetic diversity analysis using RAPD primers correlates with the morphological finding of Atom et al., (2017).

In conclusion, the RAPD primers used in this study are still efficient marker for successful identification and diversity studies of chilli.

Acknowledgements
The authors are thankful to DBT for the DBT-RA fellowship (2015-2017) and also express gratitude to Department of genetics and plant breeding, CAU, Imphal for lab facility.

References
Andersson, J.A. Churchill, G.A. Autrique, J.E. Tanksley, S.D. and Sorrells, M.E., 1993, Optimizing parental selection for genetic-linkage maps. Genome., 36(1): 181-186
Atom, A. D. Brajendra, N. S. and Dinachandra, M. S., 2017, Classification and characterization of chilli (Capsicum annuum L.) found in Manipur using multivariate analysis. Electron. J. Plant. Breed., 8(1): 324-330.
Bosland, P.W. and Baral, J.B., 2007, Bhut Jolokia-The world’s hottest known chile pepper is a putative naturally occurring interspecific hybrid. Hortic. Sci. 42 (2): 222-224.
Bosland, P.W., 1996, Capsicums: Innovative uses of an ancient crop, in: Progress in new crops. (ASHS Press, Arlington), 479-487.
Colney, L., Wricha T., and Mayank, R., 2018, Morphological and molecular characterization of two distinct chilli cultivars from North Eastern India with special reference to pungency related genes. Sci. Hort., 240(20), 1-10.
Cong-Ying, Y. Ping, W. Pang-Pang, C. Wen-Jun, X. Cheng, Z. Shuai. H. Ping, Z, Hong-Ping. Chang. Zhuang, H, Rong, H, Xiu-Tao, L, Jia-Zhuo, Ye and Xin-Hong, Guo., 2015, Genetic diversity revealed by morphological traits and ISSR markers in 48 Okras (Abelmoschus esculentus L.). Physiol. Mol. Biol. Plants., 21(3): 359–364.
Dhaliwal, M. S. Naveen, G. Jindal, S. K., and Cheema, D. S., 2014, Heterosis in chilli (Capsicum annuum L.) using genetic
male sterility. J. Res. Punjab. Agric. Univ (3 & 4): 255-261.

Doyle, J.J. and Doyle, J.L., 1990, Isolation of plant DNA from fresh tissue. Focus., 12:13-15.

Ferniah, R., Kusdiyantini, E. and Nurhayati, N., 2018, Phylogenetic of Ornamented Chilli Based on the Fruit Morphology and Molecular Marker using OPA-12 Primer. Agric, 30(1), 57-62.

Makari, H. K. Ravikumar Patil H. S. Abhilash M., and Mohan Kumar H. D., 2009, Genetic diversity in commercial varieties of chilli as revealed by RAPD method. Indian. J. Sci. Technol., 2:4.

Mullainathan, L. Sridevi, A. Umavathi, Sanjai Gandhi, E., 2014, Genetic variation in Mutants of chilli (Capsicum annum) revealed by RAPD marker, International letters of Natural Sciences, 11:1-8.

Peeraullee, N. and V.M. Ranghoo-Sanmukhiya, 2013, Assessment of genetic diversity in local chilli (Capsicum annum) varieties in Mauritius. Int. J. Agric. Biol., 15: 891–896.

Prevost, A. and Wilkinson, M.J., 1999, A new system of comparing PCR primers applied to ISSR fingerprinting of potato accessions. Theor. Appl. Genet., 98:107-112.

Rohlf, F.J., 1993, NTSYS-pc. Numerical taxonomy and multivariate analysis system. Exeter Software, New York.

Williams, G. K. Kubelik, A. R. Livak, K. L. Rafalshi, J. A. and Tingey, S. V., 1990, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18:6531-6535.

How to cite this article:

Atom Annupama Devi, Naorem Brajendra and Mutum Dinachandra. 2018. Genetic Diversity Analysis in Chilli (Capsicum annum L.) Found in Manipur Using RAPD Markers. Int.J.Curr.Microbiol.App.Sci. 7(10): 257-262. doi: https://doi.org/10.20546/ijemas.2018.710.027