Existence and concentration of positive bound states for the
Schrodinger-Poisson system with potential functions

Patrícia L. Cunha †
Departamento de Informática e Métodos Quantitativos, FGV-SP, Brazil

Abstract

In this article we study the existence and concentration behavior of bound states
for a nonlinear Schrödinger-Poisson system with a parameter ε > 0. Under some
suitable conditions on the potential functions, we prove that for ε small the system
has a positive solution that concentrates at a point which is a global minimum of the
minimax function associated to the related autonomous problem.

Keywords: Schrödinger-Poisson system; variational methods, concentration.

1 Introduction

In this article we will focus on the following Schrödinger-Poisson system

\[
\begin{cases}
-\varepsilon^2 \Delta v + V(x)v + K(x)\phi(x)v = |v|^{q-2}v & \text{in } \mathbb{R}^3 \\
-\Delta \phi = K(x)v^2 & \text{in } \mathbb{R}^3
\end{cases}
\] (SP_ε)

where ε > 0 is a parameter, q ∈ (4, 6) and V, K : \mathbb{R}^3 → \mathbb{R} are, respectively, an external
potential and a charge density. The unknowns of the system are the field v associated
with the particles and the electric potential \phi. We are interested in the existence and
concentration behavior of solutions of (SP_ε) in the semiclassical limit ε → 0.

The first equation of (SP_ε) is a nonlinear equation in which the potential \phi satisfies a
nonlinear Poisson equation. For this reason, (SP_ε) is called a Schrödinger-Poisson system,
also known as Schrödinger-Maxwell system. For more informations about physical aspects,
we refer [5, 9] and references therein.

We observe that when \phi ≡ 0, (SP_ε) reduces to the well known Schrödinger equation

\[-\varepsilon^2 \Delta u + V(x)u = f(x, u) \quad x \in \mathbb{R}^N. \] (S)

In the last years, the nonlinear stationary Schrödinger equation has been widely inves-
tigated, mainly in the semiclassical limit as ε → 0 (see e.g. [18, 20, 21] and its references).

In [18], Rabinowitz studied problem (S) through mountain pass arguments in order to
find least energy solutions, for ε > 0 sufficiently small. Then, Wang [20] proved that the
solution in [18] concentrates around the global minimal of V when ε tends to 0.

In [21], Wang and Zeng considered the following Schrödinger equation

\[-\varepsilon^2 \Delta u + V(x)u = K(x)|u|^{p-1}u + Q(x)|u|^{q-1}u, \quad x \in \mathbb{R}^N \] (WZ)

*Supported by CAPES-PROEX/Brazil.
†patcunha80@gmail.com
where $1 < q < p < (n + 2)/(n - 2)$. They proved the existence of least energy solutions and their concentration around a point in the semiclassical limit. The authors used the energy function $C(s)$ defined as the minimal energy of the functional associated with $\Delta u + V(s)u = K(s)|u|^{p-1}u + Q(s)|u|^{q-1}u$, where $s \in \mathbb{R}^N$ acts as a parameter instead of an independent variable. For each $\varepsilon > 0$ sufficiently small, they proved the existence of a solution u_ε for (εWZ), whose global maximum approaches to a point y^* when ε tends to 0. Moreover, under suitable hypothesis on the potentials V in W, the function $s \mapsto C(s)$ assumes a minimum at y^*.

Motivated by those results, Alves and Soares \cite{1} investigated the same phenomenon for the following class of gradient systems

$$\begin{cases}
-\varepsilon^2 \Delta u + V(x)u = Q_u(u, v) & \text{in } \mathbb{R}^N \\
-\varepsilon^2 \Delta v + W(x)v = Q_v(u, v) & \text{in } \mathbb{R}^N \\
u(x), v(x) \to 0, \quad \text{as } |x| \to \infty \\
u, v > 0 & \text{in } \mathbb{R}^N
\end{cases}$$

In this system is natural to expect some competition between the potentials V and W, each one trying to attract the local maximum points of the solutions to its minimum points. In fact, in \cite{1} the authors proved that functions u_ε and v_ε satisfies (AS) and concentrate around the same point which is the minimum of the respective function $C(s)$.

In \cite{23}, Yang and Han studied the following Schrödinger-Poisson system

$$\begin{cases}
\Delta v + V(x)v + K(x)\phi(x)v = |v|^{q-2}v & \text{in } \mathbb{R}^3 \\
-\Delta\phi = K(x)v^2 & \text{in } \mathbb{R}^3
\end{cases}$$

(SP)

Under suitable assumptions on V, K and f they proved existence and multiplicity results by using the mountain pass theorem and the fountain theorem. Later, L. Zhao, Liu and F. Zhao \cite{24}, using variational methods, proved the existence and concentration of solutions for system

$$\begin{cases}
\Delta v + \lambda V(x)v + K(x)\phi(x)v = |v|^{q-2}v & \text{in } \mathbb{R}^3 \\
-\Delta\phi = K(x)v^2 & \text{in } \mathbb{R}^3
\end{cases}$$

when $\lambda > 0$ is a parameter and $2 < p < 6$.

Several papers dealt with system (SP) under variety assumptions on potentials V and K. Most part of the literature focuses on the study of the system with V or K constant or radially symmetric, mainly studying existence, nonexistence and multiplicity of solutions see e.g. \cite{3} \cite{8} \cite{9} \cite{10} \cite{15} \cite{17} \cite{19}.

The double parameters’ perturbation was also considered in system (SP_ε). In \cite{13}, He and Zhou studied the existence and behavior of a ground state solution which concentrates around the global minimum of the potential V. They considered $K \equiv 1$ and the presence of the nonlinear term $f(x,u)$.

Recently, Ianni and Vaira \cite{14} studied the Schrödinger-Poisson system (SP_ε) proving that if V has a non-degenerated critical point x_0, then there exists a solution that concentrates around this point. Moreover, they also proved that if x_0 is degenerated for V and a local minimum for K, then there exist a solution concentrating around x_0. The proof was based in the Lyapunov-Schmidt reduction.

Using variational methods as employed by \cite{1} \cite{18} \cite{21}, we prove that there exists a solution u_ε for the Schrödinger-Poisson system (SP_ε) which concentrates around a point, without any additional assumption on the degenerability of such point related with the potentials V and K, as used in \cite{14}.
More precisely, denote C_∞ as the minimax value related to

$$\begin{cases}
-\Delta v + V_\infty v + K_\infty \phi v = |v|^{q-2}v & \text{in } \mathbb{R}^3 \\
-\Delta \phi = K_\infty v^2 & \text{in } \mathbb{R}^3
\end{cases}$$

where the following conditions hold

(H0) There exists $\alpha > 0$ such that $V(x), K(x) \geq \alpha > 0, \forall x \in \mathbb{R}^3$

(H1) V_∞ and K_∞ are defined by

$$
V_\infty = \liminf_{|x| \to \infty} V(x) > \inf_{x \in \mathbb{R}^3} V(x) \\
K_\infty = \liminf_{|x| \to \infty} K(x) > \inf_{x \in \mathbb{R}^3} K(x).
$$

We prove that if

$$C_\infty > \inf_{\xi \in \mathbb{R}^3} C(\xi)$$

then, system (SP_ε) has a positive solution v_ε as ε tends to zero. After passing to a subsequence, v_ε concentrates at a global minimum point of $C(\xi)$ for $\xi \in \mathbb{R}^3$, where the energy function $C(\xi)$ is defined to be the minimax function associated with the problem

$$\begin{cases}
-\Delta u + V(\xi)u + K(\xi)\phi(\xi)u = |u|^{q-2}u & \text{in } \mathbb{R}^3 \\
-\Delta \phi = K(\xi)u^2 & \text{in } \mathbb{R}^3
\end{cases} \quad (SP_\xi)$$

Therefore, $C(\xi)$ plays a central role in our study.

The main result for system (SP_ε) is the following

Theorem 1. Suppose (H0) – (H1) hold. If

$$C_\infty > \inf_{\xi \in \mathbb{R}^3} C(\xi), \quad (C^\infty)$$

then there exists $\varepsilon^* > 0$ such that system (SP_ε) has a positive solution v_ε for $\varepsilon \in (0, \varepsilon^*)$. Moreover, v_ε concentrates at a local (hence global) maximum point $y^* \in \mathbb{R}^3$ such that

$$C(y^*) = \min_{\xi \in \mathbb{R}^3} C(\xi).$$

Remark 1. Theorem 1 complements the study made in [10, 14, 23, 24] in the following sense: we deal with the perturbation problem (SP_ε) and study the concentration behavior of positive bound states.

Remark 2. To the best of our knowledge, it seems that the only previous paper regarding the concentration of solutions for the perturbed Schrödinger-Poisson system with potentials V and K is [14], where the smoothness of such potentials is considered. We only need the boundedness of V and K. Moreover, we do not assume that the concentration point of solutions v_ε for the system (SP_ε) is a local minimum (or maximum) of such potentials, as in the previous paper. In our research we shall consider a different variational approach.

The outline of this paper is as follows: in Section 2 we set the variational framework. In Section 3 we study the autonomous system related to (SP_ε). In section 4 we establish an existence result for system (SP_ε) with $\varepsilon = 1$. In section 5, we prove Theorem 1.
2 Variational framework and preliminary results

Throughout this paper we use the following notations:

- \(H^1(\mathbb{R}^3) \) is the usual Sobolev space endowed with the standard scalar product and norm
 \[
 (u, v) = \int_{\mathbb{R}^3} (\nabla u \nabla v + uv) \, dx, \quad ||u||^2 = \int_{\mathbb{R}^3} (|\nabla u|^2 + u^2) \, dx.
 \]

- \(D^{1,2} = D^{1,2}(\mathbb{R}^3) \) represents the completion of \(C^\infty_0(\mathbb{R}^3) \) with respect to the norm
 \[
 ||u||^2_{D^{1,2}} = \int_{\mathbb{R}^3} |\nabla u|^2 \, dx.
 \]

- \(L^p(\Omega), 1 \leq p \leq \infty, \Omega \subset \mathbb{R}^3 \), denotes a Lebesgue space; the norm in \(L^p(\Omega) \) is denoted by \(||u||_{L^p(\Omega)} \), where \(\Omega \) is a proper subset of \(\mathbb{R}^3 \);
 \(||u||_p \) is the norm in \(L^p(\mathbb{R}^3) \).

We recall that by the Lax-Milgram theorem, for every \(v \in H^1(\mathbb{R}^3) \), the Poisson equation
\[
-\Delta \phi = v^2
\]
has a unique positive solution \(\phi = \phi_v \in D^{1,2}(\mathbb{R}^3) \) given by
\[
\phi_v(x) = \int_{\mathbb{R}^3} \frac{v^2(y)}{|x - y|} \, dy. \tag{1}
\]

The function \(\phi : H^1(\mathbb{R}^3) \to D^{1,2}(\mathbb{R}^3), \phi[v] = \phi_v \) has the following properties (see for instance Cerami and Vaira [7])

Lemma 2. For any \(v \in H^1(\mathbb{R}^3) \), we have

i) \(\phi \) is continuous and maps bounded sets into bounded sets;

ii) \(\phi_v \geq 0 \);

iii) there exists \(C > 0 \) such that \(||\phi||_{D^{1,2}} \leq C||v||^2 \) and
 \[
 \int_{\mathbb{R}^3} |\nabla v|^2 \, dx = \int_{\mathbb{R}^3} \phi_v v^2 \, dx \leq C||v||^4;
 \]

iv) \(\phi_{tv} = t^2 \phi_v, \forall t > 0 \);

v) if \(v_n \to v \) in \(H^1(\mathbb{R}^3) \), then \(\phi_{v_n} \to \phi_v \) in \(D^{1,2}(\mathbb{R}^3) \).

As in [3], for every \(v \in H^1(\mathbb{R}^3) \), there exist a unique solution \(\phi = \phi_{K,v} \in D^{1,2}(\mathbb{R}^3) \) of
\[
-\Delta \phi = K(x)v^2
\]
where
\[
\phi_{K,v}(x) = \int_{\mathbb{R}^3} \frac{K(y)v^2(y)}{|x - y|} \, dy. \tag{2}
\]

and it is easy to see that \(\phi_{K,v} \) satisfies Lemma 2 if \(K \) satisfies conditions \((H_0)-(H_1)\).

Substituting (2) into the first equation of \((SP)_\varepsilon\), we obtain
\[
-\varepsilon^2 \Delta v + V(x)v + K(x)\phi_{K,v}(x)v = |v|^{q-2}v. \tag{3}
\]

Making the changing of variables \(x \mapsto \varepsilon x \) and setting \(u(x) = v(\varepsilon x) \), (3) becomes
\[
-\Delta u + V(\varepsilon x)u + K(\varepsilon x)\phi_{K,v}(\varepsilon x)u = |u|^{q-2}u. \tag{4}
\]
A simple computation shows that
\[\phi_{K,v}(\varepsilon x) = \varepsilon^2 \phi_{\varepsilon,u}(x), \]
where
\[\phi_{\varepsilon,u}(x) = \int_{\mathbb{R}^3} K(\varepsilon y)u^2(y) \frac{dy}{|x-y|}. \]
Substituting it into \((\mathcal{P}_\varepsilon) \), \((\mathcal{SP}_\varepsilon) \) can be rewritten in the following equivalent equation
\[-\Delta u + V(\varepsilon x)u + \varepsilon^2 K(\varepsilon x)\phi_{\varepsilon,u}u = |u|^{q-2}u. \] \((S_\varepsilon) \)
Note that if \(u_\varepsilon \) is a solution of \((S_\varepsilon) \), then \(v_\varepsilon(x) = u_\varepsilon(\xi) \) is a solution of \((\mathcal{M}) \).

We denote by \(H_{\varepsilon} = \{ u \in H^1(\mathbb{R}^3) : \int_{\mathbb{R}^3} V(\varepsilon x)u^2 < \infty \} \) the Sobolev space endowed with the norm
\[\| u \|_{\varepsilon}^2 = \int_{\mathbb{R}^3} (|\nabla u|^2 + V(\varepsilon x)u^2) \, dx. \]

At this step, we see that \((S_\varepsilon) \) is variational and its solutions are critical points of the functional
\[I_\varepsilon(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + V(\varepsilon x)u^2) \, dx + \frac{\varepsilon^2}{4} \int_{\mathbb{R}^3} K(\varepsilon x)\phi_{\varepsilon,u}(x)u^2 \, dx - \frac{1}{q} \int_{\mathbb{R}^3} |u|^q \, dx. \] \((5) \)

3 Autonomous Case

In this section we study the following autonomous system

\[\begin{cases}
-\Delta u + V(\xi)u + K(\xi)\phi(\xi)u = |u|^{q-2}u & \text{in } \mathbb{R}^3 \\
-\Delta \phi = K(\xi)u^2 & \text{in } \mathbb{R}^3
\end{cases} \] \((\mathcal{SP}_\xi) \)

where \(\xi \in \mathbb{R}^3 \).

We associate with system \((\mathcal{SP}_\xi) \) the functional \(I_\xi : H_\xi \mapsto \mathbb{R} \)
\[I_\xi(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + V(\xi)u^2) \, dx + \frac{1}{4} \int_{\mathbb{R}^3} K(\xi)\phi_{\xi,u}(\xi)u^2 \, dx - \frac{1}{q} \int_{\mathbb{R}^3} |u|^q \, dx. \] \((5) \)

Hereafter, the Sobolev space \(H_\xi = H^1(\mathbb{R}^3) \) is endowed with the norm
\[\| u \|_\xi = \int_{\mathbb{R}^3} (|\nabla u|^2 + V(\xi)u^2) \, dx. \]

By standard arguments, the functional \(I_\xi \) verifies the Mountain-Pass Geometry, more exactly it satisfies the following lemma

Lemma 3. The functional \(I_\xi \) satisfies

(i) There exist positive constants \(\alpha, \rho \) such that \(I_\xi(u) \geq \alpha \) for \(\| u \|_\xi = \rho \).

(ii) There exists \(u_1 \in H^1(\mathbb{R}^3) \) with \(\| u_1 \|_\xi > \rho \) such that \(I_\xi(u_1) < 0 \).
Applying a variant of the Mountain Pass Theorem (see [22]), we obtain a sequence $\{u_n\} \subset H^1(\mathbb{R}^3)$ such that

$$I_\xi(u_n) \to C(\xi) \text{ and } I'_\xi(u_n) \to 0,$$

where

$$C(\xi) = \inf_{\gamma \in \Gamma} \max_{0 \leq t \leq 1} I_\xi(\gamma(t)), \quad C(\xi) \geq \alpha$$

and

$$\Gamma = \{\gamma \in C([0,1], H^1(\mathbb{R}^3)) | \gamma(0) = 0, \gamma(1) = u_1\}.$$

We observe that $C(\xi)$ can be also characterized as

$$C(\xi) = \inf_{u \neq 0} \max_{t > 0} I_\xi(t u).$$

Proposition 4. Let $\xi \in \mathbb{R}^3$. Then system (SP ξ) has a positive solution $u \in H^1(\mathbb{R}^3)$ such that $I'_\xi(u) = 0$ and $I_\xi(u) = C(\xi)$, for any $q \in (4,6)$.

Proof. The proof is an easy adaptation of Theorem 1.1 in [4] and we omit it. \qed

Lemma 5. The function $\xi \mapsto C(\xi)$ is continuous.

Proof. The proof consists in proving that there exist sequences (ζ_n) and (λ_n) in \mathbb{R}^3 such that $C(\zeta_n), C(\lambda_n) \to C(\xi)$ as $n \to 0$, where

$$\zeta_n \to \xi \text{ and } C(\zeta_n) \geq C(\xi), \forall n$$

$$\lambda_n \to \xi \text{ and } C(\lambda_n) \geq C(\xi), \forall n$$

as we know by Alves and Soares [1] with slightly modifications. \qed

Remark 3. The function $(\mu, \nu) \mapsto c_{\mu, \nu}$ is continuous, where $c_{\mu, \nu}$ is the minimax level of

$$I_{\mu, \nu}(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + \mu u^2) \, dx + \frac{1}{4} \int_{\mathbb{R}^3} \nu \phi_u(x) u^2 \, dx - \frac{1}{q} \int_{\mathbb{R}^3} |u|^q \, dx.$$

(7)

Remark 4. We denote by C_∞ the minimax value related to the functional

$$I_\infty(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + V_\infty u^2) \, dx + \frac{1}{4} \int_{\mathbb{R}^3} K_\infty \phi_u u^2 \, dx - \frac{1}{q} \int_{\mathbb{R}^3} |u|^q \, dx$$

where V_∞ and K_∞, given by condition (H_1), belong to $(0, \infty)$. Otherwise, define $C_\infty = \infty$. $I_\infty(u)$ is well defined for $u \in H_\infty$, where H_∞ is a Sobolev space endowed with the norm

$$\|u\|_\infty = \int_{\mathbb{R}^3} (|\nabla u|^2 + V_\infty u^2) \, dx$$

equivalent to the usual Sobolev norm on $H^1(\mathbb{R}^3)$. 6
4 System \((S_1)\)

Setting \(\varepsilon = 1\), in this section we consider the following system

\[
\begin{align*}
-\Delta u + V(x)u + K(x)\phi(x)u &= |u|^{q-2}u \quad \text{in } \mathbb{R}^3 \\
-\Delta \phi &= K(x)u^2 \\
\end{align*}
\]

whose solutions are critical points of the corresponding functional

\[
I(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + V(x)u^2) \, dx + \frac{1}{4} \int_{\mathbb{R}^3} K(x)\phi_u(x)u^2 \, dx - \frac{1}{p} \int_{\mathbb{R}^3} |u|^p \, dx
\]

which is well defined for \(u \in H_1\), where

\[
H_1 = \{u \in H^1(\mathbb{R}^3) : \int_{\mathbb{R}^3} V(x)u^2 \, dx < \infty\}
\]

with the same norm notation of the Sobolev space \(H^1(\mathbb{R}^3)\).

Similar to the autonomous case, the functional \(I\) satisfies the mountain pass geometry, then there exists a sequence \((u_n) \subset H_1\) such that

\[
I(u_n) \to c \quad \text{and} \quad I'(u_n) \to 0 \tag{8}
\]

where

\[
c = \inf_{\gamma \in \Gamma} \max_{0 \leq t \leq 1} I(\gamma(t))
\]

and

\[
\Gamma = \{\gamma \in C([0, 1], H^1(\mathbb{R}^3)) : \gamma(0) = 0, I(\gamma(1)) < 0\}.
\]

An important tool in our analysis is the following theorem:

Theorem 6. If \(c < C_\infty\), then \(c\) is a critical value for \(I\).

Proof. From ALVES, SOUTO and SOARES [2], \((u_n)\) is bounded in \(H_1\). As a consequence, passing to a subsequence if necessary, \(u_n \rightharpoonup u\) in \(H_1\). From Proposition 2 (v), \(\phi_{u_n} \rightharpoonup \phi_u\) in \(D^{1,2}(\mathbb{R}^3)\), as \(n \to \infty\). Then, \((u, \phi_u)\) is a weak solution of \((SP_1)\). Similar to the proof of Lemma 3 \(I(u) = c\). It remains to show that \(u \neq 0\).

By contradiction, consider \(u \equiv 0\).

From Alves, Souto and Soares [2], if there exist constants \(\eta, R\) such that

\[
\liminf_{n \to +\infty} \int_{B_R(0)} u_n^2 \, dx \geq \eta > 0
\]

then \(u \neq 0\).

Hence, there exists a subsequence of \((u_n)\), still denoted by \((u_n)\), such that

\[
\lim_{n \to +\infty} \int_{B_R(0)} u_n^2 \, dx = 0.
\]

Let \(\mu\) and \(\nu\) be such that

\[
\begin{align*}
\inf_{x \in \mathbb{R}^3} V(x) &< \mu < \liminf_{|x| \to \infty} V(x) = V_\infty \\
\inf_{x \in \mathbb{R}^3} K(x) &< \nu < \liminf_{|x| \to \infty} K(x) = K_\infty
\end{align*}
\]
and take \(R > 0 \) such that
\[
V(x) > \mu, \quad \forall \, x \in \mathbb{R}^3 \setminus B_R(0)
\]
\[
K(x) > \nu, \quad \forall \, x \in \mathbb{R}^3 \setminus B_R(0).
\]

For each \(n \in \mathbb{N} \), there exist \(t_n > 0 \), \(t_n \to 1 \) such that \(I(t_n u_n) = \max_{t \geq 0} I(t u_n) \). The convergence of \((t_n)\) follows from (13). In fact, since
\[
\|u_n\|^2 + \int_{\mathbb{R}^3} K(x) \phi_{u_n} u_n^2 \, dx = \int_{\mathbb{R}^3} |u_n|^q \, dx + o_n(1)
\]
we have
\[
t_n^2 \|u_n\|^2 + t_n^4 \int_{\mathbb{R}^3} K(x) \phi_{u_n} u_n^2 \, dx = t_n^q \int_{\mathbb{R}^3} |u_n|^q \, dx + o_n(1).
\]
Then,
\[
(1 - t_n^2) \|u_n\|^2 = (t_n^q - t_n^2) \int_{\mathbb{R}^3} |u_n|^q \, dx + o_n(1)
\]
Suppose \(t_n \to t_0 \). Letting \(n \to +\infty \),
\[
0 = (t_0^2 - 1)\ell_1 + t_0^2(t_0^q - 4)\ell_2
\]
where \(\ell_1, \ell_2 > 0 \). Hence, \(t_0 = 1 \).

Consequently, we have
\[
I(u_n) - I(t_n u_n) = \frac{1 - t_n^2}{2} \|u_n\|^2 + \frac{1}{4} (1 - t_n^4) \int_{\mathbb{R}^3} K(x) \phi_{u_n} u_n^2 \, dx + \frac{t_n^q - 1}{q} \int_{\mathbb{R}^3} |u_n|^q \, dx + o_n(1)
\]
which implies, for every \(t \geq 0 \),
\[
I(u_n) \geq I(t u_n) + o_n(1)
\]
\[
= \frac{t^2}{2} \int_{\mathbb{R}^3} \nabla u_n^2 + V(x) u_n^2 \, dx + \frac{t^4}{4} \int_{\mathbb{R}^3} K(x) \phi_{u_n} u_n^2 \, dx - \frac{t^q}{q} \int_{\mathbb{R}^3} |u_n|^q \, dx + I_{\mu,\nu}(t u_n) - I_{\mu,\nu}(t u_n) + o_n(1)
\]
\[
\geq \frac{t^2}{2} \int_{B_R(0)} (V(x) - \mu) u_n^2 \, dx + \frac{t^4}{4} \int_{B_R(0)} (K(x) - \nu) \phi_{u_n} u_n^2 \, dx + I_{\mu,\nu}(t u_n) + o_n(1),
\]
(9)
where \(I_{\mu,\nu}(u) \) is given by (7).

Consider \(\tau_n \) such that \(I_{\mu,\nu}(\tau_n u_n) = \max_{t \geq 0} I_{\mu,\nu}(t u_n) \). As in the above arguments, \(\tau_n \to 1 \).

Letting \(t = \tau_n \) in (9), we have
\[
I(u_n) \geq c_{\mu,\nu} + \frac{\tau_n^2}{2} \int_{B_R(0)} (V(x) - \mu) u_n^2 + \frac{\tau_n^4}{4} \int_{B_R(0)} (K(x) - \nu) \phi_{u_n} u_n^2 \, dx + o_n(1).
\]
Taking the limit \(n \to +\infty \), we have \(c \geq c_{\mu,\nu} \). Next, taking \(\mu \to V_\infty \) and \(\nu \to K_\infty \), we obtain \(c \geq C_\infty \), proving Theorem 5.
\[\Box\]
Proof of Theorem 1

This section is devoted to study the existence, regularity and the asymptotic behavior of solutions for the system \((SP_\varepsilon)\) for small \(\varepsilon\). The proof of Theorem 1 is divided into three subsections as follows:

5.1 Existence of a solution

Theorem 7. Suppose \((H_0) - (H_1)\) hold and consider

\[C_\infty > \inf_{\xi \in \mathbb{R}^3} C(\xi) \quad (C_\infty) \]

Then, there exists \(\varepsilon^* > 0\) such that system \((S_\varepsilon)\) has a positive solution for every \(0 < \varepsilon < \varepsilon^*\).

Proof. By hypothesis \((C_\infty)\), there exists \(b \in \mathbb{R}^3\) and \(\delta > 0\) such that

\[C(b) + \delta < C_\infty. \quad (10) \]

Define \(u_\varepsilon(x) = u(x - \frac{b}{\varepsilon})\), where, from Proposition \(4\) \(u\) is a solution of the autonomous Schrödinger-Poisson system \((SP_b)\)

\[
\begin{aligned}
-\Delta u + V(b)u + K(b)\phi(b)u &= |u|^{q-2}u \quad \text{in} \quad \mathbb{R}^3 \\
-\Delta \phi &= K(b)u^2 \quad \text{in} \quad \mathbb{R}^3
\end{aligned}
\]

with \(I_b(u) = C(b)\).

Let \(t_\varepsilon\) be such that \(I_\varepsilon(t_\varepsilon u_\varepsilon) = \max_{t \geq 0} I_\varepsilon(t u_\varepsilon)\). Similar to the proof of Theorem \(6\), we have

\[\lim_{\varepsilon \to 0} t_\varepsilon = 1. \]

Then, since

\[c_\varepsilon = \inf_{\gamma \in \mathcal{I}} \max_{0 \leq t \leq 1} I_\varepsilon(\gamma(t)) = \inf_{u \in H^1_{0 \neq 0}} \max_{t \geq 0} I_\varepsilon(t u) \leq \max_{t \geq 0} I_\varepsilon(t u) = I_\varepsilon(t_\varepsilon u_\varepsilon) \]

we have

\[\limsup_{\varepsilon \to 0} c_\varepsilon \leq \limsup_{\varepsilon \to 0} I_\varepsilon(t_\varepsilon u_\varepsilon) = I_b(u) = C(b) < C(b) + \delta, \]

which implies that, from \(10\)

\[\limsup_{\varepsilon \to 0} c_\varepsilon < C_\infty. \]

Therefore, there exists \(\varepsilon^* > 0\) such that \(c_\varepsilon < C_\infty\) for every \(0 < \varepsilon < \varepsilon^*\). In view of Theorem \(6\) system \((S_\varepsilon)\) has a positive solution for every \(0 < \varepsilon < \varepsilon^*\). \(\Box\)

5.2 Regularity of the solution

The first result is a suitable version of Brezis and Kato \(6\) and the second one is a particular version of Theorem 8.17 from Gilbarg and Trudinger \(12\).
Proposition 8. Consider $u \in H^1(\mathbb{R}^3)$ satisfying
\[-\Delta u + b(x)u = f(x,u) \quad \text{in } \mathbb{R}^3\]
where $b : \mathbb{R}^3 \to \mathbb{R}$ is a $L^\infty_{\text{loc}}(\mathbb{R}^3)$ function and $f : \mathbb{R}^3 \to \mathbb{R}$ is a Caratheodory function such that
\[0 \leq f(x,s) \leq C_f(s^r + s), \quad \forall s > 0, \, x \in \mathbb{R}^3.\]

Then, $u \in L^t(\mathbb{R}^3)$ for every $t \geq 2$. Moreover, there exists a positive constant $C = C(t, C_f)$ such that
\[
\|u\|_{L^t(\mathbb{R}^3)} \leq C \|u\|_{H^1(\mathbb{R}^3)}.
\]

Proposition 9. Consider $t > 3$ and $g \in L^\frac{t}{2}(\Omega)$, where Ω is an open subset of \mathbb{R}^3. Then, if $u \in H^1(\Omega)$ is a subsolution of
\[
\Delta u = g \quad \text{in } \Omega
\]
we have, for any $y \in \mathbb{R}^3$ and $B_{2R}(y) \subset \Omega$, $R > 0$
\[
\sup_{B_{R}(y)} u \leq C \left(\|u^+\|_{L^2(B_{2R}(y))} + \|g\|_{L^\frac{t}{2}(B_{2R}(y))} \right)
\]
where $C = C(t, R)$.

In view of Propositions 8 and 9, the positive solutions of (SP_{ε}) are in $C^2(\mathbb{R}^3) \cap L^\infty(\mathbb{R}^3)$ for all $\varepsilon > 0$. Similar arguments was employed by He and Zou [13].

5.3 Concentration of solutions

Lemma 10. Suppose $(H_0) - (H_1)$ hold. Then, there exists $\beta_0 > 0$ such that
\[c_{\varepsilon} \geq \beta_0,
\]
for every $\varepsilon > 0$. Moreover,
\[
\limsup_{\varepsilon \to 0} c_{\varepsilon} \leq \inf_{\xi \in \mathbb{R}^3} C(\xi).
\]

Proof. Let $w_{\varepsilon} \in H_{\varepsilon}$ be such that $c_{\varepsilon} = I_{\varepsilon}(w_{\varepsilon})$. Then, from condition (H_0)
\[c_{\varepsilon} = I_{\varepsilon}(w_{\varepsilon}) \geq \inf_{w \in H^1_{\varepsilon}} \sup_{t \geq 0} J(tu) = \beta_0, \quad \forall \varepsilon > 0,
\]
where
\[
J(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + \alpha u^2) \, dx + \frac{1}{4} \int_{\mathbb{R}^3} \alpha \phi_{\varepsilon} u^2 \, dx - \frac{1}{q} \int_{\mathbb{R}^3} |u|^q \, dx.
\]

Let $\xi \in \mathbb{R}^3$ and consider $w \in H^1(\mathbb{R}^3)$ a least energy solution for system (SP_{ξ}), that is, $I_{\xi}(w) = C(\xi)$ and $I'_{\xi}(w) = 0$. Let $w_{\varepsilon}(x) = w(x - \frac{\xi}{\varepsilon})$ and take $t_{\varepsilon} > 0$ such that
\[c_{\varepsilon} \leq I_{\varepsilon}(t_{\varepsilon} w_{\varepsilon}) = \max_{t \geq 0} I_{\varepsilon}(tw_{\varepsilon}).
\]
Similar to the proof of Theorem 6, \(t_\varepsilon \to 1 \) as \(\varepsilon \to 0 \), then
\[
c_\varepsilon \leq I_\xi(t_\varepsilon w_\varepsilon) \to I_\xi(w) = C(\xi), \quad \text{as } \varepsilon \to 0
\]
which implies that \(\limsup_{\varepsilon \to 0} c_\varepsilon \leq C(\xi), \quad \forall \xi \in \mathbb{R}^3 \).
Therefore,
\[
\limsup_{\varepsilon \to 0} c_\varepsilon \leq \inf_{\xi \in \mathbb{R}^3} C(\xi).
\]

Lemma 11. There exist a family \((y_\varepsilon) \subset \mathbb{R}^3\) and constants \(R, \beta > 0 \) such that
\[
\liminf_{\varepsilon \to 0} \int_{B_R(y_\varepsilon)} u_\varepsilon^2 \, dx \geq \beta, \quad \text{for each } \varepsilon > 0.
\]

Proof. By contradiction, suppose that there exists a sequence \(\varepsilon_n \to 0 \) such that
\[
\limsup_{n \to \infty} \sup_{y \in \mathbb{R}^3} \int_{B_R(y)} u_n^2 \, dx = \beta, \quad \text{for all } R > 0.
\]
where, for the sake of simplicity, we denote \(u_n(x) = u_{\varepsilon_n}(x) \). Hereafter, denote \(\phi_{\varepsilon_n,u_n}(x) = \phi_{u_{\varepsilon_n},u_n}(x) \).
From Lemma I.1 in [16], we have
\[
\int_{\mathbb{R}^3} |u_n|^q \, dx \to 0, \quad \text{as } n \to \infty.
\]
But, since,
\[
\int_{\mathbb{R}^3} (|\nabla u_n|^2 + V(\varepsilon_n x)u_n^2) \, dx + \int_{\mathbb{R}^3} \varepsilon_n^2 K(\varepsilon_n x)\phi_{u_{\varepsilon_n},u_n}^2 \, dx = \int_{\mathbb{R}^3} |u_n|^q \, dx
\]
we have
\[
\int_{\mathbb{R}^3} (|\nabla u_n|^2 + V(\varepsilon_n x)u_n^2) \, dx \to 0, \quad \text{as } n \to \infty.
\]
Therefore,
\[
\lim_{n \to \infty} c_{\varepsilon_n} = \lim_{n \to \infty} I_{\varepsilon_n}(u_n) = 0
\]
which is an absurd, since for some \(\beta_0 > 0, \ c_\varepsilon \geq \beta_0 \), from Lemma 10.

Lemma 12. The family \((\varepsilon y_\varepsilon)\) is bounded. Moreover, if \(y^* \) is the limit of the sequence \((\varepsilon_n y_{\varepsilon_n})\) in the family \((\varepsilon y_\varepsilon)\), then we have
\[
C(y^*) = \inf_{\xi \in \mathbb{R}^3} C(\xi).
\]

Proof. Consider \(u_n(x) = u_{\varepsilon_n}(x + y_{\varepsilon_n}) \). Suppose by contradiction that \((\varepsilon_n y_{\varepsilon_n})\) goes to infinity.
It follows from Lemma 11 that there exists constants \(R, \beta > 0 \) such that
\[
\int_{B_R(0)} u_{\varepsilon_n}^2 \, dx \geq \beta > 0, \quad \text{for all } n \in \mathbb{N}.
\]
Since \(u_n(x) \) satisfies
\[
- \Delta u_n + V(\varepsilon_n x + \varepsilon_n y_{\varepsilon_n})u_n + \varepsilon_n^2 K(\varepsilon_n x + \varepsilon_n y_{\varepsilon_n})\phi_{\varepsilon_n,u_n} u_n = |u_n|^{q-2} u_n, \tag{12}
\]
then, \(u_n(x) \) is bounded in \(H_\varepsilon \). Hence, passing to a subsequence if necessary, \(u_n \to \hat{u} \geq 0 \) weakly in \(H_\varepsilon \), strongly in \(L^p_{\text{loc}}(\mathbb{R}^3) \) for \(p \in (2,6) \) and a.e. in \(\mathbb{R}^3 \). From (11), \(\hat{u} \neq 0 \).

Using \(\hat{u} \) as a test function in (12) and taking the limit, we get
\[
\int_{\mathbb{R}^3} (|\nabla \hat{u}|^2 + \mu \hat{u}^2) \, dx \leq \int_{\mathbb{R}^3} (|\nabla \hat{u}|^2 + \mu \hat{u}^2) \, dx + \int_{\mathbb{R}^3} \nu \phi \hat{u}^2 \, dx \leq \int_{\mathbb{R}^3} |\hat{u}|^q \, dx \tag{13}
\]
where, \(\mu \) and \(\nu \) are positive constants such that
\[
\mu < \liminf_{|x| \to \infty} V(x) \quad \text{and} \quad \nu < \liminf_{|x| \to \infty} K(x).
\]

Consider the functional \(I_{\mu,\nu} : H^1(\mathbb{R}^3) \to \mathbb{R} \) given by
\[
I_{\mu,\nu}(u) = \frac{1}{2} \int_{\mathbb{R}^3} (|\nabla u|^2 + \mu u^2) \, dx + \frac{1}{4} \int_{\mathbb{R}^3} \nu \phi u^2 \, dx - \frac{1}{q} \int_{\mathbb{R}^3} |u|^q \, dx.
\]

Let \(\sigma > 0 \) be such that \(I_{\mu,\nu}(\sigma \hat{u}) = \max_{t > 0} I_{\mu,\nu}(t \hat{u}) \).

We claim that
\[
\sigma^2 \int_{\mathbb{R}^3} (|\nabla \hat{u}|^2 + \mu \hat{u}^2) \, dx + \sigma^4 \int_{\mathbb{R}^3} \nu \phi \hat{u}^2 \, dx = \sigma^q \int_{\mathbb{R}^3} |\hat{u}|^q \, dx. \tag{14}
\]

In fact, from (13)
\[
I_{\mu,\nu}(\sigma \hat{u}) = \frac{\sigma^2}{2} \int_{\mathbb{R}^3} (|\nabla \hat{u}|^2 + \mu \hat{u}^2) \, dx + \frac{\sigma^4}{4} \int_{\mathbb{R}^3} \nu \phi \hat{u}^2 \, dx - \frac{\sigma^q}{q} \int_{\mathbb{R}^3} |\hat{u}|^q \, dx
\]
\[
\leq \frac{\sigma^2}{2} \int_{\mathbb{R}^3} |\hat{u}|^q \, dx + \frac{\sigma^4}{4} \int_{\mathbb{R}^3} \nu \phi \hat{u}^2 \, dx - \frac{\sigma^q}{q} \int_{\mathbb{R}^3} |\hat{u}|^q \, dx
\]

it follows that \(\sigma \leq 1 \), and since \(\frac{d}{dt} I_{\mu,\nu}(t \hat{u}) \bigg|_{t=\sigma} = 0 \), we obtain
\[
\frac{d}{dt} I_{\mu,\nu}(t \hat{u}) \bigg|_{t=\sigma} = \sigma \int_{\mathbb{R}^3} (|\nabla \hat{u}|^2 + \mu \hat{u}^2) \, dx + \sigma^3 \int_{\mathbb{R}^3} \nu \phi \hat{u}^2 \, dx - \sigma^{q-1} \int_{\mathbb{R}^3} |\hat{u}|^q \, dx = 0
\]
proving (14).

From Lemma 11 equation (14) and the fact that \(\sigma \leq 1 \), we have
\[
c_{\mu,\nu} = \inf_{u \neq 0} \max_{t > 0} I_{\mu,\nu}(t u) = \inf_{u \neq 0} I_{\mu,\nu}(\sigma u) \leq I_{\mu,\nu}(\sigma \hat{u})
\]
\[
= \frac{\sigma^2}{2} \int_{\mathbb{R}^3} (|\nabla \hat{u}|^2 + \mu \hat{u}^2) \, dx + \frac{\sigma^4}{4} \int_{\mathbb{R}^3} \nu \phi \hat{u}^2 \, dx - \frac{\sigma^q}{q} \int_{\mathbb{R}^3} |\hat{u}|^q \, dx
\]
\[
= \frac{\sigma^2}{4} \int_{\mathbb{R}^3} (|\nabla \hat{u}|^2 + \mu \hat{u}^2) \, dx + \frac{\sigma^q(q-4)}{4q} \int_{\mathbb{R}^3} \nu \phi \hat{u}^2 \, dx - \frac{\sigma^q}{q} \int_{\mathbb{R}^3} |\hat{u}|^q \, dx
\]
\[
\leq \frac{1}{4} \int_{\mathbb{R}^3} (|\nabla \hat{u}|^2 + \mu \hat{u}^2) \, dx + \frac{q-4}{4q} \int_{\mathbb{R}^3} |\hat{u}|^q \, dx
\]
\[
\leq \liminf_{n \to \infty} \left(I_{\varepsilon_n}(u_n) - \frac{1}{4} I'_{\varepsilon_n}(u_n) u_n \right)
\]
\[
= \liminf_{n \to \infty} c_{\varepsilon_n} \leq \limsup_{n \to \infty} c_{\varepsilon_n} \leq \inf_{\xi \in \mathbb{R}^3} C(\xi).
\]
hence, \(c_{\mu,\nu} \leq \inf_{\xi \in \mathbb{R}^3} C(\xi) \).

If we consider
\[
\begin{align*}
\mu & \to \liminf_{|x| \to \infty} V(x) = V_\infty \quad \text{and} \quad \nu \to \liminf_{|x| \to \infty} K(x) = K_\infty
\end{align*}
\]
then, by the continuity of the function \((\mu, \nu) \mapsto c_{\mu,\nu}\) we obtain
\(C_\infty \leq \inf_{\xi \in \mathbb{R}^3} C(\xi) \), which contradicts condition \((C^\infty)\). Therefore, \((\varepsilon y_\varepsilon)\) is bounded and there exists a subsequence of \((\varepsilon y_\varepsilon)\) such that \(\varepsilon_n y_{\varepsilon_n} \to y^*\).

Now we proceed to prove that \(C(y^*) = \inf_{\xi \in \mathbb{R}^3} C(\xi) \).

Recalling that \(u_n(x) = u_{\varepsilon_n}(x + y_{\varepsilon_n}) \) and from the arguments above, \(\hat{u} \) satisfies the equation
\[
-\Delta u + V(y^*) u + K(y^*) \phi_y u = |u|^{q-2} u
\]
(15)

The Euler-Lagrange functional associated to this equation is \(I_{y^*} : H_{y^*}(\mathbb{R}^3) \), defined as in \((10)\) with \(\xi = y^* \).

Using \(\hat{u} \) as a test function in \((15)\) and taking the limit, we obtain
\[
\int_{\mathbb{R}^3} (|\nabla \hat{u}|^2 + V(y^*) \hat{u}^2) \, dx \leq \int_{\mathbb{R}^3} |\hat{u}|^q \, dx.
\]

Then,
\[
I_{y^*}(\sigma \hat{u}) = \max_{t > 0} I_{y^*}(t \hat{u}).
\]

Finally, from Lemma \((10)\) and since \(0 < \sigma \leq 1\) we have
\[
\begin{align*}
\inf_{\xi \in \mathbb{R}^3} C(\xi) & \leq C(y^*) \leq I_{y^*}(\sigma \hat{u}) \\
& = \frac{\sigma^2}{4} \int_{\mathbb{R}^3} (|\nabla \hat{u}|^2 + V(y^*) \hat{u}^2) \, dx + \frac{\sigma^q (q - 4)}{4q} \int_{\mathbb{R}^3} |\hat{u}|^q \, dx \\
& \leq \frac{1}{4} \int_{\mathbb{R}^3} (|\nabla \hat{u}|^2 + V(y^*) \hat{u}^2) \, dx + \frac{q - 4}{4q} \int_{\mathbb{R}^3} |\hat{u}|^q \, dx \\
& \leq \liminf_{n \to \infty} \left[\frac{1}{4} \int_{\mathbb{R}^3} (|\nabla u_n|^2 + V(\varepsilon_n x + \varepsilon_n y_{\varepsilon_n}) u_n^2) \, dx + \frac{q - 4}{4q} \int_{\mathbb{R}^3} |u_n|^q \, dx \right] \\
& \leq \liminf_{n \to \infty} \left(I_{\varepsilon_n}(u_n) - \frac{1}{4} I'_{\varepsilon_n}(u_n) u_n \right) \\
& \leq \liminf_{n \to \infty} \varepsilon_n \leq \inf_{\xi \in \mathbb{R}^3} C(\xi)
\end{align*}
\]
which implies that \(C(y^*) = \inf_{\xi \in \mathbb{R}^3} C(\xi) \).

As a consequence of the previous lemma, there exists a subsequence of \((\varepsilon_n y_{\varepsilon_n})\) such that \(\varepsilon_n y_{\varepsilon_n} \to y^*\).

Let \(u_{\varepsilon_n}(x + y_{\varepsilon_n}) = u_n(x) \) and consider \(\tilde{u} \in H^1 \) such that \(u_n \to \tilde{u} \).

Lemma 13. \(u_n \to \tilde{u} \) in \(H^1(\mathbb{R}^3) \), as \(n \to \infty \). Moreover, there exists \(\varepsilon^* > 0 \) such that \(\lim_{|x| \to \infty} u_\varepsilon(x) = 0 \) uniformly on \(\varepsilon \in (0, \varepsilon^*) \).
Proof. By applying Lemmas 10 and 12, we observe that

\[
\inf_{\xi \in \mathbb{R}^3} C(\xi) = C(y^*) + \frac{1}{4} I_{y^*}'(\tilde{u}) \tilde{u}
\]

\[
= \frac{1}{4} \int_{\mathbb{R}^3} (|\nabla \tilde{u}|^2 + V(y^*) |\tilde{u}|^2) \, dx + \left(\frac{q-4}{4q} \right) \int_{\mathbb{R}^3} |\tilde{u}|^q \, dx
\]

\[
= \lim_{n \to \infty} \frac{1}{4} \int_{\mathbb{R}^3} (|\nabla u_n|^2 + V(\varepsilon_n x + \varepsilon_n y_n) u_n^2) \, dx + \left(\frac{q-4}{4q} \right) \int_{\mathbb{R}^3} |u_n|^q \, dx
\]

\[
\leq \limsup_{n \to \infty} \frac{1}{4} \int_{\mathbb{R}^3} (|\nabla u_n|^2 + V(\varepsilon_n x + \varepsilon_n y_n) u_n^2) \, dx + \left(\frac{q-4}{4q} \right) \int_{\mathbb{R}^3} |u_n|^q \, dx
\]

\[
= \limsup_{n \to \infty} \left(I_{\varepsilon_n}(u_{\varepsilon_n}) - \frac{1}{4} I_{\varepsilon_n}'(u_{\varepsilon_n}) u_{\varepsilon_n} \right)
\]

\[
= \limsup_{n \to \infty} c_{\varepsilon_n} \leq \inf_{\xi \in \mathbb{R}^3} C(\xi)
\]

then,

\[
\lim_{n \to \infty} \int_{\mathbb{R}^3} (|\nabla u_n|^2 + V(\varepsilon_n x + \varepsilon_n y_n) u_n^2) \, dx = \int_{\mathbb{R}^3} (|\nabla \tilde{u}|^2 + V(y^*) |\tilde{u}|^2) \, dx.
\]

Now observe that

\[
c_{\varepsilon_n} = I_{\varepsilon_n}(u_{\varepsilon_n}) - \frac{1}{4} I_{\varepsilon_n}'(u_{\varepsilon_n}) u_{\varepsilon_n}
\]

\[
= \frac{1}{4} \int_{\mathbb{R}^3} (|\nabla u_n|^2 + V(\varepsilon_n x) u_n^2) \, dx + \left(\frac{q-4}{4q} \right) \int_{\mathbb{R}^3} |u_n|^q \, dx
\]

\[
= \frac{1}{4} \int_{\mathbb{R}^3} (|\nabla u_n|^2 + V(\varepsilon_n x + \varepsilon_n y_n) u_n^2) \, dx + \left(\frac{q-4}{4q} \right) \int_{\mathbb{R}^3} |u_n|^q \, dx
\]

\[
:= \alpha_n
\]

hence,

\[
\limsup_{n \to \infty} \alpha_n = \limsup_{n \to \infty} c_{\varepsilon_n} \leq C(y^*).
\]

On the other hand, using Fatou’s Lemma,

\[
\liminf_{n \to \infty} \alpha_n \geq \frac{1}{4} \int_{\mathbb{R}^3} (|\nabla \tilde{u}|^2 + V(y^*) |\tilde{u}|^2) \, dx + \left(\frac{q-4}{4q} \right) \int_{\mathbb{R}^3} |\tilde{u}|^q \, dx
\]

\[
= I_{y^*}(\tilde{u}) - \frac{1}{4} I_{y^*}'(\tilde{u}) \tilde{u}
\]

\[
\geq C(y^*)
\]

then, \(\lim_{n \to \infty} \alpha_n = C(y^*) \).

Therefore, since \(\tilde{u} \) is the weak limit of \((u_n)\) in \(H^1(\mathbb{R}^3) \), we conclude that \(u_n \to \tilde{u} \) strongly in \(H^1(\mathbb{R}^3) \).

In particular, we have

\[
\lim_{R \to \infty} \int_{|x| \geq R} u_n^{2^*} \, dx = 0 \quad \text{uniformly on } n. \quad (16)
\]

Applying Proposition 8 with \(b(x) = V(\varepsilon_n x + \varepsilon_n y_n) + \varepsilon_n^2 K(\varepsilon_n x + \varepsilon_n y_n) \phi_{u_n} \), we obtain \(u_n \in L^t(\mathbb{R}^3), \ t \geq 2 \) and

\[
||u_n||_t \leq C ||u_n||
\]
where C does not depend on n.

Now consider

$$-\Delta u_n \leq -\Delta u_n + V(\varepsilon_n x + \varepsilon_n y_n)u_n + \varepsilon_n^2 K(\varepsilon_n x + \varepsilon_n y_n)\phi_{u_n} u_n$$

$$= |u_n|^q - u_n := g_n(x).$$

For some $t > 3$, $\|g_n\|_t \leq C$, for all n. Using Proposition 9, we have

$$\sup_{B_R(y)} u_n \leq C\left(\|u_n\|_{L^2(B_{2R}(y))} + \|g_n\|_{L^2_t(B_{2R}(y))}\right)$$

for every $y \in \mathbb{R}^3$, which implies that $\|u_n\|_{L^\infty(\mathbb{R}^3)}$ is uniformly bounded. Then, from (16),

$$\lim_{|x| \to \infty} u_n(x) = 0 \quad \text{uniformly on } n \in \mathbb{N}.$$

Consequently, there exists $\varepsilon^* > 0$ such that

$$\lim_{|x| \to \infty} u_\varepsilon(x) = 0 \quad \text{uniformly on } \varepsilon \in (0, \varepsilon^*).$$

To finish the proof of Theorem 1, it remains to show that the solutions of (SP_ε) have at most one local (hence global) maximum point y^* such that $C(y^*) = \min_{\xi \in \mathbb{R}^3} C(\xi)$.

From the previous Lemma, we can focus our attention only in a fixed ball $B_R(0) \subset \mathbb{R}^3$. If $w \in L^\infty(\mathbb{R}^3)$ is the limit in $C^2_{loc}(\mathbb{R}^3)$ of

$$w_n(x) = u_n(x + y_n)$$

then, from Gidas, Ni and Nirenberg [13], w is radially symmetric and has a unique local maximum at zero which is a non-degenerate global maximum. Therefore, there exists $n_0 \in \mathbb{N}$ such that w_n does not have two critical points in $B_R(0)$ for all $n \geq n_0$. Consider $p_\varepsilon \in \mathbb{R}^3$ this local (hence global) maximum of w_ε.

Recall that if u_ε is a solution of (S_ε), then

$$v_\varepsilon(x) = u_\varepsilon\left(\frac{x}{\varepsilon}\right)$$

is a solution of (SP_ε).

Since p_ε is the unique maximum of w_ε then, $\hat{y}_\varepsilon = p_\varepsilon + \varepsilon y_\varepsilon$ is the unique maximum of u_ε. Hence, $\hat{y}_\varepsilon = \varepsilon p_\varepsilon + \varepsilon y_\varepsilon$ is the unique maximum of v_ε.

Once $p_\varepsilon \in B_R(0)$, that is, it is bounded, and $\varepsilon y_\varepsilon \to y^*$, we have

$$\hat{y}_\varepsilon \to y^*.$$

where $C(y^*) = \inf_{\xi \in \mathbb{R}^3} C(\xi)$. Consequently, the concentration of functions v_ε approach to y^*.

Acknowledgements This paper was carried out while the author was visiting the Mathematics Department of USP in São Carlos. The author would like to thank the members of ICMC-USP for their hospitality, specially Professor S. H. M. Soares for enlightening discussions and helpful comments.
References

[1] C. O. Alves, S. H. M. Soares, Existence and concentration of positive solutions for a class of gradient systems, Nonlinear Differ. Equ. Appl., 12, 437-457, 2005.

[2] C.O. Alves, S.H.M. Soares, M.A.S. Souto, Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 377 (2011), 584-592.

[3] A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257-274.

[4] A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.

[5] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Top. Meth. Nonlinear Anal, 11, (1998) 283-293.

[6] H. Brezis, T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. pures et appl., 58, (1979) 137-151.

[7] G. Cerami, G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543.

[8] G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7 (2003), 417-423.

[9] T. D’Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations, Proc. R. Soc. Edinb., Sect. A 134 (2004), 1-14.

[10] Y. Fang, J. Zhang, Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system, Commun. Pure App. Anal., 10 (2011), 1267-1279.

[11] B. Gidas, Wei-Ming Ni, L. Nirenberg, Symmetry and related Properties via the Maximum Principle, Commun. Math. Phys., 68 (1979), 209-243.

[12] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (224). Springer-Verlag, Berlin, 1983.

[13] X. He, W. Zou, Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53 (2012), 023702.

[14] I. Ianni, G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Studies, 8, 573-595, 2008.

[15] H. Kikuchi, On the existence of a solution for a elliptic system related to the Maxwell-Schrödinger equations, Nonlinear Anal., 67 (2007), 1445-1456.

[16] P. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

[17] C. Mercuri, Positive solutions of nonlinear Schrödinger-Poisson systems with radial potentials vanishing at infinity, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 19 (2008), 211-227.

[18] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 270-291, 1992.
[19] D. Ruiz, *The Schrödinger-Poisson equation under the effect of a nonlinear local term*, J. Funct. Anal., 237 (2006), 665-674.

[20] X. Wang, *On concentration of positive solutions bounded states of nonlinear Schrödinger equations*, Comm. Math. Phys., 153, 229-244, 1993.

[21] X. Wang, B. Zeng, *On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions*, SIAM J. Math. Anal., 28, 633-655, 1997.

[22] M. Willem, "Minimax theorems", Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, Boston, 1996.

[23] M-H Yang, Z-Q Han, *Existence and multiplicity results for the nonlinear Schrödinger-Poisson systems*, Nonlinear Anal., 13 (2012), 1093-1101.

[24] L. Zhao, H. Liu, F. Zhao, *Existence and concentration of solutions for the Schrödinger-Poisson equations with steep potential*, J. Differential Equations, 255 (2013), 1-23.