THE SPHERICAL PART OF THE LOCAL AND GLOBAL SPRINGER ACTIONS

ZHIWEI YUN

Abstract. The affine Weyl group acts on the cohomology (with compact support) of affine Springer fibers (local Springer theory) and of parabolic Hitchin fibers (global Springer theory). In this paper, we show that in both situations, the action of the center of the group algebra of the affine Weyl group (the spherical part) factors through the action of the component group of the relevant centralizers. In the situation of affine Springer fibers, this partially verifies a conjecture of Goresky-Kottwitz-MacPherson and Bezrukavnikov-Varshavsky.

We first prove this result for the global Springer action, and then deduce the result for the local Springer action from that of the global one. The argument strongly relies on the fact that we can deform points on a curve, hence giving an example of using global Springer theory to solve more classical problems.

Contents

1. Introduction 1
2. Local Springer action 5
3. Global Springer action: extension to the hyperbolic locus 8
4. Proof of the global main theorem 13
5. From global to local 18
Appendix A. Sheaves and correspondences on spaces locally of finite type 25
References 27

1. Introduction

Let k be an algebraically closed field. Let G be a reductive algebraic group over k. We assume either char(k) = 0 or char(k) is large with respect to G (see [11]). Let g be the Lie algebra of G. Let B be the flag variety of G. For $v \in g(k)$, the Springer fiber of v is the closed subvariety $B_v \subset B$ consisting of all Borel subgroups of G whose Lie algebras contain v. Classical Springer theory [S76] gives an action of the Weyl group W of G on the cohomology of B_v. One the other hand, the centralizer G_v of v in G acts on B_v, hence on the cohomology of B_v via its component group $\pi_0(G_v)$. These two symmetries commute with each other:

$$ W \rtimes H^*(B_v) \cong \pi_0(G_v). $$

However, there is no obvious way to recover the $\pi_0(G_v)$-action on $H^*(B_v)$ solely from the W-action.

Now we consider the affine situation. Let $F = k((\varpi))$ be the field of formal Laurent series in one variable and $\mathcal{O}_F = k[[\varpi]]$. Let Fl_G be the affine flag variety of G classifying all Iwahori...
subgroups of $G(F)$. This is an ind-scheme, an infinite union of projective varieties. We may identify $\text{Fl}_G(k)$ with $G(F)/I$ for a fixed Iwahori subgroup $I \subset G(F)$. For any regular semisimple element $\gamma \in \mathfrak{g}(F)$, Kazhdan and Lusztig [KL88] defined a closed sub-ind-scheme $\text{Spr}_\gamma \subset \text{Fl}_G$, called the \textit{affine Springer fiber} of γ. The set $\text{Spr}_\gamma(k)$ consists of those Iwahori subgroups whose Lie algebras contain γ. The ind-scheme Spr_γ is a possibly infinite union of projective varieties of dimension expressible in terms of γ (see [B96]).

In [L96], Lusztig defined an action of the affine Weyl group W_{aff} on the homology of affine Springer fibers Spr_γ. We will review this construction in §2 and extend it to an action of the extended affine Weyl group $\widetilde{W} = X_s(T) \rtimes W$ on both $H_*(\text{Spr}_\gamma)$ and $H^i_*(\text{Spr}_\gamma)$. On the other hand, the centralizer group $G_\gamma(F)$ acts on Spr_γ, hence induces an action of its component group $\pi_0(G_\gamma(F))$ on the homology of Spr_γ. Here we view $G_\gamma(F)$ as a group ind-scheme over the base field k. These two symmetries on $H_*(\text{Spr}_\gamma)$ interact: the “central character” of $\pi_0(G_\gamma(F))$ factors through the action of its component group $\pi_0(G_\gamma(F))$ on the homology of Spr_γ. There we view $G_\gamma(F)$ as a group ind-scheme over the base field k. These two symmetries on $H_*(\text{Spr}_\gamma)$ again commute with each other:

$$\widetilde{W} \curvearrowright H_*(\text{Spr}_\gamma) \curvearrowleft \pi_0(G_\gamma(F)).$$

Similar statement holds for $H^i_*(\text{Spr}_\gamma)$.

A priori, the definition of the \widetilde{W}-action and the $\pi_0(G_\gamma(F))$-action has nothing to do with each other. However, as opposed to the situation in classical Springer theory, we expect that the $\pi_0(G_\gamma(F))$-action be completely determined by the “central character” of the \widetilde{W}-action. The center of the group algebra $\mathbb{Q}_\ell[\widetilde{W}]$ is $\mathbb{Q}_\ell[X_s(T)]^W$ (superscript W means taking W-invariants). If one views $\mathbb{Q}_\ell[\widetilde{W}]$ as the specialization of the affine Hecke algebra at $q = 1$, then $\mathbb{Q}_\ell[X_s(T)]^W$ is the specialization of the spherical Hecke algebra at $q = 1$. For this reason, we shall call $\mathbb{Q}_\ell[X_s(T)]^W$ the spherical part of the group algebra $\mathbb{Q}_\ell[\widetilde{W}]$. We shall see that there is a canonical algebra homomorphism (see [2.8])

$$\sigma_\gamma : \mathbb{Q}_\ell[X_s(T)]^W \rightarrow \mathbb{Q}_\ell[\pi_0(G_\gamma(F))].$$

1.1. \textbf{Conjecture} (Goresky, Kottwitz and MacPherson [K]; independently Bezrukavnikov and Varshavsky [BV]). For any regular semisimple element $\gamma \in \mathfrak{g}(F)$ and any $i \in \mathbb{Z}_{\geq 0}$, the spherical part of the W-action on $H_i(\text{Spr}_\gamma)$ and $H^i_*(\text{Spr}_\gamma)$

$$\mathbb{Q}_\ell[X_s(T)]^W \rightarrow \text{End}(H_i(\text{Spr}_\gamma)), \quad \mathbb{Q}_\ell[X_s(T)]^W \rightarrow \text{End}(H^i_*(\text{Spr}_\gamma))$$

factors through the action of $\pi_0(G_\gamma(F))$ via the homomorphism (1.1).

In fact, the $\pi_0(G_\gamma(F))$-action factors through a further quotient $\pi_0(P_{a(\gamma)})$, where $P_{a(\gamma)}$ is a certain quotient of $G_\gamma(F)$ (see [2.7]).

The difficulty in proving this conjecture lies in the fact that we do not know an effective way of computing the action of $\mathbb{Q}_\ell[X_s(T)]^W$: Lusztig’s construction of the W_{aff}-action only tells us how each simple reflection acts, but elements in $\mathbb{Q}_\ell[X_s(T)]^W$ are in general sums of complicated words in simple reflections.

The main purpose of this paper is to prove

1.2. \textbf{Theorem} (Local Main Theorem). \textit{Conjecture 1.1 holds for $H^i_*(\text{Spr}_\gamma)$.}

For the homology part of the conjecture, we prove a weaker statement.

1.3. \textbf{Theorem.} Under the conditions of Conjecture 1.1, there exists a filtration Fil^p on $H_*(\text{Spr}_\gamma)$, stable under both \widetilde{W} and $\pi_0(G_\gamma(F))$, such that the action of $\mathbb{Q}_\ell[X_s(T)]^W$ on $\text{Gr}^p_{\text{Fil}} H_*(\text{Spr}_\gamma)$ factors through the action of $\pi_0(G_\gamma(F))$ via the homomorphism (1.1).

Moreover, one may choose Fil^p such that $\text{Gr}^p_{\text{Fil}} H_*(\text{Spr}_\gamma) = 0$ unless $0 \leq p \leq r$, where r is the split rank of the F-torus G_γ.
The above conjecture and results have a parahoric version. For each parahoric subgroup \(P \subset G(F) \) we have the affine partial flag variety \(\text{Fl}_P = G(F)/P \) and affine partial Springer fibers \(\text{Spr}_{P,\gamma} \). The subalgebra \(1_P \overline{\mathbb{Q}}_\ell[\tilde{W}] 1_P \cong \overline{\mathbb{Q}}_\ell[X_*(T)]^{W_P} \) acts on \(H_*(\text{Spr}_{P,\gamma}) \) and \(H^*(\text{Spr}_{P,\gamma}) \) (see 2.6).

1.4. Proposition. Let \(P \subset G(F) \) be any parahoric subgroup. Let \(\gamma \in \mathfrak{g}(F) \) be a regular semisimple element. If Conjecture 1.1 holds for \(H_*(\text{Spr}_{\gamma}) \) (resp. \(H^*(\text{Spr}_{\gamma}) \)), then the action of \(\overline{\mathbb{Q}}_\ell[X_*(T)]^W \) on \(1_P \overline{\mathbb{Q}}_\ell[\tilde{W}] 1_P \) on \(H_*(\text{Spr}_{P,\gamma}) \) (resp. \(H^*(\text{Spr}_{P,\gamma}) \)) factors through the action of \(\pi_0(G_\gamma(F)) \) via the homomorphism \((1.1) \).

In fact, the natural projection \(\text{Spr}_{\gamma} \to \text{Spr}_{P,\gamma} \) induces a surjection \(H_*(\text{Spr}_{\gamma}) \to H_*(\text{Spr}_{P,\gamma}) \) and an injection \(H^*(\text{Spr}_{P,\gamma}) \hookrightarrow H^*(\text{Spr}_{\gamma}) \), which are easily seen to be equivariant under both \(\overline{\mathbb{Q}}_\ell[X_*(T)]^W \) and \(\pi_0(G_\gamma(F)) \) by construction in 2.6.

Surprisingly, Theorem 1.2 is deduced from its global counterpart, which we state next. Fix a geometric point \(a \in \mathcal{A}^\circ \) over \(k \). The study of this action in the case of the usual Hitchin moduli space \(\mathcal{M}^\text{Hit} \) leads to the geometric theory of endoscopy, which plays a crucial role in Ngô’s proof of the Fundamental Lemma [N10].

In this paper, we will extend this construction to a larger locus \(\mathcal{A}^\circ \times X \), where \(\mathcal{A}^\circ \subset \mathcal{A}^\text{Hit} \) is the hyperbolic locus (see [N10 §4.5]), containing \(\mathcal{A}^\text{an} \) as an open subset.

On the other hand, Ngô defined a Picard stack \(\mathcal{P} \) over \(\mathcal{A}^\circ \) which acts on \(\mathcal{M}^\text{par} \) fiber-wise over \(\mathcal{A}^\circ \times X \). This action induces an action of the sheaf of groups \(\pi^0(\mathcal{P}/\mathcal{A}^\circ) \) (which interpolates the component groups \(\pi^0(\mathcal{P}_a) \) for \(a \in \mathcal{A}^\circ \)) on \(\mathcal{R}_f|_\mathcal{A}^\circ \times X \). The study of this action in the case of the usual Hitchin moduli space \(\mathcal{M}^\text{Hit} \) leads to the geometric theory of endoscopy, which plays a crucial role in Ngô’s proof of the Fundamental Lemma [N10]. The idea of relating the \(\pi^0(\mathcal{P}/\mathcal{A}^\circ) \)-action and the \(\overline{\mathbb{Q}}_\ell[X_*(T)]^W \)-action on \(\mathcal{R}_f|_\mathcal{A}^\circ \times X \) was also suggested to the author by Ngô.

1.5. Theorem (Global Main Theorem). For any \(i \in \mathbb{Z}_{\geq 0} \), the spherical part of the \(\tilde{W} \)-action on the cohomology sheaves of the parahoric Hitchin complex \(\mathcal{R}_f|_\mathcal{A}^\circ \times X \):

\[
\overline{\mathbb{Q}}_\ell[X_*(T)]^W \to \text{End}(\mathcal{R}_f|_\mathcal{A}^\circ \times X)
\]

factors through the action of the sheaf \(\pi^0(\mathcal{P}/\mathcal{A}^\circ) \) via a natural homomorphism of sheaves of algebras on \(\mathcal{A}^\circ \):

\[
\sigma : \overline{\mathbb{Q}}_\ell[X_*(T)]^W \otimes \overline{\mathbb{Q}}_\ell[H^*(\mathcal{M}_a^\text{par})] \to \overline{\mathbb{Q}}_\ell[\pi^0(\mathcal{P}/\mathcal{A}^\circ)]
\]

(1.2)

Here, \((\mathcal{A}^\circ \times X)' \subset \mathcal{A}^\circ \times X \) is any open subset on which a certain codimension estimate holds (see [Y11 Proposition 2.6.3, Remark 2.6.4]). If \(\text{char}(k) = 0 \), we may take \((\mathcal{A}^\circ \times X)' = \mathcal{A}^\circ \times X \) (see [N09 p.4]).

A consequence of Theorem 1.5 is

1.6. Corollary. For any geometric point \((a,x) \in (\mathcal{A}^\circ \times X)' \), the action of \(\overline{\mathbb{Q}}_\ell[X_*(T)]^W \) on \(H^*_c(\mathcal{M}_a^\text{par}) \) factors through the action of \(\pi^0(\mathcal{P}_a) \) via the stalk of the homomorphism (1.2) at \(a \).
We also have a version of Theorem 1.5 for parahoric Hitchin fibrations. Let us spell out the case of the usual Hitchin fibration \(f_{\text{Hit}} : \mathcal{M}_{\text{Hit}} \to \mathcal{A}_{\text{Hit}} \). Extending [Y11] Theorem 6.6.1 to the locus \(\mathcal{A}^\triangleright \), we have an action of \(\overline{\mathbb{Q}}_\ell[X_\ast(T)]^W \) on the complex \(R f_{\text{Hit}}^! \overline{\mathbb{Q}}_\ell \boxtimes \overline{\mathbb{Q}}_{\ell,X} \) on \(\mathcal{A}^\triangleright \times X \).

1.7. Theorem. The action of \(\overline{\mathbb{Q}}_\ell[X_\ast(T)]^W \) on the sheaf \(R^i f_{\text{Hit}}^! \overline{\mathbb{Q}}_\ell \boxtimes \overline{\mathbb{Q}}_{\ell,X} \) factors through the action of the sheaf of algebras \(\overline{\mathbb{Q}}_\ell[\pi_0(P/\mathcal{A}^\triangleright)] \) via the homomorphism \((1.2) \).

Note that this theorem is valid on the whole of \(\mathcal{A}^\triangleright \times X \), rather than just \(\mathcal{A}^\triangleright \times X \)' as in Theorem 1.5. In the preprint [Y10], Theorem 1.5 and 1.7 were proved over \(\mathcal{A}^\triangleright \times X \).

1.8. Application. In recent work of Bezrukavnikov and Varshavsky, they construct new examples of stable distributions on \(p \)-adic groups using an affine analog of the relation between character sheaves and the center of the Hecke algebra. When the local field is a function field, a key step in checking the stability of their distributions is Theorem 1.2 and Theorem 1.3.

1.9. Idea of the proof. The main idea of proving Theorem 1.2 is to view \(O_F \) as the completed local ring of an algebraic curve at one point \(x \), and then to deform the point \(x \) along the curve \(X \). For this, we also need to extend \(\gamma \in g(F) \) to a \(g \)-valued meromorphic function on \(X \). This naturally leads to the consideration of the (parabolic) Hitchin moduli stack, hence leading to Theorem 1.5.

To prove Theorem 1.5, we first prove Theorem 1.7 The \(\overline{\mathbb{Q}}_\ell[X_\ast(T)]^W \)-action on \(R f_{\text{Hit}}^! \overline{\mathbb{Q}}_\ell \boxtimes \overline{\mathbb{Q}}_{\ell,X} \) can be thought of as a family of \(\overline{\mathbb{Q}}_\ell[X_\ast(T)]^W \)-actions on \(R f_{\text{Hit}}^! \overline{\mathbb{Q}}_\ell \) indexed by \(x \in X \). Homotopy invariance guarantees that the effect of this action on \(R f_{\text{Hit}}^! \overline{\mathbb{Q}}_\ell \) is independent of \(x \). Then we only need to check that the \(\overline{\mathbb{Q}}_\ell[X_\ast(T)]^W \)-action at a general point \(x \in X \) does factor through \(\pi_0(P/\mathcal{A}^\triangleright) \), which is clear from the construction in [Y11].

To deduce Theorem 1.5 from Theorem 1.7, we simultaneously deform the point of Borel reduction (which is contained in the moduli problem of \(\mathcal{M}_{\text{par}} \)) and the point of Hecke modification (which gives the \(\overline{\mathbb{Q}}_\ell[X_\ast(T)]^W \)-action). This way we get a result about the \(\overline{\mathbb{Q}}_\ell[X_\ast(T)]^W \)-action on \(R f_{\text{Hit}}^! \overline{\mathbb{Q}}_\ell \boxtimes \overline{\mathbb{Q}}_{\ell,X} \) analogous to Theorem 1.7 but this time our complex lives on \(\mathcal{A}^\triangleright \times X \).

Restricting to the diagonal \(\mathcal{A}^\triangleright \times \Delta(X) \), we get the desired factorization in Theorem 1.5. The idea behind this argument is reminiscent of Gaitsgory’s construction of the center of the affine Hecke algebra via nearby cycles (see [Go1]).

Finally, we need to deduce Theorem 1.2 from Theorem 1.5 We argue that for every affine Springer fiber \(\text{Spr}_x \), its compactly supported cohomology appears inside the compactly supported cohomology of a certain rigidified parabolic Hitchin fiber, and this inclusion respects the various symmetries. This fact follows from a detailed analysis of Ngô’s product formula.

We remark that using a parahoric version of Ngô’s Support Theorem (see [Ya]), one can deduce a weaker version of Theorem 1.5 namely the semisimplification of the \(\overline{\mathbb{Q}}_\ell[X_\ast(T)]^W \)-action factors through the \(\pi_0(P/\mathcal{A}^\triangleright) \)-action on \(R f_{\text{Hit}}^! \overline{\mathbb{Q}}_\ell \mathcal{A}^\triangleright \times X \).

The proof described above shows that the global Springer theory developed in [Y11] can be useful in solving more classical problems about affine Springer fibers.

1.10. Convention. Throughout the paper, \(k \) will be an algebraically closed field. The stacks on which we talk about sheaves are of the form \([X/A] \), where \(X \) is an algebraic space, locally of finite type over \(k \), and \(A \) is a linear algebraic group over \(k \) which acts on \(X \). All complexes of sheaves will be objects in the derived category of \(\overline{\mathbb{Q}}_\ell \)-complexes in the étale topology. See [DS0] §1.1 for the case of schemes of finite type and [O07] for the case of stacks. See Appendix A.1 for the convention for sheaves on algebraic spaces which are locally of finite type over \(k \). All sheaf-theoretic functors are understood to be derived without putting \(R \) or \(L \) in the.
front. For a morphism \(f : \mathcal{X} \to \mathcal{Y} \) between stacks, we use \(\mathbb{D}_{\mathcal{X}/\mathcal{Y}} \) or \(\mathbb{D}_f \) to denote the relative dualizing complex \(f^! \mathcal{O}_{\mathcal{Y}} \). The homology complex of \(f \) is defined as

\[
\mathbf{H}_s(\mathcal{X}/\mathcal{Y}) := f_! \mathbb{D}_{\mathcal{X}/\mathcal{Y}}.
\]

In particular, if \(\mathcal{Y} = \text{Spec} \ k \), we write \(\mathbf{H}_s(\mathcal{X}) \) for \(\mathbf{H}_s(\mathcal{X}/\text{Spec} \ k) \).

1.11. Notations for \(G \). Let \(G \) be a reductive algebraic group over \(k \). Fix a maximal torus \(T \) of \(G \) and a Borel \(B \) containing \(T \). Let \(\mathfrak{g}, \mathfrak{b}, \mathfrak{t} \) be the Lie algebras of \(G, B, T \) respectively. Let \((X^*(T), \Phi, X_*(T), \Phi^\vee) \) be the based root and coroot systems determined by \((G, B, T) \). Let \(W \) be the Weyl group. Let \(\mathfrak{c} = \mathfrak{g} / G = \mathfrak{t} / W \) be the adjoint quotient of \(\mathfrak{g} \) in the GIT sense.

We now make precise the assumption on \(\text{char}(k) \). Let \(h \) be one plus the sum of coefficients of the highest root of \(G \) written in terms of simple roots. We assume either \(\text{char}(k) = 0 \) or \(\text{char}(k) > 2h \). We impose this condition because we would like to make sure that the Kostant section \(\epsilon : \mathfrak{c} \to \mathfrak{g} \) exists, see [N10] §1.2.

The extended affine Weyl group and the affine Weyl group are defined as

\[
\tilde{W} := X_*(T) \rtimes W; \quad W_{\text{aff}} := \mathbb{Z}\Phi^\vee \rtimes W
\]

where \(\mathbb{Z}\Phi^\vee \subset X_*(T) \) is the coroot lattice. The affine Weyl group \(W_{\text{aff}} \) is a Coxeter group with the set of simple reflections \(\Delta_{\text{aff}} \). There is an exact sequence

\[
1 \to W_{\text{aff}} \to \tilde{W} \to \Omega \to 1
\]

with \(\Omega = X_*(T) / \mathbb{Z}\Phi^\vee \) a finite abelian group.

2. Local Springer action

In this section, we will explain all the ingredients that go into the statement of Conjecture 1.1.

2.1. Loop group. Let \(F = k((\varpi)) \) and \(\mathcal{O}_F = k[[\varpi]] \subset F \). For a scheme \(X \) over \(F \), we use \(\text{Res}^F \mathcal{O}_k X \) to denote the functor \(\{k\text{-algebras}\} \to \{\text{Sets}\} \):

\[
(\text{Res}^F \mathcal{O}_k X)(R) = X(R((\varpi))).
\]

Similarly, if \(\mathcal{X} \) is defined over \(\mathcal{O}_F \), we define \(\text{Res}^{\mathcal{O}_F} \mathcal{X} \) to be the functor

\[
(\text{Res}^{\mathcal{O}_F} \mathcal{X})(R) = \mathcal{X}(R[[\varpi]]).
\]

The functor \(\text{Res}^F \mathcal{O}_k(G \otimes_k F) \) is represented by a group ind-scheme \(G((\varpi)) \) over \(k \), called the loop group of \(G \). The standard Iwahori subgroup \(\mathbf{I} \subset G(\mathcal{O}_F) \) is the preimage of \(B(k) \) under the evaluation map \(G(\mathcal{O}_F) \to G(k) \). Standard parahoric subgroups \(\mathbf{P} \supset \mathbf{I} \) are in bijection with proper subsets of \(\Delta_{\text{aff}} \). The parahoric \(G(\mathcal{O}_F) \) is denoted by \(\mathbf{G} \).

For each parahoric \(\mathbf{P} \), there is a smooth \(\mathcal{O}_F \)-model \(\mathbf{G}_\mathbf{P} \) of \(G \otimes_k F \), the Bruhat-Tits group scheme, such that \(\mathbf{G}_\mathbf{P}(\mathcal{O}_F) = \mathbf{P} \). The Lie algebra \(\text{Lie} \mathbf{P} \) of \(\mathbf{P} \) is, by definition, the Lie algebra of \(\mathbf{G}_\mathbf{P} \), hence a finite free \(\mathcal{O}_F \)-module. Let \(\mathbf{L}_\mathbf{P} \) be maximal reductive quotient of the special fiber of \(\mathbf{G}_\mathbf{P} \). This is a connected reductive group over \(k \). The functor \(\text{Res}^{\mathcal{O}_F} \mathbf{G}_\mathbf{P} \) is represented by a group scheme over \(k \). The affine partial flag variety of type \(\mathbf{P} \) is the ind-scheme

\[
\text{Fl}_\mathbf{P} = G((\varpi)) / \text{Res}^{\mathcal{O}_F} \mathbf{G}_\mathbf{P}.
\]

The set \(\text{Fl}_\mathbf{P}(k) \) classifies all parahoric subgroups of \(G(F) \) which are conjugate to \(\mathbf{P} \).
Having fixed an Iwahori \(I \), the exact sequence \([13] \) admits a section \(\Omega \rightarrow \hat{W} \) whose image \(\Omega_I \) is the stabilizer of the fundamental alcove corresponding to \(I \) in the reduced building of \(G(F) \). The group \(\Omega_I \subset \hat{W} \) can also be identified with \(N(I)/I \) where \(N(I) \) is the normalizer of \(I \) in \(G(F) \).

2.2. **Affine Springer fibers.** Let \(\gamma \in \mathfrak{g}(F) \) be a regular semisimple element. The sub-ind-scheme \(\hat{\text{Spr}}_{P,\gamma} \subset G((\mathbb{w})) \) is defined to have \(R \)-points

\[
\hat{\text{Spr}}_{P,\gamma}(R) = \{ g \in G(R((\mathbb{w}))) | \text{Ad}(g^{-1})\gamma \in R \otimes_k \text{Lie} P \}.
\]

Clearly the right \(\text{Res}_k^O \mathcal{G}_P \)-action on \(G((\mathbb{w})) \) preserves \(\hat{\text{Spr}}_{P,\gamma} \), hence we can define the quotient

\[
\text{Spr}_{P,\gamma} = \hat{\text{Spr}}_{P,\gamma} / \text{Res}_k^O \mathcal{G}_P \subset \text{Fl}_P.
\]

As defined above \(\text{Spr}_{P,\gamma} \) is highly non-reduced. Its reduced structure \(\text{Spr}_{P,\gamma} \) is a scheme locally of finite type, see \([KL88] \). We call \(\text{Spr}_{P,\gamma} \) the affine Springer fiber of \(\gamma \) with type \(P \). When \(P = I \), we often omit \(I \) from subscripts.

2.3. **Lusztig’s construction of the \(\Omega_I \)-action in \([L96] \).** Let \(\mathfrak{l}_P \) be the Lie algebra of \(L_P \) and \(\mathfrak{I}_P \) be the Grothendieck simultaneous resolution of \(\mathfrak{l}_P \). We have a Cartesian diagram

\[
\begin{array}{ccc}
\text{Spr}_\gamma & \xrightarrow{ev} & \mathfrak{I}_P/L_P \\
\downarrow \nu_P & & \downarrow \pi_P \\
\hat{\text{Spr}}_{P,\gamma} & \xrightarrow{ev_{P,\gamma}} & \mathfrak{I}_P/L_P
\end{array}
\]

Apply proper base change to the diagram \((2.1) \), we get

\[
\nu_P^\ast \mathcal{D}_{\text{Spr}_\gamma} = \nu_{P,\gamma}^\ast \pi_P^\ast \mathcal{D}_{[\mathfrak{I}_P/L_P]}.
\]

By classical Springer theory for the Lie algebra \(\mathfrak{l}_P \), there is a \(W_P \)-action on \(\pi_P^\ast \mathcal{D}_{[\mathfrak{I}_P/L_P]} \) (to see this, we may identify \(\mathcal{D}_{[\mathfrak{I}_P/L_P]} \) with the constant sheaf on \(\mathfrak{I}_P/L_P \)). Therefore \(\nu_{P,\gamma}^\ast \mathcal{D}_{\text{Spr}_\gamma} \) also carries a \(W_P \)-action. Since \(\nu_{P,\gamma} \) is proper, \(H_*(\text{Spr}_\gamma) = \text{R}\Gamma_c(\text{Spr}_{P,\gamma}, \nu_{P,\gamma}^\ast \mathcal{D}_{\text{Spr}_\gamma}) \) also carries a \(W_P \)-action.

For \(P \subset Q \), Lusztig then argues that the \(W_Q \)-action on \(H_*(\text{Spr}_\gamma) \) restricts to the \(W_P \)-action defined both as above. Therefore, these \(W_P \)-actions generate a \(W_{\Omega_I} \)-action on \(H_*(\text{Spr}_\gamma) \).

Replacing the dualizing complexes by the constant sheaves in the above discussion, we obtain an action of \(W_{\Omega_I} \) on \(H^*_c(\text{Spr}_\gamma) \).

2.4. **The \(\Omega_I \)-action.** Viewing \(\Omega_I \) as the quotient \(N(I)/I \), we get a natural action of \(\Omega_I \) on \(\text{Fl} = \text{Fl}_I \) by right multiplication. We denote this action by \(\omega \mapsto R_\omega \) for \(\omega \in \Omega_I \). This action preserves \(\text{Spr}_\gamma \) (because \(\text{Ad}(g)I = \text{Ad}(g\omega)I \) for any \(\omega \in N(I) \)), hence \(\omega \in \Omega_I \) acts on \(H_*(\text{Spr}_\gamma) \) from the left:

\[
R_{\omega^{-1}}^\ast : H_*(\text{Spr}_\gamma) \rightarrow H_*(\text{Spr}_\gamma).
\]

Similarly, right multiplication by \(\omega \in N(I) \) sends one standard parahoric \(P \) to another standard parahoric \(\omega^{-1}P \omega \), and gives an isomorphism \(\text{Fl}_{P,\gamma} \cong \text{Fl}_{\omega^{-1}P,\omega,\gamma} \). We have a commutative diagram

\[
\begin{array}{ccc}
\text{Spr}_\gamma & \xrightarrow{R_\omega} & \text{Spr}_\gamma \\
\downarrow \nu_P & & \downarrow \nu_{\omega^{-1}P,\omega} \\
\hat{\text{Spr}}_{P,\gamma} & \xrightarrow{R_\omega} & \hat{\text{Spr}}_{\omega^{-1}P,\omega,\gamma}
\end{array}
\]
for any ω ∈ Ωt. This implies that R−1ω∗ intertwines the action of W∗−1Pω and of WP on H∗(Sprγ), via the isomorphism Ad(ω) : W∗−1Pω → WP. Similar remarks apply to H∗c(Sprγ). Summarizing, we get

2.5. Theorem. Lusztig’s construction in 2.3 and the Ωt-action in 2.4 together generate a ¯W action on both H∗(Sprγ) and H∗c(Sprγ).

2.6. The parahoric version. For each standard parahoric P, let WP ⊂ Waff be the finite Weyl group of the Levi quotient LP. The Cartesiand diagram (2.1) and proper base change implies that

\[H_*(Spr_{P,\gamma}) = H_*(Spr_\gamma)^{WP}, \quad \text{and} \quad H_{*c}(Spr_{P,\gamma}) = H_{*c}(Spr_\gamma)^{WP}. \]

In fact, the constant sheaf on tP depends on Sprγ depends on ΛRk using X(2.4). We have the finite type Néron model F of Sprγ using X(2.4) instead of X(2.4)). The ring O-flat (instead of O-flat) factors through Sprγ factors through Pγ.

2.7. Local Picard. We follow [N10, §3.3] in this subsection. For γ ∈ g(OF), let a(γ) be its image in c(OF).

Recall the F-torus Gγ admits a smooth model Jγ over Spec OF which canonically only depends on a(γ). This is the regular centralizer group scheme defined in [N06, §3]. Let Pγ be the affine Grassmannian of the Spec OF-group scheme Jγ (see [N10, §3.8]):

\[P_{\gamma} = G_{\gamma} J_{\gamma} := \text{Res}_F J_{\gamma} / \text{Res}_k J_{\gamma} = \text{Res}_k G_{\gamma} / \text{Res}_k J_{\gamma}. \]

For a k-algebra R, Pγ(R) is the set of isomorphism classes of Jγ-torsors over Spec R〚w〛 together with a trivialization over Spec R〚w〛. Since Jγ is commutative, Pγ has a group ind-scheme structure. The action of Resk Gγ on Sprγ factors through Pγ.

We have the finite type Néron model Jγ of Jγ (see [N10, §3.8]). We define Pγ similarly using Jγ instead of Jγ. By [N10, Lemme 3.8.1], the reduced structure of Pγ is a free abelian group Λa(γ). Let Pγ → Pγ be the preimage of Λa(γ) → Pγ, then we have an exact sequence

\[1 \to R_{a(\gamma)} \to P_{a(\gamma)} \to \Lambda_{a(\gamma)} \to 1, \]

where the kernel R_{a(\gamma)} is an affine commutative group scheme of finite type.

2.8. Definition of the map σγ in (1.1). Consider the following diagram

\[
\begin{array}{ccc}
\text{Spec } \mathcal{O}_F & \longrightarrow & \text{Spec } \mathcal{O}_{F,a} \\
\downarrow & & \downarrow \\
\text{Spec } \mathcal{O}_F & \longrightarrow & t
\end{array}
\]

where the square on the right is Cartesian by definition. The morphism Spec OF,a → Spec OF is called the local cameral cover. The ring OF is the normalization of OF,a. Choose a component Spec OF ⊂ Spec OF. Let W1 ⊂ W be the stabilizer of Spec OF. According to [N10, Prop. 3.9.2] (or rather its dual statement), the choice of Spec OF allows us to define a canonical surjection

\[X_*(T) \to X_*(T)_{W} = \pi_0(\text{Res}_k G_{\gamma}) \to \pi_0(P_{a(\gamma)}). \]
If we change the choice of \tilde{O}_F, the above map will differ by an action of W on $X_s(T)$. In particular, taking the group algebras in (2.4) and restricting to $\mathbb{Q}_l[X_s(T)]^W$, the map

$$\sigma_\gamma : \mathbb{Q}_l[X_s(T)]^W \to \mathbb{Q}_l[\text{Res}_k G_\gamma] \to \mathbb{Q}_l[\pi_0(P_{a(\gamma)})]$$

is independent of any choice. The first of map above is the map in (1.1).

2.9. Proposition (Local constancy). Fix a regular semisimple $\gamma \in g(F)$ with $a(\gamma) \in \mathfrak{c}(O_F)$. There is an integer $N > 0$ such that for any $\gamma' \in g(F)$ with $a(\gamma') \in \mathfrak{c}(O_F)$ and $a(\gamma') \equiv a(\gamma) \pmod{\gamma}$, there are isomorphisms

$$\iota_P : P_{\gamma} \xrightarrow{\sim} P_{\gamma'};$$

$$\iota : \text{Spr}_{\gamma} \xrightarrow{\sim} \text{Spr}_{\gamma'},$$

such that ι is equivariant under the P_{γ} and $P_{\gamma'}$ actions via ι_P. Moreover, the isomorphism ι can be chosen so that both $\iota^* : H^*_c(\text{Spr}_{\gamma}) \to H^*_c(\text{Spr}_{\gamma'})$ and $\iota_* : H_*(\text{Spr}_{\gamma}) \to H_*(\text{Spr}_{\gamma'})$ are \tilde{W}-equivariant.

Proof. We first deal with the case $a(\gamma) = a(\gamma')$. Since the field F has dimension ≤ 1, $H^1(F,A) = 0$ for any torus A over F (see [S68, Ch. X, end of §7]). In particular, if γ and γ' have the same image in $\mathfrak{c}^0(F)$, they are conjugate by an element $g \in G(F)$, and the required isomorphisms are given by $\text{Ad}(g)$.

By the above discussion, we may assume γ is the Kostant section of $a(\gamma)$ (see [N10, §1.2]); similarly we may assume γ' is the constant section of $a(\gamma')$.

We need a variant of [N10] Lemme 3.5.3 with $g(O_F) = \text{Lie} G$ replaced by $\text{Lie} I$. For this, one only needs to use [N10] Lemme 2.4.3 in place of [N10] Lemme 2.1.1 in the argument. This variant of [N10] Lemme 3.5.3 shows that Spr_{γ} canonically depends only on the O_F-group scheme $G_\gamma = J_{a(\gamma)}$ (recall $\gamma \in g(O_F)$ comes from the Kostant section).

By [N10] Lemme 3.5.2, there is an integer $N > 0$ such that the local cameral covers $O_{F,a(\gamma)}$ and $O_{F,a(\gamma')}$ are W-equivariantly isomorphic as O_F-modules. By [N10] Lemme 3.5.4, there exists $g \in G(O_F)$ such that $\text{Ad}(g)G_\gamma = G_{\gamma'}$ as subgroups of $G \otimes_k O_F$. The isomorphism ι_P is induced from $\text{Ad}(g)$. The left translation $g : F_{\text{fl}} \to F_{\text{fl}}$ then induces an isomorphism $\iota : \text{Spr}_{\gamma} \xrightarrow{\sim} \text{Spr}_{\gamma'}$ intertwining the actions of $P_{a(\gamma)}$ and $P_{a(\gamma')}$. This proves the first statement of the Proposition.

To prove that ι_* and ι^* are \tilde{W}-equivariant, one only needs to notice that under the left translation by $g \in G(O_F)$, the diagrams (2.1) and (2.2) for γ map isomorphically to the corresponding diagrams for γ', at least after replacing the Spr's by their reduced structures Spr. For the diagram (2.1), we remark that $\text{Spr}_{P,\gamma}$ maps isomorphically to $\text{Spr}_{P,\gamma'}$ under g, since they are images of Spr_{γ} and $\text{Spr}_{\gamma'}$ under the projection $F_{\text{fl}} \to F_{\text{fl}}$. Since these diagrams determine the \tilde{W}-action by construction, the \tilde{W}-equivariance follows.

3. Global Springer action: Extension to the hyperbolic locus

In this section, we extend the \tilde{W}-action on $f\Gamma_{\text{bar}}\overline{\mathcal{O}}_{X_s}^\text{ani}|_{\mathcal{A}^\text{ani} \times X}$ constructed in [Y11] from the anisotropic locus \mathcal{A}^ani to the hyperbolic locus \mathcal{A}^c.

3.1. The Hitchin moduli stack. We first recall the definition of the Hitchin moduli stack. Fix a divisor $D = 2D'$ on X with $\deg(D) \geq 2g_X$. The Hitchin moduli stack $\mathcal{M}^\text{Hit} = \mathcal{M}^\text{Hit}_{X,G,D}$ assigns to a k-scheme S the groupoid of Hitchin pairs (\mathcal{E}, φ) where

- \mathcal{E} is a (right) G-torsor over $X \times S$;
• φ is a section of the vector bundle \(\text{Ad}(\mathcal{E}) \otimes \mathcal{O}_X(D) \), where \(\text{Ad}(\mathcal{E}) = \mathcal{E}^G \times \mathfrak{g} \) is the adjoint bundle over \(X \times S \).

It is well-known that \(\mathcal{M}^\text{Hit} \) is an algebraic stack.

Let \(c_D \) be the affine space bundle \(\text{Tot}^X(D) \times \mathbb{G}_m \) where \(\text{Tot}^X(D) \) is the \(\mathbb{G}_m \)-torsor associated to the line bundle \(\mathcal{O}_X(D) \). Let \(\mathcal{A}^\text{Hit} = H^0(X, c_D) \) be the Hitchin base. We have the Hitchin fibration \(f^\text{Hit} : \mathcal{M}^\text{Hit} \to \mathcal{A}^\text{Hit} \) which assigns \((\mathcal{E}, \varphi) \) the "invariant polynomials" of \(\varphi \). Recall from [N10 §4.5] that there is an open subset \(\mathcal{A}^\varnothing \subset \mathcal{A}^\text{Hit} \) consisting of those sections \(a : X \to c_D \) which generically lies in the regular semisimple locus \(c_{rs}^D \). We call \(\mathcal{A}^\varnothing \) the hyperbolic locus of \(\mathcal{A}^\text{Hit} \).

3.2. Rigidified Hitchin moduli space. Fix a point \(z \in X(k) \setminus D \). Let \(\mathcal{A}^z \subset \mathcal{A}^\text{Hit} \) be the open subset consisting of \(a : X \to c_D \) such that \(a(z) \in c_{rs}^D \). Clearly \(\mathcal{A}^z \subset \mathcal{A}^\varnothing \). Define \(\mathcal{B} \) by the Cartesian diagram

\[
\begin{array}{ccc}
\mathcal{B} & \xrightarrow{f^\text{rs}} & \mathcal{A}^z \\
\downarrow & & \downarrow \\
\mathcal{A}^z & \xrightarrow{a \mapsto a(z)} & c_{rs}^D
\end{array}
\]

So \(\mathcal{B} \to \mathcal{A}^z \) is a \(W \)-torsor.

Let \(\hat{\mathcal{M}}^\text{Hit} \) be the functor which assigns to a \(k \)-scheme \(S \) the groupoid of tuples \((\mathcal{E}, \varphi, t_z, \iota_z) \) where

- \((\mathcal{E}, \varphi) \in \mathcal{M}^\text{Hit}(S) \);
- Let \(a : X \times S \to c_D \) be the image of \((\mathcal{E}, \varphi) \) under \(f^\text{Hit} \), and \(a(z) : \{z\} \times S \to c \). We require that the image of \(a(z) \) lies in \(c_{rs}^D \). Moreover, \(t_z : S \to c_{rs}^D \) is a lifting of \(a(z) \).
- \(\iota_z : (\mathcal{E}, \varphi)|_{\{z\} \times S} \sim (G \times S, t_z) \) is an isomorphism of Hitchin pairs over \(\{z\} \times S \).

Note that \(T \) acts on \(\hat{\mathcal{M}}^\text{Hit} \) by changing the trivialization \(\iota_z \), because it is the centralizer of \(t_z \).

3.3. Lemma. The functor \(\hat{\mathcal{M}}^\text{Hit} \) is represented by an algebraic space which is locally of finite type and smooth over \(k \).

Proof. Forgetting \(t_z \) and \(\iota_z \) we get a morphism \(\hat{\mathcal{M}}^\text{Hit} \to \mathcal{M}^\text{Hit} \) which is a \(N_G(T) \)-torsor. In particular, the forgetful morphism is of finite type. Since \(\mathcal{M}^\text{Hit} \) is an algebraic stack which is locally of finite type and smooth over \(k \), so is \(\hat{\mathcal{M}}^\text{Hit} \).

It remains to show that the automorphism group of any geometric point \((\mathcal{E}, \varphi, t_z, \iota_z) \in \hat{\mathcal{M}}^\text{Hit}(k) \) is trivial \((K \supset k \) being any algebraically closed field). In fact, in [N10 Proposition 4.11.2] it is shown that

\[
\text{Aut}(\mathcal{E}, \varphi) \subset H^0(X_K, J_a^2),
\]

where \(J_a^2 \) is the (finite type) Néron model of the regular centralizer group scheme \(J_a \) over \(X_K \). Let \(q_a : X_a \to X_K \) be the cameral cover of \(X_K \), then by [N10 Corollaire 4.8.1], we have

\[
H^0(X_K, J_a^2) = H^0(X_a, T)^W \subset (q_a^{-1}(z) \times T)^W = J_{a,z}^2 = \text{Aut}((\mathcal{E}, \varphi)_z)
\]

the last equality holds because \(a(z) \in c_{rs}^D(K) \). Therefore there is no nontrivial automorphism of \((\mathcal{E}, \varphi) \) which preserves \(t_z \). This shows that the automorphism group of the triple \((\mathcal{E}, \varphi, t_z, \iota_z) \) is trivial.

We still have the Hitchin fibration (which is no longer proper even over the anisotropic locus)

\[
f^\text{Hit} : \hat{\mathcal{M}}^\text{Hit} \to \mathcal{B}.
\]
3.4. Rigidified parahoric Hitchin moduli space. For each standard parahoric subgroup \(P \subseteq G(F) \), we have defined in [Y11 Definition 4.3.3] an algebraic stack \(\mathcal{M}_P \) classifying Hitchin pairs \((\mathcal{E}, \varphi)\) together with a \(P \)-level structure \(\mathcal{E}^P_x \) of \(\mathcal{E} \) at a varying point \(x \in X \) such that \(\varphi \) is compatible with \(\mathcal{E}^P_x \). For the precise meaning of “\(P \)-level structure” and “compatible” we refer the readers to [Y11 §4.3].

A particular case is when \(P = I \), then \(\mathcal{M}_I^{\text{par}} := \mathcal{M}_I \) is called the parabolic Hitchin moduli stack, which classifies quadruples \((\mathcal{E}, \varphi, x, \mathcal{E}^B_x)\) where \((\mathcal{E}, \varphi) \in \mathcal{M}_\text{Hit}, x \in X \) and \(\mathcal{E}^B_x \) is a \(B \)-reduction of \(\mathcal{E} \) at \(x \) such that \(\varphi(x) \in \text{Ad}(\mathcal{E}^B_x) \otimes \mathcal{O}(D)_x \). Another special case is when \(P = G \), then \(\mathcal{M}_G = \mathcal{M}_\text{Hit} \times X \). For each \(P \), we have the parahoric Hitchin fibration

\[
f_P : \mathcal{M}_P \to \mathcal{A}_\text{Hit} \times X.
\]

Let \(\widehat{\mathcal{M}}_P \) be the stack classifying data \((\mathcal{E}, \varphi, x, \mathcal{E}^P_x, t_z, t_z)\) where

- \((\mathcal{E}, \varphi, x, \mathcal{E}^P_x) \in \mathcal{M}_P \);
- \(x \) is disjoint from \(z \) and \(a(z) \in c^{rs} (a = f^{\text{Hit}}(\mathcal{E}, \varphi) \in \mathcal{A}^{\text{Hit}}) \), \(t_z \in t^{rs} \) lifts \(a(z) \);
- \(t_z \) is an isomorphism \((\mathcal{E}, \varphi)|_z \sim (G, t_z)\) of Hitchin pairs at \(\{z\} \) (cf. the definition of \(\widehat{\mathcal{M}}^{\text{Hit}} \)).

Parallel to Lemma 3.3, \(\widehat{\mathcal{M}}_P \) is represented by an algebraic space which is locally of finite type and smooth over \(k \). We also have morphisms

\[
\overline{f}_P : \widehat{\mathcal{M}}_P \to B \times X^z
\]

where \(X^z = X \setminus \{z\} \). When \(P = I \), we usually write the morphism (3.1) as

\[
\overline{f}^{\text{par}} : \widehat{\mathcal{M}}^{\text{par}} \to B \times X^z.
\]

For two parahorics \(Q \subseteq P \), we have a forgetful morphism over \(B \times X^z \):

\[
\text{For}^P_Q : \widehat{\mathcal{M}}_Q \to \widehat{\mathcal{M}}_P
\]

3.5. Construction of the \(\widetilde{W} \)-action. In this subsection we construct a \(\widetilde{W} \)-action on the direct image complex \(f^\text{par}_! \widehat{\mathcal{Q}}_\ell \). Since \(T \) acts on \(\mathcal{M}^{\text{par}} \) and \(f^{\text{par}} \) is \(T \)-invariant, we can view \(f^\text{par}_! \widehat{\mathcal{Q}}_\ell \) as an object in \(\text{indD}_{\text{par}}^2(B \times X^z) \), where \(\text{D}_{\text{par}}^2(B \times X^z) \) is the \(T \)-equivariant derived category of \(\mathcal{Q} \)-complexes on \(B \times X^z \) (with trivial \(T \)-action). The construction of the \(\widetilde{W} \)-action is completely parallel to the case of \(f^{\text{par}} \) treated in [Y11 §5.1] and the affine Springer fiber case in [2.3].

For each standard parahoric \(P \), we have a Cartesian diagram

\[
\begin{array}{ccc}
\widehat{\mathcal{M}}^\text{par} & \xrightarrow{\text{ev}^P} & [\mathcal{P}/L_{\mathcal{P}}]_D \\
\downarrow_{\text{For}^P} & & \downarrow \\
\widehat{\mathcal{M}}_P & \xrightarrow{\text{ev}^P} & [\mathcal{P}/L_{\mathcal{P}}]_D
\end{array}
\]

Here \(L_{\mathcal{P}} \) is a group scheme over \(X \) which is an inner form of \(L_{\mathcal{P}} \). For precise definition, see [Y11 Equation (4.1)]. Similarly, we have the twisted versions \(\mathcal{P} \) and \(L_{\mathcal{P}} \) of the Lie algebra \(\mathfrak{p} \) and its Grothendieck resolution \(\mathfrak{L} \). So \([\mathcal{P}/L_{\mathcal{P}}] \) and \([\mathcal{P}/L_{\mathcal{P}}] \) are stacks over \(X \) with natural \(\mathbb{G}_m \)-actions by dilation. Adding a subscript \(D \) means applying the twisted product \((-) \times_X \text{Tot}^X(D)\) to these stacks.

With this diagram, we can define a \(W_{\mathcal{P}} \)-action on \(\text{For}^P_{\mathcal{L}} \cdot \overline{\mathcal{Q}}_\ell \subseteq D^b(\widehat{\mathcal{M}}_{\mathcal{P}}) \) similarly as in [2.3] or [Y11 Construction 5.1.1]. Therefore we get a \(W_{\mathcal{P}} \)-action on the ind-object \(f^\text{par}_! \widehat{\mathcal{Q}}_\ell = f^\text{par}_! \text{For}^P_{\mathcal{L}} \overline{\mathcal{Q}}_\ell \).
As in the proof of [Y11 Theorem 5.1.2], these actions for various P are compatible, and they together give an action of W_{aff} on $\tilde{f}_!^{\text{par}}\overline{Q}_\ell$.

On the other hand, Ω_T still acts on \mathcal{M}^par on the right, lifting its action on \mathcal{M}^par in [Y11 Corollary 4.3.4]. This gives an Ω_T-action on $\tilde{f}_!^{\text{par}}\overline{Q}_\ell$. Putting together with the W_{aff}-action, we get a \tilde{W}-action on $\tilde{f}_!^{\text{par}}\overline{Q}_\ell$.

The diagram (3.2) implies

$$\tilde{f}_P^!\overline{Q}_\ell = (\tilde{f}_!^{\text{par}}\overline{Q}_\ell)_z W_{T_{\text{par}}^{\text{aff}}}.$$

Therefore we get an action of $1_P\overline{Q}_\ell[W]1_P$ on $\tilde{f}_P^!\overline{Q}_\ell$.

3.6. **Hecke correspondences.** In [Y11 §3], we also have a construction of the \tilde{W}-action on $f_!^{\text{par}}\overline{Q}_\ell$ via Hecke correspondences. Here we extend the construction to the case of $\tilde{f}_!^{\text{par}}\overline{Q}_\ell$.

Recall we have a Hecke correspondence $\mathcal{H}\text{ecke}^\text{par}$, which is a self-correspondence of \mathcal{M}^par over $\mathcal{A}^\text{Hit} \times X$. Over the locus $(\mathcal{A}^\varnothing \times X)_z$, there is a \tilde{W}-action on $\mathcal{M}^\text{par}|_{(\mathcal{A}^\varnothing \times X)_{z}}$. For each $\tilde{w} \in \tilde{W}$, the closure $\mathcal{H}_{\tilde{w}}$ of the graph of the \tilde{w}-action is a closed subspace of $\mathcal{H}\text{ecke}^\text{par}$.

Let \tilde{h} be the second projection from $\mathcal{H}\text{ecke}^\text{par}$ or $\mathcal{H}_{\tilde{w}}$ to \mathcal{M}^par. Let

$$\tilde{\mathcal{H}}^\text{par} = \mathcal{H}\text{ecke}^\text{par} \times_{\tilde{h}} \mathcal{M}^\text{par};$$

$$\tilde{\mathcal{H}}_{\tilde{w}} = \mathcal{H}_{\tilde{w}} \times_{\tilde{h}} \mathcal{M}^\text{par}.$$

Then $\tilde{\mathcal{H}}^\text{par}$ and $\tilde{\mathcal{H}}_{\tilde{w}}$ can be viewed as self-correspondences of \mathcal{M}^par over $B \times \mathbb{Z}^2$. In fact, $\tilde{\mathcal{H}}^\text{par}$ parametrizes two Hitchin pairs with Borel reductions at a point $x \neq z$, an isomorphism of these Hitchin pairs on $X\setminus\{x\}$ and a rigidification τ_z of the second Hitchin pair at z (which then automatically gives a rigidification of the first Hitchin pair at z).

3.7. **The subset $(B \times \mathbb{Z}^2)'$.** On the scheme $\mathcal{A}^\varnothing \times X$, we have an upper semi-continuous function δ given by the local δ-invariants $\delta(a, x)$, see [Y11 §2.6]. Let $(\mathcal{A}^\varnothing \times X)_\delta$ be the level set of this function. By [Y11 Proposition 2.6.3], for each $\delta_0 \geq 0$, as long as $\deg(D)$ is large enough, we have

$$\text{codim}_{\mathcal{A}^\varnothing \times X}(\mathcal{A}^\varnothing \times X)_\delta \geq \delta + 1,$$

for all $\delta \leq \delta_0$.

Fix such a D (depending on δ_0) in the definition of \mathcal{M}^Hit. Let $(\mathcal{A}^\varnothing \times X)' = \bigsqcup_{\delta \leq \delta_0} (\mathcal{A}^\varnothing \times X)_\delta$, which is an open subscheme of $\mathcal{A}^\varnothing \times X$. Let $(B \times \mathbb{Z}^2)' = (\mathcal{A}^\varnothing \times X)' \times_{(\mathcal{A}^\varnothing \times X)} (B \times \mathbb{Z}^2)$.

We will need the notion of Property (G-2) of a correspondence, as defined in [Y11 Definition A.6.1] and recalled in Appendix A.6. The following fact is an easy consequence of [Y11 Lemma 3.1.4]

3.8. **Lemma.** Any algebraic subspace $\tilde{\mathcal{H}}' \subset \mathcal{H}\text{ecke}^\text{par}|_{(B \times \mathbb{Z}^2)'_z}$ which is of finite type over \mathcal{M}^par via both projections satisfies Property (G-2) with respect to $(B \times \mathbb{Z}^2)_{z}$, as a self-correspondence of $\mathcal{M}^\text{par}|_{(B \times \mathbb{Z}^2)_{z}}$.

Using the formalism of cohomological correspondences in Appendix A.3 the fundamental class of $\tilde{\mathcal{H}}_{\tilde{w}}$ gives a map

$$[\tilde{\mathcal{H}}_{\tilde{w}}]# : \tilde{f}_!^{\text{par}}\overline{Q}_\ell \to \tilde{f}_!^{\text{par}}\overline{Q}_\ell,$$

in the category $\text{ind}D^b_{\text{par}}(B \times \mathbb{Z}^2)$ (with T acting trivially on $B \times \mathbb{Z}^2$).

Completely parallel to [Y11 Theorem 3.3.3] and [Y11 Proposition 5.2.1], we have

3.9. **Proposition.** The assignment $\tilde{w} \mapsto [\tilde{\mathcal{H}}_{\tilde{w}}]#$ for $\tilde{w} \in \tilde{W}$ gives a left action of \tilde{W} on the restriction $\tilde{f}_!^{\text{par}}\overline{Q}_\ell|_{(B \times \mathbb{Z}^2)_{z}}$. Moreover, this action coincides with the action constructed in §3.5.
3.10. Global Picard stack. We recall some facts from [N10, §4.8]. For a point $a \in \mathcal{A}^\circ(k)$, we have a smooth commutative group scheme J_a over X, called the regular centralizer group scheme. The global Picard stack \mathcal{P}_a is defined as the moduli stack of J_a-torsors on X. It acts on both \mathcal{M}_a^Hit and $\mathcal{M}_{a,x}^\text{par}$ (for any $x \in X(k)$).

Because we work with the rigidified moduli spaces, it is more relevant to consider the group subscheme $J_a^z \subset J_a$ which fits into the exact sequence

$$1 \to J_a^z \to J_a \to i_{z,*}J_{a,z} \to 1$$

Here $J_{a,z}$ is the fiber of J_a at z and $i_z : \{z\} \to X$ is the inclusion. Let $\hat{\mathcal{P}}_a$ be the Picard stack of J_a^z-torsors over X. One may also view $\hat{\mathcal{P}}_a$ as classifying a J_a-torsor over X together with a trivialization at z. Similar argument as in Lemma 3.3 shows that $\hat{\mathcal{P}}_a$ is in fact a group scheme, locally of finite type and smooth over k. The exact sequence (3.3) gives a homomorphism of group schemes $J_{a,z} \to \hat{\mathcal{P}}_a$, and an isomorphism of Picard stacks

$$\mathcal{P}_a \cong [\hat{\mathcal{P}}_a/J_{a,z}].$$

As a varies in \mathcal{A}°, $\{\hat{\mathcal{P}}_a\}$ form a group scheme $\hat{\mathcal{P}}_{\mathcal{A}^\circ}$ over \mathcal{A}°. Let $\hat{\mathcal{P}} = \mathcal{B} \times_{\mathcal{A}^\circ} \hat{\mathcal{P}}_{\mathcal{A}^\circ}.$

For $\hat{a} = (a, t_z) \in \mathcal{B}$, the choice of t_z gives an isomorphism $J_{a,z} \sim T$. Therefore we have an isomorphism of Picard stacks over \mathcal{B}:

$$\mathcal{B} \times_{\mathcal{A}} \mathcal{P} \cong [\hat{\mathcal{P}}/T]$$

The group scheme $\hat{\mathcal{P}}$ acts on both $\hat{\mathcal{M}}^\text{Hit}$ and its parahoric variants $\hat{\mathcal{M}}_\mathcal{P}$ over \mathcal{B}.

Let J_a^b be the finite-type Néron model of J_a over X (see [N10, §4.8]), then there is an exact sequence

$$1 \to J_a^z \to J_a^b \to J_{a,z} \times \prod_{x \in \text{Sing}(a)} R_{a,x} \to 1.$$

Here $R_{a,x}$ is an affine group scheme of finite type over $\text{Spec } k = \text{Spec } k(x)$, and $\text{Sing}(a) \subset X$ is the locus where $a(x) \notin c_a^b$. Let \mathcal{P}_a^b be the Picard stack of J_a^b-torsors on X, and let P_a^b be its coarse moduli space. From the above sequence we deduce an exact sequence

$$1 \to H^0(X, J_a^b) \to J_{a,z} \times \prod_{x \in \text{Sing}(a)} R_{a,x} \to \hat{\mathcal{P}}_a \to P_a^b \to 1.$$

3.11. Definition of the map σ in (1.2). Recall from [Y11, Definition 2.2.2] we have the universal cameral cover defined by the Cartesian diagram

$$\begin{array}{ccc}
\mathcal{A}^\text{Hit} & \xrightarrow{\text{ev}} & t_D \\
q \downarrow & & \downarrow q_i \\
\mathcal{A}^\text{Hit} \times X & \xrightarrow{\text{ev}} & c_D
\end{array}$$

For $a \in \mathcal{A}^\text{Hit}(k)$, the preimage $X_a := q^{-1}(\{a\} \times X)$ is the cameral curve of a. Let $\mathcal{A}^\text{rs} \subset \mathcal{A}^\text{Hit}$ (resp. $(\mathcal{A}^\circ \times X)^\text{rs} \subset \mathcal{A}^\text{Hit} \times X$) be the preimage of t_{D}^{rs} (resp. c_{D}^{rs}). Then $q^{\text{rs}} : \mathcal{A}^\text{rs} \to (\mathcal{A}^\circ \times X)^\text{rs}$ is a W-torsor.

Recall from [Y11] paragraph before Lemma 3.2.6] that we have a canonical morphism:

$$s : \mathcal{X}_s(T) \times \mathcal{A}^\text{rs} \to \mathcal{G}_r \rightarrow \mathcal{P}.$$
This gives a push-forward map on homology complexes
\[s_* : \mathcal{Q}_\ell[X_*(T)] \otimes H_*(\tilde{A}_{\text{rs}}/A^\triangleright) \to H_*(\mathcal{P}/A^\triangleright) \]
which is \(W \)-invariant (\(W \) acts diagonally on the two factors on the LHS and acts trivially on the RHS). Therefore, it factors through the \(W \)-coinvariants of \(\mathcal{Q}_\ell[X_*(T)] \otimes H_*(\tilde{A}_{\text{rs}}/A) \). In particular, if we restrict to \(\mathcal{Q}_\ell[X_*(T)]^{W} \), the map \(s_* \) factors through a map
\[(3.6) \quad s'_* : \mathcal{Q}_\ell[X_*(T)]^{W} \otimes H_*(\tilde{A}_{\text{rs}}/A^\triangleright)^W \to H_*(\mathcal{P}/A^\triangleright) \]
Since \(q^\triangleright \) is a \(W \)-torsor, we have \(H_*(\tilde{A}_{\text{rs}}/A^\triangleright)^W = H_*(\tilde{A}_{\text{rs}}/A^\triangleright) \). Since \((A^\triangleright \times X)^{\text{rs}} \to A^\triangleright \) has connected fibers, we get
\[(3.7) \quad H_0(\tilde{A}_{\text{rs}}/A^\triangleright)^W = H_0((A^\triangleright \times X)^{\text{rs}}/A^\triangleright) = \mathcal{Q}_\ell[A^\triangleright]. \]
On the other hand,
\[(3.8) \quad H_0(\mathcal{P}/A^\triangleright) = \mathcal{Q}_\ell[\pi_0(\mathcal{P}/A^\triangleright)]. \]
Therefore, the degree zero part of \((3.6)\) gives the desired map \(\sigma \) in \((1.2)\).

3.12. Remark. We define
\[\tilde{B} = \tilde{A} \times_{\tilde{A}_{\text{Hit}}} B, \quad \tilde{B}_{\text{rs}} = \tilde{A}_{\text{rs}} \times_{A^\triangleright} B. \]
When we work with the rigidified versions of Hitchin moduli spaces, the above discussion is valid if we change \(A^\triangleright, \tilde{A}_{\text{rs}} \) and \(\mathcal{P} \) to \(B, \tilde{B}_{\text{rs}} \) and \(\tilde{\mathcal{P}} \) respectively. In particular, we have a map
\[\sigma_B : \mathcal{Q}_\ell[X_*(T)]^{W} \to \mathcal{Q}_\ell[\pi_0(\tilde{\mathcal{P}}/B)], \]
analogous to \((1.2)\). Since \(\tilde{\mathcal{P}} \to B \times_{A^\triangleright} \mathcal{P} \) is a \(T \)-torsor, the sheaf \(\pi_0(\tilde{\mathcal{P}}/B) \) is the pullback of \(\pi_0(\mathcal{P}/A^\triangleright) \) to \(B \).

4. Proof of the global main theorem

4.1. Proof of Theorem \((1.7)\). We first set up some notation. Fix \(S \subset T \) to be any algebraic subgroup. Then \(T \), hence \(S \) acts on \(\tilde{M}_{\text{Hit}} \). The complex \(f^\text{Hit}_! \mathcal{Q}_\ell \) (as an ind-object of \(D^b(B) \)) carries a canonical \(S \)-equivariant structure, and can be viewed as an ind-object in the \(S \)-equivariant derived category \(D_S^b(B) = D^b([B/S]) \), where \(S \) acts trivially on \(B \). Let \(p_S : [B/S] \to B \) be the projection. Then we have the derived functor \(p_{S,*} : D^b_S(B) \to D^b(B) \) of taking \(S \)-equivariant cohomology. We define
\[R^i_{Sj!} \tilde{M}_{\text{Hit}}^\text{Hit} \mathcal{Q}_\ell := R^i p_{S,*} f^\text{Hit}_! \mathcal{Q}_\ell. \]
For each point \(\tilde{a} \in B(k) \), the stalk of \(R^i_{Sj!} \tilde{M}_{\text{Hit}}^\text{Hit} \mathcal{Q}_\ell \) at \(\tilde{a} \) is
\[(R^i_{Sj!} \tilde{M}_{\text{Hit}}^\text{Hit} \mathcal{Q}_\ell)_{\tilde{a}} = H^i(\tilde{M}^\text{Hit}_{\tilde{a}}/S). \]
In particular,
\[(R^i_{Tj!} \tilde{M}_{\text{Hit}}^\text{Hit} \mathcal{Q}_\ell)_{\tilde{a}} = H^i(\tilde{M}^\text{Hit}_{\tilde{a}}). \]
Similarly, one defines \(R^i_{Sj!} \tilde{M}_{\text{Hit}}^\text{par} \mathcal{Q}_\ell \).
We also define the following maps
\[\bar{B} \xrightarrow{q^\triangleright} B \times X \xrightarrow{p} B \]
We can identify \(\tilde{H}_i^\text{Hit} \hat{\mathcal{Q}}_\ell \cong \mathbb{Q}_{\ell,X_\ast} \) with \(p^!\tilde{H}_i^\text{Hit} \underline{\mathcal{Q}}_\ell \). Therefore, the action of \(\mathbb{Q}_{\ell}[X_\ast(T)]^W \) on \(p^!\tilde{H}_i^\text{Hit} \underline{\mathcal{Q}}_\ell \) defined in (3.5) may be viewed as a map

\[
\mathbb{Q}_{\ell}[X_\ast(T)]^W \otimes p^!\tilde{H}_i^\text{Hit} \underline{\mathcal{Q}}_\ell \to p^!\tilde{H}_i^\text{Hit} \underline{\mathcal{Q}}_\ell.
\]

Applying the adjunction \((p_! , p^!)\), we get

\[
(4.1) \quad \mathbb{Q}_{\ell}[X_\ast(T)]^W \otimes H_\ast(X^\ast) \otimes \tilde{f}_i^\text{Hit} \underline{\mathcal{Q}}_\ell = \mathbb{Q}_{\ell}[X_\ast(T)]^W \otimes p_! p^! \tilde{f}_i^\text{Hit} \underline{\mathcal{Q}}_\ell \to \tilde{f}_i^\text{Hit} \underline{\mathcal{Q}}_\ell.
\]

Taking only the \(H_0(X^\ast) \) part, and passing to the level of \(S \)-equivariant cohomology sheaves, we get

\[
(4.2) \quad \alpha_0 : \mathbb{Q}_{\ell}[X_\ast(T)]^W \otimes R_\ast f_i^\text{Hit} \underline{\mathcal{Q}}_\ell \to R_\ast f_i^\text{Hit} \underline{\mathcal{Q}}_\ell.
\]

This gives an action of \(\mathbb{Q}_{\ell}[X_\ast(T)]^W \) on \(R_\ast f_i^\text{Hit} \underline{\mathcal{Q}}_\ell \). It is easy to see that the \(\mathbb{Q}_{\ell}[X_\ast(T)]^W \)-action on \(R_\ast (f_i^\text{Hit} \underline{\mathcal{Q}}_\ell \otimes \mathbb{Q}_{\ell,X^\ast}) = R_\ast f_i^\text{Hit} \underline{\mathcal{Q}}_\ell \otimes \mathbb{Q}_{\ell,X^\ast} \), given by taking \(R_\ast (-) \) of the construction in (3.5) is the same as \(\alpha_0 \otimes \text{id} \).

The map (3.5) has a rigidified version

\[
s : X_\ast(T) \times \hat{B}^{\text{rs}} \to \mathcal{G}_{r,j} |_{X^\ast} \to \hat{\mathcal{P}},
\]

which gives a geometric action of \(\lambda \) on \(\tilde{\mathcal{M}}_{\text{par,rs}} \) via

\[
(4.3) \quad \xymatrix{ \tilde{\mathcal{M}}_{\text{par,rs}} \ar[r]^-{s(\lambda,-)} \ar@{=}[d] & \hat{\mathcal{P}} \times_B \tilde{\mathcal{M}}_{\text{par,rs}} \ar[r]^-{\text{act}} \ar@{=}[d] & \tilde{\mathcal{M}}_{\text{par,rs}} \ar@{=}[d] \ar[r]^-{\text{id} \times \text{act}} & \hat{B}^{\text{rs}} \times_B \tilde{\mathcal{M}}_{\text{Hit}} \ar[d] \ar[r]^-{\text{id} \times \text{act}} & \hat{B}^{\text{rs}} \times_B \tilde{\mathcal{M}}_{\text{Hit}} \ar[d]}
\]

Let \(\text{Av} (\lambda) := \sum_{\lambda' \in |\lambda|} \lambda' \in \tilde{\mathcal{Q}}_{\ell}[X_\ast(T)]^W \), then \(\text{Av} (\lambda) \) acts on \(p^! f_i^\text{Hit} \underline{\mathcal{Q}}_\ell \). Base change from \(B \times X^\ast \) to \(\hat{B}^{\text{rs}} \), the action of \(\text{Av} (\lambda) \) on \(q^{\text{rs},!} (\hat{\mathcal{P}} / B) \otimes \tilde{f}_i^\text{Hit} \underline{\mathcal{Q}}_\ell \) comes from the action of \(\sum_{\lambda' \in |\lambda|} \lambda' \) on \(\tilde{f}_i^{\text{par}} \underline{\mathcal{Q}}_\ell \), hence is induced from the horizontal arrows in (4.3) for various \(\lambda' \in |\lambda| \):

\[
(4.4) \quad q^{\text{rs},!} \text{Av} (\lambda) : q^{\text{rs},!} f_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell \sum_{\lambda' \in |\lambda|} \lambda' \times_{\tilde{f}_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell} \text{id} \times \text{act} \quad \xymatrix{ (\tilde{\mathcal{M}}_{\text{par,rs}}) \ar[r]^-{\text{act}} & \tilde{\mathcal{M}}_{\text{par,rs}}} \quad \xymatrix{ \tilde{\mathcal{M}}_{\text{par,rs}} \ar[r]^-{\text{act}} & \hat{B}^{\text{rs}} \times_B \tilde{\mathcal{M}}_{\text{Hit}} \ar[r]^-{\text{id} \times \text{act}} & \hat{B}^{\text{rs}} \times_B \tilde{\mathcal{M}}_{\text{Hit}}}.
\]

where the last arrow \(\cap \) is the cap product

\[
\cap : H_\ast (\hat{\mathcal{P}} / B) \otimes \tilde{f}_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell \to \tilde{f}_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell.
\]

derived from the action of \(\hat{\mathcal{P}} \) on \(\tilde{\mathcal{M}}_{\text{Hit}} \). See [10] [§7.4.2] for a discussion of cap products, which extends to the situation where the relevant spaces are locally of finite type as formulated in Appendix A.1.

Applying the adjunction \((p_!^{\text{rs}}, p^{\text{rs},!})\) to (4.4) we get

\[
(4.5) \quad H_\ast (\hat{B}^{\text{rs}} / B) \otimes \tilde{f}_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell = p_!^{\text{rs}} p^{\text{rs},!} f_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell \sum_{\lambda' \in |\lambda|} \lambda' \times_{\tilde{f}_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell} H_\ast (\hat{\mathcal{P}} / B) \otimes \tilde{f}_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell \cap \tilde{f}_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell.
\]

On the other hand, since the map (4.4) is \(q^{\text{rs},!} \text{Av} (\lambda) \), the map (4.5) should factor through the map (4.1) via

\[
q^{\text{rs}} \otimes \text{id} : H_\ast (\hat{B}^{\text{rs}} / B) \otimes \tilde{f}_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell \to H_\ast (B \times X^\ast / B) \otimes \tilde{f}_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell = H_\ast (X^\ast) \otimes \tilde{f}_i^{\text{Hit}} \underline{\mathcal{Q}}_\ell.
\]
Summarizing, as \(\lambda \in X_*(T) \) varies, we get a commutative diagram

\[
\begin{array}{ccc}
\mathbb{Q}_\ell[X_*(T)]^W & \otimes & H_*(\mathcal{B}^s/\mathcal{B})_W \\
\downarrow & & \downarrow \\
\mathbb{Q}_\ell[X_*(T)]^W & \otimes & H_*(\mathcal{P}/\mathcal{B})_W
\end{array}
\]

Here we take \(W \)-coinvariants on \(H_*(\mathcal{B}^s/\mathcal{B}) \) because both maps from it are \(W \)-invariant. So the \(s'_i \) in the upper arrow is the analog of the map (4.6) in the rigidified setting.

We are now ready to pass to the \(\mathcal{S} \)-equivariant cohomology sheaves. We can apply the truncation functor \(\tau_{\leq 0} \) (in the usual \(t \)-structure of \(D^b(\mathcal{B}) \)) to \(H_*(\mathcal{B}^s/\mathcal{B}), H_*(X^z) \otimes \mathbb{Q}_\ell \mathcal{B}, \) and \(H_*(\mathcal{P}/\mathcal{B}) \), and the truncation functor \(\tau_{< p_S \lambda} \) (in the usual \(t \)-structure of \(D^+(\mathcal{B}) \), recall \(p_S : D^b_*(\mathcal{B}) \to D^+(\mathcal{B}) \)) to the complex \(\mathbb{F}^1_H \mathbb{Q}_\ell \). The “truncated” diagram (4.7) is still commutative.

Taking the zeroth homology sheaves of \(H_*(\mathcal{B}^s/\mathcal{B}), H_*(X^z) \) and \(H_*(\mathcal{P}/\mathcal{B}) \), using the analogs of (3.7) and (3.8) for \(\mathcal{B}, \mathcal{B}^s \) and \(\mathcal{P} \) (see Remark 3.12), and passing to \(R_S^i \mathbb{F}^1_H \mathbb{Q}_\ell \) in the truncated diagram (4.6), we get the following commutative diagram for each \(i \in \mathbb{Z} \):

\[
\begin{array}{ccc}
\mathbb{Q}_\ell[X_*(T)]^W & \otimes & R_S^i \mathbb{F}^1_H \mathbb{Q}_\ell \\
\downarrow & & \downarrow \\
 & & R_S^i \mathbb{F}^1_H \mathbb{Q}_\ell
\end{array}
\]

where the diagonal map \(\alpha_0 \) is the same as the map (4.2).

For the original statement of Theorem 1.7, we take \(S = T \). Let \(\pi_z : \mathcal{B} \times X^z \to \mathcal{A}^z \times X^z \). Since

\[
\widehat{\mathcal{M}}^{\text{Hit}} \to (\mathcal{B} \times X^z) \times (\mathcal{A}^z \times X^z)
\]

is a \(T \)-torsor, we have

\[
R_T^i \mathbb{F}^1_H \mathbb{Q}_\ell \otimes \mathbb{Q}_\ell \mathcal{B} \times X^z = \pi_z^* R_S^i \mathbb{F}^1_H \mathbb{Q}_\ell|_{\mathcal{A}^z \times \mathbb{Q}_\ell \mathcal{B} \times X^z}.
\]

Moreover, since \(\pi_z \) is finite étale, \(\text{End}(R_S^i \mathbb{F}^1_H \mathbb{Q}_\ell|_{\mathcal{A}^z \times \mathbb{Q}_\ell \mathcal{B} \times X^z}) \to \text{End}(R_T^i \mathbb{F}^1_H \mathbb{Q}_\ell|_{\mathcal{A}^z \times \mathbb{Q}_\ell \mathcal{B} \times X^z}) \) is injective. Therefore the diagram (4.7) implies that the action of \(\mathbb{Q}_\ell[X_*(T)] \) on \(R_S^i \mathbb{F}^1_H \mathbb{Q}_\ell|_{\mathcal{A}^z \times \mathbb{Q}_\ell \mathcal{B} \times X^z} \) factors through \(\pi_0(\mathcal{P}/\mathcal{A}^z) \). Since \(\mathcal{A}^z \times X \) is covered by \(\mathcal{A}^z \times X^z \) for various \(z \in X(k) \), the theorem follows.

4.2. Hecke modification at “another” point. This subsection provides preparatory tools for proving Theorem 1.5.

Consider the correspondence

\[
\begin{array}{ccc}
\widehat{\mathcal{M}}^{\text{par}} & \times & X^z \\
\downarrow & \cong & \downarrow \\
\widehat{\mathcal{H} \text{ecke}_2} & \cong & \mathcal{M}^{\text{par}} \times X^z
\end{array}
\]

For any scheme \(S \), \(\widehat{\mathcal{H} \text{ecke}_2}(S) \) is the isomorphism classes of tuples \((x, y, E_1, \varphi_1, t_{1, z}, t_{1, z}, E_{1,x}, E_2, \varphi_2, t_{2, z}, t_{2, z}, E_{2,x}, \tau)\) where

- \((x, E_1, \varphi_1, t_{1, z}, t_{1, z}, E_{1,x}) \in \widehat{\mathcal{M}}^{\text{par}}(S)\), for \(i = 1, 2 \);
- \(y \in X(S) \) with graph \(\Gamma(y) \);
• \(\tau\) is an isomorphism of objects on \(S \times X^z - \Gamma(y)\):

\[
\tau : (E_1, \varphi_1, t_1, z, t_1, \zeta)\big|_{S \times X^z - \Gamma(y)} \sim (E_2, \varphi_2, t_2, z, t_2, \zeta)\big|_{S \times X^z - \Gamma(y)}.
\]

For a point \((\tilde{a}, x, y) \in (B \times (X^z)^2)(k)\) such that \(x \neq y\), the fibers of \(\tilde{h}_2\) and \(\tilde{h}_2'\) over \((\tilde{a}, x, y)\) are isomorphic to the product of \(\Spr_{G, \gamma_{a,y}}\) and a Springer fiber in \(G/B\) corresponding to the image of \(\gamma_{a,x} \in g\) (here \(\gamma_{a,x} \in g(O_x)\) and \(\gamma_{a,y} \in g(O_y)\) are Kostant sections of \(a\) in the formal neighborhood of \(x\) and \(y\); see the discussion in \(5.5\)). If we restrict to the diagonal \(\Delta_{X^z} : B \times X^2 \subset B \times (X^z)^2\), \(\Hecke_{2|\Delta_{X^z}}\) is the same as \(\Hecke^{par}\). The reader may notice the analogy between our situation and the situation considered by Gaitsgory in \([G01]\), where he uses Hecke modifications at two points to deform the product \(G_{\tau_G} \times G/B\) to \(Fl_G\).

As in the case of \(\Hecke^{par}\), we have a morphism

\[
\Hecke_{2|\ell} \to \hat{\mathcal{M}}^{par} \times (B \times X^z) \xrightarrow{\hat{\rho}_{par \times X^z}} \hat{\mathcal{M}}^{Hit} \times X^z
\]

where the horizontal maps are given by forgetting the \(B\)-reductions.

By \([Y11]\) Lemma 2.6.1, if we restrict the base spaces (the bottom line above) to \(\hat{\mathcal{B}}^{rs} \times X^z \to (B \times X^z)^{rs}\), all squares in the above diagram are Cartesian. Recall from \([Y11]\) Construction 6.6.3 that for each \(W\)-orbit \(|\lambda|\) in \(X_*(T)\), we have a graph-like closed substack \(\hat{\mathcal{H}}_{|\lambda|} \subset \Hecke^{Hit}\). Similarly, we have \(\hat{\mathcal{H}}_{|\lambda|} \subset \hat{\mathcal{H}}_{\ell, |\lambda|}\). Let \(\hat{\mathcal{H}}_{2, |\lambda|} \subset \hat{\mathcal{H}}_{\ell, |\lambda|}\) be closure of \(\hat{\rho}_{\ell}^{-1}\hat{\mathcal{H}}_{|\lambda|}\). Using the formalism of cohomological correspondences in Appendix \(\Delta\), the fundamental class \([\hat{\mathcal{H}}_{2, |\lambda|}]\) induces a map

\[
[\hat{\mathcal{H}}_{2, |\lambda|}]_{#} : \hat{f}_{|\lambda|}^{par, \ell} \otimes \hat{\mathcal{Q}}_{\ell, X^z, |B|} \to \hat{f}_{|\lambda|}^{par, \ell} \otimes \hat{\mathcal{Q}}_{\ell, X^z}.
\]

4.3. Lemma. The assignment \(\hat{\mathcal{Q}}_{\ell, [X_*(T)]^W} \to \Av(\lambda) \mapsto [\hat{\mathcal{H}}_{2, |\lambda|}]_{#}\) extends by linearity to an action of \(\hat{\mathcal{Q}}_{\ell, [X_*(T)]^W} \otimes (\hat{f}_{|\lambda|}^{par, \ell} \otimes \hat{\mathcal{Q}}_{\ell, X^z})\big|_{(B \times (X^z))^{|B|}}\), where \((B \times (X^z)^{|B|}) = (B \times (X^z)^{|B|}) \times_B (B \times (X^z)^{|B|})\).

Let \(p_2 : B \times (X^z)^2 \to B\) be the projection. Similar argument as in \(4.1\) proves the following statement. Note that the argument in \(4.1\) did not use more information than the explicit knowledge of the \(\hat{\mathcal{Q}}_{\ell, [X_*(T)]^W}\)-action over the locus \((B \times X^z)^{rs}\).

4.4. Lemma. The action of \(\hat{\mathcal{Q}}_{\ell, [X_*(T)]^W} \big|_{(B \times (X^z)^{|B|})}\) constructed in Lemma \(4.3\) factors through the action of \(p_2^*\hat{\mathcal{Q}}_{\ell, [\pi_0(P/A^\vee)]} \big|_{(B \times (X^z)^{|B|})}\) on the first factor of \(\hat{f}_{|\lambda|}^{par, \ell} \otimes \hat{\mathcal{Q}}_{\ell, X^z} \big|_{(B \times (X^z)^{|B|})}\) via the homomorphism \(\phi^x\).
4.5. Proof of Theorem 1.5. We consider two actions of $\overline{\mathcal{Q}}_\ell[X_s(T)]^W$ on $\mathcal{F}_1^\text{par} \overline{\mathcal{Q}}_\ell|(B \times X^2)^\vee$:

- The action α_1 of $\overline{\mathcal{Q}}_\ell[X_s(T)]^W$ on $\mathcal{F}_1^\text{par} \overline{\mathcal{Q}}_\ell$ is given by the restriction of the \mathcal{W}-action constructed in (4.3) This is the action involved in the statement of Theorem 1.5.

- The action α_Δ of $\overline{\mathcal{Q}}_\ell[X_s(T)]^W$ on $\mathcal{F}_1^\text{par} \overline{\mathcal{Q}}_\ell$ is given by restricting the action constructed in Lemma 4.3 via $\Delta_{Z^2} : (B \times X^2)^\vee \to (B \times (X^2)^2)^\vee$. Note that $\mathcal{F}_1\overline{\mathcal{Q}}_\ell = \Delta_{Z^2}(\mathcal{F}_1^\text{par} \overline{\mathcal{Q}}_\ell)$.

We claim that the actions α_1 and α_Δ are the same. On the one hand, by Lemma 4.3 the action of $\text{Av}(\lambda)$ on $\mathcal{F}_1^\text{par} \overline{\mathcal{Q}}_\ell$ is given by the class $[\mathcal{H}_{2,\lambda}]$. Recall from [Y11, Appendix A.2] the notion of the pullback of a cohomological correspondence. By [Y11, Lemma A.2.1], the action of $\Delta\text{Av}(\lambda)$ is given by the pullback class $\Delta_{Z^2} [\mathcal{H}_{2,\lambda}] \in \text{Corr}(\mathcal{H}; \overline{\mathcal{Q}}_\ell, \overline{\mathcal{Q}}_\ell)$, where $\mathcal{H}' \subset \mathcal{H}$ is a large enough closed sub-correspondence with both maps to \mathcal{M}_par proper. For the notation $\text{Corr}(-; -, -)$, see Appendix A.3. Let $(B \times (X^2)^2)^\text{rs} = (B \times X^2)^\text{rs} \times_B (B \times X^2)^\text{rs}$, and $\Delta_{Z^2} : (B \times X^2)^\text{rs} \to (B \times (X^2)^2)^\text{rs}$ be the restriction of Δ_{Z^2}. Over $(B \times (X^2)^2)^\text{rs}$, $\mathcal{H}_{2,\lambda}$ is finite étale over $\mathcal{M}_\text{par} \times X^2$ via both projections, therefore $\Delta_{Z^2}[^2[\mathcal{H}_{2,\lambda}]] = [\mathcal{H}_{2,\lambda}][\Delta_{Z^2}]$, the fundamental class of the base change of $\mathcal{H}_{2,\lambda}$ via Δ_{Z^2}. However, restricting the right column of the diagram (4.9) to $\mathcal{B}^\text{rs} \to B \times X^2$ (as the graph of the projection $\mathcal{B}^\text{rs} \to X^2$), we get the following Cartesian diagram

$$
\begin{array}{ccc}
\bigcup_{\lambda' \in [\lambda]} \mathcal{H}_{2,\lambda}' & \to & \mathcal{H}_{\lambda}' \\
\mathcal{M}_\text{par,rs} \to & \mathcal{M}_\text{Hit,rs} \times X^2 | (B \times X^2)^\text{rs} & | \mathcal{H}_\text{Hit,rs} \times \text{id} \\
\mathcal{B}^\text{rs} & q^\text{rs} & (B \times X^2)^\text{rs}
\end{array}
$$

Hence

(4.10)
$$
\Delta_{Z^2}^{-1}[\mathcal{H}_{2,\lambda}] = \bigcup_{\lambda' \in [\lambda]} \mathcal{H}_{\lambda}'.
$$

On the other hand, the action of $\text{Av}(\lambda)$ is given by the class $\sum_{\lambda' \in [\lambda]} [\mathcal{H}_{\lambda'}] \in \text{Corr}(\mathcal{H}'; \overline{\mathcal{Q}}_\ell, \overline{\mathcal{Q}}_\ell)$ (enlarge the correspondence \mathcal{H}' defined before to contain all the $\mathcal{H}_{\lambda'}$ with $\lambda' \in [\lambda]$). Over $(B \times X^2)^\text{rs}$, both classes $\Delta_{Z^2}[^2[\mathcal{H}_{2,\lambda}]]$ and $\sum_{\lambda' \in [\lambda]} [\mathcal{H}_{\lambda'}]$ are supported on \mathcal{H}', which has property (G-2) by Lemma 4.7. Applying Lemma A.7, the equality (4.10) implies

$$
(\Delta_{Z^2}[^2[\mathcal{H}_{2,\lambda}]])_# = \sum_{\lambda' \in [\lambda]} [\mathcal{H}_{\lambda'}]_#
$$

as endomorphisms of $\mathcal{F}_1^\text{par} \overline{\mathcal{Q}}_\ell|(B \times X^2)^\vee$. This proves the claim.

By Lemma 4.2, the action α_Δ of $\overline{\mathcal{Q}}_\ell[X_s(T)]^W$ on $R^i \mathcal{F}_1^\text{par} \overline{\mathcal{Q}}_\ell|(B \times X^2)^\vee$ is $\Delta_{Z^2}(R^i \mathcal{F}_1^\text{par} \overline{\mathcal{Q}}_\ell \otimes \overline{\mathcal{Q}}_\ell|(B \times X^2)^\vee|)$ factors through (3.9). Since the action of α on $R^i \mathcal{F}_1^\text{par} \overline{\mathcal{Q}}_\ell|(B \times X^2)^\vee$ is the same as α_Δ, it also factors through (3.9).

Again, for the purpose of proving Theorem 1.5, we take $S = T$ and argue as in the final part of 4.4.1. Taking the stalk at a point of $(B \times X^2)^\vee$, we conclude:

4.6. Corollary. Let $S \subset T$ be an algebraic subgroup and $(\hat{a}, x) \in (B \times X^2)^\vee(k)$. Then for each i the action of $\overline{\mathcal{Q}}_\ell[X_s(T)]^W$ on $H^i_c((\mathcal{M}_\text{par,rs} / S))$ factors through the action of $\pi_0(\mathcal{P}_a)$ via σ_a.
5. FROM GLOBAL TO LOCAL

In this section, we prove the local main theorem (Theorem \ref{thm:local_main_theorem}) and Theorem \ref{thm:local_main_theorem_2}.

5.1. The local data. Without loss of generality, we may assume G is of adjoint type.

We use the notations from \cite{Yun19}. Let $\gamma \in \mathfrak{g}(F)$ be a regular semisimple element. Assume $a(\gamma) \in \mathfrak{c}(\mathcal{O}_F)$, otherwise the affine Springer fiber is empty. Recall the local cameral cover diagram \cite{Yun20}.

As before, we choose a component $\text{Spec} \overline{\mathcal{O}}_F$ of $\text{Spec} \mathcal{O}_F$ with stabilizer $W^!$. By our assumption on $\text{char}(k)$, $F^! = \text{Frac}(\overline{\mathcal{O}}_F)$ is a tamely ramified extension of F, hence $W^! = \text{Gal}(F^!/F)$ is a cyclic subgroup of W. Fix a generator w of $W^!$ and a primitive m-th root of unity $\zeta \in \mu_m(k)$, where $m = \#W^!$.

5.2. The global data. Let $X = \mathbb{P}^1$. Fix $z \in X(k) \setminus \{0, \infty\}$. Let \widetilde{X} be the contracted product $\widetilde{X} = W \times \mathbb{P}^1$, where w acts on \mathbb{P}^1 by $t \mapsto \zeta t$. We take $\widetilde{X}^!$ to be the component $\{1\} \times \mathbb{P}^1 \subset \widetilde{X}^!$. The morphism $\pi : \widetilde{X}^! \to \widetilde{X}^! / W^! = X$ is a branched W-cover. The point 0 has a unique preimage in $\widetilde{X}^!$, which we denote by 0'. We fix a $W^!$-equivariant isomorphism

$$\overline{\mathcal{O}}_F \cong \mathcal{O}_{\widetilde{X}^!, 0}.$$

This induces a W-equivariant isomorphism $\overline{\mathcal{O}}_F \cong \mathcal{O}_{\widetilde{X}, 0}$ (the latter being the completion of \widetilde{X} along $\pi^{-1}(0))$, and also an isomorphism $\mathcal{O}_F \cong \mathcal{O}_{X, 0}.$

5.3. Lemma. For any $N > 0$, there exists an integer $d = d(N)$ such that for any divisor D on X, disjoint from $\{0, z, \infty\}$ and $\deg(D) \geq d$, there exists a section $a : X \to \mathfrak{c}_D$ such that

1. There is a W-equivariant birational morphism $\widetilde{X} \to X_a$ (i.e., \widetilde{X} is the normalization of the cameral curve X_a);
2. Let a_0 be the restriction of a to $\text{Spec} \mathcal{O}_{X, 0}$. Then $a_0 \equiv a(\gamma) \mod \varpi^N$ (since D is disjoint from 0, a_0 is an element in $\mathfrak{c}(\mathcal{O}_{X, 0}) = \mathfrak{c}(\mathcal{O}_F)$);
3. $a(z) \in \mathfrak{c}^\times$, i.e., $a \in \mathcal{A}^\times$.

Proof. To give such a section a is equivalent to giving a W-equivariant morphism $\tilde{a} : \widetilde{X} \to \mathfrak{c}_D$ whose induced map between W-quotients satisfies local conditions (2) and (3) (which is then automatically birational because a is regular semisimple at z).

Let \mathcal{L} be the following coherent sheaf on X

$$\mathcal{L} = (t \otimes \pi_* \mathcal{O}_{\widetilde{X}})^W.$$

Since $\text{char}(k)$ does not divide $\#W$, this is a vector bundle over X. First fix any divisor D on X not containing $\{0, z, \infty\}$. Giving a W-equivariant map $\widetilde{X} \to \mathfrak{c}_D$ is equivalent to giving a section $\tilde{a} \in H^0(X, \mathcal{L}(D))$. The conditions (2)(3) will be satisfied if we can find such a section \tilde{a} which approximates given sections at 0 and z to high order. This can obviously be achieved provided $\deg(D)$ is large.

Let N be the integer in Proposition \ref{prop:coherent_moduli} whenever $a(\gamma') \equiv a(\gamma) \mod \varpi^N$, then Theorem \ref{thm:local_main_theorem} is true for $a(\gamma')$ if and only if it is true for $a(\gamma)$. Applying Lemma \ref{lem:local_data} to this N, we obtain a divisor $D = 2D'$ on X and $a : X \to \mathfrak{c}_D$ satisfying the properties therein. By choosing $\deg(D)$ large enough, we can make sure that $(\mathcal{A}^\times \times X)' \supset (\mathcal{A}^\times \times X)_0$ for $\delta = \delta(a; 0)$, hence $(a, 0) \in (\mathcal{A}^\times \times X)'$ (see the discussion in \cite{Yun21}). We use this D to define the rigidified parabolic Hitchin moduli $\widehat{\mathcal{M}}^{\text{par}}$. With this a we have the cameral curve $q_a : X_a \to X$. The image of $\widetilde{X}^!$ in X_a is a component $X_a^!$. Let $\text{Sing}(a) \subset X$ be the locus where $q_a : X_a \to X$ is not étale, together with the point $\{0\}$.
5.4. Relation between local and global Picard. Let \(x \in X(k) \). The discussion in §2.6 can be applied to \(\gamma(a, x) \in \mathfrak{g}(F_x) \), the Kostant section of the restriction of \(a \) to the formal disk \(\text{Spec} \mathcal{O}_x \).

In particular, we obtain \(\mathcal{P}_{a, x}, P_{a, x}, \Lambda_{a, x} \) and \(R_{a, x} \), and an exact sequence

\[
(5.1) \quad 1 \to R_{a, x} \to P_{a, x} \to \Lambda_{a, x} \to 1.
\]

Note that \(R_{a, x} \) is the same group scheme which appeared in (3.3). For each \(x \in X(k) \setminus \{z\} \), we have a commutative diagram

\[
\begin{array}{ccc}
P_{a, x} & \longrightarrow & \hat{P}_a \\
\downarrow & & \downarrow \\
\Lambda_{a, x} & \longrightarrow & P^b_a
\end{array}
\]

Let \(\hat{a} = (a, t_z) \in B(k) \) lifting \(a \) such that \(t_z \in X'_1 \). The choice of \(t_z \) gives an identification \(J_{a, z} \sim T \). Recall the exact sequence (3.3). By [N10, §4.11] we have \(H^0(X, J^0_a) = T_w \), hence the first arrow in (3.4) gives a map \(T_w \to J_{a, z} = T \), which is easily checked to be the canonical inclusion \(T_w \hookrightarrow T \). Let \(S \subset T \) be a torus which is complementary to the neutral component of \(T_w \), so that \(S \cap T_w \) is a finite diagonalizable group over \(k \). By the assumption on \(\text{char}(k) \), \(S \cap T_w \) is in fact discrete. Combining the exact sequences (3.4), (5.1) and the diagram (5.2), we get a map between exact sequences

\[
(5.3)
\begin{array}{cccc}
1 & \longrightarrow & S \times \prod_{x \in \text{Sing}(a)} R_{a, x} & \longrightarrow \ S \times \prod_{x \in \text{Sing}(a)} P_{a, x} \\
& & \downarrow \alpha & \downarrow \beta \\
1 & \longrightarrow & (J_{a, z} \times \prod_{x \in \text{Sing}(a)} R_{a, x})/T_w & \longrightarrow \ \hat{P}_a \\
& & \downarrow \gamma & \downarrow \\
& & P^b_a & \longrightarrow 1
\end{array}
\]

By the choice of \(S \), \(\alpha \) is surjective. Let \(P^b_a = \ker(\beta) \) and \(\Lambda^\ker_a = \ker(\gamma) \). The snake lemma gives an exact sequence between the kernels

\[
(5.4) \quad 1 \to S \cap T_w \to P^\ker_a \to \Lambda^\ker_a \to 1.
\]

Here \(S \cap T_w \) is viewed as a subgroup of \(T_w = H^0(X, J^0_a) \), hence maps diagonally into \(S \times \prod_x R_{a, x} \).

Note that \(S \cap T_w \) is a discrete group scheme, so is \(P^\ker_a \), hence we may identify \(P^\ker_a \) with its \(k \)-points.

By Lemma 5.3 below, the map \(\gamma \) in (5.3) is also surjective. Hence so is \(\beta \) and we have an exact sequence

\[
(5.5) \quad 1 \to P^\ker_a \to S \times \prod_{x \in \text{Sing}(a)} P_{a, x} \to \hat{P}_a \to 1
\]

5.5. Lemma. In our situation, the coarse moduli space \(P^b_a \) of \(\mathcal{P}^b_a \) is a discrete group. The natural map \(\iota_0 : \Lambda_{a, 0} \to P^b_a \) is an isomorphism, and both groups are canonically isomorphic to \(\mathcal{X}_*(T)_w/\text{torsion} \).

Proof. By [N10, Corollaire 4.8.1], the finite type Néron model \(J^0_a \) of \(J_a \) is \((\text{Res}_{\mathcal{X}^1 / X}(T \times \mathcal{X}^1))^w \).

The Lie algebra of \(P^b_a \) is \(H^1(X, \text{Lie} J^0_a) = H^1(X, (t \otimes \mathcal{O}_{\mathcal{X}^1}))^w \subset H^1(\mathcal{X}^1, \mathcal{O}_{\mathcal{X}^1}) = 0 \) since \(\mathcal{X}^1 \cong \mathbb{P}^1 \).

Therefore \(P^b_a \) is discrete.
The restriction of \(J_a^0 \) to \(\text{Spec} \mathcal{O}_F \) is \((\text{Res}_{\mathcal{O}_F/\mathcal{O}_F} T)^w\). Therefore \(\Lambda_{a,0} = J_a(F)/J_a^0(\mathcal{O}_F) = T(F^I)^w/(\mathcal{O}_F^I)^w \). Taking the \(w \)-invariants of the exact sequence
\[
1 \to T(\mathcal{O}_F^I) \to T(F^I) \xrightarrow{\text{ev}} \mathbb{X}_s(T) \to 0
\]
we get that \(\Lambda_{a,0} \) is the image of the map
\[
\text{ev} : J_a(F) = T(F^I)^w \to \mathbb{X}_s(T)^w.
\]
Similarly, from the injection \(J_a^0 \hookrightarrow \text{Res}_{\mathcal{O}_F/\mathcal{O}_F} (T \times \mathcal{X}^I) \) we deduce a natural map
\[
\text{deg} : P_a^{\flat} \to H^1(\mathcal{X}^I, T)^w = \mathbb{X}_s(T)^w.
\]
Consider the diagram
\[
\begin{aligned}
\mathbb{X}_s(T)^w & \xrightarrow{\alpha} \Lambda_{a,0} & \xrightarrow{\text{ev}} & \mathbb{X}_s(T)^w \\
\downarrow & & \downarrow & \\
\mathbb{X}_s(T)^w & \xrightarrow{\beta} & P_a^{\flat} & \xrightarrow{\text{deg}} & \mathbb{X}_s(T)^w
\end{aligned}
\]
Here \(\alpha \) is a surjection induced from the map \(J_a^0 \to J_a^0 \) (here \((-)^0\) denotes fiber-wise neutral component), and the fact that \(J_a(F)/J_a^0(\mathcal{O}_F) \cong \mathbb{X}_s(T)^w \) [N10] Lemme 3.9.4. The map \(\beta \) is a surjection induced from the same map \(J_a^0 \to J_a^0 \), and the fact that \(\pi_0(\text{Pic}(X, J_a^0)) \cong \mathbb{X}_s(T)^w \) [N06] Proposition 6.4, Corollaire 6.7. The diagram (5.6) is easily seen to be commutative.

The fact that \(\beta \) is surjective shows that \(t_0 \) is also surjective. The fact that \(\text{ev} \) is injective shows that \(t_0 \) is also injective. Therefore \(t_0 \) is an isomorphism. Now \(\ker(\alpha) \cong J_a^0(\mathcal{O}_F)/J_a^0(\mathcal{O}_F) \) is torsion and \(\Lambda_{a,0} \) is torsion-free since \(\text{ev} \) is injective, hence the first row of (5.6) identifies \(\Lambda_{a,0} \) with the torsion-free quotient of \(\mathbb{X}_s(T)^w \).

5.6. Lemma. The natural map
\[
P_a^{\ker} \to \prod_{x \in \text{Sing}(a) \setminus \{0\}} \pi_0(P_{a,x})
\]
is injective with finite cokernel.

Proof. Consider the following map between short exact sequences
\[
\begin{array}{cccc}
1 & \to & S \cap T^w & \to & P_a^{\ker} & \to & \Lambda_{a,0}^{\ker} & \to & 1 \\
\downarrow & & & & & & & & \\
1 & \to & \prod_{x \in \text{Sing}(a) \setminus \{0\}} \pi_0(R_{a,x}) & \to & \prod_{x \in \text{Sing}(a) \setminus \{0\}} \pi_0(P_{a,x}) & \to & \prod_{x \in \text{Sing}(a) \setminus \{0\}} \Lambda_{a,x} & \to & 1
\end{array}
\]
By Lemma 5.5, \(\Lambda_{a,0} \cong P_a^{\flat} \), hence \(\gamma \) is an isomorphism. By [N10] Proposition 3.9.7], we have an isomorphism \(\pi_0(\text{Pic}(a)) \cong \mathbb{X}_s(T)^w \) because \(G \) is of adjoint type. Also by [N10] Proposition 3.9.7], the map \(\pi_0(T^w) \to \mathbb{X}_s(T)^w = \pi_0(\text{Pic}(a)) \) is an embedding whose image is the torsion part of \(\mathbb{X}_s(T)^w \). Since \(T^w \to \text{Pic}(a) \) factors through \(R_{a,\infty} \), we see that \(\pi_0(T^w) \to \pi_0(R_{0,\infty}) \) is injective. By the choice of \(S \) (complementary to the neutral component of \(T^w \)), \(S \cap T^w \) injects into \(\pi_0(T^w) \), therefore \(S \cap T^w \hookrightarrow \pi_0(R_{a,\infty}) \), proving that the map \(\alpha \) in (5.7) is also injective. Therefore the map \(\beta \) in (5.7) is also injective.

Applying the snake lemma to (5.7), we get \(\text{coker}(\beta) \cong \text{coker}(\alpha) \), which is finite. \(\square \)
5.7. Proposition. For any \(x \in X(k) \), the following diagram is commutative:

\[
\begin{array}{c}
\mathbb{Q}[X_*(T)]^W \xrightarrow{\sigma_{a,x}} \mathbb{Q}[\pi_0(P_{a,x})] \\
\downarrow{\sigma_a} \quad \downarrow{\pi_0(P_a)}
\end{array}
\]

Here \(\sigma_{a,x} \) is the homomorphism (1.4) applied to \(\gamma(a, x) \), and \(\sigma_a \) is the stalk of (1.2) at a.

Proof. Recall the choice \(t_z \) gives a point \(z^! \in X^!_{a,z} \) over \(z \). Also we have \(x^! \in X^!_a \) over \(x \). Consider the diagram

\[
\begin{array}{c}
X_*(T) \xrightarrow{s(-z^!)} \pi_0(P_{a,x}) \\
\downarrow{\tau} \quad \downarrow{\pi_0(P_a)}
\end{array}
\]

Here \(s(-, z^!_z) \) is the map in (5.5), and the composition \(t_z \cdot s(-, z^!_z) \) is used to define \(\sigma_a \), see (3.11). The homomorphism \(\tilde{\sigma}_{a,z}^! \) is defined in (2.4) (quoted from [N10, Proposition 3.9.2]), which was used to define \(\sigma_{a,x} \). Therefore, in order to show that (5.8) is commutative, it suffices to show that the outer square of (5.9) is commutative.

The arrow \(\tau \) in (5.9) is defined in [N06, Proposition 6.8] and [N10, Proposition 4.10.3]. We shall show that the two triangles in (5.9) are both commutative. The commutativity of the upper triangle follows from the compatibility of Ngô’s constructions, see the proof of [N10 Proposition 4.10.3]. On the other hand, tracing through the definition of \(s(-, z^!_z) \) in [Y11 Lemma 3.2.5], we see that \(s(-, z^!_z) \) is the same as Ngô’s map \(\tilde{\sigma}_{a,z}^! \), therefore the lower triangle of (5.9) is also commutative. This finishes the proof. \(\square \)

5.8. Product formula. For each \(x \in \text{Sing}(a) \), choosing a trivialization of \(\mathcal{O}_X(D) \) at \(y \), we may view the restriction of \(a \) on \(\text{Spec} \mathcal{O}_x \) as an element \(a_x \in \mathfrak{e} \). Let \(\gamma(a, x) = \mathfrak{e}(a_x) \in \mathfrak{g}(\mathcal{O}_x) \) be the Kostant section. Define

\[
\text{Spr}_{P,a,x} := \text{Spr}_{P,\gamma(a,x)}.
\]

Recall from [N10 §4.2.4] that we have a global Kostant section \(\mathfrak{e}(a) = (\mathcal{E}, \varphi) \in \mathcal{M}_a^\text{Hit} \). Picking any isomorphism \(t_z : (\mathcal{E}, \varphi)_z \simto (G, t_z) \) gives a point \(\tilde{\mathfrak{e}}(\tilde{a}) \in \hat{\mathcal{M}}_a^\text{Hit} \). As in [N10 §4.15], by gluing the local Hitchin pairs at \(x \in \text{Sing}(a) \) with \(\tilde{\mathfrak{e}}(\tilde{a}) \) we get a morphism

\[
\text{Spr}_{a,0} \times \prod_{x \in \text{Sing}(a) \setminus \{0\}} \text{Spr}_{G,a,x} \to \hat{\mathcal{M}}_{a,0}^\text{par}
\]

which intertwines the \(\prod_{x \in \text{Sing}(a)} P_{a,x} \)-action on the LHS and the \(\hat{P}_a \)-action on the right.

A rigidified version of the product formula ([N10 Proposition 4.15.1], [Y11 Proposition 2.4.1]) gives a homeomorphism

\[
((\text{Spr}_{a,0} \times \prod_{x \in \text{Sing}(a) \setminus \{0\}} \text{Spr}_{G,a,x})) \times \hat{P}_a \to \hat{\mathcal{M}}_{a,0}^\text{par},
\]
Dividing both sides of (5.11) by S, using (5.3), we get a homeomorphism of stacks

$$\text{Spr}_{a,0} \times P^\ker_a \prod_{x \in \text{Sing}(a) \setminus \{0\}} \text{Spr}_{G,a,x} \cong [\hat{M}^\text{par}_{a,0}/S].$$

5.9. Pulling apart components. By [N10, §3.10.2], the irreducible components of $\text{Spr}_{G,a,x}$ are in bijections with $\pi_0(P_{a,x})$. Hence, by Lemma 5.6, P^\ker_a hence permutes $\prod_{x \in \text{Sing}(a) \setminus \{0\}} \text{Irr}(\text{Spr}_{G,a,x})$ freely with finitely many orbits. Let $Y \subset \prod_{x \in \text{Sing}(a) \setminus \{0\}} \text{Spr}_{G,a,x}$ be a union of irreducible components, representing the orbits of the P^\ker_a-action. Let $Y^{\text{reg}} \subset Y$ be the intersection of Y with the regular locus $\prod \text{Spr}_{G,a,x}^{\text{reg}}$ (cf. [N10, Lemma 3.3.1]). Then we have a commutative diagram

$$\begin{array}{ccc}
\text{Spr}_{a,0} \times Y^{\text{reg}} & \xrightarrow{j_Y} & \text{Spr}_{a,0} \times Y \\
\downarrow & & \downarrow \\
\text{Spr}_{a,0} \times \prod_{x \in \text{Sing}(a) \setminus \{0\}} \text{Spr}_{G,a,x} & \xrightarrow{j} & \text{Spr}_{a,0} \times \prod_{x \in \text{Sing}(a) \setminus \{0\}} \text{Spr}_{G,a,x} \\
\text{Spr}_{a,0} \times \prod_{x \in \text{Sing}(a) \setminus \{0\}} \text{Spr}_{G,a,x} & \xrightarrow{\nu} & [\hat{M}^\text{par}_{a,0}/S]
\end{array}$$

The map j_Y on compactly supported cohomology can be factored as

$$j_Y!: H^*_c(\text{Spr}_{a,0} \times Y^{\text{reg}}) \xrightarrow{j} H^*_c([\hat{M}^\text{par}_{a,0}/S]) \xrightarrow{\nu^*} \text{Spr}_{a,0} \times Y).$$

Here ν^* makes sense because it is proper. Let $d = \dim Y$. Using the Künneth formula, and taking only the top cohomology of Y^{reg} and Y, we get

$$H^*_c(\text{Spr}_{a,0}) \otimes H^{2d}(Y^{\text{reg}}) \xrightarrow{j_Y} H^{*+2d}([\hat{M}^\text{par}_{a,0}/S]) \xrightarrow{\nu^*} H^*_c(\text{Spr}_{a,0} \times Y).$$

The composition of the above maps is an isomorphism because $H_c^{2d} (Y^{\text{reg}}) \simeq H^d(Y) = \mathbb{Q}_\ell [\text{Irr}(Y)]$. Therefore the map j_Y in (5.13) gives an injection

$$H^*_c(\text{Spr}_{a,0}) \hookrightarrow H^*_c(\text{Spr}_{a,0}) \otimes H^{2d}(Y^{\text{reg}}) \hookrightarrow H^{*+2d}([\hat{M}^\text{par}_{a,0}/S]),$$

where the first map is given by the inclusion of the fundamental class $[Y^{\text{reg}}] \in H^d_c(Y^{\text{reg}})$.

5.10. Proposition. The map (5.14) intertwines the $\hat{W} \times \pi_0(P_{a,0})$-action on the first factor of the LHS and the $\hat{W} \times \pi_0(P_a) = \hat{W} \times \pi_0(\mathcal{P}_a/S)$-action on the RHS via the natural map $P_{a,0} \to \mathcal{P}_a$.

Proof. The fact that this map intertwines the $\pi_0(P_{a,0})$-action on the LHS and the $\pi_0(\mathcal{P}_a)$-action on the RHS is clear from the equivariance property of (5.10).

It remains to prove the \hat{W}-equivariance of (5.14). For each standard parahoric P, we have a commutative diagram

$$\begin{array}{ccc}
\text{Spr}_{a,0} \times Y^{\text{reg}} & \xrightarrow{\nu_P} & \hat{M}^\text{par}_{a,0} \xrightarrow{\text{evo}} [l_P/L] \\
\downarrow \quad \quad \quad \downarrow & \quad \quad \quad \downarrow \quad \quad \quad \downarrow \\
\text{Spr}_{P,a,0} \times Y^{\text{reg}} & \xrightarrow{\nu_P} & \hat{M}^\text{par}_{a,0} \xrightarrow{\text{evo}} [l_P/L]
\end{array}$$

such that the outer square is the product of Y^{reg} with the diagram (2.1) and the right square is the restriction of the diagram (3.2) at $(a,0) \in B \times X^\circ$. The W_P-action on $H^*_c(\text{Spr}_{a,0} \times Y^{\text{reg}})$ and $H^*_c(\hat{M}^\text{par}_{a,0})$ are constructed from these diagrams using the parahories P and the classical Springer

1This part of the argument was suggested by Y.Varshavsky.
theory for $L_{\mathbf{P}}$. The diagram (5.15) implies that (5.14) is $W_{\mathbf{P}}$-equivariant for every \mathbf{P}, hence W_{aff}-equivariant. Similarly, using a diagram connecting (2.2) and its global analogue, one shows that (5.14) is also $\Omega_{\mathbf{I}}$-equivariant. Putting together, we conclude that (5.14) is \tilde{W}-equivariant. □

5.11. Conclusion of the proof of Theorem 1.2 Consider the diagram

$$
\begin{array}{c}
\mathbb{Q}_\ell[X_*(T)]^W \otimes H^*_c(Spr_{a,0}) \xrightarrow{\sigma_{a,0} \otimes \text{id}} \mathbb{Q}_\ell[\pi_0(P_{a,0})] \otimes H^*_c(Spr_{a,0}) \xrightarrow{\text{act}_{\text{loc}}} H^*_c(Spr_{a,0}) \\
\mathbb{Q}_\ell[X_*(T)]^W \otimes H^{i+2d}([\hat{\mathcal{M}}_{\mathcal{a},0}/S]) \xrightarrow{\sigma_{a,0} \otimes \text{id}} \mathbb{Q}_\ell[\pi_0(P_0)] \otimes H^*_c([\hat{\mathcal{M}}_{\mathcal{a},0}/S]) \xrightarrow{\text{act}_{\text{glob}}} H^*_c([\hat{\mathcal{M}}_{\mathcal{a},0}/S]) \\
\end{array}
$$

where the upper α_{loc} and α_{glob} are actions maps of $\mathbb{Q}_\ell[X_*(T)]^W$; act_{loc} and act_{glob} are action maps of the π_0’s. By Proposition 5.7, the left side square is commutative. By Proposition 5.10 the right side square and the outer square are commutative. By Corollary 4.4, the lower triangle is commutative. Our goal is to prove that the upper triangle is commutative. From the known commutativity, we conclude that $\text{act}_{\text{loc}} \circ (\sigma_{a,0} \otimes \text{id})$ and α_{loc} are the same if we further compose them with (5.14). Since (5.14) is injective, they must be equal before composition, i.e., the upper triangle is commutative. This proves Theorem 1.2 for $\text{Spr}_{a,0}$. Since $a_0 \equiv a(\gamma) \in \mathbb{W}_N$ by construction, the theorem also holds for Spr_{γ} by Proposition 2.9 This finishes the proof of Theorem 1.2.

5.12. Duality between homology and compactly supported cohomology. The next goal is to prove Theorem 1.3 We consider the following general setting. Let Λ be a group. Let X be a scheme, locally of finite type over k with a free Λ-action such that X/Λ is representable by a proper scheme. The main examples we have in mind are $X = \text{Spr}_{\gamma}$ with the action of a lattice $\Lambda \subset G_\gamma(F)$.

A Λ-covering of X is a morphism

$$f : Y \times \Lambda \to X$$

such that the induced morphism $\overline{f} : Y \to X/\Lambda$ is finite and surjective. For example, we may take $Y \subset X$ to be the union of representatives of the Λ-orbits on the irreducible components of X, and take f to be the action map.

Given a Λ-covering, we can form a simplicial resolution X_* of X

$$
\cdots \xrightarrow{\delta_0} X_2 \xrightarrow{\delta_1} X_1 \xrightarrow{\delta_0} X_0 \xrightarrow{\delta_1} X
$$

where $X_0 = Y \times \Lambda$ and $X_n = X_0 \times X \times \cdots \times X_0$ ($n + 1$ terms). Each X_n carries a diagonal Λ-action. It is easy to see that each X_n is Λ-equivariantly isomorphic to $Y_n \times \Lambda$, where $Y_n \to X/\Lambda$ is again finite surjective. The morphisms $\delta_i : X_n \to X_{n-1}$ are all finite.

Using cohomological descent for proper surjective morphisms (see [D74, §5.3]), we see that $H^*_c(X)$ can be calculated as the cohomology of the total complex associated to the following double complex

$$C^**(f) : H^*_c(X_0) \xrightarrow{\delta_{0*} - \delta_{1*}} H^*_c(X_1) \xrightarrow{\delta_{0*} - \delta_{1*} + \delta_{2*}} H^*_c(X_2) \to \cdots$$

where each term is a free $\mathbb{Q}_\ell[\Lambda]$-module $H^*_c(Y_n) \otimes \mathbb{Q}_\ell[\Lambda]$. Dually, $H_*(X)$ can be calculated by the homology of

$$C_**(f) : \cdots \to H_*(X_2) \xrightarrow{\delta_{0*} - \delta_{1*} + \delta_{2*}} H_*(X_1) \xrightarrow{\delta_{0*} - \delta_{1*}} H_*(X_0).$$
where each term is again a free $\overline{Q_\ell}[\Lambda]$-module $H_*(Y_n) \otimes \overline{Q_\ell}[\Lambda]$. In this way, we have upgraded the complexes $H_*^c(X)$ and $H_*(X)$ to objects in the derived category $D^b(\overline{Q_\ell}[\Lambda]\text{-mod})$.

Since each Y_n is proper, we have
\[
H_*(X_n) \cong H_*(Y_n) \otimes \overline{Q_\ell}[\Lambda] = \text{Hom}_\Lambda(H_*^c(Y_n) \otimes \overline{Q_\ell}[\Lambda], \overline{Q_\ell}[\Lambda]) \cong \text{Hom}_\Lambda(H_*^c(X_n), \overline{Q_\ell}[\Lambda]).
\]
compatible with the differentials in $C^*_c(f)$ and $C_*(f)$, therefore the double complexes $C^*_c(f)$ and $C_*(f)$ are dual as free $\overline{Q_\ell}[\Lambda]$-module. This gives an isomorphism in $D^b(\overline{Q_\ell}[\Lambda]\text{-mod})$:
\[
H_*(X) \cong \text{R Hom}_\Lambda(H_*^c(X), \overline{Q_\ell}[\Lambda]).
\]

Moreover, neither the isomorphism classes of the objects $H_*^c(X), H_*(X) \in D^b(\overline{Q_\ell}[\Lambda]\text{-mod})$ nor the isomorphism (5.16) depend on the choice of the Λ-covering. In fact, for any two Λ-coverings $f: Y \times \Lambda \to X$ and $f': Y' \times \Lambda \to X$ are both dominated by the third $f'' : Y'' \times \Lambda \to X$, where $Y'' = (Y \times \{0\}) \times_X (Y' \times \Lambda)$. Let $g : Y'' \to Y$ and $g' : Y'' \to Y$ be projections. A further application of cohomological descent gives canonical quasi-isomorphisms
\[
C^*_c(f) \xrightarrow{g} C^*_c(f''), C_*(f) \xrightarrow{g'} C_*(f'),
\]
which intertwine the dualities between $C_*(\cdot)$ and $C^*_c(\cdot)$. Therefore, f, f' and f'' all give the same isomorphism (5.16).

5.13. **Proof of Theorem 1.3**

Now let $X = \text{Spr}_\gamma$ and $\Lambda \subset G_\gamma(F)$ be a free abelian subgroup considered in [KL88, Proposition 2.1], which acts freely on Spr_γ with proper quotient [KL88 Proposition 3.1(b), Corollary 3.1]. In fact, the proof in [KL88] also applies to $\text{Spr}_{\gamma P}$ for any parahoric $P \subset G(F)$. Hence Λ also acts freely on $\text{Spr}_{\gamma P}$ with proper quotient.

The discussion in (5.12) gives the upgraded objects
\[
H_*^c(\text{Spr}_{\gamma P}), H_*(\text{Spr}_{\gamma P}) \in D^b(\overline{Q_\ell}[\Lambda]\text{-mod})
\]
and the canonical isomorphism (5.16) now reads
\[
H_*(\text{Spr}_{\gamma P}) \cong \text{R Hom}_\Lambda(H_*^c(\text{Spr}_{\gamma P}), \overline{Q_\ell}[\Lambda]).
\]

5.14. **Lemma.** *The upgraded objects in (5.17) carry $\overline{W} \times \pi_0(P_{a(\gamma)})$-actions (lifting the actions on the plain vector spaces), and the isomorphism (5.18) is $\overline{W} \times \pi_0(P_{a(\gamma)})$-equivariant.***

Proof. For each parahoric P, we pick a ΛP-covering $f_P : Y_P \times \Lambda \to \text{Spr}_{\gamma P}$ and define a Λ-covering $f : Y \times \Lambda \to \text{Spr}_{\gamma}$ by requiring the left square of the following diagram to be Cartesian
\[
\begin{array}{ccc}
Y \times \Lambda & \xrightarrow{f} & \text{Spr}_\gamma \\
\downarrow & & \downarrow \\
Y_P \times \Lambda & \xrightarrow{f_P} & \text{Spr}_{\gamma P}
\end{array}
\]
where the right square is topologically Cartesian by (2.1). The construction of the W_P-action on $H_*^c(\text{Spr}_{\gamma P})$ (resp. $H_*(\text{Spr}_{\gamma P})$) in (2.3) then gives a W_P-action on $C^*_c(f)$ (resp. $C_*(f)$), which is intertwined by the duality between $C^*_c(f)$ and $C_*(f)$ as $\overline{Q_\ell}[\Lambda]$-modules. This gives the W_P-action on the upgraded objects (5.17), and proves that (5.18) is W_P-equivariant. The actions of Ω_I and $\pi_0(P_{a(\gamma)})$ on Spr_γ itself, which clearly lift to the objects in (5.17) and are intertwined by (5.18). One easily checks that the $\pi_0(P_{a(\gamma)})$-action

\footnote{The idea of proving Theorem 1.3 by duality of the type (5.16) was suggested by R.Beuzukavnikov.}
commutes with the W_p and Ω actions. Using a variant of the diagram \eqref{eqn:2.2} incorporating the Λ-coverings as in \eqref{eqn:5.19}, one checks that the commutation relation between W_p and Ω continues to hold after upgrading. This finishes the proof.

By \eqref{eqn:5.18} and the above lemma, we have a $\tilde{\pi} \times \pi_0(P_{a(\gamma)})$-equivariant spectral sequence
\[E_2^{p,-q} = \text{Ext}_{\Lambda}^p(H^0_i(Spr_{\gamma}), \overline{\ell}_i[\Lambda]) \Rightarrow H_{p+q}(Spr_{\gamma}), \]
which necessarily converges because $\overline{\ell}_i[\Lambda]$ has cohomological dimension $\text{rk}(\Lambda)$. Therefore, this gives a finite decreasing filtration Fil^p on $H_i(Spr_{\gamma})$ such that
\[\text{Gr}^p_{\text{Fil}} H_i(Spr_{\gamma}) = E_{\infty}^{p-i}. \]

Since the $\overline{\ell}_i[X_0(T)]^W$-action on the E_2 page factors through $\pi_0(G_{\gamma}(F))$ by Theorem \ref{thm:1.2} so does the $\overline{\ell}_i[X_0(T)]^W$-action on E_∞. Therefore, the $\overline{\ell}_i[X_0(T)]^W$-action on $\text{Gr}^p_{\text{Fil}} H_i(Spr_{\gamma})$ also factors through $\pi_0(G_{\gamma}(F))$. Since $E_2^{p,q} = 0$ unless $0 \leq p \leq \text{rk}(\Lambda)$, the same is true for $E_\infty^{p,q} = \text{Gr}^p_{\text{Fil}} H_i(Spr_{\gamma})$. Note that $\text{rk}(\Lambda)$ is the same as the F-rank of G_{γ}. This proves Theorem \ref{thm:1.3}

Appendix A. Sheaves and correspondences on spaces locally of finite type

In this appendix, all algebraic spaces are locally of finite type over k.

A.1. The category of sheaves. Let X be an algebraic space over k which is locally of finite type. Let $\text{Ft}(X)$ be the set of open subsets $U \subset X$ which are of finite type over k. We define
\[\mathcal{D}^b(X) := \lim_{U \in \text{Ft}(X)} D^b(U) \]
When X itself is of finite type over k, $\text{Ft}(X)$ has a final object X, so obviously $\mathcal{D}^b(X) = D^b(X)$.

Concretely, an object in $\mathcal{D}^b(X)$ is a system of complexes $\mathcal{F}_U \in D^b(U)$ for each open subset $U \subset X$ of finite type over k, together with isomorphisms $\varphi^U_V : j^*\mathcal{F}_U \cong \mathcal{F}_V$ for each open embedding $j : V \hookrightarrow U$ satisfying obvious transitivity conditions. A morphism $\alpha : \{\mathcal{F}_U\} \rightarrow \{\mathcal{G}_U\}$ is a system of maps $\alpha_U : \mathcal{F}_U \rightarrow \mathcal{G}_U$ in $D^b(U)$ such that α_U restricts to α_V on V.

Examples of objects in $\mathcal{D}^b(X)$ include the constant sheaf $\overline{\ell}_{i,U} := \{\overline{\ell}_{i,U}\}$ and the dualizing complex $\mathbb{D}_X := \{\mathbb{D}_U\}$.

A.2. Functors. Let $f : X \rightarrow Y$ be a morphism which is locally of finite type. We have the following functors
\begin{enumerate}
 \item $f^* : \mathcal{D}^b(X) \rightarrow \mathcal{D}^b(Y)$. For $U \in \text{Ft}(X)$, $f(U)$ is contained in some $V \in \text{Ft}(Y)$. Denote by $f_{U,V} : U \rightarrow V$ the restriction of f. We define $(f^*\mathcal{G})_U = f_{U,V}^*\mathcal{G}_V$.
 \item $f_! : \mathcal{D}^b(X) \rightarrow \mathcal{D}^b(Y)$, defined in a similarly way as f^*. $(f_!\mathcal{G})_U := f_{U,V!}\mathcal{G}_V$.
 \item If f is of finite type, we have
 \[f_! : \mathcal{D}^b(X) \rightarrow \mathcal{D}^b(Y) \]
 For $V \in \text{Ft}(Y)$, $f^{-1}(V) \in \text{Ft}(X)$. Let $f_V : f^{-1}(V) \rightarrow V$ be the restriction of f. We define $(f_!\mathcal{F})_V := f_V!\mathcal{F}_{f^{-1}(V)}$.
 In general, if f is only locally of finite type, we have
 \[f_! : \mathcal{D}^b(X) \rightarrow \text{ind}\mathcal{D}^b(Y) \]
\end{enumerate}
where \(\text{ind}\mathcal{D}^b(Y)\) denotes the category of ind-objects in \(\mathcal{D}^b(Y)\). We define \(f_!\mathcal{F}\) as the ind-object \(\lim_{\rightarrow} U \in \mathcal{Ft}(X) f_U!\mathcal{F}_U\), where \(f_U : U \to Y\), the restriction of \(f\), is of finite type, and \(f_U!\) is defined above.

(4) If \(f\) is of finite type, we have
\[
f_\ast : \mathcal{D}^b(X) \to \mathcal{D}^b(Y)
\]
defined in a similar way as \(f_! : (f_\ast \mathcal{F})_V := f_{V_\ast} \mathcal{F}_{f^{-1}(V)}\).

In general, if \(f\) is only locally of finite type, we have
\[
f_* : \mathcal{D}^b(X) \to \text{pro}\mathcal{D}^b(Y)
\]
where \(\text{pro}\mathcal{D}^b(Y)\) denotes the category of pro-objects in \(\mathcal{D}^b(Y)\). We define \(f_*\mathcal{F}\) as the pro-object \(\lim_{\rightarrow} U \in \mathcal{Ft}(X) f_U_* \mathcal{F}_U\).

In particular, we can still define
\[
H_\ast(X/Y) := f_! \mathcal{D}_X \in \text{ind}\mathcal{D}^b(Y).
\]

When \(Y = \text{Spec} \ k\), we have
\[
\begin{align*}
H_\ast^c(X) &= f_! \overline{\mathcal{Q}}_{\ell,X}, \\
H_\ast(X) &= f_! \mathcal{D}_X \in \text{ind}\mathcal{D}^b(\overline{\mathcal{Q}}_{\ell}-\text{vector spaces}); \\
H^\ast(X) &= f_* \overline{\mathcal{Q}}_{\ell,X}, \\
H_\ast^\text{BM}(X) &= f_* \mathcal{D}_X \in \text{pro}\mathcal{D}^b(\overline{\mathcal{Q}}_{\ell}-\text{vector spaces}).
\end{align*}
\]

A.3. **Cohomological correspondences.** In this appendix, we extend the formalism of cohomological correspondences (see [SGA5] and [Y11, Appendix A]) to situations where the relevant algebraic spaces are locally of finite type.

Consider a correspondence diagram
\[
\begin{array}{ccc}
C & \xleftarrow{\sim} & C \\
\xrightarrow{f} & & \xleftarrow{g} \\
X & \xrightarrow{g} & S & \xleftarrow{f} & Y
\end{array}
\]

where
- \(S\) is locally of finite type over a field \(k\);
- \(f, g\) are locally of finite type;
- \(\sim\) is proper and \(\sim\) is of finite type.

For \(\mathcal{F} \in \mathcal{D}^b(X)\) and \(\mathcal{G} \in \mathcal{D}^b(Y)\), we define as in [Y11, Definition A.1.1]
\[
\text{Corr}(C; \mathcal{F}, \mathcal{G}) := \text{Hom}_{\mathcal{D}^b(C)}(\overline{\mathcal{c}}^* \mathcal{G}, \overline{\mathcal{c}}^! \mathcal{F}).
\]

We call an element \(\zeta \in \text{Corr}(C; \mathcal{F}, \mathcal{G})\) a **cohomological correspondence** between \(\mathcal{F}\) and \(\mathcal{G}\) with support on \(C\).

Given \(\zeta \in \text{Corr}(C; \mathcal{F}, \mathcal{G})\), we define
\[
\zeta_\# : g_! \mathcal{G} \xrightarrow{g_!(\text{ad})} g_! \overline{\mathcal{c}}_* \overline{\mathcal{c}}^* \mathcal{G} \xrightarrow{g_! \overline{\mathcal{c}}_* \overline{\mathcal{c}}^! \zeta} g_! \overline{\mathcal{c}}_* \overline{\mathcal{c}}^! \mathcal{F} = g_! \overline{\mathcal{c}}_* \overline{\mathcal{c}}^! \mathcal{F} = f_! \overline{\mathcal{c}}_* \overline{\mathcal{c}}^! \mathcal{F} \xrightarrow{f_!(\text{ad})} f_* \mathcal{F}.
\]

In the equality above, we used \(\overline{\mathcal{c}}^! = \overline{\mathcal{c}}_*\) since it is proper. Arrows indexed by “ad.” all come from the relevant adjunctions for the morphisms \(\overline{\mathcal{c}}\) and \(\overline{\mathcal{c}}\), which are of finite type. Note that \(\zeta_\#\) is a morphism in \(\text{ind}\mathcal{D}^b(S)\).

Most of the results in [Y11, Appendix A] are still valid in this extended situation. In particular, the results on pull-backs of cohomological correspondences in [Y11 Appendix A.2] extends verbatim.
A.4. Composition. Suppose we have the following diagram

\[
\begin{array}{ccc}
 C & \xleftarrow{\tau} & C \\
\downarrow{d} \quad \downarrow{d} \quad \downarrow{d} & & \downarrow{d} \quad \downarrow{d} \quad \downarrow{d} \\
C_1 & \xleftarrow{\tau_1} & C_2 \\
\downarrow{c_1} & & \downarrow{c_2} \\
X & \xrightarrow{f} & Y \\
\downarrow{g} & & \downarrow{h} \\
Z & \xleftarrow{\tau} & S
\end{array}
\]

where \(C = C_1 \times_Y C_2 \) and \(C_1 \) and \(C_2 \) satisfy the conditions in beginning of §A.3. Since \(\tau_1 \) and \(\tau_2 \) are proper, so are \(\tau \) and \(\tau \). Similarly, \(\tau \) is of finite type. Hence \(C \), as a correspondence between \(X \) and \(Z \), also satisfies the conditions in the beginning of §A.3.

Let \(F \in \mathcal{D} \xleftarrow{b}(X) \), \(G \in \mathcal{D} \xleftarrow{b}(Y) \) and \(H \in \mathcal{D} \xleftarrow{b}(Z) \). The convolution product defined in [Y11, Appendix A.2] extends to the current situation, giving a bilinear map

\[
(\cdot \circ \cdot): \text{Corr}(C_1; F, G) \otimes \text{Corr}(C_2, G, H) \to \text{Corr}(C; F, H).
\]

The following statement is a variant of [Y11, Lemma A.2.1], and is proved by a diagram-chasing:

A.5. Lemma. Let \(\zeta_1 \in \text{Corr}(C_1; F, G) \) and \(\zeta_2 \in \text{Corr}(C_2; G, H) \). Then

\[
(\zeta_1 \circ \zeta_2)^\# = \zeta_1^\# \circ \zeta_2^\#: h_! \mathcal{H} \to f_! \mathcal{F}.
\]

The associativity of the convolution \(\circ \) also holds, see [Y11, Lemma A.2.2].

A.6. Property (G-2). From now on we assume both \(X \) and \(Y \) are smooth of equidimension \(d \). Recall from [Y11, Appendix A.6] that we say \(C \) has Property (G-2) with respect to an open subset \(U \subset S \) if \(\dim C_U \leq d \) and the image of \(C - C_U \to X \times_S Y \) has dimension \(< d \).

[Y11, Lemma A.6.2] now reads

A.7. Lemma. Suppose \(C \) satisfies (G-2) with respect to \(U \subset S \). Let \(\zeta, \zeta' \in \text{Corr}(C_1; \overline{f_{\ell,X}}, \overline{f_{\ell,Y}}) \). If \(\zeta|_U = \zeta'|_U \in \text{Corr}(C_U; \overline{f_{\ell,X,U}}, \overline{f_{\ell,Y,U}}) \), then \(\zeta^\# = \zeta'^\# \in \text{Hom}_{\mathcal{S}_S}(g_! \overline{_{\ell,Y}}, f_! \overline{_{\ell,X}}) \).

Acknowledgement. The author would like to thank R. Bezrukavnikov, B-C. Ngô and Y. Varshavsky for helpful discussions.

REFERENCES

[B96] Bezrukavnikov, R. The dimension of the fixed point set on affine flag manifolds. Math. Res. Lett. 3(1996), no.2, 185–189.
[BV] Bezrukavnikov, R.; Varshavsky, Y. Preprint in progress.
[D74] Deligne, P. Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. No. 44 (1974), 5–77.
[D80] Deligne, P. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. No. 52 (1980), 137–252.
[G01] Gaitsgory, D. Construction of central elements of the affine Hecke algebra via nearby cycles. Invent. Math. 144 (2001), no. 2, 253–280.
[SAG5] Grothendieck, A., Illusie, L. Formule de Lefschetz, exposé III of SGA 5, Lecture Notes in Mathematics, vol.589, Springer-Verlag, 1977.
[KL88] Kazhdan, D., Lusztig, G. Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no.2, 129–168.
[K] Kottwitz, R. Unpublished notes.
[L96] Lusztig, G. Affine Weyl groups and conjugacy classes in Weyl groups. Transform. Groups 1(1996), no. 1-2, 83–97.
[N06] Ngô, B-C. Fibration de Hitchin et endoscopie. Invent. Math. 164 (2006), no.2, 399–453.
[N09] Ngô, B-C. Decomposition theorem and abelian fibration. Le projet du livre, available at http://fa.institut.math.jussieu.fr/node/44
[N10] Ngô, B-C. Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci. No. 111 (2010), 1–169.
[O07] Olsson, M. Sheaves on Artin stacks. J. Reine Angew. Math. 603 (2007), 55–112.
[S68] Serre, J-P. Corps locaux. (Deuxième édition) Publications de l’Université de Nancago, No. VIII. Hermann, Paris, 1968. 245 pp.
[S76] Springer, T.A. Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent. Math. 36 (1976), 173–207
[Y11] Yun, Z. Global Springer Theory. To appear in Advances in Math. Preprint available at http://math.mit.edu/~zyun
[Ya] Yun, Z. Langlands duality and Global Springer theory. Preprint available at http://math.mit.edu/~zyun
[Yb] Yun, Z. Towards a global Springer theory II: the double affine action. arXiv:0904.3371

Department of Mathematics, MIT, Cambridge, MA 02139, USA
E-mail address: zyun@math.mit.edu