Heavy quarkonium production provides an ideal laboratory to understand quantum chromodynamics. In contrast to the unpolarized cross section, the quarkonium polarization measurement may provide more complete information for the production mechanism of heavy quarkonium.\(^1\)

A distinct example is the \(J/\psi\) polarization at hadron colliders. The polar asymmetry coefficient \(\lambda_0\) in the angular distribution of the leptons from the \(J/\psi\) decay is an important observable that encodes the \(J/\psi\) polarization information. At the Tevatron, the CDF Collaboration measured the quantity many years ago\(^2\). Their measurements show that \(\lambda_0\) for prompt \(J/\psi\) production in its helicity frame is around zero up to \(p_T = 30\text{GeV}\), indicating that the \(J/\psi\) are produced unpolarized at the Tevatron. The state-of-the-art theory that describes the heavy quarkonium dynamics, non-relativistic QCD (NRQCD)\(^3\), predicts that the heavy quark pair is allowed to be created in a color-octet(CO) intermediate state at short distances and then evolves nonperturbatively into a color-singlet(CS) quarkonium at long distances. Although this CO mechanism provides an opportunity to account for the CDF yield data\(^4\) that cannot be resolved in the CS model (CSM) even by including the higher-order QCD corrections\(^5\), the leading-order (LO) in \(\alpha_S\) NRQCD prediction gives a completely transverse polarization result at high \(p_T\) due to the gluon fragmentation contribution to the CO \(S_1^{[8]}\) intermediate state\(^6\). Recently, three groups have reported their next-to-leading order QCD corrections to the \(J/\psi\) polarization\(^7\). Remind that the \(J/\psi\) polarization is strongly dependent on the specific choice of the nonperturbative CO long-distance matrix elements (LDMEs), which can only be determined from the experimental data. Choosing different \(p_T\) regions of the input experimental data may result in very different predictions. Therefore, the precise measurement of polarization, especially at high \(p_T\), may provide a smoking-gun signature to distinguish between various production mechanisms of heavy quarkonium. Moreover, it was pointed out in Ref.\(^1\) that there is still a CO LDMEs parameter space left to make both the unpolarized yields and \(\lambda_0\) quite satisfactory compared to the hadroproduction data.

However, the prompt \(J/\psi\) production at the Tevatron and LHC is affected substantially by the higher charmonia (e.g. \(\chi_c\) and \(\psi'\)) transitions to \(J/\psi\). Furthermore, even for direct \(J/\psi\) production there are three leading CO LDMEs, which makes the precise determination of CO LDMEs uneasy. In contrast to the \(J/\psi\), the feed-down contribution only comes from \(\psi'\) to \(\chi_c\) transition but is not significant, and there is only one leading CO state \(S_1^{[8]}\) involving \(\chi_c\) direct production, which can make the determination of the nonperturbative LDMEs more easily and precisely. Moreover, the higher-order QCD corrections to the conventional P-wave CS state suffer from severe infrared divergences, while in NRQCD these divergences can be absorbed by the CO state and thus make the P-wave observables well defined beyond LO. Given these reasons, the investigation of \(\chi_c\) production at the LHC is an important way to test the validity of NRQCD factorization and the CO mechanism.

The first investigation for the unpolarized \(\chi_c\) hadroproduction at NLO level was performed in Ref.\(^8\). In this work, we extend our calculation to the polarized case, with the method described in Refs.\(^9,10\). Similar to the case of \(J/\psi\) polarization, the measurement of \(\chi_{c1}\) and \(\chi_{c2}\) polarizations at the LHC may provide important information for the production mechanism of heavy quarkonium. The polarization observables of \(\chi_{c1}\) and \(\chi_{c2}\) have been proposed in Refs.\(^11,12\). Experimentally, one may have two ways to measure the polarization of the \(\chi_{c1}\) and \(\chi_{c2}\) through the angular distributions of their decay products. One is to measure the \(J/\psi\) angular distribution from \(\chi_c \rightarrow J/\psi\gamma\). The angular distribution with respect to the \(J/\psi\) polar angle \(\theta\) in the rest frame of \(\chi_c\) can be formulated as\(^13\):

\[
\frac{dN_{\chi_{c1}}}{d \cos \theta} \propto 1 + \sum_{k=1}^{j} \lambda_{k\theta} \cos^{2k} \theta, \tag{1}
\]

where the polar asymmetry coefficients \(\lambda_{k\theta}\) can be ex-
pressed as the rational functions of the χ_{cJ}'s production spin density matrix $\rho^{\chi_{cJ}}$. More specifically, for χ_{c1} it is

$$\lambda_{\theta} = \frac{(1 - 3\delta)}{(1 + \delta)N_{\chi_{c1}} + (1 - 3\delta)\rho_{0,0}^{\chi_{c1}}},$$

with $N_{\chi_{c1}} \equiv \rho_{1,1}^{\chi_{c1}} + \rho_{0,0}^{\chi_{c1}} + \rho_{-1,-1}^{\chi_{c1}}$, while for χ_{c2}, the coefficients are

$$\lambda_{\theta} = 6[(1 - 3\delta_{0} - \delta_{1})N_{\chi_{c2}} - (1 - 7\delta_{0} + \delta_{1})(\rho_{1,1}^{\chi_{c2}} + \rho_{-1,-1}^{\chi_{c2}}) - (3 - \delta_{0} - 7\delta_{1})\rho_{0,0}^{\chi_{c2}}]/R,$$

$$\lambda_{2g} = (1 + 5\delta_{0} - 5\delta_{1})[N_{\chi_{c2}} - 5(\rho_{1,1}^{\chi_{c2}} + \rho_{-1,-1}^{\chi_{c2}}) + 5\rho_{0,0}^{\chi_{c2}}]/R,$$

with

$$N_{\chi_{c2}} = \rho_{1,1}^{\chi_{c2}} + \rho_{0,0}^{\chi_{c2}} + \rho_{-1,-1}^{\chi_{c2}} + \rho_{-2,-2}^{\chi_{c2}},$$

$$R = (1 + 5\delta_{0} + 3\delta_{1})N_{\chi_{c2}} + 3(1 - 3\delta_{0} - \delta_{1})(\rho_{1,1}^{\chi_{c2}} + \rho_{-1,-1}^{\chi_{c2}}) + (5 - 7\delta_{0} - 9\delta_{1})\rho_{0,0}^{\chi_{c2}}.$$

The parameters δ, δ_{0} and δ_{1} can be determined by the normalized multipole amplitudes. Following the notations in Ref. [18], we denote the normalized electric dipole (E1) transition amplitudes by $a_{1,J}^{0,1}$ and $a_{2,J}^{0,2}$ for χ_{c1} and χ_{c2} respectively, while $a_{1,1}^{J=1}$ and $a_{2,2}^{J=2}$ are the χ_{c1} and χ_{c2}'s normalized magnetic quadrupole (M2) amplitudes and χ_{c2}'s electric octupole amplitude (E3). The explicit expressions for δ, δ_{0} and δ_{1} are

$$\delta = \frac{(1 + 2a_{1,J}^{J=1}a_{2,J}^{J=1})}{2},$$

$$\delta_{0} = \frac{(1 + 2a_{1,J}^{J=2}(\sqrt{5}a_{2,J}^{J=2} + 2a_{2,J}^{J=2}) + 4a_{2,J}^{J=2}(a_{1,J}^{J=2} + \sqrt{7}a_{2,J}^{J=2}) + 3(3a_{3,J}^{J=2})^{2}}{10},$$

$$\delta_{1} = \frac{(9 + 6a_{1,J}^{J=2}(\sqrt{5}a_{2,J}^{J=2} - 2a_{2,J}^{J=2}) - 4a_{2,J}^{J=2}(\sqrt{2}a_{2,J}^{J=2} + 2\sqrt{5}a_{2,J}^{J=2}) + 7(3a_{3,J}^{J=2})^{2}}{30}.$$

An alternative way to study the polarizations of χ_{c1} and χ_{c2} is to measure the dilepton angular distributions from $\chi_{c,J} \rightarrow J/\psi \gamma \rightarrow l^{+}l^{-}\gamma$. There are two scenarios to describe the dilepton angular distributions [17]. Here, we only choose the second scenario presented in Ref. [17], where the z axis in the rest frame of J/ψ coincides with the direction of the spin quantization axis in the χ_{c} rest frame. The generic lepton polar angle θ' dependence is

$$\frac{dN_{\chi_{cJ}}}{d\cos\theta'} \propto 1 + \lambda_{\theta'} \cos^{2}\theta',$$

where

$$\lambda_{\theta'}^{\chi_{c1}} = \frac{-N_{\chi_{c1}} + 3\rho_{0,0}^{\chi_{c1}}}{R_{1}},$$

$$\lambda_{\theta'}^{\chi_{c2}} = \frac{6N_{\chi_{c2}} - 9(\rho_{1,1}^{\chi_{c2}} + \rho_{-1,-1}^{\chi_{c2}})}{R_{2}} - 12\rho_{0,0}^{\chi_{c2}},$$

with

$$R_{1} = [(15 - 2(a_{2,J}^{J=1})^{2})N_{\chi_{c1}} - (5 - 6(a_{2,J}^{J=1})^{2})\rho_{0,0}^{\chi_{c1}}]/(5 - 6(a_{2,J}^{J=1})^{2}),$$

$$R_{2} = [2(21 + 14(a_{2,J}^{J=2})^{2}) + 5(a_{2,J}^{J=2})^{2})N_{\chi_{c2}} + 3(7 - 14(a_{2,J}^{J=2})^{2}) - 5(a_{2,J}^{J=2})^{2})/(\rho_{1,1}^{\chi_{c2}} + \rho_{-1,-1}^{\chi_{c2}}) + 4(7 - 14(a_{2,J}^{J=2})^{2} - 5(a_{2,J}^{J=2})^{2})\rho_{0,0}^{\chi_{c2}}]/(7 - 14(a_{2,J}^{J=2})^{2} - 5(a_{2,J}^{J=2})^{2}).$$

In this case, the angular distribution observable is just the component of the χ_{c} feeddown to the J/ψ polarization when $p_{T} \gg m_{c} - m_{J/\psi}$. Note that λ_{2g} for χ_{c2} is suppressed by the higher-order multipole amplitudes, i.e. $a_{2,J}^{J=2}, a_{3,J}^{J=3}$. The observable is expected to be near zero. Hence, we refrain from establishing the p_{T} distribution of λ_{2g} here.

In our numerical computation, we choose the same input parameters as those presented in Ref. [11]. The renormalization scale μ_{r}, factorization scales μ_{f} and NRQCD scale μ_{A} are chosen as $\mu_{r} = m_{c} = \sqrt{4m_{c}^{2} + p_{T}^{2}}$ and $\mu_{A} = m_{c}$. The CO LDMEs are chosen as $\langle O^{(5)}(\chi_{c1}) \rangle = (2J + 1) \times (2.2^{+0.48}_{-0.32}) \times 10^{-3} \text{GeV}^{5}$, which are obtained by fitting the ratio σ_{c2}/σ_{c1} at NLO level to the CDF data [18], while the CS LDMEs are estimated using the B-T potential model [20] as $\langle O^{(5)}(\chi_{c2}) \rangle = (2J + 1) \times (2.54^{+0.33}_{-0.29}) \times 0.075 \text{GeV}^{5}$. The uncertainties from the scale dependence, which is estimated by varying μ_{r}, μ_{f} by a factor of $\frac{1}{2}$ to 2 with respect to their central values, the charm quark mass $m_{c} = 1.5 \pm 0.1 \text{GeV}$ and the error in the CDF data [18] are all encoded in the error estimations of the CO LDMEs. The normalized multipole amplitudes used here are taken from the CLEO measurement [21], i.e. $a_{2,J}^{J=2} = (-6.26 \pm 0.68) \times 10^{-2}$, $a_{3,J}^{J=3} = (-0.3 \pm 0.1) \times 10^{-2}$, $a_{3,J}^{J=3} = 0$. We keep the E3 amplitude $a_{3,J}^{J=3}$ vanishing, which is the consequence of the single quark radiation hypothesis [21, 22].

As performed in Ref. [17], we have tried to improve the extraction of CO LDMEs ($\langle O^{(5)}(\chi_{c1}) \rangle$) by including the LHcb data [24]. However, the magnitudes and accuracies of these parameters are not changed significantly. Measurements with higher resolution in the high p_{T} region will be useful to improve the theoretical predictions. In Fig. 4, the cross section ratios $\sigma_{\chi_{c2}}/\sigma_{\chi_{c1}}$ at the Tevatron Run II and LHC are shown. For comparison, besides the NLO NRQCD predictions, we also plot the LO NRQCD results and the LO CSM results. We see the NLO NRQCD result is consistent with the CDF data [18] at the Tevatron in the whole $p_{T}^{J/\psi}$ region, while in the forward rapidity region the NLO NRQCD prediction is in agreement with the LHcb data [23] at the LHC only when $p_{T}^{J/\psi} > 8 \text{GeV}$, which may be attributed to the fact that the non-perturbative effects make our fixed-order results unreliable when $p_{T}^{J/\psi}$ is lower. Note that $p_{T}^{J/\psi}$ is obtained from p_{T} of χ_{c} by the mass rescaling $p_{T}^{J/\psi} = \frac{m_{J/\psi}}{m_{\chi_{c}}}p_{T}$, which is proven to be a good approxi-
FIG. 1: (color online) The unpolarized cross-section ratio \(\sigma_{c,1}/\sigma_{c,2} \) vs. the transverse momentum \(p_T^{J/\psi} \) at the Tevatron Run II (left panel) and LHC with \(\sqrt{S} = 7 \text{TeV} \) (right panel). The rapidity cuts are the same as in the experiments [24, 25]. Results for LO NRQCD (solid line), NLO NRQCD (dashed line) and LO CSM (dotted line) are shown.

FIG. 2: (color online) Predictions of \(p_T \) spectra for the unpolarized \(\chi_{c1} \) (left column) and \(\chi_{c2} \) (right column) at the LHC with \(\sqrt{S} = 7 \text{TeV} \). Cross sections in the central rapidity region \((|y| < 2.4)\) and forward rapidity region \((2 < y < 4.5)\) for \(\chi_c \) are plotted. Results for LO NRQCD (solid line), NLO NRQCD (dashed line) and LO CSM (dotted line) are shown.

FIG. 3: (color online) The \(p_T \) dependence of \(\lambda_0 \) with \(J/\psi \) angular distributions from radiative decays \(\chi_{c1} \to J/\psi \gamma \) (left column) and \(\chi_{c2} \to J/\psi \gamma \) (right column) in the helicity frame at the LHC with \(\sqrt{S} = 7 \text{TeV} \). Results in central and forward rapidity regions are plotted. The LO NRQCD (solid line), NLO NRQCD (dashed line) and LO CSM (dotted line) predictions are shown.

The polar observables for \(\chi_{c1} \) approach to their maximal values, while the minimal values are obtained when \(\rho_{1,1}^{\chi_{c1}} = \rho_{1,1}^{\chi_{c2}} \gg \rho_{0,0}^{\chi_{c1}} \). For \(\chi_{c2} \), the polar asymmetry coefficients \(\lambda_0 \) and \(\lambda_\rho \) are maximum when \(\rho_{2,2}^{\chi_{c1}} = \rho_{0,0}^{\chi_{c1}} \gg \rho_{0,0}^{\chi_{c2}} \) and minimum when \(\rho_{2,2}^{\chi_{c2}} = \rho_{0,0}^{\chi_{c2}} \ll \rho_{0,0}^{\chi_{c1}} \). The \(p_T \) distributions of \(\lambda_0 \) and \(\lambda_{\rho} \) are shown in Fig. 3 and Fig. 4, respectively. It is worth noting that the transformation relation between the spin density matrices of \(S_1^{\chi_{c}} \) and those of \(T_2^{[1]} \)

\[
\rho_{J_s^c,J_s^c}\propto \sum_{l_z,s_z,s_z'} \langle 1, l_z; 1, s_z | J_s | 2, s_z' \rangle \langle 2, s_z' | J_s | 1, l_z; 1, s_z \rangle^{3/8}
\]

are used in our numerical results. The error bars are due to uncertainties of the CO LDMEs \(\langle S_1^{\chi_{c}} \rangle \) and errors in the normalized multipole amplitudes. From Figs. 3 and 4, we see that the measurements of these polarization observables may provide another important way to test the CO mechanism in the hadroproduction of heavy quarkonium. Moreover, our polarization predictions may also substantially reduce the systematic errors of experimental data at the LHC.

In summary, we have performed an analysis of the polarized \(\chi_{c1} \) and \(\chi_{c2} \) production at the LHC in NRQCD...
and in the color-singlet model. The complete NLO NRQCD predictions are given for the first time. These observables may provide important information, which is not available in the unpolarized p_T spectra, in testing the validity of NRQCD factorization. In addition, the predictions of the χ_c polarizations can be used to reduce the experimental systematic errors in the measurement of χ_c production. Compared with J/ψ production, the prompt χ_c production may play a unique role in understanding the heavy quarkonium production mechanism. Therefore we propose to measure these polarization observables at the LHC.

We are grateful to C. Meng, Y. J. Zhang and H. Han for helpful discussions. This work was supported in part by the National Natural Science Foundation of China (Nos.11021092,11075002). Y.Q.M is supported by the U.S. Department of Energy, contract number DE-AC02-98CH10886.

[1] N. Brambilla et al., “Heavy quarkonium: progress, puzzles, and opportunities,” Eur.Phys.J. C71 (2011) 1534, [hep-ph/0905.4527].
[2] CDF Collaboration, T. Affolder et al., “Measurement of J/ψ and $\psi(2S)$ polarization in pp collisions at $\sqrt{s}=1.8$ TeV,” Phys.Rev.Lett. 85 (2000) 2886–2891, [hep-ex/0004027].
[3] CDF Collaboration, A. Abulencia et al., “Polarization of J/ψ and $\psi(2S)$ mesons produced in pp collisions at $\sqrt{s}=1.96$-TeV,” Phys.Rev.Lett. 99 (2007) 132001, [hep-ex/0704038].
[4] G. T. Bodwin, E. Braaten, and G. Lepage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” Phys.Rev. D51 (1995) 1125–1171, [hep-ph/9407339].
[5] CDF Collaboration, F. Abe et al., “J/ψ and $\psi(2S)$ production in pp collisions at $\sqrt{s}=1.8$ TeV,” Phys.Rev.Lett. 79 (1997) 572–577.
[6] CDF Collaboration, F. Abe et al., “Production of J/ψ mesons from χ_c meson decays in pp collisions at $\sqrt{s}=1.8$ TeV,” Phys.Rev.Lett. 79 (1997) 578–583.
[7] J. M. Campbell, F. Maltoni, and F. Tramontano, “QCD corrections to J/ψ and $\psi(2S)$ production at hadron colliders,” Phys.Rev.Lett. 98 (2007) 252002, [hep-ph/0703113].
[8] I. Lansberg, “On the mechanisms of heavy-quarkonium hadroproduction,” Eur.Phys.J. C61 (2009) 693–703, [0811.4005].
[9] E. Braaten, B. A. Kniehl, and J. Lee, “Polarization of prompt J/ψ at the Tevatron,” Phys.Rev. D62 (2000) 094005, [hep-ph/0001368].
[10] M. Butenschoen and B. A. Kniehl, “J/ψ polarization at Tevatron and LHC: Nonrelativistic-QCD factorization at the crossroads,” Phys.Rev.Lett. 108 (2012) 172002, [1201.1872].
[11] K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang, and Y.-J. Zhang, “J/ψ polarization at hadron colliders in nonrelativistic QCD,” Phys.Rev.Lett. 108 (2012) 242004, [1201.2675].
[12] B. Gong, L.-P. Wan, J.-X. Wang, and H.-F. Zhang, “Polarization for Prompt J/ψ, $\psi(2S)$ production at the Tevatron and LHC,” Phys.Rev.Lett. 110 (2013) 042002, [1205.6682].
[13] Y.-Q. Ma, K. Wang, and K.-T. Chao, “QCD radiative corrections to χ_{cJ} production at hadron colliders,” Phys.Rev. D83 (2011) 111503, [1012.3987].
[14] H.-S. Shao, “HELAC-Onia: An automatic matrix element generator for heavy quarkonium;” Comput.Phys.Commun. 184 (2013) 2562–2570, [1212.5293].
[15] B. A. Kniehl, G. Kramer, and C. P. Palisoc, “$\chi(c1)$ and $\chi(c2)$ decay angular distributions at the Fermilab Tevatron,” Phys.Rev. D78 (2008) 094005, [hep-ph/0707386].
[16] F. Faccioli, C. Lourenco, J. Seixas, and H. K. Wohri, “Determination of χ_c and χ_b polarizations from dilepton angular distributions in radiative decays,” Phys.Rev. D83 (2011) 096001, [1103.4882].
[17] H.-S. Shao and K.-T. Chao, “Spin correlations in polarizations of P-wave charmonia χ_{cJ} and impact on J/ψ polarization,” Phys.Rev. D83 (2011) 094002, [1109.4610].
[18] CLEO Collaboration, M. Artuso et al., “Higher-order multipole amplitudes in charmonium radiative transitions,” Phys.Rev. D80 (2009) 112003, [0910.0046].
[19] CDF Collaboration, A. Abulencia et al., “Measurement of $\sigma\chi_{cJ}\sigma\chi_{cJ}\rightarrow J/\psi\gamma)/\sigma\chi_{cJ}\rightarrow J/\psi\gamma$ in pp collisions at $\sqrt{s}=1.96$-TeV,” Phys.Rev.Lett. 98 (2007) 232001,
[20] E. J. Eichten and C. Quigg, “Quarkonium wave functions at the origin,” Phys.Rev. D52 (1995) 1726–1728, hep-ph/9503356.

[21] G. Karl, S. Meshkov, and J. L. Rosner, “QUARK MAGNETIC MOMENTS AND E1 RADIATIVE TRANSITIONS IN CHARMONIUM,” Phys.Rev.Lett. 45 (1980) 215.

[22] M. Olsson, I. Suchyta, C.J., A. D. Martin, and W. J. Stirling, “TESTING THE SINGLE QUARK RADIATION HYPOTHESIS,” Phys.Rev. D31 (1985) 1759.

[23] LHCB Collaboration, R. Aaij et al., “Measurement of the cross-section ratio \(\sigma(\chi_{c2})/\sigma(\chi_{c1}) \) for prompt \(\chi_c \) production at \(\sqrt{s} = 7 \) TeV,” Phys.Lett. B714 (2012) 215–223, 1202.1080.

[24] Particle Data Group, K. Nakamura et al., “Review of particle physics,” J.Phys.G G37 (2010) 075021.

[25] LHCB Collaboration, R. Aaij et al., “Measurement of the ratio of prompt \(\chi_c \) to \(J/\psi \) production in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV,” Phys.Lett. B718 (2012) 431–440, 1204.1462.