Gauge equivalence classes of flat connections in the Aharonov–Bohm effect

M. A. Aguilar *, J. M. Isidro **, and M. Socolovsky +

*) Instituto de Matemáticas, Universidad Nacional Autónoma de México
Cd. Universitaria, 04510, México D.F., México

**) IFIC, Instituto de Física Corpuscular, Apdo. de Correos 22085, E-46071, Valencia, España

+) Departamento de Física Teórica, Universidad de Valencia, Burjassot 46100, España

and

+) Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México
Circuito Exterior, Cd. Universitaria, 04510, México D.F., México

In this paper we present a simplified derivation of the fact that the moduli space of flat connections in the abelian Aharonov-Bohm effect is isomorphic to the circle. The length of this circle is the electric charge.

PACS: 03.65.Bz, 03.65.-w, 02.40.Hw

Key words: Aharonov-Bohm effect, principal bundle, gauge group, connection, moduli space.

1. Introduction

In a recent paper, Aguilar and Socolovsky 1 have studied geometrical and topological aspects of the abelian Aharonov-Bohm (A-B) 2 effect. This is a gauge invariant non local quantum effect that geometrically can be thought to be induced by a non trivial flat connection on a product bundle over a space with a non trivial topology. In particular it was determined that the principal bundle relevant for the A-B effect is the product bundle $\xi_{A-B} : U(1) \rightarrow \mathbb{R}^2 \times U(1) \rightarrow \mathbb{R}^2$ (for scalar particles, the wave function is a section of the associated vector bundle $\xi_C : C \rightarrow \mathbb{R}^2 \times C \rightarrow \mathbb{R}^2$), where $\mathbb{R}^2 \times U(1)$, the total space of ξ_{A-B}, is homeomorphic to an open solid 2-torus minus a circle. The moduli space of flat connections, that is, the set of gauge equivalence classes of flat connections $\mathcal{M}_0 = C_0/G$, where C_0 is the set of flat connections and G is the gauge group of the bundle, was shown to be isomorphic to the circle S^1; finally, the holonomy groups of these connections in terms of $\rho \in [0, 1)$ were shown to be either the cyclic groups $H(\rho) = \mathbb{Z}_q$, for $\rho = p/q \in Q$, or the integers \mathbb{Z}, the infinite cyclic group, for $\rho \notin Q$.

These geometrical properties of the A-B effect are independent of the ideal case considered here, namely that of an infinitesimally thin solenoid carrying the magnetic flux Φ. In a real situation, the base space of the bundle is the plane minus a disk, which is topologically equivalent to \mathbb{R}^2.

The result about \mathcal{M}_0 in Ref. 1, was obtained as a corollary of a general result which is valid for product bundles over any manifold M. This result shows that the A-B effect is caused by the non trivial topology of M. Here we find \mathcal{M}_0 i.e., the moduli space for the case $M = \mathbb{R}^2$ in a simpler way. The result coincides with the previous derivation, but the explicit inclusion of the coupling constant i.e. the electric charge e, leads to the result that the length of the circle is $|e|$. In section 2 we describe the gauge group G, and in section 3 we rederive \mathcal{M}_0. Section 4 is a remark on the relation of this length with other fundamental lengths.

Corresponding author: M. S., Universidad de Valencia, telephone number: (34) 963 54 4349, fax number: (34) 963 98 3381, e-mails: miguel.socolovsky@uv.es, socolovs@nuclecu.unam.mx
2. The gauge group

Since the A-B bundle $\xi_{A-B} : U(1) \rightarrow R^{2*} \times U(1) \xrightarrow{\pi} R^{2*}$ is trivial, then its gauge group \mathcal{G} (see e.g. Refs. 1 or 3) is given by $\mathcal{G} = C^\infty(M,G)$ where G is the fiber and M is the base space; in our case, $G = U(1)$ and $M = R^{2*}$, then

$$\mathcal{G} = C^\infty(R^{2*}, U(1)).$$ \hspace{1cm} (1)

Since differentiable functions are continuous, then $\mathcal{G} \subset C^0(R^{2*}, U(1))$, and therefore the elements of \mathcal{G} fall into different homotopy classes:

$$[R^{2*}, U(1)] = \{\text{homotopy classes of maps } R^{2*} \rightarrow U(1)\} \cong [S^1, S^1] \cong \pi_1(S^1) \cong Z.$$ \hspace{1cm} (2)

So, if $f \in \mathcal{G}$, then there exists a unique $n \in Z$ such that f is homotopic to f_n ($f \sim f_n$), where $f_n(re^{i\phi}) = e^{in\phi}$, and $\phi \in [0, 2\pi)$, in other words, f is an element of the homotopy class of f_n ($f \in [f_n]$). This means there exists a differentiable map $h : R^{2*} \times [0,1] \rightarrow U(1)$, such that $h((re^{i\phi}), 0) = f(re^{i\phi})$ and $h((re^{i\phi}), 1) = e^{in\phi}$. In fact, in Ref. 1 it is shown that the group of smooth homotopy classes of smooth maps from R^{2*} to $U(1)$ is isomorphic to Z.

3. Flat connections

By Ref. 1, the space of flat connections on ξ_{A-B} is given by the set

$$\mathcal{C}_0 = \{A \in \Omega^1(R^{2*}; u(1)), \ dA = 0\}$$ \hspace{1cm} (3)

where $u(1) = iR$ is the Lie algebra of $U(1)$ and d is the exterior derivative operator on R^{2*}. And the action of \mathcal{G} on \mathcal{C}_0 is given by $A \cdot f = A + f^{-1}df$, where $f^{-1}(x, y) = f(x, y)^{-1} \in U(1)$.

We shall prove the following result.

Theorem.

There is a bijection between $\mathcal{M}_0 = \mathcal{C}_0 / \mathcal{G} = \{\text{gauge equivalence classes of flat connections on } \xi_{A-B}\}$ and S^1, with $length(S^1) = |e|$.

Proof. The 1-form in R^{2*} which induces the A-B effect is given by

$$a_0 = \frac{\Phi_0 }{2\pi^2} \frac{xdy - ydx}{x^2 + y^2}$$ \hspace{1cm} (4)

where Φ_0 is the magnetic flux associated with the charge $|e| : \frac{\Phi_0 }{2\pi^2} = \frac{hc}{|e|}$, and is such that for an arbitrary flux Φ in the solenoid, $\Phi = \lambda \Phi_0$, with $\lambda \in R$; it is useful to express Φ_0 in terms of the fine structure constant α and in the natural system of units: $\frac{\alpha^2}{e^2hc} = \alpha$, so $|e| = \sqrt{4\pi\alpha}$ and then $\frac{\Phi_0 }{2\pi^2} = \frac{\Phi_0 }{2\pi^2} \cong \sqrt{\frac{137}{4\pi}}$. So, $a_0 = \frac{1}{\sqrt{4\pi\alpha} \sqrt{\frac{137}{4\pi}}} \frac{xdy - ydx}{x^2 + y^2}$ and therefore

$$A_0 = ia_0 = \frac{i}{\sqrt{4\pi\alpha}} \frac{xdy - ydx}{x^2 + y^2} \in \mathcal{C}_0.$$ \hspace{1cm} (5)

Though closed, A_0 is not exact since only locally, i.e. for $\phi \in (0, 2\pi)$, $\frac{xdy - ydx}{x^2 + y^2} = d\phi$.

In particular, A_0 generates the De Rahm cohomology (with coefficients in iR) of R^{2*} in dimension 1

$$H^1_{DR}(R^{2*}; iR) \cong H^1_{DR}(S^1; iR) = \{\lambda [A_0]_{DR}\}_{\lambda \in R} \cong R,$$ \hspace{1cm} (6)
where \([A_0]_{DR} = \{A_0 + d\beta, \beta \in \Omega^0(R^2; iR)\}\). Though \(\beta\) does not generate the most general gauge transformation of \(A_0\), it gives, however, the gauge transformation defined by the composite \(\exp \circ \beta : R^{2*} \to U(1)\),

In general, a gauge transformed of \(A_0\) is of the form \(A'_0 = A_0 + f^{-1}df\) with \(f \in \mathcal{G}\). Therefore, the gauge class of \(A_0\) is

\[
[A_0] = \{A_0 + f^{-1}df\}_{f \in \mathcal{G}}.
\] (7)

In order to calculate the quotient \(C_0/\mathcal{G}\), consider the homomorphism \(\exp : C^\infty(R^{2*}, iR) \to \mathcal{G} = C^\infty(R^{2*}, U(1))\), given by \(\exp(\beta) = \exp \circ \beta\).

It is easy to see that \(C_0/\mathcal{G} \cong (C_0/\text{Im}(-)\mathcal{G})/\mathcal{G}\), where the action of \(\text{Im}(\exp\#)\) on \(C_0\) is the action as a subgroup of \(\mathcal{G}\), i.e., \(A \cdot \exp(\beta) = A + \exp(\beta^{-1}d\exp(\beta))\). Since \(\exp(\beta)^{-1}d\exp(\beta) = (\exp \circ \beta)^{-1}(\exp \circ \beta)d\beta\), then \(A \cdot \exp(\beta) = A + d\beta\). Therefore \(C_0/\text{Im}(\exp\#) = H^1(R^{2*}; iR) = \{\lambda[A_0]_{DR}\}_{\lambda \in R}\). The restriction imposed by the action of the full group \(\mathcal{G}\) on the parameter \(\lambda\) is obtained as follows.

Let \((\lambda + \sigma)A_0 \in [\lambda A_0]\), then there exists \(f \in \mathcal{G}\) (\(f\) depends on \(\sigma\)) such that \((\lambda + \sigma)A_0 = \lambda A_0 + f^{-1}df\) and therefore \(f^{-1}df = \sigma A_0\) i.e.

\[
\frac{1}{f} \frac{\partial}{\partial x} f = \frac{\partial}{\partial x} \ln f(x, y) = -\frac{i\sigma}{\sqrt{4\pi\alpha}} \frac{y}{x^2 + y^2},
\] (8)

\[
\frac{1}{f} \frac{\partial}{\partial y} f = \frac{\partial}{\partial y} \ln f(x, y) = \frac{\sigma}{\sqrt{4\pi\alpha}} \frac{x}{x^2 + y^2}.
\] (9)

Since \(\int \frac{dx}{x^2 + y^2} = \frac{i}{2\pi} \ln(x + iy) + \text{const.}\), \(\int \frac{dy}{x^2 + y^2} = \frac{i}{2\pi} \ln(y + iy) + \text{const.}\), and \(\frac{dy}{x + iy} = -\frac{x + iy}{x - iy}\), we obtain

\[
\ln f(x, y) = \frac{\sigma}{\sqrt{16\pi\alpha}} \ln\left(\frac{x + iy}{x - iy}\right) + c_1 = -\frac{\sigma}{\sqrt{16\pi\alpha}} \ln\left(\frac{y + ix}{y - ix}\right) + c_2;
\] (10)

where \(c_1\) and \(c_2\) are constants; if \(z = x + iy\) then \(\tilde{z} = x - iy\) and \(\frac{z}{\tilde{z}} = e^{2i\arg(z)} = e^{2i\phi}\), then

\[
\ln f(x, y) = \frac{\sigma i\phi}{\sqrt{4\pi\alpha}} + c_1 = \frac{\sigma}{\sqrt{16\pi\alpha}} (2i\phi + i\pi) + c_2 = \frac{i\sigma}{\sqrt{4\pi\alpha}} + \frac{i\pi\sigma}{\sqrt{16\pi\alpha}} + c_2;
\] (11)

let \(\sigma = n\sqrt{4\pi\alpha} (= n|\epsilon|)\) with \(n \in Z\), then \(\ln f(x, y) = \ln f + c_1 = \ln f + \frac{i\pi n}{4} + c_2\) i.e. \(f(x, y) = f_n(r e^{i\phi}) = K_1 e^{i\phi} = K_2 e^{i\frac{\pi n}{4}} e^{i\phi}\). Choosing \(K_2 = e^{-i\frac{\pi n}{4}}\) implies \(K_1 = 1\), and we have the solutions

\[
f_n(r e^{i\phi}) = e^{i\phi},
\] (12)

with \(f_n(e^{i0}) = f_n(e^{i2\pi}) = 1\). In particular, for \(n = 1\), we obtain

\[
[\lambda A_0] = [\lambda + \sqrt{4\pi\alpha} A_0],
\] (13)

which, as far as the classification of equivalence classes of connections and the calculation of holonomy groups is concerned, restricts the possible values of \(\lambda\) to an interval of length \(\sqrt{4\pi\alpha}\) which, without loss of generality, can be chosen to be \([0, \sqrt{4\pi\alpha}] \cong [0, \sqrt{\frac{3}{2}}]\) with \(\sqrt{4\pi\alpha}\) identified with 0, which corresponds to the trivial connection i.e. the electromagnetic vacuum. Then, one obtains

\[
\left(\begin{array}{c}
\text{gauge equivalence classes} \\
\text{of flat connections on } \xi_{A-B}
\end{array}\right) \cong \frac{\{[\lambda A_0]\}_{\lambda \in [0, \sqrt{4\pi\alpha}]}}{0 \sim \sqrt{4\pi\alpha}} \cong [0, \sqrt{4\pi\alpha}] \cong S^1.
\] (14)
4. Final remark

In terms of the electric charge, \(\frac{0,|e|}{0,|e|} \cong S^1 \). The “small” value of \(\alpha (\alpha \cong 1_{137.04}) \) reduces the pure geometrical upper limit 1 of the interval of \(\lambda^1 \), since \(\sqrt{4\pi\alpha} \cong 3028 < 1 \); then \(\text{length}(S^1) = |e| \) (approximately \(5.5 \times 10^{-9} (\text{erg} \times \text{cm})^{1/2} \) in the c.g.s. system of units). It is interesting that this “length” can be related to the Kaluza-Klein \(4 \) length \(l_{KK} \) for 5 dimensional gravity with the 5th dimension compactified in a circle giving the Maxwell field, and to the Planck length \(l_P = \sqrt{G_N} \), through \(l_{KK} = \frac{2\pi|e|}{\sqrt{G_N}} \).

Acknowledgments

This work has been partially supported by the research grant BFM2002-03681 from the Ministerio de Ciencia y Tecnología and from EU FEDER funds. One of us, M. S., thanks the Spanish Ministry of Education and Culture for a sabbatical grant. We thank J. A. de Azcárraga for his suggestions to improve the manuscript.

References

1. M. A. Aguilar, M. Socolovsky, Int. Jour. Theor. Phys. 41 (2002) 839.

2. Y. Aharonov, D. Bohm, Phys. Rev. 115 (1959) 485; T. T. Wu, C. N. Yang, C. N., Phys. Rev. D 12 (1975) 3845.

3. J. A. de Azcárraga, J. M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics, Cambridge University Press, Cambridge, 1998.

4. Th. Kaluza, Sitz. Preuss. Akad. Wiss. K1 (1921) 966; O. Klein, O., Z. Phys. 37 (1926) 895.

5. M. Kaku, M., Quantum Field Theory: A Modern Introduction, Oxford University Press, New York, 1993 (Chapter 19).