Supplementary Material

Flow Chemistry System for Carbohydrate Analysis by Rapid Labeling of Saccharides after Glycan Hydrolysis

Wei-Ting Hung¹, Yi-Ting Chen¹, Chung-Hsuan Chen¹, Yuan Chuan Lee², Jim-Min Fang¹,³, Wen-Bin Yang¹

¹ The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan R.O.C.
² Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2685, US.
³ Department of Chemistry, National Taiwan University, Taipei 106, Taiwan R.O.C.

Correspondence: Wen-Bin Yang, The Genomics Research Center, Academia Sinica, Taipei 115, Taiwan R.O.C. Email: wbyang@gate.sinica.edu.tw

Contents

Figure	Description	Pages
S1	Flow chemistry system set in the Genomics Research Center of Academia Sinica for sugar tagging and glycan hydrolysis.	S2
S2	The hydrolysis efficiency of maltose on treatment with 4 M HCl for 10 min at different temperatures in a flow chemistry system.	S3
S3	The hydrolysis efficiency of maltooltriose on treatment with 4 M HCl for 10 min at different temperatures in a flow chemistry system.	S4
S4	Comparison of the hydrolysis efficiency of maltooltriose on treatment with 4 M or 2 M HCl at 120 °C for 10 min in a flow chemistry system.	S5
S5	The hydrolysis efficiency of lactose with 4 M HCl at 120 °C for 10 min in a flow chemistry system.	S6
S6	¹H-NMR spectrum of Lac-NAIM.	S7
S7	CE analysis of enzymatic digestion of oligosaccharides: (A) maltoolhexaoase-NAIM derivative digested by α-amylase, (B) laminarrihexaoase-NAIM derivative digested by endo-β-1,3-glucanase, and (C) cellohexaoase-NAIM derivative digested by cellulase.	S8
Figure S1. Vapourtec easy-MedChem, E-Series flow chemistry system set in the Genomics Research Center of Academia Sinica for sugar tagging and glycan hydrolysis.
Figure S2. The hydrolysis efficiency of maltose (1.0 mg/mL) on treatment with 4 M HCl for 10 min at different temperatures (80, 120 and 150 °C) in a flow chemistry system. The reaction was monitored by MALDI-TOF-MS measurement. Reaction volume: 2.0 mL. Collect volume: 5.0 mL. The hydrolysis of maltose was estimated to be 60% at 80 °C, 99% at 120 °C, and substantial decomposition at 150 °C. Glucose and maltose appeared as the sodiated ions at m/z 202 and 365, respectively.
Figure S3. The hydrolysis efficiency of maltotriose (1.0 mg/mL) on treatment with 4 M HCl for 10 min at different temperatures (25–120 °C) in a flow chemistry system. The reaction was monitored by MALDI-TOF-MS measurement.
Figure S4. Comparison of the hydrolysis efficiency of maltotriose (1.0 mg/mL) on treatment with 4 M or 2 M HCl at 120 °C for 10 min in a flow chemistry system. The reaction was monitored by MALDI-TOF-MS measurement.
Figure S5. Hydrolysis of lactose (1.0 mg/mL) with 4 M HCl at 120 °C for 10 min in a flow chemistry system. The reaction was monitored by LC-MS analysis: LC diagram (A) and LTQ-FTMS spectra (B).
Figure S6. 1H-NMR spectrum of Lac-NAIM (600 MHz) in D$_2$O solution (1.0 mL) containing 0.1% (CH$_3$)$_2$SO as internal standard. The aromatic protons of NAIM derivatives in the range of δ 7.2–8.2 ppm are not shown for clarity. The signal of HDO was set at δ 4.80 ppm, and the signal of (CH$_3$)$_2$SO occurred at δ 2.73 ppm.
Digestion of maltohexose (α1,4-linkage) by amylase

Digestion of laminarihexose (β1,3-linkage) by endo-β-1,3-glucanase
Figure S7. CE analysis of enzymatic digestion of oligosaccharides. (A) Electropherograms of maltohexaose-NAIM derivative (trace a) and after digestion by α-amylase (trace b). Peaks 1–6 indicate the NAIM derivatives of saccharides containing 1–6 glucose units. (B) Electropherograms of laminarirexaose-NAIM derivative (trace c, containing minor components of pentamer and heptamer) and after digestion by endo-β-1,3-glucanase (trace d). Peaks 2–7 indicate the NAIM derivatives of saccharides containing 2–7 glucose units. (C) Electropherograms of cellohexaose-NAIM derivative (trace e) and after cellulase digestion (trace f). Peaks 1–6 indicate the NAIM derivatives of saccharides containing 1–6 glucose units. CE conditions: uncoated fused-silica capillary of 30 cm (effective length) × 50 μm id; phosphate buffer (300 mM, pH 3.0); applied voltage of 15 kV (detector at cathode side); sample loaded by pressure for 5s; detection wavelength at 254 nm.