PRODUCTIVE PERFORMANCE OF GROWING RABBITS FED DIETS CONTAINING DIFFERENT LEVELS OF FENNEL (Foeniculum vulgare L.) SEEDS BY-PRODUCT.

Azza M.M. Badr

Regional Center for Food and Feed, Agriculture Research Center, Giza, Egypt.

E-mail: Azzabadr805@yahoo.com

(Received 13/8/2019, accepted 30/9/2019)

SUMMARY

The present study aimed to investigate the effect of fennel seeds by-product (FSB) at different levels in rabbit feeds. The experiment was carried out at a privat farm in Giza, Egypt. Thirty-six unsexed White New Zealand rabbits breed aged 5-6 weeks with average weight of 682.85±3.75 g were randomly assigned into four equal groups: the first group was basal diet (R0 control), meanwhile, the other three experimental groups were received diets containing 20, 40 and 60% of FSB for (R1, R3, and R4), respectively. The feeding period was extended for 56 days. Results showed that the best apparent digestibilities of DM, OM, CP, CF, NFE digestibility were recorded with rabbits fed 40% FSB diet (R3) in comparison with the other tested control diets. All rabbits received diets containing FSB recorded higher (P<0.05) nutritive values expressed as TDN%, serum level of HDL and mean values of HDL-C/LDL-C ratio were significant (P<0.05) increase in diets containing FSB diets compared to control, the highest significant values recorded with diet (40%FSB). However, DCP%; serum total protein; albumin and albumin: globulin ratio values were not significant differences between the experimental groups. There was significant decreased (P<0.05) for treated diets of serum (AST) and (ALT), TG, TC, LDL, TC/HDL and VLDL-C compared to the control. The lowest significant values recorded with diet 40% FSB. The caecal NH3-N concentration was higher ratios of R3 followed R2 and finally R4, while, the TVFA,s was significant increased in R3 and R4 only compared to the control. Both body weight gain and average daily gain were significantly (P<0.05) improved (by 6.24%, 26.58% and 12.66%) and (by 6.22, 26.55 and 12.64%, in groups fed diets contained 20, 40 and 60% FSB, respectively, compared to those fed the control diet. Inclusion of 40 or 60% FSB in the rabbit diets led to significant (P<0.05) differences in hot carcass weight and dressing percentages compared to the 20% or control FSB groups. Incorporation FSB in rabbit diets significantly (P<0.05) increased the dressing percentage and decreased fat % of carcass boneless compared to control group. Increasing FSB% in the tested diet decreased FSB feed consumption by rabbits compared to control. No mortality was recorded in the rabbits fed diets incorporated 40 and 60% fennel seeds by-product (R3 and R4 diets), while rabbits fed diets containing 0 (control) and 20% FSB (R1 and R2 diets) were recorded 8.3% mortality rate. The major phytochemicals of the fennel seeds by-product are the total antioxidant capacity 183.82 mg/100g (ascorbic acid equivalent), the total phenols 113.96 mg/100g (garlic acid equivalent) and total flavonoid contents 67.10 mg/100 (catechin equivalents) addition of FSB improved feed conversion ratio; total cost, total revenue, net revenue, economic efficiency, relative economic efficiency and feed cost / kg LBW. Rabbits received R3 which content 40% FSB recorded the best total cost. It can be concluded that adding 40% fennel seeds by-product in rabbit diets improved their nutrient digestibility, nutritive values, final body weight, average daily gain, feed conversion ratio and decreased mortality rate, as well as realized the highest value of relative economic efficiency.

Keywords: fennel seeds by-product, rabbits, growth performance, nutrient digestibility coefficients, blood parameters and caecum activity and carcass characteristics.

INTRODUCTION

Herbs are produced by huge amount in Egypt. Fennel plant is cultivated around 2143 feddan per year (Egyptian Ministry of Agriculture, 2014). Its seed contains 2-6% volatile oil which is used in human feed...
additive for flavor. Many efforts have been devoted on using the green natural materials and/or medicinal plants as feed additives to improve the efficiency of feed utilization and productive performance (Aboul-fotouh et al., 1999). The production of Fennel in Egypt was about 22,000 tons according to the economic made by F.A.O. (2008). Fennel (Foeniculum vulgare L.) seeds contain health-promoting volatile essential oil compounds such as fenchone, anethole, myrcene, limonene, chavicol, cineole, anisic aldehyde, and pinene as well as amino acids, phenolic compounds, and flavonoids (El-Deek 2003). Fennel seed meal is a by-product of oil extraction and contains both seeds and steam. Stefanini, et al. (2006) found that the main compounds of essential oils from plant parts were trans-anethole in dry seeds in summer (78.25%); limonene in steams/leaves in spring (42.30%); Fenchone in green seeds in autumn (16.98%) and summer (15.08 %); methyl-chavicol in green seeds in autumn (3.57%); and to inflorescences in anthesis phase in summer α-pinene (2.24 %), γ-terpinene (1.14 %) and myrcene (1.24%). In the summer was found 1.78% β-ocimene in leaves and 44.61% of exo-fenchyl acetate in leaves and stem. Fennel seeds are rich in total carbohydrates (61.0%) and low in total soluble sugars (7.6%). The seeds are rich in Ca, P and Mg and contain considerable amounts of K, Fe and Zn and traces of Ma. The major fatty acid components of fennel seeds are 18:1 (71.31%) and 18:2 (11.66%). Also, fennel seeds are high in isoleucine and histidine (Abou-Raiia et al., 1991). The analysis of ethanolic and methanolic seed extracts showed the presence of nine components including linoleic acid (56%), palmitic acid (5.6%) and 5.2% of oleic acid (Gulfraz et al., 2008).

Several previous studies showed that adding medicinal plants and herbs to the diets of rabbits, chicks, sheep, cows or buffaloes improved their feed intake and nutrient digestibility (Aboul-Fotouh et al., 1999 and EL-Ayek, 1999) feed conversion (Aboul-fotouh et al., 1999; Allam et al., 1999; Salem and EL-Mahdy, 2001). In this respect, Radwan and Khalil (2002) found that feeding growing rabbit on fennel hay (a by-product, after yielding fennel grains) at levels 34 or 50% of the diet improved nutrients digestion, growth performance and dressing percentage. Furthermore, the addition of fennel straw at a rate of 0-15% of the diet showed stimulatory properties of digestion in lactating cows (Grela and Kowalczuk, 2007). Extracts of F.vulgare and isolated compounds have been evaluated for several activities, namely, antiaging, anti allergic, anti colitic, anti-hirsutism, anti-inflammatory, antimicrobial and antiviral, antimitogenic, anti nociceptive, antipyretic, antispasmodic, antistress, antithrombotic, anxiolytic, diuretic, estrogenic properties, expectorant, galactogenic, gastrointestinal effect, hepatoprotective, human liver cyt choline P450 3A4 inhibitory, hypoglycemic, hypolipidemic, memory-enhancing property, nootropic, and ocu olhypotensive activities [Albert-Puleo (1980); Oktay et al. (2003); Pradhan et al. (2008); Nassar et al. (2010); Rasul et al. (2012); Rahimi and Ardekani (2013); and Tripathi et al. (2013)].

The present study was designed to evaluate the inclusion of fennel seed by product on growth performance of growing rabbit and the effect of phytochemical on its growth performance.

MATERIALS AND METHODS

Animal diets and management:

Dried fennel seeds grinder mill and sieves were used to obtain a powder particle size of less than 0.2 mm. Chemical composition of fennel seed by product and alfalfa hay was shown in Table (1). The basal diet and experimental diets were formulated and pelleted to cover the nutrient requirements of rabbits according to NRC, (1977) as shown in Table (2), while chemical analysis of the experimental diets was shown in Table (3). Thirty-six unsexed New Zealand rabbits breed aged 5-6 weeks and average weight of 682.85±3.75g were randomly assigned into four groups. 9 rabbits for each group in 3 replicates. The trail was done in the summer season (the temperature about 25°C to36°C for the period from April to June) throughout year (2018). The feeding period was extended for 56 days. The experiment was carried out at privet farm in Giza, Egypt. The experimental groups were classified as the following: the first group was fed the basal diet (R1) and served as control group, meanwhile, 20, 40 and 60% of the alfalfa in the control diet was replaced by fennel seeds by-product (FSB) for groups R2, R3 and R4, respectively.
Table (1): Chemical analysis of the alfalfa hay and seed funnel by product (as dry matter basis).

Ingredient	DM	OM	CP	EE	CF	NFE	ASH	DE (Mcal/kg)	NDF
alfalfa hay	90.00	92.00	15.50	2.00	25.00	49.50	8.00	2.14	45.35
funnel seed by product	91.19	86.76	13.79	6.90	26.74	39.33	13.24	2.08	46.49

DE (Mcal/kg) = 4.36 – 0.049 x NDF, NDF% = 28.924 + 0.657 (CF%) according to Cheeke (1987).

Table (2): Composition of the experimental diets.

Ingredient	(R1) Control	(R2)	(R3)	(R4)
alfalfa hay	27.00	21.60	16.20	10.80
Fennel seeds by-product	0.00	5.40	10.80	16.20
Wheat bran	27.00	27.00	27.00	27.00
Yellow corn grain	19.90	19.90	19.90	19.90
Soybean meal (44%)	19.40	19.40	19.40	19.40
Corn Gluten Meal	3.00	3.00	3.00	3.00
Calcium phosphate, dibasic	1.50	1.50	1.50	1.50
Sugar Cane Molasses	1.00	1.00	1.00	1.00
Salt	0.30	0.30	0.30	0.30
Limestone	0.15	0.15	0.15	0.15
Methionine	0.30	0.30	0.30	0.30
L-Lysine HCL 98%	0.15	0.15	0.15	0.15
Premix (Vit. & Min. mixture)	0.30	0.30	0.30	0.30
Total	100	100	100	100

R1: Control diet. R2: contained 20% from fennel seeds by-product. R3: contained 40% from fennel seeds by-product. R4: contained 60% from fennel seeds by-product. * Vit. & Min. mixture: Each kilogram of Vit. & Min. mixture contains: 2000,000 IU Vit. A, 150,000 IU Vita. D, 8.33 g Vit. E, 0.33 g Vit. K, 0.33 g Vit. B1, 1.0 g Vit. B2, 0.33g Vit. B6, 8.33 g Vit.B5, 1.7 mg Vit. B12, 3.33 g Pantothenic acid, 33 mg Biotin, 0.83g Folic acid, 200 g Choline chloride, 11.7 g Zn, 12.5 g Fe, 16.6 mg Se, 16.6 mg Co, 66.7 g Mg and 5 g M.

Table (3): Chemical analysis of the experimental diets.

Item	(R1) Control	(R2)	(R3)	(R4)
Dry matter (DM)	96.16	96.82	96.61	96.61
Chemical analysis % (DM basis):				
Organic matter (OM)	94.39	94.28	94.18	94.07
Crude protein (CP)	20.52	20.43	20.34	20.24
Crude fiber (CF)	11.65	11.75	11.84	11.94
Ether extract (EE)	2.73	2.30	3.26	3.52
Nitrogen-free extract (NFE)	59.49	59.80	58.74	58.37
Ash	5.61	5.72	5.82	5.93
Digestible energy (Kcal/kg DM)	3045	3009	3010	2990

R1: Control diet. R2: contained 20% from fennel seeds by-product. R3: contained 40% from fennel seeds by-product. R4: contained 60% from fennel seeds by-product. Digestible energy (Kcal/kg DM) was calculated according to Fekete and Gippert (1986) using the following equation: DE (kcal/ kg DM) = 4253 – 32.6 (CF %) – 144.4 (total ash).

Each three rabbits were housed together in galvanized wire cages (30 x 35 x 40 cm). Stainless steel nipples for drinking and feeders allowing recording individual feed intake for each rabbit were supplied for each cage (ad libitum). Rabbits of all groups were kept under the same managerial conditions. Chemical analysis of diet samples and feces were analyzed according to AOAC (2005).
Digestibility trials:

At the end of the experimental period, four rabbits per group were used in digestibility trials over period of 7 days to determine the nutrient digestibility and nutritive values of the tested diets. Feed intake of experimental diets and weight of feces were daily recorded. Representative samples of feces were dried at 60°C for 27 hrs. and stored for later chemical analysis.

Slaughter trials:

At the end of the feeding period (56 days) all rabbits were fasted for 12 hours before slaughtering according to Blasco et al. (1993). Edible offal's (giblets) includes (heart, liver, testes and kidneys) were removed and individually weighed. Full and empty weights of digestive tract were recorded, and digestive tract contents were calculated by differences between full and empty digestive tract. Weights of carcass, giblets and external offal's were calculated as percentages of body weight at slaughtering (SW). Dressing percentages were calculated as carcass weight/slaughter weight * 100. Physical composition (lean, bone and fat) were calculated as percentages of ribs weight (RW). Boneless samples of carcasses were frozen in polyethylene bags for later chemical analysis. Live body weight of rabbits and feed consumption were weekly recorded and feed conversion ratio was calculated.

Blood serum samples:

The blood serum samples were collected during slaughtering from 4 rabbits per group into labeled sterile sample bottles without anticoagulant. The blood samples were centrifuged at 3000 rpm for 15 min. and serum was kept frozen at (~18°C) for subsequent analysis. Various blood serum chemical parameters were calorimetrically determined using commercial kits, following the same steps as described by manufactures. Blood serum was analyzed for total protein (Armstrong and Carr, 1964); albumin (Doumas et al., 1971). Globulin (was calculated by subtracting the albumin value from total protein value). Serum Glutamic Oxaloacetic Transaminase (AST) and Glutamic Pyruvic Transaminase (ALT) activities (Reitman and Frankel 1957), alkaline phosphatase (Belfield and Goldberg, 1971), total cholesterol (Roeschlaup et al., 1974) and Creatinine by (Bartles, 1972). Low density lipoprotein cholesterol concentration Friedwald et al. (1972). Then ratio of high density lipoprotein cholesterol to low density lipoprotein cholesterol (HDL/LDL) was measured. Very low density lipoprotein cholesterol (VLDL-C) was calculated using the following equation: VLDL-c (mg/dL) = TG/5

Caecal activity:

After slaughtering, caecum was taken for all slaughtered rabbits and caecum pH was immediately determined using digital pH meter, ammonia nitrogen (NH3-N mg/100gm) according to Conway (1958) and Total volatile fatty acids (TVFA's MEq/100gm) concentrations of caecum content according to Edadie (1967).

Determination of total phenolics total antioxidant capacity and total flavonoids assay in fennel seeds by-product:

Fennel seed by product was analyzed for the total phenolic contents of dry herbs were determined by using the Folin-Ciocalteau assay by (Marinova et al., 2005). The antioxidant activity of the plant extracts was evaluated by the phosphomolybdenum method of Prieto et al. (1999). Total flavonoid contents were measured by aluminum chloride colorimetric assay (Marinova et al., 2005).

The major constituents in seed fennel by product essential oil:

The major constituents in seed fennel by-product essential oil determined by Gas chromatography/mass spectrometry analysis. GC–MS analyses of the essential oils were performed using an Agilent Technologies (Little Falls, CA, USA) 6890 N Network gas chromatographic (GC) system.

Statistical analysis:

The experimental data was set in a completely randomized design. Analyzes of variance has done by using the general liner model procedure Proc. GLM (SAS, 2002). Differences among means were determined using Duncan’s test Duncan, 1955).
RESULTS AND DISCUSSION

Digestibility coefficients and nutritive values:

Results of Table (4) showed that the best apparent digestibility’s of DM, OM, CP, CF and NFE digestibility were recorded with rabbits fed 40% FSB diets in comparison with the other experimental and the control diets. The increased values of CP, CF, EE and NFE digestibility were significantly (P<0.05) higher by 5.50, 34.07, 8.89 and 11.98%, respectively, compared to the control group. These results are in harmony with the findings of Radwan and Khalil (2002) who found that digestion coefficient values of CF and EE were significantly improved by including fennel hay meal at levels of 34 or 50% in rabbit diets. They also, noted that OM, CP and NFE digestibilities were insignificantly difference between groups. The enhancement in all digestion coefficient and nutritive values may be attributed to promoting the growth of useful bacteria in the gut (Viveros et al., 1993 and Kholif et al., 2005). El-Deek et al. (2003) indicated that fennel stimulates the flow of digestive juice in the stomach and intestine and increase the efficiency of broken fats to fatty acids. They also noted that the anethole (active component in fennel seeds) affected pathogen microorganisms in digestive system and increased live body weight and improved feed conversion ratio.

On the contrary, Walaa et al. (2019) reported that, the control group recorded higher digestibility coefficients of CP, CF, EE and NFE without significant differences to groups of growing rabbits which fed diets containing fennel seed meal (FSM) at levels of 20 and 40%.

Table (4): Digestion coefficients and nutritive values (%) of the diets

Item	(R₁) Control	Experimental diet
Digestion coefficients:		
Dry matter (DMD)	74.20	77.49
Organic matter (OMD)	78.45	85.99
Crude protein (CPD)	65.93	69.56
Crude fiber (CFD)	45.46	60.95
Ether extract (EED)	70.88	77.18
Nitrogen-free extract (NFED)	64.51	72.24
Nutritive value:		
Total digestible nutrient (TDN%)	59.29	66.68
Digestible crude protein (DCP%)	12.36	12.71

a, b and c: Means in the same row having different superscripts differ significantly (P<0.05). SE standard error of the mean. R₁: Control diet. R₂: contained 20% from fennel seeds by-product. R₃: contained 40% from fennel seeds by-product. R₄: contained 60% from fennel seeds by-product.

Rahimi et al. (2011) revealed that, beneficial effects of medicinal plants or active substances in animal nutrition may include the improvement of endogenous digestive enzyme secretion, stimulation of appetite and therefore increase feed consumption, activation of immune response and antibacterial, antiviral, antioxidant actions which may affect the physiological and chemical function of the digestive tract.

Nutritive values expressed as TDN% are shown in Table (4). Rabbits received diet containing fennel seeds by-product recorded the higher (P<0.05) nutritive values compared with the control group, the observed superiority with diet containing 20, 40 and 60% FSB increased by 7.58, 12.46% and 8.74%, respectively. However, nutritive value as DCP% were insignificantly higher in FSB groups than control. Walaa et al. (2019) reported that nutritive values as DCP and TDN of rabbits fed fennel seed meal were significantly (P<0.05) values of fed fennel seed meal compared of control group. Moreover, the higher nutritive values for FSB diets could be contain some active components stimulating the active enzymatic digestible, anethole and estrgole have digestive stimulating and appetizing effects (Cabuk et al., 2003). Bown (2001) reported that fennel has been used in connection with the following conditions: appetite increase, up sed stomach and gastric juice production which relieves nausea and helpful for colic pain. Fennel is helpful for belching gas bloating, gastrointestinal cramps and sluggish digestion, because it has antispasmodic, antifungal properties and helps prevent...
fersation and gas in the stomach and bowels found that fennel has promoted iron absorption in rats and helps to improve the appetite.

Blood serum constituents:

Result of blood serum parameters in (Table 5) cleared that the diets containing fennel seed by-products had no significant effect (P>0.05) on blood serum total protein; albumin and albumin: globulin ratio. Whereas there was significant decrease (P<0.05) among values aspartate aminotransferase (AST) and alanine aminotransferase (ALT) compared to control. Rabbits fed diet (R4) recorded lowest significant (P<0.05) values of AST and ALT. The present results reveal that feeding rabbits with different levels of fennel seeds produce significant (P<0.05) decrease in serum AST and ALT levels and improved liver functions compared to the control. This effect may be related to antioxidant properties of fennel. These results are accordance with findings by Walaa et al. (2019) and Rezq (2012) who fed rabbits diets containing fennel meal with 20% and 40% FSM instead of clover hay. They found the serum total protein, albumin and creatinine values did not significantly differ between groups. However, values of serum globulin, AST, ALT, while total cholesterol were significantly decreased. Analyses of blood AST and ALT are very useful to get insight in the metabolic and health status of animals Ozbek et al. (2003). Fennel contains several types of phenolic and flavonoids that is known as antioxidants and had strong free radical scavenging. It is of the most effective antioxidants in the food industry (Choi and Hwang 2004). Chemical composition of fennel demonstrated the presence of anethole as the most potent antioxidant (DE Martino 2009). Also, Table (5) showed that the three groups that fed diets containing FSB recorded significantly (P<0.05) lower values of TG; TC; LDL; TC/ HDL and VLDL-C compared to control, the lowest values were recorded with diet (R4). Moreover, serum level of HDL and mean values of HDL-C/LDLC ratio were significant (P<0.05) increase than control. Eleni and Bairaktari (2005) demonstrated that flavonoids and anthocyanins, a heterogeneous group of polyphenols, have exhibited variety of pharmacological activities, including the antiatherogenesis effect. Anethole (1-anethole) that is the main compound in all fennel volatile oils possesses significant antioxidant activity. The presence of t-anethole and flavonoids content in fennel may be associated with lowering TC, TG and LDL-c levels. Flavonoids are reported to increase HDL-C concentration and decrease in LDL and VLDL levels in hypercholesteremic rats (Patel et al. 2009).

Item	(R1) Control	(R2)	(R3)	(R4)	± SE
Total protein (g/dl)	6.27	6.29	6.49	6.31	0.70 NS
Albumin (g/dl)	3.87	3.9	3.98	3.915	0.12 NS
Globulin (g/dl)	2.40	2.39	2.51	2.395	0.25 NS
Albumin: Globulin ratio	1.66	1.63	1.56	1.62	0.31 NS
Creatinine (mg/dl)	2.07	1.78	1.69	1.75	0.65*
AST (U/ml)	31.50	28.50	25.00	27.50	1.05*
ALT (U/ml)	35.00	34.00	32.50	34.00	1.52*
Total Triglyceride (mg/ dl)	78.00	71.00	48.00	45.00	2.43*
Total cholesterol (mg/ dl)	88.00	87.00	81.00	76.00	3.70
HDL	31.07	45.89	41.74	40.19	2.24*
LDL	41.34	26.92	26.99	26.12	1.12*
HDL/LDL (mg/ dl)	0.75	1.70	1.55	1.54	0.03*
TC/HDL (mg/ dl)	2.83	1.90	1.94	1.89	0.85*
VLDL-C (mg/ dl)	15.60	14.20	9.60	9.00	1.86*

a, b and c: Means in the same row having different superscripts differ significantly (P<0.05).

AST: Glutamic Oxaloacetic Transaminase; ALT: Glutamic Pyruvic Transaminase. R1: Control diet. R2: contained 20% from fennel seeds by-product. R3: contained 40% from fennel seeds by-product. R4: contained 60% from fennel seeds by-product. VLDL-c (mg/dl) = TG/5 values were calculated according to Friedewald et al. (1972).
Caecal activity:

The caecal pH, ammonia-N and TVF's concentrations were significantly (P<0.05) affected by the level of incorporation of FSB in the diets (Table 6). The pH meter not affected in different levels FSB, NH3-N concentration was higher ratios of R3 (FSB 40%) followed R2 (FSB 20%) and finally R4 (FSB 60%), while, the TVFAs was significant increase in R3 and R4 compared to the control except R2 was decreased in TVFAs compared to control. Abd-El-Hady (2014) noticed that the caecal activity of TVFAs (MEq/100gm) was increased significantly when added 300 and 400 gm. Digestorom 7.20 and 7.27 (MEq/100gm) compared with control 5.17, NH3N (mg/100gm) increased from 17 to 19.10 and 18.53 but pH not affected.

Table (6): Caecum parameters of the experimental diets.

Item	Experimental diet				
	(R1)	(R2)	(R3)	(R4)	± SE
pH	7.75	6.15	6.08	7.34	0.03*
Ammonia-nitrogen (NH3-N mg/100gm)	20.57	25.04	29.05	21.95	1.47*
Total volatile fatty acids (TVFA's MEq/100 g)	8.47	7.57	9.59	9.44	0.76*

a, b and c: Means in the same row having different superscripts differ significantly (P<0.05).

R1: Control diet. R2: contained 20% from fennel seeds by-product. R3: contained 40% from fennel seeds by-product. R4: contained 60% from fennel seeds by-product.

Productive performance.

Data of Table (7) showed that, dietary feeds containing different levels of FSB significantly (P<0.05) improved final weight, body weight gain and average daily gain.

Table (7): Growth performance of the experimental diets.

Item	Experimental diets				
	(R1) Control	(R2)	(R3)	(R4)	± SE
No. of animals	9	9	9	9	
Initial weight (g)	680.08	681.92	680.43	688.87	3.82 NS
Final weight (FW, g)	1858.67±	1934.61bc	2172.35a	2016.67ab	12.37*
Total body weight gain (TBWG, g)	1178.59c	1252.08bc	1491.92a	1327.80b	11.45*
Experimental duration	56 days				
Average daily gain (ADG, g/day)	21.05c	22.36bc	26.64a	23.71b	1.40*
Feed intake as:					
Dry matter (DMI), g	97.42a	95.64b	90.21b	92.22b	2.98*
Total digestible nutrient (TDNI), g	57.76	60.99	60.15	59.45	2.04
Crude protein (CPI), g	18.26	17.89	16.85	17.20	1.08
Digestible crude protein (DCPI), g	12.04	12.05	11.71	11.72	0.74
Digestible energy (DE), kcal	297.31	291.42	273.52	278.43	3.65
Feed conversion ratio (g intake /g gain) as:					
Dry matter (DMI)	4.63a	4.28b	3.38b	3.89b	0.23*
Total digestible nutrient (TDN)	2.74a	2.73b	2.26b	2.51b	0.21*
Crude protein (CP)	0.87a	0.80b	0.63b	0.73b	0.06*
Digestible crude protein (DCP)	0.57a	0.54b	0.44b	0.49b	0.04*
Digestible energy (DE), kcal / g. gain	14.12a	13.03b	10.27b	11.74b	3.49*
Mortality rate%	8.30	8.30	0	0	---

a, b and c: Means in the same row having different superscripts differ significantly (P<0.05).

R1: Control diet. R2: contained 20% from fennel seeds by-product. R3: contained 40% from fennel seeds by-product. R4: contained 60% from fennel seeds by-product.
Badr

Final weight was improved by 4.09, 16.88 and 8.50%, for rabbits fed diets containing 20, 40 and 60% fennel seeds by-products compared to control group, meanwhile, body weight gain was significantly (P<0.05) improved by 6.24, 26.58% and 12.66% and average daily gain by 6.22, 26.55 and 12.64% for R2, R3 and R4, respectively compared to the control (R1). Rabbits received R3 that contained 40% FSB recorded the best final weight, body weight gain and average daily gain. These results are in agreement with those obtained by Krieg et al., (2009) who reported that, weight gain and feed intake of the growing rabbits fed diets containing medicinal herbs mixture of 300 mg (included fennel) was 18 and 14% higher, respectively, than those fed control diet. Mohamed and Abbas (2009) observed a higher of BW gain of broiler chickens by 6% when adding 1 g/kg of fennel. Radwan and Khalil (2002) evaluated of fennel hay in growing rabbit diets at level of 34 or 50% and they showed an improvement in growth performance compared with control group. Acimovic et al., (2016) found that the different levels of fennel seeds (0.25, 0.50 and 0.75 g/kg) on growing Japanese quail were significantly increased live body weight gain of quail chicks. Diet containing 0.50 g/kg fennel seed recorded the best values of feed conversion ratio and economic efficacy among the experimental treatments.

Results of Table (7) also showed that dry matter feed intake was numerically insignificantly decreased in diets supplemented with 40 and 60% FSB compared to the control diets by 1.83, 7.40 and 5.34% for R2, R3 and R4, respectively. Feed conversion ratio expressed as (g intake /g gain) showed that were significant decreased for FSB diets compared with control diet. The lowest value of feed conversion was recorded with R3, these may be attributed to be the decrease of dry matter Intake and the increase of ADG. In this study, rabbits fed diet containing 40% fennel seeds by-product improved FCR by almost 27%. In this respect, Halle et al. (2004) noted that the addition of oregano and its essential oil reduced daily feed intake of broilers and significantly improved feed conversion ratio (FCR). Mohammed and Abbas (2009) reported that, broiler chickens containing fennel seeds at the dose of 2 and 3 g/kg improved FCR by almost 16%. Walaa et al. (2019) mentioned that, the groups of 20% FSM with enzyme, control and 40%FSM with enzyme recorded better values of FCR without significant differences. In the contrary, Krieg et al. (2009) reported that no differences in the feed conversion feed conversion between treatments of the growing rabbits fed diets containing medicinal herbs mixture of 300 mg (included fennel).

Mortality rate

Data presented in Table (7) showed that no mortality were recorded in the rabbits fed diets incorporated with 40 and 60% fennel seeds by-product, while rabbits fed diets containing 0 (control) and 20% fennel seeds by-product recorded 8.3% mortality rate. Diarrhoea in rabbits occurs mainly within the first three weeks post weaning causing a mortality rate up to 50% (Gidenne and Garcia, 2006). It is also reported that using phytogenic flavors reduced mortality due to optimization of immune system (Fortun and Boullier, 2007). Expectorant activity fennel stimulates the ciliary motility of the respiratory apparatus and enhance the external transport of extraneous corpuscles. This action sug-gests a use for fennel in treating bronchial and bronchopulmonary affections and in particularly polluted environments (Mueller-Limmoth and Froehlich, 1980). The volatile oil of fennel stimulates the contraction of the smooth muscles of the trachea, an action that could facilitate the expectoration of mucus, bacteria, and other corpuscles extraneous to the respiratory tracts (Reiteran and Brandt, 1985).

Carcass traits

Results of Table (8) showed that inclusion of FSB significant (P<0.05) increased in hot carcass weights and edible offal's compared to control. The highest (P<0.05)dressing percentage was recorded for R4 (60% FSB) whereas the lowest was recorded for R2(20%FSB) Radwan and Khalil (2002) found that dressing percentage of rabbits fed fennel hay meal at levels 34 or 50% was improved with increasing fennel hay meal level without holding significant differences in liver and heart percentages. On the contrary, Walaa et al. (2019) reported that, there were significantly decreased in values of carcass and dressing percentages with 40% fennel seed meal without enzyme compared with control group. Carcass weight that includes edible offal's (Liver, heart, kidneys and testes) was improved by 1.02, 17.19 and 18.06% for (R2, R3 and R4), respectively in comparison with the control (R1). This improvement in relative weights of hot carcass, dressing and liver as a result to the reduction in the alimentary tract percentage may be due to that addition of essential oils of medicinal herbs of fennel increased digestibility coefficient of nutrients and maintaining the acidic condition in the hindgut which is optimal for better feed utilization. In the contrary, Mohammed and Abbas (2009) denoted that, addition of 1, 2 and 3 g/ kg fennel seeds to the broiler did not significant effect on all carcass characteristics.

Chemical analysis of carcass boneless was significantly (P<0.05) affected by incorporated FSB in rabbit diets (Table 8). The crude protein was significant (P<0.05) increased in groups fed diets
containing FSB compared to those fed the control diet. On the other hand, ether extract values of 20% FSB containing diets were significant (P<0.05) decreased compared to 40 and 60% FSB containing diets, while, ash contents recorded non-significant different among the experimental groups.

Data in Table (8) showed that incorporation of FSB in rabbit diets significantly (P<0.05) increased of crude protein % of rib compared to control. The best value was recorded with R3 (40% FSB). On the other hand, fat% were significantly (P<0.05) decreased compared to control group without R2 (20% FSB), the lowest fat% was recorded with R3 (40%) but the ash was non-significant decrease. These results agree with those of Omer et al. (2013). The decrease of fat of rib% of FSB may be associated with activities of antioxidant enzymes; the main compound in fennel is t-anethole and flavonoids (Table 9).

Table (8): carasses traits of the experimental diets.

Item	Experimental diet	(R1) Control	(R2)	(R3)	(R4)	± SE
Slaughter weight (SW), g	1858.24d	1949.12c	2172.08a	2016.65b	10.03a	
Empty body weight (EBW), g	1599.57c	1618.33c	1883.67a	1692.67c	9.21a	
Giblets Edible offal's, g	97.36c	105.33b	124.67a	115.78a	4.54a	
Hot carcass weight (CW), g	1192.33c	1204.52b	1307.34a	1407.67a	8.54a	
Dressing percentage (DP)%	64.16b	61.80c	64.33b	69.80a	4.15a	
Dressing percentage (DP)%*	68.74b	65.35b	67.56b	74.68a	2.16a	
Dressing percentage (DP)%**	74.53b	71.61c	74.18b	83.16a	2.87a	
Chemical composition (DM%) of carasses boneless						
Ether extract (EE)	24.30a	23.05a	20.20b	21.54b	1.12a	
Ash	2.22	2.07	2.76	2.31	0.60 NS	
Crude protein (CP)	72.48b	77.04a	77.04a	76.15a	2.74a	
Chemical composition of the 9th, 10th and 11th ribs of the experimental groups						
Ether extract (EE)	26.02a	25.25a	22.60c	23.15b	1.45	
Ash	2.19	2.02	2.00	2.07	0.14 NS	
Crude protein (CP)	71.81b	72.72b	75.40a	74.76a	3.04a	

a and b: Mean in the same row having different superscripts differ significantly (P<0.05).

R1: Control diet. R2: contained 20% from fennel seeds by-product. R3: contained 40% from fennel seeds by-product. R4: contained 60% from fennel seeds by-product.

SW: Slaughter weight = Carcass weight + head + edible offal's include (Liver, heart, kidneys, testes, lungs and spleen).

**Chemical composition: (DM%) of carasses boneless = (EBW/ (SW x 100)) **

Phytochemicals of the fennel seed by product

Phytochemicals of the fennel seed by-product are shown in Table (9). The major constituents of fennel seed by product are the total antioxidant capacity (183.82 mg/100g ascorbic acid equivalent), the total phenols (113.96 mg/100g garlic acid equivalent) and total flavonoid contents (67.10 mg/100gm catechin equivalents). These values nearest with those obtained by Valentina et.al. (2013). The antioxidant capacity, phenolic compounds exhibit a wide range of biological activities, including anti-carcinogenic, anti-inflammatory, anti-viral, anti-allergic, estrogenic, immune-stimulating agents, anti-germogenic, anti-atherosgenic, anti-microbial, antithrombotic, antistress, antihyperglycemia, cardioprotective and vasodilatory effects. It is well known that plant phenolics, in general are the highly effective free radical scavenging and antioxidants (Tawaha et al., 2007). These flavonoids exhibit remarkable antinociceptive and anti-inflammatory activity (Nassar et al. 2010). Further, quercetin, rutin, and isoquercitrin were reported to have the immunomodulatory activities (Cheng et al., 2008). Fennel inhibits the oxidative stress induced by cyclophosphamide (Tripathi et.al. 2013). Fennel has been reported to contain hydroxyl cinnamic acid derivatives, flavonoid glycosides, and flavonoid aglycones (Parejo et al. 2004). The total phenolic compounds in fennel methanol extract were higher than the flavonoid compounds (Roby et al., 2013). The total phenolic and flavonoid contents of wild fennel (2.4% and 1.2% respectively) were less as compared to cultivated fennel (3.1%and 1.6%, resp.) Ghanem et al. (2012).
Table (9): phytochemicals evaluation of the Fennel seed by product

Phytochemical	Equivalent	Fennel seed by product
Total antioxidant capacity	mg/100g (ascorbic acid equivalent)	183.82
Total phenolic content	mg/100g (gallic acid equivalents)	113.96
Total flavonoid contents	mg/100g (catechin equivalents)	67.10

The major essential oils in seed fennel by product

The major constituents in fennel essential oils are shown in Table (10). The components determined by GC and GC/MS from fennel by product oil, representing Trans-Anethole (67.53g/100g), fenchone (4.98g/100g), followed by estragole (9.79g/100g) the limonene (4.58g/100mg). These results are agreement with those of Diao et al. (2014). Essential oil of F.vulgare showed appreciable antifungal activity against strains of pathogenic fungi, namely, Aspergillus niger, Fusarium solani, and Rhizopus solani (Anwar et al. 2009). Also, Martins et al. (2012) showed that the essential oils of fennel showed significant antifungal activity against the food spoilage fungi Aspergillus niger and Fusarium oxysporum and may have important applications as food additives.

Table (10): The major essential oils in seed fennel by product.

Compounds	Content (g/100g)
trans-Anethole	67.8
Fenchone	4.98
Estragole	9.79
Limonin	4.58

Economical Evaluation:

The economic efficiency of the experimental diets is shown in Table (11). The cost of one kg feed, (LE) was decreased by inclusion fennel seeds by-product in the diets (R2 to R4) compared to control diet (R1). Also, increasing FSB% in the tested diets decreased FSB feed consumption by rabbits compared to control. In addition, the marketing weight was increased by added FSB in diets.

Table (11): Economical evaluation of the experimental diets

Item	(R1) Control	(R2)	(R3)	(R4)
Marketing weight, Kg	1.86	1.93	2.17	2.02
Feed consumed (kg) / rabbit	5.46	5.36	4.94	5.16
Cost of one kg feed, (LE)3	5.50	5.49	5.48	5.48
Total feed cost, (LE)	30.01	29.40	27.68	28.30
Price of buying one rabbit, LE	10	10	10	10
Management/ Rabbit, (LE)2	5.00	5.00	5.00	5.00
Total cost, (LE)3	45.01	44.40	42.68	43.30
Total revenue, (LE)4	74.35	77.36	85.88	80.64
Net revenue	29.34	33.23	43.20	37.34
Economic efficiency5	0.65	0.75	1.01	0.86
Relative economic efficiency6	100.00	115.38	155.38	132.31

R1: Control diet. R2: contained 20% from fennel seeds by-product. R3: contained 40% from fennel seeds by-product. R4: contained 60% from fennel seeds by-product. * Based on prices of year 2018. 1: Include medication, vaccines, sanitation and workers. 2: include the feed cost of experimental rabbit which was LE 25/ rabbit + management. 3: Body weight x price of one kg at selling which was LE 40. 4: net revenue per unit of total cost. 5: Assuming that the relative economic efficiency of control diet equal 100. 6: Feed cost/kg LBW = feed intake * price of kg / Live weight
Diet of FSB improved total cost, total revenue, net revenue, economic efficiency, relative economic efficiency and feed cost / kg LBW. Rabbits received R3(40% FSB) recorded the best total cost, total revenue, net revenue, economic efficiency, relative economic efficiency and feed cost /Kg LBW (LE). In this respect. The present works are in good agreement with those of Radwan and Khalil (2002) who found that economic efficiency values were increased by increasing fennel hay meal levels in rabbit diets. Acimovic et al., (2016) used different levels of fennel seeds (0.25, 0.50 and 0.75 g/kg) on growing Japanese quail, they concluded that feed diet containing 0.50 g/kg fennel seed recorded the best values of net return as well as the highest value of economic efficacy among the experimental treatments.

CONCLUSION

Based on the results of the present study, using fennel seeds by-product (FSP) at level of 40% in diets of growing rabbit improved their digestibility and increased performance, feed conversion and decreased mortality rate as well as realized higher values of relative economic efficiency. This implies that FSP (especially at level of 40 %) may be beneficial as a suitable natural growth promoter in feeding rabbits.

REFERENCES

Abd-El-Hady (2014). Performance, physiological parameters and slaughter characteristics in growth rabbits as affected by a herbal feed additives (DIGESTAROM). Journal of International Scientific Publications: Agriculture and Food Volume 2, ISSN 1314-8591 (Online), Published at: http://www. Scientific publications.net.
Abdul-Azez, N.H., (2000). Treatment by Herbs. Al-Shaffa Library, Egypt, pp: 27. Book.
Aboul-fotouh, G. E., S. M. Allam, E. Shehat and S. N. Abdel-Azeem (1999). Effect of some medicinal plants as feed additives on performance of growing sheep. Egypt J. Nutr. and Feeds, 2: 79–87.
Abou-Raiia, S.H.; N.M. Abdel-Moein and M.Y. Khalil (1991). Chemical evaluation of common dill and bitter fennel seeds. Bulletin of Fac. of Agric. Cairo. Univ., 42: 1133-1148.
Acimovic MG, Kostadinovic LM, Puvaca NM, Popovic SJ, Urosevic MI. Phytochemical constituents of selected plants from Apiaceae family and their biological effects in poultry. Food and Feed Research. 2016; 43(1):35-41.
Albert-Puleo, M. (1980). Fennel and anise as estrogenic agents. Journal of Ethnopharmacology, 2(4): 337–344.
Allam, S. M., M. El-Hosseiny, A. M. Abdel-Gawad, S. A. EL-Saadany and A. M. Zeid (1999). Medicinal herbs and plants as feed additives for ruminants. 1- Effect of using some medicinal herbs and plants as feed additives on Zaraibi goat performance. Egypt J. Nutr. and Feeds, 2: 349–365.
Anwar, F.; M. Ali; A. I. Hussain and M. Shahid (2009). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill.) seeds from Pakistan. Flavour and Fragrance Journal, 24 (4):170–176.
AOAC (2005). Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists, Washington, DC, USA.
Armstrong, W.D. and C.W. Carr (1964). Physiological Chemistry: Laboratory directions 3: 75 Buger. Puplishing Co. in neapolis, Minnesota, U.S.A.
Bartles, H. (1972). Calorimetric determination of creatinine. Clin. Chem. Acte,32:81.
Belfield, A. and D.M. Goldberg (1971). Enzyme 12: 561.
Blasco, A.; J. Quha yaun and G. Masoscro (1993). Hormonization of criteria and terminology in rabbit meat research. World Rabbits Sciences, 1: 3-10.
Badr

Bown, D. (2001). The Herb Society of American New Encyclopedia of Herbs and the uses. New York: DK.

Cabuk, M., A. Alicicex, M. Bozhutr and N. Lmre, (2003). Antibacterial properties of the essential oils isolated from aromatic plants and using possibility as alternative feed additives 11. National Animal Nutrition Congress 18-20, September, pp: 184-187.

Cheeke, P. R. 1987. Rabbit Feeding and Nutrition. Academic Press, New York.

Cheng, J.; W. Chiang and L. Chiang (2008). Immunomodulatory activities of common vegetables and spices of Umbelliferae and its related coumarins and flavonoids. Food Chemistry, 106 (3): 944–950.

Choi E.M. and J.K. Hwang (2004). Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia, 75: 557-565.

Conway, E.J. (1958). Microdiffusion Analysis and Volumetric Error, 4th edn. Crosby Lockwood, London.

DE Martino L.; V. DE Feo; F. Fratianni and F. Nazzaro (2009). Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components. Nat. Prod. Commun., 4: 1741-1750.

Diao, W.; Q. Hu; H. Zhang and J. Xu (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control, 35(1):109–116.

Doumas, B.; W.W. Wabson and H. Biggs (1971). Albumin standards and measurement of serum with bromocresol green. Clin. Chem. Acta, 3;258(1):21-30.

Duncan, D. B. (1955). Multiple ranges and multiple F test. Biometrics, 11:1-42.

Eadie, J.M.; P.N. Hobson and S.O. Mann (1967). A note on some comparisons between the rumen content of barley fed steers and that of young calves also fed on high concentrate rations. J. Anim. Prod., 2: 279–296.

Egyptian Ministry of Agriculture (2014). Study of important indicator of the Agriculture Statistics.

El-Ayek, M. Y. (1999). Influence of substituting concentrate feed mixture by Nigella sativa meal on: 1-Voluntary intake, digestibility, some rumen parameters and microbial protein yield with sheep. Egypt J. Nutr. and Feeds, 2: 279–296.

El-Deek, A.A., Y.A. Attia and M.M. Hannfy, 2003. Effect of anise (Pimpinella anisium)j, ginger (Zingiber officinale roscoe) and Fennel (Foeniculum vulgare) and their mixture of performance of Broilers. Arch.Geflugelk., 67: 92-96.

El-Shobaki, F.A., Z.A. Saleh and N. Saleh, (1990). The effect of some beverage extracts on intestinal ionabsorption. Z Ernahrungswis, 29: 264-269.

F.A.O. (2008). Food and Agricultural Organization of United Nations: Economic and Social Department: The Statistical Division.

Fekete, S. and T. Gippert (1986). Digestibility and nutritive value of nineteen important feedstuffs for rabbits. J. Appl. Rabbit Res., 9 (3): 103- 108. Halle, I., R. Thomann, U. Bauermann, M. Henning and P. Köhler, (2004). Effects of a graded supplementation of herbs and essential oils in broiler feed on growth and carcass traits, Landbauforschung Volkenrode, 54 :219-229.

Fortun Lamothe L. and S. Boullier (2007). A review on the interactions between gut microflora and digestive mucosal immunity. Possible ways to improve the health of rabbits. Livestock Science, 107: 1-18.

Friedewald W.T.; R.I. Levy and D.S. Fredrickson (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem; 18:499–502.

Ghanem M. T. M.; H. M. A. Radwan; E. M. Mahdy; Y. M. Elkholy; H. D. Hassanein, and A. A. Shahat (2012). Phenolic compounds from Foeniculum vulgare (Subsp.Piperitum) (Apiaceae) herb and evaluation of hepatoprotective antioxidant activity. Pharmacognosy Research, 4(2):104–108.
Gidenne T., and J. Garcia (2006). Nutritional strategies improving the digestive health of the weaned rabbit. In: Maertens L., Coudert P (eds). Recent Advances in Rabbit Sciences. ILVO, Animal Science United, Melle- Belgium; 229-238.

Grela, E.R. and E. Kowalczuk (2007). Herbs in animal feeding. Herba Pol., 53: 360-366.

Gulfraz, M., S. Mehmood, N. Minhas, N. Jabeen, R. Kausar, K. Jabeen and G. Arshad (2008). Composition and antimicrobial properties of essential oil of Foeniculum vulgare. African Journal of Biotechnology, 7 (24): 4364–4368.

Kholif, A.M.; El-Ashry, M.A; El-alamy, H.A; El-Sayed, H.M.; Fadel,M. and Kholif, S. (2005). Biological treatments banana wastes for feeding lactating goats. *Egyptian Journal Nutrition and Feeds*, 8: 149-162.

Krieg R.; W. Vahjen; W. Awad; M. Sysel; S. Kroeger; E. Zocher; W. Hulan; G. Arndt and J. Zentek (2009). Performance, digestive disorders and the intestinal microbiota in weaning rabbits are affected by a herbal feed additive. *World Rabbit Sci.* 17: 87 – 95.

Marinova D.; Ribarova F. Atanassova M. (2005). Total phenolics and total flavonoids in Bulgarian fruits and vegetables. JUCTM, 40(3): 255-260.

Martins, M. R.; M. T. Tinoco; A. S. Almeida and J. Cruz Morais (2012) Chemical composition, antioxidant and antimicrobial properties of the essential oils from Portuguese flora. Journal of Pharmacognosy, 3(3):39–44.

Mohammed, A.A. and R. J., Abbas (2009). The effect of using fennel seeds (*Foeniculum vulgare* L.) on productive performance of broiler chickens. Int. J. Poult. Sci. 8, 642-644.

Mueller-Limmroth W. and H. H. Froehlich (1980). Effect of various phytotherapeutic expectorants on mucociliary transport. Fortschrritte der Medizin, 98 (3): 95 –101.

Nassar M.I.; E.A. Aboutabl; Y.A. Makled; E.A. El-Khrisy and A. F. Osman (2010). Secondary metabolites and pharmacology of Foeniculum vulgare Mill. Subsp. Piperitum, Revista Latinoamericana de Quimica, 38 (2):103–112.

NRC (1977). National Research Council. Nutrient requirements of rabbits. National Academy of Science, Washington, D.C.

Oktay, M.; I. Guclu; and O. I. Kufreviojlu (2003). Determination of in vitro antioxidant activity of fennel (*Foeniculum vulgare*) seed extracts. LWT-Food Science and Technology, 36(2): 263–271.

Omer, H.A.A; M. Sawsan; A. Abd El-Maged; A. Abedo and Azza M.M. Badr (2013). Utilization of Flaxseeds (*Linum usitatissimum L.*) in Rabbit Rations. 2. Influence of Flaxseeds Levels supplementation on Blood Constituents, Carcass Characteristics and Fatty Acids Profile. *Life Science Journal*, 10 (4): 2625-2637.

Ozbek H., Ugras S., Dulger H., Bayram I., Tuncer I., Ozturk G. and Ozturk A. (2003). Hepatoprotective effect of Foeniculum vulgare essential oil. Fitoterapia, 74 (3): 317-319.

Parejo I., O. Jauregui, F. Sanchez-Rabaneda, F. Viladomat, J. Basida, and C. Codina (2004). Separation and characterization of phenolic compounds in fennel (*Foeniculumvulgar*) using liquid chromatography-negative electrospray ionization tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 52(12):3679–3687.

Patel D.K., Patel K.A., Patel U.K., Thounaajoa M.C., Jadeja R.N., Ansarullah G.S., Salunke S.P., Devkar R.V. and Ramachandra A.V.(2009). Assessment of lipid lowering effect of Sida rhomboidea. Roxb methanolic extract in experimentally induced hyperlipidemia. J. Young Pharma., 1 (3): 233-238.

Pradhan, M.; S. Srikhawanewsvari, D. Karthikeyan (2008). In-vitro cytoprotection activity of Foeniculum vulgare and Helicteres isorain cultured human blood lymphocytes and anti-tumour activity against B16F10 melanoma cell line. Research Journal of Pharmacy and Technology, 1 (4): 450–452.

Prieto, P.; M. Pineda and A.R. M. Aguil (1999). Spectrofotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. *Anal. Biochem.* 269: 337–341.

Radwan, M.S.M. and E.F. Khalil (2002). Nutritional evaluation of fennel hay inclusion in rabbit diets. *Egypt. J. Rabbit Sci.*, 12: 85-94.
Badr

Rahimi R. and M. R. S. Ardekani (2013). Medicinal properties of Foeniculum vulgare Mill. in traditional Iranian medicine and modern phytotherapy. Chinese Journal of Integrative Medicine, 19(1):73–79.

Rasul, A.; N. Akhtar; B.A. Khan; T. Mahmood; S.U. Zaman and H. M. Shoaib Khan (2012). Formulation development of a cream containing fennel extract: in vivo evaluation for anti-aging effects. Pharmazie, 67, (1):54–58.

Reiteran M. and W. Brandt (1985). Relaxant effects on tracheal and ileal smooth muscles of the guinea pig. Arzneimittel-Forschung, 35(1A):408–414.

Reitman, S. and S. Frankel (1957). Colorimetric determination of GOT and GPT activity. American Journal Clinical Pathology, 28: 56.

Roby M. H. H.; M. A. Sarhan; K. A. Selim and K. I. Khalel (2013). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Industrial Crops and Product, 44: 437–445.

Roeschlau, P.; E. Bernt and W. Gruber (1974). Enzymatic determination of total cholesterol in serum. J. Clin. Chem. Clin. Biochem, 12, 403–407.

Rezq A. (2012). Beneficial Health Effects of Fennel Seeds (Shamar) on Male Rats Feeding High Fat-Diet Med. J. Cairo Univ., 80 (2): 101–113.

Pradhan, M.; S. Sribhuwaneswari; D. Karthikeyan; S. Minz; P. Sure; A.N.Chandu; U. Mishra.; K. Kamalakannan; A. Saravananku-mar and T. Sivakumar (2008). In-vitro cytotoxicity activity of Foeniculum vulgare and Helicteres isora in cultured human bloodlymphocytes and antitumour activity against B16F10 melanomacell line. Res. J. Pharm. Technol. 1 (14), 450–452.

Salem, F. A. and M. R. EL-Mahdy (2001). Effect of some medicinal plants as feed additives on nutrients digestibility, rumen fermentation, blood and carcass characteristics of sheep. 2nd Int. Conf. Anim. Prod. Health in Semi-Arid Area, 161–175.

SAS (2002). Institute Inc., System 2002® Software: Product Support Manual, Version 1, First Edition, Cary, NC: SAS Institute Inc.,

Stefanini, M.B.; Ming, L.C.; Marques, M.O.M.; Facanali, R.; Meireles, M.A.A.; Moura, L.S.; Marchese, J.A. and Sousa, L.A. (2006) Rev. Bras. Pl. Med., Botucatu, (8):193-198.

Tawaha K., F. Alali, M. Gharaibeh, M. Mohammad and T. El-Elimat (2007) Antioxidant activity and total phenolic content of selected Jordanian species. Food Chem., 104: 1372-1378.

Tripathi, P.; R. K. Patel and S. S. Pancholi (2013). Investigation of antimutagenic potential of Foeniculum vulgare essential oil on cyclophosphamide induced genotoxicity and oxidative stress in mice, Drug and Chemical Toxicology, vol. 36(1): 35–41.

Valentina C. Bagdassarian; Kristine S. Bagdassarian and Maria Atanassova (2013). Phenolic Compounds and Antioxidant Capacity in Bulgarian Plans (dry seeds). International Journal of Advanced Research, 1(9): 186-197.

Viveros, A.; Brenes, A.; Pizarro, M. and Castano, M. (1993). Effect of enzyme supplementation of a diet based on barley and autoclave treatment on apparent digestibility, growth performance and gut morphology of broilers. Animal feed science and Technology, 48(3/4):237-251.

Walaa A. Salama; Amira M. Refaie and M. A. El-Shora (2019). Performance of growing rabbits fed diets containing fennel seed meal without or with enzyme mixture (2019). Egyptian Journal of Rabbit Science, 29 (1): 45 – 60.
The objective of this study was to investigate the effect of incorporating the mealworm (FSB) on the productivity and quality of broiler chickens of different ages. The mealworm was incorporated into the diet of broiler chickens at different levels. The results showed a significant increase in the weight gain and feed conversion ratio compared to the control group. The inclusion of the mealworm in the diet also resulted in a significant improvement in the biochemical parameters, such as ALT, AST, and ALT/AST. The inclusion of the mealworm also resulted in a significant improvement in the quality of the meat, as indicated by the TVF, CF, and NFE values. The results suggest that the mealworm can be used as a feed ingredient to improve the productivity and quality of broiler chickens.