Tissue- and Salinity-specific Na–Cl Cotransporter (NCC) Orthologues Involved in the Sea lamprey (Petromyzon Marinus) Adaptive Osmoregulation

A. Barany (andre.barany@uca.es)
University of Cádiz

C. A. Shaughnessy
University of Massachusetts

R. M. Pelis
Binghamton University

J. Fuentes
University of Algarve

J. M. Mancera
University of Cádiz

S. D. McCormick
U.S. Geological Survey

Research Article

Keywords: ion transport-proteins, indapamide, intestine, Ussing chamber, water absorption

DOI: https://doi.org/10.21203/rs.3.rs-764478/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Two ncc orthologues (termed ncca and nccb) were found in the sea lamprey genome, whereas nkcc2 was not. In a phylogenetic comparison among other vertebrate amino acids, NCC and NKCC deduced sequences, the sea lamprey NCC’s occupied basal positions within the NCC clade. In freshwater, ncca mRNA was found only in the gill and nccb only in the intestine, whereas both were found in the kidney. Acclimation to seawater increased nccb mRNA in the intestine and kidney. Intestinal nccb mRNA also increased during late metamorphosis. The electrophysiological approach in the Ussing chamber of intestinal tissue ex vivo showed significant differences between freshwater and seawater-acclimated juveniles. Luminal application of indapamide (NCC inhibitor) resulted in 73 and 30% inhibition of short-circuit current (I_{sc}) in the proximal and distal intestine, respectively. The luminal application of bumetanide (NKCC inhibitor) did not affect intestinal I_{sc}. Indapamide also inhibited ex vivo intestinal water absorption. Our results indicate that NCCb is likely the key passive ion cotransporter protein for ion uptake by the lamprey intestine to facilitate water absorption in seawater. As such, the preparatory increases in intestinal nccb mRNA expression during metamorphosis are likely critical to the development of whole animal salinity tolerance.

1. Introduction

Lampreys are one of two surviving lineages of jawless fishes. Agnathans appear to have diverged during the late Ordovician period ~ 450 Mya (million years ago) \(^1\), and persisted through several confirmed mass extinctions on Earth \(^2\). Adult lampreys have remained morphologically conserved based on a limited fossil record and have inhabited marine and estuarine environments from at least the late Devonian period ~ 360 Mya \(^3\). Two episodes of whole-genome duplication likely occurred prior to the divergence of Agnatha \(^4\). Additional whole-genome duplications have been reported in the ancestors of modern salmonids \(^5\), castomids (suckers) \(^6\), and carp \(^7\), and additional partial genome duplications have been reported elsewhere in fishes \(^8\). Given Agnathans' basal phylogenetic position and the many genomic and phenotypic evolutionary transitions that have occurred since the divergence of this group, molecular studies in this group are important for understanding and contextualizing physiological shifts throughout vertebrate evolution.

Modern lampreys are iono- and osmoregulators, in that they maintain their plasma osmolality at approximately one-third that of seawater (SW) regardless of external salinity. This osmoregulatory strategy is found in nearly all other extant vertebrate lineages, with the notable exception of elasmobranchs, coelacanths, and lungfishes \(^9\). The persistence of an osmoregulatory system over evolutionary time underscores its adaptive importance, particularly considering the extensive increases in phenotypic complexity that has occurred in derived fishes \(^10\).

Like marine teleosts, lampreys ingest large SW amounts, which are progressively processed by distinct intestinal regions to compensate for passive water loss \(^11\). The gut desalinates ingested SW until it is
nearly iso-osmotic with respect to the blood14,15, thus facilitating net water absorption16. Intestinal water absorption occurs primarily via two possible paths: (i) transcellular, in which aquaporins17, Na+-glucose transporters18,19, and/or Na+-K+-2Cl− (NKCC2)/ Na+-Cl− (NCC) cotransporter proteins are involved20; (ii) paracellular diffusion across the tight apical junction complexes21,22.

Regardless of the pathway for water absorption, the driving force is the same: water absorption from the lumen is driven by a luminal-to-serosal osmotic gradient, particularly those related to Cl− movements21. In this process, ingested SW fills lateral intercellular spaces between ion-transporting enterocytes. The intestinal water absorption from the lumen into the serosa likely occurs by osmosis following Cl− molecular transport21. The luminal Cl− uptake mechanism is species- and tissue-dependent but always includes a member of the SLC family of solute carrying proteins such as NKCC2, NCC, and Cl−/HCO\textsubscript{3}− exchanger23–25. The active transport of Cl− across the intestinal epithelium is associated with high levels of Na+/K+-ATPase (NKA) activity26. The basolateral NKA energizes a favorable electrogenic gradient for the absorption of Cl− to occur via the SLC cotransporters localized in apical and basolateral membranes of enterocytes14,20. Excess of monovalent ions that are incorporated into the blood plasma is secreted across the gills27.

The NCC is perhaps most well-known for its crucial role in renal ion reabsorption in the mammalian distal convoluted tubule, where 5–10\% of the filtered Na+ and Cl− are reabsorbed28–30. Expression of an orthologous NCC (termed NCC1) in teleost fishes acclimated to freshwater (FW) environments has been shown to be highly expressed in the kidney, presumably fulfilling a similar role in NaCl absorption31,32. Fishes have another NCC gene (termed NCC2), which is classically referred to as a ‘fish-specific NCC’, although it has not been found in sharks32. In teleost fishes, NCC2 is localized to the apical membrane of branchial ionocytes and is responsible for branchial NaCl absorption in FW33–36. Within the NKCC1/NKCC2/NCC gene superfamily, NCC1 and NCC2 form distinct lineages, indicating that this gene family has functionally diverged on an evolutionary timescale37.

In teleost fishes, NKCC2 is the predominant cation-chloride cotransporter that facilitates apical ion absorption in the SW intestine. The nkcc2 increases following seawater exposure in a number of teleost species25,26,38. Ion and water uptake by the intestine has been shown to be inhibited by bumetanide, a selective inhibitor of NKCC20. The NCC2 appears to have a role in Na+ and Cl− removal from ingested SW in the esophagus and intestine of the Japanese39,40 and European eel41. However, information regarding the importance of NCC in intestinal ion and water uptake in other fish species is still scarce20.

Although these underlying mechanisms for intestinal SW osmoregulation have been elucidated in teleost fishes, whether such molecular mechanisms are present in the lampreys’ intestine was unknown prior to the present study. Thus, we aimed to functionally characterize the putative molecular pathway for intestinal ion absorption during SW osmoregulation in the sea lamprey (Petromyzon marinus). Sea lamprey has a complex anadromous life cycle marked by a dramatic metamorphosis from a benthic
filter-feeding larva (ammocoete) into a parasitic juvenile that migrates from FW to SW. After ~ 2 years at sea, the adults migrate upstream in search of a place for spawning. Although larval-juvenile metamorphosis has been morphologically conserved from at least the early Cretaceous, ~ 125 mya \(^{42}\), recent studies on fossil records suggest that ammocoetes are specializations of modern lampreys rather than a relic of ancient lampreys \(^{43}\).

We hypothesized that intestinal ion absorption in SW-acclimated sea lamprey occurred by an NKCC and/or NCC. We present the discovery of two functionally divergent NCC isoforms in lamprey, which appear to be basal in structure and function to the NCC isoforms of more derived fishes. Moreover, we show that NCC and not an NKCC2 is the likely pathway for ion absorption in marine lampreys' intestine.

2. Results

2.1. Tissue profile and molecular characterization

We comprehensively surveyed cDNA sequences encoding relevant ion-transporting proteins in the sea lamprey genome in preliminary genomic analyses. Partial sequences of orthologous cDNAs encoding two distinct NCC-like proteins were discovered. The accession numbers of these newly identified sea lamprey NCC sequences are BK014291 and BK014292, which we have subsequently named “NCCa” and “NCCb”, respectively. We could not identify a gene encoding an NKCC2-like protein in any available genome for different lamprey species, whereas we did for NKCC1-, NCCa-, and NCCb-like proteins. Sea lamprey NCCa and NCCb amino acid deduced sequences shared the highest sequence identity to known NCC families; molecular phylogenetic analysis grouped NCCa and NCCb with other NCC sequences (Fig. 1). NCCa occupied a basal position among the NCC1 and NCC2 clades. NCCb was basally positioned within the clade of the conventional, kidney-specific NCC1 sequences.

In tissue profiles, mRNA abundance of \textit{ncca} and \textit{nccb} showed drastically different expression patterns. The \textit{ncca} was expressed predominately in the gills and kidney at ~ 400-fold higher than other tissues in FW-acclimated juvenile sea lamprey (Fig. 2A). Remarkably, \textit{ncca} mRNA was even greater expressed in larvae than juveniles, both acclimated to FW (Barany, unpublished data). Acclimation to SW resulted in ~ 90 % reduction of \textit{ncca} in the gills and kidney. The \textit{nccb} was predominately expressed in the anterior intestine (AI), posterior intestine (PI), and kidney at ~ 1,000-fold higher than other tissues in SW-acclimated sea lamprey (Fig. 2B). The \textit{nccb} mRNA in the AI and kidney of SW-acclimated sea lamprey was 5- and 2-fold higher, respectively, than in FW-acclimated sea lamprey.

In additional metamorphic and salinity experiments, \textit{nccb} in the intestine increased at the late stages of metamorphosis and then increased further after SW acclimation. The \textit{nccb} mRNA levels increased 6- and 5-fold in the AI and PI, respectively, of field-collected post-metamorphic migrating juveniles, compared to juveniles (Fig. 3A, B). In lab-acclimated sea lamprey, intestinal \textit{nccb} mRNA was significantly higher in both the AI (9-fold) and PI (5.5-fold) in FW-acclimated juveniles compared to larvae (Fig. 3C, D).
Acclimation to SW further increased sea lamprey nccb mRNA abundance in the AI (2-fold) and PI (1.5-fold).

2.2. Bioelectrical properties of sea lamprey intestine

The transepithelial potential (TEP) and I_{sc} values observed for this tissue are consistent with a preferential anion-absorbing tissue. Chloride is the primary physiologic anion and the ion suspected of carrying the majority of the current. Thus, both FW- and SW-acclimated sea lamprey were preferentially anion absorptive. In the AI, I_{sc} was significantly less negative after SW acclimation (Fig. 4A). I_{sc} of the AI of SW-acclimated sea lamprey was significantly less negative than that of the PI. The transepithelial electric resistance (TER) did not change across intestinal regions and/or salinities (Fig. 4B).

To investigate whether NKCC2 and/or NCCb are involved in intestinal ion absorption mechanisms in the intestine of the juvenile sea lamprey, increasing concentrations of either bumetanide in preparations from FW- and SW-acclimated juveniles, or indapamide in preparations from SW-acclimated juveniles, were added to the luminal side of the AI and PI. There was no significant effect of bumetanide at any of the concentrations tested (0.1-2.0 mM). In contrast, increasing concentrations of indapamide resulted in significant inhibition of the baseline I_{sc}, and the effect appeared to be dose-dependent. These data are consistent with the presence of an NCC-mediated anion absorptive pathway in both the AI and PI (see Supplementary Fig. S1A, B respectively) regions of the SW-acclimated sea lamprey intestinal tract.

The magnitude of the indapamide effects varied between intestinal regions and with environmental salinity (Fig. 5). In FW, approximately 40 % and 25 % of the baseline anion absorption was indapamide-sensitive in the AI and PI, respectively. In SW, indapamide-sensitive anion absorption was significantly higher in the AI than in the PI. Indapamide-sensitive anion absorption in the AI was 73 % of baseline anion absorption in SW-acclimated juvenile sea lamprey, compared to only 30 % of that PI.

2.3. Intestinal water absorption

Whole intestine water absorption under iso-osmotic conditions decreased significantly by 64% and 41% after the serosal addition of ouabain (500 µM) or luminal addition of indapamide (400 µM), respectively (Fig. 6).

3. Discussion

It has been hypothesized that a first-round (1R) of whole-genome duplication in vertebrates led to an initial divergence of NKCC from NCC and that a second round (2R) of whole-genome duplication in the vertebrate lineage resulted in multiple NKCC and NCC isoforms, NKCC1/NKCC2 and NCC1/NCC2. Whether Agnathans radiated after 1R or 2R is still unresolved.

Our molecular phylogenetic analysis showed that the NCC1 and NCC2 of bony fishes were grouped into distinct NCC1 (conventional, kidney NCC) and NCC2 (ray-finned fish-specific gill NCC) clades. Sea lamprey NCCb was clearly positioned at a basal position within the NCC1 clade. Sea lamprey NCCa was
not explicitly located within either the NCC1 or NCC2 clades and was instead positioned basal to both NCC clades. All retrieved NKCC1-, NCCa-, and NCCb-like proteins from other lamprey species were grouped with the respective identified sequences of the sea lamprey (*Petromyzon marinus*).

The large changes in gene transcription during development and response to environmental changes are good indicators of functional relevance. We found that *nccb* mRNA levels were significantly upregulated in the later stages of metamorphosis, particularly in post-metamorphic juveniles which were captured while actively migrating toward the sea. Barany et al. 14,46 observed increases in intestinal NKA transcription, mRNA, and activity in the late stages of metamorphosis. Both NKA and NCCb might be important to the development of SW tolerance that occurs late in metamorphosis. Based on our transcriptional and pharmacological experiments, NCCb in the intestine was further upregulated in juveniles after exposure to SW. Furthermore, the expression and activity of NCCb in SW were higher in AI than in PI. This salinity-responsive pattern for NCCb is similar to previously reported apical NKCC2 in the intestine of euryhaline teleosts transferred to higher salinities 25,47,48, but also in the basolateral NKCC1 in gills of the sea lamprey 49. These changes in intestinal NCCb expression and activity during metamorphosis and SW-acclimation reflect similar intestinal NKA activity and expression 14, indicating that both of these transporters play a critical role in the development of salinity tolerance.

Although the present study was explicitly focused on functional characterization of the intestinal NCCb isoform, we posit a potential mechanism for branchial ion uptake and renal NaCl reabsorption in FW-acclimated sea lamprey, the NCCa isoform. In our mRNA tissue profile, *ncca* was highly expressed in FW-acclimated juveniles' gills and significantly down-regulated after SW acclimation in agreement with what was found in the adult up-streaming sea lamprey 50. This salinity-specific regulation of gill NCC in order to adapt to different salinities is similar to what has been described of gill NKCC2 in teleosts 36,51,52.

The transcription of both NCCa and NCCb in the sea lamprey kidney is unique and warrants further discussion and investigation. The sea lamprey *ncca* was abundant in the kidney of FW-acclimated juveniles and strongly down-regulated after SW acclimation. By contrast, *nccb* mRNA levels in the kidney were upregulated after SW acclimation. The typical salinity-responsive pattern of the conventional kidney NCC1 in fishes is that it is abundant in FW and down-regulated in SW 31. This indicates that NCCa in sea lamprey kidney functions similar to the conventional, kidney-specific NCC involved salt retention of teleosts in FW. The transcription of the sea lamprey *ncca* in both the gills and kidney is particularly interesting because, in teleost fishes, the NCC in the gills (NCC2) and kidney (NCC1) are two distinct NCC isoforms 31,34,51. It is important to note that the elasmobranch NCC also exhibits FW-specific function in the gills and kidney 32,53, similar to the expression pattern of the sea lamprey NCCa.

In our effort to functionally characterize the intestinal NCCb isoform, we used an electrophysiological approach to elucidate the underlying mechanisms contributing to intestinal ion transport in response to environmental salinity. The sea lamprey intestine's anion absorptive properties reported here agree with what has previously been shown in the sea lamprey intestine 14. Surprisingly, absorptive I_{sc} in the AI was
higher in FW-acclimated juvenile sea lamprey. It is known that FW-acclimated sea lamprey exhibits some minimal drinking14,54. Thus, it could be that the AI might offer extra osmoregulatory support by facilitating ion uptake in ion-poor environments, suggesting that intestinal ion uptake from imbibed FW might be more important than previously thought. In SW, higher anion-absorptive I_{sc} was detected in the PI than in the AI. This demonstrates that these intestinal regions have different functional responses to environmental salinity, similar to what has also been previously reported in teleosts25,38,55. Intestinal precipitates were observed only in SW-acclimated juveniles (Barany et al., unpublished). Thus, the reduction in anion absorption in the AI of SW-acclimated juveniles may also indicate a functional switch in intestinal physiology to secrete HCO_3^- and/or H^+56 into the AI lumen to lower luminal osmolality and facilitate net water absorption57,58.

In the juvenile sea lamprey, the apparent lack of sensitivity to bumetanide indicates that anion absorption by NKCC2 is unlikely to be present in the sea lamprey intestine. This is further supported by our inability to identify a gene encoding NKCC2 in the sea lamprey, western brook lamprey, Pacific lamprey, or Arctic lamprey genomes. We cannot rule out the possibility that a sea lamprey NKCC2 could be insensitive to bumetanide59,60 and that $nkcc2$ is present but has yet to be detected in the available lamprey genomes. Note that no significant effects in I_{sc} were obtained with either chlorothiazide or hydrochlorothiazide, which were initially employed to target a putative NCC. It also should be noted that NKCC1 has been identified and characterized in sea lamprey gills49 but is present only at very low levels in the intestine. Moreover, we were able to identify NKCC1-, NCCa-, and NKCCb-like proteins in the available different lamprey species genomes. Therefore we can surmise two possible explanations for the lack of a sea lamprey $nkcc2$: (i) Agnathans diverged after 2R, but without a functional role, an $nkcc2$ gene was eventually lost; and (ii) Agnathans diverged before 2R, and an $nkcc2$ gene never existed in sea lamprey.

Our results demonstrate that an indapamide-sensitive mechanism (\textit{i.e.}, NCCb) on the apical membrane appears to be a major contributor to anion absorption in the lamprey intestine. Overall lumen-to-serosa ion influx along the intestinal tract was observed, with marked differences depending on intestinal regions. In SW-acclimated sea lamprey juveniles, approximately 70 and 30\% of the net absorptive currents in the AI and PI, respectively, are mediated by presumably NCCb. The remaining uncharacterized absorptive current might involve different apical transporters and/or bidirectional ion movement (\textit{e.g.}, cation secretion and anion absorption, or \textit{vice versa}). Also, we cannot rule out that indapamide did not inhibit all NCCb I_{sc}, even at the highest tested doses.

Additionally, we suggest that DIDS-sensitive mechanisms significantly contribute to I_{sc} substantially (Barany, unpublished results), further supported by observing intestinal carbonate precipitates in SW-acclimated sea lamprey juveniles, thus implicating an apical $\text{Cl}^-/\text{HCO}_3^-$ exchanger. A $\text{Cl}^-/\text{HCO}_3^-$ exchanger has also been postulated to substantially contribute to intestinal Cl^- absorption of marine teleosts25,61. Further research is needed to determine if a similar gut intestinal fluid alkalinization mechanism occurs in sea lamprey.
The contribution of NCCb to anion-absorption in the AI, in particular, is about twice as high in SW compared to FW. Thus, increased environmental salinity may cause a shift of Cl\(^{-}\) absorption mechanisms \(^{38}\), in keeping with previously reported increases in drinking rate, intestinal NKA activity, and intestinal water absorption \(^{14}\), as well as increased gill Cl\(^{-}\) secretory mechanisms \(^{49}\). The higher sensitivity of \(I_{sc}\) to indapamide in the AI than the PI is consistent with higher \(nccb\) transcription in this region.

To better understand how intestinal water absorption was related to NCCb activity, we characterized indapamide-sensitive intestinal water transport in SW-acclimated sea lamprey juveniles. As expected, the serosal addition of ouabain inhibited active water absorption, demonstrating NKA is critical involvement in this process, as has previously been shown in teleosts and sea lamprey \(^{14,62}\). The luminal addition of indapamide also inhibited water absorption to a similar degree as the addition of ouabain. These results indicate that the activity of NCCb in the sea lamprey intestine is a critical anion absorptive mechanism that is functionally coupled to water absorption.

In summary, our finding that an NCCb, and not NKCC2, functions in the intestine offers new insights into the diversification of the vertebrate NKCC/NCC protein superfamily as it might be related to partial and/or whole-genome duplication events. Although the results reported here are an important discovery and describe specific differences in the osmoregulatory roles of NKCCs and NCCs between lamprey and later-derived fishes, further studies are still needed to complete our understanding of ion-absorptive pathways in the gill, kidney, and intestine of the sea lamprey.

4. Materials And Methods

4.1. Animals and experimental designs

All experiments were carried out in accordance with USGS guidelines and approved by the USGS Institutional Animal Care and Use Committee (Protocol No. LB00A3O-117). Sea lamprey juveniles were caught in the Sawmill River, a tributary of the Connecticut River (Montague, MA, USA), by electrofishing or Fyke net capture from July to November 2018. For the metamorphic series, lamprey were sampled in the field immediately upon capture and staged according to the descriptions presented by Youson and Potter \(^{63}\). Salinity acclimation experiments were carried out under laboratory conditions at the USGS Conte Anadromous Fish Research Center (Turners Falls, MA, USA) and acclimated to experimental salinity conditions at least 3 weeks prior to sampling. Experimental SW was prepared by mixing artificial sea salt (Crystal Sea Salt, Baltimore, MD, USA) and dechlorinated municipal FW. Lamprey in FW and SW were kept under natural photoperiod conditions and at a constant temperature of 15 °C in 60 L recirculating glass aquaria equipped with mechanical, chemical, and biological filtration and monitored daily. The animals were not offered food because they naturally stop feeding during metamorphosis and does not resume until they begin parasitic feeding once they reach the ocean.

4.2. Sampling protocol
For all tissue collection, lamprey were euthanized using MS-222 (400 mg L\(^{-1}\) buffered with NaHCO\(_3\), pH 7.0) (Argent Chemical Laboratories, Redmond, WA, USA). Tissue was collected from the gills and two sections of the intestine: (i) the AI, corresponding to 1.5–2 cm after the end of the oesophagus; and (ii) the PI, which corresponds to a section of distal intestine, 2–3 cm in length, delimited by the rectal sphincter. All samples were immediately frozen and stored at -80°C until analysis, except in cases of measurements of intestinal water permeability and electrophysiology, where the tissues were used immediately after dissection.

4.3. Gene identification and molecular phylogenetic analysis

Gene-specific primers were designed based on sea lamprey genomic information available from the SIMRbase (https://genomes.stowers.org/). The identity of annotated genes was confirmed using sequence identity comparison and NCBI blast analyses.

The deduced amino acid sequences of the obtained annotated genes were predicted using the Translate tool provided by the ExPASy bioinformatics resource portal (https://www.expasy.org). Phylogenetic analysis was carried out on a balanced selection of vertebrate NKCC1, NKCC2 and NCC peptides available from NCBI GenBank, Ensemble Genomes and SIMRbase, using a ClustalW alignment (https://www.ebi.ac.uk/clustalw) and the neighbour-joining method with bootstrap analysis for 1000 cycles implemented by Mega-X software. Accession numbers for the peptides used in the phylogenetic analysis were: lancelet (NKCC/NCC-like, XP_035666237.1), human (NKCC1, U30246; NKCC2, NM_000338; NCC1, X91220), mouse (NKCC1, NP_033220.2; NKCC2, NP_899197.2; NCC1, NP_062288.1), rat (NCC1, NP_062218.3; KCC1, NM_019229.2), tilapia (NKCC1, AY513737; NKCC2, AY513739; NCC2, EU518934), eel (NKCC1, AJ486858; NKCC2, AJ564602; NCC1, AJ564604; NCC2, AJ564606), zebrafish (NCC1, NP_001038545; NCC2a, NP_001154850; NCC2b, NP_001128603.1), medaka (NCC2a, KJ489428; NCC2b, KJ489429), mefugu (NCC1, AB479211), flounder (NCC1, L11615), gar (NCC1, ENSLOCG00000007841; NCC2, ENSLOCG0000000965), sturgeon (NCC1, XP_033895975.2; NCC2, XP_034770356.1), coelacanth (NCC1, XM_014494272), elephant fish (NKCC1, AB769492; NKCC2, AB769493; NCC1, AB769494), dogfish (NKCC1, U05958; NKCC2a, AF521915), bullshark (NCC1, AB769491), houndshark (NKCC1, AB669487; NKCC2, AB769486; NCC1, AB769487), arctic lamprey (NCCa-like, KE993714.1; NCCb-like, APJL01019054.1); western brook lamprey (NKCC1-like, LPT_00008897-P; NCCa-like, LPT_00002495-RA; NCCb-like, LPT_00012662-RA); pacific lamprey (NKCC1-like, ETRf_mk00026850-P; NCCa-like, ETRf_mk00025483-RA; NCCb-like, ETRf_mk00025494-RA); sea lamprey (NKCC1, MK779970.1; NCCa, BK014291; NCCb, BK014292).

4.4. RNA isolation and quantitative real-time PCR

Total RNA was extracted from frozen tissues using the TRIzol reagent (Molecular Research Center Inc., Cincinnati, OH, USA) following the manufacturer’s protocol. The total RNA concentration and purity of each sample were determined spectrophotometrically using a Take3 microvolume plate reader (BioTek Instruments, Inc., Winooski, VT, USA), and RNA integrity was assessed using gel electrophoresis. Only
high-purity RNA (1.9 < A260/A280 > 2.2) were used for cDNA synthesis. First-strand cDNA synthesis was accomplished using a High-Capacity Reverse Transcription Kit following the manufacturer’s protocol (Applied Biosystems, Carlsbad, CA, USA).

Quantitative real-time PCR (RT-qPCR) reactions were carried out in 10 µl reactions containing 5 ng cDNA template (estimated from the input of total RNA), 150 nM forward and reverse primers, and SYBR Select master mix (ThermoFisher, Waltham, MA, USA). All RT-qPCR reactions were performed in optical 96-well reaction plates in a StepOnePlus™ Real-Time PCR System (Applied Biosystems, Inc., Foster City, CA, USA) covered with adhesive seals. The thermocycling procedure was as follows: an initial step of 50°C (2 min) followed by 95°C (2 min), and then 40 consecutive cycles of 95°C (15 s), 60°C (1 min), and 72°C (30 s). Melting curves were used to ensure that only a single PCR product was amplified and to verify the absence of primer-dimer artefacts. A pool of concentrated cDNA from all samples for each tissue was used for a standard curve, which was a five-point, serial 10-fold dilution from 50 ng to 5 pg. The linearity and efficiency of amplification for each primer combination was assessed. Control reactions with RNase free water (no template control) and RNA (no reverse transcriptase during cDNA synthesis) were included in the analysis to ensure the absence of primer-dimerization and genomic DNA contamination. For all pairs of primers, linearities (R^2) and amplification efficiencies were in the ranges 0.998-1 and 0.923–0.939, respectively. The relative gene expressions were quantified using the ΔΔC$_T$ method 64, corrected for efficiencies 65, and referenced to the relative mRNA expression of the difference between the target gene and an endogenous reference gene (eef1α; gene encoding eukaryotic elongation factor 1-alpha) for each sample. Primer sequence details are shown in Table 1.

Gene name	Nucleotide sequence (5’→3’)	GenBank acc. no.	Amplicon size (bp)
ncca (*)	Fw GTCTCACTTCGACCTTCCT	BK014291	289
	Rv ACACCGGATGAAATTCTCG		
nccb	Fw GATCCTGCTGGACCTCGC	BK014292	177
	Rv CAGTACAGGGTGACGCTTT		
eef1α	Fw GTGGGTCGTGTTGAGACTGG	KU726618	208
	Rv GGTGTTCTTTGCTGAC		

(*): Primers from Ferreira-Martins D, Coimbra J, Antunes C, Wilson JM. Effects of salinity on upstream-migrating, spawning sea lamprey, Petromyzon marinus. Conserv Physiol. 2016;4(1).
4.5. Chemicals

Bumetanide (a selective NKCC2 inhibitor), ouabain (a selective NKA inhibitor), and indapamide (a selective NCC inhibitor) were purchased from ThermoFisher (Waltham, MA, USA) and prepared as concentrated stocks in dimethyl sulfoxide (DMSO) except ouabain, which was dissolved in lamprey serosal saline. The final volume of DMSO never exceeded 0.2 %, and no effect of DMSO at this concentration was observed on multiple tissues tested (data not shown).

4.6. Electrophysiology in Ussing chambers

Anterior and posterior intestinal tissues were dissected, washed, and mounted in Ussing chambers. The tissues were opened longitudinally, flattened, and placed between the chambers containing 1.2 mL of serosal saline (in mM: 128.0 NaCl, 1.2 NaH₂PO₄, 5.0 NaHCO₃, 4.0 KCl, 2.4 CaCl₂, 0.9 MgSO₄, 0.9 MgCl₂, 5.5 glucose; 270 mOsm/kgH₂O; pH 7.8). During the experiments, the tissue was bilaterally gassed with humidified 0.5 % CO₂ in oxygen, and the temperature was maintained at 15°C. The TEP (in mV) was referenced to the luminal side, where a positive TEP indicates that the luminal side is positively charged with respect to the serosal side. The I_{sc} (in µA cm⁻²) was monitored by clamping epithelia to 0 mV expressed as negative for the absorption of anions. The TER (in Ω·cm²) was manually calculated (Ohm's Law) using the current deflections induced by a 10 mV pulse at the beginning and the end of the experiment. After the tissue achieved a steady state, which usually occurred between 30 and 40 min after mounting, all data were digitally recorded using the Lab-Trax-4 acquisition system (World Precision Instruments, Sarasota, FL, USA) and LabScribe3 software (iWorx Systems Inc., Dover, NH, USA). Ag–AgCl electrodes were used as short-circuiting electrodes to measure transepithelial electrical properties. The electrodes were connected to the serosal and luminal sides using PE90 tubing containing solidified 3 mM KCl and 2% agar. A high impedance automatic dual voltage clamp (EVC 4000-4, World Precision Instructions, Sarasota, FL) was used for voltage clamping and monitoring TEP. Under these conditions, the measured I_{sc} is a function of transcellular ion transport that requires an energy input (active transport).

4.7. Determination of iso-osmotic in vitro intestinal water absorption

Water absorption was determined following previous methods. Briefly, the intestinal sections were isolated, flushed and then incubated for 30 min in lamprey serosal saline bubbled with a physiological gas mixture (humidified 0.5 % CO₂ in oxygen). Saline was maintained at 15°C and pre-gassed for at least 30 min before experimentation. The ends of the intestinal samples were sealed at each end using dental line and placed in a beaker containing serosal saline supplied with the gas mixture. The intestinal preparations were weighed every 15 min for 1 h. At the end of the experiment, each intestinal section was opened, placed on graph paper, and then photographed. The surface area of the intestinal segment within the tied region was determined using ImageJ software (NIH, Bethesda, MD).

4.8. Statistical analysis
Statistical comparisons across experimental procedures were performed using unpaired Student's t-test, one-sample t-test, one-way ANOVA, and two-way ANOVA, as indicated in the figure legends. All data are represented as the mean ± SEM. Prior to these statistical analyses, both normality and equal variance were confirmed. When ANOVA yielded significant differences, Tukey's post hoc test was used to identify these. Statistical significance was accepted at P < 0.05.

Declarations

FUNDING

This research was funded by two International Mobility Program Fellowships from the University of Cadiz, UCA-INTERNACIONAL- POSGRADO and PU / PP-EST / MV / 2018-004 (to A. Barany) and the National Science Foundation Grant IOS-1558025 (to S.D. McCormick). CCMAR is supported by Portuguese national funds from the Foundation for Science and Technology (FCT) through project UIDB/04326/2020

ACKNOWLEDGMENTS

We thank Amy Regish, Jessica Norstog, Diogo Ferreira Martins, Daniel Hall, Hadley Kerr, and Alec Daigle for help in collecting and sampling sea lamprey. Any use of product or firm names is only for descriptive purposes and does not imply endorsement by the US Government.

AUTHOR CONTRIBUTIONS

A.B., C.A.S., and S.D.M., conception and design of research; C.A.S., and S.D.M collected sea lamprey juveniles; A.B., conducted all live animal experimentation; A.B., and C.A.S., performed phylogeny; A.B., performed ex-vivo, molecular and electrophysiological analyses, data curation, and statistical analyses; A.B., wrote original manuscript draft; A.B., C.A.S., R.P., J.F., J.M.M., and S.D.M., edited, revised and approved the final version of the manuscript.

COMPETING INTERESTS

The author(s) declare no competing interests.

DATA AVAILABILITY

All data generated or analyzed during this study are included in this published article (and its Supplementary Information files).
References

1. Kuraku, S. & Kuratani, S. Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences. Zoolog. Sci, 23, 1053–1064 (2006).

2. Miyashita, T. et al. Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological-molecular conflict in early vertebrate phylogeny. Proc. Natl. Acad. Sci. U. S. A. 116, 2146–2151 (2019).

3. MacLeod, N. The Great Extinctions: What Causes Them and how They Shape Life (Firefly Books, 2013).

4. Corso, J. D. et al. Extinction and dawn of the modern world in the Carnian (Late Triassic). Sci. Adv, 6, 1–13 (2020).

5. Gess, R. W., Coates, M. I. & Rubidge, B. S. A lamprey from the Devonian period of South Africa. Nature, 443, 981–984 (2006).

6. Holland, L. Z. & Ocampo Daza, D. A new look at an old question: When did the second whole genome duplication occur in vertebrate evolution? Genome Biol, 19, 2–5 (2018).

7. Wang, S., Hard, J. J. & Utter, F. Genetic variation and fitness in salmonids. Conserv. Genet, 3, 321–333 (2002).

8. Uyeno, T. & Smith, G. R. Tetraploid origin of the karyotype of catostomid fishes. Science (80-), 175, 644–646 (1972).

9. David, L., Blum, S., Feldman, M. W., Lavi, U. & Hillel, J. Recent duplication of the common carp (Cyprinus carpio L.) Genome as revealed by analyses of microsatellite loci. Mol. Biol. Evol, 20, 1425–1434 (2003).

10. Vrijenhoek, R. C. The Evolution of Clonal Diversity in Poeciliopsis. Evol. Genet. Fishes, 399–429 https://doi.org/10.1007/978-1-4684-4652-4_8 (1984).

11. Griffith, R. W. Chemistry of the Body Fluids of the Coelacanth, Latimeria chalumnae. Proc. R. Soc. London. Ser. B, Biol. Sci. 208, 329–347 (1980).

12. Pang, P. K. T., Griffith, R. W. & Atz, J. W. Osmoregulation in elasmobranchs. Integr. Comp. Biol, 17, 365–377 (1977).

13. Donoghue, P. C. J. & Purnell, M. A. Genome duplication, extinction and vertebrate evolution. Trends Ecol. Evol, 20, 312–319 (2005).

14. Barany, A., Shaughnessy, C. A., Fuentes, J., Mancera, J. M. & McCormick, S. D. Osmoregulatory role of the intestine in the sea lamprey (Petromyzon marinus). Am. J. Physiol. Regul. Integr. Comp. Physiol, 318, R410–R417 (2020).

15. Skadhauge, E. The mechanism of salt and water absorption in the intestine of the eel (Anguilla anguilla) adapted to waters of various salinities. J Physiol135–158(1969).

16. Grosell, M. & Taylor, J. R. Intestinal anion exchange in teleost water balance. 148,14–22(2007).
17. Cerdà, J. & Finn, R. N. Piscine aquaporins: an overview of recent advances. *J. Exp. Zool. A. Ecol. Genet. Physiol*, **313**, 623–650 (2010).

18. Loo, D. D. F., Wright, E. M. & Zeuthen, T. Water pumps. *J. Physiol*, **542**, 53–60 (2002).

19. Zeuthen, T. Water-transporting proteins. *J. Membr. Biol.*, **234**, 57–73 (2010).

20. Whittamore, J. M. Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. *J. Comp. Physiol. B*, **182**, 1–39 (2012).

21. Grosell, M. The role of the gastrointestinal tract in salt and water balance. Fish Physiology vol. 30 (Elsevier Inc., 2010).

22. Sundell, K. & Sundh, H. Intestinal fluid absorption in anadromous salmonids: importance of tight junctions and aquaporins. *Front. Physiol.*, **3**, 388 (2012).

23. Grosell, M. Intestinal anion exchange in marine teleosts is involved in osmoregulation and contributes to the oceanic inorganic carbon cycle. *Acta Physiol. (Oxf)*, **202**, 421–434 (2011).

24. Watanabe, T. & Takei, Y. Molecular physiology and functional morphology of SO42− excretion by the kidney of seawater-adapted eels. *J. Exp. Biol.*, **214**, 1783–1790 (2011).

25. Gregorio, S. F. et al. Adaptation to different salinities exposes functional specialization in the intestine of the sea bream (Sparus aurata L.). *Journal of Experimental Biology* vol. 216 (2013).

26. Shaughnessy, C. A. & Breves, J. P. Molecular mechanisms of Cl− transport in fishes: New insights and their evolutionary context. *J. Exp. Zool. Part A Ecol. Integr. Physiol.*, **335**, 207–216 (2021).

27. McCormick, S. D. et al. Physiological and endocrine changes in Atlantic salmon smolts during hatchery rearing, downstream migration, and ocean entry. *Can. J. Fish. Aquat. Sci*, **70**, 105–118 (2013).

28. Plotkin, M. D. et al. Localization of the thiazide sensitive Na-Cl cotransporter, rTSC1, in the rat kidney. *Kidney Int*, **50**, 174–183 (1996).

29. Reilly, R. F. & Ellison, D. H. Mammalian distal tubule: Physiology, pathophysiology, and molecular anatomy. *Physiol. Rev*, **80**, 277–313 (2000).

30. Yang, S. et al. Generation and analysis of the thiazide-sensitive Na+Cl− cotransporter (Ncc/Slc12a3) Ser707X knockin mouse as a model of Gitelman syndrome. *Hum. Mutat*, **31**, 1304–1315 (2010).

31. Kato, A. & Romero, M. F. Regulation of electroneutral NaCl absorption by the small intestine. *Annu. Rev. Physiol.*, **73**, 261–281 (2011).

32. Takabe, S., Inokuchi, M., Yamaguchi, Y. & Hyodo, S. Distribution and dynamics of branchial ionocytes in houndshark reared in full-strength and diluted seawater environments. *Comp. Biochem. Physiol. - Part A Mol. Integr. Physiol*, **198**, 22–32 (2016).

33. Inokuchi, M., Hiroi, J., Watanabe, S., Lee, K. M. & Kaneko, T. Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. *Comp. Biochem. Physiol. - A Mol. Integr. Physiol*, **151**, 151–158 (2008).
34. Hwang, P. P. Ion uptake and acid secretion in zebrafish (Danio rerio). *J. Exp. Biol.*, **212**, 1745–1752 (2009).

35. Hsu, H. H., Lin, L. Y., Tseng, Y. C., Horng, J. L. & Hwang, P. P. A new model for fish ion regulation: Identification of ionocytes in freshwater- and seawater-acclimated medaka (Oryzias latipes). *Cell Tissue Res.*, **357**, 225–243 (2014).

36. Breves, J. P. *et al.* Clc-2c is regulated by salinity, prolactin and extracellular osmolality in tilapia gill. *J. Mol. Endocrinol.*, **59**, 391–402 (2017).

37. Takei, Y., Hiroi, J., Takahashi, H. & Sakamoto, T. Diverse mechanisms for body fluid regulation in teleost fishes. *Am. J. Physiol. Integr. Comp. Physiol.*, **307**, R778–R792 (2014).

38. Ruiz-Jarabo, I., Barany, A., Jerez-Cepa, I., Mancera, J. M. & Fuentes, J. Intestinal response to salinity challenge in the Senegalese sole (Solea senegalensis). *Comp. Biochem. Physiol. - Part A Mol. Integr. Physiol.*, **204**, 57–64 (2017).

39. Watanabe, S., Mekuchi, M., Ideuchi, H., Kim, Y. K. & Kaneko, T. Electroneutral cation-Cl- cotransporters NKCC2B and NCCB expressed in the intestinal tract of Japanese eel Anguilla japonica. *Comp. Biochem. Physiol. - A Mol. Integr. Physiol.*, **159**, 427–435 (2011).

40. Takei, Y. *et al.* Molecular mechanisms underlying active desalination and low water permeability in the esophagus of eels acclimated to seawater. *Am. J. Physiol. - Regul. Integr. Comp. Physiol.*, **312**, R231–R244 (2017).

41. Cutler, C. P. & Cramb, G. Differential expression of absorptive cation-chloride-cotransporters in the intestinal and renal tissues of the European eel (Anguilla anguilla). *Comp. Biochem. Physiol. - B Biochem. Mol. Biol.*, **149**, 63–73 (2008).

42. Chang, M., Wu, F., Miao, D. & Zhang, J. Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle.1–5(2014) doi:10.1073/pnas.1415716111.

43. Miyashita, T., Gess, R. W., Tietjen, K. & Coates, M. I. Non-ammocoete larvae of Palaeozoic stem lampreys. *Nature*, **591**, 408–412 (2021).

44. Hartmann, A. M., Tesch, D., Nothwang, H. G. & Bininda-Emonds, O. R. P. Evolution of the cation chloride cotransporter family: Ancient origins, gene losses, and subfunctionalization through duplication. *Mol. Biol. Evol.*, **31**, 434–447 (2014).

45. Smith, J. J. *et al.* The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. *Nat. Genet.*, **50**, 270–277 (2018).

46. Barany, A., Shaughnessy, C. A. & McCormick, S. D. Corticosteroid control of Na+/K+-ATPase in the intestine of the sea lamprey (Petromyzon marinus). *Gen. Comp. Endocrinol.*, **307**, 113756 (2021).

47. Sundh, H. *et al.* Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar. *J. Fish Biol.*, **85**, 1227–1252 (2014).

48. Esbaugh, A. J. & Cutler, B. Intestinal Na+, K+, 2Cl- cotransporter 2 plays a crucial role in hyperosmotic transitions of a euryhaline teleost. *Physiol. Rep.*, **4**, (2016).
49. Shaughnessy, C. A. & McCormick, S. D. Functional characterization and osmoregulatory role of the Na+-K+2Cl- cotransporter in the gill of sea lamprey (Petromyzon marinus), a basal vertebrate. *Am. J. Physiol. - Regul. Integr. Comp. Physiol, 318*, R17–R29 (2020).

50. Ferreira-Martins, D., Coimbra, J., Antunes, C. & Wilson, J. M. Effects of salinity on upstream-migrating, spawning sea lamprey, Petromyzon marinus. *Conserv. Physiol, 4*, (2016).

51. Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P. P. & Kaneko, T. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. *J. Exp. Biol, 211*, 2584–2599 (2008).

52. Dymowska, A. K., Hwang, P. P. & Goss, G. G. Structure and function of ionocytes in the freshwater fish gill. *Respir. Physiol. Neurobiol, 184*, 282–292 (2012).

53. Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P. P. & Kaneko, T. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. *J. Exp. Biol, 211*, 2584–2599 (2008).

54. Dymowska, A. K., Hwang, P. P. & Goss, G. G. Structure and function of ionocytes in the freshwater fish gill. *Respir. Physiol. Neurobiol, 184*, 282–292 (2012).

55. Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P. P. & Kaneko, T. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. *J. Exp. Biol, 211*, 2584–2599 (2008).

56. Dymowska, A. K., Hwang, P. P. & Goss, G. G. Structure and function of ionocytes in the freshwater fish gill. *Respir. Physiol. Neurobiol, 184*, 282–292 (2012).

57. Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P. P. & Kaneko, T. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. *J. Exp. Biol, 211*, 2584–2599 (2008).

58. Dymowska, A. K., Hwang, P. P. & Goss, G. G. Structure and function of ionocytes in the freshwater fish gill. *Respir. Physiol. Neurobiol, 184*, 282–292 (2012).

59. Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P. P. & Kaneko, T. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. *J. Exp. Biol, 211*, 2584–2599 (2008).

60. Dymowska, A. K., Hwang, P. P. & Goss, G. G. Structure and function of ionocytes in the freshwater fish gill. *Respir. Physiol. Neurobiol, 184*, 282–292 (2012).
64. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-\(\Delta\Delta CT\) method., 25, 402–408 (2001).

65. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29, e45 (2001).

Figures
Molecular phylogenetic tree of vertebrate NKCC/NCC family. Rat KCC1 was used as an outgroup to root the tree.

Figure 2

Gene transcription of ncca (A) and nccb (B) isoforms in a tissue profile of juvenile sea lamprey acclimated to either FW or SW. Abbreviations: B, brain; P, pituitary; G, gill; H, heart; L, liver; Al, anterior intestine; PI, posterior intestine; K, kidney; M; muscle. Values are relative to the FW brain tissue. Each
Gene transcription of nccb in the anterior, AI (A) and posterior intestine, PI (B) during metamorphosis of the sea lamprey. Gene transcription of nccb in the AI (B) and PI (C) for larvae, and FW- and SW-acclimated juvenile sea lamprey. Each column represents mean ± SEM (n = 4-19). Different superscript letters indicate significant differences within intestinal regions among life stages (A and B; P < 0.05, one-way ANOVA, Tukey’s post hoc). *Significant differences within the same environmental salinities between groups (B and C; unpaired Student’s t-test).
Figure 4

(A) Short-circuit current (I_{sc}, μA cm$^{-2}$), and (B) transepithelial electric resistance (TER, Ω·cm2) in the anterior (AI) and posterior (PI) intestine of FW- and SW-acclimated juvenile sea lamprey. Each column represents mean ± SEM ($n = 8–15$). Different letters indicate significant differences within intestinal regions between environmental salinities. *Significant differences between intestinal regions within salinities (two-way ANOVA, Tukey’s post hoc).
Figure 5

Per cent inhibition of baseline short circuit current (%) in response to luminal indapamide (0.4 mM) in FW- and SW-acclimated juvenile sea lamprey. All data are the mean ± SEM (n = 5-8). Different letters indicate significant differences within intestinal regions between environmental salinities. *Significant differences between intestinal regions within environmental salinities (two-way ANOVA, Tukey’s post hoc).
Figure 6

Intestinal water absorption (% of control) in whole intestines of juvenile sea lamprey acclimated to SW. Ouabain (500 µM) was added to the serosal side, and indapamide (400 µM) was added to the luminal side. All data are presented as mean ± SEM (n=3-4). Different letters indicate significant differences among groups (one-way ANOVA, Tukey’s post hoc).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- AvailableData.7z
- SupplementaryFigure1.docx