Gray matter abnormalities follow non-random patterns of co-alteration in autism: Meta-connectomic evidence

Donato Liloiaa,b, Lorenzo Mancusoa,b, Lucina Q. Uddinc,d, Tommaso Costaa,b,e,\textasteriskcentered, Andrea Nania,b, Roberto Kellerf, Jordi Manuelloa,b, Sergio Ducaa,b, Franco Caudaa,b,e

a GCS/FMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
b Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
c Department of Psychology, University of Miami, Coral Gables, FL, USA
d Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
e Neuroscience Institute of Turin (NIT), Turin, Italy
f Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy

\textasteriskcentered Corresponding author at: Department of Psychology, Via Giuseppe Verdi 10, 10124 Turin, Italy.
E-mail addresses: donato.liloia@unito.it (D. Liloia), lorenzo.mancuso@unito.it (L. Mancuso), Luddin@umiami.edu (L.Q. Uddin), tommaso.costa@unito.it (T. Costa), andrea.nani@unito.it (A. Nani), rokel2003@libero.it (R. Keller), jordi.manuello@unito.it (J. Manuello), ducasergio@osp-koelliker.it (S. Duca), franco.cauda@unito.it (F. Cauda).

\section{Introduction}

Autism spectrum disorder (ASD) is the diagnostic label that refers to a set of neurodevelopmental conditions characterized by atypical brain anatomy and connectivity. Graph-theoretical methods have mainly been applied to detect altered patterns of white matter tracts and functional brain activation in individuals with ASD. The network topology of gray matter (GM) abnormalities in ASD remains relatively unexplored.

\textbf{Background:} Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by atypical brain anatomy and connectivity. Graph-theoretical methods have mainly been applied to detect altered patterns of white matter tracts and functional brain activation in individuals with ASD. The network topology of gray matter (GM) abnormalities in ASD remains relatively unexplored.

\textbf{Methods:} An innovative meta-connectomic analysis on voxel-based morphometry data (45 experiments, 1,786 subjects with ASD) was performed in order to investigate whether GM variations can develop in a distinct pattern of co-alteration across the brain. This pattern was then compared with normative profiles of structural and genetic co-expression maps. Graph measures of centrality and clustering were also applied to identify brain areas with the highest topological hierarchy and core sub-graph components within the co-alteration network observed in ASD.

\textbf{Results:} Individuals with ASD exhibit a distinctive and topologically defined pattern of GM co-alteration that moderately follows the structural connectivity constraints. This was not observed with respect to the pattern of genetic co-expression. Hub regions of the co-alteration network were mainly left-lateralized, encompassing the precuneus, ventral anterior cingulate, and middle occipital gyrus. Regions of the default mode network appear to be central in the topology of co-alterations.

\textbf{Conclusion:} These findings shed new light on the pathobiology of ASD, suggesting a network-level dysfunction among spatially distributed GM regions. At the same time, this study supports pathoconnectomics as an insightful approach to better understand neuropsychiatric disorders.

Over the past decades, neuroimaging studies have suggested that ASD is associated with both anatomical and functional brain abnormalities (for a review see Ecker et al., 2015). In particular, voxel-based morphometry (VBM), a univariate technique capable of quantifying morphometric differences between diagnostic groups (Ashburner and Friston, 2000), has been used extensively to elucidate the neuroanatomy of autism. In addition, coordinate-based meta-analyses (CBMAs) have identified concordant structural effects across independent ASD studies, showing focal aberrations in multiple areas such as the cerebellum,
amygdala-hippocampus complex, cingulate cortex, parieto-occipital pole, temporal and prefrontal cortices (Carlisi et al., 2017; Cauda et al., 2014, 2011; DeRamus and Kana, 2015; Liu et al., 2017; Lukito et al., 2020; Nickl-Jockschat et al., 2012; Via et al., 2011). These important findings notwithstanding, the intrinsic mechanisms and network topological organization that underpin the distribution of gray matter (GM) abnormalities in ASD remains largely unappreciated.

In recent years, advances in graph-theoretical analysis have begun to provide a conceptual framework for studying the topological properties of complex brain systems, which has led to the new field of connectomics. This line of research has been aiming to comprehensively map large-scale brain networks as a collection of nodes (brain regions or sub-areas) and edges (neural pathways or statistical relationships) (Sporns, 2013). The conceptual and empirical development of connectomics presents novel opportunities for understanding neuropsychiatric conditions, which now tend to be conceived of as brain networks disorders (Deco and Kringlebach, 2014; Fornito et al., 2017; Rubinov and Bullmore, 2013; van den Heuvel and Sporns, 2019). Moreover, there is an emerging consensus that the investigation of neuroanatomical patterns is ever more essential to improve diagnosis and prediction of mental illness (Cao et al., 2015; Huys et al., 2016; Yahata et al., 2017). This view is particularly relevant for psychiatric disorders. The U.S. National Institute of Mental Health’s Research Domain Criteria (RDoC) takes into account network-level abnormalities as a core feature for understanding the neurobiology of mental disorders, with the aim to integrate the current symptom-based diagnostic classifications (Insel et al., 2010; Insel, 2014).

Despite advances in neuroimaging, graphs of GM alterations are particularly difficult to investigate. So far only a few studies have explored differences in GM systems in ASD using source-based morphometry (SoBM) (Grecucci et al., 2016; Pappaianni et al., 2018) and anatomical covariance, an MRI measure of cortical thickness or density relationships between brain areas (Evans, 2013). Although the neurobiological basis of anatomical covariance is still poorly understood (Alexander-Bloch et al., 2013), research on this topic has produced important findings in characterizing abnormal brain structures in ASD that appear to be part of the salience and default mode (Valk et al., 2015; Zheng et al., 2020; Zielenksi et al., 2012), fronto-temporal (Bernhardt et al., 2014; Shardar et al., 2017), striatal (Eisenberg et al., 2015), parieto-occipital and limbic (Balardin et al., 2015; Bethlehem et al., 2017; Cardon et al., 2017) networks. A network neuroscience approach can better assess the anatomical alterations of ASD, reporting not only the sites of the alterations but also their mutual relationships.

An innovative computational methodology has been devised recently to perform morphometric co-alteration networking (MCN) analysis of human brain pathology, which can be defined as the investigation of abnormal conjoint patterns formed by localized GM co-altered regions (Cauda et al., 2018a). This type of analysis is a meta-connectomic and data-driven method, able to extend the information available from voxel-wise data. MCN can statistically derive the pathological network of a given brain disease using Patel’s κ, an empirical Bayesian technique suitable for detecting the probability that alterations of two brain regions can co-occur (Patel et al., 2006; Smith et al., 2011). Different from the anatomical covariance method, MCN can identify a network in which the pathological modifications of GM are statistically related. It is therefore possible to examine the topological properties of GM co-alterations rather than those related to within-group anatomical covariance (Cauda et al., 2018a).

This innovative approach is well-suited to the study of pathophysiological alterations of brain disorders, which tend to be distributed across the brain according to network-like patterns (Fornito and Bullmore, 2015; Iurrria-Medina and Evans, 2015; Raj et al., 2012; Stam, 2014). It has been proposed that mutual relationships of morphometric variation between two or more structurally defined regions reflect their shared vulnerability to damage due to processes of neuronal degeneration or neurodevelopmental factors (e.g., atypical dendritic growth, cellular migration, myelination, synaptogenesis and axonal pathfinding), and is mediated by molecular/cellular trophic and genetic effects (for a review see Fornito et al., 2015; Raj and Powell, 2018).

Evidence for such mutual alteration distributions in autism exists (Casanova, 2006; Cauda et al., 2014; Galvez-Contreras et al., 2017; Nickl-Jockschat and Michel, 2011; Palmen et al., 2004; Wegiel et al., 2014; Zielenksi et al., 2012); however, these distributions have not yet been comprehensively understood both from a micro- and macro-level perspective. Therefore, the identification of statistically robust and anatomically plausible co-alteration networks by means of the MCN methodology has the potential to reveal more about ASD pathophysiology than a canonical GM approach, since it better assesses the complex nature of morphometric abnormalities underlying the clinical hallmarks of disease.

Moreover, an emerging literature suggests that certain brain regions are preferentially vulnerable to a wide range of psychiatric and neurocognitive disorders (Cauda et al., 2019b; Crossley et al., 2014; Goodkind et al., 2015; Lilioa et al., 2018; Uddin, 2015). Typically, these regions are highly connected and play a pivotal role in supporting the integrity of brain network architecture (Buckholtz and Meyer-Lindenberg, 2012; Bullmore and Sporns, 2012; Crossley et al., 2014). In relation to their high topological centrality, these regions are to be conceived as pathological hubs capable of influencing the distribution of alterations within the cerebral parenchyma (Manuello et al., 2018; van den Heuvel and Sporns, 2013; Worbe, 2015; Zhou et al., 2012).

To date, the MCN methodology has been applied to find evidence of abnormal conjoint patterns in transdiagnostic meta-analyses (Cauda et al., 2020, 2018a, 2018b; Mancuso et al., 2020; Nani et al., 2021) and in studies on single neurological conditions such as Alzheimer’s disease (Manuello et al., 2018) and chronic pain (Tatu et al., 2018). However, the presented approach has never been used to analyze data from individuals with ASD or other psychiatric conditions. Following the hypothesis that dysfunction at the systems’ level characterizes this neurodevelopmental disorder (Ecker et al., 2013; Geschwind and Levitt, 2007), here we aim to provide a unique and comprehensive description of network topology of regional GM co-alterations in individuals with ASD. To further clarify the neurobiological basis of co-alterations, we also investigate the possible correspondence of MCN with normative structural and genetic co-expression connectivity. This choice is motivated by recent experimental proposals suggesting that the development of pathological alteration patterns are influenced by brain connectivity constraints (Cauda et al., 2020, 2018b; Shafiei et al., 2020), as well as by degeneration processes and maladaptive mechanisms (Fornito et al., 2015; Zhou et al., 2012). Finally, since we believe that the application of network science tools offer a powerful way of better understanding how pathology affects the brain (Filippini et al., 2013; Fornito and Bullmore, 2015; Fornito et al., 2017), this study takes advantage of graph-theoretical measures of centrality and clustering in order to provide new insights into large-scale GM co-alteration patterns in ASD.

2. Materials and methods

2.1. Data sources and search strategy

Meta-data of interest were identified in BrainMap (Fox et al., 2005; Laird et al., 2005b) and MEDLINE databases. First, the VBM BrainMap sector (Vanasse et al., 2018) was queried employing the software package Sleuth (v.3.0.3). The search logic was composed as follows:

- [Experiments Contrast is Gray Matter] AND [Experiments Context is Patients] AND [Experiments Observed Changes is Controls - Patients]

A further systematic search was also carried out on the PubMed search engine (https://www.ncbi.nlm.nih.gov/pubmed/). Keywords terms were used as follows:
• (“Autism spectrum disorder” [title/abstract] OR “ASD” [title/abstract] OR “Autism” [title/abstract]) AND (“voxel-based morphometry” [title/abstract] OR “VBM” [title/abstract]).

The search protocol adheres to the PRISMA Statement international guidelines (Liberati et al., 2009; Moher et al., 2009). This study is also compliant with the consensus-based rules for neuroimaging CBMA in psychiatric disorders (Muller et al., 2018; Tahmasian et al., 2019).

Up until December 2019, 118 full-text articles were reviewed systematically. We included experiments published in a peer-review journal a) using a whole-brain VBM analysis; b) reporting GM variations (i.e., decreased morphometric values) in subjects with ASD; c) adopting a between-group comparison with healthy controls; d) including stereotactic results in Talairach (TAL) or Montreal Neurological Institute (MNI) space.

We removed all the experimental groups having a sample size
smaller than 10 participants as previous recommended (Muller et al., 2018; Norman et al., 2016; Tahmasian et al., 2019). We also excluded experiments based on region-of-interest (ROI) analysis that did not analyze the whole brain (Muller et al., 2018). Additionally, to avoid the possibility of analyzing the same participants several times in a single study, we selected only the alteration foci reported by the largest experiment or the ones divided into diagnostic subcategories (for further details see also Table S1 – Checklist for neuroimaging CBMA).

2.2. Morphometric co-alteration network identification

2.2.1. Node definition

The anatomical likelihood estimation (ALE) results were used as priors for the meta-connectomic analysis. ALE is the most employed CBMA technique (Tahmasian et al., 2019); it can identify the spatial concordance of the morphological brain alterations between different neuroimaging experiments (Eickhoff et al., 2012, 2009). For each included experiment, the ALE algorithm generated a modeled alteration (MA) map as the union of the 3-D Gaussian probability distribution of each stereotactic coordinate (Fig. 1A). The final ALE map was obtained from the union of the MA maps.

To produce the MCN set of nodes, we individuated the local maxima of the ALE maps using a peak detection algorithm. Only the local maxima exhibiting the highest values survived this stage (i.e., values greater than the 90 percentile of the unthresholded ALE distribution). This step was crucial to consider only the altered loci with a very high consensus among the selected experiments. Thus, we reduced the number of nodes by adding a minimum spatial distance of 10 mm and a spherical ROI with a diameter of 10 mm was superimposed on the resulting peaks. The aforementioned threshold values employed are based on the quantitative estimates of the spatial uncertainty associated with the stereotactic coordinate in CBMA provided by Eickhoff et al. (2009), who evidenced an uncertainty in a spatial location with a mean of 10.2 mm (StDev = 0.4 mm). Therefore, the rationale behind this step is to minimize the redundancy of the co-alterations relating to the same cluster of variation that could potentially affect our subsequent topological analysis (Manuello et al., 2018). The Talairach Daemon (Lancaster et al., 2000) was finally used to label the anatomical areas.

To determine whether these nodes were altered in a given experiment, an MA map was produced for each experiment (Laird et al., 2005a). A 3-D Gaussian distribution of probability was built around each reported coordinate of a given experiment, for which standard deviation is smaller for a larger number of subjects, as proposed by Eickhoff et al. (2009). Then, MA was thresholded at $p = 0.01$ and overlaid on the set of nodes. Each node was considered to be altered for that experiment if at least 20% of its volume overlapped with a significant MA voxel. This step was crucial to avoid the detection of a false positive, given the possibility of considering a node as altered if it only includes the periphery of a distribution probability (Mancuso et al., 2019). For an in-depth and comprehensive discussion of the methodological steps, see also Manuello et al. (2018).

2.2.2. Co-alteration probability quantification

The set of nodes was used to build the MCN in ASD. We generated an alteration matrix $N \times M$, where each column corresponds to a node and each row represents an included experiment (Fig. 1B). By means of a Bernoulli generation data model, we determined the probability distribution of joint values of alteration for each pair of nodes. For each couple of nodes (a and b) it is possible to describe their state of co-occurrence with two binary variables representing four cases: both a and b altered; a altered and b non-altered; a non-altered and b altered; 4) both a and b non-altered:

$$
\theta_1 = P(a = 1, b = 1) \\
\theta_2 = P(a = 1, b = 0) \\
\theta_3 = P(a = 0, b = 1) \\
\theta_4 = P(a = 0, b = 0)
$$

Starting from the marginal probabilities, we calculated the co-alteration probability strength between each pair of nodes using the Patel’s κ index (Patel et al., 2006; Smith et al., 2011) as:

$$
\kappa = \frac{(\theta_1 - E)}{D(\max(\theta_1) - E) + (1 - D)(E - \min(\theta_1))}
$$

where

$$
E = (\theta_1 + \theta_2)(\theta_1 + \theta_3) \\
D = \begin{cases}
\frac{\theta_1 - E}{2(\max(\theta_1) - E)} + 0.5, & \text{if } \theta_1 \geq E \\
\frac{\theta_1 - E}{2(E - \min(\theta_1))}, & \text{otherwise}
\end{cases}
$$

$$
\min(\theta_1) = \max(0.2E + \theta_1 + \theta_2 - 1) \\
\max(\theta_1) = \min(\theta_1 + \theta_2, \theta_1 + \theta_3)
$$

The numerator of the fraction calculates the difference between the probability that a and b occur to be co-altered and the expected probability E that a and b occur to be co-altered independently. E is the prior information of this Bayesian equation, which, in a frequentist framework, would be disregarded or treated as not fixed by the data. The denominator calculates a weighted normalizing constant so as to have the κ ranging from -1 and 1: an index that is close to 1 denotes high co-alteration (i.e., co-occurrence) between the nodes (Fig. 1C). The statistical significance of κ is assessed by means of a Monte Carlo simulation algorithm, a multinomial and generative model, which determines an estimate of $p(\kappa|x)$ by sampling a Dirichlet distribution and by calculating the proportion of the samples in which $\kappa > e$, where e is the threshold of statistical significance set to 0.01 (1,000 permutation runs). The obtained co-alteration matrix reports values proportional to the statistical occurrence between the alterations of the brain areas taken into account (Cauda et al., 2018a).

2.3. Topological analysis

Nodes and edges are the basic units of every network, and their accurate definition is of fundamental importance for a valid model of a complex system (Butts, 2009). Here, a large-scale brain analysis was employed: every node was defined as a peak of GM alteration, while the undirected binary edges represented the values of the thresholded Patel’s κ. To determine the topological properties of the MCN in ASD, the corresponding co-alteration matrix was analyzed with Cytoscape (v.3.7.2.) (https://cytoscape.org/). Cytoscape is a bioinformatics software platform, which allows the analysis, modeling and visualization of biological networks and complex systems (Su et al., 2014). Then, the software application CentiScaPe (v.2.2) (Scardoni et al., 2014) was used to examine the topological properties of the nodes (Fig. 1D).

2.3.1. Measures of centrality

For each node of alteration, degree, closeness, and betweenness were determined in order to quantify the relevance of the node in the context of the MCN. These measures are cardinal indices of topological centrality (Freeman, 1978) and have been used collectively to examine the central network position of brain areas in both structural and functional connectomes (for a review see van den Heuvel and Sporns, 2013). Among them, degree centrality (D_c) is the simplest measure, which is formally defined as:

$$
C_D(i) = k_i = \sum_{ij} A_{ij}
$$
In the formula, A_{ij} is a matrix of adjacency. The D_C is defined as the number of undirected links that are incident to a node, assuming that nodes with high connections exert more influence over network structure and function.

The closeness index can be conceived as the average tendency to node proximity or isolation. The closeness is calculated by determining the shortest path between the given node and all the others in the graph. The reciprocal of the summa is then calculated. Closeness centrality (C_c) is formally defined as the inverse of the average shortest path length:

$$C_c(i) = \frac{N - 1}{\sum_{j \neq i} d_{ij}}$$

In the formula, d_{ij} is the shortest path length between nodes i and j. Of note, distance is related to the topological proximity. The C_c reflects the integration capacity of a node, as it can be conceived as the probability of the node to be relevant for several other nodes.

The betweenness index is determined by considering a pair of nodes (i, j) and counting the number of shortest paths connecting i and j that pass through another node (h). Betweenness centrality (B_C) measures the proportion of shortest paths between all pairs of nodes in the network that pass through a given node. Therefore, the B_C of a node i can be formally defined as:

$$B_C(i) = \frac{1}{(N-1)(N-2)} \sum_{h \neq i, j} \frac{P(h|i, j)}{P(h)}$$

In the formula, $P(h|i, j)$ indicates the number of shortest paths between h and j going through i, $P(h)$ indicates the number of shortest paths between h and j, and $(N - 1)(N - 2)$ indicates the number of couples of nodes that do not include node i. The normalization by $P(h)$ accounts for the possibility that several shortest paths may exist between any couple of nodes. Of note, the B_C value is associated with the total number of shortest paths connecting i and j. However, though a node can be crossed by only one path connecting i and j, if this path is the only one to link i and j, the node will have a high betweenness value. This implies that the node is essential in order to maintain the network connections.

Degree, closeness and betweenness are all measures of node prominence because they indicate which focal points, or brain areas in our case, occupy a central position in the network (i.e., hubness profile). Conceptually, these measures exhibit a considerable overlap in both real and simulated networks (Bolland, 1988); however, paying attention to different process by which key nodes might influence the distribution of the network. In particular, degree and closeness tend to be highly intercorrelated because they are directed centrality measures between nodes. By contrast, betweenness remains relatively uncorrelated with the degree and closeness, as it is an inherently asymmetric metric, measuring the frequency with which a node lies along paths that link other nodes (Valente et al., 2008).

Therefore, we defined node centrality on the grounds of different topological properties, aggregating rankings across all the measures to devise a more robust classification (Fornito et al., 2016). Specifically, we considered regions as pathological hubs when they reported the highest level of centrality (i.e., one standard deviation above the mean) across all three metrics (Fornito et al., 2016; van den Heuvel and Sporns, 2013).

2.3.2. Graph clustering

To provide a more specific characterization of the core architecture of the MCN, a network clustering analysis was performed. We applied the k-core decomposition algorithm as implemented in the Brain Connectivity Toolbox (Hagmann et al., 2008; Rubinov and Sporns, 2010), to reveal the hierarchical nucleus organization of the graph by gradually focusing on their central cores. This decomposition consists in identifying specific subsets of the graph (i.e., k-cores), each obtained by recursively eliminating all the nodes with a degree smaller than k, until the degree of all the surviving nodes is higher than or equal to k.

2.4. Correlation with brain connectivity profiles

To determine a possible correspondence of the MCN with normative patterns of brain connectivity, the Mantel’s test – MT (Mantel, 1967) was applied. Specifically, we tested the relationship of similarity (i.e., Pearson’s r) of the ASD co-alteration matrix with the structural and genetic co-expression connectivity matrices, respectively. The MT is a statistical test able to detect the correlation between two distance matrices. By means of a permutation test (i.e., Monte Carlo simulation), the significance of similarity was assessed. This step was crucial to overcome the problem of non-independence of elements in a distance matrix (Mantel, 1967). In this investigation we evaluated the statistical significance of any apparent departure from a zero correlation. To do so, each column and row of one of the two analyzed matrices was randomly permuted 5,000 times. The correlation was recalculated after each permutation, with a statistical significance consisting in the proportion of the permutations leading to a higher correlation coefficient. P-value was estimated after 5,000 permutations.

Analyses of the relationship of similarity between matrices were conducted in MNI space. Thus, we renormalized TAL coordinates of the co-altered nodes using the ‘icbm2tal’ algorithm developed by Lancaster et al. (2007).
2.5. Distribution of the nodes across canonical networks and network-betweenness estimation

To evaluate the impact of GM alterations on different functional large-scale networks, each co-altered node was assigned in data-driven manner to one of the 7 networks of the parcellation proposed by Yeo et al. (2011), who parceled the human cerebral cortex using resting-state fMRI data from 1000 healthy volunteers. Nodes falling in the basal nuclei and cerebellum were assigned to one of Yeo’s networks using the striatal (Choi et al., 2012) and cerebellar (Buckner et al., 2011) parcellations, respectively. We tested if the spatial distribution of the alteration nodes across canonical networks was different from chance by creating 28 random GM nodes (corresponding to the number of the co-altered nodes of our network, see below), and repeating the procedure 1000 times. The significance of the numerosity of each network’s nodes was tested against the resulting null distributions.

For each network, its network-betweenness — NB (Gauda et al., 2020; Mancuso et al., 2020) was estimated as the ratio between the number of co-alteration edges connecting its nodes to the nodes belonging to other networks and the total number of edges incident upon its nodes. To test whether the NB of each network was significantly different from chance, the co-alteration network was randomized 1000 times using a Maslov-

Table 1
Brain areas (nodes) of the gray matter morphometric co-alteration network. Node labeling, morphometric location (Talairach Daemon Labels) and Talairach coordinates were expressed for both co-altered and non co-altered nodes.

Node ID	Node label	Anatomical region (Brodmann area)	Hemisphere	Talairach	Co-altered			
				x	y	z		
1	Crus2_L	Crus II (cerebellum)	Left	−44	−58	−44	Yes	
2	Crus2_R	Crus II (cerebellum)	Right	48	−58	−44	Yes	
3	ML9	Medial lobule IX (cerebellum)	Left	−4	−56	−42	No	
4	FG	Fusiform gyrus (BA 37)	Right	26	−2	−38	Yes	
5	Crus1	Crus I (cerebellum)	Right	48	8	32	No	
6	Crus1	Crus I (cerebellum)	Right	−44	−40	−32	Yes	
7	BA38	Temporal polar cortex (BA 38)	Right	46	12	−30	No	
8	BA28	Parahippocampal gyrus (BA 28)	Right	26	−12	−28	Yes	
9	Unc	Uncus (BA 20)	Right	28	14	26	No	
10	Dec	Declive (cerebellum)	Right	24	8	44	Yes	
11	Amy_R	Amygdala	Right	24	−8	22	Yes	
12	OG	Orbital gyrus (BA 11)	Left	−4	40	−22	No	
13	IFG	Inferior frontal gyrus (BA 11)	Left	−12	36	−20	No	
14	RG	Rectal gyrus (BA 11)	Left	−6	40	−20	No	
15	PHG	Parahippocampal gyrus (BA 34)	Right	20	−12	−14	Yes	
16	Hip	Hippocampus	Left	−18	6	14	No	
17	BA10	Superior frontal gyrus (BA 10)	Left	−10	56	12	No	
18	OFG_R	Orbitofrontal gyrus (BA 10)	Right	6	58	12	Yes	
19	BA37	Fusiform gyrus (BA 37)	Right	48	−60	−10	No	
20	MTG	Middle temporal gyrus (BA 37)	Right	60	48	16	No	
21	Amy_L	Amygdala	Left	20	4	−10	Yes	
22	BA47	Inferior frontal gyrus (BA 47)	Left	30	12	10	No	
23	MFG_R	Medial frontal gyrus (BA 10)	Right	6	58	10	No	
24	BA17	Inferior occipital gyrus (BA 17)	Right	16	56	−8	No	
25	Pu	Putamen	Left	−20	4	−8	Yes	
26	OFG_L	Middle orbital gyrus (BA 10)	Left	−32	52	−8	No	
27	IOG	Inferior occipital gyrus (BA 18)	Right	44	−72	−6	No	
28	Cd	Caudate tail	Right	38	−24	6	Yes	
29	BA11	Medial frontal gyrus (BA 11)	Left	−34	52	6	Yes	
30	Ci	Claustrum	Right	38	−26	4	No	
31	AI_R	Anterior insula (BA 13)	Left	40	−26	4	No	
32	STG	Superior temporal gyrus (BA 22)	Right	62	−24	−2	Yes	
33	ACC_L	Anterior cingulate cortex (BA 10)	Left	8	54	−2	No	
34	AI_L	Anterior insula (BA 13)	Left	−40	22	0	Yes	
35	BA22	Middle temporal gyrus (BA 22)	Right	64	−34	2	No	
36	IFG_Tri	Inferior frontal gyrus (BA 47)	Left	−42	22	2	No	
37	IFG	Inferior frontal gyrus (BA 45)	Left	−46	28	2	Yes	
38	LG	Lingual gyrus (BA 18)	Left	0	−72	8	Yes	
39	PCC	Posterior cingulate cortex (BA 30)	Left	0	−62	10	Yes	
40	Puv	Pulvinar (thalamus)	Right	12	−22	10	No	
41	MDN	Medial dorsal nucleus (thalamus)	Right	2	16	10	No	
42	MFG_L	Middle frontal gyrus (BA 10)	Left	−26	46	10	Yes	
43	BA18	Middle occipital gyrus (BA 18)	Left	−28	92	12	No	
44	BA9	Middle frontal gyrus (BA 9)	Left	−16	44	20	Yes	
45	IPL	Inferior parietal lobule (BA 40)	Left	−50	−28	22	No	
46	SM	Supramarginal gyrus (BA 40)	Left	−54	−42	24	Yes	
47	vACC	Ventral anterior cingulate (BA 24)	Left	−2	−4	26	Yes	
48	PCG	Precuneal gyrus (BA 6)	Left	−48	0	28	No	
49	PCUN_R	Precuneus (BA 7)	Right	6	−64	36	Yes	
50	BA6	Medial frontal gyrus (BA 6)	Left	−4	34	36	No	
51	SFG_R	Superior frontal gyrus (BA 9)	Right	24	46	36	Yes	
52	MOG	Middle occipital gyrus (BA 19)	Left	−28	−68	38	Yes	
53	PCUN_L	Precuneus (BA 7)	Left	0	−62	38	Yes	
54	BAB	Superior medial frontal gyrus (BA 8)	Left	−10	32	38	Yes	
55	ACC_R	Anterior cingulate cortex (BA 32)	Right	8	8	40	No	
56	SFG_L	Superior frontal gyrus (BA 9)	Left	−4	36	42	Yes	

Bold text = Co-altered nodes; No bold = Non-altered nodes.
NeuroImage: Clinical 30 (2021) 102583

3. Results

We included 42 published articles. Specifically, we analyzed meta-data coming from 45 VBM experiments, including 3,576 subjects (1,786 with diagnosis of ASD and 1,790 healthy controls) and 244 coordinates of GM variation. The analysis was carried out in the TAL space. Original MNI coordinates were converted using the ‘icbm2tal’ algorithm (Lancaster et al., 2007) in order to correct the spatial disparity between coordinate (x-y-z) results (Laird et al., 2010), thus promoting accuracy of the meta-analytic synthesis (Müller et al., 2018; Tahmasian et al., 2019). For the systematic study selection see Fig. S1 and Table S1. For detailed information about the clinical and methodological characteristics of the selected meta-data, see also Tables S2 and S3, respectively.

3.1. General characterization of co-alterations

Our meta-connectomic and data-driven approach reveals that it is possible to identify a quantifiable co-alteration network of GM abnormalities in ASD. On the grounds of the ALE meta-data, our ROI generation procedure derived 56 nodes (see also Table 1 and Table S4 for the morphometric location of nodes and their coordinates in TAL and MNI space, respectively). However, only 28 nodes exhibit statistically significant edges of co-alteration, encompassing cortical, basal nuclei and cerebellar regions. With regard to the anatomical distribution of the nodes, we observe that they can be found in both perceptual lower-level and multimodal regions and that some of them show a symmetric position across hemispheres. This is the case of the amygdala, precuneus and the cerebellar crus II.

Fig. 2 reports the whole co-alteration pattern showing 91 edges (45 interhemispheric and 46 intrahemispheric). Most of the edges involve fronto-cerebellar, limbic-striatal and fronto-parietal regions. A complex pattern of co-alteration was also detected for occipital and superior temporal nodes. Patel’s \(\kappa \) values range from 0.79 of the right amygdala-parahippocampal-basal ganglia structures to the 0.23 of the edges of the middle occipital-inferior frontal regions. High \(\kappa \) values are also associated to the left precuneus (PCUN_L), lingual gyrus (LG_L) and posterior cingulate cortex (PCC_L), as well as to the right orbitofrontal gyrus (OFG_R), temporopolar pole (BA_38_R) and posterior cerebellar lobe (Crus2_R) (see Table 2 for the \(\kappa \) values graph).

Fig. 2. The gray matter morphometric co-alteration network of autism spectrum disorder. Both co-alteration matrix and brain network related to gray matter abnormalities are shown. Edge colors from blue to red mean increasing Patel’s \(\kappa \) values (i.e., increasing co-alteration probabilities). Unconnected nodes are not reported. The images were generated by the BrainNet application (Xia et al., 2013). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.2. Level of the centrality of nodes

Fig. 3 illustrates the level of topological position of the nodes. The co-altered nodes are represented in different colors and sizes according to their values of degree, betweenness and closeness centrality. The PCUN_L and ventral anterior cingulate cortex (vACC_L) show the highest values of degree (12 edges), followed by the left middle occipital gyrus (MOG_L, 11 edges) and right Crus2, tail of caudate (Cd_R), left inferior frontal gyrus (IFG_L), LG_L and right parahippocampal area (PHG_R) (10 edges). By contrast, the left anterior insular and cerebellar regions (i.e., AI_L and Crus2_L) exhibit the lowest values of degree. Values of closeness range from 0.34 to 0.63, with the highest values associated with the PCUN_L, followed by the vACC_L, MOG_L, IFG_L, Cd_R and PHG_R. Also for this measure, the AI_L and Crus2_L show the lowest values. Relative to the betweenness, the Crus2_R reports the highest value, followed, in order, by the PCUN_L, PHG_R, vACC_L, MOG_L and OFG_R.

Next, we investigated in detail the pathological hubness profile of the regions. To do so, we identified the nodes reporting the highest level of centrality (i.e., one standard deviation above the mean) across all three metrics. The analysis reveals a central network position for the PCUN_L \([\text{TAL } x = -6; y = -62; z = 38]\), vACC_L \([\text{TAL } x = -2; y = -4; z = 26]\) and MOG_L \([\text{TAL } x = -28; y = -68; z = 38]\). For a graphical representation of results and node-specific values of degree, betweenness and closeness of each node of the MCN, see Fig. 4.

3.3. Core sub-graph

Since highly interconnected nodes characterize the MCN of ASD, we investigated the possibility of identifying the most central sub-graph and its hierarchical components. The implementation of the k-core decomposition algorithm allowed us to detect a core nucleus composed of 15 nodes and 57 edges using a k degree = 6, including frontal (i.e., OFG_R, left superior, medial and inferior frontal gyri), subcortical (vACC_L, PHG_R, Cd_R, left putamen and right amygdala), occipital (LG_L and MOG_L), temporo-parietal (PCUN_L, right superior temporal gyrus and left supramarginal gyrus) and cerebellar (Crus2_R) areas (Fig. 5).

3.4. Correlation with the brain connectivity profiles

The Mantel test employed to investigate whether or not GM co-alterations overlap the structural or genetic connectivity profiles showed that the ASD co-alterations are significantly correlated with the anatomical connectivity (\(r = 0.14, p < 0.027 \)). Finally, the comparison with the genetic co-expression connectivity matrix reports non-
Table 2

Edge co-alteration strength between co-altered nodes (Patel’s k). Node labeling, Talairach coordinates and Yeo’s network classification were expressed for each co-altered node.

Node	Talairach	Yeo’s Network	Patel’s k	Node	Talairach	Yeo’s Network
Amy_R	24 –8 –22	Limbic 0.790	Cd_R 38	–24 –6	FPN 0.755	LG_L 0 –72 8
PHG_R	38 –24 –6	FPN 0.755	OFG_R 6	58 –12	DMN 0.742	LG_L 0 –72 8
Cd_R	38 –24 –6	FPN 0.755	BA_11_L	–34 52	6 DMN 0.685	PCUN_L 0 –62 38 DMN
BA_38_R	46 12 –30	DMN 0.669	PCUN_L 0 –62 10 DMN			
Crus2_R	48 –58 –44	FPN 0.669	PCUN_L 0 –62 38 DMN			
BA_9_R	–16 44 20	DMN 0.652	MOG_L 28 –68 38 Visual			
Amy_R	24 –8 –22	Limbic 0.634	PCUN_L 0 –62 38 DMN			
PHG_R	20 –12 –14	Limbic 0.634	PCUN_L 0 –62 38 DMN			
Cd_R	38 –24 –6	FPN 0.634	PCUN_L 0 –62 38 DMN			
OFG_R	6 58 –12	DMN 0.615	PCUN_L 0 –62 38 DMN			
Amy_R	24 –8 –22	Limbic 0.602	IFG_L –46 28 2 FPN			
PHG_R	20 –12 –14	Limbic 0.602	IFG_L –46 28 2 FPN			
Cd_R	38 –24 –6	FPN 0.602	IFG_L –46 28 2 FPN			
Amy_R	24 –8 –22	Limbic 0.602	LG_L 0 –72 8			
PHG_R	20 –12 –14	Limbic 0.602	LG_L 0 –72 8			
Cd_R	38 –24 –6	FPN 0.602	LG_L 0 –72 8			
OFG_R	6 58 –12	DMN 0.581	IFG_L –46 28 2 FPN			
Amy_R	24 –8 –22	Limbic 0.580	STG_R 46 –24 2 FPN			
PHG_R	20 –12 –14	Limbic 0.580	STG_R 46 –24 2 FPN			
Cd_R	38 –24 –6	FPN 0.580	STG_R 46 –24 2 FPN			
OFG_R	6 58 –12	DMN 0.580	STG_R 46 –24 2 FPN			

(continued on next page)
significant results at $p = 0.05$.

3.5. Distribution of the nodes across canonical networks and network-betweenness

The parcellation search revealed the presence of at least one node for six out of seven canonical networks, namely the default mode network (DMN), frontoparietal network (FPN), salience/ventral attentional network (SN/VAN), limbic network, visual network and the sensorimotor network (SMN). In particular, the DMN reports the highest number of co-altered nodes (10/28, 35.7% of the total) mainly located in fronto-parietal areas. The number of nodes of the DMN was greater than a random null model ($p = 0.06$). By contrast, the number of nodes related to the Limbic, SN/VAN FPN and Visual networks was not significantly different from chance. The SMN network showed only a single node located in the right STG (Fig. 6 left panel), while in the null model there were significantly more nodes ($p = 0.04$). The dorsal attentional network (DAN) had no co-altered nodes, which was significant when compared to the random extraction ($p = 0.02$). It is important to clarify that these results do not indicate that the functionally defined SMN and DAN regions are not altered in subjects with ASD, but rather that their alterations are not associated with that in other nodes.

With regard to the 91 edges, only 17 edges connect nodes of the same functional network, whereas 81.6% of them connect nodes belonging to different networks (Fig. 6 right panel). Table 3 indicates the NB of each one of the 7 networks identified by Yeo et al. (2011) . With the exception of the DAN, which is not represented by any node of alteration, each one of the canonical networks have a very high NB, that is, the edges of co-
alteration often connect nodes that are placed in two different functional networks rather than in the same one. The DMN is the more co-altered with itself, while the nodes belonging to the SMN only connect with nodes of other networks. However, the Maslov-Sneppen null model (Cauda et al., 2020; Maslov and Sneppen, 2002) indicates that, given our starting nodes, only the DMN-NB is significantly higher than chance ($p < 0.001$). All the other networks’ NB, SMN included, are not different from the null model. The apparent contradiction of having the DMN-NB as the lowest one of the 7 canonical networks, but also significantly higher than chance, is probably due to the fact that the DMN is the most represented network in terms nodes of alteration. Thus, the number of within-DMN co-alteration edges is obviously high (Fig. 6 bottom panel); however, given the node distribution across the networks, this is not a surprising result, as it could be expected to be even higher.

4. Discussion

To the best of our knowledge, this is the first meta-analytic study that mapped the unknown GM topology in individuals with ASD, using the canonical ALE framework as priors for an unbiased and connectome-wide analysis. Our findings provide evidence that neuroanatomical variations in ASD tend to form a complex network of co-alteration, encompassing multiple defined cortical, subcortical and cerebellar sites. Within this co-alteration network, certain higher-order areas (i.e., vACC, PCUN and MOG) exhibit a substantial hierarchical profile, and thereby they are conceivable as pathological hubs. Further, we reveal that the organization of co-alterations reflects a biologically plausible distribution, mirroring in part the constraints of brain structural connectivity. Altogether, these results extend previous literature reporting morphometric variations in the ASD pathophysiology, emphasizing the necessity of considering this spectrum of disorders as a network-like dysfunction of spatially distributed GM sites.

Significantly, our findings demonstrate that regional GM abnormalities are not independent in ASD. Instead, multiple neural sub-populations report a morphometric change that statistically co-occurs with an alteration in other brain sites. This result is consistent with recent neuroimaging literature suggesting a structural signature of brain architecture in other psychiatric disorders, such as schizophrenia.
regions that have been consistently reported to be altered and associated with clinical manifestations in previous MRI-based investigations in ASD. However, different from classical anatomical neuroimaging techniques such as VBM or cortical thickness, which do not assess any kind of topological relationship between regions (Ashburner and Friston, 2001), our graphical analysis was able to consider neuroanatomical abnormalities (nodes) and their statistical mutual relationship (edges) as a network unit (Cauda et al., 2018b). Therefore, our results can be understood in the context of a spatially distributed model rather than of isolated neural loci.

Anatomical abnormalities have been observed in different cerebral systems, encompassing a set of multimodal, cerebellar, perceptual and limbic nodes. This large-scale distribution and its conjoint patterns of alteration might be considered as a clinical implication of the phenotypic heterogeneity of ASD (Wylie et al., 2020) and might also derive from an abnormal neural development (Frith, 2004; Kim et al., 2017; Neniskyte and Gross, 2017; Thomas et al., 2016) or compensatory responses (Fornito et al., 2015; Zhou et al., 2012).

The present findings, along with recent proposals (Balardin et al., 2015; Ecker et al., 2016; Geschwind and Levent, 2007; Minshew and Williams, 2007; Picci et al., 2016), are largely consistent with the notion of ASD as a syndrome due to perturbations of different cytoarchitectonic and neurocognitive systems. According to this view, a reasonable interpretation of our results is that topological organization of interregional GM co-alterations may arise from volumetric aberrations of the regional-level morphology. This hypothesis accords well with the experimental evidence of Ecker et al. (2013), who, performing measures of cortical separation distances on a sample of adults with ASD, reported an abnormal architecture of GM showing reduced cortico-cortical connectivity and low intrinsic wiring costs of the cortex. Interestingly, these authors observed low intrinsic wiring costs in the fronto-posterior areas that are also key components of our MCN, including the left precuneus (BA 7), right temporal pole (BA 22), bilateral orbitofrontal and dorsolateral prefrontal cortices (BA 10, BA 11).

Moreover, our analysis confirms and extends previous results of altered anatomical covariance patterns as a key mechanism in the ASD condition. For example, in the seminal paper of Zielinski et al. (2012), the authors found distributed abnormal components in GM structure using seed-ROIs anchored in the fronto-insular and posterior cingulate cortices. In line with their findings, our data show a non-negligible overlap with pathological covariance sites in ASD. Morphometric components with reduced covariance are clearly present and co-altered in our MCN; some of these are core units within the co-alteration pattern. This is the case with regard to the left precuneus, right STG, left supramarginal area, left vACC, left IFG, right MFG, right OFG and the left SFG. Similar results obtained with the same seeds were also reported by Palande et al. (2017), who carried out a graph correlation analysis combined with a statistical inference approach in addition to the anatomical covariance analysis. This general overlap is not surprising, as significant correlations between the MCN and anatomical covariance has been recently evidenced by our group (Cauda et al., 2018a). However, we note that the present methodology differs from the anatomical covariance approach because it enables the examination, in a whole-brain and data-driven manner, of multiple large-scale network affected architectures, thus overcoming the limited resolution of network-level effects given by prior ROI correlations (Evans, 2013; Palande et al., 2017; Tatu et al., 2018; Zielinski et al., 2012).

Another important issue addressed by this study concerns the identification of brain sites that have a pivotal position in the MCN of ASD.
By combining three different measures of node centrality (i.e., degree, closeness and betweenness), we observe that a subset of areas influences significantly the architecture of co-alterations; for this reason, these multimodal areas can be conceived as pathological hubs (i.e., they are topologically central in the co-alteration network) (Cauda et al., 2018a, 2018b; Manuello et al., 2018). One of those regions is the left precuneus, a component of the medial posterior parietal cortex, which has been frequently associated with social reasoning and self-reflection (Patriquin et al., 2016). The precuneus has also been reported to be involved in a range of integrated tasks, including awareness information processing, visuospatial imagery, mnemonic retrieval and voluntary attention (Cavanna, 2007; Cavanna and Trimble, 2006; Zhang and Li, 2012). From a clinical point of view, its morphometric alterations and decreased functional connectivity have been linked to autistic symptom severity (Cheng et al., 2017; Fang et al., 2020; Lynch et al., 2013), as well as to

![Brain templates illustrating the anatomical location of the co-altered nodes within the main human large-scale functional networks (left panel) and the between/within network distribution of the co-alterations (right and bottom panels). DMN: default mode network; FPN: frontoparietal network; SN/VAN: salience/ventral attentional network; Limbic: limbic network; Visual: visual network; SMN: sensorimotor network.](image)

Fig. 6.

![Between-networks](image)

![Within-networks](image)

Table 3
The network-betweenness of each one of the Yeo et al. (2011) networks. DMN: default mode network; FPN: frontoparietal network; SN/VAN: salience/ventral attentional network; DAN: dorsal attentional network; SMN: sensorimotor network.

Canonical Network	Network Betweenness
DMN	0.82
FPN	0.93
SN/VAN	0.89
DAN	n.a.
Limbic	0.96
Visual	0.95
SMN	1
dysfunction in mentalizing processes (Wang et al., 2007), attention orienting (Fitzgerald et al., 2015) and empathy (Schulte-Rüther et al., 2011) in different ASD cohorts.

The second pathological hub is the left vACC. Reduced activation of this region has been reported in patients with ASD while playing a social-exchange game (Chiu et al., 2008). Authors have therefore associated this reduced cingulate response with ASD social impairment. Furthermore, it has been observed that developmental differences in the limbic nodes as well as in other integrative regions such as the cingulate cortex might produce a cascading effect on brain areas mediating social perception (Apps et al., 2013; Baron-Cohen et al., 2000; Rolls, 2019). These findings are in agreement with the pattern of our MCN, and with research finding alterations in the activity of the cingulate cortex in individuals with ASD, especially with regard to a reduced glucose metabolism (Haznedar et al., 2000), functional connectivity (Zhou et al., 2016) and disrupted white matter pathways (Barnea-Goraly et al., 2004). It therefore should not be surprising that this region may be significantly co-altered in ASD, given the essential involvement of the vACC in integrative functions that are supposed to help the regulation of cognitive, executive and emotional processes (for a review see Stevens et al., 2011). Interestingly, the cingulate cortex and the precuneus were proposed to be part of a whole-brain system of areas involved in joint attention, which disruption is an early and characteristic symptom of ASD (Mundy, 2018).

The third hub node identified in the analysis is the left MOG, a second-order region implicated in the integration of multisensory stimuli (Kravitz et al., 2011). It has been recently suggested that microstructural dendritic dispersion of this site is associated with abnormal visual processing in ASD and also with social interaction dysfunction because of its long-range disconnections (Matsuoka et al., 2020). It is worth noting that the central involvement of the MOG in the MCN may indicate an anatomical damage, which can be typical of the ASD condition. As recently reported by VBM transdiagnostic investigations (Cauda et al., 2019b; Liloia et al., 2018), the left portion of the occipital lobe, including BA 18/19, is usually spared by most psychiatric and neurological disorders, and is thereby considered a region with low structural alteration variety. Therefore, the present finding further supports the importance of abnormalities at the perceptual level in ASD, as well as of their fronto-posterior patterns. Those abnormalities have been hypothesized to be the basis of sensory aberrations and of failure in socio-communicative integration (Courchesne and Pierce, 2005; Hadjikhani et al., 2004; Lombardo et al., 2019; Marco et al., 2011).

As the aforementioned nodes are also network hubs in the healthy connectome (van den Heuvel and Sporns, 2013), our results are consistent with a recent line of research showing that morphometric damage of brain disorders preferentially accumulates in areas with greater topological value (Crossley et al., 2014), probably due to their long-range connections (Cauda et al., 2020) and related high metabolic cost (Armatkevicu et al., 2019a, 2019b; Liang et al., 2013).

We found that the pathological hubs are selectively located in the left hemisphere. Interestingly, this finding is in line with both experimental and theoretical proposals suggesting a typical leftward asymmetry and volumetric reduction in ASD, particularly in cognitive and linguistic-related areas (De Fossé et al., 2004; Floris et al., 2013, 2020; Kong et al., 2020; Mellet et al., 2014; Postema et al., 2019; Prior and Bradshaw, 1979). Moreover, a recent transdiagnostic study from our group (Cauda et al., 2020) shows that the regional structural deviation of co-alteration is higher in the left hemisphere compared to the right one. In other words, the GM decreases of the left hemisphere tend to show long-range co-alterations across many psychiatric and neurological diseases. The concurrent existence of GM decreases and GM increases, which might be taken as evidence of functional and structural failures and compensations, has shown to be more lateralized in the left hemisphere in a range of psychiatric and neurodevelopmental diseases, including autism (Mancuso et al., 2020). Therefore, our current findings of ASD hubs mainly located in left-brain sites suggest a left hemisphere dominance in the co-alteration process.

However, this is not to say that the contribution to the MCN of the right hemisphere is negligible. In fact, there is also an important involvement of right-lateralized sites in the MCN, encompassing the cerebellar crus II, caudate, amygdala, STG and orbitofrontal gyri. These structures and their dysfunctional connections have attracted much attention in ASD research and have been associated with specific features of social, emotional and motor dysfunctions of the disorder (Bachevalier and Loveland, 2006; D’Mello et al., 2016; D’Mello and Stoodley, 2015; Gibbard et al., 2018; Girgis et al., 2007; Hardan et al., 2006; Qiu et al., 2016; Turner et al., 2006).

To further characterize the topological structure of the MCN and to go beyond the peculiarities of the specific hub nodes, we employed k-core decomposition. Our network clustering analysis suggests that the core hierarchy in ASD contains regions predominantly associated with the highest values of node centrality. In particular, several components are higher-order associative areas, namely left precuneus, left superior parietal lobule, right parahippocampus, along with visual regions such as lingual and middle occipital gyri (Fig. 5). Interestingly, the aforementioned components were recently categorized as units of high hierarchy within large-scale brain networks (Labav et al., 2016) because they essentially support the structural organization of inter-connections and, thereby, can efficiently allow data integration and monitor cognitive processing (Collin et al., 2014; Hagmann et al., 2008). Thus, our findings support the notion that the integration and monitoring of information might be disrupted in ASD, especially with regard to the social and affective domains associated with the DMN (Buckner and DiNicola, 2019; Padmanabhan et al., 2017), whose nodes appear to be the central components within the MCN of ASD.

Overall, our findings emphasize the importance of the DMN in ASD. In fact, many co-altered nodes have been located in this network, indicating its relevance in the system of reciprocal GM modifications produced by ASD. This is also pointed out by the combined centrality measures and the k-core that highlight brain regions associated with the DMN.

Also, the DMN is the only network whose co-alterations are more likely to be between its nodes and those of other networks than within itself (Fig. 6). This means that the numerous alterations occurring in the DMN also co-occur with many others in the other networks, suggesting a pivotal role of the DMN in the spatial distribution of GM abnormalities in ASD. Despite the fact that direct associations between functional covariation and underlying morphometric substrates remains an open question in autism research (Uddin et al., 2013), the peculiar topology related to the DMN co-alterations might suggest an atypical morphometric substrate for aberrant between-network functional connectivity, which was found decreased in different age-stratified cohorts of individuals with ASD compared with neurotypical controls (Kennedy and Courchesne, 2008; Nomi and Uddin, 2015; von dem Hagen et al., 2013).

Although it is tempting to speculate that the DMN might exert a causal effect in the development of alterations, our analyses do not provide information about the directionality of the co-alteration edges. Still, regardless of the direction of the pathological influence, the central position of the DMN in the pathoconnectome of ASD is significant. By contrast, other networks, namely the SMN and, in particular, the DAN, appeared to be much less involved in our network of co-alterations (Fig. 6 left panel). This seems to indicate that the alterations in these networks do not influence or are not influenced by those in other parts of the brain. It is worth pointing out that the only SMN node is connected to six other nodes spanning across all the remaining networks (Fig. 6 right and bottom panels). Considering its location in the right STG, such a node might be associated with auditory functions, thus suggesting an association between auditory dysfunctions such as hypersensitivity and impaired perception (Marco et al., 2011; Nieto Del Rincón, 2008; Robertson and Baron-Cohen, 2017; Williams et al., 2021). On the contrary,
with the genetic connectivity suggests that a model of shared genetic vulnerability to the disease (Zhou et al., 2012) falls short in explaining the development of the MCN pattern of ASD.

4.1. Methodological considerations and future perspectives

The present meta-connectomics analysis proposes a statistically robust view on the GM topology of autism, improving on previous works in several ways. The innovative method used here allowed us to extend spatial information given by canonical CBMs, providing valuable insights on the mutual relationship between regional changes of the ASD phenotype, as well as on the peculiar role of each aberrant component and of brain connectivity. Also, from a network-level perspective, the MCN integrates current anatomical covariance approaches, exercising a thorough and detailed topological resolution not limited by a prior choice of ROIs or by circumscribed ASD cohort analysis. However, methodologically speaking, it is important to point out that, given the different scale of statistical comparison (i.e., meta-analytic vs. group data level), the two types of analysis should not be confused but, rather, integrated for a better comprehension of the dynamic underlying brain disorders. Finally, although this study proposes a new outlook on the ASD brain architecture, the MCN methodology can be potentially applied to any other condition that reflects morphometric disturbances of the brain, opening attractive prospects for an in-depth comprehension of the human pathoconnectome.

Despite these strengths, we acknowledge that some limitations should be recognized. By definition, meta-connectomic approaches have general limitations inherent to publication biases (i.e., the file-drawer problem) and to the quality/constraints of individual investigations (Crossley et al., 2016). In this regard, we note that our data set reports a certain degree of heterogeneity in terms of clinical- and age-related differences among participants. Specifically, 23 out of 45 VBM experiments contain a mixed (i.e., comprehensive of two or more diagnostic sub-categories) or an unspecified ASD sample (Table S2). Still, the marked presence of original experimental groups composed of mixed age-stratified participants or with unspecified age ranges (35.6% of the experiments included), hampers the possibility to interpret developmental co-alteration changes in neuroanatomy of ASD (Table S2). In other words, this heterogeneity makes it challenging to discriminate possible differences related to the clinical or age-stratified sub-populations. At the same time, however, it offers important advantages. In fact, in conjunction with the substantial statistical power provided by meta-analytic synthesis (Eickhoff et al., 2016), the meta-level approach tends to afford more robust and reliable results in terms of generalization for the population of interest (Muller et al., 2018).

Another critical element of the present study relates to the continuous dimensionality of the psychopathology of ASD. Since the diagnosis of ASD includes a wide array of clinical manifestations and biological endophenotypes, it might be pointed out that our database could be affected by a large inter-subject variability. This does not constitute a limitation per se, as the aim of a meta-analysis is exactly to overcome the heterogeneity of samples in order to discover invariant findings across groups (Tahmasian et al., 2019). However, not considering the peculiarity of each individual or diagnostic subgroup might be simplistic and miss some critical feature of ASD. Future research might develop subject-level methods to assess co-alteration networks, and eventually investigate whether or not they can help discriminate between different categories or dimensions of ASD. At the moment, the main issue to extend the methodology used here to subject-level data is the identification of focal structural alteration in absence of normative intensity values to discriminate between T1 images of healthy and pathological subjects.

The current work does not assess the directionality of the network co-alterations, but future research might test, for instance, the hypothesis that the DMN alterations may play a role in the distribution of the other GM alterations, or the other way round. Finally, the lack of a significant
correlation between the co-alteration network and genetic co-expression connectivity is not indicative of an absence of a genetic role in ASD, but rather, that the genetic influence does not explain the statistical dependence between GM modifications. However, genetic connectivity could have a role in determining the first areas to be affected (Cauda et al., 2019a), while the diaschisis effect might induce other regions to be co-altered (Carrera and Tononi, 2014). Further research is needed to investigate these possibilities.

The long-term aim of the co-alteration approach is to produce valuable insights for clinical practice, in terms of improvement in the diagnostic procedure and in monitoring the disease course. Future investigations may adopt the co-alteration nodes as ROIs to test the generalizability of the MCN pattern on longitudinal native data. In addition, multi-scale research may explore the role of the meta-analytic hubs in different clinical cohorts, testing in detail the impact of these key regions on the ASD pathoconnectome. Finally, a more profound investigation may adopt the co-alteration nodes as ROIs to test the diagnostic procedure and in monitoring the disease course. Future investigations may adopt the co-alteration nodes as ROIs to test the generalizability of the MCN pattern on longitudinal native data. In addition, multi-scale research may explore the role of the meta-analytic hubs in different clinical cohorts, testing in detail the impact of these key regions on the ASD pathoconnectome. Finally, a more profound investigation may adopt the co-alteration nodes as ROIs to test the diagnostic procedure and in monitoring the disease course.

5. Conclusion

This study investigated VBM abnormalities of individuals with ASD using a meta-connectomic perspective, demonstrating a topologically characteristic structure of co-alteration underlying a circumscribed set of GM sites in the autistic brain. We found that the co-alteration pattern is influenced in part by structural connectivity, which is in line with the hypothesis that the brain connectome plays an important role in the development of disease-related alterations. Finally, we observed that the regions belonging to the DMN are central in the topology of co-alterations, thus suggesting a significant contribution of DMN dysfunction in the pathophysiology of ASD. This effect may be due to the strong network-betweenness of the DMN, which makes GM alterations in these network regions to be pathoconnectivity centers. In conclusion, the present study provides new insight into the complex pathophysiology of ASD, emphasizing the need for a more integrative view based on large-scale network dysfunction in order to better understand the complex clinical manifestations of this spectrum of disorders.

6. Funding information

This study was supported by Fondazione SanPaolo, Turin (Cauda F. PI)

CRediT authorship contribution statement

Donato Lilioa: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Data curation, Writing - original draft, Writing - review & editing, Supervision. Lorenzo Mancuso: Conceptualization, Methodology, Formal analysis, Investigation, Writing - original draft, Writing - review & editing. Lucina Q. Uddin: Writing - review & editing. Tommaso Costa: Methodology, Formal analysis, Validation, Supervision. Andrea Nani: Writing - review & editing. Roberto Keller: Writing - review & editing. Jordi Manuelli: Formal analysis, Writing - review & editing. Sergio Duca: Project administration. Franco Cauda: Conceptualization, Data curation, Writing - review & editing, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Data were provided [in part: diffusion tensor imaging (DTI) data set] by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nicl.2021.102583.

References

Ajjore, O., Virueta, N., Wahlhab, P., Zhan, L., Lewo, A., Althuler, L.L., 2015. Connectome signatures of neurocognitive abnormalities in eutymic bipolar I disorder. J. Psychiatr. Res. 68, 37–44. https://doi.org/10.1016/j.jpsychires.2015.05.017.
Alexander-Bloch, A., Geidel, J.N., Bullmore, E.D., 2013. Imaging structural co-variation between human brain regions. Nat. Rev. Neurosci. 14 (5), 322–336. https://doi.org/10.1038/nrn3465.
Allen, G., Courchesne, L., 2001. Attention function and dysfunction in autism. Front. Biosci. 6, D105-D119. https://doi.org/10.2741/Allen.
Ameis, S.H., Catani, M., 2015. Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex 62, 158–181. https://doi.org/10.1016/j.cortex.2014.10.014.
American Psychiatric Association, 2013. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). 5th ed. American Psychiatric Publishing, Arlington, VA.
Andrews, D.S., Avino, T.A., Gushbranderen, M., Daly, E., Marquand, A., Murphy, C.M., Lai, M.C., Lombardo, M.V., Ruigrok, A.N., Williams, S.C., Bullmore, E.T., The M Accs, C., Suckling, J., Baron-Cohen, S., Craig, M.C., Murphy, D.G., Ecker, C., 2017. In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder. Cereb Cortex 27, 877–887. doi:10.1093/cercor/bhw043.
Apps, M.A., Lockwood, P.L., Balsters, J.H., 2013. The role of the midecingulate cortex in monitoring others’ decisions. Front. Neurosci. 7, 251. https://doi.org/10.3389/fnins.2013.00251.
Arannekivecita, A., Fulcher, B.D., Fortino, A., 2019a. A practical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage 189, 353–367. https://doi.org/10.1016/j.neuroimage.2019.01.011.
Arannekivecita, A., Fulcher, B.D., Fortino, A., 2019b. Uncovering the transcriptional correlates of hub connectivity in neural networks. Front. Neural Circuits 13, 47. https://doi.org/10.3389/fncir.2019.00047.
Ashburner, J., Friston, K.J., 2000. Voxel-based morphometry—the methods. Neuroimage 11 (6), 805–821. https://doi.org/10.1016/S1053-8119(00)00058-2.
Ashburner, J., Friston, K.J., 2001. Why voxel-based morphometry should be used. Neuroimage 14 (6), 1238–1243. https://doi.org/10.1016/S1053-8119(01)00961-7.
Bachevalier, J., Loveland, K.A., 2006. The orbitofrontal-amygdala circuit and self-regulation of social-emotional behavior in autism. Neurosci. Biobehav. Rev. 30 (1), 97–117. https://doi.org/10.1016/j.neubiorev.2005.07.002.
Bai, J., Wiggins, L., Christensen, D.L., Maenner, M.J., Daniels, J., Warren, Z., Kurzius-Spencer, M., Zahorody, W., Robinson, C., Rosenberg, White, T., Durkin, M.S., Imm, P., Nikolaou, L., Yeagin-Alsepp, M., Lee, L.-C., Harrington, R., Lopez, M., Fitzgerald, R.T., Hewitt, A., Pettygrove, S., Constantino, J.N., Vehorn, A., Shenouda, J., Hall-Lande, J., Van, K., Naarand, Braun, Dowling, N.F., 2018. Prevalence of Autism Spectrum Disorder Among Children Ages 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill Summ 67 (6), 1–23. https://doi.org/10.15585/mmwr.su.17091.
Baldarin, J.B., Comfort, W.E., Daly, E., Murphy, C., Andrews, D., Murphy, D.G., Ecker, C., Sato, J.R., 2015. Decreased centrality of cortical volume covariance networks in autism spectrum disorders. J. Psychiatr. Res. 69, 142–149. https://doi.org/10.1016/j.jpsychires.2015.08.003.
Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lesch, A.L., Reiss, A.L., 2004. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol. Psychiatry 55 (3), 323–326. https://doi.org/10.1016/S0006-3223(03)00222-3.
Becker, E.B., Stoodley, C.J., 2013. Autism spectrum disorder and the cerebellum. Int. Rev. Neurobiol. 113, 1–34. https://doi.org/10.1016/S0079-7051(13)00100-0.
Berndt, B.C., Valk, S.L., Silani, G., Bird, G., Frith, U., Singer, T., 2014. Selective disruption of sociocognitive structural brain networks in autism and alexithymia. Cereb. Cortex 24, 3258–3267. https://doi.org/10.1093/cercor/bht182.
Bethlehem, R.J., Romero-Garcia, R., Mak, E., Bullmore, E.T., Baron-Cohen, S., 2017. Structural covariance networks in children with autism or ADHD. Cereb. Cortex 27, 4267–4276. https://doi.org/10.1093/cercor/bhx115.
Bolland, J.M., 1988. Sorting out centrality: An analysis of the performance of four centrality models in real and simulated networks. Social Networks 10 (3), 233–253. https://doi.org/10.1016/0378-8733(88)90014-7.
Cao, M., Wang, Z., He, Y., 2015. Connectomics in psychiatric research: advances and applications. Neuropsychiatr. Dis. Treat. 11, 2801–2810. https://doi.org/10.2147/ndt.s63470.

Cao, R., Yang, X., Luo, J., Wang, P., Meng, F., Xia, M., He, Y., Zhao, T., Li, Z., 2021. The effects of cognitive behavioral therapy on the whole brain structural connectivity in unmedicated patients with obsessive-compulsive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 104, 110037. https://doi.org/10.1016/j.pnpbp.2020.110037.

Casanova, M.F., 2006. Neuropathological and genetic findings in autism: the significance of white matter abnormality in autism spectrum disorder: an activation likelihood estimation meta-analysis. J. Neurosci. 36 (1), 122–123. https://doi.org/10.1016/j.jneurosci.2015.04.027.

Collin, G., Sporns, O., Mandl, R.C.W., van den Heuvel, M.P., 2014. Structural and functional correlates relating to cost and benefit of rich club organization in the human brain connectome. Cereb. Cortex 24 (9), 2258–2267. https://doi.org/10.1093/cercor/bht064.

Courchesne, E., Pierce, K., 2005. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr. Opin. Neurobiol. 15 (2), 225–230. https://doi.org/10.1016/j.conb.2005.03.001.

Crawley, N.A., Fox, P.T., Bullmore, E.T., 2016. Meta-connectomics: human brain network and connectivity meta-analyses. Psychol. Med. 46 (5), 897–907. https://doi.org/10.1017/S0033291715002889.

Crocetti, L., Mechielli, A., Scott, J., Odertti, F., Fox, P.T., McGuire, P., Bullmore, E.T., 2014. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137, 2382–2395. https://doi.org/10.1093/brain/awu312.

D’Amelio, M., Moode, D.M., Crocetti, D., Mostofsky, S.H., Stoodley, C.J., 2016. Cerebello-cerebral circuits in children with autism. Autism Res. 9 (11), 1191–1204. https://doi.org/10.1002/aur.1622.

Deco, G., Krügelbach, M., 2014. Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 84 (5), 768–785. https://doi.org/10.1016/j.neuron.2014.06.034.

DeRamus, T.P., Kana, R.K., 2015. Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders. Neuroimage 102, 525–536. https://doi.org/10.1016/j.neuroimage.2014.11.004.

Ecker, C., Andrews, D., Dell’Acqua, F., Daly, E., Murphy, C., Catani, M., Thiebaut de Schotten, M., Baron-Cohen, S., Lai, M.C., Minda, G., Murphy, D.G., 2014. Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol. 14 (11), 1192–1203. https://doi.org/10.1016/S1474-4422(14)70295-X.

Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E.M., Brammer, M.J., Murphy, C., Murphy, D.G., 2010. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Proc. Natl. Acad. Sci. USA 107 (34), 14747–14751. https://doi.org/10.1073/pnas.1009821107.

Ecker, C., Ronan, L., Feng, Y., Daly, E., Murphy, C., Ginetser, C.E., Brammer, M., Fletcher, P.C., Bullmore, E.T., Suckling, J., Baron-Cohen, S., Williams, S., Loth, E., Murphy, D.G.M., Bailey, A.J., Baron-Cohen, S., Bolton, P.F., Bullmore, E.T., Carrington, S., Chakravarti, B., Daly, E.M., Deoni, S.C., Ecker, C., Happe, F., Henty, J., Jezzard, P., Johnston, P., Jones, D.K., Lai, M.C., Lombardo, M.V., Madden, A., Mullins, D., Murphy, C.M., Murphy, D.G., Pasco, G., Sadek, S., Spain, D., Steward, R., Suckling, J., Wheelwright, S., Williams, S.C., 2013. Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder. Proc. Natl. Acad. Sci. U.S.A. 110 (13), 13222–13227. https://doi.org/10.1073/pnas.1218880110.

Eickhoff, S.B., Bzdok, D., Laird, A.R., Kühn, U., Kühnis, C., Fox, P.T., 2012. Activation likelihood estimation meta-analysis revisited. NeuroImage 59 (3), 2349–2361. https://doi.org/10.1016/j.neuroimage.2011.06.062.

Eickhoff, S.B., Laird, A.R., Grek, C., Wang, L.E., Zilles, K., Fox, P.T., 2009. Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30 (9), 2907–2926. https://doi.org/10.1002/hbm.20718.

Eickhoff, S.B., Nichols, T.E., Laird, A.R., Hoffstaetter, F., Amunts, K., Fox, P.T., Bzdok, D., Eickhoff, S.B., 2016. Behavior, sensitivity, and power of activation likelihood estimation compared to mass univariate approaches. NeuroImage 137, 70–85. https://doi.org/10.1016/j.neuroimage.2016.04.072.

Eisenberg, I.W., Wallace, G.L., Kenworthy, L., Sjostrom, J., Martin, A., 2015. Insistence on sameness relates to increased covariance of gray matter structure in autism spectrum disorder. Mol. Autism 6, 74. https://doi.org/10.1186/s13222-015-0077-7.

Evans, A.C., 2013. Networks of anatomic covariance. NeuroImage 80, 489–504. https://doi.org/10.1016/j.neuroimage.2013.05.054.

Fang, H., Wu, Q., Li, Y., Ren, Y., Li, C., Xiao, X., Xiao, T., Chu, K., Ke, X., 2020. Structural connectivity in children with autism spectrum disorder with regression: a graph theory study. Behav. Brain Res. 378, 112262. https://doi.org/10.1016/j.bbr.2019.112262.
Nani, A., Manuello, J., Mancuso, L., Liloia, D., Costa, T., Vercelli, A., Duca, S., Cauda, F., 2018. A review of joint attention and social-cognitive brain systems in typical and atypical development. Brain Res. 1456, 72–79. https://doi.org/10.1016/j.brainres.2015.02.024.

Noonan, S.K., Haist, F., Muller, R.A., 2009. Aberrant functional connectivity in autism: evidence from low-frequency BOLD signal fluctuations. Brain Res. 1262, 48–63. https://doi.org/10.1016/j.brainres.2008.12.076.

Norman, L.J., Carlisi, C., Lukito, S., Hart, H., Mataix-Cols, D., Radua, J., Rubia, K., 2016. Structural and Functional Brain Abnormalities in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder: A Comparative Meta-analysis. JAMA Psychiatry 73, 815–825. https://doi.org/10.1001/jamapsychiatry.2016.0700.

Padmanabhan, A., Lynch, C.J., Uddin, L.Q., Supekar, K., Khouzam, A., Phillips, J., Menon, V., 2013. Default mode network in childhood autism: postero medial cortex heterogeneity and relationship with social deficits. Biol. Psychiatry 74 (3), 212–219. https://doi.org/10.1016/j.biopsych.2012.12.013.

Mancuso, L., Costa, T., Nani, A., Manuello, J., Lilioa, D., Gelmini, G., Panero, M., Duca, S., Cauda, F., 2019. The homotopic connectivity of the functional brain: a meta-analytic approach. Sci. Rep. 9, 3346. https://doi.org/10.1038/s41598-019-41930-0.

Mancuso, L., Forino, A., Costa, T., Ficco, L., Lilioa, D., Manuello, J., Duca, S., Cauda, F., 2020. A meta-analytic approach to mapping co-occurring grey matter volume increases and decreases in psychiatric disorders. Neuroimage 222, 117220. https://doi.org/10.1016/j.neuroimage.2020.117220.

Manuello, J., Carlos, N., M., Mano, J., DeRamus, T., Kana, R.K., 2016. Neuroanatomical changes associated with functional connectivity in boys with autism spectrum disorder. Cereb Cortex. https://doi.org/10.1093/cercor/bhu121.

Mellet, E., Zago, L., Jobard, G., Grivel, F., Petit, L., Joliot, M., Mazoyer, B., Tzourio-Mazoyer, N., 2014. Weak language lateralization affects both verbal and spatial skills: An fMRI study in 297 subjects. Neuropsychologia 65, 56–62. https://doi.org/10.1016/j.neuropsychologia.2014.10.010.

Minshew, N.J., Williams, D.L., 2007. The new neurobiology of autism: cortex, connectivity, and neuronal organization. Arch. Neurol. 64, 945–950. https://doi.org/10.1001/archneur.64.8.945.

Mohed, D., Liberiati, A., Pustill, M., Altman, D.G., 2015. Preferred reporting items for meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. J. Clin. Epidemiol. 62 (10), e1–e34. https://doi.org/10.1016/j.jclinepi.2009.06.006.

Lilienfeld, S.O., 2001. Experiential Gardner: Giant-Dependent Synaptic Pruning and Neurodevelopmental Disorders. Nat. Rev. Neurosci. 18 (11), 658–670. https://doi.org/10.1038/nrn3710.

Liljebraud, G., Gross, C.T., 2017. Erant gardener: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat. Rev. Neurosci. 18, 10.1515/102583.
Rubinov, M., Bullmore, E.D., 2013. Fledgling pathoconnectomics of psychiatric disorders. Trends Cogn Sci 17 (12), 641–647. https://doi.org/10.1016/j.tics.2013.10.007.
Rubinov, M., Sporns, O., 2010. Network measures of brain connectivity: Uses and interpretations. Neuroimage 52 (3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003.
Salehi, A., Delcroix, J.-D., Mobley, W.C., 2003. Traffic at the intersection of neurotrophic factor signaling and axon guidance. Trends Neurosci 26 (2), 73–80. https://doi.org/10.1016/S1474-4137(03)13990-7.
Scardoni, G., Tosadori, G., Faizan, M., Spoto, F., Fabbi, F., Laudanna, C., 2014. Biological network analysis with CentiScipe: centralities and experimental dataset integration. Frontiers Res 3, 139. https://doi.org/10.3389/fnins.2014.00477.
Schaerer, A., Kong, R., Gordon, E.M., Stamm, T.O., Zuo, X.N., Holmes, A.J., Eickhoff, S.B., Yeo, B.T.T., 2013. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb. Cortex 23, 3095–3114. https://doi.org/10.1093/cercor/bht179.
Schaer, M., Ottet, M.-C., Scaratti, E., Dukes, D., Franchini, M., Elzer, S., Glaser, B., 2014. The paraspinalcoginalynus links the default-mode cortical network with the medial temporal lobe memory system. Hum. Brain Mapp. 35 (3), 1061–1073. https://doi.org/10.1002/hbm.22234.
Wegiel, J., Flory, M., Kuchna, L., Nowicki, K., Ma, S.Y., Imaki, H., Wegiel, J., Cohen, I.L., London, E., Brown, W.T., Wisniewski, T., 2014. Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism. Acta Neuropathol Commun 2, 28. https://doi.org/10.1186/2051-5960-2-28.
William, J.L., Hendriks, T.C., 2020. A review of Decreased Sounds. Nat. Rev. Neurosci. 19, 171–172. https://doi.org/10.1016/j.neuroimage.2019.05.041.
Yao, E., Radau, J., Cardoner, N., Huppe, F., Mataix-Cols, D., 2021. Meta-analysis of gray matter abnormalities in autism spectrum disorder: Should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? Arch. Gen. Psychiatry 68, 490–498. https://doi.org/10.1001/archpsyc.2011.27-28.
Zhang, W.-A., Chen, S.-S., Sigman, M., DiPietro, M., 2007. Reading affect in the face and voice: neural correlates of interpreting communicative intent in children and adolescents with autism spectrum disorders. Arch. Gen. Psychiatry 64, 698–708. https://doi.org/10.1001/archpsyc.64.8.698.
Ward, A.M., Schultz, A.P., Huijbers, W., Van Dittheoven K.R.A., Hedden, T., Sprenger, R.A., 2014. The paraspinalcoginalynus links the fronto-parietal cortical network with the medial temporal lobe memory system. Hum. Brain Mapp. 35 (3), 1061–1073. https://doi.org/10.1002/hbm.22234.
Wegiel, J., Flory, M., Kuchna, L., Nowicki, K., Ma, S.Y., Imaki, H., Wegiel, J., Cohen, I.L., London, E., Brown, W.T., Wisniewski, T., 2014. Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism. Acta Neuropathol Commun 2, 28. https://doi.org/10.1186/2051-5960-2-28.
William, J.L., Hendriks, T.C., 2020. A review of Decreased Sounds. Nat. Rev. Neurosci. 19, 171–172. https://doi.org/10.1016/j.neuroimage.2019.05.041.
Yao, E., Radau, J., Cardoner, N., Huppe, F., Mataix-Cols, D., 2021. Meta-analysis of gray matter abnormalities in autism spectrum disorder: Should Asperger disorder be subsumed under a broader umbrella of autistic spectrum disorder? Arch. Gen. Psychiatry 68, 490–498. https://doi.org/10.1001/archpsyc.2011.27-28.
Zhang, W.-A., Chen, S.-S., Sigman, M., DiPietro, M., 2007. Reading affect in the face and voice: neural correlates of interpreting communicative intent in children and adolescents with autism spectrum disorders. Arch. Gen. Psychiatry 64, 698–708. https://doi.org/10.1001/archpsyc.64.8.698.