T-replete HLA-matched Grafts vs T-depleted HLA-mismatched Grafts in Inborn Errors of Immunity

Tracking no: ADV-2020-004072R2

Su Han Lum (Great North Children's Hospital, United Kingdom) Sinéad Greener (3. Host defence unit, The Great North Children's Hospital, Newcastle upon Tyne, UK, United Kingdom) Inigo Perez-Heras (Great North Children's Hospital, United Kingdom) Daniel Drozdov (University Children's Hospital, Zurich, Switzerland) Rebecca Payne (Newcastle University, United Kingdom) Helen Watson (Tyne Hospital NHS Foundation Trust, United Kingdom) Kay Carruthers (Newcastle upon Tyne Hospitals NHS Foundation Trust, United Kingdom) Robert January (Great North Children's Hospital, United Kingdom) Zohreh Nademi (Translational and Clinical Research Institute, United Kingdom) Stephen Owens (Great North Children's Hospital, United Kingdom) Eleri Williams (Great North Children's Hospital, United Kingdom) Sheila Waugh (Newcastle upon Tyne Hospital NHS Foundation Trust, United Kingdom) Shirelle Burton-Fanning (Newcastle upon Tyne Hospital NHS Foundation Trust, United Kingdom) Timothy Leahy (Our Lady's Children's Hospital, Crumlin, Ireland) Andrew Cant (Newcastle University, United Kingdom) Mario Abinun (Newcastle University, United Kingdom) Terry Flood (Great North Children's Hospital, United Kingdom) Sophie Hambleton (Newcastle University, United Kingdom) Andrew Gennery (Newcastle University, United Kingdom) Mary Slatter (Newcastle upon Tyne NHS Foundation trust, United Kingdom)

Abstract:
Haematopoietic cell transplantation (HCT) has become standard of care for an increasing number of inborn errors of immunity (IEI). This is the first report to compare the transplant outcomes according to T-replete HLA-matched grafts using alemtuzumab (n=117) and T-depleted HLA-mismatched grafts using TCR αβ/CD19 depletion (n=47) in children with IEI who underwent first HCT between 2014 and 2019. All patients received treosulfan-based conditioning except patients with DNA repair disorders. For T-replete grafts, the stem cell source was marrow in 25 (21%) patients, PBSC in 85 (73%) and CB in 7 (6%). TCR αβ/CD19 depletion was performed on PBSC from 45 haploidentical parental donors and 2 mismatched unrelated donors. The 3-year OS and EFS for the entire cohort were 85% (77-90%) and 79% (69-86%) respectively. Analysis by age at transplant revealed a comparable 3-year OS between T-replete grafts (88%, 76-94%) and T-depleted grafts (87%, 64-96%) in younger patients (<5 years of age at HCT). For older patients more than 5 years of age, the OS was significantly lower in T-depleted grafts (55%, 23-78%), compared to T-replete grafts (87%, 68-95%) (p=0.03). Grade III-IV aGVHD was observed in 8% of T-replete marrow, 7% of T-replete PBSC, 14% of T-replete CB and 2% of T-depleted PBSC (p=0.73). Higher incidence of viraemia (p<0.001) and delayed CD3 reconstitution (p=0.003) were observed after T-depleted graft HCT. These data indicate that mismatched donor transplant after TCR αβ and CD19 depletion represents an excellent alternative for younger children with IEI in need of an allograft.

Conflict of interest: No COI declared

COI notes:

Preprint server: No;

Author contributions and disclosures: SHL developed the conceptualization of the research, collected the data, performed the statistical analysis, interpreted the data and prepared the manuscript. MS contributed to the conceptualization of the research, manuscript writing and critical review at every level of the research stages. SG, IPH, DD, RP, HW, KC, RJ, SW, SBF collected the data and reviewed the manuscript. AG, TF, ZN, SH, AC, SO, EW, RL and MA critically reviewed the manuscript.

Non-author contributions and disclosures: No;
Agreement to Share Publication-Related Data and Data Sharing Statement: Not applicable

Clinical trial registration information (if any):
T-replete HLA-matched Grafts vs T-depleted HLA-mismatched Grafts in Inborn Errors of Immunity

Su Han Lum1,2, Sinéad Greener1, Inigo Perez-Heras1, Daniel Drozdov1, Rebecca Payne2, Helen Watson3, Kay Carruthers4, Robert January1, Zohreh Nademi1,2, Stephen Owens1, Eleri Williams1, Sheila Waugh5, Shirelle Burton-Fanning5, Ronan Leahy6, Andrew Cant1,2, Mario Abinun2, Terry Flood1, Sophie Hambleton1,2, Andrew R Gennery1,2, Mary Slatter1,2

Children’s Haematopoietic Stem Cell Transplant Unit, Great North Children’s Hospital, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK1

Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK2

Blood Sciences, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK3

Newcastle Advanced Therapies, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK4

Microbiology and Virology, Newcastle upon Tyne Hospital NHS Foundation Trust, Newcastle upon Tyne, UK5

Department of Immunology, Our Lady’s Children’s Hospital, Crumlin, Dublin6

Corresponding Author:
Su Han Lum
Clinical Resource Building, Floor 4, Block 2
Great North Children’s Hospital
Queen Victoria Road
Newcastle Upon Tyne, NE1 4LP
Email: s.lum@nhs.net
Telephone: 0191 2825234
Fax: 0191 2730183

Word count: 3786

Abstract: 246
Figures: 5
Tables: 2
Supplemental figures: 4
Supplemental tables: 9

Prior presentation
Presented in oral form at The 47th Annual Meeting of the European Society for Blood and Marrow Transplantation in March 2021.
Key points
1. CD3+TCR αβ/CD19 depleted mismatched grafts result in comparable survival to unmanipulated HLA-matched grafts in young children with IEIs.

2. GvHD rate is comparable between T-replete and T-depleted graft recipients but more viraemia was observed in T-depleted graft recipients.

Abstract
Haematopoietic cell transplantation (HCT) has become standard of care for an increasing number of inborn errors of immunity (IEI). This is the first report to compare the transplant outcomes according to T-replete HLA-matched grafts using alemtuzumab (n=117) and T-depleted HLA-mismatched grafts using TCR αβ/CD19 depletion (n=47) in children with IEI who underwent first HCT between 2014 and 2019. All patients received treosulfan-based conditioning except patients with DNA repair disorders. For T-replete grafts, the stem cell source was marrow in 25 (21%) patients, PBSC in 85 (73%) and CB in 7 (6%). TCR αβ/CD19 depletion was performed on PBSC from 45 haploidentical parental donors and 2 mismatched unrelated donors. The 3-year OS and EFS for the entire cohort were 85% (77-90%) and 79% (69-86%) respectively. Analysis by age at transplant revealed a comparable 3-year OS between T-replete grafts (88%, 76-94%) and T-depleted grafts (87%, 64-96%) in younger patients (<5 years of age at HCT). For older patients more than 5 years of age, the OS was significantly lower in T-depleted grafts (55%, 23-78%), compared to T-replete grafts (87%, 68-95%) (p=0.03). Grade III-IV aGvHD was observed in 8% of T-replete marrow, 7% of T-replete PBSC, 14% of T-replete CB and 2% of T-depleted PBSC (p=0.73). Higher incidence of viraemia (p<0.001) and delayed CD3 reconstitution (p=0.003) were observed after T-depleted graft HCT. These data indicate that mismatched donor transplant after TCR αβ and CD19 depletion represents an excellent alternative for younger children with IEI in need of an allograft.
Introduction

Inborn errors of immunity (IEI) encompass a group of more than 400 inherited disorders. (1) IEI lead to severe problems and may be fatal in severe phenotypes. While haematopoietic cell transplantation (HCT) has always been standard of care for infants with severe combined immunodeficiency (SCID), it is now an established curative treatment for an increasing number of non-SCID IEI. For many non-SCID IEI such as chronic granulomatous disease, studies have demonstrated that long-term survival, disease outcomes and quality of life are better in transplanted patients compared with non-transplanted patients who were treated with conventional therapy using antimicrobial prophylaxis. (2) In recent years, HCT has developed from a treatment of last resort into the standard of care that corrects the defects of immunity in children and young adults with non-SCID IEI. Many studies have also shown that younger age at transplant is significantly associated with better survival and outcomes. (3) However, approximately 25-60% of eligible paediatric patients for HCT do not have a suitably well-matched donor. (4) An alternative is to use a mismatched related or unrelated donor and deplete the T-lymphocytes in the graft prior to infusion. Historically, the major challenges of using such mismatched donors for HCT are graft versus-host disease (GvHD), graft failure, and high transplant-related mortality. In the absence of a suitably matched donor, physicians are reluctant to offer a curative transplant procedure to children with IEI, leading to prolonged periods of illness, poor quality of life, significant psychosocial problems and reduced life expectancy.

A new graft selection method has now enabled selective depletion of the T-lymphocyte receptor-αβ-bearing (TCRαβ+) cells which cause GvHD and CD19+ (B) cells, decreasing the risk of EBV driven post-transplant lymphoproliferative disease. In this method, the cellular product contains CD34+ progenitors, TCR-γδ+ T-lymphocytes, other progenitor cells, monocytes, and dendritic cells, which might have engraftment facilitating effects, with a low incidence of graft-versus-disease (GvHD) in children with malignant and non-malignant disorders. To address the questions of whether transplant outcomes after a TCR αβ/CD19 depleted graft are comparable to a matched family or unrelated donor, we have analysed the outcome of consecutive transplants in children with IEI over the past six years in Newcastle upon Tyne, United Kingdom.
Methods

Patients and Methods

Between January 2014 to December 2019, 184 children with IEI underwent their first allograft at the Great North Children’s Hospital. Sixteen patients who received an unmanipulated T-replete mismatched graft and four patients with SCID who received stem cell infusion without conditioning or serotherapy, were excluded from this study. A total number of 164 patients were included in the final analysis. The clinical and laboratory data were retrieved from the transplantation database, patients’ medical files and laboratory records. Written informed consent was obtained from the parents or legal guardians of the patients as per institutional practice for HCT.

Donor selection, stem cell source, conditioning regimen and GvHD prophylaxis

Donor selection was based on allele level high resolution HLA-typing for HLA-A, B, C, DQ and DR loci. The donor hierarchy for SCID was i) matched family donor ii) matched unrelated cord blood iii) haploidentical donor while the donor hierarchy for non-SCID IEI was: i) matched family donor (MFD) ii) matched unrelated donor (MUD) iii) mismatched family/unrelated donor iv) haploidentical donor. From 2018 onwards, a haploidentical donor was preferred to a mismatched unrelated donor except if parents were not suitable as donors. The donor selection criteria for a haploidentical donor was as follows: (1) non-carrier donor for X-linked diseases (2) maternal donor for a patient with SCID with maternal fetal engraftment (3) donor with a better HLA match. In our centre, peripheral blood stem cell (PBSC) graft has been the first choice of stem cell source with 10/10 HLA matched donors since 2011 except when using young sibling donors aged less than 16 years. (5) From 2011 onwards, the CD3+ cell dose in T-replete PBSC was capped at 5 x10^8/kg and the maximum dose of CD34+ cells were given within this dose of CD3+ cells. All patients received fludarabine-treosulfan (Flu-Treo) -based chemotherapy except three patients with DNA repair disorders who received fludarabine and low dose cyclophosphamide, and one patient with X-linked lymphoproliferative disease who received Fludarabine-Melphalan (Flu-Mel). Additional thiotepa was added for patients with diseases which were associated with a high risk of graft failure. In T-replete HLA-matched grafts, alemtuzumab 1mg/kg was given for all PBSC recipients while alemtuzumab 0.6mg/kg was given for family donor marrow and unrelated cord blood (CB) recipients. Post-transplant graft-versus-host disease (GvHD) prophylaxis was ciclosporin and mycophenolate mofetil (MMF). For T-depleted mismatched grafts,
patients received standardized conditioning which consisted of fludarabine, treosulfan, ATG (Grafalon, 5mg/kg/dose on day-4, -3, -2) and 1 dose of rituximab (200mg/m²) for SCID. Thiotepa was added for non-SCID PID. One T-depleted graft recipient received alemtuzumab (1mg/kg). The graft manipulation strategy was TCRαβ and CD19 depletion as previously described.(6) Thirteen patients received a CaspaCIDe gene modified T-lymphocyte add-back as part of a phase I/II clinical trial (NCT03301168). When TCR αβ/CD19 depletion strategy was first implemented in 2012, all patients received CSA prophylaxis. In patients who received TCR αβ cells > 5x10^4/kg, both CSA and MMF were given as GvHD prophylaxis. No GvHD prophylaxis was given since 2015 in patients receiving TCR αβ cells of < 5x10^4/kg.

Supportive care

Surveillance for cytomegalovirus (CMV), adenovirus, Epstein Barr virus (EBV), human herpes virus type 6 (HHV6) viraemia, respiratory and gastrointestinal viruses was performed weekly. All patients received antimicrobial prophylaxis against fungi, *Pneumocystis jiroveci* (PCP), and human herpesvirus reactivation. All patients received immunoglobulin replacement until normal IgM levels were evident. Donor haematopoietic chimerism was monitored by molecular techniques.

Definition and endpoints

The main outcomes of interest were overall survival (OS) and event-free survival (EFS) and cumulative incidence of GvHD. OS was defined as survival from first HCT to last follow-up or death. An event was defined as death, graft failure or second procedures for slipping chimerism. Other endpoints assessed were as follows: (i) time to neutrophil recovery (first day of achieving a neutrophil count ≥ 0.5 × 10^9/L for three consecutive days); (ii) incidence of transplant-related complications as defined and graded according to existing institutional guidelines at the time of HCT (iii) immune reconstitution; (iv) degree of donor haematopoietic chimerism at the most recent assessment.

For pre-transplant patient-related risk factors, the following factors were included: 1) active infection (viraemia, cryptosporidium, PCP, disseminated BCG, mycobacteria, serious bacterial infection requiring intravenous antibiotics) within 100 days prior to or at transplant (2) chronic diarrhoea (3) autoimmunity/autoinflammatory (4) lung damage (abnormal lung function test or bronchiectasis or...
oxygen dependency at HCT) (5) liver damage (proven fibrosis/sclerosing cholangitis on liver biopsy or
deranged liver function test (bilirubin > 1.5 upper limit of normal (ULN) or alanine
aminotransferase/aspartate aminotransferase > 2.5 ULN within 100 days prior to HCT) (6) renal
impairment within 100 days prior to HCT (7) neurological disorders secondary to infection, bleeding,
vasculitis or encephalitis (disease-related congenital malformation or developmental delay was not
included) (8) growth failure (9) pre-transplant malignancy.

Statistical analysis
Quantitative variables were described with median and range while categorical variables were
reported with counts and percentages. The association between variables was assessed with the use
of Kruskal Wallis test for continuous variables and the chi-square test for categorical variables.
Subgroup differences in OS and EFS were evaluated by log-rank test. Competing risks methods
were used for the cumulative incidence (CIN) of acute GvHD (aGvHD) and viraemia, with death as a
competing event. and graft failure was added as a competing event for CIN of aGVHD. Subgroup
differences in aGvHD and viraemia were evaluated by Gray's test. All estimates were reported with
95% confidence intervals. A matched-pair analysis of CD3 reconstitution was carried out in T-replete
HLA-matched PBSC survivors (n=28) and T-depleted mismatched survivors without T-lymphocyte
add-back. The two-patient series were matched for age at transplant and diagnosis. Multilevel mixed
effects modelling was performed for the longitudinal analysis of CD3+, CD4+, CD8+, CD19+, NK cells
and HLA-DR. All p-values quoted are two-sided, with a level of significance of 0.05. Statistical
analyses were performed using STATA 14.2.

Data sharing statement
For original data, please contact s.lum@nhs.net

Results
Patient and transplantation characteristics
Patient and transplantation characteristics are summarized in Table 1 and Table S1. There were no
significant differences in age at diagnosis and age at transplant between T-replete HLA-matched graft
and T-depleted HLA-mismatched graft recipients. The median age at transplant for the entire cohort
was 2.5 years (range 0.14 to 18.1 years). For pre-transplant risk factors, there was no significant
difference in number of pre-transplant risk factors between T-replete HLA-matched graft and T-depleted mismatched graft recipients for both severe combined immunodeficiency (SCID) and non-SCID IEI (Table S2). T-depleted HLA-mismatched graft recipients (n=29/47, 62%) had a significantly higher rate of active infection within 100 days of HCT compared to T-replete HLA-matched family (13/37, 35%) or unrelated donor (n = 28/80, 35%) recipients (p=0.008) (Table S3). There was a greater proportion of patients with chronic diarrhoea in T-depleted HLA-mismatched graft (n=17/47, 36%) and T-replete HLA-matched unrelated graft (n=31/80, 39%) recipients compared to T-replete HLA-matched family graft (n=6/37, n=16%) recipients (p=0.04). The proportions of patients with autoimmunity/autoinflammation, lung damage, liver damage, renal impairment, neurological disorders, growth failure, or pre-transplant malignancy were comparable between T-replete HLA matched graft and T-depleted HLA-mismatched graft recipients. There was no significant difference in the proportion of patients with pre-transplant history of viraemia (CMV, EBV, adenovirus and HHV6) between T-replete HLA-matched graft (n=24/117, 21%) and T-depleted HLA-mismatched graft recipients (n=13/47, 28%) (p=0.41) (Table S4).

For T-replete grafts, the stem cell source was marrow in 25 (21%) patients, PBSC in 84 (72%) and CB in 7 (6%). TCR αβ/CD19 depletion was performed on PBSC from 45 haploidentical parental donors and 2 mismatched unrelated donors. Of 47 T-depleted graft recipients, 33 (70%) had no post HCT GvHD prophylaxis and 14 (%) received GvHD prophylaxis (8 CSA only; 6 CSA/MMF). For T-replete graft recipients, 93 received Flu-Treo-alemtuzumab, 17 Flu-Treo-Thiotepa-alemtuzumab, 3 Flu-Cy-alemtuzumab (1 DNA ligase IV deficiency; 2 Nijmegen Breakage syndrome), 1 Flu-Mel-alemtuzumab and 3 patients with SCID received alemtuzumab only. For T-depleted graft recipients, 11 with SCID received Flu-Treo-ATG-Rituximab and 36 with non-SCID PID had Flu-Treo-Thiotepa-ATG-Rituximab, except one patient who received alemtuzumab as serotherapy.

The graft composition is shown in Figure 1. Between T-replete PBSC and T-depleted PBSC, total nucleated cell dose was significantly higher in T-replete PBSC (p= 0.002) but the CD34+ cell dose was comparable between both T-replete PBSC and T-deplete PBSC (Figure 1A and 1B). CD3+ cells (p<0.001) and CD19+ cells (p<0.001) were lowest in T-depleted PBSC (Figure 1C and 1D).
Engraftment and transplant-related complications

The engraftment kinetics and transplant-related complications are summarized in Table 2. The rates of neutrophil and platelet engraftment were comparable between T-depleted PBSC and T-replete PBSC and significantly earlier compared to T-replete marrow and T-replete CB (Figure 1E and 1F).

The CIN of grade II-IV aGVHD was 18% (95% CI 7-48%) in T-replete marrow, 26% (16-41%) in T-replete PSBC, 14% (2-79%) in T-replete CB and 18% (9-39%) in T-depleted PBSC (p=0.73) (Figure 2A). Grade III-IV aGVHD was observed in 8% (2-30%) of T-replete marrow, 7% (3-17%) of T-replete PBSC, 14% (2-79%) of T-replete CB and 2% (3-17%) of T-depleted PBSC (p=0.73) (Figure 2B). Only one T-depleted graft recipient who did not receive ATG due to concerns about drug-resistant CMV disease, developed grade III-IV aGVHD. None had chronic GvHD in the entire cohort.

With routine surveillance for CMV, adenovirus, EBV and HHV6, the cumulative incidence of any reactivation of viraemia at 6 months after transplant was significantly higher in T-depleted grafts (80%, 70-99%) compared to T-replete grafts (55%, 46-64%) (p<0.001) (Figure 2C). Comparing to T-replete graft recipients, a greater proportion of T-depleted graft recipients had adenoviraemia (p=0.004) and HHV6 viraemia (p=0.002) (Table 2). All CB recipients were patients with SCID and only one had new onset viraemia after transplant.

A greater proportion of T-replete marrow (n=16, 64%) and T-replete PBSC (n=57, 67%) recipients developed acute kidney injury (serum creatinine increased > 2 times from baseline creatinine prior to transplant) during transplant, compared to T-replete CB recipients (n=2, 28%) and T-depleted graft recipients (n=11, 23%) (p=0.001). Of 86 patients with acute kidney injury, seven (8%; 4 T-replete PBSC, 1 T-replete CB and 2 T-depleted PBSC) required renal replacement therapy. There was no significant difference in occurrence of transplant associated microangiopathy between T-replete graft recipients (marrow, 0; PBSC, n=4 (5%); CB, n=1 (14%)) and T-depleted graft recipients (n=4, 9%) (p=0.33). Only one patient developed macrophage activation syndrome after T-replete PBSC for juvenile idiopathic arthritis.
Transplant survival

The 3-year OS and EFS for the entire cohort were 85% (77-90%) and 79% (69-86%) respectively. Analysis by age at transplant revealed a comparable 3-year OS between T-replete grafts (88%, 76-94%) and T-depleted grafts (87%, 64-96%) in patients who were less than 5 years of age at transplant. For older patients, more than 5 years of age, the OS was significantly lower in T-depleted grafts (55%, 23-78%), compared to T-replete grafts (87%, 68-95%). (p=0.006) (Figure 2C). A similar pattern was observed in EFS (Figure 2D). Among patients who received T-replete HLA-matched donor transplant, the OS and EFS were comparable between MFD (n=37) and MUD (n=80). OS was 91% (74-97%) for MFD and 89% (80-95%) for MUD (p=0.76) while EFS was 78% (47-92%) for MFD and 85% (73-92%) (p=0.89).

Regarding the pre-transplant risk factors, there were no significant differences between T-replete HLA-matched graft and T-depleted HLA-mismatched graft recipients in patients who were aged > 5 years at HCT (Tables S5 and S6), and between patients aged < 5 years and patients aged > 5 years after T-depleted HLA-mismatched graft HCT, except a greater proportion of T-depleted recipients > 5 years had autoimmunity (5/13, 38% vs 1/34, 3% in younger T-depleted recipient, p=0.001) prior to transplant (Tables S7 and S8). In patients who were older than 5 years of age and received T-depleted grafts, a greater proportion of deceased recipients (n=4/5, 80%) had more than two risk factors compared to the survivors (n=4/8, 50%), but the number was too small to reach statistical significance (Table S9).

A trend towards lower survival was observed in T-depleted graft recipients with viraemia (75%, 54-88%), compared to T-depleted graft recipients without viraemia (88%, 41-98%), and in T-replete graft recipients with viraemia (89%, 75-95%) and without viraemia (86%, 72-94%) (p=0.38). All deceased T-depleted recipients died of infection and its associated complications (Table S10).

Six (5%) grafts failed in the entire cohort, 4 (5%; all secondary autologous reconstitution) after T-replete PBSC and 2 (4%; 1 secondary aplasia; 1 secondary reconstitution) after T-depleted PBSC. All received a second HCT: 5 received a TCR αβ/CD19 depleted parental graft and one received T-
replete PBSC from an HLA-matched unrelated donor. All survived except one patient, who sadly died of cerebral haemorrhage before engraftment.

Hospital stay and parenteral nutritional support
The median duration of hospitalization was 46 days (range, 13 to 187 days) for T-replete MFD, 60 days (range, 14 to 365 days) for T-replete MUD and 62 days (range, 27 to 365 days) for T-depleted mismatched donor recipients ($p=0.15$) (Figure S1A). The proportion of patients requiring intensive care was 11% ($n=4/37$) for T-replete MFD, 11% ($n=9/80$) for T-replete MUD and 17% ($n=8/47$) for T-depleted mismatched donor recipients ($p=0.62$). The proportion of patients requiring parenteral nutrition support was significantly higher in T-depleted mismatched donor transplants (77%, $n=36/47$), compared to T-replete MFD (41%, $n=15/37$) and T-replete MUD (51%, $n=41/80$) ($p=0.003$). There was no significant difference in duration of parenteral nutrition between T-depleted mismatched donor (median 53 days, range 17-196 days), T-replete MFD (median 41 days, range 9-172 days) and T-replete MUD (median 60 days, range 11-189 days) ($p=0.52$; Figure S1B).

Immune reconstitution and donor chimerism
To compare the immune reconstitution, a matched pair analysis was performed in survivors of T-depleted grafts without T-lymphocyte add-back ($n=28$, received ATG) and T-depleted PBSC ($n=28$, received alemtuzumab 1mg/kg). The median day to CD3 >200 cells/µL was 66 (range, 33-133 days) in T-replete graft patients and 89 days (range, 34 to 397 days) in T-depleted graft patients ($p=0.003$) (Figure S2). Immune-reconstitution kinetics within first 6 months is illustrated in Figure 4. T-depleted graft recipients had significantly lower CD3+ (Figure 4A), CD4+ (Figure 4B), CD8+ (Figure 4C) and activated (figure 4D) T-lymphocyte counts at months 2 and 3 post-transplant. There was not significant difference in natural killer cell reconstitution (Figure 4E) between T-replete and T-depleted graft recipients. CD19+ B-lymphocyte was significantly lower in T-depleted graft recipients at month 2 post-transplant but B-lymphocyte reconstitution was comparable between T-replete and T-depleted graft recipient after 3 months post HCT (Figure 4F). TCR $\alpha\beta$ and $\gamma\delta$ reconstitution for T-depleted survivors without T-lymphocyte add-back is shown is Figure 3S. The TCR $\alpha\beta$ proportion increased gradually and exceeded TCR $\gamma\delta$ proportion after 3 months post-transplant.
The median follow-up of surviving patients (n=146) was 2.8 years (range 0.5 to 6.5 years). Data on latest donor chimerism after first HCT were available in 141 patients. A greater proportion of T-depleted graft recipients had full donor myeloid chimerism >95% (n =30/39, 77%) compared to T-replete graft recipients (n=62/102, 61%) (p=0.04) (Figures 5A and S4A). For T-lymphocyte chimerism, 90% (n=35/39) of T-depleted graft recipients had full donor T-lymphocyte chimerism >99% compared to 55% (n=56/102) in T-replete graft recipients (Figures 5B and S4B).

Discussion
This study reports the first series comparing transplant outcomes between T-replete HLA-matched grafts and T-depleted HLA-mismatched grafts in children with IEI who were transplanted between 2014 and 2019. Treosulfan-based conditioning was used for both T-replete and T-depleted grafts. Thiotepa was given for all non-SCID IEI in T-depleted grafts but in a subset of non-SCID IEI with a high risk of graft rejection in T-replete grafts. The survival after T-depleted grafts was comparable to T-replete grafts in younger children with IEI, but inferior in older children with IEI. A greater proportion of older T-depleted graft recipients had autoimmunity and received immunosuppressive therapy prior to transplant compared to younger T-depleted graft recipients. We observed a significantly higher incidence of adenoviraemia and HHV6 viraemia after T-depleted grafts, but a similar incidence of CMV viraemia compared to T-replete graft recipients. Delayed CD3 reconstitution remains a significant issue after T-depleted grafts. We have also demonstrated T-replete PBSC using alemtuzumab was not significantly associated with increased aGvHD, compared to T-replete marrow and CB, this is consistent with Shaw et al/s. report in patients with leukaemia. (7) In our cohort, no recipients of T-replete PBSC had chronic GvHD.

HCT has become a curative option for a variety of otherwise incurable diseases such as high-risk leukaemia and many non-malignant conditions. It has been increasingly used as standard of care for an increasing number of IEI. Unfortunately, only about one in four patients who need an HCT will have a HLA-matched sibling available to become a stem cell donor. (8) The likelihood of finding an optimal unrelated donor varies among racial and ethnic groups, as high as 75% in Caucasians of European descent to as low as 16% among ethnic groups of South or Central American descent. (4)
Transplantation from a haploidentical donor has some unrivalled advantages, including highly motivated and readily available donors and, in the setting of malignancy, a haploidentical donor allows the selection of a donor with the highest degree of mismatch in their natural killer cell immunoglobulin-like receptor (KIR) repertoire, which provides a better graft-versus-tumour effect. (9) Historically, the major challenges of using such mismatched haploidentical donors for HCT are GvHD, graft failure, and high transplant-related mortality. In the absence of a suitably matched donor, physicians are reluctant to offer a curative transplant procedure to children with IEI, leading to prolonged periods of illness, poor quality of life, significant psychosocial problems and reduced life expectancy. Locatelli et al. reported comparable risks of non-relapse mortality and relapse in children with acute leukaemia between CD3+ TCR αβ/CD19 depleted haploidentical donor graft and matched family and unrelated donor recipients. (10) In this report, we demonstrated comparable outcomes between T-depleted HLA-mismatched grafts and T-replete HLA-matched grafts in younger children with IEI.

The current strategy using TCR αβ/CD19 depletion has a comparable incidence of GvHD to T-replete HLA-matched grafts, but the immune reconstitution and the generation of a broad TCR repertoire, which are required for normal immunity, are delayed. (11) This is reflected in a significant rate of viral infections in our cohort, especially adenoviraemia and HHV6 viraemia. Of note, the incidence of acute kidney injury was significantly lower in T-depleted graft patients, this is likely due to the fact that the majority of these patients did not receive any calcineurin inhibitors for GvHD prophylaxis. In long-term survivors, the donor myeloid and T-lymphocyte chimerism were better in the T-depleted graft group. One possible explanation for this is that additional thiotepa was given to patients with non-SCID IEI for T-depleted grafts to prevent graft rejection, which is more myeloablative compared to Fludarabine-Treosulfan based conditioning. Although Leiper et al showed that treosulfan-based conditioning conferred a more favourable outcome for gonadal reserve (12), the long-term impact of additional thiotepa on fertility function is unknown.

Whilst the introduction of CD3+ TCR αβ/CD19 depletion has transformed our practice for children with IEI, improved strategies are required to accelerate immune recovery and reduce viral infection. A number of such emerging strategies include the generation of donor-derived cytotoxic T-lymphocytes against multiple viruses, Rivo-cel (genetically modified αβ T-lymphocyte receptor bearing cells with an added caspase suicide gene) and photodynamic purging. (13, 14) Whilst these approaches might be promising, they are complex, time-consuming, and additional harvests from donors are required.
Depletion of naïve (TCRαβ+CD45RA+) T-lymphocytes has been developed as a new method of graft selection with the potential to confer improved reactivity to pathogens by memory T-lymphocytes (TCRαβ+CD45RO+), without conferring an increased risk of GvHD. Recent trials in children with malignancy show positive benefits from CD45RO+ memory T-lymphocyte add-back with improvement in immune reconstitution, reduction in incidence and severity of viral infection, and lower transplant related mortality. (15-17) To date, there is no prospective trial in children with IEI using TCR αβ/CD19 depleted mismatched graft with CD45RO+ memory T-lymphocyte add-back.

In conclusion, our data indicate that, through a more advanced strategy of graft selection, mismatched related or unrelated donor transplant allows the development of universal donors and offers the opportunity to transplant virtually every child with IEI in need of an allograft, with an expected outcome comparable to that obtained with an HLA-matched donor in younger children. We are now setting up a new prospective trial, based on CD45RO+ memory T-lymphocyte add-back, with the aim of accelerating recovery of adaptive immunity and reducing the incidence of viral infection in patients who receive in vitro T-depleted grafts. Demonstration of efficacy and safety would allow physicians to refer IEI patients earlier to transplant; avoiding many IEI related complications as well as transplant-related morbidity and mortality which rise with each year of delay. For infants who are diagnosed with IEI through newborn and family screening, transplant can be performed as soon as possible before any infection or organ damage. Every child with IEI deserves a cure with transplant: the major obstacle of “no suitable donor” will be eliminated if this clinical trial demonstrates promising outcomes.
Acknowledgements: We would like to thank all patients, their families and the treating multidisciplinary team.

Authorship

Conflict-of-interest disclosure: None of the authors has a relevant conflict of interest.

Contributions: SHL developed the conceptualization of the research, collected the data, performed the statistical analysis, interpreted the data and prepared the manuscript. MS contributed to the conceptualization of the research, manuscript writing and critical review at every level of the research stages. SG, IPH, DD, RP, HW, KC, RJ, SW, SBF collected the data and reviewed the manuscript. AG, TF, ZN, SH, AC, RL, SO, EW and MA critically reviewed the manuscript.
References

1. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40(1):24-64.

2. Cole T, McKendrick F, Titman P, Cant AJ, Pearce MS, Cale CM, et al. Health related quality of life and emotional health in children with chronic granulomatous disease: a comparison of those managed conservatively with those that have undergone haematopoietic stem cell transplant. J Clin Immunol. 2013;33(1):8-13.

3. Lum SH, Flood T, Hambleton S, McNaughton P, Watson H, Abinun M, et al. Two decades of excellent transplant survival for chronic granulomatous disease: a supraregional immunology transplant center report. Blood. 2019;133(23):2546-9.

4. Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371(4):339-48.

5. Slatter MA RK, Amrolia P, Flood T, Abinun M, Hambleton S, Nadeni Z, Goulden N, Davies G, Qasim Q, Gaspar HB, Cant A, Gennery AR, Veys P. Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood. 2011;117(16):4367-75.

6. Shah RM, Elfeky R, Nadeni Z, Qasim W, Amrolia P, Chiesa R, et al. T-cell receptor alphabeta(+) and CD19(+) cell-depleted haploidentical and mismatched hematopoietic stem cell transplantation in primary immune deficiency. J Allergy Clin Immunol. 2018;141(4):1417-26 e1.

7. Shaw BE, Apperley JF, Russell NH, Craddock C, Liakopoulou E, Potter MN, et al. Unrelated donor peripheral blood stem cell transplants incorporating pre-transplant in-vivo alemtuzumab are not associated with any increased risk of significant acute or chronic graft-versus-host disease. Br J Haematol. 2011;153(2):244-52.

8. PD M. Overview of marrow transplantation immunology. Blume KG FS, Appelbaum FR, editor. Malden, MA: Backwell Science; 2004.

9. Leung W, Iyengar R, Turner V, Lang P, Bader P, Conn P, et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172(1):644-50.
10. Locatelli F, Merli P, Pagliara D, Li Pira G, Falco M, Pende D, et al. Outcome of children with acute leukemia given HLA-haploidentical HSCT after alphabeta T-cell and B-cell depletion. Blood. 2017;130(5):677-85.

11. Zvyagin IV, Mamedov IZ, Tatarinova OV, Komech EA, Kurnikova EE, Boyakova EV, et al. Tracking T-cell immune reconstitution after TCRalphabeta/CD19-depleted hematopoietic cells transplantation in children. Leukemia. 2017;31(5):1145-53.

12. Leiper A, Houwing M, Davies EG, Rao K, Burns S, Morris E, et al. Anti-Mullerian hormone and Inhibin B after stem cell transplant in childhood: a comparison of myeloablative, reduced intensity and treosulfan-based chemotherapy regimens. Bone Marrow Transplant. 2020;55(10):1985-95.

13. Houghtelin A, Bollard CM. Virus-Specific T Cells for the Immunocompromised Patient. Front Immunol. 2017;8:1272.

14. Perruccio K, Topini F, Tosti A, Carotti A, Aloisi T, Aversa F, et al. Photodynamic purging of alloreactive T cells for adoptive immunotherapy after haploidentical stem cell transplantation. Blood Cells Mol Dis. 2008;40(1):76-83.

15. Triplett BM, Muller B, Kang G, Li Y, Cross SJ, Moen J, et al. Selective T-cell depletion targeting CD45RA reduces viremia and enhances early T-cell recovery compared with CD3-targeted T-cell depletion. Transpl Infect Dis. 2018;20(1).

16. Mamcarz E, Madden R, Qudeimat A, Srinivasan A, Talleur A, Sharma A, et al. Improved survival rate in T-cell depleted haploidentical hematopoietic cell transplantation over the last 15 years at a single institution. Bone Marrow Transplant. 2020;55(5):929-38.

17. Maschan M, Blagov S, Shelikhova L, Shekhovtsova Z, Balashov D, Starichkova J, et al. Low-dose donor memory T-cell infusion after TCR alpha/beta depleted unrelated and haploidentical transplantation: results of a pilot trial. Bone Marrow Transplant. 2018;53(3):264-73.
Table 1: Patient and transplantation characteristics according donor type (n=164)

	All	T-replete HLA-matched graft	T-depleted HLA-mismatched graft	p-value
Number	164	37	80	47
Male, n (%)	97 (59)	16 (16)	52 (54)	29 (30)
Diagnosis, n (%)				ns
SCID	35 (21)	10 (27)	14 (18)	11 (23)
Non-SCID IEI	129 (79)	27 (73)	66 (83)	36 (77)
Median age at diagnosis (range), years				ns
SCID	0.2 (at birth-1.0)	0.13 (at birth-0.7)	0.3 (at birth-0.8)	0.3 (at birth – 1.04)
Non-SCID IEI	1.9 (at birth-17.1)	2.1 (at birth -12.8)	1.5 (at birth -14.3)	2.0 (0.1-17.1)
Median age at transplant (range), years				ns
SCID	0.4 (0.14-1.4)	0.3 (0.2-0.8)	0.54 (0.14-1.4)	0.65 (0.14-1.4)
Non-SCID IEI	4.1 (0.2-18.1)	4.32 (0.2-16.8)	4.7 (0.3-17.2)	3.1 (0.2-18.1)
Median interval between diagnosis and transplant (range), years				ns
SCID	0.2 (0.02-1.2)	0.16 (0.11-0.32)	0.24 (0.02-1.2)	0.22 (0.13-0.8)
Non-SCID IEI	1.2 (0.1-17.2)	0.8 (0.2-12.8)	1.3 (0.1-17.2)	1.2 (0.1-4.6)
Median number of pre-transplant risk factors (range)				ns
SCID	2 (0-4)	1 (0-3)	2 (0-4)	2 (0-3)
Non-SCID IEI	2 (0-6)	1 (0-5)	2 (0-6)	2 (0-5)
Graft composition				
Median TNC (range), x10^8/kg	12.0 (1.0-96.0)	7.6 (1.4-22.8)	13.9 (1.2 – 37.9)	10 (1.0-96.0)
Median CD34+ (range), x10^4/kg	12.4 (0.5-60.9)	6.7 (1.7-25.7)	13.5 (0.5-8.7)	18.4 (0.8-60.9)
CD3+ (range), x10^5/kg	1.9 (0.02-14.4)	0.9 (0.2-7.7)	4.6 (0.3-8.7)	0.2 (0.02-14.4)
CD19+ (range), x10^7/kg	5.25 (0.0008-27.0)	5.0 (1.1-21.0)	9.4 (0.7-27.0)	0.007 (0.008-0.11)

IEI: inborn errors of immunity; MFD: matched family donor; MUD: matched unrelated donor; SCID: severe combined immunodeficiency; TNC: total nucleated cell

^1Median TCR αβ+ cell dose: 4.1 x10^8/kg (range, 0.06 to 20 x10^8/kg)
Table 2 Engraftment kinetics and transplant-related complications according to T-replete HLA-matched grafts and T-depleted HLA-mismatched grafts

	T-replete HLA-matched graft	T-depleted HLA-mismatched graft	p-value
Engraftment kinetics			
Median day to neutrophil recovery	22 (13-32)	14 (0-27)	<0.001
(range)	15 (6-40)	15 (6-90)	
Median day to platelet recovery	19.5 (7-103)	15 (6-366)	0.002
(range)	27 (17-41)		
Acute GvHD, % (95% CI)			
1-year CIN grade II-IV aGVHD	18 (7-48)	18 (9-39)	ns
	26 (16-41)		
	14 (2-79)		
1-year CIN grade III-IV aGVHD	8 (2-3)	2 (3-17)	ns
	7 (3-17)		
	14 (2-79)		
Organ involved in aGvHD (all stages), n (%)			
Skin	6 (24)	17 (36)	ns
	28 (33)		
	2 (29)		
Gut	0	1 (2)	ns
	2 (2)		
	1 (14)		
Liver	0	0	ns
	2 (2)		
	0		
Chronic GvHD, n (%)			
	0	0	
	0	0	
New onset of viraemia after HCT, n (%)			
CMV viraemia	6 (24)	14 (30)	ns
	17 (20)		
Adenoviraemia	5 (20)	22 (47)	0.004
	19 (22)		
HHV 6 viraemia	4 (16)	24 (51)	0.002
	24 (28)		
EBV viraemia	5 (20)	8 (17)	ns
	11 (13)		
	1 (14)		
TMA, n (%)	0	4 (5)	0.33
	1 (14)		
	4 (9)		
Acute kidney injury, n (%)	16 (64)	11 (23)	<0.001
	57 (67)		
	2 (28)		
Graft failure, n (%)	0	2 (4)	ns
	4 (5)		
	0		
Number of deaths, n (%)	1 (4)	8 (17)	ns
	9 (10)		
	1 (14)		
Cause of death			
GvHD	0	0	
Multi-organ failure	1	3	
	2		
Infection	0	0	
	3		
Others	0	3	2^
	3		

1Neuromyelitis optica spectrum disorder, n=1; 2encephalopathy, n=1; 3post-transplant lymphoproliferative disease, n=1
4pulmonary TMA, n=1; 5cerebral haemorrhage, n=1
aGVHD: acute GvHD; CMV: cytomegalovirus; EBV: Epstein Barr Virus; GvHD: graft-versus-host disease; ns: not significant; TMA: transplant associated microangiopathy
Legends for figures

Figure 1: Graft composition and engraftment kinetics according to T-replete marrow, T-replete PBSC, T-replete CB and T-depleted PBSC. (A) Total nucleated cell dose, x10^8/kg (B) CD34+ cells, x10^6/kg (C) CD3+ cells, x10^6/kg (D) CD19+ cells, x10^7/kg (E) Neutrophil recovery (F) Platelet recovery

Abbreviations: CB: cord blood; PBSC: peripheral blood stem cell

Figure 2: Cumulative incidence of aGvHD and survival according to T-replete and T-depleted grafts: (A) Grade II-IV aGVHD (B) Grade III-IV aGvHD (C) OS according to age at transplant (D) EFS according to age at transplant

Abbreviations: aGvHD: acute graft-versus-host disease; EFS: event-free survival; OS: overall survival

Figure 3: (C) Cumulative incidence of viraemia (CMV, AdV, EBV and HHV6) according to T-replete and T-depleted grafts

Abbreviations: CMV: cytomegalovirus; AdV: adenovirus; EBV: Epstein Barr Virus; HHV6: human herpes virus 6

Figure 4: A matched pair analysis for immune reconstitution kinetics post-transplant. Means (±SEM) CD3+ (A), CD4+ (B), CD8+ (C), activated T lymphocytes (D), natural killer (NK) cells (E) and CD19+ lymphocytes (F) measured at different time points post-transplant. *p<0.05; **p<0.001

Figure 5: The latest donor chimerism in T-replete and T-depleted grafts: (A) Myeloid donor chimerism (B) T-lymphocyte chimerism
Figure 1: Graft composition and engraftment kinetics according to T-replete marrow, T-replete PBSC, T-replete CB and T-depleted PBSC. (A) Total nucleated cell dose, x10⁶/kg (B) CD34+ cells, x10⁶/kg (C) CD3+ cells, x10⁶/kg (D) CD19+ cells, x10⁷/kg (E) Neutrophil recovery (F) Platelet recovery

Abbreviations: CB: cord blood; PBSC: peripheral blood stem cell
Figure 3

Cumulative incidence of viremia (CMV, AdV, EBV, HHV6)

Days post-HCT

$p<0.001^*$

T-replete graft (n=117)

T-depleted graft (n=47)
Figure 4: A matched pair analysis for immune reconstitution kinetics post-transplant. Means (±SEM) CD3+ (A), CD4+ (B), CD8+ (C), activated lymphocytes (D), natural killer (NK) cells (E) and CD19+ lymphocytes (F) measured at different time points post-transplant. *p<0.05; **p<0.001.
Figure 5

(A) Myeloid ≥ 95%
- Myeloid 50-94%
- Myeloid 10-49%
- Myeloid <10%

\[p = 0.04 \]

(B) T-lymphocyte ≥ 95%
- T-lymphocyte 50-94%
- T-lymphocyte 10-49%

\[p < 0.001 \]