Research article

Molecular and biochemical characterization of urease and survival of Yersinia enterocolitica biovar 1A in acidic pH in vitro

Neeru Bhagat and Jugsharan S Virdi*

Address: Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi - 110 021, India

Email: Neeru Bhagat - neeru_bhagat@yahoo.com; Jugsharan S Virdi* - virdi_dusc@rediffmail.com

* Corresponding author

Abstract

Background: Yersinia enterocolitica, an important food- and water-borne enteric pathogen is represented by six biovars viz. 1A, 1B, 2, 3, 4 and 5. Despite the lack of recognized virulence determinants, some biovar 1A strains have been reported to produce disease symptoms resembling that produced by known pathogenic biovars (1B, 2-5). It is therefore imperative to identify determinants that might contribute to the pathogenicity of Y. enterocolitica biovar 1A strains. Y. enterocolitica invariably produces urease and the role of this enzyme in the virulence of biovar 1B and biovar 4 strains has been reported recently. The objective of this work was to study genetic organization of the urease (ure) gene complex of Y. enterocolitica biovar 1A, biochemical characterization of the urease, and the survival of these strains under acidic conditions in vitro.

Results: The ure gene complex (ureABCEFGD) of Y. enterocolitica biovar 1A included three structural and four accessory genes, which were contiguous and was flanked by a urea transport (yut) gene on the 3’ side. Differences were identified in ure gene complex of biovar 1A strain compared to biovar 1B and 4 strains. This included a smaller ureB gene and larger intergenic regions between the structural genes. The crude urease preparation exhibited optimal pH and temperature of 5.5 and 65°C respectively, and Michaelis-Menten kinetics with a K_m of 1.7 ± 0.4 mM urea and V_max of 7.29 ± 0.42 μmol of ammonia released/min/mg protein. The urease activity was dependent on growth temperature and growth phase of Y. enterocolitica biovar 1A, and the presence of nickel in the medium. The molecular mass of the enzyme was > 545 kDa and an isoelectric point of 5.2. The number of viable Y. enterocolitica biovar 1A decreased significantly when incubated at pH 2.5 for 2 h. However, no such decrease was observed at this pH in the presence of urea.

Conclusions: The ure gene cluster of biovar 1A strains though similar to biovar 1B and 4 strains, exhibited important differences. The study also showed the ability of biovar 1A strains of Y. enterocolitica to survive at highly acidic pH in vitro in the presence of urea.

Background

Yersinia enterocolitica, an important food- and water-borne human enteropathogen is known to cause a variety of gastrointestinal problems. Most commonly, it causes acute diarrhea, terminal ileitis and mesenteric lymphadenitis [1]. Long-term sequelae following infection include reactive arthritis and erythema nodosum [1]. Blood transfusion associated septicemia due to Y. enterocolitica has been...
reported to have high mortality [2]. Currently, \textit{Y. enterocolitica} is represented by six biovars (1A, 1B, 2, 3, 4 and 5) and more than 30 distinct serovars. The virulence of known pathogenic biovars namely 1B and 2-5 is attributed to pYV (plasmid for \textit{Yersinia virulence}) plasmid [3] and chromosomally borne virulence factors [4].

The biovar 1A strains however lack pYV plasmid and have generally been regarded as avirulent. But several clinical, epidemiological and experimental evidences indicate their potential pathogenicity [5]. Some biovar 1A strains have been reported to produce disease symptoms resembling that produced by pathogenic biovars [6,7]. These have been implicated in nosocomial [8] and food-borne [9] outbreaks and isolated from extra-intestinal sites [10]. The biovar 1A strains also invade epithelial cells [11,12], resist killing by macrophages [13] and carry virulence-associated genes such as \textit{ysfB} (enterotoxin), \textit{inv} (invasin), \textit{myfA} (fimbriae), \textit{hreP} (subtilisin/kexin-like protease) and \textit{tccC} (insecticidal-toxin like complex) [5,14]. In the past, enterotoxin has been thought to be the only major virulence factor produced by pathogenic biovars 1B and 4 strains. Recently insecticidal-toxin complex [15] and flagella [16] have been identified as virulence factors of \textit{Y. enterocolitica} biovar 1A strains. However the exact mechanisms underlying the pathogenesis by biovar 1A strains remains unclear and there is need to investigate the role of other putative virulence factors.

Urease (urea amidohydrolase; EC 3.5.1.5) has been implicated to play a role in the pathogenesis of many bacteria such as \textit{Helicobacter pylori}, \textit{Proteus mirabilis} and \textit{Brucella abortus} [17-19]. \textit{Y. enterocolitica} invariably produces urease which has been reported to enable biovar 1B and biovar 4 strains to survive in the acidic environment of the stomach [20,21]. However, the role of urease in the survival of biovar 1A strains has not been investigated. The objective of this study was to determine the genetic organization of urease (\textit{ure}) gene cluster, factors affecting urease activity, and the survival of biovar 1A strain of \textit{Y. enterocolitica} in acidic pH \textit{in vitro}.

\section*{Methods}

\subsection*{Bacterial strains and growth conditions}

\textit{Y. enterocolitica} biovar 1A (serovar O:6,30) isolated from the stools of a diarrheic patient and deposited with \textit{Yersinia} National Reference Laboratory and WHO Collaborating Center, Pasteur Institute (Paris) under reference number IP27403 was used to characterize \textit{ure} gene complex and the enzyme urease. The details of other \textit{Y. enterocolitica} strains used in this study namely serovars, source of isolation, country of origin, reference laboratory accession numbers and clonal groups have been reported previously [22]. \textit{Y. enterocolitica} 8081 (biovarserovar 1B/O:8) was obtained from M. Skurnik (Haartman Institute, Helsinki, Finland). \textit{Y. enterocolitica} IP26329 (biovarserovar 2/O:9), IP26249 (biovarserovar 2/O:5,27), and IP134 (biovarserovar 4/O:3) were obtained from E. Carniel (\textit{Yersinia} National Reference Laboratory and WHO Collaborating Center, Pasteur Institute, France). All strains were grown overnight at 28°C in Luria broth (HiMedia, Mumbai, India).

\subsection*{DNA extraction, primers and Polymerase Chain Reaction}

Genomic DNA was isolated from overnight grown cultures using DNeasy tissue kit (Qiagen GmbH) as reported earlier [14].

Urease gene sequences of \textit{Y. enterocolitica} biovar 1B and biovar 4 with GenBank accession numbers L24101[23] and Z18865[24] respectively were used to design primers U1 and U2 using PrimerSelect 5.03 software (DNASTAR Inc., Madison, USA) such that the structural genes (\textit{ureA}, \textit{ureB}, \textit{ureC}) may be amplified as one amplicon. As these primers failed to consistently amplify the \textit{ureABC} region of biovar 1A strains, primers for amplification of each of the structural genes separately were designed from the following sequences in the database (accession numbers are given in parentheses): \textit{Y. enterocolitica} biovar 1B (L24101, AM286415), \textit{Y. enterocolitica} biovar 4 (Z18865), \textit{Y. aldovae} (AY363680), \textit{Y. bercovieri} (AY363681), \textit{Y. frederiksenii} (AY363682), \textit{Y. intermedia} (AY363683), \textit{Y. kristensenii} (AY363684), \textit{Y. mollaretii} (AY363685), \textit{Y. rohdei} (AY363686), \textit{Y. pestis} (AE017042, AL590842, AE009952, AF095636) and \textit{Y. pseudotuberculosis} (U40842, BX936398). These sequences were also used to design primers for \textit{ure} accessory (\textit{uva}, \textit{uvaF}, \textit{uvaG}, \textit{uvaD}) and \textit{ure} transport (\textit{yut}) genes. The most conserved regions for each of the genes were identified using MegAlign (DNASTAR) or ClustalW version 1.83 (accessible at http://www.ebi.ac.uk/tools/clustalw).

Primer pairs - \textit{ureA1-ureA2} (for \textit{ureA}), \textit{ureB1-ureB2} (for \textit{ureB}), \textit{ureC1-ureC2} (for \textit{ureC}), \textit{ureCE1-ureCE2} (for \textit{ureC-ureE} and \textit{ureE}), \textit{ureF1-ureF2} (for \textit{ureF}), \textit{ureG1-ureG2} (for \textit{ureG}), \textit{ureD1-ureD2} (for \textit{ureD}) and \textit{yut1-yut2} (for \textit{yut}) were designed from the conserved regions (Fig. 1) with PrimerSelect software. The sequences of the amplicons thus obtained (with strain IP27403) were used subsequently to design primers for the intergenic regions and a remaining part of the \textit{ureC} gene. The intergenic regions between \textit{ureA-ureB}, \textit{ureB-ureC}, \textit{ureE-ureF}, \textit{ureF-ureG} and \textit{ureD-yut} were amplified using primer pairs - \textit{ureAB1-ureAB2}, \textit{ureBC1-ureBC2}, \textit{ureE1-ureE2}, \textit{ureFG1-ureFG2} and \textit{ureD3-ureD4} respectively and part of \textit{ureC} gene by \textit{ureC3-ureC4}. As \textit{ureD} could not be amplified in biovar 1A strain with \textit{ureD1-ureD2}, another primer pair \textit{ureG1-ureD2} was used for amplification of the \textit{ureC-ureD} intergenic region and \textit{ureD} gene. The primers were synthesized.
from Microsynth or Sigma Genosys. The details of the PCR primers and the target genes are given in Table 1.

PCR amplification

PCR amplification is a method to amplify specific DNA sequences of interest using a thermal cycler. Primers are designed to target regions of the DNA that are conserved among the samples of interest.

The PCR reaction mixture typically contains 100 ng of genomic DNA, 2.5 μl of 10× Taq buffer (1.5 mM MgCl₂, 2.5 μl of 2 mM dNTP, 25 pmol of each primer, and 2 U of Taq DNA polymerase). The conditions used for amplification are given in Table 1. After amplification, 10 μl of the PCR product was resolved in 2% agarose gel in 1× Tris-acetate-ethylenediaminetetraacetic acid (TAE) buffer at 70 V for 2 h. The gels were stained with ethidium bromide (0.5 μg/ml) and photographed under UV-transillumination.

Sequence analysis and phylogenetic relationships

The PCR amplicons obtained above using the genomic DNA of Y. enterocolitica biovar 1A (strain IP27403) were extracted, purified using QIAquick Gel extraction kit (Qiagen) and sequenced directly in one or both directions (Microsynth, Balgach, Switzerland or LabIndia, Gurgaon, India). The sequences were analyzed, edited and compiled using Editseq and MegAlign of DNASTAR. The nucleotide and deduced amino acid sequence alignments were performed by MegAlign or ClustalW. The percent identity and similarity were calculated using MatGAT 2.02 [25]. The theoretical molecular weight and isoelectric point (pI) of urease structural and accessory proteins were determined by EditSeq and MegAlign of DNASTAR.

The open reading frames (ORFs) in the compiled ure gene cluster were identified using GeneMark [26], GeneMark.hmm [27], FGENESB [28] and the NCBI ORF finder [29] programs. All ORFs were checked further for homology to known protein sequences using BLASTX.

The relationship of urease structural and accessory protein sequences of biovar 1A strain of Y. enterocolitica to sequences available in GenBank were determined by constructing phylogenetic trees with the program MEGA 4.0 using the neighbor-joining algorithm. Bootstrap values were calculated for each node of the tree and was calculated over 1,000 replicate trees.

PCR-Restriction fragment length polymorphism (PCR-RFLP) of urease genes

Primer pairs ureAB3-ureAB4 and ureC1-ureC4 were designed to amplify the 1,004 bp and 1,727 bp of ureAB and ureC genes respectively (Fig. 1). The biovar 1A strains were chosen such that each belonged to a different serovar, country, source of isolation, REP/ERIC-type [22] and VNTR01-type [30]. The PCR amplicon of ureAB was digested with HaeIII and Sau96I while that of ureC was digested with RsaI and Sau96I. The choice of the restriction enzymes was based on in silico restriction of the expected amplicons such that DNA fragments were amenable to separation by gel electrophoresis. Restriction enzymes were from New England BioLabs (RsaI and HaeIII) or Bangalore Genei (Sau96I). Ten microlitre of amplified DNA was digested with 2.5 U (HaeIII and Sau96I) or 5 U (RsaI) of restriction enzyme using appropriate buffer recommended by the manufacturer, in a total volume of 25 μl at 37°C overnight. The digested products were separated by electrophoresis in 2.5% agarose gel at 50 V for 5 h in TAE buffer. 100 bp ladder (New England Biolabs) was used as the molecular size standard. The gel was stained with ethidium bromide and examined under UV transillumination.

Growth and preparation of cell free extract

Y. enterocolitica strain IP27403 was grown overnight at 28°C in 20 ml LB medium with shaking at 200 rpm. Cells were collected by centrifugation (9,000 × g, 10 min, 4°C), washed twice, and resuspended to 1.5 × 10⁸ CFU/ml. 0.1 ml of this suspension was inoculated into 50 ml of fresh LB medium, and incubated further (28°C, shaking at 200 rpm). Samples were withdrawn at different time intervals up to 78 h and diluted in 20 mM sodium phosphate buffer (pH 7.0). The number of viable bacteria was recorded at different intervals and CFU/ml was calculated. The log₁₀CFU/ml was plotted against incubation time (in h).

For preparing lysate, cells grown in 50 ml LB medium were harvested by centrifugation, washed twice and resuspended in 2.5 ml of 20 mM sodium phosphate buffer (pH 7.0). Cells were disrupted by sonication with three cycles (2 s “pulse on” and 2 s “pulse off” for 2 min) at 25% intensity with Vibra-Cell (Sonics). The cell lysate was centrifuged at 18,000 × g for 30 min at 4°C to obtain cell-free extract. The supernatant was transferred to pre-chilled microcentrifuge tubes and used immediately for determination of urease activity. Protein concentration was estimated by Bradford [31] method using bovine serum albumin (Sigma) as standard.
Table 1: PCR amplification of urease structural (ureA, ureB, ureC) and the accessory (ureE, ureF, ureG, ureD) genes and the intergenic regions thereof, in Y. enterocolitica biovar 1A strain.

Primer	Sequence (5' - 3')	Target	Accession no.	Region amplified	Amplicon length (bp)	PCR conditions (°C, s)*
U1	CGAGCCGTTTGTC	ureA-ureC	DQ350880	275...2896	2622	94, 60 62.0, 110 72, 110
U2	ACGG		AM286415	1075847...1078426	2580	
	CTATGCCACGCATC		Z18865	325...2907	2582	
	CCGACC					
ureA	GGAGGGCTTATGCA	ureA	DQ350880	1...161	161	94, 60 61.4, 60 72, 60
ureB	GCTACCCACCAAG		AM286415	1075573...1075733	161	
	TTGCCATCTCTGGCC		Z18865	51...211	161	
	CCTTCA					
ureAB1	GAAGGGCAAGGGGCC	ureA-ureB	DQ350880	137...579	443	94, 60 60.3, 60 72, 60
ureAB2	AGAATGGTG		AM286415	1075709...1076210	502	
	GTCAGGCTCACTTC		Z18865	187...688	502	
	GCTAICCTCACTTCTTT					
ureB3	GCGAGCTCACCCCACA	ureA-ureB	DQ350880	12...1015	1004	95, 60 56.9, 110 72, 60
ureB4	AGAAGTGTGGAATTGAG		AM286415	1075584...1076068	1025	
	GTATTTAGGACCTCATCT		Z18865	62...1086	1025	
	GATCCGTCCTTT					
ureB1	ATTCAGAGAGATTTCA	ureB	DQ350880	349...650	302	94, 60 60.0, 60 72, 60
ureB2	AAGCATGAGCCGCA		AM286415	1075920...1076281	362	
	AGCCGAGACCTCGGCGT		Z18865	398...759	362	
	TTTCACTCACC					
ureBC1	TGCGGCTACCGGAA	ureB-ureC	DQ350880	570...1022	453	94, 60 60.3, 60 72, 60
ureBC2	AAAAGGCTAAATGAAA		AM286415	1076201...1076615	415	
	GGGCGAAGATTTGACGCC		Z18865	679...1093	415	
	GACGTCCTCTTT					
ureC1	AAGGAGGCCGACAGA	ureC	DQ350880	991...1749	759	94, 60 63.2, 60 72, 60
ureC2	TGCCCTCAA		AM286415	1076584...1077342	759	
	GAAAACCTGAATATC		Z18865	1062...1823	762	
	CATTTCATCCGCTTAT					
ureC3	GGGTACAAATGGTCA	ureC	DQ350880	1661...2717	1057	94, 60 52.9, 60 72, 60
ureC4	CCAAGACTG		AM286415	1077254...1078310	1057	
	CAAAGAATAGCCCGT		Z18865	1735...2791	1057	
	TGTCCTCA					
ureC1	AAGAGGCAGAGAGA	ureC	DQ350880	991...2717	1727	94, 60 50.0, 60 72, 120
ureC4	TGCTCTCAA		AM286415	1076584...1078310	1727	
	CAAAAGAAATAGCCGC		Z18865	1062...2791	1730	
	TGTCCTCA					
ureCE1	GGCCTGAGTGACCGG	ureC-ureE, ureE	DQ350880	2504...3552	1019	94, 60 61.0, 60 72, 60
ureCE2	TGTGAAAGAGATGTAAGCCG		AM286415	1078097...1079082	986	
ureE1	ACCATGATGGATCT	ureE-ureF	DQ350880	3364...3734	371	95, 60 58.7, 60 72, 60
ureE2	CGTGTGAGA		AM286415	1078894...1079270	377	
	GTGAGACTCCACCCCGAC					
ureE1	TGAATCAGATCAGA	ureF	DQ350880	3668...4304	637	95, 60 50.0, 60 72, 60
ureE2	CTGTTGGTGTA		AM286415	1079204...1079840	637	
	ACATCCCAAATAGG					
	GACATAAGA					
Table 1: PCR amplification of urease structural (ureA, ureB, ureC) and the accessory (ureE, ureF, ureG, ureD) genes and the intergenic regions thereof, in Y. enterocolitica biovar 1A strain. (Continued)

Gene Cluster	Primer Details	GenBank Accession	PCR amplicons	Tm (°C)	Size (bp)
ureFG1	CAATATGGCGTGCC	DQ350880	4132..4535	95, 60	401
	GATGACAAT	AM286415	1079668..1080070	60 72, 60	72, 60
	CCACCGGGGCCACC				
	AATACCAA				
ureFG2					
ureG1	GAATAGCCATTCAA	DQ350880	4474..5091	95, 60	618
	CCGATAAAC	AM286415	1080009..108062	60 72, 60	72, 60
	CCGATAATCATAC				
	TACCAAC				
ureG2					
ureG1	GAATAGCCATTCAA	DQ350880	4474..6099	95, 60	1626
	CCGATAAT	AM286415	1080009..1081634	60 72, 60	72, 120
	CATGCA				
	CAGGAAGAAT				
ureD1	AGCCAGAATATCGT	DQ350880	5146..6099	95, 60	954
	GGAACACTCT	AM286415	1080681..1081634	95, 60	72, 60
	TCCGGCCATATGCA				
	CACCGGAGAAT				
ureD2					
ureD3	TTGTTAACCCCAAA	DQ350880	5884..6416	95, 60	533
	AGAGCATATCAT	AM286415	1081419..1081950	532	72, 60
	CTGCCGGATTCCT				
	TCCGCCATAG				
ureD4					
Yut1	CGCGGCTGTGCTCA	DQ350880	3194..3678	95, 60	895
	AGTC	AM286415	1081851..1082745	95, 60	72, 60
	GTGCTGGCATACA				
	TCTTTATTAGG				

The primer details and the PCR conditions used are given.

DQ350880: Y. enterocolitica IP27403 (biovar IA/O:6,30); AM286415: Y. enterocolitica 8081 (biovar IB/O:8); Z18865: Y. enterocolitica 6471/76 (biovar 4/O:3)

Nucleotides sequences in bold are different in biovar 1A strain (DQ350880)

*PCRs were performed with initial denaturation step of 94°C for 10 min, 30 cycles each of denaturation (Den), annealing (Ann) and extension (Ext) as indicated and a final extension of 10 min at 72°C

Urease assay

Urease activity in the cell extract was assayed by measuring release of ammonia from urea in the phenol-hypochlorite assay [32]. Briefly, extract containing 2 μg of protein was added to 100 mM citrate buffer (pH 5.5) containing 50 mM urea in 200 μl of final volume. The mixture was incubated at 37°C for 15 min. A similar volume of the extract boiled for 10 min served as negative control. The reaction was terminated by the addition of 1.5 ml of solution containing 1% phenol and 0.005% sodium nitroprusside; this was followed by the addition of 1.5 ml solution containing 0.5% (w/v) NaOH and 0.044% (v/v) NaClO, and the contents were mixed well. Following incubation at 37°C for 30 min, the absorbance was measured at 625 nm

![Figure 1](image)

Figure 1

Organization of ure gene cluster of Y. enterocolitica biovar 1A. Primers used for amplification of structural and accessory genes, and the intergenic regions thereof are indicated.
using a spectrophotometer (UV-1700 Pharmaspec; Shimadzu Scientific Instruments Inc., Columbia, Md.). Assays were carried out in triplicate and the amount of the ammonia released per minute was determined. The quantity of ammonia (in nmol) released was calculated from the calibration curve obtained from appropriate dilutions of freshly prepared NH4Cl solution, which was determined to be linear between 20-500 nmol. Data are presented as specific activity of urease, defined as μmol of NH3/min/mg of protein. Stated values are the mean ± standard deviation of triplicate determinations.

Biochemical characterization

The optimum pH for urease was determined by measuring activity at pH 1.5 to 7.5. The assays were carried out in 20 mM sodium phosphate (for pH 1.5, 2.5, 5.5, 6.0, 6.5, 7.0 and 7.5) and 100 mM citrate (for pH 3.0, 3.5, 4.0 and 5.5) buffers. The optimum temperature for urease was determined by incubating the extract containing enzyme with substrate at different temperatures (18-75°C) in the phenol-hypochlorite assay described above. The kinetic data (Km and Vmax) of urease were calculated from Lineweaver-Burk plot of the initial rate of hydrolysis of urea in citrate buffer (100 mM, pH 5.5). To determine the effect of growth temperature and growth phase on urease activity, extracts were prepared from cells grown in shaker flask (Bio-Rad). Contents were mixed and incubated with shaking at 37°C for 2 h. At the end of the incubation, samples were removed and diluted serially in 20 mM sodium phosphate buffer (pH 7.0). 0.1 ml of an appropriate dilution was plated on LB agar to determine CFU/ml. At conclusion of each assay, the pH of the buffer was recorded. All assays were repeated at least thrice on separate occasions.

Statistical analysis

The mean and the standard deviation for each data set were calculated using Microsoft Excel 2003 software (Microsoft Corporation, Redmond, Wash.). Statistical significance was calculated using unpaired t test (Sigma Stat version 3.5). p value < 0.05 was considered significant.

Nucleotide sequence accession number

The nucleotide sequence data of ure genes reported in this paper have been deposited in GenBank database under accession numbers DQ350880 and EU527335 respectively.

Results

Characterization of urease genes

Primers U1 and U2 were designed to amplify the ure structural (ureA, ureB, ureC) genes of Y. enterocolitica. Although amplification was obtained with biovar 1B, 2 and 4 strains, these primers did not consistently amplify the ure structural genes of biovar 1A strains. Thus, new primers were designed to amplify each of the ure structural and accessory (ureE, ureF, ureG, ureD) genes separately, and the intergenic regions so as to encompass the entire urease

Isoelectric focusing (IEF)

IEF of the cell extract was carried out in 6% polyacrylamide gel containing 2% ampholyte of pH 3-10 (Biolyte Ampholyte, Bio-Rad). 3.5 μl of extract containing ca. 20-25 μg of protein was loaded on the gel and focused at 4°C using a Mini IEF cell (Bio-Rad) according to the manufacturer’s instructions. After focusing, the gel was equilibrated with a solution containing 0.02% cresol red and 0.1% EDTA. Urease bands were visualized by superimposing the gel with Whatman No. 1 filter paper presaturated with cresol red-EDTA solution containing 1.5% urea. Urease appeared as pink band against a yellow background. Broad range IEF standard with pl 4.45-9.6 (Bio-Rad) was used as the pl marker to determine the isoelectric point of the urease.

Survival of Y. enterocolitica in acidic pH in vitro

The in vitro survival of Y. enterocolitica was performed by slight modification of the method reported earlier [35]. Briefly, ten microlitre of the bacterial suspension was added to 1 ml of 20 mM sodium phosphate (for pH 2.5 and 7.0) or 100 mM citrate (for pH 4.0) buffer with or without 3.4 mM urea in 0.6% NaCl, and prewarmed to 37°C to give an initial count of ca. 7.0 log10 CFU/ml. The contents were mixed and incubated with shaking at 37°C for 2 h. At the end of the incubation, samples were removed and diluted serially in 20 mM sodium phosphate buffer (pH 7.0). 0.1 ml of an appropriate dilution was plated on LB agar to determine CFU/ml. At conclusion of each assay, the pH of the buffer was recorded. All assays were repeated at least thrice on separate occasions.

Native and SDS PAGE

Cell-free extracts from different biovars of Y. enterocolitica were electrophoresed on non-denaturing polyacrylamide gel [33]. Briefly, extract containing ca. 100 μg of protein was mixed with 1× tracking dye and loaded on 5% resolving gel in 380 mM Tris-HCl (pH 8.8) with 4% stacking gel in 63 mM Tris-HCl (pH 6.8) in a mini-Protein III apparatus (Bio-Rad). Samples were electrophoresed with Tris-Glycine (pH 8.4) as the running buffer at 70 V for 2 h at 4°C. The gel was removed and equilibrated with 5-10 changes of solution containing 0.02% cresol red and 0.1% EDTA until the entire gel turned yellow. After draining the solution, gel was flooded with 1.5% (w/v) solution of urea. The pink bands of urease were recorded by scanning (UMAX Astra 3600). Urease from jack bean (Sigma) was used as the marker.

SDS-PAGE was performed as per standard protocol [34]. Briefly, extract containing 25 μg of protein was boiled in reducing Laemmli sample buffer and separated on 12% polyacrylamide gel.

Characterization of urea genes

Primers U1 and U2 were designed to amplify the ure structural (ureA, ureB, ureC) genes of Y. enterocolitica. Although amplification was obtained with biovar 1B, 2 and 4 strains, these primers did not consistently amplify the ure structural genes of biovar 1A strains. Thus, new primers were designed to amplify each of the ure structural and accessory (ureE, ureF, ureG, ureD) genes separately, and the intergenic regions so as to encompass the entire urease
gene cluster of biovar 1A strain. Amplitcons of expected sizes were obtained for all genes except ureB and the intergenic regions namely ureA-ureB, ureB-ureC and ureC-ureE (Table 1). The sequences thus obtained were analyzed for homology with sequences available in databases, edited and combined to obtain 7,180 bp sequence of ure gene cluster of biovar 1A strain (See Additional file 1 for ure gene cluster sequence).

Seven ORFs were identified in the ure gene cluster of Y. enterocolitica biovar 1A strain and designated as ureA, ureB, ureC, ureE, ureF, ureG and ureD (Fig. 1) as in the ure gene complex of Y. enterocolitica 8081 (biovar 1B, accession number AM286415). As with Y. enterocolitica 8081, yet gene which encodes a urea transport protein was present downstream of the ure gene cluster. All ORFs had ATG as the start codon except ureG where the start codon was GTG. These ORFs were preceded by ribosome-binding consensus sequence. Although ure gene cluster of biovar 1A strain was broadly similar to that of biovar 1B and biovar 4 strains, differences were identified. These were smaller ureB gene and ureA-ureB intergenic region and larger ureB-ureC and ureC-ureE intergenic regions in biovar 1A strain (Table 2). The size of ureB gene of Y. enterocolitica biovar 1A was identical to ureB of Y. aldovae, Y. bercovieri, Y. intermedia, Y. mollaretii and exhibited higher nucleotide sequence identity to these species than to Y. enterocolitica biovar 1B or 4. The stop codon of ureG overlapped with the start codon of ureG gene. The G + C content of the urease gene cluster was 49.76% which was typical of Y. enterocolitica with G + C content of 47.27%.

The comparison of Y. enterocolitica biovar 1A ure genes and the deduced amino acid sequences with that of Yersinia spp. and other bacteria are given in Tables 2 and 3 respectively. Besides Yersinia species, the homologies of ure genes (upto 76% identity) and their deduced amino acid sequences (upto 86% identity and 95% similarity) were significant with ureases from Photorhabdus luminescens and Edwardsiella ictaluri. The UreA, UreC and UreG are

Gene/Intergene	Ye1A	Size (in bp) and % identity								
	YeO8	YeO3	Yers	Yps	Ype	PI	Ei	Ka		
Structural										
ureA	303	303	303	303	303	303	303	303		
	98	98	89-96	91	91	77	76	63		
ureB	435	495	1722	1719	1719	1716	1719	1704		
	83	83	78-89	74-82	67-81	63	62	48		
ureC	1719	1719	1719	1719	1716	1719	1704	104		
	96	94	87-91	86	82-86	75	76	61		
Accessory										
ureE	687	792/693	NA	NA	681-720	696	696/705	597	678	477
	85/97	83-91			82	82	80-82	59	58	44
ureF	687	687	687	687	687	687	705	675		
	98	85-90	85-86	86	66	65	68	58		
ureG	666	666	666	663	663	636	630	610		
	99/90	88-92	84	85	78	73	59			
ureD	984	978/984	966-984	966	834/964/967	966	963			
	96/97	84-90		81	71-82	64	62			
Intergenic region										
ureAB	54	53	53	53-65	10/52	0/10/52	91	46	9	
ureBC	202	164	164	87-97/201-202	89	89	67	42	0	
ureCE	236	74/173	NA	NA	133-204	294/295	286/295	74	57	9
ureEF	21	21	20-24	21	21	0	0	1		
ureFG	117	117/177	NA	NA	58-102	125/126	126	52	14	8
ureGD	0	0	0	0	0	0	0	0		

Comparison with different Yersinia spp. and other bacteria. The abbreviations correspond to following species with accession number(s) in parentheses. Ye1A: Y. enterocolitica bioserovar 1A/O:6,30 (DQ350880); YeO8: Y. enterocolitica bioserovar 1B/O:8 (L24101, AM286415); YeO3: Y. enterocolitica bioserovar 4/O:3 (Z18865); Yers: Y. aldovae (AY363680), Y. bercovieri (AY363681), Y. frederiksenii (AY363682), Y. intermedia (AY363683), Y. kristensenii (AY363684), Y. mollaretii (AY363685), Y. rohdei (AY363686); Yps: Y. pseudotuberculosis (U40843, CP000720, CP000950, BX936398); Ype: Y. pestis (CP000991, CP000918, AL590842, AE017042, CP000385, CP000648, AF095636); Pl: Photorhabdus luminescens (BX571866); Ei: Edwardsiella ictaluri (AY607844); Ka: Klebsiella aerogenes (M36068).

% identity is indicated in bold.

0 indicates that the intergenic region had overlapping stop and start codons.

*ureB gene size was 435 bp (Y. aldovae, Y. bercovieri, Y. intermedia, and Y. mollaretii), 441 bp (Y. rohdei), 468 bp (Y. frederiksenii) and 495 bp (Y. kristensenii); ureBC intergenic region of 201-202 bp was present in Y. aldovae and Y. intermedia.
proteins were most conserved among *Yersinia* spp. The estimated molecular weights, in Da, of the protein subunits were 11,048 (UreA), 15,854 (UreB), 61,026 (UreC), 25,507 (UreE), 25,040 (UreF), 24,181 (UreG) and 36,592 (UreD) (Table 3).

Phylogenetic analysis of urease structural and accessory proteins of *Y. enterocolitica* biovar 1A showed clustering with members of gamma-proteobacteria such as *Photorhabdus luminescens* and *E. ictaluri* along with *Yersinia* spp. (See Additional files 2 and 3). These protein sequences were also related closely to members of alpha-proteobacteria like *Methylobacterium chloromethanicum* related closely to members of alpha-proteobacteria like *P. mirabilis* and *Y. pestis* (AAA51000, AAC11049, CAL11055, Y. pestis). The regions constituting the structural genes namely *ureAB* and *ureC* were amplified in several *Y. enterocolitica* biovar 1A strains using primer pairs AB3-AB4 and C1-C4 respectively. Restriction digestion of *ureAB* region with *HaeIII* and *Sau96I* resulted in almost identical patterns among all biovar 1A strains (See Additional file 4). But, differences were clearly evident in restriction profiles of *ureC* digested with *RsaI* and *Sau96I* (Fig. 2). With *RsaI*, strains belonging to clonal group A exhibited profile different from that of clonal group B strains. Thus, it may be inferred that sequence of urease gene in clonal group A strains is different from that of clonal group B strains.

The *HaeIII* and *Sau96I* restriction profiles of *ureAB* of biovar 1B, 2 and 4 strains were distinct from that of biovar 1A strains (See Additional file 4). As with *ureAB*, restriction patterns of *ureC* for these biovars were also quite distinct from biovar 1A strains (data not shown).

Biochemical characterization

The crude extract of urease of *Y. enterocolitica* biovar 1A strain was active over a pH range of 4.0-7.0. The maximum activity was observed at pH 5.5 (Fig. 3a). The enzyme was quite heat-stable as urease activity was recorded up to 65°C but decreased progressively at higher temperature (Fig. 3b). The optimum temperature for urease activity was 65°C (Fig. 3b). The optimum temperature for urease activity was 65°C (Fig. 3b). The optimum temperature for urease activity was 65°C (Fig. 3b). The optimum temperature for urease activity was 65°C (Fig. 3b). The optimum temperature for urease activity was 65°C (Fig. 3b). The optimum temperature for urease activity was 65°C (Fig. 3b). The optimum temperature for urease activity was 65°C (Fig. 3b). The optimum temperature for urease activity was 65°C (Fig. 3b).

Table 3: Urease structural and accessory proteins of *Y. enterocolitica* biovar 1A (Ye 1A).

Structural subunits	Gene product (aa)	Mol. mass (Da)*	pI*	% identity/% similarity											
UreA	ureA	100	11,048	5.29	99-100/84-85/86	YeO8	YeO3	Yers	Yps	Ype	Pl	Ei	Ka		
UreB	ureB	144	15,854	9.06	84-85/85-99	100	85/86	100	86-94/88-97	100	78-94/79-97	100	79/95	86/95	60/82
UreC	ureC	572	61,026	9.64	99/100	95/97	97-99/99-100	97/99	93-97/95-99	83/91	86/94	58/73			

Accessory proteins

Accessory proteins	Gene product (aa)	Mol. mass (Da)*	pI*	% identity/% similarity								
UreE	ureE	228	25,507	6.35	86-99	NA	91-95/95-97	94/97	92-93/96-97	55/69	50/70	27/39
UreF	ureF	228	25,040	6.41	100	NA	96-99/97-100	98/99	97-98/99	67/76	65/83	22/43
UreG	ureG	221	24,181	4.94	91-100	NA	98-100/99-100	96/97	96/97	86/91	86/91	54/71
UreD	ureD	327	36,592	6.61	93-98/95-99	NA	91-98/95-99	93/96	FS	64/77	59/71	

*Theoretical molecular mass and pI were determined with DNASTAR

Comparison with different *Yersinia* spp. and other bacteria.
The abbreviations correspond to following species with protein accession numbers for UreA, UreB, UreC, UreE, UreF, UreG and UreD in parentheses: Ye1A: *Y. enterocolitica* biovar 1A (ABC74582-ABC74585; ACA51855-ACA51857); YeO8: *Y. enterocolitica* OB biovar 1B (AAA50994-AAA51000) CAL11049 (CAL11055); YeO3: *Y. enterocolitica* O3 biovar 4 (CA97314-A97320); Yers included Y. aldovae (AAR15084-AAR15090); Y. bercovieri (AAR15092-AAR15098); Y. frederiksenii (AAR15100-AAR15106); Y. intermedia (AAR15108-AAR15114); Y. kristensenii (AAR15117-AAR15123); Y. mollaretii (AAR15126-AAR15132); Y. rohdei (AAR15135-AAR15144); Yps: *Y. pseudotuberculosis* (CAL22182-CAL22176, AAA87852-AAA87858, ACA67429-ACA67435); Pl: *Pseudomonas aeruginosa* (AAR15106-AAR15112); Ka: *Klebsiella aerogenes* (AAA25149-AAA25154); NA: Not available; FS: frameshift mutation.

PCR-RFLP of ure genes

The regions constituting the structural genes namely *ureAB* and *ureC* were amplified in several *Y. enterocolitica* biovar 1A strains using primer pairs AB3-AB4 and C1-C4 respectively. Restriction digestion of *ureAB* region with *HaeIII* and *Sau96I* resulted in almost identical patterns among all biovar 1A strains (See Additional file 4). But, differences were clearly evident in restriction profiles of *ureC* digested with *RsaI* and *Sau96I* (Fig. 2). With *RsaI*, strains belonging to clonal group A exhibited profile different from that of clonal group B strains. Thus, it may be inferred that sequence of urease gene in clonal group A strains is different from that of clonal group B strains.

The *HaeIII* and *Sau96I* restriction profiles of *ureAB* of biovar 1B, 2 and 4 strains were distinct from that of biovar 1A strains (See Additional file 4). As with *ureAB*, restriction patterns of *ureC* for these biovars were also quite distinct from biovar 1A strains (data not shown).

Biochemical characterization

The crude extract of urease of *Y. enterocolitica* biovar 1A strain was active over a pH range of 4.0-7.0. The maximum activity was observed at pH 5.5 (Fig. 3a). The enzyme was quite heat-stable as urease activity was recorded up to 65°C but decreased progressively at higher temperature (Fig. 3b). The optimum temperature for urease activity was 65°C (Fig. 3b). The enzyme exhibited Michaelis-Menten kinetics with K_m and V_{max} of 1.74 ± 0.4 mM urea and 7.29 ± 0.42 μmol of ammonia released/min/mg of protein respectively (data not shown).
Y. enterocolitica biovar 1A grown at 28°C (optimum temperature for growth) exhibited higher urease activity than that grown at 37°C (Fig. 3c). Irrespective of the growth temperature, stationary phase cells showed higher activity (Fig. 3c). The supplementation of growth medium (Luria broth) with 16.7 mM urea did not show significant difference in urease activity. However, supplementation with nickel chloride resulted in a 10-fold increase in the activity. 1 μM NiCl₂ was sufficient to induce urease activity as no significant increase in the activity was observed with further increase in concentration up to 200 μM (See Additional file 5).

On native PAGE, urease was observed as two bands with the major band having molecular weight > 545 kDa and a slowly-developing band above it (Fig. 4). The electrophoretic mobility of urease of Y. enterocolitica biovar 1A strain was shown to be different from that of biovar 1B, 2 and 4 strains though similar to the Y. intermedia urease. The isoelectric point of the crude extract urease was 5.2.

Survival of Y. enterocolitica in vitro
The ability of Y. enterocolitica biovar 1A strain to survive at pH 2.5, 4.0 and 7.0 in vitro was investigated. Strains belonging to other biovars were also studied concurrently.
Biochemical characterization of Y. enterocolitica biovar 1A urease. (a) optimal pH for urease activity (b) effect of temperature on urease activity and (c) effect of growth phase and growth temperature on urease production; growth curve of biovar 1A strain grown at 28°C is also shown. Data points represent mean of triplicate determinations. The error bars indicate standard deviation.

The biovar 1A strain survived at pH 4.0 and 7.0 for 2 h without significant differences in their viable counts (Fig. 5). However, no viable cells were recovered after 2 h at pH 2.5. In fact, the decrease in the viable counts at this pH was evident even within 5 min of incubation. The addition of 3.4 mM urea at pH 2.5 was sufficient to increase the survival of Y. enterocolitica biovar 1A equivalent to that observed at pH 4.0 and 7.0. Similar results were observed for other biovars also. The pH of the assay medium at the end of the experiment was same as that at the start, suggesting that increased survival of Y. enterocolitica was not due to any significant change in the pH.

Discussion

The *ure* gene cluster of *Y. enterocolitica* biovar 1A strain included three structural (*ureA, ureB, ureC*) and four (*ureE, ureF, ureG, ureD*) accessory genes. The *yut* gene, which is required for transport of urea was present downstream of this cluster. Thus, the organization (*ureABCEFGD*) of *ure* gene cluster in *Y. enterocolitica* biovar 1A strain was similar to that reported for *Y. enterocolitica* biovar 1B, *P. luminescens* and *E. ictaluri* [23,36,37]. Similar organization has
been reported for other species such as *Streptococcus salivarius*, *Synechococcus* sp. WH7805, and *B. abortus* ure-2 operon [19,38,39]. However, important differences were observed compared to urease genes of *Y. enterocolitica* biovar 1B and biovar 4 strains. These included differences in the size of *ureB* gene and the intergenic regions. Also, the restriction profiles of *ure* structural genes of biovar 1A strains were different from that of biovars 1B, 2 and 4. These observations indicated that RFLP of urease genes may be used to study the epidemiology of *Y. enterocolitica*.

The amino acid residues in the urease structural proteins namely UreA (\(\gamma\) subunit), UreB (\(\beta\) subunit) and UreC (\(\alpha\) subunit) that are reported to have functional significance in *K. aerogenes* urease [40] were also conserved in *Y. enterocolitica* biovar 1A. The crystallographic [41] and genetic [40] analysis of *K. aerogenes* urease has shown that four histidine residues (His-134, -136, -246 and -272), an aspartate (Asp-360) and a carbamylated lysine (Lys-217) of UreC are involved in nickel metallocenter binding. All these amino acids were conserved at positions His-139, -141, -251, -277; Asp-365 and Lys-222 in UreC of *Y. enterocolitica* biovar 1A. Histidine residues in the \(\alpha\)-subunit of *K. aerogenes* shown to be important for substrate binding (His-219) and catalysis (His-320) are present at positions 224 and 325 in \(\alpha\)-subunit of biovar 1A [40]. The urease active-site consensus sequence (MVCHHLD) [42] deviated by two residues (MVCHNLN) in biovar 1A strain. Amino acid residues with functional significance including His-97 (UreA) and His-39, -41 (UreB) [40] were also conserved in relative positions in *Y. enterocolitica* biovar 1A. The conservation of amino acids in *Y. enterocolitica* biovar 1A urease involved in coordination of nickel at active site, substrate binding and catalysis as seen in *K. aerogenes* urease, suggested similar quaternary structure of the two enzymes. UreE consisted of histidine-rich motif at carboxy terminus as in UreE of *K. aerogenes*, *B. abortus*, *Actinobacillus pleuropneumoniae*, *E. icatuli* and *Synechococcus* [19,36,39,43,44]. A P-loop motif (GPVGSGKT), which contains ATP and GTP binding sites [45] and probably provides energy for Ni activation [46] was present at the amino terminus (positions 19-26) of UreG.

A pH optimum in the acidic range for urease produced by a neutrophile like *Y. enterocolitica* biovar 1A was similar to that reported for *Y. enterocolitica* biovars 1B and 4, and *Morganella morganii* [35,47]. Ureases with optima in the acidic range reportedly carried a phenylalanine seven residues towards N-terminus, and an asparagine one residue toward the C-terminus, from the catalytic site [35]. Both these residues are also present at respective positions in UreC of *Y. enterocolitica* biovar 1A. The maximal activity of urease at 65°C by *Y. enterocolitica* biovar 1A has also been reported for other bacteria [44]. A low \(K_m\) of *Y. enterocolitica* biovar 1A urease as in biovar 4 strains [47], indicated its high affinity for urea. This suggested that the enzyme might function quite normally in the gut despite low concentrations (1.7-3.4 mM) of the urea available there. Also, consistent with our observation, organisms which produce urease with low \(K_m\) have been reported to possess urea transport (utu) gene as seen in *S. salivarius*, *Lactobacillus fermentum*, *Bacillus* sp. strain TB-90 and *B. suis* [48].

The cultural conditions which affected production of urease by *Y. enterocolitica* biovar 1A included growth phase, growth temperature and availability of nickel ions. The expression of bacterial ureases is known to be either constitutive or induced by factors like low nitrogen, urea or pH [49]. The maximal urease activity during stationary phase of the growth and at 28°C as observed for *Y. enterocolitica* biovar 1A strain was consistent with that of biovar 4 strains [47]. In *Y. enterocolitica*, several other virulence factors such as invasin, Myf fibrillae and enterotoxin have also been reported to be regulated by growth phase and the growth temperature [50]. A 10-fold increase in urease activity following supplementation of growth medium with nickel was not accompanied by increase in the expression of urease structural proteins suggesting that increased activity was probably due to the activation of pre-existing apoenzyme. Nickel has been reported to regulate both expression and activity of urease in *H. pylori* [51]. *In silico* analysis of whole genome of *Y. enterocolitica* strain 8081 (biovar 1B) revealed two systems (ureH and ynt) for transport of nickel. It would be interesting to determine...
the role of multiple nickel transport genes in urease activity and its regulation in Y. enterocolitica.

The M_n of Y. enterocolitica biovar 1A urease as assessed from native PAGE was > 545 kDa. The molecular mass of urease is known to vary from as low as 130 kDa in B. suis [52] to as high as 620 kDa in Providencia rettgeri or > 700 kDa in M. morganii [53]. The difference in the molecular mass of urease of Y. enterocolitica biovar 1A vis-à-vis Y. enterocolitica biovar 1B and biovar 4 seems to be due to difference in the size of UreB (β-subunit), which is smaller in the former and thus may account for its lower molecular mass. The isoelectric point (pI) of 5.2 of biovar 1A urease was close to that reported for Proteus penneri (pI = 5.1) and H. pylori (pI = 5.9) urease [33,54]. No data on molecular mass and isoelectric point of ureases produced by Y. enterocolitica strains belonging to other biovars has been reported.

The ability of Y. enterocolitica biovar 1A strains to survive at pH 2.5 in vitro in the presence of 3.4 mM urea implicated urease in their survival. This suggested the possible role urease might play in the survival of Y. enterocolitica biovar 1A under acidic conditions in the gut. However, this needs to be confirmed by comparison of wild type strain with an isogenic urease mutant. The role of urease in survival during transit through gut has been reported for B. suis, B. abortus, H. pylori and E. ictaluri [18,19,36,55,56]. Interestingly, the biovar 1A strains have also been reported to resist killing, and survive within macrophages [13]. It would therefore be worthwhile to determine the role urease may play in the survival of Y. enterocolitica biovar 1A strains in the acidic environment of phagolysosomes.

Conclusions

The ure gene cluster of Y. enterocolitica biovar 1A though broadly similar to that of biovar 1B and biovar 4 strains showed differences in structural (ureB) genes and the intergenic regions thereof. The kinetic data indicated that urease produced by Y. enterocolitica biovar 1A strain would be active at low concentration of urea typically present in the gut. The ability of biovar 1A strain to survive at acidic pH in the presence of urea suggested that urease might play role in their survival in the gut. This however needs to be corroborated using ure isogenic mutants.

Authors’ contributions

NB carried out the experimental part of the study. JSV conceived and supervised the work. Both authors participated in interpretation of data and preparation of the final manuscript.

Additional material

Additional file 1

Nucleotide and deduced amino acid sequences of ure gene cluster of Y. enterocolitica biovar 1A. The nucleotide sequence of the ure gene cluster of Y. enterocolitica biovar 1A and the deduced amino acid sequences of the structural (A, B, and C) and accessory (E, F, G and D) proteins are shown. Putative ribosome binding site consensus sequences upstream of ureA, ureB, ureC, ureF and ureG are in bold face. Stop codons are indicated by an asterisk. Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2180-9-262-S1.PDF]

Additional file 2

Phylogenetic relationships of urease structural (UreA, UreB and UreC) proteins. Dendrograms showing phylogenetic relationships of Yersinia spp. including Y. enterocolitica biovar 1A and other bacterial species based on amino acid sequence of urease structural proteins (UreA, UreB and UreC). The trees were constructed by the neighbor joining method in MEGA 4.0 package. The bootstrap values presented at corresponding branches were evaluated from 1,000 replications. GenBank accession numbers are indicated for strains used in creating the dendrogram. The bar scale shows substitutions per site. Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2180-9-262-S2.PDF]

Additional file 3

Phylogenetic relationships of urease accessory (UreE, UreF UreG and UreD) proteins. Dendrograms showing phylogenetic relationships of Yersinia spp. including Y. enterocolitica biovar 1A and other bacterial species based on amino acid sequence of urease accessory proteins (UreE, UreF, UreG and UreD). The trees were constructed by the neighbor joining method in MEGA 4.0 package. The bootstrap values presented at corresponding branches were evaluated from 1,000 replications. GenBank accession numbers are indicated for strains used in creating the dendrogram. The bar scale shows substitutions per site. Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2180-9-262-S3.PDF]

Additional file 4

PCR-RFLP of ureAB of Y. enterocolitica. DNA was amplified with primers ureAB4-ureAB4 and restriction digested using (A) HaeII and (B) Sau96I enzymes. Lanes 1: IP27403, 2: IP26305, 3: E1281550, 4: P346, 5: P472, 6: IP27387, 7: STM 126, 8: 0310/90, 9: IP27938, 10: IP27897, 11: IP27873, 12: IP24211, 13: IP134, 14: IP26329, 15: IP26249, 16: 8081. M: Molecular mass marker (100 bp ladder, New England BioLabs); BV: biovar. Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2180-9-262-S4.PDF]
Additional file 5
Effect of urea/nickel chloride on activity (A) and expression (B) of urease of Y. enterocolitica. Strain IP27403 was grown in Luria Broth (LB) or in LB supplemented with 16.7 mM urea (LB-urea) or NiCl₂, at 1 μM (Ni-I), 10 μM (Ni-10), 100 μM (Ni-100) and 200 μM (Ni-200) concentration. M: Medium range protein ladder (Bangalore Genetec). Data points represent mean of triplicate determinations; error bars denote standard deviation. Click here for file: [http://www.biomedcentral.com/content-supplementary/1471-2180-9-262-SS.PDF]

Acknowledgements
This work was supported by research grants to JSV from Indian Council of Medical Research (ICMR) and Defence Research and Development Organization (DRDO) and Senior Research Fellowship to NB from Indian Council of Medical Research (ICMR), New Delhi. The financial assistance from University of Delhi to strengthen R & D doctoral research programme is also acknowledged gratefully.

References
1. Bottrone EJ. Yersinia enterocolitica: overview and epidemiologic correlates. Microbes Infect 1999, 1:323-333.
2. Leclercq A, Martin L, Vergnes ML, Ounnoughene N, Laran JF, Giraud MP, Stainier I:
3. Ratnani SM, Skinner NA, Joe A, Robins-Browne RM: Homologues of insecticidal toxin complex genes in Yersinia enterocolitica biotype 1A and their contribution to virulence. Infect Immun 2005, 73:6860-6867.
4. McNally A, La Ragione RM, Best A, Manning G, Newell DG: An afla-
geb mutant Yersinia enterocolitica biotype 1A strain displays altered invasion of epithelial cells, persistence in macrophages, and cytokine secretion profiles in vitro. Micro-
5. Tseng YY, Clancy KA, Burne RA: Streptococcus salivarius urease gene and the source of isolation. FEMS Microbiol Lett 2007, 266:177-183.
6. Marshall BJ, Barrett LJ, Prakash C, McCallum RW, Guerrant RL: Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology 1999, 107:697-702.
7. Sachdeva P, Virdi JS: Repetitive elements sequence (REP/ERIC)-PCR based genotyping of clinical and environmental strains of Yersinia enterocolitica biotype 1A reveal existence of limited number of clonal groups. FEMS Microbiol Lett 2004, 240:193-201.
8. de Koning-Ward TF, Robins-Browne RM: Contribution of urease to acid tolerance in Yersinia enterocolitica. Infect Immun 1995, 63:3790-3795.
9. Campanella JJ, Bitincka L, Smalley J: MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 2003, 4:29.
10. Bradford M: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
11. McMee DJ, May CA, Garner RM, Himpsl JM, Robins-Humley HL: Identification of urease: a flagellar toxin complex gene in Yersinia enterocolitica. Infect Immun 1995, 63:6487-6495.
12. Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press C.S.H., New York; 1989.
13. Bradford M: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
14. Miller VL: Yersinia virulence: more than a plasmid. FEMS Microbiol Lett 2001, 205:159-164.
15. Tannam SM, Grant TH, Robins-Browne RM: Pathogenicity of Yersinia enterocolitica biotype 1A. FEMS Immunol Med Microbiol 2003, 38:127-137.
16. Nair GM, Prado V, Ferreccio C, Robins-Browne RM: Bordun AM, Cayazzo M, Kay BA, Levine MM: Yersinia enterocolitica isolated from two cohorts of young children in Santiago, Chile: incidence of and lack of correlation between illness and proposed virulence factors. J Clin Microbiol 1991, 29:2784-2788.
17. Burnum AP, Frey A, Niccolet J: Association between clinical presentation, biovargroups and virulence attributes of Yersinia enterocolitica strains in human diarrhoeal disease. Epidemiol Infect 1996, 116:27-37.
18. Ratnam S, Mercer E, Picco B, Parsons S, Butler R: A nosocomial outbreak of diarrhoeal disease due to Yersinia enterocolitica serotype O:5, biotype 1. J Infect Dis 1992, 145:242-247.
19. Greenwood MH, Hooper WL: Excretion of Yersinia spp. associated with consumption of pasteurized milk. Epidemiol Infect 1990, 104:345-350.
20. Bissett ML, Powers C, Abbott SL, Janda JM: Epidemiologic investigations of Yersinia enterocolitica and related species: source, frequency, and serogroup distribution. J Clin Microbiol 1990, 28:910-912.
21. Grant T, Bennett-Wood V, Robins-Browne RM: Identification of virulence-associated characteristics in clinical isolates of Yersinia enterocolitica lacking classical virulence markers. Infect Immun 1998, 66:113-120.
22. Singh I, Virdi JS: Interaction of Yersinia enterocolitica biotype 1A strains of diverse origin with cultured cells in vitro. Jpn J Infect Dis 2005, 58:31-33.
23. Grant T, Bennett-Wood V, Robins-Browne RM: Characterization of the interaction between Yersinia enterocolitica biotype 1A and phagocytes and epithelial cells in vitro. Infect Immun 1999, 67:4367-4375.
24. Bhagat N, Virdi JS: Distribution of virulence-associated genes in Yersinia enterocolitica biovar 1A correlates with clonal groups and not the source of isolation. FEMS Microbiol Lett 2007, 266:177-183.
39. Collier JL, Brahamsa B, Palenik B: The marine cyanobacterium Synechococcus sp. WH7805 requires urease (urea amidohydrolase, EC 3.5.1.5) to utilize urea as a nitrogen source: molecular-genetic and biochemical analysis of the enzyme. Microbiology 1999, 145:447-459.

40. Park IS, Hausinger RP: Site-directed mutagenesis of Klebsiella aerogenes urease: identification of histidine residues that appear to function in nickel ligation, substrate binding, and catalysis. Protein Sci 1993, 2:1034-1041.

41. Jabri E, Carr MB, Hausinger RP, Karplus PA: The crystal structure of urease from Klebsiella aerogenes. Science 1995, 268:998-1004.

42. Todd MJ, Hausinger RP: Identification of the essential cysteine residue in Klebsiella aerogenes urease. J Biol Chem 1991, 266:24327-24331.

43. Mulrooney SB, Hausinger RP: Sequence of the Klebsiella aerogenes urease genes and evidence for accessory proteins facilitating nickel incorporation. J Bacteriol 1990, 172:5837-5843.

44. van Vliet AH, Kuipers EJ, Waidner B, Davies BJ, de Vries N, Penn CW, Davies BM, Kusters JG: Genetic and biochemical diversity of urease genes and evidence for accessory proteins facilitating nickel incorporation. J Bacteriol 1997, 179:4081-4086.

45. de Koning-Ward TF, Robins-Browne RM: A novel mechanism of urease regulation in Yersinia enterocolitica. FEMS Microbiol Lett 1997, 147:221-226.

46. van Vliet AH, Kuipers EJ, Waidner B, Davies BJ, de Vries N, Penn CW, Vandenbroucke-Grauls CM, Kist M, Bereswill S, Kusters JG: Nickel-responsive induction of urease expression in Helicobacter pylori. Mol Microbiol 2002, 45:1163-1174.

47. Straley SC, Perry RD: Environmental modulation of gene expression and pathogenesis in Yersinia. Trends Microbial 1995, 3:310-317.

48. van Vliet AH, Kuipers EJ, Waidner B, Davies BJ, de Vries N, Penn CW, Vandenbroucke-Grauls CM, Kist M, Bereswill S, Kusters JG: Nickel-responsive induction of urease expression in Helicobacter pylori is mediated at the transcriptional level. Infect Immun 2001, 69:4891-4897.

49. Contras-Rodriguez A, Quiroz-Limon J, Martins AM, Peralta H, Avila-Calderon E, Sriranganathan N, Boyle SM, Lopez-Merino A: Enzymatic, immunological and phylogenetic characterization of Brucella suis urease. BMC Microbiol 2008, 8:121.

50. Jones BD, Mobeley HL: Genetic and biochemical diversity of ureases of Proteus, Providencia, and Morganella species isolated from urinary tract infection. Infect Immun 1998, 66:2198-2203.

51. Mobeley HL, Cortesia MJ, Rosenthal LE, Jones BD: Characterization of urease from Campylobacter pylori. J Clin Microbiol 1998, 36:831-836.

52. Bandura AB, Contras A, Contras-Rodriguez A, Martins AM, Dobrean V, Poff-Reichow S, Rajasekaran P, Sriranganathan N, Schurig GG, Boyle SM: Brucella suis urease encoded by urei but not ure2 is necessary for intestinal infection of BALB/c mice. BMC Microbiol 2007, 7:57.

53. Thuné RL, Fernandez DH, Benoit JL, Kelly-Smith M, Rogge ML, Booth NJ, Landry CA, Bologna RA: Signature-tagged mutagenesis of Edwardsiella ictaluri identifies virulence-related genes, including a salmonella pathogenicity island 2 class of type III secretion systems. Appl Environ Microbiol 2007, 73:7934-7946.