Gastric xanthoma is a predictive marker for metachronous and synchronous gastric cancer

Narihiro Shibukawa, Shohei Ouchi, Shuji Wakamatsu, Yuhei Wakahara, Akira Kaneko

AIM
To investigate predictive markers for metachronous and synchronous gastric cancer (GC), which can develop after endoscopic submucosal dissection (ESD).

METHODS
A total of 352 patients underwent ESD for early GC at NTT West Osaka Hospital between June 2006 and February 2016. Exclusion criteria were as follows: Remnant stomach, unknown Helicobacter pylori status, and endoscopic observation of the whole stomach outside our hospital. We analyzed data from 192 patients comprising 109 patients with solitary GC (Group A) and 83 with metachronous and synchronous GC (Group B). We retrospectively investigated the clinicopathological and endoscopic characteristics, and endoscopic risk score as predictive markers for GC.

RESULTS
The median age of Group B [72 years (interquartile range 63-78)] was significantly higher than that of Group A [66 years (interquartile range 61-74), respectively, \(P = 0.0009 \)]. The prevalence of intestinal metaplasia in Group B tended to be higher than that in Group A (57.8% vs 45.0%, \(P = 0.08 \)). The prevalence of gastric xanthoma (GX) in Group B was significantly higher than that in Group A (54.2% vs 32.1%, \(P = 0.003 \)). The atrophy score in Group B was significantly higher than that in Group A (\(P = 0.005 \)). Multivariate analysis revealed that higher age and the presence of GX were independently related to metachronous and synchronous GC (OR = 1.04).

Abstract
AIM
To investigate predictive markers for metachronous and synchronous gastric cancer (GC), which can develop after endoscopic submucosal dissection (ESD).

METHODS
A total of 352 patients underwent ESD for early GC at NTT West Osaka Hospital between June 2006 and February 2016. Exclusion criteria were as follows: Remnant stomach, unknown Helicobacter pylori status, and endoscopic observation of the whole stomach outside our hospital. We analyzed data from 192 patients comprising 109 patients with solitary GC (Group A) and 83 with metachronous and synchronous GC (Group B). We retrospectively investigated the clinicopathological and endoscopic characteristics, and endoscopic risk score as predictive markers for GC.

RESULTS
The median age of Group B [72 years (interquartile range 63-78)] was significantly higher than that of Group A [66 years (interquartile range 61-74), respectively, \(P = 0.0009 \)]. The prevalence of intestinal metaplasia in Group B tended to be higher than that in Group A (57.8% vs 45.0%, \(P = 0.08 \)). The prevalence of gastric xanthoma (GX) in Group B was significantly higher than that in Group A (54.2% vs 32.1%, \(P = 0.003 \)). The atrophy score in Group B was significantly higher than that in Group A (\(P = 0.005 \)). Multivariate analysis revealed that higher age and the presence of GX were independently related to metachronous and synchronous GC (OR = 1.04).
metachronous and synchronous GC, including GX and investigate predictive markers of the development of and synchronous GC also remains unknown. An accurate predictor of GC risk remains unclear. And the early GC (GX) has been reported as the predictive marker of GC risk was also announced. In 2015, the Kyoto global consensus (8­14) gastritis was elevated lesion by white light imaging, without image-enhanced endoscopy. This study was carried out with the approval of the NTT West Osaka Hospital Ethics Committee. Because of the anonymous nature of the date obtained after each patient had provided written informed consent for ESD, the requirement for informed consent was waived.

Statistical analysis
All statistical analyses were performed with EZR (Saitama Medical Center, Jichi Medical University, www.wjgnet.com).
Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria). More precisely, it is a modified version of R commander designed to add statistical functions frequently used in biostatistics[22]. Fisher’s exact test was performed to investigate the relationships between the two groups. Differences between the two groups were analyzed by Mann-Whitney U test when the data was not parametric. Multivariate logistic analysis was used to identify predictive markers of metachronous and synchronous GC. Age, sex, and baseline variates with P < 0.2 in univariate analysis were included in the multivariate logistic analysis. The threshold for significance was P < 0.05.

RESULTS

Clinicopathological characteristics of patients

The characteristics of the two patient groups are shown in Table 1.

The median ages in Group A and B were 66 [interquartile range (IQR) 61-74] and 72 [IQR 63-78] years, respectively (P = 0.0009). The proportion of male patients was high in both groups (84.4% vs 86.7%, P = 0.7). H. pylori status was positive for many patients in Group A and B (75.2% vs 68.7%, respectively, P = 0.4).

Regarding tumor location, lesion of the upper part of the stomach was least frequent. Median tumor size was 15 mm in both groups. The most frequent macroscopic type was 0-I. The scores for differentiated type were not significantly different between the two groups. Nodular gastritis was absent in all patients in this study.

Endoscopic characteristics

Endoscopic characteristics are shown in Table 2. Although the difference was not significant, the prevalence of severe atrophy and intestinal metaplasia in Group B tended to be higher than that in Group A (89.2% vs 79.8%, P = 0.1 and 57.8% vs 45.0%, P = 0.08). The prevalence of GX in Group B was significantly higher than that in Group A (54.2% vs 32.1%, P = 0.003). The number and size of GX were not significantly different between the two groups.

Endoscopic score for GC risk

The endoscopic score for GC risk is reported in Table 3. The atrophy score in Group B was significantly higher than that in Group A (P = 0.005). The scores for intestinal metaplasia, fold swelling, and diffuse redness, and the total score were not significantly different between the two groups. Nodular gastritis was absent in all patients in this study.

Multivariate logistic analysis

Age, male sex, severe atrophy, presence of intestinal metaplasia, and presence of GX were subjected to multivariate logistic analysis. As shown in Table 4, higher age and the presence of GX were independently related to metachronous and synchronous GC.

DISCUSSION

In the present study, we compared the characteristics of 109 patients with solitary GC to those of 83 patients with metachronous and synchronous GC in order to identify predictive markers for metachronous and synchronous GC. Multivariate logistic analysis revealed that high age and the presence of GX were independently related to metachronous and synchronous GC.

The results of recent studies indicated that male sex, multiple initial GC, severe atrophy, and multiple GC before successful H. pylori eradication were independent risk factors for metachronous GC[13,14]. After performing...
univariate analysis, we carried out multivariate logistic analysis using male sex and severe atrophy as variates, but our results revealed that these two markers were not predictive of metachronous and synchronous GC. This finding may reflect the fact that most patients in this study were male and showed severe atrophy in both groups.

Endoscopic findings related to the development of GC have been previously reported. Of these, five endoscopic findings were confirmed; atrophy, intestinal metaplasia, fold swelling, nodular gastritis, and diffuse redness. A subsequent study reported the endoscopic score for GC risk; however, the usefulness of this score remains unclear. After performing univariate analysis, we carried out multivariate logistic analysis using severe atrophy and intestinal metaplasia as variates. However, our results indicated that these two markers were not predictive of metachronous and synchronous GC. Further investigations are necessary to evaluate the usefulness of the endoscopic score for GC risk.

GX, a localized non-neoplastic accumulation of foamy histiocytes in the lamina propria of the inflamed gastric mucosa, is occasionally found during EGD. GX is a positive indicator of H. pylori and persists after eradication therapy. GX has received little attention clinically, perhaps because it is considered a benign entity. A retrospective cohort study reported that the presence of GX was significantly associated with the presence of GC. Another cohort study performed at the same hospital reported that GX was a useful marker for predicting the development of GC by performing endoscopic follow-up examinations. However, both these studies did not investigate GX as a predictive marker for metachronous and synchronous GC. In our study, univariate analysis revealed that GX was significantly more prevalent in Group B than in Group A. In addition, results of multivariate logistic analysis indicated that GX was a predictive marker for metachronous and synchronous GC. To our knowledge, this is first report of the presence of GX as a useful predictive marker for metachronous and synchronous GC.

Why does GC develop more frequently in patients with GX? Increased release of oxygen free radicals may be involved in the formation of GX. On the other hand, the presence of GX may reflect the severity and long duration of chronic gastritis, which is a risk factor for GC development. Because of the same reason, GX may be more frequent in Group B than Group A. However, further studies are required to elucidate this link.

Our study has some limitations. First, it was a retrospective single-center study. Second, the sample size was small. Finally, we did not analyze inter-observer variability in the assessment of endoscopic images.

In summary, our results revealed that higher age and the presence of GX were independently related to metachronous and synchronous GC. These findings, especially the predictive value of the presence of GX, could improve the timely detection and treatment of metachronous and synchronous GC. Further investigations are necessary to confirm the predictive value of these markers.

COMMENTS

Background

Predictive markers for the development of metachronous and synchronous gastric cancer (GC) have not been extensively studied. In addition, it is often difficult to clearly distinguish metachronous GC from synchronous GC because of missed detection of synchronous GC. And the usefulness of endoscopic score for GC risk and gastric xanthoma (GX) as the predictive markers of metachronous and synchronous GC remains unknown.

Table 2 Endoscopic characteristics of the two groups (%)

	Group A (n = 109)	Group B (n = 83)	P value
Severe atrophy	87 (79.8)	74 (89.2)	0.1
Intestinal	49 (45.0)	48 (57.8)	0.08
metaplasia			
Gastric xanthoma	35 (32.1)	45 (54.2)	0.003

Table 3 Endoscopic score of risk for gastric cancer of the two groups

	Group A (n = 109)	Group B (n = 83)	P value
Atrophy	0	0	0.005
1	1	1	
2	99	83	
Intestinal	0	0	0.1
metaplasia	60	35	
1	33	34	
2	14	14	
Fold swelling	0	0	0.6
1	99	73	
1	10	10	
Nodular gastritis	0	109	1.0
1	1	0	
Diffuse redness	0	4	0.5
1	23	25	
2	82	58	
Total score, median [IQR]	4 [4-5]	4 [4-5]	0.1

IQR: Interquartile range.

Table 4 Multivariate analysis of predictive marker of metachronous and synchronous gastric cancer

	Odds ratio	P value
Age	1.04 (1.01-1.08)	0.02
Male	1.38 (0.57-3.34)	0.47
Severe atrophy	1.68 (0.70-4.05)	0.25
Intestinal	1.35 (0.71-2.54)	0.36
metaplasia		
Gastric xanthoma	2.11 (1.14-3.99)	0.02
REFERENCES

1 Isomoto H, Shikuwa S, Yamaguchi N, Fukuoka E, Ikeda K, Nishiyama H, Ohnita K, Mizuta Y, Shiozawa J, Kohno S. Endoscopic submucosal dissection for early gastric cancer: a large-scale feasibility study. Gut 2009; 58: 331-336 [PMID: 19001058 DOI: 10.1136/gut.2008.165381]

2 Goto O, Fujishiro M, Kodashima S, Ono S, Omata M. Outcomes of endoscopic submucosal dissection for early gastric cancer with special reference to validation for curability criteria. Endoscopy 2009; 41: 118-122 [PMID: 19214889 DOI: 10.1055/s-0028-1119452]

3 Gotoda T, Iwasaki M, Kuwano C, Seewald S, Oda I. Endoscopic resection of early gastric cancer treated by guideline and expanded National Cancer Centre criteria. Br J Surg 2010; 97: 868-871 [PMID: 20301163 DOI: 10.1002/bjs.7033]

4 Abe S, Oda I, Suzuki H, Nonaka S, Yoshinaga S, Odagaki T, Taniguchi H, Kashiwagi R, Saito Y. Short- and long-term outcomes of endoscopic submucosal dissection for undifferentiated early gastric cancer. Endoscopy 2013; 45: 703-707 [PMID: 23990481 DOI: 10.1055/s-0033-1344396]

5 Oda I, Oyama T, Abe S, Ohnita K, Kosaka T, Hiraseawa K, Ishido K, Nakagawa M, Takahashi S. Preliminary results of multivariate questionnaire study on long-term outcomes of curative endoscopic submucosal dissection for early gastric cancer. Dig Endosc 2014; 26: 214-219 [PMID: 23826719 DOI: 10.1111/den.12141]

6 Ohnita K, Isomoto H, Shikuwa S, Yajima H, Minami H, Matsushima K, Akazawa Y, Yamaguchi N, Fukuoka E, Nishiyama H, Takashima F, Nakao K. Early and long-term outcomes of endoscopic submucosal dissection for early gastric cancer in a large patient series. Exp Ther Med 2014; 7: 594-598 [PMID: 24520251 DOI: 10.3822/etm.2014.1488]

7 Suzuki H, Oda I, Abe S, Sekiguchi M, Mori G, Nonaka S, Yoshinaga S, Saito Y. High rate of 5-year survival among patients with early gastric cancer undergoing curative endoscopic submucosal dissection. Gastric Cancer 2016; 19: 198-205 [PMID: 25616808 DOI: 10.1007/s10120-015-0469-0]

8 Nasu J, Doi T, Endo H, Nishina T, Hirasewa S, Hyodo I. Characteristics of metachronous multiple early gastric cancers after endoscopic mucosal resection. Endoscopy 2005; 37: 990-993 [PMID: 16189772 DOI: 10.1055/s-2005-870198]

9 Nakajima T, Oda I, Gotoda T, Hamakana H, Eguchi T, Yokoi C, Saito D. Metachronous gastric cancers after endoscopic resection: how effective is annual endoscopic surveillance? Gastric Cancer 2006; 9: 93-98 [PMID: 16767364 DOI: 10.1007/s10120-006-0372-9]

10 Kobayashi M, Narisawa R, Sato Y, Takeuchi M, Aoyagi Y. Self-limiting risk of metachronous gastric cancers after endoscopic resection. Dig Endosc 2010; 22: 169-173 [PMID: 20642604 DOI: 10.1111/j.1445-1661.2010.09987.x]

11 Kato M, Nishida T, Yamamoto K, Hayashi S, Kitamura S, Yabuta T, Yosho T, Nakamura T, Komori M, Kawai N, Nishihara A, Nakanishi F, Nakahara M, Oyama H, Kinoshita K, Yamada T, Iijima H, Tsuji M, Takehara T. Scheduled endoscopic surveillance controls secondary cancer after curative endoscopic resection for early gastric cancer: a multicentre retrospective cohort study by Osaka University ESD study group. Gut 2013; 62: 1425-1432 [PMID: 22914298 DOI: 10.1136/gutjnl-2011-301647]

12 Shiokata A, Haruma K, Graham DY. Metachronous gastric cancer after successful Helicobacter pylori eradication. World J Gastroenterol 2014; 20: 11552-11559 [PMID: 25206262 DOI: 10.3748/wjg.v20.i33.11552]

13 Abe S, Oda I, Suzuki H, Nonaka S, Yoshinaga S, Nakajima T, Sekiguchi M, Mori G, Taniguchi H, Sekine S, Kato H, Saito Y. Long-term surveillance and treatment outcomes of metachronous gastric cancer occurring after curative endoscopic submucosal dissection. Endoscopy 2015; 47: 1113-1118 [PMID: 26165734 DOI: 10.1055/s-0034-1392484]

14 Mori G, Nakajima T, Asada K, Shinazu T, Yamarnichi N, Maekita T, Yokoi C, Fujishiro M, Gotoda T, Ichinose M, Ushijima T, Oda I. Incidence of and risk factors for metachronous gastric cancer after endoscopic resection and successful Helicobacter pylori eradication: results of a large-scale, multicenter cohort study in Japan. Gastric Cancer 2016; 19: 911-918 [PMID: 26420267 DOI: 10.1007/s10120-015-0544-6]

15 Kim HH, Cho EJ, Noh E, Choi SR, Park SJ, Park MI, Moon W. Missed synchronous gastric neoplasm with endoscopic submucosal dissection for gastric neoplasm: experience in our hospital. Dig Endosc 2013; 25: 32-38 [PMID: 23286254 DOI: 10.1111/j.1443-1661.2012.01339.x]

16 Gweon TG, Park JM, Lim CH, Kim JS, Cho YK, Lee JS, Kim SW, Choi MG. Increased incidence of secondary gastric neoplasia in patients with early gastric cancer and coexisting gastric neoplasia at the initial endoscopic evaluation. Eur J Gastroenterol Hepatol 2014; 26: 1209-1216 [PMID: 25162149 DOI: 10.1097/MEG.0000000000000193]

17 Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, Haruma K, Asaka M, Uemura N, Malfertheiner P; faculty members of Kyoto Global Consensus Conference. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 2015; 64: 1353-1367 [PMID: 26187502 DOI: 10.1136/gutjnl-2015-309252]

18 Haruma K. Kyoto classification of gastritis. Japan: Kawasaki Medical School, 2014; 97-110

19 Sekikawa A, Fukui H, Maruo T, Tsumura N, Kanasaka T, Okabe Y, Osaki Y. Gastric xanthelasma may be a warning sign for the presence of early gastric cancer. J Gastroenterol Hepatol 2014; 29: 951-956 [PMID: 24372908 DOI: 10.1111/jgh.12512]

20 Sekikawa A, Fukui H, Sada R, Fukuhara M, Marui S, Tanke G, Endo M, Ohara Y, Matsuda F, Nakajima J, Henmi S, Saito S, Tsumura T, Maruo T, Kimura T, Osaki Y. Gastric atrophy and xanthelasma are markers for predicting the development of early gastric cancer. J Gastroenterol Hepatol 2016; 31: 35-42 [PMID: 25904908 DOI: 10.1111/jgh.13022]

21 Kimura K, Takenoto T. An endoscopic recognition of the atrophic border and its significance in chronic gastritis. Endoscopy 1969; 1: 87-97

22 Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 2013; 48: 452-458 [PMID: 23208313 DOI: 10.1038/bmt.2012.244]

23 Uemura N, Okamoto S, Yamamoto S, Matsunami N, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001; 345: 784-789 [PMID: 11556297 DOI: 10.1056/NEJMoa010999]

24 Kato I, Tominaga S, Ino Y, Kobayashi S, Yoshiy Y, Matsuura A, Kameya A, Kano T. Atrophic gastritis and stomach cancer risk: sectional analyses. Jpn J Cancer Res 1992; 83: 1041-1046 [PMID: 1452455 DOI: 10.1111/j.1349-7006.1992.tb02719.x]

25 Inoue K, Fujisawa T, Chinuki D, Kushiyyama Y. Characteristics of
gastric mucosa in gastric cancer improvement-examination from a clinical survey by endoscopy. Stomach and Intestine 2009; 44: 1367-1373

26 Kamada T, Tabaka A, Yamanaka Y. Nodular gastritis with Helicobacter pylori infection is strongly associated with diffuse-type gastric cancer in young patients. Dig Endosc 2007; 19: 180-184 [DOI: 10.1111/j.1443-1661.2007.00750.x]

27 Nishibayashi H, Kanayama S, Kiyohara T, Yamamoto K, Miyazaki Y, Yasunaga Y, Shinomura Y, Takeshita T, Takeuchi T, Morimoto K, Matsuzawa Y. Helicobacter pylori-induced enlarged-fold gastritis is associated with increased mutagenicity of gastric juice, increased oxidative DNA damage, and an increased risk of gastric carcinoma. J Gastroenterol Hepatol 2003; 18: 1384-1391 [PMID: 14675267 DOI: 10.1046/j.1440-1746.2003.03192.x]

28 Hori S, Tsutsumi Y. Helicobacter pylori infection in gastric xanthomas: immunohistochemical analysis of 145 lesions. Pathol Int 1996; 46: 589-593 [PMID: 8893228 DOI: 10.1111/j.1440-1827.1996.tb03658.x]

29 Kaiserling E, Heinle H, Itabe H, Takano T, Remmele W. Lipid islands in human gastric mucosa: morphological and immunohistochemical findings. Gastroenterology 1996; 110: 369-374 [PMID: 8566582 DOI: 10.1053/gast.1996.v110.pm8566582]

P- Reviewer: Chen JQ, Izuka T, Nishida T
S- Editor: Gong ZM
L- Editor: A
E- Editor: Lu YJ
