STUDY OF OUTWARD SIGNS, MICROSCOPY AND CHEMICAL COMPOSITION OF WALNUT

STRELYAEVA AV1, LEZHAVA DI1, LUFEROV AN1, BOBKOVA NV1, KARTASHOVA NV1, KUZNETSOV RM2

1Department of Pharmaceutical and Natural Sciences, Sechenov First Moscow State Medical University, Moscow 119991, Russia. 2Department of Pharmaceutical Science, Laboratory of Pharmacokinetics and Metabolism Analysis, Sechenov First Moscow State Medical University, Moscow 119991, Russia. Email: nataliekartashova@gmail.com

Received: 29 June 2018, Revised and Accepted: 06 September 2018

INTRODUCTION

At present, an impressive number of scientists around the world is engaged in the search for new natural biologically active substances; thorough study of the pharmacological action of known BAS, i.e., actions on individual systems and the body as a whole; is engaged in the search for new sources of biologically active substances, more economically advantageous. These sources are plants. Scientists have given nature the widest choice of objects for research. One of them is a powerful plant with a majestic crown - a walnut (Juglans regia L.), one of the popular names of which is the royal nut [1, 2].

Many researchers mentioned this medicinal plant in their literary works, having previously conducted many experiments to study the chemical composition - these are qualitative reactions to the main groups of BAS, the paper chromatography method, and the thin-layer chromatography (TLC) method. Quantitative determination of ultraviolet (UV) spectrophotometry and high-performance liquid chromatography [3-6] was carried out.

Qualitative reactions determined the rich chemical composition. In the medicinal plant, there are quinones (naphthoquinone juglone and α and β-hydrogens), flavonoids (hyperoside and kaempferol), Vitamin B, ascorbic acid, tannins, carotenoids, phenolic acids, lilac aldehyde, and juglone and this is only in the leaves [4,7-10].

Green pericarp contains hydrocoals and tannins. In the kernels of walnut fruit identified fatty oils, protein substances, Vitamins K and P, and amino acids [11-13]. The raw material of walnut is widely used in folk medicine and homeopathy [7,14]. A number of researchers indicate a wide pharmacological activity of various types of walnut raw materials. Hence, according to a number of authors [7,14], walnut has a pronounced antitumor effect and antiproliferative activity [15]. The extract from walnut fruit shows high antifungal, antimicrobial, and antioxidant activity [16-19,20]. The antifungal action of the ethanol extract from the roots of walnut has been revealed. Petroleum extraction from walnut fruit showed high anthelmintic activity and antiparasitic action [21,22].

The aim of the study is to study external features, microscopy of walnut bark raw materials and walnut fruit in the stage of milky-wax maturity and chemical composition of alcohol extraction from these types of raw materials.

METHODS

The object of the study was the medicinal plant raw materials of walnut fruit in the stage of milky-wax maturity and the walnut bark, as well as alcohol extraction from this type of raw material. The material of the study was samples of the bark and fruit of walnut (J. regia L.), collected in the Moscow region, air-shade dried, and used as medicinal plant material.

Fruits were harvested in June in the stage of milky-wax maturity. To perform the cuts, the dried bark was soaked in a mixture of 95% ethanol-glycerol-water (1:1:1). Cross-sections were examined using a light microscope.

Photographs were performed using a Canon Digital IXUS 80 IS digital camera. Alcohol extraction was prepared using 96% alcohol by the method of obtaining a tincture of the matrix homeopathic [23].

The component composition of the samples was studied by gas chromatography–mass spectrometry. The study was carried out on an Agilent Technologies instrument consisting of 1) 7890 gas chromatograph (HP-5 column, 50 m × 320 μm × 1.05 μm) and 2) 5975 C mass-selective detector with quadrupole mass analyzer. Temperature program of chromatography: 40°C, isotherm for 2 min, further programmed heating to 250°C at a rate of 5°C/min; 250°C -...
isothen for 15 min; further programmed heating to 320°C at a speed of 25°C/min; at 320°C - isotherm for 5 min. Injector with flow division 1:50. Injector temperature is 250°C. The interface temperature is 280°C. The carrier gas is helium; flow rate 1 ml/min. The chromatogram of the samples is based on the total ion current. Mass spectrometric analysis conditions: Ionizing electron energy 70 eV; registration of mass spectra in positive ions in the range (m/z) from 20 to 450 at a rate of 2.5 scan/s. Software - ChemStation E 02.00.1. Identification of the component composition (qualitative analysis) was carried out from the NIST-05 complete mass spectra library and the corresponding values of chromatographic linear retention indices. The relative content (%) of the components of the mixture (quantitative analysis) was calculated from the ratio of the areas of chromatographic peaks (by the simple normalization method) [24].

External signs of solid raw materials were investigated. The cortex is examined with the naked eye or with a magnifying glass (×10) or a stereomicroscope (×8, ×16) in accordance with the section "methods of analysis of medicinal raw materials" [25].

RESULTS AND DISCUSSION

Fresh raw materials are trough-shaped pieces of bark, 5–6 cm long, about 2–3 mm thick. The external surface of the cortex is smooth with transverse wrinkles (Fig. 1). There are lenticels of round shape. The inner surface of the bark is smooth. In the fracture, the edge is fibrous. The color of the bark from the outside is brown and grayish-brown, inside is yellowish flesh. The smell is weak when the cortex is moistened with water it does not increase. The taste is bitter.

Dried raw materials are trough-shaped pieces of bark, some are curled, a length of 5–6 cm, a thickness of about 2–3 mm. The external surface of the cortex is smooth with transverse wrinkles (Fig. 1). There are lenticels of round shape. The inner surface of the bark is smooth. In the fracture, the edge is fibrous. The color of the bark outside is brown and grayish-brown, inside yellowish flesh. The smell is weak when the cortex is moistened with water it does not increase. The taste is bitter.

External signs of crushed raw materials were researched. Pieces of bark of various shapes, mostly rectangular. They pass through a sieve with apertures 7 mm in diameter. The color of the raw material is from light brown to dark reddish-brown. A dark gray-brown color is possible (Fig. 2). The smell is weak, increasing with soaking. The taste is bitter.

Powder

The powder has grayish brown color, passing through a sieve with holes 0.5 mm in diameter (Fig. 4). The smell is weak, peculiar. The taste is bitter.

The periderm of the bark collected from 2 to 5-year-old branches is represented mainly by a multilayered fallen (cork) consisting of 4–6 layers of thin-walled, cross-sectioned tabular cells colored in brown. The outer layers of the plug consist of colorless, dead, scaly, sloughing cells. Phelloderm cells located under the pigmented layer of the plug are not colored, compressed, and deformed (Fig. 3a and b).

Under the periderms are 3–4 layers of collenchyma cells, slightly transversely tangentially elongated, with thickened walls and greenish-amorphous contents (Fig. 3b).

Parenchyma of the primary cortex consists of isodiametric polygonal or oval cells, the walls of which are often permeated with pores. Some parenchyma cells contain druzes of calcium oxalate, greenish amorphous contents, and starch. Sometimes, intercellular cavities are observed in the parenchyma of the primary cortex (Fig. 3b).

The inner zone of the primary cortex is characterized by the presence of a discontinuous “mechanical belt” consisting of groups of stone cells (sclereids) and mechanical fibers, forming a primary cortex (Fig. 3a).
Thus, to standardize the medicinal plant material - the walnut bark, diagnostic anatomical signs were established. These include the features of the structure of periderm, the stereoty of the primary and secondary cortex, the presence of crystalline inclusions (drusen of calcium oxalate).

When wetting the inner surface of the bark with a drop of 1% ferric ammonium alum solution, a greenish-black color is observed (Fig. 4).

Qualitative reactions
The ground bark in the amount of 0.1 g is boiled for 2–3 min with 10 ml of water, cooled and filtered. To 1 ml of the filtrate, 2–3 drops of a 1% solution of iron ammonium alum are added: A black color is observed.

On the bark, 2–3 drops of 5% sodium hydroxide solution are applied: A violet-brown color is observed.

The powder is placed on a slide and 2–3 drops of a 1% solution of iron ammonium alum are dripped: A blue color is observed, which turns into black (hydrolyzed tannins) (Fig. 4).

The powder is placed on a slide and 2–3 drops of a 5% solution of sodium hydroxide solution are applied: A violet-brown color is observed.

The powder is placed on a slide and 2–3 drops of a 1% solution of iron ammonium alum are dripped: A black color is observed.

On the bark, 2–3 drops of 5% sodium hydroxide solution are applied: A violet-brown color is observed.

TLC - analysis of alcohol extraction of the walnut bark
To the start line of the finished chromatographic plate with a layer of “Sorbphil” silica gel, 20 μl (0.02 ml) of the test tincture and 5 μl (0.005 ml) of 0.1% solution of gallic acid POO are applied separately and strip chromatographed in an ascending system in a solvent system chloroform/acetic acid/isopropanol/water (15:8:3:2) to a height of 10 cm. The plate is then removed from the chamber, dried in air to remove traces of solvents, and examined in UV light at a wavelength of 365 nm.

In UV light at a wavelength of 365 nm, a brown zone with a Rt of about 0.75 should be detected on a chromatogram of 0.1% solution of gallic acid.

In UV light at a wavelength of 365 nm on the chromatogram, brown zones with Rf about 0.5 and 0.9; in addition, zones can be found: Brown with Rt about 0.4.

In the extraction from the bark of the walnut by TLC, tannic substances, gallic acid, were found (Table 1).

The relative percentage of each component was calculated taking into account unidentified peaks (Fig. 1).

The maximum content falls on sugar, namely for sucrose 25.27%, for ethyl-α-D-glucopyranosyl 29.75%, and for lactose 4.86%.

Terpenic compounds have been identified, the total content of which is almost the secondplace. The content of camphor is 9.63%, the content of cineol is 0.9%, and the content of thujone is 0.4% (Diagram 1).

The marker compounds are the derivatives of yuglon 4,5-dihydroxy-3,4-dihydro-1(2H)-naphthalenone and anthracene derivative 4, 5-dihydroxy-3,4-dihydro-1 (2H)-naphthalenone. With these compounds, the pharmacological activity of medicinal plant material is associated.

The research task included the study of raw walnut fruit in the stage of milky-wax maturity. Microscopy of the fetus was prepared according to the generally accepted procedure [27,28]. It should be noted the most important diagnostic signs of the fruit: The epidermal cells of the “final” structure; grouped large oval stomata of anomocytous type; hairs simple, unicellular; thick-walled, joined at 2–4 in the base rarely; hairs head with a 1–3- or multicellular single-rowed pedicle and a multicellular glandular head (rarely) and rounded-colored places of attachment of simple and glandular hairs [27-30].
Table 1: Substances contained in alcohol extraction of the walnut bark

No	Name	Formula	Rt, min	ICP	ICTs	Percentage	Major peaks
1	2-hydroxypropanoic acid	![Formula](image1.png)	19.18	875.44	838	1.84	45, 28, 29, 27, 43, 26, 74, 44, 56, 42
2	Cineol	![Formula](image2.png)	27.75	1046.95	1059	0.9	43, 81, 71, 108, 111, 41, 69, 84, 93, 55
3	Ethylhydrogenoloxalate	![Formula](image3.png)	29.38	1000.6	943	0.08	44, 28, 31, 29, 27, 43, 74, 43, 26, 32
4	1,2-hydroxyacetohydrazine	![Formula](image4.png)	29.47	1198	1106	0.7	31, 32, 29, 28, 30, 44, 90, 62, 43, 42
5	Thujone	![Formula](image5.png)	30.35	1170.86	1062	0.4	81, 41, 68, 110, 67, 69, 109, 95, 39, 55
6	2-Oxo-propanoic acid	![Formula](image6.png)	30.96	1152.08	1249	1.03	43, 15, 44, 45, 42, 28, 29, 14, 18, 39
7	Camphor	![Formula](image7.png)	31.93	1122.45	1121	9.63	95, 81, 69, 55, 108, 83, 67, 109, 68, 152
8	Mannopyranoside	![Formula](image8.png)	34.56	1238.04	1353	0.34	43, 44, 29, 57, 41, 27, 31, 28, 55, 42

(Contd...)
No	Name	Formula	Rt, min	ICP	ICTs	Percentage	Major peaks
9	Triacetin	![Formula](image1)	36.68	1367	1354	0.81	43, 103, 145, 116, 15, 115, 86, 44, 42, 73
10	O-acetyl-p-cresol	![Formula](image2)	36.90	1359.375	1363	0.47	135, 150, 77, 107, 43, 136, 51, 39, 53, 151
11	1,3-diethylether-pyrogallol	![Formula](image3)	37.80	1328	1279	2.01	154, 139, 111, 93, 96, 65, 39, 51, 155, 68
12	Ethyl-α-d-ribose	![Formula](image4)	38.657	1498.26	1505	2.03	60, 73, 47, 43, 75, 57, 74, 42, 45, 44
13	Sucrose	![Formula](image5)	39.85	1454.3	3139	25.27	73, 57, 31, 43, 60, 61, 44, 71, 86, 45
14	1,6-anhydro-β-d-talopyranoside	![Formula](image6)	41.38	1597.62	1404	4.23	60, 73, 57, 43, 42, 56, 55, 47, 71, 70
15	2-benzamidoanthraquinone	![Formula](image7)	44.58	1673.37	1705	0.26	207, 105, 133, 151, 134, 132, 104, 77, 106, 18
16	Ethyl-α-D-glucopyranosyl	![Formula](image8)	45.02	1656.28	1813	1.54	60, 42, 43, 73, 57, 47, 75, 45, 74, 71
17	Ethyl-α-D-glucopyranosyl	![Formula](image9)	45.16	1650.7	1813	29.75	60, 42, 43, 73, 57, 47, 75, 45, 74, 71

(Contd...)
We examined the transverse section of the pericarp. An exocarp consists of a single-layered small-celled epidermis covered with a layer of yellowish cuticle. A four-layer collenchyma underlies the epidermis. We found a mechanical belt consisting of thick-walled stony cells of various shapes pierced with pores. We also investigated mesocarp, consisting of large thin-walled parenchymal cells with greenish granular contents, druzes of calcium oxalate, randomly scattered conductive bundles with spiral vessels and tracheids and stony cells with porous layered, not very thick walls. We examined endocarp which consists of sclerized porous cells, and parenchymal cells. When examining the micropreparation of the seed coat from the surface, we found polygonal brownish cells of the epidermis; very large stomata with a gaping stomatal gap and kidney-shaped terminal cells; under the epidermis. In the study of the transverse section of the cotyledons (seed embryo), thin-walled parenchymal cells with granular contents are visible; drops of fatty oil in the immature nucleus are rare [27,28].

Alcohol extraction, obtained from medicinal plant raw materials of walnut fruits in the stage of milky-wax maturity, is a transparent, green-brown liquid with a fragrant smell. Using the chromatography-mass spectrometry method for alcohol extraction from walnut fruit, 17 compounds were identified in the milk-wax stage, related to different classes of BAS. Sugars, flavonoids, phenolic compounds and coumarins, juglone, and organic acids were identified.

CONCLUSION

1. In describing external signs and microscopy, diagnostic features of both whole and shredded raw materials and powder of the walnut crust, as well as its fruit in the stage of milky-wax maturity, were revealed.
2. Alcohol extraction derived from medicinal plant raw materials, walnut bark is a transparent liquid of brown color. Alcohol extraction, obtained from the medicinal plant raw material of walnut fruits in the stage of milky-wax maturity, is a transparent, green-brown liquid with a fragrant smell. TLC in the walnut cortex identified gallic acid.
3. The method of chromatography-mass spectrometry in alcohol extraction from walnut fruit in the stage of milk-wax maturity was able to identify 17 compounds belonging to different classes of BAS. Sugars, flavonoids, phenolic compounds of coumarins, and organic acids were identified. Alcohol extraction from the walnut bark identified marker compounds, the combination of which makes it possible to quickly identify this type of feedstock by chromatography-mass spectrometry marker compounds derivatives of juglone 4,5-dihydroxy-3,4-dihydro-1 (2H)-naphthalenone and derivative anthracene 4,5-dihydroxy-3,4-dihydro-1 (2H)-naphthalenone. With these compounds, the pharmacological activity of medicinal plant material is associated.

ACKNOWLEDGMENTS

The authors would like to grateful to the Department of Pharmaceutica and Natural Sciences of Sechenov First Moscow State Medical University, Moscow, for providing infrastructure and instrumentation facilities.

AUTHORS' CONTRIBUTION

A.N. Luferov, N.V. Bobkova, and A.V. Strelyaeva conceived of the presented idea. A.V. Strelyaeva developed the theory and performed the computations. N.V. Kartashova and R.M. Kuznetsov verified the analytical methods. All authors discussed the results and contributed to the final manuscript. D.I. Lezhava, N.V. Kartashova, and R.M. Kuznetsov carried out the experiment. D.I. Lezhava wrote the manuscript with support from N.V. Kartashova.

CONFLICTS OF INTEREST

We have no conflicts of interest to declare.

REFERENCES

1. Andrienko MV, Zatokovsky FT. Walnut in Transdniestria. Russia: Gardening and Viticulture; 1989. p. 10-2.
2. Chikov PS. Atlas of Areals and Resources of Medicinal Plants of the USSR. Moscov: GUGKL; 1980. p. 247.
3. Solar A, Colaric M, Usenik V, Stampar F. Seasonal variations of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L). Plant Sci 2006;170:453-61.
4. Labuckas DO, Maestri DM, Perello M, Martinez ML, Lamarque AL. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins Food Chem 2008;107:607-12.
5. Dyironas ZV, Pshukova IV. Study of the composition of the lipophilic
fraction of walnut leaves growing in the Caucasian mineral waters.
Chem Plant Raw Mater 2010;4:91.

6. Abdallah IB, Tili N, Martinez-Force E, Rubio AG, Perez-Camino MC, Albouchi A, et al. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem 2015;173:972-8.

7. Enikeeva RA. Walnut Walnut Juglans regia and Its Application in Medical, Including Homeopathic Practice. SAT Scientific Works Development, Research and Marketing of New Pharmaceutical Products; 2005 p. 44-6.

8. Enikeeva RA, Sokolskaya TA, Dergayeva TD. Characterization of Microdiagnostic Features of Walnut. Pyatigorsk: Sborn Scientific Works; 2011;21:39-43.

9. Fukuoka T, Ito H, Yoshida T. Antioxidative polyphenols from walnuts (Juglans regia L.) Phytochemistry 2003;63:795-801.

10. Wianowska D, Garbaczewska S, Cieniecka-Roslonkiewicz A, Dawidowicz AL, Jankowska A. Comparison of antifungal activity of extracts from different Juglans regia cultivars and juglone. Microb Pathog 2016;100:263-7.

11. Samylina IA, Strelyaeva AV, Lazareva NB, Sadykov VM. Homeopathic Preparations from Pharmacopeial Medicinal Plant Raw Materials: Textbook. New York: Medical Information Agency; 2012. p. 432.

12. Strelyaeva AV. Study of toxicity and pharmacological activity of preparations based on medicinal plant raw materials and new extractants. Dis Doct Farm Sci M 2003;32:325.

13. Strelyaeva AV. Application for a Patent for an Image: A Method for Obtaining an Extract of Walnuts of Milky Wax Ripeness in Aviation Kerosene. Pat Russia 2011.

14. Strelyaeva AV. Development of Methods for the Quality of the Tincture of the Matrix Homoeopathic “YUGLON”. Materials of the Regional Scientific Conference. Moscow: Publishing House of the Federal Scientific Clinical Experimental Center of Traditional Methods of Diagnostics and Treatment of Roszdrev; 2007. p. 43-7.

15. Samylina IA, Ermakova VA, Bobkova NV, Samylina IA, editors. Traditional Medicine - 2007 Collection of Scientific Papers of the Congress. Moscow M: Publishing House of the Federal Scientific Clinical Experimental Center of Traditional Methods of Diagnostics and Treatment of Roszdrev; 2007. p. 43-7.

16. Bovkova NV. Microscopic examination of immature walnut fruit. In: Ermakova VA, Bobkova NV, Samylina IA, editors. Traditional Medicine - 2007 Collection of Scientific Papers of the Congress. Moscow M: Publishing House of the Federal Scientific Clinical Experimental Center of Traditional Methods of Diagnostics and Treatment of Roszdrev; 2007. p. 43-7.

17. Muchtaridi M, Suryani D, Qosim WA, Saptarini NM. Quantitative analysis of t-mangostin himmangosteen (Garcinia mangostana L.) pericarp extracts from four districts of west java by HPLC method. Int J Pharm Pharm (IJPPS) Sci 2016;8:232-6.