Review

Paracoccidioidomycosis Diagnosed in Europe—A Systematic Literature Review

Gernot Wagner 1,*, Deddo Moertl 2, Anna Glechner 1, Verena Mayr 1, Irma Klerings 1, Casey Zachariah 1, Miriam Van den Nest 3,4, Gerald Gartlehner 1,5 and Birgit Willinger 4

1 Department for Evidence-based Medicine and Evaluation, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria; anna.glechner@donau-uni.ac.at (A.G.); verena.mayr@donau-uni.ac.at (V.M.); irma.klerings@donau-uni.ac.at (I.K.); Casey.Zachariah@hotmail.com (C.Z.); gerald.gartlehner@donau-uni.ac.at (G.G.)
2 Clinical Department of Internal Medicine III, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Dunant-Platz 1, 3100 St. Poelten, Austria; deddo.moertl@stpoelten.lknoe.at
3 Department for Infection Control and Hospital Epidemiology, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; miriam.vandennest@meduniwien.ac.at
4 Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; birgit.willinger@meduniwien.ac.at
5 RTI International, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709-2194, USA
* Correspondence: gernot.wagner@donau-uni.ac.at; Tel.: +43-2732-893-2913

Abstract: Paracoccidioidomycosis is a systemic mycosis that is endemic in geographical regions of Central and South America. Cases that occur in nonendemic regions of the world are imported through migration and travel. Due to the limited number of cases in Europe, most physicians are not familiar with paracoccidioidomycosis and its close clinical and histopathological resemblance to other infectious and noninfectious disease. To increase awareness of this insidious mycosis, we conducted a systematic review to summarize the evidence on cases diagnosed and reported in Europe. We searched PubMed and Embase to identify cases of paracoccidioidomycosis diagnosed in European countries. In addition, we used Scopus for citation tracking and manually screened bibliographies of relevant articles. We conducted dual abstract and full-text screening of references yielded by our searches. To identify publications published prior to 1985, we used the previously published review by Ajello et al. Overall, we identified 83 cases of paracoccidioidomycosis diagnosed in 11 European countries, published in 68 articles. Age of patients ranged from 24 to 77 years; the majority were male. Time from leaving the endemic region and first occurrence of symptoms considerably varied. Our review illustrates the challenges of considering systemic mycosis in the differential diagnosis of people returning or immigrating to Europe from endemic areas. Travel history is important for diagnostic-workup, though it might be difficult to obtain due to possible long latency period of the disease.

Keywords: paracoccidioidomycosis; Paracoccidioides spp.; endemic systemic mycosis

1. Introduction

Paracoccidioidomycosis, also known as South American blastomycosis, is a systemic fungal infection [1] caused by the thermally dimorphic fungi of the species Paracoccidioides brasiliensis and the related species P. americana, P. restrepiensis, P. venezuelensis, and P. lutzii [2,3]. These fungi are endemic to certain geographic regions of Central and South America [4]. Most of the cases of paracoccidioidomycosis are reported in Brazil, followed by Colombia, Venezuela, Ecuador, and Argentina [5]. Based on estimates from epidemiological data, the number of cases of paracoccidioidomycosis in Brazil ranges from 3360 to 5600 per year [5]. The incidence of cases considerably varies among regions with low, moderate
or high endemicity [5]. According to estimates, in regions with a stable endemic situation, the annual incidence of paracoccidioidomycosis ranges from 1 to 4 cases per 100,000 inhabitants [5].

People living in rural areas and working in agriculture are particularly at risk for this mycosis [1]. The risk of infection is higher for men than women [6]. The chronic form (adult type) accounts for the majority of cases [4]. This form of paracoccidioidomycosis is progressive over months or years and can be unifocal, if only one site is affected, or multifocal, in case of dissemination [7]. The organ most frequently affected is the lung [7]. Skin, oral mucosa, pharynx, larynx, lymph nodes, adrenal glands, central nervous system, bones, or joints may also be affected [8]. Symptoms of the disease can be systemic (e.g., weight loss, general weakness) or related to specific organ affection (e.g., cough, shortness of breath) [8]. In particular, pulmonary affection, lymphadenopathy, and B symptoms often lead to clinical signs similar to tuberculosis [8,9].

Paracoccidioidomycosis differential diagnosis is particularly challenging, because clinical signs and symptoms, as well as histopathological findings, resemble numerous other infections (e.g., tuberculosis) and noninfectious diseases (e.g., sarcoidosis) [8]. In addition, a long latency period [7] between exposure and manifestation of symptoms, as well as limited clinical experience, make adequate diagnosis difficult. In nonendemic areas, the history of travel and residency in endemic regions is a key to consider paracoccidioidomycosis for differential diagnosis.

Most physicians in nonendemic areas are unfamiliar with the clinical picture of endemic systemic mycoses because they are rarely presented to them. This in turn increases the risk that patients with paracoccidioidomycosis end up with misdiagnosis or remain undiagnosed. Subsequently, this results in no or inappropriate therapy. Therefore, it is important to provide information about the disease presentations in nonendemic regions. A previously published review by Ajello et al. 1985 [10] comprehensively summarized internationally published cases of paracoccidioidomycosis from Africa, Asia, the Middle East, North America, and Europe [10]. However, this review is now 35 years old and needs to be updated.

The purpose of this systematic review is to summarize the evidence of paracoccidioidomycosis imported to nonendemic European countries. Thereby, we aim to increase awareness for this fungal infection and provide important information regarding its challenging diagnosis.

2. Materials and Methods

For reporting of this systematic review, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA) [11].

2.1. Information Sources and Literature Search

An experienced information specialist searched PubMed and Embase (Embase.com) from inception to June 15 and 16, 2020 to identify relevant publications. We used a combination of subject headings and title and abstract free-text terms. We restricted our search to adults and humans. We have provided the detailed search strategy in Appendix A (Tables A1 and A2). In addition to database searches, we used Scopus (Elsevier) on June 16, 2020 to perform forward and backward citation tracking of included publications and reviews. We also manually screened reference lists of these records, in case the reference lists available via Scopus were incomplete. To identify publications published prior to 1985, we used the previous review published by Ajello et al. [10]. We used references found by our search to identify relevant publications published in 1985 or later.
2.2. Eligibility Criteria and Study Selection

Our population of interest was adults of any age and origin diagnosed with paracoccidioidomycosis (South American blastomycosis) in geographic Europe. We considered any case description of an acute or chronic form of paracoccidioidomycosis as eligible for this review if authors provided sufficient clinical information on number of cases, country of exposure, and diagnosis. Publications were included regardless of language and type of publication. We included case series and case reports, observational studies, reviews providing information mentioned above and published as abstracts, full-articles, letters, and editorials. Table 1 provides a summary of eligibility criteria.

After a pilot round, two reviewers independently screened each title and abstract. Eligible publications subsequently underwent independent dual full-text assessment. We solved disagreements by consensus or involvement of a senior reviewer. Throughout the whole study selection process, we used the web-based software Covidence [12]. We organized search and screening results in an EndNote® X9 bibliographic database (Clarivate, Pennsylvania, USA).

Table 1. Eligibility criteria.
Inclusion
Population
Adults of any age and origin
Diagnosed with acute or chronic form of paracoccidioidomycosis (South American blastomycosis)
Sufficient clinical information on number of cases, country of exposure and diagnosis
Region
Diagnosis was made in geographic Europe
Case reports and case series
Study design
Observational studies
Publication type
Language

2.3. Data Collection Process and Evidence Synthesis

We extracted the following relevant information from each article into pilot-tested evidence tables: author, year, study design, language, country of diagnosis, country of exposure, number of cases, patient characteristics (age, gender, occupation, affected organ(s), systemic antymycotic therapy, and treatment response), and latency period. If the publication language was not English, we asked native speakers to translate or used the online tool DeepL (http://www.deepl.com (accessed on 15 January 2021)) for translations into German. We synthesized data of identified articles narratively.

3. Results

3.1. Study Selection and Characteristics

Overall, we identified 83 case reports from 11 European countries, published in 68 articles. Figure 1 shows details of the study selection process.
Table 2 summarizes the number of publications and reported cases by country. Spain reported most of the cases, followed by Italy and Germany. The majority of articles were written in English or Spanish. Other publication languages were German, Portuguese, Italian, Norwegian and French.

Table 2. Number of identified publications and reported cases of paracoccidioidomycosis by country of diagnosis.

Country of Diagnosis	No. of Publications	No. of Reported Cases
Austria	2	2
Bulgaria	1	1
France	5	5
Germany	8	9
Great Britain	5	6
Italy	15	15
Netherlands	1	1
Norway	1	1
Portugal	7	7
Spain	21	35 \(^1\)
Switzerland	2	1
Total	**68**	**83**

\(^1\) Based on number of cases reported by Vivancos et al. 1969 [13] \((n = 1)\), Pereiro Miguens et al. 1974 [14] \((n = 2)\), Simon Merchán, et al. 1970 [15] \((n = 1)\), Pereiro Miguens et al. 1987 [16] \((n = 1)\), Miguélez et al. 1995 [17] \((n = 2)\), Molina-Morant et al. 2018 [18] \((n = 25)\), Agirre et al. 2019 [19] \((n = 2)\) and Chamorro-Tojeiro et al. 2020 [20] \((n = 1)\). Abbreviation: No., number; \(n\), number of patients.

3.2. Clinical Patient Characteristics

The age of the patients ranged from 24 to 77 years. The infection mainly affected men. In most cases, exposure to Paracoccidioides took place in Venezuela, followed by Brazil and Ecuador. The most common occupations were field and construction workers. Latency period, defined as the period from leaving the endemic region until occurrence of first symptoms or medical contact, ranged from six days to 50 years. Table 3 shows patient
characteristics, country of exposure, latency period, affected organ(s), systemic antymycotic therapy and response to treatment grouped by countries in which the diagnosis was made.
Table 3. Imported cases of paracoccidioidomycosis from Central and South America diagnosed in Europe.

Author, Year	Study Design Language	No. of Cases	Age Years, Gender	Suspected Country of Exposure	Latency Period 1	Occupation	Affected Organ(s)	Systemic Antimycotic Therapy	Treatment Response	
Austria										
Wagner et al. 2016 [21]	Case report English	1	62, M	Peru	6 years	Construction worker	Adrenal glands, brain, lung, lymph node	Amphotericin B, itraconazole, posaconazole	Clinical improvement during hospital stay	
Mayr et al. 2004 [22]	Case report English	1	43, F	Brazil, Venezuela, or Mexico	4 years	Government employee	Lung, lymph node	Amphotericin B, voriconazole	Clinical improvement	
Bulgaria										
Balabanov et al. 1964 [23]	Case report * French	1	67, M	Brazil	30 years	Worked in the jungle	Lung, oral mucosa	Sulfonamide, trimethoprim	Complete remission	
Germany										
Kayser et al. 2019 [24]	Case report English	1	57, F	Venezuela	1 year	NR	Lung	Amphotericin B, itraconazole	Clinical improvement during hospital stay, remained under control	
Slevogt et al. 2004 [25]	Case report English	1	31, F	Brazil	10 years	NR	Lymph nodes	Itraconazole	Complete remission	
Horré et al. 2002 [26]	Case report English	1	61, M	Brazil	10 years	Legionnaire	Lung, oral mucosa, skin	Itraconazole	Complete remission	
Köhler et al. 1988 [27]	Case report German	1	49, M	Brazil	15 years	Gold mine worker	Brain, lung, oral and laryngeal mucosa	Amphotericin B, ketoconazole, itraconazole	Clinical improvement during hospital stay, remained under control	
Study	Type	Country	Age (years)	Sex	Location	Disease Manifestations	Therapy	Outcomes		
------------------------------	--------------------	---------	-------------	-----	-------------------	--	------------------	-------------------------------		
Neveling 1988 [28]	Case series	Germany	64	M	Brazil	Lung, none	None	Clinical improvement, remained under control		
Neveling 1988 [28]	Case series	Germany	64	M	Brazil	Lung, none	None	Clinical improvement, remained under control		
Braeuninger et al. 1985 [29], Hastra et al. 1985 [30]	Case report	German	32	M	Peru	Lung, lymph nodes, oral mucosa, skin	Ketoconazole	Clinical improvement		
Altmeyer 1976 [31]	Case report *	German	69	M	Paraguay	Lung, lymph nodes, oral mucosa, skin	Imidazole	Patient deceased		
PORTUGAL										
Ferreira et al. 2017 [32]	Case report	Portuguese	46	M	Brazil	Lung, lymph nodes, oral mucosa	Itraconazole	Clinical improvement		
Coelho et al. 2013 [33]	Case report (Abstract only)	English	63	M	Brazil	Oral and pharyngeal mucosa	NR	NR		
Alves et al. 2013 [34]	Case report	Portuguese	43	M	Venezuela	Lung, oral mucosa, skin	Itraconazole	Complete remission		
Armas et al. 2012 [35]	Case report	English	43	M	Venezuela	Lung, skin	Itraconazole	Clinical improvement		
Carvalho et al. 2009 [36]	Case report	Portuguese	24	M	Brazil	Construction worker	Itraconazole	Clinical improvement		
Villar et al. 1963 [37]	Case report **		-		Brazil	-	-			
Oliveira et al. 1960 [38]	Case report **	Portuguese	-		Brazil	-	-			
SPAIN										
Study	Type	Country	Age	Sex	Duration	Location	Treatment	Outcome		
-------------------------------	-------------------------------	----------	------	-----	----------	-------------------	-----------------------------	--		
Chamorro-Tojeiro et al. 2020	Case report English	Mexico	42	M	6 days	Lung	Itraconazole	Complete remission, remained under control		
Agirre et al. 2019 [19]	Case series English	Peru	29	F	10 days	Lung, lymph nodes	Itraconazole	Complete remission		
			31	M	10 days	Lung	Itraconazole	Complete remission		
Molina-Morant et al. 2018 [18]	Retrospective observational study English		Median 48 yrs (range 33 to 67), M 16 (64%)	This retrospective study reported 25 cases of paracoccidioidomycosis admitted to Spanish hospitals between 1 January 1997 to 31 December 2014.						
Navascués et al. 2013 [39]	Case report Spanish	Ecuador	47	M	11 years	Lung, lymph nodes, skin	Amphotericin B, itraconazole	Complete remission		
			67	M		Lung	Amphotericin B, itraconazole	Complete remission		
			57	M		NR	NR	Complete remission		
			44	M		NR	NR	Complete remission		
			51	M		NR	NR	Complete remission		
			31	M		NR	NR	Complete remission		
			NR	M		NR	NR	Complete remission		
Buitrago et al. 2011 [40]	Case series English	Paraguay	48	M	6 years	Lung	Itraconazole	Complete remission		
			56	M	6 months	Lung	Itraconazole, amphotericin B	Complete remission		
Ramírez-Olivencia et al. 2010	Case report English	Paraguay	43	M	NR	Lung	Itraconazole	Clinical improvement; disappearance of oral and laryngeal lesions		
Botas-Velasco et al. 2010 [43]	Case report Spanish	Ecuador	63	M	8 months	Lung	Itraconazole	Patient deceased		
Mayayo et al. 2007 [44]	Case report English	Ecuador	27	M	None	Lymph nodes, skin	Itraconazole	Complete remission		
López Castro et al. 2005 [45]	Case report Spanish	Venezuela	63	M	8 months	Lung, skin	Amphotericin B	Patient deceased		
Authors	Type	Country	Age	Sex	Disease Sites	Treatment	Outcome			
-------------------------	-----------------	---------	-----	------	------------------------------	-------------------------	--------------------------			
Ginarte et al. 2003	Case series	Venezuela	50 years	NR	Skin	Fluconazole	Remained under control			
	English									
		67, M	Brazil	1 year	Oral mucosa, teeth	Itraconazole, sulfonamides	Complete remission			
		65, M	Venezuela	38 years	Oral mucosa	Fluconazole	Remained under control			
Garcia Bustínduy et al.	Case report	Venezuela	1 year	Taxi driver	Skin	Itraconazole	Complete remission			
2000	English									
Del Pozo et al. 1998	Case report	Venezuela	13 years	NR	Lung, oral and nasal mucosa	Itraconazole	Complete remission			
	Spanish									
Garcia et al. 1997	Case report	Venezuela	50 years	NR	Lung, oral mucosa, skin	Fluconazole	Complete remission			
	Spanish									
Pereiro et al. 1996	Case report	Venezuela	NR	NR			This case was also described by Ginarte et al. 2003 and is therefore not presented here again.			
	English									
Miguélez et al. 1995	Case report	Venezuela	2 years	NR	Brain, lung, lymph nodes	Itraconazole	Patient deceased (tuberculosis coinfection)			
	Spanish									
		53, M	Venezuela	18 months	Lung, lymph nodes, oral mucosa	Itraconazole	Clinical improvement			
Pereiro Miguens et al.	Case report	Venezuela	23 years	Construction worker	Oral mucosa, skin	Ketoconazole	Clinical improvement			
1987	Spanish									
Simon Merchán et al. 1970	Case report **	Venezuela	2 years	-	-	-	-			
Pereiro Miguens et al.	Case report *	Venezuela	7 years	NR	Lung, oral mucosa	Sulfonamide, trimethoprim	Clinical improvement			
1974, Pereiro Miguens	Spanish									
	Case report									
		44, M	Venezuela	8 years	Oral mucosa	Sulfonamide, trimethoprim	Clinical improvement			
		49, M	Venezuela	8 years	Oral mucosa	Sulfonamide, trimethoprim	Clinical improvement			
Author(s)	Year	Gender	Age	Nationality	Occupation	Site(s)	Treatment	Outcome		
------------------	------	--------	-----	-------------	---------------------	---	------------------------------------	--		
Vivancos et al.	1969	44 M		Venezuela	Farmer	Oral mucosa	Sulfamethoxazole / trimethoprim, amphotericin B	Complete remission		
De Cordova et al.	2012	52 M		Venezuela	Butcher	Oral mucosa	Itraconazole	Complete remission		
Sierra et al.	2011	77 M		Ecuador	NR	Lung, lymph nodes, oral mucosa, skin	Itraconazole	NR		
Walker et al.	2008	51 M		Venezuela	None	Lung, oral mucosa, skin	Itraconazole	Clinical improvement, cutaneous lesions cleared		
Bowler et al.	1986	57 F	17 years	Argentina, Venezuela	Clerk	Lung	NR	NR		
Symmers 1966		42 M		Brazil	NR	Skin	NR No therapy	Patient deceased (acute heart failure)		
Borgia et al.	2000	61 M		Venezuela	House-painter	Bones, lung	Itraconazole	Clinical improvement		
Pecoraro et al.	1998	60 M		Venezuela	Coffee plantations worker	Bones, lung	Ketoconazole	Clinical improvement		
Solaroli et al.	1998	49 M		Brazil	NR	Brain, lung, skin	Itraconazole	Clinical improvement		
Authors	Year	Country	Age	Gender	Duration of Disease	Occupation	Symptoms	Treatment	Outcome	
--------------------	--------	----------	-----	--------	---------------------	------------	---	-------------------------------	------------------------------	
Fulciniti et al.	1996	Venezuela	60, M	NR	NR	Bones, lung	Itraconazole	Clinical improvement, remained under control		
Cuomo et al.	1985	Venezuela	37, M	2 years	Butcher	Lung, skin	Ketoconazole	Clinical improvement		
Benoldi et al.	1985	Venezuela	41, M	Few months	Butcher	Lung, lymph nodes, skin	Ketoconazole, sulfamethoxy-pyridazine	Complete remission		
Cuomo et al.	1985	Venezuela	37, M	2 years	Butcher	Lung, skin	Ketoconazole	Clinical improvement		
Benoldi et al.	1985	Venezuela	41, M	Few months	Butcher	Lung, lymph nodes, skin	Ketoconazole, sulfamethoxy-pyridazine	Complete remission		
Finzi et al.	1980	Brazil	14 years	-	-	-	-	-		
Vellutti et al.	1979	Venezuela	52, M	17 years	Fabric retailer	Lung	Amphotericin B, miconazole	Clinical improvement		
Lasagni et al.	1979	Venezuela	NR	-	-	-	-	-		
Scarpa et al.	1965	Venezuela	43, M	5 years	Farmer	Lung, oral mucosa, skin	Amphotericin B, sulfamethoxazole	Patient deceased		
Schiralde et al.	1963	Venezuela	None	-	-	-	-	-		
Molese et al.	1956	Venezuela	47, M	None	Painter	Lung, lymph nodes, oral mucosa	Nystatin	NR		
Farris 1955		Brazil	7 years	-	-	-	-	-		
Bertacini 1934		Brazil	None	-	-	-	-	-		
Dalla Favera 1914		Brazil	None	-	-	-	-	-		
FRANCE										
Heleine et al.	2020	Brazil	48, M	NR	Farmer	Lung, lymph nodes, oropharyngeal mucosa, skin	Itraconazole	Clinical improvement		
Author(s)	Type	Language	Gender	Age	Location	Latency	Occupation	Lesions	Treatment	Clinical Improvement
----------	------	----------	--------	-----	----------	---------	------------	---------	-----------	----------------------
Dang et al. 2017 [73]	Case report	English	54, M	12 years	Columbia, Venezuela	Itraconazole	Clinical improvement; almost complete resolution of the tongue lesion and lymphadenopathy			
Sambourg et al. 2014 [74]	Case report	French	43, M	NR	Brazil	NR	Skin	NR	NR	
Laccourreye et al. 2010 [75]	Case report	English	46, M	NR	Venezuela	Engineer	Laryngeal mucosa	Itraconazole	Complete remission	
Poisson et al. 2007 [76]	Case report	English	70, M	6 years	Paraguay	NR	Brain, lung	Fluconazole, Itraconazole	Remained clinically stable	
Van Damme et al. 2006 [77]	Case report	English	60, M	8 years	Peru, Ecuador	Carpenter	Lung, oral mucosa, urinary tract	Itraconazole	Clinical improvement, remained under control	
Maehlen et al. 2001 [78]	Case report	Norwegian	51, F	23 years	Brazil	NR	Brain	-	Patient deceased	
Stanisic et al. 1979 [79], Wegmann et al. 1959 [80]	Case report	German	47, M	5 years	Brazil	Carpenter	Lung, lymph nodes, oral mucosa	Hydroxy-stilbamidine, amphotericin B, sulfonamide	Patient deceased (Cor pulmonale)	

Abbreviations: M, male; F, female; NR, not reported; yrs, years; † Latency period from leaving the endemic region until occurrence of first symptoms or medical contact; ‡ We assume that most of 25 cases diagnosed in Spain between 1997 to 2014 and published by Molina-Morant et al. 2018 [18] are also described in case reports and case series presented in this table; * Included in the review by Ajello et al. 1985 [10]; ** Included in the review by Ajello et al. 1985, full-text not available, data extracted from Ajello et al. 1985 [10].
3.3. Differential Diagnosis

Table A3 of Appendix A shows infectious and non-infectious diseases that were considered for differential diagnosis of cases in the included articles.

3.4. Diagnostic Work-Up

The diagnostic workup varied across publications. Usually, *Paracoccidioides* spp. was identified from clinical specimens through microscopic visualization and/or culture. In addition, some of the authors reported results from serological tests and/or molecular biological techniques such as polymerase chain reaction (PCR). Table A3 provides information on diagnostic workup in individual cases of paracoccidioidomycosis.

In general, direct examination, using 10% potassium hydroxide applied to different samples, is effective and inexpensive. A histologic examination of tissue specimens using silver methenamine or periodic acid–Schiff stain is common and practical when patients present with oral or other skin lesions. In a clinical sample, *Paracoccidioides* spp. appear as globose yeast cells with multiple buds and a thick refractile wall [81].

4. Discussion

Our systematic review summarizes the evidence on published case reports of imported paracoccidioidomycosis diagnosed in Europe. To the best of our knowledge, this is the most recent and comprehensive review of published cases of this systematic mycosis endemic to geographical regions of Central and South America. While narrative reviews on patients with this disease often included a nonsystematic search, we followed a systematic approach with a much broader scope to identify all published cases of paracoccidioidomycosis imported to Europe. In addition, the last systematic assessment of case reports on paracoccidioidomycosis was published in 1985, almost four decades ago [10]. A more recent narrative review focused only on cases diagnosed in Spain [82].

Our systematic review of case reports and case series emphasizes the clinical challenges and pitfalls of paracoccidioidomycosis. Most of the physicians in non-endemic regions such as Europe are unfamiliar with systemic mycosis. They struggle with the diagnostic work-up and management due to several reasons. In general, depending on the type, clinical presentation of patients with paracoccidioidomycosis is variable [4]. A major issue is the clinical similarity to several other infectious and non-infectious diseases [81]. Paracoccidioidomycosis is commonly misdiagnosed as tuberculosis [83]. The clinical picture of tuberculosis resembles the chronic progressive form of paracoccidioidomycosis [9].

The differential diagnosis of chronic paracoccidioidomycosis with lung involvement also includes coccidioidomycosis, histoplasmosis, sarcoidosis, pneumoconiosis, interstitial pneumonia, and malignancy [84]. Inappropriate treatment could have harmful consequences for the patient, without any prognostic impact on systemic mycosis. In addition, the latency period from pathogen exposure to development of symptoms is highly variable and might comprise several decades when patients might already have left the endemic region [7]. Therefore, clinicians must inquire about any short- and long-term stay (travel and residency) in endemic areas and even time abroad many years preceding presentation. Figure 2 summarizes important aspects that have to be considered for diagnosis of paracoccidioidomycosis, including signs and symptoms, travel history, and imaging.
If paracoccidioidomycosis is considered for differential diagnosis, clinicians should provide this information to the microbiologist, pathologist and other laboratory personnel to ensure that adequate methods for direct and indirect identification of the pathogen are applied. In addition, laboratory personnel need to apply safety precautions when collected specimens are handled.

The strengths of our work are the systematic literature search and screening. However, this systematic review has several limitations. First, we have not included cases that may have been diagnosed but never published. Second, because translation methods varied, we might have missed relevant information in the articles. A native speaker translated Spanish texts into German but online electronic translation tools provided translations for all other languages (11 publications) except texts published in English and German. Third, our findings rely on not uniformly structured case reports and cases series that are considered as low-level evidence. Finally, although we conducted comprehensive additional literature searches, we might have missed studies not cited in previous reviews and not indexed in electronic databases due to very early publication dates or non-indexed journals.

5. Conclusions

In conclusion, this review highlights the importance of considering systemic mycosis in the differential diagnosis of people with symptoms of tuberculosis who have either returned to Europe from endemic areas or were natives of endemic countries who migrated to Europe. In light of systemic mycosis’s potentially long latency period, extensive evaluation of travel history is an essential key for a quick and correct diagnosis of systemic endemic mycosis such as paracoccidioidomycosis.

Author Contributions: Conceptualization, B.W. and G.W.; methodology, G.W., A.G. and G.G.; literature search, I.K.; literature screening, A.G., V.M, C.Z. and G.W.; data extraction, A.G., V.M., M.V.d.N., C.Z. and G.W.; writing—original draft preparation, G.W.; writing—review and editing, A.G., B.W., D.M., V.M., I.K., M.V.d.N., C.Z. and G.G.; supervision, B.W., D.M. and G.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by internal funds from the Department of Evidence-based Medicine and Evaluation, Danube University Krems, Austria.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Acknowledgments: We would like to thank Edith Kertesz from Danube University for administrative support.

Conflicts of Interest: The authors declare no conflict of interest.

List of Abbreviations

Abbreviation	Description
PCR	polymerase chain reaction
PCM	paracoccidioidomycosis
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Appendix A

Table A1. Search Strategy Pubmed 15 June 2020.

Search Number	Query	Results
1	“Paracoccidioidomycosis”[Mesh]	1833
2	Paracoccidioidomycos*[tiab]	1782
3	Paracoccidioides brasiliensis*[tiab]	1611
4	paracoccidioidal granuloma*[tiab]	9
5	South american blastomycosis*[tiab]	272
6	#1 OR #2 OR #3 OR #4 OR #5	2858
7	“Europe”[Mesh]	1,408,827
8	“Emigrants and Immigrants”[Mesh]	12,277
9	“Travel”[Mesh:NoExp]	24,916
10	(Albania*[tiab] OR Andorra*[tiab] OR Armenia*[tiab] OR Austria*[tiab] OR Azerbaijan*[tiab] OR Belarus*[tiab] OR Belgi*[tiab] OR Bosnia*[tiab] OR Herzegov*[tiab] OR Bulgaria*[tiab] OR Croatia*[ad] OR Cypr*[ad] OR Czech*[ad] OR Denmark*[ad] OR danish*[ad] OR Estonia*[ad] OR Finland*[ad] OR finnish*[ad] OR France*[ad] OR french*[ad] OR Georgia*[ad] OR German*[ad] OR Greece*[ad] OR greek*[ad] OR Hungar*[ad] OR Iceland*[ad] OR Ireland*[ad] OR irish*[ad] OR Italy*[ad] OR Italian*[ad] OR Kazak*[ad] OR Kosov*[ad] OR Latvia*[ad] OR Liechtenstein*[ad] OR Lithuania*[ad] OR Luxembourg*[ad] OR Macedon*[ad] OR Malat*[ad] OR malese*[ad] OR Moldov*[ad] OR Monac*[ad] OR Montenegr*[ad] OR Netherlands*[ad] OR dutch*[ad] OR Norway*[ad] OR norwegian*[ad] OR Poland*[ad] OR polish*[ad] OR Portug*[ad] OR Romanian*[ad] OR Russian*[ad] OR San Marino*[ad] OR Serbia*[ad] OR Slovak*[ad] OR Slovenia*[ad] OR Spain*[ad] OR spanish*[ad] OR Sweden*[ad] OR swedish*[ad] OR Switzerland*[ad] OR swiss*[ad] OR Turkey*[ad] OR turkish*[ad] OR Ukran*[ad] OR United Kingdom*[ad] OR britain*[ad] OR british*[ad])	1,082,126
11	(Albania*[ad] OR Andorra*[ad] OR Armenia*[ad] OR Austria*[ad] OR Azerbaijan*[ad] OR Belarus*[ad] OR Belg*[ad] OR Bosnia*[ad] OR Herzegov*[ad] OR Bulgaria*[ad] OR Croatia*[ad] OR Cypr*[ad] OR Czech*[ad] OR Denmark*[ad] OR danish*[ad] OR Estonia*[ad] OR Finland*[ad] OR finnish*[ad] OR France*[ad] OR french*[ad] OR Georgia*[ad] OR German*[ad] OR Greece*[ad] OR greek*[ad] OR Hungar*[ad] OR Iceland*[ad] OR Irish*[ad] OR Italian*[ad] OR Kazak*[ad] OR Kosov*[ad] OR Latvia*[ad] OR Liechtenstein*[ad] OR Lithuania*[ad] OR Luxembourg*[ad] OR Macedon*[ad] OR Malat*[ad] OR Malese*[ad] OR Moldov*[ad] OR Monac*[ad] OR Montenegr*[ad] OR Netherlands*[ad] OR dutch*[ad] OR Norway*[ad] OR norwegian*[ad] OR Poland*[ad] OR polish*[ad] OR Portug*[ad] OR Romanian*[ad] OR Russian*[ad] OR San Marino*[ad] OR Serbia*[ad] OR Slovak*[ad] OR Slovenia*[ad] OR Spain*[ad] OR Spanish*[ad] OR Sweden*[ad] OR swedish*[ad] OR Switzerland*[ad] OR swiss*[ad] OR Turkey*[ad] OR turkish*[ad] OR Ukran*[ad] OR United Kingdom*[ad] OR britain*[ad] OR british*[ad])	5,875,438
12	europ*[tiab] OR immigrant*[tiab] OR travel*[tiab]	383,712
No.	Query	Results
-----	---	---------
13	non endemic[tiab] OR nonendemic[tiab]	4492
14	#13 OR #12 OR #11 OR #10 OR #9 OR #8 OR #7	7,173,281
15	#6 AND #14	204
16	(“Animals”[Mesh] NOT “Humans”[Mesh])	4,707,502
17	#15 NOT #16	175

Table A2. Search Strategy Embase 16 June 2020.

No.	Query	Results					
1	‘south american blastomycosis’/exp OR ‘paracoccidioides brasiliensis’/exp	3026					
2	paracoccidioidomycos*:ab,ti OR ‘paracoccidioides brasiliensis’:ab,ti OR ‘paracoccidioidal granuloma’:ab,ti	3075					
3	#1 OR #2	3620					
4	‘europe’/exp OR ‘immigrant’/exp OR ‘travel’/exp	1,695,885					
	albania*:ca,ab,ti OR andorra*:ca,ab,ti OR armenia*:ca,ab,ti OR austria*:ca,ab,ti OR azerbaijan*:ca,ab,ti OR belarus*:ca,ab,ti OR belgi*:ca,ab,ti OR bosnia*:ca,ab,ti OR herzegov*:ca,ab,ti OR bulgaria*:ca,ab,ti OR croatia*:ca,ab,ti OR cypr*:ca,ab,ti OR czech:ca,ab,ti OR danmark:ca,ab,ti OR danish:ca,ab,ti OR estonia*:ca,ab,ti OR finland:ca,ab,ti OR finnish:ca,ab,ti OR france:ca,ab,ti OR french:ca,ab,ti OR georgia*:ca,ab,ti OR german*:ca,ab,ti OR greece:ca,ab,ti OR hungary*:ca,ab,ti OR iceland*:ca,ab,ti OR ireland:ca,ab,ti OR irish:ca,ab,ti OR italy:ca,ab,ti OR italian:ca,ab,ti OR kazak*:ca,ab,ti OR kosov*:ca,ab,ti OR latvia*:ca,ab,ti OR liechtenstein*:ca,ab,ti OR lithuania*:ca,ab,ti OR luxembourg*:ca,ab,ti OR macedonia*:ca,ab,ti OR malta*:ca,ab,ti OR maltese*:ca,ab,ti OR moldov*:ca,ab,ti OR monac*:ca,ab,ti OR montenegro*:ca,ab,ti OR netherlands:ca,ab,ti OR dutch:ca,ab,ti OR norway:ca,ab,ti OR norwegian:ca,ab,ti OR poland:ca,ab,ti OR polish:ca,ab,ti OR portug*:ca,ab,ti OR portugal*:ca,ab,ti OR romania*:ca,ab,ti OR russia*:ca,ab,ti OR san marino*:ca,ab,ti OR serbia*:ca,ab,ti OR slovakia*:ca,ab,ti OR slovenia*:ca,ab,ti OR spain*:ca,ab,ti OR spanish*:ca,ab,ti OR sweden:ca,ab,ti OR swedish:ca,ab,ti OR switzerland:ca,ab,ti OR swiss:ca,ab,ti OR turkey*:ca,ab,ti OR turkish*:ca,ab,ti OR ukrain*:ca,ab,ti OR united kingdom*:ca,ab,ti OR britain*:ca,ab,ti OR british*:ca,ab,ti	10,276,132					
5	#14 OR #15 OR #16 OR #17	10,847,515					
6	europ* OR ‘non endemic’ OR nonendemic OR travel*:ab,ti OR imported:ti	2,203,591					
7	immigrant*	34,244					
8	#4 OR #5 OR #6 OR #7	11,651,119					
9	#3 AND #8	457					
10	‘animal’/exp NOT ‘human’/exp	5,449,241					
11	#9 NOT #10	405					
12	‘groups by age’/exp NOT ‘adult’/exp	2,775,185					
13	#11 NOT #12	397					
14	‘case report’/exp OR ‘case study’/exp OR ‘letter’/exp	3,471,553					
15	case:ab,ti OR cases:ab,ti	4,628,697					
16	‘review’/exp OR ‘evidence based medicine’/exp	3,575,830					
17	review:ab,ti OR systematic:ab,ti OR search*:ab,ti OR ‘meta analy*’:ab,ti OR metaanaly*:ab,ti	2,588,995					
18	#14 OR #15 OR #16 OR #17	10,847,515					
19	#13 AND #18	256					
Author, Year	Symptoms and Signs	Differential Diagnosis	Specimen for Histopathology	Histo-Logy 1	Micro-Biology 2	Sero-Logy	PCR
-----------------------	--	------------------------------	--	--------------	----------------	-----------	-----
AUSTRIA							
Wagner et al. 2016 [21]	Chest and abdominal pain, weight loss, night sweats, cough	Tuberculosis	Left adrenal gland biopsy, extirpation of a right cervical lymph node	+	+	NR	+
Mayr et al. 2004 [22]	Cough, lymphadenopathy, weight loss	Tuberculosis, Wegener’s granulomatosis, sarcoidosis, mycosis	Lung biopsy	+	+	+	NR
BULGARIA							
Balabanov et al. 1964 [23]	Ulcerous oral and cutaneous lesions, lymphadenopathy	Tuberculosis	Peribuccal lesion biopsy	+	+	NR	NR
GERMANY							
Kayser et al. 2019 [24]	Cough, dyspnea	Sarcoidosis, histoplasmosis	Lung biopsy	+	+	+	+
Slevogt et al. 2004 [25]	Bilateral cervical and axillary lymphadenopathy, weight loss	Tuberculosis	Cervical lymph node biopsy	+	+	NR	NR
Horré et al. 2002 [26]	Erythematous and swollen lips, mucocutaneous pustules and ulcerations, oral nodules, occasional night sweats	Leishmaniosis, tropical pulmonary mycosis, gammopathy	Oral lesion biopsy	+	+	+	+
Köhler et al. 1988 [27]	Cheilitis, erosive stomatitis, loss of teeth, dysphagia, aphonia, cough, night sweats, weight loss	Tropical disease		NR	NR	+	+
Neveling 1988 [28]	Flue like symptoms, dry cough	Coccidiosis, histoplasmosis, North American blastomycosis		NR	NR	NR	+

Table A3. Signs and symptoms, differential diagnosis and diagnostic work-up.
Study	Symptoms, Lesions, and Signs	Diagnoses	Biopsy Sites	Results					
Braeuninger et al. 1985	Flue like symptoms, cervical lymphadenopathy, skin lesions, cough, dyspnea, pain in the left leg	Tuberculosis, sarcoidosis	Lymph node biopsy	++					
Hastra et al. 1985									
Altmeyer 1976 [31]	Respiratory insufficiency, cervical lymphadenopathy, painful infiltrations of the soft palate, hypersalivation, ulcerations of the feet, weight loss, dysphagia, dysphonia	Tuberculosis, Wegner’s granulomatosis	Lung and skin lesion biopsy	+					
Ferreira et al. 2017 [32]	Labial lesion, dry cough, inguinal and axillary lymphadenopathy, weight loss	Cryptococcosis	Lip lesion and lung biopsy, inguinal lymph node resection	+					
Coelho et al. 2013 [33]	Odynophagia, dysphagia, irregular and ulcerated oral mucosa	NR	Oropharyngeal mucosa biopsy	+					
Alves et al. 2013 [34]	Skin lesion, oral mucosal ulcerations	Coccidioidomycosis, cutaneous tuberculosis	Skin lesion and oral mucosa biopsy	+					
Armas et al. 2012 [35]	Ulcerated skin and nasal mucosa lesion	NR	Skin lesion biopsy	+					
Carvalho et al. 2009 [36]	Fever, epigastric pain, anorexia, fatigue, lymphadenopathy, skin lesions	NR	Skin biopsy and lymph node	+					
Villar et al. 1963 [37]	Full-text not available								
Oliveira et al. 1960 [38]	Full-text not available								
SPAIN									
Chamorro-Tojeiro et al. 2020 [20]	Fever, arthralgia, myalgia, dyspnea, dry cough, sweating, general cutaneous rash	Bacterial respiratory infection	NR	NR					
Agirre et al. 2019 [19]	Fever, productive cough, exertional dyspnea	Bacterial respiratory infection	NR	NR					
Molina-Morant et al. 2018 [18]									
Navascués et al. 2013 [39]	Productive cough, weight loss, asthenia, lymphadenopathy, skin lesions	NR	Lung biopsy	+					
Study	Symptoms	Diagnosis	Lesion biopsy	Lung biopsy	Skin biopsy	Oral mucosa biopsy			
-------------------------------	---	----------------------	---------------------	-------------------	-------------	-------------------			
Buitrago et al. 2011 [40]	Fever, asthenia, ulcerated pustular skin lesions, extremities	NR	Skin biopsy	+	NR	+			
	Productive cough	NR	NR	+	NR	+			
	NR	NR	Cerebral biopsy	+	NR	+			
	NR	NR	Lung biopsy	NR	+	NR			
	NR	Oral mucosa biopsy	+	NR	+	+			
Pujol-Riqué et al. 2011 [41]	Productive cough, hemoptysis, night sweats, skin lesions	Sarcoidosis	Lung and skin biopsy	−	+	NR			
Ramírez-Olivencia et al. 2010 [42]	Fever, dyspnea, productive cough, hemoptysis, night sweats, loss of appetite, weight loss		Lung biopsy	NR	−	+	+		
Botas-Velasco et al. 2010 [43]	Cough, fever, weight loss, retromolar mass	Sarcoidosis	Retromolar mass and laryngeal biopsy	+	+	+	NR		
Mayayo et al. 2007 [44]	Skin lesions	Blastomycosis	Skin lesion biopsy	+	NR	NR			
López Castro et al. 2005 [45]	Dyspnea, dry cough, fever, weight loss, skin lesions	Sarcoidosis	Lung and skin biopsy	+	NR	−			
Ginarte et al. 2003 [46]	Ulcerative lesions from upper left jaw to labial mucosa and nasal grave	Squamous cell carcinoma	Lesion biopsy	+	+	+	NR		
	Ulcerative lesions left cheek mucosa, periodontitis with loss of several teeth	Tuberculosis, squamous cell carcinoma	Lesion biopsy	+	+	NR	NR		
	Mass and ulcerative lesions in cheek mucosa	Squamous cell carcinoma	Lesion biopsy	+	+	NR	NR		
Garcia Bustínduy et al. 2000 [47]	Ulcerative skin lesion	NR	Skin lesion biopsy	+	+	+			
Del Pozo et al. 1998 [48]	Lesions upper labial mucosa and nasal fossa	NR	Lesion biopsy	+	+	NR			
Garcia et al. 1997 [49]	Lesions of labial and palatal mucosa	NR	Lesion biopsy	+	+	NR			
Source	Clinical Manifestations								
---	--								
Pereiro et al. 1996 [50]	Tumoral mass of the upper jaw, ulcerated lesion in the upper left jaw, extended to the	Epidermoid carcinoma	Lesion biopsy	+	+	+	NR		
	lip mucosa and the nasal grave								
Miguélez et al. 1995 [17]	Fever, weight loss, dyspnea, ulcerated mass right tonsil, lymphadenopathy	Pulmonary fibrosis	Ulcerated mass biopsy	+	+	NR	NR		
	Palatal mass, cervical lymphadenopathy	NR	Palatal mass biopsy	+	+	NR	NR		
Pereiro Miguens et al. 1987 [16]	Oral mucosal lesions, gingivitis	Tuberculosis	Mucosa biopsy	+	+	+	NR		
Simon Merchán et al. 1970 [15]	Full-text not available								
Pereiro Miguens et al. 1974 [14], Pereiro Miguens et al. 1972 [51]	Epididymitis, gingivitis, oral ulcerative lesion	Tuberculosis	Epididymis and oral lesion biopsy	+	+	+	NR		
	Asthenia, ulcerative oral lesions, labial edema	NR	Oral lesion biopsy	+	+	NR	NR		
Vivancos et al. 1969 [13]	Oral mucosal lesions	Pseudoneoplasia	Oral lesion biopsy	+	+	NR	NR		
GREAT BRITAIN									
De Cordova et al. 2012 [52]	Submandibular mass, oral ulcerative lesions	NR	Oral lesion and submandibular mass biopsy	+	+	NR	NR		
Sierra et al. 2011 [53]	Dyspnea, lip lesion, ulcer on tonsil and uvula	Malignancy, sarcoidosis, squamous cell carcinoma	Lip lesion excision, ulcer biopsy	+	NR	+	NR		
Walker et al. 2008 [54]	Cough, dyspnea, plantar pruritus, painful skin lesions on his legs, face and feet, hepato megaly, weight loss	NR	Skin biopsy	+	+	+	NR		
Bowler et al. 1986 [55]	Cough, dyspnea, and wheeze on exertion	Lymphangitis carcinomatosa	Lung biopsy	+	NR	+	NR		
Symmers 1966 [56]	Asymptomatic	Spleen (autopsy)	+	NR	NR	NR			
ITALY	Skin ulceration	Skin lesion excision	+	NR	NR	NR			
Reference	Symptoms	Diagnosis	Procedure	+	+	NR	NR		
--------------------	---	--------------------	--------------------------------	-----	-----	-----	-----		
Borgia et al. 2000	Fever, pain, and inflammation of left knee	Malignancy	Left femur biopsy	+	+	NR	NR		
Pecoraro et al. 1998	Weight loss, night sweat, pain left knee	NR	Left femur biopsy	+	NR	NR	NR		
Solaroli et al. 1998	Skin lesion, asthenia, fever, loss of vision	NR	Skin lesion excision	+	+	NR	NR		
Fulciniti et al. 1996	Weight loss, night, sweats, pain in left knee	Metastatic lung cancer	Left femur biopsy	+	+	NR	NR		
Cuomo et al. 1985	Productive cough, weight loss, asthenia, skin lesions	Tuberculosis, lupus vulgaris	Lung and skin lesion biopsy	+	+	+	NR		
Benoldi et al. 1985	Ulcerative skin lesions, cough, fatigue, malaise, weight loss	Tuberculosis, lupus vulgaris	Skin lesion biopsy	+	+	+	NR		
Finzi et al. 1980	Full-text not available								
Velluti et al. 1979	Cough, dyspnea	Bronchitis, tuberculosi	Lung biopsy	+	+	+	NR		
Lasagni et al. 1979	Full-text not available								
Scarpa et al. 1965	Cough, asthenia, weight loss, night sweats, lymphadenitis, ulcerative oral lesions	Tuberculosis	Lymph node and lung biopsy	+	+	NR	NR		
Schiraldi et al. 1963	Full-text not available								
Molese et al. 1956	Oral mucosa lesions, cervical lymphadenopathy, fever, cough	Tuberculosis, leishmaniosis, pneumoconiosis, lues, malignancy	Oral mucosa and tonsillar biopsy	+	NR	NR	NR		
Farris 1955	Full-text not available								
Bertaccini 1934	Full-text not available								
Dalla Favera 1914	Full-text not available								
FRANCE									
Heleine et al. 2020	Skin lesions, ulcero-nodular lesions lips and mouth, cough, fever, inguinal lymphadenopathy, asthenia, weight loss	HIV, tuberculosis	Skin biopsy	−	+	NR	NR		
Dang et al. 2017	Nodular slightly painful, nonulcerated lesion of the tongue, cervical lymphadenopathy	NR	Lingual lesion biopsy	+	NR	NR	+		
Authors	Symptoms/Findings	Diagnosis	Biopsy/Excision Pathology	Paracoccidioides spp.	L. paracoccoides spp.	T. cruzi spp.	Fungal Structures	Microbiology	Signs and Symptoms
----------------------	---	--	---------------------------	-----------------------	----------------------	---------------	-------------------	--------------	-------------------
Sambourg et al. 2014 [74]	Partially ulcerous and crusted erythematous lesion left auricle extending to the pre-auricular region	Leishmaniosis	Skin lesion biopsy	+	+	–	+	NR	
Laccourreye et al. 2010 [75]	Dysphonia, laryngitis	Chronic laryngitis	Laryngeal biopsy, removed mucosa	+	+	NR	NR	NR	
Poisson et al. 2007 [76]	Seizures	Brain tumor	Single cerebral lesion surgically excised	+	+	+	NR	NR	

NETHERLANDS

Authors	Symptoms/Findings	Diagnosis	Biopsy/Excision Pathology	Paracoccidioides spp.	L. paracoccoides spp.	T. cruzi spp.	Fungal Structures	Microbiology	Signs and Symptoms
Van Damme et al. 2006 [77]	Dyspnea, cough, wheezing, weight loss, tiredness, fever, night sweats, periodontitis, oral ulceration	Sarcoidosis, bronchiolitis obliterans organizing pneumonia, oral carcinoma	Lung and oral mucosa biopsy	+	+	+	NR	NR	

NORWAY

Authors	Symptoms/Findings	Diagnosis	Biopsy/Excision Pathology	Paracoccidioides spp.	L. paracoccoides spp.	T. cruzi spp.	Fungal Structures	Microbiology	Signs and Symptoms
Maehlen et al. 2001 [78]	Dizziness, nausea, headache, hearing loss, hemiplegia	Cerebral tuberculosis	Brain biopsy	+	+	NR	NR	NR	

SWITZERLAND

Authors	Symptoms/Findings	Diagnosis	Biopsy/Excision Pathology	Paracoccidioides spp.	L. paracoccoides spp.	T. cruzi spp.	Fungal Structures	Microbiology	Signs and Symptoms
Stanisic et al. 1979 [79], Wegmann et al. 1959 [80]	Submandibular and cervical lymphadenopathy, oral ulceration	Tuberculosis, Morbus Wegener, lues, bartonellosis, Morbus Hodgkin, neoplasma, blastomycosis, sporotrichosis, cryptococcosis	Oral mucosa and cervical lymph node biopsy	+	+	NR	NR	NR	

Abbreviations: NR, not reported or not performed; +, positive for *Paracoccidioides* spp.; –, negative for *Paracoccidioides* spp.; 1 Fungal structures were identified in at least one of the biopsy/excision specimen; 2 Microbiology includes microscopy and/or culture; 3 Signs and symptoms obtained for case 1 and case 2 obtained from Buitrago et al. 2009 [85].
References

1. Bocca, A.L.; Amaral, A.C.; Teixeira, M.M.; Sato, P.; Yasuda, S.M.A.; Felipe, S.M.S. Paracoccidioidomycosis: eco-epidemiology, taxonomy and clinical and therapeutic issues. *Future Microbiol.* 2013, 8, 1177–1191, doi:10.2217/fmb.13.68.

2. Hrycyk, M.F.; Garces, G.H.; Bosco, S.D.M.G.; de Oliveira, S.L.; Marques, S.A.; Bagagli, E. Ecology of Paracoccidioides brasiliensis, P. lutzii and related species: Infection in armadillos, soil occurrence and mycological aspects. *Med. Mycol.* 2018, 56, 950–962, doi:10.1093/mmy/mmy142.

3. Turissini, D.A.; Gomez, O.M.; Teixeira, M.M.; McEwen, J.G.; Matute, D.R. Species boundaries in the human pathogen Paracoccidioides. *Fungal Genet. Biol.* FG B 2017, 106, 9–25, doi:10.1016/j.fgb.2017.05.007.

4. Ameen, M.; Talhari, C.; Talhari, S. Advances in paracoccidioidomycosis. *Clin. Exp. Dermatol.* 2010, 35, 576–580.

5. Martínez, R. New trends in paracoccidioidomycosis epidemiology. *J. Fungi* 2017, 3, doi:10.3390/jf3010001.

6. Shankar, J.; Restrepo, A.; Clemons, K.V.; Stevens, D.A. Hormones and the Resistance of Women to Paracoccidioidomycosis. *Clin. Microbiol. Rev.* 2011, 24, 296, doi:10.1128/CMR.00062-10.

7. Brummer, E.; Castaneda, E.; Restrepo, A. Paracoccidioidomycosis: An update. *Clin. Microbiol. Rev.* 1993, 6, 89–117.

8. Wanke, B.; Aidé, M.A. Chapter 6-paracoccidioidomycosis. *J. Bras. Pneumol.* 2009, 35, 1245–1249.

9. Salzer, H.J.F.; Burchard, G.; Cornely, O.A.; Lange, C.; Rolling, T.; Schmiedel, S.; Libman, M.; Capone, D.; Le, T.; Dalcolmo, M.P.; et al. Diagnosis and Management of Systemic Endemic Mycoses Causing Pulmonary Disease. *Respiration* 2018, 96, 283–301, doi:10.1159/000489501.

10. Ajello, L.; Polonelli, L. Imported paracoccidioidomycosis: A public health problem in non-endemic areas. *Eur. J. Epidemiol.* 1985, 1, 160–165.

11. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PloS Med.* 2009, 6, 97, doi:10.1371/journal.pmed.1000977.

12. Innovation, V.H. Covidence Systematic Review Software. Available online: www.covidence.org (accessed on 2 June 2019).

13. Vivancos, G.; Marrero, B.; Hernández, B.; Padrón, G. La blastomicosis sudamericana en España. Primera observación en las Islas Canarias. In Proceedings of the VV. AA. Actas VII Congreso Hispano-Portugués de Dermatología Médico quirúrgica, Granada, Spain, 22–25 October 1969; pp. 330–335.

14. Pereiro, M.M. Two cases of South American blastomycosis observed in Spain. *Actas Dermosifiliogr.* 1974, 65, 509–522.

15. Merchán, S.A.; Escudero, R.; Lavin, R. Un caso de blastomicosis sudamericana observado en España. *Med. Cutan. Iber. Lat. Am.* 1970, 5, 631–636.

16. Miguens, P.M.; Ferreiros, P.M.M. A propósito de un nuevo caso de paracoccidioidomicosis observado en España. *Ver. Iber. Micol.* 1987, 4, 149–157.

17. Miguélez, M.; Amerigo, M.J.; Perera, A.; Rosquete, J. Imported paracoccidioidomycosis. Apropos of 2 cases. *Med. Clin. (Barc)* 1995, 105, 756.

18. Morant, M.D.; Montalvá, S.A.; Salvador, F.; Avilés, S.A.; Molina, I. Imported endemic mycoses in Spain: Evolution of hospitalized cases, clinical characteristics and correlation with migratory movements, 1997–2014. *PloS Negl. Trop. Dis.* 2018, 12, 6245, doi:10.1371/journal.pntd.0006245.

19. Agirre, E.; Osorio, A.; de Tejerina, C.F.J.M.; Arrondo, R.F.; Bermejo, S.Y. Bilateral interstitial pneumonia after recent trip to Peru. *Enferm. Infec. Microbiol.* Clin. 2019, 37, 609–610, doi:10.1016/j.eimc.2019.03.002.

20. Tojeiro, C.S.; Sarria, G.A.; Pedrosa, E.G.G.; Buitrago, M.J.; Vélez, L.R. Acute Pulmonary Paracoccidioidomycosis in a Traveler from Mexico. *J. Travel. Med.* 2020, 27, 10.1093/jtm/taaa018.

21. Wagner, G.; Moertl, D.; Eckhardt, A.; Sagel, U.; Wrba, F.; Dam, K.; Willinger, B. Chronic Paracoccidioidomycosis with adrenal involvement mimicking tuberculosis—A case report from Austria. *Med. Mycol. Case Rep.* 2016, 14, 12–16, doi:10.1016/j.mcmcr.2016.12.002.

22. Mayr, A.; Kirchmair, M.; Rainer, J.; Rossi, R.; Kreczy, A.; Tintelnot, K.; Dierich, M.P.; Flörl, L.C. Chronic paracoccidioidomycosis in a female patient in Austria. *Eur. J. Clin. Microbiol. Infect. Dis.* 2004, 23, 916–919.

23. Balabanov, K.; Balabanoff, V.A.; Angelov, N. South American Blastomycosis in a Bulgarian Laborer Returning after 30 Years in Brazil. *Mycopathol. Mycol. Appl.* 1964, 24, 265–270.

24. Kayser, M.; Rickerts, V.; Dric, N.; Gerkrath, J.; Kreipe, H.; Soudah, B.; Welte, T.; Suhling, H. Chronic progressive pulmonary paracoccidioidomycosis in a female immigrant from Venezuela. *Ther. Adv. Respir. Dis.* 2019, 13, 4913, doi:10.1177/1753466619894913.

25. Slevogt, H.; Tintelnot, K.; Seybold, J.; Sutter, N. Lymphadenopathy in a pregnant woman from Brazil. *Lancet* 2004, 363, 1282.

26. Horré, R.; Schumacher, G.; Alpers, K.; Seitz, H.M.; Adler, S.; Lemmer, K.; De Hoog, G.S.; Schaaf, K.P.; Tintelnot, K. A case of imported paracoccidioidomycosis in a German legionnaire. *Med. Mycol.* 2002, 40, 213–216.

27. Köhler, C.; Klotz, M.; Daus, H.; Schwarze, G.; Dette, S. Viseral paracoccidioidomycosis in a gold-digger from Brasil. *Mycoses* 1988, 31, 395–403.

28. Neveling, F. Paracoccidioidomycosis infections caused by an adventure vacation in the Amazon. *Prax. Klin. Pneumol.* 1988, 42, 722–725.

29. Brauninger, W.; Hastra, K.; Rubín, R. Paracoccidioidomycosis, an imported tropical disease. *Hautarzt* 1985, 36, 408–411.

30. Hastra, K.; Schulz, V.; Brauninger, A. South American blastomycosis in the Federal Republic of Germany. *Prax. Klin. Pneumol.* 1985, 39, 905.
62. Finzi, F.F.; Bubola, D.; Lasagni, A. Blastomycosi sudamericana. *Ann. Ital. Dermatol. Clin. Sper.* 1980, 34, 277–285.
63. Velluti, G.; Mazzoni, A.; Kaufman, L.; Covi, M. Physiopathological, clinical and therapeutical notes on a case of paracoccidioidomycosis. *Gazz. Med. Ital.* 1979, 138, 297–304.
64. Lasagni, A.; Innocenti, M. Su un caso di blastomycosi sud americana. *Chenioter. Antimicrob.* 1979, 2, 188–190.
65. Scarpa, C.; Nini, G.; Gualdi, G. Clinico-radiological contribution to the study of paracoccidioidomycosis. *Minerva Dermatol.* 1965, 40, 413–421.
66. Schiraldi, O.; Grimaldi, N. Granulomatosi paracoccidioido. *Policlinico* 1963, 70, 65–84.
67. Molese, A.; Pagano, A.; Pane, A.; Vingiani, A. Case of paracoccidioidal granulomatosis; Lutz-Splendore-Almeida disease. *Riforma Med.* 1956, 70, 1009–1014.
68. Farris, G. Report on a case of paracoccidioidomycosis (so-called Brazilian blastomycosis). Atti della Società italiana di dermatologia e sifilografia e delle sezioni interprovinciali. *Soc. Ital. Dermatol. Sifilogr.* 1955, 96, 321–358.
69. Bertaccini, G. Contributo allo studio della cosi detta≪ blastomicosi sud-americana >>. *Giorn. Ital. Dermatol. Sifil.* 1934, 75, 783–828.
70. Dalla Faveria, G.B. Per la conoscenza della cosidetta blastomycosi cutanea (con un’osservazione personale di oidiomicosi (Gilchrist, Bushke) zimonematosi (de Beurmann et Gougerot). Giorn. Ital. Mal. Ven. Pelle (Gilchrist, Bushke) zimonematosis (de Beurmann et Gougerot). Giorn. Ital. Mal. Ven. Pelle 1914, 55, 650–729.
71. Heleine, M.; Blaizot, R.; Cissé, H.; Labaudi nière, A.; Guerin, M.; Demar, M.; Blanchet, D.; Couppee, P. A case of disseminated paracoccidioidomycosis associated with cutaneous lobomycosis. *J. Eur. Acad. Dermatol. Venereol.* 2020, 34, e18–e20, doi:10.1111/edv.15863.
72. Dang, J.; Chanson, N.; Charlier, C.; Bonnal, C.; Jouvon, G.; Goulenok, T.; Papo, T.; Sacre, K. A 54-Year-Old Man with Lingual Granuloma and Multiple Pulmonary Excavated Nodules. *Chest* 2017, 151, e13–e16, doi:10.1016/j.chest.2016.07.026.
73. Sambourg, E.; Demar, M.; Simon, S.; Blanchet, D.; Dufour, J.; Marie, S.D.; Fior, A.; Carne, B.; Aznar, C.; Couppee, P. Paracoccidioidomycosis of the external ear. *Ann. Dermatol. Venereol.* 2014, 141, 514–517, doi:10.1016/j.annder.2014.04.121.
74. Laccourreye, O.; Mirghani, H.; Brasnu, D.; Badoul, C. Imported acute and isolated glottic paracoccidioidomycosis. *Ann. Otol. Rhinol. Laryngol.* 2010, 119, 89–92.
75. Poisson, D.M.; Heitzmann, A.; Mille, C.; Muckensturm, B.; Dromer, F.; Dupont, B.; Hochqueloux, L. Paracoccidioides brasiliensis in a brain abscess: First French case. *J. Mycol. Med.* 2007, 17, 114–118.
76. Van Damme, P.A.; Bierenbroodspot, F.; Telgt, D.S.C.; Kwakman, J.M.; De Wilde, P.C.M.; Meis, J.F.G.M. A case of imported paracoccidioidomycosis: An awkward infection in the Netherlands. *Med. Mycol.* 2006, 44, 13–18.
77. Maehlen, J.; Strøm, E.H.; Gerlyng, P.; Heger, B.H.; Orderud, W.J.; Syversen, G.; Solgaard, T. South American blastomycosis--a differential diagnosis to tuberculous meningitis. *Tidskr. Nor. Laegeforening* 2001, 121, 33–34.
78. Stanisic, M.; Wegmann, T.; Kuhn, E. South American blastomycosis (paracoccidioidomycosis) in Switzerland. Clinical course and morphological findings in a case following long-term therapy. *Schweiz. Med. Wochenschr.* 1979, 109, 693–699.
79. Wegmann, T.; Zollinger, H.U. Tuberkuloide Granulome in Mundscheinhaut und Halslymphknoten: Sudamerikanische Blastomykose. *Schweiz. Med. Wochenschr.* 1959, 89, 2–8.
80. Bonifaz, A.; González, V.D.; Ortiz, P.A.M. Endemic systemic mycoses: Coccidioidomycosis, histoplasmosis, paracoccidioidomycosis and blastomycosis. *J. Ger. Soc. Dermatol.* 2011, 75, 705–716.
81. Buitrago, M.J.; Estrella, C.M. Current epidemiology and laboratory diagnosis of endemic mycoses in Spain. *Enferm. Infecc. Microbiol. Clin.* 2012, 30, 407–413.
82. Júnior, Q.R.; Tde, G.A.; Massucio, R.A.; De Capitani, E.M.; Sde, R.M.; Balthazar, A.B. Association between paracoccidioidomycosis and tuberculosis: Reality and misdiagnosis. *J. Bras. Pneumol. Publicacao Soc. Bras. Pneumol. Tisiologia* 2007, 33, 295–300, doi:10.1590/s1806-37132007000300011.
83. Telles, Q.F.V.; Petrobom, P.P.M.; Júnior, R.M.; Baptista, R.M.; Peçanha, P.M. New Insights on Pulmonary Paracoccidioidomycosis. *Semin. Respir. Crit. Care Med.* 2020, 41, 53–68, doi:10.1055/s-0039-3400544.
84. Pecoraro, C.; Pinto, A.; Tortora, G.; Ginolfi, F. South American blastomycosis of the lung and bone: A case report. *Radiol. Med.* 1998, 95, 521–523.
85. Buitrago, M.J.; Merino, P.; Puente, S.; Lopez, G.A.; Arribi, A.; Oliveira, Z.R.M.; Gutierrez, M.C.; Tudela, R.J.L.; Estrella, C.M. Utility of Real-time PCR for the detection of Paracoccidioides brasiliensis DNA in the diagnosis of imported paracoccidioidomycosis. *Med. Mycol.* 2009, 47, 879–882.