Selection and validation of experimental condition-specific reference genes for qRT-PCR in *Metopolophium dirhodum* (Walker) (Hemiptera: Aphididae)

Xinan Li¹,²,⁵, Peipan Gong¹,⁵, Bingting Wang³, Chao Wang¹, Mengyi Li³, Yunhui Zhang³, Xiangrui Li³, Haifeng Gao⁴, Jiansong Ju³,⁶, * & Xun Zhu¹,⁶

Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) is one of the most common aphid pests of winter cereals. To facilitate accurate gene expression analyses with qRT-PCR assays, the expression stability of candidate reference genes under specific experimental conditions must be verified before they can be used to normalize target gene expression levels. In this study, 10 candidate reference genes in *M. dirhodum* were analyzed by qRT-PCR under various experimental conditions. Their expression stability was evaluated with delta Ct, BestKeeper, geNorm, and NormFinder methods, and the final stability ranking was determined with RefFinder. The results indicate that the most appropriate sets of internal controls were SDHB and RPL8 across geographic population; RPL8, Actin, and GAPDH across developmental stage; SDHB and NADH across body part; RPL8 and Actin across wing dimorphism and temperature; RPL4 and EF1A across starvation stress; AK and RPL4 across insecticide treatments; RPL8 and NADH across antibiotic treatments; RPL8, RPL4, Actin, and NADH across all samples. The results of this study provide useful insights for establishing a standardized qRT-PCR procedure for *M. dirhodum* and may be relevant for identifying appropriate reference genes for molecular analyses of related insects.

The quantitative analysis of target gene expression is an essential part of most molecular studies. Quantitative real-time PCR (qRT-PCR) is a powerful tool for quantifying gene expression, combining improvements in both sensitivity and specificity with efficient techniques for signal detection. It is useful for the quantitative data analysis required for research related to molecular medicine, biotechnology, microbiology, and diagnostics and has become the preferred method for quantifying mRNA. Nevertheless, gene expression analyses are affected by many factors such as the quality of RNA samples, the efficiency of reverse transcription, and PCR efficiency. For accurate comparisons of expression levels, the expression data of the genes of interest are normalized against the expression data for a reference gene. Moreover, the reference gene compensates for the above-mentioned limitations. Because housekeeping genes are related to ubiquitous and basic cellular functions, they are considered to be constitutively expressed under diverse conditions. Housekeeping genes, including those encoding actin, glyceraldehyde-3-phosphate dehydrogenase, ribosomal protein, 18S ribosomal RNA, elongation factor 1α and heat shock proteins, have been extensively used as endogenous controls for normalizing real-time PCR data. However, several studies have indicated that the expression levels of the reference genes vary under diverse conditions. In fact, no single reference gene is appropriate for all experimental conditions. Therefore, evaluating and validating the stability of reference genes under different experimental conditions is critical.

¹State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China. ²School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang 453003, Henan, China. ³College of Life Science, Hebei Normal University, Road Nan er huan dong No.20, Shijiazhuang 050024, Hebei, China. ⁴Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Ürümqi 830091, China. ⁵These authors contributed equally: Xinan Li and Peipan Gong. ⁶Email: jujiansong@126.com; zhuxun@caas.cn
There have recently been several reports regarding reference genes for molecular research on insects, including bumblebee, Harmonia axyridis, Propylea japonica, Aphis craccivora Koch, Henosepilachna vigintioctomaculata, Chilo suppressalis, Galerusca daurica, Liriomyza trifolii, Coccinella septempunctata, Phenacoccus solenopsis, Lipaphis erysimi, Myzus persicae, Acyrthosiphon pisum, and Megoura viciea.3,14–27.

Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) is one of the most major aphid pests affecting winter wheat and other cereals worldwide.28–31 Additionally, *M. dirhodum*, which was first detected in the 1970s, originated in the Holarctic and was subsequently introduced to South America and other regions.32,33 The *M. dirhodum* nymphs and adults damage cereals by directly feeding on plants, which may result in grain yield losses of 27–30%.34 Moreover, they damage crops by transmitting several viruses, especially the barley yellow dwarf virus.35 This aphid has most often been detected in semi-arid regions in South America, South Africa, Australia, and New Zealand, where it damages cereals, including wheat, barley, rye, and oat. A previous study revealed that *M. dirhodum* is the most abundant aphid species on cereals in the continental climate of central Europe.33 With the technical advances occurring in the post-genomic era, researchers may soon have additional options for studying *M. dirhodum* at the molecular level, which may contribute to the development of improved control measures. Thus, identifying suitable reference genes is important for analyzing the expression of functional genes at the molecular level, which may contribute to the development of improved control measures.

The objective of this study was to identify and evaluate a suite of experimental condition-specific reference genes to normalize target gene expression in *M. dirhodum*. Specifically, we analyzed the following 10 candidate genes: *Actin*, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), NADH dehydrogenase (NADH), arginine kinase (AK), succinate dehydrogenase B (SDHB), ribosomal protein L8 (RPL8), 18S ribosomal RNA (18S), elongation factor 1a (EF1A), ribosomal protein L4 (RPL4), and heat shock protein 68 (HSP68). The effects of the following factors on reference gene expression were evaluated: geographic population, developmental stage, body part, wing dimorphism, temperature, starvation stress, and exposure to an insecticide or antibiotic. The results indicate that the best reference genes for analyzing *M. dirhodum* gene expression vary among conditions.

Results

Expression levels of candidate reference genes. To evaluate the expression profiles of the selected candidate genes in all *M. dirhodum* sample sets, mRNA levels were measured for all genes. The gene expression levels varied considerably between Ct values of 12.70 (18S) and 30.88 (GAPDH) (Fig. 1). Of the 10 analyzed genes, the highest and lowest expression levels were detected for 18S (mean Ct value of 14.27) and GAPDH (mean Ct value of 28.90), respectively. The least variable expression among all samples was observed for *Actin* (mean Ct value ± SD of 26.79 ± 0.42) and *RPL8* (21.10 ± 0.35). In contrast, *HSP68* (24.82 ± 1.86) exhibited the most variable expression in all the tested samples.

Analysis of gene expression stability. The delta Ct method and the BestKeeper, NormFinder, and geNorm algorithms were used to assess the stability of the candidate reference gene expression levels. The rank order (most to least stable expression) was highly consistent among the four methods. Specifically, *SDHB*, *RPL4*, and *RPL8* were identified as the most stable genes, whereas *HSP68* and *GAPDH* were the least stable genes (Table 1). The RefFinder results for the geographic populations revealed a rank order (most to least stable expression) of *SDHB*, *RPL8*, *RPL4*, *NADH*, *AK*, 18S, *Actin*, EF1A, *GAPDH*, and *HSP68* (Fig. 2). On the basis of the GeNorm analysis, all pairwise variation values were below the 0.15 cut-off value, except for V5/6 (Fig. 3). Moreover, the RefFinder analysis indicated *SDHB* and *RPL8* are required for the normalization of target gene expression levels in different geographic populations.

![Figure 1](https://example.com/f1.png)

Figure 1. Candidate reference gene expression levels. Candidate reference gene expression levels in the whole *M. dirhodum* sample set are expressed in terms of the threshold cycle number (Ct value). Data are presented as whisker box plots. The box represents the 25th–75th percentiles, the median is indicated by a bar across the box, and the whiskers on each box represent the minimum and maximum values.
Experimental conditions	Rank	Delta CT	Gene name Standard deviation	Gene name Standard deviation	Gene name Standard deviation	Gene name Stability value	Gene name Stability value	
	1	0.73	SDHB	0.04	RPL4	0.292	SDHB/RPL8	0.123
	2	0.74	RPL4	0.12	SDHB	0.311		
	3	0.78	NADH	0.13	RPL8	0.439	NADH	0.129
	4	0.78	RPL8	0.20	NADH	0.474	RPL4	0.225
	5	0.85	AK	0.29	18S	0.537	AK	0.274
	6	0.90	18S	0.62	AK	0.593	18S	0.507
	7	0.96	Actin	0.68	Actin	0.707	Actin	0.640
	8	1.06	EF1A	0.75	EF1A	0.862	EF1A	0.727
	9	1.38	GAPDH	0.84	GAPDH	1.310	GAPDH	0.843
	10	1.44	HSP68	1.08	HSP68	1.366	HSP68	0.962
Geographic populations	1	1.03	GAPDH	0.61	GAPDH	0.149	Actin/RPL8	0.461
	2	1.04	RPL4	0.64	Actin	0.231		
	3	1.08	RPL8	0.85	RPL8	0.410	GAPDH	0.504
	4	1.10	NADH	0.89	NADH	0.458	NADH	0.564
	5	1.31	RPL4	0.94	RPL4	0.934	RPL4	0.653
	6	1.55	GAPDH	0.96	AK	1.199	EF1A	0.840
	7	1.55	AK	1.40	18S	1.266	18S	0.949
	8	1.56	EF1A	1.50	SDHB	1.503	SDHB	1.123
	9	1.75	HSP68	1.97	HSP68	1.57	HSP68	1.395
	10	2.11	HSP68	2.92	HSP68	2.18	HSP68	1.059
Development stages	1	0.72	GAPDH	0.24	NADH	0.043	NADH/SDHB	0.085
	2	0.74	18S	0.28	SDHB	0.043		
	3	0.77	EF1A	0.32	18S	0.168	Actin	0.270
	4	0.81	SDHB	0.36	Actin	0.447	18S	0.314
	5	0.88	NADH	0.42	EF1A	0.568	AK	0.377
	6	0.95	Actin	0.50	GAPDH	0.687	EF1A	0.554
	7	0.98	RPL8	0.61	AK	0.711	GAPDH	0.645
	8	1.15	AK	0.66	RPL8	1.056	RPL8	0.757
	9	1.25	RPL4	0.71	RPL4	1.162	RPL4	0.832
	10	1.59	HSP68	1.23	HSP68	1.557	HSP68	0.983
Body parts	1	0.60	Actin	0.06	RPL8	0.027	RPL8/EF1A	0.053
	2	0.60	RPL4	0.14	EF1A	0.027		
	3	0.62	HSP68	0.19	RPL4	0.039	RPL4	0.087
	4	0.64	RPL8	0.19	Actin	0.094	Actin	0.217
	5	0.64	HSP68	0.23	HSP68	0.332	HSP68	0.309
	6	0.67	EF1A	0.23	NADH	0.406	NADH	0.344
	7	0.94	SDHB	0.51	SDHB	0.889	SDHB	0.458
	8	1.01	AK	0.57	AK	0.982	AK	0.523
	9	1.13	GAPDH	0.74	GAPDH	1.035	GAPDH	0.680
	10	1.41	18S	0.97	18S	1.401	18S	0.827
Wing dimorphism	1	0.72	RPL8	0.10	RPL8	0.032	Actin/NADH	0.206
	2	0.74	RPL4	0.16	RPL8	0.064		
	3	0.75	SDHB	0.29	Actin	0.141	RPL8	0.280
	4	0.78	Actin	0.30	EF1A	0.266	RPL4	0.310
	5	0.81	EF1A	0.30	NADH	0.347	EF1A	0.341
	6	0.83	NADH	0.32	SDHB	0.397	SDHB	0.386
	7	0.94	AK	0.46	AK	0.502	AK	0.448
	8	1.00	GAPDH	0.60	GAPDH	0.626	GAPDH	0.526
	9	1.11	18S	0.69	18S	0.915	18S	0.595
	10	2.92	HSP68	2.18	HSP68	2.885	HSP68	1.059
Developmental stage. The delta Ct and NormFinder analyses identified GAPDH and Actin as the most stable genes. In contrast, the most stable genes were RPL8 and RPL4 according to BestKeeper and Actin and RPL8 according to GeNorm. Regardless of the method, HSP68 was identified as the least stable gene (Table 1). According to the RefFinder results, the rank order (most to least stable expression) for the developmental stages was RPL8, Actin, GAPDH, RPL4, NADH, 18S, AK, SDHB, EF1A, and HSP68 (Fig. 2). The GeNorm analysis revealed that the values for V3/4 were less than the proposed 0.15 cut-off (Fig. 3). The RefFinder analysis indicated RPL8, Actin, and GAPDH are required for normalizing target gene expression levels for the different M. dirhodum developmental stages.

Body part. The gene expression stability rank order determined with BestKeeper differed from that obtained with the other three methods (Table 1). The BestKeeper algorithm identified GAPDH and 18S as the most stable genes. In contrast, the delta Ct method, NormFinder, and GeNorm identified NADH and SDHB as the most stable genes. All four analyses indicated RPL4 and HSP68 were the least stable genes. The RefFinder results for the different body parts revealed a rank order (most to least stable expression) of SDHB, NADH, 18S, Actin, GAPDH, EF1A, AK, RPL8, RPL4, and HSP68 (Fig. 2). On the basis of the GeNorm analysis, all pairwise variation values

Table 1. Rank order of the M. dirhodum candidate reference genes under various experimental conditions.

Experimental conditions	Rank	Gene name	Standard deviation	Gene name	Standard deviation	Gene name	Stability value	Gene name	Stability value
Starvation-stress	1	RPL4	1.03	18S	0.06	EF1A	0.026	NADH/AK	0.050
	2	EF1A	1.03	Actin	0.33	RPL4	0.026		
	3	RPL8	1.10	GAPDH	0.46	RPL8	0.484	SDHB	0.175
	4	AK	1.23	RPL8	0.78	AK	0.706	RPL4	0.599
	5	NADH	1.26	EF1A	1.02	NADH	0.771	EF1A	0.687
	6	GAPDH	1.31	RPL4	1.05	SDHB	1.034	RPL8	0.790
	7	SDHB	1.40	AK	1.70	GAPDH	1.066	GAPDH	0.930
	8	Actin	1.43	NADH	1.74	Actin	1.280	Actin	1.017
	9	18S	1.77	SDHB	1.89	18S	1.727	18S	1.125
	10	HSP68	2.55	HSP68	2.80	HSP68	2.527	HSP68	1.409
Insecticide-stress	1	RPL4	0.32	HSP68	0.12	AK	0.129	Actin/AK	0.028
	2	AK	0.32	SDHB	0.22	RPL4	0.135		
	3	Actin	0.33	RPL8	0.22	NADH	0.154	RPL8	0.080
	4	RPL8	0.33	RPL4	0.23	Actin	0.167	RPL4	0.102
	5	NADH	0.37	Actin	0.29	GAPDH	0.192	HSP68	0.151
	6	GAPDH	0.39	NADH	0.29	RPL8	0.208	NADH	0.205
	7	HSP68	0.44	AK	0.31	SDHB	0.384	SDHB	0.245
	8	SDHB	0.47	GAPDH	0.50	HSP68	0.388	GAPDH	0.281
	9	18S	0.56	18S	0.69	18S	0.478	18S	0.347
	10	EF1A	0.76	EF1A	0.77	EF1A	0.731	EF1A	0.431
Antibiotic-stress	1	RPL8	0.54	SDHB	0.03	NADH	0.024	GAPDH/18S	0.013
	2	RPL4	0.54	Actin	0.15	RPL8	0.086		
	3	AK	0.54	NADH	0.18	Actin	0.087	AK	0.060
	4	18S	0.58	RPL8	0.47	RPL4	0.350	RPL4	0.071
	5	GAPDH	0.59	RPL4	0.59	SDHB	0.371	EF1A	0.112
	6	NADH	0.63	AK	0.61	AK	0.383	RPL8	0.163
	7	Actin	0.65	18S	0.67	18S	0.484	NADH	0.297
	8	EF1A	0.69	GAPDH	0.68	GAPDH	0.501	Actin	0.370
	9	SDHB	0.76	EF1A	0.76	EF1A	0.646	SDHB	0.439
	10	HSP68	1.99	HSP68	0.95	HSP68	1.987	HSP68	0.749
All above conditions	1	RPL8	1.01	Actin	0.54	RPL8	0.401	RPL8/RPL4	0.421
	2	RPL4	1.03	RPL8	0.54	RPL4	0.497		
	3	NADH	1.09	RPL4	0.82	Actin	0.543	EF1A	0.674
	4	Actin	1.10	18S	0.96	NADH	0.624	NADH	0.747
	5	EF1A	1.15	SDHB	1.00	SDHB	0.723	GAPDH	0.786
	6	GAPDH	1.16	EF1A	1.01	EF1A	0.724	Actin	0.827
	7	SDHB	1.17	GAPDH	1.15	GAPDH	0.752	SDHB	0.868
	8	AK	1.44	NADH	1.16	AK	1.159	AK	0.955
	9	18S	1.51	HSP68	1.46	18S	1.230	18S	1.061
	10	HSP68	2.16	AK	1.56	HSP68	2.019	HSP68	1.281
were below the 0.15 cut-off value, except for V9/10 (Fig. 3). The RefFinder analysis indicated SDHB and NADH are required for normalizing target gene expression levels in wing-dimorphic insects.

Wing dimorphism. The delta Ct and BestKeeper analyses identified Actin and RPL4 as the most stable genes, whereas both NormFinder and GeNorm identified RPL8 and EF1A as the most stable genes. All four analyses indicated that 18S, GAPDH, AK, and SDHB were the least stable genes (Table 1). The RefFinder data for the wing dimorphism revealed a rank order (most to least stable expression) of RPL8, Actin, RPL4, EF1A, HSP68, NADH, SDHB, AK, GAPDH, and 18S (Fig. 2). On the basis of the GeNorm analysis, all pairwise variation values were below the 0.15 cut-off value (Fig. 3). According to RefFinder, RPL8 and Actin are required for normalizing target gene expression levels in wing-dimorphic insects.

Temperature-induced stress. The delta Ct method identified Actin and RPL8 as the most stable genes. Both BestKeeper and NormFinder identified RPL8 and RPL4 as the most stable genes, whereas GeNorm identified Actin and NADH as the most stable genes. All four analyses indicated HSP68, 18S, GAPDH, and AK were the

Figure 2. Stability of candidate reference gene expression levels in response to various treatments and conditions. In a RefFinder analysis, decreasing Geomean values correspond to increasing gene expression stability. The Geomean values for the following *M. dirhodum* samples are presented: adult samples from different geographic populations (Geographic population), samples for all developmental stages (Developmental stages), samples for different body parts of wingless adults (Body part), samples for winged and wingless adults (Wing dimorphism), adult samples exposed to different temperatures (Temperature-stress), fed and unfed adult samples (Starvation-stress), adult samples treated with different insecticides (Insecticide-stress), adult samples treated with antibiotic (Antibiotic-stress), and all samples for all treatments (All conditions). The candidate reference genes are as follows: Actin, Actin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NADH, NADH dehydrogenase; AK, arginine kinase; SDHB, succinate dehydrogenase B; RPL8, ribosomal protein L18; RPL4, ribosomal protein L4; HSP68, heat shock protein 68; 18S, 18S ribosomal RNA; and EF1A, elongation factor 1a.
least stable genes (Table 1). The RefFinder data for the different temperatures revealed a rank order (most to least stable expression) of RPL8, Actin, RPL4, NADH, EF1A, SDHB, AK, GAPDH, 18S, and HSP68 (Fig. 2). On the basis of the GeNorm analysis, all pairwise variation values were below the 0.15 cut-off value, except for V9/10 (Fig. 3). The RefFinder analysis indicated RPL8 and Actin are required for normalizing target gene expression levels in M. dirhodum exposed to different temperatures.

Starvation-induced stress. The delta Ct method and the NormFinder algorithm identified EF1A and RPL4 as the most stable genes and Actin, 18S, and HSP68 as the least stable genes (Table 1). However, BestKeeper identified 18S and Actin as the most stable genes and SDHB and HSP68 as the least stable genes (Table 1). The GeNorm algorithm identified NADH and AK as the most stable genes and Actin, 18S, and HSP68 as the least stable genes (Table 1). The RefFinder results for the starvation treatment revealed a rank order (most to least stable expression) of RPL4, EF1A, AK, NADH, RPL8, 18S, GAPDH, Actin, SDHB, and HSP68 (Fig. 2). The GeNorm analysis indicated that the pairwise variation values for V2/3 were less than the proposed 0.15 cut-off (Fig. 3). The RefFinder analysis indicated RPL4 and EF1A are required for normalizing target gene expression levels in starvation-stressed M. dirhodum.

Insecticide-induced stress. The delta Ct and NormFinder data revealed AK and RPL4 as the most stable genes, whereas the BestKeeper results identified HSP68 and SDHB as the most stable genes. In contrast, Actin and AK were the most stable genes according to GeNorm. All four analyses identified 18S and EF1A as the least stable genes (Table 1). The RefFinder data for the insecticide treatment revealed a rank order (most to least stable expression) of AK, RPL4, Actin, RPL8, HSP68, NADH, SDHB, GAPDH, 18S, and EF1A (Fig. 2). Based on the GeNorm analysis, all the pairwise variation values were below 0.15 cut-off value (Fig. 3). Thus, AK and RPL4 are required for normalizing target gene expression levels in insecticide-treated M. dirhodum.

Antibiotic-induced stress. The delta Ct method identified RPL8 and RPL4 as the most stable genes. The BestKeeper algorithm identified SDHB and Actin as the most stable genes, whereas NormFinder indicated NADH and RPL8 were the most stable genes. The GeNorm algorithm identified GAPDH and 18S as the most stable genes. All four analyses identified EF1A, SDHB, and HSP68 as the least stable genes (Table 1). The RefFinder data for the antibiotic treatment revealed a rank order (most to least stable expression) of RPL8, NADH, RPL4, 18S, GAPDH, AK, Actin, SDHB, EF1A, and HSP68 (Fig. 2). According to the GeNorm analysis, all pairwise variation values were less than the proposed 0.15 cut-off, except for V9/10 (Fig. 3). The RefFinder analysis suggested RPL8 and NADH are required for normalizing the target gene expression levels in antibiotic-treated M. dirhodum.

Overall ranking of M. dirhodum candidate reference genes. An examination of the candidate reference expression stability for all treatments and conditions with the four methods used in this study produced similar rank orders, with RPL4 and RPL8 identified as the most stable genes and AK, 18S, and HSP68 revealed as the least stable genes (Table 1). The RefFinder results for all treatments and conditions revealed a rank order (most to least stable expression) of RPL8, RPL4, Actin, NADH, EF1A, SDHB, GAPDH, 18S, AK, and HSP68 (Fig. 2). The GeNorm analysis indicated that the pairwise variation values for V4/5 were less than the proposed 0.15 cut-off (Fig. 3). Thus, an analysis of all treatments and conditions suggested that RPL8, RPL4, Actin, and NADH are suitable internal reference genes for normalizing target gene expression levels in M. dirhodum.
to various temperatures. However, we determined that SDHB was identified as the most stable gene following insecticide treatments (Fig. 2). In *H. armigera*, Actin was revealed as the least stable reference gene for analyses of developmental stages, temperature effects, and wing dimorphism (Fig. 2). Additionally, RPL4 was detected as the least stable gene in response to starvation and insecticide treatments, but was also almost the least stable gene during analyses of various *M. dirhodum* body parts (Fig. 2).

Discussion

There are several reports describing the application of qRT-PCR assays to clarify the gene expression levels associated with diverse biological processes. Reference genes used for molecular investigations can influence the accuracy of target gene expression levels. Therefore, a stable reference gene is an important prerequisite for gene expression investigations. Housekeeping genes, which are constitutively expressed to maintain basic cellular functions, have traditionally been used as internal reference controls. However, there is no universal reference gene that is stably expressed in all cell and tissue types under different experimental conditions. Therefore, every stable reference gene used to normalize gene expression data should be evaluated under each experimental condition.

In this study, qRT-PCR was used to evaluate the expression-level stability of 10 candidate reference genes in *M. dirhodum* across specific conditions. The best reference genes varied among conditions. Specifically, RPL8 (mean Ct value ± SD, 21.10 ± 0.35) and Actin (26.79 ± 0.42) had the least variable expression levels, whereas HSP68 (24.82 ± 1.86) produced the most variable expression levels among the examined candidate reference genes. Similarly, RPL8, RPL4, and Actin were the most stable reference genes, whereas HSP68 and 18S were the least stable reference genes under most conditions.

Ribosomal proteins (RPs), which are the principal components of ribosomes, are one of the most highly conserved proteins in all life forms. Earlier research proved that RP-encoding genes are among the most stably expressed reference genes, and have been widely used to normalize gene expression levels in insect molecular investigations during the past 10 years. For example, in *Brady sia odoriphaga*, RPS15 was the most stably expressed gene in response to various temperature treatments. However, another study indicated that the expression levels of RP-encoding genes may vary under some conditions. Moreover, RPS20 was detected as the least stably expressed gene for analyzing *Plutella xylostella* geographic populations as well as the effects of the temperature, photoperiod, and insecticides. Consistent with these earlier findings, we identified RPL8 as the most stable gene in *M. dirhodum* across various conditions (except for analyses of different body parts, starvation stress, and insecticide treatments). Additionally, RPL4 was detected as the most stable gene in response to starvation and insecticide treatments, but was also almost the least stable gene during analyses of various *M. dirhodum* body parts.

Actin, which encodes a major structural protein, is important for cell secretion, motility, cytoplasm flow, and cytoskeleton maintenance. Moreover, *Actin* is expressed at various levels in many cell types, and is considered the ideal reference gene for qRT-PCR, which may explain its frequent use. For example, it has been used to study the effects of diet on *B. odoriphaga* gene expression and for investigating *M. persicae* gene expression in different tissues and in response to the temperature, photoperiod, and wing dimorphism. However, in *Helicoverpa armigera*, Actin was revealed to be the least stable reference gene following temperature and photoperiod treatments. In our study, Actin was identified as one of the most stable reference genes for analyzing developmental stages, temperature effects, and wing dimorphism.

The GAPDH gene has been commonly used as a reference gene in the studies of gene expression. However, unstable GAPDH expression has been detected in *Tetranychus cinnabarinus* developmental stages, in the labial glands and fat bodies of *Bombus terrestris* and *Bombus lucorum*, and in various *Sogatella furcifera* body parts. In the current study, GAPDH was revealed as a stably expressed candidate reference gene for analyses of developmental stages. These results imply that the mechanism underlying the expression stability of endogenous reference genes is complex. Furthermore, the stability of potential reference genes in different biological samples should be tested prior to their use.

The protein encoded by EF1A affects translation by catalyzing the GTP-dependent binding of aminoacyl-tRNA to the acceptor site of the ribosome. The EF1A gene was recently used as a reference gene in multiple insect gene expression studies. Our results suggest that EF1A is an appropriate reference gene only for analyzing the effects of starvation stress on *M. dirhodum* gene expression.

The AK gene encodes the phosphagen kinase in invertebrates, and it has rarely been used as a reference gene. An earlier study revealed that AK is the most stably expressed gene in the *B. terrestris* labial gland and fat body. In this study, AK was identified as the most stable gene following insecticide treatments. In *A. pisum*, SDHB and NADH are reported as the most stable housekeeping genes in developmental stages and in response to various temperatures. However, we determined that SDHB and NADH are the most stable housekeeping genes only during examinations of different *M. dirhodum* body parts. These further suggest that reference gene expression stability is influenced by the experimental conditions.

The 18S rRNA gene is considered to be an ideal reference control because of its relatively stable expression levels. Accordingly, it has been applied in previous studies involving *Lucilia cuprina*, *Rhodnius prolixus*, and *Delphacodes kuscheli*. However, in this study, 18S was revealed as one of the least stable genes in almost all

Conditions	Reference gene	Conditions	Reference gene
Population	SDHB, RPL8	Temperature	RPL8, Actin
Development stage	RPL8, Actin, GAPDH	Starvation	RPL4, EF1A
Body part	SDHB, NADH	Insecticide	AK, RPL4
Wing dimorphism	RPL8, Actin	Antibiotic	RPL8, NADH
All conditions	RPL8, RPL4, Actin, NADH	Sample	

Table 2. Recommended reference genes for *M. dirhodum* under various experimental conditions.
sample sets, implying it is an inappropriate reference gene for *M. dirhodum* (Fig. 2). This observation is consistent with the results of previous studies that indicated 18S rRNA is not a stable reference gene in *Bactrocera dorsalis* and *Nilaparvata lugens* under specific experimental conditions. It is transcribed by a separate RNA polymerase, which may explain why rRNA is not a suitable reference control. Moreover, the utility of 18S for normalizing target gene expression levels in a qRT-PCR assay is limited by the potential imbalance between rRNA and mRNA fractions among samples.

The HSP68 gene, which belongs to the HSP70 family, encodes a highly conserved chaperone involved in protein assembly, folding, and transport as well as in antigen processing and presentation. The expression of genes encoding HSPs can be affected by high temperatures or other stresses (e.g., due to chemicals). In the current study, HSP68 was the least stable gene for all conditions (Fig. 2). In a previous study on *Coleomegilla maculata*, HSP70 was identified as the most stably expressed gene for sexes, but was the least stably expressed gene for analyses of different tissues, and dsRNA exposure.

It is becoming common for researchers to use multiple reference genes to normalize target gene expression levels in diverse studies because a single gene is usually insufficient for analyzing gene expression. An earlier investigation indicated that too many or too few reference genes may adversely affect the robustness of data normalizations. However, the simultaneous application of multiple reference genes in a given experiment may decrease the probability of biased normalizations. The optimal number of reference genes under specific experimental conditions can be determined with the geNorm algorithm, which calculates the pairwise variation $V_{n/n+1}$ based on the normalization factors N_F and $N_{F_{n+1}}$ with $n \geq 2$. If $V_{n/n+1}$ is below 0.15, n is the optimal number of reference genes. The results of this study indicate that the most appropriate number of reference genes varies under diverse experimental conditions (Fig. 3). This implies that the stability of reference genes must be evaluated before every qRT-PCR experiment.

Conclusions

To the best of our knowledge, this study is the first to evaluate and validate experimental condition-specific candidate reference genes for *M. dirhodum* gene expression analyses. We identified reference genes applicable for elucidating functional gene expression profiles. In this study, we examined 10 candidate reference genes under diverse conditions. Notably, the stability of candidate gene expression levels in *M. dirhodum* varies depending on the experimental conditions. Moreover, we identified internal reference genes suitable for normalizing and quantifying gene expression in *M. dirhodum* (Table 2). Our findings may be useful for establishing a more accurate and reliable method for normalizing *M. dirhodum* qRT-PCR data. They may also provide the basis for future investigations on RNA interference and gene transcription in *M. dirhodum* and other insect pests.

Materials and methods

Insects. Our original *M. dirhodum* colony was collected in Yinchuan (Ningxia), China (38° 48′ 54.78″ N, 106° 30′ 27.93″ E) in 2018. Other colonies were collected in Langfang (Hebei), China (39° 8′ 9.8″ N, 116° 10′ 4.05″ E) and Guiyang (Guizhou), China (26° 0′ 34.08″ N, 106° 35′ 4.35″ E) in 2018. The adult aphids were collected in wheat leaves of different plants of these geographic locations and were taken back to the lab to establish population. All the wheat aphid populations were reared on Luxuan 987 wheat seedlings in a thermostat chamber maintained at 20 ± 2 °C and 60% relative humidity, with a 16-h light:8-h dark cycle.

Treatments. Geographic population. Insects collected in Yinchuan (Ningxia), Langfang (Hebei), and Guiyang (Guizhou) in 2018 were examined to assess the effects of geography on gene expression. These three locations are separated by more than 1000 km. For each geographic population, three samples of 20 adults were selected, flash frozen in liquid nitrogen, and stored at −80 °C until total RNA extraction.

Developmental stage. Three *M. dirhodum* samples of about 30 first-instar nymphs, 30 second-instar nymphs, 20 third-instar nymphs, 20 fourth-instar nymphs, and 20 adults were collected, flash frozen in liquid nitrogen, and stored at −80 °C until total RNA extraction.

Body part. We used a dissection needle and a tweezer to separate the head, thorax, and abdomen from wingless *M. dirhodum* adults. These body parts as well as whole adult bodies were stored as described earlier.

Wing dimorphism. Three samples of 20 winged and wingless *M. dirhodum* adults were collected, flash frozen in liquid nitrogen, and stored at −80 °C until total RNA extraction.

Temperature-induced stress. Potted wheat seedlings infested with *M. dirhodum* were divided into five groups for a 24-h exposure to one of the following five temperatures: 4, 10, 15, 20, and 25 °C. For each temperature, three samples of 20 adults were collected, flash frozen in liquid nitrogen, and stored at −80 °C until total RNA extraction. None of the temperature treatments were lethal to the aphids.

Starvation-induced stress. Adult aphids were placed on moistened filter paper in a Petri dish (9 cm diameter) with no food for a 32-h incubation in a thermostatic chamber (20 ± 2 °C and 60% relative humidity, with a 16-h light:8-h dark cycle). The control (satiated) group comprised aphids able to feed on wheat seedlings in the same conditions. For the control and treatment groups, three samples of 20 adults were collected, flash frozen in liquid nitrogen, and stored at −80 °C until total RNA extraction. The mortality rate among the starved aphids was approximately 10%.
Table 3. Functions, primer sequences, and amplicon characteristics of the candidate reference genes analyzed in this study. *A* Amplicon length, *b* qRT-PCR efficiency (based on a standard curve). *c* Reproducibility of the qRT-PCR.

Insecticide-induced stress. The effects of insecticides on the stability of candidate reference genes were assessed in *M. dirhodum* subjected to one of the following three insecticide treatments: imidacloprid (9.87 mg/L), thiamethoxam (122.00 mg/L), and beta-cypermethrin (17.28 mg/L). These concentrations were selected because a bioassay indicated they are 30% to the mortality of the population (LC30) (Table S1). Aphids were treated with the insecticides via the leaf dip method. The 1% insecticide stock solutions prepared in acetone were serially diluted with water (containing 0.1% Tween-80) to produce five concentrations. Water (containing 0.1% Tween-80) was used as a control solution. Wheat leaves with *M. dirhodum* adults were fed a 30% sucrose solution containing 50 µg/mL rifampicin or an antibiotic-free sucrose solution (control) (25 aphids per feeder) for 48 h. For the control and treatment groups, three samples of 20 adults were collected, flash frozen in liquid nitrogen, and stored at −80 °C until total RNA extraction.

Antibiotic-induced stress. The *M. dirhodum* adults were fed a 30% sucrose solution containing 50 µg/mL rifampicin or an antibiotic-free sucrose solution (control) (25 aphids per feeder) for 48 h. For the control and treatment groups, three samples of 20 adults were collected, flash frozen in liquid nitrogen, and stored at −80 °C until total RNA extraction.

Total RNA extraction and cDNA synthesis. Total RNA was extracted with Trizol according to the protocol for the TRNZol Universal Reagent (Tiangen, Beijing, China). The ratio of the absorbance at 260 and 280 nm was 1.981–2.121, indicating the extracted RNA was pure. Next, 1 µg RNA was used as the template to synthesize first-strand cDNA with Oligo dT primers using the FastKing gDNA Dispelling RT SuperMix (Tiangen) following the manufacturer-recommended protocol. The synthesized cDNA was stored at −20 °C.

Primer design and quantitative real-time PCR. A qRT-PCR assay was completed with the Talent qPCR PreMix (SYBR Green; Tiangen) and the CFX Connect Real-Time system (Bio-Rad, Hercules, CA, USA). Details regarding the primers for *EF1A* and *18S* (Table 3) have been published by NCBI. Primers for the other target genes were designed based on our unpublished RNA sequencing data for *M. dirhodum*. The cDNA of each sample was prepared as a 50 ng/µL working solution. The qRT-PCR was completed in a 25-µL reaction volume comprising 12.5 µL 2 × Talent qPCR PreMix, 1 µL forward primer (100 µM), 1 µL reverse primer (100 µM), 1 µL cDNA working solution, and 9.5 µL RNase-Free ddH₂O. The PCR program was as follows: 95 °C for 5 min; 40 cycles of 95 °C for 30 s and 60 °C for 30 s. For each treatment, standard curves were produced based on a fivefold dilution series of cDNA as a template according to the linear regression model. The fixed threshold in this study

Table 3. Functions, primer sequences, and amplicon characteristics of the candidate reference genes analyzed in this study. *A* Amplicon length, *b* qRT-PCR efficiency (based on a standard curve). *c* Reproducibility of the qRT-PCR.

Gene symbol	Gene name	Gene ID	(Putative) Function	Primer sequences(5’-3’)	*R*²	*E* (%)	*t* (bp)
Actin	Actin	TR996[c1_g1	Cytoskeletal structural protein	F:CCATGTACCCTGTATATTGC	0.9984	1.106	
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase	TR3352[c0_g1	Glycolytic enzyme	F:GGATTACCGAGCTAGGC	0.9839	0.977	
NADH	NADH dehydrogenase	TR12676[c0_g1	Enzyme involved in redox reactions	F:CCAGCGACAAAGAGTTTA	0.9973	0.941	
RPL8	Ribosomal protein L18	18S	Structural constituent of ribosome	F:AGTACATAATTTCGACG	0.9824	1.014	
SDHB	Succinate dehydrogenase B	TR11034[c0_g1	Structural constituent of ribosome	F:TCAGCCGAGATTCCG	0.9998	0.888	
RPL4	Ribosomal protein L4	TR996[c0_g1	Structural constituent of ribosome	F:GGCAGCACTGAGACACC	0.9961	0.928	
HSP68	Heat shock protein68	TR7632[c0_g3	Molecular chaperone	F:AAACGGCTCGGAGAC	0.9983	0.955	
18S	18S ribosomal RNA	KT204362.1	Structural constituent of ribosome	F:CGATGATGACGACGTGTAGT	0.999	0.904	
EF1A	Elongation factor 1a	DQ005156.1	Catalysis of GTP-dependent binding of aminoacyl-tRNA to the ribosome	F:GGGAACGGCTCTATTTGCC	0.9989	0.924	

Insecticide-induced stress. The effects of insecticides on the stability of candidate reference genes were assessed in *M. dirhodum* subjected to one of the following three insecticide treatments: imidacloprid (9.87 mg/L), thiamethoxam (122.00 mg/L), and beta-cypermethrin (17.28 mg/L). These concentrations were selected because a bioassay indicated they are 30% to the mortality of the population (LC30) (Table S1). Aphids were treated with the insecticides via the leaf dip method. The 1% insecticide stock solutions prepared in acetone were serially diluted with water (containing 0.1% Tween-80) to produce five concentrations. Water (containing 0.1% Tween-80) was used as a control solution. Wheat leaves with *M. dirhodum* adults were immersed in the prepared solutions for 3–5 s and then placed on moistened filter paper in a Petri dish (9 cm diameter). The samples were incubated for 24 h at 20 ± 2 °C and 60% relative humidity, with a 16-h light:8-h dark cycle. For each concentration, the mortality rate based on three replicates of 30 aphids was calculated. Additionally, for the control and treatment groups, three samples of 20 adults were collected, flash frozen in liquid nitrogen, and stored at −80 °C until total RNA extraction.

Antibiotic-induced stress. The *M. dirhodum* adults were fed a 30% sucrose solution containing 50 µg/mL rifampicin or an antibiotic-free sucrose solution (control) (25 aphids per feeder) for 48 h. For the control and treatment groups, three samples of 20 adults were collected, flash frozen in liquid nitrogen, and stored at −80 °C until total RNA extraction.

Total RNA extraction and cDNA synthesis. Total RNA was extracted with Trizol according to the protocol for the TRNZol Universal Reagent (Tiangen, Beijing, China). The ratio of the absorbance at 260 and 280 nm was 1.981–2.121, indicating the extracted RNA was pure. Next, 1 µg RNA was used as the template to synthesize first-strand cDNA with Oligo dT primers using the FastKing gDNA Dispelling RT SuperMix (Tiangen) following the manufacturer-recommended protocol. The synthesized cDNA was stored at −20 °C.

Primer design and quantitative real-time PCR. A qRT-PCR assay was completed with the Talent qPCR PreMix (SYBR Green; Tiangen) and the CFX Connect Real-Time system (Bio-Rad, Hercules, CA, USA). Details regarding the primers for *EF1A* and *18S* (Table 3) have been published by NCBI. Primers for the other target genes were designed based on our unpublished RNA sequencing data for *M. dirhodum*. The cDNA of each sample was prepared as a 50 ng/µL working solution. The qRT-PCR was completed in a 25-µL reaction volume comprising 12.5 µL 2 × Talent qPCR PreMix, 1 µL forward primer (100 µM), 1 µL reverse primer (100 µM), 1 µL cDNA working solution, and 9.5 µL RNase-Free ddH₂O. The PCR program was as follows: 95 °C for 5 min; 40 cycles of 95 °C for 30 s and 60 °C for 30 s. For each treatment, standard curves were produced based on a fivefold dilution series of cDNA as a template according to the linear regression model. The fixed threshold in this study
was set to 500 to obtain all the threshold cycle (Ct) values of tested candidate reference genes. The qRT-PCR analyses were completed with three biological replicates and three technical replicates.

Data analysis. The stability of the 10 candidate reference housekeeping genes was evaluated with the geNorm19, NormFinder20, and BestKeeper21 algorithms and the comparative delta Ct method22. Finally, we compared and ranked the tested candidate reference genes with the web-based RefFinder analytical tool (https://www.heartcurve.com.au/for-researchers).

Received: 9 February 2020; Accepted: 5 November 2020
Published online: 15 December 2020

References

1. Nolan, T., Hands, R. E. & Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559–1582. https://doi.org/10.1038/nprot.2006.236 (2006).

2. Strube, C., Buschbaum, S., Wölken, S. & Schnieder, T. Evaluation of reference genes for quantitative realtime PCR to investigate protein disulfide isomerase transcription pattern in the bovine lungworm Dictyocaulus viviparous. Gene 425, 36–43. https://doi.org/10.1016/j.gene.2008.08.001 (2008).

3. Bustin, S. A., Benes, V., Nolan, T. & Pfaffl, M. W. Quantitative real-time RT-PCR—a perspective. J. Mol. Endocrinol. 34, 597–601. https://doi.org/10.1677/jme.1.01755 (2005).

4. Stephan, L., Tilmes, V. & Hulskamp, M. Selection and validation of reference genes for quantitative Real-Time PCR in Arabis alpina. PLoS ONE 14, e0211172. https://doi.org/10.1371/journal.pone.0211172 (2019).

5. Chao, W. S., Wang, H., Horvath, D. F. & Anderson, J. V. Selection of endogenous reference genes for qRT-PCR analysis in Camellina sativa and identification of FLOWERING LOCUS C allele-specific markers to differentiate summer- and winter-biotypes. Ind. Crops Prod. 129, 495–502. https://doi.org/10.1016/j.indcrop.2018.12.017 (2019).

6. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. https://doi.org/10.1186/gb-2002-3-7-research0034 (2002).

7. Van Hiel, M. B. et al. Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Mol. Biol. 10, 56. https://doi.org/10.1186/1471-2199-10-56 (2009).

8. Silva, A. X., Jander, G., Samaniego, H., Ramsey, J. S. & Figueroa, C. C. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: A transcriptomic survey. PLoS ONE 7, e36566. https://doi.org/10.1371/journal.pone.0036366 (2012).

9. Fu, W. et al. Exploring valid reference genes for quantitative real-time PCR analyses in Plutella xylostella (Lepidoptera: Plutellidae). Int. J. Biol. Sci. 9, 792–802. https://doi.org/10.7150/ijbs.5862 (2013).

10. Yang, C., Pan, H., Liu, Y. & Zhou, X. Temperature and development impacts on housekeeping gene expression in cowpea aphid, Aphis craccivora (Hemiptera: Aphididae). PLoS ONE 10, e0130593. https://doi.org/10.1371/journal.pone.0130593 (2015).

11. Liu, J. et al. Selection and validation of reference genes for RT-qPCR analysis of the ladybird beetle Henosepilachna vigintioctopunctata. Front. Physiol. 9, 1614. https://doi.org/10.3389/fphys.2018.01614 (2018).

12. Xu, J., Lu, M., Cui, Y. & Du, Y. Selection and evaluation of reference genes for qRT-PCR gene expression analysis in Chilo suppressalis (Lepidoptera: Pyralidae). J. Econ. Entomol. 110, 683–691. https://doi.org/10.1093/jee/tow297 (2017).

13. Tan, Y., Zhou, X. R. & Fang, B. P. Reference gene selection and evaluation for expression analysis using qRT-PCR in Galeruca daucaria (Joannis). Bull. Entomol. Res. 107, 359–368. https://doi.org/10.1017/S000746911700178X (2017).

14. Chang, Y. et al. Selection and validation of reference genes for quantitative real-time PCR analysis under different experimental conditions in the leafminer Liriomyza trifolii (Diptera: Agromyzidae). PLoS ONE 12, e0181682. https://doi.org/10.1371/journal.pone.0181682 (2017).

15. Astrawati, A. et al. Reference genes validation in Phenacoccus solenopsis under various biotic and abiotic stress conditions. Sci. Rep. 7, 13520. https://doi.org/10.1038/s41598-017-13925-9 (2017).

16. Yang, C. et al. Selection of reference genes for RT-qPCR analysis in Coccinella septempunctata to assess un-intended effects of RNase transgenic plants. Front. Plant Sci. 7, 1672. https://doi.org/10.3389/fpls.2016.01672 (2016).

17. Koramutla, M. K., Aminedi, R. & Bhattacharya, R. Comprehensive evaluation of candidate reference genes for qRT-PCR studies of gene expression in mustard aphid, Lipaphis erysimi (Kalt). Sci. Rep. 6, 25883. https://doi.org/10.1038/srep25883 (2016).

18. Yang, C. et al. Evaluation of the reference genes for expression analysis using quantitative real-time polymerase chain reaction in the green peach aphid, Myzus persicae. Insect Sci. 24, 222–234. https://doi.org/10.1111/1744-7917.12310 (2017).

19. Cristiano, G. et al. Validation of reference genes for qRT-PCR analysis in Megoura vicina (Hemiptera: Aphididae). Bull. Insectol. 69, 229–238 (2016).

20. Kabbinge, R. & Mantel, W. P. Monitoring for cereal aphids in winter wheat. Neth. J. Plant Pathol. 87, 25–29. https://doi.org/10.1007/BF01981397 (1981).
31. Ma, C., Hau, B. & Poehling, H. Effects of pattern and timing of high temperature exposure on reproduction of the rose grain aphid, *Metopolophium dirhodum*. *Entomol. Exp. Appl.* 110, 65–71. https://doi.org/10.1111/j.1744-7348.1994.tb07977.x (1994).

32. Kennedy, T. F. & Connery, J. Grain yield reductions in spring barley due to barley yellow dwarf virus and aphid feeding. *Ir. J. Agric. Food Res.* 44, 111–128 (2005).

33. Honek, A., Martinkova, Z., Saska, P. & Dixon, A. F. G. Aphids (Homoptera: Aphididae) on winter wheat: Predicting maximum occurrences of *B. tabaci* and *M. dirhodum* using SYBR green I real-time RT-PCR. *Anal. Biochem.* 303, 95–98. https://doi.org/10.1006/abio.2001.5564 (2002).

34. Bustin, S. A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. *Clin. Chem.* 55, 611–622. https://doi.org/10.1373/clinchem.2008.112797 (2009).

35. Ross, D. T. Selection and evaluation of reference genes for qRT-PCR analysis in the sweetpotato whitefly, *Bemisia tabaci.* *Entomol. Exp. Appl.* 111–128 (2005).

36. Ross, D. T. et al. Reference gene selection for qRT-PCR in virus-infected planthoppers. *Virol. J.* 9, 2015.01.001 (2015).

37. Zhu, X. et al. Identification and validation of reference genes for quantitative real-time PCR in *Drosophila suzukii* (Diptera: Drosophilidae). *PLoS ONE* 10, e0125868. https://doi.org/10.1371/journal.pone.0125868 (2015).

38. Bustin, S. A. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. *Clin. Chem.* 55, 611–622. https://doi.org/10.1373/clinchem.2008.112797 (2009).

39. Mao, J. & Zeng, F. Plant-mediated RNAi of a gap gene-enhanced tobacco tolerance against the *Myzus persicae*. *Transgenic Res.* 23, 145–152. https://doi.org/10.1007/s11248-013-9739-y (2014).

40. Paim, R. M. Selection and evaluation of reference genes for expression analysis using qRT-PCR in the beet armyworm, *Spodoptera exigua* (Lepidoptera: Noctuidae). *J. Mol. Endocrinol.* 23, 101–114. https://doi.org/10.2307/2403084 (1986).

41. Bustin, S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction (RT-PCR) analysis in plants. *Plant Biotechnol.* J. 6, 609–618. https://doi.org/10.1111/j.1467-7652.2008.00346.x (2008).

42. Li, R. et al. Selection of reference genes for RT-qPCR analysis in the sweetpotato whitefly, *Bemisia tabaci* (Hemiptera: Aleyrodidae). *PLoS ONE* 9, e87514. https://doi.org/10.1371/journal.pone.0087514 (2014).

43. Yang, C. et al. Selection of reference genes for RT-qPCR analysis in a predatory biological control agent, *Coleomegilla maculata* (Coleoptera: Coccinellidae). *Sci. Rep.* 5, 18201. https://doi.org/10.1038/srep18201 (2015).

44. Yang, C. et al. Reference gene selection for RT-qPCR analysis in the beetle armyworm *Bemisia tabaci* (Hemiptera: Aleyrodidae). *Reference gene selection for qRT-PCR analysis in the whitefly vector of *D. suzukii*. *PLoS ONE* 8, e53006. https://doi.org/10.1371/journal.pone.0053006 (2013).

45. Zhai, Y. et al. Selection and evaluation of reference genes for expression analysis using qRT-PCR in the beet armyworm *Spodoptera exigua* (Hübner)(Lepidoptera: Noctuidae). *PLoS ONE* 9, e84730. https://doi.org/10.1371/journal.pone.0084730 (2014).

46. Sharf, O. et al. Identification and validation of reference genes for quantitative real-time PCR in *Drosophila melanogaster* (Diptera: Drosophilidae). *PLoS ONE* 9, e100800. https://doi.org/10.1371/journal.pone.0100800 (2014).

47. Zhai, Y. et al. Identification and validation of reference genes for quantitative real-time polymerase chain reaction in *Cimex lectularius* (Hemiptera: Cimicidae). *J. Med. Entomol.* 48, 947–951. https://doi.org/10.1603/me10262 (2011).

48. Bustin, S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. *J. Mol. Endocrinol.* 25, 169–193. https://doi.org/10.1677/jme.0.0250169 (2000).

49. Bagnall, N. H. & Kotze, A. C. Evaluation of reference genes for quantitative real-time PCR. *Pouria, A. & Pourbabaee, A. Identification and validation of reference genes for expression analysis in the *B. tabaci* whitefly. *J. Insect Sci.* 10, 291–295 (1999).

50. Shi, C. et al. Selection and evaluation of reference genes for quantitative gene expression studies in insects: A systematic review. *Front. Physiol.* 9, 1560. https://doi.org/10.3389/fphys.2018.01560 (2018).

51. Shai, J., Zhang, Y., Pan, H. & Liu, X. Selection of reference genes for real-time polymerase chain reaction analysis in insects from *Bombyx mori* and *Bombyx mandarini* of different ages. *Anal. Biochem.* 397, 118–120. https://doi.org/10.1016/j.ab.2009.09.019 (2010).

52. De Boer, M. E. et al. Reference genes for QRT-PCR tested under various stress conditions in *Folsomia candida* and *Orchesella cincta* (Insecta, Collembola). *BMC Mol. Biol.* 10, 54. https://doi.org/10.1186/1471-2199-10-54 (2009).

53. Studies and validation of a suite of reverse transcription-quantitative PCR reference genes for analyses of density-dependent behavioural plasticity in the Australian plagues locust. *BMC Mol. Biol.* 12, 7. https://doi.org/10.1186/1471-2199-12-7 (2011).

54. Sun, M., Lu, M. X., Tang, X. T. & Du, Y. Z. Exploring valid reference genes for quantitative real-time PCR analysis in *Sesamia inferens* (Lepidoptera: Noctuidae). *PLoS ONE* 10, e0115979. https://doi.org/10.1371/journal.pone.0115979 (2015).

55. Zhai, Y. et al. Identification and validation of reference genes for quantitative real-time PCR in *Drosophila suzukii* (Diptera: Drosophilidae). *PLoS ONE* 9, e106000. https://doi.org/10.1371/journal.pone.0106000 (2014).

56. Mamidala, P. R., Rajarapa, S. P., Jones, S. C. & Mitterpalli, O. Identification and validation of reference genes for quantitative real-time polymerase chain reaction in *Cimex lectularius*. *J. Med. Entomol.* 48, 947–951. https://doi.org/10.1603/me10262 (2011).

57. Bustin, S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. *J. Mol. Endocrinol.* 25, 169–193. https://doi.org/10.1677/jme.0.0250169 (2000).

58. Bagnall, N. H. & Kotze, A. C. Evaluation of reference genes for quantitative real-time PCR of *Bombus lucorum* (Hymenoptera: Vespidae). *BMC Mol. Biol.* 10, 54. https://doi.org/10.1186/1471-2199-10-54 (2009).

59. Sun, M., Lu, M. X., Tang, X. T. & Du, Y. Z. Exploring valid reference genes for quantitative real-time PCR analysis in *Sesamia inferens* (Lepidoptera: Noctuidae). *PLoS ONE* 10, e0115979. https://doi.org/10.1371/journal.pone.0115979 (2015).

60. Zhai, Y. et al. Identification and validation of reference genes for quantitative real-time PCR in *Drosophila suzukii* (Diptera: Drosophilidae). *PLoS ONE* 9, e106000. https://doi.org/10.1371/journal.pone.0106000 (2014).

61. Mambida, P. R., Rajarapa, S. P., Jones, S. C. & Mitterpalli, O. Identification and validation of reference genes for quantitative real-time polymerase chain reaction in *Cimex lectularius*. *J. Med. Entomol.* 48, 947–951. https://doi.org/10.1603/me10262 (2011).
66. Shen, G., Jiang, H., Wang, X. & Wang, J. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). BMC Mol. Biol. 11, 76. https://doi.org/10.1186/1471-2199-11-76 (2010).

67. Tricarico, C. et al. Quantitative real-time reverse transcription polymerase chain reaction: Normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal. Biochem. 309, 293–300. https://doi.org/10.1016/s0003-2697(02)00311-1 (2002).

68. Zhao, L. & Jones, W. A. Expression of heat shock protein genes in insect stress responses. Invertebr. Surv. J. 9, 93–101. https://doi.org/10.1155/2012/484919 (2012).

69. Veazey, K. J. & Golding, M. C. Selection of stable reference genes for quantitative rt-PCR comparisons of mouse embryonic and extra-embryonic stem cells. PLoS ONE 6, e27592. https://doi.org/10.1371/journal.pone.0027592 (2011).

70. Ling, D. & Salvaterra, P. M. Robust RT-qPCR data normalization: Validation and selection of internal reference genes during post-experimental data analysis. PLoS ONE 6, e17762. https://doi.org/10.1371/journal.pone.0017762 (2011).

71. Zuo, Y. et al. Regional susceptibilities of Bphalopsipham padi (Hemiptera: Aphididae) to ten insecticides. Fla. Entomol. 99, 269–275. https://doi.org/10.1653/024.099.0217 (2016).

72. Wilkinson, T. L. & Ishikawa, H. On the functional significance of symbiotic microorganisms in the Homoptera: A comparative study of Acrystosiphon pisum and Nilaparvata lugens. Physiol. Entomol. 26, 86–93 (2001).

73. Andersen, C. L., Jensen, J. L. & Ørntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Car. Res. 64, 5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496 (2004).

74. Pfaffl, M. W., Tichopad, A., Prgemet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515 (2004).

Acknowledgements
This study was supported by the National Key Research and Development Program of China (2018YFD0200501, 2017YFD0201703, 2016YFD0300705) and China Agriculture Research System (Award Number: CARS-3).

Author contributions
X.L., P.G., J.J. and X.Z. conceived and designed the research. X.L., P.G., M.L. and B.W. conducted the experiments. X.L., H.G., C.W. and X.Z. analyzed the data. X.L. and X.Z. wrote the manuscript. Y.Z., X.L. and L.W. revised the manuscript. All authors have read and approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-020-78974-z.
Correspondence and requests for materials should be addressed to J.J. or X.Z.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020