Association of Common Genetic Variants in Pre-microRNAs and Neuroblastoma Susceptibility: A Two-Center Study in Chinese Children

Jing He,1,5 Yan Zou,1,5 Xiaodan Liu,2,5 Jinhong Zhu,3 Jiao Zhang,4 Ruizhong Zhang,1 Tianyou Yang,1 and Huimin Xia1

1Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; 2Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; 3Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China; 4Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China

Neuroblastoma is a commonly occurring extracranial pediatric solid tumor without defined etiology. Polymorphisms in pre-miRNAs have been demonstrated to associate with the risk of several cancers. So far, no such polymorphism has been investigated in neuroblastoma. With this in mind, we performed a two-center case-control study to assess the association of genetic variants in pre-miRNAs and neuroblastoma susceptibility in Chinese children, including 393 cases and 812 controls. We found that miR-34b/c rs4938723 T > C polymorphism was significantly associated with decreased neuroblastoma risk (TC versus TT: adjusted odds ratio [OR] = 0.51, 95% confidence interval [CI] = 0.39–0.67; TC/CC versus TT: adjusted OR = 0.62, 95% CI = 0.48–0.79). We also observed the significant association between the miR-218 rs11134527 A > G polymorphism and decreased neuroblastoma risk (AG versus AA: adjusted OR = 0.73, 95% CI = 0.56–0.96). Stratified analysis further demonstrated that the protective effect of the rs4938723 T > C polymorphism remained prominent in the subgroups, regardless of age, gender, and clinical stages. In term of sites of origin, this polymorphism significantly reduced the risk of tumors originating from the adrenal gland. We further validated the significant results using false-positive report probability analyses. Overall, the miR-34b/c rs4938723 T > C and miR-218 rs11134527 A > G polymorphisms displayed a protective role from neuroblastoma. These findings need further validation.

INTRODUCTION

Neuroblastoma is one of the most commonly occurring extracranial pediatric solid tumors, which accounts for approximately 8–10% of all childhood cancers and 15% of pediatric malignancy deaths.1 The 10-year survival rate in patients with low-risk neuroblastoma is around 90%, whereas the long-term survival of high-risk neuroblastoma remains less than 40%, despite great advances achieved in the treatment of cancers.2,3 Environment risk factors for developing neuroblastoma remain undefined.4,5 Numerous studies have indicated that genetic factors may play a critical role in the occurrence of neuroblastoma, such as ALK gene mutations6–8 and genome-wide-as-

MicroRNAs (miRNAs) are non-coding single-stranded RNAs of approximately 17–22 nt in length, which is one of the largest classes of gene regulators.17 They can bind to 3’ UTR of mRNA to induce the degradation or translational inhibition of the corresponding mRNAs, consequently silencing target genes.18 In the nucleus, primary miRNA (pri-miRNA) transcripts with lengths from several hundred nucleotides to several kilobases can be cleaved to generate a precursor miRNA (pre-miRNA) of about 70 nt, which can fold to form a stem-loop intermediate.19,20 Next, the intermediate is further processed to produce a mature miRNA.19 Polymorphisms or mutations in the promoter or in the miRNAs sequence may lead to altered structure or expression of miRNA, thereby influencing the expression of hundreds of target genes.21 Polymorphisms in miRNAs may modify cancer susceptibility and prognosis.22–24 The association between genetic variants in pre-miRNAs and cancer susceptibility has been investigated in various types of cancer,25 but not in neuroblastoma. Therefore, we performed a two-center case-control study to assess the association of genetic variants in pre-miRNAs and neuroblastoma susceptibility in Chinese children.

Received 22 October 2017; accepted 9 January 2018; https://doi.org/10.1016/j.omtn.2018.01.003.

© These authors contributed equally to this work.

Correspondence: Huimin Xia, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsi Road, Guangzhou 510623, Guangdong, China.
E-mail: xia-huimin@foxmail.com

Correspondence: Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, 9 Jinsi Road, Guangzhou 510623, Guangdong, China.
E-mail: hejing198374@gmail.com

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
RESULTS

Characteristics of the Participants

The demographic and clinical characteristics data of neuroblastoma cases and cancer-free controls are summarized in Table S1. No significant differences were observed between cases and controls for the Southern Chinese children regarding age (p = 0.229) and gender (p = 0.510) and the Northern Chinese children regarding age (p = 0.484) and gender (p = 0.196).

Association of Selected Polymorphisms with Neuroblastoma Risk

As shown in Tables 1 and S2, all of the nine selected polymorphisms (Table S3) were in accordance with Hardy-Weinberg equilibrium (HWE) in the controls, and the HWE p values ranged from 0.290 to 0.948, except for the mir1-149 rs2292832 T > C. As a result, this polymorphism was excluded from further analyses. Of the remaining eight polymorphisms, we found that the mir34b/c rs4938723 T > C polymorphism was significantly associated with decreased neuroblastoma susceptibility (TC versus TT: adjusted odds ratio [OR] = 0.51, 95% confidence interval [CI] = 0.39–0.67; TC/CC versus TT: adjusted OR = 0.62, 95% CI = 0.48–0.79; and C versus T: adjusted OR = 0.82, 95% CI = 0.68–0.99) (Figures 1, 2, and 3). The mir218 rs11134527 A > G polymorphism was also shown to significantly increase neuroblastoma susceptibility (AG versus AA: adjusted OR = 0.73, 95% CI = 0.56–0.96) (Table S4).

Stratified Analysis

We further explored the association of mir34b/c rs4938723 T > C and mir218 rs11134527 A > G polymorphisms with neuroblastoma susceptibility by stratified analysis (Table 2). We found that the protective effect of the mir34b/c rs4938723 T > C polymorphism was significant in subgroups, regardless of age, gender, and clinical stages. Concerning sites of origin, this polymorphism tended to reduce the risk of tumors originated from the adrenal gland but not of tumors from another site. As to the mir218 rs11134527 A > G polymorphism, the significant association was only observed in male subjects.

False-Positive Report Probability Results

We preset 0.2 as the false-positive report probability (FPRP) threshold. As shown in Table 3, at the prior probability of 0.1, all of the significant findings for the mir34b/c rs4938723 T > C polymorphism remained noteworthy, except for the results on subjects no more than 18 months old, males, and the allele contrast model. Moreover, the association with the mir218 rs11134527 A > G polymorphism (AG versus AA) was also noteworthy, with a statistical power of 0.820 and the FPRP value of 0.187.

DISCUSSION

In the current two-center case-control study, we investigated the association of nine polymorphisms in pre-miRNAs with neuroblastoma susceptibility in Chinese children. We found that the
miR-34b/c rs4938723 T > C and miR-218 rs11134527 A > G polymorphisms were significantly associated with a decreased neuroblastoma risk. The associations were further validated by stratified analyses and FPRP analyses. Our results indicate that the polymorphisms in pre-miRNAs may play critical roles in the etiology of neuroblastoma.

miRNAs can negatively regulate gene expressions at the posttranscriptional level and, thereby, affect cell proliferation, differentiation, apoptosis, metabolism, and carcinogenesis. Particularly, miR-34 family members can serve as direct transcriptional targets of TP53. Loss of function of miR-34 impairs TP53-mediated cell death, and overexpression of miR-34 induces apoptosis. miR-34b/c has been reported to target TP53 and cooperate to suppress cell proliferation and adhesion-independent growth. Furthermore, TP53 can bind to the promoter region of miR-34b/c to increase the expression of this microRNA, which may alter GATA-X transcription factor binding capacity and, consequently, affect the expression of target genes related to carcinogenesis. In 2011, Xu et al. first found that carriers of the miR-34b/c rs4938723 T allele had a significantly increased risk of hepatocellular carcinoma. Since then, numerous epidemiology studies have been carried out to assess the role of this polymorphism in various cancers. So far, no study investigating the association between miR-34b/c rs4938723 C > T polymorphism and neuroblastoma has been reported.

In the present study, we found that the rs4938723 C > T polymorphism was associated with a significantly decreased neuroblastoma risk. The miR-34b/c rs4938723 C > T polymorphism has been suggested to decrease the risk of intracranial aneurysm, colorectal cancer, esophageal squamous cell carcinoma, gastric cancer, and childhood acute lymphoblastic leukemia. Moreover, we also found that the miR-218 rs11134527 A > G polymorphism was associated with a decreased neuroblastoma risk. This finding is consistent with those of some previous studies, such as studies conducted in cervical cancer and esophageal squamous cell carcinoma. Opposite results were also observed. For instance, Han et al. found that the same polymorphism was associated with an increased hepatocellular carcinoma risk. Polymorphisms may have diverse genetic effects on cancer susceptibility, depending on different cancer types, regions, and ethnicities. It is possible that the methylation status of miR-34b/c may vary among different types of cancer, which could also have an impact on the risk of cancer. This is the first and largest study to investigate the associations between polymorphisms in pre-miRNAs and neuroblastoma susceptibility in Chinese children; however, several limitations should be addressed. First, the sample size is still moderate, even though we pooled together samples from two hospitals, partially due to the low incidence rate of neuroblastoma (approximately 7.7 per million in Chinese children). As a result, the statistical power of this study was relatively limited. Second, we only included nine polymorphisms in pre-miRNAs. More polymorphisms should be investigated to fully illuminate the contribution of polymorphisms in pre-miRNAs to neuroblastoma susceptibility. Third, other than polymorphisms, low-frequency coding variants and mutations undetectable by genome-wide association studies (GWASs) may also play important roles in neuroblastoma risk. More comprehensive studies are encouraged. Fourth, functional analysis is warranted to prove the biological plausibility of our findings from observational studies, which would reveal the underlying mechanisms by which the significant polymorphisms modify neuroblastoma susceptibility. Additionally, in the current hospital-based case-control study, selection bias may exist. Thus, these findings cannot be directly applied to the general population. Finally, due to the nature of retrospective studies, some demographic, environmental, and clinical characteristics were not available, which limited our ability to conduct gene-environmental interactions analysis.
should be performed to explore the possible mechanisms by which these polymorphisms in pre-miRNAs modulate the development of neuroblastoma.

MATERIALS AND METHODS

Participants

The current two-center case-control study was composed of two independent retrospective studies. One study enrolled 275 histopathologically confirmed neuroblastoma cases enrolled from the Guangzhou Women and Children’s Medical Center (Guangdong Province, China), mainly between February 2010 and March 2017, and 531 cancer-free controls recruited from the same hospital as we described previously.48–51 The other study incorporated 118 cases and 281 controls recruited from the First Affiliated Hospital of Zhengzhou University (Henan Province, China) from August 2011 to April 2017.52 Informed written consent was obtained from the guardians of all participants. The study protocol was approved by the institutional review boards of the participating institutions.

Polymorphism Selection and Genotyping

Nine widely investigated polymorphisms (miR-27a rs895819 T > C, miR-34b/c rs4938723 T > C, miR-137 rs1625579 T > G, miR-146a rs2910164 C > G, miR-149 rs1134527 A > G, miR-196a2 rs11614913 T > C, miR-218 rs2292832 T > C, miR-423 rs6505162 C > A, and miR-608 rs4919510 G > C) were selected (Table S3). The minor allele frequency for all of the nine polymorphisms was larger than 0.05. Of them, eight were located in the transcription factor binding sites, as predicted by SNPinfo (https://snpinfo.niehs.nih.gov/), and the miR-137 rs1625579 T > G polymorphism was significantly associated with schizophrenia risk.53 Genomic DNA was mainly extracted from EDTA-anticoagulated blood samples by using the TIANamp Blood DNA Kit (TianGen Biotech, Beijing, China).54 Genotyping was performed by TaqMan methodology.55–57 For quality control, 10% samples were retested, and the genotype concordance was 100%.

Statistical Analysis

The chi-squared test was used to compare the differences in the frequency distributions of demographic variables and genotypes between cases and controls.
Variables	rs4938723 (Cases/Controls)	rs11134527 (Cases/Controls)										
	Crude OR (95% CI)	p Value	Adjusted OR (95% CI)	p Value	Crude OR (95% CI)	p Value	Adjusted OR (95% CI)	p Value				
Age (months)												
≤ 18	75/146	45/159	0.55 (0.36–0.85) b	0.007 b	0.55 (0.36–0.85) b	0.007 b	52/107	74/198	0.77 (0.50–1.18)	0.226	0.77 (0.50–1.18)	0.227
> 18	146/231	111/274	0.64 (0.47–0.87) b	0.004 b	0.64 (0.47–0.87) b	0.004 b	102/169	163/336	0.80 (0.59–1.10)	0.166	0.81 (0.59–1.10)	0.168
Gender												
Females	103/160	60/181	0.52 (0.35–0.76) b	0.007 b	0.52 (0.35–0.76) b	0.007 b	63/123	103/218	0.92 (0.63–1.35)	0.680	0.92 (0.63–1.36)	0.687
Males	118/217	96/252	0.70 (0.51–0.97) b	0.032 b	0.70 (0.51–0.97) b	0.031 b	91/153	134/316	0.71 (0.51–0.99)	0.044 b	0.72 (0.52–0.995)	0.046 b
Sites of Origin												
Adrenal gland	101/377	51/433	0.44 (0.31–0.63) b	<0.0001 b	0.44 (0.31–0.64) b	<0.0001 b	59/276	94/534	0.82 (0.58–1.18)	0.286	0.83 (0.58–1.19)	0.312
Retroperitoneal	35/377	42/433	1.05 (0.65–1.67)	0.855	1.05 (0.65–1.68)	0.849	32/276	54/534	0.87 (0.55–1.38)	0.561	0.86 (0.54–1.37)	0.530
Mediastinum	60/377	46/433	0.67 (0.44–1.00)	0.052	0.67 (0.45–1.02)	0.059	47/276	61/534	0.67 (0.45–1.01)	0.055	0.68 (0.45–1.02)	0.059
Other had to be	21/377	14/433	0.58 (0.29–1.16)	0.122	0.58 (0.29–1.16)	0.121	14/276	22/534	0.81 (0.41–1.61)	0.552	0.81 (0.41–1.61)	0.547
Clinical Stages												
I + II + 4 s	92/377	66/433	0.63 (0.44–0.88) b	0.008 b	0.63 (0.44–0.89) b	0.008 b	65/276	97/534	0.77 (0.55–1.09)	0.141	0.78 (0.55–1.10)	0.151
III + IV	119/377	83/433	0.61 (0.44–0.83) b	0.002 b	0.60 (0.44–0.83) b	0.002 b	82/276	127/534	0.80 (0.59–1.10)	0.164	0.80 (0.59–1.10)	0.174

OR, odds ratio; CI, confidence interval; INSS, International Neuroblastoma Staging System.

*Adjusted for age and gender, omitting the corresponding stratification factor.

*For these values, the 95% CI excluded 1 or p < 0.05.

*INSS criteria defined stage 4 s as age <1 year old, with localized primary tumor as delineated in stage I or II, and with dissemination limited to liver, skin, or bone marrow.
controls. The goodness-of-fit χ² test was adopted to evaluate departure from HWE for the selected polymorphisms in control subjects. ORs and 95% CIs, calculated by multivariate logistic regression, were used to assess the association between the nine selected polymorphisms and neuroblastoma susceptibility. Additionally, stratified analyses were performed by age, gender, tumor sites, and clinical stages. Moreover, we also performed FPPR analysis to verify significant findings are presented.

REFERENCES

1. Maris, J.M., Hogarty, M.D., Bagatell, R., and Cohn, S.L. (2007). Neuroblastoma. *Lancet* 369, 2106–2120.
2. Spix, C., Pastore, G., Sankila, R., Stiller, C.A., and Steliarova-Foucher, E. (2006). Neuroblastoma incidence and survival in European children (1978-1997): report from the Automated Childhood Cancer Information System project. *Eur. J. Cancer* 42, 2081–2091.
3. Bernstein, M.L., Leclerc, J.M., Bunin, G., Brisson, L., Robison, L., Shuster, J., Byrne, T., Gregory, D., Hill, G., Dougherty, G., et al. (1992). A population-based study of neuroblastoma incidence, survival, and mortality in North America. *J. Clin. Oncol.* 10, 323–329.
4. De Roos, A.J., Olshan, A.F., Teschke, K., Poole, C., Savitz, D.A., Blatt, J., Bondy, M.L., and Pollock, B.H. (2001). Parental occupational exposures to chemicals and incidence of neuroblastoma in offspring. *Am. J. Epidemiol.* 154, 106–114.
5. De Roos, A.J., Teschke, K., Savitz, D.A., Poole, C., Grufferman, S., Pollock, B.H., and Olshan, A.F. (2001). Parental occupational exposures to electromagnetic fields and radiation and the incidence of neuroblastoma in offspring. *Epidemiology* 12, 508–517.
6. Chen, Y., Takita, J., Choi, Y.L., Kato, M., Ohira, M., Sanada, M., Wang, L., Soda, M., Kikuchi, A., Igarashi, T., et al. (2008). Oncogenic mutations of ALK kinase in neuroblastoma. *Nature* 455, 971–974.
7. George, R.E., Sanda, T., Hanna, M., Fröhling, S., Luther, W., 2nd, Zhang, J., Ahn, Y., Zhou, W., London, W.B., McGrady, P., et al. (2008). Activating mutations in ALK provide a therapeutic target in neuroblastoma. *Nature* 455, 975–978.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

This work was supported by grants from the Pearl River S&T Nova Programme of Guangzhou (no. 201710010086), the National Natural Science Foundation of China (nos. 81502046 and 81602199), the Guangzhou Science and Technology Innovation Commission (no. 201607010395), the Natural Science Foundation of Guangdong Province (no. 2016A030313496), and the State Clinical Key Specialty Construction Project (Paediatric Surgery) 2013 (no. GJLCZD1301).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four tables and can be found with this article online at https://doi.org/10.1016/j.omtn.2018.01.003.
17. Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., He, J., Wang, F., Zhu, J., Zhang, R., Yang, T., Zou, Y., and Xia, H. (2016). Association
16. McDaniel, L.D., Conkrite, K.L., Chang, X., Capasso, M., Vaksman, Z., Oldridge, D.A., Diskin, S.J., Capasso, M., Schnepp, R.W., Cole, K.A., Attiyeh, E.F., Hou, C., Diamond, M., Wang, K., Diskin, S.J., Zhang, H., Attiyeh, E.F., Winter, C., Hou, C., Schnepp, R.W.,
11. Nguyen, B., Duskin, S.J., Capasso, M., Wang, K., Diamond, M.A., Glessner, J., Kim, C., Attiyeh, E.F., Mosse, Y.P., Kim, C., Diskin, S.J., Cole, K.A., et al. (2009). Common variations in
10. Capasso, M., Devoto, M., Hou, C., Asgharzadeh, S., Glessner, J.T., Attiyeh, E.F., Mosse, Y.P., Kim, C., Diskin, S.J., and nonconserved human microRNAs. Nat. Genet.
8. Janoueix-Lerosey, I., Lequin, D., Brugières, L., Ribeiro, A., de Pontual, L., Combaret, Einat, P., Einav, U., Meiri, E., et al. (2005). Identi
19. Schanen, B.C., and Li, X. (2011). Transcriptional regulation of mammalian miRNA
25. He, B.S., Pan, Y.Q., Lin, K., Ying, H.Q., Wang, F., Deng, Q.W., Sun, H.L., Gao, T.Y., Lin, K., Ying, H.Q., Wang, F., Deng, Q.W., Sun, H.L., Gao, T.Y., He, L., He, X., Lim, L.P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., Riddon, D., et al. (2007). A microRNA component of the p53 tumour suppressor
14. Chinese population. J. Cell. Mol. Med.
20. Lee, Y., Jeon, K., Lee, J.T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation:
7. microRNA-binding sites to female breast cancer risk in Chinese population. Gene
47. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 67, 8433–8438,
22. Bossard, P., and Zaret, K.S. (1998). GATA transcription factors as potentiators of
gut endoderm differentiation. Development 125, 4909–4917.
20. Interactions of miR-34b/c and TP53 polymorphisms on the risk of intracra-
nial aneurysm. Clin. Dev. Immunol. 2012, 567586.
24. Gao, L.B., Li, L.J., Pan, X.M., Li, Z.H., Liang, W.B., Bai, P., Zhu, Y.H., and Zhang, L. (2013). A genetic variant in the promoter region of miR-34b/c is associated with a reduced risk of colorectal cancer. Biol. Chem. 394, 415–420.
21. Han, W., Zhou, Y., Zhong, R., Wang, F., Sun, H., Deng, Q., Liu, Q., Gao, T., Liu, R., et al. (2014). Hsa-miR-34b/c rs4938723 T>C and hsa-miR-423 rs6505162 C>A polymorphisms are associated with the risk of esophageal squamous cell carcinoma in Chinese populations. PLoS ONE 9, e86570.
23. Yang, C., Ma, X., Liu, D., Wang, Y., Tang, R., Zou, Y., and Yang, L. (2014). Promoter polymorphisms of miR-34b/c are associated with risk of gastric cancer in a Chinese population. Tumour Biol. 35, 12545–12554.
22. Pan, X.M., Sun, R.F., Li, Z.H., Guo, X.M., Qin, H.J., and Gao, L.B. (2015). Pri-miR-
34b/c rs4938723 polymorphism is associated with a decreased risk of esophageal squamous cell carcinoma in Chinese populations. PLoS ONE 9, e865505.
23. Hashemi, M., Bahari, G., Naderi, M., Sadeghi-Bajol, S., and Taheri, M. (2016). Pri-
miR-34b/c rs4938723 polymorphism is associated with the risk of childhood acute lymphoblastic leukemia. Cancer Genet. 209, 493–496.
22. Tong, N., Chu, H., Wang, M., Xue, Y., Du, M., Lu, L., Zhang, H., Wang, F., Yang, Y., Li, J., et al. (2016). Pri-miR-34b/c rs4938723 polymorphism contributes to acute lymphoblastic leukemia susceptibility in Chinese children. Leuk. Lymphoma 57, 1436–1441.
22. Zhou, X., Chen, X., Hu, L., Han, S., Qiang, F., Wu, Y., Pan, L., Shen, H., Li, Y., and Hu, Z. (2010). Polymorphisms involved in the miR-218-LAMB3 pathway and susceptibility of cervical cancer, a case-control study in Chinese women. Gynecol. Oncol. 117, 287–290.
22. Shi, T.Y., Chen, X.J., Zhu, M.L., Wang, M.Y., He, J., Yu, K.D., Shao, Z.M., Sun, M.H., Zhou, X.Y., Cheng, X., et al. (2013). A pri-miR-218 variant and risk of cervical carcinoma in Chinese women. BMC Cancer 13, 19.
22. Jiang, L., Wang, C., Sun, C., Xu, X., Ding, Z., Zhang, X., Huang, J., and Yu, H. (2014). The impact of pri-miR-218 rs11134527 on the risk and prognosis of patients with esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 7, 6206–6212.
22. Han, Y., Pu, R., Han, X., Zhao, J., Li, W., Yin, J., Zhang, Y., Shen, Q., Xie, J., Zhang, Q., et al. (2014). Association of a potential functional pre-miR-218 polymorphism and its
interaction with hepatitis B virus mutations with hepatocellular carcinoma risk. Liver Int. 34, 728–736.

47. Bao, P.P., Li, K., Wu, C.X., Huang, Z.Z., Wang, C.F., Xiang, Y.M., Peng, P., Gong, Y.M., Xiao, X.M., and Zheng, Y. (2013). [Recent incidences and trends of childhood malignant solid tumors in Shanghai, 2002-2010]. Zhonghua Er Ke Za Zhi 51, 288–294.

48. He, J., Yang, T., Zhang, R., Zhu, J., Wang, F., Zou, Y., and Xia, H. (2016). Potentially functional polymorphisms in the LIN28B gene contribute to neuroblastoma susceptibility in Chinese children. J. Cell. Mol. Med. 20, 1534–1541.

49. He, J., Zhong, W., Zeng, J., Zhu, J., Zhang, R., Wang, F., Yang, T., Zou, Y., and Xia, H. (2016). LMO1 gene polymorphisms contribute to decreased neuroblastoma susceptibility in a Southern Chinese population. Oncotarget 7, 22770–22778.

50. He, J., Wang, F., Zhu, J., Zhang, R., Zou, Y., Zhang, R., Yang, T., and Xia, H. (2017). The TP53 gene rs1042522 C>G polymorphism and neuroblastoma risk in Chinese children. Aging (Albany N.Y.) 9, 852–859.

51. He, J., Zou, Y., Wang, T., Zhang, R., Yang, T., Zhu, J., Wang, F., and Xia, H. (2017). Genetic variations of GWAS-identified genes and neuroblastoma susceptibility: a replication study in Southern Chinese children. Transl. Oncol. 10, 936–941.

52. Zhang, J., Lin, H., Wang, J., He, J., Zhang, D., Qin, P., Yang, L., and Yan, L. (2017). LMO1 polymorphisms reduce neuroblastoma risk in Chinese children: a two-center case-control study. Oncotarget 8, 65620–65626.

53. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011). Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976.

54. He, J., Zhang, R., Zou, Y., Zhu, J., Yang, T., Wang, F., and Xia, H. (2016). Evaluation of GWAS-identified SNPs at 6p22 with neuroblastoma susceptibility in a Chinese population. Tumour Biol. 37, 1635–1639.

55. He, J., Qiu, L.X., Wang, M.Y., Hua, R.X., Zhang, R.X., Yu, H.P., Wang, Y.N., Sun, M.H., Zhou, X.Y., Yang, Y.J., et al. (2012). Polymorphisms in the XPG gene and risk of gastric cancer in Chinese populations. Hum. Genet. 131, 1235–1244.

56. Li, J., Zou, L., Zhou, Y., Li, L., Zhu, Y., Yang, Y., Gong, Y., Lou, J., Ke, J., Zhang, Y., et al. (2017). A low-frequency variant in SMAD7 modulates TGF-β signaling and confers risk for colorectal cancer in Chinese population. Mol. Carcinog. 56, 1798–1807.

57. Lou, J., Gong, J., Ke, J., Tian, J., Zhang, Y., Li, J., Yang, Y., Zhu, Y., Gong, Y., Li, L., et al. (2017). A functional polymorphism located at transcription factor binding sites, rs6695837 near LAMC1 gene, confers risk of colorectal cancer in Chinese populations. Carcinogenesis 38, 177–183.

58. Fu, W., Zhu, J., Xiong, S.W., Jia, W., Zhao, Z., Zhu, S.B., Hu, J.H., Wang, F.H., Xia, H., He, J., and Liu, G.C. (2017). BARD1 gene polymorphisms confer nephroblastoma susceptibility. EBioMedicine 16, 101–105.