Current treatments in diabetic macular oedema: systematic review and meta-analysis

John Alexander Ford,1 Noemi Lois,2 Pamela Royle,3 Christine Clar,4 Deepson Shyangdan,3 Norman Waugh3

ABSTRACT

Objectives: The aim of this systematic review is to appraise the evidence for the use of anti-VEGF drugs and steroids in diabetic macular oedema (DMO) as assessed by changes in best corrected visual acuity (BCVA), central macular thickness and adverse events.

Data source: MEDLINE, EMBASE, Web of Science with Conference Proceedings and the Cochrane Library (inception to July 2012). Certain conference abstracts and drug regulatory site web sites were also searched.

Study eligibility criteria, participants and interventions: Randomised controlled trials were used to assess clinical effectiveness and observational trials were used for safety. Trials which assessed triamcinolone, dexamethasone, fluocinolone, bevacizumab, ranibizumab, pegaptanib or aflibercept in patients with DMO were included.

Study appraisal and synthesis methods: Risk of bias was assessed using the Cochrane risk of bias tool. Study results are narratively described and, where appropriate, data were pooled using random effects meta-analysis.

Results: Anti-VEGF drugs are effective compared to both laser and placebo and seem to be more effective than steroids in improving BCVA. They have been shown to be safe in the short term but require frequent injections. Studies assessing steroids (triamcinolone, dexamethasone and fluocinolone) have reported mixed results when compared with laser or placebo. Steroids have been associated with increased incidence of cataracts and intraocular pressure rise but require fewer injections, especially when steroid implants are used.

Limitations: The quality of included studies varied considerably. Five of 14 meta-analyses had moderate or high statistical heterogeneity.

Conclusions and implications of key findings: The anti-VEGFs ranibizumab and bevacizumab have consistently shown good clinical effectiveness without major unwanted side effects. Steroid results have been mixed and are usually associated with cataract formation and IOP increase.

ARTICLE SUMMARY

Article focus

- To review the evidence for triamcinolone, dexamethasone, fluocinolone, bevacizumab, ranibizumab, pegaptanib and aflibercept in the treatment of diabetic macular oedema.

Key messages

- The anti-VEGFs ranibizumab and bevacizumab have consistently shown good clinical effectiveness in the short term without major unwanted side effects.
- Steroid results have been mixed and are usually associated with cataract formation and IOP increase.

Strengths and limitations of this study

- A robust, detailed review of the literature has been undertaken and, when appropriate, data have been combined in meta-analysis.
- The quality of studies included varied considerably.

INTRODUCTION

Diabetic macular oedema (DMO) is a complication of diabetic retinopathy and a leading cause of blindness. The prevalence of DMO is likely to increase with more people suffering from diabetes.1 Increasing DMO has significant implications for patients, healthcare providers and wider society. Laser has been the mainstay of treatment, but recently antivasular endothelial growth factor (anti-VEGF) drugs and steroids have been introduced as potential alternatives to laser photoocoagulation.

Burden of disease

Diabetic retinopathy is present at the time of diagnosis of diabetes mellitus in 0–30% of individuals.3 The incidence is estimated to be 2.3/100 person-years for the overall diabetic population and 4.5 for patients on insulin therapy.3 There is good evidence that progression to DMO is associated with...
duration of disease,6–7 poor glycaemic control8 and, in type 2 diabetes, the need for insulin,9 though the need for insulin therapy is more a marker for duration and poor control.

The number of people with DMO is likely to increase as diabetes becomes more common. Some reports have suggested a decrease in progression to severe visual loss between 1975–1985 and 1986–2008 in a combined population of types 1 and 2.10 Regular screening for retinopathy and better glycaemic control are thought to have reduced the progression to severe visual loss. Diabetic retinopathy is associated with a reduced quality of life. Compared with all diabetic complications, blindness was perceived to be the third worst health state after a major stroke and amputation.11

In the USA, the presence of DMO at diagnosis is associated with 29% additional costs within the first 3 years compared with individuals without retinopathy at diagnosis.12 In 2010, the estimated healthcare costs for DMO in England were £92 million, with £65.6 million being spent on hospital treatment and related costs.13

Visual impairment results in increased welfare costs, early retirement and costs of home help and carers.14 In England in 2010 (total population 52.23 million), the estimated population with diabetes was 2.34 million; the above social costs were estimated to be £11.6 million for DMO.15

Overview of pathophysiology
DMO is caused mainly by disruption of the blood-retinal barrier. The complex pathway that leads to this disruption has been previously described in this journal.15 Sustained hyperglycaemia causes a multifactorial cascade of physiological processes, involving increased permeability, cytokine activation, altered blood flow, hypoxia and inflammation. Vascular endothelial growth factor-A (VEGF-A) is a major contributor to the inflammatory process and, in particular, to angiogenesis and permeability.16 Hypoxia caused by microvascular disease stimulates the release of VEGF-A to aid perfusion. There are six major isoforms of VEGF-A: 121, 145, 165, 183, 189 and 206. In addition to causing widespread microvascular injury, there is now evidence that hyperglycaemia results in preceding neuronal dysfunction, which may contribute to visual loss.17

Overview of current treatments
Laser photocoagulation has been the mainstay of treatment for DMO. The landmark Diabetic Retinopathy Study18 and the Early Treatment Diabetic Retinopathy Study (ETDRS)19 20 demonstrated its clinical effectiveness. However, although laser photocoagulation was clearly effective in preserving vision, it was less successful in restoring it, once lost. Furthermore, patients with perifoveal ischaemia are not amenable to this form of therapy. In ETDRS, although laser was shown to reduce the risk of moderate visual loss (a loss of three ETDRS lines) by 50%, visual acuity improved in only 3% of patients.20 However, in some recent trials, laser has improved the proportion of patients with more than or equal to 10 letters by 7–31%.21–24 In addition, laser is not without side effects. Foveal burns, visual field defects, retinal fibrosis and laser scars have been reported.25 Over the following decade it became apparent that certain patients suffered severe visual loss despite aggressive treatment.26

Steroids and anti-VEGF drugs are newer treatments in DMO. Intravitreal corticosteroids have potent anti-inflammatory effects. Triamcinolone (Kenalog) is not licensed for eye use but has been used to treat DMO for over 10 years. Triamcinolone (Trivaris), recently, was licensed for eye use. The development of intravitreal implants has allowed sustained release formulations. Fluocinolone acetonide (Fluivien, Alimera Sciences) and dexamethasone (Ozudex, Allergan) are implants that have been introduced recently.

Anti-VEGF agents have shown efficacy compared with laser. Bevacizumab (Avastin, Genentech/Roche) is a monoclonal antibody that targets all VEGF isoforms. Although being developed for colorectal cancer, it is widely used off-label, as an intravitreal treatment for macular oedema of different aetiologies. Ranibizumab (Lucentis, Genentech/Roche) is a fragment of the bevacizumab antibody (molecular weight of ranibizumab 48.4 KDa compared with 149 KDa for bevacizumab). It was designed specifically for use in the eye. Ranibizumab is considerably more expensive than bevacizumab (the estimated cost of ranibizumab is $2000/dose compared with $50 for bevacizumab).27 Pegaptanib (Macugen, Eyetech Pharmaceuticals/Pfizer) is a PEGylated aptamer, with a high affinity to the VEGF isoform 165, and was approved for the treatment of exudative AMD in 2004. Affibercept (Regeneron/Bayer HealthCare) is a recent addition to the anti-VEGF class that targets all forms of VEGF-A and placental growth factor.

Aim of the review
The aim of this review is to provide clinicians with an up-to-date overview of current intraocular drug treatments for DMO. It is hoped that the information contained herein will assist clinicians to present their patients with the best evidence supporting each treatment, including possible complications. In addition, this review may be helpful to policy makers. The review focuses on the current evidence for the use of anti-VEGF drugs and steroids to treat DMO, as assessed by change in best corrected visual acuity (BCVA) (mean and proportion with more than two lines improvement), central macular thickness (CMT), as determined by optical coherence tomography (OCT), and their adverse events.

EVIDENCE ACQUISITION
A systematic literature search was performed. The databases searched included MEDLINE, EMBASE, Web of Science with Conference Proceedings and the Cochrane
Library. The dates searched were from the inception of each database until July 2012.

The search terms combined the following key words: ranibizumab or lucentis or bevacizumab or avastin or pegaptanib or macugen or aflibercept or vegf trap-eye or steroid* or corticosteroid* or dexamethasone or fluocinolone or triamcinolone or anti-VEGF* or anti-vascular endothelial growth factor*

AND

DMO or diabetic macular edema or diabetic retinopathy or diabetic maculopathy

AND

(masked or sham or placebo OR control group or random*) OR (systematic review or meta-analysis) OR (risk or safety or adverse or harm or pharmacovigilance or side-effect* or precaution* or warning* or contraindication* or contra-indication* or tolerability or toxic)

The meeting abstracts of the Association for Research in Vision and Ophthalmology, the American Diabetes Association (2002–2012) and the European Association for the Study of Diabetes were searched from 2002 to 2012.

In addition, the web sites of the European Medicines Agency and the US Food and Drug Association were searched for data on registration status and safety. Clinicaltrials.gov and the EU Clinical Trials Register were searched in July 2012 for data on ongoing research.

Full details of the searches are shown in appendix 1.

Randomised controlled trials (RCT) were used to evaluate clinical effectiveness. Safety was assessed through both RCTs and observational studies.

RCTs were included provided that they (1) addressed the use of triamcinolone, dexamethasone, fluocinolone, bevacizumab, ranibizumab, pegaptanib or aflibercept in patients with DMO, (2) had a minimum follow-up of 6 months and (3) had a minimum of 25 eyes per study arm. Studies were excluded if they (1) evaluated laser only, (2) assessed the effect of the aforementioned treatments in macular oedema due to other retinal diseases (instead of DMO), (3) used only a single dose, (4) were combined with a surgical intervention or (5) published studies in languages other than English. There were no exclusions based on drug dose. Trials were excluded if they evaluated combined drug treatment with surgery or systemic treatment.

Search results were screened by two independent authors (JF and PR/DS). Data were extracted by one author (CC) and checked by a second (JF). Data extracted included inclusion/exclusion criteria, baseline demographics, BCVA expressed as a change in logMAR/ETDRS letters or proportion of participants with more than two or three lines BCVA improvement, CMT and adverse events. Risk of bias was assessed using the Cochrane risk of bias tool.

Studies were assessed for similarity in study population, interventions (dose and frequency), outcomes and time to follow-up, with a view to including similar studies in a meta-analysis. Conference abstracts were excluded from the meta-analysis because their quality and detailed methodology were not clear. A difference of 6 months was allowed between study follow-ups because of the potential heterogeneity from disease progression and differences in the number of doses prescribed. If salient data were not reported, such as SDs, data were sought by personal communication with authors. Data were analysed using Review Manager software. If data from multiple time-points were available, the primary end-point data were used. Data were entered by one author (JF) and double-checked by a second (DS). Mean differences were calculated for change in BCVA and CMT and ORs were calculated for proportion of participants with more than two lines improvement. The 95% CIs were calculated for all outcomes. Statistical heterogeneity was measured through I^2 scores. A score of less than 30% was considered as low heterogeneity, a score of more than 70% was considered as high heterogeneity and scores between 30% and 70% were considered as moderate. A random effects model was used throughout. The random effects model assumes variability between studies and therefore models uncertainty into the meta-analysis. Fixed assumes no variability. Generally speaking, the random effects model results in wider CIs.

RESULTS

The literature search identified 430 unique articles for possible inclusion, as shown in figure 1. In total, 328 articles were excluded on the basis of title and abstract, leaving 102 full papers to be read. Fifty-one of these articles were excluded; the reasons for their exclusion are summarised in table 1. Fifty-one articles from 29 studies met the inclusion criteria and were included in the review; these are described in tables 3–16. Seven studies were suitable for meta-analysis.

Study quality

The quality of the included studies was, in general, good as is shown in table 2. (Note that the meeting abstracts were not quality assessed, owing to the lack of details reported on the methods.) Most studies adequately described sequence generation, except in three studies where it was unclear.29–30 However, allocation concealment was poorly described throughout, with only eight reports addressing this issue appropriately.31–38 Reporting of masking also varied. A number of studies masked patients using sham injection or sham laser.21 24 29 31 33 36 38 39 40 Various studies reported that masking of patients was impossible. Assessors, where it was unclear.28
Intravitreal anti-VEGFs

The characteristics of all published studies including design, inclusion/exclusion criteria, intervention, outcomes and their timing are shown in tables 3–8. Safety data for each drug are shown in tables 9–16.

Ranibizumab

Nine RCTs have evaluated ranibizumab as a potential new treatment for patients with DMO (tables 3 and 8); seven were sponsored by industry, and two were led by independent investigators (table 7). READ-2 was the first large RCT (n=126). It compared ranibizumab (0.5 mg) alone, ranibizumab in combination with laser and laser alone. At 6 months, BCVA had improved significantly in the ranibizumab alone group compared with laser alone or ranibizumab plus laser. Addition of laser to ranibizumab did not provide additional BCVA gain. REVEAL (n=396) compared ranibizumab (0.5 mg) with ranibizumab plus laser and laser alone. At 12 months, both ranibizumab arms resulted in a statistically significantly better improvement in BCVA compared to laser alone. The addition of laser did not confer further benefit.

Within the past 2 years, the results of RESOLVE, RESTORE, and RISE and RIDE have been published in peer-reviewed journals. RESTORE (n=345) randomised similar groups as the READ-2 study (ranibizumab (0.5 mg) alone, laser alone and ranibizumab plus laser); outcomes were evaluated at 12 months. Ranibizumab improved mean BCVA, with laser providing no additional benefit. Two-year extended follow-up suggested that these results continued. RESOLVE (n=151) compared two doses of ranibizumab (0.5 and 0.5 mg) with sham injection. The greatest improvement in BCVA at 12 months was in the 0.5 mg group (11.8 letter gain) compared to the 0.5 mg group (8.8 letter gain) or sham injection (1.4 letter loss). In this study, rescue laser was

Figure 1 PRISMA flow diagram.
allowed after 3 months of treatment, if BCVA had decreased by 10 letters or more, or if the investigator considered the macula not to be flat as assessed by OCT. Only 4.9% of the ranibizumab group required rescue laser, compared with 34.7% in the sham injection group.

READ-2 and RESTORE were suitable for pooling through meta-analysis and, when doing so, it was found that ranibizumab statistically significantly improved mean BCVA compared with laser (figure 2). In regard to the proportion of patients gaining more than or equal to 15 letters, individual trials showed a statistically significant difference between laser and ranibizumab but when these two trials were pooled using a random effects model, the result was no longer statistically significant. When a fixed effects model was used, the result was statistically significant (figure not shown). Adding laser to ranibizumab did not add any significant benefit (figure 3). In fact, the mean change in BCVA and the proportion of patients with more than 15 letter gain favoured, although not statistically significantly so, ranibizumab alone compared with ranibizumab plus laser. This was probably a chance effect.

RISE (n=577) and RIDE (n=382) were identical in design. The study arms are similar to those in the RESOLVE study, 0.3 or 0.5 mg ranibizumab compared with sham. In the RISE study, the proportion of patients with 15 or more letter gain was greatest in the 0.3 mg group at 24 months, whereas in the RIDE study this was greatest in the 0.5 mg group. In the DRCRN trial (n=854), Elman and colleagues compared ranibizumab (0.5 mg) plus prompt (within 3–10 days post ranibizumab) or deferred (≥24 weeks) laser with sham injection plus prompt laser, or triamcinolone (4 mg, Trivaris) plus prompt laser (table 8). At 1 year, both ranibizumab groups reported greater gains in mean BCVA change than triamcinolone or laser alone. Interestingly, at 2 years (n=628), the proportion of patients with 10 or more letter gain was not statistically significantly different between ranibizumab plus prompt laser and laser alone groups, but was statistically significant in the ranibizumab plus deferred laser compared with laser alone comparison. The reason for this is not clear.

READ-3 (n=152) has been published in abstract form and compared monthly injections of intravitreal ranibizumab high dose (2.0 mg) and low dose (0.5 mg). At 6 months, there was no statistically significant difference in BCVA between groups.

One study (n=63), published in abstract form, was identified which directly compared monthly injections of ranibizumab (0.5 mg) with bevacizumab (1.5 mg). At 48 weeks, the authors found no statistically significant difference between bevacizumab and ranibizumab.

RESTORE, READ-2 and DRCRN (12 month data used) were suitable for pooling through meta-analysis to compare ranibizumab plus laser and laser alone (figure 4). Ranibizumab plus laser resulted in a statistically significantly greater change in mean BCVA, proportion of patients with more than 15 letter gain and CMT reduction versus laser alone.

Table 1 List of excluded studies

Study	Reason	Study Reason
Active comparator trials	Single dose	et al[77] PDR, RVO, retinal vein occlusion.
DRCRN 2010	<6 months f/u	Ischemic optic neuropathy, deferred treatment
Faghihi et al[69]	Single dose	bevacizumab, laser, compared with study
Figueiroa 2004	Single dose	DCRN—Scott et al[100]
Isaac et al[51]	Single dose	Non-RTT
Paccola et al[22]	Single dose	Non-RCT
Prager et al[63]	<25 pts per arm	Non-RCT
Ozturk et al[44]	Non-RCT	Non-RCT
Shahin and El-Lakkany[96]	<6 months	Single dose
Pegaptanib	Quality of life data	
Ferrone and Jonisch[98]	<25 pts per arm	
Dexamethasone	Study protocol	
Avitable[104]	Mixed RVO and DMO	
Bandello et al[105]	Case report-PDR	
Bonini et al[106]	Single dose injection technique	
Cellini et al[107]	Single injection PSTI	
Cardillo et al[108]	Single injection PSTI	
Chung et al[109]	Single injection PSTI	
Dehghan et al[110]	Single dose	
DRCRN—Chew et al[111]	<25 pts per arm	
Gli et al[112]	<25 pts per arm	
Entezari et al[113]	<6 months	
Hauser et al[114]	Single dose	
Jonas et al[115]	Single dose	
Joussen et al[116]	Study protocol	
Avci and Kaderli[117]	Anaesthetic technique	
Kang et al[118]	Single dose	
Kim et al[119]	Single injection and CME	
Lam et al[120]	Single injection	
Lee[121]	Single injection	
Maia et al[122]	Single dose	
Massin et al[123]	Single dose	
Mohamed et al[24]	Post hoc analysis	
Nakamura et al[25]	Single dose	
Spandau et al[126]	Single dose	
Tunc[127]	<6 months	
Verma et al[128]	Single dose	
Wickremasinghe et al[29]	Single dose	
Yalcinbayir et al[30]	Single dose	
Dexamethasone	<6 months	
Haller et al[31]	<25 pts per arm	
Kuppermann et al[133]	Mixture of macular oedema causes	
Boyer et al[134]	Non-randomised	
Fluocinolone	<35 pts per arm	
Campochiaro and et al[36]	Single dose	
Diclofenac	<35 pts per arm	

CME, cystoid macular edema; DMO, diabetic macular oedema; PDR, proliferative diabetic retinopathy; PSTI, posterior subtenon injection; RVO, retinal vein occlusion.
Table 2 Study quality

Study (author and year)	Adequate sequence generation	Allocation concealment	Masking	Incomplete outcome data addressed	Free of selective reporting	Free of other bias (eg, similarity at baseline, power assessment)	Funder
Anti-VEGFs							
Ranibizumab							
READ-2 Study	Unclear	Unclear	Unclear	Yes (91.3% completion)	Yes	Comparison groups similar at baseline; power analysis not mentioned	Juvenile Diabetes Research Foundation, Genentech Inc
RESOLVE Study (Massin et al)	Yes	Yes	Yes (patients and outcome assessors)	Yes (82% completion in sham arm, 90.2% with ranibizumab)	Yes	Comparison groups similar at baseline; power analysis unclear	Novartis Pharma, Switzerland
RESTORE Study (Mitchell et al)	Yes	Unclear	Yes (patients, outcome assessors)	Yes (87.3–88.3% completion)	Yes	Comparison groups similar at baseline; power analysis carried out (power adequate for VA changes)	Novartis Pharma, Switzerland
RISE and RIDE (Nguyen et al)	Yes	Yes	Yes (patients, treating physician masked to assigned dose of ranibizumab)	Yes (2 year study completed by 83.3% of patients in RISE and by 84.6% in RIDE)	Yes	Comparison groups similar at baseline; ITT analysis; power analysis carried out (power adequate for primary endpoint)	Genentech Inc
Bevacizumab							
BOLT Study (Michaelides et al)	Yes	Unclear	Partial (outcome assessors, not patients)	Yes (97.5% completion)	Yes	Comparison groups similar at baseline (except laser group had longer duration of clinically significant DMO); power analysis carried out (power adequate for VA changes)	Moorfields Special Trustees, National Institute for Health Research
Lam et al	Yes	Unclear	Yes (patient)	Yes (100% completion)	Yes	Comparable groups at baseline	Not specified
Faghihi et al	Yes	Unclear	Yes (patients and technicians assessing BCVA, OCT and IOP)	Yes (92.3% follow-up at 6 months)	Yes	Comparison groups similar at baseline; power analysis carried out (power adequate for CMT changes)	Supported in part by the Action for Vision Eye Foundation Hong Kong (charity)

Continued
Study (author and year)	Adequate sequence generation	Allocation concealment	Masking	Incomplete outcome data addressed	Free of selective reporting	Free of other bias (eg, similarity at baseline, power assessment)	Funder	
Pegaptanib	Yes	Unclear	Yes (patients and outcome assessors)	Yes (95% completion)	Yes	Comparison groups similar at baseline; acknowledge lack of power to detect differences between doses of pegaptanib	Pfizer Inc, New York	
Cunningham et al	Yes	Unclear	Yes (patients and outcome assessors)	Yes (69.9–73.8% completion)	Yes	Comparison groups similar at baseline; power analysis carried out (power adequate for VA changes)	Eyetech Pharmaceuticals Inc, New York	
Sultan et al	Yes	Unclear	Yes (patients and outcome assessors)	Yes (95% completion)	Yes	Comparison groups similar at baseline, power calculation completed	Pfizer Inc, New York	
Aflibercept	UNCLEAR (predetermined randomisation scheme)	UNCLEAR	UNCLEAR	YES (PATIENTS)	YES	YES	Comparison groups similar at baseline; power calculation completed	Regeneron Pharmaceuticals, Inc, New York
Steroids	Yes	Unclear	Yes (patients) to dexamethasone dose, outcome assessors	Yes (92% completion)	Yes	Comparison groups similar at baseline; power analysis carried out, but study not powered to detect differences in subgroups	Oculex Pharmaceuticals Inc	
Fluocinolone	UNCLEAR (masking of outcome assessment not mentioned)	UNCLEAR	UNCLEAR	YES (DROP-OUT RATE 19.0–22.7%)	YES	YES	Comparison groups similar at baseline; power analysis not mentioned	Alimera Sciences Inc, Atlanta, Georgia; Psivida Inc, Watertown, Massachusetts; Bausch & Lomb Inc, Rochester, New York
Pearson et al	Yes	Unclear	Third party masked design (patient and investigator not masked)	No losses to follow-up	Yes	YES	Demographic characteristics were similar between implant and SOC groups; power calculation done, study adequately powered	Alimera Sciences Inc, Atlanta, Georgia; Psivida Inc, Watertown, Massachusetts; Bausch & Lomb Inc, Rochester, New York
FAME Study (Campochiaro et al)	UNCLEAR	UNCLEAR	Partial (patients, masking of outcome assessment not mentioned)	YES	YES	YES	Comparison groups similar at baseline; power analysis not mentioned	Alimera Sciences Inc, Atlanta, Georgia; Psivida Inc, Watertown, Massachusetts; Bausch & Lomb Inc, Rochester, New York
Study (author and year)	Adequate sequence generation	Allocation concealment	Masking	Incomplete outcome data addressed	Free of selective reporting	Free of other bias (eg, similarity at baseline, power assessment)	Funder	
------------------------	-------------------------------	------------------------	---------	---------------------------------	--------------------------	--	---------	
Triamcinolone DRCR Network 2008	Yes	Unclear	Partial (patients to triamcinolone dose, outcome assessors not formally masked but generally not aware of participant’s study group)	Yes (81–86% completion)	Yes	Comparison groups similar at baseline; power analysis carried out (power adequate for VA changes)	Cooperative agreement from the National Eye Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services	
Gillies et al Sutter et al	Yes	Yes	Yes (patients, outcome assessors)	Yes (91% completion intervention, 83% control)	Yes	Comparison groups similar at baseline (but limited demographic data); power analysis carried out (power adequate for VA changes)	Sydney Eye Hospital Foundation and Juvenile Diabetes Research Foundation, New York	
Gillies et al	Yes	Yes	Yes (patients, outcome assessors)	Yes (84.5% completion)	Yes	Power analysis carried out (power adequate for VA changes)	National Health and Medical Research Council, Canberra, Australia, and the Sydney Eye Hospital Foundation Sydney, Australia	
Lam et al	Yes	Yes	Partial (outcome assessors)	No losses to follow-up	Yes	Comparison groups similar at baseline; power analysis carried out (power adequate for CMT changes)	Action for Vision Foundation, Hong Kong	
Ockrim et al Sivaprasad et al	Yes	Unclear	Unclear	Yes (94% completion)	Yes	Comparison groups similar at baseline; power analysis carried out (power adequate for VA changes)	Special Trustees of Moorfields Eye Hospital	
Study (author and year)	Adequate sequence generation	Allocation concealment	Masking	Incomplete outcome data addressed	Free of selective reporting	Free of other bias (eg, similarity at baseline, power assessment)	Funder	
-------------------------	------------------------------	-----------------------	---------	----------------------------------	---------------------------	---	---------	
Active comparator trials								
Ahmadieh et al³¹	Yes	Yes	Yes (patients and outcome assessors)	Unclear	Yes	CMT lower in control group at baseline (p<0.05), other baseline values similar; power analysis carried out (power adequate for CMT changes)	Not reported	
DRCR Network^{21 46}	Yes	Unclear	Yes (patients, except deferred laser group; outcome assessors); masking discontinued after the first year	Yes (1 year completion for 91–95% of eyes)	Yes	Comparison groups similar at baseline; power analysis carried out (power adequate for VA changes)	Cooperative agreement from the National Eye Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health and Human Services; Ranibizumab provided by Genentech, triamcinolone provided by Allergan Inc; companies also provided funds to defray the study's clinical site costs	
Lim et al⁵⁵	Yes	Unclear	Yes (investigators only)	Yes (7.5% drop out after enrolment)	Yes	Groups similar at baseline. The bevacizumab group received more injections	Not reported	
Soheilian et al^{37 41}	Yes	Yes	Yes (patients and outcome assessors)	Unclear (36 week completion for 76–88%)	Yes	CMT significantly lower and VA significantly better in MPC group at baseline, other baseline values similar; power analysis carried out (power adequate for VA changes)	Ophthalmic Research Centre, Labbafinejad Medical Center, Tehran	

MPC, macular photocoagulation.
Table 3 Ranibizumab trials

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)		
READ-2 Study (Nguyen et al) USA	**N: 126 eyes of 126 patients** **Inclusion criteria:** ≥18 years, type 1 or 2 DM, DMO, BCVA 20/40-20/320, CMT ≥250 µm, HbA1c ≥6% within 12 months before randomisation; expectation that scatter laser photoagulation not required for 6 months **Exclusion criteria:** contributing causes to reduced BCVA other than DMO, focal/grid laser within 3 months, intraocular steroid within 3 months, intraocular VEGF antagonist within 2 months **Age:** 62 years **Sex:** 52–69% female **Diabetes type:** not reported **HbA1c:** 7.39–7.77% **Baseline VA:** ETDRS letter score 24.85–28.35 **Baseline CMT:** excess foveal thickness 198.75–262.52 µm **Comorbidities:** not reported	**Group 1 (IVR, n=42 eyes): IV injections of 0.5 mg ranibizumab at baseline, 1, 3 and 5 months** **Group 2 (L, n=42 eyes): focal/grid laser at baseline and 3 months if CMT ≥250 µm** **Group 3 (IVRL, n=42 eyes): IV injections of 0.5 mg ranibizumab at baseline and 3 months, followed by focal/grid laser treatment 1 week later** **Regimen for all groups:** after 6 months, patients could receive IV injections of ranibizumab no more than every 2 months or focal/grid laser no more than every 3 months if CMT ≥250 µm **Laser Modified ETDRS protocol was used**	**At 6 months** **BCVA (ETDRS): BCVA (letters) p Value** **IVR** +7.24 0.0003 vs L **L** −0.43 NS vs IVR or L **IVRL** +3.80 0.0003 vs L **Plus ≥3 lines** **IVR** 22% <0.05 vs L **L** 0 NS vs IVR or L **IVRL** 8% <0.05 vs L	**At 6 months:** **BCVA (mean BCVA letters gain) p Value** **IVR2.0** +7.46 NR **IVR0.5** +8.69 NR **CST** −163.86 µm NR **CST reduction** −169.27 µm NR **Group 1 (IVR, n=42 eyes): monthly injections** **Group 2 (IVR0.5, n=NR): monthly injections** **After month 6, eyes evaluated and additional ranibizumab injections given on an as needed basis if DMO still present on OCT.** **Baseline CST (central subfield thickness): 432 µm in the 2.0 mg group and 441 µm in the 0.5 mg group **Comorbidities:** NR	**At 6 months:** **BCVA (mean BCVA letters gain) p Value** **IVR2.0** +7.46 NR **IVR0.5** +8.69 NR **CST** −163.86 µm NR **CST reduction** −169.27 µm NR

READ-3 Study (Do et al) USA
Design: phase 2, 2-arm RCT
Follow-up: 6 months
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
RESOLVE Study (Massin et al)	N: 151 eyes of 151 patients	**Group 1 (IVR0.3, n=51 eyes):** 0.3 mg (0.05 ml) IV ranibizumab, 3 monthly injections (dose up to 0.6 mg, see below)	**At 12 months:** BCVA (ETDRS):
Multicenter international	Inclusion criteria: >18 years, type 1 or 2 DM, clinically significant DMO, BCVA 20/40–20/160, HbA1c <12%, decreased vision attributed to foveal thickening from DMO, laser photocoagulation could be safely withheld in the study eye for at least 3 months after randomisation	**Group 2 (IVR0.5, n=51 eyes):** 0.5 mg IV (0.05 ml) ranibizumab, 3 monthly injections (dose up to 1.0 mg, see below)	BCVA (letters) p Value
Design: 3-arm placebo-controlled RCT	Exclusion criteria: unstable medical status, panretinal laser photocoagulation performed within 6 months before study entry, previous grid/laser photocoagulation except patients with only mild laser burns at least 1000 µm from the centre of the fovea performed >6 months previously	**Group 3 (C, n=49 eyes):** sham treatment, 3 monthly injections	**IVR0.3:** Gain 72.5% loss 0 <0.0001 vs C
Follow-up: 12 months	Age: 63–65 (range 32–85) years	**Regimen for all groups:** after month 1, the injection dose could be doubled if CMT remained >300 µm or was >225 µm and reduction in retinal oedema from previous assessment was <50 µm; once injection volume was 0.1 ml it remained that for subsequent injections; if treatment had been withheld for >45 days, subsequent injections restarted at 0.05 ml; 68.6% of dose doubling with ranibizumab, 91.8% with sham; 34.7% of rescue laser photocoagulation in sham group, 4.9% in ranibizumab group	**IVR0.5:** Gain 49% loss 9.8% 0.001 vs C
	Sex: 43.1–49% female		**C:** Gain 18.4% loss 24.5%
	Diabetes type: 96.1–98% type 2 DM		**CMT (OCT):** CMT (µm) p Value
	HbA1c: 7.3–7.6 (range 5.3–11.1) %		IVR0.3: −200.7 SD122.2 <0.0001 vs C
	Baseline VA: ETDRS letter score		IVR0.5: −187.6 SD147.8 <0.0001 vs C
	59.2–61.2 SD9.0–10.2		**C:** −48.4 SD153.4
	Baseline CMT: 448.9–459.5		
	SD102.8–120.1 µm		
	Comorbidities: not reported		
RESTORE Study (Mitchell et al)	N: 345 eyes of 345 patients	**Group 1 (IVR, n=116 eyes):** 0.5 mg IV ranibizumab plus sham laser	**At 12 months:** BCVA (ETDRS):
	Inclusion criteria: ≥18 years, type 1		

Continued
Table 3: Study Participants and baseline values

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Multicenter international			
Design: 3-arm RCT		(median injections 7 (range 1–12), median sham laser treatments 2 (range 1–5))	
Follow-up: 12 months		Group 2 (IVRL, n=118 eyes): 0.5 mg IV ranibizumab plus active laser (median injections 7 (range 2–12), median laser treatments 1 (range 1–5))	
Exclusion criteria: concomitant eye conditions that could affect VA, active intraocular inflammation or infection, uncontrolled glaucoma in either eye, panretinal laser photocoagulation within 6 months or focal/grid laser photocoagulation within 3 months prior to study entry, history of stroke, hypertension		Group 3 (L, n=111 eyes): laser treatment plus sham injections (median sham injections 7 (range 1–12), median laser treatments 2 (range 1–4))	
Age: 62.9–64.0 SD8.15–9.29 years		Regimen for all groups: 3 initial monthly injections, followed by retreatment schedule; 1 injection per month if stable VA not reached; Laser retreatments in accordance with ETDRS guidelines at intervals no shorter than 3 months from previous treatment	
Sex: 37.1–47.7% female			
Diabetes type: 86.4–88.8% type 2 DM			
HbA1c: not reported			
Baseline VA: ETDRS letter score 62.4–64.8 SD9.99–11.11		**BCVA (letters)** p Value	
Baseline CMT: 412.4–426.6 µm		IVR +6.1 SD6.43 <0.0001 vs L	
Comorbidities: not reported		IVRL +5.9 SD7.92 <0.0001 vs L	
REVEAL Study (Ohji and Ishibashi)		L +0.8 SD8.56 BCVA change categories	
Japan Multicenter		**IVR** Plus ≥10: 37.4% <0.0001 vs L	
Design: phase III double-masked RCT		Loss ≥10: 3.5%	
Follow-up: 12 months		IVRL Plus ≥10: 43.2% <0.0001 vs L	
N: 396 patients		L Plus ≥10: 15.5%	
Inclusion criteria: NR		Loss ≥10: 12.7%	
Exclusion criteria: NR			
Age: 61.1 years			
Sex: NR			
Diabetes type: 98.7% with type 2 diabetes			
HbA1c: 7.5%			
Baseline VA: 58.6 letters			
Baseline CMT: 421.9 µm			
Comorbidities: NR			

Continued
Table 3 Continued

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)	
RISE Study (Brown et al/Nguyen et al)	N. 377 eyes of 377 patients	Group 1 (IVR0.3, n=125 eyes): 0.3 mg IV ranibizumab	At 24 months	
USA Multicenter Design: 3-arm double-blind	Inclusion criteria: ≥18 years, type 1 or 2 diabetes, BCVA 20/40–20/320, DMO CMT ≥275 µm	Group 2 (IVR0.5, n=125 eyes): 0.5 mg IV ranibizumab	BCVA:	
sham-controlled RCT Follow-up: 24 months	Exclusion criteria: prior vitreoretinal surgery, recent history (within 3 months of screening) of panretinal or macular laser in the study eye, intraocular corticosteroids or antiangiogenic drugs, those with uncontrolled hypertension, uncontrolled diabetes (HbA1c >12%), recent (within 3 months) cerebrovascular accident or myocardial infarction	Group 3 (C, n=127 eyes): sham injection Regimen for all groups: monthly injections; need for macular rescue laser assessed monthly starting at month 3	Plus ≥15 letters p Value	
	Age: 61.7–62.8 SD8.9–10.0 (range 21–87) years		IVR0.3 44.8% <0.0001 vs C	
	Sex: 41.6–48% female		IVR0.5 39.2% =0.0002 vs C	
	Diabetes type: type 1 or 2		C 18.1%	
	HbA1c: 7.7% SD 1.4–1.5; ≤8% (65–68.3%); >8% (31.7%–35%)	Loss of <15 letters	IVR0.3 97.6% =0.0086 vs C	
	Baseline VA: Mean ETDRS letter score 54.7–57.2; ≤20/200	Mean BCVA gain (letters)	IVR0.5 97.6% =0.0126 vs C	
	(7.9–13.6%); >20/200 but <20/40 (72.4–72.8%); ≥20/40 (13.6–19.7%)		C 37.8%	
	Baseline CMT: 463.8–474.5 µm	Mean change from baseline p Value		
	Comorbidities: History of smoking		CFT:	
	46.4–51.2%	−250.6 SD212.2 <0.0001 vs C	IVR0.3	
RIDE study (Boyer et al/Nguyen et al)	N. 382 eyes	At 24 months	−253.1 SD183.7 <0.0001 vs C	
USA Multicentre Design: 3-arm double-blind	Inclusion criteria: ≥18 years, type 1 or 2 diabetes, BCVA 20/40–20/320, and DMO CMT ≥275 µm	Group 2 (IVR0.5, n=127 eyes): 0.5 mg IV ranibizumab	−133.4 SD209.0	
sham-controlled RCT Follow-up: 24 months	Exclusion criteria: prior vitreoretinal surgery, recent history (within 3 months of screening) of panretinal or macular laser in the study eye, intraocular corticosteroids or antiangiogenic drugs, those with uncontrolled hypertension, uncontrolled diabetes (HbA1c >12%), recent (within 3 months) cerebrovascular accident or myocardial infarction	Group 3 (C, n=130 eyes): sham injection Regimen for all groups: Patients	p Value	
	Age: 56.2–74.5 SD12.4–12.0 (range 21–87) years		IVR0.3 33.6% <0.0001 vs C	
	Sex: 40.8% female		IVR0.5 45.7% <0.0001 vs C	
	Diabetes type: type 1 or 2		C 12.3%	
	HbA1c: 7.5% SD 1.4–1.5; ≤8% (66.7%); >8% (31.7%–35%)			
	Baseline VA: Mean ETDRS letter score 53.4–56.2; ≤20/200			
	(7.1–12.7%); >20/200 but <20/40 (72.4–72.8%); ≥20/40 (13.6–19.7%)			
	Baseline CMT: 467.2–479.7 µm			
	Comorbidities: History of smoking			
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)	
-------	---------------------------------	--------------	--	
panretinal or macular laser in the study eye, intraocular corticosteroids or antiangiogenic drugs, those with uncontrolled hypertension, uncontrolled diabetes (HbA1c >12%), recent (within 3 months) cerebrovascular accident or myocardial infarction	were eligible for rescue macular laser starting at month 3	IVR0.3	1.6%	>0.05 vs C
		IVR0.5	3.9%	<0.05 vs C
		C	8.5%	Snellen equivalent of 20/40 or better
Age: 61.8–63.5 (range 22–91) years		IVR0.3	54.4%	=0.0002 vs C
Sex: 37–49.1% female		IVR0.5	62.2%	<0.0001 vs C
Diabetes type: type 1 or 2		C	34.6%	Mean BCVA gain (letters)
HbA1c: 7.6 SD1.3–1.5; ≤8% (65.8–67.5%); >8% (32.5–34.2%)		IVR0.3	+10.9 SD10.4	<0.0001 vs C
Baseline VA: Mean ETDRS letter score 56.9–57.5		IVR0.5	+12.0 SD14.9	<0.0001 vs C
Baseline CMT: 447.4–482.6 µm		C	+2.3 SD14.2	Mean change from baseline p Value
Comorbidities: history of smoking 33.6–51.6%		IVR0.3	−259.8 SD169.3	<0.0001 vs C
		IVR0.5	−270.7 SD201.6	<0.0001 vs C
		C	−125.8 SD198.3	

Injections are intravitreal unless otherwise noted. BCVA, best corrected visual acuity; C, control; CMT, central macular thickness; CSME, clinically significant macular oedema; DDS, dexamethasone; DIL, dexamethasone followed by laser; DM, diabetes mellitus; DMO, diabetic macular oedema; DP, diastolic pressure; DR, diabetic retinopathy; HR Qol, health-related quality of life; IOP, intraocular pressure; IV, intravitreal; IVB, intravitreal bevacizumab; IVP, intravitreal pegaptanib; IVR, intravitreal ranibizumab; IVT, intravitreal triamcinolone; IVTL, intravitreal triamcinolone plus laser; IVTETE, intravitreal VEGF Trap Eye; L, laser; MLT/MPC, macular laser therapy/macular photoagulation; NEI VFQ-25, National Eye Institute Visual Function Questionnaire-25; NPDR, non-proliferative diabetic retinopathy; NR, not reported; OCT, optical coherence tomography; PDR, proliferative diabetic retinopathy; PRP, panretinal photocoagulation; RCT, randomised controlled trial; SOC, standard of care; SP, systolic pressure; SRFA, fluocinolone; VA, visual acuity; VEGF, vascular endothelial growth factor.
Table 4 Bevacizumab studies

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
BOLT Study (Michaelides et al/Rajendram et al)\(^{23}\)	N: 80 eyes of 80 patients	Group 1 (MLT, n=38 eyes): modified ETDRS macular laser therapy; reviewed every 4 months up to 52 weeks; retreatment performed if clinically indicated by ETDRS guidelines (median 4 laser treatments)	At 24 months BCVA (ETDRS): BCVA, p Value mean (SD) −0.5 (10.6) 0.005 vs MLT +8.6 (9.1) 0.001 vs MLT
UK		Group 2 (IVB, n=42 eyes): 1.25 mg (0.05 ml) IV bevacizumab at baseline, 6 and 12 weeks; subsequent IVB injections (up to 52 weeks) guided by an OCT-based retreatment protocol (median 13 injections)	BCVA gain categories (letters) gaining ≥10: 7% losing >15: 4% 0.001 vs MLT ≥10: 49% MLT losing >15: 0.004 vs 32% MLT
Design: 2-arm RCT	Follow-up: 12 months	Laser modified ETDRS protocol, retreatment by ETDRS guidelines	CMT (µm, quartiles) −118 SD171 −146 SD122 MLT
Lam et al\(^{95}\)	N: 52 eyes of 52 patients	Group 1 (IVB1.25, n=26 eyes): 1.25 mg bevacizumab (0.05 ml)	At 6 months BCVA (ETDRS chart):
Hong Kong		Group 2 (IVB2.5, n=26 eyes): 2.5 mg bevacizumab (0.1 ml)	BCVA (ETDRS chart):
Design: 2-arm RCT			BCVA gain categories (letters) gaining ≥10: 88% phakic ≤10: 5% phakic 0.62 vs MLT

Note: ETDRS = Early Treatment Diabetic Retinopathy Study, DMO = diabetic macular oedema, BCVA = best-corrected visual acuity, OCT = optical coherence tomography, MLT = macular laser therapy, IVB = intravitreal bevacizumab.
Table 4

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Follow-up: 6 months	angiography, CMT ≥250 µm on OCT), BCVA ≥1.3 ETDRS logMAR units; only patients with diffuse DMO recruited	Regimen for all groups: 3 monthly IV injections, topical 0.5% levofloxacin 4×/day for up to 2 weeks after each injection	BCVA (logMAR)
	Exclusion criteria: macular oedema due to reasons other than diabetes, significant media opacities, macular ischemia of ≥1 disk area, vitreomacular traction, PDR, aphakia, glaucoma or ocular hypertension, previous anti-VEGF treatment, intraocular surgery except uncomplicated cataract extraction (but > 6 months prior), focal DMO, any laser procedure within previous 4 months, subtenon or intravitreal triamcinolone injection within 6 months, pregnancy	IVB1.25	0.11 SD0.31 (+5.5 letters)
	Age: 65.3 SD8.9 years	IBV2.5	0.13 SD0.26 (+6.5 letters)
	Sex: 46.2% female		baseline
	Baseline HbA1c: 7.5 SD1%		baseline
	Baseline VA: 0.61 SD0.29 logMAR		baseline
	Baseline CMT: 466 SD127 µm		baseline
	Comorbidities: not reported		baseline
	Subgroups:		baseline
	▶ For patients with previous DMO treatment (mainly laser): no significant reduction in CMT at 6 months (452 µm at baseline to 416 µm at 6 months, p=0.22); no significant improvement in BCVA (0.66 logMAR at baseline to 0.56 logMAR at 6 months (+5 letters), p=0.074)		

Ford JA, Lois N, Royle P, et al. BMJ Open 2013;3:e002269. doi:10.1136/bmjopen-2012-002269

Continued
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Faghihi et al		Group 1 (IVB, n=40 eyes): 1.25 mg bevacizumab	At 6 months Mean change in BCVA (ETDRS chart):
Iran		Group 2 (IVB+MPC, n=40 eyes): 1.25 mg bevacizumab	BCVA (logMAR) p Value
Design: 2-arm RCT		Regimen for all groups: Eyes examined every 2 months and if evidence of CSME IVB was injected. Mean of the number of IVB injections in IVB group and IVB+MPC group were 2.23±1.24 and 2.49±1.09, respectively	IVB 0.138 <0.05 vs baseline
Follow-up: 6 months			IVB+MPC 0.179 <0.05 vs baseline
			▶ no statistically significant difference between the two groups
			CMT (OCT):
			IVB −39 <0.05 vs baseline
			IVB+MPC −39 <0.05 vs baseline
			▶ No statistically significant difference between the two groups

BCVA, best corrected visual acuity; C, control; CMT, central macular thickness; CSME, clinically significant macular oedema; DDS, dexamethasone; DIL, dexamethasone followed by laser; DM, diabetes mellitus; DMO, diabetic macular oedema; DP, diastolic pressure; DR, diabetic retinopathy; HR QoL, health-related quality of life; IOP, intraocular pressure; IV, intravitreal; IVB, intravitreal bevacizumab; IVP, intravitreal pegaptanib; IVR, intravitreal ranibizumab; IVT, intravitreal triamcinolone; IVTL, intravitreal triamcinolone plus laser; IVVTE, intravitreal VEGF Trap Eye; L, laser; MLT/MPC, macular laser therapy/macular photocoagulation; NEI VFQ-25, National Eye Institute Visual Function Questionnaire-25; NPDR, non-proliferative diabetic retinopathy; NR, not reported; OCT, optical coherence tomography; PDR, proliferative diabetic retinopathy; PRP, panretinal photocoagulation; RCT, randomised controlled trial; SOC, standard of care; SP, systolic pressure; SRFA, fluocinolone; VA, visual acuity; VEGF, vascular endothelia growth factor.
Table 5 Pegaptanib and aflibercept studies

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Pegaptanib			
Cunningham et al	N: 172 eyes of 172 patients **Inclusion criteria:** ≥ 18 years, type 1 or 2 DM, DMO involving the center of the macula with corresponding leakage from microaneurysms, retinal telangiectasis, or both; clear ocular media, BCVA letter scores between 68 and 25 in the study eye and at least 35 in the fellow eye; IOP ≤ 23 mm Hg, focal photocoagulation could be safely deferred for 16 weeks; no ECG abnormalities, no major serological abnormalities **Exclusion criteria:** history of panretinal or focal photocoagulation; neodymium:yttrium–aluminum–garnet laser or peripheral retinal cryoablation in previous 6 months; any ocular abnormality interfering with VA assessment or fundus photography; vitreoretinal traction; vitreous incarceration; retinal vein occlusion involving the macula; history of intraocular surgery within previous 12 months, myopia of ≥ 8 diopters, axial length of ≥ 25 mm, likelihood of requiring panretinal photocoagulation following within 9 months; cataract surgery within 12 months; active ocular or periorbital infection; previous therapeutic radiation to the eye, head, or neck; known serious disorders to fluorescein dye; HbA1c ≥ 13%, pregnancy **Age:** 61.3–64.0 SD 9.3–10.1 years **Sex:** 45–55% female **Diabetes type:** 5–10% IDDM **HbA1c:** 7.1–7.7 SD 1.2–1.6 **Baseline VA:** letter score 55.0–57.1 SD 9.1–11.5 **Baseline CMT:** 423.2–476.0 μm **Comorbidities:** not reported	Group 1 (IVP0.3, n=44 eyes): 0.3 mg IV pegaptanib (90 µl) (median 5 injections (range 1–6)) **Group 2 (IVP1, n=44 eyes):** 1 mg IV pegaptanib (90 µl) (median 6 injections (range 1–6)) **Group 3 (IVP3, n=42 eyes):** 3 mg IV pegaptanib (90 µl) (median 6 injections (range 1–6)) **Group 4 (C, n=42 eyes):** sham injection (median 5 injections (range 1–6)) **Regimen for all groups:** injections at baseline, week 6 and week 12; thereafter, additional injections administered every 6 weeks at the discretion of the investigators if judged indicated (maximum of 6 injections up to week 30); laser photocoagulation allowed after week 13 if judged indicated by the study-masked ophthalmologist (25% for IVP0.3, 30% for IVP1, 40% for IVP3, 48% for C) **Subgroups:** of 16 participants with retinal neovascularisation at baseline, 8 of 13 (62%) in the pegaptanib groups and 0 of 3 in the sham group had regression of neovascularisation at 36 weeks	BCVA: **BCVA (letters) p Value** IVP0.3: +4.7 0.04 vs C IVP1: +4.7 0.05 vs C IVP3: +1.1 NS vs C C: −0.4 **Plus ≥ 10 letters** **CMT (OCT): p Value** IVP0.3: −68.0 (−118.9 to −9.88) 0.02 vs C IVP1: −22.7 (−76.9 to +33.8) NS vs C IVP3: −5.3 (−63.0 to +49.5) NS vs C C: +3.7
USA Design: 4-arm phase II RCT Follow-up: 36 weeks			
Adamis et al			
Age: 61.3–64.0 SD 9.3–10.1 years Sex: 45–55% female Diabetes type: 5–10% IDDM HbA1c: 7.1–7.7 SD 1.2–1.6 Baseline VA: letter score 55.0–57.1 SD 9.1–11.5 Baseline CMT: 423.2–476.0 μm Comorbidities: not reported	Group 1 (IVP0.3, n=44 eyes): 0.3 mg IV pegaptanib (90 µl) (median 5 injections (range 1–6)) **Group 2 (IVP1, n=44 eyes):** 1 mg IV pegaptanib (90 µl) (median 6 injections (range 1–6)) **Group 3 (IVP3, n=42 eyes):** 3 mg IV pegaptanib (90 µl) (median 6 injections (range 1–6)) **Group 4 (C, n=42 eyes):** sham injection (median 5 injections (range 1–6)) **Regimen for all groups:** injections at baseline, week 6 and week 12; thereafter, additional injections administered every 6 weeks at the discretion of the investigators if judged indicated (maximum of 6 injections up to week 30); laser photocoagulation allowed after week 13 if judged indicated by the study-masked ophthalmologist (25% for IVP0.3, 30% for IVP1, 40% for IVP3, 48% for C) **Subgroups:** of 16 participants with retinal neovascularisation at baseline, 8 of 13 (62%) in the pegaptanib groups and 0 of 3 in the sham group had regression of neovascularisation at 36 weeks	BCVA: **BCVA (letters) p Value** IVP0.3: +4.7 0.04 vs C IVP1: +4.7 0.05 vs C IVP3: +1.1 NS vs C C: −0.4 **Plus ≥ 10 letters** **CMT (OCT): p Value** IVP0.3: −68.0 (−118.9 to −9.88) 0.02 vs C IVP1: −22.7 (−76.9 to +33.8) NS vs C IVP3: −5.3 (−63.0 to +49.5) NS vs C C: +3.7	

Continued
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Sultan et al¹⁰ Multicenter international Design: 2-arm placebo-controlled RCT Follow-up: 2 years (primary efficacy endpoint at 1 year)	**N**: 260 eyes of 260 patients		
Inclusion criteria: ≥18 years, type 1 or 2 DM, DMO involving the center of the macula not associated with ischemia, CMT ≥250 µm, BCVA letter score 65–35, IOP ≤21 mm Hg, clear ocular media
Exclusion criteria: any abnormality other than DMO affecting VA assessment, vitreomacular traction; yttrium–aluminum–garnet laser, peripheral retinal cryoablation, laser retinopathy for retinal tears, focal or grid photoaquagulation within prior 16 weeks; panretinal photoaquagulation <6 months before baseline or likely to be needed within 9 months; significant media opacities; intraocular surgery in prior 6 months; pathological high myopia; prior radiation in region of study eye; history of severe cardiac or peripheral vascular disease, stroke in prior 12 months, major surgery in prior 1 month, treatment in prior 90 days with any investigational agent or with bevacizumab for any nonocular condition, HbA1c ≥10% or signs of uncontrolled diabetes, hypertension, known relevant allergies; pregnant or lactating
Age: 62.3–62.5 SD9.3–10.2 years
Sex: 39–46% female
Diabetes type: 6.3–7.5% type 1 DM, 92.5–93.7% type 2 DM
HbA1c: 42.5–45.9% <7.6%, 54.1–57.5% >7.6%
Baseline VA: letter score 57.0–57.5 SD8.1–8.9
Baseline CMT: 441.6–464.6 SD135.5–148.5 µm
Comorbidities: not reported | Group 1 (IVP, n=133 eyes):
0.3 mg IV pegaptanib sodium (mean number of injections 12.7 SD4.6)
Group 2 (C, n=127 eyes):
sham injection (mean number of injections 12.9 SD4.4)
Regimen for all groups: injections every 6 weeks up to week 48 (9 injections); at investigator determination (ETDRS criteria), laser photocoagulation could be performed at week 18, with possible repeat treatment at a minimum of 17 weeks later (maximum 3 treatments per year) (laser treatments in 25.2% of IVP group and 45% of C group); in year 2, injections as judged necessary
At 1 year:
BCVA (ETDRS):
IVP +5.2
C +1.2
Plus ≥10 letters:
IVP 36.8%
C 19.7%
Retinopathy:
Increase in degree by ≥2 steps
IVP 4.1%
C 12.4%
Decrease in degree by ≥2 steps
IVP 10.2%
C 3.1%
CMT (OCT):
Decrease in CMT
IVP ≥25%: 31.7%
>50%: 14.6%
≥25%: 23.7%
>50%: 11.9%
At 2 years:
BCVA (ETDRS):
IVP +6.1
C +1.3
Plus ≥10 letters:
IVP 38.3%
C 30%
Retinopathy:
Increase in degree by ≥2 steps
IVP 6.3%
C 13.8%
Decrease in degree by ≥2 steps
IVP 16.3%
C 0.3%
CMT (OCT):
Decrease in CMT
IVP ≥25%: 40.4%
>50%: 19.2%
≥25%: 44.6%
>50%: 26.1%
Continued |
Table 5

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)			
DA VINCI 2010 (Do et al)	Multicenter, 5-arm phase II RCT	Aflibercept	**NEI VFQ-25:** between group differences not significant at 54 weeks; at 102 weeks, significantly greater improvement in composite score and subscales distance vision, activities, social functioning, and mental health with pegaptanib.			
		EQ-5D	No significant differences between groups in EQ-5D scores at weeks 54 or 102.			
Trial of VEGF Trap-Eye (VTE), randomised on a 1:1:1:1:1 basis			**BCVA (letters) p Value**			
			IVVTE1	+8.6	0.005 vs L	
			IVVTE2	+11.4	≤0.0001 vs L	
			IVVTE3	+10.3	0.0001 vs L	
			IVVTE4	+8.5	0.0001 vs L	
			L	+2.5	0.0001 vs L	
				≥10 letters		
			IVVTE1	NR	NR	
			IVVTE2	NR	NR	
			IVVTE3	58%	NR	
			IVVTE4	58%	NR	
			L	58%	NR	
				CMT(um)		
				IVVTE1	−144.6	0.0001 vs L
				IVVTE2	−194.5	<0.0001 vs L
				IVVTE3	−127.3	0.0001 vs L
				IVVTE4	−153.3	<0.0001 vs L
				L	−67.9	

Note: BCVA = best-corrected visual acuity; CRT = central retinal thickness; DMO = diabetic macular oedema; ETDRS = Early Treatment Diabetic Retinopathy Study; IVT = intravitreal; L = laser photocoagulation; NR = not reported; VTE = VEGF Trap-Eye; VFQ = Visual Function Questionnaire; WMV = white matter volume.
Table 5 Continued

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)	
	Membrane evident biomicroscopically or on OCT; history of idiopathic autoimmune uveitis; structural damage to the center of the macula that is likely to preclude improvement in visual acuity after the resolution of macular oedema; uncontrolled glaucoma or previous filtration surgery; infectious blepharitis, keratitis, scleritis, or conjunctivitis; or current treatment for serious systemic infection: uncontrolled diabetes mellitus; uncontrolled hypertension; history of cerebral vascular accident or myocardial infarction within 6 months; renal failure requiring dialysis or renal transplant; pregnancy or lactation; history of allergy to fluorescein or povidone iodine; only 1 functional eye (even if the eye met all other entry criteria); or an ocular condition in the fellow eye with a poorer prognosis than the study eye	L	–1.3 +15 letters	
	Age: 60.7–64.0 years (SD 8.1–11.5)	IVVTE1	40.9% 0.0031 vs L	
	Sex: % female 35.6–47.6%	IVVTE2	45.5% 0.0007 vs L	
	Diabetes type: percentage of type 2, 88.6–97.7%	IVVTE3	23.8% 0.1608 vs L	
	HbA1c: 7.85–8.10 (SD 1.71–1.94)	IVVTE3	42.2% 0.0016 vs L	
	Baseline VA: 57.6–59.9 (SD 10.1–12.5)	L	11.4% +10 letters	
	Baseline CMT: 426.1–456.6 µm (SD 111.8–152.4)	IVVTE1	57% 0.0031 vs L	
	Comorbidities: history of any cardiac disease was twice as common in the VEGF Trap-Eye groups compared with the laser group	IVVTE2	71% 0.0007 vs L	
		IVVTE3	45% 0.1608 vs L	
		L	62% 0.0016 vs L	
				CMT(µm)
		IVVTE1	−165.4 <0.0001 vs L	
		IVVTE2	−227.4 <0.0001 vs L	
		IVVTE3	−187.8 <0.0001 vs L	
		L	−180.3 <0.0001 vs L	
			−58.4	

BCVA, best corrected visual acuity; C, control; CMT, central macular thickness; CSME, clinically significant macular oedema; DDS, dexamethasone; DIL, dexamethasone followed by laser; DM, diabetes mellitus; DMO, diabetic macular oedema; DP, diastolic pressure; DR, diabetic retinopathy; HR QoL, health-related quality of life; IOP, intraocular pressure; IV, intravitreal; IVB, intravitreal bevacizumab; IVP, intravitreal pegaptanib; IVR, intravitreal ranibizumab; IVT, intravitreal triamcinolone; IVTL, intravitreal triamcinolone plus laser; IVVTE, intravitreal VEGF Trap Eye; L, laser; MLT/MPC, macular laser therapy/macular photocoagulation; NEI VFQ-25, National Eye Institute Visual Function Questionnaire-25; NPDR, non-proliferative diabetic retinopathy; NR, not reported; OCT, optical coherence tomography; PDR, proliferative diabetic retinopathy; PRP, panretinal photocoagulation; RCT, randomised controlled trial; SOC, standard of care; SP, systolic pressure; SRFA, fluocinolone; VA, visual acuity; VEGF, vascular endothelia growth factor.
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Dexamethasone			
Callanan et al USA⁴⁴	N: 253 eyes of 253 patients	Group 1 (DIL, n=126 eyes): dexamethasone IV implant followed by laser photoagulation after 1 month (mean 1.6 implants; 78.6% completion) Group 2 (L, n=127 eyes): laser alone (79.5% completion) Regimen for all groups: if needed, patients were retreated with the dexamethasone implant at months 6 or 9, and with laser at months 4, 7 and 10; mean 2.2 laser treatments per patient Laser protocol not reported	At 12 months BCVA: Plus ≥ 10 letters (%) DIL: 28 L: 24 ▶ Patients in DIL group had significantly greater increases in BCVA from baseline than patients in the laser group (p<0.05) at months 1–9 only CMT (OCT): ▶ Patients in DIL group had significantly greater mean reductions from baseline in CMT at months 1 and 6 only (p<0.001)
Design: 2-arm RCT Follow-up: 12 months	Inclusion criteria: diffuse DMO, CMT ≥275 µm, BCVA ≥34 and ≤70 letters Exclusion criteria: not reported Age: not reported Sex: not reported Diabetes type: not reported HbA1c: not reported Baseline VA: not reported Baseline CMT: not reported Comorbidities: not reported		
Haller et al⁵⁹	N: 171 eyes of 171 patients	Group 1 (DDS350, n=57 eyes): 350 µg dexamethasone IV drug delivery system, implanted into the vitreous cavity Group 2 (DDS700, n=57 eyes): 700 µg dexamethasone IV drug delivery system, implanted into the vitreous cavity Group 3 (C, n=57 eyes): no treatment Regimen for all groups: eyes demonstrating a VA loss of ≥5 letters could be treated with any other therapy (including laser photoagulation and IV triamcinolone) (n=4 with photoagulation or IV triamcinolone in the C group, n=2 in the DDS350 group, none in the DDS700 group)	At 90 days BCVA (ETDRS): Plus ≥10 letters CMT (µm) p Value DDS350: −42.57 SD95.96 NS (p=0.07) vs C DDS700: −132.27 SD160.86 <0.001 vs C C: +30.21 SD82.12 At 180 days BCVA (ETDRS): Plus ≥10 letters DDS350: 20% (graph) DDS700: 33% (graph) C: 23% (graph)
USA Multicenter Design: 3-arm RCT Follow-up: 6 months (180 days), primary outcome 3 months (90 days)	Inclusion criteria: ≥12 years, DMO persisting for ≥90 days after laser treatment or medical therapy, BCVA by ETDRS between 20/40 (67 letters) and 20/200 (35 letters) due to clinically detectable DMO; analysis includes only eyes with DMO associated with DR Exclusion criteria: history of vitrectomy in the study eye; use of systemic, periocular, or intraocular steroids within 30 days of enrolment; moderate or severe glaucoma in the study eye; poorly controlled hypertension (SP >160 mm Hg or DP >90 mm Hg); poorly controlled diabetes (HbA1c >13%) Age: 62.9–63.8 years SD10.2–12.0 Sex: 45.6–49.1% female Diabetes type: not reported HbA1c: 7.3–7.6% Baseline VA: letter score 54.4–54.7 SD9.96–11.88 Baseline CMT: 417.5–446.5 µm SD123.7–155.9 Comorbidities: 19–21% prior cataract extraction		
Table 6
Continued

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Fluocinolone			
FAME Study (Campochiaro et al)	N: 956 eyes of 956 patients	Group 1 (0.5, n=375 eyes): intravitreal insert releasing 0.2 µg/day fluocinolone acetamide (FA) (2, 3, or 4 treatments received by 21.3, 1.9 and 0.3%)	**At 24 months**
Multicenter international placebo-controlled RCT Design: 3-arm Follow-up: 24 months; abstract with 36 month outcomes	Inclusion criteria: DMO, CMT ≥250 µm despite at least 1 prior focal/grid macular laser photocoagulation treatment, BCVA ETDRS letter score between 19 and 68 (20/50–20/400)	**BCVA (ETDRS):**	**BCVA (letters) p Value**
	Exclusion criteria: glaucoma, ocular hypertension, IOP >21 mm Hg, taking IOP lowering drops; laser treatment for DMO within 12 weeks of screening, any ocular surgery in the study eye within 12 weeks of screening; ocular or systemic steroid therapy; active ocular infection; pregnancy	**SRFA0.2** +4.4 0.02 vs C	
	Age: 62.5 SD9.4 years	**SRFA0.5** +5.4 0.017 vs C	
	Sex: 40.6%	**C** +1.7	
	Diabetes type: 6.6% type 1 DM, 92% type 2 DM, 1.4% uncertain	**Plus ≥15 letters (%) p Value**	
	HbA1c: 7.8 SD1.59%	**SRFA0.2** 29 0.002	
	Baseline VA: ETDRS letter score 53.4 SD12.23	**SRFA0.5** 29	
	Baseline CMT: 469.0 SD164.78 µm	**C** 16	
	Comorbidities: 47.1% cataract at baseline, 62.7–67.4% phakic		
		Subgroups:	
		BCVA benefits only in pseudophakic eyes (cataract surgery before or during the study), in phakic eyes, BCVA letter score was reduced by 5 (high dose) and 9 (low dose) from baseline at 24 months	
		Regimen for all groups: patients could receive rescue focal/grid laser therapy any time after the first 6 weeks for persistent oedema (35.2–36.7% in FA groups, 58.9% control group, p<0.001); treatments were allowed every 3 months for persistent or recurrent oedema; patients eligible for another FA insert at 1 year if ≥5 letter reduction in BCVA or ≥50 µm CMT increase from best status	
		CMT (optical coherence tomography):	**CMT (µm) p Value**
		SRFA0.2 −167.8 0.005 vs C	
		SRFA0.5 −177.1 <0.001 vs C	
		C −111.3	
		effect maintained at 36 months	
		At 36 months	
		Plus ≥15 letters (%) p Value	
		SRFA0.2/0.5 28.7% 0.018	
		C 18.9%	

Continued
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Pearson et al²³ USA Multicenter	N: 196 patients	Group 1 (SRFA, n=127): 0.5 mg sustained release fluocinolone acetone implant	At 3 years BCVA:
Design: 2-arm RCT Follow-up: 36 months	Inclusion criteria: persistent or recurrent unilateral or bilateral DMO with retinal thickening involving fixation of ≥1 disc area in size, ETDRS visual acuity of ≥20 letters (20/400) to ≤68 letters (20/50) and ≥1 macular laser treatment in the study eye more than 12 weeks prior to enrolment	Group 2 (SOC, n=69): standard of care—either repeat laser or observation Laser ETDRS protocol	Gain ≥15 letters p Value 31% NS
	Exclusion criteria: Ocular surgery within 3 months prior to enrolment, uncontrolled IOP within the past 12 months while on ≥1 antiglaucoma medication, IOP of ≥22 mm Hg at screening while on ≥1 antiglaucoma medication, peripheral retinal detachment in the area of implantation or media opacity precluding diagnosis of status in the study eye		SRFA SOC
	Age: 61.4–62.7 years	SRFA	17% NS
	Sex: 41.7–42% female	SOC	14% NS
	Diabetes type: 62.3–70% on insulin	CMT:	Mean change in baseline CMT
	HbA1c: not reported	SRFA	–86 NS
	Baseline VA: not reported	SOC	–110 NS
	Baseline CMT: not reported		
	Comorbidities: not reported		

BCVA, best corrected visual acuity; C, control; CMT, central macular thickness; CSME, clinically significant macular oedema; DDS, dexamethasone; DIL, dexamethasone followed by laser; DM, diabetes mellitus; DMO, diabetic macular oedema; DP, diastolic pressure; DR, diabetic retinopathy; HR QoL, health-related quality of life; IOP, intraocular pressure; IV, intravitreal; IVB, intravitreal bevacizumab; IVP, intravitreal pegaptanib; IVR, intravitreal ranibizumab; IVT, intravitreal triamcinolone; IVTL, intravitreal triamcinolone plus laser; IVT-E, intravitreal VEGF Trap Eye; L, laser; MLT/MPC, macular laser therapy/macular photocoagulation; NEI VFO-25, National Eye Institute Visual Function Questionnaire-25; NPDR, non-proliferative diabetic retinopathy; NR, not reported; OCT, optical coherence tomography; PDR, proliferative diabetic retinopathy; PRP, panretinal photocoagulation; RCT, randomised controlled trial; SOC, standard of care; SP, systolic pressure; SRFA, fluocinolone; VA, visual acuity; VEGF, vascular endothelia growth factor.
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)		
DRCR Network 2008 (Ip et al/Beck et al/Bressler et al) USA	N: 840 eyes of 693 patients	Study 1 (IVT1, n=256 eyes): 1 mg IV triamcinolone (3.5 treatments)	At 2 years		
Follow-up: 2 years, additional 3 year follow-up	Inclusion criteria: >18 years, type 1 or 2 DM, study eye: (1) BCVA (E-ETDRS) between 24 and 73 (20/300 and 20/40), (2) retinal thickening due to DMO involving the center of the macula, main cause for visual loss, (3) CMT ≥ 250 µm, (4) no expectation of scatter photocoagulation within 4 months	Group 1 (IVT1, n=256 eyes): 1 mg IV triamcinolone (3.5 treatments)	BCVA (E-ETDRS):		
	Exclusion criteria: any prior treatment with IV corticosteroids, peribulbar steroid injection within prior 6 months, photocoagulation for DMO within prior 15 weeks, panretinal scatter photocoagulation within prior 4 months, pars plana vitrectomy, history of open-angle glaucoma or steroid-induced IOP elevation requiring IOP-lowering treatment, and IOP > 25 mm Hg	Group 2 (IVT4, n=254 eyes): 4 mg IV triamcinolone (3.1 treatments)	BCVA (letters):		
	Age: 63 SD9 years	Group 3 (L, n=330 eyes): focal/grid photocoagulation (2.9 treatments)	Group 1 (IVT1, n=256 eyes): 1 mg IV triamcinolone (3.5 treatments)	IVT1: -2 SD18, p = 0.02 vs L	
	Sex: 49% female	Regimen for all groups: retreatment protocol: where indicated, retreatment was performed within 4 weeks after the follow-up visit and no sooner than 3.5 months from the time of last treatment; eyes were generally retreated unless: (1) little or no oedema involving the center of the macula present and CMT ≥ 225 µm, (2) VA letter score ≥ 79 (20/25 or better), (3) substantial improvement in macular oedema since last treatment (eg, ≥ 50% decrease in CMT), (4) clinically significant adverse effect from prior treatment, (5) additional treatment deemed futile (< 5 letter improvement in VA letter score or lack of CMT reduction) and (6) for laser group, complete focal/grid photocoagulation already given, with no areas identified for which additional treatment was indicated	Subgroups:		
	Diabetes type: 95% type 2 DM, 5% type 1 DM	Laser Modified ETDRS	IVT1: +10 or more: 25% vs L, p = 0.03	NS vs IVT4, p = 0.01 vs L	
	HbA1c: 7.9 SD1.8%		IVT4: +9 to −9: 50% vs L, p = 0.01	IVT4: +9 to −9: 44% vs L, p = 0.01	
	Baseline VA: ETDTRS letter score 59 SD11 (~20/63)		+10 or more: 28% vs L, p = 0.01	+10 or more: 31% vs L, p = 0.01	
	Baseline CMT: 24 SD130 µm		+10 or more: 31% vs L, p = 0.01	+10 or more: 19% vs L, p = 0.01	
	Comorbidities: 21%				
	pseudophakic, 2% ocular hypertension, 7% mild NPDR, 13% moderate NPDR, 40% moderately severe NPDR, 11% severe NPDR, 23.5% mild to moderate, 3% high risk PDR	CMT (µm): −86 SD167			
		p Value	CMT (µm): −86 SD167	p Value	

Continued
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Gillies et al Sutter et al	Australia	protocol as used in prior DCRR.net protocols	BCVA (letters)
	Design: 2-arm placebo-controlled RCT Follow-up: 2 years, additional 3-year follow-up	Group 1 (IVT, n=34 eyes): 4 mg (0.1 ml) IV triamcinolone acetonide (mean 2.6)	At 2 years
		injections over 2 years	BCVA (ETDRS):
		Group 2 (C, n=35 eyes): placebo injection (subconjunctival saline injection) (mean 1.8 injections over 2 years)	
		Regimen for all groups: reiterations considered at each visit as long as treatments were at least 6 months apart (reirteration if VA decreased ≥5 letters from previous peak value and persistent CMT >250 µm), if no improvement after 4 weeks, further laser treatment was applied (n=1 laser treatment in intervention group, n=16 in placebo group, p=0.0001)	CMT (OCT):
	Age: 62.4–69.6 SD9.2–12.5 years		
	Sex: 52% female		
	Diabetes type: not reported		
	HbA1c: 7.63–8.28 SD1.12–1.41		
	Baseline VA: ETDRS letter score 60.5–61.3 SD11.9–13.2		
	Baseline CMT: 439–444 SD101–125 µm		
	Comorbidities: 25% pseudophakic		
		BCVA (letters): +3.1	p Value 0.01 vs C
		C: −2.9	
		IVT: +10 or more: 21%	
		+9 to −9: 70%	
		−10 or more: 9%	
		+10 or more: 12%	0.013 vs C
		+9 to −9: 62%	
		−10 or more: 25%	
		CMT (µm): −125	p Value 0.009 vs C, difference between groups 59 µm (95% CI 15 to 104)

Continued
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Gillies et al²³ Australia	N: 84 eyes of 54 patients	**Inclusion criteria:** DMO involving the central fovea, CMT ≥ 250 µm, BCVA 17–70 letters (~20/40–20/400), laser treatment could be safely delayed for 6 weeks without significant adverse effects	**At 24 months** BCVA (ETDRS): **BCVA (letters)** ITL +0.76 L −1.49 **p Value** NS vs L **BCVA gain categories** +10 or more: 36% +9 to −9: 31% −10 or more: 33% +10 or more: 17% +9 to −9: 59% −10 or more: 24%
Design: 2-arm RCT	**Follow-up:** 24 months	**Group 1 (IVTL, n=42 eyes):** 4 mg (0.1 ml) IV triamcinolone acetonide followed by laser treatment (at least 1 retreatment in 2nd year in 69%)	**Regimen for all groups:** retreatment with injection followed by laser at discretion of chief investigator, with at least 6 weeks between treatments; no retreatment if: (1) investigator considered the macula nearly flat and CMT <300 µm; (2) VA was ≥ 79 letters (20/25) or VA had improved by ≥ 5 letters compared with the best VA after treatment or baseline acuity; (3) laser treatment was considered by the investigator as inappropriate or had no potential for improvement
Group 2 (L, n=42 eyes): sham injection followed by laser treatment (at least 1 retreatment in 2nd year in 45%)	**CMT (OCT):** **CMT (µm)** IVTL −137.1 L −109.6 **p Value** NS vs L		
Exclusion criteria: uncontrolled glaucoma, controlled glaucoma but with a glaucomatous visual field defect, loss of vision resulting from other causes, systemic treatment with >5 mg prednisolone (or equivalent) daily, retinal laser treatment within 4 months, intraocular surgery within 6 months, concurrent severe systemic disease, any condition affecting follow-up or documentation	**Subgroups:** BCVA outcome not significantly affected by cataract surgery		
Age: 65.4–66.9 SD8.9–9.5 years	**Sex:** 38.1–47.6% female **Diabetes type:** not reported **HbA1c:** 7.81–8.02 SD1.44–1.63% **Baseline VA:** letter score 55.2–55.5 SD11.3–12.5 **Baseline CMT:** 482.1–477.4 SD122.7–155.5 µm **Comorbidities:** not reported		
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
-------	----------------------------------	--------------	---
Kim et al⁴⁵			
Korea			
Design: 2-arm RCT			
Follow-up: 3 years	N: 86 eyes of 75 patients		
Inclusion criteria: diffuse DMO			
Exclusion criteria: not reported			
Age: not reported			
Sex: not reported			
Diabetes type: not reported			
HbA1c: not reported			
Baseline VA: not reported			
Baseline CMT: not reported			
Comorbidities: not reported	Group 1 (IVT, n=38 eyes):		
4 mg IV triamcinolone (1.88 additional treatments, completion 68.1%)			
Group 2 (IVTL, n=48 eyes):			
macular laser photocoagulation 4 weeks after 4 mg IV triamcinolone (0.92 additional treatments, completion 77.1%)			
Regimen for all groups: additional treatment possible, criteria not mentioned	At 3 years		
BCVA: not reported			
Outcomes related to DMO:			
No DMO recurrence			
IVT			
IVTL			
Time DMO not present			
10.33 months			
19.88 months			
0.027 vs IVT			
Lam et al³⁴			
Hong Kong
Design: 3-arm RCT
Follow-up: 6 months (2 years planned) | N: 111 eyes of 111 patients
Inclusion criteria: >18 years, type 1 or 2 DM, clinically significant DMO (ETDRS), CMT ≥250 µm
Exclusion criteria: macular oedema due to causes other than diabetic maculopathy, signs of vitreomacular traction, proliferative diabetic retinopathy, aphakia, history of glaucoma or ocular hypertension, macular ischemia, any laser procedure within 3 months, ocular surgery within 6 months, significant media opacities
Age: 64.7–67.2 SD8.2–10.3 years
Sex: 42–59% female
Diabetes type: not reported
HbA1c: not reported
Baseline VA: ETDRS logMAR 0.64–0.72 SD0.34–0.36
Baseline CMT: 385–424 SD91–108 µm
Comorbidities: 66–84% phakic eyes | Group 1 (IVT, n=38 eyes):
4 mg IV triamcinolone (no retreatments)
Group 2 (IVTL, n=36 eyes):
4 mg IV triamcinolone followed by grid laser photocoagulation (ETDRS) (laser treatment once the macular oedema had reduced to <250 µm at the foveal center or at 1 to 2 months after injection, whichever was earlier)
Group 3 (L, n=37 eyes): grid laser photocoagulation (n=3 retreatments) (no retreatments)
Regimen for all groups: in case of recurrence or persistence of macular oedema, retreatment offered according to study group, at intervals no less than 4 months | At 6 months
BCVA (ETDRS):
BCVA improvement
IVT
IVTL
L
CMT (OCT):
CMT (µm)
IVT
IVTL
L
342 SD124 (–54)
307 SD181 (–116)
350 SD169 (–35)
NS between groups, <0.01 vs baseline |

Continued
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Ockrim et al/Sivaprasad et al⁸² UK	N: 88 eyes of 88 patients	Group 1 (IVT, n=43 eyes): 4 mg IV triamcinolone (mean number of IVT injections 1.8 (range 1–3))	BCVA (ETDRS): IVT BCVA (letters) p Value
	Study: 2-arm RCT Follow-up: 1 year	Group 2 (L, n=45 eyes): ETDLS laser photocoagulation (mean number of grid laser sessions 2.1 (range 1–3))	L +1.7 Plus ≥ 15 letters NS vs L
	Inclusion criteria: clinically significant DMO persisting ≥4 months, ≥1 previous laser treatment, BCVA 6/12–3/60, VA in fellow eye ≥3/60, duration visual loss <24 months	Regimen for all groups: patients retreated at 4 and 8 months if they had persistent macular oedema Laser ETDRS protocol	CMT (optical coherence tomography): IVT CMT (µm) p Value
	Exclusion criteria: significant macular ischemia, baseline IO >23 mm Hg, glaucoma, coexistent renal disease, loss of VA due to other causes, previous vitrectomy, intracocular surgery within 3 months of study entry, previous inclusion in other DR trials, inability to return to follow-up, inability to give informed consent		L −63.7 NS vs L
	Age: 62.3–64.8 SD7.5–10.1 years		
	Sex: 28.9–34.9% female		
	Diabetes type: 97.8–100% type 2 DM		
	HbA1c: 7–7.8 IQR6.5–8.7%		
	Baseline VA: ETDRS letter score 53.0–54.6 SD13.3–14.2		
	Baseline CMT: 410.4–413.4 SD127.8–134.1 μm		
	Comorbidities: 17.8–19.5% PDR, 13.3–18.6% pseudophakia, 15–17.8% posterior vitreous detachment		

BCVA, best corrected visual acuity; C, control; CMT, central macular thickness; CPL, control plus laser; CSME, clinically significant macular oedema; DDS, dexamethasone; DIL, dexamethasone followed by laser; DM, diabetes mellitus; DMO, diabetic macular oedema; DP, diastolic pressure; DR, diabetic retinopathy; HR QoL, health-related quality of life; IOP, intraocular pressure; IV, intravitreal; IVB, intravitreal bevacizumab; IVP, intravitreal pegaptanib; IVR, intravitreal ranibizumab; IVT, intravitreal triamcinolone; IVTl, intravitreal triamcinolone plus laser; IVTVE, intravitreal VEGF Trap-E; L, laser; MLT/MPC, macular laser therapy/macular photocoagulation; NEI VFQ-25, National Eye Institute Visual Function Questionnaire-25; NPDR, non-proliferative diabetic retinopathy; NR, not reported; OCT, optical coherence tomography; PDR, proliferative diabetic retinopathy; PRP, panretinal photocoagulation; RCT, randomised controlled trial; RD, ranibizumab plus deferred laser; RPL, ranibizumab plus laser; SOC, standard of care; SP, systolic pressure; SRFA, fluorocinolone; TPL, triamcinolone plus laser; VA, visual acuity; VEGF, vascular endothelial growth factor.
Table 8 Trials assessing more than one drug

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)	
Ahmadieh et al[11] Iran	N: 115 eyes of 101 patients	Group 1 (IVB, n=41 eyes): bevacizumab 1.25 mg (0.05 ml)	At 24 weeks	
	Inclusion criteria: eyes with clinically significant DMO unresponsive to previous macular laser photocoagulation (last session >3 months prior)	Group 2 (IVB/IVT, n=37 eyes): combined bevacizumab (1.25 mg (0.05 ml)) and triamcinolone (2 mg (0.05 ml)), followed by two injections of bevacizumab alone	BCVA (Snellen chart):	
	Exclusion criteria: visual acuity ≥20/40; history of cataract surgery within past 6 months; prior intraocular injection or vitrectomy, glaucoma or ocular hypertension; PDR with high-risk characteristics; vitreous hemorrhage; significant media opacity; presence of traction on the macula; pregnancy; serum creatinine ≥3 mg/100 ml; monocular patients	Group 3 (C, n=37 eyes): sham injection	BCVA (logMAR), 95% CI	
	Age: 59.7 SD8.3 years (range 39–74)	Regimen for all groups: 3 consecutive IV injections at 6-week intervals	p Value	
	Sex: 50.5% female		−0.18 (−0.29, −0.08) (+9 letters (4, 14.5))	
	Diabetes type: not reported, 27.6–33.3% on insulin	CMT (OCT): CMT (µm), 95% CI p Value	0.01 vs C, NS vs IVB/IVT	
	HbA1c: 9.35–10.06%		−0.21 (−0.30, −0.12) (+10.5 letters (6, 15))	
	Baseline VA: not reported		0.006 vs C	
	Baseline CMT: not reported		−0.03 (−0.08, 0.14) (+1.5 letters (−7, 4))	
	Comorbidities: (percentage of eyes)			
	13.9% history of cataract surgery, 81.7% NPDR, 4.3% early PDR, 13.9% regressed PDR; no iris neovascularisation			
	ATEMD Oliveira Neto et al[66]			
Multicenter	N: 120 eyes of 120 patients	Group 1 (IVB, n=NR eyes): IV bevacizumab 1.25 mg (0.05 ml)	At 6 months	
	Inclusion criteria: DMO, BCVA 20/40–20/400, CMT ≥275 µm	Group 2 (IVT, n=NR eyes): 4 mg (0.1 ml) of IV triamcinolone acetoneide	BCVA:	
	Exclusion criteria: PDR, laser photoocoagulation in previous 3 months, no IV corticosteroid or anti-VEGF in previous 3 months	Group 3 (IVB/IVT, n=NR eyes): 1.25 mg (0.05 ml) of IV bevacizumab plus 4 mg (0.1 ml) of IV triamcinolone acetoneide	no significant difference between groups (between 1.7 and 2.3 lines gained in the different groups in 2010 report (n=18))	
	Age: not reported	Regimen for all groups: monthly injections	CMT (OCT): CMT (µm), 95% CI p Value	0.012 vs C, NS vs IVB/IVT
	Sex: not reported		−95.7	
	Diabetes type: not reported		−172.2, −19.3	
	HbA1c: not reported		−92.1	
	Baseline VA: not reported		−154.4, −29.7	
	Baseline CMT: not reported		34.9 (7.9, 61.9)	
	Comorbidities: not reported			

Continued
Table 8
Continued

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
DRCR Network 2010 (Elman et al)^{21, 46} USA Multicenter Design: 4-arm placebo-controlled RCT Follow-up: 1–2 years; 2 years extension (Elman)⁴⁶ for consenting patients	**N**: 854 eyes of 691 patients		
Inclusion criteria: ≥18 years, type 1 or 2 DM; study eye: (1) BCVA letter score 78–24 (20/32–20/320), (2) definite retinal thickening due to DMO assessed to be main cause of visual loss, (3) retinal thickness measured on time domain OCT ≥250 µm in central subfield (2 study eyes per patient could be included if both were eligible at study entry)			
Exclusion criteria: (1) treatment for DMO within the prior 3 months, (2) panretinal photocoagulation within the prior 4 months or anticipated need for panretinal photocoagulation within the next 6 months, (3) major ocular surgery within the prior 4 months, (4) history of open-angle glaucoma or steroid-induced IOP elevation, requiring IOP-lowering treatment, (5) IOP ≥25 mm Hg; systolic pressure >180 mm Hg, diastolic pressure >110 mm Hg; myocardial infarction, other cardiac event requiring hospitalisation, cerebrovascular accident, transient ischemic attack, treatment for acute congestive heart failure within 4 months before randomisation			
Age: median 62–64 years (25th, 75th centile 55–58, 69–70)			
Sex: 41–46% female			
Diabetes type: 6–9% type 1 DM, 89–92% type 2 DM, 2–3% uncertain			
HbA1c: median 7.3–7.5% (25th, 75th centile 6.5–6.7, 8.3–8.6)			
Baseline VA: letter score 63 SD12 (<20/63 SD2.4 lines)			
Baseline CMT: 405 SD134 µm			
Comorbidities: 60–67% prior treatment for DMO	**Group 1 (CPL, n=293 eyes)**: sham injection plus prompt (within 3–10 days after injection) focal/grid photocoagulation		
Group 2 (RPL, n=187 eyes): 0.5 mg IV ranibizumab plus prompt focal/grid photocoagulation			
Group 3 (RDL, n=188 eyes): 0.5 mg IV ranibizumab plus deferred (≥24 weeks) focal/grid photocoagulation			
Group 4 (TPL, n=186 eyes): 4 mg IV triamcinolone plus prompt focal/grid photocoagulation			
Regimen for all groups: Baseline treatment 0.5 mg IV ranibizumab and 4 mg preservative free triamcinolone; study treatment every 4 weeks up to 12 weeks, then retreatment algorithm: 16 to 20 weeks, monthly retreatment unless ‘success’ criteria were met (visual acuity letter score ≥84 (20/20) or OCT central subfield thickness <250 µm); 24–48 weeks, patients subdivided (according to predefined criteria) into ‘success’, ‘improvement’, ‘no improvement’ or ‘failure’;	**At 1 year BCVA (E-ETDRS Visual Acuity Test)**:		
BCVA (letters)	**p Value**		
	CPL	+3 SD13	
	RPL	+9 SD11	<0.001 vs CPL
	RDL	+9 SD12	<0.001 vs CPL
	TPL	+4 SD13	NS vs CPL

Subgroups:
▸ BCVA results in TPL group substantially better for pseudophakic eyes than for phakic eyes (comparable to results for RPL and RDL groups) (p not reported)
▸ No difference in results according to prior treatment for DMO, baseline VA, baseline CMT, baseline level of retinopathy, focal or diffuse oedema

CMT (OCT)	**CMT (µm)**	**p Value**
CPL	−102 SD151	
RPL	−131 SD129	<0.001 vs CPL
RDL	−137 SD136	<0.001 vs CPL

Continued
Table 8

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)		
	DMO; 61–68% with NPDR, 26–36% with PDR or PDR scars	‘improvement’ group continued treatment, other groups treated at investigator discretion; alternative treatment permitted if eye met criteria for ‘failure’ or ‘futility’. In the case of retreatment, ranibizumab could be given as often as every 4 weeks, and triamcinolone every 16 weeks (with sham injections as often as every 4 weeks).	TPL	−127 SD140	<0.001 vs CPL
		Subgroups:			
		▶ pattern of CMT decrease similar for groups with CMT <400 and ≥400 µm at baseline			
		▶ Significantly more patients with severe NPDR or worse improved by 2 levels or more in the ranibizumab groups (28%, no significant change in the other groups)			
		At 2 years (expanded results, Elman 2011)			
		BCVA (E-ETDRS Visual Acuity Test):			
		Retreatment for focal/grid laser (after ≥13 weeks from previous treatment) if there was oedema involving or threatening the center of the macula and if complete laser had not been given; retreatment algorithms facilitated by web-based real-time data entry system. Median number of drug injections before 1 year visit was 8–9 for ranibizumab, 3 for triamcinolone, and 5 sham injections. Retreatment between 1 and 2 years (Elman 2011): median injections 2 in RPL group, 3 in RDL group; in TPL group 68% of eyes received at least 1 injection; at least one focal/grid laser session between 1 and 2 years: 51% CPL, 40% RPL, 29% RDL, 52% TPL			

Continued
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Jorge et al. \(^{1}\) Brazil	\(N: 63\) eyes of \(47\) patients	Laser Modified ETDRS protocol as used in prior DRCR.net protocols	At 48 weeks
Design: Prospective RCT	Inclusion criteria: Refractory cener-involving DMO	Group 1 (IVB 1.5 mg, \(n=NR\)): injections at baseline and monthly if CSFT (central subfield thickness) measured by SDOCT (spectral domain OCT) >275 µm	BCVA Mean BCVA reduction from baseline (logMAR) \(p\) Value
Follow-up: 24 and 48 weeks (to date, 73% and 56% of patients completed 24 and 48 weeks, respectively)	Exclusion criteria: NR	Group 2 (IVR 0.5 mg, \(n=NR\)): injections at baseline and monthly if CSFT >275 µm	IVB1.5 \(-0.21\) vs baseline \(<0.05\) at all-time points vs IVR0.5: no significant difference at all time-points
Sex: NR	Diabetes type: NR	CSFT Mean CSFT reduction from baseline \(p\) Value	IVR0.5 \(-0.21\) vs baseline \(<0.05\) at all time-points vs IVB1.5: no significant difference at all time-points
HbA1c: NR	Baseline VA: NR		
Baseline CMT: NR	Comorbidities: NR		

Continued

Current treatments in diabetic macular oedema
Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Lim et al⁶⁵ Korea	N: 111 eyes of 105 patients		
Inclusion criteria: eyes with clinically significant DMO based on ETDRS and DMO with central macular thickness of at least 300 µm by optical coherence tomography (OCT)
Exclusion criteria: unstable medical status, including glycemic control and blood pressure; any previous treatment for DMO, including intravitreal, sub-Tenon injection or macular photoagulation, history of vitreoretinal surgery, uncontrolled glaucoma; proliferative diabetic retinopathy with active neovascularisation, previous panretinal photoagulation, presence of vitreomacular traction, history of systemic corticosteroids within 6 months, contraindications for bevacizumab or triamcinolone acetonide
Age: 60.4 SD 7.4 (range 48–70) years
Sex: 52% female
Diabetes type: NR
HbaA1c: 7.2 SD 1.2–7.4 SD1.2
Baseline VA: 0.62 SD 0.23–0.65 SD 0.28 logMAR
Baseline CMT: 447 SD 110–458 SD 92 µm
Comorbidities: NR | Group 1 (IVB/IVT, n=36):
IV injection of 1.25 mg (0.05 ml) IVB at 0 and 6 weeks and IV injection of 2 mg (0.05 ml) IVT at 0 weeks. Mean number of addition injection 1.28 | BCVA (logMAR)
p Value
IVB/IVT
−0.15
0.088 (between groups)
IVB
−0.16
IVT
−0.16 | Group 2 (IVB, n=38): IV injection of 1.25 mg (0.05 ml) IVB at 0 and 6 weeks. Mean number of injections 2.54.
Group 3 (IVT, n=37): IV injection of 2 mg (0.05 ml) IVT at 0 weeks. Mean number of injections 1.04 | CMT (µm)
p Value
−199
0.132 (between groups)
−17s9
−200 | Group 3 (IVT, n=37): IV injection of 2 mg (0.05 ml) IVT at 0 weeks. Mean number of injections 1.04 | Unclear if rescue laser was available
IVB injections were repeated if CMT appeared >300 µm on OCT in at least 6 weeks in all three groups |
Table 8 Continued

Study	Participants and baseline values	Intervention	Outcome (change from baseline at study end)
Soheilian et al. Iran	N: 150 eyes of 129 patients **Inclusion criteria:** eyes with clinically significant DMO (ETDRS criteria) **Exclusion criteria:** previous panretinal or focal laser photocoagulation, prior ocular surgery or injection, history of glaucoma or ocular hypertension, VA $\geq 20/40$ or $<20/300$, iris neovascularisation, high risk PDR, significant media opacity, monocularis, pregnancy, serum creatinine ≥ 3 mg/dL, uncontrolled DM **Age:** 61.2 SD6.1 years **Sex:** 47.3% female **Diabetes type:** not reported **HbA1c:** not reported **Baseline VA:** 0.55–0.73 SD0.26–0.28 logMAR **Baseline CMT:** 300–359 SD118–149 µm **Comorbidities:** 94% NPDR, 6% early PDR	Group 1 (IVB, $n=50$ eyes): IV injection of bevacizumab 1.25 mg (0.05 ml) (retreatment IVB 14 eyes) Group 2 (IVB/IVT, $n=50$ eyes): IV injection of combined bevacizumab (1.25 mg (0.05 ml)) and triamcinolone (2 mg (0.05 ml)), followed by two injections of bevacizumab alone (retreatment IVB/IVT 10 eyes) Group 3 (MPC, $n=50$ eyes): focal or modified grid laser (retreatment MPC 3 eyes)	At 36 weeks **BCVA (Snellen chart):** **BCVA (logMAR), SD** 0.28 SD0.25 (+14 SD12.5 letters) vs IVB/IVT or MPC 0.04 SD0.33 (+2 SD16.5 letters) $+0.01$ SD0.27 NS vs MPC $+2$ lines or more: NS between groups **Snellen line changes** +2 lines or more: 37% stable within 2 lines: 59.3% $+2$ lines or more: 25% stable within 2 lines: 54.2% $+2$ lines or more: 14.8% stable within 2 lines: 66.7% $+2$ lines or more: 8.3% stable within 2 lines: 33.3% $+2$ lines or more: 12.5% stable within 2 lines: 25.0% $+2$ lines or more: 11.1% stable within 2 lines: 61.1% $+2$ lines or more: 10.0% stable within 2 lines: 60.0% $+2$ lines or more: 9.1% stable within 2 lines: 59.1% $+2$ lines or more: 8.2% stable within 2 lines: 58.2% $+2$ lines or more: 7.3% stable within 2 lines: 57.3% $+2$ lines or more: 6.5% stable within 2 lines: 56.5% $+2$ lines or more: 5.7% stable within 2 lines: 55.7% $+2$ lines or more: 4.9% stable within 2 lines: 54.9% $+2$ lines or more: 4.1% stable within 2 lines: 54.1% $+2$ lines or more: 3.3% stable within 2 lines: 53.3% $+2$ lines or more: 2.5% stable within 2 lines: 52.5% $+2$ lines or more: 1.7% stable within 2 lines: 51.7% $+2$ lines or more: 0.9% stable within 2 lines: 50.9% $+2$ lines or more: 0.1% stable within 2 lines: 50.1% $+2$ lines or more: NS between groups **CMT (OCT):** **CMT (µm), SD** -56 SD140 NS vs baseline, between groups -5 SD113 NS vs baseline, between groups -8 SD67 NS vs baseline, between groups
Adverse events are shown in tables 9 and 16. Conjunctival haemorrhages were higher in the ranibizumab arms compared with laser (RESTORE) or no treatment (RESOLVE). In the RESOLVE, RISE and RIDE studies, a considerably higher incidence of intraocular pressure (IOP) increase was reported in the ranibizumab arm compared to control. This increase in IOP was not demonstrated in the RESTORE study. There were no consistent differences in systemic adverse events between ranibizumab and laser or placebo.

Bevacizumab

Eight RCTs investigating the use of bevacizumab in DMO were identified (tables 4 and 8). One RCT, the BOLT study (n=80), randomised patients to laser therapy or 1.25 mg intravitreal bevacizumab. At 24 months, the mean changes in BCVA and the proportion of patients who gained 10 ETDRS letters or more was statistically significantly higher in the bevacizumab arm than in the laser arm. Faghihi et al (n=80) compared 1.25 mg bevacizumab (average 2.23 injections per patient) with 1.25 mg bevacizumab plus a single laser treatment (average 2.49 injections per patient). After 6 months, the authors found both treatments to be effective at improving BCVA, but neither treatment was found to result in a greater benefit.

Lam et al (n=52) compared two doses of bevacizumab (1.25 and 2.5 mg) in patients with diffuse DMO. Patients with focal DMO associated with localised retinal thickening were excluded. At 6 months, following 3 initial monthly injections (no treatment in the remaining 3 months), both groups showed a statistically significantly increased mean BCVA compared with baseline vision, but there was no difference between doses.

Four trials have investigated the combination of bevacizumab and triamcinolone. Ahmadieh et al (n=115) compared combined bevacizumab (three 1.25 mg injections at 6 week intervals) plus triamcinolone (2 mg baseline injection only, Triamhexal) with bevacizumab alone (three 1.25 mg at 6 week intervals) and sham injection in patients who had DMO unresponsive (definition not reported) to previous laser (last session more than 3 months previously). The combination arm and bevacizumab alone improved mean BCVA more than the sham injection. For BCVA, the combination of bevacizumab plus triamcinolone was non-statistically significantly better than bevacizumab alone.

Soheilian et al (n=150) compared combined bevacizumab (1.25 mg) plus triamcinolone (2 mg) with bevacizumab alone and laser alone in patients who were laser naive. At 36 weeks, bevacizumab alone improved BCVA more than either combination therapy or laser, although the difference was not statistically significant. Extended follow-up at 24 months showed that there was no statistically significant difference between groups for BCVA; however, the direction of effect favours the bevacizumab and combination arms more than the laser.24
Table 9 Ranibizumab safety data

	READ-2 study	RESOLVE study	RESTORE study	RISE study	RIDE study
Number of patients					
IVR: n=42; L: n=42; IVRL: n=42			IVR0.3: n=51; IVR0.5: n=51; C: n=49		
IVR0.3: n=116; IVRL: n=118; L: n=111			IVR0.3: 125; IVR0.5: 126; C: 123		
IVR0.5: n=10; L: n=12 (11%)			IVR0.3: 26%; IVR0.5: 21%; C: 19%		
Ocular adverse events					
Eye pain	NR				
IVR0.3: n=9 (18%); IVR0.5: n=9 (18%); C: n=10 (20%)			IVR0.3: 54%; IVR0.5: 52%; C: 32%		
Conjunctival hyperaemia	NR				
IVR0.3: n=10 (20%); IVR0.5: n=13 (25%); C: n=7 (14%)			IVR0.3: 20%; IVR0.5: 14%; C: 2%		
Conjunctival haemorrhage	NR				
IVR0.3: n=6 (12%); IVR0.5: n=15 (29%); C: n=1 (2%)			IVR0.3: 15.2%; IVR0.5: 18.5%; C: 11%		
IOP increase	NR				
IVR: n=1 (2%); L: n=4 (10%); IVRL: 3 (7%); L: n=1 (2%)			IVR0.3: 3.2%; IVR0.5: 3.2%; C: 13%		
Vitreous haemorrhage	NR				
Substantial worsening of DMO					
Retinal ischaemia	NR				
Retinal artery occlusion	NR				
Endophthalmitis	NR				
Retinal detachment	NR				
Neovascularisation	NR				
Traumatic cataract	NR				
Uveitis	NR				
Macular oedema	NR				
Retinal exudates	NR				

Continued
Event	READ-2 study	RESOLVE study	RESTORE study	RISE study	RIDE study
Retinal haemorrhage	NR	NR	NR	IVR0.3: 12.8%; IVR0.5: 12.7%; C: 20.3%; IVR0.3: 16.8%; IVR0.5: 11.9%; C: 14.6%	IVR0.3: 15.2%; IVR0.5: 22.6%; C: 18.9%
Cataract	NR	NR	NR	IVR0.3: 13.6%; IVR0.5: 11.1%; C: 15.4%	IVR0.3: 8.8%; IVR0.5: 12.9%; C: 15%
Vitreous detachment	NR	NR	NR	IVR0.3: 15.2%; IVR0.5: 11.1%; C: 10.6%	IVR0.3: 3.2%; IVR0.5: 3.2%; C: 7.9%
Ocular hyperemia	NR	NR	NR	IVR0.3: 12.8%; IVR0.5: 14.3%; C: 9.5%	IVR0.3: 7.2%; IVR0.5: 8.1%; C: 3.1%
Vitreous floaters	NR	NR	NR	IVR0.3: 13.6%; IVR0.5: 11.1%; C: 15.4%	IVR0.3: 5.6%; IVR0.5: 5.6%; C: 3.1%
Eye irritation	NR	NR	NR	IVR0.3: 10.4%; IVR0.5: 9.5%; C: 6.5%	IVR0.3: 8%; IVR0.5: 2.4%; C: 5.5%
Foreign body sensation in eyes	NR	NR	NR	IVR0.3: 12.8%; IVR0.5: 7.1%; C: 4.1%	IVR0.3: 3.2%; IVR0.5: 7.9%; C: 7.3%
Systematic adverse events	Stroke in 1 pt (2%) in IVRL group- not related to study drug	IVR0.3: n=0; IVR0.5: n=3 (6%); C: n=2 (4%)	IVR: n=6 (5%); IVRL: n=1 (<1%); L: n=1 (<1%)	IVR0.3: 3.2% (n=1 stroke); IVR0.5: 7.9% (n=5 strokes); C: 7.3% (n=2 strokes)	IVR0.3: 1.6% (stroke), 5.6% (heart attack); IVR0.5: 2.4% (stroke), 2.4% (heart attack); C: 1.6% (stroke), 5.6% (heart attack)
Arterial thromboembolic events	NR	IVR0.3: n=4 (8%); IVR0.5: n=5 ((10%); C: n=5 (10%)	IVR: n=9 (8%); IVR0.3: n=6 (5%); IVR0.5: n=9 (8%); C: n=1 (<1%)	IVR0.3: 0.8%; IVR0.5: 3.2%; C: 0.8%	Serious IVR0.3: 1.6%; IVR0.5: 1.6%; C: 0%
Hypertension	NR	IVR0.3: n=1 (2%); IVR0.5: n=1 (2%); C: n=0	IVR: n=1 (<1%); IVR0.3: n=0; IVR0.5: n=1 (<1%); L: n=0	NR	NR
Non-ocular haemorrhage	NR	NR	NR	NR	NR
Proteinuria	NR	NR	NR	IVR: n=1 (<1%); IVR0.3: n=1 (<1%); L: n=0	NR
Deaths	1 (2%) due to CVA in IVRL group	NR	NR	IVR: n=2 (2%); IVR0.3: n=2 (2%); IVR0.5: n=2 (2%); C: 0.8%	IVR0.3: 3.2%; IVR0.5: 4.8%; C: 1.6%

C, control; DMO, diabetic macular oedema; IOP, intraocular pressure; IVR, intravitreal ranibizumab; IVRL, intravitreal ranibizumab plus laser; L, laser; NR, not reported.
Table 10 Bevacizumab safety

Number of patients	BOLT study	Lam et al	Faghihi et al
MLT: n=38; IVB: n=42	IVB1.25, n=26; IVB2.5, n=26	IVB1.25 n=40 IVB 1.25 plus MLT n=40	

Ocular adverse events

Event	MLT	IVB
Loss of -15 or -30 ETDRS letters	n=1 transient, 3 at 24 month analysis; n=4 transient	No significant ocular events (IOP increase, retinal tear, retinal detachment, endophthalmitis); no significant difference in change in cataract scores between groups
Vitreous haemorrhage	n=1; n=0	
Eye pain/irritation/watering during or after injection	n=0; n=8	
Red eye after injection	n=0; n=8	
Endophthalmitis	NR	
Transient IOP increase	≥30 mm Hg—MLT: 0; IVB: n=4; ≥45 mm Hg—MLT: n=1; IVB: n=1	
Floaters after injection	n=0; n=2	
Corneal epithelial defect	n=0; n=1	
Vitreomacular traction with macular oedema	n=1; n=0	

Systematic adverse events

Event	MLT	IVB
Anaemia	n=1; n=0	No systematic adverse effects (1 patient in 1.25 mg group with foot gangrene requiring amputation due to worsening diabetic neuropathy, considered unrelated to treatment)
Vomiting after FFA	n=0; n=0	
Uncontrolled hypertension	n=0; n=1	
Polymyalgia rheumatica	n=0; n=1	
Intermittent claudication	n=0; n=1	
Gastroenteritis	n=0; n=1	
Fall	n=2; n=0	
Urinary tract infection	n=0; n=1	
Chest infection	n=0; n=1	
Headaches, dizziness, tiredness	n=0; n=1	
Bell palsy	n=1; n=0	
Admission for diabetic foot ulcer	n=1; n=1	
Admission for cholecystectomy	n=0; n=1	
Admission for fall/loss of consciousness	n=1; n=0	
Angina—hospital admission	n=1; n=0	
Cerebrovascular accident	n=1; n=0	
Myocardial infarction	n=0; n=2	
Coronary artery bypass graft	n=0; n=1	
Dyspnea, chest pain–admitted for hospital observation	n=0; n=1	
Death	NR	

ETDRS, Early Treatment Diabetic Retinopathy Study; FFA, fundus fluorescein; IOP, intraocular pressure; IVB, intravitreal bevacizumab; MLT, macular laser therapy; NR, not reported.
Lim et al55 (n=111) also evaluated the combination of bevacizumab plus triamcinolone when compared with bevacizumab alone or triamcinolone alone. At 12 months, the authors found no statistically significant difference between groups for BCV A or CMT.

The Efficacy Study of Triamcinolone and Bevacizumab Intravitreal for Treatment of Diabetic Macular Oedema (ATEMD) study, currently only published in abstract form, compared combined therapy with bevacizumab (1.25 mg) and triamcinolone (4 mg) with each of these alone.56 At 6 months, they found no statistically significant difference between groups. One study comparing bevacizumab with ranibizumab is discussed above.51 No bevacizumab trials were suitable for meta-analysis because treatment arms were not comparable among included studies.

Adverse events are shown in tables 10 and 16. There was a low frequency of adverse events reported in the included trials. A higher incidence of mild anterior chamber reaction was reported in bevacizumab groups compared with controls. The incidence of IOP increase was comparable between bevacizumab and laser. Soheilian et al41 were the only authors to report the incidence of lens opacity. No patients in the bevacizumab alone group were found to have lens opacities but in four patients (8\%) in the bevacizumab plus triamcinolone group, this finding was observed over the 36-week follow-up period.

Pegaptanib

Two studies have evaluated pegaptanib in DMO and both compared it with sham injection (table 5). Cunningham et al57 compare three doses of pegaptanib (0.3, 1 and 3 mg) and sham injection in laser-naive patients (n=172). At 6 months, patients in the 0.3 and 1 mg groups performed statistically significantly better than those in either the 3 mg or sham groups. Six injections (median) were administered in the 0.3 and 1 mg groups, whereas only five (median) injections were administered in the 3 mg group.

The second trial (n=260), reported by Sultan and colleagues in 2011, compared pegaptanib (0.3 mg) and sham injection. At 2 years, the pegaptanib group showed a statistically significantly greater improvement in mean BCV A compared with sham.40 However, there was no statistically significant difference in the proportion of patients with an improvement of 10 letters or more. Patients were allowed rescue laser at the assessors’ discretion (25.2\% of patients in the pegaptanib group and 45\% of patients in the sham group received rescue treatment). In regard to meta-analysis, data were only available to combine these trials for the proportion of patients with more than 15 letter gain. Although neither trial individually demonstrated a statistically significant difference favouring pegaptanib over sham (figure 5), when pooled together in meta-analysis, a statistically significant difference was found in favour of pegaptanib (OR 1.94, 95\% CI 1.01 to 3.71).

Number of patients	Cunningham et al/Adamis et al57	Sultan et al40
Ocular adverse events	IVP0.3, n=44 eyes; IVP1, n=44 eyes; IVP3, n=42 eyes	IVP, n=133 eyes; C, n=127 eyes
Eye pain	Pegaptanib: 31%; C: 17%	IVP: 11.1%; C: 7%
Vitreous haemorrhage	Pegaptanib: 22%; C: 7%	IVP: 6.3%; C: 7.7%
Punctate keratitis	Pegaptanib: 18%; C: 17%	IVP: 11.8%; C: 6.3%
Cataract	Pegaptanib: 13%; C: 10%	IVP: 8.3%; C: 9.2%
Eye discharge	Pegaptanib: 11%; C: 10%	NR
Conjunctival haemorrhage	Pegaptanib: 10%; C: 0%	IVP: 22.2%; C: 14.1%
Vitreous opacities	Pegaptanib: 9%; C: 5%	NR
Blurred vision	Pegaptanib: 7%; C: 5%	NR
Other vitreous disorder	Pegaptanib: 7%; C: 0%	NR
Other visual disturbance	Pegaptanib: 7%; C: 0%	NR
Culture-negative endophthalmitis	Pegaptanib: n=1	NR
IOP increase	NR	IVP: 17.4%; C: 6.3%
Retinal haemorrhage	NR	IVP: 6.3%; C: 10.6%
Retinal exudates	NR	IVP: 6.3%; C: 5.6%
Conjunctivitis	NR	IVP: 5.6%; C: 4.2%
Lacrimation increased	NR	IVP: 5.6%; C: 2.8%
Diabetic retinal oedema	NR	IVP: 11.1%; C: 17.6%
Macular oedema	NR	IVP: 9.7%; C: 11.6%
Systemic adverse events		
Non-ocular hypertension	NR	IVP: 13.9%; C: 9.9%
Cardiac disorders	NR	IVP: 6.9%; C: 5.6%
Deaths	NR	IVP: n=4

IOP, intraocular pressure; IVP, intravitreal pegaptanib; NR, not reported.
Adverse events for pegaptanib are shown in table 11. There was a higher incidence of eye pain compared to control (31% vs 17%). Cataract formation was similar between the pegaptanib and control groups. There was a higher incidence of IOP increase in the pegaptanib arm compared to control (17.4% vs 6.3%). Other anti-VEGF A fibers have been evaluated in the Da Vinci study (n=219) (table 5). Four regimens of aflibercept (0.5 mg 4 weekly, 2 mg 4 weekly, 2 mg monthly for 3 months, then every 8 weeks, and 2 mg monthly for 3 months followed by treatment as required) were compared with laser. At 6 months, all aflibercept arms had a statistically better BCVA and CMT change than the laser arm. The regimen that resulted in the greatest BCVA gain and CMT reduction was 2 mg every 4 weeks; however, statistical significance between aflibercept arms was not reported. One year extended follow-up showed that all aflibercept arms were found to have a statistically significantly better BCVA compared to laser.

Adverse events are shown in table 12. There was a higher incidence of IOP increase and eye pain in the aflibercept group compared with laser. Other adverse events were too infrequent to draw meaningful conclusions. The incidence of cataracts was not reported.

Table 12 Aflibercept safety

Number of patients	DA VINCI 2010^{30 58}
Ocular adverse events	IVVTE (all doses) n=175, laser n=44
Conjunctival hemorrhage	At 6 months: Laser 18.2%, IVVTE 18.9%
IOP increase	At 12 months: Laser 18.2%, IVVTE 26.9%
Eye pain	At 6 months: Laser 2.3%, IVVTE 9.7%
At 12 months: Laser 2.3%, IVVTE 9.7%	
Ocular hyperaemia	At 6 months: Laser 4.5%, IVVTE 6.3%
Vitreous floaters	At 12 months: Laser 4.5%, IVVTE 6.3%
Endophthalmitis	At 6 months: Laser 0%, IVVTE 1.1%
Uveitis	At 12 months: Laser 0%, IVVTE 1.1%
Diabetic retinal oedema	At 6 months: Laser 2.3%, IVVTE 0.6%
At 12 months: Laser 0%, IVVTE 0.6%	
Visual acuity reduced	At 6 months: Laser 2.3%, IVVTE 0%
At 12 months: Laser 2.3%, IVVTE 0%	
Vitreous hemorrhage	At 6 months: Laser 2.3%, IVVTE 0%
At 12 months: Laser 2.3%, IVVTE 0%	
Corneal abrasion	At 6 months: Laser 0%, IVVTE 0.6%
At 12 months: Laser 0%, IVVTE 0.6%	
Retinal tear	At 6 months: Laser 0%, IVVTE 0.6%
At 12 months: NR	
Systematic events	
Hypertension	At 6 months: Laser 6.8%, IVVTE 9.7%
At 12 months: Laser 0%, IVVTE 1.7%	
Myocardial infarction	At 6 months: Laser 0%, IVVTE 1.1%
At 12 months: Laser 0%, IVVTE 1.1%	
Cerebrovascular event	At 6 months: Laser 0%, IVVTE 1.1%
At 12 months: Laser 2.3%, IVVTE 1.7%	
Death	At 6 months: Laser 0%, IVVTE 1.7%
At 12 months: Laser 2.3%, IVVTE 4%	

IOP, intraocular pressure; IVVTE, intravitreal vascular endothelial growth factor Trap Eye.

Other anti-VEGF

Aflibercept has been evaluated in the Da Vinci study (n=219) (table 5). Four regimens of aflibercept (0.5 mg 4 weekly, 2 mg 4 weekly, 2 mg monthly for 3 months, then every 8 weeks, and 2 mg monthly for 3 months followed by treatment as required) were compared with laser. At 6 months, all aflibercept arms had a statistically better BCVA and CMT change than the laser arm. The regimen that resulted in the greatest BCVA gain and CMT reduction was 2 mg every 4 weeks; however, statistical significance between aflibercept arms was not reported. One year extended follow-up showed that all aflibercept arms were found to have a statistically significantly better BCVA compared to laser.

Adverse events are shown in table 12. There was a higher incidence of IOP increase and eye pain in the aflibercept group compared with laser. Other adverse events were too infrequent to draw meaningful conclusions. The incidence of cataracts was not reported.

Steroids

Dexamethasone

Two included trials assessed the use of dexamethasone to treat DMO (table 6): Haller 2010 (full text available) and Callanan (available to date only in an abstract form). Haller 2010 (n=171) compared two doses of dexamethasone, administered as an intravitreal implant (350 and 700 µm) through a 20-gauge transcleral incision, with no treatment. At 90 days only, the 700 µm group showed a statistically significantly higher proportion of patients with 10 or more letter gain...
Two trials assessed fluocinolone implant for DMO (table 6). The FAME study (n=956) compared two doses of fluocinolone (0.2 and 0.5 µg/day) with sham injection in patients with at least one prior laser treatment. Approximately 25% of patients in each group had more than one prior laser treatment. At 24 months, both doses of fluocinolone showed a statistically significant improvement in mean BCVA compared to sham. There was no modest difference between fluocinolone groups. Rescue laser was given after the first 6 weeks for persistent oedema and was allowed every 3 months. A range of 35–37% of patients in the fluocinolone group and 59% in the sham injection group required rescue laser. Extended follow-up at 36 months showed that both the fluocinolone arms continued to result in a statistically significant benefit compared with sham.

Pearson et al (n=196) compared fluocinolone (0.59 mg) with standard of care, either laser or no treatment. At 3 years, there was no statistically significant difference in the proportion of patients with 15 letter gain or more (31% fluocinolone compared with 20% standard of care) between groups and the proportion of patients losing 15 letters or more in the fluocinolone group (17% compared with 14%). Increased incidence of cataracts may have contributed to this difference.

These trials were not suitable for meta-analysis. Adverse events are shown in table 13. Following the demonstration in the FAME trial that a lower dose was about as good as higher ones, the higher doses are unlikely to be used.

Table 13 Dexamethasone safety

Ocular adverse events	Callanan et al	Haller et al
IOP elevation	DIL: 20% (p<0.001); 1% ≥10 mm Hg; 1.6%; 0% ≥10 mm Hg	DDS350: 29.1%; DDS700: 26.4%; C: 1.8%
Cataract	NR	DDS350: 18.2%; DDS700: 9.4%; C: 3.5%
Anterior chamber cells	NR	DDS350: 14.5%; DDS700: 9.4%; C: 0%
Anterior chamber flare	NR	DDS350: 14.5%; DDS700: 7.5%; C: 0%
Vitreous haemorrhage	NR	DDS350: 7.3%; DDS700: 17%; C: 0%
Eye pain	NR	No significant differences in: reduced VA, eye irritation, abnormal sensation in eye, macular oedema, eye pruritus, retinal hemorrhage, DR, nonocular events
Vitreous floaters	NR	

DIL, dexamethasone followed by laser; DDS, dexamethasone; IOP, intraocular pressure; NR, not reported.
Triamcinolone
Ten trials evaluating triamcinolone were identified (tables 7 and 8). All trials evaluated intravitreal administration of triamcinolone, but there were no trials evaluating posterior or anterior subtenon injections. Two trials used Trivaris, two trials used Kenacort, one trial used Kenalog, one trial used Trimahexal and four trials did not report the type of triamcinolone used. Three doses were assessed in the included studies (1, 4 and 8 mg) and triamcinolone has been combined with laser or bevacizumab.

Ip and colleagues (n=840) were the only authors to evaluate triamcinolone 1 mg (Trivaris). They found a statistically significant improvement in mean BCVA at 2 years in the laser group compared with the triamcinolone group and no significant difference between 1 compared with 4 mg.

Several trials compared 4 mg intravitreal triamcinolone. Ip and colleagues (n=840) found that laser therapy resulted in a greater improvement in mean BCVA at 2 years compared to 4 mg triamcinolone (Trivaris). Lam et al (n=111) found no

Number of patients	FAME study (Campochiaro et al)	Pearson et al
IOP at 12 months	NR	NR
Progression of cataract	NR	NR
Cataract	NR	SRFA: 55.9%; SOC: 21.7%
Transient vitreous floaters	NR	NR
Transient subconjunctival haemorrhage	NR	NR
Cataract surgery	SRFA0.2: 41.1% (74.9% of those without cataract surgery at baseline, 80% at 36 months); SRFA0.5: 50.9% (84.5% of those without cataract surgery at baseline, 87.2% at 36 months); C: 7% (23.1% of those without cataract surgery at baseline, 27.3% at 36 months)	NR
Glaucoma	SRFA0.2: 1.6%; SRFA0.5: 2.3%; C: 0.5%	NR
Increased IOP	SRFA0.2: 3.2%; SRFA0.5: 3.3%; C: 0%	SRFA: 69.3%; SOC: 11.6%
IOP >30 mm Hg at any point during 36 months	SRFA0.2: 18.4%; SRFA0.5: 22.9%; C: 4.3%	NR
Trabeculectomy	SRFA0.2: 2.1%; SRFA0.5: 4.8%; C: 0%	NR
Other glaucoma surgery	SRFA0.2: 1.3%; SRFA0.5: 1.3%; C: 0.5%	NR
Trabecuoplasty	SRFA0.2: 0.8%; SRFA0.5: 2.3%; C: 0%	NR
Vitreous haemorrhage	NR	SRFA: 40.2%; SOC: 18.8%
Abnormal sensation in eye	NR	SRFA: 37%; SOC: 11.6%
Macular oedema	NR	SRFA: 34.6%
Eye pain	NR	SRFA: 26.8%; SOC: 15.9%
Eye irritation	NR	SRFA: 22%; SOC: 10.1%
Increased lacrimation	NR	SRFA: 22%; SOC: 8.7%
Photophobia	NR	SRFA: 21.3%; SOC: 21.7%
Blurred vision	NR	SRFA: 21.3%; SOC: 15.9%
Vitreous floaters	NR	SRFA: 21.3%; SOC: 8.7%
Systemic adverse events	SRFA0.2: 12%; SRFA0.5: 13.2%; C: 10.3%	SRFA: 38.6%; SOC: 21.7%
Serious cardiovascular events	SRFA0.2	NR
Pruritus	NR	SRFA: 38.6%; SOC: 21.7%
Deaths	NR	NR

IOP, intraocular pressure; NR, not reported; SOC, standard of care; SRFA, fluocinolone.
Ocular adverse events	Number of patients	DRCR Network 2008 (Ip et al/Beck et al/ Bressler et al)	Gillies et al/Sutter et al^{22-61, 63, 64}	Kim et al⁶⁵	Lam et al⁶⁴	Ockrim et al/Sivaprasad et al⁴²⁻⁶²
Number of patients		At 2 years (or 3 years when indicated)	At 2 years	Not reported	–	At 12 months
IOP ≥30 mm Hg		IVT1: n=22; IVT4: n=53; L: n=3	NR	NR	–	IVT: IOP significantly higher than in L group (18.2 mm Hg, range 12–26 mm Hg); no cases of glaucoma
IOP >22 mm Hg		NR	NR	NR	–	NR
IOP ≥10 mm Hg from baseline		IVT1: n=41; IVT4: n=85; L: n=12	NR	NR	–	NR
IOP ≥5 mm Hg		NR	IVT: 68% (p=0.007 vs C); C: 10%	NR	–	NR
IOP lowering medication used		IVT1: n=31; IVT4: n=76; L: n=25	IVT: 44% (p=0.0002 vs C); C: 3%	IVT: 64% (p<0.001); L: 24%	–	NR
Cataract surgery		IVT1: 23% (of those phakic at baseline, 46% by 3 years (p<0.001 between all groups); IVT4: 51% (of those phakic at baseline, 83% by 3 years); L: 13% (of those phakic at baseline, 31% by 3 years)	NR	–	–	NR
Ptosis		NR	NR	NR	–	NR
Retinal detachment		IVT1: n=2; IVT4: n=4; L: n=2	NR	NR	None	NR
Retinal vein occlusion		IVT1: n=1; IVT4: n=2; L: n=3	NR	NR	–	NR
Retinal artery occlusion		IVT1: n=0; IVT4: n=0; L: n=1	NR	NR	–	NR
Anterior ischemic optic neuropathy		IVT1: n=1; IVT4: n=0; L: n=0	NR	NR	–	NR
Vitrectomy		IVT1: n=26; IVT4: n=19; L: n=31	NR	NR	–	NR
Open angle glaucoma		IVT1: n=2; IVT4: n=7; L: n=2	NR	NR	–	NR
Glaucoma filtering surgery		IVT1: n=0; IVT4: n=0; L: n=0	NR	NR	–	NR
Laser trabeculoplasty		IVT1: n=0; IVT4: n=1; L: n=0	IVT: n=2; C: n=0	IVT: n=1	NR	NR
Ciliary body destruction		IVT1: n=0; IVT4: n=1; L: n=0	NR	NR	–	NR

Continued
Table 15	DRCR Network 2008 (Ip et al/Beck et al/Bressler et al)	Gillies et al/ Sutter et al\(^2\) 136–138	Gillies et al\(^3\)	Kim et al\(^5\)	Lam et al\(^4\)	Ockrim et al/ Sivaprasad et al\(^2\) 62
Endophthalmitis	IVT: n=0; IVT4: n=0 L: n=0	(Infectious) IVT: n=1; C: NR	(Culture-negative) IVTL: n=1	None	(sterile) IVT: n=1	
Pseudoendophthalmitis	IVT: n=0; IVT4: n=0 L: n=0	NR	NR	NR	NR	
Chemosis	NR	NR	NR	NR	NR	
Percentage of increase in cataract scores	NR	NR	NR	NR	NR	
Ocular hypertension (>21 mm Hg)	NR	NR	NR	NR	NR	
Cataract progression	NR	NR	NR	NR	NR	
Cataract surgery	NR	IVT: NR; C: n=1	NR	NR	NR	
Corneal decompensation	NR	IVT: NR; C: n=1	NR	NR	NR	
Vitreous haemorrhage	NR	IVT: n=1	NR	NR	NR	
Lens opacity	NR	IVT: n=1	NR	NR	NR	
Deaths	N=33, unrelated to study treatment	IVT: n=1; C: n=2	IVT: n=2; L: n=1	NR	NR	

CPL, control plus laser; IOP, intraocular pressure; NR, not reported; IVT, intravitreal triamcinolone; IVTL, intravitreal triamcinolone plus laser; RDL, ranibizumab plus deferred laser; RPL, ranibizumab plus laser; TPL, triamcinolone plus laser.
Number of patients	Ahmadieh31 (Oliveira Neto et al)56	ATEMD 2011	DRCR Network 2010 (Elman et al.,)51, 46	Lim et al65	Soheilian et al87, 41
Ocular adverse events					
Mild anterior chamber reaction	IVB: 19.5% (n=8 eyes), resolved after 1 week of no treatment; IVB/IVT: 18.9% (n=7 eyes), resolved after 1 week of no treatment	NR	NR	NR	IVB: 20% (n=10 eyes), resolved after 1 week; IVB/IVT: 18% (n=9 eyes), resolved after 1 week
Marked anterior chamber reaction	IVB: n=1 (topical corticosteroid and cycloplegic drops)	NR	NR	NR	IVB: n=1 (topical corticosteroids and cycloplegic drops); IVB: n=1 with no sign of retinal traction
Progression of fibrous proliferation	IVB: n=1 with no sign of retinal traction	NR	NR	NR	
Vitreous haemorrhage	IVB/IVT: n=1 after third injection (excluded from study)	NR	NR	NR	
OIP rise	IVB: 23, 22 and 28 mm Hg at 6, 12 and 18 weeks (anti-glaucoma drops)	NR	IOP elevation more frequent with triamcinolone + PL	IVB/IVT: 8.3%	NR
IOP ≥10 mm Hg from baseline	NR	NR	CPL: n=16; RPL: n=10; RDL: n=5; TPL: n=70	NR	
IOP ≥30 mm Hg from baseline	NR	NR	CPL: n=3; RPL: n=2; RDL: n=4; TPL: n=46	NR	
Initiation of IOP lowering treatment at any visit	NR	NR	CPL: n=9; RPL: n=5; RDL: n=4; TPL: n=41	NR	
Iris neovascularisation	None	NR	NR	NR	
Lens opacity	None	NR	NR	NR	
Endophthalmitis	NR	NR	CPL: n=1; RPL: n=1; RDL: n=1; TPL: n=0	NR	
Pseudoendophthalmitis	NR	NR	CPL: n=1; RPL: n=0; RDL: n=0; TPL: n=1	NR	
Ocular vascular event	NR	NR	CPL: n=1; RPL: n=1; RDL: n=0; TPL: n=2	NR	
Retinal detachment	NR	NR	CPL: n=0; RPL: n=1; RDL: n=1; TPL: n=0	NR	
Vitrectomy	NR	NR	CPL: n=7; RPL: n=0; RDL: n=3; TPL: n=0	NR	
Vitreous haemorrhage	NR	NR	CPL: n=15; RPL: n=3; RDL: n=4; TPL: n=2	NR	

Continued
Table 16 Continued

	Ahmadieh31	ATEMD 2011 (Oliveira Neto et al)56	DCR Network 2010 (Elman et al)21, 46	Lim et al66	Soheilian et al37, 41
Cataract surgery	NR	NR	CPL: 11 (of those phakic at baseline); RPL: 6 (of those phakic at baseline); RDL: 8 (of those phakic at baseline); TPL: 19 (of those phakic at baseline)	NR	NR
Glaucoma surgery	NR	NR	NR	NR	NR
Retinal neovascularisation	NR	NR	NR	NR	NR
Development of early PDR	NR	NR	NR	NR	NR
Progression to high-risk PDR	NR	NR	NR	NR	NR
Ocular hypertension (≥23 mm Hg)	NR	NR	NR	NR	NR
Systemic adverse events					
Acute myocardial infarction	N=1, considered not to be related to the study drug	No specific systemic adverse events that could be attributed to chance	No significant blood pressure increase, no thromboembolic events		
Deaths	C: n=1				

C, control; CPL, control plus laser; DMO, diabetic macular oedema; IOP, intraocular pressure; IVB, intravitreal bevacizumab; IVR, intravitreal ranibizumab; IVRL, intravitreal ranibizumab plus laser; IVT, intravitreal triamcinolone; L, laser; NR, not reported; PDR, proliferative diabetic retinopathy; RDL, ranibizumab plus deferred laser; RPL, ranibizumab plus laser; TPL, triamcinolone plus laser.
statistically significant difference between laser and triamcinolone at 6 months (triamcinolone type not reported). When these two trials were pooled through meta-analysis, the treatment effect favoured laser but the differences were not statistically significant (figure 6). Ockrim et al 62 (n=88) compared 4 mg intravitreal triamcinolone (Kenalog) with laser alone. At 12 months, they found no statistically significant BCVA improvement between the triamcinolone and laser groups. Gillies et al 32 (n=69) compared 4 mg of triamcinolone (Kenacort) with sham injection. Mean BCVA improved statistically significantly with triamcinolone at 24 months compared with sham injection (3.1 letter gain compared with 2.9 letter loss, p=0.01).

Table 2. Mean change in BCVA

Study or Subgroup	Ranibizumab 0.5 mg (Mean ± SD)	Laser alone (Mean ± SD)	Std. Mean Difference IV, Random, 95% CI	Std. Mean Difference IV, Random, 95% CI
READ-2 2009	0.14 ± 0.17	-0.01 ± 0.16	0.24 ± 0.16	0.34 [0.21, 0.48]
RESTORE 2011	0.12 ± 0.13	0.02 ± 0.17	0.25 ± 0.16	0.35 [0.22, 0.48]
Total (95% CI)	152	0.13 ± 0.17	0.24 ± 0.16	0.46 [0.25, 0.67]

Figure 2 Ranibizumab 0.5 mg alone versus laser alone. (A) Mean change in best corrected visual acuity. (B) Proportion with >15 letter gain. (C) Central macular thickness.

Table 3. Proportion with >15 letter gain

Study or Subgroup	Ranibizumab 0.5 mg (Mean ± SD)	Laser alone (Mean ± SD)	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
READ-2 2009	0.08 ± 0.18	0.14 ± 0.12	0.79 [0.50, 1.26]	0.80 [0.51, 1.27]
RESTORE 2011	0.12 ± 0.16	0.13 ± 0.13	0.89 [0.50, 1.60]	0.90 [0.51, 1.50]
Total (95% CI)	160	158	0.76 [0.49, 1.19]	0.80 [0.51, 1.27]

Figure 3 Ranibizumab 0.5 mg plus laser versus ranibizumab 0.5 mg alone. (A) Mean change in best corrected visual acuity. (B) Proportion with >15 letter gain. (C) Central macular thickness.
Lam et al. (n=111) compared triamcinolone 4 mg alone with 4 mg of triamcinolone plus laser or laser alone. At 6 months, the authors found no difference in BCV A between any of the groups. Elman et al. (n=854) compared 4 mg of triamcinolone (Trivaris) plus laser with ranibizumab plus prompt (within 3–10 days) or deferred (more than 24 week) laser and laser alone. At 2 years, they found a statistically significant difference in mean BCV A between ranibizumab plus prompt/deferred laser compared with laser alone (7 letter gain/9 letter gain compared with 3 letter gain), but no difference with triamcinolone plus laser compared with laser alone (2 letter gain compared with 3 letter gain). Neto et al. (n=120) compared 4 mg triamcinolone alone (triamcinolone type not reported) with 4 plus 1.25 mg bevacizumab. At 6 months, they found no statistically significant difference between groups.

The Elman and Lam studies were suitable for meta-analysis, which showed non-statistically significant improvements in mean BCV A between triamcinolone plus laser compared with laser alone (figure 7).

Adverse events are shown in tables 15 and 16. Triamcinolone was associated with consistently higher incidences of IOP increase and cataracts. Gilles and colleagues reported a cataract rate of over 50% by 3 years in patients treated with triamcinolone.

Other pertinent studies
Only one study in abstract form directly compared bevacizumab with ranibizumab. Bevacizumab and ranibizumab have been compared through an indirect comparison of five trials. There was no evidence of a difference between the drugs; however, wide credible intervals meant that the superiority of either drug could not be excluded.

Two-year results of the CATT (Comparison of AMD Treatment Trials) and 1 year results of the IVAN (Inhibit VEGF in Age-related choroidal Neovascularisation), recently published, have demonstrated a good safety profile of anti-VEGF therapies when used to treat patients with age-related macular degeneration. The CATT study randomised 1208 patients with AMD to monthly or as required injection of either ranibizumab or bevacizumab. At 1 year, the mean BCVA was similar in

Figure 4 Ranibizumab 0.5 mg plus laser versus laser alone. (A) Mean change in best corrected visual acuity. (B) Proportion with >15 letter gain. (C) Central macular thickness.

Figure 5 Pegaptanib 0.3 mg versus sham injection. (A) Proportion with >15 letter gain.
both groups (8 letter gain in bevacizumab and 8.5 in ranibizumab). Over 2 years, the rates of deaths, myocardial infarction and stroke did not differ between the ranibizumab and bevacizumab treatment groups. However, there was a higher rate of serious adverse events in the bevacizumab group compared with the ranibizumab group. This increased event rate was driven mainly by hospitalisations (RR 1.29, 95% CI 1.01 to 1.66). However, the hospitalisations were not caused by known adverse events of bevacizumab. Arteriothrombotic events and heart failure occurred in less than 2% of participants in the IV AN, and they were more often observed in the ranibizumab group than in the bevacizumab group (p=0.03). Further data from other ongoing clinical trials may provide more insight on the safety or anti-VEGF treatment and possible differences on this respect among available drugs.

Campbell et al conducted a population-based nested case–control study of 91 378 older adults with a history of physician-diagnosed retinal disease. The authors found that neither ranibizumab nor bevacizumab was associated with significant risks of ischaemic stroke, acute myocardial infarction, congestive heart failure or venous thromboembolism.

A recent systematic review specifically assessing adverse events in anti-VEGF drugs found a low incidence of serious (below 1 in 100) and non-serious ocular events (below 1 in 500) from ranibizumab, bevacizumab and pegaptanib.60 Fung et al61 used an internet-based survey of clinicians to assess the safety of bevacizumab. The survey covered over 5000 patients and found that bevacizumab was associated with an infrequent incidence of adverse events (all less than 0.21%).

One study, which assessed diclofenac, did not meet the inclusion criteria (follow-up for only 12 weeks).71 The authors randomised 32 patients to either intravitreal diclofenac or triamcinolone and found that both diclofenac and triamcinolone reduced CMT, but a statistically significant visual improvement was observed only in the triamcinolone group.

Sfikakis et al undertook a 30-week randomised cross-over trial comparing infliximab and placebo. The study failed to meet our inclusion criteria (only 11 patients included). The authors found that infliximab resulted in a 28.6% improvement in vision compared with 4.3% with placebo. The improvement seen with placebo could be due to a ‘carry over effect’, seen in cross-over trials.

The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) trial was primarily a study to see if the lipid-lowering agent fenofibrate could reduce macrovascular and microvascular events in type 2 diabetes.73

Figure 6

Triamcinolone 4 mg versus laser alone. (A) Mean change in best corrected visual acuity. (B) Proportion with >15 letter gain.

Figure 7

Triamcinolone 4 mg plus laser versus laser alone. (A) Mean change in best corrected visual acuity. (B) Proportion with >15 letter gain.
However, a substudy within FIELD recruited 1012 patients to a retinopathy study. The primary outcome in the main study was need for laser therapy (3.4% on fenofibrate vs 4.9% on placebo), but the substudy used retinal photography to assess progression of retinopathy or development of macular oedema. The HR at 6 years for DMO was 0.69 (95% CI 0.54 to 0.87) in the fenofibrate group compared to placebo.

Ruboxistaurin is another oral agent which has been assessed for the treatment of DMO. Aiello and colleagues randomised 686 patients to receive placebo or one of three doses of ruboxistaurin. There was no statistically significant difference in delay to sight-threatening DMO in any ruboxistaurin group compared to placebo. The authors suggest that differences in laser treatment between groups may have contributed to the non-significant finding.

Assessment of heterogeneity within meta-analysis

Heterogeneity was assessed methodologically and statistically. Methodological heterogeneity was assessed by comparing the study population, interventions, outcome measures and follow-up. Studies that were not methodologically comparable were excluded from the meta-analysis. For example, bevacizumab trials were not pooled because Soheilian et al included patients who were laser naive and Ahmadi et al included patients who were unresponsive to laser. Some analyses were also excluded because sufficient details were not reported in the studies. For example, several studies failed to report SDs.

Statistical heterogeneity was assessed through I^2 scores. High statistical heterogeneity was found in two analyses (2.3 and 4.3). Therefore, these results should be interpreted with due caution. Moderate heterogeneity was found in three analyses (2.2, 3.1 and 3.2). Low heterogeneity was found in the remaining eight analyses.

Ongoing trials

There are numerous ongoing studies listed in appendix 2. The most salient studies include a study to compare ranibizumab and bevacizumab (Schmidt-Erfurth), a study investigating rescue ranibizumab treatment for patients who have failed on bevacizumab (Chaudhry), a study evaluating two algorithms for ranibizumab, ‘treat and extend’ and ‘as required’ (RETAIL), further studies of Trap-eye (VIVID and VISTA) and trials which are examining the use of NSAIDs, such as diclofenac and nepafenac (NEVANAC and Soheilian).

DISCUSSION

It appears that anti-VEGF treatment is effective in DMO, especially ranibizumab and bevacizumab. Meta-analysis of available short-term data (up to 2 years) suggests that ranibizumab is superior to laser and that adding laser to ranibizumab treatment does not confer additional benefit. Steroid treatment has demonstrated mixed success and, almost uniformly, increased the incidence of cataracts and IOP. The licence for fluocinolone takes note of this and it is positioned as a treatment when others have failed.

Strengths and limitations of the review

There are a number of strengths of this review. A robust systematic review methodology was used. Reliability was improved by excluding trials with small sample sizes or short follow-up. Since a number of trials included similar intervention arms, consistent treatment effects further improve reliability. Validity was improved by assessing the quality of trials using the Cochrane risk of bias tables. Including abstracts from ARVO provided up-to-date results. Pooling results through meta-analysis provided further evidence. The random effects model was used throughout to allow for heterogeneity among studies.

This review, however, has limitations. Although the inclusion of abstracts provides more up-to-date results, the studies contained in these abstracts could not be assessed for risk of bias and should therefore be interpreted with caution. In addition, reporting of quality assessment criteria was variable. Allocation concealment was especially poorly reported. There was only one study which compared different anti-VEGFs and none that compared steroids (fluocinolone vs dexamethasone vs triamcinolone). Therefore, it is difficult to assess the effectiveness within drug classes. As with any meta-analysis, questions of heterogeneity arise. Follow-up periods varied among studies. A difference of 6 months was allowed for studies to be pooled for meta-analysis, but this could have still resulted in heterogeneity. High statistical heterogeneity was found in a quarter of the analyses. Furthermore, because of the low number of trials included, publication bias could not be assessed by funnel plot analysis. The manufacturers funded most of the trials for ranibizumab, pegaptanib, dexamethasone and fluocinolone, whereas trials for bevacizumab and triamcinolone were generally funded by non-pharmaceutical organisations. Generally, non-commercial studies had smaller numbers, perhaps because of the funding restraints.

It is important to note that there may be differences in laser treatment protocol between studies. This applies to trials which combine drug treatments with laser or include laser as a comparator. All studies referred to the ETDRS protocol or a modified version of it. In the ETDRS, once a diagnosis of clinically significant macular oedema was made, an angiogram was obtained to identify ‘treatable lesions’. ‘Treatable lesions’ included discrete points of retinal hyperfluorescence or leakage (most of these are often microaneurysms), areas of diffuse leakage within the retina related to microaneurysms, intraretinal microvascular abnormalities, diffusely leaking retinal capillary bed and retinal avascular zones. In the ETDRS protocol, treatment of lesions closer than 500 microns from the centre of the macula was not required initially; however, if vision was less than 20/40 and the oedema and leakage persisted, treatment up to 300 microns from the centre of the macula was
recommended unless there was capillary dropout; in the latter case, treatment was not recommended as it may lead to further loss of perifoveal capillaries.

However, in routine clinical practice, clinicians generally use lighter and less intense treatment than specified in the ETDRS protocol. In addition, some centres do not use fluorescein angiography (unlike the ETDRS study) to guide treatment. The exact adherence to the ETDRS protocol within studies is unclear. For example, in the BOLT study, a modified ETDRS protocol was used. One of the aims of the protocol was ‘not darkening/whitening of microaneurysms’, which is not consistent with the ETDRS protocol.

Interpretation of the results

The anti-VEGF drugs appear to be clinically effective in treating DMO in short-term studies (up to 2 years). Ranibizumab has the most robust evidence base and has shown superiority compared to laser and sham injection in all trials and meta-analyses, except for the proportion of patients with 10 or more letter gain in the DRCR.net study published by Elman et al at 2 years follow-up. Adding laser to ranibizumab conferred no benefit. Bevacizumab has also been shown to be superior to laser. Three doses have been used (1.25, 1.5 and 2.5). The higher dose does not appear to add further benefit, and most studies in the literature use 1.25 mg. The addition of triamcinolone to bevacizumab did not provide further benefits. Pegaptanib has only been compared to sham injection. Mean change in BCVA favoured pegaptanib, but only through meta-analysis did the proportion of patients with more than 15 letter gain favour pegaptanib. Further published data are required before drawing conclusions on aflibercept. However, although the anti-VEGF drugs are a significant advance, they fail to improve BCVA by 10 or more letters in half or more patients, and so they do not provide a complete answer to DMO.

Steroid treatments have inconsistent results and are undoubtedly associated with increased IOP and cataract. The effects of dexamethasone appear to peak at 3 months. At 6 months, there was no significant difference compared with laser. This might imply that earlier retreatment is needed if the beneficial effect is to be maintained, but increasing the number of treatments would very likely increase the associated complications, especially with the relatively large needle size. The addition of laser did not appear to add further benefit. There was no significant difference in cataract formation at 6 months with dexamethasone compared to observation, but it is likely that a higher incidence of cataracts would be seen with longer follow-up. Significantly more patients suffered increased IOP in the dexamethasone group compared with observation. Fluocinolone has been shown to be effective compared with sham injection (FAME); however, when compared to standard of care (laser or observation at clinician’s discretion), there was no significant difference in the proportion of patients with a 15 letter or more gain. Both studies reported higher incidence of cataract formation in the fluocinolone group, with over 80% at 3 years at the higher dose. Results for triamcinolone are inconsistent. Ip et al found that laser was more effective, while others have found no statistically significant difference. Triamcinolone combined with laser, however, seemed to have similar efficacy as ranibizumab combined with laser in pseudophakic eyes. Triamcinolone is more effective than sham injection. Triamcinolone has consistently been associated with increased incidence of cataract and raised IOP.

Steroids and laser therapy may affect CMT in a different manner from anti-VEGF drugs. For example, when ranibizumab alone is compared with ranibizumab plus laser, it appears to be more effective in terms of mean change in BCVA and proportion of patients with more than 15 letter gain. However, ranibizumab plus laser is more effective at reducing CMT. Furthermore, when triamcinolone plus laser is compared with ranibizumab plus laser, the latter appears to be more effective in terms of change in BCVA and proportion of patients with more than 15 letter gain, but triamcinolone plus laser is more effective at reducing CMT. The reasons for this are unclear. There is a weak correlation between CMT and BCVA. However, the long-term benefits of reducing CMT are currently unknown.

No large observational studies were identified that compared anti-VEGF drugs. Using an internet-based survey, Fung et al found the incidence of adverse events in bevacizumab to be low. One small outbreak of sterile endophthalmitis was reported with a single batch of bevacizumab in Canada, emphasising the need for sterility when preparing aliquots. Curtis et al carried out a very large retrospective cohort study in 146 942 patients aged 65 and over with age-related macular degeneration (AMD). Their aim was to examine cardiovascular outcomes in patients treated with the four options: photodynamic therapy (PDT), pegaptanib, bevacizumab and ranibizumab. The authors reported that one of their comparisons showed an increase in overall mortality and stroke risk with bevacizumab compared to ranibizumab, with HRs of 0.86 (95% CI 0.75 to 0.98) and 0.78 (0.64 to 0.96), respectively. However, owing to the very large cost differences between bevacizumab and ranibizumab, the authors noted that selection bias might be operating, with poorer people (with poorer health) more likely to be treated with bevacizumab. They therefore carried out another analysis using only ophthalmological clinics which used only one drug, to avoid selection bias. This analysis showed no significant difference: overall mortality HR for ranibizumab 1.10 (95% CI 0.85 to 1.14); MI 0.87 (0.53 to 1.14); stroke 0.87 (0.61 to 1.24).

Gower et al analysed 77 886 anti-VEGF injections from Medicare data (46% ranibizumab and 54% bevacizumab). Results have only been published in abstract form. The authors found an increased risk of overall mortality and cerebrovascular events in the bevacizumab group compared with the ranibizumab group, with HRs of 1.10 (95% CI 1.01 to 1.19) and 1.10 (95% CI 1.02 to 1.19), respectively. However, the authors noted that selection bias might be operating, with poorer people (with poorer health) more likely to be treated with bevacizumab. They therefore carried out another analysis using only ophthalmological clinics which used only one drug, to avoid selection bias. This analysis showed no significant difference: overall mortality HR for ranibizumab 1.10 (95% CI 0.85 to 1.14); MI 0.87 (0.53 to 1.14); stroke 0.87 (0.61 to 1.24).
group (HR 1.11 99% CI 1.01 to 1.23 and 1.57, 1.04 to 2.37, respectively). There was no statistically significantly increased risk in the ranibizumab group. The authors acknowledge that a limitation of the study is a failure to adjust for important confounding factors (such as smoking, hypertension and hyperlipidaemia). Considering the cost difference, it is likely that patients treated with bevacizumab would have been in a lower socioeconomic class and therefore at high risk of mortality and vascular disease.

Implications for clinicians

The anti-VEGF drugs appear to be a significant advance in the treatment of DMO and are regarded now as the treatment of choice for patients affected by this condition. Studies assessing the effectiveness of steroids have reported mixed results. The high rates of cataract and increased IOP are a drawback. Triamcinolone combined with laser may be a good option for pseudophakic patients and may be more cost-effective than treatment with ranibizumab. However, the need for fewer administrations, potentially one every 3 years with fluocinolone, is advantageous. From an administration perspective, some patients might prefer infrequent steroid injections with a sizeable risk of cataract, and a small, but existent, risk of glaucoma, to frequent anti-VEGF injections, even if the potential gain may not be fully comparable. Steroids may also be considered for patients who do not adequately respond to anti-VEGFs. Currently, the role of laser in the treatment of DMO is debatable. Short-term data from available trials have demonstrated the superiority of anti-VEGF with regard to laser treatment but have failed to demonstrate a benefit of combining both treatment approaches. It is possible that some ophthalmologists may still opt to offer laser treatment to patients with very focal areas of leakage.

Currently, there is more evidence for the effectiveness of ranibizumab and bevacizumab than for pegaptanib and VEGF-trap eye. The results of direct head to head trials of ranibizumab and bevacizumab are awaited. Bevacizumab is not licensed for intraocular use but costs considerably less than other forms of therapy. Ranibizumab is licensed and more expensive, but its use is supported by large manufacturer-funded trials demonstrating its clinical effectiveness. In the UK, the General Medical Council recommends that unlicensed medications should only be prescribed if ‘an alternative, licensed medicine would not meet the patient’s needs’ and there is ‘a sufficient evidence base and/or experience of using the medication to demonstrate its safety and efficacy’. The FDA says that when using a drug ‘off-label’, clinicians ‘have the responsibility to be well informed about the product, to base its use on firm scientific rationale and on sound medical evidence, and to maintain records of the product’s use and effects’. Patients should be fully aware of the use of any unlicensed medication and consent to any safety or efficacy uncertainties.

The place of intravitreal steroids needs consideration now that we have the anti-VEGFs drugs, as does the role of laser. The anti-VEGFs drugs may now be the first-line treatment in place of laser, with laser being used selectively for focal lesions, and in sequence after anti-VEGF therapy once the retinal thickness has been reduced. However, it should be noted that about half of the patients do not get good results with anti-VEGFs. In RESTORE, only 50% of patients had gains in VA of 10 or more letters. So the anti-VEGFs are ‘game-changers’, but their impact should not be overestimated.

In those who do not respond to anti-VEGFs or laser, there remains a place for steroids, despite their high adverse effect rates. The European licence for fluocinolone recognises this, by stating that it should be used when other therapies have not had sufficient effect. The commonest adverse effect is cataract, but that is very common in people with diabetes, and many are already pseudophakic when treatment of DMO is required.

Vitreoretinal surgery for the treatment of DMO was not included in our review. Laidlaw reviewed the literature and only found evidence for vitrectomy when there were signs of clinical or OCT traction. However, even in these cases, the evidence was not strong.

Implications for policy makers

In the UK, the National Institute of Health and Clinical Excellence (NICE) has recently made the decision not to recommend ranibizumab for the treatment of DMO. NICE concluded that ranibizumab, although clinically effective, was not cost-effective compared to laser therapy. Bevacizumab is less than a tenth of the cost of ranibizumab but is unlikely to be licensed. This beckons the question as to whether policy makers should recommend cheaper unlicensed medications over a more expensive licensed alternative when their efficacy and side effects appear to be similar.

Unanswered questions

Several unanswered questions remain. Studies evaluating the effectiveness of ranibizumab compared with bevacizumab are needed. Although the anti-VEGFs are clinically effective and a major step forward in the management of DMO, it has to be noted that they have little effect in a large number of patients. Generally speaking, the proportion of patients who have demonstrated 10 or more letter gain using anti-VEGFs is between 30% to 50% in the trials that demonstrate the greatest effectiveness. Most of these patients would not achieve the 20/40 visual acuity required for driving. More effective treatments, or combinations of treatments, are required.

There is a lack of specific evidence for the use of anti-VEGF drugs or steroids in patients with macular ischaemia secondary to DMO. A number of trials excluded patients with macular ischaemia. The RESTORE trial included patients with macular...
ischaemia and undertook a subgroup analysis. The authors compared patients with (n=34) and without (n=35) macular ischaemia at baseline. They found that those without macular ischaemia responded better to ranibizumab (mean average change in BCVA at 12 months 7.2 letters gain compared with 6.3 letters). Larger trials are needed to assess the use of anti-VEGF drugs and steroids in patients with macular ischaemia.

The duration of treatment is as yet uncertain. Most of the included studies use a retreatment protocol based on clinical need or OCT results. For example, in the BOLT study, patients received a median of nine injections of bevacizumab over 24 months. However, it is not yet known for how frequent long-term maintenance injections will be needed and whether laser treatment in sequence could potentially reduce the number of anti-VEGF injections required. Other treatment strategies to apply laser, such as using laser power at subthreshold levels, may prove more effective. Future trials should use active comparators which are used in routine clinical practice and avoid placebo-controlled trials.

CONCLUSION

This review evaluated current treatments for DMO. Undoubtedly, the use of anti-VEGFs heralds a new era for patients who suffer from DMO. Currently, the anti-VEGFs ranibizumab and bevacizumab have consistently shown good clinical effectiveness without major unwanted side effects. Steroid results have been mixed and are usually associated with cataract formation and IOP increase. Based on the short-term data available, adding laser therapy to anti-VEGFs does not appear to confer additional benefit.

Despite the current wider spectrum of treatments for DMO, only a small proportion of patients recover good vision (≥20/40), and thus the search for new therapies to prevent and manage DMO needs to be continued.

Contributors JAF screened titles, checked data extraction, performed the meta-analysis and drafted the manuscript. NL conceived the idea, interpreted the results and provided clinical expertise throughout. PR performed the literature search, updated the searches, screened the titles and managed the references. CC extracted data from the studies. DS screened the titles and checked the meta-analysis. NW designed the review and supervised the running of the study. All authors contributed to the final draft.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Disclosure The authors report no proprietary or commercial interest in any product mentioned or concept discussed in this article.

Data sharing statement No additional data are available.

Protocol This review was built upon several technology appraisals for NICE, those without macular ischaemia responded better to ranibizumab (mean average change in BCVA at 12 months 7.2 letters gain compared with 6.3 letters). Larger trials are needed to assess the use of anti-VEGF drugs and steroids in patients with macular ischaemia.

The duration of treatment is as yet uncertain. Most of the included studies use a retreatment protocol based on clinical need or OCT results. For example, in the BOLT study, patients received a median of nine injections of bevacizumab over 24 months. However, it is not yet known for how frequent long-term maintenance injections will be needed and whether laser treatment in sequence could potentially reduce the number of anti-VEGF injections required. Other treatment strategies to apply laser, such as using laser power at subthreshold levels, may prove more effective. Future trials should use active comparators which are used in routine clinical practice and avoid placebo-controlled trials.

CONCLUSION

This review evaluated current treatments for DMO. Undoubtedly, the use of anti-VEGFs heralds a new era for patients who suffer from DMO. Currently, the anti-VEGFs ranibizumab and bevacizumab have consistently shown good clinical effectiveness without major unwanted side effects. Steroid results have been mixed and are usually associated with cataract formation and IOP increase. Based on the short-term data available, adding laser therapy to anti-VEGFs does not appear to confer additional benefit.

Despite the current wider spectrum of treatments for DMO, only a small proportion of patients recover good vision (≥20/40), and thus the search for new therapies to prevent and manage DMO needs to be continued.

Contributors JAF screened titles, checked data extraction, performed the meta-analysis and drafted the manuscript. NL conceived the idea, interpreted the results and provided clinical expertise throughout. PR performed the literature search, updated the searches, screened the titles and managed the references. CC extracted data from the studies. DS screened the titles and checked the meta-analysis. NW designed the review and supervised the running of the study. All authors contributed to the final draft.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Disclosure The authors report no proprietary or commercial interest in any product mentioned or concept discussed in this article.

Data sharing statement No additional data are available.

Protocol This review was built upon several technology appraisals for NICE, and therefore no protocol exists.

REFERENCES

1. Holman N, Forouhi NG, Goyder E, et al. The Association of Public Health Observatories (APHO) Diabetes Prevalence Model: estimates of total diabetes prevalence for England, 2010–2030. Diabet Med 2011;28:576–82.

2. Williams R, Airey M, Baxter H, et al. Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye (London) 2004;18:983–93.

3. Hencricson M, Sellman A, Tyberg M, et al. Progression to proliferative retinopathy and macular oedema requiring treatment. Assessment of the alternative classification of the Wisconsin Study. Acta Ophthalmol Scand 1999;77:218–23.

4. Chen E, Looman M, Laouini M, et al. Burden of illness of diabetic macular edema: literature review. Curr Med Res Opin 2010;26:1587–97.

5. Hirai FE, Knudtson MD, Klein BE, et al. Clinical significance of macular edema and survival in type 1 and type 2 diabetes. Am J Ophthalmol 2008;145:766–74.

6. Klein R, Klein BE, Moss SE, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XVII. The 14-year incidence and progression of diabetic retinopathy and associated risk factors in type 1 diabetes. Ophthalmology 1998;105:1801–15.

7. Klein R, Knudtson MD, Lee KE, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology 2009;116:497–503.

8. Knudsen LL, Lenvang HH, Lundbye-Christensen S, et al. The North Jutland County Diabetic Retinopathy Study (NCDRS) 2009;116:497–503.

9. Thomas RL, Dunstan F, Luzio SD, et al. Incidence of diabetic retinopathy in people with type 2 diabetes mellitus attending the Diabetic Retinopathy Screening Service for Wales: retrospective analysis. BMJ 2012;344:e874.

10. Wong TY, Mwamburi M, Klein R, et al. Rates of progression in diabetic retinopathy during different time periods: a systematic review and meta-analysis. Diabetes Care 2009;32:2307–13.

11. Huang ES, Brown SE, Ewigman BG, et al. Patient perceptions of quality of life with diabetes-related complications and treatments. Diabetes Care 2007;30:2478–83.

12. Shea AM, Curtis LH, Hammill BG, et al. Use and cost associated with diabetic macular edema in elderly persons. Arch Ophthalmol 2008;126:1748–54.

13. Minassian DC, Owens DR, Reidy A. Prevalence of diabetic macular edema and related health and social care resource use in England. Br J Ophthalmol 2012;96:345–9.

14. Hapich M, Reitberger U, Breitschleier L, et al. The economic burden of diabetic retinopathy in Germany in 2002. Gastes Arch Clin Exp Ophthalmol 2008;246:151–9.

15. Bhagat N, Grigorian RA, Tutela A, et al. Diabetic macular edema: pathogenesis and treatment. Surv Ophthalmol 2009;54:1–32.

16. Murata T, Ishibashi T, Khalil A, et al. Vascular endothelial growth factor plays a role in hyperpermeability of diabetic retinal vessels. Ophthalmic Res 1995;27:48–52.

17. Barile GR, Pachydiplasi SI, Tani SR, et al. The RAGE axis in early diabetic retinopathy. Invest Ophthalmol Vis Sci 2005;46:2916–24.

18. The Diabetic Retinopathy Study Research Group. Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol 1976;81:383–96.

19. Early Treatment Diabetic Retinopathy Study research group. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Arch Ophthalmol 1985;103:1796–806.

20. Early Treatment Diabetic Retinopathy Study group. Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 2. Ophthalmology 1987;94:761–74.

21. Elman MJ, Aiello LP, Beck RW, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2010;117:1064–77.

22. Ip MS, Bressler SB, Antoszyk AN, et al. A randomized trial comparing intravitreal triamcinolone and focal/grid photocoagulation for diabetic macular edema: baseline features. Retina 2008;28:919–30.

23. Michaelides M, Kaines A, Hamilton RD, et al. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: report 2. Ophthalmology 2010;117:1078–86.

24. Mitchell P, Bandello F, Schmidt-Erfurth U, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 2011;118:615–25.

25. Lovestam-Adrian M, Agardh E. Photocoagulation of diabetic macular edema—complications and visual outcome. Acta Ophthalmol Scand 2000;78:667–71.
37. Soheilian M, Ramezani A, Bijanzadeh B, Gillies MC, Sutter FK, Simpson JM, Ahmadieh H, Ramezani A, Shoeibi N, Do DV, Schmidt-Erfurth U, Gonzalez VH, Elman MJ, Bressler NM, Qin H, Kim Y, Kang S, Yi CH. Three-year follow-up of intravitreal bevacizumab vs. combination of intravitreal bevacizumab plus macular photocoagulation in clinically significant diabetic macular edema: 6 months results of a randomized clinical trial. Iran J Ophthalmol 2010;22:21–6.

38. Soheilian M, Gaffarzadeh K, Ramezani A, et al. Two-year results of a randomized trial of intravitreal bevacizumab alone or combined with triamcinolone versus laser in diabetic macular edema. Retina 2012;32:314–21.

39. Lim JW, Lee HK, Shin MC. Comparison of intravitreal bevacizumab alone or combined with triamcinolone versus triamcinolone in diabetic macular edema: a randomized clinical trial. Ophthalmologica 2012;227:100–6.

40. Oliveira Neto HL, Andrade RE, Casella M, et al. A randomized clinical trial to compare the efficacy and safety of isolated or combined intravitreal injection of bevacizumab and ranibizumab, multicenter phase II study. Diabetes Care 2010;33:2399–405.

41. Soheilian M, Ramezani A, Bijanzadeh B, et al. Intravitreal bevacizumab (avastin) injection alone or combined with triamcinolone versus macular photocoagulation as primary treatment of diabetic macular edema. Retina 2007;27:1187–95.

42. Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from phase II randomized controlled trial: RISE and RIDE. Ophthalmology 2012;119:789–801.

43. Cunningham ET Jr, Adams AP, Altaweel M, et al. A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 2005;112:1747–57.

44. Sultan MB, Zhou D, Lofts J, et al. A phase 2/3, multicenter, randomized, masked, 2-year study of visudyne and ranibizumab for the treatment of diabetic macular edema. Ophthalmology 2011;118:1107–18.

45. Soheilian M, Ramezani A, Obudi A, et al. Randomized trial of intravitreal bevacizumab alone or combined with triamcinolone versus macular photocoagulation in diabetic macular edema. Ophthalmology 2009;116:1142–50.

46. Sivaprasad S, Ockrim Z, Massaoutis P, et al. Posterior hyaloid changes following intravitreal triamcinolone and macular laser for diffuse diabetic macular edema. Retina 2008;28:1435–42.

47. Pearson PA, Comstock TL, Ip M, et al. Fluocinolone acetonide intravitreal implant for diabetic macular edema: a 3-year multicenter, randomized, controlled clinical trial. Ophthalmology 2011;118:1580–8.

48. Ohji M, Ishibashi T Sr, REVEAL study group. Efficacy and safety of ranibizumab 0.5 mg as monotherapy or adjunctive to laser versus laser monotherapy in Asian patients with visual impairment due to diabetic macular edema: 12-month results of the REVEAL Study [abstract]. Invest Ophthalmol Vis Sci 2012;53:E-Abstract 4664.

49. Mitchell P, RESTORE extension study group. 2-Year safety and efficacy outcome of ranibizumab 0.5 mg in patients with visual impairment due to diabetic macular edema (DME): an interim analysis of the RESTORE extension study [abstract]. Invest Ophthalmol Vis Sci 2012;53:E-Abstract 4667.

50. Do DV, Campochiaro PA, Boyer DS, et al. 6 month results of the READ 3 Study: ranibizumab for edema of the macula in diabetes [abstract]. Invest Ophthalmol Vis Sci 2012;53:E-Abstract 5282.

51. Jorge R, Namdresis AB, Takaki E, et al. A prospective randomized trial of intravitreal bevacizumab versus ranibizumab for the management of refractory diabetic macular edema [abstract]. Invest Ophthalmol Vis Sci 2012;53:E-Abstract 547.

52. Michaelides M, Fraser-Bell S, Hamilton P, et al. Macular perfusion determined by fundus fluorescein angiography at the 4-month time point in a prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BooT Study): report 1. Retina 2010;30:781–96.

53. Faghihi M, Altaweel M, Bressler NM, et al. Three-year results of a randomized controlled trial. Ophthalmology 2007;114:2162–8.

54. Gillies MC, Sutter FK, Simpson JM, et al. Intravitreal triamcinolone for refractory diabetic macular edema: two-year results of a double-masked, randomized clinical trial. Ophthalmology 2006;113:1533–8.

55. Gillies MC, McAllister IL, Zhu M, et al. Intravitreal triamcinolone prior to laser treatment of diabetic macular edema: 24-month results of a randomized controlled trial. Ophthalmology 2011;118:866–8.

56. Lam DS, Chan CK, Mohamed S, et al. Intravitreal triamcinolone plus sequential grid laser versus triamcinolone or laser alone for treating diabetic macular edema: six-month outcomes. Ophthalmology 2007;114:2162–7.

57. Lam DS, Lai TY, Lee VY, et al. Efficacy of 1.25 MG versus 2.5 MG intravitreal bevacizumab for diabetic macular edema: six-month results of a randomized controlled trial. Retina 2009;29:292–9.

58. Massin P, Bandello F, Garweg JG, et al. Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, open-label, multicenter, prospective phase II study. Diabetes Care 2010;33:2399–405.

59. Soheilian M, Ramezani A, Bijanzadeh B, et al. Intravitreal bevacizumab (avastin) injection alone or combined with triamcinolone versus macular photocoagulation as primary treatment of diabetic macular edema, randomized controlled trial. Graefes Arch Clin Exp Ophthalmol 2008;246:483–9.

60. Cunningham ET Jr, Adams AP, Altaweel M, et al. A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 2005;112:1747–57.

61. Sultan MB, Zhou D, Lofts J, et al. A phase 2/3, multicenter, randomized, masked, 2-year study of visudyne and ranibizumab for the treatment of diabetic macular edema. Ophthalmology 2011;118:1107–18.

62. Soheilian M, Ramezani A, Obudi A, et al. Randomized trial of intravitreal bevacizumab alone or combined with triamcinolone versus macular photocoagulation in diabetic macular edema. Ophthalmology 2009;116:1142–50.

63. Sivaprasad S, Ockrim Z, Massaoutis P, et al. Posterior hyaloid changes following intravitreal triamcinolone and macular laser for diffuse diabetic macular edema. Retina 2008;28:1435–42.

64. Pearson PA, Comstock TL, Ip M, et al. Fluocinolone acetonide intravitreal implant for diabetic macular edema: a 3-year multicenter, randomized, controlled clinical trial. Ophthalmology 2011;118:1580–8.

65. Catania D, Ockrim S, Ciulla TA, et al. Efficacy and safety of combination therapy with dexamethasone intravitreal implant (DEX implant) plus laser photocoagulation versus monotherapy with laser for treatment of diffuse diabetic macular edema (DDEME) [abstract]. Invest Ophthalmol Vis Sci 2011;52:E-Abstract 3968.

66. Kim Y, Kang SY. Three-year follow-up of intravitreal triamcinolone acetonide injection and macular laser photocoagulation for diffuse diabetic macular edema [abstract]. Invest Ophthalmol Vis Sci 2010;51:E-Abstract 4262.

67. Nguyen QD, Shah SM, Heier JS, et al. Primary end point (six months) results of the ranibizumab for edema of the macula in diabetes (READ-2) study. Ophthalmology 2009;116:2175–81.
Current treatments in diabetic macular oedema

68. Campbell RJ, Gill SS, Bronskill SE, et al. Adverse events with intravitreal injection of vascular endothelial growth factor inhibitors: nested case-control study. BMJ 2012;345:e2403.

69. Van der Reis MI, La Heij EC, De Haas-Hoogeveen T, et al. A systematic review of the adverse events of intravitreal anti-vascular endothelial growth factor injections. Retina 2011;31:1449–69.

70. Fung AE, Rosenfeld PJ, Reichel E. The International Intravitreal Bevacizumab Safety Survey: using the internet to assess drug safety worldwide. J Ophthalmol 2006;30:1344–9.

71. Elbendary AM, Shahin MM. Intravitreal dexamethasone versus intravitreal triamcinolone acetonide in the treatment of diabetic macular edema. Retina 2011;31:2058–64.

72. Sifakis PP, Grigoropoulos V, Emfietzoglou I, et al. Infliximab for diabetic macular edema refractory to laser photocoagulation: a randomized, double-blind, placebo-controlled, crossover, 32-week study. Diabetes Care 2010;33:1523–8.

73. Keech AC, Mitchell P, Summanen PA, et al. Effect of tenofovir on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 2007;370:1887–97.

74. PKC-DMES Study Group. Effect of ruboxistaurin in patients with diabetic macular edema: thirty-month results of the randomized PKC-DMES clinical trial. Arch Ophthalmol 2007;125:318–24.

75. U.S. Food and Drug Administration. Off-Label” and investigational use of marketed drugs, biologics, and medical devices. RegulatoryInformation/Guidances/ucm126486.htm [cited 24 Oct 2012];http://www.fda.gov/RegulatoryInformation/Guidances/ucm126486.htm

76. Health Canada. Reports of eye inflammation, endophthalmitis, and Toxic Anterior Segment Syndrome (TASS) following off-label intravitreal use of Avastin (bevacizumab). 2008 [cited 24 Oct 2012];http://www.hc-sc.gc.ca/phpp/medeff/advices-avis/prof_/2008/avastin_4_hpc-cps-eng.php

77. Curtis LH, Hammill BG, Schulman KA, et al. Risks of mortality, myocardial infarction, bleeding, and stroke associated with therapies for age-related macular degeneration. Arch Ophthalmol 2010;128:1271–80.

78. Gower EW, Cassard S, Chu L, et al. Adverse event rates following intravitreal injection of Avastin or Lucentis for treating age-related macular degeneration [abstract]. Invest Ophthalmol Vis Sci 2011;52:E-Abstract 6644.

79. General Medical Council. Prescribing medicines for use outside the terms of their licence (off-label), 2012 [cited 24 Oct 2012];http://www.gmc-uk.org/guidance/ethical_guidance/prescriptions_faqs.asp#10

80. Food and Drug Administration, Off-Label and investigational use of marketed drugs, biologics, and medical devices—Information Sheet. 2011 [cited 24 Oct 2012];http://www.fda.gov/RegulatoryInformation/Guidances/ucm126486.htm

81. Alimera Sciences. Alimera Sciences ILUVIEN Receives Marketing Authorization for the Treatment of Chronic Diabetic Macular Edema. 2012 [cited 24 Oct 2012];http://investor.alimerasciences.com/releasesdetail.cfm?ReleaseID=692876

82. Laidlaw DA. Vitrectomy for diabetic macular oedema. Eye 2008;22:1337–41.

83. National Institute for Health and Clinical Excellence. Ranibizumab for the treatment of diabetic macular oedema:TA237. 2011 [cited 24 Oct 2012];http://publications.nice.org.uk/ranibizumab-for-the-treatment-of-diabetic-macular-oedema-ta237

84. Rajendram R, Fraser-Bell S, Kaines A, et al. Intravitreal bevacizumab versus combined bevacizumab-triamcinolone versus macular laser photocoagulation in diabetic macular edema. Eur J Ophthalmol 2008;18:941–8.

85. Figureoa MS, Contreras I, Noval S. Surgical and anatomical outcomes of pars plana vitrectomy for diffuse nontraumatic diabetic macular edema. Retina 2008;28:420–5.

86. Furlan DL, Bud M, Trentz O, et al. Comparing intravitreal triamcinolone acetonide and bevacizumab injections for the treatment of diabetic macular oedema: a randomized double-blind study. Acta Ophthalmol 2012;90:56–60.

87. Faccolla L, Costa RA, Folgosa MS, et al. Intravitreal triamcinolone versus bevacizumab for treatment of refractory diabetic macular oedema (IBEME study). Br J Ophthalmol 2008;92:76–80.

88. Prager SG, Kriechbaum K, Mylonas G, et al. Comparison of intravitreally applied bevacizumab and triamcinolone on diabetic macular edema [abstract]. Invest Ophthalmol Vis Sci 2010;51:E-Abstract 4282.

89. Ozturk BT, Kerimoglu H, Bozkurt B, et al. Comparison of intravitreal bevacizumab and ranibizumab treatment for diabetic macular edema. J Ocul Pharmacol Ther 2011;27:373–7.

90. Marey HM, Ellekawa AF. Intravitreal bevacizumab alone or combined with triamcinolone acetonide for diffuse diabetic macular edema. Clin Ophthalmol 2011;5:1011–16.

91. Shahin MM, El-Lakkyian RS. A prospective, randomized comparison of intravitreal triamcinolone acetonide versus intravitreal bevacizumab (avastin) for the treatment of diabetic macular edema. Middle East Afr J Ophthalmol 2010;17:250–3.

92. Loftus JV, Sultan MB, Pleil AM, et al. Changes in vision- and health-related quality of life in patients with diabetic macular edema treated with pegaptanib sodium or sham. Invest Ophthalmol Vis Sci 2011;52:7496–506.

93. Perrone PJ, Jonisch J. Ranibizumab dose comparison for the treatment of diabetic macular edema [abstract]. Invest Ophthalmol Vis Sci 2011;52:E-Abstract 5333.

94. Salamaian KA, Diab MM, Abo-Elenin M. Intravitreal bevacizumab and/or macular photocoagulation for the treatment of diabetic retinopathy in patients with diabetic macular edema. Retina 2010;30:1638–45.

95. Scott IU, Edwards AR, Beck RW, et al. Diabetic Retinopathy Clinical Research Network. A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology 2008;115:1183–9.

96. Lee SJ, Kim ET, Moon YS. Intravitreal bevacizumab alone versus combined with macular photocoagulation in diabetic macular edema. Korean J Ophthalmol 2011;25:299–304.

97. Audren F, Leclerc-Lollet A, Erginay A, et al. Intravitreal triamcinolone acetonide for diffuse diabetic macular edema: phase 2 trial comparing 4 mg vs 2 mg. Am J Ophthalmol 2006;142:794–9.

98. Audren F, Erginay A, Haouchine B, et al. Intravitreal triamcinolone acetonide for diffuse diabetic macular edema: 6-month results of a prospective controlled trial. Acta Ophthalmol Scand 2006;84:624–30.

99. Avitabile T, Longo A, Reibaldi A. Intravitreal triamcinolone compared with macular laser grid photocoagulation for the treatment of cystoid macular edema. Am J Ophthalmol 2005;140:695–702.

100. Bandello F, Pognuz DR, Pirracchio A, et al. Intravitreal bevacizumab-acetonide for florid proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2004;242:1024–7.

101. Bonini MA, Jorge R, Barbosa JC, et al. Intravitreal injection versus sub-Tenon’s infusion of triamcinolone acetonide for refractory diabetic macular edema: a randomized clinical trial. Invest Ophthalmol Vis Sci 2005;46:3845–9.

102. Cellini M, Pazzaglia A, Zumpanni E, et al. Intravitreal vs. subtenon triamcinolone acetonide for the treatment of diabetic cystoid macular edema. BMC Ophthalmol 2008;8:57TN.

103. Candillo JA, Melo LA Jr, Costa RA, et al. Comparison of intravitreal versus posterior sub-Tenon’s capsule injection of triamcinolone acetonide for diffuse diabetic macular edema. Ophthalmology 2005;112:1557–63.

104. Cheung EJ, Freeman WR, Azen SP, et al. Comparison of combination posterior sub-Tenon’s triamcinolone and modified grid laser treatment with intravitreal triamcinolone treatment in patients with diffuse diabetic macular edema. Yonsei Med J 2008;49:965–64.

105. Dehghan MH, Ahmadi H, Ramezani A, et al. A randomized, placebo-controlled clinical trial of intravitreal triamcinolone for refractory diabetic macular edema. Int Ophthalmol 2008;28:7–17.

106. Chew E, Strauber S, Beck RW, et al. Diabetic Retinopathy Clinical Research Network. Randomized trial of periocular triamcinolone acetonide with and without focal photocoagulation for mild diabetic macular edema: a pilot study. Ophthalmology 2007;114:1190–6.

107. Gil AL, Azvedo MJ, Tomasetto GG, et al. Treatment of diffuse diabetic maculopathy with intravitreal triamcinolone and laser photocoagulation: randomized clinical trial with morphological and histological outcomes. Br J Ophthalmol 2012;96:1431–6.

108. Ford JA, Lois N, Royle P, et al. BMJ Open 2013;3:e002269. doi:10.1136/bmjopen-2012-002269
functional evaluation. Arq Bras Arqvisos Brasileiros de Oftalmol 2011;74:343–7.

113. Entezami M, Ahmadieh H, Dehghan MH, et al. Posterior sub-tenon triamcinolone for refractory diabetic macular edema: a randomized clinical trial. Eur J Ophthalmol 2005;15:746–50.

114. Hauser D, Bukelman A, Pokroy R, et al. Intravitreal triamcinolone for diabetic macular edema: comparison of 1, 2, and 4 mg. Retina 2008;28:825–30.

115. Jonas JB, Kamperger BA, Harder B, et al. Intravitreal triamcinolone acetate for diabetic macular edema: a prospective, randomized study. J Ocul Pharmacol Ther 2006;22:200–7.

116. Joussen AM, Weiss C, Bauer D, et al. Intravitreal triamcinolone for proliferative diabetic retinopathy and choroidal neovascularization. Eur J Ophthalmol 2006;16:718–21.

117. Karger SW, Sa HS, Cho HY, et al. Macular grid photoagulation after intravitreal triamcinolone acetate for diffuse diabetic macular edema. Arch Ophthalmol 2006;124:653–8.

118. Kim JE, Pollack JS, Miller DG, et al. ISIS-DME: a prospective, randomized, double-masked and placebo-controlled intravitreal steroid injection study for refractory diabetic macular edema. Retina 2008;28:735–40.

119. Lam DS, Chan CK, Mohamed S, et al. A prospective randomised trial of different doses of intravitreal triamcinolone for diabetic macular oedema. Br J Ophthalmol 2007;91:199–203.

120. Lee HY, Lea SY, Park JS. Comparison of photocogulation with combined intravitreal triamcinolone for diabetic maculaedema. Korean J Ophthalmol 2009;23:153–8.

121. Maia OO Jr, Takahashi BS, Costa RA, et al. Combined laser and intravitreal triamcinolone for proliferative diabetic retinopathy and macular edema: one-year results of a randomized clinical trial. Am J Ophthalmol 2009;147:291–7.

122. Massin P, Audren F, Haouchine B, et al. Intravitreal triamcinolone acetate for diabetic diffuse macular edema: preliminary results of a prospective controlled trial. Ophthalmology 2004;111:218–24.

123. Mohamed S, Leung GM, Chan CK, et al. Factors associated with variability in response of diabetic macular oedema after intravitreal triamcinolone. Clin Experiment Ophthalmol 2009;37:602–8.

124. Nakamura A, Shimada Y, Horio N, et al. Vitrectomy for diabetic macular edema with posterior subtenon injection of triamcinolone acetone. [Japanese]. Folia Ophthalmol Japonica 2004;55:968–62.

125. Spandau UH, Derse M, Schmitz-Valckenberg P, et al. Dosage dependency of intravitreal triamcinolone acetate as treatment for diabetic macular oedema. Br J Ophthalmol 2005;89:999–1003.

126. Tunc M, Onder Hl, Kaya M. Posterior sub-Tenon’s capsule triamcinolone injection combined with focal laser photocoagulation for diabetic macular edema. Ophthalmologica 2005;219:1086–91.

127. Verma VK, Vivek KM, Kumar A, et al. A prospective controlled trial to evaluate the adjunctive role of posterior subtenon triamcinolone in the treatment of diffuse diabetic macular edema. J Ocul Pharmacol Ther 2004;20:277–84.

128. Wickremasinghe SS, Rogers SL, Gillies MC, et al. Retinal vascular caliber changes after intravitreal triamcinolone treatment for diabetic macular edema. Invest Ophthalmol Vis Sci 2008;49:4707–11.

129. Yalcinbayir O, Gelsken O, Kaderli B, et al. Intravitreal versus sub-Tenon posterior triamcinolone injection in bilateral diffuse diabetic macular edema. Ophthalmologica 2011;225:222–7.

130. Haller JA, Bandello F, Belfort R Jr, et al. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 2010;117:1134–46.

131. Haller JA, Dugel P, Weinberg DV, et al. Evaluation of the safety and performance of an applicator for a novel intravitreal dexamethasone drug delivery system for the treatment of macular edema. Retina 2009;29:46–51.

132. Kuppermann BD, Blumenkranz MS, Haller JA, et al. Randomized controlled study of an intravitreal dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol 2007;125:309–17.

133. Beyer DS, Faber D, Gupta S, et al. Dexamethasone intravitreal implant for treatment of diabetic macular edema in vitrectomized patients. Retina 2011;31:915–23.

134. Campochiaro PA, Hafiz G, Shah SM, et al. Sustained ocular delivery of fluocinolone acetonide by an intravitreal insert. Ophthalmology 2010;117:1393–9.
corticosteroid* or dexamethasone or fluocinolone or triamcinolone or anti-VEGF* or anti-vascular endothelial growth factor*) AND Title=(diabetic macular edema or diabetic macular oedema or diabetic retinopathy or diabetic maculopathy) AND Title=(random*)

Searches for systematic reviews
Ovid MEDLINE(R) Daily Update 11 July 2012, Ovid MEDLINE(R) In-Process and Other Non-Indexed Citations 11 July 2012
1. Diabetic Retinopathy/dt (Drug Therapy)
2. Macular Edema/dt (Drug Therapy)
3. (diabet* adj2 macular adj (edema or oedema)).tw.
4. (diabet* adj2 maculopathy).tw.
5. (diabet* adj2 retinopathy).tw.
6. 1 or 2 or 3 or 4 or 5
7. (ranibizumab or lucentis or bevacizumab or avastin or pegaptanib or macugen or aflibercept or vegf trap-eye or steroid* or cortico-steroid* or dexamethasone or fluocinolone or triamcinolone or anti-VEGF* or anti-vascular endothelial growth factor*).tw.
8. exp Vascular Endothelial Growth Factor A/
9. exp Fluocinolone Acetonide/
10. exp Triamcinolone/
11. 7 or 8 or 9 or 10
12. 6 and 11
13. (systematic review or meta-analysis or pubmed or medline).tw.
14. meta-analysis.pt.
15. cochrane.af.
16. 13 or 14 or 15
17. 12 and 16
Cochrane Database of Systematic Reviews and Technology Assessments Database, Cochrane Library July Issue, 2012
Ranibizumab or lucentis or bevacizumab or avastin or pegaptanib or macugen or aflibercept or vegf trap-eye or steroid* or corticosteroid* or dexamethasone or fluocinolone or triamcinolone or anti-VEGF* or anti-vascular endothelial growth factor* in Record Title and diabetic macular edema or diabetic macular oedema or diabetic retinopathy or diabetic maculopathy in Record Title

Searches for safety and adverse events
Ovid MEDLINE(R) Daily Update 11 July 2012, Ovid MEDLINE(R) In-Process and Other Non-Indexed Citations 11 July 2012; EMBASE 1980–2012 week 27
1. (ranibizumab or lucentis or bevacizumab or avastin or pegaptanib or aflibercept or vegf trap-eye or macugen or dexamethasone or fluocinolone or triamcinolone or anti-VEGF* or anti-vascular endothelial growth factor*).m_titl.
2. (diabetic macular edema or diabetic macular oedema or diabetic retinopathy or diabetic maculopathy).m_titl.
3. 1 and 2
4. (risk or safety or adverse or harm or pharmacovigilance).tw.
5. (side-effect* or precaution* or warning* or contraindication$ or contra-indication* or tolerability or toxic*).tw.
6. 4 or 5
7. 3 and 6

Searches of the annual meeting abstracts (for trials, reviews and safety studies)
► ARVO (Association for Research in Vision and Ophthalmology) (2002–2012)
► ADA (American Diabetes Association) (2002–2012)
► EASD (European Association for the Study of Diabetes) (2002–2012)

Other searches
Web sites of the following
► Drugs@FDA: FDA Approved Drug Products
► European Medicines Association
► ClinicalTrials.gov
► EU Clinical Trials Register
► National Institute for Health and Clinical Excellence

APPENDIX 2: ONGOING TRIALS IN CLINICALTRIALS.GOV
► Schmidt-Erfurth and colleagues are comparing ranibizumab and bevacizumab in DME (NCT00545870)
► TRIASTIN study is comparing ranibizumab, triamcinolone and sham injection (NCT00682539)
► Maturi and colleagues are comparing bevacizumab plus dexamethasone with bevacizumab alone (NCT01309451)
► IBeTA study (Jorge and colleagues) is comparing bevacizumab (1.5 mg) plus laser, triamcinolone (4 mg) plus laser with laser alone (NCT00997191)
► Chaudhry and colleagues are evaluating ranibizumab in patients who have failed with 3–6 injections of bevacizumab (NCT01253694)
► MIDME study (Pfizer) is comparing pegaptanib 0.3 mg with sham injection (NCT01175070)
► Figueiredo and colleagues are comparing pegaptanib plus laser with laser alone (NCT01281098)
► RESPOND (Novartis) is comparing ranibizumab (0.5 mg) alone with ranibizumab plus laser or laser alone (NCT0135914)
► RETAIN (Novartis) study is comparing two different ranibizumab algorithms; ‘treat and extend’ versus as needed (NCT01171976)
► RED-ES (Novartis) is comparing ranibizumab with laser in patients with visual impairment due to DME (NCT00901186)
► READ 3 study (Do and colleagues) are comparing two doses of ranibizumab 0.5 and 2 mg (NCT01077401)
► VIVID-DME and VISTA DME studies (Bayer) are comparing aflibercept with laser. (NCT01331681 and NCT01363440)
► Gillies and colleagues are comparing bevacizumab with dexamethasone (NCT01288076)
► Soheilian and colleagues are performing a phase I study looking at the use of diclofenac compared with bevacizumab in DME (NCT00999791)
► López-Miranda and colleagues are comparing the use of bevacizumab before and after laser therapy (NCT00804206)
► NEVANAC study is comparing triamcinolone alone with triamcinolone plus nepafenac (NSAID) (NCT00780780)
► Elman and colleagues are comparing laser alone, laser combined with an intravitreal injection of triamcinolone, laser combined with an intravitreal injection of ranibizumab, or intravitreal injection of ranibizumab alone (NCT00444600)
► BRDME (Schlingemann and colleagues) study is comparing the use of bevacizumab and ranibizumab in the treatment of patients with DME (OCT central area thickness > 275 µm) (NCT01635790)
► Wile and colleagues are comparing bevacizumab and ranibizumab in patients with DME in at least one eye (NCT01610557)
► Protocol T study (Wells and colleagues) is comparing effectiveness of a aflibercept, bevacizumab and ranibizumab for DME (NCT01627249)
► Allergan-funded study comparing safety and efficacy of 700 µg dexamethasone implant against 0.5 mg ranibizumab in patients with DME (NCT01492400)
► Pfizer-funded study comparing effectiveness of 0.3 mg pegaptanib against sham injection (NCT01100307)
► Allergan-funded study comparing safety and efficacy of an intravitreal dexamethasone implant (700 and 350 µg) against sham in patients with DME (NCT00168329)
► Allergan-funded study comparing safety and efficacy of an intravitreal dexamethasone implant (700 and 350 µg) against sham in patients with DME (NCT00168337)