Effectiveness of Self-Instructional Module (SIM) on Knowledge Regarding Cancer of Cervix and Its Prevention Among Married Women

Divya Rani Rajan (divyaranirajan@gmail.com)
Bule Hora University

Gomathi Munusamy
Mekelle University College of Health Sciences

Anoop Thampi
Mekelle University College of Health Sciences

Ramesh Shanmugam
Mekelle University College of Health Sciences

Research note

Keywords: Cervical cancer, Married women, Knowledge, Effectiveness, Self-instructional module

Posted Date: October 23rd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-94964/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective: Self-Instructional Module (SIM) is the self-contained typed written instructional material about the importance and prevention of cervical cancer prepared by an investigator. Instructional material given to the study subjects after a pre-test and self-evaluate by them before the post-test. Therefore, the present work aimed to find the effectiveness of SIM regarding cancer of the cervix and its prevention among married women in India.

Results: SIM administrated to 60 married women after assessing pre-test knowledge on the prevention of cancer cervix. The study showed that there was a greater increase in mean post-test knowledge score 24.92 (±2.560) compared to that of the mean pre-test knowledge score 8.65 (±3.369). The paired t-test value for overall knowledge was 30.73 with the post-test mean percentage score (83.06) was high when compared to that of the mean percentage of pre-test knowledge score (28.83).

Introduction

Cervical cancer is the most common cancer among women in 45 countries of the world, ranked second-highest, and the incidence rate is two times greater reported in developing countries (85%) than developed [1]. Worldwide, 266,000 women die of cervical cancer each year [2, 3]. In India 2nd most common female cancer in women aged 15 to 44 years, and 2018 estimates 469.1 million women are at risk for cervical cancer ≥ 15 years of age, an annual number of cervical cancer cases 96,922 and deaths 60,078 [4, 5].

Prevention at the population level is an effective strategy than considering non-modifiable factors like genetic, age, and environment to control and for early detection [6, 7]. The women can enhance and understand about prevention of cancer cervix by an educational strategy [2]. Information, education communication about routine screening on Human Papilloma Virus (HPV) tests, and resources accessible to all populations with cost-effective [8]. Increasing awareness of health promotive and protective measures among women is a prime step to lower the incidence and death due to cancer of the cervix [9]. Education campaigns [10] and involving media are effective for increasing knowledge on cancer of the cervix among women in rural areas and also intend to get vaccinate [11–14].

Even various programs and propaganda on cancer cervix, there is a lack of knowledge and beliefs of an Indian woman to follow healthy lifestyle practices, and screening for early detection is still stigmatic. A study concluded that educational materials to be provided in their local language with training programs may increase women to go for early screening and increases knowledge on preventive aspects [15, 16].

Intensify women’s knowledge with the national health care system should facilitate and encourage early diagnosis and therapy on prevention and control of cancer of the cervix. [17–19].

Due to a lack of knowledge on cancer of the cervix, women are unaware of the prevalence, prevention, and early detection. Since married women are at more risk and based on various literature and incidences, the researcher felt the necessity of providing information regarding cervical cancer and its prevention in married women through SIM and evaluate the effectiveness of SIM.

Methods

Study area and period: Jeppu Urban Family Welfare Centre, Mangalore, India, from December 2018 to March 2019.

Study design and sampling process: This study used a pre-experimental one group pre-test and post-test design. The purposive sampling technique was used to recruit study participants.

Selection criteria: The inclusion criteria were (i) married women aged 18–45 years (ii) participants who willing to participate voluntarily (iii) read and write Kannada (local language). Exclusion criteria: women undergone hysterectomy and who already have cervical cancer.

Sample size determination: The sample size was estimated with a 13% expected difference in standard deviation taken from a previous study [20], 90% power at 95% confidence interval with an expected 10% dropout, a minimum sample of 42 participants needed. The sample size was increased by 60 to adjust drop out and non-response.

Study variables

Extraneous variable: socio-demographic variables were age, education, occupation, monthly income, and the number of children.

Independent variable: SIM regarding cancer of the cervix and its prevention.

Dependent variable: meaning, risk factors, symptoms, diagnostic test, treatment, and prevention regarding cancer of the cervix.
Data collection tool: It consists of 30 multiple choice questions from the area of meaning (2), risk factors (5), symptoms (5), diagnostic test (4), treatment (4), and preventive aspects of cervical cancer (10). Each correct answer was given a score of '1' and each wrong answer was given a '0' score. The total score was 30.

Operational definition

Knowledge: refers to the correct response of the married women to the items in the structured questionnaires. Inadequate knowledge: score (1–10) considered ≤ 50%; moderately adequate knowledge: score (11–20) considered 51–75%; adequate knowledge: score (21–30) considered 76–100%.

Data quality assurance:

Data collector was trained to gather and accumulate data. A pilot study was run in 10% of the samples in the Attavar primary health center at Mangalore.

Conceptual Framework:

Open general system theory based on Ludwig Von Bertalanffy [21, 22] utilized in this study to achieve the effect of SIM. It has five major elements such as input (socio-demographic variables), process (administration of SIM), output (knowledge level), environment (information gained from mass media), and feedback.

Intervention:

SIM is an instructional package with a single conceptual unit of the content on cancer cervix and its prevention, that helps in individualized learning prepared by an investigator by previous references [2, 23, 24]. The study participants understand the meaning, risk factors, symptoms, stages, diagnostic tests, treatment, and prevention mainly focused on vaccination, quit active and passive smoking, avoid exposure to HPV and multiple sexual partners, use condoms, stress reduction, dietary modification, menstrual hygiene, sexual and genital hygiene practice, control use of oral contraceptives, annual gynecological examination, and pap smear examination and visual inspection test with acetic acid when and where the resources available. The study participants systematically go through the module from the beginning to the end with their own time to read this material slowly and carefully within the scheduled time. Women were encouraged to go for self-evaluation given at the end of each unit. Compare their answers with answers provided in the key answers. Duration to complete SIM was one month.

Data processing and analysis:

The data were analyzed using SPSS 26.0 for Windows (SPSS, IBM, USA). Statistical significance was set at \(P < 0.05 \). The results were analyzed by calculating basic statistics and paired t-test for pre-/post-comparisons of variables and knowledge level.

Ethical considerations

Informed consent was obtained from study participants on a voluntarily and made all the effort to protect their information confidentially.

Result

Socio-demographic characteristics

The mean age of respondents was 35.7 (± 7.5) years, and the highest proportions were 37–45 years. The majority of the study participants were married 208 (73%). Study subjects were high school education 20 (33.3%). Most of them were self-employed 13(21.7%). Income below Rs.3000 among the respondents was 21(35%). The more number of the respondents had two children 28 (46.7%).

Effectiveness of SIM

The results of the study are presented in Tables 1, 2, and 3. Overall knowledge of married women on cancer cervix and its prevention in pre-test and a post-test mean score was 8.37 and 24.85; standard deviation 3.08 and 2.27. The paired t-test value was 39.419.
Table 1
Comparison between pre-test, post-test knowledge scores and demographic variables (n = 60)

Variable	Pre-Test	Post-Test				
	Inadequate	Moderately Adequate	Total	Moderately Adequate	Adequate	Total
	N (%)	N (%)	N (%)	N (%)	N (%)	N (%)
Age						
18–27	14 (25.0)	2 (50.0)	16 (26.7)	7 (70.0)	9 (18.0)	16 (26.7)
28–36	21 (37.5)	0 (0.0)	21 (35.0)	3 (30.0)	18 (36.0)	21 (35.0)
37–45	21 (37.5)	2 (50.0)	23 (38.3)	0 (0.0)	23 (46.0)	23 (38.3)
Education						
Primary	4 (7.1)	1 (25.0)	5 (8.3)	2 (20.0)	3 (6.0)	5 (8.3)
Middle School	19 (33.9)	0 (0.0)	19 (31.7)	4 (40.0)	15 (30.0)	19 (31.7)
High School	20 (35.7)	0 (0.0)	20 (33.3)	4 (40.0)	16 (32.0)	20 (33.3)
Diploma	12 (21.4)	3 (75.0)	15 (25.0)	0 (0.0)	15 (30.0)	15 (25.0)
Graduate	1 (1.8)	0 (0.0)	1 (1.7)	0 (0.0)	1 (2.0)	1 (1.7)
Occupation						
Professional	8 (14.3)	2 (50.0)	10 (16.7)	0 (0.0)	10 (20.0)	10 (16.7)
Non-Professional	11 (19.6)	0 (0.0)	11 (18.3)	1 (10.0)	10 (20.0)	11 (18.3)
Self-Employed	13 (23.2)	0 (0.0)	13 (21.7)	4 (40.0)	9 (18.0)	13 (21.7)
Daily Wages	11 (19.6)	2 (50.0)	13 (21.7)	2 (20.0)	11 (22.0)	13 (21.7)
Unemployed	13 (23.2)	0 (0.0)	13 (21.7)	3 (30.0)	10 (20.0)	13 (21.7)
Monthly Income						
≤ Rs. 3000	19 (33.9)	2 (50.0)	21 (35.0)	5 (50.0)	16 (32.0)	21 (35.0)
Rs. 3001–5000	11 (19.6)	0 (0.0)	11 (18.3)	1 (10.0)	10 (20.0)	11 (18.3)
Rs. 5001–8000	17 (30.4)	0 (0.0)	17 (28.3)	2 (20.0)	15 (30.0)	17 (28.3)
Rs. 8001–10000	4 (7.1)	2 (50.0)	5 (8.3)	1 (10.0)	4 (8.0)	5 (8.3)
≥ Rs. 10001	5 (8.9)	1 (25.0)	6 (10.0)	1 (10.0)	5 (10.0)	6 (10.0)
No. of Children's						
None	1 (1.8)	0 (0.0)	1 (1.7)	0 (0.0)	1 (20.0)	1 (1.7)
One	21 (37.5)	3 (37.5)	24 (40.0)	4 (40.0)	20 (40.0)	24 (40.0)
Two	28 (50.0)	0 (0.0)	28 (46.7)	5 (50.0)	23 (46.0)	28 (46.7)
Three or more than three	6 (10.7)	1 (25.0)	7 (11.7)	1 (10.0)	6 (12.0)	7 (11.7)
Table 2
Association between pre-test, post-test knowledge scores and demographic variables (n = 60)

Variables	N	Pre-Test	Post-Test	Adjusted Mean	Paired t-test value			
		M	SD	M	SD	M	SD	
Age								
18–27	16	9.31	3.70	23.75	9.31	14.43	3.74	15.44
28–36	21	7.00	2.07	25.33	2.47	18.23	2.03	41.32
37–45	23	8.95	3.08	25.17	1.64	16.21	2.90	26.75
Education								
Primary	5	8.60	4.97	22.60	1.67	14.00	1.67	08.36
Middle School	19	7.63	1.86	24.26	1.85	16.63	2.24	32.34
High School	20	8.05	2.50	24.05	2.16	16.00	3.09	23.12
Diploma	15	9.60	4.18	27.33	0.62	17.73	4.06	16.01
Graduate	1	-	-	-	-	-	-	-
Occupation								
Professional	10	10.80	4.13	25.00	1.63	14.20	3.52	12.75
Non-Professional	11	7.90	1.57	25.81	1.72	17.90	1.14	52.27
Self-Employed	13	6.77	2.20	24.30	2.92	17.53	3.95	16.01
Daily Wages	13	9.07	3.73	25.07	2.25	16.00	3.83	15.06
Unemployed	13	7.76	2.08	24.23	2.38	16.46	1.80	32.83
Monthly Income								
≤ Rs. 3000	21	8.80	3.44	24.28	2.32	15.47	3.60	19.69
Rs. 3001 – Rs. 5000	11	7.45	1.96	24.63	1.85	17.18	2.35	24.16
Rs. 5001 – Rs. 8000	17	7.47	20.45	25.58	2.12	18.11	2.68	27.77
Rs. 8001 – Rs. 10000	5	9.20	4.32	25.20	2.94	16.00	2.44	14.60
≥ Rs. 10001	6	10.33	3.50	24.83	2.78	14.50	3.67	9.67
No. of Children’s								
None	1	-	-	-	-	-	-	-
One	24	8.87	3.55	25.12	2.32	16.25	3.32	23.932
Two	28	7.53	2.13	24.75	2.42	17.21	2.97	30.634
Three or more than three	7	9.71	4.23	24.00	1.82	14.28	3.54	10.660

*aAll variables paired t-test value is significant at p-value < 0.05
Table 3
Effects of SIM on cervical cancer: area wise mean, standard deviation and mean percentage (n = 60)

Variables	Pre-test M ±SD	M %	Post-test M ±SD	M %	Paired t-test value
Meaning	1.30 ±0.743	65	1.88 ±0.324	94.17	5.45
Risk factors	1.82 ±1.172	36.33	4.35 ±0.755	87	14.71
Symptoms	1.58 ±1.169	31.67	4.35 ±0.777	87	13.98
Diagnostic test	0.52 ±0.701	12.92	2.93 ±0.936	73.33	15.82
Treatment	0.97 ±1.008	24.17	3.37 ±0.736	84.17	16.13
Prevention	2.47 ±1.241	24.67	8.03 ±1.248	80.33	26.29
Overall Knowledge	8.65 ±3.369	28.83	24.92 ±2.560	83.06	30.73

aAll variables paired t-test value is significant at p-value < 0.05

Discussion

In this existing study, most women range from 37–45 years with mean ages of 35.7 (± 7.5). This finding was seen in the study conducted in Nigeria [25] respondents were in the age of 35–54 years with mean ages of 38.54 (± 11.06) and Korea [26] participants were in the age of 36–59 years with a mean age of 44.8 (± 6.4) years respectively.

In this present study, there was an increased knowledge in post-test 83.06% (p < 0.05) after introducing SIM when compared to pre-test 28.83%. Previous studies consistent with the result conducted in Nigeria among women knowledge level on cancer cervix from 2–70.5% (p < 0.0001) after structured group health education [27]; study reported from Vietnamese American women [28] overall knowledge on cancer cervical education program from 30–88% (p < 0.001) and Vietnam rural areas among married women [29] level of knowledge increased from (27.5%-54.3%) in the intervention group (p < 0.05); study conducted in Cameroon [19] women who received the educational intervention had a significantly higher knowledge about HPV and cervical cancer in the intervention group 81.6% (p < 0.05)

The current study underpinned with system theory with the attainment of the effectiveness of SIM. A systematic review [30] concluded that the use of theory-based educational interventions significantly increased cervical cancer screening rates by more than double (OR, 2.46, 95% CI: 1.88, 3.21). Through the administration of SIM, the results are expected to increase the level of knowledge in urban areas. The study conducted in rural areas also had similar results from previous studies. It may provoke women with preventive measures and follow up care regularly for their future.

Limitations

The study sample included only married women between the ages of 18–45 years, but it can include all the women above the age of 15 years irrespective of marriage. The contemporary study used a pre-experimental one group pre-test post-test design; it can be conducted as a randomized control trial. Information collected from the women was based only on written responses. This study has limited to urban areas, it can be applied to rural areas.

Abbreviations

HPV: human papilloma virus; IBM: International Business Machines; M: mean; OR: odds ratio; SIM: self-instructional module; SD: standard deviation; SPSS: Statistical Package for Social Sciences.

Declarations

Ethics approval and consent to participate

Ethical approval was obtained from the Ethics Review Committee of Masood College of Nursing and formal permission obtained from Jeppu Urban Health Centre, Mangalore, India. Written informed consent was obtained from all participants before the data collection tools were administered, and confidentiality was maintained.

Consent for publication
Not applicable.

Availability of data and materials

All data generated or analyzed during the present study are included in this published article.

Competing interests

The authors declare that they have no competing interests.

Funding

The research study was self-funded as a mini-thesis.

Authors’ contributions

DRR: conception, design, acquisition of data, analysis, and interpretation of data and drafting the manuscript. GM: critically reviewed the design, analysis, interpretation, and the drafted manuscript. AT: participate in reviewing the design, data analysis, interpretation, and the drafted manuscript. RS: involved in drafting and critically revising the manuscript for important intellectual content. All authors read and approved the final manuscript.

Acknowledgements

The authors would like to acknowledge the contributions of the data collector for data collection and entry. We would like to thanks our study participants for their cooperation in the provision of their information.

References

1. Freire SM, Almeida RT de, Cabral MDB, Bastos E de A, Souza RC, Silva MGP da. A record linkage process of a cervical cancer screening database. Comput Methods Programs Biomed. 2012;108:90–101. doi:10.1016/j.cmpb.2012.01.007.

2. World Health Organization. Comprehensive cervical cancer control: a guide to essential practice. World Heal Organ. 2014;1–408. http://apps.who.int/iris/bitstream/10665/144785/1/9789241548953_eng.pdf?ua=1. Accessed 20 Dec 2019.

3. World Health Organization. Global status report on noncommunicable diseases 2014. 2014;1–302. https://apps.who.int/iris/bitstream/handle/10665/148114/9789241564854_eng.pdf;jsessionid=E7879F88DB5E630487BF43438008AC?sequence=1. Accessed 20 Dec 2019.

4. Albero G, Barrionuevo-Rosas L, Bosch F, Brunl L, de SanJose S, Gomez D, et al. Human papilloma virus and related diseases report. Inst Català d'Oncologia. 2019;1–79. https://hpvcentre.net/statistics/reports/IND.

5. Husain RSA, Ramakrishnan V. Global variation of human papillomavirus genotypes and selected genes involved in cervical malignancies. Ann Glob Heal. 2015;81(5):675–83. http://dx.doi.org/10.1016/j.aogh.2015.08.026.

6. Calderon-Garciduenas AL, Flores-Pena Y, De Leon-Leal S, Vazquez-Martinez CA, Farias-Calderon AG, Melo-Santiesteban G, et al. An educational strategy for improving knowledge about breast and cervical cancer prevention among Mexican middle school students. Prev Med Reports. 2015;2:250–4. http://dx.doi.org/10.1016/j.pmedr.2015.02.006.

7. Gabrielli S, Maggioni E, Fieschi L. Cervical cancer prevention in senegal: An international cooperation project report. Acta Biomed Heal Prof. 2018;89(6):29–34. doi: 10.23750/abm.v89i6-S.7460.

8. Sreedevi A, Javed R, Dinesh A. Epidemiology of cervical cancer with special focus on India. Int J Womens Health. 2015;7:405–14. http://dx.doi.org/10.2147/IJWH.S50001.

9. Ali-Risasi C, Mulumba P, Verdonck K, Vanden Broeck D, Praet M. Knowledge, attitude and practice about cancer of the uterine cervix among women living in Kinshasa, the Democratic Republic of Congo. BMC Womens Health. 2014;14:1–13. http://www.biomedcentral.com/1472-6874/14/30.

10. Li J, Kang LN, Li B, Pang Y, Huang R, Qiao YL. Effect of a group educational intervention on rural Chinese women's knowledge and attitudes about human papillomavirus (HPV) and HPV vaccines. BMC Cancer. 2015;15:1–11. http://dx.doi.org/10.1186/s12885-015-1682-2.

11. Assoumou SZ, Mabika BM, Mbiguino AN, Moullif M, Khattabi A, Ennaji MM. Awareness and knowledge regarding of cervical cancer, pap smear screening and human papillomavirus infection in Gabonese women. BMC Womens Health. 2015;15:1–7. doi: 10.1186/s12905-015-0193-2.

12. Baskaran K, Kumar PK, Santha K, Sivakamasundari I. Cofactors and their association with cancer of the uterine cervix in women infected with high-risk human papillomavirus in South India. Asian Pacific J Cancer Prev. 2019;20(11):3415–9. doi:10.31557/APJCP2019.20.11.3415.
13. Thapa N, Maharjan M, Petrin MA, Shah R, Shah S, Maharjan N, et al. Knowledge, attitude, practice and barriers of cervical cancer screening among women living in mid-western rural, Nepal. J Gynecol Oncol. 2018;29(4):1–12. https://doi.org/10.3802/jgo.2018.29.e57.

14. Sawadogo B, Sheba GN, Rutebemberwa E, Sawadogo M, Meda N. Knowledge and beliefs on cervical cancer and practices on cervical cancer screening among women aged 20 to 50 years in Ouagadougou, Burkina Faso, 2012: A cross-sectional study. Pan Afr Med J. 2014;18:1–10. doi:10.11604/pamj.2014.18.175.3866.

15. Mary NJJ, Kundapur K, Nighina AS, John PS, Soumya SV, ViswamKrishnan. Effect of two teaching methods on learning outcomes regarding prevention of cervical cancer among married women in rural areas of Kannur District, Kerala - a pilot study. Virol Immunol J. 2018;2(5):149–54. doi: 10.31031/COJNH.2018.02.000534.

16. Jayaprakash M, Eralil GJ, Jose R, Radha KR, Vijilakshmi AG, Ambikabhai PG. Study on knowledge and practice of screening for cervical cancer among women from rural communities in central Kerala, India. Int J Reprod Contraception, Obstet Gynecol. 2018;7(10):4165–70. doi: http://dx.doi.org/10.18203/2320-1770.ijrcog20184146.

17. Mathur MR, Singh A, Dhillon PK, Dey S, Sullivan R, Jain KK, et al. Strategies for cancer prevention in India-catching the “low hanging fruits.” J Cancer Policy. 2014;2(4):105–6. http://dx.doi.org/10.1016/j.jcpo.2014.07.001.

18. Dahiya N, Aggarwal K, Singh M, Garg S, Kumar R. Knowledge, attitude, and practice regarding the screening of cervical cancer among women in New Delhi, India. Tzu Chi Med J. 2019;31(4):240–3. doi: 10.4103/tcmj.tcmj_145_18.

19. Sossauer G, Zbinden M, Tebeu PM, Fosso GK, Untiet S, Vassilakos P et al. Impact of an educational intervention on women's knowledge and acceptability of human papillomavirus self-sampling: a randomized controlled trial in Cameroon. PLoS One. 2014;9(10):1–8. doi:10.1371/journal.pone.0109788.

20. Khatri RA, Joseph B. A study to evaluate the effectiveness of self instructional module on knowledge regarding pap smear screening among female teachers from selected schools of Bangalore. Int J Heal Sci Res. 2017;7(7):171–6. www.ijhshr.org/ Accessed on 20 Dec 2019.

21. Cordon CP. System theories: an overview of various system theories and its application in healthcare. Am J Syst Sci. 2013;2(1):13–22. doi: 10.5923/j.ajs.20130201.03.

22. Smith M, Parker M. Nursing theories and nursing practice. 4th Ed. 2015. http://elib.fk.uwks.ac.id/asset/archive/e-book/KEPERAWATAN/Nursing Theories and Nursing Practice.

23. World Health Organization. Cervical cancer screening and management of cervical pre-cancers: trainees’ handbook and facilitators’ guide - programme managers’ manual. World Heal Organ. 2017;1–145.

24. Dutta DC. DC Dutta's gynecology including contraception. 6th ed. Jaypee Brothers Medical Publishers (P) Ltd. 2013. https://drive.google.com/file/d/0B3cgt8R3_yHcYnE0NDVYY3hkckk/view.

25. Gana GJ, Oche MO, Ango JT, Kaoje AU, Awosan KJ, Raji IA. Educational intervention on knowledge of cervical cancer and uptake of pap smear test among market women in Niger state, Nigeria. J Public Health Africa. 2017;8:111–6. doi:10.4081/jphia.2017.575.

26. Kim K, Boyoung K, Choic E, Song Y, Han H-R. Knowledge, perceptions, and decision-making about human papillomavirus vaccination among Korean American women: A focus group study. Womens Heal Issues. 2017;25(2):112–9. doi:10.1016/j.whi.2014.11.005.

27. Abiodun OA, Olu-Abiodun OO, Sotunsa OJ, Oluwole FA. Impact of health education intervention on knowledge and perception of cervical cancer and cervical screening uptake among adult women in rural communities in Nigeria. BMC Public Health. 2014;14:1–9. doi: 10.1186/1471-2458-14-814.

28. Fang CY, Lee M, Feng Z, Tan Y, Levine F, Nguyen C, et al. Community-based cervical cancer education: changes in knowledge and beliefs among Vietnamese American women. J Community Health. 2019;44(3):525–33. doi: 10.1007/s10900-019-00645-6.

29. Le ATK, Tran VT, Dinh HTP, Dau CX, Pham BQ, Nguyen HT, et al. Effectiveness of community intervention program on knowledge and practice of HPV prevention among married females in Vietnam rural areas. Cancer Control. 2019;26:1–9. doi: 10.1177/1073274819862792.

30. Musa J, Achenbach CJ, O’Dwyer LC, Evans CT, McHugh M, Hou L, et al. Effect of cervical cancer education and provider recommendation for screening on screening rates: a systematic review and meta-analysis. PLoS One. 2017;12(9):1–28. http://dx.doi.org/10.1371/journal.pone.0183924.