Global $SU(3)_C \times SU(2)_L \times U(1)_Y$ linear sigma model $\nu_D^{SM_{tb\nu}}$: axial-vector Ward Takahashi identities, and decoupling of certain heavy BSM particles due to the Goldstone theorem

Bryan W. Lynn1,2,3 and Glenn D. Starkman1

1 ISO/CERCA/Department of Physics, Case Western Reserve University, Cleveland, OH 44106-7079
2 University College London, London WC1E 6BT, UK and
3 Department of Physics, University of Wisconsin, Madison, WI 53706-1394

This work is dedicated to the memory of Raymond Stora (1930-2015).

PACS numbers: 11.10.Gh

I. INTRODUCTION

Ward-Takahashi Identities (WTI) are relations among Green’s functions or amplitudes of field theories that result from the symmetries of the theory. They exist both in “unbroken” theories (in which the vacuum shares the symmetries of the Lagrangian) and in spontaneously broken theories (in which the vacuum does not share the symmetries of the Lagrangian). In this paper we are concerned specifically with the global $SU(2)_L \times U(1)_Y$ Schwinger model [9] Linear Sigma Model (LSM), the ungauged scalar sector of the Standard Model (SM), augmented by the third generation of SM fermions with their usual Yukawa couplings to the Higgs doublet (and so augmenting the symmetry with a global $SU(3)_C$ factor), as well as by a right-handed τ neutrino, with its allowed Yukawa couplings. For brevity, we call this global theory the $\nu_D^{SM_{tb\nu}}$; with G for global and D indicating that the neutrinos have only Dirac masses. With SM isospin and hypercharge quantum numbers for fermions, the 3rd-generation $\nu_D^{SM_{tb\nu}}$ has zero axial anomaly. We prove here that the CP-conserving $\nu_D^{SM_{tb\nu}}$ is governed by axial-vector WTI directly analogous with those proved by B.W. Lee [33] for the $SU(2)_L \times SU(2)_R$ Gell-Mann-Lévy [17] with Partially Conserved Axial-vector Currents (PCAC). One of those axial-vector WTIs is equivalent to the Goldstone Theorem in this global theory, proving that the Nambu-Goldstone bosons (NGB) from non-zero contributions.

1 In June 2011 [14] one of us (BWL) introduced these ideas. A December 2011 pedagogical companion paper [16] simplified the treatment of UVQDs in the context of the global Gell-Mann-Lévy model [17] with PCAC. In [18] we showed that, what we called the Goldstone theorem, but to be specific is really a WTI equivalent to the Goldstone Theorem in this global theory, protects the weak-scale global SSB $SO(2)$ Schwinger model [9] (i.e.
We also demonstrate that there exists a wide class of heavy matter $M_{\text{Heavy}}^{2} \gg m_{\text{Weak}}^{2}$ particles from which the low-energy effective $\nu_{D} \text{SM}_{lbrv}^{G}$ Lagrangian, fortified by the WTI, is protected. It may be coincidental that this class includes heavy Majorana masses for right-handed neutrinos, as envisioned in the see-saw models of light neutrinos. Another theory might well have been less effectively protective.

Here we prove properties of the spontaneously broken mode of a quantum field theory with global symmetries that are the rigid versions of the local symmetries of the Standard Model, in anticipation of extending our arguments to the one-3rd-generation standard electroweak model itself [24, 25]. We discover how the physics of the Goldstone Theorem in this global theory is more symmetric than the effective Lagrangian, because consistency conditions on the states constrain the physics. A particularly crucial role is played by a WTI among T-matrix elements, which is equivalent to the Goldstone Theorem in this global theory. In upcoming papers we extend these results, first to a $U(1)_{Y}$ gauge theory, the CP-conserving Abelian Higgs model (AHM) [24], and then to the CP-conserving gauged electroweak SM, with the 3rd generation of quarks, charged leptons, ν_{L}, ν_{R}, and Dirac-mass neutrinos, $\nu_{D} \text{SM}_{lbrv}$ [24, 25]. Along the way we discover that the important T-matrix WTI and the Goldstone Theorem contain independent information.

The structure of the remainder of this paper is as follows.

Section II concerns the correct (i.e. axial-vector-WTI-obedient) renormalization of the scalar-sector effective $\nu_{D} \text{SM}_{lbrv}^{G}$ Lagrangian in its Goldstone (i.e. spontaneously broken) mode. In this section we treat the $\nu_{D} \text{SM}_{lbrv}^{G}$, with its SM fermions, augmented by a right-handed neutrino, and consequently a Dirac neutrino mass, as a stand-alone flat-space quantum field theory, not embedded or integrated into any higher-scale “Beyond the SM” (BSM) physics.

Section III extends our results to $M_{\text{Heavy}}^{2} \gg m_{\text{BEH}}^{2}$ heavy $SU(3)_{\text{color}} \times SU(2)_{L} \times U(1)_{Y}$ matter representations, such as arise in certain BSM models:

Section IV draws a historical lesson.

Appendix A extends the proof of B. W. Lee (i.e. for the WTI of $SU(2)_{L} \times SU(2)_{R}$ Gel-Mann-Lévy with PCAC), to WTI for $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \nu_{D} \text{SM}_{lbrv}^{G}$, the mathematical basis on which the results of this paper rest.

II. AXIAL-VECTOR-WTI-OBEDIENT RENORMALIZATION OF THE GLOBAL $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \nu_{D} \text{SM}_{lbrv}$ EFFECTIVE LAGRANGIAN

The global $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \nu_{D} \text{SM}_{lbrv}$ Lagrangian of SM scalar and 3rd generation fermion fields $\mathbf{2}$, extended with a right-handed neutrino with Dirac mass $\mathbf{3}$ is

$$L_{\nu_{D} \text{SM}_{lbrv}^{G}}(\phi; l_{L}, T_{R}, \nu_{R}; \bar{q}_{L}^{c}, b_{R}^{c}, e_{R}^{c})$$

$$\mu_{\phi}^{2}, \lambda_{\phi}^{2}; \nu_{L}, \nu_{R}, \nu_{R}^{c}$$

(1)

$$\nu_{D} \text{SM}_{lbrv}^{G}$$ parameters include quadratic and quartic scalar couplings $\mu_{\phi}^{2}, \lambda_{\phi}^{2}$, 4 and real Yukawa couplings. This Lagrangian conserves CP.

We define a complex BEH doublet representation for the scalars

$$\phi = \frac{1}{\sqrt{2}} \left[\begin{array}{c} H + i \pi_{3} \\ -\pi_{3} + i \pi_{1} \end{array} \right].$$

(2)

(This can trivially be mapped to an O(4) quartet of real scalars, since $\phi^{\dagger} \phi = \frac{1}{2}(H^{2} + \pi^{2}).$ We use this manifestly renormalizable linear representation for the scalars in order to control relevant operators.

The Lagrangian (1) has 3 modes, which we characterize by the values of the renormalized BEH-VEV $\langle H \rangle$ and the renormalized (pseudo-)NGB mass-squared m_{π}^{2}. $\langle H \rangle = 0, m_{\pi}^{2} > 0$, known as the “Wigner mode"; $\langle H \rangle = m_{\pi}^{2} = 0$, the classically scale-invariant point; and $\langle H \rangle \neq 0, m_{\pi}^{2} = 0$, the spontaneously broken or “Goldstone mode.”

This paper distinguishes carefully between the global $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$ Lagrangian of (a single generation of) SM matter fields (i.e. (1)) and the $\nu_{D} \text{SM}_{lbrv}^{G}$ itself: i.e. the $\nu_{D} \text{SM}_{lbrv}^{G}$ is the “Goldstone mode" of (1).

$\mathbf{2}$ The $\nu_{D} \text{SM}$ matter fields are well known: a spin 0, known as the “Wigner mode"; and $\langle H \rangle \neq 0, m_{\pi}^{2} = 0$, the spontaneously broken or “Goldstone mode." This paper distinguishes carefully between the global $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$ Lagrangian of (a single generation of) SM matter fields (i.e. (1)) and the $\nu_{D} \text{SM}_{lbrv}^{G}$ itself: i.e. the $\nu_{D} \text{SM}_{lbrv}^{G}$ is the “Goldstone mode" of (1).

$\mathbf{3}$ Before the experimental observation of neutrino mixing, the SM was defined to include only left-handed neutrinos ν_{L}. The proof of our new axial-vector WTI’s requires CP-conservation and that neutrinos be massive. We therefore pay homage to experimentally observed neutrino mixing, and study in this paper the CP-conserving $\nu_{D} \text{SM}_{lbrv}^{G}$, here defined to include a right-handed neutrino ν_{R} and a Dirac mass $m_{\nu_{D} \text{Dirac}} = \nu_{R}(H)/\sqrt{2}$.

$\mathbf{4}$ We follow the language and power counting of the early literature [33], taking the quartic coupling constant to be λ_{ϕ}^{2} rather than the modern [34] λ. Renormalized $\lambda_{\phi}^{2} \geq 0$.

against 1-loop relevant operators $\sim M_{\text{Heavy}}^{2} \gg m_{\text{Weak}}^{2}$ which arise from virtual heavy particles) by way of 2 explicit 1-loop examples: a real singlet scalar S and a singlet Majorana neutrino ν_{R} with $M_{\nu}^{2}, M_{\nu}^{2} \gg |q_{s}|, \langle H \rangle^{2}.$
1) **Symmetric** \(\langle H \rangle = 0, m^2 ≠ 0 \) **Wigner mode:**
This is analogous with the Schwinger-model x-axis Figure 12-12 in the textbook by C. Itzykson & J-C. Zuber [34] and the similar Figure 1 in [10]. The analysis and renormalization of Wigner mode (e.g., its infra-red structure with massless fermions) is outside the scope of this paper. Thankfully, Nature is not in Wigner mode! Our universe is, instead, in the SSB Goldstone mode.

2) **Classically scale-invariant point** \(\langle H \rangle = 0, m^2 = 0 \) is analogous with the Schrödinger-model origin in Figure 12-12 in the textbook by C. Itzykson & J-C. Zuber [34] and Figure 1 in [10]. The analysis and renormalization of the classically scale-invariant point is outside the scope of this paper.

3) **Spontaneously broken** \(\langle H \rangle ≠ 0, m^2 = 0 \) **Goldstone mode:**
The \(\nu_D SM^G_{brv} \) is the Goldstone mode of \(L_{\nu_D SM^G} \) in [1]. The “physics” is the spectrum of physical particles – \(S = 0 \) bosons, and the 3rd generation of \(S = \frac{3}{2} \) Dirac-massive quarks and leptons – and their associated dynamics.

The one-generation **global** \(\nu_D SM^G_{brv} \) is invariant under global \(SU(3)_C × SU(2)_L × U(1)_Y \) transformations and conserves \(CP \). Global **axial-vector** WTI therefore govern the dynamics of the \(\eta \)-sector (i.e., BEH scalar \(H \) and 3 pseudoscalars \(\vec{\pi} \)) of the all-loop-orders renormalized \(\nu_D SM^G_{brv} \), effective Lagrangian\(^5\). There are two sets of such \(CP \)-conserving axial-vector WTI. One set governs relations among connected amputated 1-\((h, \vec{\pi})\)ScalarParticle-Irreducible (1-\(\phi\)-I) Greens functions. A separate set governs relations among connected amputated 1-\((h, \vec{\pi})\)ScalarParticle-Rducible (1-\(\phi\)-R) T-Matrix elements. As observed by Lee for the Gell-Mann-Lévy model \(^6\), one of those T-Matrix WTI is equivalent to the Goldstone theorem in this global theory.

We use “pion-pole dominance” arguments to derive these axial-vector WTI for the SSB \(\nu_D SM^G_{brv} \) in Appendix \(A \) and rely on the masslessness of the NGB in Goldstone mode. In this global theory (although not in the gauge theories that we consider in [23,25]) that masslessness translates precisely into the masslessness of the pseudoscalar boson \(m^2 = 0 \) when \(\langle H \rangle ≠ 0 \). \(L_{\nu_D SM^G_{brv}}, \langle H \rangle ≠ 0 \) is the subject of the remainder of this Section.

These global axial-vector WTI for the \(\nu_D SM^G_{brv} \) are a generalization of the classic work of B.W. Lee \(^8\), who constructed the all-loop-orders renormalized tower of quantum WTI for the \(SU(2)_L × SU(2)_R \) Gell-Mann Lévy (GML) model \([14] \) with Partially Conserved Axial-vector Currents (PCAC). We replace GML’s strongly-interacting \(\Sigma \)M with a weakly-interacting \(\Sigma \)M: \(σ → H, \vec{π} → \vec{π}, m_σ → mh, f_σ → \langle H \rangle \); we eliminate the explicit symmetry breaking of PCAC (\(γ = 0 \)), and reduce the symmetry from \(SU(2)_L × SU(2)_R \) to \(SU(2)_L × U(1)_Y \) when we add SM fermions and their attendant Yukawa couplings. We also introduce a quark \(SU(3)_C \), so that the resultant generation has SM couplings, which ensures that our WTI have zero axial anomaly.

A. **Axial-vector Ward-Takahashi identities in** \(\nu_D SM^G_{brv} \)

We focus on the global isospin axial-vector current \(\vec{J}^\nu_{L-R,\nu_D SM^G_{brv}} \). The global color \(SU(3)_C \), \(SU(2)_L+R \) and electromagnetic \(J_{\mu ED} \) currents are vector currents and are not spontaneously broken, so they do not yield further WTI information of interest to this paper. In Appendix \(A \) we describe how CP conservation enables us to consider amplitudes of the axial-vector current, and derive towers of WTI. In future work, we will consider the generalization to the case where CP is violated.

Because we are interested in global-symmetric relations among 1-scalar-particle-irreducible (1-\(\phi\)-I) connected amputated Green’s functions (GF) with external \(\phi \) scalars, it is convenient to use tools (e.g., canonical quantization) from Vintage Quantum Field Theory (VQFT), a name coined by Ergin Sezgin. Analysis is done in terms of the exact renormalized interacting \(\nu_D SM^G_{brv} \)

\(^5\) Our interest in axial-vector WTI may be surprising, given that while \(SU(2)_L \) is a symmetry of the Lagrangian, \(SU(2)_L \) is not. This interest is justified by our insistence on CP conservation, as described in detail in Appendix \(A \). In future work, we will consider the interesting consequences for our WTI, and for physics, of small amounts of CP violation.

\(^6\) Ref. [16] used B.W. Lee’s Gell-Mann-Lévy (GML) WTI to construct the all-loop-orders renormalized low-energy \((m^2, \langle H \rangle^2, m_{q, u, d} \ll \text{Euclidean UV cut-off } \Lambda^2)\), effective GML Lagrangian including UV quadratic divergences (UVQD). The \(SU(2)_L × SU(2)_R \) \((1 \frac{1}{2}, 1 \frac{1}{2})\) representation is \(\Phi \equiv \sqrt{2} \left[H + iσ · \vec{π} \right] \), while the \(SU(2)_L × U(1)_Y \) doublet in this paper is \(\phi \equiv \Phi \begin{bmatrix} 1 \\ 0 \end{bmatrix} \).

Including all \(\mathcal{O}(\Lambda^2), \mathcal{O}(ln \Lambda^2) \) divergences:

\[
E_{\text{low-loops}}^\text{GML} = \frac{1}{2} g \left[H^2 + \vec{π}^2 \right] + \left(H^2 - \frac{m^2}{\Lambda^2} \right)^2 \cdot (H)_m^2 H + C_{\text{GML}}^{\text{ignore}},
\]

causes tadpoles to vanish identically, so that separate tadpole renormalization is unnecessary. \(C_{\text{GML}}^{\text{ignore}} \) denotes finite operators that do not contribute to UVQD.

\[
C_{\text{GML}}^{\text{ignore}} = C_{\text{GML}}^{D>4} + C_{\text{GML}}^{D<4, \text{NonAnalytic}} + C_{\text{GML}}^{1/\Lambda^2, \text{Nonrelevant}}.
\]

The effective potential \(\xi \) reduces to the 3 effective potentials of the Schwinger model \([16] \) as: \(\langle H \rangle → 0, m^2 ≠ 0 \) (Schwinger Wigner mode); \(\langle H \rangle → 0, m^2 → 0 \) (Schwinger scale-invariant point); or \(\langle H \rangle ≠ 0, m^2 → 0 \) (Schwinger Goldstone mode). Ref. [16] extended \(\xi \) to include SM quarks and leptons, but possible IR divergences, due to massless SM neutrinos, were out of scope and ignored.
fields, which asymptotically become the in/out states, i.e. free fields for physical S-Matrix elements. Appendix A gives details of the derivation of our rigid axial-vector WTI's, some highlights of which we present in this section.

For \(\langle H \rangle \neq 0 \), the pseudoscalars \(\pi \) are massless\(^7\). We therefore solve/obey the axial-vector “pion-pole-dominance” Transition-Matrix (T-matrix, which recall is related to the better-known S-matrix by \(S = 1 + iT \)) identity proved in Appendix A:

\[
\langle H \rangle T_{x_1 \ldots x_M} (p_1 \ldots p_N; q_1 \ldots q_M 0)
= \sum_{n=1}^{M} \delta^{t_1} \ldots \delta^{t_M} (p_1 \ldots p_N q_m; q_1 \ldots q_m q_M 0)
- \sum_{n=1}^{N} T_{\pi_1 \ldots \pi_M} (p_1 \ldots p_N q_m; q_1 \ldots q_M p_n) \quad (5)
\]

with \(N \) renormalized \(h = H - \langle H \rangle \) external legs (coordinates \(x, \) momenta \(p \)), and \(M \) renormalized \((CP = -1) \pi \) external legs (coordinates \(y, \) momenta \(q \), isospin \(t \)).

Equation (5) either relates T-matrix elements all with even numbers of \(\pi \) (if \(M \) is odd), or T-matrix elements all with odd numbers of \(\pi \) (if \(M \) is even). Because \(CP \) is conserved, T-matrix elements with odd numbers of \(\pi \) vanish, hence (5) is of interest only for \(M \) odd.

Here \(T = T_1 + T_2 \). \(T_1 \) includes only diagrams with an extra zero-momentum external leg \(\pi \), attached directly to an external h or another external \(\pi \) leg as in Figure 1.

\(^7\) The masslessness of \(\pi \), \(m_{\pi}^2 = 0 \), in Goldstone Mode, is closely related to the masslessness of the Nambu-Goldstone bosons of the broken global symmetry in this ungauged theory. To identify the NGBs, we must pass from the linear representation of the unitary Kibble representation\(^{[14][25]}\) to the unitary Kibble representation\(^{[24][25]}\), with transformed fields \(\hat{h} \) and \(\pi \), and VEVs \(\langle \hat{H} \rangle = \langle H \rangle \) and \(\langle \hat{\pi} \rangle = 0 \).

\[\phi = \frac{1}{\sqrt{2}} \hat{U}; \quad U = \exp \left[\frac{i}{\langle H \rangle} \left[\begin{array}{c} \frac{\hat{\pi}}{\langle H \rangle} \\ 0 \end{array} \right] \right]. \quad (4) \]

\(\hat{\pi} \) (not \(\pi \)) are the purely derivatively coupled NGBs. We note that it is the ability to transform to the unitary representation that makes \(\hat{\pi} \) derivatively coupled. The transformation (4) is not possible in Wigner mode nor at the scale-invariant point. In the ungauged theory it is also possible to add a Polkinghorne PCAC term \(\gamma H \) that explicitly violates the axial symmetry. In\(^{[10]}\) we follow\(^{[33]}\) in considering the \(\langle H \rangle \) vs. \(m_{\pi}^2 \) quarter-plane, in which the Wigner mode is the x-axis (\(\langle H \rangle = 0 \)), the Goldstone mode is the y-axis (\(m_{\pi}^2 = 0 \)), the scale-invariant point is the origin, and the symmetry is explicitly broken off these axes. Lee\(^{[23]}\) points out a remarkable WTI: \(\gamma = \langle H \rangle m_{\pi}^2 \). The Goldstone mode and the Wigner mode are thus equivalent in the \(m_{\pi}^2 \to 0 \) and \(\langle H \rangle \to 0 \) limits of the explicitly broken theory. In the quarter plane, the transformation to the Kibble representation finds that \(\pi \) has non-derivative couplings, including a mass, proportional to \(m_{\pi}^2 \). These all vanish in the \(m_{\pi}^2 \to 0 \) limit, and the Goldstone theorem (among other WTIs) is recovered. This connection between \(m_{\pi}^2 = 0 \) and \(m_{\pi}^2_{\text{GB}} = 0 \) appears to be severed in the gauge theory where the explicit breaking term is thought to be forbidden by unitarity.

![FIG. 1: T_{N,M}^{1 \ldots M}(p_1 \ldots p_N; q_1 \ldots q_M 0): Hashed circles are 1-\(\phi \)-R T_{N,M}^{1 \ldots M}(p_1 \ldots p_N; q_1 \ldots q_M 0), solid lines \(\pi \), dashed lines h. One (zero-momentum) soft pion is attached to an external leg (i.e. a branch) in all possible ways. Fig. 1 is the \(SU(3)C \times SU(2)D \times U(1) \nu \nu \text{SM}_{\nu \nu \nu} \times \text{theory} \) analogy of B.W. Lee’s Figure 10.](image)
all-loop-orders from the global $SU(3)_C \times SU(2)_L \times U(1)_Y$ theory, originating in loops containing virtual $\nu_D S M_{ibrvs}^G$: quarks q_L^c, t_R^a, b_R^a and leptons l_L, ν_R, R_T, with colors $c = \tau, u, b$; and scalars $h, \tilde{\tau}$. Because they arise entirely from global axial-vector WTIs, our results are independent of regularization-scheme [37].

There remains, however, one more crucial step. We must (!) impose all those symmetries of the 1-ϕ-T-matrix that are not of the complete effective Lagrangian $[\hat{2}]$. In particular the $\nu_D S M_{ibrvs}^G$-anologue of the Adler self-consistency conditions [38, 39] (see for example [33, p. 37]), derived in Appendix A, of which the Goldstone Theorem is a special case, ensures the infra-red finiteness of the theory for exactly zero pseudoscalar masses, $m_{\tilde{\tau}}^2 = 0$.

B. Construction of SM scalar-sector effective Lagrangian from axial-vector Ward-Takahashi IDs

We want to classify operators arising from $\nu_D S M_{ibrvs}^G$, degrees of freedom, and separate the finite operators from the divergent ones. There are finite operators that arise entirely from $\nu_D S M_{ibrvs}^G$ degrees of freedom. Although important for computing “physical observables” [40, 42, 44] and the W top-quark from Z-pole physics [40, 43] in 1984 and the ν though important for computing “physical observables” [40, 42, 44] and the W top-quark from Z-pole physics [40, 43] in 1984 and the ν

degrees of freedom, and separate the finite operators

Ward-Takahashi IDs (6):

Λ

the theory for exactly zero pseudoscalar masses, $m_{\tilde{\tau}}^2 = 0$ is also

$\nu_D S M_{ibrvs}^G$ or $O_{1/\Lambda^2; Irrelevant}$:

$N + M \leq 4$ operators $O_{Dim \leq 4; NonAnalytic}$ also appear in those WTIs.

All such operators will be ignored below:

$O_{Dim \leq 4; NonAnalytic}$

Finally, there are $N + M \leq 4$ operators that are analytic in momenta. We expand these in powers of momenta, count the resulting dimension of each term in the operator Taylor-series, and ignore $O_{Dim \leq 4; NonAnalytic}$ terms.

We next seek to classify the relevant operators, in this case the $\tilde{\tau}$ and h inverse propagators (together with tadpoles).

Define the exact renormalized pseudoscalar propagator (no sum on j) in terms of a $\tilde{\tau}$ pole, the Källén-Lehmann spectral density $\rho_{\tilde{\tau}}$ [35, 36], and wavefunction renormalization. We assume $\tilde{\tau}$ decays weakly:

$\Delta_{\tilde{\tau}}(q^2) = -i(2\pi)^2(0|T[\pi_{\tilde{\tau}}(y)\pi_{\tilde{\tau}}(0)]|0)_{\text{Fourier Transform}}$

$\frac{1}{q^2 - m^2_{\tilde{\tau}; \text{Pole}} + i\epsilon} + \int dm^2 \frac{\rho_{\tilde{\tau}}(m^2)}{q^2 - m^2 + i\epsilon}$

$Z_{\tilde{\tau}}^{-1} = 1 + \int dm^2 \rho_{\tilde{\tau}}(m^2)$

Define similarly the BEH scalar propagator in terms of a BEH scalar pole, the spectral density ρ_{BEH}, and the same wavefunction renormalization. We assume h also decays weakly and resembles a resonance:

$\Delta_{\text{BEH}}(q^2) = -i(2\pi)^2(0|T[h(x)h(0)]|0)_{\text{Fourier Transform}}$

$\frac{1}{q^2 - m^2_{\text{BEH}; \text{Pole}} + i\epsilon} + \int dm^2 \frac{\rho_{\text{BEH}}(m^2)}{q^2 - m^2 + i\epsilon}$

$Z_h^{-1} = 1 + \int dm^2 \rho_{\text{BEH}}(m^2)$

The connected amputated 1-ϕ-1 $\tilde{\tau}$ and h inverse propagators are:

$\Gamma_{0,2}^{\text{BEH}}(q, -q) \equiv \delta^{\text{BEH}}_{0,2}(q; -q)$

$\Gamma_{0,2}^{\text{BEH}}(q, -q) \equiv \left[\Delta_{\text{BEH}}(q^2)\right]^{-1}$

The spectral density parts of the propagators

$\Delta_{\text{BEH SpectralDensity}}(q^2) = \int dm^2 \frac{\rho_{\text{BEH}}(m^2)}{q^2 - m^2 + i\epsilon}$

$\Delta_{\tilde{\tau}}^{\text{SpectralDensity}}(q^2) = \int dm^2 \frac{\rho_{\tilde{\tau}}(m^2)}{q^2 - m^2 + i\epsilon}$

8 Failing to impose those T-matrix symmetries (eg. crucially the one that is equivalent to the Goldstone Theorem) results in a mistake.
are clearly finite. From dimensional analysis of \(M_{\text{Heavy}}^2 \), the contribution of a state of mass/energy \(\sim M_{\text{Heavy}}^2 \) to the spectral densities \(\rho_\pi(M_{\text{Heavy}}^2) \) and \(\rho_{\text{BEH}}(M_{\text{Heavy}}^2) \), and to \(\Delta_{\text{SpectralDensity}}^{\text{BEH}} \), \(\Delta_{\text{SpectralDensity}}^{\text{BEH}} \) scale as \(M_{\text{Heavy}}^2 \). The Euclidean cut-off therefore contributes only \(\sim 1/\Lambda^2 \).

We now form the all-loop-orders renormalized scalar-sector effective Lagrangian for \((h, \vec{\pi})\) with \(CP = (1, -1) \)

\[
L_{\phi; \beta; \phi; \gamma; \phi; \Delta}^{\text{Eff}} = \Gamma_{1,0}(0;0) h + \frac{1}{2!} \Gamma_{2,0}(p,-p) h^2 + \frac{1}{3!} \Gamma_{3,0}(000;0) h^3 + \frac{1}{4!} \Gamma_{4,0}(0000;0) h^4 + \cdots
\]

The connected amputated Green’s function identities \([10]\) severely constrain the effective Lagrangian \([13]\). For pedagogical clarity, we first separate out the isospin indices

\[
\begin{align*}
\Gamma_{0,2}^{t s t} (q,-q) &= \delta^{s t s} \Gamma_{0,2}^{t s t} (q,-q), \\
\Gamma_{1,2}^{t s t} (-q;0) &= \delta^{s t s} \Gamma_{1,2}^{t s t} (-q;0), \\
\Gamma_{2,0}^{t s t t} (00;00) &= \delta^{s t s} \Gamma_{2,0}^{t s t t} (00;00), \\
\Gamma_{0,4}^{t s t t t t st} (0000;0) &= \Gamma_{0,4}(0000;0) \times \left[\delta^{ststst} + \delta^{s t s t} \delta^{s t st} + \delta^{s t s t} \delta^{s t st} \right].
\end{align*}
\]

Itemizing the relevant WTI and their effects on \([13]\), setting momenta to zero except where needed, suppressing the isospin indices, and indicating the finite operators as simply \(O_{\text{Ignore}} \):

\[
\begin{align*}
\text{WTI } N = 0, M &= 1 \\
\delta^{s t s t} &\Gamma_{1,0}(q) = (H)\Gamma_{0,2}^{t s t} (q,-q), \\
 &\Gamma_{1,0}(0) = (H)\Gamma_{0,2}(00;00),
\end{align*}
\]

since no momentum can run into the tadpoles.

\[
\begin{align*}
\text{WTI } N = 1, M &= 1 \\
\delta^{s t s t} &\Gamma_{2,0}(-q,q) - \Gamma_{1,2}^{t s t} (q,-q) = (H)\Gamma_{1,2}^{t s t} (-q;0), \\
 &\Gamma_{2,0}(-q,q) - \Gamma_{0,2}(q,-q) = (H)\Gamma_{1,2} (q,-q), \\
 &\Gamma_{2,0}(00;00) = \Gamma_{0,2}(00;00) + O_{\text{Ignore}}^{\text{O} \phi; \Delta} \\
 &\Gamma_{2,0}(00;00) = \Gamma_{0,2}(00;00) + \langle H \rangle \Gamma_{1,2}(00;00).
\end{align*}
\]

\[
\begin{align*}
\text{WTI } N = 2, M &= 1 \\
\langle H \rangle \Gamma_{2,2}^{t s t t t} (00;00) &= \delta^{s t s t} \Gamma_{3,0}(0000;0000) - 2\delta^{s t st s t \delta^{s t st t s t}} (00;00), \\
\langle H \rangle \Gamma_{2,2}(00;00) &= \Gamma_{3,0}(0000;0000) - 2\Gamma_{1,2}(00;00).
\end{align*}
\]

- WTI \(N = 0, M = 3 \)

\[
- \langle H \rangle \Gamma_{6,4}^{t s t t t t} (0000;000) = \delta^{s t s t} \Gamma_{5,4}^{t s t t} (00;00) + \delta^{s t st st} (1,2) + \delta^{s t st t s t} (1,2) + \delta^{s t st st t s t} (1,2),
\]

- WTI \(N = 1, M = 3 \)

\[
\delta^{s t s t} \Gamma_{2,2}^{t s t t} (00;00) + \delta^{s t st st} (1,2) + \delta^{s t st t s t} (1,2) + \delta^{s t st st t s t} (1,2) = 0,
\]

- WTI \(N = 3, M = 1 \)

\[
- \delta^{s t st st} (1,2) + 3\delta^{s t st st st} (1,2) = 0,
\]

The quadratic and quartic coupling constants are defined in terms of 2-point and 4-point \(\phi-I \) connected amputated GF

\[
\begin{align*}
\Gamma_{0,2}(00;00) &= -m_\pi^2, \\
\Gamma_{0,4}(0000;0000) &= -2\Lambda_\phi^2.
\end{align*}
\]

The pseudoscalar and \(h \) (BEH) scalar masses are most usefully defined as:

\[
\begin{align*}
\frac{m_\pi^2}{m_h^2} &= -\langle H \rangle \Gamma_{0,2}(00;00) = \left[\frac{1}{m_h^2} + \int dm^2 \rho_{\text{BEH}}(m^2) \right]^{-1}, \\
m_h^2 &= -\langle H \rangle \Gamma_{0,2}(00;00).
\end{align*}
\]

The third WTI is \(1, M = 1 \) WTI of equation \([16]\) can then be rewritten instructively as a mass-relation between the BEH \(h \) scalar and the 3 pseudoscalar bosons \(\vec{\pi} \):

\[
m_h^2 = m_\pi^2 + 2\Lambda_\phi^2 (\langle H \rangle)^2,
\]

a more familiar form which we have employed in previous papers \([14][16][18]\).

The all-loop-orders renormalized \(\phi \)-sector effective Lagrangian \([13]\), constrained only by those axial-vector WTI\s governing Greens functions \([6]\), may be written

\[
L^{\text{Wigner;SI;Goldstone}} = \frac{1}{2} \left(\Gamma_{0,2}(p,-p) - \Gamma_{0,2}(00;00) \right) h^2 + \frac{1}{2} \left(\Gamma_{0,2}(q,-q) - \Gamma_{0,2}(00;00) \right) \vec{\pi}^2
\]

The kinetic term incorporates the non-trivial (but finite) wavefunction renormalization

\[
L^{\text{Kinetic}} = \frac{1}{2} \left(\Gamma_{0,2}(p,-p) - \Gamma_{0,2}(00;00) \right) h^2 + \frac{1}{2} \left(\Gamma_{0,2}(q,-q) - \Gamma_{0,2}(00;00) \right) \vec{\pi}^2
\]
with
\[\Gamma_{0,2}(q,-q) - \Gamma_{0,2}(0,0) \sim q^2, \] (26)
while the effective potential
\[V^{Wigner:SI;Goldstone}_{\nu_{DSM}} = m_\pi^2 \left(\frac{\hat{h}^2 + \hat{\pi}^2}{2} + \langle H \rangle h \right) - \frac{\lambda^2_\phi}{2} \left(\frac{\hat{h}^2 + \hat{\pi}^2}{2} + \langle H \rangle h \right)^2 \] (27)
incorporates all 3 modes (i.e. Wigner mode, Scale Invariant and Goldstone mode) of the Lagrangian (1). 9

It is instructive, and we argue [34] dangerous, to ignore vacuum energy and re-write the potential in (27) as:
\[V^{Wigner:SI;Goldstone}_{\nu_{DSM}} = \frac{\lambda^2_\phi}{2} \left(\phi^2 - \frac{m_\pi^2}{\lambda^2_\phi} \right)^2 \] (28)
using \(\hat{h}^2 + \hat{\pi}^2 + \langle H \rangle h = \phi^2 \phi - \frac{1}{2} (\langle H \rangle^2 - \frac{m_\pi^2}{\lambda^2_\phi}) \). If one then minimizes \(V^{Wigner:SI;Goldstone}_{\nu_{DSM}} \) while ignoring the crucial constraint imposed by the Goldstone Theorem, (or more precisely by the WTI that is equivalent to the Goldstone Theorem in this ungauged theory: see Subsection III C), the resultant (incorrect and un-physical) minimum \(\langle H \rangle^2 \equiv (\langle H \rangle^2 - \frac{m_\pi^2}{\lambda^2_\phi}) \) does not distinguish properly between the 3 modes (33) of (28). At issue is the renormalized
\[m_\pi^2 = m_\pi^2_{\text{Bare}} + C_A \lambda^2 + C_B E M \pi^2_{\text{Bare}} + \delta m_\pi^2 + C_{\text{Heavy}} M_{\text{Heavy}}^2 + C_{\text{Heavy},\text{In}} M_{\text{Heavy}}^2 \ln (M_{\text{Heavy}}^2) + C_{\text{Heavy},\text{Out}} M_{\text{Heavy}}^2 \ln (\Lambda^2) + \frac{\lambda^2_\phi}{2} \langle H \rangle^2 \] (29)
where the C’s are constants, and \(m_\pi^2 = m_\pi^2 + 2 \lambda^2 \langle H \rangle^2 \). It is “fashionable” to simply drop the UVQD term \(C_A \lambda^2 \) in (29), and argue that it is somehow an artifact of dimensional regularization (DR), even though M.J. G. Veltman [35] showed that UVQD do appear at 1-loop in the SM, and are properly handled by DR’s poles at dimension \(\text{Dim} = 2 \). We keep UVQD.

For pedagogical efficiency, we have included in (29) terms with \(M_{\text{Heavy}}^2 \approx m_{\text{Wak}}^2 \), such as might arise in BSM physics (cf. Section III C).

In Wigner mode, where \(\langle H \rangle = 0 \):
\[m_\pi^2 = m_\pi^2_{\text{Bare}} \sim \Lambda^2, M_{\text{Heavy}}^2 \approx m_{\text{Wak}}^2. \] (30)
During renormalization of a tree-level weak-scale BEH mass-squared \(m_\pi^2_{\text{Bare}} \approx m_{\text{Wak}}^2 \), relevant operators originating in quantum loops appear to “naturally” force the renormalized value up to the heavy scale (30). Wigner mode is therefore quantum-loop unstable, because the heavy scale cannot decouple from the weak scale! Eqn. (30) is the motivation for much BSM physics, even though our universe is not in Wigner mode.

In the Spontaneously broken Goldstone mode, where \(\langle H \rangle \neq 0 \), in obedience to a WTI (equivalent to the Goldstone Theorem) in Subsection II C below, the bare counter-term \(m_\pi^2_{\text{Bare}} \) in (29) is defined by
\[m_\pi^2 \equiv 0. \] (31)
We show in Subsection II C that, for constant \(\theta \), the zero-value in (31) is protected by the NGB shift symmetry
\[\hat{\pi} \to \hat{\pi} + \hat{\theta} \times \hat{\theta} + \langle H \rangle \hat{\theta} + O(\theta^2). \] (32)

The effective potential in (27) becomes in various limits: Wigner mode (\(\langle H \rangle = 0; m_\pi^2 = m_{\pi,\text{Bare}}^2 = 0 \)); SI=Scale Invariant point (\(\langle H \rangle = 0; m_\pi^2 = m_{\pi,\text{Bare}}^2 = 0 \)); or Goldstone mode (\(\langle H \rangle \neq 0; m_\pi^2 \neq m_{\pi,\text{Bare}}^2 \)):
\[V^{Wigner} = m_\pi^2 \left(\frac{\hat{h}^2 + \hat{\pi}^2}{2} + \langle H \rangle h \right)^2 \]
\[V^{\text{Scale Invariant}} = \frac{\lambda^2_\phi}{2} \left(\frac{\hat{h}^2 + \hat{\pi}^2}{2} + \langle H \rangle h \right)^2 \] (33)
\[V^{\text{Goldstone}} = \frac{\lambda^2_\phi}{2} \left(\frac{\hat{h}^2 + \hat{\pi}^2}{2} + \langle H \rangle h \right)^2 \]

But (33) has exhausted the constraints, on the allowed terms in the \(\phi \)-sector effective Lagrangian, due to those axial-vector WTIs that govern 1-loop (see pages 1-10). In BSM physics, even though our universe is not in Wigner mode.

9

C. Infra-red finiteness, Goldstone theorem, and automatic tadpole renormalization

“Whether you like it or not, you have to include in the Lagrangian all possible terms consistent with locality and power counting, unless otherwise constrained by Ward identities,” Kurt Symanzik, in a 1970 private letter to Raymond Stora [10].

In Appendix A we extend Adler’s self-consistency condition [38, 39] (originally written for the SU(2)_L \times SU(2)_R Gell-Mann-Lévy model [17]), to the case of the \(\nu_{\text{DSM}}_{\text{L}+\text{R}}, \) Lagrangian (1)
\[\lim_{\nu_{\text{DSM}}_{\text{L}+\text{R}}} \langle H \rangle = 0 \]
\[\frac{\langle H \rangle}{T^{M_1 \cdots M_2}} (p_1 \ldots p_2; 0q_1 \cdots q_M) \left| \begin{array}{c} p_1^2 = \ldots = p_M^2 = m_{\pi,\text{Bare}}^2 \n q_1^2 = \ldots = q_M^2 = 0 \end{array} \right. \]
\[= 0 \] (34)
where, for pedagogical simplicity, we will suppress \(M + 1 \) isospin indices in \(T^{M_1 \cdots M_2} \)\((p_1 \ldots p_2; 0q_1 \ldots q_M) \) going forward. The T-matrix vanishes as one of the pion momenta goes to zero, provided all other physical scalar particles are on mass-shell. These are “1-soft-pion” theorems [39]. Eqn. (34) asserts the absence of infrared divergences in the physical-scalars sector in Goldstone mode \(\nu_{\text{DSM}}_{\text{L}+\text{R}}, \).

Minimization of (28) violates stationarity of the true minimum at \(\langle H \rangle \) [35] and destroys the theory’s renormalizability and unitarity, which require that dimensionless wavefunction renormalization \(\langle H \rangle_{\text{Bare}} = \sqrt{Z^8} \langle H \rangle \) contain no relevant operators [14, 35, 37]. The crucial observation is, that in obedience to the Goldstone theorem, \(\text{Renormalized}(\langle H \rangle^2_{\text{Bare}}) \neq \langle H \rangle^2_{\text{FT}}. \)
“Although individual Feynman diagrams may be IR divergent, those IR divergent parts cancel exactly in each order of perturbation theory. Furthermore, the Goldstone mode amplitude must vanish in the soft-pion limit (34).”

A special case of (34) is the Goldstone Theorem itself, or at least equivalent to it – the $N = 0, M = 1$ case of (34) reads

$$ \langle H \rangle T_{0,2}(\nu, 0) = 0 $$

where momentum conservation forces $q_1 = 0$ (so that $q_1^2 = 0$). We may write (35) as a further constraint on the 1ϕ-I connected amputated Greens functions

$$ \langle H \rangle \Gamma_{1,0}(; 0) = \langle H \rangle \Gamma_{0,2}(; 0) = 0 $$

As described in footnote 7 above, the actual Goldstone theorem states that the mass of the NGB $\tilde{\pi}$ vanishes, where $\tilde{\pi}$ are the angular degrees of freedom in the unitary representation of the Φ field. However, $m_\pi^2 = 0$ if and only if $m_\pi^2 = 0$ in this global theory.

A crucial effect of the Adler relation (35), together with the $N = 0, M = 1$ Ward-Takahashi Greens function identity (36), is to automatically eliminate tadpole in (40).

$$ \Gamma_{1,0}(; 0) = \langle H \rangle \Gamma_{0,2}(; 0) = 0 $$

so that separate tadpole renormalization is un-necessary. With $\langle H \rangle \neq 0$, (35) and (36) may be written:

$$ -\Gamma_{0,2}(; 0) = -[\Delta_{\pi}(0)]^{-1} \equiv m_\pi^2 $$

$$ = m_\pi^2 \pi_{\phi,\phi} \left[1 + m_\pi^2 \pi_{\phi,\phi} \int \frac{d^2 \rho_\pi(m^2)}{m^2} \right]^{-1} $$

The pole masses of the pseudoscalars $\tilde{\pi}$ in the $\nu_DSM_{\nu,\nu}^G$ therefore vanish exactly

$$ m_\pi^2 \pi_{\phi,\phi} = m_\pi^2 \left[1 - m_\pi^2 \int \frac{d^2 \rho_\pi(m^2)}{m^2} \right]^{-1} = 0. $$

which is the reason that $\tilde{\pi}$ are Nambu-Goldstone bosons.

D. $\nu_DSM_{\nu,\nu}^G$, scalar-sector effective Lagrangian obedient to Goldstone theorem ($H) \neq 0, m_\pi^2 \equiv 0$

We now re-write the effective Lagrangian (24) including the constraint from (36), i.e. $m_\pi^2 = 0$:

$$ L_{\nu_DSM_{\nu,\nu}^G}^{Eff} = L_{\nu_DSM_{\nu,\nu}^G}^{Kinetic} - V_{\nu_DSM_{\nu,\nu}^G}^{Eff\text{-Goldstone}} + O_{\nu_DSM_{\nu,\nu}^G}^{\text{ignore}} $$

with the all-loop-orders renormalized Goldstone-mode SSB $\nu_DSM_{\nu,\nu}^G$, effective potential $V_{\nu_DSM_{\nu,\nu}^G}^{Eff\text{-Goldstone}}$

$\nu_DSM_{\nu,\nu}^G$ are the $\nu_DSM_{\nu,\nu}^G$ effective SSB Lagrangian, derived from the global $SU(3)_{\text{color}} \times SU(2)_L \times U(1)_Y$ Lagrangian $L_{\nu_DSM_{\nu,\nu}^G}$ in (1). It obeys the Goldstone theorem; is minimized at $\langle H \rangle = \langle H \rangle, \pi = 0$; obeys stationarity of that true minimum (35) at $\langle H \rangle$; and preserves the theory’s renormalizability and unitarity, which require $33, 35, 47–49$ that dimensionless wavefunction renormalization $\langle H \rangle_{\text{Bare}} = Z_{\phi,\phi}^{1/2}(H)$ not attract any relevant operators.

With Goldstone mode wavefunction renormalization

$$ \Gamma_{0,2}(; q, -q) - \Gamma_{0,2}(; 0) = q^2 + O_{\nu_DSM_{\nu,\nu}^G}^{\text{ignore}}, $$

the coordinate-space effective Lagrangian reads

$$ L_{\nu_DSM_{\nu,\nu}^G}^{Eff} = |\partial_{\mu} \phi|^2 - \lambda_\phi^2 \left[\phi^\dagger \phi - \frac{1}{2} \langle H \rangle^2 \right] $$

+ $O_{\nu_DSM_{\nu,\nu}^G}^{\text{ignore}}$

+ $|\partial_{\mu} \phi|^2 - \lambda_\phi^2 \left[\left(\frac{1}{2} \langle H \rangle^2 \right) + \langle H \rangle \right]^2$

We conclude section with a few observations about equation (43):

- It includes all $O(\Lambda^2), O(\ln \Lambda^2)$ and finite terms that arise, to all perturbative loop-orders, in the full $SU(3)_{\text{color}} \times SU(2)_L \times U(1)_Y$ theory, i.e. due to virtual fermions and scalars.

- $SU(2)_L \times U(1)_Y$ is spontaneously broken.

- The ultra-violet properties of the Goldstone-mode $\nu_DSM_{\nu,\nu}^G$ effective potential are analogous

10 Recall that $T_{0,2}$ is 1-P-R, while $\Gamma_{0,2}$ is 1-P-I. Consider the sum of all diagrams contributing to $T_{0,2}(; 00)$ to all loops. Each of these diagrams has exactly two (amputated) external legs, both zero-4-momentum π’s. Attach to either of these external legs a π propagator (at zero 4-momentum) $\Delta_{\pi}(0)$ and a $\Gamma_{0,2}(; 00)$. This diagram is also a contribution to $T_{0,2}(; 00)$. (Indeed, we can repeat this procedure an arbitrary number of times, and each resulting diagram must again be a contribution to $T_{0,2}(; 00)$.) Now $\Delta_{\pi}(0)$ has a pole at zero four-momentum when $m_\pi^2 = 0$. so if these contributions to $T_{0,2}(; 00)$ are not to diverge, $\Gamma_{0,2}$ must vanish as the external momenta go to zero, so that the product $\Delta_{\pi}(0)\Gamma_{0,2}(; 00)$ does not diverge.

11 It is not lost on the authors that, since we derived it from connected amputated Greens functions (where all vacuum energy and disconnected vacuum bubbles are absorbed into an overall phase, which cancels exactly in the S-matrix $35, 36$), the vacuum energy in $L_{\phi}^{Eff \nu_DSM_{\nu,\nu}^G}$ in (40) is exactly zero.
with those of the Goldstone mode of the global Schwinger $L\Sigma M$ corresponding to the y-axis of the quarter-plane characterizing the Gell-Mann-Lévy $L\Sigma M$ with PCAC, as in Figure 1 in [16] and Figure 12-12 in the textbook by C. Itzykson & J-C. Zuber [33].

- All relevant operators (e.g. UVQD $\sim O(\Lambda^2)$ in the $\nu_DSM_G^{ib\nu\nu}$, have vanished identically due to the Goldstone theorem.
- The $N = M = 1$ WTI

$$\Gamma_{2,0}(0;0) = \langle H \rangle \Gamma_{1,2}(0;0) + \Gamma_{0,2}(0;0) = \langle H \rangle \Gamma_{1,2}(0;0)$$

relates the BEH mass-squared from (43) to the coefficient of the $h\bar{h}$ vertex, so that

$$m_{h^2}^2 = m_{BEH}^2 = 2\lambda \langle H \rangle^2$$

arises entirely from SSB.
- The observable BEH resonance pole-mass-squared:

$$m_{h_{Pol}^2} = 2\lambda \langle H \rangle^2 \left[1 - 2\lambda \langle H \rangle^2 \int dm^2 \rho_h(m^2) \right]^{-1} + O_{\nu_DSM_G}^{ig\nu\nu}$$

- $\langle H \rangle = Z^{-\frac{1}{2}} \langle H \rangle_{bare}$ absorbs no relevant operators (i.e. at worst $\sim \ln \Lambda^2$).
- As promised, $\vec{\pi}$ are true NGB. In the unitary Kibble representation $\vec{\pi}$, the $\nu_DSM_G^{ib\nu\nu}$, isospin current is conserved, so that

$$\partial^\mu \vec{\pi} = 0$$

$$U = e^{i\vec{\sigma} \cdot \vec{\pi} / \langle H \rangle}$$

- The vanishing of $m_{h^2}^2$ allows $\vec{\pi}$ to have only derivative couplings and therefore possess the required shift symmetry for constant $\vec{\theta}$

$$\vec{\pi} \rightarrow \vec{\pi} + \vec{\pi} \times \vec{\theta} + \langle H \rangle \vec{\theta} + O(\theta^2)$$

III. THE GOLDSTONE THEOREM AND AXIAL VECTOR WTI CAUSE CERTAIN HEAVY BSM PARTICLES TO DE-COUPLE FROM THE LOW-ENERGY $\nu_DSM_G^{ib\nu\nu}$ SCALAR-SECTOR EFFECTIVE LAGRANGIAN

To quote Ergin Sezgin “In order to prove theorems that reveal symmetry-driven results in field theories, one must keep all of the terms arising from all Feynman graphs, not just a selection of interesting terms from a representative subset of Feynman graphs.”

A. Criteria for the extension of axial-vector WTIs to include the $\nu_DSM_G^{ib\nu\nu}$, extended with certain heavy BSM particles

In Appendix Λ, we derive the T-Matrix and Green’s function WTI for the case of the $\nu_DSM_G^{ib\nu\nu}$, Lagrangian, extended to include neutrino Dirac masses.

We here derive criteria that anomaly-free Beyond the Standard Model (BSM) spin $S = 0$ scalars, Φ, and $S = \frac{1}{2}$ fermions, ψ, must obey in order that the axial-vector WTI remain true.

1) Begin by focussing on the global $SU(2)_L$ $\nu_DSM_G^{ib\nu\nu}$ isospin current and dividing it into vector and axial-vector parts:

$$2\vec{J}_{L+R;\nu_DSM_G^{ib\nu\nu}}^\mu = \vec{\pi} \times \partial^\mu \vec{\pi} + \sum_c q^c \gamma^\mu \bar{\psi}^c + \bar{\psi}^\mu \vec{\tau}$$

$$2\vec{J}_{L-R;\nu_DSM_G^{ib\nu\nu}}^\mu = \vec{\tau} \partial^\mu \vec{\pi} - H \partial^\mu \vec{\pi} + \sum_c q^c \gamma^\mu \bar{\psi}^c + \bar{\psi}^\mu \vec{\tau}$$

$$\vec{J}_{L;\nu_DSM_G^{ib\nu\nu}}^\mu = \vec{J}_{L+R;\nu_DSM_G^{ib\nu\nu}}^\mu + \vec{J}_{L-R;\nu_DSM_G^{ib\nu\nu}}^\mu$$

(with colors $c = r, b, b$, isospin $\vec{\tau} = \frac{1}{2} \vec{\sigma}$, Pauli matrices σ).

The classical equations of motion show only that the $SU(2)_L$ isospin current is conserved

$$\partial^\mu \vec{J}_{L;\nu_DSM_G^{ib\nu\nu}}^\mu = 0$$

But in the $\nu_DSM_G^{ib\nu\nu}$, studied here, CP is conserved, so that on-shell and off-shell connected amputated T-matrix elements and Green’s functions of an odd number of $\vec{\pi}$s and their derivatives, are zero. They also vanish for an odd number of $\vec{\pi}$s and fermion bi-linears with the isospin quantum numbers of $\vec{\pi}$.

$SU(2)_L$ - R is not a sub-group of the $SU(2)_L$ symmetry group, but CP conservation ensures that the global vector current transforms as an even number of $\vec{\pi}$s, while the global axial-vector current transforms as an odd number of $\vec{\pi}$s. Thus, for M even,

$$\langle 0 | T \left[\left(\vec{J}_{L-R;\nu_DSM_G^{ib\nu\nu}}^\mu \right) (z) \right] \cdot h(x_1)\ldots h(x_N) \pi^t(y_1)\ldots \pi^t(y_M) | 0 \rangle \text{ Connected} = 0$$

$$\langle 0 | T \left[\left(\partial^\mu \vec{J}_{L-R;\nu_DSM_G^{ib\nu\nu}}^\mu \right) (z) \right] \cdot h(x_1)\ldots h(x_N) \pi^t(y_1)\ldots \pi^t(y_M) | 0 \rangle \text{ Connected} = 0$$
Meanwhile, (49-50) show that, for M odd,
\[
\langle 0 | T \left[\partial _\mu \left(\mathcal{J}^\mu _{L-R:BSM} (z) \right) \right] \times h(x_1) ... h(x_N) \pi ^{t_1} (y_1) ... \pi ^{t_M} (y_M) \rangle _{Connected} ^{M \text{ odd}}
\]
\[
= \langle 0 | T \left[\partial _\mu \left(\mathcal{J}^\mu _{L+R;BSM} (z) - \mathcal{J}^\mu _{L-R:BSM} (z) \right) \right] \times h(x_1) ... h(x_N) \pi ^{t_1} (y_1) ... \pi ^{t_M} (y_M) \rangle _{Connected} ^{M \text{ odd}}
\]
\[
= \langle 0 | T \left[\left(\partial _\mu \mathcal{J}^\mu _{L+R;BSM} (z) \right) - \left(\partial _\mu \mathcal{J}^\mu _{L-R:BSM} (z) \right) \right] \times h(x_1) ... h(x_N) \pi ^{t_1} (y_1) ... \pi ^{t_M} (y_M) \rangle _{Connected} = 0.
\]

Thus the SU(2)$_L$ current is “effectively conserved.”

Similarly, although SU(2)$_L$ + R is not a sub-group of SU(2)$_L$, its current is also effectively conserved for Green’s functions and T-Matrix elements for all M:
\[
\langle 0 | T \left[\partial _\mu \mathcal{J}^\mu _{L+R;BSM} (z) \right] \times h(x_1) ... h(x_N) \pi ^{t_1} (y_1) ... \pi ^{t_M} (y_M) \rangle _{Connected} = 0
\]

This paper is based on the effective conservation of $\mathcal{J}^\mu _{L-R:BSM}$ for on-shell and off-shell connected amputated Green’s functions and T-matrix elements, in (51-52) [2].

2) We extend the $\nu _{D;BSM}$ with certain BSM matter particles. These must carry zero anomaly.

In order to force renormalized connected amplitudes with an odd number of \bar{s}s to vanish, the new particles Φ, ψ are taken in this paper to conserve CP. Divide the conserved isospin current into axial-vector (i.e. transforming as an odd number of \bar{s}s under isospin) and vector (i.e. transforming as an even number of \bar{s}s under isospin) parts.

\[
\partial _\mu \mathcal{J}^\mu _{L:Total} = \partial _\mu \left(\mathcal{J}^\mu _{L+R:BSM} + \mathcal{J}^\mu _{L:BSM} \right) = 0
\]

\[
\mathcal{J}^\mu _{L+R:BSM} + \mathcal{J}^\mu _{L-R:BSM} = \mathcal{J}^\mu _{L:BSM}
\]

\[
\partial _\mu \left(\mathcal{J}^\mu _{L-R:BSM} (z) \right) \times h(x_1) ... h(x_N) \pi ^{t_1} (y_1) ... \pi ^{t_M} (y_M) \rangle _{Connected} = 0
\]

3) Canonical quantization is imposed on the exact renormalized fields, yielding equal-time quantum commutators at space-time points y, z. The BSM axial-vector currents must commute with H and $\bar{\pi}$:
\[
\delta (z_0 - y_0) \left[J^\mu _{BSM} (z), H (y) \right] = 0
\]
\[
\delta (z_0 - y_0) \left[\bar{J}^\mu _{BSM} (z), \pi ^j (y) \right] = 0
\]

Only certain BSM matter will obey this condition.

4) BSM scalars must have zero VEV. Only certain BSM matter will obey this condition. Note that Green’s functions are then usually 1-BSM Scalar-Reducible, by cutting a BSM-Scalar line.

5) Certain surface integrals must vanish: Appendix A used pion-pole dominance to derive 1-soft-pion theorems, which require that the connected surface integral (56) vanish. In (56) we have N external renormalized

- \(h = H - \langle H \rangle \) (coordinates x, momenta p), M external
- \(CP = -1 \) renormalized $\bar{\pi}$ (coordinates y, momenta q, isospin t). Because \(CP \) is conserved, only axial-vector WTI are needed to put the effective Lagrangian into the desired form. We form the surface integral

\[
\lim _{k_\lambda \to 0} \int d^4 z e^{ikz} \partial _\mu \langle 0 | T \left[\left(\mathcal{J}^\mu _{L-R:Total} + \langle H \rangle \partial ^\mu \bar{\pi} \right) \right] \times h(x_1) ... h(x_N) \pi ^{t_1} (y_1) ... \pi ^{t_M} (y_M) \rangle _{Connected} \]
\[
= \int d^4 z \partial _\mu \langle 0 | T \left[\left(\mathcal{J}^\mu _{L-R:Total} + \langle H \rangle \partial ^\mu \bar{\pi} \right) \right] \times h(x_1) ... h(x_N) \pi ^{t_1} (y_1) ... \pi ^{t_M} (y_M) \rangle _{Connected} \]
\[
= \int _{3-surface} d^3 z \bar{\pi}^3 \times \left(\partial _\mu \mathcal{J}^\mu _{L-R:Total} + \langle H \rangle \partial ^\mu \bar{\pi} \right) |_{3-surface \to \infty}
\]
\[
= 0
\]

where we have used Stokes theorem, and $\bar{\pi}^3$-surface is a unit vector normal to the 3-surface. The time-ordered product constrains the 3-surface to lie on, or inside, the light-cone.

At a given point on the surface of a large enough 4-volume $\int d^4 z$ (i.e. the volume of all space-time): all fields are asymptotic in-states and out-states, properly quantized as free fields, with each field species orthogonal to the others, and they are evaluated at equal times, making time-ordering un-necessary at ($z^{3-surface} \to \infty$). Input the global axial-vector current (49) to (56), using $\partial _\mu \langle H \rangle = 0$. The contribution to (56) from $\nu _{D;BSM}$.
vanishes
\[\int_{3-\text{surface}} d^3 z \ z^3_{\mu} \ \langle 0 | T \left[\left(\bar{\pi} \partial_{\mu} h - h \partial_{\mu} \bar{\pi} \right) + \sum_{\epsilon} \bar{q}^{\epsilon} \gamma_{\mu} \gamma_5 \epsilon \ q^{\epsilon} \right] \left(z^3_{-\text{surface}} \to \infty \right) \right] 0 \rangle_{\text{Connected}} \]
\[= 0 \] \hspace{1cm} (57)

The 1st and 2nd terms vanish because the BEH \(h \) is massive. The 3rd term vanishes because all quarks have non-zero Dirac masses. The 4th term vanishes because all leptons in the \(\nu_{D SM_{\text{Dirac}}} \), including neutrinos, have non-zero Dirac masses. Propagators connecting massive \(h, \bar{q}_L, q_L \) from points on \(z^3_{-\text{surface}} \to \infty \) to the localized interaction points \((x_1...x_N; y_1...y_M) \), must stay inside the light-cone, die off exponentially with \(m \), and are incapable of carrying information that far.

It is the central observation for “pion-pole-dominance” and this paper, that \(\text{this argument fails for the remaining term in the axial-vector current 2} \), \(\tilde{J}_{L-R} \nu_{D SM_{\text{Dirac}}} \) in (49).

\[\int_{2-\text{surface}} d^2 z \ z^2_{\mu} \ \langle 0 | T \left[\left(- (H) \partial_{\mu} \bar{\pi} \right) \left(z^2_{-\text{surface}} \to \infty \right) \right] \right] 0 \rangle_{\text{Connected}} \]
\[\bar{\pi} \text{ is massless, capable of carrying (along the light-cone) long-range pseudo-scalar forces out to the 2 - surface } \left(z^2_{-\text{surface}} \to \infty \right): \text{ i.e. the very ends of the light-cone (but not inside it). That massless-ness is the basis of our pion-pole-dominance-based axial-vector WTI's which, as derived in Appendix A, give 1-soft-pion theorems, infrared finiteness for } m^2_{\nu} = 0 \text{, and a “Goldstone theorem.”} \]

6) In order to include spin \(S = 0 \) scalar, and \(S = 1/2 \) fermionic, BSM matter representations in our axial-vector Ward-Takahashi identities, a certain surface integral must vanish.

\[\int d^4 z \partial_{\mu} \langle 0 | T \left[\left(\tilde{J}_{L-R} \nu_{D SM_{\text{Dirac}}} (z) \right) \right] 0 \rangle_{\text{Connected}} \]
\[\delta(z_0 - y_0) \left[\bar{J}_{L-R} \nu_{D SM_{\text{Dirac}}} (z), H(y) \right] = 0 \]
\[\delta(z_0 - y_0) \left[\bar{J}_{L-R} \nu_{D SM_{\text{Dirac}}} (z), \bar{\pi}(y) \right] = 0 \]
\[\int d^4 z \partial_{\mu} \langle 0 | T \left[\left(\tilde{J}_{L-R} \nu_{D SM_{\text{Dirac}}} (z) \right) \right] 0 \rangle_{\text{Connected}} = 0 \] \hspace{1cm} (62)

Since \(\nu_R \) is a \(SU(2)_L \) singlet, its currents
\[\bar{J}_{L-R} \nu_{Maj} = \bar{J}_{L-R} \nu_{Maj} = \bar{J}_{L-R} \nu_{Maj} = 0 \] \hspace{1cm} (61)

satisfy all of the criteria, in Sub-section III A, for the extension of our axial-vector Ward-Takahashi IDs:

\[\langle 0 | T \left[\left(\tilde{J}_{L-R} \nu_{Maj} \right) \right] 0 \rangle_{\text{Connected}} = 0 \]

Since it is massive \(\nu_R \) cannot carry information to the surface of the 4-volume \(\int d^4 z \), nor can it induce any “neutrino-pole-dominance” terms. It follows that the WTI for T-Matrix elements \[\langle J_{L-R} \nu_{Maj} \rangle \leftrightarrow \langle J_{L-R} \nu_{Maj} \rangle \], Adler’s self-consistency and IR finiteness \[\langle \tilde{J}_{L-R} \nu_{Maj} \rangle \leftrightarrow \langle \tilde{J}_{L-R} \nu_{Maj} \rangle \], and Goldstone theorem \[\langle \tilde{J}_{L-R} \nu_{Maj} \rangle \leftrightarrow \langle \tilde{J}_{L-R} \nu_{Maj} \rangle \], are still true for the \(\nu_{D SM_{\text{Dirac}}} \) with a non-zero Majorana neutrino mass.

In order that total neutrino masses \(\sim m_{\nu_{D SM_{\text{Dirac}}}} / M_{\nu_R} \) remain non-zero in this Type I See-saw, we can’t take the strict \(M_{\nu_R} \to \infty \) limit: that would destroy our axial-vector WTIs. Instead we take \(1 \gg m_{\nu_{Weak}} / M_{\nu_R} > 0 \), so that \(\nu_{R} \) decouples in practice.

The weak-scale effective Lagrangian therefore remains

\[\mathcal{O}(M_{\text{Heavy}}^2 \ln \Lambda^2), \ \mathcal{O}(M_{\text{Heavy}} \ln M_{\text{Heavy}}^2), \ \mathcal{O}(M_{\text{Heavy}}^2 \ln m_{\text{Weak}}), \ \mathcal{O}(m_{\text{Weak}} \ln M_{\text{Heavy}}^2), \ \text{to the effective Lagrangian of weak-scale } \nu_{D SM_{\text{Dirac}}} \text{ scalars } \phi. \]

We show that, for low-energy \(\left| q_1 \right|^2, m_{\text{Weak}} \ll M_{\text{Heavy}} \), physics, the heavy degrees of freedom decouple completely \[13 \], including marginal operators \(\mathcal{O}(\ln M_{\text{Heavy}}^2) \), leaving only irrelevant operators, at worst \(\mathcal{O}(M_{\text{Heavy}}^2) \).

We demonstrate this below for two heavy BSM particle examples, a heavy fermion and a heavy scalar.
C. Singlet $M_S^2 \gg m_{W_{EH}}^2$ real scalar field S with discrete Z_2 symmetry and $\langle S \rangle = 0$

Consider an $SU(3)_C \times SU(2)_L \times U(1)_Y$ singlet real scalar S, with $(S \rightarrow -S)$ Z_2 symmetry, $M_S^2 \gg m_h^2$, and $\langle S \rangle = 0$. We add to the renormalized theory

$$L_S = \frac{1}{2} (\partial_{\mu} S)^2 - V_{\phi S}$$

$$V_{\phi S} = \frac{1}{2} M_S^2 S^2 + \frac{\lambda_S}{4} S^4 + \frac{1}{2} \phi S M_S^2 \left[\phi^\dagger \phi - \frac{1}{2} (H_2)^2 \right]$$

with $M_S^2 > 0$. Again,

$$\vec{J}^\mu_{L:S} = \vec{J}^\mu_{L+R:S} = \vec{J}^\mu_{L-R:S} = 0$$

and all the analogues of equation (62) follow.

Since it is massive, S cannot carry information to the surface of the 4-volume $\int d^4 x \cdot S - h$ mixing, which might well have spoiled the protection that the WTI provide to m_h^2, is forbidden by the Z_2 symmetry $S \rightarrow -S$. It follows that the axial-vector WTI for T-Matrix elements (3), Greens functions (6), Adler’s self-consistency and IR finiteness (34), including the Goldstone theorem, are still true for the $\nu_{DM}^G_{abr}$, extended to include this scalar singlet. Note that Green’s functions are usually 1-S-Reducible, by cutting an S line.

In the $m_{W_{EH}}^2/M_S^2 \rightarrow 0$ limit, the weak-scale effective Lagrangian therefore again remains (40) (41).

IV. CONCLUSION: HISTORICALLY, COMPLETE DECOUPLING OF HEAVY INVISIBLE PARTICLES IS THE USUAL PHYSICS EXPERIENCE

We defined the $\nu_{DM}^G_{abr}$, as the global $SU(3)_C \times SU(2)_L \times U(1)_Y$ model of a complex Higgs doublet and 3rd generation SM quarks and leptons, augmented by a right-handed neutrino with Dirac mass. With SM isospin and hypercharge assignments for fermions, $\nu_{DM}^G_{abr}$ has zero axial anomaly. We showed that, in the presence of CP conservation, the weak-scale low-energy effective Lagrangian of the spontaneously broken $\nu_{DM}^G_{abr}$, is severely constrained by, and protected by, new rigid/global SSB axial-vector Ward-Takahashi identities (WTI) including an equivalent of the Goldstone theorem. In particular, the weak-scale SSB $\nu_{DM}^G_{abr}$, has an $SU(2)_L$ shift symmetry for constant $\bar{\theta}$

$$\vec{\pi} \rightarrow \vec{\pi} + \vec{\pi} \times \vec{\theta} + \langle H \rangle \vec{\theta} + O(\theta^2).$$

This protects it, and causes the complete decoupling of certain heavy $M_{W_{EH}}^2 \gg m_{W_{EH}}^2$ BSM matter-particles. (Note that such decoupling is modulo special cases: e.g. heavy Majorana ν_G, and possibly $O_{\nu_{DM}}^{Dim \leq 4,NonAnalytic}$, which are dimension ≤ 4 operators, non-analytic in momenta or a renormalization scale μ^2, involve heavy particles, and are beyond the scope of this paper.)

Such heavy-particle decoupling is historically the usual physics experience at each energy scale as experiments probed smaller and smaller distances. After all, Willis Lamb did not need to know the top quark or BEH mass in order to interpret theoretically the experimentally observed $O(m_e \alpha^5 \ln \alpha)$ splitting in the spectrum of hydrogen.

Such heavy-particle decoupling may be the reason why the Standard Model, viewed as an effective low-energy weak-scale theory, is the most experimentally and observationally successful and accurate theory of Nature known to humans, i.e. when augmented by classical General Relativity and neutrino mixing: that “Core Theory” has no known experimental or observational counterexamples.

Acknowledgements The importance and influence of Raymond Stora’s contribution to this paper (revealtory conversations, correction of the authors’ errors and wrong-headedness, illumination of the history of renormalization, attention/obedience to the detailed technology of renormalization, etc.) cannot be over-estimated.

BWL thanks Jon Butterworth and University College London for support as an Honorary Senior Research Associate; Albrecht Karle and U Wisconsin at Madison for hospitality during the academic year 2014-2015; and Chris Pope, the George and Cynthia Woods Mitchell Center for Fundamental Physics and Astronomy, and Texas A&M University for support/hospitality, during the academic year 2010-2011, where this work began. GDS is partially supported by CWRU grant doc-sco0009946 and thanks the CERN theory group for hospitality during 2012-13 when the groundwork for this paper was laid.

[1] S.Raby, in Review of Particle Physics, Particle Data Group Collaboration, J.Phys. G37 (2010) 075021.
[2] H. Baer and X. Tata, Weak Scale Supersymmetry, Cambridge U. Press (2006), Cambridge UK, pgs.13-16.
[3] L. Randall and M. Reece, arXive 1206.6540, 29 June 2012;
[4] S. Dimopoulos and H. Georgi,‘Solution Of The Gauge Hierarchy Problem,’ Phys. Lett. B 117, 287 (1982);
[5] N. Arkani-Hamed, A. G. Cohen and H. Georgi., Phys. Lett. B 513,232 (2001), [hep-ph/0105239].
[6] B. Grinstein, D. O’Connell and M. B. Wise, Phys. Rev. D 77, 025012 (2008) [arXiv:0704.1845 [hep-ph]].
[7] S. Weinberg, Expectations of a Final Theory, Symposium, Trinity College, Cambridge, September 2, 2005; Universe or Multiverse? Ed. B. Carr (Cambridge University Press); S.W. writes in the context of fine-tuned
Appendix A: Proof of the Ward-Takahashi Identities for $SU(2)_L \times SU(2)_R$ and $SU(2)_L \times U(1)_Y$

In 1970, B. Lee presented a series of lectures at the Cargese Summer School on Chiral Dynamics, with detailed results on the renormalization of the Gell-Mann-Levy Model — the $SU(2)_L \times SU(2)_R$ Linear Sigma Model (ΣM) with an approximate $SU(2)_L R$ chiral symmetry, but with an explicit breaking term (known as the Partially Conserved Axial Current (PCAC), or Polkinghorne term). Of specific interest to us, in section V of those lectures, he proved a tower of $SU(2)_L R$ Ward-Takahashi identities (WTI) among (h,π)Scalar-sector (ϕ-sector) connected amputated Green’s functions, Adler’s self-consistency conditions, and the Goldstone theorem.

Those WTI, and the proof thereof, are of immense value to us in this and companion papers. Unfortunately, the volume in which the lecture appears is difficult to obtain. We therefore present in this Appendix, for the benefit of the reader, those WTI and Lee’s proof of them for the case of conserved axial-vector currents. We hew closely to Lee’s presentation, language, notation and pedagogy. Although we sometimes comment/elaborate on specific details, we mostly just let Lee explain. Because we are interested in weak interactions rather than strong interactions, we set the explicit PCAC breaking term (parametrized by γ in Lee’s notation) to zero; the result is the $SU(2)_L R$ Schwinger model [9]. Because we are interested in including SM fermions, whose Yukawa couplings break global $SU(2)_L R$ explicitly to global $SU(2)_L U(1)_y$, we derive $SU(3)_C \times SU(2)_L U(1)_y$ WTI’s, analogous
with those of Lee.

The conserved vector and axial-vector currents of the Φ-sector $SU(2)_L \times SU(2)_R \times \Sigma \times \Sigma M$ with the Lagrangian [3] are

\[
\begin{align*}
\bar{V}_\mu &= \bar{\pi} \times \partial_\mu \pi; \quad \partial^\mu \bar{V}_\mu(x) = 0 \quad (A1) \\
\bar{A}_\mu &= \pi \partial_\mu H - H \partial_\mu \pi; \quad \partial^\mu \bar{A}_\mu(x) = 0
\end{align*}
\]

In Lee’s lectures, there is an explicit PCAC breaking of the chiral symmetry, $\partial_\mu \bar{A}_\mu(x) = \gamma \bar{\pi}(x)$. In this paper we take $\gamma = 0$.

In $SU(2)_L \times U(1)_Y$, we are interested in the left-handed combination of \bar{V}_μ and \bar{A}_μ: $2\bar{\mu} \equiv \bar{V}_\mu + \bar{A}_\mu$. The addition of fermions in $SU(3)_C \times SU(2)_L \times U(1)_Y$ representations adds contributions to both \bar{V}_μ and \bar{A}_μ: The various $SU(2)_L$, $SU(2)_L+R$, $SU(2)_L-R$ currents in the ν_0SM(odd), together with their conservation laws, are given in Eqns. (49) through (53). We focus the remainder of our attention on the $SU(3)_C \times SU(2)_L \times U(1)_Y$ case, which has some additional subtleties compared to Lee’s $SU(2)_L \times SU(2)_R$.

We examine time-ordered amplitudes of products of the axial-vector current J_{μ}^{L-R}, with ν scalars (coordinates x, momenta p, and M pseudo-scalars (coordinated y, momenta q, isospin t)): $\langle 0 | T \left[J^{L-R}_{\mu}(z) h(x_1) \cdots h(x_N) \pi^{t_1}(y_1) \cdots \pi^{t_M}(y_M) \right] | 0 \rangle$

Here $h = H - \langle H \rangle$ and $\bar{\pi}$ are all-loop-orders renormalized fields, normalized so that $\langle 0 | h(0) | h \rangle = 1$ and $\langle 0 | \pi^0(0) | \pi^0 \rangle = \delta^{ij}$. We want the divergence of such amplitudes.

We are reminded that, as discussed in section III A, such axial-vector-current amplitudes (as distinct from left-handed current amplitudes) are of interest, and can be considered separately from vector-current amplitudes, solely because of CP conservation. Making use of axial-vector-current conservation (equations (49) through (53), and the equal-time commutation relations (again assuming CP conservation)

\[
\begin{align*}
\delta(z_0 - x_0) & \left[2J_{0}^{L-R;l}(z), h(x) \right] = -i\pi^i(x)\delta^{(4)}(x - z) \\
\delta(z_0 - y_0) & \left[2J_{0}^{L-R;l}(z), \pi^j(y) \right] = +i\delta^{ij}h(y)\delta^{(4)}(y - z)(A2)
\end{align*}
\]

a short calculation reveals

\[
\begin{align*}
\partial^\mu & \langle 0 | T \left[2J^{L-R;l}(z) h(x_1) \cdots h(x_N) \pi^{t_1}(y_1) \cdots \pi^{t_M}(y_M) \right] | 0 \rangle \\
&= \sum_{m} \langle 0 | T \left[h(x_1) \cdots h(x_N) h(z) \pi^{t_1}(y_1) \cdots \pi^{t_M}(y_M) \right] | 0 \rangle \delta^{(4)}(y_M - z) \delta^{t_m} \\
&+ \sum_{m} \langle 0 | T \left[h(x_1) \cdots h(x_N) \pi^{t_1}(y_1) \cdots \pi^{t_M}(y_M) \right] | 0 \rangle \delta^{(4)}(y_M - z) \delta^{t_m} \\
&- \sum_{n} \langle 0 | T \left[h(x_1) \cdots h(x_n) \cdots h(x_N) \pi^{t_1}(y_1) \cdots \pi^{t_M}(y_M) \right] | 0 \rangle \delta^{(4)}(x_n - z)
\end{align*}
\]

(A3)

where $\pi^{t_m}(y_M)$ or $h(x_n)$ indicates that that copy of π or h is to be omitted from the product of fields. The LHS of [A3] has M pion fields. On the RHS, the first 2 terms have $M - 1$, and the 3rd term $M + 1$, pions.

The fermion contributions to J_{μ}^{L-R} commute with $h(x)$ and $\pi(y)$ and so do not contribute to the RHS of [A3]. Fermion contributions to the LHS remain.

We define the Fourier Transform of these amplitudes in the usual way

\[
\begin{align*}
iG_{\mu}^{t_1 \cdots t_M}(k; p_1 \cdots p_N; q_1 \cdots q_M) (2\pi)^2 \delta^{(4)} \left(k + \sum_{n} p_n + \sum_{m} q_m \right) \\
&= \int d^4z e^{ikz} \Pi_{n=1}^{N} d^4x_n e^{ip_n x_n} \Pi_{m=1}^{M} d^4y_m e^{iq_m y_m} \langle 0 | T \left[2J^{L-R;l}(z) h(x_1) \cdots h(x_N) \pi^{t_1}(y_1) \cdots \pi^{t_M}(y_M) \right] | 0 \rangle
\end{align*}
\]

(A4)

To economize on notation, going forward we will omit all isospin indices, letting momenta stand in for the
isospin indices as well.

The reader is warned that, in this Appendix (and in
Lee), it is assumed that π are the only massless fields in
the theory, so that certain surface integrals, which are
discussed in the body of this paper, vanish.

Taking the Fourier Transform of the divergence of the
amplitude, and applying Stokes theorem:

$$\int d^4z e^{ikz} \Pi_{n=1}^N d^4x e^{ip_n \cdot x} \Pi_{m=1}^M d^4y e^{iq_m \cdot y} \partial_n^2 \langle 0| T \left[2J_\mu^z(z)h(x_1) \cdots h(x_N)\pi(y_1) \cdots \pi(y_M) \right] |0 \rangle =$$

$$k^\mu G_\mu(k; p_1 \cdots p_N; q_1 \cdots q_M) (2\pi)^4 \delta^{(4)} \left(k + \sum_{n}^N p_n + \sum_{m}^M q_m \right) \quad (A5)$$

The first term contains the pion-hole contribution; the
second term is non-singular at $k^2 = 0$.

With this new decomposition, the LHS of equation[14]
is

$$i \langle H \rangle k^2 H(p_1 \cdots p_N; q_1 \cdots q_M) + k^\mu \tilde{H}_\mu \quad (A11)$$

As $k \to 0$, the second term vanishes, and the first term
goes to a limit, since H has a pole at $k^2 = 0$. Therefore

$$i \langle H \rangle \lim_{k^2 \to 0} k^2 H(p_1 \cdots p_N; q_1 \cdots q_M)$$

$$= \sum_{m}^M H(p_1 \cdots p_N q_m; q_1 \cdots \hat{q}_m \cdots q_M) \delta_{l,t,m}$$

for all $N, M \geq 1$. For $N = 0$ and $M = 1$

$$\langle H \rangle \lim_{k^2 \to 0} \left(k^2 \Delta_\pi(k^2) \right) = \langle H \rangle \quad (A13)$$

where

$$i \Delta_\pi(q^2) = \int d^4x e^{iq \cdot x} \langle 0| T[\pi(x)\pi(0)] \rangle \quad (A14)$$

and $\Delta_\pi(q^2)$ is the pion propagator. The relation[13]
looks like the Goldstone Theorem, and is indeed equiva-
tent to it in this gauged theory, where the masslessness
of the NGB π is equivalent to the masslessness of π, as
discussed in the body of the paper.

Equations[12] and[13] are the Ward-Takahashi
Identities (WTI) of the theory. They are the fundamental
identities upon which the arguments of this paper are
based. We can combine them to write (for $N \geq 0, M \geq 1$):

$$-\langle H \rangle \left[i \Delta_\pi(0) \right]^{-1} H(p_1 \cdots p_N; 0q_1 \cdots q_M)$$

$$= \sum_{n}^N H(p_1 \cdots \hat{p}_n \cdots p_N; p_n q_1 \cdots q_M) \quad (A15)$$

$$-\sum_{m}^M H(p_1 \cdots p_n q_m; q_1 \cdots \hat{q}_m \cdots q_M)$$

In order to derive “1-soft-pion theorems”, the limit
$k \to 0$ is taken in equations[12] and[13]. Here we must be
careful. Because of the pion pole in H_μ at $k^2 = 0$,
k$^\mu H_\mu \to constant$. We therefore isolate the pion-hole
contribution to H_μ by writing

$$H_\mu(k; p_1 \cdots p_N; q_1 \cdots q_M)$$

$$= i \langle H \rangle k^\mu \hat{H}_\mu(k; p_1 \cdots p_N; q_1 \cdots q_M) + \tilde{H}_\mu(k; p_1 \cdots p_N; q_1 \cdots q_M) \quad (A10)$$
Equation (A15) is of the form
\[\langle H \rangle (N + M + 1) = \text{point function} \] (A16)
\[\propto \sum [(N + M) - \text{point functions}] \]

B.W. Lee develops perturbation theory as an expansion in his \(\lambda \), the square-root of his all-loop-orders renormalized 4-point coupling \(\lambda^2 \) (written less compactly \(\lambda_0^2 \) in the body of this paper). Treating \(\langle H \rangle \) as \(\mathcal{O}(\lambda^{-1}) \), Lee points out that equation (A15), being of the form (A16), “is satisfied in each order of perturbation theory.” That is, if the \(N + M + 1 \)-point function on the LHS is computed in the 1-loop approximation, that is to order \(\lambda^2 \), and the \(N + M \)-point functions on the RHS are computed in the same 1-loop approximation, that is to order \(\lambda^2 \), then the equation is identically satisfied.

The off-mass-shell T-matrix for the \(\pi \) scalar, \(\lambda \) pseudo-scalar process is obtained from the connected amplitudes \(H(p_1 \cdots p_N; q_1 \cdots q_M) \) by “amputating” the propagators of the external lines:

\[H(p_1 \cdots p_N; q_1 \cdots q_M) = \prod_{n=1}^{N} i \Delta_h(p_n^2) \prod_{m=1}^{M} i \Delta_\pi(q_m^2) T(p_1 \cdots p_N; q_1 \cdots q_M) \] (A17)

The off-shell 1-(\(h, \pi \))ScalarParticle-Reducible (1-\(\phi \)-R) connected amputated T-matrix elements are expressed in terms of the all-loop-orders renormalized \(h \) and \(\pi \) propagators:

\[i \delta_{ij} \Delta_h(p^2) = \int d^4 x e^{i p \cdot x} \langle 0 | T[h(x)h(0)] | 0 \rangle \] (A18)
\[i \delta_{ij} \Delta_\pi(q^2) = \int d^4 x e^{i q \cdot x} \langle 0 | T[\pi_i(x)\pi_j(0)] | 0 \rangle \]

and 1-(\(h, \pi \))ScalarParticle-Irreducible (1-\(\phi \)-I) connected amputated Green’s functions \(\Gamma_{N,M}(p_1 \cdots p_N; q_1 \cdots q_M) \), which cannot be disconnected by cutting a \(h \) or \(\pi \) propagator line.

\[T(p_1 \cdots p_N; q_1 \cdots q_M) = \Gamma_{N,M}(p_1 \cdots p_N; q_1 \cdots q_M) + \text{reducible part} \] (A19)

\(\Gamma_{N,M}(p_1 \cdots p_N; q_1 \cdots q_M) \) is the 1-\(\phi \)-I vertex for \(N \) \(h \)’s and \(M \) \(\pi \)’s. The “reducible part” can be written in terms of irreducible vertices of lower order and full propagators. Expressed in terms of the full propagators and the irreducible vertices, the T-matrix has a tree structure – i.e. it can be represented by graphs without loops.

Because the T-Matrix contains only connected graphs, and our WTI concern only the axial-vector current, and CP is conserved,

\[\Gamma_{0,0} = \Gamma_{0,1} = \Gamma_{1,0} = 0 \] (A20)

In terms of connected amputated Green’s functions, the propagators

\[\Gamma_{2,0}(p, -p) = i \Delta_h(p^2)^{-1} \] (A21)
\[\Gamma_{0,2}(q, -q) = i \Delta_\pi(q^2)^{-1} \]

We now examine \(\Gamma_{1,2} \). By definition

\[H(p; 0, -p) = \left[i \Delta_h(p^2) \right] \left[i \Delta_\pi(0) \right] \times \left[i \Delta_\pi(p^2) \right] \Gamma_{1,2}(p; 0, -p) \] (A22)

so with (A15) we have

\[\langle H \rangle \Gamma_{1,2}(p; 0, -p) = \left[\Delta_h(p^2) \right]^{-1} - \left[\Delta_\pi(p^2) \right]^{-1} \] (A23)

We can easily verify that this holds to lowest order where \(\Gamma_{1,2}(p; 0, -p) = -2\lambda^2 \langle H \rangle, \left[\Delta_h(p^2) \right]^{-1} = p^2 - m_h^2 = p^2 - 2\lambda^2 \langle H \rangle^2 \) and \(\left[\Delta_\pi(p^2) \right]^{-1} = p^2 \).

To proceed further, we must express the WTI in terms of the connected amputated T-matrix rather than the Green’s functions. We can rewrite equation (A15) for

\[\langle H \rangle T(p_1 \cdots p_N; 0; q_1 \cdots q_M) \] (A24)

\[= \sum_{m=1}^{M} i \Delta_h(q_m^2) \left[i \Delta_\pi(q_m^2) \right]^{-1} \times T(p_1 \cdots p_N q_m; q_1 \cdots q_m \cdots q_M) - \sum_{n=1}^{N} i \Delta_\pi(p_n^2) \left[i \Delta_h(p_n^2) \right]^{-1} \times T(p_1 \cdots \hat{p}_n \cdots p_N; q_1 \cdots q_M p_n) \]

A corollary of (A24) are Adler’s self-consistency conditions for global \(SU(2)_L \times U(1)_Y \):

\[\langle H \rangle \lim_{q_1 \rightarrow 0} T(p_1 \cdots p_N; q_1 \cdots q_M) |_{q_1^2 = \cdots = q_M^2 = 0} = 0, \] (A25)

which shows that, for \(\langle H \rangle \neq 0 \), the T-matrix vanishes as one of the pion momenta goes to zero, provided all the external particles are on the mass shell. Equation (A25) asserts the absence of infrared divergences in Goldstone model. “Individual Feynman diagrams are IR divergent, but the divergent parts must cancel in every order of perturbation theory. Furthermore, the amplitude must vanish in the soft-pion limit [33].”

In (A24), the zero-momentum pion in \(T(p_1 \cdots p_N; 0 q_1 \cdots q_M) \) can either come off a “branch” (Lee’s word for an external \(\phi \) line) or off the “body” (our word) of the diagram. Let \(T_1 \) be the sum of the subset of the tree graphs belonging to \(T(p_1 \cdots p_N; 0 q_1 \cdots q_M) \) in which the zero-momentum pion comes off a branch, as in Figure 1. The branch is either a \(\pi \) branch (left-hand graph of Figure 1), with finite-momentum \(q_m \), written

\[i \Gamma_{1,2}(p_n; 0, -p_n) i \Delta_\pi(p_n^2) T(p_1 \cdots \hat{p}_n \cdots p_N; p_n, q_1 \cdots q_M) \]

or a \(h \) branch (right-hand graph of Figure 1), with momentum \(q_m \), written

\[i \Gamma_{1,2}(q_m; 0, -q_m) i \Delta_\pi(q_m^2) T(p_1 \cdots p_N; q_1 \cdots q_m \cdots q_M) \]
so that, combining (A24, A26, A27), the WTI for $N \geq t$ satisfies (A29). Assume then that (A29) holds for $N + M < n + m$. Let $N = n, M = m$. T_2 in (A29) contains two classes of graphs, shown in Figure 2:

- Figure 2, top graphs are reducible graphs in which the zero-momentum pion comes out of an irreducible vertex. However, this does not include graphs in which the zero-momentum pion comes out of a three-prong irreducible vertex of which two prongs are external lines, since those belong to T_1, not T_2. For the sum of the 1-$\bar{\phi}$-R graphs, we may use (A29), for $N + M < n + m$, to show that the 1-$\bar{\phi}$-I contributions from both sides of (A28) are identical and cancel. This leaves only 1-$\bar{\phi}$-I vertices on both sides of equation (A29), giving us (A29) for $N = n, M = m$, as desired.

- Figure 2, bottom graph is 1-$\bar{\phi}$-I, and already satisfies (A29).

Having proved equation (A29), we can now restore all the isospin indices and display it in its full glory:

$$\langle H \rangle \Gamma_{N, M+1}^{T_1 \cdots T_m} (p_1 \cdots p_N; q_1 \cdots q_M) \quad (A30)$$

$$= \sum_{m=1}^{N} \Gamma_{N-1, M+1}^{T_1 \cdots T_m t} (p_1 \cdots p_N q_m; q_1 \cdots q_M p_n);$$

valid for all $N, M \geq 0$, and non-trivial for M odd.

As Lee emphasizes for the $SU(2)_L \times SU(2)_R$ symmetric theory, "the identities (A30) are valid in any renormalizable theory in which the divergence [of the axial vector current vanishes] ... and the H, π fields transform as the $[1, \bar{1}]$ representation under chiral $SU(2) \times SU(2)$ transformations. Whether other fields are included is irrelevant, so long as the chiral symmetry is broken in a way to ensure the divergence remains zero. When there are other fields present, the irreducible vertices we have defined here may still be reducible with respect to these new fields." To Lee's statement, we add the strong constraint: as long as the new fields are massive!

With the addition of massive Standard Model fermions to the $SU(2)_L \times SU(2)_R$ symmetric scalar theory, the symmetry is explicitly broken down to $SU(2)_L \times U(1)_Y$.

The addition of certain other new massive BSM particles that do not contribute to the divergence of the $SU(2)_L \times U(1)_Y$ current will again leave the form (A25, A30) of the WTI identities, and the Goldstone theorem, unchanged. This is discussed more explicitly in section III.