The connection between the DRED and NSVZ Renormalisation Schemes

I. Jack, D.R.T. Jones and A. Pickering

Dept. of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK

We explore the relationship between the DRED and NSVZ schemes. Using certain exact results for the soft scalar mass β-function, we derive the transformation of α^{NSVZ} to α^{DRED} through terms of order α^4. We thus incidentally determine $\beta_{\alpha}^{\text{DRED}}$ through four loops, and we compare our result to a previous Padé Approximant prediction.

May 1998

1 This paper is dedicated to the memory of Mark Samuel
In a recent series of papers we have explored the scheme–dependence associated with the renormalisation of the coupling constants and mass-parameters of a softly-broken supersymmetric theory. There are two schemes of particular interest, which we term the DRED scheme and the NSVZ scheme. The DRED scheme is defined by the procedure of minimal (or modified minimal) subtraction associated with regularisation by dimensional reduction; also known as DR (or DR). (The distinction between DR and DR is immaterial for our present purposes.) The NSVZ scheme is one such that the NSVZ formula [1] for the gauge \(\beta \)-function \(\beta_\alpha \) holds; we will define this scheme in more detail later. The NSVZ formula relates \(\beta_\alpha \) to the the anomalous dimension matrix \(\gamma \) of the chiral superfields as follows:

\[
\beta^\text{NSVZ}_\alpha = 2 \frac{\alpha^2}{16\pi^2} \left[\frac{Q - 2r^{-1}\text{tr}[\gamma C(R)]}{1 - 2\alpha C(G)(16\pi^2)^{-1}} \right],
\]

where \(\alpha = g^2 \) and \(Q = T(R) - 3C(G) \). \(C(R) \) and \(C(G) \) are the quadratic matter and adjoint Casimirs respectively; \(T(R) = r^{-1}d_R\text{tr}[C(R)] \), where \(d_R \) is the dimension of the matter representation, and \(r \) is the number of generators of the gauge group.

The NSVZ scheme is related to the “holomorphic” scheme (wherein the one–loop \(\beta_\alpha \) is exact) by the transformation

\[
\frac{1}{\alpha^{\text{H}}} = \frac{1}{\alpha^{\text{NSVZ}}} + 2 \frac{C(G) \ln \alpha^{\text{NSVZ}}}{16\pi^2} - \frac{4}{16\pi^2}r^{-1}\text{tr}[ZC(R)],
\]

where \(\mu \frac{dZ}{d\mu} = \gamma \).

No relation of the form of Eq. (1) exists in DRED; on the other hand, DRED is a well-defined procedure for the calculation of radiative corrections. Thus if we wish to perform a calculation which involves

1. Running couplings and masses from \(10^{16}\text{GeV} \) (say) to \(M_Z \) and then
2. Calculating radiative corrections to physical masses and processes,

we might well consider using NSVZ (or the holomorphic scheme) in the former procedure and DRED in the latter. In fact, the NSVZ scheme has been used for running the dimensionless couplings in Refs. [2], [3] (see also Ref. [4]). For this reason it is useful to know as precisely as possible the connection between the schemes.

In Refs. [5], [6] we constructed perturbatively a redefinition \(\alpha^{\text{NSVZ}} \to \alpha^{\text{DRED}} \) by comparing \(\beta_\alpha \) in the two schemes. The result was

\[
\alpha^{\text{DRED}} = \alpha^{\text{NSVZ}} + \sum_{L=1}^{\infty} \delta^{(L)}(\alpha^{\text{NSVZ}}, Y, Y^*),
\]
where $\delta^{(1)} = 0,$

$$(16\pi^2)^2 \delta^{(2)} = \alpha^2 \left[r^{-1} \text{tr} [PC(R)] - \alpha QC(G) \right],$$

and

$$\delta^{(3)} = \rho_1 \Delta_1 + \rho_2 \Delta_2 + \rho_3 \Delta_3.$$

Here

$$(16\pi^2)^3 \Delta_1 = \alpha^3 C(G) \left[r^{-1} \text{tr} [PC(R)] - \alpha QC(G) \right]$$

$$(16\pi^2)^3 \Delta_2 = r^{-1} \text{tr} \left[\alpha^2 S_4 C(R) - 2\alpha^4 QC(R)^2 + 2\alpha^3 PC(R)^2 \right]$$

$$(16\pi^2)^3 \Delta_3 = \alpha^2 r^{-1} \text{tr} [P^2 C(R)] - \alpha^4 Q^2 C(G),$$

and in Ref. [6] we showed that $\rho_2 = -\frac{4}{3}$ and $\rho_3 = \frac{1}{3}$. P^i_j and S^i_{4j} are defined as follows:

$$P^i_j = \frac{1}{2} Y^{ijkl} Y^j_{kl} - 2\alpha C(R)^i_j,$$

$$S^i_{4j} = Y^{imn} P^p_m Y^j_{pn},$$

where we have written the superpotential as

$$W(\Phi) = \frac{1}{6} Y^{ijk} \Phi_i \Phi_j \Phi_k + \frac{1}{2} \mu^{ij} \Phi_i \Phi_j.$$

As usual we raise and lower indices by complex conjugation, e.g. $Y_{ijk} = (Y^{ijk})^*$. In principle the undetermined coefficient ρ_1 could be found by the same method as employed in Ref. [6] to find ρ_2 and ρ_3; that is, by calculating a relevant contribution to $\beta^{(4)}_{i\lambda DRED}$. This would be very tedious, however [7]. In this paper we show that our recent work on the soft supersymmetry-breaking β-functions leads to a determination of ρ_1 based on a remarkably simple three-loop calculation.

We take the soft breaking Lagrangian L_{SB} as follows:

$$L_{SB}(\phi, \lambda) = \left[\frac{1}{6} h^{ijk} \phi_i \phi_j \phi_k + \frac{1}{2} b^{ij} \phi_i \phi_j + \frac{1}{2} M \lambda^2 + \text{h.c.} \right] - (m^2)^i j \phi^i \phi^j.$$

Here M is the gaugino mass, and $\phi^i = \phi^*_i$. In Ref. [8] we showed that the soft scalar mass β-function is given by the following expression:

$$(\beta_{m^2})^i j = \left[\Delta + \tilde{X}(\alpha, Y, Y^*, h, h^*, m, M) \frac{\partial}{\partial \alpha} \right] \gamma^i j.$$

1 In Ref. [7] a method based on Padé approximants was used to suggest that $\rho_1 \approx 4.9$
where
\[\Delta = 2\mathcal{O} + 2MM^* \frac{\partial}{\partial \alpha} + \tilde{Y}_{lmn} \frac{\partial}{\partial Y_{lmn}} + \tilde{Y}^{lmn} \frac{\partial}{\partial Y^{lmn}} \],
(11)
\[\mathcal{O} = \left(M\alpha \frac{\partial}{\partial \alpha} - h^{lmn} \frac{\partial}{\partial Y^{lmn}} \right) , \]
(12)
and
\[\tilde{Y}^{ijk} = (m^2)^i Y^{ijk} + (m^2)^j Y^{ikl} + (m^2)^k Y^{ijl}. \]
(13)
The function \(\tilde{X} \) was introduced in Ref. [8]; it does not appear in a naive application of the spurion formalism [9], because (when using DRED) this fails to allow for the fact that the \(\epsilon \)-scalars associated with DRED acquire a mass through radiative corrections [10]. (For further discussion, see Refs. [11], [12].) Indeed, in DRED, \(\beta_{m^2} \) will actually depend on the \(\epsilon \)-scalar mass. It is, however, possible to define a scheme, DRED', related to DRED, such that \(\beta_{m^2} \) is independent of the \(\epsilon \)-scalar mass [13].

In Ref. [14] we claimed that Eq. (10) holds in both DRED' and the NSVZ scheme, the two schemes being related by the transformation Eq. (3) and an associated transformation on the gaugino mass \(M \), given by
\[\alpha M = \alpha' M' \frac{\partial \alpha(\alpha', Y, Y^*)}{\partial \alpha'} - h^{ijk} \frac{\partial \alpha(\alpha', Y, Y^*)}{\partial Y^{ijk}}. \]
(14)
(These two transformations define precisely what we mean by the NSVZ scheme.) We also argued that in the NSVZ scheme we have simply
\[\tilde{X}^{NSVZ} = -4 \frac{\alpha^2}{16\pi^2} \frac{S}{[1 - 2\alpha C(G)(16\pi^2)^{-1}]} \]
(15)
where
\[S = r^{-1} \text{tr}[m^2 C(R)] - MM^* C(G), \]
(16)
whereas in the DRED' scheme, \(\tilde{X} \) is related to the \(\beta \)-function for the \(\epsilon \)-scalar mass, \(\tilde{m} \). Writing
\[\beta_{\tilde{m}^2} = N_1 + N_2 \tilde{m}^2, \]
(17)
where \(N_1(\alpha, Y, Y^*, h, h^*, m, M) \) does not depend on \(\tilde{m} \), we have
\[\tilde{X}^{DRED'} = - \sum_{L=1}^{\infty} \frac{\alpha}{L N_1^{(L)}} \]
(18)
where $N_1^{(L)}$ is the L-loop contribution to N_1. The distinction between DRED and DRED' has no influence on the calculation of N_1; the DRED → DRED' redefinition only changes N_2.

Clearly, given Eqs. (18) and (15), we can determine the relation between α^{DRED} and α^{NSVZ} by calculating N_1 if we know how \tilde{X} transforms under a scheme redefinition. We showed in Ref. [14] that under a transformation $\alpha \to \alpha'$, with an associated transformation of M given by Eq. (14), the transformed \tilde{X}' is related to \tilde{X} by

$$
\tilde{X}' = \tilde{X}' \frac{\partial \alpha}{\partial \alpha'} + 2M'M'^* \left[\alpha'^2 \frac{\partial^2 \alpha}{\partial \alpha'^2} + 2\alpha' \frac{\partial \alpha}{\partial \alpha'} - 2 \frac{\alpha'^2}{\alpha} \left(\frac{\partial \alpha}{\partial \alpha'} \right)^2 \right] - \left[2M'\alpha' \frac{\partial^2 \alpha}{\partial Y_{ijk} \partial \alpha'} - \frac{\partial \alpha}{\partial Y_{ijk}} \frac{\partial \alpha}{\partial \alpha'} \right] - \tilde{Y}_{ijk} \frac{\partial \alpha}{\partial Y_{ijk}} + \text{c.c.} \right) - \tilde{Y}_{ijk} \frac{\partial \alpha}{\partial Y_{ijk}} + \text{c.c.} \right)
$$

and we also showed that Eq. (19) is consistent with Eq. (4). Moreover, we calculated the contributions of all tensor structures of the general form $\alpha m^2 Y^2 Y^\ast 2C(R)$ to N_1, which enabled us to test Eq. (19) against Eq. (4); this calculation did not involve tensor structures associated with ρ_1. Our confidence bolstered by this, we now proceed to determine ρ_1 by calculating the N_1 contributions from some tensor structures that are sensitive to ρ_1. This involves a three-loop calculation in the broken theory; far simpler than the four-loop calculation (albeit in the unbroken theory) required to determine ρ_1 from $\beta^{\text{DRED}}_\alpha$.

If we take the primed scheme in Eq. (19) to be NSVZ and the unprimed scheme to be DRED', then using Eqs. (3)-(5) we find that in DRED'
where

\[W^j_i = \frac{1}{2} \left[Y^{jkl} \tilde{Y}_{ikl} + \tilde{Y}^{jkl} Y_{ikl} \right] + h_{ipq} h^{jipq} - 8\alpha M M^* C(R)^j_i, \] \hspace{1cm} (21)

and

\[H^i_j = h^{ikl} Y_{jkl} + 4\alpha M C(R)^i_j. \] \hspace{1cm} (22)

(The combination \(H^i_j \) was formerly known \cite{10} as \(X^i_j \).) We have not substituted for \(\rho_2 \) and \(\rho_3 \) in Eq. (20) above so that the contributions emanating from the first term on the RHS of Eq. (19) are easier to identify. As explained above, in Ref. \cite{14} we explicitly calculated the three-loop Feynman diagrams corresponding to contributions to \(\beta_{\tilde{m}^2} \) of the form \(\alpha m^2 Y^2 Y^* C(R) \). Here we report on analogous calculations involving the following tensor structures:

\[T_1 = \alpha^2 h^* M Y C(R) C(G) + \text{c.c}, \]
\[T_2 = \alpha^2 h h^* C(R) C(G), \]
\[T_3 = \alpha^2 M M^* Y Y^* C(R) C(G). \] \hspace{1cm} (23)

These all have coefficients that depend on \(\rho_1 \).

The Feynman graphs giving \(T_1 \)-type contributions to \(N_1 \) are shown in Fig. 1.

\[T_1 = \alpha^2 h^* M Y C(R) C(G) + \text{c.c} \]

\[T_2 = \alpha^2 h h^* C(R) C(G), \]
\[T_3 = \alpha^2 M M^* Y Y^* C(R) C(G). \] \hspace{1cm} (23)

These all have coefficients that depend on \(\rho_1 \).

The Feynman graphs giving \(T_1 \)-type contributions to \(N_1 \) are shown in Fig. 1.

\[T_1 = \alpha^2 h^* M Y C(R) C(G) + \text{c.c} \]

\[T_2 = \alpha^2 h h^* C(R) C(G), \]
\[T_3 = \alpha^2 M M^* Y Y^* C(R) C(G). \] \hspace{1cm} (23)

These all have coefficients that depend on \(\rho_1 \).

The Feynman graphs giving \(T_1 \)-type contributions to \(N_1 \) are shown in Fig. 1.

\[T_1 = \alpha^2 h^* M Y C(R) C(G) + \text{c.c} \]

\[T_2 = \alpha^2 h h^* C(R) C(G), \]
\[T_3 = \alpha^2 M M^* Y Y^* C(R) C(G). \] \hspace{1cm} (23)

These all have coefficients that depend on \(\rho_1 \).

The Feynman graphs giving \(T_1 \)-type contributions to \(N_1 \) are shown in Fig. 1.

\[T_1 = \alpha^2 h^* M Y C(R) C(G) + \text{c.c} \]

\[T_2 = \alpha^2 h h^* C(R) C(G), \]
\[T_3 = \alpha^2 M M^* Y Y^* C(R) C(G). \] \hspace{1cm} (23)

These all have coefficients that depend on \(\rho_1 \).

The Feynman graphs giving \(T_1 \)-type contributions to \(N_1 \) are shown in Fig. 1.

\[T_1 = \alpha^2 h^* M Y C(R) C(G) + \text{c.c} \]

\[T_2 = \alpha^2 h h^* C(R) C(G), \]
\[T_3 = \alpha^2 M M^* Y Y^* C(R) C(G). \] \hspace{1cm} (23)

These all have coefficients that depend on \(\rho_1 \).

The Feynman graphs giving \(T_1 \)-type contributions to \(N_1 \) are shown in Fig. 1.

\[T_1 = \alpha^2 h^* M Y C(R) C(G) + \text{c.c} \]

\[T_2 = \alpha^2 h h^* C(R) C(G), \]
\[T_3 = \alpha^2 M M^* Y Y^* C(R) C(G). \] \hspace{1cm} (23)

These all have coefficients that depend on \(\rho_1 \).

The Feynman graphs giving \(T_1 \)-type contributions to \(N_1 \) are shown in Fig. 1.

\[T_1 = \alpha^2 h^* M Y C(R) C(G) + \text{c.c} \]

\[T_2 = \alpha^2 h h^* C(R) C(G), \]
\[T_3 = \alpha^2 M M^* Y Y^* C(R) C(G). \] \hspace{1cm} (23)

These all have coefficients that depend on \(\rho_1 \).

The Feynman graphs giving \(T_1 \)-type contributions to \(N_1 \) are shown in Fig. 1.

\[T_1 = \alpha^2 h^* M Y C(R) C(G) + \text{c.c} \]

\[T_2 = \alpha^2 h h^* C(R) C(G), \]
\[T_3 = \alpha^2 M M^* Y Y^* C(R) C(G). \] \hspace{1cm} (23)

These all have coefficients that depend on \(\rho_1 \).

The Feynman graphs giving \(T_1 \)-type contributions to \(N_1 \) are shown in Fig. 1.

\[T_1 = \alpha^2 h^* M Y C(R) C(G) + \text{c.c} \]

\[T_2 = \alpha^2 h h^* C(R) C(G), \]
\[T_3 = \alpha^2 M M^* Y Y^* C(R) C(G). \] \hspace{1cm} (23)

These all have coefficients that depend on \(\rho_1 \).

The calculation is quite straightforward, especially when one realises that Fig. 1(a) does not contribute, because the two possible places for the \(M \)-insertion give opposite signs and cancel. Thus we are reduced to evaluating the simple pole in \(\epsilon = 4 - d \) from a single graph, and we obtain:

\[2 - \rho_1 = -\frac{10}{3} \] \hspace{1cm} (24)
whence
\[\rho_1 = \frac{16}{3}. \] (25)

As a check, we have also calculated the \(T_2 \) and \(T_3 \) contributions. Here we have more Feynman diagrams, including ones with vector fields; care must be taken with subtractions. In both cases we also obtain Eq. (25).

The determination of \(\rho_1 \) completes the NSVZ/DRED connection through terms of \(O(\alpha^4) \). In terms of physics at \(M_Z \) this facilitates a very accurate transformation between the two schemes in the MSSM. It also completes the determination of \(\beta_\alpha^{(4)\text{DRED}} \); see Eq. (3.18) of Ref. [6] (note that \(\rho_1 = 2\alpha_1 \)). For the special case of SQCD we have the following results:

\[\beta_\alpha^{\text{DRED}} = 2\alpha \sum_{n=1}^{\infty} \beta_n \left(\frac{\alpha}{16\pi^2} \right)^n, \] (26)

where

\[\begin{align*}
\beta_1 &= N_f - 3N_c, \quad \text{(27a)} \\
\beta_2 &= \left[4N_c - \frac{2}{N_c} \right] N_f - 6N_c^2, \quad \text{(27b)} \\
\beta_3 &= \left[\frac{3}{N_c} - 4N_c \right] N_f^2 + \left[21N_c^2 - \frac{2}{N_c} - 9 \right] N_f - 21N_c^3, \quad \text{(27c)} \\
\beta_4 &= A + BN_f + CN_f^2 + DN_f^3. \quad \text{(27d)}
\end{align*} \]

Here \(N_c \) is the number of colours, and

\[\begin{align*}
A &= -102N_c^4, \\
B &= 132N_c^3 - 66N_c - \frac{8}{N_c} - \frac{4}{N_c^2}, \\
C &= -[42 + 12\zeta(3)]N_c^2 + 44 + \frac{36\zeta(3) - 20}{3N_c^2}, \quad \text{(28)} \\
D &= -\frac{2}{3N_c}.
\end{align*} \]

In the case \(N_f = 0 \) it is interesting to compare the above DRED results with the exact NSVZ formula,

\[\beta_\alpha^{\text{NSVZ}} = \frac{-6N_c\alpha^2}{16\pi^2 \left[1 - 2\alpha N_c(16\pi^2)^{-1} \right]}. \] (29)

In both cases the \(\beta \)-function coefficients have the same sign through four loops. In the NSVZ case, the series manifestly has a finite radius of convergence; it is not clear whether or not this is true in the DRED case.
Our result for ρ_1 represents what we at least regard as striking confirmation of the
Asymptotic Padé Approximant prediction $\rho_1/2 = 12/5$ or $5/2$. The error of $6.25 - 10\%$
is remarkably small and provides further evidence for the precocious convergence of APAPs
when applied to calculations of β–functions in non-abelian theories.

Finally we have confirmation of our exact result for $\tilde{\xi}^{\text{NSVZ}}$, Eq. (15). We will explore
the effect of this on the running analysis within the NSVZ scheme elsewhere.

Acknowledgements

The main result of this paper is the determination of ρ_1; a prediction of this
was made by two of us (IJ and TJ) in collaboration with Mark Samuel, using his Asymptotic
Padé Approximation methods. Mark died on November 6 1997; we both miss his
friendship and enthusiasm.

TJ thanks the physicists of SLAC and UC San Diego for hospitality and financial
support while part of this work was done.

AP was supported by a PPARC Research Grant.

3 With hindsight (always reliable) we might have arrived at the correct result for ρ_1 from the
cue that ρ_2 and ρ_3 are both fractions with 3 in the denominator
References

[1] V. Novikov, M. Shifman, A. Vainstein and V. Zakharov, Nucl. Phys. B229 (1983) 381;
 V. Novikov, M. Shifman, A. Vainstein and V. Zakharov, Phys. Lett. B166 (1986) 329;
 M. Shifman and A. Vainstein, Nucl. Phys. B277 (1986) 456
[2] M. Shifman, Int. J. Mod. Phys. A11 (1996) 5761
[3] G. Amelino-Camelia, D. Ghilencea and G.G. Ross, hep-ph/9804437
[4] N. Arkani-Hamed and H. Murayama, Phys. Rev. D57 (1998) 6638
[5] I. Jack, D.R.T. Jones and C.G. North, Phys. Lett. B386 (1996) 138
[6] I. Jack, D.R.T. Jones and C.G. North, Nucl. Phys. B486 (1997) 479
[7] I. Jack, D.R.T. Jones and M.A. Samuel, Phys. Lett. B407 (1997) 143
[8] I. Jack, D.R.T. Jones and A. Pickering, hep-ph/9712542
[9] L.V. Avdeev, D.I. Kazakov and I.N. Kondrashuk, Nucl. Phys. B510 (1998) 289
[10] I. Jack and D.R.T. Jones, Phys. Lett. B333 (1994) 372
[11] I. Jack and D.R.T. Jones, Phys. Lett. B415 (1997) 383
[12] N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, hep-ph/9803290
[13] I. Jack, D.R.T. Jones, S.P. Martin, M.T. Vaughn and Y. Yamada, Phys. Rev. D50 (1994) R5481
[14] I. Jack, D.R.T. Jones and A. Pickering, hep-ph/9803405
[15] J. Ellis, M. Karliner and M.A. Samuel, Phys. Lett. B400 (1997) 176