A community based model for effective malaria control in a known endemic area of a metropolitan city

Ratnendra R. Shinde*, Milind M. Rasal, Rakesh Waghmare, Pravin Meshram, Pranali Khobragade

Department of Community Medicine, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India

Received: 31 January 2015
Revised: 22 February 2015
Accepted: 23 February 2015

*Correspondence:
Dr. Ratnendra R. Shinde,
E-mail: ratnendra.shinde@gmail.com

ABSTRACT

Background: Malaria is a global health problem causing impact on Health and socio economic development of country. Mumbai city with high density population is endemic region with unstable malaria transmission. Surveillance data of malaria cases in tertiary care hospital indicated the need for strategic plan for community based effective interventions. This highlights sharing information, strengthening community partnerships and a structured plan for malaria control in addition to the regular surveillance activities of public health department.

Methods: 2 city zonal areas (wards) having high prevalence of malaria cases and deaths in the previous year were identified as study units. One of the 2 wards was designated as control unit where no interventions (were executed by the investigator). In study area activities were implemented in three phases. 1) Preparatory - baseline epidemiological survey, enlistment of risk factors. 2) Interventional - enlistment and elimination of breeding places, mobilizing supportive community participation, team building with PSM department faculty, public health department staff, general practitioners, youth club members and the co-operative societies. 3) Evaluation - compliance of housing societies, analysis of indicators & comparison of prevalence with previous year.

Results: In study area no deaths are reported in 2010. 12 deaths in 2010 in control area. Also number of malaria cases in 2010 in study area were drastically reduced as compared to 2009.

Conclusions: Malaria control is essentially a multidimensional event dependant on active community participation. Malaria control cannot be achieved in isolation by singular efforts of the Public Health Department alone. A community based multipronged approach is necessary for malaria control in urban area.

Keywords: Community partnerships, Structured action plan

INTRODUCTION

Malaria is a global health problem causing unacceptable burden on health and economic development of various countries. In India in 2010 total malaria cases were 1.04 million. Out of which pf cases were 0.56 million. Total deaths were 547 & API was 1.36. About 10% of total cases of malaria are reported from urban area. In 2010 from urban area there were 111486 cases of malaria out of which pf were 15332 (13.75%). The SPR was 2.81, SFR was 0.39 while total deaths reported were 118. In Mumbai under NVBDCP the regular surveillance activities undertaken by public health department of Mumbai are suspect malaria case detection, blood smear collection, treatment of cases, indoor residual spraying.

Under IDSP surveillance data of malaria cases compiled on a daily basis in tertiary care hospital indicated that
there was a need for evolving local innovative strategies to strengthen regular surveillance activities as recommended in strategic model for urban malaria control through NVBDCP.¹

The surveillance data when analyzed epidemiologically provided insights into the time, place, person distribution of malaria cases in the community. Thus the existing trend of malaria in the study area was assessed & appropriate interventions strengthening the malaria control activities were evolved. Need based interventions then utilized in the study areas have led to evolving a strategic model for community based activities.

METHODS

Study design

The present study is prospective interventional study undertaken during the monsoon period, from June to September 2010.

Data collection

The study was carried out in 3 phases - preparatory phase, intervention phase and evaluation phase.

Preparatory phase

In preparatory phase scrutiny and analysis of past & present malaria cases was done. Cases were mapped to identify highly prevalent area in Mumbai city. Based on malaria surveillance case records of tertiary care hospital IDSP unit, area with high morbidity and mortality were identified as study area. The F south and G south ward areas indicated high prevalence of cases. Out of these two wards F south ward areas was selected as study area. The F south area was divided in 6 residential units within one zone reporting maximum number of malaria cases and deaths were identified. The cluster area was designated as intervention area & the rest of area was designated as internal control area.

The area comprises of 6 residential units with a population of 6330. Advocacy meetings with public health department were held initially to explain the plan. Team for community surveillance activity was formulated which comprises of public health department staff, health post staff, members of youth club, faculty and residents from PSM department. The schedule for activities was planned according to community convenience. Meetings with general practitioners were held fortnightly.

Description of study community

Study community comprises of 6 residential units with around 1000 households and 6330 population. These households are about 200 meter away from railway tract. The area includes a non-functioning mill and 2 construction sites. There is one health post for providing health care services. Two youth clubs are functioning in the area. There are organized dwellings and few slum inhabitants near railway tracts, surrounded by new building construction sites.

There was abundant presence of potential breeding sites such as flower pots, scrap material, uncovered storage and overhead tanks.

RESULTS

A standardised protocol for community action as a part disease surveillance for vector borne diseases is evolved as evident in Table 1.

Table 1: The various activities carried out include.

Various activities carried out include
Preparatory phase
Baseline epidemiological survey
Community survey
Estimation of indices
Morbidity and mortality indicator assessment
Enlistment of risk factors
Interventional phase
Operational:
Sensitization of local housing society executive members through interventions and correspondence for ensuring establishment of malaria proof overhead tanks and other measures
Enlistment of breeding places
Elimination of breeding places
Follow up
Need assessment
Managerial:
Planning & coordinating various activities of malaria control in the community. Handholding by Public Health personnel for preparation of microaction plan by the community.
Advocacy:
Meetings held with general practitioners, public health department staff, youth club, members, local leaders
Health education given to community
Mobilization of community for local meetings
Promotion of ‘Sunday service day’
Display of boards at strategic places highlighting control measures adapted by a family locally
Liaisonal:
Joint collaboration effort with public health department in elimination of breeding places.
Evaluation phase
Coverage of housing societies
Extent of mosquito proof tanks
Coverage of population with IEC
Assessment of indicators of malaria control
Compilation and analysis of disease indicators through IDSP
Comparison of prevalence with previous year

¹ Valekar SS et al. Int J Community Med Public Health, 2015 May;2(2):101-106
A comparison of occurrence of diagnosed malaria cases in the years 2009 and 2010 in the interventional area shows number of cases as 135 and 334 respectively. In control area the cumulative number of cases of malaria is 2360 in the year 2009 and 4692 in the year 2010. In 2009 the prevalence of Plasmodium vivax infection amongst total cases shows no difference, 97 cases (71.85%) in 2009 and 237 (70.95%) in 2010 in the interventional area. Similar pattern is reflected in control area including predilection for both Plasmodium vivax and plasmodium falciparum infection.

The total number of deaths reported in the year 2010 is 11 in the control area where as it is nil in the study area, where interventions were planned in a structured sequential manner (Table 2).

Table 2: Morbidity and mortality profile of malaria in study area.

Morbidity & mortality profile	Interventional area (Study area)	Control group (Entire ward area)		
Total No. of cases month wise	2009	2010	2009	2010
July	135 (100%)	334 (100%)	2360 (100%)	4692 (100%)
August	20 (14.81%)	230 (68.86%)	327 (3.85%)	2312 (49.27%)
September	39 (28.88%)	71 (21.25%)	604 (28.02%)	1315 (28.02%)
October	31 (22.96%)	19 (5.68%)	671 (28.43%)	606 (12.91%)
Total No. of cases species wise	135 (100%)	334 (100%)	2360 (100%)	4692 (100%)
Plasmodium Vivax	97 (71.85%)	237 (70.95%)	1830 (77.54%)	3624 (77.25%)
Plasmodium falciparum	38 (28.15%)	89 (26.65%)	477 (20.21%)	780 (16.62%)
Mixed infection	-	8 (2.40%)	53 (2.24%)	108 (2.35%)
Total No. of deaths month wise	2	0	4	11
July	-	-	1	2
August	-	-	1	3
September	-	-	1	3
October	-	-	1	3
Total population	6200	6330	353569	359580

The slide positivity rate in the study area is 20.7% in the peak month of September 2010 where as it is 5.2% in the control area. But the control area includes both fever and non-fever cases in the denominator, hence the reduced SPR in the control area is illusive (Table 3).

Table 3: Year and month wise SPR of study and control area.

Area	Month	SPR (2009)	Total BS (2009)	SPR (2010)	Total BS (2010)	Z score	P value	Significance
Study area (fever cases only)	July	6.3	315	32.5	708	11.749	0.000	HS
	August	10.9	357	15.9	447	-2.09	0.02	HS
	September	14.4	215	20.7	92	-1.29	0.119	NS
	October	28.3	159	17.8	119	3.557	0.001	HS
Control area (fever & non fever cases)	July	4.9	6735	13.5	15791	-22.730	0.000	HS
	August	7.1	8518	8.3	15901	-3.390	0.000	HS
	September	10.7	6297	5.2	11568	12.475	0.000	HS
	October	14.6	5177	5.2	8815	17.255	0.000	HS

The monthly blood examination rate in the year 2010 in the study area is 1.45 in correlation with SPR of 20.7. But in the control area MBER is 3.21 in correlation with SPR of 5.2 in control area. This indicates that MBER as an indicator correlates with the situational analysis and impact of interventions in the study area (Table 4). The activities performed in the interventional areas facilitated enlistment of preventive actions completing the canvas of disease surveillance in malaria control.
Table 4: Estimation of malaria indices.

	MBER 2009	MBER 2010	SPR 2009	SPR 2010
Study area (Fever cases only)				
July	5.08	11.18	6.3	32.5
August	5.75	7.06	10.9	15.9
September	3.46	1.45	14.4	20.7
October	2.56	1.87	28.3	17.8
Control area (Fever & non fever cases)				
July	1.90	4.39	4.9	13.5
August	2.40	4.42	7.1	8.3
September	1.78	3.21	10.7	5.2
October	1.46	2.45	14.6	5.2

Table 5: Community based interventions in study area (6 months).

Community based interventions in study area (6 months)	
Number of households visited	1000
Total Population covered	6330
Total number of overhead tanks	8
Number of overhead tanks made mosquito proof	2
Number of overhead tanks already mosquito proof	6
IEC material distributed (handouts, pamphlets)	1000
IEC material used (posters, banners)	12
Advocacy meetings held with - NGO, PP and CHS members, members of youth club	4
Actual and potential breeding places identified and eliminated	6
Total follow up visits conducted by MPW (every weekly)	24
Estimation of indices done MBER, SPR	
Key-epidemiological factors identified	4
Health education sessions conducted	2

Table 6: Epidemiological determinants of malaria in study area.

Epidemiological factors	Number
New Construction sites	2
Presence of railway track	1
Presence of non-functioning mill for several years	1
Actual and potential breeding places i.e. flower pots, scrap material, uncovered water storage tanks, overhead tanks etc. in houses	Abundant

DISCUSSION

The preparatory phase of the study enabled the investigators to plan the subsequent phases of intervention and evaluation. The high risk pockets within the study area could be mapped and strategic actions could be focussed in the study community.

The operational, managerial, advocacy and liaisoning with public health department ensured community participation, total compliance of control measures including active disease surveillance. The actual and potential breeding sites were not only eliminated but further development of breeding sites was also prevented during the designated period i.e. monsoon and post monsoon period (Table1).

The number of cases increased by 2-2.5% in both study and control areas. The peak number of cases are seen in the month of July in both the areas. The impact of multipronged interventions becomes evident in the month of August reaching up to disease control status by the end of October. The prevalence of mixed infections in malaria is more evident in control area and the presence of Plasmodium falciparum cases show reduction in both the areas. However the number of Plasmodium vivax
cases predominates in both the areas. The number of deaths due to malaria is distinctly more in control area. In study area, there are no deaths in the year 2010. This is probably attributable to the consistent interventions implemented in study area since year 2009 (Table 2).5,6

The slide positivity rate in study area is estimated amongst the total number of fever cases only whereas in control area it is estimated with the denominator including both fever and non-fever cases (as per available data). Hence SPR appears to be higher in study area as compared to the control area, the “at risk” population is clearly defined in the study area and therefore the sequential decrease in the SPR in the study area is an indirect indication of the effect of the interventions carried out in the study area (Table 3). 3,8

The decrease in MBER is evident in study area in the year 2010 as compared to the control area. The SPR reduction is more pronounced in the study area in 2010 as compared to the year 2009. The variations in SPR in control area becomes indeterminate, since the denominator includes both fever and non-fever cases (Table 4).

The outcomes of the interventions are correlated with active community participation in malaria control activities. The enlistment of key epidemiological factors identified in the study area indicate the complexity and diversity of the problem of malaria and its control measures (Table 5, 6). 9

CONCLUSIONS

Malaria control is essentially a multi-dimensional, multi factorial event which requires active community participation. Malaria control cannot be achieved in isolation by singular efforts of the public health department alone. A multipronged approach as enlisted in Table 1 is practical & relevant to the strategy of malaria control in the urban area. Following community based activities can be undertaken to reduce malaria burden in the community

1) The local housing society members must be actively involved in the elimination of breeding places & promotion of awareness programmes in their residential premises.

2) Key executive members of local housing societies be involved through interactive meetings conducted under convenorship of local health authority with other stakeholders. (Viz. local municipal councillor, engineering department, insecticidal officer, public works department etc.)

3) An appeal in writing from the local health authority to all housing society members regarding malaria prevention and control measures must be made during pre-monsoon period.

4) Micro action plan for societies should be developed by the society members themselves and be duly endorsed by the local health authorities as per activities specified in the interventional phase of the study (Table 1 & 5). Local public health authority must monitor compliance of these activities.

5) Vector control measures under Mumbai, municipal corporation act section 380, 381A,B,D, 374, 375, 471, 472, 488 should be stringently implemented to create a sense of self responsibility towards malaria control measures. 10

6) A malaria free housing society during the monsoon period from June to October should be facilitated for their consistent achievement by the local health authority.

7) Promotion of ‘Sunday service day’ in interest of malaria control in the monsoon period will be meaningfully utilized for community based malaria control activity.

8) Key messages for malaria control, should be displayed at strategic points in the housing society areas.

9) Need based interventions structured as per the convenience of the community is the key for provoking community participation in malaria control.

Sensitisation, motivation and sustainable involvement of community through supportive handholding supervision are vital for success of malaria control activities, in the local community.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

1. WHO. Roll back malaria: a global partnership. In: WHO, eds. WHO Report. Geneva: WHO; 1998.
2. Government of India. Annual report, 2011. Ministry of Health and Family welfare. Available at: http://mohfw.nic.in/WriteReadData/1892s/69601445-09Annual%20Report%20to%20the%20People%20on%20Health.pdf. Accessed December 2011.
3. National Vector Borne Disease Control Programme. Urban malaria scheme, 2014. Available at: http://www.nvbdcp.gov.in/ums.html. Assessed 27 June 2014.
4. Integrated Disease Surveillance Programme (IDSP). Training manual for medical officers for hospital based disease surveillance, 2014. Available at: http://www.idsp.nic.in/. Assessed 1 December 2014.
5. Castro MC, Tsuruta A, Kanamori S, Kannady K, Mkude S. Community based environmental control.
management for malaria control: evidence from small scale intervention in Dar es Sallam, Tanzania. Malar J. 2009;8:57.
6. Okeibunor JC, Orji BC, Brieger W, Ishola G, Otolorin E, Rawlins B, et al. Preventing malaria in pregnancy through community directed interventions. Evidence from Akwa Ibom state, Nigeria. Malar J. 2011;10:227.
7. Bamidele JO, Ntaji MI, Oladele EA, Bamimore OK. Community participation in malaria control in Olorunda local government area, Osun state, South-Western Nigeria. African J Infect Dis. 2012;6(2):24-8.
8. Malaviya VS, Kant R, Pant CS, Srivastava HC, Yadav RS. Community based integrated malaria control with reference to involvement of social forestry activities: an experience. Indian J Community Med. 2006;31(4):234-6.
9. Susantha Gosh, Rajan Patil, Satyanarayan Tiwari, Aditya Dash. A Community based health education programme for bio-environmental control of malaria through folk theatre (Kalajatha) in rural India. Malar J. 2006;5:123.
10. Municipal Corporation of Greater Mumbai (MCGM). Section 374, 375, 380, 380(1)A,B,D, 471, 472, 488 of municipal corporation act. In: MCGM, eds. Municipal Corporation Act. Mumbai, India: MCGM; 2010-2011.

DOI: 10.5455/2394-6040.ijcmph20150506
Cite this article as: Shinde RR, Rasal MM, Waghmare R, Meshram P, Kho bragade P. A community based model for effective malaria control in a known endemic area of a metropolitan city. Int J Community Med Public Health 2015;2:101-6.