A Near-Conformal Composite Higgs Model

Thomas Appelquist,1 James Ingoldby,2 and Maurizio Piai3

1Department of Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06520, USA
2Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy
3Department of Physics, College of Science, Swansea University, Singleton Park, Swansea, Wales, UK

We analyze a composite Higgs model based on the confining $SU(3)$ gauge theory with $N_f = 8$ Dirac fermions in the fundamental representation. This gauge theory has been studied on the lattice and shown to be well described by a dilaton effective field theory (EFT). Here we modify the EFT by assigning standard-model quantum numbers such that four of the composite pseudo-Nambu-Goldstone boson (pNGB) fields form the standard-model Higgs doublet, by coupling it to the top quark, and by adding to the potential a term that triggers electroweak symmetry breaking. The model contains a pNGB Higgs boson, a set of heavier pNGBs, and an approximate dilaton in the same mass range. We study the phenomenology of the model, and discuss the amount of tuning required to ensure consistency with current direct and indirect bounds on new physics, highlighting the role of the dilaton field.

I. INTRODUCTION

Lattice studies of the $SU(3)$ gauge theory with $N_f = 8$ Dirac fermions in the fundamental representation show evidence of a light scalar singlet $\mathbf{1}[15]$. (Similar results hold with $N_f = 2$ fermions in the symmetric representation $\mathbf{8}[11]$.) The suggestion that this state might be a dilaton has fueled a revival of interest in the dilaton effective field theory (EFT). Its history dates back to dynamical symmetry breaking $\mathbf{12}$-$\mathbf{14}$, well before this recent lattice-driven activity $\mathbf{15}$-$\mathbf{26}$. Existing lattice data, analyzed via the dilaton EFT $\mathbf{20}$-$\mathbf{21}$ yielded the first measurement of a key, large anomalous dimension related to the fermion bilinear condensate $\mathbf{27}$. The results are consistent with earlier expectations $\mathbf{28}$ and with recent high-loop perturbative studies $\mathbf{29}$-$\mathbf{30}$.

This theory, with a global $SU(8) \times SU(8)$ symmetry, broken to the diagonal $SU(8)$, is a natural candidate to build a composite Higgs model (CHM) $\mathbf{31}$-$\mathbf{33}$, (see also $\mathbf{34}$-$\mathbf{40}$ and references therein). Lattice studies of $SU(2)$ $\mathbf{41}$-$\mathbf{47}$, $SU(4)$ $\mathbf{48}$-$\mathbf{52}$, and $Sp(4)$ $\mathbf{53}$-$\mathbf{55}$ gauge theories have explored the possible origin of CHMs. The $SU(3)$ gauge theory has distinctive features: the presence of a light scalar singlet which modifies the EFT description of the CHM (see also Ref. $\mathbf{56}$), and the presence of large anomalous dimensions. Furthermore, ordinary baryons can give rise to top compositeness $\mathbf{34}$.

In this paper, we show that the presence of the dilaton field in the EFT allows us to construct an appealing CHM based upon the $SU(8) \times SU(8)/SU(8)$ coset. We demonstrate that observables such as the ratio of the mass of the Higgs boson, $m_h \simeq 126$ GeV, to the electroweak vacuum expectation value (VEV), $v \simeq 246$ GeV, and to the mass of the additional heavy scalars, are substantially altered with respect to generic CHM expectations. We highlight how current lattice studies might already be exploring phenomenologically relevant regions of parameter space. These statements depend on the value of a (currently) unknown scaling dimension w, which in principle can be measured on the lattice.

Fermion	SU(2)$_L$	U(1)$_Y$	SU(3)$_c$	SU(3)
L_α	2	0	1	3
$R_{1,2}$	1	(1/2, -1/2)	1	3
T	1	2/3	3	3
S	1	0	1	3

TABLE I. Quantum number assignments of the Dirac fermions. $SU(3)_c \times SU(2)_L \times U(1)_Y$ is the SM gauge group, while $SU(3)$ is the strongly coupled gauge symmetry. We denote with $\alpha = 1, 2$ the $SU(2)_L$ index. The fermions denoted by $R_{1,2}$ form a fundamental representation of the global $SU(2)_R$ custodial symmetry. A model with similar assignments has been considered in Ref. $\mathbf{31}$.

II. THE MODEL

We assign to the eight Dirac fermions the quantum numbers indicated in Table I. The global $SU(8) \times SU(8)$ symmetry group is broken both explicitly (by a diagonal mass term) and spontaneously (by the strong dynamics) to its diagonal $SU(8)$ subgroup. The gauge group of the standard model (SM) is a subgroup of the unbroken $SU(8)$. The EFT description contains 63 pseudo-Nambu-Goldstone Bosons (pNGBs) denoted as π^a, and one additional $SU(3)$ singlet, the dilaton, which we denote as χ. We ignore the $U(1)_A$ meson, which is a singlet and has a large mass, due to the anomaly.

The CHM construction starts from the observation that 8 of the pNGBs have the correct quantum numbers to form two copies of the Higgs doublet of the standard model. We further modify the dilaton EFT of Refs. $\mathbf{20}$-$\mathbf{22}$ by adding two terms: a coupling of one of these two doublets to the top quark, and a related potential term for the pNGBs. In this paper, we ignore all SM fermions other than the top; the generalization to include other SM fermions within the EFT framework is straightforward.
The EFT Lagrangian density that results from this construction is the following:

\[\mathcal{L} = \frac{1}{2} (\partial_\mu \chi)^2 + \mathcal{L}_\pi + \mathcal{L}_M - V(\chi) + \mathcal{L}_Y - V_t + \mathcal{L}_1, \tag{1} \]

where the dilaton field \(\chi \) acts as a conformal compensator, coupling to EFT operators in such a way as to restore scale invariance in Eq. (1). It acquires a VEV \(\langle \chi \rangle \equiv F_d \), breaking scale invariance spontaneously.

The kinetic term for the pNGBs is

\[\mathcal{L}_\pi = \frac{F^2}{4} \left(\frac{\chi}{F_d} \right)^2 \text{Tr} \left[D_\mu \Sigma (D^\mu \Sigma) \right], \tag{2} \]

where \(F \) enters the EFT as the scale of spontaneous breaking of \(SU(8) \times SU(8) \). The matrix–valued field \(\Sigma \) represents the 63 pNGBs spanning the \(SU(8)/SU(8) \) coset. The covariant derivatives describe couplings to the SM gauge bosons, following the embedding identified in Table 1. Their kinetic terms and self-interactions are the standard ones, which we include in \(\mathcal{L}_1 \). \(\Sigma \) satisfies the nonlinear constraint \(\Sigma \Sigma^T = 1 \).

The Dirac mass given to the fermions of the new strong sector leads directly to the following term in the EFT

\[\mathcal{L}_M = \frac{M^2 F^2}{4} \left(\frac{\chi}{F_d} \right)^y \text{Tr} \left[\Sigma + \Sigma^T \right], \tag{3} \]

and breaks the global symmetry. The quantity \(M^2 \) sets the scale for the masses of the 59 pNGBs besides those that become the Higgs doublet. The parameter \(y \) has been interpreted as the scaling dimension of the fermion bilinear condensate in Ref. [27]. Its value is \(y = 2.06 \pm 0.05 \) [22].

The scalar potential \(V(\chi) \) describes the self-interactions of the dilaton field. It encodes both the spontaneous and explicit breaking of scale symmetry originating from the underlying gauge theory. We provided a general form for this potential in Eq. [22], where it played a key role. Here we will not find it necessary to further invoke the explicit form of \(V(\chi) \).

At the level of the EFT, we describe the mass of the top quark using the Yukawa interaction

\[\mathcal{L}_Y = y_t F_\pi \left(\frac{\chi}{F_d} \right)^z \left(Q_L^a t_R^a \right) \text{Tr} \left[P^a \Sigma \right] + \text{h.c.}, \tag{4} \]

The underlying gauge theory determines the scaling dimension \(z \). \(H_\alpha \equiv \text{Tr}[P^a \Sigma] \) transforms as the Higgs Doublet, with quantum numbers \((2, -1/2)\) under \(SU(2)_L \times U(1)_Y \). Here \(\alpha \) is the index of \(SU(2)_L \). We take the projectors \(P^a \) to be the following 8 \(\times \) 8 matrices

\[P^a = \left(\begin{array}{cc} \tilde{P}^a & 0_4 \\ 0_4 & 0_4 \end{array} \right), \tag{5} \]

with

\[\tilde{P}_1 = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \tilde{P}_2 = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}. \tag{6} \]

This choice, motivated by simplicity, will ensure that one Higgs doublet is responsible for electroweak symmetry breaking.

The operator in Eq. (4) breaks the \(SU(8) \times SU(8) \) global symmetry. In the underlying theory, interactions responsible for generating Eq. (4) also generate an \(SU(8) \times SU(8) \) breaking contribution to the potential of the form

\[V_t = -C_t \left(\frac{\chi}{F_d} \right)^w \sum_{\alpha=1}^{2} |\text{Tr} \left[P^\alpha \Sigma \right]|^2. \tag{7} \]

The (unknown) scaling dimension \(w \) derives from the underlying gauge theory. This potential has non-Abelian global symmetry \(SU(2)_L \times SU(2)_R \times SU(4) \), the \(SU(4) \) remaining due to the vanishing entries in \(P^a \). The custodial \(SU(2)_R \) symmetry, suppressing the effect of new physics on precision electroweak observables, is preserved here for our choice of \(P^a \), despite the fact that the Yukawa interaction in Eq. (4) breaks this symmetry explicitly. There are subleading contributions to this potential that break \(SU(2)_R \), but they are smaller than \(V_t \), and we will not consider them. Similarly, the gauging of the SM subgroup breaks the global symmetries, and leads to additional contributions to the potential, but they are smaller and we neglect them in this analysis.

A loop of top quarks can also generate the interaction in Eq. (7), naturally making the constant \(C_t \) positive. In addition, partial top compositeness can generate Eq. (4)—and hence Eq. (7)—in which case the field \(Q^a_L \) couples linearly to the baryon operator \(B^a_L = \bar{L}^\dagger (\not{T} R^a) \) and \(B^a_R = 2 R_1 (T R^a) + L (T L)^\dagger \) in the underlying theory. (Parentheses indicate contraction of spinor indices.) Alternatively, Eq. (4) can be generated by coupling the elementary fermion bilinear \((\bar{Q}^a_L t_R^a) \) to the mesonic operator \(O^a_M = (L R^a_1) - \epsilon^{abc} (R^a_2 L^b_\beta) \).

III. THE VACUUM

We first analyze the vacuum of the EFT. Both the pNGB that we identify with the Higgs field and the dilaton have nontrivial vacuum values, which must be calculated simultaneously. Then we determine the mass of the composite Higgs boson in this vacuum, emphasizing the significant role played by the dilaton field.

The three terms without derivatives or the top quark field in the Lagrangian of Eq. (1) define a potential for both the pNGBs and the dilaton. It is helpful to
parametrize the Σ field as
\[
\Sigma = \exp \left[i \theta \begin{pmatrix}
0_{2 \times 2} & -i \mathbb{1}_2 & 0_{2 \times 4} \\
0_{2 \times 2} & 0_{2 \times 2} & 0_{2 \times 2} \\
0_{4 \times 2} & 0_{4 \times 2} & 0_{4 \times 4}
\end{pmatrix}\right],
\]
where only the degree of freedom corresponding to the pNGB component of the Higgs boson (represented by θ) is shown, for simplicity. The potential then reads
\[
W(\chi, \theta) = V(\chi) - C_t \left(\frac{\chi}{F_d}\right)^w \sin^2 \theta - 2 M^2_\pi F^2_\pi \left(\frac{\chi}{F_d}\right)^y (1 + \cos \theta),
\]
Minimizing this potential determines the vacuum value F_d of χ, and the vacuum value of θ (the misalignment angle). We henceforth use θ to denote this vacuum value rather than the dynamical pNGB field. The electroweak scale $v \simeq 246$ GeV is related to the misalignment angle through $v = \sqrt{2} F_\pi \sin \theta$. The top acquires the mass $m_t = y_t v / \sqrt{2}$.

At the minimum of the potential, we have $\langle \chi \rangle \equiv F_d$, while
\[
\cos \theta = \frac{M^2_\pi F^2_\pi}{C_t },
\]
provided that $M^2_\pi F^2_\pi < C_t$, otherwise at the minimum we get $\theta = 0$, preserving electroweak symmetry. Furthermore, the minimum must satisfy:
\[
0 = \frac{\partial V}{\partial \chi} \bigg|_{F_d} - \frac{4y M^2_\pi F^2_\pi}{F_d} - \frac{M^2_\pi F^2_\pi}{F_d} \left(\frac{\sin^2 \theta}{\cos \theta} - 2y(1 - \cos \theta)\right).
\]
These equations determine θ in terms of C_t and provide a relation between F_d and other EFT parameters with the dilaton potential V.

To comply with the SM at currently accessible energies, we must find a small misalignment angle $\theta \ll 1$, that is, a large separation between v and F_π. This is achieved by tuning C_t in Eq. \ref{eq:theta}.

For $\theta \ll 1$, Eq. \ref{eq:theta} determining F_d simplifies in an essential way. The second line is suppressed, and may be neglected in first approximation. The resulting equation is precisely the one used in Refs. \[20, 21\] to relate F_d to the other parameters in the EFT employed there. That EFT, with no potential term proportional to C_t, was used to fit lattice data for the $SU(3)$ gauge theory with $N_f = 8$. The functional form of the scalar potential $V(\chi)$ was constrained in that fit.

The mass matrix for the χ and θ degrees of freedom is approximately given (for small misalignment angle) by
\[
M^2 = \begin{pmatrix}
M^2_\chi & \theta \sqrt{2} M^2_\chi F_\pi (y - w) \\
\theta \sqrt{2} M^2_\chi F_\pi (y - w) & \theta^2 M^2_\pi
\end{pmatrix},
\]
The (1,1) entry is the second derivative of $W(\chi, \theta)$ with respect to χ at $\chi = F_d$ in the limit $\theta \to 0$. It is expressible in terms of the scalar potential $V(\chi)$ and other EFT parameters by
\[
M^2_d = \frac{\partial^2 V}{\partial \chi^2} \bigg|_{F_d} - 4y(y - 1) \frac{F^2_\pi}{M^2_\pi} M^2_\pi,
\]

The spin-0 part of the spectrum of our EFT consists of 63 NGBs and pNGBs associated with the spontaneous breaking of the $SU(8) \times SU(8)$ symmetry of the underlying gauge theory, along with a scalar state of approximate mass M_d. The 3 massless NGBs are eaten by the W^\pm and Z. One state is the relatively light pNGB Higgs boson of mass m_h (Eq. \ref{eq:mh}), while 59 are heavier pNGB states with their mass scale set by M_π. One additional heavier state has mass M_d. The quantities F_π and F_d are decay constants associated with these states. To set the relative size of M_π, M_d, F_π, we draw directly from the LSD lattice measurements \[5\].

Neglecting the SM gauge interactions, the EFT has approximate $SU(2)_L \times SU(2)_R \times SU(4)$ global symmetry. The pNGB multiplet decomposes into representations of this symmetry as follows
\[
63 = (3, 1, 1) + (1, 3, 1) + (1, 1, 1) + (2, 2, 1) + (1, 1, 15) + (2, 1, 4) + (1, 2, 4) + (1, 1, 1).
\]

The misaligned vacuum breaks $SU(2)_L \times SU(2)_R$ spontaneously to its diagonal subgroup $SU(2)_D$. As a result, the composite spectrum is organized in a set of (approximate) multiplets of $SU(2)_D \times SU(4)$.

To determine the spectrum, we first specify the quantities \{$M^2_\chi, M^2_d, F^2_\pi, F^2_d, y, m_h, v$\}. We use data from lattice
TABLE II. Estimated composite spectrum determined using the procedure described in the text. The states are labeled using their SU(2)D × SU(4) quantum numbers, shown in the left-hand column. The m_{f_i} refer to the 5 different values for the constituent fermion mass appearing in the lattice study of Ref. [5] (arranged in ascending order) that is used as an input into these estimates. We show only the central values of the masses, to highlight the high level of degeneracy among the heavier states, which is independent of uncertainties coming into these estimates. We show only the central values of the masses, to highlight the high level of degeneracy among the heavier states, which is independent of uncertainties coming from the lattice determinations of M_d and F_π^2/F_d^2.

SU(2)_D	SU(4)	Mass (TeV)
1	1	4.31 4.73 4.29 4.96 4.87
3	1	4.35 4.37 4.39 4.40 4.40
2	4	4.18 4.19 4.20 4.20 4.20
3	1	4.03 4.03 4.04 4.04 4.04
1	1	4.03 4.03 4.04 4.04 4.04
1	15	4.00 4.00 4.00 4.00 4.00
1	1	3.99 3.98 3.98 3.98 3.98
2	4	3.84 3.83 3.83 3.82 3.82
3	1	3.67 3.66 3.64 3.64 3.64
1	1	0.126 0.126 0.126 0.126 0.126
3	1	0 0 0 0 0

FIG. 1. The ratio m_h^2/v^2, as a function of w, for y = 2.06 ± 0.05 and F_d^2/F_d^2/π = 0.086 ± 0.015 [22], for the LSD measurements taken at the second fermion mass (m_{f_2}) in the range [5]. The horizontal black dashed line represents the experimental value m_h^2/v^2 ≃ 0.26. The yellow shaded region is the uncertainty, which is dominated by the substantial uncertainty in the measurement of the mass M_d of the scalar, and in the quantity F_d^2/F_d^2. For the best case scenario of w = 4.7, the resulting uncertainty in m_h^2/v^2 is approximately an order of magnitude larger than the central value. Still, as the error in the measurement of M_d is reduced, the range of acceptable w values required to maintain m_h^2/v^2 ≃ 0.26 will diminish and potentially shift slightly.
the pNGB and dilaton components of the Higgs particle, and the expressions for them take the same form as those derived in the literature (see e.g. Ref. [38] and refs. therein). In the limit $\theta \to 0$, the Higgs would couple to the gauge bosons and top with the same strength as the SM Higgs.

Using the benchmark $M_\rho = 4$ TeV and the values for parameters selected by the lattice data of Ref. [3], we find that the ratio between the Higgs couplings to W and Z bosons and their SM values is approximately 0.98. The coupling to top pairs has additional weak dependence on the unknown scaling dimension z, which arises because the dilaton component of the Higgs boson has a coupling to the top that is z dependent from Eq. (1). For the value $z \approx 2-3$, the coupling strength to the top becomes the same as in the SM. Over a plausible range of values for z, the top coupling deviates from its SM value only by a few percent.

The amplitudes $h \to gg$ and $h \to \gamma\gamma$ also deviate slightly from their SM values. New electrically charged and colored pNGBs contribute to these amplitudes at loop level, but are sufficiently heavy for our choice of benchmark that their contributions are negligible.

Considering all of these deviations, the signal significance for Higgs boson production in all observable channels would deviate from the SM prediction by no more than a few percent. Given the current accuracy of the Higgs measurements, which is no better than 8% [60], these effects will lie within experimental bounds, and a more precise analysis can be deferred.

The masses of composite states which are not included in the EFT have also been calculated in the $N_f = 8$ gauge theory on the lattice, in Ref. [5]. In particular, this data allows us to estimate the masses of the vector (ρ) and axial (a_1) mesons. Using lattice measurements for ratios M_ρ/M_π and M_{a_1}/M_π, we estimate that the ρ would have a mass in the 6–8 TeV range and the a_1 a mass in the 9–11 TeV range, for our choice of benchmark $M_\rho = 4$ TeV. We therefore do not expect them to be detectable at the LHC. Given the small deviations in Higgs couplings, as well as the large ρ and a_1 masses, precision electroweak observables such as the S parameter will lie within current experimental bounds.

V. SUMMARY

We have argued that the $SU(3)$ gauge theory with $N_f = 8$ fundamental fermions provides an attractive ultraviolet completion for a realistic composite Higgs model. This model has the distinctive feature that the near-conformal behavior of its underlying dynamics has been revealed by lattice studies.

We have drawn on such lattice results to compute several observable quantities within the model. These include the misalignment angle in the vacuum of the theory, the mass of the Higgs boson, and the spectrum of heavy scalars. We have also examined the Higgs boson couplings and its production rates at the LHC. The model passes all the direct and indirect tests currently available, at the price of a moderate amount of fine-tuning for one of the coefficients in the EFT potential.

We have described the model in terms of the dilaton effective field theory (EFT) from Refs. [20–22], requiring only a simple addition to realize the Higgs doublet as composite pseudo-Nambu-Goldstone bosons. Because of the approximate scale invariance of the dilaton EFT, it is possible to accommodate a realistic value of the mass of the composite Higgs boson even for the values of the ratio M_ρ/F_π currently available from lattice studies. As a consequence, the mass of the Higgs boson is suppressed by an order of magnitude with respect to that of the other pNGBs and dilaton in the EFT.

We look to future lattice studies for a determination of the scaling dimensions z and ν, which play important phenomenological roles. It will also be interesting to perform a more detailed study of the precision electroweak observables and explore the rest of the parameter space of this theory.

ACKNOWLEDGMENTS

MP would like to thank G. Ferretti for a useful discussion. The work of MP has been supported in part by the STFC Consolidated Grants ST/P00055X/1 and ST/T000813/1. MP has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 813942.

[1] Y. Aoki et al. [LatKMI Collaboration], “Light composite scalar in eight-flavor QCD on the lattice,” Phys. Rev. D 89, 111502 (2014) doi:10.1103/PhysRevD.89.111502 [arXiv:1403.5000 [hep-lat]].

[2] T. Appelquist et al., “Strongly interacting dynamics and the search for new physics at the LHC,” Phys. Rev. D 93, no. 11, 114514 (2016) doi:10.1103/PhysRevD.93.114514 [arXiv:1601.04027 [hep-lat]].

[3] Y. Aoki et al. [LatKMI Collaboration], “Light flavor-singlet scalars and walking signals in $N_f = 8$ QCD on the lattice,” Phys. Rev. D 96, no. 1, 014508 (2017) doi:10.1103/PhysRevD.96.014508 [arXiv:1610.07011].
[hep-lat]).

[4] A. D. Gasbarro and G. T. Fleming, “Examing the Low Energy Dynamics of Walking Gauge Theory,” PoS LATTICE 2016, 242 (2017) doi:10.22323/1.256.0242 [arXiv:1702.00480 [hep-lat]].

[5] T. Appelquist et al. [Lattice Strong Dynamics Collaboration], “Nonperturbative investigations of SU(3) gauge theory with eight dynamical flavors,” Phys. Rev. D 99, no. 1, 014509 (2019) doi:10.1103/PhysRevD.99.014509 [arXiv:1807.08411 [hep-lat]].

[6] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder and C. H. Wong, “Can the nearly conformal sextet gauge model hide the Higgs impostor?,” Phys. Lett. B 718, 657 (2012) doi:10.1016/j.physletb.2012.10.079 [arXiv:1209.0391 [hep-lat]].

[7] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi and C. H. Wong, “Toward the minimal realization of a light composite Higgs,” PoS LATTICE 2014, 244 (2015) doi:10.22323/1.214.0244 [arXiv:1502.00028 [hep-lat]].

[8] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi and C. H. Wong, “Status of a minimal composite Higgs theory,” PoS LATTICE 2015, 219 (2016) doi:10.22323/1.251.0219 [arXiv:1605.08750 [hep-lat]].

[9] Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. H. Wong, “The twelve-flavor β-function and dilaton tests of the sextet scalar,” EPJ Web Conf. 175, 08015 (2018) doi:10.1051/epjconf/201817508015 [arXiv:1712.08594 [hep-lat]].

[10] Z. Fodor, K. Holland, J. Kuti and C. H. Wong, “Tantalizing dilaton tests from a near-conformal EFT,” PoS LATTICE2018, 196 (2019) doi:10.22323/1.334.0196 [arXiv:1901.06324 [hep-lat]].

[11] Z. Fodor, K. Holland, J. Kuti and C. H. Wong, “Dilaton EFT from p-regime to RMT in the ϵ-regime,” arXiv:2002.05163 [hep-lat].

[12] C. N. Leung, S. T. Love and W. A. Bardeen, “Spontaneous Symmetry Breaking in Scale Invariant Quantum Electrodynamics,” Nucl. Phys. B 273, 649 (1986). doi:10.1016/0550-3213(86)90382-2

[13] W. A. Bardeen, C. N. Leung and S. T. Love, “The Dilaton and Chiral Symmetry Breaking,” Phys. Rev. Lett. 56, 1230 (1986). doi:10.1103/PhysRevLett.56.1230

[14] K. Yamawaki, M. Bando and K. I. Matumoto, “Scale Invariant Technicolor Model and a Technidilaton,” Phys. Rev. Lett. 56, 1335 (1986). doi:10.1103/PhysRevLett.56.1335

[15] M. Golterman and Y. Shamir, “Dilaton Chiral Perturbation Theory: Determining the Mass and Decay Constant of the Technidilaton on the Lattice,” Phys. Rev. D 95, no. 5, 054502 (2016) doi:10.1103/PhysRevD.95.054502 [arXiv:1603.04575 [hep-ph]].

[16] M. Golterman and Y. Shamir, “Low-energy effective action for pions and a dilatonic meson,” Phys. Rev. D 94, no. 5, 054502 (2016) doi:10.1103/PhysRevD.94.054502 [arXiv:1603.04575 [hep-ph]].

[17] M. Golterman and Y. Shamir, “Effective pion mass term and the trace anomaly,” Phys. Rev. D 95, no. 1, 016003 (2017) doi:10.1103/PhysRevD.95.016003 [arXiv:1611.04275 [hep-ph]].

[18] T. Appelquist, J. Ingoldby and M. Piai, “Dilaton EFT Framework For Lattice Data,” JHEP 1707, 035 (2017) doi:10.1007/JHEP07(2017)035 [arXiv:1702.04410 [hep-ph]].

[19] T. Appelquist, J. Ingoldby and M. Piai, “Analysis of a Dilaton EFT for Lattice Data,” JHEP 1803, 039 (2018) doi:10.1007/JHEP03(2018)039 [arXiv:1711.00067 [hep-ph]].

[20] T. Appelquist, J. Ingoldby and M. Piai, “Dilaton potential and lattice data,” Phys. Rev. D 101, no.7, 075025 (2020) doi:10.1103/PhysRevD.101.075025 arXiv:1908.00895 [hep-ph].

[21] M. Golterman and Y. Shamir, “Large-scale regime of the dilaton-pion low-energy effective theory,” Phys. Rev. D 98, no. 5, 056025 (2018) doi:10.1103/PhysRevD.98.056025 [arXiv:1805.00198 [hep-ph]].

[22] O. Cata and C. Muller, “Chiral effective theories with a light scalar at one loop,” Nucl. Phys. B 952, 114938 (2020) doi:10.1016/j.nuclphysb.2020.114938 [arXiv:1906.01879 [hep-ph]].

[23] M. "Golterman, E. T. Neil and Y. Shamir, “Application of dilaton chiral perturbation theory to $N_f = 8$, SU(3) spectral data,” Phys. Rev. D 102, no.3, 034515 (2020) doi:10.1103/PhysRevD.102.034515 arXiv:2003.00114 [hep-ph].

[24] M. Golterman and Y. Shamir, Phys. Rev. D 102, 114507 (2020) doi:10.1103/PhysRevD.102.114507 arXiv:2009.13846 [hep-lat].

[25] C. N. Leung, S. T. Love and W. A. Bardeen, “Aspects of Dynamical Symmetry Breaking in Gauge Field Theories,” Nucl. Phys. B 323, 493 (1989). doi:10.1016/0550-3213(89)90121-1

[26] A. G. Cohen and H. Georgi, “Walking Beyond the Rain- bow,” Nucl. Phys. B 314, 196 (1989). doi:10.1016/0550-3213(89)90109-0

[27] T. A. Ryttov and R. Shrock, Phys. Rev. D 83, 056011 (2011) doi:10.1103/PhysRevD.83.056011 arXiv:1011.4512 [hep-ph].

[28] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, no. 10, 105014 (2016) doi:10.1103/PhysRevD.94.105014 arXiv:1608.00068 [hep-th].

[29] D. B. Kaplan and H. Georgi, “$SU(2) \times U(1)$ Breaking by Vacuum Misalignment,” Phys. Lett. 136B, 183 (1984).

[30] H. Georgi and D. B. Kaplan, “Composite Higgs and Custodial SU(2),” Phys. Lett. 145B, 216 (1984).

[31] M. J. Dugan, H. Georgi and D. B. Kaplan, “Anatomy of a Composite Higgs Model,” Nucl. Phys. B 254, 299 (1985).

[32] L. Vecchi, “A dangerous irrelevant UV-completion of the composite Higgs,” JHEP 02, 094 (2017) doi:10.1007/JHEP02(2017)094 arXiv:1506.00623 [hep-ph].

[33] T. Ma and G. Cacciapaglia, “Fundamental Composite 2HDM: SU(N) with 4 flavours,” JHEP 03, 211 (2016) doi:10.1007/JHEP03(2016)211 arXiv:1508.07014 [hep-ph].

[34] G. Panico and A. Wulzer, “The Composite Nambu-Goldstone Higgs,” Lect. Notes Phys. 913, pp.1 (2016) doi:10.1007/978-3-319-22617-0 arXiv:1506.01961 [hep-ph].
[37] O. Witzel, “Review on Composite Higgs Models,” PoS LATTICE 2018, 006 (2019) doi:10.22323/1.334.0006 [arXiv:1901.08216 [hep-lat]].

[38] G. Cacciapaglia, C. Pica and F. Sannino, Phys. Rept. 877, 1-70 (2020) doi:10.1016/j.physrep.2020.07.002 [arXiv:2002.04914 [hep-ph]].

[39] V. Drach, T. Flacke and H. Serodio, “Light scalars in composite Higgs models,” Front. Phys. 7, 22 (2019) doi:10.3389/fphy.2019.00022 [arXiv:1902.06890 [hep-ph]].

[40] G. Cacciapaglia, G. Ferretti, T. Flacke and H. Serodio, “Gauge theories of Partial Compositeness: Scenarios for Run-II of the LHC,” JHEP 06, 107 (2016) doi:10.1007/JHEP06(2016)107 [arXiv:1604.06467 [hep-ph]].

[41] R. Arthur, V. Drach, M. Hansen, A. Hietanen, C. Pica and F. Sannino, “SU(2) gauge theory with two fundamental flavors: A minimal template for model building,” Phys. Rev. D 94, no. 9, 094507 (2016) [arXiv:1602.06559 [hep-lat]].

[42] R. Arthur, V. Drach, A. Hietanen, C. Pica and F. Sannino, “SU(2) Gauge Theory with Two Fundamental Flavours: Scalar and Pseudoscalar Spectrum,” arXiv:1607.06654 [hep-lat].

[43] G. Cacciapaglia, G. Ferretti, T. Flacke, A. Parolini and H. Serodio, JHEP 1704, 116 (2014) arXiv:1404.2794 [hep-lat].

[44] W. Detmold, M. McCullough and A. Pochinsky, “Dark nuclei. II. Nuclear spectroscopy in two-color QCD,” Phys. Rev. D 90, no. 11, 114506 (2014) doi:10.1103/PhysRevD.90.114506 [arXiv:1406.4116 [hep-lat]].

[45] R. Arthur, V. Drach, M. Hansen, A. Hietanen, C. Pica and F. Sannino, “SU(2) gauge theory with two fundamental flavors: The spectrum of SU(4) composite Higgs models,” Front. Phys. 7, 22 (2019) doi:10.3389/fphy.2019.00022 [arXiv:1902.06890 [hep-ph]].

[46] G. Cacciapaglia, A. Deandrea, T. Flacke and A. M. Iyer, “Fundamental Composite Higgs Dynamics on the Lattice: SU(2) with Two Flavors,” JHEP 1407, 116 (2014) arXiv:1404.2794 [hep-lat].

[47] G. Cossu, L. Del Debbio, M. Panero and D. Preti, “Strong dynamics with matter in multiple representations: SU(4) gauge theory with fundamental and sextet fermions,” Eur. Phys. J. C 79, no. 8, 638 (2019) arXiv:1904.08885 [hep-lat].

[48] J. W. Lee, B. Lucini and M. Piai, “Sigma-assisted low scale composite Goldstone-Higgs,” Eur. Phys. J. C 80, no. 1, 28 (2020) doi:10.1140/epjc/s10052-019-7572-z [arXiv:1809.12662 [hep-lat]].

[49] R. Bennett, K. Hong, J. W. Lee, C.-J. Lin, B. Lucini, M. Piai and D. Vadacchino, “Sp(4) gauge theory on the lattice: towards SU(4)/Sp(4) composite Higgs (and beyond),” JHEP 1803, 185 (2018) doi:10.1007/JHEP03(2018)185 [arXiv:1712.04220 [hep-lat]].

[50] E. Bennett, D. K. Hong, J. W. Lee, C.-J. Lin, B. Lucini, M. Piai and D. Vadacchino, “Sp(4) gauge theories on the lattice: quenched fundamental and antisymmetric fermions,” Phys. Rev. D 101, no. 7, 074516 (2020) doi:10.1103/PhysRevD.101.074516 [arXiv:1912.06505 [hep-lat]].

[51] R. Bennett, K. Hong, J. W. Lee, C.-J. Lin, B. Lucini, M. Piai and D. Vadacchino, “Sp(4) gauge theories on the lattice: \(N_f = 2\) dynamical fundamental fermions,” JHEP 1912, 053 (2019) [arXiv:1909.12662 [hep-lat]].

[52] A. M. Sirunyan et al. [CMS], JHEP 05, 033 (2020) doi:10.1007/JHEP05(2020)033 [arXiv:1911.03947 [hep-ex]].

[53] A. Belyaev, G. Cacciapaglia and A. Deandrea, “Sigma-assisted low scale composite Goldstone-Higgs,” Eur. Phys. J. C 80, no.1, 28 (2020) doi:10.1140/epjc/s10052-019-7572-z [arXiv:1809.09146 [hep-lat]].

[54] E. Bennett, K. Hong, J. W. Lee, C.-J. Lin, B. Lucini, M. Piai and D. Vadacchino, “Sp(4) gauge theories on the lattice: quenched fundamental and antisymmetric fermions,” Phys. Rev. D 101, no. 7, 074516 (2020) doi:10.1103/PhysRevD.101.074516 [arXiv:1912.06505 [hep-lat]].

[55] V. Drach, T. Janowski and C. Pica, “Update on SU(2) gauge theory with NF = 2 fundamental flavours,” EPJ Web Conf. 175, 08020 (2018) doi:10.1051/epjconf/201817508020 [arXiv:1710.07218 [hep-lat]].

[56] V. Ayyar, T. DeGrand, M. Golterman, D. C. Hackett, W. I. Jay, E. T. Neil, Y. Shamir and B. Svetitsky, “Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations,” Phys. Rev. D 97, no. 7, 074505 (2018) doi:10.1103/PhysRevD.97.074505 [arXiv:1710.00806 [hep-lat]].