Bioeroding (boring) polychaete species (Annelida: Polychaeta) from the Aegean Sea (eastern Mediterranean)

Melih Ertan Çinar and Ertan Dagli

Faculty of Fisheries, Department of Hydrobiology, Ege University, 35100, Bornova, Izmir, Turkey

Abstract

The present study reports polychaetes that bore into limestone rocks along the east coast of the Aegean Sea (eastern Mediterranean). Rock materials were collected at two depth intervals (0–5 and 5–10 m) at 15 stations in four localities of Ildır Bay. A total of 276 specimens belonging to 12 species and four families (Eunicidae, Spionidae, Cirratulidae and Sabellidae) were recorded. Specimens belonging to Dodecaceria and Pseudopotamilla were identified at the genus level, because they differ from described species, were few in number or were in poor condition. Dipolydora giardia is a new species to the marine fauna of Turkey. The most dominant and frequent family in the area was Eunicidae, followed by Spionidae. Lysidice ninetta and L. margaritacea comprised 59% of the total number of individuals. The number of species and individuals, and the diversity index did not change with regard to depth or locality. Two species assemblages were found in the area, mainly formed by Dipolydora and Lysidice species. The Lessepsian species, Palola valida, which is a new record for the Aegean Sea, occurred abundantly at the study sites, posing a risk of damage to limestone rocks in the Mediterranean Sea. The morphological features of the species identified at the generic level and the burrow structure of these species are presented. The burrow shapes of Palola siliensis and P. valida were described for the first time in the present study; they constructed complicated galleries, including more than four entrances.

Introduction

Polychaetes are one of the primary bioeroders of calcareous structures such as rocks, corals and bivalves (Scott et al., 1988; Peyrot-Clausade et al., 1992; Hutchings & Peyrot-Clausade, 2002). Bioerosion by polychaetes, where hard substratum is degraded into minute fragments, is a dynamic, destructive process that results in shaping of rocky bottoms and changes to the structural integrity of coral reefs (Hutchings, 1986; Tribollet & Golubic, 2011). Although there are three types of destruction (i.e. grazing, etching and boring; see Hutchings, 1986), polychaetes especially play important roles in the boring phenomenon, which is mediated by chemical and mechanical processes (Sato-Okoshi & Okoshi, 1993; Blake, 1996). They can secrete acid mucopolysaccharides from the ventral epithelium and segmental mucus glands to dissolve substrata, or they can utilize their jaws (i.e. Eunicidae) and specialized chaetae (i.e. Spionidae and Cirratulidae) to bore into substrata (Evans, 1969; Hutchings, 2008). Several polychaete families play roles in bioerosion, but many boring species have been reported in the families Eunicidae, Lumbrineridae, Dorvilleidae, Spionidae, Cirratulidae and Sabellidae (Hutchings, 1986; Fonseca et al., 2006). The majority of species construct circular, shallow burrows into the substrata, but eunicid worms form a sinuous, branched network (Glynn, 1997). However, young and adult worms can create different burrow shapes (Evans, 1969; Liu & Hsieh, 2000). Erosional losses of the Great Barrier Reef caused by polychaetes were estimated as 1.8 kg m$^{-2}$ year$^{-1}$ (Davies & Hutchings, 1983). The mass infestation of boring spionid and sabellid species on bivalve beds can cause severe damage to mollusc shells, affecting the growth of their hosts and in turn resulting in financial loss to owners of aquaculture sites (Evans, 1969; Fitzhugh & Rouse, 1999; Simion et al., 2010).

Bioerosion created by polychaetes and their impacts on calcareous substrata have been studied at several localities world-wide, i.e. Atlantic Ocean (Bromley, 1978; Chughtai & Knight-Jones, 1988), Indian Ocean (Carreiro-Silva & McClanahan, 2012) and Pacific Ocean (Hutchings & Peyrot-Clausade, 2002; Fonseca et al., 2006). However, marine bioerosion has rarely been studied in the Mediterranean Sea. Sartoreto (1998) studied bioeroding species on coralligenous panels experimentally and determined that boring spionid species (Polydora spp.) occurred at the pioneering stage of colonization and their densities reached up to an average value of 1200 ind. m$^{-2}$ after one year of submergence. Some studies emphasized the settlement of boring polychaetes on hard substrata (Laubier, 1958, 1959) and bivalves (i.e. Carazzi, 1893; Boscolo & Giovanardi, 2002) in the region. The distribution of boring eunicid species on scales of the endemic phanerogame Posidonia oceanica (Linnaeus) Delile, 1813 has been relatively well-studied in the region (Gambi, 2002; Gambi et al., 2005). However, there is only one study that specifically focused on the distribution of boring species on limestone rocks in the Mediterranean Sea (Casoldi et al., 2019).
A few papers were specifically focused on boring polychaete species along the coast of Turkey. Çağlar (1954) reported the dense settlement of a polydorid species (identified as *Polydora ciliata*, whose presence is now questionable in the Mediterranean) on the mussel *Mytilus galloprovincialis* in the Istanbul Strait and studied its reproductive biology and larval development in the area. She also described galleries within shells constructed by the worm. Pinar (1974) and Sen et al. (2010) studied wood-boring bivalves and crustaceans at some ports in Turkey. Bioeroding sponges were specifically studied in İldırı Bay, based on the material collected during the present study (Evven & Çınar, 2015). However, boring sponges (see Evven & Çınar, 2012), polychaetes (Demir, 1952–1954; Ergen, 1976; Kurt-Sahin & Çınar, 2009; Dağlı et al., 2011; Çınar et al., 2014), foraminifers (*Phoronis hippocrepia*, Çınar et al., 2008), crustaceans (see Bakır et al., 2014) and molluscs (see Öztürk et al., 2014) were reported in general faunistic and ecological studies in the area.

This paper is aimed at assessing the distribution and diversity of bioeroding (boring) polychaete species in the Aegean Sea, and determining their morphological and ecological aspects.

Materials and methods

Sampling and material

The hard-bottom benthic samples were collected at 15 stations in four localities (southern part (SP), Eşek Islands (EI), eastern part (EP) and Gencelli Bay (GB)) at 0–10 m depths in İldırı Bay (east Aegean Sea, Turkey) in August 2011 (Figure 1). Among the localities, Eşek Islands has no human settlements, but dense human settlements (especially in summer) exist in the southern part (near Çeşme). In Gerence Bay and the eastern part, mariculture (mainly sea-bass and sea-bream) activities take place. In the area, limestone rocks are generally present at 0–10 m depth; from 10 m depth downwards soft substrata with dense meadows of *Posidonia oceanica* together with *Caulerpa cylindracea* and *C. prolifera*, and *Halophila stipulacea* are present. Except for stations 5 and 6 where bottoms are covered with *P. oceanica* meadows at 0–5 m depth, hard bottom samples were taken at the depth intervals 0–5 and 5–10 m at all stations.

Samples were collected randomly at each depth interval of stations by snorkelling and scuba diving. Only one sample in a quadrat covering almost 0.5 m² area was taken in each depth interval of the stations. Rock samples were broken underwater using a hammer and chisel, and immediately covered with mesh and put in cloth bags. On board the pleasure vessel 'Çağan 2005', benthic samples collected in each depth interval were put in a large plastic washbasin and specimens among rock pieces were collected. Large rock pieces were carefully broken into small pieces to observe the placement and burrow structures of boring species. The material was put in separate jars and fixed with 4% formaldehyde in the laboratory, benthic material was washed with tap water, sorted according to major taxonomic groups under a stereomicroscope (Olympus SZ-51) and preserved in 70% ethanol. Specimens were then identified and counted. In the identification of the specimens, papers including the original and subsequent descriptions of the species were used.

Specimens were deposited at the Museum of Faculty of Fisheries, Ege University (ESFM).

Photographs of specimens were taken with a digital camera (Olympus, Camedia, C-7070) attached to stereo (Olympus SZ-16) and compound (Olympus BX-51) microscopes. Total body length and width at chaetiger 10 (excluding parapodia and chaetae) were measured with an ocular micrometer.

Statistical analyses

Community descriptors such as the number of species and individuals, and the diversity (log, base) and evenness index values were estimated for each sample and depth interval. The spatial patterns of species assemblages were assessed using the hierarchical cluster analysis in PRIMER (Clarke et al., 2014). The pattern of species assemblages was explored and visualized using nMDS, applied on the Bray–Curtis resemblance matrix. Prior to analysis, the raw data were transformed by using the fourth-root transformation. The similarity profile test (SIMPROF) routine was run if groupings assessed are statistically significant at 0.05 (Clarke et al., 2014). Similarity percentages analysis (SIMPER) was applied to the species-station matrices in order to identify the species which contributed most to the similarity of groups of stations. Two-way distance-based permutation multivariate analysis of variance (PERMANOVA) (Anderson, 2001) was used to test (1) if the community descriptors differ significantly in the depth intervals and localities, (2) if species assemblages differ significantly in the depth intervals and localities. The Euclidean distance matrix was used in the former analysis, and the Bray–Curtis similarity matrix was used in the latter. All analyses were performed by using the software PRIMER v7.

Results

Faunistic analysis

The shallow-water rocky bottom of İldırı Bay yielded 12 boring polychaete species belonging to four families (Eunicidae, Spongidae, Cirratulidae and Sabelllidae) (Table 1). Spongidae were represented by the highest number of species (5 species), followed by Eunicidae (4 species) and Sabelllidae (2 species). Among the species, the polydorid *Dipolydora giardia* is new to the marine fauna of Turkey, the lessessian species *Palola valida* new to the Aegean Sea, and one *Doeccacera* and two *Pseudopotamilla* species probably new to science – these are described below.

The dominant species in the area were *Lysidice ninetta* (39% of all specimens), *L. margaritacea* (20%) and *Dipolydora coeca* (13%). The species with the frequency value (occurrence) higher than 50% in all samples was *L. ninetta* (56%), but the scores changed according to the depth intervals. *Dipolydora coeca* (62%), *L. ninetta* (54%) and *L. margaritacea* (54%) had the highest frequency scores (>50%) in the 0–5 m depth interval, whereas only *L. ninetta* had the highest score (57%) in the 5–10 depth interval. Almost similar numbers of species and individuals were found at the depth intervals, 0–5 and 5–10 m. Ten species and 14 individuals were encountered at 0–5 m depth, whereas 11 species and 135 individuals were found at 5–10 m depth. The mean scores of the community descriptors varied among localities and depths. The highest mean number of species (4 species) and individuals (23 individuals), and diversity score (*H = 1.28*) were found at 0–5 m depth in Gencelli Bay (GB), whereas the highest evenness score (*F = 0.92*) was estimated at 0–5 m depth in the eastern part of İldırı Bay (EP) (Figure 2). The number of species, the number of individuals and the diversity index did not change significantly between the depth intervals and localities (*P > 0.05*), and the evenness index only differed significantly among localities (*Pseudo-*F* = 3.87, *P* < 0.05) (Table 2).

Two main species assemblages (A and B) were determined in the area (SIMPROF test, *P < 0.05*) (Figure 3). Samples from the southern part (SP) and Eşek Islands were clustered in the MDS graphs (group B) and represented high similarity values. Locality and depth were not a significant factor affecting the assemblages (Table 3). The distribution and abundance of sponges and eunicids affected the species assemblages. The first assemblage (indicated as A in Figure 4), which is mainly...
dominated by the boring *Dipolydora* species, was formed at a few stations (2, 4, 10, 12, 14 and 15). The second assemblage (indicated as B in Figure 3), which is mainly dominated by the eunicids such as *Lysidice* species and *Palola valida*, was formed at the majority of stations. In this assemblage, there are two specific assemblages structured by different boring species (indicated as I and II in Figure 3). The species that showed strong or moderate correlations with the first and second nMDS axes were *Lysidice margaritacea* \((r = 0.76, \text{with MDS1}), *Polydora hoplura* \((r = -0.45, \text{with MDS1}), *L. ninetta* \((r = 0.57, \text{with MDS2}) \) and *Palola valida* \((r = 0.51, \text{with MDS2}) \).

According to the SIMPER analysis, the species most responsible for the similarity of the assemblage A was *D. armata* (contribution = 73%); and those most responsible for the assemblage...
B are L. ninetta (36%) and L. margaritacea (35%). The specific assemblages (BI and BII) within assemblage B are mainly structured with presence of the eunicids (P. valida and L. ninetta) and the polydorid (Dipolydora coeca) in the assemblage BII, and the difference in the abundance of L. margaritacea, which was three times higher in the assemblage BI.

The boring eunicids formed different burrow shapes. Palola sicilensis and P. valida constructed complicated galleries within limestone, including more than four entrances (Figure 4A). However, the whole shape of the burrow of P. valida could not be determined, due to damaged rocks. The Lysidice species, L. ninetta and L. margaritacea constructed a vertical, short burrow within limestone.

The bioeroding spionid polychaetes found in the study area generally constructed almost the same burrows within limestone. Dipolydora armata, D. flava and D. giardia and Polydora hoplura formed thin, long and straight grooves (Figure 4C–E), whereas D. coeca formed a characteristic L-shaped burrow within rocks (Figure 4B), sometimes in association with a Lithophaga lithophaga burrow. The burrow of this species was deeper than those of Dipolydora giardi and D. armata.

Pseudopotamilla species constructed irregular, short vertical burrows in limestone in the study area. Dodecaceria species bore into rocks, but its burrow type was not fully determined, due to damaged rocks.

Descriptions of the species identified at genus level

Phylum: Annelida Lamarck, 1802
Class: Polychaeta Grube, 1850
Order: Terebellida Rouse & Fauchald, 1997
Family: Cirratulidae Ryckholt, 1851

Dodecaceria sp.

Description. Largest specimen incomplete, with anterior fragment, 5 mm long, 0.8 mm wide, with 18 chaetigers. Body somewhat cylindrical, becoming enlarged in middle region, dark brownish in colour, with black speckles on palps, branchiae and body (Figure 5A). Prostomium rounded, expanded, with two slit-like nuchal organs placed on posterior margin. Peristomium multi-annulated, with 2–3 dorsal rings. Palps thick, laterally inserted, extending to 9–10 chaetiger. First segment achaetous, completely fused to peristomium. Branchiae dimorphic, from ‘peristomium’ to chaetiger 7, one pair per segment; those on chaetigers 1–3 with branchiae almost 2–3 times longer than posterior ones. Branchiae inserting more dorsally on anterior segments. Chaetigers annulated dorsally, 3–4 rings per chaetiger. Anterior chaetigers with serrated capillaries in notopodia and neuropodia; notopodial capillaries longer than neuropodial ones. Spoon-shaped hooks commencing on chaetiger 12; numbering three in both rami.

Remarks

As all specimens were incomplete, with anterior end, and most specimens were damaged, we did not determine if this species is distinct or not. More well-preserved specimens are required to name them. The specimens most probably belong to an undescribed species, as they showed morphological features different from described species, especially in terms of the branchial distributions and the shape of spoon chaetae when compared with species of Dodecaceria in the Mediterranean, namely Dodecaceria sextentaculata and D. saxicola.

Pseudopotamilla sp. 1

Description. Specimen incomplete, 10.6 mm long (including branchial crown), 0.6 mm wide, with 38 chaetigers. Body pale...
yellowish. Branchial crown 2 mm long, with seven pairs of radioles, with one compound eye near base, except for dorsal and ventral radioles (L, R = x111xxx) (Figure 5B1). Dorsal lips large, with pointed tip, associated with dorsal radiolar appendages. Ventral lips and ventral sacs present; ventral lips short, somewhat rectangular in shape; sacs located between crown and ventral crown flanges.

Remarks

This species differs from the previously reported species of *Pseudopotamilla* from the coasts of the Mediterranean Sea, namely *P. reniformis* and *P. saxicava*, in having deep, distinct notches on the lateral sides of collar; short paired dorsal collar lappets; and fewer eyes on the radioles. More undamaged specimens are needed to clarify its taxonomic entity.

Table 2. Overall PERMANOVA tests applied on the community descriptors (number of species, number of individuals, diversity index and evenness index) with regard to depth intervals (two levels: 0–5 and 5–10 m depths) and localities (four areas: southern part, Eşek Islands, eastern part and Gencelli Bay)

Source	Degree of freedom	Sum of square	Mean of square	Pseudo-F	P(perm)	Perms
Number of species						
Locality	3	2.42	0.81	0.22	0.89	9944
Depth	1	0.34	0.34	0.09	0.77	9833
Depth × Locality	3	3.07	1.02	0.27	0.84	9954
Residue	19	71.25	3.75			
Total	26	76.96				
Number of individuals						
Locality	3	365	122	0.90	0.46	9962
Depth	1	25	25	0.18	0.69	9832
Depth × Locality	3	425	142	1.05	0.39	9951
Residue	19	2563	135			
Total	26	3387				
Diversity index						
Locality	3	0.98	0.33	1.39	0.29	9958
Depths	1	0.21	0.21	0.90	0.36	9826
Depth × Locality	3	0.88	0.29	1.24	0.33	9960
Residue	12	2.82	0.23			
Total	19	5.01				
Evenness index						
Locality	3	0.25	0.08	3.87	0.04	9948
Depth	1	0.01	0.01	1.18	0.66	9827
Depth × Locality	3	0.08	0.03	1.23	0.33	9944
Residue	12	0.26	0.02			
Total	19	0.63				

Bold value is statistically significant (P < 0.05).
Dorsal margin with narrow flanges, ventral margin with oblique flanges. Paired dorsal collar lappets low, somewhat triangular, a little surpassing beyond the junction of crown and thorax; lateral collar margin deeply notched; ventral collar margin distinctly higher than dorsal margin, with a pair of broadly triangular lobes. Thorax with 8 chaetigers, abdomen with 22 chaetigers. Anterior margin of first ventral shield indented medially. Collar chaetae limbate. Thoracic notopodia with limbate and paleate chaetae; the latter with a small distal mucro. Abdominal neuropodia with limbate chaetae. Thoracic uncini with numerous teeth above main fang. Companion chaetae with flat tear-drop distal blades. Abdominal uncini relatively small, with short handle.

Remarks
This species differs from the previously reported species of Pseudopotamilla (P. reniformis and P. saxicava) from Mediterranean coasts and Pseudopotamilla sp. 1 in having deep, distinct notches on the lateral sides of collar; short paired dorsal collar lappets; and the distribution of eyes on radioles; ventral sacs. More undamaged specimens are needed to clarify its taxonomic entity.

Discussion
In the eastern Aegean Sea, limestone rocky substrata hosted 12 boring polychaete species, belonging to four families. The most widespread and abundant species were eunicids (Lysidice species) and spionids (Dipolydora species). The present study is focused only on the species that bore into rocks, so other polychaete species effectively involved in bioeroding processes such as etching and grazing have not been considered.

In a previous experimental study performed on the Tyrrhenian coast of Italy by Casoli et al. (2019), two polychaete species, namely Polydora ciliata and Dodecaceria concharum, were reported as borers on limestone panels. However, the occurrence of these two species in the Mediterranean is highly questionable (see Çinar et al., 2014) and previous records of P. ciliata in the Mediterranean and Black Sea were assigned to different species such as P. cornuta (Çinar et al., 2005). It seems that they are Atlantic species and do not occur in the Mediterranean Sea. In our study, four Diopolydora species and one Polydora species were determined, among which P. ciliata was absent. Not only within limestone, but in other substrata, P. ciliata was never found in the Aegean Sea (Dagli et al., 2011). Dodecaceria concharum was frequently reported in previous studies in the Mediterranean, but it seems not to occur in the region, but D. sextentaculata and D. saxicola do occur, which have different morphological features (e.g. shapes of branchiae, spoon chaetae, prostomium) when compared with D. concharum (MEÇ, pers. obs. on material in the Zoological Museum of Copenhagen). In this study, the Dodecaceria species found did not resemble previously described species and they require further examination with additional intact material.

Lysidice ninetta and L. margaritacea were embedded tightly into rocks, and observed to construct vertical, short burrows, suggesting that they are active borers of rocks rather than being nesters (i.e. species living inside burrows shaped by other boring species sensu Hutchings, 2008). They are known to be active

Table 3. Main tests of PERMANOVA based on fourth-root transformed species-abundance data

Source	Degree of freedom	Sum of square	Mean of square	Pseudo-F	P(perm)	Perms
Locality	3	8.34	2.78	0.83	0.66	9890
Depth	1	2.68	2.68	0.80	0.55	9943
Depth × Locality	3	6.43	2.14	0.64	0.86	9904
Residue	19	63.76	3.35			
Total	26	81.55				

Localties and the depth intervals were used as different fixed factors.
borers of Posidonia oceanica, using their chitinous, strong jaws to bore into the scales of P. oceanica and create distinct traces (Gambi et al., 1995; Çinar, 2013a). Lysidice ninetta has previously been reported as a borer of rocks (Bromley, 1978; Castriota et al., 2003), but L. margaritacea was found as a borer within limestone for the first time in the present study.

Different shapes of burrows constructed by boring polychaetes were determined in the present study. The most complicated, branched burrow with several entrances was formed by two Palola species, P. valida and P. siciliensis. Such a burrow type has not previously been described for these species. The other boring species have almost short, straight/vertical or L-shaped (Dipolydora coeca) burrows. However, polydorids are known to construct various types of burrows, such as surface fouling burrows, U shaped burrows, complex burrows, and mudblisters (Blake & Evans, 1973). The boring mechanisms of the species have not been observed in the present study. However, it is known that the boring strategy changes according to families; eunicid species use their strong jaws or secrete acids (Hutchings, 2008); Dodecaceria species utilize their spoon-shaped chaetae and secrete acid-like substances (Evans, 1969); Pseudopotamilla species usually perform boring by secreting acid, but the peristatic movements by specimens within burrows are believed to accelerate the process (Chughtai & Knight-Jones, 1988); Polydora/Dipolydora species utilize three mechanisms (Blake & Evans, 1973): a chemical mechanism (secreting acid); a mechanical mechanism (using enlarged modified chaetae on chaetiger 5); and a combined mechanism (both chemical and mechanical). Further investigation is required to determine the exact mechanism of burrow formation in these Palola species.

Multivariate analysis indicated that two distinct species assemblages occurred in Ildiri Bay; spionid and eunicid assemblages. The reason(s) why spionid and eunicid species were clustered at some certain stations is unknown at this stage, but spatial and temporal distributions of boring polychaetes are known to be shaped by some biotic and abiotic factors. Hutchings & Peyrot-Clausade (2002) reported that water quality had a great impact on the abundance of borers indirectly; it stimulated the development of epilithic and endolithic algae that changed the periphery of substrata where initial borers lived. Sedimentation also affects the composition of bioeroders (Hutchings et al., 2005; Osnorno et al., 2005). Under heavy sedimentation, endolithic algae do not develop due to light availability, decreasing the levels of grazing, whereas in clean waters, high rates of bioerosion occur due to grazing and boring activities by bivalves and polychaetes. Anthropogenic nitrogen enrichment of waters was proved to enhance the settlement of boring spionid polychaetes on corals in the Red Sea, causing coral skeleton aberrations (Wielgus et al., 2006). Casoli et al. (2019) proved that boring activities of polychaetes increased with the increase in the abundance of ascidians, barnacles and bryozoans on limestone panels in the Mediterranean Sea. In Ildiri Bay, where intense fish farming and tourism activities take place at some locations, anthropogenic disturbance affected the composition of the benthic fauna (Ergen et al., 2015).
It is unknown at this stage as to how these factors might affect the distribution and abundance of polychaete borers. In the western Mediterranean, some boring sponges (Cliona spp.) adapt well and grow larger in areas with high sedimentation rates (Carballo et al., 1994). Depth was not a factor significantly affecting the distribution of borers in İldırım Bay. However, we only investigated shallow depth intervals (0–5 and 5–10 m), because the presence of rocks generally ended at 10 m depth in the area and from that depth downwards a soft bottom with phanerogames commenced. In the Mediterranean Sea, scale borers of Posidonia oceanica (Lysidice spp.) showed a clear depth preference; L. collaris was abundant in shallow waters (10 m) and L. ninetta in deep waters (28 m) (Gambi et al., 1995; Gambi, 2002). No clear depth zonation was assessed for the boring species examined in the study area, except for the sabellids (Pseudopotamilla spp.) that occurred only in 5–10 m depths.

Among the borers, Palola valida is an alien species of Red Sea origin, previously reported only on the Levantine coast of Turkey (Kurt-Şahin & Çinar, 2009, 2017; Çinar et al., 2019). It was reported on a variety of habitats such as rocks, algae and sponges, but its abundance and frequency were estimated to be far higher on rocks (Kurt-Şahin & Çinar, 2017). This species was also found in coralligenous constructions in Fethiye Bay (MEÇ, unpublished data). Boring alien species belonging to families Spionidae, Cirratulidae and Sabellidae were previously reported worldwide and commonly infested shells of cultured mollusc species (Çinar, 2013b). In the Mediterranean Sea, no boring alien polychaete species has been reported to date, but a sipunculan, Aspidosiphon elegans, was reported to bore into rocks in the Levantine Sea, causing bioerosion (Açık, 2018). In addition, boring alien bivalve species (Petricola hemprichi, Gastrochaena symbium and Sphenia rueppelli) infested large bivalve species such as Spondylus spp. in the Levantine Sea (Zenetos et al., 2010). Increasing densities and distributional ranges of these species within the Mediterranean Sea could create a nuisance, causing physical damage of rocks as well as biogenic habitats like coralligenous habitats. The interactions between native and alien boring species in such habitats would be an interesting subject to study further.

Fig. 5. (A) Anterior end of Dodecaceria sp., dorsal view (ESFM-POL/2011–335); (B1) Anterior end of Pseudopotamilla sp.1, dorsal view (ESFM-POL/2011–338); (B2) Thoracic chaetigers of Pseudopotamilla sp.1; (B3) Uncini and companion chaetae of Pseudopotamilla sp.1; (C) Anterior end of Pseudopotamilla sp.2 (ESFM-POL/2011–338), dorsal view. Scale bars: A = 0.5 mm; B1, 0.6 mm; B2, 75 μm; B3, 25 μm; C, 0.7 mm.
Conclusions
The present study sheds more light on the diversity and distribution of boring polychaete species in the Mediterranean where no detailed study has been carried out so far. Two different species assemblages were identified in the region which might have been structured due to specific environmental conditions, a matter which merits further investigation. Examination of species shows the likelihood of previously undescribed species present in the area, which also merits further investigation. New burrow constructions of *P. valida* and *P. siciliensis* have been found. The importance of alien invasive species in shallow-water benthic environments of the eastern Mediterranean is increasing and habitat-forming or -destructive alien species, such as the eunicid *Palola valida*, might irreversibly modify benthic habitats of the Mediterranean, causing detrimental effects to native biodiversity.

Acknowledgements
The authors want to thank Dr Alper Doğan and Alper Evecen (Ege University) for help in collecting and sorting the material.

Financial support
This work was financially supported by TÜBİTAK (Project number: 111Y141).

References
Açık S (2018) Alien sipuncula species in the Mediterranean Sea. *Journal of the Marine Biological Association of the United Kingdom* 98, 33–39.
Andersen MJ (2001) A new method for non-parametric multivariate analysis of variance. *Australasian Ecology* 26, 32–46.
Bakır AK, Catatan T, Aker HV, Özcan T, Sezgin M, Ateş AS, Koçak C and Kırkım F (2014) The marine arthropods of Turkey. *Turkish Journal of Zoology* 38, 765–831.
Blake JA (1996) Family Spionidae Grube, 1850. Including a review of genera and species from California and revision of Polydora Bosc, 1802. In Blake JA, Håküss B and Scott PH (eds), *Taxonomic Atlas of the Benthic Fauna of the Santa Maria Basin and Western Santa Barbara Channel, vol. 6. The Annelida part 3 – Polychaeta: Orbiniidae to Cossonidae*. Santa Barbara, CA: Santa Barbara Museum of Natural History, pp. 81–223.
Blake JA and Evans JD (1973) *Polydora* and related genera (Polychaeta: Spionidae) as borers in mollusk shells and other calcareous substrates. *The Velger* 15, 235–249.
Brollo R and Giovannardi O (2002) Polydora ciliata shell infestation in *Tapes philippinarum* Manila clam held out of the substrate in the Adriatic Sea, Italy. *Journal of Invertebrate Pathology* 79, 197–198.
Bromley RG (1978) Bioerosion of Bermuda reefs. *Bromley RG, 1954 Mytilus galloprovincialis kabukları* *Anderson MJ, Carreiro-Silva M and McClanahan TR* (1997) *Bioerosion and coral substrate. Experimental results, Lizard Island, Great Barrier Reef. Coral Reefs* 21, 27–35.
Demir M (1952–1954) Boğaz ve Adalar Sahillerinin Omurgalı Dip Hayvanları. *İstanbul Üniversitesi Fen Fakültesi Hidrobiyoloji Araştırmaları Enstitüsü Yayını*, 3, 1–617.
Ergen Z (1976) Ecological and taxonomic features of *Polychaeta* in Izmir Bay and its vicinity. *Ege University Science Faculty Scientific Report Series* 209, 1–73. [In Turkish].
Ergen Z, Çinar ME and Dagi L (2004) Effects of fish farming on the distribution of polychaetes in the Aegean Sea. *Rapport Commission International Mer Méditerranée* 37, 350.
Evans JW (1969) Borers in the shell of the sea scallop, *Placopecten magellanicus*. *American Zoologist* 9, 775–777.
Evecen A and Çinar ME (2012) Sponges (*Portiera*) from the Mediterranean coast of Turkey (Levantine Sea, eastern Mediterranean), with a checklist of sponges from the coasts of Turkey. *Turkish Journal of Zoology* 36, 460–464.
Evecen A and Çinar ME (2015) Biorodung sponge species (*Portiera*) in the Aegean Sea (Eastern Mediterranean). *Journal of Black Sea/Mediterranean Environment* 21, 285–306.
Fitzhugh K and Rouse GW (1999) A remarkable new genus and species of fan worm (*Polychaeta: Sabellidae: Sabellineae*) associated with marine gastropods. *Invertebrate Ecology* 118, 357–390.
Fonseca AC, Dear HK and Cortés J (2006) Non-colonial coral macro-borers as indicator of coral reef status in south Pacific of Costa Rica. *Revista de Biología Tropical* 54, 101–115.
Gambi MC (2002) Spatio-temporal distribution and ecological role of polychaete borers of *Posidonia oceanica* (L.) Delile scales. *Bulletin of Marine Science* 71, 1323–1331.
Gambi MC, Giangrande A, Martinelli M and Chessa LA (1995) Polychaetes of a *Posidonia oceanica* bed off Sardinia (Italy): spatio-temporal distribution and feeding guild analysis. *Scientia Marina* 59, 129–141.
Gambi MC, Trani B and Buia MC (2005) Taxonomic diversity and distribution of polychaete and isopod borers on the sheaths of the seagrass *Posidonia oceanica*: analysis at regional scale along the coast off Sardinia (Italy). *Italian Journal of Zoology* 72, 141–151.
Glyn P (1997) Bioerosion and coral–reef growth: a dynamic approach. In *Birkeland C (ed.), Life and Death of Coral Reefs*. New York, NY: Chapman and Hall, pp. 68–85.
Hutchings PA (1986) Biological destruction of coral reefs: a review. *Coral Reefs* 4, 239–252.
Hutchings PA (2008) Role of polychaetes in bioerosion of coral substrates. In *Wissak W and Tapanila L (eds), Current Developments in Bioerosion. Erlander Earth Conference Series*. Berlin: Springer–Verlag, pp. 249–264.
Hutchings PA and Peyrot-Clausade M (2002) The distribution and abundance of boring species of polychaetes and sipunculans in coral substrate
in French Polynesia. *Journal of Experimental Marine Biology and Ecology* **269**, 101–121.

Hutchings PA, Peyrot-Clausade M and Osnorno, A. (2005) Influence of land runoff on rates and agents of bioerosion of coral substrates. *Marine Pollution Bulletin* **51**, 438–447.

Kurt-Sahin G and Çinar ME (2009) Eunicidae (Polychaeta) species in and around İskenderun Bay (Levantine Sea, eastern Mediterranean) with a new alien species for the Mediterranean Sea and a re-description of *Lysidice collaris*. *Turkish Journal of Zoology* **33**, 331–347.

Kurt-Sahin G and Çinar ME (2017) Distribution of Eunicidae (Annelida: Polychaeta) along the Levantine coast of Turkey, with special emphasis on alien species. *Marine Biodiversity* **47**, 421–431.

Laubier L (1958) Contribution a la faunistique de coraligène. I. Quelques particularités biologiques de Polydora armata Langerhans. *Vie et Milieu* **9**, 412–415.

Laubier L (1959) Contribution a la faunistique de coraligène. III. Deux spionidiens inquilins sur des bryozoaires chilostomides. *Vie et Milieu* **10**, 347–349.

Liu PJ and Hsieh HL (2000) Burrow architecture of the spionid polychaeta *Polydora villosa* in coral *Montipora* and *Porites*. *Zoological Studies* **39**, 47–54.

Osnorno A, Peyrot-Clausade M and Hutchings PA (2005) Patterns and rates of erosion in dead *Porites* across reef (Australia) after 2 years and 4 years of exposure. *Coral Reefs* **24**, 292–303.

Öztürk B, Doğan A, Bakır BB and Salman A (2014) Marine molluscs of the Turkish coasts: an updated checklist. *Turkish Journal of Zoology* **38**, 832–879.

Peyrot-Clausade M, Hutchings P and Richard G (1992) Temporal variations of macroborers in massive *Porites lobata* on Moorea, French Polynesia. *Coral Reefs* **11**, 161–166.

Pinar E (1974) Fouling-boring organisms in some ports of Turkey and anti-fouling, anti-boring paints on these impact. *Ege University Science Faculty Scientific Report Series* **170**, 1–67. [In Turkish].

Sartoretto S (1998) Bioérosion des concrétions coralligènes de Méditerranée par les organismes perforants: essai de quantification des processus. *Comptes Rendus de l'Académie des Sciences—Series II A—Earth and Planetary Science* **327**, 839–844.

Sato-Okoishi W and Okoshi K (1993) Microstructure of scallop and oyster shells infested with boring *Polydora*. *Nippon Suisan Gakkaishi* **59**, 1243–1247.

Scott PJB, Moser KA and Risk MJ (1988) Bioerosion of concrete and limestone by marine organisms: a 13 year experiment from Jamaica. *Marine Pollution Bulletin* **5**, 219–222.

Sen S, Sivrıkaya H, Yalçın M, Bakır AK and Öztürk B (2010) Fouling and boring organisms that deteriorate various European and tropical woods at Turkish seas. *African Journal of Biotechnology* **9**, 2566–2573.

Simón CA, Worsfold TM, Lange L and Sterley J (2010) The genus *Boccardia* (Polychaeta: Spionidae) associated with mollusc shells on the south coast of South Africa. *Journal of the Marine Biological Association of the United Kingdom* **90**, 585–598.

Tribollet A and Golubic S (2011) Reef bioerosion: agents and processes. In Dubinsky Z and Stambler N (eds), *Coral Reefs: An Ecosystem in Transition*. Dordrecht: Springer, pp. 435–449.

Wielgus J, Glassom D and Chadwick-Furman NE (2006) Patterns of polychaete worm infestation of stony corals in the northern Red Sea and relationship to water chemistry. *Bulletin of Marine Science* **78**, 377–388.

Zenetas A, Ovalis P and Çeviker D (2010) On some Indo-Pacific boring endolithic Bivalvia species introduced into the Mediterranean Sea with their host-spread of *Sphenia rueppelli* A. Adams, 1850. *Mediterranean Marine Science* **11**, 201–207.