Prospecting for *Cressa cretica* to treat COVID-19 via *in silico* molecular docking models of the SARS-CoV-2

Sapan Shah, Dinesh Chaplea, Sumit Arora, Subhash Yende, Chetan Mehta and Usha Nayak

Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Nagpur, Maharashtra, India; Pharmacognosy and Phytochemistry Division, Gurunanak College of Pharmacy, Nagpur, Maharashtra, India; Pharmacology Division, Gurunanak College of Pharmacy, Nagpur, Maharashtra, India; Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India

Communicated by Ramaswamy H. Sarma

ABSTRACT

The severe acute respiratory syndrome COVID-19 declared as a global pandemic by the World Health Organization has become the present wellbeing worry to the whole world. There is an emergent need to search for possible medications. *Cressa cretica* is reported to show antitubercular, antibacterial and expectorant property. In this research, we aim to prospect the COVID-19 main protease crystal structure (Mpro; PDB ID: 6LU7) and the active chemical constituents from *Cressa cretica* in order to understand the structural basis of their interactions. We examined the binding potential of active constituents of *Cressa cretica* plant to immensely conserved protein Mpro of SARS-CoV-2 followed by exploration of the vast conformational space of protein–ligand complexes by molecular dynamics (MD) simulations. The results suggest the effectiveness of 3,5-Dicaffeoylquinic acid and Quercetin against standard drug Remdesivir. The active chemical constituents exhibited good docking scores, and interacts with binding site residues of Mpro by forming hydrogen bond and hydrophobic interactions. 3,5-Dicaffeoylquinic acid showed the best affinity towards Mpro receptor which is one of the target enzymes required by SARS CoV-2 virus for replication suggesting it to be a novel research molecule. The potential of the active chemical constituents from *Cressa cretica* against the SARS-CoV-2 virus has best been highlighted through this study. Therefore, these chemical entities can be further scrutinized and provides direction for further consideration for *in-vivo* and *in-vitro* validations for the treatment of covid-19.

GRAPHICAL ABSTRACT

Abbreviations: MD: Molecular dynamics; ORF: Open reading frames; HIV: Human Immunodeficiency virus; RNA: Ribonucleic acid; OPLS: Optimized potentials for liquid simulations; NCDCV: Neonatal calf diarrhoea coronavirus; OC43: Orthocornavirinae family; RdRps: RNA-dependent RNA polymerase; MW: Molecular weight; PSA: Polar surface area; HBD: Hydrogen bond donor; RMSD: Root mean square
1. Introduction

Novel coronavirus disease (COVID-19) has become a pandemic danger to the general wellbeing. It is a respiratory disease-causing fever, fatigue, dry cough; muscle aches, shortness of breath and some instances lead to pneumonia. Development of symptoms and their brutality of disease vary from patient to patient. The elderly people, children below 6 years and patients with the past medical history of asthma, diabetes, cardiac disorder are more susceptible to this disease due to weaker or conceded immune systems (Shah et al., 2020). The World Health Organization (WHO) has now declared a global emergency and pandemic for the coronavirus disease (COVID-19) that has been actively spreading around the globe (World Health Organization, WHO, 2020). SARS-CoV-2 virus consists of mRNA as genetic material after release into the host cell can be readily translated into protein. There are totally about 14 open reading frames (ORF) in the mRNA genome of virus. Every individual ORF is responsible for encoding a variety of structural and non-structural proteins required for viral existence plus its virulence influence. In the transformation phase of the viral genome, genes that encode non-structural polyprotein are first translates into ORF1a and ORF1b to generates two large overlapping polyprotein namely pp1a and pp1ab by contributing a ribosomal frame shifting event (Astuti & Ysrafil, 2020; Masters, 2006).

The SARS-CoV-2 virus polyprotein encodes two proteases, which share in its processing and release of the translated non-structural proteins. A) Main protease is called 3-CL-like or serine-type protease (M^{pro}) and B) Papain-like protease (PLpro). The researchers are concentrating on both of these vital targets M^{pro} and PLpro for drug discovery studies against the recent coronavirus epidemics. The mediation of nonstructural viral proteins and maturation by the main protease makes M^{pro} a very attractive target for the development of anti-coronavirus drugs. Thus, any inhibitors which inhibit the main protease (3CL^{pro} or M^{pro}) and block the replication of SARS-CoV-2 would be effective and specific measures for the development of therapeutic agents or antiviral drugs against SARS-CoV-2 (Vlachakis et al., 2020). The first available crystal structure of COVID-19 proteins is M^{pro}, which was published in February 2020 (PDB ID:6LU7) (Kandeel & Al-Nazawi, 2020) provides structural insights for understanding of ligand binding to M^{pro}. As of now, no specific protein available for coping this malady. Clinical trials undergoing at ClinicalTrials.gov (https://clinicaltrials.gov/) and WHO Solidarity concentrating on the repurposing of existing drugs (Altay et al., 2020; Viveiros Rosa & Santos, 2020). Scientist working in this area has suggested the use of some recognized broad-spectrum antiviral drugs such as Nucleoside analogs, HIV protease inhibitors and traditional Chinese medicines as hopeful treatment approach. Some antiviral drugs like Remdesivir, Ritonavir, Oseltamivir, Favinapir, Ganciclovir and Lopinavir are clinically tried against COVID-19 disease. Until any exact treatment procedure is accessible for COVID-19, the utilization of derivatives of recently realized antiviral drugs is a helpful technique (Hall & Ji, 2020). In resembling, different clinical trials are likewise now being experienced on nucleoside analogue medications, for example, Remdesivir, an antiviral medication demonstrated to be compelling against a wide scope of RNA infections in vitro (Elfiky, 2020a) and it is the only drug that is approved by FDA (National Institutes of Health, n.d.). However, the beneficial importance of Remdesivir remains uncertain (Siemieniuk et al., 2020). Favipiravir demonstrated a better effect in disease progression and viral clearance (Cai et al., 2020).

To encounter viral diseases, traditional plants are principally empowered in the greater part of the total populace (Mukhtar et al., 2008). Also, different assessment shows the valuable impact of traditional therapeutics in the usage of patients infected with a novel SARS-CoV-2 virus (Yang et al., 2020). Sanjeevani is among the most baffling and most sought-after herbs in Indian folklore, whose presence and personality are saturated with profound contention. Cressa cretica is a plant that is referred to by the name that mirrors the highlights of Sanjeevani (Sen, 2009). Selaginella bryopteris, Dendrobium plicatile and Cressa cretica have been anticipated as likely nominees for the Sanjeevani plant. Amongst them, Cressa cretica is a very common holophytic herb used in traditional medicine for cure of diabetes, ulcers, asthma, anhelminthic, stomachic, aphrodisiac, and beneficial in constipation, leprosy and urinary discharges. The leaf extract also shows antioxidant and antibacterial property for infections. It has a huge range of biologically active chemicals as Quercetin, Quercetin-3-0-glucoside, Kampferol-3-O-glucoside, Rutin, Syringaresinol-h-d-glucoside, Scopoletin, 3,5-dicaffeoylquinic acid, Creticane, Cressa tetrososanote, Cressa tetrachriantoic acid, Cressa triactonanone, Cressa naphthace, none, etc. that are chemically and structurally different (Afshari & Savyed-Alangi, 2017; Priyashree et al., 2010; Rani et al., 2011; Suganthi et al., 2008).

With the conventional technique of drug discovery could take years, whereas in silico docking models from the most variable protein in the SARS-CoV-2 can search for the possible natural medications for the treatment of COVID 19. In this investigation, docking examines on the phytoconstituents of Cressa cretica were performed over restricting pocket of M^{pro} (protease) to locate the potential small natural molecule to encounter life-threatening coronavirus disease. The obtained results will help in the repurposing natural remedies to combat the recent dangerous COVID-19.

2. Material and methods

2.1. Protein preparations

In-silico analysis of phytoconstituents of Cressa cretica was performed on 2.16Å crystal structure of COVID-19 M^{pro}, the
main protease in complex with an inhibitor N3 (PDB ID: 6LU7, Resolution: 2.16 Å) which was retrieved from protein data bank (https://www.rcsb.org) Figure S1. Protein Preparation Wizard module of Maestro (Anang et al., 2018) was used to prepare and process protein structure which includes three main steps; import and process, review and modify and final refinement of the protein structure. Pre-process step includes assigning bond orders, hydrogen bond addition, creation of zero-order bonds to metals and disulphide bonds with the filling of missing side chains and missing loops using Prime. The waters beyond 5 Å was deleted and het states were generated using Epik pH 7.0 ± 0.0. The workspace was analysed and states were generated at pH 7.0 ± 0.0. In the refinement step, optimization of protein and removal of water molecules followed by minimization using OPLS3e as force field was performed (Jorgensen et al., 1996).

2.2. Ligand preparations

The structures of chemical constituents of Cressa cretica were retrieved in a MOL format from the PubChem database available on the NCBI website (https://pubchem.ncbi.nlm.nih.gov). The ligand N3 (N-{(5-methylisoxazol-3-yl) carbonyl} alanyl-l-valyl-n~1~n~2~z~1~z~2~)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl] methyl} but-2-eny(l)-leucinamide) was obtained from database of chemspider. CSID:4883311, http://www.chemspider.com/ChemicalStructure.4883311.html (accessed 04:56, May 12, 2020). Ten compounds were selected to target the main protease of SARS-CoV-2; five are known as potential inhibitors for Mpro enzyme, one of them is approved drug against different viral RdRps (Remdesivir) (C. Gordon et al., 2020) and 3,5-Dicaffeoylquinic, Quercetin and Scopoletin are active chemical constituent of the plant Cressa cretica. The chemical structures of all the ligands are depicted in Figure 1. All the structures were minimized using LigPrep module within Schrodinger using OPLS3e force field and pH 7.0 ± 0.0 was set as an ionization state (LigPrep, Schrödinger, LLC, New York, NY, 2020).

2.3. Receptor grid generation and molecular docking

The grid was generated by selecting co-crystallized inhibitor N3 within the minimised protein structure. Furthermore, the generated grid was used for docking of all prepared ligands using Glide employing extra precision (XP) docking module (Friesner et al., 2006; Release, 2017). Glide has been shown to calculate superior prediction in contrast to that of the other docking software; because it applies both empirical as well as force field terms to compute the finest binding pose and binding energy (Friesner et al., 2004).

2.4. Molecular dynamic (MD) simulation studies

Desmond with OPLS3e force field from Schrodinger was used to study the dynamic behaviour of all protein–ligand complexes in the presence of explicit water molecules (Harder et al., 2016). The obtained docking poses for selected compounds (3,5-Dicaffeoylquinic, Remdesivir and Quercetin) were used for MD simulation studies. The System Builder module was used for system preparation using the SPC module for solvation and volume occupancy in an orthorhombic box with periodic boundary conditions. The solvated system was neutralised by the addition of appropriate anion (Cl⁻) and cation (Na⁺) with a salt concentration of 0.15 mol/L. The generated solvated system was used for 100 ps minimization. The minimized system was then used for 100 ns MD simulation using NPT ensemble, 300 K temperature and pressure (1.013 bar). The MD trajectory analysis was performed using a simulation interaction diagram (Kotha et al., 2020).

Furthermore, the relative binding affinity of the ligands towards Mpro protein was determined using Prime Molecular Mechanics with Generalized Born Surface Area (MM-GBSA) Schrödinger, NY, 2019 (Release, 2017). The MM-GBSA (Genheden & Ryde, 2015) calculations were performed using VSGB (Li et al., 2011) and OPLS3 (Harder et al., 2016) as the solvent model and force field, respectively.

2.5. ADME and toxicity studies

The selected phytoconstituents were further checked for drug-likeness properties according to the Lipinski rule. During drug development, safety is usually the foremost important issue, therefor Toxicology prediction of small molecules is vital to predict the amount of tolerability before being ingested into the animal models. VEGA-QSAR (http://
www.vega-qsar.eu/) is integrating In silico QSAR models and read-across method for a number of toxicological data outcomes (Rogiers et al., 2020). To analysed ligands for toxicological properties, SMILES notations or SDF files uploaded followed by selecting required models for generating numerous information about structure related effects. The results also show structural alerts in chemical structure based on known mutagenic and carcinogenic structural analog (Benfenati et al., 2019).

3. Result and discussion

The main aim of the study was to prospect active chemical constituents of Cressa cretica to a highly conserved protein, Mpro of SARS-CoV-2, therefore, we performed molecular docking studies of all chemical constituents of Cressa cretica followed by identification of top hits which is discussed in the first section. Furthermore, the docking poses of ligands showing highest docking score were evaluated through MD simulations, calculated free energy of binding for the drugs using MM-GBSA. The results are presented in the second section.

3.1. Molecular docking studies

All the prepared ligands shown in Figure 1 were docked (XP module) on the prepared protein (PDB ID: 6LU7) successfully and XP docking score was analysed. The XP docking score for all the ligands is listed in Table 1 along with their molecular properties.

Table 1. Ligands binding interaction parameter with the main protease of SARS-CoV-2 (PDB ID: 6LU7).

Sr. No.	PubChem CID/ChemSpider ID Name	MW (g/mol)	log P	HBDH	Topo-logical PSA (Å²)	XP docking score (kcal/mol)	Lipinski rule violation
1	6474310 3,5-Dicaffeoylquinic acid	516.4	1.5	19	211	-6.375	3
2	121304016 Remdesivir	602.6	1.9	17	204	-6.278	2
3	5280343 Quercetin	302.23	1.5	12	127	-5.314	0
4	479503 Shikonin	288.29	3.0	8	94.8	-4.091	0
5	5280460 Scopoletin	192.17	1.5	5	55.8	-3.345	0
6	11313622 Tideglubis	334.4	4.3	3	65.9	-2.100	0
7	3117 Disulfiram	296.5	3.9	4	121	-1.977	0
8	100067 Tideglubis	418.4	2.2	10	95.8	-1.740	0
9	4883311 N3	680.791	1.74	19	198	-1.705	2
10	219104 PX-12	188.3	2.3	4	79.3	-1.506	0

Table 2. Binding interactions of ligands with the binding site of main protease of SARS-CoV-2 (PDB ID: 6LU7).

Sr. No.	Ligands	H-Bonding	Hydrophobic
1	3,5-Dicaffeoylquinic acid	LEU4, MET49, GLN189, THR190, GLN256, ALA255, VAL297, SER301	ALA2, LEU50, ARG188, PHE305
2	Remdesivir	LEU4, THR24, THR25, GLU166, GLN189	VAL3, MET49, LEU50 and PRO168
3	Quercetin	THR24, THR26, ASN28, HIS41, ASN119, ASN142 and GLN189	

Figure 2. Docked pose of A) Remdesivir B) Quercetin and C) 3,5-Dihydrocaffeoylquinic acid against Mpro protease (PDB ID: 6LU7). The ligand is shown in ball and stick representation whereas residues forming binding pocket of Mpro are shown as green sticks. Hydrogen bond interactions are shown with black dotted lines.
interactions with ALA2, LEU50, ARG188 and PHE305. On the other hand, Remdesivir formed five hydrogen bonds with LEU4, THR24, THR25, GLU166 and GLN189, and four hydrophobic interactions with VAL3, MET49, LEU50 and PRO168. This is well aligned with the reported docking studies of Remdesivir (Elfiky, 2020a, 2020b; Shannon et al., 2020). Similarly, Quercetin also interacted with different amino acids such as THR24, THR26, ASN28, HIS41, ASN119, ASN142 and GLN189 residues by forming H-bond interactions. The docking poses for 3,5-Dihydrocaffeoylquinic acid, Remdesivir and Quercetin is depicted in Figure 2 and Figure S2 in supporting information (SI).

A literature review revealed that extracts of the selected plants were reported to possess antiviral activity at various concentrations (Shahat et al., 2004; Sunita et al., 2011). 3,5-Di-O-caffeoylquinic acid possessed potent anti-respiratory syncytial virus activity (IC50 of 2.33 mM), antibacterial activity against Vibrio cholera, Vibrio parahaemolyticus, Bacillus cereus (Li et al., 2005; Ooi et al., 2006) and strongest DPPH radical scavenging activity (Devrnja et al., 2017). The role of Quercetin as potential antiviral agents is well known since 1951 and it is also found to diminish infectivity of bovine and human coronaviruses, NCDCV and OC43, respectively, by half at a concentration of 60 μg/mL. Quercetin, have ability to block the entry of SARS-CoV into host cells. Quercetin antagonized HIV-luc/SARS pseudo typed virus entry (EC50 of 83.4 μM) (Meyer-Almes, 2020; Russo et al., 2020).

The screened chemical constituents displayed higher docking scores, stronger binding energies, and better interactions with the conserved catalytic residue than Remdesivir. To further prove the effectiveness of phytoconstituents for COVID-19 therapy, the best three compounds having the highest docking scores based on XP docking method, namely 3,5-Dicaffeoylquinic acid, Remdesivir and Quercetin were selected for MD simulation studies.

3.2. Molecular dynamic simulation studies

MD simulation studies were carried out to understand the stability of protein-ligand interaction. As discussed earlier,
Table 4. Toxicological data of selected active phytoconstituents (QSAR Models).

Toxicity study	Toxicity test	3,5-Dicaffeoyl quinic acid	Quercetin	Remdesivir
Mutagenicity	Mutagenicity (Ames test) CONSENSUS model – assessment	NON-Mutagenic (Consensus score: 0.5)	Mutagenic (Consensus score: 1)	Mutagenic (Consensus score: 0.1)
Mutagenicity	Mutagenicity (Ames test) CONSENSUS model – prediction	0.823**	1.0***	0.505*
Mutagenicity	Mutagenicity (Ames test) model (CAESAR) – assessment	NON-Mutagenic	Mutagenic	NON-Mutagenic
Mutagenicity	Mutagenicity (Ames test) model (SarPy/IRFMN) – assessment	0.745**	0.5*	0.539*
Mutagenicity	Mutagenicity (Ames test) model (ISS) – assessment	0.737**	0.85**	0.506*
Carcinogenicity	Carcinogenicity model (CAESAR) – assessment	outside applicability domain of the model	Carcinogen	NON-Carcinogen
Carcinogenicity	Carcinogenicity model (CAESAR) – prediction	0.5*	0.85**	0.506*
Carcinogenicity	Carcinogenicity model (ISS) – assessment	NON-Carcinogen	Carcinogen	Carcinogen
Carcinogenicity	Carcinogenicity model (ISS) – prediction	0.666**	1.0***	0.492*
Carcinogenicity	Carcinogenicity oral classification model (IRFMN/ISSCAN-CGX) – assessment	Possible NON-Carcinogen	Carcinogen	Carcinogen
Carcinogenicity	Carcinogenicity oral classification model (IRFMN) – prediction	0.5*	0.525*	0.354*
Carcinogenicity	Carcinogenicity oral Slope Factor model (IRFMN) – assessment	NON-Carcinogen	Carcinogen	Carcinogen
Carcinogenicity	Carcinogenicity oral Slope Factor model (IRFMN) – prediction	0.85**	0.541*	0.199*
Carcinogenicity	Carcinogenicity inhalation classification model (IRFMN) – assessment	1.26	0.8	3.59
Carcinogenicity	Carcinogenicity inhalation classification model (IRFMN) – prediction	0.5*	0.75**	0.287*
Developmental Toxicity	Developmental Toxicity model (CAESAR) – assessment	0.74**	0.886***	0.5*
Developmental Toxicity	Developmental Toxicity model (CAESAR) – prediction	NON-Toxicant	Toxicant	NON-Toxicant
Developmental/Reproductive Toxicity library (PG) – assessment	0.5*	0.881**	Toxicant	(low reliability)
Developmental/Reproductive Toxicity library (PG) – prediction	NON-Toxicant	Toxicant	Toxicant	
Zebrafish	Zebrafish embryo AC50 (IRFMN/CORAL) – assessment	520.15 ug/L (low reliability)	179309.14 ug/L (low reliability)	192108.37 ug/L (low reliability)
Oestrogen	Estrogen Receptor Relative Binding Affinity model (IRFMN) – assessment	0.866***	0.99***	0.354*
Oestrogen	Estrogen Receptor Relative Binding Affinity model (IRFMN) – prediction	Inactive	Active	Inactive
Oestrogen	Estrogen Receptor-mediated effect (IRFMN/CERAPP) – assessment	0.868***	0.797***	0.724**

(continued)
three best ligands having highest docking score were selected for MD simulations studies.

Remdesivir was considered as the standard drug molecule in the treatment of covid-19 (Costanzo et al., 2020; C. J. Gordon et al., 2020; Jean & Hsueh, 2020; Wu et al., 2020). Backbone root mean square deviation (RMSD) analysis was carried out to evaluate the stability of Remdesivir into the binding pocket of Mpro protein. 100 ns MD simulations of Remdesivir showed that simulations converged after ~60 ns yielding final RMSD within 3 Å. Thus, the last 40 ns simulations were considered for further calculations. It was observed that Remdesivir formed H-bond with various amino acid residues such as LEU4, THR24, THR25, GLU166 and GLN189 whereas hydrophobic bond interaction with VAL3, MET49, LEU50 and PRO168. The RMSD and RMSF plot of protein–ligand and the ligand protein contacts for Remdesivir are shown in Figures 3 and 4, respectively.

Similarly, the interactions of 3,5-Dicaffeoylquinic acid at different time intervals were analysed and check for the stability which showed that, at 40 ns, the proteins got stabilized and ligand was forming interaction with the protein (RMSD difference = 2.5 Å). 3,5-Dicaffeoylquinic acid was forming H-bond interactions with LEU4, MET49, GLN189, THR190, GLN256, Ala255, Val297 and Ser301 while hydrophobic interactions with Ala2, Leu50, Arg188 and Phe305. The RMSD of 3,5-Dicaffeoylquinic acid is shown in Figure 3.

On the other hand, Quercetin was showing stable interaction throughout the simulation period (100 ns) which indicates the stability of the ligand in the binding site pocket of the protein (RMSD Difference = 2.8 Å). Quercetin was interacted with different amino acid such as THR24, THR26, ASN28, HIS41, ASN119, ASN142 and GLN189 residues by forming H-bond interactions. The RMSF plot for Quercetin is shown in Figure 4.

Even though hydrogen bonds are weaker compared to ionic and covalent bonds, they are exploited the most for design of new drug candidate (Bhardwaj et al., 2020; Yunta, 2017). H-bonds are important contributor for the specificity of molecular recognition. The free energy for H-bonds usually ranges from of -12 to -20 kJ/mol, and the binding potential of a ligand rises by almost one order of magnitude per H-bond. Therefore, we observed into the H-bonding pattern of Remdesivir, 3,5-Dicaffeoylquinic acid and Quercetin over the entire 100 ns simulation trajectory.

MD simulations trajectories revealed that 3,5-Dicaffeoylquinic acid (Figure 5(C)) was making more H-bonds in comparison to Remdesivir (Figure 5(A)) and Quercetin (Figure 5(B)) over the entire simulation trajectory. All the selected molecules (3,5-dicaffeoylquinic, Remdesivir and Quercetin) maintained the molecular interactions with the protein. Overall, the interactions analysis showed that at any fraction of time, 3,5-Dicaffeoylquinic acid was making better contacts and better consistency compared to Remdesivir. This suggests that 3,5-Dicaffeoylquinic acid has good affinity towards the substrate-binding pocket of Mpro and could probably be natural and readily available drugs for the inhibition of SARS-CoV-2 functional activity. Refer Table S1 for ligand interactions with amino acid residues of protein at different time intervals.

Furthermore, we also carried out MM-GBSA calculations to estimate binding energies or affinity (dG Bind) of ligands. The results of MM-GBSA calculations are shown in Table 3.

Toxicity study	Toxicity test	3,5-Dicaffeoyl quinic acid	Quercetin	Remdesivir
Androgen	Androgen Receptor-mediated effect (IRFMN/CERAPP) – prediction	NON-active	Active	NON-active
Androgen	Androgen Receptor-mediated effect (IRFMN/COMPARA) – assessment	0.872***	0.5*	0.612*
Thyroid	Thyroid Receptor Alpha effect (NRMEA) – prediction	0.958***	0.94***	0.866***
Thyroid	Thyroid Receptor Beta effect (NRMEA) – prediction	Inactive	Inactive	Inactive
Skin sensitivity	Skin Sensitization model (CAESAR) – prediction	0.706**	0.368*	0.5*
Skin sensitivity	Skin Sensitization model (CAESAR) – prediction	NON-Sensitizer	Sensitizer	NON-Sensitizer
Skin sensitivity	Skin Sensitization model (IRFMN/JRC) – prediction	outside applicability	domain of the model	Sensitizer
Skin sensitivity	Skin Sensitization model (IRFMN/JRC) – prediction	Sensitizer	NON-Sensitizer	Sensitizer
Hepatotoxicity	Hepatotoxicity model (IRFMN) – assessment	0.801***	0.781**	0.5*
Hepatotoxicity	Hepatotoxicity model (IRFMN) – prediction	NON-Toxic	Toxic	Toxic

[The table continues with the same format as above.]
indicating stronger binding to M\text{pro} protein. Based on both the results, the order of binding affinity was found to be Remdesivir, 3,5-Dicaffeoylquinic acid and Quercetin. Therefore, 3,5-Dicaffeoylquinic acid and Quercetin might be a novel therapeutic for M\text{pro} inhibition and could be helpful in the treatment of coronavirus infection.

3.3. Toxicity results

To access toxicological data, QSAR modelling method performed using VEGA-QSAR (Table 4). The software incorporated algorithm provides evaluation of reliability prediction as Applicability domain index (ADI) value. We used positive results with ADI >0.5, as indicators of reliability effect; low (0.5 < ADI < 0.6), medium (0.6 < ADI < 0.8) and high (0.8 < ADI < 1). The dicaffeoylquinic acid does not show mutagenicity (CONSENSUS model, CAESAR, SarPy/IRFMN, ISS and KNN/Read-Across, assessment and prediction) (Votano et al., 2010), does not have carcinogenicity (ISS model, IRFMN/ISSCAN-CGX, IRFMN (oral, inhalation and slope factor model) assessment and prediction) (Fjodorova et al., 2010), do not show developmental toxicity (CAESAR model, PG model assessment and prediction) (Simms et al., 2020), no adverse health effects to humans and ecological species (IRFMN/COMPARA, assessment and prediction) (Mansouri et al., 2020), Inactive for oestrogen and androgen mediated effect (IRFMN/CERAPP, assessment and prediction) (Cotterill et al., 2019; Mansouri et al., 2020) and found to be inactive for Thyroid hormone receptor α/β (NRMEA, assessment and prediction). compounds does not have skin sensitivity (CAESAR model, assessment and prediction) (Chaudhry et al., 2010). No hepatotoxic potential (IRFMN, assessment and prediction). Thus, overall 3,5-Dicaffeoylquinic acid can be suitable candidate for further in vitro and in vivo assessment for its inhibitory potential against SARS-CoV-2.

4. Conclusion

In summary, results obtained by molecular docking revealed that 3, 5-Dicaffeoylquinic acid from Cressa cretica shows highest binding energy as compared to Remdesivir and may inhibit M\text{pro} protein required to cut mRNA and for viral assembly. Likewise, the interaction with various amino acid residues of M\text{pro} were maintained throughout the 100 ns of molecular dynamic simulations. 3,5-Dicaffeoylquinic acid showed best affinity towards COVID-19 main protease (M\text{pro}) of SARS-CoV-2 suggesting it to be novel research molecule. Thus, chemical constituents of Cressa cretica become effective to fight against the new corona virus and provide an imminent research attention as they mark the desire interaction with main protease (M\text{pro}), which implies a possible antiviral activity. These results encourage further in vitro and in vivo investigations and also encourage traditional use of Cressa cretica preventively and will provide vital information on novel scaffolds for further lead optimization.

Acknowledgements

We are thankful to Manipal College of Pharmaceutical Sciences, Manipal for providing facilities to conduct molecular simulations studies.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Sapan Shah http://orcid.org/0000-0002-8155-9361
Sumit Arora http://orcid.org/0000-0001-9453-6057
Subhash Yende http://orcid.org/0000-0003-3886-531X
Chetan Mehta http://orcid.org/0000-0002-1895-8562
Usa Nayak http://orcid.org/0000-0002-1995-3114

References

Afshari, A., & Sayyed-Alangi, S. Z. (2017). Antioxidant effect of leaf extracts from Cressa cretica against oxidation process in soybean oil. Food Science & Nutrition, 5(2), 324–333. https://doi.org/10.1002/fsn3.396
Altay, O., Mohammad, E., Larm, S., Turkez, H., Boren, J., Nielsen, J., Uhlen, M., & Mardinolou, A. (2020). Current status of COVID-19 therapies and drug repositioning applications. iScience, 23(7), 101303. https://doi.org/10.1016/j.isci.2020.101303
Anang, S., Kaushik, N., Hingane, S., Kumari, A., Gupta, J., Asthana, S., Shalimar, Nayak, B., Ranjith-Kumar, C. T., & Surjit, M. (2018). Potent inhibition of Hepatitis E virus release by a cyclic peptide inhibitor of the interaction between viral open reading frame 3 protein and host tumor susceptibility gene 101. Journal of Virology, 92(20), e00684–18. https://doi.org/10.1128/JVI.00684-18
Astuti, I. & Ysrafil, (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes & Metabolic Syndrome, 14(4), 407–412. https://doi.org/10.1016/j.dsx.2020.04.020
Benfenati, E., Chaudhry, Q., Gini, D., & Dorne, J. L. (2019). Integrating in silico models and read-across methods for predicting toxicity of chemicals: A step-wise strategy. Environment International, 131, 105060. https://doi.org/10.1016/j.envint.2019.105060
Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2020). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1766572
Cai, Q., Yang, M., Liu, D., Chen, J., Shu, D., Xia, J., Liao, X., Gu, Y., Cai, Q., Yang, Y., Shen, C., Li, X., Peng, L., Huang, D., Zhang, J., Zhang, S., Wang, F., Liu, J., Chen, L., ... Liu, L. (2020). Experimental treatment with favipiravir for COVID-19. Engineering, 6(10), 1192–1198. https://doi.org/10.1016/j.eng.2020.03.007
Chaudhry, Q., Piclin, N., Cotterill, J., Pintore, M., Price, N. R., Christien, J. R., & Roncaglioni, A. (2010). Global QSAR models of skin sensitisers for regulatory purposes. Chemistry Central Journal, 4 (Suppl 1), S5–S5. https://doi.org/10.1186/1752-153X-4-S1-S5
Costanzo, M., De Giglio, M. A. R., & Roviello, G. N. (2020). SARS-CoV-2: Recent reports on antiviral therapies based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and other drugs for the treatment of the new coronavirus. Current Medicinal Chemistry, 27(27), 4536–4541. https://doi.org/10.2174/0929877327666200416131117
Cotterill, J. V., Palazzolo, L., Ridgway, C., Price, N., Rorije, E., Moreto, A., Peijnenburg, A., & Eberini, I. (2019). Predicting estrogen receptor binding of chemicals using a suite of in silico methods - Complementary approaches of (Q)SAR, molecular docking and molecular dynamics. Toxicology and Applied Pharmacology, 378, 114630. https://doi.org/10.1016/j.taap.2019.114630
Devnija, N., Andelković, B., Arandelović, S., Radulović, S., Soković, M., Krstić-Milošević, D., Ristić, M., & Ćalić, D. (2017). Comparative studies
on the antimicrobial and cytotoxic activities of Tanacetum vulgare L. essential oil and methanol extracts. South African Journal of Botany, 111, 212–221. https://doi.org/10.1016/j.sajb.2017.03.028

Elfiky, A. A. (2020a). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253(February), 117592. https://doi.org/10.1016/j.lfs.2020.117592

Elfiky, A. A. (2020b). SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: An in silico perspective. Journal of Biomolecular Structure & Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1761882

Fjodorova, N., Vracko, M., Novic, M., Roncaglioni, A., & Benfenati, E. (2020). Virtual screening and repurposing of Remdesivir for the non-combusted products, when compared to cigarettes. Tobacco Research, 11(1), 104793. https://doi.org/10.1016/j.trc.2020.104793

Siemieniuk, R. A. C., Bartoszko, J. J., Ge, L., Zeraatkar, D., Izcovich, A., Ellison, C., Ezendam, J., Gaffet, E., Galli, C. L., Goebel, C., Granum, B., Hollnegel, H. M., Kern, P. S., Koremendy-Meynen, K., … Worth, A. (2020). The way forward for assessing the human health safety of cosmetics in the EU - Workshop proceedings. Toxicology, 436, 152421. https://doi.org/10.1016/j.tox.2020.152421

Shahat, A. A., Abdel-Azim, N. S., Pieters, L., & Vlietinck, A. J. (2004). Flavonoids from Cressa cretica (L.) Frodin. Journal of Ethnopharmacology, 91(1), 17–22. https://doi.org/10.1016/j.jep.2004.05.019

Gajardo, A., Espi, S., & Pinto, E. (2004). Headache prevention with the flavonoids quercetin and rutin. Journal of Nutritional Science and Vitaminology, 50(1), 57–63. https://doi.org/10.3111/138802004900500912

Kohler, G., Tannenbaum, S. R., & Price, J. WA. (2006). AJCC Cancer Staging Manual, seventh edition. Springer Science & Business Media.

Kotha, S. B., Kulkarni, V. M., S. R. S., B. H. K., & R. H. (2020). In silico approach: Identification of PPAR-γ agonists from seaweeds for the management of Alzheimer’s disease. Journal of Biomolecular Structure and Dynamics, 1–20. https://doi.org/10.1080/07391102.2020.1747543

Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106

Li, Y., But, P. P. H., & Ooi, V. E. C. (2005). Antiviral activity and mode of action of caffeoylquinic acids from Schefflera heptaphylla (L.) Frodin. Antiviral Research, 68(1), 1–9. https://doi.org/10.1016/j.antiviral.2005.06.004

Mansouri, K., Kleinstreuer, N., Abdelaziz, A. M., Alberga, D., Alves, V. M., Andersson, P. L., Andrade, C. H., Bai, F., Balabani, I., Ballabio, D., Benenati, E., Bhatarai, B., Boyer, S., Chen, J., Consomni, V., Farag, S., Fourches, D., García-Sossa, A. T., Gramatica, P., … Judson, R. S. (2020). CoMPARA: Collaborative modeling project for androgen receptor activity. Environmental Health Perspectives, 128(2), 2702 https://doi.org/10.1289/EHP5580

Masters, P. S. (2006). The molecular biology of coronaviruses. Advances in Virus Research. https://doi.org/10.1016/0065-3527(06)66005-3

Meyer-Almes, F.-J. (2020). Repurposing approved drugs as potential inhibitors of 3CL-protease of SARS-CoV-2: Virtual screening and structure based drug design. Computational Biology and Chemistry, 88, 107351. https://doi.org/10.1016/j.compbiolchem.2020.107351

Mukhtar, M., Arshad, M., Ahmad, M., Pomerantz, R. J., Wigdahl, B., & Parveen, Z. (2008). Antiviral potentials of medicinal plants. Virus Research, 131(2), 111–120. https://doi.org/10.1016/j.virusres.2007.09.008

National Institutes of Health. (n.d.). COVID-19 treatment guidelines panel. Coronavirus disease 2019 (COVID-19) treatment guidelines. https://www.covid19treatmentguidelines.nih.gov/therapeutic-management

Ooi, L. S. M., Wang, H., He, Z., & Ooi, V. E. C. (2006). Antiviral activities of purified compounds from Youngia japonica (L.) DC (Asteraceae, Compositae). Journal of Ethnopharmacology, 106(2), 187–191. https://doi.org/10.1016/j.jep.2005.12.028

Priyashree, S., Jha, S., & Pattanayak, S. (2010). A review on Cressa cretica Linn.: A halophytic plant. In Pharmacognosy Reviews. https://doi.org/10.4103/0973-7847.70910

Rani, S., Singh, P., Mishra, G., Jha, K. K., & Khosa, R. L. (2011). Cressa cretica Linn. - An important medicinal plant: A review on its traditional uses, phytochemistry and pharmaceutical properties. Journal of Natural Product & Plant Resources, 1, 91–100.

Release, S. (2017). I: Maestro. Schrödinger, LLC.

Regiers, V., Benfenati, E., Bernauer, U., Bodin, L., Carmichael, P., Chaudhry, Q., Coenraads, P. J., Cronin, M. T. D., Dent, M., Dusinska, M., Ellison, C., Ezendam, J., Gaffet, E., Galli, C. L., Goebel, C., Granum, B., Hollnegel, H. M., Kern, P. S., Koremendy-Meynen, K., … Worth, A. (2020). The way forward for assessing the human health safety of cosmetics in the EU - Workshop proceedings. Toxicology, 436, 152421. https://doi.org/10.1016/j.tox.2020.152421

Russo, M., Moccia, S., Spagnuolo, C., Tedesco, I., & Russo, G. L. (2020). Roles of flavonoids against coronavirus infection. Chemico-Biological Interactions, 328, 109211. https://doi.org/10.1016/j.cbi.2020.109211

Sen, D. (2009). Cressa cretica Linn. - In search of Sanjevevani. Current Science, 97(11), 1523–1523. http://www.jstor.org/stable/24107281

Shah, B., Modi, P., & Sagar, S. R. (2020). In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sciences, 252, 117652. https://doi.org/10.1016/j.lfs.2020.117652

Shahat, A. A., Abdel-Azim, N. S., Pieters, L., & Vlietinck, A. J. (2004). Flavonoids from Cressa cretica. Pharmaceutical Biology, 42(4-5), 349–352. https://doi.org/10.1080/13880200490519622

Shannon, A., Le, N. T. T., Selisko, B., Eyeloux, C., Alvarez, K., Guilloumet, J.-C., Decroy, E., Peersen, O., Ferron, F., & Canard, B. (2020). Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites. Antiviral Research, 178, 104973. https://doi.org/10.1016/j.antiviral.2020.104973
Suganthi, G., Sripathy, S. K., & Manian, K. (2008). HPTLC and antibacterial analysis of extracts of *Cressa cretica* Linn. *Ancient Science of Life*, 27(3), 1–14. https://pubmed.ncbi.nlm.nih.gov/22557271

Sunita, P., Jha, S., & Pattanayak, S. P. (2011). Anti-inflammatory and in-vivo antioxidant activities of *Cressa cretica* Linn., a halophytic plant. *Middle-East Journal of Scientific Research*, 8(1), 129–140.

Viveiros Rosa, S. G., & Santos, W. C. (2020). Clinical trials on drug repositioning for COVID-19 treatment. *Revista Panamericana de Salud Pública*, 44, 1. https://doi.org/10.26633/RPS.P.2020.40

Vlachakis, D., Papakonstantinou, E., Mitsis, T., Pierouli, K., Diakou, I., Chrousos, G., & Bacopoulou, F. (2020). Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic. *Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association*, 146, 111805. https://doi.org/10.1016/j.fct.2020.111805

Votano, J. R., Parham, M., Hall, L. H., Kier, L. B., Oloff, S., Tropsha, A., Xie, Q., & Tong, W. (2004). Three new consensus QSAR models for the prediction of Ames genotoxicity. *Mutagenesis*, 19(5), 365–377. https://doi.org/10.1093/mutage/geh043

World Health Organization (WHO). (2020). *Novel Coronavirus (2019-nCoV) Situation Report - 71*. 31 March 2020. In World Health Organization. https://doi.org/10.1001/jama.2020.2633

Wu, R., Wang, L., Kuo, H.-C., Shannar, A., Peter, R., Chou, P. J., Li, S., Hudlikar, R., Liu, X., Liu, Z., Poiani, G. J., Amorosa, L., Brunetti, L., & Kong, A.-N. (2020). An update on current therapeutic drugs treating COVID-19. *Current Pharmacology Reports*, 6(3), 56–15. https://doi.org/10.1007/s40495-020-00216-7

Yang, Y., Islam, M. S., Wang, J., Li, Y., & Chen, X. (2020). Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. *International Journal of Biological Sciences*, 16(10), 1708–1717. https://doi.org/10.7150/ijbs.45538

Yunta, M. (2017). It is important to compute intramolecular hydrogen bonding in drug design? *American Journal of Modelling and Optimization*, 5, 24–57. https://doi.org/10.12691/ajmo-5-1-3