Genetic and morphometric analyzes of *Paralichthys* species confirm the presence of *P. brasiliensis* in the Uruguay waters

Daniela Olsson\(^a\), Alejandro Marquez\(^b\), Javier S. Tellechea\(^c\), Pedro Hollanda Carvalho\(^d\), Alfredo N. Pereira\(^e\) and Walter Norbis\(^a\)

\(^a\)Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; \(^b\)Unidad de Microscopía Electrónica de Barrido. Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; \(^c\)Área de Anatomía, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay; \(^d\)Núcleo em Ecologia e Desenvolvimento Sócioambiental Macaé, UFRJ, Rio de Janeiro, Brasil; \(^e\)Laboratorio de Genética, Dirección Nacional de Recursos Acuáticos, MGAP, Uruguay

**ABSTRACT**

*Paralichthys* species have high commercial value and constitute a resource for demersal fisheries in the Southwestern Atlantic Ocean. Although six species have been described based on morphological characters for the Uruguay and Argentinean waters, only the presence of three species is accepted, being their distribution still uncertain. Genetic tools are useful for species identification as a complement of morphological characters. This paper determines the genetic and morphometric variation between three species of *Paralichthys* that inhabiting Uruguay waters. The interorbital width (IN) and the length from the mouth to the dorsal fin base (SD) of *P. patagonicus* differed significantly from the other two species (*P. orbignyanus* and *P. brasiliensis*). From a morphological perspective, individuals identified as *P. orbignyanus* formed two different groups. Clade Po_A included those belonging to oceanic coastal waters of Uruguay and deeper waters of the Rio de la Plata together with individuals of *P. brasiliensis* from Itajaí, Santa Catarina (Brazil). Individuals collected in the Rio de la Plata coastal and beach zone formed the clade Po_B group. Genetic analysis confirmed for the first time the presence of *P. brasiliensis* in Uruguay and Rio de la Plata shelf waters and extends its known distribution area further south. Discriminant scores for *P. orbignyanus* separate individuals in two groups corresponding to the presence of two species. Molecular and morphological analysis showed individuals in the clade Po_A includes those collected in Uruguay waters together with those collected in northern Brazilian waters belonging to the species *P. brasiliensis*.

Along the Southwestern Atlantic Ocean, the genus *Paralichthys* is distributed between 34° and 47° S [1]. Although six species have been described based on morphological characters for Uruguay and Argentinean waters [2], only the presence of three species is accepted (*P. isosceles, P. patagonicus, P. orbignyanus*) [3,4], however their distribution is still uncertain [1]. According to Figueiredo and Menezes [5], and Diaz de Astarloa and Munroe [1], *P. brasiliensis* does not occur in Argentinean or in Uruguay waters. For Nion et al. [6], its presence in Uruguay waters is considered debatable but more studies are needed for its confirmation. *Paralichthys* species have high commercial value and constitute a much-appreciated resource for the artisanal and industrial demersal fisheries in the Southwestern Atlantic Ocean [7–12]. Additionally *Paralichthys orbignyanus* has been the subject of numerous studies related to the development of aquaculture [13–19]. Accurate identification and the knowledge of differences between species is relevant from the biological point of view, particularly in aquaculture and breeding programs, because invasion risks of hybrids into natural environments [20–22]. Also, misclassifications generate errors in defining stocks and lead to biased fishing quotas which can have repercussions in the conservation and management of the flatfish resources [23]. Identification of evolutionary significant units has been traditionally based on morphological characters [24]. However, there are limitations to relying primarily on morphological characters when individuals of a given species vary hugely in their morphology. In this sense, the use of molecular markers has become a useful tool for species identification, independent of morphological characters [25]. Mitochondrial DNA has been widely used as a tool in evolutionary and population studies in many eukaryotes [26], given its maternal line. The aims of this work were to determine the genetic and morphometric variation between three species of *Paralichthys* (*P. orbignyanus, P. patagonicus, and P. isosceles*) that inhabit Uruguay waters, and find the most suitable morphological characters that can be used for a corrected identification.
A total of 33 individuals from flatfishes of *P. orbignyanus* (*n* = 19), *P. patagonicus* (*n* = 5), and *P. isosceles* (*n* = 9) were collected from Uruguayan waters for genetic and morphometric analysis and five individuals of *P. brasiliensis* from Itajaí, Santa Catarina (Brazil) for genetic analysis. Samples of muscles of the flatfish *Oncopterus darwinii* (*n* = 2) from the Uruguayan coast were collected to be used as outgroup in genetic analysis (Figure 1). All species were identified according to Diaz de Astarloa [3] and Figueiredo and Menezes [5]. All muscle samples were preserved in 96° ethanol for subsequent molecular analyzes. DNA extraction was performed using the phenol-chloroform method according to Maniatis et al. [27]. A fragment of the cytochrome b gene of approximately 400 pb was amplified using primers L14735 and H15149AD. PCR reaction was performed as follows: for 50 ml of the PCR reaction were used 50 ng of DNA, 10 mM Tris-HCl (pH 8.8), 50 mM KCl, 2.5 mM MgCl₂, 2.5 units of Taq DNA polymerase, 200 mM each dNTP, and 0.5 mM of each primer. Amplification was performed under the following conditions: 1 cycle at 94°C for 5 min, 35 cycles at 94°C for 45 s, 45 s at 52°C and 45 s at 72°C and a final extension at 72°C for 7 min. PCR products were sequenced in an automated sequencer at Macrogen Inc. (Korea). Sequences were aligned with Clustal W (using default parameters) [28] implemented in MEGA7 [29]. A neighbor joining tree of genetic distances was constructed to evaluate de phylogenetic relationships of sequences in the software MEGA7 [29]. The best evolution model of data was estimated using the Modeltest 3.7 program [30] and the support of clades was evaluated with a bootstrap of 1000 pseudoreplicates. Morphometric variables (mm), total length (TL), standard length (SL), interorbital width (IN), pectoral fin length (PL), length from the mouth to the base of the anal fin (MA), length from snout to dorsal fin base (SD), and head length (HL), were obtained for all individuals according the criteria proposed by Diaz de Astarloa [3]. To infer how morphometric variables would discriminate the different species, we conducted a canonical discriminant analysis (CDA) [31,32]. These analyzes assess the separation between species through discriminant and canonical axes, evaluating the groups presence into a multivariate space by maximizing the variation between them [32]. Before performing multivariate analysis, the size and allometry effect on the variables analyzed were removed according to Lleonart et al. [33], and all six variables were standardized regarding the total length (TL). We used standard regression model \( Y = ax^b \) adjusted by logarithmic transformation of the variables \( X \) and \( Y \) to homogenize the residuals. Each measure \( Y_{ij} \) where \( i \) and \( j \) is the individual variable was transformed into \( Z_{ij} \) according to \( Z_{ij} = Y_{ij}(X_0/X_j)^b \), where \( X_j \) is the total length of individual \( j \), \( X_0 \) is the total length of reference (we used the average total length) and \( b \) is the allometric parameter relating the dependent variable \( Y_i \) with the independent

Figure 1. Sampling sites where the individuals of different species were collected (white crosses: *P. orbignyanus* Río de la Plata estuary subgroup (*P.o._*B); black crosses: *P. orbignyanus* Atlantic Ocean subgroup *P.o._*A).
variable $X$. $Z_q$ is the value that would measure $Y_q$ if the fish length were $X_0$, considering its allometric growth and residual [33]. The CDA were performed using Past program (Version 3.19; March 2018) [34].

The best substitution model for all the species studied was HKY+G with $\alpha = 0.26$. All individuals morphologically identified as *P. patagonicus* and *P. isosceles* group together using neighbor joining as grouping algorithm (Figure 2). Nevertheless, individuals morphologically identified as *P. orbignyanus* formed two different groups with a 99% bootstrap support at each node. Individuals in the clade Po_A include those collected in oceanic coastal waters of Uruguay and the deeper waters of the Rio de la Plata together with individuals of *P. brasiliensis* from Itajaí, Santa Catarina (Brazil). Individuals collected in the Rio de la Plata coastal and beach zone formed the clade Po_B group (Figure 2). The CDA of morphometric variables showed significant differences ($\text{Wilks } \lambda = 0.1391$, $F_{18,72} = 3.514$, $p = 0.00112 < 0.05$; Pillai = 1.349; $F_{18,72} = 3.269$, $p = 0.001819 < 0.05$) between the groups *P. isosceles*, *P. patagonicus* and the group determined as *P. orbignyanus* composed for two subgroups named Po_A ($n = 11$) and Po_B ($n = 8$) (Figure 3). The first canonical factor explained 52.09% and the second 41.33% of the total discrimination, respectively. The morphometric variables that contributed to discriminate groups were: PL with positive sign and SL and HL with negative sign to the canonical axis 1 and, IN and MA with positive signs and SD with negative sign to the canonical axis 2 (Table 1). *P. patagonicus* would have lower values of SL and HL

![Figure 2](image-url). Phylogenetic relationship of individuals analyzed using Neighbor Joining as clustering algorithm (P.o_A: *Paralichthys orbignyanus* A, P.o_B: *Paralichthys orbignyanus* B, P.b: *Paralichthys brasiliensis*, P.i: *Paralichthys isosceles*, P.p: *Paralichthys patagonicus*, O.d: *Oncopterus darwini*). The numbers corresponds to different individuals. On each node the percentage bootstrap support it is shown.
As several studies in the family Pleuronectidae have shown, the use of morphological and molecular tools is the most accurate approach to identify and/or delimit species within the family [21,23,25,35–38]. Menni et al [2], mentioned that P. brasiliensis inhabits Uruguayan and probably Argentinean waters, particularly the oceanic environment. Nevertheless Diaz de Astorlao and Munroe [1], defined as valid species for Uruguay and Argentine continental shelf only P. orbignyanus, P. patagonicus and P. isoscles stating that P. brasiliensis does not occur in Argentinean-Uruguayan waters. According to Figueiredo and Menezes [5] P. orbignyanus differs from P. brasiliensis only by the number of gill rankers and crosswise scales on the straight part of lateral line rows. These authors also suggest that P. brasiliensis is not present in Uruguayan waters and that the distribution range limits from San Luis de Maranhao (Maranhao) to Ilha Grande Bay (Rio de Janeiro), Brazil. However P. brasiliensis has been cited for the State of San Pablo waters [39] and also confirmed its presence for Paranaguá and Parana coastal waters of Brazil [40,41], respectively. In practice, P. orbignyanus and P. patagonicus were the species most difficult to differentiate morphologically onboard, although the most noticeable features to differentiate these species are their scales (cycloid in P. orbignyanus and ctenoid in P. patagonicus) and the beginning of the anal fin [42] as well as other morphological characteristics [4]. However the interorbital width (IN) and the length from the mouth to the dorsal fin base (SD), contributed significantly to separate P. patagonicus from other species (P. orbignyanus and P. brasiliensis). Thus these variables should be considered when getting morphometric information to help facilitate the separation between species. Our work shows evidence for the presence of P. brasiliensis in Uruguayan waters and contributes to the knowledge of its current geographical distribution.

Several fish species have been registered southern-most from their previously location reported. These events have been associated with the warm circulation from Brazil Current regarding a putative factor to explain the occurrence of different species [43, 44, 45, 46, and 47]. This could be the case of P. brasiliensis, but other studies would be necessary to confirm this hypothesis.

**Acknowledgments**

This work was partially funded though the grant from Programa de Apoyo a la Investigación Estudiantil (PAIECSIC, 2008): “Identificación y caracterización de poblaciones de lenguados en el Río de la Plata y su Frente Marítimo.” We are grateful to the crew of the R/V “Aldebaran” and the scientists and researchers working on board and to Captain Mr. Daniel Olsson for collected the individuals used in this work. Also we thank to, Daniel Cambón for his help in the beach sampling and to Estela Baccino for her collaboration in drawing Figure 1.

We also would like to thank the two anonymous reviewers for the suggestion made to the manuscript. This study was performed under the agreement of the Dirección Nacional de
Recursos Acuáticos (DINARA – MGAP, Uruguay) and the Universidad de la República (UdelaR), Facultad de Ciencias.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The authors received no direct funding for this research.

ORCID

The authors received no direct funding for this research.

References

[1] Díaz de Astarloa JM, Munroe TA. Systematic, distribution and ecology of commercially important paralicthystid flounders occurring in Argentinean–uruguayan waters (Paralichthys, Paralichthyidae); an overview. J Sea Res. 1998;39:1–9.

[2] Menni RC, Ringuete RA, Aramburu RH. Peces Marinos de argentina y Uruguay. Edit. Hemisferio Sur, Buenos Aires. 1984.

[3] Díaz de Astarloa JM. Determinación taxonómica de un grupo de lenguados del género Paralichthys colectado en aguas Argentinas (Pleuronectiformes: paralichthyidae). Rev Biol Mar Oceanogr. 1995;30:79–90.

[4] Díaz de Astarloa JM, Munroe TA, Bearez P, et al. External morphology, postcranial and appendicular osteology of three southwestern Atlantic flatfishes (Paralichthys, Paralichthyidae), and comparisons with other congerenic species. Neotropical Ichthyol. 2018;16:2.

[5] Figueiredo JLM, Menezes NA. Manual de peixes marinhos do sudeste do Brasil VI. Teleostei Museu De Zoologia, Universidade De São Paulo. 2000:5:116.

[6] Nion H, Rios C, Menezes P. Peces del Uruguay. Lista sistemática y nombres comunes (Segunda edición corregida y ampliada). Montevideo: MGAP – DINARA; 2016.

[7] Díaz de Astarloa JM. A review of the flatfish fisheries of the South Atlantic Ocean. Rev Biol Mar Ocean. 2002;37:113–125.

[8] Fabre NN, Díaz de Astarloa JM. Pleuronectiformes of importância comercial del atlántico sudoccidental, entre los 34° 30’ y 55° S. Distribución y consideraciones sobre su pesca. Rev Inv Des Pes. 1996;10:45–55.

[9] Haimovici M, Araújo JN. Paralichthys patagonicus (Jordan, 1889). In: Rossi CLW, Cergole MC, Vila Da Silva AO, editors. Análise das Principais Pecuarias Comerciais da Região Sudeste-Sul do Brasil: dinâmica Populacional das Espécies em Exploração. Série Documentos Revive-Seei Cordeiro Sul. São Paulo: IOUS; 2005. p. 116–123.

[10] Norbis W, Galli O, Paesch L, et al. Distribuição y abundance de tres especies de lenguados en el frente oceánico del Río de la Plata (Zona Común de Pesca Argentino-Uruguayo). Frente Marit. 2005;20:27–33.

[11] Norbis W, Paesch L, Galli O. Los recursos pesqueros de la costa de Uruguay: ambiente, biología y gestión. In: Menafra R, Rodriguez-Gallego L, Scarabino F Y Conde D, editors. Bases para la Conservación y Manejo de la Costa Uruguay. 2006. p. 197–210.

[12] Ricco MR. Pesquería de lenguados en el ecoestima costero bonaerense al norte de 39° S. Frente Marit. 2010;21:129–135.

[13] Bambill GA, Oka M, Radonic M, et al. Broodstock management and induced spawning of flounder Paralichthys orbignyanus (Valenciennes, 1839) under a closed recirculated system. Rev Biol Mar Oceanogr. 2006;41(1):45–55.

[14] Sampaio LE, Bianchini A. Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus. J Exp Mar Biol Ecol. 2002;269:187–196.

[15] Sampaio LA, Freitas LS, Okamoto MH, et al. Effects of salinity on Brazilian flounder Paralichthys orbignyanus from fertilization to juvenile settlement. Aquaculture. 2007;262:340–346.

[16] Sampaio LA, Robaldo RB, Bianchini A. Hormone induced ovulation, natural spawning and larviculture of Brazilian flounder Paralichthys orbignyanus (Valenciennes, 1839). Aquacult Res. 2008;9:712–717.

[17] Radonic M, Macchi GJ. Gonadal sex differentiation in cultured juvenile flounder, Paralichthys orbignyanus (Valenciennes, 1839). J World Aquacult Soc. 2009;40:129–133.

[18] Rodrigues RV, Freitas LS, Robaldo RB, et al. Crescimento e sobrevivência de juvenis de um lenguado do atlântico Paralichthys orbignyanus; efeitos do enriquecimento da Artemiasp. com n-3 HUFA. Atlântica. 2012;34:121–127.

[19] Wasielewsky W Jr, Miranda K, Bianchini A. Tolerância do lenguado Paralichthys orbignyanus a salinidade. Braz Arch Biol Tech. 1995;38:385–395.

[20] Chapleau F. Pleuronectiform relationships: a cladistic reassessment. Bull Mar Sci. 1993;52:516–540.

[21] Cooper JA, Chapleau F. Monophyly and intrarelationships of the family Pleuronectidae (Pleuronectiformes), with a revised classification. Fish Bull. 1998;96:686–726.

[22] Kang JH, Kim YK, Park JY, et al. Microsatellite analysis as a tool for discriminating an interfamily hybrid between olive flounder and starry flounder. Genet Mol Res. 2011;10:2786–2794.

[23] Kartavtsev YP, Sharina SN, Saitoh K, et al. Phylogenetic relationships of Russian far eastern flatfish (Pleuronectiformes, Pleuronectidae) based on two mitochondrial gene sequences, Co-I and Cyt-b, with inferences in order phylogeny using complete mitogenome data. Mitochondrial DNA. 2016;27:667–678. DOI:10.3109/19401736.2014.913139. Epub 2014 May 19

[24] Begg AG, Waldman JR. An holistic approach to fish stock identification. Fish Res. 1999;43:35–44.

[25] Kartavtsev YP, Lee JS. Analysis of nucleotide diversity at the cytochrome b and cytochrome oxidase 1 genes at the population, species and genus levels. Russ J Gen. 2006;42:341–362.

[26] Brown WM. The mitochondrial genome of animals. In: Macintyre RJ, editor. Molecular evolutionary genetics. New York: Plenum Press; 1985. p. 95–130.

[27] Mamiatis T, Fritsch EF, Sambrook J. Molecular cloning. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory. 1982.; pp. 545.

[28] Thompson JD, Gibson TJ, Plewniak F, et al. ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res. 1997;24:4876–4882.
[29] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874. Epub 2016 Mar 22. DOI:10.1093/molbev/msw054

[30] Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinform. 1998;14:817–818.

[31] Campbell NA, Atchley WR. The geometry of canonical variate analysis. Syst Zool. 1982;30:268–280.

[32] Manly BFJ, Alberto JA. Multivariate statistical methods: a primer. Boca Raton, FL: CRC Press; 2016.

[33] Lleonart J, Salat J, Torres GJ. Removing allometric effects of body size in morphological analysis. J Theor Biol. 2000;205:85–93.

[34] Hammer O, Harper DA, Ryan PD. PAST: paleontological Statistics software package for education and data analysis. Paleontologia Electronica. 2001;4:9.

[35] Berendzen PB, Dimmick WW. Phylogenetic relationships of Pleuronectiformes based on molecular evidence. Copeia. 2002;3:642–652.

[36] Kartavtsev YP, Park TJ, Vinnikov KA, et al. Cytochrome b(Cyt-b) gene sequence analysis in six flatfish species (Teleostei, Pleuronectidae), with phylogenetic and taxonomic insights. Mar Biol. 2007;152:757–773.

[37] Pardo BG, Machordom A, Foresti F, et al. Phylogenetic analysis of flatfish (Order Pleuronectiformes) based on mitochondrial 16s rDNA sequences. Sci Mar. 2005;69:531–543.

[38] Sharina SN, Kartavtsev IF. Phylogenetic and taxonomic analysis of flatfish species (Teleostei, Pleuronectiformes) inferred from the primary nucleotide sequence of cytochrome oxidase 1 gene (Co-1). Genetika. 2010;46:401–407.

[39] Menezes NA. Checklist of marine fishes from São Paulo State, Brazil. Biota Neotropicals. 2011;11(1):31–101.

[40] Passos AC, Contente RF, Vilar CC, et al. Peixes do Complexo Estuarino de Paranaguá, Atlântico Sul Oeste. Biota Neotropica. 2012;12(3):226–238.

[41] Spier D, Nadolny HL, Bomatowski H, et al. Ichthyofauna of the inner shelf of Paraná, Brazil: checklist, geographic distribution, economic importance and conservation status. Biota Neotropica. 2018;18:2.

[42] Cousseau MB, Perrotta RG. Peces marinos de Argentina. Biologia, distribución, pesca. Instituto de Investigación y Desarrollo Pesquero, Mar del Plata, Publicaciones Especiales; 2004. p. 167.

[43] Díaz de Astarloa JM, Figeroa DE. Scrawledcowfish, Acanthostracion quadricornis (Tetraodontiformes: Ostraciidae), collected from Argentine waters. J J Ich. 1995;41:466–4685.

[44] Izzo P, Milessi AC, Ortega L, et al. First record of Aluterus scriptus (Monacanthidae) in Mar del Plata, Argentina. JMB2 – Biod Rec. 2010;3. DOI:10.1017/S1755267210000369.

[45] Ricco MR, Acha EM. Southernmost occurrence of Epinephelus marginatus in the Southwest Atlantic. J Fish Biol. 2003;63:1621–1624.

[46] Segura A, Carranza A, Rubio L, et al. Stellifer rastrifer (Pisces: Sciaenidae): first Uruguayan records and a 1200 km range extension. Mar Biod Rec. 2009;2. DOI:10.1017/S1755267209000852.

[47] Solari A, García ML, Jaureguizar AJ. First record of Eucinostomus melanopterus, Bleeker 1863 (Perciformes, Gerreidae) from the Río de la Plata Estuary. J Appl Ichthyol. 2010;26:137–139.