Reabilitação com uso de realidade virtual: atividade física para pacientes admitidos na unidade de terapia intensiva

Rehabilitation through virtual reality: physical activity of patients admitted to the intensive care unit

INTRODUÇÃO

A inatividade se caracteriza por baixa mobilidade e ausência de atividade física. (1) Estudos em diferentes países demonstraram que poucos pacientes na unidade de terapia intensiva (UTI) são fisicamente ativos. Uma percentagem muito pequena de pacientes atinge nível alto de intensidade durante a atividade física. Estes dados mostram que o nível de atividade dos pacientes durante a permanência na UTI é muito baixo. (2-4) A inatividade causa problemas respiratórios e cardíacos, assim como lesões musculoesqueléticas. (5-7) Além disso, estes pacientes podem apresentar alterações do equilíbrio e coordenação, assim como delírium, devido à privação de estímulos visuais, auditivos e táteis. (8)
Tais alterações podem ter impacto na funcionalidade do paciente, como demonstrado por estudos prévios que revelaram diminuição da funcionalidade após a hospitalização, levando a uma diminuição da qualidade de vida.\(^{(9,10)}\)

Dadas as alterações que a inatividade pode causar em pacientes de UTI, desenvolveram-se programas de reabilitação precoce e progressiva com altos níveis de atividade para pacientes na UTI.\(^{(11-13)}\) Recentemente, estudos têm avaliado métodos alternativos que possam ser utilizados durante a fisioterapia para complementar o tratamento tradicional e oferecer nível suficiente de atividade para reverter a condição de inatividade.\(^{(14-16)}\) Em outros ambientes, jogos interativos, que utilizam realidade virtual em sessões de fisioterapia, foram propostos como opções terapêuticas.\(^{(4,17-19)}\)

A tecnologia de realidade virtual simula jogos e esportes e utiliza um dispositivo de controle para captar os movimentos, exibidos em uma tela.\(^{(17,20)}\) Alguns estudos demonstraram que sistemas de jogos podem gerar movimentação suficiente para produzir atividade física e ajudar a melhorar equilíbrio, mobilidade, força muscular e cognição em idosos. Esta tecnologia é benéfica não apenas porque trabalha os componentes da reabilitação diretamente envolvidos na fisiopatologia, mas também porque estimula o interesse e a motivação do paciente em relação à terapia.\(^{(21-25)}\)

Assim, o uso de realidade virtual pode ser uma ferramenta também que auxilia na reabilitação de pacientes em terapia intensiva.\(^{(20,26)}\) Na literatura, poucos estudos em pacientes de UTI avaliaram a viabilidade desta ferramenta e os níveis de atividade que ela pode oferecer aos pacientes. Assim, nossa hipótese é de que a realidade virtual pode ser utilizada como nova ferramenta na reabilitação desta população de pacientes, por ser segura, prática e capaz de promover apropriado nível de atividade em pacientes críticos.

Para testar esta hipótese, este estudo teve como objetivo avaliar a segurança e a viabilidade do uso de realidade virtual como ferramenta de reabilitação para pacientes na UTI, assim como avaliar o nível de atividade física que é capaz de provocar nestes pacientes ao utilizá-la.

MÉTODOS

Este foi um estudo experimental. O ensaio foi realizado na UTI do Departamento de Emergência do Instituto Central do Hospital das Clínicas, Faculdade de Medicina, da Universidade de São Paulo. O estudo foi aprovado pelo Comitê de Ética da instituição (número de aprovação 662.187).

Durante o período compreendido entre novembro de 2016 e janeiro de 2018 conduziu-se, na UTI, o ensaio clínico randomizado Progressive Mobility Program and Technology to Improve the Level of Physical Activity and Functionality of ICU Patients (NCT 02889146). O programa de reabilitação inclui sessões de uso de videogame.

O presente estudo é uma análise secundária do estudo principal. Analisamos e descrevemos os pacientes do grupo intervenção que utilizaram o videogame nas sessões de exercício. Assim, os pacientes incluídos no grupo intervenção e que realizaram esta atividade foram analisados com relação aos objetivos deste estudo específico. Para as sessões de uso de videogame durante o programa, consideraram-se elegíveis para o estudo pacientes com idade maior ou igual a 18 anos, sem patologia neurológica, sem condições cutâneas que impedissem o uso do acelerômetro, e não tivessem restrições de mobilidade. Os critérios de exclusão foram incapacidade de compreender as instruções para o uso do videogame e incapacidade de obedecer a comandos simples.

Avaliação

Informações demográficas e clínicas

Para caracterização da amostra, foi coletado os dados relativos a sexo, idade, escore de gravidade segundo o Simplified Acute Physiology Score III (SAPS III), índice de comorbidade de Charlson, e escore segundo a escala de coma de Glasgow, assim como os procedimentos cirúrgicos.

Segurança

Avaliaram-se os sinais vitais imediatamente antes do início da intervenção, imediatamente após o término da sessão, e 5 minutos após período de repouso de 5 minutos. Os sinais vitais foram revistos para detectar qualquer diferença significativa nos sinais para critérios de segurança para mobilização em pacientes críticos ou critérios para interrupção da atividade delineados pela literatura, assim como qualquer intercorrência.\(^{(27,28)}\) Foi também registrada a presença de cateter, tubo, dreno, sonda ou dispositivo de oxigenoterapia, assim como o uso de fármaco vasoativo ou de ventilação mecânica invasiva (VMI) no momento da terapia. Além disso, registrou-se a ocorrência de eventos adversos, inclusive remoção acidental dos acessos e necessidade de aumento da medicação ou suplementação de oxigênio.
Avaliação do nível de atividade

Acelerometria

O nível de atividade física foi avaliado utilizando-se um monitor de atividade, um acelerômetro triaxial; este foi instalado no punho e no tornozelo do paciente, enquanto ele interagia com o videogame. O monitor ActiGraph GT3X foi validado e é utilizado para mensuração objetiva de atividade. Este monitor pode detectar alterações da aceleração em três eixos (vertical, horizontal e perpendicular), criando um registro contínuo de movimentos mínimos.

O monitor proporciona informação específica, como percentagem do tempo gasto em diferentes níveis de atividade: atividade leve, atividade moderada, atividade vigorosa e atividade muito vigorosa. Assim, o dispositivo colheu o nível máximo de atividade física alcançado pelo paciente durante a sessão de interação com o videogame e o tempo que o paciente despendeu em cada nível de atividade. Os dados foram analisados com o programa de computador fornecido pelo fabricante do monitor (ActiLife 6). Com utilização de um algoritmo validado, foi determinada a duração de cada nível de atividade para cada paciente.

Escala modificada de Borg

A escala modificada de Borg varia de zero a 10 e avalia fadiga respiratória, na qual zero corresponde à ausência de fadiga e dez à maior fadiga que o paciente já sentiu. Trata-se de uma escala subjetiva, sendo necessário avaliar a compreensão do paciente para classificar a fadiga respiratória. Esta escala mostrou boa reprodutibilidade na avaliação da fadiga respiratória durante exercício. Assim, antes de iniciar o uso do videogame, explicamos o instrumento ao paciente e, então, pedimos que ele classificasse seu nível de fadiga respiratória.

Satisfação

Ao final de cada sessão, administrou-se um questionário para avaliação da satisfação do paciente com a sessão de videogame. Para avaliar a percepção do paciente com relação às sessões de videogame, utilizamos um questionário simples, com cinco questões desenvolvidas pelos pesquisadores e com base em um questionário de satisfação encontrado na literatura. Fizeram-se as seguintes perguntas:

1. Você acha que é capaz de participar deste jogo?
2. Em uma escala de zero a 10, quanto você gostou desta atividade?
3. Você prefere uma sessão de videogame ou outras atividades durante a fisioterapia? Qual atividade você prefere?
4. Você gostaria de realizar esta atividade em sua próxima sessão de fisioterapia?
5. Você sentiu algum desconforto durante a atividade? Qual?

Intervenção

As sessões de videogame foram realizadas durante sessões de fisioterapia por fisioterapeuta treinado na administração do método. Os pacientes receberam instruções sobre como praticar o jogo e, antes de iniciar, viram a fisioterapeuta jogar uma partida (Figura 1).

Foi utilizado para estas sessões o sistema de jogo Nintendo Wii (Nintendo of America Inc., EUA), sendo o jogo mostrado na tela de uma televisão (Figura 1). Os jogos utilizados no estudo foram divididos em duas categorias: (1) pacientes com incapacidade para permanecer em pé participaram de um jogo com luta de espadas e um jogo de tênis de mesa, permanecendo em posição sentada no leito ou em uma poltrona (Figura 2), e (2) pacientes com capacidade para sair do leito de UTI e permanecer em pé participaram de um jogo que exigia que o jogador movesse os membros inferiores e desviasse ou saltasse sobre obstáculos e um jogo que demandou que o participante se equilibrasse sobre uma bola e fizesse malabarismos com bolas. Cada paciente participou do jogo por 6 minutos.

Os pacientes inscritos assinaram um Termo de Consentimento Livre e Esclarecido e tiveram instalados dois acelerômetros, um no punho e outro no tornozelo antes de iniciar as sessões com videogame. Os momentos de início e término do jogo foram anotados. Imediatamente antes do início do jogo, registram-se os sinais vitais, o uso de cateteres, sondas ou outros equipamentos, assim como o nível de fadiga do paciente. A intervenção foi realizada e, caso necessário, podia ser cessada. Durante a intervenção, avaliou-se o nível de atividade com utilização dos acelerômetros, assim como com a escala de Borg. Imediatamente após o término do jogo, todas as variáveis acima mencionadas foram reavaliadas e solicitou-se ao paciente responder o questionário de satisfação sobre a atividade.

Análise estatística

A análise foi conduzida com utilização do programa de computador SigmaStat (versão 3.0). Utilizou-se o teste de Kolmogorov-Smirnov para verificar a normalidade dos dados, que foram apresentados como média ± desvio padrão.
Figura 1 - Paciente recebendo instruções sobre como participar do jogo mostrado na televisão durante a sessão de fisioterapia. Os pacientes sentados em uma poltrona jogando o videogame foram adequadamente monitorados.

Figura 2 - Paciente sentado em uma poltrona durante a sessão de fisioterapia, participando de um jogo de luta de espadas.

ou mediana com variações interquartis. Utilizaram-se também o número absoluto e percentagem. As variáveis categóricas foram apresentadas como número absoluto (relativo).

Para análise do nível de atividade, calculou-se o tempo despendido em cada nível de atividade física durante a sessão de videogame. A satisfação do paciente com relação às sessões de videogame foi apresentada qualitativamente.

RESULTADOS

Durante o período do estudo, analisaram-se 100 sessões de fisioterapia. Durante os 9 meses, 68 pacientes cumpriram os critérios de inclusão no estudo. Entretanto, 7 pacientes foram excluídos, por não conseguirem atender a comandos verbais e não serem capazes de participar dos jogos. Assim, 60 pacientes participaram da intervenção. Como os pacientes aceitaram participar das sessões de videogame mais de uma vez, avaliamos os dados de cada sessão individualmente.

A média de idade dos pacientes foi de 47 ± 17 anos, sendo 50% deles do sexo masculino; o SAPS III médio foi de 48 (14,5). Em nove das sessões, os pacientes estavam sob uso de VMI durante a sessão de videogame; em oito das sessões os pacientes tinham um tubo orotraqueal, em três sessões os pacientes tinham traqueostomia, e em 16% das sessões os pacientes estavam em uso de fármacos vasoativos. Estes dados se encontram descritos na tabela 1. O número de sessões nas quais os pacientes estavam sob utilização de dispositivos invasivos também é mostrado na tabela 1.
Tabela 1 - Características da população (n = 60 pacientes e 100 sessões)

Variáveis	
Idade, anos	47 ± 17
SAPS III	53 ± 14
Sexo masculino	30 (50)
Causa para admissão à UTI	
Respiratória	12 (20)
Não respiratória	48 (80)
Uso de dispositivos invasivos durante as sessões	
Cânula nasal de oxigênio	37 (37)
Tubo de alimentação	72 (72)
Cateter venoso central	37 (37)
Cateter venoso periférico	59 (59)
Dreno	7 (7)
Cateter de diálise	4 (4)
Uso de fármaco vasoativo durante as sessões	16 (16)
Uso de traqueostomia durante as sessões	3 (3)
Uso de tubo orotraqueal durante as sessões	8 (8)
Uso de VMI durante as sessões	9 (9)

SAPS III - Simplified Acute Physiology Score III; UTI - unidade de terapia intensiva; VMI - ventilação mecânica invasiva. Resultados expressos como média ± desvio padrão ou n (%).

Avaliação do nível de atividade

A interação com o videogame provocou níveis leves de atividade para todos os pacientes, e nível moderado de atividade para todos, exceto um dos pacientes. A tabela 2 descreve a duração média de cada nível de atividade na fisioterapia. Dentre as 100 sessões, 14 foram realizadas na posição em pé. Durante a terapia com videogame, registrou-se um nível leve de atividade em 59% do tempo, e um nível moderado de atividade foi alcançado em 38% do tempo. Atingiu-se nível vigoroso de atividade em 12 das 100 sessões, e nível muito vigoroso de atividade em seis sessões; destas seis sessões, quatro foram realizadas enquanto o paciente permanecia em pé sobre uma plataforma (Tabela 2). O escore, segundo a escala modificada de Borg, antes da sessão de videogame, foi de zero; após a sessão de videogame, o escore mediano segundo a escala modificada de Borg foi de 2 (0 - 4), o que indica fadiga respiratória de leve a moderada (Tabela 2).

Segurança

Não ocorreram eventos adversos e nem remoções acidentais de dispositivos invasivos durante as sessões de videogame, assim como não se observaram alterações significativas nos sinais vitais durante as sessões. Apenas 2% dos participantes relataram desconforto durante as sessões, descrito como tontura.

Satisfação

Com relação à aceitação e à satisfação dos pacientes com as sessões de videogame, os pacientes relataram que gostaram da atividade e que podiam realizá-la com sua condição física. Em uma escala de zero a 10, os pacientes deram um escore mediano de 10 a respeito do quanto gostaram da sessão de videogame. Relataram que gostaria de jogar videogame nas futuras sessões de fisioterapia 86% dos pacientes. Estes resultados são apresentados na tabela 3.

Tabela 2 - Características do nível de atividade (n = 100 sessões)

Escala modificada de Borg	
Escore inicial	0 (0 - 0)
Escore final	2 (0 - 4)
Percentagem de tempo em cada nível de atividade	
Leve (n = 100 sessões)	59 ± 21
Moderada (n = 99 sessões)	38 ± 21
Vigorosa (n = 12 sessões)	16 ± 9
Sessões realizadas na posição em pé (n = 12)	4 (4)
Sessões realizadas em posição sentada (n = 12)	8 (8)
Muito vigorosa (n = 6 sessões)	8 ± 6

Resultados expressos como mediana (quartis 25% - 75%), média ± desvio padrão ou n (%).

Tabela 3 - Avaliação da atividade (n = 10 sessões e 60 pacientes)

Você acha que é capaz de praticar este jogo?	
Sim	86 (86)
Não	1 (1)
Não respondeu	13 (13)
Em uma escala de 0 a 10, quanto você gostou desta atividade?	10 (8 - 10)
Você prefere uma sessão de videogame ou outras atividades durante a fisioterapia?	
Videogame	22 (32)
Videogame e treinamento de caminhada	7 (7)
Exercícios padrão e treinamento de caminhada	4 (4)
Caminhada	9 (9)
Todos os exercícios	24 (24)
Não respondeu	23 (23)
Você gostaria de tomar parte desta atividade em sua próxima sessão de fisioterapia?	
Sim	84 (84)
Não	2 (2)
Não respondeu	14 (14)
Você sentiu algum desconforto durante esta atividade?	
Tortura	2 (2)

Resultados expressos como n (%) ou mediana (25% - 75%).
DISCUSSÃO

O presente estudo teve como objetivo avaliar a segurança e a viabilidade do uso de realidade virtual como ferramenta de reabilitação para pacientes na UTI. Adicionalmente, avaliamos o nível de atividade física provocada nos pacientes com o uso desta ferramenta. Não ocorreram eventos adversos com risco potencial durante as sessões de exercício nas quais se utilizou o videogame, assim como não houve a remoção inadvertida de dispositivos. Nossos resultados também demonstraram que a fisioterapia com utilização do videogame conseguiu provocar níveis leves e moderados de atividade nos pacientes, e, em alguns pacientes, níveis vigorosos de atividade. Um breve relato de alguns casos na literatura descreveu o uso de realidade virtual na UTI. (20) Em estudo subsequente, uma série de casos mostrou que esta ferramenta pode ser adequadamente utilizada na UTI. (26) Nosso estudo contribui com a literatura ao fornecer dados de uma grande população de pacientes na UTI, inclusive relativos à viabilidade e à segurança, assim como dados de acelerometria, mostrando os níveis de atividade que foram obtidos com segurança nesses pacientes.

Os critérios de segurança recomendados para exercícios em pacientes na UTI estão bem estabelecidos na literatura. (28) Em estudo que avaliou a segurança de atividades no leito em comparação a atividades fora do leito, observou-se que a frequência de eventos adversos potenciais não foi diferente. Os eventos potenciais que ocorreram com maior frequência foram modificações fisiológicas, em geral transitórias, e resolvidas após repouso sem qualquer intervenção. (24) Um estudo que avaliou a segurança da mobilização e deambulação na UTI relatou a ocorrência de potenciais eventos de segurança em apenas 1% dos pacientes. (9) Outros programas de mobilidade e algumas terapias específicas, como cicloergômetros, demonstraram ser seguros e viáveis. (14-16) Não observamos com a utilização do equipamento qualquer intercorrência no programa de exercícios, ou nos sinais vitais que tenham demandado interrupção de uma sessão ou provocado lesão no paciente. Não tivemos intercorrências relativas a acessos, drenos ou sondas, mesmo nos pacientes sob ventilação mecânica, o que sugere que a realidade virtual também é segura para pacientes na UTI.

Além disto, diversos estudos sugeriram a necessidade de novas ferramentas para exercícios para aumento da mobilização e atividade física em pacientes de UTI, com o objetivo de reduzir o comportamento sedentário durante a hospitalização. (11-16) Nossos resultados demonstraram que movimentação corporal desenvolvida com auxílio de realidade virtual pôde gerar níveis suficientes de atividade, oferecendo algum grau de exercício e modificando a condição de imobilidade do paciente. Estes resultados atendem a necessidades da literatura quanto a novas ferramentas para reduzir, com segurança, a imobilidade dos pacientes na UTI. (35,36)

Estes achados são importantes porque já se demonstrou que a atividade física traz benefícios para pacientes na UTI, prevenindo o síndrome do imobilismo, que pode ter impacto negativo nas atividades da vida diária dos pacientes após a alta da UTI. (1-3) Em outras populações, esta ferramenta tem se mostrado promissora para reabilitação e continuidade dos exercícios em pacientes com variedade de enfermidades, e demonstrado que o uso de videogames produz nível suficiente de mobilização corpórea para encorajar pessoas saudáveis a participarem de uma atividade e em processos de reabilitação. (18,19,37-39) Segundo o American College of Sports Medicine, a intensidade da atividade é um fator que necessita ser estabelecido para prescrição de exercícios. (40) Neste estudo, identificamos que o uso do Nintendo Wii™ pôde obter, com segurança, exercícios com intensidade leve a moderada em pacientes de UTI. Identificamos também que a fisioterapia com videogames foi bem aceita pelos pacientes, sendo que a maioria deles gostou da atividade e afirmou que gostaria de participar destas atividades nas próximas sessões. Mais estudos foram realizados com utilização de realidade virtual em razão da motivação que esta ferramenta pode dar aos pacientes. Em um estudo que avaliou os benefícios e desafios desta nova ferramenta na fisioterapia, os autores identificaram que os pacientes se divertiram com esta ferramenta (25,38,40) e desenvolveram a motivação para realização da atividade. (21,23,25)

Uma limitação do presente estudo foi que se tratou de estudo em um único centro conduzido em uma única UTI. Não separamos pacientes clínicos de cirúrgicos. Além disto, realizamos a intervenção com poucos pacientes mecanicamente ventilados. Assim, são necessários mais estudos com pacientes em uso de VMI e que explorem outras variações de exercícios nesta população específica, como diferentes frequências da intervenção, e um número maior de ensaios clínicos que utilizem grupos controlados para uma melhor descrição dos benefícios deste tipo de intervenção. Ao que sabemos, nosso estudo foi o primeiro a avaliar o nível de atividade obtida por pacientes na UTI. Com nossos dados, pudemos demonstrar objetivamente o valor de um equipamento específico, ao identificar e classificar os tipos de atividade obtida pelos indivíduos, como os descritos na literatura, para análise da atividade física.
CONCLUSÃO

O uso do sistema de jogos Nintendo Wii™ provocou níveis leves a moderados de atividade física em pacientes na unidade de terapia intensiva, com a possibilidade de atingir níveis de atividade vigorosa. Ainda, o sistema de jogos Nintendo Wii™ é uma ferramenta segura e com probabilidade de ser escolhida pelos pacientes durante sessões de fisioterapia e reabilitação neste ambiente.

AGRADECIMENTOS

Os autores agradecem à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pelas bolsas que financiaram este estudo (bolsa número 2015/18768-8).

ABSTRACT

Objective: To evaluate the level of activity that Nintendo Wii™ can elicit in intensive care unit patients and its associated safety and patient satisfaction.

Methods: Experimental, single-center study performed at a tertiary care hospital. Patients ≥ 18 years old who were admitted to the intensive care unit, participated in videogames as part of their physical therapy sessions and did not have mobility restrictions were included. Th exclusion criteria were the inability to comprehend instructions and the inability to follow simple commands. We included n = 60 patients and performed 100 sessions. We used the Nintendo Wii™ gaming system in the sessions. An accelerometer measured the level of physical activity of patients while they played videogames. We evaluated the level of activity, the modified Borg scale scores, the adverse events and the responses to a questionnaire on satisfaction with the activity.

Results: One hundred physical therapy sessions were analyzed. When the patients played the videogame, they reached a light level of activity for 59% of the session duration and a moderate level of activity for 38% of the session duration. No adverse events occurred. A total of 86% of the patients reported that they would like to play the videogame in their future physical therapy sessions.

Conclusion: Virtual rehabilitation elicited light to moderate levels of activity in intensive care unit patients. This therapy is a safe tool and is likely to be chosen by the patient during physical therapy.

Keywords: Physical activity; Video games; Virtual reality; Physical therapy modalities; Intensive care units

REFERÊNCIAS

1. Vollman KM. Introduction to progressive mobility. Crit Care Nurse. 2010;30(2):S3-5.
2. Berney SC, Harrold M, Webb SA, Seppelt I, Patman S, Thomas PJ, et al. Intensive care unit mobility practices in Australia and New Zealand: a point prevalence study. Crit Care Resusc. 2013;15(4):260-5.
3. Nydahl P, Ruhl AP, Bartoszek G, Dubb R, Filipovic S, Flohr HJ, et al. Early mobilization of mechanically ventilated patients: a 1-day point-prevalence study in Germany. Crit Care Med. 2014;42(5):1178-86.
4. Beach LJ, Fetterplace K, Esbrook CL, et al. Measurement of physical activity levels in the intensive care unit and functional outcomes: An observational study. J Crit Care. 2017;40:189-96.
5. Winkelman C. Bed rest in health and critical illness: a body systems approach. AACN Adv Crit Care. 2009;20(3):254-66.
6. Convertino VA, Bloomfield SA, Greenleaf JE. An overview of the issues: physiological effects of bed rest and restricted physical activity. Med Sci Sports Exerc. 1997;29(2):187-90.
7. Wieske L, Dettling-Ihnenfeldt DS, Verhamme C, Nollet F, van Schaik IN, Schultz MJ, et al. Impact of ICU-acquired weakness on post-ICU physical functioning: a follow-up study. Crit Care. 2015;19:196.
8. Teasell R, Dittmer DK. Complications of immobilization and bed rest. Part 2: Other complications. Can Fam Physician. 1993;39:1440-2, 1445-6.
9. Herridge MS, Tansey CM, Matté A, Tominson G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart TE, Kudlow P, Cook D, Slutsky AS, Cheung AM; Canadian Critical Care Trials Group. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293-304.
10. Borges RC, Carvalho CR, Colombo AS, da Silva Borges MP, Soriano FG. Physical activity, muscle strength, and exercise capacity 3 months after severe sepsis and septic shock. Intensive Care Med. 2015;41(8):1433-44.
11. King L. Developing a progressive mobility activity protocol. Orthop Nurs. 2012;31(5):253-62; quiz 263-4.
12. Cameron S, Ball I, Cepinskas G, Chong K, Doherty TJ, Ellis CG, et al. Early mobilization in the critical care unit: A review of adult and pediatric literature. J Crit Care. 2015;30(4):664-72.
13. Gosselink R, Bott J, Johnson M, Dean E, Nava S, Norrenberg M, et al. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med. 2008;34(7):1188-99.
14. Burtin C, Clercx B, Robbeets C, Fersinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37(9):2499-505.
15. Berry MJ, Morris PE. Early exercise rehabilitation of muscle weakness in acute respiratory failure patients. Exerc Sport Sci Rev. 2013;41(4):208-15.
16. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874-82.
17. Molina KI, Ricci NA, de Moraes SA, Perracini MR. Virtual reality using games for improving physical functioning in older adults: a systematic review. J Neuroeng Rehabil. 2014;11:156.
18. Kafri M, Myslinski MJ, Gade VK, Deutsch JE. Energy expenditure and exercise intensity of interactive video gaming in individuals poststroke. Neurorehabil Neural Repair. 2014;28(1):56-65.
19. Naugle KE, Naugle KM, Wikstrom EA. Cardiovascular and affective outcomes of active gaming: using the Nintendo Wii as a cardiovascular training tool. J Strength Cond Res. 2014;28(2):443-51.

20. Massie K, O'Keefe L, Stott SA. Wiihab in intensive care. Anaesthesia. 2010;65(7):750-1.

21. Del Corral T, Percegona J, Seborda M, Rabinovich RA, Vilaró J. Physiological response during activity programs using Wii-based video games in patients with cystic fibrosis (CFI). J Cyst Fibros. 2014;13(6):706-11.

22. Wardini R, Dajczman E, Yang N, Baitzan M, Prêfautaine D, Stathatos M, et al. Using a virtual game system to innovate pulmonary rehabilitation: safety, adherence and enjoyment in severe chronic obstructive pulmonary disease. Can Respir J. 2013;20(5):357-61.

23. Agmon M, Perry CK, Phelan E, Demiris G, Nguyen HQ. A pilot study of Wii Fit exergames to improve balance in older adults. J Geriatr Phys Ther. 2011;34(4):161-7.

24. Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L, et al. Early activity is feasible and safe in respiratory failure patients. Crit Care Med. 2007;35(1):139-45.

25. Forsberg A, Nilsagard Y, Boström K. Perceptions of using videogames in rehabilitation: a dual perspective of people with multiple sclerosis and physiotherapists. Disabil Rehabil. 2015;37(4):338-44.

26. Kho ME, Damluji A, Zanni JM, Needham DM. Feasibility and observed safety of interactive video games for physical rehabilitation in the intensive care unit: a case series. J Crit Care. 2012;27(2):219.e1-6.

27. Green M, Marzano V, Leditschke IA, Mitchell I, Bissett B. Mobilization of intensive care patients: a multidisciplinary practical guide for clinicians. J Multidiscip Healthc. 2016;9:247-56.

28. Hodgson CL, Stiller K, Needham DM, Tipping CJ, Harrold M, Baldwin CE, et al. Expert consensus and recommendations on safety criteria for mechanically ventilated critically ill adults. Crit Care. 2014;18(6):658.

29. Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Br J Sports Med. 2014;48(13):1019-23.

30. Mistrarelli G, Taverna M, Sabatini G, Carloni E, Bolgiagli L, Pirrone M, et al. Actigraphic monitoring in critically ill patients: preliminary results toward an "observation-guided sedation". J Crit Care. 2009;24(4):563-7.

31. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777-81.

32. Wilson RC, Jones PW. A comparison of the visual analogue scale and modified Borg scale for the measurement of dyspnoea during exercise. Clin Sci (Lond). 1989;76(3):277-82.

33. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.

34. Pires-Neto RC, Pereira AL, Parente C, Sant’Anna GN, Esposito DD, Kimura A, et al. Characterization of the use of a cycle ergometer to assist in the physical therapy treatment of critically ill patients. Rev Bras Ter Intensiva. 2012;25(1):39-43.

35. Morris PE, Herridge MS. Early intensive care unit mobility: future directions. Crit Care Clin. 2007;23(1):97-110.

36. Sommers J, Engelbert RH, Dettling-Ihnenfeldt D, Gosselink R, Spronk PE, Nollet F, et al. Physiotherapy in the intensive care unit: an evidence-based, expert driven, practical statement and rehabilitation recommendations. Clin Rehabil. 2015;29(11):1051-63.

37. Taylor MJ, McCormick S, Shawis T, Impson R, Griffin M. Activity-promoting gaming systems in exercise and rehabilitation. J Rehabil Res Dev. 2011;48(10):1171-86.

38. Levac D, Glegg S, Colquhoun H, Miller P, Noubary F. Virtual reality and active videogame-based practice, learning needs, and preferences: a cross-Canada survey of physical therapists and occupational therapists. Games Health J. 2017;6(4):217-28.

39. Bronner S, Pinsker R, Naik R, Noah JA. Physiological and psychophysiological responses to an exer-game training protocol. J Sci Med Sport. 2016;19(3):267-71.

40. Tropp R, Ditmyer M, King K, Doherty K, Hornyak J 3rd. The effect of bed rest and potential of prehabilitation on patients in the intensive care unit. AACN Clin Issues. 2002;13(2):263-76.