A modified three-term PRP conjugate gradient algorithm for optimization models

Yanlin Wu*

*Correspondence: m1528083940@163.com
Department of Basic Teaching, Yango College, Fuzhou, Fujian 350015, P.R. China

Abstract

The nonlinear conjugate gradient (CG) algorithm is a very effective method for optimization, especially for large-scale problems, because of its low memory requirement and simplicity. Zhang et al. (IMA J. Numer. Anal. 26:629-649, 2006) firstly propose a three-term CG algorithm based on the well known Polak-Ribièr-Polyak (PRP) formula for unconstrained optimization, where their method has the sufficient descent property without any line search technique. They proved the global convergence of the Armijo line search but this fails for the Wolfe line search technique. Inspired by their method, we will make a further study and give a modified three-term PRP CG algorithm. The presented method possesses the following features: (1) The sufficient descent property also holds without any line search technique; (2) the trust region property of the search direction is automatically satisfied; (3) the step length is bounded from below; (4) the global convergence will be established under the Wolfe line search. Numerical results show that the new algorithm is more effective than that of the normal method.

MSC: 90C26

Keywords: conjugate gradient; sufficient descent; trust region

1 Introduction

We consider the optimization models defined by

$$
\min_{x \in \mathbb{R}^n} f(x),
$$

(1.1)

where the function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is continuously differentiable. There exist many similar professional fields of science that can revert to the above optimization models (see, e.g., [2–21]). The CG method has the following iterative formula for (1.1):

$$
x_{k+1} = x_k + \alpha_k d_k, \quad k = 1, 2, \ldots,
$$

(1.2)

where x_k is the kth iterate point, the step length is $\alpha_k > 0$, and the search direction d_k is designed by

$$
d_{k+1} = \begin{cases}
-g_{k+1} + \beta_k d_k, & \text{if } k \geq 1, \\
-g_{k+1}, & \text{if } k = 0,
\end{cases}
$$

(1.3)
where $g_k = \nabla f(x_k)$ is the gradient and $\beta_k \in \mathbb{R}$ is a scalar. At present, there are many well-known CG formulas (see [22–46]) and their applications (see, e.g., [47–50]), where one of the most efficient formulas is the PRP [34, 51] defined by

$$\beta^{\text{PRP}}_k = \frac{g^T_k \delta_k}{\|g_k\|^2}, \quad (1.4)$$

where $g_{k+1} = \nabla f(x_{k+1})$ is the gradient, $\delta_k = g_{k+1} - g_k$, and $\|\cdot\|$ is the Euclidian norm. The PRP method is very efficient as regards numerical performance, but it fails as regards the global convergence for the general functions under Wolfe line search technique and this is a still open problem; many scholars want to solve it. It is worth noting that a recent work of Yuan et al. [52] proved the global convergence of PRP method under a modified Wolfe line search technique for general functions. Al-Baali [53], Gilbert and Nocedal [54], Touati-Ahmed and Storey [55], and Hu and Storey [56] hinted that the sufficient descent property may be crucial for the global convergence of the conjugate gradient methods including the PRP method. Considering the above suggestions, Zhang, Zhou, and Li [1] firstly gave a three-term PRP formula

$$d_{k+1} = \begin{cases}
-g_{k+1} + \frac{g^T_k \delta_k}{\|g_k\|^2}, \beta^{\text{PRP}}_k d_k - \vartheta_k \delta_k, & \text{if } k \geq 1, \\
-g_{k+1}, & \text{if } k = 0,
\end{cases} \quad (1.5)$$

where $\vartheta_k = \frac{g^T_k d_k}{\|g_k\|^2}$. It is not difficult to deduce that $d^T_{k+1} g_{k+1} = -\|g_{k+1}\|^2$ holds for all k, which implies that the sufficient descent property is satisfied. Zhang et al. proved that the three-term PRP method has global convergence under Armijo line search technique for general functions but this fails for the Wolfe line search. The reason may be the trust region feature of the search direction that cannot be satisfied for this method. In order to overcome this drawback, we will propose a modified three-term PRP formula that will have not only the sufficient descent property but also the trust region feature.

In the next section, a modified three-term PRP formula is given and the new algorithm is stated. The sufficient descent property, the trust region feature, and the global convergence of the new method are established in Section 3. Numerical results are reported in the last section.

2 The modified PRP formula and algorithm

Motivated by the above observation, the modified three-term PRP formula is

$$d_{k+1} = \begin{cases}
-g_{k+1} + \frac{g^T_k \delta_k d_k - \vartheta_k \delta_k}{\gamma_1 \|g_k\|^2 + \gamma_2 \|\delta_k\|^2 + \gamma_3 \|d_k\|^2}, \beta^{\text{PRP}}_k d_k - \vartheta_k \delta_k, & \text{if } k \geq 1, \\
-g_{k+1}, & \text{if } k = 0,
\end{cases} \quad (2.1)$$

where $\gamma_1 > 0$, $\gamma_2 > 0$, and $\gamma_3 > 0$ are constants. It is easy to see that the difference between (1.5) and (2.1) is the denominator of the second and the third terms. This is a little change that will guarantee another good property for (2.1) and impel the global convergence for Wolfe conditions.
Algorithm 1 (New three-term PRP CG algorithm (NTT-PRP-CG-A))

Step 0: Initial given parameters: $x_1 \in \mathbb{R}^n$, $\gamma_1 > 0$, $\gamma_2 > 0$, $\gamma_3 > 0$, $0 < \delta < \sigma < 1$, $\varepsilon \in (0, 1)$. Let $d_1 = -g_1 = -\nabla f(x_1)$ and $k := 1$.

Step 1: $\|g_k\| \leq \varepsilon$, stop.

Step 2: Get stepsize α_k by the following Wolfe line search rules:

$$f(x_k + \alpha_k d_k) \leq f(x_k) + \delta \alpha_k g_k^T d_k,$$

and

$$g(x_k + \alpha_k d_k)^T d_k \geq \sigma g_k^T d_k.$$ (2.2)

Step 3: Let $x_{k+1} = x_k + \alpha_k d_k$. If the condition $\|g_{k+1}\| \leq \varepsilon$ holds, stop the program.

Step 4: Calculate the search direction d_{k+1} by (2.1).

Step 5: Set $k := k + 1$ and go to Step 2.

3 The sufficient descent property, the trust region feature, and the global convergence

It has been proved that, even for the function $f(x) = \lambda \|x\|^2$ ($\lambda > 0$ is a constant) and the strong Wolfe conditions, the PRP conjugate gradient method may not yield a descent direction for an unsuitable choice (see [24] for details). An interesting feature of the new three-term CG method is that the given search direction is sufficiently descent.

Lemma 3.1 The search direction d_k is defined by (2.1) and it satisfies

$$d_{k+1}^T g_{k+1} = -\|g_{k+1}\|^2$$ (3.1)

and

$$\|d_{k+1}\| \leq \gamma \|g_{k+1}\|$$ (3.2)

for all $k \geq 0$, where $\gamma > 0$ is a constant.

Proof For $k = 0$, it is easy to get $g_1^T d_1 = -g_1^T g_1 = -\|g_1\|^2$ and $\|d_1\| = \| - g_1\| = \|g_1\|$, so (3.1) is true and (3.2) holds with $\gamma = 1$.

If $k \geq 1$, by (2.1), we have

$$g_{k+1}^T d_{k+1} = -\|g_{k+1}\|^2 + g_{k+1}^T \left[\frac{g_{k+1}^T \delta_k d_k - d_{k+1}^T g_{k+1} \delta_k}{\gamma_1 \|g_k\|^2 + \gamma_2 \|d_k\| \delta_k + \gamma_3 \|d_k\| \|g_k\|} \right],$$

$$= -\|g_{k+1}\|^2 + \frac{g_{k+1}^T g_{k+1} \delta_k d_k - d_{k+1}^T g_{k+1} \delta_k}{\gamma_1 \|g_k\|^2 + \gamma_2 \|d_k\| \delta_k + \gamma_3 \|d_k\| \|g_k\|},$$

$$= -\|g_{k+1}\|^2.$$ (3.3)
Then (3.1) is satisfied. By (2.1) again, we obtain
\[\|d_{k+1}\| = \left\| \frac{g_{k+1}^T \delta_k d_k - d_{k+1}^T g_{k+1} \delta_k}{\gamma_1 \|g_k\|^2 + \gamma_2 \|d_k\| \|\delta_k\| + \gamma_3 \|d_k\| \|g_k\|} \right\| \]
\[\leq \|g_{k+1}\| + \left\| \frac{g_{k+1}^T \delta_k d_k - d_{k+1}^T g_{k+1} \delta_k}{\gamma_1 \|g_k\|^2 + \gamma_2 \|d_k\| \|\delta_k\| + \gamma_3 \|d_k\| \|g_k\|} \right\| \]
\[\leq \|g_{k+1}\| + \left\| \frac{\|\delta_k\| \|g_{k+1}\| \|d_k\| + \|d_k\| \|g_{k+1}\| \|\delta_k\|}{\gamma_1 \|g_k\|^2 + \gamma_2 \|d_k\| \|\delta_k\| + \gamma_3 \|d_k\| \|g_k\|} \right\| \]
\[\leq \|g_{k+1}\| + \left\| \frac{2\|\delta_k\| \|g_{k+1}\| \|d_k\|}{\gamma_2 \|d_k\| \|\delta_k\|} \right\| \]
\[= (1 + 2/\gamma_2)\|g_{k+1}\|, \quad (3.4)\]

where the last inequality follows from \(\frac{\|g_k\|^2 + \gamma_2 \|d_k\| \|\delta_k\| + \gamma_3 \|d_k\| \|g_k\|}{\gamma_1 \|g_k\|^2 + \gamma_2 \|d_k\| \|\delta_k\| + \gamma_3 \|d_k\| \|g_k\|} \leq \frac{1}{\gamma_2 \|d_k\| \|\delta_k\|} \). Thus (3.2) holds for all \(k \geq 0\) with \(\gamma = \max\{1, 1 + 2/\gamma_2\}\). The proof is complete. \(\square\)

Remark (1) Equation (3.1) is the sufficient descent property and the inequality (3.2) is the trust region feature. And these two relations are verifiable without any other conditions.

(2) Equations (3.1) and (2.2) imply that the sequence \(\{f(x_k)\}\) generated by Algorithm 1 is descent, namely \(f(x_k + \alpha_k d_k) \leq f(x_k)\) holds for all \(k\).

To establish the global convergence of Algorithm 1, the normal conditions are needed.

Assumption A

(i) The defined level set \(\Omega = \{x \in \mathbb{R}^n \mid f(x) \leq f(x_1)\}\) is bounded with given point \(x_1\).
(ii) The function \(f\) has a lower bound and it is differentiable. The gradient \(g\) is Lipschitz continuous

\[\|g(x) - g(y)\| \leq L\|x - y\|, \quad \forall x, y \in \mathbb{R}^n, \quad (3.5)\]

where \(L > 0\) a constant.

Lemma 3.2 Suppose that Assumption A holds and NTT-PRP-CG-A generates the sequence \(\{x_k, d_k, \alpha_k, g_k\}\). Then there exists a constant \(\beta > 0\) such that

\[\alpha_k \geq \beta, \quad \forall k \geq 1. \quad (3.6)\]

Proof Using (3.5) and (2.3) generate

\[\alpha_k L \geq (g_{k+1} - g_k)^T d_k \]
\[\geq -(1 - \sigma)\|g_k\|^2 d_k \]
\[= (1 - \sigma)\|g_k\|^2 \]

where the last equality follows from (3.1). By (3.2), we get

\[\alpha_k \geq \frac{1 - \sigma}{L \|d_k\|^2} \geq \frac{1 - \sigma}{L \gamma}. \]

Setting \(\beta \in (0, \frac{1 - \sigma}{L \gamma})\) completes the proof. \(\square\)
Remark. The above lemma shows that the steplength \(\alpha_k \) has a lower bound, which is helpful for the global convergence of Algorithm 1.

Theorem 3.1. Let the conditions of Lemma 3.2 hold and \(\{x_k, d_k, \alpha_k, g_k\} \) be generated by NTT-PRP-CG-A. Thus we get

\[
\lim_{k \to \infty} \|g_k\| = 0.
\]

Proof. By (2.2), (3.1), and (3.6), we have

\[
\delta \beta \|g_k\|^2 \leq \delta \alpha_k \|g_k\|^2 \leq f(x_k) - f(x_k + \alpha_k d_k).
\]

Summing the above inequality from \(k = 1 \) to \(\infty \), we have

\[
\sum_{k=1}^{\infty} \delta \beta \|g_k\|^2 \leq f(x_1) - f_\infty \leq \infty,
\]

which means that

\[
\|g_k\| \to 0, \quad k \to \infty.
\]

The proof is complete. \(\Box \)

4 Numerical results and discussion

This section will report the numerical experiment of the NTT-PRP-CG-A and the algorithm of Zhang et al. [1] (called Norm-PRP-A), where the Norm-PRP-A is the Step 4 of Algorithm 1 that is replaced by: Calculate the search direction \(d_{k+1} \) by (1.5). Since the method is based on the search direction (1.5), we only compare the numerical results between the new algorithm and the Norm-PRP-A. The codes of these two algorithms are written by Matlab and the problems are chosen from [57, 58] with given initial points. The tested problems are listed in Table 1. The parameters are \(\gamma_1 = 2 \), \(\gamma_2 = 5 \), \(\gamma_3 = 3 \), \(\delta = 0.01 \), \(\sigma = 0.86 \). The program uses the Himmelblau rule: Set \(S_1 = \frac{f(x_k) - f(x_{k+1})}{\|f(x_k)\|} \) if \(|f(x_k)| > \tau_1 \), otherwise set \(S_1 = |f(x_k) - f(x_{k+1})| \). The program stops if \(\|g(x)\| < \epsilon \) or \(S_1 < \tau_2 \) hold, where we choose

No.	Problems	\(x_0 \)
1	Extended Freudenstein and Roth function	\([0.5, -2, \ldots, 0.5, -2]\)
2	Extended trigonometric function	\([0.2, 0.2, \ldots, 0.2]\)
3	Extended Rosenbrock function	\([-1.2, 1, \ldots, -1.2, 1]\)
4	Extended White and Holst function	\([-1.2, 1, \ldots, -1.2, 1]\)
5	Extended Beale function	\([1, 0.8, \ldots, 1/0.8]\)
6	Extended penalty function	\([1/1, 1/2, \ldots, 1/n]\)
7	Perturbed quadratic function	\([0.5, 0.5, \ldots, 0.5]\)
8	Raydan 1 function	\([1, \ldots, 1]\)
9	Raydan 2 function	\([1, \ldots, 1]\)
10	Diagonal 1 function	\([1/n, 1/n, \ldots, 1/n]\)
11	Diagonal 2 function	\([1/1, 1/2, \ldots, 1/n]\)
12	Diagonal 3 function	\([1, 1, \ldots, 1]\)
No.	Problems	x_0
-----	--	--------------------------------
13	Hager function	[1, 1, ..., 1]
14	Generalized tridiagonal 1 function	[2, 2, ..., 2]
15	Extended tridiagonal 1 function	[2, 2, ..., 2]
16	Extended three exponential terms function	[0, 1, 0.1, ..., 0.1]
17	Generalized tridiagonal 2 function	[−1, −1, ..., −1, −1]
18	Diagonal 4 function	[1, 1, 1, 1]
19	Diagonal 5 function	[1, 1, 1, 1, 1]
20	Extended Himmelblau function	[1, 1, 1]
21	Generalized PSC1 function	[3, 0.1, ..., 3, 0.1]
22	Extended PSC1 function	[3, 0.1, ..., 3, 0.1]
23	Extended Powell function	[3, −1, 0, 1, ...]
24	Extended block diagonal BD1 function	[0, 1, 0.1, ..., 0.1]
25	Extended Maratos function	[1, 1, 0.1, ..., 1, 1, 0.1]
26	Extended Cliff function	[0, −1, ..., 0, −1]
27	Quadratic diagonal perturbed function	[0.5, 0.5, ..., 0.5]
28	Extended Wood function	[−3, −1, −3, −1, ..., −3, −1]
29	Extended Hiebert function	[0, 0, ..., 0]
30	Quadratic QF1 function	[1, 1, ..., 1]
31	Extended quadratic penalty QP1 function	[1, 1, ..., 1]
32	Extended quadratic penalty QP2 function	[1, 1, ..., 1]
33	Quadratic QF2 function	[0.5, 0.5, ..., 0.5]
34	Extended EP1 function	[1.5, 1.5, ..., 1.5]
35	Extended tridiagonal-2 function	[1, 1, 1]
36	BDORTIC function (CUTE)	[1, 1, 1]
37	TRIDIA function (CUTE)	[1, 1, 1]
38	ARWHEAD function (CUTE)	[1, 1, 1]
39	NONDIA (Shanno-78) function (CUTE)	[−1, −1, ..., −1, −1]
40	NONDIQUR function (CUTE)	[1, −1, 1, −1, ..., 1, −1]
41	DQORTIC function (CUTEr)	[3, 3, 3, 3]
42	EG2 function (CUTE)	[1, 1, 1]
43	DIXMAANA function (CUTE)	[2, 2, 2, ..., 2]
44	DIXMAANB function (CUTE)	[2, 2, 2, ..., 2]
45	DIXMAANC function (CUTE)	[2, 2, 2, ..., 2]
46	DIXMAANE function (CUTE)	[2, 2, 2, ..., 2]
47	Partial perturbed quadratic function	[0.5, 0.5, ..., 0.5]
48	Broyden tridiagonal function	[−1, −1, ..., −1]
49	Almost perturbed quadratic function	[0.5, 0.5, ..., 0.5]
50	Tridiagonal perturbed quadratic function	[0.5, 0.5, ..., 0.5]
51	EDENSCH function (CUTE)	[0, 0, ..., 0]
52	VARDIM function (CUTE)	[1 − 1/n, 1 − 2/n, ..., 1 − n/n]
53	STAIRCASE S1 function	[1, 1, 1]
54	LIARWHD function (CUTEr)	[4, 4, 4, 4]
55	DIAGONAL 6 function	[1, 1, 1]
56	DIXON3DQ function (CUTE)	[−1, −1, ..., −1]
57	DIXMAANF function (CUTE)	[2, 2, 2, ..., 2]
58	DIXMAANG function (CUTE)	[2, 2, 2, ..., 2]
59	DIXMAANH function (CUTE)	[2, 2, 2, ..., 2]
60	DIXMAANl function (CUTE)	[2, 2, 2, ..., 2]
61	DIXMAANJ function (CUTE)	[2, 2, 2, ..., 2]
62	DIXMAANK function (CUTE)	[2, 2, 2, ..., 2]
63	DIXMAANL function (CUTE)	[2, 2, 2, ..., 2]
64	DIXMAAND function (CUTE)	[2, 2, 2, ..., 2]
65	ENGVAL1 function (CUTE)	[2, 2, 2, ..., 2]
66	FLETCHCR function (CUTE)	[0, 0, ..., 0]
67	COSINE function (CUTE)	[1, 1, 1]
68	Extended DENSCHNB function (CUTE)	[1, 1, 1]
69	DENSCHNF function (CUTEr)	[2, 0, 2, 0, ..., 2, 0]
70	SINOQUAD function (CUTE)	[0, 1, 0.1, ..., 0.1]
71	BIGGSB1 function (CUTE)	[0, 0, ..., 0]
72	Partial perturbed quadratic PPQ2 function	[0.5, 0.5, ..., 0.5]
73	Scaled quadratic SQ1 function	[1, 2, ..., n]
74	Scaled quadratic SQ2 function	[1, 2, ..., n]
\[\epsilon = 10^{-6} \text{ and } \tau_1 = \tau_2 = 10^{-5}. \]

For the choice of the stepsize \(\alpha_k \) in (2.2) and (2.3), the largest cycle number is 10 and the current stepsize is accepted. The dimensions of the test problems accord to large-scale variables with 3,000, 12,000, and 30,000. The runtime environment is MATLAB R2010b and run on a PC with CPU Intel Pentium(R) Dual-Core CPU at 3.20 GHz, 2.00 GB of RAM, and the Windows 7 operating system.

Table 2 report the test numerical results of the NTT-PRP-CG-A and the Norm-PRP-A, and we note:

No. the test problems number. Dimension: the variables number.
Ni: the iteration number. Nfg: the function and the gradient value number. CPU time: the CPU time of operating system in seconds.

No.	Dimension	NTT-PRP-CG-A	Norm-PRP-A				
	Ni	Nfg	CPU time	Ni	Nfg	CPU time	
1	3,000	15	43	0.468003	31	92	0.546004
12,000	15	43	0.842405	56	158	1.778411	
30,000	15	43	1.482009	36	113	2.730018	
2	3,000	57	131	0.374402	55	126	0.374402
12,000	63	144	1.138807	62	142	0.920406	
30,000	66	152	3.08882	66	152	2.511616	
3	3,000	54	186	0.124801	117	375	0.202801
12,000	67	233	0.234001	144	479	0.514803	
30,000	73	253	0.530403	159	522	1.624216	
4	3,000	59	198	0.296402	207	595	0.936006
12,000	34	139	0.733205	264	801	4.305638	
30,000	74	256	4.118426	228	618	8.907657	
5	3,000	23	68	0.093601	39	106	0.124801
12,000	23	69	0.265202	39	109	0.390003	
30,000	21	64	0.826805	47	135	1.279208	
6	3,000	80	185	0.124801	80	185	0.093601
12,000	103	232	0.405603	103	232	0.343202	
30,000	102	235	1.216808	102	235	0.998406	
7	3,000	1,000	2,002	3.16682	835	2,257	2.808018
12,000	1,000	2,002	9.781263	1,000	2,779	9.734462	
30,000	1,000	2,002	9.781263	1,000	2,779	9.734462	
8	3,000	21	47	0.0468	19	46	0.0312
12,000	20	44	0.093601	19	46	0.093601	
30,000	20	44	0.296402	19	46	0.265202	
9	3,000	12	26	0.0312	12	26	0.0312
12,000	12	26	0.0468	12	26	0.0624	
30,000	12	26	0.202801	12	26	0.156001	
10	3,000	2	13	0.0312	2	13	0.0312
12,000	2	13	0.124801	2	13	0.093601	
30,000	2	13	0.312002	2	13	0.280802	
11	3,000	81	194	0.171601	24	101	0.0624
12,000	91	247	0.764405	15	59	0.202801	
30,000	11	35	0.436803	13	50	0.280802	
12	3,000	17	36	0.0468	14	33	0.0624
12,000	19	40	0.171601	14	33	0.124801	
30,000	19	40	0.499203	14	33	0.343202	
13	3,000	23	86	0.093601	22	84	0.078
12,000	42	111	0.452403	42	111	0.468003	
30,000	2	13	0.358802	2	13	0.327602	
No.	Dimension	NTT-PRP-CG-A	Norm-PRP-A				
-----	-----------	-------------	------------				
	Ni Nfg CPU time	Ni Nfg CPU time					
14	3,000	6 15 0.717605 6 15 0.733205					
12,000	6 15 7.004445 5 13 5.709637						
30,000	3 8 14.258491 3 8 13.587687						
15	3,000	38 85 1.794011 66 176 3.04202					
12,000	41 102 17.924515 60 169 28.09578						
30,000	44 114 75.395283 68 194 120.245571						
16	3,000	20 42 0.0624 20 42 0					
12,000	24 50 0.171601 24 50 0.156001						
30,000	24 50 0.483603 24 50 0.436803						
17	3,000	24 55 0.156001 31 71 0.218401					
12,000	33 73 0.764405 29 74 0.717605						
30,000	48 103 3.042019 30 81 1.996813						
18	3,000	3 10 0.0156 13 43 0.0312					
12,000	3 10 0.0312 13 43 0.0156						
30,000	3 10 0.0312 14 47 0.124801						
19	3,000	3 9 0 3 9 0					
12,000	3 9 0.0468 3 9 0.0312						
30,000	3 9 0.124801 3 9 0.124801						
20	3,000	33 82 0.0312 26 74 0.0312					
12,000	11 61 0.0624 5 35 0.0312						
30,000	5 35 0.093601 20 67 0.218401						
21	3,000	25 59 0.093601 27 63 0.0624					
12,000	27 63 0.249602 26 60 0.187201						
30,000	25 58 0.530403 27 63 0.530403						
22	3,000	6 31 0.0312 7 42 0					
12,000	6 31 0.0624 5 21 0.0624						
30,000	6 31 0.218401 5 21 0.124801						
23	3,000	134 383 0.670804 334 986 1.52881					
12,000	147 416 2.652017 452 1309 7.73765						
30,000	114 330 5.304034 291 854 12.776482						
24	3,000	28 90 0.0624 50 126 0.109201					
12,000	31 108 0.249602 60 146 0.405603						
30,000	28 97 0.686404 67 160 1.170007						
25	3,000	28 56 0.0312 28 56 0.0312					
12,000	7 16 0.0156 231 774 0.748805						
30,000	7 16 0.0312 213 774 0.208013						
26	3,000	65 152 0.124801 65 152 0.124801					
12,000	72 166 0.514803 72 166 0.468003						
30,000	79 180 1.51321 79 180 1.341609						
27	3,000	31 94 0.0624 104 327 0.156001					
12,000	43 137 0.187201 202 655 0.639604						
30,000	104 329 1.154407 384 1231 4.024826						
28	3,000	40 124 0.0468 31 76 0.0312					
12,000	31 91 0.124801 38 95 0.124801						
30,000	40 107 0.546003 32 78 0.265202						
29	3,000	4 19 0.0312 100 287 0.124801					
12,000	4 19 0.0156 84 240 0.312002						
30,000	4 19 0.093601 93 264 0.842405						
30	3,000	1,000 2,002 0.842405 446 1205 0.436803					
12,000	1,000 2,002 2.636417 754 2010 2.074813						
30,000	1,000 2,002 8.330453 1,000 2,721 8.065252						
31	3,000	29 66 0.0468 29 66 0.0624					
12,000	34 78 0.156001 34 78 0.156001						
30,000	34 78 0.421203 34 78 0.452403						
Table 2 (Continued)

No.	Dimension NTT-PRP-CG-A			Norm-PRP-A			
	Ni	Nfg	CPU time	Ni	Nfg	CPU time	
32	3,000	48	100	0.093601	48	100	0.093601
	12,000	37	80	0.280802	37	80	0.234001
	30,000	36	80	0.780005	36	80	0.670804
33	3,000	3	7	0	3	7	0
	12,000	2	5	0	2	5	0.0312
	30,000	2	5	0.0312	2	5	0
34	3,000	4	8	0.0312	4	8	0.0312
	12,000	7	14	0.0624	7	14	0.0312
	30,000	10	20	0.156001	10	20	0.124801
35	3,000	12	24	0.0312	12	24	0
	12,000	21	42	0.093601	21	42	0.093601
	30,000	4	10	0.093601	4	10	0.0312
36	3,000	14	48	1.138807	45	148	3.244821
	12,000	8	28	6.970844	120	369	95.821414
	30,000	17	55	55.427155	162	483	488.922734
37	3,000	776	1,559	0.733205	1,000	2,688	1.107607
	12,000	1,000	2,006	3.322821	1,000	2,733	3.556823
	30,000	1,000	2,011	9.828063	506	1,378	4.960832
38	3,000	9	30	0.0312	27	81	0.0312
	12,000	10	32	0.0468	21	60	0.140401
	30,000	11	34	0.140401	24	64	0.312002
39	3,000	26	52	0.0624	26	52	0
	12,000	29	58	0.093601	29	58	0.093601
	30,000	23	46	0.187201	23	46	0.171601
40	3,000	554	1,332	5.881238	1,000	2,856	11.013671
	12,000	1,000	2,228	39.733455	1,000	2,892	43.352678
	30,000	1,000	2,247	100.745446	1,000	2,866	108.16694
41	3,000	27	68	0.078	49	133	0.0312
	12,000	28	69	0.093601	50	136	0.124801
	30,000	37	91	0.390002	39	101	0.374402
42	3,000	6	24	0.0312	6	24	0
	12,000	6	24	0.0624	6	24	0.0624
	30,000	6	24	0.187201	6	24	0.156001
43	3,000	28	60	0.202801	28	60	0.218401
	12,000	30	64	0.936006	30	64	0.858005
	30,000	32	68	2.527216	31	66	2.230814
44	3,000	46	96	0.358802	46	96	0.296402
	12,000	49	102	1.51321	49	102	1.400409
	30,000	52	108	4.024826	52	108	3.728424
45	3,000	19	44	0.202801	19	44	0.124801
	12,000	20	46	0.608404	20	46	0.577204
	30,000	20	46	1.54441	20	46	1.48201
46	3,000	117	244	0.920406	108	296	0.967206
	12,000	165	340	5.116833	120	326	4.009226
	30,000	195	400	15.678101	126	341	10.576868
47	3,000	27	66	8.299253	44	102	12.963683
	12,000	31	87	93.741001	49	141	150.150963
	30,000	69	182	1,163.84546	85	256	1,490.683156
48	3,000	32	74	1.762811	27	63	1.310408
	12,000	50	103	30.154993	29	74	19.546925
	30,000	42	100	112.726323	37	87	94.209004
49	3,000	1,000	2,002	0.858005	575	1,593	0.577204
	12,000	1,000	2,002	2.792418	885	2,377	2.527216
	30,000	1,000	2,002	9.484861	1,000	2,738	8.143252
No.	Dimension	NTT-PRP-CG-A	Norm-PRP-A				
-----	-----------	--------------	------------				
		Ni	Nfg	CPUtime	Ni	Nfg	CPUtime
50	3,000	1,000	2,002	57.236767	370	998	23.727752
12,000	3,000	2,002	617.73276	920	2,495	676.23313	
30,000	1,000	2,002	2,467.96702	1,000	2,720	2,856.471911	
51	3,000	23	48	0.124801	23	48	0.140401
12,000	23	48	0.811205	23	48	0.452403	
30,000	121	276	2,090413	128	316	1,684811	
52	3,000	138	316	2,090413	138	316	1,684811
12,000	150	344	4,66443	150	344	4,61763	
30,000	1,000	2,009	3.759624	1,000	2,661	3.369622	
53	3,000	23	48	0.0624	23	48	0.109201
12,000	23	48	0.811205	23	48	0.452403	
30,000	23	48	1.154407	23	48	1.216808	
54	3,000	121	276	0.436803	121	276	0.374402
12,000	138	316	7.488048	138	316	7.441248	
30,000	150	344	4.66443	150	344	4.61763	
55	3,000	1,000	2,009	0.998406	1,000	2,706	1.170008
12,000	1,000	2,009	3.759624	1,000	2,661	3.369622	
30,000	1,000	2,009	8.502054	1,000	2,781	9.594061	
56	3,000	430	886	0.358802	507	1,397	0.608404
12,000	430	886	1.450809	613	1,667	2.043613	
30,000	430	886	3.541223	491	1,337	4.492829	
57	3,000	145	296	1.154407	55	132	0.468003
12,000	145	296	7.75325	69	179	2.246414	
30,000	265	536	19.500125	77	196	6.27124	
58	3,000	107	223	0.873606	107	223	0.873606
12,000	107	223	3.931225	91	243	3.07322	
30,000	142	293	10.514467	98	261	8.205653	
59	3,000	77	166	0.639604	52	137	0.405603
12,000	107	226	4.08429	60	152	1.934412	
30,000	94	203	7.082445	72	181	5.803237	
60	3,000	488	983	3.978026	111	303	0.967206
12,000	175	360	5.522435	106	293	3.650423	
30,000	194	398	14.47693	140	377	11.856076	
61	3,000	145	296	1.185608	56	142	0.468003
12,000	206	418	6.692443	70	179	2.277615	
30,000	264	534	19.390924	92	247	7.75325	
62	3,000	153	314	1.232408	63	163	0.717605
12,000	239	486	7.332047	86	214	2.761218	
30,000	313	634	23.166148	96	261	8.127652	
63	3,000	209	430	1.934412	138	378	1.388409
12,000	1,000	2,009	3.779042	164	448	6.489642	
30,000	1,000	2,009	8.7220159	191	521	18.532919	
64	3,000	29	64	0.265202	29	64	0.218401
12,000	31	68	1.045207	31	68	0.936006	
30,000	32	70	2.340015	32	70	2.324415	
65	3,000	22	51	1.903212	19	45	1.59121
12,000	17	38	14.586094	17	38	14.258491	
30,000	17	38	61.167992	17	38	59.420781	
66	3,000	1,000	2,003	57.985572	733	2,293	50.684725
12,000	1,000	2,003	618.637566	214	671	171.757101	
30,000	4	11	10.374067	58	157	163.879051	
67	3,000	6	37	0.0312	9	59	0.0312
12,000	10	63	0.499203	48	231	0.577204	
30,000	5	27	0.124801	10	54	0.296402	
Table 2 (Continued)

No.	Dimension	NTT-PRP-CG-A	Norm-PRP-A				
		Ni	Nfg	CPU time	Ni	Nfg	CPU time
68	3,000	35	72	0.0312	35	72	0.0312
	12,000	38	78	0.124801	38	78	0.109201
	30,000	39	80	0.343202	39	80	0.374402
69	3,000	27	58	0.0312	30	64	0.0624
	12,000	28	60	0.140401	32	68	0.187201
	30,000	29	62	0.421203	33	70	0.468003
70	3,000	25	82	1.950013	129	386	8.876457
	12,000	52	184	46.8471	143	479	119.621567
	30,000	13	62	52.790738	193	598	597.967433
71	3,000	1,000	2,004	0.889206	449	1,247	0.468003
	12,000	1,000	2,004	4.196427	661	1,779	2.106014
	30,000	706	2,011	228.837867	1,000	2,845	323.40567
72	3,000	569	1,589	1,742.46877	785	2,234	2,412.04662
	12,000	229	654	3,931.381201	1,000	2,813	17,084.27791
73	3,000	1,000	2,002	0.936006	490	1,307	0.421203
	12,000	1,000	2,002	3.291621	900	2,460	2.605217
	30,000	785	2,234	7.566048	1,000	2,735	7.940451
74	3,000	1,000	2,002	0.873606	398	1,061	0.374402
	12,000	1,000	2,002	4.399228	795	2,120	2.262015
	30,000	1,000	2,002	7.519248	1,000	2,682	7.86245

A new tool was given by Dolan and Moré [59] to analyze the performance of the algorithms. Figures 1-3 show that the efficiency of the NTT-PRP-CG-A and the Norm-PRP-A relate to Ni, Nfg, and CPU time, respectively. It is easy to see that these two algorithms are effective for those problems and the given three-term PRP conjugate gradient method is more effective than that of the normal three-term PRP conjugate gradient method. Moreover, the NTT-PRP-CG-A has good robustness. Overall, the presented algorithm has some potential property both in theory and numerical experiment, which is noticeable.
5 Conclusions
In this paper, based on the PRP formula for unconstrained optimization, a modified three-term PRP CG algorithm was presented. The proposed method possesses sufficient descent property also holds without any line search technique, and we have automatically the trust region property of the search direction. Under the Wolfe line search, the global convergence was proven. Numerical results showed that the new algorithm is more effective compared with the normal method.

Competing interests
The author declares that they have no competing interests.
Author's contributions
Only the author contributed in writing this paper.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 25 March 2017 Accepted: 20 April 2017 Published online: 03 May 2017

References
1. Zhang, L, Zhou, W, Li, D: A descent modified Polak-Ribiére-Polyak conjugate method and its global convergence. IMJ Numer. Anal. 26, 629-649 (2006)
2. Fu, Z, Wu, X, Guan, C, Sun, X, Ren, K: Towards efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans. Inf. Forensics Secur. (2016), doi:10.1109/TIFS.2016.2596138
3. Gu, B, Sheng, VS, Tay, KY, Romano, W, Li, S: Incremental support vector learning for ordinal regression. IEEE Trans. Neural Netw. Learn. Syst. 26, 1403-1416 (2015)
4. Gu, B, Sun, X, Sheng, VS: Structural minimax probability machine, IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2016.2544779
5. Li, J, Li, X, Yang, B, Sun, X: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10, 507-518 (2015)
6. Pan, Z, Lei, J, Zhang, Y, Sun, X, Kwong, S: Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Trans. Broadcast. (2016). doi:10.1109/TBC.2016.2580920
7. Pan, Z, Zhang, Y, Kwong, S: Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans. Broadcast. 61, 166-176 (2015)
8. Xia, Z, Wang, X, Sun, X, Wang, Q: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27, 340-352 (2015)
9. Xia, Z, Wang, X, Sun, X, Liu, Q, Xiong, N: Steg analysis of LSB matching using differences between nonadjacent pixels. Multimed. Tools Appl. 75, 1947-1962 (2016)
10. Xia, Z, Wang, X, Zhang, L, Qin, Z, Sun, X, Ren, K: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. (2016). doi:10.1109/TIFS.2016.2590944
11. Yuan, GL: A new method with descent property for symmetric nonlinear equations. Numer. Funct. Anal. Optim. 31, 974-987 (2010)
12. Yuan, GL, Lu, S, Wei, ZX: A new trust-region method with line search for solving symmetric nonlinear equations. Int. J. Comput. Math. 88, 2109-2123 (2011)
13. Yuan, C, Sun, X, Lv, R: Fingerprint liveness detection based on multi-scale LFPQ and PCA. China Commun. 13, 60-65 (2016)
14. Yuan, GL, Lu, XW, Wei, ZX: BFGS trust-region method for symmetric nonlinear equations. J. Comput. Appl. Math. 230, 44-58 (2009)
15. Yuan, G, Wei, Z: A trust region algorithm with conjugate gradient technique for optimization problems. Numer. Funct. Anal. Optim. 32, 212-232 (2011)
16. Yuan, GL, Wei, ZX, Lu, S: Limited memory BFGS method with backtracking for symmetric nonlinear equations. Math. Comput. Model. 54, 367-377 (2011)
17. Yuan, GL, Wei, ZX, Lu, XW: A BFGS trust-region method for nonlinear equations. Computing 92, 317-333 (2011)
18. Yuan, GL, Wei, ZX, Wang, ZX: Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization. Comput. Optim. Appl. 54, 45-64 (2013)
19. Yuan, GL, Wei, ZX, Wu, YL: Modified limited memory BFGS method with nonmonotone line search for unconstrained optimization. J. Korean Math. Soc. 47, 767-788 (2010)
20. Yuan, GL, Yao, SW: A BFGS algorithm for solving symmetric nonlinear equations. Optimization 62, 45-64 (2013)
21. Zhou, Z, Wang, Y, Wu, QM, Yang, C-N, Sun, X: Effective and efficient global context verification for image copy detection. IEEE Trans. Inf. Forensics Secur. (2016). doi:10.1109/TIFS.2016.2601065
22. Andrei, N: A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes-Stiefel and Dai-Yuan. Stud. Inform. Control 17, 55-70 (2008)
23. Dai, Y: A nonmonotone conjugate gradient algorithm for unconstrained optimization. J. Syst. Sci. Complex. 15, 139-145 (2002)
24. Dai, Y, Yuan, Y: A nonlinear conjugate gradient with a strong global convergence properties. SIAM J. Optim. 10, 177-182 (2000)
25. Dai, Y, Yuan, Y: Nonlinear Conjugate Gradient Methods. Shanghai Sci. Technol, Shanghai (1998)
26. Dai, Y, Yuan, Y: An efficient hybrid conjugate gradient method for unconstrained optimization. Ann. Oper. Res. 103, 33-47 (2001)
27. Fletcher, R: Practical Method of Optimization, Vol I: Unconstrained Optimization, 2nd edn. Wiley, New York (1997)
28. Fletcher, R, Reeves, C: Function minimization by conjugate gradients. Comput. J. 7, 149-154 (1964)
29. Grippo, L, Lucidi, S: A globally convergent version of the Polak-Ribiére gradient method. Math. Program. 78, 375-391 (1997)
30. Hager, WW, Zhang, H: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170-192 (2005)
31. Hager, WW, Zhang, H: Algorithm 851: CG-DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. 32, 113-137 (2006)
32. Hager, WW, Zhang, H: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35-58 (2006)
33. Hestenes, MR, Stiefel, E: Method of conjugate gradient for solving linear equations. J. Res. Natl. Bur. Stand. 49, 409-436 (1952)
34. Polak, E, Ribiére, G: Note sur la convergence de directions conjugees. Rev. Fr. Autom. Inform. Rech. Opér. 3, 35-43 (1969)
35. Powell, M.J.D: Nonconvex minimization calculations and the conjugate gradient method. In: Numerical Analysis, Lecture Notes in Mathematics, vol. 1066, pp. 122-141. Springer, Berlin (1984)
36. Powell, M.J.D: Convergence properties of algorithm for nonlinear optimization. SIAM Rev. 28, 487-500 (1986)
37. Wei, Z, Li, G, Qi, L: New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems. Appl. Math. Comput. 179, 407-430 (2006)
38. Wei, Z, Li, G, Qi, L: Global convergence of the PRP conjugate gradient methods with inexact line search for nonconvex unconstrained optimization problems. Math. Comput. 77, 2173-2193 (2008)
39. Wei, Z, Yao, S, Liu, L: The convergence properties of some new conjugate gradient methods. Appl. Math. Comput. 183, 1341-1350 (2006)
40. Yuan, G: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems. Optim. Lett. 3, 11-21 (2009)
41. Yuan, G, Duan, X, Liu, W, Wang, X, Cui, Z, Sheng, Z: Two new PRP conjugate gradient algorithms for minimization optimization models. PLoS ONE 10(10), e0140071 (2015)
42. Yuan, G, Lu, X, Wein, Z: A modified PRP conjugate gradient method. Ann. Oper. Res. 166, 73-90 (2009)
43. Yuan, G, Lu, X, Wein, Z: A conjugate gradient method with descent direction for unconstrained optimization. J. Comput. Appl. Math. 233, 519-530 (2009)
44. Yuan, G, Wei, ZX: New line search methods for unconstrained optimization. J. Korean Stat. Soc. 38, 29-39 (2009)
45. Yuan, G, Wei, ZX, Zhao, QH: A modified Polak-Ribière-Polyak conjugate gradient algorithm for large-scale optimization problems. IEE Trans. 46, 397-413 (2014)
46. Yuan, G, Zhang, MJ: A modified Hestenes-Stiefel conjugate gradient algorithm for large-scale optimization. Numer. Funct. Anal. Optim. 34, 914-937 (2013)
47. Yuan, G, Meng, ZH, Li, Y: A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. J. Optim. Theory Appl. 168, 129-152 (2016)
48. Yuan, G, Wei, ZX: The Barzilai and Borwein gradient method with nonmonotone line search for nonsmooth convex optimization problems. Math. Model. Anal. 17, 203-216 (2012)
49. Yuan, G, Wei, ZX, Li, GY: A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs. J. Comput. Appl. Math. 255, 86-96 (2014)
50. Yuan, G, Zhang, MJ: A three-terms Polak-Ribière-Polyak conjugate gradient algorithm for large-scale nonlinear equations. J. Comput. Appl. Math. 286, 186-195 (2015)
51. Polak, E: The conjugate gradient method in extreme problems. Comput. Math. Math. Phys. 9, 94-112 (1969)
52. Yuan, G, Wei, ZX, Lu, XW: Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line search. Appl. Math. Model. (2017). doi:10.1016/j.apm.2017.02.008
53. Al-Baali, A: Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J. Numer. Anal. 5, 121-124 (1985)
54. Gilbert, JC, Nocedal, J: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2, 21-42 (1992)
55. Ahmed, T, Storey, D: Efficient hybrid conjugate gradient techniques. J. Optim. Theory Appl. 64, 379-394 (1990)
56. Hu, YF, Storey, C: Global convergence result for conjugate method. J. Optim. Theory Appl. 71, 399-405 (1991)
57. Bongartz, I, Conn, AR, Gould, N, Toint, PL: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21, 123-160 (1995)
58. Gould, N, Orban, D, Toint, PL: CUTEr and SifDec: a constrained and unconstrained testing environment, revised. ACM Trans. Math. Softw. 29, 373-394 (2003)
59. Dolan, ED, More, JJ: Benchmarking optimization software with performance profiles. Math. Program. 91, 201-213 (2002)