Evaluation of the Effect of a Number of Commercial Disinfectants on Pseudomonas aeruginosa Isolates Obtained from Human Infection Cases

Zohreh Hoseinpoor Mohammadabadi1*, Azizollah Ebrahimii Kahrizsangi1, Azam Mokhtari1,2

1. Department of Pathobiology, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran
2. Zoonotic Disease Research Institute, Shahrekord University, Shahrekord, Iran

ABSTRACT

Background: Disinfectants have important clinical applications. Antibiotic resistance of some hospital pathogens such as Pseudomonas aeruginosa has led to the use of disinfectants. In the present study, the effects of four commercial disinfectants; Hydrocare, Benzalkonium Chloride, Cetrimide-C, and Vico sience on Pseudomonas aeruginosa isolates were investigated.

Materials & Methods: The dilutions of four tested disinfectants recommended by the manufacturer were prepared and their effects on twelve Pseudomonas aeruginosa isolates were evaluated at five, ten, fifteen minutes after the bacterial inoculation.

Results & Discussions: Hydrocare and Benzalkonium Chloride inhibited the growth of all strains while Cetrimide-C disinfectant did not inhibit the growth of bacterial strains at any time. The Vico sience completely inhibited the growth of bacterial strains at ten and fifteen minutes after the addition of disinfectant. Since the recommended dilutions by the manufacturer were prepared and evaluated in the present study, the inefficiency of some of the disinfectants indicated that the evaluation and dilution assay of the disinfectant is necessary prior to routine use in laboratories or health centers.

Keywords: Disinfectant, Hydrocare, Benzalkonium Chloride, Vico sience, Cetrimide-C, Pseudomonas aeruginosa

Introduction

Nosocomial infections cause significant morbidity and mortality worldwide, and the pathogenic organisms that are responsible for such infections may resist antimicrobial agents. Therefore, understanding the activity of commercial disinfectants against environmental and pathogenic bacteria is very important (1) and the need for improved disinfection methods in therapeutic settings is abundantly felt (2). Pseudomonas aeruginosa is an important bacterium responsible for nosocomial infections (3) that may resistant to antibiotics (4). Therefore, it causes multidrug-resistance infections (5). Pseudomonas aeruginosa has a great importance due to its pathogenicity and adaptation to different environmental conditions (6). In addition, it is known to be an important human pathogen that can lead to nosocomial infections, especially in the intensive care unit, immune system disorder, wound infection, skin burn, eye infection, bacteremia, etc (7, 8). Which is a contaminant of medical instruments and causes of cross-infection in hospitals (9). Disinfection methods in hospitals are the main type of intervention against pathogenic microorganisms (10). Based on information reported by the European Center for Disease Prevention and Control (ECDC), About 33,000 people in Europe die each year from infections caused by multidrug-resistant bacteria (11). Eighty-eight
thousand deaths from nosocomial infections have been reported in Iran in 1995 (12). In recent years, numerous studies have been conducted in different countries to evaluate the effect of disinfectants and antiseptics against bacterial agents (13). Until now various disinfectants and compositions have been developed by different companies, each has its own disadvantages and advantages. Since manufacturers often exaggerate their product descriptions, it is sometimes difficult to choose a suitable disinfectant. Incorrect use of disinfectants also exposes the bacteria to non-lethal concentrations of these solutions and can subsequently help develop resistance. Therefore, it is necessary to verify the accuracy of the dilution protocols provided by the manufacturing companies before applying their products (13, 14).

Given the aforementioned and the importance of *Pseudomonas aeruginosa* in the incidence and complication of nosocomial infections and its intrinsic resistance to antibiotics, the use of appropriate methods to control it is very important. Therefore, in the present study, the effect of four disinfectants: Hydrocare, Benzalkonium Chloride, Vico sience and Cetrimide- C, with the dilutions recommended by the manufacturer in inhibiting the growth of *Pseudomonas aeruginosa* isolates obtained from human infections at different time intervals was investigated.

Materials and Methods

Sample Collection

For the present study, in May 2019, seven strains were collected from the laboratory of Alzahra Hospital in Isfahan and four isolates along with a standard strain were obtained from Microbial Bank Collection of Faculty of Veterinary Medicine, Shahrekord University.

Verification of Bacterial Samples

Bacterial samples were cultured on MacConkey agar medium and incubated at 37 °C for 24-48 h. To purify and isolate the proliferating bacteria, one to two similar colonies were cultured on sterile blood agar medium and incubated at 37 °C for 24-48 h to achieve single and pure colonies.

To confirm the bacterial growth, the colonies were first morphologically and biochemically tested and then cultured in TSB medium and incubated at 37 °C for 24 hours. After the incubation, the bacteria grown in TSB were re- cultured in blood agar medium. Smears were prepared from the colonies and catalase and oxidase tests were performed (15). Then a single colony was picked out and was cultured on MacConkey agar medium to grow lactose-negative colonies. The bacteria were then cultured on Cetrimide agar medium and the production of brown and green pigments was investigated (16). The colonies were then cultured in TSI medium to evaluate the bacterial ability to consume glucose, lactose, sucrose and also hydrogen sulfide gas production, alkaline reaction and not fermenting sugar (16). At a later stage, colonies were cultured in SIM medium to test for SH2 and indole production, and bacterial motility. Subsequently, colonies were cultured on Lithmus Milk medium to observe the color change and fragmented clots (15).

Evaluation of the Effect of Disinfectants on *Pseudomonas aeruginosa* Strains

Hydrocare is a very powerful detergent and disinfectant that is used to prevent infectious diseases caused by drinking water (17). According to the guidelines provided by Dominteb Company, Iran, a dilution of 4:100 Hydrocare disinfectants will be effective.

At first the stoke solution (4:100) of Hydrocare was prepared by adding 400 µL of Hydrocare to 9.6 ml of sterile distilled water. Then 1 ml of the stock solution was added to 9 ml of Yeas Extract Broth medium.

Vico sience is a rapid eliminator of a wide range of pathogens (18). According to the guidelines provided by Sciene Laboratories (LS), a dilution of 1:100 Vico sience disinfectants will be effective. To prepare a stock solution (1: 10) of Vico sience, 1 g of disinfectant was dissolved 9 ml of sterile distilled water. Then 1 ml of stock was dissolved in 9 ml of Yeas Extract Broth medium.

Benzalkonium Chloride is a broad spectrum biocide (19) that has various applications in disinfection industry (20, 21), medicine (22) and home use (23). According to the guidelines provided by Benzalkonium Chloride (license number: D.T-140-93, Veterinary Organization), a dilution of 1:200 Benzalkonium Chloride disinfectants will be effective.

To prepare stock solution (1:200) of Benzalkonium Chloride 1 mL of disinfectant was dissolved in in 19 mL of sterile distilled water. Then, 1 mL of stock solution was added in 9 mL of Yeas Extract Broth medium.

Cetrimide-C or Savlon is a widely used disinfectant that is applied for disinfection and bandage, rinsing and disinfecting hospital equipment and the operating room, etc. It is a strong bactericidal, safe and free of toxic effects (24). According to the guidelines provided by Cetrimide-C (license number: SH- 67- 013, Iran Daru Laboratory), a dilution of 1:200 Cetrimide-C disinfectants will be effective. For the preparation of Stoke solution (1:200) Cetrimide-C 1 mL of the disinfectant was dissolved in 19 mL of sterile distilled water. Then, 1 mL of obtained stock solution was added in 9 mL of Yeas Extract Broth medium.

To investigate the effect of disinfectants on *Pseudomonas aeruginosa* isolates, 2–3 colonies were picked up from the purified culture of each strain and cultured in tubes containing TSB medium. After the incubation at 37 °C for 24 hours, the turbidity of the tubes...
was compared with 0.5 McFarland standard turbidity (2.5 × 10^8 CFU / mL). Whereas the turbidity of the tubes containing the bacterial strain was higher than the 0.5 McFarland standard, the BHI environment was added and if the absorbance of the bacterial strain was lower than the standard, the bacterial colony was added to achieve a concentration equal to the 0.5-McFarland standard.

Subsequently, 100 µL of the obtained 0.5-McFarland medium was added to 9.9 mL of TSB medium to give the concentration of strains at 2.5 × 10^6 CFU / mL.

Then 100 microliter of bacterial strain at a concentration of 2.5 × 10^6 CFU / mL was added to tubes containing 9.9 mL of Yeas Extract Broth mixed with a disinfectant stock and it was completely mixed. At the times 5, 10, and 15 minutes after mixing the disinfectant dilution with the bacterial strain, 1 mL of the mixture of disinfectant and bacteria was added to 3 mL of BHI Broth and after a complete mixing, it was incubated at 37 °C for 4 days. After this period of time, 50 µL of the mixture of disinfectant and bacteria was seeded on a Nutrient agar medium and then it was incubated at 37 °C for 24 h. At the end, the growth or non-growth of bacterial colonies in was studied.

Results and Discussion

Confirmation of Pseudomonas aeruginosa Isolates

The results of biochemical tests performed for purified colonies has been shown in Figure 1.

Investigating the Effect of Each of the Tested Disinfectants on Pseudomonas aeruginosa Isolates.

The results of this study to investigate the antimicrobial effect of four disinfectants, Hydrocare, Benzalkonium Chloride, Cetrimide-C and Vico science in eliminating Pseudomonas aeruginosa isolated from human infections in hospitals, in terms of whether the recommended concentration is in the instructions. Disinfectants affect the removal of Pseudomonas aeruginosa species in hospital centers, to what extent is the manufacturer’s instructions correct and to what extent has it simply deviated from the introduction of products?

According to Table 1, in 5, 10 and 15 minutes no bacterial growth was observed in any of the isolates.
In other words, the disinfectant Hydrocare kills the bacteria completely and has a 100% effect on the bacterium Pseudomonas aeruginosa. According to Table 2, in 5, 10 and 15 minutes no bacterial growth was observed in any of the isolates. In other words, the disinfectant Benzalkonium Chloride kills the bacteria completely and has a 100% effect on the bacterium Pseudomonas aeruginosa.

Table 1. The effect of the disinfectant Hydrocare on Pseudomonas aeruginosa isolates

strains name	5 minutes	10 minutes	15 minutes
Standard	Non-growth	Non-growth	Non-growth
Strains1	Non-growth	Non-growth	Non-growth
Strains2	Non-growth	Non-growth	Non-growth
Strains3	Non-growth	Non-growth	Non-growth
Strains4	Non-growth	Non-growth	Non-growth
Strains5	Non-growth	Non-growth	Non-growth
Strains6	Non-growth	Non-growth	Non-growth
Strains7	Non-growth	Non-growth	Non-growth
Strains8	Non-growth	Non-growth	Non-growth
Strains9	Non-growth	Non-growth	Non-growth
Strains10	Non-growth	Non-growth	Non-growth
Strains11	Non-growth	Non-growth	Non-growth
Total	100% Non-growth	100% Non-growth	100% Non-growth

Table 2. The effect of the disinfectant Benzalkonium Chloride on Pseudomonas aeruginosa isolates

strains name	5 minutes	10 minutes	15 minutes
Standard	Non-growth	Non-growth	Non-growth
Strains1	Non-growth	Non-growth	Non-growth
Strains2	Non-growth	Non-growth	Non-growth
Strains3	Non-growth	Non-growth	Non-growth
Strains4	Non-growth	Non-growth	Non-growth
Strains5	Non-growth	Non-growth	Non-growth
Strains6	Non-growth	Non-growth	Non-growth
Strains7	Non-growth	Non-growth	Non-growth
Strains8	Non-growth	Non-growth	Non-growth
Strains9	Non-growth	Non-growth	Non-growth
Strains10	Non-growth	Non-growth	Non-growth
Strains11	Non-growth	Non-growth	Non-growth
Total	100% Non-growth	100% Non-growth	100% Non-growth

According to Table 3, Cetrimide-C disinfectant has seen approximately 3 growths from 12 isolates in 5 minutes and 100% bacterial growth in the other 9 strains. In the 10 minutes that most strains came in contact with disinfectants, about 4 strains of bacterial growth were not observed, and in the other 8 strains, 100 bacterial growths were observed. Within 15 minutes, when the strains were much higher in contact with disinfectants, no bacterial growth was observed in 4 strains and 100 bacterial growths were observed in the other 9 strains. According to the Cetrimide-C disinfectant, of the 12 isolates tested for Pseudomonas, 2 were effective: 1 and 10 isolates and it kills bacteria and prevents them from growing 10%, in Separation No. 9, contact with less disinfectant affects the bacteria, which is observed in 5 and 10 minutes 20% without growth and in 15 minutes it has been ineffective. Separation of No. 2 at low contact.
times, in 5 minutes, was ineffective and in 10 minutes, it had a 10% effect on killing bacteria in contact with disinfectants for more than 15 minutes, the effect is greater and the bacteria does not grow 20%. In general, the antiseptic effect of Cetrime-C on 12 strands of Pseudomonas aeruginosa in 5 minutes 20%, 10 minutes 25% and 15 minutes 30% prevents the growth of bacteria and the bacterium has sometimes been able to grow despite the presence of the Cetrime-C disinfectant.

Table 3. The effect of the disinfectant Cetrimide-C on Pseudomonas aeruginosa isolates

strains name	5 minutes	10 minutes	15 minutes
Standard	100% growth	100% growth	100% growth
Strains1	90% growth	90% growth	90% growth
Strains2	100% growth	90% growth	80% growth
Strains3	100% growth	100% growth	100% growth
Strains4	100% growth	100% growth	100% growth
Strains5	100% growth	100% growth	100% growth
Strains6	100% growth	100% growth	100% growth
Strains7	100% growth	100% growth	100% growth
Strains8	100% growth	100% growth	100% growth
Strains9	90% growth	90% growth	90% growth
Strains10	80% growth	90% growth	90% growth
Strains11	100% growth	100% growth	100% growth
Total	20% Non-growth	25% Non-growth	30% Non-growth

According to Table 4, the Vico science disinfectant has not been effective in just 5 minutes at 80%, and only in isolating No. 11, 100% growth of bacteria was observed. Colon growth was not observed at any time of 10 min or 15 min and 100% disinfectant has not caused the growth of bacteria. In other words, the Vico science disinfectant has been quite effective in 11 Shush from the beginning and in the other Strains, it was not only effective in the first 5 minutes and with more contact, the disinfectant with the bacteria in 10 minutes and 15 minutes has completely destroyed the bacteria.

Table 4. The effect of the disinfectant Vico science on Pseudomonas aeruginosa isolates

strains name	5 minutes	10 minutes	15 minutes
Standard	Non-growth	Non-growth	Non-growth
Strains1	Non-growth	Non-growth	Non-growth
Strains2	Non-growth	Non-growth	Non-growth
Strains3	Non-growth	Non-growth	Non-growth
Strains4	Non-growth	Non-growth	Non-growth
Strains5	Non-growth	Non-growth	Non-growth
Strains6	Non-growth	Non-growth	Non-growth
Strains7	Non-growth	Non-growth	Non-growth
Strains8	Non-growth	Non-growth	Non-growth
Strains9	Non-growth	Non-growth	Non-growth
Strains10	Non-growth	Non-growth	Non-growth
Strains11	Growth 100%	Non-growth	Non-growth
Total	92% Non-growth	100% Non-growth	100% Non-growth

Confirmation of the Effect of Disinfectants Tested on Pseudomonas aeruginosa Isolates

The results effects of the disinfectants tested on the Pseudomonas aeruginosa isolates can be seen in Figure 2.

Comparing the Effect of Disinfectants with Pseudomonas aeruginosa Isolates

The results of the present study to investigate the antimicrobial effect of four disinfectants of Hydrocare, Benzalkonium Chloride, Cetrime-C and Vico science...
against *Pseudomonas aeruginosa* isolates obtained from human infections are summarized in Table 1. According to the information presented in this table, Hydrocare and Benzalkonium Chloride caused 100% non-growth at all 3 times of 5, 10 and 15 minutes. Vico science resulted in 100%, 100% and 92% at 15, 10 and 5 minutes bacterial non-growth, respectively. Cetrimide-C showed 20%, 25%, and 30% inhabitation of bacterial growth at 5, 10 and 15 minutes, respectively, and using ANOVA statistical test the difference in the antiseptic power of Cetrimide-C was statistically significant (*P*<0.05).

Table 5. The effect of the disinfectants on *Pseudomonas aeruginosa* isolates (12 strains)

Disinfectant name	5 minutes	10 minutes	15 minutes
Hydrocare	100% Non-growth	100% Non-growth	100% Non-growth
Benzalkonium chloride	100% Non-growth	100% Non-growth	100% Non-growth
Vico sience	92% Non-growth	100% Non-growth	100% Non-growth
Cetrimide-C	20% Non-growth	25% Non-growth	30% Non-growth

In this study, it was very difficult to determine which disinfectant was the most potent; although the results from Cetrimide-C were very poor, the three other disinfectants did not differ significantly. The results showed that Cetrimide-C may not be suitable and useful for control of *Pseudomonas aeruginosa* in health centers and hospitals and if is used according to the manufacture instructions, it will not only has the ability to inhibit bacterial growth but can also cause irreparable damages.
Along with the present study, other studies have been carried out including:

El-Bana et al. (2019) studied the effect of non-lethal concentrations of Benzalkonium Chloride on the antibiotic resistance, growth pattern and biofilm formation of Pseudomonas aeruginosa isolates and the results indicated that 60% of isolates showed increased biofilm formation and antibiotic resistance (25).

Montagna et al (2019) evaluated the effect of five hospital antibacterial disinfectants (Phenolic compounds, Quaternary Ammonium compounds, Sodium hypochlorite, alcoholic compounds and Hydrogen peroxide) on Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus. The results showed that Hydrogen peroxide at all concentrations was the only disinfectant that had inhibitory effect against all tested microorganisms (1).

Vijaya et al. (2016) addressed the issue of increasing the drug resistance of Pseudomonas aeruginosa clinical strains against common disinfectants in the laboratory, it has been shown that aerogenous strains increase by 22% multidrug resistance as well as decrease resistance to benzalkonium chloride disinfectant (26). Medical environments, etc., may be infected with microorganisms, which are disinfected with disinfectants such as benzalkonium chloride. Of course, various factors can be involved in the resistance of pathogens to this disinfectant.

Hourai et al. (2004) studied the disinfectant effect of benzalkonium chloride and chlorhexidine on bacterial biofilm formation, the bacterium Pseudomonas aeruginosa is more resistant to the disinfectant benzalkonium chloride. The results of the study by Hourai et al. Did not show much agreement with the present study, because in our study, benzalkonium chloride showed a 100% inhibitory effect against the growth of Pseudomonas aeruginosa bacteria. The reason for this discrepancy may be due to differences in the methods used in the two studies as well as differences in the studies studied (27).

Carson et al. (1972) examined the factors affecting the resistance of Pseudomonas aeruginosa purified from a hospital center to disinfectants, they found that Pseudomonas aeruginosa was inactivated by contact with glutaraldehyde chloride, acetic acid, and a combination of ammonium quaternary, this inactivation depends on factors such as the growth stage at the time of contact with the disinfectant, the nature of the disinfectant, and the incubation temperature. The results of a study by Carson et al. On the effect of ammonium quaternary compound on Pseudomonas aeruginosa were consistent with the results of the present study (28).

Olasehinde et al. (2008) addressed the effect of Savlon, Dettol, la-naphtho disinfectants on Pseudomonas aeruginosa, Salmonella typhoid and Proteus bacteria. In this study, the concentration of disinfectants was increased by 25% and the results showed that all disinfectants had weaker inhibitory inhibition than microorganisms in the early stages. As the concentration increased, the disinfectant effect increased (29). The findings of this study on the weakness of the antimicrobial effect of Saulen are in line with the findings of the present study.

Hassan et al. (2008) examined the effect of a number of common hospital disinfectants against Pseudomonas aeruginosa isolated from patients’ infections. The strains studied showed resistance to the three ethanol disinfectants, Jeremy Side-P and Pidon Ayodine with different dilutions in the surface test with different percentages and only Cetrimide-C was able to completely eliminate all strains by consuming 1 to 30 (30). The reason for the discrepancies between the findings of this study and the results of the present study is that the concentration of 1 to 30 Savlon used in the study of Hassan et al. Is much higher than the concentration recommended by the manufacturing plant in the present study.

Gasparini et al. (1995) discussed the effect of Virkon S on Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Spor bacillus bacteria, and hepatitis B surface antigen, Virkon S was in contact with the mentioned bacteria for 5, 10, 20, 30, 40, 50, 60 minutes and they found that Virkon S was able to destroy the surface antigen of hepatitis B. They also found that Virkon S was suitable for destroying spores. The results of this study showed that Virkon S is a very fast disinfectant. The results of the Gasparini et al. Study of the effect of vacuoussion on Pseudomonas aeruginosa are fully consistent with the results of the present study (31).

Acknowledgment

The present study is based on a Master's thesis in Bacteriology at Shahrekord University. The authors are grateful to the personnel of the Microbiology Laboratory of the Faculty of Veterinary Medicine, Shahrekord University.

Conflict of Interest

Authors declared no conflict of interests.
ارزیابی تأثیر تعدادی از ضدفونی‌کننده‌های تجاری بر جدایی‌های سودوموناس آئروجینوزا

چکیده

خاکی ضدعفونی کننده در بیمارستان مورد بررسی شد. مورد بررسی تهیه شده و سودوموناس آئروجینوزا در پژوهش حاضر تأثیر چهار ضدعفونی کننده از چهار ضدعفونی کننده کاربردهای بالینی مهمی دارند. مقاومت آنتی‌بیوتیکی برخی پاتوژن‌ها و یک‌نفر در اروپا در اثر عفونت ویژه به سبب هشت و هشت هزار مورد مرگ در اثر عفونت ویژه در بخش مراقبت درمانی بیمارستان‌ها ناشی از باکتری روده‌دهه گزارش شده است، هر چند دارو جان خود را از دست می‌دهد. واژگونسی در زمان بیمارستانی در دنیا گزارش شده است.

مقدمه

همه مصرف‌کننده‌های بیمارستانی باعث عوارض و مرگ و میر قابل مشاهده‌ای در سراسر جهان می‌شود و اگر چهای بیمارستان‌ها که مستند به عفونت‌های هستند می‌توانند در بربر عامل ضدعفونی‌کننده می‌توانند این هدایت ایجاد کنند. درک فعالیت ضدفونی‌کننده‌های در برابر باکتری‌های زیست محیطی و باکتری‌ای محسوس بسیار مهم بوده و نیاز به بهبود روش‌های ضدفونی‌کننده در محیطهای درمانی به فاوانی احساس می‌شود. سودوموناس آئروجینوزا یک باکتری مهم در عفونت‌های بیمارستانی که در قلم بی‌کاری‌های میتواند از مقاومت به آنتی‌بیوتیک‌ها است که باعث عفونت‌های ناشی از مقاومت به چند دارو می‌شود. سودوموناس آئروجینوزا به‌طوری که باکتری‌ای می‌باشد، باکتری‌ای می‌باشد و سازگاری در شرایط مختلف محیطی از همیت با‌پای‌برخوردار است. به‌طوری که این بیماری در سال 1399 درمانی در دانشگاه علوم پزشکی شیراز توصیه شده است.

چکیده

زمینه و اهداف: ضدفونی‌کننده‌ها کاربردهای بالینی مهمی دارند. مقاومت آنتی‌بیوتیکی برخی یافته‌های بیمارستانی نظر سودوموناس آئروجینوزا به‌طور چشمگیری نشان‌دهنده شده است. در پژوهش حاضر تأثیر چهار ضدفونی‌کننده از چهار ضدعفونی‌کننده کاربردهای بالینی مهمی دارند. مقاومت آنتی‌بیوتیکی برخی یافته‌های بیمارستانی نظر سودوموناس آئروجینوزا به‌طور چشمگیری نشان‌دهنده شده است.

مواد و روش‌کار: رفتار یافته‌های شبانه در چراهم صباعی از چهار ضدفونی‌کننده مرد بررسی و نهایی تا ۱۵ دقیقه بعد از اضافه کردن باکتری بررسی شد.

کلید واژه‌ها: ضدفونی‌کننده، سترمید، سی، واژگونسی، پاتوژن‌ها، مقاومت، انتخاب محیطی.

مراجع

[۱] علی‌مختاری، حسین پور محمدآبادی. گروه پاتوبیولوژی. دانشگاه ایران: شهرکرد، شهرکرد. ایران. ایمیل: hoseinpoor325@gmail.com

[۲] علی‌مختاری، حسین پور محمدآبادی. گروه پاتوبیولوژی. دانشگاه ایران: شهرکرد، شهرکرد. ایران. ایمیل: hoseinpoor325@gmail.com

[۳] مرجانی، همیشه بری. مجله میکروب شناسی پزشکی ایران. ۱۳۹۹. شماره ۲.

[۴] علی‌مختاری، حسین پور محمدآبادی. گروه پاتوبیولوژی. دانشگاه ایران: شهرکرد، شهرکرد. ایران. ایمیل: hoseinpoor325@gmail.com

[۵] علی‌مختاری، حسین پور محمدآبادی. گروه پاتوبیولوژی. دانشگاه ایران: شهرکرد، شهرکرد. ایران. ایمیل: hoseinpoor325@gmail.com

[۶] مرجانی، همیشه بری. مجله میکروب شناسی پزشکی ایران. ۱۳۹۹. شماره ۲.
ساعت زیلیتر آب مقطر

لیتر آب مقطر کننده های رشد یافته در میکت با مقدار ۰.۱ لیتر به شرط استفاده از این محلول به عنوان فاکتور کنترل عفونت برای گرم خانه‌ها می‌باشد. این محلول کننده شرکت دامین طب رقت با دارایی آنژیون خاصی که از ماده ضدعفونی کننده های دامین طب رقت در تفاوت با محصولات دیگر، می‌تواند به عنوان یک کمک به تحقیقاتی که در مورد تأثیر عفونت‌های سطحی در محیط‌های راکدگری انجام می‌شود در کنترل عفونت سطحی مؤثر باشد.

روش پژوهش

جمع‌آوری نمونه

برای انجام این پژوهش در اردیبهشت ماه ۱۳۹۸، هفت سویه از آزمایشگاه بیمارستان الزهراء اصفهان و چهار سویه به همراه یک سویه دیگر از این محلول در استان‌های تربیتی به کار برده شد. سپس این نمونه‌ها در سویه‌های مختلف ساخته شده و گذاری شد.

تایید نمونه‌های باکتریایی

نمونه‌های باکتریایی نهاده با کشت استریک روی مکانیکی آگار و آگازیک بازو در دمای ۳۷ درجه سلسیوس به مدت ۲۴ ساعت اجرا می‌شود. به منظور خاص سایر این شرایط و آبزیان کنترل نمونه‌ها تکثیر داده شده. یک تا دو کلنی شناسی توسط میکروپیکره دانشکده دامی‌شیک شده خشک کرده تهیه شد. تایید نمونه‌های باکتریایی با کشت استریک روی مکانیکی آگار و آگازیک بازو در دمای ۳۷ درجه سلسیوس به مدت ۲۴ ساعت اجرا می‌شود.

*روش تهیه استریک گیاهی**

میلی‌لیتری از ماده ضدعفونی کننده در ۹ میلی‌لیتر بروث Yeas Extract و اکسیکسیس Vico sience به کار برده شد. با توجه به دستورالعمل ذکر شده، در نتیجه این استریک گیاهی و اکسیکسیس Vico sience با کمک ماده ضدعفونی کننده، میزان ۱ گرم از ماده ضدعفونی کننده در ۹ میلی‌لیتر از میکت با بیماری‌ای با کشت استریک روی مکانیکی آگار و آگازیک بازو در دمای ۳۷ درجه سلسیوس به مدت ۲۴ ساعت اجرا می‌شود.

بحث

در نتیجه این تحقیق، می‌توان نتایج بدست آمده را به عنوان نشانه‌ای از کنترل و ضدعفونی میکرو‌افکاده در محیط‌های راکدگری، بیمارستانی و دکتری در کنار استفاده از محصولات سنتی و خرد می‌دانیم. به همکاری بیمارستان الزهراء اصفهان و دکتری دانشکده دامی‌شیک شده دانشگاه شهرکرد تشکر و تأیید نمونه‌های باکتریایی با کشت استریک روی مکانیکی آگار و آگازیک بازو در دمای ۳۷ درجه سلسیوس به مدت ۲۴ ساعت اجرا می‌شود.
مربوط به. از زمان مخلوط شدن رقت تهیه شده از ماده ضد لیتر از Yeas Extract Broth

یپ سوش باکتری با غلظت (CFU/ML) از سازمان دامپزشکی کشور رقی ۱ به ۲۰۰ این ضدضدعفونی کننده موثر خواهد بود. برای تهیه استوک ۱ به ۲۰۰ این ضدضدعفونی کننده نیاز به استوک میلی لیتر از CFU/ML ۱ در ۱۹ میلی لیتر آب مقطع استریل حل شود. سپس حجم ۱ میلی لیتر از استوک به دست آمده در ۹ میلی لیتر ممیز طی ۱۹۸۲۹. ۹۲۷. Yeas Extract Broth

سیریمیدس-سی (Savlon) یا ساوان (Savlon) استفاده گسترده است که برای ضدعفونی و پانسنیز و ادکلن ادارات و سوختن‌ها، شست و ضدضدعفونی و سوال و لوازم بیمارستانی، ضدضدعفونی اثر عامل و. هم‌چنین اثرات زیادی از سوختن‌ها، شست و ضدعفونی کننده نیم مکفارلند با استاندارد شرایط SH-013 در شرکت ایران‌سپهر در دو تریتان-ایران رقی ۱ به ۲۰۰ این ضدضدعفونی کننده موثر خواهد بود. برای تهیه استوک ۱ به ۲۰۰ این ضدضدعفونی کننده سیریمیدس-سی (Savlon) همکاری ۱۹۸۲۹. ۹۲۷. CFU/ML ۱ در ۹ میلی لیتر ممیز طی ۱۹۸۲۹. ۹۲۷. Yeas Extract Broth

برای بررسی ضدعفونی کننده با روز سویه‌ها با اکثری سودوموناس آترونجنوزا(TSB) فعالیت در حاوی میزان CFU/ML تقریباً کاهش ۲۰-۵۰٪ در تمام آزمون‌های انجام گرفته روزی کلی‌های خاص شده و در طبق منابع مشاهده است.

A) شکل ۱ تایید سودوموناس آترونجنوزا
B) شکل ۲CFU/ML ۱۹۸۲۹. ۹۲۷. Yeas Extract Broth

در ادامه میزان CFU/ML از به مقدار CFU/ML مک فارلند به ۲۰-۵۰٪ در تمام آزمون‌های انجام گرفته روزی کلی‌های خاص شده و در طبق منابع مشاهده است.

CFU/ML ۱۹۸۲۹. ۹۲۷. Yeas Extract Broth

بررسی تأثیر در ضدعفونی کننده با روز سویه‌ها با اکثری سودوموناس آترونجنوزا(TSB) فعالیت در حاوی میزان CFU/ML تقریباً کاهش ۲۰-۵۰٪ در تمام آزمون‌های انجام گرفته روزی کلی‌های خاص شده و در طبق منابع مشاهده است. A) شکل ۱ تایید سودوموناس آترونجنوزا
B) شکل ۲CFU/ML ۱۹۸۲۹. ۹۲۷. Yeas Extract Broth

در ادامه میزان CFU/ML از به مقدار CFU/ML مک فارلند به ۲۰-۵۰٪ در تمام آزمون‌های انجام گرفته روزی کلی‌های خاص شده و در طبق منابع مشاهده است.
نتایج به دست آمده از این پژوهش جهت بررسی اثر ضدپادکستی چهار ضدعفونی کننده اینتریامیدروگر، بنزالکونیوم کلراید، استری‌میت، سی و پروتکسیونس در این بین بردن عوامل یکسان در سه کاندیدا و سودوموناس آیروجینوزا گذاشته شده. این اساسی بیماری‌های کلاسیک SP STIP یا بذلی و کلاسیک SP STIP ST به سوی عوامل یکسان در سه کاندیدا و سودوموناس آیروجینوزا یا چرایی تاثیر BGM سلول کننده اینتریامیدروگر که این تاثیر BGM سلول کننده اینتریامیدروگر به صورت انرژی دست‌یافته و در بورد و تا جه حد ضدعفونی و از بین بردن عوامل بیماری‌های انسانی بیمارستانی و تأثیر باکتری کلاید منجر به این تنها کلاید باکتری شده و تنها 100/15 دقیقه در هیچ کدام از

جدول 1. تأثیر ضدعفونی کننده اینتریامیدروگر بر سودوموناس آیروجینوزا

نام سویها	زمان 5 دقیقه	زمان 10 دقیقه	زمان 15 دقیقه
استاندارد	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 1	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 2	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 3	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 4	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 5	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 6	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 7	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 8	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 9	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 10	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 11	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جمع جدایی	100/1500/100	عدم رشد باکتری	عدم رشد باکتری

جدول 2. تأثیر ضدعفونی کننده بنزالکونیوم کلراید بر سودوموناس آیروجینوزا

نام سویها	زمان 5 دقیقه	زمان 10 دقیقه	زمان 15 دقیقه
استاندارد	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 1	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 2	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 3	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 4	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 5	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 6	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 7	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 8	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 9	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 10	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جدایی 11	عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری
جمع جدایی	100/1500/100	عدم رشد باکتری	عدم رشد باکتری
با توجه به جدول ۳ ضدعفونی کننده ستریمید-سی در بین ۱۲ جدایی در زمان ۵ دقیقه تقریباً ۳ سوش عدم رشد کامل داشته و در ۹ سوش دیگر ۱۰۰/۰۰ رشد باکتری مشاهده شد. در زمان ۱۰ دقیقه که سوش با ضدعفونی کننده بیشر در تمام بود تقریباً در ۴ سوش عدم رشد کامل باکتری و در ۸ سوش دیگر ۱۰۰/۰۰ رشد باکتری مشاهده گردید. در زمان ۱۵ دقیقه که تمام سوش با ضدعفونی کننده خیلی بیشتر بود در ۳ سوش عدم رشد کامل باکتری و در ۹ سوش دیگر ۱۰۰/۰۰ رشد باکتری مشاهده شد.

برای هنگام ضدعفونی کننده ستریمید-سی از بین ۱۲ جدایی سودوموناس مورد آزمایش بر ۳ جدایی شماره ۱ و ۱۰ تأثیر داشته و موچیر از بین رفت باکتری و ۱۰/۰۰ عدم رشد آنها شده. در با توجه به جدول ۴ ضدعفونی کننده وايکوسیانس فقط در زمان ۵ دقیقه ۸/۰۰ موتر نبوده و تنها در نمود جدایی شماره ۱۱ رشد باکتری ۱۰۰/۰۰ مشاهده شد. در هیچ یک از زمان‌های ۱۰ دقیقه و ۱۵ دقیقه رشد کلی مشاهده نشد و ضدعفونی کننده ۱۰۰/۰۰ عدم رشد باکتری را به دنبال داشت.

جدول ۲: تأثیر ضدعفونی کننده ستریمید-سی بر جدایی‌های سودوموناس / برخی از

زمان ۱۵ دقیقه	زمان ۱۰ دقیقه	زمان ۵ دقیقه	نام سوش‌ها
رشد باکتری ۱۰۰/۰۰	رشد باکتری ۱۰۰/۰۰	رشد باکتری ۱۰۰/۰۰	استاندارد
رشد باکتری ۸۹/۰۰	رشد باکتری ۸۰/۰۰	رشد باکتری ۸۰/۰۰	جدایی ۱
رشد باکتری ۷۳/۰۰	رشد باکتری ۶۰/۰۰	رشد باکتری ۶۰/۰۰	جدایی ۲
رشد باکتری ۶۸/۰۰	رشد باکتری ۵۰/۰۰	رشد باکتری ۵۰/۰۰	جدایی ۳
رشد باکتری ۵۰/۰۰	رشد باکتری ۴۰/۰۰	رشد باکتری ۴۰/۰۰	جدایی ۴
رشد باکتری ۴۰/۰۰	رشد باکتری ۳۰/۰۰	رشد باکتری ۳۰/۰۰	جدایی ۵
رشد باکتری ۳۰/۰۰	رشد باکتری ۲۰/۰۰	رشد باکتری ۲۰/۰۰	جدایی ۶
رشد باکتری ۲۰/۰۰	رشد باکتری ۱۰/۰۰	رشد باکتری ۱۰/۰۰	جدایی ۷
رشد باکتری ۱۰/۰۰	رشد باکتری ۱۰/۰۰	رشد باکتری ۱۰/۰۰	جدایی ۸
رشد باکتری ۱۰/۰۰	رشد باکتری ۱۰/۰۰	رشد باکتری ۱۰/۰۰	جدایی ۹
رشد باکتری ۱۰/۰۰	رشد باکتری ۱۰/۰۰	رشد باکتری ۱۰/۰۰	جدایی ۱۰
رشد باکتری ۱۰/۰۰	رشد باکتری ۱۰/۰۰	رشد باکتری ۱۰/۰۰	جدایی ۱۱
رشد باکتری ۱۰/۰۰	رشد باکتری ۱۰/۰۰	رشد باکتری ۱۰/۰۰	جدایی ۱۲

جدول ۴: تأثیر ضدعفونی کننده وايکوسیانس بر جدایی‌های سودوموناس / برخی از

زمان ۱۵ دقیقه	زمان ۱۰ دقیقه	زمان ۵ دقیقه	نام سوش‌ها
عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری	استاندارد
عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری	جدایی ۱
عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری	جدایی ۲
عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری	جدایی ۳
عدم رشد باکتری	عدم رشد باکتری	عدم رشد باکتری	جدایی ۴
تایید تأثیر ضدعفونی کندنه‌های مورد آزمایش بر روی جذایهای سودوموناس آتروجوژنزا

نتایج تأثیر ضدعفونی کندنه‌های مورد آزمایش بر روی جذایه‌های سودوموناس آتروجوژنزا، در شکل ۲ قابل مشاهده است.

test آنوا، ۰.۰۵ سی از یک بقیه کمتر (۰.۰۵/۰۰۰) و از نظر آماری معنی‌دار بود.

شکل ۱. تایید تأثیر ضدعفونی کندنه‌ها بر جذایه‌های سودوموناس آتروجوژنزا:

(A) تأثیر ضدعفونی کندنه اینتراهیدروکر بر جذایه ۴. که در هر سه زمان‌های ۵، ۱۰ و ۱۵ دقیقه با تأثیر کامل نقش رضایت‌بخشی رشده ای داشته است. (B) تأثیر ضدعفونی کندنه‌های واکسیناس بر جذایه ۵. در شکل ۱، نشان داده شده که در هر سه زمان‌های ۵، ۱۰ و ۱۵ دقیقه با تأثیر کامل نقش رضایت‌بخشی رشده ای داشته است. (C) تأثیر ضدعفونی کندنه‌های پنالتکمیس بر جذایه ۶. در شکل ۲، نشان داده شده که در هر سه زمان‌های ۱۰، ۱۵ و ۲۰ دقیقه با تأثیر کامل نقش رضایت‌بخشی رشده ای داشته است. (D) تأثیر ضدعفونی کندنه‌های سرمیمید بر جذایه ۷. که در هر سه زمان‌های ۸۰، ۱۰۰ و ۱۲۰ دقیقه با تأثیر کامل نقش رضایت‌بخشی رشده ای داشته است.
مکان است محیط‌های پزشکی و درک‌گر آلودگی با میکروگفلیسیپسی‌ها بودن که برای از بین بردن آنها ضدعفونی کننده‌های نظیر بنزالکونیوم کراید به کم روش، به‌عنوان گونه‌ای می‌تواند در مقاطع بازوبانی در مقایسه با این ضدعفونی‌کننده دخیل بداشد.

و همکاران (2004) به مطالعه میزان از Hourai ضدعفونی‌کننده بنزالکونیوم کراید و کلرگزیدین بر روی شکل پروتئوس پروکسیمالا. در این بررسی ترکیب آمونیوم کواترنری غیرفعال می‌تواند ضدعفونی‌کننده بر روی سازی‌های روانه و همکاران شوند که برای از بین بردن آنها ضدعفونی‌کننده می‌تواند ضدعفونی‌کننده دخیل بداشد.

و همکاران (1972) به بررسی عوامل مؤثر بر ایجاد مقاومت سودوموناس آیرو سویه در تمرکز‌های بیمارستانی در سوابق مقاومت نام ضدعفونی‌کننده که در روش‌های معمول در آزمایشگاه‌ها بروز ریادت می‌شود، زیرا در ضدعفونی‌کننده سودوموناس آیرو سویه باعث شده که توانایی مهار رشد باکتری را ندارد بلکه توانایی مهار رشد باکتری را ندارد.

در این پژوهش مشخص کردن این که کدام یک از ضدعفونی‌کننده‌ها قوی‌ترین ضدعفونی‌کننده است بسیار دشوار بود، زیرا با وجود که نتایج حاصل از سرمای – بسیار ضعیف بود، ضعف ضعافی‌کننده دیدن اختلاف جدیدی نداشتند. نتیجه این ضعافی‌کننده دیدن از مطالعه حاضر تطابق چندانی نشان داد.

نتایج مطالعات حاضر تغییر مقایسه با همکاران در درصد افزايش ضعافی‌کننده این ضعافی‌کننده دیدن با کلرگزیدین در درصد افزايش ضعافی‌کننده دیدن با کلرگزیدین در درصد افزايش ضعافی‌کننده دیدن با کلرگزیدین.

و همکاران (2019) به مطالعه تأثیر غلظت‌های غیر El-Bana کشندن بنزالکونیوم کراید بر مقاومت آنتی‌بیوتیکی، الگوی رشد و تشکیل بیوفیلم جدایی‌های سودوموناس آتیروژنیوزا پرداختند و نتایج نشان دادند که تمامی ضدعفونی‌کننده‌های اری بیمارستانی سودوموناس آیرو سویه به آنتی‌بیوتیک‌های به روش بیدار کرد.

و همکاران (2019) تأثیر بی‌پوش‌کننده Montagna ضد باکتری‌های بیمارستانی (ترکیبات فنولیک، ترکیبات آمونیوم کواترنر، هیدروکلریت سدیم، ترکیبات الکل و پراکسیدهیدروژن) را بر روی سویه سودوموناس آتیروژنیوزا استفاده کردند و نتایج نشان داد که بی‌پوش‌کننده‌های سودوموناس آیرو سویه در درصد افزايش ضعافی‌کننده نشان داد، چرا که در مطالعه ما همکاران نتایج مطالعه و نیز تفاوت سوشالیتی در رابطه با تأثیر دستگاه‌های پزشکی ایرانی در مقایسه با دستگاه‌های پزشکی در مراکز بهداشتی و چنین نیز نشان داد جهت کنترل باکتری سودوموناس آیرو سویه در درصد افزايش ضعافی‌کننده نشان داد، چرا که در مطالعه ما همکاران نتایج مطالعه و نیز تفاوت سوشالیتی در رابطه با تأثیر دستگاه‌های پزشکی ایرانی در مقایسه با دستگاه‌های پزشکی در مراکز بهداشتی و چنین نیز نشان داد.

و همکاران (2019) به موضوع افزایش مقاومت جند Vijaya دارویی سویه‌های پنلینی سودوموناس آتیروژنیوزا نسبت به ضعافی‌کننده‌های معمول در آزمایشگاه پرداختند که نشان داد شد سویه‌های آتیروژنیوزا با افزایش درصد مقاومت چند دارویی و نیز کاهش مقاومت نسبت به ضعافی‌کننده بنزالکونیوم کراید رو به رو هستند.

جدول 5. مقایسه تأثیر ضدعفونی کننده‌های مورد آزمایش بر روی جداه‌های سودوموناس آتیروژنیوزا (۱۲ سویه)
پژوهش حاضر برگرفته از پایان‌نامه دانشجویی کارشناسی ارشد باکتری‌شناسی دانشگاه شهیرک می‌باشد. نویسندگان مقاله از کارشناسان آزمایشگاه میکروبیولوژی دانشگاه دامیشکی دانشگاه شهرک سپاسگزار می‌کنند.

تعارض در منافع

این مقاله پژوهش مستقل است که بدون حمایت مالی سازمانی انجام شده است. در انجام مطالعه حاضر، نویسندگان هیچگونه تضاد منافعی نداشته‌اند.

Reference

1. Montagna MT, Triggiano F, Barbuti G, Bartolomeo N, De Giglio O, Diella G, Lopuzzo M, Ruiglione S, Serio G, Caggiano G. Study on the In Vitro Activity of Five Disinfectants against Nosocomial Bacteria. Int J Environment Res Public Health. 2019 Jan;16(11):1895. [DOI:10.3390/ijerph16111895] [PMID] [PMCID]

2. West AM, Teska PJ, Lineback CB, Oliver HF. Strain, disinfectant, concentration, and contact time quantitatively impact disinfectant efficacy. Antimicrob Resist Infect Control. 2018 Dec;7(1):49. [DOI:10.1186/s13756-018-0340-2] [PMID] [PMCID]

3. Xia J, Gao J, Tang W. Nosocomial infection and its molecular mechanisms of antibiotic resistance. Biosci Trend. 2016;10(1):14-21. [DOI:10.5582/bst.2016.0120] [PMID]

4. Watanabe S, Ohhishi T, Yusa A, Kiyota H, Iwata S, Kaku M, Watanabe A, Sato J, Hanaki H, Manabe M, Suzuki T. The first nationwide surveillance of antibacterial susceptibility patterns of pathogens isolated from skin and soft-tissue infections in dermatology departments in Japan. J Infect Chemother. 2017 Aug 1;23(8):503-11. [DOI:10.1016/j.jiac.2017.05.006] [PMID]

5. Yamagishi Y, Hagihara M, Kato H, Hirai J, Nishiyama N, Koizumi Y, Sakashita D, Suematsu H, Nakai H, Mikamo H. In vitro and in vivo Pharmacodynamics of Colistin and Aztreonam Alone and in Combination against Multidrug-Resistant Pseudomonas aeruginosa. Chemotherapy. 2017;62(2):105-10. [DOI:10.1159/000449367] [PMID]

6. Scano A, Serafì F, Fais S, Bondi S, Peri M, Ibba A, Girometta G, Orrù G, Rossi P, Sanna P, Coghe F. Antimicrobial susceptibility pattern to disinfectants in Pseudomonas aeruginosa strains isolated from dairy sheep breeds in Sardinia. Large Animal Rev. 2019 Apr 18;25(1):11-5.

7. Stefani S, Campana S, Cariani L, Carnovale V, Colombo C, Lleo MM, Iula VD, Minicucci L, Morelli P, Pizzamiglio G, Taccetti G. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int J Med Microbiol. 2017 Sep 1;307(6):353-62. [DOI:10.1016/j.ijmm.2017.07.004] [PMID] [PMCID]

8. Ferris RA, McCue PM, Borlee GI, Glapa KE, Martin KH, Mangalea MR, Hennet ML, Wolfe LM, Broeckling CD, Borlee BR. Model of chronic equine endometritis involving a Pseudomonas aeruginosa biofilm. Infect Immun. 2017 Dec 1;85(12):e00332-17. [DOI:10.1128/IAI.00332-17] [PMID] [PMCID]

9. Argyraki A, Markwart M, Nielsen A, Bjarnsholt T, Bjørndal L, Petersen PM. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas aeruginosa (P. aeruginosa) biofilm. InBiophotonics: Photon Solutions Better Health Care V 2016 Apr 27 (Vol. 9887, p. 988730). International Society for Optics and Photonics. [DOI:10.1117/12.2225597]
10. Lineback CB, Nkemnong CA, Wu ST, Li X, Teska PJ, Oliver HF. Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrobial Resistance & Infection Control. 2018 Dec 1;7(1):154. [DOI:10.1186/s13756-018-0447-5] [PMID] [PMCID]

11. ECDC2018: https://www.thelancet.com/journals/laninf/arti
cle/PIIS1473-3099 (18)30605-4/sec1 (accessed on 23 January 2019).

12. Rahimzadeh Torabi L, Doudi M, Golshani Z. The frequency of blaIMP and blaVIM carbapenemase genes in clinical isolates of pseudomonas aeruginosa in Isfahan medical centers. Med J Mashhad University Med Sci. 2016;59(3):139-47.

13. Rokoei F, Rezaei S, Karbasian M, Sadaee N, Rastegar Lari A. Comparison of the antibacterial activity of Handsept and Decosept . Iran J Med Microbiol. 2008; 1 (4):51-57

14. Subedi D, Vijay AK, Wilcox M. Study of Disinfectant Resistance Genes in Ocular Isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52(5):1508-1515. [DOI:10.1128/AAC.00498-07] [PMID] [PMCID]

15. Espinal MA, Laszlo A, Simonsen L, Boulhabal F, Kim SJ, Reniero A, Hoffner S, Rieder HL, Binkin N, Dye C, Williams R. Global trends in resistance to antimicrobial drugs. New England Journal of Medicine. 2001 Apr 26;344(17):1294-303. [DOI:10.1056/NEJM200104263441706] [PMID]

16. Abdollahzadeh Fatemeh, Hakami Vala Mojdeh, Bagheri Bajestani Fatemeh, Bahar Mohammad Reza. Evaluation of ESBL Extended Beta Lactamase Production from Pseudomonas aeruginosa strains isolated from burn patients admitted in Shahid Motahari Hospital. Tehran Iran. 2011; 47:42: 1.

17. Damin Teb Rooz. Intra Hyvarocare.2019. Available at: www.daminteb.com

18. Gasparini R, Pozzi T, Magnelli R, Fatighenti D, Giotti E, Poliseno G, Pratelli M, Severini R, Bonanni P, De Feo L. Evaluation of in vitro efficacy of the disinfectant Virkon. Europ J Epidemiol. 1995 Apr 1;11(2):193-7. [DOI:10.1007/BF01719487] [PMID]

19. Furi L, Ciusa ML, Knight D, Di Lorenzo V, Tocci N, Cirasola D, Aragones L, Coelho JR, Freitas AT, Marchi E, Moce L. Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus. Antimicrob Agents Chemo. 2013 Aug 1;57(8):3488-97. [DOI:10.1128/AAC.00498-13] [PMID] [PMCID]

20. Alzubeidi YS, Udompjitkul P, Talukdar PK, Sarker MR. Inactivation of Clostridium perfringens spores adhered onto stainless steel surface by agents used in a clean-in-place procedure. Int J Food Microbiol. 2018 Jul 20;277:26-33. [DOI:10.1016/j.ijfoodmicro.2018.04.016] [PMID]

21. Webb HE, Bricha-Harhay DM, Brashears MM, Nightingale KK, Arthur TM, Bosilevac JM, Kalchayanand N, Schmidt JW, Wang R, Granier SA, Brown TR. Salmonella in peripheral lymph nodes of healthy cattle at slaughter. Frontiers Microbiol. 2017 Nov 9;8:2214. [DOI:10.3389/fmicb.2017.02214] [PMID] [PMCID]

22. Uppal S, Bazzi A, Reynolds RK, Harris J, Pearlman MD, Campbell DA, Morgan DM. Chlorhexidine-alcohol compared with povidone-iodine for preoperative topical antisepsis for abdominal hysterecetomy. Obstet Gynecol. 2017 Aug 1;130(2):319-27. [DOI:10.1097/AOG.0000000000002130] [PMID]

23. Koelehr DA, Strevert KA, Papelis C, Kibbey TC. The impact of antibacterial handsoap constituents on the dynamics of triclosan dissolution from dry sand. Chemosphere. 2017 Nov 1;186:251-6. [DOI:10.1016/j.chemosphere.2017.07.142] [PMID]

24. Olasehinde GI, Akinyanju JA, Ajayi AA. Comparative Antimicrobial Activity of Commercial Disinfectants with Naphtolc. Res J Microbiol. 2008;3(4):262-8. [DOI:10.3923/jm.2008.262.268]

25. El-Banna T, El-Aziz AA, Sonbol F, El-Ekhwawy E. Adaptation of Pseudomonas aeruginosa clinical isolates to benzalkonium chloride retards its growth and enhances biofilm production. Molecular biology reports. 2019 Jun 1;46(3):3437-43. [DOI:10.1007/s11033-019-04806-7] [PMID]

26. Vijaya k, Abody MS, Alfanaisan MK. Sandle T. In vitro susceptibility of multidrug resistant pseudomonas aeruginosa clinical isolates to common biocides. International Journal of Pharmaceutical Sci Res. 2016; 7(1): 110-16.

27. Houari A, Di Martino P. Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Let Appl Microbiol. 2007 Dec;45(6):652-6. [DOI:10.1111/j.1365-7358.2007.02249.x] [PMID]

28. Olasehinde GI, Akinyanju JA, Ajayi AA. Comparative Antimicrobial Activity of Commercial Disinfectants with Naphtolc. Res J Microbiol. 2008;3(4):262-8. [DOI:10.3923/jm.2008.262.268]

29. Carson LA, Favero MS, Bond WW, Petersen NJ. Factors affecting comparative resistance of naturally occurring and subcultured Pseudomonas aeruginosa to disinfectants. Appl. Environ. Microbiol. 1972 May 1;23(5):863-9. [DOI:10.1128/AEM.23.5.863-869.1972] [PMID]

30. Hassan M, Kjos M, Nes IF, Diep DB, LotfiFournier F. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol. 2012 Oct;113(4):723-36. et al.[DOI:10.1111/j.1365-2672.2012.05338.x] [PMID]

31. Gasparini R, Pozzi T, Magnelli R, Fatighenti D, Giotti E, Poliseno G, Pratelli M, Severini R, Bonanni P, De Feo L. Evaluation of in vitro efficacy of the disinfectant Virkon. Europ J Epidemiol. 1995 Apr 1;11(2):193-7. [DOI:10.1007/BF01719487] [PMID]