ABSTRACT

Gastric cancer (GC) is one of the most common lethal malignant neoplasms worldwide, with limited treatment options for both locally advanced and/or metastatic conditions, resulting in a dismal prognosis. Although the widely used morphological classifications may be helpful for endoscopic or surgical treatment choices, they are still insufficient to guide precise and/or personalized therapy for individual patients. Recent advances in genomic technology and high-throughput analysis may improve the understanding of molecular pathways associated with GC pathogenesis and aid in the classification of GC at the molecular level. Advances in next-generation sequencing have enabled the identification of several genetic alterations through single experiments. Thus, understanding the driver alterations involved in gastric carcinogenesis has become increasingly important because it can aid in the discovery of potential biomarkers and therapeutic targets. In this article, we review the molecular classifications of GC, focusing on The Cancer Genome Atlas (TCGA) classification. We further describe the currently available biomarker-targeted therapies and potential biomarker-guided therapies. This review will help clinicians by providing an inclusive understanding of the molecular pathology of GC and may assist in selecting the best treatment approaches for patients with GC.

Keywords: Gastric cancer; Human genome project; Molecular diagnostic testing; Diagnostic molecular pathology; Biomarker; Molecular targeted therapy

INTRODUCTION

Gastric cancer (GC) is one of the most common cancers and the third leading cause of cancer-related deaths worldwide, with more than 768,793 estimated deaths in 2020 [1], despite the ongoing decline in incidence and mortality in recent decades. Unfortunately, there is a significant difference in both the incidence and mortality of GC patients between East Asian and Western countries owing to the lack of validated screening programs for GC and the quality of global therapeutic approaches [2,3]. Most patients in Western countries are diagnosed late with advanced GC disease stages, and these patients show poor prognosis with a high mortality rate. Although targeted drugs in combination with conventional chemotherapeutic agents have improved the overall survival (OS) of patients with GC, the long-term survival of patients with advanced and/or metastatic disease remains poor [4-6].
Currently, therapeutic regimens follow a “one-size-fits-all” approach and do not consider the highly heterogeneous nature of GC. From morphological and molecular viewpoints, GC is a heterogeneous disease [7]. Moreover, GC is a multifactorial disease influenced by both genetic and environmental risk factors [8]. For these reasons, it may be difficult to target the entire tumor despite better control over known risk factors and improvements in new therapeutic strategies, including new chemotherapeutic and targeted agents such as trastuzumab and ramucirumab.

With respect to patient stratification, although numerous morphologic classifications for GC have been proposed, the Lauren, Japanese Gastric Cancer Association (JGCA), and World Health Organization (WHO) classification systems are the most popular [9]. Nevertheless, their clinical utility in guiding precise treatment for individual patients is doubtful [10,11]. Therefore, new alternative schemes for patient stratification are required. Recently, remarkable advances in genomic technology and high-throughput analysis have made it possible to study GC at a molecular level. Integrative analyses of large-scale genomic and proteomic profiling data have facilitated the identification of candidate driver alterations in GC pathogenesis [11]. Understanding these candidate driver alterations may lead to the discovery of potential biomarkers and therapeutic targets [11-14]. Taken together, the molecular genetic classification of GC may help define future personalized therapy plans by providing opportunities for patient stratification and the development of new biomarkers for clinical trials. For example, recent molecular data offer a rationale for examining the importance of Epstein-Barr virus (EBV) and mismatch repair (MMR) systems in predicting immunotherapy efficacy in GC [15].

The aim of this review is to help clinicians understand the molecular classification of GCs, particularly focusing on The Cancer Genome Atlas (TCGA) classification [16], which has paved the way for targeted therapies in GC. We discuss established biomarker-guided therapies for GC, including human epidermal growth factor receptor 2 (HER2)-targeted, immune checkpoint inhibitor (ICI), and tropomyosin receptor kinase (TRK) inhibitor therapies. We also discuss the potential biomarkers of targetable alterations. Owing to the increasing demand for the revision of the ‘Standardized Pathology Report for Gastric Cancer,’ the Committee of the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists was organized in 2022, and after several discussions and consensus meetings, the Standardized Pathology Report for Gastric Cancer, 2nd edition, will be released. Thus, detailed principles and guidelines for the interpretation of biomarker testing in routine pathology laboratories will be described in the Standardized Pathology Report for Gastric Cancer, 2nd edition.

This comprehensive review will assist medical trainees and clinicians dedicated to GC treatment in selecting the best precision management approaches for patients with GC by improving the understanding of the molecular pathology of GC.

MOLECULAR CLASSIFICATION OF GC

TCGA molecular classification of GC
The advent of molecular techniques has accelerated the molecular classification of various human cancers [12,17]. TCGA groups have categorized GC into four subtypes using large-scale genome sequencing analysis: EBV-positivity, microsatellite instability
EBV-positive GC (8.8% of GC cases in the TCGA cohort) is more prevalent in men than in women and commonly occurs in the gastric fundus and body (in the upper and middle parts of the stomach) [16,18-20]. EBV-positive GC displays extreme CpG island methylator phenotypes (CIMP), which are distinct from those of MSI GC [16,21]. These are characterized by cyclin-dependent kinase inhibitor 2A (CDKN2A) promoter hypermethylation and MLH1 promoter hypermethylation deficiency [16,22]. Genes that are frequently mutated in EBV-associated gastric carcinomas (EBVaGCs) include phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), AT-rich interactive domain-containing protein 1A (ARID1A), and BCL6 corepressor (BCOR) [16,23]. Interestingly, PIK3CA mutations were frequently found in 80% of EBV-positive GC cases and 42% of MSI GC cases in the TCGA cohort. However, PIK3CA mutations in EBV-positive GC displayed a more dispersed pattern than those localized in the kinase domain (exon 20) in EBV-negative GC [16]. Although not as high as 80% as observed in other studies, a significant association was observed between EBV-positive status and PIK3CA mutations [24,25]. PIK3CA regulates the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway, and its mutations have been found in various cancers [24,26]. Clinical trials evaluating the efficacy of PI3K/AKT/mammalian target of rapamycin (mTOR) axis inhibitors in PIK3CA-mutated patients with advanced cancers are currently ongoing [27]. Recently, the Food and Drug Administration (FDA) has approved the use of alpelisib plus fulvestrant for patients with hormone receptor-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer [28-30]. However, in a recent study on EBV-positive GC, intratumoral and intertumoral heterogeneity of PIK3CA mutations was identified using hot spot pyrosequencing and next-generation sequencing (NGS) [24]. Furthermore, research showed that intratumoral heterogeneity of EBV-encoded small RNA (EBER)-positivity with juxtaposition of EBER-negative and EBER-positive tumor areas was assessed using the EBER in situ hybridization (ISH) assay [24]. Although its utility as a
potential biomarker is being investigated, these findings may attenuate the effects of targeted therapies for \textit{PIK3CA} mutations. Tumor protein p53 (\textit{TP53}) mutations are known to rarely occur in EBV-positive GC owing to EBV-induced p53 stabilization [16,31]; however, based on our experience, \textit{TP53} mutations are not as infrequent as previously reported, particularly in EBV-positive GC with intestinal-type histology (unpublished data). EBV-positive GC exhibits a high frequency of amplifications for programmed death ligands 1 and 2 (PD-L1 and PD-L2), Janus kinase 2 (\textit{JAK2}), and erb-b2 receptor tyrosine kinase 2 (\textit{ERBB2}; \textit{HER2}) [16]. The intensity of IL-12-mediated signals in EBV-positive GC suggests the presence of strong immune cells [16,32]. Combined with an evidence of PD-L1/2 overexpression, these findings provide a rationale for testing immune checkpoint inhibitors as therapeutic agents for EBV-positive GC [16,33,34]. As such, EBV-positive GC has distinct genetic and epigenetic molecular characteristics as well as distinct histologic features, which will be discussed later.

MSI in GCs (21.7% of GC cases in the TCGA cohort) was more prevalent in females and older patients and was mainly localized in the gastric antrum (in the distal part of the stomach) [16]. MSI GC shows a very high number of mutations (hypermutation) and MSI-associated gastric-CIMP methylation with epigenetic silencing of mutl. homolog 1 (\textit{MLH1}) [16]. \textit{MLH1} promoter methylation is the most frequent mechanism leading to MSI-H in GC [35,36], although MSI-H phenotypes occur via various mechanisms [37]. MSI GC is noted to be associated with mutations of \textit{PIK3CA}, erb-b2 receptor tyrosine kinase 3 (\textit{ERBB3}; \textit{HER3}), \textit{ERBB2}, and \textit{EGFR}, along with major histocompatibility complex I; moreover, MSI GC is generally rare, with targetable gene amplifications [16]. In contrast, B-Raf proto-oncogene and serine/threonine kinase (\textit{BRAF}) V600E mutations were not found in colorectal cancer with high MSI (MSI-H) [16,38]. MSI-H is an FDA-approved biomarker used to predict responses to pembrolizumab, an anti-PD1 antibody [39]. Neoantigens derived from hypermutated genes in MSI-H tumors elicit enhanced antitumor responses to ICIs [40]. Therefore, the detection of MSI-H GCs is needed to assess their eligibility for immunotherapy. Histological data of MSI-H GCs revealed diverse patterns, usually accompanied by dense lymphocytic infiltration, similar to EBV GC [37,41].

Genomically stable (GS) GC (19.7% of GC cases in the TCGA cohort) are associated with a diffuse type of Lauren histology and are diagnosed at a relatively younger age [16,42,43]. The somatic mutational burden of GS GC is the lowest among the four subtypes; accordingly, fewer targetable genetic alterations were observed in GS GC than in other subtypes [16]. Among them, mutations in cadherin 1 (\textit{CDH1}), ras homolog family member A (\textit{RHOA}), and \textit{ARID1A} were commonly observed [16,44,45]. In addition, 15% of GS GC cases harbored a \textit{CLDN18--ARHGAP26} translocation, which was mutually exclusive with somatic \textit{RHOA} alterations, contributing to dysregulated Rho signaling and enhanced cell motility. In line with this, GS GC demonstrated elevated syndecan-1 mediated signaling and angiogenesis-related pathways, in addition to enhanced expression of B1/B3 integrins, which may serve as potential therapeutic targets [16,46,47].

CIN in GC (49.8% of GC cases in the TCGA cohort) represents the largest group and is characterized by marked aneuploidy, either broadly or focally [13,16]. This subtype preferentially occurs in GEJ and cardia, and is associated with the intestinal type of Lauren histology [16,32]. \textit{TP53} is most frequently altered in this subtype (71% of CIN GC cases) [48]. Additionally, genomic amplification of receptor tyrosine kinase (RTKs), including \textit{ERBB2} (\textit{HER2}), \textit{ERBB3} (\textit{HER3}), \textit{EGFR}, \textit{FGFR2}, \textit{MET}, \textit{JAK2}, \textit{KRAS} proto-oncogene, GTPase (\textit{KRAS}) or \textit{NRAS} proto-oncogene, GTPase (\textit{NRAS}), and vascular endothelial growth factor A (\textit{VEGFA}),
as well as cell cycle mediators (cyclin E1 [CCNE1], cyclin D1 [CCND1], and cyclin-dependent kinase 6 [CDK6]), have been observed, some of which are therapeutic targets [16, 49-53]. During reverse-phase protein array analysis, phosphorylation of EGFR and expression of p53 appeared to be significantly increased, consistent with EGFR amplification and frequent TP53 mutations in this subtype [16]. In a subsequent study, it was reported that GC patients with CIN experienced the greatest benefit from adjuvant chemotherapy (CTx), whereas those with GS experienced the least benefit from adjuvant CTx [54]. As CIN occurs in nearly 50% of GC patients and is associated with frequent targetable genetic alterations, further studies on the respective targeted drugs are urgently needed.

Although the TCGA group did not investigate the association between molecular subtypes and prognosis, subsequent studies demonstrated that the prognosis of EBV-positive GC and MSI-H GC was better than that of the other subtypes, whereas the prognosis of GS GC was the worst [54-56].

OTHER MOLECULAR CLASSIFICATIONS

In addition to the TCGA molecular classification of GC, which is the most frequently used, other molecular classifications of GC have been proposed using different molecular methods and analysis tools. Of these, we briefly review the molecular classification suggested by the Asian Cancer Research Group (ACRG) and the Singapore groups. Furthermore, we summarize a simplified algorithm that can reproduce the recently presented molecular subgroups of GC using immunohistochemical (IHC) and ISH assays.

ACRG classification

The ACRG group employed array-based gene expression profiling data and applied principal component analysis to the expression profiling dataset [57]. They then classified GC into 4 subtypes associated with distinct patterns of molecular alterations, disease progression, clinical outcomes, MSI, microsatellite stable (MSS)/epithelial-mesenchymal transition (EMT), MSS/TP53+, and MSS/TP53− [57]. The ACRG group first molecularly separated GC into two large categories, MSI and MSS. MSS tumors were stratified based on the presence or absence of an epithelial-mesenchymal gene signature (MSS/EMT). The remaining tumors were divided into final categories, MSS/TP53+ and MSS/TP53−, according to the presence or absence of TP53 activity [57]. The MSI subtype is consistent with that in the TCGA classification, but there are distinct differences in terms of molecular mechanisms and driver genes [57]. Although the MSS/EMT, MSS/TP53+, and MSS/TP53− subtypes are enriched with GS, EBV, and CIN subtypes of TCGA classification, respectively, they do not overlap perfectly [32]. The CIN and GS subtypes are present in all ACRG subtypes [32,57]. Furthermore, CDH1 and RHOA mutations, which appeared with high frequency in GS subtypes in TCGA classification, were infrequently observed in the MSS/EMT subtype [57]. These differences may be due to variations in ethnicity, the larger inclusion rate for diffuse Lauren histology types (ACRG, 45% vs. TCGA, 24%), and a lower proportion of GEJ cancers and proximally located GC in the ACRG cohort [32,57].

The MSI subtype (22.7% of GC cases in the ACRG cohort) shared similar molecular and clinical features with MSI-H GC in the TCGA cohort. This subtype was significantly associated with the presence of hypermutations in ALK (16.3%), KRAS (23.3), and ARID1A (44.2%), and was involved in the PI3K/phosphatase and tensin homolog (PTEN)/mTOR
pathway (42%) with loss of MLH1 expression [32,57]. In the MSI subtype, PIK3CA H1047R mutations are frequently observed [57]. The MSI subtype showed the best prognosis and lowest frequency of recurrence (mostly liver metastasis) among the four subtypes [57]. This subtype was also associated with an early stage (I/II) at the time of diagnosis (>50%), intestinal-type Lauren histology (>60%), and GC located in the antrum (75%) [32,57].

The MSS/EMT subtype (15.3% of GC cases in the ACRG cohort) occurs at a significantly younger age, with the majority (>80%) showing a diffuse subtype of Lauren histology at advanced stages (III/IV) [57]. Notably, this subtype showed the worst prognosis and highest recurrence frequency (mostly peritoneal seeding) among the four subtypes [57]. The MSS/EMT subtype harbored fewer somatic mutations and copy number alterations than the other subtypes [57].

The MSS/TP53− subtype (35.7% of GC cases in the ACRG cohort), as its name implies, displayed a functional loss of TP53 and somatic TP53 mutations. Copy number analysis revealed that the MSS/TP53− subtype showed recurrent amplification of ERBB2, EGFR, MYC, cyclin E1 (CCNE1), MDM2 proto-oncogene (MDM2), cyclin D1 (CCND1), roundabout guidance receptor 2 (ROBO2), and GATA binding protein 6 (GATA6). However, the MSS/TP53+ subtype (26.3% of GC cases in the ACRG cohort) displayed the second-best prognosis among the 4 subtypes and a relatively higher frequency of mutations in KRAS, PIK3CA, APC regulator of the WNT signaling pathway (APC), ARID1A, and SMAD4 compared to the MSS/TP53− subtype.

'Singapore-Duke' classification
The Singapore group (also called the ‘Singapore-Duke’ classification) used microarray-based gene expression profiling to classify subtypes of GC with biological properties and sensitivity for chemotherapy and targeted agents via unsupervised hierarchical clustering [58]. They categorized GC into three subtypes: mesenchymal, proliferative, and metabolic [58].

The mesenchymal subtype showed high expression of cadherin 2 (CDH2) mRNA and low expression of CDH1 mRNA, consistent with the highly upregulated EMT [58]. Cancer stem cell-related pathways are also activated in this subtype, with increased CD44 (CD44) and decreased CD24 (CD24) expression [58]. This subtype is associated with transforming growth factor β (TGF-β), vascular endothelial growth factor (VEGF), nuclear factor κ-light-chain enhancer of activated B cells (NFκB), mTOR, and sonic hedgehog (SHH) pathways [32,58]. In addition, the mesenchymal subtype is enriched in tumors with low CNAs and strongly correlated with a diffuse type of Lauren histology and poorly differentiated GC [32,58]. In an in vitro study, GC cell lines of the mesenchymal subtype showed significant sensitivity to PI3K/ AKT/mTOR inhibitors [32,58].

The proliferative subtype is enriched in gene sets associated with the gene cycle [58]. This subtype frequently harbors TP53 mutations and higher levels of CNAs than other subtypes, which are primarily caused by copy number gains. This subtype was associated with increased oncogenic pathway activity, including E2F, MYC, and RAS pathways [32,58]. It showed enrichment for the amplification of several oncogenes such as CCNE1, MYC, ERBB2, and KRAS [58]. Hypomethylated sites in the proliferative subtype displayed a much higher proportion of aberrantly methylated CpG islands than those in the other 2 subtypes [58]. Based on the hypothesis that DNA hypomethylation may play a role in promoting chromosomal instability, this may be related to high levels of CNAs [32,58-60]. This subtype was strongly correlated with the intestinal type of Lauren histology and low tumor grade [32,58].
The metabolic subtype showed increased activity in pathways associated with spasomolytic-polypeptide-expressing metaplasia, which has been suggested to be an intermediate step in GC tumorigenesis [58]. GC cell lines of the metabolic subtype are more sensitive to 5-fluorouracil (5-FU) than GC cell lines of other subtypes [58]. In the Singaporean and Australian cohorts, patients with the metabolic subtype treated with 5-FU displayed improved survival compared to patients who received surgery alone [58]. This sensitivity may be related to the lower levels of thymidylate synthase and dihydropyrimidine dehydrogenase in the metabolic subtype compared to that in other subtypes [32].

However, no significant differences in cancer-specific survival or disease-free survival, tumor, node, metastasis (TNM) stage, or tumor size were observed among the three subtypes [58]. Interestingly, Singaporean patients with the proliferative subtype displayed worse disease-free survival in multivariate analysis, whereas Australian patients did not [58].

Simplified algorithm using IHC and ISH assays

Advanced methods and high-throughput technology are required to classify the molecular subtypes of GC; however, these methods are not effective or cost-effective in daily routine diagnostic practice [32]. In routine pathological examination, IHC staining of MMR proteins, p53, and E-cadherin combined with EBER ISH may be helpful in categorizing molecular subtypes of GC [61-63]. This algorithm divides GC into 5 subgroups according to EBV status, deficient mismatch repair (dMMR), and aberrant E-cadherin and p53 expression [61,63]. Aberrant E-cadherin and p53 expression is observed when there is a complete loss of cytoplasmic/granular staining and complete loss of diffuse and strong staining, respectively [61].

A previous study analyzed 146 GC cases from a Western cohort and reported that the proportions of GC cases with EBER positivity, dMMR, aberrant expression of E-cadherin, and aberrant expression of p53 were 5%, 16%, 21%, and 51%, respectively [61]. In another study using the same algorithm, 349 GC cases were analyzed from an Asian cohort, and the proportions of GC cases with EBER positivity, dMMR, aberrant expression of E-cadherin, and aberrant expression of p53 were 7.4%, 6.9%, 15.2%, and 50%, respectively [63]. Interestingly, the proportion of GC cases with dMMR (Western, 16% vs. Asian, 6.9%) and normal p53 expression (Western, 7% vs. Asian, 21.4%) differed significantly between cohorts, which may be due to geographical and ethnic differences [61,63]. Unlike the study conducted in the Western cohort using 4 MMR proteins (MLH1, PMS1 homolog 2, mismatch repair system component [PMS2], mutS homolog 2 [MSH2], and mutS homolog 6 [MSH6]), the study conducted in an Asian cohort only confirmed MLH1 protein expression [61,63]. However, both studies used tissue microarrays, which consider the intra-patient heterogeneity of biomarker expression in GC [63].

The clinical and molecular characteristics of each subtype are summarized in Table 2. GC with aberrant p53 expression was associated with the CIN subtype of TCGA, MSS/TP53+ subtype of ACRG, and proliferative subtype of Singapore-Duke classification [61,63]. GC with normal p53 expression was correlated with the MSS/EMT subtype of ACRG and metabolic subtype of Singapore-Duke classification [61,63]. As expected, GC with aberrant E-cadherin expression was linked to the GS subtype of TCGA, MSS/EMT subtype of ACRG, and mesenchymal subtype of Singapore-Duke classification [61,63]. However, these subtypes are not perfectly matched; therefore, a suitable reference is recommended.
Table 2. Clinical and molecular characteristics of a protein and mRNA expression-based classification [61,63]

Associated histology	EBV tumors	MSI tumors	EMT tumors	Aberrant p53 expression tumors	Normal p53 expression tumors
Prognosis	Best prognosis	Better prognosis	Worst prognosis	Intermediate prognosis	Intermediate prognosis
Molecular features	• PIK3CA, ARID1A, and BCOR mutations	• MLH1 promoter hypermutation	• CDH1 and RH0A mutations	• High TP53 mutation	• Intermediate level of mutations (APC, KRAS, ARID1, PI3K, and SAMD4)
	• CDKN2A (p16) promoter hypermethylation	• Hyper-mutation (occasional mutations in PIK3CA, ERBB2, ERBB3, and EGFR)	• Low number of mutations		
Characteristic findings	• Male predominance	• Old age	• Young age	• Higher N category	• MUC6 over-expression
	• Body location	• Distal location	• Higher T and N category		

Comparison with TCGA classification

| EBV | MSI | GS | CIN | None |

Comparison with ACRG classification

| None | MSI | MSS/EMT | MSS/TP53 | MSS/TP53 |

EBV = Epstein-Barr virus; MSI = microsatellite instability; EMT = epithelial-mesenchymal transition; T = tumor; N = node; TCGA = The Cancer Genome Atlas; GS = genomically stable; CIN = chromosomal instability; ACRG = Asian Cancer Research Group; MSS = microsatellite stable; TP53 = tumor protein p53.

Molecular Targeted Therapies for GC

The NCCN Guidelines for Gastric Cancer Version 2.2022 state that IHC and/or molecular testing for HER2/ERBB2 status, MSI or MMR status, PD-L1 expression, tumor mutation burden-high (TMB-H) status, and neurotrophic tropomyosin-related kinase (NTRK) gene fusions are involved in the clinical management of advanced GC [64]. The recent development and introduction of ICIs to cancer patients has greatly influenced the therapeutic landscape of malignant tumors [65-68]. Programmed death-1 receptor (PD-1) inhibitors (such as pembrolizumab and nivolumab), PD-L1 inhibitors (including durvalumab), and CTLA-4 inhibitors (including ipilimumab) have been approved for certain cancers [67,69]. Key factors including MSI, PD-L1 expression, and tumor mutational burden affect the treatment response to ICIs [33,70,71]. However, the relationship between these biomarkers is complex, and it remains unclear whether using a combination of biomarkers is better than relying on a single marker [72-75]. In a recent clinical trial (NCT02589496), patients with EBV-positive metastatic GC showed dramatic response rates to pembrolizumab, providing a clinical evidence of potential sensitivity to ICIs [76].

HER2-targeted therapy

HER2 is a member of the EGFR family of tyrosine kinases, which are involved in cell proliferation, differentiation, apoptosis, adhesion, and migration [77-80]. HER2 overexpression/HER2 amplification is found in a subset of cancers, including breast cancer [81], GC [82], and colorectal cancer [83]. Although HER2 overexpression/HER2 amplification are associated with aggressive disease and poor prognosis in breast cancer [84,85], their prognostic value in GC is controversial [79,80,86-95]. The overall frequency of HER2 overexpression/HER2 amplification ranged from 6% to 35% in GC [79,80,90,96,97], with a relatively higher frequency in GEJ cancer than in GC, in Lauren intestinal-type than in diffuse or mixed type, and in tumors with moderate differentiation than in tumors with poor differentiation [64,79,80,90,98,99]. Trastuzumab plus chemotherapy is the first-line therapy for HER2-amplified GC [4]. However, GC did not respond as well to HER2-targeted therapies as did HER2-amplified breast cancer [100-103]. Heterologous HER2 expression as
well as high levels of intra- and intertumoral heterogeneity in GC can contribute to intrinsic and acquired resistance to HER2-targeted agents [96,104,105]. Unfortunately, intratumor heterogeneity of HER2 expression is estimated to be present in up to 30% of HER2-positive GC cases [99,106-108]. To overcome this resistance, combinations of anti-HER2 antibodies with other drugs with various mechanisms of action have been developed [109-111]. Recently, pembrolizumab plus trastuzumab and chemotherapy have been added as first-line therapies for HER2-amplified GC, given the synergistic antitumor effect of ICIs and HER2-targeted therapy [112]. Trastuzumab deruxtecan, an antibody-drug conjugate composed of anti-HER2 antibody linked to a topoisomerase I inhibitor, can be used as third-line therapy for patients who previously received HER2-targeted therapy [113]. Deruxtecan, a cytotoxic topoisomerase I inhibitor, acts by killing the surrounding tumor cells (bystander antitumor effect) and may be effective for GC patients with heterogeneous or low levels of HER2 expression [114].

HER2 positivity was defined as IHC 3+ or IHC 2+ and ISH positivity (Tables 3 and 4, Fig. 1) [115,116]. HER2 testing is recommended for all patients with advanced, recurrent, or metastatic GC or GEJ cancer (G/GEJ cancer) [64,108,115]. HER2 IHC is recommended as the initial test [64,108,115]. HER2 IHC was scored using a 4-tiered system based on an evaluation area cutoff of ≥10% stained tumor cells for resection specimens and a small single cluster consisting of ≥5 tumor cells, irrespective of the percentage of tumor cells stained for biopsy specimens, and interpreted as follows [96]: negative (0 or 1+), equivocal (2+), or positive (3+). Only membranous staining and not nuclear or cytoplasmic staining was counted for scoring. In breast cancer, only a complete membranous staining pattern indicates positivity [117], but in GC, incomplete, basolateral, or lateral membranous staining patterns are often observed and indicative of positivity, as well as complete membranous staining [96,108,115]. As such, there are inherent differences in HER2 expression between breast cancer and G/GEJ cancer; therefore, gastroenterologists and gastrointestinal pathologists should always be aware of this and should not apply the scoring criteria for breast cancer [79]. Additionally, it is important to consider the difference in scoring criteria according to the GC specimen type (surgically resected versus biopsy specimen) [79,96,115]. Although this 4-tiered scoring system was observed to be reproducible among different pathologists in a validation study [118], occasionally, the assessment of staining intensity may lead to inter- and intra-observer variability [119,120].

Table 3. HER2 scoring criteria for gastric cancer using IHC assays [96,115]

IHC score	Staining pattern	Interpretation
0	Membranous staining in ≤10% of tumor cells (surgical specimen) or no membranous staining in any of tumor cells (biopsy specimen)	Negative
1+	Faint/barely perceptible membranous staining (reactive only in part of membrane) in ≥10% of tumor cells (surgical specimen) or tumor cell cluster irrespective of the percentage of tumor cells stained (biopsy specimen)	Negative
2+	Weak to moderate complete, basolateral, or lateral membranous staining in ≥10% of tumor cells (surgical specimen) or tumor cell cluster irrespective of the percentage of tumor cells stained (biopsy specimen)	Equivocal; proceed to ISH
3+	Strong complete, basolateral, or lateral membranous staining in ≥10% of tumor cells (surgical specimen) or tumor cell cluster irrespective of the percentage of tumor cells stained (biopsy specimen)	Positive

Table 4. HER2 scoring criteria for gastric cancer using ISH assays [96,115]

HER2 ISH result	ISH scoring criteria (at least 20 tumor cell nuclei should be counted)
Negative	HER2/CEP17 <2.0 or <4 HER2 signals when ≥3 CEP17 signals and HER2/CEP17 <2.0
Equivocal	4 to 6 HER2 signals with ≥3 CEP17 signals and HER2/CEP17 <2.0. Another 20 cancer cells should be counted.
Positive	HER2/CEP17 ≥2.0 or ≥6 HER2 signals when ≥3 CEP17 signals and HER2/CEP17 ≥2.0

HER2 = human epidermal growth factor receptor 2; IHC = immunohistochemical; ISH = in situ hybridization.

*Tumor clusters were defined as ≥5 cancer cells.

https://jgc-online.org https://doi.org/10.5230/jgc.2022.22.e35 281
Cases with IHC 2+ or indeterminate results of any cause should be confirmed using ISH (fluorescence ISH [FISH] or silver ISH [SISH]) to determine the final HER2 status [64,96,115]. In clinical practice, SISH is preferred over FISH for assessing HER2 IHC 2+ samples, as it allows the histologic evaluation of tumors, easily identifies HER2-positive tumors using light microscopy while considering marked intratumoral heterogeneity, leaves permanent signals for storage, and can be completely automated [108,116,117].

FISH/SISH results were assessed using the ratio of the number of HER2 signals to that of the centromere of chromosome 17 signals (CEP17) within the nucleus counted in at least 20 non-overlapping cancer cells (HER2:CEP17). Sometimes, cases with three or more signals of CEP17 in tumor cells on average are observed, which are usually due to the segmental duplication of CEP17 (or referred to as “polysomy”) [115]. Alternatively, FISH/ISH results can be presented as the average ERBB2 copy number per cell [64]. Therefore, a HER2:CEP17 ratio of ≥2.0, or average HER2 copy number ≥6 signals/cell was considered positive for an ISH test (HER2 amplification), despite a HER2:CEP17 ratio <2, whereas HER2:CEP17 ratio <2.0, or average HER2 copy number <4 signals/cell was considered negative [64,115]. When cases are observed with 4–6 HER2 signals on average, another 20 tumor cells should be counted in a different target area [115]. Notably, the discordant HER2 status between primary lesions and synchronous or metachronous locoregional/distant metastatic lesions is also observed owing to intertumoral heterogeneity in GC, which ranges from 2% to 14% [121-126]. Repeat HER2 testing may be considered at the initial diagnosis and in the diagnosis of recurring or metastatic GC [64,108].

Recently, NGS has been considered instead of sequential testing for a single biomarker if limited diagnostic tissue is available, or if the patient is unable to undergo a traditional biopsy [64]. The use of IHC/ISH should be considered first, and NGS should be performed where appropriate [64].
MSI or MMR

MSI is a hypermutable phenotype characterized by the accumulation of mutations in monomorphic microsatellites (short tandem repeats) caused by the loss of DNA MMR activity [32,72]. DNA MMR is a highly conserved mechanism designed to recognize and replace/repair mismatched nucleotides during DNA replication [72]. Repetitive DNA sequences are prone to spontaneous DNA insertion and deletion mutations [70]. Impairments in MMR proteins frequently introduce frameshift-inactivating mutations [127]. Although MSI is the hallmark of Lynch syndrome and constitutional MMR deficiency syndrome, it is found in various sporadic cancers [70,72,128]. Approximately 6.9%–22.7% of sporadic GC cases display MSI-H depending on the detection method and ethnicity [16,57,61,63]. Of note, MSI-H GC with Lynch syndrome constitutes 6%–13% of GC cases [129,130], thereby warranting familial surveillance. As mentioned earlier, GC with MSI-H is a distinct molecular classified subtype and has specific clinical characteristics, such as higher morbidity in females, occurrence at a relatively older age, located in the antrum (distal) of the stomach, significant association with the intestinal type of Lauren histology, early disease stage, and favorable prognosis [16,61,63,131,132]. MSI-H is associated with poor therapeutic response to 5-FU-based cytotoxic chemotherapy, whereas MSI-H is considered a predictive biomarker of benefit from immunotherapy [39,76,133-139]. In particular, post hoc analysis of the phase 2 KEYNOTE-059 and phase 3 KEYNOTE-061 and KEYNOTE-062 randomized trials suggested that MSI-H may be a biomarker for pembrolizumab therapy in patients with advanced G/GEJ cancer, regardless of the line and therapy received [140].

The NCCN Guidelines for Gastric Cancer Version 2.2022 state that universal testing for MSI using polymerase chain reaction (PCR)/NGS or MMR by IHC analysis should be performed for all patients with newly diagnosed GC [64]. PCR, IHC, and NGS analyses have been widely used [70,72,108,141,142]. A recently developed peptide nucleic acid probe-mediated real-time PCR-based method using 5 quasi-monomorphic mononucleotide repeat markers was used [143]. Surprisingly, artificial intelligence has been employed in combination with whole-slide imaging techniques, allowing the prediction of MSI status by deep machine learning based on hematoxylin and eosin-stained slides [144-146]. However, artificial intelligence technology is expensive, requires specialized equipment, and has a low sensitivity.

IHC analysis directly evaluates the nuclear expression of 4 MMR proteins (MLH1, PMS2, MSH2, and MSH6) involved in MMR. (Fig. 2) [64,147]. This method showed a high concordance rate (>90%), similar to MSI detection using PCR [148,149]. If all 4 of these proteins are expressed, it means that the MMR process is intact (proficient MMR [pMMR]) [108,133]. However, the loss of expression of any of these four proteins indicates dMMR [108,133]. Generally, dMMR is considered equivalent to MSI-H. Mutations in MLH1 and MSH2 result in the subsequent proteolytic degradation of the mutated protein and their respective dimeric partners, PMS2 and MSH6, respectively [72]. Conversely, mutations in PMS2 and MSH6 may not result in proteolysis of their primary partners [72]. For this reason, loss of MLH1 expression is accompanied by loss of PMS2 expression, whereas loss of MSH2 expression accompanies loss of MSH6 expression. However, the reverse is not true [127,133]. In more than 90% of MSI-GC cases, loss of MLH1 and/or PMS2 by hypermethylation of the MLH1 gene has been observed [61,63]. Notably, in IHC testing, IHC staining results may be misinterpreted owing to technical or biological reasons and may present false information that does not reflect the true MMR state [72]. In the past, when interpreting MMR IHC test results, loss of expression was regarded as a complete absence (or less than 1%) of tumor cells [150]. However, occasionally, heterogeneous IHC staining results showing mixtures of
weakly stained/non-stained and strongly stained areas within the same tumor can be found [151-153]. Furthermore, aberrant cytoplasmic or membranous staining has been observed [148,154,155]. Therefore, interpretation of IHC staining results is difficult.

PCR compares the allelic position of the microsatellite locus in tumors with that in normal tissue [70,108,133,156]. Fluorescence multiplex PCR and capillary electrophoresis were used to evaluate MSI status by measuring the gene expression levels of microsatellite markers after fluorescence-labeled PCR amplification [64,70]. The National Cancer Institute panel consists of two mononucleotide repeat loci (BAT-25 and BAT-26) and three dinucleotide repeat loci (D2S123, D5S346, and D17S250) [157,158]. As a newly developed alternative panel, the Pentaplex panel (Promega, Madison, WI, USA), which includes quasi-monomonucleotide markers (BAT-25, BAT-26, NR-21, NR-27 [or Mono-27], and NR-24), can detect MSI-H without control DNA samples [159]. If the tumor showed instability at two or more of these markers compared to the paired normal sample, it was termed MSI-H (Fig. 3). In current clinical practice, MSS and MSI-low tend to be regarded as one subtype, based on several clinical studies [160,161].

Finally, NGS interrogates nearly 100 microsatellite loci to determine MSI status [162]. Compared to PCR-based tests, NGS methods do not require corresponding normal controls and can also be used to determine tumor mutation burden (TMB; also referred to as tumor mutational load) and identify other potentially targetable alterations suitable for personal and precision therapy [72]. Although the sensitivity and specificity of NGS methods are reportedly very high (>95%) [163-165], they require stringent DNA quality and lack standard and validated parameters for detecting dMMR/MSI in tumors.
Each detection method has its own advantages and disadvantages. Furthermore, PCR/NGS analysis of MSI and IHC analysis of MMR proteins measure different biological effects related to dMMR function [64]. For example, IHC test can yield false-negative results if missense mutations in the MMR gene cause dMMR [166]. Moreover, MSI-H tumors caused by a defective $MSH6$ gene can be interpreted as MSS in PCR analysis [167,168]. Furthermore, PCR analysis may be compromised by sample confusion [158]. Taken together, co-testing using different MSI detection methods increases sensitivity and improves patient response to biomarker-guided therapy [169,170].

PD-L1

Tumor cells can evade immune surveillance via various mechanisms [171-173]. PD-L1, a transmembrane protein encoded by $CD274$, is upregulated in tumor cells and binds to PD-1, a co-inhibitory receptor expressed on the cytotoxic cluster of differentiation 8 (CD8)-positive T cells [174]. The PD-1/PD-L1 interaction is one of the major mechanisms of immune modulation, which inhibits T-cell function by inducing T-cell exhaustion to promote immune evasion [33]. Cancer cells use this brake system to avoid apoptotic effects induced by T cells [175]. PD-L1 overexpression induces an immunosuppressive tumor microenvironment in several cancers [175]. PD-1/PD-L1 blocking agents successfully restore the immune function of T cells [176-178]. The NCCN Guidelines for Gastric Cancer Version 2.2022 suggest that PD-L1 testing may be considered for locally advanced, recurrent, or metastatic GC in patients receiving PD-1 inhibitor treatment [64]. PD-L1 expression in tumor cells and surrounding immune cells can be quantified and used to predict the response of cancer patients to ICIs. Four FDA-registered PD-L1 antibodies (PD-L1 IHC 22C3 pharmDx, PD-L1 IHC 28-8 pharmDx,
VENTANA PD-L1 [SP263], and VENTANA PD-L1 [SP142]) were used in IHC analyses of various solid tumors. These antibodies are available as pre-packaged kits for use on approved platforms [179]. The NCCN Guidelines for Gastric Cancer Version 2.2022 mentioned that a US FDA-approved companion diagnostic test, which provides the required and essential information necessary for safe and effective use of the corresponding drug, should be used to identify patients for treatment with PD-1 inhibitors [64]. This companion diagnostic test is a qualitative IHC assay using an anti-PD-L1 antibody to detect PD-L1 protein levels in formalin-fixed, paraffin-embedded tumor tissues [64]. FDA-approved pembrolizumab, a third-line therapy in patients with G/GEJ cancer, displayed a combined proportion score (CPS) of ≥1 using the PD-L1 IHC 22C3 pharmDx assay on the Autostainer Link 48 platform based on the findings of the phase 2 KEYNOTE-059 trial [180]. Recently, nivolumab plus chemotherapy was also approved as a first-line therapy for G/GEJ cancers with CPS ≥5 using the PD-L1 IHC 28-8 pharmDx assay on the Autostainer Link 48 platform based on the findings of the phase 3 CheckMate-649 [181]. CPS, one of the two scores to identify PD-L1 expression, is measured as the number of PD-L1 stained cells (including tumor cells, lymphocytes, and macrophages) divided by the total number of viable tumor cells and then multiplied by 100 (Fig. 4) [182,183]. Samples containing at least 100 viable tumor cells were required for accurate evaluation, and if the calculation result exceeded 100, the maximum score was considered CPS 100. In some trials on other solid tumors, such as metastatic non-small cell lung cancers and melanomas, a tumor proportion score (TPS) has been reported and considered [64,65,184]. The TPS method counts the percentage of PD-L1 expressing tumor cells among total tumor cells [185,186]. However, as TPS does not include tumor-infiltrating immune cells when calculating the score, it may not be efficient in identifying ICI responders [179]. Pre-analytical issues such as tissue fixation and processing significantly affect the outcome of IHC reactions and may lead to erroneous PD-L1 IHC test results [179,187,188]. In addition, manual scoring of PD-L1 immunostained slides by a pathologist may introduce potential errors in reproducibility [179]. Several recent studies have demonstrated that automated digital image analysis provides accuracy and consistency comparable to manual scoring of PD-L1 expression [179,189-191] in various solid tumors.

Fig. 4. PD-L1 immunohistochemical staining using 22C3 anti-PD-L1 antibodies. Almost all tumor cells demonstrated membranous or granular membranous staining, and the recruited immune cells (lymphocytes and macrophages) displayed both cytoplasmic and membranous staining. A combined proportion score of 70 was assigned to this field. Original magnification: ×200.

PD-L1 = programmed death ligand 1.
TMB

TMB, usually measured by the total number of somatic coding mutations per megabase (Mb) of genome sequenced [192], has been actively investigated to predict ICI responses [193]. Whereas whole exome sequencing is considered optimal for estimating TMB, several commercially available targeted NGS platforms also provide TMB values, showing a good correlation with TMB values from whole exome sequencing [71]. Targeted gene panels larger than up to 1 Mb of the coding genome are generally recommended for the enumeration [71,193]. However, the adoption of TMB as a biomarker in current clinical practice are faced with major limitations, namely the lack of harmonization in panel-based TMB quantification, adequate methods to transform TMB estimates across different panels, and robust predictive cutoffs [193]. The FDA approved pembrolizumab for patients with metastatic solid tumors with TMB-H (≥10 mutations/Mb) who had progressed after previous treatment and had no satisfactory alternative treatment options based on the KEYNOTE-158 trial [64,194]. In the exploratory analysis of the KEYNOTE-062 trial, the association between TMB and clinical efficacy of first-line pembrolizumab-based therapy was demonstrated in patients with advanced G/GEJ cancer, but the clinical usefulness of TMB weakened after the exclusion of MSI-H [195].

NTRK gene fusion

Fusions of NTRK genes (NTRK1, NTRK2, and NTRK3) induce the expression of constitutively active chimeric TRK proteins (TRKA, TRKB, and TRKC), which serve as potential oncogenic drivers across a range of tumor types [196-198]. Fusion of NTRK to an unrelated gene results in the overexpression and permanent activation of the TRK fusion protein [199,200]. As transmembrane proteins, these kinases have a ligand-dependent function by transducing extracellular signals to the nucleus to activate cell growth, proliferation, and survival pathways, such as the mitogen-activated protein kinase/extracellular signal-regulated kinase and PI3K/AKT pathways [199-201]. Although NTRK fusions are frequently reported in secretory breast carcinoma, mammary analog secretory carcinoma, and congenital mesoblastic nephroma, they occur at a very low frequency in common solid cancers [196,202-204]. In GC, NTRK fusions are extremely rare, but may be associated with an aggressive phenotype [205-207]. Larotrectinib and entrectinib—TRK inhibitors—demonstrated excellent responses to NTRK-fusion tumors regardless of the tumor type (“tumor-agnostic”) [202,203,208,209]. Based on this, the FDA recently approved select TRK inhibitors, larotrectinib and entrectinib, for the treatment of NTRK fusion-positive solid tumors [64,210]. The NCCN Guidelines for Gastric Cancer V.2.2022 recommend entrectinib and larotrectinib as second-line or subsequent therapies for NTRK fusion-positive tumors [64]. Therefore, NTRK fusions must be identified during clinical practice of advanced GC. As a screening tool, pan-TRK IHC can be used first, and targeted reverse transcription PCR (RT-PCR) and/or RNA-based NGS are considered diagnostic methods for detecting NTRK fusions [208,211]. Although pan-TRK IHC can detect TRK proteins A, B, and C, this assay was not optimized to differentiate between wild-type TRK and chimeric fusion proteins. This is because protein expression may not result from gene fusion events [212]. FISH may have limited utility in elucidating NTRK fusions because it is not designed for multiplexing. To comprehensively evaluate the 3 NTRK fusions, three separate FISH tests are required unless multicolor approaches are developed [213]. RT-PCR is designed to detect only known translocation partners and breakpoints, and not new breakpoints or fusion partners [213]. Taken together, NGS may be the most promising tool for investigating NTRK fusions, along with other possibly targetable alterations, using minimal samples.
EBV
EBV, a herpesvirus formally called human gammaherpesvirus 4, is a double-stranded DNA virus that infects B lymphocytes [214]. It is a ubiquitous virus that infects more than 90% of the adults worldwide in their life-time [214,215]. EBV leads to infectious mononucleosis in adolescents and young adults [215] and causes neoplasms of various cell origins, such as B-cell, NK/T cells, epithelial cells, and mesenchymal cells [216,217]. EBVaGCs account for approximately 5%-40% of GC cases worldwide, with variable frequencies between geographic regions [16,20,61,63,216,218]. EBVaGCs have distinct clinicopathological features and molecular characteristics and are one of the TCGA subtypes. The clinical characteristics of EBVaGCs are as follows: proximal locations and remnant stomach, early disease stage, and favorable prognosis [20,54,132,219]. Recent retrospective studies have revealed that the frequency of lymph node metastasis is very low in submucosal invasive EBVaGCs (T1b category of TNM stage) [220,221]. Prominent infiltration of lymphocytes is considered a typical histologic feature of EBVaGCs (Fig. 5A). GC with similar histologic patterns is ‘gastric carcinoma with lymphoid stroma (GCLS)’ of the WHO classification, which has been referred to as lymphoepithelioma-like carcinoma or medullary carcinoma [216,222]. GCLS is significantly associated with EBV infection, which is identified in 20%-90% of GCLS cases [216,222-225]. However, GCLS is also observed in MSI GC, and EBV and MSI are mutually exclusive in GC owing to mutually exclusive methylation in the MLH1 promoter [222,226]. Interestingly, other histologic patterns in EBVaGCs have been reported, including conventional intestinal-type adenocarcinoma-like [227] and Crohn's disease-like [227], or rarely, chronic granulomatous inflammation-like [228] and signet ring-cell carcinoma-like patterns [229,230]. EBV can be detected using several methods, such as Southern blotting, IHC staining, western blotting, PCR, and EBER ISH assay [108,231-233]. In GC, the EBER ISH assay is the most widely used method and is regarded as the gold standard for detecting and localizing latent EBV in tissue samples (Fig. 5B) [108,132]. EBER1 and 2 are produced in large amounts in the nucleus of each EBV-infected cell, that is, 106-107 copies [216]. The EBER ISH assay is a highly sensitive detection method and provides relatively stable results even in formalin-fixed paraffin-embedded tissue blocks; however, quantitative analysis of viral particles cannot be performed. Recently, droplet digital PCR has been used to quantitatively detect EBV with high sensitivity [234].

Upcoming biomarker-targeted therapies
There are several ongoing clinical trials on GC harboring potential targetable alterations. As mentioned earlier, oncogenic PIK3CA mutations in breast cancer are an indication for alpelisib plus fulvestrant treatment in advanced or metastatic breast cancer [29]. PIK3CA

Fig. 5. Histologic appearance of EBV-associated gastric cancer (A) and EBV-encoded small RNA ISH (B). EBV-infected carcinoma cells exhibited nuclear dark blue staining. Original magnification: ×40. EBV = Epstein-Barr virus; ISH = in situ hybridization.
mutations, which are found in GC, with higher frequencies in EBV-positive and MSI-H GC of TCGA subtypes, may serve as potential therapeutic targets [16]. Interestingly, PIK3CA mutations are mostly hot-spot mutations located in exon 9 (E542K and E545K) and exon 20 (H1047R) in various solid tumors, but PIK3CA mutations are more dispersed in EBV-positive GC [16,25]. Although no relationship between PIK3CA mutations and patient outcomes has been found in GC [235-237], it has been reported that activation of the PI3K/AKT/mTOR signaling pathway may have a discriminatory negative effect on OS and progression-free survival in advanced GC treated with trastuzumab-based chemotherapy [238]. Other studies have suggested that PIK3CA mutations in exon 9 may be associated with worse prognosis than PIK3CA mutations in exon 20 in MSI-H GC and EBV-positive GC [25,239]. Unfortunately, in randomized phase III trials (RADPAC trial; NCT01248403), everolimus in combination with paclitaxel did not lead to improved outcomes in pretreated metastatic G/GEJ cancer [240]. Additional studies on this biomarker are currently underway.

Because they showed disappointing results for outcomes in several clinical trials [32,241,242], protein overexpression and/or amplification of RTKs, such as FGFR2, EGFR, and MET, have not received much interest recently, but may still be investigated as candidates for biomarker-guided therapy [242-244]. In particular, monotherapy using bemarituzumab, which is a fucosylated monoclonal antibody against the FGFR2b receptor, has demonstrated clinical activity in patients with late-line G/GEJ cancer with FGFR2b overexpression and/or FGFR2 amplification [245,246]. FGFR2 amplification occurs in approximately 4%–10% of GC cases with both GS and CIN of TCGA subtypes [16,245,247-250]. FGFR2 amplification tends to be related to advanced stage, lymphatic invasion, and worse prognosis [247,250], suggesting that FGFR2 inhibition may be an important therapeutic strategy [245]. In tumors with FGFR2 amplification, the FGFR2B splice variant is almost always expressed on the cell surface [245].

Because some GCs secrete angiogenic factors and display increased angiogenesis, inhibiting angiogenic growth factors may provide an avenue for future therapeutic targets [251,252]. Treatments targeting using claudin 18.2 (CLDN18.2), which is almost always expressed in GS GC harboring CLDN18 the ARHGAP26/6 fusion [253], are being investigated [254].

Poly (ADP-ribose) polymerase (PARP) inhibitors are emerging as key therapeutic options for certain cancers with BRCA1/2 mutations, homologous recombination-related genes, or homologous recombination deficiency (HRD) [255]. To date, the clinical relevance of HRD in GC remains unclear. HRD-related GC is found in approximately 10% of GC cases. In a randomized phase II clinical trial (NCT01063517), olaparib, an oral PARP inhibitor, in combination with paclitaxel, showed activity in the treatment of metastatic GC, resulting in greater OS in patients with GC lacking ATM mutations [256]. However, in a randomized phase III clinical trial (NCT01924533), olaparib/paclitaxel treatment did not result in significant improvements in OS in an entire ATM-negative cohort of Asian patients with advanced GC [257].

CONCLUSION

Here, we review the molecular classification and biomarker-targeted therapies for GC. Currently used molecular classifications have some limitations associated with molecular techniques, ethnicity, and tumor heterogeneity. Moreover, there are limited options of molecular-targeted therapies for GC, including Herceptin and trastuzumab deruxtecan (for
HER2-positive GC) and ICIs (for MSI-H, PD-L1 high-expression, and TMB-high GC along with EBVaGC). In addition, the application of new techniques, such as circulating tumor DNA sequencing [258] and single-cell RNA sequencing [259], in combination with deep learning approaches [260], will expand our knowledge regarding the molecular heterogeneity, resistance mechanisms, and complex tumor microenvironment of GC. These applications will lead to a better molecular classification of GC as well as targeted therapies in the era of precision medicine.

ACKNOWLEDGMENTS

The authors express their deep gratitude to the members of the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists for their efforts in revising the Standardized Pathology Report for Gastric Cancer, 2nd edition. The authors are grateful for the support provided by the Kyungpook National University Chilgok Hospital Molecular Pathology Laboratory.

REFERENCES

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209-249.

2. GBD 2017 Stomach Cancer Collaborators. The global, regional, and national burden of stomach cancer in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease study 2017. Lancet Gastroenterol Hepatol 2020;5:42-54.

3. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikić M, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37,513,025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018;391:1023-1075.

4. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010;376:687-697.

5. Fuchs CS, Tomasek I, Yong CJ, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014;383:31-39.

6. Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 2014;15:1224-1235.

7. Gullo I, Carneiro F, Oliveira C, Almeida GM. Heterogeneity in gastric cancer: from pure morphology to molecular classifications. Pathobiology 2018;85:50-63.

8. Alessandri L, Manchi M, De Re V, Dolcetti R, Canzonieri V. Proposed molecular and miRNA classification of gastric cancer. Int J Mol Sci 2018;19:E1683.

9. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 1965;64:31-49.
10. Dicken BJ, Bigam DL, Cass C, Mackey JR, Joy AA, Hamilton SM. Gastric adenocarcinoma: review and considerations for future directions. Ann Surg 2005;241:27-39.

11. Chia NY, Tan P. Molecular classification of gastric cancer. Ann Oncol 2016;27:763-769.

12. Chakravarty D, Solit DB. Clinical cancer genomic profiling. Nat Rev Genet 2021;22:483-501.

13. Nakamura Y, Kawazoe A, Lordick F, Janjigian YY, Shitara K. Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: an emerging paradigm. Nat Rev Clin Oncol 2021;18:473-487.

14. Denny JC, Collins FS. Precision medicine in 2030-seven ways to transform healthcare. Cell 2021;184:1415-1419.

15. Gullo I, Carvalho J, Martins D, Lemos D, Monteiro AR, Ferreira M, et al. The transcriptomic landscape of gastric cancer: insights into Epstein-Barr virus infected and microsatellite unstable tumors. Int J Mol Sci 2018;19:E2079.

16. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513:202-209.

17. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 2014;158:929-944.

18. Yanagi A, Nishikawa J, Shimokuri K, Shuto T, Takagi T, Takagi F, et al. Clinicopathologic characteristics of Epstein-Barr virus-associated gastric cancer over the past decade in Japan. Microorganisms 2019;7:E305.

19. van Beck I, zur Hausen A, Klein Kranenbarg E, van de Velde CJ, Middeldorp JM, van den Brule Al, et al. EBV-positive gastric adenocarcinomas: a distinct clinicopathologic entity with a low frequency of lymph node involvement. J Clin Oncol 2004;22:664-670.

20. Murphy G, Pfeiffer R, Camargo MC, Rabkin CS. Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology 2009;137:824-833.

21. Kang GH, Lee S, Kim WH, Lee HW, Kim JC, Rhyu MG, et al. Epstein-Barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol 2002;160:787-794.

22. Sakuma K, Chong JM, Sudo M, Ushiku T, Shibahara J, et al. High-density methylation of p14ARF and p16INK4A in Epstein-Barr virus-associated gastric carcinoma. Int J Cancer 2004;112:273-278.

23. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 2011;43:1219-1223.

24. Böger C, Krüger S, Behrens HM, Bock S, Haag J, Kalthoff H, et al. Epstein-Barr virus-associated gastric cancer reveals intratumoral heterogeneity of PIK3CA mutations. Ann Oncol 2017;28:1005-1014.

25. Juric D, Janku F, Rodón J, Burris HA, Mayer IA, Schuler M, et al. Alpelisib plus fulvestrant in PIK3CA-altered and PIK3CA-wild-type estrogen receptor-positive advanced breast cancer: a phase 1b clinical trial. JAMA Oncol 2019;5:e184475.
29. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 2019;380:1929-1940.

30. Narayan P, Prowell TM, Gao JJ, Fernandes LL, Li E, Jiang X, et al. FDA approval summary: alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clin Cancer Res 2021;27:1842-1849.

31. Ribeiro J, Malta M, Galagher A, Silva F, Afonso LP, Medeiros R, et al. P53 deregulation in Epstein-Barr virus-associated gastric cancer. Cancer Lett 2017;404:37-43.

32. Cislo M, Filipp AA, Arnold Offerhaus GJ, Cislo B, Rawicz-Pruszyński K, Skierucha M, et al. Distinct molecular subtypes of gastric cancer: from Laurén to molecular pathology. Oncotarget 2018;9:19427-19442.

33. Bevilacqua RA, Simpson AI. Methylation of the hMLH1 promoter but no hMLH1 mutations in sporadic gastric carcinomas with high-level microsatellite instability. Int J Cancer 2000;87:200-203.

34. Ballassiano K, Lima S, Jenab M, Overvad K, Tjonneland A, Boutron-Ruault MC, et al. Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Cancer Lett 2011;311:85-95.

35. Mathiak B, Warneke VS, Behrens HM, Haag J, Böger C, Krüger S, et al. Clinicopathologic characteristics of microsatellite instable gastric carcinomas revisited: urgent need for standardization. Appl Immunohistochem Mol Morphol 2017;25:12-24.

36. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-2520.

37. Sahin IH, Akce M, Alese O, Shaib W, Lesinski GB, El-Rayes B, et al. Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br J Cancer 2019;121:809-818.

38. De B, Rhome R, Jairam V, Ozbek U, Holcombe RF, Buckstein M, et al. Gastric adenocarcinoma in young adult patients: patterns of care and survival in the United States. Gastric Cancer 2018;21:889-899.

39. Lee JY, Gong EJ, Chung EJ, Park HW, Bae SE, Kim EH, et al. The characteristics and prognosis of diffuse-type early gastric cancer diagnosed during health check-ups. Gut Liver 2017;11:807-812.

40. Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet 2014;46:583-587.

41. Humar B, Graziano F, Cascinu S, Catalano V, Ruzzo AM, Magnani M, et al. Association of CDH1 haplotypes with susceptibility to sporadic diffuse gastric cancer. Oncogene 2002;21:8192-8195.

42. Shu Y, Zhang W, Hou Q, Zhao L, Zhang S, Zhou J, et al. Prognostic significance of frequent CLDN18-ARHGAP26 fusion in gastric signet-ring cell cancer. Nat Commun 2018;9:2447.
Yao F, Kausalya JP, Sia YY, Teo AS, Lee WH, Ong AG, et al. Recurrent fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of epithelial integrity. Cell Reports 2015;12:272-285.

Hanazono K, Natsugoe S, Stein HJ, Aikou T, Hoefler H, Siewert JR. Distribution of p53 mutations in esophageal and gastric carcinomas and the relationship with p53 expression. Oncol Rep 2006;15:821-824.

Zhang L, Yang J, Cai J, Song X, Deng J, Huang X, et al. A subset of gastric cancers with EGFR amplification and overexpression respond to cetuximab therapy. Sci Rep 2013;3:2992.

Smolen GA, Sordella R, Muir B, Mohapatra G, Barnettler A, Archibald H, et al. Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A 2006;103:2316-2321.

Pearson A, Smyth E, Babina IS, Herrera-Abreu MT, Tarazona N, Peckitt C, et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov 2016;6:838-851.

Kim J, Fox C, Peng S, Pusung M, Pectasides E, Matthee E, et al. Preexisting oncogenic events impact trastuzumab sensitivity in ERBB2-amplified gastroesophageal adenocarcinoma. J Clin Invest 2014;124:5145-5158.

Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB, et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 2012;61:673-684.

Sohn BH, Hwang JE, Jang HJ, Lee HS, Oh SC, Shim JJ, et al. Clinical significance of four molecular subtypes of gastric cancer identified by The Cancer Genome Atlas project. Clin Cancer Res 2017;23:4441-4449.

Zhu L, Li Z, Wang Y, Zhang C, Liu Y, Qu X. Microsatellite instability and survival in gastric cancer: a systematic review and meta-analysis. Mol Clin Oncol 2015;3:699-705.

Janjigian YY, Sanchez-Vega F, Jonsson P, Chatila WK, Hechtman JF, Ku GY, et al. Genetic predictors of response to systemic therapy in esophagogastric cancer. Cancer Discov 2018;8:49-58.

Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015;21:449-456.

Lei Z, Tan IB, Das K, Deng N, Zouridis H, Pattison S, et al. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology 2013;145:554-565.

Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, et al. Induction of tumors in mice by genomic hypomethylation. Science 2003;300:489-492.

Suzuki K, Suzuki I, Leodolter A, Alonso S, Horiiuchi S, Yamashita K, et al. Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 2006;9:199-207.

Setia N, Agoston AT, Han HS, Mullen JT, Duda DG, Clark JW, et al. A protein and mRNA expression-based classification of gastric cancer. Mod Pathol 2016;29:772-784.

Gonzalez RS, Messing S, Tu X, McMahon LA, Whitney-Miller CL. Immunohistochemistry as a surrogate for molecular subtyping of gastric adenocarcinoma. Hum Pathol 2016;56:16-21.

Ahn S, Lee SJ, Kim Y, Kim A, Shin N, Choi KU, et al. High-throughput protein and mRNA expression-based classification of gastric cancers can identify clinically distinct subtypes, concordant with recent molecular classifications. Am J Surg Pathol 2017;41:106-115.

Ajani JA, D’Amico TA, Bentrem DJ, Chao J, Cooke D, Corvera C, et al. Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2022;20:167-192.
65. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.

66. Ferris RL, Blumenschine G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375:1856-1867.

67. Waldman AD, Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.

68. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375:1856-1867.

69. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.

70. Waldman AD, Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.

71. Waldman AD, Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.

72. Waldman AD, Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.

73. Waldman AD, Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.

74. Waldman AD, Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.

75. Waldman AD, Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.

76. Waldman AD, Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.

77. Waldman AD, Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.

78. Waldman AD, Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-1833.
82. Abrahao-Machado LF, Scapulatempo-Neto C. HER2 testing in gastric cancer: an update. World J Gastroenterol 2016;22:4619-4625.

83. Meric-Bernstam F, Hurwitz H, Raghav KP, McWilliams RR, Fakhri M, VanderWalde A, et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2019;20:518-530.

84. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235:177-182.

85. Tandon AK, Clark GM, Channess GC, Ullrich A, McGuire WL. HER-2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol 1989;7:1120-1128.

86. Kurokawa Y, Matsuura N, Kimura Y, Adachi S, Fujita J, Imamura H, et al. Multicenter large-scale study of prognostic impact of HER2 expression in patients with resectable gastric cancer. Gastric Cancer 2015;18:691-697.

87. Fuse N, Kuboki Y, Kuwata T, Nishina T, Kadowaki S, Shinozaki E, et al. Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients. Gastric Cancer 2016;19:183-191.

88. Motoshima S, Yonemoto K, Kamei H, Morita M, Yamaguchi R. Prognostic implications of HER2 heterogeneity in gastric cancer. Oncotarget 2018;9:9262-9272.

89. Grabisch H, Sivakumar S, Gray S, Gabbert HE, Müller W. HER2 expression in gastric cancer: rare, heterogeneous and of no prognostic value - conclusions from 924 cases of two independent series. Cell Oncol 2010;32:57-65.

90. Tanner M, Hollmén M, Junntila TT, Kapanen AI, Tommola S, Soini Y, et al. Amplification of HER-2 in gastric carcinoma: association with Topoisomerase I/alpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol 2005;16:273-278.

91. Chua TC, Merrett ND. Clinicopathologic factors associated with HER2-positive gastric cancer and its impact on survival outcomes--a systematic review. Int J Cancer 2012;130:2845-2856.

92. Gómez-Martín C, Garralda E, Echarri MJ, Ballesteros A, Arcediano A, Rodríguez-Peralto JL, et al. HER2/neu testing for anti-HER2-based therapies in patients with unresectable and/or metastatic gastric cancer. J Clin Pathol 2012;65:751-757.

93. Jørgensen JT, Hersom M. HER2 as a prognostic marker in gastric cancer - a systematic analysis of data from the literature. J Cancer 2012;3:137-144.

94. Cho JH, Lim JY, Cho JY. Survival analysis based on human epidermal growth factor 2 status in stage II-III gastric cancer. World J Gastroenterol 2017;23:7407-7414.

95. Janjigian YY, Werner D, Pauligk C, Steinmetz K, Kelsen DP, Jäger E, et al. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA international collaborative analysis. Ann Oncol 2012;23:2656-2662.

96. Hofmann M, Stoss O, Shi D, Büttner R, van de Vijver M, Kim W, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology 2008;52:797-805.

97. Im SA, Kim JW, Kim JS, Kim MA, Jordan B, Pickl M, et al. Clinicopathologic characteristics of patients with stage III/IV (M0) advanced gastric cancer, according to HER2 status assessed by immunohistochemistry and fluorescence in situ hybridization. Diagn Mol Pathol 2011;20:94-100.

98. Albarello L, Pecchiari I, Doglioni C. HER2 testing in gastric cancer. Adv Anat Pathol 2011;18:53-59.
99. Van Cutsem E, Bang YJ, Feng-Yi F, Xu JM, Lee KW, Jiao SC, et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer 2015;18:476-484.

100. Hecht JR, Bang YJ, Qin SK, Chung HC, Xu JM, Park JO, et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC--a randomized phase III trial. J Clin Oncol 2016;34:443-451.

101. Tabernero J, Hoff PM, Shen L, Ohtsu A, Shah MA, Cheng K, et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol 2018;19:1372-1384.

102. Satoh T, Xu RH, Chung HC, Sun GP, Doi T, Xu JM, et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN--a randomized, phase III study. J Clin Oncol 2014;32:2039-2049.

103. Thuss-Patience PC, Shah MA, Ohtsu A, Van Cutsem E, Ajani JA, Castro H, et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol 2017;18:640-653.

104. Lee S, de Boer WB, Fernoyle S, Platten M, Kumarasinghe MP. Human epidermal growth factor receptor 2 testing in gastric carcinoma: issues related to heterogeneity in biopsies and resections. Histopathology 2011;59:832-840.

105. Yagi S, Wakatsuki T, Yamamoto N, Chin K, Takahari D, Ogura M, et al. Clinical significance of intratumoral HER2 heterogeneity on trastuzumab efficacy using endoscopic biopsy specimens in patients with advanced HER2 positive gastric cancer. Gastric Cancer 2019;22:518-525.

106. Abraham-Machado LF, Jácome AA, Wohrrath DR, dos Santos JS, Carneseca EC, Fregnani JH, et al. HER2 in gastric cancer: comparative analysis of three different antibodies using whole-tissue sections and tissue microarrays. World J Gastroenterol 2013;19:6436-6446.

107. Lee HE, Park KU, Yoo SB, Nam SK, Park DJ, Kim HH, et al. Clinical significance of intratumoral HER2 heterogeneity in gastric cancer. Eur J Cancer 2013;49:1448-1457.

108. Lee HS, Kim WH, Kwak Y, Koh J, Bae JM, Kim KM, et al. Molecular testing for gastrointestinal cancer. J Pathol Transl Med 2017;51:103-121.

109. Stagg J, Loi S, Divisekera U, Ngiof SW, Durlet H, Yagita H, et al. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci U S A 2011;108:7142-7147.

110. Janjigian YY, Maron SB, Chatila WK, Millang B, Chavan SS, Alterman C, et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: an open-label, single-arm, phase 2 trial. Lancet Oncol 2020;21:821-831.

111. Catenacci DYT, Lim KH, Uronis HE, Kang Y-K, Ng MCH, Gold PJ, et al. Antitumor activity of margetuximab (M) plus pembrolizumab (P) in patients (pts) with advanced HER2+ (IHC3+) gastric carcinoma (GC). J Clin Oncol 2019;37:65.

112. Chung HC, Bang YJ, Feng-Yi F, Qin SK, Satoh T, Shitara K, et al. First-line pembrolizumab/placebo plus trastuzumab and chemotherapy in HER2-positive advanced gastric cancer: KEYNOTE-811. Future Oncol 2021;17:491-501.

113. Shitara K, Bang YJ, Iwasa S, Sugimoto N, Ryu MH, Sakai D, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med 2020;382:2419-2430.

114. Iwata TN, Ishii C, Ishida S, Ogitani Y, Wada T, Agatsuma T. A HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol Cancer Ther 2018;17:1494-1503.
115. Bartley AN, Washington MK, Colasacco C, Ventura CB, Ismaila N, Benson AB 3rd, et al. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and the American Society of Clinical Oncology. J Clin Oncol 2017;35:446-464.
PUBMED | CROSSREF

116. Rüschoff J, Hanna W, Bilous M, Hofmann M, Osamura RY, Penault-Llorca F, et al. HER2 testing in gastric cancer: a practical approach. Mod Pathol 2012;25:637-650.
PUBMED | CROSSREF

117. Ahn S, Woo JW, Lee K, Park SY. HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation. J Pathol Transl Med 2020;54:34-44.
PUBMED | CROSSREF

118. Rüschoff J, Dietel M, Baretton G, Arbogast S, Walch A, Monges G, et al. HER2 diagnostics in gastric cancer: guideline validation and development of standardized immunohistochemical testing. Virchows Arch 2010;457:299-307.
PUBMED | CROSSREF

119. Gavrielides MA, Gallas BD, Lenz P, Badano A, Hewitt SM. Observer variability in the interpretation of HER2/neu immunohistochemical expression with unaided and computer-aided digital microscopy. Arch Pathol Lab Med 2011;135:233-242.
PUBMED | CROSSREF

120. Thomson TA, Hayes MM, Spinnelli JJ, Hilland E, Sawrenko C, Phillips D, et al. HER-2/neu in breast cancer: interobserver variability and performance of immunohistochemistry with 4 antibodies compared with fluorescent in situ hybridization. Mod Pathol 2001;14:1079-1086.
PUBMED | CROSSREF

121. Kim MA, Lee HI, Yang HK, Bang YJ, Kim WH. Heterogeneous amplification of ERBB2 in primary lesions is responsible for the discordant ERBB2 status of primary and metastatic lesions in gastric carcinoma. Histopathology 2011;59:822-831.
PUBMED | CROSSREF

122. Peng Z, Zou J, Zhang X, Yang Y, Gao J, Li Y, et al. HER2 discordance between paired primary gastric cancer and metastasis: a meta-analysis. Chin J Cancer Res 2015;27:163-171.
PUBMED | CROSSREF

123. Kim JH, Kim MA, Lee HS, Kim WH. Comparative analysis of protein expressions in primary and metastatic gastric carcinomas. Hum Pathol 2009;40:314-322.
PUBMED | CROSSREF

124. Fusco N, Rocco EG, Del Conte C, Pellegrini C, Bulfamante G, Di Nuovo F, et al. HER2 in gastric cancer: a digital image analysis in pre-neoplastic, primary and metastatic lesions. Mod Pathol 2013;26:816-824.
PUBMED | CROSSREF

125. Geng Y, Chen X, Qiu J, Zhou Y, Wang J, Liu L, et al. Human epidermal growth factor receptor-2 expression in primary and metastatic gastric cancer. Int J Clin Oncol 2014;19:303-311.
PUBMED | CROSSREF

126. Kochi M, Fujii M, Masuda S, Kanamori N, Mihaara Y, Funada T, et al. Differing deregulation of HER2 in primary gastric cancer and synchronous related metastatic lymph nodes. Diagn Pathol 2013;8:191.
PUBMED | CROSSREF

127. Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res 2008;18:85-98.
PUBMED | CROSSREF

128. Hause RJ, Pritchard CC, Shendure J, Salipante SI. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 2016;22:1342-1350.
PUBMED | CROSSREF

129. Capelle LG, Van Grieken NC, Lingsma HF, Steyerberg EW, Klokman WJ, Bruno MJ, et al. Risk and epidemiological time trends of gastric cancer in Lynch syndrome carriers in the Netherlands. Gastroenterology 2010;138:487-492.
PUBMED | CROSSREF

130. Ladigan-Badura S, Vangala DB, Engel C, Bucksch K, Hueneburg R, Perne C, et al. Value of upper gastrointestinal endoscopy for gastric cancer surveillance in patients with Lynch syndrome. Int J Cancer 2021;148:106-114.
PUBMED | CROSSREF

131. Polom K, Marano L, Marrelli D, De Luca R, Roviello G, Savelli V, et al. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br J Surg 2018;105:159-167.
PUBMED | CROSSREF
Molecular Characterization of Gastric Cancer

132. Guideline Committee of the Korean Gastric Cancer Association (KGCA), Development Working Group & Review Panel. Korean practice guideline for gastric cancer 2018: an evidence-based, multi-disciplinary approach. J Gastric Cancer 2019;19:1-48.

133. Kim BH, Kim JM, Kang GH, Chang HJ, Kang DW, Kim JH, et al. Standardized Pathology Report for Colorectal Cancer, 2nd Edition. J Pathol Transl Med 2020;54:1-9.

134. Zaanan A, Shi Q, Taieb I, Alberts SR, Meyers JP, Smyrk TC, et al. Role of deficient DNA mismatch repair status in patients with stage III colon cancer treated with FOLFOX adjuvant chemotherapy: a pooled analysis from 2 randomized clinical trials. JAMA Oncol 2018;4:379-383.

135. Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010;28:3219-3226.

136. Choi YY, Kim H, Shin SJ, Kim HY, Lee J, Yang HK, et al. Microsatellite instability and programmed cell death-ligand 1 expression in stage II/III gastric cancer: post hoc analysis of the CLASSIC randomized controlled study. Ann Surg 2019;270:309-316.

137. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017;357:409-413.

138. Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA, et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol 2019;5:471-478.

139. Le DT, Kim TW, Van Cutsem E, Geva R, Jäger D, Hara H, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol 2020;38:11-19.

140. Chao J, Fuchs CS, Shitara K, Tabernero J, Muro K, Van Cutsem E, et al. Assessment of pembrolizumab therapy for the treatment of microsatellite instability-high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol 2021;7:899-902.

141. Kim JE, Chun SM, Hong YS, Kim KP, Kim SY, Kim J, et al. Mutation burden and I index for detection of microsatellite instability in colorectal cancer by targeted next-generation sequencing. J Mol Diagn 2019;21:241-250.

142. Richman S. Deficient mismatch repair: read all about it (review). Int J Oncol 2015;47:1189-1202.

143. Jang M, Kwon Y, Kim H, Kim H, Min BS, Park Y, et al. Microsatellite instability test using peptide nucleic acid probe-mediated melting point analysis: a comparison study. BMC Cancer 2018;18:1218.

144. Kather JN, Pearson AT, Halama N, Jäger D, Krause J, Loosen SH, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med 2018;24:1054-1056.

145. Yamashita R, Long J, Longacre T, Peng L, Berry G, Martin B, et al. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Lancet Oncol 2021;22:132-141.

146. Hinata M, Ushiku T. Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning. Sci Rep 2021;11:22636.

147. Lindor NM, Burgart LJ, Leontovich O, Goldberg RM, Cunningham JM, Sargent DJ, et al. Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 2002;20:1043-1048.

148. Shia J, Ellis NA, Klimstra DS. The utility of immunohistochemical detection of DNA mismatch repair gene proteins. Virchows Arch 2004;445:431-441.
149. Bae YS, Kim H, Noh SH, Kim H. Usefulness of immunohistochemistry for microsatellite instability screening in gastric cancer. Gut Liver 2015;9:629-635.
PUBMED | CROSSREF

150. Hampel H, Pearlman R, Beightol M, Zhao W, Jones D, Frankel WL, et al. Assessment of tumor sequencing as a replacement for Lynch syndrome screening and current molecular tests for patients with colorectal cancer. JAMA Oncol 2018;4:806-813.
PUBMED | CROSSREF

151. McCarthy AJ, Capo-Chichi IM, Spence T, Grenier S, Stockley T, Kamel-Reid S, et al. Heterogenous loss of mismatch repair (MMR) protein expression: a challenge for immunohistochemical interpretation and microsatellite instability (MSI) evaluation. J Pathol Clin Res 2019;5:115-129.
PUBMED | CROSSREF

152. Renkonen E, Zhang Y, Lohi H, Salovaara R, Abdel-Rahman WM, Nilbert M, et al. Altered expression of MLH1, MSH2, and MSH6 in predisposition to hereditary nonpolyposis colorectal cancer. J Clin Oncol 2003;21:3629-3637.
PUBMED | CROSSREF

153. McCarthy AJ, Capo-Chichi IM, Spence T, Grenier S, Stockley T, Kamel-Reid S, et al. Heterogenous loss of mismatch repair (MMR) protein expression: a challenge for immunohistochemical interpretation and microsatellite instability (MSI) evaluation. J Pathol Clin Res 2019;5:115-129.
PUBMED | CROSSREF

154. Jones EC, Wotherspoon A, Peckitt C, Gonzalez D, Hulkki-Wilson S, Eltahir Z, et al. Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) trial. JAMA Oncol 2017;3:1197-1203.
PUBMED | CROSSREF

155. Fujiyoshi K, Yamamoto G, Takahashi A, Arai Y, Yamada M, Kakuta M, et al. High concordance rate of KRAS/BRAF mutations and MSI-H between primary colorectal cancer and corresponding metastases. Oncol Rep 2017;37:785-792.
PUBMED | CROSSREF

156. Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC. Microsatellite instability detection by next generation sequencing. Clin Chem 2014;60:1192-1199.
PUBMED | CROSSREF

157. Kang SY, Kim DG, Ahn S, Ha SY, Jang KT, Kim KM. Comparative analysis of microsatellite instability by next-generation sequencing, MSI PCR and MMR immunohistochemistry in 1942 solid cancers. Pathol Res Pract 2022;238:153874.
PUBMED | CROSSREF
165. Trabucco SE, Gowen K, Maund SL, Sanford E, Fabrizio DA, Hall MJ, et al. A novel next-generation sequencing approach to detecting microsatellite instability and pan-tumor characterization of 1000 microsatellite instability-high cases in 67,000 patient samples. J Mol Diagn 2019;21:1053-1066.

166. Hechtman JF, Rana S, Middha S, Stadler ZK, Latham A, Benayed R, et al. Retained mismatch repair protein expression occurs in approximately 6% of microsatellite instability-high cancers and is associated with missense mutations in mismatch repair genes. Mod Pathol 2020;33:871-879.

167. Hampel H, Frankel W, Panescu J, Lockman J, Sotamaa K, Fix D, et al. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res 2006;66:7810-7817.

168. Ferguson SE, Aronson M, Pollett A, Eiriksson LR, Oza AM, Gallinger S, et al. Performance characteristics of screening strategies for Lynch syndrome in unselected women with newly diagnosed endometrial cancer who have undergone universal germline mutation testing. Cancer 2014;120:3932-3939.

169. Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. J Mol Diagn 2017;19:187-225.

170. Zhang L. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part II. The utility of microsatellite instability testing. J Mol Diagn 2008;10:301-307.

171. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011;29:235-271.

172. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol 2004;22:329-360.

173. Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol 2006;90:51-81.

174. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 2018;8:1069-1086.

175. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 2016;375:1767-1778.

176. Akhtar M, Rashid S, Al-Bozom IA. PD-L1 immunostaining: what pathologists need to know. Diagn Pathol 2021;16:94.

177. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol 2018;4:e180013.

178. Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 2021;398:27-40.

179. Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clinc Oncol 2021;18:345-362.
183. Kulangara K, Zhang N, Corigliano E, Guerrero L, Waldroup S, Jaiswal D, et al. Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med 2019;143:330-337.
PUBMED | CROSSREF

184. Morrison C, Pabla S, Conroy JM, Nesline MK, Glenn ST, Dressman D, et al. Predicting response to checkpoint inhibitors in melanoma beyond PD-L1 and mutational burden. J Immunother Cancer 2018;6:32.
PUBMED | CROSSREF

185. Kerr KM, Tsao MS, Nicholson AG, Yatabe Y, Wistuba II, Hirsch FR, et al. Programmed death-ligand 1 immunohistochemistry in lung cancer: in what state is this art? J Thorac Oncol 2015;10:985-989.
PUBMED | CROSSREF

186. Kerr KM, Hirsch FR. Programmed death ligand-1 immunohistochemistry: friend or foe? Arch Pathol Lab Med 2016;140:326-331.
PUBMED | CROSSREF

187. de Ruiter EI, Mulder FJ, Koomen BM, Speel EJ, van den Hout MF, de Roest RH, et al. Comparison of three PD-L1 immunohistochemical assays in head and neck squamous cell carcinoma (HNSCC). Mod Pathol 2021;34:1125-1132.
PUBMED | CROSSREF

188. Parra ER, Villalobos P, Mino B, Rodriguez-Canales I. Comparison of different antibody clones for immunohistochemistry detection of programmed cell death ligand 1 (PD-L1) on non-small cell lung carcinoma. Appl Immunohistochem Mol Morphol 2018;26:83-93.
PUBMED | CROSSREF

189. Widmaier M, Wiestler T, Walker J, Barker C, Scott ML, Sekhavati F, et al. Comparison of continuous measures across diagnostic PD-L1 assays in non-small cell lung cancer using automated image analysis. Mod Pathol 2020;33:380-390.
PUBMED | CROSSREF

190. Inge LJ, Dennis E. Development and applications of computer image analysis algorithms for scoring of PD-L1 immunohistochemistry. Immunooncol Technol 2020;6:2-8.
PUBMED | CROSSREF

191. Koelzer VH, Gisler A, Hanhart JC, Griss J, Wagner SN, Willi N, et al. Digital image analysis improves precision of PD-L1 scoring in cutaneous melanoma. Histopathology 2018;73:397-406.
PUBMED | CROSSREF

192. Lawlor RT, Mattiolo P, Mafficini A, Hong SM, Piredda ML, Taormina SV, et al. Tumor mutational burden as a potential biomarker for immunotherapy in pancreatic cancer: systematic review and still-open questions. Cancers (Basel) 2021;13:3119.
PUBMED | CROSSREF

193. Fancello L, Gandini S, Pellici PG, Mazzarella L. Tumor mutational burden quantification from targeted gene panels: major advancements and challenges. J Immunother Cancer 2019;7:183.
PUBMED | CROSSREF

194. Marabelle A, Fakh M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-458 study. Lancet Oncol 2020;21:1353-1365.
PUBMED | CROSSREF

195. Lee KW, Van Cutsem E, Bang YJ, Fuchs CS, Kudaba I, Garrido M, et al. Association of tumor mutational burden with efficacy of pembrolizumabchemotherapy as first-line therapy for gastric cancer in the phase III KEYNOTE-062 study. Clin Cancer Res 2022;28:3489-3498.
PUBMED | CROSSREF

196. Demetri GD, De Braud F, Drilon A, Siena S, Patel MR, Cho BC, et al. Updated integrated analysis of the efficacy and safety of entrectinib in patients with NTRK fusion-positive solid tumors. Clin Cancer Res 2022;28:1302-1312.
PUBMED | CROSSREF

197. Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 2013;19:1469-1472.
PUBMED | CROSSREF

198. Amatu A, Sartore-Bianchi A, Bencardino K, Pizzutilo EG, Tosi F, Siena S. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann Oncol 2019;30:viii5-viii15.
PUBMED | CROSSREF

199. Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov 2015;5:25-34.
PUBMED | CROSSREF
200. Amatu A, Sartore-Bianchi A, Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016;1:e000023.

201. Okimoto RA, Bivona TG. Tracking down response and resistance to TRK inhibitors. Cancer Discov 2016;6:14-16.

202. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 2018;378:731-739.

203. Forseyte A, Zhang W, Phillip Strauss U, Fellous M, Korei M, Keating K. A systematic review and meta-analysis of neurotrophic tyrosine receptor kinase gene fusion frequencies in solid tumors. Ther Adv Med Oncol 2020;12:1758835920975613.

204. Cocce E, Scataliti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 2018;15:731-747.

205. Shinozaki-Ushiku A, Ishikawa S, Komura D, Seto Y, Aburatani H, Ushiku T. The first case of gastric carcinoma with NTRK rearrangement: identification of a novel ATP1B-NTRK1 fusion. Gastric Cancer 2020;23:944-947.

206. Okamura R, Boichard A, Kato S, Sicklick JK, Bazhenova L, Kurzrock R. Analysis of NTRK Alterations in pan-cancer adult and pediatric malignancies: implications for NTRK-targeted therapeutics. JCO Precis Oncol 2018;2018:PO.18.00183.

207. Arnold A, Daum S, von Winterfeld M, Berg E, Hummel M, Horst D, et al. Analysis of NTRK expression in gastric and esophageal adenocarcinoma (AGE) with pan-TRK immunohistochemistry. Pathol Res Pract 2019;215:152662.

208. Solomon JP, Linkov I, Rosado A, Mullaney K, Rosen EY, Frosina D, et al. NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol 2020;33:38-46.

209. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 2020;21:271-282.

210. Rolfo C. NTRK gene fusions: a rough diamond ready to sparkle. Lancet Oncol 2020;21:472-474.

211. Hechtman JF, Benayed R, Hyman DM, Drilon A, Zehir A, Frosina D, et al. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol 2017;41:1547-1551.

212. Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan AM. Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Med 2015;7:129.

213. Hsiao SJ, Zehir A, Sireci AN, Aisner DL. Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy. J Mol Diagn 2019;21:553-571.

214. Odumade OA, Hogquist KA, Balfour HH Jr. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev 2011;24:193-209.

215. Womack J, Jimenez M. Common questions about infectious mononucleosis. Am Fam Physician 2015;91:372-376.

216. Fukayama M, Abe H, Kunita A, Shinozaki-Ushiku A, Matsusaka K, Ushiku T, et al. Thirty years of Epstein-Barr virus-associated gastric carcinoma. Virchows Arch 2020;476:353-365.

217. Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 2016;16:789-802.

218. Kang BW, Seo AN, Yoon S, Bae HI, Jeon SW, Kwon OK, et al. Prognostic value of tumor-infiltrating lymphocytes in Epstein-Barr virus-associated gastric cancer. Ann Oncol 2016;27:494-501.
219. Camargo MC, Kim WH, Chiaravalli AM, Kim KM, Corvalan AH, Matsuo K, et al. Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut 2014;63:236-243.

220. Park JH, Kim EK, Kim YH, Kim JH, Bae YS, Lee YC, et al. Epstein-Barr virus positivity, not mismatch repair-deficiency, is a favorable risk factor for lymph node metastasis in submucosa-invasive early gastric cancer. Gastric Cancer 2016;19:1041-1051.

221. Osumi H, Kawachi H, Yoshih T, Ida S, Yamamoto N, Horiuchi Y, et al. Epstein-Barr virus status is a promising biomarker for endoscopic resection in early gastric cancer: proposal of a novel therapeutic strategy. J Gastroenterol 2019;54:774-783.

222. Park JH, Kim EK, Kim YH, Kim JH, Bae YS, Lee YC, et al. Epstein-Barr virus positivity, not mismatch repair-deficiency, is a favorable risk factor for lymph node metastasis in submucosa-invasive early gastric cancer. Gastric Cancer 2016;19:1041-1051.

223. Nakamura S, Ueki T, Yao T, Ueyama T, Tsuneyoshi M. Epstein-Barr virus in gastric carcinoma with lymphoid stroma. Special reference to its detection by the polymerase chain reaction and in situ hybridization in 99 tumors, including a morphologic analysis. Cancer 1994;73:2239-2249.

224. Lim H, Park YS, Lee JH, Son DH, Ahn JY, Choi KS, et al. Features of gastric carcinoma with lymphoid stroma associated with Epstein-Barr virus. Clin Gastroenterol Hepatol 2015;13:i738-i744.e2.

225. Gullo I, Oliveira P, Athelogou M, Gonçalves G, Pinto ML, Carvalho J, et al. New insights into the inflamed tumor immune microenvironment of gastric cancer with lymphoid stroma: from morphology and digital analysis to gene expression. Gastric Cancer 2019;22:77-90.

226. Chetty R. Gastrointestinal cancers accompanied by a dense lymphoid component: an overview with special reference to gastric and colonic medullary and lymphoepithelioma-like carcinomas. J Clin Pathol 2012;65:1062-1065.

227. Song HJ, Srivastava A, Lee J, Kim YS, Kim KM, Ki Kang W, et al. Host inflammatory response predicts survival of patients with Epstein-Barr virus-associated gastric carcinoma. Gastroenterology 2010;139:84-92.e2.

228. Tamura T, Hamada T, Sako T, Makihara K, Yamada K, Kashima K, et al. Lymphoepithelioma-like carcinoma of the stomach with epithelioid granulomas. Case Rep Gastroenterol 2010;4:361-368.

229. Luo B, Murakami M, Fukuda M, Fujioka A, Yanagihara K, Sairenji T. Characterization of Epstein-Barr virus infection in a human signet ring cell gastric carcinoma cell line, HSC-39. Microbes Infect 2004;6:429-439.

230. Harn HJ, Chang JY, Wang MW, Ho LI, Lee HS, Chiang JH, et al. Epstein-Barr virus-associated gastric adenocarcinoma in Taiwan. Hum Pathol 1995;26:267-271.

231. AbuSalah MA, Gan SH, Al-Hatamleh MA, Irekeola AA, Shueb RH, Yean Yean C. Recent advances in diagnostic approaches for Epstein-Barr virus. Pathogens 2020;9:E226.

232. Hassan R, White LR, Stefanoff CG, de Oliveira DE, Felisbino FE, Klumb CE, et al. Epstein-Barr virus (EBV) detection and typing by PCR: a contribution to diagnostic screening of EBV-positive Burkitt’s lymphoma. Diagn Pathol 2006;1:17.

233. Gulley ML, Glaser SL, Craig FE, Borowitz M, Mann RB, Shema SI, et al. Guidelines for interpreting EBER in situ hybridization and LMP1 immunohistochemical tests for detecting Epstein-Barr virus in Hodgkin lymphoma. Am J Clin Pathol 2002;117:259-267.

234. Shuto T, Nishikawa J, Shimokuri K, Yanagi A, Takagi T, Takagi F, et al. Establishment of a screening method for Epstein-Barr virus-associated gastric carcinoma by droplet digital PCR. Microorganisms 2019;7:E628.
235. Harada K, Baba Y, Shigaki H, Ishimoto T, Miyake K, Kosumi K, et al. Prognostic and clinical impact of PIK3CA mutation in gastric cancer: pyrosequencing technology and literature review. BMC Cancer 2016;16:400. [PUBMED] [CROSSREF]

236. Ito C, Nishizuka SS, Ishida K, Uesugi N, Sugai T, Tamura G, et al. Analysis of PIK3CA mutations and PI3K pathway proteins in advanced gastric cancer. J Surg Res 2017;212:195-204. [PUBMED] [CROSSREF]

237. Li H, Chen S, Li H, Cui J, Gao Y, Wu D, et al. Association between PIK3CA alteration and prognosis of gastric cancer patients: a meta-analysis. Oncotarget 2018;9:7651-7659. [PUBMED] [CROSSREF]

238. Díaz-Serrano A, Angulo B, Dominguez C, Pazo-Cid R, Salud A, Jiménez-Fonseca P, et al. Genomic profiling of HER2-positive gastric cancer: PI3K/Akt/mTOR pathway as predictor of outcomes in HER2-positive advanced gastric cancer treated with trastuzumab. Oncologist 2018;23:1092-1102. [PUBMED] [CROSSREF]

239. Polom K, Marrelli D, Roviello G, Pascale V, Voglino C, Vindigni C, et al. PIK3CA mutation in gastric cancer and the role of microsatellite instability status in mutations of exons 9 and 20 of the PIK3CA gene. Adv Clin Exp Med 2018;27:963-969. [PUBMED] [CROSSREF]

240. Lorenzen S, Knorrenschild JR, Pauligk C, Hegewisch-Becker S, Seraphin J, Thuss-Patience P, et al. Phase III randomized, double-blind study of paclitaxel with and without everolimus in patients with advanced gastric or esophageogastric junction carcinoma who have progressed after therapy with a fluoropyrimidine/platinum-containing regimen (RADPAC). Int J Cancer 2020;147:2493-2502. [PUBMED] [CROSSREF]

241. Shah MA, Bang YJ, Lordick F, Alsina M, Chen M, Hack SP, et al. Effect of fluorouracil, leucovorin, and oxaliplatin with or without onartuzumab in HER2-negative, MET-positive gastroesophageal adenocarcinoma: the METGastric randomized clinical trial. JAMA Oncol 2017;3:620-627. [PUBMED] [CROSSREF]

242. Waddell T, Chau I, Cunningham D, Gonzalez D, Okines AF, Okines C, et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol 2013;14:481-489. [PUBMED] [CROSSREF]

243. Polom K, Marrelli D, Roviello G, Pascale V, Voglino C, Vindigni C, et al. PIK3CA mutation in gastric cancer and the role of microsatellite instability status in mutations of exons 9 and 20 of the PIK3CA gene. Adv Clin Exp Med 2018;27:963-969. [PUBMED] [CROSSREF]
251. Zhang Y, Sun M, Huang G, Yin L, Lai Q, Yang Y, et al. Maintenance of antiangiogenic and antitumor effects by orally active low-dose capecitabine for long-term cancer therapy. Proc Natl Acad Sci U S A 2017;114:E5226-E5235.

252. Li J, Qin S, Xu J, Xiong J, Wu C, Bai Y, et al. Randomized, double-blind, placebo-controlled phase III trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction. J Clin Oncol 2016;34:1448-1454.

253. Nakayama I, Shinozaki E, Sakata S, Yamamoto N, Fujisaki J, Muramatsu Y, et al. Enrichment of CLDN18-ARHGAP fusion gene in gastric cancers in young adults. Cancer Sci 2019;110:1352-1363.

254. Zhan X, Wang B, Li Z, Li J, Wang H, Chen L, et al. Phase I trial of Claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. J Clin Oncol 2019;37:2509.

255. Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol 2019;16:81-104.

256. Bang YJ, Im SA, Lee KW, Cho JY, Song EK, Lee KH, et al. Randomized, double-blind phase II trial with prospective classification by ATM protein level to evaluate the efficacy and tolerability of olaparib plus paclitaxel in patients with recurrent or metastatic gastric cancer. J Clin Oncol 2015;33:3858-3865.

257. Bang YJ, Xu RH, Chin K, Lee KW, Park SH, Rha SY, et al. Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy (GOLD): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2017;18:1637-1651.

258. Nakamura Y, Shitara K. Development of circulating tumour DNA analysis for gastrointestinal cancers. ESMO Open 2020;5:e000600.

259. Sathe A, Grimes SM, Lau BT, Chen J, Suarez C, Huang RJ, et al. Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment. Clin Cancer Res 2020;26:2640-2653.

260. Ba W, Wang S, Shang M, Zhang Z, Wu H, Yu C, et al. Assessment of deep learning assistance for the pathological diagnosis of gastric cancer. Mod Pathol 2022;35:1262-1268.