Comparison of Coulomb Impurity, Longitudinal Acoustic Phonons, and Surface Optical Phonons Affecting the $n = 0$ Landau Level in Monolayer Graphene

W. H. Ji, 1,2 H. T. Yang, 2 and S. L. Ban 1

1Department of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
2College of Physics and Electronic Information Engineering, Jining Normal University, Ulanqab 012000, China

Correspondence should be addressed to S. L. Ban; slban@imu.edu.cn

Received 7 April 2022; Revised 28 June 2022; Accepted 5 July 2022; Published 31 August 2022

1. Introduction

In recent years, layered systems such as graphene with a substrate have been attracting a strong interest in applied physics since they have many unique physical properties. However, the gapless nature of graphene limits its application in electronic devices. Up to now, the most direct way to open the energy gap (EG) is to apply a magnetic field perpendicular to the graphene [1], in which the energy of an electron near the K-point is quantized into nonequidistant Landau levels, leading to the $n = 0$ Landau level (LL) splitting and the abnormal quantum Hall effect [2]. Besides, there are many methods to enhance the EG opening, such as electron-phonon interactions [3, 4], and doped impurity effects [5, 6].

In the presence of an external magnetic field, the effects of the electron-phonon longitudinal acoustic (LA) phonons in the graphene plane and the surface optical (SO) phonons on the substrate have been discussed for the assistant mechanism of EG opening. Li et al. [7] investigated the EG opened by the coupling between the electron and LA phonons and found both linear and square root relations between the EG and the magnetic field. Recently, Sun and Xiao [8] studied the effects of LA phonons in a monolayer graphene plane on the ground state energy of a magnetopolaron under different temperatures to indicate the energy splitting. But the energy gap opened by LA phonons in Refs. [7, 8] is only several meV. Wang et al. [9] investigated the effect of SO phonons from a polar substrate on the EG of $n = 0$ LL, and it was found to have a 40 meV constant of EG while increasing the external magnetic field. But it was confirmed that the EG can be enlarged with the increase of the magnetic field while an impurity appears in experiments [10, 11].

Xiao et al. [12] discussed both the effects of Coulomb impurities and SO phonons from the substrate on the $n = 0$ LL splitting. It was found the splitting energy could vary on a large scale due to a Coulomb impurity. Unfortunately, a constant relative dielectric function related to the screening effect was adopted in their calculation. Recently, we discussed the influences of a screened charge impurity with an inconstant dielectric function and carrier-SO phonons on the $n = 0$ LL in monolayer graphene [13]. A weak carrier-phonon coupling was adopted in our computation. However, it is more practical to discuss the arbitrary carrier-phonon coupling for monolayer graphene with a substrate since there are different kinds of phonons.

The influences of a charged Coulombic impurity with screened effect and carrier-phonon interaction on the $n = 0$ Landau level in monolayer graphene with a polar substrate under a high static magnetic field are discussed to compare the competition among the impurities, the longitudinal acoustic phonons in the graphene plane and the surface optical phonons on the substrate. A method of linear combination operators is used to deal with the position and momentum of a carrier in a magnetic field. The method of Lee-Low-Pines variation with an arbitrary carrier-phonon coupling is adopted to derive the effects of phonons. It is found that the energy gap of $n = 0$ Landau level opened by carrier-longitudinal acoustic phonons cannot be the main mechanism, whereas both the carrier-surface optical phonon interaction and the carrier-impurity interaction play the main roles in determining the energy splitting.

Copyright © 2022 W. H. Ji et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this work, the coupling between a carrier both with LA deformation phonons in the graphene plane and SO phonons on the substrate, and the influence of a screened Coulomb impurity from the substrate are considered to affect the splitting of $n = 0$ LL under a static magnetic field. An arbitrary carrier-phonon coupling is adopted to derive the effect of phonons by using the Lee-Low-Pines variation method [14]. The effect of the screened Coulomb potential induced by the charged impurity is examined by using the dielectric function under the random-phase approximation (RPA). A linear combination operator method [15] is adopted to derive the effect of the magnetic field. Our results show the competition of the above three effects on the EG of $n = 0$ LL splitting. Our model can provide a theoretical explanation for the experimental measurements [16, 17] of opening the EG in the monolayer graphene with a substrate.

2. Model and Theory

As shown by Figure 1(a), the monolayer graphene is taken along the x-y plane under a uniform static magnetic field B along the z direction and the carrier (electron and hole) is located at $\mathbf{R} = (r, 0)$, where $r = (x, y)$ is the position vector in the graphene plane. A single charged impurity with charge number Z is located at $\mathbf{R}_0 = (0, -z_0)$ and provides a Coulomb potential in the graphene plane as plotted in Figure 1(b). The Hamiltonian of the carrier, LA phonons, SO phonons, and the impurity [5, 7, 12] can be expressed as

$$H = H_c + H_{LA} + H_{c-LA} + H_{SO} + H_{c-SO} + H_{c-i},$$

where

$$H_c = V_F \begin{pmatrix} 0 & \pi_x - i\pi_y \\ \pi_x + i\pi_y & 0 \end{pmatrix},$$

$$H_{LA} = \sum_k \hbar \omega_{LA} a_k^\dagger a_k,$$

$$H_{c-LA} = \sum_{k,\nu} M_{LA,\nu} \begin{pmatrix} i 0 \\ 0 i \end{pmatrix} (a_k^\dagger + a_k) e^{ikr},$$

$$H_{SO} = \sum_{k,\nu} \hbar \omega_{SO,\nu} b_{k,\nu}^\dagger b_{k,\nu},$$

$$H_{c-SO} = \sum_{k,\nu} M_{SO,\nu} \begin{pmatrix} b_k^\dagger + b_k \end{pmatrix} e^{ikr},$$

$$H_{c-i} = \frac{\beta Z e^2}{4\pi\varepsilon_0 |\mathbf{R} - \mathbf{R}_0|}.$$

Equation (2a) is denoted by H_c, stands for the carrier (electron and hole) kinetic energies and V_F is the Fermi velocity of carriers. The magnetic field \mathbf{B} is in a symmetric gauge and satisfies $\pi_x = (p_x + \beta eB y/2)$ and $\pi_y = (p_y - \beta eB x/2)$ with p_x and p_y as the electron (hole) momentum operators. In the Hamiltonian $\beta = +$ and $\beta = -$ denote hole and electron, respectively. Equations (2b)–(2e) represented by $H_{LA}, H_{c-LA}, H_{SO},$ and H_{c-SO} describe the LA phonon energy, electron (hole)–LA phonon coupling energy, the SO phonon energy, and electron (hole)–SO phonon coupling energy, respectively. In equations (2b) and (2d), a_k^\dagger and b_k^\dagger are the creation (annihilation) operators of LA and SO phonons with wave vector k, respectively. Subscript v ($v = 1, 2$) is the branch of SO phonons with frequency $\omega_{SO,v}$. In equation (2f), $M_{SO,\nu} = D k \sqrt{\omega_{SO,\nu}}/\hbar$ is the electron (hole)–LA phonon interaction with the phonon dispersion relation $\omega_{LA} = \nu LA k$ in the graphene plane, and ν_{LA} is the velocity of the LA wave. Here, A represents the area of the monolayer graphene, D is the deformation potential constant, and ρ is the mass density. In equation (2e), $M_{SO,k,\nu} = \sqrt{(\varepsilon_0^2 \eta \omega_{SO,v})/ (2\varepsilon_0^2 \kappa_0)} \exp(-kz')$ is the electron (hole)–SO phonon interaction with the parameter of polarization strength $\eta = (\kappa_0 - \kappa_\infty)/[(\kappa_0 + 1)(\kappa_\infty + 1)]$ for the substrate, with κ_0 as the static dielectric constant and κ_∞ as the electric dielectric constant, z' represents the distance from the graphene to the substrate. Equation (2f) denoted by H_{c-i} is the carrier-impurity Coulomb energy describes the interaction between the electron (hole) and impurity, ε_0 as the permittivity of vacuum, and ε as the relative static dielectric constant for impurity in the substrate, respectively.

A two-dimensional transform of the Fourier series for equation (2f) can be performed as [12, 18, 19]

$$H_{c-i} = \frac{\beta Z e^2}{2\varepsilon_0 \varepsilon k} \sum_k \frac{1}{|k|} \exp(i\mathbf{k} \cdot \mathbf{r}) \exp(-kz_0).$$

Applying the well-known Lee-Low-Pines (LLP) theory [14] which was extensively used to deal with the problem of polaron, a unitary transformation can be performed by [15]

$$U_1 = \exp \left(-i\alpha_1 \sum_k \mathbf{k} \cdot \mathbf{r} a_k^\dagger a_k - i\alpha_1 \sum_{k,\nu} \mathbf{k} \cdot \mathbf{r} b_k^\dagger b_k \right),$$

$$U_2 = \exp \left(\sum_k (g_k f_k^\dagger a_k + g_k^* f_k b_k^\dagger b_k) + \sum_{k,\nu} (g_{k,\nu} f_k^\dagger b_{k,\nu} + g_{k,\nu}^* f_k b_{k,\nu}) \right),$$

where f_k, f_k^*, $g_{k,\nu},$ and $g_{k,\nu}^*$ are the variational parameters, α_1 and α_2 are variational parameters related to the carrier-phonon coupling. The linear combination of creation and annihilation operators B_j^\dagger and B_j for the position and momentum of an electron (hole) is adopted by

$$j = \left(\frac{i}{\sqrt{2\lambda}} \right) (B_j - B_j^\dagger),$$

$$p_j = \left(\frac{\hbar k}{\sqrt{2}} \right) (B_j^\dagger + B_j),$$

where index j refers to the coordinates x, y and $\lambda = \sqrt{\varepsilon B/2\hbar}.$

Substituting equations (4)–(7) into equation (1), and performing the LLP transformation, one can get

$$H' = U_{c-i}^\dagger U_{c-i} H U_{c-i} U_{c-i}^\dagger.$$
where
\[H'_c = U^{-1}_c U^{-1}_c H_c U_c U_2 = V_F \left\{ \begin{array}{cc} 0 & H'_{c,12} \\ H'_{c,21} & 0 \end{array} \right\}, \]
with
\[H'_{c,12} = \left(\frac{\hbar a}{\sqrt{2}} (B'_x + B'_z) - \left(\frac{\beta e B}{2\hbar} \right) (B_x - B'_z) \right) \]
\[- \left(\frac{i eB}{\sqrt{2}} \right) (B'_x + B'_y) + \left(\frac{i eB}{2\hbar} \right) (B_y - B'_y) \]
\[- \alpha_1 h \sum_k k_x (a'_k + f'_k) (a_k + f_k) \]
\[+ \alpha_2 h \sum_k k_x (b'_k + g'_k) (b_k + g_k) \]
\[H'_{c,21} = \left(\frac{\hbar a}{\sqrt{2}} (B'_x + B'_z) - \left(\frac{\beta e B}{2\hbar} \right) (B_x - B'_z) \right) \]
\[+ \left(\frac{i eB}{\sqrt{2}} \right) (B'_x + B'_y) + \left(\frac{i eB}{2\hbar} \right) (B_y - B'_y) \]
\[- \alpha_1 h \sum_k k_x (a'_k + f'_k) (a_k + f_k) \]
\[- \alpha_1 h \sum_k k_x (a'_k + f'_k) (a_k + f_k) \]
\[- \alpha_2 h \sum_k k_x (b'_k + g'_k) (b_k + g_k) \]
\[- \alpha_2 h \sum_k k_x (b'_k + g'_k) (b_k + g_k) \]
\[H_{L,k} = U^{-1}_c U^{-1}_c H_{L,k} U_c U_2 \]
\[= \sum_k \hbar \omega_{L,k} (a'_k a_k + a_k f_k' + f_k' a_k + f_k f_k'), \]
\[H_{c-L,k} = U^{-1}_c U^{-1}_c H_{c-L,k} U_c U_2 \]
\[= \left\{ \begin{array}{ccc} i & 0 & \left\{ \sum_k M_{L,k} (a'_k + f'_k) \exp[-(1 - \alpha_1)^2 k^2/4\lambda^2] \right\} \\ 0 & i & \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B'_j \right) \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B_j \right) \right. \]
\[+ \sum_k M_{L,k} (a_k + f_k) \exp[-(1 - \alpha_1)^2 k^2/4\lambda^2] \]
\[\times \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B'_j \right) \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B_j \right) \right\}. \]
\[H_{SO} = U^{-1}_c U^{-1}_c H_{SO} U_c U_2 \]
\[= \sum_{k,v} \hbar \omega_{SO,v} (b^+_k g_k + g^+_k b_k) \exp\left[-\left(1 - \alpha_1\right)^2 k^2/4\lambda^2 \right] \]
\[\times \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B'_j \right) \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B_j \right) \]
\[+ \sum_{k,v} M_{SO,k,v} (b^+_k g_k + g^+_k b_k) \exp\left[-\left(1 - \alpha_1\right)^2 k^2/4\lambda^2 \right] \]
\[\times \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B'_j \right) \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B_j \right). \]
\[H_{c-SO} = U^{-1}_c U^{-1}_c H_{c-SO} U_c U_2 \]
\[= \sum_{k,v} M_{c-SO,k,v} (b^+_k g_k + g^+_k b_k) \exp\left[-\left(1 - \alpha_1\right)^2 k^2/4\lambda^2 \right] \]
\[\times \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B'_j \right) \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B_j \right). \]
\[H_{c-i} = U^{-1}_c U^{-1}_c H_{c-i} U_c U_2 \]
\[= \sum_{k} \left[\beta Z e^2 \left\{ \begin{array}{c} \frac{1}{2 A \epsilon e k} \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B'_j \right) \\ \exp\left(\frac{1}{\sqrt{2} \lambda} \sum_j k_j B_j \right) \right. \right\} \right]. \]

The wavefunctions of the n = 0 LL system in a magnetic field can be written as [1]
\[|\psi_{0,e}\rangle|0 >_{LA}|0 >_{SO} = \left(\begin{array}{c} 0 \\ |0 >_{LA} \end{array} \right) |0 >_{LA}|0 >_{SO}, \]
\[|\psi_{0,h}\rangle|0 >_{LA}|0 >_{SO} = \left(\begin{array}{c} |0 >_{LA} \\ 0 \end{array} \right) |0 >_{LA}|0 >_{SO}, \]
for the electron in the K' valley and
\[|\psi_{0,e}\rangle|0 >_{LA}|0 >_{SO} = \left(\begin{array}{c} 0 \\ |0 >_{LA} \end{array} \right) |0 >_{LA}|0 >_{SO}, \]
for the hole in the K valley, where |y > 0 e (|y > 0 h) denotes the eigenfunction of the electron (hole). In equations (11a) and (11b), |0 >_{LA} and |0 >_{SO} represent the zero LA and SO phonon states, respectively, which satisfies \[a'_k |0 >_{LA} = |1 >_{LA}, \]
\[b'_k |0 >_{SO} = |1 >_{SO}, \]
and \[a_k |0 >_{LA} = b_k |0 >_{SO}. \] The eigenenergy of the system \[H_c \] can be obtained via [12, 16]
\[E_{c,0}^2 = SO < |0 >_{LA}|\psi_0|H_{c}^2|\psi_0|0 >_{LA}|0 >_{SO}. \]

Furthermore, one can get
\[E_{c,0} = \pm \sqrt{E_{c,0}^2} = \beta \left(\sum_k \alpha_k V F h k f'_k f_k + \sum_{k,v} \alpha_k V F h g_k g'_k f_k f_k' \right). \]

The eigenenergy of the total system corresponding to the n = 0 LL can be expressed as
E_0 = \beta \left(\sum_k \alpha_1 V_p \hbar k f_k^* f_k + \sum_k \alpha_2 V_p \hbar k g_k^* g_k \right) + \sum_{n=0} \left| \psi_0 \right| H_{n,LA} |\psi_0 \rangle + H_{c-LA} + H_{c-SO} + H_{c-\epsilon_0} \left| \psi_0 \right| \langle 0_{n} | 0_{SO} \rangle

= \beta \sum_k \left[\alpha_1 V_p \hbar k f_k^* f_k + \alpha_2 V_p \hbar k g_k^* g_k \right] + \sum_k \left[M_{LA,k} f_k^* f_k + h\omega_{LA} f_k^* f_k \right] + \sum_{k,\nu} \left[\alpha_1 V_p \hbar k g_k^* g_k + h\omega_{SO,k} g_k^* g_k \right] + M_{SO,k,v} g_k^* g_k + \frac{Ze^2}{2\lambda\eta\varepsilon_k} \left(\frac{k^2}{4\lambda^2} - k z_0 \right) .

(14)

Minimizing equation (14) with respect to \(f_k, f_k^*, g_k, g_k^* \), and \(g_{k,v}^* \), one has

\[f_k = \left(\frac{-iM_{LA,k}}{\alpha_1 V_p \hbar k + h\omega_{LA}} \right) \exp \left[-(1 - \alpha_1)^2 \frac{k^2}{4\lambda^2} \right] , \quad (15) \]

\[f_k^* = \left(\frac{-iM_{LA,k}^*}{\alpha_1 V_p \hbar k + h\omega_{LA}} \right) \exp \left[-(1 - \alpha_1)^2 \frac{k^2}{4\lambda^2} \right] , \quad (16) \]

\[g_k = \left(\frac{-M_{SO,k,v}}{\alpha_2 V_p \hbar k + h\omega_{SO,v}} \right) \exp \left[-(1 - \alpha_2)^2 \frac{k^2}{4\lambda^2} \right] , \quad (17) \]

\[g_k^* = \left(\frac{-M_{SO,k,v}^*}{\alpha_2 V_p \hbar k + h\omega_{SO,v}} \right) \exp \left[-(1 - \alpha_2)^2 \frac{k^2}{4\lambda^2} \right] . \quad (18) \]

Substituting equations (15)–(18) into equation (14), one can obtain

\[E_{0,k} = E_{c-LA,k} + E_{c-SO,k} + E_{c-\epsilon_0,k} \]

\[= \sum_k \left[\left| M_{LA,k} \right|^2 \exp \left[-(1 - \alpha_1)^2 \left(\frac{k^2}{2\lambda^2} \right) \right] \right] \frac{\alpha_1 V_p \hbar k + h\omega_{LA}}{\alpha_1 V_p \hbar k + h\omega_{LA}}

\[+ \sum_{k,\nu} \left[\left| M_{SO,k,v} \right|^2 \exp \left[-(1 - \alpha_2)^2 \left(\frac{k^2}{2\lambda^2} \right) \right] \right] \frac{\alpha_2 V_p \hbar k + h\omega_{SO,v}}{\alpha_2 V_p \hbar k + h\omega_{SO,v}}

\[+ \sum_k \left[\frac{Ze^2}{2\lambda\eta\varepsilon_k} \exp \left(\frac{k^2}{4\lambda^2} - k z_0 \right) \right] \frac{k}{2\pi\nu_{LA}} \exp \left[-(1 - \alpha_2)^2 \left(\frac{k^2}{2\lambda^2} \right) \right] - 2k z_0 \right] \frac{dk}{4\pi\varepsilon_0 (\alpha_2 V_p \hbar k + h\omega_{SO,v})}

\[+ \int_0^\infty \sum_{k,\nu} \frac{Ze^2}{4\pi\varepsilon_0 k} \exp \left(\frac{k^2}{4\lambda^2} - k z_0 \right) \frac{dk}{4\pi\varepsilon_0 (\alpha_2 V_p \hbar k + h\omega_{SO,v})} . \quad (19) \]

In the previous works, \(\alpha_1 = \alpha_2 = 0 \) as a strong coupling [7] and \(\alpha_1 = \alpha_2 = 1 \) as a weak coupling [13] for carrier-phonon interaction were discussed, respectively. However, we take the variational minimum of equation (19) with respect to \(\alpha_1 \) and \(\alpha_2 \) as arbitrary coupling in our calculation. In equation (19), the ground state \(E_0 \) splits into two branches \(E_{0,+} \) and \(E_{0,-} \) for the hole and electron in the \(n = 0 \) LL under a high magnetic field, respectively. Therefore, the EG of \(n = 0 \) LL splitting can be determined by 2\(A = E_{0,+} - E_{0,-} \). Here, \(E_{c-LA,k} \), \(E_{c-SO,k} \), and \(E_{c-\epsilon_0,k} \) are the carrier-LA phonon, carrier-SO phonon, and carrier-impurity interaction splitting energy, respectively. The upper limit of the integral for the first term on the right side of equation (19) was adopted as a larger cut-off wave number \(k_c \) [7, 9].

In the present work, the \(c-i \) interaction potential can be represented by the Coulomb potential intensity \(V_k = 2n\beta Z e^2 / 4\pi\varepsilon_0 k \) in the third term on the right side of equation (19). Taking into account the usual RPA, the screened \(c-i \) Coulomb interaction potential is obtained as
In our computation, the parameters used in Sec. 2 are adopted as $V_F \approx 10^8 m/s$ [9], $D = 50 eV/LA = 2.0 \times 10^4 m/s$, $\rho = 7.5 \times 10^{-7} kg/m^3$ [7, 23], $Z = 1$ and $zt = 0$. For $z_0 = 0$ since the impurity is in the graphene plane, static dielectric constants $\varepsilon = 2.50$ and 2.30 [1] are the average of the dielectric constant of the vacuum and that of the substrate for SiO$_2$ and h-BN, respectively. For $z_0 > 0$, since the impurity is in the substrate, $\varepsilon = 3.90$ and 3.57 are adopted as shown in Table 1. The other parameters used in our computation are given in Table 1.

The comparisons of the splitting of $n = 0$ LL for SiO$_2$ (a) and h-BN (b) substrate with $z_0 = 2.0 nm$ and $k_c = 5.0 \times 10^8 m^{-1}$ are depicted in Figure 2. It can be seen that the EG of $n = 0$ LL split by LA phonons varies only 1–2 meV with the magnetic field both on SiO$_2$ and on h-BN substrate, and the splitting increases gradually with the increase of the magnetic field. The dependence of $n = 0$ LL splitting on magnetic field changes into the form of square root from linear form as considering the effect of SO phonons and $c-i$ interaction. Such a relationship is in agreement with experiments [10, 17].

Figure 3 gives each component of splitting energy $\Delta \varepsilon$ as a function of the magnetic field for SiO$_2$ (a) and h-BN (b) substrate with $z_0 = 2.0 nm$ and $k_c = 5.0 \times 10^8 m^{-1}$. The EG of the $n = 0$ LL opened by LA phonons has a gentle linear relationship with the magnetic field both for SiO$_2$ and h-BN as substrates. It can be clearly seen that the splitting energy can be expanded significantly by the screened Coulombic potential of the charged impurity and increases with the increase of the magnetic field. It can be found that the contribution from the carrier-SO phonons on a substrate and the carrier-impurity interaction play the main roles.

Figure 4 shows the splitting energy $\Delta \varepsilon$ as a function of the magnetic field for SiO$_2$ and h-BN as substrates with $k_c = 5.0 \times 10^8 m^{-1}$ and different z_0. It can be seen that $\Delta \varepsilon$ increases with increasing the magnetic field due to the Lorenz

Table 1: Physical parameters for graphene with SiO$_2$ and h-BN substrates used in the computation.

Quantity (units)	$\hbar \omega_{SO,1}$ (meV)	$\hbar \omega_{SO,2}$ (meV)	$\kappa_0 (\varepsilon_0)$	$\kappa_{\infty} (\varepsilon_0)$
SiO$_2$	146.5a	60.0a	3.90a	2.50a
h-BN	195.7b	101.7b	3.57c	2.95c

a Reference [24]. b Reference [25]. c Reference [26].

$V_{sc}^R = V_k^R k^R \varepsilon_{PL}(k)$, where $\varepsilon^R(k) = \varepsilon^R \varepsilon(k, \omega = 0)$ is the static dielectric function in graphene on polar substrates. Therefore, the screened carrier-impurity Coulomb interaction potential in equation (19) can be replaced by V_{sc}^R and $\varepsilon \rightarrow \varepsilon^R(k, \omega = 0)$ [19–21]. Here, $\varepsilon^R(k, \omega = 0)$ in graphene with air on one side and SiO$_2$ substrate on the other for $n = 0$ LL has been discussed in detail in Ref. [21, 22] and it can be expressed as

$$\varepsilon^R(k, \omega = 0) \approx 1 + \frac{k k^c_{vac}(k^2)}{\sqrt{2}},$$

where $l = 1/\sqrt{2} \lambda$ is the magnetic length and $\xi_{vac}(k^2)$ is the vacuum polarization function, whose specific form was given by equation (4.4) in Ref. [22]. The relation curves between $\varepsilon^R(k)$ of $n = 0$, LL and k/λ for SiO$_2$ and h-BN substrate have plotted in our previous work [13]. Substituting equation (20) into equation (19), the numerical results can be obtained.

3. Results and Discussion

In our computation, the parameters used in Sec. 2 are adopted as $V_F \approx 10^8 m/s$ [9], $D = 50 eV/LA = 2.0 \times 10^4 m/s$, $\rho = 7.5 \times 10^{-7} kg/m^3$ [7, 23], $Z = 1$ and $zt = 0$. For $z_0 = 0$ since the impurity is in the graphene plane, static dielectric constants $\varepsilon = 2.50$ and 2.30 [1] are the average of the dielectric constant of the vacuum and that of the substrate for SiO$_2$ and h-BN, respectively. For $z_0 > 0$, since the impurity is

\[V_{sc} = V_k^R k^R \varepsilon_{PL}(k), \] where $\varepsilon^R(k) = \varepsilon^R \varepsilon(k, \omega = 0)$ is the static dielectric function in graphene on polar substrates. Therefore, the screened carrier-impurity Coulomb interaction potential in equation (19) can be replaced by V_{sc}^R and $\varepsilon \rightarrow \varepsilon^R(k, \omega = 0)$ [19–21]. Here, $\varepsilon^R(k, \omega = 0)$ in graphene with air on one side and SiO$_2$ substrate on the other for $n = 0$ LL has been discussed in detail in Ref. [21, 22] and it can be expressed as

$$\varepsilon^R(k, \omega = 0) \approx 1 + \frac{k k^c_{vac}(k^2)}{\sqrt{2}},$$

where $l = 1/\sqrt{2} \lambda$ is the magnetic length and $\xi_{vac}(k^2)$ is the vacuum polarization function, whose specific form was given by equation (4.4) in Ref. [22]. The relation curves between $\varepsilon^R(k)$ of $n = 0$, LL and k/λ for SiO$_2$ and h-BN substrate have plotted in our previous work [13]. Substituting equation (20) into equation (19), the numerical results can be obtained.

3. Results and Discussion

In our computation, the parameters used in Sec. 2 are adopted as $V_F \approx 10^8 m/s$ [9], $D = 50 eV/LA = 2.0 \times 10^4 m/s$, $\rho = 7.5 \times 10^{-7} kg/m^3$ [7, 23], $Z = 1$ and $zt = 0$. For $z_0 = 0$ since the impurity is in the graphene plane, static dielectric constants $\varepsilon = 2.50$ and 2.30 [1] are the average of the dielectric constant of the vacuum and that of the substrate for SiO$_2$ and h-BN, respectively. For $z_0 > 0$, since the impurity is
effect and decreases with increasing z_0 since the increase of z_0 can weaken the carrier-impurity interaction. Therefore, the energy of the $n = 0$ LL splitting can be modulated by the position of a charged impurity. Significantly, there is an obvious change in the splitting energy 2Δ (from the black line to the red line) when the impurity moves from the graphene plane to the substrate due to the change in the dielectric environment around the impurity. In addition, there is only the impurity energy correction corresponding to angular momentum $j = \pm 1/2$ of $n = 0$ LL in Ref. [11], and the effects of different angular momentums on the modification of impurity energy will be the subject of further work.

4. Conclusion

In summary, the influence of carrier-LA phonons, carrier-SO phonons, and the carrier-impurity interaction on the EG of $n = 0$ LL splitting in monolayer graphene with a substrate under a static magnetic field is investigated theoretically. The dependence of splitting energy on the magnetic field strength and position of the charged Coulombic impurity are also discussed. Our results show that the EG split by LA phonons is smaller enough to be neglected, the main contributions to the splitting depend on SO phonons and the screened Coulombic impurity, and our model could provide a possible theoretical explanation for previous experiments.
Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under Grant nos. NJZY22301 and NJYT-17-B37.

References

[1] M. O. Goerbig, “Electronic properties of graphene in a strong magnetic field,” Reviews of Modern Physics, vol. 83, no. 4, pp. 1193–1243, 2011.
[2] F. C. Wu and S. Das Sarma, “Collective excitations of quantum anomalous Hall ferromagnets in twisted bilayer graphene,” Physical Review Letters, vol. 124, no. 4, Article ID 046403, 2020.
[3] A. Pound, J. P. Carbotte, and E. J. Nicol, “Effects of electron-phonon coupling on Landau levels in graphene,” Physical Review B, vol. 84, no. 8, Article ID 085125, 2011.
[4] G. Benedek, J. R. Manson, and S. Miret-Artés, “The electron-phonon coupling constant for single-layer graphene on metal substrates determined from He atom scattering,” Physical Chemistry Chemical Physics, vol. 23, no. 13, pp. 7575–7585, 2021.
[5] S. C. Kim and S. R. Eric Yang, “Coulomb impurity problem of graphene in magnetic fields,” Annals of Physics, vol. 347, pp. 21–31, 2014.
[6] K. S. Figueroa, N. J. Pinto, S. V. Mandyam et al., “Controlled doping of graphene by impurity charge compensation via a polarized ferroelectric polymer,” Journal of Applied Physics, vol. 127, no. 12, Article ID 125503, 2020.
[7] W. P. Li, Z. W. Wang, J. W. Yin, and Y. F. Yu, “The effects of the magnetopolaron on the energy gap opening in graphene,” Journal of Physics: Condensed Matter, vol. 24, no. 13, Article ID 135301, 2012.
[8] Y. Sun and J. L. Xiao, “Temperature dependence of acoustic phonons on ground state energy of the magnetopolaron in monolayer graphene,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 121, Article ID 114122, 2020.
[9] Z. W. Wang, L. Liu, and Z. Q. Li, “Energy gap induced by the surface optical polaron in graphene on polar substrates,” Applied Physics Letters, vol. 106, no. 10, Article ID 101601, 2015.
[10] S. Y. Zhou, G. H. Gweon, A. V. Fedorov et al., “Erratum: substrate-induced bandgap opening in epitaxial graphene,” Nature Materials, vol. 6, no. 11, p. 916, 2007.
[11] E. V. Gorbar, V. P. Gusynin, and O. O. Sobol, “Electron states in the field of charged impurities in two-dimensional Dirac systems (Review Article),” Low Temperature Physics, vol. 44, no. 5, pp. 371–400, 2018.
[12] Y. Xiao, W. P. Li, Z. Q. Li, and Z. W. Wang, “Coulomb impurity effects on the zero-Landau level splitting of graphene on polar substrates,” Superlattices and Microstructures, vol. 104, pp. 178–185, 2017.

[13] W. H. Ji, H. T. Yang, and S. L. Ban, “Influence of charged impurity screening and surface optical phonons on the n=0 Landau level splitting of graphene with polar substrate,” Superlattices and Microstructures, vol. 158, Article ID 107032, 2021.
[14] T. D. Lee, F. E. Low, and D. Pines, “The motion of slow electrons in a polar crystal,” Physical Review, vol. 90, no. 2, pp. 297–302, 1953.
[15] W. J. Huybrechts, “Note on the ground-state energy of the Feynman polaron model,” Journal of Physics C: Solid State Physics, vol. 9, no. 8, pp. L211–L212, 1976.
[16] Z. G. Chen, Z. W. Shi, W. Yang et al., “Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures,” Nature Communications, vol. 5, no. 1, p. 4461, 2014.
[17] M. Orlita, W. Escoffier, P. Plochocka, B. Raquet, and U. Zeitler, “Graphene in high magnetic fields,” Comptes Rendus Physique, vol. 14, no. 1, pp. 78–93, 2013.
[18] P. Boross and A. Pályi, “Valley relaxation in graphene due to charged impurities,” Physical Review B, vol. 92, no. 3, Article ID 035420, 2015.
[19] C. H. Yang, F. M. Peeters, and W. Xu, “Landau-level broadening due to electron-impurity interaction in graphene in strong magnetic fields,” Physical Review B, vol. 82, no. 7, Article ID 075401, 2010.
[20] E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Physical Review B, vol. 75, no. 7, Article ID 035405, 2010.
[21] R. Roldan, M. O. Goerbig, and J. N. Fuchs, “The magnetic field particle-hole excitation spectrum in doped graphene and in a standard two-dimensional electron gas,” Semiconductor Science and Technology, vol. 25, no. 3, Article ID 034005, 2010.
[22] K. Shizuya, “Electromagnetic response and effective gauge theory of graphene in a magnetic field,” Physical Review B, vol. 75, no. 24, Article ID 245417, 2007.
[23] J. K. Viljas and T. T. Heikkilä, “Electron-phonon heat transfer in monolayer and bilayer graphene,” Physical Review B, vol. 81, no. 24, Article ID 245404, 2010.
[24] A. Konar, T. A. Fang, and D. Jena, “Effect of high-shear dielectrics on charge transport in graphene-based field effect transistors,” Physical Review B, vol. 82, no. 11, Article ID 115452, 2010.
[25] V. Perebeinos and P. Avouris, “Inelastic scattering and current saturation in graphene,” Physical Review B, vol. 81, no. 19, Article ID 195442, 2010.
[26] Y. Cai, L. Zhang, Q. Zeng, L. Cheng, and Y. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Communications, vol. 141, no. 5, pp. 262–266, 2007.