Myocardial oedema: pathophysiological basis and implications for the failing heart

Francisco Vasques-Nóvoa1,2*, António Angélico-Gonçalves1,2, José M.G. Alvarenga1,2, João Nobrega1,2, Rui J. Cerqueira1,2, Jennifer Mancio1,2, Adelino F. Leite-Moreira1,2 and Roberto Roncon-Albuquerque Jr.1,2

1Cardiovascular R&D Center, Faculty of Medicine, University of Porto, Porto, Portugal; and 2Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, Porto, 4200-319, Portugal

Abstract

Myocardial fluid homeostasis relies on a complex interplay between microvascular filtration, interstitial hydration, cardiomyocyte water uptake and lymphatic removal. Dysregulation of one or more of these mechanisms may result in myocardial oedema. Interstitial and intracellular fluid accumulation disrupts myocardial architecture, intercellular communication, and metabolic pathways, decreasing contractility and increasing myocardial stiffness. The widespread use of cardiac magnetic resonance enabled the identification of myocardial oedema as a clinically relevant imaging finding with prognostic implications in several types of heart failure. Furthermore, growing experimental evidence has contributed to a better understanding of the physical and molecular interactions in the microvascular barrier, myocardial interstitium and lymphatics and how they might be disrupted in heart failure. In this review, we summarize current knowledge on the factors controlling myocardial water balance in the healthy and failing heart and pinpoint the new potential therapeutic avenues.

Keywords Heart failure; Myocardial oedema; Cardiac microcirculation; Cardiac pericytes; Cardiac lymphatics; Myocardial interstitium; Extracellular matrix

Introduction

The adequate compartmentalization of water in the myocardium is essential to maintain normal cardiac function.1 Despite several mechanisms known to regulate cardiomyocyte and interstitial volume,2 the myocardium remains particularly susceptible to oedema formation due to its dense microvascular network and high interstitial flow rate.

Myocardial oedema (MO), defined by the accumulation of cardiac water in interstitial and/or intracellular compartments, has been shown to induce cardiomyocyte injury, dysfunction3–6 and remodelling.3,4

The recent introduction of magnetic resonance imaging (MRI) techniques (e.g. myocardial T1 and T2 mapping) has enabled the non-invasive assessment of the extracellular component, namely, the myocardial water content, suggesting that MO negatively affects the prognosis across acute and chronic heart failure (HF).7–9 Moreover, advances in the understanding of the myocardial microvascular barrier and lymphatics suggest that myocardial fluid balance disturbances are key determinants of the extent and duration of myocardial injury. These aspects may recast MO as a therapeutic target yet to explore in clinical practice.

The present review aims to summarize the current knowledge on the pathophysiological mechanisms of MO formation and their contribution to the disruption of cardiac homeostasis in the failing heart, also discussing future perspectives on therapeutic targeting of MO.
Basic concepts

Myocardial fluid balance and myocardial oedema

To maintain fluid homeostasis, microvascular fluid filtration into the myocardium must be matched by its removal rate via myocardial lymphatic vessels. Microvascular fluid exchange is governed by the Starling principle, expertly reviewed elsewhere, summarised by the revised Starling equation:

\[J_V = L_P S \left[\left(P_C - P_I \right) - \sigma \left(\Pi_C - \Pi_G \right) \right] \]

where \(L_P \) is the hydraulic conductivity, \(S \) is the filtration surface area, \(P_C \) and \(P_I \) are the intracapillary (C) and interstitial (I) hydrostatic pressures, \(\sigma \) is the protein reflection coefficient and \(\Pi_C \) and \(\Pi_G \) are the intracapillary and subglycocalyx (G) colloid osmotic pressures, respectively (Figure 1). In order to keep a stable interstitial volume \((V_I) \) and defend against oedema formation, several physiological mechanisms counteract primary perturbations in \(P_C \), \(\Pi_C \) and endothelial barrier function—oedema safety factors.

Figure 1. The disruption of myocardial fluid balance in the failing heart. Multiple mechanisms can contribute for oedema formation in the failing heart and are differentially observed in several types of acute and chronic heart failure. Myocardial ischaemia, inflammation and volume overload negatively impact on microvascular barrier function by promoting the glycocalyx degradation and pericyte detachment, resulting in excessive fluid filtration. The resulting increase in interstitial volume and pressure disrupt the extracellular matrix (ECM) architecture, pulling cardiomyocytes away from capillaries and increasing oxygen diffusion distance. Moreover, ECM degradation and high central venous pressure impair lymphatic recruitment and drainage, leading to the accumulation of inflammatory cells, cytokines and metabolic waste products in the myocardial interstitium. Collectively, these mechanisms can impair myocardial contractility and bioenergetics, increase myocardial stiffness and promote cardiomyocyte apoptosis.
Myocardial oedema develops when fluid filtration rate exceeds lymphatic fluid removal and can be generated by increased ΔP or S, decreased ΔΠ or alterations of microvascular membrane properties (increased Lp or decreased σ) (Figure 1). Increased Pc can be driven by high pre-capillary pressure in the setting of acute arterial hypertension, or high post-capillary pressure in coronary sinus occlusion, pulmonary hypertension or in acute HF with increased central venous pressure. Moreover, increased S, caused by increased capillary recruitment or vasodilation, promotes MO formation and is particularly relevant in inflammatory HF aetiologies (e.g. myocarditis and sepsis). Finally, as albumin is the major determinant of Πc, states of hypoalbuminemia facilitate fluid filtration and global interstitial oedema. This is particularly relevant in crystalloid coronary perfusion during cardiac surgery and in shock management (e.g. septic and cardiogenic) in which, excessive fluid resuscitation worsens prognosis.

Myocardial oedema dramatically reduces energetic efficiency, impairing both contraction and relaxation. However, increased VI and P have been shown to primarily affect myocardial viscoelastic properties, resulting in higher diastolic stiffness. Due to its low interstitial compliance, small interstitial volume expansions create high interstitial pressures, making the myocardium particularly sensitive to oedema formation. The experimental increase in myocardial water content by 3.5% was associated with a 40% drop in cardiac output. In addition, MO directly opposes filtration, by decreasing ΔP and physically compressing the capillaries and disrupting nutrient and oxygen delivery. The disruption of the extracellular matrix structure, increased oxygen diffusion distance and accumulation of metabolic waste products are additional proposed mechanisms of MO-associated functional deterioration (Figure 2).

In summary, myocardial fluid balance is largely dependent on microcirculation dynamics, microvascular barrier, interstitial architecture and lymphatic drainage. Disruption of any of these components may disturb myocardial fluid homeostasis. In this review, each factor will be addressed in detail regarding its physiological role and how it may be disrupted in the failing heart.

Coronary microcirculation

The healthy myocardium is one of the most densely vascularized tissues in human body, possessing a high density capillary network (3,000–4,000/mm²) closely disposed around cardiomyocytes (Figure 2). Such proximity between cardiomyocytes and capillaries is of utmost importance to maintain a short diffusion distance not only for oxygen, but also for potentially toxic byproducts of cellular metabolism. Moreover, the high metabolic rate of the myocardium, which primarily depends on oxidative phosphorylation, translates in an elevated oxygen demand that is matched by a very high oxygen extraction rate (70%–80% in resting conditions). Consequently, in stress conditions, additional increments in oxygen demand are predominantly met by parallel increases in myocardial blood flow (MBF). This metabolic contribution to MBF autoregulation is made possible by the close contact...
between cardiac muscle and vasculature, enabling cardiomyocyte-derived mediators (CO$_2$, lactate) and microenvironmental factors (pH, extracellular K) to modulate local vasomotor tone and haemoglobin dissociation curve. Therefore, pathological conditions limiting the close communication between cardiomyocytes and vasculature, namely, the expansion of the interstitial space due to oedema or fibrosis, as well as arteriolar and capillary rarefaction, common features in chronic HF, impair diffusional transport and MBF autoregulation, contributing to oxygen supply/demand mismatch (Figure 2).

Another consequence of the proximity between coronary microvasculature and cardiomyocytes is their mechanical interactivity. Previously considered an important modulator of contractility (i.e. Gregg phenomenon), the effect of coronary perfusion was later shown to be negligible within the autoregulatory pressure-flow range. Extravascular forces are not uniform across the ventricular wall and a gradual increase in interstitial pressure and vascular compression is observed from the subepicardium to the subendocardium. This is partly compensated by a higher arteriolar density at the subendocardium so that, in physiological conditions, MBF is similar in both myocardial layers. Yet, the distinct mechanical cross-talk between different myocardial layers, makes arterio-venous pressure gradient (i.e. pressure force) at the subendocardium about half of that of subepicardium. Consequently, in the setting of decreased coronary pressure (e.g. coronary artery disease), the subendocardial perfusion is predominantly affected. This intricate relation between microcirculation and perfusion may underly, at least partially, the existence of clearly distinct patterns of MO distribution associated with different kinds of myocardial injury: in acute inflammatory conditions (e.g. viral myocarditis, sepsis) oedema is generally evident in the subepicardial layers whereas in acute ischaemia, the oedema is transmural or predominantly affects the subendocardium.

Coronary vasculature also influences myocardial tissue properties. Higher coronary perfusion pressure is associated with increased myocardial stiffness, shifting diastolic pressure-volume relationship left and upwards, even in the absence of oedema formation. The underlying mechanism resides in the fact that cardiomyocyte contraction increases the cell diameter, which happens at the expense of coronary vascular diameter, contributing to the abovementioned systolic vascular compression. Accordingly, higher intravascular volume and pressure, caused by increased coronary perfusion or venous outflow pressure, oppose intravascular fluid displacement, and therefore impair muscle contraction and relaxation. This has been shown to be especially relevant in the setting of increased coronary sinus pressure, seen in acute and chronic HF, where increased intravascular and interstitial volume act cooperatively to impair systolic function and diastolic compliance.

Coronary microvascular barrier

Overlooked in the past, the cardiac microvascular barrier became increasingly recognized as highly active and complex structure, composed of a continuous non-fenestrated endothelial cell monolayer, which is internally coated with a negatively charged gel-like mesh (i.e. glycocalyx) and externally covered by pericytes and basement membrane (Figure 3).

Interendothelial junctions

Endothelial cells (EC) are tightly bonded by interendothelial junctions (IEJ), mostly comprised by tight (occludins, claudins and JAMs) and adherens junctions (VE-cadherin), which define endothelial pore size and can be dynamically regulated at the expression level and through internalization, to finely tune endothelial permeability and regulate the passage of macromolecules and cells (Figure 3). Accumulating evidence suggests IEJ disruption as a potential pathophysiological mechanism in cardiac diseases. Importantly, endothelial expression of claudin-5, a critical player in size-selective barrier function, is reduced in human end-stage HF hearts. This was also shown in experimental diastolic dysfunction induced by western diet, where claudin-5 and occludin down-regulation was associated with increased vascular permeability, an effect attenuated by amiloride, suggesting an important role for endothelial ENaC expression and sodium overload. Regarding adherens junctions, reduced VE-cadherin/β-catenin expression in dilated cardiomyopathy was associated with endothelial cell degeneration, whereas in post-ischaemic MO, Src inhibition prevented VEGF-mediated disruption of Flk/VE-cadherin/β-catenin complex and attenuated post-ischaemic MO, fibrosis and mortality. In addition, key risk factors for HF development and progression have been shown experimentally to promote endothelial hyperpermeability by disrupting EJ, namely, renin-angiotensin-aldosterone system activation, inflammation, hypoxia, cardioplegic arrest, hyperglycaemia, oxidative stress, increased circulating LDL and free fatty acid levels.

The endothelial surface layer

The endothelial glycocalyx (eGC) covers the apical side of endothelial cells and consists of a complex meshwork of varied membrane-associated macromolecules (Figure 3). These include proteoglycans and glycoproteins, forming a backbone in which soluble proteins, plasma- or endothelial-derived, are incorporated. eGC proteoglycans are constituted by linear core proteins, mostly Syndecan-1, to which multiple glycosaminoglycans (GAGs) side chains can be covalently attached.
Figure 3 Molecular interactions in myocardial fluid balance. The myocardium is composed by cardiomyocytes, microvascular capillaries enclosed by pericytes and lymphatic capillaries. Fluid is filtrated in microvascular capillaries, through the endothelial surface layer and interendothelial junctions. In the myocardial interstitium, fluid entry is limited by type I and type III collagen fibres and GAGs, extracellular matrix components that act as a buffer for Na⁺ and water. Interstitial and intracellular water are in delicate balance, maintained by cardiomyocyte volume regulators. Interstitial fluid (IF) and solutes are collected by initial lymphatic capillaries, enabling a continuous IF renovation, which is returned ultimately to the venous circulation. (A). Cardiomyocyte ionic transporters: cardiomyocytes closely regulate intracellular water entry and extrusion. Water enters through aquaporins or passively diffuses through the cell membrane, according to osmotic gradients established by ionic and solute concentrations. (B). Endothelial cell–pericyte interaction: these cells establish close paracrine and physical (N-cadherin) interactions regulating microvascular stability. Endothelial cells secrete PDGF-BB that binds to PDGFR-β, promoting pericyte recruitment and microvascular integrity, whereas pericytes secrete angiopoietin 1 (Ang-1), which acts on Tie-2 and stabilizes endothelial cells. (C). Endothelial surface layer and interendothelial junction: the endothelial surface layer is composed by endoluminal glycocalyx, which binds plasma proteins and protects endothelial cells. Furthermore, endothelial cells establish varied connections, maintaining cohesiveness and cell survival. (D). Lymph drainage in initial lymphatic capillary: fluid enters the lymphatic vasculature via lymphatic capillaries, which are blunt-ended vessels attached to the extracellular matrix by anchoring filaments. Lymphatic endothelial cells overlap, creating valve-like structures that promote unidirectional lymph flow. These vessels converge progressively from the subendocardium to the subepicardium, forming epicardial lymphatic collectors. ALK-1 and -5, anaplastic lymphoma kinase-1 and -5; Ang-1, angiopoietin-1; AngII, angiotensin II; Aqp, aquaporins; GAG, glycosaminoglycans; HA, hyaluronic acid; JAMs, junctional adhesion molecules; NBS, Na+/HCO₃⁻/CO₂ Symporter; NCX, Na⁺/Ca²⁺ exchanger; NHE, Na⁺/H⁺ exchanger; PDGF-BB, platelet-derived growth factor BB; PDGFR-β, PDGF receptor β; TGF-β, transforming growth factor β; TGFR-β2, TGF receptor β2; Tie-2, angiopoietin-1 receptor.

GAGs are highly polyanionic compounds composed of disaccharide repeating units which can be non-sulfated [hyaluronic acid (HA)] or sulfated (chondroitin sulfate, dermatan sulfate, keratan sulfate and heparan sulfate). Together, they form a negatively charged surface that will enable electrostatic interactions with plasma cations, mostly with divalent metal cations (e.g. Ca²⁺), but also with Na⁺ due to its high plasma concentration.⁷⁵,⁷⁶ The resulting high cation concentration at the interface with the plasma enables negatively charged circulating proteins (albumin, antithrombin III and thrombomodulin), that would otherwise not be able to electrically interact with the glycocalyx, to approach and incorporate this layer, forming together the endothelial cell surface layer (ESL).⁷⁷,⁷⁸ The ESL, measuring between 0.2 and 2.0 mm in vivo, is therefore a highly complex structure with critical functions in microvascular physiology by (i) physically shielding the underlying endothelium from luminal aggressions; (ii) regulating microvascular flow by transmitting shear-stress forces; (iii) constituting a barrier for plasma proteins and ions, thereby maintaining intravascular oncotic...
pressure; (iv) avoiding platelet aggregation by accumulating platelet-inhibitory factors (antithrombin III and thrombomodulin) and physically restricting its interaction with subendothelium at the endothelial gaps; (v) inhibiting endothelial proinflammatory activation (i.e. increased permeability and adhesiveness) by binding circulating cytokines; and (vi) limiting the access and adhesion of circulating immune cells to the EC surface.79,80,81

The ESL structure is maintained by a fragile balance between flow and enzymatically mediated shedding, and de novo production of its components.82 Not surprisingly, most pathological mechanisms shown to increase microvascular barrier permeability act concomitantly on IEJ and ESL, namely, in inflammation, ischaemia–reperfusion,83 hypoxia84 and hyperglycaemia.85 Importantly, the activity of glycosalyx-degrading enzymes (i.e. hyaluronidases, heparanase and MMPs) is increased in the setting of inflammation, which, in combination with endothelial CAM overexpression, facilitates leukocyte adhesion and diapedesis.86 The importance of the permissive effect of ESL degradation on cardiac leukocyte infiltration has been shown in myocardial infarction,87,88 viral myocarditis89 and sepsis,90,91 aggravating the myocardial inflammatory injury. Moreover, degradation of eGC components (hyaluronan92 and heparan sulfate93) has been shown to promote MO by increasing microvascular permeability to water and proteins.

Perhaps, the more striking association between eGC and HF is the fact natriuretic peptides (NP), mostly produced by cardiomyocyte stretching in the setting of hypervolemia and ventricular overload, have been repeatedly shown to promote eGC degradation.94–98 This effect seems to act concurrently with Na+ overload, which also leads to the destabilization and collapse of the eGC, mainly through loss of heparan sulfate residues, an effect attenuated by the use of spironolactone.99 This can be interpreted essentially as a compensatory mechanism, by enabling the escape of excessive intravascular fluid and sodium to the interstitium, which has a high Na+ buffering capacity due to its GAG content,100 and acting in conjunction with NP-mediated venodilation to reduce cardiac overload. However, eGC degradation in the setting of myocardial functional impairment might also carry some drawbacks. In addition to eGC degradation being an inherently proinflammatory stimuli for EC,101,102,103 the impairment of glycosalyx Na+ buffering capacity may increase the amount of Na+ presented to the endothelium, promoting intracellular endothelial Na+ overload and increased transport to the interstitium, resulting in endothelial dysfunction and aggravated interstitial oedema, respectively.104,105,106 Furthermore, this combined effect of hypervolemia and Na+ overload also has important implications in the critical care setting (e.g. cardiogenic and septic shock),107,108 where the frequently excessive crystalloid resuscitation might disrupt microvascular barrier function and complicate haemodynamic management and prognosis. Despite its proposed pathophysiological importance, a direct observation of ESL disruption in HF is still lacking.

Cardiac pericytes

Cardiac pericytes (CPC) are a highly heterogeneous population of perivascular contractile cells that ensheathe and intimately interact with underlying endothelial cells, forming a microvascular syncytium.109,110 Despite conflicting reports, recent data suggest that CPC cover up to 99% of the length of the myocardial microvasculature.111 CPC share the basement membrane with EC and establish numerous physical interactions, ensuring an adequate control of microvascular permeability. Moreover, an intense reciprocal communication between CPC and EC takes place through gap junctions and paracrine factors, which has been shown to be especially relevant for angiogenesis and stabilization of newly formed vessels101 (Figure 3). Importantly, multiple pericyte phenotypes with distinct cell-surface marker signatures and variable expression of contractile proteins have been shown to be differentially distributed across the arteriolar, microvascular and venular sections of coronary vasculature.99,112 Such diversity probably underlies distinct pathological roles attributed to pericytes in the context of myocardial injury and remodeling.

Extensive evidence supports a key role for CPC in the regulation of myocardial microvascular flow and permeability. Indeed, the disruption of key trophic and homeostatic pathways for CPC, namely, PDGF-β/PDGFR-β,113,114 Ang-1/Tie2,115,116 Sirtuin-3117,118 and Notch3,119,120 has been shown to decrease CPC density and EC coverage, resulting in increased microvascular permeability in response to injury, MO and functional impairment. Importantly, common observations in genetic and drug-induced CPC dysfunction are increased microvascular tortuosity and decreased coronary reserve in response to vasodilator challenge, with cardiac up-regulation of hypoxia-related genes.121 In knockout mouse models, the genetic ablation of Notch3122 and Sirtuin-3123 impairs microvascular maturation and pericyte/EC interaction, exacerbating ischaemic injury and hindering post-ischaemic functional recovery. Similar observations were made in experimental models of endotoxemia and diet-induced obesity, in which Sirtuin-3 has been shown to be down-regulated.124,125 Accordingly, in the setting of ischaemic injury, cardiomyocyte-derived proNGF activates p75 neurotrophin receptor, causing pericyte process retraction, resulting in a lack of support of the microvascular endothelium and perivascular oedema.126 Moreover, Hypoxia-Induced Endoplasmic Reticulum Stress Regulating (HypER) lncRNA, which promotes pericyte proliferation, viability and interactions with EC, is down-regulated in human HF,127 supporting pericyte degeneration as a potentially important pathophysiological mechanism.

ESC Heart Failure 2022; 9: 958–976
DOI: 10.1002/ehf2.13775
In line with the diversity of CPc phenotypes and functional roles in the setting of myocardial ischemia, CPc have also been implicated in the no-reflow phenomenon.\(^{128}\) Importantly, some pericyte subpopulations express variable amounts of myosin and actin isoforms (\(\alpha\)-SMA and \(\gamma\)-actin), having the ability to contract and relax in response to multiple paracrine factors (catecholamines and adenosine).\(^{129,130}\) Being circumferentially disposed around capillaries, CPc contraction can decrease microvascular flow and theoretically reduce capillary luminal diameter enough to impede the passage of leukocytes. Indeed, in an ischaemia/reperfusion injury model, post-ischaemic capillary blockage sites have been shown to be disproportionately close to pericytes, suggesting ischemic CPc contraction, probably mediated by an increase in intracellular Ca\(^{2+}\),\(^{131}\) as an important mediator of impaired reoxygenation of ischemic tissue following myocardial revascularization.\(^{132}\)

In inflammatory conditions, CPc detachment from EC surface was associated with differentiation into myofibroblasts and increased production of ECM, potentially contributing to pathological myocardial remodelling.\(^{134,135}\) In fact, galectin-3, a well-validated biomarker and mediator of cardiac fibrosis in HF patients,\(^{136}\) has been shown to stimulate pericyte proliferation and procollagen I secretion.\(^{137}\) This is in accordance with observations in angiotensin II-induced myocardial hypertrophy model, in which Gli1+ cells were shown to be a subpopulation of pericytes that, in the setting of injury, differentiate into myofibroblasts and produce ECM in perivascular and interstitial spaces.\(^{138}\) Further supporting this role of CPc, in a clinically relevant rat model of HF with preserved ejection fraction (ZSF1 obese rats), decreased EC coverage was associated with subendocardial foci of CPc proliferation, which colocalized with ECM deposition and inflammatory cell infiltration.\(^{139}\) Consistently with this finding, pericytes have been shown to respond to proinflammatory stimuli with overexpression of cytokines, chemokines and CAMs,\(^{140}\) regulating immune cell diapedesis.\(^{141}\) In the setting of experimental sepsis, inflammatory-mediated CPc loss facilitates the infiltration of immune cells in cardiac interstitium.\(^{142}\) These findings highlight the fact that, beyond being key determinants in the microvascular barrier, pericytes may detach from endothelial cells and promote interstitial remodelling in inflammatory injury.

Myocardial interstitium

The myocardial interstitium is a highly organized and compact structure, comprised by fibrillar collagen, non-collagen matrix proteins, proteoglycans, GAGs and a wide array of bioactive signalling molecules\(^{143}\) (Figure 3). Cardiomyocytes are enclosed in a basement membrane, mostly constituted by integrins, laminin and fibronectin, behaving as anchoring points for fibrillar collagen and other matrix components (proteoglycans and GAG) attachment. Collagens (type I and III) are the predominant components of cardiac ECM, and their high tensile strength is assumed to be the main contributor for ECM structural integrity.\(^{144}\) Cardiac ECM architecture enables an effective force summation of individually contracting cardiomyocytes, allowing a coordinated myocardial tissue contraction, while at the same time maintaining adequate spatial relationships between cells, which prevents cardiomyocyte overstretching, preserves intercellular connections and opposes microcirculatory collapse.

Cardiac ECM composition is an important determinant of interstitial space volume and pressure. The interstitial space is densely crowded with intertwined components, which occupy the available physical space and limit the entrance of plasma proteins or cells, a phenomenon called steric interstitial exclusion.\(^{2}\) Given their polyanionic nature, interstitial GAGs further contribute to limit the entrance of plasma proteins, while also binding free ions (mostly Na\(^+\)) and annulling their osmotic force.\(^{93}\) Interestingly, changes in sulfated GAG conformation are associated with decreased Na\(^+\) buffering capacity and interstitial oedema.\(^{93}\) Moreover, the high stiffness of cardiac ECM not only preserves cardiomyocyte function by generating passive tension and avoiding tissue overstretching but also confers a low interstitial compliance to the myocardium and opposes interstitial space expansion.\(^{145}\) Consequently, in the setting of increased transcapillary filtration, interstitial fluid (IF) buildup stretches the ECM, causing a steep increase in interstitial pressure, which, in turn, forces IF into the lymphatic system.\(^{2}\)

Alterations in ECM architecture or composition critically influence myocardial function. Increased ECM deposition, mainly in the form of collagen, has been recognized as an important mechanism of increased stiffness and diastolic dysfunction in most forms of chronic HF.\(^{16}\) However, mechanical and enzymatic disruption of the ECM also significantly impairs myocardial systolic and diastolic function by compromising force transmission by displacing collagen struts from their anchoring points and breaking intercellular connections.\(^{146,147}\) Moreover, inflammation-driven up-regulation of ECM-degrading enzymes promotes both ECM and basement membrane degradation, decreasing interstitial exclusion effect and facilitating the interstitial passage of fluid, proteins and immune cells.\(^{148}\) ECM degradation has been shown in acute high-grade myocardial inflammation, especially in experimental myocarditis\(^{149}\) and sepsis,\(^{150}\) where a significant acute decrease in total myocardial collagen content and collagen degradation were observed and associated with MO, systolic and diastolic dysfunction. Further supporting this experimental observation, post-mortem evaluation of human septic myocardium found significant ECM disruption and interstitial oedema at the subepicardium, which colocalized with macrophage infiltration and cardiomyocyte apoptosis.\(^{45}\) Importantly, disruption of collagen struts may also increase coronary microvasculature susceptibility.
bility to external compression, which might compromise MBF in the setting of oedema-associated increased interstitial pressure.36,123

Interestingly, chronic oedematous states produced by increased microvascular filtration or decreased lymphatic drainage are associated with increased myocardial collagen deposition.3,4 The interstitial remodelling may be interpreted as a compensatory mechanism, by decreasing interstitial compliance and preventing interstitial expansion, therefore minimizing the disruption of cardiac architecture. However, increased collagen deposition also causes long-term detrimental effects on overall myocardial compliance and function.151

Impaired turnover of non-collagen ECM elements can also promote fibrosis and have detrimental effects on myocardial function. HA is observed in healthy cardiac ECM in its high-molecular-weight HA form and has a unique capacity to bind and retain water molecules.152 Interestingly, while eGC HA degradation has been consistently associated with endothelial dysfunction, increased microvascular permeability and MO,153 cardiac interstitial accumulation of HA, has similarly been shown to promote MO and structural remodelling.154 Cardiac interstitial accumulation of HA is normally associated with increased interstitial water content and MO, and is observed in myocardial infarction,155 hypertrophic cardiomyopathy,156 myocarditis157 and experimental cardiac transplant rejection.158,159 Curiously, hyaluronidase treatment was able to decrease MO in rejected heterotopic transplants,160 whereas accumulation of low-molecular-weight HA (LMWHA) in hypertrophic cardiomyopathy is not associated with increased water content,161 raising the possibility of distinct contributions of high-molecular-weight HA and LMWHA for oedema generation. Indeed, in the setting of inflammation and myocardial injury, production of LMWHA is preponderant and has been shown to stimulate TLR inflammatory signalling pathways.127 Collectively, these results underscore the importance of GAG structure, composition and regional distribution for IF balance.

Cardiac lymphatic system

The cardiac lymphatic system is essential in maintaining myocardial fluid balance and immunological homeostasis.139 It represents the main route for the removal of cellular metabolites, allowing the continuous IF renewal while avoiding the buildup of interstitial volume and pressure.2 Additionally, an immunomodulatory role has also been attributed to cardiac lymphatics due to the washout of proinflammatory mediators and immune cells from the myocardial interstitium in the setting of myocardial injury.162,163

Lymphatic capillaries are highly specialized blind-ended structures, composed by oak-leaf shaped lymphatic endothelial cells (LEC), which mostly lack basement membrane and are connected by permeable flap-like intercellular junctions that favour unidirectional passage of IF, solutes and immune cells164,165 (Figure 3). Moreover, cardiac LEC are connected to the surrounding ECM and cardiomyocytes by structures designated as anchoring filaments, constituted by type VII collagen projections, integrins and focal adhesion kinases. Anchoring filaments maintain lymphatic patency by exerting tensile forces and opening the lumen of lymphatic capillaries, facilitating lymphatic flow.166,167 Anatomically, the lymphatic capillaryplexus progressively converges from the subendocardium to the subepicardium, suffering structural alterations along the way, namely, the appearance of a continuous basement membrane, intraluminal valves to promote unidirectional flow, tight junctions, and, in larger trunks outside the myocardium, an adventitial layer and surrounding smooth muscle cells to help pump lymph.168,169 Subepicardial lymphatic pre-collectors converge to form epicardial lymphatic collectors that transport cardiac lymph via lymph nodes towards thoracic ducts, ultimately draining into the superior vena cava.170

Several factors influence cardiac lymph flow, most of which known to be unique to the heart. A distinctive feature of the intramyocardial lymphatic system is the absence of smooth muscle in intramyocardial vessels. Therefore, lymph flow is highly dependent on external forces, namely, muscle contraction and deformation along the cardiac cycle, heart rate and contractility.1 However, factors not intrinsic the heart function also impact lymph drainage. By concentrating interstitial metabolic products and proteins, lymph oncotic pressure exceeds interstitial oncotic pressure, promoting water osmotic dragging and fluid drainage.1 Coronary venous pressure is also an important regulator of lymph flow. Experimental coronary sinus blockade increases capillary hydrostatic pressure and promotes fluid filtration upstream, which requires compensatory lymphatic dilation and increased lymph flow to maintain fluid homeostasis.13,14,147 On the other hand, downstream, because lymph is ultimately drained into the venous circulation, increased central venous pressure acts synergically with decreased contractility to impair lymph flow in acute HF, promoting MO.16,93

The frequent observation of MO in several aetiologies of HF suggests that cardiac lymphatic inability to respond to increased filtration is a rather common finding. Despite the recognized ability of the healthy heart to respond to an increased capillary filtration by increasing lymph drainage severalfold,1 multiple disease mechanisms may render the cardiac lymphatic system incapable to cope. In this setting, lymphatic dysfunction will not only promote accumulation of a protein-rich IF, which contributes to microvascular and cardiomyocyte stress, but will also have a proinflammatory effect by decreasing the clearance of proinflammatory cytokines and immune cells.171 Prolonged residence of cellular debris, inflammatory mediators and cells in myocardial interstitium will aggravate and prolong myocardial

ESC Heart Failure 2022; 9: 958–976
DOI: 10.1002/ehf2.13775
inflammation, especially in the setting of myocardial infarc-
tion and myocarditis. Furthermore, the distortion of in-
terstitial architecture mediated by oedema and the acti-
vation of collagen and GAG-degrading enzymes may have a negative
impact on anchoring filaments and initial lymphatics, further
compromising lymphatic patency and function. Whereas
acute lymphatic obstruction leads to oedema, chronic ob-
struction is associated with interstitial fibrosis and ECM
remodelling. Moreover, given the close proximity of the
lymphatic and electrical conduction system, lymphatic dys-
fuction has also been shown to be associated with electrical
disturbances.

Lymphangiogenesis, the process of producing new ly-
mpathic vessels is known to be a dynamic process mainly re-
gulated by VEGF-C and VEGF-D binding to lymphatic-specific
receptor VEGFR3, and to be affected by inflammation and
other cardiovascular factors (diabetes and obesity). In
acute inflammation and in myocardial infarction, higher
fluid filtration increases the need for lymph drainage, with
resulting up-regulation of lymphangiogenic factors. However,
this endogenous response appears to be insufficient and to
result in deficient lymphangiogenesis, with a predominance
of lymphatic capillaries and lack of pre-collectors. In fact, in
post-infarct mouse models, stimulating lymphangiogenesis
with exogenous VEGF-C or adrenomedullin increases lymph
flow, decreases MO, attenuates myocardial inflammation
and fibrosis and improves cardiac function. Still, this
promising therapeutic avenue has been recently questioned
by the absent impact of genetic blockade of lymphangiogen-
esis on cardiac function after experimental myocardial
infarction.

Cardiomyocyte volume regulation

The cardiomyocyte membrane is highly permeable to water,
which moves passively according to osmotic gradients and di-
rectly sets cell volume. Normal cell function requires a sta-
ble volume and excessive water entry may disrupt membrane
and cytoskeleton integrity. To prevent abrupt cell volume al-
terations, intracellular osmolarity is highly controlled, either
with active ionic fluxes or the synthesis/degradation of os-
motically active solutes (Figure 3).

In the isotonic steady-state, intracellular osmotic pressure
exceeds extracellular osmotic pressure due to cellular con-
centration of organic phosphates and proteins, thus favouring
passive water entry. To maintain the volume constant, the
membrane Na+/K+ ATPase promotes the exit of 3 Na+ and en-
try of 2 K+ ions, a phenomenon known as the ‘Pump and
Leak’ concept. Together with low Na+ membrane permeabili-
ity, both mechanisms contribute to maintain a low
intra cellular [Na+] and a constant transmembrane gradient,
on which many ionic transporters that regulate cell volume
are highly dependent. In myocardial ischaemia, Na+/K+ ATPase
dysfunction results in extracellular accumulation of K+, intra-
cellular accumulation of lactate, Na+ and Cl− and consequent
cell swelling and membrane depolarization. Furthermore,
aerobic metabolites accumulate in extracel-
lular and intracellular spaces. Following reperfusion of the
coronary vessels will re-establish water delivery and wash
out extracellular, but not intracellular, metabolic products,
creating an osmotic gradient that promotes cell swelling.
Highlighting the pathophysiological importance of cardio-
myocyte oedema in ischaemia/reperfusion injury, reperfusion
with a hypertonic solution limited MO and infarct size, when
compared with isotonic solution.

Cell swelling depolymerizes actin filaments and disrupts cy-
toskeleton interactions with membrane proteins. Of note,
cardiomyocyte swelling induced by ischaemia–reperfusion in-
jury was associated with variable degrees of mitochondrial
damage, cytoskeleton abnormalities and significant increases
in sarcomere length, radial distance between myofibrils and
distance between mitochondria and myofibrils, repercussing
on maximal tension and calcium sensivity. Accordingly,
swelling of isolated cardiomyocytes induced by hypotonic
medium was associated with lower contractility and activated
NO/cGMP/PKG pathway.

Despite most of myocardial water being confined to the in-
tracellular compartment, few studies have addressed the
pathophysiological role of cardiomyocyte swelling in HF.

Clinical perspective

In clinical research and practice, MRI stands out as the
gold-standard method for non-invasive MO evaluation,
based on its ability to identify the tissue ‘free’ water pool.
‘Free’ water molecules rotate very rapidly when subjected
to a magnetic field and produce long T1 and T2 relaxation
times, whereas ‘bound’ water molecules have their motion
restricted due to hydrogen bonding with macromolecules,
producing short T2 relaxation time values. The recent intro-
duction of parametric mapping techniques—T1, T2 and
extracellular volume, has enabled the detection of subtle
changes in myocardial free water content and precise
estimation of the interstitial fraction volume and com-
position.

Making use of aforementioned MRI capabilities, evidence
supporting the disruption of myocardial water balance has
been shown in a broad range of cardiac and systemic diseases
(Table 1). Overall, the increase in myocardial free water con-
tent is generally associated with depressed left ventricular
function, increased NP plasma levels, disease progression
and severity, and poor prognosis (Table 1). Nevertheless,
due to the observational nature of these studies, a causal as-
sociation between the presence of MO, LV dysfunction and
cardiac prognosis could not yet be drawn.
Disease	Myocardial oedema	CMR imaging	Analytical associations	Clinical associations	References
Acute heart failure	Global	T2 mapping	—	(+) PAWP	16,188
Myocardial infarction/Ischaemia-reperfusion	Focal	T2-weighted imaging, T1, T2 and ECV mapping	(+) Troponin	(+) Infarct extension (+) MACE (+) LV dilatation	189,190
Aortic stenosis	Global	T1 and T2 mapping	—	(--) LVEF	191
Cardiomyopathies				(+) Disease progression (+) Risk of Syncope	194,195
Non-ischaemic dilated cardiomyopathy				(+) Myocardial macrophages	196,197
Hypertrophic cardiomyopathy	Focal	T2-weighted imaging, T2 mapping	(+) Troponin (+) BNP	(+) ECG Changes (+) Clinical worsening	202
Takotsubo cardiomyopathy	Focal	T1 and T2 mapping (USPIO enhancement)	(+) Myocardial macrophages	—	196,197
Peripartum cardiomyopathy	Global	T1 and T2 mapping	—	(--) LVEF	198
Infiltrative diseases				(+) Anrhymia (+) MACE (+) Death	9,203–205
Cardiac amyloidosis	Global	T2 and ECV mapping	(+) NT-proBNP	(+) Mortality (AL)	199
Cardiac sarcoidosis	Focal	T1 and T2 mapping	—	—	200,201
Fabry disease	Focal	T1 and T2 mapping	(+) Troponin	(+) ECG Changes (+) Clinical worsening	202
Viral myocarditis	Focal, subepicardial	T2-weighted and LGE imaging, T2 mapping	(+) Troponin	(+) Anrhymia (+) MACE (+) Death	9,203–205
COVID-19	Focal	T2-weighted and LGE imaging, T2 mapping	(+) Troponin	—	206–209
Sepsis	Focal	T2-weighted imaging	(+) EMB macrophages	—	45,210
HIV	Global	T2-weighted and LGE imaging, T1 mapping	—	(+) Adverse cardiovascular events	211
Chagas disease	Focal	T2-weighted and LGE imaging	—	(+) Disease severity	212
Inflammatory diseases				(+) Disease activity (+) Circumferential Strain	213
Rheumatoid arthritis	Focal	T1 and ECV mapping	—	(--) Circumferential Strain	214,215
ANCA-associated vasculitides	Diffuse	T1 and T2 mapping	—	(+) Cold pressor test (+) Disease activity (+) Circumferential Strain	216,217
Systemic sclerosis	Focal	T1 and T2 mapping	—	(+) Disease activity	218,219
Systemic lupus erythematosus				(+) Reversal of acromegalic cardiomyopathy (+) Stroke volume (+) Cardiac index	220,221
Endocrine diseases				(+) Transplant rejection	222,223
Acromegaly				(+) Stroke volume (+) RV dilatation	224
Hypothyroidism				(+) RV function (+) RV dilatation	225–228
Pulmonary arterial hypertension				(+) Uremic Cardiomyopathy	225–228
Cardiac surgery				(+) Transplant rejection	222,223
Chronic kidney disease				(+) Uremic Cardiomyopathy	225–228

(Continues)
Myocardial oedema has been particularly well-studied in the acute setting of ischemic heart disease, in which it may have a role on early injury during reperfusion and also late tissue healing.165–171 During the initial phase of reperfusion, MO may contribute to the pathophysiological process of microcirculation compression and perfusion defects underlying the ‘no-reflow’ phenomenon.171,172 MO is also detectable later, at the time of tissue healing and collagen deposition,166 which discloses the complex interplay between myocardial fluid balance and inflammation and underscores the need for a cautious interpretation of MRI assessment of infarcted and at-risk myocardium.171,173 Interestingly, patient comorbidities might impact on the development of MO in a disease-specific and somewhat unpredicted way, underscoring the lack of clinical knowledge on this topic. As an illustration, diabetes was shown to aggravate post-ischaemic MO,174,175 whereas the opposite effect may be present in Takotsubo cardiomyopathy.176

Myocardial oedema has not been evaluated as an endpoint in HF randomized clinical trials, and the effect of most drugs on myocardial fluid balance is currently unknown. However, pre-clinical evidence supports the beneficial effect of spironolactone92 and SGLT2 inhibitors177 by protecting endothelial glycocalyx. Interestingly, these two drug classes were shown to provide clinical benefit across a wide ejection fraction range in HF,178–181 supporting a possible role for myocardial fluid balance among their mechanisms of action. Other drugs have proved useful to protect microvascular barrier in distinct clinical scenarios and may oppose MO formation. Of note, aprotinin, a fibrinolysis inhibitor, preserves adherens junctions and reduces MO in experimental cardioplegic arrest,65 whereas in sepsis, hydrocortisone182 and sulodexide, a mixture of GAGs (heparan and dermatan sulfates),183 may protect the glycocalyx and diminish oedema formation.

In contrast, some drugs may facilitate the development of MO by impacting on microvascular filtration and ESL preservation. NP are known disruptors of the ESL89,91 and BNP levels correlate with myocardial water content across several clinical scenarios (Table 1), an association not yet known to be causal. However, it is tempting to speculate that this effect might have contributed to the somewhat disappointing results of BNP analogue nesiritide in the setting of acute HF treatment.184 In line with this, nepirilysin is a known regulator of microvascular permeability by increasing the half-life of NP and bradykinin,185 suggesting that sacubitril may also perturb microvascular barrier function.230 Preclinical evidence suggests that beta-blockers186 and calcium channel blockers187 may increase microvascular permeability, an effect not yet observed in the myocardium.

Finally, experimental data suggest that stimulators of lymphangiogenesis (e.g. VEGF-C and adrenomedullin) may accelerate oedema resolution after myocardial

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Disease} & \textbf{Myocardial oedema} & \textbf{References} \\
\hline
Breast cancer/chemotherapy & (+) & \end{tabular}
\caption{Table 1 (continued)}
\end{table}
in infarction, but clinical studies are needed before considering this therapeutic pathway in HF.

Conclusion

In the failing heart, myocardial fluid balance is disrupted due to alterations in microcirculation dynamics, microvascular barrier, extracellular matrix composition and lymphatic function. Experimental data suggest that MO significantly impairs cardiac performance, affecting systolic and diastolic properties and promoting long-term adverse remodelling. In the last decade, CMR has been increasingly used for HF phenotyping and data suggest the increase in myocardial free water content as relevant pathophysiological mechanism of cardiac injury and dysfunction, also representing an important prognosticator across multiple cardiac and systemic diseases. The recent advances in the knowledge of microvascular barrier and lymphatic function open the prospect for novel therapeutics targeting myocardial fluid disturbances in HF.

Funding

This study was funded by national funds through FCT - Portuguese Foundation for Science and Technology, under the scope of the Cardiovascular R&D Center – UnIC (UIDP/00051/2020 and UIDP/00051/2020).

References

1. Dongaonkar RM, Stewart RH, Geissler HJ, Laine GA. Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovase Res 2010; 87: 331–339.

2. Wig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev 2012; 92: 1005–1060.

3. Laine GA, Allen SJ. Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ Res 1991; 68: 1713–1721.

4. Desai KV, Laine GA, Stewart RH, Cox CS, Quick CM, Allen SJ, Fischer UM. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema. Am J Physiol Heart Circ Physiol 2008; 294: H2428–H2434.

5. Rubboli A, Sobotka PA, Euler DE. Effect of acute edema on left ventricular function and coronary vascular resistance in the isolated rat heart. Am J Physiol 1994; 267: H1054–H1061.

6. Miyamoto M, McClure DE, Schertel ER, Andrews PJ, Jones GA, Pratt JW, Ross P, Myerowitz PD. Effects of hypoproteinemina-induced myocardial edema on left ventricular function. Am J Physiol 1998; 274: H937–H944.

7. Friedrich MG. Myocardial edema—a new clinical entity? Nat Rev Cardiol 2010; 7: 292–296.

8. Raman SV, Simonetti OP, Winner MW, Dickerson JA, He X, Mazzaferrri EL, Ambrosio G. Cardiac magnetic resonance with edema imaging identifies myocardium at risk and predicts worse outcome in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol 2010; 55: 2480–2488.

9. Aquaro GD, Ghebru Habtemicael Y, Camasta G, Monti L, Dellegrotraglie S, Moro C, Lanzillo C, Scatellia A, Di Roma M, Pontone G, Perazzolo Marra M, Barison A, Di Bella G, Cardiac Magnetic Resonance Working Group of the Italian Society of C. Prognostic value of repeating cardiac magnetic resonance in patients with acute myocardial infarction. J Am Coll Cardiol 2019; 74: 2439–2448.

10. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 2010; 87: 198–210.

11. Mehlhorn U, Davis KL, Laine GA, Geissler HJ, Allen SJ. Myocardial fluid balance in acute hypertension. Microcirculation 1996; 3: 371–378.

12. Laine GA. Microvascular changes in the heart during chronic arterial hypertension. Circ Res 1988; 62: 953–960.

13. Nielsen NR, Rangarajan KV, Mao L, Rockman HA, Caron KM. A murine model of increased coronary sinus pressure induces myocardial edema with cardiac lymphatic dilation and fibrosis. Am J Physiol Heart Circ Physiol 2020; 318: H895–H907.

14. Diab OA, Amer MS, Salah El-Din RA. Effect of experimental coronary sinus ligation on myocardial structure and function in the presence or absence of structural heart disease: an insight for the interventional electrophysiologist. Europace 2016; 18: 1897–1904.

15. Davis KL, Laine GA, Geissler HJ, Mehlhorn U, Brennan M, Allen SJ. Effects of myocardial edema on the development of myocardial interstitial fibrosis. Microcirculation 2000; 7: 269–280.

16. Verbrugge FH, Bertrand PB, Willems E, Gielens E, Mullens W, Giri S, Tang WHW, Raman SV, Verhaert D. Global myocardial oedema in advanced decompensated heart failure. Eur Heart J Cardiovasc Imaging 2017; 18: 787–794.

17. Mehlhorn U, Geissler HJ, Laine GA, Allen SJ. Myocardial fluid balance. Eur J Cardiothorac Surg 2001; 20: 1220–1230.

18. Takegawa R, Kabata D, Shimizu K, Hisano S, Ogura H, Shintani A, Shimazu T. Serum albumin as a risk factor for death in patients with prolonged sepsis: an observational study. J Crit Care 2019; 51: 139–144.

19. Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA. Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 2011; 39: 259–265.

20. Pratt JW, Schertel ER, Schaefer SL, Esham KE, McClure DE, Heck CF, Myerowitz PD. Acute transient coronary sinus hypertension impairs left ventricular function and induces myocardial edema. Am J Physiol 1996; 271: H834–H841.

21. Fischer UM, Cox CS, Stewart RH, Laine GA, Allen SJ. Impact of acute myocardial edema on left ventricular function. J Invest Surg 2006; 19: 31–38.

22. Pogatsa G, Dubecc E, Gábor G. The role of myocardial edema in the left ventricular diastolic stiffness. Basic Res Cardiol 1976; 71: 263–269.

23. Scallan J, Hazley VH, Korthuis RJ. Capillary Fluid Exchange: Regulation, Functions, and Pathology. San Rafael (CA): Morgan & Claypool Life Sciences; 2010.

24. Lim HS. Cardiogenic shock: failure of oxygen delivery and oxygen utilization. Clin Cardiol 2016; 39: 477–483.

25. Wearm JT. The extent of the capillary bed of the heart. J Exp Med 1928; 47: 273–290.

26. Laughlin MH, Tomanek RJ. Myocardial capillarity and maximal capillary diffusion capacity in exercise-trained dogs. J Appl Physiol 1987; 63: 1481–1486.
27. Feigl EO. Coronary physiology. Physiol Rev 1983; 63: 1–205.
28. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev 2008; 88: 1009–1086.
29. Basseenge E, Heusch G. Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 1990; 116: 77–165.
30. Case RB, Felix A, Wachter M, Kyriakidis G, Castellana F. Relative effect of CO2 on canine coronary vascular resistance. Circ Res 1978; 42: 410–418.
31. Grubbström J, Berglund B, Kaijser L. Myocardial blood flow and lactate metabolism at rest and during exercise with reduced arterial oxygen content. Acta Physiol Scand 1991; 142: 467–474.
32. Hiroshi I, Li H. Acidosis-induced coronary arteriolar dilation is mediated by ATP-sensitive potassium channels in vascular smooth muscle. Circ Res 1996; 78: 50–57.
33. Bünner R, Haddy FJ, Querengässer A, Gerlach E. Studies on potassium induced myocardial dilation in the isolated guinea pig heart. Pflügers Arch 1976; 363: 27–31.
34. Mohammed SF, Saad H, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 2015; 131: 550–559.
35. Schulz R, Janssen F, Guth BD, Heusch G. Effect of coronary hyperperfusion on regional myocardial function and oxygen consumption of stunned myocardium in pigs. Basic Res Cardiol 1991; 86: 534–543.
36. Schulz R, Guth BD, Heusch G. No effect of coronary perfusion on regional myocardial function with the autoregulatory range in pigs. Evidence against the Gregg phenomenon. Circulation 1990; 1: 1403–1405.
37. Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 2006; 86: 1263–1308.
38. Aldea GS, Mori H, Hussein VK, Austin RE, Hoffman JE. Effects of increased pressure inside or outside ventricles on total and regional myocardial blood flow. Am J Physiol Heart Circ Physiol 2000; 279: H2927–H2938.
39. Mihajlović LS, Abel FL. Intramyocardial pressure gradients in working and nonworking isolated cat hearts. Am J Physiol Heart Circ Physiol 1994; 266: H1223–H1241.
40. Hoffman JI, Spaan JA. Pressure-flow relations in coronary circulation. Physiol Rev 1990; 70: 351–390.
41. Chilian WM. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ Res 1991; 69: 561–570.
42. Merkus D, Vergroesen I, Hiramoto O, Tachibana H, Nakamoto H, Toyota E, Goto M, Ogasawara Y, Spaan JAE, Kajiy A, Fstenosis differentially affects subendocardial and subepicardial arterioles in vivo. Am J Physiol Heart Circ Physiol 2001; 280: H1674–H1682.
43. Heusch G. Myocardial ischemia: lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what? Am J Physiol Heart Circ Physiol 2019; 316: H1439–H1446.
44. Levy B, Heusch G, Camici PG. The many faces of myocardial ischaemia and angina. Cardiovasc Res 2011; 1460–1470.
45. Luutakens JA, Isaak A, Öztürk C, Mesropyan N, Monin M, Schlabe S, Reinert M, Fanor A, Heine A, Velten M, Dabir D, Boesecke C, Strassburg CP, Attenberger U, Zimmer S, Duerr GD, Nattermann J. Cardiac MRI in suspected acute COVID-19 myocarditis. Radiol: Cardiothoracic Imaging 2021; 3: e200628.
46. Vasques-Nóvoa F, Laundos TL, Madureira A, Bettencourt N, Nunes JPL, Carneiro F, Paiva JA, Pinto-do-O P, Nascimento DS, Leite-Moreira AF, Roncon-Albuquerque R. Myocardial Edema: an Overlooked Mechanism of Septic Cardiomyopathy? Shock 2020; 53: 616–619.
47. Vasques-Nóvoa F, Angelico-Goncalves A, Bettencourt N, Leite-Moreira AF, Roncon-Albuquerque R. Myocardial Edema and Remodeling: a Link between Acute Myocarditis and Septic Cardiomyopathy? J Am Coll Cardiol 2020; 75: 1497–1498.
48. McCulloch AD, Hunter PJ, Smaill BH. Mechanical effects of coronary perfusion in the passive canine left ventricle. Am J Physiol Heart Circ Physiol 1992; 262: H523–H530.
49. Gaasch WH, Bernard SA. The effect of acute changes in coronary blood flow on left ventricular end-diastolic wall thickness. An echocardiographic study. Circulation 1990; 82: 531–538.
50. Allaart CP, Sipkema P, Westerhof N. Effect of perfusion pressure on diastolic stress-strain relations of isolated rat papillary muscle. Am J Physiol Heart Circ Physiol 1995; 268: H945–H954.
51. Goto Y, Slinker BK, LeWinter MM. Effect of coronary hyperemia on Emax and oxygen consumption in blood-perfused rabbit hearts. Energetic consequences of Gregg’s phenomenon. Circ Res 1991; 68: 482–492.
52. Watanabe J, Levine MJ, Bellotto F, Johnson KG, Grossman W. Effects of coronary venous pressure on left ventricular diastolic distensibility. Circ Res 1990; 67: 923–932.
53. Charan NB, Riplcy R, Carvalho P. Effect of increased coronary venous pressure on left ventricular function in sheep. Respir Physiol 1998; 112: 227–235.
54. Ilbawi MN, Idriis FS, Muster AJ, DeLeon SY, Berry TE, Duffy CE, Paul MH. Effects of elevated coronary sinus pressure on left ventricular function after the Fontan operation. An experimental and clinical correlation. J Thorac Cardiovasc Surg 1986; 92: 231–237.
55. Rahimi N. Defenders and challengers of endothelial barrier function. Front Immunol 2017; 8: 1847.
56. Sibide A, Imhof BA. VE-cadherin phosphorylation decides: vascular permeability or diapedesis. Nat Immunol 2014; 15: 215–217.
57. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 2008; 121: 2115–2122.
58. Swager SA, Delfin DA, Rastogi N, Wang H, Canan BD, Fedorov VV, Mohler PJ, Killi A, Higgins RSD, Ziolot MT, Janssen PML, Rafael-Fortney JA. Claudin-5 levels are reduced from multiple cell types in human failing hearts and are associated with mislocalization of ephrin-B1. Cardiovasc Pathol 2015; 24: 160–167.
59. Jia G, Habibi J, Aroor AR, Hill MA, DeMarco VG, Lee LE, Ma I, Barron BJ, Whaley-Connell A, Sowers JR. Enhanced endothelial epithelial sodium channel signaling prompts left ventricular diastolic dysfunction in obese female mice. Metab Clin Exp 2018; 78: 69–79.
60. Schafer R, Abraham D, Paulus P, Blumer R, Grimm M, Wojta J, Aharinejad S. Impaired VE-cadherin/beta-catenin expression mediates endothelial cell degeneration in dilated cardiomyopathy. Circulation 2003; 108: 1585–1591.
61. Weis S, Shintani S, Weber A, Kirchmair R, Wood M, Cravena A, McSharry H, Iwakura A, Yoon YS, Himes N, Burstein D, Doukas J, Soll R, Losordo D, Chere K. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 2004; 113: 885–894.
62. Giacomelli F, Anversa P, Wiener J. Effect of angiotensin-induced hypertension on rat coronary arteries and myocardium. Am J Pathol 1976; 84: 111–138.
63. Castanares-Zapatero D, Bouleti C, Sommersreyns C, Gerber B, Lecut C, Mathivet T, Horckmans M, Communi D, Foretz M, Vanoverschelde J-L, Germain S, Bertrand L, Laterre P-F, Oury C, Violett B, Hornan S, Beauloye C. Connection between Cardiac Vascular Permeability, Myocardial Edema, and Inflammation During Sepsis. Crit Care Med 2013; 41: e411–e422.
64. Vasques-Nóvoa F, Laundos TL, Cerqueira RJ, Quina-Rodrigues C, Soares-Dos-Reis R, Vieira-Ferreira R, S, Mendoza L, Goncalves F, Reguesna C, Verhesen W, Carneiro F, Paiva JA, Schroen B, Castro-Chaves P, Pinto-do-O P, Nascimento DS, Heymans S, Leite-Moreira AF, Roncon-Albuquerque
Myocardial oedema in the failing heart 971

76. Kolář, 65. Jenkins EL, Caputo M, Angelini GD, Haidari M, Zhang W, Willerson JT, Magalhaes A, Matias I, Palmela I, Brito Jedlicka J, Becker BF, Chappell D. Endothelial glycocalyx and dysfunction after regional ischemia and cardioplegic arrest. Circulation 2005; 112: 1196–1201.

77. Haidari M, Zhang W, Willerson JT, Dixon RA. Disruption of endothelial adherens junctions by high glucose is mediated by protein kinase C-β-dependent vascular endothelial cadherin tyrosine phosphorylation. Cardiovasc Diabetol 2014; 13: 105.

78. Rao R. Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front Biosci 2008; 13: 7210–7226.

79. Magalhaes A, Matias I, Palmela I, Brito MA, Dias S. LDL-cholesterol increases the transcytosis of molecules through endothelial monolayers. PLoS ONE 2016; 11: e0163988.

80. Mani AM, Chattopadhyay R, Singh NK, Rao GN. Cholesterol crystals increase vascular permeability by inactivating SHP2 and disrupting adherens junctions. Free Radiac Biol Med 2018; 123: 72–84.

81. Wang L, Chen Y, Li X, Zhang Y, Gulbins E, Zhang Y. Enhancement of endothelial permeability by free fatty acid through lysosomal cathepsin B-mediated Nlrp3 inflammasome activation. Oncotarget 2016; 7: 73229–73241.

82. Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 2010; 105: 687–701.

83. Becker BF, Jacob M, Leipert S, Salmon AHJ, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 2015; 80: 389–402.

84. Jedlicka J, Becker BF, Chappell D. Endothelial glycocalyx. Crit Care Clin 2020; 36: 217–232.

85. Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 2008; 72: 455–482.

86. Kolářová H, Ambrúzová B, Švíhalová Šindlerová L, Klína A, Kubala L. Modulation of endothelial glyocalyx structure under inflammatory conditions. Mediators Inflamm 2014; 2014: 1–17.

87. Reitsma S, Slaff DW, Vink H, van Zandoort MA, ouder Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454: 345–359.

88. Annecke T, Chappell D, Chen C, Jacob M, Welsch U, Sommerhoff CP, Rehm M, Conzen PF, Becker BF. Sevoflurane preserves the endothelial glycocalyx against ischaemia-reperfusion injury. Br J Anaesth 2010; 104: 414–421.

89. Ward BJ, Donnelly JL. Hypoxia-induced disruption of the cardiac endothelial glycocalyx: implications for capillary permeability. Cardiovasc Res 1993; 27: 384–389.

90. Diebel LN, Diebel ME, Martin JV, Liberati DM. Acute hyperglycemia exacerbates trauma-induced endothelial and glyocalyx injury: an in vitro model. J Trauma Acute Care Surg 2018; 85: 960–967.

91. Huebener P, Abou-Khamis T, Zymek P, Bujak M, Ying X, Chatila K, Haudek S, Thakker G, Fragogiannis NG. CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol 2008; 180: 2625–2633.

92. Vanhoutte D, Schellings MWM, Götte M, Swinnen M, Herias V, Wild MK, Vestweber D, Chorianopoulos E, Cortés V, Rigotti A, Stepp M-A, Van de Werf F, Carmeliet P, Pinto YM, Heymans S. Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial infarction. Circulation 2007; 115: 475–482.

93. Riekkä M, Carai P, van Teeffelen J, De Groot LM, Carai P, van Teeffelen J, Brox M, Carai P, van Teeffelen J. MicroRNA-155 amplifies nitric oxide-dependent vascular leak in guinea pig hearts. Cardiovasc Res 2005; 66: 2625–2636.

94. Wiosina H, Steglich H, Clausen H, Rüttinger M, Lossig S, Wiesch U. P-selectin inhibits adhesion molecule expression and increases release of atrial natriuretic peptide. J Physiol 2005; 561: 455–466.

95. Nijst P, Verbrugge FH, Grieten L, Dupont M, Steels P, Tang WHW, Mullens W. The pathophysiological role of interstitial sodium in heart failure. J Am Coll Cardiol 2015; 65: 376–388.

96. Bode L, Eklund EA, Murch S, Freeze HH. Heparan sulfate depletion amplifies TNF-α-induced protein leakage in an in vitro model of protein-losing enteropathy. Am J Physiol Gastrointest Liver Physiol 2005; 288: G1015–G1023.

97. Oberleithner H, Riethmüller C, Schillers H, MacGregor GA, de Wardener HE, Hauseberg M. Plasma sodium stiffness vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci U S A 2007; 104: 16281–16286.

98. Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glyocalyx and sepsis-induced alterations in vascular permeability. Crit Care 2015; 19: 26.

99. Uchimido R, Schmidt EP, Shapiro NI. The glyocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 2019; 23: 16.

100. Armulik A, Genové G, Betcholtz C. Percytlices: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises. Dev Cell 2011; 21: 199–215.

101. Lee LL, Chintalagattu V. Percytlices in the heart. Adv Exp Med Biol 2019; 1122: 187–210.

102. Nees S, Weiss DR, Senf tl A, Knott M, Forch S, Schnurr M, Weyrich P, Juchem G. Isolation and cultivation of and characterization of coronary microvascular pericytes: the second most frequent myocardial cell type in vitro. Am J Physiol Heart Circ Physiol 2012; 302: H69–H84.
102. Anniha A, Alexandra A, Christo B. Endothelial/Pericyte interactions. Circ Res 2005; 97: 512–523.

103. Avolio E, Madeddu P. Discovering cardiac pericyte biology: from physiopathological mechanisms to potential therapeutic applications in ischemic heart disease. Vascul Pharmacol 2016; 86: 53–63.

104. Ziegler T, Horstkotte J, Schwab C, Dimmeler S, Zehendner CM. Identification and functional characterization of hypoxia-induced endoplasmic reticulum stress regulating IncRNA (HypERlin) in pericytes. Circ Res 2017; 121: 368–375.

105. Chintalagadda V, Rees ML, Culver JC, Goel A, Jiffar T, Zhang J, Dunner K, Pati S, Bankson JA, Pasqualini R, Arap W, Bryan NS, Naegle K, Langley R, Yao H, Kupferman ME, Entman ML, Dickinson ME, Khakoo AY. Coro- notin and functional characterization of SIRT3 loss.

106. Zeng H, He X, Tuo QH, Liao DF, Zhang GQ, Chen JX. LPS causes pericyte loss and microvascular dysfunction via disruption of Sirt3/angiopoietins/Tie-2 and HIP-2alpha/Notch3 pathways. Sci Rep 2016; 6: 20931.

107. He X, Zeng H, Chen JX. Ablation of SIRT3 causes coronary microvascular dysfunction and impairs cardiac recovery post myocardial ischemia. Int J Cardiol 2016; 215: 349–357.

108. Tso YK, Zeng H, Zhang GQ, Chen ST, Xie X-J, He X, Wang S, Wen H, Chen J-X. Notch3 deficiency impairs coronary microvascular maturation and reduces cardiac recovery after myocardial ischemia. Int J Cardiol 2017; 236: 413–422.

109. Zeng H, Yaka VR, He X, Booz GW, Chen JX. High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss. J Cell Mol Med 2015; 19: 1847–1856.

110. Siao C-J, Lorentz CU, Kermani P, Marinic T, Carter J, McGrath K, Padow VA, Mark W, Falcone DJ, Cohen-Gould L, Parrish DC, Habecker BA, Nykjaer A, Ellenson LH, Tessarollo L, Hemp- ler BL. ProNGF, a cytokine induced inflammatory response in human hypertrophic cardiomyopathy. Elife 2017; 6: e29280.

111. Grant RI, Hartmann DA, Underly RG, Berthiaume A-A, Bhat NR, Shih AY. Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J Cereb Blood Flow Metab 2019; 39: 411–425.

112. Schimpf C, Duffield JS. Mechanisms of fibrosis: the role of the pericyte. Curr Opin Nephrol Hypertens 2011; 20: 297–305.

113. Suthar NH, Meijers WC, Sillijé HHW, Ho JE, Liu F-T, de Boer RA. Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. Theranostics 2018; 8: 593–609.

114. McCulloch PA, Olobofarte A, Vanhecke TE. Galectin-3: a novel blood test for the evaluation and management of patients with heart failure. Rev Cardiovasc Med 2011; 12: 200–210.

115. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henning MJ, Ebert BL, Humphreys BD. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 2015; 16: 51–66.

116. van Dijk CGM, Oosterhuis NR, Xu YJ, Attewell D, Berthiaume A-A, Bhat NR, Shih AY. Origins of fibrosis: pericytes take centre stage. F1000Prime Rep 2013; 5: 37.

117. Greenhalgh SN, Iredale JP, Henderson NC. Origins of fibrosis: pericytes take centre stage. F1000Prime Rep 2013; 5: 37.

118. Sperandio M, Pohl U, Thomas M, W, Bryan NS, Taegtmeyer H, Langley R, Yao H, Kupferman ME, Entman ML, Dickinson ME, Khakoo AY. Coro- notin and functional characterization of SIRT3 loss.

119. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henning MJ, Ebert BL, Humphreys BD. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 2015; 16: 51–66.

120. van Dijk CGM, Oosterhuis NR, Xu YJ, Attewell D, Berthiaume A-A, Bhat NR, Shih AY. Origins of fibrosis: pericytes take centre stage. F1000Prime Rep 2013; 5: 37.

121. Schimpf C, Duffield JS. Mechanisms of fibrosis: the role of the pericyte. Curr Opin Nephrol Hypertens 2011; 20: 297–305.

122. Suthar NH, Meijers WC, Sillijé HHW, Ho JE, Liu F-T, de Boer RA. Galectin-3 activation and inhibition in heart failure and cardiovascular disease: an update. Theranostics 2018; 8: 593–609.

123. McCulloch PA, Olobofarte A, Vanhecke TE. Galectin-3: a novel blood test for the evaluation and management of patients with heart failure. Rev Cardiovasc Med 2011; 12: 200–210.

124. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henning MJ, Ebert BL, Humphreys BD. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 2015; 16: 51–66.

125. Pine MB, Brooks WW, Nosta JJ, Abelmann WH. Hydrostatic forces limit swelling of rat ventricular myocardium. Am J Physiol Heart Circ Physiol 1981; 241: H740–H747.

126. Lamberts R, Willemsen MJM, Pérès NG, Sipkema P, Westerhof N. Acute and specific collagen type I degradation increases diastolic and developed tension in perfused rat papillary muscle. Am J Physiol Heart Circ Physiol 2004; 286: H889–H894.

127. Baicu CF, Stroud JD, Livesay VA, Hapke E, Holder J, Spinale FG, Zile MR. Changes in extracellular collagen matrix alter myocardial systolic performance. Am J Physiol Heart Circ Physiol 2003; 284: H122–H132.

128. Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol 2010; 10: 712–723.

129. Li J, Schimmbeck PL, Tschope C, Leshcha S, Humphra L, Rutschow S, Reichenbach F, Notz, M, Kobalz U, Pollar W, Spillmann F, Zeichhardt H, Schulthess H-P, Pauschinger M. Collagen degradation in a murine myocarditis model: relevance of matrix metalloproteinase in association with inflammatory induction. Cardiovasc Res 2002; 56: 235–247.

130. Yu P, Boghner DR, Bistbold WJ, Keys J, Dunmore J, Martin CM. Myocardial collagen changes and edema in rats with hyperdynamic sepsis. Crit Care Med 1997; 25: 657–662.

131. Azevedo PS, Polygato BF, Minicucci MF, Paiva SAR, Zornoff LAM. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol 2016; 106: 62–69.

132. Jiang D, Liang J, Noble PW. Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 2007; 23: 435–461.

133. Dogne S, Rath G, Jouret F, Caron N, Dessy C, Flamion B. Hyaluronidase 1 deficiency preserves endothelial function and glyocalyx integrity in early streptozotocin-induced diabetes. Diabetes 2016; 65: 2742–2753.

134. Chowdhery B, Hemming R, Hombach-Klonisch S, Flamion B, Triggs-Raine B. Murine hyaluronidase 2 deficiency results in extracellular hyaluronan accumulation and severe cardiopulmonary dysfunction. J Biol Chem 2013; 288: 520–528.

135. Waldenstrom A, Martinussen HJ, Gerdin B, Hallgren R. Accumulation of hyaluronan and tissue edema in experimental myocardial infarction. J Clin Invest 1991; 88: 1625–1628.

136. Lernón CE, Dahl CP, Do L, Almaas VM, Geirán OR, Mörrner S, Hellman U. Low molecular mass myocardial hyaluronan in human hypertrophic cardiomyopathy. Cell 2019; 8: 97.
137. Waldenström A, Fohlman J, Ilbäcky NG, Ronquist G, Häggren R, Gerdin B. Cossackie B3 myocarditis induces a decrease in energy charge and accumulation of haemorhagia in the mouse heart. *Eur J Clin Invest* 1993; 23: 277–282.

138. Johnsson C, Tufveson G, Häggren R, Elvin A, Gerdin B. Haemorhagia ameliorates rejection-induced edema. *Transpl Int* 1999; 12: 235–243.

139. Johnsson C, Häggren R, Tufveson G. Haemorhagia can be used to reduce interstitial edema in the presence of hepatic failure. *Eur J Pharmacol Ther* 2000; 5: 229–236.

140. Cuijpers I, Simmonds SJ, van Bilsen M, Makinen T, Alitalo K. Lymphatic system in development, repair and regeneration. *Circ Res* 2019; 43: 78–97.

141. Jackson DG. Leucocyte trafficking via the lymphatic vasculature—mechanisms and consequences. *Front Immunol* 2019; 10: 471.

142. Schwager S, Detmär M. Inflammation and lymphatic function. *Front Immunol* 2019; 10: 308.

143. Leak IV, Burke JF. Ultrastructural studies on the lymphatic anchoring filaments. *J Cell Biol* 1968; 36: 129–149.

144. Klaunerakis K, Vieira JM, Ryley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. *Nat Rev Cardiol* 2021; 18: 368–379.

145. Leak IV. The structure of lymphatic capillaries in lymph formation. *Fed Proc* 1976; 35: 1863–1871.

146. Brakenhielm E, Alitalo K. Cardiac lymphatics in health and disease. *Nat Rev Cardiol* 2019; 16: 56–68.

147. Aspelund A, Robciuc MR, Karaman S, Johnsson C, Tufveson G, Hällgren R, Dongaonkar RM, Stewart RH, Quick KL, Cox CS, Laine GA. Interstitial edema in the presence of myocardial infarction. *J Cell Biol* 2019; 216: 129–149.

148. Mahmoud Housari, Anais Dumesnil, Virginie Tardif, Rikka Kivelä, Nathalie Pizzinat, Ines Boukhalfa, David Godefroy, Damien Schapman, Hemanthakumar Kartik, A Mathilde, Bizzou, Jean-Paul Henry, Sylvanice Renet, Gaetan Riou, Julie Ronceaux, Yousef Anouar, Sahil Adrichou, Sylvain Freinaure, Kari Alitalo, Vincent Richard, Paul Mulder, Elba Brakenhielm, Edi. Lymphatic and immune cell cross-talk regulates cardiac function after experimental myocardial infarction. *Arterioscler Thromb Vasc Biol* 2020; 40: 1722–1737.

149. Lang F. Mechanisms and significance of cell volume regulation. *J Am Coll Nutr* 2007; 26: 613S–623S.

150. Garcia-Dorado D, Theroux P, Munoz R, Alonso J, Elizaga J, Fernandez-Arives F, Botas J, Solares J, Soriano J, Duran JMA. Favorable effects of hyperosmotic reperfusion on myocardial edema and infarct size. *J Am Physiol Heart Circ Physiol* 1992; 262: H17–H22.

151. Trincot CE, Xu W, Zhang H, Cordero JF, Weid P, Wang Y, Alexander JS, Pattillo C, Zawieja D, Muthuchamy M, F, Becker F, Gavins FNE, Woolard MD, Fernández-Jiménez R, Garcia-Prieto J, Sanchez-Gonzalez J, Aguero J, Lopez-Martín GJ, Galán-Arriola C, Molina-Iracheta A, Doohan R, Fuster V, Ibanez B. Pathophysiology underlying the bimodal edema phenomenon after myocardial ischemia/reperfusion. *J Am Coll Cardiol* 2018; 72: 3158–3176.

152. Fernández-Jiménez R, Garcia-Prieto J, Sanchez-Gonzalez J, Agüero J, Lopez-Martín GJ, Galán-Arriola C, García-Prieto J, Díaz-Pelaez E, Vara P, Martinez I, Zamarro I, Garde B, Sanz J, Fuster V, Sánchez PL, Ibanez B. Dynamic Edematous Response of the Human Heart to Myocardial Infarction. *Circulation* 2017; 136: 1288–1300.

153. Hausenloy DJ, Chilian W, Crea F, Davidson SM, Schmidt M, Garcia-Arriola C, Garcia-Prieto J, Díaz-Pelaez E, Vara P, Martinez I, Zamarro I, Garde B, Sanz J, Fuster V, Sánchez PL, Ibanez B. Cardiovascular magnetic resonance in nonischemic myocardial inflammation. *J Am Coll Cardiol* 2018; 72: 3158–3176.

154. Ferreira VM, Schulz-Menger J, Holmvang K, Kramer CM, Carbone I, Sechtem U, Kindermann I, Gurtubay M, Cooper LT, Liu P, Friedrich MG. Cardiovascular magnetic resonance in nonischemic myocardial inflammation. *J Am Coll Cardiol* 2018; 72: 3158–3176.

155. Bhalla M. Increase in myofilament separation in the “stunned” myocardium. *J Mol Cell Cardiol* 1992; 24: 269–276.

156. Ashley EA, Wiviott SD, Kim RJ, Golding J, Hernandez-DelPozo C, Cannon CP, Rouleau J, Hylek EM, Radford MJ, McCabe CH, Lonn E, Feinberg WM, Cutlip DE, Pfeffer MA, Peterson KS, Braunwald E, for the METOCARD-CNIC trial investigators. Effect of clopidogrel and aspirin on inflammation in vertebrates. *Physiol Rev* 2009; 89: 193–277.

157. Gonzalez LA, Morell M, Burgos JJ, Dulce RA, De Giusti VC, Aiello EA, Hare JM, Vila Petroff M. Hypotonic swelling promotes nitric oxide release in cardiac ventricular myocytes: impact on swelling-induced negative inotropic effect. *Cardiovasc Res* 2014; 104: 456–466.

158. Lang F, Busch GL, Ritter M, Völk H, Waldegg S, Gulbins E, Häussinger D. Functional significance of cell volume regulatory mechanisms. *Physiol Rev* 1998; 78: 247–306.

159. Lang F. Mechanisms and significance of cell volume regulation. *J Am Coll Nutr* 2007; 26: 613S–623S.

160. Garcia-Dorado D, Theroux P, Munoz R, Alonso J, Elizaga J, Fernandez-Arives F, Botas J, Solares J, Soriano J, Duran JMA. Favorable effects of hyperosmotic reperfusion on myocardial edema and infarct size. *J Am Physiol Heart Circ Physiol* 1992; 262: H17–H22.

161. Heusch G. Treatment of myocardial ischemia/reperfusion injury by ischemic and pharmacological postconditioning. *Circ Res* 2019; 124: 113–145.

162. Zhao M. Increase in myofilament separation in the “stunned” myocardium. *J Mol Cell Cardiol* 1992; 24: 269–276.

163. Ferreira VM, Schulz-Menger J, Holmvang K, Kramer CM, Carbone I, Sechtem U, Kindermann I, Gurtubay M, Cooper LT, Liu P, Friedrich MG. Cardiovascular magnetic resonance in nonischemic myocardial inflammation. *J Am Coll Cardiol* 2018; 72: 3158–3176.

164. Fernández-Jiménez R, García-Prieto J, Sanchez-Gonzalez J, Agüero J, López-Martín GJ, Galán-Arriola C, Molina-Iracheta A, Doohan R, Fuster V, Ibanez B. Pathophysiology underlying the bimodal edema phenomenon after myocardial ischemia/reperfusion. *J Am Coll Cardiol* 2015; 66: 816–828.

165. Fernández-Jiménez R, Barreiro-Pérez M, Martín-García A, García-González J, Agüero J, Galán-Arriola C, García-Prieto J, Díaz-Pelaez E, Vara P, Martinez I, Zamarro I, Garde B, Sanz J, Fuster V, Sánchez PL, Ibanez B. Dynamic Edematous Response of the Human Heart to Myocardial Infarction. *Circulation* 2017; 136: 1288–1300.

166. Hausenloy DJ, Chilian W, Crea F, Davidson SM, Schmidt M, Garcia-Dorado D, van Royen N, Schulz R, Heusch G. The coronary circulation in acute myocardial ischemia/reperfusion injury: a target for cardioprotection. *Cardiovasc Res* 2019; 115: 1143–1155.

167. Díaz-Munoz R, Valle-Caballero MJ, Sanchez-Gonzalez J, Pizarro G, García-Rubira JC, Escalera N, Fuster V, Fernández-Jiménez R, Ibanez B. Intravenous metoprolol during ongoing STEMl ameliorates markers of ischemic injury: a METOCARD-CNIC trial electrocardiographic study. *Basic Res Cardiol* 2021; 116: 45.
170. Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 2020; 17: 773–789.

171. Heusch G. Myocardial stunning and hibernation revisited. Nat Rev Cardiol 2021; 18: 522–536.

172. Heusch G. Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res Cardiol 2019; 114: 45.

173. Manciet LH, Poole DC, McDonagh PF, Copeland JG, Mathieu-Costello O. Microvascular compression during myocardial ischemia: mechanistic basis for no-reflow phenomenon. Am J Physiol Heart Circ Physiol 1994; 266: H1541–H1550.

174. Heusch P, Nensa F, Heusch G. Is MRI really the gold standard for the quantification of salvage from myocardial infarction? Circ Res 2015; 117: 222–224.

175. Zia MI, Ghugre NR, Connelly KA, Cooper S, Teoh H, Campeau MA, Zia MI, Ghugre NR, Roifman I, Strauss Heusch P, Nensa F, Heusch G. Myocardial microvascular obstruction: the new frontier in cardioprotection. Basic Res Cardiol 2019; 114: 45.
mapping and T1-mapping detect myocardial involvement in Takotsubo cardiomyopathy: a preliminary experience. J Cardiovasc Magn Reson 2015; 17: P354.

198. Scally C, Abbas H, Ahearn T, Srinivasan J, Mezzinescu A, Rudd A, Spath N, Yuel-Finn A, Yuel R, Oldford K, Dospinescu C, Horgan G, Broadhurst P, Henning A, Newby DE, Semple S, Wilson HM, Dawson DK. Myocardial and systemic inflammation in acute stress-induced (Takotsubo) cardiomyopathy. Circulation 2019; 139: 1581–1592.

199. Liang Y-D, Xu Y-W, Li W-H, Sun K, Sun J-Y, Lin J-Y, Zhang Q, Zhou XY, Chen Y-C. Left ventricular function recovery in peripartum cardiomyopathy: a cardiovascular magnetic resonance study with myocardial T1 and T2 mapping. J Cardiovasc Magn Reson 2020; 22: 2.

200. Kotecha T, Martinez-Naharro A, Treibel TA, Francis R, Nordin S, Abdel-Gadir A, Knight DS, Razvi Y, Kumar P, Henning A, Newby DE, Semple S, Karamitsos T, Emmanuel S, Clarke K, Schnackenburg B, Reinecke P, Kelm MM, Westenfeld R, Bönner F. Abnormal T1 and T2 mapping in recognition of early myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur Heart J 2021; 42: 1866–1878.

201. Holten E, Aslam S, Osborne M, Abbas S, Bittenmez MS, Blankstein R. Cardiac sarcoidosis—state of the art review. Cardiov Diagn Ther 2016; 6: 50–63.

202. Puntmann VO, Isted A, Hinojara R, Foote L, Carr-Wright G, Engel E. T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis. Radiology 2017; 285: 63–72.

203. Augusto JB, Nordin S, Vijaipurapu R, Baig S, Bulluck H, Castelletti S, Alfarih A, Eisele R, Treibel TA, Cole GD, Fontana M. Patterns of myocardial injury in patients with ANCA-associated vasculitides. J Cardiovasc Magn Reson 2017; 19: 6.

204. Eylar AE, Ahmad FA, Jahangir E. Magnetic resonance imaging of the cardiac manifestations of Churg-Strauss. JRSM Open 2014; 5: 205427041452370.

205. Galea N, Rosato E, Gigante A, Borrazzo C, Fiorelli A, Barchetti G, Trombeta AC, Digitali MA, Fernandez M, Catalan C, Carbone I. Early myocardial damage and microvascular dysfunction in asymptomatic patients with systemic sclerosis: a cardiovascular magnetic resonance study with cold pressor test. PLoS ONE 2020; 15: e0244282.

206. Ntusi NA, Piechnik SK, Francis JM, Ferreira VM, Rai AB, Matthews PM, Robson MD, Moon J, Wordsworth PB, Neubauer S, Karamitsos TD. Subclinical myocardial inflammation and diffuse fibrosis are common in systemic sclerosis—a clinical study using myocardial T1-mapping and extracellular volume quantification. J Cardiovasc Magn Reson 2014; 16: 21.

207. Abdel-Aty H, Siegle N, Natusch A, Gromnicha-Ihle E, Wassmuth R, Dietz R, Schulz-Menger J. Myocardial tissue characterization in systemic lupus erythematosus: value of a comprehensive cardiovascular magnetic resonance approach. Lupus 2008; 17: 561–567.

208. Zhang Y, Corona-Villalobos CP, Kiani AN, Eng J, Kamel IR, Zimmerman SL, Petri M. Myocardial T2 mapping by cardiovascular magnetic resonance reveals subclinical myocardial inflammation in patients with systemic lupus erythematosus. Int J Cardiovasc Imaging 2015; 31: 389–397.

209. Gouya H, Vignaux O, Le Roux P, Chanon P, Berthet J, Bertagna X, Legmann P. Rapidly reversible myocardial edema in patients with acromegaly: assessment with ultrafast T2 mapping in a single-breath-hold MRI sequence. AJR Am J Roentgenol 2008; 190: 1576–1582.

210. Gao X, Liu M, Qu A, Chen Z, Jia Y, Yang N, Feng X, Liu J, Xie Y, Wang Y, Wang G. Native magnetic resonance T1-mapping identifies diffuse myocardial injury in hypothyroidism. PLoS ONE 2016; 11: e0151266.
223. Marie PY, Angioï M, Carteaux JP, Escanye JM, Mattei S, Tzvetanov K, Claudon O, Hassan N, Danchin N, Karcher G, Bertrand A, Walker PM, Villemot JP. Detection and prediction of acute heart transplant rejection with the myocardial T2determination provided by a black-blood magnetic resonance imaging sequence. *J Am Coll Cardiol* 2001; 37: 825–831.

224. Vermès E, Pantaléon C, Auvet A, Cazeneuve N, Machet MC, Delhommais A, Bourguignon T, Aupart M, Brunereau L. Cardiovascular magnetic resonance in heart transplant patients: diagnostic value of quantitative tissue markers: T2 mapping and extracellular volume fraction, for acute rejection diagnosis. *J Cardiovasc Magn Reson* 2018; 20: 59.

225. Alabed S, Saunders L, Garg P, Shahin Y, Alandejani F, Rolf A, Puntmann VO, Nagel E, Wild JM, Kiely DG, Swift AJ. Myocardial T1-mapping and extracellular volume in pulmonary arterial hypertension: a systematic review and meta-analysis. *Magn Reson Imaging* 2021; 79: 66–75.

226. Arcari L, Engel J, Freiwald T, Zhou H, Zainal H, Gawor M, Buettner S, Geiger H, Hauser I, Nagel E, Puntmann VO. Cardiac biomarkers in chronic kidney disease are independently associated with myocardial edema and diffuse fibrosis by cardiovascular magnetic resonance. *J Cardiovasc Magn Reson* 2021; 23: 71.

227. Kotecha T, Martinez-Naharro A, Yooovannakul S, Lambe T, Rezk T, Knight DS, Hawkins PN, Moon JC, Muthurangu V, Kellman P, Rakhit RD, Gillmore JD, Jeetley P, Davenport A, Fontana M. Acute changes in cardiac structural and tissue characterisation parameters following haemodialysis measured using cardiovascular magnetic resonance. *Sci Rep* 2019; 9: 1388.

228. Hayer MK, Radhakrishnan A, Price AM, Liu B, Baig S, Weston CJ, Biasioli L, Ferro CJ, Townend JN, Steeds RP, Edwards NC, Birmingham Cardio-Renal Group. Defining myocardial abnormalities across the stages of chronic kidney disease: a cardiac magnetic resonance imaging study. *JACC Cardiovasc Imaging* 2020; 13: 2357–2367.

229. Hayer MK, Radhakrishnan A, Price AM, Liu B, Baig S, Weston CJ, Biasioli L, Ferro CJ, Townend JN, Steeds RP, Edwards NC, Birmingham Cardio-Renal Group. Defining myocardial abnormalities across the stages of chronic kidney disease: a cardiac magnetic resonance imaging study. *JACC Cardiovasc Imaging* 2020; 13: 2357–2367.

230. Thavendiranathan P, Amir E, Bedard P, Crean A, Paul N, Nguyen ET, Wintersberger BJ. Regional myocardial edema detected by T2 mapping is a feature of cardiotoxicity in breast cancer patients receiving sequential therapy with anthracyclines and trastuzumab. *J Cardiovasc Magn Reson* 2014; 16: P273.

231. Damman K, Gori M, Claggett B, Jhund PS, Senni M, Lefkowitz MP, Prescott MF, Shi VC, Rouleau JL, Swedberg K, Zile MR, Packer M, Desai AS, Solomon SD, McMurray JJV. Renal Effects and Associated Outcomes During Angiotensin-Nephrilysin Inhibition in Heart Failure. *JACC Heart Fail* 2018; 6: 489–498.