Crossroads, Milestones, and Landmarks in Insect Development and Evolution: Implications for Systematics

Rob DeSalle
American Museum of Natural History

Donat Agosti
American Museum of Natural History

Michael Whiting
American Museum of Natural History

Beatriz Perez-Sweeney
Columbia University

James Remsen
New York University

See next page for additional authors

Follow this and additional works at: http://scholarship.claremont.edu/aliso
Crossroads, Milestones, and Landmarks in Insect Development and Evolution: Implications for Systematics

Authors
Rob DeSalle, Donat Agosti, Michael Whiting, Beatriz Perez-Sweeney, James Remsen, Rick Baker, James Bonacum, and Ranhy Bang
CROSSROADS, MILESTONES AND LANDMARKS IN INSECT DEVELOPMENT AND EVOLUTION: IMPLICATIONS FOR SYSTEMATICS

ROB DESALLE, DONAT AGOSTI, MICHAEL WHITING

Department of Entomology
American Museum of Natural History
79th Street at Central Park West
New York, New York 10024
FAX: 212-769-5277
e-mail: desalle@amnh.org

BEATRIZ PEREZ-SWEEENEY

Department of Anthropology
Columbia University
New York, New York 10035

JAMES REMSEN

Department of Biology
New York University
New York, New York 10003

RICK BAKER AND JAMES BONACUM

Department of Biology
Yale University
New Haven Connecticut 06511

RANHY BANG

Department of Entomology
Cornell University
Ithaca, New York 14853

ABSTRACT

Our understanding of insect development and evolution has increased greatly due to recent advances in the comparative developmental approach. Modern developmental biology techniques such as in situ hybridization and molecular analysis of developmentally important genes and gene families have greatly facilitated these advances. The role of the comparative developmental approach in insect systematics is explored in this paper and we suggest two important applications of the approach to insect systematics—character dissection and morphologicallandmarking. Existing morphological characters can be dissected into their genetic and molecular components in some cases and this will lead to more and richer character information in systematic studies. Character landmarking will be essential to systematic studies for clarifying structures such as shapes or convergences, which are previously hard to analyze anatomical regions. Both approaches will aid greatly in expanding our understanding of homology in particular, and insect development in general.

Key words: Drosophila, germ-band formation, insect development, insect evolution, insect systematics

INTRODUCTION

Our understanding of insect development and evolution has increased greatly due to recent advances in the comparative developmental approach. Modern developmental biology techniques such as in situ hybridization and molecular analysis of developmentally important genes and gene families have greatly facilitated these advances. The role of the comparative developmental approach in insect systematics is explored in this paper and we suggest two important applications of the approach to insect systematics—character dissection and morphologicallandmarking. Existing morphological characters can be dissected into their genetic and molecular components in some cases and this will lead to more and richer character information in systematic studies. Character landmarking will be essential to systematic studies for clarifying structures such as shapes or convergences, which are previously hard to analyze anatomical regions. Both approaches will aid greatly in expanding our understanding of homology in particular, and insect development in general.

Key words: Drosophila, germ-band formation, insect development, insect evolution, insect systematics

INTRODUCTION

The role of developmental information in systematics has been twofold (Shubin 1994). First, embryological information has been used to establish hypotheses of homology among characters in systematic analyses and second the information has been used to polarize characters (the ontogenetic criterion; Nelson 1978; Patterson 1982). Both of these implementations of developmental data use the principle of recapitulation and observation of embryos during development to establish homology and polarity respectively. While character polarity and homology are essential for clarifying and using existing morphological characters in systematic analyses, more modern molecular tech-
niques can add to systematic analyses in other equally important ways.

In particular, molecular comparative biology of development allows the discovery of new morphological characters and more detailed dissection of existing morphological characters. In order to detail how modern developmental biology can interact with systematic analyses we need to first show what kinds of morphological information this new technology can provide, and to place this new information in the context of systematics. The purpose of this paper, therefore, is twofold. The first objective is to give the reader an indication of the state of the art of developmental biology and genetics in the model organism *Drosophila melanogaster* and to relate this knowledge to insect systematics. The summary presented herein should demonstrate both the great potential of insect development systems and the difficulties associated with collecting the developmental information from a wide variety of taxa for systematic purposes. The second objective of this paper is to make some suggestions as to how developmental analysis can and will be used in future systematic studies of insects.

CROSSROADS AND MILESTONES

Modern developmental biology and evolutionary biology have recently converged at a significant and productive crossroads. Developmental biologists have recently spread out from their favorite model organisms to impart an evolutionary aspect to their understanding of development. *Drosophila* specialists have recently recognized the importance of applying developmental techniques and approaches to organisms other than *D. melanogaster* (Patel 1994a, b; Carroll 1994; Tautz 1994; Tautz et al. 1994; Akam et al. 1994). Other invertebrate developmental biologists and vertebrate specialists have applied their approaches to questions related to evolution (Kenyon 1994; Davidson 1991, 1994; Tabin 1992; Gurdon 1992; Wolpert 1994; DeRobertis 1994; Duboule 1994; Sander 1994; Lauber and Marigo 1994; Burke et al. 1995; Zuker 1994). Following the insightful lead more than 10 years ago of Raff and Kaufman (1983), evolutionary biologists are again taking a hard look at developmental biology as a source of information in understanding evolutionary mechanisms and pathways and also in systematics (Conway-Morris 1994; Wray and Bely 1994; Dickinson et al. 1993; DeSalle and Grimaldi 1993; Jacobs 1990, 1994; Davidson 1991, 1994; Bitsch 1994).

One of the factors that has most assuredly facilitated this broadening of interests by both developmental and evolutionary biologists is the availability of a wide variety of techniques for developmental analysis. For the most part, these techniques have been unavailable for organisms other than model systems. If not for the model systems though, these tools and techniques would not exist and much of the broadening of the comparative method has these model systems to thank. In insect studies advancement of *Drosophila* as a model system (Rubin 1989; Merriam et al. 1991; DeSalle and Grimaldi 1993) has been a critical step in reestablishing insect development as a part of evolutionary studies. The development of *Drosophila* as a model system has proceeded largely because of three historical events that have or will reach significant anniversaries by 1995. These three milestones are the clarification of the term homeosis (Bateson 1894; McGinnis 1994; Gehring 1993; Lewis 1994; Lauber and Marigo 1994), the classification of early developmental events via massive mutant screens (Nüsslein-Volhard and Weischaus 1980) and the discovery of the homeobox using molecular techniques (McGinnis et al. 1984a, b; Scott and Weiner 1984). William Bateson’s (1894) coining of the term homeosis and clarification of its role in producing morphological variation in organisms was an important first step in the unraveling of the genetics of development. Undoubtedly, this clarification of the role of homeosis in morphological evolution such as first described by Bateson (1894) has greatly advanced our knowledge of development. One need look no further than Lewis (1978) or Kaufman et al. (1980) and the discovery and characterization of the Bithorax (BX-C) and Antennapedia (ANT-C) Complexes, respectively in *D. melanogaster* to grasp the importance of Bateson’s clarification of the term homeosis.

Equally important as the pioneering work done by Bateson (1894) is the second milestone accomplished 15 years ago, the immense mutant screening for maternal effect genes and early embryonic genes conducted by Nüsslein-Volhard and Weischaus (1980). Up to the time of this 1980 study only a handful of maternal effect and embryonic lethal mutants had been characterized. This work established the developmental hierarchy in *Drosophila* discussed below, and is remarkable in that the majority of mutants isolated by

1 "Morphological anomalies were known to be present in a wide variety of organisms in Bateson’s time. In particular, plant biologists had characterized several monstrous plant forms (The Metamorphosis of Plants; Goethe in Mueller 1952; Vegetable Tertiary: Masters 1869), and indeed Bateson refers to these works in some detail. Bateson was the first to propose that a particular class of morphological changes that he documented so beautifully in Materials for the Study of Variation: Treated with Special Regard to Discontinuity in the Origin of Species were unique in their expression (Lewis 1994). He suggested that this class of morphological changes was different because it involved not just alterations in the basic morphology of an organism, but transformations of one body part into another: "For the word ‘Metamorphos’ I therefore propose to substitute the term Homeosis; for the essential phenomenon is not that there has merely been a change, but that something has been changed into the likeness of something else" (Bateson 1894, p. 85)."
these workers were embryonic lethal. The clarification and characterization of homeotic transformations in a wide variety of organisms by Bateson (1894) and early developmental genes in Drosophila (Nüsslein-Volhard and Weischaus 1981) laid the groundwork for the third milestone alluded to above: the 10th anniversary of the discovery of the homeobox (McGinnis et al. 1984a, b; Scott and Weiner 1984). The discovery of this protein motif and its subsequent characterization gave molecular biologists a foothold into developmental processes (reviewed in McGinnis 1994 and Gehring 1993). One significant contribution from these molecular studies is that the homeobox genes in a wide variety of organisms are very similar in sequence. The sequence similarity of these genes allowed a great leap forward in developmental biology because important developmental genes could be obtained relatively simply and compared across large phylogenetic distances. Most importantly for our discussion, the techniques of antibody staining and in situ hybridization of probes to embryos were developed as a direct result of these molecular studies. Antibody staining and in situ hybridization as well as enhancer trap methods (Bier et al. 1989; Bellien et al. 1989; Wilson et al. 1989) facilitated the direct localization of developmental gene products in developing D. melanogaster embryos. These techniques allow the comparison of altered and wild type gene function in the fruit fly by direct determination of the spatial organization of gene products.

More recently, developmental biologists and molecular biologists have begun to broaden the organismal base for spatial expression studies of developmentally important genes. Davidson (1994) offers a lucid review of the growth and the state of the art in the field of “developmental molecular biology.” In order to discuss some of the exciting results obtained from the molecular approach to comparative biology and their implications in systematics, some background on the processes involved in the spatial organization of the embryo and its gene products is necessary. Obviously, space restrictions do not allow a thorough discussion of all of the nuances of Drosophila development. However, the following discussion should provide an adequate background yet instill in the reader the notion that development of even this relatively simple insect is quite complex.

THE COMPARATIVE MOLECULAR APPROACH

Axes, Germ-Bands and Secondary Fields in Insect Development

One area of the tree of life that has experienced a relatively intense organismal sampling of developmental processes are the Arthropods. In particular, a large number of research programs have exploited the vast knowledge and technical expertise that is centered around the understanding of the development of the model research organism, D. melanogaster (Ransom 1982; Ashburner et al. 1978; DeRobertis et al. 1986; Ashburner 1989; Campos-Ortega and Hartenstein 1985; Lawrence 1992; Bate and Martinez-Arias 1993; Lindsley and Zim 1992) to examine other insect systems. In addition, excellent classical treatments of insect morphology and development exist (Sander 1976; Matsuda 1976; Snodgrass 1935; Schwalm 1988; Anderson 1972a, b, 1973) that allow the application of developmental principles and patterns obtained from the study of Drosophila to a wider array of insect taxa.

The initial determination of the spatial and temporal distribution of gene products in the developmental hierarchy of D. melanogaster resulted in several surprising discoveries such as the existence of protein gradients in the early embryo and distinctive “banding” or “striping” patterns of gene products in the developing embryo (Fig. 1). The targets of molecular studies in insect development can be conveniently separated into two areas that roughly coincide with Davidson’s (1994) “initial spatial specification mechanisms” and limb “pattern formation” subdivisions. These two areas also coincide with the primary embryonic axes determining systems and the secondary fields within these primary embryonic axes that give rise to limbs (Williams and Carroll 1993).

Studies emphasizing analyses of the primary embryonic axes concern analyses of zygotic and early embryonic groundplan. These studies involve the examination of early developmental events such as determination of germ-band formation, segment identity, and segment polarity. Maternally and zygotically active genes determine the Anterior-Posterior (AP), and the Dorsal-Ventral (DV), embryonic axes. Three gene systems determine the AP axis and one determines the DV axis (Nüsslein-Volhard 1980; Govind and Steward 1991; Lawrence and Sempedo 1993; Sprenger and Nüsslein-Volhard 1993). Zygotically active pattern genes then refine the AP and DV axes by appearance in a regulatory hierarchy (Nüsslein-Volhard and Wieschaus 1980; Pankratz and Jäckle 1990, 1993; Carroll 1990) that includes gap genes, pair-rule genes, segment polarity genes and homeotic genes (Fig. 1). Each segment can be thought of as being divided into an anterior and posterior compartment and the pair-rule genes and segment polarity genes are essential for this compartmentalization in the developing segments of the embryo.

Germ-band formation (Fig. 2) has been a topic of discussion in insect development since Krause (1939) first characterized embryos as having long, intermediate or short-germ-bands (Sander 1976, 1988; Tautz et al. 1994; French 1988; Tear et al. 1988; Patel 1994a,
I. Fig. 1. Schematic drawings of antibody and in situ staining of *Drosophila melanogaster* embryos to show the embryonic location of gene products from the five classes of genes in the developmental hierarchy. A representative gene from each class in the hierarchy is presented in these schematics. In general, antibody and in situ experiments give the same results for the genes depicted. For a more detailed description of these types of experiments see Patel *b, c*). These terms describing the embryo are meant to differentiate functional aspects of insect embryogenesis. At the germ band stage all insects have the same basic segmental organization which consists of a head with three gnathal segments (the mandibular, maxillary, and labial segments) and a procephalic region. Three thoracic segments follow the head with 8–11 abdominal segments completing the posterior portion of the germ-band stage embryo. Long-germ-band embryos appear to lay down the entire segmental pattern by the onset of gastrulation; short-germ-band insects deploy body segments during a post-blastoderm growth phase, and intermediate band insects have segments as far posterior as the thorax and even the anterior abdomen established at the blastoderm stage, while segments posterior to these are established after gastrulation in a processional fashion. The utility of the germ-band terminology with respect to systematics and homology is discussed below.

The secondary fields mentioned by Carroll (1994, 1995) and Davidson (1994) involve, among other things, the development of limbs. Holometabolous insects such as the Diptera and Lepidoptera develop through larval stages where limb anlagen called imaginal discs are formed on the inside of the larvae. These discs form as epidermal invaginations in genetically and developmentally predetermined positions along the anterior posterior axis of the larva. In *Drosophila* there are 19 imaginal discs that correspond to the eye-antennal pair, the three pairs of leg discs, a pair of wing discs, a pair of haltere discs, a pair of labial discs, a pair of clypeo-labral discs, a pair of dorsal prothoracic discs (humeral discs) and a genital disc (Russel 1982; Oberlander 1985). Like the segments in the developing embryo, each imaginal disc can also be divided into compartments that are established by the interaction of developmental gene products discussed below.

Development of secondary fields in the larvae of holometabolous insects is extremely complex, but recent work (Williams and Carroll 1993; Cohen 1990, 1994c) — A. The distribution of the maternal effect gene bicoid in a newly oviposited egg demonstrating the anterior-posterior gradient that is indicative of this class of morphogenetic gene product. — B. The distribution of the gap class gene hunchback in a syncistial blastoderm embryo, showing the 60%-40% egg length distribution of this gene product. — C. The distribution of the pair-rule gene product even-skipped in a post-blastula embryo showing the seven stripe pattern that marks the seven pairs of segments in the developing embryo. — D. The distribution of the engrailed gene product in a post-blastula embryo showing the 14 stripe pattern indicative of the segment polarity class of genes. Each stripe marks the posterior compartment of the segments in the developing embryo. — E. The distribution of the Ultrabithorax gene product in a first larval instar showing a typical homeotic gene product distribution. The staining in the third thoracic segment and the first abdominal segment is specific for this locus.
1993) has somewhat clarified our understanding of the processes that occur at the genetic and molecular levels. In this section we will concentrate on a brief review of the events responsible for wing development, as this particular limb has been used as a paradigm for limb development by several authors (Williams and Carroll 1993; North and French 1994; Davidson 1994). We divide the events for limb differentiation into five, more or less, distinct stages that correspond roughly to the stages listed in Williams and Carroll (1993). Although we list these as distinct stages, gene products and interactions required in one stage are often essential in other stages (Fig. 3).

The five stages are: 1) determination of the position of the wing disc along the AP axis of the larval body plan; 2) determination of limb fate, i.e., whether the disc will become a wing, a leg, a haltere, etc.; 3) the establishment of the three fields of orientation in the imaginal disc: anterior-posterior (AP), dorsal-ventral (DV), and proximal-distal (PD); 4) surface elaboration including the determination of the position of the notum versus the wing proper and differentiation of the dorsal and ventral wing surfaces; and 5) the implementation of venation and sensilla formation by a wide variety of genes and genetic interactions. Unique evolutionary questions can be assigned to each of these different stages. Most of the evolutionary questions addressed to date have been concerned with limb fate and position, but studies on pattern elaboration of wings show great potential (Carroll 1994).

Comparative Molecular Insights: The Primary Developmental Field

Studies examining the early embryonic development of insects have for the most part used early-acting segment polarity genes and pair-rule genes, and have in general been instrumental in forming a picture of segmentation in developing insect embryos as well as a better understanding of the evolution of the germ-band developmental strategies discussed in Fig. 2. The strategy used in these studies is to directly compare the patterns seen in *D. melanogaster* with other taxa and to place the observed differences in an evolutionary context using the current hypotheses concerning insect phylogeny (Patel 1994a, b, c; Tautz et al. 1994; Akam et al. 1994). Table 1 summarizes these types of comparative molecular studies done for insects. The types of insect developmental evolution questions concerning the primary fields of development that have been addressed using this comparative approach include the evolution of mesoderm formation, formation of the gut, the evolution of oogenesis and maternal gene function (Tautz et al. 1994; Patel 1994a), the universality of parasegments and the origins of pair-rule organization in insect embryos (Patel et al. 1994; Patel 1994a, b, c).

Germ-band formation in insects has been the major subject of comparative molecular studies. *Drosophila melanogaster*, a long-germ-band insect, has been examined for several early segmentation genes (Table 1). The general approaches to examining this problem involve the determination of the position and timing of expression of *engrailed* (*en*) stripes in a variety of long- and short-germ-band insects (Patel 1994a, b; Tautz et al. 1994), in conjunction with information ob-
A. *al, dpp, wg*

B. *BX-C, Dll, vg*

C. *al, ap, Dll, dpp, en, hh, pd, sd, vg, wg*

D. *ap, PS1, PS2, sd, vg*

E. *Dll, hh, N, rho, wg, etc*. For others, see Garcia-Bellido and de Celis (1992); Sturtevant and Bier (1995).

Fig. 3. Cartoons of the five stages involved in the determination of the secondary developmental fields of the wing redrawn after Williams and Carroll (1993). Only specific events in each stage are represented and lists of genes involved in events at each stage are given to the right of each cartoon. — A. The position of imaginal discs in the embryo and larval stage are established late in embryogenesis.
tained from studies using pair-rule and segment polarity genes (Patel et al. 1994).

The spatial and temporal distribution of the \(en \) gene product can conveniently be used to determine the position of the posterior compartment of each segment during development. In this sense, \(en \) expression can refine our understanding of germ-band extension at the molecular level by actually demonstrating whether or not the signals for segmentation are present at various developmental stages in insects with different germ-band strategies. In \(D. melanogaster \) there are 14 \(en \) stripes in the blastoderm embryo, three representing the head segments, three for the thoracic segments and eight for the abdominal segments. These data suggest that the signals necessary for all segments are present in this long-germ-band insect at the blastoderm stage.

Patel (1994a) suggests that there are two possibilities for the formation of segments in the short-germ-band insects; first, all segments could be established at the blastoderm stage as in long-germ-band insects and expand during the growth phase, or, second, the proliferative zone could generate the information needed for segments and the segments would then form sequentially after the growth phase. Two short-germ-band insects have been used to determine the mode of segment determination. Using the \(en \) antibody to detect segmental position in developing embryos, the short-germ beetle, \(Tribolium castaneum \), shows sequential establishment of segments. In particular, at the beginning of gastrulation a single \(en \) stripe appears that corresponds to the mandibular segment. The remaining \(en \) stripes corresponding to the rest of the segments in this insect then appear sequentially during the rest of embryogenesis. A second short-germ insect, \(Schistocerca \), shows establishment of the first \(en \) stripes in the thorax, with no apparent evidence of \(en \) activity in the area where abdominal cells will eventually proliferate. Later in embryogenesis, the abdominal \(en \) stripes begin to appear sequentially from an area of new cell proliferation. Examination of the distribution of other developmental gene products in embryos of short-germ-band insects supports the contention that these insects develop by sequential differentiation of segments from zones of cell proliferation (\(wingless \ [wg] \) in \(T. castaneum \); Nagy and Carroll 1994; \(Antennapedia \ [Antp] \), Ultrabithorax \([Ubx]\), abdominal-A \([abd-A]\) and Abdominal-B \([Abd-B]\) in \(Schistocerca \); Tear et al. 1990, Kelsh et al. 1993, 1994, Patel 1994b; \(hairy \ [h] \) and \(even skipped \ [eve] \) in \(T. castaneum \); Sommer and Tautz 1993, Patel et al. 1994; \(eve \) in \(Schistocerca \); Patel et al. 1992; Patel 1994a).

Although \(en \) staining at various developmental stages in a wide variety of organisms has been instrumental in determining the modes of germ-band elongation (Patel 1994a; Sommer and Tautz 1993) an explanation for the phylogenetic distribution of germ-band strategies comes from other sources. Figure 4 shows the phylogenetic distribution of long-, short- and intermediate-germ-band strategies for several orders of insects and demonstrates that germ-bandedness, per se, shows a homoplasious distribution.

Characterization of the spatial distribution of pair-rule genes that are responsible for the "transient double segmental organization" of the developing \(D. melanogaster \) embryo (Patel et al. 1994) has added to the understanding of germ-band formation in insects. More detailed examination of this pair-rule gene expression in the four insect orders discussed in Table 1 (Diptera, Coleoptera, Lepidoptera and Orthoptera) render a high degree of interpretability of germ-banded-
Table 1. Summary of the antibody staining (plain text) and *in situ* hybridization (bold text) studies done on the various classes of genes in the regulatory hierarchy.1

Taxa	Drosophilidae	Other Diptera	Lepidoptera	Coleoptera	Orthoptera	Thysanura	Other Arthropods
MATERNAL							
bicoid	25, 27, 28, 34						
nanos	14, 39						
snail		25					
twist		25					
GAP		23, 25, 28, 37					
hunch-back	9, 23, 29	23, 25, 28, 37	22, 25	26			
knirps		23, 25	37				
Krüppel	22	23, 25	37				
tailless	29	22, 25	37				
PAIR RULE							
even-skipped	22				8, 13, 20	8, 15, 20	
fushi tarazu		18					
hairy	21	23, 25, 28, 32	29	34			
patched	29			34			
runt		37					
SEGMENT POLARITY		6, 23, 25, 28	8, 6, 12, 38	8, 16, 17	8, 11	16, 17, 20	
Dax	29	29	34, 37	35			
gooseberry-b	29	29	34, 37	35			
wingless		29	34, 37	35			
HOMEO TIC		19	19, 34	5, 20	1, 4, 20	7	
Antennapedia	29	19	19, 34	5, 20	1, 4, 20	7	
Abdominal-A		19, 34	5, 20	1, 4, 20	7		
Abdominal-B		19, 34	5, 20	1, 4, 20	7		
fushi tarazu		31					
Sex combs reduced		19					
Ultrabithorax	23, 25, 28	19, 34	1	7			
SECONDARY FIELD							
apterous		34					
decapentaplectic		34					
Disall-less	30	34					
invected		34					
scalloped		34		34			
OTHERS							
Fasciclin IV		34			14		
Trg		10			10		

1 The individual genes used in the studies are indicated in the left hand column. The studies are also listed so that the particular type of insect on which the experiments were performed are indicated in the row at the top. References in bold refer to *in situ* hybridization, otherwise to antibody hybridization. 1 Kelsh et al. 1994; 2 Dawes et al. 1994; 3 Kelsh et al. 1993; 4 Tear et al. 1990; 5 Stuart et al. 1993; 6 Schmidt-Ott et al. 1994; 7 Carroll et al. 1995; 8 Patel 1994b; 9 Treier et al. 1989; 10 Kispert et al. 1994; 11 Scholtz et al. 1994; Brown et al. 1994; 13 Patel et al. 1994; 14 Kolodkin et al. 1992; 15 Patel et al. 1992; 16 Patel et al. 1989a; 17 Patel et al. 1989b; 18 Brown et al. 1994; 19 Warren et al. 1994; 26 Patel! 1994a; 21 Tautz and Sommer 1995; 22 Reuter et al. 1989; 23 Sommer and Tautz 1991; 24 Lukowizt et al. 1994; 25 Sommer and Tautz 1994; 26 Sommer and Tautz 1993; 27 Schröder and Sander 1993; 28 Tautz and Sommer 1995; 29 Dickinson et al. 1993; 30 Panganiban et al. 1994; 31 Brown et al. 1994; 32 Carroll et al. 1994; 33 Langeland and Carroll 1993; 34 Carroll 1994; 35 Nagy and Carroll 1994; 36 Webster et al. 1994; 37 Kraft and Jäckle 1994; 38 Fleig 1994; 39 Curtis et al. 1995.

In these insects, the domains of segment polarity genes such as *en* and *wg* are established by pair-rule genes in *D. melanogaster*. When examined for *eve* expression, this long-germ-band insect has a seven stripe pattern in the early embryo that modulates the fourteen stripe *en* pattern. The short-germ-insect *Schistocerca* displays no segmental pattern of *eve* expression with the domain of expression of this gene product being primarily in the posterior portion of the gastrulating embryo. Sequential *en* expression that marks the segments in the embryo (see above) proceeds without the expression of *eve* to regulate position as the *eve* signal remains in the posterior domain of the developing embryo. In the second short-germ-insect *Tribolium*, *eve* stripes appear as the embryo elongates and, in particular, appear to modulate *en* expression. The lepidop-
teran *Manduca sexta*, can be used as an example of an intermediate band insect (Broadie et al. 1991; Sander 1976; Kraft and Jäckle 1994). *Manducas sexta* shows an early embryonic morphology that resembles short-germ-band insects in that only head lobes and a region that resembles a growth zone are present in the developing embryo. The major difference between *M. sexta* and a short-germ-band insect is that instead of undergoing cell proliferation in the growth zone as short-germ-band insects will do, *M. sexta* develops by elongation of the germ-band through tissue reorganization. When *M. sexta* was examined using the pair-rule gene *runt* and the segment polarity gene *wg*, 8 and 16 stripes, respectively, were observed in the early embryo (Kraft and Jäckle 1994). These results suggest a pattern of pair-rule regulation of segment polarity expression in this insect also. Two other Coleoptera have been examined (Patel et al. 1994) due to their variable germ-band designations and it is evident that there is pair-rule prepatternning in these taxa similar to that of *Tribolium*. These comparative molecular studies demonstrate that a complex morphological character such as germ-bandedness can be interpreted in molecular terms. Germ-bandedness can be dissected into the presence or absence of pair-rule prepatternning and the implications for this dissection with respect to character evolution in insects will be discussed below.

Comparative Molecular Insights: The Secondary Developmental Field: Limbs

Carroll (1994; 1995) has divided the problem of insect appendage development and evolution into three major questions concerning differences in appendage number, differences in appendage type, and differences in pattern on the appendage. The evolution of appendage number has recently been examined by Carroll et al. (1995). This study used the observation that wing primordia can first be visualized in the developing embryo as discrete clusters of snail expressing cells and vestigial producing cells using antibodies for these two gene products (Alberga et al. 1991). In *D. melanogaster* development of wings in all segments but T2 is repressed by homeotic gene activity (*Ubx, abdA, AbdB, Scr* and *Anp*; for a concise review see Carroll et al. 1995). Although homeotic gene repression is the mechanism by which loss of wing formation is implemented in the various segments, these genes are not at all involved in the actual development of adult wings (Carroll et al. 1995). This is an important piece of information because it suggests that the sole role of homeotic genes in the formation of wings in *D. melanogaster* is to repress expression of vestigial and snail in the wing primordia and hence to repress the development of the wing.

In developing embryos of *Thermobia domestica* (a primitive apterygote Thysanurid insect that would represent the condition prior to the “invention” of insect wings), *abdA* and *Ubx* are expressed in the posterior thoracic segments and the anteriormost abdominal segments just as in the more derived pterygote insects described above. Carroll et al. (1995) use these data and the fossil record to suggest a plausible scenario for the evolution of insect wings. They suggest that the first stage in the evolution of wings in pterygote insects occurred on all segments of the insect, because there was no homeotic gene input into the repression of these structures on these segments. Subsequently, certain elements of wing formation must have evolved response mechanisms to homeotic (ANT-C or BX-C) gene regulation. The *Thermobia* results suggest that homeotic gene structure and function have been conserved in the ancestral taxa and hence evolution of *Scr* responsive elements implement the reduction or elimination of wings in the first thoracic segment. In a
similar way, the evolution of *Ubx* and *abdA* responsive elements resulted in the repression of wing development on abdominal segments and further in diptera (two-winged pterygotes) the reduction of wings on the third thoracic segment.

Carroll (1994, 1995) suggests that the second class of questions one can approach with respect to limb development concerns determination of appendage type. He uses the evolution of halteres versus wings as an example of these differences and concludes that the regulation of homeotic target genes is involved in this class of differences. This mode of regulation should be contrasted with the appendage number differences where control of those differences is through regulation by homeotic repression.

A recent study of the systematics of the enigmatic insect order Strepsiptera (twisted-wing parasites) suggests that regulation of appendage type and position may have been a factor in the evolution and diversification of this group (Whiting and Wheeler 1994). Strepsiptera are a small order of insects (520 species) that are exclusively parasitic on a wide range of insect taxa. Adult male Strepsiptera have wings fully developed on the third thoracic segment and wings on the second thoracic segment that are reduced to structures similar morphologically and functionally to the halteres (reduced hind wings) of Diptera. Strepsiptera have been posited as the sister group to nearly every other order of insects, but recent work using 18S rDNA and 28S rDNA sequences and morphological characters strongly support the placement of Strepsiptera as the sister group to Diptera (Whiting and Wheeler 1994). This phylogenetic conclusion is important in that it raises the possibility that the same developmental mechanism responsible for the modification of the halteres in Diptera is also operating in Strepsiptera but on a different thoracic segment. It is plausible that this mechanism arose in the dipteran-strepsipteran ancestor, and its expression was subsequently switched to a different thoracic segment, presumably in the strepsipteran lineage, after their divergence. Studies into the expression patterns of *Ubx*, *abdA*, *AbdB*, *Scr* and *Antp* in Strepsiptera, primitive Diptera, and other mecopteroid insects, will bring further insight into the evolution of these genes in a phylogenetic context.

The final aspect of appendage development, pattern formation on the appendage, has used the excellent background work of Nijhout (1991, 1994) on butterfly wings. In particular, the buckeye, *Proecis coenia*, has been used as a model system. The unique aspect of Lepidoptera wings concerns the elaborate coloring and patterning of the colors on the wing, that although present in other orders of insects, is by no means as extreme as in the Lepidoptera. Carroll (1994) summarizes the developmental genes that have been isolated and characterized from this insect, and in particular these genes represent DV axis determining genes (*apterows*), PD axis determining genes (*scalloped, Distal-less*), AP axis determining genes (*inverted, en­grailed and decapentaplegic*) and wing margin genes (*wingless*) in the developing limb. Not surprisingly, Carroll et al. (1994) showed that the expression of these genes in *P. coenia* is very similar to the expression patterns in *D. melanogaster*. On the other hand, the startling result arose that in the fifth instar *P. coenia*, these coordinate systems have been co-opted to produce a second pattern of transcription. Although the transcription patterns of most of the genes used do not correspond directly to pigment patterns in the adult wings, Carroll et al. (1994) suggest that they, “do reflect a fundamental dynamic patterning system within each wing cell”. *Dll* is one exception to this general noncorrespondence in that it has been suggested to be responsible for the initial proximodistal restriction of pigments, midline rays, posterior enlargements and the posterior eyespot (Carroll et al. 1994; Carroll 1995). The success stories that arise from studies in the three major areas of limb development discussed by Carroll (1994, 1995) demonstrate the plausibility of using the developmental approach to examine limb characters in systematic studies.

PHYLOGENETIC ANALYSIS AND PARALLELSMS

The deciphering of the evolution of germ-band formation (Patel 1994a, b; Tautz et al. 1994) and the telling of the evolution of insect appendages (Carroll 1994, 1995) are indeed exciting, but these topics are not necessarily questions on which the typical insect systematist might capitalize. From the standpoint of systematics we are struck with very different group-specific problems that the developmental comparative approach can aid in deciphering. An examination of the systematics of the Drosophilidae will assist in demonstrating the kinds of problems that may arise in systematic analysis at the generic level. Although the morphologies discussed below are highly specific for this family of Diptera, the methods used to pinpoint them and, in general, their distribution should be familiar to most systematists.

Figure 5 shows a total evidence (Miyamoto 1985; Kluge 1989) hypothesis for several genera of Drosophilidae based on DNA sequences and morphological data next to the morphology-only hypothesis. The details of this analysis have been discussed at length in DeSalle and Grimaldi (1991, 1992, 1993) and DeSalle (1994). Note that the Hawaiian *Drosophila* could be construed as the taxon that causes much of the incongruence between the total evidence analysis and the morphological analysis. In short, addition of the molecular characters to the data set calls into question the morphological-character support for the *Hirtodrose-
Fig. 5. Right panel shows the total evidence cladogram for several genera of Drosophilidae taken from DeSalle and Grimaldi (1991). The left panel shows the cladogram obtained when only morphological characters are used to infer phylogeny. The single character that supports the Hirtodrosophila-Hawaiian Drosophila sister grouping in the morphological hypothesis (raised nasal carina; RNC) is shown mapped on both cladograms and implies that this character is homoplasious in the total evidence hypothesis.

Philia-Hawaiian Drosophila sister group relationship. There is a single morphological character in the DeSalle and Grimaldi (1991; originally described in Grimaldi 1990) analysis that hypothesizes these two groups as sister taxa: a raised nasal carina. This example, points out the type of morphological character that will concern most systematists.

We suggest that the first step in an integrative approach to development and evolution is the construction of a cladogram from all available evidence that approximates the genealogical history of a group in question. Morphological characters are then mapped (Maddison and Maddison 1992; Brooks and McLennan 1991; Harvey and Pagel 1991; Miller and Wenzel 1995) on the cladogram and convergences and parallelisms are pinpointed for further scrutiny. One caveat that must be made clear concerning this character-mapping approach is that character optimization (Maddison and Maddison 1992; Swofford and Maddison 1992) on the tree can have a profound effect on how the evolution of the character is interpreted.

Several authors in the systematics literature have indicated an interest in this approach. Saether (1983) and Sluys (1989) both suggest that these types of characters can be used in phylogenetic analyses. Saether (1983) coined the term “underlying synapomorphy” and defined the phenomenon as a “close parallelism” produced by the same underlying genetic factors in a monophyletic group. Sluys (1989) examined this idea of underlying synapomorphy in more detail and suggested that under cases of “rampant parallelism” the principle of parsimony is not appropriate. Although we disagree with the use of underlying synapomorphy as a foil for debunking parsimony (DeSalle and Grimaldi 1993), some interesting and important ideas about “rampant parallelism” are discussed by these authors. For instance, Sluys (1989) rightly points out that homology is the cornerstone of these types of analyses. He also interestingly suggests that rampant parallelism is intricately connected to canalization and the organization of genetic and epigenetic systems controlling morphology. In other words, characters with common epigenetic potential and canalization patterns or similar genetic elements are more prone to rampant parallelism. In the context of developmental genetics, Sluys (1989 p. 366) suggests that “a back mutation in the regulatory mechanism would switch on again the gene complex that remained unexpressed in the predecessors of a species.”

The rationale for the general approach we suggest for pinpointing interesting morphological phenomena is explained best by referring to Sluys’s (1989) differentiation of parallelism versus convergence. Systems where homologous genes and developmental processes are involved are most appropriate for understanding the interface of development and evolution. In order for homologous developmental processes to be involved in morphological change, examination of parallelisms is most appropriate. Convergence in its most strict definition does not necessarily involve the reappearance of morphologies caused by the homologous genetic elements or developmental mechanisms. Sluys (1989) and Saether (1983) both indicate this difference and suggest that recognition of parallelisms versus convergence is important. Whereas they suggest that parallelisms are grounds for reinterpretation of characters in parsimony analysis we feel that rampant parallelisms are grounds for further character dissection using modern molecular and developmental biology.

An excellent case in point occurs again in the Drosophilidae and concerns a morphological trend called hypercephaly (Grimaldi and Fenster 1989; summarized in DeSalle and Grimaldi 1993). Within the family Drosophilidae, hypercephaly or broad headedness has arisen at least eleven independent times, twice within the genus Chymomyza, twice within the subgenus Drosophila, once within the genus Mugravea and six times within the genus Zygathrica (Grimaldi 1987). DeSalle and Grimaldi (1993) discuss this hypercephalic trend in Zygathrica and suggest that the head region of the fly be used as a “starting point” for understanding the bridge between development and evolution. Their suggestion concerning the importance of the head in systematic studies of flies arose not only from the analysis of parallelisms and convergences in the group but also from the observation that the majority of the characters used by Drosophilidae systematists concerned the morphology of the head (DeSalle and Grimaldi 1992, 1993).

Character dissection

Once characters have been examined for parallelism it is possible for further examination of their genetic
and molecular basis. Genetic dissection of complex traits is a difficult task, and usually entails application of rather sophisticated genetic approaches (linkage analysis, allele sharing methods, association studies in human populations, and genetic analysis of large crosses in model organism studies; Lander and Schork 1994). In light of the fact that most systematists are interested in typically nonmodel organisms and hence will be unable to apply these techniques, we feel that the use of the phyletic phenocopy paradigm (Bassil and Stebbins 1985; DeSalle and Carew 1992) often times can allow an educated guess as to the genetic basis for certain characters. Examination of a parallelism concerning a morphological character used in Drosophilidae generic-level systematics called interfacial setae (Grimaldi 1990) is a good example of this preliminary approach. The character arises at least four times in the family Drosophilidae (DeSalle and Grimaldi 1992). A close examination of the morphology involved in this character indicates that the loss of interfacial setae is a phenocopy of simple mutations found in D. melanogaster (Hairless and deltoid). It should be noted that these two mutant forms in D. melanogaster are a simple point mutation and an allele produced by the insertion of a transposable element into the Notch locus, respectively. Other D. melanogaster loci can produce the phenotype (such as Shibire and DOA) but these are embryonic lethals and it is difficult to suggest that these mutants are responsible for the loss of interfacial setae. The phyletic phenocopy approach may result in valuable suggestions as to which loci could be examined to further dissect characters.

Some character systems are more complicated in that they do not have an obvious phenocopy or in that the phenocopies are produced by more complex genetic interactions. An example using an admittedly poor morphological character has been discussed at length by DeSalle and Grimaldi (1992, 1993). This example takes advantage of the interest in the bobbed (bb) phenotype in D. melanogaster and the fact that the bb morphology appears as a rampant parallelism with respect to Drosophila phylogeny. When the underlying molecular and genetic mechanisms involved in the production of the morphology are examined a phylogenetically informative molecular character is revealed and the causes of the multiple independent morphological arisal can be explained (DeSalle and Grimaldi 1992).

Germ-band determination in insects can be used as an example of character dissection at higher taxonomic levels. As explained in Fig. 2, the character germ-bandedness can be coded as long, intermediate or short. The phylogenetic distribution of the character states for this character is depicted in Fig. 4. This figure also shows two possible character reconstructions using these data that reinterpret the underlying homoplasy of the germ-band character states. In the first scenario, it is assumed that the ancestral outgroup lacked pair-rule prepatterning, so that such prepatterning becomes a synapomorphy for Coleoptera, Diptera and Lepidoptera. In the second scenario, the ancestral outgroup is assumed to have pair-rule prepatterning and hence the loss of this prepatterning is seen as an apomorphy that diagnoses the Orthoptera. Either character reconstruction reinterprets the homoplasy natural of germ-band designation via the dissection of germ-bandedness using pair-rule genes.

LANDMARKING

Wheeler (1981, p. 4) made the insightful observation that many of the major groups of Drosophilidae are diagnosed by, "whether a certain bristle is present or absent, or if it is directed forward or backward". In addition, in the morphological revision of the family Drosophilidae (Grimaldi 1990) nearly 70% of the female characters and 55% of male characters concern morphological variation of the head region. The concentration of Drosophilidae morphological systematics on the head and on sensilla is the result of the occurrence of readily identifiable morphological variation of these structures, and new sources of characters are highly desirable.

The vast majority of the morphological characters used by Drosophila systematists are adult characters (Grimaldi 1990), however, there exists a wealth of larval characters in other dipteran systems (Meier 1995). In addition, ultrastructure offers a source of characters in the Drosophilidae that has only recently been exploited (Grimaldi 1990). Developmental approaches offer yet another source of characters for the morphological systematist. Use of well-defined molecular markers of development may allow for a more concise delineation of morphological structures in developmental stages that to this point have been considered lacking in structure.

In Drosophilidae larvae, a major part of the head involutes as part of the developmental process. This involution "obscures" many of the fine larval head structures that can be used in systematic studies of the group. Molecular landmarking using well-characterized developmental genes such as en, other segment polarity genes and homeotic genes can "uncover" hidden morphological structures. One extreme example concerns the nature of segmentation in the head. The drosophilid head has classically been enigmatic concerning segment number. Several researchers have argued that the drosophilid head has only six segments while others argue seven. Studies using the en antibody clearly show seven "stripes" in the drosophilid head (Schmidt-Ott and Technau 1992, 1994 Schmid-
Ott et al. 1994a). Since en is a marker for the posterior compartment of segments, this result is taken as strong evidence for the existence of seven segments in the drosophilid head (Schmidt-Ott and Technau 1992). Other difficult morphological characters that have been ignored in the past because of our inability to determine homology or even to discern structure may now be examined using an approach similar to this. Localization of the en gene product in developing D. melanogaster embryos, as well as other important head development genes such as Dfd (Chadwick and McGinnis 1987; Mahaffey et al. 1989; Regulski et al. 1987), lab, Scr and pb (Mahaffey et al. 1989), spalt (Kühnlein et al. 1994), hh (Mohler and Vani 1992, crumbs (Tepass et al. 1990; Tepass and Knust 1990) and cap and collar (Mohler et al. 1995) among others are examples of the potential of the approach. In fact, Younossi-Hartenstein et al. (1993) have used the position of crumbs antibody staining in conjunction with patterns from two en-enhancer trap lines to determine the embryonic origin of imaginal discs (see also Bate and Martinez-Arias 1991) in the drosophilid head. Data such as these on the origin of imaginal discs are essential for addressing the important problem of homology of imaginal discs in the Holometabola (Svacha 1992) and to allow the utilization of information on discs in systematic studies.

Another excellent example of the application of this approach that concerns the discovery of several new structures in the drosophilid head is the use of the 22C10 antibody to visualize structures in the head of D. melanogaster embryos. Schmidt-Ott et al. (1994a p. 8365) show in their Fig. 2 staining patterns with this antibody and demonstrate the delineation of several new sensory organs in the larval head region. In addition, they were able to use these staining patterns in combination with mutant analysis to determine the genes that are responsible for these structures. In all, seven new sensory organs were identified and their fasciculation patterns were established.

Another source of characters using these well-defined molecular markers has been discussed by Collazo and Fraser (1995) and is also relevant to our discussion of discovering new Drosophila characters. He has described systems where the researcher can follow developmental markers and this allows the visualization of developmental and morphogenetic events and hence morphologies in developmental stages that have been ignored. Certain cell lineages in the developing embryo can also be marked using developmental techniques. Schmidt-Ott and Technau (1992, 1994) have used horse-radish peroxidase (HRP) staining by injection to mark cells in the developing head of D. melanogaster embryos. Their Figure 2 (Schmidt-Ott and Technau 1994b p. 368) shows staining of specific cells in the developing head at various stages. These data allow the characterization of morphogenetic movements and changes in the head of developing D. melanogaster and are potentially a great source of character information.

SUMMARY

The recent explosion of molecular techniques and approaches in developmental biology has added a new dimension to our approach to comparative biology. The pioneering work of Bateson (1894) on homeosis is the cornerstone to all subsequent work on homeotic phenomena in insects and opened the way for the classical genetic work of Lewis (1978) Kaufman et al. (1980) and Nüsslein-Volhard and Wieschaus (1980) on the BX-C, ANT-C and maternal and early embryonic loci respectively. These genetic studies were essential for the molecular analysis of homeotic genes and early developmental genes and resulted in molecular cloning of homeobox genes (McGinnis et al. 1984a; Scott and Weiner 1984) and other developmentally important genes. The cloning of homeotic loci and other developmentally important genes allowed technological advances such as antibody staining, in situ and enhancer traps that are essential for analysis of developmental pathways in insects. It is interesting to note that the entire chain of events described above made Bateson’s (1894) ideas concerning homeosis even more timely. The genetics and technology that arose as a result of his work can now be looped back to clarify and enlighten our ideas about homeosis in insects in particular, and insect evolution, in general.

Several aspects of insect evolution have been examined using the new approach of comparative developmental biology (Patel 1994a, b; Carroll 1994, 1995; Tautz et al. 1994; Akam et al. 1994). While these kinds of studies are both elegant and highly informative, the importance of the application of these techniques to systematic analysis is somewhat limited. Systematists can, however, benefit from the elegant advances made by developmental biologists and, in particular, from the comparative molecular approach. The problems that systematists face that can benefit from developmental analyses are quite different from those currently addressed by the comparative method. Classically, development has been used to examine and refine character homology assessment and polarity. We suggest that developmental approaches can add in two additional important areas of systematics. The first concerns the use of this approach to dissect complex morphological characters or even morphogenetic events, the second encompasses the generation of new characters using landmarking techniques. In order for these approaches to be viable sources of character information in systematics, though, culturing techniques and collection techniques will have to be developed so
that embryonic stages of a wide variety of taxa can be examined.

ACKNOWLEDGMENTS

We thank Dr. Elliot Meyerowitz for two clarifying comments on the content of this talk. The first concerns Bateson’s role in defining the term homeosis and the second concerns the fact that some of the eye setae mutants (Shibire and DOA) that produce visible morphological change are embryonic lethals. They manifest the visible phenotype only through genetic mosaic and recombination techniques, but when they occur naturally produce lethality at early developmental stages. Any misinterpretations of the literature even after being made aware of these suggestions are of course ours. We also thank Elizabeth Bonwich for help with the manuscript, and Chris Fisher for drawing the figures. Finally, we thank Dr. Elizabeth Zimmer for the invitation to speak at the symposium and for her support during the writing of the manuscript.

LITERATURE CITED

ALISO, M., N. JAN. 1989. Searching for pattern and mutation in the Drosophila genome with P-lacZ vector. Genes and Development. 3: 1273–1287.

BIETSCH, J. 1994. The morphological groundplan of Hexapoda: Critical review of recent concepts. Ann. Soc. Entomol. France. 30: 103–129.

BLAIR, S. 1995. Compartments and appendage development in Drosophila. BioEssays 17: 299–309.

BRODIE, K. S., N. J. TUBLITZ. 1991. Quantitative staging of embryonic development of the tobacco hawkmoth. Manduca sexta. Roux’s Arch. Developm. Biol. 199: 327–334.

BROOKS, D., AND D. A. MCLENNAN. 1991. Phylogeny, ecology and behavior: A research program in comparative biology. University of Chicago Press, Chicago, Illinois.

BRUMNER, E. R. H. 1994. The beetle Tribolium castaneum has a fushi tarazu homolog expressed in stripes during segmentation. Proc Natl. Acad. Sci. U. S. A. 91: 12922–12926.

CASTELLI-GAIR, R., AND D. FERRIER. 1994. The evolving role of Hox genes in arthropods. In: A. A. M. BATE, AND N. J. TUBLITZ. 1991. Quantitative staging of embryonic development of the tobacco hawkmoth. Manduca sexta. Roux’s Arch. Developm. Biol. 199: 327–334.

CHADWICK, R., AND W. McGINNIS. 1987. Temporal and spatial distribution of transcripts from the Deformed gene of Drosophila. EMBO J. 6: 779–789.

CHASAN, R., AND K. ANDERSON. 1993. Maternal control of dorsal-ventral polarity and pattern in the embryo, pp. 387–424. In M. Bate and A. Martinez-Arias [eds.], The development of Drosophila melanogaster. Cold Spring Harbor Press, Cold Spring Harbor, New York.

COHEN, S. M. 1990. Specification of limb development in the Drosophila embryo by positional cues from segmentation genes. Nature 344: 173–177.

COHEN, B., A. A. SIMCOX, AND S. M. COHEN. 1993. Allocation of the imaginal primordia in the Drosophila embryo. Development 117: 597–608.

CONWAY-MORES, S. 1994. Why molecular biology needs paleontology. Development 121: 1899–1910.
DAVISON, E. H. 1991. Spatial mechanisms of gene regulation in metazoan embryos. Development 113: 1-26.

—. 1994. Molecular biology of embryonic development—how far have we come in the last ten years. BioEssays 16: 603-615.

DAWES, R., I. DAWSON, F. FALCIANI, G. TEAR, AND M. AKAM. 1994. Dax, a locus Hox gene related to fushi-tarazu but showing no pair-rule expression Development 120: 1561-1572.

DE ROBERTIS, E., E. PAINOSO, L. GONT, AND H. STEINBEISER. 1994. The evolution of vertebrate gastrulation. Development 1994 Supplement: 117-124.

DE SALLE, R. 1994. Flies and congruence. Amer. J. Phys. Anthro. 90: 201-220.

—, AND E. CAREW. 1992. Phyletic phenocopy and the role of developmental genes in morphological evolution of the Drosophilidae. J. Evol. Biol. 5: 364-374.

—, AND D. A. GRIMALDI. 1991. Morphological and molecular systematics of the Drosophilidae. Ann. Rev. Ecol. Syst. 22: 447-475.

—, AND —. 1992. Characters and the systematics of the Drosophilidae. J. Heredity. 83: 182-188.

—, AND —. 1993 Phylogenetic pattern and developmental process in Drosophila. Biol. Syst. 42: 458-475.

DICKINSON, W. E., Y. YANG, K. SCHULKE, AND M. AKAM. 1993. Conservation of molecular prepatterns during the evolution of cuticle morphology in Drosophila larvae. Development 47: 1396-1400.

DEROBERTIS, D. B. 1986. Drosophila a practical approach. IRL Press, Oxford, U. K.

DUBOULE, D. 1994. Temporal colinearity and the phylyocyte progression: A basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development 1994 Supplement: 135-142.

FLEIG, R. 1994. Head segmentation in the embryo of the Colorado beetle Lepitoptera rosetteaea as seen with anti-en immunostaining. Roux’s Arch Developm. Biol. 203: 227-229.

FRANCH, V. 1988. Gradients and insect segmentation. Development 1988 Supplement: 3-16.

GARCIA-BELLIDO, A., AND J. DE CELS. 1992. Developmental genetics of the venation pattern of Drosophila. Ann. Rev. Genet. 26: 277-304.

GEHRING, W. 1993. Exploring the homeobox. Gene 135: 215-221.

GOVIND, S., AND R. STEWART. 1991. Dorsoventral pattern formation in Drosophila. TIG 7: 183-190.

GRIMALDI, D. A. 1987. Phylogenetics and taxonomy of Zygorhithra Diptera: Drosophilidae. Bull. Amer. Mus. Nat. Hist. 7: 183-90.

—. 1990. A phylogenetic revised classification of genera in the family Drosophilidae. Bull. Amer. Mus. Nat. Hist. 186: 1-268.

—, AND G. FENSTER. 1989. Evolution of extreme sexual dimorphisms: Structural and behavioral convergence among broad-headed male Drosophilidae, Diptera. Amer. Mus. Novit. 2939: 1-25.

GORDON, J. B. 1992. The generation of diversity and pattern in animal development. Cell 68: 185-199.

HARVEY, P. H., AND M. D. PAGEL. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford, U. K.

JACOBS, D. 1990. Selectory genes and the Cambrian radiation of Bilateria. Proc. Natl. Acad. U.S.A. 87: 4406-4410.

—. 1994. Developmental genes and the origin and evolution of Metazoa, pp. 537-550. In B. Schierwater, B. Streit, G. Wagner and R. DeSalle [eds.], Molecular ecology and evolution: Approaches and applications. Bircherhaus, Basel.

KAUFMAN, T., R. LEWIS, AND B. WAKINOTO. 1980. Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: the homeotic gene complex in chromosome interval 84A-B. Genetics 94: 115-133.

KELSCH, R. N., I. DAWSON, AND M. AKAM. 1993. An analysis of Abdominal-B expression in the locust Schistocerca gregaria Development 117: 293-302.

—, R. N. WENZELK, R. A. WHITE, AND M. AKAM. 1994. Homeotic gene expression in the locust Schistocerca: A antibody that detects conserved epitopes in Ultrathorax and abdominal-A proteins. Developm. Genet. 15: 19-31.

KENYON, C. 1994. If birds can fly, why can’t we? Homeotic genes and evolution. Cell 78: 175-186.

KSPERT, A. B., G. P. HERRMANN, M. LEPTIN, AND R. REUTER. 1994. Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. Genes and Development 8: 2137-2150.

KLUYE, A. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epiptera: Bosidae. Zool. Journ 38: 7-25.

KOLOKORI, A. L., D. J. MATTHEIS, T. P. O’CONNOR, N. H. PAI, A. ADMON, D. BENTLEY, AND C. S. GODIN. 1992. Fasclina IV sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron 9: 831-845.

KRAFT, R., AND H. JACKE. 1994. Drosophila mode of metamertization in the embryogenesis of the intermediate germ-band insect Manduca sexta. Proc. Natl. Acad. U.S.A. 91: 6634-6638.

KRAUSE, G. 1939. Die Eitypen der Insekten. Biol. Zentralbl. 59: 495-536.

KUHLEIN, R., G. FROMMER, M. FREDRICH, M. GONZALEZ-GAITAN, A. WEBER, J. WAGNER-BEHNSCH, W. GEHRING, H. JACKE, AND R. SCHUH. 1994. Spalt encodes an evolutionary conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo. EMBO J. 13: 168-179.

LANDER, E. H., AND N. J. SCHORK. 1994. Genetic dissection of complex traits. Science 265: 2037-2048.

LANGEBAAND, J. A., AND S. B. CARROLL. 1993. Conservation of regulatory elements controlling hair-like pair-rule stripe formation. Development 117: 585-596.

LAUFER, E., AND V. MANEGO. 1994. Evolution of developmental biology: morphology and molecules. TIG 10: 261-263.

LAWRENCE, P. A. 1992. The Making of a Fly. Blackwell Scientific Publications, London, U. K.

—, AND J. SAMPEDEO. 1993. Drosophila segmentation after the first three hours. Development 119: 971-976.

LEWIS, E. B. 1978. A gene complex controlling segmentation in Drosophila. Nature 276: 565-570.

—. 1994. Homeosis: the first 100 years. TIG 10: 341-343.

LINDSLEY, D. L., AND G. G. ZIMM. 1992. The genome of Drosophila melanogaster, Academic Press, San Diego, California.

LUKOWITZ, W., C. SCHÖPER, G. GLAESER, M. HULSKAMP, AND D. TAUTZ. 1994. Regulatory and coding regions of the segmentation gene hunchback are functionally conserved between Drosophila virilis and Drosophila melanogaster. Mech. Developm. 45: 105-115.

MADDISON, W. P., AND D. R. MADDISON. 1992. MacClade: interactive analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts.

MAHAPAT, J. W., R. DIEDRICH, AND T. C. KAUFMAN. 1989. Novel patterns of homeotic protein accumulation in the head of the Drosophila embryo. Development 105: 167-174.

MABLE, M. 1869. Vegetable teratology. Robert Hardwicke, London, U. K.

MATSUO, R. 1975. Morphology and evolution of the insect abdomen. Pergamon, Oxford, U. K.

MCGINNIS, W. 1994. A century of homeosis, a decade of homeoboxes. Genetics 137: 607-611.

—, R. GABER, J. WIRZ, A. KUROWA, AND W. GEHRING. 1984a. A homologous protein-coding sequence in Drosophila homotypic genes and its conservation in other metazoans. Cell 37: 403-405.

—, M. LEVINE, E. HAFEN, A. KUROWA, AND W. GEHRING. 1984b. A conserved DNA sequence found in homeotic genes of...
the Drosophila Antennapedia and Bithorax Complex. Nature 308: 428–433.

Mehler, R. 1995. Cladistic analysis of the Sepsiidae (Syclorrhapha: Diptera) based on a comparative scanning electron microscopic study of larvae. Syst. Ent. 20: 99–128.

Merrim, J. M., Ashburner, D. Hartl, and E. Kafatos. 1991. Toward cloning and mapping the genome of Drosophila. Science 254: 221–225.

Miller J. S., and J. W. Wenzel. 1995. Ecological characters and phylogeny. Ann. Rev. Entomol. 40: 389–415.

MiyaMoto, M. M. 1985. Consensus cladograms and general classifications. Cladistics 1: 186–189.

Mohler, J., and K. Vanii. 1992. Molecular organization and embryonic expression of the hedgehog gene involved in cell-cell communication in segmental patterning of Drosophila. Development 115: 957–971.

—. J. MahaYeffe, E. Deutschi, and K. Vanii. 1995. Control of Drosophila head segment identity by the bZIP homeotic gene cnc. Development 121: 237–247.

Mueller, B. 1952. Translation of Goethe's Botanical Writing. University Press of Hawaii, Honolulu.

Nagy, L. M., and Carroll, S. B. 1994. Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367: 460–463.

Neilson, G. 1978. Ontogeny, phylogeny, paleontology and the biogenetic law. Syst. Zool. 27: 324–345.

Nihout, E. 1991. The development and evolution of butterfly wing patterns. Smithsonian Institution Press, Washington, DC.

—. 1994. Symmetry systems and compartments in Lepidopteran wings: The evolution of a patterning system. Development 1994 Supplement: 225–233.

North, G., and V. French. 1994. Patterns upon patterns. Current Biol. 4: 611–614.

Nusslein-Volhard, C. 1991. Determination of the embryonic axes of Drosophila. Development 1991 Supplement: 1–10.

—. and W. Wieschaus. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287: 795–801.

Oberlander, H. 1985. The imaginal discs, pp. 151–182. In G. A. Kerkt and L. J. Gilbert [eds.], Comprehensive insect physiology, biochemistry and pharmacology. Pergamon, New York.

Panganiban, G., L. Nagy, and S. B. Carroll. 1994. The development and evolution of insect limb types. Current Biol. 4: 671–675.

Pankratz, M. J., and H. Jackle. 1990. Making stripes in the Drosophila embryo. TIG 6: 287–292.

—. 1993. Blastoderm segmentation, pp. 467–516. In M. Bate and A. Martinez-Arias [eds.], The development of Drosophila melanogaster. Cold Spring Harbor Press, Cold Spring Harbor, New York.

Patel, N. H. 1994a. Developmental evolution: Insights from studies of insect segmentation. Science 266: 581–589.

—. 1994b. The evolution of arthropod segmentation: insights from comparisons of gene expression patterns. Development 1994 Supplement: 201–207.

—. 1994c. Evolution of insect patterning. Proc. Natl. Acad. U.S.A. 91: 7385–7386.

—. T. B. Kornberg, and C. S. Goodman. 1989a. Expression of engrailed during segmentation in grasshopper and crayfish. Development 107: 201–212.

—. E. Martin-Blanco, K. G. Coleman, S. J. Poole, M. C. Ellis, T. B. Kornberg and C. S. Goodman. 1989b. Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58: 955–968.

—. E. E. Ball, and C. S. Goodman. 1992. Changing role of even-skipped during the evolution of insect pattern formation. Nature 357: 339–342.

—. B. G. Condon, and K. Zinni. 1994. Pair-rule expression patterns of even-skipped are found in both short- and long-germ beetles. Nature 367: 429–434.

Patterson, C. 1982. Morphological characters and homology, pp. 21–74. In K. A. Joysey, A. E. Friday [eds.], Problems of phylogenetic reconstruction. John Wiley and Sons, London, U. K.

Rapp, R., and T. Kaufman. 1983. Embryos, genes and evolution. Macmillan, New York.

Ransom, J. 1982. [Ed.] Handbook of Drosophila development. Elsevier, New York.

Regulski, M., N. McGinnies, R. Chadwick, and W. McGinnies. 1987. Development and molecular analysis of Deformed: a homologous gene controlling Drosophila head development. EMBO J. 6: 767–777.

Reuter, D., R. Schuh, and H. Jackle. 1989. The homologous gene spalt (sal) evolved during Drosophila speciation. Proc. Natl. Acad. U.S.A. 86: 5483–5486.

Rubin, G. 1989. Drosophila melanogaster as an experimental organism. Science 240: 1453–1459.

Russel, M. 1982. Imaginal discs, pp. 95–121. In J. Ransom [ed.], Handbook of Drosophila development. Elsevier, New York.

Saether, O. A. 1983. The canalized evolutionary potential: Inconsistencies in phylogenetic reasoning. Syst. Zool. 32: 343–359.

Sander, K. 1976. Specification of the basic body pattern in insect embryogenesis. Advanc. Insect. Physiol. 12: 125–138.

—. 1988. Studies in insect segmentation. Development 1988 Supplement: 112–121.

—. 1994. The evolution of insect patterning mechanisms: A survey of progress and problems in comparative molecular embryology. Development 1994 Supplement: 187–191.

Schmidt-Ott, U., and G. M. TechNaU. 1992. Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven remnants. Development 116: 111–125.

—. and M. Gonzalez-Gaitan, H. Jackle, and G. TechNaU. 1994a. Number, identity and sequence of the Drosophila head segments as revealed by neural elements in their deletion patterns in mutants. Proc. Natl. Acad. U.S.A. 91: 8363–8367.

—. K. Sander, and G. M. TechNaU. 1994b. Expression of engrailed in embryos of a beetle and five dipteran species with special references to the terminal regions. Roux's Arch. Developl. Biol. 203: 298–303.

Scholtz, G., N. H. Patel, and W. Dohle. 1994. Serially homologous engrailed stripes are generated via different cell lineages in the germ-band of amphipod crustaceans (Maiacosta, Peraearida). Int. J. Developl. Biol. 38: 471–478.

Schroder, R., and K. Sander. 1993. A comparison of transplantable bicoid activity and partial bicoid homeobox sequences in several Drosophila and blowfly species (Calliphoridae). Roux's Arch. Developl. Biol. 203: 34–43.

Schwalm, F. E. 1988. Insect morphogenesis. Karger, Basel.

Scott, M., and A. Weiner. 1984. Structural relationships among genes that control development: Sequence homology between the Antennapedia, Ultrathorax and fused torso loci of Drosophila. Proc. Natl. Acad. U.S.A. 81: 4115–4119.

ShubIN, N. 1994. The phylogeny of development and the origin of homology, pp. 201–226. In L. Grande and O. Rieppei [eds.], Interpreting the hierarchy of nature. Academic Press, San Diego, California.

Slyus, R. 1989. Rampant parallelism: An appraisal of the use of nonuniversal derived character states in phylogenetic reconstruction. Syst. Zool. 38: 350–370.

Snodgrass, R. E. 1935. Principles of insect morphology. McGraw-Hill, London and New York.

Sommer, J. R., and D. Tautz. 1991. Segmentation gene expression in the housefly Musca domestica. Development 113: 419–430.
——, AND ———. 1993. Involvement of an orthologue of the
Drosophila pair-rule gene *kfly* in segment formation of the short-
Germ-band embryo of *Tribolium* (Coleoptera) [see comments].
Nature 361: 448–450.

——, AND ———. 1994. Expression patterns of *twist* and *snail*
in *Tribolium* (Coleoptera) suggest a homologous formation of me-
soderm in long- and short-germ-band insects. *Development*
15: 32–37.

SPRENGER, F. AND C. NÜSSELI-VOLHARD. 1993. The terminal system
of axis determination in the *Drosophila* embryo, pp. 365–
386. In M. Bate and A. Martinez-Arias [eds.], The development
of *Drosophila melanogaster*. Cold Spring Harbor Press, Cold
Spring Harbor, New York.

STREIT, G. AND K. BASLER. 1993. Organizing activity of the wing-
less protein in *Drosophila*. *Cell* **72**: 527–540.

STUART, J. J., S. J. BROWN, R. W. BEEMAN, AND R. E. DENELL. 1993.
The *Tribolium* homeotic *Abdominal* is homologous to the
abdominal-A of the *Drosophila* Bithorax complex. *Development*
117: 233–243.

STURDEVANT, M. AND E. BEER. 1995. Analysis of the genetic hier-
archy guiding wing vein development in *Drosophila*. *Development*
121: 785–801.

SVACHA, P. 1992. What are and what are not imaginal discs: Re-
evaluation of some basic concepts. *Insecta, Holometabola.*
Development **154**: 101–117.

SWOFFORD, D. AND W. MADDISON. 1992. Parsimony, character state
reconstruction and evolutionary inferences, in R. L. Mayden [ed.],
Systematics, historical ecology and North American freshwater
fishes, Stanford University Press, Stanford, California.

TABIN, C. J. 1992. Why we have only five fingers per hand: Hox
genes and the evolution of paired limbs. *Development* **116**: 289–
296.

TAUTZ, D. 1994. Evolutionary analysis of genes involved in early
embryonic pattern formation in *Drosophila*, pp. 525–536. In B.
Schierwater, B. Streit, G. Wagner and R. DeSalle [eds.], Molecular
ecology and evolution: Approaches and applications. Birkhäuser,
Basel.

——, M. FRIEDRICH, AND R. SCHRODER. 1994. Insect embryogen-
esis-what is ancestral and what is derived. *Development 1994*
Supplement: 193–199.

——, AND R. J. SOMMER. 1995. Evolution of segmentation genes
in insects. *TIG* **11**: 23–27.

TEAR, G., C. BATE, AND A. MARTINEZ-ARIA. 1988. A phylogenetic
interpretation of the patterns of gene expression in *Drosophila*
embryos. *Development 1988 Supplement*: 135–146.

——, M. AKAM AND A. MARTINEZ-ARIA. 1990. Isolation of an
abdominal-A gene from the locust *Schistocerca gregaria* and its
expression during embryogenesis. *Development* **110**: 915–925.

TEERER, M., C. PFEIFFE, AND D. TAUTZ. 1989. Comparison of the
gap segmentation gene *hunchback* between *Drosophila melanogaster*
and *Drosophila virilis* reveals novel modes of evolutionary
change. *EMBO J.* **8**: 1517–1525

VACHON, G., B. COHEN, C. PFEIFFE, M. MCCUFFIN, J. BOTAS, AND S.
M. COHEN. 1992. Homeotic genes of the Bithorax complex repress
limb development in the abdomen of the *Drosophila* embryo through
the target gene *Distal-less*. *Cell* **72**: 437–450.

WARREN, R. W., L. NAGY, J. SELEGUE, J. GATES AND S. CARROLL.
1994. Evolution of homeotic gene regulation and function in flies
and butterflies. *Nature* **372**: 458–461.

WEBSTER, P. J. J. SUEN, AND P. M. MACDONALD. 1994. *Drosophila*
virilis oskar transgenes direct body patterning but not pole cell
formation or maintenance of mRNA localization in *D. melanogaster*.
Development **120**: 2027–2037.

WHEELER, M. R. 1981. The *Drosophilidae*: A taxonomic overview,
pp.1–97. In M. Ashburner, H. L. Carson and J. N. Thompson
[eds.], The genetics and biology of *Drosophila*, vol. 3a. Academic
Press, New York.

WHITING, M. AND W. C. WHEELER. 1994. Insect homeotic transfor-
mation. *Nature* **368**: 596.

WILLIAMS, J., AND S. B. CARROLL. 1993. The origin, patterning and
evolution of insect appendages. *BioEssays* **15**: 567–577.

——, S. PADDock, K. VORWECK, AND S. B. CARROLL. 1994. Or-
ganization of wing formation and induction of a wing-patterning
gene at the dorsal/ventral compartment boundary. *Nature* **368**:
299–305.

WILSON, C., R. PEARSON, H. BELLEN, C. O’KANE, U. GROSSLINKAUS,
AND W. GEHRING. 1989. P-element-mediated enhancer detection:
an efficient method for isolating and characterizing development-
ally regulated genes in *Drosophila*. *Genes and Development*
3: 1301–1313.

WOLPERT, L. 1994. The evolutionary origin of development: cycles,
patterning, privilege and continuity. *Development 1994 Supple-
ment*: 79–84.

WYATT, G., AND A. BELY. 1994. The evolution of echinoderm de-
velopment is driven by several distinct factors. *Development 1994*
Supplement: 97–106.

YOUANNISI-HARTENSTEIN, A., U. TEPASS, AND V. HARTENSTEIN. 1993.
Embryonic origin of the imaginal discs of the head of *Drosophila melano-
gaster*. *Rosa’s Arch. Developm. Biol.* **283**: 60–73.

ZUKER, C. S. 1994. On the evolution of eyes: would you like it
simple or compound. *Science* **265**: 742–743.