Biological and phylogenetic characterization of a novel hemagglutination-negative avian avulavirus 6 isolated from wild waterfowl in China

Yanyu Chen 1, #, Zhuang Ding 1, Xinxin Liu 2, #, Jianjun Chen 3, #, Junjiao Li 1, Yidong Fei 1, Zhe Liu 1, Tobias Stoeger 4, Yuhai Bi 5, Renfu Yin 1, *

1. Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Xi’an Road 5333, Changchun, Jilin 130062, China
2. College of Food Science and Engineering, Jilin University, Xi’an Road 5333, Changchun, Jilin 130062, China
3. CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei, China
4. Comprehensive Pneumology Center, Institute of Lung Biology and Disease (iLBD), Helmholtz Zentrum Muenchen, Ingolstaedter Landstrasse 1, D-85764 Neuherberg/Munich, Germany
5. CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

# Equal contributors

* Corresponding author: Dr. Renfu Yin (yin@jlu.edu.cn)

Abstract
Up to now only nine whole genome sequences of avian avulavirus 6 (AAvV-6) had been documented in the world since the first discovery of AAvV-6 (AAvV-6/duck/HongKong/18/19977) at a domestic duck in 1977 from Hong Kong of China. Very limited information is known about the regularities of transmission, genetic and biological characteristics of AAvV-6 because of the lower isolation rate and mild losses for poultry industry. To better further explore the relationships among above factors, an AAvV-6 epidemiological surveillance of domestic poultry and wild birds in 6 provinces of China suspected of sites of interspecies transmission and being intercontinental flyways during the year 2013 to 2017 was conducted. Therefore, 9, 872 fecal samples from wild birds and 1, 642 cloacal and tracheal swab samples from clinically healthy poultry of live bird market (LBM) were collected, respectively. However, only one novel hemagglutination-negative AAvV-6 isolate (AAvV-6/mallard/Hubei/2015) was isolated from a fresh fecal sample obtained from mallard at a wetland of Hubei province. Sequencing and phylogenetic analyses of this AAvV-6 isolate (AAvV-6/mallard/Hubei/2015) indicated that this isolate grouping to genotype I were epidemiological intercontinentally linked with viruses from the wild birds in Europe and America. Meanwhile at least two genotypes (I and II) is existed within serotype AAvV-6. In additional, this novel hemagglutination-negative AAvV-6 isolate restored its hemagglutination when pretreated with trypsin. These findings, together with data from other AAvV-6, suggest potential epidemiological intercontinental spreads among AAVV-6 transmission by wild migratory birds, and reveal potential threats to wild birds and domestic poultry worldwide.

Keywords: AAvV-6, wild bird, intercontinental transmission, domestic Poultry, genotype

Introduction

Over the last 40 years, many viruses from the Paramyxoviridae family isolated from not only human or animal but also in birds have been newly identified (1, 2).
Paramyxoviruses are enveloped, nonsegmented, pleomorphic RNA viruses containing a single stranded, negative-sense genome. Avian paramyxoviruses (APMV) that have been isolated from birds; however, due to changes in taxonomy is now referred to as avian avulavirus (AAvV) (3). There are 13 described AAvV serotypes (AAvV-1 to -13) based on neuraminidase inhibition tests and hemagglutination inhibition (HI), and 8 another putative serotypes have been recently isolated (AAvV-14 to -21) (4-9). While very limited information is known about the biological and molecular characteristics of AAvV-2 to -21, extensive study has been mainly conducted on AAvV-1 (Newcastle disease virus, NDV) (10, 11).

Newcastle disease (ND), caused by the virulent AAvV-1, a well-characterized AAvV serotype, is a highly contagious devastating viral disease to the domestic poultry worldwide because of its high mortality and heavy losses for economy (12). Other serotypes AAvV, such as AAVV-2, -3, and -7, are also known to cause reproductive and respiratory diseases in turkeys and chickens, sometimes resulting in death of the infected birds (13, 14). Meanwhile, some serotypes AAvV strains display their specific host restriction, such as AAvV-5 causes diarrhea and high mortality in budgerigars but not in chickens and ducks(15). However, AAvV-6 was first identified at a domestic duck in 1977 from Hong Kong (duck/Hong Kong/18/199/77) and then was found to cause drop in egg production and mild respiratory disease in turkeys, but was avirulent in chickens (16-18). But recent serosurveillance of commercial chickens in USA showed the likely prevalence of all serotypes AAvV including AAvV-6, excepted with AAvV-5 (19).

The genome size of AAvV range from 14.9 to 17.4 kb that is transcribed into at least 6 genes, which separately encode for up to 9 different proteins (12). However, AAvV-6 has an RNA genome consists of seven genes in the order of 3′-NP(56-1 626)-P(1 634-3 119)-M(3 122-4 526)-F(4 586-6 420 or 4 586-6416)-SH(6 470-7 061 or 6 464-7 037)-HN(7 072-9 102 or 7 066-9 096)-L(9 166-16 182 or 9 160-16 176)-5′ in length with 16 230 or 16 236 nucleotides (18, 20). Six major proteins are encoded, including the nucleocapsid protein (NP, 128-1 525, 1 398nt), phosphoprotein (P, 1 687-2 979, 1 293nt), matrix protein (M, 3 235-4 335, 1 101nt), fusion protein (F, 4
598-6 265, 1 668nt or 4 628-6 265, 1 638nt), haemagglutinin-neuraminidase (HN, 7
122-8 963 or 7 116-8 957, 1 842nt), and large polymerase protein (L, 9 278-16 003 or
9 272-15 997, 6 726nt). In addition, the small hydrophobic protein (SH, 6 542-6 970
or 6 536-6 964, 429nt) that AAvV-6 has, is not found in the other serotypes(21, 22).

The few reports on the incidence of AAvV-6 in commercial and domestic poultry
from different parts of the world have shown a notable presence of several of this
virus (16, 19). Despite this, knowledge about the regularities of transmission, genetic
and biological characteristics of AAvV-6 viruses in commercial poultry and wild birds
in the China recent years remains limited. Therefore, in this study, an AAvV-6
surveillance of domestic poultry and wild birds in six provinces of China suspected of
sites of interspecies transmission and being intercontinental flyways from December
2013 to June 2017 was conducted.

Materials and Methods

Ethical states

All experimental protocols (Approval ID: 20130113–1, approval date: 15th Jan 2013)
used in this work were reviewed and approved by the Experimental Animal Council
of Jilin University, China.

Sample collection

9, 872 fecal samples were obtained from wild birds of wetlands and 1, 642 cloacal
and tracheal swab samples were collected from clinically healthy domestic poultry of
live bird market (LBM) in China for AAvV-6 epidemiological surveillances from
December 2013 to June 2017. The samples were obtained in one province in north
China (Neimenggu), two in central China (Hubei and Hunan), one in east China
(Anhui), one in northeast China (Jilin), and one in northwest China (Qinghai).
Virus identification and isolation

Presence and identification of AAvV-6 in each individual collected specimen was performed through allantoic cavities inoculation of 9-10-day old specific-pathogen-free (SPF) chicken embryos (Merial, Beijing, China) (23, 24). The presence of the AAvV-6 in allantoic fluid was identified by RT-PCR and sequencing for paramyxoviruses (25).

Cell culture and virus infection of cells

The chicken fibroblast cell line DF-1 and the chicken bone marrow macrophages cell line HD11 were grown in DMEM containing 10% fetal bovine serum (FBS) (Gibco, Life Technologies) and complete DMEM/F12 containing 10% FBS, respectively. Cells were planted into a 24-well cell culture plate at a viable cell density (determined by Trypan blue exclusion, Sigma, Shanghai, China) of 3x10^5 cells per well at 37 °C under 5% CO2 for 8 hours. Cells then were washed three times with phosphate buffered saline (PBS) and supernatant was changed into fresh medium supplemented with 100 μg/ml streptomycin and 100 U/ml penicillin without FBS. Thereafter cells were absorbed with virus at 100 ul allantoic fluid containing the Hubei isolate for 1 hour in the presence or absence of TPCK-trypsin (Sigma, Shanghai, China) and fresh medium was added into the well and then incubated with 72 hours post infection (hpi). Subsequent to infection, virus titer in the supernatants was measured using a micro-HA method (26).

RNA extraction, RT-PCR and sequencing

Viral RNA was isolated from allantoic fluid using AxyPrep Body Fluid Viral DNA/RNA Miniprep Kit (Axygen, Shanghai, China) according to the manufacturer’s instructions. Following extraction, cDNA synthesis was performed by using GoScript™ Reverse Transcription System (Promega, Shanghai, China) following the manufacturer’s instructions using random primer. Then samples were measured by seminested PCR for L gene of paramyxoviruses using 2×EasyTaq PCR kit (TransGen Biotech, Beijing,
The first amplification in the seminested PCR assay consists of 10ul 2x EasyTaq PCR supermix, 2ul cDNA, 10uM PAR-F1 primer, 10uM PAR-R primer and H2O to achieve a final volume of 20ul. The cycling reactions consisted of a cycle of 94°C for 2 min followed by 40 cycles of 94°C for 15 s, 48 to 50°C for 30 s, and 72°C for 30 s. For the second amplification in the seminested PCR assay, we used 2ul aliquot from the first PCR reaction, 10ul 2x EasyTaq PCR supermix, 10uM PAR-F2 primer, 10uM PAR-R primer, and H2O to achieve a final volume of 20ul. The cycling conditions consisted of an initial denaturation at 94°C for 2 min followed by 40 cycles of 94°C for 15 s, 48 to 50°C for 30 s, and 72°C for 30 s. After that, the PAR-F2 and PAR-R primers were used for PCR amplicons sequencing (Sangon Biotech, Shanghai, China).

The BLAST search identified the relatedness of the isolated viruses with other reported AAvV-6 strains and therefore this Hubei strain was designated as AAvV-6/mallard/Hubei/2015. After that this AAvV-6 in this study were amplified for the entire genome using 16 primer pairs (Table 1). The cycling reactions consisted of a cycle of 95°C for 3 min followed by 40 cycles of 95°C for 1 min, 45-57°C for 45 s, and 72°C for 150 s. PCR amplicons sequencing was performed by Major-bio Company (Beijing, China).

**Pathogenicity test**

The pathogenicity of the AAvV-6 isolate was determined by (i) mean death time (MDT) in 9-10-day old embryonated SPF eggs, (ii) Intra-cerebral pathogenicity index (ICPI) tests in 1-day-old SPF chickens (Merial, Beijing, China) and (iii) the intravenous pathogenicity index (IVPI) in six-week-old chickens (Merial, Beijing, China) according to the Office International des Epizooties (OIE) manual of standards (27).

**Hemagglutination (HA) and Hemagglutination Inhibition (HI) assay**

HA and HI assay were carried out according to the OIE guidelines (27). In HI tests, antisera against AIV H1, H5 and H9 (Weike Biotechnology, Harbin, China) and NDV
LaSota strain (Weike Biotechnology, Harbin, China), AAvV-4 (prepared by our lab) were used as references.

Phylogenetic analysis

Nucleotide sequences of AAvV-6 in this study were aligned through Mega X software with the sequences of representative AAvV-6 strains retrieved from Genbank database (http://www.ncbi.nlm.nih.gov/GenBank). The homology analysis was carried out using the maximum likelihood method through Megalign (DNASTAR). The phylogenetic consensus tree of complete F gene and viral whole genome sequence were generated a Maximum Likelihood method based on the General Time Reversible model through MEGA X software (28).

Results and discussion

Only one sample from mallard in 2015 at a wetland of Hubei province, China, produced suspect AAvV-6 positive result for the L gene by seminested PCR for paramyxoviruses, and then genome sequencing and phylogenetic analysis was conducted on this Hubei isolate (AAvV-6/mallard/Hubei/2015, GenBank accession number MH551526). Surveillance data were also observed by researchers who performed similar monitoring researches of wild birds and domestic poultry and identified AAvV-6 viruses (22, 29), such as the isolate rate of AAvV-6 in shorebirds was 2.4% in Germany during the year 2001 to 2002 (30) and in free-living wild ducks was 0.76‰ in South Korea during the winter season (November to February) between 2010 and 2014 (31). However, our current data clearly indicate that AAvV-6 is a lower isolated virus (the isolate rate was 0.1‰, 1/9, 872) in wild birds in China from the year 2013 to 2017 as compared with other AAvVs, such as AAvV-1 and -4 (24, 32). Meanwhile, no AAvV-6 isolate was obtained from domestic poultry. To our best knowledge, most of reported AAvV-6 viruses were isolated from waterfowl species, such as geese, teal, mallard and so on (Figure 1). Therefore, future AAvV-6 monitoring studies in domestic poultry should include more samples from LBMs as
well as their susceptibility to AAvV-6 viruses may differ from that of wild bird species.

The complete sequence obtained for the genome of this Hubei isolate consisted of 16,236 nucleotides, which is the same in size as the other reported AAvV-6 strains excepted with two isolates that is AAvV-6/duck/Italy/4524-2/07 and AAvV-6/red-necked_stint/Japan/8KS0813/2008 (16,230 nucleotides genome length). As same as other reported AAvV-6 isolates, the genome of this Hubei isolate also encoding seven structural proteins (NP, P, M, F, SH, HN and L) in the order 3’ leader-N-P-M-F-SH-HN-L-trailer 5’.

To further determine the virulence of the AAvV-6/mallard/Hubei/2015, the cleavage site in the fusion (F) protein, MDT, ICPI and IVPI were determined. For AAvV-6/mallard/Hubei/2015, deduced amino acid sequence of the cleavage site of the F protein, 112PAPEPR*L117, that contains a monobasic aa residue (arginine, R), is identical to most of AAvV-6 strains (Table2). However, there are several differences in the cleavage site of AAvV-6/duck/Italy/4524-2/07 and AAvV-6/red-necked stint/Japan/8KS0813/2008 (112SIREPR*L117) strains. In addition, this Hubei isolate was able to grown in chicken cell lines HD11 and DF-1 only with the addition of trypsin (data not shown). The MDT score was more than 168h, with no mortality after 7 days, as well as both ICPI and IVPI were 0, suggesting this Hubei isolate is a low virulent virus for chickens.

Interestingly, infective allantoic fluid of AAvV-6/mallard/Hubei/2015 only produced hemagglutination assay (HA) positive results after five passages in 9-10-day-old SPF embryonated chicken eggs. Meanwhile, the HA negative allantoic fluid of this Hubei isolate was negative for avian coronavirus (infectious bronchitis virus), avian avastrovirus and avian adenovirus serotype 4 (data not shown). Furthermore, the HA positive allantoic fluid from AAvV-6/mallard/Hubei/2015 was negative for avian influenza virus (AIV), NDV and AAvV-4 based on the HI test and PCR. However, the HA negative allantoic fluid of AAvV-6/mallard/Hubei/2015 restored the HA positive results when the virus pretreated with 1% trypsin for 30 min. But the nucleotide and aa (amino acid) sequences homologies of the HN gene between this novel
HA-negative Hubei isolate and a reported HA-positive isolate

AAvV-6/teal/Novosibirsk region/455/2009 (128 hemagglutination units (HAU) per 50 μl, GenBank No: KT962980) (22) was 100% (data not shown). Therefore, more research is needed to elucidate the molecular mechanisms of HA-negative AAvV-6 isolates in the field.

HA and HI assays are the classical methods to identify AAvV worldwide. Emerging non-hemagglutination AAvV-6 isolates that are not detected by traditional HI assay, suggesting it is critical to continuously update surveillance systems, comprising biosecurity measures, research and diagnostic assays, to protect domestic poultry across the globe.

To further study the genetic characteristics of this AAvV-6 virus, phylogenetic trees were generated based on the genome sequence and the complete F gene sequence, respectively. However, the complete F gene sequence is considered as the main target for molecular epidemiological investigations and genotyping of AAvV.

Meanwhile, a unified nomenclature and classification system of the NDV (AAvV-1) genotyping method based on the mean interpopulational evolutionary distances of the complete F gene sequence, with cutoff values more than 10% to assign new genotypes (33), will provide a more rational and scientific genotyping method for epidemiological studies of other serotypes AAvV. Therefore, 24 reported AAvV-6 isolates, including this Hubei isolate, were classified into two genotypes (I and II, with the mean interpopulational evolutionary distances between groups varying of 0.476 [47.6%] (Figure 1b; Table3A). Furthermore, the isolates within genotype I and II were grouped into two subgenotypes (Ia and Ib, with the mean interpopulational evolutionary distances between groups was 0.0485 [4.85%] and IIa and IIb, with the mean interpopulational evolutionary distances between groups was 0.0438 [4.385%]), respectively (Figure 1b; Table3B). To our interestingly, no similar genotype II isolates were detected in domestic poultry and wild birds of this study during the year 2015 to 2017, suggesting that no genotype II viruses were introduced into China from nearby country Japan and south Korea and limited virus circulation. Taken together, at least two genotypes (I and II) is existed within AAvV-6, based on the
evolutionary distances of the complete F gene. Meanwhile, highly similar genotype I and II AAvV-6 isolates from distinct bird species in different regions of America, Asian and Europe clearly demonstrate that AAvV-6 can be intercontinental and interspecies transmitted by wild migratory birds.

A tremendous amount of information about AAvV-1 is available on the characteristics and genetic relationships because of the severe disease it causes in poultries worldwide (32, 34-36). By comparison, the pathological phenomenon which AAvV-6 causes are relatively weak, just manifested in decreased egg production and mild respiratory disease in turkeys and was avirulent in chickens under normal circumstances (12, 22, 37). As a low virulence virus for chickens and low separation rate, the potential harm of the AAvV-6 is easily overlooked. However, in a recent study of the pathogenicity of two AAvV-6 variant isolates, AAvV-6/red-necked stint/Japan/8KS0813/2008 and AAvV-6/duck/Hong Kong/18/199/1977, as representative isolate of genotype I and II respectively, could replicate in respiratory tissues of infected mice and induce respiratory disease, sometimes resulting in death of the infected mice (38). Further researches about the virulence and susceptibility of AAvV-6 should be include more isolates, since differences of viral propagation properties in same cells were observed between the two variant isolates, owing to the change of host from red-necked stint to duck and sites where the two variant isolates separated at such a distance to some extent (39). Therefore, the identification and isolation of Hubei isolate is beneficial for the further understanding of HA-negative AAvV-6 in this study for the high sequence identity (99.1%-99.2%) with two Jilin isolates (AAvV-6/mallard/Jilin/190/2011 and AAvV-6/mallard/Jilin/127/2011) and the same cleavage site with other AAvV-6 isolates.

In conclusion, our current data indicates that AAvV-6 is distributed sporadically in wild migratory birds, not in domestic birds, in China during the year 2013 to 2017. Because the Russian Far East, eastern Mongolia, eastern Siberia, Alaska, Black Sea/Mediterranean, and Asian are linked by the migratory routes of the migratory
wild bird species investigated here, our conclusion should commonly be applicable to
other similar Asian AAvV-6 isolates. Bird shows, import, and trade are other potential
opportunities that easily allow the introduce of emerging isolates to susceptible
populations, unless strict control measures are complied. The AAvV-6 Hubei isolate
here is epidemiological connected to AAvV-6 from other geographical areas, such as
FarEast, Siberia, Kazakhstan and South Korea, therefore their presence implies the
potential risk of AAvV-6 being spread into the region and country, possibly causing to
domestic poultry and wild birds infections. It also necessitates the demand for
constant epidemiological surveillance for AAvV-6 isolates among domestic poultry
and wild birds in China to discover the potential spread of novel variants from other
countries and regions.

AUTHOR CONTRIBUTIONS

RY, XL, YC, and ZD designed and performed the study, drafted the manuscript and
analyzed the data. All authors collected clinical samples. RY, XL, ZD and YC carried out
experiments.

ACKNOWLEDGMENTS

This study was partly supported by three grants from the Key Project of Chinese
National Programs for Research and Development (2017YFD0500800,
2018YFD051404 and 2018YFD0500100), one grant from the Natural Science
Foundation of Jilin Province (20160414029GH), and three grants from the National
Science Foundation of China (31402195, 31472195 and 31570026).

References

1. Samal SK. The Biology of paramyxoviruses. Norfolk, UK: Caister Academic Press; 2011.
2. Kolakofsky D, Roux L. The Molecular Biology of Paramyxoviruses. In: Bercoff RP, editor. The
Molecular Basis of Viral Replication. Boston, MA: Springer US; 1987. p. 277-97.
3. Amarasinghe GK, Bao Y, Basler CF, Bavari S, Beer M, Bejerman N, et al. Taxonomy of the order
Mononegavirales: update 2017. Arch Virol. 2017 Aug;162(8):2493-504.
4. Thomazelli LM, de Araujo J, Fabrizio T, Walker D, Reischak D, Ometto T, et al. Novel avian paramyxovirus (APMV-15) isolated from a migratory bird in South America. PLoS One. 2017;12(5):e0177214.

5. Yamamoto E, Ito T, Ito H. Completion of full length genome sequence of novel avian paramyxovirus strain APMV/Shimane67 isolated from migratory wild geese in Japan. J Vet Med Sci. 2016 Nov 01;78(10):1583-94.

6. Lee HJ, Kim JY, Lee YJ, Lee EK, Song BM, Lee HS, et al. A Novel Avian Paramyxovirus (Putative Serotype 15) Isolated from Wild Birds. Front Microbiol. 2017;8:786.

7. Jeong J, Kim Y, An I, Wang SJ, Kim Y, Lee HJ, et al. Complete genome sequence of a novel avian paramyxovirus isolated from wild birds in South Korea. Arch Virol. 2017 Oct 16.

8. Thampaisarn R, Bui VN, Trinh DQ, Nagai M, Mizutani T, Omatsu T, et al. Characterization of avian paramyxovirus serotype 14, a novel serotype, isolated from a duck fecal sample in Japan. Virus Res. 2017 Jan 15;228:46-57.

9. Neira V, Tapia R, Verdugo C, Barriga G, Mor S, Ng TFF, et al. Novel Avulaviruses in Penguins, Antarctica. Emerg Infect Dis. 2017 Jul;23(7):1212-4.

10. Umali DV, Ito H, Katoh H, Ito T. Surveillance of avian paramyxovirus in migratory waterfowls in the San-in region of western Japan from 2006 to 2012. The Journal of veterinary medical science / the Japanese Society of Veterinary Science. 2014 Mar;76(3):423-30.

11. Cardenas-Garcia S, Diel DG, Susta L, Lucio-Decanini E, Yu Q, Brown CC, et al. Development of an improved vaccine evaluation protocol to compare the efficacy of Newcastle disease vaccines. Biologicals : journal of the International Association of Biological Standardization. 2015 Mar;43(2):136-45.

12. Saif YM, Barnes HJ. Diseases of poultry. 12th ed. / edited by Y.M. Saif /A.M. Fadly ... [et al.], associate editors. ed. Oxford: Blackwell; 2008.

13. Warke A, Stallknecht D, Williams SM, Pritchard N, Mundt E. Comparative study on the pathogenicity and immunogenicity of wild bird isolates of avian paramyxovirus 2, 4, and 6 in chickens. Avian Pathol. 2008 Aug;37(4):429-34.

14. Samuel AS, Subbiah M, Shive H, Collins PL, Samal SK. Experimental infection of hamsters with avian paramyxovirus serotypes 1 to 9. Veterinary research. 2011 Feb 23;42:38.

15. Briand FX, Henry A, Massin P, Jestin V. Complete genome sequence of a novel avian paramyxovirus. Journal of Virology. 2012;86(14):7710.

16. Chang PC, Hsieh ML, Shien JH, Graham DA, Lee MS, Shieh HK. Complete nucleotide sequence of avian paramyxovirus type 6 isolated from ducks. J Gen Virol. 2001 Sep;82(Pt 9):2157-68.

17. Tian Z, Chai H, Li F, Sun J, Chen G, Hu X, et al. Complete nucleotide sequence of avian paramyxovirus type 6 strain JL isolated from mallard ducks in China. J Virol. 2012 Dec;86(23):13112.

18. Xiao S, Subbiah M, Kumar S, De NR, Terregino C, Collins PL, et al. Complete genome sequences of avian paramyxovirus serotype 6 prototype strain Hong Kong and a recent novel strain from Italy: evidence for the existence of subgroups within the serotype. Virus Research. 2010;150(1):61-72.

19. Warke A, Appleby L, Mundt E. Prevalence of antibodies to different avian paramyxoviruses in commercial poultry in the United States. Avian Dis. 2008 Dec;52(4):694-7.

20. Yamamoto E, Ito H, Tomioka Y, Ito T. Characterization of novel avian paramyxovirus strain APMV/Shimane67 isolated from migratory wild geese in Japan. Journal of Veterinary Medical Science. 2015;77(9).

21. Warke A, Stallknecht D, Williams SM, Pritchard N, Mundt E. Comparative study on the
pathogenicity and immunogenicity of wild bird isolates of avian paramyxovirus 2, 4, and 6 in chickens.

22. Sobolev IA, Sharshov K, Yurchenko K, Korneev D, Glushchenko A, Alikina T, et al. Characterization of avian paramyxovirus type 6 isolated from a Eurasian teal in the intersection of migratory flyways in Russia. Arch Virol. 2016 Nov;161(11):3275-9.

23. Kim LM, King DJ, Suarez DL, Wong CW, Afonso CL. Characterization of class I Newcastle disease virus isolates from Hong Kong live bird markets and detection using real-time reverse transcription-PCR. J Clin Microbiol. 2007 Apr;45(4):1310-4.

24. Yin R, Zhang P, Liu X, Chen Y, Tao Z, Ai L, et al. Dispersal and Transmission of Avian Paramyxovirus Serotype 4 among Wild Birds and Domestic Poultry. Front Cell Infect Microbiol. 2017;7:212.

25. Tong S, Chen SW, Li Y, Pallansch MA, Anderson LJ. Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses. Journal of clinical microbiology. 2008 Aug;46(8):2652-8.

26. Zhang P, Ding Z, Liu X, Chen Y, Li J, Tao Z, et al. Enhanced Replication of Virulent Newcastle Disease Virus in Chicken Macrophages Is due to Polarized Activation of Cells by Inhibition of TLR7. Front Immunol. 2018;9:366.

27. Newcastle disease. Chapter 2.3.14. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2018, Paris, France: OIE, the World Organisation for Animal Health. 2018:555-74.

28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018 Jun 1;35(6):1547-9.

29. Hlinak A, Muhle RU, Werner O, Globig A, Starick E, Schirrmeyer H, et al. A virological survey in migrating waders and other waterfowl in one of the most important resting sites of Germany. J Vet Med B Infect Dis Vet Public Health. 2006 Apr;53(3):105-10.

30. Choi KS, Kim JY, Lee HJ, Jang MJ, Kwon HM, Sung HW. Genetic Diversity of Avian Paramyxovirus Type 6 Isolated from Wild Ducks in the Republic of Korea. J Wildl Dis. 2018 Jul;54(3):558-63.

31. Zhang P, Xie G, Liu X, Ai L, Chen Y, Meng X, et al. High Genetic Diversity of Newcastle Disease Virus in Wild and Domestic Birds in Northeastern China from 2013 to 2015 Reveals Potential Epidemic Trends. Appl Environ Microbiol. 2015 Dec 28;82(5):1530-6.

32. Diel DG, da Silva LH, Liu H, Wang Z, Miller PJ, Afonso CL. Genetic diversity of avian paramyxovirus type 1: proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2012 Dec;12(8):1770-9.

33. Xue C, Xu X, Yin R, Qian J, Sun Y, Wang C, et al. Identification and pathotypical analysis of a novel VIk sub-genotype Newcastle disease virus obtained from pigeon in China. Virus Res. 2017 Jun 15;238:1-7.

34. Xue C, Cong Y, Yin R, Sun Y, Ding C, Yu S, et al. Genetic diversity of the genotype VII Newcastle disease virus: identification of a novel VIIj sub-genotype. Virus Genes. 2017 Feb;53(1):63-70.

35. Shitru I, Joannis TM, Odaibo GN, Olaleye OD. Newcastle disease in Nigeria: epizootiology and current knowledge of circulating genotypes. Virusdisease. 2016 Dec;27(4):329-39.

36. Alexander DJ. Newcastle disease and other avian paramyxoviruses. Rev Sci Tech. 2000 Aug;19(2):443-62.
38. Bui VN, Trinh DQ, Abao LNB, Ozeki Y, Runstadler J, Nakamura K, et al. Evaluation of the replication and pathogenicity of a variant avian paramyxovirus serotype 6 in mice. Arch Virol. 2017 Jul 06.

39. Bui VN, Mizutani T, Nguyen TH, Trinh DQ, Awad SS, Minoungou GL, et al. Characterization of a genetic and antigenic variant of avian paramyxovirus 6 isolated from a migratory wild bird, the red-necked stint (Calidris ruficollis). Archives of virology. 2014 Nov;159(11):3101-5.
Figure 1. Phylogenetic analysis of whole genome sequence (A) and complete F gene sequences (B) of AAvV-6.

The evolutionary history was inferred by using the Maximum Likelihood method based on the General Time Reversible model. The tree with the highest log likelihood (-48402.50) (A) and (-5766.82) (B) is shown. Initial tree(s) for the heuristic search were obtained by applying the Neighbor-Joining method to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 10 (A) and 24 (B) nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 16192 (A) and 1638 (B) positions in the final dataset. Evolutionary analyses were conducted in MEGA X.
| Name | Primer sequence (5′-3′) | Length (bp) |
|------|-------------------------|-------------|
| 1-F  | GCAGCCCTTTGTAAATAGAGAC | 494         |
| 1-R  | AAATGCCATGTAGGGTCCATC  |             |
| 2-F  | AACACGACGCGATATTATGCC  | 1049        |
| 2-R  | TCGTGTGGCCCTTACTGTC    |             |
| 3-F  | ACACCCCTCAGAGAGATCCA   | 979         |
| 3-R  | TAATCAGCGTCAAGAGTGTCCA |             |
| 4-F  | CTCACCCTGACTCTGACA     | 2455        |
| 4-R  | CGCTTGAAAGTTGCAATAGGTCC |        |
| 5-F  | AG GTA TCTAACAGCCCAACCA | 2392       |
| 5-R  | GGGCATTCCCTCCAGTCC     |             |
| 6-F  | TAGCAGCCACAGAATCAGGT   | 2387        |
| 6-R  | TTACTGCCCCCAGTTAGCCT   |             |
| 7-F  | AAGCAGCATACTTAAACCAC   | 1977        |
| 7-R  | CGCTCAGATCTCAACTAAGTCA |             |
| 8-F  | CTCCCCGGTCTCTAGCAAGG   | 2396        |
| 8-R  | TCCCCGGATTCCCTTACGTC   |             |
| 9-F  | GGAATACAAACTCTCGAGGCTA | 536         |
| 9-R  | TCAATAGTCTCATGGCTAGTCT |          |
| 10-F | ATATGCTTGGGGAATTACGAGA | 486         |
| 10-R | CACATCTGCGCGTGCTCT     |             |
| 11-F | AGGAAACCATATGCTTGAGGA  | 724         |
| 11-R | GTACTCGGATCATCTGTTTT   |             |
| 12-F | CTGCATCACCCCTTGGCAGCAT | 977         |
| 12-R | CTAAAAAGGAGAATAGTAGGAA |             |
| 13-F | CAGGGTTATGGCAGGTTCTA   | 1458        |
| 13-R | GAGATGTTCCAGCTCCAAGG   |             |
| 14-F | TTTTACACCTTAAAGGCGAAAC | 1759        |
| 14-R | AGCACCTGCATGATTCCTG    |             |
| GenBank accession numbers | Strain | Cleavage site |
|--------------------------|--------|---------------|
| KF267717.1               | AAvV-6/mallard/Jilin/127/2011 | PAPEPR ↓ L |
| JX522537.1               | AAvV-6/mallard/Jilin/190/2011 | PAPEPR ↓ L |
| KP762799.1               | AAvV-6/red-crested pochard/Balkhash/5842/2013 | PAPEPR ↓ L |
| KT962980.1               | AAvV-6/teal/Novosibirsk region/455/2009 | PAPEPR ↓ L |
| NC003043.1               | AAvV-6/duck/Taiwan/Y1/98 | PAPEPR ↓ L |
| EF569970.1               | AAvV-6/Goose/Fareast/4440/2003 | PAPEPR ↓ L |
| EU622637.2               | AAvV-6/duck/Hong Kong/18/199/77 | PAPEPR ↓ L |
| JN571486.1               | AAvV-6/mallard/Belgium/12245/07 | PAPEPR ↓ L |
| AB759118.1               | AAvV-6/red-necked stint/Japan/8KS0813/2008 | SIREPR ↓ L |
| GQ406232.1               | AAvV-6/duck/Italy/4524-2/07 | SIREPR ↓ L |
| MH551526                 | AAvV-6/mallard/Hubei/2015 | PAPEPR ↓ L |
Table 3 Estimates of evolutionary distances between AAvV-6 genotypes (A) and subgenotypes (B).

| Genotype | I         | II        |
|----------|-----------|-----------|
| I        |           | 0.476     |
| II       |           | (0.437)   |

| Subgenotype | Ia        | Ib        |
|-------------|-----------|-----------|
| Ia          | 0.0102    |           |
| Ib          | (0.0099)  | 0.0485    |

| Subgenotype | Ilb       |
|-------------|-----------|
| Ilb         | 0.0438    |

The number of base substitutions per site from averaging over all sequence pairs between groups are shown. Standard error estimate(s) are shown above the diagonal and were obtained by a bootstrap procedure (500 replicates). Analyses were conducted using the Maximum Composite Likelihood model. The rate variation among sites was modeled with a gamma distribution (shape parameter =1). The analysis involved (a) 24 nucleotide sequences (I, n=13; II, n=11), (b) 13 nucleotide sequences (Ia, n=8; Ib, n=4) and 11 nucleotide sequences (IIa, n=5; IIb, n=6). Codon positions included were 1st+2nd+3rd+Noncoding. All positions containing gaps and missing data were eliminated. There were a total of 1638 positions in the final dataset. Evolutionary analyses were conducted in MEGA X.
