Mathematical analysis of cost function and reliability condition for new proposed multilevel inverter topology

D. Karthikeyan¹, K. Vijayakumar², D. Senthil Kumar³, Daki Krishnachaitanya⁴
¹²Department of Electrical and Electronics Engineering, SRM Institute of Science & Technology, India
³Department of computer science Engineering, SRM Institute of Science & Technology, India
⁴Department of Electrical and Electronics Engineering, Vellore Institute of Technology, India

ABSTRACT

In this paper cost function and reliability analysis of classic novel symmetric multilevel inverter topology has been presented. Cost function and reliability analysis are the economical factors of the efficiency of an inverter, this made the interest in this area. Cost function denotes the cost of the inverter based on the power flow, reliability explain the mean time failure proportional to the life span.

Firstly the cost function of the novel topology has been proposed using mathematical calculation using various current rating and the results are validated compared with exiting topology. Secondly reliability approach is used to evaluate the reliability of the switch with respect to the failure rate and mean time period of the switch using fediis and markow reliability analysis equations and the results are evaluated for all the switches present in the topology. And the results are compared with the conventional multilevel inverter, cost function and reliability analysis of the proposed multilevel inverter.

Keywords:
Cost function
Mathematical analysis
Mean time failure
Reliability analysis

1. INTRODUCTION

Now a day’s renewable energy resources like solar and wind plays a vital role in the field of energy production, particularly speaking the solar energy has numerous advantage compared to wind resources like less installation cost, enormous availability [1-4]. Cost function is defined as expressing the production cost of the product in terms of the amount produced for designing of circuit. It helps to decide the pricing of the particular product. Cost function is depends on the number of components are used in the inverter topology. If number of components is increased cost also increased. Cost function is related to cost of switch. It’s depends on the various factors in this implementing the factor of the blocking voltage across the switch. Performance is the one of the factor to cost fixing [5-8]. The capability of a product to perform a required function for the given time interval is called reliability. Demonstration and taking technical and physical factors have identified role in reliability. Reliability provides the electrical and mechanical components performance and life profile of the particular product. Main factor in reliability is failure rate of the each component. Failure mechanism means a set of cause’s effect relation for physical, chemical or other process that relates to the root cause of the failure rate for the component [9-12].

The proposed topology can produce 11-level and the level can be increase by cascading the topology both in symmetrical and as well as in unsymmetrical aspects. In this paper the cost function and reliability analysis has been analyzed and its cost function is compared with various same level existing topologies. The Figure 1 represents the new topology multilevel inverter which has 8 switches and 5 sources in symmetrical condition and can also be redrawn using three sources and two capacitor if it has been as unsymmetrical mode [13-18]. Load we are considering is practical RL load for medium voltage applications.
2. METHODOLOGY

First condition to design a novel multilevel inverter topology is, it should have less number of power electronics components like less number of switches, sources and passive elements, so that the cost and size of the inverter is less [19-23]. Second condition is it should have better performance in its working condition like high voltage, current, less THD, cost function & reliability condition, here the new designed topology is analyzed based on its cost function and reliability, so that its results the economic condition of the designed inverter based on cost, life span & failure condition, here two analysis has been done using mathematical equations and feds reliability conditions to verify the circuit efficiency based on cost and mean time failure. The cost function of the proposed circuit is given below in the Section 3:

3. COST FUNCTION

3.1. Cost function for the conventional multilevel inverter

For making the analysis at first we are considering the conventional multilevel inverter topology with 12 switches and 5 sources as shown in Figure 2.

![Figure 2. Conventional multilevel inverter](image-url)
Similarly Switches M2 and M3 each will block V1 and V5 i.e 1+1=2V respectively

\[S_4 = S_5 = 1 + 1 = 2V \]
\[S_3 = S_6 = 1 + 1 = 2V \]
\[M_1 = M_4 = 1V \]
\[M_2 = M_3 = 1V \]

Blocking Voltage across the Switch is given by

\[V_{\text{block}} = \frac{V_{\text{max}}}{n} \] \(\text{(1)} \)

Consider \(V_{\text{max}} = 5V \)

\[S_1 = S_3 = S_4 = 2.5V \]
\[S_2 = S_6 = 2.5V \]
\[M_1 = M_4 = 5V \]
\[M_2 = M_3 = 5V \]

The Blocking Voltages across the Switches are

\[S_1 + S_3 + S_4 + S_2 = S_6 = S_7 = S_8 = 2.5V \]
\[M_1 + M_2 = M_3 + M_4 = 5V \]

The Total Blocking Voltage of the circuit is given by

\[V_{P,V} = \frac{\text{Total voltage}}{\text{max voltage}} = \frac{40}{8} = 5 \] \(\text{(2)} \)

Cost function = \(N_{\text{IGBT}} + \alpha V_{\text{Switch}}^{P,V} \) \(\text{(3)} \)

where \(\alpha \) is current rating

a) If \(\alpha = 0.5 \)
\[C.F = 8 + 0.5(8) = 12 \]
b) If \(\alpha = 1.5 \)
\[C.F = 8 + 1.5(8) = 20 \]
c) If \(\alpha = 2.5 \)
\[C.F = 8 + 2.5(8) = 28 \]
d) If \(\alpha = 3.5 \)
\[C.F = 8 + 3.5(8) = 36 \]
e) If \(\alpha = 4.5 \)
\[C.F = 8 + 4.5(8) = 44 \]

3.2. Cost function of the proposed multilevel inverter

In connection with earlier analysis in section 3.1, we are moving to the comparative analysis for proposed novel topology 11-level inverter with reduced power components as shown in Figure 3.
Consider the switches S_4 & S_5
In open Condition each switch will block Voltages V_1 and $V_4 = 1 + 1 = 2V$
Similarly, S_6 and S_7 each will block voltage $V_5=1V$
Similarly, S_1 block voltage $V_1, V_2, V_3, V_4 = 4V$
Similarly, S_8 block voltage $V_2, V_3=2V$
Similarly, S_3, S_2 block voltage $V_4, V_3, V_2 = 5V$
Blocking voltage across the switch=$v_{\text{max}}/v_{\text{block}}$

$$S1 = \frac{5}{4} = 1.25V$$
$$S2, S3 = \frac{5}{3} = 1V$$
$$S6, S7 = \frac{5}{1} = 5V$$

Total blocking voltage circuit given by

$$V_{PV}^V = \frac{\text{Total voltage}}{\text{max voltage}} = \frac{20.75}{5} = 4.15V$$

Cost function=$N_{\text{IGBT}} + \alpha V_{PV}^V$
where α is current rating

a) If $\alpha=0.5$
 $C.F = 8 + 0.5(4.15) = 10.075$

b) If $\alpha=1.5$
 $C.F = 8 + 1.5(4.15) = 14.225$

c) If $\alpha=2.5$
 $C.F = 8 + 2.5(4.15) = 18.375$

d) If $\alpha=3.5$
 $C.F = 8 + 3.5(4.15) = 22.525$

e) If $\alpha=4.5$
 $C.F = 8 + 4.5(5) = 26.675$

3.3. Comparison of cost function between conventional and new topology multilevel inverter

Table 1 represents the comparison of cost function between conventional multilevel inverter and new topology multilevel inverter, from the results it is evident that the cost function of new topology has better performance in all the variants of α compared to the conventional topology.

Cost Function	$\alpha=0.5$	$\alpha=1.5$	$\alpha=2.5$	$\alpha=3.5$	$\alpha=4.5$
Conventional Multilevel Inverter	12	20	28	36	44
New Topology	10.075	14.225	18.375	22.525	26.675

4. RELIABILITY OF PROPOSED MULTILEVEL INVERTER

4.1. Reliability analysis

Calculate failure rate of each switch according to data sheet to the used thyristor [24-27].

a) Calculate the failure rate for used thyristor.

Formula for failure rate: $-\lambda = \lambda_{\text{physical}} \cdot \pi_{PM} \cdot \pi_{Process}$ (4)

λ is failure rate
π_{PM} is part manufacturing represents quality and technical control over manufacturing of item.
$\pi_{Process}$ is quality and technical control over manufacturing and usage.

$\lambda_{\text{physical}} = \lambda_b$
\[\pi_{PM} = \pi_T \pi_Q \pi_E \]
\[\pi_{Process} = \pi_R \pi_S \]
\[\lambda_p = \lambda_b \pi_T \pi_Q \pi_E \pi_R \pi_S \]

where
- \(\lambda_b \) is base failure rate.
- \(\pi_T \) is temperature factor
- \(\pi_Q \) is quality factor
- \(\pi_E \) is environmental factor
- \(\pi_R \) is current rating factor
- \(\pi_S \) is voltage stress factor

Used switch ratings:
- Junction temperature = 150°C
- \(I_{\text{rms}} = 30\text{A} \)
- Quality of product = JANTX
- Case temperature = 75°C
- \(V_c = 500\text{V} \)

Substitute in (5)
\[\lambda_p = \lambda_b \pi_T \pi_Q \pi_E \pi_R \pi_S \]

According to datasheet all values are having numerical values
- \(\lambda_b \) is base failure rate=0.002 (for all type devices same value)
- \(\pi_T \) is temperature factor=150°C

\[e^{-\frac{3082(\frac{1}{T_j+273} - \frac{1}{273})}{273}} = e^{-\frac{3082(\frac{1}{150+273} - \frac{1}{273})}{273}} = 21 \]

where \(T_j \) = junction temperature.

0°C temperature converted into Kelvin=273
At room temperature 25°C converted into Kelvin=273+25=298
- \(\pi_Q \) is quality factor = 1.0
- \(\pi_E \) is environmental factor = \(N_e = \text{marine} = 9.0 \)
- \(\pi_R \) is current rating factor = \(I_{\text{rms}}^{0.40} = (30)^{0.40} = 3.9 \)
- \(\pi_S \) is voltage stress factor = \(V_c^{1.9} = (0.5)^{1.9} = 0.27 \)

b) \(\lambda_p = \lambda_b \pi_T \pi_Q \pi_E \pi_R \pi_S = 0.002*21*1.0*9.0*3.9*0.27 = 0.437 \text{ failure/10}^6\text{ hours} \)

Failure rate for selected model switch (hardware) =0.437 failure/10^6 hours

Now, Failure rate per year:-

\[\text{The failure rate for each phase } \lambda_{\text{physical}} = \sum_{i} \text{phase annual time phase} \times \lambda_{\text{phase}} \]

For 1-\(\phi \) consider operation for 265 days = 265*24=6360 hours
365 days = 365*24=8760 hours
Failure rate of the selected switch \(\lambda_{\text{phase}} = 0.437 \text{ per 10}^6\text{ hours} \)

\[\lambda_{\text{physical}} = \frac{6360}{8760} * 0.437 = 0.3712 \text{ per 10}^6\text{ hours} \]

On-mission failure rate:

\[\text{On- mission failure rate } \lambda_{\text{mission}} = \lambda_{\text{calendar}} \times \frac{\text{calander duration}}{\text{duration on-mission}} \]

\[= 2*365*24*10^9 \times \frac{8760}{6360} \text{ for 2 years} \]

\[= 2.412*10^5\text{ hours} \]
Mathematical analysis of cost function and reliability condition for new proposed … (D. Karthikeyan)
REFERENCES

[1] L. Maharjan, S. Inoue, H. Akagi, and J. Asakura, "State-of-charge (SOC)-balancing control of a battery energy storage system based on a cascade PWM converter," in IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1628-1636, 2009.

[2] K. Himour, K. Ghedamsi, and E. M. Berkouk, "Supervision and control of grid connected PV-Storage systems with the five level diode clamped inverter," Energy Conversion and Management, vol. 77, pp. 98-107, 2013.

[3] Escalante, Miguel F., J-C. Vannier, and Amir Arzandé, "Flying capacitor multilevel inverters and DTC motor drive applications," in IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 809-815, 2002.

[4] K. Ramani, M. A. J. Sahilk, and S. Sivakumar, "A new symmetric multilevel inverter topology using single and double source sub-multilevel inverters," Journal of Power Electronics, vol. 15, no. 1, pp. 96-105, 2015.

[5] A. Mokhberdoran, and Ali Ajjami, "Symmetric and asymmetric design and implementation of new cascaded multilevel inverter topology," in IEEE Transactions on Power Electronics, vol. 29, no. 12, pp. 6712-6724, 2014.

[6] R. S. Alishah, S. H. Hosseini, E. Babaei, M. Sabahi, "Optimal Design of New Cascaded Switch-Ladder Multilevel Inverter Structure," in IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2072-2080, 2017.

[7] R. Samanbakhsh and A. Taheri, "Reduction of Power Electronic Components in Multilevel Converters Using New Switched Capacitor-Diode Structure," in IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 7204-7214, 2016.

[8] Z. Du, L. M. Tolbert, J. N. Chiasson, and B. Ozpineci, “A cascaded multilevel inverter using a single dc source,” Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC ’06, Dallas, TX, p. 5, 2006.

[9] R. Shalchi Alishah, D. Nazarpour, S. H. Hosseini, and M. Sabahi, “Novel topologies for symmetric, asymmetric and cascaded switch-diode multilevel converter with minimum number of power electronic components,” in IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5300-5310, 2014.

[10] J. M. Carrasco, et al., “Power-electronic systems for the grid integration of renewable energy sources: A survey,” in IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1002-1016, 2006.

[11] P. Palanivel and S. S. Dash, “Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques,” in IET Power Electronics, vol. 4, no. 8, pp. 951-958, 2011.

[12] A. M. Massoud, S. J. Finney, and B. W. Williams, “Control Techniques for Multilevel Voltage Source Inverters,” IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC ’03, Acapulco, Mexico, vol. 1, pp. 171-176, 2003.

[13] R. Gupta, A. Ghosh, and A. Joshi, “Switching characterization of cascaded multilevel inverter controlled systems,” in IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1047-1058, 2008.

[14] J. Ebrahimi, E. Babaei, and G.B. Gharehpetian, “A new multilevel converter topology with reduced number of power electronic components,” in IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 655-667, 2012.

[15] Haji-Esmaili M. M., Nasiri M., Khounjahan H., Abapour M., “Fault tolerant structure for cascaded H-bridge multilevel inverter and reliability evaluation,” in IET Power Electronics, vol. 10, no. 1, pp. 59-70, 2017.

[16] Catelani M., Ciani L., Luchetta A., Manetti S., Piccirilli M. C., Reatti A, Kazimierzczuk M. K., “Fault detection of resonant inverters for wireless power transmission using MLMVNN,” 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Bologna, pp. 1-5, 2016.

[17] Haji-Esmaili M. M., Nasiri M., Khounjahan H., Abapour M., “Fault-tolerant and reliable structure for a cascaded quasi Z source DC-DC converter,” in IEEE Transactions on Power Electronics, vol. 32, no. 8, pp. 6455-6467, 2017.

[18] Luh D. D., Soon J. L., Verstraete D., “Derivation of dual-switch step-down DC/DC converters with fault-tolerant capability,” in IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6064-6068, 2016.

[19] Jamshidpour E., Pour E., Saadate S., “Photovoltaic systems reliability improvement by real-time FPGA-based switch failure diagnosis and fault-tolerant DC-DC converter,” in IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7247-7255, 2015.

[20] Catelani M., Ciani L., Luchetta A., Manetti S., Piccirilli M. C., Reatti A., Kazimierzczuk M. K., “MLMVNN for parameter fault detection in PWM DC-DC converters and its applications for Buck DC-DC converter,” 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEIEC), Florence, pp. 1-6, 2016.

[21] Baldanzani L., Catelani M., Ciani L., Kazimierzczuk M. K., Luchetta A., Manetti S., Reatti A., “MLMVNN for parameter faults detection in a DC-DC boost converter,” XIX IMEKO World Congress on “Measurement in Research and Industry”, Prague, Czech Republic, 2015.

[22] Siwakoti Y. P., Peng F. Z., Blaabjerg F., Loh P. C., Town G. E., “Impedance-source networks for electric power conversion part I: a topological review,” in IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 699-716, 2015.

[23] Siwakoti Y. P., Peng F. Z., Blaabjerg F., Loh P. C., Town G. E., Yang S., “Impedance-source networks for electric power conversion part II: review of control and modulation techniques,” in IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1887-1906, 2015.

[24] Mouna Es-Saadi, Mohamed Khaflallah, Hamid Chaikhy, “Using the Five-Level NPC Inverter to Improve the FOC Control of the Asynchronous Machine,” International Journal of Power Electronics and Drive System (IJPEDS), vol. 9, no. 4, pp. 1457-1466, 2016.

[25] V. S. Prasadara K., V. Joshi Manohar, “Grid Interconnection of PV System Using Symmetric and Asymmetric MLI Topology,” International Journal of Power Electronics and Drive System (IJPEDS), vol. 9, no. 4, pp. 1616-1623, 2018.

[26] K. Rajasekhar Reddy, V. Nagabhaskar Reddy, M. Vijaya Kumar, “Control of Single Stage Grid Tied Photovoltaic Inverter Using Incremental Conductance Method,” International Journal of Power Electronics and Drive System (IJPEDS), vol. 9, no. 4, pp. 1702-1708, 2018.

[27] Tarek Selmi, Maher Rezgui, “A Novel DC-AC Inverter Topology to Eliminate Leakage Current,” International Journal of Power Electronics and Drive System (IJPEDS), vol. 9, no. 4, pp. 1733-1744, 2018.
Mathematical analysis of cost function and reliability condition for new proposed... (D. Karthikeyan)