Colonization with Resistant Microorganisms in Patients Transferred from Abroad: Who Needs to be Screened?

Masterarbeit zur Erlangung des Masters of Public Health im Rahmen des Weiterbildungsstudiengangs Public Health der Universitäten Basel, Bern und Zürich

vorgelegt von Tanja Kaspar von Unterägeri (ZG)

Murten, November 2014

Projektbegleitung: Jonas Marschall
Inselspital, Universitätsspital Bern
Inhalt

Abstract...2

Manuskript der eingereichten Publikation ...4

Kritische Würdigung / Methodenkritik ..20

Public Health-Relevanz ...26

Anhang / Ergänzende Informationen ..33

Selbständigkeitsklärung ...43

Curriculum Vitae ..45

Aufstellung über die für die Masterarbeit aufgewendete Zeit ..48
Abstract
Colonization with Resistant Microorganisms in Patients Transferred from Abroad: Who Needs to be Screened?

Objectives: While multi-drug resistant organisms (MDRO) are a global phenomenon, there are significant regional differences in terms of prevalence. In this study we determined risk factors for MDRO colonization among patients who returned from a healthcare system in a high-prevalence area. Factors predicting colonization could serve as screening criteria to better target those at highest risk.

Methods: This screening study included adult patients who had been exposed to a healthcare system abroad or in a high-prevalence region in Switzerland over the past six months and presented to our 950-bed tertiary care hospital between January 1, 2012 and December 31, 2013, a 24-month period.

Results: A total of 235 transfer patients were screened and analyzed, of which 42 (18%) were positive for a Gram-negative MDRO. In a univariate analysis, factors associated with screening positivity were hospitalization outside of Europe (p<0.001), surgical procedure in the hospital abroad (p=0.007), and - on admission to our hospital - active infection (p=0.002), antibiotic treatment (p=0.014) and presence of skin lesions (p=0.001). Only hospitalization outside of Europe and active infection on admission remained as independent predictors of Gram-negative MDRO colonization.

Conclusion: Our data show that a large proportion of patients (i.e., 82%) transferred to Switzerland from hospitals in high MDRO prevalence areas were not MDRO carriers. Basing our screening strategy on certain criteria (such as presence of skin lesions, active infection, antibiotic treatment, history of a surgical procedure abroad and hospitalization outside of Europe) promises to be a better targeted and more cost-effective strategy.
Manuskript der eingereichten Publikation
Colonization with Resistant Microorganisms in Patients Transferred from Abroad: Who Needs to be Screened?

T. Kaspar¹, A. Schweiger², S. Droz³, J. Marschall

¹ Bern University Hospital, Department of Infectious Diseases and Infection Prevention, Bern, Switzerland
² Kantonsspital Schwyz, Medizinische Klinik, Schwyz, Switzerland
³ Institute for Infectious Diseases, University of Bern, Bern, Switzerland

Short title: Screening after transfer from abroad

Key words: Screening; Multi-drug resistant organisms; Gram–negative bacteria; colonization; international travel

Key points: We performed a screening study of and determined risk factors for multi-drug resistant organism (MDRO) colonization in patients transferred from abroad. Independent risk factors for being MDRO colonized were hospitalization outside of Europe, surgical procedure in the hospital abroad, active infection at time of admission, antibiotic treatment on admission and skin lesions on admission.

Corresponding author and reprint requests to:
Tanja Kaspar, University Hospital Bern, Department of Infectious Diseases and Prevention, 3010 Bern, Switzerland (mail to: tanja.kaspar@insel.ch)

Word count: Text: 3,193; Abstract: 347; References: 32; Tables: 1; Key words: 5
Abstract:

Background: While multi-drug resistant organisms (MDRO) are a global phenomenon, there are significant regional differences in terms of prevalence. Traveling to countries with a high MDRO prevalence increases the risk of acquiring such an organism. In this study we determined risk factors for MDRO colonization among patients who returned from a healthcare system in a high-prevalence area (so-called transfer patients). Factors predicting colonization could serve as screening criteria to better target those at highest risk.

Methods: This screening study included adult patients who had been exposed to a healthcare system abroad or in a high-prevalence region in Switzerland over the past six months and presented to our 950-bed tertiary care hospital between January 1, 2012 and December 31, 2013, a 24-month period. Laboratory screening tests focused on Gram-negative MDROs and methicillin-resistant *Staphylococcus aureus* (MRSA).

Results: A total of 235 transfer patients were screened and analyzed, of which 43 (18%) were positive for an MDRO. Most of them yielded Gram-negative bacteria (42; 98%), with only one screening revealing MRSA (2%); three screenings showed a combination of Gram-negative bacteria and MRSA. For the risk factor analysis we focused on the 42 Gram-negative MDROs. Most of them were ESBL-producing *E. coli* and *Klebsiella pneumoniae* while only two were carbapenemase producers. In a univariate analysis, factors associated with screening positivity were hospitalization outside of Europe (p<0.001), surgical procedure in a hospital abroad (p=0.007), and - on admission to our hospital - active infection (p=0.002), antibiotic treatment (p=0.014) and presence of skin lesions (p=0.001). Only hospitalization outside of Europe (Odds Ratio, OR 3.23 (95% CI 1.54- 6.79)) and active infection on admission (OR 2.67 (95% CI 1.07-6.65)) remained as independent predictors of Gram-negative MDRO colonization.

Conclusion: Our data show that a large proportion of patients (i.e., 82%) transferred to Switzerland from hospitals in high MDRO prevalence areas were not MDRO carriers. Basing our screening strategy on certain criteria (such as presence of skin lesions, active infection, antibiotic treatment, history of a surgical procedure abroad and hospitalization outside of Europe) promises to be a better targeted and more cost-effective strategy.
Introduction:

Multi-drug resistant organisms (MDRO) are known to negatively impact patient outcomes (due to delaying and limiting antibiotic treatment options) and represent a considerable threat to public health because they can be transmitted from person-to-person. MDROs are becoming more prominent worldwide \(^1\,^2\). In Europe, the average percentage of *Klebsiella pneumoniae* resistant to third generation cephalosporins (a surrogate for the production of extended-spectrum betalactamase, ESBL) increased markedly over the last few years (21.5% in 2009 to 25.7% in 2012)\(^3\). Nevertheless, there are significant regional differences in prevalence \(^1\,^2\). In 2012, the percentage of *K. pneumoniae* resistant to third generation cephalosporin for example was 1.7% in Finland, 10-25% in Germany and France, 25-50% in Italy and 74.8% in Bulgaria \(^3\). Certain countries outside Europe suffer from enormous rates of MDROs (e.g., India, with an average prevalence of 72%)\(^1\). In Switzerland, the “Sentinel Surveillance of Antibiotic Resistance in Switzerland” (www.anresis.ch) identified 5.4% of *K.pneumoniae* to be resistant to third generation cephalosporins in 2012 \(^5\). In our own institution, only 0.9% of the *K. pneumoniae* tested in 2012 were ESBL producers.

MDROs may simply colonize a patient or cause an infection. Delayed administration of adequate antibiotic therapy and increased mortality are consequences of infection with MDROs \(^6\,^7\). Being colonized with an MDRO alone may lead to prolonged ICU stays, however, and is associated with increased mortality \(^8\). Apart from the implications for individual patients, there is the potential for interpersonal transmission and outbreaks \(^2\,^9\,^10\). These transmissions do not stop at international borders. Patients often return either colonized or infected with an MDRO after hospitalization abroad \(^2\,^8\,^11\,^13\) especially if the visited country struggles with antimicrobial resistance. A good example for this is the spread of NDM-1 (New Delhi metallo-β-lactamase): this resistance gene was first detected in 2008 in a patient who had been hospitalized in India; today, just a few years later, NDM-1 has spread to forty countries \(^13\). The stay in regions with a high MDRO prevalence is therefore an established risk factor for the acquisition of such an organism \(^12\,^14\,^15\).
The Infection Prevention Unit at Bern University Hospital pursues a multi-pronged strategy to keep the MDRO prevalence low that is based on recommendations by national and international guidelines \(^{16-18}\). One goal of this strategy is to identify patients who are colonized with a MDRO as early as possible. This aligns with recommendations to screen those with a high risk of being colonized with an MDRO \(^{15,19}\), including patients transferred directly from a hospital abroad or those who were hospitalized abroad in the previous four weeks up to 12 months \(^{15,20}\). Due to limited data on the MDRO situation in many countries a German expert commission now advises to screen patients with a suggestive medical history irrespective of the place of stay abroad \(^{15}\).

The aim of our study was to determine risk factors for MDRO colonization among transfer patients that will help us target high-risk patients in our future approach to screening.

Methods:

The University Hospital of Bern is a 950-bed tertiary care hospital that includes a 30-bed intensive care unit (ICU) and covers all medical specialties. Each year, there are approximately 38,000 admissions. According to written local infection control guidelines so-called “transfer patients” are screened on admission for carriage of MRSA (methicillin-resistant *Staphylococcus aureus*), ESBL (extended spectrum betalactamase) -positive, and carbapenemase-producing Gram-negative bacteria.

Transfer patients are defined as patients who were exposed to a healthcare system abroad or in a high prevalence region in Switzerland over the past six months. Exposure to a healthcare system includes admission to a hospital or outpatient visit in a medical center independent of the time the patient spent there or the reason for seeking care. The definition includes both patients who were directly transferred from a hospital abroad (i.e., repatriated) and those who returned by themselves. Transfer patients are screened at our institution regardless of whether they were hospitalized or seen as outpatients.
In this screening study we analyzed transfer patients who had a *standard admission screening* (with or without additional screening tests) between January 1, 2012 and December 31, 2013 (a 24-month period). A standard admission screening for MDRO required at minimum a nasal and an inguinal swab plus either a rectal swab or a stool sample. Additionally, if present, a swab was taken from skin lesions, wound drainage in a patient with a drain in place, urine in patients with urinary catheter and tracheal secretions in intubated or tracheostomy patients; these risk factor-based screening tests were labeled as *extended screening*. For the swabs, we used a cotton tip moistened with sterile 0.9% saline solution. A positive admission screening meant that at least one of the screening samples showed an MDRO. A standard screening set costs approximately 118 Swiss Francs.

For identifying patients with an MDRO screening on admission, we used the database of the Bern University Institute for Infectious Diseases, where all microbiological samples from the University Hospital are processed. This dataset was supplemented with data on patients’ length of stay in the hospital abroad, the interval between that stay and our screening, country of exposure, mode of patient transfer, antibiotic treatment, hospital service at admission, medical devices at time of admission, skin lesions at admission, clinical presentation and history of surgical procedure from the hospital electronic medical records. If a patient was admitted more than once during the study period, only the first admission was included. We excluded screenees younger than 16 years.

Microbiological Analysis

For the MRSA screening we used a Mannitol-oxacillin biplate. Identification of *Staphylococcus aureus* was done according to laboratory standard procedures. Susceptibility testing of *S. aureus* was performed using the Kirby-Bauer disk diffusion test and test results were interpreted according to the Clinical Laboratory Standards Institute (CLSI) standards\(^{21,22}\).

For the screening of ESBL and carbapenemase producing bacteria we used CHROMagar™ ESBL, McConkey with ceftazidime, and Drigalski with cefotaxime\(^{23}\).
Statistical Analyses
The statistical analyzes were performed using the STATA 12 software package. Categorical data were analyzed using the χ^2-test or the Fisher's exact test. For comparing of continuous variables we employed Student's t-test or Mann-Whitney U-test as appropriate. We created a multivariate model using logistic regression to identify independent risk factors for MDRO carriage. For assessing model quality, we used goodness-of-fit tests. A p-value of <0.05 was considered statistically significant.

Ethical Aspects
The data for patients included here were generated during routine medical care. MDRO screening was started as part of the hospital’s risk assessment strategy by the infection prevention program. There were no study-specific interventions administered. Quality improvement activities such as those initiated by the infection prevention program are exempt from IRB review at our institution.

Results:
Among 287 patients who had a complete admission screening for MDRO between January 1, 2012 and December 31, 2013, 52 did not qualify as transfer patients by our criteria and were therefore excluded. We further analyzed the remaining 235 patients. Of those, 97 (41%) were female and 138 (59%) men. Median age was 58 years (range, 17-95). Two hundred and fifteen (91%) patients had their residence in Switzerland at the time of screening while 20 (9%) patients reported a residence abroad. Of the 235 patients, 15 (6.4%) were transferred from a hospital in a high endemic region in Switzerland, 145 (61%) patients had contact to a healthcare system in another European country. The remaining 75 patients (32%) returned from countries outside of Europe.
In total, 43 (18%) of the 235 patients were screened positive for an MDRO. Most of them yielded resistant Gram-negative bacteria (42; 98%) with only a single screening result revealing MRSA (2%); three screenings showed a combination of MRSA and Gram-negatives. Thirty-six patients (15%) were colonized with one bacterial species, 6 (2.6%) with two species, and one patient (0.4%) with three different species.

Next we attempted to determine risk factors for having a positive screening result. For this particular analysis we focused on Gram-negative bacteria, which were detected in 42 out of 235 patients. Most of them were ESBL-positive *E. coli* and *K. pneumoniae* while only two were carbapenemase producers (Table 1). Significant associations for screening positivity were found for the followings variables: antibiotic treatment on admission was more frequent in carriers vs. non-carriers [17/42 (40.5%) carriers vs. 43/193 (22.3%) non-carriers; p=0.014], patients who had an active infection on admission [15/40 (37.5%) vs. 29/183 (15.83%); p=0.002]. Also, skin lesions on admission were associated with a positive screening [17/42 (40.5%) vs. 34/193 (17.6%); p=0.001]. Carriers were more likely to have undergone a surgical procedure in a hospital abroad than non-carriers [15/42 (35.7%) vs. 33/193 (17.1%); p=0.007].

A standard screening set required three samples (a nasal swab, an inguinal swab, plus either a rectal swab or a stool sample). More than three samples were taken if patients had additional risk factors (i.e., extended screening). Those who were found to be colonized had a median of four samples (range, 3-10) which was more than the 3 samples (range, 3-9) in those with negative screenings (p=0.03).

The 235 patients had contact to healthcare systems in a total of 62 different countries. Because of the low number of patient transfers from each individual country, we grouped them based on regions (Table 1). There were more carriers among those patients who had contact with a healthcare system outside of Europe than in those who returned from an European country [24/42 (57.1%) vs. 51/193 (2.4%); p<0.001]. Of note, direct transfer form a referring hospital was not associated with a higher likelihood of colonization (p=0.42). There was also no association between screening positivity and whether patients had been in- or outpatients in a hospital abroad (p=0.5).
Further, we determined independent predictors for screening positivity and identified active infection on admission as a significant risk factor [odds Ratio, OR 2.67 (95% CI 1.07- 6.65); p=0.035] as well as contact with a healthcare system outside of Europe [OR 3.23 (95% CI 1.54-6.79); p=0.002] (Table 1).

Discussion:

This study focused on MDRO colonization in transfer patients from abroad admitted to our institution. Our data show that a significant proportion (18%) of patients who were exposed to a healthcare system abroad or had been hospitalized in high endemicity region within Switzerland over the last six month were colonized with an MDRO. This observation reflects other reports [8,11,20], including two Swiss studies that found similar rates of MDROs in transfer patients [8,20]. The fact that most screenings yielded resistant Gram-negative bacteria is also consistent with recently published data [8,11]. The very low rate of MRSA detections, however, is unexpected given the higher rates of MRSA abroad, as suggested by data from the European Centre for Disease Prevention and Control [3].

A number of studies show that traveling to certain foreign countries is a risk factor for acquiring MDRO colonization [24-27]. In these studies travel to India and the African continent stood out for the elevated rates of such colonization. India, in particular, is notable for being the country where the NDM-1 resistance gene first surfaced [13]. Many other Asian countries are affected by this development. Our data confirm that patients returning from Asia were more likely to be colonized than those returning from other regions. In contrast to a study from the Netherlands, southern Europe could not be linked to MDRO colonization in our work, even though there is a gradient of Gram-negative resistance from the Mediterranean area to Scandinavia [3,11]. Transfer of a patient from outside Europe remained an independent factor for colonization in our analysis.
Our findings also show that transfer patients who received antibiotic treatment on admission were more likely to have a positive screening. This finding is not surprising. Even without an appropriate travel history, prior antibiotic use is a well-recognized risk factor for colonization and infection with MDROs14,28-31.

The Dutch study also meant to elucidate the association between patient-related factors and MDRO carriage in repatriated patients11. It is, however, an older study conducted between 1998 and 2001, when the global prevalence of MDROs, especially of Gram-negative bacteria, was much lower than today. This may be an explanation for why we identified additional risk factors. Skin lesions and a history of surgical procedure abroad, for example, were associated with having a positive screening in our study. To our knowledge this has not been recognized in returning patients before. However, our findings align with the commonality of risk factors for resistant pathogens first highlighted by Safdar and Maki in 200231. Patients who had an active infection on admission to our institution were also more likely to have a positive screening and this association remained in the multivariate model.

The standard screening set (nasal, inguinal swab, plus either a rectal swab or stool sample) was supplemented by additional swabs if certain clinical factors were present (skin lesions, urine in patients with urinary catheter, drainage fluid in a patient with wound drain in place, and tracheal secretions in intubated or tracheostomy patients). Based on this a transfer patient had at minimum of three screening samples taken. Those who turned out to be carriers had more screening samples taken (corresponding to the wounds or devices they had) than the non-carriers. In the literature, exposure to all types of invasive devices appears as a risk factor for MDRO acquisition31.

The definition of transfer patients is not uniform in older studies. We defined transfer patients as patients who were exposed to a healthcare system abroad or in a high prevalence region in Switzerland over the past six months. In some studies the authors only captured patients who underwent direct transfer from a hospital abroad8,11, while others screened patients who were exposed over various time frames, e.g., the past 4 weeks20 or 12 months2,15. In our study, the interval between last healthcare exposure and presentation to our hospital was between 1 and 126 days (median 10 days) in those who returned by themselves.
We do not know if longer intervals were missed by the admitting services or if there were in fact none. Among these “indirect” transfer patients, the days between hospitalization abroad and admission to our institution were not different between carriers and non-carriers [21.92 (±24.6) vs. 21.16 (±28.9); p=0.93]. We also did not find a difference in colonization between those who organized their return trip themselves and the direct referrals (p=0.4), although we had expected the latter to be a determinant of MDRO colonization. The ideal time frame to incorporate distant healthcare exposure abroad remains unclear.

We screened all transfer patients on admission independent of whether they had been in- or outpatients abroad and found no association between screening positivity and the type of hospital exposure. We could not identify other studies that made this comparison. Kaiser and colleagues 11 found no association between duration of stay at a hospital abroad and MDRO colonization, which supports our findings. Thus, it appears that the length of hospitalization abroad has limited influence on the colonization status, just like type exposure has.

While some studies show that contact to a healthcare institution or a transfer from abroad is a risk factor 14,20, others demonstrate that healthy travelers who were never hospitalized abroad were found to carry MDROs when they returned home 24-27. It is unclear if a stay in a hospital abroad is a more relevant determinant of MDRO acquisition than a visit in a high endemic country. More studies are necessary to answer this question.

The original aim of the study was to elicit factors that could help us improve our screening strategy. Had we limited the screening to those with risk factors (hospitalization outside Europe, history of surgical procedure in the hospital abroad and – on admission to our hospital - active infection, presence of skin lesion and antibiotic treatment), we would have swabbed only 61.7% (145 patients) of all transfer patients. With this “risk factor based screening” we would have found 36 patients with multiresistant Gram-negative bacteria, representing 86% of all carriers we identified with the current strategy.
A standard screening set costs approximately 118 Swiss Francs. For 235 screenings, assuming standard triple sets, we spent 27'730 Swiss Francs. This is 660 Swiss Francs per identified carrier. For comparison, the cost of the alternative strategy would have been 475 Swiss Francs. Modifying our strategy to only screen patients with ≥ 1 out of five risk factors would have meant missing six colonized patients. A detailed cost-benefit analysis, however, would need to take secondary costs such as clinical infection and transmission to others into account.

Our study has some limitations. We did not conduct admission screening for all patients and cannot make a statement on baseline MDRO colonization in our patient population. Moreover, we cannot be sure that every patient who had a contact to a healthcare system abroad was screened on admission; this depended on the admitting service and their thoroughness when taking the history. Also, we focused on patients who had at least a standard set of swabs upon admission and disregarded those without a complete screening (i.e., patients who had less than three swabs taken). Analyzing incomplete screening tests has the potential to introduce performance bias. Because of the missing or insufficient documentation of patient histories from the hospitals abroad we were only able to analyze antibiotic treatment on admission in our hospital and could not collect sufficient data on previous antibiotic treatment. Also, it was not possible for us to determine how long their stay in the hospital abroad was if patients had been inpatients there. As we screened patients on admission to our hospital we also cannot be sure if patients acquired the MDRO in the hospital abroad or if they were colonized with these bacteria before traveling to the foreign country.

For making a sound recommendation who to screen, many aspects need to be taken into consideration, including: data on harms and benefits of the screening (including multicenter studies), information about the cost generated by those with MDRO infection (antibiotic treatment, surgery, contact tracing), insight into the effectiveness of the screening test, and accurate knowledge about the MDRO prevalence.
Conclusion:

Eighteen percent of patients returning after exposure to a healthcare system abroad were screened positive on admission to our hospital. The major risk factors for acquiring a Gram-negative MDRO was hospitalization outside of Europe (p<0.001), history of surgical procedure in the hospital abroad (p=0.007), and on admission to our hospital active infection (p= 0.002), antibiotic treatment (p=0.014) and presence of skin lesions (p=0.001). Only hospitalization outside of Europe and active infection on admission remained as independent predictors.

Our data show that a large proportion of patients (i.e., 82%) transferred to Switzerland from hospitals in high MDRO prevalence areas were not MDRO carriers. To perform a leaner and maybe more cost-effective screening strategy we propose to screen those transfer patients with either a skin lesion, on antibiotic treatment, with an active infection on admission, or a history of surgical procedure abroad or hospitalization outside Europe.

Acknowledgments:

We thank Fabienne Kessler and Eveline Rolli for help with the data collection, Doris Nydegger for her contribution while introducing the screening, Magi Bächli for the critical revision, Andreas Kronenberg for providing local resistance data, and all members of the infection control team for their support.

Conflict of interest:

There are no conflicts of interest.
Reference:

1. Ho J, Tambyah PA, Paterson DL. Multiresistant Gram-negative infections: a global perspective. *Current opinion in infectious diseases*. Dec 2010;23(6):546-553.
2. Lepelletier D, Andremont A, Grandbastien B. Risk of highly resistant bacteria importation from repatriates and travelers hospitalized in foreign countries: about the French recommendations to limit their spread. *Journal of travel medicine*. Sep-Oct 2011;18(5):344-351.
3. ecdc. Surveillance report, Antimicrobial resistance surveillance in Europe 2012. 2013. http://www.ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-surveillance-europe-2012.pdf
4. Hawser SP, Badal RE, Bouchillon SK, et al. Monitoring the global in vitro activity of ertapenem against Escherichia coli from intra-abdominal infections: SMART 2002-2010. *International journal of antimicrobial agents*. Mar 2013;41(3):224-228.
5. Anresis. anresis.ch: Meldungen ausgewählter multiresistenter Mikroorganismen in der Schweiz. *Bulletin 40/41 Bundesamt für Gesundheit* 2014;40:642-643.
6. Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. *The Journal of antimicrobial chemotherapy*. Nov 2007;60(5):913-920.
7. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. Apr 15 2001;32(8):1162-1171.
8. Nemeth J, Ledergerber B, Preiswerk B, et al. Multidrug-resistant bacteria in travellers hospitalized abroad: prevalence, characteristics, and influence on clinical outcome. *The Journal of hospital infection*. Dec 2012;82(4):254-259.
9. Sanchini A, Spitoni MG, Monaco M, et al. Outbreak of skin and soft tissue infections in a hospital newborn nursery in Italy due to community-acquired meticillin-resistant Staphylococcus aureus USA300 clone. *The Journal of hospital infection*. Jan 2013;83(1):36-40.
10. Rettedal S, Lohr IH, Natas O, Giske CG, Sundsfjord A, Oymar K. First outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a Norwegian neonatal intensive care unit; associated with contaminated breast milk and resolved by strict cohorting. *APMIS: acta pathologica, microbiologica, et immunologica Scandinavica*. Aug 2012;120(8):612-621.
11. Kaiser AM, Schultz C, Kruithof GJ, Debets-Ossenkopp Y, Vandenbroucke-Grauls C. Carriage of resistant microorganisms in repatriates from foreign hospitals to The Netherlands. *Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases*. Nov 2004;10(11):972-979.
12. Rogers BA, Aminzadeh Z, Hayashi Y, Paterson DL. Country-to-country transfer of patients and the risk of multi-resistant bacterial infection. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. Jul 1 2011;53(1):49-56.
13. Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-beta-lactamase (NDM)-mediated carbapenem resistance. *Journal of medical microbiology*. Apr 2013;62(Pt 4):499-513.
14. Kuster SP, Hasse B, Huebner V, et al. Risks factors for infections with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae at a tertiary care university hospital in Switzerland. *Infection*. Feb 2010;38(1):33-40.
15. KRINKO. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO), Ergänzung zu den „Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen“ *Epidemiologisches Bulletin* 2014;21:183-184.
16. Siegel JD RE, Jackson M, Chiarello L, and the Healthcare Infection Control Practices Advisory Committee. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings 2007.

17. RKI. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut (RKI). Hygienemassnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen. "Bundesgesundheitsbl." 2012;55:1311–1354.

18. Widmer A RC, Troillet N. Neue Isolationsrichtlinien in den USA für Spitäler und andere Gesundheitseinrichtungen: Bedeutung für die Schweiz. "Swissnoso Bulletin." 2010;15(1).

19. Tissot F WA, Kuster SP, Zanetti G. Enterobacteriaceae mit Breitspektrum Beta-Laktamasen (ESBL) im Spital: Neue Empfehlung Swissnoso 2014. "Swissnoso Bulletin." 2014;18(2).

20. Fankhauser C, Zingg W, Francois P, et al. Surveillance of extended-spectrum-beta-lactamase-producing Enterobacteriaceae in a Swiss Tertiary Care Hospital. "Swiss medical weekly." Dec 26 2009;139(51-52):747-751.

21. CLSI. "Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. CLSI document M100-S18": Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

22. CLSI. "Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. CLSI document M100-S18": Wayne, PA: Clinical and Laboratory Standards Institute; 2013.

23. Seiffert SN, Marschall J, Perreten V, Carattoli A, Furrer H, Endimiani A. Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. "International journal of antimicrobial agents." Sep 2014;44(3):260-262.

24. Weisenberg SA, Mediavilla JR, Chen L, et al. Extended spectrum beta-lactamase-producing Enterobacteriaceae in international travelers and non-travelers in New York City. "PloS one." 2012;7(9):e45141.

25. Peirano G, Laupland KB, Gregson DB, Pitout JD. Colonization of returning travelers with CTX-M-producing Escherichia coli. "Journal of travel medicine." Sep-Oct 2011;18(5):299-303.

26. Tangden T, Cars O, Melhus A, Lowdin E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. "Antimicrobial agents and chemotherapy." Sep 2010;54(9):3564-3568.

27. Paltansing S, Vlot JA, Kraakman ME, et al. Extended-spectrum beta-lactamase-producing enterobacteriaceae among travelers from the Netherlands. "Emerging infectious diseases." Aug 2013;19(8):1206-1213.

28. Harbarth S, Sax H, Uckay I, et al. A predictive model for identifying surgical patients at risk of methicillin-resistant Staphylococcus aureus carriage on admission. "Journal of the American College of Surgeons." Nov 2008;207(5):683-689.

29. Pena C, Gudiol C, Tubau F, et al. Risk-factors for acquisition of extended-spectrum beta-lactamase-producing Escherichia coli among hospitalised patients. "Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases." Mar 2006;12(3):279-284.

30. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. "The New England journal of medicine." May 13 2010;362(19):1804-1813.

31. Safdar N, Maki DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. "Annals of internal medicine." Jun 4 2002;136(11):834-844.

32. Zwahlen M, Low N, Borisch B, et al. Population based screening - the difficulty of how to do more good than harm and how to achieve it. "Swiss medical weekly." 2010;140:w13061.
Table 1: **Risk Factors for Colonization with Gram-negative Bacteria in 235 Transfer Patients**

Variable	Positive N	Negative N	p value	multivariate analysis odds Ratio (95%CI)	p value
sex (female)	20 (47.6%)	77 (39.9%)	0.4		
Age	53 (±16.59)	55.4 (±19.6)	0.5		
Swiss residents	37 (88.1%)	178 (92.2%)	0.4*		
Inpatient hospitalization in Bern	36 (85.7%)	170 (88.1%)	0.7		
• Intensive care unit	10 (23.8%)	29 (15.0%)	0.2		
• surgical wards	13 (31.0%)	74 (38.3%)	0.4		
• medical wards	13 (31.0%)	67 (34.7%)	0.6		
Number of swabs/samples	4 (3-10)	3 (3-9)	0.03		
Risk factors on admission:					
Medical device	13 (31.0%)	41 (21.2%)	0.2		
• urinary catheter	10 (23.8%)	36 (18.7%)			
• intubation/ tracheostomy	6 (14.3%)	11 (5.7%)			
• wound drain	3 (7.1%)	4 (2.1%)			
Skin lesion	17 (40.5%)	34 (17.6%)	0.001	1.9 (0.75 - 4.66)	0.183
Number of risk factors	0 (0-3)	0 (0-3)	0.0006		
Antibiotic treatment	17 (40.5%)	43 (22.3%)	0.01	1.3 (0.53 - 3.31)	0.541
• two and more antibiotics	9 (21.4%)	14 (7.3%)			
• antibiotic days up to admission	8.5 (±11.7)	5.8 (±6.4)			
Active infection	15 (37.5%)	29 (15.9%)	0.002	2.7 (1.07 - 6.65)	0.035
Surgical procedure abroad	15 35.7%	33 17.1%	0.007	1.5 (0.59 - 3.85)	0.389
Direct transfer	24 (57.1%)	123 (63.7%)	0.4		
Indirect transfer, days between last exposure abroad until admission	7.7 (±17.7)	6.54 (±18.7)	0.7		
Individual transportation	13 (31.0%)	55 (28.5%)	0.8		
Europe	18 (42.9%)	142 (73.6%)	<0.01		
• Switzerland	2 (4.8%)	13 (6.7%)			
• Spain	4 (9.5%)	25 (13.0%)			
• Italy	2 (4.8%)	27 (14.0%)			
• France	4 (9.5%)	15 (7.8%)			
Outside Europe	24 (57.1%)	51 (26.4%)	<0.01	3.2 (1.54 - 6.79)	0.002
• Asia	14 (33.3%)	25 (13.0%)			
o south/southeast Asia	9 (21.4%)	11 (5.7%)			
• Africa	6 (14.3%)	11 (5.7%)			
• America (North, South)	3 (7.1%)	13 (6.7%)			

Continuous variables: t-test\(^a\) (Mean (± standard deviation, SD)) for normal distribution or Mann-Whitney U-test\(^o\) (median (range)) for others
Categorical datas: the \(\chi^2\)-test\(^a\) or the Fisher’s exact test\(^*\)

Note. Transfer patients are patients who were exposed to a healthcare system abroad or in a high prevalence region in Switzerland over the past six months.
Kritische Würdigung / Methodenkritik
Aufgrund der weltweiten Zunahme von multiresistenten Erregern (MRE) werden am Inselspital Bern seit 2011 sogenannte Transferpatienten bei deren Spitaleintritt mittels Screening auf eine Kolonisation mit MRE untersucht. Transferpatienten sind Patienten, die in den letzten 6 Monaten vor ihrem Spitaleintritt im Ausland hospitalisiert waren. Das Screening hat zum Ziel, Patienten mit einer Kolonisation oder Infektion durch einen MRE frühzeitig zu identifizieren und zu isolieren und dadurch interpersonelle Übertragungen zu verhindern. Die vorliegende Arbeit geht der Frage nach, ob die Screening-Strategie des Inselspitals in Bezug auf Transferpatienten gezielter durchgeführt werden kann. Konkret wollten wir wissen, ob es Faktoren gibt, die die Identifizierung von MRE-kolonisierten Patienten erleichtern. Damit wurde das Ziel angestrebt, dass weniger Patienten ein „low-yield“ und gelegentlich unangenehmes Screening über sich ergehen lassen müssen und unnötige Kosten eingespart werden können. Es gibt zwar nationale und internationale Empfehlungen von Fachgesellschaften zum Screening von Transferpatienten, diese sind aber weder einheitlich noch verbindlich.

Um die Gesundheit von Menschen und Tieren zu schützen, hat der Bundesrat die Entwicklung einer Nationalen Strategie zur Kontrolle und Bekämpfung von Antibiotikaresistenzen in Auftrag gegeben. Eine Massnahme zur Bekämpfung von Antibiotikaresistenzen im Spital ist, Patienten mit einer Kolonisation oder Infektion durch einen multiresistenten Erreger schnell zu erkennen, wenn nötig zu isolieren und Übertragungen dieser Erreger auf andere Patienten zu verhindern. Das Screening von Transferpatienten ist einen solche Massnahme. Die vorliegende Arbeit zeigt allerdings, dass zwischen dem 1.1.12 und 31.12.13 82% der am Inselspital gescreenten Transferpatienten nicht mit einem MRE kolonisiert waren. Dieses Resultat veranlasste uns dazu, die bestehende Screening-Strategie zu hinterfragen.

Bei der Einführung des Screenings von Transferpatienten im Jahr 2011 wurden Pflegende und Ärzte des Inselspitals von den Mitarbeitenden der Spitalhygiene über die Problematik der Transferpatienten aufgeklärt und bezüglich dem Screening geschult. Die Anleitung zum Screening wurde intern in den Hygienerichtlinien abgelegt (Anleitung zum Screening im Anhang).
Zudem wurde für dieses Screening ein spezielles Laborauftragsformular (Formular im Anhang) entworfen. Dieses Laborauftragsformular erlaubte es retrospektiv via Laborabfrage, die gescreenten Transferpatienten zu identifizieren.

Eine Schwierigkeit der aktuellen Screening-Strategie ist die Identifikation von Transferpatienten. Wird ein Patient nicht direkt von einem Spital im Ausland in das Inselspital verlegt, muss bei Spitaleintritt aktiv nach einer entsprechenden Anamnese gefragt werden. Dies bedeutet, dass die flächendeckende Durchführung des Screenings von der Qualität der Anamnese-Erhebung abhängig ist. Wird die Patientenamnese nicht vollständig erfragt oder ist den zuständigen Ärzten oder Pflegenden das Screening nicht mehr bewusst, wird es nicht durchgeführt.

Im Studienzeitraum vom 1. Januar 2012 bis 31. Dezember 2013 wurde bei mehr als 1000 Patienten (nicht nur Transferpatienten!) ein Screening durchgeführt. Ein Standardscreening für Transferpatienten beinhaltete neben einem Nasen- und Leistenabstrich eine Stuhlprobe respektive einen Rektalabstrich. Dieses Standardscreening wurde erweitert, wenn Wunden, Urin- oder Wunddrainagen vorhanden waren oder der Patient intubiert war. Bei 287 Patienten wurde ein Standardscreening bzw. ein erweitertes Screening durchgeführt. Von diesen 287 Patienten qualifizierten 235 als Transferpatienten. Die übrigen 52 Patienten wurden aus anderen Gründen gescreent. Bei den über 700 weiteren Patienten, die im Studienzeitraum gescreent wurden, ist unklar, aus welchen Gründen sie einem Screening unterzogen wurden. Sie hatten weder ein Standardscreening für Transferpatienten noch ein erweitertes Screening (d.h., sie wiesen weniger als drei Abstriche auf). Es bräuchte eine weitere Datensammlung, um diese Patienten analysieren zu können.

Damit das Screening der Transferpatienten nachhaltig so flächendeckend wie möglich umgesetzt wird, hat die Abteilung für Spitalhygiene Anfang 2014 eine Computerschulung (easylearn) zu diesem Thema dem Personal der Aufnahmekliniken zugestellt (Dokumentation zu easylearn im Anhang).
Die vorliegende Arbeit ist eine Screeningstudie (Querschnittstudie). Wir haben uns für dieses Studiendesign entschieden, da bereits mikrobiologische Screeningresultate vorlagen. Diese Daten wurden durch die Abteilung für Spitalhygiene und Infektionsprävention zur Qualitätskontrolle und zur Patientensicherheit erhoben. Zur Komplementierung der Daten, wurden Angaben aus den Patientenakten retrospektiv erhoben. Diese Angaben wurden in einem elektronischen Erfassungsformular eingefügt, welches wir im Datenmanagementprogramm *Filemaker pro Advanced* erstellt hatten (Erfassungsformular im Anhang). Diese selbständige Erstellung des Erfassungstools ermöglichte es, die dazugehörige Eingabemaske anwenderfreundlich einzurichten und somit die Dateneingabe übersichtlich und effizient zu gestalten. Weiter konnten bereits vorhandenen Daten in das Erfassungsformular importiert, ergänzt, auf ihre Vollständigkeiten geprüft und ins Statistikprogramm exportiert werden. In der vorliegenden Studie wurden keine Interventionen durchgeführt. Der Endpunkt (positives bzw. negatives Screeningergebnis) war klar definiert.

Der Nachteil des gewählten Studiendesigns war, dass nicht alle interessanten Variablen konsequent erfasst und analysiert werden konnten. Es fehlte die Möglichkeit, bei den betreffenden Patienten oder ihren Ärzten nachzufragen. Wir waren somit auf korrekt ausgefüllte Patientenakten angewiesen. Diese waren hinsichtlich der Anamnese nicht immer vollständig. Bei Patienten, die stationär im Inselspital aufgenommen wurden, war die Anamnese in Bezug auf einen Spitalaufenthalt im Ausland häufig vorhanden. Bei Patienten mit einem ambulanten Aufenthalt im Inselspital waren anamnestische Daten zum Krankenhausaufenthalt im Ausland schwieriger aufzufinden.

Eine Alternative zum gewählten Studiendesign wäre eine prospektive Kohorten-Studie gewesen. In einer solchen Kohorten-Studie könnten Patienten direkt zu ihrem Spitalaufenthalt im Ausland befragt werden. Dies hätte die Analyse von weiteren interessanten Variablen (z.B. Dauer des Spitalaufenthaltes im Ausland) erlaubt. Der Nachteil dieses Designs ist jedoch der grosse personelle und zeitliche Aufwand. Um die nötige Anzahl Patienten in die Kohorte einzuschliessen, hätte es mehr Zeit gebraucht. Die Organisation der Befragung hätte zudem Schwierigkeiten nach sich gezogen, da z.B. Transferpatienten teilweise ambulant oder an Wochenenden im Inselspital waren.
Weiter hätten Schwierigkeiten wie sprachliche Barrieren, Patienten die eine Befragung ablehnen oder Patienten die wegen ihres Gesundheitszustandes nicht hätten antworten können, bei der Befragung berücksichtigt werden müssen.

Eine weitere Alternative wäre eine Fall-Kontroll-Studie. Die „Fall–Gruppe“ in diesem Studiendesign wären die Transferpatienten gewesen. Zur Kontrolle hätten Patienten mit entsprechenden Krankheitsbildern aber ohne anamnestischen Spitalaufenthalt im Ausland gesucht werden müssen. Die Rekrutierung der Kontrollpatienten wäre aufgrund der vielen verschiedenen Krankheitsbilder aufwendig gewesen. Mit einer Fall-Kontroll Studie hätte die Frage beantworten werden können, wie hoch die Prävalenz von multiresistenten Erregern bei Patienten ohne Spitalaufenthalt im Ausland verglichen mit der Prävalenz von MRE bei Patienten mit Spitalaufenthalt im Ausland ist. Dies wäre eine interessante Frage gewesen, hätte aber nicht unserer Studienfrage entsprochen, ob es Faktoren gibt, die die Identifizierung von MRE-kolonisierten Patienten nach Rückkehr aus dem Ausland erleichtern.

Die vorliegende Arbeit hat Anlass dazu gegeben, die interne Screening-Strategie zu überdenken. Eine Möglichkeit das Screening einzuzgrenzen, wäre nicht mehr alle Transferpatienten zu screenen, sondern nur noch Transferpatienten mit Faktoren, die auf eine MRE-Kolonisation hinweisen. Als solche „Risikofaktoren“ haben sich Spitalaufenthalt ausserhalb Europa, chirurgischer Eingriff im Ausland sowie Antibiotikatherapie, Wunden, oder aktive Infektion bei Spitaleintritt herausgestellt.

Durch ein „Risikofaktoren-basiertes“ Screening müssten nur noch 62% der jetzigen Transferpatienten untersucht werden. Dadurch würden im Inselspital pro Jahr ca. 5‘000 Franken an Screeningkosten eingespart werden. Allerdings wären mit dieser „Risikofaktoren-basierten“ Screening-Strategie im Studienzeitraum 14% von den MRE-Trägern nicht sofort entdeckt worden. Es ist unklar, welche Folgen diese verpassten MRE-Träger auf die Transmission der entsprechenden Erregern im Spital sowie auf die Kosten hätten.
Weiter fiel auf, dass im Studienzeitraum 126 Tage der längste Intervall zwischen Spitalaufenthalt im Ausland und Eintritt ins Inselspital war. Dies obwohl bei der jetzigen Strategie alle Transferpatienten gescreent werden sollten, die in den letzten 6 Monaten (180 Tage) einen Spitalaufenthalt im Ausland hatten. Es ist unklar, ob länger zurückliegende Hospitalisationen nicht erfasst wurden oder ob es tatsächlich keine gab.

Die Resultate dieser Arbeit sind für die interne Evaluation der Screening-Strategie bezüglich der Transferpatienten sehr wichtig. Eine Besprechung der Resultate sowie die Evaluation des Screenings ist im Rahmen einer Spitalhygiene- Projektsitzung geplant. Die Resultate haben somit direkten Einfluss auf unsere künftige Screeningstrategie.
Public Health-Relevanz
Multiresistente Erreger (MRE) nehmen weltweit immer mehr zu (1). Im Vergleich zu Infektionen mit antibiotikasensiblen Erregern sind durch MRE ausgelöste Infektionen schwieriger zu behandeln und führen zu schlechteren Behandlungsergebnissen (1, 2). Gemäß den Behörden der Europäischen Union sterben in den EU-Ländern jährlich 25´000 Menschen an Infektionen mit multiresistenten Bakterien. Für die Schweiz existieren keine Zahlen zur Mortalität (3). Patienten, die mit einem MRE kolonisiert sind, werden durchschnittlich länger auf der Intensivstation betreut (4, 5), haben insgesamt längere Spitalaufenthalte, benötigen teurere Antibiotikatherapien (oftmals mit Reserveantibiotika) und werden vorzugsweise in einem Einzelzimmer isoliert. Dieses sind Faktoren, die neben dem grösseren Leid des einzelnen Patienten zu Mehrkosten führen und somit das allgemeine Gesundheitsbudget belasten. Gemäß WHO Regionalbüro Europa belaufen sich die durch MRE bedingten Mehrkosten für die Gesundheitsversorgung in den EU-Ländern auf 0.9 Mrd. Euro jährlich (6).

Abgesehen von den finanziellen Belastungen für das Gesundheitswesen und den schweren Folgen für einzelne Patienten mit einer Infektion durch einen MRE, besteht die Gefahr der interpersonellen Übertragung. Die Verbreitung eines multiresistenten Erregers kann von einer oder mehreren Personen ausgehen und auf weitere übergreifen (7, 8). Das „worst case scenario“ ist eine Epidemie mit MRE.

Die multiresistenten Erreger und damit verbundene Antibiotikaresistenzen werden in der Schweiz als wichtiges Gesundheitsthema wahrgenommen. Der Bundesrat nahm im Januar 2013 die „Kontrolle und Bekämpfung von Antibiotikaresistenzen“ als eine der 36 Massnahmen in die Gesamtschau „Gesundheit 2020“ auf. Diese hat zum Ziel, die Gesundheit von Menschen und Tieren zu schützen (9).

Mittlerweile haben die Bundesräte Alain Berset (Eidgenössisches Departement des Inneren EDI) und Johann Schneider-Amann (Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF) die Entwicklung einer nationalen Strategie in Auftrag gegeben. Bis Ende 2015 wird eine landesweite Strategie zur Kontrolle und Bekämpfung von Antibiotikaresistenzen angestrebt.
Da die Antibiotikaresistenz ein bereichsübergreifendes Thema ist, sind neben dem Bundesamt für Gesundheit (BAG) die Bundesämter für Veterinärmedizin (BLV), für Landwirtschaft (BLW) und für Umwelt (BAFU), sowie die Kantone an der Strategieentwicklung beteiligt. Handlungsfelder wurden bereits in Workshops (2013 und 2014) definiert. Diese Handlungsfelder sind Überwachung, Prävention, sachgemässer und verantwortungsvoller Einsatz von Antibiotika, Resistenzbekämpfung, Forschung und Entwicklung, Kooperation, Information und Bildung, sowie Rahmenbedingungen (10).

Im Bereich der Humanmedizin gibt es momentan keine einheitliche Strategie zur Bekämpfung der multiresistenten Erreger. Jedes Krankenhaus muss daher abhängig von der eigenen MRE-Prävalenz lokale Strategien entwickeln, um Übertragungen von MRE zu verhindern (11).

Diese MRE-Prävalenz ist regional sehr unterschiedlich (12, 13). Beispielsweise waren 2012 in Europa durchschnittlich 25.7% der *Klebsiella pneumoniae* resistent gegen Cephalosporine der dritten Generation (13). Allerdings wiesen in Finnland 1.7%, in Frankreich und Deutschland 10-25% und in Bulgarien 74% der *K. pneumoniae* diese Resistenz auf (13). In der Schweiz waren im selben Jahr 5.4% der *K. pneumoniae* resistent gegen Cephalosporine der dritten Generation (14).

Auch wenn die Schweiz im Vergleich zum Ausland tiefere Resistenzraten aufweist, können wir uns nicht isoliert betrachten. Aufgrund der geographischen Lage hat die Schweiz viele Kontakte zu anderen Ländern. Zudem reist die Schweizer Bevölkerung ausgesprochen gern. Gemäss Bundesamt für Statistik unternahmen 2012 86,5% der Schweizerinnen und Schweizer mindestens eine Reise. Ca. 64% dieser Reisen führten ins Ausland (15). Im europäischen Vergleich steht die Schweiz mit ihrer Reisetätigkeit an vierter Stelle (16). Dies stellt für die Überwachung, Bekämpfung und Prävention von multiresistenten Erregern eine Herausforderung dar, da MRE mitreisen können. Verschiedene Studien konnten zeigen, dass bereits eine einzige Reise in exponierte Länder das Risiko für eine Besiedelung mit MREs erhöhen kann (17-20). Dies bedeutet, dass auch „gesunde Personen“ mit einem MRE kolonisiert werden können. Besonders gefährdet sind aber Personen mit chronischen Grundkrankheiten und vor allem hospitalisierte Patienten. Bei diesen Personen wirkt sich eine Besiedelung oder Infektion mit einem MRE am schwersten aus (21).
Eine Option zur Überwachung, Resistenzbekämpfung und Prävention wäre es, alle Personen, die vom Ausland zurückkehren, auf eine Kolonisation mit MRE zu screenen. Diese Methode wäre sehr aufwendig und kostenintensiv und würde in die persönliche Freiheit eingreifen. Zudem wäre auch das Ergebnis eines solchen Screenings nur für eine kleine Bevölkerungsgruppe relevant. Es ist dementsprechend wünschenswert, eine Screening-Strategie so anzusetzen, dass auf diejenigen Personen abgezielt wird, bei denen sich eine Besiedelung oder Infektion mit einem MRE am schwersten auswirken würde, nämlich Personen mit chronischen Grundkrankheiten und hospitalisierten Patienten. In Spitälern erachten wir es daher als wichtig, Patienten, die mit einem MRE kolonisiert sind oder eine Infektion mit einem solchen Erreger haben, frühzeitig zu erkennen. Von dieser frühzeitigen Identifizierung der betroffenen Patienten profitieren alle weiteren hospitalisierten Patienten, weil Massnahmen eingeleitet werden können, um Übertragungen von multiresistenten Erregern zu vermeiden. Ausserdem ist eine schnelle Identifikation des Erregers für den betroffenen Patienten von Bedeutung, da eine allfällige Infektion baldmöglichst adäquat behandelt werden soll.

Den Schweizer Spitälern empfiehlt die Expertengruppe Swissnoso, dass alle Patienten, welche direkt aus einem ausländischen Spital repatriiert werden, beim Spitaleintritt auf eine Besiedelung mit MRE gescreent werden sollten. Das Robert Koch Institut in Deutschland (RKI) empfiehlt zusätzlich, nicht nur die direkt repatriierten Patienten zu screenen, sondern alle Patienten, die in den letzten 12 Monaten im Ausland hospitalisiert waren (22). Das Inselspital Bern entschied sich 2011 für einen Kompromiss zwischen beiden Strategien und screent alle Patienten, die in den letzten 6 Monaten einen Kontakt zu einer Gesundheitsinstitution im Ausland hatten.

Diese Strategie des Inselspitals ist aufwendig und kostenintensiv. Ein „Standard-Screening“ beinhaltet mindestens einen Nasen- und Leistenabstrich, sowie eine Stuhlprobe resp. einen Rektalabstrich. Das „Standard-Screening“ kostet mindestens 118.- Franken pro Patient. Jährlich werden im Inselspital ca. 120 Patienten gescreent, was Kosten in der Höhe von mindestens 14`160 Franken pro Jahr verursacht. Wie viele Patienten in anderen Spitälern in der Schweiz einem Screening unterzogen werden, ist unklar. Übersichtsarbeiten fehlen zu diesem Thema. Von den untersuchten Patienten im Inselspital ist der grösste Teil (82%) nicht mit einem MRE kolonisiert.
Die vorliegende Arbeit geht der Frage nach, ob die Screening-Strategie des Inselspitals gezielter durchgeführt werden kann. Konkret möchten wir wissen, ob es Faktoren gibt, die bei der Identifizierung von MRE-kolonisierten Patienten helfen könnten. Dies würde bedeuten, dass weniger Patienten ein „low-yield“ und gelegentlich unangenehmes Screening (Rektalabstrich) über sich ergehen lassen müssten. Des weiteren könnten bei einem gezielteren Screening auch die damit verbundenen Kosten gesenkt werden. Andererseits dürfen bei einem modifizierten Screening nicht viele MRE-Träger verpasst werden.

Die Resultate dieser Arbeit können anderen Krankenhäusern in der Schweiz potentiell einen Input für ihre eigene Strategieentwicklung geben. Zusammenfassend kann ein gezieltes Screening auf MRE einen wichtigen Beitrag zur Kontrolle und Bekämpfung von Antibiotikaresistenzen leisten, um unnötige Kosten zu sparen und die Gesundheit von Menschen und Tieren zu schützen. Dabei ist die Prävention von Ausbrüchen mit resistenten Bakterien unser höchstes Ziel.
Literaturangaben:

1. Ho J, Tambyah PA, Paterson DL. Multiresistant Gram-negative infections: a global perspective. Current opinion in infectious diseases. 2010;23(6):546-53. Epub 2010/08/31.

2. Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. The Journal of antimicrobial chemotherapy. 2007;60(5):913-20. Epub 2007/09/13.

3. BAG. Antibiotikaresistenzen Antworten auf häufig gestellten Fragen Stand: März 2014. Eidgenössisches Departement des Innern EDI, Bundesamt für Gesundheit: Bundesamt für Gesundheit; 2014 [updated July 2014; cited 2014 October 5]; Available from: http://www.bag.admin.ch/themen/medizin/14226/index.html?lang=de&download=NHzLpZeg7t,Ijn6l0N TU0492lZ6ln1acy4Zn4Z2qZpnO2Yuq2Z6gpJCLd4N8fWym162epYbg2c_JkJbNoKSn6A-.

4. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2001;32(8):1162-71. Epub 2001/04/03.

5. Nemeth J, Ledergerber B, Preiswerk B, Nobile A, Karrer S, Ruef C, et al. Multidrug-resistant bacteria in travellers hospitalized abroad: prevalence, characteristics, and influence on clinical outcome. The Journal of hospital infection. 2012;82(4):254-9. Epub 2012/10/30.

6. WHO. Strategischer Aktionsplan zur Bekämpfung von Antibiotikaresistenzen. Weltgesundheitsorganisation (WHO) Regionalbüro für Europa. EUR/RC61/142011 [updated September 2011; cited 2014 October 5]; Available from: http://www.euro.who.int/__data/assets/pdf_file/0010/147736/wd14G_AntibioticResistance_111382bhn.pdf.

7. Sanchini A, Spitoni MG, Monaco M, Raglio A, Grigis A, Petro W, et al. Outbreak of skin and soft tissue infections in a hospital newborn nursery in Italy due to community-acquired meticillin-resistant Staphylococcus aureus USA300 clone. The Journal of hospital infection. 2013;83(1):36-40. Epub 2012/11/20.

8. Rettedal S, Lohr IH, Natas O, Giske CG, Sundsfjord A, Oymar K. First outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a Norwegian neonatal intensive care unit; associated with contaminated breast milk and resolved by strict cohorting. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2012;120(8):612-21. Epub 2012/07/12.

9. BAG. Gesamtschau „Gesundheit2020“ Eidgenössisches Departement des Innern EDI, Bundesamt für Gesundheit: Bundesamt für Gesundheit; 2013 [updated January 2013; cited 2014 October 5]; Available from: http://www.bag.admin.ch/gesundheit2020/index.html?lang=de

10. BAG. Antibiotikaresistenzen: Strategie nimmt Form an; Juli 2014. Eidgenössisches Departement des Innern EDI, Bundesamt für Gesundheit: Bundesamt für Gesundheit; 2014 [updated July 2014; cited 2014 October 5]; Available from: http://www.bag.admin.ch/themen/medizin/14226/index.html?lang=de
11. Rogers BA, Aminzadeh Z, Hayashi Y, Paterson DL. Country-to-country transfer of patients and the risk of multi-resistant bacterial infection. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2011;53(1):49-56. Epub 2011/06/10.

12. Hawser SP, Badal RE, Bouchillon SK, Hoban DJ, Biedenbach DJ, Canton R, et al. Monitoring the global in vitro activity of ertapenem against Escherichia coli from intra-abdominal infections: SMART 2002-2010. International journal of antimicrobial agents. 2013;41(3):224-8. Epub 2013/01/12.

13. ecdc. Surveillance report, Antimicrobial resistance surveillance in Europe 2012.2013 [cited 2014 october 31]. Available from: http://www.ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-surveillance-europe-2012.pdf

14. Anresis. anresis.ch: Meldungen ausgewählter multiresistenter Mikroorganismen in der Schweiz. Bulletin 40/41 Bundesamt für Gesundheit 2014;40:642-3.

15. BFS. Reisen der Schweizer Wohnbevölkerung 2011. Bundesamt für Statistik Bundesamt für Statistik 2013 [updated November 2013; cited 2014 October 5]; Available from: http://www.bfs.admin.ch/bfs/portal/de/index/themen/10/22/publ.html?publicationID=5407.

16. eurostat. Teilnahme am Tourismus aus persönlichen Gründen. Europäische Kommission: eurostat; 2014 [updated July 2014; cited 2014 October 5]; Available from: http://epp.eurostat.ec.europa.eu/portal/page/portal/tourism/stat_illu/annual_data_trips/participation.

17. Weisenberg SA, Mediavilla JR, Chen L, Alexander EL, Rhee KY, Kreiswirth BN, et al. Extended spectrum beta-lactamase-producing Enterobacteriaceae in international travelers and non-travelers in New York City. PloS one. 2012;7(9):e45141. Epub 2012/10/03.

18. Peirano G, Laupland KB, Gregson DB, Pitout JD. Colonization of returning travelers with CTX-M-producing Escherichia coli. Journal of travel medicine. 2011;18(5):299-303. Epub 2011/09/08.

19. Tangden T, Cars O, Melhus A, Lowdin E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrobial agents and chemotherapy. 2010;54(9):3564-8. Epub 2010/06/16.

20. Paltansing S, Vlot JA, Kraakman ME, Mesman R, Bruijning ML, Bernards AT, et al. Extended-spectrum beta-lactamase-producing enterobacteriaceae among travelers from the Netherlands. Emerging infectious diseases. 2013;19(8):1206-13. Epub 2013/07/28.

21. anresis. Anresis.ch- Schweizerisches Zentrum für Antibiotikaresistenzen; . 2014; Available from: http://www.anresis.ch/index.php/anresis.html

22. KRINKO. Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO), Ergänzung zu den „Hygienemassnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen“ Epidemiologisches Bulletin 2014;21:183-4.
Anhang / Ergänzende Informationen
Anleitung zum Screening

Anhang 4

Screening von Patienten aus einem Spital im Ausland und festgelegten Spitälen in der Schweiz

Auf Grund einer höheren Häufigkeit von multiresistenten Erregern in Spitälem im Ausland und in einigen Regionen in der Schweiz, werden Patienten welche direkt aus einem der unten aufgeführten Spitälem ins Inselspital verlegt werden, oder in den vergangenen 6 Monaten ambulant oder stationär in einem dieser Spitäler behandelt wurden, am Eintrittstag auf eine Kolonisation durch Metillin-resisterter *Staphylococcus aureus* (MRSA), Extended-spectrum Beta-lactamase (ESBL) und Carbapenemase-produzierende gram-negative Bakterien (*E.coli, Klebsiella spp.*) gescreent.

Screening auf MRSA und ESBL/Carbapenemasebildner bei Patienten aus

- dem ausländischen Spital (alle Länder)
- dem Universitätsspital Genf (HUG)
- dem Universitätsspital Lausanne (CHUV)
- einem Spital im Tessin

Für das Screening müssen folgende Doppelschichttupfer verwendet werden:

Diese können telefonisch beim IFIK (Institution für Infektionskrankheiten Tel. 232 65) bestellt werden. Auftragsformulare können direkt vom Hygieneordner ausgedruckt (siehe Auftragsformulare) oder ebenfalls beim IFIK bestellt werden.

Resultate:
Patienten mit Risikofaktoren (Wunden, Drainagen etc): Resultat nach 2-4 Std
Patienten ohne Risikofaktoren: Resultat nach 4-5 Tage
Montag-Freitag: ertreffende Proben werden laufend bis 16:00 Uhr bearbeitet.
Samstag Sonntag: telefonische Anmeldung der Screening auf Sucher 181 67 01.
Proben, welche nach 16:00 Uhr im IFIK eintreffen, werden am nächsten Tag bearbeitet.

Isolation:
Auf eine vorsorgliche Kontaktsdesinfektion der gescreenten Patienten kann auf den Bettenstationen, den IMC’s und im ZAWR verzichtet werden, da die Resultate des MRSA-Screenings rasch verfügbar sind und das Übertragungsrisko von multiresistenten gram negativen Bakterien, verglichen zu MRSA, niedriger eingestuft wird. Dies gilt auch, wann das MRSA-Screeningresultat erst am nachfolgenden Tag verfügbar ist.

Auf der Intensivstation wird bei Patienten immer bis zum Erhalt des MRSA-Screening-Results eine „Kontaktisolation“ durchgeführt.
Merkblatt: Screening von Patienten aus einem Spital im Ausland und festgelegten Spitäler in der Schweiz

Patienten die direkt aus einem ausländischen Spital, den Universitätsspitälen Genf (HUG), Lausanne (CHUV) oder einem Spital im Kanton Tessin ins Inselspital verlegt werden, oder in den letzten 6 Monaten ambulant oder stationär in einem dieser Spitäler behandelt wurden, müssen am Eintrittstag auf eine Kolonisation durch MRSA und ESBL/Carbapenemasebildner gescreent werden.

Folgende Körperstellen müssen bei allen Patienten gescreent werden:

- **Nase beidseits**
 - Abstrich*, ein Doppelwatteträger für beide Seiten

- **Leiste beidseits**
 - Abstrich*, ein Doppelwatteträger für beide Seiten

- **Stuhl**
 - Stuhl in Nativstuhlröhrchen
 - Rektalabstrich*

Falls vorhanden müssen zusätzlich folgende Körperstellen gescreent werden:

- **Urindauerkatheter, Cystofix, Nephrostomie oder Ersatzblase**
 - Umm in einen sterilen Behälter (Vacutainer)

- **Wunden, Ulcera**
 - Abstrich*, je ein Doppelwatteträger pro Stelle

- **Tracheostoma/Intubation**
 - Tracheobronchialsekret in steriles Gefäss

- **Drainage**
 - Drainageflüssigkeit in steriles Gefäss

Entnehmen der Abstriche:

1. Doppelwatteträger vorgängig mit sterilem NaCl 0.9% anfeuchten (trocken versandte Tupfer sind für den Erregernachweis wertlos).
2. Abstrich entnehmen. Für Rektalabstrich Abstrichtupfer vorsichtig 2-3 cm in Analkanal vorschieben, rotieren und vorsichtig zurückziehen.

Wichtig:

Für die Abstriche werden die roten Doppelabstrichtupfer* verwendet. Für Nasen- und Rektalabstrich kann, falls nötig, ein Watteträger herausgezogen und vernichtet werden.

Für das Screening muss nachfolgendes Auftragsformular verwendet werden (1 Formular pro Patient).

Bei Fragen: Sucher Spitalhygiene 181 6699

* Abstrichtupfer können beim IFIK (Institution für Infektionskrankheiten) bestellt werden Tel. 2 32 65.

Ersetzt: Version 2.11 | Version: 1.12
Genehmigt durch Hygienekommission: 16.12.11 | Kap. 4, Anh. 4 / Seite 2 von 2
Laborauftragsformular

Insel Untersuchungsauftrag MRSA- und ESBL/Carbapenemasescreening

Entnahmedatum Entnahmefracht

Spitalaufenthalt lmff

Folgende Körperstellen müssen bei allen Patienten gescreent werden:

☐ Abstrich Nase
☐ Abstrich Ingua
☐ Stuhl nativ oder
☐ Rektalabstrich

Falls vorhanden müssen zusätzliche folgende Körperstellen gescreent werden:

☐ Urm (bei Blasenkatheter) oder
☐ Tracheotrichinalsor (bei Tracheotomie oder Tracheostoma)
☐ Abstrich Wunde
☐ Drainageflüssigkeit
☐ Andere

Für das Screening müssen folgende Abstrichtupfer (s. Abb.) verwendet werden

Bei Fragen/Unklarheiten Spitalhygieneteam kontaktieren (Sucher 181 66 99)

Materialbestellung: Exo. Auftragsformular: Sonstiges
Dokumentation zu „easylearn“

Auslandscreening

Lernziele

Nach Durcharbeitung der folgenden easyLEARN Sequenz kennen Sie:

• den Grund warum Patienten aus einem Spital im Ausland und definierten Spitälen in der Schweiz auf das Vorkommen von multiresistenten Erregern gescreent werden

• die Fälle in welchen ein Screening durchgeführt werden muss

• die korrekte Durchführung des Screenings

• den Ablauf des Probenversandes

• die weiterführenden Massnahmen

Lerninhalte

Die easyLEARN Sequenz beinhaltet folgende Lernschritte:

• Patientengruppe welche gescreent werden müssen

• Ablauf des Screenings

• die weiterführenden Massnahmen

Zielgruppe

• Pflegefachpersonen

• Ärzte

• und andere autorisierte Personen

Voraussetzungen

Dauer

Die Lernsequenz dauert max. 10 Minuten.
Hintergrund

Auf Grund einer höheren Häufigkeit von multiresistenten Erregern in Spitälen im Ausland und in einigen Regionen in der Schweiz, werden Patienten welche direkt aus einem der unten aufgeführten Spitälen ins Inselspital verlegt werden, oder in den vergangenen 6 Monaten ambulant oder stationär in einem dieser Spitäler behandelt wurden, am Eintrittstag auf eine Kolonisation mit Methicillin-resistentem Staphylococcus aureus (MRSA), Extended-spectrum Beta-lactamase (ESBL) und Carbapenemase-produzierenden gram-negative Bakterien (E. coli, Klebsiela spp.) gescreent.

Folgende Patienten müssen gescreent werden

- Patienten aus einem ausländischen Spital (alle Länder)
- Patienten aus dem Universitätsspital Genf (HUG)
- Patienten aus dem Universitätsspital Lausanne (CHUV)
- Patienten aus einem Spital in Tessin

Welche Patienten müssen bei Verlegung ins Inselspital, oder einem Aufenthalt (stationär oder ambulant) in den vergangenen 6 Monaten am Eintrittstag gescreent werden? (minimale Antwort im Text)

- Patienten aus einem ausländischen Spital (alle Länder)
- Patienten aus dem Spital Thun
- Patienten aus dem Universitätsspital Genf (HUG)
- Patienten aus dem Universitätsspital Lausanne (CHUV)
- Patienten aus einem Spital im Kanton Tessin
Durchführung des Screenings

Folgende Körperstellen müssen bei allen Patienten gescreent werden:

Körperstelle	Abstrich/Transportmedium
Nasenabstrich	ein Doppelspatenkügelchen (s. Bild unten) für beide Seiten benutzen (Nase rechts und links)
Leiste	ein Doppelspatenkügelchen (s. Bild unten) für beide Seiten benutzen (Leiste rechts und links)
Stuhl oder Rektalabstrich	Stuhl in Nativabstrichröhrchen, oder Rektalabstrich

Falls vorhanden muss zusätzlich folgendes gescreent werden:

Körperstelle	Abstrich/Transportmedium
Urin, Wund, Tracheostomie	Urin in einem sterilen Behälter (Vasculaner)
Wunde, Ulkus	Doppelspatenkügelchen (s. Bild unten)
Tracheostoma/Intubation	Tracheobronchialsekret in steriles Gefäß
Drainage	Drainageflüssigkeit in steriles Gefäß

Probenahme/Transportmedium

Zur Probenahme von Nasen-, Leiste-, Wund-, Rektalabstrich werden folgende Doppelspatenkügelchen benutzt.

Probenahme von Urin: Urin in einen sterilen Behälter (Vasculaner) abnehmen.
Probenahme von Stuhl: Stuhl in Nativabstrichröhrchen.

Transportmedien können telefonisch beim IFK (Institut für Infektionskrankheiten) Tel.: 23 33 41 bestellt werden.

Laborauftragsformulare können direkt vom Hygienester (Anhang 4) ausgedruckt oder ebenfalls beim IFK bestellt werden.
Korrekte Abstrichentnahme

1. Doppelabstrichtupfer vor Gebrauch mit sterielm NaCl 0.9% anfeuchten (erhöht die Keimausbeute)
2. Mit sanftem Druck über Haut oder Schleimhaut streichen.
 - Für Rektalabstrich die Doppelabstrichtupfer vorsichtig 2-3 cm in den Analkanal vorschieben, rotieren und vorsichtig zurückziehen
3. Abstrichstupfer zurück in das Abstrichröhrchen stecken und gut verschliessen
4. Abstrichröhrchen mit Patientendaten und Lokalisation der Probenentnahme (z.B. Nase, Leiste, Wunde, usw.) beschriften

Versand der Proben

Die Proben entweder mit der Rohpost ans Institut für Infekionskrankheiten (IFIK) senden
Rohpostnummer 2 32 66, oder dem nächsten Labortransport mitgeben.

Von Montag-Freitag werden die eingehenden Proben bis 16:00 Uhr laufend bearbeitet.
Proben, welche nach 16:00 Uhr im IFIK eintreffen, werden am nächsten Tag bearbeitet.

Wichtig: Samstag Sonntag, telefonische Anmeldung der Screening auf Sucher 181 67 91

Ab wann sind die Resultate verfügbar?

Bei Patienten mit Risikofaktoren (Wunden, Drainagen etc.) ist das MRSA Resultat nach 2-4 Std verfügbar.

Bei Patienten ohne Risikofaktoren sind die Resultate (MRSA und multiresistente gram negative Keime) nach 4-5 Tagen verfügbar.
Weiterführende Massnahmen

> Massnahmen auf der Klinik für Intensivmedizin

Bei Patienten auf der Intensivstation wird bis zum Erhalt des MRSA-Screening-Resultats eine Kontaktisolation durchgeführt.

> Massnahmen auf den Bettenstationen, IMC’s und im ZAWR

Auf den Bettenstationen, den IMC’s und im ZAWR kann auf eine vorsorgliche Kontaktisolation der gescreenten Patienten verzichtet werden.

Muss ein Patient, welcher auf der Bettenstation hospitalisiert ist nach dem Screening kontaktisoliert werden?

- ja
- nein
- werder noch

Herzliche Gratulation. Sie haben den Knowledge Snack Auslandscreening erfolgreich abgeschlossen.

Etwas vergessen? Sie können jeden Lernschritt wieder in der Wissensbörse nach Stichworten abrufen!

Neuerungen unterwegs? Müssen Sie demnächst selber für eine Schaltung sorgen? Verwenden Sie easyLEARN!

Smart-Tipp zeigen
Selbständigkeitserklärung
Hiermit bestätige ich, dass ich die gesamte Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Alle Stellen der Arbeit, die wörtlich oder sinngemäss aus Quellen entnommen wurden, habe ich als solche kenntlich gemacht.

Murten, 14.11.14

Tanja Kaspar
Curriculum Vitae
Persönliche Angaben

Vorname, Name: Tanja Kaspar-Löhri
Wohnadresse: Hauptgasse 38, CH 3280 Murten
Mobile: +41 78 631 83 74
E-Mail: Tanja.Kaspar@insel.ch
Geburtsdatum: 29.10.1976
Zivilstand: verheiratet
Nationalität: Schweizerin

Ausbildung

01/2011 bis heute MPH Weiterbildungsstudiengang Universität Bern, Zürich und Basel
11/2009 ESCMID-Shea Training Course in Hospital Epidemiology
Applied Module / San Lorenzo del El Escorial Spanien
11/2008 ESCMID-Shea Training Course in Hospital Epidemiology
Basic Module / Oisterwijk Holland
2008 bis 2009 Eidgenössisches Zertifikat für nebenberufliche Lehrpersonen an höheren Fachschulen Modul 1 und Modul2 / EHB Bern
2/2005 bis 3/2007 Lehrgang zur Pflegekraft für Hygiene / Charité Berlin
8/2004 bis 1/2005 Höherer Fachausbildung Stufe I, Grundmodule / SBK Bildungszentrum Zürich
3/2001 bis 6/2001 Fortbildung zur Praktikumsbegleiterin / Bern
1996 bis 2000 Schule für Gesundheits- und Krankenpflege DN II / Zug
1983- 1995 Primar-, Real- und Sekundarschule / Unterägeri sowie Vorschule für Spitalberufe / Zürich
Diverse fachliche Weiterbildungen

Berufliche Tätigkeit

3/2014 bis heute Leiterin Hygieneberatungsteam / Universitätsklinik Inselspital Bern
6/2004 bis 3/2014 Fachperson für Spitalhygiene / Universitätsklinik Inselspital Bern
1/2003 bis 12/2003 Stellvertretende Stationsleiterin auf einer orthopädischen Station / Salemspital Bern

6/2000 bis 12/2002 Pflegefachfrau DNII, Schwerpunkt: Gefässchirurgie, Thorax- und Kieferchirurgie und Urologie Praktikumsbegleiterin der Lernenden / Lindenhofspital Bern

Artikel

2014 Cusini A, Schweiger A, Nydegger D, Loehri T, Mühlemann K, Marschall J. Improved hand hygiene compliance after eliminating mandatory glove use for patients on contact precautions (submittiert)

Abstract

2014 Gebreselassie HM, Kaspar T, Droz S, Marschall J. Low yield of MRSA screening in hemodialysis patients: 10 years’ experience. ICAAC, Washington DC, 2014.

Fremdsprachenaufenthalte / weitere Tätigkeiten

6/2004 Englischkurs / Malta

8/1995 bis 10/1995 Englischkurs / Southbourne England

1993 bis 1994 Italienischkurs und Au-pair / Ponte Capriasca Tessin

1/2004 bis 5/2004 Kinderbetreuerin und Snowboardlehrerin Schweizerische Ski- und Snowboardschule / Lenk
Aufstellung über die für die Masterarbeit aufgewendete Zeit
Thema	Datum	Zeit in Stunden
Ideensammlung, Wahl des Themas und Literaturrecherche	März 2013	50
Besprechung mit Projektbetreuer J. Marschall	März 2013	2
Verfassen und einreichen der Projektskizze	Mai und Juni 2013	30
Vorstellung der Projektskizze (Studienleitungssitzung Zürich)	11.07.14	1
Besprechung mit Projektbetreuer über Vorgehensweise und Plan	17.09.13	1
Besprechung mit Sara Droz Institut für Infektionskrankheiten (ifik): Welche Daten kann die Mikrobiologie liefern?	23.09.2013	1
Erarbeitung des Erfassungsbogen in *Filemaker pro Advanced*	23.09.13 - 04.10.13	17
Besprechung des Erfassungsbogen mit Projektbetreuer J. Marschall	04.10.13	2
Besprechung mit Frau Endrich von der Codierungsabteilung über Zugang zu Daten	09.10.13	1
Import der Daten vom (ifik) in Erfassungsbogen (Daten 1.1.2012- 30.06.2013)	10.10.13	3
Datencleaning der importierten Daten (nur komplette Screenings)	10.10.13 - 11.10.13	5
Test Datensammlung (Komplementierung der Datensätze aus den medizinischen Berichten)	14.10.13 - 25.10.13	8
Anpassung des Erfassungsbogen nach Test inkl. Rücksprache mit Projektbetreuer J. Marschall	30.10.13	2
Datensammlung (Komplementierung der Datensätze aus den medizinischen Berichten)	20.01.14 - 10.05.14	100
Aktivität	Datum	Tage
--	----------	------
Import der Daten vom (ifik) in Erfassungsbogen (Daten von 1.07.2013-31.12.2013)	22.02.14	2
Datencleaning der importierten Daten (nur komplette Screenings)	22.02.14	2
Besprechung mit Projektbetreuer J. Marschall bezüglich Umfang der Datensammlung sowie Anforderung von Unterstützung.	10.03.14	1
Einführung von 2 Fachpersonen Spitalhygiene als Unterstützung in Datensammlung	12.03.14	3
Einführung von A. Schweiger Assistanzarzt der Spitalhygiene zur Unterstützung in der Datensammlung bei unklaren Fällen	17.03.14	2
Besprechung von unklaren Fällen mit A. Schweiger	17.03.14 - 10.5.14	8
Zusammenfügen der gesammelten Daten, Überprüfung auf Vollständigkeit und Unklarheiten beidseitigen	10.05.14 - 27.05.14	15
Vorbesprechung der Datenanalyse mit Projektbetreuer J. Marschall	23.05.14	1
Datenanalyse	27.05.14 - 15.07.14	25
Besprechung der Resultate und Verifizierung der Datenanalyse mit Projektbetreuer J. Marschall	15.07.14 - 18.07.14	5
Datenanalyse 2	18.07.14	3
Literaturrecherche (aktuelle Literatur)	20.07.14 - 26.09.14	9
Verfassen der Publikation (Entwurf 1) inkl. Tabelle	20.07.14 - 26.09.14	50
Überarbeiten Entwurf 1 → Verfassen von Entwurf 2	13.10.14 - 17.10.14	20
Schreiben der Public Health Relevanz inkl. weitere Literaturrecherche	05.10.14 - 17.10.14	15
Schreiben der Methodenkritik	13.10.14 - 17.10.14	14
Aktualisierung des CV	13.10.14 - 17.10.14	2
Aktivität	Datum	Dauer
--	--	-------
Besprechung von Entwurf 2 mit Projektbetreuer J. Marschall	03.11.14	2
Überarbeiten Entwurf 2 → Verfassen von Entwurf 3	31.10.14 - 09.11.14	10
Anforderungen von 3 möglichen Papers überprüfen	11.11.14	2
Überarbeiten Entwurf 3 mit Inputs der co Autoren → Verfassen Entwurf 4	12.11.14 - 14.11.14	8
Besprechung von Entwurf 4 mit Projektbetreuer J. Marschall sowie Auswahl des Papers	14.11.14	1
Letzte Korrekturen Entwurf 4 → Definitive Version	15.11.14	3
Zusammenfügen der verschiedenen Kapiteln und Formatierung der Masterarbeit	15.11.14	5
Letter to the editor für Publication	15.11.14	1
Eingabe der Publikation ins Paper	16.11.14	2
Total	1.3.13 - 17.11.14	434