A fluorescent calix[4]arene with naphthalene units at the upper rim exhibits long fluorescence emission lifetime without fluorescence quenching†

Masaki Takahashi, a Naoya Tsuji, a Kohei Yazaki, a, b Yoshihisa Seib a

We synthesised a new compound with four naphthyl groups in the upper rims of calix[4]arene (1). Compared to the monomer unit, compound 1 has redshifted absorption and fluorescence, together with high fluorescence quantum yield and long fluorescence lifetime, which is extremely rare because long fluorescence lifetime emission tends to reduce the quantum yield. Single-crystal X-ray analysis and quantum calculations in the S1 state revealed π–π through-space interactions between naphthalene rings.

In 1954, Förster and Kasper first reported dimerised aromatic compounds in the excited state, which were termed ‘excimers’ by Stevens and Hutton. Excimers have attracted much attention in various fields such as organic solar cells, organic electronics, chemical sensors, and biotechnology because of their unique photophysical properties. In particular, with the development of time-resolved fluorescence imaging and stimulated emission depletion microscopy (STED) microscopes, there is a growing demand for fluorescent dyes with both high brightness and long fluorescence lifetime. Excimers with long emission lifetime are promising candidates for next-generation imaging probes.

Many progresses have been made towards understanding the relationship between the molecular structure of organic dyes and their fluorescence intensity. However, there is little knowledge on the relationship between the fluorescence lifetime and molecular structure. Also, only a few fluorescent probes have achieved both high intensity and long lifetime. In recent years, it was reported that bright and long-lived fluorescence can be obtained from the excimer state because of their easy molecular movement. The reported substances also suffer from low synthesis yields in the ring-forming reaction and difficulty in introducing functional groups (such as hydrophilic substituents). In general, the yield of the ring formation step is extremely low in the synthesis of cyclophanes. Therefore, there remains the need for new molecules that can be easily synthesised and chemically modified.

In this study, we adopted the calixarene skeleton as the macrocyclic structure. Calixarenes have been used in supramolecular chemistry, analytical chemistry, biochemistry, material science, and catalysts because of their easy molecular modification. Nevertheless, almost all studies introducing fluorescence sites do so at the lower rim of calixarene, while few reports considered incorporating fluorophores at the upper rim. Further, no researchers have investigated the fluorescence lifetime, and there was also no reported computational investigation of the excited state.

Specifically, we synthesised a fluorescent molecule in which naphthyl group was introduced into the upper rim of calix[4] arene. The new molecule showed both a long fluorescence wavelength and a high quantum yield. After measuring the conformation of tetranaphthylcalix[4]arene in a single crystal, structural optimisation of the ground state and excited state (S1) was performed by time-dependent density functional theory (TD-DFT) at the DFT-D3-CAM-B3LYP/6-31G(d) level. The calculation takes into account effects such as dispersion force. Molecular orbital calculation confirmed that the π orbitals of the naphthalene rings of tetranaphthylcalixarene have a binding interactions in LUMO of the S1 state.

The synthesis of tetranaphthylcalix[4]arene (1) was carried out by deprotection of the tert-Bu groups of tetra-tert-butyl(tetrahydroxy)calix[4]arene, followed by introduction of substituents by Williamson ether synthesis of phenolic hydroxyl groups, and iodation by silver tetrafluoracetate and iodine. The

† Electronic supplementary information (ESI) available. CCDC 2058720. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d1ra01743h
iodination was followed by Suzuki–Miyaura cross-coupling reaction with naphthylboronic acid pinacol ether (ESI†).

The target substance was characterised by 1H NMR, 13C NMR, HRMS of ESI-TOF-MS, and single-crystal X-ray diffraction (Fig. S7–S9 and Table S3, ESI†).

We also synthesised the phenylnaphthalene derivative 2 (Fig. 1), which is the unit molecule of 1. To compare its photophysical properties with that of 1, first we measured the absorption spectra. At 1 × 10⁻⁴ mol L⁻¹ in chloroform solution, 1 and 2 have their maximum absorption wavelengths at 297 and 294 nm, and the molar absorption coefficients were 3.3 × 10⁵ and 1.0 × 10⁵ mol⁻¹ L cm⁻¹, respectively (Fig. 2). Their fluorescence spectra were measured in chloroform solution at 1 × 10⁻⁴ mol L⁻¹ (Fig. 3). 1 has a broader fluorescence peak with maximum intensity at 389 nm, which is redshifted by 25 nm from that of 2. Furthermore, the fluorescence spectrum of the powder after grinding in a mortar was also measured and it was found that the fluorescence wavelength was increased by 22 nm (Fig. S14, ESI†). We also measured the absorption and fluorescence spectra at a lower concentration of 1 × 10⁻⁵ mol L⁻¹ (Fig. S15, ESI†), and there was almost no change in the wavelength or shape of the peak. Therefore, the spectral changes in tetranaphthylcalix[4]arene from the unit model molecule are due to intramolecular rather than intermolecular interactions. Furthermore, the temperature dependence of fluorescence was investigated by measuring fluorescence by changing the temperature from 20 °C to 80 °C (Fig. S16†). As the temperature rose from 20 °C to 80 °C, a blue shift of the fluorescence wavelength of about 10 nm was observed, and the half-value width of the peak narrowed. These results indicate that as the temperature rises, the intramolecular interaction in the excited state weakens and the light emission becomes closer to that of 2.

Single-crystal X-ray crystal structure analysis of 1 revealed that two of the four naphthyl groups facing each other had an intramolecular stacking structure, with a distance of 3.54 Å between them (Fig. 4 and Table S3, ESI†).

The macrocyclic structure improved the fluorescence quantum yield from 0.38 in 2 to 0.46 in 1 (Table 1). The unit model molecule showed single-exponential fluorescence decay with a fluorescence lifetime of 2.0 ns. In contrast, 1 displayed non-single exponential fluorescence decay. When the data were fitted using a two-component exponential equation (Fig. S17† and Table 1), the fitted weight ratio and fluorescence lifetime were τ₁ = 2.4 ns, A₁ = 0.95, τ₂ = 48.0 ns, and A₂ = 0.05. The area-weighted fluorescence lifetime (τ) was 26 ns. These lifetimes are very long compared to current commercial dyes with long fluorescence lifetimes for STED microscopes and time-gate imaging: Alexa Fluor 488 (4.1 ns), azadioxatriangulenium (ADOTA⁺) (25 ns), and SeTau425 NHS (26.2 ns). To investigate this characteristic property, the fluorescence emission rate constant kᵣ and the nonradiative decay rate constant kₙᵣ were determined by the following equation:

\[
Φᵣ = \frac{k_f}{k_f + k_{nr}} = \frac{k_f}{κ_f τ_f}
\]

where Φᵣ is the fluorescence quantum yield and τᵣ is the fluorescence lifetime. The values are summarized in Table 1. kₙᵣ decreased by more than one order of magnitude from 0.31 ns⁻¹ to 0.021 ns⁻¹ for 1. The small nonradiative decay rate of 1 is probably due to the suppression of molecular motion by the rigid macrocyclic structure of 1. On the other hand, the origin of
and with (b) superimposed LUMO. The S1 geometry was optimised by

probability.

drawn by ORTEP program with the thermal ellipsoids set at 50%
single-crystal X-ray crystallographic analysis. The structures were

state (3.59 Å is the focus of this study, was slightly smaller in the crystalline

distance of the naphthalene rings facing each other, which

ESI†). Furthermore, structural optimisation of the S1 state was

performed for compound 1 using the same level of theory and

basis functions. The results further reduced the interplanar
distance of naphthalene rings in the S1 state to 3.18 Å (Fig. 5a).

In the frontier orbitals calculated for the S1 geometry, there were
clear binding interactions between the naphthalene rings according
to the LUMO (Fig. 5b and S20, ESI†) and a small oscillator strength value (0.0019) of the HOMO ← LUMO

transition in agreement with the lower value of k_i compared with that of 2. An oscillator strength value of HOMO ← LUMO

transition of 2 with the optimized structure in S1 state is 0.700.

Therefore, the reason why 1 has both a high fluorescence

quantum yield and a long fluorescence lifetime is that a decrease in k_{nr} due to suppression of molecular motion by

a rigid macrocyclic structure contributes more significantly to the fluorescence enhancement than the decrease in k_i by

intramolecular electronic interaction in the excited state.

Subsequently, our group has been developing new imaging dyes

using this molecular skeleton having fluorescence sites that

have a long conjugation length and therefore can be excited by

visible light.

In summary, we synthesised tetranaphthylcalix[4]arene (1).

Such a structure with naphthalene substituents on the upper

rim has never been reported before. A unit model molecule of 1

was also synthesised. For the optical properties, it was found

that 1 has a higher fluorescence quantum yield and a fluores-
cence lifetime at least 11 times longer than that of the unit

model molecule. These differences were interpreted based on

single-crystal X-ray structure analysis and molecular orbital

calculations, which revealed binding interactions between the

naphthalene rings in the S1 state. These results will provide new

insights into the molecular design of dyes with high fluores-
cence quantum yields and long fluorescence lifetimes.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We would like to thank Prof. K. Yamamoto, Dr T. Kambe, and
Dr K. Takada of Tokyo Institute of Technology for PL quantum
yield measurements (Hamamatsu Photonics C9920-02) and ESI-
TOF-MS (Bruker microTOF II) support. This study was financial-
ly supported in part by the Japan Society for the Promotion of
Science KAKENHI (Grants-in-Aid for Scientific Research, No.
JP20K15243), the Izumi Science and Technology Foundation,
and the Cooperative Research Program of the “Network Joint
Research Center for Materials and Devices”.

References

1 T. Förster and K. Kasper, Z. Physiol. Chem., 1954, 1, 275–277.
2 B. Stevens and E. Hutton, Nature, 1960, 186, 1045–1046.
3 B. J. Walker, A. J. Musser, D. Beljonne and R. H. Friend, Nat.
Chem., 2013, 5, 1019.
