Morphology-based diagnostics of “protodogs.”
A commentary to Galeta et al., 2021, Anatomical Record, 304, 42–62, doi: 10.1002/ar.24500

Luc A. A. Janssens1,2 | Myriam Boudadi-Maligne3 | Dennis F. Lawler4,5,6 | F. Robin O’Keefe7 | Stefan van Dongen8

1Department of Archaeology, Ghent University, UFO, Ghent, Belgium
2Department of Archaeology, University of Leiden, Leiden, The Netherlands
3CNRS UMR 5199, CNRS, Université de Bordeaux, Pessac Cedex, France
4Center for American Archaeology, Kampsville, Illinois
5Illinois State Museum, Springfield, Illinois
6Pacific Marine Mammal Center, Laguna Beach, California
7Marshall University, Huntington, West Virginia
8Evolutionary Ecology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium

Abstract
In a recent article in this journal, Galeta et al., (2020) discussed eight Pleistocene “protodogs” and seven Pleistocene wolves. Those “protodogs” had been diagnosed in earlier publications, based on skull morphology. We re-examined the Galeta et al. paper to offer comments on their observed outcomes, and the conclusion of presumed domestication. Of seven metrics that the authors used, five differed statistically between their two groups. However, from more elaborate studies, some of those same metrics had been rejected previously as not valid species-distinguishing traits. In this respect, we do accept cranium size and wider palate as species-distinguishing metrics. The physical size of their specimens was much larger than other archaeological specimens that have been accepted as dogs. Additionally, their sample size was small, compared to the number of available specimens, as shown from previous publications by the same group. Thus, we considered statistical differences that were found between groups in their study, and assessed whether the outcomes could have resulted from natural morphological variation. We examined a group of 73 dire wolves ((Aenocyon [Canis] dirus; Perri et al., 2021), using the same methods as used by Galeta et al., (2020). We could segregate two distinct morphological groups in our study, one having outcomes that were identical to the “protodogs” in Galeta et al. (2020). For the specimens of extinct dire wolves to segregate in the same way as the subjects from Galeta et al. indicates that natural variation probably was the driver of their observed outcomes, domestication being an unlikely assumption.

KEYWORDS
cranium, dog, domestication, morphology, pleistocene
1 | INTRODUCTION

In a recent Anatomical Record article “Morphological evidence for early dog domestication in the European Pleistocene: New evidence from a randomization approach to group differences” by Galeta, Láznic’kova-Galetova, Sablin, and Germonpré (2021), the authors report on eight “protodogs” and seven Pleistocene wolves from previous publications (Germonpré et al., 2009, 2017; Germonpré, Laznickova-Galetova, & Sablin, 2012; Sablin & Khlopachev, 2002). They applied complicated statistics and the data were analyzed—after size-adjustment and log transformation—using cluster analysis that was followed by linear discriminant analysis. Their results, they claim, add new evidence to show that these two groups differ significantly and conclude that “protodogs” show (among other metric differences) shorter crania and wider snouts, which would be typical for domestication.

Morphometry often has been used to distinguish the earliest dogs in the archaeological record (Ameen et al., 2017; Janssens et al., 2016, 2019, 2019a; Napierala & Uerpmann, 2012; Pitulko & Kasparov, 2017; Sablin & Khlopachev, 2002; Studer, 1901; Wolfram, 1894). Several differences between dogs and wolves have been suggested as species-diagnostic, many of these now have been rejected for that purpose (for an overview, see Janssens, Perri, et al., 2019). Diagnosing the earliest archaeological dogs is mainly based on size reduction (Aaris-Sorensen, 1977; Benecke, 1987, 1994; Dimitrijević & Vuković, 2012; Hemmer, 1990; Morey, 1992, 1994, 2010; Rütimeyer, 1861; Studer, 1901; Wolfram, 1894), which is isometrically related to cranial length (Losey, McLachlin, Nomokonova, Latham, & Harrington, 2017; Tchernov & Horwitz, 1991; Wayne, 1986). Other acceptable discerning metrics are: wider snout ratio, higher skull ratio, shorter carnassials, larger orbital angle, smaller brain index and inner ear differences; but also archaeological context and genetics are important factors (Bergstrom, Frantz, Schmidt, Ersmark, et al., 2020; Janssens et al., 2016; Janssens, Perri, et al., 2019; Janssens, Gunz, et al., 2019; Larson et al., 2012; Pitulko and Kasparov, 2018; Thalmann et al., 2013; Zeder, 2012). About 20 Pleistocene specimens are generally accepted as the earliest archaeological dogs which are considerably smaller than contemporary wolves (about 1/3). The oldest finds up to now, are 14.5 kya old (Perri et al., 2021; Table 1 and references therein).

Since 2009 much older specimens (up to 34 kya) were suggested to be insipient or “protodogs” (Germonpré et al., 2009, 2012, 2017; Table 2). Assigning these as wolf specimens that underwent anthropogenic morphological change, was mainly based on shorter cranium, shorter snout, shorter mandible metrics and wider snout. Also change in diet (isotopes) and dental wear was reported to be different (Bocherens et al., 2014; Prassack, Dubois, Laznickova-Galetova, Germonpré, & Ungar, 2020).

“Protodogs” as a signal of earlier domestication, have been contested by many, mainly based on lack of genetical closeness to dogs (Thalmann et al., 2013), lack of important size reduction, doubts about real differences in diet and dental wear, doubts about the validity of discerning metrics and on methodology (Ameen et al., 2017; Boudadi-Maligne & Escarguel, 2014; Crockford & Kuzmin, 2012; Drake, Coquerelle, & Colombeau, 2015; Janssens, Boudadi-Maligne, Mech, & Lawler, 2021; Janssens, Perri, et al., 2019; Jung & Pörtl, 2018; Ledoux & Boudadi-Maligne, 2015; Mech & Boitani, 2003; Morey, 2010; Morey & Jeger, 2015; Napierala & Uerpmann, 2012; Perri, 2016; Pitulko & Kasparov, 2017; Wilczynski, Goslar, Wojtal, et al., 2020).

In this study, we also question whether the morphological variation between the two groups depicted by Galeta et al. (2021) is related to domestication process. Next, we question the value of the metrics used in Galeta et al. (2021) find evidence for early signs of domestication. Last, we focus on the small group size examined, already reported as problematic, by the authors themselves.

To investigate the first question, we examined a group of dire wolves (Canis dirus; Perri, Mitchell, Mouton, et al., 2021) with the same metrics and statistical methods as in Galeta et al. (2021). We postulate that if we can show identical separation of two subgroups, this subdivision might equally be the result of natural variation, and not necessarily related to an early signature of domestication. Our main aim is to increase awareness of the fact that interpretation of morphological variation in small samples should be done with great care and an open mind for alternative explanations.

2 | MATERIALS AND METHODS

We evaluated the same seven metrics that were used by Galeta et al. (2021). Our study group was a set of 73 dire wolves from O’Keefe et al., (2014). The specimens are from the Hancock Collection at Page Museum, La Brea Tarpits, Los Angeles CA (Pits 91, 13, 61/67), and from the University of California Museum of Paleontology, Berkeley CA (pit 3874). The time period covered by the specimens ranged 28–13 kya. The measurements were taken from digitalized photographs (TPSdig).

The metrics that were examined included (vdd, von den Driesch, 1976): (1) Total cranium length TL, from landmark 1–4 (vdd 1); (2) Viscerocranium (snout) length VL, from landmark 1–2 (vdd 8); (3) Alveolar length AL of the tooth row P1–M2, landmark 13–16 (vdd 15); (4) P4 mesio-distal diameter, from landmark 14–15 (vdd 18);
TABLE 1 Earliest Late-Pleistocene and transitional period to early Holocene small stature dogs

Specimens	Chronocultural context	Direct dating on dog remains	Indirect datings	mtDNA clade	Country	MNI	References
Erralla	Lower/Upper Magdalenian		12,310 ± 190/16,270 ± 240	Spain	1	Altuna, Baldeon, & Mariezkurrena, 1984; Vigne, 2005	
Montespan	Middle Magdalenian		ca 13,500/15,500⁵	France	1	Pionnier-Capitan et al., 2011	
Le Morin	Upper Magdalenian	OxA-23,627:12,540 ± 55	12,540 ± 55	France	1	Boudadi-Maligne, Mallye, Langlais, & Barshay-Szmidt, 2012	
Le Closeau	Azilian		12,050 ± 100/12,480 ± 70	France	1	Pionnier-Capitan et al., 2011	
Troubat	Azilian	OxA-36,550:10,600 ± 45	10,600 ± 45	France	2	Boudadi-Maligne et al., 2020	
Palegawra	Zarzian		ca 12000⁴	Italy	1	Boschin et al., 2020; Calcagnile et al., 2019	
Pont d’Ambon	Laborian	GiA 99,102:10730 ± 100	10,600 ± 40	C	France	Turnbull & Reed, 1974	
Saint-Thibaud-de-Couz	Laborian	Ly23/OxA-4405:10,050 ± 100	10,050 ± 100	France	1	Chaix, 2000	
Karstein	Ahrensburgian		9995 ± 65/10,220 ± 75	C	Germany	Baales, 1992; Charles, 1993	
Bedburg	Early Mesolithic	9,600 ± 100/9,780 ± 100	9,780 ± 100	Germany	1	Street, et al., 2015	
Senckenberg-Moor	Mesolithic		ca 10000⁴	Germany	1	Mertens, 1936; Degerbol, 1961	
Ain Mallaha	Natufian	10,350 ± 100/10,540 ± 90	10,540 ± 90	Israel	2	Tchernov & Valla, 1997; Grosman, 2013	
Hayonim Terrace	Natufian	9,640 ± 100/11,790 ± 120	11,790 ± 120	Israel	2	Tchernov & Valla, 1997; Grosman, 2013	

(Continues)
The hierarchical clustering in dire wolves (Figure 1) reveals a separation in two subgroups (indicated by red rectangles, Figure 1). Morphological shape was significantly different between the two groups (MANOVA; Figure 1, $F_{7,65} = 17.9, p < .0001$). The linear discriminant function (based on DA) assigned 90% of the craniums to the correct group (Figure 2), indicating good group separation. A significant difference between the two groups was found for five metrics:

1. Total cranium length (TL) (vdd 1);
2. P4 mesio-distal diameter;
3. Greatest width of the brain case (GWBRC) (vdd 29);
4. Greatest palatal width (GWPAL) (vdd 34);
5. Minimal width of the palate/snout (MWPAL) (vdd 35).

TABLE 1 (Continued)

Specimens	Chronocultural context	Direct dating on dog remains	Indirect datings	mtDNA clade	Country	MNI	References
Shillourokambos	Neolithic (Middle PPNB)		9,432 ± 49/9,525 ± 49	Cyprus	1		Vigne, et al., 2011
Shubayqa 6	Neolithic (PPNA)		9,440 ± 50/10,072 ± 43	Jordan	?		Yeomans et al., 2019
Tell Mureybet	Late Natufian (Khiamian)		9,945 ± 50/9,905 ± 60	Syria	1		Helmer, 1991; Gourichon and Helmer, 2008; Ibáñez, 2009; Grosman, 2013

Uncertain dog remains

Specimens	Chronocultural context	Direct dating on dog remains	Indirect datings	mtDNA clade	Country	MNI	References
Monruz	Upper Magdalenian		12,800 ± 85/13,330 ± 110	Switzerland	3?		Brochier & Moulin, 2010; Müller & Leesch, 2013
Hau terive	Upper Magdalenian		12,510 ± 130/13,050 ± 155	Switzerland	1		Morel & Müller, 1997; Brochier & Moulin, 2010

*italics = indirect dating on site, but not on level in which dog remains were found.

In our first step of statistical analyses, a hierarchical clustering was performed on the size-corrected log Euclidian distances. More specifically, a Ward's hierarchical agglomerative clustering method was used. In this way, dissimilarities in shape between the crania were contrasted such that craniums of different shape end up in separate clusters or groups. The size correction was performed using the residuals from a standard major axis analysis (see Galeta et al., 2021 for an identical approach). Next, the significance of shape difference was tested using an MANOVA test, and a linear discriminant analysis (DA) was performed to evaluate the number of crania assigned to the correct hierarchical cluster, using a cross validation approach. Finally, the differences in trait values were tested, using an ANOVA test (F-test) and calculated as effect sizes, based on the standardized means and standard deviations. Effect sizes were expressed as Cohen’s D. To ease the interpretation of these effect sizes, they are often defined as being small when Cohen’s D is smaller than 0.2, medium or intermediate when D is between 0.5 and large for values of D above 0.8.
Effect sides (Cohen’s D) were medium-to-very large for these significant effects. The crania in dire wolf group 2 can be characterized as having: shorter, wider cranium and wider palate (Table 1). The morphological differences between “protodogs” and Pleistocene wolves in Galeta et al. (2021) were greater for TL, VL, and AL compared to the differences in dire wolves. For the GWBRC, GWPAL and MWPAL, differences were comparable, or greater, in dire wolves, compared to Galeta et al. (2021).

TABLE 2 Pleistocene canids used in studies on “protodogs”

	Germonpré et al., 2009	Germonpré et al., 2012	Germonpré et al., 2017	Galeta et al., 2020
A. Pleistocene wolves (or defined unknown)				
Kostenki 17 36233		Kostenki 17 36233	Kostenki 17 36233	
/	/	/	/	
/	/	/	/	
/	/	/	/	
Predmosti 1924	/	/	/	
Predmosti 1	/	/	/	
Trou des Nutons 2559	Trou des nutons 2559	Trou des nutons 2559	Trou des nutons 2559	
Mezin 5469	Mezin 5469	Mezin 5469	Mezin 5469	Mezin 5469
Mezin 5488	Mezin 5488	Mezin 5488	Mezin 5488	Mezin 5488
/	/	/	/	
Anabar	Anabar			
Trou Bailleux	/	/	/	
Trou de la Naullette	/	/	/	
Grand Malades	/	/	/	
Yukatia 29699	Yukatia 29699			
/	/	/	/	
Tirehtyakh				
Razboinychia				
Maldidier				

Pleistocene canids defined as unknown

| Predmosti 1062 | Badyarikha |
| Predmosti 1061 |

Avdeevo 911 **Avdeevo 911**

| **B. “Protodogs”** |
|---------------------|---------------------|---------------------|---------------------|
| Germonpré et al., 2009 | Germonpré et al., 2012 | Germonpré et al., 2017 | Galeta et al., 2020 |
| Goyet | Goyet | Goyet | Goyet |
| Predmosti 1060 | Predmosti 1060 | Predmosti 1060 | Predmosti 1060 |
| Predmosti 1069 | Predmosti 1069 | Predmosti 1069 | Predmosti 1069 |
| Elliseevichi 447 | Elliseevichi 447 | Elliseevichi 447 | Elliseevichi 447 |
| Elliseevichi 23781 | Elliseevichi 23781 | Elliseevichi 23781 | Elliseevichi 23781 |
| Mezin 5490 | Mezin 5490 | Mezin 5490 | Mezin 5490 |
| Mezerichi 4493 | Mezerichi 4493 | Mezerichi 4493 | Mezerichi 4493 |
| Ulakhan Sular | / | | |

*Note: “/” specimens from former studies not used in more recent studies by same authors.
*Mousterian layers relaxer to Neanderthal finds.
4 DISCUSSION

The primary topics to discuss are: (a) is the variation between the two groups related to domestication; (b) what is the value of the metrics used to test for domestication; and (c) problems with small group size.

5 MORPHOLOGICAL VARIATION BETWEEN THE TWO GROUPS

The most important conclusion of our analysis is that dire wolves could be segregated into two groups, one with a “typical domestication signature.” The primary reason that we chose a dire wolf comparison was an available database with all of the metrics that were used by Galeta et al. (2021). Additionally, dire wolves are highly similar to Pleistocene wolves in physiognomy and morphology (Perri, Mitchell, et al., 2021), and their dating in this studied group is Upper Pleistocene.

Since dire wolves were never domesticated, the implication is that group segregation is likely reflecting normal population variation, which should also be considered in the context of any biometric study. As thus, the documented morphological variation in Pleistocene large canids could also reflect natural variation in the absence of any domestication event. The word “protodogs” should thus be used with great caution and perhaps be rephrased as “Pleistocene large canids with dog-like skull features.”

Galeta et al. (2021) added modern specimens in the study and show that also modern wolves and dogs can be separated statistically by using their method. These modern samples enlarge examined groups but add no fundamental information on whether or not the two Pleistocene small groups really differ due to natural selection caused by domestication. We are not convinced of the benefit, nor correctness, of adding recent specimens in the analyses, as wolves evolved morphologically since the Pleistocene, they are smaller (Kurtén, 1965), and have more gracile crania (Janssens, Perri, et al., 2019). In addition, with so few ancient large canids being measured, a discriminant analysis tends to overfit when comparing several groups.

6 VALIDITY OF THE METRICS USED TO TEST FOR DOMESTICATION

Of the seven parameters used by Galeta et al. (2021) five differ between groups: cranial length; viscerocranial length; maxillary tooth row length; braincase width and minimal palate width.

6.1 Cranium length (TL)

Cranium length is accepted as isometrically related to size (Losey et al., 2017). Although Galeta et al. (2021) report “protodogs” to be smaller that wolves they are very large and out of the range of Pleistocene small stature dogs that have TL < 191 mm, while all Pleistocene canids have TL > 225 mm and some “protodogs” even a TL of 256 mm (Janssens, Perri, et al., 2019, table 7). These specimens do not fulfill expected small size criteria. Next the statistical relative size reduction in “protodogs” in Galeta
et al. (2021) is probably due to small sample size, as a much larger comparative study (n 122) could not find such difference (Janssens, Perri, et al., 2019, table 7).

It has been argued that large size of “protodogs” might have been caused by a domestication process spread over centuries or millennia (contrary to an event), and thus that size reduction was slow in developing. If so, one would expect progressively smaller specimens in time, slowly evolving to the size of generally accepted Pleistocene dogs. However, such is not the case with “protodogs”, for example, Goyet, 36kya (n 1); Predmosti 27kya (n 2); Eelisevichi 15kya (n 3), in which mean TL is resp. 227 mm; 235 mm; 248 m.

It has also been argued that the onset of wolf domestication may have been partial (commensalism [Zeder, 2012]) thus inducing only minimal morphological change. Commensalism however cannot explain genetic isolation, a prerequisite for species formation. Nor has it been reported recently or historically (up to 4.3 kya; Weszeli, 2018).

Arguments above question real size difference of “protodogs” versus wolves, and indicate that the size reduction is minimal and question minimal size reduction as being caused by a slow domestication process or partial domestication.

6.2 Viscero-cranial length

Galeta et al. (2021) measured Viscero-cranial length (VL), and referred to Morey (1992) in support. However, Morey (1992) asserted the contrary. Historically, several other studies with small population sizes also reported the VL difference (Anderson & Ozolins, 2000; Benecke, 1987; Chaix, 2000; Dimitrijević & Vuković, 2012; Harrison, 1973; Jolicoeur, 1959; Lüps, 1974; Mertens, 1936; Nehringer, 1884, 1888; Okarma & Buchalcyk, 1993; Ovodov et al., 2011; Pidoplichko, Alsworth-Jones, & Djindjian, 2001; Rütimeyer, 1861). On the other hand, two large studies (one with 1700 specimens) rejected VL as species-distinguishing metric (Wayne 1984, Janssens, Perri, et al., 2019). The group separation in Galeta et al. (2021) could better be explained by normal variation which is under influence of gender or and climate-driven food stress (O’Keefe, Binder, Frost, Sadlier, & van Valkenburgh, 2014).

6.3 Maxillary tooth row length (AL)

In Galeta et al. (2021), “Protodogs” have shorter maxilla tooth row length than Pleistocene wolves. The latter is congruent with results from an earlier mandible study (Germonpré, Láznicˇková-Galetová, Losey, Räikkönen, & Sabin, 2015) and based on nine metrics in Pleistocene canids.

We have five concerns. Two relate directly to maxillary tooth row length, three relate to mandible tooth row length. A close mandible-maxilla length connection is logical as both tooth rows are anatomically closely interlinked, thus conclusions on mandible length may probably safely be used as indirect evidence on maxillary length.

Regarding maxillary tooth row length (a) Drake et al. (2015), with a much large number of specimens (Drake et al., 2015; Table S1), failed to find dog-wolf differences in maxillary tooth row length, contradicting Galeta et al. (2021). (b) Maxillary tooth row length has been used in former studies by the same group of authors (Germonpré et al., 2009, 2012, 2017). However, in one of these (Germonpré et al., 2017) this metric did not differ between groups.

Regarding mandible tooth row length, first Brannick, O’Keefe, and Meachen (2015) showed that dire wolf mandible size-length is related to climate and not domestication. Second, Ameen et al. (2017) rejected tooth row shortening in dogs, compared to wolves (Ameen, personal communication). Third, Janssens, Perri, et al. (2019) showed that identical shorter mandible metrics could be demonstrated (using the same metrics and methodology as in Germonpré et al. (2015)) in a subgroup of German shepherd dogs, a “wolf-like” breed. Clearly, if one can subdivide such closely related specimens as German shepherds in two subgroups; one with this so-called typical domestication signature, the other groups seemingly not domesticated, it is logical to conclude that a group of Pleistocene wolf specimens, acquired from a wide geographic area and long elapsed time (see below), will vary considerably more, thus divide into subgroups more easily.

6.4 Braincase width (GWBRC)

Braincase width was used in former studies by the same group of authors (Germonpré et al., 2009, 2012, 2017), but rarely has been used elsewhere. In two of these studies (Germonpré et al., 2012, 2017) this metric did not differ between groups. This metric was introduced by Lawrence and Bossert (1967) to distinguish between coyotes (Canis latrans), wolves, dogs and red wolves (C. l. rufus), but no difference was observed between dogs and wolves. Additionally, Pitulko and Kasparov (2017) did not confirm a difference in early Holocene dogs compared to wolves.

6.5 Palate minimum width (MWPAL)

This metric was used by the same authors in previous studies (Germonpré et al., 2009, 2012, 2017) but was then not different between groups in two studies (Germonpré et al., 2012, 2017). We are aware of only one other study
TABLE 3 Descriptive characteristics (min., med., max., mean, SD) and statistical comparison (F-test) of seven distances on dire wolf skulls

	This study (Dire wolves)	Galeta et al., (2020) study	Pleistocene wolves	“Protodogs”
	Cluster 1 (N = 24)	Cluster 2 (N = 49)	(N = 7)	(N = 8)
Total skull length				
Min	282.25	258.6		
Median	301.55	283.85		
Max	317.51	311.08		
Mean (SD)	301.40 (8.23)	284.22 (11.85)	$F_{1,71} = 4.12$	$p = .0461$
Scaled effect	0.33 (0.86)	−0.16 (1.03)	Cohen’s $D = 0.52$	
Viscerocranium length				
Min	142.25	127.6		
Median	151.53	142.2		
Max	163.09	155.97		
Mean (SD)	151.10 (5.32)	143.09 (6.71)	$F_{1,71} = 0.39$	$p = .5338$
Scaled effect	−0.11 (0.92)	0.05 (1.04)	Cohen’s $D = 0.16$	
Alveolar length				
Min	94.34	87.03		
Median	101.15	96.99		
Max	108.61	106.41		
Mean (SD)	101.80 (3.68)	97.45 (4.20)	$F_{1,71} = 3.35$	$p = 0.0713$
Scaled effect	−0.30 (1.21)	0.15 (0.86)	Cohen’s $D = 0.43$	
P4 mesio-distal diameter				
Min	28.22	25.21		
Median	31.4	30.16		
Max	35.81	34.51		
Mean (SD)	31.53 (1.75)	30.38 (2.05)	$F_{1,71} = 9.49$	$p = .0029$
Scaled effect	−0.49 (0.87)	0.24 (0.98)	Cohen’s $D = 0.79$	
Greatest width brain case				
Min	59.92	58.37		
Median	65.22	71.36		
Max	79.99	86.78		
Mean (SD)	66.71 (5.02)	72.49 (5.74)	$F_{1,71} = 88.53$	$p < .0001$
Scaled effect	−1.06 (0.64)	0.52 (0.69)	Cohen’s $D = 2.37$	
Greatest palatum width				
Min	105.41	96.11		
Median	113.49	114.27		
Max	125.25	126.82		
Mean (SD)	114.31 (5.28)	114.18 (7.25)	$F_{1,71} = 37.53$	$p < .0001$
Scaled effect	−0.83 (0.74)	0.41 (0.85)	Cohen’s $D = 1.56$	
Smallest width palatum				
Min	43.51	39.9		
Median	51.37	50.82		
that used palate minimum width (albeit slightly differently), but found no statistical difference between (Hayonim) dogs and C.l. pallipes \((p = .26;\) Tchernov & Valla, 1997; Table 3). Modern Eurasian wolves vary considerably in minimum palate width. This seems to be related to prey size, suggesting that palate minimum width is governed strongly by extrinsic influences, and would not be a useful metric for distinguishing dog from wolf (Boudadi-Maligne & Escarguel, 2014).

6.6 | Summary of validity

Only snout width is, according to us, an acceptable difference between “protodogs” and Pleistocene wolves. This one (out of seven) parameter is a weak argument to plead for domestication. Most of the differences reported by Galeta et al. (2021) could equally be explained by natural morphological variation within a population. The specimens in Galeta et al. (2021) vary considerably in deep time age (c. 34–14 kya) and geographical source region (from western Europe to Russia, >7000 km distance). Over the indicated time period, drastic climate changes strongly influenced wolf size (Aaris-Sorensen, 1977; Kurten 1965; Davis, 1981). During that same time period, this vast area included different climates that varied from quite dry in the East (modern Ukraine and Russia) to quite wet and relatively mild in the West (modern France). These extrinsic influences alone are sufficient to explain the variation seen among the specimens in the Galeta et al. (2021) study.

The fact that three metrics (AL, GWBRC, MWPAL) did not differ between groups in several former studies raised serious concerns about the robustness of these metrics. This reveals the importance of which specific specimens were selected to be examined. Such selection must have taken place as in former studies by the same authors (Germonpré et al., 2009, 2012, 2017) different, and not all, specimens were selected to be examined (Table 2).

Presenting only a selected subgroup of available specimens, as in Galeta et al. (2021), weakens, in our eyes, the strength of their argument.

7 | STUDY SIZE SAMPLE

Evaluation of earlier publications from the same group of authors (Germonpré et al., 2009, 2012, 2017) shows that nine “protodog” along with 16 Pleistocene wolf crania were reported (Table 2). Using previously studied specimens would have expanded sample size considerably Galeta et al. (2021) did not discuss their specimen selection sufficiently to help the reader understand the decision to exclude 10 previously studied specimens. The rationale behind limiting sample size would be enlightening.

8 | GENERAL CONCLUSION

We acknowledge the enormity of what we are trying to figure out when it comes to define the earliest evolutionary signals of domestication in wolves. We have less and less context the farther back in time we go, and thus our powers of resolution are vastly less. That creates uncertainties that cannot be resolved. Additionally since we were not there, and thus one must realize that much is speculative. Yet, we think that the often reported morphological differences between the so-called “protodogs” and Pleistocene wolves should be interpreted with an open mind, allowing several possible mechanisms beside domestication as evolutionary force. First, Dire wolves can be segregated into two morphological groups, including one with the same presumed domestication signature as well. That means that natural variation in a Canid population alone could also be responsible for this group division. Two, most metrics used by Galeta et al. (2021) to distinguish wolves and dogs, can be rejected, based on pre-existing work on large groups, and conflicting
conclusions by the same group of authors. Three, the sizes of all specimens included by Galeta et al. (2021) miss the size reduction seen in the oldest generally accepted archaeological dogs. Four, small sample size, based on deleting previously described specimens by the same groups of authors, appears to be too small to support broad biological conclusions. We conclude that the segregation of the morphological groups (Galeta et al., 2021) easily could result from small study population size, influences of climate change, highly varied geography, long-time span, species-related evolution, variable diet, and sexual dimorphism (Munoz-Fuentes, Darimont, Wayne, Paquet, & Leonard, 2009; O’Keefe, Meachen, Pet, & Brannick, 2013) all leading to a wide normal distribution of morphological metrics. Indeed, high variability among wild wolf crania was already noted in 1884 by Nehring. Nevertheless, we cannot disprove the involvement of a domestication process either. Yet, our main message here is a cautionary one, urging for the acceptance of several alternative hypotheses or evolutionary mechanisms when interpreting morphological variation in small historical samples with little other background information.

ACKNOWLEDGMENT
We are grateful for the advice on wolf behavior by L. David Mech and the efforts from Carly Ameen to additionally examine tooth row length in her published study.

AUTHOR CONTRIBUTIONS
Luc A. A. Janssens: Conceptualization; supervision; validation; writing-original draft. Myriam Boudadi-Maligne: Data curation; formal analysis; methodology; validation. Dennis Lawler: Supervision; validation; visualization; writing-review & editing. Robin O’Keefe: Data curation; formal analysis; methodology; validation; writing-review & editing. Stefan Van Dongen: Data curation; formal analysis; methodology; writing-review & editing.

ORCID
Luc A. A. Janssens https://orcid.org/0000-0002-7894-0073

REFERENCES
Aaris-Sorensen K. 1977. The subfossil wolf, Canis lupus L. Demark Vidensk. Meddr dabsk naturhistorisch Forensen 29:129–146.
Altuna, J., Baldeon, A., & Mariezkurrena, K. (1984). Dépôts rituels de la grotte d’Erralla (Pays Basque), Munibe. Sociedad de Ciencias Naturales Aranzadi (San Sebastian), 36, 3–10.
Ameen, C., Hulme-Beaman, A., Evin, A., Germonpré, M., Britton, K., Cucchi, T., ... Dobney, K. (2017). A landmark-based approach for assessing the reliability of mandibular tooth crowding as a marker of dog domestication. Journal of Archaeological Science, 85, 41–50. https://doi.org/10.1016/j.jas.2017.06.014
Andersone, Z., & Ozolins, J. (2000). Craniometrical characteristics and dental anomalies in wolves Canis lupus from Latvia. Acta Theriologica, 45(4), 549–558.
Baales, M. (1992). Überreste von Hunden aus der Ahrensburger Kultur am Karstein, Norddeil. Archäologisches Korrespondenzblatt, 22, 461–471.
Benecke, N. (1987). Studies on early dog remains from Northern Europe. Journal of Archaeological Science, 14, 31–49.
Benecke, N. (1994). Archäozoologische Studien zur Entwicklung der Haustierhaltung. Berlin: Akademie Verlag.
Bergstrom, A., Frantz, L., Schmidt, R., Ersmark, E., ... Skoglund, P. (2020). Origins and genetic legacy of prehistoric dogs. Science, 370, 557–564.
Bocherens, H., Drucker, D. G., Germonpré, M., Lázničková-Galetová, M., Naito, Y. I., Wissing, C., ... Oliva, M. (2014). Reconstruction of the Gravettian food-web at Předmosti I, using multi-isotopic tracking (13 C, 15 N, 34 S) of bone collagen. Quaternary International, 245, 238–248. https://doi.org/10.1016/j.quaint.2014.09.044
Boschin, F., Bernardini, F., Pilli, E., Vai, S., Zanolli, C., Tagliacozzo, A., ... Ronchitelli. (2020). The first evidence for late Pleistocene dogs in Italy. Scientific Reports, 10, 13313. https://doi.org/10.1038/s41598-020-69940-w
Boudadi-Maligne, M., & Escarguel, G. (2014). A biometric re-evaluation of recent claims for early upper Palaeolithic wolf domestication in Eurasia. Journal of Archaeological Science, 45, 80–89.
Boudadi-Maligne, M., Mallye, J.-B., Langlais, M., & Barshay-Szmidt, C. (2012). Des restes des chiens magdaléniens à l’abri du Morin (Gironde, France). Implications Socio-économiques d’une Innovation Zootechnique. Revue d’archéologie préhistorique, 23, 39–54.
Boudadi-Maligne M, Bonnet-Jaquement P, Langlais M, Ferrie J-G, Mallye J-B, editors. L’Aquitaine à la fin des temps (Archéologie numérique, vol. 4). Neuchâtel: Office et Musée d’archéologie, 267-316.

COMMENTARY

Brochier J, Moulin B. 2010. Quinze sites retracent l’histoire du lac de Neuchâtel et les hommes de la fin des temps glaciaires. Les sociétés de la transition du Paléolithique final au début du Mésolithique dans l’espace nord aquitain. Les Eyzies 24-26 juin 2015, Acte de la table ronde organisée en hommage à Guy Célérier, Paléo, num. sp., 67-76

Calcagnile, L., Sardella, R., Mazzini, I., Giustini, F., Brilli, M., D’Elia, M., ... Quarta, G. (2019). New radiocarbon dating results...
from the upper Paleolithic-Mesolithic levels in Grotta Romanelli (Apulia, southern Italy). *Radiocarbon, 61*, 1211–1220.

Célérier, G., Tisserat, N., & Valladas, H. (1999). Données nouvelles sur l’âge des vestiges de chien à Pont d’Ambon, Bourdeilles (Dordogne). *Paléo, 11*, 163–165.

Chais, L. (2000). A preboreal dog from the northern Alps (Savoie, France). *BAR Intern Series*, 889, 49–60.

Charles, R. (1993). Towards a new chronology for the Belgian late glacial: Recent radiocarbon dates from the Oxford AMS system. *Notae Præhistoricae*, 12, 1–62.

Crockford, S., & Kuzmin, Y. (2012). Comments on Germonpré et al., *J Archaeol Sci* 36: 2009 “Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes”, and Germonpré, Lázkičková-Galetová, and Sablin, *Journal of Archaeological Sciences* 39, 2012 “Palaeolithic dog skulls at the Gravettian Předmosti site, the Czech Republic”. *Journal of Archaeological Science*, 39, 2797–2801.

Davis, S. (1981). The effect of temperature change and domestication on the body size of large Pleistocene to Holocene mammals in Israel. *Paleobiology*, 7, 101–114.

Dimitrijević, V., & Vuković, S. (2012). Was the dog locally domesticated in the Danube Gorges? Morphometric study of dog cranial remains from four Mesolithic–Early Neolithic archaeological sites by comparison with contemporary wolves. *International Journal of Osteoarchaeology, 22*, 12–34.

Drake, A. G., Coquerelle, M., & Colombeau, G. (2015). 3D morphometric analysis of fossil canid crania: New evidence from a randomization approach to group differences. *Anatomical Record, 304*, 42–62. https://doi.org/10.1002/E.24500

Germonpré, M., Sablin, M. V., Stevens, R. E., Hedges, R. E., Hofreiter, M., Stiller, M., & Desprès, V. R. (2009). Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: Osteometry, ancient DNA and stable isotopes. *Journal of Archaeological Science, 36*, 473–490.

Germonpré, M., Lázničková-Galetová, M., & Sablin, M. V. (2012). Palaeolithic dog crania at the Gravettian Předmostí site, The Czech Republic. *Journal of Archaeological Science, 39*, 184–202.

Germonpré, M., Lázničková-Galetová, M., Losey, R. J., Räikkönen, J., & Sablin, M. V. (2015). Large canids at the Gravettian Předmostí site, The Czech Republic: The mandible. *Quaternary International*, 359–360, 261–279.

Germonpré, M., Fedorov, S., Danilov, P., Galeta, P., Jimenez, E.-L., Sablin, M., & Losey, R. J. (2017). Palaeolithic and prehistoric dogs and Pleistocene wolves from Yakutia: Identification of isolated crania. *Journal of Archaeological Science, 78*, 1–19.

Grossman, L. (2013). The Natufian chronology scheme - new insights and their implications for Natufian foragers in the levant. In: Bar-Yosef O, Valla F, editors. Terminal Pleistocene social changes in Western Asia. Int Monogr prehistory. *Ann Arbor MI: Archaeol Series*, 19, 622–638.

Harrison D. 1973. Some comparative features of the cranium of wolves (*Canis lupus* Linn.) and pariah dogs (*Canis familiaris* Linn.) from the Arabian Peninsula and neighbouring lands. Bonner Zoologische Beitrage, 1887?

Hemmer, H. (1990). *Domestication: The decline of environmental appreciation*, (208 p). Cambridge, England: Cambridge University Press.

Janssens, L., Spanoghe, I., Miller, R., & Van Dongen, S. (2016). Can orbital angle morphology distinguish dogs from wolves? *Zoo morphology, 135*, 149–158.

Janssens, L., Gieisch, L., Schmitz, R., Street, M., Van Dongen, S., & Crombé, P. (2018). A new look at an old dog: Bonn-Oberkassel reconsidered. *Journal of Archaeological Science, 92*, 126–138.

Janssens, L., Perri, A., Crombé, P., Van Dongen, S., & Lawler, D. (2019). An evaluation of classical morphologic and morphometric parameters reported to distinguish wolves and dogs. *Journal of Archaeological Science: Reports, 23*, 501–533.

Janssens, L., Gunz, P., Stenger, T., Fischer, M., Boone, M., & Stoessel, A. (2019). Bony labyrinth shape differs distinctively between modern wolves and dogs. *Zoo morphology*. 138(3), 409–417. https://doi.org/10.1007/s00435-019-00445-5

Janssens, L., Boudadi-Maligne, M., Mech, D. L., & Lawler, D. (2021). The enigma of the Předmosti protodogs. A comment on Prassack et al. 2020. *Journal of Archaeological Science, 126*, 1–4. https://doi.org/10.1016/j.jas.2020.105160

Jolicoeur, P. (1959). Multivariate geographical variation in the wolf (*Canis lupus* L. Evol, 3, 283–299.

Jung, C., Pörtl, D. (2018). Scavenging hypothesis: Lack of evidence for dog domestication on the waste dump. *Dog Behavior, 4*, 41–56. https://doi.org/10.4454/db.v4i2.73

Kurtén, B. (1965). The carnivora of the Palestine caves. *Acta Zoologica Fennica, 107*, 1–74.

Larson, G., Karlsson, E., Perri, A., Webster, M., Ho, S., Peters, J., ... Lindblad-Toh, K. (2012). Rethinking dog domestication by integrating genetics, archeology, and biogeography. *Proceedings of the National Academy of Sciences of the United States of America, 109*, 8878–8883. https://doi.org/10.1073/pnas.1203005109

Lawrence, B., & Bossert, W. H. (1967). Multiple character analysis of *Canis lupus, latrans* and *familiaris*, with a discussion of the relationships of *Canis Niger*. *American Zoologist, 7*, 223–232.

Ledoux, L., & Boudadi-Maligne, M. (2015). The contribution of geometric morphometric analysis to prehistoric ichnology: The example of large canid tracks and their implication for the debate concerning wolf domestication. *Journal of Archaeological Science, 61*, 25–35.

Losey, R. J., McLachlin, K., Nomokonova, T., Latham, K., & Harrington, L. (2017). Body mass estimates in dogs and north American gray wolves using limb element dimensions. *International Journal of Osteoarchaeology, 27*, 180–191.

Lupz, P. (1974). Biometric Untersuchung an den Schadelbasis des Haushundes. *Zoologischen Anzeigungen, 192*, 383–413.

Mech LD, L Boitani. 2003. Wolf social ecology. Pp. 1-34. In: *Mech LD & Boitani (Eds.) Wolves: Behavior, ecology, and conservation*. Chicago: University of Chicago Press. 405 pp.

Mertens, R. (1936). Der Hund aus dem Senckenberg-Moor, Ein Begleiter des Urs. *Begleiter des Urs. Nationaler Volk*, 66, 506–510.

Morel, P., & Müller, W. (1997). *Hauterive-Champrévyres - un campement magdalénien au bord du lac de Neuchâtel*. Neuchâtel: Etude archéozoologique. Musée cantonal d’archéologie.
Morey D. 2010. *Dogs: Domestication and the development of a social bond.* Cambridge, Cambridge University Press. 356 p.

Morey, D., & Jeger, R. (2015). Palaeolithic dogs: Why sustained domestication then? *Journal of Archaeological Sciences Reports,* 3, 420–428.

Morey, D. F. (1992). Size, shape and development in the evolution of the domestic dog. *Journal of Archaeological Science,* 19, 181–204.

Morey, D. F. (1994). The early evolution of the domestic dog. *American Scientist,* 82, 336–347.

Müller, W., & Leesch, D. (2013). Le site magdalénien de Monruz: Acquisition, traitement et consommation des ressources animales. *Office du Patrimoine et de l’archéologie de Neuchâtel, Section archéologie.*

Munoz-Fuentes, V., Darimont, C. T., Wayne, R. K., Paquet, P. C., & Leonard, J. A. (2009). Ecological factors drive differentiation in wolves from British Columbia. *Journal of Biogeography,* 36, 1516–1531.

Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? *Journal of Classification,* 31, 274–295. https://doi.org/10.1007/s00357-014-9161-z

Napierala, H., & Uerpmann, H. P. (2012). A ‘new’ Palaeolithic dog. *Current Anthropology,* 53, 1516–1531.

Nehring A. 1884. Hunde-Rassen der Vorzeit und ihre Abstammung. *Zeitschrift für vergleichende Physiologie und vergleichende Anatomie.*

Nehring A. 1888. Zur Abstammung der Hunde-Rassen. *Abteilung Systematik Geographischer Biologie und Tiere,* 3, 51–96.

Nehring, A. (1888). Zur Abstammung der Hunde-Rassen, Zoologische Jahrbücher. *Abteilung Systematik Geographischer Biologie und Tiere,* 3, 51–96.

O’Keefe, F. R., Meachen, J., Fet, E., & Brannick, A. (2013). Ecological determinants of clinal morphological variation in the cranium of the North American gray wolf. *Journal of Mammalogy,* 94, 1223–1236.

O’Keefe, F. R., Binder, W. J., Frost, S. R., Sadlier, R. W., & van Valkenburgh, B. (2014). Cranial morphometrics of the dire wolf, *Canis dirus,* at Rancho La Brea: Temporal variability and its links to nutrient stress and climate. *Palaeontologia Electronica,* 17, 1–17A.

Ovodov, N. D., Crockford, S. J., Kuzmin, Y. V., Higham, T. F., Hodgins, G. W., & van der Plicht, J. (2011). A 33,000-year-old incipient dog from the Altai Mountains of Siberia: Evidence of the earliest domestication disrupted by the last glacial maximum. *PLoS One,* 6, e22821.

Perri, A. (2016). A wolf in dog’s clothing: Initial dog domestication and Pleistocene wolf variation. *Journal of Archaeological Science,* 68, 1–4.

Perri, A., Mitchell, K., Mouton, A., & Frantz, L. (2021). Dire wolves were the last of an ancient New World canid lineage. *Nature,* 591, 87–91. https://doi.org/10.1038/s41586-020-03082-x

Perri, A., Feuerbaum, T., Frantz, L., Larson, G., Malhi, R., Meltzer, D., & Witt, K. (2021). Dog domestication and the dual dispersal of people and dogs in the Americas. *Proceedings of the National Academy of Sciences of the United States of America,* 118, e201083118. https://doi.org/10.1073/pnas.201083118

Pidoplichko I, Allsworth-Jones P, Djindjian F. 2001. Upper Paleolithic dwellings of mammoth bones in the Ukraine. In: Brit Archeol Rep (BAR). International Series 712 JSTOR.

Pionnier-Capitan, M., Bemill, C., Bodu, P., Célérier, G., Ferrié, J.-G., Fosse, P., & Vigne, J. D. (2011). New evidence for Upper Palaeolithic small domestic dogs in South Western Europe. *Journal of Archaeological Science,* 38, 2123–2140.

Pitulko, V., & Kasparov, A. (2017). Archaeological dogs from the Early Holocene Zhokhov site in the Eastern Siberia. *Journal of Archaeological Science Reports,* 13, 491–515.

Prassack, K., Dubois, J., Laznickova-Galetova, M., Germonpré, M., & Ungar, P. (2020). Dental microwear as a behavioral proxy for distinguishing between canids at the Upper Palaeolithic (Gravettian) site of Predmostí, Czech Republic. *Journal of Archaeological Science,* 115, 105092.

Rütimayer, L. (1861). Die Fauna der Pfahlbauten der Schweiz. *Geschichte der Wilden und der Haus-Saugetieren. Neue Denkschriften der Alten Schweizerischen Gesellschaft für die Gesammten Naturwissenschaften,* 19, 97–143.

Sabin, M., & Khlopachev, G. (2002). The earliest ice age dogs: Evidence from Eliseevich. *Current Anthropology,* 43, 795–799. https://doi.org/10.1086/343372

Studer, T. (1901). *Die prähistorischen Hunde in ihrer Beziehung zu den gegenwärtig lebenden Rassen* (p. 137). Zurich: Zurcher und Furrer.

Tchernov, E., & Valla, F. F. (1997). Two new dogs, and other Natufian dogs, from the southern Levant. *Journal of Archaeological Science,* 24, 65–95.

Thalmann, O., Shapiro, B., Cui, P., Schuenemann, V., Sawyer, S., Greenfield, D., Domingo-Roura, X. (2013). Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. *Science,* 342, 871–874.

Turnbull, P. F., & Reed, C. A. (1974). The fauna from the terminal Pleistocene of Piegavara Cave, a Zarzian occupation site in northeastern Iraq. *Fieldiana. Anthropology* (Vol. 63, pp. 3, 81–146). Chicago IL: Chicago Field Museum of Natural History.

Vigne J.-D. 2005 L’humérus de chien magdalénien de Erraila (Gipuzkoa, Espagne) et la domestication tardiglaciaire du loup en Europe. MUNIBIE, (Anthropologia-Arkeologia) 57 Homenaje a Jesus Altuna, 279-287.

Wilczynski, J., Goslar, T., Wojtal, P., & Zeder, M. A. (2012). The domestication of animals. *Journal of Anthropological Research,* 68, 1–161.

How to cite this article: Janssens LAA, Boudadi-Maligne M, Lawler DF, O’Keefe FR, van Dongen S. Morphology-based diagnostics of “protodogs.” A commentary to Galeta et al., 2021, *Anatomical Record,* 304, 42–62, doi: 10.1002/ar.24500. *Anat Rec.* 2021;1–12. https://doi.org/10.1002/ar.24624