EFFICACY OF ORGANOPHOSPHORUS DERIVATIVES CONTAINING CHALCONES/CHALCONE SEMICARBAZONES AGAINST FUNGAL PATHOGENS OF SUGARCANE

S.K. Sengupta*, O.P. Pandey¹, G.P. Rao² and Priyanka Singh¹

¹ Department of Chemistry, DDU Gorakhpur University; Gorakhpur-273009, India
² Sugar Cane Research station, Kunraghat, Gorakhpur 273008, India

ABSTRACT
Ten newly synthesized organophosphorus derivatives containing substituted chalcones and substituted chalcone semicarbazones were tested for their antifungal efficacy against Colletotrichum falcatum, Fusarium oxysporum, Curvularia pallescens (all sugarcane pathogens). The O,O-diethylphosphate derivatives containing 2-chlorochalcone and 2-chlorochalcone semicarbazone exhibited 70-85% mycelial inhibition against all the test fungi at 1000 ppm. The screening results were correlated with structural features of the tested compounds.

INTRODUCTION
Sugarcane is an important cash crop in many tropical and sub-tropical countries and is one of main sources of sugar production in the world. The crop is highly susceptible to various fungi, bacteria, viruses mycoplasma like organisms and other diseases due to which the yield is greatly reduced1,2. Because of their economic importance sugarcane diseases have been studied in great depth from various angles3.

Table I. Physical and Analytical Data of the Organophosphorus Derivatives

Cpd	Yield (%)	Colour	Decomp. Temp. (°C)	Mol. Formula	Analysis: % Found (Calcd.)			
					C	H	N	Cl
I	55	Olive green	110	C9H22O5P	66.3 (66.5)	6.0 (6.1)	-	-
II	62	Yellow brown	105	C9H22O5P	66.2 (66.5)	6.0 (6.1)	-	-
III	51	Dark brown	110	C9H22O6P	63.2 (63.5)	5.6 (5.8)	-	-
IV	57	Dark yellow	70	C10H21O2ClP	60.4 (60.5)	5.1 (5.3)	-	-
V	60	Light brown	47	C20H32O6P	53.8 (54.0)	5.0 (5.1)	-	-
VI	58	Dark brown	Semi solid	C20H23O2N3P	57.9 (58.0)	5.6 (5.8)	9.9 (10.0)	-
VII	55	Olive green	80	C20H25O3N3P	57.8 (58.0)	5.6 (5.8)	9.7 (10.0)	-
VIII	59	Dark brown	110	C24H33O6N3P2	55.4 (55.6)	5.4 (5.6)	9.6 (9.7)	-
IX	55	Yellow	95	C20H24O5N3ClP	53.2 (53.3)	5.0 (5.1)	9.1 (9.3)	7.7 (7.8)
X	60	Dark brown	Semi solid	C21H25O6N3P	56.4 (53.3)	5.7 (5.8)	9.3 (9.4)	-
A number of synthetic organic compounds viz., dithiocarbamates, carbamates, organochlorine, organomercurial, thio carbamates and hydrazides are now known to be useful in the control of various fungal diseases in plants. Currently we are engaged in synthesizing novel organophosphorus derivatives, which could constitute a new and promising field of application in the national economy. It was realized that on the basis of suitable logic, organic molecules incorporating phosphorus might be designed such that they may be less dangerous in use without losing thesis value as effective pesticides. The present study was therefore undertaken to evaluate the antifungal efficacy of some newly synthesized organophosphorus compounds against various important fungal pathogens of sugarcane.

Table II. IR Spectral Data (cm⁻¹) of Organophosphorus Derivatives

Compound	v (C=O)	v (C=N)	v (P-O-C)	v (P=O)
I	1685 s	-	1035 m	1290 m
II	1665 s	-	1035 m	1290 m
III	1670 s	-	1025 m	1280 m
IV	1675 s	-	1030 m	1275 m
V	1680 s	-	1030 m	1265 m
VI	1700 s	1525 s	1020 m	1270 s
VII	1670 s	1485 s	1025 m	1275 s
VIII	1680 s	1475 s	1025 m	1270 s
IX	1700 s	1510 s	1015 m	1275 s
X	1685 s	1500 s	1020 m	1265 s

EXPERIMENTAL

The reactions of O,O-diethylchlorophosphate were carried out under inert atmosphere and anhydrous conditions. Special precaution were taken to exclude moisture from the apparatus and chemicals as the starting materials (O,O-diethylchlorophosphate) and reactions were susceptible to hydrolysis. Glass apparatus with interchangeable joints were used throughout the work. The solvents were purified and dried using the method described in the literature. O,O–diethylchlorophosphate was prepared according to the reported method. Chalcones/ chalcone semicarbazones were prepared as described. All reactions were carried out in the hood. A hood is a specially constructed workplace that has, at the least, a powered went to suck noxious fumes outside. The details of analysis and physical measurements were the same as reported earlier.

For antifungal activity all the compounds were tested against all the test fungi by the food poison technique at three concentrations (10, 100, 1000 ppm). For this the desired amount of chemical was dissolved in 0.5 cm³ of solvent and mixed with the culture medium on the basis of the volume of medium in each petriplate (80-mm diameter). Oat meal agar medium was used for all test fungi. In controls, the same amount of medium containing the requisite amount of solvent was poured in place of test chemicals. A mycelial disk (5-mm diameter) obtained from the periphery of 2 week old cultures was taken and transferred to the center of each petriplate. Plates were incubated for 7 days at 28 ± 2°C. Each treatment was repeated three times and the inhibition was a recorded relative to percent mycelial inhibition calculated using the formula:

\[
\frac{(dC-dT)}{dC} \times 100
\]

where dC is the average diameter of the mycelial colony of the control and dT is the average diameter of the mycelial colony of the treatment.

Synthesis of Organophosphorus derivatives

A mixture of O,O-diethyl chlorophosphate (10 mmol) and the substituted chalcone / semicarbazones of substituted chalcones (10 mmol) were refluxed in ethyl alcohol (40 cm³) in presence of pyridine (5 cm³) for about 30- 40 hours. The reaction mixture was cooled and poured in ice. The precipitate, thus obtained, was filtered off. The compound was recrystallised from ethanol.
Scheme 1: Synthetic route of O,O-diethylphosphate derivative containing 2-hydroxy chalcone

Scheme 2: Synthetic route of O,O-diethyl phosphate derivative containing 2'-hydroxy chalcone
S.K. Sengupta et al.

Efficacy of Organophosphorus derivatives Containing Chalcones/Chalcone Semicarbazones against Fungal Pathogens of Sugarcane

Scheme 3: Synthetic route of O,O-diethylphosphate derivative containing 2,2'-dihydroxy chalcone

Scheme 4: Synthetic route of O,O-diethyl phosphate derivative containing 2-chloro-2'-hydroxy chalcone
RESULTS AND DISCUSSION
The reactions of O,O-diethylchlorphosphate with substituted chalcones, derived by the condensation of 2-hydroxybenzaldehyde and acetophenone; benzaldehyde and 2-hydroxybenzaldehyde; 2-hydroxybenzaldehyde and 2-hydroxyacetophenone; 2-chlorobenzaldehyde and 2-hydroxybenzaldehyde or 3-methoxybenzaldehyde and 2-hydroxyacetophenone, have been carried out in ethanol in the presence of pyridine and a variety of organophosphorus derivatives (types I - V) have been isolated according to Schemes 1 - 5.

Table III. 1HNMR (δ, ppm) Data of Organophosphorus Derivatives

Cpd	-CH = CH -	CH$_3$	C$_2$H$_5$	- NH	-NH$_2$
I	6.82 (d), 5.75 (d)	-	2.75 (t), 3.38 (q)	-	-
II	6.95 (d), 5.88 (d)	-	2.60 (t), 3.00 (q)	-	-
III	7.00 (d), 5.82 (d)	-	2.80 (t), 3.40 (q)	-	-
IV	6.85 (d), 5.90 (d)	-	2.65 (t), 3.26 (q)	-	-
V	6.80 (d), 5.86 (d)	1.95 (s)	2.72 (t), 3.35 (q)	-	-
VI	4.60 (d), 5.35 (d)	-	2.45 (t), 3.28 (q)	5.40 (s)	6.45 (s)
VII	4.75 (d), 5.55 (d)	-	2.55 (t), 3.30 (q)	5.48 (s)	6.40 (s)
VIII	4.65 (d), 5.00 (d)	-	2.60 (t), 3.10 (q)	5.45 (s)	6.48 (s)
IX	4.72 (d), 5.48 (d)	-	2.50 (t), 3.25 (q)	5.50 (s)	6.38 (s)
X	4.70 (d), 5.28 (d)	1.96 (s)	2.58 (t), 3.15 (q)	5.42 (s)	6.50 (s)

The reactions of O,O-diethylchlorphosphate with semicarbazones of substituted chalcones derived by the condensation of 2-hydroxybenzalacetophenone / benzal -2'- hydroxyacetophenone / 2,2'-dihydroxybenzalacetophenone / 2-chlorobenzal 2'-hydroxyacetophenone / 3-methoxybenzal-2'-hydroxyacetophenone and semicarbazide have been carried out in ethanol in the presence of pyridine and a variety of organophosphorus derivatives (types VI - X) have been isolated according to Schemes 6 - 10.

The analytical data and physical properties of all organophosphorus derivatives are given in Table-I. The methods used for the preparation and isolation of these compounds give materials of good purity as supported by their analysis and TLC. The spectral (IR, 1H NMR) data are given in Tables 2 and 3.

Anti fungal activity
Results of the antifungal assay of the organophosphorus derivatives are summarized in Table 4. The compounds were screened for their antifungal properties against Colletotrichum falcum, Fusarium oxysporum, and Curvularia pallescens (all parasitic on sugarcane). Organophosphorus derivatives containing substituted chalcones showed promising results in inhibiting the mycelial growth of all the test fungi. The derivatives containing 2-chlorobenzal-2'-hydroxyacetophenone (IV) showed inhibition upto 84% for C. falcum and 80.2% for F. oxysporum at 1000 ppm concentration. Other derivatives showed inhibition 55.1 to 80.3% against all test fungi at 1000 ppm concentration.

The derivatives containing semicarbazones of substituted chalcones were found to be less active than substituted chalcones.
Table 4. Fungitoxic Screening Data of Organophosphorus Derivatives

Compound	Percent Mycelial Inhibition	Compound Dose (ppm)
	Colletotrichum falcatum	Fusarium oxysporum
I	40.18 58.6 78.0 31.5 44.2 68.1 30.5 44.7 65.2	
II	28.6 35.6 80.1 20.0 43.2 70.3 11.6 33.3 55.1	
III	34.5 60.8 80.3 30.3 50.9 75.6 47.2 51.8 69.8	
IV	27.6 50.4 84.0 33.3 60.6 80.2 21.7 45.9 74.2	
V	25.3 40.6 80.1 22.1 50.2 78.3 12.7 50.2 68.6	
VI	18.8 40.9 71.2 10.6 37.8 59.2 12.1 30.3 55.1	
VII	10.7 48.2 68.1 16.7 44.3 60.6 15.0 39.8 50.3	
VIII	22.8 45.2 72.1 20.1 41.3 64.2 20.2 40.3 61.2	
IX	25.5 49.7 73.0 22.4 46.0 62.1 15.6 39.8 62.0	
X	18.7 34.6 63.4 18.2 26.2 63.8 13.2 22.2 57.7	

Scheme 5: Synthetic route of O,O-diethyl phosphate derivative containing 3-methoxybenzal-2′-hydroxyacetophenone (MBAH)
Scheme 6: Synthetic route of O,O-diethyl phosphate derivative containing 2-hydroxy chalcone semicarbazone.

Scheme 7: Synthetic route of O,O-diethyl phosphate derivative containing 2'-hydroxy chalcone semicarbazone.
Scheme 8: Synthetic route of O,O-diethyl phosphate derivative containing 2,2'-dihydroxy chalcone semicarbazone.

Scheme 9: Synthetic route of O,O-diethyl phosphate derivative containing 2-chloro-2'-hydroxy chalcone semicarbazone.
The best activity was recorded with O,O-diethylchlorophosphatederivative containing 2-chlorobenzal-2'-hydroxyacetophenonesemicarbazone (IX). This compound showed activity upto 73.0% against *C. falcatus* at 1000 ppm concentration.

Comparing the antifungal activity of different compounds can derive the following conclusions.

(a) There were significant alteration in the antifungal activity with the change in the nature of organic group attached to O,O-diethylchlorophosphatemoiety.

(b) For any particular species of fungus, organophosphorus derivatives containing substituted chalcones were found to be more effective than its semicarbozone derivatives.

(c) For any particular series of organic compounds, the compounds containing chloro group in the chalcone ring show better activity.

(d) The activity decreases of dilution.

These results indicate that studies on organophosphorus derivations could be promising as fungicides and constitute a new and promising field of application in disease and pest management.

Acknowledgement
One of the authors (OPP) is thankful to UGC, New Delhi for financial assistance.

References
1. C. Recaud, B.T. Eagan, A.G. Gillaspie, C.G. Hughes, Diseases of Sugarcane: Major Diseases, Elsevier, Amsterdam, p. 399 (1989).
2. V.P. Agnihotri and A.K. Srivastava, Current Trends in sugarcane Pathology, International Books & Periodicals Supply Service, Delhi, p. 235 (1994).
3. V.P. Agnihotri, Diseases of Sugarcane and Sugarbeet, Oxford & IBH, New Delhi, p 4 (1990).
4. G.P. Rao, P. Kumar, M. Singh, H.N. Singh, O.P. Pandey, Sugarcane, 17 (1994).
5. G.S. Gruzdyaeve, V.A. Zichenko, V.A. Kalinin, R.I. Slovtsov. "The chemical protection of plants," Mir, Moscow, 1983.
6. K. Chaturvedi, O.P. Pandey and S.K. Sengupta, *Synth. React. Inorg. Met.-org. Chem.*, 24, 1487 (1994).
7. K. Chaturvedi, S.K. Srivastava, O.P. Pandey and S.K. Sengupta, *Synth React. Inorg. Met.-org. Chem.*, 25, 1191 (1995).
8. K. Chaturvedi, A.K. Jaiswal, O.P. Pandey and S.K. Sengupta, *Synth React. Inorg. Met.-org Chem.*, 26, 1581 (1995).
9. A.K. Jaiswal, G.P. Rao, O.P. Pandey and S.K. Sengupta, *J. Agric. Food Chem.*, 46, 1609 (1998).
10. K. Chaturvedi, A.K. Jaiswal, K.N. Mishra, O.P. Pandey and S.K. Sengupta, *A.C.H. Models in Chem.*, 135, 93 (1998).
11. S.K. Sengupta, O.P. Pandey, G.P. Rao, S.P. Shahi and A.K. Jaiswal, *Sugarcane*, 4, 17 (1998).
12. A.I. Vogel, *A Text Books of practical organic Analysis*, 3rd Ed Longmans, London, 1956.
13. K. Chaturvedi, Ph.D. Thesis, University of Gorakhpur, 1993.
14. A.I. Vogel, *A Text Books of Practical organic chemistry*, 4th Edn., (Longmans ; London), 1978.
15. R.K. Grover and J.D. Moore, *Phytopathology*, 52, 876 (1962).