Acknowledgments
We thank Shneh Sethi for helpful advice and Sabrina Mündlein, Grit Mrotzek, and Ahmad Saleh for excellent technical assistance.

The German National Reference Center NRZMyk is funded by the Robert Koch Institute from funds provided by the German Ministry of Health (grant no. 1369-240). Calculations were performed on the Freiburg Galaxy server using computing services provided by the Center of Genetic Epidemiology (Danish Technical University, Lyngby, Denmark). The Freiburg Galaxy project is supported by the Collaborative Research Centre 992 Medical Epigenetics (DFG grant no. SFB 992/1 2012) and German Federal Ministry of Education and Research (BMBF grant no. 031 A538A). T.D. acknowledges support by the Deutsche Forschungsgemeinschaft (project no. 210879364–TRR 124/B1).

About the Author
Dr. Hamprecht is a clinical microbiologist at the Institute for Medical Microbiology, Immunology and Hygiene and professor for antibiotic resistance of gram-negative pathogens at the University of Cologne, Germany, and the German Centre for Infection Research (DZIF), also in Cologne. His research interests include multidrug-resistant organisms (mainly Enterobacterales and fungi), their resistance mechanisms, and the improvement of diagnostic methods.

References
1. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53:41–4.
 http://dx.doi.org/10.1111/j.1348-0421.2008.00083.x
2. Chowdhary A, Voss A, Meis JF. Multidrug-resistant Candida auris: “new kid on the block” in hospital-associated infections? J Hosp Infect. 2016;94:209–12.
 http://dx.doi.org/10.1016/j.jhin.2016.08.004
3. Schelenz S, Hagen F, Rhodes JL, Abdolrasouli A, Chowdhary A, Hall A, et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control. 2016;5:35.
 http://dx.doi.org/10.1186/s13756-016-0132-5
4. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64:134–40.
 http://dx.doi.org/10.1093/cid/ciw691
5. Kohlenberg A, Struelens MJ, Monnet DL, Plachouras D; The Candida auris Survey Collaborative Group. Candida auris: epidemiological situation, laboratory preparedness and preparedness in European Union and European Economic Area countries, 2013 to 2017. Euro Surveill. 2018;23:18-00136.
 http://dx.doi.org/10.2807/1560-7917.ES.2018.23.18-00136
6. Jeffery-Smith A, Christ S, Oestreicher T, Plum G, Kempf VA, Gött S. Performance of two MALDI-TOF MS systems for the identification of yeasts isolated from bloodstream infections and cerebrospinal fluids using a time-saving direct transfer protocol. Med Microbiol Immunol (Berl). 2014;203:93–9.
 http://dx.doi.org/10.1007/s00430-013-0319-9
7. Prakash A, Sharma C, Singh A, Kumar Singh P, Kumar A, Hagen F, et al. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clin Microbiol Infect. 2016;22:277e1–9.
 http://dx.doi.org/10.1016/j.cmi.2015.10.022
8. Prakash A, Sharma C, Singh A, Kumar Singh P, Kumar A, Hagen F, et al. Evidence of genotypic diversity among Candida auris isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amplified fragment length polymorphism. Clin Microbiol Infect. 2016;22:277e1–9.
 http://dx.doi.org/10.1016/j.cmi.2015.10.022
9. Magobo RE, Corcoran C, Seetharam S, Govender NP. Candida auris-associated candidemia, South Africa. Emerg Infect Dis. 2014;20:1250–1.
 http://dx.doi.org/10.3201/eid2007.131765
10. Chowdhary A, Prakash A, Sharma C, Kordaleswka M, Kumar A, Sarma S, et al. Multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J Antimicrob Chemother. 2018;73:891–9.
 http://dx.doi.org/10.1093/jac/dkx480

Address for correspondence: Oliver Kurzai, University of Würzburg Institute for Hygiene and Microbiology, Josef-Schneider-Straße 2 / E1, Würzburg 97080, Germany; email: okurzai@hygiene.uni-wuerzburg.de

Characterization of Clinical Isolates of Talaromyces marneffei and Related Species, California, USA

Linlin Li, Katelyn Chen, Nirmala Dhungana, Yvonne Jang, Vishnu Chaturvedi,1 Ed Desmond2

Author affiliation: California Department of Public Health, Richmond, California, USA

DOI: https://doi.org/10.3201/eid2509.190380

Talaromyces marneffei and other Talaromyces species can cause opportunistic invasive fungal infections. We characterized clinical Talaromyces isolates from patients in California, USA, a non–Talaromyces-endemic area, by a multiphasic approach, including multigene phylogeny, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and phenotypic methods. We identified 10 potentially pathogenic Talaromyces isolates, 2 T. marneffei.

1Current affiliation: New York State Department of Health, Albany, New York, USA.
2Current affiliation: Hawaii State Department of Health, Pearl City, Hawaii, USA.
Talaromyces marneffei is a dimorphic fungal pathogen that causes focal or systemic infection in immunocompromised persons, primarily HIV-infected patients (1). Many cases have been reported in travelers returning from areas of Southeast Asia, southern China, and eastern India to which it is endemic. Other *Talaromyces* species also have been reported to cause invasive fungal infections, including *T. amstolkiae* (2), *T. purpureogenus* (3,4), and *T. piceus* (5,6). *Talaromyces* species are common in air, soil, and human habitats. Clinical laboratories in areas to which this fungus is not endemic often do not perform identification of *T. marneffei* and other *Talaromyces* species (2). Therefore, we devised a multiphasic approach for identifying *T. marneffei* and other potentially pathogenic *Talaromyces* species.

We conducted this study during 2018. *Talaromyces* isolates from 10 human specimens were submitted to the Microbial Diseases Laboratory (MDL), California Department of Public Health (Richmond, CA, USA), to rule out *T. marneffei* (Appendix, https://wwwnc.cdc.gov/EID/article/25/9/19-0380-App1.pdf). Temperature and pH are known to influence pigment production and colony morphology of *Talaromyces* species; therefore, growth characteristics were observed using 2 different culture media (Sabouraud dextrose agar, pH 5.6; and Sabouraud dextrose agar, Emmons, pH 6.9), incubated at 25°C and 30°C. Fungal DNA was extracted using a previously reported method (7). *Talaromyces* isolates were identified to species level using the internal transcribed spacer (ITS) region, partial β-tubulin gene (BenA), and partial RNA polymerase II largest subunit gene (RPB1) (8). The ITS and partial BenA and RPB1 sequences were used to search for homologies in GenBank and CBS databases (http://www.westerdijk institute.nl/collections). Multigene phylogenetic analysis was conducted on the concatenated ITS–BenA–RPB1 nucleotide sequence alignment (Appendix). A blastn search (https://blast.ncbi.nlm.nih.gov/blast) through the GenBank database, pairwise comparison alignment through the CBS database, or both showed 99%–100% homology for ITS, 97%–100% for BenA, and 91%–100% for RPB1 sequences with the best-matched sequences of known *Talaromyces* species isolates.

Phylogenetic analysis of the *Talaromyces* isolates showed 7 genetic clades, consistent with previous descriptions of the *Talaromyces* genera (9) (Figure). Species identification using a comparison of the ITS, BenA, and RPB1 sequences with existing sequences and multigene phylogenetic analysis identified *T. marneffei* (isolates MDL17022 and MDL18026), *T. atroroseus* (MDL17026, MDL17144, MDL17164, and MDL18070), *T. islandicus* (MDL18167), *T. stollii* (MDL18054), *T. coalescens* (MDL18102), and *T. australis* (MDL18159). The 2 *T. marneffei* isolates produced diffuse red pigment early, by 3 days of growth, on both medium types and at both incubation temperatures. *T. australis* and *T. stollii* isolates also produced red pigment by 3 days but with variations based on media or temperature. At 7 days of growth, the 4 *T. atroroseus* isolates also showed variable red pigment production (abundant, weak, and absent) (Appendix). Microscopically, most isolates showed biverticillate conidiophores and globose to fusiform conidia in unbranched chains. Both *T. marneffei* isolates were from HIV-positive patients. MDL17022 was from a blood sample of a 37-year-old man with a travel history to Southeast Asia; MDL18026 was from skin tissue of a 36-year-old man with no available travel history.

Using matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry, we generated main spectrum profiles (MSP) of *Talaromyces* species following Bruker’s custom MSP and library creation standard operating procedure (https://www.bruker.com). We extracted proteins of *Talaromyces* isolates using the previously published National Institutes of Health (NIH) protocol (10). We analyzed *Talaromyces* spectra with MALDI Biotyper 4.1 software against combined databases of the Filamentous Fungi Library 2.0 (Bruker) and the NIH Mold Library (10), with and without inclusion of newly created MSPs of *Talaromyces* species (Appendix). The threshold for species identification was >1.9; for genus identification, ≥1.7.

Using the combined databases of Filamentous Fungi Library 2.0 (Bruker) and NIH Mold Library, we identified none of the isolates to species level; results showed either no identification or genus-level identification. However, when we expanded the combined database with the MDL Mold Library, we correctly identified all *Talaromyces* isolates to the species level with the best score ≥1.9. There were no ambiguous identification results; that is, the second-best matched species also had a high confidence score ≥1.9.

T. marneffei can be readily differentiated from other red pigment–producing *Talaromyces* species by yeast-like colony conversion at 37°C. However, many clinical laboratories no longer conduct yeast conversions. For those laboratories, yellow-green colonies producing red soluble pigment at ≈3 days on common fungal culture media at 25°C–30°C might indicate the need to further confirm *T. marneffei*. It is difficult to distinguish *Talaromyces* species only by macroscopic and microscopic examination. Multilocus sequencing, although confirmatory, might be too time-consuming and expensive for routine use. Therefore, we identified all *Talaromyces* isolates to species level by MALDI-TOF mass spectrometry by using an expanded database with well-characterized *Talaromyces* strains.

In conclusion, our results show that MALDI-TOF mass spectrometry is a good choice for rapid, less expensive primary identification of *Talaromyces* species and other medically important fungal pathogens. Species-level
identification of Talaromyces isolates is clinically useful for treatment of patients with underlying conditions, such as immunodeficiency, cancer, advanced age, and immunosuppressive therapy.

Acknowledgments
We thank Zenda Berrada for her support and helpful suggestions on this study.

The Microbial Diseases Laboratory at the California Department of Public Health provided funding for this study.

About the Author
Dr. Li is a research scientist and a certified public health microbiologist at the Microbial Diseases Laboratory, California Department of Public Health. Her primary research interests include molecular diagnosis of mycotic diseases, Valley fever, candidemia, antifungal susceptibility testing, mycobacteriology, metagenomics, and next-generation sequencing.

References
1. Ustianowski AP, Sieu TP, Day JN. Penicillium marneffei infection in HIV. Curr Opin Infect Dis. 2008;21:31–6. http://dx.doi.org/10.1097/QCO.0b013e3282f406ae
2. Villanueva-Lozano H, Treviño-Rangel RJ, Renpenning-Carrasco EW, González GM. Successful treatment of Talaromyces amestolkiae pulmonary infection with voriconazole in an acute lymphoblastic leukemia patient. J Infect Chemother. 2017;23:400–2. http://dx.doi.org/10.1016/j.jiac.2016.12.017
3. Atalay A, Koc AN, Akyol G, Cakir N, Kaynar L, Ulu-Kilic A. Pulmonary infection caused by Talaromyces purpurogenus in a patient with multiple myeloma. Infez Med. 2016;24:153–7.
4. Lyatzopoulos G, Ellis M, Nerring R, Denning DW. Invasive infection due to Penicillium species other than P. marneffei. J Infect. 2002;45:184–95. http://dx.doi.org/10.1053/jinf.2002.1056
5. Santos PE, Pientelli E, Shea YR, Galluzzo ML, Holland SM, Zelazko ME, et al. Penicillium piceum infection: diagnosis and successful treatment in chronic granulomatous disease. Med Mycol. 2006;44:749–53. http://dx.doi.org/10.1080/13693780600967089
6. Horré R, Gilges S, Breig P, Kupfer B, de Hoog GS, Hoekstra E, et al. Case report. Fungaemia due to Penicillium piceum, a member of the Penicillium marneffei complex. Mycoses. 2001;44:502–4. http://dx.doi.org/10.1046/j.1439-0507.2001.00710.x
Parathyridaria percutanea, earlier known as Roussoella percutanea in the order Pleosporales, has been reported to cause subcutaneous phaeohyphomycoses (1,2). *P. percutanea* belongs to coelomycetes, a group of fungi in which the conidia or asexual propagules lie within a cavity. *Parathyridaria* spp. generally exist as plant saprobes; *P. percutanea* is the only species reported as an opportunistic pathogen.

We recently observed a case of subcutaneous phaeohyphomycosis caused by *P. percutanea*. The patient was a 33-year-old man who had ACTH-dependent Cushings disease with 2 cutaneous lesions, one under the left axilla and the other on the ulnar aspect of the left forearm, that had progressed slowly over 3 years (Appendix Figure 1, panel A). Direct microscopy of a biopsy sample taken from the left forearm lesion revealed dematiaceous septate hyphae with irregular hyphal swellings (Appendix Figure 1, panel B). Colonies on Sabouraud’s dextrose agar at 25°C were flat, spreading with sparse aerial hyphae after 1 week, and later turned to cottony greenish-black growth (Appendix Figure 1, panel C). Lactophenol cotton blue mount revealed nonsporulating dematiaceous hyphae with chlamydospores (Appendix Figure 1, panel D). Several attempts to induce sporulation (on oatmeal agar and malt extract agar) failed. Histopathologic examination (Appendix Figure 1, panels E–G) showed neutrophilic infiltration with fungal hyphae, nodular swellings on Giemsa stain, and black hyphae on Grocott-Gomori’s methamine silver stain.

We identified the fungus as *Roussoella percutanea* of the order Pleosporales, later renamed *P. percutanea*, by PCR sequencing of the internal transcribed spacer (ITS) and 28S regions of ribosomal DNA, as described previously (3). ITS sequencing of our strain NCCPF104001 (GenBank accession nos. MG708109 [by ITS] and MG708116 [by 28S]) had 99.8% identity with CBS128203 (type strain, GenBank accession no. KF322117) and CBS868.95 (GenBank accession no. KF322118), whereas 28S sequences had 100% identity with CBS128203 (GenBank accession no. KF366448) and CBS868.95 (GenBank accession no. KF366449) (Appendix Figure 2, panels A-B). The patient refused further treatment in the hospital and left against medical advice.

We screened all the isolates deposited in our National Culture Collection of Pathogenic Fungi (NCCPF, Chandigarh) and characterized them phenotypically as *Pleosporales*. Of 7 such isolates, we identified 4 as *P. percutanea* by sequencing (Table, https://wwwnc.cdc.gov/EID/article/25/9/19-0383-App1.pdf). The strains identified as *P. percutanea* clustered together with the ITS and 28S sequences of CBS12608 and CBS868.95 strains, the other 2 *P. percutanea*