A NOTE ON THE NAVARRO CONJECTURE FOR
ALTERNATING GROUPS WITH ABELIAN DEFECT

RISHI NATH

Abstract. G. Navarro proposed (in [8]) a refinement of the unsolved McKay conjecture involving certain Galois automorphisms. The author verified this new conjecture for the alternating groups $A(\Pi)$ when $p = 2$ (see [7]). For odd primes p the conjecture is more difficult to study due to the complexities in the p-local character theory. We consider the principal blocks of $A(\Pi)$ with an abelian defect group when p is odd: in this case the Navarro conjecture holds for p-singular characters.

1. McKay and Navarro conjectures

Let G be a finite group, $|G| = n$, p be a prime dividing n, D a Sylow p-group of G, and $N_G(D)$ the normalizer of D in G. Let $\text{Irr}(G)$ denote the irreducible characters of G, and $\text{Irr}_{p'}(G)$ the subset of characters whose degree is relatively prime to p. The following is a well-known conjecture.

Conjecture 1.1. (McKay, [1])

$$|\text{Irr}_{p'}(G)| = |\text{Irr}_{p'}(N_G(D))|.$$

Recently G. Navarro strengthened the McKay conjecture in the following way. All irreducible complex characters of G are afforded by a representation with values in the nth cyclotomic field \mathbb{Q}_n/\mathbb{Q} (Lemma 2.15, [4]). Then the Galois group $\mathcal{G} = \text{Gal}(\mathbb{Q}_n/\mathbb{Q})$ permutes the elements of $\text{Irr}(G).$ We denote the action of σ on $\chi \in \text{Irr}(G)$ by $\chi^\sigma.$ Then $\chi \in \text{Irr}(G)$ is σ-fixed if its values are fixed by $\sigma,$ that is, $\chi^\sigma = \chi.$ Let e be a nonnegative integer and consider $\sigma_e \in \mathcal{G}$ where $\sigma_e(\xi) = \xi^{p^e}$ for all p'-roots of unity $\xi.$ Define \mathcal{N} to be the subset of \mathcal{G} consisting of all such $\sigma_e.$ Let $\text{Irr}_{p'}^\sigma(G)$ and $\text{Irr}_{p'}^\sigma(N_G(D))$ be the subsets of $\text{Irr}_{p'}(G)$ and $\text{Irr}_{p'}(N_G(D))$ respectively fixed by $\sigma \in \mathcal{N}.$

2000 Mathematics Subject Classification. Primary 20C30.
Conjecture 1.2. (Navarro, [8]) Let \(\sigma \in \mathcal{N} \). Then
\[
|\text{Irr}_{p'}^\sigma(G)| = |\text{Irr}_{p'}^\sigma(N_G(D))|.
\]

The Navarro conjecture follows from the existence of a bijection \(\phi \) from \(\text{Irr}_{p'}(G) \) to \(\text{Irr}_{p'}(N_G(D)) \) that commutes with \(\mathcal{N} \). That is, \(\phi(\chi^\sigma) = \phi(\chi)^\sigma \) for all \(\sigma \in \mathcal{N} \) and \(\chi \in \text{Irr}_{p'}(G) \). The author verified in [6] that the Navarro conjecture holds for the alternating groups \(A(\Pi) \) when \(p = 2 \). The verification when \(p \) is odd is more complicated since little is known about values of \(\text{Irr}_{p'}(N_{A(\Pi)}(D)) \). However in the special case that \(A(\Pi) \) has an abelian defect group (equivalently \(|\Pi| = n_0 + wp \) with \(w < p \)) this paper verifies that the Navarro conjecture holds for the \(p \)-singular characters of the principal block. The proof relies on results of P. Fong and M. Harris (see §4, [3]) on the irrationalities of the \(p \)-singular characters of \(N_{A(\Pi)}(D) \).

2. A local-global bijection

2.1. \(p' \)-splitting characters of \(G \).

Let \(n \in \mathbb{N} \). A partition \(\lambda \) of \(n \) is a non-increasing integer sequence \((a_1, \ldots, a_m) \) satisfying \(a_i \geq \cdots \geq a_m \) and \(\sum_i a_i = n \). Then the Young diagram of \(\lambda \) is \(n \) nodes placed in rows such that the \(i \)th row of \(\lambda \) consists of \(a_i \) nodes. The \((i, j)\)-node of \(\lambda \) lies in the \(i \)th row and \(j \)th column of the Young diagram. The \((i, j)\)-hook \(h_{ij}^\lambda \) of \([\lambda] \) and consists of the \((i, j)\)-node (or corner of \(h_{ij}^\lambda \)), all nodes in the same row and to the right of the corner, and all nodes in the same column and below the corner. The column-lengths of \([\lambda] \) form the conjugate partition \(\lambda^* \) of \(n \). Partitions where \(\lambda = \lambda^* \) are self-conjugate. Let \(\lambda = \lambda^* \) and \(\delta(\lambda) = \{\delta_{jj}\} \) be the set of diagonal hooks of \(\lambda \) i.e. \(\delta_{jj} = h_{jj} \), which are necessarily odd. When there is no ambiguity we write \(h_{ij}^\lambda = h_{ij} \).

Every \(\lambda \) is expressed uniquely in terms of its \(p \)-core \(\lambda^0 \) and \(p \)-quotient \((\lambda_0, \lambda_2, \cdots, \lambda_{p-1}) \). The \(p \)-core \(\lambda^0 \) is the unique partition that results when all possible hooks of length \(p \) are removed from \(\lambda \). The \(p \)-quotient \(\langle \lambda \rangle \) is a \(p \)-tuple of (sub-)partitions which encode the \(p \)-hooks of \(\lambda \).

Henceforth, let \(\Pi \) be a set of size \(n \) and \(G = S(\Pi) \) and \(G^+ = A(\Pi) \) be respectively the symmetric and alternating groups on \(\Pi \). The elements of \(\text{Irr}(G) \) are labeled by partitions \(\{\lambda \vdash n\} \). Then \(\text{Irr}(G^+) \) is obtained from \(\text{Irr}(G) \) by restriction. If \(\alpha \) is an irreducible character for some finite group \(J \), and \(K \) is a subgroup of \(J \), the notation \(\alpha|_K \) indicates restriction of the subgroup \(K \).

Theorem 2.1. The irreducible characters of \(G^+ \) arise from those of \(G \) in two ways. If \(\lambda \neq \lambda^* \) then \(\chi_{\lambda}|_{G^+} = \chi_{\lambda^*}|_{G^+} \) is in \(\text{Irr}(G^+) \). If \(\lambda = \lambda^* \) then \(\chi_{\lambda}|_{G^+} \) splits into two conjugate characters \(\chi_{\lambda}^+ \) and \(\chi_{\lambda}^- \) in \(\text{Irr}(G^+) \).
The conjugacy classes κ of $S(\Pi)$ are labeled by cycle-types of permutations of n. If $\lambda = \lambda^*$ we let $\kappa_{\delta(\lambda)}$ be the conjugacy class determined by the cycle-type of $(\delta_{11}, \cdots, \delta_{dd})$. Then $\kappa_{\delta(\lambda)}$ splits into $\kappa_{\delta(\lambda),+}$ and $\kappa_{\delta(\lambda),-}$ when viewed as a class of G^+. Let $\text{Irr}^*(G)$ be the set of splitting characters, i.e. those that split into two conjugate characters when restricted to G^+. The following is a classical result of Frobenius (see e.g. Theorem (4A), [3]).

Theorem 2.2. Suppose χ_λ is an irreducible character of G which splits on G^+. Let $g \in G^+$. Then $(\chi_{\lambda,+} - \chi_{\lambda,-})(g) \neq 0$ if and only if g is in $\kappa_{\delta(\lambda)}$. Moreover, $\chi_{\lambda,\pm}$ and $\kappa_{\delta(\lambda),\pm}$ may be labeled so that

$$
\chi^\pm_\lambda(g) = \frac{1}{2}[\epsilon_\lambda + \sqrt{\epsilon_\lambda \prod_j \delta_{jj}}] \quad \text{if} \ g \in \kappa_{\delta(\lambda),\pm}
$$

$$
\chi^\pm_\lambda(g) = \frac{1}{2}[\epsilon_\lambda - \sqrt{\epsilon_\lambda \prod_j \delta_{jj}}] \quad \text{if} \ g \in \kappa_{\delta(\lambda),\mp}
$$

where $\epsilon_\lambda = (-1)^{\frac{a_n}{2}}$.

By extension, $\text{Irr}^*(G^+)$ is the set of (pairs) of characters that arise from restricting elements of $\text{Irr}^*(G)$. Suppose $n = wp$, where $w < p$. By a condition of Macdonald (see [3]), the elements of $\text{Irr}_{p'}(G)$ are labeled by partitions for whom $\sum |\lambda_\gamma| = \omega$. Then the p'-splitting characters are labeled by self-conjugate partitions that satisfy the Macdonald condition.

2.2. p'-splitting characters of H.

Let B be a p-block of G the defect group D and b the p-block of $N_G(D)$ which is the Brauer correspondent of B. Let ν be the exponential valuation of \mathbb{Z} associated with p normalized so $\nu(p) = 1$. The height of the χ in B is the nonnegative integer $h(\chi)$ such that $\nu(\chi(1)) = \nu(|G|) - \nu(|D|) + h(\chi)$. The height of ξ in b is the nonnegative integer $h(\xi)$ such that $\nu(\xi) = \nu(|N_G(D)|) - \nu(|D|) + h(\xi)$. Let $M(B)$ and $M(b)$ be the characters of B and b of height zero. By the Nakayama conjecture a p-block B of G is parametrized by a p-core λ^0 so $\chi_\mu \in B$ if and only if $\lambda^0 = \mu^0$. In particular, $n = n_0 + wp$ where $n_0 = |\lambda_0|$. We suppose that B has abelian defect group D or equivalently $w < p$. Thus $\Pi = \Pi_0 \cup \Pi_1$ is the disjoint union of sets Π_0 and Π_1 of cardinality n_0 and wp. We may suppose $\Pi_1 = \Gamma \times \Omega$ where $\Gamma = \{1, 2, \cdots, p\}$ and Ω is a set of w elements. Let $X = S(\Gamma)$ and $Y = N_X(P)$ where P is a fixed Sylow p-subgroup of X. Note that the when B is a Sylow subgroup the p'-irreducible characters agree with the height zero characters.

We take D as the Sylow p-subgroup P^Ω of $S(\Pi_1)$ and set $H = N_G(D)$ so that $H = H_0 \times H_1$ with $H_0 = S(\Pi_0)$ and $H_1 = Y \wr S(\Omega)$. The Brauer
Let \(p \) be a partition of \(n \) with \(p \)-core \(\lambda^0 \) and \(p \)-quotient \(\langle \lambda \rangle = (\lambda_0, \ldots, \lambda_{p-1}) \) normalized as follows: if \(\mu = \lambda^* \) then \(\lambda_i = (\mu_{p-i-1})^* \).

Let \(p^* = \frac{p - 1}{2} \). Then \(\lambda = \lambda^* \) implies \(\lambda_{p^*} = \lambda_{p^*}^* \). Let \(Y^\gamma = \{ \xi_{\gamma} : 0 \leq \gamma \leq p - 1 \} \). The characters in \(H^\gamma \) have the form \(\chi_{\tau} \times \psi_{\lambda} \) where \(\tau \) is a \(p \)-core partition and \(\chi_{\tau} \in \text{Irr}(H_0) \) and \(\psi_{\lambda} \in \text{Irr}(H_1) \) and \(\Lambda \) is a mapping

\[
Y^\gamma \longrightarrow \{ \text{Partitions} \}, \, \xi_{\gamma} \mapsto \mu_{\gamma},
\]

such that \(\sum_{\gamma} |\mu_{\gamma}| = w \). We also represent \(\Lambda \) by the \(p \)-tuple \((\mu_1, \ldots, \mu_p) \).

Then \(M(B) \) and \(M(b) \) are in bijection via \(f : \chi_{\lambda} \mapsto \chi_{\lambda^0} \times \psi_{\langle \lambda \rangle} \) (see [2] for details). Hence \(\text{Irr}_{p'}(G) \) and \(\text{Irr}_{p'}(H) \) are in bijection via \(f = \cup_B f_B \).

There is an induced bijection \(f^+ \) between \(\text{Irr}_{p'}(G^+) \) and \(\text{Irr}_{p'}(N_{G^+}(D)) \).

Let \(\text{sgn}_H = \text{sgn}_G |_{H} \) and \(\text{sgn}_Y = \text{sgn}_X |_{Y} \). If \((f, \sigma) \) is an element of \(H = Y \wr S(\Omega) \) with \(f \in S(\Omega) \) and \(\gamma \in S(\Omega) \) and \(\sigma \in S(\Omega) \), then

\[
\text{sgn}_H(f, \sigma) = \text{sgn}_{S(\Omega)}(\sigma) \prod_{i \in \Omega} \text{sgn}_Y(f(i)).
\]

Let \(H^+ = N_{G^+}(D) \). Then \(\Lambda \) is a splitting mapping of \(H \) if \(\psi_{\lambda} \) splitting character of \(H \) i.e. \((\psi_{\lambda})|_{H^+} = \psi_{\lambda^*, +} - \psi_{\lambda^*, -} \) where \(\psi_{\lambda^*, \pm} \in (H^+)^\gamma \). Let \(* \) be the duality \(\Lambda \mapsto \Lambda^* \) where \(\Lambda^* : \xi_{\gamma} \mapsto (\lambda_{p-\gamma})^* \). The following is Proposition (4D) in [3].

Proposition 2.3. Let \(\psi_{\lambda} \in \text{Irr}(H) \). Then \(\text{sgn}_H \psi_{\lambda} = \psi_{\lambda^*}^* \). In particular, \(\psi_{\lambda} \) is a splitting character if and only if \(\Lambda = \Lambda^* \).

Proposition 2.3 implies that map \(f^+ \) induced by \(f \) remains a bijection on splitting characters (and \(p' \)-splitting characters). That is, \(\text{Irr}_{p'}(G^+) \) is in bijection with \(\text{Irr}_{p'}(H^+) \). In particular, if \(\lambda \neq \lambda^* \) then \(\chi_{\lambda}|_{G^+} = \chi_{\lambda^*}|_{G^+} \) is mapped to \(\psi_{\lambda^*}|_{H^+} = \psi_{\lambda^*}^*|_{H^+} \) and if \(\lambda = \lambda^* \) then \(\chi_{\lambda}^\pm \) maps to \(\psi_{\lambda}^\pm \).

3. Values of \(p \)-singular characters

We say \(\lambda \) is \(p \)-singular if \(\lambda_{p^*} \neq 0 \) and \(\lambda_i = 0 \) for all \(i \in \{0, \ldots, p-1\} - p^* \). Then \(\chi_{\lambda} \in \text{Irr}_{p'}(G) \) is \(p \)-singular if \(\lambda \) is. The notation \(\text{Irr}_{p', \text{sing}}(G) \) denotes the \(p \)-singular \(p' \)-characters and \(\text{Irr}_{p', \text{sing}}(G^+) \) is the restrictions to \(G^+ \). Then \(\text{Irr}_{p', \text{sing}}(H) \) and \(\text{Irr}_{p', \text{sing}}(H^+) \) are defined analogously. It is immediate from the definition of \(f^+ \) that \(\text{Irr}_{p', \text{sing}}(G^+) \) and \(\text{Irr}_{p', \text{sing}}(H^+) \) are in bijection. We show that \(f^+ \) commutes with the action of \(\sigma \in \mathcal{N} \) on \(p \)-singular \(p' \)-characters by describing explicitly the relevant irrational character values.
In [6], the author describes how to obtain the set of diagonal hooks \(\delta(\lambda) \) of a symmetric partition \(\lambda = \lambda^* \) given just the \(p \)-core \(\lambda^0 \) and the \(p \)-quotient \(\langle \lambda \rangle \). The following special case (Theorem 4.3 in [6]) is relevant to the goals of this paper.

Theorem 3.1. Suppose \(\lambda^0 \) is empty and \((\emptyset, \ldots, \lambda_p^*, \ldots, \emptyset)\) such that \(\lambda_p^* = (\lambda_{p'}^*)^* \) and \(\delta(\lambda_p^*) = (\delta_{12}^*, \ldots, \delta_{dd}^*) \). Then \(\delta(\lambda) = (\delta_{12}^1 p, \ldots, \delta_{dd}^1 p) \).

A conjugacy class \(C \) of \(H \) is a splitting class if \(C \subseteq H^+ \) and \(C = C_\pm \) is the union of two conjugacy classes of \(H^+ \). There is a bijection between splitting mappings \(\Lambda \) and splitting classes \(C_\Lambda \) of \(H \) (see pg.3491, [3]). The following is Proposition (4F) in [3].

Theorem 3.2. Let \(|\Pi| = wp\). Suppose \(\Lambda \) is a splitting mapping of \(N_{S(\Pi)}(D) \) that equals its \(p \)-singular part i.e. \(\Lambda = (\emptyset, \ldots, \lambda_p^*, \ldots, \emptyset) \). Let \((f, \sigma) \in N_{A(\Pi)}(D)^+ \). Then \((\psi_{\Lambda,+} - \psi_{\Lambda,-})(f, \sigma) \neq 0 \) if and only if \((f, \sigma) \in C_\Lambda \). Moreover, \(\psi_{\Lambda,\pm} \) and \(C_{\Lambda,\pm} \) may be labeled so that

\[
(\psi_{\Lambda,+} - \psi_{\Lambda,-})(f, \sigma) = \pm (\sqrt{\epsilon_{p^e}})^d \sqrt{f_{\lambda^p}} \eta_{\lambda^p}
\]

for \((f, \sigma) \in C_{\Lambda,\pm} \), where, \(\epsilon_{\lambda^p} = (-1)^{d-1} \), \(d \) is the number of diagonal nodes in \(\lambda^p \) and \(\delta(\lambda_p^*) = (\eta_1, \ldots, \eta_{dd}) \).

Suppose \(\sigma \in Gal(\mathbb{Q}^{G^+}/\mathbb{Q}) \) is such that \(\sigma(\xi) = \xi^{p^e} \) for some \(e \in \mathbb{Z}^+ \) and \(\xi \) is a \(p' \)-root of unity. We define \(Irr_{p'}(B_1) \) and \(Irr_{p'}(b_1) \) to be the \(p' \)-characters of the principal block \(B_1 \) of \(A(\Pi) \) and its Brauer correspondent \(b_1 \) and \(Irr_{p',sing}(B_1) \) and \(Irr_{p',sing}(b_1) \) are defined by extension.

Theorem 3.3. Let \(A(\Pi) \) be the alternating group on \(\Pi \) and \(p \) is an odd prime such that \(A(\Pi) \) has an abelian defect group. Let \(\sigma \in N. \) Let \(B_1 \) be the principal block of \(A(\Pi) \), \(\chi \in Irr_{p'}(B_1) \) and \(b_1 \) its Brauer correspondent. Then the restriction of \(f^\sigma \) is a bijection between \(Irr_{p',sing}(B_1) \) and \(Irr_{p',sing}(b_1) \) that commutes with \(\sigma \). That is, \(f^\sigma(\chi) = f^\sigma(\chi^\sigma) \).

Proof. Since \(A(\Pi) \) has abelian defect, and we are considering only the principal block, we can assume \(|\Pi| = wp\). By the discussion above, we consider two cases.

1. Suppose \(\lambda \neq \lambda^* \). Then the restrictions \(\chi_\lambda|_{G^+} = \chi_{\lambda^*}|_{G^+} \) are in bijection with \(\psi_{\lambda^*}|_{H^+} = \psi_{\lambda^*}|_{H^+} \). Since the values of \(\chi_\lambda \) are all rational, \(\chi_{\lambda^*} \) is \(\sigma \)-fixed. Since \(N_{G^+}(X) = Y \wr S(\Omega) \) where \(|\Omega| = p \), \(\psi_{\lambda^*}|_{H^+} \) is also \(\sigma \)-fixed.

2. Suppose \(\lambda = \lambda^* \). Upon restriction, the pair \(\chi^\pm \) is in bijection with the pair \(\psi_{\Lambda}^\pm \) via \(\tilde{f} \). It remains to show that the values of \(\chi_{\lambda}^\pm \) and \(\psi_{\Lambda}^\pm \) on the splitting classes \(\kappa_{d(\lambda)}^\pm \) and \(C_{\Lambda}^\pm \) are both exchanged.
or fixed by σ. By Theorem 3.1, Theorem 2.2, and Theorem 3.2,
\[\sqrt{\eta_j p^d} = \sqrt{\delta_j}. \]
Since p is odd, $(wp - d) \equiv (p - 1 + w - d) \pmod{2}$, so $\epsilon_{\lambda_p} \cdot \epsilon_p = \epsilon_{\lambda}$. This completes the proof.

\[\square \]

Acknowledgements. The author is indebted to Paul Fong for his guidance and suggestions. This research was partially supported from a grant by PSC-CUNY.

REFERENCES

[1] J. Alperin. (1976) The main problem of block theory in Proc. of the Conference of Finite Groups, University of Utah, Park City, Utah:341–356.
[2] P. Fong, The Isaacs-Navarro conjecture for symmetric groups. Journal of Algebra, 250, No.1(2003)154–161.
[3] P. Fong, and M. Harris, On perfect isometries and isotypies in alternating groups. Transactions of the American Mathematical Society 349, No.9:3469–3516.
[4] I.M. Isaacs, (1994) Character Theory of Finite Groups Dover
[5] I.G. MacDonald, On the degrees of the irreducible representations of the symmetric groups, Bull. London Math. Soc., 3 (1971), 189-192
[6] R. Nath, On the diagonal hook lengths of symmetric partitions arXiv:0903.2494v1
[7] R. Nath, The Navarro conjecture for alternating groups, $p = 2$ J. Algebra and its Applications, Volume 6 (2009) 837-844
[8] G. Navarro, The McKay conjecture and galois automorphisms Annals of Mathematics 160:1129–1140.

York College/City University of New York
E-mail address: rnath@york.cuny.edu