A note on identities in two variables for a class of monoids

Enrique Salcido1 and Emil Daniel Schwab2

1 MS student, Department of Mathematical Sciences, The University of Texas at El Paso
El Paso, Texas 79968, USA
e-mail: esalcido@miners.utep.edu

2 Department of Mathematical Sciences, The University of Texas at El Paso
El Paso, Texas 79968, USA
e-mail: eschwab@utep.edu

Received: 30 August 2019 Revised: 24 December 2019 Accepted: 12 January 2020

Abstract: In this note we consider identities in the alphabet $X = \{x, y\}$. This note is self-contained and the aim is to describe gradually the identities partition (with three parameters) of the free semigroup X^+ for the class of monoids $B_n = \langle a, b \mid ba = b^n \rangle$ $(n > 0)$.

Keywords: Semigroup identities, Checking identities, Identities partition.

2010 Mathematics Subject Classification: 68R15, 08A50.

1 Introduction and preliminaries

Section 4 of the recent paper by Geroldinger and Schwab [2] is devoted to the study of non-unique factorizations in a class of non-commutative monoids $\{B_n\}_{n>1}$. The monoids B_n, $n \in \mathbb{N}$, where \mathbb{N} denotes the set of nonnegative integers, are defined by the monoid presentation:

$$B_n = \langle a, b \mid ba = b^n \rangle.$$

The elements of B_n are words of the form $a^k b^m$ for $k, m \in \mathbb{N}$ with the understanding that $a^0 = b^0 = 1$. The monoid B_0 is the bicyclic monoid which plays a very important role in the structural theory of semigroups. The multiplication in B_0 is given by the rule
If there are three distinct ways, and Shleifer [4] studied also (only if \(X = \{ \} \)) identities using computer assistance.

In preparation we used only a few identities (Section 2).
2 The identities \((A_{i,j})\)

Since \(B_n\) (for all \(n \in \mathbb{N}\)) contains a copy of the infinite cyclic semigroup, any identity \(v \approx w\) for \(B_n\) is balanced. From the multiplication defined in \(B_n\) it follows that if \(v \approx w\) is an identity satisfied in \(B_n\) then the first letter of \(v\) and \(w\) coincide. We will consider identities with the first letter \(x\); changing the two letters \(x\) and \(y\) between them in each of the words of the identity \(v \approx w\) does not lead to a new identity in our convention. If \(n > 0\) then the right cancellation law holds in the set of all identities for \(B_n\) because the monoid \(B_n\) \((n > 0)\) is right cancellative.

Proposition 2.1. For any positive integers \(i \geq j\) and \(n > 0\),

\[
(A_{i,j}) \quad xy^{i+1}x \approx xy^{j}xy^{i-j+1} \quad (A'_{i,j}) \quad yx^{i+1}y \approx yx^{j}yx^{i-j+1}
\]

is an identity satisfied in \(B_n\).

Proof. To prove that \((A_{i,j})\) is an identity for \(B_n\) \((n > 0)\) we consider the substitution \(y = a^kb^m\), \(x = a^rb^s\). Then

\[
(a) \quad y^2x = \begin{cases} a^{2k+rm} & \text{if } m = 0 \\ a^{k+2m+(n-1)k+(n-1)r+s} & \text{if } m > 0, \end{cases}
\]

and

\[
(b) \quad yxy = \begin{cases} a^{2k+r} & \text{if } m = 0 \text{ and } s = 0 \\ a^{k+2m+(n-1)k+(n-1)r+s} & \text{if } m = 0 \text{ and } s > 0 \\ a^{k+2m+(n-1)k+(n-1)r+s} & \text{if } m > 0. \end{cases}
\]

Since \(y^2x = yxy\) in the cases \(m > 0\) and \(m = 0 = s\), we will consider hereinafter \(m = 0, s > 0\). Then

\[
xy^{i+1}x = xy^{i-1}(y^2x) = a^r b^s a^{(i-1)k} a^{2k+rm} b^s = a^r b^s a^{(i+1)k+r} b^s = a^r b^{2s+(n-1)(i+1)k},
\]

and

\[
xy^jy = xy^{i-1}(yxy) = a^r b^s a^{(i-1)k} a^{k+rm} b^{s+(n-1)k} = a^r b^s a^{ik+rm} b^{s+(n-1)k} = a^r b^{2s+(n-1)(i+1)k}.\]

So, \((A_{i,j})\) is an identity satisfied in \(B_n\) \((n > 0)\) if \(i = j\).

Now, the following sequence of identities satisfied in \(B_n, n > 0,\)

\[
xy^{i+1}x \approx xy^i xy \approx xy^{i-1}xy^2 \approx xy^{i-2}xy^3 \approx \ldots \approx xy^ixy^{i-j+1}
\]

finishes the proof of the proposition. \(\square\)

It is easy to check that nontrivial identities for \(B_n\) of length 2 and 3 do not exist. It follows that:

Corollary 2.1. For any \(n > 0\), the identity

\[
(A_{1,1}) \quad xy^2x \approx xyxy \quad (A'_{1,1}) \quad yx^2y \approx yxyx
\]

is the shortest nontrivial identity satisfied in the monoid \(B_n\).
Remark 2.1. The Adjan identity (I) and the identity (II) are both satisfied in B_n since they are simple consequences of $(A'_{1,1})$ if $n > 0$:

$$(A'_{1,1}) \Rightarrow xy y^2 x y^2 x \approx xy y x y x y^2 x$$

that is (I);

$$(A'_{1,1}) \Rightarrow xy y^2 x y x^2 y \approx xy y x y x y^2 y$$

that is (II).

Remark 2.2. Example 4.4 of [3] sets that

$$xyx^i y x^{j-i} y^k x \approx xy x^j y x^{j-i} y^k x$$

$(0 \leq i < j < \ell$ and $k \geq 1)$

is an identity for B_0 if and only if $(k+1)(i+1) \geq \ell + 1 \geq 2(j+1)$. The problem gets a new look in the case $n > 0$. Using $(A'_{i,1})$ and $(A'_{j,1})$ we obtain the following two identities satisfied in B_n, $n > 0$:

$$xy x^i y x^{j-i} y^k x \approx xy x^j y x^{j-i} y^k x$$

and

$$xy x^i y x^{j-i} y^k x \approx xy x^j y x^{j-i} y^k x.$$

So, $xy x^i y x^{j-i} y^k x \approx xy x^j y x^{j-i} y^k x$ is an identity for B_n (if $n > 0$) for any $i, j, k, \ell \in \mathbb{N}$ with $i, j \leq \ell$.

3 Main results

Unless otherwise indicated, we consider words v (and identities) with x the first letter and with $n_y(v) > 0$ (that is, words v of the form $v = x^k u$, where u is non-empty and y is the first letter of u). We say that a word of the form

$$(*) \quad x^{\ell_1} (yx)^{\ell_2} z^{\ell_3}$$

(where $z \in \{x, y\}$, $\ell_1 > 0$ and $\ell_2, \ell_3 \geq 0$)

is a canonical form of the word v (the words $(yx)^{\ell_2}$ and z^{ℓ_3} are the empty word if $\ell_2 = 0$ and $\ell_3 = 0$, respectively) if

$$v \approx x^{\ell_1} (yx)^{\ell_2} z^{\ell_3}$$

is an identity satisfied in B_n, $n > 0$ (ℓ_2 can be 0 only if $\ell_3 > 0$ and $z = y$ since $n_y(v) > 0$).

Lemma 3.1. A canonical form of the word $v = x^k u$ (y being the first letter of u), is given by

$$v \approx \begin{cases}
 x^k (yx)^{n_y(u)} y^{n_y(u) - n_x(u)} & \text{if } n_y(u) \geq n_x(u) \\
 x^k (yx)^{n_y(u) - n_x(u)} & \text{if } n_y(u) < n_x(u)
\end{cases}.$$

Proof. A sequence of identities obtained by using (from left to right) only the identities $(A_{i,1})$ and $(A'_{i,1})$ (i.e., $xy^{i+1} x \approx xy x^i$ and $yx^{i+1} y \approx yxy^{i}$) leads us in the end to an identity for B_n of the form

$$v \approx x^k y x y x \cdots y x z^m$$

$(m \geq 0)$,

where $z \in \{x, y\}$. It is clear that if $n_y(u) > n_x(u)$ then $z = y$ and the number of occurrences of (yx) is $n_x(u)$. If $n_y(u) = n_x(u)$ then the number of occurrences of (yx) is also $n_x(u)$. Since any identity for B_n is balanced, it follows that $m = n_y(u) - n_x(u)$. Now, if $n_y(u) < n_x(u)$ then $z = x$ and the number of occurrences of (yx) is $n_y(u)$. Obviously in this case $m = n_x(u) - n_y(u).$
Theorem 3.1. Let \(v \) and \(w \) be two words in the alphabet \(\{x, y\} \), \(v = x^k u \) and \(w = x^{k'} u' \) (\(y \) being the first letter of both words \(u \) and \(u' \)). Then the following statements are equivalent:

1. \(v \approx w \) is an identity satisfied in \(B_n, n > 0 \);
2. \(v \) and \(w \) have the same canonical form;
3. \(n_x(u) = n_x(u') \), \(n_y(u) = n_y(u') \) and \(k = k' \);
4. \((v, w) \) is balanced and \(k = k' \).

Proof. (i) \(\iff \) (ii) If \(v \approx w \) have the same canonical form then obviously \(v \approx w \) is an identity satisfied in \(B_n \) if \(n > 0 \).

Conversely, if \(v \approx w \) is an identity for \(B_n, n > 0 \), and \(v \approx x^{\ell_1}(yx)^{\ell_2} z^{\ell_3} \), \(w \approx x^{\ell_1}(yx)^{\ell_2} z^{\ell_3'} \), are two canonical forms of \(v \) and \(w \) respectively, then we will prove that the two canonical forms are the same, that is: (1) \(\ell_1 = \ell_1', \ell_2 = \ell_2', \ell_3 = \ell_3' \), and (2) \(z = z' \) if \(\ell_3 = \ell_3' \neq 0 \).

Using the substitution \(\sigma_{1,1} \) by elements of \(B_n \) \((n > 0) \) defined by \(x = a, y = b \),

\[
\sigma_{1,1}(x^{\ell_1}(yx)\ell_2 z^{\ell_3}) = a^{\ell_1} b^{\ell_2} z^{\ell_3} = a^{\ell_1} b^{\ell_2 + \ell_3} \quad \text{if } z = y
\]

and

\[
\sigma_{1,1}(x^{\ell_1}(yx)\ell_2 z^{\ell_3}) = a^{\ell_1} b^{\ell_2} z^{\ell_3} = a^{\ell_1} b^{\ell_2 + (n-1)\ell_3} \quad \text{if } z = x.
\]

Analogously,

\[
\sigma_{1,1}(x^{\ell_1}(yx)\ell_2 z^{\ell_3'}) = a^{\ell_1} b^{\ell_2 + \ell_3'} \quad \text{if } z' = y
\]

and

\[
\sigma_{1,1}(x^{\ell_1}(yx)\ell_2 z^{\ell_3'}) = a^{\ell_1} b^{\ell_2 + (n-1)\ell_3} \quad \text{if } z' = x.
\]

It is clear that \(\sigma_{1,1}(x^{\ell_1}(yx)\ell_2 z^{\ell_3}) = \sigma_{1,1}(x^{\ell_1}(yx)\ell_2 z^{\ell_3'}) \) implies

\[\ell_1 = \ell_1'.\]

Since any identity for \(B_n \) is balanced, it follows that

\[2\ell_2 + \ell_3 = 2\ell_2' + \ell_3'.\]

The equality \(\sigma_{1,1}(x^{\ell_1}(yx)\ell_2 z^{\ell_3}) = \sigma_{1,1}(x^{\ell_1}(yx)\ell_2 z^{\ell_3'}) \) implies also:

Case 1. \(z = z' = y \): \(n\ell_2 + \ell_3 = n\ell_2' + \ell_3' \), that is \((n-2)(\ell_2' - \ell_2) = 0 \).

Case 2. \(z = z' = x \): \(n\ell_2 + (n-1)\ell_3 = n\ell_2' + (n-1)\ell_3' \), that is \((n-2)(\ell_2' - \ell_2) = 0 \).

Case 3. \(z \neq z' \): if \(z = y \) and \(z' = x \) then \(n\ell_2 + \ell_3 = n\ell_2' + (n-1)\ell_3' \) implies \(2n(\ell_2' - \ell_2) = 2\ell_3 - 2(n-1)\ell_3' \) and so, \((n-2)(\ell_3 + \ell_3') = 0 \); analogously if \(z = x \) and \(z' = y \). Thus the hypothesis \(z \neq z' \) implies \(\ell_3 = \ell_3' = 0 \) if \(n \neq 2 \), and therefore \(z^{\ell_3} \) and \(z^{\ell_3'} \) are the empty word.
Taking into account that \(\sigma \) and \(\ell_3 \) are two words that \(\ell_2 = \ell_2, \ell_3 = \ell_3 \) if \(n \neq 2 \), and \(z = z' \) if \(\ell_3 = \ell_3 \neq 0 \) and \(n \neq 2 \) \((n > 0)\). The case \(n = 2 \) will be discussed below.

Let \(\sigma_{1,2} \) be the substitution by elements of \(B_2 \) defined by \(x = a, y = b^2 \). Then,

\[
\sigma_{1,2}(x^{\ell_1}(yx)^{\ell_2}z^{\ell_3}) = a^{\ell_1}b^{3\ell_2}a^{\ell_3} = a^{\ell_1}b^{3\ell_2+\ell_3} \quad \text{if } z = x
\]

and

\[
\sigma_{1,2}(x^{\ell_1}(yx)^{\ell_2}z^{\ell_3}) = a^{\ell_1}b^{3\ell_2}b^{2\ell_3} = a^{\ell_1}b^{3\ell_2+2\ell_3} \quad \text{if } z = y.
\]

Analogously,

\[
\sigma_{1,2}(x^{\ell_1}(yx)^{\ell_2}z^{\ell_3}) = a^{\ell_1}b^{3\ell_2+\ell_3} \quad \text{if } z' = x
\]

and

\[
\sigma_{1,2}(x^{\ell_1}(yx)^{\ell_2}z^{\ell_3}) = a^{\ell_1}b^{3\ell_2+2\ell_3} \quad \text{if } z' = y.
\]

Taking into account that \(\ell_1 = \ell_1 \) and \(2\ell_2 + \ell_3 = 2\ell_2 + \ell_3' \), the equality \(\sigma_{1,1}(x^{\ell_1}(yx)^{\ell_2}z^{\ell_3}) = \sigma_{1,1}(x^{\ell_1}(yx)^{\ell_2}z^{\ell_3}) \) implies:

Case 1. \((z = z') = y)\: 3\ell_2 + \ell_3 = 3\ell_2 + \ell_3' \Rightarrow \ell_2 = \ell_2' \) (and therefore \(\ell_3 = \ell_3' \)).

Case 2. \((z = z') = x)\: 3\ell_2 + 2\ell_3 = 3\ell_2 + 2\ell_3' \Rightarrow \ell_2 = \ell_2' \) (and therefore \(\ell_3 = \ell_3' \)).

Case 3. \((z \neq z')\): if \(z = y \) and \(z' = x \) then \(3\ell_2 + \ell_3 = 3\ell_2' + 2\ell_3' \Rightarrow \ell_2 = \ell_2' + \ell_3' \) and so

\[
2\ell_2' + \ell_3' = 2(\ell_2' + \ell_3') + \ell_3, \quad \text{that is } \ell_3' + \ell_3 = 0 \quad \text{and therefore } \ell_3' = \ell_3 = 0 \quad \text{(analogously if } z = x \text{ and } z' = y).
\]

Thus, if \(v \approx w \) is an identity for \(B_n, n > 0 \), and \(v \approx x^{\ell_1}(yx)^{\ell_2}z^{\ell_3}, w \approx x^{\ell_1}(yx)^{\ell_2}z^{\ell_3} \), are two canonical forms of \(v \) and \(w \) respectively, then the two canonical forms coincide.

\((ii) \Leftrightarrow (iii) \) follows from Lemma 3.1.

\((iii) \Leftrightarrow (iv) \) holds obviously.

Remark 3.1. Given two different words \(v \) and \(w \), if \(x^k \) \((k > 0)\) is the leftmost subword of the maximal length of both words \(v \) and \(w \) consisting of repetitions of \(x \), \(n_y(v) = n_y(w) = \ell > 1 \) and \(n_x(v) - k = n_x(w) - k = m > 0 \) then, and only then, \(v \approx w \) is a nontrivial identity for \(B_n \) \((n > 0)\). So, a triple of positive integers \((k, l, m)\), \(l > 1 \), determine a set of words and thus a set of nontrivial identities. For example, the triple of positive integers \((4, 2, 2)\) determine the set of words

\[
\{x^4y^2x^2, x^4yx^2y, x^4xyyx\}
\]

and the set of nontrivial identities

\[
\{x^4y^2x^2 \approx x^4yx^2y, x^4yx^2y \approx x^4xyyx, x^4y^2x^2 \approx x^4yx^2\}.
\]

Taking into account all possible cases, we conclude that
Theorem 3.2. The identities partition \(\mathcal{P}_{B_n} \) \((n > 0)\) is given by

\[
\mathcal{P}_{B_n} = \{P_{k,l,m}\}_{k,l>0,m\geq 0} \cup \{P_{k,0,0}\}_{k>0},
\]

where

\[
P_{k,l,m} = \{x^k u \mid \text{the first letter of } u \text{ is } y, \ n_y(u) = l \text{ and } n_x(u) = m\}
\]

if \(k, l > 0, m \geq 0\), and \(P_{k,0,0} \ (k > 0)\) are the singletons \(\{x^k\}\). The elements of this partition are finite sets and if \(k, l > 0, m \geq 0\), then

\[
|P_{k,l,m}| = \binom{l + m - 1}{l - 1}.
\]

References

[1] Adjan, S.I. (1967). Defining relations and algorithmic problems for groups and semigroups, American Mathematical Society, Providence, (English translation of Proceeding of the Steklov Institute of Mathematics Vol. 85).

[2] Geroldinger, A. & Schwab, E. D. (2018). Sets of lengths in atomic unit-cancellative finitely presented monoids, Colloq. Math., 151, 171–187.

[3] Pastijn, F. (2006). Polyhedral convex cones and the equational theory of the bicyclic semigroup, J. Aust. Math. Soc., 81, 63–96.

[4] Shleifer, F. G. (1990). Looking for identities on a bicyclic semigroup with computer assistance, Semigroup Forum, 41, 173–179.

[5] Shneerson, L. M. (1985). On the varieties generated by semigroups and monoids with one defining relation, Siberian Math. Journal 26, 202 (Abstract), Preprint VINITI No 3641–84, 1–32.