Gravitational Lensing by Elliptical Galaxies and the Schwarz Function

Ch. Fassnacht
University of California, Davis

Ch. Keeton
Rutgers University

and

Dmitry Khavinson
University of South Florida

July, 2007
Figure 2: Setup of a gravitational lens situation: The lens L located between source S and observer O produces two images S_1 and S_2 of the background source.
Gravitational Microlensing

- n co-planar point-masses (e.g. condensed galaxies, black holes, etc.) in *lens plane* or *deflector plane*.

- Consider a light source in the plane parallel to the lens plane (*source plane*) and perpendicular to the line of sight from the observer.

- Due to deflection of light by masses multiple images of the source are formed. This phenomenon is known as *gravitational microlensing*.
Gravitational Lens
Galaxy Cluster 0024+1654

HST • WFPC2

PRC96-10 • ST ScI OPO • April 24, 1996

W.N. Colley (Princeton University), E. Turner (Princeton University),
J.A. Tyson (AT&T Bell Labs) and NASA
Lens Equation for Co-Planar Point Masses

- Light source is located in the position \(w \) in the source plane.

- The lensed image is located at the position \(z \) in the lens plane.

- The masses are located at the positions \(z_j \) in the lens plane.

\[
w = z - \sum_{1}^{n} \sigma_j / (\overline{z} - \overline{z_j}),
\]

where \(\sigma_j \neq 0 \) are real constants. Letting \(r(z) = \sum_{1}^{n} \sigma_j / (z - z_j) + \overline{w} \), the lens equation becomes

\[
z - r(z) = 0, \quad \text{deg } r = n.
\]

The number of solutions = the number of “lensed” images.
History

- First calculations of the deflection angle based on Newton’s corpuscular theory of light and the gravitational law (H. Cavendish and Reverend J. Michell circa 1784, P. Laplace - 1796, J. Soldner, 1804 - the first published calculation).

- $n = 1$ (one mass) A. Einstein (circa ’33), either two images or the whole circle (“Einstein ring”).

- H. Witt (’90) For $n > 1$ the maximum number of observed images is $\leq n^2 + 1$.

- S.H. Rhie (’01) conjectured the upper bound for the number of lensed images for an n-lens is $5n - 5$.
Solution

- (Mao - Petters - Witt, ’97) The maximum is $\geq 3n + 1$

- $n = 2, 3$ (’97-'03)(Mao, Petters, Witt, Rhie) - the maximum is 5, 10 respectively.

- $n = 4$, is the maximum 15 or 17?

Theorem 1. (G. Neumann-DK, ’06). The number of lensed images by an n-mass lens cannot exceed $5n - 5$ and this bound is sharp (Rhie, ’03). Moreover, it follows from the proof that the number of images is even when n is odd and vice versa.
Quadratic vs. Linear Numbers of Images

A model problem: Let \(p(z) := a_n z^n + \cdots + a_0, a_n \neq 0 \) be a polynomial of degree \(n > 1 \).

Question. Estimate \(\# \{ z : z - \bar{p}(z) = 0 \} \), or more generally,
\[
\# \{ (x, y) : A(x, y) + iB(x, y) = 0 \},
\]
where \(A, B \) are real polynomials of degree \(\leq n \).

Bezout’s theorem implies
\[
\# \{ (x, y) : A = B = 0 \} \leq n^2.
\]

Conjecture 1. (T. Sheil-Small - A. Wilmshurst, ’92)
\[
\# \{ z : p(z) - \bar{z} = 0, n > 1 \} \leq 3n - 2.
\]
Results

- In the 1990s D. Sarason and B. Crofoot and, independently, D. Bshouty, A. Lyzzaik and W. Hengartner verified it for $n = 2, 3$.

- In 2001, G. Swiatek and DK proved Conjecture 1 for all $n > 1$.

- In 2003-2005 L. Geyer showed that $3n - 2$ bound is sharp for all n.
Examples

• One-point mass lens with source at $w = 0$.

$$z - \frac{c}{z-a} = 0.$$

Two images for $a \neq 0$, a circle (“Einstein ring”) for $a = 0$, i.e., when the observer, the lens and the source coalesce.

• One-point lens with the tidal perturbation (a “shear”) from a far away galaxy, a Chang-Refsdal lens.

$$z - \frac{c}{z} - \gamma z = w.$$

The equation reduces to a quadratic and Bezout’s theorem yields a bound of at most 4 images. Curves cannot occur!
Continuous Mass Distribution

For a continuous real-valued mass-distribution μ in a region Ω in the plane the lens equation with shear takes form

$$z - \int_{\Omega} \frac{d\mu(\zeta)}{z - \zeta} - \gamma\bar{z} = w.$$

- $\mu = n > 1$ non-overlapping radially symmetric masses. The number of images “outside” the masses $\leq 5n - 5$ if $\gamma = 0$ and $\leq 5n$ if $\gamma \neq 0$ (DK-G. Neumann '06, refinements by J. H. An and N. W. Evans, '06).

- $\mu = \text{uniform-mass distribution inside a quadrature domain } \Omega \text{ of order } n$, i.e. $\Omega = \phi(D)$, ϕ is a rational function with n poles univalent in $D := \{|z| < 1\}$. The number of images outside Ω is $\leq 5n - 5$ (DK-GN, '06).
Smooth Mass Distributions

(W. L. Burke’s Theorem, ’81). The number of images is always odd. \((\gamma = 0)\).

Take \(w = 0\). Let \(n_+\) be the number of sense preserving images and \(n_-\) - the number of sense reversing images. Argument principle yields

\[1 = n_+ - n_- \]

so the total number of images

\[N = n_+ + n_- = 2n_- + 1. \]
Einstein Rings are Ellipses

Theorem 2. (CF-CK-DK, ’07) For any lens \(\mu \), if the lensing produces an image “curve” surrounding the lens, it is either a circle when the shear \(\gamma = 0 \), or an ellipse.

For an illustration assume the shear \(\gamma = 0 \). If the lens produces an image which is a curve \(\Gamma \), then

\[
\bar{z} = \int_{\Omega} \frac{d\mu(\zeta)}{z - \zeta} \quad \text{on} \quad \Gamma
\]

The integral is an analytic function in \(\mathbb{C} \setminus \Omega \) vanishing at \(\infty \). Hence \(|\bar{z}|^2 \) matches on \(\Gamma \) a bounded analytic function in \(\mathbb{C} \setminus \Omega \) and must be a constant.

Remark 1. Using P. Divé’s converse to the Newton’s “no gravity in the ellipsoidal cavity” theorem, we can extend the above result to higher dimensions.
Einstein Ring Gravitational Lenses

Hubble Space Telescope • Advanced Camera for Surveys

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team

STScI-PRC05-32
Ellipsoidal Lens

Lens $\Omega = \{x^2/a^2 + y^2/b^2 \leq 1, a > b > 0\}$, with constant density. $c^2 = a^2 - b^2$.

$$\bar{z} - \frac{1}{\pi} \int_{\Omega} \frac{dA(\zeta)}{z - \zeta} - \gamma z = \bar{w},$$

or, using complex Green’s formula,

$$\bar{z} - \frac{1}{2\pi i} \int_{\partial \Omega} \frac{\bar{\zeta} d\zeta}{z - \zeta} - \gamma z = \bar{w}.$$
The Schwarz Function of the Ellipse

The Schwarz function $S(\zeta) = \bar{\zeta}$ of $\partial\Omega$.

\[S(\zeta) = \frac{a^2 + b^2}{c^2} \zeta - \frac{2ab}{c^2} (\zeta - \sqrt{\zeta^2 - c^2}) \]
\[= \frac{a^2 + b^2 - 2ab}{c^2} \zeta + \frac{2ab}{c^2} (\zeta - \sqrt{\zeta^2 - c^2}) \]
\[= S_1(\zeta) + S_2(\zeta), \]

where S_1 analytic inside Ω, S_2 - outside Ω, $S_2(\infty) = 0$. This is the Plemelj-Sokhotsky decomposition of the Schwarz function of $\partial\Omega$.

16
• For z outside Ω the lens equation then reduces to
\[
\bar{z} + \frac{2ab}{c^2}(z - \sqrt{z^2 - c^2}) - \gamma z = \bar{w},
\]
that may have at most 4 solutions by Bezout’s theorem.

• For z inside Ω the lens equation reduces to a linear equation giving at most one solution.

Theorem 3. *(CF-CK-DK)* An elliptic galaxy Ω with a uniform mass density may produce at most 4 “bright” lensing images of a point light source outside Ω, and at most one “dim” image inside Ω, i.e., at most 5 lensing images altogether.
Confocal Ellipses

MacLaurin’s mean value theorem concerning potentials of confocal ellipsoids readily yields

Corollary 1. An elliptic galaxy Ω with mass density that is constant on ellipses confocal with Ω, may produce at most 4 “bright” lensing images of a point light source outside Ω.
“Isothermal” Elliptical Lenses

- Density, inversely proportional to the distance from the origin, is constant on ellipses $\Gamma_t := \{x^2/a^2 + y^2/b^2 = t\}$ homothetic with $\partial \Omega$.

- Lens equation becomes transcendental:

$$z = \text{const} \int_0^1 \frac{dt}{\sqrt{z^2 - c^2 t^2}} - \gamma \bar{z} = w.$$

- There are no more than 5 images (4 + 1) observed as of today.

- In 2000 Ch. Keeton, S. Mao and H. J. Witt constructed models with a strong tidal perturbation (shear) having 9, (8 bright + 1 dim), images.
Remarks

- An isothermal sphere with a shear is covered by ’06 K-N theorem (cf. also ’06 paper by An - Evans on Chang-Refsdal lens) and may produce at most 4 images (observed).

- A rigorous proof that an isothermal elliptical lens may only produce finitely many images is still missing.
Critical Curves and Caustics

• Jacobian of the lens map \(L(z) = z - \overline{p(z)} = w \) with potential \(p(z) \)

\[
J(z) = 1 - |p'(z)|^2.
\]

• Critical Curve \(C := \{z : J = 0\} \).

• Caustic \(C' = L(C) \).

• \(J(z) \) is the area distortion factor. Its reciprocal expresses the ratio of the apparent solid angle covering the lensed images \(z \) to that of the original source \(w \), called magnification.

• Caustics indicate positions for the source where magnification tends to infinity.
Remarks

- Critical curves are *lemniscates*, caustics and their pre-images, “pre-caustics”, $L^{-1}(C')$ are much more complicated.

- Geometry of critical curves and caustics especially for 2, 3 and 4 point lenses was modeled and studied by astrophysicists An, Evans, Keeton, Mao, Petters, Rhie, Witt to name just a few and, independently, by Bshouty, Hengartner, Lyzzaik, Neumann, Ortel, Suez, Suffridge, Wilmshurst. G. Neumann’s thesis ’03 has a variety of deep, novel geometric results.

- (K-N ’06, conjectured by Rhie ’01). The total number of “positive” ($J \geq 0$) images produced by an $n > 1$-point mass lens in absence of a tidal perturbation is $\leq 2n - 2$. Further refinements can be found in ’06 work of An and Evans.
Isothermal Ellipsoid
QUESTIONS

Lensing by a uniform mass in a Q. D..

- Geometric interplay between critical curve(s) vs. the boundary of the q.d.

- Estimate the number of “dim” images inside the q.d. = in-depth study of the algebraic part of the Schwarz function.

- Valence of algebraic vs. transcendental harmonic mappings (cf. G. Neumann’s papers ’05, ’07).

 Model Problem: Sharp estimate for \(\#\{z : \bar{z}^m - p(z) = 0\} \), \(n := \deg p >> m \). Wilmshurst (’94) conjectured the upper bound \(m(m - 1) + 3n - 2 \).

- Estimate the number of bright images for a polynomial mass density.
Elliptic Lenses

- Maximal number of images for the isothermal elliptical lens.

- Elliptical lens with a polynomial (rational) mass density
 (i) Maximal number of images
 (ii) Critical curves and pre-caustics
 (iii) Anomalies related to arbitrary continuous mass-densities

- Lensing by several elliptical masses (observed so far 2 galaxies lens giving 5 images and 3 galaxies lens with 6).
Three-Dimensional Lensing

The 3-dimensional lens equation with mass-distribution $dm(y)$ with source at \vec{w} becomes

$$\vec{x} - \nabla_x \left(\int \frac{dm(y)}{|x - y|} \right) = \vec{w}.$$

1. $dm = \sum_{1}^{n} c_j \delta y_j$. There are rough estimates for the maximal number of images (Petters, ’90s) based on Morse theory.

2. A difficult Maxwell’s problem concerns a number of stationary points of the Newtonian potential of n point-masses (conjectured $\leq (n - 1)^2$). Most recent progress due to Eremenko, Gabrielov, D. Novikov, B. Shapiro.
• Ellipsoidal mass densities.

• Critical surfaces, caustics and pre-caustics of the lens map.

(CF-CK-DK, ’07: “Einstein” surfaces can only be either spherical in absence of a shear, or ellipsoidal.)

• Other mass-densities???
THANK YOU!