A Multistage Gene Normalization System Integrating Multiple Effective Methods

Lishuang Li1*, Shanshan Liu1, Lihua Li2, Wenting Fan1, Degen Huang1, Huiwei Zhou1

1 School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, China, 2 School of Mathematics and Information Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China

Abstract

Gene/protein recognition and normalization is an important preliminary step for many biological text mining tasks. In this paper, we present a multistage gene normalization system which consists of four major subtasks: pre-processing, dictionary matching, ambiguity resolution and filtering. For the first subtask, we apply the gene mention tagger developed in our earlier work, which achieves an F-score of 88.42% on the BioCreative II GM testing set. In the stage of dictionary matching, the exact matching and approximate matching between gene names and the EntrezGene lexicon have been combined. For the ambiguity resolution subtask, we propose a semantic similarity disambiguation method based on Munkres’ Assignment Algorithm. At the last step, a filter based on Wikipedia has been built to remove the false positives. Experimental results show that the presented system can achieve an F-score of 90.1%, outperforming most of the state-of-the-art systems.

Introduction

As a critical step of text mining in biomedical literature, gene name normalization [1] is the determination of the unique identifiers of genes and proteins mentioned in biomedical literature, so as to create the linkage between these entities and the biological databases. For example, “CARD10” may be a human gene or a mouse gene with a different gene ID in different context. “CARD10” with ID “29775” is a human gene and “CARD10” with ID “105844” belongs to a mouse gene. So they represent different types of genes and the ambiguity should be eliminated first, known as gene normalization. Once the concepts of interest are identified, more accurate information retrieval and extraction could be achieved, and more complex findings, such as relationships among entities, could be more accurately extracted. Over the past years, many solutions have been proposed for the gene name normalization task. However, despite many efforts it remains a challenging task. The main challenges for gene name normalization are as follows:

1. Gene products are often described in a phrase, rather than being referred to by a specific name.
2. Gene names are also common English words.
3. Gene and protein names often have several spelling variations or abbreviations.
4. There is the problem of inter-species gene mention ambiguity. One name or abbreviation may refer to genes in multiple species, each with its own unique ID, or even to multiple genes in the same species.

To tackle these problems, many different systems have been proposed. In general, the gene name normalization task can be decomposed into the following four components:

1. Pre-processing: detecting the named entities which denote gene names. The entities then serve as candidates with which a gene identifier may be associated. The solution for named entities detection falls roughly into two different strategies. The first strategy uses the dictionary provided by the BioCreative II organizers or an extended version of this lexicon. Hakenberg et al.’s system [2] implemented the named entity recognition process by matching the term against the synonym list. Unlike the dictionary-based approaches, the named entity tags based on machine learning method are also employed in many systems [3-6]. For example, Neves et al.’s system [3] carried out a CBR-Tagger to handle the process of gene named entity recognition.
2. Dictionary matching: assigning candidate identifiers to each recognized gene mention via matching them against a lexicon. To gain more mapping pairs, many systems expanded the gene dictionaries by using additional resources or exploiting pattern-based expansion strategies. Hakenberg et al.’s system [2] expanded the provided lexical resource with additional synonyms found in EntrezGene’s ‘other designations field’. And it generated lots of variants by exploiting structural, lexical, orthographical or morphological properties of gene names, such as the transformations between Latin and Arabic. Xia et al.’s system [4] collected each gene identifier’s ‘description’, ‘full name from nomenclature authority’ and ‘other designations’ of EntrezGene as additional synonyms.
And they made attempt to generate the token variants, such as adding lower case of synonym, replacement of punctuation with spaces. In the matching process, the exact matching and approximate matching strategies were incorporated in many systems. The core of approximate matching is to measure the similarity between the gene names in test and the terms in lexicon. Technologies for similarity computation include minimum edit distance [7], Dice coefficient [8], Jaro and JaroWinkler distance [9], etc. The Lucene package [10] is also employed as the search engine to generate the candidate list. Wermter et al.'s system [5] used the indexing and retrieval facilities of the APACHE Lucene search engine for efficient candidate retrieval. Xia et al.'s system [4] matched every gene mention occurrence with the lexical synonym through the inverted index exactly and for those unmatched gene mentions they applied a JaroWinkler similarity computation method.

(3) Ambiguity resolution: determining the most appropriate identifier for the gene name when it is assigned two or more gene identifiers. The solution method falls into two main strategies. One strategy is that the disambiguation is considered as a classification task, a classifier is trained to distinguish valid gene identifiers from spurious ones. The other uses additional resources and the vector-based context models to select the most appropriate identifier among ambiguous mapping pairs. In the system of Liu et al. [6], each pair (NE, ID) was represented as a feature vector and a machine learning algorithm was used to determine the most valid pair. Hakenberg et al.'s system [11] extracted the extensive background knowledge to construct the semantic profiles for gene mention. Then the similarity metric between the context and background knowledge vector was used to distinguish valid mapping pairs from false pairs.

(4) Filtering: filtering the false positives produced in the previous steps, e.g. a cell or disease name or protein family names. Many systems leaned on heuristic rules to remove potential false positives such as non-gene names, common English words or gene/protein family names. Wermter et al.'s system [5] implemented a Blacklist filter which was compiled out of several public resources (such as Wikipedia, which contains several sites listing gene and protein families) to discard the unwarranted gene mentions. Hu et al.'s system [12] developed a filtering method based on the combination of the confidence scores obtained in named entity recognition, protein family names extracted from Wikipedia and the semantic similarity used in the step of disambiguation.

For BioCreative II GN task, we pay attention to two state-of-the-art systems: one is Wermter et al.'s [5], the other is Hakenberg et al.'s [11]. They both adopted the above four components and obtained good performance achieving an F-score of 86.4%, however, there is still space for further improvement.

In Wermter et al.’s system, an ML-based tagger, JNET and the dictionary-based method were combined. The tagger achieved an F-score of 80.1% performing 10-fold cross-validation on their merged corpus. Dictionary-based method could not cover all variations of gene names, so it performed ineffectively for gene names not in the training set. For the disambiguation, the context they adopted was the whole abstract (stemmed and stop-words-removed), which might affect the computation of semantic similarity.

Hakenberg et al.’s system used a single finite state automaton which encoded manually regular expressions for all gene names together to recognize gene names. A gene name might not fit any regular expression in the automaton. Therefore the gene names never appearing in the training set might not be detected in the automaton. For the disambiguation, their method was based on the similarity between the gene’s background knowledge (extracted from public databases) and the current abstract, and then picked the gene identifier corresponding to the highest similarity. For example, one method to calculate the similarity was based on GO terms. They searched for GO terms in the current abstract and compared them with the set of GO terms assigned to each gene candidate. The similarity was obtained from the distances of the terms in the ontology tree. In the filter, Wikipedia was not used as an external resource to filter Bio-NEs.

In this paper, we also take the four components as four subtasks and integrate them to a system for the gene name normalization task, and effective methods are proposed in each subtask. Specifically, for the gene name recognition subtask, as the fundamental step of gene normalization, we apply the gene mention tagger developed in our earlier work [13], which achieves an F-score of 88.42% on the BioCreative II GM testing set based on the two-layer stacking hybrid method. For the ambiguity resolution subtask, as the core component of gene normalization, we compute the semantic similarity based on a gene mention’s context and the extended semantic information extracted from the file “gene_info” to predict the unique identifier. The gene mention’s context is constructed using the entities in the abstract rather than the whole abstract. Here, Munkers’ Assignment Algorithm based on JaroWinkler distance is adopted and boosts our system’s performance. Furthermore, in filtering, Wikipedia, as an encyclopedia online resource, is used to remove the false positives. And combined with the approximate string matching, the filter improves F-score significantly.

The remaining part of this paper is organized as follows: the method is described in Section 2. The experiments and results are shown in Section 3. Discussion and error analysis are illustrated in Section 4 and finally, conclusions are drawn in Section 5.

Materials and Methods

The overall framework of our gene normalization system is shown Figure 1, which consists of four components. Once gene mentions in the texts have been detected, they are mapped to gene identifiers in a synonym dictionary. Subsequently, the disambiguation is implemented via a semantic similarity method, which ranks the similarity between the context and the extended semantic information of the gene identifiers. In the last step, the noisy items such as gene and protein family names are filtered based on Wikipedia.

Pre-processing

Gene mention list generation. For the gene name recognition subtask, we apply a ML-tagger developed in our earlier work [13] and achieved an F-score of 88.42% on the BioCreative II GM [14] testing set. This ML-tagger was based on the two-layer stacking hybrid method which could exploit the diversity or consistency among different classifiers and the relearning process to make a final decision.

After gene name recognition, some false positives tend to be introduced. A gene family is a set of several similar genes that generally have similar biochemical functions [15]. So a gene family is not a specific gene and is not considered in the Gene Normalization task. To reduce the cost of candidate gene list generation, some false positives are removed including:

(1) False positives itself
Figure 1. Architecture of the gene name normalization system.

doi:10.1371/journal.pone.0081956.g001
The entities ended with words like “genes”, “proteins”, “enzymes”, “receptors”, “domain”, “subunit”, “cDNA”, “mRNA”, “family”, “subfamily”, etc. will be removed. Those are gene family names rather than specific genes.

(2) False positives and their contexts
The context of each false positive consists of the word before an entity or the word after an entity. For example, an initial candidate name followed by “cells” most likely refers to a cell line rather than a gene. The word “Yeast” before a candidate hints to a yeast gene instead of a human gene name. If a gene mention matches any of the above descriptions, it is removed from the list because the Gene Normalization task focuses on human genes.

Dictionary construction. Our dictionary is based on the original lexicon provided by BioCreative II dataset, which is composed of 32975 entries, and each entry is made up of multiple synonyms indexed by the same gene name. Comparing the gene mentions in abstracts with the lexicon, we find that the gene mentions have slight spelling variants and then we remove the hyphens in the lexicon. Some stop words are also removed, since they are considered to be non-informative, such as “of”, “the”, “and”.

Dictionary matching
Here we apply a lexicon look-up method to integrate the exact string matching and approximate string matching.

Exact string matching. The following heuristic rules are employed to improve the coverage of the dictionary during the exact matching:

1. If a space appears in the gene mention, both the original form and the variants are considered. For example, for the term “ABC 1”, the spelling variant “ABC1”, is also in the mapping list.
2. Roman numbers are matched with Arabic numbers. For example, for the term “ABC 1”, the spelling variant “ABC 1”, is also in the mapping list.
3. The matching is case insensitive.
4. When abbreviations are introduced and a long form is followed by its abbreviation in brackets, we assign the same ID to these two kinds of candidates and vice versa.

Approximate string matching. Since the exact matching is not able to cover all of the gene mention variants, there are some genes that cannot match any entry in the dictionary. For example, the entity “serum- and glucocorticoid-induced protein kinase” is recognized in the pre-processing phase, however, it cannot get any match only by the exact matching because its form in the dictionary is “serum/glucocorticoid regulated kinase”. In order to increase the possibility of matching, the approximate string matching is combined with the exact string matching. We use an approximate matching method based on JaroWinkler distance to look up the lexicon as Figure 2.

Ambiguation resolution
In the dictionary matching phase, if more than one gene identifiers can be matched by the same gene mention, these candidates need to be disambiguated. It is necessary to select the unique identifier for the gene mention that is most likely referred to in the text. In most cases, the context contains a lot of useful information to determine the unique identifier, where the context includes all Bio-NEs detected in the abstract. A representative example is given in Figure 3.
Similarity computing measure based on the JaroWinkler distance

JaroWinkler distance is a measure of similarity between two strings gene and synonym which is a variant of the Jaro distance metric. The Jaro measure between gene and synonym is defined as:

$$\text{Jaro}(\text{gene}, \text{synonym}) = \frac{1}{3} \left(\frac{|\text{gene}|}{|\text{gene}|} + \frac{|\text{synonym}|}{|\text{synonym}|} + \frac{|\text{gene}^\prime|}{|\text{gene}|} - \frac{T_{\text{gene}, \text{synonym}}}{|\text{gene}|} \right)$$

Where gene is a gene mention in an abstract detected in the pre-processing, synonym is a term in the lexicon. For a character a_i in gene, a_j is shared with synonym if there is b_i in synonym such that b_j=a_i with i-H\leq j\leq i+H, where H= min(|gene|,|synonym|)/2. gene^\prime is the sequence of the characters in gene which are shared with synonym (in the same order as they appear in gene). synonym^\prime is defined analogously. |gene| and |synonym| represent the length of gene and synonym respectively. |gene|^\prime and |synonym|^\prime are defined analogously. T_{gene, synonym}^\prime is half the number of character positions at which the character from gene^\prime and the one from synonym^\prime are different. Let \(P_0\) be the number of common prefix characters between gene and synonym. The JaroWinkler measure is:

$$\text{JaroWinkler}(\text{gene}, \text{synonym}) = \text{Jaro}(\text{gene}, \text{synonym}) + \frac{P}{10} (1 - \text{Jaro}(\text{gene}, \text{synonym}))$$

Where \(P=\max(P_0,4)\).

Figure 2. Similarity computing measure based on JaroWinkler distance.
doi:10.1371/journal.pone.0081956.g002

At least 110 genes are now known to be located in the 4000 kb of DNA encompassing the human major histocompatibility complex (MHC) in the chromosome band 6p21.3. Recent genomic sequence analysis of a 90 kb segment of DNA containing the tumour necrosis factor genes in the class III region of the MHC has predicted the presence of three potential exons mapping between the BAT1 and TNFB genes (12).

Gene ID	Symbol	Map Location	Chromosome	Description
7919	BAT1	6	6p21.3	HLA-B associated transcript 1
10212	DDX39	19	19p13.12	DEAD (Asp-Glu-Ala-Asp) box
11136	SLC7A9	19	19q13.1	Solute carrier family 7 (cationic amino acid transporter, y+ system), member 9
gene with PubMed ID and some gene names can be disambiguated with it.

Filtering

Some gene family names (False Positives in our work) may be introduced in the phases of the gene name recognition and approximate string matching. Wikipedia provides a list of protein family names, we can exploit it to remove some gene family names. If a Bio-NE appears in the list, it will be removed. Different from the entities removed in Section Gene mention list generation (usually followed by the obvious words “family”, “subfamily”), the entities filtered in this section are often followed by a number, Roman numeral or Greek letter. For instance, “Zinc finger protein” is also detected as a substring in “Zinc finger protein 51”. However, the “Zinc finger protein” refers to the gene family rather than a specific gene and should be removed. In this work, a list generated from the protein family names on Wikipedia website [17] is used to filter the false positives. Every spurious gene mention in the candidate list is removed through Wikipedia filter.

Results and Discussion

Experimental settings

The experiments are all based on the BioCreative II dataset. The organizers provided a collection of 281 expert-annotated abstracts containing 640 gene identifiers manually mapped to human EntrezGene identifiers as training data. The test corpus consisted of 261 abstracts containing 785 identifiers manually annotated. Our system is evaluated based on the performance measures Precision and Recall supplied in the official evaluation script, and then F-score can be obtained according to Precision and Recall. The formulas are as below:

\[\text{Precision} = \frac{TP}{TP + FP}, \quad \text{Recall} = \frac{TP}{TP + FN} \]
\[F\text{-score} = \frac{2 \times P \times R}{P + R} \]

where TP is true positives, FP is false positives and FN is false negatives. In this paper, the result is recognized as TP if the identifiers match the answer key, the result is recognized as FP if the identifiers do not match the answer key, and the result is

Semantic similarity calculation based on Munkres’ Assignment Algorithm

Input:
S: a String Array represents the extended semantic information
E: a String Array represents the context

Output:
the semantic similarity between the extended semantic information and the context

// A: a maximum matching;
//LS: the length of S; LE: the length of E; LA: the length of A;

Steps:
1: Initializing a LSxLS weight matrix M;
2: for i from 0 to LA-1
3: for j from 0 to LS-1
4: \[M_{i,j} = \text{JaroWinkler}(E[i], S[j]); \]
5: end for
6: end for
7: Finding the maximum matching A in M by using the Munkres’ Assignment Algorithm;
8: for k from 0 to LA-1
9: \[\text{sum} += M[A[k][0]][A[k][1]]; \]
10: return sum;

Figure 4. An example of the maximum matching in the bipartite graph. The maximal matching between the extended semantic information and the context is flagged with solid lines. Edges with weight 0 are bypassed and all weights are rounding in this figure.

doi:10.1371/journal.pone.0081956.g004

Figure 5. Semantic similarity calculation based on Munkres’ Assignment Algorithm.

doi:10.1371/journal.pone.0081956.g005
recognized as FN if the gold standard identifiers do not match the
answer key.

Results

The experiments are carried out to evaluate our system’s
performance as follows:

(1) Comparison of disambiguation methods based on different
algorithms

Table 1 shows the comparison of the disambiguation methods
based on different algorithms. In Table 1, both of the runs employ
the filtering method based on Wikipedia. Firstly, we use the
similarity scores based on JaroWinkler distance for disambiguation
and achieve an F-score of 89.4%. Then Munkres’ Assignment
Algorithm based on JaroWinkler distance is introduced for
ambiguity resolution and the F-score is 90.1%. The experiment
result verifies that Munkres’ Assignment Algorithm performs
better. The difference between the two methods is whether there is
a matching process at first. In Munkres’ Assignment Algorithm, we
first get the maximum matching where each edge is incident to a
vertex in set U (a field in the extended semantic information) and
a vertex in set V (a Bio-NE in the context), and then sum the
matching edges’ weights obtained from JaroWinkler distance.
The sum is regarded as the final semantic similarity. While only using
JaroWinkler distance for ambiguity resolution, the semantic
similarity is defined as the sum of all edges’ weights including those
not in the matching. Therefore the semantic similarity after
matching using Munkres’ Assignment Algorithm is more reason-
able than that directly applying JaroWinkler distance.

(2) Comparison using the combination of different steps

Table 2 shows the results using the combination of different
steps. We can see that the Recall increases from 88.4% to 92.6%
while the Precision decreases by 12.7% when combining the
approximate matching. Therefore the approximate matching can
recall more entities for the next step (Ambiguation resolution)
while some gene family names are introduced resulting in reducing
the Precision. However, the gene family names can be filtered out
by the Filter step. From Table 2 we can see that adding Filter the
Precision (88.3%) of the combination (Prepro.+Exact+Appro.+Filter) is
12.6% higher than that of (Prepro.+Exact+Appro.), and almost the
same with that (88.2%) only using the exact matching, while the
Recall decreases by only 0.5%, and gets the F-Score of 90.1%. In
short, combined with the approximate matching, the system can
recall more True Positives and remove some False Positives by the
Filter and finally obtain the best performance.

(3) Comparison with other systems

We also compare our results with some systems for BioCreative
II GN task in Table 3. It shows that our method is comparable to
the current state-of-the-art systems in this task. We get an F-score
of 90.1%(Precision:88.1% Recall:92.3%) on the BioCreative II
gene normalization test data. Compared with Wermter et al.’s and
Hakenberg et al.’s systems, the main different aspects are the
methods of the gene mention recognition and disambiguation:

For the gene mention list generation, Wermter et al.’s system
combined a tagger, JNET, based on CRF and a dictionary to
detect gene names. The tagger achieved 80.1% F-score perform-
ing a 10-fold cross-validation on their organized training set. And
the method based on dictionary was limited by the size of
dictionary and could not perform well on the gene names not in
the dictionary. In Hakenberg et al.’s system, regular expressions
for gene names were encoded together in a single finite state
automaton. A gene name might not fit any regular expression in
the automaton and could not be detected. In our system, a two-
layer stacking hybrid method [13] is exploited and achieved
88.42% F-score on the BioCreative II GM testing data, which
outperforms most of the state-of-the-art systems.

In the phase of ambiguity resolution, the gene context is used
to decide the correct identifier. In Wermter et al.’s system, they
constructed the background knowledge for all the identifiers in the
dictionary and Semantic Profile Index for background knowledge
was created using Lucene. The semantic similarity was computed
by querying the whole abstract (stemmed and stop word-removed)
text in which a gene mention to be disambiguated occurred
against the Semantic Profile Index. Though the abstract was
stemmed, with stop words removed, it might include some noisy
information resulting in inadequate semantic similarity scores. In
our work, the context includes all the Bio-NEs occurring in the
text in which a gene mention to be disambiguated occurred
against the Semantic Profile Index. Moreover, the method based on
JaroWinkler distance contributes to our system’s performance.

Furthermore, the combination of the approximate string
matching and the filter based on Wikipedia improves F-score
significantly.

Table 1. Results based on different disambiguation
algorithms.

Method	F-score	Precision	Recall	TP	FP	FN
JaroWinkler distance	89.4%	87.3%	91.5%	717	104	67
Munkres’ Assignment	90.1%	88.1%	92.1%	723	98	62

| doi:10.1371/journal.pone.0081956.t001

Table 2. Results using the combination of different steps.

Method	F-score	Precision	Recall	TP	FP	FN
Prepro.+Exact	88.3%	88.2%	88.4%	694	93	91
Prepro.+Exact+Appro.	83.2%	75.5%	92.6%	726	236	58
Prepro.+Exact+Appro.+Filter	90.1%	88.1%	92.1%	723	98	62

Prepro. is short for pre-processing; Exact stands for Exact string match; Appro. means Approximate string matching and Filter is based on Wikipedia.

doi:10.1371/journal.pone.0081956.t002

Table 3. Comparison with other systems.

Method of authors	Precision	Recall	F-score	TP	FP	FN
Our system	88.1%	92.3%	90.1%	723	98	62
Wermter et al., 2009[5]	87.8%	85.0%	86.4%	668	76	118
Hakenberg et al., 2008[11]	90.7%	82.4%	86.4%	647	66	138
Hu et al., 2012[12]	83.5%	82.5%	83.0%	648	128	137

| doi:10.1371/journal.pone.0081956.t003

A Gene Normalization System
Discussion

From the above comparison of the experiment results, we discuss our system’s effectiveness as follows:

(1) Effectiveness of the Bio-NEs recognition

We incorporate our powerful NER system [8] into the gene normalization system. The tagger is based on the two-layer stacking method. Six different classifiers are respectively trained at layer-0. Then at layer-1, the results of single classifiers are regarded as feature vectors and the stacking result can be obtained from the CRF. The tagger achieves 88.42% F-score on the BioCreative II GM testing data. The two-layer stacking method performs better as: (I) It can exploit the diversity or consistency among different classifiers to make a final decision on the basis of single models. (II) It has the capability of relearning from the original learning at layer-0. Only the better the performance of recognition is, can the gene normalization performs better.

(2) Effectiveness of the ambiguation resolution method

We employ the useful context for disambiguation. The context in our system ignores lots of noisy information and is helpful to the similarity measure on account of the satisfactory Bio-NEs recognition performance. Besides, Munkers’ Assignment Algorithm improves the measure of semantic similarity and boosts our system’s performance.

(3) Effectiveness of the combination of the approximate string matching and the Filter based on Wikipedia

It can be seen from the experiment results (Prepro.+Exact+Appro.) in Table 2 that more gene names can get candidate identifiers by the approximate string matching, and therefore the recall increases significantly. Though this step may introduce some wrong pairs (NE, identifier) resulting in the precision’s decrease, after the filter based on Wikipedia, the system removes some False Positives and finally obtain better performance (the experiment result (Prepro.+Exact+Appro.+Filter)). The approximate string match improves the recall and the Filter based in Wikipedia contributes to the precision respectively. Finally, their combination enhances the system’s performance.

Error analysis

Analyzing the FN and FP errors in Table 1, we categorize the causes of errors as shown in Figure 6 and Figure 7.

The causes for false negatives are as follows (shown in Figure 6):

(1) Mentions not identified. Gene mentions are not detected in the pre-processing (51 cases and 50% proportion), such as the enumeration “SMADs 1, 5 and 8” and “FA proteins A, C, G and F”. Also in some cases, the gene name is too long to be recognized, such as the mention “52-kD Ro/SSA lupus and Sjogren’s syndrome auto-antigen”.

(2) Mentions not matched. Gene mentions cannot get matched in the dictionary matching process because of the scale of lexicon (2 cases and 3% proportion). For example, “VP16” cannot get matched only using the lexicon provided by the BioCreative II dataset.

(3) Incorrect disambiguation. Despite the useful context and extended semantic information are employed for disambiguation, the high similarity among the different identifiers still causes some errors (23 cases and 37% proportion), such as the mention “sp1”.

(4) Erroneously filtered (6 cases and 10% proportion).

The causes for false positives are as follows (shown in Figure 7):

(1) Mentions not matched. Gene mentions cannot get matched in the dictionary matching process because of the scale of lexicon (2 cases and 3% proportion). For example, “VP16” cannot get matched only using the lexicon provided by the BioCreative II dataset.

(2) Incorrect disambiguation. Despite the useful context and extended semantic information are employed for disambiguation, the high similarity among the different identifiers still causes some errors (23 cases and 37% proportion), such as the mention “sp1”.

(3) Spurious gene names (60 cases and 61% proportion).
(1) Spurious genes by our system (60 cases and 61% proportion), such as “TFIIIB” recognized as TP in one abstract while as FP in another.

(2) Matching errors (26 cases and 27% proportion). For example, the gene mention “mitogen-activated protein kinase-interacting kinases 1” cannot get matched by using the exact matching and the false mapping with “mitogen activated protein kinase kinase kinase 1” is established by using the approximate matching.

(3) Incorrect disambiguation errors (12 cases and 12% proportion).

Conclusions

In this paper, we realize a multistage gene normalization system integrating different effective methods in each stage to complete the gene mention normalization task and make some comparisons among the results. Experimental results show that without using any external dictionary, our multistage system achieves an F-score of 90.1% on the BioCreative II GN test corpus, which is higher than that of most the state-of-the-art systems.

Author Contributions

Conceived and designed the experiments: LishuangL, WF. Performed the experiments: SL. Analyzed the data: SL, LihuaL. Contributed reagents/materials/analysis tools: LishuangL, LihuaL. Wrote the paper: SL, DH, HZ. Manuscript revision: LishuangL, SL.

References

1. Morgan AA, Lu ZY, Wang XL, Cohen AM, Fluck J, et al. (2008) Overview of BioCreative gene normalization. Genome Biology 9: S3.
2. Hakenberg J, Roeyt L, Plake C, Strobel H, Schroeder M (2007) Me and my friends: gene mention normalization with background knowledge. In: Proceedings of the Second BioCreative Challenge Evaluation Workshop. Madrid, Spain, pp. 141–144.
3. Neves ML, Carazo JM, Alberto PM (2010) Moara: a java library for extracting and normalizing gene and protein mentions. BMC Bioinformatics 11: 157.
4. Xia N, Lin HF, Yang ZH, Li YP (2011) Combining multiple disambiguation methods for gene mention normalization. Expert Systems with Applications 38: 7994–7999.
5. Wernter J, Tomaneck K, Hahn U (2009) High-performance gene name normalization with gene. Bioinformatics 25: 815–821.
6. Liu H, Torii M, Hu ZZ, Wu C (2007) Gene mention and gene normalization based on machine learning and online resources. In: Madrid, Spain, Proceedings of the Second BioCreative Challenge Evaluation Workshop. pp. 135–140.
7. Lau W, Johnson C (2007) Rule-based human gene normalization in biomedical text with confidence estimation. In: Madrid, Spain, Proceedings of the Second BioCreative Challenge Evaluation Workshop. pp. 165–168.
8. Gonzalez G, Tari I, Gitter A, Leaman R, Nikkila S (2007) Integrating knowledge from biomedical literature. In: Madrid, Spain, Proceedings of the Second BioCreative Challenge Evaluation Workshop. pp. 227–236.
9. Grover C, Haddow B, Klein E, Matthews M, Neilsen L, et al. (2007) Adapting a relation extraction pipeline for the BioCreAtIvE II task. In: Madrid, Spain, Proceedings of the BioCreAtIvE II Workshop. pp. 273–286.
10. Huang M, Liu J, Zhu X (2011) Genetukit: a software for document-level gene normalization. Bioinformatics 27: 1032–1033.
11. Hakenberg J, Plake C, Roeyt L, Strobel H, Leser U, et al. (2008) Gene mention normalization and interaction extraction with context models and sentence motifs. Genome Biology 9: S14.
12. Hu Y, Li Y, Lin H, Yang Z, Cheng L (2012) Integrating various resources for gene name normalization. PLOS ONE 7: e35558.
13. Li LS, Fan WT, Huang DG, Dang YZ, Sun J (2012) Boosting performance of gene mention tagging system by hybrid methods. Journal of Biomedical Informatics 45: 136–164.
14. Smith L, Tanabe IK, Ando RJ, Kuo CJ, Chung IF, et al. (2008) Overview of BioCreative gene mention recognition. Genome Biology 9: S2.
15. The definition of gene_family in Wikipedia. Available. http://en.wikipedia.org/wiki/Gene_family. Accessed 2013 August 1.
16. Munkres’ assignment algorithm. Available. http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html. Accessed 2010 Jun 3.
17. The Protein family term of Wikipedia. Available. http://en.wikipedia.org/wiki/Category:Protein_families. Accessed 2013 March 30.