Association of genetic polymorphisms of aldehyde dehydrogenase-2 with esophageal squamous cell dysplasia

Ying-Zhi Zhou, Yu-Tao Diao, Hao Li, Hui-Qing Li, Qing Ma, Jia Cui

Ying-Zhi Zhou, School of Economics, Shandong University, 27# Shanda Nanlu, Jinan 250100, Shandong Province, China
Yu-Tao Diao, Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, 44# Wenhuaxi Road, Jinan 250012, Shandong Province, China
Hao Li, Tumor Center, Qilu Hospital of Shandong University, 107# Wenhua xi Road, Jinan 250012, Shandong Province, China
Hui-Qing Li, Qing Ma, Jia Cui, Department of Epidemiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877# Jingshi Road, Jinan 250062, Shandong Province, China

Author contributions: Zhou YZ, Diao YT and Li H performed the majority of experiments, they contributed equally to this work; Zhou YZ wrote the manuscript; Li HQ designed the study, analyzed the data and modified the manuscript; Ma Q and Cui J performed part of the experiments and were responsible for data collection and entry.

Supported by The Project of National Natural Science Foundation of China, No. 30571601; the 2004 Key Special Project of Scientific and Technological Development in Shandong Province, China, No. 2004GG1108039; and the 2007 Special Foundation for Postdoctoral Innovation Subject in Shandong Province of China, No. 200702034

Correspondence to: Hui-Qing Li, Professor, Department of Epidemiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, 18877# Jingshi Road, Jinan 250062, Shandong Province, China. huqing4192@yahoo.com.cn
Telephone: +86-531-82919945 Fax: +86-531-82919930
Received: October 18, 2009 Revised: December 30, 2009
Accepted: January 6, 2010
Published online: July 21, 2010

Abstract

AIM: To demonstrate the possible associations between genetic polymorphisms of aldehyde dehydrogenase-2 (ALDH2) and esophageal squamous cell dysplasia (ESCD).

METHODS: All participants came from an area of high incidence of esophageal cancer and underwent an endoscopic staining examination; biopsies were taken from a non-staining area of the mucosa and diagnosed by histopathology. Based on the examinations, the subjects were divided into the control group with normal esophageal squamous epithelial cells and the ESCD group. ALDH2 genotypes of 396 cases were determined including 184 ESCD cases and 212 controls. The odds ratio (OR) and 95% confidence intervals (95% CI) were calculated by binary logistic regression models.

RESULTS: The distribution of ALDH2 genotypes showed significant differences between the two groups. The adjustment factors were gender and age in the logistic regression models. Compared with 2*2/2*2 genotype, 2*1/2*1 genotype was found to be a risk factor for ESCD, and the OR (95% CI) was 4.50 (2.21-9.19). There were significant correlations between ALDH2 genotypes and alcohol drinking/smoking/history of esophageal cancer.

CONCLUSION: The ALDH2 polymorphism is significantly associated with ESCD.

Key words: Aldehyde dehydrogenase 2; Polymorphism; Alcohol; Smoking; Esophageal squamous cell dysplasia; History of esophageal cancer

Peer reviewer: Julia B Greer, MD, MPH, Department of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, M2, Presbyterian University Hospital, 200 Lothrop Street, Pittsburgh, PA 15213, United States

Zhou YZ, Diao YT, Li H, Li HQ, Ma Q, Cui J. Association of genetic polymorphisms of aldehyde dehydrogenase-2 with esophageal squamous cell dysplasia. World J Gastroenterol 2010; 16(27): 3445-3449 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i27/3445.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i27.3445

INTRODUCTION

Esophageal squamous cell carcinoma (ESCC) is one of
the most common malignant tumors, and alcohol consumption is a major risk factor for esophageal cancer[1-3]. Alcohol is first oxidized by alcohol dehydrogenase (ADH) to acetaldehyde[4,5] which is then oxidized to acetate by aldehyde dehydrogenase (ALDH). The \textit{ALDH2} gene encoding ALDH2 is composed of 13 exons residing on chromosome 12. Deficiency at \textit{ALDH2} is a dominant trait that is caused by a single Glu to Lys amino acid substitution at residue 487, a change that can be attributed to a G-to-A transition (dbSNP: rs671) in exon 12 of the gene. This deficient allele (\textit{ALDH2*487Lys}) is common in many East Asian populations[6-7], and approximately 45\% of Chinese and Japanese individuals have inactive ALDH2 phenotype[8]. The \textit{ALDH2} alleles encoding the active and inactive subunits are termed “\textit{ALDH2*1}” and “\textit{ALDH2*2}” respectively, and \textit{ALDH2*2} exhibits functional polymorphism that is associated with a lower rate of alcohol dependence[9]. In persons with \textit{ALDH2*2}, the body fails to metabolize acetaldehyde rapidly, leading to excessive accumulation of acetaldehyde, so \textit{ALDH2*2} enhances the risk of esophageal squamous cell carcinoma in East Asian drinkers[10]. The stages of the carcinogenic process of esophageal cancer develop from normal esophageal mucosa to esophagitis, esophageal hyperplasia, dysplasia, and then to cancer in situ and early cancer[11,12]. It is also noteworthy that Japanese and Chinese pathologists prefer to classify “atypical” squamous epithelium dysplasia as a precancerous lesion. Historically, atypical squamous dysplasia has been classified as mild, moderate, or severe[13,14],[15,16]. Most reports of case-control studies have only consisted of one case-group of esophageal cancer and one normal control group[13,14], and few reports based on population screening data found an association of \textit{ALDH2} with esophageal squamous cell dysplasia (ESCD). Recently, we carried out such a screening survey for esophageal lesions in a high incidence area of esophageal cancer and performed sampling to determine the association of genetic polymorphism of \textit{ALDH2} with the ESCD in this area.\textbf{MATERIALS AND METHODS}\textbf{Study population}The subjects in this study consisted of 184 patients with ESCD and 212 controls with normal esophageal mucosa. All subjects in the present study were selected from the screened participants of Feicheng County between January 2004 and December 2006. The screening included a cardiograph, ventral ultrasound, and endoscopic examination, which used mucosal stain with 1.2\% iodine solution. The biopsies were taken from a non-stained area of mucosa, which then underwent pathologic evaluation carried out by two pathologists. Participating subjects who suffered from cardiovascular, liver and kidney diseases, cancers, and psychiatric disorders were excluded. A uniform questionnaire was used to interview all the subjects to obtain information such as socio-demographic characteristics, alcohol intake, tobacco use, and family history of esophageal carcinoma. The local ethics committee approved the study protocol, and all participants gave their written informed consent.

\textbf{DNA extraction}\n
A 3-5 mL elbow venous blood sample was collected at 9-10 am after a 12-h fast from each participant. The heparinized sample was centrifuged for 10 min at 3000 \textit{r}/min to separate plasma and obtain blood cells. Genomic DNA was extracted using phenol-chloroform method and frozen at -20\Celsius. The following two pairs of primers were produced by Takara Biotechnology (Dalian Co., Ltd.): F1, 5’-TCATGGCATGGCAACTCCAGC-3’; R1, 5’-CCTA CTCAGATTTCTCTCT-3’; F2, 5’-TACGCGGCT-GCAGGCATACTA-3’; R2, 5’-TGATCCCCAG-CAGGTCTCTGAA-3’. F1 and R1 were used to amplify the \textit{ALDH2*1} allele (296 bp), and F2 and R2 to amplify the \textit{ALDH2*2} allele (203 bp). Two 25 microliters reaction tubes were needed for each specimen to amplify \textit{ALDH2*1} (G) and \textit{ALDH2*2} (A) respectively, each containing 30-100 ng DNA, 0.12 mmol/L dNTPs, 12.5 pmol F1 (or R1) primer, 12.5 pmol F2 (or R2) primer, 0.5 U \textit{Taq} polymerase, and 2.5 \mu L 10 \times PCR buffer (containing 15 mmol/L MgCl\textsubscript{2}). The reaction tubes were heated to 95\Celsius for 5 min followed by 30 cycles of 95\Celsius for 60 s, 60\Celsius for 60 s, 72\Celsius for 60 s, and 72\Celsius for 45 s, and then followed by a final extension of 5 min at 72\Celsius. Ten microliters PCR product was used in agarose gel electrophoresis and the electrophoresis result was photographed.\textbf{Electrophoresis results}Two lanes were used for each specimen. If one showed 296 bp band and the other showed no band, the corresponding genotype was \textit{ALDH2*1/2*1} (G/G); if one showed 296 bp band and the other showed 203 bp band, the corresponding genotype was \textit{ALDH2*1/2*2} (G/A); and if one showed 203 bp band and the other showed no band, the corresponding genotype was \textit{ALDH2*2/2*2} (A/A).\textbf{Statistical analysis}Results for the enumeration of data (e.g. the number of individuals with various genotypes) and comparison of percentages between groups were evaluated with a \chi2 test. Allele frequencies were calculated using allele counting tests for the Hardy-Weinberg equilibrium by the chi-square, while the odd ratio (OR) and 95\% confidence intervals (95\% CI) were calculated by multinomial logistic regression model. The statistical analysis were made using SPSS program (version 11.5), and \textit{P} < 0.05 (two-sided) was taken as statistically significant.
Table 1 Characteristics of cases and controls n (%)

Variables	Controls	Cases	χ² *	p *
Age (yr)	51.01 ± 8.427	54.89 ± 8.443	4.567	0.000
Income (yuan/yr	1825 ± 1605	1768 ± 1599	0.350	0.726
Height (cm)	163.71 ± 7.374	164.40 ± 7.225	0.944	0.346
Weight (kg)	67.08 ± 52.848	61.36 ± 8.027	0.671	0.502
Body mass index (kg/m²)	23.08 ± 2.957	22.68 ± 2.462	1.470	0.142
DBP (mmHg)	132.45 ± 19.852	135.38 ± 20.411	1.445	0.149
Gender	84.74 ± 13.083	85.27 ± 13.132	0.406	0.685

Table 2 Association of factors with squamous cell dysplasia of esophagus

Factors	OR (95% CI)	OR (95% CI)
Smoking index		
0	1.00	1.00
< 500	1.32 (0.80-2.18)	1.19 (0.64-2.24)
500	1.81 (1.12-2.90)	1.56 (0.83-2.91)
Drinking index		
0	1.00	1.00
< 65	1.12 (0.67-1.86)	0.92 (0.49-1.76)
≥ 65	1.40 (0.88-2.22)	1.03 (0.55-1.96)
History of esophageal cancer		
No	1.00	1.00
Yes	1.10 (0.66-1.85)	1.08 (0.64-1.83)
ALDH2		
A/A	1.00	1.00
A/G	2.17 (1.09-4.34)	2.19 (1.08-4.43)
G/G	4.76 (2.37-9.56)	4.50 (2.21-9.19)

1Smoking index = cigarettes/d × number of smoking years; 2Alcohol = 65 g/d = heavy drinker; 2×χ² and χ² test were used for quantitative data variables and categorical data variables respectively. SBP: Systolic blood pressure; DBP: Diastolic blood pressure.

RESULTS

Basic data

All analysis variables are shown in Table 1. Gender, age, smoking, and ALDH2 genotypes were significantly different between the two groups. The Hardy-Weinberg test for the control group showed the genotype distribution was in equilibrium. Gender and age as potential confounders were adjusted in the logistic models. Other variables including income (yuan/year per person), height, weight, body mass index, systolic blood pressure (SBP), diastolic blood pressure (DBP), alcohol drinking, and family history of esophageal cancer were not significantly different between the two groups.

Association of ALDH2 genotypes with ESCD

As shown in Table 2, after the potential confounders were adjusted, compared with ALDH2*2/2*2 genotype, 2*/1/2*1 and 2*/1/2*2 genotypes were related to having ESCD, and the ORs (95% CI) were 4.50 (2.21-9.19) and 2.19 (1.08-4.43), respectively. Meanwhile, after adjusting for gender and age, no significant association of smoking, alcohol drinking or family history of esophageal cancer with ESCD were observed in the two groups.

Interaction analysis of the ALDH2 genotypes and environmental factors

The frequency distribution of ALDH2 genotypes combined with smoking index/alcohol drinking status and history of esophageal cancer are listed in Table 3.

As shown in Table 3, in the no smoking stratum only ALDH2*1/2*1 genotype increased the relative risk (OR = 6.97, 95% CI: 1.88-25.87); in the light smoking stratum 2*/1/2*2 and 2*/1/2*1 increased the relative risk and there was an interaction effect between the genotypes and smoking; and in the heavy smoking stratum either smoking or any genotypes of ALDH2 were associated with the dysplasia, when compared with ALDH2*2/2*2 genotype combined with no smoking as baseline.

In the no drinking stratum only ALDH 2*1/2*1 genotype increased the relative risk (OR = 3.16, 95% CI: 1.19-8.41); and in the light and heavy drinking strata both 2*/1/2*2 and 2*/1/2*1 increased the relative risk with an interaction effect between the genotypes and drinking, when compared with ALDH2*2/2*2 genotype combined with no drinking as baseline.

There was a significant interaction between ALDH2*1/2*1 genotype and family history of esophageal cancer, when compared with ALDH2*2/2*2 genotype and no family history of esophageal cancer as baseline.

DISCUSSION

Feicheng, a County in Shandong Province of China, was found to be a high incidence area of esophageal cancer. Its mortality rates from esophageal cancer were 63.19, 71.68, 66.87 and 82.33/100 000 in the years 1970-1974,
1.85-1989, 1990-1992, and 1997-1999, respectively[17]. In the present study, the cases and controls came from the same communities of Feicheng County, and they possessed similar environmental and customs, so their data are comparable. All diseases were determined by endoscopic and pathological examinations, and the possibility of misclassification was small. Considering the information with little recall bias, we believe the results of this study provide more convincing evidence to elucidate the relationship between ALDH2 polymorphism and ESCD.

The ALDH2*2 allele produces an inactive protein subunit, which is unable to metabolize acetaldehyde. Genetic epidemiologic studies have suggested that the ALDH2*2 allele inhibits the development of alcoholism. The inheritance of alcohol-induced flushing in families also suggested that the trait is dominant, that is, both ALDH2*1/2*1 and ALDH2*2/2*2 genotype encode inactive ALDH2.[18,19]

The ALDH2*1/2*1 allele has a dual effect on esophageal cancer. On one hand, it can convert acetaldehyde toacetate and get rid of the carcinogenic role of acetaldehyde. On the other, it decreases the blood level of acetaldheyde and alleviates adverse response to alcohol consumption[20], so individuals who have an ALDH2*1/2*1 genotype are prone to heavy drinking and an increased risk of esophageal cancer. We found in this study that ALDH2*1/2*1 genotype was a risk factor for ESCD compared with ALDH2*2/2*2 genotype. Although individuals with ALDH2*1/2*1 have a strong alcohol metabolism ability, if the alcohol consumption is beyond the metabolism ability the alcohol becomes a dangerous factor for ESCD.

Most reports have indicated that alcohol increases the risk of ESSC in drinkers with ALDH2*2/2*2 genotype. This leads us to speculate that alcohol will also increase the risk of ESCD in drinkers with ALDH2*2/2*2 genotype. However, our result did not confirm this association. The reason may be related to the very low frequency of residents who drink alcohol, in particular who indulge in heavy drinking, in Feicheng County, where the people’s living standard is relatively low and the majority of farmers cannot afford to drink wine[21,22].

The main finding in the study was an interaction between the ALDH2 genotype and smoking/family history of esophageal cancer in cases of ESCD, indicating that a polymorphism of ALDH2 is involved in the process of some carcinogen metabolism, and that it is helpful to control alcohol and tobacco consumption in high incidence areas of esophageal cancer to reduce ESCD and other esophageal diseases.

Table 3 Interaction between ALDH2 genotypes and environmental factors for esophageal dysplasia a (%)

Factors	Genotype	Controls	Cases	OR (95% CI)	OR (95% CI)	
Smoking index	ALDH2	A/A	18 (8.5)	3 (1.6)	1.00	1.00
Smoking index	ALDH2	G/A	62 (29.2)	33 (17.9)	3.19 (0.88-11.64)	3.10 (0.84-11.45)
Smoking index	ALDH2	G/G	37 (17.5)	45 (24.5)	7.30 (1.99-26.71)	6.97 (1.88-25.87)
<500	A/A	17 (8.0)	3 (1.6)	1.06 (0.19-5.99)	0.98 (0.17-5.77)	
<500	G/A	22 (10.4)	19 (10.3)	5.18 (1.32-20.35)	4.70 (1.16-19.07)	
<500	G/G	8 (3.8)	21 (11.4)	15.75 (3.63-68.41)	13.10 (2.85-62.14)	
≥500	A/A	6 (2.8)	7 (3.8)	7.00 (1.26-36.01)	6.84 (1.25-37.36)	
≥500	G/A	22 (10.4)	21 (11.4)	5.73 (1.47-22.33)	5.03 (1.21-20.82)	
≥500	G/G	20 (9.4)	32 (17.4)	9.60 (2.50-36.81)	7.78 (1.92-31.53)	

Drinking index

Drinking index	ALDH2	A/A	20 (9.4)	8 (4.3)	1.00	1.00
Drinking index	ALDH2	G/A	50 (23.6)	34 (18.5)	1.70 (0.67-4.30)	1.98 (0.75-5.25)
Drinking index	ALDH2	G/G	36 (17.0)	39 (21.2)	2.71 (1.06-6.91)	3.16 (1.19-8.41)
<65	A/A	12 (5.7)	3 (1.6)	0.63 (0.14-2.82)	0.65 (0.19-3.09)	
<65	G/A	27 (12.7)	15 (8.2)	1.39 (0.48-3.91)	1.19 (0.40-3.50)	
<65	G/G	9 (4.2)	23 (12.5)	6.39 (2.07-19.69)	5.05 (1.57-16.15)	
≥65	A/A	9 (4.2)	2 (1.1)	0.56 (0.10-3.16)	0.43 (0.07-2.52)	
≥65	G/A	29 (13.7)	24 (13.0)	2.07 (0.78-5.23)	1.70 (0.60-4.80)	
≥65	G/G	20 (9.4)	36 (19.6)	4.50 (1.68-12.06)	3.19 (1.12-9.28)	

History of esophageal cancer	ALDH2	A/A	31 (15.8)	10 (5.4)	1.00	1.00
History of esophageal cancer	ALDH2	G/A	82 (41.8)	61 (33.2)	2.31 (1.05-5.06)	2.23 (1.01-4.93)
History of esophageal cancer	ALDH2	G/G	53 (27.0)	81 (44.0)	47.74 (2.15-10.47)	43.0 (1.93-9.62)
Yes	A/A	9 (4.6)	3 (1.6)	1.03 (0.23-4.58)	0.88 (0.20-4.01)	
Yes	G/A	14 (7.1)	12 (6.5)	2.66 (0.93-7.59)	2.37 (0.82-6.89)	
Yes	G/G	7 (3.6)	17 (9.2)	7.53 (2.42-23.37)	7.11 (2.25-22.45)	

^{1Crude OR; 2Adjusted ORs were adjusted for age and gender. OR: Odds ratio; CI: Confidence intervals.}
Research fronts

Most previous reports have indicated that alcohol increases the risk of ESCC in drinkers with ALDH2*2/2'2' genotype. This leads to speculation that alcohol will also increase the risk of ESCC in drinkers with ALDH2*2/2'2' genotype. However, this association was not found in this study, but interactions between the ALDH2 genotype and smoking/family history of esophageal cancer were found in cases of ESCC.

Innovations and breakthroughs

Most reports of case-control studies have only consisted of one case-group of esophageal cancer and one normal control group, and few reports based on population screening data found an association of ALDH2 with ESCC. In this study, the data of a screening survey for esophageal lesions in a high incidence area of esophageal cancer were used and the association of genetic polymorphisms of ALDH2 with ESCC in this area was determined.

Applications

It was found that ALDH2 genotype has interactions with smoking/family history of esophageal cancer for ESCC cases, indicating that a polymorphism of ALDH2 is involved in the process of some carcinogen metabolism; so it is necessary to control alcohol and tobacco consumption in high incidence areas of esophageal cancer to reduce ESCC and other esophageal diseases.

Terminology

Alcohol is first oxidized by alcohol dehydrogenase to acetaldehyde which is then oxidized to ALDH. The ALDH2 gene is composed of 13 exons residing on chromosome 12. Deficiency at ALDH2 is a dominant trait that is caused by a single Glu to Lys amino acid substitution at residue 487, a change that can be attributed to a G-to-A transition (bSNP: rs671) in exon 12 of the gene. The ALDH2 alleles encoding the active and inactive subunits are termed “ALDH2*1” and “ALDH2*2”, respectively, and ALDH2*2 exhibits functional polymorphism that is associated with a lower rate of alcohol dependence.

Peer review

This is a well-designed and well-organized study of acetaldehyde dehydrogenase 2 polymorphisms and the risk of esophageal squamous cell dysplasia.

REFERENCES

1. Chitra S, Ashok L, Anand L, Srinivasan V, Jayanthi V. Risk factors for esophageal cancer in Coimbatore, southern India: a hospital-based case-control study. Indian J Gastroenterol 2004; 23: 19-21
2. Garavello W, Negri E, Talamini R, Levi F, Zampon P, Dal Maso L, Bosetti C, Franceschi S, La Vecchia C. Family history of cancer, its combination with smoking and drinking, and risk of squamous cell carcinoma of the esophagus. Cancer Epidemiol Biomarkers Prev 2005; 14: 1390-1393
3. Yokoyama A, Muramatsu T, Ohmori T, Higuchi S, Hayashida M, Ishii H. Esophageal cancer and aldehyde dehydrogenase-2 genotypes in Japanese males. Cancer Epidemiol Biomarkers Prev 1996; 5: 99-102
4. Yang CX, Matsuo K, Ito H, Hirose K, Waki K, Saito T, Shinoda M, Hatoosa K, Mizutani K, Tajima K. Esophageal cancer risk by ALDH2 and ADH1Z polymorphisms and alcohol consumption: exploration of gene-environment and gene-gene interactions. Asian Pac J Cancer Prev 2005; 6: 256-262
5. Ishikawa H, Miyatsu Y, Kurihara K, Yokoyama K. Gene-environment interactions between alcohol-drinking behavior and ALDH2 and CYP2E1 polymorphisms and their impact on micronuclei frequency in human lymphocytes. Mutat Res 2006; 594: 1-9
6. Wall TL. Genetic associations of alcohol and aldehyde dehydrogenase with alcohol dependence and their mechanisms of action. Ther Drug Monit 2005; 27: 702-703
7. Nishimura FT, Kimura Y, Abe S, Fukunaga T, Saioh K. Effect of -361 G/A polymorphism of aldehyde dehydrogenase-2 gene on alcohol metabolism and its expression in human peripheral blood leukocytes. Nihon Arukoru Yakubutsu Igakkai Zasshi 2006; 41: 108-119
8. Isse T, Oyama T, Matsuno K, Uchiyama I, Kawamoto T. Aldehyde dehydrogenase 2 activity affects symptoms produced by an intraperitoneal acetaldehyde injection, but not acetaldehyde lethality. J Toxicol Sci 2005; 30: 315-328
9. Yokoyama A, Kato H, Yokoyama T, Igaki H, Tsujinaka T, Muto M, Omori T, Kumagai Y, Yokomoto M, Watanabe H. Esophageal squamous cell carcinoma and aldehyde dehydrogenase-2 genotypes in Japanese females. Alcohol Clin Exp Res 2006; 30: 491-500
10. Cai L, You NC, Lu H, Mu LN, Lu QY, Yu SZ, Le AD, Marshall J, Heber D, Zhang ZF. Dietary selenium intake, aldehyde dehydrogenase-2 and X-ray repair cross-complementing 1 genetic polymorphisms, and the risk of esophageal squamous cell carcinoma. Cancer Lett 2006; 206: 2345-2354
11. Yokoyama A, Omori T, Tanaka Y, Yokomoto T, Sugihara H, Mizukami T, Matsuhashi S, Higuchi S, Maruyama K, Ishii H, Hibi T. p53 Protein accumulation, cancer multiplicity, and aldehyde dehydrogenase-2 genotype in Japanese alcoholic men with early esophageal squamous cell carcinoma. Cancer Lett 2007; 247: 243-252
12. Chen ZF, Wang GQ, Hou J. Follow-up Results of Esophageal Squamous Severe Dysplasia in 158 cases. Zhongguo Zhongliu Linchuang 2004; 31: 306-308
13. Shimizu M, Ban S, Odze RD. Squamous dysplasia and other precursor lesions related to esophageal squamous cell carcinoma. Gastroenterol Clin North Am 2007; 36: 797-811, v-vi
14. Kawanoh H, Watanabe M, Sadanaga N, Ikebe M, Mori M, Sugimachi K. Squamous epithelial dysplasia associated with squamous cell carcinoma of the esophagus. Cancer Lett 1993; 72: 141-147
15. Yang CX, Wang HY, Wang ZM, Du HZ, Tao DM, Mu XY, Chen HG, Lei Y, Matsuo K, Tajima K. Risk factors for esophageal cancer: a case-control study in South-western China. Asian Pac J Cancer Prev 2005; 6: 48-53
16. Xibib S, Meilan H, Moller H, Evans HS, Dixin D, Wenjie D, Jianbang L. Risk factors for oesophageal cancer in Linzhou, China: a case-control study. Asian Pac J Cancer Prev 2003; 4: 119-124
17. Zhao DL, Ji P, Han RH, Jiang ZY, Guo XL, Li HQ, Jin SK. A retrospective investigation of cancer mortality from 1997 to 1999 in Feicheng, Shandong Province. Zhongguo Zhongliu 2003; 12: 387-389
18. Ogawa M, Oyama T, Isse T, Saito K, Tomigahara Y, Endo Y, Kawamoto T. A comparison of cervical binding of ethanol metabolites to DNA according to Aldh2 genotype. Toxicol Lett 2007; 168: 148-154
19. Ishikawa H, Ishikawa T, Yamamoto H, Fukao A, Yokoyama K. Genotoxic effects of alcohol in human peripheral lymphocytes modulated by ADH1B and ALDH2 gene polymorphisms. Mutat Res 2007; 615: 134-142
20. Yamada Y, Imai T, Ishizaki M, Honda R. ALDH2 and CYP2E1 genotypes, urinary acetaldehyde excretion and the health consequences in moderate alcohol consumers. J Hum Genet 2006; 51: 104-111
21. Matsuo K, Hamajima N, Shinoda M, Hatoosa K, Inoue M, Takezaki T, Tajima K. Gene-environment interaction between an aldehyde dehydrogenase-2 (ALDH2) polymorphism and alcohol consumption for the risk of esophageal cancer. Cancer Genesis 2001; 22: 913-916
22. Ding JH, Li SP, Cao HX, Wu JZ, Gao CM, Su P, Liu YT, Zhou JN, Chang J, Yao GH. Polymorphisms of alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 and esophageal cancer risk in Southeast Chinese males. World J Gastroenterol 2009; 15: 2395-2400

S- Editor Wang YR L- Editor Logan S E- Editor Zheng XM