Effects of L-valine in layer diets containing 0.72% isoleucine

Usman Liaqat¹, Yasir Ditta¹*, Saima Naveed¹, Annie King²*, Talat Pasha¹, Sana Ullah¹, Khalid Abdul Majeed¹

¹ Department of Animal Nutrition, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan, 2 Department of Animal Science, University of California Davis, Davis, CA, United States of America

* yasirad787@gmail.com (YD); ajking@ucdavis.edu (AJK)

Abstract

In a previous study with LSL-LITE layers (-23 to 30-week-old), isoleucine at 0.72% and 0.84% produced values for FCR at 1.45 and 1.44, respectively and shared significance with 0.78% isoleucine (1.49). Considering that FCR is an important standard in the poultry industry due to the cost for adding feed ingredients such as synthetic amino acids and the low FCR of 1.45, 0.72% isoleucine was chosen for further study with LSL-LITE layers (n = 490 at 33- to 40-week-old) to determine effects on production and egg quality. The study included 7 diets (2730 Kcal kg metabolizable energy and constant isoleucine at 0.72%) containing varying quantities of valine [0.72 (Control), 0.75, 0.78, 0.81, 0.84, 0.87 or 0.90%] x 7 replicates x 10 hens/replicate. Significance at P<0.05 and P<0.10 was determined. Level and week were significant for feed intake, egg production, and FCR; the interaction of level x week (L*W) was significant for feed intake and FCR. An isoleucine:valine of 1.233 corresponding to 0.72% isoleucine and 0.87% valine produced the lowest FCR of 1.30 (a 2.26% decrease compared to the Control at 1.33 ± 0.04). All measurements for external egg quality, except shape index and eggshell thickness, were significant for level. Week was significant for all parameters except shell thickness; L*W was significant for external quality measurements except shape index and shell thickness. Level, week, and L*W were significant for internal egg quality measurements. Serum protein and H1 titer were significant for level. Various production, egg quality, and biochemical measurements were significantly different from the control (0.72% isoleucine and 0.72% valine) at 0.81 to 0.87% valine. Findings of this study will aid researchers and commercial producers in narrowing the range of isoleucine, valine, and leucine needed for effects on particular parameters. Knowledge gained from this and others studies will eventually lead to an understanding of synergistic and antagonistic effects of branched chain amino acids in feed for various genetic types of layers throughout their productive lifetime.
Introduction

Branched chain amino acids (BCAAs) are precursors of other amino acids and proteins. Metabolized extra-hepatically, they are energy precursors and aid in repair of muscle proteins (Brosnan and Margaret, 2006) [1]. It has been assumed that leucine requirements can generally be met by various sources of protein in diets. Thus, research has focused on appropriate amounts of isoleucine and valine in the diet to maintain antioxidant capacity, gut immunity, and critical metabolic processes such as fatty acid metabolism (Azzam et al., 2015; Dong et al., 2016; Wen et al., 2019; Bai et al., 2021) [2–5].

In layers, isoleucine is said to be the fourth limiting amino acid after tryptophan (Harms and Ivey, 1993) [6]. Several studies have focused on isoleucine requirements for young hens. Harms and Russell (2001) provided 0.49 to 0.61% isoleucine to Hy-Line W36 (36- to 44-week-old) diets containing supplemental amino acids to ensure that isoleucine was first limiting [7]. Egg production, weight, and contents were significantly increased by all isoleucine additions. Results revealed daily isoleucine requirement of 589.2, 601.2, and 601.4 mg/day for egg production, weight, and content, respectively, indicating 12.6 mg isoleucine/g of egg content. A follow-up experiment for Hy-Line layer (35 to 43 week-old) diets with 0.39 to 0.61% isoleucine indicated significantly elevated egg mass, egg production, and egg weight for levels above 0.51% (Shivazad et al., 2002) [8]. Egg mass, egg weight, and egg production decreased with decreasing isoleucine. Feed consumption, energy intake, and body weight were significantly decreased at 0.45% isoleucine. Broken-line regressions showed requirements of 449.8, 497.0, and 469.0 mg isoleucine/day for egg production, weight, and mass, respectively, corresponding to 9.30 mg isoleucine/g egg mass. Parenteau et al. (2020) determined responses to isoleucine supplementation in low crude protein diets of laying hens (20- to 27 and 28- to 46-week-old) [9]. Findings showed that a reduction of crude protein by 2% was possible when diets were fortified with synthetic amino acids (methionine, lysine, threonine, and tryptophan) + isoleucine. Optimum responses occurred at 82 and 88% standardized ileal digestible isoleucine:lysine [9].

Results of earlier studies reported dietary valine requirements between 0.54 and 0.72% for maximum layer performance (Johnson and Fisher, 1958; Hurwitz and Bornstein, 1978) [10, 11]. Other results suggested from 610 to 786 mg valine/hen/day (McDonald and Morris, 1985; Jensen and Colnago, 1991) [12, 13]. NRC (1977) [14] recommended 550 mg/hen/day [15]. Later the recommendation was 600 mg/hen/day, followed by a final recommendation (to date) of 700 mg/hen/day (NRC,1994) [15]. As with isoleucine, some research has focused on valine requirements for layers of young to medium age (Harms and Russell, 2001) [16]. Hy-Line W-36 layers (39- to 47-week-old) were fed diets containing 0.525 to 0.700% valine. Egg production and egg weight were increased by 0.630% and 0.655% valine, respectively. Daily valine requirement of 592.5, 677.7, and 619.0 mg/hen/day were reported for improved egg production, weight, and contents respectively. A value of 13.1 mg valine/g of egg content was indicated by broken-line regression [16]. In work by Bregendahl et al. (2008) with Hy-Line W-36 hens (26- to 34-week-old), the digestible amino acid requirement used to calculate the ideal amino acid ratio for maximum egg mass was 501 mg/day of valine. The ideal amino acid ratio for maximum egg mass was 93% valine relative to lysine (100%) [17].

A critical review of amino acids requirements for laying hens was recently provided by Macelline et al. (2021) [18]. Values from producers of five layer breeders ranged from 640 to 760 and 700 to 819 mg/bird/day for isoleucine and valine, respectively (Macelline et al., 2021) [18]. Values for ideal digestible amino acid ratios for layers ranged from 79 to 86 and 88 to 102 mg/bird/day for isoleucine and valine, respectively (Macelline et al., 2021) [18].

As antagonists, isoleucine and valine, branched chain amino acids (BCAA’s) share the same pathway to cross the cellular membrane, are degraded by the same enzymes, and cross the...
blood-brain barrier at the same time (Benton et al., 1956; Rogers et al., 1993; Harper, 1984) [19–21]. As more synthetic amino acids are used in poultry diets, research will continue to ensure that complementary quantities of BCAA’s are maintained. The ideal amino acid ratio as determined by the Goettingen approach was lysine, 100; isoleucine, 75; and valine, 90. As determined by the Louvain approach, it was lysine, 100; isoleucine, 80; and valine, 91 (Soares et al., 2018) [22].

In a previous study with LSL-LITE layers (23- to 30-week-old), 0.72% and 0.84% total isoleucine in diets produced low FCR of 1.45 and 1.44, respectively, and shared significance of FCR (1.49) with isoleucine at 0.78% (Ullah et al., 2021) [23]. The corresponding ratios of lysine:isoleucine for these percentages were 0.72% = 1:0.867; 0.78% = 1:0.939, and 0.84% = 1:0.988. Due to the low FCR and cost consideration when adding synthetic isoleucine, 0.72% was designated for further study with various concentrations of valine to determine effects for layer performance as well as external and internal egg quality in LSL-LITE layers (33- to 40-week-old).

Results and discussion

The standard error of the mean (SE) is pooled for each individual measurement for production; external egg quality; internal egg quality; and serum biochemistry, digestibility, and titers. SE is included with the value for the Control of each parameter discussed below.

Production (Table 1)

Increasing valine had linear (p < 0.01), quadratic (p = 0.01), and cubic (p < 0.01) effects on feed intake. Except for 0.87%, all levels of valine significantly increased feed intake. At 0.78% valine, feed intake (111.52 kg) was 6.33% greater than the Control (104.88 kg ± 3.18). Lelis et al. (2014) also reported a linear increase in feed intake when feeding brown layers (42- to 54-wk-old) valine to lysine ratios of 84 to 100%, compared to our ratio of ~94 to 100% [24]. They suggested an ideal digestible valine to lysine ratio of 92% (0.607% digestible valine or 567 mg/hen/day of digestible valine) [24]. Differences in age and genetics of layers may explain differences in findings. Week (fluctuating values) and L^2W were significant (p < 0.01) for feed intake in the present study.

Level produced a quadratic (p = 0.07) trend and a cubic (p < 0.01) effect for production of isoleucine:valine at 1.048 and 1.192, respectively.

The highest production (96.85% for 0.87% valine) produced an increase in weight of 2.77% compared to the Control (94.24% ± 2.01). Lelis et al. (2014) also noted that increasing ratios of valine:lysine had a quadratic effect on egg production of brown layers [24]. When Harms and Russell (2001) fed HyLine W-36 layers (39- to 47-week-old) diets containing 0.525 to 0.700% valine, egg production was increased at 0.630% [16]. Azzam (2015) found no effect on production when feeding 0.1 to 0.4% to Hyline Brown hens (40- to 47- week old) [2]. Results of Azzam (2015) are likely different from others due to the lower quantities (0.1 to 0.4%) of valine provided [2]. Age and breed of layers are likely important factors for differences in results as well.

For FCR, level was significant (p < 0.01); there were linear (p < 0.03) and cubic (p < 0.01) effects. A low feed intake and the highest egg production at 0.87% valine produced the lowest FCR (1.30) compared to the Control (1.33 ± 0.04). Lelis et al. (2014) reported a quadratic effect for FCR [24]. Azzam (2015) reported no effect on FCR with an increase of valine, likely due to the lower quantities fed [2]. Week was significant (p = 0.01) as values fluctuated over time. A trend (p = 0.10) was observed for L^2W.
External egg quality (Table 2)

External egg quality parameters are shown in Table 2. Level was significant for all external egg quality measurements except shape index and shell thickness where there were trends at p = 0.08 and p = 0.10, respectively. Egg weight trended linearly (p = 0.09) with quadratic (p = 0.04) and cubic (p = 0.008) responses. Compared to the control (60.73 g ± 0.42), a significant peak (61.61 g) for weight occurred at 0.84% valine. Harms and Russell (2001) noted that for Hy-Line W-36 layers (39- to 47-week-old), egg weight started to increase at 0.655% valine when layers received 0.525 to 0.700% valine. Lelis et al. (2014) fed Dekalb Brown layers (42- to 54-week-old) while Azzam (2015) fed Hyline Brown layers (40- to 47-week-old) and found no effect of valine for egg weight or specific gravity. Information for our study with SL LITE layers, those of Lelis et al. (2014) and Azzam (2015) with brown layers suggest a thorough investigation of the literature for effects of valine on egg quality traits from various genetic types of layers in the same age range.
Table 2. Valine level and external egg quality* of 33- to 40-week-old hens.

Level (%)	Lys: val	Iso: val	Egg weight (g)	Specific gravity	Shape index	Shell weight (g)	Shell thickness (mm)	Prop shell weight
Control†	0.867	0.986	60.73b	1.0739d	74.17b	6.61b	0.33b	10.81b
0.75	0.900	1.027	60.72b	1.0772abc	74.29abc	6.45abc	0.36a	10.60b
0.78	0.939	1.068	60.44a	1.0779b	74.60b	6.59b	0.34b	10.84b
0.81	0.975	1.109	60.17d	1.0802a	74.77a	6.56b	0.34b	10.95a
0.84	1.010	1.151	61.61a	1.0760a	74.06b	6.39b	0.33b	10.31c
0.87	1.048	1.192	60.58bc	1.0779b	74.20bc	6.46bc	0.34b	10.61b
0.90	1.084	1.233	60.55bc	1.0765bc	74.47bc	6.56bc	0.34b	10.86bc
Pooled SE	0.42	0.002	0.98	0.29	0.039	0.46		

Week (age)

33	59.05c	1.08b	74.71ab	6.00c	0.34abc	10.20d
34	60.06d	1.09a	74.39abc	6.25d	0.34abc	10.32d
35	60.62c	1.07c	73.92c	6.25d	0.35bc	10.27c
36	61.00a	1.07a	73.95c	6.48c	0.33c	10.59c
37	61.08a	1.10a	74.87a	6.91bc	0.33bc	11.29a
38	61.18ab	1.07a	74.14bc	7.01a	0.33bc	11.53a
39	61.40a	1.07f	74.43abc	6.47c	0.34abc	10.58c
40	61.09b	1.08b	74.53abc	6.76b	0.36a	10.90b
Pooled SE	0.31	0.001	0.74	0.21	0.03	0.35

Level

< 0.01 | < 0.01 | 0.08 | 0.04 | 0.10 | < 0.01 |
< 0.01 | < 0.01 | < 0.01 | < 0.01 | 0.08 | < 0.01 |

L’W**

0.01 | < 0.01 | 0.06 | < 0.01 | 0.21 | 0.03 |

Linear

0.09 | < 0.01 | 0.22 | 0.29 | 0.02 | 0.43 |

Quadratic

0.04 | < 0.01 | 0.60 | 0.18 | 0.15 | 0.15 |

Cubic

0.008 | 0.70 | 0.20 | 0.03 | 0.16 | 0.01 |

* Means (7 treatments x 7 replicates x 10 layers per replicate) with the same superscript within a column do not differ significantly at P ≤ 0.05.
† Lysine: valine.
* Iso: valine.
* Proportional shell weight. %
* Control as isoleucine and valine, both at 0.72% of the diet.
** Interaction of level by week.

https://doi.org/10.1371/journal.pone.0258250.t002

Level was linear and quadratic (both at p < 0.001) for specific gravity while egg shell weight was cubic (p = 0.03). Specific gravity peaked (1.0802) at 0.81% valine compared to the Control (1.0739 ± 0.002). Specific gravity and shell weight are closely related because specific gravity is the relationship between the shell weight and other egg components (Butcher and Miles, 2017) [25]. However, shell weight was not linear but cubic (p = 0.03). Shell weight was different from the Control (6.61 g + 0.29) at 0.84% valine (6.39 g), producing 3.33% less shell.

Increasing valine produced a trend for shell thickness at p = 0.10 and a linear effect (p = 0.02). Shell thickness increased at 0.75% valine (0.36 mm), producing 9.09% greater thickness compared to the Control (0.33 mm ± 0.039 SE). L’W was not significant for shell thickness (p = 0.21) and week produced a linear trend at p = 0.08 for shell thickness. The trend for shell thickness by level may have been confounded by a trend for week associated with deposition of minerals. This supposition was supported by findings of Park and Sohn (2018) who conducted a study to examine the histological change of the eggshell endometrium for 30-, 60-, and 72-wk-old commercial layers [26]. As well, they analyzed eggshell ultrastructure and ionic composition. These investigators noted that eggshell weight significantly increased
between 30 (6.72 g ± 0.026) and 60 weeks (7.08 g ± 0.40). Na⁺, K⁺, and V²⁺ increased with age while CA²⁺, Co²⁺, and S²⁻ significantly decreased. Ultimately, egg shell structure was affected causing increased weakness of the shell while thickness and density did not change.

Level of valine was significant (p < 0.01) for proportional shell weight and there was a cubic effect at p = 0.01. The lowest proportional shell weight occurred at 0.84% valine (10.31%), compared to the Control (10.82% + 0.42). The reduction was 4.63%. When eggs have similar weights, the amount of shell can cause a difference in specific gravity (Butcher and Miles, 2017) [25]. At 0.84% valine, egg weight was highest (61.61 g), proportional shell weight was lowest (10.81%); however specific gravity, while at the numerically lowest point (10.61), shared significance with other values. For proportional shell weight, week was significant at p < 0.01 and L•W was significant at p = 0.03.

Shape index for level (p = 0.08) and L•W (p = 0.06) were not highly significant. The importance of shape index as associated with shell durability is controversial. While some investigators noted that an index >76 is needed for shell durability during marketing, others show no correlation for these measurements (Sarica and Erensayin, 2004; Duman et al., 2016) [27, 28]. Unless eggs shells are extremely fragile due to feed source, disease, or handling, shape index may not affect sale of eggs in local farmers’ markets or for consumers’ use from backyard production.

Internal egg measurements (Table 3). Level was significant for all internal measurements (Table 3). Albumen and yolk indices were linear, quadratic and, cubic at p = <0.01. The Control for the albumen index was 7.57 ± 0.38. It increased by 8.59% and 10.30% for 0.84% valine (8.22) and 0.90% valine (8.35), respectively. The yolk index for the Control (42.61 ± 0.96) increased by 5.09% with valine (44.78) at both 0.75% and 0.78%. Haugh unit for the Control (93.32 HU ± 1.87) had the greatest increase of 2.90% at 0.84% valine (96.02 HU) and 3.24% at 0.90% valine (96.33 HU).

The yolk:albumen had quadratic (p = 0.013) and cubic effects (p = 0.01) for level. The Control value of 0.43 ± 0.03 for yolk:albumen decreased for hens fed 0.84% (0.40) and the reduction was 6.98%. The albumin index and Haugh unit exhibited a general downward trend as hens aged. r² for these two variables was 0.95. These temporal effects likely confounded findings for level.

Proportional yolk weight had quadratic (p < 0.01) and cubic (p = 0.03) effects. The Control value was 26.90% ± 0.80 and there was a reduction of 4.46% for valine levels at 0.84% (25.70%). Level produced a linear trend for yolk color at p = 0.07 and a quadratic effect (p = 0.02).

For Lelis et al. (2014), egg weight and egg internal quality were not influenced by the different dietary digestible valine-to-lysine ratios [24]. Internal quality measurements associated with yolk at various isoleucine:valine used in the present study may be associated with synergistic or antagonistic effects on deposition of lipids influenced by branched chain amino acids and need further study (Bai et al., 2017) [5]. Yolk color may be affected by deposition of fat soluble carotenoids associated with effects of BCAA’s.

As noted by Macelline et al. (2021), the higher values for amino acid ratios for layers used in our study and that for Lelis et al. (2014) were warranted [18, 24]. These levels may be especially important for layers to produce egg content (protein and lipids) during the early to middle range of egg production, maintain antioxidant capacity, gut immunity, and critical metabolic processes (Azzam et al., 2015; Dong et al., 2016; Wen et al., 2019; Bai et al., 2021) [2–5].

Serum biochemistry and crude protein digestibility (Table 4)

No influence of level was noted for serum glucose. For serum albumin, there was a trend (p = 0.06) for level. Valine level was also significant (p = 0.02) for total protein due to
fluctuation; there was no linear response. Valine at 0.81%, while not different from other values, produced a significantly lower value (3.22 g/dl) than that of the Control (4.30 g/dl ± 0.03) for total protein. The H9 titer did not respond to level of valine. The H1 titer for NDV was significant (p = 0.02) with a linear (p < 0.01) effect and a trend for a cubic response (p = 0.07). For level, there was a cubic (p = 0.07) trend and a linear effect (p = 0.02) for ileal protein digestibility.

Contrary to our results, Azzam et al. (2015) reported a significant quadratic effect on serum glucose for increasing valine that peaked at 0.2% but; there was no effect of valine level on total serum protein (Azzam, 2014) [2, 29]. The general downward response for total protein seemed to support findings of Bunchasak et al. (2005) [30] who found a significant response for decreased serum protein with increasing dietary valine (0.66, 0.76, and 0.85) in broilers [29]. However, Thornton et al. (2006) found insignificant effects of digestible valine on innate or adaptive immunity in broilers [31].

Table 3. Valine level and internal egg quality of hens at 33–40 weeks.

Levels (%)	Lys: val	Iso: val	Albumen index	Yolk index	Yolk color	Yolk: albumen	Haugh unit	Prop. yolk weight
Control	0.867	0.986	7.57	42.61	5.22^b	0.43^a	93.31	26.90^a
0.75	0.900	1.027	7.55	44.78	5.13^b	0.42^ab	93.94	26.54^bc
0.78	0.939	1.068	7.43	44.78	5.16^b	0.42^ab	93.34	26.40^bc
0.81	0.975	1.109	7.49	42.94	5.34	0.43^a	93.75	26.80^b
0.84	1.010	1.151	8.22	42.98	5.27^b	0.40^f	96.02	25.70^d
0.87	1.048	1.192	8.01	42.78^bc	5.25^bc	0.41^bc	94.97	26.21^c
0.90	1.084	1.233	8.35	42.61^d	5.35	0.41^bc	96.33	26.60^bc

Pooled SE

Weeks (age)	Albumen index	Yolk index	Yolk color	Yolk: albumen	Haugh unit	Prop. yolk weight
33	8.32^a	43.00^b	3.32^f	0.41^e	96.58^a	26.04^c
34	8.02^bc	42.70^bc	4.1^d	0.41^bc	95.86^a	26.19^c
35	8.05^b	43.54^a	5.27^a	0.40^f	95.67^a	25.99^c
36	7.54^d	42.93^b	5.90^a	0.42^bc	93.65^bc	26.42^b
37	7.87^ab	44.09^a	6.45^c	0.43^ab	94.43^sh	26.67^sh
38	7.79^c	43.90^c	5.44^d	0.42^bc	94.15^s	26.71^sh
39	7.44^d	42.81^b	5.80^bc	0.42^bc	93.00^c	26.69^b
40	7.39^d	42.20^d	5.65^e	0.43^a	92.84^c	26.95^b

Pooled SE

Level	Albumen index	Yolk index	Yolk color	Yolk: albumen	Haugh unit	Prop. yolk weight
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Weeks

Linear	Albumen index	Yolk index	Yolk color	Yolk: albumen	Haugh unit	Prop. yolk weight
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Quadratic

Cubic	Albumen index	Yolk index	Yolk color	Yolk: albumen	Haugh unit	Prop. yolk weight
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Means (7 treatments × 7 replicates × 10 layers per replicate) with the same superscript within a column do not differ significantly at P ≤ 0.05.

* Lysine:valine.

**Isoleucine:valine.

^Feed consumed/kg egg.

° Control as isoleucine and valine, both at 0.72% of the diet.

**Interaction of level by week.
Our significance for level and a linear response for NDV titer agreed with early results of Bhardava et al. (1969) who found a positive effect for increasing high levels of valine (0.9 to 1.5%) on NDV titers in diets of 4-day-old chicks [32]. These findings are likely related to the requirement of valine for antibody production (killer-cell activity and lymphocyte proliferation) as noted by Calder (2006) for mammals [33]. Results from Jian et al. (2021) revealed a significant quadratic decrease in serum IgA and IgM with increasing valine (0.59, 0.64, 0.69, 0.74, and 0.79%) in diets of 33- to 40-week-old Fengda No.1 laying hens. Serum IgM levels did not change among diets [34]. Investigators (Azzam et al., 2015) reported that high levels of valine did not negatively affect the immune function in layers [2]. As noted by Kidd et al. (2021), the quantity of leucine in the diet must be considered when examining the effects of valine on responses in broilers [35]. Perhaps future work on immune responses in layers should always include responses across levels of the BCAA’s simultaneously.

The supplemental amino acids, threonine, also boosted the immune function in laying hens as reported by Azzam et al. (2011a), Azzam et al. (2011b), and Dong et al. (2016) [3, 36, 37]. According to Dong et al. (2017), mucosal immunity was enhanced with increasing threonine [38]. These investigators suggested that when limiting amino acids in a low-crude protein diet of layers during peak production, threonine may be a limiting amino acid.

Conclusion

In our work, production, egg quality, biochemical measurements, and ileal digestibility were most significantly affected by varying level of valine from 0.81 to 0.87%, when isoleucine was constant at 0.72%. Information from the present work is valuable for both researchers and producers. Results of our previous work, indicated that addition of isoleucine produced a low FCR at 0.72%. When investigating levels of isoleucine and valine in the present work with older layers, FCR was reduced with 0.72% isoleucine and 0.87% valine in the diet. More research will
narrow the range for appropriate quantities of valine when isoleucine is held at 0.72% in diets for hens in early stages of egg production. Work on comparison of all BCAA’s should be performed on the same group of layers over their lifetime. In this way, use of BCAAs could be optimized for various genetic types throughout each period of production. Presently, producers can choose the amount of isoleucine (72%) and valine to maximize their most important commercial parameter(s).

Materials and methods

Diets, housing, and care

Layers (490, 33-weeks-old LSL-LITE starting weight of 1.581 ± 0.065 Kg) were randomly assigned to 7 dietary treatments × 7 replicates × 10 layers per replicate for 8 weeks. Mash diets with 0.72% isoleucine + 0.72, 0.75, 0.78, 0.81, 0.84, 0.87 and 0.90% total valine were formulated and prepared. The diet containing 0.72% of both isoleucine and valine was considered the Control. Several low cost ingredients were used to replace more expensive soy (protein source) in the diet (Table 5) [39–42]. Diet and fresh water were provided *ad libitum*.

The total quantity of protein from all sources and amino acids are shown in Table 6 (Amino LAB®) [43].

Bird care, egg quality, and measurements

The Ethical Review Committee, University of Veterinary and Animal Sciences (Lahore, Pakistan) approved the protocol housing, feeding, and care of layers. Housing conditions included a caged system (60 x 63.5 cm, five birds each) on a commercial layer farm with uniform egg production and body weight, constant 16L:8D photoperiod (10–15 Lux), a maximum (26.68 ± 0.21 SE °C), and a minimum (21.75 ± 0.24 SE °C) temperature during October and November. All procedures and measurements were those noted for Ullah et al., 2021 [23].

Statistical analysis

Data were subjected to a one way ANOVA under a completely randomized design (Steel et al., 1997) [44]. Weekly data for feed intake, FCR, body weight change, and egg quality parameters were analyzed by repeated measures SAS (version 9.1; SAS Inst. Inc. Cary, NC) using PROC GLM [45]. The model was $Y_{ijk} = \mu + \tau_i + P_j + (\tau \times P)_{ij} + \epsilon_{ijk}$, where: Y_{ijk} = Y is observation of i^{th} treatment on j^{th} period, μ = the overall mean, τ_i = the effect of i^{th} treatment ($i = 1, 2, 3, \ldots, 7$), P_j = the effect of j^{th} period ($P = 1, 2, 3, \ldots, 8$), $(\tau \times P)_{ij}$ = the effect of interaction between i^{th} treatment and j^{th} period, ϵ_{ijk} = random error associated with k^{th} observation on j^{th} period on i^{th} treatment \sim mean 0 and variance σ^2. Data were also evaluated using orthogonal analysis.

Table 5. Protein content in 100g of various components in layer diets.

Component	Grams/100grams
Conventional canola meal1	40.73 to 43.01
De hulled sunflower seed meal2	42.00
Soybean meal3	52.00
Poultry byproduct meal4	61.20

1Chen et al., 2015 [39].

2González-Pérez, 2015 [40].

3Banaszkiewicz, 2007 [41].

4Pesti, 1986 [42].

https://doi.org/10.1371/journal.pone.0258250.t005
polynomials for linear, quadratic, and cubic responses. Statistical significance at \(P \leq 0.05 \) and trends \((P \leq 0.10) \) were determined using Duncan’s Multiple Range Test (Duncan, 1955) [46].

Acknowledgments

Authors thank the commercial layer farm for cooperation while conducting the research.

Author Contributions

Conceptualization: Usman Liaqat, Yasir Ditta, Saima Naveed, Annie King, Talat Pasha, Kha- lid Abdul Majeed.

Data curation: Usman Liaqat, Yasir Ditta, Saima Naveed, Sana Ullah.

Formal analysis: Annie King.
Investigation: Khalid Abdul Majeed.

Methodology: Saima Naveed, Talat Pasha, Sana Ullah.

Project administration: Talat Pasha.

Supervision: Sana Ullah, Khalid Abdul Majeed.

Visualization: Annie King.

Writing – review & editing: Annie King.

References

1. Brosnan JT, Margaret EB. Branched-chain amino acids: Enzyme and substrate regulation. J Nutr. 2006; 136: 207S–211S. https://doi.org/10.1093/jn/136.1.207S PMID: 16365084

2. Azzam MMM, Dong XY, Dai L, Zou XT. Effect of excess dietary L-valine on laying hen performance, egg quality, serum free amino acids, immune function and antioxidant enzyme activity. Brit Poul Sci. 2015; 56: 72–78. https://doi.org/10.1080/00071668.2014.989487 PMID: 25409658

3. Dong XY, Azzam MMM, Zou XT. Effects of dietary L-isoleucine on laying performance and immunomodulation of laying hens. Poult Sci. 2016; 10: 61–69. https://doi.org/10.3382/ps/pew163 PMID: 27118860

4. Wen J, Helmbrecht A, Elliot MA, Thoson J, Persia ME. Evaluation of the valine requirement of small-framed first cycle laying hens. Poult Sci. 2019; 98: 1272–1279. https://doi.org/10.3382/ps/pew448 PMID: 30329096

5. Bai J, Greene E, Li W, Kidd MT, Dridi S. Branched-chain amino acids modulate the expression of hepatic fatty acid metabolism-related genes in female broiler chickens. Mol Nutr Food Res. 2015; 59: 1171–1181. https://doi.org/10.1002/mnfr.201400918 PMID: 25787688

6. Harms RH, Ivey FJ. Performance of commercial laying hens fed various supplemental amino acids in a corn soybean meal diet. J Appl Poult Res. 1993; 2: 273–282.

7. Harms RH, Russell GB. Evaluation of the isoleucine requirement of the commercial layer in a corn-soybean meal diet. Poult Sci. 2000; 79: 1154–1157. https://doi.org/10.1093/ps/79.8.1154 PMID: 10947184

8. Shivazad M, Harms RH, Russell GB, Faria DE, Antar RS. ReEvaluation of the isoleucine requirement of the commercial layer. Poult Sci. 2002; 81: 1869–1872. https://doi.org/10.1093/ps/81.12.1869 PMID: 12512579

9. Parenteatu IA, Stevenson M, Kiarie EG. Egg production and quality responses to increasing isoleucine supplementation in Shaver white hens fed a low crude protein corn-soybean meal diet fortified with synthetic amino acids between 20 and 46 weeks of age. Poult Sci, 2020; 99: 1444–1453. https://doi.org/10.1016/j.psj.2019.10.064 PMID: 32111315

10. Johnson D, Fisher H. The amino-acid requirement of laying hens: Minimal requirement levels of essential amino acids: techniques and development of diet. Brit J Nutr. 1958; 12: 276–285. https://doi.org/10.1079/bjn19580039 PMID: 13572750

11. Hurwitz S, Bornstein S. The protein and amino acid requirements of laying hens: experimental evaluation of models of calculation. II. Valine requirement and layer-starter diets. Poult Sci. 1978; 57: 711–718. https://doi.org/10.3382/ps.0570711 PMID: 674047

12. McDonald M, Morris T. Quantitative review of optimum amino acid intakes for young laying pullets. Brit Poult Sci. 1985; 26: 253–264. https://doi.org/10.1080/00071668508416811 PMID: 3924352

13. Jensen LS, Colnago GL. Amino acids and protein for broilers and laying hens. Maryland Nutrition Conference, Baltimore, MD. 1991.

14. NRC. Nutrient Requirements of Poultry. 7th ed. Washington DC: National Academy Press; 1977.

15. NRC. Nutrient Requirements of Poultry. 8th ed. Washington DC: National Academy Press; 1984.

16. Harms RH, Russell GB. Evaluation of valine requirement of the commercial layer using a corn-soybean meal basal diet. Poult Sci. 2001; 80: 215–218. https://doi.org/10.1093/ps/80.2.215 PMID: 11233011

17. Bregendahl K, Roberts SA, Kerr B, Hoehier D. Ideal ratios of isoleucine, methionine, methionine plus cystine, threonine, tryptophan, and valine relative to lysine for white leghorn-type laying hens of twenty-eight to thirty-four weeks of age. Poult Sci. 2008; 87: 744–758. https://doi.org/10.3382/ps.2007-00412 PMID: 18339997

18. Macelline SP, Toghyani M, Chrystal PV, Selle PH, Liu, SY. Amino acid requirements for laying hens: a comprehensive review. Poult Sci. 2021; 100: 101–136.
19. Benton DA, Harper AE, Spivey HE, Elvehjem CA. Leucine, isoleucine, and valine relationships in the rat. Arch Biochem Biophy. 1956; 60: 147–155.

20. Harper AE. Interrelationship among the branched chain amino acids. In: Adibi SA, Fekl W, Langenbeck U, Schrauder P, editors. Branched chain amino and keto acids in health and disease. Göttingen, Germany: Karger Publishers, 1984. pp 81–99.

21. Rogers AE, Eaton DL, Groopman JD. The toxicology of aflatoxin carcinogenesis health, veterinary, and agricultural significance. London: Academic Press; 1993.

22. Soares L, Sakomura NK, Dorigam J C de Paula, Liebert F, Sunder A, Quintino do Nascimento M, et al. Optimal in-feed amino acid ratio for laying hens based on deletion method. J Ani. Physio Ani. Nutr. 2018; 103: 170–181. https://doi.org/10.1111/jpn.13021 PMID: 30478953

23. Ullah S, Ditta YA, King AJ, Pasha TN, Mahmud A, Makeed KA. Varying digestible isoleucine level to determine effects on performance, egg quality, serum biochemistry, and ileal protein digestibility in diets of young laying hens. 2021. Plos Bio. In Press.

24. Lelis GR, Albino LFT, Tavernari FC, Calderano AA, Rostagno HS, Maia RC. Lelis, Digestible valine-to-digestible lysine ratios in brown commercial layer diets. J Appl Ani Res. 2014; 23:683–690

25. Butcher GD, Miles RD. Egg specific gravity—designing a monitoring program. Florida: IFAS Extension, University of Florida; 2017. https://edis.ifas.ufl.edu/pdf/VM/VM04400.pdf.

26. Park JA, Sohn, SH. The influence of hen aging on eggshell ultrastructure and shell mineral components. Korean J Food Sci Ani Res. 2018; 38: 1080–1091.

27. Sarica M, Erensayin C. Effects of balanced dietary protein levels on egg production and egg quality parameters of individual commercial layers. Poult Sci. 2013; 92: 2687–2696. https://doi.org/10.3382/ps.2012-02569 PMID: 24046416

28. Duman M, Sekeroglu A, Yildirim A, Eleroglu H. Relation between egg shape index and egg quality characteristics. Europ Poult Sci. 2016; 80; 1–9.

29. Azzam MMM, Yuan C, Liu GH, Zou XT. Effect of excess dietary threonine on laying performance, egg quality, serum free amino acids, and digestive enzymes activities of laying hens during the post peak period. J Appl Poult Res. 2014; 23: 605–613.

30. Butcher GD, Miles RD. Egg specific gravity—designing a monitoring program. Florida: IFAS Extension, University of Florida; 2017. https://edis.ifas.ufl.edu/pdf/VM/VM04400.pdf.

31. Azzam MMM, Yuan C, Liu GH, Zou XT. Effect of excess dietary threonine on laying performance, egg quality, serum free amino acids, and digestive enzymes activities of laying hens during the post peak period. J Appl Poult Res. 2014; 23: 605–613.

32. Butcher GD, Miles RD. Egg specific gravity—designing a monitoring program. Florida: IFAS Extension, University of Florida; 2017. https://edis.ifas.ufl.edu/pdf/VM/VM04400.pdf.

33. Azzam MMM, Yuan C, Liu GH, Zou XT. Effect of excess dietary threonine on laying performance, egg quality, serum free amino acids, and digestive enzymes activities of laying hens during the post peak period. J Appl Poult Res. 2014; 23: 605–613.

34. Azzam MMM, Yuan C, Liu GH, Zou XT. Effect of excess dietary threonine on laying performance, egg quality, serum free amino acids, and digestive enzymes activities of laying hens during the post peak period. J Appl Poult Res. 2014; 23: 605–613.

35. Azzam MMM, Yuan C, Liu GH, Zou XT. Effect of excess dietary threonine on laying performance, egg quality, serum free amino acids, and digestive enzymes activities of laying hens during the post peak period. J Appl Poult Res. 2014; 23: 605–613.

36. Azzam MMM, Yuan C, Liu GH, Zou XT. Effect of excess dietary threonine on laying performance, egg quality, serum free amino acids, and digestive enzymes activities of laying hens during the post peak period. J Appl Poult Res. 2014; 23: 605–613.

37. Azzam MMM, Yuan C, Liu GH, Zou XT. Effect of excess dietary threonine on laying performance, egg quality, serum free amino acids, and digestive enzymes activities of laying hens during the post peak period. J Appl Poult Res. 2014; 23: 605–613.

38. Azzam MMM, Yuan C, Liu GH, Zou XT. Effect of excess dietary threonine on laying performance, egg quality, serum free amino acids, and digestive enzymes activities of laying hens during the post peak period. J Appl Poult Res. 2014; 23: 605–613.

39. Azzam MMM, Yuan C, Liu GH, Zou XT. Effect of excess dietary threonine on laying performance, egg quality, serum free amino acids, and digestive enzymes activities of laying hens during the post peak period. J Appl Poult Res. 2014; 23: 605–613.
40. González-Pérez S. Sunflower proteins. In: Martínez-Force E, Dunford TN, Salas JJ, editors. Sunflower chemistry, production, production, and utilization. 2007. Rockville, MD: AOCS Press; pp: 331–393.

41. Banaszkiewicz T. Nutritional value of soybean meal In: El-Shemy H, editor. Soybean and nutrition. London: IntechOpen; 2010. https://www.intechopen.com/chapters/19972.

42. Pesti GM, Faust LO, Fuller HL, Dale NM, Benoff FH. Nutritive value of poultry by-product meal. 1. Metabolizable energy values as influenced by method of determination and level of substitution. Poult Sci. 1986; 65: 2258–2267. https://doi.org/10.3382/ps.0652258 PMID: 3575216

43. Amino Acid Lab®. Singapore. Evonik SEA Pte. Ltd. 2021. 3 International Business Park #07–18 Nordic European Centre

44. Steel RGD, Torrie JH, Dickey DA. Principles and procedures of statistics- biometrical approach. 3rd ed. New York, NY: Mc.Graw Hill Book Company Inc; 1997.

45. SAS version 9.1. https://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/statug_7313.pdf

46. Duncan DB. Multiple range and multiple F tests. Biometrics. 1955; 11: 1–41.