Analyzing the impact of induced magnetic flux and Fourier’s and Fick’s theories on the Carreau-Yasuda nanofluid flow

Seemab Bashir1, Muhammad Ramzan2, Jae Dong Chung3, Yu-Ming Chu4,5 & Seifedine Kadry6

The current study analyzes the effects of modified Fourier and Fick’s theories on the Carreau-Yasuda nanofluid flow over a stretched surface accompanying activation energy with binary chemical reaction. Mechanism of heat transfer is observed in the occurrence of heat source/sink and Newtonian heating. The induced magnetic field is incorporated to boost the electric conductivity of nanofluid. The formulation of the model consists of nonlinear coupled partial differential equations that are transmuted into coupled ordinary differential equations with high nonlinearity by applying boundary layer approximation. The numerical solution of this coupled system is carried out by implementing the MATLAB solver bvp4c package. Also, to verify the accuracy of the numerical scheme grid-free analysis for the Nusselt number is presented. The influence of different parameters, for example, reciprocal magnetic Prandtl number, stretching ratio parameter, Brownian motion, thermophoresis, and Schmidt number on the physical quantities like velocity, temperature distribution, and concentration distribution are addressed with graphs. The Skin friction coefficient and local Nusselt number for different parameters are estimated through Tables. The analysis shows that the concentration of nanoparticles increases on increasing the chemical reaction with activation energy and also Brownian motion efficiency and thermophoresis parameter increases the nanoparticle concentration. Opposite behavior of velocity profile and the Skin friction coefficient is observed for increasing the stretching ratio parameter. In order to validate the present results, a comparison with previously published results is presented. Also, Factors of thermal and solutal relaxation time effectively contribute to optimizing the process of stretchable surface chilling, which is important in many industrial applications.

List of symbols

- u, v: Velocity components m/s
- T: Temperature K
- μ: Dynamic viscosity m2/s
- μ_f: Base fluid dynamic viscosity m2/s
- H_e: Magnetic field at free stream
- c_p: Specific heat J/(K kg)
- T_∞: Ambient temperature K
- D_B: Brownian diffusion coefficient m2/s
- D_T: Thermophoretic diffusion coefficient m2/s

1Department of Mathematics, Air University, Islamabad 44000, Pakistan. 2Department of Computer Science, Bahria University, Islamabad 44000, Pakistan. 3Department of Mechanical Engineering, Sejong University, Seoul 143-747, Korea. 4Department of Mathematics, Huzhou University, Huzhou 313000, People’s Republic of China. 5Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science and Technology, Changsha 410014, People’s Republic of China. 6Faculty of Applied Computing and Technology, Noroff University College, Kristiansand 4608, Norway. Email: chuyuming@zjhu.edu.cn
Most commonly working liquids and materials, in many engineering disciplines, such as material and chemical processing, possess multifaceted rheological properties, whose viscosity and viscoelasticity can be continuously deformed and reshaped by imposing some forces and external conditions, such as temperature, timescale, stress, and strain. These fluids have the property to be used as heat exchangers and coolant to reduce pumping power. Other than the Newtonian model, these fluids also exhibit a relationship between shear-stress—a strain that makes them completely different. Nowadays, non-Newtonian fluid dynamics are involved in abundant researches due to their practical application. Such liquids have a shear dependent viscosity. The Carreau-Yasuda model is one of the non-Newtonian liquid models which predicts the shear-thinning/thickening behavior and also shows both elevated and low shear levels relationship. Because of this fact, the Carreau-Yasuda model has great industrial and technological applications which include drilling muds, molten polymers, oils, foodstuff, volcanic lava, liquid suspensions, certain paints, polycrystal melts, cosmetic products, and many more. Tanveer et al.1 discussed the peristaltic transport in the presence of curved channel and Hall effects. The heat sink and heat source effects on the peristaltic flow of the Carreau-Yasuda fluid. They observed the opposite impacts of velocity slip on temperature and velocity distributions. Hayat et al.23 explained joule heating and MHD effects on an inclined channel. Malik et al.24 elaborated on the Darcy–Forchheimer Carreau-Yasuda nanofluid flow with magnetohydrodynamics. Abdul Hakeem et al.25 used a porous medium to explained MHD effects with the heat source and sink term. Hayat et al.24 addressed how MHD affects Carreau-Yasuda fluid peristaltic transport in the presence of curved channel and Hall effects. The heat sink and heat source effects
considering MHD flow over the vertical stretched sheet was studied by Ibrahim et al.25. They examined that the velocity profile and the transfer rate of heat are increased by enhancing the Hartmann number and parameter of mixed convection. Bilal et al.26 discussed the exclusive impact of a magnetized viscous fluid in the presence of Hall current over a variably thicked sheet and non-Fourier flux theory. Khan et al.27 elaborated the bioconvection MHD Carreau nanofluid flow for the parabolic surface. He used generalized Fourier’s and Fick’s laws to discover the mass and heat flux phenomena.

In fluid mechanics, different researchers28–32 put remarkable contributions to understand the mass transfer process by adding Arrhenius activation energy and chemical reaction. It has a large variety of applications in recovery of thermal oil, chemical engineering, in geothermal reservoirs, and cooling of nuclear reactors. Alghamdi33 discussed the significance of binary chemical reaction on a nanofluid flow in the presence of Arrhenius Activation Energy with a rotating disk geometry with mixed convection. Dhlamini et al.34 studied nanofluid flow with Arrhenius Activation Energy and binary chemical reaction in presence of mixed convection and convective boundary conditions. The meaning of Arrhenius Activation Energy and binary chemical reaction in the presence of heat source/sink was elaborated by Hayat et al.35. Analysis of Arrhenius Activation Energy and binary chemical reaction in Couette-Poiseuille nanofluid flow is reported by Ellahi et al.36. Hayat et al.37 explained binary chemical reaction and Arrhenius activation energy in MHD nanofluid flow with entropy generation minimization. Some recent investigations featuring aspects of activation energy may be found in38–45.

In light of the above literature review, this current study is focused to scrutinize the detailed aspects of induced magnetic flux and modified Fourier and Fick’s theories on Carreau-Yasuda nanofluid flow with binary chemical reaction and activation energy. Besides, the Newtonian heating condition is incorporated on the boundary to analyze the behavior of the flow. The impact of different physical parameters is also analyzed. Furthermore, the effects of the local Nusselt number and the Skin friction coefficient are addressed. The transport phenomenon is explained by governing equations that are developed including effects of heat generation/absorption in the energy equation. The complicated nonlinear equations are solved using MATLAB solver bvp4c. Graphical results are displayed to discuss the behavior of involved parameters.

Mathematical formulation

The proposed mathematical model is considered under following assumptions:

1. Here, steady Carreau-Yasuda nanofluid’s incompressible flow to a stretching sheet is considered.
2. This current investigation is obtained by assuming the flow with chemical reaction and the Arrhenius activation energy process.
3. To analyze the heat mechanism heat generation/absorption is introduced.
4. The stretched surface is located on x-axis and Carreau-Yasuda nano liquid is occupied in the region y > 0.
5. Let \(u_e(x) = ax \) and \(u_w(x) = cx \). The “c” and “a” correspond to stretching and free stream velocities respectively.
6. An induced magnetic field \(H \) with its parallel component \(H_1 \) and normal component \(H_2 \) is considered here. In Fig. 1 configuration of the flow is plotted.
The Carreau-Yasuda nanofluid model1,18,19 is explained by the following equation:

\[
\tau = \left[\mu_{\infty} + (\mu_0 - \mu_{\infty})(1 + (\Gamma \dot{\gamma})^d)^{\frac{\eta}{n}} \right] A_1,
\]

where \(\Gamma, n \) and \(d \) are the parameters used for Carreau-Yasuda nanofluid, \(A_1 \) shows first Rivlin-Ericksen tensor, \(\dot{\gamma} \) is represented by \(\dot{\gamma} = \sqrt{2} tr\left(\dot{\gamma}\right) \), here \(A_1 = [\nabla V + (\nabla V)^T] \). Assuming \(\mu_{\infty} = 0 \) transform the above equation into the following form:

\[
\tau = \left[\mu_0 (1 + (\Gamma \dot{\gamma})^d)^{\frac{\eta}{n}} \right] A_1, \quad (2)
\]

Under the above assumptions the model equations are written as2,18,19,46:

\[
u_x + v_y = 0, \quad (3)
\]

\[
(H_1)_x + (H_2)_y = 0, \quad (4)
\]

\[
u u_x + v u_y = \frac{\mu_e}{4 \pi \rho_f} \left[H_1 (H_1)_x + H_2 (H_1)_y \right] = \frac{\mu_e}{4 \pi \rho_f} H_2 H_1 + \frac{\mu_f}{\rho_f} u_{yy} - \frac{(n - 1)(d + 1)u_y}{d} \Gamma_d u_{yy} u_y^d, \quad (5)
\]

\[
\left(u (H_1)_x + v (H_2)_y - H_1 u_x - H_2 u_y = \mu_c (H_1)_{yy}, \quad (6)
\]

\[
u T_x + v T_y + \lambda_1 (u u_x T_x + v v_y T_y + v u_y T_x + 2 u v T_{xy} + u^2 T_{xx} + v^2 T_{yy}) = \frac{k}{(\rho c_p)_f} T_{yy} + \frac{Q_0}{(\rho c_p)_f} (T - T_{\infty}) + \frac{Q_0}{(\rho c_p)_f} u_y^2 + \frac{(\rho c_p)_p}{(\rho c_p)_f} \left(D_B C_y T_y + \frac{D_T}{T_{\infty}} T_y^3 \right), \quad (7)
\]

\[
u C_x + v C_y + \lambda_2 (u u_x C_x + v v_y C_y + v u_y C_x + 2 u v C_{xy} + u^2 C_{xx} + v^2 C_{yy}) = D_B C_y + \frac{D_T}{T_{\infty}} T_y^2 - k_f \left(\frac{T}{T_{\infty}} \right)^n e^{-\frac{\eta}{n}} (C - C_{\infty}), \quad (8)
\]

with the following set of conditions on the boundary

\[
u = cx, \quad v = 0, \quad (H_1)_y = H_2 = 0, \quad -k T_y = h_f(-T + T_w), \quad D_B C_y + \frac{D_T}{T_{\infty}} T_y \quad \text{at} \quad y = 0, \quad (9)
\]

\[
u u_x = u_c, \quad H_1 \rightarrow H_0 x = H_2 x, \quad C \rightarrow C_{\infty}, \quad T \rightarrow T_{\infty}, \quad \text{as} \quad y \rightarrow \infty.
\]

Here Eqs. (3) and (4) are the continuity and its corresponding Induced magnetic field equations. Similaraly, Eqs. (5) and (6) represent the momentum and its associated Induced magnetic field equation. However, the heat and concentration equations are numbered as Eqs. (7) and (8), respectively.

Applying transformation

\[
u = cx f'(\eta), \quad \eta = \gamma \frac{c}{u_y}, \quad v = \sqrt{c u_y f'(\eta)}, \quad (10)
\]

\[
H_1 = H_0 x g'/(\eta), \quad H_2 = H_0 \frac{c}{u_y} g(\eta), \quad T - T_{\infty} = \theta(\eta) (-T_{\infty} + T_w), \quad C - C_{\infty} = \psi(\eta) (-C_{\infty} + C_w).
\]

The model equations are transfigured under the aforementioned transformation into the following form:

\[
\left(1 + \frac{(n - 1)(d + 1)}{d} W_d (f''')^d \right) f'' + f'' f - f^2 + \left(g^2 - g g'' - 1 \right) \beta = 0, \quad (11)
\]

\[
\lambda g''' + f g'' - f' g = 0, \quad (12)
\]

\[
\theta''(1 - \lambda^2 \theta \gamma^2) + Pr (f \theta' + Q \theta + N_b \phi \theta' + N_1 \theta'^2 - \lambda^2 f' \theta'') = 0, \quad (13)
\]

\[
\phi'' + \frac{N_1}{N_b} \theta'' + Sc \left(f \psi' - \lambda^2 \left(f' \phi' + f^2 \phi'' \right) \right) - \sigma (1 + n \delta \theta) e^{-\frac{\eta}{n}} = 0. \quad (14)
\]

With
\[f'(0) = 1, \quad f(0) = 0, \quad g(0) = 0, \quad g''(0) = 0, \quad \theta'(0) = -B_i[1 - \theta(0)], \]
\[N_0 \phi'(0) + N_i \phi'(0) = 0, \quad f'(\infty) \to A, \quad g'(\infty) \to 1, \quad \theta(\infty) \to 0, \quad \phi(\infty) \to 0. \] (15)

The non-dimensional variables are defined as:
\[A = \frac{a}{c}, \quad \beta = \frac{\mu_0}{4\pi \rho_j \nu}, \quad Pr = \frac{\mu e_f}{k_f}, \quad \lambda = \frac{\mu e}{\nu}, \quad \lambda_1 = \lambda_1 c, \quad \lambda_2 = \lambda_2 c, \]
\[Q = \frac{Q_0}{c(\rho \rho_{\rho})}, \quad W_{\theta} = \left(\frac{\sqrt{c}}{\nu} \right)^d, \quad \tau = \frac{\rho \rho_{\rho}}{\rho \rho_{\rho}} \frac{N_i}{\nu}, \quad N_i = \frac{\tau D_T(T_w - T_\infty)}{\nu T_\infty}, \]
\[\sigma = \frac{k^2}{c}, \quad \delta = \frac{T_w - T_\infty}{T_\infty}, \quad E = \frac{E_d}{\kappa T_\infty}, \quad Sc = \frac{\nu}{D_A}. \] (16)

Physical quantities

Physically interesting quantities are to be determined for practical applications in engineering. For instance, the rate of heat transfer \(Nu \) and the coefficient of Skin friction \(C_f \) is mathematically expressed as:
\[C_f = \frac{2\tau_w}{\rho_j u_w}, \quad Nu = \frac{xq_w}{k_f(T_w - T_\infty)}, \] (17)

in the above equation, the shear stress is \(\tau_w \) and the heat flux \(q_w \) is defined as:
\[\tau_w = \mu_0 \left[1 + T_{\rho} \left(\frac{n - 1}{d} \right) \left(\frac{\partial u}{\partial y} \right)^d \right], \quad q_w = -\left(\frac{\partial T}{\partial y} \right)_{y=0}. \] (18)

The final expression for the \(C_f \) and \(Nu \) is written as:
\[C_f \text{Re}_x^{1/2} = f''(0) \left[1 + (f''(0)) \left(\frac{n - 1}{d} \right) W_{\theta} \right], \quad \text{Nu}_x \text{Re}_x^{1/2} = -\theta'(0). \] (19)

Numerical scheme

To test the translated coupled non-linear ordinary differential equations, MATLAB program bvp4c is implemented. Using bvp4c, we calculate residuals and carry out the computations for different step sizes \(h = 0.01, 0.001, ... \). As in this process, the absolute convergence requirements were taken \(10^{-6} \). It is most critical that the necessary finite values of \(\eta_\infty \) being chosen. For this computational purpose, the asymptotic boundary conditions at \(\eta_\infty \) for a given case is constrained to \(\eta = 5 \), that is enough to better illustrate the solution’s asymptotic behavior, of the governed equations. The assumed initial approximation must encounter the BCs without disturbing the solution process. For this first and foremost, fresh variables are added as:
\[f(\eta) = y_1, \quad g(\eta) = y_4, \quad \theta(\eta) = y_7, \quad \phi(\eta) = y_9, \quad f'(\eta) = y_2, \quad g''(\eta) = y_5, \quad \theta'(\eta) = y_8, \]
\[f'(\eta) = y_{10}, \quad f''(\eta) = y_3, \quad g''(\eta) = y_6, \quad f''(\eta) = y_{11}, \quad g''(\eta) = y_{12}, \quad \theta''(\eta) = y_{13}. \] (20)

Using the above expressions in MATLAB bvp4c, a new form of first-order equations is:
\[\begin{align*}
\dot{y}_1 &= \left[\frac{1}{1 + (n - 1)(d + 1)} W_{\theta}(f''(\eta))^d \right] [y_2^2 - y_1 y_1 - \beta (y_2^2 - y_4 y_6 - 1)], \\
\dot{y}_2 &= \frac{1}{\lambda} (-y_1 y_6 + y_3 y_4), \\
\dot{y}_3 &= \left(\frac{1}{Pr} \right) [y_1 y_8 + Q y_7 + N_i y_{10} y_8 + N_i y_{10}^2 - \lambda_1 y_1 y_2 y_6], \\
\dot{y}_4 &= \left(\frac{-1}{1 - \lambda_2 y_1^2} \right) [N_i / N_0 y_3 + Sc \left(y_1 y_10 - \lambda_2 y_1 y_2 y_10 - \sigma (1 + n d e) e^{-\frac{y_9}{\nu D_A}} y_9 \right)].
\end{align*} \] (21)

with the transformed BCs
\[y_4(0) = 0 = y_6(0), \quad y_2(0) = 1, \quad N_i y_{10}(0) + N_i y_8(0) = 0, \quad y_8(0) = -B_i[1 - y_7(0)], \]
\[y_2(\infty) = A, \quad y_3(\infty) = 1, \quad y_7(\infty) = 0, \quad y_9(\infty) = 0. \] (25)
A graphical interpretation is captured in this section for different embedded physical parameters like A, β, We, n, λ_1, λ_2, Q, Bi, Sc, N_t, N_b, δ, Pr, E, and σ^2 on the physical quantities like velocity, temperature, and concentration. The desired ranges of these parameters are $2.1 \leq A \leq 2.4$, $0.05 \leq \beta \leq 0.3$, $0.1 \leq We \leq 0.4$, $1.1 \leq n \leq 2.0$, $1.3 \leq \lambda \leq 1.9$, $-1.2 \leq Q \leq 1.8$, $1.1 \leq Bi \leq 2.1$, $0.1 \leq Sc \leq 0.4$, $0.1 \leq N_t \leq 0.8$, $1.2 \leq N_b \leq 1.8$, $1.1 \leq \lambda_1^2 \leq 1.8$, $1.0 \leq \lambda_2^2 \leq 1.9$.

Velocity and induced magnetic field profile. The velocity profile is analyzed in Fig. 2 for different values of A. Increasing trends in the velocity are examined for the mounting values of $(A = 2.1, 2.2, 2.3, 2.4)$. It is because of an increase in the value of A exhibit more pressure initially, which ultimately increases the velocity and momentum boundary layer.

$f'(\eta)$ is examined for different values of β $(= 0.05, 0.08, 0.1, 0.3)$ in Fig. 3. Enhanced behavior of momentum is noticed on increasing induced magnetic field parameters. Generally, an electric current is developed on an increasing magnetic field which causes the electric force to increase, which, ultimately, is responsible for the increase in the thickness of both thermal as well as momentum boundary layers. Figure 4 elucidates that the increasing value of $We (= 0.1, 0.2, 0.3, 0.4)$ increases $f'(\eta)$. Since Weissenberg is measured as a ratio of the liquid’s relaxation time to a given process time. So, its increasing value produces enhancement in relaxation time of the fluid which offers more pressure in flow direction and causes enhancement in the velocity.

Figure 5 increases for mounting $n (= 1.1, 1.3, 1.5, 2.0)$ which causes more resistance in fluid flow. As a result, axial velocity flow declines upon increasing n. The note $n = 1$ represents Newtonian flow behavior. Also, the effects

Graphical discussion
A graphical interpretation is captured in this section for different embedded physical parameters like A, β, We, n, λ, Q, Bi, Sc, N_t, N_b, λ_1, λ_2, δ, Pr, E, and σ^2 on the physical quantities like velocity, temperature, and concentration. The desired ranges of these parameters are $2.1 \leq A \leq 2.4$, $0.05 \leq \beta \leq 0.3$, $0.1 \leq We \leq 0.4$, $1.1 \leq n \leq 2.0$, $1.3 \leq \lambda \leq 1.9$, $-1.2 \leq Q \leq 1.8$, $1.1 \leq Bi \leq 2.1$, $0.1 \leq Sc \leq 0.4$, $0.1 \leq N_t \leq 0.8$, $1.2 \leq N_b \leq 1.8$, $1.1 \leq \lambda_1^2 \leq 1.8$, $1.0 \leq \lambda_2^2 \leq 1.9$.

Velocity and induced magnetic field profile. The velocity profile is analyzed in Fig. 2 for different values of A. Increasing trends in the velocity are examined for the mounting values of $(A = 2.1, 2.2, 2.3, 2.4)$. It is because of an increase in the value of A exhibit more pressure initially, which ultimately increases the velocity and momentum boundary layer. $f'(\eta)$ is examined for different values of $\beta (= 0.05, 0.08, 0.1, 0.3)$ in Fig. 3. Enhanced behavior of momentum is noticed on increasing induced magnetic field parameters. Generally, an electric current is developed on an increasing magnetic field which causes the electric force to increase, which, ultimately, is responsible for the increase in the thickness of both thermal as well as momentum boundary layers. Figure 4 elucidates that the increasing value of $We (= 0.1, 0.2, 0.3, 0.4)$ increases $f'(\eta)$. Since Weissenberg is measured as a ratio of the liquid’s relaxation time to a given process time. So, its increasing value produces enhancement in relaxation time of the fluid which offers more pressure in flow direction and causes enhancement in the velocity. Figure 5 increases for mounting $n (= 1.1, 1.3, 1.5, 2.0)$ which causes more resistance in fluid flow. As a result, axial velocity flow declines upon increasing n. The note $n = 1$ represents Newtonian flow behavior. Also, the effects
\(\lambda \) are highlighted on \(g'(\eta) \) in this section. Clearly, Fig. 6 shows that for increasing \(\lambda(=1.3, 1.5, 1.7, 1.9) \) the \(g'(\eta) \) first increases near the surface from \(\eta \) (0 to 1.9) and then decrease from \(\eta \) (2 to 5). Induced magnetic boundary layer thickness also increases but \(g'(\eta) \) decreases far from the boundary as the magnetic field is responsible for producing Lorentz force in the flow direction which increases for higher \(\lambda \).

Temperature profile. The effects of \(Q \), \(Bi \), \(N_t \), \(N_b \), \(\lambda_1^* \), Pr on \(\theta(\eta) \) are explained in this section. The influence of \(Q \) on \(\theta(\eta) \) for heat sink \((Q < 0) \), and the heat source \((Q > 0) \) is plotted in Figs. 7 and 8. An increase in the temperature of nanofluid is measured for enhancing the value of the heat sink \((Q < 0) \). Whereas, enhancing the value of the heat source reduces the fluid temperature. Sink term puts more energy into layers of a thermal boundary, which leads to a rise in \(\theta(\eta) \). Figure 9 shows when \(\lambda_1^* \) increases the thermal distribution \(\theta(\eta) \) also increases. Enhancing thermal relaxation time \((\lambda_1^* = 1.1, 1.4, 1.6, 1.8)\) heat transfer from one particle to another is fast which becomes the reason for the increase in temperature. Figure 10 shows the effects of \(N_b \). Temperature distribution boosts up due to the random motion of particles for growing values of \((N_b = 1.2, 1.4, 1.6, 1.8)\). The response of temperature distribution against the thermophoresis parameter \(N_t \) is seen in Fig. 11. Physically when \((N_t = 0.2, 0.4, 0.6, 0.8)\) rises thermophoretic force increases due to which hot particles move toward cold particles hence temperature rises. Increasing trends of temperature distribution are observed for increasing values of \((Bi = 1.1, 1.4, 1.9, 2.1)\) in Fig. 12. Heat transfer and thermal boundary layer have a direct relation with \(Bi \). Therefore, when \(Bi \) is increased heat transfer coefficient is increased, and ultimately heat is transferred from the
heated source to the cooler surface, which transfers extra heat from the surface to the nanofluid. Hence, θ(η) of nanofluid increases on increasing Bi. Similarly, Fig. 13 highlights the effects of Pr. The temperature profile is enhanced for boosting the Pr (= 6.2, 7.1, 7.5, 8.5) in the flow region. This temperature profile variation is because of large values of Pr considerably reduces the thermal diffusivity and as a result, the thermal boundary layer thickness reduces which produces an increment in thermal profile.

Concentration profile. The importance of activation energy E is displayed in Fig. 14. The figure shows that the enhancing E (E = 0.1, 0.3, 0.6, 0.9), excite thickness of the boundary layer increases the concentration φ(η). Figure 15 highlights the impact of σ on φ(η). Observation shows that σ (σ = 1.5, 1.6, 1.7, 1.8) increases both the solutal layer and the concentration field. A higher estimation of σ is a reason for solutal layer thickness. Therefore, φ(η) increases. The effect of δ on φ(η) is graphed in Fig. 16. The figure indicates, increasing the value of δ reduces φ(η). Figure 17 highlights the effect of the solutal relaxation parameter λ_s^2 on φ(η). A dropped φ(η) is observed for large values of λ_s^2. Both N_b and N_t have opposite effects on the φ(η) (see Figs. 18, 19). A considerable increase in φ(η) is observed when N_b increases. Moreover, the impact of Sc on φ(η) is graphed in Fig. 20. The figure indicates that a gradual increase in estimates of the Schmidt number Sc results in a thicker boundary layer of concentration. For a large Sc, concentration diffusivity of fluid is increased which is suppressed for the increasing values of the Schmidt number.
Skin friction coefficient and heat transfer rate. The impact of different emerging thermophysical parameters on the heat transfer rate as well as on the skin friction coefficient is presented in Tables 1 and 2. Friction factor coefficient increases on escalating Weissenberg number and induced magnetic field parameter whereas reduces for the growing value of stretching ratio parameter A. Similarly, the heat transfer rate increases on boosting Thermal relaxation factor λ_1^*, N_b, and the Prandtl number Pr and declines for increasing heat source/sink parameter Q.

Also, for the accuracy and correctness of the numerical scheme, grid-free analysis for the Nusselt number is presented in Table 3. The current findings of Skin friction coefficient are compared for different values of a/c by Mahapatra and Gupta,47 Ishak et al.,48 Nazar et al.,49 Ali et al.,50 and Gireesha et al.51 in Table 4 by ignoring induced magnetic field effects and Carreau-Yasuda nanofluid. For each considered value, comparison table displays good agreement, which provides the validity of the correctness and reliability of the latest results.

Conclusions

In this exploration, we have studied the influence of inclined magnetic flux and modified Fourier and Fick’s theories are examined on Carreau-Yasuda nanofluid flow induced by a stretching sheet using the Buongiorno model. Additionally, activation energy with binary chemical reaction is introduced to examine the concentration...
field. Furthermore, heat source/sink effects are considered along with Newtonian heating on the boundary to analyze the heating mechanism. The final remarks drawn from this study are as follows:

- The growing values of \(W_e \) decline the thickness of the momentum boundary layer and \(f' (\eta) \). To boost the rotation parameter, an increase in the axial velocity profile is seen.
- \(\theta (\eta) \) boosts on increasing the heat source/sink parameter.
- For broad parameters of \(N_t \) and \(N_b \), the temperature of nanofluids is increased.
- A large thermal relaxation factor \(\lambda_1^2 \) rises \(\theta (\eta) \) and also the thermal boundary layer, whereas larger solutal relaxation factor \(\lambda_2^2 \) drops the concentration profile.
- The opposite performance of the concentration boundary layer is observed on increasing \(\sigma \) and \(\delta \).
- Increasing \(E \), boosts the concentration profile.
- The friction factor coefficient increases on escalating Weissenberg \(W_e \). Whereas, its value reduces for increasing stretching ratio parameter \(A \).
- Increasing values of the Thermal relaxation factor and the Prandtl number \(Pr \) boosts the heat transfer rate.

Figure 10. \(\theta (\eta) \) versus \(N_b \).

Figure 11. \(\theta (\eta) \) versus \(N_t \).
Figure 12. $\theta(\eta)$ versus Bi.

Figure 13. $\theta(\eta)$ versus Pr.
Figure 14. $\phi(\eta)$ versus E.

Figure 15. $\phi(\eta)$ versus σ.
Figure 16. $\phi(\eta)$ versus δ.

Figure 17. $\phi(\eta)$ versus λ_2^*.
Figure 18. \(\phi(\eta) \) versus \(N_b \).

Figure 19. \(\phi(\eta) \) versus \(N_t \).
Figure 20. $\phi(\eta)$ versus Sc.

β	n	A	W_e	$f''(0)[1 + (f''(0) - \frac{1}{2}) W_e^2]$
0.1	1.1	0.3	1.5	-0.4172815
0.2				-0.49195911
0.3				-0.57265426
0.4				-0.6605834
1.2				-0.53327392
1.3				-0.53897413
1.4				-0.54478907
0.4				-0.35475913
0.5				-0.35037484
0.6				-0.27708379
1.6				-0.42489466
1.7				-0.4332459
1.8				-0.4424708

Table 1. Numerical estimation of $C_f/Re_c^{1/2}$ for different parameters.
Table 2. Numerical estimation of $\frac{1}{2}N_u \frac{R}{\kappa^2}$ for different parameters.

A^*	N_i	N_s	Q	Pr	Bi	$-\theta''(0)$
0.2	0.1	0.1	0.3	1.1	0.9	0.13792991
0.3						0.13804022
0.4						0.13818509
0.5						0.13838548
0.2						0.27777992
0.3						0.13790234
0.4						0.13788854
0.2						0.13795968
0.3						0.13798945
0.4						0.13801907
0.4						0.13784733
0.5						0.13776472
0.6						0.13768207
1.2						0.13794798
1.3						0.13796686
1.4						0.13798662
0.2						0.20425922
0.3						0.20969592
0.4						0.2145712

Table 3. Grid free analysis for the Nusselt number.

S. no.	Grid size	$(N_{u_{ave}})_\theta$
1	10×10	0.17827252
2	50×50	0.17821146
3	100×100	0.17826705
4	300×300	0.12915111
5	500×500	0.12915111
6	600×600	0.12915111
7	1000×1000	0.12915111

Table 4. Comparison of outcomes with Mahapatra and Gupta, Ishak et al., Nazar et al., Ali et al., and Gireesha et al. for co-efficient Skin friction $f''(0)$ considering $\beta = n = d = W_e = 0$ by varying $A = a/c$.

$A = a/c$	**1**	**2**	**3**	**4**	**5**	**6**	**7**	**Present study**
0.1	−0.9694	−0.9694	−0.9694	−0.9694	−0.9694	−0.9694	−0.96938	−0.96933
0.2	−0.9181	−0.9181	−0.9181	−0.9181	−0.9181	−0.9181	−0.91810	−0.91811
0.5	−0.6673	−0.6673	−0.6673	−0.6673	−0.6673	−0.6673	−0.66723	−0.66724
1.0	−	−	−	−	−	−	0.90852	0.90853
2.0	2.0175	2.0176	2.0175	2.0175	2.0175	2.0175	2.01750	2.01752
3.0	4.7293	4.7296	4.7294	4.7293	4.7293	4.7293	4.72928	4.72930
4.0	−	−	−	−	−	−	8.00043	8.00046

References
1. Tanveer, A., Hayat, T., Alsaeedi, A. & Ahmad, B. Numerical simulation for peristalsis of Carreau-Yasuda nanofluid in a curved channel with mixed convection and porous space. PLoS One 12, 2 (2017).
2. Khan, M., Shahid, A., Malik, M. Y. & Salahuddin, T. Chemical reaction for Carreau-Yasuda nanofluid flow past a nonlinear stretching sheet considering Joule heating. Results Phys. 8, 1124–1130 (2018).
3. Khechiba, K., Mamou, M., Hachemi, M., Delenda, N. & Rebhi, R. Effect of Carreau-Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid. *Phys. Fluids.*, 29, 063101 (2017).

4. Ahmed, B., Hayat, T., Alsaedi, A. & Abbas, F. M. Entropy generation analysis for peristaltic motion of Carreau-Yasuda nanomaterial. *Phys. Script.*, 95(5), 055804 (2020).

5. Khan, M. I., Hayat, T., Afzal, S., Khan, M. I. & Alsaedi, A. Theoretical and numerical investigation of Carreau-Yasuda fluid flow subject to Soret and Dufour effects. *Comput. Methods Programs Biomed.*, 186, 105145 (2020).

6. Ahmed, B., Hayat, T., Alsaedi, A. & Abbas, F. M. Entropy generation analysis for peristaltic motion of Carreau-Yasuda nanomaterial. *Phys. Script.*, 95, 5 (2020).

7. Hasona, W. M. Temperature-dependent viscosity and thermal conductivity effects on peristaltic flow of Carreau-Yasuda nanofluid in a 2D tapered asymmetric channel: Applications of solar collectors. *Mech. Time Depend Mater.*, 20, 1–18 (2019).

8. Hayat, T., Iqbal, R., Tanveer, A. & Alsaedi, A. Mixed convective peristaltic transport of Carreau-Yasuda nanofluid in a tapered asymmetric channel. *J. Mol. Liq.*, 223, 1100–1113 (2016).

9. Shamekhi, A. & Sadeghy, K. Cavity flow simulation of Carreau-Yasuda non-Newtonian fluids using PMM meshfree method. *Appl. Math. Model.*, 33(11), 4131–4145 (2009).

10. Ali, F. M., Nazar, R., Arifin, N. M. & Pop, I. MHD stagnation point flow and heat transfer towards stretching with induced magnetic field. *Appl. Math. Mech.*, 32(4), 409–418 (2011).

11. Hussain, A., Malik, M. Y., Khan, M. & Salahuddin, T. Application of generalized Fourier heat conduction law on MHD viscoelastic fluid flow over stretching surface. *Int. J. Numer. Method H.*, 20, 20 (2019).

12. Khan, I., Malik, M. Y., Hussain, A. & Khan, M. Magnetohydrodynamics Carreau nanofluid flow over an inclined convective heated stretching cylinder with Joule heating. *Results Phys.*, 7, 4001–4012 (2017).

13. Salahuddin, T., Malik, M. Y., Hussain, A., Bilal, S. & Awais, M. MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach. *J. Magn. Magn. Mater.*, 401, 991–997 (2016).

14. Rehman, K. U., Awais, M., Hussain, A., Kousar, N. & Malik, M. Y. Mathematical analysis on MHD Prandtl-Eyring nanofluid new mass flux conditions. *Math. Methods Appl. Sci.*, 42(1), 24–38 (2019).

15. Ali, F. M., Nazar, R., Arifin, N. M. & Pop, I. MHD mixed convective boundary layer flow towards a stagnation point flow on a vertical surface with induced magnetic field. *J. Heat Transfer.*, 133, 1–8 (2011).

16. Lu, D., Ramzan, M., Huda, N., Chung, J. D. & Farooq, U. Nonlinear radiation effect on MHD Carreau nanofluid flow over a radially stretching surface with zero mass flux at the surface. *Sci. Rep.*, 8(1), 1–17 (2018).

17. Salahuddin, T. et al. MHD squeezed flow of Carreau-Yasuda fluid over a sensor surface. *Alexand. Eng. J.*, 56(1), 27–34 (2017).

18. Hayat, T., Tanveer, A. & Alsaedi, A. Simultaneous effects of radial magnetic field and wall properties on peristaltic flow of Carreau-Yasuda fluid in curved flow configuration. *AIP Adv.*, 9(12), 127234 (2019).

19. Hayat, T., Tanveer, A. & Alsaedi, A. Simultaneous effects of radial magnetic field and wall properties on peristaltic flow of Carreau-Yasuda fluid in curved flow configuration. *AIP Adv.*, 5, 127–234 (2015).

20. Hayat, T., Shafque, M., Tanveer, A. & Alsaedi, A. Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel. *Int. J. Heat Mass Transf.*, 102, 54–63 (2016).

21. Khan, M., Salahuddin, T. & Malik, M. Y. Implementation of Darcy-Forchheimer effect on magnetohydrodynamic Carreau-Yasuda nanofluid flow: Application of Von Kármán. *Can. J. Phys.*, 97(6), 670–677 (2019).

22. Abdul Hakeem, A. K., Kalaiavanan, R., Ganga, B. & Vignesh Ganes, N. Nanofluid slip flow through porous medium with elasic deformation and heat source/sink effects. *Int. J. Heat Mass Transf.*, 11, 269–283 (2019).

23. Abbasi, F. M., Hayat, T. & Alsaedi, A. Numerical analysis for MHD peristaltic transport of Carreau-Yasuda fluid in a curved channel with Hall effects. *J. Magn. Magn. Mater.*, 382, 104–110 (2015).

24. Awad, E. G., Motsa, S. & Khumalo, M. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy. *PLOS One.*, 9, 9 (2014).

25. Hussain, A., Bilal, S., Aligarni, M. S., Malik, M. Y. & Mechai, I. The exclusive impact of Hall current over a vastly thickened sheet in magnetized viscous fluid by the implementation of non-Fourier flux theory. *Phys. A Stat. Mech. Appl.*, 542, 123181 (2020).

26. Khan, M., Hussain, A., Malik, M. Y., Salahuddin, T. & Aly, S. Numerical analysis of Carreau fluid flow for generalized Fourier’s and Fick’s laws. *Appl. Numer. Math.*, 144, 100–117 (2019).

27. Ramzan, M., Ullah, N., Chung, J. D., Lu, D. & Farooq, U. Buoyancy effects on the radiative magneto micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction. *Sci. Rep.*, 7(1), 1–15 (2017).

28. Lu, D., Ramzan, M., Ahmad, S., Chung, J. D. & Farooq, U. Upshot of binary chemical reaction and activation energy on carbon nanotubes with Cattaneo-Christov heat flux and buoyancy effects. *Phys. Fluids.*, 31(12), 125103 (2017).

29. Maleque, K. Effects of binary chemical reaction and activation energy on MHD boundary layer heat and mass transfer flow with viscous dissipation and heat generation/absorption. *ISRN Thermodyn.*, 20, 20 (2013).

30. Hamid, A. & Khan, M. Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-Williamson nanofluid. *J. Mol. Liq.*, 262, 435–442 (2018).

31. Abbas, Z., Sheikhh, M. & Motssa, S. S. Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. *Energy*, 95, 12–20 (2016).

32. Alghamdi, M. Significance of arhenius activation energy and binary chemical reaction in mixed convection flow of nanofluid due to a rotating disk. *Coatings*, 10, 86 (2020).

33. Dhillami, M., Kameswaran, P. K., Sabanda, P., Motssa, S. & Mondal, R. Activation energy and binary chemical reaction effects in mixed convective nanofluid flow with convective boundary conditions. *J. Comput. Des. Eng.*, 6, 149–158 (2019).

34. Khan, M. I., Nasir, T., Hayat, T., Khan, N. R. & Alsaedi, A. Binary chemical reaction with activation energy in rotating fluid flow subject to nonlinear heat flux and heat source/sink. *J. Comput. Des. Eng.*, 7(10), 1–8 (2020).

35. Zeeshan, A., Shehzad, N. & Ellahi, R. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. *Results Phys.*, 8, 502–512 (2018).

36. Khan, M. I. et al. Entropy generation minimization and binary chemical reaction with Arhenius activation energy in MHD radiative flow of nanomaterial. *J. Mol. Liq.*, 259, 274–283 (2018).

37. Ramzan, M., Gul, H., Kadry, S. & Chu, Y. M. Role of bioconvection in a three-dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo-Christov heat flux and activation energy. *Int. Commun. Heat Mass Transf.*, 1, 104994 (2020).

38. Ramzan, M., Gul, H., Chung, J. D., Kadry, S. & Chu, Y. M. Significance of Hall effect and ion slip in a three-dimensional bioconvective Tangent hyperbolic nanofluid flow subject to Arhenius activation energy. *Sciences*, 10(1), 1–5 (2020).

39. Shah, Z., Kumam, P. & Deebani, W. Radiative MHD Casson nanofluid flow with activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation. *Sci. Rep.*, 10(1), 1–14 (2020).

40. Lu, D., Ramzan, M., Ullah, N., Chung, J. D. & Farooq, U. A numerical treatment of radiative nanofluid 3D flow containing gyrotactic microorganism with anisotropic slip, binary chemical reaction and activation energy. *Sci. Rep.*, 7(1), 71–12 (2017).

41. Lu, D., Ramzan, M., Bilal, C., Chung, J. D. & Farooq, U. A numerical investigation of 3D MHD rotating flow with binary chemical reaction, activation energy and non-Fourier heat flux. *Commun. Theor. Phys.*, 70(1), 89 (2018).
43. Ijaz, M., Yousaf, M. & El Shaafy, A. M. Arrhenius activation energy and Joule heating for Walter-B fluid with Cattaneo-Christov double-diffusion model. *J. Therm. Anal. Calorim.* **20**, 1–12 (2020).
44. Khan, M., Salahuddin, T., Yousaf, M. M., Khan, F. & Hussain, A. Variable diffusion and conductivity change in 3D rotating Williamson fluid flow along with magnetic field and activation energy. *Int. J. Numer. Method H.* **20**, 20 (2019).
45. Ayub, M., Malik, M. Y., Ijaz, M., Alqarni, M. S. & Alqahtani, A. S. Cattaneo-Christov double-diffusion model for viscoelastic nanofluid with activation energy and nonlinear thermal radiation. *Multidiscip. Model. Mater. Struct.* **20**, 20 (2019).
46. Mahmood, R. *et al.* Comprehensive finite element examination of Carreau Yassuda fluid model in a lid driven cavity and channel with obstacle by way of kinetic energy and drag and lift coefficient measurements. *J. Mater. Res. Technol.* **20**, 2 (2019).
47. Mahapatra, T. R. & Gupta, A. S. Heat transfer in stagnation point flow towards a stretching sheet. *Heat Mass Transf.* **38**, 517–521 (2002).
48. Ishak, A., Nazar, R. & Pop, I. Mixed convection boundary layers in the stagnation point flow towards a stretching vertical sheet. *Meccanica* **41**, 509–518 (2006).
49. Nazar, R., Amin, N., Filip, D. & Pop, I. Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. *Int. J. Eng. Sci.* **42**, 1241–1253 (2004).
50. Ali, F. M., Nazar, R., Arifin, N. M. & Pop, I. MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field. *Heat Mass Transf.* **47**, 155–162 (2011).
51. Gireesha, B. J., Mahanthesh, B., Shivakumara, I. S. & Eshwarappa, K. M. Melting heat transfer in boundary layer stagnation-point flow of nanofluid toward a stretching sheet with induced magnetic field. *Eng. Sci. Technol. Int. J.* **19**, 313–321 (2016).

Author contributions
M.R. supervised and conceived the idea; S. B. wrote the manuscript; S.K. did the software work; Y.M.C. helped in graphical depiction. J.D.C. helped in revised manuscript and funding arrangements.

Funding
This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government (MOTIE)(20202020900060, The Development and Application of Operational Technology in Smart Farm Utilizing Waste Heat from Particulates Reduced Smokestack).

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.-M.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021