Selective regulation of IP₃-receptor-mediated Ca²⁺ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-XI

G Monaco ¹, E Decrooc ², ³, H Akil ¹, R Ponsaerts ¹, T Vervliet ¹, T Luyten ¹, M De Maeyer ², L Missiaen ¹, CW Distelhorst ⁴, H De Smedt ¹, JB Parys ³, L Leybaert ² and G Bultynck* ¹

Antiprototic B-cell lymphoma 2 (Bcl-2) targets the inositol 1,4,5-trisphosphate receptor (IP₃R) via its BH4 domain, thereby suppressing IP₃R Ca²⁺ -flux properties and protecting against Ca²⁺ -dependent apoptosis. Here, we directly compared IP₃R inhibition by BH4-Bcl-2 and BH4-Bcl-XI. In contrast to BH4-Bcl-2, BH4-Bcl-XI neither bound the modulatory domain of IP₃R nor inhibited IP₃-induced Ca²⁺ release (IICR) in permeabilized and intact cells. We identified a critical residue in BH4-Bcl-2 (Lys17) not conserved in BH4-Bcl-XI (Asp11). Changing Lys17 into Asp in BH4-Bcl-2 completely abolished its IP₃R-binding and -inhibitory properties, whereas changing Asp11 into Lys in BH4-Bcl-XI induced IP₃R binding and inhibition. This difference in IP₃R regulation between BH4-Bcl-2 and BH4-Bcl-XI controls their antiapoptotic action. Although both BH4-Bcl-2 and BH4-Bcl-XI had antiapoptotic activity, BH4-Bcl-2 was more potent than BH4-Bcl-XI. The effect of BH4-Bcl-2, but not of BH4-Bcl-XI, depended on its binding to IP₃Rs. In agreement with the IP₃R-binding properties, the antiapoptotic activity of BH4-Bcl-2 and BH4-Bcl-XI was modulated by the Lys/Asp substitutions. Changing Lys17 into Asp in full-length Bcl-2 significantly decreased its binding to the IP₃R, its ability to inhibit IICR and its protection against apoptotic stimuli. A single amino-acid difference between BH4-Bcl-2 and BH4-Bcl-XI therefore underlies differential regulation of IP₃Rs and Ca²⁺ -driven apoptosis by these functional domains. Mutating this residue affects the function of Bcl-2 in Ca²⁺ signaling and apoptosis.

Cell Death and Differentiation (2012) 19, 295–309; doi:10.1038/cdd.2011.97; published online 5 August 2011

Pro- and anti-apoptotic B-cell lymphoma 2 (Bcl-2) family members control cell survival by regulating programmed cell death and autophagy.¹ The founding member is Bcl-2, a 26-kDa protein localized in the mitochondrial and endoplasmic reticulum (ER) membranes. Members of this protein family are characterized by the presence of Bcl-2 homology domains (BH domains).²,³ Although multidomain proapoptotic proteins contain three BH domains (BH1, BH2 and BH3), the antiprototic proteins, like Bcl-2 and Bcl-Xl, are characterized by an additional BH domain (BH4).⁴ The BH1, BH3 and BH2 domains of the antiprototic Bcl-2 family proteins form a hydrophobic pocket that binds the BH3 domain of proapoptotic proteins, thereby counteracting their proapoptotic activity.⁵ Besides this hydrophobic cleft, the BH4 domain is also essential for the antiprototic activity of Bcl-2.⁵,⁶

Moreover, Ca²⁺ signaling from the ER to the mitochondria plays an important role in apoptosis initiation.⁷ Several pro- and anti-apoptotic Bcl-2 proteins localize at the ER membrane, where they modulate Ca²⁺ -release events⁸,⁹ (recently reviewed in Rong et al.¹⁰ and Rizzuto et al.¹¹). Bcl-2 proteins thereby influence mitochondrial function because of the close proximity of ER and mitochondrial membranes.¹²–¹⁴ Ca²⁺ transfer via the ER–mitochondria connection plays a bimodal role in cell survival.¹⁵,¹⁶ Small oscillatory Ca²⁺ signals promote survival by stimulating mitochondrial function and bioenergetics, whereas larger mitochondrial [Ca²⁺ ] rises promote cell death by provoking mitochondrial outer membrane permeabilization (MOMP) and mitochondrial Ca²⁺ release (IICR).¹⁷,¹⁸

Keywords: apoptosis; antiapoptotic Bcl-2-family members; calcium signaling; endoplasmic reticulum; intracellular Ca²⁺ -release channels

Abbreviations: AIF, apoptotic index; ATP, adenosine 5'-triphosphate; AUC, area under the curve; Bcl, B-cell lymphoma; BH domain, Bcl-2 homology domain; BSAR, bovine serum albumin; Caspase, cysteine-dependent aspartate-specific protease; CED, cell death abnormal; c.p.m., counts per min; CytC, cytochrome c; DTR, Dextran Texas Red; EGTA, ethylene glycol tetraacetic acid; ER, endoplasmic reticulum; FACS, fluorescence-activated cell sorting; FITC, fluorescein isothiocyanate; GST, glutathione-S-transferase; HBSS, Hank’s balanced salt solution; HRP, horseradish peroxidase; IC50, inhibitory concentration; IDP, IP₃R-derived peptide; IICR, IP₃-induced Ca²⁺ release; IP₃R, inositol 1,4,5-trisphosphate receptor; Kd, dissociation constant; MEF, mouse embryonic fibroblast; MOMP, mitochondrial outer membrane permeabilization; NFAT, nuclear factor of activated T cells; NFκB, nuclear factor kappa-light-chain enhancer of activated B cells; PAC-1, first procaspase activating compound; PAG, poly(ADP-ribose)-polymerase; PARP, poly(ADP-ribose) polymerase; PBS, phosphate-buffered saline; PFA, paraformaldehyde; PI, propidium iodide; PVDF, polyvinylidene fluoride; RAF-1, v-raf-1 murine leukemia viral oncogene homolog 1; RAS, RAF-1 murine leukemia viral oncogene homolog 1; RAS, RAF-1 murine leukemia viral oncogene homolog 1; RAS, RAt Sarcoma; RU, resonance; response unit; SDS, sodium dodecyl sulfate; SPR, surface plasmon resonance; SERCA, sarcoplasmic-endoplasmic-reticulum Ca²⁺ -adenosine triphosphatase; STS, staurosporine; TG, thapsigargin; VDAC, voltage-dependent anion channel

¹Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, BE-3000 Leuven, Belgium; ²Department of Basic Medical Sciences, Physiology Group, Faculty of Medicine and Health Sciences, Ghent University, BE-9000 Gent, Belgium; ³Biomolecular Modelling, Biochemistry, Molecular and Structural Biology Section, Department of Chemistry, Celestijnenlaan 200G bus 2403, BE-3001 Heverlee, Belgium; ⁴Departments of Medicine and Pharmacology, Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA

*Corresponding author: G Bultynck, Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Campus Gasthuisberg O/N-1 bus 802, Herestraat 49, BE-3000 Leuven, Belgium. Tel: + 32 16 330215; Fax: + 32 16 345991; E-mail: geert.bultynck@med.kuleuven.be

²These authors contributed equally to this work.

Received 02.12.10; revised 02.5.11; accepted 13.6.11; Edited by L Scorrano; published online 05.8.11

© 2012 Macmillan Publishers Limited All rights reserved 1350-9047/12

www.nature.com/cdd
membrane permeabilization (MOMP). Thus, both promoting cytosolic Ca\(^{2+}\) oscillations and blunting cytosolic Ca\(^{2+}\) transients underpin the antiapoptotic action of Bcl-2 family members.

Different studies demonstrated that inositol 1,4,5-trisphosphate receptors (IP\(_3\)R) play a central role in this paradigm as targets of Bcl-2, Bcl-XI and Mcl-1. However, the localization of their interaction sites on the IP\(_3\)R as well as the physiological roles of these interactions remain unresolved. Different, not mutually exclusive, mechanisms have been proposed. (1) Increasing the ratio of anti- over pro-apoptotic Bcl-2 proteins caused IP\(_3\)R sensitization, enhancing basal IP\(_3\)R-mediated Ca\(^{2+}\) leak and reducing steady-state [Ca\(^{2+}\)]\(_i\) in the ER. (2) Bcl-XI interacted with the C-terminus of IP\(_3\)Rs, promoting spontaneous Ca\(^{2+}\) oscillations and enhancing mitochondrial bioenergetics. (3) Bcl-2 directly inhibited IP\(_3\)Rs without altering steady-state ER Ca\(^{2+}\) levels. Recently, the Bcl-2 interaction domain was identified in the central, modulatory region of the IP\(_3\)R (amino acids (a.a.) 1389–1408). Disturbing endogenous IP\(_3\)R/Bcl-2 complexes potentiated IP\(_3\)-induced Ca\(^{2+}\) release (IICR) and sensitized cells toward proapoptotic Ca\(^{2+}\) signaling. The BH4 domain of Bcl-2 was necessary and sufficient for interaction with the IP\(_3\)R. (4) Bcl-XI reduced the expression levels of IP\(_3\)Rs via a decreased binding of NFATc2 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 2) to the IP\(_3\)R promoter, thereby reducing IICR.

Here, we directly compared the regulation of IP\(_3\)Rs by the BH4 domains of Bcl-2 and Bcl-XI. Our results indicate that although the BH4 domain of Bcl-2 and Bcl-XI are very similar in sequence and structure, a difference in one single residue between BH4-Bcl-2 and BH4-Bcl-XI critically determined its IP\(_3\)R binding, suppression of IP\(_3\)R activity and protection against IP\(_3\)R-driven apoptosis.

Results

**BH4-Bcl-2 and BH4-Bcl-XI differentially regulate IICR.** The structure of antiapoptotic Bcl-2 and of a monomeric subunit of the IP\(_3\)R1 is depicted in Figure 1a, including the interaction of Bcl-2 via its BH4 domain with the IP\(_3\)R1. The IP\(_3\)R-derived peptide (IDP; a.a. 1389–1408) corresponds to the Bcl-2-binding site on IP\(_3\)R1 and is therefore able to disrupt Bcl-2/IP\(_3\)R interaction in a competitive way. IDP completely alleviates the inhibitory action of the BH4 domain of Bcl-2 on IP\(_3\)Rs without affecting other BH4-domain targets, like voltage-dependent anion channel (VDAC) and calcineurin. Thus, IDP is an excellent tool to decipher the role of IP\(_3\)R in the observed actions of BH4-Bcl-2 on intracellular Ca\(^{2+}\) signaling and cell death. Here, we directly compared the effect of BH4-Bcl-2 and BH4-Bcl-XI on IICR using a unidirectional 45Ca\(^{2+}\)-flux assay in saponin-permeabilized mouse embryonic fibroblasts (MEF cells) in which the non-mitochondrial Ca\(^{2+}\) stores were loaded to steady state with 45Ca\(^{2+}\). After adding 4\(\mu\)M thapsigargin (TG), the efflux of 45Ca\(^{2+}\) was followed in the presence of 1 mM ethylene glycol tetraacetic acid (EGTA). This assay allows the quantitative assessment of Ca\(^{2+}\) efflux properties under unidirectional conditions in the absence of ER and mitochondrial Ca\(^{2+}\) uptake activity.

**Figure 1** Although the BH4 domains of Bcl-2 and Bcl-XI are similar in sequence and structure, they differentially regulate IP\(_3\)R-mediated Ca\(^{2+}\) flux in permeabilized and intact cells. (a) Schematic presentation of the antiapoptotic Bcl-2-family members and the IP\(_3\)R. The N-terminal BH domain is unique for antiapoptotic members. The secondary structure and primary sequence of BH4-Bcl-2 and BH4-Bcl-XI are very similar. The central, modulatory domain of the IP\(_3\)R1, containing the Bcl-2-binding site (a.a. 1389–1408) IP\(_3\)R could prevent binding of Bcl-2 to IP\(_3\)Rs. (b) Unidirectional 45Ca\(^{2+}\) fluxes in permeabilized MEF cells plotted as fractional loss (%/2 min) as a function of time. (c) BH4-Bcl-2 and BH4-Bcl-XI on IICR using a unidirectional 45Ca\(^{2+}\)-flux assay in saponin-permeabilized mouse embryonic fibroblasts (MEF cells) in which the non-mitochondrial Ca\(^{2+}\) stores were loaded to steady state with 45Ca\(^{2+}\). After adding 4\(\mu\)M thapsigargin (TG), the efflux of 45Ca\(^{2+}\) was followed in the presence of 1 mM ethylene glycol tetraacetic acid (EGTA). This assay allows the quantitative assessment of Ca\(^{2+}\) efflux properties under unidirectional conditions in the absence of ER and mitochondrial Ca\(^{2+}\) uptake activity.

### Results

**BH4-Bcl-2 and BH4-Bcl-XI differentially regulate IICR.** The structure of antiapoptotic Bcl-2 and of a monomeric subunit of the IP\(_3\)R1 is depicted in Figure 1a, including the interaction of Bcl-2 via its BH4 domain with the IP\(_3\)R1. The IP\(_3\)R-derived peptide (IDP; a.a. 1389–1408) corresponds to the Bcl-2-binding site on IP\(_3\)R1 and is therefore able to disrupt Bcl-2/IP\(_3\)R interaction in a competitive way. IDP completely alleviates the inhibitory action of the BH4 domain of Bcl-2 on IP\(_3\)Rs without affecting other BH4-domain targets, like voltage-dependent anion channel (VDAC) and calcineurin. Thus, IDP is an excellent tool to decipher the role of IP\(_3\)R in the observed actions of BH4-Bcl-2 on intracellular Ca\(^{2+}\) signaling and cell death. Here, we directly compared the effect of BH4-Bcl-2 and BH4-Bcl-XI on IICR using a unidirectional 45Ca\(^{2+}\)-flux assay in saponin-permeabilized mouse embryonic fibroblasts (MEF cells) in which the non-mitochondrial Ca\(^{2+}\) stores were loaded to steady state with 45Ca\(^{2+}\). After adding 4\(\mu\)M thapsigargin (TG), the efflux of 45Ca\(^{2+}\) was followed in the presence of 1 mM ethylene glycol tetraacetic acid (EGTA). This assay allows the quantitative assessment of Ca\(^{2+}\) efflux properties under unidirectional conditions in the absence of ER and mitochondrial Ca\(^{2+}\) uptake activity. Ca\(^{2+}\) content (Figure 1b) and fractional loss (Figure 1c) were plotted as a function of time. Figure 1b shows that because of an inherent Ca\(^{2+}\) leak, the Ca\(^{2+}\) content of the stores slowly decreased over time, whereas adding IP\(_3\) (3 \(\mu\)M) accelerated the decrease in Ca\(^{2+}\) content due to IICR, observed as a steep increase in the fractional loss (Figure 1c). The BH4 domains of Bcl-2 (BH4-Bcl-2; a.a. 6–30) and BH4-Bcl-XI (BH4-Bcl-XI; a.a. 1–24) were produced as synthetic peptides. A scrambled version of the BH4 domain of Bcl-2 (BH4-Bcl-2SCR) and a ‘binding-deficient’ version of BH4-Bcl-2, in which the surface-accessible residues were altered (BH4-Bcl-2BIND), were used as negative controls. The 45Ca\(^{2+}\)-flux assays showed that BH4-Bcl-2 caused a potent concentration-dependent inhibition of IICR (Figures 1b and c). Importantly, BH4-Bcl-2 did not alter the Ca\(^{2+}\)-leak rate from the ER in the absence of IP\(_3\). In contrast to BH4-Bcl-2, BH4-Bcl-2BIN and BH4-Bcl-2SCR did not inhibit IICR (Figure 1d and Supplementary Figures 1A and B). BH4-Bcl-2 inhibited IICR with a half-maximal inhibitory concentration (IC\(_{50}\)) of 30 \(\mu\)M and an IC\(_{100}\) of 100 \(\mu\)M (Figure 1d).

Strikingly, BH4-Bcl-XI did not inhibit IICR (estimated IC\(_{50}\) > 500 \(\mu\)M).
Different BH4-motif properties of Bcl-2 and Bcl-XL

G Monaco et al

Cell Death and Differentiation
We repeated the experiments using more physiological conditions, like 300 nM free Ca\(^{2+}\) (Supplementary Figure 2B), 1 mM free Ca\(^{2+}\) (Supplementary Figure 2C) and 1 mM Mg-ATP (Supplementary Figure 2D), and found that 40 mM BH4-Bcl-2 equally inhibited IICR.

Next, we examined the differential regulation of IP\(_3\)Rs by BH4-Bcl-2 and BH4-Bcl-Xl in C6 glioma cells, a cellular model optimized for \textit{in situ} electroporation of membrane-impermeable molecules.\(^{32,33}\) We loaded BH4-Bcl-2 or BH4-Bcl-Xl (both 20 mM) by electroporation and found that BH4-Bcl-2 inhibited IICR triggered by IP\(_3\) photoliberation from its caged precursor in intact C6 cells (50 mM; Figures 1e and f), whereas BH4-Bcl-Xl did not. BH4-Bcl-2SCR and BH4-Bcl-2BIND control peptides did not reduce IICR. The inhibition by BH4-Bcl-2 was completely prevented by loading the cells with IDP (20 mM), indicating a competitive binding of BH4-Bcl-2 to IP\(_3\)Rs. Similar results were obtained using adenosine 5'-triphosphate (ATP; 1 mM), a physiological agonist provoking IP\(_3\)-mediated Ca\(^{2+}\) release in these cells (Figures 1g and h). Finally, we assessed the TG (2.5 mM)-releasable Ca\(^{2+}\) in these cells 1 min after exposing the cells to EGTA (1 mM) and found no differences among the different conditions (Figures 1i and j). Hence, the decreased ATP-induced Ca\(^{2+}\) release in the presence of BH4-Bcl-2 was not because of decreased ER Ca\(^{2+}\)-store content.

These results indicate that BH4-Bcl-2 and BH4-Bcl-Xl differentially regulate IP\(_3\)R function independently of the ER Ca\(^{2+}\)-store content.

**BH4-Bcl-2 and BH4-Bcl-Xl differentially bind to the central domain of the IP\(_3\)R.** Next, we compared the binding of BH4-Bcl-2 and BH4-Bcl-Xl with glutathione-S-transferase (GST)-Dom3 (i.e. a.a. 923–1581 of IP\(_3\)R1; Figures 2a and b). Using GST pull-down assays, we found that BH4-Bcl-2, but not BH4-Bcl-Xl, strongly and specifically interacted with GST-Dom3. However, we consistently noticed a higher nonspecific binding of BH4-Bcl-Xl to GST than for BH4-Bcl-2. The reason for this is unclear. BH4-Bcl-2BIND was not pulled down by GST-Dom3 (Figures 2a and b), indicating that surface-accessible residues are important for interaction with IP\(_3\)Rs.

We also assessed the binding of GST-Dom3 to BH4-Bcl-2 and BH4-Bcl-Xl in a more quantitative manner using surface plasmon resonance (SPR). We monitored the binding of GST-Dom3 (Figures 3a–c) and GST (Supplementary Figures 3A–C and Figure 3e) to the streptavidin-coated sensor chip containing immobilized biotinylated peptides. Background signals obtained from the reference flow cell containing the scrambled peptides were subtracted to generate response curves. In each sensorgram, the association phase is plotted. GST (up to 40 mM) bound to neither biotin-BH4-Bcl-2 nor biotin-BH4-Bcl-Xl (Supplementary Figures 3A–C). GST-Dom3 displayed a concentration-dependent increase in resonance units, in the biotin-BH4-Bcl-2-containing flow cell (Figure 3a). This indicates a specific binding toward biotin-BH4-Bcl-2 with estimated dissociation constant (K\(_d\)) of \(\sim 1\) mM (Figure 3c). In the biotin-BH4-Bcl-Xl-containing flow cell (Figure 3b), GST-Dom3 resulted in significantly less increase in resonance units (Figure 3c).

We also monitored the binding of GST-Dom3 to biotin-BH4-Bcl-2BIND corrected for the response to the scrambled counterpart (Figure 3d). Clearly, GST-Dom3 did not specifically bind to biotin-BH4-Bcl-2BIND. The negative values in the sensorgrams indicate a slightly higher binding of GST-Dom3 to the scrambled version.

As the Bcl-2-binding site\(^{28}\) is largely conserved among the different IP\(_3\)R isoforms, we compared the BH4-Bcl-2-binding properties of the GST-Dom3 (3.3 mM) derived from IP\(_3\)R1, IP\(_3\)R2 and IP\(_3\)R3 (Figures 3e and f). GST-Dom3 from all three IP\(_3\)R isoforms bound to biotin-BH4-Bcl-2 with roughly similar potencies (Figures 3e and f). The quality of the purified GST-fusion proteins was controlled using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE; Figure 3g).
Identification of residues in BH4-Bcl-2 responsible for inhibiting IP3Rs. Next, we investigated which residues in BH4-Bcl-2 are responsible for interaction with IP3Rs. Based on a bioinformatics approach,30 we successively changed the various predicted surface-accessible residues into alanines (Figure 4a) and investigated their properties toward inhibiting IICR as described in Figure 1. We applied 60 μM of the different BH4-Bcl-2 mutant peptides. This concentration, when used for wild-type BH4-Bcl-2, reduced the IICR to ~20% of its control value (Figure 4b). This analysis revealed that BH4-Bcl-2 acts as a discontinuous binding domain, in which every surface-accessible residue (Asp10, Arg12, Lys17, His20, Tyr21, Gln25, Arg26, Tyr28) contributed to the inhibition of IICR. In particular, Lys17, His20, Tyr21 or Arg26 seemed critical for the inhibitory properties of BH4-Bcl-2. Moreover, changing these residues into an Ala may indirectly affect the binding of BH4-Bcl-2 to IP3Rs by altering its α-helical properties. It has to be noted that although minor changes in the secondary structure can occur, all Ala mutants displayed similar predicted α-helical properties as the wild-type BH4-Bcl-2 using PSIPRED vs3.0 (Supplementary Figure 4, http://bioinf.cs.ucl.ac.uk/psipred/).

Sequence alignment identifies a difference of one critical residue essential for differential IP3R-inhibitory properties of BH4-Bcl-2 and BH4-Bcl-Xl. Sequence alignment shows that Lys17 (K17) in BH4-Bcl-2 corresponds to Asp11 (D11) in BH4-Bcl-Xl (Figure 5a), thereby introducing a charge change in the middle of the α-helical structure.29,34,35 Hence, we made a mutant BH4-Bcl-2 peptide in which we replaced Lys17 by an aspartate (BH4-Bcl-2 K/D) and a mutant BH4-Bcl-Xl peptide in which we replaced Asp11 by a lysine (BH4-Bcl-Xl D/K). Strikingly, we found that BH4-Bcl-2 K/D failed to inhibit IICR, whereas BH4-Bcl-Xl and BH4-Bcl-Xl D/K strongly reduced IICR (Figures 5b and c). Dose-response curves (Figure 5d) indicated that BH4-Bcl-2 and BH4-Bcl-Xl D/K inhibited IICR with an IC50 of 30 and 60 μM, respectively. In contrast, BH4-Bcl-Xl and BH4-Bcl-2 K/D were largely ineffective. The effects of the BH4-domain mutants on IICR were also observed in intact C6 glioma cells using caged IP3 (Figures 5e and f). In contrast to BH4-Bcl-2, BH4-Bcl-2 K/D did not inhibit IICR, whereas in contrast to BH4-Bcl-Xl, BH4-Bcl-Xl D/K was able to significantly reduce IICR. Similar results were obtained using the physiological agonist ATP (1 μM; Figure 5g), whereas none of the BH4-domain peptides did alter the amount of TG (2.5 μM)-releasable Ca2+ from the ER (Figure 5h).

The importance of this critical residue was underpinned by SPR experiments using immobilized biotin-BH4-Bcl-2 K/D and biotin-BH4-Bcl-Xl D/K. Consistent with the functional data, BH4-Bcl-2 K/D largely lost its ability to interact with...
GST-Dom3 (Figure 5i), whereas BH4-Bcl-Xl D/K was able to bind GST-Dom3 (Figure 5j).

Taken together, these data indicate that one single residue difference between BH4-Bcl-2 and BH4-Bcl-Xl can explain their differential action on IP$_3$R.

**BH4-Bcl-2 and BH4-Bcl-Xl differentially affect apoptosis.** Next, we assessed whether BH4-Bcl-2 and BH4-Bcl-Xl displayed a difference in protection against apoptotic cell death in C6 glioma cells triggered by loading the cells with cytochrome c (CytC; 10 $\mu$M, 25 min) or by incubation with staurosporine (STS; 2 $\mu$M, 6 h). The apoptotic index (AI) was determined and expressed relative to the condition in which apoptosis was triggered in the absence of BH4 peptides (vehicle), which was set to 100%.

We first examined whether CytC interaction with the IP$_3$R contributed to CytC-induced apoptosis in the C6 cell model. The CytC–IP$_3$R interaction is part of a positive feedback loop that enhances cell death by promoting ER Ca$^{2+}$ release through IP$_3$R channels. We examined CytC-induced cell death in the absence and presence of a peptide matching the CytC-binding site on IP$_3$Rs (IP3RCYT; 50 $\mu$M). Cells loaded with IP3RCYT displayed a decrease of ~50–60% in CytC-induced cell death (Figure 6a). These results indicate that part of the CytC-induced cell death was because of CytC binding to the IP$_3$Rs. We tested the different BH4-domain peptides (20 $\mu$M) in this cell system and found that both BH4-Bcl-2 and BH4-Bcl-Xl protected against CytC-induced cell death. However, BH4-Bcl-2 was significantly more potent in protecting than BH4-Bcl-Xl (Figure 6b). The BH4-Bcl-2SCR control did not protect at all. Importantly, changing Lys17 into Asp in BH4-Bcl-2 (BH4-Bcl-2 K/D) reduced the level of protection, thereby resembling BH4-Bcl-Xl. In contrast, changing Asp11 into Lys in BH4-Bcl-Xl (BH4-Bcl-Xl D/K) increased cell survival, thereby resembling BH4-Bcl-2.

To assess whether the difference in potency between BH4-Bcl-2 and BH4-Bcl-Xl is because of their differential action on the IP$_3$R, the BH4-domain peptides were loaded together with IDP competing with the IP$_3$R for binding of Bcl-2. IDP completely abolished the protective action of BH4-Bcl-2, but not that of BH4-Bcl-Xl (Figure 6c).

We also used STS, which acts upstream of the mitochondrial and CytC release and initiates apoptosis via ER Ca$^{2+}$-release-dependent mechanisms. STS induced apoptosis with a minor fraction of these cells displaying secondary necrosis (Figure 6d). Primary necrosis was not observed, as all propidium iodide (PI)-positive cells were also characterized by activated caspases (cysteine-dependent process).

**Figure 4** Determination of the residues in BH4-Bcl-2 critical for inhibiting ICR. (a) Zoomed picture of the BH4 domain of Bcl-2 showing its surface-accessible residues is depicted. (b) The inhibitory properties of different BH4-Bcl-2 mutant versions (60 $\mu$M), in which the surface-accessible residues were altered into alanines, were monitored in unidirectional 45Ca$^{2+}$-flux assays in permeabilized MEF cells. Four of the six single alanine mutations (K17A, H20A, Y21A and R26A) had the largest effect on the inhibitory action of the wild-type (wt) BH4-Bcl-2 domain.

**Figure 5** BH4-Bcl-2 and BH4-Bcl-Xl differ in one critical amino acid, which determines their effect on the IP$_3$R. (a) Aligned sequence of the BH4 domain of Bcl-2 and Bcl-Xl with indication of the surface-accessible residues (in color) is shown. The critical residue Lys17 in BH4-Bcl-2 is not conserved in BH4-Bcl-Xl (depicted in blue). The sequences of these BH4-domain peptides are indicated. (b) A typical experiment of a unidirectional 45Ca$^{2+}$-flux assay in permeabilized MEF cells, comparing the effect of BH4-Bcl-2, BH4-Bcl-Xl, BH4-Bcl-2 K/D and BH4-Bcl-Xl D/K (80 $\mu$M of peptides). (c) The quantification of the effects of the different BH4-domain peptides (80 $\mu$M) on ICR was obtained from three to four independent experiments. Data points represent mean ± S.E.M. *BH4-Bcl-2 and BH4-Bcl-Xl D/K are statistically different from control. BH4-Bcl-2 K/D is statistically different from BH4-Bcl-2. BH4-Bcl-Xl D/K is statistically different from BH4-Bcl-Xl. (d) A dose-response curve for the different BH4-domain peptides was obtained from three independent experiments. Values are plotted as mean ± S.E.M. (e) Representative IP$_3$R-mediated Ca$^{2+}$-traces in intact C6 glioma cells using caged IP$_3$ and UV photoliberation. (f) Quantitative analysis of the area under the curve, of the traces in (e), was obtained from at least six independent experiments and data are plotted as mean ± S.E.M. BH4-Bcl-2 and BH4-Bcl-Xl D/K are significantly inhibited ICR, in contrast to BH4-Bcl-2 K/D and BH4-Bcl-Xl. BH4-Bcl-2 and BH4-Bcl-Xl D/K are statistically different from control. BH4-Bcl-2 K/D is statistically different from BH4-Bcl-Xl. BH4-Bcl-Xl D/K is statistically different from BH4-Bcl-Xl. (g) Similar experiment as in (e and f), except that Ca$^{2+}$ signals were elicited by ATP (1 $\mu$M). Area under the curve of different control cells was determined and set at 100%. (h) Similar experiment as in (e and f), except that cells were pretreated for 1 min with EGTA (1 mM) and exposed to thapsigargin (TG, 2.5 $\mu$M), Area under the curve for control was determined and set at 100%. Statistically significant differences were considered at P < 0.05 (single symbols), P < 0.01 (double symbols) and P < 0.001 (triple symbols). (i) Quantitative analysis of data obtained from three independent SPR experiments, in which the binding of different concentrations of GST-Dom3 to immobilized biotin-BH4-Bcl-2 was compared with its binding to immobilized biotin-BH4-Bcl-2 K/D. The maximal signal (resonance units) during the association phase was used in this analysis. (j) Quantitative analysis of data obtained from SPR experiments, in which the binding of GST-Dom3 to biotin-BH4-Bcl-Xl was compared with its binding to biotin-BH4-Bcl-Xl D/K. The maximal signal (resonance units) during the association phase was used in this analysis.
aspartate-specific proteases). Results with STS were similar to those obtained with CytC loading (Figure 6e). Both BH4-Bcl-2 and BH4-Bcl-Xl, but not BH4-Bcl-2SCR, protected against STS-induced cell death. However, BH4-Bcl-2 was significantly more potent than BH4-Bcl-Xl. BH4-Bcl-2-mediated protection against STS was completely suppressed by IDP, whereas the effect of BH4-Bcl-Xl was independent of IDP.

As an additional control, we used first procaspase activating compound (PAC-1; 150μM, 6h), a direct procaspase-3 activating compound downstream of CytC. These conditions caused apoptosis in ~15% of the cell population. We found that BH4-Bcl-2 and BH4-Bcl-Xl did not protect against PAC-1-induced cell death, confirming that the target of these peptides is indeed upstream of caspase-3 (Figure 6f).
Co-loading of BH4-Bcl-2 with BH4-Bcl-Xl in C6 glioma cells did not display an additive effect toward their protection against CytC- and STS-induced cell death (Figure 6g and Supplementary Figure 5). The protective effects of both BH4-Bcl-2 and BH4-Bcl-Xl against CytC-induced apoptosis were ablated when the positive feedback loop of CytC on the IP₃R was prevented by co-loading IP3RCYT peptide (Figure 6h).

Collectively, these data indicate that the BH4 domains of Bcl-2 and Bcl-Xl both protect against apoptosis by acting on different targets upstream of caspase activation. Although the protective effect of BH4-Bcl-2 was stronger and largely dependent on its interaction with a specific binding site on the IP₃R, the protective effect of BH4-Bcl-Xl is independent of binding to the IP₃R. Nevertheless, in these paradigms
BH4-Bcl-Xl likely acts on a target that functions downstream of the IP₃R-signaling cascade.

**Full-length Bcl-2 K/D is less efficient in binding IP₃Rs, inhibiting IP₃R activity and protecting against Ca²⁺-dependent apoptosis.** Finally, we tested whether the critical Lys17 identified in BH4-Bcl-2 plays a crucial role in the IP₃R-inhibitory action of full-length Bcl-2. Therefore, we mutated Lys17 into Asp in full-length 3xFLAG-Bcl-2, creating 3xFLAG-Bcl-2 K/D.

First, we compared the GST-Dom3-binding properties of 3xFLAG-Bcl-2 and 3xFLAG-Bcl-2 K/D by expressing these proteins in COS-1 cells and using GST pull-down assays (Figure 6). We found that the binding of 3xFLAG-Bcl-2 K/D to GST-Dom3 was severely compromised compared with wild-type 3xFLAG-Bcl-2 (Figure 7b).

Next, we examined the effect of 3xFLAG-Bcl-2 and 3xFLAG-Bcl-2 K/D overexpression in COS-1 cells on ATP-induced Ca²⁺ release. We applied 1 μM ATP, a submaximal concentration for triggering Ca²⁺ signals, in Fura-2-loaded COS-1 cells. We monitored the Ca²⁺ signals in mCherry-transfected cells (Supplementary Figure 6). In each experiment, 10 cells were selected and calibrated Ca²⁺ signals were obtained. Typical Ca²⁺ responses in empty-vector, 3xFLAG-Bcl-2- and 3xFLAG-Bcl-2 K/D-transfected cells are shown in Figures 7c–e, respectively. Cells expressing 3xFLAG-Bcl-2 displayed blunted ATP-triggered Ca²⁺ signals in comparison with empty vector- or 3xFLAG-Bcl-2 K/D-transfected cells (Figure 7f). 3xFLAG-Bcl-2 was much more potent in inhibiting IP₃R-mediated Ca²⁺ signals than 3xFLAG-Bcl-2 K/D (Figure 7f). In addition, there was no difference for TG-induced Ca²⁺ signals (Figure 7g). Finally, we examined the effect of 3xFLAG-Bcl-2 and 3xFLAG-Bcl-2 K/D overexpression on the protection against STS-induced apoptosis. We used the cleavage of poly-(ADP-ribose)-polymerase (PARP), a downstream target of activated caspase-3, to monitor STS-induced apoptosis in transfected COS-1 cells (Figure 7h). Compared with control cells, 3xFLAG-Bcl-2 significantly reduced PARP cleavage upon STS treatment. 3xFLAG-Bcl-2 K/D was much less potent than 3xFLAG-Bcl-2 in preventing STS-induced PARP cleavage (Figure 7i).

**Discussion**

The major findings of this study are that (1) BH4-Bcl-2 and BH4-Bcl-Xl, although very similar in primary sequence and secondary structure, act differentially on IP₃Rs, IICR and Ca²⁺-dependent apoptosis; (2) one critical residue that has an opposite charge in BH4-Bcl-2 versus BH4-Bcl-Xl is responsible for their distinct biological properties; and (3) mutating this residue in the BH4 domain of full-length Bcl-2 decreases its ability to bind and inhibit IP₃Rs and to protect against apoptotic stimuli. We pinpointed one residue critical for inhibiting IP₃Rs in the sequence of BH4-Bcl-2 versus BH4-Bcl-Xl that was not conserved in BH4-Bcl-Xl (Lys17) that was not conserved in BH4-Bcl-Xl (Asp11). This residue is of key importance for the specific action of BH4-Bcl-2 on the IP₃R. Changing Asp11 in BH4-Bcl-Xl into a Lys induced IP₃R binding and inhibition, leading to a BH4-Bcl-2-like function.

Bcl-2 and Bcl-Xl both act at the mitochondrial and the ER membranes, where they regulate ER Ca²⁺ dynamics via interaction with the IP₃R. Several reports suggested that Bcl-2 predominantly inhibits prosapoptotic Ca²⁺ transients, whereas Bcl-Xl predominantly stimulates...
IP₃R-mediated prosurvival Ca²⁺ oscillations. Nevertheless, other reports showed that Bcl-2 too may enhance IP₃R activity and/or stimulate Ca²⁺ oscillations. Hence, until now, it was not clear whether Bcl-2 and Bcl-Xl displayed distinct functional properties toward regulating IP₃Rs and thus Ca²⁺-regulated apoptosis or whether they were similar in their action. As we recently showed that BH4-Bcl-2 was sufficient to protect against IP₃R-mediated apoptosis, we now made a direct comparison of the BH4-domain properties of Bcl-2 and Bcl-Xl by using synthetic peptides. Our study reveals a specific cellular function for the BH4 domain of Bcl-2 as a potent inhibitor of IICR and Ca²⁺-dependent apoptosis, which is not shared by the BH4 domain of Bcl-Xl, although both motifs are very similar in sequence and structure. Our data indicate that this is because of a critical charge difference in one of the surface-accessible amino-acid residues. As a result, BH4-Bcl-Xl did not inhibit Ca²⁺ flux through the IP₃R. Nevertheless, BH4-Bcl-Xl protected against cell death.
However, this effect was significantly smaller than for BH4-Bcl-2 and was not due to inhibition of IICR. This was concluded from the observation that IDP counteracting the effect of BH4-Bcl-2 did not interfere with the protective function of BH4-Bcl-XI. Finally, using oxenogenous expression in COS-1 and WEHI7.2 cells, we demonstrated that the role of Lys17 is important for the action of full-length Bcl-2 on the IP$_2$R, as full-length Bcl-2 K/D was much less efficient in binding and inhibiting IP$_3$Rs as well as in protecting against apoptotic stimuli. We observed a weak binding of full-length Bcl-2 K/D (i.e., ~20% of the binding of wild-type Bcl-2) to the IP$_2$R fragment, which indicates that residues other than Lys17 may contribute to the binding of full-length Bcl-2 to the IP$_2$R. This remaining binding of Bcl-2 K/D to IP$_2$R may be responsible for the weak inhibitory property of this protein on IP$_3$R-mediated Ca$^{2+}$-signaling and its protective effects against STS-induced apoptosis. However, the latter may also be related to the antiaipoptotic actions of Bcl-2 K/D through its hydrophobic cleft and may therefore suggest that its ability to scaffold proapoptotic BH3-domain proteins is unaffected by this mutation in the BH4 domain.

Clearly, whereas Bcl-2 exclusively interacts with the central domain of the IP$_2$R, Bcl-XI seems to interact with the C-terminal tail of the IP$_2$R. The latter domain has been proposed to contain two putative BH3-like domains and may therefore interact with the hydrophobic cleft of Bcl-XI.

Besides the differential interaction with the IP$_2$R, Bcl-2 and Bcl-XI could also differ with respect to other previously identified targets of the BH4 domain of Bcl-2-family members, as calcinurin, VDAC, RAF-1 (v-raf-1 murine leukemia viral oncogene homolog 1), RAS (RAI Sarcoma), CED (cell death abnormal)-4, paxillin and NF-$kappa$-B (nuclear factor kappa-light-chain-enhancer of activated B cells), all of which may play a role in apoptosis. A side-by-side comparison between Bcl-2 and Bcl-XI will be required to examine whether there is a distinct or preferential action of either domain on these targets and whether the critical sequence difference between domain of Bcl-2 and Bcl-XI may be mediated by modulating mitochondrial targets. Although BH4-Bcl-2 and BH4-Bcl-XI appear to have distinct targets, these targets likely do not function in completely independent pathways. Indeed, a combination of BH4-Bcl-2 and BH-Bcl-XI did not provoke an additive protective effect and IP3RCYT abolished the protective effect of both BH4-Bcl-2 and BH4-Bcl-XI against CytC-induced apoptosis. Thus, Bcl-XI may act through its BH4 domain on a target downstream of the IP$_3$R, whereas other targets independently of the IP$_3$R/Ca$^{2+}$-signaling cascade cannot be excluded.

Our study may have important therapeutic consequences for cancers dependent on high levels of Bcl-2, like chronic lymphocytic leukemia. It may be possible to target the BH4 domain of Bcl-2 in these malignancies, while preserving essential biological functions of Bcl-XI in other cells.

To conclude, our study is the first to reveal a difference in the cellular activity of the BH4 domain of Bcl-2 and Bcl-XI toward IP$_3$R regulation because of a single residue difference between both domains.

Materials and Methods

Peptides. All synthetic peptides were obtained from Thermo Electron (Osterode, Germany). Biotinylated peptides were obtained from Lifetein (South Pleinfield, NJ, USA). Table 1 provides an overview of the different peptides used in this study and their primary sequence.

Plasmid vector constructs. The pGEX-6p2 construct (Amersham Biosciences, GE Healthcare, Diegem, Belgium) encoding a.a. 923–1581 of mouse IP$_3$R Domain 3 was obtained as previously described. The pDCN3.1 (+) mouse IP$_3$R2 and rat IP$_3$R were used as templates for the construction of pGEX-6p2 vectors encoding the corresponding regions of IP$_3$R2 and IP$_3$R3 (a.a. 910–1427). Their respective coding regions were amplified by PCR using the following primers: IP$_3$R forward (5'–GGCGGCAGTACATCGTGAGGCATCCACCGCACCAG-3'); IP$_3$R reverse (5'–GGCGGCCCGTATGAGACGCTGTGCAT-3'); IP$_3$R forward (5'–GGCGCCGAGTCCACGGTGAGTCCGATCAGCGGAGGGAC-3') and IP$_3$R reverse (5'–GGCGCCGAGATCTCTCAGACGCGCTACATGGGAC-3'). PCR products were purified, digested with BamHI and EcoRI (restriction sites are underlined above) and ligated into BamHI-EcoRI-treated pGEX-6p2 vector.

3xFLAG-Bcl-2 and Bcl-XI were generated by subcloning their respective full-length cDNAs into p3xFLAG-myc-CMV-24 vector (Sigma-Aldrich, Munich, Germany) at HindIII/BglII sites. The 3xFLAG-Bcl-2 K/D mutant was generated by PCR site-directed mutagenesis. To introduce the desired point mutations, we used the following primers: 3F-Bcl-2 K/D forward (5'–GCGGGATCCATCCATTATAAGCTGTCG-3') and 3F-Bcl-2 reverse (5'–GCGGGATCCATCCATTATAAGCTGTCG-3'). The 3xFLAG-Bcl-2 K/D mutant was generated by PCR site-directed mutagenesis. To introduce the desired point mutations, we used the following primers: 3F-Bcl-2 K/D forward (5'–GCGGGATCCATCCATTATAAGCTGTCG-3') and 3F-Bcl-2 reverse (5'–GCGGGATCCATCCATTATAAGCTGTCG-3'). The 3xFLAG-Bcl-2 K/D mutant was generated by PCR site-directed mutagenesis. To introduce the desired point mutations, we used the following primers: 3F-Bcl-2 K/D forward (5'–GCGGGATCCATCCATTATAAGCTGTCG-3') and 3F-Bcl-2 reverse (5'–GCGGGATCCATCCATTATAAGCTGTCG-3'). The 3xFLAG-Bcl-2 K/D mutant was generated by PCR site-directed mutagenesis. To introduce the desired point mutations, we used the following primers: 3F-Bcl-2 K/D forward (5'–GCGGGATCCATCCATTATAAGCTGTCG-3') and 3F-Bcl-2 reverse (5'–GCGGGATCCATCCATTATAAGCTGTCG-3'). The 3xFLAG-Bcl-2 K/D mutant was generated by PCR site-directed mutagenesis. To introduce the desired point mutations, we used the following primers: 3F-Bcl-2 K/D forward (5'–GCGGGATCCATCCATTATAAGCTGTCG-3') and 3F-Bcl-2 reverse (5'–GCGGGATCCATCCATTATAAGCTGTCG-3').
Cell culture and transfections. MEF cells were cultured at 37°C in a 9% CO₂ incubator in DMEM/Ham’s F12 medium (1:1; Invitrogen, Merelbeke, Belgium) supplemented with 10% fetal calf serum (Sigma-Aldrich), 3.8 mM L-glutamine (Glutamax, Invitrogen), 85 μl/ml penicillin and 85 μg/ml streptomycin (Invitrogen). C6 glioma cells were cultured in DMEM/Ham’s F12 medium (1:1), containing 10% fetal calf serum, 100 IU/ml penicillin, 100 μg/ml streptomycin, 2.5 μg/ml fungizone and 2 mM L-glutamine at 37°C, 5% CO₂. COS-1 cells were seeded at a density of 15 000 cells/cm² and cultured in DMEM supplemented with 10% fetal bovine serum (Sigma-Aldrich) at 37°C, 10% CO₂. At 2 days after plating, COS-1 cells were transiently transfected with the empty p3xFLAG-Myc-CMV-24 vector (Sigma-Aldrich) or containing the cDNA of Bcl-2 or of the Bcl-2 K/D mutant. The transfection procedure was performed using JetPRIME transfection reagent (Polyplus Transfections, New York, NY, USA) and following the manufacturer’s recommendations. For Ca²⁺-imaging experiments, COS-1 cells were also co-transfected with a pcDNA 3.1-mCherry vector (Invitrogen) using a DNA ratio of 1:2 between pcDNA 3.1-mCherry and p3xFLAG-Myc-CMV-24 vectors.

Figure 8 Bcl-2 K/D is less effective than Bcl-2 in protecting against STS-induced apoptosis in stable WEHI7.2 cell lines. (a) Stable WEHI7.2 cell lines expressing Bcl-2 or Bcl-2 K/D were created. The expression levels of Bcl-2 and Bcl-2 K/D were examined by western-blotting analysis using an anti-Bcl-2 antibody. Control WEHI7.2 cells display very low endogenous Bcl-2 levels. (b) The cleavage of poly(ADP-ribose)-polymerase (PARP) in control WEHI7.2 cells, WEHI7.2 cells expressing Bcl-2 and WEHI7.2 cells expressing Bcl-2 K/D was monitored by western-blotting analysis using an anti-PARP antibody. (c) FACS analysis of untreated and STS-treated PI/Annexin V-FITC-stained control, Bcl-2-overexpressing and Bcl-2 K/D-overexpressing WEHI7.2 cell lines (10 000 cells per analysis). The apoptotic population was identified as the AnnexinV-FITC-positive fraction (P2 + P3). The STS-induced apoptotic population was determined by the difference between the Annexin V-FITC-positive fraction of STS-treated cells and the untreated cells: (P2 + P3)_{STS}–(P2 + P3)_{untreated}. (d) Quantitative analysis from five independent experiments of the STS-induced apoptotic cell population, normalized to the values obtained for the control WEHI7.2 cells (% of control). (e) Fluorimetric analysis from three independent experiments of the caspase-3 activity in untreated and STS-treated control, Bcl-2-overexpressing and Bcl-2 K/D-overexpressing WEHI7.2 cells using a plate-reader assay. The difference in relative fluorescence units between STS-treated and untreated cells was calculated and plotted. In all these experiments, both Bcl-2 and Bcl-2 K/D significantly (*) protected against STS-induced apoptosis, but Bcl-2 K/D was significantly ($) less potent than Bcl-2. Statistically significant differences are indicated as in Figure 5.
WEHI7.2 murine cells were grown as described previously and nucleofected with either pSFFV-Neo, pSFFV-Neo-Bcl-2 or pSFFV-Neo-Bcl-2 K/D vectors, using the Amaxa nucleofector and the dedicated Mouse T cell Nucleofector Kit according to the manufacturer’s instructions (Amaxa-Lonzza AG, Basel, Switzerland). Resistant cells were stably selected with 1 mg/ml G418 (Invitrogen) as described in Chen et al., but no clonal expansion was performed.

Western-blot analysis and antibodies. COS-1 and WEHI7.2 cells were lysed in a buffer containing 25 mM Hepes, pH 7.5, 1% Triton X-100, 10% glycerol, 0.3 M NaCl, 1.5 mM MgCl₂, 1 mM DTT, 2 mM EGTA and protease inhibitor cocktail tablets (Roche, Basel, Switzerland). The protein concentration of the samples was determined by Bradford assay (Sigma-Aldrich) using bovine serum albumin (BSA) as standard. Proteins (10–20 μg) were separated by NuPAGE 4–12% Bis/Tris SDS-polyacrylamide gels using MES/SDS-running buffer (Invitrogen) and transferred onto a polyvinylidene fluoride (PVDF) membrane. After blocking with TBS containing 0.1% Tween and 5% non-fat dry milk powder, the membrane was incubated with the primary antibody overnight. Next, membranes were washed three times with Hanks’ balanced salt solution buffered with Hepes (HBSS-Hepes) supplemented with 0.137 mM NaCl, 0.44 mM KH₂PO₄, 5.55 mM D-glucose, 25 mM Hepes, pH 7.4) and subsequently three times with a low-conductivity electroporation buffer (4.02 mM K₂HPO₄, 10.8 mM KHPO₄, 1.0 mM MgCl₂, 300 mM sorbitol, 2.0 mM Hepes, pH 7.4). They were placed 400 μm underneath a two-wire Pt-Hr electrode on the microscopic stage and electroporated in the presence of a tiny amount of electroporation solution (10 μl). Electroporation was done with 50 kHz biphasic pulses applied as trains of 10 pulses of 2 ms duration each and repeated 15 times. The field strength was 100 V peak-to-peak applied over a 500 μm electrode separation distance. After electroporation, cells were thoroughly washed with HBSS-Hepes.

Fluo-3 Ca²⁺ imaging. C6 cells were seeded on 18 mm diameter glass coverslips and ester-loaded for 25 min with 5 μM Fluor-3-AM (Invitrogen) in HBSS-Hepes supplemented with 1 mM of probenecid (Sigma-Aldrich) and 0.01% Pluronic F-127 (Invitrogen) at 37°C, followed by de-esterification over 15 min. Subsequently, cells were loaded with 100 μM Dextran Texas Red (DTR; Invitrogen) and 20 μM Bcl-2 peptides using the in situ electroporation technique as described above. For UV flash-photolysis experiments, 50 μM caged IP₃ (Invitrogen) was also included in the loading solution. Imaging was carried out using an inverted fluorescence microscope equipped with a × 40 oil-immersion objective and an intensified CCD camera (Extended isis camera, Photonic Science, East Sussex, UK). In the case of stimulation by ATP, cells were superfused for 1 min with HBSS-Hepes followed by 8 min with 1 μM of ATP (Sigma-Aldrich) in HBSS-Hepes, whereas for TG experiments, cells were superfused for 1 min with Ca²⁺-free HBSS-Hepes containing 1 mM EGTA followed by 7 min with 2.5 mM TG (Invitrogen) in the same buffer. For IP₃-photoriberation experiments, cells were, after 10 s, spot illuminated with 1 kHz pulsed UV light (349 nm UV laser Explorer, Spectra-Physics, Oxfordshire, UK) during 20 ms (20 pulses of 90 μJ energy measured at the entrance of the microscope epifluorescence tube). The UV flash was applied at five different places along the electroporated area per dish. Images (1/5 s) were generated with software written in Microsoft Visual C++ 6.0 (http://msdn.microsoft.com/en-us/aa336402). Fluorescence-intensity changes in different cells (at least 20) were measured in situ with a high-speed imaging system (Lab.). For UV flash photolysis experiments, fluorescence-intensity changes in all cells in a predefined 3950 μm² region were analyzed. Ca²⁺ concentrations were calculated using the fraction of the peak-intensity changes quantified as the area under the curve (AUC) of the initial increase in fluorescence. For each peak, the fluorescence intensity was normalized to the mean of 10 control pulses.

Preparation of GST-fusion proteins. BL21 (DE3) Escherichia coli cells were transformed with pGEX-6P-2 constructs containing cDNAs of IP₃R1 domain 3 (GST-IP₃R1:D, a.a: 923–1581), IP₃R2 domain-3 analog (GST-IP₃R3IP₃R2: a.a: 913–1562), IP₃R3 domain-3 analog (GST-IP₃R3IP₃R3: a.a: 910–1427) or with

Table 1 Overview of the sequence of different peptides used in this study

| Peptide name | Peptide sequence |
|--------------|------------------|
| BH4-Bcl-2    | RTGYDREIVKMIYHKLQSGQYEW |
| BH4-Bcl-XI   | MSQSNRELVVDLSYKLSQGYSW |
| BH4-Bcl-2SCR | WYEKQRSLHGYIVYIREDNKTGYR |
| BH4-Bcl-2BIND | RTGYANAEIVKMIYEAELSAAEKWE |
| BH4-Bcl-2K/D | RTGYDREIVKMIYHKLQSGQYEW |
| BH4-Bcl-XI/D | MSQSNRELVVDLSYKLSQGYSW |
| IDP          | NVYTEIKCLNLPLDDRIVR |
| Biotin-BH4-Bcl-2 | Biotin-RTGYDREIVKMIYHKLQSGQYEW |
| Biotin-BH4-Bcl-XI | Biotin-MSQSNRELVVDLSYKLSQGYSW |
| Biotin-BH4-Bcl-XISC | Biotin-WYEKQRSLHGYIVYIREDNKTGYR |
| Biotin-BH4-Bcl-2BIND | Biotin-RTGYANAEIVKMIYEAELSAAEKWE |
| Biotin-BH4-Bcl-2BINDCR | Biotin-WKEKAAASLAGIMEYVIEAANNTKGYR |
| Biotin-BH4-Bcl-2K/D | Biotin-MSQSNRELVVDLSYKLSQGYSW |
| Biotin-BH4-Bcl-XI/D | MSQSNRELVVDLSYKLSQGYSW |
All fusion proteins were affinity purified and dialyzed against standard phosphate-buffered saline (PBS) without added Ca\textsuperscript{2+} or Mg\textsuperscript{2+} (2.67 mM KCl, 1.47 mM KH\textsubscript{2}PO\textsubscript{4}, 137.93 mM NaCl, 8.06 mM Na\textsubscript{2}HPO\textsubscript{4}, Invitrogen) using Slide-A-Lyzer with a cutoff of 3 kDa (Thermo Fisher Scientific, Pittsburgh, PA, USA). After dialysis, the concentration of the purified GST-fusion proteins was determined using BCA Protein Assay Reagent (Thermo Fisher Scientific, Pittsburgh, PA, USA) and the quality and integrity were examined by SDS-PAGE and GelCode blue stain reagent (Thermo Fisher Scientific) before GST pull-downs or SPR analysis.

**GST pull-downs.** Equal amounts (30 µg) of the intact full-length GST-fusion proteins or parental GST (control) were incubated in Interaction Buffer (50 mM Tris-HCl, 300 mM NaCl, 1 mM EDTA, 1% NP-40, 0.5% sodium deoxycholate, 0.5% BSA and protease inhibitor cocktail, pH 7.0) with 30 µg of different BH4 domains (BH4-Bcl-2, BH4-Bcl-Xl or a non-binding mutant (BH4-Bcl2BIND)) and immobilized on glutathione-Sepharose 4B beads (GE Healthcare Europe GmbH, Munich, Germany) via rotation in a head-over-head rotator for 2 h at 4 °C. The beads were washed four times with modified Interaction Buffer (150 mM NaCl instead of 300 mM NaCl, without BSA) and complexed GST-fusion proteins were eluted by incubating the beads with 40 µl LDS (Invitrogen) for 3 min at 95 °C and collected after centrifuging at 500 x g for 5 min. Eluates (10 µl) were subjected to western-blot analysis and the total protein content was visualized by GelCode blue staining of the gels. For the pull-downs with full-length Bcl-2 proteins, 200 µg of clear lysate from COS-1 cells transiently transfected with the 3xFLAG-Bcl-2 vector, 3xFLAG-Bcl2-2K or the empty vector were incubated with GST-tagged proteins using the same protocol as above. Eluates (10 µl) were subjected to western-blot and incubated with anti-FLAG HR-conjugated antibody, diluted 1: 4000 in 0.1% Tween/TBS.

**SPR measurements.** SPR experiments were performed as described before. The binding of GST-Dom3 and parental GST (control) to the wild-type or mutated BH4 domain of Bcl-2 or Bcl-XI was analyzed by SPR at 25 °C using a Biacore 2000 instrument (Uppsala, Sweden). Equal amounts (200 ng or 58.2 pmol) of over 80% pure biotinylated BH4 peptides were immobilized on four different flow cells of a streptavidin-coated sensor chip (BR-1000-32; Biacore, Uppsala, Sweden) using PBS supplemented with 0.005% P20 (Polysorbate-20) at pH 7.0. At least three independent sensor chips were used for the quantitative analysis.

Measurements with GST-fusion proteins as analyte were performed in PBS at a flow rate of 30 µl/min. Different concentrations of the analyte (injection volume 120 µl) were used in a random order to assess binding, expressed in terms of resonance units (RU). Bound peptide was removed by injection of 5 µl regeneration buffer (25 mM NaOH, 0.002% SDS) at 10 µl/min. Background signals were obtained from the reference flow cell, containing the BH4-scrambled peptide, and were subtracted to generate response curves using Biaevaluation 3.0 software (Biacore, Uppsala, Sweden) plotted and analyzed using BD FACSdiva Software (Becton Dickinson). Results were normalized as percentage decrease over control conditions. Differences were considered at P < 0.05 (double symbols) and P < 0.001 (triple symbols) after using a two-tailed paired Student's t-test (Excel Microsoft Office) or one-way ANOVA and Bonferroni post-test using Origin 7.0.

**Conflict of interest**

The authors declare no conflict of interest.

**Acknowledgements.** We thank Marina Crabbe, Anja Fioriozze and Kirsten Weltenhuysen for excellent technical help. We thank Dr. Yvva Ivasson for SPR training. We greatly appreciated the help of Dr. K Mikoshiba (Lab. for Developmental Neurobiology, Brain Science Institute, RIKEN, Japan), Dr. D Boehning (Department of Neuroscience and Cell Biology, University of Texas, Medical Branch, Texas, USA) and Dr. P Zimmermann (Dept. of Human Genetics, University of Texas Medical Branch, Texas, USA).
1. Chupuk JE, Moldoveanu T, Lambil F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell 2010; 37: 299–310.

2. Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 2009; 122: 427–431.

3. Chupuk JE, Green DR. How do BCL-2 family proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 2008; 18: 157–164.

4. Bertsch U, Deschermeier C, Fanwick W, Girkante I, Hillemeier K, Johnen H et al. The second messenger binding site of inositol 1,4,5-trisphosphate 3-insine is centered in the catalytic domain and related to the inositol trisphosphate receptor binding site. J Biol Chem 2000; 275: 1557–1564.

5. Hunter JJ, Bond BL, Paslow TG. Functional dissection of the human Bcl2 protein: sequence requirements for inhibition of apoptosis. Mol Cell Biol 1996; 16: 877–883.

6. Huang DC, Adams JM, Cory S. The conserved N-terminal BH4 domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J 1998; 17: 1029–1039.

7. Oakes SA, Lin SS, Bassik MC. The control of endoplasmic reticulum-initiated apoptosis by the BCL-2 family of proteins. Curr Mol Med 2006; 6: 99–109.

8. Huang DC, Adams JM, Cory S. The conserved N-terminal BH4 domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J 1998; 17: 1029–1039.

9. Oakes SA, Opferman JT, Pozzan T. Calcium release and mitochondrial apoptosis: implications for aging. J Cell Sci 2007; 120: 341–351.

10. Joseph SK, Hajnoczky G. IP 3 receptors in cell survival and apoptosis: Ca 2+ release and beyond. J Biol Chem 2008; 283: 951–968.

11. Hunter JJ, Bond BL, Paslow TG. Functional dissection of the human Bcl2 protein: sequence requirements for inhibition of apoptosis. Mol Cell Biol 1996; 16: 877–883.

12. Joseph SK, Hajnoczky G. IP 3 receptors in cell survival and apoptosis: Ca 2+ release and beyond. J Biol Chem 2008; 283: 951–968.

13. Pinto P, Giori C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca++ transfer in the control of apoptosis. Oncogene 2008; 27: 6407–6418.

14. Hayashi T, Rizzuto R, Hajnoczky G, Su TP. MAM: more than just a housekeeper. Trends Cell Biol 2009; 19: 53–64.

15. Spat A, Szanda G, Csordas G, Hajnoczky G. High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling. Cell Calcium 2008; 44: 51–63.

16. Decuyper JP, Monaco G, Missiaini L, De Smedt H, Parys JB, Bultynck G, IP3 receptors, mitochondria, and Ca signaling: Implications for aging. J Aging Res 2011; 2011: 920178.

17. Baltori G, Csordas G, Garcia-Perez C, Davies E, Hajnoczky G. Ca++-dependent control of the permeability properties of the mitochondrial outer membrane and voltage-dependent anion-selective channel (VDAC). J Biol Chem 2006; 281: 17347–17358.

18. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 2006; 174: 915–921.

19. Jones RG, Bui T, White C, Madesh M, Krawczyk CM, Lindsten T et al. The proapoptotic factors Bax and Bak regulate T cell proliferation through control of endoplasmic reticulum Ca++ homeostasis. Immunity 2007; 27: 268–280.

20. Oakes SA, Szmanda L, Opferman JT, Bassik MC, Nishino M, Pozzan T et al. Proapoptotic BAX and BAK regulate the type 1 inositol triphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 2005; 102: 105–110.

21. Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, Bootman MD et al. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biochem 2004; 96: 193–203.

22. Zhong F, Davis MC, McColl KS, Distelhorst CW. Bcl-2 differentially regulates Ca++ signals according to the strength of T cell receptor activation. J Cell Bioi 2006; 172: 127–137.

23. White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB et al. The endoplasmic reticulum gateway to apoptosis by Bcl-2 modulation of the InsP3R. Nat Cell Biol 2005; 7: 1021–1028.

24. Foskett JK, Yang Y, Cheung KH, Vais H. Bcl-XL regulation of InsP3 receptors gating mediated by dual Ca++ release channel Bcl-2 domains. Biophys J 2006; 90 (Suppl 1): 391a.