Soil physicochemical properties to evaluate soil degradation under different land use types in a high rainfall tropical region: A case study from South Sulawesi, Indonesia

A Ahmad¹, C Lopulisa¹, A M Imran² and S Baja¹

¹Department of Soil Science, Faculty of Agriculture, Hasanuddin University, Jalan Perintis Kemerdekaan KM. 10, 90245, Makassar, Indonesia.
²Department of Geology, Faculty of Engineering, Hasanuddin University, Jalan Perintis Kemerdekaan KM. 10, 90245, Makassar, Indonesia.

E-mail: asmita.ahmad@agri.unhas.ac.id; asmitahmad@yahoo.com

Abstract. Intensive cropping in the tropical region always becomes one of important driving forces of soil degradation. The primary aim of this study is to analyze the states and the dynamics of soil physicochemical properties to evaluate soil degradation in the tropical region a high rainfall on agricultural areas in South Sulawesi. A number of soil characteristics were analyzed for physical and chemical properties, and clay minerals with X-ray diffractometer. The degree of soil degradation is determined using Wischmeier and Smith equation. This study reveals that mean annual precipitation in 1979-2016 ranged from 1853.15 to 2981.30 mm/year. For land used for paddy field, palm oil, cacao and coffee plantation, the texture dominated with silt loam-clay loam, cation exchange capacity was 18.63-26.32 cmol+ kg⁻¹, 0.98-2.91% of C-organic, 32-55% of base saturation, 0.1-3.5 cm h⁻¹ of permeability, soil clay minerals were montmorillonite-kaolinite-halloysite, and the index erodibility was 0.3-0.5. Land used for mixed plants and shrubs, the texture dominated with silt loam-sandy clay loam, cation exchange capacity was 18.63-27.12 cmol+ kg⁻¹, 1.09-2.89% of C-organic, 32-55% of base saturation, 0.2-4.9 cm/h of permeability, soil clay minerals were kaolinite-halloysite, and index erodibility was 0.1-0.3. Land use for cultivated in the high intensity of rainfall has changed the physicochemical properties of soils, but cultivated in monoculture has at some degree increased soil erodibility.

1. Introduction

Land with sloping topography in the tropic area had many used for an intensively cropping system for needing the community feed. Tropical region always connected with a high rainfall activity [1], where the period of rainy season from the equator to 30°N in May to October while from the equator to 30°S in November to April [2]. Cooperate rainfall and cultivation increased many processes in soil, such as weathering, alteration, eluviation, and illuviation [3], and as an important agent to decrease soil degradation.

Land use with intensively used giving significance for decreasing soil physicochemical properties [4, 5]. Soil degradation usually disturbed soil organic-carbon content [6], texture [7, 8], and fertility of soil [9]. Intensive cropping in the tropical region always becomes one of important driving forces of soil degradation, especially erosion and landslides.

The primary aim of this study is to analyze the states and the dynamics of soil physicochemical properties to evaluate soil degradation in the tropical region a high rainfall in agricultural areas.

2. Materials and Method

2.1. Study site

Soil was taken from a high degree of landslides-prone area and no-landslides area with different land use types in three districts of South Sulawesi, Indonesia 9 (figure 1) based on ESDM data [10]. The coordinates location were; Enrekang District for degraded soil; E1: 119°50'43.69"E and 3°16'52.32"S;
and E3: 119°47'48.34"E and 3°14'37.65"S; while for non-degraded soil were; E2 119°50'44.44"E and 3°16'53.89"S; and E4: 119°47'48.60"E and 3°16'14.36.86"S, North Toraja District for degraded soil; T1: 119°53'13.11"E and 2°52'26.96"S; and T3: 119°53'26.87"E and 2°52’1.96"S, and for non-degraded soil were; T2: 119°53’13.32"E and 2°52’29.51"S; and T4: 119°53’25.09"E and 2°52’5.45"S, and East Luwu District for degraded soil were; L1: 120°48’0.72"E and 2°22’57.06"S; and L3: 120°47’40.19"E and 2°22’23.46"S; and for non-degraded soil were; L2: 120°48’4.33"E and 2°22’59.49"S; and L4: 120°47’36.64"E and 2°22’25.26"S. The area had an elevation of 320-1542 m above sea level (asl) and slope topography range of 40-60%.

Figure 1. Location map of study area

2.2. Soil analysis

The soils analysis were pH with pH meter, texture with hydrometer method, Cation Exchange Capacity (CEC) with 1 M NH₄OAc, cations of Ca, Mg, K and Na done by extracting with ammonium acetate in pH 7 then measured with an Atomic absorption spectrophotometer, base saturation (BS), permeability with permeameter, and C-Organic content with Walkley and Black method. Soil erodibility from [11] modified by [12] was used to evaluate soil degradation degree.

The equation from Wischmeier and Smith (1978) is:

\[100K = 1.292 \times [2.1M^{1.14}(10^{-4})(12-a) + 3,25(b-2) + 2.5(c-3)] \]

where:

- \(K \) = Soil erodibility
- \(M \) = percent fines sand + percent silt (0.1-0.02mm) times the quantity 100-percent clay
- \(a \) = percent organic matter,
- \(b \) = the soil-structure code used in soil classification, and
- \(c \) = the profile-permeability class.

The soil temperature in 25 and 50 cm depth were measured with soil temperature tools and soil minerals were analyzed with X-Ray Diffractometer (XRD) Shimadzu XRD-7000.
3. Results

3.1. Rainfall Data
Mean annual precipitation in 1979-2016 ranges from 1853.15 to 2981.30 mm year\(^{-1}\) [13, 14]. The data showed that the distribution of rainfall becoming extreme start from 1991, where Enrekang District has dry season extreme, but in 2000 where North Toraja District and East Luwu had wet season extreme and reached 4500-5200 mm year\(^{-1}\) (figure 2). The extreme climate still continued until now. This was a connection to global warming phenomena [15] and impact of green revolution which caused intensively cropping in all region in Indonesia [16].

![Distribution of Rainfall](image)

Figure 2. Distribution of rainfall from 1979 to 2016 from Enrekang District, North Toraja district and East Luwu district

3.2. Physicochemical Properties of Soil
Degraded soils at 25 cm depth have a temperature ranging from 24 to 34 °C, and 23-29 °C at 50 cm depth. The area was used for paddy field in North Toraja, palm oil and cacao in East Luwu, crop and coffee plantation in Enrekang District. The range of soil pH was 4.5-6.4, and it indicated increasing of leaching process. Texture dominated with silt loam-clay loam with difference in the fraction presentation, and C-organic ranged of 0.98-2.91% (table 1). Soils with non-degraded had a temperature at 25 cm depth ranging of 26-31°C and 23-29 °C at 50 cm depth. Land used dominating with mixed plants and shrubs. The range of soil pH was 5.0-6.5, texture was very varied and dominated with silt loam, clay loam, and sandy clay loam, and C-organic ranged of 1.09-2.89%. BS and CEC in degraded soil and non-degraded soil had same variation from first layer and second layer and gave not much contribution to soil degradation.

3.3. Soil Erodibility
The permeability of soil degraded ranged of 0.1-3.5 cm/hour with criterion of very slow-moderate and the index erodibility was 0.3-0.5 with soil clay minerals dominated with montmorillonite, vermiculite, illite, kaolinite, and halloysite. Permeability of soil non-degraded ranged of 0.2-4.9 cm hour\(^{-1}\) with criterion of very slow-moderate and the index erodibility was 0.1-0.3 with soil clay minerals dominated with illite, kaolinite, and halloysite (table 2).
Table 1. Physicochemical properties of soil

Soil layer	Soil depth	Sand	Fine sand	Silt	Clay	Texture	pH	C-Organic	Exchangeable Cations	CEC	BS
	cm	%	%					%	H_2O Ca Mg K Na		
E1.1	0-10	5	12	41	42	Clay loam	4.5	2.91	6.84 1.24 0.22 0.36	24.62	39
E1.2	10-30	5	12	38	45	Clay	5.6	1.86	6.14 1.86 0.16 0.25	26.25	32
E2.1	0-10	4	17	42	37	Clay loam	6.0	2.41	6.92 2.24 0.28 0.36	24.62	40
E2.1	10-20	4	15	31	50	clay	6.0	1.86	6.78 2.13 0.23 0.25	26.20	36
E3.1	0-10	4	19	40	37	Clay Loam	5.7	2.67	6.85 3.25 0.21 0.21	25.32	42
E3.2	10-30	2	10	39	49	Clay	5.8	2.14	7.42 3.22 0.19 0.25	26.32	42
T1.1	0-10	5	11	57	27	Silt loam	5.6	2.06	6.56 2.65 0.19 0.25	20.89	47
T1.2	10-40	4	8	50	28	Silty clay	5.8	1.86	7.25 3.41 0.36 0.28	21.85	52

Table 2. Soil erodibility index from different land use types

Soil layer	Organic Matter	Cramer	Code of Permeability	Code of structure	Soil Mineral	Land Use types
E1.1	5.02	0.5	5	3	soil degraded, montmorillonite (28.6%), vermiculite (5.9%)	crop
E1.2	3.21	0.1	6	4	illite (12.5%), kaolinite (6%), halloysite (47)	crop
E2.1	4.15	0.5	5	2	soil non-degraded, montmorillonite (0.8%), illite (5.8%),	shub
E2.2	3.21	0.4	6	3	chlorite (32.7%), halloysite (52.5), kaolinite (8.2%)	coffe
E3.1	4.60	0.4	6	3	chlorite (10.3%), halloysite (38.3%), kaolinite (22%)	paddy fields
E3.2	3.69	0.2	6	3	chlorite (10.3%), halloysite (38.3%), kaolinite (22%)	paddy fields
E4.1	4.98	0.5	5	3	soil degraded, montmorillonite (12.1%), vermiculite (7.4%)	mixed plants
E4.2	4.34	0.3	6	3	soil non-degraded, montmorillonite (16.6%), illite (12.8%)	mixed plants
T1.1	4.88	1.3	6	4	soil-degraded, montmorillonite (28.6%), vermiculite (5.9%)	paddy fields
T1.2	4.36	0.4	6	4	illite (12.1%), kaolinite (23.1%), halloysite (39.4%)	paddy fields
T2.1	4.40	0.5	6	3	soil non-degraded, montmorillonite (0.8%), illite (5.8%),	shub
T2.2	4.15	0.6	6	3	chlorite (32.7%), halloysite (52.5), kaolinite (8.2%)	coffe
T3.1	4.97	1.3	5	3	chlorite (10.3%), halloysite (38.3%), kaolinite (22%)	paddy fields
T3.2	4.02	0.4	6	3	soil degraded, montmorillonite (28.6%), vermiculite (5.9%)	mixed plants
T4.1	4.80	0.8	5	6	soil non-degraded, montmorillonite (16.6%), illite (12.8%)	mixed plants
T4.2	3.69	0.6	6	3	soil non-degraded, montmorillonite (16.6%), illite (12.8%)	mixed plants
L1.1	3.19	3.3	4	3	soil degraded, montmorillonite (28.6%), vermiculite (5.9%)	cocoa
L1.2	1.69	0.3	6	3	kaolinite (94%), halloysite (1.8%),	cocoa
L2.1	3.38	4.9	5	2	soil non-degraded, montmorillonite (0.7%), illite (20.5%)	mixed plants
L2.2	2.72	1.5	5	3	soil non-degraded, montmorillonite (0.7%), illite (20.5%)	mixed plants
L3.1	3.03	1.6	5	4	kaolinite (74.8%), halloysite (4%),	palm oil
L3.2	2.84	1.2	5	3	kaolinite (74.8%), halloysite (4%),	palm oil
L4.1	1.88	0.4	6	3	soil degraded, montmorillonite (28.6%), vermiculite (5.9%)	shub
L4.2	2.43	1.9	5	3	soil degraded, montmorillonite (28.6%), vermiculite (5.9%)	shub

Note: The tables represent the physicochemical properties and erodibility index of different soil layers and land use types, indicating various soil characteristics such as texture, pH, organic content, and permeability, as well as the erosion risk associated with different land use activities.
4. Discussion
Physicochemical properties of soil on degraded soil and non-degraded soil with different land use types showed the difference in soil texture conditions from the percentage of fine-coarse soil fractions. The difference in the size of the soil fraction affected the cohesiveness of the soil grains and influenced soil erodibility index value [4, 17, 18]. Degraded soils in cultivated soils had larger erodibility index values with greater difference of organic material content between first layer and second layer of soil at same profile, compared with non-degraded soils, the percentage difference between organic matter content in first layer to second layer was very small (table 1). Organic matter had functioned as an aggregate binding of soil fraction, so the soil is difficult to degrade [6].

Differences in the value of the erodibility indexes in the first and second layers of soil profile lead to decrease in soil stability so that the soils were easily eroded (table 2). Differences in the value of the erodibility index generally occur on land used for monoculture plantations, whereas land used for mixed plantations and shrub, the stability of the soil in second layer is higher or equal than layer in first layer so as to prevent soil degradation. According to Dibal et al. [17], mixed plants is one of management to retain soil from degradation, especially in the tropical region with high activity of rainfall, where study area had high mean annuals of rainfall categories [14]. Rainfall contributed to increase weathering in soil and produced secondary clay minerals. These minerals can absorb water in their surface crystal and in interlayer space of crystal [19, 20] and caused the soil permeability slower. Variety of clay minerals in soil have contributed to decreasing soil stability [21, 22, 23] and triggering erosion-landslides.

Soils structure in form of blocky shape in the second layer of profile had a relationship to trigger the erosion/landslides. Blocky structure indicated to present of clay minerals fraction in the soil and inhibits water sub-surface movement downward [24]. This support with permeability data, where the value of permeability became very slow downward (table 2).

5. Conclusions
Land use for cultivated in the high intensity of rainfall has changed the physicochemical properties of soils, but cultivated in monoculture has at some degree increased soil erodibility.

Acknowledgments
Thanks to the Ministry of Research, Technology and Higher Education Indonesia for the bppdn scholarship and dissertation grant.

Thanks to the Post-Graduate Program and LP2M of Hasanuddin University for the opportunity to do this research.

References
[1] Rodriguez-Lloveras X, Buytaert W and Benito G 2016 Land use can offset climate change induced increases in erosion in Mediterranean watersheds Catena 143 244–55
[2] Ratan R and Venugopal V 2013 Wet and dry spell characteristics of global tropical rainfall Water Resour. Res. 49 3830–41
[3] Virto I, Imaz M, Fernández-Ugalde O, Gartzia-Bengoetxea N, Enrique A and Bescansa P 2014 Soil degradation and soil quality in Western Europe: current situation and future perspectives Sustainability 7 313–65
[4] Ezeabasili A C C, Okoro B U and Emengini E J 2014 Relative erodibilities of some soils from Anambra basin sky J. soil Sci. Environ. 3 83–90
[5] Zare M, Panagopoulos T and Loures L 2017 Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran Land use policy 67 558–72
[6] Manyiwa T and Dikinya O 2013 Using universal soil loss equation and soil erodibility factor to assess soil erosion in Tshesebe village , north east Botswana African J. Agric. Res. 8 4170–8
[7] Salako F K 2003 Susceptibility of Coarse-textured Soils to Soil Erosion by Water in the Tropics 3–21
[8] Rosenbloom N A, Doney S C and Schimel D S 2001 Geomorphic evolution of soil texture and
organic matter in eroding landscapes Global Biogeochem. Cycles 15 365–81

[9] Sharma U C, Datta M and Sharma V 2014 Soil fertility, erosion, runoff and crop productivity affected by different farming systems Ecopersia 2 629–50

[10] ESDM 2009 Peta Zona Kerentanan Gerakan Tanah Provinsi Sulawesi Selatan (Map of Soil Susceptibility of South Sulawesi Province)

[11] Wischmeier W H and Smith D D 1978 Predicting rainfall erosion losses (United States Department of Agriculture)

[12] Arsyad S 2010 Konserwasi Tanah & Air (Soil and Water Conservation) (Bogor: IPB Press)

[13] Global Weather 2017 Climate data in 1979 -2014 for Enrekang, North Toraja and East Luwu District

[14] BMKG 2017 Data curah hujan tahun 2008-2016 untuk Kabupaten Enrekang, Toraja Utara dan Luwu Timur (Rainfall Data in 2008-2016 for Enrekang, North Toraja, and East Luwu District)

[15] Houghton J, Filho M, Bruce J, Lee H, Callander B, Haitez E, Harris N and Maskell K 1995 Climate Change 1994 vol 15

[16] Sopandie D, Poerwanto R and Sobir 2012 Sustainable Agriculture System Revolutionizing the Green Revolution (Bogor, Indonesia: IPB Press) p 2012

[17] Dibal J M, Bashir A U, Umara B G and Baraya B 2014 Variability of soil erodibility factor with some soil management practices in a semi-arid agroecological condition, Nigeria ARPN J. Eng. Appl. Sci. 9 2206–11

[18] Centeri C, Szalai Z, Jakab G, Barta K, Farsang A, Szabó S and Bíró Z 2015 Soil erodibility calculations based on different particle size distribution measurements Hungarian Geogr. Bull. 64 17–23

[19] Schoonheydt R A and Johnston C T 2011 The surface properties of clay minerals EMU notes Mineral. 11 335–70

[20] Hazen R M, Sverjensky D A, Azzolini D, Bish D L, Elmore S C, Hinnov L and Milliken R E 2013 Clay mineral evolution Am. Mineral. 98 2007–29

[21] Regmi A D, Yoshida K, Dhital M R and Devkota K 2013 Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besi landslide, Lesser Himalaya Nepal Landslides 10 1–13

[22] Yalcin A 2007 The effects of clay on landslides: A case study Appl. Clay Sci. 38 77–85

[23] Kitutu M G, Muwanga A, Poesen J and Deckers J A 2009 Influence of soil properties on landslide occurrences in Bududa district , Eastern Uganda African J. Agric. Res. 4 611–20

[24] Schoonover J E and Crim J F 2015 An Introduction to soil concepts and the role of soils in watershed management J. Contemp. Water Res. Educ. 154 21–47