Original Research Article

Assessment of plasma fibrinogen as a marker of diabetic nephropathy

Ayyali Ambresh¹, Shilpa A²,*

¹Dept. of General Medicine, Bowering Medical College, Bangalore, Karnataka, India
²Dept. of Biochemistry, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka, India

A B S T R A C T

Introduction: Diabetes is one of the most common chronic hyperglycemic syndrome. Diabetic Nephropathy is one of the major complications of DM characterized by persistent albuminuria, increased arterial blood pressure, a relentless decline in glomerular filtration rate (GFR) & a high risk of cardiovascular morbidity & mortality. The biological marker of DN is fibrinogen. Fibrinogen, is increased in diabetic patients. An increase in plasma fibrinogen levels is also considered an independent risk factor for diabetic nephropathy. Fibrinogen is the major coagulation protein in blood.

Objectives: To find out whether the levels of Plasma Fibrinogen levels can be used as markers for the early diagnosis of DN.

Materials and Methods- Study design: A case control study. The study includes total of 150 patients, of which 50 were diabetic without any complications, 50 were diabetic nephropathy patients and remaining 50 were age matched healthy controls.

Results: The mean plasma fibrinogen level in control group was 190.34 ± 72.83 mg/dl. The mean plasma fibrinogen levels in DM & DN groups were 522.76 ± 115.79 mg/dl & 657.64 ± 124.61 mg/dl respectively. In our study, fibrinogen levels were increased significantly in DM group compared to controls which was further increased in DN group. Hence above studies interpret that fibrinogen increases in diabetes with complications.

Conclusion: Fibrinogen correlated positively with FBS, HbA1c, TC, triglyceride, LDL, Blood Urea, serum creatinine, TC/HDL, LDL/HDL & urine A/C ratio in both DM & DN group, whereas there was negative correlation of fibrinogen with HDL & eGFR. Thus fibrinogen could be used as early biomarkers for the diagnosis of DN.

* Corresponding author.
E-mail address: ambrish7799@gmail.com (Shilpa A).

1. Introduction

Diabetes is one of the most common chronic hyperglycemic syndrome. Diabetic Nephropathy is one of the major complications of DM characterized by persistent albuminuria, increased arterial blood pressure, a relentless decline in glomerular filtration rate (GFR) & a high risk of cardiovascular morbidity & mortality.¹

The biological marker of DN is fibrinogen. Fibrinogen, is increased in diabetic patients.²,³ An increase in plasma fibrinogen levels is also considered an independent risk factor for diabetic nephropathy.⁴ Fibrinogen is the major coagulation protein in blood. It is a glycoprotein and circulates as a dimer composed of three pairs of polypeptide chains.⁵ It is an acute phase protein & increases during the inflammatory process. Inflammation plays an important role in the development of atherosclerosis. Monocytes infiltrating the atherosclerosis differentiate into macrophages that release cytokines, such as interleukin-6, which increase plasma fibrinogen levels in serum.

Diabetes mellitus leads to dyslipidemia and this dyslipidemia is more in presence of DN.

Lipid ratios are better indicators of atherogenic risk in patients with DN as compared to lipidsalone.⁶ Creatinine is
not raised above the normal range until 60% of total kidney function is lost. Hence, the more accurate means of measuring renal function is eGFR. Microalbuminuria in DN is best investigated by the urinary albumin excretion in relation to creatinine, as assessed from the albumin-to-creatinine ratio.7

Hence, the present study was undertaken to estimate plasma fibrinogen levels in DM & DN and to know whether these levels could be used as early predictors of DN.

2. Objectives

To find out whether the levels of Plasma Fibrinogen levels can be used as markers for the early diagnosis of DN.

3. Materials and methods

3.1. Study design

3.1.1. Case control study

The study includes total of 150 patients, of which 50 were diabetic without any complications, 50 were diabetic nephropathy patients and remaining 50 were age matched healthy controls.

3.1.2. Study period & duration

The study was conducted from 1st January 2015 to 31st December 2015.

3.1.3. Study site

Study was conducted in Department of Biochemistry of a tertiary care hospital.

Patients were recruited from out-patient department (OPD) and inpatient department (IPD) of medicine and nephrology of tertiary care hospital.

3.1.4. Ethical committee approval

The permission of Institutional Ethics Committee (IEC) was taken before starting the study.

Ethical Committee Approval No-VIMS/PG/IEC/14/2014-15 dated 07.11.2014

3.1.5. Informed consent

All the patients enrolled in the study were explained about the purpose of the study in their own language and a written informed consent was taken as given in annexure II.

3.2. Selection criteria

3.2.1. Inclusion criteria

Patients of both gender aged above 30 years, diagnosed as type 2 diabetes mellitus by clinicians according to American Diabetes Association (ADA) guidelines and

Patients diagnosed as diabetic nephropathy by clinicians.

3.2.2. Exclusion criteria

1. Type 1 diabetes mellitus
2. Patients with severe complications of diabetes mellitus other than nephropathy
3. Pregnant women
4. Patients with history of – acute febrile illness, current episode of urinary tract infection, pyelonephritis, urinary tract obstruction, congestive heart failure or acute coronary syndrome
5. Patients with gout & patients on anti-inflammatory drug or allopurinol
6. History of kidney transplant
7. Albuminuria documented due to causes that are other than diabetes

3.3. Methodology

Patients attending medicine and nephrology departments were examined.

 Patients satisfying inclusion & exclusion criteria were included in the study

4. Results

The study includes total of 150 patients, studied in 3 groups. Group I- 50, age & sex matched healthy controls; group II-50, diabetic patients without any complications and group III- 50, diabetic nephropathy patients.

The mean age of subjects in 3 groups - control, DM & DN were 40.5 ± 10.9 years, 51.46 ± 11.3 years & 51.9 ± 8.38 years respectively as shown in Table 1.

Table 1: Mean Age in Study groups

Particulars	Control	DM	DN
Age (in yrs.)	40.5 ± 10.9	51.46 ± 11.3	51.9 ± 8.38

The age group of all study subjects ranged from 25 to 70 years & majority of study subjects were in the age groups of 41-50 years as shown below in Table 2.

Table 2: Age Distribution in Study groups

Age (yrs.)	Control	DM	DN	Percentage
25-30	11	2	-	2%
31-40	15	11	5	12%
41-50	17	18	17	34%
51-60	6	8	18	30%
61-70	1	11	10	22%
Total	50	50	50	100%

Table 3: Mean Duration of diabetes in study groups

Duration of Diabetes (years)	DM	DN	P value
0-5	3.58 ± 0.02	10.14 ± 0.04	0.0001
5-10	3.13	3.07	

The age of patients with diabetes was between 25 to 70 years, and majority of the study subjects were in the age group of 41-50 years as shown in Table 2.
Based on the duration of diabetes, the subjects in DM group were divided as shown in Table 4.

Duration of DM (years)	No of patients in DM group
< 1	3
1-2	9
2-3	13
3-4	10
4-5	8
5-10	4
10-15	3
Total	50

The subjects in DN group were studied according to the duration of diabetes as shown in Table 5. Many of the study subjects included in this group were of 10-13 years of diabetes.

Duration of DM (years)	DN group
< 5	1
5-8	8
8-10	11
10-13	17
13-15	13
Total	50

The study subjects of 2 groups (DM & DN) were compared based on duration of diabetes, which is shown below; as the duration of diabetes increases the incidence of nephropathy also increased as shown in Table 6.

Duration of DM (yrs.)	DM group	DN group
1-3	25	-
3-5	18	1
5-8	2	8
8-10	2	11
10-13	3	17
13-15	-	13
Total	50	50

The study subjects in DN group was distributed based on the duration of nephropathy as shown in Table 7 which showed majority of patients included in the study were suffering from nephropathy since 1-2 years.

Duration of nephropathy (years)	No of patients
<1	6
1-2	22
2-3	15
3-4	4
4-5	1
5-6	2

The mean plasma fibrinogen level in control group was 190.34 ± 72.83 mg/dl. The mean plasma fibrinogen levels in DM & DN groups were 522.76 ± 115.79 mg/dl & 657.64 ± 124.61 mg/dl respectively as shown in Table 8. There was statistically significant increase of fibrinogen levels in DM & DN groups with a p value of 0.0001.

P. Fibrinogen (mg/dl)	Controls	DM	DN
190.34 ± 72.83	522.76*	657.64†	

Statistical significance * p<0.0001 compared to controls; †p<0.0001 compared to DM group.

The mean HbA1c level in control group was 5.95 ± 0.29%. The mean HbA1c levels in DM & DN groups were 7.60 ± 0.51% & 7.83 ± 0.48% respectively. HbA1c level was increased in DM & DN groups when compared to controls with a p value of 0.0001. There was only a slight increase of HbA1c levels in DN group when compared to DM group as shown in Table 9. P value between groups was statistically significant.

FBS (mg/dl)	Controls	DM	DN
71.94 ± 15.6	123.38*	178.3†	

Statistical significance * p<0.0001 compared to controls; †p<0.0001 compared to DM patients.
Table 10: HbA1c levels in study groups

	Controls	DM	DN
HbA1c (%)	5.95 ± 0.29	7.60 ± 0.51*	7.83 ± 0.48†

Statistical significance * p<0.0001 compared to controls; †p<0.05 compared to DM patients.

The mean Blood Urea level in control group was 21.48 ± 4.89 mg/dl. The mean B Urea levels in DM & DN groups were 34.04 ± 10.91 mg/dl & 75.86 ± 31.24 mg/dl respectively as shown in Table 14. The mean Serum Creatinine levels of control, DM & DN groups were 0.82 ± 0.22mg/dl, 1.20 ± 0.21mg/dl & 5.39 ± 2.42mg/dl respectively as shown in the table no 11. Blood Urea & Serum Creatinine levels were increased in DM group & DN group when compared to control group with further increase in DN group.

Table 11: Blood Urea & Serum Creatinine levels in study groups

	Controls	DM	DN
B Urea (mg/dl)	21.48 ± 4.89	34.04 ± 10.91*	75.86 ± 31.24*†
S Creatinine (mg/dl)	0.82 ± 0.22	1.20 ± 0.21*	5.39 ± 2.42*†

Statistical significance * p<0.0001 compared to controls; †p<0.0001 compared to DM patients

SA & fibrinogen levels were correlated with levels of FBS, HBA1c, LDL, HDL, TC, Blood Urea, serum creatinine, TC/HDL, LDL/HDL, eGFR & Urine A/C ratio in DM &DN group as shown in Table 14.

Blood Urea & serum creatinine had positive correlation coefficients of 0.04 & 0.11 in DM group and 0.31 (p value = 0.02) & 0.35 (p value = 0.01) in DN group respectively. Thus both parameters had linear correlation in DN group with fibrinogen as shown in Figure 6.

Atherogenic ratios- TC/HDL & LDL/HDL when correlated with fibrinogen had positive correlation with r values of 0.11 & 0.3 in DM group & 0.21 (p value = 0.05) & 0.5 (p value = 0.0002) in DN group respectively as shown in Figure 8.

Correlation coefficient between fibrinogen & eGFR was -0.25 & -0.2 (p value =0.05) in DM & DN groups respectively as shown in Figure 10. Thus eGFR was negatively correlated with fibrinogen.

Urine A/C ratio had positive correlation with fibrinogen with r value of 0.33 & 0.48 (p value =0.0004) in DM & DN.
Table 12: Mean, standard deviation (SD) of all the parameters

S. No	Assay parameters	Controls Mean	SD	DM Mean	SD	DN Mean	SD
1.	Plasma Fibrinogen	190.34	72.83	522.76	115.79	657.05	131.50
2.	FBS	71.94	15.66	123.38	44.36	174.75	65.83
3.	HbA1c	5.954	0.29	7.606	0.512	7.86	0.49
4.	TC	101	20.13	192.46	49.57	231.525	53.19
5.	Triglyceride	121.78	17.16	194.64	25.95	249.38	86.92
6.	LDL	56.36	28.41	110.86	28.21	128.275	34.03
7.	HDL	30.2	4.90	24.48	3.97	19.675	2.99
8.	Blood Urea	21.48	4.89	34.04	10.917	77	32.03
9.	Serum Creatinine	0.82	0.22	1.204	0.210	5.63	2.53
10.	TC/HDL	3.41	0.85	8.03	2.404	12.01	3.18
11.	LDL/HDL	1.94	1.106	4.63	1.421	5.28	1.35
12.	eGFR	111.36	38.81	62.20	14.83	13.52	7.26
13.	Urine A/C ratio	0.072	0.060	0.12	0.072	0.42	0.16

Table 13: P values of all parameters between groups

	Control & DM	C & DN	DM & DN
Sialic acid	0.0001	0.0001	0.0463
Fibrinogen	0.0001	0.0001	0.0001
FBS	0.0001	0.0001	0.0001
HbA1c	0.0001	0.0001	0.0179
TC	0.0001	0.0001	0.0005
Triglyceride	0.0001	0.001	0.0004
LDL	0.0001	0.0001	0.0094
HDL	0.0001	0.0001	0.0001
B Urea	0.0001	0.0001	0.0001
S Creat	0.0001	0.0001	0.0001
TC/HDL	0.0001	0.0001	0.0001
LDL/HDL	0.0001	0.0001	0.0293
eGFR	0.0001	0.0001	0.0001
U A/C ratio	0.0004	0.0001	0.0001

Table 14: Correlation coefficients of fibrinogen levels with other risk factors in DM & DN

Risk factors	Correlation coefficient (r) of Fibrinogen	
	DM	DN
FBS	0.2	0.2
HbA1c	0.41	0.5
TC	0.1	0.3
Triglyceride	0.40	0.5
LDL	0.1	0.24
HDL	-0.1	-0.23
B Urea	0.04	0.31
S Creatinine	0.11	0.35
TC/HDL	0.11	0.21
LDL/HDL	0.3	0.5
eGFR	-0.25	-0.2
Urine A/C ratio	0.33	0.48

Pearson’s correlation (r) between SA & FBS levels in DM & DN groups were 0.04 & 0.24 (p value = 0.05) respectively, thus had a positive correlation. There was also positive correlation between SA & HbA1c with r values of 0.35 for DM & 0.38 for DN (p value = 0.006).
The mean plasma fibrinogen level in control group was 190.34 ± 72.83 mg/dl. The mean plasma fibrinogen levels in DM & DN groups were 522.76 ± 115.79 mg/dl & 657.64 ± 124.61 mg/dl respectively. In our study, fibrinogen levels were increased significantly in DM group compared to controls which was further increased in DN group which is in accordance to study done by Venkataramana G et al., Laurell et al., Alper et al. Hence above studies interpret that fibrinogen increases in diabetes with complications. Our findings were also similar to studies done by Killingsworth et al, Ganda et al, Collier et al, Schmidtz et al & Eraslan M et al. The cause of increased fibrinogen production in type 2 DM are insulin resistance, hyperglucagonemia acting as stimulators.
of fibrinogen production in the liver, and possibly, also a subclinical inflammatory state. Thus diabetic patients should be followed up with fibrinogen levels to prevent complications like diabetic nephropathy.

The mean FBS levels of control, DM & DN groups were 71.94 ± 15.6 mg/dl, 123.38 ± 44.36 mg/dl & 178.3 ± 66.57 mg/dl respectively. FBS levels were increased in DM group & DN group when compared to control group which was statistically significant.

The mean HbA1c level in control group was 5.95 ± 0.29%. The mean HbA1c levels in DM & DN groups were 7.60 ± 0.51% & 7.83 ± 0.48% respectively. HbA1c level was increased in DM & DN groups when compared to controls with a (p= 0.0001) which was statistically significant. There was only a slight increase of HbA1c levels in DN group when compared to DM group.

We also observed that plasma fibrinogen concentrations were significantly increased and positively co-related with several known risk factors, notably FBS, glycolytic control (HbA1c), lipid profile, Blood urea, Serum creatinine & UAC whereas negatively correlated with HDL & eGFR in DM & DN groups. At present microalbuminuria is considered as the earliest marker for DN. In our study fibrinogen correlated positively with UAC. These findings strengthen the hypothesis that an increase in circulating inflammatory biomarkers like fibrinogen levels are early manifestation of diabetic renal disease. Hence, plasma fibrinogen levels could be used for early diagnosis of DN. The results of our study were in accordance with recent studies with biomarkers like fibrinogen levels are early manifestation of diabetic renal disease. Hence, plasma fibrinogen levels could be used as early biomarkers for the diagnosis of DN.

6. Summary
The present study consists of total 150 patients, studied in 3 groups, group I- 50 were age & sex matched healthy controls, group II- 50 were diabetic patients and group III- 50 were diabetic nephropathy patients. The aim of the study was to fibrinogenin type 2 DM, DN patients and healthy controls, to correlate fibrinogen levels with FBS, HbA1c, Lipid profile, Blood Urea, Serum Creatinine, eGFR and urine A/C ratio in type 2 DM and DN patients and to find out whether fibrinogen can be used as markers for the early diagnosis of DN. The mean plasma fibrinogen level in control group was 190.34 ± 72.83 mg/dl. The mean plasma fibrinogen levels in DM & DN groups were 522.76 ± 115.79 mg/dl & 657.64 ± 124.61 mg/dl respectively. There was progressive statistically significant increase of fibrinogen levels in DM & DN groups with a p value of 0.0001. Correlation coefficient between fibrinogen & eGFR was -0.25 & -0.2 in DM & DN groups respectively. Thus eGFR was negatively correlated with fibrinogen. Urine A/C ratio had positive correlation with fibrinogen with a r value of 0.33 & 0.48 in DM & DN groups respectively.

7. Source of Funding
No financial support was received for the work within this manuscript.

8. Conflict of Interest
The authors declare that they have no conflict of interest.

References
1. Mogensen CE. Microalbuminuria Predicts Clinical Proteinuria and Early Mortality in Maturity-Onset Diabetes. N Engl J Med. 1984;310(6):356–60. doi:10.1056/nejm198402093100605
2. Meigs JB, Mittleman MA, Nathan DM, Tofler GH, Singer DE, Murphy-Sheehy PM, et al. Hyperinsulinemia, Hyperglycemia, and Impaired Hemostasis. JAMA. 2000;283(2):221–8. doi:10.1001/jama.2000.2832.2.221
3. Duncan BB, Schmidt MI, Offenbacher S, Wu KK, Savage PJ, Heiss G, et al. Factor VIII and other hemostasis variables are related to incident diabetes in adults. The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care. 1999;22:767–72. doi:10.2337/diacare.22.5.767
4. Johan-Vague I, Alessi MC, Vague P. Thrombogenic and Fibrinolytic Factors and Cardiovascular Risk in Non-insulin-dependent Diabetes Mellitus. Ann Med. 1996;28(4):371–80. doi:10.3109/07853899608999095
5. Kahn SE, Zinman B, Haffner SM, O’Neill MC, Kravitz BG, Yu D, et al. Obesity Is a Major Determinant of the Association of C-Reactive Protein Levels and the Metabolic Syndrome in Type 2 Diabetes. Diabet Med. 2006;55(8):2357–64. doi:10.1111/j.1464-5491.2006.01717.x
6. Suchitra M, Sheshu M, Bitala AR, Rao MA, Alok S. Atherogenic dyslipidemia in diabetic nephropathy: lipoprotein (a), lipid ratios and atherogenic index. Int J Res Med Sci. 2013;1(4):455–9. doi:10.5455/2320-6012.ijrms2013112
7. Festa A, D’agostino R, Howard G, Mykkänen L, Tracy RP, Haffner SM, et al. Inflammation and microalbuminuria in nondiabetic and type 2 diabetic subjects: The Insulin Resistance Atherosclerosis Study. Kidney Int. 2000;58(4):1703–10. doi:10.1046/j.1523-1755.2000.00331.x

8. Venkataramana G, Indira P, Rao DVM. Changes of Plasma Total proteins, Albumin and Fibrinogen in Type 2 Diabetes mellitus- A Pilot study. Indian J Basic Appl Med Res. 2013;7(2):679–85.

9. Laurell CB. Electrophoresis, Specific Protein Assays, or Both in Measurement of Plasma Proteins? Clin Chem. 1973;19(1):99–102. doi:10.1093/clinchem/19.1.99

10. Alper CA. Plasma Protein Measurements as a Diagnostic Aid. N Engl J Med. 1974;291(6):287–90. doi:10.1056/nejm197408082910606

11. Killingsworth LM. A report format for serum proteins. Clin Chem. 1978;24(4):728–9. doi:10.1093/clinchem/24.4.728

12. Ganda OP, Arkin CF. Hyperfibrinogenemia: An important risk factor for vascular complications in diabetes. Diabetes Care. 1992;15(10):1245–50. doi:10.2337/diacare.15.10.1245

13. Collier A, Rumley A, Rumley AG. Free radical activity and hemostatic factors in NIDDM patients with and without microalbuminuria. Diabetes. 1992;41:909–13.

14. Schmitz A, Ingerslev J. Haemostatic Measures in Type 2 Diabetic Patients with Microalbuminuria. Diabetic Med. 1990;7(6):521–5. doi:10.1111/j.1464-5491.1990.tb01435.x

15. Eraslan M, Yenice O, Kazokoglu H, Yavuz DG, Cerman E, Celiker H, et al. Increased serum sialic acid in diabetic retinopathy of type 1 diabetes. Guoji Yanke Zazhi (Int Eye Sci). 2013;13(10):1950–2.

Author biography

Ayyali Ambresh, Assistant Professor

Shilpa A, Assistant Professor

Cite this article: Ambresh A, Shilpa A. Assessment of plasma fibrinogen as a marker of diabetic nephropathy. IP Indian J Neurosci 2021;7(1):44-51.