Spectral subspaces of spectra of Abelian lattice-ordered groups in size aleph one

Miroslav Ploščica and Friedrich Wehrung

Abstract. It is well known that the lattice \(\text{Id}_c G \) of all principal \(\ell \)-ideals of any Abelian \(\ell \)-group \(G \) is a completely normal distributive 0-lattice; yet not every completely normal distributive 0-lattice is a homomorphic image of some \(\text{Id}_c G \), via a counterexample of cardinality \(\aleph_2 \). We prove that every completely normal distributive 0-lattice with at most \(\aleph_1 \) elements is a homomorphic image of some \(\text{Id}_c G \). By Stone duality, this means that every completely normal generalized spectral space with at most \(\aleph_1 \) compact open sets is homeomorphic to a spectral subspace of the \(\ell \)-spectrum of some Abelian \(\ell \)-group.

Mathematics Subject Classification. 06D05, 06D20, 06D35, 06D50, 06F20, 46A55, 52A05, 52C35.

Keywords. Lattice-ordered, Abelian, Group, Vector lattice, Ideal, Homomorphic image, Completely normal, Distributive, Lattice, Countable, Tree, Relatively complete, Join-irreducible, Heyting algebra, Closed map, Consonance, Spectrum.

1. Introduction

A subset \(I \) in a lattice-ordered group (in short \(\ell \)-group) \(G \) is an \(\ell \)-ideal if it is an order-convex normal subgroup closed under the lattice operations. An \(\ell \)-ideal \(I \) of \(G \) is prime if \(I \neq G \) and \(x \land y \in I \) implies that \(\{x, y\} \cap I \neq \emptyset \) whenever \(x, y \in G \). In case \(G \) is Abelian, the \(\ell \)-spectrum of \(G \) is defined as the set \(\text{Spec} G \) of all prime \(\ell \)-ideals of \(G \), endowed with the topology whose closed subsets are the \(\{P \in \text{Spec} G \mid X \subseteq P\} \) for \(X \subseteq G \) (often called the hull-kernel topology). Denote by \(\mathcal{G} \) the class of all Abelian \(\ell \)-groups.

The problem of the description of \(\ell \)-spectra of all Abelian \(\ell \)-groups (say the \(\ell \)-spectrum problem) is stated, in the language of MV-algebras, in Mundici [10, Problem 2]. Now under Stone duality (cf. Grätzer [6, § II.5], Johnstone [8, § II.3], Rump and Yang [13] for the case without top element, and Wehrung [18, § 2.2] for a summary), for any \(G \in \mathcal{G} \), \(\text{Spec} G \) corresponds to the lattice \(\text{Id}_c G \) of all principal \(\ell \)-ideals of \(G \); that is, \(\text{Id}_c G = \)
\{\langle a \rangle \mid a \in G^+ \} \text{ where each } \langle a \rangle \overset{\text{def}}{=} \{x \in G \mid (\exists n \in \mathbb{N})(|x| \leq na)\}. \text{ This enables us to restate the } \ell\text{-spectrum problem as the description problem of the class } \Id_c \mathcal{G} \overset{\text{def}}{=} \{D \mid (\exists G \in \mathcal{G})(D \cong \Id_c G)\}. \text{ All such lattices are clearly distributive with smallest element (usually denoted by 0). They are also completely normal (cf. Bigard, Keimel, and Wolfenstein [3, Ch. 10]), that is, they satisfy the statement}
\[(\forall a, b)(\exists x, y)(a \lor b = a \lor y = x \lor b \text{ and } x \land y = 0).
\]
Delzell and Madden observed in [4, Theorem 2], \textit{via} a counterexample of cardinality \(\aleph_1\), that those properties are not sufficient to characterize \(\Id_c \mathcal{G}\). On the other hand, the second author proved in [15] that every countable completely normal distributive 0-lattice belongs to \(\Id_c \mathcal{G}\). The categorical concept of \textit{condensate}, initiated in the second author’s work [5] with Pierre Gillibert, together with the main result of [16], enabled the second author to prove in [17] that \(\Id_c \mathcal{G}\) is not the class of models of any class of \(\mathcal{L}_{\infty \lambda}\) sentences of lattice theory, for any infinite cardinal \(\lambda\). Using further tools from infinitary logic, the second author extended those results in [19] by proving that \(\Id \mathcal{G}\) is not the \textit{complement of a projective class} over \(\mathcal{L}_{\infty \infty}\), thus verifying in particular that the additional property of all lattices \(\Id_c G\) coined by the first author in his proof of [11, Theorem 2.1] is still not sufficient to characterize \(\Id_c \mathcal{G}\).

As observed in the above-cited references, all those results extend to the class of all (lattice) homomorphic images of lattices \(\Id_c G\). On the other hand, not every homomorphic image of a lattice of the form \(\Id_c G\) belongs to \(\Id_c \mathcal{G}\) (cf. Wehrung [15, Example 10.6]). Recast in terms of spectra, \textit{via} Stone duality, this means that \textit{not every spectral subspace of an }\ell\text{-spectrum is an }\ell\text{-spectrum}.

Moreover, not every completely normal bounded distributive lattice is a homomorphic image of some \(\Id_c G\): a counterexample of cardinality \(\aleph_2\) is constructed in Wehrung [16].

In this paper we complete the picture above, by establishing that every completely normal distributive 0-lattice \(D\) with at most \(\aleph_1\) elements is a homomorphic image of \(\Id_c G\) for some Abelian \(\ell\)-group \(G\). This also strengthens the first author’s result, obtained in [11], that \(D\) is \textit{Cevian}. In fact, we verify the slightly more general statement that \(G\) may be taken a vector lattice over any given countable totally ordered division ring \(k\) (cf. Theorem 4), modulo the obvious change in the definition of an \(\ell\)-ideal (i.e., \(\ell\)-ideals need to be closed under scalar multiplication by elements of \(k\); see Wehrung [18, §2.3] for more detail). Due to the results of [18, §9], the countability assumption on \(k\) cannot be dispensed with.

Our argument will roughly follow the one from Wehrung [15], with the “Main Extension Lemma” [15, Lemma 4.2] strengthened from finite lattices to certain infinite lattices, and streamlined \textit{via} the introduction of \textit{consonance kernels} (cf. Definition 1), as Lemma 10. The proof of the “closure step” [15, Lemma 7.2] fails in that more general context, so we get only “homomorphic image” as opposed to “isomorphic copy”, of \(\Id_c G\). This will also require a few known additional properties of finite distributive lattices and their homomorphisms, \textit{via} Birkhoff duality (see in particular Lemma 4). Our final argument,
given a completely normal distributive 0-lattice L, will start by expressing L as a directed union of an ascending ω_1-sequence $\bar{L} = (L_\xi \mid \xi < \omega_1)$ of countable completely normal distributive 0-lattices, and then, with the help of Lemma 10, iteratively lift all subdiagrams $(L_\xi \mid \xi < \alpha)$ with $\alpha < \omega_1$, with respect to the functor Id_c. That part of our argument turns out to be valid not only for the chain ω_1 but for any tree in which every element has countable height (cf. Theorem 3).

2. Basic concepts

2.1. Sets, posets, lattices

For any set X, $\text{Pow} X$ denotes the powerset algebra of X. By “countable” we will mean “at most countable”. For an element a in a partially ordered set (from now on poset) P, we set $P \downarrow a \overset{\text{def}}{=} \{p \in P \mid p \leq a\}$ (or $\downarrow a$ if P is understood). A subset A of P is a lower subset of P if $P \downarrow a \subseteq A$ whenever $a \in A$. A poset P with bottom element is a tree if $P \downarrow a$ is well-ordered under the induced order whenever $a \in P$.

For a subset P in a poset Q and for $x \in Q$, x^P (resp., x_P) denotes the least $y \in P$ such that $x \leq y$ (resp., the largest $y \in P$ such that $y \leq x$) if it exists. We say that P is relatively complete in Q if x^P and x_P both exist for all $x \in P$. If P is a subalgebra of a Boolean algebra Q, it suffices to verify that x^P exists whenever $x \in Q$ (resp., x_P exists whenever $x \in Q$).

Relative completeness has been used in a description of projective Boolean algebras. For the proof of the following (easy) assertion see Heindorf and Shapiro [7, Lemma 1.2.7].

Lemma 1. Let A, A' be subalgebras of a Boolean algebra B with A' finitely generated over A. If A is relatively complete in B, then so is A'.

For posets P and Q with respective top elements \top_P and \top_Q, a map $f: P \to Q$ is top-faithful if $f^{-1}\{\top_Q\} = \{\top_P\}$. For any poset P, $P^{\uparrow \infty}$ denotes the poset obtained by adding an extra element, usually denoted by ∞, atop of P. For any map $f: P \to Q$, we denote by $f^{\uparrow \infty}: P^{\uparrow \infty} \to Q^{\uparrow \infty}$ the unique extension of f sending ∞ to ∞. Such maps are exactly the top-faithful maps from $P^{\uparrow \infty}$ to $Q^{\uparrow \infty}$.

We denote by Ji_L (resp., Mi_L) the set of all join-irreducible (resp., meet-irreducible) elements in a lattice L, endowed with the induced ordering. For any join-irreducible element p in a finite distributive lattice D, we denote by p^* the unique lower cover of p in D, and by p^\dagger the largest element of D not above p; so $p^* = p \land p^\dagger$. The assignment $p \mapsto p^\dagger$ defines an order-isomorphism from Ji_D onto Mi_D.

As in Wehrung [15,18], two elements a and b in a 0-lattice (i.e., lattice with a bottom element) D are consonant if there exist $u, v \in D$ such that $a \leq u \vee b$, $b \leq a \vee v$, and $u \wedge v = 0$. A subset X of D is consonant if any pair of elements in X is consonant. The lattice D is completely normal if it is consonant within itself.
The assignment \(D \mapsto \text{Ji}D \) is part of Birkhoff duality between finite distributive lattices with 0,1-lattice homomorphisms and finite posets with isotope maps (cf. Grätzer [6, § II.1.3]). The Birkhoff dual of a 0,1-lattice homomorphism \(\varphi: D \rightarrow E \) is the map \(\text{Ji}E \rightarrow \text{Ji}D \), \(q \mapsto q^\varphi \overset{\text{def}}{=} \min \{ x \in D \mid q \leq \varphi(x) \} \).

For any distributive 0-lattice \(D \), we denote by \(\text{BR}(D) \) the generalized Boolean algebra \(R\)-generated by \(D \) in the sense of Grätzer [6, § II.4] (aka the Boolean envelope of \(D \)). Equivalently, \(\text{BR}(D) \) is the universal generalized Boolean algebra of \(D \). Up to isomorphism, \(\text{BR}(D) \) is the unique generalized Boolean algebra generated by \(D \) as a 0-sublattice. The assignment \(D \mapsto \text{BR}(D) \) canonically extends to a functor, which turns 0-lattice embeddings to embeddings of generalized Boolean algebras. For a 0-sublattice \(D \) of a distributive lattice \(E \) with 0, we will thus identify \(\text{BR}(D) \) with its canonical image in \(\text{BR}(E) \). If \(D \) is a finite distributive lattice and \(P \overset{\text{def}}{=} \text{Ji}D \), then the assignment \(x \mapsto P \downarrow x \) defines an isomorphism from \(D \) onto the lattice \(\text{Down}P \) of all lower subsets of \(P \). Since the universal Boolean algebra of \(\text{Down}P \) is the powerset lattice of \(P \), with each \(\{ p \} = (\downarrow p) \setminus (\uparrow p)_* \), it follows that the atoms of \(\text{BR}(D) \) are exactly the \(p \wedge \neg p_* \) for \(p \in \text{Ji}D \).

Lemma 2. The following statements hold, for any distributive 0-lattice \(D \):

1. For all \(a_1, a_2, b_1, b_2 \in D \), \(a_1 \wedge \neg b_1 \leq a_2 \wedge \neg b_2 \) within \(\text{BR}(D) \) iff \(a_1 \leq a_2 \lor b_1 \) and \(a_1 \wedge b_2 \leq b_1 \) within \(D \). (This does not require \(D \) be finite.)

2. If \(D \) is finite, then \(a \wedge \neg b = \vee \{ p \wedge \neg p_* \mid p \in \text{Ji}D, p \leq a, p \not\leq b \} \) within \(\text{BR}(D) \), whenever \(a, b \in D \).

Lemma 3. Let \(D \) and \(L \) be distributive 0-lattices with \(D \) finite, let \(\varphi: D \rightarrow L \) be a 0-lattice homomorphism, let \(a, b \in D \), and let \(c \in L \). Then \(\varphi(a) \leq \varphi(b) \lor c \) iff \(\varphi(p) \leq \varphi(p_*) \lor c \) whenever \(p \in \text{Ji}D \) with \(p \leq a \) and \(p \not\leq b \).

Proof. \(\varphi(a) \leq \varphi(b) \lor c \) iff \(\text{BR}(\varphi)(a \wedge \neg b) \leq c \), iff \(\text{BR}(\varphi)(p \wedge \neg p_*) \leq c \) whenever \(p \in \text{Ji}D \) such that \(p \leq a \) and \(p \not\leq b \) (we apply Lemma 2(2)). Now \(\text{BR}(\varphi)(p \wedge \neg p_*) \leq c \) iff \(\varphi(p) \leq \varphi(p_*) \lor c \). \(\square \)

For any elements \(x \) and \(y \) in a lattice \(E \) let \(x \rightarrow_E y \) denote the largest \(z \in E \), if it exists, such that \(x \wedge z \leq y \) (it is also called the pseudocomplement of \(x \) relative to \(y \)); so \(\rightarrow_E \) is the Heyting implication on \(E \). If \(\rightarrow_E \) is defined on every pair of elements then we say that \(E \) is a generalized Heyting algebra.

If, in addition, \(E \) has a bottom element, then we say that \(E \) is a Heyting algebra. Every Heyting algebra is a bounded distributive lattice, and every finite distributive lattice is a Heyting algebra.\(^1\)

Dually, we denote by \(x \wedge_E y \) the least \(z \in E \), if it exists, such that \(x \leq y \lor z \). It is the dual pseudocomplement of \(y \) relative to \(x \).

A lattice homomorphism \(\varphi: D \rightarrow E \) is closed if whenever \(a_0, a_1 \in D \) and \(b \in E \), if \(\varphi(a_0) \leq \varphi(a_1) \lor b \), then there exists \(x \in D \) such that \(a_0 \leq a_1 \lor x \).

\(^1\) Strictly speaking we should set the Heyting implication \(\rightarrow \) apart from the lattice signature, thus for example stating that “every finite distributive lattice expands to a unique Heyting algebra”. The shorter formulation, which we shall keep for the sake of simplicity, reflects a standard abuse of terminology that should create no confusion here.
and \(\varphi(x) \leq b \). If \(\varphi \) is an inclusion map we will say that \(D \) is a closed sublattice of \(E \).

The following folklore lemma, whose easy proof we leave to the reader as an exercise, enables to read, on the Birkhoff dual, whether a given homomorphism, between finite distributive lattices, is a homomorphism of Heyting algebras or a closed homomorphism, respectively.

Lemma 4. The following statements hold, for any finite distributive lattices \(D \) and \(E \) and any 0, 1-lattice homomorphism \(\varphi: D \to E \):

1. \(\varphi \) is a homomorphism of Heyting algebras iff for all \(p \in \text{J}_iD \) and all \(q \in \text{J}_iE \), if \(p \leq q^{\varphi} \), then there exists \(x \in \text{J}_iE \) such that \(x \leq q \) and \(x^{\varphi} = p \).
2. \(\varphi \) is closed iff for all \(p \in \text{J}_iD \) and all \(q \in \text{J}_iE \), if \(q^{\varphi} \leq p \), then there exists \(x \in \text{J}_iE \) such that \(q \leq x \) and \(x^{\varphi} = p \).

2.2. The lattices \(\text{Bool}(\mathcal{F}, \Omega) \), \(\text{Op}(\mathcal{F}, \Omega) \), and \(\text{Op}^- (\mathcal{F}, \Omega) \)

For more detail on this subsection we refer the reader to Wehrung [15,18]. For a right vector space \(E \) over a totally ordered division ring \(k \), a map \(f: E \to k \) is an affine functional if \(f - f(0) \) is a linear functional. Note that the affine functionals on \(E \) form a left vector space over \(k \).

For functions \(f \) and \(g \) with common domain \(\Omega \) and values in a poset \(T \), we set \([f \leq g] \stackrel{\text{def}}{=} \{ x \in \Omega \mid f(x) \leq g(x) \} \); and similarly for \([f < g] \), \([f = g] \), \([f \neq g] \), and so on. Throughout this paper, \(f \) and \(g \) will always be restrictions, to a convex set \(\Omega \), of continuous affine functionals on a topological vector space \(E \) over a totally ordered division ring \(k \). For a set \(\mathcal{F} \) of maps from \(\Omega \) to \(k \), we will denote by \(\text{Bool}(\mathcal{F}, \Omega) \) the Boolean subalgebra of the powerset of \(\Omega \) generated by all subsets \([f > 0] \) and \([f < 0] \) for \(f \in \mathcal{F} \). As in [18], we will also denote by \(\text{Op}^- (\mathcal{F}, \Omega) \) the 0-sublattice of \(\text{Bool}(\mathcal{F}, \Omega) \) generated by all \([f > 0] \) and \([f < 0] \) where \(f \in \mathcal{F} \), and then set \(\text{Op}(\mathcal{F}, \Omega) \stackrel{\text{def}}{=} \text{Op}^- (\mathcal{F}, \Omega) \cup \{ \Omega \} \). Evidently, \(\text{Bool}(\mathcal{F}, \Omega) \) is generated, as a Boolean algebra, by its 0-sublattice \(\text{Op}(\mathcal{F}, \Omega) \); so \(\text{Bool}(\mathcal{F}, \Omega) = \text{BR}(\text{Op}(\mathcal{F}, \Omega)) \).

For any set \(I \) and any totally ordered division ring \(k \), we will denote by \(k^{(I)} \) the collection of all \(I \)-indexed families of elements in \(k \) that vanish outside some finite subset of \(I \). We will occasionally identify every element \(a = (a_i \mid i \in I) \in k^{(I)} \) with the corresponding (continuous) linear functional \(\sum_{i \in I} a_i \delta_i \) (where \(\delta_i \) denotes the \(i \)th projection), thus justifying such notations as \(\text{Bool}(k^{(I)}, k^{(I)}) \) and \(\text{Op}(k^{(I)}, k^{(I)}) \); observe that in those notations, the first (resp., second) occurrence of \(k^{(I)} \) is endowed with its structure of left (resp., right) vector space over \(k \). Moreover, in its second occurrence, \(k^{(I)} \) is endowed with the coarsest topology making all canonical projections \(\delta_i \) continuous.

Denote by \(F_\ell(I, k) \) the free left \(k \)-vector lattice on a set \(I \). As observed in Baker [1], Bernau [2], Madden [9, Ch. III] (see also Wehrung [18, page 13] for a summary), \(F_\ell(I, k) \) canonically embeds into \(k^{k^{(I)}} \). We sum up a few related facts.

2 “Right” and “left” appear to have been unfortunately mixed up at various places in [18], particularly on pages 12 and 13. Since this is mostly a matter of choosing sides, that paper’s results are unaffected. We nonetheless attempt to fix this here.
Lemma 5. (Folklore)

(1) $F_\ell(I, k)$ is isomorphic to the sublattice of $k^{k(I)}$ generated by all linear functionals $\sum_{i \in I} a_i \delta_i$ associated to elements $a \in k^{(I)}$, via the assignment $i \mapsto \delta_i$.

(2) The assignment $(x) \mapsto [x \neq 0]$ defines an isomorphism from the lattice $\text{Id}_c F_\ell(I, k)$, of all principal ℓ-ideals of the left k-vector lattice $F_\ell(I, k)$, onto $\text{Op}^-(k^{(I)}, k^{(I)})$.

3. Consonance kernels

In this section we introduce a tool, the consonance kernels, expressing the consonance of the image a lattice homomorphism via its behavior on join-irreducible elements.

Definition 1. Let D and L be distributive lattices, with D finite and L with a zero element, and let $f : D \to L$ be a join-homomorphism. Set $P \overset{\text{def}}{=} \text{Ji} D$. A consonance kernel for f is a family $(e_p \mid p \in P)$ of elements of L such that

$$
(3.1) \quad f(p) = f(p_\ast) \lor e_p, \quad \text{whenever } p \in P; \\
(3.2) \quad e_p \land e_q = 0, \quad \text{whenever } p, q \in P \text{ are incomparable}.
$$

We then set $x \otimes_y \overset{\text{def}}{=} \bigvee \{e_p \mid p \in (P \downarrow x) \setminus (P \downarrow y)\}$, whenever $x, y \in D$.

Lemma 6. In the context of Definition 1, $f(x) = f(x \land y) \lor (x \otimes y)$ whenever $x, y \in D$. Moreover, f is a lattice homomorphism.

Proof. Setting $c \overset{\text{def}}{=} f(x \land y) \lor (x \otimes y)$, it is obvious that $c \leq f(x)$. In order to prove that $f(x) \leq c$, it suffices to prove that $f(p) \leq c$ whenever $p \in P \downarrow x$. By way of contradiction, let p be a minimal element of $P \downarrow x$ with $f(p) \not\leq c$. Since $p \leq y$ implies $f(p) \leq f(x \land y) \leq c$, we get $p \in (P \downarrow x) \setminus (P \downarrow y)$, so $f(p) = f(p_\ast) \lor e_p$. Since $e_p \leq c$, we get $f(p_\ast) \not\leq c$. The case $p_\ast = 0$ is impossible, because $f(0) \leq f(x \land y) \leq c$. Since f is a join-homomorphism, we get $f(p_\ast) = \bigvee \{f(q) \mid q \in P \downarrow p_\ast\}$. By the minimality assumption on p, we get $f(q) \leq c$ for every $q \in P \downarrow p_\ast$, hence $f(p_\ast) \leq c$, a contradiction.

Now let $x, y \in D$. By the result of the paragraph above, $f(x) = f(x \land y) \lor (x \otimes y)$ and $f(y) = f(x \land y) \lor (y \otimes x)$. Due to (3.2), $(x \otimes y) \land (y \otimes x) = 0$; whence $f(x) \land f(y) = f(x \land y)$. \qed

Lemma 7. Let D and L be distributive lattices, with D finite and L with a zero element. Then a lattice homomorphism $f : D \to L$ has a consonance kernel iff the range of f is consonant in L.

Proof. Suppose first that the range of f is consonant in L. Since D is finite, there exists a finite 0-sublattice K of L, containing $f[D]$, such that the range of f is consonant in K. Setting $e_p \overset{\text{def}}{=} f(p) \setminus_K f(p_\ast)$ for each $p \in \text{Ji} D$, Condition (3.1) is obviously satisfied. Let $p, q \in \text{Ji} D$ be incomparable. From $p \land q \leq p_\ast$ we get

$$
e_p = f(p) \setminus_K f(p_\ast) \leq f(p) \setminus_K f(p \land q) = f(p) \setminus_K (f(p)$$

\cite{Birkhäuser}
\[\wedge f(q) = f(p) \setminus_K f(q), \]

and, similarly, \(e_q \leq f(q) \setminus_K f(p) \). Since \(f(p) \) and \(f(q) \) are consonant within \(K \), we get \((f(p) \setminus_K f(q)) \wedge (f(q) \setminus_K f(p)) = 0 \); whence \(e_p \wedge e_q = 0 \).

Let, conversely, \((e_p \mid p \in \text{Ji} D) \) be a consonance kernel for \(f \) and set \(P \defeq \text{Ji} D \). Let \(x, y \in D \), set \(u \defeq x \otimes_E y \) and \(v \defeq y \otimes_E x \). It follows from Lemma 6 that \(f(x) \leq f(y) \vee u \) and \(f(y) \leq f(x) \vee v \). Moreover, for all \(p \in (P \downarrow x) \setminus (P \downarrow y) \) and \(q \in (P \downarrow y) \setminus (P \downarrow x) \), \(p \) and \(q \) are incomparable, thus \(e_p \wedge e_q = 0 \); whence \(u \wedge v = 0 \). Therefore, the pair \((u, v)\) witnesses the consonance of \(f(x) \) and \(f(y) \) in \(L \).

\[\square \]

4. An extension lemma for infinite distributive lattices

This section’s main result, Lemma 10, states conditions under which a homomorphism \(f : D \to L \) of distributive lattices can be extended to a homomorphism \(f : E \to L \) in case \(E \) is generated over \(D \) by two disjoint elements \(a \) and \(b \). One of its main improvements, over the original [15, Lemma 4.2] it stems from, is the possibility of \(D \) being infinite.

Definition 2. A 0, 1-sublattice \(D \) of a bounded distributive lattice \(E \) is a semi-Heyting sublattice if for all \(x, y \in D \), \(x \to_D y \) and \(x \to_E y \) both exist and are equal.

In particular, every semi-Heyting sublattice of \(E \) is a Heyting algebra (\(E \) itself may not be a Heyting algebra).

Notation 1. Let \(D \) be a finite 0, 1-sublattice of a bounded distributive lattice \(E \) and let \(f : D \to L \) be a 0-lattice homomorphism. We set

\[f_{\vec{e}}(a) \defeq \bigvee \{ e_p \mid p \in \text{Ji} D, \ p \leq p_* \vee a \} \]

for every consonance kernel \(\vec{e} \) of \(f \) and every \(a \in E \).

The following lemma arises from Wehrung [18, Remark 4.6]. We include a proof for convenience.

Lemma 8. Let \(D \) be a finite semi-Heyting sublattice of a bounded distributive lattice \(E \), let \(f : D \to L \) be a 0-lattice homomorphism, and let \(a, b \in E \) such that \(a \wedge b = 0 \). Then any join-irreducible elements \(p \) and \(q \) in \(D \) such that \(p \leq p_* \vee a \) and \(q \leq q_* \vee b \) are incomparable. In particular, \(f_{\vec{e}}(a) \wedge f_{\vec{e}}(b) = 0 \) for any consonance kernel \(\vec{e} \) for \(f \).

Proof. Suppose otherwise, say \(p \leq q \); thus \(p^\ddagger \leq q^\ddagger \). From \(a \wedge b = 0 \) we get \(p \wedge b \leq (p_* \vee a) \wedge b = p_* \wedge b \leq p_* \), thus, by assumption, \(b \leq p \to_E p_* = p \to_D p_* = p^\ddagger \). Since \(p^\ddagger \leq q^\ddagger \), we get \(b \leq q^\ddagger \), so \(q \leq q_* \vee b \leq q^\ddagger \), a contradiction.

\[\square \]

The following lemma ought to be well known, however we could not locate any reference for it. We include a proof for convenience.
Lemma 9. Let D and L be lattices, with L distributive, and let X a generating subset of D. Then a map $f: X \to L$ can be extended to a (necessarily unique) lattice homomorphism $g: D \to L$ if and only if
\[
\bigwedge_{i=1}^{m} x_i \leq \bigvee_{j=1}^{n} y_j \implies \bigwedge_{i=1}^{m} f(x_i) \leq \bigvee_{j=1}^{n} f(y_j)
\] (4.1)
for all integers $m, n > 0$ and all $x_1, \ldots, x_m, y_1, \ldots, y_n \in X$.

Proof. Let us express (4.1) by stating that the map f is consistent (on its domain X). Clearly, it suffices to prove that f extends to a consistent map defined on the whole lattice D.

Set $\mathcal{C} \overset{\text{def}}{=} \{ Y \subseteq D \mid X \subseteq Y \text{ and } f \text{ extends to } Y \to L \}$. Trivially, $X \in \mathcal{C}$. Let $Y \in \mathcal{C}$ with unique consistent extension $g: Y \to L$ of f and let $U \subseteq Y$ be nonempty finite; set $v \overset{\text{def}}{=} \bigwedge U$. We claim that $Y \cup \{ v \} \in \mathcal{C}$. The case where $v \in Y$ being trivial, we may assume that $v \notin Y$. Denote by $h: Y \cup \{ v \} \to L$ the unique extension of g such that $h(v) = \bigwedge g[U]$. We need to prove that h is the unique consistent extension of f to Y. Since g witnesses that Y belongs to \mathcal{C}, any consistent extension h' of f to $Y \cup \{ v \}$ extends g, so it also satisfies $h'(v) = \bigwedge g[U]$ (consider the inequality $\bigwedge U \leq v$ together with the monotonicity of h'), and so it extends h. The uniqueness statement on h follows. It thus remains to verify that h is consistent. Several cases need to be considered, among which the only nontrivial one arises from an inequality $\bigwedge_{i=1}^{m} x_i \leq \bigvee_{j=1}^{n} y_j \vee v$ where $m > 0$, $n \geq 0$, and all $x_i, y_j \in Y$. For each $u \in U$, it follows from the inequality $\bigwedge_{i=1}^{m} x_i \leq \bigvee_{j=1}^{n} y_j \vee u$ that $\bigwedge_{i=1}^{m} g(x_i) \leq \bigvee_{j=1}^{n} g(y_j) \vee g(u)$; whence, meeting over $u \in U$ and applying the distributivity of L, $\bigwedge_{i=1}^{m} g(x_i) \leq \bigvee_{j=1}^{n} g(y_j) \vee h(v)$, as required for our claim. By iterating that process and since \mathcal{C} is obviously closed under directed unions, it follows that the closure X^\wedge of X under finite meets belongs to \mathcal{C}. Dually, the closure X^\vee of X under finite joins also belongs to \mathcal{C}. Since \mathcal{C} is closed under directed unions and X generates D, it follows that $D = \bigcup \{ X^{(\wedge \vee)^n} \mid n < \omega \}$ belongs to \mathcal{C}.

We are now reaching this section’s main goal.

Lemma 10 (Main Extension Lemma). Let D be a semi-Heyting sublattice of a bounded distributive lattice E and let $a, b \in E$. Setting $B \overset{\text{def}}{=} \text{BR}(D)$, we assume the following:

1. E is generated, as a lattice, by $D \cup \{ a, b \}$.
2. $a \land b = 0$.
3. All elements $a_B, b_B, (a \lor b)_B, a^B$, and b^B are defined.
4. $(a \lor b)_B = a_B \lor b_B$.

Then
\[
c^B \in D \text{ whenever } c \in \{ a, b, a \lor b \}.
\] (4.2)
Further, for every 0-lattice homomorphism $f: D \to L$ and all $\alpha, \beta \in L$, the following conditions are equivalent.

\[c^B \in D \quad \text{whenever} \quad c \in \{ a, b, a \lor b \}. \]
(i) \((\alpha, \beta) = (g(a), g(b))\) for some lattice homomorphism \(g: E \to L\) extending \(f\);
(ii) \(\alpha \leq f(a^B), \beta \leq f(b^B), \alpha \wedge \beta = 0\), \(\text{BR}(f)(a_B) \leq \alpha\), and \(\text{BR}(f)(b_B) \leq \beta\).

Moreover, for any finite semi-Heyting sublattice \(D'\) of \(D\) such that \(\{a_B, b_B\} \subseteq \text{BR}(D')\) and \(\{a^B, b^B\} \subseteq D'\), and any consonance kernel \(\bar{c}\) of \(f' \overset{\text{def}}{=} f|_{D'}\), the pair \((f'_\alpha(a), f'_\beta(b))\) satisfies (ii).

Note. By the same token as the one used in the proof of Lemma 3, the condition that \(\text{BR}(f)(a_B) \leq \alpha\) is equivalent to saying that for all \(x, y \in D\), \(x \leq y \lor a \Rightarrow f(x) \leq f(y) \lor \alpha\). By Lemma 3, if \(D\) is finite, then it suffices to restrict ourselves to the case where \(x = p \in J_1 D\) and \(y = p^*\). Note that \(\text{BR}(f)(a_B)\) is an element of \(\text{BR}(L)\), usually not in \(L\), so it cannot be taken as the lowest possible value of \(\alpha\) a priori.

Proof. We start by proving (4.2). By (3), there is an expression of the form \(c^E = \bigwedge_{i<n}(\neg u_i \lor v_i)\) (within \(B\)) where \(n < \omega\) and all \(u_i, v_i \in D\). For each \(i < n, c \leq \neg u_i \lor v_i\) within \(\text{BR}(E)\), thus \(u_i \land c \leq v_i\), and thus, since \(D\) is a semi-Heyting sublattice of \(E\), \(c \leq u_i \to_E v_i = u_i \to_D v_i\); whence, setting \(w = \bigwedge_{i<n}(u_i \to_D v_i)\), we get \(c \leq w\). For each \(i < n, w \leq u_i \to_D v_i\) with \(w \in D\), thus \(u_i \land w \leq v_i\), so \(w \leq \neg u_i \lor v_i\) within \(B\), and so \(w \leq c^B\). Since \(w \in D\), it follows that \(w = c^B = c^D\).

Now it is obvious that for every lattice homomorphism \(g: E \to L\) extending \(f\), the pair \((\alpha, \beta) \overset{\text{def}}{=} (g(a), g(b))\) satisfies \(\alpha \leq f(a^B), \beta \leq f(b^B), \alpha \wedge \beta = 0\), \(\text{BR}(f)(a_B) \leq \alpha\), and \(\text{BR}(f)(b_B) \leq \beta\). Let, conversely, \((\alpha, \beta)\) be such a pair.

By virtue of Lemma 9, we need to verify the implication (4.1) for \(x_i, y_j \in D \cup \{a, b\}\), at the unique extension of \(f\) to \(D \cup \{a, b\}\) sending \(a\) to \(\alpha\) and \(b\) to \(\beta\) (note that \(a \in D \Rightarrow \alpha = f(a)\) and \(b \in D \Rightarrow \beta = f(b)\)). Since \(f\) is a lattice homomorphism, we may assume that exactly one \(x_i\) and exactly one \(y_j\) belong to \(D\). Since \(a \land b = 0\), the inequality \(x \land a \leq y \lor b\) is equivalent to \(x \land a \leq y\). Hence (4.1) boils down to the equation \(\alpha \land \beta = 0\) (which is assumed) and the following implications:

\[
\begin{align*}
x \leq y \lor a & \Rightarrow f(x) \leq f(y) \lor \alpha; \quad (4.3) \\
x \leq y \lor b & \Rightarrow f(x) \leq f(y) \lor \beta; \quad (4.4) \\
x \leq y \lor a \lor b & \Rightarrow f(x) \leq f(y) \lor \alpha \lor \beta; \quad (4.5) \\
x \land a \leq y & \Rightarrow f(x) \land \alpha \leq f(y); \quad (4.6) \\
x \land b \leq y & \Rightarrow f(x) \land \beta \leq f(y). \quad (4.7)
\end{align*}
\]

The implications (4.3) and (4.4) follow from \(\text{BR}(f)(a_B) \leq \alpha\) and \(\text{BR}(f)(b_B) \leq \beta\). Owing to Condition (4), the implication (4.5) follows from the inequalities

\[
\text{BR}(f)((a \lor b)_B) = \text{BR}(f)(a_B \lor b_B) = \text{BR}(f)(a_B) \lor \text{BR}(f)(b_B) \leq \alpha \lor \beta.
\]

Suppose that \(x \land a \leq y\). Since \(D\) is a semi-Heyting sublattice of \(E\), it follows that \(a \leq x \to_E y = x \to_D y\), thus, using (4.2), \(a^D = a^B \leq x \to_D y\). It follows that \(\alpha \leq f(a^B) \leq f(x \to_D y)\), thus \(f(x) \land \alpha \leq f(x) \land f(x \to_D y) \leq f(y)\). The implication (4.6) follows. The proof of (4.7) is similar.
For the remainder of the proof, let D' be a finite semi-Heyting sublattice of D such that $\{a^B, b^B\} \subseteq BR(D')$ and $\{a^B, b^B\} \subseteq D'$ (cf. Fig. 1), and let \vec{c} be a consonance kernel of $f' \overset{\text{def}}{=} f|_{D'}$. Set $(\alpha, \beta) \overset{\text{def}}{=} (f'_\vec{c}(a), f'_\vec{c}(b))$.

For every $p \in Ji(D')$, $p \leq p^* \lor a$ (within E) implies that $p \leq p^* \lor a^B$ (within D'), thus, since $p \in Ji(D')$, we get $p \leq a^B$, whence $e_p \leq f(p) \leq f(a^B)$. This proves that $\alpha \leq f(a^B)$. Similarly, $\beta \leq f(b^B)$. Further, the equation $\alpha \land \beta = 0$ follows from Lemma 8.

Let $c \in \{a, b\}$ and let $x, y \in D$ such that $x \leq y \lor c$, we need to prove that $f(x) \leq f(y) \lor f'_\vec{c}(c)$. From $x \land \neg y \leq c$ (within BR(E)) it follows that $x \land \neg y \leq c_B$ (within BR(D)). Set $X \overset{\text{def}}{=} \{p \in Ji(D') \mid p \land \neg p^* \leq c_B\} = \{p \in Ji(D') \mid p \leq p^* \lor c\}$. By (3) and since BR($D'$) is a finite Boolean algebra with atoms $p \land \neg p^*$ for $p \in Ji(D')$,

$$c_B = \bigvee \{p \land \neg p^* \mid p \in X\} \text{ within } B. \quad (4.8)$$

By the definition of X,

$$f(p) = f(p^*) \lor e_p \leq f(p^*) \lor f'_\vec{c}(c) \quad \text{whenever } p \in X,$$

so $f(p) \land \neg f(p^*) \leq f'_\vec{c}(c)$ within BR(L), whenever $p \in X$; whence, using (4.8),

$$\text{BR}(f)(c_B) = \bigvee \{f(p) \land \neg f(p^*) \mid p \in X\} \leq f'_\vec{c}(c) \quad \text{within } \text{BR}(L). \quad (4.9)$$

Using (4.9), we get

$$f(x) \land \neg f(y) = \text{BR}(f)(x \land \neg y) \leq \text{BR}(f)(c_B) \leq f'_\vec{c}(c),$$

so $f(x) \leq f(y) \lor f'_\vec{c}(c)$. \hfill \qed

5. Adjunctions between lattices $\text{Bool}(\mathcal{F}, k(I))$

Throughout this section k will be a totally ordered division ring. We shall state a few properties of Boolean algebras of the form $\text{Bool}(\mathcal{F}, \Omega)$, mostly related to relative completeness between such algebras.

The following observation is contained in the proof of Wehrung [15, Lemma 6.6].
Lemma 11. Let Ω be a convex subset in a right vector space \mathbb{E} over k and let $F \cup \{a\}$ be a set of affine functionals on \mathbb{E}. Set $A^+ \overset{\text{def}}{=} [a > 0]$ and $A^- \overset{\text{def}}{=} [a < 0]$. Then for every $U \in \text{Bool}(F, \Omega)$, if $U \subseteq A^+ \cup A^-$, then there are $U^+, U^- \in \text{Bool}(F, \Omega)$ such that $U = U^+ \cup U^-$ whereas $U^+ \subseteq A^+$ and $U^- \subseteq A^-$. Proof. Since U is the union of finitely many cells, each of which being the intersection of finitely many sets of the form either $[±f > 0]$ or $[±f \geq 0]$ where $f \in F$, it suffices to consider the case where U is such a cell. If U meets both A^+ and A^-, pick $x \in U \cap A^+$ and $y \in U \cap A^-$; so $a(x) > 0$ and $a(y) < 0$. Then $x \overset{\text{def}}{=} (a(y) - a(x))^{-1} a(y)$ belongs to the open interval $]0, 1[$ and $a(x\lambda + y(1-\lambda)) = 0$, that is, $x\lambda + y(1-\lambda) \notin A^+ \cup A^-$. On the other hand, since U is convex, $x\lambda + y(1-\lambda) \in U$; a contradiction since $U \subseteq A^+ \cup A^-$. Therefore, U is disjoint either from A^+ or from A^-, thus it is contained either in A^+ or in A^-. Corollary 1. In the context of Lemma 1, $(A^+ \cup A^-)_{\text{Bool}(F, \Omega)}$ exists iff both $(A^+)_{\text{Bool}(F, \Omega)}$ and $(A^-)_{\text{Bool}(F, \Omega)}$ exist, and then $(A^+ \cup A^-)_{\text{Bool}(F, \Omega)} = (A^+)_{\text{Bool}(F, \Omega)} \cup (A^-)_{\text{Bool}(F, \Omega)}$. In what follows we will identify every element $f \in k(I)$ with the associated linear functional on $k(I)$, that is, $x \mapsto \sum_{i \in I} f_i x_i$. Moreover, whenever $I \subseteq J$, we will identify $k(I)$ with the subset of $k(J)$ consisting of all vectors with support contained in I. Notation 2. For $I \subseteq J$, we define mappings
\[
\varepsilon_{I,J} : \text{Pow } k(I) \rightarrow \text{Pow } k(J), \quad X \mapsto \{y \in k(J) \mid y\upharpoonright_I \in X\},
\]
\[
\rho_{I,J} : \text{Pow } k(J) \rightarrow \text{Pow } k(I), \quad Y \mapsto \{y\upharpoonright_I \mid y \in Y\}.
\]
It is straightforward to verify that $\varepsilon_{I,J}$ is an embedding of Bool algebras with left adjoint $\rho_{J,I}$ (i.e., $\rho_{J,I}(Y) \subseteq X$ iff $Y \subseteq \varepsilon_{I,J}(X)$), whenever $X \in \text{Pow } k(I)$ and $Y \subseteq k(J)$. In particular, $\rho_{I,J}$ is a $(\vee, 0)$-homomorphism and $\rho_{J,I}\varepsilon_{I,J}$ is the identity map on $\text{Pow } k(I)$. Lemma 12. Let I and J be sets with $I \subseteq J$. Then $\rho_{J,I}[\text{Bool}(k(J), k(J))] = \text{Bool}(k(I), k(J))$. Proof. For every $X \in \text{Bool}(k(I), k(I))$, $X = \rho_{J,I}\varepsilon_{I,J}(X)$ with $\varepsilon_{I,J}(X) \in \text{Bool}(k(J), k(J))$, thus $X \in \rho_{J,I}[\text{Bool}(k(J), k(J))]$; whence $\rho_{J,I}[\text{Bool}(k(J), k(J))]$ contains $\text{Bool}(k(I), k(I))$. Let us establish the converse containment. Since $\rho_{J,I}$ is a $(\vee, 0)$-homomorphism, it suffices to prove that $\rho_{J,I}(Y) \in \text{Bool}(k(I), k(I))$ whenever Y is a set of the form $\bigcap_{i < m}[a_i \geq 0] \cap \bigcap_{j < n}[b_j > 0]$ where $m, n < \omega$ and all $a_i, b_j \in k(J)$. Set $a_i' \overset{\text{def}}{=} a_i\upharpoonright_I$ and $a_i'' \overset{\text{def}}{=} a_i\upharpoonright_{J \setminus I}$, for all $i < m$, and define similarly b_j' and b_j'' for $j < n$. An element $x \in k(I)$ belongs to $\rho_{J,I}(Y)$ iff
there exists $z \in \k^{(J \setminus I)}$ such that each $a_i'(x) + a_i''(z) \geq 0$ and each $b'_j(x) + b''_j(z) > 0$. The set V of all $(m + n)$-tuples of elements of \k of the form $(a'_0(z), \ldots, a'_{m-1}(z), b'_0(z), \ldots, b''_{n-1}(z))$ is a vector subspace of \k^{m+n}. Hence, an element $x \in \k^{(I)}$ belongs to $\rho_{I,1}(Y)$ if there exists $u \in V$ such that $a'_i(x) + u_i \geq 0$ whenever $i < m$ and $b'_j(x) + u_{m+j} > 0$ whenever $j < n$. Since membership in V, of any $(m+n)$-tuple of elements of \k, can be expressed by a finite set of linear equations, the statement that a given $x \in \k^{(I)}$ belongs to $\rho_{I,1}(Y)$ can be expressed by a sentence, over the first-order language $\mathcal{L} \overset{\text{def}}{=} \{<, 0, -, +\} \cup \{\cdot, \lambda \mid \lambda \in \k\}$ of ordered Abelian groups augmented with right scalar multiplications by elements of \k, in $(a'_0(x), \ldots, a'_{m-1}(x), b'_0(x), \ldots, b''_{n-1}(x))$. Now every \mathcal{L}-sentence is equivalent, over all nonzero totally ordered right \k-vector spaces, to a quantifier-free \mathcal{L}-sentence (cf. van den Dries [14, Corollary I.7.8]). Therefore, $\rho_{I,1}(Y)$ belongs to $\text{Bool}(\mathcal{F}, \k^{(I)})$ for a finite set \mathcal{F} of linear combinations of the a'_i and the b'_j. □

Proposition 1. Let I and J be sets with $I \subseteq J$ and let D be a finite subset of $\k^{(J)}$. Then $\text{Bool}(\k^{(I)} \cup D, \k^{(J)})$ is relatively complete in $\text{Bool}(\k^{(J)}, \k^{(J)})$.

Proof. We first prove that $\text{Bool}(\k^{(I)}, \k^{(J)})$ is relatively complete in $\text{Bool}(\k^{(J)}, \k^{(J)})$. Let $Y \in \text{Bool}(\k^{(I)}, \k^{(J)})$. Then $Y \subseteq Z \in \text{Bool}(\k^{(I)}, \k^{(J)})$ implies that $\varepsilon_{I,1,\rho_{I,1}}(Y) \subseteq \varepsilon_{I,1,\rho_{I,1}}(Z) = Z$. Thus, $Y^{\text{Bool}(\k^{(I)}, \k^{(J)})} = \varepsilon_{I,1,\rho_{I,1}}(Y)$ which, by Lemma 12, belongs to $\text{Bool}(\k^{(I)}, \k^{(J)})$.

Since $\text{Bool}(\k^{(I)} \cup D, \k^{(J)})$ is finitely generated over $\text{Bool}(\k^{(I)}, \k^{(J)})$, via the additional generators $[d > 0]$ and $[d < 0]$ for $d \in D$, the desired conclusion follows from Lemma 1. □

6. Extending a top-faithful map

In Lemmas 13 and 14 we fix a totally ordered division ring \k. The following lemma takes care of the “domain step” required in the proof of Theorem 4.

Lemma 13. Let I and J be sets, let L be a completely normal distributive 0-lattice, let D be a finite subset of $\k^{(J)}$, and let $e \in \k^{(J)}$. Then every top-faithful 0-lattice homomorphism $f: \text{Op}(\k^{(I)} \cup D, \k^{(J)}) \to L^{\ominus\infty}$ extends to a top-faithful lattice homomorphism $g: \text{Op}(\k^{(I)} \cup D \cup \{e\}, \k^{(J)}) \to L^{\ominus\infty}$ (cf. Fig. 2).

Proof. Set $E \overset{\text{def}}{=} D \cup \{e\}$, $D \overset{\text{def}}{=} \text{Op}(\k^{(I)} \cup D, \k^{(J)})$, $E \overset{\text{def}}{=} \text{Op}(\k^{(I)} \cup E, \k^{(J)})$, $B \overset{\text{def}}{=} \text{BR}(D) = \text{Bool}(\k^{(I)} \cup D, \k^{(J)})$, and $C \overset{\text{def}}{=} \text{Bool}(\k^{(I)} \cup E, \k^{(J)})$. By Proposition 1, B is relatively complete in C. In particular, setting $a \overset{\text{def}}{=} [e > 0]$ and $L^{\ominus\infty} \xrightarrow{g} \text{Op}(\k^{(I)} \cup D \cup \{e\}, \k^{(J)})$.

Diagram 1. A commutative triangle for Lemma 13.
b \equiv [e < 0]$, the elements a^B, b^B, a_B, b_B, and $(a \lor b)_B$ are all defined. By Corollary 1, $(a \lor b)_B = a_B \lor b_B$. Let \mathcal{D}' be a finite subset of $\mathbb{k}^I \cup \mathcal{D}$ such that a^B, b^B, a_B, and b_B all belong to $B' \equiv \text{Bool}(\mathcal{D}', \mathbb{k}^{\mathcal{J}})$. By Wehrung [15, Lemma 5.4] (see also Wehrung [18, Lemma 4.1] for the more general form of that statement), D is a Heyting subalgebra of E and $\mathcal{D}' \equiv \text{Op}(\mathcal{D}', \mathbb{k}^{\mathcal{J}})$ is a Heyting subalgebra of D. Since L is completely normal and $f[\mathcal{D}']$ is finite, it follows from Lemma 7 that $f' \equiv f|_{\mathcal{D}'}$ has a consonance kernel $(e_P \mid P \in \text{Ji} \mathcal{D}')$. By Lemma 10, f extends to a unique lattice homomorphism $g: \mathcal{D} \rightarrow L$ such that $g(x) = f'_e(x)$ whenever $x \in \{a, b\}$. For any $P \in \text{Ji} \mathcal{D}'$ such that $P \subseteq P_x \cup x$, $0 \notin P_x \cup x$, thus $0 \notin P$, that is, P is not the top element of $\text{Op}(\mathbb{k}^I, \mathbb{k}^{\mathcal{J}})$. Since f is top-faithful, it follows that $e_P \leq f(P) < \infty$; whence $f'_e(x) < \infty$. It follows that g is top-faithful.

The “surjectivity step” is much more easily taken care of:

Lemma 14. Let I and J be sets with $I \subset J$ and $J \setminus I$ infinite, let L be a distributive 0-lattice, let \mathcal{D} be a finite subset of \mathbb{k}^I, and let $c \in L$. Then for every top-faithful 0-lattice homomorphism $f: \text{Op}(\mathbb{k}^I \cup \mathcal{D}, \mathbb{k}^{\mathcal{J}}) \rightarrow L^{\cup \infty}$, there are $e \in \mathbb{k}^I$ and a top-faithful lattice homomorphism $g: \text{Op}(\mathbb{k}^I \cup \mathcal{D} \cup \{e\}, \mathbb{k}^{\mathcal{J}}) \rightarrow L^{\cup \infty}$ extending f such that $g(e) = c$.

Proof. Since \mathcal{D} is finite and $J \setminus I$ is infinite, there exists $j \in J \setminus I$ not in the support of any element of \mathcal{D}. Take $e \equiv \delta_j$, the jth canonical projection $\mathbb{k}^{\mathcal{J}} \rightarrow \mathbb{k}$. By the argument of Wehrung [15, Lemma 8.3], $\text{Op}(\mathbb{k}^I \cup \mathcal{D} \cup \{\delta_j\}, \mathbb{k}^{\mathcal{J}})$ is the (internal) free amalgamated sum of $\text{Op}(\mathbb{k}^I \cup \mathcal{D}, \mathbb{k}^{\mathcal{J}})$ and $\{\emptyset, [\delta_j > 0], [\delta_j < 0], [\delta_j \neq 0], \mathbb{k}^{\mathcal{J}}\}$ within the category of bounded distributive lattices. Hence f extends to a unique lattice homomorphism $g: \text{Op}(\mathbb{k}^I \cup \mathcal{D} \cup \{\delta_j\}, \mathbb{k}^{\mathcal{J}}) \rightarrow L$ such that $g([\delta_j > 0]) = c$ and $g([\delta_j < 0]) = 0$. Since $c < \infty$ and f is top-faithful, it follows that g is also top-faithful.

\section{Representing trees of countable lattices}

In this section we will reach the paper’s main goal, Theorem 4, which states that if \mathbb{k} is countable, then every completely normal distributive 0-lattice with at most \aleph_1 elements is a homomorphic image of some $\text{Id}_c F$ for some \mathbb{k}-vector lattice F. In order to reach that result we will in fact prove (cf. Theorem 3) the apparently stronger statement that every diagram of countable completely normal distributive 0-lattices, indexed by a tree in which every element has countable height, can be represented in that fashion.

Towards that goal, our main technical tool is the following “one-step extension” theorem, which relies on the results of Sect. 6, together with the observation that for $\mathcal{F} \subseteq \mathbb{k}^I$, $\text{Op}(\mathcal{F}, \mathbb{k}^I) = \text{Op}^-(\mathcal{F}, \mathbb{k}^I) \cup \{\infty\}$ (where ∞ denotes here the full space \mathbb{k}^I; so the top-faithful maps $\text{Op}(\mathcal{F}, \mathbb{k}^I) \rightarrow L^{\cup \infty}$ are exactly the $g^{\cup \infty}$ where $g: \text{Op}^-(\mathcal{F}, \mathbb{k}^I) \rightarrow L$).

Theorem 1. Let \mathbb{k} be a countable totally ordered division ring, let I and J be countable sets with $I \subset J$ and $J \setminus I$ infinite, let K and L be distributive 0-lattices with L countable and completely normal, let $\varphi: K \rightarrow L$ be a 0-lattice.
homomorphism, and let \(f : \text{Op}^{-}(k^{(I)}, k^{(I)}) \to K \) be a 0-lattice homomorphism. Then there exists a surjective lattice homomorphism \(g : \text{Op}^{-}(k^{(J)}, k^{(J)}) \to L \) such that \(g \circ \varepsilon_{I,J} = \varphi \circ f \).

The settings for Theorem 1 can be read in Fig. 3. Its proof can be followed in Fig. 4.

Proof. An iterative application of Lemmas 13 and 14, similar to the proof of Wehrung [15, Theorem 9.1] but easier since we do not need any analogue of the "closure step" [15, Lemma 7.1]. Let \(k^{(J)} = \{ v_n \mid n < \omega \} \) and \(L = \{ c_n \mid n < \omega \} \). Given an extension \(g_n : \text{Op}^{-}(k^{(I)} \cup D_n, k^{(J)}) \to L \) of \(g_0 \overset{\text{def}}{=} \varphi \circ f \), where \(D_n \subseteq k^{(J)} \) is finite, we extend the top-faithful extension \(g_n^\cup : \text{Op}(k^{(I)} \cup D_n, k^{(J)}) \to L^\cup \) of \(g_n \) to a top-faithful lattice homomorphism \(g_{n+1}^\cup : \text{Op}(k^{(I)} \cup D_{n+1}, k^{(J)}) \to L^\cup \), with \(D_n \subseteq D_{n+1}, v_{|n/2|} \in D_{n+1} \) if \(n \) is even (via Lemma 13), and \(c_{|n/2|} \in \text{rng } g_{n+1} \) if \(n \) is odd (via Lemma 14). The common extension \(g \) of all \(g_n \) is as required. \(\square \)

By virtue of Lemma 5, Theorem 1 can be recast in terms of \(\ell \)-ideal lattices of free vector lattices over \(k \), as follows.

Theorem 2. Let \(k \) be a countable totally ordered division ring, let \(I \) and \(J \) be countable sets with \(I \subset J \) and \(J \setminus I \) infinite, let \(K \) and \(L \) be distributive 0-lattices with \(L \) countable and completely normal, let \(\varphi : K \to L \) be a 0-lattice homomorphism, and let \(f : \text{Id}_c F_\ell I, k \to K \) be a 0-lattice homomorphism. Denote by \(\eta_{I,J} : \text{Id}_c F_\ell I, k \to \text{Id}_c F_\ell J, k \) the canonical embedding. Then there exists a surjective lattice homomorphism \(g : \text{Id}_c F_\ell J, k \to L \) such that \(g \circ \eta_{I,J} = \varphi \circ f \).

By using the functoriality of the assignment \(I \mapsto \text{Id}_c F_\ell I, k \), Theorem 2 can further be extended to diagrams indexed by trees, as follows.

Theorem 3. Let \(k \) be a countable totally ordered division ring, let \(T \) be a tree in which every element has countable height, and let \(L \overset{\text{def}}{=} (L_s, \varphi_{s,t} \mid s \leq t \text{ in } T) \) be a commutative \(T \)-indexed diagram of distributive 0-lattices such that \(L_t \) is countable and completely normal whenever \(t \in T \setminus \{ \bot \} \). Let \(I_{\bot} \subseteq \{ \bot \} \times \omega \) and
set $I_t \overset{\mathrm{def}}{=} (T \downarrow t) \times \omega$ whenever $t \in T \setminus \{ \bot \}$. Set $\bar{I} \overset{\mathrm{def}}{=} (I_s, \eta_{I_s, I_t} \mid s \leq t \text{ in } T)$. Then every 0-lattice homomorphism $\chi_\bot : \operatorname{Id}_c F_\ell(I_\bot, k) \to L_\bot$ extends to a natural transformation $\bar{\chi} : \operatorname{Id}_c F_\ell(\bar{I}, k) \to \bar{L}$ such that χ_t is a surjective lattice homomorphism whenever $t \in T \setminus \{ \bot \}$.

Proof. The proof can be partly followed on Fig. 5.

By Zorn’s Lemma, there exists a maximal lower subset T' of T, containing $\{ \bot \}$, on which the conclusion of Theorem 3 holds. Suppose, by way of contradiction, that $T' \neq T$ and let t be a minimal element of $T \setminus T'$; so $T' \cup \{ t \}$ is also a lower subset of T. Since the height of t is countable, so are the lattice $L_{< t} \overset{\mathrm{def}}{=} \lim_{s < t} L_s$ (with transition maps $\varphi_{s, s'}$ where $s \leq s' < t$ and limiting maps $\varphi_{s, < t} : L_s \to L_{< t}$ for $s < t$) and the set $I_{< t} \overset{\mathrm{def}}{=} \bigcup \{ I_s \mid s < t \}$. The universal property of the colimit ensures the existence of unique 0-lattice homomorphisms

$$\eta_{I_{< t}, I_t} : \operatorname{Id}_c F_\ell(I_{< t}, k) = \lim_{s < t} \operatorname{Id}_c F_\ell(I_s, k) \to \operatorname{Id}_c F_\ell(I_t, k)$$

and $\varphi_{< t, t} : L_{< t} \to L_t$, such that $\eta_{I_{< t}, I_t} \circ \eta_{I_s, I_{< t}} = \eta_{I_s, I_t}$ and $\varphi_{< t, t} \circ \varphi_{s, < t} = \varphi_{s, t}$ whenever $s < t$. Further, the natural transformation $(\chi_s \mid s < t)$ induces a unique 0-lattice homomorphism

$$\chi_t : \operatorname{Id}_c F_\ell(I_{< t}, k) \to L_{< t}$$

such that $\chi_t \circ \eta_{I_s, I_{< t}} = \varphi_{s, t} \circ \chi_s$ whenever $s < t$. By Theorem 2, there exists a surjective lattice homomorphism $\chi_t : \operatorname{Id}_c F_\ell(I_t, k) \to L_t$ such that $\chi_t \circ \eta_{I_{< t}, I_t} = \varphi_{< t, t} \circ \chi_t$. Therefore, for each $s < t$,

$$\chi_t \circ \eta_{I_s, I_{< t}} = \chi_t \circ \eta_{I_{< t}, I_t} \circ \eta_{I_s, I_{< t}} = \varphi_{< t, t} \circ \chi_t \circ \eta_{I_s, I_{< t}} = \varphi_{< t, t} \circ \varphi_{s, < t} \circ \chi_s = \varphi_{s, t} \circ \chi_s.$$

This shows that our conclusion holds at $T' \cup \{ t \}$, in contradiction with the maximality assumption on T'.

□

This leads us to the following positive solution of the problem stated at the end of Wehrung [20].

Theorem 4. Let k be a countable totally ordered division ring. Then every completely normal distributive 0-lattice L with at most \aleph_1 elements is a surjective homomorphic image of $\operatorname{Id}_c F$ for some vector lattice F' over k.
Proof. Write L as the directed union of an ascending ω_1-sequence $\bar{L} = (L_\xi \mid \xi < \omega_1)$ of countable completely normal distributive 0-lattices, with $L_0 = \{0\}$. Theorem 3, applied to the well-ordered chain ω_1, yields an ω_1-indexed commutative diagram $\bar{F} = (F_\xi, f_{\xi, \eta} \mid \xi \leq \eta < \omega_1)$ of k-vector lattices together with a natural transformation $\bar{\chi} : \text{Id}_c \bar{F} \to \bar{L}$ all of whose components are surjective lattice homomorphisms. Letting $F \overset{\text{def}}{=} \lim_{\rightarrow} \bar{F}$, the universal property of the colimit yields a surjective homomorphism from $\text{Id}_c F$ onto L.

Due to Wehrung [18, Corollary 9.5], Theorem 4 cannot be generalized to uncountable totally ordered division rings k. On the other hand, setting k as any countable Archimedean totally ordered field (for example the rationals), $\text{Id}_c F$ is identical to the ℓ-ideal lattice of the underlying ℓ-group of F. Hence,

Corollary 2. Every completely normal distributive 0-lattice L with at most \aleph_1 elements is a surjective homomorphic image of $\text{Id}_c F$ for some Abelian ℓ-group F.

By applying Stone duality for distributive 0-lattices, we obtain the following formulation in terms of spectra.

Corollary 3. Every completely normal generalized spectral space with at most \aleph_1 compact open sets embeds, as a spectral subspace, into the ℓ-spectrum of an Abelian ℓ-group.

Corollary 2 also strengthens Ploščica [11, Theorem 3.2], which states that every completely normal distributive 0-lattice of cardinality at most \aleph_1 is Cevian; that is, it carries a binary operation $(x, y) \mapsto x \setminus y$ such that $x \leq y \lor (x \setminus y) \land (y \setminus x) = 0$, and $x \setminus z \leq (x \setminus y) \lor (y \setminus z)$ for all elements x, y, z. Indeed, $\text{Id}_c G$ is Cevian for any Abelian ℓ-group G, and any homomorphic image of a Cevian lattice is Cevian (cf. Wehrung [16, § 5]).

As in the second author’s paper [15], say that a distributive 0-lattice has countably based differences if for all $a, b \in D$ there exists a countable subset $\{c_n \mid n < \omega\}$ of D such that for all $x \in D$, $a \leq b \lor x$ if and only if there exists $n < \omega$ such that $c_n \leq x$. As observed in the second author’s paper [15], the lattice $\text{Id}_c G$ has countably based differences whenever G is an Abelian ℓ-group. The question thus arises whether every completely normal distributive 0-lattice D with countably based differences is isomorphic to $\text{Id}_c G$ for some Abelian ℓ-group G. The cases where $\text{card} D \leq \aleph_0$ and $\text{card} D \geq \aleph_2$ are settled in Wehrung [15, 16], in the positive and the negative, respectively; the counterexample constructed in [16] is not even Cevian, thus it is not a homomorphic image of any $\text{Id}_c G$. A Cevian counterexample (of size continuum plus) is constructed in Ploščica [11].

The authors’ recent preprint [12] solves the case where $\text{card} D = \aleph_1$, stated as an open problem at the end of [11]: a distributive 0-lattice D of cardinality \aleph_1 is isomorphic to $\text{Id}_c G$ for some Abelian ℓ-group G iff it is completely normal and has countably based differences.

Author contributions Both authors contributed to the results in this paper.
Funding The first author was supported by Slovak VEGA grant 1/0152/22.

Availability of Data and Materials Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

[1] Baker, K.A.: Free vector lattices. Canad. J. Math. 20, 58–66 (1968)
[2] Bernau, S.J.: Free abelian lattice groups. Math. Ann. 180, 48–59 (1969)
[3] Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York (1977)
[4] Delzell, C.N., Madden, J.J.: A completely normal spectral space that is not a real spectrum. J. Algebra 169(1), 71–77 (1994)
[5] Gillibert, P., Wehrung, F.: From objects to diagrams for ranges of functors. Lecture Notes in Mathematics, vol. 2029. Springer, Heidelberg (2011)
[6] Grätzer, G.: Lattice Theory: Foundation. Birkhäuser/Springer Basel AG, Basel (2011)
[7] Heindorf, L., Shapiro, L.B.: Nearly Projective Boolean Algebras. Lecture Notes in Mathematics, Springer-Verlag, Berlin (1994)
[8] Johnstone, P.T.: Stone Spaces, Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press, Cambridge (1982)
[9] Madden, J.J.: Two methods in the study of k-vector lattices. Wesleyan University, USA (1984)
[10] Mundici, D.: Advanced Lukasiewicz Calculus and MV-Algebras, Trends in Logic-Studia Logica Library, vol. 35. Springer, Dordrecht (2011)
[11] Ploščica, M.: Cevian properties in ideal lattices of Abelian ℓ-groups. Forum Math. 33(6), 1651–1658 (2021)
[12] Ploščica, M., Wehrung, F.: A solution to the MV-spectrum Problem in size aleph one, hal-04040959, (2023)
[13] Rump, W., Yang, Y.C.: The essential cover and the absolute cover of a schematic space. Colloq. Math. 114(1), 53–75 (2009)
[14] van den Dries, L.: Tame Topology and o-Minimal Structures. London Mathematical Society Lecture Note Series, vol. 248. Cambridge University Press, Cambridge (1998)
[15] Wehrung, F.: Spectral spaces of countable Abelian lattice-ordered groups. Trans. Am. Math. Soc. 371(3), 2133–2158 (2019)
[16] Wehrung, F.: Cevian operations on distributive lattices. J. Pure Appl. Algebra. 224(4), 106202 (2020)
[17] Wehrung, F.: From noncommutative diagrams to anti-elementary classes. J. Math. Log. 21(2), 2150011 (2021)
[18] Wehrung, F.: Real spectra and ℓ-spectra of algebras and vector lattices over countable fields. J. Pure Appl. Algebra 226(4), 106861 (2022)
[19] Wehrung, F.: Projective classes as images of accessible functors. J. Logic Comput. 33(1), 90–135 (2023)
[20] Wehrung, F.: Real spectrum versus ℓ-spectrum via Brumfiel spectrum. Algebr. Represent. Theory 26(1), 137–158 (2023)

Miroslav Ploščica
Faculty of Natural Sciences
Šafárik’s University
Jesenná 5
Košice 04154
Slovakia
e-mail: miroslav.ploscica@upjs.sk
URL: https://ploscica.science.upjs.sk

Friedrich Wehrung
Normandie Université, UNICAEN
CNRS UMR 6139, LMNO
14000 Caen, France
e-mail: friedrich.wehrung01@unicaen.fr
URL: https://wehrungf.users.lmno.cnrs.fr

Received: December 7, 2022.
Accepted: April 1, 2023.