A Comprehensive Review on the Medicinal Plants from the Genus *Asphodelus*

Maryam Malmir 1, Rita Serrano 1, Manuela Caniça 2, Beatriz Silva-Lima 1 and Olga Silva 1,*

1 Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal; mmalmir@ff.ulisboa.pt (M.M.); rserrano@ff.ulisboa.pt (R.S.); beatrizlima@netcabo.pt (B.S.-L.)

2 Department of Infectious Diseases, National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal; Manuela.Caniça@insa.min-saude.pt

* Correspondence: odsilva@ff.ulisboa.pt or osilva@campus.ul.pt; Tel.: +351-217-946400; Fax: +351-217-946470

Received: 14 February 2018; Accepted: 10 March 2018; Published: 13 March 2018

Abstract: Plant-based systems continue to play an essential role in healthcare, and their use by different cultures has been extensively documented. *Asphodelus* L. (*Asphodelaceae*) is a genus of 18 species and a total of 27 species, sub-species and varieties, distributed along the Mediterranean basin, and has been traditionally used for treating several diseases particularly associated with inflammatory and infectious skin disorders. The present study aimed to provide a general review of the available literature on ethnomedical, phytochemical, and biological data related to the genus *Asphodelus* as a potential source of new compounds with biological activity. Considering phytochemical studies, 1,8-dihydroxyanthracene derivatives, flavonoids, phenolic acids and triterpenoids were the main classes of compounds identified in roots, leaf and seeds which were correlated with their biological activities as anti-microbial, anti-fungal, anti-parasitic, cytotoxic, anti-inflammatory or antioxidant agents.

Keywords: anthracene derivatives; antimicrobial; *Asphodelus*; ethnomedicine; skin diseases

1. Introduction

The genus *Asphodelus* Linnaeus belongs to family *Asphodelaceae* Jussieu and is native to temperate Europe, the Mediterranean, Africa, the Middle East, and the Indian Subcontinent, and now naturalized in other places (New Zealand, Australia, Mexico, southwestern United States, etc.) [1]. It reaches its maximum diversity in the West of the Mediterranean, particularly in the Iberian Peninsula and in North-West Africa [2].

The family consists of three subfamilies: *Asphodeloideae* Burnett (including 13 genera), *Hemerocallidoideae* Lindley (including 19 genera) and *Xanthorrhoeoideae* M.W. Chase (with only one genus). This botanical family, now called *Asphodelaceae*, has had a complex history; its circumscription and placement in an order have varied widely. In the Cronquist system of 1981, members of the *Asphodelaceae* were placed in the order Liliales Perleb [3,4]. Cronquist had difficulty classifying the less obviously delineated lilioid monocots; consequently, he placed taxa from both the modern orders Asparagales and Liliales into a single family, *Liliaceae* Jussieu [5]. The decision to group three formerly separate families, *Asphodeloideae*, *Hemerocallidoideae* and *Xanthorrhoeoideae*, into a single family first occurred in 2003 as an option in the II Angiosperm Phylogeny Group (APG) classification for the orders and families of flowering plants. The name used for the broader family was then *Xanthorrhoeaceae* Dumortier [6], and the earlier references to this family were related only to subfamily *Xanthorrhoeoideae*. These changes were a consequence of improvements in molecular and morphological analysis and also a reflection of the increased emphasis on placing families within an appropriate order [5,7,8]. Later in
2009, the APG III classification dropped the option of keeping the three families separate, using only the expanded family, still under the name Xanthorrhoeaceae [7]. Anticipating a decision to conserve the name Asphodelaceae over Xanthorrhoeaceae, the APG IV classification of 2016 used Asphodelaceae as the name for the expanded family [9].

According to the World Checklist of Selected Plant Families (WCSP), there are 32 accepted names with more than 150 homo- and heterotypic synonyms for all species, subspecies and varieties of the genus Asphodelus L. namely, Asphodelus acaulis Desfontaines, Asphodelus aestivus Brotero, Asphodelus albus Miller (subsp. albus; subsp. carpetanus Z. Diaz & Valdés; subsp. delphinensis (Grenier & Godron) Z. Diaz & Valdés; subsp. occidentalis (Jordan) Z. Diaz & Valdés), Asphodelus ayardii Jahandiez & Maire, Asphodelus bakeri Breistroffer, Asphodelus bento-rainhae P. Silva (subsp. bento-rainhae; subsp. salmanticus Z. Diaz & Valdés), Asphodelus cerasiferus J. Gay, Asphodelus fistulosus Linnaeus (subsp. fistulosus; subsp. madeirensis Simon), Asphodelus gracilis Braun-Blanquet & Maire, Asphodelus lusitanicus Coutinho (var. lusitanicus; var. ovoideus (Merino) Z. Diaz & Valdés), Asphodelus macrocarpus Parlatore (subsp. macrocarpus; subsp. rubescens Z. Diaz & Valdés; var. arrondeau (J. Lloyd) Z. Diaz & Valdés), Asphodelus ramosus Linnaeus (subsp. distalis Z. Diaz & Valdés; subsp. Ramosus); Asphodelus refractus Boissier, Asphodelus roseus Humbert & Maire, Asphodelus serotinus Wolley-Dod, Asphodelus tenuifolius Cavanilles, and Asphodelus vasicidus Boissier [1]. However, on the Missouri Botanical Garden database (Tropicos), more two accepted names (Asphodelus cerasifer Gay and Asphodelus microcarpus Salzmann & Viviani) were recorded [10]. Considering all the above-mentioned data 18 species and of a total of 27 species, sub-species and varieties must be considered for the Asphodelus genus.

Among all the species, A. aestivus and A. fistulosus are inscribed as “Least Concern” and A. bento-rainhae as “Vulnerable” species on International Union for the Conservation of Nature (IUCN) Red List of Threatened Species [11].

Botanical and systematic descriptions of this genus have been discussed by several taxonomists in various flora publications. The plants are hardy herbaceous perennials with narrow tufted radical leaves and an elongated stem bearing a spike of white or yellow flowers. Many have a small rhizomatous crown and thick, fleshy roots [12].

Different ethnomedical uses were described to Asphodelus species. Different parts of the plant including leaf, fruit, seed, flower, and root are used as traditional herbal medicines, alone or in mixtures to treat various ailments. In Iberian Peninsula, the following general medicinal uses were described: by rubbing with the cut tubers for the treatment of skin eczema, the ashes of the roots were used against the alopecia, and the leaves and stems decoction was used for the treatment of paralysis and the juice of fresh capsules for earache treatment [2]. Medicinal usage of the Asphodelus genus is also common in North African, and West and South Asian countries. Beside its medicinal uses, in Iberian Peninsula the alcohol obtained by fermentation of the tubers is extracted and used as fuel [2] and the local people of Iran, Turkey and Egypt use the root tubers of A. aestivus and A. microcarpus to produce a strong glue used by shoemakers and cloggers [2,13,14], and as yellow and brown dyes to dye the wool [2].

Root tubers are used as daily food, after being moistened and fried beforehand to eliminate the astringent compounds, and also the young stem, the leaves and the roasted seeds [2,15].

This study aims to present a comprehensive and updated review of documented ethnomedicinal and ethnopharmacological studies including chemical and biological data concerning Asphodelus genus.

2. Results and Discussion

Table 1 summarizes the ethnomedicinal data about the Asphodelus species including specific information on the plant parts as well as the geographical region where the plant is used. In Table 2 the principal chemical studies and identified compounds of the genus are presented. Tables 3 and 4 summarize the principals of in vitro and in vivo biological activity assays on the total extracts and isolated compounds.
2.1. Ethnomedical Studies

Ethnomedicinal records showed that among the 18 species of the genus *Asphodelus*, only five species namely *A. aestivus*, *A. fistulosus*, *A. microcarpus*, *A. ramosus*, and *A. tenuifolius* have been documented for their traditional uses (Table 1). Most commonly, these species were used as anti-inflammatory and anti-infective agents. In particular, *A. aestivus*, *A. fistulosus* and *A. microcarpus* were reported to be used in dermatomucosal infections in various countries including Cyprus, Egypt, Libya, Palestine, and Spain [16–20]. *A. microcarpus*, *A. ramosus* and *A. tenuifolius* were generally indicted as anti-inflammatory agents specifically for the treatment of psoriasis, eczema, and rheumatism [21–28]. *A. aestivus* and *A. tenuifolius* are also used for ulcer treatment in Turkey, India, and Pakistan [26–29]. *A. ramosus* and *A. tenuifolius* have frequently been reported as diuretics among the inhabitants of Egypt, India, Pakistan, and Turkey [24,25,27–31].

Species	Part Used	Country	Traditional Uses/Application	References
A. aestivus	L, R	Turkey	Peptic ulcers	[32]
	R	Turkey	Haemorrhoids, burns, wounds and nephritis	[33]
	NI	Cyprus, Spain	Skin diseases	[16]
A. fistulosus	NI	Egypt, Libya	Fungal infections	[17]
A. microcarpus	FR, L, R	Egypt	Ear-ache, withering and paralysis	[13,14]
	R	Palestine	Dermatomucosal infections	[18]
	R	Egypt	Ectodermal parasites, jaundice, microbial infections and psoriasis	[19–21]
	NI	Algeria	Ear-ache, eczema, colds and rheumatism	[22]
A. ramosus	R	North-Africa	Inflammatory disorders	[23]
	NI	Turkey	Anti-tumoral, diuretic and emmenagogue	[29]
A. tenuifolius	L	India	Diuretic, inflammatory disorders and ulcers	[24]
	L, SE	Egypt	Diuretic	[30]
	SE	Pakistan	Antipyretic, diuretic, colds and hemorrhoids, inflammatory disorders, rheumatic pain, ulcers	[25,27]
			and wounds	
	SE	Pakistan	Ulcers and inflammatory disorders	[26]
			Diuretic, inflammatory disorders, bite of bees and wasps, ulcers	[28,34]
	WP	India	Diuretic	[25]
	NI	Pakistan	Diuretic	[31]

Table 1. Ethnomedicinal uses of the *Asphodelus* species.

2.2. Phytochemical Studies

Phytochemical studies as shown in Table 2, revealed the presence of different groups of compounds namely anthraquinones (either in the free or in the glycoside form), phenolic acids, flavonoids, and triterpenoids from *A. acaulis*, *A. albicaulis*, *A. aestivus*, *A. cerasiferus*, *A. fistulosus*, *A. microcarpus*, *A. ramosus*, and *A. tenuifolius*.

Roots were mainly reported to have anthraquinone derivatives such as chrysophanol and aloe-emodin, triterpenoids, and naphthalene derivatives, while aerial parts mostly exhibited the presence of flavonoids such as luteolin, isovitexin and isoisorientin, phenolic acids, and few anthraquinones. Fatty acids, namely myristic, palmitic, oleic, linoleic, and linolenic, were found in seeds and roots. Only *A. aestivus* and *A. microcarpus* were studied for essential oil characterization of flowers [22,35].

*SE: Seed; L: Leaf; WP: Whole plant; FR: Fruit; R: Root; NI: Not indicated; * Asphodelus luteus L.—synonym of *Asphodeline lutea* was formerly included in the family *Asphodelaceae*.
Table 2. Identified compounds reported from *Asphodelus* genus.

Species	Part Used	Class	Name of Compounds	References
A. acaulis	L	Flavonoids	Luteolin; apigenin	[36]
	R	Anthraquinones	Chrysophanol; asphodelin; 10,7'-bichrysophanol	[37]
	FL	n-alkenes	Hexadecanoic acid (35.6%); pentacosane (17.4%); tricosane (13.4%); heptacosane (8.4%); heneicosane (4.5%); phytol (4.5%); tetracosane (3%); hexacosane (2%); hexahydrofarnesyl acetone (1.7%); tetradecanoic acid (1.4%); docosane (1.3%); nonadecane (1%)	[35]
A. aetricus	L	Anthraquinones	Aloe-emodin; aloe-emodin acetate; chrysophanol 1-O-gentiobioside	[38]
	L	Flavonoids	Isovitexin; isoorientin; isoorientin 4'-O-β glucopyranoside; 6'4'-O-(malonyl)-isoorientin; 6'4'-O-[((S)-3-hydroxy-3-methylglutaroyl]-isoorientin	
	SE	Phenolic acid	Chlorogenic acid	[39]
A. albus	L	Anthraquinones	Aloe-emodin; chrysophanol	[36,40]
	SE	Fatty acids	Butyric acid; nervoic acid	[36]
A. albus var. delphinensis	R	Anthraquinones	Asphodeline; microcorpine; aloe-emodine; chrysophanole	[41]
A. cerasifer	L	Anthraquinones	Aloe-emodin; Isoorientin; luteolin; luteolin 7-glucoside	[36,43]
A. delphinensis	L	Flavonoids	Isoorientin; luteolin; luteolin 7-glucoside	[41]
A. fistulosus	AP	Anthraquinones	Asphodelin; asphodelin 10'-anthrone; aloesaponarin II; aloe-emodin; chrysophanol; desoxyerythrolacin	[17]
	L	Flavonoids	Chrysoeriol; luteolin	
A. luteus	L	Anthraquinones	Aloe-emodin	[36]
A. mauritii Sennen	L	Anthraquinones	Aloe-emodin; chrysophanold	[36]
Table 2. Cont.

Species	Part Used	Class	Name of Compounds	References
A. microcarpus	FL	Terpenoids	Germacrene D (78.3%); germacrene B (3.9%); a-elemene (3.8%); caryophyllene (3.3%)	[22]
	FL	Flavonoids	Luteolin; luteolin-6-C-glucoside; luteolin-6-O-hexoside; luteolin-7-O-glucoside; luteolin-O-acetylglicoside; luteolin-O-deoxyhexosylhexoside; methyl-luteolin, naringenin	[47]
	L	Phenolic acids	3-O caffeoylquinic acid; 5-O caffeoylquinic acid	[49]
A. ramosus	L	Anthraquinones	Chrysophanol, 10 (chrysophanol-7-yi)-10-Hydroxychrysophanol-9-antrone, asphodoside C, Dianhydrorugulosin, aloes-edomin	[44,48]
	L	Flavonoids	Luteolin-6-C-glucoside; luteolin-6-C-acetilglucoside; luteolin-C-glucoside; luteolin, isoorientin	[43,49]
	SE	Phenolic acids	5-O caffeoylquinic acid; cichoric acid; cumaril exosa malic acid	[49]
	FL	Anthraquinones	Dianhydrorugulosin, aloes-edomin; chrysophanol; asphodelin; microcarpin, 8 methoxychrysophanol; emodin; chrysophanol dianthaquione; 5,5′-bichrysophanol; chrysophanol-8-mono-β-d-glucoside; Methyl-1,4,5-trihydroxy-7-methyl-9,10-dioxo-9,10-dihydroanthracene-2-carboxylate; 6 methoxychrysophanol	[21,44,50–54]
	SE	Arylcoumarins	Asphodelin A 4′-O-β-D-glucoside; asphodelin A	[19]
	SE	Carbohydrates	Raffinose; sucrose; glucose; fructose	[55]
	SE	Fatty acids	Palmitic; stearic; oleic; linoleic; linolenic; arachidic; behenic; lignoceric; myristic acids	[55,56]
	SE	Naphthalene derivatives	2-acetyl-1,8-dimethoxy-3 methylnaphthalene; 1,6-dimethoxy-3-methyl-2-naphthoic acid	[21]
	SE	Mucilage	Composed of glucose; galactose; arabinose	[55]
	SE	Triterpenoids	β-sitosterol-β-D-glucoside, fucosterol	[13,55]
A. ramosus	FL	Phenolic acids	Caffeic acid; chlorogenic acid; p-hydroxy-benzoic acids	[57]
	SE	Flavonoids	Luteolin; 7-O-glucosyl luteolin; 7-O-glucosyl apigenin; isoorientin; isoosertaiaponin (7-methyl orientin); isocytisoso (4′-methyl vitae)	[29]
	L	Flavonoids	Luteolin; 7-O-glucosyl luteolin; 7-O-glucosyl apigenin; isoorientin; isoosertaiaponin (7-methyl orientin); isocytisoso (4′-methyl vitae)	[29]
	R	Anthraquinone	Ramosin; (−)-10′-C-[β-D-glucopyranosyl]-; (−)-10′-C-[β-D-glucopyranosyl-(1-4)]-β-D-glucopyranosyl-1′,7′,8,9,10,10′-hexa hydroxy -3′,3′-dimethyl-10′,10′-biantiranalene-9′,9′-dione; 10′-deoxy-10′-epi-ramosin; 10′(chrysophanol-7′-yl)-10-hydroxychrysophanol-9-anthronetr; 7′(chrysophanol-4′-yl)-chrysophanol-10′anthrone10′-C-α-rhamnopyranosyl; -C-β-sylpyranosyr; -C-β-antiaropyranosyl; -C-α-arabinopyranosyl; -C-β-quinovoopyranosyl	[58–60]
	WP	Phenolic acids	Naringin, quercetin, kaemferol	[61]
		Phenic acids	Gallic acid, chlorogenic acid, vanillic acid, caffeic acid	
Table 2. Cont.

Species	Part Used	Class	Name of Compounds	References
A. tenuifolius	AP	Flavonoids	Luteolin; luteolin-7-O-β-D-glycopyranoside; apigenin, chrysoeriol	[30]
	R	Naphthalene derivatives	1,8-dimethylnaphthalene; 2-acetyl-8-methoxy-3-methyl-1-naphthol; 2-acetyl-1,8-dimethoxy-3-methylnaphthalene	[62]
	SE	Triterpenoids	β-sitosterol; stigmasterol	
	WP	Ester	1-O-17methylstearylmyoinositol	[63]
		Fatty acids	Myristic (3.96%); palmitic (13.84%); oleic (15.60%); linoleic (62.62%); linolenic (2.60%)	[64,65]
		Carbohydrates	D-glucose; lactose; D-glucuronic acid; D-arabinose; D-fructose, D-ribose	
		Chromone	2-hentriacontyl-5,7-dihydroxy-8-methyl-4H-1-benzopyran-4-one	[31]
		Triterpenoids	Asphorodin; asphorin A; asphorin B; β-sitosterol; β-amyrin	[26,28,31]

AP: Aerial Part; FL: Flower; FR: Fruit; L: Leaf; R: Root; SE: Seed; WP: Whole plant; NI: Not indicated; * The accepted name is *Asphodelus albus* subsp. *delphinensis* (Gren. & Godr.). ** *Asphodelus luteus* L.—synonym of *Asphodeline lutea* was formerly included in the family *Asphodelaceae*. *** The accepted name is *Asphodelus macrocarpus* subsp. *rubescens*.
2.3. Reported Biological Activities

In vitro and in vivo biological studies concerning *Asphodelus* extracts are presented in Table 3 and those reported from identified pure compounds are shown in Table 4. In some of the studies, no data were obtained concerning the tested doses and/or inhibitory values.

The ethanol and aqueous extracts of *A. aestivus* leaf showed moderate anti-fungal activity against *Aspergillus niger* [33], and whole plant ethanol extracts exhibited weak activity against *Staphylococcus aureus* with minimum inhibitory concentration (MIC) = 42 mg/mL and *Klebsiella pneumoniae* (MIC = 60 mg/mL) [67]. Both leaf and root extracts showed strong antioxidant activity [15,68]. The root extract also showed significant anti-inflammatorcy properties, specifically anti-ulcer activity which is one of the documented uses in Turkish traditional medicine [32]. Root and leaf extracts showed antitumoral activity against human cancer cells (lung and prostate) through DNA damage [68-69].

The aerial parts extracts of *A. luteus* showed strong anti-fungal activity against *Trichophyton violaceum* (MIC = 18 µg/mL), *Microsporum canis* (MIC = 25 µg/mL), and *Trichophyton mentagrophytes* (MIC = 30 µg/mL) supporting their traditional use in dermatomucosal infections [18] and weak activity against methicillin-resistant *Staphylococcus aureus* (MRSA) isolates (MIC = 1.25–2.5 mg/mL) [70]. Moreover, the methanol root extracts showed moderate antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl free radicals (DPPH; IC\textsubscript{50} = 0.54 mg/mL) [61].

The aerial parts and root extracts of *A. microcarpus* showed moderate antioxidant [47,61] and moderate to weak cytotoxic activities [48,49,71]. The ethanol extracts of leaves demonstrated strong antiviral activity against Ebola virus (EBOV) in the concentration of 0.1–0.3 µg/mL [49]. Although the leaf seems to have stronger antimicrobial activity in comparison with roots, in general, both exhibit weak or no antimicrobial/antifungal activity [20,48,49,70]; however, compounds isolated from root tubers extracts showed potent activity such as asphodelin A against *S. aureus* (MIC = 16 µg/mL), *Escherichia coli* (MIC = 4 µg/mL), *Pseudomonas aeruginosa* (MIC = 8 µg/mL), *Candida albicans* (MIC = 64 µg/mL) [19] and *Botrytis cinerea* (MIC = 128 µg/mL) and asphodoside B against MRSA (IC\textsubscript{50} = 1.62 µg/mL) [51]. Other isolated compounds from root extracts showed different biological activity; for instance, ramosin showed potent cytotoxic activity against leukemia cell lines [21], aestivin showed potent antimalarial activity against chloroquine-sensitive and resistant strains of *Plasmodium falciparum* with IC\textsubscript{50} of 0.8–0.7 µg/mL [21] and 3,4-dihydroxy-methyl benzoate exhibited anti-parasitic activity against *Leishmania donovani* promastigotes with IC\textsubscript{50} of 33.2 µg/mL [54].

Root extracts of *A. ramosus* showed positive in vivo anti-inflammatory activity, confirming the traditional uses of the plant in inflammatory disorders [23].

Several root, seed, aerial parts, fruit, and leaf extracts of *A. tenuifolius* showed strong anti-microbial/antifungal against *K. pneumoniae*, *P. aeruginosa*, *E. coli*, *S. aureus*, *Proteus mirabilis*, *C. albicans*, *Aspergillus fumigatus*, *Vibrio cholerae*, *Salmonella typhi*, and *Candida glabrata*, among other pathogens [24,27,30,34,72,73]. Of note, there is no ethnomedical report of antimicrobial use of *A. tenuifolius*.

The whole plant extract showed in vivo hypotensive and diuretic activity in normotensive rats [74]. The root extract of this species showed anti-oxidant activity (DPPH test, IC\textsubscript{50} = 2.006 µg/mL) [25] and asphorodin, a compound isolated from the whole plant extract, exhibit a potent inhibition of lipoygenase enzyme, (IC\textsubscript{50} = 18.1 µM) [26], which may have an important role as an anti-inflammatory agent. The biological properties of *A. tenuifolius* extracts prove their ethnomedical use mostly as anti-inflammatory or diuretic [24–28,30,31,34].
Table 3. In vitro and in vivo biological studies reported from the *Asphodelus* genus.

Species	Part	Extract	Test/Assay	Result	Reference
			In vitro anti-fungal activity (A. niger)—Agar well diffusion method (zone of inhibition in cm⁻¹)	Ethanol extract (0.25 and 0.5 mg/mL) showed higher activity than aqueous extract (0.25 and 0.5 mg/mL) and similar activity for concentrations of 1 mg/mL. Both extracts were less active than Fluconazole (100 µg/mL)	[33]
A. aestivus	L	Aqueous, Ethanol	In vitro antioxidant activity—β-carotene bleaching effect, metal chelating, total antioxidant activity, DPPH, ABTS, superoxide radical scavenging activity, hydroxyl radical scavenging activity, DMPD, nitric oxide scavenging activity	Aqueous extract presented higher activity in metal chelating and radical scavenging assays (DPPH, IC₅₀ aqueous = 4.58 mg/mL and IC₅₀ methanol = 9.54 mg/mL, superoxide, hydroxyl, DMPD) Ethanol extract presented higher activity in β-carotene bleaching effect and total antioxidant activity Aqueous and ethanolic extracts presented similar radical scavenging activity in ABTS and NO assays. Both extracts presented significantly inferior results when compared to reference substances	[15]
A. aestivus	L	Acetone, Methanol	In vitro antioxidant activity—β-carotene bleaching effect, metal chelating, total antioxidant activity, DPPH, ABTS, superoxide radical scavenging activity, hydroxyl radical scavenging activity, DMPD, nitric oxide scavenging activity	Reducing power and total antioxidant activity were higher in acetone extract; free radical and superoxide radical scavenging activity were higher in methanol extract (DPPH, IC₅₀ methanol = 0.16 mg/mL and IC₅₀ acetone = 0.50 mg/mL) Acetone extract presented higher activity in Reducing power and total antioxidant activity (inhibition of linoleic acid peroxidation) Methanol extract presented higher activity in superoxide radical scavenging and free radical scavenging activity (β-carotene, ABTS and DPPH, IC₅₀ methanol =0.16 mg/mL, IC₅₀ acetone = 0.50 mg/mL)	[69]
A. aestivus	L, R	Dichloromethane /n-Hexane	In vitro cytotoxic activity—MTT assay against human lung cell cancer (A549) and prostate cell cancer (PC3)	Root: Dichloromethane: A549 (IC₅₀ = 16 µg/mL); PC3 (IC₅₀ = 19 µg/mL) n-Hexane: PC3 (IC₅₀ = 80 µg/mL) Leaves: Dichloromethane: A549 (IC₅₀ = 90 µg/mL)	[69]
A. aestivus	R	Aqueous (decoction)	In vivo anti-inflammatory—Ethanol induced gastric ulcer model in rats	Decoction gave significant protection against the lesions	[32]
A. aestivus	R	Aqueous (infusion and decoction)	Diethyl ether, Ethyl acetate, Methanol	In vitro cytotoxic & apoptotic activity—MCF-7 breast cancer cells-trypan blue exclusion assay, comet assay, Hoechst 33,258, propidium iodide double staining Methanol and aqueous extracts exhibited strong cytotoxic activities. All extracts showed significant DNA damaging and apoptotic activities.	[68]
A. aestivus	SE	Petroleum ether	In vitro antimicrobial/fungal activity—broth microdilution method	Active against *S. aureus* (MIC = 512 µg/mL), *Enterococcus faecalis* (MIC = 512 µg/mL), *K. pneumoniae* (MIC = 512 µg/mL) and *C. albicans* (MIC = 512 µg/mL) Not active against *Bacillus cereus*, *Staphylococcus epidermidis*, *E. coli*, *P. aeruginosa*, *S. typhimurium*, *Salmonella enterica*, *Candida krusei* and *Candida parapsilosis*	[39]
A. aestivus	WP	n-Butanol, Ethanol	In vitro anti-microbial/fungal activity—well and disk diffusion method	Active against *S. aureus* (MIC: 42 mg/mL), *K. pneumoniae* (MIC: 60 mg/mL), *E. coli* (MIC: 90 mg/mL), *C. albicans* (MIC: 90 mg/mL)	[67]
A. aestivus	WP	Aqueous	In vitro antioxidant activity—DPPH assay	Inhibition % = 62.5	[75]
Species	Part	Extract	Test/Assay	Result	Reference
----------------------	------------	--------------------------	---	--	-----------
A. fistulosus var. *tenuifolius*	NI	NI	In vitro anti-microbial/fungal activity	Positive to *S. aureus* and no activity against *E. coli*, *Proteus vulgaris*, *Salmonella sp.*, *P. aeruginosa*, *C. albicans*	[76]
A. luteus *	AP	Aqueous	In vitro anti-fungal activity—Agar dilution method	Activity against *T. violaceum* (MIC = 18 µg/mL), *M. canis* (MIC = 25 µg/mL) and *T. mentagrophytes* (MIC = 30 µg/mL)	[18]
A. luteus *	AP, R	Methanol, Petroleum Ether	In vitro anti-microbial activity—agar diffusion test; tetrazolium microplate assay (MIC)	Against MRSA isolates Methanol extract: MIC (AP) = 1.25–2.5 mg/mL. MIC (R) = 0.65–1.25 mg/mL Petroleum ether extract: Root extract had higher activity than aerial part extract	[70]
A. luteus *	R	Methanol	In vitro antioxidant activity—DPPH assay	IC₅₀ (methanol)= 0.54 mg/mL, IC₅₀ (reference, BHT) = 0.017 mg/mL	[61]
A. microcarpus	AP	Aqueous	In vitro anti-fungal activity—Agar dilution method	Weak activity against *T. violaceum* (MIC = 25 µg/mL) and no activity against *M. canis* and *T. mentagrophytes*	[18]
A. microcarpus	AP, R	Methanol	In vitro antimelanogenic activity—tyrosinase inhibition (mushroom tyrosinase assay and mouse melanoma cells viability), kojic acid as positive control	Antimelanogenic activity Ethanol extract (F) had the highest tyrosinase inhibition activity in mushroom assay and melanoma cell assay	[47]
A. microcarpus	FL, L, R	Aqueous, Ethanol, Methanol	In vitro antioxidant activity—DPPH and ABTS (reference—Trolox)	Antioxidant activity DPPH (best activity) Ethanol extract (F): IC₅₀ = 28.4 µg/mL Ethanol extract (L): IC₅₀ = 55.9 µg/mL Trolox: IC₅₀ = 3.2 µg/mL	[47]
A. microcarpus	L	Ethanol	In vitro antimicrobial/fungal activity—micro broth dilution method	Active against *Bacillus clausii* (MIC = 250 µg/mL), *S. aureus* (MIC = 250 µg/mL), *Staphylococcus haemolyticus* (MIC = 250 µg/mL) and *E. coli* (MIC = 500 µg/mL). No activity against *Streptococcus spp.* and yeasts	[49]
A. microcarpus	L	Ethanol	In vitro antiviral activity (IFN-β induction)—luciferase reporter gene assay	Antiviral activity Active against EBOV in concentration of 0.1–3 µg/mL	[49]
			In vitro cytotoxicity—Cell viability of A549 cells, positive control (camptothecin)	Cytotoxicity IC₅₀ (extract) > 100 µg/mL IC₅₀ (camptothecin) = 0.54 µg/mL	
Species	Part	Extract	Test/Assay	Result	Reference
---------------	------	----------------	--	--	-----------
A. microcarpus	L	Methanol	In vitro antimicrobial/fungal — two-fold serial dilution technique	**Antimicrobial activity**	
Active against *S. aureus* (MIC = 78 µg/mL), *Bacillus subtilis* (MIC = 156 µg/mL), *Salmonella* spp. (MIC = 313 µg/mL), *E. coli* (MIC = 125 µg/mL), *Aspergillus flavus* (MIC = 125 µg/mL), *C. albicans* (MIC = 78 µg/mL)	[48]				
			In vitro antiviral activity — CPE inhibition assay against HSV-1 and HAV-10	**Antiviral activity**	
Moderate activity against Hepatitis A virus (HAV-10) and no activity against Herpes Simplex Virus (HSV-1)					
			In vitro cytotoxicity — viability assay against human tumor cell lines of the lung (A-549), colon (HCT-116), breast (MCF-7) and prostate (PC3). Cisplatin as standard	Cytotoxicity	
Highest activity against human lung carcinoma cells (A-549), IC₅₀ = 29.3 µg/mL					
A. microcarpus	R	Methanol	In vitro antioxidant activity — DPPH assay	IC₅₀ (Methanol) = 0.30 mg/mL, IC₅₀ (reference, BHT) = 0.017 mg/mL	[61]
A. microcarpus		Aqueous, Ethanol	In vitro anti-microbial — Disk diffusion assay	No activity against *S. aureus*, *B. subtilis* and *E. coli*	[20]
A. microcarpus	WP	Aqueous, Ethanol	In vitro cytotoxic activity — Trypan blue technique for Ehrlich Ascites Carcinoma Cells (EACC)	Weak anti-cancer activity of both extracts	[71]
A. ramosus	R	Aqueous, Chloroform, Ethanol, Methanol	In vivo anti-inflammatory — Arachidonic acid test (mouse ear oedema), Carrageenan test (sub-plantar oedema)	**Arachidonic acid test**: Positive activity from chloroform and ethanol extracts	
Carrageenan test: No activity was observed	[23]				
A. ramosus	WP	Aqueous, Methanol, Methanol 50%	In vitro antioxidant activity — DPPH assay at 35 °C and 65 °C	Aqueous extract at 65 °C had the highest inhibition percentage	[77]
A. tenuifolius	AP	Butanol, Ethyl acetate, Methylene-chloride	In vitro anti-microbial/fungal activity — Disk diffusion method	All extracts showed antimicrobial activity, the methylene-chloride as the most active against *S. aureus* (MIC = 1.6 mg/mL), *E. faecalis* (MIC = 1.0 mg/mL), *E. coli* (MIC = 1.8 mg/mL) and *P. aeruginosa* (MIC = 0.15 mg/mL)	
All extracts showed antifungal activity against *C. albicans*, *C. parapsilosis*, *C. glabrata*, *C. krusei*.	[30]				
A. tenuifolius	FR	Acetone, Aqueous, Benzene, Chloroform, Methanol, Petroleum ether	In vitro anti-microbial/fungal activity — Kirk-bauer disc diffusion method	Significant activity against *S. aureus* (acetone, MIC = 125 µg/mL); *S. epidermidis* (acetone, MIC = 125 µg/mL); *E. coli* (acetone, MIC = 125 µg/mL), *P. mirabilis* (benzene, MIC = 125 µg/mL); *P. vulgaris* (methanol, MIC = 250 µg/mL), *L. monocytogenes* (chloroform, MIC = 125 µg/mL), *K. pneumoniae* (acetone, MIC = 125 µg/mL); *P. aeruginosa* (acetone, MIC = 250 µg/mL), *C. albicans* (acetone, MIC = 125 µg/mL); *A. fumigatus* (benzene and chloroform, MIC = 250 µg/mL), *E. coli* (acetone, chloroform and methanol, MIC = 250 µg/mL), *S. aureus* (acetone, MIC = 125 µg/mL)	[27]
A. tenuifolius	L	Acetone, Methanol	In vitro anti-microbial/fungal activity — Agar disc diffusion method	Methanol extract positive against *S. aureus*, *B. cereus*, *Citrobacter freundii*, *Candida tropicalis* and acetone extract was positive against *K. pneumoniae*, *C. tropicalis* and *Cryptococcus laurentii*	[24]
Table 3. Cont.

Species	Part	Extract	Test/Assay	Result	Reference
A. tenuifolius	R	Methanol	In vitro antioxidant activity—DPHH, ABTS, NO, OH, O₂⁻⁻⁻, ONOO⁻⁻⁻ assays, Oxidative DNA damage	Positive activity, DPPH (IC₅₀ = 2.006 µg/mL), ABTS + (IC₅₀ = 156.94 µg/mL), NO (nd), OH (IC₅₀ = 50.13 µg/mL), O₂⁻⁻⁻ (IC₅₀ = 425.92 µg/mL) and ONOO⁻⁻⁻ (IC₅₀ = 3.390 µg/mL), oxidative DNA damage: 1.85 µg/mL of extract prevented DNA damage.	[25]
A. tenuifolius	R	Benzene, Chloroform, Ethyl acetate, Methanol, Petroleum ether	In vitro anti-microbial/fungal activity—Disc diffusion method	All extracts were active against *B. subtilis*, *P. vulgaris*, *P. aeruginosa*, *Trichophyton rubrum*, *E. coli*, *K. pneumoniae*, *Shigella sonnei*, *S. aureus*, *C. albicans*, *A. niger* and *A. flavus*	[72]
A. tenuifolius	SE	Aqueous, Ethanol, Methanol, Petroleum ether	In vitro anti-microbial/fungal activity—modified Kirby Bauer disc diffusion method	Petroleum ether: no antibacterial activity Ethanol: activity against *P. aeruginosa*, *Vibrio cholerae* and *S. aureus* (MIC = 16 µg/mL); *P. mirabilis*, *S. typhi*, *Shigella flexneri* and *Serratia marcescens* (MIC = 32 µg/mL); Methanol: activity against *S. aureus* (MIC = 16 µg/mL); *V. cholerae*, *P. aeruginosa*, *S. typhi*, *S. flexneri* and *S. marcescens* (MIC = 16 µg/mL); Aqueous: activity against *V. cholerae*, *S. aureus*, *S. typhi* and *S. flexneri* (MIC = 32 µg/mL); *P. aeruginosa* and *P. mirabilis* (MIC = 16 µg/mL).	[34]
A. tenuifolius	WP	Methanol	In vitro antimicrobial/fungal activity—disk diffusion method	Good activity against *E. coli* and moderate activity against *S. aureus*, *S. typhi*, *K. pneumoniae*, *P. aeruginosa*, *C. albicans* and *A. niger*	[73]
A. tenuifolius	WP	Aqueous	In vivo diuretic activity—measure of rat urine output and urinary electrolytes. After 6 hr administration, Saline solution and furosemide as controls	Hypotensive activity The extract decreased blood pressure in normotensive rats (35.2% decrease with 30 mg/Kg), similar to Verapamil. The response was independent from atropine effect	[74]

AP: Aerial Part; FL: Flower; FR: Fruit; L: Leaf; R: Root; SE: Seed; WP: Whole plant; NI: Not indicated; * Asphodelus luteus L.—synonym of *Asphodeline lutea* was formerly included in the family Asphodelaceae. ABTS⁺⁺: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation, DMPD: N,N-dimethyl-p-phenylenediamine dihydrochloride, DPPH: 2,2-diphenyl-1-picrylhydrazy radical, NO: nitric oxide radical, O₂⁻⁻⁻: superoxide anion radical, OH: hydroxyl radical, ONOO⁻⁻⁻: Peroxynitrite radicals, EBOV: Ebola virus.
Table 4. In vitro and in vivo biological studies reported from pure compounds isolated from *Asphodelus* genus.

Species	Pure Compounds	Test/Assay	Result	Reference
A. microcarpus	Asphodelin A 4′-O-β-D-glucoside (1), Asphodelin A (2)	In vitro antimicrobial/fungal activity—micro dilution assay	*S. aureus* (MIC₁ = 128 µg/mL, MIC₂ = 16 µg/mL), *E. coli* (MIC₁ = 128 µg/mL, MIC₂ = 4 µg/mL), *P. aeruginosa* (MIC₁ = 256 µg/mL, MIC₂ = 8 µg/mL), *C. albicans* (MIC₁ = 512 µg/mL, MIC₂ = 64 µg/mL) and *B. cinerea* (MIC₁ = 1024 µg/mL, MIC₂ = 128 µg/mL)	[19]
	3-methyl anthracline, chrysophanol, and aloe-emodine	Psoriasis	Positive (patent)	[78,79]
	1,6-dimethoxy-3-methyl-2-naphthoic acid (1), asphodelin (2), chrysophanol (3),	In vitro anti-parasitic activity	Compounds 3 and 4 showed moderate to weak against a culture of *L. donovani* promastigotes (IC₅₀ = 14.3 and 35.1 µg/mL, respectively)	
	8 methoxychrysophanol (4), emodin (5), 2-acetyl-1,8-dimethoxy-3-methylanthrathene (6), 10-(chrysophanol-7′-yl)-10-hydroxychrysophanol-9-anthrone (7), aloesaponol-III-8-methyl ether (8), ramosin (9), aestivin (10)	In vitro cytotoxic activity—Human acute leukemia HL60 cells/human chronic leukemia 562 cells	Compounds 7 and 9 exhibited a potent cytotoxic activity against leukemia LH60 and K562 cell lines	[21]
A. tenuifolius	Methyl-1,4,5-trihydroxy-7-methyl-9,10-dioxo-9,10-dihydroanthracene-2-carboxylate (1), (1R) 3,10-dimethoxy-5-methyl-1H,4-epoxybenzol[h]isochromene (2), 3,4-dihydroxy-methyl benzate (3), 3,4-dihydroxybenzonic acid (4), 6 methoxychrysophanol (6)	In vitro anti-parasitic activity	Compound 10 showed potent antimalarial activities against both chloroquine-sensitive and resistant strains of *P. falciparum* (IC₅₀ = 0.8–0.7 µg/mL) without showing any cytotoxicity to mammalian cells	
	5 Compounds, Asphodosides A–E	In vitro anti-microbial/fungal activity	Compound 3 showed activity against a culture of *L. donovani* promastigotes (IC₅₀ = 33.2 µg/mL)	
		In vitro anti-parasitic activity	Compound 4 showed moderate antifungal activity against Cryptococcus neoformans (IC₅₀ = 15.0 µg/mL), compounds 5, 7 and 10 showed potent activity against methicillin resistant *S. aureus* (MRSA) (IC₅₀ = 6.6, 9.4 µg/mL and 1.4 µg/mL, respectively). Compounds 5, 7 and 9 displayed good activity against *S. aureus* (IC₅₀ = 3.2, 7.3 and 8.5 µg/mL, respectively)	
		In vitro anti-microbial/activity	Compounds 2–4 showed activity against methicillin resistant *S. aureus* (MRSA) (IC₅₀ = 1.62, 7.0 and 9.0 µg/mL, respectively). activity against *S. aureus* (non-MRSA), IC₅₀ = 1.0, 3.4 and 2.2 µg/mL, respectively)	[51]
	Asphorodin	In vitro anti-inflammatory-inhibition of lipoxigenase enzyme	Potent inhibitory activity (IC₅₀ = 18.1 µM), Reference: baicalein (22.6 µM)	[26]
3. Materials and Methods

Ethnobotanical data was collected by our team in Portugal and relevant literature was reviewed until December 2017, by probing scientific databases (PubMed, Scopus, Google Scholar, b-on, Web of knowledge) and other web sources such as records from WCSP, IUCN, APG and the Missouri Botanical Garden database. Various keywords were used during the bibliographic research including: ASPHODELUS SPECIES; TRADITIONAL USES; ETHNOMEDICINAL EVIDENCE; BIOLOGICAL ACTIVITIES; ISOLATED MOLECULES; PHYTOCHEMISTRY. Information was gathered and summarized in table form where appropriate.

4. Conclusions

In conclusion, among the 18 species of the genus Asphodelus, only 30 percent of the species namely A. aestivus, A. fistulosus, A. microcarpus, A. ramosus, and A. tenuifolius have been documented for their traditional uses. In phytochemical studies 50 percent of the species (A. acaulis, A. aestivus, A. albus, A. cerasifer, A. fistulosus, A. macrocarpus, A. microcarpus, A. ramosus, A. tenuifolius) have been evaluated for their constituents however there is no documented data related to traditional uses of A. acaulis, A. albus and A. cerasiferus.

All the species with ethnomedical documented data were submitted to biological activity tests, showing a total or partial correlation with their traditional use as anti-microbial, anti-fungal, anti-parasitic, cytotoxic, anti-inflammatory, or antioxidant agents.

Root tubers plant part were mainly reported to have anthraquinone derivatives, triterpenoids, and naphthalene derivatives, while aerial parts mostly exhibited the presence of flavonoids, phenolic acids, and few anthraquinones.

Considering the previous phytochemical studies, 1,8 dihydroxyanthracene derivatives (e.g., aloe-emodin and chrysophanol) were the most common reported anthraquinones of A. aestivus, A. luteus and A. microcarpus extracts which could be responsible for the reported antimicrobial/fungal activities [78,80]. Aloe-emodin as a potent cytotoxic compound might be related to the reported anti-tumoral activity of A. aestivus [68,78].

Flavonoids namely luteolin and apigenin derivatives were frequently reported from the aerial parts of all studied Aphodelus species, which according to their known antioxidant and anti-inflammatory properties [81,82], could be correlated to their traditional uses in inflammatory diseases in agreement with the reported biological studies. Phenolic acids, namely caffeic acid and chlorogenic acid reported from aerial parts and root tubers might be responsible for the general antioxidant activity presented in the biological studies.

Phytosterols (e.g., fucosterol, β-sitosterol, and stigmasterol) and β-amyrin were the most common found triterpenoids from roots and seeds. According to the literature, β-amyrin possess antibacterial/antifungal properties [83] which complement the reported biological activities of A. tenuifolius.

The present study allowed the importance and potential of the genus Asphodelus as a source of new compounds to be ascertained, with biological activity and new herbal products based on Asphodelus genus used in traditional medicine being ascertained, as well as its quality, mode of action, and safety of use. It should be pointed out that, to the best of our knowledge, the latter aspect (the safety of Asphodelus species) has not yet been the object of in-depth studies.

Acknowledgments: The authors wish to thank the Fundação para a Ciência e Tecnologia (FCT) for financial support of iMed.ULisboa project (UID/DTP/04138/2013) as well as a doctoral fellowship granted to the first author (SFRH/BD/125310/2016). This work was supported by the National Research Foundation (FCT), in Portugal, having no role in the data collection and analysis, interpretation of the findings, preparation of the manuscript, or the decision to submit the manuscript for publication. None of the authors has a conflict of interest.

Author Contributions: Maryam Malmir and Olga Silva did the literature review and wrote the first draft of the manuscript; Beatriz Silva-Lima and Manuela Caniça gave scientific involvement and evaluated critically the literature review; Rita Serrano was associated with the edition of the paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Checklist of Selected Plant Families (WCSP). Facilitated by the Royal Botanic Gardens, Kew. Available online: http://apps.kew.org/wcsp/ (accessed on 20 December 2017).

2. Díaz Linfante, Z. Asphodelus L. Flora Iberica; Talavera, S., Andrés, C., Arista, M., Piedra, M.P.F., Rico, E., Crespo, M.B., Quintanar, A., Herrero, A., Aedo, C., Eds.; Consejo Superior de Investigaciones Científicas (CSIC), Real Jardín Botánico: Madrid, Spain, 2013; Volume 20, ISBN 276-308-152.

3. Cronquist, A. An Integrated System of Classification of Flowering Plants; Columbia University Press: New York, NY, USA, 1981; ISBN 9780231038805.

4. Beadle, N.C.W. The Vegetation of Australia; Cambridge University Press: New York, NY, USA, 1981; ISBN 0521241952.

5. Rudall, P.J. Unique floral structures and iterative evolutionary themes in Asparagales: Insights from a morphological cladistic analysis. Bot. Rev. 2002, 68, 488–509. [CrossRef]

6. The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 2003, 141, 399–436. [CrossRef]

7. The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121. [CrossRef]

8. The Angiosperm Phylogeny Group. An Ordinal Classification for the Families of Flowering Plants. Ann. Mo. Bot. Gard. 1998, 85, 531–553.

9. The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [CrossRef]

10. Tropicos. Missouri Botanical Garden. 2017. Available online: http://www.tropicos.org/Name/18400528 (accessed on 20 December 2017).

11. Caldas, F.B.; Moreno Saiz, J.C. The International Union for the Conservation of Nature (IUCN) Red List of Threatened Species; The International Union for the Conservation of Nature: Grand, Switzerland, 2011.

12. Talavera, S.; Andrés, C.; Arista, M.; Piedra, M.P.F.; Rico, E.; Crespo, M.B.; Quintanar, A.; Herrero, A.; Aedo, C. (Eds.) Asphodelus. In Flora Iberica. Plantas Vasc. la Península Ibérica e Islas Baleares; Consejo Superior de Investigaciones Científicas (CSIC), Real Jardín Botánico: Madrid, Spain, 2014.

13. Hammouda, F.M.; Rizk, A.M.; Ghaleb, H.; Abdel-Gawad, M.M. Chemical and Pharmacological Studies of Asphodelus microcarpus. Planta Medica 1972, 22, 188–195. [CrossRef] [PubMed]

14. Boullos, L. Medicinal Plants of North Africa; Reference Publications, Inc.: Algonac, MI, USA, 1983.

15. Peksel, A.; Imamoglu, S.; Altas Kiymaz, N.; Orhan, N. Antioxidant and radical scavenging activities of Asphodelus aestivus L. Brot. extracts. Int. J. Food Prop. 2013, 16, 1339–1350. [CrossRef]

16. González-Tejero, M.R.; Casares-Porcel, M.; Sánchez-Rojas, C.P.; Ramiro-Gutiérrez, J.M.; Molero-Mesa, J.; Pieroni, A.; Giusti, M.E.; Censorii, E.; de Pasquale, C.; Della, A.; et al. Medicinal plants in the Mediterranean area: synthesis of the results of the project Rubia. J. Ethnopharmacol. 2008, 116, 341–357. [CrossRef] [PubMed]

17. Abd El-Fattah, H. Chemistry of Asphodelus fistulosus. Int. J. Pharmacogn. 1997, 35, 274–277. [CrossRef]

18. Ali-Shtayeh, M.S.; Abu Ghdeib, S.I. Antifungal activity of plant extracts against dermatophytes. Mycoses 1999, 42, 665–672. [CrossRef] [PubMed]

19. El-Seedi, H.R. Antimicrobial arylcoumarins from Asphodelus microcarpus. J. Nat. Prod. 2007, 70, 118–120. [CrossRef] [PubMed]

20. Abuhamadah, S.; Abuhamadah, R.; Al-Olimat, S.; Paul, C. Phytochemical investigations and antibacterial activity of selected medicinal plants from Jordan. Eur. J. Med. Plants 2013, 3, 394–404. [CrossRef]

21. Ghoneim, M.M.; Ma, G.; El-Hela, A.; Mohammad, A.; Kotob, S.; El-Ghaly, S.; Cutler, S.J.; Ross, S. Biologically active secondary metabolites from Asphodelus microcarpus. Nat. Prod. Commun. 2013, 8, 1117–1119. [PubMed]

22. Amar, Z.; Noureddine, G.; Salah, R. A Germacrene—D, caracteristic essential oil from A. microcarpus Salzm and Viv. flowers growing in Algeria. Glob. J. Biodivers. Sci. Manag. 2013, 3, 108–110.

23. Rimbau, V.; Risco, E.; Canigueral, S.; Iglesias, J. Antiinflammatory activity of some extracts from plants used in the traditional medicine of north-African countries. Phytother. Res. 1996, 10, 421–423. [CrossRef]

24. Vaghasiya, Y.; Chanda, S.V. Screening of methanol and acetone extracts of fourteen Indian medicinal plants for antimicrobial activity. Turk. J. Biol. 2007, 31, 243–248.
25. Kalim, M.D.; Bhattacharyya, D.; Banerjee, A.; Chattopadhyay, S. Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine. BMC Complement. Altern. Med. 2010, 10, 27. [CrossRef] [PubMed]

26. Safer, M.; Imran, M.; Mehmoood, R.; Malik, A.; Afza, N.; Iqbal, L.; Latif, M. Asphorodin, a potent lipoxygenase inhibitory triterpene diglycoside from Asphodelus tenuifolius. J. Asian Nat. Prod. Res. 2009, 11, 945–950. [CrossRef] [PubMed]

27. Panghal, M.; Kaushal, V.; Yadav, J.P. In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases. Ann. Clin. Microbiol. Antimicrob. 2011, 10, 21. [CrossRef] [PubMed]

28. Saxena, V.K.; Singh, R.B. Unsaponified Matter of Asphodelus tenuifolius. J. Oleo Sci. 1964, 38, 277–281. [CrossRef]

29. Williams, C.A. Biosystematics of the Monocotyledoneac—Flavonoid Patterns in Leaves of the Liliaceae. J. Med. Plant Res. 2010, 4, 229–244. [CrossRef] [PubMed]

30. Faidi, K.; Hammami, S.; Salem, A.B.; El Mokni, R.; Mastouri, M.; Gorcii, M.; Ayedi, M.T. Polyphenol derivatives from bioactive butanol phase of the Tunisian narrow-leaved asphodel (Asphodelus tenuifolius Cav. Ashphodeleae). J. Med. Plant Res. 2014, 8, 550–557. [CrossRef]

31. Safer, M.; Mehmoood, R.; Ali, B.; Mughal, U.R.; Malik, A.; Jabbar, A. New secondary metabolites from Asphodelus tenuifolius. Helv. Chim. Acta 2012, 95, 144–151. [CrossRef]

32. Gürbüz, I.; Üstün, O.; Yesilada, E.; Sezik, E.; Akyürek, N. In vivo gastroprotective effects of five Turkish folk remedies against ethanol-induced lesions. J. Ethnopharmacol. 2002, 83, 241–244. [CrossRef]

33. Peksel, A.; Altas-Kiymaz, N.; Imamoglu, S. Evaluation of antioxidant and antifungal potential of Asphodelus aestivus Brot. growing in Turkey. J. Med. Plants Res. 2012, 6, 253–265. [CrossRef]

34. Dangi, A.S.; Aparna, S.M.; Yadav, J.P.; Arora, D.R.; Chaudhary, U. Antimicrobial Potential of Asphodelus tenuifolius. J. Evol. Med. Dent. Sci. 2013, 2, 5663–5667.

35. Polatoglu, K.; Demirci, B.; Can Basar, K.H. High Amounts of n-Alkanes in the Composition of Asphodelus aestivus Brot. Flower Essential Oil from Cyprus. J. Oleo Sci. 2016, 65, 867–870. [CrossRef] [PubMed]

36. Williams, C.A. Biosystematics of the Monocotyledoneae—Flavonoid Patterns in Leaves of the Liliaceae. Biochem. Syst. Ecol. 1975, 3, 229–244. [CrossRef]

37. Van Wyk, B.E.; Yenesew, A.; Dagne, E. Chemotaxonomic significance of anthraquinones in the roots of asphodeloideae (Asphodelaceae). Biochem. Syst. Ecol. 1995, 23, 277–281. [CrossRef]

38. Çalıș, I.; Birircioglu, S.S.; Kurumizbekmez, H.; Pfeiffer, B.; Heilmann, J. Secondary Metabolites from Asphodelus aestivus. Z. Naturforsch. 2006, 61, 1304–1310. [CrossRef]

39. Fafal, T.; Yilmaz, F.F.; Birincioglu, S.S.; Hosgor-Limoncu, M.; Kivcak, B. Fatty acid composition and antimicrobial activity of Asphodelus aestivus seeds. Hum. Vet. Med. 2016, 8, 103–107.

40. Van Oudtshoorn, M.V.R. Chemotaxonomic Investigations in Asphodeleae and Aloineae (Liliaceae). Phytochemistry 1964, 3, 383–390. [CrossRef]

41. Abdel-Gawad, M.; Hasan, A.; Raynaud, J. Estude de l’insaponifiable et des acides gras des tuberculuses d’Asphodelus albus. Fitotaxonomie 1976, 47, 111–112.

42. Abdel-Gawad, M.M.; Raynaud, J.; Netien, G. Les Anthraquinones des Liliaceae. Fitoterapia 1976, 47, 111–112.

43. Raynaud Par, J.; Abdel-Gawad, M.M. Contribution à l’étude Chimiotaxonomique du Genre Asphodelus (Liliaceae); Publications of the Lyon Linnæenne Society: Lyon, France, 1974.

44. Hammouda, F.M.; Rizk, A.M.; Seif El-Nasr, M.M. Anthraquinones of Certain Egyptian Asphodelus Species. Z. Naturforsch. C 1974, 29, 351–354. [CrossRef]

45. Fell, K.; Hammouda, F.; Rizk, A. The Constituents of the Seeds of Asphodelus microcarpus Viviani and A. fistulosus L. J. Pharm. Pharmacol. 1968, 20, 646–649. [CrossRef] [PubMed]

46. Khan, S.A.; Qureshi, M.I.; Bhatty, M.K. Composition of the Oil of Asphodelus fistulosus (Piazi) Seeds. J. Am. Oil Chem. Soc. 1961, 38, 452–453. [CrossRef]

47. Di Pettrillo, A.; Gonzalez-Paramas, A.M.; Era, B.; Medda, R.; Pintus, F.; Santos-Buelga, C.; Fais, A. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement. Altern. Med. 2016, 16, 453. [CrossRef] [PubMed]

48. El-Ghaly, E.S. Phytochemical and biological activities of Asphodelus microcarpus leaves. J. Pharmacogn. Phytochem. 2017, 6, 259–264.
49. Di Petrillo, A.; Fais, A.; Pintus, F.; Santos-Buelga, C.; González-Paramás, A.M.; Piras, V.; Orrù, G.; Mameli, A.; Tramontano, E.; Frau, A. Broad-range potential of Asphodelus microcarpus leaves extract for drug development. *BMC Microbiol.* 2017, 17, 159. [CrossRef] [PubMed]

50. González, A.G.; Freire, R.; Hernández, R.; Salazar, J.A.; Suárez, E. Asphodelin and Microcarpin, Two New Biaanthraquinones from Asphodelus microcarpus. *Chem. Ind.* 1973, 4, 851.

51. Ghoneim, M.M.; Elokely, K.M.; El-Hela, A.A.; Mohammad, A.; Jacob, M.; Radwan, M.M.; Doerkson, R.J.; Cutler, S.J.; Ross, S.A. Asphodosides A-E, anti-MRSA metabolites from *Asphodelus microcarpus*. *Phytochemistry* 2014, 105, 79–84. [CrossRef] [PubMed]

52. Rizk, A.M.; Hammouda, F.M.; Abdel-Gawad, M.M. Anthraquinones of *Asphodelus microcarpus*. *Phytochemistry* 1972, 11, 2122–2125. [CrossRef]

53. Ghoneim, M.M.; Elokely, K.M.; El-Hela, A.A.; Mohammad, A.; Jacob, M.; Cutler, S.J.; Doerkson, R.J.; Ross, S.A. Isolation and characterization of new secondary metabolites from *Asphodelus microcarpus*. *Med. Chem. Res.* 2014, 23, 3510–3515. [CrossRef] [PubMed]

54. Ghoneim, M.M.; Elokely, K.M.; El-Hela, A.A.; Mohammad, A.; Jacob, M.; Radwan, M.M.; Doerkson, R.J.; Ross, S.A.; Cutler, S.J.; Hamouda, F.M.; Abdel-Gawad, M.M. The Active Constituents of Asphodelus microcarpus Salzmann et Vivi. *Riv. Ital. Essenze Profum. Piante Off.* 1978, 60, 647–650.

55. Picci, V.; Cerri, R.; Ladu, M. Note di biologia e fitochimica sul genere Asphodelus (Liliaceae) di Sardegna, I Asphodelus microcarpus Salzmann e Viviani. *Phytochemistry* 1989, 28, 284–288. [CrossRef]

56. Adinolfi, M.; Corsaro, M.M.; Lanzetta, R.; Parrilli, M.; Scopa, A. A Bianthrone C-Glycoside from Asphodelus Ramosus Tubers. *Phytochemistry* 1990, 29, 2849–2852. [CrossRef]

57. Adinolfi, M.; Lanzetta, R.; Parrilli, M.; Aquila, T.; Corsaro, M. Bianthrone C-Glycosides. 2. Three New Compounds from Asphodelus Ramosus Tubers. *Tetrahedron* 1990, 46, 1287–1294. [CrossRef]

58. Adinolfi, M.; Lanzetta, R.; Marciano, C.E.; Parrilli, M.; Giulio, A.D.E. A New Class of Anthraquinone-Anthrone-C-Glycosides from Asphodelus Ramosus Tubers. *Tetrahedron* 1991, 47, 4435–4440. [CrossRef]

59. Lanzetta, R.; Parrilli, M.; Adinolfi, M.; Aquila, T.; Corsaro, M. Biaanthraquinones from Asphodelus microcarpus. *BMC Microbiol.* 2013, 13, 50. [CrossRef] [PubMed]

60. Adawi, K. Comparison of the Total Phenol, Flavonoid Contents and Antioxidant Activity of Methanolic Roots and Leaves of *Asphodelus tenuifolius*. *BMC Microbiol.* 2012, 12, 3510–3515. [CrossRef] [PubMed]

61. Ahmad, F.; Ahmad, M.U.; Alam, A.; Sinha, S.; Osman, S.M. Studies on Herbaceous Seed Oils-I. *J. Oil Technol. Assoc. India* 1976, 18, 168–172. [CrossRef] [PubMed]

62. Abdel-Mogib, M.; Basaif, S. Two New Naphthalene and Anthraquinone Derivatives from *Asphodelus tenuifolius* Growing in Syria. *Int. J. Pharm. Res. Dev.* 2014, 6, 55–58.

63. Singh, N.; Jaswel, S.S. Structure of an Ester from the Seeds of *Asphodelus tenuifolius* Cav. *Indian J. Chem.* 1974, 12, 1325–1327.

64. Madaan, T.R.; Bhatia, I.S. Lipids of *Asphodelus tenuifolius* Cav. *Seeds. Indian J. Bichem. Biophys.* 1973, 10, 55–58.

65. Ahmad, F.; Ahmad, M.U.; Alam, A.; Sinha, S.; Osman, S.M. Studies on Herbaceous Seed Oils-I. *J. Oil Technol. Assoc. India* 1976, 8, 3–4. [CrossRef]

66. Saxena, V.K.; Singh, R.B. Chemical Examination of *Asphodelus tenuifolius*. *J. Inst. Chem.* 1976, 48, 18–20.

67. Oskay, M.; Aktaş, K.; Sari, D.; Azeri, C. *Asphodelus aestivalis* (Liliaceae) un Antimikrobiyal Etikisinin çukur ve Disk Diffüzyon Yöntemiyile Karşılaştırılması Olarak Belirlenmesi. *Ekojoloj* 2007, 16, 62–65.

68. Aslantürk, S.O.; Çelik, T.A. Investigation of antioxidant, cytotoxic and apoptotic activities of the extracts from tubers of *Asphodelus aestivalis* Brot. *Afr. J. Pharm. Pharmacol.* 2013, 7, 610–621. [CrossRef]

69. Al-Groshi, A.; Nahar, L.; Andrew, E.; Auzi, A.; Sarkar, S.D.; Ismail, F.M.D. Cytotoxicity of *Asphodelus aestivalis* against two human cancer cell lines. *Nat. Prod. Chem. Res.* 2017, 5. [CrossRef]

70. Al-kayali, R.; Kitaz, A.; Haroun, M. Antibacterial Activity of *Asphodelin lutea* and *Asphodelus microcarpus* Against Methicillin Resistant *Staphylococcus aureus* Isolates. *Int. J. Pharmacogn. Phytochem. Res.* 2016, 8, 1964–1968.

71. Aboul-Enein, A.M.; El-Ela, F.A.; Shalaby, E.A.; El-Shemy, H.A. Traditional Medicinal Plants Research in Egypt: Studies of Antioxidant and Anticancer Activities. *J. Med. Plants Res.* 2012, 6, 689–703. [CrossRef]

72. Menghani, E. Isolation and Characterization of Bioactives from Arid Zone Plants. *Int. J. Pharm. Res. Dev.* 2012, 4, 113–118.
73. Ahmed, A.; Howladar, S.; Mohamed, H.; Al-Robai, S. Phytochemistry, Antimicrobial, Antigiardial and Antiamoebic Activities of Selected Plants from Albaha Area, Saudi Arabia. Br. J. Med. Med. Res. 2016, 18. [CrossRef]

74. Aslam, N.; Janbaz, K.H.; Jabeen, Q. Hypotensive and diuretic activities of aqueous-ethanol extract of Asphodelus tenuifolius. Bangladesh J. Pharmacol. 2016, 11, 830–837. [CrossRef]

75. Unal, I.; Ince, O.K. Characterization of Antioxidant activity, Vitamins and Elemental Composition of Ciris (Asphodelus aestivus L.) from Tunceli, Turkey. Instrum. Sci. Technol. 2017, 45, 469–478. [CrossRef]

76. Al-Yahya, M.A.; Al-Meshal, I.A.; Mossa, J.S.; Khatibi, A.; Hammouda, Y. Phytochemical and Biological Screening of Saudi Medicinal Plants: Part II. Fitoterapia 1983, 1, 21–24.

77. Apaydin, E.; Arabaci, G. Antioxidant Capacity and Phenolic Compounds with HPLC of Asphodelus ramosus and Comparison of the Results with Allium cepa L. and Allium porrum L. Extracts. Turk. J. Agric. Nat. Sci. 2017, 4, 499–505.

78. Abu-darwish, S.M.; Ateyyat, M. The Pharmacological and Pesticidal Actions of Naturally Occurring 1, 8-dihydroxyanthraquinones Derivatives. World J. Agric. Sci. 2008, 4, 495–505.

79. Moady, M.; Petereit, H.U. Anti-Psoriatic Composition, Method of Making and Method of Using. U.S. Patent 5,955,081A, 21 of 1999.

80. García-sosa, K.; Villarreal-alvarez, N.; Lübben, P.; Peña-rodríguez, L.M. Chrysophanol, an Antimicrobial Anthraquinone from the Root Extract of Colubrina greggii. J. Mex. Chem. Soc. 2006, 50, 76–78.

81. Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 1–16. [CrossRef] [PubMed]

82. Köpeli, E.; Aslan, M.; Gürbüz, I.; Yesilada, E. Evaluation of in vivo Biological Activity profile of Isoorientin. Z. Naturforsch. 2004, 59, 787–790. [CrossRef]

83. Hernández, L.; Palazon, J.; Navarro-Oca, A. The Pentacyclic Triterpenes alpha, beta-amyrins: A Review of Sources and Biological Activities. Phytochem. Glob. Perspect. Role Nutr. Health 2012, 426. [CrossRef]