Associations between methylenetetrahydrofolate reductase polymorphisms and hepatocellular carcinoma risk
An update meta-analysis and trial sequential analysis

Bin Feng Wang, MD, Miaomiao Ma, MD, Xiaojun Guo, BD, Yan Yan, PhD, Lang Li, MD

Abstract
Aim: To evaluate the associations between the methylenetetrahydrofolate reductase (MTHFR) single-nucleotide polymorphisms (SNPs) and hepatocellular carcinoma (HCC) with meta-analysis and trial sequential analysis.

Methods: PubMed, Embase, the Google Scholar, Wan fang database, VIP database, and China National Knowledge Infrastructure were extensively searched before April 2021. Odds ratios (ORs) and 95% confidence interval (95% CI) were calculated. Review Manager Version 5.3, STATA version 12.0 and TSA 0.9.5.10 Beta software were used.

Results: Nineteen studies with 6941 HCC patients and 9436 controls were finally included. The MTHFR rs1801133 (C677T) SNP was associated with increased HCC risk under heterozygote genetic model (OR = 1.10, 95% CI = [1.01, 1.20]). For Subgroup analysis, increased risks of HCC were detected in Mongoloid, Chinese. For MTHFR rs1801131 (A1298C) SNP, increased risk of HCC was only observed in Caucasians (allelic: OR = 1.86, 95% CI = [1.49, 2.31]; homozygote: OR = 3.39, 95% CI = [2.18, 5.27]), interesting decreased risk was detected in Mongoloid (recessive: OR = 0.30, 95% CI = [0.15, 0.58]; homozygote: OR = 0.41, 95% CI = [0.24, 0.72]). Sensitivity analysis indicated stability in our results. Publication bias was not detected based on Begg test and Egger test. Trial sequential analysis indicated further studies to confirm the associations in MTHFR C677T polymorphism.

Conclusion: The MTHFR rs1801133 SNP was associated with an increased risk of HCC in Mongoloid population especially in Chinese. Increased HCC risk is also observed in Caucasian population for the MTHFR rs1801131 SNP, and decreased risk of HCC is remarkably discovered in Mongoloid and Chinese subgroups, which need further validation.

Abbreviations: CI = confidence interval, HCC = hepatocellular carcinoma, MTHFR = methylenetetrahydrofolate reductase, ORs = odds ratios, SNP = single-nucleotide polymorphism.

Keywords: hepatocellular carcinoma, meta-analysis, methylenetetrahydrofolate reductase, polymorphism, trial sequential analysis

1. Introduction
Hepatocellular carcinoma (HCC) accounts for roughly 90% of all primary liver cancers, which is the sixth most common cancer and the second leading cause of cancer death worldwide.\(^{1–5}\) HCC is asymptomatic most of the time, and when symptoms appear patients are usually at the middle or late stage, which result in a high mortality.\(^{6–9}\) Therefore, early diagnosis based on related risk factors is of great significant to prevent HCC. HCC is a multifactorial disease due to the complex interactions between genetic and environmental factors. Genetic polymorphisms in HCC related genes such as toll-like receptor genes,\(^{10}\) PD-L1,\(^{11}\) matrix metalloproteinase-11 gene,\(^{12}\) have drawn increasing attention in the past decades. To filtrate predisposing gene polymorphisms is important to the early prevention of HCC.

Folate metabolism plays an important role in the DNA synthesis and methylation, which is crucial to the development of HCC. Methylenetetrahydrofolate reductase (MTHFR) is the key enzyme in folate and one-carbon metabolism, which can catalyze the 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. The 5-methyltetrahydrofolate is the predominant circulatory form of folate and serves as the methyl donor for the remethylation of homocysteine to methionine, which is the precursor of S-adenosylmethionine (SAMe), the principal biological methyl donor for methylation of DNA.\(^{13–18}\) Two functional single nucleotide polymorphisms (SNPs) in MTHFR were identified: the MTHFR rs1801133 (C677T) polymorphism (a C to T transition at nucleotide 677 at exon 4, resulting in an alanine-to-valine conversion in protein) and MTHFR rs1801131 (A1298C) polymorphism (a A to C transition at nucleotide 1298 at exon ten, causing a glutamate-to-alanine change in
protein[19,20] Both of the 2 polymorphisms were reported to be associated with a lower MTHFR activity[21–28] and the reduced enzymatic activity can promote or inhibit the occurrence of HCC by affecting DNA methylation and synthesis, which indicated these 2 polymorphisms could be associated with HCC risk.

Many studies were performed to discover the associations between the 2 MTHFR SNPs and HCC risk, however, the conclusions were inconclusive[13,29,30] Former meta-analyses in 2014 and 2015 reported the MTHFR rs1801133 polymorphism was associated with an increased risk of HCC, but for the MTHFR rs1801131 polymorphism, no association was observed.[30,31] Since then, controversial results emerged in different regions and ethnicities[13,29,32–34] In order to reach a more accurate evaluation of these 2 polymorphisms and HCC risk, we performed an update meta-analysis with trial sequential analysis.

2. Methods

Based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) checklist[35] we organized our update meta-analysis. Ethical approval was not necessary for the type of the study (meta-analysis).[36]

2.1. Literature search

An extensive literature search for related studies regarding the associations between MTHFR polymorphisms and hepatocellular carcinoma risk was conducted on PubMed, Embase, the Google Scholar, Wan fang database, VIP database, and China National Knowledge Infrastructure before April 2021. We used the following keywords and MeSH terms: “Methylenetetrahydrofolate reductase” or “folate metabolism” or “one-carbon metabolism” or “MTHFR,” “polymorphism, single nucleotide” or “single nucleotide polymorphism” or “polymorphism” or “SNP,” and “carcinoma, hepatocellular” or “liver neoplasms” or “liver cancer.” No language restrictions were set in our search, furthermore, references of eligible studies were screened manually to identify potential relevant researches.

2.2. Inclusion and exclusion criteria

Studies included should meet the following inclusion criteria:
1. case-control studies or cohort studies;
2. studies on analyzing the associations between MTHFR polymorphisms and hepatocellular carcinoma risk;
3. hepatocellular carcinoma patients should be diagnosed by histopathology in the included study;
4. studies providing detailed genotype frequencies on case and control subjects.

The exclusion criteria were as follows:
1. reviews, comments and conference documents;
2. unclear diagnostic basis for case subjects;
3. animal research;
4. studies with insufficient data, especially without enough data for Hardy-Weinberg equilibrium;
5. duplicate publications.

2.3. Data extraction and quality assessment

Data from the potential eligible studies were independently retrieved by all the authors based on a pre-designed standard form. The following data were extracted: name of the first author, year of publication, country and region where the study was conducted, matching criteria, ethnicity, genotyping method, source of controls, genotype frequency in the cases and controls, quality score and results of Hardy-Weinberg equilibrium test. Ethnicity was categorized as Mongoloid, Caucasian. Hardy-Weinberg equilibrium (HWE) was evaluated for each study by Chi-Squared test in control groups for goodness of fit, and P < .05 was considered as a significant departure from HWE. Any disagreement was resolved by group discussion. The quality assessment for each eligible study was assessed based on the modified Newcastle-Ottawa quality assessment scale.[37] Scores ranged from 0 to 10, with 0 as the lowest and 10 as the highest quality.

2.4. Statistics analysis

Odds ratio (OR) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between MTHFR gene polymorphisms and hepatocellular carcinoma risk. Pooled ORs were performed for allelic model (rs1801133: T VS C; rs1801131: C VS A), recessive model (rs1801133: TT VS TC+CC; rs1801131: CC VS CA+AA), dominant model (rs1801133: TT+TC VS CC; rs1801131: CC VS CA+AA), heterozygote model (rs1801133: TC VS C; rs1801131: CA VS AA), homozygote model (rs1801133: TT VS CC; rs1801131: CC VS AA), respectively. Heterogeneity was evaluated by Q statistic (significance level of P < .1) and I2 statistic (greater than 50% as evidence of significant inconsistency). If the P value of heterogeneity test was more than .1 or I2 statistic less than 50%, the fixed-effect model was used to calculate the pooled OR, otherwise, the random-effect model was used. Sensitivity analysis was performed to detect the heterogeneity by omitting each study in each turn. In addition, subgroup analyses were stratified by HWE (Whether meet the Hardy Weinberg Equilibrium), Region (China, France, Italy, South Korea, USA, Brazil), ethnicity (Mongoloid, Caucasian), source of controls (Hospital based, Population based). The potential for publication bias was assessed with Begg funnel plot and Egg test. All the tests in this meta-analysis were conducted with Review Manager Version 5.3 and the STATA software (version 12.0; State Corporation, College Station, Texas, USA). All tests were two-sided and a P value of lower than .05 was considered as statistically significant.[38]

2.5. Trial sequential analysis

Due to dispersed data and repeated significance testing, type I and type II errors are inevitable in traditional updated meta-analysis with new trials[19] Bias from trials with low methodological quality, outcome measure bias, early stopping for benefit, and small trial bias may result in spurious P values, therefore, the trial sequential analysis which is a methodology that combines an information size calculation (cumulated sample sizes of all included studies) for an updated meta-analysis with the threshold of statistical significance was introduced in our analysis (http://www.ctu.dk/tools-and-links/trial-sequential-analysis.aspx). The trial sequential analysis software (TSA, version 0.9; Copenhagen Trial Unit, Copenhagen, Denmark, 2011) was used and the parameters were set as an overall type I error of 5%, a statistical test power of 80%, and a relative risk reduction of 20%.[40–42] If the Z-curve crosses the trial sequential monitoring boundary line
or required information size is reached, a sufficient level of evidence has been acquired and no more further studies are needed, or else, further studies are essential.

3. Results

3.1. The characteristics of the included studies

A total of nineteen articles were included and 6941 hepatocellular carcinoma patients and 9436 healthy controls were enrolled\(^{[13,29,32-34,43-56]}\) (The flow chat of literature selection was showed in Figure 1 and Table S1 (see Table S1, Supplemental Digital Content, which showed the flow chat of literature selection, http://links.lww.com/MD/G441). The characteristics of the included studies were showed in Table 1. Among the nineteen included articles, 20 studies were research regarding the associations between the MTHFR rs1801133 polymorphism (There were 2 different study groups from the article Yuan et al\(^{[49]}\) and hepatocellular carcinoma, and 8 studies were about the MTHFR rs1801131 polymorphism. For the MTHFR rs1801133 polymorphism, 5227 HCC patients and 6688 healthy controls were involved, which came from China, France, Italy, South Korea, USA and Brazil; as for the MTHFR rs1801131 polymorphism, 1714 HCC and 2775 healthy controls from

![Flow Diagram](image-url)
Study	Year	Country/region	Matching criteria	Ethnicity	Genotyping method	Controls source	Sample size	AA	AB	BB	Quality score	HWE					
MTHFR C677T polymorphism																	
Wang8	2018	China-Hangzhou	Gender, Age	Mongoloid	TaqMan	HB	731	80	121	43	164	216					
Qiao32	2017	China-Tianjin	Gender, Age, BMI, Duration of HBV infection, HBV DNA, HCC family history	Mongoloid	PCR-DNA microarray-based assay	HB	415	30	100	74	40	120					
Jian33	2017	China-Tianjin	Gender, Age, HBVAg, HBV DNA, Child-Pugh stage, AFP, G677T-II, Drinking habit, Smoking habit	Mongoloid	TaqMan	HB	1275	168	370	188	110	263					
Peres29	2016	Brazil-Sao Paulo	Age, Gender, Alcoholic habit, Sm drinking habit	Caucasian	PCR-RFLP	PB	427	28	36	7	149	174					
Lei54	2016	China-Enshi	Gender, Age, Smoking habit, HCC family history, HBV infection, Drinking habit, BMI	Mongoloid	PCR-RFLP	PB	250	19	38	64	12	32					
Zhang30	2015	China-Shenyang	Gender, Age, HBV infection, HCC infection	Mongoloid	PCR-Illumina Golden Gate platform	PB	3000	440	800	260	498	770					
Chang43	2014	China-Taikin	Gender, Age, BMI, Education, Smoking, Alcohol drinking, H. pylori Chagge status, HBsAg status, Anti-HCV status, Plasma AR1-albumin adduct levels	Mongoloid	PCR-RFLP	PB	586	50	114	30	135	199					
Xue55	2014	China-Shanghai	Gender, Age, BMI, HCC infection	Mongoloid	PCR-SNaPshot	PB	405	50	112	43	50	111					
Cui44	2012	China-Qingdao	Gender, Age, Alcohol, BMI, Diabetes, Platelets count	Mongoloid	PCR-SSCP	PB	987	52	179	123	121	325					
Couveret45	2012	France-Paris	Gender, Age, Alcohol, BMI, HCC family history, HBV infection, Drinking habit, BMI	Mongoloid	PCR-DHPLC	PB	121	23	29	10	26	23					
Liu66	2012	China-Tianjin	Age, HBV infection status, AFP, Duration of HBV infection	Mongoloid	TaqMan	PB	333	39	85	57	37	64					
D’Amico47	2009	Italy-Palermo	Age, Duration of HBV infection	Caucasian	PCR-RFLP	PB	188	30	37	27	56	28					
Fabris46	2009	Italy-Udine	Gender, Age, BMI, Smoking habit, Drinking habit, BMI	Caucasian	TaqMan	PB	301	22	30	13	69	113					
Kwak48	2008	South Korea-Seongnam	Gender, Age, HBV infection, HCC family history, HBV infection, Drinking habit, BMI	Mongoloid	TaqMan	PB	257	32	46	18	64	106					
Yuan49	2007	USA-Los Angeles	Gender, Age, Race/ethnicity, Level of education	Mongoloid	TaqMan	PB	327	53	51	14	80	99					
Yuan49	2007	China-Guangxi	Gender, Age, Race/ethnicity, Level of education	Mongoloid	TaqMan	PB	327	65	44	9	104	85					
Muts0	2007	China-Taikin	Gender, Age, Education, Income	Mongoloid	TaqMan	PB	585	50	114	30	135	199					
Zhu51	2006	China-Shanghai	Gender, smoking habit, Drinking habit, HBVAg, Anti-HCV, HCC family history	Mongoloid	TaqMan	PB	1051	172	226	110	173	268					
Ventura52	2005	Italy-Foggia	Age, BMI, Albumin, Quick, Creatinine, Haemoglobin, Platelet count	Caucasian	TaqMan	PB	72	7	986	4394	9	02	7	16	7	8	0.092
Saftryg3	2004	France-Paris	Gender, Age	Caucasian	PCR-RFLP	PB	228	67	69	12	30	37					
MTHFR A1298C polymorphism																	
Wang8	2018	China-Hangzhou	Gender, Age	Mongoloid	TaqMan	HB	731	181	57	6	296	140					
Peres29	2016	Brazil-Sao Paulo	Age, Gender, Alcoholic habit, Smoking habit	Caucasian	PCR-RFLP	PB	427	32	24	15	205	116					
Xue55	2014	China-Shanghai	Gender, Age, BMI, HCC family history	Mongoloid	PCR-SNaPshot	PB	405	150	52	3	152	44					
Cui44	2012	China-Qingdao	Gender, Age, BMI, Smoking status	Mongoloid	PCR-SSCP	PB	267	253	94	4	461	153					
Kwak48	2008	South Korea-Seongnam	Gender, Age, HBV infection, HCC family history, HBV infection, Drinking habit, BMI	Mongoloid	TaqMan	PB	297	67	28	1	155	41					
Yuan49	2007	USA-Los Angeles	Gender, Age, Race/ethnicity, Level of education	Mongoloid	TaqMan	PB	549	159	71	71	156	74					
Yuan49	2007	China-Guangxi	Gender, Age, Race/ethnicity, Level of education	Mongoloid	TaqMan	PB	405	136	101	10	136	91					
Muts0	2007	China-Taikin	Gender, Age, Education, Income	Mongoloid	TaqMan	PB	588	135	55	4	275	112					

For MTHFR rs1801133 polymorphism, AA, AB and BB represent CC, CT and TT, respectively. For MTHFR rs1801131 polymorphism, AA, AB and BB refer to AA, AC and CC, HB = hospital based, HCC = hepatocellular carcinoma, HWE = Hardy-Weinberg Equilibrium, PB = population based, PCR-DHPLC = Polymerase Chain Reaction-Denaturing High Performance Liquid Chromatography, PCR-DNA microarray-based assay = Polymerase Chain Reaction with microarray-based assay, PCR-Illumina Golden Gate platform = Polymerase Chain Reaction based on Illumina Golden Gate platform, PCR-QIAamp DNA Blood Mini Kit = Polymerase Chain Reaction with QIAamp DNA Blood Mini Kit, PCR-RFLP = Polymerase Chain Reaction-Restriction Fragment Length Polymorphism, PCR-SNaPshot = Polymerase Chain Reaction with SNaPshot, TaqMan = Polymerase Chain Reaction with TaqMan probe

* P value for Hardy-Weinberg Equilibrium test in controls.
Table 2

Pooled analysis and subgroup analysis of associations between MTHFR polymorphisms and HCC.

Type of analysis	Number of the studies	Allelic/genic model	Dominant genic model	Recessive genic model	Heterozygote genic model	Homozygote genic model
		OR [95% CI]	OR [95% CI]	OR [95% CI]	OR [95% CI]	OR [95% CI]
		P-meta-analysis	P-meta-analysis	P-meta-analysis	P-meta-analysis	P-meta-analysis
MTHFR C677T						
polymorphism						
Pooled analysis	20	1.05 [0.95, 1.17]	.00068/R	.330	1.09 [0.96, 1.25]	.00452/R
Subgroup analysis						
Region						
China	12	1.04 [0.94, 1.15]	.00263/R	.490	1.11 [1.01, 1.21]	.03444/F
France	2	0.87 [0.55, 1.39]	.15515/R	.560	0.91 [0.59, 1.41]	.19414/F
Italy	3	1.78 [0.77, 4.11]	.00088/R	.180	1.71 [0.67, 4.33]	.00681/R
South Korea	1	1.04 [0.73, 1.47]	NA	.830	0.93 [0.56, 1.57]	NA
USA	1	0.82 [0.59, 1.15]	NA	.240	0.76 [0.48, 1.20]	NA
Brazil	1	1.07 [0.73, 1.59]	NA	.730	1.11 [0.66, 1.86]	NA
Entitcity						
Mongolia	13	1.04 [0.94, 1.14]	.00459/R	.460	1.09 [0.94, 1.09]	.06414/F
Caucasian	7	1.18 [0.82, 1.72]	.00081/R	.380	1.17 [0.78, 1.77]	.00469/F
Source of controls						
Hospital Based	18	1.04 [0.92, 1.17]	.00070/R	.570	1.05 [0.91, 1.22]	.00751/R
Population Based	2	1.21 [1.04, 1.4]	.0380/R	.010	1.43 [1.10, 1.86]	.06580/R
MTHFR A1298C						
polymorphism	8	1.07 [0.78, 1.49]	.00087/R	.690	1.08 [0.84, 1.39]	.00171/R
Subgroup analysis						
Region						
China	5	0.83 [0.64, 1.09]	.00074/R	.190	0.98 [0.70, 1.37]	.00576/R
South Korea	1	1.27 [0.78, 2.08]	NA	.350	1.46 [0.84, 2.52]	NA
USA	1	1.92 [1.47, 2.62]	NA	.000	1.01 [0.80, 1.37]	NA
Brazil	1	1.74 [1.19, 2.53]	NA	.004	1.65 [0.99, 2.76]	NA
Entitcity						
Mongolia	6	0.88 [0.68, 1.14]	.00373/R	.340	0.79 [0.52, 1.2]	.00176/R
Caucasian	2	1.86 [1.49, 2.31]	.0670/R	.000	1.25 [0.77, 2.02]	.13579/R
Source of Controls						
Hospital Based	7	1.11 [0.76, 1.66]	.00089/R	.600	1.10 [0.81, 1.52]	.00075/R
Population Based	7	0.87 [0.67, 1.12]	NA	.290	0.97 [0.73, 1.39]	NA

EM = effect model, F = fixed effect model, HWE = Hardy Weinberg Equilibrium, NA = not available for one study, R = random effect model. Heterogeneity means P value for heterogeneity; P meta-analysis means P value for meta-analysis.

Significant association with more than one study in each research group was bold and color red.
3.4.1 China

Study or Subgroup	HCC Events	Control Events	Total Events	Weight	Odds Ratio M-H Fixed, 95% CI Year
Wang	121	201	322	7.5%	1.15 [0.81, 1.63] 2018
Jiao	370	538	908	12.2%	0.92 [0.69, 1.23] 2017
Qiao	100	130	230	3.1%	1.11 [0.65, 1.91] 2017
Lei	38	57	95	1.5%	0.75 [0.32, 1.78] 2016
Zhang	800	1240	2040	33.9%	1.10 [0.99, 1.38] 2015
Chang	11 14	164	278	5.0%	1.55 [1.04, 2.30] 2014
Xu	112	162	274	4.3%	1.01 [0.63, 1.62] 2014
Cui	179	231	410	6.3%	1.28 [0.88, 1.88] 2012
Liu	85	124	209	2.6%	1.26 [0.72, 2.19] 2010
Mu	114	164	278	5.0%	1.55 [1.04, 2.30] 2007
Yuanil	44	109	153	4.7%	0.83 [0.51, 1.34] 2007
Zhu	226	398	624	13.8%	0.85 [0.64, 1.12] 2006
Subtotal (95% CI)	3518	4231	7749	100.0%	1.11 [1.01, 1.22]

Total events: 2303

Heterogeneity: Chi² = 14.31, df = 11 (P = 0.22); I² = 23%
Test for overall effect: Z = 2.17 (P = 0.03)

3.4.2 France

Study or Subgroup	HCC Events	Control Events	Total Events	Weight	Odds Ratio M-H Fixed, 95% CI Year
Couvert	29	52	81	30.0%	1.43 [0.65, 3.12] 2012
Saffroy	69	136	205	70.0%	0.84 [0.46, 1.50] 2004
Subtotal (95% CI)	188	316	504	100.0%	1.01 [0.63, 1.62]

Total events: 98

Heterogeneity: Chi² = 1.15, df = 1 (P = 0.29); I² = 13%
Test for overall effect: Z = 0.05 (P = 0.96)

3.4.3 Italy

Study or Subgroup	HCC Events	Control Events	Total Events	Weight	Odds Ratio M-H Fixed, 95% CI Year
D'Amico	37	67	104	30.1%	2.47 [1.27, 4.78] 2009
Fabris	30	52	82	57.5%	0.83 [0.45, 1.56] 2009
Ventura	5	13	18	12.4%	1.05 [0.39, 3.13] 2005
Subtotal (95% CI)	132	309	441	100.0%	1.35 [0.88, 2.07]

Total events: 72

Heterogeneity: Chi² = 5.62, df = 2 (P = 0.08); I² = 64%
Test for overall effect: Z = 1.40 (P = 0.16)

3.4.4 South Korea

Study or Subgroup	HCC Events	Control Events	Total Events	Weight	Odds Ratio M-H Fixed, 95% CI Year
Kwak	46	78	124	100.0%	0.87 [0.50, 1.50] 2008
Subtotal (95% CI)	46	146	192	100.0%	0.87 [0.50, 1.50]

Total events: 46

Heterogeneity: Not applicable
Test for overall effect: Z = 0.51 (P = 0.61)

3.4.5 USA

Study or Subgroup	HCC Events	Control Events	Total Events	Weight	Odds Ratio M-H Fixed, 95% CI Year
Yuanil	51	104	155	100.0%	0.78 [0.48, 1.26] 2007
Subtotal (95% CI)	104	179	283	100.0%	0.78 [0.48, 1.26]

Total events: 51

Heterogeneity: Not applicable
Test for overall effect: Z = 1.02 (P = 0.31)

3.4.6 Brazil

Study or Subgroup	HCC Events	Control Events	Total Events	Weight	Odds Ratio M-H Fixed, 95% CI Year
Peres	36	64	100	100.0%	1.10 [0.64, 1.89] 2016
Subtotal (95% CI)	64	174	238	100.0%	1.10 [0.64, 1.89]

Total events: 36

Heterogeneity: Not applicable
Test for overall effect: Z = 0.35 (P = 0.73)

Test for subarous differences: Chi² = 3.77, df = 5 (P = 0.50), I² = 0%

Figure 2. Forest plot of the subgroup analysis of the MTHFR rs1801133 heterozygote genetic model (TC VS CC) and susceptibility to hepatocellular carcinoma in different regions.
China, South Korea, USA and Brazil were recruited. The quality assessment scale was showed in Table S2 (see Table S2, Supplemental Digital Content, which showed the quality assessment scale, http://links.lww.com/MD/G442) and the scores ranged from 6 to 9, which indicated the reliability of our included studies. The PRISMA checklist was attached as Table S3 (see Table S3, Supplemental Digital Content, which showed the PRISMA checklist, http://links.lww.com/MD/G443).

3.2. Meta-analysis results and heterogeneity analysis

Table 2 summarized the pooled and subgroup analysis of associations between the 2 MTHFR SNPs and HCC risk. In the pooled analysis of these 2 polymorphisms, significant association was only detected in heterozygote genetic model (OR = 1.10, 95% CI = [1.01, 1.20], Pmeta-analysis = 0.04; PHeterogeneity = 0.17, I2 = 23) for MTHFR rs1801133 polymorphism (Fig. 1), but for the MTHFR rs1801131 polymorphism, no significant association was found. In order to discover the potential associations and resource of heterogeneity, we conducted a comprehensive subgroup analysis stratiﬁed by HWE (In accordance with HWE or departure from HWE), Region (China, France, Italy, South Korea, USA, Brazil), Ethnicity (Mongoloid or Caucasian), and source of controls (Population based or Hospital based).

For the subgroup analysis stratified by HWE, no association was observed for the MTHFR rs1801133 polymorphism; significant association was detected in recessive genetic model (OR = 0.31, 95% CI = [0.14, 0.65], Pmeta-analysis = .002; PHeterogeneity = .03, I2 = 61) and heterozygote genetic model (OR = 0.36, 95% CI = [0.23, 0.55], Pmeta-analysis = .006; PHeterogeneity = .13, I2 = 44) for the Chinese subgroup for the MTHFR rs1801131 polymorphism (Fig. 2); as for the MTHFR rs1801131 polymorphism, significant associations were observed in recessive genetic model (OR = 1.11, 95% CI = [1.01, 1.21], Pmeta-analysis = .02; PHeterogeneity = .03, I2 = 44) and homozygote genetic model (OR = 0.36, 95% CI = [0.23, 0.55], Pmeta-analysis = .006; PHeterogeneity = .13, I2 = 44) for the Chinese (Fig. 3). For the MTHFR rs1801131 polymorphism, significant association was observed in the heterozygote genetic model (OR = 1.10, 95% CI = [1.00, 1.21], Pmeta-analysis = .04; PHeterogeneity = .24, I2 = 20) in Mongoloid subgroup (Fig. 4); but for the subgroup analysis stratified by ethnicity of the MTHFR rs1801131 polymorphism, significant associations were widely observed [Mongoloid: recessive genetic model (OR = 0.30, 95% CI = [0.19, 0.62], Pmeta-analysis = .004; PHeterogeneity = .82, I2 = 14) and heterozygote genetic model (OR = 1.11, 95% CI = [1.01, 1.21], Pmeta-analysis = .04; PHeterogeneity = .03, I2 = 44) for the Chinese (Fig. 3)].

![Forest plot of the subgroup analysis of the MTHFR rs1801131 homozygote genetic model (CC VS AA) and susceptibility to hepatocellular carcinoma in different regions.](http://links.lww.com/MD/G443)
CI = [0.15, 0.58], \(P_{\text{meta-analysis}} = .000; P_{\text{heterogeneity}} = .06, I^2 = 52 \), homozygote genetic model (OR = 0.36, 95% CI = [0.24, 0.55], \(P_{\text{meta-analysis}} = .000; P_{\text{heterogeneity}} = .21, I^2 = 31 \); Caucasian: allelic genetic model (OR = 1.86, 95% CI = [1.49, 2.31], \(P_{\text{meta-analysis}} = .000; P_{\text{heterogeneity}} = .67, I^2 = 0 \), homozygote genetic model (OR = 3.47, 95% CI = [2.24, 5.39], \(P_{\text{meta-analysis}} = .000; P_{\text{heterogeneity}} = .45, I^2 = 0 \)) (Fig. 5). As for the subgroup analysis stratified by source of controls, no association was observed for the rs1801131 polymorphism and significant associations were found in allelic genetic model (OR = 1.21, 95% CI = [1.04, 1.40], \(P_{\text{meta-analysis}} = .010; P_{\text{heterogeneity}} = .93, I^2 = 0 \), dominant genetic model (OR = 1.43, 95% CI = [1.10, 1.86], \(P_{\text{meta-analysis}} = .007; P_{\text{heterogeneity}} = .68, I^2 = 0 \)) and heterozygote genetic model (OR = 1.40, 95% CI = [1.07, 1.84], \(P_{\text{meta-analysis}} = .020; P_{\text{heterogeneity}} = .50, I^2 = 0 \)) for the MTHFR rs1801133 polymorphism.

3.3. Sensitivity analysis and publication bias

The results of sensitivity analysis indicated that any single study had no significant effect on pooled OR of relationship between the MTHFR rs1801133 and rs1801131 polymorphisms and HCC risk (Fig. 6). Funnel plots for the MTHFR rs1801133 polymorphism under the heterozygote genetic model was symmetrical, implying no significant publication bias (Fig. 7) and the Egger linear regression test (\(P = .845 \)) also confirmed the negation of publication bias. But for the MTHFR rs1801131 polymorphism, because the number of studies included was less than 10, publication bias could not be assessed.

3.4. Trial sequential analysis

Trial sequential analysis was introduced to evaluate the pooled results of the MTHFR rs1801133 polymorphism and HCC risk under heterozygote genetic model (Fig. 8). Based on the sample size estimation, a sample size of 11259 was required to detect a plausible result for the association of the MTHFR rs1801133 polymorphism. In the present study, a sample size of 9412 has been tested using the heterozygote genetic model (TC VS CC), moreover, the Z curve line only cross the conventional boundary and do not cross the TSA boundary line, indicating that the cumulative evidence is inconclusive and further studies are required to confirm conclusion.
4. Discussion

Abnormal DNA synthesis and methylation caused by environmental or genetic factors play important role in the occurrence and development of HCC. A lower MTHFR activity will lead to the increased pool of 5,10-methylenetetrahydrofolate for thymidylate synthase and the decreased pool of 5-methyltetrahydrofolate for SAMe, which could favor optimal DNA synthesis, methylation and repair by reducing uracil mis incorporation and double strand breaks of DNA.\[58\] Functional researches have indicated that subjects with the mutant allele of these 2 polymorphisms showed lower MTHFR enzyme activities.\[59,60\] Previous meta-analysis reported an increased risk of HCC in the MTHFR rs1801133 polymorphism,\[31,61–63\] but the small sample size could bias the results, in addition, the influence of studies departure from Hardy Weinberg Equilibrium on the analysis was not discussed in the former studies. As for the MTHRF rs1801131 polymorphism, no association was detected in meta-analysis, but several late case-control studies reported the polymorphism was associated with HCC risk.\[13,29\] The important biological role of the 2 polymorphisms and the inconsistent conclusions from previous studies draw us to reevaluate the associations between MTHFR polymorphisms and HCC risk with comprehensive subgroup analysis and trial sequential analysis.

![Figure 5](image-url)

Figure 5. Forest plot of the subgroup analysis of the MTHFR rs1801131 homozygote genetic model (CC VS AA) and susceptibility to hepatocellular carcinoma in different ethnicities.

![Figure 6](image-url)

Figure 6. Sensitivity analysis of the pooled analysis of the MTHFR rs1801133 heterozygote genetic model (TC VS CC) and susceptibility to hepatocellular carcinoma.

![Figure 7](image-url)

Figure 7. Publication bias of the pooled analysis of the MTHFR rs1801133 heterozygote genetic model (TC VS CC) and susceptibility to hepatocellular carcinoma.
Our study included nineteen articles, involving 20 studies with 5227 HCC patients and 6688 healthy controls for the MTHFR rs1801133 polymorphism and 8 studies with 1714 HCC patients and 2775 healthy controls for the MTHFR rs1801131 polymorphism. The pooled meta-analysis results showed that the MTHFR rs1801133 polymorphism in the heterozygote genetic model was associated with a high risk of developing HCC. It implied the TC genotypes had a 10% increased risk of HCC compared to CC genotypes (OR [95% CI] = 1.10 [1.01, 1.20]). Moreover, the results of sensitivity analysis and publication bias also increased the reliability and stability of the association. However, the TSA results required more further large sample size studies to confirm the association. As for the MTHFR rs1801131 polymorphism, no association was discovered.

The differences in the genetic equilibrium of control group, region, ethnicity, source of controls may have an influence on the risk of developing HCC in a way of gene-environment interaction. Hence, we performed a comprehensive subgroup analysis based on the differences mentioned above. To test the Hardy-Weinberg Equilibrium in the control group is essential to reflect the homogeneity of selected population and reduce the bias in enroll research subjects. In the subgroup in accordance with HWE, a decreased risk of the MTHFR rs1801131 polymorphism under the recessive genetic model was observed (OR [95% CI] = 0.51 [0.29, 0.92]), indicating the CC genotype had a 49% decreased risk of HCC compared to CA/AA genotypes. Hospital based and Population based are the 2 main source of controls, the advantages of low selection bias and more randomization in Population based control group could generate more reliable and solid results. In the subgroup analysis stratified by source of controls, extensive increased risks of HCC in the MTHFR rs1801133 polymorphism under allelic (OR [95% CI] = 1.21 [1.04, 1.40]), dominant (OR [95% CI] = 1.43 [1.10, 1.86]), heterozygote (OR [95% CI] = 1.40 [1.07, 1.84]) genetic model were observed.

Geography information is an important environment variable for gene-environment interaction. Significant associations were observed for these 2 polymorphisms in Chinese group. The MTHFR rs1801133 polymorphism was associated with a high risk of HCC under dominant genetic model (OR [95% CI] = 1.11 [1.01, 1.21]) and heterozygote genetic model (OR [95% CI] = 1.11 [1.01, 1.22]). A decreased risk of HCC for MTHFR rs1801131 polymorphism was detected in recessive (OR [95% CI] = 0.31 [0.14, 0.65]) and homozygote (OR [95% CI] = 0.36 [0.24, 0.55]) genetic model. In addition, the same increased risk of HCC for the MTHFR rs1801133 polymorphism under the heterozygote genetic model was observed in Mongoloid population. But for the MTHFR rs1801131 polymorphism, interesting results were emerged. The decreased risk of HCC was detected in Mongoloid under the recessive (OR [95% CI] = 0.30 [0.15, 0.58]) and homozygote genetic model (OR [95% CI] = 0.36 [0.23, 0.55]). But the increased risk of HCC was observed in Caucasian under the allelic (OR [95% CI] = 1.86 [1.49, 2.31]).
and homozygote (OR [95% CI] = 3.47 [2.24, 5.39]) genetic model. As a brief summary, in Mongoloid especially in Chinese, an increased risk of HCC for the MTHFR rs1801133 and a decreased risk of HCC for the MTHFR rs1801131 were observed, nevertheless, an increased risk of HCC for the MTHFR rs1801131 in Caucasian was discovered.

The contrary risk associations in the Mongoloid and Caucasian populations of the MTHFR rs1801131 polymorphism arouse our great interests. After literature intensive reading, we found there are 2 ways of changed MTHFR enzyme activity on the HCC risk:

1. the reduced MTHFR enzymatic activity would result in reductive conversion of 5,10-methylenetetrahydrofolate into 5-methylentetrahydrofolate, next, a decreased level of S-adenosylmethionine lead to down-regulated DNA methylation and an increased risk of HCC occurrence;[64]

2. the reduced activity of MTHFR contribute to an accumulation of 5,10-methylenetetrahydrofolate, resulting in a lower dUMP/dTMP ratio, reduce the incidence of the incorrect incorporation of uracil into the DNA and double-strand DNA breaks, which can strengthen the ability of the DNA and finally lead to a lower HCC risk.[65,66]

We found the mutant 1298C allele could decrease the risk of HCC in Chinese and Mongoloid population, and the epidemic study reported that most cases of HCC occur in Asian,[67] particularly in East Asia with a very high incidence (over 20 cases/100000 population), which was a proof to our results. Anyway, larger studies are required to validate the associations.

Several limitations should be acknowledged in the present meta-analysis. Firstly, associations in relative small sample size in some subgroups should be interpreted with cautions such as the increased risk of HCC in Caucasian for the MTHFR rs1801131 polymorphism, the only 1 study in some subgroups (Brazil, South Korea, USA, Hospital based for MTHFR rs1801131 polymorphism); secondly, only English and Chinese literatures were retrieved, and missing of relevant studies in other language might bias our results; thirdly, for the type of our research (meta-analysis), the unreasonable data and bias in original studies could be the potential confounding factors; at last, the genotyping method were not uniform and could have an influence on the deviation of outcomes. All above, further studies with larger sample size from different regions and ethnicities are required to provide a more accurate association.

In conclusion, this meta-analysis indicates the TC genotype of the MTHFR rs1801133 polymorphism is associated with an increased risk of hepatocellular carcinoma (HCC) risk, in addition, the MTHFR rs1801133 polymorphism was associated with an increased risk of HCC in Mongoloid population especially in Chinese. As for the MTHFR rs1801131 polymorphism, increased HCC risk was observed in Caucasian population, and decreased risk of HCC was remarkably discovered in homozygous mutant CC genotypes in Mongoloid and Chinese subgroups. In the future, larger well-designed studies are warranted to verify these results.

Author contributions

Conceptualization: Lang Li.
Data curation: Binfenf Wang, Lang Li.
Formal analysis: Yan Yan.
Investigation: Miaomiao Ma, Yan Yan.

Methodology: Miaomiao Ma, Xiaojun Guo, Yan Yan, Lang Li.
Project administration: Lang Li.
Resources: Yan Yan.
Software: Binfenf Wang, Miaomiao Ma, Xiaojun Guo, Yan Yan.
Supervision: Binfenf Wang, Lang Li.
Validation: Binfenf Wang, Miaomiao Ma, Lang Li.
Visualization: Binfenf Wang, Lang Li.
Writing – original draft: Binfenf Wang, Lang Li.
Writing – review & editing: Binfenf Wang, Miaomiao Ma, Xiaojun Guo, Yan Yan, Lang Li.

References

[1] Granito A, Bolondi L. Non-transplant therapies for patients with hepatocellular carcinoma and Child-Pugh-Turcotte class B cirrhosis. Lancet Oncol 2017;18:e101–12.
[2] Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019;16:589–604.
[3] Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology 2019;156:477–491.e471.
[4] Thorsson V, Gibbs JB, Browne SD, et al. The immune landscape of cancer. Immunity 2018;48:812–830.e814.
[5] Forner A, Reig M, Brüix J. Hepatocellular carcinoma. Lancet 2018;391:1301–14.
[6] Janevska D, Chaloska-Ivanova V, Janevski V. Hepatocellular carcinoma: risk factors;1; diagnosis and treatment. Open Access Macedonian J Med Sci 2015;3:732.
[7] Hack SP, Spahn J, Chen M, et al. IMbrave 050: a Phase III trial of atezolizumab plus bevacizumab in high-risk hepatocellular carcinoma after curative resection or ablation. Future Oncol 2020;16:975–89.
[8] Liu X, Li M, Wang X, et al. Effects of adjuvant traditional Chinese medicine therapy on long-term survival in patients with hepatocellular carcinoma. Phytomedicine 2019;62:152930.
[9] Flackes N, Sarabia SF, Alvarez KR, et al. Characterization of pediatric hepatocellular carcinoma reveals genomic heterogeneity and diverse signaling pathway activation. Pediatric Blood Cancer 2019;66:e27745.
[10] Lin W, Chen J, Zhu B, Xu X, Dong Z. Role of toll-like receptors gene polymorphism in hepatocellular carcinoma. J Receptor Signal Transduction Res 2014;34:345–7.
[11] Xie Q, Chen Z, Xia L, Zhao Q, Yu H, Yang Z. Correlations of PD-L1 gene polymorphisms with susceptibility and prognosis in hepatocellular carcinoma in a Chinese Han population. Gene 2018;674:188–94.
[12] Wang B, Hsu CJ, Lee HL, et al. Impact of matrix metalloproteinase-11 gene polymorphisms upon the development and progression of hepatocellular carcinoma. Int J Med Sci 2018;15:653–8.
[13] Wang C, Xie H, Lu D, et al. The MTHFR polymorphism affect the susceptibility of HCC and the prognosis of HCC liver transplantation. Clin Transl Oncol 2018;20:448–56.
[14] Sah S, Lahry K, Talwar C, Singh S, Varshney U. Monomeric NADH- oxidizing methylenetetrahydrofolate reductases from mycobacterium smegmatis lack flavin coenzyme. J Bacteriol 2020;202:e00709–19.
[15] Kaur R, Correa ARE, Thakur S, Kabra M, Gupta N. Methylenetetrahydrofolate reductase deficiency. Indian J Pediatr 2020;87:951–3.
[16] Frihka R. Assessment of the relationship between methylenetetrahydrofolate reductase polymorphism and acute lymphoblastic leukemia: evidence from an updated meta-analysis. J Oncol Pharm Pract 2020;26:1598–610.
[17] Ahmed SF, Ali MM, Kheiri S, Elzaki SE, Adam I. Association of methylenetetrahydrofolate reductase C677T and reduced-f carrier-I G80A gene polymorphism with preeclampsia in Sudanese women. Hypertens Pregnancy 2020;39;77–81.
[18] Wan L, Li Y, Zhang Z, Sun Z, He Y, Li R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl Psychiatry 2018;8:242.
[19] Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995;10:111–3.
[20] van der Put NM, Gabriels F, Stevens EM, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 1998;62:1044–51.
[21] Ventura P, Venturelli G, Maracci M, et al. Hyperhomocysteinemia and MTHFR C677T polymorphism in patients with portal vein thrombosis complicating liver cirrhosis. Thromb Res 2016;141:189–95.
methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev 2000;9:849–53.

[65] Blount BC, Mack MM, Wehr CM, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proceedings National Academy Sci United States Am 1997;94:3290–5.

[66] Machover D, Zittoun J, Saffroy R, et al. Treatment of cancer cells with methioninase produces DNA hypomethylation and increases DNA synthesis. Cancer Res 2002;62:4685–9.

[67] Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol 2008;14:4300–8.