A translation of

“Verallgemeinerung des Sylow’schen Satzes”
by F. G. Frobenius
Sitzungsberichte der Königl. Preuß. Akad. der Wissenschaften zu Berlin, 1895 (II), 981–993.
A generalization of Sylow’s theorem.

By G. Frobenius.

Every finite group whose order is divisible by the prime \(p \) contains elements of order \(p \). (Cauchy, Mémoire sur les arrangements que l’on peut former avec des lettres données. Exercises d’analyse et de physique Mathématique, Vol. III, §. XII, p. 250.) Their number is, as I will show here, always a number of the form \((p - 1)(np + 1)\). From that theorem, Sylow deduced the more general one, that a group whose order \(h \) is divisible by \(p^\kappa \), must contain subgroups of order \(p^\kappa \). (Théorèmes sur les groupes de substitutions, Math. Ann., Vol. V.) I gave a simple proof thereof in my work Neuer Beweis des Sylow’schen Satzes, Crelle’s Journal, Vol. 100. The number of those subgroups must, as I will show here, always be \(\equiv 1 \pmod{p} \). If \(p^\lambda \) is the highest power of \(p \) contained in \(h \), then Sylow proved this theorem only for the case that \(\kappa = \lambda \). Then any two groups of order \(p^\lambda \) contained in \(\mathcal{H} \) are conjugate, and their number \(np + 1 \) is a divisor of \(h \), while for \(\kappa < \lambda \) this does not hold in general. I obtain the stated results in a new way from a theorem of group theory that appears to be unnoticed thus far:

In a group of order \(h \), the number of elements whose order divides \(g \) is divisible by the greatest common divisor of \(g \) and \(h \).

§. 1.

If \(p \) is a prime number then any group \(\mathfrak{P} \) of order \(p^\lambda \) has a series of invariant subgroups (chief series) \(\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_{\lambda-1} \) of orders \(p, p^2, \ldots, p^{\lambda-1} \), each of which is contained in the subsequent one. Sylow (loc. cit., p. 588) derives this result from the theorem:

1. Every group of order \(p^\lambda \) contains an invariant element of order \(p \).

An invariant element of a group \(\mathcal{H} \) is an element of \(\mathcal{H} \) that is permutable with every element of \(\mathcal{H} \). If \(\mathfrak{P} \) contains the invariant element \(P \) of order \(p \) then the powers of \(P \) form an invariant subgroup \(\mathfrak{P}_1 \) of \(\mathfrak{P} \) whose order is \(p \). Likewise, \(\mathfrak{P}/\mathfrak{P}_1 \) has an invariant subgroup \(\mathfrak{P}_2/\mathfrak{P}_1 \) of order \(p \) hence \(\mathfrak{P} \) has an invariant subgroup \(\mathfrak{P}_2 \) of order \(p^2 \) which contains \(\mathfrak{P}_1 \), etc. In my work Über die Congruenz nach einem aus zwei endlichen Gruppen gebildeten Doppelmodul, Crelle’s Journal, Vol. 101 (§. 3, IV), I complemented that theorem with the following remark:
II. Every group of order $p^{\lambda-1}$ contained in a group of order p^λ is an invariant subgroup.

Other proofs for this I developed in my work Über endliche Gruppen, Sitzungsberichte 1895 (§. 2, III, IV, V; §. 4, II). This can be obtained from Theorem I in the following way: Let \mathcal{H} be a group of order p^λ, \mathcal{G} a subgroup of order $p^{\lambda-1}$, P an invariant element of \mathcal{H} whose order is p, and \mathcal{P} the group of the powers of P. If \mathcal{G} is divisible by \mathcal{P} then \mathcal{G}/\mathcal{P} is an invariant subgroup of \mathcal{H}/\mathcal{P} because one can assume Theorem II as proven for groups whose order is smaller than p^λ. Thus \mathcal{G} is an invariant subgroup of \mathcal{H}. If \mathcal{G} is not divisible by \mathcal{P} then $\mathcal{H} = \mathcal{G}\mathcal{P}$, meaning that every element of \mathcal{H} can be brought into the form $H = GP$, where G is an element of \mathcal{G}. Now, G is permutable with \mathcal{G} and P even with every element of \mathcal{G}. Hence also H is permutable with \mathcal{G}.

The theorem mentioned at the onset lends itself to completion in a different direction:

III. Every invariant subgroup of order p of a group of order p^λ consists of powers of an invariant element.

Let \mathcal{H} be a group of order p^λ, \mathcal{P} an invariant subgroup of order p. If Q is any element of \mathcal{H} and $q = p^\kappa$ is its order, then the powers of Q form a group \mathcal{Q} contained in \mathcal{H} of order q. If \mathcal{P} is a divisor of \mathcal{Q} then every element P of \mathcal{P} is a power of Q, hence permutable with Q. If \mathcal{P} is not a divisor of \mathcal{Q} then \mathcal{P} and \mathcal{Q} are relatively prime. \mathcal{P} is permutable with every element of \mathcal{H} and therefore with every element of \mathcal{Q}. Thence $\mathcal{P}\mathcal{Q}$ is a group of order $p^{\kappa+1}$ and \mathcal{P} is an invariant subgroup of it. But by Theorem II, \mathcal{Q} is one also. Therefore P and Q are permutable in view of the Theorem:

IV. If each of the relatively prime groups \mathcal{A} and \mathcal{B} is permutable with every element of the other, then every element of \mathcal{A} is permutable with every element of \mathcal{B}.

Indeed, if A is an element of \mathcal{A} and B is an element of \mathcal{B}, then the element

$$A(BA^{-1}B^{-1}) = (ABA^{-1})B^{-1}$$

is contained in both \mathcal{A} and \mathcal{B}, and is therefore the principal element E.

I want to prove Theorem III also in a second way: If $Q^{-1}PQ = P^a$ then $Q^{-q}PQ^q = P^{aq}$. Hence if $Q^q = E$ then $a^q \equiv 1 \pmod{p}$. Now $a^{p-1} \equiv 1 \pmod{p}$, hence as q and $p - 1$ are relatively prime, also $a \equiv 1 \pmod{p}$ and therewith $PQ = QP$.

Thirdly and finally, the Theorem follows from the more general Theorem:

V. Every invariant subgroup of a group \mathcal{H} of order p^λ contains an invariant element of \mathcal{H} whose order is p.

Partition the elements of \mathcal{H} into classes of conjugate elements (conjugate with respect to \mathcal{H}). If a class consists of a single element, then it is an invariant one,
and conversely every invariant element of \mathfrak{H} forms a class by itself. Let \mathfrak{G} be an invariant subgroup of \mathfrak{H} and $p^κ$ its order. If the group \mathfrak{G} contains an element of a class then it contains all its elements. Select an element G_1, G_2, \ldots, G_n from each of the n classes contained in \mathfrak{G}. If the elements of \mathfrak{H} permutable with $G_ν$ form a group of order $p^λ_ν$, then the number of elements of \mathfrak{H} conjugate to $G_ν$, i.e. the number of elements in the class represented by $G_ν$, equals $p^λ_ν − λ_ν$ (Crelle’s Journal, Vol. 100, p. 181). Thence

$$p^κ = p^{λ_1 − λ} + p^{λ_2 − λ} + \cdots + p^{λ_n − λ_n}.$$

If G_1 is the principal element E then $λ = λ_1$. Therefore not all the last $n − 1$ terms on the right hand side of this equation can be divisible by p. There must exist therefore another index $ν > 1$ for which $λ_ν = λ$ holds. Then $G_ν$ is an invariant element of \mathfrak{H} whose order is $p^μ > 1$, and the $p^μ − 1$-th power of $G_ν$ is an invariant element of \mathfrak{H} of order p that is contained in \mathfrak{G}.

§. 2.

I. If a and b are relative primes, then any element of order $a \times b$ can always, and in a unique way, be written as a product of two elements whose orders are a and b and which are permutable with each other.

If A and B are two permutable elements whose orders a and b are relative primes, then $AB = C$ has the order ab. Conversely, let C be any element of order ab. Determining the integer numbers x and y such that $ax + by = 1$ and setting $ax = β, by = α$, there holds $C = C^aC^β$, and C^a has, since y is relatively prime to a, the order a, and $C^β$ the order b. (Cauchy, loc. cit., §. V, p. 179.) Let now also $C = AB$, where A and B have the orders a and b and are permutable with each other. Then $C^a = A^aB^a, B^a = B^by = E, A^a = A^{1−β} = A$, thus $A = C^a$ and $B = C^β$. Being powers of C, A and B belong to every group to which C belongs.

II. If the order of a group is divisible by n then the number of those elements of the group whose order divides n is a multiple of n.

Let \mathfrak{H} be a group of order h and n a divisor of h. For every group whose order is $h' < h$ and for each divisor n' of h', I assume the Theorem as proven. The number of elements of \mathfrak{H} whose order divides n is, if $n = h$ holds, equal to n. So if $n < h$, I can assume the theorem has been proven for every divisor of h which is $> n$. Now if p is a prime dividing $\frac{h}{n}$, then the number of elements of h whose order divides np is divisible by np, hence also by n. Let $np = p^λr$, where r is not divisible by p and $λ ≥ 1$. Let \mathfrak{K} be the complex of those elements of \mathfrak{H} whose order divides np.
but not \(n \), hence divisible by \(p^\lambda \), and let \(k \) be the order of this complex. Then it only remains to show that the number \(k \), if it differs from zero, is divisible by \(n \). For that purpose I prove that \(k \) is divisible by \(p^\lambda - 1 \) and \(r \).

I partition the elements of \(\mathcal{K} \) into systems by assigning two elements to the same system if each is a power of the other. All elements of a system have the same order \(m \). Their number is \(\phi(m) \). A system is completely determined by each of its elements \(A \), it is formed by the elements \(A^\mu \) where \(\mu \) runs through the \(\phi(m) \) numbers which are \(< m \) and relatively prime to \(m \). If \(A \) is an element of the complex \(\mathcal{K} \) then all the elements of the system represented by \(A \) belong to the complex \(\mathcal{K} \). Then the order \(m \) of \(A \) is divisible by \(p^\lambda \), hence also \(\phi(m) \) by \(p^\lambda - 1 \).

Since the number of elements of each system, into which \(\mathcal{K} \) is decomposed, is divisible by \(p^\lambda - 1 \), so must \(k \) be divisible by \(p^\lambda - 1 \).

To show secondly that \(k \) is also divisible by \(r \), I partition again the elements of \(\mathcal{K} \) into systems, but of a different kind, yet still such that the cardinality of elements of each system is divisible by \(r \). Every element of \(\mathcal{K} \) can, and in a unique way at that, be represented as a product of an element \(P \) of order \(p^\lambda \) and a with it permutable element \(Q \) whose order divides \(r \). Conversely, every product \(PQ \) so obtained belongs to the complex \(\mathcal{K} \).

Let \(P \) be some element of order \(p^\lambda \). All elements of \(\mathcal{K} \) that are permutable with \(P \) form a group \(\mathcal{Q} \) whose order \(q \) is divisible by \(p^\lambda \). The powers of \(P \) form a group \(\mathcal{P} \) of order \(p^\lambda \) which is an invariant subgroup of \(\mathcal{Q} \). The elements \(Q \) of \(\mathcal{Q} \) that satisfy the equation \(Y^r = E \) are identical to those that satisfy the equation \(Y^t = E \), where \(t \) is the greatest common divisor of \(q \) and \(r \). The first issue is to determine the number of those elements.

Every element of \(\mathcal{Q} \) can, and in a unique way at that, be represented as a product of an element \(A \) whose order is a power of \(p \) and a with it permutable element \(B \) whose order is not divisible by \(p \).

If the \(t \)-th power of \(AB \) belongs to the group \(\mathcal{Q} \) then

\[
(AB)^t = A^t B^t = P^s, \quad \text{hence} \quad A^t = P^s, \quad B^t = E,
\]

because also this element can be decomposed in the given fashion in a single way. Thus \(A^t \) belongs to \(\mathcal{P} \), hence also \(A \) itself because \(t \) is not divisible by \(p \). The order of the group \(\mathcal{Q}/\mathcal{P} \) is \(\frac{q}{p^\lambda} \) \(< h \). The number of (complex) elements of this group that satisfy the equation \(Y^t = R \) is therefore a multiple of \(t \), say \(tu \). If \(\mathcal{P}AB \) is such an element then, as \(A \) belongs to \(\mathcal{P} \), \(\mathcal{P}A = \mathcal{P} \), hence \(\mathcal{P}AB = \mathcal{P}B \). Since \(B \), as an element of \(\mathcal{Q} \), is permutable with \(P \), the complex \(\mathcal{P}B \) contains only one element whose order divides \(t \), namely \(B \) itself, whilst the order of every other element of
ΨB is divisible by \(p \). Let

\[ΨB + ΨB_1 + ΨB_2 + \cdots \]

be the \(tu \) distinct (complex) elements of the group \(Q/Ψ \) whose \(t \)-th power is contained in \(Ψ \), then this complex contains all those elements of \(Q \) whose \(t \)-th power (absolutely) equals \(E \). However, only the elements \(B, B_1, B_2, \cdots \) have this property. Thus \(Q \) contains exactly \(tu \) elements that satisfy the equation \(Y^t = E \), or there are, if \(P \) is a certain element of order \(p^\lambda \), exactly \(tu \) elements that are permutable with \(P \) and whose order divides \(r \).

The number of elements of \(H \) permutable with \(P \) is \(q \). The number of elements \(P, P_1, P_2, \cdots \) of \(H \) that are conjugate to \(P \) with respect to \(H \) is therefore \(\frac{h}{q} \). Then there are exactly \(tu \) elements \(Q_1 \) in \(H \) that are permutable with \(P_1 \) and whose order divides \(r \). Taking each of the \(\frac{h}{q} \) elements \(P, P_1, P_2, \cdots \) successively as \(X \) and each time as \(Y \) the \(tu \) elements permutable with \(X \) and satisfy the equation \(Y^r = E \), one obtains the system \(S' \) of

\[k' = \frac{h}{q} \cdot tu \]

distinct elements \(XY \) of the complex \(S \). Now \(h \) is divisible by both \(q \) and \(r \) hence also by their least common multiple \(\frac{qr}{t} \). Thus \(k' \) is divisible by \(r \). The system \(S' \), \(S'', \cdots \) have no element in common. Their orders \(k', k'', \cdots \) are all divisible by \(r \). Thus also \(k = k' + k'' + \cdots \) is divisible by \(r \).

The number of elements of a group that satisfy the equation \(X^n = E \) is \(mn \), the integer number \(m \) is \(> 0 \) because \(X = E \) always satisfies that equation.

III. If the order of a group \(S \) is divisible by \(n \) then the elements of \(S \) whose order divides \(n \) generate a characteristic subgroup of \(S \) whose order is divisible by \(n \).

Let \(R \) be the complex of elements of \(S \) that satisfy the equation \(X^n = E \). If \(X \) is an element of \(R \) and \(R \) is any element* permutable with \(S \) then \(R^{-1}XR \) is also an element of \(R \). Thus \(R^{-1}XR = R \). Let the complex \(R \) generate a group \(G \) of order \(g \). Then also \(R^{-1}GR = G \), so that \(G \) is a characteristic subgroup of \(H \).

If \(q^\mu \) is the highest power of a prime \(q \) that divides \(n \) then \(q^\mu \) also divides \(h \). Thus \(S \) contains a group \(Q \) of order \(q^\mu \). Now \(R \) is divisible by \(Q \), hence also \(G \), and consequently \(g \) is divisible by \(q^\mu \). Since this holds for every prime \(q \) that divides \(n \), \(g \) is divisible by \(n \).

On the relation of the complex \(R \) to the group \(G \) I further note the following: I considered in Über endliche Gruppen, §. 1 the powers \(R, R^2, R^3, \cdots \) of a complex

*tn: cf. Frobenius, Über endliche Gruppen, §. 5, SB. Akad. Berlin, 1895 (I), http://dx.doi.org/10.3931/e-rara-18846
If in that sequence \(R^{r+s} \) is the first one that equals one of the foregoing ones \(R^r \), then \(R^\rho = R^\sigma \) if and only if \(\rho \equiv \sigma \pmod{s} \) and \(\rho \) and \(\sigma \) are both \(\geq r \). Let \(t \) be the number uniquely defined by the conditions \(t \equiv 0 \pmod{s} \) and \(r \leq t < r+s \). Then \(R^t \) is the only group contained in that sequence of powers. If \(R \) contains the principal element \(E \) then \(R^{\rho+1} \) is divisible by \(R^\rho \). Hence \(G = R^t \) is divisible by \(R \). If \(N \) is an element of the group \(G \) then \(GN = G \). More generally then, if \(R \) is a complex of elements contained in \(G \) then \(GR = G \). Therefore \(R^{t+1} = R^t \), hence \(s = 1 \) and \(t = r \). Consequently, \(R^r = R^{r+1} \) is the first one in the sequence of powers of \(R \) that equals the subsequent one, and this is the group generated by the complex \(R \).

IV. If the order of a group \(\mathfrak{S} \) is divisible by the two relatively prime numbers \(r \) and \(s \), if there exists in \(\mathfrak{S} \) exactly \(r \) elements \(A \) whose order divides \(r \) and exactly \(s \) elements \(B \) whose order divides \(s \), then each of the \(r \) elements \(A \) is permutable with each of the \(s \) elements \(B \) and there exist in \(\mathfrak{S} \) exactly \(rs \) elements whose order divides \(rs \), namely the \(rs \) distinct elements \(AB = BA \).

Indeed, every element \(C \) of \(\mathfrak{S} \) whose order divides \(rs \) can be written as a product of two with each other permutable elements \(A \) and \(B \) whose orders divide \(r \) and \(s \). Now \(\mathfrak{S} \) contains no more than \(r \) elements \(A \) and no more than \(s \) elements \(B \). Were it not the case that each of the \(r \) elements \(A \) is permutable with each of the \(s \) elements \(B \) and furthermore that the \(rs \) elements \(AB \) are all distinct, then \(\mathfrak{S} \) would contain less than \(rs \) elements \(C \). But this contradicts Theorem II.

§. 3.

If the order \(h \) of a group \(\mathfrak{S} \) divisible by the prime \(p \) then \(\mathfrak{S} \) contains elements of order \(p \), namely \(mp - 1 \) many, because there exist \(mp \) elements in \(\mathfrak{S} \) whose order divides \(p \). From this theorem of Cauchy, Sylow derived the more general one, that any group whose order is divisible by \(p^\kappa \) possesses a subgroup of order \(p^\kappa \). In his proof he draws on the language of the theory of substitutions. If one wants to avoid this, one should apply the procedure that I used in my work Über endliche Gruppen in the proof of Theorems V and VII, §. 2.

Another proof is obtained by partitioning the \(mp - 1 \) elements \(P \) of order \(p \) contained in \(\mathfrak{S} \) into classes of conjugate elements. If the elements of \(\mathfrak{S} \) permutable with \(P \) form a group \(G \) of order \(g \), then the number of elements conjugate to \(P \) is \(\frac{h}{g} \). Thus

\[
mp - 1 = \sum \frac{h}{g}
\]
FRÖBENIUS: A generalization of Sylow’s theorem. [987–988]

where the sum is to be extended over the different classes into which the elements \(P \) are segregated. From this equation it follows that not all the summands \(\frac{h}{g} \) are divisible by \(p \). Let \(p^\lambda \) be the highest power of \(p \) contained in \(h \), and let \(\kappa \leq \lambda \). If \(\frac{h}{g} \) is not divisible by \(p \) then \(g \) is divisible by \(p^\lambda \). The powers of \(P \) form a group \(\mathfrak{P} \) of order \(p \), which is an invariant subgroup of \(\mathfrak{G} \). The order of the group \(\mathfrak{G}/\mathfrak{P} \) is \(\frac{h}{p} < h \). For this group we may therefore assume the theorems which we wish to prove for \(\mathfrak{H} \) as known. Thus it contains a group \(\mathfrak{P}_{\kappa}/\mathfrak{P} \) of order \(p^{\kappa-1} \), and in the case that \(\kappa < \lambda \), a group \(\mathfrak{P}_{\kappa+1}/\mathfrak{P} \) of order \(p^\kappa \) that is divisible by \(\mathfrak{P}_{\kappa}/\mathfrak{P} \). Consequently, \(\mathfrak{H} \) contains the group \(\mathfrak{P}_\kappa \) of order \(p^\kappa \) and the group \(\mathfrak{P}_{\kappa+1} \) of order \(p^{\kappa+1} \) that is divisible by \(\mathfrak{P}_\kappa \).

§. 4.

I. If the order of a group is divisible by the \(\kappa \)-th power of the prime \(p \) then the number of groups of order \(p^\kappa \) contained therein is a number of the form \(np^{\kappa} + 1 \).

Let \(r_\kappa \) denote the number of groups of order \(p^\kappa \) contained in \(\mathfrak{H} \). Then the number of elements of \(\mathfrak{H} \) whose order is \(p^\kappa \) equals \(r_1(p^\kappa) \). As shown above, this number has the form \(mp^{\kappa-1} + 1 \). Thus

\[
r_1 \equiv 1 \pmod{p}. \tag{1.}\]

Let \(r_{\kappa-1} = r, r_\kappa = s, \) and let

\[
\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_r \tag{2.}\]

be the \(r \) groups of order \(p^{\kappa-1} \) contained in \(\mathfrak{H} \) and

\[
\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_s \tag{3.}\]

the \(s \) groups of order \(p^\kappa \). Suppose the group \(\mathcal{A}_\rho \) is contained in \(a_\rho \) of the groups (3.). Suppose the group \(\mathcal{B}_\sigma \) is divisible by \(b_\sigma \) of the groups (2.). Then

\[
a_1 + a_2 + \cdots + a_r = b_1 + b_2 + \cdots + b_s \tag{4.}\]

is the number of distinct pairs of groups \(\mathcal{A}_\rho, \mathcal{B}_\sigma \) for which \(\mathcal{A}_\rho \) is contained in \(\mathcal{B}_\sigma \).

Let \(\mathcal{A} \) be one of the groups (2.). Of the groups (3.) let \(\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_a \) be those that are divisible by \(\mathcal{A} \). By §. 3, \(a > 0 \), and by Theorem II, §. 1, \(\mathcal{A} \) is an invariant subgroup of each of these \(a \) groups, hence also of their least common multiple \(\mathfrak{G} \). Therefore the group \(\mathfrak{G}/\mathcal{A} \) contains the \(a \) groups \(\mathcal{B}_1/\mathcal{A}, \mathcal{B}_2/\mathcal{A}, \ldots, \mathcal{B}_a/\mathcal{A} \) of order
p and none further. Indeed, if \mathcal{B}/\mathcal{A} is a group of order p contained in \mathcal{G}/\mathcal{A} then \mathcal{B} is a group of order p^κ divisible by \mathcal{A}. By formula (1.) there holds $a \equiv 1 \pmod{p}$. Thus

$$a_\rho \equiv 1, \quad a_1 + a_2 + \cdots + a_r \equiv r \pmod{p}. \quad (5.)$$

Now I need the Lemma:

The number of groups of order $p^{\lambda-1}$ which are contained in a group of order p^λ is $\equiv 1 \pmod{p}$.

I suppose this Lemma is already proven for groups of order p^κ if $\kappa < \lambda$. Then, if in the above expansion $\kappa < \lambda$ then

$$b_\sigma \equiv 1, \quad b_1 + b_2 + \cdots + b_s \equiv s \pmod{p}. \quad (6.)$$

Therefore $r \equiv s$ or $r_{\kappa-1} \equiv r_\kappa \pmod{p}$, and since this congruence holds for each value $\kappa < \lambda$, it is

$$1 \equiv r_1 \equiv r_2 \equiv \cdots \equiv r_{\lambda-1} \pmod{p}.$$

Applying this result to a group \mathcal{H} whose order is p^λ, it is therefore $r_{\lambda-1} \equiv 1 \pmod{p}$ for such a group, and with this, the above Lemma is proven also for groups of order p^λ, if it holds for groups of order $p^\kappa < p^\lambda$, it is therefore generally valid. For each value κ consequently, $r_\kappa \equiv r_{\kappa-1}$ and therefore $r_\kappa \equiv 1 \pmod{p}$.

In exactly the same way one proves the more general Theorem:

II. If the order of a group \mathcal{H} is divisible by the κ-th power of the prime p, if $\theta \leq \kappa$ and \mathcal{V} is a group of order p^θ contained in \mathcal{H}, then the number of groups of order p^κ contained in \mathcal{H} that are divisible by \mathcal{V} is a number of the form $np + 1$.

§. 5.

The Lemma used in §. 4 can also be proven in the following way by relying on the Theorem: Every group \mathcal{H} of order p^λ has a subgroup \mathcal{A} of order $p^{\lambda-1}$ and such a subgroup is always an invariant one. Let \mathcal{A} and \mathcal{B} be two distinct subgroups of order $p^{\lambda-1}$ contained in \mathcal{H} and let \mathcal{D} be their greatest common divisor. Since \mathcal{A} and \mathcal{B} are invariant subgroups of \mathcal{H}, so is \mathcal{D}, and since \mathcal{H} is the least common multiple of \mathcal{A} and \mathcal{B}, \mathcal{D} has order $p^{\lambda-2}$. Thus \mathcal{H}/\mathcal{D} is a group of order p^2. Any such group has, depending on whether it is a cyclic group or not, 1 or $p+1$ subgroups of order p, thus in our case $p+1$, since \mathcal{A}/\mathcal{D} and \mathcal{B}/\mathcal{D} are two distinct groups of this type. Therefore \mathcal{H} contains exactly $p+1$ distinct groups of order $p^{\lambda-1}$ that are divisible by \mathcal{D}.
The group \mathfrak{H} always contains a group \mathfrak{A} of order $p^{\lambda-1}$. If it contains yet another one, then \mathfrak{H} has an invariant subgroup \mathfrak{D} of order $p^{\lambda-2}$ which is contained in \mathfrak{A} and for which the group $\mathfrak{H}/\mathfrak{D}$ is not a cyclic one. Let $\mathfrak{D}_1, \mathfrak{D}_2, \ldots, \mathfrak{D}_n$ be all the groups of this kind. Then there exist in \mathfrak{H} besides \mathfrak{A} other p groups of order $p^{\lambda-1}$ divisible by \mathfrak{D}_1

$$\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_p,$$

and likewise p groups that are divisible by \mathfrak{D}_2

$$\mathfrak{A}_{p+1}, \mathfrak{A}_{p+2}, \ldots, \mathfrak{A}_{2p},$$

etc., and finally p groups divisible by \mathfrak{D}_n

$$\mathfrak{A}_{(n-1)p+1}, \mathfrak{A}_{(n-1)p+2}, \ldots, \mathfrak{A}_{np+1}.$$

The $np+1$ groups $\mathfrak{A}, \mathfrak{A}_1, \ldots, \mathfrak{A}_{np}$ are all the groups of order $p^{\lambda-1}$ contained in \mathfrak{H} since each such group \mathfrak{B} has to have in common with \mathfrak{A} a certain divisor \mathfrak{D} which is one of the n groups $\mathfrak{D}_1, \mathfrak{D}_2, \ldots, \mathfrak{D}_n$. They are, furthermore, all distinct. Indeed, if $\mathfrak{A}_1 = \mathfrak{A}_{p+1}$ was true then \mathfrak{A}_1 would be divisible by both groups \mathfrak{D}_1 and \mathfrak{D}_2, hence also by their least common multiple \mathfrak{A}. If \mathfrak{P} is a group of order p^θ contained in \mathfrak{H} then one can subject all the groups considered above to the condition of being divisible by \mathfrak{P}. If conversely \mathfrak{H} is an invariant subgroup of a group \mathfrak{P} of order p^θ then one can require that they all be invariant subgroups of \mathfrak{P}.

With the help of Theorem V, §.1 it is easy to prove that the number of groups of order $p^{\lambda-1}$ that are contained in a group of order p^λ equals 1 only if \mathfrak{H} is a cyclic group.

I. The number of invariant subgroups of order p^κ contained in a group of order p^λ is a number of the form $np + 1$.

Let \mathfrak{H} be a group of order h, let p^λ be the highest power of p contained in h, let $\kappa \leq \lambda$ and \mathfrak{P}_κ any group of order p^κ contained in \mathfrak{H}. Each group \mathfrak{P}_κ is contained in $np + 1$ groups, hence at least in one. I divide the groups \mathfrak{P}_κ into two kinds. For a group of the first kind there exists a group \mathfrak{P}_λ of which \mathfrak{P}_κ is an invariant subgroup, for a group of the second kind no such group exists. The number of elements of \mathfrak{H} permutable with \mathfrak{P}_κ is divisible by p^λ in the first case, and in the second case it is not. The number of groups conjugate to \mathfrak{P}_κ is therefore divisible by p in the second case, in the first case it is not. Hence diving the groups \mathfrak{P}_κ into classes of conjugate groups one recognizes that the number of groups \mathfrak{P}_κ of the second kind is divisible by p. Consequently, the number of groups \mathfrak{P}_κ of the first kind is $\equiv 1$ (mod p).
II. If \mathfrak{H} is a group of order p^λ and \mathfrak{G} is an invariant subgroup of \mathfrak{H} whose order is divisible by p^κ then the number of groups of order p^κ contained in \mathfrak{G} that are invariant subgroups of \mathfrak{H} is a number of the form $np+1$.

Also here let more generally p^λ be the highest power of the prime p that divides the order h of \mathfrak{H}. Let \mathfrak{G} be an invariant subgroup of \mathfrak{H} whose order g is divisible by p^κ. The number of all groups \mathfrak{P}_κ of order p^κ contained in \mathfrak{G} is $\equiv 1 \pmod{p}$. I divide them into groups of the first and the second kind (with respect to \mathfrak{H}) and further into classes of conjugate groups. If \mathfrak{G} is divisible by \mathfrak{P}_κ then \mathfrak{G} is also divisible by every group conjugate to \mathfrak{P}_κ. Therefrom the claim follows in the same way as above. One can also easily prove it directly by means of the method used in §. 4:

Let the order of \mathfrak{H} be $h = p^\lambda$. By Theorem V, §.1 the group \mathfrak{G} contains elements of order p that are invariant elements of \mathfrak{H}. They form, together with the principal element, a group. If p^a is its order then $p^a - 1$ is the number of those elements. By Theorem III, §.1, every invariant subgroup of \mathfrak{H} whose order is p consists of the powers of such an element. Therefore there exist in \mathfrak{G} $r = \frac{p^a - 1}{p-1}$ groups of order p that are invariant subgroups of \mathfrak{H}. This number is

$$ r \equiv 1 \pmod{p}. \quad (4.) $$

Let

$$ \mathfrak{A}_1, \mathfrak{A}_2, \cdots, \mathfrak{A}_r \quad (5.) $$

be those r groups and let

$$ \mathfrak{B}_1, \mathfrak{B}_2, \cdots, \mathfrak{B}_s \quad (6.) $$

be the s groups of order p^κ contained in \mathfrak{G} that are invariant subgroups of \mathfrak{H}. Let \mathfrak{B} be one of the groups (6.). Among the groups (5.) let $\mathfrak{A}_1, \mathfrak{A}_2, \cdots, \mathfrak{A}_b$ be those contained in \mathfrak{B}. By (4.) is then $b \equiv 1 \pmod{p}$. Let \mathfrak{A} be one of the groups (5.). Among the groups (6.) let $\mathfrak{B}_1/\mathfrak{A}, \mathfrak{B}_2/\mathfrak{A}, \cdots, \mathfrak{B}_a/\mathfrak{A}$ be those divisible by \mathfrak{A}. Then $\mathfrak{B}_1/\mathfrak{A}, \mathfrak{B}_2/\mathfrak{A}, \cdots, \mathfrak{B}_a/\mathfrak{A}$ are the groups of order $p^{\kappa-1}$ contained in $\mathfrak{G}/\mathfrak{A}$ that are invariant subgroups of $\mathfrak{H}/\mathfrak{A}$. By the method of induction is therefore $a \equiv 1 \pmod{p}$. Resorting to the same notation as in §. 4 there holds

$$ 1 \equiv r \equiv a_1 + a_2 + \cdots + a_r \equiv b_1 + b_2 + \cdots + b_s \equiv s \pmod{p}. $$

I add a few remarks on the number of groups \mathfrak{P}_κ of the first kind that are conjugate to a particular one, and on the number of classes of conjugate groups into which the groups \mathfrak{P}_κ are partitioned.
Let \mathfrak{P} be a group of order p^λ contained in \mathfrak{P} and \mathfrak{Q} an invariant subgroup of \mathfrak{P} of order p^κ. The elements of \mathfrak{H} permutable with \mathfrak{P} (\mathfrak{Q}) form a group of \mathfrak{P}' (\mathfrak{Q}') of order p' (q'). Let the greatest common divisor of \mathfrak{P}' and \mathfrak{Q}' be the group \mathfrak{R} of order r. The groups \mathfrak{P}', \mathfrak{Q}' and \mathfrak{R} are divisible by \mathfrak{P}. Let p^δ be the order of the largest common divisor of \mathfrak{P} and a group conjugate with respect to \mathfrak{H} that is selected in such a way that δ is a maximum. Then ($\text{Über endliche Gruppen, §. 2, VIII}$)

$$\frac{h}{p'} \equiv 1 \pmod{p^{\lambda-\delta}}.$$

The group \mathfrak{R} consists of all the elements of \mathfrak{Q}' that are permutable with \mathfrak{P}. With this,

$$\frac{q'}{r} \equiv 1 \pmod{p^{\lambda-\delta}}.$$

Consequently,

$$\frac{h}{q'} \equiv \frac{p'}{r} \pmod{p^{\lambda-\delta}}. \quad (7.)$$

Herein, $\frac{h}{q'}$ is the number of groups that are conjugate to \mathfrak{Q} with respect to \mathfrak{H} and $\frac{p'}{r}$ is the number of groups that are conjugate to \mathfrak{Q} with respect to \mathfrak{P}'. Indeed, the group \mathfrak{R} consists of all the elements of \mathfrak{P}' that are permutable with \mathfrak{Q}. The number of groups in a certain class in \mathfrak{H} is therefore congruent ($\pmod{p^{\lambda-\delta}}$) to the number of groups in the corresponding class in \mathfrak{P}'.

Furthermore, the number of distinct classes in \mathfrak{H} (into which the groups \mathfrak{P}_κ of the first kind are partitioned) equals the number of those classes in \mathfrak{P}'. This follows from the Theorem:

III. If two invariant subgroups of \mathfrak{P} are conjugate with respect to \mathfrak{H} then so they are with respect to \mathfrak{P}'.

Let \mathfrak{Q} and \mathfrak{Q}_0 be two invariant subgroups of \mathfrak{P}. If they are conjugate with respect to \mathfrak{H} then there exists in \mathfrak{H} such an element H that

$$H^{-1}\mathfrak{Q}_0H = \mathfrak{Q} \quad (4.)$$

holds. Since \mathfrak{Q}_0 is an invariant subgroup of \mathfrak{P}, $H^{-1}\mathfrak{Q}_0H = \mathfrak{Q}$ is an invariant subgroup of \mathfrak{P}.
Hence Ω' is divisible by \mathfrak{P} and \mathfrak{P}_0. Consequently (Über endliche Gruppen, §. 2, VII) there exists in Ω' such an element Q that

$$Q^{-1}\mathfrak{P}_0Q = \mathfrak{P},$$

hence

$$\mathfrak{P}HQ = HQ\mathfrak{P}$$

holds. Thus $HQ = P$ is an element of \mathfrak{P}'. Inserting the expression $H = PQ^{-1}$ into the equation (4.) one obtains, since Q is permutable with Ω,

$$P^{-1}\Omega_0P = Q^{-1}\Omega Q = \Omega.$$

There exists therefore in \mathfrak{P}' an element P that transforms Ω_0 into Ω.

Partition now the groups \mathfrak{P}_κ contained in H (of the first kind) into classes of conjugate groups (with respect to \mathfrak{H}) and choose from each class a representative. If Ω_0 is one, then Ω_0 is a group of order p^κ which is contained in a certain group \mathfrak{P}_0 as an invariant subgroup. If $H^{-1}\mathfrak{P}_0H = \mathfrak{P}$ then $H^{-1}\Omega_0H = \Omega$ is an invariant subgroup of \mathfrak{P}. One can therefore choose the representatives of different classes in such a way that they are all invariant subgroups of a certain group \mathfrak{P} of order p^λ. Each invariant subgroup of \mathfrak{P} of order p^κ is then conjugate to one of these groups with respect to \mathfrak{H}, hence also with respect to \mathfrak{P}'. Let the invariant subgroups \mathfrak{P}_κ of \mathfrak{P} aggregate into s classes of groups that are conjugate with respect to \mathfrak{P}'. Then the groups \mathfrak{P}_κ of the first kind of H also aggregate into s classes of groups that are conjugate with respect to \mathfrak{H}.

Translated with minor typographical corrections from

F. G. Frobenius, “Verallgemeinerung des Sylow'schen Satzes”, Sitzungsberichte der Königl. Preuß. Akad. der Wissenschaften zu Berlin, 1895 (II), 981–993.

http://dx.doi.org/10.3931/e-rara-18880

For the terminology see

Frobenius, Über endliche Gruppen, SB. Akad. Berlin, 1895 (I), 163–194.

http://dx.doi.org/10.3931/e-rara-18846