Technologies Enabling Situational Awareness During Disaster Response: A Systematic Review

Tara Kedia, MD; Jeremy Ratcliff, BS; Megan O’Connor, BS; Sophia Oluic, MPH; Michelle Rose, MS; Jeff Freeman, PhD, MPH; Kaitlin Rainwater-Lovett, PhD, MPH

ABSTRACT

Situational awareness (SA) is critical to mobilizing a rapid, efficient, and effective response to disasters. Limited by time and resources, response agencies must make decisions about rapidly evolving situations, which requires the collection, analysis, and sharing of actionable information across a complex landscape. Emerging technologies, if appropriately applied, can enhance SA and enable responders to make quicker, more accurate decisions. The aim of this systematic review is to identify technologies that can improve SA and assist decision-making across the United States Government and the domestic and international agencies they support during disaster response operations. A total of 1459 articles and 36 after-action reports were identified during literature searches. Following the removal of duplicates and application of inclusion/exclusion criteria, 302 articles and after-action reports were included in the review. Our findings suggest SA is constrained primarily due to unreliable and significantly delayed communications, time-intensive data analysis and visualization, and a lack of interoperable sensor networks and other capabilities providing data to shared platforms. Many of these challenges could be addressed by existing technologies. Bridging the divide between research and development efforts and the operational needs of response agencies should be prioritized.

Key Words: disaster response, emergency responders, multi-agency coordination, situational awareness, technology

From 2004 to 2014, the International Federation of Red Cross and Red Crescent Societies estimated that, on average, more than 12 disasters occurred every week around the globe. Some of these disasters had catastrophic consequences. In the United States, Hurricanes Katrina, Harvey, and Maria collectively killed at least 4500 people and caused $376 billion dollars in damages. Unfortunately, these catastrophic events are becoming more common due to a convergence of anthropomorphic and climatological factors. Climate change is driving an increase in the frequency and severity of natural disasters, whether measured by number of events or economic damage, while the recent rise in intra-state warfare and the interconnectedness of the global supply chain have increased vulnerability to man-made disasters. In addition, a global movement toward urbanization increases the potential impact of disasters as more individuals become exposed to the same hazards. Currently, 55% of the world’s population lives in urban areas, and that number is expected to rise to 68% by 2050. Already, 60% of cities with 500,000+ citizens are at a marked risk of a natural disaster, and urban settlements in low- and middle-income countries in Asia, South America, and Africa, the regions with the highest projected rates of urbanization, are located in areas with uniquely high risk to natural disasters. These heightened risks necessitate novel approaches to decrease morbidity and mortality driven by disasters.

The United States National Response Framework (NRF) defines the disaster lifecycle as comprising prevention, protection, mitigation, response, and recovery. Prevention, protection, and mitigation all take place before a disaster’s occurrence, while recovery occurs after the acute response has subsided. Response begins the moment a disaster affects an area. Disasters are fast moving, highly dynamic events, and the response can involve a wide range of actors, including state and local authorities, federal and international agencies, and the populations affected. Response is limited by time, capital, and human resources, which drive the need to quickly and efficiently mobilize limited supplies and personnel. Effective mobilization, particularly between agencies with disparate priorities and objectives, requires emergency managers to have a complete understanding of the situation in the field. This knowledge framework is frequently referred to as situational awareness (SA). In a disaster response,
Emergency Operations Centers (EOCs) act as information hubs and are responsible for the attainment and sharing of SA vertically and horizontally across decision-makers and actors in the field. SA is particularly challenging to obtain during a disaster due to logistical challenges in collecting and disseminating complete and high-quality information from first responders to EOCs, the constantly shifting needs and resources in the field, and organizations using different information sharing platforms. With incomplete SA, the decisions made within EOCs will be inefficient and potentially ineffective, as they target a situation different to the one at hand. The 2004 Indian Ocean Tsunami, which resulted in the death of over 227,000 people, was a somber illustration of the consequences of failing to achieve SA. The response was plagued by poor SA from the moment the tsunami was triggered, including the lack of a tsunami warning system, the inability of the Pacific Tsunami Warning Center to contact government officials in Indonesia, and the absence of a system to alert the public once the tsunami was identified. Domestically, this phenomenon was also demonstrated during the Deepwater Horizon response, when the EOC had incomplete and excessively technical data on the oil flow rate and well capacity, the locations of first responders, and the availability of resources, resulting in the inappropriate use of a well-sealing procedure that failed to halt the oil spill.

Emerging technology, if appropriately applied, has the potential to revolutionize response operations. A prior review published by 2 authors involved in this study (J.R., J.F.) found that the use of information and communication technologies in disaster response is generally limited in geographical application, fails to identify the intended end-users, and does not address the challenges with implementing the technology in the field. However, this prior study was limited by the lack of review of after-action reports (AARs). For example, the Deepwater Horizon AAR highlighted a lack of interoperability between technologies and information sharing platforms, challenges in interpreting and storing large amounts of gathered data, and time delays in processing data, resulting in unactionable information being delivered to decision-makers. This indicates that the technologies currently in use are not adequate to obtain SA, and may limit the speed, efficiency, and effectiveness of response efforts, but these specific challenges may not have been appreciated using the previous methodology, motivating this present study.

An inventory of existing SA technologies would allow response agencies to match their needs to available technologies. Likewise, identification of the technological capabilities that are currently unavailable would allow for strategic investment in these technologies. However, no systematic review of SA technologies relevant to disaster response was found in the academic literature. Therefore, the objectives of this review were to: identify technologies for gaining SA that are currently being applied to disaster response or are in development, classify these technologies based on their maturity level for fielding, and determine the SA needs of response agencies relative to the technologies currently available or emerging.

METHODS
The authors conducted a systematic literature review using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Guidelines to identify technologies currently being used to enable SA during disaster response. This review included published journal articles, conference proceedings, and AARs describing SA technologies undergoing research, development, testing, and evaluation in real or simulated disaster responses.

Searches for journal articles and conference proceedings were conducted in May 2019 in the following databases: Web of Science, Embase, CINAH, BIOSIS, PubMed, and Scopus. Searches included the terms listed in Table 1. English language, original research, and conference reports published between the years 2000 and 2019 were included if describing technology for SA in a real or simulated disaster. To facilitate the management of the systematic review, the Covidence platform was used to import citations and screen titles and abstracts. Covidence uploaded citations and removed duplicate entries among the databases, permitting more efficient screening and review of reports. All initial steps, including title and abstract screenings, were independently conducted by a random selection of 2 individuals (T.K., J.R., M.O., S.O., M.R., K.R.L.), with conflicts resolved by a third individual. All steps from assessment of full texts for inclusion onward were performed by a single individual, and data were extracted using a standardized Microsoft Access database.

Searches for AARs were conducted in Columbia International Affairs Online, Policy File Index, Homeland Security Digital Library, the Defense Technical Information Center, National Technical Information Service, Transport Research International Documentation, Google, and Global Health Database. AARs were screened separately from journal articles and conference proceedings using the same inclusion and exclusion criteria (Table 1).

Each full text was reviewed and the following data were extracted from each record: type (Supplemental Tables S1 and S8), purpose (Supplemental Table S2), and maturity of the technology (Supplemental Table S3); organization potentially using the technology (Supplemental Table S4); intended technology end-user (Supplemental Table S5); type of disaster in which technologies were or could be applied (Supplemental Table S6); and gaps in obtaining adequate SA during disaster response (Supplemental Tables S7 and S9). These “gaps” were defined as inadequate or absent technological capabilities, processes, systems, or knowledge during disaster response that were explicitly described in an article or AAR. For each full
were included for data extraction (was added to accommodate health-related
was removed to accommodate disas-
in which
P
A notable exclusion from the
S10
https://doi.org/10.1017/dmp.2020.196
to cope with using its own resources
which exceeds the ability of the affected community or society
material, economic or environmental losses and impacts,
in which
a serious disruption of the function-
a major disaster
29
A notable exclusion from the
The Federal Emergency Management
Agency’s (FEMA’s) response is governed by the Stafford
Act, which controls the legal definition of a “major disaster”
and determines FEMA’s ability to provide federal funding and
respond to a domestic disaster.29 A notable exclusion from the
Stafford Act definition is a health-related disaster, such as
an infectious disease epidemic. Another definition of interest was
from the United Nations Office for Disaster Risk Reduction,
which defines a disaster as “a serious disruption of the function-
ing of a community or society involving widespread human,
material, economic or environmental losses and impacts,
which exceeds the ability of the affected community or society
to cope with using its own resources”.30 Unlike the Stafford
Act, this definition includes health-related disasters; however,
it also includes exclusively economic disasters such as the 2008
financial crisis, which would not be considered a disaster by
most response agencies. Ultimately, no perfect definition
existed that precisely mapped to the scope of this project,
so an established definition was adapted. Not all agencies’
response activities are intractably linked to their definition
of a disaster; however, it is important to define the scope of
focus for this review.

For the purposes of this review, the term disaster was derived
from the definition in the Stafford Act,29 in which “determi-
nation of the President” was removed to accommodate disas-
ters taking place outside of the United States, while “epidemic
or outbreak” was added to accommodate health-related
disasters (shown in italics in Table 2). The definition of SA
was taken directly from the First Edition of the NRF.31
Technology was defined ad hoc, as definitions identified in
standard dictionaries (eg, “the practical application of knowl-
dge especially in a particular area”32) were nonspecific.
The exact definitions used in the present review served as inclusion
criteria (Table 2).

A total of 1459 articles and 36 AARs were identified during
literature searches. Following removal of 284 duplicate
records, exclusion of 667 records during abstract screening,
and exclusion of 242 records during full-text review, 302
records33–333 were included for data extraction (Figure 1).
The most common reason for exclusion of a record during
full-text review was due to it being a review study or opin-
on/editorial.

The included articles and AARs skewed to recent years
(Supplemental Figure S1), with 79% of the articles and
90% of the AARs being published in the last decade. The
majority of technologies described in articles were related to
responses to natural disasters (238 of 282 included articles, 84%)
(Figure 2). The natural disasters to which the greatest
proportions of technologies were applicable were hydrological

TABLE 1

Search Terms and Exclusion Criteria for Abstract Review
Systematic review search terms
(disaster OR cyclone OR hurricane OR tornado OR storm OR high water OR wind driven water OR tidal wave OR tsunami OR earthquake OR volcanic eruption OR landslide OR mudslide OR snowstorm OR drought OR fire OR flood OR explosion OR terrorism OR terrorist attack OR pandemic OR epidemic OR outbreak) AND (“situation* awareness” OR “data integration” OR “integrated information” OR “information integration” OR “knowledge integration” OR “continuous monitoring”) AND (technology OR dashboard OR ICT OR communications OR “mobile applications” OR machinery OR equipment OR software)
Exclusion Criteria
Non-English language
No English translation of full text exists, or English translation was completely unintelligible.
Review/OpEd
Article did not report new concepts or primary or original data collection. (Note: this criterion was not used for AARs.)
No or unclear SA capabilities
SA was mentioned in abstract but not directly incorporated into the technology. Notification systems for the public were excluded.
No or unclear technology
No or poorly described technology.
Other
Did not meet the inclusion criteria or objective of the review and did not align with an exclusion criterion.

Abbreviations: AAR, after action report; SA, situational awareness.
(153 articles) and geological disasters (142 articles). In addition, a large number of technologies from the articles could be applied to accidental or deliberate disasters (163 articles). These categories were not exclusive, and technologies were sorted into 1 or more categories, depending on the use case described by the article’s authors, or use cases envisioned by the systematic review team.

Technologies were categorized based on the technology type and purpose. Technology types varied, with the most common...
types in articles being data analysis (52%) and sensor technologies (42%), while the most common types in AARs were communications (90%) and user interface technologies (55%) (Figure 3). Communications and user interface technologies were significantly more likely to be mentioned in AARs, while data analysis technologies were significantly more likely to be mentioned in articles. In addition, technologies that performed data aggregation and data generation or collection were significantly more likely to be mentioned in AARs, and technologies that performed data interpretation were significantly more likely to be mentioned in articles (Supplemental Figure S2).

Most technologies were not associated with certain disaster types, with the exception of robotics technology. Robotics technology was significantly more likely to be mentioned in relation to accidental or deliberate disasters in articles (Figure 4), such as unmanned vehicles that could remotely sense radiation in a nuclear disaster or identify an oil spill in the ocean. There was no clear trend in the technology types mentioned over time.

Technologies were also categorized by their maturity, their intended end-user within a disaster response agency, and by the organizations likely to use the technology, none of which were mutually exclusive. End users and organizations included those explicitly reported in the article, as well as those who could potentially leverage the technology. The majority of technologies were intended for use by EOC staff (84% in articles and 90% in AARs). In addition, technologies intended for use by first responders were significantly more likely to be mentioned in AARs (Supplemental Figure S3). The most common organization in which technologies could be applied was the Department of Homeland Security (DHS) (72%) (Figure S4). The majority of technologies in articles were still immature, being at the pilot/proof of concept stage or earlier (79%) (Supplemental Figure S5). The early technology maturity level was similar across all technology categories (Figure 5).

Gaps explicitly mentioned by the authors that might limit the use of a technology were mapped to 10 categories. These gap categories were composed of numerous individual gaps (Supplemental Table S9). The 3 most common gap categories were inadequacies in communications and connectivity (95% of AARs, 21% of articles), analysis and visualization (35% of AARs, 17% of articles), and interoperability and sensor capabilities (35% of AARs, 16% of articles) (Figure 3). Gaps in
architecture, communications and connectivity, infrastructure, and training were significantly more likely to be mentioned in AARs.

There was no clear trend in the gap categories over time. Most gaps were not clearly associated with certain types of disasters, with the exception of health gaps, which were significantly more likely to be mentioned in relation to natural disasters in articles (Figure 4).

DISCUSSION
This systematic review defined disasters similarly to the Stafford Act, with the addition of health-related disasters. For the purposes of AARs and potential applicability of these findings, disasters located anywhere in the world were included. The included records skewed to more recent years, likely due to the increasing volume of publications over time, consistent with the trends seen in the initial 1495 reports identified in the literature searches.

The finding that the majority of technologies were intended to be used by EOCs is likely reflective of the scoping of this systematic review, which focused on technologies providing SA to disaster responders, and excluded technologies aimed for use by the general public. In addition, AARs were significantly more likely to mention technologies for first responders, which may be because AARs provide detailed analyses of all participants in a response, whereas articles do not always describe all potential end-users or use cases of their technologies. It is also possible that this discrepancy exists because of inadequate research on technologies for first responders, such as safe and timely recall and evacuation of first responders, tracking the locations and status of fellow first responders and required supplies, and reliable communication of data to and from the EOC. The most frequently mentioned sector in which technologies could be implemented was DHS, the parent organization to FEMA and the US Coast Guard, which are among the federal agencies most frequently involved in disaster response activities in the United States. SA technologies identified in this review were relevant to all types of disasters, with all types of disasters being well-represented.

Similar types of gaps were described over time, suggesting chronic issues in disaster response technologies. However, there was inadequate data to determine whether these gaps were resolved over time. The most prevalent gap in articles...
and AARs was communications and connectivity, followed by analysis and visualization, and interoperability and sensor capabilities. Communications, data generation/collection, user interface, and data aggregation technologies were significantly more frequently mentioned in AARs, suggesting that the research community may not be prioritizing the areas of greatest need by the operations community. While the majority of AARs described using the first 3 technologies, the technologies were inadequate; thus, the gap persists.

Meanwhile, research on data aggregation technologies was limited, which may reflect a perception among researchers that...
Technologies Enabling SA During Disaster Response

FIGURE 5

Technology Categories Versus Technology Maturity Levels (Articles Only, n = 282 Articles).

high-quality data aggregation technologies already exist. Data analysis, interpretation, and identification technologies were mentioned by very few or no AARs, likely because AARs were inadequately detailed. In addition, gaps in communications and connectivity, infrastructure, training, and architecture were mentioned more often in AARs than in articles. Given the scope of the systematic review, which focused on technologies, it is possible that not all articles mentioning gaps
in infrastructure, training, and architecture would be located by the search terms used. However, the search terms did identify articles focusing on communications and connectivity gaps. In other words, disaster response agencies were frequently reporting gaps in communications and connectivity, but academics and researchers were not, suggesting a disconnect between the state of the science and the technologies being used by disaster response agencies.

Communications and connectivity challenges, such as damaged or absent infrastructure, inadequate bandwidth for data to be transmitted from first responders in the field to the EOC, and high call and email volumes are extremely common during disasters. Articles in this review highlighted promising potential solutions to these challenges, such as delay-tolerant networks, mobile ad-hoc networks, including those using drones, ultra-wideband technology, and more. However, they are largely still immature. Additional development of these technologies to reach a higher maturity level and additional investment into communications infrastructure, such as redundant systems, are needed to improve SA during disaster response.

Data analysis was identified as another significant challenge during disaster response. For example, responses to 2 of the most salient recent disasters, the Deepwater Horizon incident and the Fukushima nuclear disaster, experienced difficulty with processing, modeling, and understanding highly technical data; inadvertent omission of certain sensor data in models that might have predicted the Tōhoku tsunami; and an overwhelming volume of data to be processed. These issues required substantial investments of time, energy, and resources. The AAR focusing on the 2017 wildfires in Sonoma, California, specifically noted that the Geographic Information Systems technology being used during the response was outdated. These findings suggest limited penetration of novel data analysis technologies among disaster response agencies, and present an opportunity for disaster response agencies to increase the efficiency and effectiveness of their handling and interpretation of data through adoption of these technologies.

For example, while a minority (15%) of AARs reported using data analysis technologies during disaster response, newer types of these technologies now exist, such as those using artificial intelligence and machine learning (AI/ML), which have the potential to autonomously ingest, analyze, generate anomaly alerts, and make inferences and conclusions about large volumes of data in real time. Examples included ML analysis of social media posts to detect and localize an incident and machine vision-based detection of anomalies, such as fire, and prediction about the severity of disaster damage. If implemented, AI/ML has the potential to revolutionize SA during disaster response operations. Articles also mentioned data analysis architectures, such as fog and edge computing, that enable data processing and analysis (including sensor data and video footage) close to the field collection site, rather than requiring transmission to a central server in the EOC for integration and analysis and transmission back to first responders, thus saving valuable time during a disaster response.

While sensor capabilities were identified as another gap during response activities, many articles described technologies to overcome these limitations. Examples included remote sensors, such as satellites and drones, to detect conditions on the ground in difficult-to-access regions; infrared sensors that enable image detection in low-visibility conditions, such as nighttime, smoke, or bad weather; and Radio Frequency Identification (RFID), which is a low-power device that can track the location of disaster supplies and victims, as a replacement for spray-painted Building Marking Systems, and more. Other articles described architectures for integrating sensor data from different networks in real time, thus providing timely and common SA to all response agencies.

Finally, AARs identified data aggregation technologies, such as WebEOC and other shared platforms, as a major area for improvement. These shared platforms were not portable into the field, meaning that first responders used paper to collect data, and they often required a high degree of customization before use. Other challenges with shared platforms were related to gaps in communications and connectivity, training, and interoperability. For example, AARs reported numerous users whose accounts had not been authorized to access a shared platform, inaccurate training of staff to effectively use the shared platform, resulting in paper-based data aggregation in EOCs, poor interoperability between computing infrastructure, and variable data security requirements at different agencies, resulting in ineffective data sharing.

In some cases, a shared platform was not available during the response. It may be valuable to conduct additional research and development to make such data aggregation platforms more user-friendly to limit the amount of training required for their effective use, and to enable their use in the field. For disaster response agencies and all levels of government, it would be important to establish data use agreements proactively, and to either ensure interoperability between their platforms or switch to a common platform, well in advance of the onset of a disaster. Other key enablers of effective shared platforms include addressing gaps in communications and connectivity, training of staff, and interoperability between sensors and data aggregation platforms.

These handful of examples suggest that there are numerous technologies that can fill gaps in disaster response operations. Introducing newer versions of all types of technologies into disaster response activities has the potential to substantially improve the ability of disaster response agencies to acquire...
real-time information, efficiently analyze the large volumes of data they receive, share information with one another on a common platform, and quickly request and deploy relevant resources during a disaster. In other words, more rapidly transitioning new technologies from researchers to disaster response agencies has the potential to transform disaster response agencies’ ability to gain SA, and thus to respond efficiently and effectively during a disaster.

While some technologies mentioned in articles were at the implementation stage, the majority of technologies across all technology categories were immature, which suggests an ongoing challenge in transitioning technologies from research and development to the field. Additionally, this highlights a gap in the systematic evaluation of technologies that have been implemented at large scales. Assessments of mature technologies would aid agencies that seek technologies to expand their capabilities. An important limitation of this systematic review is that the majority of data sources were published research articles or conference proceedings, which are skewed toward reporting immature technologies. Technologies that are beyond early research and development phases, but have yet to be commercialized, were likely excluded by virtue of not having been published. It is also possible that there was variability in the extraction of data. Because the search terms were intended to capture technologies, this systematic review was unable to capture gaps related to policy, training, and other non-technology issues. An important area of further research may include assessing whether a technology gap actually exists among disaster response agencies, or if gaps in policy or training prevent responders from knowing about or properly using available technology. As only English-language articles and AARs were captured in this review, it is likely that both the breadth and maturity of technologies that exist in reality is greater than is indicated by this systematic review. Importantly, the newest, most cutting-edge research will not be captured by a systematic review, particularly in technology fields, due to time lags in writing and publishing of journal articles.

CONCLUSIONS

Timely, accurate, and complete SA is a key enabler of successful disaster response, where the situation is changing rapidly, resources are limited, and different agencies must coordinate their activities. While policy and governance are the foundation of effective disaster response, technologies have the potential to provide rapid and shared SA for response agencies. This systematic review aimed to identify existing technologies that can be used to obtain SA during a disaster response, classify them based upon maturity level, and compare existing technologies with identified technological gaps in disaster response activities. This review identified a substantial divide between what research shows is the state of the science and the technologies that disaster response agencies are currently using. In addition, while the number of AARs was small, many technological gaps experienced by disaster response agencies seemed to be chronic issues. Further research should investigate whether these gaps are persisting over time.

Moreover, many of these challenges could be partially or fully addressed by implementing existing technologies, particularly in the areas of communications, data analysis, interoperability, and user interfaces. For example, communications and connectivity was by far the most commonly-reported gap in AARs, and was significantly less frequently reported as a gap in articles. Investing in research and maturation of, and implementing existing mature communications technologies, would profoundly impact the ability of EOCs and first responders to share information reliably and rapidly in settings with damaged or absent infrastructure. There is also a need for more research evaluating the large-scale implementation of technologies, which could aid in the uptake of mature technologies by agencies. More efficient acquisition and implementation of relevant novel technologies by disaster response agencies are recommended to improve the speed, quality, and coordination of SA in disaster response.

About the Authors

Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland (Dr Kedia, Ms O’Connor, Ms Oliver, Ms Rose, Dr Freeman, Dr Rainwater-Lovett) and Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom (Mr Ratcliffe).

Correspondence and reprint requests to Kaitlin Rainwater-Lovett, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD (e-mail: kaitlin.lovett@jhuapl.edu).

Acknowledgments

The team acknowledges helpful discussion with several individuals, particularly including Christine Fox, Matt Schaffer, and Jen Dailey.

Funding

This study was internally funded by the Johns Hopkins University Applied Physics Laboratory.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/dmp.2020.196

REFERENCES

1. Hamza M. World disasters report: focus on local actors, the key to humanitarian effectiveness. International Federation of Red Cross and Red Crescent Societies. https://irc-media.org/interactive/wp-content/uploads/2015/09/1293600-World-Disasters-Report-2015_en.pdf. Published 2015. Accessed January 18, 2020.

2. Brown DP, Beven JL, Franklin JL, et al. Atlantic hurricane season of 2008. Mon Weather Rev. 2010;138(5):1975-2001. doi: 10.1175/2009MWR3174.1

3. Jonkman SN, Godfrey M, Sebastian A, et al. Brief communication: loss of life due to Hurricane Harvey. Nat Hazards Earth Syst Sci. 2018;18(4): 1073-1078. doi: 10.5194/nhess-18-1073-2018
4. Santos-Burgoa C, Goldman A, Andrade E, et al. Ascertaining of the estimated excess mortality from Hurricane Maria in Puerto Rico. George Washington University. https://hsrc.himmelfarb.gwu.edu/gphs_global_facpubs/288. Published 2018. Accessed January 16, 2020.

5. NOAA Office for Coastal Management. Fast facts: hurricane costs. https://www.coast.noaa.gov/states/fast-facts/hurricane-costs.html. Published 2019. Accessed January 12, 2020.

6. Otto FEL, Philip S, Kew S, et al. Attributing high-impact extreme events across timescales: a case study of four different types of events. Clim Change. 2018;149(3-4):399-412. doi: 10.1007/s10584-018-2258-3

7. Intergovernmental Panel on Climate Change. Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/. Published 2012. Accessed January 16, 2020.

8. Coroneo M, Lamperti F, Keller K, et al. Evidence for sharp increase in the economic damages of extreme natural disasters. Proc Natl Acad Sci U S A. 2019;116(43):21450-21455. doi: 10.1073/pnas.1907826116

9. Sazyia TS, Watts S, O'Mahony A, et al. What are the trends in armed conflicts, and what do they mean for U.S. defense policy? 2017. https://www.rand.org/pubs/research_reports/RR1904.html. doi: 10.7249/rr1904

10. Umar M, Wilson M, Heyl J. Food network resilience against natural disasters: a conceptual framework. SAGE Open. 2017;7(3). doi: 10.1177/2158244017717570

11. United Nations: Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. Herndon, VA: United Nations Publications. 2019. doi: 10.18356/869e9956e-en

12. United Nations. The World’s Cities in 2018 (ST/ESA/SER.A/417). www.un.org/en/development/desa/publications/pdf/urbanization/the_worlds_cities_in_2018_data_booklet.pdf. Published 2018. Accessed January 16, 2020.

13. Balk D, Montgomery M, McGranahan G, et al. Mapping urban settlements and the risks of climate change in Africa, Asia and South America. Population Dynamics and Climate Change. 2009(January):80-103. http://www.unfpa.org/public/home/publications/pd/4500. Accessed January 16, 2020.

14. US Department of Homeland Security: Federal Emergency Management Agency. National Response Framework: Fourth Edition. https://www.fema.gov/media-library/assets/documents/117791. Published 2019. Accessed January 18, 2020.

15. Telford J, Cosgrave J. Joint evaluation of the international response to the Indian Ocean tsunami: synthesis report. Tsunami Evaluation Coalition (TEC). https://www.slick.cs/slet/contentassets These/08/97c46c92a60850a353/ask/joint-evaluation-of-the-international-response-to-the-indian-ocean-tsunami_3141.pdf. Published 2006. Accessed March 4, 2020.

16. Ozer P, de Longueville F. The tsunami in South-East Asia – a retrospective analysis of the management of an apocalyptic natural disaster. Cybengeo Eur J Geogr Environ Nature, Landsce. 2011;560: doi: 10.4000/cybergeo.24607

17. US Coast Guard Incident Specific Preparedness Review (ISPR) Team. Final Action Memorandum - Incident Specific Preparedness Review (ISPR) Deepwater Horizon Oil Spill. 2011. doi: 10.1017/CBO9781017715324.004

18. Freeman JD, Blacker B, Hart G, et al. Use of big data and information and communications technology in disasters: an integrative review. Proc 2014 11th Int Bhurban Conf Appl Sci Technol IBCAST 2014. 2018:85-90. doi: https://www.fema.gov/pdf/emergency/nrf/nrf-core.pdf

19. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097

20. Covidence. https://www.covidence.org. Accessed January 24, 2020.

21. Columbia University Press. Columbia International Affairs Online (CIAO). https://cup.columbia.edu/reference/ciao. Accessed May 29, 2019.

22. ProQuest. Policy File Index. https://search.proquest.com/policyfile/. Accessed May 29, 2019.

23. Center for Homeland Defense and Security. Homeland Security Digital Library. https://www.hsdl.org/>. Accessed May 29, 2019.
83. Hsu PH, Wu SY, Lin FT. Disaster management using GIS technology: a case study in Taiwan. In: Asian Association on Remote Sensing - 26th Asian Conference on Remote Sensing and 2nd Asian Space Conference, ACRS 2005. Vol 3. 2005:1510-1519.

84. Ilk D, Voita D, Belding E. Delay tolerant disaster communication with the One Laptop per Child XO laptop. In: ISCRAM 2013 Conference Proceedings - 10th International Conference on Information Systems for Crisis Response and Management. 2013:863-867.

85. Isikdag U, Underwood J, Aousd G, et al. Investigating the role of building information models as a part of an integrated data layer: a fire response management case. Archit Eng Des Manag. 2007;3(2):124-142. doi: 10.1080/17452007.2007.9684636

86. Jafarzadeh RS. Emergency management 2.0: integrating social media in emergency communications. J Emerg Manag. 2011;9(4):13-18. doi: 10.5055/jem.2011.0263

87. Jain T, Sibley A, Stryhn H, et al. Comparison of unmanned aerial vehicle technology versus standard practice in identification of hazards at a mass casualty incident scenario by primary care paramedic students. Disaster Med Public Health Prep. 2018;12(6):631-634. doi: 10.1017/dmp.2017.129

88. James JJ, Lyznicki JM, Irmiter C, et al. Secure personal health information system for use in disasters and public health emergencies. Internet-Based Intell Public Heal Emergencies Early Detect Response Dis Outbreak Ctrs. 2013:113-125. doi: 10.3233/978-1-61499-175-5-113

89. Arnous MO. Integrated remote sensing and GIS techniques for landslide hazard zonation: a case study Wadi Watier area, South Sinai, Egypt. J Coast Conserv. 2011;15(4):477-497. doi: 10.1016/s1195-0038(11)00017-2

90. Jokela J, Rädestad M, Gryth D, et al. Increased situation awareness in major incidents' radio frequency identification (RFID) Technique: a promising tool. Prehospital Disast Med. 2012;27(1):81-87. doi: 10.1071/SM10940213X12020295

91. Jones AS, Horsburgh JS, Reeder SL, et al. A data management and publication workflow for a large-scale, heterogeneous sensor network. Environ Monit Assess. 2015;187(6). doi: 10.1007/s10661-015-4594-3

92. Joseph SL, Xiao J, Zhang X, et al. Being aware of the world: toward using social media to support the blind with navigation. IEEE Trans Human-Machine Syst. 2015;45(3):399-405. doi: 10.1109/THMS.2014.2382582

93. Kabou A, Nouali-Taboudjemat N, Nouali O. Toward a new backpressure-based framework to enhance situational awareness in disaster response. In: Proceedings of the 2017 4th International Conference on Information and Communication Technologies for Disaster Management, ICT-DM 2017. 2018. doi: 10.1080/01431161.2017.1294780

94. Kakooei M, Baleghi Y. Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment. Int J Remote Sens. 2017;38(8-10):2511-2534. doi: 10.1080/01431161.2017.1294780

95. Kaminski L, Kulawiak M, Czmowski W, et al. Web-based GIS dedicated for marine environment surveillance and monitoring. Ocean '09 IEEE Bremen Baltic Technol with Future Needs. 2009. doi: 10.1109/OCEANSE.2009.5278151

96. Kanianthru S. FIRESTORM: a collaborative network suite application for rapid sensor data processing and precise decision responses. Unattended Ground, Sea, Air Sens Technol Appl XIII. 2011:8046(May 2011):8046O1. doi: 10.1109/INTELLNET.2011.888931

97. Karajannisid L, Misiorch F, Damigos Y, et al. A novel and interoperable communication gateway implementation for evacuation systems. 2016 Int Wiresl Commun Mob Comput Conf IWCMC. 2016. 10:227023. doi: 10.1109/IWCMC.2016.7577203

98. Karkkainen AP. Improving situation awareness using a hub architecture for friendly force tracking. Cyber Secur Situat Manag Impact Assess II; Vis Anal Homel Def Secur II. 2010;7709(April 2010):1709. doi: 10.1007/12.852627

99. Karnatak HC, Shukla R, Sharma VK, et al. Spatial mashup technology and real-time data integration in geo-web application using open source GIS - a case study for disaster management. Geocarto Int. 2012;27(6):499-514. doi: 10.1080/01600931.2011.650651

100. Ashish N, Eguchi R, Hegde R, et al. Situational awareness technologies for disaster response. In: Terrorism Informatics: Knowledge Management and Data Mining for Homeland Security. 2008:517-544. doi: 10.1007/978-0-387-71613-8_24
Technologies Enabling SA During Disaster Response

120. Kroutil RT, Shen SS, Lewis PE, et al. Airborne remote sensing for Deepwater Horizon oil spill emergency response. Imaging Spectrom XV. 2010;7812(August 2010):78120E. doi: 10.1117/12.863258

121. Kryvasheyeu Y, Chen H, Obadovich N, et al. Rapid assessment of disaster damage using social media activity. Sci Adv. 2016;2(3):1-12. doi: 10.1126/sciadv.1500779

122. Aulov O, Halem M. Human sensor networks for improved modeling of natural disasters. Proc IEEE. 2012;100(10):2812-2823. doi: 10.1109/JPROC.2012.2195629

123. Kumar S, Rangan PV, Ramesh MV. Design and validation of wireless communication architecture for long term monitoring of landslides. 4th World Landslide Forum Adv Cult Living with Landslides. 2017;51:60. doi: 10.1007/978-3-319-53487-9

124. Kussul N, Shelestov A, Skakun S, et al. Service-oriented infrastructure for flood mapping using optical and SAR satellite data. Int J Digit Earth. 2014;7(10):829-845. doi: 10.1080/17538947.2013.871242

125. La Loggia G, Arnone E, Cairoli G, et al. An integrated information system for the acquisition, management and sharing of environmental data aimed to decision making. Remote Sens Agric Ecosystem Hydrov. 2012;8531(October 2012):853112. doi: 10.1117/12.976300

126. La Salla LM, Odubela A, Esgada G, et al. The EDNA public safety drone: bullet-stopping lifesaving. GHTC 2018 - IEEE Glob Humanit Technol Conf Proc. 2019:1-8. doi: 10.1109/GHTC.2018.8601597

127. Labbé P, Arden D, Li L. GPS-INS-radio and GIS integration into handheld computers for dispersive civilian and military urban operations. In: Proceedings of the Institute of Navigation, National Technical Meeting. Vol 2; 2007:998-1010.

128. Lagios E, Sideris G, Zervos F, et al. Tectonic early warning system through real-time radon (Rn) monitoring: preliminary results of a geophysical method for forecasting earthquakes. In: Earthquake Hazard and Seismic Risk Reduction. 2000:261-270.

129. Lambrigsten B. Observing fast mesoscale atmospheric processes with a geostationary microwave sounder. In: Proc SPIE. Vol 10776; 2018. doi: 10.1117/12.2324048

130. Lara-Cueva R, Benitez D, Caamaño A, et al. Performance evaluation of a volcano monitoring system using wireless sensor networks. In: 2014 IEEE Latin-America Conference on Communications (IEEE LATINCOM). 2014. doi: 10.1109/LATINCOM.2014.7041853

131. Lara R, Benitez D, Caamaño A, et al. On real-time performance evaluation of a volcano-monitoring system with wireless sensor networks. IEEE Sens J. 2015;15(6):3514-3523. doi: 10.1109/JSEN.2015.2393713

132. Larochelle B, Knijff GJMJ, Smetts NIJM, et al. Experiences with USAR held computers for disperse civilian and military urban operations. In: Proceedings of the Institute of Navigation, National Technical Meeting. Vol 2; 2007:998-1010.

133. Lurio J, Morrison FP, Richardo M, et al. Using electronic health record alerts to provide public health situational awareness to clinicians. J Am Med Inform Assoc. 2010;17(2):217-219. doi: 10.1136/jama.2009.005539

134. Lynch RA, Smith T, Jacobs MC, et al. A radiation weather station: development of a continuous monitoring system for the collection, analysis, and display of environmental radiation data. Health Phys. 2018;115(5):590-599. doi: 10.1097/HP.0000000000000962

135. Maffei AR, Lerner S, Lynch J, et al. ExView: a real-time collaboration environment for multi-ship experiments. In: IEEE OCEANS 2007 - Europe; 2007.

136. Maltsev SA, Stepanov M V. Alam-Seismo 3 automated monitoring station. Seism Instruments. 2009;45(1):9-104. doi: 10.3103/S0747929009010174

137. Mandl D, Frye S, Cappelaere P, et al. Use of the earth observing one (EO-1) satellite for the namibia sensorweb flood early warning pilot. IEEE J Sel Top Appl Earth Obs Remote Sens. 2013;6(2):298-308. doi: 10.1109/JSTARS.2013.2255861

138. Abrajanmo G, Faviola C, Luo CY, et al. Demonstrations of post-disaster resilient communications and decision-support platform with UAVs, ground teams and vehicles using delay-tolerant information networks on sub-GHz frequencies. GHTC 2017 - IEEE Glob Humanit Technol Conf Proc. 2017;2017-Janua:1-8. doi: 10.1109/GHTC.2017.8293927

139. Avvenuti M, Del Vigna F, Cresci S, et al. Pulling Information from social media in the aftermath of unpredictable disasters. Proc 2015 2nd Int Conf Intel Commun Technol Disaster Manag ICT-DM 2015. 2016:258-264. doi: 10.1109/ICT-DM.2015.7402058

140. Marecki J, Schurt N, Tambe M, et al. Safety and security in multiagent systems. 2009;4324(September 2009). doi: 10.1109/JSSM.2015.7041079

141. McCurdy NJ, Griswold WG, Lenert LA. RealityFlythrough: enhancing situational awareness for medical response to disasters using ubiquitous video. In: AMIA Annual Symposium Proceedings/AMIA Symposium. 2005:510-514.

142. Minor CP, Johnson KJ, Rose-Pehrsson SL, et al. A full-scale prototype multisensor system for fire detection and situational awareness. Multisensor, Multisource Info Fusion Archit Algorithms. 2007;6571(April 2007):65710E. doi: 10.1117/12.719764

143. Mohsin B, Steinhäuser F, Madl P, et al. An innovative system to enhance situational awareness in disaster response: what are end users looking for in such systems. J Home Sec Emerg Manag. 2016;13(3):301-327. doi: 10.15315/jhsem-2015-0279

144. Naser MZ, Kodur VKR. Cognitive infrastructure - a modern concept for resilient performance under extreme events. Auton Constr. 2018;90(March):253-264. doi: 10.1016/j.autcon.2018.03.020

145. Negi I, Tsow F, Tanwar K, et al. Novel monitor paradigm for real-time exposure assessment. J Expo Sci Environ Epidemiol. 2011;21(4):419-426. doi: 10.1038/jes.2010.35

146. Nengoar M, Dowla F. Location-based tracking using long-range passive RFID and ultrawideband communications. Multimodal Content Mob Devices. 2013;8667(March 2013):86670M. doi: 10.1115/1.4028706

147. Nikolakopoulos K, Kavoura K, Depountis N, et al. Preliminary results from active landslide monitoring using multidisciplinary surveys. Eur J Remote Sens. 2017;50(3):280-299. doi: 10.1080/22797254.2017.1324741

148. Nikoletopoulu K, Kavoura K, Depountis N, et al. Preliminary results from active landslide monitoring using multidisciplinary surveys. Eur J Remote Sens. 2017;50(3):280-299. doi: 10.1080/22797254.2017.1324741

149. Nogueira ML, Greis NP. Application of answer set programming for public health data integration and analysis. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2011;6908 LNCS;118-134. doi: 10.1007/978-3-642-23300-5_10

150. Nunavath V, Princ A. Data sources handling for emergency management: supporting information availability and accessibility for emergency responders. 19th Int Conf HCI Int 2017, Proceedings II, LNCS. 2017;10274:240-259. doi: 10.1007/978-3-319-58524-6_24

151. Osorio A, Kass I, Quichmayr G. Towards a generic data-model for cross-media communication during disasters & crises proposed framework for classification of platforms and technologies. Proc 2016 3rd Int Conf Intel Commun Technol Disaster Manag ICT-DM 2016. 2017. doi: 10.1109/ICT-DM.2016.7857228

354

Disaster Medicine and Public Health Preparedness

VOL. 16/NO. 1
application to lo and other planets. J Volcanol Geotherm Res. 2017;343:1-16. doi: 10.1016/j.jvolgeores.2017.04.016

305. Dhouk M, Mcheick H, Sbeity I. CityPro: an integrated city-protection collaborative platform. Procedia Comput Sci. 2014;37:72-79. doi: 10.1016/j.procs.2014.08.014

306. De Cillis F, Inderst F, Pascucci F, et al. Improving the safety and the operational efficiency of emergency operators via on field situational awareness. Chem Eng Trans. 2016;53(2009):331-336. doi: 10.3303/CET1653056

307. De Visser RJ, Freedy E, Payne JJ, et al. AREA: a mobile application for rapid epidemiology assessment. Procedia Eng. 2015;107:357-365. doi: 10.1016/j.proeng.2015.06.092

308. DeFrates RF, Chambers WC. Gaining experience with military situational awareness in a simulated influenza epidemic. Mil Med. 2007;172(10):1071-1076. doi: 10.7205/milmed.172.10.1071

309. Dejpichai R. A tsunami after-action report: active disease surveillance in tsunami affected areas, Southern Thailand, December 2004-February 2005. http://id-scholarship.pitt.edu/21990/. Published June 20, 2014. Accessed July 23, 2019.

310. Demir F, Ahmad S, Calyam P, et al. A next-generation augmented reality platform for mass casualty incidents (MCI). J Usability Stud. 2017;12(4):193-214.

311. Demir I, Krajewski WF. Towards an integrated flood information system: centralized data access, analysis, and visualization. Environ Model Softw. 2013;50:77-84. doi: 10.1016/j.envsoft.2013.08.009

312. Allenes J, Tik S, Copp J, et al. Advanced monitoring of water systems using in situ measurement stations: data validation and fault detection. Water Sci Technol. 2013;68(5):1022-1030. doi: 10.2166/wst.2013.302

313. Deng Y, Tang Z, Chen Y, et al. Information Integration based on open geospatial database connectivity specification. In: ISPRS Technical Commission IV, ASPRS/CaGIS 2010 Fall Specialty Conference. 2010.

314. Deveci HS, Koru A, Sakarya U, et al. The benefits and challenges of having an open and free basis satellite data sharing platform in Turkey: Gezinm. Int Arch Photogramm Remote Sens Spat Inf Sci - ISPRS Arch. 2016;41(7):1341-1347. doi: 10.5194/isprsarchives-XLII-B8-1341-2016

315. Di Ciaccio R, Pullen J, Breimyer P. Enabling distributed command and control with standards-based geospatial collaboration. 2011 IEEE Int Conf Technol Humol Secur HST 2011. 2011:512-517. doi: 10.1109/THS.2011.6107921

316. Di Lazzaro M, Angino G, Piemontese M, et al. COSMO-SkyMed: the cyber-physical system for advanced response to Ebola (CARE). Proc Ann Int Conf IEEE Eng Med Biol Soc EMBS. 2015;2015-Novem:6856-6859. doi: 10.1109/EMBC.2015.7319968

317. Ding XL, Huang DF, Yin JH, et al. A new generation of multi-antenna GPS system for landslide and structural deformation monitoring. Adv Build Technol. 2002;2:1611-1618. doi: 10.1016/b978-008044100-9/50199-6

318. Dimitrov V, Jagtap V, Skorinko J, et al. Human-centered design of a fast disaster images collection in delay tolerant network. Sensors. 2013:790-796. doi: 10.1109/MILCOM.2005.1606030

319. Donahoe M, Steckler B. Emergency mobile wireless Networks Flyaway Communications (FLAC) with WIMAX 802.16 technology. Proc - IEEE Mil Commun Conf MILCOM. 2005/2005. doi: 10.1109/MILCOM.2005.1606030

320. Enanoria WT, Crawford AW, Tseng W, et al. The epidemiology and surveillance response to pandemic influenza A (H1N1) among local health departments in the San Francisco Bay Area. BMC Public Health. 2013;13(1). doi: 10.1186/1471-2458-13-276

321. Erickson P, Weinten A, Breimyer P, et al. Designing public safety mobile applications for disconnected, interrupted, and low bandwidth communication environments. 2013 IEEE Int Conf Technol Humol Secur HST 2013. 2013:790-796. doi: 10.1109/THS.2013.6699028

322. Erol B. Evaluation of high-precision sensors in structural monitoring. Sensors. 2010;10(12):10803-10827. doi: 10.3390/s101210803

323. Espiritu M, Patil U, Cruz H, et al. Evacuation of a neonatal intensive care unit in a disaster: lessons from hurricane Sandy. Pediatrics. 2014;134(6):e1662-e1669. doi: 10.1542/peds.2014-0936

324. Espósito M, Marchi AZ. HyperCube the intelligent hyperspectral imager. 2nd IEEE Int Work Metrol Aerospace, Metroaerosp 2015 - Proc. 2015:547-550. doi: 10.1109/MetroAeroSpace.2015.7180716

325. Fajardo JTB, Yasumoto K, Ito M. Content-based data prioritization for fast disaster images collection in delay tolerant network. 2014 7th Int Conf Mob Comput Ubiquitous Networking, ICNU 2014. 2014:147-152. doi: 10.1109/ICNU.2014.6799086

326. Fall K, Iannaccone G, Kannan J, et al. A disruption-tolerant architecture for secure and efficient disaster response communications. In: ISCRAM 2010 - 7th International Conference on Information Systems for Crisis Response and Management: Defining Crisis Management 3.0, Proceedings. 2010.

327. Fan S, Blair C, Brown A, et al. A multi-function public health surveillance system and the lessons learned in its development: the Alberta Real Time Syndromic Surveillance Net. Can J Public Heal. 2010;101(6):454-458. doi: 10.1542/peds.2013-0340963

328. Fang S, Xu L, Pei H, et al. An integrated approach to snowmelt flood forecasting in water resource management. IEEE Trans Ind Informatics. 2014;10(1):548-558. doi: 10.1109/TII.2013.2257807