Topological spin texture in Janus monolayers of the chromium trihalides Cr(I, X)\textsubscript{3}

Changsong Xu1,4,* Junsheng Feng2,3,* Sergei Prokhorenko,1 Yousra Nahas,1 Hongjun Xiang,3,4,* and L. Bellaiche1,‡

1Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
2School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, People’s Republic of China
3Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, People’s Republic of China

(Rceived 25 July 2019; revised manuscript received 18 September 2019; accepted 28 January 2020; published 10 February 2020)

Topological magnetic states are promising for ultradense memory and logic devices. Recent progress in two-dimensional magnets encourages the idea to realize topological states, such as skyrmions and merons, in freestanding monolayers. However, monolayers such as Cr\textsubscript{3} lack Dzyaloshinskii-Moriya interactions (DMIs) and thus do not naturally exhibit skyrmions/merons but rather a ferromagnetic state. Here we propose the fabrication of Cr(I, X)\textsubscript{3} monolayers, in which the Cr atoms are covalently bonded to the underlying I ions and top-layer Br or Cl atoms. By performing first-principles calculations and Monte Carlo simulations, we identify strong enough DMIs, which leads to not only helical cycloid phases, but also to topologically nontrivial states, such as the intrinsic domain wall skyrmions in Cr(I, Br)\textsubscript{3} and the magnetic-field-induced bimerons in Cr(I, Cl)\textsubscript{3}. Microscopic origins of such spin textures are revealed as well.

DOI: 10.1103/PhysRevB.101.060404

Introduction. Novel spin textures, such as skyrmions and merons, are nanoscale spin clusters with topological stability, and are promising for advanced spintronics [1–3]. One requirement toward such applications is that the hosting materials should be thin films, so that the nanosize of the spin clusters can be taken full advantage of. Besides previous studies on skyrmionic states of bulk MnSi [4–7], recent works focused on ultrathin films, such as skyrmion states in FeGe [8,9] and rare-earth ion garnet [10,11] and meron states in Co\textsubscript{8}Zn\textsubscript{9}Mn\textsubscript{3} [12], which all take advantage of the Dzyaloshinskii-Moriya interaction (DMI) arising from relativistic spin-orbit coupling (SOC). However, no skyrmionic state has ever been reported to intrinsically exist in freestanding monolayers, to the best of our knowledge. Two-dimensional (2D) semiconducting magnets, such as monolayer Cr\textsubscript{3} [13], are recently attracting much attention due to their novel physics and rich applications [14]. The ferromagnetic monolayer Cr\textsubscript{3} crystallizes in honeycomb lattice made of edge-sharing octahedra. Its ferromagnetic order is stabilized by an out-of-plane anisotropy [13], which arises from single ion anisotropy (SIA) and Kitaev-type exchange coupling that both result from the SOC of its heavy ligands [15,16]. However, the ingredient DMI is absent between the most strongly coupled first-nearest-neighbor (1st NN) Cr-Cr pairs, because the inversion center between the two Cr atoms prevents its existence [17].

Here we propose an approach that consists in fabricating Janus monolayers of chromium trihalides Cr(I, X)\textsubscript{3} (X = Br, Cl). One example of Janus monolayers is the transition metal dichalcogenides MoS\textsubscript{2}, which originates from the well-known monolayer Mo\textsubscript{2}S\textsubscript{2} but with one layer of S being substituted by Se. Such Janus monolayer is experimentally achievable, since Mo\textsubscript{2}Se\textsubscript{2} has been reproducibly obtained using different methods [18,19], which strongly suggests the feasibility of also creating Cr(I, X)\textsubscript{3} Janus monolayers. In this Rapid Communication, we apply density functional theory (DFT) and parallel tempering Monte Carlo (PTMC) simulations to study the magnetic interactions and to reveal novel spin textures of two Janus monolayers, namely, Cr(I, Br)\textsubscript{3} and Cr(I, Cl)\textsubscript{3}, as well as the prototype Cr\textsubscript{3} [see structural schematics in Figs. 1(a) and 1(b)]. As we will show, these Janus monolayers exhibit not only strong enough DMI, but also a decrease in magnetic anisotropy energy (MAE), which both contribute to stabilizing helical, skyrmion, and even bimeron states. We also demonstrate that the presence of Kitaev interaction and the application of magnetic field both benefit to the emergence of novel spin textures in these Cr(I, X)\textsubscript{3} Janus monolayers.

Hamiltonian and magnetic parameters. We consider the following Hamiltonian for describing the magnetic interactions of the Cr(I, Br)\textsubscript{3} and Cr(I, Cl)\textsubscript{3} Janus monolayers, as well as the prototype Cr\textsubscript{3} monolayer, using the generalized matrix form up to the second-nearest neighbors (2nd NN) for the spins, \(\mathbf{S}\):

\[
\mathcal{H} = \frac{1}{2} \sum_{n=1,2} \sum_{i,j} \mathbf{S}_i^\dagger \mathcal{J}_{n,ij} \mathbf{S}_j + \sum_i \mathbf{S}_i^\dagger A_{ii} \mathbf{S}_i, \tag{1}
\]

where the first term is the exchange coupling that runs over all first \((i, j)\) and second \((i, j)\) NN Cr pairs, respectively, and the second term represents SIA that runs over all Cr

*These authors contributed equally to this work.
1hxiang@fudan.edu.cn
2laurent@uark.edu

©2020 American Physical Society
The Hamiltonian can then be rewritten as
\[
\mathcal{H} = J' \sum_{n=1,2, \alpha, j, k} \left\{ \mathbf{S}_i \cdot \mathbf{S}_j + K \mathbf{S}^\gamma_i \mathbf{S}^\gamma_j + D_{n,ij} \left(\mathbf{S}_i \times \mathbf{S}_j \right) \right\} + A_{zz} (S^\gamma_i)^2,
\]
where \(J' = (J_x + J_y)/2\), \(K = J_x - J_y\), and \(S^\gamma\) is the \(\gamma\) component of \(\mathbf{S}\) in a local basis \((\alpha, \beta, \gamma)\) that results from the diagonalization of the symmetric part of \(\mathcal{J}\) [see Figs. 1(c), 1(d) and SM [20] for details about Kitaev interaction]. The directions of the DMI vectors \(\mathbf{D}\) are illustrated in Figs. 1(c) and 1(d). Specifically, the \(\mathbf{D}_1\) vectors of both Cr(I, X)\(_3\) are perpendicular to the Cr2X plane, which satisfy Moriya’s rule [17] and thus testify to the accuracy of our calculations. The \(\mathbf{D}_2\) vectors are basically pointing from one bridging I to the other I or X. Note that we further define another isotropic parameter as \(J' = (J_x + J_y + J_z)/3\), which is equivalent to the \(J\) coefficient involved in the commonly used J₃SᵢSⱼ term. Such isotropic \(J\) is thus different from \(J'\) and its ratio with the DMI parameter \((|D_2|/|J'|)\) can provide information about the existence of magnetic skyrmions or not. Let us now look at the precise values of the magnetic parameters obtained from DFT and the four-state method [15,21,23,24]. As shown in Table I, both \(J_1\) and \(J_2\) yield negative values, which imply ferromagnetism (FM) for all investigated systems, which is consistent with the measured ferromagnetism of CrX₃, with \(X = \text{Cl}, \text{Br}\), and I [13,25,26]. The \(J_1\), \(K_1\), and \(A_{zz}\) parameters all decrease in magnitude when the \(X\) ion of Cr(I, X)\(_3\) varies from I to Cl, via Br. This decrease in \(J_1\) results from the shrinking of lattice constants [27], while that of \(K_1\) and \(A_{zz}\) root in the weakening of the SOC strength (as consistent with the location of I, Br, and Cl in the periodic table). On the other hand, the \(J_2\) and \(K_2\) coefficients show no significant changes with the \(X\) ion. Moreover, the Janus monolayers Cr(I, Br)\(_3\) and Cr(I, Cl)\(_3\) exhibit remarkable \(D_1\) values of 0.270 and 0.194 meV, respectively, while the prototype CrI\(_3\) has no finite \(D_1\), as aforementioned. Such values, altogether with \(J_1\) yield large \(|D_1/J_1|\) ratios of 0.150 for Cr(I, Br)\(_3\) and 0.194 for Cr(I, Cl)\(_3\), which are within the typical range of 0.1–0.2 known to generate skyrmionic phases [2]. Note that a very recent theoretical study proposed the application of electric field to monolayer CrI\(_3\), in order to break the inversion center and induce DMI [28]. Although this method is clever, the electric field has a weak effect in generating DMI, as an extremely large electric field of 2 V/nm leads to a small \(|D_1/J_1|\) of 0.071, which hinders the actual creation of skyrmions. Notably, our three investigated systems also show non-negligible \(D_2\) values, which leads to \(|D_2/J_2|\) ratios comparable to their 1st NN counterparts, as detailed in Table I. The significant \(|D_2/J_2|\) ratios of Cr(I, Br)\(_3\) and Cr(I, Cl)\(_3\) demonstrate that the fabrication of Janus monolayers is an effective way to induce considerable DMI and is thus promising to create magnetic skyrmions.

Another important factor that affects the formation of topological states is the MAE, which is defined as the energy difference between out-of-plane FM (zFM) and in-plane FM (xFM) states, \(\epsilon = E_{zFM} - E_{xFM}\), where \(\epsilon < 0\) (>0, respectively) favors out-of-plane (in-plane, respectively) FM. Supplemental Material Fig. S1(a) displays the MAE calculated using the model energy of Eq. (2) with the parameters of Table I [20]. The prototype CrI\(_3\), with \(\epsilon = -0.693\) meV/Cr, favors strong out-of-plane anisotropy and Cr(I, Br)\(_3\), with \(\epsilon = -0.218\) meV/Cr, exhibits mild out-of-plane anisotropy. In contrast, Cr(I, Cl)\(_3\) shows weak in-plane anisotropy since \(\epsilon = 0.111\) meV/Cr [29]. As we will see later, such differences in anisotropy between Cr(I, Br)\(_3\) and Cr(I, Cl)\(_3\) plays a role on the morphology of the spin textures.
Hamiltonian of Eq. (1) are performed over a 50 × 50 × 1 supercell to find spin structures with low energies. These latter spin structures are then further relaxed with the conjugate gradient (CG) method, until arriving at energy minima. Such optimization scheme guarantees the converged spin structures to be either metastable states or the ground state at the temperature of 0 K.

Practically, the ground state of Cr(I, Br)₃ is determined to be out-of-plane ferromagnetism (zFM), of which the energy is set to be zero. The first metastable state [the convention of terminology here is that the n-th metastable state has the (n + 1)th lowest energy] of Cr(I, Br)₃ is an out-of-plane Néel-type cycloid structure, as shown in Fig. 2(a), with an energy of 0.056 meV/Cr. Its propagation direction is symmetrically equivalent along (a + 2b), (2a + b), and (b − a). Moreover, the in-plane components of the spin vectors and the propagation direction form angles of ~5.9° around the middle of domains (bright and dark zones) and ~3.2° near the domain walls. Such cycloid structure yields no finite topological charge Q that is defined as $Q = \frac{1}{4\pi} \int \mathbf{m} \cdot (\nabla \times (\nabla \times \mathbf{m})) \, dx \, dy$, where \mathbf{m} is the unit vector lying along the local magnetic moment’s direction.

On the other hand, novel topological states with finite Q are found as the second and even higher metastable states. As shown in Fig. 2(b), near the lower bright-dark domain boundary, the spin vectors not only behave as the aforementioned Néel-type cycloid, but also rotate clockwise in the film plane and form a point defect. The in-plane components of such defect is reminiscent of a domain wall skyrmion (DWS) [30], or precisely, a slice of the latter. The in-plane rotation, together with the out-of-plane cycloidal behavior, renders $Q = -1$ and is thus topologically equivalent to the common axially symmetric skyrmion [4–7]. We thus refer to this special defect as a DWS for simplicity. Such DWS state of Fig. 2(b) has an energy of 343.5 meV/DWS with respect to the ground state and 63.8 meV/DWS with respect to the cycloid phase.

Moreover, it is found that either the upper or the lower domain boundary can host multiple DWS, as shown in Fig. 2(c). The $50 \times 50 \times 1$ supercell can thus host up to four DWS. Interestingly, when the in-plane components of the spin vectors rotate anticlockwise, it forms a domain wall antiskyrmion, with $Q = +1$. As shown in Fig. 2(d), the upper domain boundary hosts two antiskyrmions and the lower one hosts two skyrmions, which results in the total topological charge being $Q = 0$. Interestingly, either a skyrmion or an antiskyrmion is found to cost an energy of 63.8 meV/DWS with respect to the cycloid state. In fact, the energy is linearly increasing with simply the number of skyrmions, as shown in Fig. S2(c). It is also found here that skyrmions and antiskyrmions cannot exist at the same domain wall, since they tend to annihilate each other, which would in fact lead to the transformation to the cycloid state (resulting in $Q = 0$) [31].

In order to reveal the microscopic origin of the aforementioned spin textures, DMI vectors are decomposed into their $(r pz)$ components. As shown in Fig. 1(e), the \hat{r} axis is along the Cr-Cr bond direction and thus in-plane; the \hat{p} axis is perpendicular to \hat{r} and also in-plane, and the \hat{z} axis is the out-of-plane direction. As shown in Supplemental Material Table SII, for Cr(I, Br)₃, this decomposition gives $D_1 = (0, -0.226, -0.147)$ meV for the Cr-Cr pair that is along $(a - b)/2$ and $D_2 = (0.080, -0.040, -0.071)$ meV. As detailed in Sec. SII and Table SIII of the SM, by switching between a clockwise and an anticlockwise DWS with respect to the ground state $\{31\}$.

FIG. 2. Magnetic structures and topological charges of Cr(I, Br)₃. (a) shows the out-of-plane Néel-type cycloid; (b) illustrates one DWS at one domain boundary; (c) and (d) each host four DWS and are also energetically degenerate with different Q. The color map applies to the out-of-plane component of the spin vectors (“spin-in” and “spin-out,” for negative (dark) and positive (bright) z components, respectively) while the arrows characterize the in-plane components of the spin vectors.
renders an in-plane perpendicular moment of 0.15μB/Cr, with an energy lowering of 0.024 meV/Cr. Such zigzag-canted FM state is degenerate when the main component of the magnetization is along the a direction (which is precisely our x direction), or along the b and (a + b) directions.

The first metastable state is a mostly in-plane cycloidal structure superimposed with small out-of-plane components forming a waved spin pattern, as shown in Fig. 3(b) [33]. Note also that the zigzag canting of the ground state exists in such cycloid phase too. Such cycloidal structure has an energy higher by 0.026 meV/Cr from the ground state and is degenerate for propagation directions being along the (a + 2b), (2a + b), or (b − a) directions.

Skyrmionic states are not found to be “naturally” stable in Cr(I, Cl)3 within our Hamiltonian, partially due to the relatively strong in-plane anisotropy. An out-of-plane magnetic field B is then applied to compensate the in-plane anisotropy that arises from the original DFT-derived magnetic parameters (K and A⊥). It is numerically found that, for B > 0.65 T, zFM is energetically more favorable than in-plane FM. However, the magnetic field (< 2 T) does not polarize the spins to the fully out-of-plane direction, but rather renders the in-plane zigzag-canted FM now possessing an out-of-plane component. The previously metastable cycloid state cannot survive and transform to such FM state when B > 0.2 T.

Interestingly, topologically nontrivial bimeron states can be stabilized in Cr(I, Cl)3 with a compensative magnetic field between 0.5 and 1.3 T. A meron/antimeron can be viewed as half of a skyrmion/antiskyrmion (and thus has a half integer topological charge Q) embedded in a background made of in-plane dipoles [12,34]. Note also that a bimeron [35–38], which is a pair of merons or antimerons, is sometimes referred to as asymmetric skyrmion [39], double-pair skyrmion [40], or in-plane skyrmion [3,41] too. Although micrometer-sized merons have been widely reported in permalloys [42–45], merons with nanometric sizes have only been very recently observed in Co8Zn9Mn3 [12,34].

Our study thus suggests a feasible approach to create topological spin states. By combining DFT and MC simulations, we find that Cr(I, Br)3 can intrinsically host metastable domain wall skyrmion phases, while a bimeron state of Cr(I, Cl)3 can be stabilized by applying an out-of-plane magnetic field. The Kitaev interaction is found critical to stabilize DWS and bimerons, as it contributes to the MAE and adds to the disorder of the systems (see SM for details).

In summary, we propose the fabrication of Cr(I, X)3 (X = Br, Cl) Janus monolayers to induce large DMI and subsequent topological spin states. By combining DFT and MC simulations, we find that Cr(I, Br)3 can intrinsically host a metastable domain wall skyrmion phases, while a bimeron state of Cr(I, Cl)3 can be stabilized by applying an out-of-plane magnetic field. The Kitaev interaction is found critical to stabilize DWS and bimerons, as it contributes to the MAE and adds to the disorder of the systems [3,41]. Our study thus suggests a feasible approach to create topological spin textures in semiconducting magnets consisting of chromium trihalide Janus monolayers. Such presently predicted topological phases are not only useful for memory and logic devices, but can also be promising for energy storage [46].

Note added. Recently, we became aware of two recent theoretical works on prediction of skyrmionic states in MoS2-prototyped Janus monolayers of MnXY (X = S, Se and Te) [61,62].

Acknowledgments. This work is primarily supported by the Office of Department of Energy, Basic Energy Sciences under Contract No. ER-46612 (C.X. and L.B.). S.P. and Y.N., who contributed to the topological analysis, also acknowledge the financial support from DARPA Grant No. HR0011727183-D18AP00010 (TEC Program). H.X. is supported by NSFC (11825403), the Special Funds for Major State Basic Research (05405), the Special Funds for Major State Basic Research (15CB921700), Program for Professor of Special Appointment (Eastern Scholar), Qing Nian Ba Jian Program, and Fok Ying Tung Education Foundation. J.F. acknowledges the support from Anhui Provincial Natural Science Foundation (1908085MA10). The Arkansas High Performance Computing Center (AHGCC) is also acknowledged.

[1] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[2] A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152 (2013).
[3] K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Kläui, J. Appl. Phys. 124, 240901 (2018).
[4] S. Heinze, K. Von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Nat. Phys. 7, 713 (2011).
[5] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).
The second nearest neighbors DMI of CrI$_3$ are also listed in

H. Xiang, C. Lee, H.-J. Koo, X. Gong, and M.-H. Whangbo, Phys. Rev. Lett. 102, 186802 (2009).

C. Pappas, E. Leliévre-Berna, P. Falus, P. M. Bentley, E. Moskvin, S. Grigoriev, P. Fouquet, and B. Farago, Phys. Rev. Lett. 102, 197201 (2009).

X. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nat. Mater. 10, 106 (2011).

S. X. Huang and C. L. Chien, Phys. Rev. Lett. 108, 267201 (2012).

C. O. Avci, E. Rosenberg, L. Caretta, F. Büttner, M. Mann, C. Marcus, D. Bono, C. A. Ross, and G. S. D. Beach, Nat. Nanotechnol. 14, 561 (2019).

Q. Shao, Y. Liu, G. Yu, S. K. Kim, X. Che, C. Tang, Q. L. He, Y. Tserkovnyak, J. Shi, and K. L. Wang, Nat. Electron. 2, 182 (2019).

X. Yu, W. Koshibae, Y. Tokunaga, K. Shibata, Y. Taguchi, N. Nagoasa, and Y. Tokura, Nature (London) 564, 95 (2018).

B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Nature (London) 546, 270 (2017).

M. Gibertini, M. Koperski, A. Morpurgo, and K. Novoselov, Nat. Nanotechnol. 14, 408 (2019).

C. Xu, J. Feng, H. Xiang, and L. Bellaiche, npj Comput. Mater. 4, 57 (2018).

J. L. Lado and J. Fernández-Rossier, 2D Mater. 4, 035002 (2017).

T. Moriya, Phys. Rev. 120, 91 (1960).

A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang et al., Nat. Nanotechnol. 12, 744 (2017).

J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi et al., ACS Nano 11, 8192 (2017).

See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.101.060404 for detailed methods and discussions on our results, which cites Refs. [15,21,23,24,59–58].

C. Xu, B. Xu, B. Dupé, and L. Bellaiche, Phys. Rev. B 99, 104420 (2019).

The second nearest neighbors DMI of CrI$_3$ are also listed in Table I, and have the potential to result in noncollinear spin textures.

H. J. Xiang, E. J. Kan, S.-H. Wei, M.-H. Whangbo, and X. G. Gong, Phys. Rev. B 84, 224429 (2011).

H. Xiang, C. Lee, H.-J. Koo, X. Gong, and M.-H. Whangbo, Dalton Trans. 42, 823 (2013).

B. Morosin and A. Narath, J. Chem. Phys. 40, 1958 (1964).

M. Kim, P. Kumaravadivel, J. Birkbeck, W. Kuang, S. G. Xu, D. G. Hopkinson, J. Knolle, P. A. McClarty, A. I. Berdyugin, M. B. Shalom et al., Nat. Electron. 2, 457 (2019).

The net negative and thus ferromagnetic (FM) J_1 results from the competition between Cr-Cr direct antiferromagnetic (AFM) coupling and Cr-X-Cr indirect FM coupling. The Cr-Cr distance becomes shorter via the shrinking of the lattice constants. Consequently, the direct AFM coupling is enhanced, while the changes to indirect FM coupling are relatively small, so that the total ferromagnetism is weakened and J_1 thus becomes smaller in magnitude [15,59].

A. K. Behera, S. Chowdhury, and S. R. Das, Appl. Phys. Lett. 114, 232402 (2019).

Note that Fig. 2(a) also displays the ϵ directly calculated from DFT, that agrees rather well with those obtained by the model, which thus further testifies to the accuracy of our model Hamiltonian.

R. Cheng, M. Li, A. Sapkota, A. Rai, A. Pokhrel, T. Mewes, C. Mewes, D. Xiao, M. De Graef, and V. Sokalski, Phys. Rev. B 99, 184412 (2019).

Moreover, it is found that the DWS cannot be induced by magnetic field at zero temperature, since a mild magnetic field increases the energy of the DWS, while a strong out-of-plane magnetic field polarizes the spin patterns to zFM state.

G. Yin, Y. Li, L. Kong, R. K. Lake, C.-L. Chien, and J. Zang, Phys. Rev. B 93, 174403 (2016).

Note that such spin arrangement is reminiscent of the spin organization of BiFeO$_3$ that consists of an in-plane cycloidal structure and an out-of-plane wave spin pattern [60].

X. Zhang, M. Ezawa, and Y. Zhou, Sci. Rep. 5, 9400 (2015).

C. Heo, N. S. Kiselev, A. K. Nandy, S. Blügel, and T. Rasing, Sci. Rep. 6, 27146 (2016).

Y. A. Kharkov, O. P. Sushkov, and M. Mostovoy, Phys. Rev. Lett. 119, 207201 (2017).

B. Göbel, A. Mook, J. Henk, I. Mertig, and O. A. Tretiakov, Phys. Rev. B 99, 060407(R) (2019).

A. O. Leonov and I. Kézsmárki, Phys. Rev. B 96, 014423 (2017).

Y.-K. Liu and S.-J. Yang, New J. Phys. 19, 063037 (2017).

K.-W. Moon, J. Yoon, C. Kim, and C. Hwang, Phys. Rev. Appl. 12, 064054 (2019).

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289, 930 (2000).

C. Phatak, A. K. Petford-Long, and O. Heinonen, Phys. Rev. Lett. 108, 067205 (2012).

S. Wintz, C. Bunce, A. Neudert, M. Körner, T. Strache, M. Buhl, A. Erbe, S. Gemming, J. Raabe, C. Quitmann et al., Phys. Rev. Lett. 110, 177201 (2013).

A. Tan, J. Li, A. Scholl, E. Arenholz, A. T. Young, Q. Li, C. Hwang, and Z. Q. Qiu, Phys. Rev. B 94, 014433 (2016).

Y. Tserkovnyak and J. Xiao, Phys. Rev. Lett. 121, 127701 (2018).

G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

W. Kohn and L. J. Sham, Phys. Rev. B 140, A1133 (1965).

Y. Miyatake, M. Yamamoto, J. Kim, M. Toyonaga, and O. Nagai, J. Phys. C: Solid State Phys. 19, 2539 (1986).

M. R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems (National Bureau of Standards, Washington, DC, 1952), Vol. 49.

B. Berg and M. Lüscher, Nucl. Phys. B 190, 412 (1981).

G. P. Müller, M. Hoffmann, C. Dülkamp, D. Schürhoff, S. Mavros, M. Sallermann, N. S. Kiselev, H. Jönsson, and S. Blügel, Phys. Rev. B 99, 224414 (2019).

A. Kitaev, Ann. Phys. (NY) 321, 2 (2006).
[55] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009).
[56] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett. 105, 027204 (2010).
[57] A. Leonov and M. Mostovoy, Nat. Commun. 6, 8275 (2015).
[58] A. N. Bogdanov and D. A. Yablonskii, Zh. Eksp. Teor. Fiz 95, 178 (1989) [Sov. Phys. JETP 68, 101 (1989)].
[59] X. Li and J. Yang, J. Mater. Chem. C 2, 7071 (2014).
[60] D. Rahmedov, D. Wang, J. Íñiguez, and L. Bellaiche, Phys. Rev. Lett. 109, 037207 (2012).
[61] J. Yuan, Y. Yang, Y. Cai, Y. Wu, Y. Chen, X. Yan, G. Xu, and L. Shen, arXiv:1906.10836.
[62] J. Liang, W. Wang, H. Du, M. Chshiev, A. Fert, and H. Yang, arXiv:1906.00648.