PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors

Beyrend, Guillaume; van der Gracht, Esmé; Yilmaz, Ayse; van Duikeren, Suzanne; Camps, Marcel; Hollt, Thomas; Vilanova, Anna; van Unen, Vincent; Koning, Frits; de Miranda, Noel F. C. C.

DOI
10.1186/s40425-019-0700-3

Publication date
2019

Document Version
Final published version

Published in
Journal for ImmunoTherapy of Cancer

Citation (APA)
Beyrend, G., van der Gracht, E., Yilmaz, A., van Duikeren, S., Camps, M., Hollt, T., Vilanova, A., van Unen, V., Koning, F., de Miranda, N. F. C. C., Arens, R., & Ossendorp, F. (2019). PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors. Journal for ImmunoTherapy of Cancer, 7(1), 1-14. [217]. https://doi.org/10.1186/s40425-019-0700-3

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.
PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors

Guillaume Beyrend, Esmé van der Gracht, Ayse Yilmaz, Suzanne van Duikeren, Marcel Camps, Thomas Höllt, Anna Vilanova, Vincent van Unen, Frits Koning, Noel F. C. de Miranda, Ramon Arens, and Ferry Ossendorp

Abstract

Background: The clinical benefit of immunotherapeutic approaches against cancer has been well established although complete responses are only observed in a minority of patients. Combination immunotherapy offers an attractive avenue to develop more effective cancer therapies by improving the efficacy and duration of the tumor-specific T-cell response. Here, we aimed at deciphering the mechanisms governing the response to PD-1/PD-L1 checkpoint blockade to support the rational design of combination immunotherapy.

Methods: Mice bearing subcutaneous MC-38 tumors were treated with blocking PD-L1 antibodies. To establish high-dimensional immune signatures of immunotherapy-specific responses, the tumor microenvironment was analyzed by CyTOF mass cytometry using 38 cellular markers. Findings were further examined and validated by flow cytometry and by functional in vivo experiments. Immune profiling was extended to the tumor microenvironment of colorectal cancer patients.

Results: PD-L1 blockade induced selectively the expansion of tumor-infiltrating CD4+ and CD8+ T-cell subsets, co-expressing both activating (ICOS) and inhibitory (LAG-3, PD-1) molecules. By therapeutically co-targeting these molecules on the TAI cell subsets in vivo by agonistic and antagonist antibodies, we were able to enhance PD-L1 blockade therapy as evidenced by an increased number of TAI cells within the tumor micro-environment and improved tumor protection. Moreover, TAI cells were also found in the tumor-microenvironment of colorectal cancer patients.

Conclusions: This study shows the presence of T cell subsets in the tumor micro-environment expressing both activating and inhibitory receptors. These TAI cells can be targeted by combined immunotherapy leading to improved survival.

Keywords: Mass cytometry, Combinatorial immunotherapy, T cells
Cytofast used high-dimensional, single-cell mass cytometry and a
of adaptive resistance during such a therapy. Here we
going clinical response, as well as into the development
into the underlying immunological mechanisms of on-
relevant responding cell types to therapy reveals insight
more effective cancer therapies. Identification of the
additional targeting of those biomarkers would lead to
portunical design of complementary therapies in which the
peutic response and resistance could support the ra-
mechanistic studies of PD-1/PD-L1 blockade in vivo may
lead to rational design of improved co-treatment protocols.

Identification of biomarkers related to immunothera-
peutic response and resistance could support the ra-
tional design of complementary therapies in which the
additional targeting of those biomarkers would lead to
more effective cancer therapies. Identification of the
relevant responding cell types to therapy reveals insight
into the underlying immunological mechanisms of on-
going clinical response, as well as into the development
of adaptive resistance during such a therapy. Here we
used high-dimensional, single-cell mass cytometry and a
customized bioinformatics pipeline Cytofast [14] to gen-
erate an in-depth analysis of the tumor-infiltrating immu-
une cells upon PD-L1-based treatment. Our aim was
to identify responsiveness-associated targets to improve
immunotherapy. We discovered unique CD4\(^+\) and CD8\(^+\)
T cell subsets that increased after anti-PD-L1 immuno-
therapy and were characterized by expression of both
activating and inhibitory receptors, hence we defined
these cells as T\(_{AI}\) cells. By therapeutic targeting of the
activating and inhibitory receptors on the T\(_{AI}\) cells in
vivo, significant improvement of immunotherapy was
shown, correlating with an increase of the CD8\(^+\) T\(_{AI}\)
cells in the tumor micro-environment (TME). T\(_{AI}\) cells
were also present within tumor-infiltrated immune cells
from mismatch repair-deficient (MMRd) colorectal can-
cer patients. Together, our data show the importance of
the T\(_{AI}\) cells and their possible targetability to induce
tumor regression in colorectal cancer.

Methods

Mice

C57BL/6J mice were purchased from The Jackson
Laboratory. All animal experiments were approved by the
Animal Experiments Committee of LUMC and were
executed according to the animal experimentation
guidelines of the LUMC in compliance with the guide-
lines of Dutch and European committees.

Staining and acquisition for CyTOF mass cytometry

Metal conjugated antibodies were purchased from Flui-
digm or conjugated to unlabeled antibodies in-house. All
non-platinum conjugations were performed using X8
polymer as per manufacturer’s protocol (Fluidigm) and
were performed at 100 \(\mu\)g scale. Conjugation with 208
Bismuth was performed using a protocol adapted from
M. Spitzer [15]. All in-house conjugated antibodies were
diluted to 0.5 mg/ml in antibody stabilizer supplemented
with 0.05% sodium azide (Candor Biosciences). Appropriate
antibody dilution was determined by serial dilution
staining to minimize background and optimize
detection of positively expressing populations.

CyTOF data were acquired and analyzed on-the-fly,
using dual-count mode and noise-reduction on. All other
settings were either default settings or optimized with tun-
sing solution, as instructed by Fluidigm Sciences. After data
acquisition, the mass beam signal was used to normalize
the short-term signal fluctuations with the reference EQ
passport P13H2302 during the course of each experiment
and the bead events were removed [16].

CyTOF mass cytometry data analysis

To isolate immune cells from the tumor, solid tumors
were excised after a flushing step to remove the blood
from TME. Exclusion criteria were ulceration of tumors,
incomplete or unsuccessful flushing (determined by an
unexpected high numbers of B cells in the TME). Single-
cell suspensions were then prepared by mechanical
and enzymatic (collagenase D and DNase, Sigma-Ald-
rich) dissociation, followed by density gradient centrifu-
gation on an 100% / 70% / 40% / 30% Percoll (GE
Healthcare) gradient.

After staining cells according to van Unen et al. [17],
we analyzed live immune cells from the TME. We set
our gating strategy to live single cells, positive for CD45,
and excluded reference beads. For further analysis, live
CD45\(^+\) gated files were sample-tagged, their marker ex-
pression arcsinh5 transformed and subjected to dimen-
sionality reduction analyzes in Cytosplore [18]. All
markers were taken in account to process the clustering
analysis except PD-L1, which is a marker used only as a
quality control to check the efficacy of PD-L1 blocking
antibodies. The PD-L1 blocking antibody we used (clone
MIH5, rat-anti-mouse, IgG2a subtype) binds to FcyRIIb and
FcyRIII but not to FcyRI and FcyRIV, and is not able
to mediate specific killing or depletion [19]. By staining
with the same antibody clone, PD-L1 downmodulation
was determined to show the effectiveness of the pro-
vided therapeutic antibodies to block PD-L1 binding.

Pooled samples from control and PD-L1 treated groups
were analyzed by hierarchical stochastic neighbourhood
embedding (HSNE) [20] based on approximated t-distributed
stochastic neighbourhood embedding (A-tSNE) [21]. The
default perplexity and iterations of the HSNE analysis were
30 and 1,000, respectively. If some clusters showed a similar
phenotype, they were manually merged in Cytosplore. For
further data exploration, CD4⁺ T cell, CD8⁺ T cell, CD19⁺ B cell, CD11b⁺ myeloid cell lineages were analyzed separately. Downstream analysis was performed by Cytofast [14] and Cytofworkflow [22].

Diffusion map
Diffusion map was generated with R using the cytokit package [23] by displaying only CD3⁺ metaclusters identified by PhenoGraph [24] as a confirmation method of the HSNE clustering.

Reference standard comparison
Reference standard samples were compared with each other by calculating the similarity between their respective t-SNE maps. We used the Jensen-Shannon (JS) divergence to quantify the similarity between t-SNE maps. After converting t-SNE maps into two-dimensional probability density functions, the similarity between two maps is quantified as the JS divergence between their corresponding probability density functions. We used the base 2 logarithm in the JS divergence computation, which results in a continuous range of JS divergence values between 0 (for identical distributions) and 1 (for fully disjoint distributions), the algorithm being provided by E.D. Amir [25]. The average overlap frequency (AOF) is determined as described by E.D. Amir [26].

Flow cytometry

Mouse
Single-cell suspensions were prepared from TME [27] obtained from untreated or PD-L1 treated mice by an incubation of 15 min with collagenase and DNase IV (Roche) and by mincing the tumor tissue through a 70-μm cell strainer (BD Bioscience). Live cells were washed with RPMI-1640 supplemented with 8% FBS and P/S and once with FACS buffer. Subsequently, samples were incubated with Fc block mouse (2%) and mouse serum (5%) for 10 min, then stained with antibodies (Additional file 1: Table S1A) at 4 °C for 10 min. Samples were processed for surface staining (Additional file 1: Table S1B) and analyzed using a similar protocol as described for processing, staining and analyzing murine tumor samples. All specimens were anonymized and handled according to the ethical guidelines described in the Code for Proper Secondary Use of Human Tissue in the Netherlands of the Dutch Federation of Medical Scientific Societies.

In vivo murine tumor experiments
MC-38 colon adenocarcinoma cells were injected at a dose of 0.3 × 10⁶ cells subcutaneously (s.c.) in the right flank. Antibodies blocking LAG-3 and PD-L1 were injected intraperitoneally and agonistic anti-ICOS antibodies were given subcutaneously, next to the tumor. Tumor diameter was measured every 2 to 3 days with a calliper and reported as volume using the formula \((w \times h \times l) \times (\pi/6)\).

Statistical analyses
Statistical analyses were performed using R software or Prism (GraphPad). Unpaired two-tailed t-tests were used for subset abundance comparisons.

Results
Efficacy of PD-L1 blockade parallels with an increase in tumor infiltrating CD8⁺ T cells over time
To examine the effect of PD-L1 blocking therapy, we used the colorectal adenocarcinoma mouse model MC-38. Mice were inoculated with MC-38 tumor cells, and when tumors were established after 10 days (tumor volume of 30-40 mm³), mice were treated with PD-L1 blockade therapy or left untreated (control group) (Fig. 1A). To identify biomarkers that respond to immunotherapy with PD-L1 blockade, we set up a CyTOF mass cytometry panel for in-depth phenotypic characterization of tumor-infiltrated lymphocytes (TILs).
in preclinical tumor models, which allows kinetic dissec-
tion of anti-tumor immune responses. The panel con-
sisted of 38 cell surface markers and was designed to
identify the major lymphoid and myeloid subsets and to
ascertain the differentiation and activation status of
these subsets (Additional file 1: Figure S1). We isolated
immune cells from the tumor 8 days after start of im-
munotherapy and stained the single cell suspensions
followed by mass cytometry acquisition of 3.5 million
cells in total. In parallel, tumor growth was measured to
assess the therapeutic benefit of the PD-L1 blockade
treatment. Treated animals displayed a significant delay
in tumor progression or even had complete tumor eradi-
cation (Fig. 1B). To determine the effectiveness of the
provided therapeutic antibodies to block PD-L1 binding,
the cell surface expression of PD-L1 in the TME was
assessed by staining with the same antibody clone (i.e.
MIH5). Indeed, the PD-L1 expression on CD45+ tumor-in-
filtrated immune cells from the treated group was signifi-
cantly decreased compared to control animals (Fig. 1C).

To monitor the robustness of the measurement, we in-
cluded reference standard acquisitions and used the Jensen-
Shannon (JS) divergence calculation to determine similarity
between samples. The results yielded consistency between
the measurements with low JS distance, meaning high simi-
larities between samples (Additional file 1: Figure S2A). We
also tested the quality of our staining by using the Average
Overlap Frequency (AOF), a metric to evaluate and quantify

Fig. 1 PD-L1-blocking treatment induces delay of MC-38 tumor growth. (a) Schematic of CyTOF mass cytometry experiment investigating the
effect of PD-L1 antibody treatment on the TME. Mice were challenged with MC-38 tumor cells and subsequently tumor-bearing mice were
treated either with PBS (n = 16 mice) or PD-L1 blocking antibodies (n = 16 mice). Tumors were isolated and analyzed by mass cytometry (CyTOF).
Cluster identification was performed with HSNE and downstream analysis was done with Cytofast. (b) Tumor growth curves of individual mice in
the control group (mock injected with PBS, blue lines) and PD-L1-treated group (red lines). (c) Frequency of CD45+ PD-L1+ cells in the TME 8
days after therapy starts displayed on a per-mouse basis with mean ± SEM. (d) Overview of the immune cell composition in the TME shown in
percentage of cells on a per-mouse basis with mean ± SEM (n = 16 mice per group)
the robustness of staining and clustering quality in high-dimensional data [26]. Importantly, all the markers involved in the cluster identification of CD3+ cells (e.g. CD4, CD8, PD-1, ICOS, etc.) showed an AOF < 0.3, which indicates a valid staining of the samples and a clear separation between negative and positive signals (Additional file 1: Figure S2B). Together, these data showed a stable and reliable sample acquisition with limited inter-sample variation.

An overview of the main tumor-infiltrating immune cells identified by mass cytometry showed a higher proportion of CD8+ T cells in the PD-L1 treated group (24.1%) compared to the control group (16.1%) 8 days after first injection (Fig. 1D). Simultaneously, the frequency of the CD11b+ myeloid compartment decreased after PD-L1 blockade. Thus, PD-L1 blockade empowers the increase of CD8+ T cells and limits the infiltration of myeloid cells in the TME.

PD-L1 treatment increases selectively CD8+ T-cell subsets expressing both activating and inhibitory receptors

Because treatment with anti-PD-L1 has major effects on the expansion of the CD8+ T-cell compartment, we analyzed in detail the CD8+ TIL subset at this timepoint and identified 48 different CD8+ T-cell subsets (Fig. 2A). t-SNE clustering allowed distinction between naïve (e.g. cluster C28 expressing CD62L, CD27), effector (e.g. cluster C13 and C14 expressing CD54, CD38, CD27, CD44) and central-memory subsets (e.g. cluster C34 expressing CD54, CD62L, CD44, CD27). Remarkably, one cluster (cluster C4) displayed both activating (ICOS, CD69, CD54) and inhibitory receptors (PD-1, LAG-3, NKG2A). To visualize the distribution of each identified cluster, we displayed the abundance of each subset per treatment group (Fig. 2B). The t-SNE map overlaid with the expression of specific markers showed that the cluster C4 subset could be defined by the inhibitory molecule LAG-3 and the co-stimulatory receptor ICOS. Essentially, co-expression of ICOS and LAG-3 was highly specific to the PD-L1 blockade treated group (Fig. 2C, D). Further characterization of this subset also demonstrated up-regulation of the ectonucleotidase CD39, the early activation marker CD69, the inhibitory NKG2A receptor, and the activation/exhaustion cell surface marker PD-1. The CD8+ T-cell subset expressing both the activating and inhibitory molecules, referred hereafter as T_AI cells, represented approximately 17% of all the CD8+ T cells across individual mice in the PD-L1 blockade group compared to 7% in the control group (Fig. 2E). Next, we validated the presence of CD8+ T_AI cells by flow cytometry. We isolated TILs from the TME and stained for the markers ICOS, LAG-3, CD69, CD39 and PD-1. The CD8+ T_AI subset (CD8+, LAG-3+, CD39+, PD-1+, ICOS+) population could indeed be identified, and was more abundant following PD-L1 blockade therapy (mean = 22%, sd = 16%, n = 6) than in the untreated group (mean = 9%, sd = 8%, n = 6; p-value = 0.03 by Student’s t-test). In addition, we confirmed our findings in the MCA205 sarcoma model. We identified the CD8+ T_AI cells by flow cytometry and observed that PD-L1 treatment increased this subset as compared to the control untreated group (Additional file 1: Figure S3A).

Identification of T_AI cell subsets in the tumor-infiltrated CD4+ T-cell compartment

We next analyzed whether PD-L1 blockade therapy-specific subsets were also apparent in the CD4+ T-cell compartment. The t-SNE algorithm identified 45 CD4+ T-cell subsets revealing the heterogeneous profile of the CD4+ T cells (Fig. 3A, B). Notably, as for the CD8+ T cells, one subset was identified that correlated with PD-L1 treatment (cluster C12) and displayed the activating molecule ICOS and the inhibitory molecule LAG-3. In addition, these CD4+ T_AI cells expressed CD27, CD39, CD43, CD44, CD54, KLRG1 and PD-1. The t-SNE map overlaid with the expression of specific markers showed that these subsets could also be defined by LAG-3, ICOS and CD39 and the co-expression of those markers was highly specific to the PD-L1 treated group (Fig. 3C, D). The T_AI subset of CD4+ T cells was also significantly more abundant, representing about 17% of the total CD4+ T-cell population within the tumor infiltrated immune cells of the treated group compared to 8% in the control group (Fig. 3E). Also, in the MCA205 tumor model, the CD4+ T_AI cells were identified and were increased by PD-L1 treatment (Additional file 1: Figure S3B).

Differentiation relationships of the identified PD-L1 treatment-associated T-cell subsets

To corroborate the results obtained from the previous t-SNE analysis regarding the PD-L1 treatment-associated T-cell subsets, we used the PhenoGraph algorithm to identify cell clusters and their differentiation status [24]. Similar T-cell metaclusters as those depicted by t-SNE earlier were indeed identified (Fig. 4A). The CD4 and CD8 T-cell lineages could be distinguished into a resting phenotype (called CD44int), an activated intermediate phenotype without inhibitory marker expression (called CD44int), and the T_AI cells expressing both inhibitory and activation molecules (called T_AI). To investigate the relationship between those metaclusters identified by PhenoGraph, we used the diffusion map algorithm [28].

The two represented components defined gradual trends of variation (Fig. 4A) correlated with signatures for lineage and activation. Both CD4+ and CD8+ T cells could be distinguished on the diffusion map, showing the independent differentiation lineages of CD4+ and CD8+ T cells. The T_AI cells (CD39+, PD-1+, LAG-3+, ICOS+), more frequent in the PD-L1 treated group (Fig. 4B), could be
Fig. 2 (See legend on next page.)
The expansion of the CD4+ TAI cells occurred already early after treatment, we analyzed the markers studied is represented by the evolution of the markers CD62L and CD44 (Fig. 4D). While PD-1 expression was more prominent on CD8+ TAI cells, ICOS was more abundantly expressed on CD4+ TAI cells (Fig. 4E). The inhibitory and activating markers NKG2A, CD38 and CD43 were also found to be upregulated on the CD8+ TAI cell subset (data not shown).

Early induction of CD4+ TAI and CD8+ TAI cells upon PD-L1 blocking

PD-L1 blocking treatment enhanced CD4+ and CD8+ TAI cell subsets in the TME 8 days post therapy. To determine if the expansion of these compartments occurred already early after treatment, we analyzed the TME at day 3 post-treatment (i.e. 13 days after tumor inoculation). The expansion of the CD4+ TAI cells started at an earlier stage, 3 days post-therapy, and continued over time. The presence of the CD8+ TAI cells could also be observed 3 days after the start of the treatment, but these cells significantly increased over time (Fig. 5A). Essentially, the vast majority of the CD39+ PD1+ CD8+ T cells that are present in the TME produce copious amounts of granzyme B, revealing their cytotoxic potential (Fig. 5B).

Rational design of combinatorial immunotherapy targeting activating and inhibitory receptors

The data above indicate that the activity of anti-PD-L1 treatment could be mediated via the expansion of CD4+ and CD8+ TAI cells that express activating receptors and inhibitory receptors. We assessed if we could further enhance the functionality of the TAI cells by combining the PD-L1 blockade treatment with antibodies targeting inhibitory and stimulatory molecules. For the proof-of-principle, we performed co-treatment studies with blocking antibodies to the inhibitory receptor LAG-3 and with agonistic antibodies to ICOS during PD-L1 blockade (Fig. 6A).

PD-L1 blockade therapy in combination with LAG-3 blockade resulted in enhanced survival and tumor growth delay. Co-treatment with agonistic ICOS antibody improved PD-L1 blockade therapy even further (Fig. 6B-C). Importantly, significantly higher percentages of CD8+ TAI cells were observed in mice treated by the combined ICOS and PD-L1 targeted therapy compared to control or PD-L1 blockade treated mice. Expansion of CD4+ TAI cells upon single and combinatorial therapy was equivalent (Fig. 6D). Thus, combinatorial therapy targeting ICOS and PD-L1 expands CD8+ TAI cells and relates to improved survival of the treated mice.

Identification of TAI cells in human colorectal cancer

To extrapolate our findings in preclinical models to clinical settings, we questioned whether the TAI cells were present within tumor-infiltrated immune cell populations in human tumors. We investigated the phenotype of the TILs in colorectal tumors of five patients, who have not undergone any immunotherapy. To reflect the immunogenicity of the MC-38 model, we selected MMRd colorectal cancer patients [29]. We designed our flow cytometry panel to characterize putative TAI subsets within the tumor infiltrated CD8+ and CD4+ T cells. Hence, we included the activating receptors ICOS and CD69, also the inhibitory receptors like LAG-3 and
Fig. 3 (See legend on next page.)
CD39. We depicted the CD8+ T cells phenotypic diversity by gating on CD45+ CD8+ CD4+ cells and showed that a subset (cluster 8) with a similar phenotype (CD69+ ICOS+ and LAG-3+) as identified in mice tumors could be found in human tumors (Fig. 7A). The CD4+ T cell pool in human tumors contained a substantial fraction of cells with a CD69+ PD1+ phenotype, and within this population a CD39+ ICOS+ subset could be identified (Fig. 7B). Together, these results established that in tumors of mice and humans, CD4+ and CD8+ TAI cell subsets are present.

Discussion

Variance of clinical outcomes upon checkpoint blocking immunotherapy like PD-L1 antibody treatment reflects the diversity of the anti-tumor immune response. In the current work, we identified the expansion of CD4+ and CD8+ T-cell subsets that strikingly co-expressed both inhibitory markers, like PD-1 and LAG-3, and activating markers like ICOS. These subsets, named TAI cells, expanded over time, starting 3 days after therapy and were still visible 8 days after the start of the therapy. Since the PD-L1 blocking antibody we used does not induce antibody-dependent cell-mediated cytotoxicity [19], the expansion of the TAI cells is most likely caused by blocking the PD-1 signaling pathways rather than e.g. depleting PD-L1+ cells or reactions to the antibody itself.

The TAI cells appear to play a central role in mediating tumor rejection, despite the expression of inhibitory receptors. The variance seen in response to PD-L1 therapy could be explained by a variable expansion of TAI cells in the TME and needs to be further explored. Our unbiased high dimensional immunophenotyping of the TME provides a deeper insight on the immune changes triggered by immune checkpoint blockade. By identifying a precise expansion of specific subsets in the TME, this strategy enabled us to rationally design immunotherapeutic combination treatments. We were able to enhance the anti-tumor efficacy of PD-L1 blocking therapy by combining it with an agonist ICOS therapy or an antagonist LAG-3 therapy. The TAI cells identified in our murine models shared a similar phenotype with colorectal cancer patients and therefore a similar effect of the combination therapy could be expected. Hence, this detection of the TAI cells in human tumors could thus pave the path to clinically target these cells in colorectal cancer by e.g. combined PD-1/PD-L1 and ICOS targeted immunotherapy. We surmise that TIL analysis by mass cytometry might be a powerful tool for personal-guided combinatorial therapy for each individual patient.

Our mass cytometry panel only screened for certain immunomodulatory molecules of the CD28 superfamily. Upregulation of other molecules, as has been reported for CTLA-4 [30] or BTLA, might have occurred but were not analyzed due to the limitation of the number of markers in our designed mass cytometry panel. On the other hand, we have included other markers like LAG-3, CD39, CD38, NKG2A, CD43, CD54, ICOS, KLRG1, which have never been analyzed at once in mass cytometry on ex vivo TILs. A large percentage of the TAI cells may be tumor-reactive and have encountered tumor-specific antigenic peptides (e.g. neo-antigens). The granzyme B expression within the TAI cells underlines this and is consistent with previous work showing that CD39 expression is a marker for cancer-related CD8+ T cells in the TME [31]. Consistently, CD8+ T cells expressing PD-1 have also been shown to be more reactive against tumors [32].

Our study is in line with previous studies on other tumor models like the T3 methylcholanthrene-induced sarcomas showing that inhibitory markers like PD-1 and TIM-3 and activating receptors like ICOS are co-expressed on tumor-specific T cells [33]. In addition, it was found that the expansion of CD8+ T cells expressing PD-1 improves the efficacy of adoptive T-cell therapy [34] and T cells co-expressing CD39 and PD-1 or LAG-3 and PD-1 were found to expand after anti-PD-1 therapy [7, 35].

Remarkably, in a viral setting, CD8+ T cells that provide the proliferative burst after PD-1 therapy are expressing ICOS [36], suggesting that the TAI cell expansion in the TME relies on the co-expression of ICOS and PD-1 markers. PD-1 and ICOS are also co-expressed on T cells in human bladder tumors [37]. Our results can also explain the positive correlation between higher ICOS expression and a better overall survival in colorectal cancer patients [38]. Together, this is strengthening the relevance of targeting the PD-1+
Fig. 4 Diffusion maps of the identified CD4+ and CD8+ subsets in the control and treated group. (a) Two-dimensional diffusion map of the CD4+ and CD8+ T cells present in the tumor at day 8 after the first PD-L1 treatment. Three different CD4+ and CD8+ T cell metaclusters have been identified by PhenoGraph. Continuity of the pattern reveals relationship between the different represented metaclusters (n = 5 mice per group). (b) Diffusion map of the CD4+ and CD8+ T cell displayed by group origin (PBS in blue and PD-L1 in red). (c) Diffusion map of the CD4+ and CD8+ T cell displayed by marker expression ICOS, LAG-3, CD39, PD-1 and CD69. (d) Expression levels of CD44 and CD62L on the metaclustered CD4+ and CD8+ T cell populations. (e) Expression levels of ICOS, LAG-3, CD39, PD-1 and CD69 on the metaclustered CD4+ and CD8+ T cell populations.
ICOS+ TAI cells by the above-mentioned dual therapy targeting PD-L1 and ICOS. Interestingly, ICOS appears to be relatively higher expressed on CD4+ TAI cells than on CD8+ TAI cells, which we aim to further explore. The TAI cells expanding after PD-L1 blocking therapy also co-expressed LAG-3, which might explain the better efficiency of the combination of targeting PD-L1 and LAG-3. These findings are coherent with what has been previously reported in other studies [39, 40].

The TAI cells are intratumorally present at an early stage, irrespective of the treatment and respond to immunotherapy as shown by an increase in the TME across time. This

ICOS+ TAI cells by the above-mentioned dual therapy targeting PD-L1 and ICOS. Interestingly, ICOS appears to be relatively higher expressed on CD4+ TAI cells than on CD8+ TAI cells, which we aim to further explore. The TAI cells expanding after PD-L1 blocking therapy also co-expressed LAG-3, which might explain the better efficiency of the combination of targeting PD-L1 and LAG-3. These findings are coherent with what has been previously reported in other studies [39, 40].

The TAI cells are intratumorally present at an early stage, irrespective of the treatment and respond to immunotherapy as shown by an increase in the TME across time. This

ICOS+ TAI cells by the above-mentioned dual therapy targeting PD-L1 and ICOS. Interestingly, ICOS appears to be relatively higher expressed on CD4+ TAI cells than on CD8+ TAI cells, which we aim to further explore. The TAI cells expanding after PD-L1 blocking therapy also co-expressed LAG-3, which might explain the better efficiency of the combination of targeting PD-L1 and LAG-3. These findings are coherent with what has been previously reported in other studies [39, 40].

The TAI cells are intratumorally present at an early stage, irrespective of the treatment and respond to immunotherapy as shown by an increase in the TME across time. This

ICOS+ TAI cells by the above-mentioned dual therapy targeting PD-L1 and ICOS. Interestingly, ICOS appears to be relatively higher expressed on CD4+ TAI cells than on CD8+ TAI cells, which we aim to further explore. The TAI cells expanding after PD-L1 blocking therapy also co-expressed LAG-3, which might explain the better efficiency of the combination of targeting PD-L1 and LAG-3. These findings are coherent with what has been previously reported in other studies [39, 40].

The TAI cells are intratumorally present at an early stage, irrespective of the treatment and respond to immunotherapy as shown by an increase in the TME across time. This
suggests that the TAI cells are an identifiable unique subset among T cells, existing before immunotherapy, which can be further expanded by treatment. Tracking these cells in the TME warrants further investigation and would inform about their origin and the plasticity of their phenotype.

The expansion kinetics of the CD4+ TAI cells compared to the CD8+ TAI cells after PD-L1 treatment are dissimilar. In both relative abundance and absolute numbers CD4+ TAI cells are already strongly expanded at day 3 after treatment in contrast to CD8+ TAI cells, while at day 8 the CD8+ TAI cells are more expanded. This is in line with a restored early helper function of the CD4 compartment to stimulate expansion of effector CD8+ T cells. Immunotherapy in the MC-38 model is fully dependent on CD8+ T cells [41]. Indeed, after 8 days of PD-L1 treatment, regression of tumor size becomes apparent. We could confirm that similar tumor infiltrating T-cell subsets exist in colorectal cancer patients. CD4+ TAI subsets co-expressing inhibitory PD-1 and activating ICOS as well as CD39 and CD69 were detectable in freshly resected colon tumor from MMRd colorectal cancer patients known to express neo-epitopes due to accumulated point-mutations. It would be interesting to study these TAI subpopulations in patients upon treatment with checkpoint therapy or other immunotherapies.

![Fig. 7](image_url) Identification of the TAI cell subset in humans. (a) Heatmap of CD8+ T-cell phenotypes (pre-gated on CD45+ CD3+ CD4− cells) in tumors of 5 human colorectal cancer (MMRd) patients. Dendrogram above shows the hierarchical similarity between the identified clusters. Right panel shows the frequency of CD8+ LAG3+ ICOS+ cells (cluster 8) among total CD8+ T cells across the 5 patients. (b) Gating strategy to identify the CD4+ CD69+ PD1+ CD39+ ICOS+ population in human colorectal cancer. The abundance proportional to circle area is shown.
The relevance of targeting simultaneously inhibitory and activating molecules is already transposed in humans. For example, three clinical trials ongoing (NCT02904226, NCT02723955 and NCT02520791) are meant to study the effect of anti-ICOS as monotherapy or in combination with anti-PD-1. Our preclinical study suggests the synergistic effect of ICOS together with a blocking PD-L1 therapy. A systematic immunophenotyping of the TME should enable a better prediction of response to immunotherapy and a progress in development of rational immunotherapeutic strategies.

Conclusion
This study described the expansion of a treatment-related cell subset, named T_{AI} cells, which co-express activating and inhibitory molecules. In preclinical mouse models, both CD4^+ and CD8^+ T_{AI} cells were higher in abundance in the TME upon PD-L1 therapy. Co-targeting the inhibitory receptor LAG-3 or the activating receptor ICOS on the T_{AI} cells further enhanced this subset and resulted in improved tumor immunity. T_{AI} cells were also present in human colorectal tumors. We surmise that targeting the inhibitory and activating receptors on these T_{AI} cells could lead to enhanced tumor immunity.

Additional file

Additional file 1: Figure S1. Mass cytometry panel and marker expression. Figure S2. Quality control assessment of the data generated by mass cytometry. Figure S3. Identification of CD4^+ and CD8^+ T_{AI} cells in the MCA205 sarcoma model. Figure S4. Synergy of combination immunotherapy. Table S1. FACS panels used in the study. (DOCX 2099 kb)

Abbreviations
AOF: Average Overlap Frequency; A-ESNE: Approximated t-distributed Stochastic Neighbor Embedding; HSNE: Hierarchical Stochastic Neighbor Embedding; MMRe: Mismatch Repair-deficient; TILs: Tumor Infiltrated Lymphocytes; TME: Tumor Micro-Environment; t-SNE: t-distributed Stochastic Neighbor Embedding

Acknowledgements
We would like to thank Sandra Laban for providing technical support, Tamim Abdelal for his assistance in computational analysis, Camilla Labire, Elham Beyranvand Nejad and Anke Redeker for their technical support in performing animal experiments and CyTOF processing, Sjoerd van der Burg for his critical review of the manuscript, Ferenc Scheeren for the characterisation of the PD-L1 antibodies (clone MH5), and the LUMC flow cytometry facility for their support during CyTOF acquisition.

Authors’ contributions
GB conceived the study, performed the experiments, analyzed the data and wrote the manuscript. AY, EvdG, SoD and MC helped with tumor material processing and animal experiments. TH, VvU, FK, and AV developed Cytosplre and HSNE applications. NFM provided human tumor material. RA and FO designed the experiments, initiated and supervised the project and wrote the manuscript. All authors discussed the results and commented the manuscript. All authors read and approved the final manuscript.

References
1. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(24):2455–65. https://doi.org/10.1056/NEJMoa120694.
2. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62. https://doi.org/10.1038/nature13904.
3. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. https://doi.org/10.1056/NEJMoa120690.
4. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87. https://doi.org/10.1038/nrc.2016.36.
5. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa S, Rains SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9. https://doi.org/10.1126/science.aaf1490.
6. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114(8):1537–44. https://doi.org/10.1182/blood-2008-12-195792.
7. Huang AC, Postow MA, Orlofski RJ, Mick R, Bengsch B, Manne S, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545(7652):60–5. https://doi.org/10.1038/nature22079.
8. Canale FP, Ramello MC, Nunez N, Furlan CLA, Bossio SN, Serran MG, et al. CD39 expression defines cell exhaustion in tumor-infiltrating CD8(+) T cells. Cancer Res. 2018;78(1):115–28. https://doi.org/10.1158/0008-5472.CAN-16-2684.
9. Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:1792. https://doi.org/10.1038/cdddis.2015.162.

10. Buchan SL, Fallatah M, Thirdborough SM, Taraban Vy, Rogel A, Thomas LJ, et al. PD-1 blockade and CD27 stimulation activate distinct transcriptional programs that synergize for CD8+ T-cell driven anti-tumor immunity. Clin Cancer Res. 2018. https://doi.org/10.1158/1078-0432.CCR-17-3057.

11. Lichtenegger FS, Rotte M, Schnorr FJ, Deisser K, Krupka C, Augerberger C, et al. Targeting LAG-3 and PD-1 to enhance T cell activation by antigen-presenting cells. Front Immunol. 2018;9:385. https://doi.org/10.3389/fimmu.2018.00385.

12. Sakutsch K, Apetoh L, Sullivan JM, Blakar BR, Kuchroo VA, and Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(12):2187–94. https://doi.org/10.1084/jem.20100643.

13. Messenheimer DJ, Jensen SM, Aferlits ME, Wegmann KF, Feng Z, Friedman DJ, et al. Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin Cancer Res. 2017. https://doi.org/10.1158/1078-0432.CCR-16-2677.

14. Beyerd G, Stamm K, Holtt T, Ossendorp F, Arnes R. Cytosoft: a workflow for visual and quantitative analysis of flow and mass cytometry data to discover immune signatures and correlations. Comput Struct Biotechnol J. 2018;16:435–42. https://doi.org/10.1016/csbj.2018.10.004.

15. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, et al. Systemic immunity is required for effective Cancer immunotherapy. Cell. 2017;168(3):487–502 e15. https://doi.org/10.1016/j.cell.2016.12.022.

16. Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fanti W, et al. Normalization of mass cytometry data with bead standards. Cytometry A. 2013;83(5):483–94. https://doi.org/10.1002/cyto.a.22271.

17. van Unen V, Li N, Molendijk I, Temurhan M, Holtt T, van der Meulen-de Jong AE, et al. Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity. 2016;44(5):1227–39. https://doi.org/10.1016/j.immuni.2016.04.014.

18. Holtt T, Pezzotti N, van Unen V, Koning F, Eismann E, Lelièvre B, et al. Cytosplere interactive immune cell phenotyping for large single-cell datasets. Comput Graph Forum. 2016;35(3):187–78. https://doi.org/10.1111/cgf.12893.

19. van der Schout JMS, Fennemann FL, Wegmann KF, Feng Z, Friedman DJ, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(12):2187–94. https://doi.org/10.1084/jem.20100643.

20. Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fanti W, et al. Normalization of mass cytometry data with bead standards. Cytometry A. 2013;83(5):483–94. https://doi.org/10.1002/cyto.a.22271.

21. van Unen V, Li N, Molendijk I, Temurhan M, Holtt T, van der Meulen-de Jong AE, et al. Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity. 2016;44(5):1227–39. https://doi.org/10.1016/j.immuni.2016.04.014.

22. Holtt T, Pezzotti N, van Unen V, Koning F, Eismann E, Lelièvre B, et al. Cytosplere interactive immune cell phenotyping for large single-cell datasets. Comput Graph Forum. 2016;35(3):187–78. https://doi.org/10.1111/cgf.12893.

23. van der Schout JMS, Fennemann FL, Wegmann KF, Feng Z, Friedman DJ, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(12):2187–94. https://doi.org/10.1084/jem.20100643.

24. Finn R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fanti W, et al. Normalization of mass cytometry data with bead standards. Cytometry A. 2013;83(5):483–94. https://doi.org/10.1002/cyto.a.22271.

25. van Unen V, Li N, Molendijk I, Temurhan M, Holtt T, van der Meulen-de Jong AE, et al. Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity. 2016;44(5):1227–39. https://doi.org/10.1016/j.immuni.2016.04.014.

26. Amir ED, Guo XV, Mayovska O, Rahman A. Average overlap frequency: a simple metric to evaluate staining quality and community identification in high dimensional mass cytometry experiments. J Immunol Methods. 2017. https://doi.org/10.1016/j.jim.2017.08.011.