Tr(R^2) control charts based on kernel density estimation for monitoring multivariate variability process

Muhammad Mashuri1*, Haryono Haryono1, Diaz Fitra Aksioma1, Wibawati Wibawati1, Muhammad Ahsan1 and Hidayatul Khusna1

Abstract: The multivariate control charts are not only used to monitor the mean vector but also can be used to monitor the covariance matrix. The multivariate variability charts are used to guarantee the consistency of products in the subgroup. Many researchers have been studied the multivariate control chart for variability. Nevertheless, those conventional methods have several drawbacks because it is developed based on the determinant of the covariance matrix and not free of the measurement unit. To overcome such issues, this paper proposes the multivariate control chart for variability. Nevertheless, those conventional methods have several drawbacks because it is developed based on the determinant of the covariance matrix and not free of the measurement unit. To overcome such issues, this paper proposes the multivariate control chart for variability based on trace of the squared correlation matrix. Kernel Density Estimation is used to improve estimated control limit. The kernel density estimation method is used to calculate the control limit. Through simulation studies, the performance of the proposed chart is evaluated using the average run length (ARL). The control limits of the proposed chart are produced in control ARL at about 370 for $\alpha = 0.00273$. Meanwhile, the proposed chart demonstrated better performance to detect the shift for the large value of quality characteristics and sample size. The proposed chart also produces a better performance than the conventional generalized variance chart when used to monitor the real case data.

Subjects: SPC/Reliability/Quality Control; Multivariate Statistics; Industrial Engineering & Manufacturing

ABOUT THE AUTHOR

The corresponding author, Dr. Muhammad Mashuri is an associate professor in the Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya Indonesia. His research interest includes statistical quality control and multivariate analysis, especially in industrial field. Haryono, Diaz Fitra Aksioma, and Wibawati are senior lecturers whose research interest includes statistical process control. Hidayatul Khusna and Muhammad Ahsan are PhD students through Master Program of Education Leading to Doctoral Degree for Excellent Graduates, an accelerated program for undergraduate prepared to be candidate lecturers or researchers with doctoral degrees.

PUBLIC INTEREST STATEMENT

A control chart is one of the improvement tools to monitor how a process changes over time. A good control chart will provide precise conclusion if the special causes of variation affect the actual process. The multivariate variability charts are used to guarantee the consistency of products in the subgroup. However, the conventional methods have several drawbacks because it is developed based on the determinant of the covariance matrix and not free of the measurement unit. This paper proposes the multivariate control chart for variability based on trace of squared correlation matrix to overcome such issues. Kernel density estimation is nonparametric techniques used to improve estimated control limit. Furthermore, the proposed control chart draws a correct decision to monitor real problem compared to the conventional method.
1. Introduction

One of the most powerful tools in statistical process control (SPC) is the control chart, which has been widely used in industries and services. Based on the type of monitored quality characteristics, there are two kinds of control charts: variable for interval or ratio scale (Page, 1961; Roberts, 1959; Shewhart, 1924) and attribute for categorical scale (Ahsan, Mashuri, & Khusna, 2017; Wibawati, Purhadi, & Ahsan, 2018; Wibawati, Purhadi, & Irhamah, 2016). At present, the demands of the consumers for the quality of the product are increasing, both in terms of the quality level and in terms of quality characteristics number. The quality of a product is not only determined by one characteristic but also by more than one quality characteristics. Therefore, to monitor the quality of a product, the multivariate control chart is needed in order to monitor several quality characteristics simultaneously. The multiple quality characteristics should be monitored together using a multivariate control chart. The recent development for multivariate control chart includes Hotelling’s T^2 control chart (Abu-Shawiesh, Kibria, & George, 2014; Ahsan, Mashuri, Kuswanto, Prastyo, & Khusna, 2018a; Alfaro & Ortega, 2009; Ali, Syed Yahaya, & Omar, 2013; Alkindi & Prastyo, 2016), MCUSUM control chart (Arkat, Niaki, & Abbasi, 2007; Issam & Mohamed, 2008; Khusna, Mashuri, Ahsan, Suhartono, & Prastyo, 2018; Noroosizadeh & Vaghefi, 2006), and MEWMA control chart (Chen, CHENG, & Xie, 2005; Khusna, Mashuri, Suhartono, & Ahsan, 2018; Pirhooshyan & Niaki, 2015).

The multivariate control charts are not only used to monitor the mean vector but also can be used to monitor the covariance matrix. The control charts are not only used to monitor the multivariate mean but also used to monitor multivariate variability. Multivariate mean vector charts are useful in seeing product uniformity between subgroups of observation, while the multivariate variability charts are used to ensure the uniformity of products in the subgroup.

Many definitions of multivariate variability measures are found in the literature, as stated by Djauhari (2005b) such as total variance (TV) (Chatterjee & Hadi, 2009), volume ellipsoid (VE) (Croux & Haesbroeck, 1999; Grambow & Stromberg, 1998), generalized variance (GV) (Alt & Smith, 1988; Montgomery, 2009; Tang & Barnett, 1996). Several variants of GV can also be found in the literature includes effective variance (EV) (Peña & Rodríguez, 2003), generalized standard deviation (GSD) (Alt & Smith, 1988), relative generalized variance (RGV) (Tang & Barnett, 1996), vector variance (VV) (Suwanda & Djauhari, 2003), and correlation matrix chart (Sindelar, 2007).

The advantage of using the correlation matrix chart (Sindelar, 2007) in monitoring variability process is not affected by units of measurement from the quality characteristics because it uses a correlation matrix, while the other charts based on covariance matrices or successive difference covariance matrices are not free of the measurement unit. However, the chart developed based on the determinant of the correlation matrix has weaknesses because of the matrix determinant nature. The first weakness is the quality characteristics with a small variance will result in decreasing value of multivariate variability. Second, a quality characteristic is a linear combination of the other variables, if it is used then the multivariate variability becomes small. To overcome these weaknesses, Suwanda and Djauhari (2003), Huwang, Yeh, and Wu (2007), and Djauhari (2010) proposed the trace operator.

Mashuri, Haryono, Wibawati, Khusna, and Ahsan (2016) have succeeded in developing a Trace Rho 2 chart based on the squared correlation matrix using the trace operator, for the simplify henceforth it is called $\text{Tr}(R^2)$. Besides having a relatively good performance, this chart has two other advantages, which are free of unit measurement and can avoid the weaknesses of the determinant properties of a matrix. Also, there are two essential advantages of trace operators compared to determinant. First, trace statistics can deal with determinant weaknesses, that is,
trace values will not produce small value. Even if one of the correlations between variables is very small or near to zero. Second, the trace of a matrix can still be calculated and will not be zero, even though the covariance matrix is definite negative.

Although it has some advantages, this chart has never been applied to monitor the actual production process and its exact distribution is still unknown. To overcome this issue, kernel density estimation (KDE) can be employed to calculate the control limit (Ahsan, Mashuri, Kuswanto, Prastyo, & Khusna, 2018b; Chou, Mason, & Young, 2001; Phaladiganon, Kim, Chen, Baek, & Park, 2011; Phaladiganon, Kim, Chen, & Jiang, 2013).

Based on the aforementioned reasons, this paper focuses on developing the multivariate variability control chart based on trace squared of correlation matrix R. The KDE method is employed to estimate the control limit of the proposed chart. The performance of the proposed chart is also evaluated using the average run length (ARL) criteria for several numbers of quality characteristics p and number of sample size n. Section 2 presents some of related work to this study. In Section 3, a brief review of the proposed $\text{Tr}(R^2)$ statistics and KDE method are presented. The methodology of simulation study is exhibited in Section 4. Section 5 contains the illustrative example of $\text{Tr}(R^2)$ control chart. Finally, Section 6 is devoted to the conclusion and future research.

2. Related works

Many works studied the utilization of a control chart to monitor the shift in variance. In univariate case, the simplest method is the Shewhart sample range (R) and sample standard deviation (S) charts. Riaz (2008) proposed Q chart based on interquartile range (IQR), for monitoring changes in process dispersion under normality assumption. For non-normal distribution, Abbasi and Miller (2012) inspected the performance of some univariate variability charts such as R, S, IQR, Downton's estimator, median absolute deviation (MAD), as well as Sn and Qn. Kang, Lee, Seong, and Hawkins (2007) developed coefficient of variation (CV) chart using rational groups of observations. Castagliola, Celano, and Psarakis (2011) developed new method to monitor the CV by means of 2 one-sided EWMA charts of the coefficient of variation squared and later improved by Yeong, Khoo, Tham, Teoh, and Rahim (2017). Calzada and Scariano (2013) developed synthetic coefficient of variation (SynCV) chart. An adaptive Shewhart control chart implementing a variable sample size strategy in order to monitor the coefficient of variation is developed by Castagliola, Achori, Taleb, Celano, and Psarakis (2015). For short-run production, Amdouni, Castagliola, Taleb, and Celano (2015) introduced an adaptive Shewhart control chart using a variable sample size (VSS). Variable sampling interval (VSI) Shewhart chart can also be used to monitor the coefficient of variation in a short production run context (Amdouni, Castagliola, Taleb, & Celano, 2017). For detecting small and moderate shifts, Khaw, Khoo, Yeong, and Wu (2017) proposed variable sample size and sampling interval (VSSI) feature to improve the performance of the basic CV chart. The side sensitive group runs chart for the CV (SSGR CV) chart is developed. The chart surpasses the other charts under comparison, for most upward and downward CV shifts (W C Yeong et al., 2017).

The most popular multivariate variability control chart is the GV control chart (Alt & Smith, 1988) which was refined by Djauhari (2005a). The properties of this method are studied by Aparisi, Jabaioyes, and Carrion (1999). Aparisi, Jabaloyes, and Carrión (2000) developed the new design of the GV chart $|S|$ with adaptive sample size. Grigoryan and He (2005) introduced the multivariate double sampling (MDS) $|S|$ control chart scheme for controlling shifts in a covariance matrix. Doğu and Kocakoç (2011) proposed the GV control chart based on maximum likelihood estimation which can be used to monitor the multivariate process dispersion and detect the time of the change in covariance matrix. Hamed (2014) improved the performance of GV chart $|S|$ to monitor the multivariate process. Lee and Khoo (2017) developed the multivariate synthetic generalized sample variance $|S|$ (synthetic $|S|$) chart. The comparative studies show that the synthetic $|S|$ chart outperforms the conventional $|S|$ chart in detecting shifts in the covariance matrix of a multivariate normally distributed process. The
combination of the double sampling, variable sample size and variable sampling interval features (DSVSSI [S] chart) is applied to monitor the shifts in the covariance matrix of a multivariate normally distributed process (Lee & Khoo, 2018).

In addition, many other multivariate variability control charts have been developed, namely vector variance chart (Suwanda & Djauhari, 2003), successive difference covariance matrix chart (Ahsan et al., 2018a; Djauhari, 2010; Holmes & Mergen, 1993), correlation matrix chart (Sindelar, 2007), multivariate coefficient of variation chart (Khatun, Khoo, Lee, & Castagliola, 2018; Lim, Khoo, Teoh, & Haq, 2017; Wai Chung Yeong, Khoo, Teoh, & Castagliola, 2016), VMAX statistic (Costa & Machado, 2009; Gadre & Kakade, 2018; Machado, Costa, & Rahim, 2009), Lasso chart (Maboudou-Tchoa & Diawara, 2013), Gini mean differences based matrix (Riaz & Does, 2008), sample range multivariate (Costa & Machado, 2011), and MEWMA (Yeh, Huwang, & Wu, 2005). Furthermore, the new chart for monitoring high dimensional variability of individual observation is introduced by Li and Tsung (2019).

3. Charting procedures

3.1. Tr (R²) statistics

Let the p dimension sample random vectors, X₁, X₂, ..., Xₚ, are taken from the population which follow multivariate normal distribution Nₚ(μ, Σ). The sample correlation matrix R of those random vectors can be written as follows:

$$R = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1p} \\ r_{21} & r_{22} & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & r_{pp} \end{bmatrix}$$

(1)

where rᵢᵢ = 1, rᵢⱼ = 1, for i = 1, 2, ..., p and rᵢⱼ is the coefficient correlation corresponded to i-th and k-th variable, for i = 1, 2, ..., p and j = 1, 2, ..., p. Furthermore, the Tr(R²) statistics are defined as follows:

$$Tr(R^2) = Tr \left(\begin{bmatrix} 1 & r_{12} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & 1 \end{bmatrix} \times \begin{bmatrix} 1 & r_{12} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & 1 \end{bmatrix} \right)$$

$$Tr(R^2) = p + b,$$

where p denotes the number of variables, and b is a positive number where the value is determined by the correlation among the variables.

For example, three-dimension sample random vectors X₁, X₂, X₃ are taken from the population which follow the multivariate normal distribution. The sample correlation matrix can be written as

$$R = \begin{bmatrix} 1 & r_{12} & r_{13} \\ r_{21} & 1 & r_{23} \\ r_{31} & r_{32} & 1 \end{bmatrix}$$

$$R^2 = \begin{bmatrix} 1 & r_{12} & r_{13} \\ r_{21} & 1 & r_{23} \\ r_{31} & r_{32} & 1 \end{bmatrix} \times \begin{bmatrix} 1 & r_{12} & r_{13} \\ r_{21} & 1 & r_{23} \\ r_{31} & r_{32} & 1 \end{bmatrix} = \begin{bmatrix} 1 & r_{12} & r_{13} \\ r_{21} & 1 & r_{23} \\ r_{31} & r_{32} & 1 \end{bmatrix}$$
with common form diagonal elements are:

\[a_{11} = 1 + r_{12}^2 + r_{13}^2 \]
\[a_{22} = r_{21}^2 + 1 + r_{23}^2 \]
\[a_{33} = r_{31}^2 + r_{32}^2 + 1 \]

\[\text{Tr}(R^2) = a_{11} + a_{11} + a_{11} \]
\[= (1 + r_{12}^2 + r_{13}^2) + (r_{21}^2 + 1 + r_{23}^2) + (r_{31}^2 + r_{32}^2 + 1) \]
\[= 3 + r_{12}^2 + r_{13}^2 + r_{21}^2 + r_{23}^2 + r_{31}^2 + r_{32}^2. \]

Because \(R \) is symmetric, \(r_{ik} = r_{ki} \); for \(k = 1, 2, 3 \), then

Figure 1. \(\text{Tr}(R^2) \) Statistics for \(p = 3 \) with: a) \(\rho_{ik} = 0.1 \), b) \(\rho_{ik} = 0.3 \), c) \(\rho_{ik} = 0.5 \), and d) \(\rho_{ik} = 0.9 \).

No	Kernel function	Formula				
1.	Uniform kernel	\(K(x) = \frac{1}{2}	x	\leq 1 \)		
2.	Triangle kernel	\(K(x) = (1 -	x)I(x	\leq 1) \)
3.	Epanechnikov kernel	\(K(x) = \frac{1}{4} (1 - x^2)I(x	\leq 1) \)		
4.	Quartic kernel	\(K(x) = \frac{1}{16} (1 - x^2)^2 I(x	\leq 1) \)		
5.	Triweight kernel	\(K(x) = \frac{35}{32} (1 - x^2)^3 I(x	\leq 1) \)		
6.	Cosines kernel	\(k(x) = \frac{\pi}{4} \cos(\frac{\pi}{2}x)I(x	\leq 1) \)		
7.	Gaussian kernel	\(k(x) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{1}{2} x^2\right), -\infty < x < \infty \)				
Table 2. Control limit of the proposed chart with $\mu = 0$ and $\beta = 1$ for $p = 3$ to 10 in-control ARL 370

n	3	4	5	6	7	8	9	10
3	8.969980	15.645785	23.583310	32.417190	42.271666	52.842250	64.029437	76.631700
4	8.503043	13.715336	19.237226	25.319145	32.040484	39.749394	47.720496	56.576581
5	7.777262	11.924676	16.294036	21.198309	26.384407	32.397366	38.760148	45.670863
6	7.155352	10.611833	14.335743	18.421868	23.063887	28.051887	33.304041	38.891049
7	6.635057	9.585115	12.911012	16.525598	20.435315	24.621868	29.315742	34.418072
8	6.192275	8.964093	11.901085	15.118603	18.694069	22.450324	26.494551	31.055569
9	5.882320	8.415212	11.164274	14.022280	17.256055	20.818464	24.550636	28.445952
10	5.648542	7.956362	10.499451	13.204498	16.296325	19.385592	22.798815	26.347409
15	4.762402	6.602968	8.610523	10.756051	13.011179	15.422759	17.992555	20.661904
20	4.353519	5.961051	7.747974	9.546429	11.492277	13.500325	15.651715	17.975966
25	4.076524	5.574366	7.139272	8.793152	10.547369	12.371905	14.306293	16.303792
30	3.921191	5.335310	6.826268	8.332644	9.957582	11.633537	13.374903	15.199179

Table 3. Control limit of the proposed chart with $\mu = 0$ and $\beta = 1$ for $p = 11$ to 30 in-control ARL 370

n	11	12	13	14	15	20	25	30
3	90.370626	104.721061	120.038061	136.245494	153.865725	256.520042	383.617301	536.221458
4	65.892028	76.135074	86.823478	98.178006	109.818735	180.455655	267.056261	370.609531
5	53.091954	60.867712	69.141910	78.066117	87.169999	141.662466	208.535209	287.991728
6	44.904528	51.442364	58.472486	66.042769	73.230438	117.620645	172.276726	236.848011
7	39.437424	45.125861	50.933325	57.423708	64.016698	101.664101	148.599376	202.696386
8	35.521353	40.499573	45.727028	51.402870	57.212405	90.306572	130.721782	178.037425
9	32.743314	37.029061	41.786357	46.871033	51.877868	81.596351	117.826654	159.913451
10	30.306949	34.313542	38.626550	43.108493	47.961313	75.166658	107.249039	145.694497
15	23.456501	26.481228	29.649080	32.756155	36.192104	55.461965	78.093969	104.270656
20	20.214437	22.637989	25.368469	27.932550	30.691076	46.055537	64.148748	84.889047
25	18.336632	20.442208	22.728560	25.062423	27.456373	40.702427	55.978158	73.432596
30	17.104814	19.034573	21.045441	23.096349	25.374495	37.190711	50.797992	65.924211

\[
\text{Tr}(R^2) = 3 + (r_{12}^2 + r_{21}^2) + (r_{13}^2 + r_{31}^2) + (r_{23}^2 + r_{32}^2) \\
= 3 + 2r_{12}^2 + 2r_{13}^2 + 2r_{23}^2 \\
= 3 + 2(r_{12}^2 + r_{13}^2 + r_{23}^2)
\]

\[
\text{Tr}(R^2)\text{ statistic for the number of quality characteristics } p = 3 \text{ can be calculated as } p + b, \text{ where } p = 3 \text{ and } b = 2(r_{12}^2 + r_{13}^2 + r_{23}^2).
\]

In general, for p quality characteristics, $\text{Tr}(R^2)$ can also be written as $\text{Tr}(R^2) = p + b$, where p is the number of quality characteristic and b is two times of sum squared coefficient correlation which can be expressed as:

\[
b = 2(r_{12}^2 + r_{13}^2 + \ldots + r_{1p}^2 + \ldots + r_{23}^2 + \ldots + r_{2p}^2 + \ldots r_{(p-1)p}).
\]
The minimum value of $\text{Tr}(R^2)$ is p for $\forall r_{ik} = 0$ and its maximum value is p^2 for $\forall r_{ik} = 1$. Figure 1 illustrated the statistics of $\text{Tr}(R^2)$ for $p = 3$ with various coefficient correlation. It can be seen that the larger coefficient correlation the larger statistics $\text{Tr}(R^2)$ produced. Because of the $\text{Tr}(R^2)$ statistics is obtained from $p + b$ where b is two times of sum squared coefficient correlation, the distribution of $\text{Tr}(R^2)$ statistics is not easy to determine. Thus, this research employs the KDE to estimate the empirical distribution of $\text{Tr}(R^2)$.

3.2. Kernel density estimation

KDE method is a non-parametric method to estimate the probability density function of a random variable. This method was first introduced by Rosenblatt (1956) and Parzen (1962) so that its name is called the Rosenblatt–Parzen kernel density estimator which is the development of the histogram estimator. Chou et al. (2001) proposed KDE to estimate the distribution of T^2 statistic. Let T^2 is a Hotelling’s statistic which obtained under in-control condition. The distribution of T^2 statistic.

δ	3	4	5	7	9	
ARL$_0$	0.0	376.52	362.42	370.93	374.65	353.86
ARL$_1$	0.1	268.62	199.17	178.46	124.39	91.40
	0.2	119.66	74.09	49.27	26.54	15.74
	0.3	56.52	30.79	18.32	9.46	6.11
	0.4	32.91	15.47	9.59	4.69	3.27
	0.5	20.05	9.27	5.80	3.05	2.41
	0.6	13.82	5.88	4.14	2.44	1.83
	0.7	10.07	4.47	2.93	2.03	1.54
	0.8	7.65	3.78	2.41	1.70	1.44
	0.9	5.91	3.04	2.04	1.52	1.34
	1.0	4.75	2.66	1.95	1.37	1.21
	1.1	4.10	2.28	1.72	1.30	1.17
	1.2	3.48	2.01	1.55	1.23	1.13
	1.3	3.23	1.74	1.48	1.21	1.11
	1.4	2.79	1.69	1.38	1.15	1.07
	1.5	2.59	1.60	1.29	1.13	1.07
	1.6	2.37	1.49	1.24	1.10	1.05
	1.7	2.18	1.46	1.23	1.11	1.05
	1.8	2.06	1.39	1.21	1.09	1.05
	1.9	1.90	1.35	1.21	1.08	1.04
	2.0	1.83	1.30	1.14	1.06	1.05
	2.1	1.74	1.25	1.12	1.06	1.03
	2.2	1.64	1.23	1.11	1.04	1.02
	2.3	1.58	1.20	1.11	1.03	1.02
	2.4	1.52	1.19	1.11	1.03	1.01
	2.5	1.48	1.14	1.07	1.03	1.02
	2.6	1.41	1.16	1.09	1.02	1.01
	2.7	1.37	1.13	1.05	1.02	1.02
	2.8	1.34	1.12	1.07	1.02	1.01
	2.9	1.34	1.13	1.05	1.02	1.01
could be calculated with the following kernel function:

$$f_h(t) = \frac{1}{n} \sum_{i=1}^{n} K \left(\frac{|t - T_i|}{h} \right).$$

where \(K\) and \(h\) define kernel function and smoothing parameter, respectively. Table 1 presents some kernel functions displayed in (Härdle & Linton, 1994), where I is an indicator. The most used Gaussian Kernel is used in the analysis for this paper.

The control limit in equation (2) can be calculated using tables of integrals, in closed form distribution. However, the control limit might be not efficient to be calculated if the distribution is not closed form. Thus, the kernel control limit is solved using trapezoidal rule (Burden & Faires, 2011), one of the numerical integration methods to approximate the definite value of integral equation.

\(\delta\)	\(3\)	\(5\)	\(7\)	\(10\)	\(15\)
\(\text{ARL}_0\)	381.90	380.47	370.98	384.99	381.97
\(\text{ARL}_1\)	158.84	95.85	52.88	30.03	13.38
0.2	45.63	15.26	7.44	4.08	2.17
0.3	17.33	5.47	2.83	1.89	1.31
0.4	8.61	2.90	1.78	1.29	1.00
0.5	5.08	1.95	1.39	1.14	1.03
0.6	3.89	1.56	1.20	1.05	1.01
0.7	2.60	1.31	1.12	1.03	1.01
0.8	2.17	1.20	1.06	1.01	1.00
0.9	1.85	1.15	1.03	1.01	1.00
1.0	1.63	1.10	1.02	1.01	1.00
1.1	1.53	1.06	1.01	1.00	1.00
1.2	1.33	1.04	1.01	1.00	1.00
1.3	1.28	1.03	1.01	1.00	1.00
1.4	1.24	1.03	1.00	1.00	1.00
1.5	1.17	1.02	1.00	1.00	1.00
1.6	1.14	1.01	1.00	1.00	1.00
1.7	1.11	1.00	1.00	1.00	1.00
1.8	1.08	1.01	1.00	1.00	1.00
1.9	1.07	1.01	1.00	1.00	1.00
2.0	1.06	1.00	1.00	1.00	1.00
2.1	1.04	1.00	1.00	1.00	1.00
2.2	1.04	1.00	1.00	1.00	1.00
2.3	1.03	1.00	1.00	1.00	1.00
2.4	1.03	1.00	1.00	1.00	1.00
2.5	1.02	1.00	1.00	1.00	1.00
2.6	1.01	1.00	1.00	1.00	1.00
2.7	1.02	1.00	1.00	1.00	1.00
2.8	1.01	1.00	1.00	1.00	1.00
2.9	1.01	1.00	1.00	1.00	1.00
Furthermore, the control limit of T^2 based on KDE could be estimated by taking the percentile of kernel distribution. Hence, the control limit of T^2 based on KDE equal to $\frac{1}{2}\left(1 - \alpha \right)$-th percentile of T^2 distribution which could be calculated using as follows:

$$CL_{\text{kernel}} = \hat{F}_{n}(t)^{-1}(1 - \alpha).$$ \hspace{1cm} (2)

3.3. $\text{Tr}(R^2)$ control chart based on KDE

The following procedures are used to form the $\text{Tr}(R^2)$ control chart with the KDE control limit.

Procedures to form the $\text{Tr}(R^2)$ control chart:

1. Specify the level of significance α and sample size n.
2. Input data as a matrix with the dimension of $mn \times p$, where m denotes the number of subgroups.

δ	3	10	15	20	25	
ARL$_0$	0.0	377.16	357.69	373.08	371.47	381.35
ARL$_1$	0.1	116.90	13.40	6.50	3.75	2.79
	0.2	23.65	2.14	1.41	1.16	1.10
	0.3	8.15	1.26	1.06	1.02	1.01
	0.4	4.33	1.07	1.01	1.00	1.00
	0.5	2.80	1.02	1.00	1.00	1.00
	0.6	2.02	1.00	1.00	1.00	1.00
	0.7	1.60	1.00	1.00	1.00	1.00
	0.8	1.41	1.00	1.00	1.00	1.00
	0.9	1.25	1.00	1.00	1.00	1.00
	1.0	1.14	1.00	1.00	1.00	1.00
	1.1	1.10	1.00	1.00	1.00	1.00
	1.2	1.07	1.00	1.00	1.00	1.00
	1.3	1.07	1.00	1.00	1.00	1.00
	1.4	1.04	1.00	1.00	1.00	1.00
	1.5	1.03	1.00	1.00	1.00	1.00
	1.6	1.02	1.00	1.00	1.00	1.00
	1.7	1.02	1.00	1.00	1.00	1.00
	1.8	1.01	1.00	1.00	1.00	1.00
	1.9	1.01	1.00	1.00	1.00	1.00
	2.0	1.00	1.00	1.00	1.00	1.00
	2.1	1.00	1.00	1.00	1.00	1.00
	2.2	1.00	1.00	1.00	1.00	1.00
	2.3	1.00	1.00	1.00	1.00	1.00
	2.4	1.00	1.00	1.00	1.00	1.00
	2.5	1.00	1.00	1.00	1.00	1.00
	2.6	1.00	1.00	1.00	1.00	1.00
	2.7	1.00	1.00	1.00	1.00	1.00
	2.8	1.00	1.00	1.00	1.00	1.00
	2.9	1.00	1.00	1.00	1.00	1.00

Table 6. ARLs of the proposed chart with $\mu = 0$, $\delta = 1$ and $n = 30$ for various number of quality characteristics p.
For each subgroup i from 1 to m:

(a) Calculate the correlation matrix R_i with a dimension of p / C_2 from i-th subgroup matrix with a dimension of n / C_2.

(b) Calculate $R_i^2 = R_i R_i$ which has the dimension of $p \times p$.

(c) Calculate the statistics $Tr_i = trace(R_i^2)$ with a dimension of 1×1. For $i = 1, 2, \ldots, m$ subgroup the dimension of the vector Tr is $m \times 1$.

(4) Create the control chart by plotting the Tr_i, where $i = 1, 2, \ldots, m$ and Control Limit (CL) calculate using KDE method.

Procedures to calculate the density of Tr_i using KDE:

1. Determine the type of kernel, in this study Gaussian kernel is used with the following equation:

$$ k(x, y) = \exp\left(-\frac{1}{2} \frac{||x - y||^2}{\sigma^2}\right) $$
\[K(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} (u^2)\right), \quad -\infty < u < \infty, \quad (3) \]

2. Define \(u = \frac{(Tr - T_{\hat{h}})}{\hat{h}} \) so that the equation (3) can be written as follows:

\[K\left(\frac{Tr - T_{\hat{h}}}{\hat{h}}\right) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{Tr - T_{\hat{h}}}{\hat{h}}\right)^2\right), \quad -\infty < u < \infty, \quad \text{where} \quad \hat{h} \quad \text{is the optimum bandwidth.} \]

3. Calculate the density of \(Tr \) statistics as follows:

\[f_n(Tr) = \frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{Tr - T_{\hat{h}}}{h}\right). \quad (4) \]

4. Substitute the value of \(K\left(\frac{Tr - T_{\hat{h}}}{\hat{h}}\right) \) to equation so that the following equation is obtained:

\(\delta \)	\(p \)	3	10	25	50	75
ARL\(_0\)	0.0	360.96	375.79	379.81	379.99	377.83
ARL\(_1\)	0.1	24.27	1.92	1.01	1.00	1.00
0.2	3.59	1.01	1.00	1.00	1.00	1.00
0.3	1.57	1.00	1.00	1.00	1.00	1.00
0.4	1.14	1.00	1.00	1.00	1.00	1.00
0.5	1.02	1.00	1.00	1.00	1.00	1.00
0.6	1.01	1.00	1.00	1.00	1.00	1.00
0.7	1.00	1.00	1.00	1.00	1.00	1.00
0.8	1.00	1.00	1.00	1.00	1.00	1.00
0.9	1.00	1.00	1.00	1.00	1.00	1.00
1.0	1.00	1.00	1.00	1.00	1.00	1.00
1.1	1.00	1.00	1.00	1.00	1.00	1.00
1.2	1.00	1.00	1.00	1.00	1.00	1.00
1.3	1.00	1.00	1.00	1.00	1.00	1.00
1.4	1.00	1.00	1.00	1.00	1.00	1.00
1.5	1.00	1.00	1.00	1.00	1.00	1.00
1.6	1.00	1.00	1.00	1.00	1.00	1.00
1.7	1.00	1.00	1.00	1.00	1.00	1.00
1.8	1.00	1.00	1.00	1.00	1.00	1.00
1.9	1.00	1.00	1.00	1.00	1.00	1.00
2.0	1.00	1.00	1.00	1.00	1.00	1.00
2.1	1.00	1.00	1.00	1.00	1.00	1.00
2.2	1.00	1.00	1.00	1.00	1.00	1.00
2.3	1.00	1.00	1.00	1.00	1.00	1.00
2.4	1.00	1.00	1.00	1.00	1.00	1.00
2.5	1.00	1.00	1.00	1.00	1.00	1.00
2.6	1.00	1.00	1.00	1.00	1.00	1.00
2.7	1.00	1.00	1.00	1.00	1.00	1.00
2.8	1.00	1.00	1.00	1.00	1.00	1.00
2.9	1.00	1.00	1.00	1.00	1.00	1.00
Figure 2. ARLs of Proposed chart with $p = 3$ for various n.

\[f_h(Tr) = \frac{1}{n h} \sum_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{Tr - Tr_i}{h} \right)^2 \right). \]

(5)

Procedures to calculate the control limit $Tr(R^2)$ control chart using KDE:

1. Calculate the cumulative distribution function of $f_h(Tr)$ using the following equation:

\[F_h(Tr) = \int_0^{Tr} f_h(tr) \, dtr. \]

(6)

2. By using the trapezoid rule method which is a numerical integration method, the integral \(\int_0^{Tr} f_h(tr) \, dtr \) can be computed as follows:

\[\int_{\text{min}}^{\text{max}} f_h(Tr) \, dTr \approx \frac{\text{max} - \text{min}}{2n} \sum_{i=1}^{n} (f_h(Tr_i) + f_h(Tr_{i+1})). \]

3. The control limit of $Tr(R^2)$ control chart can be estimated by taking the 100$(1 - \alpha)$th percentile of the empirical density of $f_h(tr)$ as the following equation:

\[CL = F_h^{-1}(Tr)(1 - \alpha). \]

(7)

4. Simulation studies

In this section, several simulation studies are conducted to investigate the performance of the proposed chart. The quality characteristics are assumed to follow the multivariate normal distribution, $X \sim N_p(\mu, \Sigma)$. First, the performance of the control limit is evaluated by calculating its ARL_0. Further, the performance of the proposed chart to detect a shift in the process is also evaluated using ARL_1 criteria. The simulation study, ARL_0 and ARL_1 of the proposed chart is calculated using Algorithm 1.

Algorithm 1. Calculation of ARL_0 and ARL_1

1. Specify the significance level $\alpha = 0.00273$, number of characteristics p and sample size n.

2. Calculate the control limit (CL) for specified parameters given in step 1 using KDE procedure in section 2.

3. For 1000 repetitions, follow these steps:
a. Generate the data which follow Multivariate Normal distribution with vector $\mu = 0$ and covariance matrix $\Sigma = I$.

b. Calculate statistics Tr^2 from the generated data.

c. Calculate the run length (RL), number of samples until finding the first statistic Tr which is greater than CL.

4. Calculate ARL_0 by taking the average of RL over 1000 replications.

5. Define $\Sigma' = \Sigma + \delta$, where δ a shift in process.

6. For 1000 repetitions follow these steps:

 a. Generate the data which follow Multivariate Normal distribution with vector $\mu = 0$ and covariance matrix $\Sigma = \Sigma'$.

 b. Calculate statistics T_r from the generated data in step 6.a.

 c. Calculate the RL', number of samples until finding the first statistic T_r which is greater than CL.

7. Calculate ARL_1 by taking the average of RL' over 1000 replications.

8. Repeat step 1 until 7 for different value of p and n.

4.1. Control limit

In this section, the performance of the KDE control limit is evaluated using ARL_0 criteria. Tables 1 and 2 present the KDE control limits of the proposed chart. Since the simulation study is conducted using significance level $\alpha = 0.00273$, which corresponds to three-sigma, the ARL_0 equals to 370. Three sigma control limit is used in this study because it refers to the processes that run efficiently to create the highest quality of production goods. For several combinations of n and p, the control limits calculated using the KDE method always produce ARL_0 at about 370 which indicates that the KDE control limit is reliable for process monitoring. Moreover, it also can be seen that the value of control limits become smaller for the larger value of sample size n and it became larger as the larger value of quality characteristics p.

4.2. Performance of the proposed chart

This section provides the performance evaluation of the proposed control chart using the KDE control limit. The out of control ARL is calculated by adding shift to covariance matrix $\Sigma = \Sigma + \delta$, where $\delta = 0.2 I$. The simulation study is conducted for $\mu = 0$, $\Sigma = I$ over the various number of characteristics quality p and number of sample n. In addition, the KDE control limit is taken from Tables 2 and 3 for $\alpha = 0.00237$.

4.2.1. Level of significance sarathkumar

In this subsection, the performance of the proposed chart is evaluated using $\alpha = 0.00237$. Table 4 shows the ARLs of the proposed chart with $n = 10$ for the various number of quality characteristics. It can be known that the larger shift in the process, the faster the proposed chart to detect the out-of-control signal. Furthermore, the proposed chart become more sensitive for the larger number of quality characteristics p. This is confirmed by the value of ARL_1 for such condition.

Table 5 shows the ARLs of the proposed chart with $n = 20$ for the various number of quality characteristics p. Similar to the previous case, it can be seen that the larger shift in the process, the faster the proposed chart to detect the out-of-control signal. Furthermore, the proposed chart become more
sensitive for the larger number of quality characteristics p. Meanwhile, the performance of the proposed chart to detect a shift in the covariance matrix for $n=30$ is presented in Table 6. The ability of the proposed chart to detect shift is increased as the larger number of sample size n and number of quality characteristics p.

Table 7 shows the ARLs of the proposed chart with $n = 50$ for the various number of quality characteristics. For this case, the proposed chart shows great performance in detecting the shift in the process. This is shown by the proposed chart become very sensitive for the larger number of quality characteristics p. Moreover, the performance of the proposed chart to detect a shift in the covariance matrix for $n = 100$ is presented in Table 8. The oversensitive performance of the proposed chart to detect the small number of a shift in the covariance matrix is found for this case. It can be seen that the value of ARL1 for this case is 1.00 except $p = 3$ for only 0.1 shift in the covariance matrix. Figure 2 shows the

δ	β	γ				
ARL$_{0}$	0.0	205.91	199.01	194.72	212.37	198.14
		(5.3726)	(7.5720)	(10.1109)	(15.8402)	(19.8962)
ARL$_{1}$	0.1	57.19	41.20	30.26	22.37	12.57
		20.05	10.28	7.12	4.32	2.91
		9.44	4.25	3.04	2.20	1.66
		4.84	2.95	2.07	1.65	1.29
		3.52	2.24	1.65	1.33	1.23
		2.80	1.83	1.47	1.25	1.14
		2.24	1.56	1.31	1.09	1.09
		1.80	1.35	1.21	1.10	1.06
		1.79	1.27	1.13	1.06	1.04
		1.50	1.23	1.09	1.08	1.02
		1.45	1.18	1.10	1.04	1.01
		1.28	1.17	1.06	1.02	1.02
		1.35	1.07	1.07	1.01	1.01
		1.24	1.07	1.05	1.01	1.02
		1.22	1.08	1.02	1.01	1.01
		1.17	1.06	1.03	1.01	1.00
		1.15	1.07	1.02	1.00	1.01
		1.11	1.05	1.01	1.00	1.00
		1.10	1.04	1.01	1.01	1.00
		1.11	1.02	1.01	1.00	1.00
		1.06	1.04	1.01	1.01	1.00
		1.07	1.02	1.00	1.00	1.00
		1.07	1.01	1.00	1.01	1.00
		1.04	1.01	1.01	1.00	1.00
		1.06	1.01	1.00	1.00	1.00
		1.03	1.02	1.01	1.00	1.00
		1.05	1.03	1.00	1.00	1.00
performance comparison of the proposed chart with a number of quality characteristics $p = 3$ for various value of sample size n. It can be seen from the figure that the value of ARL$_1$ for $n = 100$ is very small indicated that the proposed chart is very sensitive to detect the shift for such condition. In general, the proposed chart becomes more sensitive as the number of sample size increase.

4.2.2. Level of significance sarathkumar

In this subsection, the performance of the proposed chart is evaluated for $\alpha = 0.00237$. Simulation studies are conducted using a number of sample $n = 10$, number of quality characteristic $p = 3, 4, 5, 7,$ and 10, as well as $\alpha = 0.005, 0.01$, and 0.05.

Table 9 tabulated the performance of the proposed chart for $\alpha = 0.005$ with $n = 10$ for the various number of quality characteristics. The ARL$_0$ is written as the bold number while the value

δ	p	3	4	5	7	9					
ARL$_0$	0.0	97.50	(5.1426)	103.66	(7.3176)	98.20	(9.6749)	99.12	(15.1656)	98.09	(21.5672)
ARL$_1$	0.1	39.02	26.03	19.88	12.66	9.88					
	0.2	13.44	7.25	5.19	3.68	2.46					
	0.3	6.26	3.75	2.61	1.87	1.65					
	0.4	4.07	2.53	1.89	1.41	1.27					
	0.5	2.63	1.96	1.56	1.24	1.11					
	0.6	2.37	1.64	1.34	1.15	1.09					
	0.7	2.02	1.48	1.22	1.10	1.05					
	0.8	1.61	1.38	1.14	1.08	1.06					
	0.9	1.57	1.23	1.16	1.09	1.05					
	1.0	1.34	1.17	1.06	1.04	1.01					
	1.1	1.36	1.12	1.10	1.04	1.01					
	1.2	1.27	1.13	1.05	1.02	1.00					
	1.3	1.23	1.07	1.03	1.02	1.00					
	1.4	1.21	1.06	1.03	1.01	1.00					
	1.5	1.13	1.06	1.04	1.01	1.00					
	1.6	1.12	1.06	1.04	1.02	1.01					
	1.7	1.15	1.03	1.02	1.01	1.00					
	1.8	1.12	1.03	1.01	1.00	1.00					
	1.9	1.06	1.02	1.02	1.00	1.00					
	2.0	1.06	1.01	1.00	1.00	1.00					
	2.1	1.11	1.02	1.01	1.00	1.00					
	2.2	1.06	1.02	1.00	1.00	1.00					
	2.3	1.05	1.01	1.02	1.00	1.00					
	2.4	1.05	1.01	1.00	1.00	1.00					
	2.5	1.04	1.01	1.01	1.00	1.00					
	2.6	1.05	1.00	1.00	1.00	1.00					
	2.7	1.02	1.01	1.00	1.00	1.00					
	2.8	1.02	1.00	1.00	1.01	1.00					
	2.9	1.02	1.00	1.01	1.00	1.00					
inside bracket below the ARL0 is the estimated KDE control limit. It can be seen that for \(\alpha = 0.005 \), the ARL0 produced is around 200. These facts prove that estimated ARL0 produced by proposed control limit has a similar value to ARL0 in the theory. The theoretical ARL0 is equal to \(\frac{1}{\alpha} \) or in case is \(\frac{1}{0.005} \approx 200 \). According to the table, it can be concluded that higher number of quality characteristic \(p \) smaller value of ARL1. In other words the larger quality characteristics the more sensitive the proposed chart to detect shift in the covariance matrix.

Tables 10 and 11 report the performance of the proposed chart for \(\alpha = 0.01 \) and 0.05, respectively. Similar to the previous case, the estimated ARL0 is around 100 for \(\alpha = 0.01 \) and around 20 for \(\alpha = 0.05 \). The pattern is same as the previous case, the proposed chart has a better performance for the larger quality characteristics.
4.3. Discussion

The previous sections present the simulation result of the control limit and performance of the proposed chart. From these results, there are several notes that can be used as further discussion. First, the control limit of the proposed chart always shows the consistent ARL value at about 370 for $\alpha = 0.00273$. It also has the consistent ARL for $\alpha \neq 0.00273$ by producing value at about $\frac{1}{2}$. This fact indicated that the proposed KDE method in calculating the control limit has a great ability to obtain the approximation value of the control limit. This happens due to the KDE method employed can capture all changes on the distribution of statistics Tr and estimated the control limit based on the empirical density of the statistics proposed.

Second, the proposed chart has an outstanding ability to detect a shift in the covariance matrix, especially for the larger number of quality characteristics p and sample size n. This may happen due to the ability of the proposed statistics to detect small changes in the covariance matrix. By
5. Illustrative example

A numerical example is given in this section in order to illustrate the operation of the Tr(R^2) control chart with the KDE control limit. In this section, we use the ZA fertilizer production dataset in carbonation step to illustrate the use of the proposed chart. There are 44 samples with each of them has 12 observations. The quality characteristics measured in this dataset include CO_2 (g/L), NH_3 (g/L), the ratio of CO_2 and NH_3, specific weight (kg/L), as well as temperature (°C). It can be seen that the quality characteristics are recorded with different measures.

First, by treating the first 20 samples as the in-control process, the control limit is estimated using the KDE method. Further, the estimated KDE control limit, which equals 14.1633, is used to monitor the full dataset. Figure 3 shows the monitoring process of the ZA fertilizer production dataset. Moreover, the conventional GV in Figure 4 also employed to monitor this dataset as the benchmark of the proposed chart.

According to the figures, it can be seen that the proposed chart can detect the changes in the covariance matrix by declaring three out-of-control samples. Meanwhile, the conventional GV chart did not detect any out of control signal. Furthermore, the conventional method produces very small and similar statistics. This fact can be proved that the proposed chart is more sensitive to detect changes in the covariance matrix than the conventional one. Also, this is confirmed the second drawback of the conventional method that is the multivariate variability becomes small due to the quality characteristic is a linear combination of the other variables.

6. Conclusion

In this paper, the Tr(R^2) control chart based on the squared correlation matrix with the trace operator is proposed in order to overcome the drawbacks of the existing multivariate variability chart. Kernel Density Estimation method is used to calculate the better control limit for the proposed chart. The simulation studies show that for the several combinations of a number of quality characteristics p and number of sample size n, the control limit using the KDE method always results in an ARL$_0$ at about 370 for $\alpha = 0.00273$. For $\alpha = 0.00273$, the proposed chart has ARL$_0$ near to $\frac{1}{\alpha}$. For the shifted process, the proposed chart demonstrated the great performance as shown by the ARL$_1$ value. The performance of the proposed chart becomes better for the larger number of quality characteristics and the number of sample size n in the process. The application of the proposed chart to monitor the ZA fertilizer production dataset shows that the proposed chart has a better performance to monitor the covariance matrix than the GV chart. For future research, the proposed chart will be applied to detect high dimensional big data due to its great ability for such a case. In addition, the use of the bootstrap resampling method is also appropriate for estimating the control limit of the proposed chart.

Funding
The authors received no direct funding for this research.

Author details
Muhammad Mashuri
E-mail: m_mashuri@statistika.its.ac.id
ORCID ID: http://orcid.org/0000-0001-9348-4507
Haryono Haryono
E-mail: haryono@statistika.its.ac.id
Diaz Fitra Aksioma
E-mail: diaz_fa@statistika.its.ac.id
Wibawati Wibawati
E-mail: wibawati@statistika.its.ac.id
Muhammad Ahsan
E-mail: ahsan418@gmail.com
ORCID ID: http://orcid.org/0000-0003-3444-2766

Hidayatul Khusna
E-mail: khusna16@mhs.statistika.its.ac.id
ORCID ID: http://orcid.org/0000-0001-9889-2884
1 Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia.

Disclosure statement
The authors declare that there are no potential conflict of interest

Funding
The authors received no direct funding for this research.

Citation information
Cite this article as: Tr(R^2) control charts based on kernel density estimation for monitoring multivariate variability process, Muhammad Mashuri, Haryono Haryono, Diaz Fitra...
References

Abdul, S. A., & Miller, A. (2012). On proper choice of variability control chart for normal and non-normal processes. *Quality and Reliability Engineering International*, 28(3), 279–296. doi:10.1002/qre.1244

Abu-Shawiesh, M. O. A., Kibria, G., & George, F. (2014). A robust bivariate control chart alternative to the Hotelling’s T2 Control Chart. *Quality and Reliability Engineering International*, 30(1), 25–35. doi:10.1002/qre.1474

Ahsan, M., Mashuri, M., & Khusna, H. (2017). Evaluation of Laney p’ Chart Performance. *International Journal of Applied Engineering Research*, 12(24), 14208–14217.

Ahsan, M., Mashuri, M., Kuswanto, H., Prastyo, D. D., & Khusna, H. (2018a). Multivariate control chart based on PCA mix for variable and attribute quality characteristics. *Production & Manufacturing Research*, 6(1), 364–384. doi:10.1080/21693277.2018.1517055

Ahsan, M., Mashuri, M., Kuswanto, H., Prastyo, D. D., & Khusna, H. (2018b). T2 control chart based on successive difference covariance matrix for intrusion detection system. In *Journal of Physics: Conference Series*, Makassar, Indonesia (Vol. 1028, p. 12220). IOP Publishing.

Alfaro, J. L., & Ortega, J. F. (2009). A comparison of robust alternatives to Hotelling’s T2 control chart. *Journal of Applied Statistics*, 36(12), 1385–1396. doi:10.1080/026647670902810813

Ali, H., Syed Yahaya, S. S., & Omar, Z. (2013). Robust hoteling t2 control chart with consistent minimum vector variance. *Mathematical Problems in Engineering*, 2013, 1–7. doi:10.1155/2013/401350

Alkindi, M., & Prusty, D. D. (2016). T2 hotelling fuzzy and W2 control chart with application to wheat flour production process. In *AIP Conference Proceedings*, Yogyakarta, Indonesia (Vol. 1746). doi:10.1063/1.4963777

Alt, F. B., & Smith, N. D. (1988). Multivariate process control. *Handbook of Statistics*, 7, 333–351.

Amdouni, A., Castagliola, P., Taleb, H., & Celano, G. (2015). Monitoring the coefficient of variation using a variable sample size control chart in short production runs. *International Journal of Advanced Manufacturing Technology*, 81(1), 1–14. doi:10.1007/s00170-015-7084-4

Amdouni, A., Castagliola, P., Taleb, H., & Celano, G. (2017). A variable sampling interval Shewhart control chart for monitoring the coefficient of variation in short production runs. *International Journal of Production Research*, 55(19), 5521–5536. doi:10.1080/00949655.2017.1285076

Aparisi, F., Jabooyes, J., & Carrión, A. (1999). Statistical properties of the Isi multivariate control chart. *Communications in Statistics - Theory and Methods*, 28(11), 2671–2686. doi:10.1080/03610929908832445

Aparisi, F., Jabooyes, J., & Carrión, A. (2001). GENERALIZED VARIANCE CHART DESIGN WITH ADAPTIVE SAMPLE SIZES. THE BIVARIATE CASE. *Communications in Statistics - Simulation and Computation*, 30(4), 931–948. doi:10.1081/ASC-100010789

Arkai, J., Niaki, S. T. A., & Abbasi, B. (2007). Artificial neural networks in applying MCUSUM residuals charts for AR (I) processes. *Applied Mathematics and Computation*, 189(2), 1889–1901. doi:10.1016/j.amc.2006.12.081

Burden, R. L., & Faires, J. D. (2011). *Numerical analysis*. Cengage learning. USA. doi:10.1017/CBO9781107415324.004

Calzada, M. E., & Scariano, S. M. (2013). A synthetic control chart for the coefficient of variation. *Journal of Statistical Computation and Simulation*, 83(5), 853–867. doi:10.1080/00949655.2011.639772

Castagliola, P., Achouri, A., Taleb, H., Celano, G., & Psarakis, S. (2015). Monitoring the coefficient of variation using a variable sample size control chart. *The International Journal of Advanced Manufacturing Technology*, 80(9), 1561–1576. doi:10.1007/s00170-015-6985-6

Castagliola, P., Celano, G., & Psarakis, S. (2011). Monitoring the Coefficient of Variation Using EWMA Charts. *Journal of Quality Technology*, 43(3), 249–265. doi:10.1080/00224065.2011.11917861

Chatterjee, S., & Hadi, A. S. (2009). *Sensitivity analysis in linear regression* (Vol. 327). New York, NY: John Wiley & Sons.

Chen, G., CHENG, S. W., & Xie, H. (2005). A new multivariate control chart for monitoring both location and dispersion. *Communications in Statistics-Simulation and Computation*, 34(3), 203–217. doi:10.1081/ASC-200047087

Chou, Y.-M., Mason, R., & Young, J. (2001). The control chart for individual observations from a multivariate non-normal distribution. *Communications in Statistics: Theory & Methods*, 30(8/9), 1937.

Costa, A. F. B., & Machado, M. A. G. (2009). A new chart based on sample variances for monitoring the covariance matrix of multivariate processes. *The International Journal of Advanced Manufacturing Technology*, 41(7), 770–779. doi:10.1007/s00170-008-1502-9

Costa, A. F. B., & Machado, M. A. G. (2011). A control chart based on sample ranges for monitoring the covariance matrix of the multivariate processes. *Journal of Applied Statistics*, 38(2), 233–245. doi:10.1080/02664760903406413

Crous, C., & Haesbroeck, G. (1999). Influence function and efficiency of the minimum covariance determinant scatter matrix estimator. *Journal of Multivariate Analysis*, 71(2), 161–190. doi:10.1006/jmva.1999.1839

Djauhari, A. M. (2005). Improved monitoring of multivariate process variability. *Journal of Quality Technology*, 37(1), 32–39. Retrieved from http://proxquest.umii.com/pqdweb?did=773835061&Fmt=7&clientId=3740&QRT=309&VName=PDQ

Djauhari, A. M. (2005b). Outlier detection: Some challenging problem for future research. *Proceedings of the Eighth Islamic Countries Conference on Statistical Sciences*, National University of Computer and Emerging Sciences, Lahore.

Djauhari, A. M. (2010). A multivariate process variability monitoring based on individual observations. *Modern Applied Science*, 4(10), 91. doi:10.5539/mas.v4n10p91

Doğu, E., & Kocakoc, I. D. (2011). Estimation of change point in generalised variance control chart. *Communications in Statistics - Simulation and Computation*, 40(3), 345–363. doi:10.1080/03610918.2010.562844

Gadre, M. P., & Kakade, V. C. (2018). Two group inspection-based control charts for dispersion matrix. *Communications in Statistics - Simulation and Computation*, 47(6), 1652–1669. doi:10.1080/03610918.2017.1321120

Grambow, S. C., & Stromberg, A. J. (1998). Combining the EID and FSA for computing the minimum volume

Page 19 of 37
ellipsoid. Department of Stat., University of Kentucky.

Grigoryan, A., & He, D. (2005). Multivariate double sampling [S] Charts for controlling process variability. International Journal of Production Research, 43(4), 715–730. doi:10.1080/00207540410001716525

Hamed, M. S. (2014). Generalized variance chart for multivariate quality control process procedure with application. Applied Mathematical Sciences, 8(163), 8137–8151. doi:10.12988/ams.2014.49734

Härde, W., & Linton, O. (2006). Applied nonparametric methods. Handbook of Econometrics, 4(26), 2295–2339. doi:10.1016/S1573-4412(05)80007-8

Holmes, D. S., & Mengen, A. E. (1993). Improving the performance of the T2 control chart. Quality Engineering, 5(4), 619–625. doi:10.1080/08982659308919004

Huwang, L., Yeh, A. B., & Wu, C.-W. (2007). Monitoring multivariate process variability for individual observations. Journal of Quality Technology, 39(3), 258–278. doi:10.1080/00224066.2007.11917692

Issam, B. K., & Mohamed, L. (2008). Support vector regression based residual MCUSUM control chart for autocorrelated process. Applied Mathematics and Computation, 201(1–2), 565–574. doi:10.1016/j.amc.2007.12.059

Kang, C. W., Lee, M. S., Seong, Y. J., & Hawkins, D. M. (2007). A control chart for the coefficient of variation. Journal of Quality Technology, 39(2), 151–158. doi:10.1080/00224065.2007.11917682

Khotun, M., Khoo, M. B. C., Lee, M. H., & Castagliola, P. (2018). One-sided charts for monitoring the multivariate coefficient of variation in short production runs. Transactions of the Institute of Measurement and Control, 0142331211879481.

Khaw, K. W., Khoo, M. B. C., Yeong, W. C., & Wu, Z. (2017). Monitoring the coefficient of variation using a variable sample size and sampling interval control chart. Communications in Statistics - Simulation and Computation, 46(7), 5772–5794. doi:10.1080/03610918.2016.1177074

Khursa, H., Mashuri, M., Ahsan, M., Suhartono, S., & Prastyo, D. D. (2018). Bootstrap based maximum multivariate CUSUM control chart. Quality Technology & Quantitative Management, 1–23. doi:10.1080/16843703.2018.15353765

Khursa, H., Mashuri, M., Suhartono, P. D., & Ahsan, M. (2018). Multivariate least square SVR based multivariate EWMA control chart. Journal of Physics: Conference Series, 1028(1), 12221. Retrieved from http://stacks.iop.org/1742-6596/1028/i=1/a=012221

Lee, M. H., & Khoo, M. B. C. (2017). Optimal designs of multivariate synthetic [S] Control chart based on median run length. Communications in Statistics - Theory and Methods, 46(6), 3034–3053. doi:10.1080/03610926.2015.1048884

Lee, M. H., & Khoo, M. B. C. (2018). Double sampling [S] Control chart with variable sample size and variable sampling interval. Communications in Statistics - Simulation and Computation, 47(2), 615–628. doi:10.1080/03610918.2017.1282846

Li, Z., & Tsung, F. (2019). A control chart for monitoring process covariance matrices with more variables than observations. Quality and Reliability Engineering International, 35(1), 351–367. doi:10.1002/qre.2403

Lim, A. J. X., Khoo, M. B. C., Teoh, W. L., & Hoa, A. (2017). Run sum chart for monitoring multivariate coefficient of variation. Computers & Industrial Engineering, 109, 84–95. doi:10.1016/j.cie.2017.04.023

Maboudou-Tchoo, E. M., & Diawara, N. (2013). A LASSO chart for monitoring the covariance matrix. Quality Technology & Quantitative Management, 10(1), 95–114. doi:10.1080/16843703.2013.11673310

Machado, M. A. G., Costa, A. F. B., & Rahim, M. A. (2009). The synthetic control chart based on two sample variances for monitoring the covariance matrix. Quality and Reliability Engineering International, 25(5), 595–606. doi:10.1002/qre.992

Mashuri, M., Haryono, P., Wibawati, A. D. F., Khusna, H., & Ahsan, M. (2016). Trace R2 control chart for monitoring variability. In International Conference on Theoretical and Applied Statistics Conference Proceedings, Surabaya, Indonesia.

Montgomery, D. (2009). Introduction to statistical quality control. New York: John Wiley & Sons Inc. doi:10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.0.CO;2-C

Naorossana, R., & Vaghefi, S. J. M. (2006). Effect of autocorrelation on performance of the MCUSUM control chart. Quality and Reliability Engineering International, 22(2), 191–197. doi:10.1002/qre.695

Pace, E. S. (1961). Cumulative sum charts. Technometrics, 3(1), 1–9. doi:10.1080/00401706.1961.10489922

Porzen, E. (1961). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3), 1065–1076. doi:10.1214/aoms/1177704472

Péña, D., & Rodríguez, J. (2003). Descriptive measures of multivariate scatter and linear dependence. Journal of Multivariate Analysis, 85(2), 361–374. doi:10.1006/jmva.2001.10447-2598/S00000003-1

Phaladiganon, P., Kim, S. B., Chen, V. C. P., Baek, J.-G., & Park, S.-K. (2011). Bootstrap-Based T2 multivariate control charts. Communications in Statistics - Simulation and Computation, 40(5), 645–662. doi:10.1080/03610918.2010.549989

Phaladiganon, P., Yenon, Y. P., Chen, V. C. P., & Jiang, W. (2013). Principal component analysis-based control charts for multivariate nonnormal distributions. Expert Systems with Applications, 40(8), 3044–3054. doi:10.1016/j.eswa.2012.12.020

Pirhooshyaran, M., & Nikaid, S. T. A. (2015). A double-max MEWMA scheme for simultaneous monitoring and fault isolation of multivariate multistage auto-correlated processes based on novel reduced-dimension statistics. Journal of Process Control, 29, 11–22. doi:10.1016/j.jprocont.2015.03.008

Riaz, M. (2015). Bootstrap control chart. Communications in Statistics - Simulation and Computation, 37(6), 1239–1261. doi:10.1080/03610918.2010.549989

Riaz, M., & Does, R. J. M. M. (2008). An alternative to the bivariate control chart for process dispersion. Quality Engineering, 21(1), 63–71. doi:10.1080/0898210080245279

Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239–250. doi:10.1080/00401706.1959.10489860

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, Volume, 27, 832–837. doi:10.1214/aoms/1177728190

Shehwar, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell Labs Technical Journal, 31(1), 43–87. doi:10.1002/j.1538-7305.1924.tb01347.x

Sindelar, M. F. (2007). Multivariate statistical process control for correlation matrices. University of Pittsburgh.

Suwanda, & Djauhari, A. M. (2003). A new concept in monitoring multivariate process variability. Data Analysis Research Group, 2(2), 1–2.
Tang, P. F., & Barnett, N. S. (1996). Dispersion control for multivariate processes. *Australian Journal of Statistics, 38*(3), 235–251. doi:10.1111/anzs.1996.38.issue-3

Wibawati, M., Purhadi, M., & Ahsan, M. (2018). Performance fuzzy multinomial control chart. *Journal of Physics: Conference Series*, 1028(1), 12120. Retrieved from http://stacks.iop.org/1742-6596/1028/i=1/a=012120

Wibawati, M., Purhadi, M., & Irhamah. (2016). Fuzzy multinomial control chart and its application. In AIP Conference Proceedings, Surabaya, Indonesia (Vol. 1718). doi:10.1063/1.4943351

Yeh, A. B., Huwang, L., & Wu, C.-W. (2005). A multivariate EWMA control chart for monitoring process variability with individual observations. *IIE Transactions, 37*(11), 1023–1035. doi:10.1080/07408170500232263

Yeong, W. C., Khoo, M. B. C., Teoh, W. L., & Castagliola, P. (2016). A control chart for the multivariate coefficient of variation. *Quality and Reliability Engineering International, 32*(3), 1213–1225. doi:10.1002/qre.1828

Yeong, W. C., Khoo, M. B. C., Tham, L. K., Teoh, W. L., & Rahim, M. A. (2017). Monitoring the coefficient of variation using a variable sampling interval EWMA chart. *Journal of Quality Technology, 49*(4), 380–401. doi:10.1080/00224065.2017.1191800
Appendix dataset

Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
8-Jul	297.50	246.50	1.21	1.14	42.00
	295.70	246.50	1.20	1.14	42.00
	295.70	247.40	1.20	1.14	43.00
	297.50	246.50	1.21	1.14	43.00
	294.00	237.20	1.24	1.14	44.00
9-Jul	290.50	243.10	1.19	1.13	43.00
	294.00	238.00	1.24	1.13	44.00
	290.50	232.00	1.25	1.13	45.00
	280.10	227.80	1.23	1.13	44.00
	283.50	232.90	1.22	1.13	42.00
	281.90	227.00	1.24	1.14	42.00
	283.50	232.90	1.22	1.13	42.00
	285.30	240.60	1.19	1.13	42.00
	283.60	241.40	1.17	1.13	42.00
	281.90	241.40	1.17	1.12	43.00
	264.60	227.80	1.15	1.12	42.00
	300.90	255.00	1.18	1.13	44.00
	316.50	258.40	1.22	1.14	45.00
10-Jul	328.60	229.50	1.43	1.16	44.00
	306.10	224.40	1.36	1.14	45.00
	285.30	217.60	1.31	1.14	43.00
	288.80	223.60	1.29	1.14	44.00
	288.80	223.60	1.29	1.14	45.00
	257.10	221.00	1.16	1.14	43.00
	287.10	221.00	1.30	1.14	42.00
	280.10	221.00	1.27	1.14	45.00
	287.10	224.40	1.28	1.14	45.00
	285.30	223.60	1.28	1.14	46.00
	295.70	235.50	1.26	1.14	44.00

(Continued)
Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
11-Jul	288.80	233.80	1.24	1.14	45.00
	285.30	216.80	1.32	1.14	44.00
	283.60	216.80	1.31	1.14	44.00
	283.60	221.00	1.28	1.14	45.00
	280.10	217.60	1.29	1.14	45.00
	280.10	230.40	1.22	1.13	44.00
	278.40	231.20	1.20	1.13	45.00
	281.90	232.00	1.22	1.13	45.00
	288.80	232.90	1.24	1.13	46.00
	285.30	225.30	1.27	1.14	40.00
	280.10	229.50	1.22	1.12	46.00
12-Jul	280.10	233.80	1.26	1.14	47.00
	294.00	233.80	1.26	1.14	47.00
	297.50	229.50	1.29	1.14	47.00
13-Jul	283.60	233.80	1.29	1.14	45.00
	281.90	233.80	1.29	1.14	44.00
	280.10	226.10	1.24	1.13	43.00
	304.40	234.60	1.25	1.14	43.00
	292.30	234.60	1.25	1.14	45.00
	302.70	233.80	1.29	1.14	44.00
	299.20	229.50	1.28	1.13	42.00
	297.50	231.20	1.29	1.14	43.00
	326.90	255.90	1.28	1.15	42.00
	309.60	251.60	1.23	1.15	41.00

(Continued)
Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
15-Jul	292.30	238.00	1.23	1.13	44.00
	281.90	238.00	1.18	1.13	45.00
	274.90	233.80	1.18	1.13	45.00
	288.80	231.20	1.25	1.14	44.00
	292.30	229.50	1.27	1.14	44.00
	287.10	217.60	1.32	1.14	42.00
	288.80	226.10	1.28	1.14	44.00
	295.70	227.00	1.30	1.14	46.00
	295.70	227.80	1.30	1.14	45.00
	313.00	244.00	1.28	1.14	45.00
	313.00	245.70	1.27	1.14	45.00
	300.90	238.90	1.26	1.13	47.00
	300.90	238.00	1.26	1.14	45.00
16-Jul	281.90	229.30	1.23	1.14	45.00
	288.80	132.90	1.24	1.14	45.00
	290.50	232.90	1.25	1.14	45.00
	292.30	233.80	1.25	1.15	45.00
	290.50	227.00	1.28	1.15	43.00
	294.00	224.40	1.31	1.15	45.00
	292.30	227.80	1.28	1.14	45.00
	302.70	225.30	1.34	1.15	45.00
	297.50	229.50	1.30	1.15	45.00
	292.30	219.30	1.33	1.14	45.00
	299.20	221.90	1.35	1.14	45.00
	292.30	226.10	1.29	1.14	45.00
17-Jul	281.90	232.00	1.22	1.14	41.00
	276.70	227.80	1.21	1.14	41.00
	281.90	228.70	1.23	1.13	41.00
	273.20	229.50	1.19	1.13	41.00
	280.10	231.20	1.21	1.13	43.00
	309.60	242.30	1.28	1.15	45.00
	314.80	242.30	1.30	1.15	44.00
	316.50	243.10	1.30	1.15	45.00
	304.40	225.40	1.35	1.15	44.00
	294.20	221.90	1.33	1.15	43.00
	290.50	221.00	1.31	1.15	43.00
Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
-----------	-----------	-----------	----------------	------------------------	------------------
18-Jul	290.50	225.30	1.29	1.15	44.00
	292.30	229.50	1.27	1.15	41.00
	306.10	231.20	1.32	1.16	41.00
	297.50	225.20	1.32	1.16	41.00
	294.00	229.50	1.28	1.14	46.00
	288.80	231.20	1.25	1.14	46.00
	299.20	233.80	1.28	1.14	46.00
	323.40	250.80	1.29	1.16	43.00
	300.90	224.40	1.34	1.15	42.00
	276.70	244.00	1.13	1.12	42.00
	281.90	238.90	1.18	1.14	40.00
	290.50	232.00	1.25	1.14	43.00
19-Jul	295.70	231.20	1.28	1.14	45.00
	290.50	229.50	1.27	1.14	45.00
	299.20	234.60	1.28	1.14	45.00
	294.00	234.60	1.25	1.14	45.00
	299.20	252.50	1.18	1.14	41.00
	304.40	245.70	1.24	1.15	41.00
	306.10	246.50	1.24	1.15	41.00
	304.40	240.60	1.27	1.15	41.00
	295.70	228.70	1.29	1.15	42.00
	302.70	233.80	1.29	1.14	42.00
	302.70	232.90	1.30	1.14	43.00
	304.40	232.00	1.31	1.14	44.00
20-Jul	302.70	231.20	1.31	1.15	45.00
	309.50	238.90	1.30	1.15	45.00
	294.00	221.00	1.33	1.14	45.00
	290.50	227.00	1.28	1.14	44.00
	288.80	231.20	1.25	1.14	42.00
	294.00	229.50	1.28	1.15	42.00
	299.20	228.70	1.31	1.15	42.00
	306.10	233.80	1.31	1.15	42.00
	320.00	249.90	1.28	1.15	46.00
	316.50	254.20	1.25	1.15	45.00
	318.20	249.90	1.27	1.15	45.00

(Continued)
Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂ /NH₃	Specific weight (kg/L)	Temperature (°C)
21-Jul	320.00	250.80	1.28	1.15	45.00
	299.20	227.00	1.32	1.15	45.00
	302.70	223.50	1.35	1.15	45.00
	290.50	231.20	1.26	1.14	45.00
	285.30	227.80	1.25	1.14	45.00
	273.20	228.70	1.19	1.14	42.00
	283.60	215.90	1.31	1.15	42.00
	304.40	212.50	1.43	1.17	42.00
	299.20	227.80	1.31	1.16	42.00
	309.60	245.70	1.26	1.15	45.00
	309.60	238.00	1.30	1.15	45.00
	300.90	236.30	1.27	1.14	46.00
	300.90	238.00	1.26	1.15	46.00
22-Jul	288.80	231.20	1.25	1.15	45.00
	300.90	236.30	1.27	1.15	45.00
	299.20	233.80	1.28	1.15	45.00
	292.30	232.90	1.26	1.15	45.00
	309.60	232.90	1.33	1.16	45.00
	306.10	220.20	1.39	1.15	45.00
	299.20	227.80	1.31	1.14	45.00
	300.90	227.00	1.33	1.14	45.00
	300.90	232.00	1.30	1.14	45.00
	295.70	230.04	1.29	1.35	43.00
	299.20	236.20	1.27	1.38	45.00
	292.30	232.00	1.26	1.13	44.00
23-Jul	271.50	224.40	1.21	1.13	44.00
	280.10	225.30	1.24	1.14	44.00
	274.80	227.00	1.21	1.14	44.00
	280.10	227.00	1.23	1.14	44.00
	295.70	244.00	1.21	1.14	42.00
	316.50	240.60	1.32	1.15	42.00
	313.00	242.30	1.29	1.14	45.00
	302.70	225.30	1.34	1.14	45.00
	257.60	246.50	1.05	1.10	41.00
	254.20	248.20	1.02	1.10	41.00
	259.40	245.70	1.06	1.11	41.00
(Continued)					
Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
----------	-----------	-----------	---------------	------------------------	------------------
24-Jul	271.50	230.40	1.18	1.12	42.00
	346.40	201.50	1.72	1.14	42.00
	281.90	218.50	1.29	1.15	42.00
	304.40	244.80	1.24	1.15	42.00
	306.10	242.30	1.26	1.15	42.00
	278.40	232.90	1.20	1.15	42.00
	273.20	227.80	1.20	1.14	39.00
	271.50	228.70	1.19	1.14	40.00
	332.10	250.80	1.32	1.17	42.00
	309.60	233.80	1.32	1.15	42.00
	302.70	225.30	1.34	1.15	45.00
	302.70	229.50	1.32	1.14	45.00
	299.20	227.00	1.32	1.14	45.00
25-Jul	294.00	238.00	1.24	1.14	45.00
	287.10	235.50	1.22	1.14	43.00
	295.70	254.20	1.16	1.14	38.00
	297.50	245.70	1.21	1.14	40.00
	288.80	233.80	1.24	1.15	40.00
	288.80	232.00	1.24	1.15	40.00
	287.10	231.20	1.24	1.15	45.00
	288.80	232.00	1.24	1.15	45.00
	294.00	224.00	1.32	1.15	45.00
	295.70	224.40	1.32	1.15	45.00
	281.90	234.60	1.20	1.14	45.00
	299.20	227.80	1.31	1.14	45.00
26-Jul	297.50	232.00	1.28	1.15	44.00
	290.50	225.30	1.29	1.14	43.00
	278.40	222.70	1.25	1.13	42.00
	276.70	229.30	1.23	1.13	42.00
	261.10	225.30	1.16	1.13	39.00
	266.30	225.30	1.18	1.13	41.00
	268.00	221.00	1.21	1.14	41.00
	274.90	221.00	1.24	1.14	41.00
	266.30	214.20	1.24	1.14	41.00
	280.10	218.50	1.28	1.15	42.00
	288.80	221.00	1.31	1.16	42.00
Quality characteristics

Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
28-Jul	288.80	215.10	1.34	1.16	39.00
28-Jul	271.50	231.20	1.17	1.13	41.00
28-Jul	294.00	229.50	1.28	1.15	40.00
28-Jul	297.50	223.60	1.33	1.15	41.00
28-Jul	295.70	222.70	1.33	1.15	43.00
28-Jul	288.80	233.80	1.24	1.14	42.00
28-Jul	287.10	237.20	1.21	1.15	42.00
29-Jul	290.50	236.30	1.23	1.15	42.00
29-Jul	290.50	238.00	1.22	1.15	43.00
29-Jul	302.70	244.00	1.24	1.15	43.00
29-Jul	304.40	233.80	1.30	1.16	44.00
29-Jul	290.50	223.60	1.30	1.15	43.00
29-Jul	278.40	215.90	1.29	1.14	43.00
29-Jul	280.10	208.30	1.34	1.14	46.00
29-Jul	278.40	212.50	1.31	1.14	44.00
29-Jul	276.70	210.80	1.31	1.14	44.00
29-Jul	274.90	215.10	1.28	1.14	42.00
29-Jul	280.10	227.00	1.26	1.14	42.00
30-Jul	281.90	227.80	1.24	1.14	42.00
30-Jul	271.50	227.00	1.20	1.13	43.00
30-Jul	274.90	226.10	1.22	1.13	43.00
30-Jul	280.10	217.60	1.29	1.13	43.00
30-Jul	261.10	215.90	1.21	1.12	40.00
30-Jul	259.40	212.50	1.22	1.13	40.00
30-Jul	257.60	210.80	1.22	1.13	40.00

(Continued)
Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
31-Jul	280.10	224.40	1.25	1.14	41.00
	278.40	227.00	1.23	1.14	42.00
	283.60	223.80	1.21	1.21	42.00
	287.10	229.50	1.25	1.14	42.00
	287.10	232.00	1.24	1.15	42.00
	285.30	210.00	1.36	1.16	42.00
	269.80	204.90	1.32	1.14	42.00
	262.80	204.90	1.28	1.14	42.00
	259.40	204.00	1.27	1.14	42.00
	271.40	205.70	1.32	1.14	41.00
	273.20	204.90	1.33	1.14	42.00
	271.50	204.90	1.33	1.15	40.00
	274.90	221.00	1.24	1.13	40.00
1-Aug	280.10	231.20	1.21	1.15	42.00
	276.70	225.30	1.23	1.15	42.00
	281.90	224.40	1.26	1.15	42.00
	280.90	225.30	1.25	1.15	43.00
	280.10	216.80	1.29	1.14	43.00
	278.40	212.50	1.31	1.15	43.00
	280.10	215.10	1.30	1.14	43.00
	280.10	210.80	1.33	1.15	43.00
	269.80	204.00	1.32	1.14	41.00
	262.80	205.70	1.28	1.13	42.00
	262.80	212.50	1.24	1.13	42.00
	261.10	211.70	1.23	1.13	42.00
2-Aug	288.80	228.70	1.26	1.15	43.00
	292.30	225.30	1.30	1.15	43.00
	294.00	227.80	1.29	1.16	43.00
	295.70	229.50	1.29	1.15	43.00
	274.90	225.20	1.22	1.14	43.00
	274.90	220.20	1.25	1.14	43.00
	280.10	217.60	1.29	1.14	43.00
	280.10	221.00	1.27	1.14	43.00
	274.90	216.80	1.27	1.14	40.00
	274.90	215.90	1.27	1.14	41.00
	276.70	216.60	1.28	1.14	42.00

(Continued)
Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
3-Aug	280.10	216.80	1.29	1.14	42.00
3-Aug	268.00	215.90	1.24	1.14	43.00
3-Aug	257.60	212.50	1.21	1.13	43.00
3-Aug	255.90	214.20	1.19	1.13	43.00
3-Aug	254.20	216.80	1.17	1.13	43.00
3-Aug	268.00	210.80	1.27	1.14	42.00
3-Aug	271.50	212.50	1.28	1.14	42.00
3-Aug	269.80	212.50	1.27	1.14	42.00
3-Aug	261.10	200.60	1.30	1.15	39.00
3-Aug	276.70	202.30	1.37	1.14	41.00
3-Aug	264.60	212.50	1.25	1.14	42.00
3-Aug	271.50	213.40	1.27	1.14	43.00
9-Aug	295.70	258.40	1.14	1.13	38.00
9-Aug	295.70	255.00	1.16	1.14	39.00
9-Aug	295.70	255.00	1.16	1.14	38.00
9-Aug	288.80	251.60	1.16	1.13	38.00
9-Aug	302.70	248.20	1.22	1.15	38.00
9-Aug	268.00	247.40	1.08	1.12	39.00
9-Aug	223.00	235.50	0.95	1.06	38.00
9-Aug	198.70	232.00	0.86	1.06	38.00
9-Aug	254.20	238.90	1.06	1.11	39.00
9-Aug	278.40	249.10	1.12	1.12	40.00
9-Aug	261.10	227.80	1.15	1.12	40.00
9-Aug	255.90	227.00	1.13	1.12	39.00
10-Aug	264.60	215.10	1.23	1.13	39.00
10-Aug	266.30	216.80	1.23	1.13	39.00
10-Aug	235.10	249.90	0.94	1.08	38.00
10-Aug	262.80	249.10	0.94	1.11	39.00
10-Aug	302.70	242.30	1.25	1.05	40.00
10-Aug	292.30	227.00	1.29	1.15	40.00
10-Aug	287.10	215.10	1.33	1.15	40.00
10-Aug	287.10	214.20	1.34	1.15	41.00
10-Aug	254.20	218.50	1.16	1.12	41.00
10-Aug	255.90	226.10	1.13	1.12	42.00
10-Aug	257.60	226.10	1.14	1.12	41.00
Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
----------	-----------	-----------	---------------	------------------------	------------------
11-Aug	268.00	222.70	1.20	1.13	41.00
	276.70	226.10	1.22	1.14	38.00
	271.50	224.40	1.21	1.13	38.00
	295.70	217.60	1.36	1.15	41.00
	288.80	215.10	1.36	1.14	42.00
	278.40	211.70	1.32	1.14	41.00
	247.20	229.50	1.08	1.11	40.00
	280.10	256.70	1.09	1.12	38.00
	292.30	259.30	1.13	1.13	40.00
	290.50	255.90	1.14	1.13	41.00
	278.40	246.50	1.13	1.13	40.00
	271.50	232.90	1.17	1.13	40.00
	276.70	227.80	1.21	1.14	39.00
12-Aug	271.50	236.30	1.15	1.13	40.00
	254.20	251.60	1.01	1.10	38.00
	278.40	241.10	1.15	1.14	41.00
	281.90	244.00	1.15	1.14	41.00
	295.70	226.10	1.31	1.16	42.00
	299.20	221.00	1.35	1.16	43.00
	285.30	223.80	1.20	1.13	44.00
	287.10	246.50	1.16	1.13	44.00
	271.50	229.50	1.18	1.13	43.00
	280.10	228.70	1.22	1.13	43.00
	281.90	226.10	1.25	1.14	43.00
	287.10	227.00	1.26	1.14	43.00
13-Aug	287.10	217.60	1.32	1.15	43.00
	290.50	218.50	1.33	1.15	42.00
	285.30	215.90	1.32	1.14	42.00
	292.30	221.90	1.32	1.16	42.00
	297.50	220.20	1.35	1.15	39.00
	295.70	218.50	1.35	1.15	43.00
	300.90	216.80	1.39	1.14	43.00
	295.70	218.50	1.35	1.14	42.00
	274.90	228.70	1.20	1.13	44.00
	276.70	223.60	1.24	1.14	45.00
	288.80	223.60	1.29	1.14	44.00
Date	CO₂ (g/L)	NH₃ (g/L)	CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
---------	-----------	-----------	---------	------------------------	------------------
15-Aug	290.50	224.40	1.29	1.14	44.00
	274.90	227.80	1.21	1.14	41.00
	274.90	225.30	1.22	1.14	42.00
	273.20	223.60	1.23	1.14	41.00
	266.30	227.80	1.17	1.14	41.00
	278.40	223.60	1.25	1.14	41.00
	274.90	220.20	1.26	1.14	42.00
	287.10	218.50	1.31	1.15	42.00
	297.50	221.00	1.35	1.14	43.00
	299.20	213.40	1.40	1.15	43.00
	273.20	217.60	1.26	1.13	42.00
	274.90	227.00	1.21	1.13	43.00
16-Aug	264.60	227.00	1.17	1.13	43.00
	273.20	227.80	1.20	1.13	43.00
	274.90	220.20	1.25	1.14	44.00
	278.40	215.90	1.25	1.14	44.00
	262.80	220.20	1.19	1.13	42.00
	264.60	219.30	1.21	1.13	42.00
	266.30	219.30	1.21	1.13	42.00
	268.00	220.20	1.22	1.12	43.00
	295.70	216.80	1.36	1.13	44.00
	299.20	217.60	1.38	1.14	44.00
	297.50	218.50	1.36	1.14	44.00
	283.60	221.00	1.28	1.13	45.00
17-Aug	266.30	227.00	1.17	1.13	47.00
	271.50	224.40	1.21	1.13	46.00
	281.90	229.50	1.23	1.15	45.00
	285.30	227.00	1.23	1.15	45.00
	278.40	218.50	1.27	1.15	43.00
	276.70	218.50	1.27	1.15	42.00
	274.90	216.80	1.27	1.15	42.00
	285.30	218.50	1.31	1.15	44.00
	304.40	214.20	1.42	1.15	44.00
	297.50	217.60	1.37	1.14	43.00
	290.50	218.50	1.33	1.14	44.00

(Continued)
Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
18-Aug	292.30	219.30	1.33	1.14	45.00
	271.50	219.30	1.24	1.14	44.00
	278.80	217.60	1.29	1.14	44.00
	281.90	216.80	1.29	1.14	44.00
	288.80	221.90	1.30	1.15	43.00
	283.60	221.90	1.28	1.14	43.00
	281.90	221.00	1.28	1.14	44.00
	287.10	220.20	1.30	1.15	44.00
	307.90	215.90	1.43	1.15	43.00
	302.70	217.60	1.39	1.15	43.00
	297.50	221.00	1.35	1.15	44.00
	296.00	221.90	1.32	1.15	44.00
19-Aug	295.70	221.90	1.33	1.15	43.00
	297.50	220.20	1.35	1.15	43.00
	297.50	232.00	1.28	1.15	43.00
	297.50	229.50	1.28	1.15	43.00
	300.90	257.60	1.17	1.15	43.00
	306.10	253.30	1.30	1.16	43.00
	300.90	232.00	1.30	1.15	44.00
	332.10	238.80	1.39	1.17	42.00
	323.40	227.80	1.42	1.17	42.00
	281.90	212.50	1.33	1.14	43.00
	285.30	212.50	1.34	1.15	44.00
20-Aug	295.70	208.30	1.42	1.15	45.00
	294.00	208.30	1.41	1.15	42.00
	283.60	208.30	1.36	1.14	45.00
	280.10	209.10	1.36	1.14	45.00
	271.50	224.40	1.21	1.14	46.00
	208.80	226.10	1.28	1.15	45.00
	287.10	225.30	1.27	1.15	45.00
	309.60	221.00	1.40	1.15	43.00
	250.70	204.00	1.23	1.12	42.00
	261.10	221.00	1.18	1.12	42.00
	297.50	238.00	1.25	1.14	42.00

(Continued)
Quality characteristics

Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
21-Aug	299.20	221.90	1.35	1.15	43.00
	295.70	212.50	1.39	1.15	43.00
	302.70	215.40	1.41	1.15	43.00
	299.20	216.80	1.38	1.15	43.00
	295.70	214.20	1.38	1.15	43.00
	288.80	207.40	1.39	1.14	43.00
	280.10	207.40	1.35	1.14	45.00
	288.80	212.50	1.36	1.13	45.00
	292.30	215.90	1.35	1.14	46.00
	304.40	218.50	1.39	1.14	45.00
	278.40	216.80	1.28	1.13	44.00
	271.50	221.00	1.23	1.13	44.00
	288.80	225.80	1.28	1.14	45.00
22-Aug	287.10	225.30	1.27	1.14	44.00
	288.80	226.10	1.27	1.14	43.00
	290.50	223.60	1.30	1.14	43.00
	292.30	225.30	1.30	1.14	44.00
	283.60	222.70	1.27	1.13	43.00
	323.40	238.00	1.36	1.15	43.00
	294.00	227.80	1.29	1.13	45.00
	297.50	232.90	1.28	1.13	45.00
	290.50	232.00	1.25	1.13	44.00
	285.30	230.40	1.24	1.13	44.00
	287.10	233.80	1.23	1.13	44.00
	290.50	232.90	1.25	1.13	44.00
23-Aug	297.50	238.00	1.25	1.15	43.00
	297.50	236.50	1.27	1.15	43.00
	288.80	225.30	1.28	1.14	44.00
	288.80	228.70	1.28	1.14	43.00
	297.50	236.30	1.26	1.14	43.00
	295.70	226.10	1.31	1.14	44.00
	292.30	223.60	1.31	1.14	44.00
	288.80	221.00	1.31	1.14	43.00
	280.10	190.40	1.47	1.13	44.00
	285.30	227.80	1.25	1.14	44.00
	288.80	229.50	1.26	1.14	44.00
Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
----------	-----------	-----------	---------------	------------------------	------------------
26-Aug	288.80	232.00	1.24	1.14	43.00
	297.50	221.00	1.35	1.15	43.00
	294.00	219.30	1.34	1.15	43.00
	288.80	221.90	1.30	1.14	44.00
	292.30	222.70	1.30	1.14	43.00
	283.60	225.30	1.26	1.14	43.00
	283.60	226.10	1.25	1.14	44.00
	280.10	223.60	1.25	1.13	44.00
	340.70	238.00	1.43	1.18	42.00
	335.90	225.30	1.49	1.17	40.00
	316.50	225.30	1.40	1.16	43.00
	294.00	225.30	1.30	1.14	43.00
	266.30	225.30	1.18	1.14	43.00
27-Aug	294.00	222.70	1.32	1.16	43.00
	297.50	224.40	1.33	1.16	43.00
	292.30	221.00	1.32	1.15	43.00
	295.70	217.60	1.32	1.15	44.00
	281.90	220.20	1.28	1.15	45.00
	288.80	219.30	1.32	1.15	45.00
	290.50	218.50	1.33	1.14	45.00
	297.50	217.60	1.37	1.15	46.00
	307.90	229.50	1.34	1.15	42.00
	300.90	238.00	1.26	1.14	43.00
	281.90	244.00	1.16	1.13	43.00
	254.20	238.00	1.07	1.13	43.00
28-Aug	288.80	231.20	1.25	1.14	43.00
	320.00	236.30	1.35	1.16	42.00
	295.70	229.50	1.29	1.15	42.00
	292.30	224.40	1.29	1.14	43.00
	281.90	222.70	1.27	1.14	43.00
	290.50	222.70	1.30	1.14	43.00
	294.00	224.40	1.31	1.15	43.00
	294.00	224.40	1.31	1.14	44.00
	297.50	237.20	1.25	1.14	42.00
	295.70	238.00	1.24	1.14	42.00
	300.90	262.70	1.15	1.14	42.00

(Continued)
Date	CO₂ (g/L)	NH₃ (g/L)	Ratio CO₂/NH₃	Specific weight (kg/L)	Temperature (°C)
280.10	248.20	1.13	1.14	42.00	
257.60	221.00	1.17	1.14	44.00	
271.50	225.30	1.21	1.14	45.00	
250.70	222.70	1.13	1.14	44.00	
236.80	225.30	1.13	1.14	45.00	
283.60	216.80	1.31	1.15	43.00	
288.80	212.50	1.36	1.15	44.00	
285.30	210.80	1.35	1.14	45.00	
281.90	212.50	1.33	1.14	45.00	
294.00	219.30	1.34	1.15	45.00	
290.50	218.50	1.33	1.14	45.00	
278.40	211.70	1.32	1.14	45.00	
288.80	221.00	1.31	1.14	45.00	
297.50	221.00	1.35	1.14	45.00	
262.80	221.00	1.19	1.14	45.00	
304.40	222.70	1.37	1.15	45.00	
288.80	221.00	1.37	1.15	45.00	
278.40	214.20	1.30	1.14	44.00	
281.90	217.60	1.30	1.14	45.00	
292.30	217.60	1.30	1.14	44.00	
288.80	218.50	1.32	1.14	45.00	
292.30	227.00	1.29	1.14	45.00	
314.80	225.30	1.40	1.13	44.00	
295.70	227.80	1.30	1.15	42.00	
