Emission line variability of RS Ophiuchi *

R. K. Zamanov1,2†, M. F. Bode1, N. A. Tomov3, J.M. Porter1
1 Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Birkenhead, CH41 1LD, UK
2 Institute of Astronomy, Bulgarian Academy of Sciences, 72 Tsarigradsko Shousse Blvd., 1784 Sofia, Bulgaria
3 Institute of Astronomy, National Astronomical Observatory Rozhen, POBox 136, 4700 Smolyan, Bulgaria

Accepted 12 July 2005. Received 2005 June 6

ABSTRACT
We report that the Hα emission line of RS Oph was strongly variable during our 2004 observations on a time scale of 1 month. The line consisted of both a double peaked central narrow component (FWHM~220 km s$^{-1}$) and a strongly variable broad one (FWHM>2000 km s$^{-1}$). The base of the Hα line was very broad with FWZI~4600 km s$^{-1}$ on all spectra from 1986 to 2004. The variability of the broad component extends from ~2000 to +2000 km s$^{-1}$. Most probably this is due to either blobs ejected from the white dwarf (with a typical blob mass estimated to be ~10$^{-10}$ M\odot) or a variable accretion disk wind. We also detected variability of the HeIIλ4686 line on a time scale shorter than 1 day. The possible origin is discussed.

Key words: stars:individual: RS Oph – binaries: symbiotic – binaries:novae, cataclysmic variables

1 INTRODUCTION
RS Ophiuchi (HD 162214) is a recurrent nova which underwent its last major outburst in 1985 (see Bode 1987 and references therein). Following Dobrzycka & Kenyon (1994), RS Oph has a binary period of 460 days with orbital inclination to the line of sight of 30$^\circ$. Following Dobrzycka & Kenyon (1994), RS Oph has a binary period of 460 days with orbital inclination to the line of sight of 30$^\circ$. Most probably it is a massive white dwarf with MWD ≈1.4 M\odot, accreting at \dot{M} >10$^{-8}$M\odot yr$^{-1}$ (Hachisu & Kato, 2000). Alternatively, it has been proposed to be a B-type shell star with highly variable luminosity, which occasionally displays blue-shifted absorption features (Dobrzycka et al. 1996). Broad, variable, emission components of the hydrogen lines were detected by Iijima et al. (1994), Anupama & Mikolajewska (1999), and Tomov (2003). Variability of the He lines on a time scale of hours was detected by Sokoloski (2003). The origin of these changes is a mystery. Here we report that similar variability is also evident in our 2004 observations and discuss its possible origin.

2 OBSERVATIONS
We secured 8 spectra in 2004 using the ESO, La Silla, 2.2m telescope and the FEROS spectrograph. FEROS is a fibre–fed echelle spectrograph, providing a resolution of \(\lambda/\Delta \lambda \approx 48000\), wide wavelength coverage from about 4000 Å to 8000 Å in one exposure and a high detector efficiency (Kaufer et al. 1999).

Additionally, we retrieved 4 spectra covering the region of the Hα line from the archive of the Isaac Newton Group of telescopes (ING). A journal of observations and the measured quantities are given in Table 1.

3 SPECTRAL VARIABILITY

3.1 Hα emission line
The variability of the Hα line is immediately apparent (see Fig.1 and Table 1). There are changes in the blue and red peaks, as well as in the wings of the line. On all spectra the base of the Hα line is very wide, the mean full width at zero intensity FWZI = 4650 ± 300 km s$^{-1}$ and the mean equivalent width of the Hα emission line $\bar{W} = 112\pm 11$ Å, which is about 1×10^{-11} erg cm$^{-2}$ s$^{-1}$. The ratio of the intensity of the blue and red peaks (V/R) varies from 0.51 to 0.87. Our data suggest that the Hα profile of RS Oph is purely in emission and consists of both a double peaked central narrow component (W~90 Å, FWHM~200-250 km s$^{-1}$) and a strongly variable broad one (W~20 Å, FWHM>2000 km s$^{-1}$).

* based on data from ESO (program 073.D-0724) and the ING Archive
† e-mail: rkz@astro.bas.bg; mfb@astro.livjm.ac.uk; tomov@astro.bas.bg;
Table 1. Hα and HeIIλ4686 observations of RS Oph. In the table are given number, date of observation, Julian Day, orbital phase, radial velocity of the blue peak, central dip and red peak, full width at zero intensity (FWZI) of Hα, equivalent width of Hα, equivalent width of HeIIλ4686, the ratio between intensities of the blue and red peak, the radial velocity of the additional emission (V_{emm}), and the origin of the spectrum. The typical errors are ±1 km s\(^{-1}\) for V_{blue}, V_{dip} and V_{red}, ±250 km s\(^{-1}\) for FWZI, ±5\% for W_{Hα}, ±20\% for W_{4686}, ±3\% for the V/R ratio, and ±150 km s\(^{-1}\) for V_{emm}. The last column indicates the origin of the observations.

N:	Date	JD	φ	V_{blue}	V_{dip}	V_{red}	FWZI	W_{Hα}	W_{4686}	V_{emm}	V/R	V_{emm} origin
1	1986-07-12	46624.4250	0.53				4750	106	—	0.51	+560: ING	
2	1986-07-13	46625.4868	0.53				4940	102	—	—	+740: ING	
3	1997-08-06	50667.3916	0.32				4390	—	—	—	—1270 ING	
4	1997-08-06	50667.3986	0.32				4660	—	—	—	—1130 ING	
5	2004-04-11	53106.3839	0.62	-87.4	-48.9	+3.3	4940	102	<0.1	0.74	-1440, +2065ESO	
6	2004-04-11	53106.3922	0.62	-86.4	-47.9	+2.9	4980	104	<0.1	0.76	-1420, +2060ESO	
7	2004-06-05	53161.2236	0.74	-92.8	-55.8	+0.7	4160	125	1.9	0.53	+1110 ESO	
8	2004-06-05	53161.2311	0.74	-92.8	-55.9	+2.0	4210	125	3.2	0.54	+1120 ESO	
9	2004-06-06	53162.2840	0.74	-90.7	-54.4	+2.4	4530	127	0.7	0.60	+1150 ESO	
10	2004-06-06	53162.2916	0.74	-89.8	-54.9	+2.9	4300	120	0.6	0.59	+1100 ESO	
11	2004-08-31	53248.0434	0.93	-91.0	-46.8	+2.9	4890	110	0.2	0.86	-1180, +1750ESO	
12	2004-08-31	53248.0510	0.93	-91.2	-45.6	+4.7	4850	102	0.3	0.87	-1225, +1740ESO	

Figure 1. The Hα and the HeIIλ4686 emission lines of RS Oph (FEROS observations). The number against each spectrum refers to the epoch of observation as given in Table 1. All spectra are normalized to the local continuum.

a) The Hα central double peaked component with FWHM ~5Å (220 km s\(^{-1}\)).
b) The same spectra as in a) but on different scales, so the Hα broad component is visible.
c) The HeIIλ4686 line. The spectrum N:8 was obtained 10 minutes after N:7, and N:9 - 24 hours later. These data demonstrate that the line is variable on a time scale \(\lesssim\)1 day.
Emission line variability of RS Oph

3

When the spectra are obtained in the same night or in consecutive nights, the Hα profiles are effectively identical. However, changes are visible when the time difference is \(\sim 1 \) month. To explore in more detail the velocity structure of the variability of the wings, assuming that the variability arises purely from changes in emission, we subtracted at each epoch a minimum spectrum (artificially generated by taking the minimum value from all normalized spectra at a given wavelength). The residuals are plotted in Fig. 2b. As can be seen, the variability of the wings extends from \(-2000\) to \(+2000\) km s\(^{-1}\), with the most prominent additional emission around \(-1200\) and \(+1200\) km s\(^{-1}\). On each spectrum we measured the radial velocity of the additional emission, which has equivalent width W\(<7\) Å. The data are given in Table 1 along with other parameters.

A variable broad component was not detected in RS Oph’s sister system T CrB (see Stanishev et al. 2004; Zamanov et al. 2005). A similar component appeared however in the 1994 observations of CH Cyg (Tomov et al., 1996) and the velocity range of \(\pm 2000\) km s\(^{-1}\), was close to that of RS Oph. However, the time scale of appearance/disappearance was considerably shorter (\(\sim 2\) hours).

3.2 Time scale of HeII\(\lambda 4686\) variability

Our spectra with numbers 7, 8 and 9 show that the HeII\(\lambda 4686\) line is also variable (Fig.1c and Table 1). The spectrum N:8 was obtained 10 minutes after N:7, and N:9 - 24 hours later. This suggests that the intensity of HeII\(\lambda 4686\) changes on a time scale of minutes-hours (note that we did not detect Hα variability on such a short time scale).

The HeII\(\lambda 4686\) line indicates high excitation conditions in the gas. In the case of RS Oph (see the next section) this can be related to a region located close to the boundary layer between the accretion disk and the white dwarf (Sokoloski 2003). The changes of the intensity of this line indicate changes in the region of its appearance which, in turn, is determined most probably by variable luminosity or/and temperature of the boundary layer.

4 DISCUSSION

Our data suggest that the Hα profile of RS Oph is purely in emission and consists of both a double peaked central narrow component and a strongly variable broad one. The Balmer emission lines, appearing in the extended envelopes of symbiotic stars usually have an ordinary nebular profile with typical FWHM\(~100-150\) km s\(^{-1}\), for example AG Dra (Tomova & Tomov 1999). FWHM increases to \(200\) km s\(^{-1}\) only during the active phases. The basic mechanism determining their width is turbulence in the gas. The central narrow emission of RS Oph is very similar to the double peaked Hα line of T CrB and the two stars have practically the same FWHM of about \(200-250\) km s\(^{-1}\). The Hα line of T CrB is supposed to be formed in the outer part of an accretion disk around the hot compact object (Stanishev et al. 2004). By analogy with this star we could assume that the narrow Hα component of RS Oph is formed also around its compact object. This assumption, however meets some difficulty with the fact that the peak of this component exceeds the level of the continuum by a factor of 20-25 like purely nebular lines of the symbiotic stars. This peak height differs from that of one of T CrB, which exceeds the level of the continuum by a factor of 2-6 only.

While the appearance and the variability of the narrow component is relatively common in symbiotic stars (see also Ikeda & Tamura 2004 and the references therein), appearance and variability of broad component is detected in about 10 objects up to now. Fast (\(~1000\) km s\(^{-1}\)) bipolar winds/jets were detected in Hen 3-1341 and ShHα 190 (Tomov 2003). The jets in both systems appeared as satellite emission components on both sides of the strong HI Balmer and HeI emission lines, and they looked similar to the additional emission bumps in RS Oph (Fig. 2b). Similar profiles have been observed in the symbiotic nova RX Pup (Mikolajewska et al. 2002) and AR Pav (Quiroga et al. 2002).

At quiescence, the hot components of RS Oph and RX Pup show activity (high states) characterized by the appearance of B/A/F shell-type features and variable ‘false atmosphere’ together with the broad and complex emission lines and are related to the accretion flow/accretion-driven phenomena in these binaries. Other systems that show similar behaviour are CH Cyg and MWC 560 (Mikolajewska et al. 2002, 2003).

Here, we will consider three possible origins for the broad component in RS Oph:

(1) The first possible origin is related to ejection of blobs of matter. These blobs could be expelled by a rotating white dwarf magnetosphere (Tomov 2003 and references therein) or by a jet mechanism. The de-projected velocity of the ejection is \(\sim 1500-4000\) km s\(^{-1}\), having in mind \(V_{\text{em}}\) from Table 1 and assuming it is realized normal to the orbital plane, and also the orbital inclination is \(30^\circ - 40^\circ\). This
velocity is practically the same as ejection velocities of up to 3800 km s\(^{-1}\) seen during the 1985 nova outburst (Bode 1987 and references therein).

(2) Variable disk winds with similar (to RS Oph and CH Cyg) velocities were detected in a few cataclysmic variables and the whole wind can even turn on and off. The terminal velocity of the wind in the BZ Cam system is \(v_T \sim 3000\) km s\(^{-1}\) and the time scale of the variability is 30-40 min (Ringwald & Naylor 1998). Indeed, their profiles bear a noticeable similarity to those in RS Oph at some epochs. For Q Cyg the terminal velocity is \(v_T \sim 1500\) km s\(^{-1}\) and the events last about 1.5 hours (Kafka et al. 2003). These time scales are similar to those of the Balmer line variability of CH Cyg but not to RS Oph. It is possible that the disk wind of RS Oph varies on longer time scales.

(3) If the variable broad component of RS Oph originates in an asymmetric disk, then a Keplerian velocity of 1000 km s\(^{-1}\) requires a distance from a 1.4 \(M_\odot\) WD of about 2\(\times 10^{10}\) cm. At that distance the Keplerian period is 20 min, which is considerably different from the observed time scale of H\(\alpha\) variability of RS Oph.

All of the mechanisms considered are related to the loss of mass by the system. Whenever such mass-loss occurs, a question about its quantitative estimate arises. A quantitative estimate, however, is possible in those cases where the phenomenon can be related to some geometrical model. However, we have no geometrical model of loss of mass which can be related to the irregular form of the profile of the broad component. The velocity distribution of this line proposes movement of discrete regions (blobs of matter) in the emitting environment (Fig.2). That is why we tried to obtain a rough estimate of the mass of one “average” blob on the basis of its emission and supposing that it is optically thin and has also a constant density within some limits. From Fig.1b and Fig.2, the luminous flux in H\(\alpha\) of such a blob is about 3\(\times 10^{-13}\) erg cm\(^{-2}\) s\(^{-1}\) (W\(\approx 3\) Å). This flux was corrected for interstellar reddening using E(B-V)=0.73 (Snijders 1987; Hachisu & Kato 2000, 2001) and the extinction law by Seaton (1979). A corrected flux of 1.602\(\times 10^{-12}\) erg cm\(^{-2}\) s\(^{-1}\) was obtained.

For calculation of the emission measure of this blob, data about the distance to the RS Oph system, the H\(\alpha\) recombination coefficient and the helium abundance are needed. For the distance to the system we adopted 0.6 kpc according to Hachisu & Kato (2000, 2001). It is not possible to obtain the electron temperature and the electron density in the region where the H\(\alpha\) broad component is emitted from observation since we have no indication about the appearance in this region of certain lines giving information for those parameters. We will suppose that the electron temperature is 20000 K and the electron density is comparatively high being in the range 10\(^8\)–10\(^10\) cm\(^{-3}\). Then we used recombination coefficients of 5.956\(\times 10^{-14}\) cm\(^3\) s\(^{-1}\) and 6.336\(\times 10^{-14}\) cm\(^3\) s\(^{-1}\) for case B, corresponding to these temperature and densities (Storey & Hummer 1995). We also adopted a helium abundance of 0.1 which is thought to be typical of symbiotic nebulae (Vogel 1993; Vogel & Nussbaumer 1994).

For calculation of the emission measure we need to know the state of ionization of helium in the emitting region. The HeII\(^{4}\)6568 line is absent in the spectrum (Dobrzycka et al. 1996) or is weak (Fig.1) during the quiescent state of the system. This means that singly ionized helium is dominant in the circumbinary nebula during this state. According to the suppositions presented however, the broad H\(\alpha\) component is emitted in a region placed in the close vicinity of the hot object in this system where probably helium is mostly doubly ionized. That is why here we will assume the state of ionization to be He\(^{++}\) in the emitting region.

Using a flux of 1.602\(\times 10^{-12}\) erg cm\(^{-2}\) s\(^{-1}\) and density of 10\(^8\)–10\(^10\) cm\(^{-3}\), we obtain the emission measure of one “average” blob of matter (with a constant density) of 3.19\(\times 10^{56}\)–3.00\(\times 10^{56}\) cm\(^{-3}\). We can also calculate the mass of the blob, adopting the parameter \(\mu\) of 1.4 (Nussbaumer & Vogel 1987), determining the mean molecular weight \(\mu_M\) in the nebula. The mass is therefore obtained as 3.8\(\times 10^{-9}\)–3.5\(\times 10^{-11}\) \(M_\odot\). [Note that Bode (1987), gives \(d = 1.6 \pm 0.3\) kpc from a variety of measures. If we adopt this longer distance, we obtain mass of the blob 2.7\(\times 10^{-8}\)–2.5\(\times 10^{-10}\) \(M_\odot\).]

5 CONCLUSIONS

We report that the H\(\alpha\) emission of RS Oph was strongly variable during our 2004 observations on time scales of \(\sim 1\) month. No variability was detected on time scales of \(\leq 1\) day. The line was always very wide at its base (FWZI\(\sim 4600\) km s\(^{-1}\)) on all spectra from 1986 to 2004, consisting of narrow and broad emission components. Variable emission is detected at velocities up to \(\pm 2000\) km s\(^{-1}\). Most probably this variable emission is due to either blobs ejected from the white dwarf or a variable accretion disk wind. The approximate mass of one “average” ejected blob of matter, suggested by the variability of the broad emission component is 3.8\(\times 10^{-9}\)–3.5\(\times 10^{-11}\) \(M_\odot\). We also detected variability of HeII\(^{4}\)6686 line on time scales \(< 1\) day. To understand more fully the nature of the emission line variability of RS Oph we need to acquire a set of spectra with time resolution from minutes to days.

ACKNOWLEDGMENTS

This note has made use of IRAF, MIDAS and Starlink. RZ is supported by a PPARC Research Assistantship and MFB is a PPARC Senior Fellow. We would like to thank the referee for the useful comments. We also acknowledge the vital contribution made by Dr Joanne Porter to this work, which was underway at the time of his tragic death.

REFERENCES

Anupama, G. C., & Miko/lajewska, J. 1999, A&A, 344, 177
Bode, M. F. 1987, RS Ophiuchi (1985) and the Recurrent Nova Phenomenon, VNU Science Press, Utrecht
Dobrzycka, D., & Kenyon, S. J. 1994, AJ, 108, 2259
Dobrzycka, D., Kenyon, S. J., Proga, D., Miko/lajewska, J., & Wade, R. A. 1996, AJ, 111, 2090
Hachisu, I., & Kato, M. 2000, ApJ, 536, L93
Hachisu, I., & Kato, M. 2001, ApJ, 558, 323
Ikeda, Y., & Tamura, S. 2004, PASJ, 56, 353
Kafka, S., Tappert, C., Honeycutt, R. K., & Bianchini, A. 2003, AJ, 126, 1472
Emission line variability of RS Oph

Kaufer, A., Stahl, O., Tubbesing, S., Norregaard, P., Avila, G., Francois, P., Pasquini, L., & Pizzella, A. 1999, The Messenger, 95, 8
Mikolajewska, J., Brandi, E., Garcia, L., Ferrer, O., Quiroga, C., & Anupama, G. C. 2002, AIP Conf. Proc. 637: Classical Nova Explosions, 637, 42
Mikolajewska, J. 2003, Astronomical Society of the Pacific Conference Series, 303, 9
Mürtset, U., & Schmid, H. M. 1999, A&AS, 137, 473
Nussbaumer, H., & Vogel, M., 1987, A&A, 182, 51
Quiroga, C., Mikolajewska, J., Brandi, E., Ferrer, O., & García, L., 2002, A&A, 387, 139
Ringwald, F. A., & Naylor, T., 1998, AJ, 115, 286
Seaton, M. J. 1979, MNRAS, 187, 73p
Snijders, M. A. 1987 Ap&SS, 130, 243
Sokoloski, J. L., 2003, Astronomical Society of the Pacific Conference Series, 303, p. 202
Stanishev, V., Zamanov, R., Tomov, N., & Marziani, P. 2004, A&A, 415, 609
Storey, P., & Hummer, D., 1995, MNRAS, 272, 41
Tomov, T., Kolev, D., Munari, U., & Antov, A. 1996, MNRAS, 278, 542
Tomov, T., 2003, Astronomical Society of the Pacific Conference Series, 303, p.376
Tomova, M. T., & Tomov, N. A. 1999, A&A, 347, 151
Vogel, M., 1993, A&A, 274, L21
Vogel, M., & Nussbaumer, H., 1994, A&A, 284, 145
Zamanov, R., Gomboc, A., Bode, M. F., Porter, J. M., & Tomov, N. A. 2005, PASP, 117, 268