Differential Performance Debugging with Discriminant Regression Trees *

Saeid Tizpaz-Niari, Pavol Černý, Bor-Yuh Evan Chang, Ashutosh Trivedi
University of Colorado Boulder

Abstract
Differential performance debugging is a technique to find performance problems. It applies in situations where the performance of a program is (unexpectedly) different for varying classes of inputs. The task is to explain the differences in asymptotic performance among various input classes in terms of program internals. We propose a data-driven technique based on discriminant regression tree (DRT) learning problem where the goal is to discriminate among different classes of inputs. We propose a new algorithm for DRT learning that first clusters the data into functional clusters, capturing different asymptotic performance classes, and then invokes off-the-shelf decision tree learning algorithms to explain these clusters. We focus on linear functional clusters and adapt classical clustering algorithms (K-means and spectral) to produce them. For the K-means algorithm, we generalize the notion of the cluster centroid from a point to a linear function. We adapt spectral clustering by defining a novel kernel function to capture the notion of “linear” similarity between two data points. We evaluate our approach on benchmarks consisting of Java programs where we are interested in debugging performance. We show that our algorithm outperforms other well-known regression tree learning algorithms in terms of running time and accuracy of classification.

1 Introduction
Developers often face the problem of finding and fixing performance problem in their programs. Performance bugs manifest themselves only on certain pathological inputs. For instance, there can be two inputs of the same size on which the performance is unexpectedly different in an otherwise functionally correct program.

We study the differential performance problem, where the goal is to explain the difference in performance between two classes of inputs in terms of program internals, such as which functions were called and how many times were they called. This information is useful, as it allows a programmer or an analyst to better assess whether the performance difference is inherent to the problem, or is a result of a coding inadequacy. The problem is hard for both traditional static analysis techniques as well as dynamic analysis techniques. Static analysis commonly target logical correctness properties (and not the performance), and are not as scalable as techniques based on machine learning. On the other hand, dynamic analysis techniques such as profiling, focus on individual traces, whereas for the differential performance problem, we need to compare the performance on different traces.

We propose a technique called differential performance debugging, based on inference of discriminant regression trees (DRTs). DRTs are regression trees where the goal is to classify input data. In contrast, the objective of standard regression tree learning is to predict the output for a previously unseen input. The input to the differential performance problem is a set of program traces. Each trace is represented as follows. We have input variables (such as the size of the user input), auxiliary variables (such as the functions called), and the output variable (such as the running time). The output to the differential performance problem is the DRT. The internal nodes of the tree has predicates on auxiliary variables. The leaf nodes model the output variable as a function of input variables. The leaf nodes represent the performance for different classes of inputs capturing asymptotically different performance behaviors.

In accordance with Occam’s razor, we are interested in finding a DRT with a small number of clusters, while minimizing the modeling error. Furthermore, the DRT should be a human readable explanation, which also suggests that smaller number of clusters is preferable. There are two major steps in our algorithm. First, we project the data into the input and output variables and cluster the data in this domain. Second, we consider the auxiliary variables only and identify what separates the clusters in terms of these variables. We use an off-the-shelf decision tree learning algorithm for the second step. The first, clustering, step thus reduces the regression tree inference problem to the decision tree inference problem.

For our approach, we need a clustering algorithm that produces functional clusters, that is, clusters that represent functions from input variables to the output variable. We adapt two classical clustering algorithms. First, we extend the K-means algorithm to produce linear functional clusters. This is done by generalizing the notion of the cluster centroid from a point to a linear function. Second, we adapt the spectral clustering algorithm by defining a new notion...
of similarity between two data points that we dub *alignment* kernel. Here, two data points are more similar when the line defined by them captures more data points.

The key contributions of this paper are:

- We propose *discriminant regression trees* which are regression trees where the goal is to classify input data into a small number of clusters.
- We give a new algorithm for learning discriminant regression trees. It finds (functional) clusters first, which enables learning the tree using an efficient algorithm for learning decision trees.
- We present extensions to two classical clustering algorithms: k-means and spectral clustering. These extensions allow us to obtain functional clusters.
- We implement our approach in the tool DPD and evaluate it on benchmarks consisting of a suite of Java programs.

Our experiments that the approach is scalable and is able to explain the differences in performance between different classes of inputs.

2 Overview

We show how our prototype tool DPD is used for diagnosing performance problems on a real-life example. We also use the example to explain how the tool works and compare it to existing approaches.

Performance problem with Apache FOP. Apache FOP (Formatting Objects Processor) is a Java application that reads a formatting object such as an XML file and renders the resulting pages to a specified output format such as PDF and PS. The formatting document can specify that an external image in, for example, a PNG or JPEG format should be included. A user had a suspicion that there is a performance bug in handling PNG images. They reported in a forum post in 2011 that they have two PNG images, which have the same size, but one of them takes seven times as much to render as the other one.

Performance debugging with DPD. Our tool, DPD, can be used exactly in this situation, to help an analyst to explain the differences in performance. The analyst can then decide whether the differences are inherent to the problem or they are a manifestation of a coding error. Song and Lu [2] reported that in 60% of bugs analyzed that they have two PNG images, which have the same size, but one of them takes seven times as much to render as the other one.

The analyst has to collect a number of inputs which in this case are PNG and JPEG images of various sizes. We remark that in many cases, the inputs can be collected from logs files of a system or generated by existing software fuzzers [9].

Given the collection of inputs, the tool produces the two diagrams in Figure 1. The analyst can diagnose the performance problem using these two figures. The left diagram is a plot of the image size (input variable) and the running time (output variable). From the plot, the analyst can see that there are two performance clusters. However, the analyst does not know what separates these two clusters. It is instructive to emphasize that looking at the two groups of inputs does not explain the difference. All the JPEG images are in the lower (red) cluster, but there are PNG images of similar size in both clusters.

Figure 1: Performance clusters (left) in the FOP data set and a DRT (right) explaining the the clusters in terms of function calls.

We thus turn to the DRT on the right side of Figure 1 for the explanation. It says that if for an input, the function `encodeRender...RGB` is not called, then the input will be in the red cluster. The user can analyze the reverse call graph to see how the function is called, and realize that it is called for PNG files, but not for JPEG files. Further, the node to the right of the root has the function `getICCProfile`. This function is what distinguishes the red (fast) cluster from the blue (slow) one among PNG files. It is called once for every PNG file, but it is called more than once only for PNG files with a color scheme that needs to be deflated. After code analysis, we see that one source of the performance problem is that some PNG files have a compressed color scheme that needs to be deflated. Another way how a PNG image can be in the blue cluster is that the dimension of the input image overflows the allowed size (see the lowest internal node).

The user thus learns from the discriminant regression tree (DRT) that what separates the two clusters is the fact that the images in the blue clusters either need to be deflated first, or overflow. So in this case, the diagnosis is that the difference in performance is not a coding mistake but it is inherent to the problem. The user can conclude this without needing to sift through almost 40,000 methods that Apache FOP has.

Inside the tool DPD. We now describe how DPD obtains the diagrams in Figure 1. The diagram on the left side is obtained as follows. The program is run on all the inputs, and the graph of input size versus running time is plotted. Then we need to cluster the data. As a preliminary step, we need to get the values of the auxiliary variables. In this example, they indicate how many times a function was called. We have a variable for each (non-standard library) function. Then, we find functional clusters in the data from the left diagram. That is we consider input and output variables only (not auxiliary variables) and identify a given number K of clusters. These clusters are intended to capture the classes of inputs with different (asymptotic) performance. For our example, spectral clustering identifies the clusters marked red and blue in Figure 1.

To obtain the right diagram, the next step is decision tree learning. We want to learn what separates the clusters in terms of predicates on the auxiliary variables. Note that here each data point is labeled with one of the K labels (indi-
cating to which cluster the data point belongs), therefore ef-
ficient decision tree learning (such as CART) can now be used to construct the regression tree. The final discriminant regression tree is on the right part of Figure 1.

Comparison with existing regression-tree algorithms. We applied the state-of-the-art algorithms for learning regression trees (M5Prime [25] and GUIDE [17]) to our problem. Our goal is different from the goal of these algorithms: we aim to classify data, whereas both Guide and M5Prime aim to predict the output for previously unseen input. We believe that this accounts for the following differences.

M5Prime finds a linear regression tree with 23 different linear models in leafs. Guide finds 4 linear models—two of them same as our algorithm, but two of the in-between, perhaps to account for noise. Note that DP DEBUGGER identified 2 clusters. Furthermore, the running time of the algorithms are as follows: M5Prime 97 seconds, Guide 1233.6 seconds, and our DP DEBUGGER 14.4 seconds.

3 Discriminant Regression Tree Learning

Let \(X = \{x_1, x_2, \ldots, x_n\} \in \mathbb{R}^n \) be the set of input variables, \(Z = \{z_1, \ldots, z_m\} \in \mathbb{R}^m \) be the set of auxiliary variables, and \(y \in \mathbb{R} \) be the performance (observable output) variable of our target program. To keep the presentation simple, we assume that there is a single performance variable \(y \), although techniques presented in the paper can easily be extended to include a set of performance variables representing time-series data on various performance measures such as time and memory.

An execution trace \(T \) of the program is a tuple \(\langle X, Z, y \rangle \) where \(X = \{x_1, x_2, \ldots, x_n\}, Z = \{z_1, \ldots, z_m\} \), and \(y \) represent the valuations to the input, auxiliary, and output variables, respectively. We further assume that the valuations of the auxiliary variables deterministically depend only on valuations of the input variables. However, we allow the process of measuring performance to be noisy. Due to this we can potentially have multiple traces of the program with the same values for the input and the auxiliary variables but different values for the performance variable.

A trace discriminant is defined as a disjoint hyper-rectangular partitioning of the space of auxiliary variables along with an affine function for each partition modeling the performance variable as a function only of input variables. Formally, a trace discriminant \(\Psi = (F, P) \) is a set of affine functions \(F = \{f_1, f_2, \ldots, f_K\} \) where each \(f_j : \mathbb{R}^n \rightarrow \mathbb{R} \) models the performance variable \(y \) as a function of the input variables—and a hyper-rectangular partition \(P = \{\langle \phi_1, d_1 \rangle, \langle \phi_2, d_2 \rangle, \ldots, \langle \phi_l, d_l \rangle\} \) where each \(\phi_i : \mathbb{R}^m \rightarrow \{\text{true}, \text{false}\} \) is a hyper-rectangular predicate over auxiliary variables \(Z \), and each \(d_i : F \rightarrow [0, 1] \) is discrete probability distribution over \(F \) giving a probabilistically weighted modeling of the affine functions from \(F \). The size \(\text{size}(\Psi) \) of a discriminant \(\Psi \) is defined as total number of affine functions (i.e., \(\text{size}(\Psi) = |F| \)). Given a trace \(T = \langle X, Z, y \rangle \) and a discriminant \(\Psi = (F, P) \), we define the prediction error as \(\epsilon(T, \Psi) \triangleq \left(y - \sum_{j=1}^{K} d_i(f_j(x_1, x_2, \ldots, x_n)) \right)^2 \), where \(1 \leq i \leq l \) is the index of the unique partition in \(P \) such that \(Z \models \phi_i \) (i.e., the predicate \(\phi_i \) evaluates to true for the valuation \(Z \)). Given a set of traces \(\mathcal{T} = \{T_1, T_2, \ldots, T_N\} \), and a discriminant \(\Psi \), we define the fitness of the discriminant as mean-squared-error \(\mu(T, \Psi) = \frac{1}{N} \sum_{i=1}^{N} \epsilon(T_i, \Psi) \).

Given a set of traces \(\mathcal{T} \), a bound on the size of the discriminant \(B \in \mathbb{N} \), and a bound on the error \(B_e \in \mathbb{R} \), the discriminant learning problem is to find a discriminant \(\Psi \) with \(\text{size}(\Psi) \leq B \) and \(\mu(T, \Psi) \leq B_e \). It follows from Theorem 1 in [5] that the discriminant learning problem is NP-HARD. For this reason, we use heuristics to construct discriminant using classification and regression trees.

A discriminant regression tree is a trace discriminant represented as a binary tree structure whose nodes contain predicates over auxiliary variables and leaves contain a discrete probability distribution over affine functions in input variables. An example of a distribution regression tree is shown in Figure 1 where each leaf represents a partition, and the probability distribution over functions is pictorially depicted using relative sizes of different colors.

Classical regression tree algorithms can be used to learn the discriminant regression trees. The most straightforward way to generalize the decision tree algorithm to learn regression trees is computationally expensive [18] as it requires solving two linear regression problems for each split candidate. Popular regression tree algorithms CART [8], M5Prime [25], GUIDE [17] propose various ways to avoid this problem. CART is a piecewise constant discriminant regression tree model that uses the standard regression-tree algorithm (with piecewise constant clusters) and then applies cross-validation to prune the tree. M5Prime [25] algorithm first constructs a piecewise constant model, and then fits linear regression models to leaves during pruning step. GUIDE regression tree algorithm [17], at each node, fits the best regression model that predicts the response variable and computes the residual. Then, it adds different class labels for traces with negative and positive residuals and solves classification problem to find the auxiliary variable to split over.

In our setting (where the goal is classification and a tight

Algorithm 1: LearnDiscriminantRegressionTree\((\mathcal{T}, B, B_e)\)

Input: A set of traces \(\mathcal{T} = \{T_1, T_2, \ldots, T_N\} \), an upper bound \(B \) on discriminant size, and a bound on mean-squared error \(B_e \).

Output: Return a discriminant regression tree of size \(B \) and error bound \(B_e \), if possible. Otherwise return NULL.

1. Extract points \(E = \{(X_1, y_1), (X_2, y_2), \ldots, (X_N, y_N)\} \) from the trace set \(\mathcal{T} = \{T_1, \ldots, T_N\} \) where \(T_i = \langle X_i, Z_i, y_i \rangle \in \mathcal{T} \).
2. Using linear clustering algorithms presented in the next section, find the smallest number \(B' \) of linear clusters \(F = \{f_1, \ldots, f_B'\} \) that can fit the data with mean-squared error smaller than \(B_e \).
3. If \(B' > B \) then return NULL.
4. else
5. Extract points \(E' = \langle Z_1, \epsilon_1 \rangle, \ldots, \langle Z_N, \epsilon_N \rangle \) where \(\epsilon_i \in F \) is the label assigned by the clustering algorithm to the dataset \(\langle X_i, y_i \rangle \).
6. Use a standard decision tree algorithm to learn a decision tree (along with its accuracy based on \(k \)-fold cross-validation) from \(E' \).
7. Return the discriminant regression tree (along with its accuracy) by replacing labels at the leaves with corresponding linear functions.
upper bound on the number of linear clusters is known), we propose a simple but rather effective method to overcome the complexity of repeatedly fitting the piecewise linear model. Our approach is summarized as Algorithm 1. Our approach is to first cluster traces along the lines based only on input and output variables, and then assign different labels to various traces based on the linear clusters into which they fall. The next step is to learn a classification decision tree in auxiliary variables with the leaves as clusters labels (classes) learned in the first step. Using a set of microbenchmarks related to performance debugging, in Section 5 we show that our algorithm performs better than other regression tree algorithms specially when the relationship between auxiliary variables and linear clusters is complex.

4 Linear Clustering Algorithms

In this section, we study K-linear clustering problem required at the clustering step of Algorithm 1. Consider the set $E = \{ (X_1, y_1), \ldots, (X_N, y_N) \}$ of data points where $X_i \in \mathbb{R}^n$ is an n-dimensional vector of valuations to the input variables and $y_i \in \mathbb{R}$ is the value of the output (response) variable. Given the number of desired clusters K, the K-linear clustering problem asks to compute a partition of set E into K clusters $S = \{ S_1, S_2, \ldots, S_K \}$ minimizing the residual-sum-of-squares (RSS) defined as $
abla_{i=1}^K \sum_{(x,y) \in S_i} \min_{f \in \mathcal{F}} (y - f(x))^2$, where f is a linear function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ over input variables in the form of $f(x) = Ax + c$ with x as an n-dim. vector and c as a scalar.

Regarding the computational complexity of the K-linear clustering problem, observe that for a given cluster S, the RSS can be computed using (least squares) linear regression in polynomial time (linear in the number of points and quadratic in input dimension). Since, there are only finitely many (K^N) distinct clusters possible, the K-linear clustering problem is decidable. The NP-hardness of K-linear clustering problem follows from NP-hardness of K-means clustering problem which is known to be NP-hard both for general dimensions and 2 clusters [4], as well as 2 dimension and K clusters [19]. For this reason, we present two heuristics to solve K-linear clustering problem. The first algorithm, which we call “K-linear” clustering, extends K-means algorithm by using line centroids instead of point centroids, while the second algorithm is based on spectral clustering with a new notion of measuring similarity between points in order to detect functional relationships.

4.1 K-Linear Clustering

We propose a modification of the standard K-means clustering algorithm to give a heuristic to solve K-linear clustering problem as shown in Algorithm 2. The termination of our algorithm is guaranteed as the number of distinct clusters possible are finite, and in each step we get a strict improvement in residual-sum-of-squares due to the restriction in Algorithm 1 on changing the set only in the case of a strict improvement. However, similar to the K-means algorithm, there is no guaranteed convergence to a global optimum. The choice of initial partition to fit linear “centroids” is crucial in converging towards the global optimal solution. One way to choose a good partition is to pick lines defined by pairs of points such that ε-size tubes around the lines pass through a large number of points. Another possible heuristic to achieve better partition is similar to that often seen with K-means algorithm—we execute the K-linear algorithm a couple of times with randomly selected initial partitions, and then we choose the result that gives minimum RSS.

Algorithm 2: K-LinearClusteringAlgorithm

Input: $\mathcal{E} = \{ (X_1, y_1), \ldots, (X_N, y_N) \}$ and number of clusters K.

Output: A partition of the set of traces \mathcal{E} in K sets (S_1, S_2, \ldots, S_K).

1. Let $S^{(1)} = \{ S_1^{(1)}, S_2^{(1)}, \ldots, S_K^{(1)} \}$ be an arbitrary partition of the points \mathcal{E}.
2. Set $t = 0$
3. repeat
4. Set $t \leftarrow t + 1$
5. For each set $S_j^{(t)} = \{ (X_p, y_p) \}$ where (X_p, y_p) is a set of points assigned to partition S_j at t-th iteration, learn a linear function $f_j = A_j x + c_j$ minimizing $\sum_{(x,y) \in \mathcal{E}} (y_p - A_j X_p - c_j)^2$.
6. Compute $S^{(t+1)} = \{ S_1^{(t+1)}, S_2^{(t+1)}, \ldots, S_K^{(t+1)} \}$ such that for each $1 \leq j \leq k$ we have $(X_p, y_p) \in S_j^{(t+1)}$ if $(y_p - A_j X_p - c_j)^2 = \min_{h \neq k} (y_p - A_h X_p - c_h)^2$, with condition that $(X_p, y_p) \in S_j^{(t)}$ and $(X_p, y_p) \in S_h^{(t+1)}$ for $j \neq h$ implies $(y_p - A_j X_p - c_j)^2 \geq (y_p - A_h X_p - c_h)^2$.
7. until $S^{(t)} = S^{(t+1)}$
8. return clusters $S^{(t)}$ and linear “centroids” (f_1, f_2, \ldots, f_K).

4.2 Spectral Clustering with ALIGNMENT Kernel

Spectral clustering is a popular clustering algorithm that views the clustering data as a weighted graph of points and the clustering problem as a graph partitioning problem. Spectral clustering algorithms are parameterized by the notion of adjacency between two data points defined using kernel functions. Spectral clustering is useful in clustering problems where the measurement of the center and the spread of cluster are not a suitable description of clusters [24].

In order to define the notion of adjacency in terms of being close to a given linear cluster, we characterize a novel kernel function—called alignment kernel—that puts two points closer to each other if the line passing through those points have multiple other points in the line’s neighborhood. The concept of alignment kernel is shown in the figure on the left where points A and B are closer to each other in linear sense than points A and C, although the latter points are closer than former points in terms of Euclidean distance. Given a data set \mathcal{E}, we define an alignment kernel function $\kappa^\Delta_{\mathcal{E}}: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ to be a real-valued symmetric and non-negative function defined as the following for every pair of neighboring points.
\langle X_i, y_i \rangle \text{ and } \langle X_j, y_j \rangle):$
\nonumber
\alpha^2_i(\langle X_i, y_i \rangle, \langle X_j, y_j \rangle) \defeq \begin{cases}
0 & \text{if } i = j \\
2^{-|R_{ij}|} & \text{if } |R_{ij}| \geq 1 \\
\infty & \text{otherwise,}
\end{cases}

where \(R_{ij} \) is the set of points \(\langle X_r, y_r \rangle \) in \(\mathcal{E} \) such that \(r \neq i \neq j \), and it has a distance from the line passing through \(\langle X_i, y_i \rangle \) and \(\langle X_j, y_j \rangle \). Finally, we construct similarity matrix by calculating \(e^{-\alpha^2_i(A,B)} \) for every pair of points \(A \) and \(B \). Observe that the exact computation of the alignment matrix is cubic in number of data points. However, we have implemented a quadratic procedure (see supplemental material in \[?]\) computing an approximation of the the alignment kernel. In our experiments, we have found that for linear clusters the quality of the alignment kernel is better than the RBF and the nearest-neighborhood kernels. In comparison with the \(K \)-linear clustering, spectral clustering with alignment kernel can often detect non-linear clusters.

5 Microbenchmark Results

Empirical evaluation questions. We compare our approach to existing algorithms for learning regression trees and focus on the following questions. 1. \emph{How deep are the regression trees and how many leaves do they have?} As we expect our regression trees to serve as human readable explanations, smaller height and number of leaves are better. 2. \emph{How scalable is our approach compared to the existing approaches?} 3. \emph{What is the prediction ability (as measured by coefficient of determination) compared to state-of-the-art approaches?} The metric we are interested in is accuracy of classification based on 10-fold cross-validation. However, the standard approaches are built with the goal of prediction measured by coefficient of determination \(R^2 \). We therefore compare performances with \(R^2 \).

Synthetic benchmarks. We compared the performance of regression tree learning approaches on a set of microbenchmarks. The benchmarks were constructed in such a way that the clusters have increasingly complex characterizations. We consider micro-benchmarks named \(R_{n,v} \) where \(n \) is the number of functions in the benchmark, and \(v \) is the version number. For \(R_2 \) to \(R_7 \), in each case there is a cluster which consists of inputs where all the functions were called. \(R_{200} \) to \(R_{6400} \) are versions of the same benchmarks with many other functions that do not influence performance. Each function call executes a for loop statement where the number of iterations depends on the inputs. Each trace of a benchmark invokes a set of functions that lead to the different time of execution. We want to detect clusters and explain them based on function calls.

Results. \(R_{7} \) summarizes the results of applying CART, M5Prime, and GUIDE (the standard algorithms) as well as our algorithms with \(K \)-linear and spectral clustering.

Our first question is about the simplicity of the explanation produced by our tool. \(R_{7} \) shows that CART and M5Prime produce significantly deeper trees with more models than GUIDE and DPDEBUGGER. For instance, for benchmark \(R_7 \), CART produces a tree with more than 5000 nodes, M5Prime with more than one node, whereas the benchmark has only 4 clusters.

Our second question is about scalability. As the first question established that CART and M5Prime are unsuitable for our purpose, we compare scalability only with the GUIDE algorithm. \(R_{2} \) shows the performance of GUIDE regression tree and DPDEBUGGER with \(K \)-linear clustering when there are many features (function calls). We see that DPDEBUGGER is more scalable on this set of benchmarks. For instance, for \(R_{6400} \), GUIDE takes more than 9 hours, whereas DPDEBUGGER takes less than 5 minutes.

Our third question asks to compare the coefficient of determination \(R^2 \). From Table \(R_{7} \) we have the following: CART and M5Prime generally perform well (but there are some outliers where the coefficient of determination drops). The main problem with these algorithms for our purpose is the large size of the regression trees. For GUIDE, the coefficient of determination is lower for more complex examples. DPDEBUGGER performs uniformly well in this metric.

Finally, we compare the two versions of our algorithm: one with \(K \)-linear and one with spectral clustering. \(R_{7} \) shows that for these benchmarks with linear clusters, they are similar in all metrics except running time, where the \(K \)-linear clustering is slightly better.

6 Case Study

\(R_{7} \) summarizes the results over eight case studies involving large Java applications, while \(R_{7} \) shows clustering and classification steps in DPDEBUGGER for seven of them (the eighth is in Figure \(R_{7} \)). We next explain how DPDEBUGGER explained differences in performance for different classes of inputs for these seven applications (Apache FOP has been treated already in Section \(R_{2} \)).

1. Charts4j. Charts4j is a Java chart library that enables developers to generate different charts available in the Google Chart API. The input data set for our experiments consists of asking for different plots of the same data. Our tool applied spectral clustering with the number of clusters set to 3. It finds three functional clusters between execution time and the number of data items. The DRT for this experiment (shown in Table \(R_{7} \)) gives two key insights: First, we notice that green cluster consists of plots that call \(scale \) function. Upon further investigation, the scale function is indeed expensive since it computes minimum and maximum for the input array and normalized values for each element of the input array. Next, the class initialization for \(PlotImpl \) distinguishes blue and red clusters. This happens for plots with one dimension where it needs to generate another dimension. It also needs to convert the new data set to a double array. This part is a performance bug because it can build a double array structure for the new dimension instead of double list.

2. Snapbuddy. SnapBuddy is a mock social network application where users can make their public profiles \[7,23\]. As inputs for our experiments, we passively monitored users’ interaction with public profile pages. We applied

\[\text{see supplemental material for detailed information in [?] }\]
Table 1: Micro-benchmark results for comparison different affine cost model learning algorithms. Legend: #M: number of functions, #N: number of traces, T: computation time in seconds, R²: coefficient of determination H: decision-tree height, L: Number of detected models, A: accuracy of classification model, e < 0.1 sec.

Bench	#M	#N	CART	MSpime	GUIDE	DPDdebugger (A-linear)	DPDdebugger (spectral)																	
Rцеп	2	400	1.09	0.14	257	1.3	0.99	1.7	1	0.97	3	1.7	0.99	3	3	0.7	0.99	3	3					
Rцеп	3	800	0.15	0.79	14	486	4.5	0.79	1	1	0.97	3	8.1	100%	0.99	3	3	0.7	100%	0.99	3	3		
Rцеп	3	800	0.14	0.99	15	470	6.9	0.99	8	41	0.97	3	6	1.7	100%	0.99	3	3	0.8	99%	0.99	3	3	
Rцеп	4	1200	0.9	0.99	14	652	8.6	0.99	7	23	2	0.97	3	8	2.9	100%	0.99	4	3	1.6	98%	0.99	4	3
Rцеп	4	1600	0.38	0.99	20	893	9.7	0.99	25	0.2	0.99	4	9	3.5	99%	0.99	4	3	3.0	98%	0.99	4	3	
Rцеп	5	1600	0.47	0.99	16	955	6.9	0.99	8	87	0.2	0.93	4	11	3.5	99%	0.99	4	3	2.8	99%	0.99	4	3
Rцеп	5	3200	0.54	0.94	16	1810	17.6	0.7	11	147	0.4	0.73	5	15	6.7	99%	0.99	5	3	11.3	99%	0.99	5	3
Rцеп	6	6400	1.1	0.99	22	3095	24.1	0.98	12	173	1.1	0.6	4	11	16.3	99%	0.99	6	4	24.5	98%	0.99	6	4
Rцеп	7	12800	2.4	0.99	32	5126	49.6	0.99	12	142	1.4	0.63	4	14	31.8	97.9%	0.98	7	4	210.1	95.5%	0.97	7	4

K-linear clustering algorithm where we set the number of clusters to 5. As a result, our tool finds five linear relationships between the size of public profile image and download time. The DRT learned by our tool is shown in Table 3. It reports that filter combinations applied in profile pictures are the key discriminants.

3. JFreeChart. JFreeChart is a free Java chart library that helps developers to plot different charts in their applications. The input data set is the set of open-high-low-close (OHLC) items. We use this library to plot OHLC items with different renders. Our tool applied K-linear clustering algorithm with K = 2. The clustering step finds two linear relationships between time of execution and the number of OHLC items. The DRT produced by our algorithm is shown in Table 3. We observe that the number of calls to drawItem distinguishes between red and blue clusters. In particular, the number of calls to drawItem is equal to the number of data points in OHLC dataset, and each call executes the loop statement when a candlestick renderer is applied. This performance bug was also reported in [20] using static analysis.

4. Apache POI. The Apache POI Project’s mission is to read and write MS Excel, MS Word, and PowerPoint files using Java. As inputs to our experiments, we used different slides that randomly include text, table, images, shapes, and smartArts. We applied the spectral clustering algorithm with number of clusters set to 3. The DRT produced by our algorithm is shown in Table 3. The DRT shows that all program traces labeled with the blue cluster do not collide2 in DxsAPSpace class to distinguish between blue and red clusters. The average number of calls to split function for blue cluster is 1,678 and for red cluster is 88,507. The temporary store data structure of Collab is a B-tree. The number of times that the B-tree needs to split a parent node is the main explanation to distinguish red and blue clusters.

5. Ode4j. Ode4j is an open source, high performance library for simulating rigid body dynamics. The data set includes the different number of geom objects that intersect with different APIs. We applied the spectral clustering algorithm with the number of clusters set to 2. The clustering finds two functional relationships between the time of execution and number of geom objects. The DRT (Table 3) reports collide function in DxsAPSpace class to distinguish between blue and red clusters. Looking into the source code, we can see the quadratic behavior in collide function. As there is a linear cost function named collide2 in DxsAPSpace class, we suspect that quadratic behavior can be mitigated.

6. Collab. Collab is a scheduling application that allows users to create new events and modify existing events. The data set consists of different operations to add and modify events using ADD, UNDO, and DONE commands. We applied K-linear clustering algorithm with K equals to 2. It finds two linear relationships between the time of execution and the number of add operations. The DRT produced by our algorithm is shown in Table 3. The discriminant model shows that the traces in red cluster call split function more times than traces in blue cluster. The average number of calls to split function for blue cluster is 1,678 and for red cluster is 88,507. The temporary store data structure of Collab is a B-tree. The number of times that the B-tree needs to split a parent node is the main explanation to distinguish red and blue clusters.

7. Tweeteer. Tweeteer application is a mock of Twitter application. Users can post tweets and see tweets posted by other users. The data set consists of a maximum 20 words for a tweet. We applied K-linear clustering algorithm where we set K to 2. The clustering step finds two relationships between time of execution and number of words in a tweet. The DRT produced by our algorithm is shown in Table 3. The discriminant model produces getAlternatives function as a feature to distinguish blue and red clusters. This function is called more times when the input tweet includes mistakes, and it will never be called if the tweet is correct.

7 Related Works

Performance debugging

The work by Tizpaz-Niari et al. [23] is the closest to ours. They use decision tree learning for finding security vulnerabilities, whereas we focus on performance bugs. They heavily rely on the assumption that it is enough to consider constant clusters, whereas we consider a much more realistic and the general setting of linear functional clusters. On the algorithmic side, for Tizpaz-Niari
et al. it is sufficient to use the standard K-means algorithm (since they have only constant clusters), whereas we needed to adapt the K-means and clustering algorithms for the linear functional case.

Spectrum-based fault localization is often used for explaining bugs [14–16, 21, 26]. In particular, Song and Lu [21] use a statistical based technique for performance debugging problem. They indicate that the problems are manifested by the performance not being uniform, but rather there being two set of inputs: bad and good inputs. They refer to bug report databases to generate the bad inputs. They use statistical models to find predicates that distinguish good and bad inputs. They assume that two sets of bad and good inputs are given. In contrast, we are not given any labeled data set. We obtain different classes by clustering techniques. In addition, we are not limited to two sets of inputs. Finally, Song and Lu find the ranking of predicates and choose the top one that is responsible for bad runs. On the other hand, we use decision tree learning that can produce conjunctions of predicates. This can be seen in the SnapBuddy example.

Time series data has been used as well for profiling and failure detection [2, 10, 11, 22]. In particular, Hauswirth et al. [10] consider different performance metrics of a system such as instruction per cycle (IPC) and monitor these factors over time. Then, they apply dynamic time warping (DTW) [6] to combine the traces of the same input. When they observe a pattern like sudden IPC changes, they align all traces using DTW and apply statistical correlation measurements to find predicates that are highly correlated with the changes in the target metric as the cause of performance anomaly. In our work, however, we do not collect metrics over time as a time series, although an extension is possible. As we collect only the total execution time, we do not need trace alignment, but we efficiently cluster traces based on relationships between running time and user inputs.

Functional data clustering

Functional data clustering is a technique for clustering given functions [1, 12, 13]. Even though there is a similarity in names, we are not given functions. Instead we are given individual data points, and we are discovering (linear) functions by clustering. Investigating the use of functional data clustering for debugging of software is an interesting area left for future work.

Table 3: Java applications studied using DPDEBUGGER.

Application	$\#M_T$	$\#M_F$	$\#N$	C_T	T	A	H	$\#C$
Apache FOP	39,694	2,765	1,988	S	14.4	96.4%	3	2
Chart4j	115	41	2,800	N	11.7	87.1%	5	4
Apache POI	10,396	199	661	S	0.4	86.4%	4	3
Ode4j	4,564	114	577	S	7.8	85.0%	1	2
Collab	185	53	530	K	0.7	96.6%	1	2
Tweeter	947	31	320	K	0.6	100%	1	2
References

[1] Christophe Abraham, Pierre-André Cornillon, ERIC Matzner-Leber, and Nicolas Molinari. Unsupervised curve clustering using b-splines. Scandinavian journal of statistics, 30(3):581–595, 2003.

[2] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. On the accuracy of spectrum-based fault localization. In Testing: Academic and Industrial Conference Practice and Research Techniques-MUTATION. 2007. TAICP-MUTATION 2007, pages 89–98. IEEE, 2007.

[3] Andrea Adamoli and Matthias Hauswirth. Trevis: A context tree visualization and analysis framework and its use for classifying performance failure reports. In Proceedings of the 5th international symposium on Software visualization, pages 73–82. ACM, 2010.

[4] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248, May 2009.

[5] Rajeev Alur and Nimit Singhalia. Precise piecewise affine models from input-output data. In Proceedings of the 14th International Conference on Embedded Software, EMSOFT, pages 3:1–3:10, New York, NY, USA, 2014. ACM.

[6] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in time series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[7] Mateus Borges, Quoc-Sang Phan, Antonio Filieri, and Corina S Păsăreanu. Model-counting approaches for nonlinear numerical constraints. In NASA Formal Methods Symposium, pages 131–138. Springer, 2017.

[8] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and regression trees. CRC press, 1984.

[9] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI, volume 8, pages 209–224, 2008.

[10] Matthias Hauswirth, Amer Diwan, Peter F Sweeney, and Michael C Mozer. Automating vertical profiling. In ACM SIGPLAN Notices, volume 40, pages 281–296. ACM, 2005.

[11] Matthias Hauswirth, Peter F Sweeney, Amer Diwan, and Michael Hind. Vertical profiling: understanding the behavior of object-oriented applications. ACM Sigplan Notices, 39(10):251–269, 2004.

[12] Julien Jacques and Cristian Preda. Functional data clustering: a survey. Advances in Data Analysis and Classification, 8(3):231–255, 2014.

[13] Julien Jacques and Cristian Preda. Model-based clustering for multivariate functional data. Computational Statistics & Data Analysis, 71:92–106, 2014.

[14] Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. Instrumentation and sampling strategies for cooperative concurrency bug isolation. In ACM Sigplan Notices, volume 45, pages 241–255. ACM, 2010.

[15] James A Jones, Mary Jean Harrold, and John Stasko. Visualization of test information to assist fault localization. In Proceedings of the 24th international conference on Software engineering, pages 467–477. ACM, 2002.

[16] Ben Liblit, Alex Aiken, Alice X Zheng, and Michael I Jordan. Bug isolation via remote program sampling. In ACM Sigplan Notices, volume 38, pages 141–154. ACM, 2003.

[17] Wei-Yin Loh. Regression trees with unbiased variable selection and interaction detection. Statistica Sinica, pages 361–386, 2002.

[18] Wei-Yin Loh. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1):14–23, 2011.

[19] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem is np-hard. In Proceedings of the 3rd International Workshop on Algorithms and Computation, WALCOM ’09, pages 274–285. Springer-Verlag, 2009.

[20] Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic performance bugs in collection traversals. In ACM SIGPLAN Notices, volume 50, pages 369–378. ACM, 2015.

[21] Linhai Song and Shan Lu. Statistical debugging for real-world performance problems. ACM SIGPLAN Notices, 49(10):561–578, 2014.

[22] Peter F Sweeney, Matthias Hauswirth, Brendon Cahoon, Perry Cheng, Amer Diwan, David Grove, and Michael Hind. Using hardware performance monitors to understand the behavior of java applications. In Virtual Machine Research and Technology Symposium, pages 57–72, 2004.

[23] Saeid Tizpaz-Niari, Pavol Černý, Bor-Yuh Evan Chang, Sriram Sankaranarayanan, and Ashutosh Trivedi. Discriminating traces with time. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 21–37. Springer, 2017.

[24] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

[25] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, 2016.

[26] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on software fault localization. IEEE Transactions on Software Engineering, 42(8):707–740, 2016.
8 Supplemental material A: Alignment Kernel

Figure 3 shows the algorithm uses to calculate the similarity matrix for spectral clustering based on the notion of alignment kernel.

Algorithm 3: ALIGNMENT KERNEL

Input: A set of points \(E = \{ (x_1, y_1), \ldots, (x_n, y_n) \} \), the number of desired clusters \(k \), the number of nearest points \(a \), minimum distance \(\Delta \) between a point and function.

Output: A \(n \times n \) similarity matrix represents a similarity graph.

1. initialize every element in similarity matrix \(W_{n\times n} \) to 2.0 and set \(i \) to 0
2. while \(i < n \) do
3. Set \(r \) to 0
4. while \(r < a \) do
5. if \(i \neq j \) and \(W[i][j] = 2.0 \) then
6. if \(i \neq j \) and \(W[i][j] = 2.0 \) then
7. if \(r = 0 \) then
8. \(W[i][j] \) and \(W[j][i] \) to Max
9. else
10. \(W[i][j] \) and \(W[j][i] \) to \(\frac{1}{2^{\Delta i}} \)
11. end if
12. end if
13. end while
14. end while
15. Set \(i \) to \(i + 1 \)
16. Set \(r \) to 0
17. end while
18. Set \(i \) to \(i + 1 \)
19. end for
20. return \(W \).

9 Supplemental material B: Case Study

In this section, we aim to provide detailed information about each case study.

9.1 Apache FOP

Apache FOP (Formatting Objects Processor) is a Java application that reads a formatting object (FO) tree such as XML file and renders the resulting pages to a specified output such as PDF and PS. For example, the output document can contain static areas that appear on every page, an external graphic, and a table. The external graphic may be PNG, JPEG, and SVG image files. Apache FOP includes many external libraries to fulfill different services and contains thousands of functions.

We consider different input requests to apache FOP and record function calls, different features of input requests, and time of execution. The inputs are in XML format and includes text, web addresses, embedded images, and so on. Our instrumentation records information of 2,768 functions from different libraries involved in processing the request.

Given the data set of different interactions with apache FOP Java application, we want to explain possible execution time differences based on the internal of the application. In other words, our goal is to explain timing differences among various requests based on program internals with considering the input features.

Using DPDEBUGGER, first, we notice that there is a relationship between execution time and the size of input images using visualization. As there is a non-linear relationship, we apply Spectral clustering with alignment kernel algorithm where we set \(K \) to 2. Figure 2 (left) shows the result of clustering algorithm. The blue and red clusters represents 0.00367 * \(size^{1.97} \) + 69.918 and 0.00291 * \(size^{0.863} \) + 1738.2, respectively. The clustering step indicates that there are timing differences possibly coming from other properties beyond the size of input files. In particular, we are interested in knowing that what internal properties of FOP explain the blue and red clusters. We apply decision tree discriminant model that discriminates between clusters based on frequency of function calls. Figure 2 (right) shows the result of decision tree model for FOP data set. For example, if (ps.ImageEncodingHelper...ModelAsRGB is called at least one time and profile.ColorProfileUtil.getICC_Profile is called more than one time, then the data point is assigned to blue cluster. The height of decision tree is 3 and the model uses two labels corresponding to two functions between time and size of embedded image as leaf models. The accuracy of decision tree model is 96.4% that shows the confidence to distinguish clusters based on the internal features of the application. It takes 14.4 seconds for DPDEBUGGER to build this model.

From the usefulness of these models, DPDEBUGGER first identifies the differences in execution time models, and then, it uses decision tree algorithm to distinguish the clusters based on FOP function calls. Using the discriminant model, we observe that the function in the root node of discriminant model is not called for images with JPEG format. This means that JPEG images are assigned to red cluster. Another interesting observation is the role of compression methods of embedded images in distinguishing clusters. The function profile.ColorProfileUtil.getICC_Profile is called one time for every inputs; however, it calls another time for PNG images with deflate compression type:
As a result, if the embedded image is PNG with deflate compression, the input is assigned to blue cluster. Another possibility for a PNG file to assign to blue cluster is that the input file overflows the allowable size of output file.

9.2 Charts4j: Plot Assistant Library

charts4j is a Java chart library that enables developers to programmatically generate nearly all the charts available in the Google Chart API. Charts4j can be incorporated into any Internet enabled Java or web application environment.

Give the data set of different interactions with the library for plotting charts, we want to explain possible execution time differences based on the internal of Charts4j library for different class of inputs. Our goal is to explain timing models based on program internals considering the number of data points in plots.

First, we notice that there is a relationship between execution time and the number of items for plotting. As there is a non-linear relationship, we apply Spectral clustering with alignment kernel algorithm where we set \(K \) to 3. Figure 3 (left) shows the result of clustering algorithm. The clustering step indicates that there are timing differences possibly coming from other properties beyond the number of items. In particular, we are interested in knowing that what internal properties of charts4j explain the blue, red, and green clusters. To explain the differences based on program internals, we apply decision tree discriminant model that distinguished between clusters based on frequency of function calls. Figure 3 (right) shows the result of decision tree model for charts4j data set. The height of decision tree is 2 and the model has three models in the leaf. The accuracy of decision tree model is 87.1% that shows the confidence to distinguish clusters based on the internal features of the application. It takes 11.7 seconds for DPDEBUGGER to build this model.

CART regression tree builds a tree that has the depth of 21, and it finds 1800 leaf models. This suggests that CART is not a useful model for our analysis. It takes 0.5 second for CART to build this model, and coefficient of determination \((R^2) \) is 0.99. MSPrime constructs a tree that has the depth of 5, and it find 13 linear models in leafs. This model is built in 17.3 seconds, and \(R^2 \) is 0.99. GUIDE builds a similar tree like DPDEBUGGER. The tree has the depth of 2, and it finds three linear models in leaf. It takes 1.5 seconds for GUIDE to build the model, and \(R^2 \) is 0.97.

From the usefulness of these models, DPDEBUGGER gives us two important information: first, we notice that green cluster is identified by calling scale function that is not called for other traces. Scale function takes an input, find its minimum and maximum, and compute the following for every element in the data set: \(\text{scaledData}[j] = ((\text{doubleArray}[j] - \text{min})/\text{(max} - \text{min}) * 100.0D); \). Finally, it converts the new array to double list. The class initialization for PlotImpl distinguishes blue and red clusters. This happens for plots with one dimensional data set where it generates new dimension for data using the following loop:

```
for (int i = 0; i < data.getSize(); i++)
{
    xVal.add(Double.valueOf(x / 100.0D));
    x += inc;
}
this.xData = Data.newData(xVal);
```

Finally, it calls newData() function to convert the new data set to double array. The obvious bug in this case is to convert the list of double item to double type array again. While, it can build double array structure for new dimension. The following code shows the part of application for converting to double type:

```
double[] d = new double[data.size()];
for (int i = 0; i < d.length; i++) {
    d[i] = ((Number)data.get(i)).doubleValue();
}
```

9.3 SnapBuddy Social Network

SnapBuddy is a Java web server that mocks a social network in which each user has their own page with a public profile image. It has 3,071 methods.

We instrument the application to obtain features about the application’s internals in every execution. For collecting the data set, we passively monitor different users’ inputs with timing information, users’ input features (like size of file), and internal function calls. The inputs are assumed to relate
to public profile of existing users in the system. The instrumentation gives information about function calls’ frequency of 150 methods. The goal is to detect possible timing differences in downloading users’ public profiles and explain them based on the internals of SnapBuddy. This analysis is also important from security point of view where a malicious user can distinguish identity of users who interact with the system through passively observing execution time.

First, we apply M5Prime regression tree algorithm for the given data set. It detects 35 linear models in leaves and the height of tree is 8. The coefficient of determination is 0.99 that shows it predicts time with a high accuracy. It takes 10 seconds for M5Prime to build the model.

Second, we apply GUIDE regression tree. The regression tree uses 6 linear models and the height of tree is 3. The coefficient of determination for this model is 0.95. It takes 1.7 seconds for GUIDE to build this model.

Third, we apply DPDEBUGGER. We plot execution time vs size of input files, and we observe linear relationships between size of input and execution time. We apply K-Linear clustering algorithm where we set K to 5. Figure 4 (left) shows the result of clustering algorithm. For example, the blue cluster is corresponding to the function Time = 0.026 * size + 11.8 and the black cluster is the function Time = 0.014 * size + 122.4. The clustering step indicates that there are timing differences possibly coming from some properties of program internals that explain the differences. We apply decision tree discriminant model to distinguish between clusters based on program internal features. Figure 4 (right) shows the result of decision tree model for SnapBuddy data set. For example, if $(¬\text{KaleidoscopeFilter}∧\text{model.filter.Filter}∧\text{TritoneFilter}∧\text{EmbossFilter})∨(\text{KaleidoscopeFilter}∧¬\text{TritoneFilter}∧¬\text{EmbossFilter})$ is true, timing model is black cluster. The height of decision tree is 4 and the model detects 5 lines. The coefficient of determination for this model is 0.99. The accuracy of decision tree model is 88.6% that shows the confidence to distinguish clusters based on the internal features of the application. It takes 1.6 seconds for DPDEBUGGER to build this model.

If we compare the results of GUIDE regression tree and DPDEBUGGER, we observe that DPDEBUGGER provides a complete insight about the application internal behaviors that accurately explain different timing models. In fact, GUIDE misses to discover all of the relationships between function calls and the functional clusters.

From the usefulness perspectives, the discriminant model shows that the type of image filters that users apply on their public profile is the main reason for timing differences. This can also lead to disclosure of a user’s identity. For example, if a malicious user observes the interaction follows the red cluster in Figure 4 (left), she can guess that the user who interacts with the system has no filter on his public profile image. This observation can reduce the uncertainty of the attacker about the identity of the user among all users in the system.

9.4 JFreeChart

JFreeChart is a free Java chart library that makes it easy for developers to display professional quality charts in their applications.

Give the data set of open-high-low-close (OHLC), we collect time of execution for plotting an input, number of items for plotting, and frequency of function calls in JFreechart library. We intend to detect possible timing differences and pinpoint parts of library responsible for the differences.

We apply DPDEBUGGER to first plot execution time vs number of items in OHLC dataset. We apply K-linear clustering algorithm where we set K to 2, and it finds two linear clusters shown in Figure 5 (left). To explain the differences based on program internals, we apply decision tree discriminant model that distinguishes between clusters based on program internal features. Figure 5 (right) shows the result of decision tree model that explains differences between red and blue clusters.

We observe that whether the plot applies CandlestickRenderer and calls drawItem distinguishes between red and blue clusters. In particular, our model shows that the number of calls to drawItem is equal to number of data points in OHLC dataset, and each call executes the loop statement above in the order of number of data item if the conditions are satisfied. This is a potential performance problem that is also presented as a performance bug in previous works.
Figure 4: (Left) Clusters of SnapBuddy data set where each cluster is a distinct linear function that explains time based on size of profile image. (Right) Learning decision tree model to explain clusters in Figure 4 based on SnapBuddy function calls.

Figure 5: (Left) Clusters of different relationships between number of items for plotting in jfreechart and time of execution using K-linear Clustering, (Right) Learning decision tree after clustering data points for jfreechart library.

9.5 Apache POI

The Apache POI Project’s mission is to read and write MS Excel, MS Word, and PowerPoint files using Java. A major use of the Apache POI is for Text Extraction applications such as web spiders, index builders, and content management systems. We would use HSLF API for MS PowerPoint.

Given data set of different slides randomly included text, table, images, shapes, and smartArts, we collect time taken to convert slides to images, the size of slides, and frequency of function calls in the Apache POI library. We intend to detect possible timing differences and pinpoint parts of library responsible for the differences.

We apply Spectral clustering algorithm where we set K to 3, and it finds three clusters shown in Figure 6 (left). Note that images and special items can’t exceed the size of slides. This can be seen for green and red clusters that can’t exceed 170 KB. To explain the differences based on program internals, we apply decision tree discriminant model that distinguishes between clusters based on program internal features. Figure 6 (right) shows the result of decision tree model that explains differences between blue, green, and red clusters.

The decision tree model indicates that all traces labeled with blue cluster do not have any image data source. These include pictures and smartArts. Then, the number of Escher records in an item distinguishes green and red clusters. Based on the experiments, slides with PNG images tend to follow red cluster, while slides with smartArts follow the green cluster. All other materials like table, shapes, and texts follow the blue cluster.

9.6 Ode4j

Ode4j is an open source, high performance library for simulating rigid body dynamics. It has advanced joint types and integrated collision detection with friction. Ode4j is useful for simulating vehicles, objects in virtual reality environments and virtual creatures.

Given different number of geom objects, we use different APIs to evaluate their timing performance and explain possible timing model differences based on the application’s internals.

We apply Spectral clustering algorithm where we set K to 2, and it finds two clusters shown in Figure 7 (left). To explain the differences based on program internals, we apply decision tree discriminant model. Figure 7 (right) shows the result of decision tree model that explains differences between red and blue clusters.

The discriminant model detects collide function in DxSAPSpace class as a feature to distinguish blue and
red clusters. This function is called one or more times for red cluster, while it does not call for blue cluster. Looking into source code, we can see the quadratic behavior in collide function. As there is a linear cost function named collide2 in DsSAPSpace class, it depends on developers to decide if this behavior can be optimized or not.

9.7 Collab

Collab is a scheduling application which allows users to create new events and modify existing events. Each user’s event is identified by a unique event ID which represents the number of time units since the applications epoch.

Given a data set of different operations to add and modify existing events using ADD, UNDO, and DONE, we want to analyze possible timing differences and explain the differences based on program internal features.

We apply K-linear clustering algorithm where we set K to 2, and it finds two clusters shown in Figure 8(left). To explain the differences based on program internals, we apply decision tree discriminant model. Figure 8(right) shows the result of decision tree model that explains differences between blue and red clusters.

The discriminant model tells us that the number of calls to split function distinguishes red and blue clusters. It says that traces in red cluster calls split function more times than traces in blue cluster. In fact, the average number of calls to split function for blue cluster is 1,678 and for red cluster is 88,507.

Looking into SchedulingSandBox, we can see the following code snippet that calls split function:[N]

```java
if (eventidlist[ind] == -2)
{
    this.log.publish("node full");
    ...
    split(node);
    addhelper(lval);
}
```

The sandbox class uses B-tree structure to store nodes temporary. The discriminant model suggests the number of times that B-tree needs to split nodes is an important feature to distinguish red and blue clusters. In the implementation, after adding 8 nodes, B-tree requires to split over the parent node. If the user commits exactly after 8 additions, this will lead to the highest number of split required by B-tree. One possible solution is to increase the capacity of each individual node in B-tree and require users’ to commit after a certain number of ADD operations.

9.8 Tweeter

Tweeter (formerly spell corrector) application is a mock of twitter. Users can create a profile, post tweets using hashtags, and see tweets posted by other users.

Given tweets of maximum 20 words, we want to see how long it takes for tweeter to post the tweet, and we intend to discover and explain potential timing differences based on application’s internal.

We apply K-linear clustering algorithm where we set K to 2, and it finds two clusters shown in Figure 9(left). To explain the differences based on program internals, we apply decision tree discriminant model. Figure 9(right) shows the result of decision tree model that explains differences between blue and red clusters.

The discriminant model introduces getAlternatives function as a feature to distinguish blue and red clusters. This function is called more times when the input tweet includes mistakes, and it will never be called if the tweet is correct:

```java
for(String word: tweet) {
    ...
    final Map<.,.> correct = spelling.correct(word);
    if (correct != null) {
        ...
        getAlternatives().add(corr);
    }
    ...
}
```

getAlternatives collects all possible prefixes to match the words in the tweet with correct words in vocabulary. As a result, longer tweets with multiple mistakes would need more time to process.
Figure 7: (Left) Clusters of different relationships between the number of geom objects in ode4j and time of execution using Spectral clustering, (Right) Learning decision tree after clustering data points.

Figure 8: (Left) Clusters of different relationships between the number of ADD operations and time of execution using K-Linear, (Right) Learning decision tree after clustering data traces in Collab.

Figure 9: (Left) Clusters of different relationships between the number of words in tweets and time of execution using K-Linear clustering, (Right) Learning decision tree after clustering data points.