ε expansion analysis of very weak first-order transitions in the cubic anisotropy model, Part II

Peter Arnold and Yan Zhang

Department of Physics, University of Washington, Seattle, Washington 98195

(December 7, 2017)

Abstract

A companion article analyzed very weakly first-order phase transitions in the cubic anisotropy model using ε expansion techniques. We extend that analysis to a calculation of the relative discontinuity of specific heat across the transition.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the product or process disclosed, or represents that its use would not infringe privately-owned rights. By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright covering this paper.
I. INTRODUCTION

In this work, we use ϵ expansion methods to compute the universal ratio C_+/C_- of specific heats for arbitrarily weak first-order phase transitions in the cubic anisotropy model. C_+ and C_- are the specific heats of the disordered and ordered phases at the transition temperature. This work is a direct follow up to the computations of other universal ratios in ref. [1], and we shall eschew any discussion of motivation or review of method and notation; instead, we jump directly into the calculation. The reader should read ref. [1] first.

In the next section, we review the leading-order calculation of the ratio, which was first performed by Rudnick in ref. [2]. Our result differs by a factor of 4. In section III, we proceed to next-to-leading order in ϵ. Our final results are displayed in section IV.

II. LEADING-ORDER ANALYSIS OF C_+/C_-

Recall from the introduction of ref. [1] that, in the three-dimensional theory, the square m^2 of the scalar mass plays the roll of the reduced temperature near the transition and the effective potential V represents the free energy of the system. The specific heat can be extracted from the effective potential as

$$C \propto \frac{d^2V}{d(m^2)^2}. \tag{1}$$

The proportionality constant will not matter to our determination of the ratio C_+/C_-.\footnote{In particular, the reduced temperature is proportional to $m^2(\mu_0)$ for some fixed renormalization scale μ_0, but we will instead apply (1) with $m^2(\mu)$ where $u\mu$ is roughly the order of the correlation length and varies as we approach the transition. [Specifically, we choose μ so that $u(\mu) = -v(\mu)$.] However, $m^2(\mu)$ is related to $m^2(\mu_0)$ by multiplicative renormalization which, even though μ dependent, cancels in the ratio.}

Because of this relationship, it is useful to begin by summarizing the leading-order form of the effective potential discussed in ref. [1].
A. Summary of leading-order potential

At one-loop order, the effective potential along an edge \(\vec{\phi} = (\phi, 0, 0, \ldots) \), evaluated at the tree-level instability line \(u = -v \), is [eq. (3.9) of ref. [1]]:

\[
\begin{align*}
N \mu^\epsilon (V_0 + V_1) = & \Lambda + 3u^{-1}m^2 M^2 + \frac{1}{4}m^4 \left[\ln \left(\frac{m^2}{\mu^2} \right) - \frac{C_{10}}{C_{11}} \right] \\
& + C_{11}(m^2 + M^2)^2 \left[\ln \left(\frac{m^2 + M^2}{\mu^2} \right) - \frac{C_{10}}{C_{11}} \right] + O(\epsilon), \\
\end{align*}
\]

(2)

where \(M^2 \equiv \frac{1}{6} N u \phi^2 \), \(C_{11} = \frac{1}{4}(n-1) \), \(C_{10} = -\frac{3}{2}C_{11} \), and the normalization \(N \) is

\[
N = (4\pi)^{d/2} \Gamma \left(\frac{d}{2} - 1 \right)
\]

(3)
in \(d = 4 - \epsilon \) spatial dimensions.

A first-order transition occurs as \(m^2 \) is varied. At the transition, in the asymmetric phase, \(m^2/M^2 \sim O(\epsilon) \). In the asymmetric phase, the potential then reduces to

\[
\begin{align*}
N \mu^\epsilon (V_0 + V_1) = & \Lambda + 3u^{-1}m^2 M^2 + M^4 \left[C_{11} \ln \left(\frac{M^2}{\mu^2} \right) + C_{10} \right] + O(\epsilon^2 V)_{\text{asym}}. \\
\end{align*}
\]

(4)

The transition occurs when

\[
m^2 = m_1^2 [1 + O(\epsilon)].
\]

(5)

and the asymmetric minimum is at

\[
M^2 = M_1^2 [1 + O(\epsilon)].
\]

(6)

where

\[
\begin{align*}
m_1^2 &\equiv \frac{C_{11} u \mu^2}{3} \exp \left(-1 - \frac{C_{10}}{C_{11}} \right) = \frac{n-1}{12} u \mu^2 \epsilon^{1/2}, \\
M_1^2 &\equiv \mu^2 \exp \left(-1 - \frac{C_{10}}{C_{11}} \right) = \mu^2 \epsilon^{1/2}.
\end{align*}
\]

(7)

(8)

We will also need the variation of the asymmetric minimum as one varies \(m^2 \) slightly away from the transition:

\[
\frac{d(M^2)}{d(m^2)} \bigg|_{m^2=m_1^2(1+O(\epsilon))} = -\frac{3}{C_{11} u} + O(\epsilon^0),
\]

(9)
Finally, we will need the renormalization group flow of the various couplings, previously presented in ref. [1]. At leading order,

$$\mu \partial_\mu m^2 = (\beta^{(1)}_{m^2}(u, v) + O(u^2, v^2))m^2,$$

(10)

$$\mu \partial_\mu u = -\epsilon u + \beta^{(1)}_u(u, v) + O(u^3, v^3),$$

(11a)

$$\mu \partial_\mu v = -\epsilon v + \beta^{(1)}_v(u, v) + O(u^3, v^3),$$

(11b)

where

$$\beta^{(1)}_{m^2} = n + \frac{2}{3} u + v,$$

(12)

$$\beta^{(1)}_u = u \left(\frac{n + 8}{3} u + 2v \right),$$

(13)

$$\beta^{(1)}_v = v(4u + 3v).$$

(14)

It is also convenient to introduce $f \equiv u/v$ and

$$\mu \partial_\mu f = \beta^{(1)}_f(u, f) + O(u^2, v^2),$$

(15)

$$\beta^{(1)}_f = u \left(\frac{n - 4}{3} f - 1 \right).$$

(16)

B. Specific heats

The most non-trivial task in computing the specific heat ratio at the transition will be to handle the renormalization group flow of the constant term Λ in the potential. Before investigating this, we first write down the expression for C_+ and C_- given the potential. From (3),

$$C_+ \propto \left(\frac{d}{d(m^2)} \right)^2 \mathcal{N}_i V(M^2 = 0)|_{m^2 = m_i^2(1 + O(\epsilon))}$$

$$= \left(\frac{d}{d(m^2)} \right)^2 \Lambda + \frac{n}{2} \left[\ln \left(\frac{m_i^2}{\mu^2} \right) \right] + O(\epsilon)$$

$$= \left(\frac{d}{d(m^2)} \right)^2 \Lambda + 2 \left(\frac{1}{4} + C_{11} \right) \left[\ln (2C_{11} u) + \frac{1}{2} \right] + O(\epsilon),$$

(17)
where the second derivative of Λ is understood to be evaluated at the transition $m^2 = m_1^2(1 + O(\epsilon))$. Using (4) for the asymmetric phase, and remembering that $\partial_M V(M) = 0$ at the asymmetric minimum,

$$C_- \propto \left(\frac{d}{d(m^2)} \right)^2 N \mu' V(M) \big|_{m^2 = m_1^2(1 + O(\epsilon))}$$

$$= \left(\frac{d}{d(m^2)} \right)^2 \Lambda + \frac{3 d(M^2)}{u \, d(m^2)} \big|_{m^2 = m_1^2} + O(1/\epsilon)$$

$$= \left(\frac{d}{d(m^2)} \right)^2 \Lambda - \frac{9}{u^2} \frac{1}{C_{11}} + O(1/\epsilon), \quad (18)$$

where M has been evaluated at the transition using (3) and (3). C_+ will be shown to be $O(1/\epsilon)$ while C_- is $O(1/\epsilon^2)$.

\section*{C. The running of Λ}

Now we turn to the contribution to the specific heat from the term Λ. The renormalization group equation for Λ at one-loop order is

$$\mu \partial_\mu \Lambda = \epsilon \Lambda + \frac{n}{2} m^4 (1 + O(u, v)) \ . \quad (19)$$

The solution, in terms of $m^2(\mu)$, is

$$\Lambda(\mu) = \left(\frac{\mu}{\mu_0} \right)^\epsilon \Lambda(\mu_0) + \frac{n}{2} \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \left(\frac{\mu}{\mu'} \right)^\epsilon [m^2(\mu')]^2 (1 + O(u, v)) \ , \quad (20)$$

where μ_0 is some initial scale. The running (14) of m^2 yields

$$m^2(\mu) = E^{(1)}(\mu, \mu_0) m^2(\mu_0) (1 + O(u, v)) \ , \quad (21)$$

where

$$E^{(1)}(\mu, \mu_0) = \exp \left(\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \beta^{(1)}(\mu') \right) \quad (22)$$

and the integral is to be understood as evaluated along the leading-order solution for the coupling constant trajectory. The contribution of Λ to the specific heat is then
\[
\left(\frac{d}{d(m^2)}\right)^2 \Lambda = n \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \left(\frac{\mu}{\mu'}\right)^\epsilon \left[E^{(1)}(\mu', \mu)\right]^2 \left(1 + O(u, v)\right) .
\]

(23)

\(E^{(1)} \) can be easily evaluated by changing variables from \(\mu' \) to \(f \) using (15) and noting that \(\beta_m^{(1)}/\beta_f^{(1)} \) depends only on \(f \):

\[
E^{(1)}(\mu, \mu_0) = \exp \left\{ \int_{f_0}^{f} \frac{d f'}{f} \left(\frac{f_0 + \lambda}{f + \lambda} \right)^{(n\lambda-1)/2} \right\}
\]

where

\[
\lambda \equiv \frac{3}{4-n} .
\]

(25)

The remaining integral in (23) can be performed similarly if we make use of the following relation ((A10a) of ref. [1]) for the solution to the leading-order RG flow equations (11):

\[
\left(\frac{\mu}{\mu_0}\right)^\epsilon = \frac{u_0}{u} \left(\frac{f_0}{f}\right)^2 \left(\frac{f_0 + \lambda}{f + \lambda}\right)^{n\lambda} .
\]

(26)

This gives

\[
\left(\frac{d}{d(m^2)}\right)^2 \Lambda = -\frac{n\lambda}{u(f + \lambda)} \int_{f_0}^{f} df' \left(\frac{f'}{f}\right)^2 \left(\frac{f' + \lambda}{f + \lambda}\right)^{n\lambda-1} \left[E^{(1)}(f', f)\right]^2 \left(1 + O(u, v)\right) \\
= -\frac{n\lambda}{u(f + \lambda)} \int_{f_0}^{f} df' \left(1 + O(u, v)\right) .
\]

(27)

So the result is

\[
\left(\frac{d}{d(m^2)}\right)^2 \Lambda = -\frac{n\lambda}{u(\mu)} \frac{[f(\mu) - f(\mu_0)]}{(f(\mu) + \lambda)} \left[1 + O(\epsilon)\right] .
\]

(28)

The only other elements we need are the values of \(f(\mu_0) \), \(f(\mu) \), and \(u(\mu) \) for the desired trajectory. As discussed in ref. [1], we can obtain the universal ratios of interest by studying the trajectory that flows away from the cubic fixed point at \(f(\mu_0) = -\lambda \) to the line of classical instability \(u= -v \) at \(f(\mu) = -1 \) and \(u = u_\ast \), where, at leading order,

\[
u_\ast = \frac{3(n^2 + 5n + 3)}{n(n + 2)(n + 8)} \epsilon .
\]

(29)

For this trajectory,

\[
\left(\frac{d}{d(m^2)}\right)^2 \Lambda = -\frac{n\lambda}{u_\ast} + O(\epsilon^0) .
\]

(30)
This is $O(1/\epsilon)$ and dominates $C_+ \, [17]$, but it does not contribute at leading order to $C_- \, [18]$. Putting it all together,

$$\frac{C_+}{C_-} = \frac{n\lambda C_{11}}{9} u_\ast + O(\epsilon^2)$$

$$= \frac{(n-1)(n^2+5n+3)}{4(n+2)(n+8)(4-n)} \epsilon + O(\epsilon^2)$$

$$= \frac{17}{320} \epsilon + O(\epsilon^2) \quad \text{for } n = 2. \quad (31)$$

This result is 4 times smaller than the result originally quoted by Rudnick [2].

III. NEXT-TO-LEADING-ORDER ANALYSIS OF C_+/C_-

Because the contribution of Λ dominated C_+, our formula (17) for C_+ is adequate at next-to-leading order provided we extend our analysis of Λ to next-to-leading order. Before doing so, let us first consider $C_-.$

A. The asymmetric phase: C_-

The two-loop effective potential near the asymmetric phase is given in ref. [1] (see eqs. (4.1), (4.2), and (4.4)):

$$N \mu^\epsilon (V_0 + V_1 + V_2) = \Lambda + 3u^{-1} m^2 M^2 + M^4 \left[C_{11} \ln \left(\frac{M^2}{\mu^2} \right) + C_{10} \right]$$

$$+ N \mu^\epsilon \delta V_1 + N \mu^\epsilon V_2 + O(\epsilon^2 V)_{\text{asym}}, \quad (32)$$

where

$$N \mu^\epsilon \delta V_1 = 2C_{11} m^2 M^2 \left[\ln \left(\frac{M^2}{\mu^2} \right) - 1 \right]$$

$$+ \epsilon M^4 \left[-\frac{1}{4} C_{11} \ln^2 \left(\frac{M^2}{\mu^2} \right) - \frac{1}{2} C_{10} \ln \left(\frac{M^2}{\mu^2} \right) + C_{e10} \right] \quad (33)$$

$$N \mu^\epsilon V_2 = u M^4 \left[C_{22} \ln^2 \left(\frac{M^2}{\mu^2} \right) + C_{21} \ln \left(\frac{M^2}{\mu^2} \right) + C_{20} \right], \quad (34)$$

and
\[C_{22} = \frac{n+2}{6} C_{11}, \quad C_{21} = -\frac{(n+6)}{3} C_{11}. \]

(35)

As discussed in ref. [1], we shall not need to know \(C_{10}^{\varepsilon} \) and \(C_{20}^{\varepsilon} \). The transition takes place at

\[m^2 = m_2^2 \left[1 + O(\varepsilon^2) \right], \]

(36)

with the asymmetric minimum at

\[M^2 = M_2^2 \left[1 + O(\varepsilon^2) \right], \]

(37)

where

\[m_2^2 = m_1^2 \left[1 + \left(-\frac{5}{16} - \frac{C_{10}}{C_{11}} \right) \varepsilon + \left(\frac{(n-4)}{24} - \frac{1}{2} C_{21} \frac{C_{20}}{C_{11}} \right) u \right], \]

(38)

\[M_2^2 = M_1^2 \left[1 + \left(-\frac{13}{16} - \frac{C_{10}}{C_{11}} \right) \varepsilon + \left(-\frac{(3n+2)}{8} - \frac{3}{2} \frac{C_{21}}{C_{11}} \frac{C_{20}}{C_{11}} \right) u \right]. \]

(39)

At the transition,

\[\left. \frac{d(M^2)}{d(m^2)} \right|_{m^2 = m_2^2 (1 + O(\varepsilon^2))} = -\frac{3}{C_{11} u} \left[1 + (C_{11} - 3 C_{22} \frac{C_{20}}{C_{11}}) + O(\varepsilon^2) \right]. \]

(40)

The result for \(C_- \) is

\[C_- \propto \left(\frac{d}{d(m^2)} \right)^2 N \mu^4 V(M) \mid_{m^2 = m_2^2 (1 + O(\varepsilon^2))} = \left(\frac{d}{d(m^2)} \right)^2 \Lambda + \left. \frac{d(M^2)}{d(m^2)} \right|_{m^2 = m_2^2} \left[\frac{3}{u} + 2 C_{11} \ln \left(\frac{M^2}{\mu^2} \right) \right] + O(\varepsilon^0) = \left(\frac{d}{d(m^2)} \right)^2 \Lambda - \frac{9}{u^2} C_{11} \left[1 + \left(\frac{4}{3} C_{11} - 3 C_{22} \frac{C_{20}}{C_{11}} \right) u \right] + O(\varepsilon^0). \]

(41)

Since the contribution of \(\Lambda \) is sub-leading, the leading-order result (30) for the contribution is adequate here.

B. The NLO running of \(\Lambda \)

Now we are left with calculating \(d^2 \Lambda / d(m^2)^2 \) to next-to-leading order. The two-loop renormalization group equation is
\[\mu \partial_\mu \Lambda = \epsilon \Lambda + \frac{n}{2} (m^2)^2 (1 + O(u^2, v^2)) , \]
(42)

which has the same form as the one-loop equation. It's solution then also has the same form,

\[
\left(\frac{d}{d(m^2)} \right)^2 \Lambda = n \int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \left(\frac{\mu}{\mu'} \right)^\epsilon [E(\mu', \mu)]^2 (1 + O(u^2, v^2)) ,
\]
(43)

where

\[E(\mu, \mu_0) = \exp \left(\int_{\mu_0}^{\mu} d\mu' \beta (m^2) \right) , \]
(44)

but now both the \(\beta \)-functions and renormalization group trajectories should be evaluated at two loops. The two-loop \(\beta \)-functions are given in Sec. VI A of ref. [1]:

\[\beta = \beta^{(1)} + \beta^{(2)} + O(u^4, v^4) , \]
(45)

where

\[\beta^{(2)}_m = -\frac{5}{6} \left[\frac{(n+2)}{3} u^2 + 2uv + v^2 \right] , \]
(46)

\[\beta^{(2)}_u = -\frac{(3n+14)}{3} u^2 - \frac{22}{3} u^2 v + \frac{5}{3} uv^2 , \]
(47)

\[\beta^{(2)}_v = -\frac{(5n+82)}{9} u^2 v - \frac{46}{3} uv^2 - \frac{17}{3} v^3 . \]
(48)

To evaluate the integrals, we again change variables from \(\mu \) to \(f \), and we shall treat the two-loop effects on \(\beta \)-functions and trajectories perturbatively. Following sec. V ID of ref. [1], it is helpful to make the \(\epsilon \) dependence explicit by rewriting \((u, v) = \epsilon (\bar{u}, \bar{v})\), and the expansion of the trajectory gives

\[\bar{u}(f) = \bar{u}^{[1]}(f) + \epsilon \delta(f) + O(\epsilon^2) , \]
(49)

where \(\bar{u}^{[1]}(f) = f R(f, c) \) is the one-loop result described in sec. IV C of ref. [1]. The solution for \(\delta(f) \) is given by eq. (6.23) of ref. [1].

To change variables from \(\mu \) to \(f \), we use

\[\frac{d\mu}{\mu} = \frac{df}{\beta_f} = \left[\beta_f^{(1)} + \epsilon \beta_f^{(2)} + O(\epsilon^2) \right]^{-1} \bigg|_{\bar{u}^{[1]}(f), f} = \frac{df}{\beta_f^{(1)}} \left[1 - \frac{\epsilon}{\beta_f^{(1)}} \left(\delta(f) \partial_f \beta_f^{(1)} + \beta_f^{(2)} \right) + O(\epsilon^2) \right] \bigg|_{\bar{u}^{[1]}(f), f} . \]
(50)
The subscript \(\bar{u}^{[1]}(f), f\) at the end of this equation means that the \(\beta\)-functions in the expression are to be evaluated with \(u \rightarrow \bar{u}^{[1]}(f)\) and \(v \rightarrow \bar{u}^{[1]}(f)/f\). Expanding the definition \((44)\) in \(\epsilon\) then gives

\[
E(f, f_0) = E(1)(f, f_0) [1 + \epsilon \delta E(f, f_0) + O(\epsilon^2)],
\]

where \(E(1)\) is the leading-order form of \((24)\) and

\[
\epsilon \delta E(f, f_0) = \int f \frac{df'}{f_0} \left\{ \frac{1}{\beta_f^{(1)}} \left[\delta(f') \partial_a \beta_a^{(1)} + \beta_a^{(2)} \right] - \frac{\beta_m^{(1)}}{\left(\beta_f^{(1)}\right)^2} \left[\delta(f') \partial_a \beta_a + \beta_f^{(2)} \right] \right\} \bigg|_{\bar{u}^{[1]}(f'), f'}.
\]

To do the final integral of \((43)\), we need an expansion of \((\mu/\mu')^\epsilon\). This can be obtained by writing

\[
\left(\frac{\mu}{\mu'}\right)^\epsilon = \exp \left(\epsilon \int_{\mu'}^{\mu} \frac{d\mu''}{\mu''} \right),
\]

and converting to \(f\) with the expansion \((51)\). Putting all the expansions together yields

\[
\left(\frac{d}{d(m^2)}\right)^2 \Lambda = -\frac{n \lambda}{u^{[1]}(f(\mu)) (f(\mu) + \lambda)} \times \int^{f(\mu)}_{f(\mu_0)} df' \left\{ 1 + \epsilon \left[2 \delta E(f', f(\mu)) + X_1(f') + X_2(f') \right] + O(\epsilon^2) \right\},
\]

where

\[
X_1(f') = -\frac{1}{\beta_f^{(1)}} \left. \left(\delta(f') \partial_a \beta_a + \beta_f^{(2)} \right) \right|_{\bar{u}^{[1]}(f'), f'},
\]

\[
X_2(f') = -\int^{f(\mu)}_{f'} \frac{df''}{\left(\beta_f^{(1)}\right)^2} \left. \left(\delta(f'') \partial_a \beta_a + \beta_f^{(2)} \right) \right|_{\bar{u}^{[1]}(f''), f''}.
\]

This integration does not seem to have a simple form for general \(n\). For \(n = 2\), we are able to obtain a simple result for the trajectory flowing away from the cubic fixed point to the classical instability line \(u = -v\):

\[
\left(\frac{d}{d(m^2)}\right)^2 \Lambda = -\frac{3}{u_*} \left\{ 1 + \epsilon \left[\frac{49}{40} - \frac{3}{5} \ln \frac{3}{2} \right] + O(\epsilon^2) \right\},
\]

11
Putting everything together, and using the next-to-leading order \(n=2\) result

\[u_* = \frac{51}{80} \epsilon + \left(\frac{243}{80} \ln \frac{3}{2} - \frac{171}{200} \right) \epsilon^2 + O(\epsilon^3) \] (58)

for \(u_*\) from eq. (6.28) of ref. [1], our final result is then

\[\frac{C_+}{C_-} = \frac{17}{320} \epsilon \left\{ 1 - \frac{17}{80} \epsilon \ln \epsilon + \epsilon \left[\frac{17}{80} \ln \frac{320}{17} + \frac{354}{85} \ln \frac{3}{2} - \frac{4967}{5440} \right] + O(\epsilon^2) \right\} \] (59)

for \(n=2\).

IV. DISCUSSION

Evaluated numerically, the final result (59) for the ratio is

\[\frac{C_+}{C_-} = 0.0531 \epsilon \left[1 + \epsilon (-0.2125 \ln \epsilon + 1.3993) + O(\epsilon^2) \right] . \] (60)

This ratio is compared against Monte Carlo simulations [3] in ref. [4]. The 140\% correction at next-to-leading order for \(\epsilon=1\) suggests that the \(\epsilon\) expansion will be at best marginally successful for this quantity.

This work was supported by the U.S. Department of Energy, grants DE-FG06-91ER40614 and DE-FG03-96ER40956. We thank Larry Yaffe for useful discussions.
REFERENCES

[1] P. Arnold and L. Yaffe, University of Washington preprint UW/PT-96-23, hep-ph/9610448.

[2] J. Rudnick, Phys. Rev. B 11, 3397 (1975).

[3] P. Arnold and Y. Zhang, University of Washington preprint UW/PT-96-26.

[4] P. Arnold, S. Sharpe, L. Yaffe and Y. Zhang, University of Washington preprint UW/PT-96-25 (in preparation).