First principles investigation of topological phase in XMR material TmSb under hydrostatic pressure

Payal Wadhwa, Shailesh Kumar, Alok Shukla and Rakesh Kumar

1 Indian Institute of Technology Ropar, Rupnagar-140001, Punjab, India
2 School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
3 Manufacturing Flagship, CSIRO, Lindfield West, New South Wales 2070, Australia
4 Indian Institute of Technology Bombay, Powai-400076, Mumbai, India

E-mail: rakesh@iitrpr.ac.in

Received 23 March 2019, revised 23 April 2019
Accepted for publication 3 May 2019
Published 29 May 2019

Abstract

In this article, we report emergence of topological phase in extremely large magnetoresistance (XMR) material TmSb under hydrostatic pressure using first principles calculations. We find that TmSb, a topologically trivial semimetal, undergoes a topological phase transition with band inversion at X point without breaking any symmetry under a hydrostatic pressure of 12 GPa. At 15 GPa, it again becomes topologically trivial with band inversion at Γ as well as X point. We find that the pressures corresponding to the topological phase transitions are far below the pressure corresponding to structural phase transition at 25.5 GPa. The reentrant behaviour of topological quantum phase with hydrostatic pressure would help in finding a correlation between topology and XMR effects through experiments.

Keywords: topological insulators, topological semi-metals, topological phase transitions, density functional theory

Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)
pressure or strain or by chemical doping or alloying composition [30–37], amongst which external pressure is highly desirable tool as it does not affect the charge neutrality of the system.

Recent experimental reports have shown XMR in TmSb, which is topologically trivial semi-metal [38]. In addition, TmSb is isostructural to LaSb/LaAs, which are reported to undergo a topological phase transition under hydrostatic pressure [39, 40]. It motivated us to investigate a topological phase in TmSb as a function of pressure. Further, LaSb and LaAs are found to undergo only a single topological quantum phase transition with pressure [39, 40]. However, we observed two topological quantum phase transitions in TmSb under hydrostatic pressure, where it first becomes topologically non-trivial from trivial phase and again becomes topologically trivial from non-trivial phase within a pressure of 15 GPa. Therefore, the studies may help better in finding a correlation between topology and XMR effect through experiments.

2. Computational details

First principles calculations are performed within the framework of density functional theory with projected augmented wave formalism [41] as implemented in VASP [42]. Generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) [43] as well as hybrid functionals (HSE06) [44, 45] are used to include exchange-correlations. The cut-off energy of 300 eV is used for electronic band structure calculations. The sampling of the Brillouin zone (BZ) is done using k-mesh of size $11 \times 11 \times 11$. The enthalpy of the system is calculated using GGA, under the hydrostatic pressure of 0–30 GPa, while band structure calculations are performed from 0–16 GPa. The system is simulated by variable cell relaxation under different applied pressures. The dynamical stability of the system under various pressures is confirmed by performing phonon dispersion calculations using PHONOPY code [46]. Band structure calculations are performed including the effect of SOC after obtaining the crystal structure at different applied pressures. Z_2 topological invariant is calculated by Kane and Mele criterion [47, 48].

3. Results and discussions

To investigate a topological phase as a function of pressure in TmSb, we first checked stability of the crystal structure under pressures of 0–30 GPa. At ambient pressure, TmSb has NaCl-type rocksalt structure having space group $Fm\overline{3}m$ (225) with Tm atom at the origin (0, 0, 0) and Sb atom at (0.5, 0.5, 0.5) (figure 1), which transforms into CsCl-type structure at higher pressure [49]. The optimized lattice constant for TmSb at ambient pressure is found to be 6.131 Å, which is in agreement with the previous reports (table 1).

In order to ensure the structural phase transition (SPT), we calculated the enthalpies of both the crystal structures from pressures of 0–30 GPa (figure 1(c)). At a given pressure, the structure having lower enthalpy, $H = E + PV$ (where $E =$ total energy, $P =$ external pressure, and $V =$ volume of the unit cell) would have more stability. At ambient pressure, the enthalpy of NaCl-type structure of TmSb is lower than that of CsCl-type structure (figure 1(c)), indicating that former structure is more stable. On increasing pressure, the enthalpies of both the structures increases gradually and a crossover is observed at 25.5 GPa, which is called as transition pressure (P_T). It indicates that CsCl-type structure becomes more stable above 25.5 GPa, which is in close agreement with the earlier report [49]. Further, the change in relative volume of TmSb is plotted as a function of hydrostatic pressure (figure 1(d)). The abrupt change in volume at pressure $P_T = 25.5$ GPa, indicates a first-order phase transition, which correspond to a change in the crystal symmetry [49]. Moreover, the dynamical stability is confirmed by plotting its phonon dispersion spectrum under different applied pressures (supplementary material (stacks.iop.org/JPhysCM/31/335401/mmedia)).

For the investigation of topological phase in TmSb under hydrostatic pressure, first we calculated its band structure at ambient pressure using GGA and HSE06 functionals including the SOC effect. Band structure is plotted along the high symmetry points in the BZ, i.e. L to Γ, Γ to X, and X to W, where we have excluded other high symmetry time-reversal variant points of K (0.375, 0.75, 0.375) and U (0.25, 0.625, 0.625), since we are interested only in topological phase transitions. Band structure plots for TmSb with SOC using GGA and HSE06 functionals are shown in figure 2.

It can be seen from the figure 2 that valence band and conduction band near the Fermi level mainly have contributions from p-orbitals of Sb (shown by blue spheres) and d-orbitals of Tm (shown by red spheres) atoms, respectively, and a finite overlap is observed between the two using both GGA and HSE06 functionals. From its corresponding DOS plot (supplementary material), it is found to be semi-metallic, which is in agreement with the previous experimental reports [38]. Further, no band inversion is found in their band structures calculated using both PBE and HSE06 functionals, indicating that it is topologically trivial at ambient pressure [38]. It is to be noted that valence band maxima and conduction band minima almost touch at Γ as well as X point in the band structures calculated using PBE functionals, while there is a finite gap between the bands at both Γ as well as X point using HSE06 functionals. Since, an increase in pressure may lead to unphysical prediction of band inversion in case of band structures calculated using PBE functionals [51], therefore we have used HSE06 functionals for our subsequent band structures calculations.

In order to explore topological phase in TmSb under pressure, we calculated its band structures from 0 to 16 GPa using HSE06 functionals including the SOC effect. To check non-trivial topological phase as a function of hydrostatic pressures, band inversion is checked at all the time-reversal invariant momenta (TRIM) points. Band inversion is found to be absent

\begin{table}[h]
\centering
\caption{Comparison of lattice constant with the other reports.}
\begin{tabular}{|c|c|c|c|}
\hline
Material & PBE & LSDA+U & Expt. \\
\hline
TmSb & 6.131 & 6.055 [49] & 6.105 [50] \\
\hline
\end{tabular}
\end{table}
from 0 to 11 GPa. However, on increasing the pressure from 12 to 14 GPa, single band inversion is found at X point; but from 15 GPa onwards, two band inversions are observed at Γ as well as X point. It is to be noted that both of the pressures corresponding to topological quantum phase transitions are far below the pressure of SPT at 25.5 GPa (figure 1). Band structure plots for TmSb at 12 GPa and 15 GPa are shown in figure 3.

It is observed that at ambient pressure, the valence band at X point mainly has a contribution from the p-orbitals of Sb atom, while the conduction band mainly has a contribution from the d-orbitals of Tm atom. However, at X point a small contribution from d-orbitals of Tm atom and p-orbitals of Sb atom arise in the valence and conduction band, respectively, at 12 GPa, indicating a band inversion and the system becomes topologically non-trivial. At 15 GPa, two band inversions are observed at Γ as well as X point (figure 3). Even number of band inversions may correspond to either weak topological phase or topologically trivial phase [47, 48].

In order to further ensure the topological phase of TmSb under hydrostatic pressure, we calculated their Z_2 topological invariants as suggested by Kane and Mele [47, 48]. For an inversion symmetric system in three dimensions, there exists four Z_2-invariants, i.e. $(\nu_0, \nu_1, \nu_2, \nu_3)$, and the value of ν_0 can be determined by the equation

$$(-1)^{\nu_0} = \prod_i \delta_i$$

where $\prod_i \delta_i$ denotes the product of the parities of all the filled bands at all TRIM points. In the three-dimensional BZ, there exists eight TRIM points. The value of first topological index $\nu_0 = 1$ corresponds to a strong topological phase and $\nu_0 = 0$ corresponds to either a weak topological phase or trivial insulator, which can be determined by the value of other three indices (ν_1, ν_2, ν_3). The detailed parities of all the filled bands of TmSb at ambient pressure, 12 GPa, and 15 GPa are shown in tables 2–4, respectively.

Since, there is no band inversion at ambient pressure, and its first Z_2 index (ν_0) calculated from equation (1) turns out to be zero, indicates that it is topologically trivial. At 12 GPa, band inversion at X point is observed and ν_0 becomes 1, which indicates a topologically non-trivial phase. At 15 GPa,
two band inversions are observed at Γ as well as X points, turning ν_0 to zero. The change in the value of ν_0 from 1 to 0 shows that the system is converted either into a weak topological phase or topologically trivial phase. In order to ensure the topological phase at 15 GPa, we calculated the other three topological indices (ν_1, ν_2, ν_3), which comes out to be (0, 0, 0) as the parity at four L and three X points are the same (table 4). It shows that the system has again become topologically trivial at 15 GPa. The value of the first \mathbb{Z}_2 topological index as a function of pressure is plotted in figure 4.

It is to be noted that with increase in pressure, an overlap between the valence and conduction band of TmSb increases, and would lead to an increase in the carrier concentration. Since XMR depends upon carrier concentration and mobility of the charge carriers, therefore evolution of mobility with pressure can only give the exact evolution of XMR as a function of pressure, which can only be explored in experiments. Consequently, the study of topological phase transitions in TmSb as a function of pressure provides a promising platform to investigate the role of topology in XMR effect.

Figure 2. Band structures of TmSb including SOC effect using (a) PBE and (b) HSE06 functionals. Blue spheres show the contribution of p-orbitals of Sb atom and red spheres show the contribution of d-orbitals of Tm atom to the bands near the Fermi level.

Figure 3. Band structures of TmSb using HSE06 functionals including SOC effect at pressure (a) 12 GPa and (b) 15 GPa. Blue spheres show the contribution of p-orbitals of Sb atom and red spheres show the contribution of d-orbitals of Tm atom near the Fermi level.

Table 2. Parities of all the filled bands at all the TRIM points in BZ at ambient pressure.

Band No.	L	L	L	L	Γ	X	X	Total
1	−	−	−	−	−	−	−	+
3	−	−	−	−	−	−	−	+
5	−	−	−	−	−	−	−	+
7	−	−	−	−	+	+	+	+
9	+	+	+	−	−	−	−	+
11	+	+	+	−	−	−	−	+
13	+	+	+	−	−	−	−	(−)
Total	+	+	+	+	+	+	+	(+)

Table 3. Parities of all the filled bands at all the TRIM points in BZ at 12 GPa.

Band No.	L	L	L	L	L	X	X	Total
1	−	−	−	−	−	−	−	+
3	−	−	−	−	−	−	−	+
5	−	−	−	−	−	−	−	+
7	−	−	−	−	+	+	+	+
9	+	+	+	−	−	−	−	+
11	+	+	+	−	−	−	−	+
13	+	+	+	−	−	−	−	(−)
Total	+	+	+	+	+	+	+	(−)
4. Summary

On the basis of first principles calculations, it is summarised that XMR material TmSb undergoes a topological phase transition from trivial to non-trivial under a hydrostatic pressure of 12 GPa. On further increasing the pressure, it again becomes topologically trivial at 15 GPa. The studies indicate a reentrant topological quantum phase transitions in TmSb as a function of hydrostatic pressure, which may help to understand the correlation between topology and XMR effect through experiments.

Acknowledgment

The authors would like to thank IIT Ropar for the High Performance Computing Facility.

ORCID iDs

Rakesh Kumar https://orcid.org/0000-0002-6892-5080

References

[1] Hulliger F and Ott H R 1977 Superconductivity of lanthanum pnictides J. Less Common Met. 55 103–13
[2] Petit L, Szotek Z, Lders M and Svane A 2016 Rare-earth pnictides and chalcogenides from first-principles J. Phys.: Condens. Matter 28 223001
[3] Tafti F F, Gibson Q D, Kushwaha S K, Haldolaarachchige N and Cava R J 2016 Resistivity plateau and extreme magnetoresistance in lasb Nat. Phys. 12 272
[4] Sun S, Wang Q, Guo P-J, Liu K and Lei H 2016 Large magnetoresistance in labi: origin of field-induced resistivity upturn and plateau in compensated semimetals New J. Phys. 18 082002
[5] Wakeham N, Bauer E D, Neupane M and Ronning F 2016 Large magnetoresistance in the antiferromagnetic semimetal ndsb Phys. Rev. B 93 205152
[6] Neupane M, Hosen M M, Belopolski I, Wakeham N, Dimitri K, Dhakal N, Zhu J-X, Hasan M Z, Bauer E D and Ronning F 2016 Observation of dirac-like semi-metallic phase in ndsb J. Phys.: Condens. Matter 28 23LT02
[7] Ghimire N J, Botana A S, Phelan D, Zheng H and Mitchell J F 2016 Magnetotransport of single crystalline ysb J. Phys.: Condens. Matter 28 235601
[8] Tafti F F et al 2017 Tuning the electronic and the crystalline structure of labi by pressure: from extreme magnetoresistance to superconductivity Phys. Rev. B 95 014507
[9] Yu Q-H, Wang Y-Y, Lou R, Guo P-J, Xu S, Liu K, Wang S and Xia T-L 2017 Magnetoresistance and shubnikov-de haas oscillation in ysb Europhys. Lett. 119 17002
[10] Yang H-Y, Nummy T, Li H, Jaszewski S, Abramchuk M, Dessau D S and Tafti F 2017 Extreme magnetoresistance in the topologically trivial lanthanum monopnictide lasb Phys. Rev. B 96 235128
[11] Dey U 2018 Comparative study of the compensated semimetals labi and lubi: a first-principles approach J. Phys.: Condens. Matter 30 205501
[12] Lou R et al 2017 Evidence of topological insulator state in the semimetal labi Phys. Rev. B 95 115140
[13] Singha R, Sapatni B and Mandal P 2017 Fermi surface topology and signature of surface dirac nodes in labi Sci. Rep. 7 6321
[14] Kuroda K et al 2018 Experimental determination of the topological phase diagram in cerium monopnictides Phys. Rev. Lett. 120 086402
[15] Hasan M Z and Kane C L 2010 Colloquium: Topological insulators Rev. Mod. Phys. 82 3045–67
[16] Qi X-L and Zhang S-C 2011 Topological insulators and superconductors Rev. Mod. Phys. 83 1057–110
[17] Chen Y L et al 2009 Experimental realization of a three-dimensional topological insulator, bi2te3 science 325 178–81
[18] Ali M N et al 2014 Large, non-saturating magnetoresistance in wte 2 Nature 514 205
[19] Huang X et al 2015 Observation of the chiral-anomaly-induced negative magnetoresistance in 3d weyl semimetal taas Phys. Rev. X 5 031023
[20] Shrestha K, Chou M, Graf D, Yang H D, Lorenz B and Chu C W 2017 Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic bi2te3 topological insulator Phys. Rev. B 95 195113
[21] Fei Z, Palomaki T, Wu S, Zhao W, Cai X, Sun B, Nguyen P, Finney J, Xu X and Cobden D H 2017 Edge conduction in monolayer wte 2 Nat. Phys. 13 677
[22] Pletikosić I, Ali M N, Fedorov A V, Cava R J and Valla T 2014 Electronic structure basis for the extraordinary magnetoresistance in wte 2 Phys. Rev. Lett. 113 216601
[23] Guo P-J, Yang H-C, Zhang B-J, Liu K and Lu Z-Y 2016 Charge compensation in extremely large magnetoresistance materials lasb and labi revealed by first-principles calculations Phys. Rev. B 93 235142
[24] Pavlosiuk O, Swatek P, Kaczorowski D and Wiśniewski P 2018 Magnetoresistance in lubi and ybi semimetals due to nearly perfect carrier compensation Phys. Rev. B 97 235132

[25] Zeng L-K et al 2016 Compensated semimetal lasb with unsaturated magnetoresistance Phys. Rev. Lett. 117 127204

[26] Jiang J et al 2015 Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material wte 2 Phys. Rev. Lett. 115 166601

[27] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Ultrahigh mobility and giant magnetoresistance in the dirac semimetal cd 3 32 Nat. Mater. 14 280

[28] He J et al 2016 Distinct electronic structure for the extreme magnetoresistance in ysb Phys. Rev. Lett. 117 267201

[29] Xu J, Ghimire N J, Jiang J S, Xiao Z L, Botana A S, Wang Y L, Hao Y, Pearson J E and Kwok W K 2017 Origin of the extremely large magnetoresistance in the semimetal ysb Phys. Rev. B 96 075159

[30] Sato T, Segawa K, Kosaka K, Souma S, Nakayama K, Eto K, Minami T, Ando Y and Takahashi T 2011 Unexpected mass acquisition of dirac fermions at the quantum phase transition of a topological insulator Nat. Phys. 7 840

[31] Brahlek M, Bansal N, Koirala N, Xu S-Y, Neupane M, Liu C, Hasan M Z and Oh S 2012 Topological-metal to band-insulator transition in (bi 1-x in x) 2 se 3 (1 1 1) films Phys. Rev. Lett. 109 186403

[32] Wu L, Brahlek M, Aguilar R V, Stier A V, Morris C M, Lubashevsky Y, Bilbro L, Bansal N, Oh S and Armitage N 2013 A sudden collapse in the transport across the phase transition topological phase transition in (bi 1-x in x) 2 se 3 Nat. Phys. 9 410

[33] Pal K and Waghmare U V 2014 Strain induced z 2 topological insulating state of beta-as2te3 Appl. Phys. Lett. 105 062105

[34] Yan C et al 2014 Experimental observation of dirac-like surface states and topological phase transition in pb 1-x sn x te (1 1 1) films Phys. Rev. Lett. 112 186801

[35] Sissakht E T, Fazileh F, Zare M H, Zarenia M and Peeters F 2016 Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons Phys. Rev. B 94 085417

[36] Qi Y et al 2017 Topological quantum phase transition and superconductivity induced by pressure in the bismuth tellurorahalite biete Adv. Mat. 29 1605965

[37] Mondal C, Barman C K, Kumar S, Alam A and Pathak B 2019 Emergence of topological insulator and nodal line semi-metal states in xx bi (x = na, k, rb, cs; x = ca, sr) Sci. Rep. 9 527

[38] Wang Y-Y, Zhang H, Lu X-Q, Sun L-L, Xu S, Lu Z-Y, Liu K, Zhou S and Xia T-L 2018 Extremely large magnetoresistance and electronic structure of tmsb Phys. Rev. B 97 085137

[39] Guo P-J, Yang H-C, Liu K and Lu Z-Y 2017 Theoretical study of the pressure-induced topological phase transition in lasb Phys. Rev. B 96 081112

[40] Khalid S, Sabino F P and Janotti A 2018 Topological phase transition in laas under pressure Phys. Rev. B 98 220102

[41] Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 1758

[42] Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169–86

[43] Perdew J F, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865–8

[44] Heyd J, Scuseria G E and Ernzerhof M 2003 Hybrid functionals based on a screened coulomb potential J. Chem. Phys. 118 8207–15

[45] Broders E N, Izmaylov A F, Normand J O, Barone V and Scuseria G E 2008 Accurate solid-state band gaps via screened hybrid electronic structure calculations J. Chem. Phys. 129 011102

[46] Togo A and Tanaka I 2015 First principles phonon calculations in materials science Scr. Mater. 108 1–6

[47] Fu L and Kane C L 2007 Topological insulators with inversion symmetry Phys. Rev. B 76 045302

[48] Fu L, Kane C L and Mele E J 2007 Topological insulators in three dimensions Phys. Rev. Lett. 98 106803

[49] Gupta D C and Singh S K 2012 Structural phase transition, elastic and electronic properties of tmsb and ybsb: a lsda + u study under pressure J. Alloys Compd. 515 26–31

[50] Abdusalyamova M, Chuiko A, Golubkov A, Popov S, Parfenova L, Procofiev A and Smirnov I 1994 Synthesis, growth and investigation of the physical-chemical properties of single crystals of tmsb, tmte and their solid solutions tmsb1xtex J. Alloys Compd. 205 107–9

[51] Crowley J M, Tahir-Kheli J and Goddard W A III 2015 Accurate ab initio quantum mechanics simulations of bi2se3 and bi2te3 topological insulator surfaces J. Phys. Chem. Lett. 6 3792–6