Measurements of $t\bar{t}$ spin correlations and top-quark polarization using dilepton final states in pp collisions at $\sqrt{s} = 7\text{ TeV}$

The CMS Collaboration

Abstract

Spin correlations in the $t\bar{t}$ system and the polarization of the top quark are measured using dilepton final states produced in pp collisions at the LHC at $\sqrt{s} = 7\text{ TeV}$. The data correspond to an integrated luminosity of 5.0 fb$^{-1}$ collected with the CMS detector. The measurements are performed using events with two oppositely charged leptons (electrons or muons), a significant imbalance in transverse momentum, and two or more jets, where at least one of the jets is identified as likely originating from a b quark. The spin correlations and polarization are measured through asymmetries in angular distributions of the two selected leptons, unfolded to the parton level. All measurements are found to be in agreement with predictions of the standard model.

Submitted to Physical Review Letters

© 2013 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

*See Appendix A for the list of collaboration members
Spin correlations in the $t\bar{t}$ system provide direct access to the properties of the bare top quark, as well as a test of the viability of perturbative quantum chromodynamics (QCD) in the $t\bar{t}$ production process [1]. The polarization of the top quarks in $t\bar{t}$ events is another topic of major interest. In the standard model (SM), top quarks are produced with a small amount of polarization that can be attributed to electroweak corrections to the QCD-dominated production process. For models beyond the SM, couplings of the top quark to new particles can alter both the polarization of the top quark and the amount of spin correlation in the $t\bar{t}$ system [2].

At the Tevatron, the top-quark mass has been measured as $m_t = 173.20 \pm 0.87$ GeV [3], and its decay width is $\Gamma_t = 2.0^{+0.7}_{-0.6}$ GeV [4]. This implies a lifetime much shorter than the spin decorrelation timescale of $m_t/A_{\chi}^2_{\text{QCD}}$ [5]. Consequently, the information about the spin of the top quark at production is transferred directly to its decay products and can be accessed from their angular distributions.

At the Large Hadron Collider (LHC), top quarks are produced abundantly, mainly in pairs. For low $t\bar{t}$ invariant masses, the production is dominated by the fusion of pairs of gluons with the same helicities, resulting in the creation of top-quark pairs with antiparallel spins. At larger invariant masses, the dominant production is via the fusion of gluons with the opposite helicities, resulting in $t\bar{t}$ pairs with parallel spins. These have the same configuration as $t\bar{t}$ events produced via $q\bar{q}$ annihilation [5].

In the decay $t\bar{t} \rightarrow \ell^+\nu b\bar{b}\tau^\tau\bar{\nu}$, in the laboratory frame, the difference in azimuthal angles of the charged leptons ($\Delta \phi_{\ell^+\ell^-}$) is sensitive to $t\bar{t}$ spin correlations, and can be measured precisely without reconstructing the full event kinematics [5]. The top-quark spin can be studied using θ_ℓ, which is the angle of the charged lepton in the rest frame of its parent top quark or antiquark, measured in the helicity frame (i.e., relative to the direction of the parent quark in the $t\bar{t}$ center-of-momentum frame). The CDF, D0, and ATLAS spin correlation and polarization measurements used template fits to angular distributions and observed results consistent with SM expectations [6-11]. In this analysis, the measurements are made using angular asymmetry variables unfolded to the parton level, allowing direct comparisons between the data and theoretical predictions.

The top-quark polarization P in the helicity basis is given by $P = 2A_P$, where the asymmetry variable A_P is defined as

$$A_P = \frac{N(\cos(\theta_\ell) > 0) - N(\cos(\theta_\ell) < 0)}{N(\cos(\theta_\ell) > 0) + N(\cos(\theta_\ell) < 0)}.$$

Here the numbers of events N are counted using the θ_ℓ measurements of both positively and negatively charged leptons (θ_{ℓ^+} and θ_{ℓ^-}), assuming CP invariance.

For $t\bar{t}$ spin correlations, the variable

$$A_{\Delta \phi} = \frac{N(\Delta \phi_{\ell^+\ell^-} > \pi/2) - N(\Delta \phi_{\ell^+\ell^-} < \pi/2)}{N(\Delta \phi_{\ell^+\ell^-} > \pi/2) + N(\Delta \phi_{\ell^+\ell^-} < \pi/2)}$$

provides excellent discrimination between correlated and uncorrelated t and \bar{t} spins, while the variable

$$A_{c_1c_2} = \frac{N(c_1 \cdot c_2 > 0) - N(c_1 \cdot c_2 < 0)}{N(c_1 \cdot c_2 > 0) + N(c_1 \cdot c_2 < 0)},$$

where $c_1 = \cos(\theta_{\ell^+})$ and $c_2 = \cos(\theta_{\ell^-})$, provides a direct measure of the spin correlation coefficient C_{hel} using the helicity angles of the two leptons in each event: $C_{\text{hel}} = -4A_{c_1c_2}$ [12].
The results presented in this Letter are based on data that correspond to an integrated luminosity of 5.0 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 7$ TeV, provided by the LHC and recorded by the Compact Muon Solenoid (CMS) detector in 2011.

The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of 3.8 T. The bore of the solenoid is outfitted with a variety of particle detection systems. Charged-particle trajectories are measured with the silicon pixel and strip trackers that cover a pseudorapidity region of $|\eta| < 2.5$, where η is defined as $\eta = -\ln[\tan(\theta/2)]$, with θ being the polar angle of the trajectory of the particle with respect to the counterclockwise-beam direction. A crystal electromagnetic calorimeter and a brass/scintillator hadron calorimeter surround the inner tracking volume and provide high-resolution measurements of energy used to reconstruct electrons, photons, and particle jets. Muons are measured in gas-ionization detectors embedded in the flux return yoke of the solenoid. The detector is nearly hermetic, thereby providing reliable measurements of momentum imbalance in the plane transverse to the beams. A two-tier trigger system selects the most interesting collisions for analysis. A more detailed description of the CMS detector is given in Ref. [13].

For this analysis, pp collisions are selected using triggers that require the presence of at least two leptons (electrons or muons) with large transverse momentum (p_T). Electron candidates [14] are reconstructed by associating tracks from the inner tracker with energy clusters in the electromagnetic calorimeter. Muon candidates [15] are reconstructed by combining information from the outer muon detector with the tracks reconstructed by the inner tracker. Additional lepton identification criteria are applied for both lepton flavors in order to reject hadronic jets that are misidentified as leptons [14, 15]. Both electrons and muons are required to be isolated from other activity in the event. This is achieved by imposing a maximum value of 0.15 on the ratio of the scalar sum of supplementary track p_T and calorimeter transverse energy deposits within a cone of $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.3$ around the lepton candidate direction, to the transverse momentum of the candidate.

Event selection is applied to reject events other than those from $t\bar{t}$ in the dilepton final state. Events are required to have exactly two opposite-sign, isolated leptons ($e^+e^−$, $\mu^+\mu^−$, or $e^\pm\mu^\mp$). The electrons (muons) are required to have $p_T > 20$ GeV and to lie within $|\eta| < 2.5$ (2.4). The reconstructed lepton trajectories must be consistent with a common interaction vertex. Events with an $e^+e^−$ or $\mu^+\mu^−$ pair with invariant mass between 76 and 106 GeV or below 20 GeV are removed to suppress Drell–Yan and heavy-flavor resonance production. The jets and the momentum imbalance in each event are reconstructed using a particle-flow technique [16]. The anti-k_T clustering algorithm [17] with a distance parameter of 0.5 is used for jet clustering. Corrections are applied to the energies of the reconstructed jets, based on the results of simulations and studies using exclusive dijet and γ+jet data [18]. At least two jets with $p_T > 30$ GeV and $|\eta| < 2.5$, separated by $\Delta R > 0.4$ from leptons passing the analysis selection, are required in each event. At least one of these jets must be consistent with the decay of heavy-flavor hadrons (a “b jet”), identified by the combined secondary vertex b-tagging algorithm [19]. This is based on the reconstruction of a secondary decay vertex, and gives a b-tagging efficiency of about 70% (depending on jet p_T and η) with misidentification probabilities of approximately 1.5% and 20% for jets originating from light partons (u, d, and s quarks, and gluons) and c quarks, respectively. The missing transverse energy, E_T^{miss}, is defined as the magnitude of the momentum imbalance, which is the negative of the vector sum of the momenta of all reconstructed particles in the plane transverse to the beam. The E_T^{miss} in the event is required to exceed 40 GeV in events with same-flavor leptons, in order to suppress the Drell–Yan background.
Simulated $t\bar{t}$ events are generated using MC@NLO 3.41 [20], with a top-quark mass of 172.5 GeV, and showered and fragmented using HERWIG 6.520 [21]. Simulations with different values of m_t and the factorization and renormalization scales are produced in order to evaluate the associated systematic uncertainties.

The dilepton $t\bar{t}$ selection classifies events with τ leptons as signal only when the τ decays leptonically. Other $t\bar{t}$ topologies, such as the lepton+jets and all-hadronic decays, are classified as background. The background samples of $W + \text{jets}$, Drell–Yan, diboson, and single-top-quark events are generated using MADGRAPH [22] or POWHEG [23], and showered and fragmented using PYTHIA 6.4.22 [24]. Next-to-leading order (NLO) cross sections are used for all background samples.

For both signal and background events, multiple pp interactions in the same or nearby bunch crossings (pileup) are simulated using PYTHIA and superimposed on the hard collision. Events are then simulated using a GEANT4-based model [25] of the CMS detector, and finally reconstructed and analyzed with the same software used to process collision data.

The trigger efficiency for dilepton events that pass the analysis selection criteria is determined using a tag-and-probe method [26]. For the $e\mu$, $e\mu$, and $\mu\mu$ channels this gives p_T- and η- dependent efficiencies of approximately 100%, 95%, and 90%, respectively [27]. These efficiencies are used to weight the simulated events to account for the trigger requirement. The lepton selection efficiencies (reconstruction, identification, and isolation) are consistent between the data and the simulation [26, 28]. To account for the difference between the b-tagging efficiencies in data and simulation [19], data-to-simulation scale factors are applied for each jet in the simulated events. CMS studies [29] have shown that the top-quark p_T distribution in data is softer than in the NLO simulation. Reweighting the top-quark p_T in the simulation to match the data improves the modeling of the lepton and jet p_T distributions, and is applied to the MC@NLO $t\bar{t}$ sample used in this Letter. Due to the dependence of the spin correlations on the $t\bar{t}$ invariant mass, and thus the top-quark p_T, the p_T reweighting increases the fraction of top-quark pairs with aligned spins in the simulation. The simulation is used only for the unfolding, which is primarily sensitive to changes in acceptance, where the effect of the p_T reweighting largely cancels in the ratio. However, the top-quark p_T spectrum modeling remains as one of the most significant uncertainties.

After all weights are applied, a total of 740 background events are expected. There are 9824 events observed in data, and the remaining 9084 events are assumed to be signal (dileptonic $t\bar{t}$). The mean acceptance for signal events is 18%, and describes the fraction of all produced signal events that are expected to be selected.

While the $\Delta\phi_{\ell^+\ell^-}$ measurement relies purely on leptonic information, the measurements based on θ_ℓ require reconstruction of the entire $t\bar{t}$ system. Each event has two neutrinos, and there is also ambiguity in combining b jets with leptons, resulting in up to 16 possible solutions for the $t\bar{t}$ system. The analytical matrix weighting technique (AMWT) [30] is used to find the most probable solution, assuming a top-quark mass of 172.5 GeV. In events with only one b-tagged jet, the second b jet is assumed to be the untagged jet with the largest p_T. Solutions are assigned a weight, based on the probability of observing such a configuration, and the $t\bar{t}$ kinematic quantities are taken from the solution with the largest weight. To improve the efficiency of the technique in the presence of mismeasured jets, the solution for each event is integrated over parameterized jet and E_T^{miss} resolution functions. Despite this, no solutions are found for approximately 14% of events, both in data and in the simulation. Events with no solutions are not used in the measurement of θ_ℓ. This is accounted for as an additional event selection requirement.
The backgrounds from Drell–Yan production and events with a misidentified lepton are estimated using both control data samples and simulation. The results agree within their uncertainties. Contributions to the background from single-top-quark and diboson events are estimated from simulation only. The simulation is chosen as the method to predict the background event yields and shapes, with systematic uncertainties based on comparisons with the estimates using data.

The Drell–Yan background outside of the Z-boson mass window is estimated using the ratio of simulated events inside/outside of the window to scale the observed event yield inside of the window. The contribution in this region from other processes, where the two leptons do not come from a Z boson, is estimated from eμ data and subtracted prior to performing the scaling.

The background with at least one misidentified lepton (non-dileptonic t̅̅, W+jets, and QCD) is estimated from control samples in data using a parametrization of the probability for a jet to be misidentified as a lepton. This parametrization is determined from data using events collected by jet triggers with varying energy thresholds. For both electrons and muons, an associated “loose” lepton candidate is defined based on relaxed isolation requirements. Lepton misidentification rates are parametrized as a function of lepton p_T and η, and are applied as weights to events containing exactly one fully-selected lepton candidate and one or more loose lepton candidates.

The measured distributions are distorted from the true underlying distributions by the limited acceptance of the detector and the finite resolution of the measurements. In order to correct the data for these effects, we apply an unfolding procedure, which yields the parton-level distributions of the variables under study, where the full covariance matrix is used to evaluate the uncertainties and bin-to-bin correlations.

The background-subtracted measured distribution \tilde{b} is related to the underlying parton-level distribution \tilde{x} by the matrix equation $\tilde{b} = S A \tilde{x}$, where A is a diagonal matrix describing the acceptance in each bin of the measured distribution, and S is a non-diagonal smearing matrix describing the migration of events between bins due to the finite detector resolution and reconstruction techniques. The A and S matrices are modeled using MC@NLO t̅̅ simulation.

We employ a regularized unfolding algorithm using the singular value decomposition method [31]. The effects of large statistical fluctuations in the algorithm are greatly reduced by introducing a regularization term in the unfolding procedure. The unfolding procedure is validated using pseudo-experiments by verifying the pull distributions and linearity for the observables under study.

Various systematic uncertainties affect the measurements. These are mainly related to the performance of the detector, and the modeling of the signal and background processes.

The uncertainty due to the jet energy scale (JES) corrections affects the AMWT t̅̅ solutions as well as the event selection. It is estimated by varying the JES of jets within their uncertainties, with the proper propagation to the E_{T}^{miss}. The uncertainty in the lepton energy scale, which affects mainly the lepton p_T distributions, is estimated by varying the energy scale of electrons by 0.5% (the uncertainty in muon energies is negligible in comparison), as estimated from comparisons between data and simulated Z-boson events.

The uncertainty in the background subtraction is obtained by making variations of the normalization of each background component, by 50% for single-top-quark and diboson production, and by 100% for the backgrounds from Drell–Yan production and from misidentified leptons.

The t̅̅ modeling and simulation uncertainties are evaluated by re-deriving the A and S matri-
ces using simulated events with variations in the parameter of interest: the factorization and renormalization scales are together varied up and down by a factor of 2; the top-quark mass is varied by ±3 GeV around $m_t = 172.5$ GeV; the parton distribution functions (PDFs) are varied using the PDF4LHC formula [32]; the jet energy resolution is varied by 5 to 10%, depending on the η of the jet; the simulated pileup multiplicity distribution is changed within its uncertainty; and the scale factors between data and simulation for b-tagging efficiency, trigger efficiency, and lepton selection efficiency are shifted up and down by 1σ. In the simulated $t\bar{t}$ events, the τ spin is not propagated correctly to its decay products. This affects the angular distributions of the electrons and muons coming from τ decays. The corresponding systematic effect is estimated by reweighting the τ decay distributions to reproduce the SM expectations. A 100% systematic uncertainty is applied to the top-quark p_T reweighting, since the origin of the effect is not yet fully understood, and the resulting systematic uncertainty is quoted separately.

Finally, the results of the unfolding linearity tests are used to estimate the systematic uncertainty in the unfolding procedure. The contributions to the total systematic uncertainty (from their sum in quadrature) for each asymmetry variable are presented in Table 1.

Table 1: Systematic uncertainties in the background-subtracted and unfolded values of $A_{\Delta\phi}$, $A_{c_1c_2}$, and A_P.

Asymmetry variable	$A_{\Delta\phi}$	$A_{c_1c_2}$	A_P
Jet energy scale	0.002	0.012	0.009
Lepton energy scale	0.001	0.001	0.001
Background	0.003	0.001	0.006
Fact. and renorm. scales	0.001	0.010	0.004
Top-quark mass	0.002	0.009	0.016
Parton distribution functions	0.002	0.002	0.001
Jet energy resolution	< 0.001	< 0.001	< 0.001
Pileup	0.002	0.002	0.004
b-tagging scale factor	< 0.001	< 0.001	0.001
Lepton selection	< 0.001	< 0.001	< 0.001
τ decay polarization	0.001	0.002	0.001
Unfolding	0.004	0.020	0.002
Total systematic uncertainty	0.007	0.027	0.020
Top p_T reweighting uncertainty	0.012	0.010	0.008

The background-subtracted and unfolded distributions for $\Delta\phi_{e^+e^-}$, $\cos(\theta_{e^+})\cos(\theta_{e^-})$, and $\cos(\theta_{\ell})$ are shown in Fig. 1 normalized to unity so that they represent parton-level differential cross sections in each variable. The data are compared to the predictions of the MC@NLO $t\bar{t}$ sample (with no data-derived reweighting applied), and to NLO calculations for $t\bar{t}$ production with and without spin correlation [12, 33].

The asymmetries determined from the unfolded distributions are also parton-level quantities, and are measured to be $A_{\Delta\phi} = 0.113 \pm 0.010 \pm 0.007 \pm 0.012$, $A_{c_1c_2} = -0.021 \pm 0.023 \pm 0.027 \pm 0.010$, and $A_P = 0.005 \pm 0.013 \pm 0.020 \pm 0.008$, where the uncertainties are statistical, systematic, and from top-quark p_T reweighting, respectively. These results are compared to the simulated and theoretical [12, 33] values in Table 2. The $A_{\Delta\phi}$ result indicates the presence of $t\bar{t}$ spin correlations, and strongly disfavors the uncorrelated case.

In summary, this Letter presents measurements related to $t\bar{t}$ spin correlations and the top-quark polarization in the $t\bar{t}$ dilepton final states (e^+e^-, $\mu^+\mu^-$, and $e^\pm\mu^\mp$), using asymmetry distri-
Figure 1: Background-subtracted and unfolded differential cross sections for $\Delta \phi_{t^+t^-}$, $\cos(\theta_{t^+})\cos(\theta_{t^-})$, and $\cos(\theta_{t})$. The error bars represent statistical uncertainties only, while the systematic uncertainty band is represented by the hatched area. The bin contents are correlated due to the unfolding.

buttons unfolded to the parton level. The results are in agreement with the standard model predictions for all three measured variables.

Table 2: Parton-level asymmetries. The uncertainties in the unfolded results are statistical, systematic, and the additional uncertainty from the top-quark p_T reweighting. The uncertainties in the simulated results are statistical only, while the uncertainties in the NLO calculations for correlated and uncorrelated $t\bar{t}$ spin measurements come from scale variations up and down by a factor of two. The prediction for A_{c1c2} is exactly zero in the absence of spin correlations by construction.

Asymmetry	Data (unfolded)	MC@NLO	NLO (SM, correlated)	NLO (uncorrelated)
$A_{\Delta \phi}$	$0.113 \pm 0.010 \pm 0.007 \pm 0.012$	0.110 ± 0.001	$0.115^{+0.014}_{-0.016}$	$0.210^{+0.013}_{-0.008}$
A_{c1c2}	$-0.021 \pm 0.023 \pm 0.027 \pm 0.010$	-0.078 ± 0.001	-0.078 ± 0.006	0
A_{ℓ}	$0.005 \pm 0.013 \pm 0.020 \pm 0.008$	0.000 ± 0.001	N/A	N/A

We would like to thank Prof. W. Bernreuther and Prof. Z.-G. Si for calculating the theoretical predictions of Fig. 1 and Table 2 for this Letter. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staff at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
References

[1] M. Beneke et al., “Top Quark Physics”, (2000). [arXiv:hep-ph/0003033]

[2] D. Krohn, T. Liu, J. Shelton, and L.-T. Wang, “A Polarized View of the Top Asymmetry”, *Phys. Rev. D* **84** (2011) 074034, [doi:10.1103/PhysRevD.84.074034] [arXiv:1105.3743]

[3] CDF and D0 Collaborations, “Combination of the top-quark mass measurements from the Tevatron collider”, *Phys. Rev. D* **86** (2012) 092003, [doi:10.1103/PhysRevD.86.092003] [arXiv:1207.1069] An update can be found in [arXiv:1305.3929].

[4] Particle Data Group, J. Beringer et al., “Review of Particle Physics”, *Phys. Rev. D* **86** (2012) 010001, [doi:10.1103/PhysRevD.86.010001] See also the 2012 and 2013 partial update for the 2014 edition.

[5] G. Mahlon and S. J. Parke, “Spin Correlation Effects in Top Quark Pair Production at the LHC”, *Phys. Rev. D* **81** (2010) 074024, [doi:10.1103/PhysRevD.81.074024] [arXiv:1001.3422]

[6] CDF Collaboration, “Measurement of $t\bar{t}$ Spin Correlation in $p\bar{p}$ Collisions Using the CDF II Detector at the Tevatron”, *Phys. Rev. D* **83** (2011) 031104, [doi:10.1103/PhysRevD.83.031104] [arXiv:1012.3093]

[7] D0 Collaboration, “Measurement of Spin Correlation in $t\bar{t}$ Production Using a Matrix Element Approach”, *Phys. Rev. Lett.* **107** (2011) 032001, [doi:10.1103/PhysRevLett.107.032001] [arXiv:1104.5194]

[8] D0 Collaboration, “Measurement of Spin Correlation in $t\bar{t}$ Production Using Dilepton Final States.”*, *Phys. Lett. B* **702** (2011) 16, [doi:10.1016/j.physletb.2011.05.077] [arXiv:1103.1871]

[9] ATLAS Collaboration, “Observation of spin correlation in $t\bar{t}$ events from pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector”, *Phys. Rev. Lett.* **108** (2012) 212001, [doi:10.1103/PhysRevLett.108.212001] [arXiv:1203.4081]

[10] D0 Collaboration, “Measurement of leptonic asymmetries and top-quark polarization in $t\bar{t}$ production”, *Phys. Rev. D* **87** (2013) 011103, [doi:10.1103/PhysRevD.87.011103] [arXiv:1207.0364]

[11] ATLAS Collaboration, “Measurement of top quark polarization in top-antitop events from proton-proton collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector”, (2013). [arXiv:1307.6511] submitted to Phys. Rev. Lett.

[12] W. Bernreuther and Z.-G. Si, “Top quark spin correlations and polarization at the LHC: Standard model predictions and effects of anomalous top chromo moments”, *Phys. Lett. B* **725** (2013) 115, [doi:10.1016/j.physletb.2013.06.051] [arXiv:1305.2066]

[13] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, [doi:10.1088/1748-0221/3/08/S08004].

[14] CMS Collaboration, “Electron Reconstruction and Identification at $\sqrt{s} = 7$ TeV”, CMS Physics Analysis Summary CMS-PAS-EGM-10-004, (2010).
[15] CMS Collaboration, “Performance of CMS muon reconstruction in \(pp\) collision events at \(\sqrt{s} = 7\) TeV”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071

[16] CMS Collaboration, “Commissioning of the Particle-Flow Reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV”, CMS Physics Analysis Summary CMS-PAS-PFT-10-002, (2010).

[17] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\(k_t\) jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189

[18] CMS Collaboration, “Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS”, JINST 6 (2011) P11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277

[19] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, JINST 8 (2013) P04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462

[20] S. Frixione and B. R. Webber, “Matching NLO QCD computations and parton shower simulations”, JHEP 06 (2002) 029, doi:10.1088/1126-6708/2002/06/029, arXiv:hep-ph/0204244

[21] G. Corcella et al., “HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes)”, JHEP 01 (2001) 010, doi:10.1088/1126-6708/2001/01/010, arXiv:hep-ph/0011363

[22] J. Alwall et al., “MadGraph 5: going beyond”, JHEP 06 (2011) 128, doi:10.1007/JHEP06(2011)128, arXiv:1106.0522

[23] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092

[24] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175

[25] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8

[26] CMS Collaboration, “Measurement of the inclusive W and Z production cross sections in \(pp\) collisions at \(\sqrt{s} = 7\) TeV with the CMS experiment”, JHEP 10 (2011) 007, doi:10.1007/JHEP10(2011)007, arXiv:1108.0566

[27] CMS Collaboration, “Search for heavy, top-like quark pair production in the dilepton final state in \(pp\) collisions at \(\sqrt{s} = 7\) TeV”, Phys. Lett. B 716 (2012) 103, doi:10.1016/j.physletb.2012.07.059, arXiv:1203.5410

[28] CMS Collaboration, “Measurement of the \(t\bar{t}\) production cross section in the dilepton channel in \(pp\) collisions at \(\sqrt{s} = 7\) TeV”, JHEP 11 (2012) 067, doi:10.1007/JHEP11(2012)067, arXiv:1208.2671

[29] CMS Collaboration, “Measurement of differential top-quark-pair production cross sections in \(pp\) collisions at \(\sqrt{s} = 7\) TeV”, Eur. Phys. J. C 73 (2013) 1, doi:10.1140/epjc/s10052-013-2339-4, arXiv:1211.2220
[30] CMS Collaboration, “Measurement of the $t\bar{t}$ production cross section and the top quark mass in the dilepton channel in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* 07 (2011) 049, doi:10.1007/JHEP07(2011)049, arXiv:1105.5661.

[31] A. Hoecker and V. Kartvelishvili, “SVD approach to data unfolding”, *Nucl. Instrum. Meth. A* 372 (1996) 469, doi:10.1016/0168-9002(95)01478-0, arXiv:hep-ph/9509307.

[32] M. Botje et al., “The PDF4LHC Working Group Interim Recommendations”, (2011), arXiv:1101.0538.

[33] W. Bernreuther and Z.-G. Si, “Distributions and correlations for top quark pair production and decay at the Tevatron and LHC”, *Nuc. Phys. B* 837 (2010) 90, doi:10.1016/j.nuclphysb.2010.05.001, arXiv:1003.3926.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut f"ur Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Er"o, C. Fabjan1, M. Friedl, R. Fr"uhwirth1, V.M. Ghete, C. Hartl, N. H"ormann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Kn"unz, M. Krammer1, I. Kr"atschmer, D. Liko, I. Mikulec, D. Rabady2, B. Rahbaran, H. Rohringer, R. Sch"ofbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Loyckx, L. Micibello, S. Ochesanu, B. Roland, R. Rougny, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D'Hondt, N. Heracleous, A. Kalogeropoulos, J. Keaveney, T.J. Kim, S. Lowette, M. Maes, A. Olbrechts, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Universit´e Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, L. Favart, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, L. Perni`e, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Dillard, G. Garcia, B. Klein, J. Lellouch, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, S. Walsh, E. Yazgan, N. Zaganidis

Universit´e Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi3, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco4, J. Hollar, P. Jez, M. Komm, V. Lemaire, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, A. Popov5, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Universit´e de Mons, Mons, Belgium
N. Beliy, T. Caebegs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, J. Chinellato6, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Sampaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote6, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, S˜ao Paulo, Brazil
C.A. Bernardes b, F.A. Diasb, T.R. Fernandez Perez Tomeiba, E.M. Gregoresb, C. Laganaa, P.G. Mercadanteb, S.F. Novaesb, Sandra S. Padulaa
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, D. Liang, S. Liang, X. Meng, R. Plestina, J. Tao, X. Wang, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim, Y. Assran, S. Elgammal, A. Ellithi Kamel, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, A. Nayak, J. Rander, A. Rosowsky, M. Titov
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski, A. Florent, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Siros, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS-IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte, F. Drouhin, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Goetzmann, P. Juillot, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, G. Boudoul, S. Brochet, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, J.D. Ruiz Alvarez, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Bontenackels, B. Calpas, M. Edelhoff, L. Feld, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbecker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, K. Padeken, F. Papacz, H. Reithler, S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell, M. Bergholz, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, A. Geiser, A. Grebenyuk, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, M. Hempel, D. Horton, H. Jung, M. Kasemann, P. Katsas, C. Kleinwort, M. Krämer, D. Krücker, W. Lange, J. Leonard, K. Lipka, W. Lohmann, B. Lutz, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mních, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, F. Nowak, H. Perrey, A. Petrukhin, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron,
M.Ö. Sahin, J. Salfeld-Nebgen, R. Schmidt, T. Schoerner-Sadenius, M. Schröder, M. Stein, A.D.R. Vargas Trevino, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
M. Aldaya Martin, V. Blobel, H. Enderle, J. Erfle, E. Garutti, M. Görner, M. Gosselink, J. Haller, K. Heine, R.S. Höing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, I. Marchesini, J. Ott, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, J. Sibille, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff, T. Hartmann, T. Hauth, H. Held, K.H. Hoffmann, U. Husemann, I. Katkov, A. Kornmayer, E. Kuznetsova, P. Lobelle Pardo, M.U. Mozer, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, F. Schilling, G. Schott, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf, M. Zeise

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, E. Ntomari, I. Topsis-giotis

University of Athens, Athens, Greece
L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszprémi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellár, J. Molnar, J. Palinkás, Z. Szilasí

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsányi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan, A.P. Singh

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar
Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, R.M. Chatterjee, S. Ganguly, S. Ghosh, M. Guchait23, A. Gurtu24, G. Kole, S. Kumar, M. Maity25, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage26

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, H. Behnamian, S.M. Etesami27, A. Fahim26, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, B. Safarzadeh29, M. Zeinali

University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa,b, L. Barbonea,b, C. Calabraisa,b, S.S. Chhibraa,b, A. Colaleoa, D. Creanzaa,c, N. De Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia, B. Marangellia,b, S. Mya,c, S. Nuzzoa,b, N. Pacificoa, A. Pompillia,b, G. Pugliesea-c, R. Radognaa,b, G. Selvaggia,b, L. Silvestrisa, G. Singha,b, R. Vendittia,b, P. Verwilligena, G. Zitoa

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendia, A.C. Benvenutia, D. Bonacorsia,b, S. Brabant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, S. Marcellinia, G. Masettia, M. Meneghellia,b, A. Montanaria, F.L. Navarraa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia,b, R. Travaglinia,b

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergoa,c, G. Cappelloa, M. Chiorbolia,b, S. Costaa,b, F. Giordanoa,b, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglia, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, E. Galloa, S. Gonzia,b, V. Goria,b, P. Lenzinia,b, M. Meschinia, S. Paolellia, G. Sguazzonia, A. Tropianoa,b

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
P. Fabbricatorea, R. Ferrettia,b, F. Ferroa, M. Lo Veterea,b, R. Musenicha, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benagliaa, M.E. Dinardoa,b, S. Fiorendia,b,2, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M.T. Lucchinia,b,2, S. Malvezzia, R.A. Manzonia,b,2, A. Martellia,b,2, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, T. Tabarelli de Fatisa,b

INFN Sezione di Napoli a, Università di Napoli ’Federico II’ b, Università della Basilicata (Potenza) c, Università G. Marconi (Roma) d, Napoli, Italy
S. Buontempoa, N. Cavalloa,c, F. Fabozzia,c, A.O.M. Iorioa,b, L. Listaa, S. Meolaa,d,2, M. Merolaa, P. Paoluccia,2
INFIN Sezione di Padova a, Università di Padova b, Università di Trento (Trento) c, Padova, Italy
P. Azzia, N. Bacchettaa, M. Bellatoa, D. Biselloa,b, A. Brancaa,b, R. Carlina,b, P. Checchiaa, T. Dorigoa, U. Dossellia, M. Galantia,b,2, F. Gasparinia,b, U. Gasparinia,b, P. Giubilatoa, A. Gozzelinoa, K. Kanishcheva,b,c, S. Lacapraraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, M. Pegoraroa, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, A. Triossia, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea.

INFIN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Vituloa.

INFIN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, L. Fanèa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, A. Nappia,b, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b.

INFIN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Andrososa,b,30, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, M.A. Cioccia,30, R. Dell’Orsoa, F. Fioritia,c, L. Foàa,c, A. Giassia, M.T. Grippoa,30, A. Kraana, F. Ligabuea, M.A. Cioccia, K. Kanishcheva,b,c, S. Lacapraraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, M. Pegoraroa, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, A. Triossia, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea.

INFIN Sezione di Roma a, Università di Roma b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, M. Grassia,b, C. Jordàa, E. Longoa,b, F. Margarolia,b, P. Meridiania, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, C. Rovellia, L. Soffia,b, P. Traczyka,b.

INFIN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, S. Casassoa,b, M. Costaa,b, A. Deganota,b, N. Demariaa, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c, G. Ortonaa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia,2, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, U. Tamponia.

INFIN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia,2, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Penzoa, A. Schizzia,b, T. Umera,b, A. Zanettia.

Kangwon National University, Chuncheon, Korea
S. Chang, T.Y. Kim, S.K. Nam.

Kyeongpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, D.C. Son.

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song.

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, K.S. Lee, S.K. Park, Y. Roh.

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu.
P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, V. Savrin, N. Tsirova

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martin, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodriguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, S. Colafranceschini, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, M. Giffels, D. Gigi, K. Gill, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, S. Gowdy, R. Guida, J. Hammer, M. Hansen, P. Harris, A. Hinzmann, V. Innocente, P. Janot, E. Karavakis, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, P. Musella, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, M. Plagge, A. Racz, W. Reece, G. Rolandi, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwik, S. Sekmen, A. Sharma,
P. Siegrist, P. Silva, M. Simon, P. Sphicas, J. Steggemann, B. Stieger, M. Stoye, A. Tsirou, G.I. Veres, J.R. Vlimant, H.K. Wohri, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. Köng, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, W. Lüsternann, B. Mangano, A.C. Marini, P. Martínez Ruiz del Arbol, D. Meister, N. Mohr, C. Nägele, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, M. Quittnat, F.J. Ronga, M. Rossini, A. Starodumov, M. Takahashi, L. Tauscher, K. Theofilatos, D. Treille, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler, V. Chiochia, A. De Cosa, C. Favaro, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, N. Ngadiuba, P. Robmann, H. Snoek, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, S.W. Li, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tseng, M. Wang, R. Wilken

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskin, S. Girgis, G. Gokbulut, E. Gürpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, G. Karapinar, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Cankocak, Y.O. Günaydın, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold, S. Paramesvaran, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder,
S. Harper, J. Ilic, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Sparrow, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazzic, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, A. Kopecky, R. Lander, T. Miceli, D. Pellett, J. Pilot, F. Ricci-Tam, B. Rutherford, M. Searle, S. Shalhout, J. Smith, M. Squires, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, S. Erhan, P. Everaerts, C. Farrell, M. Felcini, J. Hauser, M. Ignatenko, C. Jarvis, G. Rakness, P. Schlein, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, P. Jandir, F. Lacroix, H. Liu, O.R. Long, A. Luthra, M. Malberti, H. Nguyen, A. Shrinivas, J. Sturdy, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, D. Kovalskyi, M. Lebourgeois, J. Letts, I. Macneill, S. Padhi, C. Palmer, M. Pieri, M. San, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, C. Campagnari, T. Danielson, K. Flowers, P. Geffert, C. George, F. Golf, J. Incandela,
C. Justus, R. Magaña Villalba, N. Mccoll, V. Pavlunin, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, D. Kcira, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, W. Hopkins, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, O. Gutsche, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko57, S. Nahn, C. Newman-Holmes, V. O’Dell, O. Prokofyev, N. Ratnikova, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovannii, D. Dobur, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic58, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, V.E. Bazterra, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khaliatyan, P. Kurt, D.H. Moon, C. O’Brien, C. Silkworth, P. Turner, N. Varelas
The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, K. Dilsiz, F. Duru, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, R.P. Kenny III, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, T. Ma, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, A.S. Yoon, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. De Benedetti, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, L.M. Cremaldi, R. Kroeger, S. Oliveros, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S. Rappoccio, Z. Wan

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasos, J. Haley, A. Massironi, D. Nash, T. Orimoto, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, K.A. Hahn, A. Kubik, L. Lusito, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
D. Berry, A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard,
J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf

The Ohio State University, Columbus, USA
L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, C. Vuosalo, B.L. Winer, H. Wolfe, H.W. Wulsin

Princeton University, Princeton, USA
E. Berry, P. Elmer, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, S.C. Zenz, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
E. Alagoz, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, K. Jung, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
N. Parashar

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
O. Bouhali, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska
University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA
D.A. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, S. Duric, E. Friis, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Zewail City of Science and Technology, Zewail, Egypt
10: Also at Suez Canal University, Suez, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at Universidad de Antioquia, Medellin, Colombia
17: Also at Joint Institute for Nuclear Research, Dubna, Russia
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at The University of Kansas, Lawrence, USA
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Eötvös Loránd University, Budapest, Hungary
22: Also at Tata Institute of Fundamental Research - EHEP, Mumbai, India
23: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
24: Now at King Abdulaziz University, Jeddah, Saudi Arabia
25: Also at University of Visva-Bharati, Santiniketan, India
26: Also at University of Ruhuna, Matara, Sri Lanka
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at Sharif University of Technology, Tehran, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
32: Also at Purdue University, West Lafayette, USA
33: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
34: Also at National Centre for Nuclear Research, Swierk, Poland
35: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
36: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
37: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
38: Also at University of Athens, Athens, Greece
39: Also at Paul Scherrer Institut, Villigen, Switzerland
40: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
41: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
42: Also at Gaziosmanpasa University, Tokat, Turkey
43: Also at Adiyaman University, Adiyaman, Turkey
44: Also at Cag University, Mersin, Turkey
45: Also at Mersin University, Mersin, Turkey
46: Also at Izmir Institute of Technology, Izmir, Turkey
47: Also at Ozyegin University, Istanbul, Turkey
48: Also at Kafkas University, Kars, Turkey
49: Also at Suleyman Demirel University, Isparta, Turkey
50: Also at Ege University, Izmir, Turkey
51: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
52: Also at Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey
53: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
54: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
55: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
56: Also at Utah Valley University, Orem, USA
57: Also at Institute for Nuclear Research, Moscow, Russia
58: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
59: Also at Argonne National Laboratory, Argonne, USA
60: Also at Erzincan University, Erzincan, Turkey
61: Also at Yildiz Technical University, Istanbul, Turkey
62: Also at Texas A&M University at Qatar, Doha, Qatar
63: Also at Kyungpook National University, Daegu, Korea