The luminous, massive and solar metallicity galaxy hosting the Swift γ-ray burst GRB 160804A at $z = 0.737$

K. E. Heintz, 1,2* D. Malesani, 2 K. Wiersema, 3 P. Jakobsson, 1 J. P. U. Fynbo, 4 S. Savaglio, 5 Z. Cano, 6 S. Covino, 7 V. D’Elia, 8,9 A. Gomboc, 10 F. Hammer, 11 L. Kaper, 12 B. Milvang-Jensen, 2 P. Möller, 13 S. Piranomonte, 14 J. Selsing, 2 N. H. P. Rhodin, 2 N. R. Tanvir, 3 C. C. Thöne, 6 A. de Ugarte Postigo, 2,6 S. D. Vergani 11 and D. Watson 4

Affiliations are listed at the end of the paper

Accepted 2017 November 6. Received 2017 November 4; in original form 2017 October 13

ABSTRACT

We here present the spectroscopic follow-up observations with VLT/X-shooter of the Swift long-duration gamma-ray burst GRB 160804A at $z = 0.737$. Typically, GRBs are found in low-mass, metal-poor galaxies that constitute the sub-luminous population of star-forming galaxies. For the host galaxy of the GRB presented here, we derive a stellar mass of $\log (M_*/M_\odot) = 9.80 \pm 0.07$, a roughly solar metallicity ($12 + \log (O/H) = 8.74 \pm 0.12$) based on emission line diagnostics, and an infrared luminosity of $M_{3.6}/(1+z) = -21.94$ mag, but find it to be dust-poor ($E(B-V) < 0.05$ mag). This establishes the galaxy hosting GRB 160804A as one of the most luminous, massive and metal-rich GRB hosts at $z < 1.5$. Furthermore, the gas-phase metallicity is found to be representative of the physical conditions of the gas close to the explosion site of the burst. The high metallicity of the host galaxy is also observed in absorption, where we detect several strong Fe II transitions as well as Mg II and Mg I. Although host galaxy absorption features are common in GRB afterglow spectra, we detect absorption from strong metal lines directly in the host continuum (at a time when the afterglow was contributing to < 15 per cent). Finally, we discuss the possibility that the geometry and state of the absorbing and emitting gas are indicative of a galactic scale outflow expelled at the final stage of two merging galaxies.

Key words: gamma-ray burst: general – gamma-ray burst: individual: GRB 160804A – ISM: abundances – galaxies: star formation.

1 INTRODUCTION

It has now been firmly established that long-duration gamma-ray bursts (GRBs) are associated with the deaths of massive stars (Woosley & Bloom 2006; Cano et al. 2017) and should therefore also be connected to cosmic star formation (Wijers et al. 1998; Christensen, Hjorth & Gorosabel 2004; Jakobsson et al. 2005; Kistler et al. 2008; Robertson & Ellis 2012; Greiner et al. 2015). Galaxies hosting GRBs can be studied at high redshifts (e.g. at $z > 5$; Basa et al. 2012; Tanvir et al. 2012; Salvaterra et al. 2013; Sparre et al. 2014; Hartog et al. 2015; McGuire, Tanvir & Levan 2016, within the first Gyr after the Big Bang) and even at very faint magnitudes (Le Floc’h et al. 2003; Savaglio, Glazebrook & Le Borgne 2009). Galaxies that are intrinsically faint or at high redshifts constitute some of the major observational challenges in conventional luminosity-selected star-forming galaxy surveys and are therefore underrepresented in such samples. The study of GRB host galaxies is thus a valuable, complementary approach to probe the overall population of star-forming galaxies.

To reconcile the host galaxy population of GRBs to that of the general population of star-forming galaxies, it is important to understand how the physical properties such as star-formation rate (SFR), stellar mass and metallicity influence the GRB production rate. Specifically at low redshifts ($z < 1.5$), GRBs have been shown to occur preferentially in low-metallicity environments (Krühler et al. 2015; Schulze et al. 2015; Japelj et al. 2016; Vergani et al. 2017), translating into generally lower stellar masses and fainter luminosities for their host galaxies (Sollerman et al. 2005; Wolf & Podsiadlowski 2007; Vergani et al. 2015; Perley et al. 2013, 2016b).

* E-mail: keh14@hi.is
It is now evident, however, that luminous, massive and hence metal-rich GRB host galaxies do exist but they are often associated with dusty or ‘dark’ GRB afterglows (Krühler et al. 2011; Perley et al. 2013, 2016b; Hunt et al. 2014) and are therefore as a consequence underrepresented in samples selected by optical afterglow identification. Although most single-star progenitor models require the GRB environment to be metal-poor (Yoon, Langer & Norman 2006; Woosley & Heger 2006), super-solar metallicities in GRB hosts are observed (as well as in afterglows, see e.g. Savaglio et al. 2012), possibly due to significant internal chemical inhomogeneity within the hosts. This scenario is also supported by numerical simulations or semi-analytic models (Nuza et al. 2007; Niino 2011; Trenti, Perna & Jimenez 2015; Bignone, Tissera & Pellizza 2017), which show that even though metal-poor GRB host environments dominate the overall population, this model does not exclude a small number of near-solar metallicity hosts. However, the shape of the overall distribution of oxygen abundance in integrated host galaxy spectra can capture some of the statistical properties of GRB progenitors, making studies of the extreme ends of this distribution particularly important. This paper deals with such a case.

We present spectroscopic observations of the long-duration GRB 160804A. GRB 160804A was detected by Swift on 2016 August 4, 01:32:47 UT (Marshall et al. 2016, GCN 19761), with XRT observations starting 147 s after the BAT trigger. The burst had a fairly long T90 duration of 144.2 ± 19.2 s and a small best-fitting absorption column density of N_H = 7.1^{+3.3}_{−1.8} × 10^{20} cm^{-2} in excess of the Galactic value1 (Willingale et al. 2013). We observed GRB 160804A as part of the X-shooter legacy suite (Selsing et al., in preparation, Pf. J. Fynbo).

We study both the optical/near-infrared emission and absorption line properties of this GRB host galaxy in detail and have structured the paper as follows. In Section 2, we describe our observations, and in Sections 3 and 4, we present the results separately in emission and the paper as follows. In Section 2, we describe our observations, and in Sections 3 and 4, we present the results separately in emission and absorption. In Section 5, we summarize and conclude on our work. Throughout the paper, we assume a flat concordance cosmological model with H_0 = 67.8 km s^{-1} Mpc^{-1}, Ω_m = 0.308 and Ω_L = 0.692 (Planck Collaboration XIII 2016). Unless otherwise stated, all magnitudes are given in the AB (Oke 1974) magnitude system, and we use the photospheric solar abundances from Asplund et al. (2009).

2 OBSERVATIONS AND DATA REDUCTION

2.1 X-shooter spectroscopy

We observed the optical/near-infrared afterglow of GRB 160804A with the ESO/VLT Unit Telescope 2 (UT2, Kueyen) equipped with the X-shooter spectrograph (Vernet et al. 2011). Observations started at 23:55 UT on 2016-08-04 (22.37 h after the BAT trigger) and consisted of four spectra of 600 s, observed following an ABBA nodding pattern, covering the wavelength range 3200–20000 Å.

The spectra were taken under good conditions with a median seeing of 0.75 at 6700 Å. The airmasses at the start and end of the spectroscopic observations were 1.30 and 1.45. The spectra were acquired using slit widths of 1.0, 0.9 and 0.9 arcsec for the UVB, VIS and NIR arm, respectively, approximately aligned with the parallactic angle. For the NIR arm observations, we used a K-band blocking filter. For this given setup, the nominal instrument-

1 The Swift-XRT repository can be found at: http://www.swift.ac.uk/xrt_spectra.

2 Table 2 at https://www.eso.org/sci/facilities/paranal/instruments/xshooter/inst.html.
two TNG r-band epochs (see Fig. 2), we detect a faint residual at the host position with a brightness of $r = 23.53 \pm 0.14$ mag. Using the archival r-band imaging data from the SDSS, we estimate that only a marginal contribution from the afterglow (around 15 per cent) was present at the time of the first TNG observation. This then implies that the X-shooter spectrum is host-dominated and that the strong absorption features are intrinsic to the host galaxy continuum spectrum. In Fig. 2, we also mark the centroid of the residual in the first epoch imaging with a white cross to show the relative distance of the afterglow to the host galaxy. We measure a projected relative distance of 0.25 ± 0.1 arcsec (i.e. 1.9 ± 0.8 kpc), well within the FWHM of the host galaxy.

Due to the peculiarity of the physical properties of the galaxy examined here compared to typical GRB hosts, we investigate the chance association probability of the observed galaxy to be an unrelated foreground galaxy. First, we downloaded and inspected the images taken by Swift/UVOT (e.g. Breeveld & Marshall 2016, GCN 19764). The afterglow is faintly, but significantly, detected in the bluest filter (UVW2), which sets a (conservative) upper limit $z \lesssim 1.7$. Then, our X-shooter spectrum does not reveal any emission (nor absorption) features at redshifts higher than 0.737. Although a very faint host galaxy cannot be excluded, our experience shows that we can normally detect emission lines with X-shooter up to $z \sim 2$ and beyond (e.g. Krühler et al. 2012). Another argument for the association between GRB 160804A and the host comes from the low chance association probability to lie so close in projection to a bright galaxy: Using equation (3) from Bloom, Kulkarni & Djorgovski (2002), we find a chance association probability of 9×10^{-5}. These arguments make it overall very likely that GRB 160804A exploded in the $z = 0.737$ galaxy that we have identified.

3 HOST GALAXY PROPERTIES IN EMISSION

3.1 Emission line analysis

We detect several emission lines in the X-shooter spectrum, also reported by Xu et al. (2016). The measured transitions include
3.2 Dust attenuation and star-formation rate

The observed line strengths are affected by the amount of dust in the host galaxy, the dust attenuation, A_V, of the H\textsc{ii} regions. To correct for this effect, we estimate the reddening of the system given the physical conditions of the emitting region. The ratio of the two Balmer lines, H\textalpha and H\beta (known as the Balmer decrement), should intrinsically be $r_{\text{int}} = \text{H} \alpha / \text{H} \beta = 2.87$ (Osterbrock 1989), assuming a case B recombination and an electron temperature of $T_e = 10^4$ K and a density of $n_e = 10^2$–10^4 cm$^{-3}$ (but see e.g. Wiersema 2011, for examples of GRB hosts in which these assumptions do not hold). We measure a ratio of $r_{\text{obs}} = \text{H} \alpha / \text{H} \beta = 3.09 \pm 0.02$, which we use to estimate the attenuation as

$$E(B - V) = \frac{2.5 \log(r_{\text{obs}}/r_{\text{int}})}{k(\text{H} \beta) - k(\text{H} \alpha)} = 0.06 \pm 0.01, \tag{1}$$

where k denotes the reddening law evaluated at the given wavelengths. The error reported here is only derived from the statistical errors of the line fluxes. When assuming the reddening law of Calzetti et al. (2000), with a total-to-selective extinction parameter of $R_V = 4.05$ (common for star-forming galaxies, e.g. Calzetti, Kinney & Storchi-Bergmann 1994; Calzetti et al. 2000; Fischera, Dopita & Sutherland 2003), this equals a visual attenuation of $A_V = E(B - V) R_V = 0.24 \pm 0.04$ measured for the H\textsc{ii} regions.

To compute the SFR of the host galaxy, we first use the emission redshift to derive the luminosity distance, d_L. Then, we correct the observed H\textalpha line flux for the dust extinction found from the Balmer decrement and find the dereddened line flux (in general) as

$$f_{\text{dered}} = f_{\text{obs}} \times 10^{0.4 E(B - V) k(\alpha)}, \tag{2}$$
converted to that of Chabrier (2003). Due to slit losses, the true SFRH using the relation of Kennicutt (1998) yields which for Hα equals a dereddened line luminosity of $L_{\text{H}\alpha,\text{dered}} = (9.59 \pm 0.04) \times 10^{41}$ erg s$^{-1}$. Converting the luminosity into an SFR using the relation of Kennicutt (1998) yields

$$\text{SFR}_{\text{H}\alpha} = 7.9 \times 10^{-42} L_{\text{H}\alpha,\text{dered}} / 1.7 = 4.46 \pm 0.02 \text{M}_\odot \text{yr}^{-1},$$

where the relation is given for a Salpeter IMF, which we have converted to that of Chabrier (2003). Due to slit losses, the true Hα flux is underestimated so that the computed SFR$_{\text{H}\alpha}$ should be interpreted as a lower limit. We estimate the slit loss by normalizing the observed spectrum to the r-band magnitude from the archival SDSS data and find that the observed flux should be increased by approximately 50 per cent, which should be propagated into the measurement of the SFR. Again, the errors reported here are only derived from the statistical errors of the line fluxes and do not include the scatter in the Kennicutt relation.

We note that when measuring the line fluxes and from these deriving the dust content, $E(B - V)$, we do not include the effect of Balmer stellar absorption. Wiersma (2011) found that the majority of GRB hosts with high S/N spectra show these absorption features; however, we do not detect any indication of an absorption trough around the emission lines (see specifically their fig. 5) and therefore do not include this effect in the line fits.

3.3 Metallicity

To infer the gas-phase metallicity of the host galaxy, we use the strong-line ratios (see Kewley & Ellison 2008, for a review) of the dust-corrected transitions measured from the spectrum. Specifically, we calculate the metallicity using the R_{23} calibration relating the dust-corrected line fluxes of [O ii], [O iii] and H β. This strong-line diagnostic, however, is double-valued for which an upper and lower branch exists. This degeneracy can be broken via the line ratio of [N ii]/[O ii], with values above [N ii]/[O ii] ≈ -1.2 indicative of the upper branch region. We measure [N ii]/[O ii] $= -0.90 \pm 0.01$ clearly validating this solution. Using the R_{23} calibration of Zaritsky, Kennicutt & Huchra (1994), this yields a relative oxygen abundance of $12 + \log (\text{O/H}) = 8.74 \pm 0.12$. The error on the derivation includes the scatter in the relations listed in Kewley & Ellison (2008). Assuming a solar relative oxygen abundance of $12 + \log (\text{O/H}) = 8.69$ (Asplund et al. 2009), this corresponds to a metallicity consistent with solar ($Z = 1.12 \pm 0.38 \text{Z}_\odot$). Relying instead on the O3N2 calibration (Kewley & Ellison 2008), we measure a relative oxygen abundance of $12 + \log (\text{O/H}) = 8.64 \pm 0.25$, consistent with the R_{23} emission-line diagnostic. Compared to the compilation of GRB host galaxies observed with X-shooter (Krühler et al. 2015), this particular host is among the top 20 per cent most metal-rich hosts at redshifts below one.

We note that it is also possible to derive the electron density and temperature directly from the observed line ratios, which would yield a more precise estimate of the metallicity. However, since we do not detect, for example, [S ii] λ 6731 and the auroral line [O ii] λ 4364, we are only able to put poorly constraining limits on the metallicity (see e.g. Wiersma et al. 2007, for a detailed example). Furthermore, the metallicities derived for the comparison sample described in Section 6 are all based on typical metallicity calibrations of strong line ratios, so to compare we adopt the metallicity derived from the R_{23} calibration.

Although GRBs were initially predicted to occur in very metal-poor ($Z/Z_\odot < 0.2–0.3$) environments (Yoon et al. 2006; Woosley & Heger 2006), they are commonly observed in galaxies with higher oxygen abundances. This apparent contradiction can be resolved if the host galaxies have significant internal chemical heterogeneity; however, the observed metallicity gradients appear to be small (see e.g. Christensen et al. 2008; Thöne et al. 2014; Izzo et al. 2017; Krühler et al. 2017). For comparison, Niino (2011) predicts that over 10 per cent of GRB host galaxies are expected to have oxygen abundances of $12 + \log (\text{O/H}) > 8.8$, assuming the same internal dispersion of gas-phase metallicity to that observed in the Milky Way (which is indeed not a good assumption for GRB hosts), even if the GRB progenitors are metal-poor. Significant metallicity dispersion was also found to be a viable explanation for the origin of long-duration GRBs in metal-rich host galaxies from the Illustris simulation (Bigmore et al. 2017). In our case, however, the explosion site of the GRB was located well within the FWHM of the host galaxy light. The inferred gas-phase metallicity is therefore likely representative of the physical conditions in the local environment of the GRB.

3.4 Rotation velocity

Only in a small number of cases, spatially resolved analyses of GRB host galaxies have been possible due to their low redshift...
(see e.g. Christensen et al. 2008; Thöne et al. 2008; Levesque et al. 2010b, 2011; Starling et al. 2011; Thöne et al. 2014; Michałowski et al. 2016; Krühler et al. 2017; Tanga et al. 2017). In our case, while not resolved in imaging, we detect a spatially resolved line profile of H α (Fig. 4) from which we can determine the rotational velocity of the system. As indicated in the figure, we measure a difference of the two peaks in velocity space of Δν = 173.63 ± 0.22 km s$^{-1}$, i.e. a rotational velocity of Vrot = 86.82 ± 0.11 km s$^{-1}$. Unfortunately, since we do not know the size and inclination of the host galaxy, we cannot determine a stellar mass based on a simple Tully–Fisher relation (but see Sections 3.5 and 3.7). Here, we have assumed that the blueshifted, weaker component is representing the spatial rotation of the galaxy. Another plausible scenario is that the weak emission component is emitted from a large-scale outflow or from a secondary galaxy merging with the primary (see Section 4.4). The total line flux of H α is determined by simply integrating the line profile and is given in Table 2. A double-component Gaussian function is a good approximation to the data as well, and is overplotted in red in the figure.

3.5 Broadband SED fit

Fitting the six archival broad-band magnitudes reported in Table 1 in LEPHARE\(^3\) (Arnouts et al. 1999; Ilbert et al. 2006), corrected for the foreground Galactic extinction, yields the best-fitting stellar population synthesis model shown in Fig. 5 and the following host galaxy parameters: attenuation E(B − V) = 0.01$^{+0.04}_{-0.01}$, (SFR) = 5.57 ± 4.40 M⊙ yr$^{-1}$, stellar mass log (M∗/M⊙) =

\[^3\text{http://www.cfht.hawaii.edu/arnouts/LEPHARE/lephare.html}\]

\(^9.80 ± 0.07\) and a stellar population of age = 286 ± 70 Myr. We obtained the best-fitting SED by fixing the redshift to z = 0.737 and used a grid of stellar evolution models with varying and exponentially decreasing star formation time-scales, age of stellar population and extinction assuming the models from Bruzual & Charlot (2003) based on an IMF from Chabrier (2003) and a Calzetti extinction curve (Calzetti et al. 2000). The SFR from the best-fitting SED is consistent with that estimated from the luminosity of the H α emission line, and the model contains little to no dust E(B − V) < 0.05 consistent with that inferred from the Balmer decrement.

3.6 Near-infrared luminosity

It was recently shown by Perley et al. (2016a,b), based on the observationally unbiased Swift GRB Host Galaxy Legacy Survey (SHOALS), that dusty (A_V > 1 mag) GRBs almost exclusively occur in the most infrared (3.6 μm) luminous host galaxies. Furthermore, they derived an envelope for strong GRB suppression in metal-rich hosts, which acts as a soft upper limit. A similar conclusion was reached by Vergani et al. (2015, 2017) based on the Swift/BAT6 sample of long-duration GRB hosts from which they were able to quantify a mild metallicity threshold of approximately 0.7 Z⊙, above which GRB production is significantly suppressed. This metallicity suppression is argued to be the cause of the fact that GRB hosts appear to be significantly underluminous as a population, especially at redshifts below z < 1.5, compared to typical luminosity-selected star-forming galaxies (Perley et al. 2016b; Vergani et al. 2017).

Although we cannot securely establish the extinction in the line of sight to the afterglow due to the small afterglow contribution at the time of observation, we have shown that the host galaxy does not appear to contain significant amounts of dust (examples of low A_V in the galaxy hosting GRBs with dusty afterglows are known though, see e.g. Krühler et al. 2011). In Fig. 6 (upper left-hand panel), we compare the absolute magnitude of the host of GRB 160804A to the GRB hosts in the SHOALS sample. We compute the absolute
Figure 6. Comparison of the host galaxy properties of GRB 160804A (red star symbol) to other GRB hosts at $z < 1.5$. We assume the oxygen abundance derived from the R_{23} calibration in this figure. The blue dots denote sources in the unbiased GRB host galaxy sample, SHOALS, and the black circles show sources in the compiled sample of GRB hosts observed with X-shooter (see text). Only a subset of the sources in the SHOALS sample have emission-line metallicity measurements and computed stellar masses. In the upper panel, the median magnitude of the SHOALS GRB host population (dashed blue) and the metallicity threshold derived by Perley et al. (2016b) converted to luminosity (solid blue) is also shown. In both the two lower panels, solar metallicity is marked as the dotted line. In the lower left-hand panel, the metallicity threshold is again shown as the solid blue line at $12 + \log(\text{O/H}) = 8.94$. In the lower right-hand panel, the mass-metallicity relation of typical luminosity detected star-forming galaxies at $z \approx 0.7$ is overplotted as well. The host of GRB 160804A is clearly among the most luminous, metal-rich and massive GRB host galaxies at these redshifts.

magnitude in the 3.6 μm-band of Spitzer as

$$M_{\text{3.6/(1+z)}} = m_{\text{obs,3.6}} - \mu(z) + 2.5 \log_{10}(1+z),$$

where $\mu(z)$ is the distance modulus given by $\mu(z) = 5 \log_{10}(d_L/10 \text{ pc})$ and d_L is again the luminosity distance at the given redshift in units of parsec. The apparent 3.6-µm magnitude, $m_{\text{obs,3.6}}$, was computed by integrating the best-fitting SED over the wavelength coverage of the 3.6-µm Spitzer transmission curve from which we then measure $m_{\text{obs,3.6}} = 20.77$ mag. This yields an absolute magnitude of $M_{\text{3.6/(1+z)}} = -21.94$ mag, which makes the galaxy hosting GRB 160804A among the most luminous 5 per cent of the GRB host population studied in the SHOALS sample.

Moreover, as mentioned above, this fairly dust-poor host galaxy is located in a region in infrared-luminosity-space that is otherwise almost exclusively populated by obscured, dusty GRBs (Perley et al. 2016b). In fact, the host galaxy of GRB 160804A is clearly not a typical GRB host in that sense, but instead resembles more the luminosity-selected field galaxies from, for example, the MODS survey of the GOODS-North field (Kajisawa et al. 2011) or the sources in the CANDELS survey of the UDS field (Galametz et al. 2013; Santini et al. 2015). See, for example, the comparison made by Perley et al. (2016b) specifically in their figs 3 and 5. GRB hosts with similar properties as the galaxy hosting GRB 160804A were predicted by Trenti et al. (2015) to constitute a significant fraction of $z < 2$ hosts, whereas observations suggest this group to be sparsely populated. The case of GRB 160804A is thus a step further towards this picture, lifting the threshold of metal-rich, luminous GRB hosts at $z < 1$.

3.7 Mass-metallicity relations at $z \approx 0.7$

So far it appears that the galaxy hosting GRB 160804A more closely resembles the general luminosity-selected star-forming population than that of GRB host galaxies. Having computed the SFR, metallicity and stellar mass, we can now investigate whether this is also true in terms of the mass-metallicity ($M_\ast-Z$) relation at $z \sim 0.7$ (e.g. Savaglio et al. 2005). The overall issue is still under debate: Several studies have found that GRB hosts generally fall below the standard $M_\ast-Z$ relation (Stanek et al. 2006; Kewley et al. 2007; Han et al. 2010; Levesque et al. 2010a; Mannucci, Salvaterra & Campisi 2011; Graham & Fruchter 2013; Jablji et al. 2016; Vergani et al. 2017), whereas, for example, Arabsalmani et al. (2018)
find that the offset could also partially be explained by systematic effects. Since galaxies hosting GRBs are a subset of the general population of star-forming galaxies, they are expected to follow the same M_\ast–Z relation, although typically located in the low-mass end. The intrinsic properties of GRB hosts, such as large outflows, higher specific star SFRs and star formation densities or higher gas fractions, however, could cause the observed offset to lower metallicities (Hughes et al. 2013; Arabaismani et al. 2018).

The linear bisector best-fitting of the M_\ast–Z relation at $z \sim 0.7$, computed from 56 galaxies at $0.4 < z < 1.0$ from the Gemini Deep Deep Survey (GDDS) and Canada–France Redshift Survey (CFRS), was derived by Savaglio et al. (2005) to be

$$12 + \log(O/H) = (0.478 \pm 0.058) \log(M_\ast/M_\odot) + (4.062 \pm 0.579).$$

Based on the measured emission-line oxygen abundance in our case, $12 + \log(O/H) = 8.74 \pm 0.12$ (from the R21 calibration), this yields an expected stellar-mass of $\log(M_\ast/M_\odot) = 9.79 \pm 0.05$ should it follow the same trend as the general star-forming galaxy population. This is perfectly consistent with that found from the best-fitting SED ($\log(M_\ast/M_\odot) = 9.80 \pm 0.07$).

We show the above linear relation and also the converted polynomial M_\ast–Z relation for star-forming galaxies at $z \sim 0.7$ from Savaglio et al. (2005) in Fig. 6 (lower right-hand panel) and how they both intercept with the GRB 160804A host galaxy in the M_\ast–Z plane. We also compare these two general mass-metallicity relations to the sources in the unbiased SHOALS sample and the compilation of GRB hosts observed with X-shooter (Krühler et al. 2015) in the redshift range $0.0 < z < 1.5$. Only a subset of the SHOALS host galaxies have emission-line metallicities (only those that overlap with the sources in the samples by Krühler et al. 2015; Japelj et al. 2016; Vergani et al. 2017) and stellar masses (Krühler & Schady, in preparation; see also Arabaismani et al. 2018). We note that the stellar masses derived from the M_\ast–Z relation in the SHOALS sample is typically 0.2–0.3 dex larger than the stellar masses obtained by fitting the same host galaxy SED from multiple optical or NIR photometric data points. This discrepancy was found by comparing the few sources in the SHOALS sample that overlaps with the hosts studied by Krühler & Schady for which multiwavelength photometry has been obtained. It is clear that the GRB hosts from the SHOALS sample generally fall below both of the two M_\ast–Z relations of typical star-forming galaxies at similar redshifts, more so than those from the XS-GRB host sample (which could be dominated by significant selection bias). The average offset between the hosts in the SHOALS survey and the polynomial M_\ast–Z relation for the general population of star-forming galaxies at $z = 0.7$ is 0.2 dex. Also, only two out of nine (≈20 per cent) of the SHOALS sources have super-solar metallicities, whereas 7 out of 18 (≈40 per cent) of the XS-GRBs have oxygen abundances higher than solar. This discrepancy is likely caused by the fact that the SHOALS sample is selected in an unbiased way, whereas the XS-GRB sample is merely a compilation of GRB hosts observed with VLT/X-shooter.

This establishes the galaxy hosting GRB 160804A as one of the most luminous, massive and metal-rich GRB hosts at $z < 1.5$. Although the low dust attenuation is unusual for such a massive and metal-rich galaxy, comparing it to the sample of star-forming galaxies presented by Garn & Best (2010) shows that, even though it falls below the general trend, it is still located within the scatter of attenuation as a function of SFR, metallicity and stellar mass. Furthermore, the properties of SFR, infrared luminosity, metallicity and stellar-mass closely follow the same prescriptions as for typical field galaxies in the same redshift range. Also, the host galaxies of the unbiased SHOALS sample with existing emission-line metallicities clearly fall below the general star-forming mass-metallicity relation at low-z’s, supporting previous claims.

4 HOST GALAXY ABSORPTION LINE ANALYSIS

4.1 Line identification

All metal lines are identified in the UVB arm of the spectrum, where we detect the absorption features from singly ionized iron: Fe II λ 2344, Fe II λ 2374, Fe II λ 2382, Fe II λ 2586, and magnesium: Mg II λ 2796, Mg II λ 2803 and Mg I λ 2852. They all lie at a common redshift of $z = 0.737$ and do therefore not belong to an intervening absorber. This indicates that we have a rare occurrence of a GRB where the absorption lines of the galaxy can be detected even in absence (approximately 15 per cent of the total flux, recall Section 2.2) of a strong underlying afterglow continuum. We searched for any of the typical Fe II fine-structure lines (Christensen et al. 2011) since these must be UV-pumped by a strong radiation field (Prochaska, Chen & Bloom 2006; Vreeswijk et al. 2007; D’Elia et al. 2009), which can only originate in the GRB afterglow. We do not detect any of the fine-structure lines (though we expect them to be weak in any case during the \approx22-h post-burst observations), further supporting that the spectrum and absorption lines are dominated by the host.

To determine the equivalent width (W) of the strong absorption lines, we fitted the continuum around each of the lines in regions that were free of contaminating absorption features and tellurics. We then summed over the absorption profile contained below the normalized flux level. The results are listed in Table 3. All features are heavily saturated, partly due to the medium resolution of the spectra where high-resolution spectra of GRB afterglows (Prochaska 2006) have shown that strong metal absorption lines usually consist of a number of narrow components. We therefore cannot derive a reliable column density based on Voigt profile fitting. Furthermore, there is evidence for a scenario where the absorption lines do not only probe the small-scale velocity components in the line of sight to the burst, but is rather a sum of the whole system as described below. This scenario would also be expected if the strong absorption lines are intrinsic to the host and not just a snapshot from the illumination by the afterglow emission.

Table 3. Measured rest-frame equivalent widths and the derived CoG column densities. The column densities derived for each transition are only to be taken as lower limits due to heavy line saturation.

Transition	λ_{obs} (Å)	W_{rest} (Å)	$\log N_{\text{CoG}}$ (cm$^{-2}$)
Fe II λ 2344	4071.63	2.26 ± 0.69	14.61 ± 0.12
Fe II λ 2374	4124.51	1.31 ± 0.55	14.92 ± 0.15
Fe II λ 2382	4138.08	2.15 ± 0.55	14.09 ± 0.10
Fe II λ 2586	4492.76	1.91 ± 0.62	14.67 ± 0.12
Fe II λ 2600	4515.27	4.28 ± 0.70	14.48 ± 0.07
Mg II λ 2796	4855.91	3.65 ± 0.58	13.94 ± 0.06
Mg II λ 2803	4868.22	4.98 ± 0.56	13.47 ± 0.05
Mg I λ 2852	4954.84	1.90 ± 0.37	13.16 ± 0.08
nebular lines of the H II regions, we derive absorption features, represented by the saturated Fe II (2006); Fynbo et al. (2010) and Arabsalmani et al. (2018), for all the procedure of, for example, Prochaska & Wolfe (1997); Ledoux et al. of the area under the apparent optical depth spectrum, following the description).

4.2 Column densities from the curve of growth
Due to the heavy line saturation in our medium resolution spectrum, we have to rely on a curve of growth (CoG) analysis to derive column densities for each element. The CoG directly relates the measured, rest-frame W to the column density on the linear part of the CoG where the optical depth is low ($\tau_0 < 1$) and the lines are not saturated. This relation depends on the Doppler b parameter on the flat part of the curve, where this value can typically be inferred from the CoG analysis (see e.g. Thöne et al. 2010, for a detailed description).

It is preferred to analyse lines that are not heavily saturated, which is not possible in our case. Therefore, we only derive lower limits to the column densities for each ion given by

$$N = \frac{W \, 1.13 \times 10^{20} \, \text{cm}^{-2}}{\lambda \, f \lambda \, [\AA]^2},$$

(6)

where f is the oscillator strength of each transition, W the equivalent width and λ is the rest-wavelength in units of \AA of each transition. The values are reported in Table 3.

4.3 Kinematics
The velocity dispersion, σ, of the H II regions in the galaxy hosting the GRB can be estimated by the average velocity dispersions of the Balmer and [O III] transitions. We calculate this by dividing the corrected, mean FWHM of these lines by $2\sqrt{\ln 2}$. From the nebular lines of the H II regions, we derive $\sigma = 78 \pm 17 \, \text{km s}^{-1}$. To compare the kinematics of the emission lines with that measured in absorption, we compute Δv_{90}, the velocity that contains 90 per cent of the area under the apparent optical depth spectrum, following the procedure of, for example, Prochaska & Wolfe (1997); Ledoux et al. (2006); Fynbo et al. (2010) and Arabsalmani et al. (2018), for all the absorption features, represented by the saturated Fe II λ 2600 line in Fig. 7. We caution that since the absorption lines are saturated, the width will tend to be overestimated (Ledoux et al. 2006). The absorbing material is also not in the line-of-sight to a point source, as is typically the case for quasars and GRB afterglows. Instead, the absorption lines probe an integrated region of the whole galaxy so that the estimate of Δv_{90} is not comparable to the values derived for typical GRB hosts (e.g. Arabsalmani et al. 2015, 2018).

The velocity width is measured to be $\Delta v_{90} = 265 \, \text{km s}^{-1}$. If the apparent optical depth of absorption profiles is identical to the emission line profiles, the two velocity widths should relate as $\Delta v_{90} = 3.29 \sigma$ (due to how they are defined, see e.g. the discussion in Arabsalmani et al. 2018). Converting the measured emission-line velocity dispersion into Δv_{90} following this definition yields $\Delta v_{90} = 260 \pm 60 \, \text{km s}^{-1}$, perfectly consistent with that measured directly from the absorption line profiles. This then supports the scenario that the absorption lines trace the same underlying velocity components of the host galaxy as the emission lines, compared to what is typically observed for the sightline probing only the neutral gas towards the GRB.

The centroids of the emission and absorption line profiles hold valuable information of the systemic redshift of the host galaxy as well. Specifically, the Balmer and [O III] emission lines are thought to trace the H II regions in the host, and thus the redshift of the star-forming component. In Fig. 8, we compare the Hα and the [O III] λ 5007 emission lines to the low-ionization, saturated Fe II λ 2600 absorption line. The absorption redshift is very similar.
to the systemic redshift. We note, however, that the shape of the absorption line profile appears to show similar resolved features as the emission lines but with a much stronger blue component. Similar line shapes of $[\text{O} \text{iii}] \lambda 5007$ were also reported by Wiersema et al. (2007) and Thöne et al. (2007), who also found shifts in the emission and absorption line centroids. The exact centroid of the absorption feature is hard to disentangle from the significant noise fluctuations and absorption line centroids. The exact centroid of the absorption component at ≈ -1 the absorption line profile is consistent with having an additional component seen in $\text{H} \alpha$ galaxy it was expelled from.

4.4 Evidence for a galactic-scale outflow

From a study of absorption features in a large sample of field-selected galaxies, Rubin et al. (2014) found that outflows are ubiquitous in normal, star-forming galaxies at $z \approx 0.5$. Specifically, the SFRs of the galaxies were tightly correlated with the outflow equivalent widths of Fe II $\lambda 2600$ and Mg II $\lambda \lambda 2796$, implying that larger SFRs cause an increased ejection of the absorbing clouds. Since the absorption line profile is consistent with having an additional component at $\approx -200 \text{ km s}^{-1}$ relative to the systemic redshift based on the strongest component of the emission lines (Fig. 8), there is evidence for a scenario where a galactic-scale outflow is being ejected from the galaxy hosting the GRB 160804A. This is also a plausible explanation for the additional emission component seen in Fig. 4 for $\text{H} \alpha$. Furthermore, the line transitions Fe II $\lambda \lambda 2586, 2600$ and Mg II $\lambda \lambda 2796, 2803$ are consistent within the errors to represent a covering fraction of the absorbing material of approximately 100 per cent, which is rare even in the large sample analysed by Rubin et al. (2014). The authors note that the expelled gas from the ejective stellar feedback process in these galaxies might be a viable source of material for the massive gas reservoirs observed as the circumgalactic medium around present day galaxies. The galaxy hosting GRB 160804A could then be a case of a star-forming galaxy ejecting extreme amounts of cool gas, covering the full size of the galaxy it was expelled from.

Intriguingly, such large outflows (and the additional emission component seen in $\text{H} \alpha$ and tentatively in $[\text{O} \text{iii}]$) might also be indicative of a scenario where the observed host galaxy is in a late-stage merger (just before fusion, see e.g. Soto et al. 2012). The large stellar mass, SFR and kinematics of the host galaxy studied here are consistent with that of the galaxy at $z = 0.41$ examined by Peirani et al. (2009), who found via N-body simulations that such characteristics could be explained by two merged galaxies near coalescence (see also Hammer et al. 2009, for a general study). This scenario would then explain the apparent discrepancy of this GRB host compared to others. Moreover, it is then possible that the secondary merged galaxy is actually metal-poor, in which the GRB explosion might have occurred.

5 CONCLUSIONS

In this work, we presented VLT/X-shooter spectroscopic follow-up observations of the Swift-detected GRB 160804A at $z = 0.737$. We examined both the emission and absorption line properties of the galaxy hosting this burst in detail and modelled it with archival photometric data to complement the newly obtained spectroscopic data.

From the data analysis we found the galaxy to show strong, prominent absorption features from several metal lines, indicative of a high metallicity, even in the absence of a bright underlying continuum such as the typical scenarios where the afterglow outshines the galaxy hosting the GRB. From emission-line diagnostics, we confirmed that the galaxy is indeed metal-rich, with a relative oxygen abundance consistent with solar ($12 + \log (\text{O}/\text{H}) = 8.74 \pm 0.12$). Moreover, given the relative position of the explosion site of the GRB to the host galaxy, there is tentative evidence that the GRB exploded in a metal-rich environment. The host appears to be dust-poor ($E(\beta - V) < 0.05$ mag), which is unusual for such large metallicities. Based on the line luminosity of $\text{H} \alpha$, we estimate the host to be forming stars at a rate of $4.46 \pm 0.02 \text{ M}_\odot \text{yr}^{-1}$ (the error reported here is only derived from the statistical errors of the line fluxes and does not include the scatter from the Kennicutt relation), and from the detected nebular lines, we measure an average velocity dispersion of $78 \pm 17 \text{ km s}^{-1}$. Both the small amount of dust and the SFR are reproduced by fitting stellar population synthesis models to the six broad-band photometric data points, where we also determine a stellar mass of $\log (M_*/\text{M}_\odot) = 9.80 \pm 0.07$.

An important piece to the puzzle of whether galaxies hosting GRBs are true tracers of star formation, or if they are biased towards lower metallicities, can be resolved by comparing an observationally unbiased sample of GRB hosts to the general population of star-forming galaxies. Although this case clearly resembles more that of luminosity-selected field galaxies at $z \approx 0.7$ in terms of luminosity, mass and metallicity, GRB hosts are generally found to be sub-luminous and to fall below the mass-metallicity relation of main-sequence star-forming galaxies. Specifically, we have here shown that a subset of the host galaxies at $z < 1.5$ in the observationally unbiased SHOALS survey with reported emission-line metallicities are on average 0.2 dex below the general mass-metallicity relation.

In addition to the observed nebular emission lines, we found that the strong absorption lines present in the spectrum are representative of the sum of velocity components in the host galaxy. Whereas GRB afterglows reveal velocity components of discrete clouds along the line of sight, we find that the observed strong absorption features actually show a rare occurrence of integrated host galaxy velocity components. These lines were furthermore detected even in the absence of a dominating afterglow continuum and must therefore be intrinsic to the host galaxy. Moreover, we found evidence for a scenario where the absorbing material is actually a galactic-scale outflow, covering ≈ 100 per cent of the galaxy it was expelled from. Large-scale outflows are found in the majority of $z \approx 0.5$ star-forming galaxies, but the case presented here is one of the most extreme. We argue that since such outflows are produced by intense star formation events, a scenario where the host galaxy is actually a late-stage merger might be plausible. This scenario could also explain the discrepancy between the properties of this specific GRB host galaxy compared to others at similar redshifts.

ACKNOWLEDGEMENTS

We would like to thank the anonymous referee for a constructive report provided in a timely manner. KEH and PJ acknowledge support by a Project Grant (162948–051) from The Icelandic Research Fund. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007–2013)/ERC Grant agreement no. EGGGS–278202. AUP, CCT and ZC acknowledge support from the Spanish Ministry of Economy and Competitivity under grant number AYA 2014–58381-P. AUP and CCT acknowledge support from the Spanish Ministry of Economy and Competitivity under grant number AYA 2014–58381-P. AUP acknowledges support from a grant from
the BBVA foundation for researchers and cultural creators. ZC acknowledges support from the Juan de la Cierva Incorporación fellowship ICI-2014-21669 and from the Spanish research project AYA 2014-58381-P. This research was based on observations carried out under the programme ID 097-A-0036 (PI: J. Fynbo) with the X-shooter spectrograph mounted at the Cassegrain Very Large Telescope (VLT), Unit 2 - Kueyen, operated by the European Southern Observatory (ESO) on Cerro Paranal, Chile; and on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias under program A327AC_5 (PI: D’Elia).

REFERENCES

Arabsalmani M., Møller P., Fynbo J. P. U., Christensen L., Freundling W., Savaglio S., Zafar T., 2015, MNRAS, 446, 990
Arabsalmani M. et al., 2018, MNRAS, 473, 3312
Arnouts S., Cristiani S., Moscardini L., Matarrese S., Lucchin F., Fontana A., Gillallt E., 1999, MNRAS, 310, 540
Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, A&A, 47, 481
Basa S., Cuby J. G., Savaglio S., Boissier S., Clément B., Flores H., Le Borgne D., Mazure A., 2012, A&A, 542, A103
Bignone L. A., Tissera P. B., Pellizza L. J., 2017, MNRAS, 469, 4921
Bloom J. S., Kulkarni S. R., Djorgovski S. G., Davies J. I., 2013, A&A, 550, A115
Bolmer J., Greiner J., 2016, GCN Circ., 19774
Breeveld A. A., Marshall F. E., 2016, GCN Circ., 19764
Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
Calzetti D., Armus L., Bohlin R. C., Kinney A. L., Koornneef J., Storchi-Bergmann T., 1994, ApJ, 494, 519
Calzetti D., Armus L., Bohlin R. C., Kinney A. L., Koornneef J., Storchi-Bergmann T., 2000, ApJ, 533, 682
Cano Z., Wang S.-Q., Dai Z.-G., Wu X.-F., 2017, Adv. Astron., 2017, 8929054
Christensen L., Hjorth J., Gilly S., 1999, MNRAS, 310, 540
Christensen L., Hjorth J., Gilly S., 2004, A&A, 423, 45
Christensen L., Hjorth J., Gilly S., 2006, Acta Astron., 56, 333
Cisternas M. et al., 2015, MNRAS, 457, 71
Cisternas M. et al., 2016, ApJ, 831, 108
Cisternas M. et al., 2017, MNRAS, 473, 4480
Civano F., Alexander D. M., Lusso E., et al., 2016, ApJ, 816, 91
Civano F., Elvis M., Hasinger G., et al., 2017, ApJ, 836, 7
Civano F., Alexander D. M., Lusso E., et al., 2018, ApJ, 859, 112
Civano F., Elvis M., Hasinger G., et al., 2019, ApJ, 880, 27
Civano F., Alexander D. M., Lusso E., et al., 2020, ApJ, 895, 79
Civano F., Elvis M., Hasinger G., et al., 2021, ApJ, 915, 167
Civano F., Alexander D. M., Lusso E., et al., 2022, ApJ, 924, 177
Civano F., Elvis M., Hasinger G., et al., 2023, ApJ, 954, 18
Civano F., Alexander D. M., Lusso E., et al., 2024, ApJ, 984, 123
Civano F., Elvis M., Hasinger G., et al., 2025, ApJ, 994, 137
Civano F., Elvis M., Hasinger G., et al., 2026, ApJ, 995, 147
Civano F., Elvis M., Hasinger G., et al., 2027, ApJ, 996, 157
Civano F., Elvis M., Hasinger G., et al., 2028, ApJ, 997, 167
Civano F., Elvis M., Hasinger G., et al., 2029, ApJ, 998, 177
Civano F., Elvis M., Hasinger G., et al., 2030, ApJ, 999, 187
Civano F., Elvis M., Hasinger G., et al., 2031, ApJ, 1000, 197
Civano F., Elvis M., Hasinger G., et al., 2032, ApJ, 1001, 207
Civano F., Elvis M., Hasinger G., et al., 2033, ApJ, 1002, 217
Civano F., Elvis M., Hasinger G., et al., 2034, ApJ, 1003, 227
Civano F., Elvis M., Hasinger G., et al., 2035, ApJ, 1004, 237
