Indoor PM2.5 Mortality in China when Outdoor Air Meets 2021 WHO AQG

Ying Hu
Tsinghua University

John Ji
Tsinghua University

Bin Zhao (✉ binzhao@tsinghua.edu.cn)
Tsinghua University https://orcid.org/0000-0003-1325-6091

Article

Keywords: indoor air, fine particulate matter, health effect, cooking, smoking, China

Posted Date: December 9th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1137306/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Indoor PM$_{2.5}$ Mortality in China when Outdoor Air Meets 2021 WHO AQG

Ying Hua, John S. Jib and Bin Zhao$^{a, c, *}$

aDepartment of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, China.

bVanke School of Public Health, Tsinghua University, Beijing, 100084, China.

cBeijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing, 100084, China.

* Bin Zhao

Email: binzhao@tsinghua.edu.cn
Abstract

The World Health Organization (WHO) Air Quality Guidelines (AQG) 2021 for PM$_{2.5}$ is tightened to be 5 μg/m3. We firstly estimated deaths attributable to human exposure to PM$_{2.5}$ (DAHP) to be 455 thousand (372-527) in urban China in 2019, of which indoor sources contributed 253 thousand (207-294) deaths. The economic losses related to PM$_{2.5}$ from indoor sources were 0.98 trillion (0.80-1.14) RMB, accounting for 56% of the total economic losses. We then further projected the DAHP at 328 thousand (260-392) when the outdoor PM$_{2.5}$ concentration is 5 μg/m3, while PM$_{2.5}$ from indoor sources still causes 297 thousand (235-355) deaths and 1.27 trillion (1.00, 1.51) in economic losses each year. There are significant health hazards and economic losses caused by indoor PM$_{2.5}$, even the outdoor air is clean enough. The formulation and implementation of more air pollution policies are therefore in urgent need to control indoor sources of PM$_{2.5}$.

Keywords: indoor air, fine particulate matter, health effect, cooking, smoking, China.
Introduction

PM$_{2.5}$ pollution is a global concern. The World Health Organization (WHO) issued a new set of guidelines on air pollution on Sept 22, 2021, tightening the PM$_{2.5}$ Air Quality Guidelines (AQG) from 10 μg/m3 to 5 μg/m31. Particularly, the guidelines stated that the same AQG should be applied to indoor environments. There are important sources of PM$_{2.5}$ indoors. WHO has been calling for attention to household air pollution due to solid fuels and kerosene in open fires for cooking. However, even in households using clean fuels and technologies, typically in urban areas, cooking and smoking produce a large amount of PM$_{2.5}$2–3. Our latest study separated the contribution of indoor and outdoor sources for human exposure to PM$_{2.5}$ in urban China, and we figured out that indoor sources contribute over 50% of total PM$_{2.5}$ exposure for Chinese urban residents in 2019 4. However, the health effect and corresponding economic losses related to PM$_{2.5}$ from indoor sources are not clear. In particular, current policies on air pollution control of various countries still aim at reducing outdoor PM$_{2.5}$ concentrations, including strengthening industrial emission, electrification of road vehicles, adjustment of energy structure5. However, in view of the significant contribution of PM$_{2.5}$ from indoor sources to human exposure, indoor PM$_{2.5}$ concentrations are likely to remain very high when outdoor PM$_{2.5}$ meets the AQG, resulting in considerable health effects and economic losses. In this study, we estimated the deaths and economic losses attributable to PM$_{2.5}$ from indoor and outdoor sources based on our previous modelled human exposure to PM$_{2.5}$ from indoor and outdoor originated sources in Chinese urban areas in 2019 4, and we further analyzed the scenario when the outdoor air meets the WHO AQG 2021.

Results

The deaths and economic losses attributable to PM$_{2.5}$ in Chinese urban areas in 2019. The deaths attributable to human exposure to PM$_{2.5}$ (DAHP) was 455 thousand (372-527) [mean(95%CI)] in Chinese urban areas in 2019, which equates to 84 deaths (69-97) per 100,000 people. The corresponding economic losses were projected to be 1.76 trillion (1.44-2.04) RMB, approximately equivalent to 2% of GDP in China in 2019 (Table 1). Ischemic heart disease (IHD) and stroke were the two leading causes of DAHP, causing 142 thousand (117-161) and 136 thousand (116-154) deaths, accounting for 31% and 30% of the DAHP, respectively (Fig. 1a). The DAHP related to chronic obstructive pulmonary disease (COPD), lung cancer (LC), lower respiratory infections (LRI) and type 2 diabetes (DM2) were 176 thousand (139-212) deaths in total. DAHP in Chinese urban areas is splited according to sources of PM$_{2.5}$ (Fig. 1b). The DAHP from indoor sources were estimated to be 253 thousand (207-294) in Chinese urban areas in 2019, of which indoor cooking and smoking contributed 193 thousand (158-224) and 60 thousand (49-70) deaths, accounting for 43% and 13% of the DAHP, respectively. The economic losses related to PM$_{2.5}$ from indoor sources were 0.98 trillion (0.80-1.14) RMB, accounting for 56% of the total economic losses, including 0.75 trillion (0.61-0.87) RMB from cooking and 0.23 trillion (0.19-0.27) RMB from smoking (Table 1).

The human exposure of PM$_{2.5}$ and its health effect when the outdoor air meets the WHO AQG 2021. The concentration of human exposure to PM$_{2.5}$ was projected to decrease from 62.6 μg/m3 (58.5-67.5) in 2019 [the annual average concentration of ambient PM$_{2.5}$ is 36±15 μg/m3 (mean±standard deviation)] to 39.3 μg/m3 (35.3-44.0) when the outdoor air meets the WHO AQG 2021 (i.e., the annual concentration of ambient PM$_{2.5}$ is 5 μg/m3) in Chinese urban areas, and the contribution of PM$_{2.5}$ from indoor sources to human exposure increased from 56% (55%-61%) to 91% (90%-92%). The DAHP were going to be 328 thousand (260-392) when the outdoor air meets the WHO AQG 2021, equivalent to 72% (70%-74%) of the DAHP in 2019. PM$_{2.5}$ from indoor sources still causes 297 thousand (235-355) deaths (Fig. 1b) and 1.27 trillion (1.00, 1.51) RMB in economic losses each year (Table 1). The DAHP related to different diseases were shown in Fig. 1a. IHD and stroke were still the most contributed causes of the DAHP when the outdoor air meets the WHO AQG 2021, with the deaths of 103 thousand (82-120) and 98 thousand (82-114).

Discussions

Our results demonstrate significant health hazards and economic losses caused by PM$_{2.5}$ originated from indoor sources in Chinese urban areas, where solid fuels and kerosene are almost of no use. There are still hundreds of thousands of people who die from illnesses attributable to PM$_{2.5}$ from indoor sources, even if the
outdoor air meets the WHO AQG 2021. It is essential to control the PM$_{2.5}$ from indoor sources to reduce the DAHP.

The WHO AQG 2021 for PM$_{2.5}$ is 5 μg/m3 applied to both outdoor and indoor environments. The concentration of human exposure to PM$_{2.5}$ was projected to be about 39.3 μg/m3 when the outdoor air meets the WHO AQG 2021 in Chinese urban areas. To meet the WHO AQG 2021, an additional 34.3 μg/m3 reduction in human exposure to PM$_{2.5}$ is required by controlling indoor sources. Cooking and smoking are sources of PM$_{2.5}$ in residences in Chinese urban areas, with the emission rate of PM$_{2.5}$ reaching up to 10 mg/min2 and 4 mg/min2, respectively. More than 90% of households in Chinese urban areas cook at home at least once a day according to our survey4. People usually run range hoods to reduce indoor PM$_{2.5}$ concentration during cooking. But the exhaust efficiencies of range hoods are very low in Chinese homes, less than 60%6. High exhaust efficiency but low-energy-consumption range hoods and scientific kitchen layouts, structures, and ventilation designs are urgently needed for households in Chinese urban areas to protect people from exposure to PM$_{2.5}$ emitted during cooking6. Maintaining good habits of using range hoods, such as washing them regularly and running for some time after cooking, are also ways to reduce human exposure to PM$_{2.5}$ from cooking. The smoking ban has been implemented in China for many years. However, there are still 44.9% of adults and 63.2% of adolescents exposed to second-hand smoke$^7-9$. Strict enforcement of banning smoking is also in urgent need to reduce exposure to second-hand smoke in China. In addition, the use of air purifiers can effectively remove PM$_{2.5}$ indoors, and there has been evidence supporting the health benefits of using air purifiers9. However, they are still not cost-benefit effective10. Reducing the cost of air purifiers may be beneficial for their promotion, particularly for middle- and low-income groups.

More than 70% of the people in the world use clean fuels or technologies11. This study showed that approximately 250 thousand people using clean fuels or technologies could have premature mortality or morbidity attributable to PM$_{2.5}$ from indoor sources in China in 2019, indicating the significant health effect of PM$_{2.5}$ from indoor sources in areas using clean fuels or technologies. A study based on the WHO Global HAP Database showed the concentration of human exposure to PM$_{2.5}$ were ranged 20-102 μg/m3 in families using gas or electric energy sources in Latin America, Asia and Africa12. Several other studies in the US13 and Europe14 have also shown the significant contribution of indoor sources of PM$_{2.5}$. The strong contribution of indoor sources to human exposure to PM$_{2.5}$ implies the potential significant health impact around the world in areas using clean fuels or technologies, but unfortunately being overlooked, likely because indoor sources are more technically challenging to be monitored at scale. We are calling for the formulation and implementation of more air pollution policies to control indoor sources of PM$_{2.5}$.

Materials and Methods

Human exposure to fine particulate matter (PM$_{2.5}$) from different sources in Chinese urban areas. The concentration of human exposure to PM$_{2.5}$ (represented by the parameter C) is defined as the arithmetic means of the PM$_{2.5}$ concentrations over the exposure period, reporting in μg/m3. The annual average C originated from three kinds of sources, i.e., cooking, smoking, and ambient, in Chinese urban areas in 2019, have been reported in our previous study4. There, we established a source-specific PM$_{2.5}$ exposure model to separate the contribution of indoor and outdoor sources to C. After validating the model with measured human exposure concentration in different cities, we simulated C from indoor and outdoor sources of different populations by combining the model with the concentration of ambient PM$_{2.5}$ from outdoor monitoring stations in China, the measured emission rates of PM$_{2.5}$ from smoking and cooking, and the habits of cooking and smoking in Chinese urban areas4. The simulated results provided intra-population variability distribution of annual C from indoor and outdoor sources for urban residents in 333 Chinese cities in 2019, where the population was grouped according to their age (10 age groups, i.e., 0–0.5, 0.5–1, 1–2, 3–6, 7–11, 12–17, 18–44, 45–59, 60–79, and beyond 80 years old), gender (male and female) and second-hand smoke (from smoking and non-smoking households)4. Here, C$_{ambient}$ and C$_{cooking}$ referring to the C from outdoor and indoor sources of non-smoking households (i.e., only cooking present as indoor source) in the population respectively, were applied for later estimation of disease burden. These two parameters were denoted as OEC (outdoor source exposure concentration) and
IEC (indoor source exposure concentration) for non-smoking households in Hu and Zhao (2021) 4; and the values of them were provided in Table S13 in Hu and Zhao (2021) 4. Then, C from smoking (C_{smoking}) were calculated with the following equation:

$$C_{\text{smoking}} = (C_{\text{SHS,indoor}} - C_{\text{cooking}})P_{\text{SHE}} \quad (S1)$$

where $C_{\text{SHS,indoor}}$ is the C from indoor source of smoking households in the population. The value of $C_{\text{SHS,indoor}}$ (denoted as IEC for smoking households) was also provided in Table S13 in Hu and Zhao (2021) 4. P_{SHE} is the proportion of the population exposed to second-hand smoke, calculated by

$$P_{\text{SHE,group}} = 1 - (1 - P_{\text{smoking,group}})^{\sum f P_{\text{smoking,group}}(1 - P_{\text{smoking,group}})^{-1}} \quad (S2)$$

where P_{smoking} is smoking rate, the subscript group represents the population with specific age and gender, and $P_{\text{smoking,group}}$ is the proportion of the population that the family household size is f. The age-, sex-, and provincial-specific smoking rates in 2019 were calculated using the age-, sex-, and provincial-specific smoking rates in 2013 15 and the ratio of smoking rates between 2013 15 and 2019 16. The proportion of family household size 1 to 10 in 31 Chinese provinces were obtained from the National Bureau of Statistics of China 17.

We also estimated C_{ambient}, C_{cooking} and C_{smoking} for urban residents of ages and genders in 333 Chinese cities when outdoor concentration of PM$_{2.5}$ was 5 μg/m3 [the World Health Organization (WHO) Air Quality Guidelines (AQQG) issued in 2021] 1. We set the concentration of ambient PM$_{2.5}$ at 5 μg/m3 and applied the same validated source-specific model in Hu and Zhao (2021) 4 to simulate C from indoor and outdoor sources in Chinese urban areas. Then we calculated C_{ambient}, C_{cooking} and C_{smoking} with Equations S1 and S2.

Deaths attributable to human exposure to PM$_{2.5}$ (DAHP). We estimated DAHP in Chinese urban areas in 2019 and when outdoor air meet the WHO AQG 2021 following the approach employed in Global Burden of Disease Study (GBD) 2019 18. Its great advantage is that it can split DAHP into deaths from multiple sources of PM$_{2.5}$ and estimate DAHP caused by six diseases, including ischemic heart disease (IHD), obstructive pulmonary disease (COPD), lung cancer (LC), lower respiratory infections (LRI), type 2 diabetes (DM2) and stroke.

The DAHP from specific sources of PM$_{2.5}$ (M_s) is determined by the source-specific annual average concentration of human exposure to PM$_{2.5}$ (\tilde{C}_s), population (N), age- and disease- specific death rates (MR), and population attributable fraction (PAF). PAF refers to the proportion of deaths in a population that can be attributed to a certain risk factor 15, i.e., human exposure to PM$_{2.5}$ in this study. The DAHP from specific sources for specific diseases in Chinese urban areas ($M_{s,d}$) were calculated with the following equation as that applied in GBD 2019 study 18:

$$M_{s,d} = \sum_g (\tilde{C}_{\text{ambient},g} + \tilde{C}_{\text{cooking},g} + \tilde{C}_{\text{smoking},g}) \times PAF_{d,g} \times MR_{d,g} \times N_g \quad (S3)$$

where the subscript s represented the source of PM$_{2.5}$ and it is ambient, cooking and smoking in this study; the subscript d represented the type of disease and subscript g represented a population of specific age groups (19 age groups, i.e., 0-1, 1-5, 5-10, 10-15...0-85, and beyond 85 years old) and gender groups (male and female) in specific cities (333 Chinese cities). The group-specific population size in Chinese urban areas in 2019 was calculated based on the urban population of each city in 2019 19 and the age and gender composition of the population of each province 17. The age-, sex-, province- and disease- specific baseline mortality rate for residences in Chinese urban areas in 2019 was calculated using the age-, sex-, region- (east, west and central China) and disease-specific baseline mortality rate in 2019 20 and the ratio of provincial and regional mortality rates 21.

PAF caused by disease d of the population g was calculated by

$$PAF_{d,g} = \frac{RR_{d,g} - 1}{RR_{d,g}} \quad (S4)$$

where RR is the relative risk, defined as the ratio of the probability of developing a disease in an exposed group to the probability of developing a disease in a comparison group. In this study, RR represented the ratio of risk at C to risk at theoretical minimum-risk exposure level (2.4-5.9 μg/m3) 18. A set of cause-specific risk
curves [meta-regression—Bayesian, regularised, trimmed (MR-BRT) curves] were provided in GBD 2019 for calculating the risk of developing a disease at specific concentrations of human exposure to PM$_{2.5}$. The risk curves are age-specific for IHD and stroke and were uniform across different age groups for COPD, LC and LRI.

Then calculated the population level RR for specific diseases considering the rate of second-hand smoke by

$$RR_{d,g} = RR_{SHS,d,g} \times P_{SHS,g} + RR_{non-SHS,d,g} \times (1 - P_{SHS,g})$$

where RR_{SHS} and $RR_{non-SHS}$ were RR for people from smoking and non-smoking households, calculated based on exposure concentration in the population in smoking households and non-smoking households (IEC+OEC, both provided in Table S13 in Hu and Zhao (2021) and risk curves.

Finally, the DAHP from source s (M_s) was estimated by

$$M_s = \sum_d M_{s,d}$$

Economic losses due to premature deaths. We estimated the economic losses due to DAHP in Chinese urban areas in 2019 and when outdoor meet the WHO AQG 2021. The value of statistical life (VSL) for mortality is widely used to convert the health effect of air pollution from premature deaths into monetary value. The VSLs vary with cities and social–economic factors. We used the following equations to estimate the economic losses due to DAHP in a specific city in Chinese urban (E_{target}).

$$E_{target} = VSL_{target} M_{target}$$

$$VSL_{target} = VSL_{baseline} + (INC_{target} - INC_{baseline})MVSL$$

where the subscript $baseline$ and $target$ represented the baseline and target city, respectively. The baseline city was Chongqing in this study. INC is per capita disposable income in Chinese urban areas in 2019, from the China city statistical year book-2020. $MVSL$ is the coefficient of marginal increase for saving a statistical life, which was the marginal increase for saving a statistical life (119,800 RMB) divided by annual income increases (1,200 RMB) in China. The $VSL_{baseline}$ in this study was 437,138 RMB which was determined for people in Chongqing.

Uncertainty analysis. We applied a two-stage Monte Carlo simulation to obtain the mean and 95% confidence interval of DAHP and economic loss. The two stages reflected the intra-population variability distribution of human exposure to PM$_{2.5}$ and the uncertainty of the risk curve, respectively. We performed 2,000 and 1,000 iterations (2,000,000 runs in total) at variability and uncertainty stages, respectively. We then averaged the variability stage to obtain 1000 population-level RRs, and further calculated PAF, DAHP, and economic loss and reported their mean and uncertainty intervals, i.e., the 2.5th–97.5th percentile of their values in the 1,000 uncertainty runs. Finally, we tested the robustness of the model by performing 250 times of Monte Carlo simulations and calculating the error of those 250 simulations. The result showed that the error was within 5%, indicating 2000 \times 1000 runs were sufficient to quantify the uncertainty of the projected results.

Data availability

The deaths attributable to human exposure to PM$_{2.5}$ in urban areas in 333 Chinese cities in 2019 (Table S1) and when outdoor air meets the WHO Air Quality Guideline 2021 (Table S2) were provided online. The source data underlying Fig. 1 is provided as a Source Data file.

Code availability

The codes used for analyzing data are available from the corresponding author on reasonable request.
References

1. World Health Organization (2021). WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf

2. Chen, C., Zhao, Y. and Zhao, B. (2018). Emission Rates of Multiple Air Pollutants Generated from Chinese Residential Cooking. Environ. Sci. Technol. 52, 1081-1087

3. Chen, C., Zhao, Y. and Zhao, B. (2018). Emission rates of ultrafine and fine particles generated from human smoking of Chinese cigarettes. Atmos. Environ. 194, 7-13

4. Hu, Y. and Zhao, B. (2021). Indoor sources strongly contribute to exposure of Chinese urban residents to PM2.5 and NO2. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2021.127829

5. Hoffmann, B., Boogaard, H., de Nazelle, A., et al. (2021). WHO Air Quality Guidelines 2021 – Aiming for Healthier Air for all: A Joint Statement by Medical, Public Health, Scientific Societies and Patient Representative Organisations. Int. J. Public Health 66, 1604465

6. Lv, L., Gao, J., Zeng, L., et al. (2021). Performance assessment of air curtain range hood using contaminant removal efficiency: An experimental and numerical study. Build. Environ. 188, 107456.

7. World Health Organization (2018). Global adult tobacco survey (GATS) china 2018 country report http://www.chinacdc.cn/

8. Chinese Center for Disease Control and Prevention. China Youth Tobacco Survey 2019. (2019).

9. Cosselman, K.E., Navas-Acien, A. and Kaufman, J.D. (2015). Environmental factors in cardiovascular disease. Nature Reviews Cardiology 12, 627-642

10. Liu, Y., Zhou, B., Wang, J., et al. (2021). Health benefits and cost of using air purifiers to reduce exposure to ambient fine particulate pollution in China. J. Hazard. Mater. 414, 125540

11. World Health Organization. Proportion of population with primary reliance on clean fuels and technologies for cooking. (2021).

12. Shupler, M., Godwin, W., Frostad, J., et al. (2018). Global estimation of exposure to fine particulate matter (PM2.5) from household air pollution. Environ. Int. 120, 354-363

13. Chu, M.T., Gillooly, S.E., Levy, J.I., et al. (2021). Real-time indoor PM2.5 monitoring in an urban cohort: Implications for exposure disparities and source control. Environ. Res. 193, 110561.
14. Assimakopoulos, V.D., Bekiari, T., Pateraki, S., et al. (2018). Assessing personal exposure to PM using data from an integrated indoor-outdoor experiment in Athens-Greece. Sci. Total Environ. 636, 1303-1320

15. Wang, M., Luo, X., Xu, S., et al. (2019). Trends in smoking prevalence and implication for chronic diseases in China: serial national cross-sectional surveys from 2003 to 2013. Lancet Respiratory Medicine 7, 35-45

16. Reitsma, M.B., Reitsma, M.B., Kendrick, P.J., et al. (2021). Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet 397, 2337-2360

17. National Bureau of Statistics of China. (2012). Tabulation on the 2010 population census of the People’s Republic of China (in Chinese). China Statistics Press. http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/left.htm

18. Murray, C.J.L., Aravkin, A.Y., Zheng, P., et al. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223-1249

19. Editorial board and editorial staff. (2020). China city statistical year book-2020. China Statistics Press. https://data.cnki.net/yearbook/Single/N2021050059

20. The National Center for Chronic and Noncommunicable Disease Control and Prevention and Chinese Center for Disease Control and Prevention. (2019). Report on chronic disease risk factor surveillance in China 2019. Science and technology of China press. http://ncncd.chinacdc.cn/jcysj/siyinjcx/syfxbg/202101/W0202101113605045433621.pdf

21. Zhou, M., Wang, H., Zhu, J., et al. (2016). Cause-specific mortality for 240 causes in China during 1990–2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. The Lancet 387, 251-272

22. Niu, Y., Chen, R, and Kan, H. (2017). Air Pollution, Disease Burden, and Health Economic Loss in China. Adv. Exp. Med. Biol. 1017, 233-242

23. Xie, Y., Dai, H., Dong, H., et al. (2016). Economic Impacts from PM2.5 Pollution-Related Health Effects in China: A Provincial-Level Analysis. Environ. Sci. Technol. 50, 4836-4843

24. Xie, Y., Wu, Y., Xie, M., et al. (2020). Health and economic benefit of China’s greenhouse gas mitigation by 2050. Environmental Research Letters 15, 104042.

25. Zhu, B., Pang, R., Chevallier, J., et al. (2019). Including intangible costs into the cost-of-illness approach: a method refinement illustrated based on the PM2.5 economic burden in China. Eur. J. Health Econ. 20, 501-511
26. Wang, H. and Mullahy, J. (2006). Willingness to pay for reducing fatal risk by improving air quality: A contingent valuation study in Chongqing, China. Sci. Total Environ. 367, 50-57

27. Zhou, B. and Zhao, B. (2012). Population inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk in Beijing region: Contributions of indoor and outdoor sources and exposures. Atmos. Environ. 62, 472-480

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51978366) and funding from Innovative Research Groups of the National Natural Science Foundation of China (No. 51521005).

Author Contributions

Ying Hu designed the study and planned the analysis, performed the model analysis, analyzed the simulation results, interpreted the results, validated and completed all figures, and drafted the manuscript.

John S. Ji drafted and commented on the manuscript. Bin Zhao coordinated and supervised the project, designed the study and planned the analysis, analyzed the simulation results, interpreted the results, and drafted the manuscript.

Competing Interest Statement

The authors declare no competing interests.

Materials & Correspondence

Correspondence and requests for materials should be addressed to B.Z.
Figures

Fig. 1. The attributable deaths of PM$_{2.5}$ in Chinese urban in 2019 and when the outdoor air meets the WHO AQG 2021.

- **a** Attributable deaths related to different diseases.
- **b** Attributable deaths of PM$_{2.5}$ from different sources. DAHP, the deaths attributable to human exposure to PM$_{2.5}$; IHD, ischemic heart disease; COPD, Chronic obstructive pulmonary disease; LC, lung cancer; LRI, lower respiratory infections; DM2, type 2 diabetes.
Table 1. The economic losses related to attributable deaths of PM$_{2.5}$ in Chinese urban areas in 2019 and when the outdoor air meets the WHO AQG 2021. [in unit trillion RMB, mean (95%CI)]

Diseases	Ambient	Cooking	Smoking	Total	Ambient	Cooking	Smoking	Total
	2019 (36±15 μg/m3)				Ambient WHO AQG 2021 (5 μg/m3)			
IHD*	0.24 (0.19, 0.19)	0.24 (0.18, 0.19)	0.07 (0.05, 0.06)	0.55 (0.43, 0.44)	0.04 (0.03, 0.03)	0.28 (0.21, 0.22)	0.08 (0.06, 0.06)	0.40 (0.30, 0.31)
COPD†	0.13 (0.10, 0.10)	0.12 (0.10, 0.10)	0.04 (0.03, 0.03)	0.28 (0.23, 0.23)	0.02 (0.02, 0.02)	0.14 (0.11, 0.11)	0.04 (0.03, 0.03)	0.20 (0.16, 0.16)
LC‡	0.11 (0.08, 0.08)	0.10 (0.07, 0.08)	0.03 (0.03, 0.03)	0.25 (0.18, 0.18)	0.02 (0.01, 0.01)	0.12 (0.09, 0.09)	0.04 (0.03, 0.03)	0.18 (0.13, 0.13)
LIR§	0.05 (0.04, 0.04)	0.05 (0.04, 0.04)	0.02 (0.01, 0.01)	0.12 (0.09, 0.09)	0.01 (0.01, 0.01)	0.06 (0.04, 0.04)	0.02 (0.01, 0.01)	0.08 (0.06, 0.06)
DM2¶	0.02 (0.01, 0.01)	0.02 (0.01, 0.01)	0.00 (0.00, 0.00)	0.04 (0.03, 0.03)	0.00 (0.00, 0.00)	0.02 (0.02, 0.02)	0.01 (0.00, 0.00)	0.03 (0.02, 0.02)
Stroke	0.23 (0.20, 0.20)	0.22 (0.19, 0.19)	0.07 (0.06, 0.06)	0.52 (0.45, 0.45)	0.04 (0.03, 0.03)	0.27 (0.22, 0.22)	0.08 (0.06, 0.06)	0.38 (0.31, 0.31)
Total	0.78 (0.63, 0.63)	0.75 (0.60, 0.60)	0.23 (0.19, 0.19)	1.76 (1.42, 1.43)	0.12 (0.09, 0.09)	0.89 (0.69, 0.70)	0.26 (0.20, 0.20)	1.27 (0.99, 1.00)

*ischemic heart disease,
†chronic obstructive pulmonary disease,
‡lung cancer,
§lower respiratory infections,
¶type 2 diabetes,
#Annual average concentration of PM$_{2.5}$ in outdoor air in 2019,
||Annual average concentration of PM$_{2.5}$ in outdoor air when the outdoor air meets the WHO AQG 2021.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SourceData.xlsx
- TableS1.xlsx
- TableS2.xlsx