Optimization in job shop scheduling problem using Genetic Algorithm (study case in furniture industry)

S L Aquinaldo¹,², N R Cucuk¹,³ and Yuniaristanto¹,⁴

¹Industrial Engineering Department of University Sebelas Maret, Jl. Ir. Sutami, 36 A, Surakarta, Indonesia
E-mail:²saralaurensia@student.uns.ac.id, ³cucuknur@gmail.com, ⁴yuniaristanto@gmail.com

Abstract. Job shop scheduling problem belongs to a class of NP-Hard problems. We solve a scheduling problem in a job shop based furniture company. The company produces several products such as chair, table, home decorations, and home accessories. Currently, the company schedules the order using Earliest Due Date (EDD) and First Come First Serve (FCFS) methods. The best schedule resulted from those methods is then chosen and used as the initial solution for Genetic Algorithm (GA) method. The proposed algorithm is implemented in MATLAB 2019a to minimize the makespan. Parameters used in the GA formation of new generations are done by crossover using the Precedence Preservative Crossover (PPX) method and mutations using job-pair exchange mutations. The selection of chromosomes for regeneration in the crossover process is chosen by two chromosomes that have the best fitness and for the mutation process, one chromosome that has the worst fitness is chosen. Solution from genetic algorithm is better than EDD for the case study. From the results, GA produces shorter makespan compared to EDD and FCFS methods. The EDD method gives a makespan of 104,280 minutes and the FCFS method gives a makespan of 118,440 minutes, while GA provides a makespan of 81,780 minutes.

1. Introduction

Production scheduling in a manufacturing industry has an important role in minimizing production lead time. Decisions in the scheduling that are defined in the assignment are in the form of job sequencing intern of time to start and finish the operations. Scheduling also deals with the allocation of resources that exist at a certain period, with the purpose of optimally used such resources [1]. Finally, production scheduling is useful for increasing productivity and minimizing operating costs [2]. Good scheduling will also minimize delays that occur in a company.

The job shop scheduling problem is one of the scheduling problems that have task processing sequence constraints, and each task must go through each machine exactly once. Each job scheduled has a specific process through a specific set of machinery [3]. Job shop scheduling is included in complex combinatorial optimization scheduling problems and categorized as one of the Np-hard problems, a problem whose search for solutions will rise exponentially as the size of the problem increases linearly [4].

Genetic algorithm method has been able to solve various problems related to optimization, including job shops schedule. In this paper, GA is used to reduce the idle time of the machine. The initial solution is result from EDD method to reduce late delivery problems in a furniture company. Furniture company located in Trangsan RT 01 RW 05 Gatak Sukoharjo, established since April 2002. This company produces products in the form of furniture and home decor with a workforce of 80 people. Focuses on the international market by exporting to several countries including United States, Belgium, France, Netherlands, and Spain. Company makes products based on orders so processing between one order to another is different or can be called as job shops. The objective of the scheduling in this paper is to minimize the makespan.
2. Methods
The production scheduling system used by the company results in late order completion. Delayed completion of orders and the buildup of orders is a major factor in the emergence of problems with customers. This study uses a heuristic EDD method to solve the delayed completion of orders in a job order furniture company. The resulted EDD schedule still has several idle times. Therefore, GA is used to reduce the idle time based on the EDD schedule. Methodology starts with calculation production scheduling using EDD method to minimize tardiness. After that do the optimization on EDD scheduling by implementing GA using matlab software. Finally, do a comparison between the company’s initial method and proposed method. The research methodology is shown in Figure 1.

2.1. Genetic Algorithm
GA is an effective meta-heuristic to solve combinatorial optimization problems and has been successfully adopted to solve the job shops scheduling problem. Recently, many papers discuss about this topic. [5] developed the scheduling algorithm for job shop scheduling problems with parallel machines with re-entrant processes. [6] applied a product grouping system, so that there are groups of jobs that must be done in the same vulnerable time based on the same product group. [7] formulated Global Selection (GS) and Local Selection (LS) which designed to generate high-quality initial population in the initialization stage.

Genetic algorithm is one of effective metaheuristic methods to solve optimization problems. This method was developed based on idea that exist in Darwin genetics and theory. The optimum value is found by a searching technique which carried out simultaneously on several possible solutions known
as population. Individuals in a population are called chromosomes. This chromosome is a solution consisting of some genes. The initial population is built randomly, while the next population is the result of the evolution of chromosomes through an iteration called generation. In each generation, chromosomes will undergo an evaluation process using a measuring instrument called a fitness function. Fitness value of a chromosome will indicate the quality of chromosomes in the population.

The next generation is known as offspring, formed from a combination of two chromosomes of the current generation that act as parents using crossover operator. Apart from crossing operations, chromosomes can also be modified using another genetic operator called mutation. New generation population is formed by selecting the fitness value of the parent chromosome and the fitness value of the offspring chromosome and rejecting the other chromosomes (chromosomes with a small fitness value) so that the size of the population is constant. After going through several generations, this algorithm will converge to the best chromosome that will be the solution of the problems.

3. Result and Discussion

3.1. Process Operations Data

The EDD method ranks jobs according to their due date and this sequence is then used as a basis to determine the production schedules. Data recap of the processing time of each operation for six products coded as J1, J2, J3, J4, J5, and J6 are shown in Table 1.

Table 1. Data processing time.

Operation	Suar join pedestal (minute)	Suar join stool only (minute)	Donat suar stool (minute)	Stool hocker black (minute)	Stool hocker white (minute)
1	T1,1,1(1) = 720	T2,1,1(1) = 1200	T3,1,1(1) = 420	T4,1,2(2) = 960	T5,1,1(1) = 1620
2	T1,2,2(1) = 720	T2,2,2(1) = 900	T3,2,2(1) = 300	T4,2,3(1) = 840	T5,2,3(1) = 300
3	T1,3,2(1) = 840	T2,3,2(1) = 1320	T3,3,2(1) = 360	T4,3,5(1) = 180	T5,3,5(1) = 180
4	T1,4,2(2) = 540	T2,4,2(2) = 780	T3,4,2(2) = 240	T4,4,1(1) = 240	T5,4,1(1) = 480
5	T1,5,1(1) = 180	T2,5,1(1) = 180	T3,5,1(1) = 180	T4,5,1(1) = 360	T5,5,1(1) = 360
6	T1,6,2(1) = 540	T2,6,2(1) = 720	T3,6,2(1) = 60	T4,6,1(1) = 360	T5,6,1(1) = 300
7	T1,7,1(1) = 240	T2,7,1(1) = 360	T3,7,1(1) = 180	T4,7,1(1) = 240	T5,7,1(1) = 360
8	T1,8,2(1) = 540	T2,8,2(1) = 720	T3,8,2(1) = 60	T4,8,1(1) = 360	T5,8,1(1) = 360
9	T1,9,1(1) = 1320	T2,9,1(1) = 2040	T3,9,1(1) = 180	T4,9,5(1) = 720	T5,9,1(1) = 180
10	T1,10,2(2) = 360	T2,10,2(2) = 360	T3,10,1(1) = 180	T4,10,1(1) = 2700	T5,10,1(1) = 360
11	T1,11,1(1) = 60	T2,11,1(1) = 120	T3,11,1(1) = 360	T4,11,1(1) = 420	T5,11,1(1) = 300
12	T1,12,5(5) = 60	T2,12,5(5) = 120	T3,12,5(5) = 360	T4,12,1(1) = 120	T5,12,1(1) = 420
13	T1,13,1(1) = 240	T2,13,1(1) = 300	T3,13,1(1) = 240	T4,13,1(1) = 1440	T5,13,1(1) = 1440
14	T1,14,1(1) = 360	T2,14,1(1) = 360	T3,14,1(1) = 360	T4,14,1(1) = 60	T5,14,1(1) = 60
15	T1,15,1(1) = 240	T2,15,1(1) = 360	T3,15,1(1) = 360	T4,15,1(1) = 180	T5,15,1(1) = 180
16	T1,16,1(1) = 240	T2,16,1(1) = 300	T3,16,1(1) = 300	T4,16,1(1) = 60	T5,16,1(1) = 60
17	T1,17,1(1) = 360	T2,17,1(1) = 360	T3,17,1(1) = 1440	T4,17,1(1) = 360	T5,17,1(1) = 360
18	T1,18,1(1) = 240	T2,18,1(1) = 360	T3,18,1(1) = 180	T4,18,1(1) = 60	T5,18,1(1) = 60
19	T1,19,1(1) = 240	T2,19,1(1) = 300	T3,19,1(1) = 300	T4,19,1(1) = 60	T5,19,1(1) = 60
20	T1,20,1(1) = 1440	T2,20,1(1) = 1440			
21	T1,21,1(1) = 60	T2,21,1(1) = 60			
3.2. EDD Results

To solve the delayed completion of orders in a job order using the EDD method. Table 2 below shows the schedule results of EDD method.

Table 2. The schedule EDD results.

Product	Processing Time	Start	Due date	Finish	
	(minute)	(days)			
Suar Join Pedestal	8,880	21	08/04/2019	11/06/2019	03/05/2019
Suar Join Stool	17,220	41	08/04/2019	11/06/2019	27/05/2019
Wood Stool Only	18,720	38	15/05/2019	17/07/2019	08/07/2019
Donat Suar Stool	17,880	48	06/05/2019	13/07/2019	10/07/2019
Stool Hocker Black	19,980	46	06/05/2019	13/07/2019	08/06/2019
Stool Hocker White	21,600	51	06/05/2019	13/07/2019	13/07/2019
Total	104,280	245			

From the table above, it can be seen that by using the EDD method, the problem of delayed can be overcome for all products where each product can be completed on time but still have several idle times. Hence, the results of makespan with EDD method is 104,280 minutes.

GA is used to reduce the idle time based on the EDD schedule. In this paper we use 400 generations with a population of 80 and the problem is represented using encoding permutation. For problem representations, chromosomes are represented as integers, where the time calculation is based on two matrices, namely the order process matrix and the time matrix. Maximum operating limit is 21 with 19 workstations. The generation of chromosomes is done by generating random numbers. The size of chromosomes is based on the number of jobs multiplied by the number of machines (n x m). The initial population chromosome is 80 x 102, where 80 expresses the population size and 102 expresses the length of the chromosome. Chromosomes that have been raised will be determined based on the fitness value. In this paper, we use crossover probability of 0.45 and probability of mutation is 0.01 [8]. The results of GA are shown in Table 3.

Table 3. The schedule GA results.

Product	Processing Time	Start	Due date	Finish	
	(minute)	(days)			
Suar Join Pedestal	15,600	44	08/04/2019	11/06/2019	31/05/2019
Suar Join Stool	19,080	41	08/04/2019	11/06/2019	27/05/2019
Wood Stool Only	8,400	38	15/05/2019	17/07/2019	04/07/2019
Donat Suar Stool	14,220	30	06/05/2019	13/07/2019	19/06/2019
Stool Hocker Black	14,280	24	06/05/2019	13/07/2019	31/05/2019
Stool Hocker White	10,200	17	06/05/2019	13/07/2019	22/05/2019
Total	81,780	194			

Total of makespan for the six products is 81,780 minutes. The comparison of the makespan between the GA method and EDD is shown in Figure 2.
Figure 2. Comparison of makespan results from EDD and GA.

From the figure, we can see that the EDD method results a makespan of 104,280 minutes and the GA method results a makespan of 81,180 minutes. Hence, the GA gives 20.5% better results than EDD rule.

4. Conclusions
In this paper, GA is used to reduce the idle time of machines based on schedule resulted from EDD rule. The results of GA give total makespan of 81,780 minutes while EDD rule gives total makespan of 104,280 minutes. The efficiency obtained by genetic algorithms is 20.5%. Suggestion for further research that work insertion can be done.

References
[1] MCKAY K, PINEDO M, WEBSTER S. PRACTICE-FOCUSED RESEARCH ISSUES FOR SCHEDULING SYSTEMS*. Prod Oper Manag. Wiley; 2009 Jan 5;11(2):249–58. doi.org/10.1111/j.1937-5956.2002.tb00494.x.
[2] Mohamed Y, Borrego D, Francisco L, Al-Hussein M, AbouRizk S, Hermann U. Simulation-based scheduling of module assembly yards: case study. Eng. Constr. Archit. Manag. Emerald; 2007 May 8;14(3):293–311. doi.org/10.1108/09699980710744926.
[3] Applegate D, Cook W. A Computational Study of the Job-Shop Scheduling Problem. ORSA Journal on Computing. Institute for Operations Research and the Management Sciences (INFORMS); 1991 May;3(2):149–56.doi.org/10.1287/ijoc.3.2.149.
[4] Aryawan B. PT. PENERAPAN ALGORITMA TABU SEARCH DALAM PENJADWALAN JOB SHOP. MAKARA ofTechnology Series. Universitas Indonesia, Directorate of Research and Public Service; 2010 Oct 14;7(3). doi.org/10.7454/mst.v7i3.197.
[5] Chen JC, Wu C-C, Chen C-W, Chen K-H. Flexible job shop scheduling with parallel machines using Genetic Algorithm and Grouping Genetic Algorithm. Expert Syst. Appl. Elsevier BV; 2012 Sep;39(11):10016–21. doi.org/10.1016/j.eswa.2012.01.211.
[6] Krisnanti, Ria, Sudiarsa A. Penjadwalan Mesin Bertipe Job Shop untuk Meminimalkan Makespan dengan Metode Algoritma Genetika (Studi Kasus Pada PT X). Simposium Nasional RAPI XI FT UMS. 2012:60-65.
[7] Zhang G, Gao L, Shi Y. An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Syst. Appl. Elsevier BV; 2011 Apr;38(4):3563–73. doi.org/10.1016/j.eswa.2010.08.145.
[8] Grefenstette J. Optimization of Control Parameters for Genetic Algorithms. IEEE Trans. Syst. Man Cybern. Institute of Electrical and Electronics Engineers (IEEE); 1986 Jan;16(1):122–8. doi.org/10.1109/tsmc.1986.289288.