A Proteomic Analysis of Grain Yield Related Traits in Wheat
Sintayehu D. Daba¹, Xiaoqin Liu¹, Uma Aryal², and Mohsen Mohammadi*¹

¹Purdue University, Department of Agronomy, 915 W State St, West Lafayette, IN 47907
²Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, 1203 W. State St., West Lafayette, IN 47907

*Corresponding author
Mohsen Mohammadi, Assistant Professor
Department of Agronomy, Purdue University
Phone: (765)496-6885
Email: mohamm20@purdue.edu
Abstract

Grain yield, which is mainly contributed by tillering capacity as well as kernel number and weight, is the most important trait to plant breeders and agronomists. Label-free quantitative proteomics was used to analyze yield-contributing organs in wheat. These were leaf sample, tiller initiation, spike initiation, ovary, and three successive kernel development stages at five, ten, and fifteen days after anthesis. We identified 3,182 proteins across all samples. The largest number was obtained for spike initiation (1673), while the smallest was kernel sample at fifteen days after anthesis (709). Of the 3,182 proteins, 296 of them were common to all seven organs. Organ-specific proteins ranged from 148 in ovary to 561 in spike initiation. When relative protein abundances were compared to that of leaf sample, 347 and 519 proteins were identified as differentially abundant in tiller initiation and spike initiation, respectively. When compared with ovary, 81, 35, and 96 proteins were identified as differentially abundant in kernels sampled at five, ten, and fifteen days after anthesis, respectively. Our study indicated that two argonaute proteins were solely expressed in spike initiation. Of the four expansin proteins detected, three of them were mainly expressed during the first 10 days of kernel development after anthesis. We also detected cell wall invertases and sucrose and starch synthases mainly during the kernel development period. The manipulation of these proteins could lead to increases in tillers, kernels per spike, or final grain weight, and is worth exploring in future studies.

Keywords: Label-free quantitative proteomics, yield-contributing organs, differentially abundant proteins, unique and shared proteins
1. Introduction

Wheat contributes to nearly one-fifth of the total dietary calories and protein worldwide (Shiferaw et al., 2010; Reynolds et al., 2012). European Union, China, India, and the US are responsible for 60% of the global production (Hawkesford et al., 2013). Genetic gains, defined as yield increases per unit time, has recently slowed down to less than 1% per annum (Reynolds et al., 2012), while the consumption of cereals has increased worldwide (Shiferaw et al., 2010). For example, in China, wheat consumption increased from 19 million tons in 1962 to 123 million tons in 2012 - a six-fold increase in half a century (Curtis and Halford, 2014). Therefore, it is important to identify the barriers and accelerate the genetic gains in wheat and other cereals.

Tiller number is a major agronomic trait in cereal crops affecting plant architecture and grain yield (Xu et al., 2017), which influences grain number (GN) per unit area (Sreenivasulu and Schnurbusch, 2012). Final grain yield is the product of GN per unit area and kernel weight (KW) (Sreenivasulu and Schnurbusch, 2012). The GN, in combination with the size of grains makes the total sink size (or sink-strength). The limitation in sink-strength is already a well-known bottleneck in modern wheat production (Calderini et al., 2006; Reynolds et al., 2012; Serrago et al., 2013). Yield improvements in the past have generally resulted from increases in GN rather than increases in KW. Understanding the physiology and genetics of sink strength is essential to design high-yielding crosses that could successfully enhance GN, mainly by increasing the number of grains per spike dry matter (Ferrante et al., 2012), while maintaining, if not increasing, the contribution of KW in improving yield (Sadras and Lawson, 2007; Pask and Reynolds, 2013; Aisawi et al., 2015).

Evidences provided by Miralles and Slafer (1995) and Acreche and Slafer (2006) suggests that the undesirable correlation between major yield components may not be due to a competition between growing grains. Experimental data showed simultaneous increases of GN and KW in the progeny of a cross between two CIMMYT lines with exceptional yield potential (Bustos-Korts et al., 2013; García et al., 2013). This cross produced grain yield of up to 16 t ha⁻¹ in 3-4% of the breeding progeny in exceptionally favorable environments (Bustos-Korts et al., 2013). This means that the undesirable correlation between the two major yield components may not represent any competition between growing grains after anthesis (Acreche and Slafer, 2006; Miralles
and Slafer, 1995). Therefore, identification of genes that control GN and KW may provide opportunities to improve grain yield.

Grain number is the result of tiller number and number of grains per spike. Several genes were shown to be linked to tiller number and grain number or grain yield. This includes low tillering (tin) and TEOSINTE BRANCHED1 (TB1) ortholog in wheat (Xu et al., 2017; Sreenivasulu and Schnurbusch, 2012; Dixon et al., 2018); unculum (vrsI) and INT-C in barley (Li et al., 2003; Komatsuda et al., 2007; Ramsay et al., 2011; Hussien et al., 2014); MONOCULM (MOC1) in rice (Li et al., 2003; Hussien et al., 2014); TEOSINTE BRANCHED 1 in maize (Doebley et al., 1997); and multiseed (MSD) mutant in sorghum (Jiao et al., 2018).

The development of reproductive growth involves spikelet formation and spike elongation. Identification of genes that derive inflorescence architecture can help improve our understanding and potentially help identify natural variants and their uses in wheat breeding. For example, Schilling et al. (2018) extensively discussed the importance of MADS-box genes for reproductive development. In general, the MADS-box genes are key regulators of flowering time, inflorescence architecture, floral organ identity, and seed development.

Omic methods are valuable tools to identify genes and proteins that are differentially expressed/abundant in different organs, during different growth stages, and under different environmental conditions. In wheat, proteomics approaches are used in a variety of research such as grain development processes, spatiotemporal expression mapping, and disease responses (Zhang et al., 2015; Yang et al., 2016a; Yang et al., 2016b; Duncan et al., 2017; Yang et al., 2017). A recent large-scale proteome map of wheat, reporting on 24 organs and developmental samples was published by Duncan et al. (2017), representing a wide range of spatial and temporal organs, without regard to source and sink specificity. Their work aimed at dissecting total proteome and correlation of transcript and protein data for different wheat tissues. Given the large and hexaploid nature of the wheat genome (Appels et al., 2018), the task of unbiased and accurate identification of proteins based on masses is challenging. Majority of earlier wheat proteomics studies, Duncan et al. (2017) for example, did not use the recent reference genome assembly IWGSC v1.0 (Appels et al., 2018). In addition to the IWGSC v1.0 assembly, advances in mass spectrometry-based proteomics technique now provide an unprecedented opportunity for accurate identification and quantitation of
proteins and assigning them to homologous groups in the wheat genome. We sought to identify proteins that are differentially abundant in different organs that contribute to the development of organs that produce tillers, spikes, and kernels. These traits enhance sink-strength; and are physiologically relevant to the determination of grain yield. We conducted this study by employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

2. Materials and Methods

2.1. Plant growth condition

We obtained seed for accession "PI 495816 Cranbrook" from the National Small Grain Collection, Aberdeen, Idaho, USA. One hundred seeds of variety "Cranbrook" were germinated on a tray filled with Metro-mix soil (Sun Gro Horticulture Canada Ltd.) in the greenhouse condition, with 25°C day/22°C night ±2°C temperature and 16h/8h day/night photoperiod. Seven days after sowing, each seedling was transplanted into a square pot (10 cm x 10 cm x 15 cm). For nutrients, we used a general-purpose greenhouse 24-8-16 N-P-K Miracle-Gro (ScottsMiracle-Gro), by dissolving 5.3 grams of Miracle-Gro per liter of water. The nutrient solution was applied to the plants, starting from three-leaf stage, at a rate of 100 cm²/pot, twice a week.

2.2. Experimental design and sample collection

This study was designed to identify proteins associated with the following traits: the total number of grains by means of tillering and grains per spike, and the growth of the developing kernels. Therefore, the experimental design consisted of collecting three biological replicates of organs that are involved in these traits. Each biological replicate consisted of organs collected from three independent plants. We collected seven tissue samples. Leaf sample (LS) was taken at the seedling stage, when the first leaf was fully expanded and the second leaf just emerging (Fig. 1A). For leaf sample (LS), we cut a 3 cm segment from the fully developed leaf. Tiller initiation (TI) was taken at tillering stage (Fig. 1B). Tiller initiation for Cranbrook occurred in our greenhouse when plants were in the three-leaf stage. At this stage, we removed the plant gently from the soil and sampled the budding tiller by excising it from the main stem using a sharp cutter (Fig.
The third sample, spike initiation (SI), was taken during the formation of terminal spikelet after a double-ridge stage in the inflorescence structure. Approximately 4-5 weeks after emergence, when plants were at tillering and before stem elongation, the leaves were gently removed from the plant and the very tip of the terminal meristem was excised by using a laboratory blade cutter under binocular. Ovary (OV) samples were taken before anthesis. The kernel development (KD) samples were taken successively at 5, 10, and 15 days after anthesis, named 5DAA, 10DAA, and 15DAA. The kernel samples at each time point were first collected in polystyrene weighing dish floated in liquid nitrogen. After enough kernels were collected, the samples were wrapped in aluminum foil, and then flash frozen in liquid nitrogen. For all the other samples, we wrapped the samples immediately in aluminum foil and flash frozen in liquid nitrogen. All the sampled tissues were kept in deep freezer until processed in the proteomics facility. No other standards or internal references were used in this study.

In this study, we also monitored accumulation of dry matter in the developing kernels. Unlike the proteomics experiment where three time points were studied, we sampled developing kernels at five developmental stages 5DAA, 10DAA, 15DAA, 20DAA, and 25DAA. At each time-point, three spikes were sampled, kernels from each spike were harvested separately, counted, and weighed to obtain fresh weights (Wf). Then, we oven-dried the developing kernels for 24 hours at 60°C and measured the dry weight (Wd). The averages of Wd and Wf per single kernel was expressed in milligram (mg). The difference between the Wf and Wd, expressed as percentage, was used as a measure of moisture content.

2.3. Protein extraction and LC-MS sample preparation

Biological samples were homogenized in 400 µL of 20 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM EDTA, 5% glycerol, and 0.5 mM DTT (dithiothreitol) using Precellys ® 24 Bead Mill Homogenizer (Berti) at 4487g for 30 s cycles. The tissue lysates were centrifuged at 20,817 g for 15 min at 4°C, and the supernatant was transferred to new tubes. The insoluble pellet fractions were solubilized in 400 µL of 8M urea, and were incubated at room temperature for one hour with continuous mixing. Then, the solution was centrifuged at 20,817g for 15 min at 4°C to remove any undissolved pellets and cell debris. Proteins both in soluble and insoluble fractions were precipitated using five volumes (v/v) of cold (-20°C) acetone and incubated overnight at -20°C. Precipitated...
proteins were pelleted by centrifugation at 20,817 g for 15 min at 4°C. Protein pellets were washed once with 80% cold (-20°C) acetone and re-dissolved in 8 M urea. The bicinchoninic acid (BCA) assay was used to determine protein concentration in each sample with BSA as a standard (Kapoor et al., 2009).

About 50 µg protein from each sample was reduced by incubating with 10 mM dithiothreitol (DTT) at 37°C for 45 min, and cysteine alkylated with 20 mM iodoacetamide (IAA) in the dark for 45 min at room temperature. Then, the solution was incubated in 5 mM DTT for 20 min at 37°C to scavenge residual IAA. Proteins were digested using sequencing-grade trypsin and Lys-C mix from Promega at a 1:25 (w/w) enzyme-to-protein ratio and 37°C temperature overnight. The digested peptides were cleaned using C18 silica micro spin columns from The Nest Group Inc. using the manufacturer’s protocol. Peptides were eluted using 80% acetonitrile containing 0.1% formic acid (FA). The samples were vacuum dried and re-suspended in 3% acetonitrile and 0.1% formic acid. Peptide concentration was determined by BCA assay using BSA as standard. The concentration of peptides was adjusted to 0.2 µg/µL, soluble and insoluble samples were mixed, and 5 µL (1 µg total peptide) was used for LC-MS/MS analysis as described below.

2.4. LC-MS/MS data acquisition

Samples were analyzed by reverse-phase LC-ESI-MS/MS system using the Dionex UltiMate 3000 RSLC nano System coupled with the Q Exactive High Field (HF) Hybrid Quadrupole Orbitrap MS (Thermo Fisher Scientific). Peptides were loaded onto a trap column (300 µm ID × 5 mm) packed with 5 µm 100 Å PepMap C18 medium, and then separated on a reverse phase column (15-cm long × 75 µm ID) packed with 3 µm 100 Å PepMap C18 silica (Thermo Fisher Scientific). All the MS measurements were performed in the positive ion mode and using 120 min LC gradient. Mobile phase solvent A was 0.1% formic acid (FA) in water and solvent B was 0.1% FA in 80% acetonitrile. Peptides were loaded to the trap column in 100% buffer A for 5-min at 5 µL/min flow rate, and eluted with a linear 80-min gradient of 5-30% of buffer B, then changing to 45% of B at 91 min, 100% of B at 93-min at which point the gradient was held for 7 min before reverting to 95% of A at 100-min. Peptides were separated from the analytical column at a flow rate of 300 nL/min. The column temperature was maintained at 50°C. The mass spectrometer was operated using standard data-
dependent mode. MS data were acquired with a Top20 data-dependent MS/MS scan method. The full scan MS spectra were collected in the 300-1,650 m/z range with a maximum injection time of 30 milliseconds, a resolution of 120,000 at 200 m/z, spray voltage of 2 and AGC target of 1×10^6. Three biological samples were analyzed for each organ. Fragmentation of precursor ions was performed by high-energy C-trap dissociation (HCD) with the normalized collision energy of 27 eV. The MS/MS scans were acquired at a resolution of 15,000 at m/z 200 with an ion-target value of 1×10^5 and a maximum injection of 60 milliseconds. The dynamic exclusion was set at 30 s to avoid repeated scanning of identical peptides. The instrument was calibrated at the start of each batch run and then in every 72 hours using a calibration mix solution (Thermo Scientific). The performance of the instrument was also evaluated routinely using E. coli digest.

2.5. Data Analysis

All LC-MS/MS data were analyzed using MaxQuant software (v. 1.6.0.16) 17-19 with built-in Andromeda search engine. We searched the MS/MS spectra against wheat (*Triticum aestivum*) IWGSC v 1.0 genome assembly, which was recently published by Apples et al. (2018), and is publicly available at (https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.1/).

The IWGSC v1.0 assembly contains 107,891 high-confidence genes. The database search was completed by considering the minimum amino acid length of six, a precursor mass tolerance of 10 ppm, and a MS/MS fragment ions tolerance of 20 ppm. Database search was performed with enzyme specificity for trypsin and Lys-C, allowing up to two missed cleavages. Oxidation of methionine (M) was defined as a variable modification, and carbamidomethylation of cysteine (C) was defined as a fixed modification for database searches. The ‘unique plus razor peptides’ were used for peptide quantitation. The false discovery rate (FDR) of both peptides spectral match (PSM) and proteins identification was set at 0.01. Proteins labeled either as contaminants or reverse hits were removed from the analysis. Similarly, proteins identified without any quantifiable peak (0 intensity) and those identified by a single MS/MS count were also removed from downstream analyses. We only kept proteins that were detected in at least two biological replicates. We also consider proteins with MS/MS counts > 4 for further downstream analyses.
For downstream analysis, we used the InfernoRDN (formerly known as DanTE) bioinformatics software (Polpitiya et al., 2008) to produce a correlation heat map and 3D-plot of the first three principal components. To highlight the number of unique or general proteins across different samples, we drew Venn diagrams using the InteractiVenn (Heberle et al., 2015) online tool. For quantitative abundance analysis, we used two-layer criteria. First, we compared mean abundance values, in log2 scale, by using t-test and screened proteins with adjusted p-value < 0.01. Then, further screened proteins that differed in abundance level by log2 fold change > 3. These criteria allowed identifying differentially abundant proteins (DAPs). To functionally group proteins, we used the Cluster of Orthologous Groups of protein database (COGs, http://www.ncbi.nlm.nih.gov/COG). We also used AgriGO (bioinfo.cau.edu.cn/agriGo/) and wheat Ensembl BLAST (plants.ensembl.org/Triticum_aestivum/Info/index) to make further functional characterization.

3. Results

3.1. Overview of the experiment

Within the framework of yield formation (Fig. 2), it is useful to uncover sets of genes and proteins that are functional for the development of these organs. For example, it is important to know which genes and proteins are involved in the initiation and development of tillers in wheat seedlings. To identify these genes, we analyzed wheat organs by using a quantitative proteomics approach. Seven plant organs were sampled (Fig. 1) including LS, TI, SI, OV, 5DAA, 10DAA, and 15DAA. We hypothesized that TI represents enrichment for proteins that are abundant (and therefore the closest approximation of) tiller formation. The SI sample provides enrichment for proteins involved in spike initiation and determination of the number of kernels per spike. The OV and the subsequent three kernel development samples (5DAA, 10DAA, and 15DAA) provide enrichment of proteins that are abundant during kernel formation and progression towards developmental stages, and, therefore, critical for determination of kernel size and weight. Based on this rationale, we studied these yield forming organs via label-free LC-MS/MS based proteome quantification according to schematic
proteomic workflow presented in Fig. 3 to identify and quantify the intensity of proteins for each sample.

3.2. **Protein identification across different organs**

A total of 15,244 peptides were identified across all samples by LC-MS/MS analysis (Supplemental Table TS1). After filtering, 3,182 proteins were retained and used for downstream analyses (Supplemental Table TS2). The raw MS/MS data were uploaded to MASSIVE Data Repository (https://massive.ucsd.edu/), and is accessible under accession MSV000083833. The largest number of expressed proteins were encoded by genes located on sub-genome D (n=1550), as per IWGSC v1.0, followed by n = 793 proteins were encoded by genes located on sub-genome B, and, finally, n = 776 proteins by the genes located on sub-genome A. For example, 272 of the proteins were encoded by genes located on chromosome 2D while 95 proteins were encoded by genes located on chromosome 6A. We also identified 63 proteins that matched to the genes on IWGSC v1.0 but not yet associated to any of the chromosomes, and so, are unmapped.

Principal component analysis (PCA) was performed to summarize LFQ measurements into a three-dimensional space (Fig. 4). We applied PCA to all proteins that were quantified in each organ sample. The first PC, which accounted for 44% of variation, created three groups. The first group, on the far left, had only one organ and which was LS. The second group on the far right included OV, SI, and TI. The middle group included the three stages of kernel development i.e., 5DAA, 10DAA, and 15DAA. The second PC, accounting for 18.7% of variation, grouped the organs almost in the same patterns. However, the third PC, which accounted for 11.5% of variation, mainly separated the SI (on the bottom across the PC3 axis, Fig. 4) from OV and TI (on the top, across the PC3 axis). Altogether, all 3 components accounted for 74.3% of the total variation. In addition, the close clustering of the three biological replicates of each organ together, revealed by PC analysis (Fig. 4), indicated the LC-MS/MS analysis and peptide quantification were largely reproducible, which is a prerequisite for accurate label-free protein quantitation.
3.3. **Unique and shared proteins across different organs**

Two Venn diagrams (Fig. 5A and 5B) represent the shared proteins in all organs and the unique proteins identified in each organ. The list of genes and their corresponding proteins in each of the sampled tissues were given in Supplemental information (TS3). The lowest number of proteins were identified in 15DAA sample (n = 709) and the highest number of proteins were identified in SI sample (n = 1673). For simplicity, data for all three stages of kernel development (5, 10, and 15DAA) were pooled together and reflected in the first Venn diagram, which represents five groups (Fig. 5A). In total, 296 shared proteins were identified across all these samples. The sample with the greatest number of unique proteins was SI (n = 561). In contrast, OV showed the lowest number (n = 148) of unique proteins. A total of 529 proteins were shared by 5DAA, 10DAA, and 15DAA (Fig. 5B). The 5DAA sample had the greatest number (n = 530) of unique proteins and the 10DAA had the lowest number (n = 50) of unique proteins.

In TI, a total of 231 proteins were uniquely identified, which were enriched for glutathione-S-transferase, lipid transfer proteins, heat shock proteins, defensins, ferredoxin, actin-related proteins, peroxidases, histones, proteasomes, and ribosomal proteins. The unique proteins of the SI sample (n = 561) were enriched for RNA processing, ubiquitin-like proteins, heat shock proteins and other transcription factors, as well as several cell division associated proteins such as mitotic checkpoint protein, mitotic-spindle organizing protein, and sister chromatid cohesion protein. Similarly, unique proteins in 5DAA were enriched for carbohydrate degrading enzymes and cell division related proteins such as starch synthase and branching, expansins, defensins, protease inhibitors, subtilisin-like proteins, peroxidases, gibberellin-regulated protein, actin-like proteins, and DELLA protein. The 10DAA unique proteins included acid phosphatase, invertase, storage proteins, and a *TERMINAL FLOWER 1*-like protein. The 15DAA unique proteins were considerably enriched with storage proteins and, to a lesser extent, with xylanase inhibitors, lipid transfer proteins, thaumatin-like proteins, vicilin-like proteins, and defensins. Interestingly, one sucrose synthase protein, grain softness proteins, dimeric alpha-amylase inhibitors, and desiccation-related proteins were also exclusively expressed in kernels sampled at 15DAA.
3.4. Quantitative proteome expression and organ comparisons

Expression profiles in TI and SI (as compared with LS). We compared TI with LS by using a t-test to identify DAPs. There were 200 differentially abundant proteins (DAPs) with increased abundance and 147 DAPs with decreased abundance in the TI compared to the LS (Table 1, Supplemental Table TS4). Proteins related to translation, ribosomal structure and biogenesis; amino acid transport and metabolism; posttranslational modification; and chromatin structure and dynamics were higher and those related to chaperone and heat shock proteins, electron transport, lipid biosynthesis, energy production and conversion; and carbohydrate transport and metabolism were relatively lower in TI compared to LS.

Similarly, we compared SI with LS by using t-test to identify DAPs, where we identified 313 DAPs with enhanced abundance and 206 DAPs with decreased abundance in the SI compared to the LS (Table 1, TS4). The majority of the proteins with enhanced abundance in SI were grouped as translation, posttranslational modification, amino acid transport and metabolism, chromatin structure and dynamics, carbohydrate transport and metabolism, and energy production and conversion.

Considerable grain size increase occurred until 10DAA. To understand the pattern of kernel development, we measured fresh and dry weights of the grains taken at five developmental stages (5DAA, 10DAA, 15DAA, 20DAA, and 25DAA). Both fresh and dry weights increased consistently (Fig. 6). The dry weight increased by 3.5-fold between 5DAA and 25DAA. The moisture content dropped sharply, particularly beyond 10DAA. Interestingly, the size of the grain also remained constant beyond 10DAA. These results could imply that, in the variety tested (Cranbrook), the first 10 days after anthesis was the period of a significant increase in grain size.

Expression profiles in 5DAA, 10DAA, and 15DAA (as compared with OV). For the comparison of protein expression levels during kernel development stages, we compared each stage with OV sample, with the same two-step criteria for identifying DAPs. At 5DAA, a total of 81 DAPs were identified (TS4), of which 57 DAPs showed enhanced abundance levels and 24 DAPs showed decreased abundance levels than the OV (Table 1). About 53% (30 proteins) of DAPs with enhanced abundance in 5DAA were grouped as amino acid transport and metabolism, carbohydrate transport and metabolism, and energy production and conversion. Approximately 41% of the DAPs with decreased abundance in 5DAA were involved in translation and
transcription. At 10DAA, a total of 35 DAPs were identified (Table 1, TS4), of which 17 DAPs showed enhanced abundance than OV while 18 DAPs showed decreased abundance than OV. About 67% of DAPs with enhanced abundance in 10DAA were involved in carbohydrate transport and metabolism, posttranslational modification, protein turnover, chaperones, and amino acid transport and metabolism. Approximately 60% of the DAPs with decreased abundance in 10DAA were involved in transcription, carbohydrate transport and metabolism, translation, inorganic ion transport and metabolism, and defense mechanisms. In total, 96 DAPs were identified in kernels sampled at 15DAA compared to OV (Table 1, TS4), of which 67 DAPs showed enhanced abundance levels while 29 DAPs exhibited decreased abundance levels. Approximately 76% of DAPs with enhanced abundance than OV in 15DAA were functionally grouped as storage proteins such as glutenin, globulins, and gliadins; and carbohydrate transport and metabolism such as beta-amylase and alpha-amylase inhibitors. The DAPs with decreased abundance in 15DAA compared to OV were involved in translation, ribosomal structure and biogenesis; energy production and conversion; chromatin structure and dynamics; and transcription. Proteins unique to 5, 10 and 15DAA samples were involved in carbohydrate metabolic process, nutrient reservoir activity, cellulose activity, cell wall organization, and fatty acid biosynthesis.

4. Discussion

Grain yield depends in part on proteins that function in organ biogenesis, development of tillers, spikes, and kernels, carbohydrate metabolism, and nutrient storage. Expression of genes can be evaluated via transcriptome studies. Proteome analysis can be studied via two-dimensional gel electrophoresis as well as shotgun proteomics approaches. Previous proteomic studies were carried out before the publication of wheat genome assembly (Jiao et al., 2018), and mostly relied on published genomes of closely related species. Therefore, none those studies could be matched with the exact homoeologous genes among the three wheat sub-genomes.

Duncan et al (2017) presented the most comprehensive wheat proteomics study to this date. They completed a proteomics search on 24 organs. However, their effort was without regard to any specific phenotypic goal. For example, they produced a large specio-developmental proteomic map, which showed what proteins were expressed in which organ. In contrast, our study targeted organs that are specifically related to grain
number and kernel weight. Our organ sampling strategy is different from theirs because of inclusion of tillering site and inflorescence initiation site in our study and a continuum spectrum of kernel development from ovary to later stages of kernel development (e.g., 15DAA). Secondly, for MS/MS search, Duncan et al (2017) used a protein database containing the protein sequences from the IWGSC1.0 + popseq PGSB/MIPS (Mayer et al., 2014; Chapman et al., 2015) version 2.2 annotation. We used the IWGSC v1.0 wheat genome assembly published in 2018 (Appels et al., 2018), which is the complete assembly. Lastly, Duncan et al., (2017) used label free spectral counts for protein quantification but spectral count based proteomics is semi-quantitative. It has long been established that protein quantification using MS1 intensity greatly enhances quantitative accuracy and dynamic range compared to spectral counts (Bondarenko et al., 2002). For this reason, in this study, we used label-free MS1 intensity-based quantitative proteomics. We discuss these identified proteins under three categories of organ biogenesis, carbohydrate metabolism, and storage proteins. Similar to other studies that are conducted in controlled environment, this data may not be predictive of proteomic responses under natural field conditions. The non-homogenous nature of field, and interaction of the microclimate by unsynchronized growth stages of plants can all be potential cause for the lack of transferability results to field conditions. However, our study provided insight into specific proteins and their corresponding encoding genes. These genes, after a thorough study, could be incorporated in elite breeding lines that will be tested for their effect in the actual field condition.

4.1. Organ biogenesis

A proliferating cell nuclear antigen (PCNA), TraesCS2D01G361800, on chromosome 2D, was identified with nearly 11-fold and 19-fold higher abundance in TI and SI tissues than in LS, respectively. PCNA and TEOSINTE BRANCHED1 (TB1) are members of TCP transcription factor family (Li, 2015). While increased expression of TB1 restricts the outgrowth of axillary buds into lateral branches in maize and wheat (Doebley et al., 1997; Lewis et al., 2008), members of PCNA were shown to promote cell proliferation and organ growth in rice (Oryza sativa) (Li, 2015). Unlike TB1, PCNA acts as a positive regulator of tiller initiation. Therefore, we predict that overexpression of this gene could result in increases in final tiller number in wheat. We identified two
Argonaute proteins, TraesCS1D01G453600 and TraesCSU01G065300, that were solely expressed in SI sample, and not detected in other samples. Argonaute proteins were shown to play a variety of roles in plant development. As loss of function of the B sub-genome ARGONAUTE1d homoeologous was shown to produce shorter spikes and fewer grains per spike than wild-type controls (Feng et al., 2017). Other roles suggested for Argonaute proteins are seed development and grain size and width. For example, AGO802 was shown (Singh et al., 2013) to play an important role in seed development, and preferentially expressed in wheat embryos. The OsAGO17 was shown to positively regulate grain size and weight in rice (Jun et al., 2019).

We also identified four expansin-related genes, three of which i.e., TraesCS4D01G323800, TraesCS1D01G215400, and TraesCS4B01G3271000, were mainly expressed during kernel development, particularly in the first 10 days after anthesis. Expansins are important proteins for cell wall loosening and cell enlargement (Cosgrove, 2000; Lin et al., 2005; Marowa et al., 2016). Lizana et al. (2010) observed that TaExpA6 accumulates in the early grain development period, implying their role in determination of grain size in wheat. Castillo et al. (2018) have shown that expansins are involved in the extension of grain tissue, and their expression is associated with the grain size of sunflower.

Our study identified several proteins present during kernel development and ovary. For example, a cell wall invertase encoded by TraesCS2A01G295400 was found to be highly expressed at early kernel development stage. Invertases, that cleave sucrose into two monosaccharides, mainly appear in two isoforms of vacuolar (acid invertases) and extracellular (cell wall invertases) in plants. Invertases were shown to have a role in the control of cell differentiation and plant development (Silva and Ricardo, 1992; Sturm, 1999). For example, in a study on water-soluble carbohydrate and remobilization to the grains, significant difference of acid invertase activity was reported between wild and cultivated wheats (Yadhu et al., 2015). Functional analyses have shown that the rice GRAIN INCOMPLETE FILLING 1 gene encodes a cell-wall invertase which has a role in carbon partitioning during early grain-filling (Wang et al., 2008). Wang and Ruan (2012) also proposed the involvement of cell-wall invertase in early grain filling period in cotton. Several other studies have reported the importance of cell-wall invertase in kernel development in different cereal crops such as maize (Chourey et al., 2006), wheat (Ma et al., 2012), barley (Weschke et al., 2003), and rice...
(Wang et al., 2008; Hirose et al., 2002). While our finding is not a new discovery, the exact identification of the sub-genome-specific copy of the invertases identified in this study, along with the availability of complete genomic sequences, will allow future functional analyses in wheat.

4.2. Carbohydrate metabolism

The last step of kernel growth, after cell division and extension, is starch deposition, and the amount of starch synthesis and deposition is critical to kernel development and size (Edurne et al., 2003). Sucrose is the main transportable carbohydrate into non-photosynthetic organs. The products of sucrose breakdown are crucial for starch biosynthesis in the amyloplast of the sink organ (Edurne et al., 2003). Sucrose that is destined for sink organs is either cleaved by sucrose synthase to yield UDP-glucose and fructose, or by invertase to yield glucose and fructose (Spielbauer et al., 2006). Sucrose synthase is a key enzyme in plant sucrose catabolism that enables sucrose mobilization into multiple pathways involved in metabolic, structural, and storage functions (Subbaiah et al., 2007). Previously, Subbaiah et al. (2007) isolated three orthologues of Sucrose Synthase 2 (TaSus2) and mapped them to the wheat chromosomes 2A, 2B, and 2D. We identified concerted co-expression of sucrose synthase and starch synthase during kernel development. The sucrose synthases encoded by two wheat genes on chromosomes 2A and 2B (Jiang et al., 2011) were at higher abundance during three-kernel development than during ovary development, with the highest abundance observed at 15DAA.

Grain endosperm is composed of starch that is synthesized and accumulated during grain-filling period (Dupont and Altenbach, 2003; Ma et al., 2014; Huang et al., 2016). A strong relationship was observed between starch biosynthesis and grain yield in wheat and maize (Irshad et al., 2019). The activity of starch synthase was shown to be the highest at 10 to 20 DAA (Fahy et al., 2018), and that starch accumulation rates are correlated with the activities of key enzymes (Jiang et al., 2003; Emes et al., 2003). Our study identified the expression of several starch synthase enzymes during kernel development. The expression of sucrose and starch synthesis genes were studied in several other crops such as rice, maize, and barley (Spielbauer et al., 2006; Hirose et al.,...
2008; Liu et al., 2008; Barrero-Sicilia et al., 2011). For future follow up studies, we suggest collecting more biological tissues that allow analysis of starch and other soluble carbohydrates in order to correlate protein expression with starch accumulation.

The starch synthase enzymes synthesize starch that is needed for grain development and growth, and, finally, yield (Parry et al., 2011). While starch synthase synthesizes starch by mobilizing products of sucrose metabolism to sink organs, amylases reverse these reactions to degrade starch and provide energy to growing embryos during and after germination. Interestingly, concurrent with expression of starch synthases, we identified several members of the α-amylase and β-amylase protein families.

There are three possible explanations for this co-expression of starch synthases and amylases. The first possible explanation is that the activity of amylases may require posttranslational modification such as phosphorylation and thus protein abundance alone is not sufficient for degradation activity. Perhaps phosphorylation only takes place during germination and not during kernel development. One experimental evidence supporting this explanation is that, Dong et al. (2015), using two-dimensional differential gel electrophoresis, found that β-amylase was phosphorylated in germinating wheat seeds. The second explanation is that starch synthases and amylases may be expressed in tissues that are spatially different and hence do not act antagonistically. Barrero et al. (2013) reported that α-amylase is synthesized by the scutellum and adjacent aleurone, while starch synthase is expressed in endosperm cells. The third explanation is that it has been shown that α-amylase activity increased again during germination to levels much higher than those detected during kernel development (Thévenot et al., 1992). Therefore, it is possible that starch degradation requires enzyme activities much higher than the levels observed during kernel development. Therefore, accumulation of amylases during kernel development, by itself, may not be sufficient to drive starch degradation.
4.3. Storage proteins

Mature wheat grains contain 8–20% protein (Dupont and Altenbach, 2003). One group of these proteins i.e., puroindolines are responsible for kernel hardness (Giroux et al., 1997; Giroux and Morris, 1998). Hard grain phenotype results in courser flour with greater abundance of damaged starch granules and their interaction with lipid-binding proteins on the surface of starch granules (Glenn et al., 1991; Giroux et al., 1997; Bhave and Morris, 2008), resulting in absorption of more water compared to grains with soft endosperm (Matus-Cadiz et al., 2008). One aspect of kernel growth and development is the grain texture. For example, the degree of softness or hardness of the endosperm in wheat is controlled by puroindoline a (Pina-D1), and puroindoline b (Pinb-D1), which are both located at the Ha locus (Bhave and Morris, 2008; Lillemo et al., 2006) on the distal end of the short arm of chromosome 5D. In addition to puroindoline genes, Grain Softness Protein (GSP) is located on Ha locus. However, to date, strong evidence is lacking for its contribution to kernel hardness phenotype. Our study revealed expression of puroindoline and grain softness proteins during kernel development.

In addition to texture-related proteins, albumins, globulins, gliadins, and glutenins are major protein components of kernels (Dwivedi et al., 2013). Majority of proteins identified during 15DAA are related to storage proteins such as glutenins, gliadins, and globulins. For example, this study identified increasing trends of expression of 26 gliadins, 12 globulins, 8 avenins, and 12 high and low molecular weight glutenins towards later stages (10 DAA and 15 DAA) of kernel development. Albumins and globulins of wheat endosperm represent about 25% of total grain proteins (Merlino et al., 2009). The dough-making quality of wheat grains is associated with glutenin and gliadin composition and properties (Huebbner and Wall, 1976; Bottomley et al., 1982). During dough development, glutenin and gliadin for for gluten network, which determine the viscoelastic property of the dough (Sharma et al., 2020). Glutenin properties control dough resistance and extensibility (Eagles et al., 2006), and gluten elasticity and extensibility have significant influence on dough viscoelasticity (Belderok, 2000) and bread-making quality of wheat (Nieto-Talasriz et al., 1994). Gluten consists of high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) (Lindsay et al., 2000). Prolamins are also divided into two
classes of monomeric gliadins and polymeric glutenins including both LMW and HMW proteins. These gradually accumulating storage proteins provide necessary nutrients for seed germination and seedling growth, and are the main nutritional components of grains consumed by humans or other animals.

5. Conclusion

The current study discovered organ specific expressions of many important wheat proteins that may contribute to tiller and spike formation as well as kernel development. The data resources of this study may be used to support future analysis of selected genes or proteins and determine how they are linked to grain yield. Future trials should follow-up with validations on the putative candidate genes for their precise effect on plant development processes such as tillering, spike formation, and kernel development that are important to grain yield. The data will be a valuable resource for future studies on wheat systems biology and integrated, and enhancing agronomically important traits in wheat breeding programs.
Abbreviations
BCA = bicinchoninic acid
BSA = bovine serum albumin
DAA = days after anthesis
DAPs = differentially abundant proteins
DTT = dithiothreitol
EDTA = Ethylene diamine tetraacetic acid
FA = formic acid
FDR = false discovery rate
GN = grain number
HCD = high-energy C-trap dissociation
HMW-GS = high molecular weight glutenin subunit
IAA = iodoacetamide
KD = kernel development
KW = kernel weight
LMW-GS = low molecular weight glutenin subunit
LC-MS/MS = liquid chromatography-tandem mass spectrometry
LS = leaf sample
LFQ = Label Free Quantitation
OV = ovary sample
PCA = principal component analysis
PSM = peptide spectral match
SI = spike initiation
TI = tiller initiation
Wd = dry weight
Wf = wet weight

Online Data Repository. The raw MS/MS data was submitted to MASSIVE Data Repository (https://massive.ucsd.edu/), and can be accessible under accession number MSV000083833.
Contributions by the authors. MM and SD conceived the experimental design. SD executed the greenhouse work and prepared tissues. UA conducted proteomics experiments, completed database searches, and produced table of protein identifications and quantifications. SD and MM performed statistical analysis of proteomics data. SD, UA, and MM wrote the manuscript.

Conflict of Interest statement. The authors have no conflict of interest.

5. Acknowledgement
The corresponding author is thankful for financial support from USDA Hatch grant 1013073 provided via Purdue College of Agriculture. The authors are thankful to Dr. Cankui Zhang for critical reading of the manuscript.
References

Acreche M, Slafer GA. 2006, Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crops Res 98:52-59.

Aisawi K, Reynolds M., Singh R., and Foulkes M. 2015. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci 55:1749–1764.

Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, et al. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403). doi.org/10.1126/science.aar7191.

Barrero J, Mrva K, Talbot M, White R, Taylor J, Gubler F, Mares D. 2013. Genetic, hormonal, and physiological analysis of late maturity α-Amylase in wheat. Plant Physiology DOI: https://doi.org/10.1104/pp.112.209502

Barrero-Sicilia C, Hernando-Amado S, González-Melendi P, Carbonero P. 2011. Structure, Expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta 234 (2): 391–403.

Belderok B. 2000. Developments in bread-making processes. 4. Survey of gluten proteins and wheat starches. Plant Foods for Human Nutrition 55: 30-39.

Bhave M, Morris CF. 2008. Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Molecular Biology 66(3): 205–219.

Bondarenko PV, Dirk C, Thomas AS. 2002. Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase Liquid Chromatography−Tandem Mass Spectrometry. Anal. Chem. 74(18):4741-4749.

Bottomley RC, Kearns HF, Schofield JD. 1982. Characterization of wheat flour and gluten proteins using buffers containing sodium dodecyl sulphate. Journal of the Science of Food and Agriculture 33: 4481-4491.
Bustos-Korts D, Hasan A, Reynolds M, and Calderini D. 2013. Combining high grain number and weight through a DH-population to improve grain yield potential of wheat in high-yielding environments. Field Crop Res 145:106–115.

Calderini, D., Reynolds M, Slafer GA. 2006. Source–sink effects on grain weight of bread wheat, durum wheat, and triticale at different locations. Australian Journal of Agricultural Research 57, 227–233.

Castillo FM, Canales J, Claude A, Calderini DF. 2018. Expansin genes expression in growing ovaries and grains of sunflower are tissue-specific and associate with final grain weight. BMC Plant Biol. 18(1):327. doi: 10.1186/s12870-018-1535-7.

Chapman JA, Mascher M, Buluç A, Barry K, Georganas E, Session A, Strnadova V, Jenkins J, Sehgal S, Olier I, Schmutz J, Yelick KA, Scholz U, Waugh R, Poland JA, Muehlbauer GJ, Stein N, Daniel SR. 2015. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 16 (26). https://doi.org/10.1186/s13059-015-0582-8.

Chourey PS, Jain M, Li QB, Carlson SJ. 2006. Genetic control of cell wall invertases in developing endosperm of maize. Planta 223 (2): 159–167.

Cosgrove DJ. 2000. Loosening of plant cell walls by expansins. Nature 407(6802):321-326.

Curtis T, Halford NG. 2014. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 164(3):354-372.

Dixon LE, Greenwood JR, Bencivenga S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain SM, Boden SA. 2018. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). The Plant Cell 30: 563–581.

Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature 386: 485–488.

Dong K, Zhen S, Cheng Z, Cao H, Ge P, Yan Y. 2015. Proteomic analysis reveals key proteins and phosphoproteins upon seed germination of wheat (Triticum aestivum L.). Frontiers in Plant Science 6(246). DOI: 10.3389/fpls.2015.01017.

Duncan O, Trösch J, Fenske R, Taylor NL, Millar AH. 2017. Resource: Mapping the Triticum aestivum proteome. The Plant Journal 89: 601-616.
Dupont FM, Altenbach SB. 2003. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. Journal of Cereal Science 38 (2): 133–146.

Dwivedi S, Sahrawat K, Upadhyaya H, Ortiz R. 2013. Food, Nutrition and agrobiodiversity under global climate change. Advances in Agronomy 120: 1-128.

Eagles HA, Cane K, Eastwood RF, Hollamby GJ, Kuchel H, Martin PJ, Cornish GB. 2006. Contributions of glutenin and puroindoline genes to grain quality traits in southern Australian wheat breeding programs. Australian Journal of Agricultural Research 57: 179-186.

Edurne BF, Francisco JM, Takayo S, Milagros RL, Takashi A, Javier PR. 2003. Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol. 44:500–509.

Emes MJ, Bowsher CG, Hedley C, Burrell MM, Scrase - Field ESF, Tetlow IJ. 2003. Starch synthesis and carbon partitioning in developing endosperm. Journal of Experimental Botany 54(382): 569–75.

Fahy B, Siddiqui H, David LC, Powers SJ, Borrill P, Uauy C, and Smith AM. 2018. Final grain weight is not limited by the activity of key starch-synthesising enzymes during grain filling in wheat. Journal of Experimental Botany 69(22) 5461–5475.

Feng N, Song G, Guan J, Chen K, Jia M, Huang D, Wu J, Zhang L, Kong X, Geng S, Liu L, Li A, Mao L. 2017. Transcriptome profiling of wheat inflorescence development from spikelet initiation to floral patterning identified stage-specific regulatory genes. Plant Physiology 174(3): 1779–1794.

Ferrante A, Savin R, and Slager G. 2012. Differences in yield physiology between modern, well adapted durum wheat cultivars grown under contrasting conditions. Field Crop Res 136:52–64.

García, G.A., A.K. Hasan, L.E. Puhl, M.P. Reynolds, D.F. Calderini and D.J. Miralles. 2013. Grain yield potential strategies in an elite wheat double-haploid population grown in contrasting environments. Crop Science. 53: 2577–2587.

Giroux M, Morris CF. 1997. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low level of starch-surface friabilin. Theoretical and Applied Genetics 95: 857–864.
Giroux M, Morris CF. 1998. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. PNAS 95: 6262-6266.

Glenn GM, Younce FL, Pitts MJ. 1991. Fundamental physical properties characterizing the hardness of wheat endosperm. J. Cereal Sci. 13: 179–194.

Hawkesford MJ, Araus JL, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry MAJ. 2013. Prospect of doubling global wheat yields. Food and Energy security 2(1): 34-48.

Heberle H, Meirelles GV da Silva FR, Telles GP, Minghim R. 2015. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16:169(1). doi: 10.1186/s12859-015-0611-3.

Hirose T, Scofield GN, Terao T. 2008. An Expression analysis profile for the entire sucrose synthase gene family in rice. Plant Science 174 (5): 534–43.

Hirose T, Takano M, Terao T. 2002. Cell wall invertase in developing rice caryopsis: molecular cloning of OsCIN1 and analysis of its expression in relation to its role in grain filling. Plant and Cell Physiology 43 (4): 452–59.

Huang H, Xie S, Xiao Q, Wei B, Zheng L, Wang Y, Cao Y, Zhang X, Long T, Li Y, Hu Y, Yu G, Liu H, Liu Y, Huang Z, Zhang J, Huang Y. 2016. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Scientific Reports 6: 27590. DOI: 10.1038/srep27590.

Huebner FR, Wall JS. 1976. Fractionation and quantitative differences of glutenin from wheat varieties varying in baking quality. Cereal Chemistry 53: 258-263.

Hussien A, Tavakol E, Horner DS, Muñoz-Amatriain M, Muehlbauer GJ, Rossini L. 2014. Genetics of tillering in rice and barley. The plant genome 7(1). doi: 10.3835/plantgenome2013.10.0032.

Irshad A, Guo H, Zhang S, Gu J, Zhao L, Xie Y, Xiong H, Zhao S, Ding Y, Ma Y, Liu L. 2019. EcoTILLING reveals natural allelic variations in starch synthesis key gene TaSSIV and its haplotypes associated with higher thousand grain weight. Genes (Basel). 10(4). pii: E307. doi: 10.3390/genes10040307.

Jiang D, Cao W, Dai T, Jing Q. 2003. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike.; Plant Growth Regulation “41 (3): 247–57.
Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X. 2011. The wheat (T. Aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits.” functional & integrative genomics 11 (1): 49–61.

Jiao Y, Lee YK, Gladman N, Chopra R, Christensen SA, Regulski M, Burow G, Hayes C, Burke J, Ware D, Xin Z. 2018. MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nature Communications 9: 822. https://www.nature.com/articles/s41467-018-03238-4.

Jun Z, Weijie H, Zhu P, Hui Z, Feng L, Jialing Y. 2019. A putative AGO protein, OsAGO17, positively regulates grain size and grain weight through OsmiR397b in rice. Plant Biotechnology https://doi.org/10.1111/pbi.13256.

Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvit U, Fujimura T, Matsuoka M, Matsumoto T, Yano M. 2007. Six-rowed barley originated from a mutation in a homeodomainleucine zipper I-class homebox gene. Proc. Natl. Acad. Sci. 104: 424-1429.

Kapoor KN, Barry DT, Rees CR, Dodi IA, McArdle SEB, Creaser CS, Bonner PLR. 2009. Estimation of peptide concentration by a modified bicinchoninic acid assay. Analytical Biochemistry. 393(1): 138-140.

Lewis JM, Mackintosh CA, Shin S, Gilding E, Kravchenko S, Baldridge G, Zeyen R, Muehlbauer GJ. 2008. Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development. Plant Cell Rep. 27(7):1217-1225.

Li ., Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J. 2003. Control of tillering in rice. Nature 422, 618-621.

Li S. 2015. The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. Plant Signaling & Behavior 10(7): e1044192.

Lillemo M, Chen F, Xia X, William M, Peña R, Trethowan R, He Z. 2006. Puroindoline grain hardness alleles in CIMMYT bread wheat. Journal of Cereal Science 44: 86 -92.

Lin Z, Ni Z, Zhang Y, Yao Y, Wu H, Sun Q. 2005. Isolation and characterization of 18 genes encoding α- and β-expansins in wheat (Triticum aestivum L.). Molecular Genetics and Genomics 274(5): 548–556.
Lindsay MP, Tamas L, Appels R, Skerritt JH. 2000. Direct evidence that the number and location of cysteine residues affect glutenin polymer structure. Journal of Cereal Science 31: 321-333.

Liu X, Fu J, Gu D, Liu W, Liu T, Peng Y, Wang J, Wang G. 2008. Genome-wide analysis of gene expression profiles during the kernel development of maize (Zea mays L.).” Genomics 91 (4): 378–387.

Lizana XC, Riegel R, Gomez LD, Herrera J, Isla A, McQueen-Mason SJ, Calderini DF. 2010. Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.), Journal of Experimental Botany 61(4): 1147–1157.

Ma C, Zhou J, Chen G, Bian Y, Lv D, Li X. 2014. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development.” BMC Genomics 15. https://doi.org/10.1186/1471-2164-15-1029.

Ma D, Yan J, He Z, Wu L, Xia X. 2012. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding29(1): 43–52.

Marowa P, Ding A, Kong Y. 2016. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Reports 35(5): 949–965.

Matus-Cadiz MA, Pozniak CJ, and Hucl PJ. 2008. Puroindoline allele diversity in Canadian and northern US hard spring wheat varieties differing in kernel hardness. Canadian Journal of Plant Science 88: 873 - 883.

Mayer KF, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, et al., 2014. International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345: 1251788.

Merlino, M, Leroy P, Chambon C, Branlard G. 2009. Mapping and proteomic analysis of albumin and globulin proteins in hexaploid wheat kernels (Triticum aestivum L.). Theor. Appl. Genet. 118(7): 1321–1337.

Miralles DJ, Slauer GA. 1995. Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breeding 114(5):392 – 396.
Nieto-Taladriz MT, Perretant MR, and Rousset M. 1994. Effect of gliadins and HMW and LMW subunits of glutenin on dough properties in the F6 recombinant inbred lines from bread wheat cross. Theoretical and Applied Genetics 88: 81-88.

Parry MA, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu XG, Price GD, Condon AG, Furbank RT. 2011. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot. 62:453–467.

Pask A and Reynolds M. 2013. Breeding for yield potential has increased deep soil water extraction capacity in irrigated wheat. Crop Sci 53: 2090–2104.

Polpitiya AD, Qian WJ, Jaitly N, Petyuk VA, Adkins JN, Camp DG, Anderson GA, Smith RD. 2008. DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics 24(13): 1556-1558.

Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N, Hayes PM, Lundqvist U, Franckowiak JD, Close TJ, Muehlbauer GJ, Waugh R. 2011. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169-172.

Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G. 2012. Achieving yield gains in wheat. Plant, Cell & Environment 35(10): 1799-1823.

Sadras V and Lawson C. 2011. Genetic gain in yield and associated changes in phenotype, trait plasticity and competitive ability of South Australian wheat varieties released between 1958 and 2007. Crop and Pasture Science 62: 533–549.

Schilling S, Pan S, Kennedy A, Melzer R. 2018. MADS-box genes and crop domestication: the jack of all traits. Journal of Experimental Botany 69: 1447–1469.

Serrago AR, Alzueta I, Savin R, Slafer GA. 2013. Understanding grain yield responses to source–sink ratios during grain filling in wheat and barley under contrasting environments. Field Crops Research 150:42-51.

Sharma A, Garg S, Sheikh I, Vyas P, and Dhaliwal H. S. 2020. Effect of Wheat Grain Protein Composition on End-Use Quality. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-019-04222-6.

Shiferaw B, Amale M, Braun HJ, Duveiller E, Reynolds M, Muricho G. 2010. Crops the feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec. 5:291-317.
Silva MP, Ricardo CPP. 1992. β-Fructosidases and in vitro dedifferentiation-redifferentiation of carrot cells. Phytochemistry 31:1507–1511.
Singh M, Singh S, Randhawa H, Singh J. 2013. Polymorphic Homoeolog of Key Gene of RdDM Pathway, ARGONAUTE4_9 class I is associated with pre-harvest sprouting in wheat (Triticum aestivum L.). PLoS ONE 8(10): e77009. https://doi.org/10.1371/journal.pone.0077009.
Spielbauer G, Margl L, Hannah LC, Römisch W, Ettenhuber C, Bacher A, Gierl A, Eisenreich W, Genschel U. 2006. Robustness of central carbohydrate metabolism in developing maize kernels. Phytochemistry 67 (14): 1460–1475.
Sreenivasulu N, Schnurbusch T. 2012. A genetic playground for enhancing grain number in cereals. Trends in Plant Science 17(2): 91-101.
Sturm A. 1999. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiology 121(1): 1–8.
Subbaiah, CC, Huber SC, Sachs MM, Rhoads D. 2007. Sucrose Synthase: Expanding protein function. Plant Signaling & Behavior 2 (1): 28–29.
Thévenot C, Laurière C, Mayer C, Simond-Côte E, Daussant J. 1992. α-Amylase changes during development and germination of maize kernels. Journal of Plant Physiology 140: 61-65.
Wang L, Ruan YL. 2012. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton.” Plant Physiology 160 (2): 777–787.
Wang YQ, Wei XL, Xu HL, Chai CL, Meng K, Zhai HL, Sun AJ, Peng YG, Wu B, Xiao GF, Zhu Z. 2008. Cell wall invertases from rice are differentially expressed in caryopsis during the grain filling stage.” Journal of Integrative Plant Biology 50 (4): 466–474.
Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, Weber H, Wobus U. 2003. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. The Plant Journal 33 (2): 395–411.
Xu T, Bian N, Wen M, Xiao J, Yuan C, Cao A, Zhang S, Wang X. 2017. Characterization of a common wheat (Triticum aestivumL.) high-tillering dwarf mutant. Theoretical and Applied Genetics 130(3): 483–494.
Yadhu S, Anil KG, Achla S, Navtej SB. 2015. Differential response of wild and cultivated wheats to water deficits during grain development: changes in soluble carbohydrates and invertases. Physiology and Molecular Biology of Plants. 21(2): 169–177.

Yang M, Dong J, Zhao W, Gao X. 2016a. Characterization of proteins involved in early stage of wheat grain development by iTRAQ. Journal of Proteomics 136: 157-166.

Yang M, Gao X, Dong J, Gandhi N, Cai H, Von Wettstein DH, Rustgi S, Wen S. 2017. Pattern of protein expression in developing wheat grains identified through proteomic analysis. Front Plant Sci. 8: 962. doi: 10.3389/fpls.2017.00962

Yang Y, Yu Y, Bi W, Kangb Z. 2016b. Quantitative proteomics reveals the defense response of wheat against Puccinia striiformis f. sp. Tritici. Scientific Reports b.6: 34261. doi: 10.1038/srep34261.

Zhang N, Chen F, Huo W, Cui D. 2015. Proteomic analysis of middle and late stages of bread wheat (Triticum aestivum L.) grain development. Front. Plant Sci. 6:735. doi: 10.3389/fpls.2015.00735. eCollection 2015.
List of Figures

Figure 1. Tissues sampled for the proteomics study, namely; (A) leaf, (B) tillering initiation site, (C) terminal spikelet stage, (D) Ovary, (E) 5 days post anthesis (5DAA), (E) 10 days post anthesis (10DAA), (F) 15 days post anthesis (15DAA). The seven target samples were categorized into **Group 1**, representing leaf, tiller initiation site, and the terminal spikelet sample while **Group 2** represents ovary and progressive kernel development stages. For the leaf sample, the first leaf was sampled when the second leaf just emerging.

Figure 2. Hierarchical structure of yield component traits showing number of spikes per unit area (right), number of spikelets per spike (middle), and the number of grains per spikelet (left), altogether representing number of grains per unit area (GN). The weight of each grain known as kernel weight (KW).

Figure 3. Proteomic workflow: Tissues were flash frozen in liquid nitrogen. Proteins were extracted and digested into fragments using a combined action of trypsin and Lys-C mix. The protein fragments were separated using liquid chromatography (LC) and then quantified by mass spectrometry (MS). The MS/MS spectra were searched against the IWGSC v1.0 genome assembly of wheat (*Triticum aestivum*) recently published by Apples et al. (2018). Finally, label-free quantitation values were used in log2 scale for t test comparisons.

Figure 4. The 3D-plot of the first three principal components of the protein intensities of the seven-tissue sampled. LS = Leaf sample, TI = Tiller initiation, SI = Spike initiation, OV = Ovary sample, 5DAA = 5 days after anthesis, 0DAA = 10 days after anthesis, and 15DAA = 15 days after anthesis.
Figure 5. Venn diagrams showing the distribution of common and uniquely abundant proteins across samples. (A) Protein distribution in five groups with kernel development stages combined and (B) Proteins only across the three kernel development stages. LB= Leaf sample , SI = Spike initiation, TI = Tiller initiation, OV = Ovary sample, 5DAA = 5 days after anthesis, 10DAA = 10 days after anthesis, and 15DAA = 15 days after anthesis.

Figure 6. Change in kernel weight and moisture content during kernel development in cultivar "Cranbrook."
Table 1. The number of differentially abundant proteins (DAPs) (significant high and low proteins) in (A) tiller sample and young spike; and (B) kernel development stages. The tiller sample and young spike were compared against leaf sample while the kernel development stages were compared with ovary sample.

	TI vs LS	SI vs LS	OV vs 5DAA	OV vs 10DAA	OV vs 15DAA
Increased abundance	200	313	57	17	67
Decreased abundance	147	206	24	18	29

TI = Tiller initiation, LS = Leaf sample, SI = Spike initiation, OV = Ovary sample, 5DAA = 5 days after anthesis, 10DAA = 10 days after anthesis, and 15DAA = 15 days after anthesis.
Table 2. Gene ID, annotation, number of peptides per protein, protein score, and Label Free Quantitation (LFQ) averages across the three biological replicates of each tissue type. Tissues are leaf blade (LB), tiller initiation (TI), spike initiation (SI), ovary (OV) before anthesis, and three progressive kernel development stages of five, ten, and fifteen days after anthesis, named as 5DAA, 10DAA, and 15DAA. FDR for protein identification was set to 1%.

Gene ID	Annotation	Unique+Raz or peptide counts	Protein score	LB	TI	SI	OV	5DAA	10DAA	15DAA		
TraeCS4A01G4854 00	Acid invertase 1	1	78.09									
TraeCS2B01G3119 00	Cell wall invertase	1	6									
TraeCS2A01G2954 00	Cell wall invertase	12	7969									
TraeCS4D01G3238 00	Expansin-like protein	1	7589									
TraeCS3D01G3986 00	Expansin	2	1501									
TraeCS1D01G2154 00	Expansin protein	5	8271									
TraeCS4B01G3271 00	Expansin-like protein	4	8723									
TraeCS2D01G3618 00	Proliferating cell nuclear antigen	13	2609									
TraeCS4D01G2678 00	Cell division cycle protein 48-like protein	30	9358									
TraeCS5D01G3140 00	Cell division cycle 5-like protein	7	6775									
TraeCS2D01G4887 00	Cell division protein ftsZ	7	7762									
Gene ID	Description	Annotation Set	Annotation Value 1	Annotation Value 2	Annotation Value 3	Annotation Value 4	Annotation Value 5	Annotation Value 6	Annotation Value 7	Annotation Value 8		
-----------------	--	----------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------	--------------------		
TraesCS7B01G2690	Cell division cycle and apoptosis regulator protein 1		2	1617	0	0	0	0	0	0		
TraesCS2D01G2922	Cell division protein ftsZ		3	1	0	0	0	0	78183000	137990000	32470667	
TraesCS1D01G4536	Argonaute		3	5092	0	0	14506000	0	0	0		
TraesCSU01G06530	Argonaute		2	7107	0	0	5056000	0	0	0		
TraesCS2B01G1942	Sucrose synthase		3	1739	0	0	0	0	7	90616000	7	
TraesCS2A01G1682	Sucrose synthase		33	7356	0	9459000	0	7	67	10120100	136377666	
TraesCS7A01G1890	Starch synthase, chloroplastic/amyloplastic		33	9849	0	0	0	0	7	517848000	0	
TraesCS7D01G0643	Starch synthase, chloroplastic/amyloplastic		22	6148	0	0	0	0	0	34691000	583533333	470323333
TraesCS5A01G4645	Alpha-amylase		12	7578	0	0	0	0	0	84514333	753446667	
TraesCS7A01G3839	Alpha-amylase		15	6552	0	0	0	7	0	12197500	0	
TraesCS2A01G2151	Beta-amylase		2	2004	0	0	0	0	71195000	0	543886666	
TraesCS4B01G3935	Beta-amylase		8	7526	0	0	0	0	24626000	516360000	7	
TraesCSU01G03270	Beta-amylase		19	9394	0	0	0	0	10591000	432977000	211423666	
TraesCS7D01G0837	Dimeric alpha-amylase inhibitor		3	2	0	0	0	0	0	31139666	426650000	843550000
TraesCS3B01G1112	Dimeric alpha-amylase inhibitor		6	3125	0	0	0	0	0	10552333	112183333	402793333
TraesCS7B01G0720	Alpha amylase inhibitor protein		1	3223	0	0	0	0	7	653893333	0	3

Downloaded from https://academic.oup.com/aobpla/advance-article/doi/10.1093/aobpla/plaa042/5896540 by guest on 31 August 2020
Accession	Description	Start	Stop	Length	Annotation	Protein Score	Protein Match			
TraesCS7D01G1680	Alpha amylase inhibitor protein						458696666			
TraesCS5D01G0043	Puroindoline-b									
TraesCS5D01G0040	Grain softness protein									
TraesCS5A01G0033	Grain softness protein									
TraesCS5B01G0035	Grain softness protein	117.0								
TraesCS1A01G3175	High molecular weight gluten subunit									
TraesCS1B01G3300	High molecular weight gluten subunit	156.8								
TraesCS1D01G3173	High molecular weight gluten subunit									
TraesCS1A01G0080	High molecular weight gluten subunit	171.9								
TraesCS1B01G0135	Low molecular weight gluten subunit	2848								
TraesCS1D01G0002	Low molecular weight gluten subunit	2087								
TraesCS6A01G0498	Low molecular weight gluten subunit	2612								
TraesCS1A01G0077	Alphagliadin									
TraesCS7D01G0317	Gamma gliadin									
TraesCS1A01G0661	Gliadin-like avenin									
TraesCS1B01G0590	11S globulin seed storage protein	3002								
TraesCS1B01G0590	11S globulin seed storage protein 2	7785								
Accession	Description	ID	1	0	0	0	0	5765667	3	0
-----------	----------------------------------	---------	----	----	----	----	----	---------	---	---
TraesCS1D01G0671	11S globulin seed storage protein	9858	16	0	0	0	0			
TraesCS5A01G4321	Globulin-1	8313	7	0	0	0	0	0		
TraesCS5B01G4341	Globulin-1	6876	3	0	0	0	0	0		
TraesCS5D01G4400	Globulin-1	6635	12	0	0	0	0	0		
Figure 3

Extraction and Digestion

Identification and Label Free Quantitation

Visualization and Inferences

Sample Extraction, Trypsin and Lys-C mix
Protein Identification and Quantification
Visualization and Inference
Figure 4

PCA Plot (74.3%)

- LS
- TI
- SI
- OV
- 5DAA
- 10DAA
- 15DAA
Figure 6

Graph showing the change in dry or fresh weight and moisture content of green tomato fruits over 25 days after anthesis. The graph includes lines for Fresh, Dry, and %moisture content, with visible data points at key intervals.