Designing a secure campus network and simulating it using Cisco packet tracer

Alaa H. Ahmed¹, Mokhaled N. A. Al-Hamadani²
¹Network Department, Computer Science and Information Technology College, University of Kirkuk, Iraq
²Department of Electronic Techniques, Al-Hawija Technical Institute, Northern Technical University, Iraq

ABSTRACT
The network is a massive part of life today. It participates not only on one side of life but in nearly every station, especially in educational organizations. The key aim of education is to share data and knowledge, making the network important for education. In particular, it is essential to ensure the exchange of information; thus, no one can corrupt it. To safe and trustworthy transfers between users, integrity and reliability are crucial questions in all data transfer problems. Therefore, we have developed a secure campus network (SCN) for sending and receiving information among high-security end-users. We created a topology for a campus of multi networks and virtual local area networks (VLANs’) using cisco packet tracer. We also introduced the most critical security configurations, the networking used in our architecture. We used a large number of protocols to protect and accommodate the users of the SCN scheme.

1. INTRODUCTION
Nowadays, the network has become the need of most people, especially science seekers. A lot of researchers and scientists are depending excessively on networks to get more information. Students’ also involved in the case of network-dependent for a lot of reasons like sharing information, and knowledge between themselves. Thus, the network is an important demand of each community and organization [1]-[3]. Nevertheless, the network can fall under many threats and intrusions; and the reason behind that is the development of web technologies and services [4]-[6]. Those attacks can occur in many different ways either physically damaging the devices or logically hacking the codes. That type of intrusion can cause a lot of problems because of the lack of veracity. Therefore, security has a significant effect in protecting the network from those types of attacks. Network security can be applied in many aspects of the network in order to keep it from unauthorized access. Thus, network security is now one of the essential issues in many firms like universities.

As consequence, we designed a secure campus network (SCN) which includes many networks and each network consists of many VLANs’. Those networks are supported by a security system that prevents outside access without authentication. Also, it protects the sanctity and privacy of each user, so no one can attack their private information. In section 1, we explained the technologies that we used to implement SCN which is packet tracer. Also, we explained the SCN structure and the required resources that we used to create the SCN topology. In section 2, we explained internet protocol (IP) addressing methods, and the
connectivity between the devices in entire network. Whereas, virtual local area network (VLAN) explanation and simulation has been taking part in section 3. After that in section 4, there is a detailed illustration about security and configurations that we applied in the campus topology using packet tracer. Finally, in section 5 a secure network campus scenario will be conclude.

2. METHODOLGY

Cisco packet tracer (CPT) is the main technology that we depended on designing and simulating a secure campus network. CPT is a visual simulation tool that has been created and designed by cisco system. CPT has been used as an effective tool to teach and learn network communication in realistic way [7], [8]. It offers a realistic visualization and simulation tool for learning [9], [10]. That what help the users especially students to create, design, configure, and troubleshoot different type of networks such as LAN and WAN. Also, it helps with the security problems by using security protocols. For example, qualifying the use of some protocols like spanning tree protocol which helps with the looping problems; especially when there are three switches connected to each other.

2.1. Implementation

In order to design a secure campus network (SCN), we used different devices wired and wireless. Also, we used different types of communication media to connect the devices. After connecting the devices, we implemented many important configurations as VLANs, dynamic host configuration protocol (DHCP), and routing information protocol (RIP). Moreover, we applied security and management techniques in the main devices of the network; to make the campus network safer and to protect it from interior and exterior attackers. So, the sanctity and the privacy of the user will be granted.

2.2. SCN topology

The topology that is designed for the secure campus network consists of four main parts or buildings. Each part contains different devices as switches, computers, laptops, smartphones, phones, printers, access point, wireless router, and servers. All of those devices are connected with a switch that connects them directly with a router. The routers in the campus are connected with each other dynamically as it’s shown in Figure 1.

![Figure 1. Topology of secure campus network](image-url)
2.3. Required resources

We used different types of devices in our work to show different connectivity cases. Most of the devices are connected using cables like PCs. However, some of them connected by wireless such as smartphones. As a wireless connection provider, we used two devices in different networks such as wireless routers and access points. The descriptions of the devices are:

- 4 Router (Cisco 8211)
- 1 wireless router (WRT300N)
- 9 Switches (Cisco 2960)
- 1 server (server-PT)
- Access point (Accesspoint-PT)
- 17 PCs (Pc-PT)
- 3 laptops (Laptop-PT)
- 1IP phone (7960)
- 2 smart phones (Smartphone-PT)
- 2 printer (Printer-PT)
- Console cables to configure the Cisco IOS devices via the console ports
- Ethernet cables as shown in the topology
- Copper straight through cables to connect most of the end devices with switches, and switches with routers.
- Serial DTE cables to connect routers with each other dynamically
- Copper cross-over cables to connect the three switches with each other.

3. IP ADDRESSES

An IP address is an internet protocol address that assigns to each device in the network [11]-[13]. Each device assigns a unique IP address to be recognizable and visible by other devices in the network so that it can send and receive data easily without any missing. Each one consists of 32-bit number which is in the format of four-octet numbers separated by a dot as 192.168.1.0. The IP address has two versions IPv4 and IPv6 [14], [15]. Where IPv4 has five classes A, B, C, D, and E each one has a different range of capacity. For example, class A has a range from 1 to 127 network addresses [16]-[18]. This can be written as 1.0.0.0 to 126.255.255.255. Thus, Class A provides a few very large sizes of networks. In our work, we used IP addresses with class c to connect end devices, however for the router’s port that has a connection with other router’s we used IP addresses of class A.

In order to assign IPs for each device we did some of them manually and some of them by using DHCP protocol. The DHCP protocol is a dynamic host configuration protocol that assigns an IP address to end devices depending on the configuration that makes on some devices like a server or router. A DHCP server allows computers to request IP addresses and networking parameters from their Internet service provider (ISP) automatically, eliminating the need for a network administrator or user to assign IP addresses to all network devices manually. In a secure campus network, we configured a server to provide the PCs with the IP addresses as it is shown in Figure 2. We put 192.168.4.6 as a start IP address and also we determined the maximum number of 25 for end devices.

![Server configuration to provide DHCP](image)

Figure 2. Server configuration to provide DHCP
3.1. Connectivity

The connectivity between the same networks happens directly since there are switch connections between the devices. In the parts that have two or three switches, we used trunks to connect them together. Where Trunks is a channel that allows connectivity between the VLANs' that are connected to a switch. However, the connectivity between routers will need network routing protocols static or dynamic such as RIP. RIP is a router information protocol that is responsible for finding the best path for data to be transmitted [19]-[21]. Also, it prevents routing loops by limiting the number of paths from source devices to destination devices. Therefore, we used RIP to connect the entire network with each other; so the end devices can send and receive information from different networks with the shortest and simplest path. After that, we checked the connectivity between the end devices as is shown in Figures 3 and 4.

Figure 3. Routing information protocol (RIP)

Figure 4. Connectivity between devices (continue)
Designing a secure campus network and simulating it using Cisco packet tracer (Alaa H. Ahmed)

4. **VLAN**

VLAN or virtual local area network is a group of local area networks (LAN) that are connected to each other to add more security and manage broadcast domain into the LANs [22]-[24]. Therefore, in secure campus network, we used VLANs in some parts to separate the end devices into different VLANs’ for many reasons. Firstly, it will put the student, lecturers, employees, managers, and other staff in different VLANs’, so it will reduce the traffic. Secondly, for security reasons, VLAN will restrict access to the ports by non-authorized people [25]. VLAN has five types default, management, voice, data, and native VLAN; where default VLAN is already available in every switch and all ports are assigned to it. So, it is easy to attack those ports by outsider or insider attackers. Therefore, changing all ports to another VLAN rather than the default VLAN which will be more secure.
Switch configuration for VLANs

- We created three VLANs 10, 20, and 30; and then we assigned fa0/2, fa0/3, and fa0/4 respectively, one port for each one of them.
- We moved all the other FastEthernet ports fa0/5 – fa0/24 from default VLAN to new VLAN which we assigned as a VLAN 40 to be a saver.
- We changed the two remaining ports GigabitEthernet 0/1 and 0/2 to be in static trunk mode as is shown in the configuration below.

```
Switch(config)#hostname sw1
sw1(config)#vlan 10
sw1(config-vlan)#name Lecturer
sw1(config)#vlan 20
sw1(config-vlan)#name employee
sw1(config)#vlan 30
sw1(config-vlan)#name Student
sw1(config)#vlan 40
```

- Since fa0/1 connects the root switch with the router, we changed its mode to be trunk too.

```
sw1(config-if)#int fa0/1
sw1(config-if)#switchport access vlan 10
sw1(config-if)#no shut
sw1(config-if)#switchport access vlan 20
sw1(config-if)#no shut
sw1(config-if)#switchport access vlan 30
sw1(config-if)#no shut
```

4.1. Network security

There are a lot of techniques to protect the network from interior and exterior attackers. Attacking could be physical by sabotaging, ruining, or stealing the devices; or it can be by hacking the system and accessing without authorization. Thus, in order to protect the network from those types of attacks, we need a strong security system. Network security is a set of policies and procedures that monitor the entire network continuously to secure and prevent it from unauthorized access. Consequently, in SCN we used a high level of security in the main devices like routers and switches. We secured all the ports so those devices would not accept any access without authentication.

In the routers’ case, we secured VTY lines and console lines by adding passwords to require authentication from the user; as it is clear in the following router configuration. In the switch’s case, we also secured all ports; also, we disabled some protocols that show the information of the devices to others such as cisco discovery protocol (CDP). At the same time, we enabled other protocols like spanning tree protocol (STP) in order to prevent looping between switches.

a. Router configuration for security

- We start the security process by putting a password for the line console in order to prevent remote access by others.
- We put a password for line VTY 0 4 to restrict the telnet and SSH unauthorized access.
- We used the message-digest algorithm MD5 to encrypt passwords as shown in Figure 5.
- Finally, we put some restricted features in creating new passwords such as minimum length, and the number of attempts. For example, we verified restriction by entering new user with weak password and the router rejected it as it is shown in the Figure 6.
Designing a secure campus network and simulating it using Cisco packet tracer (Alaa H. Ahmed)
b. Switch configuration for security

- We disabled the CDP protocol from all the devices, and the reason is that CDP gives information about the devices that are adjacency to a specific device.
- We allowed the spanning tree protocol to get rid of the looping that can happen when there is a cycle of switches in the topology.
- After that, we did port security for used ports. We determined a maximum of 2 devices and a broadcast level to be 80% as is shown in Figure 7 and the configuration.
- We verified the security configurations of ports fa0/1, fa0/2, and fa0/3 as its shown in the Figure 8.
Designing a secure campus network and simulating it using Cisco packet tracer (Alaa H. Ahmed)
5. CONCLUSION

To increase the security level in the network’s system especially on campuses, we proposed a secure campus network (SCN) scenario designing and simulating using the cisco packet tracer program. This paper presents a topology that contains four-building, with different networks and different types of devices. In each building, we separate the end devices into different VLANs for security purposes. Also, we applied security techniques for the routers that connect the networks and for switches that connect the end devices with each other to prevent outside or unauthorized accesses. Moreover, this paper shows the real weight of some protocols in connecting and securing the entire campus system.

REFERENCES

[1] S. Pandey, "Modern Network Security: Issues and Challenges," International Journal of Engineering Science and Technology (IJEST), vol. 3, no. 5, 2011.

[2] M. N. Abdullah, I. A. Satam, R. W. Daoud, S. N. Shihab, and H. A. Kamel, "Design and implement a self-managed computer network for electronic exams and sharing," Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, no. 1, pp. 466-475, 2020, doi: 10.11591/ijeecs.v19i1.pp466-475.

[3] M. Naagas, E. Mique, and T. D. Palaaeg, "Defense-through-deception Network Security Model: Securing University Campus Network from DOS/DDOS Attack," Bulletin of Electrical Engineering and Informatics, vol. 7, no. 4, pp. 593600, 2018, doi: 10.11591/eei.v7i4.1349.

[4] M. Jahanirad, A. L. N. Yahya, and R. M. Noor, "Comprehensive Network Security Approach: Security Breaches at Retail company-A Case Study," IJCSNS International Journal of Computer Science and Network Security, vol. 12, no. 8, 2012.

[5] X. Zhou, B. Li, Y. Qi, and W. Dong, "Mimic Encryption Box for Network Multimedia Data Security," Hindawi Security and Communication Networks, 2020.

[6] L. T. Monther Alldwairi, "Security techniques for intelligent spam sensing and anomaly detection in online social platforms," International Journal of Electrical and Computer Engineering (IJCE), vol. 10, no. 1, pp. 275-287, 2020, doi: 10.11591/ijece.v10i1.pp275-287.

[7] S. Liangxu, I. Wu, Y. Zhang, and H. Yin, "Comparison between physical devices and simulat or software for Cisco network technology teaching," computer Science & Education (ICCE), 2013 8th International Conference IEEE, 2013, doi: 10.1109/ICCE2013.6554134.

[8] N. Sanam, "Performance Evaluation of Wide Area Network using Cisco Packet Tracer," International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 6, pp. 2915-2919, 2019, doi: 10.30534/ijtace/2019/38862019.

[9] I. Shemsi, "Boosting Campus Network Design Using Cisco Packet Tracer," International Journal of Innovative Science and Research Technology, vol. 2, no. 11, 2017.

[10] S. Nagentram, K. Ramchand, and H. Rao, "Hybrid Security and Energy Aware Routing for Wireless Ad hoc Networks," International Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 2, 2019, doi: 10.35940/ijrte.b3659.078219.

[11] P. Pathak, S. Majunder, C. Mondal, and M. K., "College Network Scenario Implementation by using Cisco Packet Tracer," International Journal of Advanced Research in Computer and Communication Engineering, vol. 7, no. 1, 2018, pp. 299-304, 2018.

[12] Z. A. Jaaz, S. S. Oleiwi, S. A. Sahy, and I. A. Barazanchi, "Database techniques for resilient network monitoring and inspection," TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 18, no. 5, pp. 2412-2420, 2020, doi: 10.12928/TELKOMNIKA.v18i5.14305.

[13] S. N. Sisat, "IP Subnetting," International Journal of Electronics, Communication & Soft Computing Science and Engineering, vol. 2, no. 5, pp. 5-9, 2013.

[14] Md. A. Hossain, and M. Zannat, "Simulation and Design of University Area Network Scenario(UANS) using Cisco Packet Tracer," Global Journal of Computer Science and Technology: G Interdisciplinary, vol. 19, no. 3, 2019, doi: 10.34237/GJCSTGVol.19IS3PG7.

[15] M. J. Arshad, A. Farooq, S. Ahsan, and M. Shabbaz, "A Path Towards IP-V6 Transition Strategies for Scientific Research: An Overview," Life Science Journal, vol. 9, no. 1, pp. 599-602, 2012.

[16] J. D. McCabe, "Network Analysis, Design and Architecture," Elsevier Inc, 2007.

[17] S. Isaac and J. Abdu, "Comparative Analysis Between IPv4 AND IPv6," International Journal of Information Systems and Engineering, vol. 3, no. 2, 2015, doi: 10.24924/iije/2016.11/v4.iss2/20.26.

[18] Z. Hamid and S. Daud, "A Comparative Study between IPv4 and IPv6," in International Conference on Engineering, Technology & Vocational Education, 2020.

[19] O. K. Sulaiman, A. M. Siregar, K. Nasution, and T. Harmaini, “Bellman Ford algorithm - in Routing Information Protocol (RIP),” in Journal of Physics Conference Series, 2018, doi: 10.1088/1742-6596/1007/1/012009.

[20] D. Liu, B. Barber, and L. Digrande, "Implementing RIP, Version 2," in Cisco CCNA/CCENT Exam 640-802, 640-822, 640-816 Preparation Kit, Syngress, 2009, pp. 197-232.

[21] V. Baggan, A. K. Sahoo, P. K. Sarangi, and S. P. Chaturvedi, "A comprehensive analysis and experimental evaluation of routing information protocol: An elucidation," Materials Today: Proceedings, 2020, doi: 10.1016/j.matpr.2020.10.676
Designing a secure campus network and simulating it using Cisco packet tracer (Alaa H. Ahmed)

[22] C. Agwu, N. Nwogbaga, and O. Chukwuka, “The Proposed Roles of VLAN and Inter-VLAN Routing in Effective Distribution of Network Services in Ebonyi State University,” International Journal of Science and Research (IJSR), vol. 4, no. 7, pp. 2608-2615, 2015.

[23] S. S. Tambe, "Understanding Virtual Local Area Networks," International Journal of Engineering Trends and Technology (IJETT), vol. 25, no. 4, pp. 174-6, 2015.

[24] Z. Zhang, "Analysis of Virtual Local Area Networking Technology," in 2016 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer, 2016.

[25] M. Sudha, A. K., A. K., J. T., and J. Nelson, "Implementation of VLAN AND Inter VLAN in Corporate Networks," International Journal of Advanced Research (IJAR), vol. 8, no. 2, pp. 1074-1078, 2020, doi: 10.21474/IJAR01/10548.

BIOGRAPHIES OF AUTHORS

Alaa H. Ahmed, B. Sc
Computer Science-College of Science-University of Kirkuk-Iraq. M.Sc Computer Science-College of Arts and Sciences- The University of North Carolina at Greensboro-USA. Assistant lecturer-University of Kirkuk-Iraq. Research interest. Data Mining, Data Fusion, Database, Machine Learning, Networking, and any new techniques and subjects in computer science.

Mokhaled N. A. Al-Hamadani, B. Sc
Computer Science-College of Science-University of Kirkuk-Iraq. M.Sc Computer Science-College of Arts and Sciences-The University of North Carolina at Greensboro-USA. Assistant lecturer-Northern Technical University-Iraq. Research interest. Big Data, Deep Learning, Machine Learning, Database, Networking, and any new techniques and subjects in computer science.