Identification of risk areas for *Orobanche cumana* and *Phelipanche aegyptiaca* in China, based on the major host plant and CMIP6 climate scenarios

Lu Zhang¹,² | Xiaolei Cao¹,² | Zhaoqun Yao² | Xue Dong² | Meixiu Chen² | Lifeng Xiao² | Sifeng Zhao¹

¹Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi University, Shihezi, China
²Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, China

**Correspondence**
Sifeng Zhao, Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China.
Email: zhsf_agr@shzu.edu.cn

**Funding information**
This work was supported by National Natural Science Foundation of China [grant numbers 31460467; and XPCC fund [grant numbers 2018CB022].

**Abstract**
Parasitic broomrape of the genus *Orobanche* poses a formidable threat to producing many crops in Europe, Africa, and Asia. *Orobanche cumana* and *Phelipanche aegyptiaca* are two of China’s most destructive root parasitic plants, causing extreme sunflower, tomato, melon, and tobacco damage. However, the potentially suitable areas of *O. cumana* and *P. aegyptiaca* in China have not been predicted, and little is known about the important environmental factors that affect their extension. Due to their invasiveness and economic importance, studying how climate change and host plants may affect broomrapes’ distribution is necessary. In the study, we first predicted the potentially suitable areas of the invasive weeds (*O. cumana* and *P. aegyptiaca*) and their susceptible host plants (*Helianthus annuus* and *Solanum lycopersicon*) using MaxEnt. Then, the risk zones and distribution shifts of two broomrapes under different climate conditions were identified by incorporating the distribution of their susceptible host plants. The results highlighted that the potential middle- and high-risk zones for *O. cumana* and *P. aegyptiaca* amounted to 197.88 × 10⁴ km² and 12.90 × 10⁴ km², respectively. Notably, Xinjiang and Inner Mongolia were the highest-risk areas within the distribution and establishment of *O. cumana* and *P. aegyptiaca*. Elevation and topsoil pH were the decisive factors for shaping *O. cumana* distribution; precipitation seasonality and annual precipitation were the dominant bioclimatic variables limiting the spread of *P. aegyptiaca*. The potentially suitable areas and risk zones of *O. cumana* would decrease significantly, and those of *P. aegyptiaca* would fluctuate slightly under future climate change scenarios. Overall, our study suggested that the two broomrapes’ risk zones will significantly northward to higher latitudes. The results will provide suggestions for preventing *O. cumana* and *P. aegyptiaca*.

**KEYWORDS**
Broomrape, climate change, environment variables, habitat shift, MaxEnt model, parasitic weeds, risk area
Parasitic plants are ubiquitous species in ecosystems, including 292 genera and ca. 4,750 species (Nickrent, 2020). Some parasitic plants are considered pathogens due to their negative impact on host plants, such as Orobanche L., Cuscuta L., and Striga L. (Nickrent & Musselman, 2004). Orobanche L. (broomrape) was the typical obligate holoparasitic plant (Gevezova et al., 2012). They depend entirely on the host for survival, which reduces the host’s ability to grow and may eventually cause the host’s death (Musselman, 1980). Broomrapes include over 100 species and represent some of the most devastating parasitic plants, posing a significant challenge to agricultural production (Bari et al., 2019; Das et al., 2020; Wu & Qiang, 2006). In 2018, it was estimated that global annual losses owing to broomrapes damage were $1.3–2.6 billion (¥ 8.2–16.5 bn) (Ahmad et al., 2018). Orobanche cumana and Phelipanche aegyptiaca are widely distributed in northern China and cause catastrophic damage to tomatoes, sunflower, tobacco, legumes, carrot, and other crops (Wickett et al., 2011). The annual occurrence area only in Xinjiang was about 530–670 km², causing economic losses of more than ¥ 0.5 bn (Yao et al., 2017). The damage induced to the crop by broomrape parasitism can range from 0% to 100%, which varies in each broomrape–host combination (Dhanapal et al., 1996). Orobanche cumana mainly parasitizes sunflower (Helianthus annuus). It was discovered for the first time parasitizing cultivated sunflower in Heilongjiang in 1959. Since then, O. cumana has spread over the sunflower cultivation area. In 2020, O. cumana occurred widely in the main sunflower producing area in China, and the occurrence rate was as high as 76.9%, resulting in some fields cannot continue to plant sunflowers, which has become the main factor restricting the sustainable development of sunflowers (Wu et al., 2020). Compared with O. cumana, Phelipanche aegyptiaca could parasitize more hosts (Kacan & Tursun, 2012; Parker, 2012). The tomato (Lycopersicon esculentum) is one of the significant vegetable crops in China that is highly vulnerable to infest by P. aegyptiaca (Tokasi et al., 2014). In 2013, the damaged area of P. aegyptiaca in tomato had reached about 70 km² in Xinjiang province (about 10% of the total tomato planting area), and it spreads rapidly at a rate of 10%–20% every year (Chai et al., 2013; Zhang, Gan, et al., 2016). On average, tomato yield losses were between 30% and 80%, some of which were up to 100% for being infected by broomrapes (Das et al., 2020).

It is challenging to control broomrapes because of their concealed underground for the major part of their life, lack of photosynthesis, and physical connection with the crops (Foy et al., 1989). The problem is exacerbated by the seed-setting rate of broomrape is high and adaptable. Furthermore, this weed has strong invasive potential because the minute seeds can spread rapidly to distant fields in a short time. With climate change, there is possible for this weed to extend its distribution further and become an increasingly severe weed in certain areas. However, until now, no effective prevention measures have been developed for this weed (Libiaková et al., 2018). An alternative method is to carry out strict plant quarantine to prevent further dispersal in countries where O. cumana and P. aegyptiaca have not yet appeared (Hiroaki & Yukihiro, 2018). Therefore, it is vital to predict the potentially suitable areas of broomrapes and identify their critical environmental variables, which can alert the government to the potential risks on agriculture with future climate change and help them to propose positive coping strategies to prevent the spread of these weeds.

Environmental variables are biologically significant for determining the climatic niche of a species (Mohammadi et al., 2019; Qin, Liu, et al., 2017). Future climate change may have seriously affected global ecosystems and biotas by impacting species distributions (Hulme, 2017; Qin et al., 2017; Thomas et al., 2004). In the background of climate change, more and more attention has been concentrated on projecting the future distribution of species to mitigate the influences of future climate change on biodiversity (Ma & Sun, 2018). Species distribution models (SDMs) based on niche theory are a classical approach that uses species’ occurrence data combined with bioclimatic data to study the influences of climate change on species distribution (Schipper et al., 2014). Typical SDMs include CLIMEX, GARP, BIOCLIM, DOMAIN, and the maximum entropy (MaxEnt) algorithm (Byeon et al., 2018). Among which, the MaxEnt algorithm is better than other methods in determining potential species distributions based on environmental variables, either in terms of the quantity or in terms of the distribution scope of species records (Hernandez et al., 2010; Phillips & Dudik, 2008).

At present, there has been much research on forecasting the changing trend of potentially suitable areas in some species, such as invasive creatures, dominant forest species, precious and endangered species, but only a few studies have focused on parasitic plants (Ren et al., 2020; Wang et al., 2019; Zhang et al., 2016). Climate change can impact the distribution of parasitic plants by changing the geographical regions of host plants. The host plant distribution in conjunction with climate factors can enhance the prediction accuracy of the model (Berzitis et al., 2014). For example, the potential expansion of the co-occurrence between pests and host species increased the harmful implications of fall armyworm (Zacarias, 2020). More recently, when analyzing factors affecting the distribution of emerald ash borer, it was found that adding host plant distributions in models could help with risk assessment (Dang et al., 2021). In parasitic plants, the availability of their main nutrient sources could be another determinant of broomrapes’ distribution under future climate. Thus, future control of the broomrapes should consider the influences of climate change and host plant distribution on broomrapes’ potentially suitable areas.
This research aimed to understand the potential risk status of *O. cumana* and *P. aegyptiaca* under future climate based on the host plant and climate change. Therefore, according to the occurrence records and environmental data, a niche model, MaxEnt, was used to examine important environmental variables affecting broomrapes’ distribution and predict their potentially suitable areas and risk zones under different climate scenarios. More specifically, the focus of this research was to: (1) determine the main environmental variables that are highly related with the potentially suitable areas of these two weeds; (2) predict the potentially suitable areas and risk zones of these two weeds under varying concentrations and years; (3) simulate and quantify the spatial pattern of shifts in the risk zones. These results can easily determine where is the most distributed or the most significant risk of two weeds and provide theoretical support and guide for the forewarning and prevention of *O. cumana* and *P. aegyptiaca*.

2 MATERIALS AND METHODS

2.1 Species study

*Orobanche* L., commonly known as broomrapes, are notorious global important invasive weeds. They are dicotyledonous holoparasitic flowering plants that attack a wide range of economically important crops in the Solanaceae, Asteraceae, Leguminous, and Cruciferae (Sauerborn et al., 2007). *Orobanche cumana* and *P. aegyptiaca* are the most problematic and damaging broomrape species in China. Botanically, *O. cumana* is characterized by unbranched inflorescence stems, while *P. aegyptiaca* is branched (Joel, 2009). The damage of *O. cumana* in sunflowers has lasted for nearly 100 years (Parker, 2009). In China, *O. cumana* was first discovered by a farmer in Zhaozhou County of Heilongjiang Province in 1959 (Shi & Zhao, 2020). Gradually, *O. cumana* spread widely to different sunflower planting areas of Inner Mongolia, Xinjiang, Heilongjiang, Shanxi, Jilin, Shaanxi, Hebei, Gansu, and Ningxia. *Orobanche cumana* had been a severe problem to limit sunflower productivity (Shi et al., 2015). *Phelipanche aegyptiaca* is a highly troublesome parasitic weed in the tomato field (Hershenhorn et al., 2009), and which was first recorded in Aksu of Xinjiang in 1953 (Zhang & Jiang, 1994). Since then, *P. aegyptiaca* has become the major problem in tomatoes and can totally destroy tomatoes under heavy infestation in Xinjiang.

2.2 Occurrence records collection and screening

The current distribution records for two weeds and their host plant were obtained from among the following aspects: (1) online databases: the Global Biodiversity Information Facility (GBIF, https://www.gbif.org/), Chinese Virtual Herbarium (CVH, https://www.cvh.ac.cn/), Plant Photo Bank of China (PPBC, http://ppbc.iplant.cn/), and the National Specimen Information Infrastructure (NSII, http://www.nsii.org.cn/); (2) scientific publications: published articles, books, and reports (Appendix S1); and (3) field surveys: The information about the time, location, and host plants were recorded by field surveying in the Orobanche spp. the region in Xinjiang. In addition, the longitude and latitude were recorded using Google Earth (http://ditu.google.cn/). To minimize the error caused by the clustering effect, ArcGIS10.2 set up a 5 km × 5 km grid to ensure that there was only one distribution point in each grid. Finally, 190 data of *O. cumana* and 93 records of *P. aegyptiaca* were obtained for the modeling in China, and 837 data of *H. annuus* and 636 records of *S. lycopersicum* were obtained for the modeling. All current data were sorted by species name, longitude, and latitude and stored in a CSV format (Figure 1).

2.3 Environmental variables

A total of 34 environmental variables were screened that may impact the distribution of broomrapes and host plants (Table S1). The 19 bioclimatic factors were gained from WorldClim Global Climate Database (http://www.worldclim.org/) (Hijmans et al., 2010). The 14 soil factors were downloaded from China’s soil map based on the harmonized world soil database (HWSD) (v1.1) (2009) (http://westdc.westgis.ac.cn) (Fischer et al., 2008). One topographic variable represented by elevation was downloaded from the World Soil Database (http://www.fao.org/faostat/en/#data) (New et al., 1920).

Future climate scenarios were generated based on downscaled globalclimatemodel(GCM)datafromCMIP6(IPPCSixthAssessment). Due to the climatic stronger warming, the CMIP6 model differs from CMIP5; the CMIP6 model has higher climate sensitivity and has new specifications in concentration, emission, and socio-economic development (Ramasamy et al., 2021). In the sixth IPCC report, a new set of scenarios-Shared Socioeconomic Pathways (SSPs) have been chosen to drive climate models for CMIP6. In precise, a set of scenarios were selected to support a series of different end-of-century climate change results. These scenarios were called SSP126, SSP245, SSP460, and SSP585, each of which represents the distinct probable future greenhouse gas concentration, thus making this set of scenarios ideal for exploring various warming pathways (Gidden et al., 2018). The extreme weather variations may greatly influence the future distribution pattern and its temporal and spatial variations for *O. cumana* and *P. aegyptiaca*. Therefore, SSP126 (the stringent mitigation greenhouse gas concentration scenario), SSP245 (the moderate greenhouse gas concentration scenario), and SSP585 (the scenario with very high greenhouse gas concentration) for the years 2050 (average for the years 2041–2060) and 2090 (average for the years 2081–2100) were chosen to predict future potentially suitable areas. In summary, the BCC-CSM1.1 climate change modeling data under six climate change scenario/year combinations in the current study: SSP126-2050, SSP126-2090, SSP245-2050, SSP245-2090, SSP585-2050, and SSP585-2090. The climate prediction data were derived from the World Climate Database (http://www.worldclim.org/) (Hijmans et al., 2010).
Multicollinearity among climate factors could block the analysis of species-environment relationships. To avoid the influences of strong correlation environment factor on the projection outcomes, Principal component analysis (PCA), Spearman correlation analysis, and variance inflation factor (VIF) analysis of 34 environmental variables were tested utilizing the R x64 4.0.2 software (Wickham, 2009; Zhao et al., 2021). The environmental variables with absolute values of the Spearman correlation coefficient of less than 0.8 correlated ecological physiology and could be used for modeling (Qin et al., 2019). Then, the VIF analysis was performed on all variables, and the environmental factors with a VIF <10 were selected (Ye et al., 2020). Finally, in 34 variables, 14 and 10 factors were used for the O. cumana and P. aegyptiaca further modeling, respectively. Similarly, 11 and 12 factors were chosen for the H. annuus and S. lycopersicum, respectively (Table 1, Table S2).

2.4 | MaxEnt modeling approach, optimization, and evaluation

In this research, the potential geographical distribution of broomrapes (O. cumana and P. aegyptiaca) and host plants (H. annuus and S. lycopersicum) under current and various future climate conditions were carried out in MaxEnt (maxent 3.4.1; http://www.cs.princeton.edu/~schapire/maxent) with presence-only data. For each species, the training data were 75% of the sample distribution points chosen randomly, and the testing data were the remaining 25% of the sample points. The MaxEnt was run with a maximum number of iterations of 10,000, the $10^{-5}$ default convergence threshold, and 10 replicates under bootstrap run type to guarantee the model’s accuracy (Wang et al., 2017). To ensure that the possibility of these species’ distribution appeared close to normal, the package “ENMeval” was used in R x64 4.0.2 (http://
TABLE 1 Percentage contributions and permutation importance of the environmental factors for *O. cumana* and *P. aegyptiaca*

| Variable | Description | *O. cumana* | | *P. aegyptiaca* | |
|----------|-------------|-------------|---|----------------|---|
|          |             | Percent contribution | Permutation importance | Percent contribution | Permutation importance |
| ELEV     | Elevation   | 24.8        | 28.6 | 9.6           | 21.6 |
| T_PH_H2O | Topsoil pH (H2O) | 16.7        | 2.8  | x             | x   |
| T_CEC_SOIL | Topsoil CEC (soil) | 11.3        | 0.3  | x             | x   |
| Bio19    | Precipitation of Coldest Quarter | 9.8         | 9.4  | x             | x   |
| Bio1     | Annual Mean Temperature | 8.1         | 5.6  | x             | x   |
| Bio7     | Temperature Annual Range | 6.0         | 4.6  | 4.0           | 1.6  |
| Bio6     | Min Temperature of Coldest Month | 5.8         | 5.7  | 0.6           | 0.9  |
| Bio18    | Precipitation of Warmest Quarter | 4.6         | 9.3  | x             | x   |
| Bio11    | Mean Temperature of Coldest Quarter | 3.0         | 4.0  | x             | x   |
| T_SILT   | Topsoil Silt Fraction | 3.0         | 5.7  | x             | x   |
| Bio5     | Max Temperature | 2.6         | 7.7  | 0.7           | 0.8  |
| T_TEB    | Topsoil TEB | 2.0         | 4.1  | x             | x   |
| Bio12    | Annual Precipitation | 1.5         | 11.8 | 31.5          | 56.8 |
| drainage | Soil Drainage Conditions | 1.0         | 0.3  | x             | x   |
| Bio15    | Precipitation Seasonality | x           | x   | 34.6          | 13   |
| T_ESP    | Topsoil Sodicity | x           | x   | 7.1           | 2.3  |
| T_BS     | Topsoil Base Saturation | x           | x   | 6.4           | 1.8  |
| Bio2     | Mean Diurnal Range | x           | x   | 3.6           | 0.6  |
| T_ECE    | Topsoil Salinity (Elco) | x           | x   | 1.8           | 0.5  |

Using the spatial analysis module in ArcGIS10.4.1 to superimpose the suitable areas of broomrape and its host plant, the potentially suitable areas of broomrape based on host plants in China were finally obtained, which was the potential risk zones of broomrape. The logistic format of MaxEnt output was applied in our study to assess the possibility of existence (values varied from 0 to 1) and the ultimate suitability map was divided into four classes: 0–0.1, unsuitable survival areas (no risk); 0.1–0.3, low suitability (low risk); 0.3–0.5, moderate suitability (medium risk); and 0.5–1, high suitability (high risk). The outputs were converted to raster format and areas were computed using the ArcMap tool in ArcGIS 10.4.1 for further analysis.

Jackknife testing was applied to assess the importance of variables. The relative importance of a single factor was evaluated by using default estimates of percentage contributions (Elith et al., 2015). Receiver operating characteristic (ROC) analysis was applied to assess the performance of the model, and the area under the ROC curve (AUC) was applied as an excellent index to provide the accuracy estimates (Katz & Zellmer, 2018; Peterson et al., 2017; Vanagas, 2004). Usually, AUC values were between 0 and 1. AUC < 0.5 represents a model that predicts worse than random and rarely occurs in reality, while AUC > 0.75 describes a model with a fair ability to discriminate (Ferrier, 2000). The closer the AUC is to 1, the better the prediction ability is (Yi et al., 2016). According to the AUC, prediction ability is classified as failing (0.5–0.6), poor (0.6–0.7), fair (0.7–0.8), good (0.8–0.9), or excellent (0.9–1) (Swets, 1988).
2.5 | Analysis of spatial pattern changes

The spatial units with a species presence possibility value ≥0.3 was regarded as a suitable area for the species, and the value <0.3 was considered an unsuitable area. According to the (0,1) matrix table, the changes in the spatial pattern of the potential risk zones of two weeds under the different climate conditions were further analyzed. The area changes in the future were computed based on the present risk zones of the species. Four types of changes in the risk zones for species were defined: matrix values 0 → 1 were newly expanded suitable areas, 1 → 0 were lost suitable areas, 1 → 1 were reserved suitable areas, and 0 → 0 were unsuitable areas (Ye et al., 2020). Lastly, the matrix change value was loaded into ArcGIS 10.4.1 to realize the visualization of the spatial pattern change in different periods.

2.6 | Centroids shifts

The changes in risk zones were computed, and the core distributional were compared for current and future risk zones by utilizing the SDM Toolbox (an ArcGIS tool) in ArcGIS10.4.1 (Brown, 2014). The focus of this analysis was to summarize the core distribution shifts in the risk zones of these two weeds. This was achieved by reducing the species’ risk zones to a center point and establishing a vector particle that reflected the magnitude and direction of the predicted changes through time. Finally, the shifts in species’ risk zones were checked by tracking how the core distributional changed with different SDMs, and the “dists” function in R x64 4.0.2 was used to calculate the centroid migration distance of the risk zones in latitude and longitude coordinates (Zhang et al., 2018).

3 | RESULTS

3.1 | Species distribution model performance

According to occurrences record of species and environmental data, we obtained potential distribution maps where broomrapes and host plants might occur. Models for the broomrapes and host plants performed better than random with the given series of training and test data. The average values of training AUC and testing AUC for all models were greater than 0.8, suggesting that these models were accurate for all studied species predictions and could be reliably used to simulate the relationship between diversity patterns and climatic variables (Figure S2).

3.2 | Important Environmental variables

The analysis of single-factor contributions indicated that elevation (ELEV, 24.8%), topsoil pH (T_PH_H2O, 16.7%), topsoil salinity (T_CEC_SOIL, 11.3%), precipitation of the coldest quarter (Bio19, 9.8%), annual mean temperature (Bio1, 8.1%), annual temperature range (Bio7, 6.0%), and minimum temperature of the coldest month (Bio6, 5.8%) made the significant contributions to the prediction model for O. cumana, the cumulative contribution value was reached up to 86.3% (Table 1). Among the P. aegyptiaca environmental variables selected, the important factors were precipitation seasonality (Bio15, 34.6%), followed by annual precipitation (Bio12, 31.5%), and elevation (ELEV, 9.6%). These three factors were the strongest predictor of P. aegyptiaca occurrence and contributed 75.7%. The topsoil sodicity (T_ESP, 7.1%) and topsoil base saturation (T_BS, 6.4%) were also found to contribute to the P. aegyptiaca prediction model (Table 1).

Using the response curve (Figure S3), we gained the thresholds (highly suitable possibility >0.5) for the important environmental factors. The response curves of the species prediction model of O. cumana indicated that the species of the high possibility of existence in areas with annual mean temperatures (Bio1) ranging from 3.6 to 12.8°C, the minimum temperature of the coldest month (Bio6) ranging from −20 to −4°C, an annual temperature range (Bio7) ranging from 41.9 to 66.7°C, precipitation of the coldest quarter (Bio19) ranging from 3.5 to 29.8 mm, elevation (ELEV) ranging from 250 to 1,448 m, topsoil salinity (T_CEC_SOIL) ranging from −7.6 to 4.9 cmol/kg, and topsoil pH (T_PH_H2O) ranging from 7.3 to 9. Similarly, there was a high possibility of P. aegyptiaca in regions with annual precipitation (Bio12) of 25.3–175 mm, precipitation seasonality (Bio15) of 11.6–62, elevation (ELEV) of 779–1,608 m, and topsoil sodicity (T_ESP) of 4–62.1%. Topsoil base saturation (T_BS) indicated no strong relation to highly suitable distribution for P. aegyptiaca.

3.3 | Potential geographical distribution under current climate conditions

According to occurrence records and environmental data, the current potentially suitable areas of two broomrapes are illustrated in Figure 2a.c. The simulated areas of potentially suitable for O. cumana were continuous and spanned the region from the eastern to western sectors of northern China (Figure 2a). Currently, high suitability areas were found to occur in north Xinjiang, central Inner Mongolia and Shaanxi, west Gansu and Jilin, and most of Ningxia province. The moderately suitable areas included south Heilongjiang, west Liaoning, and central Inner Mongolia. The areas with high and moderate fitness reached 318.69 × 10⁴ km², occupying 33.08% of China’s total area (Table 2). For P. aegyptiaca, the potentially suitable area is mainly distributed in Xinjiang. The areas were estimated to encompass ca. 30.64 × 10⁴ km² (Figure 2c).

The potentially suitable areas of H. annuus and S. lycopersicon based on current environmental factors are shown in Figure S4 and Table S3. For H. annuus, Maxent identified an area of 116.89 × 10⁴ km² as highly suitable and 206.11 × 10⁴ km² as moderately suitable, while 218.92 × 10⁴ km² of the area was observed as low suitable. The potential distribution of H. annuus was concentrated in
central and northern China, including the Shanxi, Ningxia, Shaanxi, Gansu, Inner Mongolia, Xinjiang, Jilin, Heilongjiang, and Liaoning. For *S. lycopersicum*, the projection results showed a wide range of potentially suitable areas in China. Of the total suitable area of *S. lycopersicum*, 9.31, 14.39, and 29.88% had high, moderate, and low suitability. The highly suitable areas for *S. lycopersicum* are predominantly distributed in Shandong, Hebei, Shanxi, Shaanxi, Henan, and Xinjiang.

According to the prediction results from MaxEnt, the potentially suitable areas of broomrape and its host plant were superimposed to obtain the risk zones of broomrape (Figure 2b,d). The results demonstrated that most of China’s northern and central areas were risk areas for *O. cumana* (Figure 2b). Currently, the potential risk zones of *O. cumana* were predicted to occur in most of Shaanxi and Shanxi, central Inner Mongolia, northeast of Xinjiang, northern Jilin, Ningxia, and Gansu. For *O. cumana*, 20.54% of China’s area, or approximately 197.88 × 10^4 km^2, is currently a potential middle- and high-risk zone (Table 2). For *P. aegyptiaca*, the middle- and high-risk zones were detected in Xinjiang (Figure 2d). The predicted area was around 12.91 × 10^4 km^2, 1.34% of China’s area (Table 2).

### 3.4 Potential geographical distribution under future climate scenarios

MaxEnt predicted the future potentially suitable areas and risk zones of *O. cumana* and *P. aegyptiaca* under six climate change conditions (SSP126-2050, SSP245-2050, and SSP585-2050; SSP126-2090, SSP245-2090, and SSP585-2090) and then conducted the comparative analysis. The results were as follows:

1. **O. cumana**

The calculated results for the *O. cumana* habitat suitability in SSP126, SSP245, and SSP585 are illustrated in Figure 3-1, III, and Table 2. The results suggested that the future climate will adversely influence the predicted distribution of *O. cumana*. The potentially suitable areas of *O. cumana* declined in response to climatic warming (Figure S6-a). Future highly suitable areas were mainly concentrated in Xinjiang and Inner Mongolia. In 2050, the area with habitat suitability accounted for 28.68% and 25.24% of the current predicted area under the SSP126 and SSP245 scenarios, respectively. The potential
TABLE 2. The percentage of different classes of potentially suitable areas and risk zones of O. cumana and P. aegyptiaca under different climate scenarios

|          | P. aegyptiaca | O. cumana |
|----------|---------------|-----------|
| Suitable area |                |           |
| Low       | 37.40         | 29.52     |
| Moderate  | 42.90         | 28.42     |
| High      | 19.72         | 12.06     |
| Not-risk  | 21.94         | 21.94     |
| Low       | 4.93          | 5.17      |
| Moderate  | 4.34          | 6.65      |
| High      | 1.14          | 11.14     |
| Not-risk  | 11.14         | 11.14     |

| Risk zones | Low     | Moderate | High       | Not-risk |
|------------|---------|----------|------------|----------|
| Low        | 2.61    | 3.82     | 1.27       | 0.22     |
| Moderate   | 1.90    | 2.12     | 1.94       | 0.26     |
| High       | 1.38    | 2.56     | 1.97       | 0.26     |
| Not-risk   | 1.38    | 2.56     | 1.97       | 0.26     |

For the host plant of O. cumana, with proceeding climate change, there was no shift in the location of potential areas for H. annuus, but the highly suitable areas would significantly decrease for SSP585-2050 (Figure S5-I, II and Table S3). In 2050, the reduction in highly suitable areas for H. annuus would be 15.09% and 5.39% under the SSP245 and SSP585 scenarios, respectively. In 2090, the high potential suitable areas of H. annuus would be decreased by 59.68% under SSP585, the predicted area to be around 47.13 × 10^4 km^2.

Similarly, the simulated results of O. cumana potential risk zones in different climate conditions showed that O. cumana risk zones decreased significantly with the changing SSPs. The warmer the climate, the lower the risk zones (Figure 3-II, IV; Table 2). In 2050 and 2090, the risk zones for O. cumana were widely located in the north of China, including Xinjiang, Inner Mongolia, and Shanxi. Under the SSP126-2050, MaxEnt predicted that moderate- and high-risk area was 182.08 × 10^4 km^2, with 18.90% of China’s total area. The risk zones were expected to have a considerably contracted range in all regions, especially SSP585-2050. The area of moderate and high risk was predicted to decrease significantly to 34.10 × 10^4 km^2, and 96.46% of the regions will be low or no risk regions.

2. P. aegyptiaca

The distribution maps of suitable areas for P. aegyptiaca in future climate conditions for 2050 and 2090 are summarized in Figure 4-I, III, and Table 2. Compared with current climate conditions, the total suitable area of P. aegyptiaca in SSP126 and SSP585 was projected to decline slightly but increase slightly under the SSP245 scenario (Figure S6-b). Highly suitable areas were still concentrated in northern Xinjiang, and the suitable areas ranged from 20.52 × 10^4 km^2–39.69 × 10^4 km^2, occupying 2.13%–4.12% of China’s area.

The predicted results of future areas’ suitability under different SSPs are shown that the changing climatic condition alters the distribution of suitable future areas of S. lycopersicum (Figure S5-III, VI and Table S3). Compared to the current potential distribution, for 2050, the slight increase in area for high suitability was found under SSP126, and a slight decrease was found under SSP245 and SSP585. In 2090, the highly suitable areas of S. lycopersicum increased with increasing temperature. Under SSP585, the high suitability area increased significantly to 193.75 × 10^4 km^2.

Figure 4-II, IV reflects the influences of climate conditions on the potential future risk zones for P. aegyptiaca. In future climate conditions, high-risk regions were scattered in northern Xinjiang, except for SSP585-2050, the area of the middle- and high-risk zones expanded slightly relative to current climate scenarios (Figure S6-b). Under the SSP585-2050 scenario, the area of the middle- and
high-risk habitat was the least at about $10.02 \times 10^4$ km$^2$. Under the SSP245-2050 scenario, the area of the middle- and high-risk habitat was the most at about $17.24 \times 10^4$ km$^2$. Overall, the risk area of *P. aegyptiaca* was relatively small, with the highest area accounting for 1.79% of China’s area.

Overall, the results gained in this research showed that the potentially suitable areas and risk zones of *O. cumana* would decrease significantly, and those of *P. aegyptiaca* would fluctuate slightly under future climate change conditions. Furthermore, compared with *P. aegyptiaca*, *O. cumana* had a relatively more comprehensive distribution range; the middle and high suitability areas of *O. cumana* were obviously larger than those of *P. aegyptiaca*. Xinjiang and Inner Mongolia were the most severely affected place by *O. cumana* and *P. aegyptiaca*.

### 3.5 Future changes in risk zones

Compared with the current risk zones, the predicted area of *O. cumana’s* risk zones shrank significantly under six future combinations (Figure 5-I, II, and Table S4). The parts of *O. cumana’s* range with high risks of areas decrease were mainly concentrated in Hebei, Beijing, Liaoning, Shanxi, part of Shaanxi, and Xinjiang, and the contraction generally increased with decreasing latitude. Under the SSP585-2090s condition, the loss of areas was the most severe at about $130.28 \times 10^4$ km$^2$, a loss of 65.83% of the current risk zones. The high-risk areas under this condition were relatively small and the risk areas in Shanxi and Shaanxi were almost exhausted, as were the highly suitable areas in Inner Mongolia. This indicated that *O. cumana* risk zones would contract to a large degree, and the high-risk range will only remain in Xinjiang under this scenario. In 2050, most predicted increases in risk zones were restricted to Inner Mongolia and Xinjiang, which amounted to ca. $34.79 \times 10^4$ km$^2$. Under the climate change conditions in 2090, the expansion areas were significantly smaller than in 2050 at $10.38 \times 10^4$ km$^2$. Overall, the total potential risk areas declined under the six future climatic scenarios, with the most pronounced contractions in Shanxi and Hebei.

Under the SSP126-2050 and SSP585-2050 scenarios, MaxEnt predicted that *P. aegyptiaca* total losses would occur mainly in western Xinjiang, with $0.07 \times 10^4$ km$^2$ and $3.36 \times 10^4$ km$^2$, respectively. Conversely, in SSP245-2050, the total risk habitats expanded by $4.52 \times 10^4$ km$^2$, and the new areas were widely concentrated in northern Xinjiang, which indicated that a lot of the low-risk areas under this condition might be replaced by the middle-risk suitable areas (Figure 5-III and Table S4). By 2090, the MaxEnt model predicted total losses of 6.51% and 12.17% of the current area under the SSP126 and SSP245 scenarios, respectively. The distribution of newly added risk zones was also concentrated in northern Xinjiang under the SSP585-2090s combination but was slightly less than the scenario of SSP245-2050 at an increase of $4.37 \times 10^4$ km$^2$ (Figure 5-IV and Table S4).
3.6 | Changes in the distribution core of the risk zones

Currently, the distribution centroid of O. cumana was located in Xinjiang and Beijing province (Figure 6d). For the Xinjiang potential risk zones, the core of the current risk zone was located at 84°37’E and 44°23’N (Figure 6-a; Table S5). The centroid of the risk zones shifted northeast to Bingtuanqi (85°12’E, 44°48’N) under SSP126-2050, but under SSP126-2090, the centroid shifted to the southwest (84°51’E, 44°29’N), which was a migration distance of 44.86 km. Under SSP245, by the 2050s, the center of the risk zones moved northeast to Dushanziqu (85°05’E, 44°31’N), and by the 2070s, it shifted 25.25 km southward to 85°08’E and 44°17’N. At the same time, it was predicted that under SSP585, the centroid of the risk zones changed to 84°57’E and 44°23’N by 2050 and 85°27’E and 44°56’N by 2090. For the risk zones of Beijing, the core of the current risk zone was located at 115°47’E and 39°59’N (Figure 6-b). Under all future climate scenarios (SSP126, SSP245, and SSP585), we saw that the centroid of the risk zones shifted toward the north over time. Under the SSP585-2090 scenario, the migration distance was the longest at about 439.28 km, and the center of the risk habitats moved north to Inner Mongolia (115°57’E, 43°56’N). Under the SSP126-2050 scenario, the migration distance was the shortest at approximately 198.15 km, and the center of the risk zones shifted northeast to Hebei (116°39’E, 41°39’N). In short, under the future conditions, all the centroids of the potential risk zones were located at more northern areas with higher latitudes, except for the SSP245-2090 Xinjiang risk zones.

For P. aegyptiaca, the current centroid of the potential risk zone was located in Xinjiang province, with geographical coordinates of 84°17’E and 43°25’N (Figure 6-c, e; Table S5). The core of the future risk zones shifted to the position (85°35’E, 44°42’N) in the northeast under SSP126-2050 and the position (86°06’E, 44°39’N) under SSP126-2090. Under SSP245-2050, the core of the future risk zones was located at a more northeast position (86°10’E, 44°49’N), and even more northeast at the position (86°30’E, 44°47’N) under SSP245-2090. The potential risk zones center under SSP585-2050 also shifted to northeast regions (85°55’E, 44°26’N) and high latitude. In contrast, the centroid under SSP585-2090 shifted to southwest areas and a low latitude (84°56’E, 44°7’N). Overall, we found that the centroid of risk zones shift expressed a northeast tendency under the future six climatic scenarios, and the migration distance was relatively small, about 94.09 km under SSP585-2090.

Evidently, in the future, the distribution centers of P. aegyptiaca and O. cumana are likely to shift to high latitudes.

4 | DISCUSSION

Broomrapes have been listed as entry plant quarantine pests and agricultural plant quarantine pests in China (Wu & Qiang, 2006). The broomrapes in farmland significantly reduce agricultural productivity and inflict severe economic damage. Sunflower and tomato are the crops most seriously damaged by broomrapes in
FIGURE 5  The spatial pattern changes of Orobanche cumana (a, e, i-2050; b, f, j-2090) and Phelipanche aegyptiaca (c, g, k-2050, d, h, l-2090) risk zones in different periods.

FIGURE 6  Predicted current distribution model (d, e) and the core distributional shifts (a, b, c) under different climate scenarios/years for Orobanche cumana (a, b, d) and Phelipanche aegyptiaca (c, e). The arrow indicates the magnitude and direction of predicted change over time.
practical production. *Orobanche cumana* and *P. aegyptiaca* have become severe impediments to developing the local sunflower and tomato industries. Thence, the potential suitability maps of their extension are urgently needed for economic and quarantine purposes. This research carefully analyzed the suitable areas and risk zones for *O. cumana* and *P. aegyptiaca* under present and future climate changes. Our results provided a basis for decision-making for the effective management and control of these notorious agricultural invasive weeds.

The predictive models constructed with MaxEnt were highly consistent with the known distribution of *O. cumana* and *P. aegyptiaca* in China. *Orobanche cumana* was reported mainly on sunflower in Inner Mongolia, Xinjiang, Heilongjiang, Jilin, Shanxi, Shaanxi, Hebei, Gansu, and Ningxia provinces (Shi & Zhao, 2020; Wu et al., 2020). The model's simulation results highlighted that the suitable areas of *O. cumana* in the current climate condition were distributed in central Inner Mongolia, northern Xinjiang, northwestern Gansu Province, most of Ningxia province, and the potential area we predicted was broader. Meanwhile, our model showed that the moderately and highly suitable areas amount to 318.69 × 10^4 km^2 for *O. cumana* and the central location was in Xinjiang and Beijing. This result agrees with previous research that found that *O. cumana* has a high potential for invasion in China (Mohamed et al., 2006). For *P. aegyptiaca*, Xinjiang is the area with the broadest distribution that suffers the greatest harm in China (Zhang et al., 2012). Similarly, our modeling demonstrated that the potentially suitable areas are currently concentrated in Xinjiang, with an area of 30.64 × 10^4 km^2. From the perspective of the overall ecological suitability of *O. cumana* and *P. aegyptiaca* in China, the suitable areas of *P. aegyptiaca* in future climatic changes would decline slightly relative to the current habitat, except for under SSP245 climate condition. For *O. cumana*, the prediction results of habitat suitability in SSP126, SSP245, and SSP585 showed that the *O. cumana* suitable areas declined significantly as global warming intensity proceeded. This indicated a declining trend for *O. cumana* distribution in the future. Global warming seems to have limited the development of *O. cumana* and have a negative impact on the suitable areas for *O. cumana*. The decreases in the distribution of *O. cumana* may be due to the narrow range of optimum temperatures required for its conditioning and germination, which was found to be around 25–30°C: both lower and higher temperatures resulted in poor germination (Shi et al., 2018). Meanwhile, this may also be attributed to transitory or constantly high atmospheric temperatures causing a series of heat injuries, physiological disorders, and morphological and biochemical changes in plants (Lipiec et al., 2013).

Climate is a critical factor in predicting the potential distribution of species. However, the distribution of susceptible host plants is another important constraint for predicting and analyzing parasitic plants, particularly for holoparasitic plants. This study also predicted the potentially suitable areas in China of broomrapes’ susceptible host plants, using the MaxEnt. The predictions obtained for *H. annuus* and *S. lycopersicum* were concordant with the known distributions of these species (Fu et al., 2019). Throughout China, highly favorable conditions existed for both *H. annuus* and *S. lycopersicum*. Comparison of prediction results of broomrapes and their host plants under different climate scenarios showed that the projection suitable areas are similar in spatial extent. The suitable areas of *O. cumana* and host plant-*H. annuus* were all distributed in central and northern China, including the Shanxi, Ningxia, Shaanxi, Gansu, Inner Mongolia, Xinjiang, Jilin, Heilongjiang, and Liaoning. For *P. aegyptiaca* and *S. lycopersicum*, Xinjiang is the common suitable area of the two species. There is a higher risk of the invasion of broomrapes in the co-occurrence areas, which may affect agricultural development or require costlier control methods.

Our study overlapped the potentially suitable areas between broomrapes and selected susceptible host plants to analyze the risk zones of broomrapes. The risk zones for the future distribution of these two weeds indicated that they were influenced by extreme temperatures or precipitation and these areas are expected to either increase or decrease as the climate changes. It was observed that, for *P. aegyptiaca*, the risk zones would rise slightly under varying future climate conditions, which indicated that extreme scenarios had little effect on *P. aegyptiaca*. However, for *O. cumana*, our model suggested that moderate and high-risk zones in all six future climatic conditions would decline significantly relative to the current risk zones. The warmer the climate was, the lower the risk zones. Meanwhile, our supplementary data showed that the highly suitable area of sunflower decreased with the increase of temperature, indicating that temperature had a negative effect on the suitable areas of the sunflower and consequently decreased the suitable area of *O. cumana* by limiting host development (Table S3). In the previous articles, some researchers also reported that the yield of sunflower (the host of *O. cumana*) significantly decreased under global warming (Johkan et al., 2011). This might reduce the risk zones of *O. cumana*. In addition, previous studies suggested that temperature impacts on the host–parasite relationship are complex (Sukno et al., 2001). Sukno et al. studied the effects of temperature on the resistance of sunflower to parasitism by *O. cumana* and found that the level of parasitism was lowest for all the treatments at the highest temperature (Sukno et al., 2001). These results have certain similarities with those of Eizenberg et al. (2003) and Eizenberg et al. (2003), who found that under controlled conditions in polyethylene bags and Petri dishes, as the temperature rose, more *Orobanche* tubercles degenerated and died: Namely, the sunflower plants expressed higher levels of resistance. The defense mechanism may have increased with rising temperature, causing the broomrapes to develop retardation, necrosis, or die. Taken together, the suitability of conditions for the host can also influence the future suitability of conditions for parasites.

However, incorporating biotic interactions (predation, competition, parasitism, and mutualism) in SDMs does not always improve predictive accuracy (Pellissier et al., 2010; Silva et al., 2014), as it requires extensive knowledge regarding biotic interactions and population-level impacts, as well as detailed and specific information in biotic interactors and target species (Fordham et al., 2012; Simões & Peterson, 2018). In this study, despite the broomrapes and selected host plants
have been thorough a detailed prediction of their potential distribution, the essence of their interaction remains poorly known. Additionally, different/novel host plants may influence an invasive species range. Helianthus annuus and S. lycopersicum are not the only wild host plant of O. cumana and S. lycopersicum, respectively. Broomrapes can parasitize many hosts, such as tobacco and muskmelon (Parker, 2012). We suggest that identifying the broomrapes–host interaction and predicting the potential distributions of additional wild hosts would aid future assessment of risks of broomrapes invasion.

The precise environmental biology of broomrapes and their phenological synchrony with host plants still require more investigation. Even so, impacts of climate limits and climate change on broomrape distribution and the host–parasite relationship are unequivocal. Temperature, precipitation, and soil properties are three bioclimatic features that can be useful starting points to study the mechanisms with which the climate affects species distribution (Hu et al., 2015). During the broomrapes’ life cycle, the temperature is the dominant factor affecting their growth, and there is a strong interdependence between parasitic ability and temperature (Eizenberg & Goldwasser, 2018). Ephrath and Eizenberg (2010) reported that the relationship between the process of O. cumana and P. aegyptiaca attachment and development and thermal time followed a sigmoid-shaped curve, and the broomrapes’ biomass was also found to be closely correlated to thermal time. Research on the influences of temperature on the germination of different species of broomrapes showed that each broomrape had a specific best temperature range for germination and growth, which generally reflected its geographical distribution (Song et al., 2005). The optimal temperatures for both conditioning and germination were about 25–30°C for O. cumana and about 18–21°C for P. aegyptiaca (Shi et al., 2018; Song et al., 2010). Final germination must fulfill the following two conditions: the minimum average temperature that must be exceeded and the maximum temperature above which the seeds will not germinate (Ermias & Murdoch, 1999). Therefore, appropriate adjustment of the sowing date can considerably reduce the abundance of broomrapes and lessen the damage caused by broomrapes to host plants.

Humidity is another major factor affecting broomrapes seed germination. The germination of broomrapes seeds requires preculturing under specific temperature and humidity conditions (Kebrab & Murdoch, 1999). When the soil humidity is too high, the parasitism and growth of broomrapes are inhibited, which may be because the humidity affects the dormancy characteristics of broomrapes, and then affects their germination and parasitism (Kebrab & Murdoch, 2000). Less infestation due to broomrapes has been observed in sunflower/tomato grown under flooded irrigation or in years with more precipitation (Punia, 2014). In addition, a substantial reduction in seed viability/longevity was observed when the seeds were imbibed and at higher temperatures. Thus, combining irrigation with solarization during the dry season could significantly raise the depletion of the soil seed bank.

Soil conditions also have a significant influence on shaping the distribution range of broomrapes. Alkaline soil (pH > 7.0) was found to be favorable for broomrape survival and growth, but the parasitism rate was less in acidic soil (pH < 7.0) (Dinesha & Dhanapal, 2013; Di et al., 2020). Shi et al. (2018) reported that sandy loamy soil with a temperature of around 25–30°C, moisture of 60%–70%, and soil pH value of 8 could benefit the attachment and growth broomrapes. Some research results have revealed that the parasitism rates of broomrapes were closely related to the amount of available soil nitrogen and the type of nitrogen fertilizer used (Irmaileh, 1994; Mesbah et al., 2012). As soil nitrogen rates increased, the numbers and dry weights of broomrape shoots declined, the yields of sunflower/tomato substantially rose, and urea fertilizers could significantly reduce the occurrence of broomrapes (Mariam & Svavanketnikom, 2004; Narges & Syyed, 2014). Therefore, N should be applied at least at the recommended rate if using N at higher doses is not possible on the ground of affordability by farmers and cost economics. In this study, the CMIP6 climatic scenarios were employed to determine the potential effects of climate change on the environmental suitability for broomrapes. Among the 19 environmental variables used for the developed model, temperature, precipitation, and soil properties all made important contributions to the habitat suitability of O. cumana and P. aegyptiaca, suggesting that these factors play essential roles in broomrapes distribution.

Responses to climate change in biological communities are usually related to species distribution about latitude or extreme elevations (Lenoir et al., 2008). Generally, with the climate changes, suitable areas in the Northern Hemisphere are expected to expand northward, and these areas will become more climatically suitable (Wang et al., 2017). Some studies have revealed that some species may expand their ranges to higher latitudes and elevations as global warming continues (Bertrand et al., 2011; Walther et al., 2005; Wilson et al., 2007). The study suggested that a northward shift of broomrapes’ risk zones to higher latitudes would gradually become more significant. The centroid of risk zones for O. cumana and P. aegyptiaca shifted to areas at higher latitudes than their current habitat, which may be facilitated through adaptations. Therefore, the long-term risks are greater in higher latitudes, as these areas will experience warming, which will promote the invasion and establishment of O. cumana and P. aegyptiaca.

5 | CONCLUSIONS

In this research, we established a predictive model that considered climate, soil, and topography and provided a basis for assessing the suitable area of Orobanche cumana and Phelipanche aegyptiaca. This model was applied to examine the influences of climate change on the potentially suitable area for those two broomrapes in China. We also took global climate change and host plants into account to examine the potential risk status of the broomrapes in the future. The results showed that Xinjiang and Inner Mongolia would experience the greatest risk of establishing the O. cumana and P. aegyptiaca, which may affect local agricultural productivity or pay a greater price to control these weeds. Although the results suggested that the distribution of risk zones for O. cumana will be significantly decreased with
global warming, protection and treatment should not be taken lightly due to the rapid spread of broomrapes and the difficulty of eradication. The predicted results can be applied to clearly understand the distribution of suitable areas and risk zones of two broomrapes and determine their expansion reasons to provide a useful reference in formulating quarantine and control measures for O. cumana and P. aegyptiaca. Future studies could be needed to consider the effects of human behavior or the habitats of other host plants, and even the study area could be extended into the global scope.

ACKNOWLEDGMENTS
This work was financially supported by National Natural Science Foundation of China [grant numbers 31460467]; and XPC fund [grant numbers 2018CB0222]. We also would like to thank reviewers for their helpful suggestions.

AUTHOR CONTRIBUTIONS
Lu Zhang: Writing – original draft (equal); Writing – review & editing (equal). Sifeng Zhao: Project administration (lead); Supervision (lead). Xiaolei Cao: Formal analysis (equal). Zhaquon Yao: Conceptualization (equal). Xue Dong: Investigation (equal). Meixiu Chen: Data curation (equal). Lifeng Xiao: Software (equal).

DATA AVAILABILITY STATEMENT
Climate data, MaxEnt input files and the four species’ distribution data: Dryad https://doi.org/10.5061/dryad.8pk0p2nh; and the data that supports the findings of this study are available in the Appendix S1 of this article.

ORCID
Sifeng Zhao https://orcid.org/0000-0003-1134-9358

REFERENCES
Ahmad, T., Ahmad, B., Tariq, R. M. S., Syed, M., Zia-Ul-Hassan, S. M., & Ahmad, Z. (2018). Assessment of the yield loss imparted by Orobanche aegyptiaca in tomato in Pakistan. Anais Da Academia Brasileira De Ciências, 90(4), 3559–3563. https://doi.org/10.1590/0001-3765201820180098
Bari, V. K., Nasser, J. A., Kheredin, S. M., Gal-On, A., Ron, M., Britt, A., Steele, D., Yoder, J., & Aly, R. (2019). CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Scientific Reports, 9(1), 11438. https://doi.org/10.1038/s41598-019-47893-z
Bertrand, R., Lenoir, J., Piedallu, C., Riofrío-Dillon, G., Ruffray, P., Vidal, C., Pieratt, J., & Gégout, J. (2011). Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479(74), 517–520. https://doi.org/10.1038/nature10548
Berzitis, E. A., Minigan, J. N., Hallett, R. H., & Newman, J. A. (2014). Climate and host plant availability impact the future distribution of the bean leaf beetle (Ceutorhiza trifurcata). Global Change Biology, 20(9), 2778–2792. https://doi.org/10.1111/gcb.12557
Brown, J. L. (2014). SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5, 694–700. https://doi.org/10.1111/2041-210X.12200
Byeon, D. H., Jung, J. M., Jung, S. H., & Lee, W. H. (2018). Prediction of global geographic distribution of Metcalpha pruinosa using CLIMEX. Entomological Research, 48(2), 99–107. https://doi.org/10.1111/1748-5967.12253
Chai, A. L., Chi, Q. Y., He, W., & Li, B. J. (2013). The parasitic weed Phelipanche aegyptiaca has serious damage to tomato in Xinjiang, China Vegetables, 17, 20–22. (In Chinese).
Dang, Y. Q., Zhang, Y. L., Wang, X. Y., Xin, B., Nicole, F. Q., & Duan, J. J. (2021). Retrospective analysis of factors affecting the distribution of an invasive wood-boring insect using native range data: The importance of host plants. Journal of Pest Science, 94, 981–990. https://doi.org/10.1007/s10340-020-01308-5
Das, T. K., Ghosh, S., Gupta, K., Sen, S., Behera, B., & Raj, R. (2020). The weed Orobanche: Species distribution, diversity, biology and management. Journal of Research in Weed Science, 3(2), 162–180. https://doi.org/10.26655/IRWEEDSCI.2020.2.4
Dhanapal, G. N., Struik, P. C., Udayakumar, M., & Timmermans, P. C. J. M. (1996). Management of broomrape (Orobanche spp.)-A review. Journal of Agronomy & Crop Science, 176(3), 335–359. https://doi.org/10.1111/j.1439-037X.1996.tb00479.x
Di, N., Ju, X. Y., Han, H. J., Wang, J., Cui, C., & Zheng, X. Q. (2020). Effects of preculture conditions on the germination of sunflower broomrape seeds. Chinese Journal of Oil Crop Sciences, 42(3), 486–492. (In Chinese). https://doi.org/10.19802/j.issn.1007-9084.2019216
Dinesha, M. S., & Dhanapal, G. N. (2013). Broomrape (Orobanche cumana) germination biology, population dynamics and its control in tomato (Lycopersicon esculentum) fields in Karnataka. Journal of Progressive Agriculture, 4(1), 15–19.
Eizenberg, H., & Goldwasser, Y. (2018). Control of Egyptian broomrape in processing tomato: A summary of 20 years of research and successful implementation. Plant Disease, 102(8), 1477–1488. https://doi.org/10.1094/PDIS-01-18-0020-FE
Eizenberg, H., Hershenhorn, J., Plakhine, D., & Kleifeld, Y. (2003). Effect of temperature on susceptibility of sunflower varieties to sunflower broomrape (Orobanche cumana) and Egyptian broomrape (Orobanche aegyptiaca). Weed Science, 51(3), 279–286.
Eizenberg, H., Plakhine, D., Hershenhorn, J., Kleifeld, Y., & Rubin, B. (2003). Resistance to broomrape (Orobanche spp.) in sunflower (Helianthus annuus L) is temperature dependent. Journal of Experimental Botany, 54(385), 1305–1311. https://doi.org/10.1093/jxb/erg129
Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E., & Yates, C. J. (2015). A statistical explanation of MaxEnt for ecologists. Diversity & Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Ephrath, J. E., & Eizenberg, H. (2010). Quantification of the dynamics of Orobanche cumana and Phelipanche aegyptiaca parasitism in confectionery sunflower. Weed Research, 50(2), 140–152. https://doi.org/10.1111/j.1365-3180.2010.00768.x
Ermias, K., & Murdoch, A. J. (1999). A model of the effects of a wide range of constant and alternating temperatures on seed germination of four Orobanche Species. Annals of Botany, 84(4), 549–557. https://doi.org/10.1006/anbo.1998.0948
Fischer, G., Nagtergaelle, F., Prieler, S., Velthuizen, H. T. V., Verelst, L., & Wiberg, D. (2008). Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA and FAO.
Fordham, D. A., Akçakaya, H. R., Araújo, M. B., Elith, J., Keith, D. A., Pearson, R., Auld, T. D., Mellin, C., Morgan, J. W., Regan, T. J., Tozer, M., Watts, M. J., White, M., Wintle, B. A., Yates, C., & Brook, B. W. (2012). Plant extinction risk under climate change: Are forecast range shifts alone a good indicator of species vulnerability to global warming? Global Change Biology, 18(4), 1357–1371. https://doi.org/10.1111/j.1365-2486.2011.02614.x
Foy, C. L., Jain, R., & Jacobsohn, R. (1989). Recent approaches for chemical control of broomrape (Orobanche spp.). Reviews of Weed Science, 5(2), 123–152.
Fu, M. Q., Liu, B., Wang, J., Sun, Y., Wang, X. H., & Cheng, F. (2019). Temporal and spatial changes of sunflower production in China from 1985 to 2015. Journal of Henan Agricultural University, 53(04), 630–637. (In Chinese). https://doi.org/10.16445/j.cnki.1000-2340.2019.04.019

Gevezova, M., Dekalska, T., Stoyanov, K., Hristeva, T., Kostov, K., Batchvarova, R., & Denev, I. (2012). Recent advances in broomrapes research. Journal of Bioscience & Biotechnology, 12(1), 91–105.

Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., & Takahashi, K. (2019). Global emissions pathways under different socio-economic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 12(4), 1443–1475. https://doi.org/10.5194/gmd-2018-266

Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2010). The effect of water stress on the temperature range for germination of Orobanche aegyptiaca seeds. Weed Science, 58(1), 57–60. https://doi.org/10.1614/WS-D-11-00068.1

Stillwell, A., & O’Hara, B. G. (2011). Assorted factors that influence parasitic plant biomass. Journal of Biological Science, 29(5), 49–57. https://doi.org/10.1016/j.jbiosc.2011.04.004

Nickrent, D. L., & Musselman, L. J. (2004). Introduction to parasitic flowering plants. The Plant Health Instructor, 13. https://doi.org/10.1094/PHI-I-2004-0330-01

Parker, C. (2009). Observations on the current status of Orobanche and Striga problems worldwide. Pest Manage Science, 65, 453–459. https://doi.org/10.1002/ps.1713

Parker, C. (2012). Parasitic weeds: A world challenge. Weed Science, 60(2), 269–276. https://doi.org/10.1614/WS-D-11-00086.1

Pearce, J., & Ferrier, S. (2000). An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecological Model, 128, 127–147. https://doi.org/10.1016/S0304-3800(99)00227-6

Pellissier, L., Brathen, A. K., Pottier, J., Randin, C. F., Vittoz, P., Dubuis, A., Yoccoz, N. G., Alm, T., Zimmermann, N. E., & Guisan, A. (2010). Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography, 33(6), 1004–1014. https://doi.org/10.1111/j.1600-0587.2010.06386.x

Kebreab, E., & Murdoch, A. J. (1999). Effect of temperature and humidity on the longevity of Orobanche seeds. Weed Research, 39(3), 199–211. https://doi.org/10.1046/j.1365-3180.1999.00138.x

Kebreab, E., & Murdoch, A. J. (2000). The effect of water stress on the temperature range for germination of Orobanche aegyptiaca seeds. Seed Science Research, 10(2), 127–133. https://doi.org/10.1017/S096025850000131

Lenoir, J., Jegout, J. C., Marquetet, P. A., Ruffray, P. D., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771. https://doi.org/10.1126/science.1156831

Libaiakowá, D., Carolien, R. S., Bouwmeester, H. J., & Matusova, R. (2018). Agrobacterium rhizogenes transformed calli of the holoparasitic plant Phelipanche ramosa maintain parasitic competence. Plant Cell Tissue & Organ Culture, 135, 321–329. https://doi.org/10.1007/s11240-018-1466-x

Lipiec, J., Doussan, C., Nosalewicz, A., & Kondracka, K. (2013). Effect of drought and heat stresses on plant growth and yield: A review. International Agrophysics, 27(4), 463–477. https://doi.org/10.2478/intag-2013-0017

Ma, B., & Sun, J. (2018). Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 18, 10. https://doi.org/10.1186/s12898-018-0165-0

Mariam, E. G., & Suwanketnikom, R. (2004). Effect of nitrogen fertilizers on branched broomrape (Orobanche ramosa L.) in tomato (Lycopersicon esculentum Mill.). Kasetsart Journal, 38(3), 311–319.

Mesbah, N., Dehghanzadeh, H., & Jarmejad, M. (2012). Effects of nitrogen fertilizers on growth of Egyptian broomrape, in the presence of the host of sunflower, in pot conditions. Research Journal of Biological Sciences, 7(6), 463–469. https://doi.org/10.3923/rjbs.2012.307.311

Mohamed, K. I., Papes, M., Williams, R., Benz, B. W., & Peterson, A. T. (2006). Global invasive potential of 10 parasitic Witchweeds and Related Orobancheae. Ambio, 6, 281–288. https://doi.org/10.1579/05-R-051R1

Mohammadi, S., Ebrahimi, E., Moghadam, S. M., & Bosso, L. (2019). Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecological Informatics, 52, 7–13. https://doi.org/10.1016/j.ecoinf.2019.04.003

Moraes, N. S., Fernández, I. C., & Baca-Gonzalez, V. (2017). MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ, 5(2), e3093. https://doi.org/10.7717/peerj.3093

Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2015). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology & Evolution, 5(11), 1198–1205. https://doi.org/10.1111/2041-210X.12261

Musselman, L. J. (1980). The biology of Striga, Orobanche, and other root-parasitic weeds. Annual Review of Phytopathology, 18(1), 463–489. https://doi.org/10.1146/annurev.py.18.090180.002335

Nargis, M., & Syed, A. N. (2014). Effect of nitrogen fertilizers on the yield of host plant, sunflower (Helianthus annuus) in presence of parasitic plant (Orobanche aegyptiaca). Research Journal of Biological Science, 9(5), 188–192.

New, M., Hulme, M., & Jones, P. (1920). Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. Journal of Climate, 12(3), 829–856.

Nickrent, D. L. (2020). Parasitic angiosperms: How often and how many? Taxon, 69(1), 5–27. https://doi.org/10.1002/tax.12195

Nickrent, D. L., & Musselman, L. J. (2004). Introduction to parasitic flowering plants. The Plant Health Instructor, 13. https://doi.org/10.1094/PHI-I-2004-0330-01

Parker, C. (2009). Observations on the current status of Orobanche and Striga problems worldwide. Pest Manage Science, 65, 453–459. https://doi.org/10.1002/ps.1713

Parker, C. (2012). Parasitic weeds: A world challenge. Weed Science, 60(2), 269–276. https://doi.org/10.1614/WS-D-11-00086.1

Pearce, J., & Ferrier, S. (2000). An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecological Model, 128, 127–147. https://doi.org/10.1016/S0304-3800(99)00227-6

Pellissier, L., Brathen, A. K., Pottier, J., Randin, C. F., Vittoz, P., Dubuis, A., Yoccoz, N. G., Alm, T., Zimmermann, N. E., & Guisan, A. (2010). Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography, 33(6), 1004–1014. https://doi.org/10.1111/j.1600-0587.2010.06386.x
Shi, B. X., Xu, D. S., Wu, Y. Z., Lei, Z. H., Lai, C. X., & Zhao, J. (2018). Patterns of resistance to Egyptian broomrape infection in tomato varieties. Plant Disease, 102(6), 85-94. https://doi.org/10.1094/PDIS-07-14-0721-PDN

Shi, B. X., Zhao, J., & Huijbregts, M. A. J. (2014). Effect of soil conditions on sunlight broomrape parasitism. Acta Botanica Boreali-Occidentalia Sinica, 38(9), 1717–1721. (In Chinese). https://doi.org/10.7606/j.issn.1001-4025.2018.09.1717

Shi, B. X., & Zhao, J. (2020). Recent progress on sunlight broomrape research in China. OCL, 27, 30. https://doi.org/10.1051/ocl/20202023

Silva, D. P., Gonzalez, V. H., Melo, G. A. R., Lucia, M., Alvarez, L. J. Jr, & De Marco, P. (2014). Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecological Modelling, 273, 200–209. https://doi.org/10.1016/j.ecolmodel.2013.11.016

Simões, M. V. P., & Peterson, A. T. (2018). Importance of biotic predictors in estimation of potential invasive areas: The example of the tortoise beetle Euyprednis nigrosignatus, in Hispaniola. PeerJ, 6, e6052. https://doi.org/10.7717/peerj.6052

Song, W. J., Cao, D. D., Jin, Z. L., & Zhou, W. J. (2005). Study on the factors affecting the seed germination of root parasitic plants. Seeds, 2, 44–47. (In Chinese). https://doi.org/10.3969/j.issn.1001-4705.2005.02.012

Song, W. J., Zhou, W. J., Jin, Z. L., Cao, D. D., Joel, D. M., Takeuchi, Y., & Yoneyama, K. (2010). Germination response of Orobanche seeds subjected to conditioning temperature, water potential and growth regulator treatments. Weed Research, 45(6), 467–476. https://doi.org/10.1111/j.1365-3180.2005.00477.x

Sukno, S. A., Fernández-Martínez, J. M., & Melero-Vara, J. M. (2001). Temperature effects on the disease reactions of sunflower to infection by Orobanche cumana. Plant Disease, 85(5), 553–556. https://doi.org/10.1094/PDIS.2001.85.5.553

Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293. https://doi.org/10.1126/science.3287615

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427, 145–148. https://doi.org/10.1038/nature02112

Tokioka, S., Bannayan, A. M., Mashhadi, H. R., & Ali, G. (2014). Screening of resistance to Egyptian broomrape infection in tomato varieties. Planta Daninha, 32(1), 109–116. https://doi.org/10.1590/0100-83582014001000012

Vanagas, G. (2004). Receiver operating characteristic curves and comparison of cardiac surgery risk stratification systems. Interactive Cardiovascular and Thoracic Surgery, 3, 319–322. https://doi.org/10.1016/j.icvts.2004.01.008

Velasco, J. A., & Gonzalez-Salazar, C. (2019). Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecological Informatics, 51, 25–32. https://doi.org/10.1016/j.ec infusion.2019.02.005

Walther, G. R., Beißner, S., & Burga, C. A. (2005). Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16(5), 541–548. https://doi.org/10.1111/j.1654-1103.2005.tb02394.x

Wang, C., Hawthorne, D., Qin, Y. J., Pan, X. B., Li, Z. H., & Zhu, S. F. (2017). Impact of climate and host availability on future distribution of Colorado potato beetle. Scientific Reports, 7(1), 4489. https://doi.org/10.1038/s41598-017-04607-7

Wang, D., Cui, B., Duan, S., Chen, J., Fan, H., Lu, B., & Zheng, J. (2019). Moving north in China: The habitat of Pedicularis kansuensis in the context of climate change. Science of the Total Environment, 697, 133979. https://doi.org/10.1016/j.scitotenv.2019.133979

Wickett, N. J., Honaas, L. A., Wafula, E. K., Das, M., Huang, K., Wu, B., Landherr, L., Timko, M. P., Yoder, J., Westwood, J. H., & de Pamphilis, C. W. (2011). Transcriptomes of the parasitic plant family Orobanchaceae reveal surprising conservation of chlorophyll synthesis. Current Biology, 21(4), 2098–2104. https://doi.org/10.1016/j.cub.2011.11.011

Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Springer. https://doi.org/10.1007/978-0-387-98141-3

Wilson, R. J., Gutirrrez, D., Llán, G. J., & Monserrat, V. J. (2007). An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biology, 13(9), 1873–1887. https://doi.org/10.1111/j.1365-2486.2007.01418.x

Wu, H. Y., & Qiang, S. (2006). Quarantine weeds Orobanche L. Weed Science, 52, 58–60. (In Chinese). https://doi.org/10.3969/j.issn.1000-935X.2006.02.026

Wu, W. L., Jiang, C. L., Huang, Z. F., Zhang, C. X., Bai, Q. J., Yun, X. P., Wei, S. H., & Huang, H. J. (2020). Investigation of present occurrence and infestation of Orobanche cumana Wallr. in China. Plant Protection, 46(3), 266–273s. (In Chinese).

Yao, Z. Q., Cao, X. L., Fu, C., & Zhao, S. F. (2017). Review of the distribution and management technology of various Orobanche L. species in Xinjiang, China. Journal of Biosafety, 26(1), 23–29. (In Chinese). https://doi.org/10.3969/j.issn.2095-1787.2017.01.004
Ye, X. Z., Zhao, G. H., Zhang, M. Z., Cui, X. Y., Fan, H. H., & Liu, B. (2020). Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the last interglacial period. *Forests, 11*(4), 434. https://doi.org/10.3390/f11040434

Yi, Y. J., Cheng, X., Yang, Z. F., & Zhang, S. H. (2016). Maxent modeling for predicting the potential distribution of endangered medicinal plant (*H. riparia* Lour) in Yunnan, China. *Ecological Engineering, 92*, 260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010

Zacarias, D. A. (2020). Global bioclimatic suitability for the fall armyworm, *Spodoptera frugiperda* (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. *Climatic Change, 4*. https://doi.org/10.1007/s10584-020-02722-5

Zhang, C., Chen, L., Tian, C. M., Li, T., & Yang, Q. Q. (2016). Predicting the distribution of dwarf mistletoe (*Arceuthobium sibiricum*) with GARP and Maxent models. *Journal of Beijing Forestry University, 38*(5), 23–32. https://doi.org/10.13332/j.1000-1522.20150516

Zhang, J. L., & Jiang, Q. (1994). The host and distribution of *Cuscuta L.* and Orobanche L. *Plant Quarantine, 8*(2), 69–73. (In Chinese).

Zhang, K. L., Yao, L. J., Meng, J. S., & Tao, J. (2018). Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. *The Science of the Total Environment, 634*, 1326–1334. https://doi.org/10.1016/j.scitotenv.2018.04.112

Zhang, L. X., Gan, Z. X., Li, B. J., Wei, Q., Yan, D. L., Zhang, Y., & Peng, G. (2016). Harm of parasitic weed *Orobanche* and its prevention in Xinjiang. *Biology Disaster Science, 39*(3), 211–214. (In Chinese). https://doi.org/10.3969/j.issn.2095-3704.2016.03.046

Zhang, X. K., Yao, Z. Q., Zhao, S. F., Ding, L. L., & Du, J. (2012). Distribution, harmfulness and its assessment of Orobanche aegyptiaca in Xinjiang province. *Plant Quarantine, 06*, 31–39. (In Chinese).

Zhao, G., Cui, X., Sun, J., Li, T., Wang, Q. I., Ye, X., & Fan, B. (2021). Analysis of the distribution pattern of Chinese *Ziziphus jujuba* under climate change based on optimized bioclim2 and MaxEnt models. *Ecological Indicators, 132*, 108256. https://doi.org/10.1016/j.ecolid.2021.108256

**SUPPORTING INFORMATION**

Additional supporting information may be found in the online version of the article at the publisher’s website.

**How to cite this article:** Zhang, L., Cao, X., Yao, Z., Dong, X., Chen, M., Xiao, L., & Zhao, S. (2022). Identification of risk areas for *Orobanche cumana* and *Phelipanche aegyptiaca* in China, based on the major host plant and CMIP6 climate scenarios. *Ecology and Evolution, 12*, e8824. https://doi.org/10.1002/ece3.8824