Cancer risks among long-standing spouses

K Hemminki*1 and Y Jiang1

1Department of Biosciences at Novum, Karolinska Institute, 141 57 Huddinge, Sweden

We estimated risks for concordant and discordant cancers in spouses in order to quantify cancer risks from the shared environment. The study was restricted to spouses who had one or more children in common and who lived together for at least 15 years after the first child's birth. The nation-wide Family-Cancer Database was used as the source of family and cancer data. Standardised incidence ratios were calculated for concordant and discordant cancers in spouses after 50 years of age. Among the 18 cancer sites considered, only three sites, stomach, lung and bladder, showed concordant increases of cancer among spouses, standardised incidence ratios ranging only from 1.19 to 1.38. Additionally, gastric and pancreatic cancer were associated among spouses, as did many cancers which were related to tobacco smoking or human papilloma virus infection. By contrast, standardised incidence ratios of colon, rectal, renal and skin cancers showed no increases among spouses. Shared lifestyle among family members seems to explain only a small proportion of familial cancer susceptibility. Because lifestyles are likely to differ more between parents and offspring than between spouses, familial cancer risks between parents and offspring are even more likely to be due to heritable than environmental effects.

British Journal of Cancer (2002) 86, 1737 – 1740. doi:10.1038/sj.bjc.6600302 www.bjcancer.com
© 2002 Cancer Research UK

Keywords: cancer in spouses; familial cancer; heredity; genetic epidemiology

Many lines of epidemiological evidence indicate that cancer is mainly an environmental disease (Doll and Peto, 1981; IARC, 1990; Lichtenstein et al, 2000; Peto, 2001). During the past decade it has become increasingly clear that overweight and lack of physical activity convey a risk of cancer, which may account for 5% of all cancers in Europe (Bergstrom et al, 2001; IARC, 2002). Moreover, the risks at the population level caused by various infections have become better understood, and the known infections have been estimated to account for 15% of cancer worldwide, though less in Europe (Pisani et al, 1997; Zur Hausen, 1999). In spite of the enormous research effort on diet and cancer, the proportion of cancer attributable to diet or to any specific dietary component remains speculative. It has been estimated that at least 50%, and probably as much as 70% of cancer deaths are unavoidable among non-smokers mainly because their aetiology remains unknown (Peto, 2001).

Decades long cohabitation by spouses should tend to result in many habits and carcinogenic exposures being similar. Interest in disease among spouses earlier focused on sexually transmitted diseases and the effects of passive smoking (IARC, 1995; Hackshaw, 1998; Hemminki et al, 2000a; Hemminki and Dong, 2000a). Besides assessing life-style factors and cancer risks, they can point to the environmental contribution to the familial aggregation of cancer, and they thus help to apportion heritable effects (Hemminki et al, 2001a,d). The studies from the Swedish Family-Cancer Database have shown limited spouse concordance, affecting mainly the sites of known environmental carcinogens (Hemminki and Dong, 2000b; Hemminki et al, 2001a). However, in the previous studies the length of cohabitation between the spouses was not considered, nor were any adjustments for socio-economic status carried out. We address these shortcomings here in a study of the 2001 update of the Family-Cancer Database, covering 10.2 million individuals and over one million tumours (Hemminki et al, 2001c). In addition to concordant cancers in spouses, a systematic analysis of discordant cancers was also carried out.

METHODS

The Swedish Family-Cancer Database includes persons born after 1932 with their biological parents (Hemminki et al, 2001c) together with cancers retrieved from the nationwide Swedish Cancer Registry for the years 1938 to 1998. Additionally, residential and socio-economic data were included from national censuses, carried out in 1960, 1970, 1980 and 1990. A four-digit diagnostic code according to a modified version of the seventh revision of the International Classification of Diseases (ICD-7) was used. The following sites were examined collectively: ‘upper aerodigestive tract’, lip, mouth and pharynx (codes 140, 141, 143 – 148) and leukemia (204 – 207), polycythemia vera (208) and myelofibrosis (209). Skin cancer only included squamous cell carcinoma; basal cell carcinoma is not registered in the Cancer Registry.

Spouses were defined as the parents of the woman’s first child, and they had to live in a shared address in at least two subsequent decennial censuses; thus the minimal cohabitation was 15 years by average. Even though data were available on the marital status, the above definition was preferable because many couples live together without being married. Follow-up was started at the age of 50 years, to allow latency time from the start of cohabitation. Standardized incidence ratios (SIRs) were calculated as the ratio of observed (O) to expected (E) number of cases. The expected numbers were calculated from site-, age-, period (10-year bands), area (three areas, three large cities, south Sweden and the rest), socio-economic status (manual workers, ‘intermediate’ workers, professionals and others) – and sex-standardized rates (Esteve et
RESULTS

A total of 71,020 couples presented with a concordant or discordant cancer after age 50 years, who fulfilled the entrance criteria for the study of being parents to the first child of the women and residing in a shared address at least through two consecutive censuses after the first childbirth. In Table 1, we show usefulness of the approach, by comparing cancer sites among spouses where increased risks should be expected due to shared smoking and sexual habits. When wives were probands and presented with lung cancer, husbands had increased risks of oesophageal (SIR 1.47), pancreatic (1.30), laryngeal (1.74) and lung (1.38) cancers. Cervical cancer was associated with pancreatic (1.28), laryngeal (1.53), lung (1.44) and penile (1.88) cancers in the husband. When husbands presented with a larynx cancer, their wives had an excess of lung (1.58) and cervical cancer (1.45). Lung cancer in husbands was associated with lung (1.32), cervical (1.31) and bladder (1.16) cancer in wives. Penile cancer was associated with cervical cancer in the wife (1.84).

Risks for spouses for concordant cancers are shown in Table 2 for sites where more than five pairs were recorded. Cancer at three sites was increased for husbands by cancer in wives: gastric (SIR 1.22). A few other significant associations between cancer sites were observed but because they were not confirmed in analysis when the sites were reversed (see last paragraph of Subjects and Methods), the data are not shown.

Table 1 Aggregation of tobacco- and sexual-behaviour-related cancers among spouses

Proband: Wife	Cancer in husband	O	SIR	95% CI
Lung	Oesophagus	48	1.47	1.08–1.92
	Pancreas	114	1.30	1.07–1.55
	Larynx	49	1.74	1.30–2.26
	Lung	406	1.38	1.25–1.52
Cervix	Pancreas	115	1.28	1.05–1.52
	Larynx	51	1.53	1.13–1.99
	Lung	458	1.44	1.31–1.58
	Penis	19	1.88	1.13–2.86

Proband: Husband	Cancer in wife	O	SIR	95% CI
Larynx	Lung	49	1.58	1.17–2.06
	Cervix	51	1.45	1.08–1.88
Lung	Lung	406	1.32	1.20–1.46
	Cervix	458	1.31	1.20–1.44
	Bladder	194	1.16	1.00–1.33
Penis	Cervix	19	1.84	1.11–2.76

Reference category was a spouse without cancer. The data were adjusted for site, age, period, residence and socio-economic level; female data additionally for parity and age at first childbirth.
between gastric and pancreatic cancers in spouses. Among the known or suggested environmental causes of pancreatic cancer, tobacco smoking, obesity and the resulting diabetes, high caloric intake and alcohol consumption are likely to be shared to some extent. However, for other cancers, such as lung cancer, the difference in lifestyle between spouses may be more pronounced, and the hereditary component is likely to be more important in spouses than between spouses, familial cancer risks between parents and offspring are more likely to be due to heritable rather than environmental effects. As a reservation, it needs to be considered that childhood and youth may be the most vulnerable period for carcinogenesis. Yet the present results suggest that, with the possible exception of lung cancer, the reported familial risks in cancer that occur in both genders are mainly due to heritable factors, many of which are yet unknown (Hemminki et al., 2001a).

In summary, the present analysis on cancer risks among spouses showed no significant deviation from the expected risks, with the exception of the association between gastric and pancreatic cancers. The present results suggest that, with the possible exception of lung cancer, the reported familial risks in cancer that occur in both genders are mainly due to heritable factors, many of which are yet unknown (Hemminki et al., 2001a). In summary, the present analysis on cancer risks among spouses showed no associations, which could not be explained by known risk factors, with the exception of the association between gastric and pancreatic cancers.

ACKNOWLEDGEMENTS

The Family-Cancer Database was created by linking registers maintained at Statistics Sweden and the Swedish Cancer Registry. The study was supported by the Swedish Cancer Society and King Gustaf V’s Jubilee Fund.

REFERENCES

Bergstrom A, Pisani P, Tenet V, Wolk A, Adami HO (2001) Overweight as an avoidable cause of cancer in Europe. Int J Cancer 91: 421 – 430
Bekan S, Houliston RS (1999) Genetic predisposition to gastric cancer. Q J Med 92: 5 – 10
Dillner J, von Krogh G, Horenbals S, Meijer CJ (2000) Etiology of squamous cell carcinoma of the penis. Scand J Urol Nephrol Suppl 205: 189 – 193
Doll R, Peto R (1981) The causes of cancer. J Natl Cancer Inst 66: 1191 – 1309
Dong C, Hemminki K (2001) Modification of cancer risks in offspring by sibling and parental cancers from 2,112,616 nuclear families. Int J Cancer 91: 144 – 150
Ekestam AM, Serafini M, Nyren O, Hansson LE, Ye W, Wolk A (2000) Dietary antioxidant intake and the risk of cardia cancer and noncardia cancer of the intestinal and diffuse types: a population-based case-control study in Sweden. Int J Cancer 87: 133 – 140
Esteve J, Benhamou E, Raymond L (1994) Statistical Methods in Cancer Research Vol. 128. IARC Scientific Publication. Lyon: IARC
Fund WCR (1997) Food, Nutrition and the Prevention of Cancer: a global perspective. Washington, DC: American Institute of Cancer Research
Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH (1994) Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst 86: 1600 – 1007

© 2002 Cancer Research UK British Journal of Cancer (2002) 86(11), 1737 – 1740
Goodman K, Correa P (2000) Transmission of Helicobacter pylori among siblings. *Lancet* 355: 358–362
Hackshaw A (1998) Lung cancer and passive smoking. *Stat Methods Med Res* 7: 119–136
Hamilton S, Aaltonen L (2000) Tumours of the digestive system. In *World Health Organization Classification of Tumours* pp 314. Lyon: IARC
Hemminki K, Dong C (2000a) Cancer in husbands of cervical cancer patients. *Epidemiology* 11: 347–349
Hemminki K, Dong C (2000b) Life style and cancer: protection from a cancer-free spouse. *Int J Cancer* 87: 308–309
Hemminki K, Dong C, Frisch M (2000a) Tonsillar and other upper aerodigestive tract cancers among cervical cancer patients and their husbands. *Eur J Cancer Prev* 9: 433–439
Hemminki K, Dong C, Vaithinen P (1999) Familial risks in cervix cancer: is there a hereditary component? *Int J Cancer* 82: 775–781
Hemminki K, Dong C, Vaithinen P (2001a) Cancer risks to spouses and offspring in the Family-Cancer Database. *Genet Epidemiol* 20: 247–257
Hemminki K, Jiang Y (2002a) Familial and second gastric cancers: a nationwide epidemiologic study from Sweden. *Cancer* 94: 512–516
Hemminki K, Jiang Y (2002b) Life style and cancer: effect of divorce. *Int J Cancer* 98: 316–319
Hemminki K, Li X (2002a) Cancer risks in childhood and adolescence among second generation immigrants to Sweden. *Br J Cancer* (in press)
Hemminki K, Li X (2002b) Cancer risks in second generation immigrants to Sweden. *Int J Cancer* 99: 229–237
Hemminki K, Li X, Mutanen P (2001b) Familial risks in invasive and in situ cervical cancer by histological type. *Eur J Cancer Prev* 10: 83–89
Hemminki K, Li X, Czene K (2002b) Cancer risks in first generation immigrants to Sweden. *Int J Cancer* 99: 218–228
Hemminki K, Li X, Plna K, Granström C, Vaithinen P (2001c) The nationwide Swedish Family-Cancer Database: updated structure and familial rates. *Acta Oncol* 40: 772–777
Hemminki K, Lonnstedt I, Vaithinen P, Lichtenstein P (2001d) Estimation of genetic and environmental components in colorectal and lung cancer and melanoma. *Genet Epidemiol* 20: 107–116

IARC (1990) *Cancer: Causes, Occurrence and Control* Vol. 100. IARC Sci Publications. Lyon: IARC
IARC (1995) *Human papillomaviruses* Vol. 64. IARC Monographs on the Carcinogenic Risks to Humans. Lyon: IARC
IARC (2002) *Weight Control and Physical Activity* Vol. 6. IARC Handbooks of Cancer Prevention. Lyon: IARC
Kvikstad A, Vatten LJ, Tretli S, Kvinnland S (1994) Widowhood and divorce related to cancer risk in middle-aged women. A nested case-control study among Norwegian women born between 1935 and 1954. *Int J Cancer* 58: 512–516
Lichtenstein P, Holm N, Verkasalo P, Illiadi A, Kaprio J, Koskenuvu M, Pukkala E, Skytte A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer. *N Engl J Med* 343: 78–85
McCredie M (1998) Cancer epidemiology in migrant studies. *Recent Results Cancer Res* 154: 298–305
Parkin DM, Iscovich J (1997) Risk of cancer in migrants and their descendants in Israel: II. Carcinomas and germ-cell tumours. *Int J Cancer* 70: 654–660
Peto J (2001) Cancer epidemiology in the last century and the next decade. *Nature* 411: 390–395
Pisani P, Parkin D, Munoz N, Ferlay J (1997) Cancer and infection: estimates of the attributable fraction in 1990. *Cancer Epidemiol Biomarkers Prev* 6: 387–400
Risch N (2001) The genetic epidemiology of cancer: interpreting family and twin studies and their implications for molecular genetic approaches. *Cancer Epidemiol Biomarkers Prev* 10: 733–741
Weiderpass E, Partanen T, Kaas R, Vainio H, Porta M, Kauppinen T, Ojajarvi A, Boffetta P, Malats N (1998) Occurrence, trends and environmental etiology of pancreatic cancer. *Scand J Work Environ Health* 24: 165–174
Zur Hausen H (1999) Viruses in human cancers. *Eur J Cancer* 35: 1174–1181
Zur Hausen H (2000) Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. *J Natl Cancer Inst* 92: 690–698