Continuous-time Markov decision processes under the risk-sensitive average cost criterion

Qingda Wei¹, Xian Chen²*†
¹School of Economics and Finance, Huaqiao University, Quanzhou, 362021, P.R. China
²School of Mathematical Sciences, Peking University, Beijing, 100871, P.R. China

Abstract

This paper studies continuous-time Markov decision processes under the risk-sensitive average cost criterion. The state space is a finite set, the action space is a Borel space, the cost and transition rates are bounded, and the risk-sensitivity coefficient can take arbitrary positive real numbers. Under the mild conditions, we develop a new approach to establish the existence of a solution to the risk-sensitive average cost optimality equation and obtain the existence of an optimal deterministic stationary policy.

Keywords. Continuous-time Markov decision processes; risk-sensitive average cost criterion; optimality equation; optimal policy.

Mathematics Subject Classification. 93E20, 90C40

1 Introduction

Continuous-time Markov decision processes (CTMDPs) have wide applications, such as the queueing systems, control of the epidemic, telecommunication, population processes, inventory control; see, for instance, [6, 8, 9]. The expected average cost criterion is a commonly used optimality criterion in the theory of CTMDPs and has been widely studied under different sets of optimality conditions; see, for instance, [6, 9, 10] and the references therein. The random costs incurred during the finite time interval are evaluated by the mathematical expectation in the definition of the expected average cost criterion. In other words, the expected average cost criterion assumes that the decision-makers are risk-neutral. However, different decision-makers may have different risk preferences in the real-world applications. Hence, it is necessary for us to consider the attitude of a decision-maker towards the risk

*The corresponding author.
†Wei’s email: weiqd@hqu.edu.cn; Chen’s email: chenxian@amss.ac.cn
in the definition of the average cost criterion. As is well known, the utility function is an important tool to characterize the risk preferences of the decision-makers. In particular, the exponential utility function is a commonly used utility function and has been applied to reflect the risk attitudes of the decision-makers towards the random costs incurred in the MDPs; see, for instance, [2–4, 7] for discrete-time MDPs and [5] for CTMDPs. The average optimality criterion in [2–5, 7] is called risk-sensitive average cost criterion because the risk preferences of the decision-makers are taken into consideration. To the best of our knowledge, [5] is the first work to study the risk-sensitive average cost criterion for CTMDPs. The state space is a denumerable set, the cost rate function is nonnegative and bounded, the transition rates are bounded and satisfy the irreducibility condition and some Lyapunov-like inequality, and the risk-sensitivity coefficient of the exponential utility function is positive and satisfies some additional relation in [5].

In this paper we further study the risk-sensitive average cost criterion in the class of all randomized Markov policies for CTMDPs. The state space is a finite set and the action space is a Borel space. The cost rate function is bounded and allowed to take both nonnegative and negative values. The transition rates are bounded and the risk-sensitivity coefficient is allowed to take arbitrary positive real numbers. Under the irreducibility condition and the continuity and compactness conditions, we employ a new approach to establish the existence of a solution to the risk-sensitive average cost optimality equation, from which the existence of optimal policies is shown. More precisely, we first introduce an auxiliary risk-sensitive first passage optimization problem and obtain the properties of the optimal value function of the risk-sensitive first passage problem (see Theorem 3.1). Then using the Feynman-Kac formula and the results on the risk-sensitive first passage optimization problem, we show that the pair of the optimal value functions of the risk-sensitive average cost criterion and the risk-sensitive first passage problem is a solution to the risk-sensitive average cost optimality equation and that there exists an optimal deterministic stationary policy in the class of all randomized Markov policies (see Theorem 3.2). As far as we can tell, the risk-sensitive first passage optimization problem for CTMDPs is discussed for the first time in this paper. Moreover, since we remove the nonnegativity of the cost rate function, the Lyapunov-like inequality imposed on the transition rates and the additional relation required for the positive risk-sensitivity coefficient in [5], the optimality conditions in this paper are weaker than those in [5] except that the state space is a finite set. Furthermore, we deal with the risk-sensitive average cost criterion in a more general class of policies than that in [5] which investigates this criterion in the class of all deterministic stationary policies.

The rest of this paper is organized as follows. In Section 2, we introduce the decision model and the risk-sensitive average cost criterion. In Section 3, we give the optimality conditions and the main results whose proofs are presented in Section 4.
2 The decision model

The decision model we are concerned with is composed of the following components

\[
\{S, A, (A(i), i \in S), q(j|i, a), c(i, a)\},
\]

where the state space \(S\) is a finite set endowed with the discrete topology, the action space \(A\) is a Borel space with the Borel \(\sigma\)-algebra \(\mathcal{B}(A)\), and \(A(i) \in \mathcal{B}(A)\) is the set of all admissible actions in state \(i \in S\). Let \(K := \{(i, a) | i \in S, a \in A(i)\}\) be the set of all admissible state-action pairs. The real-valued transition rate \(q(j|i, a)\) satisfies the following properties: (i) For each fixed \(i, j \in S\), \(q(j|i, a)\) is measurable in \(a \in A(i)\); (ii) \(q(j|i, a) \geq 0\) for all \((i, a) \in K\) and \(j \neq i\); (iii) \(\sum_{j \in S} q(j|i, a) = 0\) for all \((i, a) \in K\). The real-valued cost rate function \(c(i, a)\) is measurable in \(a \in A(i)\) for each \(i \in S\).

A continuous-time Markov decision process evolves as follows. A decision-maker observes continuously the state of a dynamical system. When the system is in state \(i \in S\), an action \(a \in A(i)\) is chosen by the decision-maker according to some decision rule and such an intervention has the following consequences: (i) a cost is incurred at the rate \(c(i, a)\); (ii) the system remains in the state \(i\) for a random time following the exponential distribution with the tail function given by \(\varphi_{q(i,a)}\), and then jumps to a new state \(j \neq i\) with the probability \(-\frac{q(j|i,a)}{q(i,a)}\) (we make a convention that \(\frac{0}{0} := 0\)).

Let \(S_\infty := S \cup \{i_\infty\}\) with an isolated point \(i_\infty \notin S\), \(\mathbb{R}_+ := (0, +\infty)\), \(\Omega^0 := (S \times \mathbb{R}_+)\), \(\Omega := \Omega^0 \cup \{(i_0, \theta_1, i_1, \ldots, i_{m-1}, i_m, i_\infty, \theta_1, \ldots) | i_0 \in S, i_1 \in S, \theta_t \in \mathbb{R}_+ \text{ for each } 1 \leq l \leq m - 1, m \geq 2\}\), and \(\mathcal{F}\) be the Borel \(\sigma\)-algebra of \(\Omega\). For each \(\omega = (i_0, \theta_1, i_1, \ldots) \in \Omega\), define \(X_0(\omega) := i_0, T_0(\omega) := 0, X_m(\omega) := i_m, T_m(\omega) := \theta_1 + \theta_2 + \cdots + \theta_m\) for \(m \geq 1\), \(T_\infty(\omega) := \lim_{m \to \infty} T_m(\omega)\), and the state process

\[
\xi_t(\omega) := \sum_{m \geq 0} I_{\{T_m \leq t < T_{m+1}\}} i_m + I_{\{t \geq T_\infty\}} i_\infty \text{ for } t \geq 0,
\]

where \(I_D\) denotes the indicator function of a set \(D\). The process after \(T_\infty\) is regarded to be absorbed in the state \(i_\infty\). Hence, we write \(q(i_\infty|i_\infty, a_\infty) = 0, c(i_\infty, a_\infty) = 0, A(i_\infty) := \{a_\infty\}\), \(A_\infty := A \cup \{a_\infty\}\), where \(a_\infty\) is an isolated point. Let \(\mathcal{F}_t := \sigma\{\{T_m \leq s, X_m = i\} : i \in S, s \leq t, m \geq 0\} \text{ for } t \geq 0\), \(\mathcal{F}_{\rightarrow} := \bigvee_{0 \leq s < \infty} \mathcal{F}_t\), and \(\mathcal{P} := \sigma\{\{D \times \{0\}, D \in \mathcal{F}_0\} \cup \{D \times (s, \infty), D \in \mathcal{F}_{\rightarrow}, s > 0\}\}\) which denotes the \(\sigma\)-algebra of predictable sets on \(\Omega \times [0, \infty)\) related to \(\{\mathcal{F}_t\}_{t \geq 0}\).

Now we introduce the definition of a randomized Markov policy below.

Definition 2.1. A \(\mathcal{P}\)-measurable transition probability \(\pi(\cdot|\omega, t)\) on \((A_\infty, \mathcal{B}(A_\infty))\), concentrated on \(A(\xi_{t-}(\omega))\) is called a randomized Markov policy if there exists a kernel \(\varphi\) on \(A_\infty\) given \(S_\infty \times [0, \infty)\) such that \(\pi(\cdot|\omega, t) = \varphi(\cdot|\xi_{t-}(\omega), t)\). A policy \(\pi\) is said to be deterministic stationary if there exists a function \(f\) on \(S_\infty\) satisfying \(f(i) \in A(i)\) for all \(i \in S_\infty\) and \(\pi(\cdot|\omega, t) = \delta_{f(\xi_{t-}(\omega))}(\cdot)\), where \(\delta_x(\cdot)\) is the Dirac measure concentrated at the point \(x\).
The set of all randomized Markov policies and the set of all deterministic stationary policies are denoted by Π and F, respectively.

For any initial state \(i \in S \) and any \(\pi \in \Pi \), Theorem 4.27 in [8] gives the existence of a unique probability measure \(P_\pi^i \) on \((\Omega, \mathcal{F}) \). Moreover, the expectation operator with respect to \(P_\pi^i \) is denoted by \(E_\pi^i \).

Fix an arbitrary risk-sensitivity coefficient \(\lambda > 0 \) throughout this paper. For any \(i \in S \) and \(\pi \in \Pi \), the risk-sensitive average cost criterion is defined by

\[
J(i, \pi) = \limsup_{T \to \infty} \frac{1}{\lambda T} \ln E_\pi^i \left[e^{\lambda \int_0^T f_\lambda c(\xi_t, a) \pi(da|\xi_t, t) \, dt} \right].
\]

The corresponding optimal value function is given by

\[
J^*(i) := \inf_{\pi \in \Pi} J(i, \pi) \quad \text{for all } i \in S.
\]

Definition 2.2. A policy \(\pi^* \in \Pi \) is said to be optimal if \(J(i, \pi^*) = J^*(i) \) for all \(i \in S \).

The main goals of this paper are to give the conditions for the existence of optimal policies and to develop a new approach to establish the existence of a solution to the risk-sensitive average cost optimality equation.

3 The optimality conditions and main results

In this section, we establish the existence of a solution to the risk-sensitive average cost optimality equation, from which the existence of optimal policies can be shown. To this end, we first introduce the following optimality conditions.

Assumption 3.1.

(i) For each \(i \in S \), the set \(A(i) \) is compact.

(ii) For each \(i, j \in S \), the functions \(c(i, a) \) and \(q(j|i, a) \) are continuous in \(a \in A(i) \).

(iii) For each \(f \in F \), the corresponding continuous-time Markov chain \(\{\xi_t, t \geq 0\} \) is irreducible, which means that for any two states \(i \neq j \), there exist different states \(j_1 = i, j_2, \ldots, j_m \) such that \(q(j_2|j_1, f) \cdots q(j_m|j_{m-1}, f) > 0 \), where \(q(j|i, f) := q(j|f(i)) \).

Remark 3.1. Assumptions 3.1(i) and 3.1(ii) are the standard continuity and compactness conditions which have been widely used in CTMDPs; see, for instance, [5, 6, 10] and the references therein. Moreover, Assumption 3.1(i) and the Tychonoff theorem imply that \(F \) is compact and metrizable. Assumption 3.1(iii) is the so-called irreducibility condition which is commonly used in the average cost criterion; see, for instance, [6] for the expected average case and [5] for the risk-sensitive average case.
In order to prove the existence of optimal policies, we introduce the following notation.

For any fixed state \(z \in S \), set \(\tau_z := \inf\{t \geq T_1 : \xi_t = z\} \) with \(\inf \emptyset := \infty \). For each \(i \in S \) and \(f \in F \), let \(c(i, f) := c(i, f(i)) \). Below we introduce a risk-sensitive first passage optimization problem which has not been discussed in the existing literature. For each \(g \in \mathbb{R} := (-\infty, \infty), i \in S \) and \(f \in F \), we define

\[
 h_g(i, f) := \frac{1}{\lambda} \ln E^f_i \left[e^{\lambda f^* \pi(c(\xi_t, f) - g) dt} \right] \quad \text{and} \quad h_g^*(i) := \inf_{f \in F} h_g(i, f). \tag{3.1}
\]

The function \(h_g^* \) on \(S \) is called the optimal value function of the risk-sensitive first passage problem. Moreover, we set

\[
 G := \{ g \in \mathbb{R} | h_g^*(z) \leq 0 \} \quad \text{and} \quad \mathcal{F} := \inf G. \tag{3.2}
\]

Now we state the first main result on the properties of the functions \(h_g \) and \(h_g^* \).

Theorem 3.1. Under Assumption [31] the following statements hold.

(a) The set \(G \) is nonempty.

(b) For each \(g \in \mathbb{R} \) and \(f \in F \), the function \(h_g(\cdot, f) \) on \(S \) satisfies the following equations:

\[
 \begin{cases}
 e^{\lambda h_g(i, f)} = Q(i, f, g) \left(q(z|i, f) + \sum_{j \in S_i \setminus \{i, z\}} e^{\lambda h_g(j, f)} q(j|i, f) \right) \\
 e^{\lambda h_g(z, f)} = Q(z, f, g) \left(\sum_{j \in S_i \setminus \{z\}} e^{\lambda h_g(j, f)} q(j|z, f) \right)
 \end{cases} \tag{3.3}
\]

for all \(i \in S \setminus \{z\} \), where we set \(Q(i, f, g) := \int_0^\infty e^{\lambda(c(i, f) - g)s + q(i, f)s} ds \) and make a convention that \(0 \cdot \infty := 0 \).

(c) For each \(g \in \mathbb{R} \) and \(i \in S \), the function \(Q(i, a, g) := \int_0^\infty e^{\lambda(c(i, a) - g)s + q(i, a)s} ds \) is continuous in \(a \in A(i) \). Moreover, \(Q(i, a, g) \left(q(z|i, a) + \sum_{j \in S_i \setminus \{i, z\}} e^{\lambda h_g(j, a)} q(j|i, a) \right) \) (for \(i \in S \setminus \{z\} \)) and \(Q(z, a, g) \sum_{j \in S_i \setminus \{z\}} e^{\lambda h_g(j, a)} q(j|z, a) \) are lower semi-continuous in \(a \in A(i) \) and \(a \in A(z) \), respectively.

(d) For each \(g \in G \), the function \(h_g^* \) on \(S \) satisfies the following equations

\[
 \begin{cases}
 e^{\lambda h_g^*(i)} = \inf_{a \in A(i)} \left\{ Q(i, a, g) \left(q(z|i, a) + \sum_{j \in S_i \setminus \{i, z\}} e^{\lambda h_g^*(j)} q(j|i, a) \right) \right\} \\
 e^{\lambda h_g^*(z)} = \inf_{a \in A(z)} \left\{ Q(z, a, g) \sum_{j \in S_i \setminus \{z\}} e^{\lambda h_g^*(j)} q(j|z, a) \right\}
 \end{cases} \tag{3.4}
\]

for all \(i \in S \setminus \{z\} \). Moreover, there exists a policy \(f_g \in F \) with \(f_g(i) \in A(i) \) attaining the minimum of \(\{3.4\} \), and for any \(f_g \in F \) with \(f_g(i) \in A(i) \) attaining the minimum of \(\{3.4\} \), we have \(h_g^*(i, f_g) = h_g^*(i) \in \mathbb{R} \) and \(Q(i, f_g, g) < \infty \) for all \(i \in S \).

(e) We have \(\mathcal{F} \in G \) and \(h_{\mathcal{F}}^*(z) = 0 \).

Proof. See Section 4. \qed
Below we present the second main result on the risk-sensitive average cost optimality equation (3.5) and the existence of optimal policies.

Theorem 3.2. Suppose that Assumption 3.1 is satisfied. Let \(\overline{g} \) and \(h^*_g \) be as in (3.1) and (3.2). Then we have

(a) The pair \((\overline{g}, h^*_g)\) \(\in \mathbb{R} \times B(S)\) satisfies the following equation:

\[
\lambda \overline{g} e^{\lambda h^*_g(i)} = \inf_{a \in A(i)} \left\{ \lambda c(i, a) e^{\lambda h^*_g(i)} + \sum_{j \in S} e^{\lambda h^*_g(j)} q(j|i, a) \right\}
\]

(3.5)

for all \(i \in S \), where \(B(S) \) denotes the set of all real-valued functions on \(S \). Moreover, there exists \(f^* \in F \) with \(f^*(i) \in A(i) \) attaining the minimum of (3.5).

(b) For any \(f^* \in F \) with \(f^*(i) \in A(i) \) attaining the minimum of (3.5), we have \(J^*(i) = J(i, f^*) = \overline{g} \) for all \(i \in S \). Hence, the policy \(f^* \) is risk-sensitive average optimal.

Proof. See Section 4. \(\square\)

Remark 3.2. (a) In this paper we use a new approach to obtain the existence of a solution to the risk-sensitive average cost optimality equation (3.5). Moreover, we discuss the risk-sensitive average cost criterion in the class of all randomized Markov policies whereas \(\text{[5]}\) restricts the study of this criterion to the class of all deterministic stationary policies.

(b) Theorem 3.2 establishes the existence of a solution to the risk-sensitive average cost optimality equation and the existence of optimal policies under the weaker conditions than those in \(\text{[5]}\) except that the state space is a finite set in this paper. More precisely, we retain the irreducibility condition and the standard continuity and compactness conditions imposed in \(\text{[5]}\), and remove the condition (A5) (i.e., the Lyapunov-like inequality) in \(\text{[5]}\). Moreover, the cost rate function \(c \) is assumed to be nonnegative and bounded and the positive risk-sensitivity coefficient \(\lambda \) is required to satisfy the relation that \(\lambda \max_{(i,a) \in K} c(i,a) < b \) (for some constant \(b > 0 \)) in \(\text{[5]}\) whereas we allow the cost rate function to take both nonnegative and negative values and there are no restrictions on the positive risk-sensitivity coefficient.

4 Proofs of Theorems 3.1 and 3.2

In this section, we give the proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1 (a) Let \(M := \max_{(i,a) \in K} c(i,a) \). Then we have \(h_M(i, f) \leq 0 \) for all \(i \in S \) and \(f \in F \), which implies \(h^*_M(z) \leq 0 \). Hence, the set \(G \) is nonempty.

(b) Fix any \(g \in \mathbb{R} \) and \(f \in F \). By (3.1), for any \(i \in S \setminus \{z\} \), we obtain

\[
e^{\lambda h_g(i,f)} = E^f_i \left[e^{\lambda \int_0^z (c(\xi,t,f) - g) dt} I_{\{T_1 = T_2\}} \right] + E^f_i \left[e^{\lambda \int_0^z (c(\xi,t,f) - g) dt} I_{\{T_2 > T_1\}} \right]
\]
Hence, part (b) follows from the last equality and (4.1). Furthermore, it follows from Assumption 3.1(ii) and the Fatou lemma that

$$\lim_{n \to \infty} E_i^f \left[e^{\lambda c(i,f) - g} T_1 I_{\{\tau_2 = T_1\}} \right] = E_i^f \left[e^{\lambda f_n T_1 (c(\xi,t) - g) dt} I_{\{\tau_2 > T_1\}} E_i^f \left[e^{\lambda f_n T_2 (c(\xi,t) - g) dt} | \xi_{T_1} \right] \right]$$

$$= E_i^f \left[e^{\lambda c(i,f) - g} T_1 I_{\{\tau_2 = T_1\}} \right] + E_i^f \left[e^{\lambda c(i,f) - g} T_1 I_{\{\tau_2 > T_1\}} e^{\lambda h_2(\xi_{T_1}, f)} \right]$$

$$= \int_0^\infty e^{\lambda c(i,f) - g} s e^{g(i,f)s} ds \left(q(z|i, f) + \sum_{j \in S \setminus \{i, z\}} e^{\lambda h_2(j,f)} q(j|i, f) \right),$$

(4.1)

where the last equality is due to Proposition B.8 in [6, p.205]. On the other hand, using the similar arguments of (4.1), we have

$$e^{\lambda h_2(z,f)} = E_z^f \left[e^{\lambda c(z,f) - g} T_1 I_{\{\tau_2 > T_1\}} e^{\lambda h_2(\xi_{T_1}, f)} \right]$$

$$= \int_0^\infty e^{\lambda c(z,f) - g} s e^{g(z,f)s} ds \sum_{j \in S \setminus \{z\}} e^{\lambda h_2(j,f)} q(j|z, f).$$

Hence, part (b) follows from the last equality and (4.1).

(c) Fix any \(g \in \mathbb{R} \) and \(i \in S \). Let \(\{a_n, n \geq 1\} \subseteq A(i) \) be an arbitrary sequence converging to \(a \in A(i) \). We deal with the cases \(Q(i, a, g) < \infty \) and \(Q(i, a, g) = \infty \) as follows.

Case 1: \(Q(i, a, g) < \infty \). Assumption 3.1(ii) gives \(\lim_{n \to \infty} \lambda c(i, a_n) + q(i|i, a_n) = \lambda c(i, a) + q(i|i, a) \). Note that \(\lambda c(i, a) - \lambda g + q(i|i, a) < 0 \). Thus, there exists a positive integer \(n_0 \) such that \(\lambda c(i, a_n) - \lambda g + q(i|i, a_n) < 0 \) for all \(n \geq n_0 \). Hence, we obtain

$$Q(i, a_n, g) = \frac{1}{\lambda g - \lambda c(i, a_n) - q(i|i, a_n)} \quad \text{for all} \ n \geq n_0,$$

which together with Assumption 3.1(ii) yields \(\lim_{n \to \infty} Q(i, a_n, g) = Q(i, a, g) \). Therefore, \(Q(i, a, g) \) is continuous in \(a \in A(i) \).

Case 2: \(Q(i, a, g) = \infty \). The inequality \(\lim \sup_{n \to \infty} Q(i, a_n, g) \leq Q(i, a, g) \) obviously holds. Thus, \(Q(i, a, g) \) is upper semi-continuous in \(a \in A(i) \). Moreover, by the Fatou lemma and Assumption 3.1(ii), we have that \(Q(i, a, g) \) is lower semi-continuous in \(a \in A(i) \). Hence, \(Q(i, a, g) \) is continuous in \(a \in A(i) \).

Furthermore, it follows from Assumption 3.1(ii) and the Fatou lemma that

$$Q(i, a, g) \left(q(z|i, a) + \sum_{j \in S \setminus \{i, z\}} e^{\lambda h_2(j)} q(j|i, a) \right) \quad \text{for} \ i \in S \setminus \{z\}$$

and \(Q(z, a, g) \sum_{j \in S \setminus \{z\}} e^{\lambda h_2(j)} q(j|z, a) \) are lower semi-continuous in \(a \in A(i) \) and \(a \in A(z) \), respectively.

(d) Fix any \(g \in G \). Employing (3.1) and (3.3), we get

$$\left\{ \begin{array}{l}
 e^{\lambda h_2(i)} \geq \inf_{a \in A(i)} \left\{ Q(i, a, g) \left(q(z|i, a) + \sum_{j \in S \setminus \{i, z\}} e^{\lambda h_2(j)} q(j|i, a) \right) \right\} \\
 e^{\lambda h_2(z)} \geq \inf_{a \in A(z)} \left\{ Q(z, a, g) \sum_{j \in S \setminus \{z\}} e^{\lambda h_2(j)} q(j|z, a) \right\}
\end{array} \right.$$ \hspace{1cm} (4.2)
for all $i \in S \setminus \{z\}$. Moreover, by part (c) and Assumption 3.1(i), there exists $f_g \in F$ with $f_g(i) \in A(i)$ attaining the minimum of (4.2) such that

$$
\begin{aligned}
\left\{ \begin{array}{l}
e^{\lambda h_y(i)} \geq Q(i, f_g, g) \left(q(z|i, f_g) + \sum_{j \in S \setminus \{i, z\}} e^{\lambda h_y(j)} q(j|i, f_g) \right) \\
e^{\lambda h_y(z)} \geq Q(z, f_g, g) \sum_{j \in S \setminus \{z\}} e^{\lambda h_y(j)} q(j|z, f_g)
\end{array} \right. \tag{4.3}
\end{aligned}
$$

for all $i \in S \setminus \{z\}$. For any $j \neq z$, Assumption 3.1(iii) implies that there exist different states $j_1 = z, j_2, \ldots , j_m = j$ such that $q(j_{n+1}|j_n, f_g) > 0$ for all $n = 1, \ldots , m - 1$, which together with $e^{\lambda h_y(z)} < \infty$ and (4.3) yields $e^{\lambda h_y(j)} < \infty$ for all $j \in S$. By (3.1) and part (b) we obtain

$$
\begin{aligned}
\left\{ \begin{array}{l}
e^{\lambda h_y(i)} \leq Q(i, f_g, g) \left(q(z|i, f_g) + \sum_{j \in S \setminus \{i, z\}} e^{\lambda h_y(j)} q(j|i, f_g) \right) \\
e^{\lambda h_y(z)} \leq Q(z, f_g, g) \sum_{j \in S \setminus \{z\}} e^{\lambda h_y(j)} q(j|z, f_g)
\end{array} \right. \tag{4.4}
\end{aligned}
$$

for all $i \in S \setminus \{z\}$. On the other hand, we have

$$
e^{\lambda h_y(i)} \geq \sum_{m=1}^{n} E_i^{f_g} \left[e^{\lambda \int_0^{T_m} (c(\xi, f_g) - g) dt} I_{\{\xi_{T_0} \neq z, \ldots , \xi_{T_{m-1}} \neq z, \xi_{T_m} = z\}} \right] + E_i^{f_g} \left[e^{\lambda \int_0^{T_m} (c(\xi, f_g) - g) dt} e^{\lambda h_y(\xi_{T_m})} I_{\{\xi_{T_0} \neq z, \ldots , \xi_{T_m} \neq z\}} \right] \tag{4.5}
$$

for all $i \in S \setminus \{z\}$ and $n = 1, 2, \ldots$. In fact, employing (4.3), we obtain

$$
e^{\lambda h_y(\xi_{T_m})} \geq E_i^{f_g} \left[e^{\lambda \int_0^{T_m+1} (c(\xi, f_g) - g) dt} I_{\{\xi_{T_{m+1}} = z\}} I_{\{\xi_{T_m} \neq z\}} \right] + E_i^{f_g} \left[e^{\lambda \int_0^{T_m+1} (c(\xi, f_g) - g) dt} e^{\lambda h_y(\xi_{T_{m+1}})} I_{\{\xi_{T_{m+1}} \neq z\}} I_{\{\xi_{T_m} \neq z\}} \right] \tag{4.6}
$$

for all $\xi_{T_m} \in S \setminus \{z\}$ and $m = 0, 1, \ldots$. Thus, (4.5) holds for $n = 1$. Suppose that (4.5) holds for $n = l \geq 1$. Then we have

$$
e^{\lambda h_y(i)} \geq \sum_{m=1}^{l} E_i^{f_g} \left[e^{\lambda \int_0^{T_m} (c(\xi, f_g) - g) dt} I_{\{\xi_{T_0} \neq z, \ldots , \xi_{T_{m-1}} \neq z, \xi_{T_m} = z\}} \right] + E_i^{f_g} \left[e^{\lambda \int_0^{T_m} (c(\xi, f_g) - g) dt} e^{\lambda h_y(\xi_{T_m})} I_{\{\xi_{T_0} \neq z, \ldots , \xi_{T_m} \neq z\}} \right] \geq \sum_{m=1}^{l+1} E_i^{f_g} \left[e^{\lambda \int_0^{T_m} (c(\xi, f_g) - g) dt} I_{\{\xi_{T_0} \neq z, \ldots , \xi_{T_{m-1}} \neq z, \xi_{T_m} = z\}} \right] + E_i^{f_g} \left[e^{\lambda \int_0^{T_{l+1}} (c(\xi, f_g) - g) dt} e^{\lambda h_y(\xi_{l+1})} I_{\{\xi_{T_0} \neq z, \ldots , \xi_{l+1} \neq z\}} \right]
$$

for all $i \in S \setminus \{z\}$, where the last inequality is due to (4.6). Hence, (4.5) holds for $n = l + 1$. Therefore, by the induction, we obtain that (4.5) holds for all $n \geq 1$. Moreover, employing (4.5) we get

$$
e^{\lambda h_y(i)} \geq \sum_{m=1}^{\infty} E_i^{f_g} \left[e^{\lambda \int_0^{T_m} (c(\xi, f_g) - g) dt} I_{\{\tau = T_m\}} \right] = e^{\lambda h_y(i, f_g)}, \tag{4.7}
$$
which together with (3.1) implies
\(e^{\lambda h_g^*(i)} = e^{\lambda h_g(i, f_g)} < \infty \) for all \(i \in S \setminus \{ z \} \).

(4.8)

Thus, by (4.4) and (4.8) we have
\[
 e^{\lambda h_g^*(i)} \leq Q(i, f_g, g) \left(q(z|i, f_g) + \sum_{j \in S \setminus \{i, z\}} e^{\lambda h_g^*(j)} q(j|i, f_g) \right)
\]
\[
 = \inf_{a \in A(i)} \left\{ Q(i, a, g) \left(q(z|i, a) + \sum_{j \in S \setminus \{i, z\}} e^{\lambda h_g^*(j)} q(j|i, a) \right) \right\},
\]
which together with (4.2) yields
\[
 e^{\lambda h_g^*(i)} = \inf_{a \in A(i)} \left\{ Q(i, a, g) \left(q(z|i, a) + \sum_{j \in S \setminus \{i, z\}} e^{\lambda h_g^*(j)} q(j|i, a) \right) \right\}
\]
(4.9)

for all \(i \in S \setminus \{ z \} \). Using the similar arguments of (4.8) and (4.9), we obtain
\[
 e^{\lambda h_g^*(z)} = e^{\lambda h_g(z, f_g)} < \infty \quad \text{and} \quad e^{\lambda h_g^*(z)} = \inf_{a \in A(z)} \left\{ Q(z, a, g) \sum_{j \in S \setminus \{z\}} e^{\lambda h_g^*(j)} q(j|z, a) \right\}.
\]
(4.10)

Hence, the function \(h_g^* \) on \(S \) is a solution to the equation (3.4). Furthermore, by (4.8), (4.10) and Assumption 3.1(iii), we have
\[
 e^{\lambda h_g^*(i)} = e^{\lambda h_g(i, f_g)} \geq E_i^{f_g} \left[e^{\lambda (\min_{(i, a) \in K} c(i, a) - g)} \right] > 0,
\]
which implies \(h_g^*(i) > -\infty \) for all \(i \in S \). Therefore, from (4.8), (4.10), we conclude that for any \(f_g \in F \) with \(f_g(i) \in A(i) \) attaining the minimum of (3.4), \(h_g(i, f_g) = h_g^*(i) \in \mathbb{R} \) and \(Q(i, f_g, g) < \infty \) for all \(i \in S \).

(e) Let \(\{g_n, n \geq 1\} \subseteq G \) be a sequence satisfying
\[
 g_n \geq g_{n+1} \quad \text{for all} \quad n \geq 1 \quad \text{and} \quad \lim_{n \to \infty} g_n = \overline{g}.
\]
(4.11)

Then by part (d), for each \(n \geq 1 \), there exists \(f_{g_n} \in F \) such that
\[
\begin{align*}
 e^{\lambda h_g^*(i)} &= Q(i, f_{g_n}, g_n) \left(q(z|i, f_{g_n}) + \sum_{j \in S \setminus \{i, z\}} e^{\lambda h_g^*(j)} q(j|i, f_{g_n}) \right) \\
 e^{\lambda h_g^*(z)} &= Q(z, f_{g_n}, g_n) \sum_{j \in S \setminus \{z\}} e^{\lambda h_g^*(j)} q(j|z, f_{g_n})
\end{align*}
\]
(4.12)

for all \(i \in S \setminus \{ z \} \). Since \(F \) is compact, there exist a subsequence of \(\{f_{g_n}, n \geq 1\} \) (still denoted by the same subsequence) and some \(\hat{f} \in F \) such that
\[
 f_{g_n}(i) \to \hat{f}(i) \quad \text{as} \quad n \to \infty
\]
(4.13)
for all \(i \in S \). Moreover, using (3.1) and (1.11), we have \(h^*_{g_n}(i) \leq h^*_{g_{n+1}}(i) \leq h^*_{g}(i) \) for all \(n \geq 1 \), which gives

\[
\lim_{n \to \infty} h^*_{g_n}(i) =: \hat{h}(i) \leq h^*_{g}(i) \quad \text{for all } i \in S. \tag{4.14}
\]

Employing (4.11)-(4.14) and the Fatou lemma, we obtain

\[
\begin{aligned}
&\left\{
\begin{array}{ll}
\lambda_c(i, f) \geq Q(i, f, \overline{\gamma}) \left(q(z|i, f) + \sum_{j \in S(z,i)} e^{\lambda h(j)} q(j|i, f) \right) \\
\lambda_c(z, f) \geq Q(z, f, \overline{\gamma}) \sum_{j \in S(z, i)} e^{\lambda h(j)} q(j|z, f)
\end{array}
\right.
\end{aligned}
\tag{4.15}
\]

for all \(i \in S \setminus \{z\} \). Thus, by (4.15) and the similar arguments of (4.7), we get \(\hat{h}(i) \geq h^*_{g}(i) \), which together with (4.14) gives \(\hat{h}(i) = h^*_{g}(i) \) for all \(i \in S \). Note that \(\hat{h}(z) \leq 0 \). Hence, we have \(h^*_{g}(z) \leq 0 \), which implies \(\overline{\gamma} \in G \). Suppose that \(h^*_{g}(z) < 0 \). Let \(f_{\overline{\gamma}} \in F \) be the policy with \(f_{\overline{\gamma}}(i) \in A(i) \) attaining the minimum of (3.4) and \(\beta_n := e^{n \lambda \hat{h}(z)} \) \((n = 1, 2, \ldots) \). By part (d) we get \(\lambda_c(i, f_{\overline{\gamma}}) - \lambda \overline{\gamma} + q(i|i, f_{\overline{\gamma}}) < 0 \) for all \(i \in S \). Thus, for each \(n \geq 1 \), we define the new transition rates as follows:

\[
p_n(z|z, f_{\overline{\gamma}}) := -\beta_{n-1}, \quad p_n(j|z, f_{\overline{\gamma}}) := -\frac{\beta_n e^{\lambda n j z f_{\overline{\gamma}}}}{\lambda c(z, f_{\overline{\gamma}}) - \lambda \overline{\gamma} + q(z|z, f_{\overline{\gamma}})} \quad \text{for all } j \in S \setminus \{z\}, \tag{4.16}
\]

and for any \(i \in S \setminus \{z\} \),

\[
p_n(i|i, f_{\overline{\gamma}}) := -\beta_n e^{\lambda n i f_{\overline{\gamma}}}, \quad p_n(z|i, f_{\overline{\gamma}}) := -\frac{\beta_n q(z|i, f_{\overline{\gamma}})}{\lambda c(i, f_{\overline{\gamma}}) - \lambda \overline{\gamma} + q(i|i, f_{\overline{\gamma}})}, \tag{4.17a}
\]

\[
p_n(j|i, f_{\overline{\gamma}}) := -\frac{\beta_n e^{\lambda n j i f_{\overline{\gamma}}}}{\lambda c(i, f_{\overline{\gamma}}) - \lambda \overline{\gamma} + q(i|i, f_{\overline{\gamma}})} \quad \text{for all } j \in S \setminus \{i, z\}. \tag{4.17b}
\]

For the policy \(f_{\overline{\gamma}} \in F \) and any initial state \(i \in S \), the probability measure and expectation operator corresponding to the transition rates \(p_n \) defined in (4.16)-(4.18) are denoted by \(P_{i,n}^{f_{\overline{\gamma}}} \) and \(E_{i,n}^{f_{\overline{\gamma}}} \), respectively. For any \(\varepsilon > 0 \) and \(n \geq 1 \), define

\[
H_{\varepsilon,n}(i) := \frac{1}{\lambda} \ln E_{i,n}^{f_{\overline{\gamma}}} \left[e^{\lambda \varepsilon t_n} \right] \quad \text{for all } i \in S.
\]

By part (d), we have \(e^{\lambda \hat{h}(i)} > 0 \) and \(p_n(i|i, f_{\overline{\gamma}}) < 0 \) for all \(i \in S \). Observe that \(e^{\lambda \hat{h}(z)} < 1 \). Thus, there exists a positive integer \(n_1 \) such that

\[
\beta_{n_1} \leq \min_{i \in S} \left\{ [\lambda \overline{\gamma} - \lambda c(i, f_{\overline{\gamma}}) - q(i|i, f_{\overline{\gamma}})] e^{-\lambda \hat{h}(i)} \right\}. \tag{4.19}
\]

For any \(\varepsilon \in (0, \min_{i \in S} \left\{ -\frac{1}{\lambda} p_n(i|i, f_{\overline{\gamma}}) \right\}) \), we denote \(o_{n_1} \), using (4.16)-(4.18) and the similar arguments of part (b), we obtain

\[
\begin{aligned}
&\left\{ e^{\lambda H_{\varepsilon,n_1}(i)} = -\frac{1}{\beta_{n_1} e^{-\lambda \hat{h}(i)} - \lambda \epsilon} \left(\frac{\beta_n q(z|i, f_{\overline{\gamma}})}{\lambda c(i, f_{\overline{\gamma}}) - \lambda \overline{\gamma} + q(i|i, f_{\overline{\gamma}})} + \sum_{j \in S(z, i)} \frac{\beta_n e^{\lambda H_{\varepsilon,n_1}(j)+\lambda \hat{h}(j)}}{\lambda c(j, f_{\overline{\gamma}}) - \lambda \overline{\gamma} + q(j|z, f_{\overline{\gamma}})} \right) \right.
\end{aligned}
\tag{4.20a}
\]
for all \(i \in S \setminus \{z\}\). On the other hand, by (4.16)-(4.18) and Assumption 3.1 for each \(i \in S\), we have \(P_{i,n_1}(\tau_z < \infty) > 0\). Let \(\alpha_1 := \min_{i \in S} P_{i,n_1}(\tau_z < \infty)\). Note that \(P_{i,n_1}(\tau_z < \infty) = \lim_{n \to \infty} P_{i,n_1}(\tau_z < n)\). Thus, for each \(i \in S\), there exists an integer \(n(i)\) (depending on \(i \in S\)) such that \(P_{i,n_1}(\tau_z < n(i)) \geq P_{i,n_1}(\tau_z < \infty) - \alpha_1 \geq \frac{\alpha_1}{2}\). Hence, taking \(t_1 := \max_{i \in S} n(i)\), we obtain

\[
P_{i,n_1}(\tau_z > t_1) \leq 1 - \frac{\alpha_1}{2}
\]

for all \(i \in S\). Employing the last inequality and an induction argument, we get

\[
P_{i,n_1}(\tau_z > nt_1) \leq \left(1 - \frac{\alpha_1}{2}\right)^n
\]

(4.21)

for all \(i \in S\) and \(n = 1, 2, \ldots\). Moreover, for any \(\varepsilon_0 \in O_{n_1}\) satisfying \(\varepsilon_0 < \frac{1}{\lambda_1} \ln \frac{2}{2 - \alpha_1}\), direct calculations give

\[
e^\lambda H_{\varepsilon_0,n_1}(i) = \sum_{m=0}^{\infty} E_{i,n_1}[e^\lambda \tau_z I_{\{\tau_z \in (mt_1,(m+1)t_1)\}}]
\]

\[
\leq \sum_{m=0}^{\infty} e^{\lambda \varepsilon_0 (m+1)t_1} E_{i,n_1}[I_{\{\tau_z \in (mt_1,(m+1)t_1)\}}]
\]

\[
\leq \sum_{m=0}^{\infty} e^{\lambda \varepsilon_0 (m+1)t_1} P_{i,n_1}(\tau_z > mt_1)
\]

\[
\leq \sum_{m=0}^{\infty} e^{\lambda \varepsilon_0 (m+1)t_1} \left(1 - \frac{\alpha_1}{2}\right)^m
\]

\[
- e^{\lambda \varepsilon_0 t_1} \left(1 - \frac{\alpha_1}{2}\right) < \infty
\]

(4.22)

for all \(i \in S\), where the third inequality follows from (4.21). Choose any \(\varepsilon_1 \in (0, \varepsilon_0)\) satisfying

\[
\varepsilon_1 < \min \left\{ \frac{1}{\lambda_1} \left[\lambda f - \lambda c(i, f) - q(i|f) + q(j|f) \right] \right\}
\]

and let \(H_{\varepsilon_1,n_1}(i) := \beta_{n_1} e^{\lambda H_{\varepsilon_1,n_1}(i) + \lambda h_z(i)}\) for all \(i \in S\). Then by (4.19) and (4.20) we have

\[
\begin{cases}
H_{\varepsilon_1,n_1}(i) \geq -\frac{1}{\lambda c(i,f) - \lambda g + \lambda \varepsilon_1 + q(i,f)} \left(\beta_{n_1} q(z|i, f) + \sum_{j \in S \setminus \{i, z\}} H_{\varepsilon_1,n_1}(j) q(j|i, f)\right)
\end{cases}
\]

for all \(i \in S \setminus \{z\}\). By the last inequalities and the similar arguments of (4.7), we obtain

\[
H_{\varepsilon_1,n_1}(i) \geq \beta_{n_1} e^{\lambda h_{\varepsilon_1}(i)} \geq \beta_{n_1} e^{\lambda h_{\varepsilon_1} - \varepsilon_1}(i)
\]

(4.23)

for all \(i \in S\). Let \(\{\eta_m, m \geq 1\} \subseteq (0, \varepsilon_1)\) be a sequence satisfying \(\lim_{m \to \infty} \eta_m = 0\). By (4.22) and the dominated convergence theorem, we have \(\lim_{m \to \infty} e^{\lambda H_{\eta_m,n_1}(z)} = 1\). Thus, for any \(\rho \in (0, e^{-\lambda h_z(z)} - 1)\), there exists a positive integer \(m_0\) such that \(e^{\lambda H_{\eta_m,n_1}(z)} < 1 + \rho\), which implies \(e^{\lambda H_{\eta_m,n_1}(z) + \lambda h_z(z)} < 1\). Moreover, it follows from (4.23) that \(h_{\eta_m}(z) < 0\). Hence, we obtain \(\overline{g} - \eta_{m_0} \in G\), which leads to a contradiction that \(\overline{g} \leq \overline{g} - \eta_{m_0}\). Therefore, we have \(h_{\eta}(z) = 0\). This completes the proof of the theorem. \(\square\)
Employing Theorem 3.1 and the Feynman-Kac formula, we prove Theorem 3.2 below.

Proof of Theorem 3.2 (a) By Theorems 3.1(d) and 3.1(e), we have that \((\varpi, h^*_{\sigma}) \in \mathbb{R} \times B(S)\) satisfies the following equation

\[
e^{\lambda h^*_\sigma(i)} = \inf_{a \in A(i)} \left\{ Q(i, a, \varpi) \sum_{j \in S} e^{\lambda h^*_\sigma(j)} q(j | i, a) \right\} \tag{4.24}
\]

for all \(i \in S\). Moreover, it follows from the Weierstrass theorem in [1, p.40], Theorem 3.1(c) and Assumption 3.1(i) that there exists \(f^* \in F\) with \(f^*(i) \in A(i)\) attaining the minimum of (4.24). Thus, we have

\[
\lambda \varpi e^{\lambda h^*_\sigma(i)} = \lambda c(i, f^*) e^{\lambda h^*_\sigma(i)} + \sum_{j \in S} e^{\lambda h^*_\sigma(j)} q(j | i, f^*)
\tag{4.25}
\]

\[
\geq \inf_{a \in A(i)} \left\{ \lambda c(i, a) e^{\lambda h^*_\sigma(i)} + \sum_{j \in S} e^{\lambda h^*_\sigma(j)} q(j | i, a) \right\}
\tag{4.26}
\]

for all \(i \in S\). Furthermore, employing (4.24), we obtain

\[
\lambda c(i, a) e^{\lambda h^*_\sigma(i)} + \sum_{j \in S} e^{\lambda h^*_\sigma(j)} q(j | i, a) \geq \lambda \varpi e^{\lambda h^*_\sigma(i)} \quad \text{for all } (i, a) \in K.
\tag{4.27}
\]

In fact, if \(\int_0^\infty e^{(\lambda c(i, a) - \lambda \varpi + q(i, a))s} ds < \infty\), using (4.24), we get

\[
\left(\int_0^\infty e^{(\lambda c(i, a) - \lambda \varpi + q(i, a))s} ds \right)^{-1} e^{\lambda h^*_\sigma(i)} \leq \sum_{j \in S \setminus \{i\}} e^{\lambda h^*_\sigma(j)} q(j | i, a),
\]

which implies (4.27). If \(\int_0^\infty e^{(\lambda c(i, a) - \lambda \varpi + q(i, a))s} ds = \infty\), we have \(\lambda c(i, a) - \lambda \varpi + q(i, a) \geq 0\). Then we get

\[
-(\lambda c(i, a) - \lambda \varpi + q(i, a)) e^{\lambda h^*_\sigma(i)} \leq \sum_{j \in S \setminus \{i\}} e^{\lambda h^*_\sigma(j)} q(j | i, a),
\]

which gives (4.27). Hence, the assertion follows from (4.26) and (4.27).

(b) Fix any \(f^* \in F\) with \(f^*(i) \in A(i)\) attaining the minimum of (3.5). By the Feynman-Kac formula, we obtain

\[
E_{i}^{f^*} \left[e^{\lambda \int_0^T (c(\xi, f^*) - \varpi) d\xi} e^{\lambda h^*_\sigma(\xi_T)} \right] = e^{\lambda h^*_\sigma(i)}
\]

\[
= E_{i}^{f^*} \left[\int_0^T e^{\lambda \int_0^r (c(\xi, f^*) - \varpi) d\xi} \left(\lambda c(\xi_r, f^*) - \lambda \varpi \right) e^{\lambda h^*_\sigma(\xi_r)} + \sum_{j \in S} e^{\lambda h^*_\sigma(j)} q(j | \xi_r, f^*) \right] dr,
\]

which together with (4.25) yields

\[
E_{i}^{f^*} \left[e^{\lambda \int_0^T (c(\xi, f^*) - \varpi) d\xi} e^{\lambda h^*_\sigma(\xi_T)} \right] = e^{\lambda h^*_\sigma(i)}
\]

12
for all $i \in S$ and $T > 0$. Thus, using the last equality, we have
\[
\frac{1}{\lambda T} \ln E_i^T \left[e^{\lambda \int_0^T c(\xi_t, f^*) \, dt} \right] + \frac{1}{\lambda T} \ln \left(\min_{i \in S} e^{\lambda h^*_i} \right) - \frac{1}{T} h^*_i \leq \bar{g}
\]
for all $i \in S$ and $T > 0$. Letting $T \to \infty$ in the last inequality, we obtain
\[
J^*(i) \leq J(i, f^*) \leq \bar{g} \quad \text{for all } i \in S. \tag{4.28}
\]

On the other hand, for any $\pi \in \Pi$ and $i \in S$, the Feynman-Kac formula and (3.5) yield
\[
E_i^\pi \left[e^{\lambda \int_0^T \int_A c(\xi_t, a) \pi(da|\xi_t, t) \, da \, dt} - e^{\lambda h^*_i} \right] \leq \bar{g} \quad \text{for all } T > 0. \tag{4.29}
\]

Then employing the last inequality, we get
\[
E_i^\pi \left[e^{\lambda \int_0^T \int_A c(\xi_t, a) \pi(da|\xi_t, t) \, dt} \right] + \frac{1}{\lambda T} \ln \left(\max_{i \in S} e^{\lambda h^*_i} \right) - \frac{1}{T} h^*_i \leq \bar{g} \quad \text{for all } i \in S, \pi \in \Pi \text{ and } T > 0. \tag{4.30}
\]

Therefore, the desired result follows from (4.28) and (4.30).

References

[1] C. Aliprantis, K. Border, Infinite Dimensional Analysis, Springer, New York, 2007.
[2] R. Cavazos-Cadena, Optimality equations and inequalities in a class of risk-sensitive average cost Markov decision chains, Math. Meth. Oper. Res. 71 (2010) 47-84.
[3] R. Cavazos-Cadena, D. Hernández-Hernández, Discounted approximations for risk-sensitive average criteria in Markov decision chains with finite state space, Math. Oper. Res. 36 (2011) 133-146.
[4] G.B. Di Masi, L. Stettner, Infinite horizon risk sensitive control of discrete time Markov processes under minorization property, SIAM J. Control Optim. 46 (2007) 231-252.
[5] M.K. Ghosh, S. Saha, Risk-sensitive control of continuous time Markov chains, Stochastics 86 (2014) 655-675.
[6] X.P. Guo, O. Hernández-Lerma, Continuous-Time Markov Decision Processes: Theory and Applications, Springer, Berlin, 2009.
[7] A. Jaśkiewicz, Average optimality for risk-sensitive control with general state space, Ann. Appl. Probab. 17 (2007) 654-675.

[8] M.Y. Kitaev, V.V. Rykov, Controlled Queueing Systems, CRC Press, Boca Raton, 1995.

[9] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, New York, 1994.

[10] Q.D. Wei, X. Chen, Strong average optimality criterion for continuous-time Markov decision processes, Kybernetika 50 (2014) 950-977.