Ptomaphaginus troglodytes sp. n., the first anophthalmic species of Ptomaphaginina from China (Coleoptera, Leiodidae, Cholevinae, Ptomaphagini)

Michel Perreau¹, Jan Růžička²

¹ IUT Paris Diderot, Université Paris Diderot, Sorbonne Paris cité, case 7139, 5 rue Thomas Mann, 75205 Paris cedex 13, France ² Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00 Praha – Suchdol, Czech Republic

Corresponding author: Jan Růžička (ruzickajan@fzp.czu.cz)

Abstract
Ptomaphaginus troglodytes sp. n., the first anophthalmic species of Ptomaphaginina from China (Coleoptera, Leiodidae, Cholevinae, Ptomaphagini). ZooKeys 749: 135–147. https://doi.org/10.3897/zookeys.749.24964

Keywords
Anophthalmy, China, Guizhou Province, new species, troglobiomorphy

Introduction
Ptomaphagini is, after Leptodirini, the richest tribe of Cholevinae in species living in subterranean environment (caves or other subterranean habitats). Unlike Leptodirini, in which all species except a few dozen are anophthalmic, cave-dwelling species of Ptomaphagini are at most microphthalmic, a single species is fully anophthalmic. The tribe is presently divided into three subtribes: Baryodirina, Ptomaphagina, and Ptomaphaginina (Perreau 2000). The phylogenetic relevance of this division has been discussed (Gnaspini 1996) but recently confirmed (Antunes Carvalho et al. 2017).
Subterranean Ptomaphagina occur mainly in the Nearctic and Neotropical Regions (Peck 1973, 1984, 1998), but the only fully anophthalmic species, *Ptomaphagus (Ptomaphagus) troglodytes* Blas & Vives, 1983, occurs in Spain, in the Palaearctic Region (Blas and Vives 1983). All Nearctic cave-dwelling species of Ptomaphagina are at most microphthalmic, even the most troglobiomorphic species *Ptomaphagus parashant* Peck & Wynne, 2013 has remnants of eyes (Peck and Wynne 2013). Microphthalmy in Ptomaphagina has been recently investigated by genetic methods on a population of *Ptomaphagus (Adelops) hirtus* (Tellkampf, 1844) from the Mammoth cave system in Kentucky, USA (Friedrich et al. 2011; Friedrich 2013). These studies showed the presence of transcripts of all critical components of the phototransduction protein network and a strong photonegative behaviour, which indicate a reduced, but functional visual system.

Ptomaphaginina are mainly distributed in the Oriental Region (Szymczakowski 1964), including the Sunda Islands (Schilthuizen et al. pers. comm.). A single genus with six species, *Proptomaphaginus* Szymczakowski, 1969, lives in Central America (Peck 1983). The Oriental species of Ptomaphaginina belong to three genera: *Ptomaphaginus* Portevin, 1914 (96 species), *Pandania* Szymczakowski (two species) and *Ptomaphaminus* Perreau, 2000 (24 published species + 9 species under description). Some species of *Ptomaphaginus* live preferably in caves (*P. lipsae* Perreau & Lemaire, 2018, *P. otusus* Szymczakowski, 1959, *P. tomellerii* Zoia, 1997) but without significant eye reduction (Szymczakowski 1959, Zoia 1997, Perreau and Lemaire 2018). Most of the species of *Ptomaphaminus* live in caves and many of them have reduced eyes (Perreau 2009; Schilthuizen et al. pers. comm.). Currently, no anophthalmic species of Ptomaphaginina is known, and the purpose of the present paper is to describe the first anophthalmic species of Ptomaphaginina: *Ptomaphaginus troglodytes* sp. n. from Guizhou Province in China.

Guizhou comprises extended karst areas with a high diversity of cave-adapted arthropods and is the Chinese province with the highest number of known troglobitic species (Latella and Hu 2008; Tian and Clark 2012). Most of the known troglobitic Coleoptera from Guizhou belong to highly troglobiomorphic ground beetles, Carabidae: Trechinae (e.g. Deuve 1993, 1995; Deuve et al. 1999; Uéno 2000a, b, 2002; Tian 2009, 2010, 2011, 2013, 2014; Tian and Clarke 2012; Tian et al. 2014a, b, 2017; Tian and Deuve 2016a, b; Huang et al. 2017; Wei et al. 2017; for broader review see Latella and Hu 2008). More recently, three additional papers on troglobiont Staphylinidae: Pselaphinae were published from Guizhou (Yin et al. 2011, 2015; Yin and Li 2015).

Material and methods

Dissected specimens were relaxed in warm water. Male genitalia were directly dehydrated in ethanol 95% then mounted in Euparal. The female abdomen was cleared in a hot water solution of potassium hydroxide 0.1 N for 10 minutes, then rinsed in distilled water, coloured with Azoblack then dissected to extract the genital segment, which was mounted in DMHF. Photonic microscopic pictures (Figs 15–19)
were taken on a Zeiss Axiolab microscope with a Spot Insight IN1820 digital camera. A photograph of the habitus in dorsal view was taken using a Canon macro photo lens MP-E 65mm on a Canon 550D. Multiple layers of focus were combined using Zerene Stacker. High-resolution electronic pictures of external morphology were taken using a Hitachi S-3700N environmental electron microscope at the National Museum, Praha.

Specimens examined are deposited in the following collections:

JRUC collection of Jan Růžička, Praha, Czech Republic

MPEC collection of Michel Perreau, Paris, France

NMPC National Museum, Praha, Czech Republic (M. Fikáček, J. Hájek)

NSMT National Museum of Nature and Science, Tokyo, Japan (S. Nomura)

The distribution map was produced and edited in ESRI ArcMap 10.5 of ArcGIS Desktop 10.5 suite. For map layers, free levels 0–2 data from Global Administrative Areas (http://www.gadm.org, ver. 2.8) and Natural Earth (http://naturalearthdata.com, Cross Blended Hypso with Relief, Water, Drains, and Ocean Bottom) were used.

Taxonomy

Ptomaphaginus troglodytes sp. n.

http://zoobank.org/957DADD8-4248-4CCE-874C-68C693144DDA

Figs 1–11, 15–20

Type locality. China: Guizhou Province, Libo Xian County, Shuiboshu Dong cave [ca. 25°29'05"N, 107°52'54"E], 490 m.

Material examined. Holotype male (NSMT): “Shuiboshu Dong cave (490 m) / Shuipu cun [ca. 25°29'05"N, 107°52'54"E], Yuiping Zhen / Libo Xian // (Guizhou, CHINA) / 13.ix.1997, T. Kishimoto [leg.] // HOLOTPUS / *Ptomaphaginus troglodytes* sp. n. / M. Perreau & J. Růžička, 2018”. Paratypes (NSMT, JRUC, MPEC): 1 male and 2 females, same data; 1 male and 1 female, “Yamen Dong cave [ca. 25°29'N, 107°54'E] / Shuibo Zhai, Shuipu Cun / Libo Xian // (Guizhou, CHINA) / 13.ix.1997, T. Kishimoto [leg.] // PARATYPUS / *Ptomaphaginus troglodytes* sp. n. / M. Perreau & J. Růžička, 2018”.

Description. Length 1.85 mm. Body widely ovoid, uniformly light brown (depigmented). Body covered with recumbent setae inserted along tight transverse striae (Fig. 5). Habitus in Figs 1, 2.

Head without eyes (Fig. 3), antenna slender, the club weakly dilated (Fig. 4), the ratio of the lengths of antennomeres to the length of the first one are as follows: 1.00, 0.60, 0.36, 0.26, 0.31, 0.29, 0.45, 0.19, 0.38, 0.45, 1.07. Mandibles with two teeth along the internal side (Fig. 9). Maxillary palpus with the apical segment slender and very elongated, slightly longer than the penultimate (Fig. 8).
Figure 1. *Promaphaginus troglodytes* sp. n., male holotype from Shuiboshu Dong cave, habitus in dorsal view.

Pronotum transverse, 1.6 times wider than long, the largest width just before the base. Lateral sides arcuate, the posterior angles clearly protruding behind the posterior margin. Pronotal surface with transverse microstriae.

Elytra short and wide, as long as wide, the greatest width near the base. Surface covered with transverse microstriae, similar to that of the pronotum (Fig. 5). One incomplete parasutural longitudinal stria, extending over the basal half of the elytral length.

Mesoventral process with a high, widely rounded medial carina (Fig. 6). Metaventral with lateral metaventral sutures slightly convergent symmetrically toward the central axis of the body. Metatergum long and thick, extending approximately half the length of the elytra (Fig. 18).

Protibia with a row of regular spines along the external side and with a second internal row on the ventral side, with one spine situated basally and a line of seven spines medially (Fig. 10). Mesotibia and metatibia with a comb of equal-sized spines around their apex (Fig. 11). Tarsal formula 5–5–5 in both sexes. Male protarsi widely dilated, as wide as the apex of the protibia. Female protarsi slightly dilated.

Male genital segment with a spiculum gastrale extending beyond the anterior margin of epipleurites on one third of its length and slightly narrowed on this part (Fig. 17). Lateralo-posterior margin of the epipleurites with a row of moderately strong setae (Fig. 17).
Aedeagus with parameres fused laterally to the median lobe, tegmen without basal blade, the median lobe 2.6 times as long as wide, the apex roughly triangular in dorsal view (Fig. 15), with two lateral rows of eight strong and long setae inserted perpendicularly.
Figures 6–11. *Ptomaphaginus troglodytes* sp. n., male holotype from Shuiboshu Dong cave, SEM. 6 mesoventral process in lateral view 7 apex of mesotarsus in lateral view 8 apex of maxillary palpus in dorsal view 9 right mandibula in dorsal view 10 left protibia in lateral view (arrows indicate position of spines on ventral side) 11 apex of mesotibia in dorso-posterior view.
Ptomaphaginus troglodytes sp. n., the first anophthalmic species of Ptomaphaginina...

Figures 12–14. *Ptomaphaginus* sp., male of epigean species (China: Jiangxi province, Jinggang Shan Mts., Baiyinhu env., NMPC). 12 head in lateral view 13 mesoventral process in lateral view 14 left protibia in lateral view (arrows indicate position of spines on ventral side).

to the main plan of the aedeagus, and a preapical lateral row of four tiny setae (Fig. 16). Endophallus with a long, thick stylus, thicker at the base and getting progressively thinner from the base to the apex, with transverse stria in the distal half (Fig. 15).
Figures 15–19. *Ptomaphaginus troglodytes* sp. n., male paratype. 15 aedeagus in dorsal view 16 aedeagus in lateral view 17 male urite IX 18 male metatergum in dorsal view. *Ptomaphaginus troglodytes* sp. n., female paratype 19 female genital segment, with spermatheca.

Female abdominal segment IX with short gonocoxites (Fig. 19). Spermatheca uniformly sclerotized, spermiduct short and straight, spermathecal gland small (Fig. 19).

Diagnosis. Distinct from other *Ptomaphaginus* in the absence of eyes, short, wide body shape, especially the elytra as wide as long (taken together), more developed setation of the aedeagus, and transverse microstrigae of the elytra which are extremely tight and orthogonal to the suture, not oblique as generally in *Ptomaphagini*.
Figure 20. Distribution map of *Ptomaphaginus troglodytes* sp. n. in Guizhou Province, China.

The identification table of Chinese species of *Ptomaphaginus* given in the revision of the genus by Wang and Zhou (2015) should be modified by adding the first couplet before all others:

1. Anophthalmic. Transverse microstriae of elytra tight and orthogonal to the suture .. *P. troglodytes* sp. n.

 – Eyes well developed. Transverse microstriae of elytra more spaced out and oblique ... Other species
Figs 12–14 illustrate some characters of a Chinese epigean species of *Ptomaphaginus* to compare with *P. troglodytes*: Fully developed eyes (Fig. 12), mesoventral process less elevated (Fig. 13) and ventral face of protibia with the second row of spines more regular (Fig. 14).

Etymology. Cave-dweller in Latin, because of the association of the new species with caves; noun in apposition.

Biology and biogeography. No bionomic details are available for the two small series, collected in Shuiboshu Dong and Yamen Dong caves. This is the first species of *Ptomaphaginus* reported from Guizhou Province, most probably as a result of a gap in knowledge of the fauna of the centre of southern China (see Wang and Zhou 2015: 336, figure 20); this may be improved by additional sampling activities.

Distribution. The species is presently known only from two closely situated caves in Libo Karst area, south of Guangxi Province, China (Fig. 20).

Acknowledgements

We would like to express our sincere thanks to Shûhei Nomura (NSMT) and Jiří Hájek (NMPC) for loan of material. Martin Fikáček (NMPC) kindly assisted during SEM micrography. Examination of specimens using a Hitashi S-3700N scanning electron microscope in National Museum, Praha, was possible due to the Barrande I Project, partially supported by the European Union. We thank Maxwell V. L. Barclay (Natural History Museum, London, United Kingdom) for comments on and linguistic revision of the text. This study was supported by the Ministry of the Interior of the Czech Republic (no. VI20152018027).

References

Antunes-Carvalho C, Ribera I, Beutel RG, Gnaspini P (2017) Morphology-based phylogenetic reconstruction of Cholevinae (Coleoptera: Leiodidae): a new view on higher-level relationships. Cladistics [2017]: 1–41. https://doi.org/10.1111/cla.12230

Blas M, Vives E (1983) Un nou *Ptomaphagus* Illiger cavernícola d’Andalousia (Col. Catopidae). Speleon 26–27: 67–72.

Deuve T (1993) Description de *Dongodytes fowleri* n. gen., n. sp., Coléoptère troglobie des karsts du Guangxi, Chine (Adephaga: Trechidae). Bulletin de la Société entomologique de France (NS) 98(3): 291–296.

Deuve T (1995) Contribution à l’inventaire des Trechidae Trechinae de Chine et de Thaïlande (Coleoptera). Revue française d’entomologie (Nouvelle Serie) 17: 5–18.

Deuve T, Tian M, Ran J (1999) Trois Caraboidea remarquables de la réserve nationale de Maolan, dans le Guizhou méridional, Chine [Coleoptera, Carabidae et Trechidae]. Revue française d’entomologie (Nouvelle Serie) 21(3): 131–138.

Friedrich M, Chen R, Daines B, Bao R, Caravas J, Rai PK, Zagmajster M, Peck SB (2011) Phototransduction and clock gene expression in the troglobiont beetle *Ptomaphagus hirtus* of Mam-
moth cave. The Journal of Experimental Biology 214: 3532–3541. https://doi.org/10.1242/jeb.060368

Friedrich M (2013) Biological Clocks and Visual Systems in Cave-Adapted Animals at the Dawn of Speleogenomics. Integrative and Comparative Biology 53(1): 50–67. https://doi.org/10.1093/icb/ict058

Gnaspini P (1996) Phylogenetic analysis of the tribe Ptomaphagini, with description of new neotropical genera and species (Coleoptera, Leiodidae, Cholevinae, Ptomaphagini). Papéis Avulsos de Zoologia 39(24): 509–556.

Huang S, Cen Y, Tian M (2017) A new genus and a new subgenus of cavernicolous beetles from Furong Jiang valley, southwestern China (Coleoptera: Carabidae: Trechinae). Annales de la Société entomologique de France (NS) 53(4): 286–295. https://doi.org/10.1080/00379271.2017.1344566

Latella L, Hu C (2008) Biological investigation of the Museo Civico di Storia Naturale of Verona in South China caves. In: Latella L, Zorzin R (Eds) Research in South China Karst. Memorie del Museo Civico di Storia Naturale di Verona – 2 serie - Monografie Naturalistiche 3: 65–88.

Peck SB (1973) A systematic revision and the evolutionary biology of the *Ptomaphagus* (Adelops) beetles of North America (Coleoptera, Leiodidae, Catopinae), with emphasis of cave inhabiting species. Bulletin of the Museum of Comparative Zoology 145(2): 29–162.

Peck SB (1983) New cavernicolous *Proptomaphaginus* from Hispaniola and Mexico (Coleoptera: Leiodidae: Cholevinae). The Florida Entomologist 66(2): 254–260. https://doi.org/10.2307/3494249

Peck SB (1984) The distribution and evolution of cavernicolous *Ptomaphagus* beetles in the southeastern United States (Coleoptera: Leiodidae; Cholevinae) with new species and records. Canadian Journal of Zoology 62: 730–740. https://doi.org/10.1139/z84-103

Peck SB (1998) Cladistic biogeography of cavernicolous *Ptomaphagus* beetles (Leiodidae, Cholevinae: Ptomaphagini) in the United States. In: Giachino PM, Peck SB (Eds) Phylogeny and Evolution of Subterranean and Endogeal Cholevidae (=Leiodidae Cholevinae). Proceedings of a Symposium (30 August, 1996, Florence, Italy), XX International Congress of Entomology. Museo Regionale di Scienze Naturali – Torino, Torino, 235–260. https://doi.org/10.1649/0010-065X-67.3.309

Peck SB, Wynne JJ (2013) *Ptomaphagus parashant* Peck and Wynne, new species (Coleoptera: Leiodidae: Cholevinae: Ptomaphagini): the most trogloomorphic Cholevinae beetle known from western North America. The Coleopterists’ Bulletin 67(3): 309–317.

Perreau M (2000) Catalogue des Coléoptères Leiodidae Cholevinae et Platypsyllinae. Mémoires de la Société entomologique de France 4, 460 pp.

Perreau M (2009) Nouveaux Ptomaphagini et Anemadini souterrains, dont la première espèce anophtalmie d’*Anemadus* (Coleoptera: Leiodidae Cholevinae). Annales de la Société entomologique de France (NS) 45: 1–10.

Perreau M, Lemaire JM (2018) Les Ptomaphagini Jeannel du Laos (Coleoptera, Leiodidae, Cholevinae). Bulletin de la Société entomologique de France 123(1): 43–48.

Szymczakowski W (1959) *Ptomaphaginus obtusus* n. sp. de Sumatra avec remarques sur quelques espèces australiennes des Catopidae (Coleoptera). Polskie Pismo Entomologiczne 29(7): 135–138.
Szymczakowski W (1964) Analyse systématique et zoogéographique des Catopidae (Coleoptera) de la Région orientale. Acta Zoologica Cracoviensia 9: 55–289.

Tian MY (2009) New records and new species of cave-dwelling trechine beetles from Mulun Nature Reserve, northern Guangxi, China (Insecta: Coleoptera: Carabidae: Trechinae). Subterranean Biology 7: 69–73.

Tian MY (2010) New records and new species of cave-dwelling trechine beetles from Mulun Nature Reserve, northern Guangxi, China (Insecta: Coleoptera: Carabidae: Trechinae). Subterranean Biology 7(2009): 69–73.

Tian M (2011) A new subgenus and two new species of the troglobitic genus Dongodytes Deuve from Guangxi, China (Coleoptera, Carabidae). Subterranean Biology 8(2010): 57–64. https://doi.org/10.3897/subtiol.8.1232

Tian M (2013) Occurrence of troglobitic clivinines in China (Insect: Coleoptera: Carabidae). Journal of Cave and Karst Studies 75: 113–120. https://doi.org/10.4311/2011LSC0226

Tian M (2014) New records and a new species of the cavernicolous genus Guiodytes Tian, 2013 from Guangxi, China (Coleoptera: Carabidae: Scaritinae). Zootaxa 3861(4): 355–362. https://doi.org/10.11646/zootaxa.3861.4.5

Tian M, Clarke A (2012) A new eyeless species of cave-dwelling trechine beetle from northeastern Guizhou Province, China (Insecta: Coleoptera: Carabidae: Trechinae). Cave and Karst Science 39(2): 66–71.

Tian M, Deuve T (2016a) Definition of the jianfengling species group of the ground beetle genus Orthogonius MacLeay (Coleoptera, Carabidae, Orthogoniini). ZooKeys 615: 95–117. https://doi.org/10.3897/zookeys.615.9179

Tian M, Deuve T (2016b) Re-definition and review of the Oriental genus Hexachaetus Chaudoir, 1871 (Coleoptera: Carabidae: Orthogoniini). Zootaxa 4169: 540–554. https://doi.org/10.11646/zootaxa.4169.3.7

Tian MY, Huang SB, Wang XH (2014a) New cavernicolous trechine beetles from eastern Guizhou Province, China (Coleoptera: Carabidae: Trechinae). Journal of the Entomological Research Society 17(3): 25–37.

Tian MY, Yin HM, Huang SB (2014b) Du’an Karst of Guangxi: a kingdom of the cavernicolous genus Dongodytes Deuve (Coleoptera, Carabidae, Trechinae). ZooKeys 454: 69–107. https://doi.org/10.3897/zookeys.454.7269

Tian M, Huang S, Wang D (2017) Discovery of a most remarkable cave-specialized trechine beetle from southern China (Coleoptera: Carabidae: Trechinae). ZooKeys 725: 37–47. https://doi.org/10.3897/zookeys.725.21040

Uéno S-I (2000a) Notes on Guizhaphaenops (Coleoptera, Trechinae), with descriptions of two new species. Elytra (Tokyo) 28(2): 247–264.

Uéno S-I (2000b) New cave trechines (Coleoptera, Trechinae) from northeastern Guizhou, South China. Journal of the Speleological Society of Japan 25: 1–38.

Uéno S-I (2002) New Sinaphaenops (Coleoptera, Trechinae) from southern Guizhou, with notes on Thaumastaphaenops pulcherrimus. Elytra (Tokyo) 30: 57–72.

Wang C-B, Zhou H-Z (2015) Taxonomy of the genus Ptomaphagus Portevin (Coleoptera: Leiodidae: Cholevinae: Ptomaphagini) from China, with description of eleven new species. Zootaxa 3941(3): 301–338. http://dx.doi.org/10.11646/zootaxa.3941.3.1
Ptomaphaginus troglodytes sp. n., the first anophthalmic species of Ptomaphaginina...