Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Covid-19 vaccine hesitancy and resistance amongst parents of children under 18 years of age in Ireland

Ruth Ceannt a,⇑, Frederique Vallieres b, Heather Burns c, Jamie Murphy d, Philip Hyland e

a Global Health Programme, Health Service Executive, Dr. Steevens’ Hospital, Kilmainham, Dublin 8, Ireland
b Trinity Centre for Global Health, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
c National Cancer Control Programme, Kings Inns House, 200 Parnell Street, Dublin 1, Ireland
d School of Psychology, Ulster University, Cromore Road, Coleraine, Co. Londonderry, Northern Ireland
e Department of Psychology, Maynooth University, Maynooth, Co. Kildare, Ireland

Article history:
Received 23 December 2021
Received in revised form 27 August 2022
Accepted 31 August 2022
Available online 7 September 2022

Keywords:
COVID-19
Vaccine
Parent
Hesitancy
Acceptance
Child

Abstract

As COVID-19 vaccination for children becomes commonplace in Ireland, it is important to understand parent's willingness to vaccinate their children and factors associated with hesitancy and resistance. Amongst a nationally representative sample of parents from Ireland, surveyed in March/April 2021, 52.1% had, or were intending to have their child vaccinated; 30.1% reported they might vaccinate their child; and 17.8% reported they would not vaccinate their child. Compared to vaccine-accepting parents, hesitant parents were more likely to be younger, less educated, poorer, to not know somebody who was sick from COVID-19, to believe the COVID-19 vaccines were unsafe, and to hold negative beliefs about scientists and healthcare professionals. Vaccine-resistant parents were more likely to be younger, living alone, to distrust scientists, and to believe the COVID-19 vaccines were unsafe. Public health messaging should target younger, lower income parents with clear information about the safety of COVID-19 vaccines for children.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The European Medicines Agency approved the Pfizer BioNTech COVID-19 vaccine for use in children aged 12 –15 years on May 28th, 2021, and for those aged 5–11 years on November 25th, 2021. Achieving suppression of the virus in the community is therefore contingent on the safe and efficient delivery of vaccines to those under 18 years of age; a group that constitutes one quarter of the world’s population [1,2]. Additionally, the vaccination of children is recommended to ensure that schools and childcare facilities remain safely open and to minimise delays in accessing paediatric health services noted during the pandemic [2,3]. Indeed, there is evidence that the closure of schools and associated activities had detrimental effects on children including educational disruption and reduced access to healthcare and nutritional supports [4].

The World Health Organization defines vaccine hesitancy as refusing or delaying vaccine acceptance despite their availability.

Recent years have seen an increase in parental vaccine hesitancy and misinformation [5], both of which are likely to complicate the rollout of COVID-19 vaccines to children. To date, studies suggest that parental acceptance of COVID-19 vaccines for their children is low in some countries, such as the UK (48.2%) [6], but higher overall globally (69.2%) [7]. Factors associated with parental COVID-19 vaccine hesitancy and resistance include younger parental age, lower income, lower education, being a single parent, not having health insurance, concerns about the safety of the vaccines for children, recency of the vaccine, and low trust in scientists/scientific institutions and healthcare professionals [7,8]. As COVID-19 vaccines become available to most, if not all, children in the coming months, it is critical to understand (a) how willing parents are to vaccinate their children against COVID-19, and (b) what factors are associated with parental hesitancy and resistance towards COVID-19 vaccination for their children.

2. Methods

This study used data from the Irish arm of the COVID-19 Psychological Research Consortium (C19PRC) study, a multi-national longitudinal population survey study examining the psychosocial impacts of the pandemic on the general adult population [9].
data were collected by the survey company Qualtrics. Data used in this study was collected at Wave 5, March/April 2021 (N = 1100). The full data collection strategy was previously described by Skipol et al. (2021) [10]. Participants were recruited from existing research panels, with quota sampling methods used to construct a non-probability-based sample representative of the general adult population of the Republic of Ireland in terms of sex, age, and geographical distribution. Previous research demonstrates that these data are representative of the Irish population on all quota variables and are highly representative of the population across many other sociodemographic variables [10]. To take part, participants had to be aged 18 years or older, resident in Ireland, and capable of completing the survey in English. Participants were remunerated by Qualtrics (amount unspecified), and informed consent was obtained electronically. Ethical approval was granted by Maynooth University [SREC-2020-2402202]. Of the 1100 participants contacted at Wave 5, 43.8% (n = 482) stated that they were a parent of a child under the age of 18. This subsample of parents was used for all analyses, and their sociodemographic details are provided in Table 1. It should be noted that childhood age was not collected.

Parental willingness to vaccinate their child was assessed by asking: “Multiple vaccines for COVID-19 have now been developed. Will you give your child a vaccine for COVID-19 when it becomes available?”. Those who answered “Yes” or “My child has already been vaccinated” were classified as vaccine accepting; those who answered “Maybe” were categorised as vaccine hesitant; and those who answered “No” were categorised as vaccine resistant. In addition to the demographic variables listed in Table 1, participants were also asked to rate their trust in scientists and doctors with each measured on a five-point Likert scale ranging from ‘Do not trust at all’ [1] to ‘Completely trust’ [5]. Participants were also asked to indicate their belief in five common false ideas about the COVID-19 vaccines and four common negative beliefs about healthcare professionals and doctors (see Table 2 for details). Participants indicated their belief in each statement using a 0–100 slider scale, where higher scores indicate stronger false or negative beliefs.

Unique associations between all variables listed in Table 2 and parental vaccine hesitancy and resistance were assessed using a multinomial logistic regression analysis, with the vaccine accepting group set as the reference category (i.e., the vaccine hesitant and vaccine resistant groups were compared to the vaccine accepting group). All associations are expressed as adjusted odds ratios (AOR), and analyses were conducted in SPSS v26.

3. Results

In total, 52.1% (n = 251) of parents had or intended to have their child(ren) vaccinated; 30.1% (n = 145) were hesitant to vaccinate their child(ren); and 17.8% (n = 86) were resistant to vaccinating their child(ren). The multinomial logistic regression model was statistically significant (χ^2 (68, n = 479) = 274.23, p <.001), and the results are presented in Table 2.

Variables significantly associated with being hesitant to vaccinating one’s child(ren) included younger parental age (AOR = 0.97), lower education levels (AORs ranged from 2.43 to 4.41), lower income level (AOR = 0.75), not knowing someone who had been sick with COVID-19 (AOR = 0.47), stronger beliefs that the vaccines are not safe due to their rapid development (AOR = 1.02), their potential to damage fertility (AOR = 1.02), and

Table 1	Sociodemographic characteristics of all parents with children under 18 years (N = 482).	
Sex	%	
Male	48.1	
Female	51.9	
Age		
18–24	7.9	
25–34	23.7	
35–44	32.8	
45–54	22.4	
55–64	9.3	
65+	3.9	
Province		
Leinster	58.5	
Munster	24.9	
Connaught	11.6	
Ulster	5.0	
Ethnicity		
Irish	78.4	
Non-Irish	21.6	
Born in Republic of Ireland	Yes	74.7
No	25.3	
Urbanicity		
Rural, suburb, town	72.4	
City	27.6	
Education		
No qualification	0.6	
Junior Certificate or Equivalent	4.1	
Leaving Certificate of Equivalent	18.0	
Technical qualification	10.8	
Diploma/Other	15.8	
Undergraduate degree	28.8	
Postgraduate degree	21.8	
Lives Alone	Yes	7.7
No	92.3	
Religion		
Atheist/Agnostic	13.5	
Religious	86.5	
Approximate Gross Salary		
<€20,000	27.0	
€20,000–€29,999	19.9	
€30,000–€39,999	18	
€40,000–€49,999	14.3	
€50,000 or more	20.8	
Employment		
Unemployed	20.5	
Retired	5.0	
Employed	74.5	
Underlying physical health issue	Yes	22.8
No	77.2	
History of Mental Health problem	Yes	30.1
No	69.9	
Pregnant/Partner pregnant	Yes	8.9
No	91.1	
Have you been diagnosed with a confirmed case COVID-19?	Yes	6.2
No/Not confirmed	93.8	
Were you admitted to hospital with COVID-19?	Yes	1.2
No	98.8	
Anyone close to you been sick with COVID-19?	Yes	28.8
No	71.2	
Has anyone close to you died with COVID-19?	Yes	9.5
No	90.5	
stronger beliefs that scientists and healthcare workers often cover up their mistakes (AOR = 1.02).

Variables significantly associated with being resistant to vaccinating one’s child(ren) included younger parental age (AOR = 0.96), living alone (AOR = 4.41), having less trust in scientists (AOR = 0.64), weaker beliefs that the vaccines contain a microchip (AOR = 0.96), stronger beliefs that the vaccines are not safe due to their rapid development (AOR = 0.96), and stronger beliefs that they may cause fertility damage (AOR = 1.02).

4. Discussion

As of the first quarter of 2021, approximately half of parents in Ireland with children under 18 years had or were intending to have their child(ren) vaccinated against COVID-19, one-in-three parents expressed hesitancy, and nearly one-in-five expressed resistance to childhood vaccination. Additionally, knowing someone close to you who had been sick with COVID-19 was significantly associated with the vaccine roll-out subsequently accepted the vaccine for themselves. This offers encouragement that many (or perhaps all) of those parents who expressed hesitancy about vaccinating their children will eventually choose to vaccine their children once the vaccines are available, and approved for their children’s age groups by the relevant medical agencies. Indeed, as of mid-December 2021, the current uptake rate in the 12–15-year-old age group in Ireland stands at 67.7% [13].

The demographic factors associated with parental COVID-19 vaccine hesitancy and resistance in this study were strikingly similar to findings from the wider literature, including younger parent age [7,14], lower education level [7,15], lower income [6,7], and living alone [7] all associated with being hesitant and/or resistant to childhood vaccination. Additionally, knowing someone close to you who had been sick with COVID-19 was significantly associated with reduced parental vaccine hesitancy (though not vaccine resistance). Public health campaigns aimed at increasing COVID-19 vaccine uptake in children should therefore target younger parents, delivering important scientific information about the safety and
efficacy of the vaccines in a clear, concise, and jargon-free manner, aimed towards those in lower socioeconomic status groups. Moreover, as knowing somebody who was infected by COVID-19 is an important factor in decreasing hesitancy, it may be that parental willingness to vaccinate their children will increase as more transmissible variants (i.e. Delta and Omicron) move through the population.

In the extant literature, concerns around safety and the rapid development of COVID-19 vaccines were frequently cited reasons for parental COVID-19 vaccine hesitancy and resistance, [6,7,16,17]. Similarly, in the current sample beliefs about the safety profile of the COVID-19 vaccines were related to parental hesitancy and resistance. Specifically, vaccine hesitant and resistant parents were more likely to believe that COVID-19 vaccines are unsafe due to their rapid development, and that they can damage fertility.

Perhaps most importantly, however, concerns about vaccines among the hesitant and resistant cohorts are less conspiratorial than the popular narrative may suggest. Unusual beliefs regarding the vaccine which abound in the media, such as the vaccines altering DNA, or containing a microchip [18] did not surface in this study, or in the published literature, as significant correlates of vaccine hesitancy or resistance. This suggests that the popular narrative that vaccine resistant groups hold very odd beliefs and/or believe in conspiracy theories does not hold true for a majority of vaccine resistant parents in Ireland. In addition, the vaccine resistant group may also be more movable than is suggested in the literature for other populations.

Based on these findings, public health messaging should focus on explaining how the COVID-19 vaccines were developed; demonstrating the steps taken to evidence their safety and effectiveness, and communicating that, while these steps may have been compressed, none were omitted. Moreover, clear and easy-to-understand explanations of how there is no likely mechanism by which the vaccines can affect male or female fertility should also be offered to the public to counter these commonly held false beliefs. Finally, dismissing the concerns of those who are vaccine hesitant or resistant as ‘conspiratorial’ is unlikely to promote trust and acceptance.

Our findings are important as they suggest that vaccine hesitant and vaccine resistant groups in Ireland share more similar beliefs regarding vaccines than previously thought, or at least than cited in the literature [5]. This has significant implications for public health campaigns, in terms of potentially being able to target both groups simultaneously, rather than requiring different messaging and approaches for each cohort, as has previously been postulated. [19].

Vaccine resistant parents were, however, significantly less likely to have trust in scientists than vaccine accepting parents, distinguishing the two groups. Similarly, in the literature, less trust in scientists was associated with being less likely to accept a vaccine for oneself or those in one’s care [7,20]. This implies that a similar message could be delivered to these two groups but in different modalities. Specifically, due consideration should be given to who delivers public health messaging around vaccines. For example, whereas the hesitant group may benefit from prominent scientists delivering the message clearly and simply, the resistant group may have more trust in messaging delivered by prominent members of their local community (e.g., religious leaders), peers, online influencers, parenting groups, or celebrities.

This study had a number of limitations. Firstly, the sample was a non-probability based sample which reduces the generalisability of the results. Second, we did not measure the age of the children, as a potential determinant of parental hesitancy or resistance. Finally, the timing of the study may have impacted the results given that the survey was completed before vaccines were approved for children aged 12 years and older in the European Union. Despite these limitations, this study provides important information about the willingness of parents to vaccinate their children, and the factors associated with unwillingness, in a nation with one of the highest rates of COVID-19 vaccination in the world. This information may be beneficial for public health authorities nationally and internationally as they prepare to communicate to the public about the value and importance of childhood vaccination against COVID-19.

Funding
This research received funding from the Health Research Board and the Irish Research Council under the COVID-19 Pandemic Rapid Response Funding Call [COV19-2020-025].

Data Sharing Statement
All data used in this study is freely available at https://osf.io/c57fp/.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Zimet GD, Silverman RD, Fortenberry JD. Coronavirus disease 2019 and vaccination of children and adolescents: prospects and challenges. J Pediatr 2021;231:254–8. https://doi.org/10.1016/j.jpeds.2020.11.002.

[2] Zimmermann P, Petret L, Finn A, Pollard AJ, Curtis N. Should children be vaccinated against COVID-19? Archives of Disease in Childhood. Published Online First: 03 November 2021. doi:10.1136/archdischild-2021-332040.

[3] McDonnell T, Nicholson E, Conlon C, Barrett M, Cummings F, Hensley C, et al. Assessing the impact of COVID-19 public health stages on paediatric emergency attendance. paediatric emergency attendance. Int J Environ Res Public Health 2020;17(18):6719. https://doi.org/10.3390/ijerph17186719.

[4] UNESCO. Adverse consequences of school closures: Paris: UNESCO; 2021. https://en.unesco.org/covid19/educationresponse/consequences [Accessed 9 December 2021].

[5] Shen SC, Dubey V. Addressing vaccine hesitancy: clinical guidance for primary care physicians working with parents. Can Family Phys Med Famille Can 2019;65(3):175–81.

[6] Bell S, Clarke R, Mounier-Jack S, Walker JL, Paterson P. Parents’ and guardians’ views on the acceptability of a future COVID-19 vaccine: a multi-methods study in England. Vaccine 2020;38(49):7788–98. https://doi.org/10.1016/j.vaccine.2020.10.072.

[7] Skjefte M, Ngirbabul M, Akeju O, Escudero D, Hernandez-Diaz S, Wyszynski DF, et al. COVID-19 vaccine acceptance among pregnant women and mothers of young children: results of a survey in 16 countries. Eur J Epidemiol 2021;36(2):197–211. https://doi.org/10.1007/s10654-021-00728-4.

[8] Sturgis P, Brunton-Smith I, Jackson J. Trust in science, social consensus and vaccine confidence. Nat Hum Behav 2021;5:1528–34. https://doi.org/10.1038/s41562-021-01115-7.

[9] McBride O, Butter S, Hartman TK, Murphy J, Hyland P, Shevlin M, et al. Sharing data to better understand one of the world’s most significant shared experiences: an overview of the openly accessible COVID-19 Psychological Research Consortium (C19PRC) Study data. International Journal of Population Data Science; 2021 [in press].

[10] Spkolok E, McBride O, Vallières F, Butter S, Hyland P. Tracking the Irish adult population during the first year of the COVID-19 pandemic: a methodological report of the C19-PRC study in Ireland. Acta Psychol 2021;220:103416. https://doi.org/10.1016/j.acpsy.2021.103416.

[11] Murphy J, Vallières F, Bentall RP, Shevlin M, McBride O, Hartman TK, et al. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nat Commun 2021;12(1):29. https://doi.org/10.1038/s41467-020-2226-8.

[12] Hyland P, Vallières F, Shevlin M, Bentall RP, McKay R, Hartman TK, et al. Resistance to COVID-19 vaccination has increased in Ireland and the United Kingdom during the pandemic. Public Health 2021;195:54–6. https://doi.org/10.1016/j.puhe.2021.04.009.

[13] Health Protection Surveillance Centre. COVID-19 Vaccine Uptake in Ireland: Weekly Reports: <https://www.hpsc.ie/a-z/respiratory/coronavirus/novelcoronavirus/vaccination/covid-19vaccinationuptake/Reports/> [accessed 23 December 2021].

[14] Kelly BJ, Southwell BG, McCormack LA, Rano CM, MacDonald PDM, Frazier AM, et al. Predictors of willingness to get a COVID-19 vaccine in the U.S. BMC Infect Dis 2021;21(1):338. https://doi.org/10.1186/s12879-021-06023-9.

[15] Rhodes ME, Sundstrom B, Ritter E, McKeever BW, McKeever R. Preparing for a COVID-19 vaccine: a mixed methods study of vaccine hesitant parents. J
Health Commun 2020;25(10):831–7. https://doi.org/10.1080/10810730.2021.1871986.

[16] Akarsu B, Canbay Özdemir D, Ayhan Baser D, Aksoy H, Fidancı I, Cankurtaran M. While studies on COVID-19 vaccine is ongoing, the public’s thoughts and attitudes to the future COVID-19 vaccine. Int J Clin Pract 2021;75(4):e13891. https://doi.org/10.1111/iarp.13891.

[17] Zhou Y, Zhang J, Wu W, Liang M, Wu Q-S. Willingness to receive future COVID-19 vaccines following the COVID-19 epidemic in Shanghai, China. BMC Public Health 2021;21(1):1103. https://doi.org/10.1186/s12889-021-11174-0.

[18] McEvoy J. Microchips,Magnets and Shedding:Here are 5 (debunked) covid vaccine conspiracy theories spreading online; 2021. <https://www.forbes.com/sites/jemimamcevoy/2021/06/03/microchips-and-shedding-here-are-5-debunked-covid-vaccine-conspiracy-theories-spreading-online/?sh=279e9a6a26af> [accessed 18 December 2021].

[19] Neumann-Böhme S, Varghese NE, Sabat I, Barros PP, Brouwer W, van Exel J, et al. Once we have it, will we use it? A European survey on willingness to be vaccinated against COVID-Eur J Health Econ. 2020. p. 977–82. doi:10.1007/s10198-020-01208-6.

[20] Viswanath K, Bekalu M, Dhawan D, Pinnamaneni R, Lang J, McLoud R. Individual and social determinants of COVID-19 vaccine uptake. BMC Public Health 2021;21(1):818. https://doi.org/10.1186/s12889-021-10862-1.