Original Research Article

https://doi.org/10.20546/ijcmas.2018.701.068

Management of Sucking Pest of Groundnut with Newer Molecules of Insecticides (Arachis hypogaea L.)

V.K. Nigude, S.P. Patil, S.A. Patil and A.S. Bagade*

Department of Agril. Entomology, College of Agriculture Kolhapur - 416 004, Maharashtra, India

*Corresponding author

ABSTRACT

Bio-efficacy of newer molecules of insecticides against sucking pests of groundnut (Arachis hypogaea L.) was studied during July to October 2016, at Reasearch farm, College of agriculture, Kolhapur. Groundnut crop was infested by Jassid (Empoasca kerri Pruthi), Thrips (Scirtothripis dorsalis Hood). The experiment was laid out in randomized block design with eight treatment and three replications with view to find out the effective insecticides against sucking pest of groundnut at Agronomy field, college of agriculture Kolhapur during Rabi 2016-17. Variety TAG-24 was sown on 1st July. The insecticide used for the treatment were quinalphos 25 EC, acephate 75 SP, imidacloprid 17.8 SL, lambda-cyhalothrin 5 EC, methomyl 40 SP, buprofenzin 25 SC, chlorpyriphos 20 EC. The results of present investigation revealed that the treatment with imidacloprid 17.8 SL was significantly most effective treatment for the control of sucking pest.

Keywords

Groundnut, Jassids, Thrips, Bio-efficacy

Article Info

Accepted: 06 December 2017
Available Online: 10 January 2018

Introduction

Groundnut (Arachis hypogaea L.) is an annual legume crop, also known as peanut, earthnut, monkey– nut and goobers. It forms the world’s largest source of edible oil and ranks 13th among the food crops and is also 4th most important oilseed crop of the world. It is grown in tropical and subtropical countries. Cultivated groundnut has been reported from South America (Weiss, 2000). It is grown in 26.4 million hectares with a production of 38.20 million tones and productivity of 691 kg ha⁻¹ (FAO, 2010). Asia posses 1st rank in area (63.4%) and production (71.1%). Major groundnut countries are India (26%), China (19%) and Nigeria (11%). In India is mainly grown in the southern and north–western states; Gujrat, Andhra Pradesh, Tamil nadu, Karnataka, Maharastra, and Madhya Pradesh, together occupying about 90 percent of the groundnut area in the country. The major insect pest of groundnut are groundnut aphid (Aphis craccivora Koch), leaf miner (Stomopteryx nertara meyrick), stem borer (Sphenoptera perotett camron), white grub (Holotrichia consainguinia Blanchard), Bihar hairy caterpillar (Spilosoma oblique walker), Tobbaco caterpillar (Spodoptera litura Fab.), Red hairy caterpillar (Amsacta albistriga Butler), Jassid (Empoasca kerri Pruthi), Thrips (Scirtothrips dorsalis), Termite
Atwal and Dhaliwal (2008). However, aphid was not considered to be a serious pest of groundnut until late 1980 (Nandgopal, 1992). Mostly, groundnut insect pests are sporadic in occurrence and distribution. However, there are instances of total crop loss caused by a single pest species. Although many insect species live and feed on the groundnut crop, only a few cause significant damage that result in large reductions in pod and haulm yields.

Materials and Methods

The experiment was laid in simple randomized block design with eight treatments and three replications. Net plot size was 3.00 x 1.80 m². Row to row and plant to plant spacing was 30 cm and 10 cm, respectively. Observations were recorded after 3, 7 and 10 days of spraying on sucking pest infesting groundnut.

Jassids, *Empoasca kerri* (Pruthi)

Numbers of jassids on three compound leaves (upper, middle and lower) per plant were recorded from selected plants from each of the five plants as per the method suggested by Yeotiker et al., (2015).

Thrips, *Scirtothrips dorsalis* (Hood)

Numbers of jassids on three compound leaves (upper, middle and lower) per plant were recorded from selected plants from each of the five plants as per the method suggested by Yeotiker et al., (2015).

Table 1	Bio-efficacy of newer molecules of insecticides against jassids on groundnut									
Tr.No	Treatments	Mean survival population of Jassids/3leaves	First Spraying	Second Spraying						
			3 DAS	7 DAS	10 DAS	Mean	3 DAS	7 DAS	10 DAS	Mean
T1	Quinalphos 25 EC	2.14 (1.63)	2.94 (1.86)	3.19 (1.92)	2.75 (1.80)	2.28 (1.67)	2.80 (1.82)	2.97 (1.86)	2.68 (1.78)	
T2	Acephate 75 SP	1.20 (1.30)	1.63 (1.46)	2.49 (1.73)	1.77 (1.49)	1.26 (1.32)	1.79 (1.51)	2.37 (1.69)	1.80 (1.50)	
T3	Imidacloprid 17.8 SL	0.56 (1.03)	1.08 (1.26)	1.86 (1.54)	1.16 (1.27)	0.73 (1.11)	1.21 (1.31)	1.93 (1.56)	1.29 (1.32)	
T4	Lambda-cyhalothrin 5 EC	0.89 (1.18)	1.47 (1.40)	2.38 (1.70)	1.58 (1.42)	1.03 (1.23)	1.63 (1.46)	2.34 (1.68)	1.66 (1.45)	
T5	Methomyl 40 SP	1.28 (1.33)	1.78 (1.51)	2.64 (1.77)	1.90 (1.53)	1.39 (1.37)	1.84 (1.53)	2.42 (1.71)	1.88 (1.53)	
T6	Buprofenzin 25 SC	2.12 (1.62)	2.88 (1.84)	3.11 (1.90)	2.70 (1.78)	2.23 (1.65)	2.73 (1.80)	2.89 (1.84)	2.61 (1.76)	
T7	Chlorpyriphos 20 EC	2.89 (1.84)	3.00 (1.87)	3.27 (1.94)	3.05 (1.88)	2.98 (1.87)	3.06 (1.89)	3.22 (1.93)	3.00 (1.89)	
T8	Untreated control	8.88 (3.06)	9.08 (3.10)	8.92 (3.07)	8.96 (3.07)	8.97 (3.08)	9.16 (3.11)	8.99 (3.08)	9.04 (3.09)	
SE ±	0.06 0.02 0.03	0.04 0.05 0.03								
CD at 5 %	0.13 0.07 0.11	0.11 0.13 0.09								

DAS = Days after spray
*Figures in parentheses are transformed values $\sqrt{X + 0.5}$
Table.2 Bio-efficacy of newer molecules of insecticides against thrips on groundnut

Tr.No	Treatments	Mean survival population of thrips/ 3leaves	First Spraying	Second Spraying						
			3 DAS	7 DAS	10 DAS	Mean	3 DAS	7 DAS	10 DAS	Mean
T1	Quinalphos 25 EC	1.49 (1.71)	1.85 (1.54)	2.03 (1.59)	1.79 (1.61)	1.59 (1.45)	1.96 (1.57)	2.14 (1.63)	1.89 (1.55)	
T2	Acephate 75 SP	1.15 (1.28)	1.29 (1.34)	1.53 (1.43)	1.32 (1.35)	1.22 (1.31)	1.49 (1.41)	1.68 (1.47)	1.46 (1.39)	
T3	Imidacloprid 17.8 SL	0.79 (1.14)	0.95 (1.20)	1.17 (1.29)	0.97 (1.21)	0.90 (1.18)	1.20 (1.30)	1.30 (1.34)	1.13 (1.27)	
T4	Lambda-cyhalothrin 5 EC	1.06 (1.24)	1.23 (1.32)	1.44 (1.39)	1.24 (1.31)	1.16 (1.29)	1.45 (1.40)	1.62 (1.46)	1.41 (1.38)	
T5	Methomyl 40 SP	1.18 (1.30)	1.36 (1.36)	1.58 (1.44)	1.37 (1.36)	1.27 (1.33)	1.56 (1.44)	1.73 (1.49)	1.52 (1.42)	
T6	Buprofenzin 25 SC	1.46 (1.62)	1.79 (1.51)	1.98 (1.57)	1.74 (1.56)	1.52 (1.42)	1.88 (1.54)	2.08 (1.61)	1.82 (1.52)	
T7	Chlorpyriphos 20 EC	1.55 (1.90)	2.02 (1.59)	2.16 (1.63)	1.91 (1.71)	1.64 (1.46)	2.04 (1.60)	2.20 (1.64)	1.96 (1.56)	
T8	Untreated control	8.60 (3.02)	9.08 (3.10)	8.98 (3.08)	8.88 (3.06)	7.15 (2.77)	6.38 (2.62)	7.05 (2.75)	6.86 (2.71)	
	SE ±	0.02 (0.09)	0.03 (0.08)	0.02 (0.08)	0.03 (0.08)	0.07 (0.08)	0.08 (0.11)	0.11 (0.11)	0.07 (0.08)	
	CD at 5 %	0.07 (0.10)	0.08 (0.11)	0.11 (0.13)	0.14 (0.17)	0.16 (0.20)	0.17 (0.24)	0.19 (0.28)	0.21 (0.30)	

DAS = Days after spray
*Figures in parentheses are transformed values $\sqrt{X + 0.5}$

Results and Discussion

First spray for jassids

Overall results on efficacy of treatments indicated that imidacloprid 17.8 SL @ 0.75 ml/lit. (1.16 jassids/3 leaves) was consistently most effective as compared to other treatments in reducing the survival population of jassids.

The treatment with lambda-cyhalothrin 5 EC @ 0.50 ml/lit (1.66 jassids/3 leaves) was the next best effective treatment, followed by acephate 75 SP @ 1.0 gm/lit (1.80 jassids/3 leaves) (Table 1).

First spray for thrips

Overall results on efficacy indicated that imidacloprid 17.8 SL @ 0.75 ml/lit (0.97 thrips/3 leaves) was the consistently most effective compared to other treatments in reducing the survival population of thrips. The treatment with lambda-cyhalothrin 5 EC @ 0.50 ml/lit (1.24 thrips/3 leaves) was the next best effective treatment, closely followed by acephate 75 SP @ 1.0 gm/lit (1.32 thrips/3 leaves) (Table 2).
Second spray for thrips

Overall results on efficacy indicated that imidacloprid 17.8 SL @ 0.75 ml/lit (1.13 thrips/3 leaves) was the most effective as compared to other treatments in reducing the survival population of thrips. The treatment with lambda-cyhalothrin 5 EC @ 0.50 ml/lit (1.41 thrips/3 leaves) was the next best effective treatment, closely followed by acephate 75 SP @ 1.0 gm/lit (1.46 thrips/3 leaves).

References

Atwal, A.S. and Dhaliwal, G. S. 2008. Agricultural pests of south Asia and their management. Publ. Rajender nagar, Ludhiana, pp. 274–277

FAO 2010. FAO Production Year book, Vol. 60.

Nandgopal, V. 1992. Studied on integrated pest management in groundnut in Saurashtra Ph.D. thesis submitted to Saurasta University, Rajkot, Pesticides, 8: 246.

Weiss, E. A. 2000. Oilseed Crops. Publ. by Blackwell Science, London. p. 13.

Yeotikar, S. G., More, D. G. and Gaikwad, B. B. 2015. Seasonal incidence of major insect pests of soybean. Indian J. agric. Sci., 39(4): 341-346.

How to cite this article:

Nigude, V.K., S.P. Patil, S.A. Patil and Bagade, A.S. 2018. Management of Sucking Pest of Groundnut with Newer Molecules of Insecticides (Arachis hypogaea L.). Int.J.Curr.Microbiol.App.Sci. 7(01): 566-569. doi: https://doi.org/10.20546/ijcmas.2018.701.068