Therapeutic effects of traditional Chinese medicine formula Qianlie Tongli decoction on chronic prostatitis/chronic pelvic pain syndrome induced by peptide T2 in mice

Xingxing Cui, Muhammad Naveed, Mirza Muhammad Faran Ashraf Baig, Wenlu Wang, Kashif Dar, Ziwei Liu, Junaid Wazir, Meng Tang, Bilal Ahmad, Xiaohui Zhou

Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China

School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, P.R. China

State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, 210004, P.R. China

Zhongda Hospital, Affiliated with Southeast University, Nanjing, Jiangsu Province, 210009, P.R. China

Correspondence: Xiaohui Zhou, zhxh@cpu.edu.cn: Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, P.R. China

#These co-authors contributed equally to this work.

Abstract

Objectives: This study was undertaken to reveal therapeutic effects and the preliminary
mechanism of Chinese medicine formula Qianlie Tongli decoction (QTD) in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS).

Methods: A total of 50 male C57BL/6 mice were randomly divided into five groups. All groups except the control group were injected subcutaneously T2 peptide emulsion, which induced the CP/CPPS model. After the induction of CP/CPPS, the model group was given 0.9% NaCl by oral gavage while low-dose, medium-dose, and high-dose groups were treated with Chinese medicine formula. Micturition habits and pain behavior of mice were analyzed for each group. Hematoxylin and eosin staining were used to investigate prostate inflammation. The serum level of tumor necrosis factor-α (TNF-α) was measured by enzyme-linked immunosorbent assay (ELISA) kit.

Key findings: Chinese medicine formula significantly reduced the number of urine spots and improved pain response frequency in the medium-dose and high-dose group. The high-dose group showed reduced considerably inflammatory lesion and inflammatory cell infiltration than the low-dose and medium-dose groups. Serum levels of TNF-α in the high-dose group were significantly reduced compared with the model group.

Conclusions: The results demonstrated the therapeutic effects of Qianlie Tongli decoction in CP/CPPS mice by analyzing clinically relevant symptoms (urinary tract system, pelvic pain, and prostate inflammation), and preliminarily explored the inflammatory-related treatment mechanisms by measuring TNF-α.

Keywords: Qianlie Tongli decoction; Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS); Anti-inflammation; Therapeutic effects; Immunization.
1. Introduction

According to the National Institutes of Health (NIH), prostatitis has acute bacterial prostatitis (category I), chronic bacterial prostatitis (category II), chronic prostatitis/chronic pelvic pain syndrome (category III) and asymptomatic inflammatory prostatitis (category IV) [1]. NIH Category III Prostatitis is a highly extensive disease that affects men with a wide age range and severely affects the quality of life (QoL) [2]. Besides, population-based surveys have shown that CP/CPPS is as severe as Crohn’s disease, diabetes, and heart failure [3]. As the most prevalent type of prostatitis, almost 90% to 95% of men have CP/CPPS with symptoms of chronic prostatitis [4]. CP/CPPS is mostly described by long-term, repeated pelvic pain or discomfort, lasting more than 3 months, with sexual dysfunction and variable urinary symptoms [5].

Presently, etiology and pathophysiology are not well-known. Many scholars believe that it might be related to pathogen infection, mental and psychological factors, neuroendocrine, immune function, and oxidative stress [6, 7]. Autoimmunity is a crucial factor in CP/CPPS, previous studies have shown that autoimmune prostatitis exists in human males, and immune disturbance leads to the loss of self-tolerance to prostatic antigens [8, 9].

Currently, there are no established treatments to alleviate symptoms for CP/CPPS. The therapeutic interventions for CP/CPPS mainly include alpha-blockers, antibiotics, pain medications, and multimodal therapy [10-12]. Weak evidence supports the use of α-blockers, pain medications, and a four to six weeks course of antibiotics for the treatment of CP/CPPS [13]. In China, for the treatment of numerous diseases, herbal has been widely used. Some studies provided evidence that herbal supplements could be effective in CP/CPPS [14].
Herbal can improve the clinical symptoms, reverse some pathological changes, and restore the body's normal physiological function. For the treatment of CP/CPPS, there are several approaches in herbal, including alleviating pain and dispersing liver-qi, removing dampness, and clearing heat, and activating blood to dissolve stasis. Pro-inflammatory cytokines expedite CP/CPPS development, while anti-inflammatory cytokines alleviate the disease [15]. Numerous researchers have shown that herbal protects against cytokine production in atherosclerosis as the potential immunosuppressive agents [16]. Such diverse and flexible therapies in Chinese medicine uncover the advantages of herbal treatment for CP/CPPS.

Qianlie Tongli decoction (QTD) is a Chinese medicine formula consisting of *Hedyotis diffusa*, *Epimedium brevicornu* Maxim, *Fritillaria thunbergii*, Cortex Phellodendri Chinensis (CPC), and Earthworm (*Lumbricus terrestris*). These Chinese medicinal materials can be used individually or in combination. QTD has been used widely in the clinical setup in China for the treatment of various inflammatory conditions. Previous studies have revealed the anti-inflammatory effect of *Hedyotis diffusa*, *Epimedium brevicornu* Maxim, *Fritillaria thunbergii*, CPC, and Earthworm (*Lumbricus terrestris*) individually [17-21]. In this experiment, QTD takes "Bushen Tongluo" as the treatment principle, and *Epimedium* is the primary medicine to nourish the kidney and remove dampness in this formula. *Hedyotis diffusa* and *Fritillaria thunbergii* are the medicines for clearing heat and detoxifying. The adjuvant medicine-Earthworm can promote blood circulation and facilitate the effects of other medications. CPC and *Fritillaria thunbergii* used to disperse blood stasis and achieve the anti-inflammatory effect. Previously for the first time, we have evaluated the effects of QTD formula in an autoimmune prostatitis rat model [22]. In this study, we investigated the
therapeutic effects of Chinese medicine formula QTD for CP/CPPS mice and explored the preliminary mechanism.

2. Method and materials

The main reagent used in this experiment was T2 peptide with the sequence of CSEEM RHRFRQLDTKLNDLKG amino acid from Transient receptor potential cation channel subfamily M member 8 (TRPM8), it is an epitope of antigenic nature inducing experimental autoimmune prostatitis (EAP) was purified and synthesized by Wuhan Buyers Biotechnology Co., Ltd., China. Complete Freund’s adjuvant (CFA) was obtained from the Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Chinese medicine compounds included *Hedyotis diffusa*, *Epimedium brevicornu* Maxim, *Fritillaria thunbergii*, CPC, and Earthworm (*Lumbricus terrestris*), which were purchased from Nanjing Crane Age Pharmaceutical Service Co., Ltd., China (Batch #: Su Cai Zhunyin (2017) No. 019-022). The four voucher specimens were preserved at the herbarium of China Pharmaceutical University, and the materials for formula were authenticated by Prof. Dr. Zhang Chunfeng, College of Chinese Medicine, China Pharmaceutical University [*Fritillaria thunbergii* (Liliaceae), CPU180910-1; *Epimedium brevicornu* Maxim (Berberidaceae), CPU180910-2; *Hedyotis diffusa* (Rubiaceae), CPU180910-3; Cortex *Phellodendri Chinensis* (Rutaceae), CPU180910-4; Earthworm (*Lumbricus terrestris*), CPU180910-5].

2.1. Ethical Statement

All procedures and experiments used in this study comply with guidelines of the local institutional ethical committee of the China Pharmaceutical University (Jiangsu Province, Nanjing, China) regarding care and welfare of animals under study (T/CPU, 235-2018,
2.2. Animal model

Fifty adult male 6-8 weeks old C57BL/6 mice weighing 18~22g were obtained from Qinglong Mountain Animal Breeding Ground (Nanjing, China). These mice were kept and fed under standard temperature and relative humidity with a 12-h light/dark cycle in an animal room. The ethical committee approved animal handling and experimental procedures of China Pharmaceutical University. These mice were randomized into five groups (n=10), including the control, model, low-dose, medium-dose, and high-dose group.

2.3. Immunization

T2 peptide was dissolved to 1mg/ml of reserves for a combination of an equal concentration of CFA before immunization [23]. Except for the control group, the other groups were all given a multipoint subcutaneous injection on days 0 and 14. Every time, mice were injected with 200μl of a mixture subcutaneously with five injections separately in the back. For the mice, the ultimate concentration of T2 peptide was 225μg/ml.

2.4. Preparation and administration of QTD

The composition of TCM formula QTD is as follows: Hedyotis diffusa (60g), Epimedium brevicornu Maxim (60g), Fritillaria thunbergii (60g), CPC (60g), and Earthworm (60g) (Table 1). Based on the traditional Chinese herbal decoction method, these five agents were mixed and kept for 1 hour in the arenaceous pot with eight volumes of cold water. Then the mixture was boiled for 40min and filtered. The first filtered solution was then reserved, and formula materials were again mixed in six volumes of cold water, boiled for 40 min and filtered. The second filtered solution was then reserved, and then in four volumes of cold
water, the formula materials were mixed again, boiled for 40 min and filtered. The three filter liquors were combined and concentrated 0.5g/ml, 0.75g/ml, and 1.0 g/ml for the low, medium, and high-dose groups, respectively. After the development of the CP/CPPS model on day 28, based on previous methodology [24, 25], each mouse in the low-dose, medium-dose, and high-dose group received 0.15ml/10g daily by oral gavage between the day 29 and 56.

Scientific name	Latin binomial	Chinese name	Part used	Weight(g)	Voucher #
Fritillaria thunbergii	Fritillaria thunbergii	Zhebeimu	Bulb	60g	CPU180910-1
Epimedium brevicornu Maxim	Epimedi Folium	Yinyanghuo	Leaf	60g	CPU180910-2
Hedyotis diffusa	Oldenlandia diffusa	Baihuasheshecao	Whole plant	60g	CPU180910-3
Cortex Phellodendri Chinensis (CPC)	Phellodendri Chinensis	Huangbo	Bark	60g	CPU180910-4
Lumbricus terrestris (Earthworm)	Lumbricidae	Dilong	Whole	60g	CPU180910-5

Total amount 300g

Table 1. The composition of TCM formula QTD.

2.5. Voiding Behavior Analysis

Changes of urine spots were analyzed by voiding the spot assay (VSA) test [26]. Experimental mice were placed on the filter paper in a cage individually. After one hour, total filter papers were collected, and the images of urine spots were taken under the ultraviolet
light. Then the urine spots of mice were evaluated by the Fiji version of ImageJ software. The number of urine spots represents the urine frequencies, and the spots with size $\geq 6.6\text{mm}^2$ were calculated. Blinded observers collected data.

2.6. Pain Threshold Assessment

Mice were tested on days 28 and 56 by using von Frey filaments (vFF) applied to the abdomen and the plantar region of the hind paw. Referred hyperalgesia and tactile allodynia were tested. The technique was done in stainless steel chambers. Ten fibers with forces of 0.04, 0.07, 0.16, 0.40, 0.60, 1.00, 1.40, 2.00, 4.00 and 6.00 of consistently increasing weights were exerted to pelvic regions, and withdrawal responses of mice were evaluated. Each filament was applied for 1~2s with a 5s interval for a total of 10 times, and in ascending order of force, the hairs were tested. Immediate licking or scratching of the area of filament stimulation, sharp retraction of the abdomen, and jumping of mice were measured as a positive response to fiber stimulation. Response frequency was considered as the mean percentage of positive responses.

2.7. Histopathology

Prostate tissues from mice were soaked in 10% PFA for 24-48 hours. The fixed tissues were dehydrated in different solvents and fixed in paraffin. After that, the samples were sliced into sections of 5μm, which were stained with H&E staining and examined under a microscope. The severity of prostate tissue inflammation was assessed by using four-point scores in a random double-blind method. Grade 0 means no inflammation, and the grade 1 means part of acinar epithelial cell detachment and slight focal infiltration, the grade 2 means most of the acinar epithelial cell detachment, epithelial cell necrosis, moderate focal and mild diffuse
infiltration and the grade 3 means most of the acinar epithelial cell detachment, epithelial cell necrosis and severe diffuse infiltrate [27].

2.8. Enzyme-linked immunosorbent assay (ELISA)

To examine the anti-inflammatory effects of QTD, the TNF-α level in the serum was identified by ELISA. The blood plasma obtained from the heart was put on room temperature for 2 hours; it was then centrifuged at 3000 rpm for 10 min. After that, the supernatant was collected and kept at -80°C. The content of TNF-α was calculated by using the ELISA kit (Elabscience Biotechnology Co., Ltd., China) according to the manufacturer’s protocol.

2.9. Statistical analysis

The statistical differences between control, model, and treatment groups were analyzed by analysis of variance (ANOVA) analysis and expressed as mean, standard deviation (±SD). In all the analyzes, p<0.05, p<0.01, p<0.001 was considered statistically significant.

3. Results

3.1. Voiding behavior analysis

As shown in (Fig. 1a), urine spots were collected on filter paper, and a VSA test was used to analyze the voiding behaviors. Several urine spots on day 28 were significantly higher as compared to the day -1 and day 56 (Fig. 1b-d). After day 56, the number of urine spots was significantly higher in the model group as compared to the control, the low-dose, medium-dose, and high-dose group (Fig. 1e).
Fig. 1a. Analysis of voiding behavior using ImageJ software. Urine spots with size $\geq 6.6\text{mm}^2$ were considered. b, c, d, e. Several urine spots. (b) *means $p<0.05$ compared with day 21 (c) # means $p<0.05$ compared with day -1, *means $p<0.05$ compared with day 28 (d) # means $p<0.05$ compared with day -1, *means $p<0.05$ compared with day 28 (e) * means $p<0.05$ compared with model group, # means $p<0.05$ compared with control group.

3.2. Pain behavior analysis
On day 28 of CP/CPPS induction and before the treatment with QTD, pain response frequency was recorded for all groups. On day 28th, maximum pain response frequency was observed in the model, low-dose, medium-dose, and the high-dose group (Fig. 2a) as compared to the control group. After the induction of CP/CPPS, the treatment groups received the treatment for 28 days, and the follow-up pain threshold on day 56 was compared to the day 28 pain threshold. On day 56, no significant difference was observed in the model and low-dose group, though the medium and high dose groups showed minimum pain response frequencies (Fig. 2b) as compared to day 28.

![Fig.2. Pain withdrawal response frequencies in the model, low-dose, medium-dose, high-dose, and control group of mice after application of forces.](image)

3.3. Histopathology

After Hematoxylin and eosin staining of the prostates, the model group appeared to have more severe inflammation than the control group. The low-dose group showed a large number of inflammatory infiltrations, while only scattered inflammatory infiltrates were seen in the medium-dose group. However, after the treatment, no significant inflammation and infiltration of inflammatory cells in a high-dose group were observed (Fig. 3a). The
inflammation score was most notable in the model group ($p<0.001$) compared to the control group. The low-dose, medium-dose, and high-dose group showed a significant difference ($p<0.001$) as compared to the model group. Compared to the control group, the low-dose and medium-dose groups were significantly different ($p<0.05$). The high-dose group showed no significant difference as compared to the control group. (Fig. 3b).

Fig. 3a. Observation of histopathology of the prostate tissue from C57BL/6 mice in the different groups (resolution: 400X). The model group appeared to have the most severe inflammatory lesion and the most extensive infiltration of inflammatory cells. The low-dose group showed a large number of inflammatory infiltrations. The medium-dose group displayed scattered inflammatory infiltrates. No significant inflammation and infiltration of inflammatory cells were observed in the high-dose group. The control group showed no
inflammation. b. Mean inflammation scores of each group. **The most significant difference from the control group at $p<0.001$. +++The most notable difference from the model group at $p<0.001$. #Significant difference from the control group at $p<0.05$.

3.4. Serum levels of TNF-α

To detect the TNF-α level in the serum ELISA was used. As shown in Fig. 4 and Table 2, the serum level of TNF-α in the model group was significantly higher than the control group ($p<0.05$). The low-dose and medium-dose groups showed no significant difference as compared to the control group ($p>0.05$). The TNF-α levels in the high-dose group also showed no significant difference from the control group ($p>0.05$). The high-dose group showed the most significant difference ($p<0.01$) as compared to the model group. When compared to the model group, the low-dose and medium-dose group showed a significant difference ($p<0.05$).

![Graph showing TNF-α levels in different groups](image)

Fig. 4 Evaluation of the expression levels of TNF-α in serum. The ELISA kit detected levels of TNF-α in blood serum. The model group showed increased levels as compared to the control group (*$p<0.05$). The medium-dose group and the low-dose group showed a significant difference (**$p<0.05$) as compared to the model group. The high-dose group displayed the most significant differences (###$p<0.01$) as compared to the model group.
Group	TNF-α (pg/ml) mean ±SD
Control	2.59±1.39
Model	9.46±6.81*
Low dose	4.10±1.53#
Medium dose	3.77±1.91#
High dose	2.47±1.53##

Table 2. TNF-α level in serum (means ±SD). *p<0.05 means, compared with the control group. #p<0.05 indicates, comparison with the model group. ##p<0.01 means, comparison with the model group.

4. Discussion

CP/CPPS severely weakens the psychological and physical health of men. The etiology of this syndrome is not fully understood, and by western medicine, its treatment is frequently unsuccessful [28]. Traditional Chinese medicine is paying increasing attention to academic circles. Many scholars verified that TCM plays an essential role in reducing the risk of chronic disease [29]. Compared to the specific drug, the advantage of TCM therapeutics for CP/CPPS is “multiple components, multiple targets” to a complex disease[30]. CP/CPPS belongs to “Gonorrhea,” “Stranguria,” and “Turbid Semen.” The theories of TCM state that there are four kinds of common syndromes; downward flow syndrome of dampness-heat, gan-qi stagnation syndrome, blood-stasis syndrome, and deficiency of kidney-yang syndrome, which influence the treatment options [31-33]. The symptoms of damp heat and blood stasis are the most prevalent clinical syndrome, Wang Z's meta-analysis and literature review
demonstrate that TCM ranks highest in terms of improvement of CP/CPPS associated with damp-heat and blood-stasis syndromes [30].

Qianlie Tongli decoction is composed of *Hedyotis diffusa*, *Epimedium brevicornu* Maxim, *Fritillaria thunbergii*, CPC, and Earthworm (*Lumbricus terrestris*). QTD can clear heat, remove dampness, and promote blood circulation. Nankang tablets are included in the 《Chinese Pharmacopoeia》, *Epimedium* is the main drug, and adjuvants include CPC and *Hedyotis diffusa*. Icariin is the quality control indicator, Ni Yan’s study [34] found that berberine and oleanolic acid also as indicators. Xiang Dong’s study [35] analyzed the determination of icariine in Qianlietong tablets by HPLC; *Epimedium* is the main medicine in Qianlietong tablets; the result suggests the icariine is the main active ingredient. Xie Xueyuan’s study [36] analyzed the determination of berberine in Qianlietong granules by HPLC, CPC is the main medicine in Qianlietong granules, the negative control doesn't contain CPC, the result suggests the berberine is the main active ingredient. 《Compendium of Materia Medica》 and 《Shennong Materia Medica》 recorded that earthworm has the functions of activating meridians, activating blood circulation and removing stasis. Shuxuetong’s main component is the earthworm, which can significantly improve the symptoms of CP/CPPS [37]. Our lab found *Fritillaria thunbergii* can improve CP/CPPS mice symptoms [18], so it as an adjunct. Fritillaria is insoluble in water, even if it may be major active ingredients. So, we presumed that QTD’ major ingredients were berberine, icariine, and oleanolic acid. Due to a Chinese herbal formula has many active ingredients, which need further research.

Numerous studies have shown that immune-related effects of TCM are associated with
cytokine regulation [38]. Inflammation may contribute to CP/CPPS. Many types of research have shown that several pro-inflammatory cytokines recruit activated immune and inflammatory cells to the sites of lesions, thus increasing and maintaining the inflammatory condition [39]. *Hedyotis diffusa* is a slender, annual plant that widely spread in the Asian country, which has been used to treat inflammation, and urethral infection [40]. And it could protect the renal damage by down-regulating the levels of TNF-α, IL-1β, IL-6, and up-regulating the level of IL-10[41]. *Epimedium brevicornu* Maxim also shown an anti-inflammatory effect in LPS-induced peritonitis by inhibiting the production of TNF-α, IL-1β, and IL-6 [17]. Icarin is a major bioactive monomer, and studies have shown its potential effect to treat immune and inflammatory diseases [42]. Berberine is an alkaloid derivative extracted from a variety of plants, and Liu X’experiment reveals its immunomodulatory effects in an autoimmune myocarditis rat model [43]. All these herbal products had a synergic anti-inflammation effect.

In particular, the TNF-α level was usually high in the expressed prostatic secretions (EPS) from men with CP/CPPS [44]. TNF-α is mainly derived from monocytes and macrophages. The study found CD4⁺ T cells and macrophages are key factors in the development of CP/CPPS[45]. Increased inflammasome may be a possible mechanism of CP/CPPS, and inhibiting the inflammasome-related pathway may be a new therapeutic approach [46]. Some studies revealed that inflammasome might be a target for pain therapy [47]. The essential problem of CP/CPPS is congestion, collateral blockage, and inflammatory cells infiltration. All these herbals play a vital role in reducing inflammation and activate blood circulation of chronic diseases.
Our results also showed the therapeutic role of QTD in ameliorating urinary tract symptoms, relieve pain, and reduce inflammation in CP/CPPS therapies. H&E staining of prostate tissue has demonstrated that the high-dose group of QTD had a most significant anti-inflammatory effect on CP/CPPS. TNF-α is a well-known pro-inflammatory cytokine. In the CP/CPPS model group, the expression levels of TNF-α were higher than the control group. After treatment, the TNF-α levels decreased significantly and were similar to the control group, which demonstrated that QTD plays an important role in the immunomodulatory of the CP/CPPS mice model. Here, we used Chinese medicines to treatment CP/CPPS, and its possible mechanism of action is to suppress the immune response by reducing the release of TNF-α.

CP/CPPS prostate involvement pain may be related to the axon reflex of the dorsal root ganglion and cause neurogenic inflammation. TNF-α is involved in pain perception during antigen-induced neurogenic inflammation [48]. Increased levels of TNF-α may also cause neuronal damage. By upregulating the voltage-gated channels of dorsal root ganglion neurons, uninjured neurons are involved in neuropathic pain [49]. The pain threshold was significantly lower in the model group, which may be local cytokine production or local neuroinflammation caused by autoimmunity. After 4 weeks of the intervention of QTD, the pain in the mice was significantly relieved, this may be related to the level of cytokine TNF-α.

We only analyzed serum levels of TNF-α, which may be the principal limitation of this study. In subsequent research, we will analyze more cytokines in the serum and prostatic tissue.

The current treatment for CP/CPPS is mainly using a combination of antibiotics, α-blockers, and anti-inflammatory drugs. The improvement in symptoms and response to treatment is
very variable; for CP/CPPS, management will likely progress toward symptom-specific rather than a generic, 'one strategy fits all' treatment [50]. However, the TCM formula has multiple ingredients; it is a more comprehensive treatment for multiple symptomatic diseases. Based on the UPOINT system [51], the QTD has unique advantages in urinary symptoms, organ function, tenderness of muscles, and regulate psychology. In this study, we revealed that Qianlie Tongli's decoction could reduce the number of urine spots, improve the pain threshold, and reduce inflammatory lesion and inflammatory cells, and decreases the TNF-α level in the serum. However, we additionally expect that Qianlie Tongli's decoction may be useful for all kinds of prostatitis diseases.

5. Conclusion

CP/CPPS is an enigma for many researchers. Although its treatment is not yet absolutely understood, traditional Chinese medicines have a significant effect on the medication for CP/CPPS. This Chinese medicine formula (QTD) provides a new therapeutic approach to CP/CPPS. However, to conclude the long-term effectiveness of this treatment, more clinical study is needed to explore the practice of traditional Chinese medicine in the treatment of CP/CPPS.

Acknowledgement

This work was supported by the National Natural Science Foundation of China [#. 30973003; 30901993]; and the Administration of TCM of Jiangsu Province [#. LZ 11093] China. Furthermore, all the authors thank and acknowledge their respective Universities and Institutes.

Conflict of interest

18
All authors declare no conflict of interest.

References

1. Polackwich, A.S. and D.A. Shoskes, *Chronic prostatitis/chronic pelvic pain syndrome: a review of evaluation and therapy*. Prostate Cancer Prostatic Dis, 2016. 19(2): p. 132-8.

2. Bowen, D.K., E. Dielubanza, and A.J. Schaeffer, *Chronic bacterial prostatitis and chronic pelvic pain syndrome*. BMJ Clin Evid, 2015. 2015.

3. McNaughton Collins, M., et al., *Quality of life is impaired in men with chronic prostatitis: the Chronic Prostatitis Collaborative Research Network*. J Gen Intern Med, 2001. 16(10): p. 656-62.

4. Nickel, J.C., et al., *Leukocytes and bacteria in men with chronic prostatitis/chronic pelvic pain syndrome compared to asymptomatic controls*. J Urol, 2003. 170(3): p. 818-22.

5. Rees, J., et al., *Diagnosis and treatment of chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome: a consensus guideline*. BJU Int, 2015. 116(4): p. 509-25.

6. Paulis, G., *Inflammatory mechanisms and oxidative stress in prostatitis: the possible role of antioxidant therapy*. Res Rep Urol, 2018. 10: p. 75-87.

7. Ilhsan, A.U., et al., *Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress*. Biomed Pharmacother, 2018. 106: p. 714-723.
8. Lu, J.C., et al., Identification and preliminary study of immunogens involved in autoimmune prostatitis in human males. Prostate, 2018.

9. Jiang, Y., et al., Association of anti-sperm antibodies with chronic prostatitis: A systematic review and meta-analysis. J Reprod Immunol, 2016. 118: p. 85-91.

10. Cohen, J.M., et al., Therapeutic intervention for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS): a systematic review and meta-analysis. PLoS One, 2012. 7(8): p. e41941.

11. Holt, J.D., et al., Common Questions About Chronic Prostatitis. Am Fam Physician, 2016. 93(4): p. 290-6.

12. Appiya Santharam, M., et al., Interventions to chronic prostatitis/Chronic pelvic pain syndrome treatment. Where are we standing and what's next? Eur J Pharmacol, 2019. 857: p. 172429.

13. Wagenlehner, F.M. and W. Weidner, Prostatitis: no benefit of alpha-blockers for chronic prostatitis. Nat Rev Urol, 2009. 6(4): p. 183-4.

14. Anderson, R.U., Traditional therapy for chronic pelvic pain does not work: what do we do now? Nat Clin Pract Urol, 2006. 3(3): p. 145-56.

15. Murphy, S.F., A.J. Schaeffer, and P. Thumbikat, Immune mediators of chronic pelvic pain syndrome. Nat Rev Urol, 2014. 11(5): p. 259-69.

16. Ren, Y., et al., Traditional Chinese Medicine Protects against Cytokine Production as the Potential Immunosuppressive Agents in Atherosclerosis. Journal of Immunology Research, 2017. 2017: p. 8.
17. Huang, S., et al., *Anti-Inflammatory Activity of Epimedium brevicornu Maxim Ethanol Extract*. J Med Food, 2018. **21**(7): p. 726-733.

18. Xia JX, H.L., Zhou XH, et al. *The Effect of Zhejiang Fritillaria Thunbergii Against Immunological CP/CPPS*. Chinese Archives of Traditional Medicine, 2011, **29**(05):1023-1025.

19. Li JC, W.L., Cai TK, et al. *Research progress of Cortex Phellodendri in the chemical constituents and their pharmacological effects*. Journal of Pharmaceutical Practice, 2018, **36**(05): 389-391+398.

20. Sun Hui, Li Xianna, Zhang Ying, et al. *A Metabolomic Study on the Intervention Effect of Phellodenron Amurense Rupr. Alkaloid Protects Against Chronic Nonbacterial Prostatitis In Rats*. Modernization of Traditional Chinese Medicine and Materia Medica-**WORLD SCIENCE AND TECHNOLOGY**, 2016, **18**(10):1709-1719.

21. Cooper, E.L. and K. Hirabayashi, *Origin of innate immune responses: revelation of food and medicinal applications*. J Tradit Complement Med, 2013. **3**(4): p. 204-12.

22. ZHOU, X.-h., L. HAN, and Z.-h. ZHOU, *Effect of Qianlie Tongli Decoction on Expression of Proinflammatory Cytokine Genes of Chronic Abacterial Prostatitis Model Rats*. Journal of Traditional Chinese Medicine, 2008. **12**.

23. Wang, W., et al., *Experimental rodent models of chronic prostatitis and evaluation criteria*. Biomedicine & Pharmacotherapy, 2018. **108**: p. 1894-1901.

24. Zhang, L., et al., *Establishment of experimental autoimmune prostatitis model by T2 peptide in aluminium hydroxide adjuvant*. Andrologia, 2018. **50**(3).
25. Khan, F.U., et al., *A novel mouse model of chronic prostatitis/chronic pelvic pain syndrome induced by immunization of special peptide fragment with aluminum hydroxide adjuvant*. Immunol Lett, 2017. 187: p. 61-67.

26. Chen, H., et al., *Evaluating the voiding spot assay in mice: a simple method with complex environmental interactions*. American Journal of Physiology-Renal Physiology, 2017. 313(6): p. F1274-F1280.

27. Cheng, Y., et al., *Novel Treatment of Experimental Autoimmune Prostatitis by Nanoparticle-Conjugated Autoantigen Peptide T2*. Inflammation, 2019: p. 1-11.

28. Maurizi, A., et al., *The role of nutraceutical medications in men with non bacterial chronic prostatitis and chronic pelvic pain syndrome: A prospective non blinded study utilizing flower pollen extracts versus bioflavonoids*. Archivio Italiano di Urologia e Andrologia, 2018. 90(4): p. 260-264.

29. Chao, J., et al., *Major achievements of evidence-based traditional Chinese medicine in treating major diseases*. Biochem Pharmacol, 2017. 139: p. 94-104.

30. Wang, Z., et al., *Efficacy and safety of Chinese herbal medicine for chronic prostatitis associated with damp-heat and blood-stasis syndromes: a meta-analysis and literature review*. Patient preference and adherence, 2016. 10: p. 1889.

31. Ma, Y., et al., *[Common TCM syndrome pattern of chronic pelvic pain syndrome relates to plasma substance p and beta endorphin]*. Zhonghua Nan Ke Xue, 2014. 20(4): p. 363-6.

32. Li, L., H. Li, and J. Guo, *Multiple factors logistic regression analysis on the basic syndromes related factors in patients with chronic prostatitis*. Zhongguo Zhong xi yi
jie he za zhi Zhongguo Zhongxiyi jiehe zazhi= Chinese journal of integrated traditional and Western medicine, 2011. 31(1): p. 41-44.

33. Zhang, M.J., K.D. Chu, and Y.L. Shi, [Clinical study on treatment of chronic prostatitis/chronic pelvic pain syndrome by three different TCM principles]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2007. 27(11): p. 989-92.

34. NI Yan , LIU Xia, LI Xianrong,et al. TLC Identification for Nankang Tablets[J].Lishizhen Medicine and Materia Medica Research,2002(07):409-411.

35. Xiang Dong, Li Ye,Wang lu.Determination of Icariine in Qianlietong Tablets by HPLC. China Pharmacy,2008(21):1645-1646.

36. Xie Xueyuan,Tang Huuhui,Di Yamin.Determination of Berberine Hydrochloride in Qianlietong Granules by HPLC.Pharmaeudical Journal of Chinese People's Liberation Army,2012,28(02):161-163.

37. Sun, Y.M., B.J. Zhuang, and C. Li, [Acupoint injection of Shuxuetong for chronic prostatitis / chronic pelvic pain syndrome complicated by premature ejaculation]. Zhonghua Nan Ke Xue, 2019. 25(1): p. 62-67.

38. Ma, H.-D., et al., Traditional Chinese medicine and immune regulation. Clinical reviews in allergy & immunology, 2013. 44(3): p. 229-241.

39. Cho, I.-H., et al., Fritillaria ussuriensis extract inhibits the production of inflammatory cytokine and MAPKs in mast cells. Bioscience, biotechnology, and biochemistry, 2011. 75(8): p. 1440-1445.
447 40. Lee, G., et al., Overcoming P-Glycoprotein-Mediated Multidrug Resistance in Colorectal Cancer: Potential Reversal Agents among Herbal Medicines. Evidence-Based Complementary and Alternative Medicine, 2018. 2018.

450 41. Ye, J.-H., et al., Chemical profiles and protective effect of Hedyotis diffusa Willd in lipopolysaccharide-induced renal inflammation mice. International journal of molecular sciences, 2015. 16(11): p. 27252-27269.

453 42. Shen, R. and J.H. Wang, The effect of icariin on immunity and its potential application. Am J Clin Exp Immunol, 2018. 7(3): p. 50-56.

455 43. Liu, X., et al., Protective mechanisms of berberine against experimental autoimmune myocarditis in a rat model. Biomed Pharmacother, 2016. 79: p. 222-30.

457 44. Nadler, R.B., et al., IL-1β and TNF-α in prostatic secretions are indicators in the evaluation of men with chronic prostatitis. The Journal of urology, 2000. 164(1): p. 214-218.

460 45. Wang, W. and M. Naveed, Morphological reseach on expression of inflammatory mediators in murine models of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) induced by T2 antigen. 2019. 51(11): p. e13435.

463 46. Chen, C.S., et al., Evidences of the inflammasome pathway in chronic prostatitis and chronic pelvic pain syndrome in an animal model. The Prostate, 2013. 73(4): p. 391-397.

466 47. Zhang, H., et al., The inflammasome as a target for pain therapy. BJA: British Journal of Anaesthesia, 2016. 117(6): p. 693-707.
468 48. Cunha, T.M., et al., *Role of cytokines in mediating mechanical hypernociception in a model of delayed-type hypersensitivity in mice.* Eur J Pain, 2008. 12(8): p. 1059-68.

469 49. He, X.H., et al., *TNF-alpha contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury.* Pain, 2010. 151(2): p. 266-79.

470 50. Ismail, M., K. Mackenzie, and H. Hashim, *Contemporary treatment options for chronic prostatitis/chronic pelvic pain syndrome.* Drugs Today (Barc), 2013. 49(7): p. 457-62.

471 51. Shoskes, D.A. and J.C. Nickel, *Classification and treatment of men with chronic prostatitis/chronic pelvic pain syndrome using the UPOINT system.* World J Urol, 2013. 31(4): p. 755-60.