Bibliometric analysis of core journals which publish articles of physical therapy on aging

Anna ARNAL-GÓMEZ, PhD1, Carolina NAVARRO-MOLINA, Dr2 and Gemma Victoria ESPÍ-LÓPEZ, PhD1

1) Department of Physical Therapy, University of Valencia
2) Superior Council of Scientific Investigations, Institute of Agrochemistry and Food Technology, Catedrático Agustín Escardino. Paterna, Valencia

ABSTRACT. Objective. Increase in population’s longevity has led to considerable efforts worldwide on physical therapy aging research. The aim of this study is to identify which are the main scientific journals, as well as the most productive authors, institutions and keywords related to the journals, that have published about physical therapy and aging. Methods. Original articles published from 1990 to 2014 were retrieved from the bibliographic database Science Citation Index Expanded of Web of Science Core Collection. After standardization of the bibliographic information, a series of bibliometric indicators was obtained regarding authors, institutions, citation and keywords of the core journals using bibliometric software. The PAJEK network analysis program was used for graphic representation. Results. A total of 2,237 original articles are included in this analysis. The number of identified journals is 573, with an average growth of publishing journals throughout the studied period of 9.41%. Bradford’s distribution shows 12 core journals, out of which 41.67% have published constantly all throughout the 25-year period, being the most productive one Physical Therapy. Fritz, Julie M is the most productive author, and University of Sydney the most productive institution. The keyword exercise is used in an outstanding way. Conclusions. The productivity trends provided an indication of the greater scientific interest of physical therapy in aging as a line of research. Collectively, the data indicated that physical therapy-specific journals are being consolidated but non-specific are still a significant research source, and that a fundamental element of their research includes exercise and movement.

Key words: Bibliometrics, Physical therapy, Aging

Globally, the number of older adults is growing faster than all younger age groups. It’s expected to more than double by 2050 and more than triple by 2100, rising from 962 million in 2017 to 2.1 billion in 2050 and 3.1 billion in 21001. Aging has taken a prominent role in research strategies and it constituted 2.4% of all scientific publications in 2015 worldwide2.

Although physical therapy (PT) publications are a relatively new phenomenon3,4, considerable efforts have been made on aging research5. The World Health Organization indicates that aging constitutes complex changes6-8, which are not linear or uniform9,10, plus there is also “successful aging” to be considered11-15. Therefore, PT plays a fundamental part in maintenance or improvement of functionality throughout the cycle of life16-18. When dealing with such complex phenomenon, bibliometric measures allow to identify emerging and innovative topics, anticipate advances and determine which paradigms will dominate research in the future19,20. It has already been implemented in, mostly, all scientific fields21,22, and it can allow PT researchers and professionals to analyze publications and identify future research opportunities23.

The goal of a scientific work is its dissemination and consumption, for which publication in any of the established channels becomes necessary24,25. Journals have a
great importance on the scientific activity, in a qualitative and a quantitative focus[20-21]. The aim of this study is to identify the main scientific journals, the most productive authors, institutions and main thematic of the journals that have published about PT and aging.

Methods

A bibliometric study was conducted through the SCI-Expanded (SCI-E) of Web of Science (WoS) Core Collection as in previous bibliometric studies[22,23], in order to retrieve all the original articles related to PT in aging. WoS allows to know the impact of publications from their citations[24] and a detailed citation analysis[25]

The search strategy was carried out with terms related to: PT, physical therapist, aging and PT techniques in aging. They were selected due to their existence in the Medical Subject Headings (MeSH) thesaurus[26], in previous bibliometric studies[14,15], or were professional terms of PT[16-18]. The final search strategy had 115 combined terms.

As for the limits, all categories of SCI-E were selected in order to obtain a multidisciplinary view. The search time limit finally was from 1990, year of the first result, to 2014. The type of document Articles was selected, since original articles of scientific journals with peer review are the most appropriate for bibliometric studies[21]. The literature search was applied on July 2015 and a total of 2,417 documents were retrieved.

A specific bibliometric relational database (Bibliométricos.mdb) in a Microsoft Access file was generated with the 2,237 documents after remove manually the 180 non-pertinent references. The authors’ signatures were standardized, because an author may use only one surname, or two. (e.g. standardized author Hill, Keith D had the variants Hill, K., Hill, Keith and Hill, Keith D.) In relation with institutions, the different variants of universities or hospitals were unified.

Keywords were standardized considering the definitions of the World Confederation for Physical Therapy (WCPT) Glossary[41], Medline Plus Dictionary of United States National Library of Medicine and the MeSH thesaurus[22]

Global bibliometric indicators were obtained: number of journals, Bradford’s distribution for journals, productivity of Bradford’s core journals (BCJ) and identification of the journal’s publishing countries. For the calculation of Bradford’s distribution, scientific journals were sorted in descending order of productivity identifying a core of specialized publications (Bradford’s nucleus) and several zones that had approximately the same number of articles than the nucleus, where the number of journals increases in n progression in the first zone around the nucleus, n^2 in the second zone and so on. In multidisciplinary areas it’s considered the indicator that best fits the distribution[26]. Journals with 500 or more citations were identified, as well as citation indicators of highly productive journals, correlation between citation and productivity (Pearson correlation coefficient and coefficient of determination-CD), Impact Factor (IF) measurements and h-Index for BCJ[42]. The h-Index is the result of the combination of productivity and citation given in an index: a journal has an h-index, if all of its h works receive at least h citations each, and the rest have at most h citations[26].

The links between highly productive journals and keywords (used in at least 15 of its publications) were also identified. All BCJ met this criterion. For the graphic representation of links, PAJEK network analysis program was used. Regarding authors, bibliometric indicators were calculated: number of authors, Lotka’s Productivity Index (PI)[43] and productivity measurements of highly productive authors in relation with the journals. PI allows to identify highly productive authors (more than 10 published papers: $\text{PI} \geq 1$), medium producers (2-9 published papers: $0 < \text{PI} < 1$) and small producers, (1 article: $\text{PI} = 0$).

The same methodology was applied to analyse the institutional signatures, identifying the PI for the institutions. Quartiles were also calculated for institutions with $\text{PI} \geq 1$.

Results

The number of articles that were analysed was 2,237 (89.48 articles per year, SD=77.64), and the number of journals was 573 (177 articles per quinquennium, SD=130). The journals that published throughout the 25 years had grown an average of 9.41% (SD = 5.3), being the largest percentage increase between 2005-2009 and 2010-2014 (15.71% more publishing journals, n=139).

Regarding the journal’s country publication, 33.68% of them were published in US (n = 193), 21.29% in UK (n = 122), 8.55% in Germany (n = 49), 3.32% in France (n = 19) and 2.97% in Australia (n = 17).

Bradford’s distribution showed that there were 12 BCJ (Zone 1 or nucleus) with 724 articles; Zone 2 had 81 (756 articles); and Zone 3 had 480 (757 articles). BCJ corresponded to high productivity specialized journals sought by authors to publish their work, and had published between 25 and 149 articles each.

The most productive journals (Table 1) experienced a steady growth in the number of publications over the period 1990-2014 and had a 29% percentage variation between first and last quinquennium.

Five (41.67%) of BCJ had published constantly all throughout the 25-year period: Phys Ther, Arch Phys Med Rehabil, JOSPT, Spine and J Am Geriatr Soc.

In relation to the 12 BCJ, most of them were published in the US (58.33%, n = 7), followed by the UK (33.33%, n
A total of 8,486 authors were identified and accumulated 10,582 signatures. Authors’ productivity distribution showed: 14 highly productive (PI \(\geq 1 \), 0.16% of authors, 1.8% of papers), 1,157 medium producers (0 < PI < 1, 13.63% of authors, 29.07% of articles), and 7,315 small producers (PI = 0, 69.13% of papers).

Highly productive authors published in 46 journals, with an average of 7.79 (SD = 2.22) journals per author. The journal with highest number of published papers was *Phys Ther* (n = 31, 16.23%), followed by *BMC Musculoskeletal Disord* (n = 23, 12.04%) and *JOSPT* (n = 20, 10.47%).

The author with more publications in the same journal was Cleland, Joshua A., (9 articles in *JOSPT*), followed by Fritz, Julie M., (7 publications in *Phys Ther*) and Hay, Elaine M. (7 in *BMC Musculoskeletal Disord*) (Table 2).

A total of 2,164 institutions from 63 different countries were identified, and accumulated 5,156 signatures. When Lotka’s distribution was applied, only 3.65% (n = 79) obtained a PI \(\geq 1 \), 30.08% (n=651) were medium producers (0 < PI < 1) and 66.27% (n = 1,434) had a PI=0. The five most productive institutions were: University of Sydney (n = 52), University of Queensland (n = 47), University of Melbourne (n = 46), University of Washington (n = 41) and University of Toronto (n = 39).

The 79 highly productive institutions corresponded to 18 countries, with US leading with 24 institutions (30.38%) which published 416 documents (18.60%), followed by Australia with 10 institutions (12.65%) and 292 articles (13.10%).

The calculation of quartiles for the 79 institutions with a PI \(\geq 1 \), allowed to identify 4 zones. In the first quartile the most highly productive institutions were found and had published in 433 journals being the main two: *BMC Musculoskeletal Disord* (8 institutions, 38.10%), followed by *Phys Ther* (5 institutions, 23.81%) with an average of 20.62 (SD = 7.05) journals per institution.

A total of 3,396 keywords were used in the 2,237 articles. The links between BCJ and the keywords used was

Journal*	Country	1990-1994	1995-1999	2000-2004	2005-2009	2010-2014	TOTAL
Phys Ther	US	13	16	14	47	59	149
Arch Phys Med Rehabil	US	5	10	33	34	42	124
JOSPT	US	3	8	10	22	30	73
BMC Musculoskeletal Disord	UK	0	0	2	14	49	65
Physiotherapy	UK	0	0	0	27	37	64
Rev Bras Fisioter	Brazil	0	0	0	11	39	50
Clin Rehabil	UK	0	2	11	20	16	49
Spine	US	4	5	13	9	5	36
Disabil Rehabil	UK	0	0	9	6	18	33
J Am Geriatr Soc	US	5	2	8	9	4	28
J Geriatr Phys Ther	US	0	0	0	2	26	28
JMPT	US	0	3	6	8	8	25

* Ordered by productivity.
analysed, finding they used 21 different keywords, being “Physical therapy” and “older people” the mostly used. The most important link was between Arch Phys Med Rehabil and the keyword “rehabilitation” (n = 114), followed by Phys Ther and the keyword “older people” (n = 63). One of the outstanding keywords was “exercise” used by the two most productive journals (Figure 1).

Discussion

The results have shown that the number of journals has increased in every quinquennium, being the most pro-
productive 2010-2014 and 2005-2009 periods. Scientific journals are the main channel for the dissemination of research results\(^\text{47,48}\), the fact that there are more publishing journals in this area confirms that there is a growing scientific interest.

As in previous bibliometric studies on PT\(^\text{38}\) or medicine\(^\text{49}\), Bradford’s distribution was applied showing core journals. Three out of the five most productive journals are considered specific to the area: Phys Ther, JOSPT and Physiotherapy\(^\text{50-52}\). This was also stated in a previous study\(^\text{53}\), being the most frequently consulted journals, Phys Ther and JOSPT.

Despite not being PT specific, other journals such as Arch Phys Med Rehabil, Clin Rehabil or Spine have an advantageous position in our results. This may be due to the fact that aging is a multidisciplinary field and this usually allows authors to have various options for publishing\(^\text{48}\).

Results show that most of the main journals are published in US, country where most of the highly productive institutions are from. These follows the pattern of other PT bibliometric studies\(^\text{29,37,55-58}\)\). US is followed by other highly developed countries such as UK or Australia. This is because they are well represented and consolidated in the WCPT\(^\text{35}\) and this organization promotes and supports PT research.

In relation to the authors, the highly productive concentrate a high percentage of their articles in three journals, two of which are PT-specific journals (Phys Ther and JOSPT), while the rest of the articles are dispersed in another forty-three journals.

The journal where highly productive institutions more articles have published has been BMC Musculoskeletal Disord, followed by Phys Ther. Phys Ther is considered one of the leading journals of the profession\(^\text{79}\), which explains the advantageous position it has obtained. However, BMC Musculoskeletal Disord does not appear in previous bibliometric analysis. In addition, financial contributions are necessary to publish articles in this journal. All of this may suggest that the most productive institutions have BMC Musculoskeletal Disord as a “target” in multidisciplinary publications that do not fit into other more PT or aging specific journals.

In relation to impact indicators, other studies\(^\text{39,60}\) found that Arch Phys Med Rehabil was the most cited publication source. Fell et al.\(^\text{61}\) concluded this journal went to a second position regarding the citation, being Phys Ther on the first position. It is also the only specific PT journal with 500 or more citations. This indicates that PT research in aging is still closely linked to other areas of rehabilitation that are published in different journals\(^\text{62}\).

Journals visibility has been studied by comparing bibliometric indicators\(^\text{63,64}\). Journals with higher IF are also those that have a high h-index. The IF is easy to manipulate with self-citations\(^\text{65}\), but the h-Index is difficult to manipulate when its value is relatively high\(^\text{66}\), so it can be assumed that the IF of BCJ was not potentially manipulated.

The IF is used to measure the quality of articles and researchers\(^\text{67,68}\). Our results allow PT researchers and professionals to quantify the prestige of scientific journals in order to know where they want to publish their results\(^\text{54}\).
There are few previous PT bibliometric works that study the thematic of the journals. In our results, the most productive journals have links to significant terms in aging such as: “exercise”, “fall”, “mobility”, “quality of life” or “stroke”. This terms, plus others like “walking”, “balance” or “risk factor” and the fact that term “exercise” has important links with the two most productive journals (Phys Ther and Arch Phys Med Rehabil), strengthens the idea that exercise and movement are one of the most promising interventions to attenuate mobility loss and are therefore fundamental in present and future PT aging research. This implicates that clinicians have more scientific evidence in order to use physical activity with their adult patients and help them to age in better conditions.

Nevertheless, the current study is not exempt from limitations: only choosing WoS and Articles for our analysis. However, WoS Core Collection includes the most important scientific publications in each subject area and Articles are considered the most suitable in bibliometric research; furthermore, there are quality problems in the bibliographic data and these are important when analysing authorship, either because the authors themselves do not always sign the papers in the same way or because of errors at processing the information. Finally, aging in population has continued to grow and scientific PT is developing, so further research should consider the following quinquenniums in order to establish further journal productivity trends.

Conclusions

To our knowledge, this is the first bibliometric analysis of PT in aging. Findings on this study have identified the 12 core journals which are considered the most outstanding in the field and, therefore, sought by authors and institutions to publish their work.

The number of publishing journals has increased in every quinquennium and productivity trends provide an indication of the greater scientific interest of PT in aging as a line of research. Collectively, the data indicated that PT-specific journals are being consolidated in terms of productivity and citation but other journals are still a significant research source since aging is a multidisciplinary rehabilitation field.

Finally, the results show that exercise and movement are one of the most outstanding interventions which implicates that clinicians have more scientific evidence in order to use physical activity with their patients and help them to age in better conditions, improve their quality of life and attenuate disability.

Conflict of Interest: The authors declare that there is no conflict of interest.

References

1) United Nations, Department of Economic and Social Affairs: Population Division. World population prospects: the 2017 revision, key findings and advance tables. [Internet] Working Paper No. ESA/P/WP/248. 2017. Available from: https://esa.un.org/unpd/wpp/publications/files/wpp2017_key-findings.pdf.
2) Fundación General CSIC: Investigación sobre envejecimiento. [internet] 2016 [cited 2018 May 30]; Available from: http://envejecimiento.csic.es/documentos/documentos/Informeinvestigacio nenvejecimiento2017.pdf.
3) Elsner B: Systematic reviews for informing clinical practice. Physiother Res Int. 2018; 23.
4) Snell K, Hassan A, et al.: Types and quality of physical therapy research publications: has there been a change in the past decade? Physiother Can. 2014; 66: 382-391.
5) Fernández JL, Parapar C, et al.: El envejecimiento de la población. Cuadernos de la Fundación General CSIC, LYCHNOS [Internet] 2010; 2: 1-90.
6) Gaskin CJ and Orellana L: Factors associated with physical activity and sedentary behavior in older adults from six low- and middle-income countries. Int J Environ Res Public Health. 2018; 15: E908.
7) Kirkwood TB: A systematic look at an old problem. Nature. 2008; 451: 644-647.
8) Organización Mundial de la Salud: WHO study on global AGEing and adult health (SAGE). [internet] [updated 2015, cited 2018 Jan. 25]; Available from: http://www.who.int/healthinfo/sage/en/.
9) Alvarado García AM and Salazar Maya AM: Aging concept analysis. Gerokomos. 2014; 25: 57-62.
10) Steves CJ, Spector TD, et al.: Ageing, genes, environment and epigenetics: what twin studies tell us now and in the future. Age Ageing. 2012; 41: 581-586.
11) Lin CC, Rogot E, et al.: A further study of life expectancy by socioeconomic factors in the national longitudinal mortality study. Ethn Dis. 2003; 13: 240-247.
12) Boulton-Lewis GM, Buys L, et al.: Learning and active aging. Educ Gerontol. 2006; 32: 271-282.
13) Fernández-Ballesteros R, Robine JM, et al.: Active aging: a global goal. Curr Gerontol Geriatr Res. 2013; 298012: 4.
14) Fries JF: The theory and practice of active aging. Curr Gerontol Geriatr Res. 2012; 420637: 7.
15) Lin PS, Hsieh CC, et al.: Association between physical fitness and successful aging in taiwanese older adults. PLoS One. 2016; 11: e0150389.
16) World Confederation for Physical Therapy: Policy statement: description of physical therapy. [internet] [updated 2011. cited 2018 Jan. 25]; Available from: http://www.wcpt.org/policy/ps-definitionPT.
17) Pérez Serrano G: Dykinson S.L. (ed): ¿Cómo intervenir en personas mayores? Madrid, 2004.
18) Lauretani F, Russo CR, et al.: Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003; 95: 1851-1860.
Journals of physical therapy on aging

19) Boyack KW and Klavans R: Creation of a highly detailed, dynamic, global model and map of science. JASIST. 2014; 65: 670-685.

20) Huang MH and Chang CP: Detecting research fronts in OLED field using bibliographic coupling with sliding window. Scientometrics. 2014; 98: 1721-1744.

21) Glänzel W: Bibliometrics as a research field. A course on theory and application of bibliometric indicators. [internet]. [updated 2003, cited 2017 Dec. 14]; Available from: http://nsdl.nisc.air.res.in/jspui/bitstream/123456789/968/1/Bib_Module_KUL.pdf.

22) Tilson JK, Marshall K, et al.: A bibliometric analysis of statistical terms used in American Physical Therapy Association journals (2011-2012): evidence for educating physical therapists. BMC Med Educ. 2016; 16: 118.

23) Yuan Y, Gretzel U, et al.: Revealing the nature of contemporary tourism research: extracting common subject areas through bibliographic coupling. Int J Tourism Res. 2014; 17: 417-431.

24) Miguel-Dasit A: Estudio bibliométrico de las publicaciones españolas sobre diagnóstico por la imagen. [internet] Universitat de Valencia. 2003; Available from: https://www.tdx.cat/handle/10803/9976.

25) Price DJS: Towards a model for science indicators. In: Elkana (eds): Towards a metric of science: the ad- venture. CEGAL, Madrid, 1994.

26) Carrizo G, Irureta-Goyena P, et al.: Manual de fuentes de información. CEGAL, Madrid, 1994.

27) Aleixandre R and Valderrama Zurián JC: Fuentes de información en traumatología del deporte. I. Fundamentos para la realización de búsquedas bibliográficas. Rev Traumatol Dep. 2003; 1: 59-65.

28) Aleixandre R and Valderrama Zurián JC: Fuentes de información en traumatología del deporte. II. Estrategias de búsqueda en Medline. Rev Traumatol Dep. 2003; 1: 85-89.

29) Aleixandre JL, Aleixandre-Tudó JL, et al.: Mapping the scientific research on wine and health (2001-2011). J Agric Food Chem. 2013; 61: 11871-11880.

30) Aleixandre-Benavent R, Alonso-Arroyo A, et al.: La producción científica cardiovascular en España y en el contexto europeo y mundial (2003-2007). Rev Esp Cardiol. 2009; 62: 1404-1417.

31) Aleixandre-Benavent R, Gonzalez-Alcaide G, et al.: Full-text publications in peer reviewed journals derived from presentations at three ISSI conferences. Scientometrics. 2009; 80: 409-420.

32) López-Illuescas C, Moya-Anegrón F, et al.: Coverage and citation impact of oncological journals in the Web of Science and Scopus. J Informetr. 2008; 2: 304-316.

33) U.S. National Library of Medicine: Medical subject headings. [internet] [updated 2015, cited 2015 Jun. 20]; Available from: https://www.ncbi.nlm.nih.gov/mesh.

34) Wiles L, Mattriciani L, et al.: Sixty-five years of Physical Therapy: bibliometric analysis of research publications from 1945 through 2010. Phys Ther. 2012; 92: 493-506.

35) Coronado RA, Riddle DL, et al.: Bibliometric analysis of articles published from 1980 to 2009 in Physical Therapy, journal of the American Physical Therapy Association. Phys Ther. 2011; 91: 642-655.

36) Coronado RA, Wurtzel WA, et al.: Content and bibliometric analysis of articles published in the Journal of Orthopaedic & Sports Physical Therapy. J Orthop Sports Phys Ther. 2011; 41: 920-931.

37) de Freitas AE, Herbert RD, et al.: Searching the LILACS database for portuguese-and spanish-language randomized trials in physiotherapy was difficult. J Clin Epidemiol. 2005; 58: 233-237.

38) Wakiji EM: Mapping the literature of physical therapy. Bull Med Libr Assoc. 1997; 85: 284-288.

39) García Ríos MC, Moreno Lorenzo C, et al.: Análisis temático de la disciplina fisioterapia en la Web de Science. Fisioterapia. 2010; 32: 159-164.

40) World Confederation for Physical Therapy: WCPT guideline for physical therapist professional entry level education. [internet] 2011 [cited 2015 Jun. 20]; Available from: https://www.wcpt.org/sites/wcpt.org/files/files/WCPT_Description_of_Physical_Therapy-Sep07-Rev_2.pdf.

41) World Confederation for Physical Therapy: WCPT glossary: Terms used in WCPT’s policies and resources. [internet] 2014 [cited 2015 Jun. 20]; Available from: https://www.wcpt.org/glossary.

42) U. S. National Library of Medicine: History of MeSH. [internet] [cited 2015 Aug. 17]; Available from: http://www.nlm.nih.gov/mesh/mesh_at_50/history_of_mesh.html.

43) Venable GT, Shepherd BA, et al.: An application of Bradford Law identification of core journals of pediatric neurosurgery and a regional comparison of citation density. Childs Nerv Syst. 2014; 30: 1717-1727.

44) Hirsch JE: An index to quantify an individual’s scientific research output. Proc Natl Acad Sci U S A. 2005; 102: 16569-16572.

45) Ardanuy J: Breve Introducción a la Bibliometría. [internet] Barcelona: Departament de Biblioteconomia i Documentació Universitat de Barcelona; 2012. [cited 2015 Sep. 14]; Available from: http://diposit.ub.edu/dspace/bitstream/2445/30962/1/brev%20introduccion%20bibliometria.pdf.

46) Thompson DF and Walker CK: A descriptive and historical review of bibliometrics with applications to medical science. Pharmacotherapy. 2015; 35: 551-559.

47) Aleixandre-Benavent R and Porcel Torrens A: El factor de impacto de las revistas científicas. Trast Adict. 2000; 1: 264-271.

48) Kaltenborn KF and Kuhn K: The journal impact factor as a parameter for the evaluation of researchers and research. Rev Esp Enf Dig. 2004; 96: 460-476.

49) Torres-Pascual C: Análisis bibliométrico sobre el estado de las investigaciones de meditación en oncología (2009-2013). Med Natur. 2015; 9: 2-8.

50) Maher CG, Moseley AM, et al.: A description of the trials, reviews, and practice guidelines indexed in the PEDro database. Phys Ther. 2008; 88: 1068-1077.

51) Miller PA, McKibbon KA, et al.: A quantitative analysis of re-
search publications in physical therapy journals. Phys Ther. 2003; 83: 123-131.

52) Costa LO, Moseley AM, et al.: Core journals that publish clinical trials of physical therapy interventions. Phys Ther. 2010; 90: 1631-1640.

53) Carter RE, Stoecker J, et al.: Descriptors of American Physical Therapy Association physical therapist members’ reading of professional publications. Physiother Theory Pract. 2006; 22: 263-278.

54) Smith DR and Rivett DA: Bibliometrics, impact factors and manual therapy: balancing the science and the art. Man Ther. 2009; 14: 456-459.

55) Fundación General CSIC: Informe de la I+D+I sobre envejecimiento. [internet] 2010 [cited 2018 May 25]; Available from: http://www.fgcsic.es/sites/default/files/InformeEnvejecimiento.pdf.

56) González-Alcaide G, Aleixandre-Benavent R, et al.: Coauthorship networks and institutional collaboration patterns in reproductive biology. Fertil Steril. 2008; 90: 941-956.

57) González Block MA: The state of international collaboration for health systems research: what do publications tell? Health Res Policy Syst. 2006; 4: 7.

58) Soteriaides ES, Rosmarakis ES, et al.: Research contribution of different world regions in the top 50 biomedical journals (1995-2002). FASEB J. 2017; 20: 29-34.

59) Kocak FU, Unver B, et al.: Level of evidence in four selected rehabilitation journals. Arch Phys Med Rehabil. 2011; 92(2): 299-303.

60) Maher CG, Moseley AM, et al.: Core journals of evidence-based physiotherapy practice. Physiother Theory Pract. 2001; 17: 143-151.

61) Fell DW, Burnham JF, et al.: Mapping the core journals of the physical therapy literature. J Med Libr Assoc. 2011; 99: 202-207.

62) Bohannon RW: Core journals of physiotherapy. Physiotherapy. 1999; 85: 317-321.

63) Lankhorst GJ and Franchignoni F: The impact factor-an explanation and its application to rehabilitation journals. Clin Rehabil. 2001; 15: 115-118.

64) Franchignoni F, Muñoz Lasa S, et al.: Bibliometric indicators: a snapshot of the scientific productivity of leading European PRM researchers. Eur J Phys Rehabil Med. 2011; 47: 455-462.

65) García-Pachón E and Padilla-Navas I: Should self-citation of articles be penalized? Arch Bronconeumol. 2014; 50: 372.

66) Bartneck C and Kokkelmans S: Detecting h-index manipulation through self-citation analysis. Scientometrics. 2011; 87: 85-98.

67) Garfield E: The history and meaning of the journal impact factor. JAMA. 2006; 295: 90-93.

68) Kamat PV and Schatz GC: Journal impact factor and the real impact of your paper. J Phys Chem Lett. 2015; 6: 3074-3075.

69) Mankowski RT, Anton SD, et al.: Device-measured physical activity as a predictor of disability among mobility-limited older adults. J Am Geriatr Soc. 2017; 65: 2251-2256.

70) Ruiz-Pérez R, Delgado López-Cózar E, et al.: Criterios del Institute for Scientific Information para la selección de revistas científicas. Su aplicación a las revistas españolas: metodología e indicadores. Int J Clin Health Psychol. 2006; 6: 401-424.