Total Knee Arthroplasty in Patients with Rheumatoid Arthritis, Severe Osteoporosis, and Genu Valgum

Tao Zhang
the Fourth Affiliated Hospital of Harbin Medical University

Yong Zhou
the Fourth Affiliated Hospital of Harbin Medical University

Rui Zhang
the Fourth Affiliated Hospital of Harbin Medical University

Mi Li
the Fourth Affiliated Hospital of Harbin Medical University

Dapeng Zhang
the Fourth Affiliated Hospital of Harbin Medical University

Naiwu Hu
675934448@qq.com
the Fourth Affiliated Hospital of Harbin Medical University

Research article

Keywords: total knee arthroplasty, rheumatoid arthritis, severe osteoporosis, genu valgum.

DOI: https://doi.org/10.21203/rs.3.rs-58695/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Rheumatoid arthritis (RA) is a systemic inflammatory disease characterized by symmetric, relapsing, or chronic destructive synovitis. The aim of this retrospective study was to assess the clinical benefits of TKA in patients with severe osteoporosis and moderate genu valgum.

Methods: This was a retrospective study of patients with RA, osteoporosis, and genu valgus treated using TKA at the Fourth Affiliated Hospital of Harbin Medical University between 05/2016 and 05/2019. Posterior stable prostheses were used in all patients. The Knee Society Scoring System (KSS) was used.

Results: There were eight males with 10 knees involved and 24 females with 34 knees involved. Healing by first intention was achieved in all patients. All patients received follow-up, with the mean follow up time of 2.9 (1-4) years. At the last follow-up, the KSS clinical score was improved from 32.1±9.8 to 82.0±5.8, (P<0.001). The KSS functional score of the patients was improved from 38.3±9.3 to 88.1±10.7 (P<0.001). The flexion-extension ROM of the knee joint was improved from 81.8°±27.9° to 105.8°±17.0° (P<0.001). The femorotibial angle (FTA) was changed from 23.1°±2.8° to 6.8°±1.9° (P<0.001). Common peroneal nerve paralysis and periarticular infection each occurred in one patient.

Conclusion: TKA via the medial parapatellar approach with proper osteotomy and soft tissue balancing could restore the knee function in patients with RA, severe osteoporosis, and genu valgum.

Background

Rheumatoid arthritis (RA) is a systemic inflammatory disease characterized by symmetric, relapsing, or chronic destructive synovitis [1–3]. There may also be multisystem involvement [1–3]. The condition is more common in women, with onset between ages 30 and 60 years [1–3]. The global prevalence of RA is about 0.24% [4]. The most common complication is musculoskeletal disability from destructive arthritis. Extraarticular complications include rheumatoid nodules, dermal vasculitis, keratoconjunctivitis sicca with associated Sjogren syndrome, interstitial lung disease, pericarditis, mononeuritis multiplex, amyloidosis, and increased cardiovascular mortality, and occur primarily in seropositive patients [1–3].

In addition, patients with RA also generally suffer from severe osteoporosis [5, 6], which in turn may lead to severe pain and functional limitation in the knee joint [7], and thus require total knee arthroplasty (TKA) [8, 9]. Such patients are generally accompanied by joint deformity, especially genu valgum [10], which could increase the difficulties of TKA and increase the risks of developing postoperative complications such as common peroneal nerve injuries and patellar maltracking [8, 9]. Proper intraoperative osteotomy and good soft tissue balancing, as well as gentle and correct procedures, are key factors influencing the postoperative prosthesis stability and restoration of joint functions in patients with RA who underwent TKA [8, 9]. Nevertheless, no studies have yet comprehensively reported the effectiveness of TKA in RA patients with severe osteoporosis and genu valgum.
The aim of this retrospective study was to assess the clinical benefits of TKA in patients with severe osteoporosis and moderate genu valgum at a single center. The results could provide insights into the management of such patients.

Methods

Study design and patients

This was a retrospective study of patients with RA, osteoporosis, and genu valgus treated using TKA at the Orthopedics Department of the Fourth Affiliated Hospital of Harbin Medical University between May 2016 and May 2019. This work has been carried out in accordance with the Declaration of Helsinki (2000) of the World Medical Association. The study was approved by the ethics committee of the Fourth Affiliated Hospital of Harbin Medical University. The need for informed consent was waived by the committee.

The inclusion criteria were: 1) preoperative femorotibial angle of 18°-27°; 2) first-ever TKA; 3) TKA through the medial parapatellar approach; 4) severe osteoporosis, defined as mean bone mineral density (BMD) T-value measured by dual-energy X-ray of -3.7 ± 0.6 [11]; and 5) follow-up of at least 1 year. The exclusion criteria were: 1) femorotibial angle > 27°; 2) received revision surgery; 3) TKA through the lateral parapatellar approach; 4) dual-energy X-ray absorptiometry (DEXA) showed that the T value of BMD >-3; and 5) poor compliance to follow-up.

Data collection

Demographic (age and sex), anthropometric (height, weight, and body mass index (BMI)), and clinical (symptoms and range of motion (ROM)) were collected from the charts. Genu valgus was classified according to the Ellison's valgus deformity classification criteria [12]. The Knee Society Scoring System (KSS) was used [13]. The anteroposterior and lateral X-ray images of the knee joint, as well as the loaded full-length X-ray image of bilateral lower extremities, were taken routinely. DEXA (Lunar DPX-NT; GE, Boston, Massachusetts, USA) was used to measure the bone mineral density (BMD) of the lumbar vertebral body, bilateral femoral necks, Ward's trigonum, and greater trochanter of all the patients on the anteroposterior images. All patients had to meet the diagnostic criteria of osteoporosis, as in the Suggested Diagnostic Criteria of Osteoporosis in Chinese People (2nd edition) issued in 2000 [11].

Surgical methods

All operations were conducted by the same team of surgeons, which was led by a chief surgeon with 28 years’ experience in orthopedics. The first assistant was an associate chief surgeon with 15 years’ experience in orthopedics. Post-stable prosthesis (Link; Germany) was used for all patients, fixed using bone cement. After anesthesia (general anesthesia in 17 patients, and continuous epidural anesthesia in combination with subarachnoid space block anesthesia in 27 patients), the patients were placed in the supine position. Pneumatic tourniquets were applied, with pressure of 45–60 kPa. After continuous use of 90 min, the tourniquets were deflated for 15 min before being inflated again. For all patients, a
longitudinal incision at the medial knee was made, and tibial and femoral osteotomies were conducted through the medial parapatellar approach. The highest point at the medial plateau was used as the reference point for the measurement to ensure that the highest thickness of osteotomy was ≤ 14 mm. Distal femoral osteotomy was conducted with the knee physical valgus angle (KPV) of 5°-7°. For patients with lateral femoral condyle dysplasia or bone defects, the highest osteotomy amount in the distal femur was no more than 16 mm. During joint capsule release, secondary osteotomy was conducted through the tibial plateau or distal femur to increase the flexion-extension gap. The residual tibial plateau or defects of femoral condyle after osteotomy were repaired as follows. For peripheral bone defects with depth < 5 mm, bone cement was filled for reparation. For bone mass cystic degeneration of the tibial plateau induced by severe osteoporosis, which was found in 1 patient in this study, long-stem post-stable prosthesis (LINK, Weiliande Orthopaedic Technology co. LTD, Beijing, China) was used for the reparation. Since simultaneous bilateral TKA involved longer anesthesia, this was only carried out for patients deemed fit to undergo such procedure. Otherwise, staged surgery was performed. The Ranawat technique [14] was used for soft tissue release. According to the tension of the lateral soft tissues, step-wise release from posterior-medial to anterior-lateral was conducted. After osteotomy and release of lateral soft tissues were completed, the prosthesis was tested to assess the stability at the medial and lateral knee joint. No patellar replacement was conducted, but the patellofemoral articular surface was reconditioned. Denervation in the surrounding tissues and resection of surrounding osteophyte were also conducted. For patients with patellar maltracking or accompanied with lateral patellar subluxation, placing of the prostheses of femur and tibia slightly at the lateral side, the release of the lateral patellar soft tissues, and tight suturing at the medial patella were conducted to improve the conditions [15].

Postoperative management

Prophylactic use of antibiotics was performed routinely after operation. A drainage tube was indwelled in the articular cavity. Compression bandaging was conducted. Cryotherapy with an ice bucket for 48 h was conducted. CPM functional training was started at 24 h after operation, with the ROM increased gradually to reach a flexion range of 90° 1 week later. The compression bandaging and the drainage tube were removed 24 h later. Subcutaneous injection of low-molecular-weight heparin calcium injection (Fraxiparine; 0.4 mL/d) was conducted for 14 days. Oral intake of Rivaroxaban (Xarelto) was conducted for two months after discharge to prevent deep venous thrombosis (DVT). A plantar ankle pump was used to prevent lower extremity deep venous thrombosis (LEDVT). The patients were allowed to stand on the floor at 48–72 h after the operation and to receive functional training by walking with the help of walking aid. The suture was removed, and the patients were discharged at 2 weeks after the operation. The patients were followed at 6 weeks, 3 months, 6 months, and 1 year at the outpatient department. The KSS clinical and functional scored, flexion-extension ROM of the knee joint, and full-length X-ray image of bilateral lower extremities were assessed. The patients were also guided with functional training during follow-up. Standard anti-osteoporosis therapy was conducted after operation, including long-term intravenous dripping of bisphosphonates.

Statistical analysis
SPSS 13.0 (SPSS Inc., Chicago, IL, USA) was used for statistical analysis. Data were described with means ± standard deviation and ranges. The paired t-test was used for comparisons pre/post-surgery. Two-sided P-values < 0.05 were considered statistically significant.

Results

Characteristics of the patients (Table 1)

Characteristics	Values
Patients, n	32
Knees, n.	44
Sex, n (%)	Male 8 (25.0)
	Female 24 (75.0)
Age, years, mean (range)	68.5 (54–82)
Weight, kg, mean (range)	68.2 (56–108)
Height, cm, mean (range)	161 (155–177)
Body mass index, kg/m², mean ± standard deviation	26.2 ± 4.1
Genu valgus deformity, range	18°-27°
Course of disease, years, mean (range)	8.2 (3–21)
Flexion-extension range of motion, mean ± standard deviation	81.8°±27.9°
Flexion contracture, mean ± standard deviation	11.4°±10.4°
Knee Society Scoring System, mean ± standard deviation	32.1 ± 9.8
Functional score, mean ± standard deviation	38.3 ± 9.3
Inversion angle, mean ± standard deviation	23.1°±2.8°

There were eight males with 10 knees involved and 24 females with 34 knees involved. The mean age was 68.5 years (54–82 years), the mean body weight was 68.2 kg (56–108 kg), the mean height was 161 cm (155–177 cm), and the mean BMI was 26.2 ± 4.1 kg/m². Genu valgus in all patients were moderate (18°-27°). The mean disease course of the patients was 8.2 years (3–21 years). The major clinical manifestations were knee joint deformity, pain, and limitation of motion. The pain was mainly at the lateral joint space and patellofemoral joint. The flexion-extension ROM of the knee joint was 81.8°
±27.9°, and 17-knee with flexion contracture of 11.4°±10.4°. The preoperative KSS was 32.1 ± 9.8, and the functional score was 38.3 ± 9.3. For all patients, the inversion angle measured by X-ray was 23.1°±2.8°. In addition, the lateral articular space of the femorotibial joint was narrower in all patients.

Surgical characteristics

Among the 12 patients with bilateral knees involved, 5 received simultaneous TKA, while the other 7 received staged TKA, with the mean interval between the two surgeries of 8 months. Healing of the incisions by first intention was achieved in all patients.

Follow-up

All patients received follow-up, with the mean follow up time of 2.9 (1–4) years. At the last follow-up, the KSS clinical score was improved from 32.1 ± 9.8 to 82.0 ± 5.8, (P < 0.001). The KSS functional score of the patients was improved from 38.3 ± 9.3 to 88.1 ± 10.7 (P < 0.001). The flexion-extension ROM of the knee joint was improved from 81.8°±27.9° to 105.8°±17.0° (P < 0.001). The femorotibial angle (FTA) was changed from 23.1°±2.8° to 6.8°±1.9° (P < 0.001) (Table 2).

	Preoperative	Last follow-up	P
KSS clinical score	32.1 ± 9.8	82.0 ± 5.8	< 0.001
KSS functional score	38.3 ± 9.3	88.1 ± 10.7	< 0.001
ROM of knee joint (°)	81.8 ± 27.9	105.8 ± 17.0	< 0.001
FTA (°)	23.1 ± 2.8	6.8 ± 1.9	< 0.001

KSS: Knee Society Scoring System; ROM: range of motion; FTA: femorotibial angle.

Complications

Re-examination with X-ray showed no complications such as the collapse of the tibial plateau, loosening of the prosthesis, and patellar necrosis in the patients (Fig. 1). Common peroneal nerve paralysis appeared after the operation in one patient, for whom nerve nutrition and acupuncture were conducted, and the sensorimotor functions completely recovered 5 months later, but lateral dorsal numbness was still found. Another patient was with periarticular infection at 1 year after the operation. The infection was controlled by a 6-week anti-infectious therapy, and no revision arthroplasty was conducted. Residual genu valgum of 5°-9° was found in three patients, but knee joint functions were good.

Discussion

Patients with RA often have severe osteoporosis [5, 6], which may seriously affect knee functions [7]. TKA might be required [8, 9], but studies have yet comprehensively reported the effectiveness of TKA in RA
patients with severe osteoporosis and genu valgum. Therefore, the aim of the present study was to assess the clinical benefits of TKA in patients with severe osteoporosis and moderate genu valgum at a single center. The results suggest that TKA via the medial parapatellar approach with proper osteotomy and soft tissue balancing could restore the knee function in patients with RA, severe osteoporosis, and genu valgum.

Various criteria are available for the classification of genu valgum, such as the Ellison criteria [12], Krackow criteria [16] Ranawat criteria [14], and SOO criteria [17]. Previous studies have reported that patients suitable for TKA are generally Ellison type I genu valgum. In this study, the Ellison classification of genu valgum in all the patients was type II, and lateral soft tissue release, medial soft tissue tightening, and application of post-stable prosthesis were conducted. All the patients were with high knee joint stability after the operation.

The operations in all patients were through the medial parapatellar approach. The medial parapatellar articular capsule approach could facilitate the operation procedures and exposure of the operating field. The complications of operations through the medial parapatellar approach are mainly postoperative joint instability and prosthesis loosening [18–20], while the operations through the lateral parapatellar approach are generally accompanied by incision complications [21–24]. All the patients in this study underwent operations through the medial parapatellar articular capsule approach, and a step-wise release was conducted and achieved good soft-tissue balance.

The mean postoperative FTA of the patients was 171.2°±6.2°, and some patients were still with residual genu valgum. In a previous study about TKA outcomes for patients with genu valgum conducted by Nakano et al. [25], the medial parapatellar approach was used for the treatment of 24 knee joints, of which the preoperative and postoperative FTA of the patients was 172.4°±2.7°. Residual genu valgum was found in some patients, supporting the present study. Femoral valgus resection could be one of the factors leading to residual valgus alignment, and conducting a 3°-5° femoral valgus resection could be performed to prevent insufficient correction [26–28]. Therefore, it is applicable to adjust the angle of femoral osteotomy to improve the positioning and alignment of the graft.

The highest point is generally used as the reference point for the measurement in the osteotomy. Bone defects are very common at the lateral tibial plateau in patients with severe genu valgum, which could be repaired by autogenous bone grafting or bone cement filling [29]. In the present study, one patient was with severe lateral tibial defects. We speculated that if the highest lateral point were used as the reference, the osteotomy amount at the medial side would be too important. Therefore, the highest medial point was selected as the reference for osteotomy, and the severe lateral defects were filled with bone cement. After the osteotomy at the distal femur and tibial plateau was completed, the flexion-extension gap of the knee joint was assessed, and the lower extremity alignment was calculated to assess the correction of the genu valgum, based on which the thickness of the polyethylene liner was decided, and a second osteotomy could be conducted if necessary. The patella was not replaced routinely, while the
surrounding osteophyte was resected, the articular surface was reconditioned to be smooth, and the nerves surrounding the patella were blocked.

In cases of genu valgum deformity, the lateral tissues are generally with different degrees of tension, and thus soft tissue release is among the most important procedures of TKA for genu valgum, leading to postoperative joint stability and the survival of the prosthesis. Nevertheless, soft tissue release has also been acknowledged as the most difficult part of this operation [30]. In the present study, the Ranawat technique [14] was adopted to release the lateral contracture structures step by step, and the flexion-extension gap balancing and varum-valgum stability were assessed after each step of release to prevent over-releasing. The popliteus tendon was preserved as possible, and the integrity of the lateral stable structures was maintained to prevent postoperative lateral instability. For the loosened medial structures, tight suturing was adopted to improve stability. By using these procedures, good soft tissue balance was obtained, and no joint instability was found after the operation. Bremer et al. [31] also adopted these techniques and avoided the use of semi-restrictive and restrictive prosthesis. Mullaji et al. [32] adopted similar techniques for the release of posterior cruciate ligament and iliotibial band, followed by computer navigated posterosuperior femoral osteotomy, which helped obtain more accurate positions.

For patients found with medial knee joint loosening, enhancing lateral releasing and thickness of padding appropriately, as well as using restrictive padding and tightening the medial ligaments, could help to obtain the medial and lateral balance, which then be followed by the application of post-stable prosthesis. The post-stable prosthesis could facilitate the intraoperative soft tissue release, provide higher internal stability to match the articular surface, and allow the maximum lateral shifting of femoral and tibial prostheses to improve the patellar tracking. Therefore, post-stable prosthesis is recommended for genu valgum patients using non-condyle restrictive prosthesis.

Severe osteoporosis is not an absolute contraindication of TKA, but perioperative treatment and preparation are very important. The frequency of osteoporosis is high in patients with RA [5, 6], and TKA in such patients can be highly difficult [8, 9]. First, improper position, inappropriate traction, and rough operating during TKA could induce bone fracture [8, 9, 33]. Therefore, all surgical procedures in osteoporotic patients must be very careful and gentle; the tools, including power saw and drill, should be used instead of a bone knife and bone chisel. The procedures of planting prosthesis, as well as flexion-extension of the knee joint, should also be careful to avoid intraoperative bone fracture [33]. For patients with underlying bone defects, impaction bone grafting is generally required to improve the fixation of the prosthesis and reduce the amount of bone cement used, but the bone mass of osteoporotic patients is generally poor, and suitable bone graft is lacking. Therefore, allogeneic bone is frequently used in such patients.

An important aspect of TKA is guiding the patients to conduct postoperative functional training. In addition to routine postoperative function training, there are still some specificities in RA patients. For instance, such patients are generally with advanced ages and long disease courses, and their physical condition is often poor. In addition, such patients have also reduced activities. Thus they are generally
with different degrees of osteoporosis and muscle atrophy, which could lead to imbalanced strength of the muscles surrounding the knee joint [34, 35]. Therefore, training of the quadriceps femoris muscle should be stressed in addition to the training of the flexion-extension function of the knee joint.

The present study has limitations. Only 32 patients (44 knees) were included in this study. In addition, this was a single-center study. Furthermore, this study was a retrospective study with a follow-up of 1 year.

Conclusions

In conclusion, TKA via the medial parapatellar approach with proper osteotomy and soft tissue balancing could restore the knee function in patients with RA, severe osteoporosis, and genu valgum.

Abbreviations

BMD: bone mineral density; BMI: body mass index; DEXA: dual-energy X-ray absorptiometry; DVT: deep venous thrombosis; FTA: femorotibial angle; KSS: Knee Society Scoring System; KPV: knee physical valgus angle; LEDVT: lower extremity deep venous thrombosis; ROM: range of motion; RA: Rheumatoid arthritis; TKA: total knee arthroplasty.

Declarations

Ethics approval and consent to participate

This work has been carried out in accordance with the Declaration of Helsinki (2000) of the World Medical Association. The study was approved by the ethics committee of the Fourth Affiliated Hospital of Harbin Medical University. The need for informed consent was waived by the committee.

Consent for publication

Not applicable'

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.
Funding

Not applicable

Authors’ contributions

TZ carried out the studies, participated in collecting data, and drafted the manuscript. TZ and NH performed the statistical analysis and participated in its design. YZ, RZ, ML and DZ participated in acquisition, analysis, or interpretation of data and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

1. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: A review. JAMA. 2018;320(13):1360–72. doi:10.1001/jama.2018.13103.
2. Wasserman A. Rheumatoid arthritis: Common questions about diagnosis and management. Am Fam Physician. 2018;97(7):455–62.
3. Littlejohn EA, Monrad SU. Early diagnosis and treatment of rheumatoid arthritis. Prim Care. 2018;45(2):237–55. doi:10.1016/j.pop.2018.02.010.
4. Cross M, Smith E, Hoy D, Carmona L, Wolfe F, Vos T, et al. The global burden of rheumatoid arthritis: Estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73(7):1316–22. doi:10.1136/annrheumdis-2013-204627.
5. Heidari B, Hassanjani Roushan MR. Rheumatoid arthritis and osteoporosis. Caspian J Intern Med. 2012;3(3):445–6.
6. Tomizawa T, Ito H, Murata K, Hashimoto M, Tanaka M, Murakami K, et al. Distinct biomarkers for different bones in osteoporosis with rheumatoid arthritis. Arthritis Res Ther. 2019;21(1):174. doi:10.1186/s13075-019-1956-1.
7. Schafer VS, Schmidt WA, Backhaus M, Hartung W. Arthritis of the knee joint in rheumatoid arthritis - evaluation of treatment response by ultrasound in daily clinical practice. Open Rheumatol J. 2016;10:81–7. doi:10.2174/1874312901610010081.
8. Lee JK, Choi CH. Total knee arthroplasty in rheumatoid arthritis. Knee Surg Relat Res. 2012;24(1):1–6. doi:10.5792/ksrr.2012.24.1.1.
9. Danoff JR, Moss G, Liabaud B, Geller JA. Total knee arthroplasty considerations in rheumatoid arthritis. Autoimmune Dis. 2013;2013:185340. doi:10.1155/2013/185340.

10. Koskinen E, Remes V, Paavolainen P, Harilainen A, Sandelin J, Tallroth K, et al. Results of total knee replacement with a cruciate-retaining model for severe valgus deformity—a study of 48 patients followed for an average of 9 years. Knee. 2011;18(3):145–50. doi:10.1016/j.knee.2010.04.001.

11. Cui R, Zhou L, Li Z, Li Q, Qi Z, Zhang J. Assessment risk of osteoporosis in chinese people: Relationship among body mass index, serum lipid profiles, blood glucose, and bone mineral density. Clin Interv Aging. 2016;11:887–95. doi:10.2147/CIA.S103845.

12. Ellison AE. Distal iliotibial-band transfer for anterolateral rotatory instability of the knee. J Bone Joint Surg Am. 1979;61(3):330–7.

13. Scuderi GR, Bourne RB, Noble PC, Benjamin JB, Lonner JH, Scott WN. The new knee society knee scoring system. Clin Orthop Relat Res. 2012;470(1):3–19. doi:10.1007/s11999-011-2135-0.

14. Ranawat AS, Ranawat CS, Elkus M, Rasquinha VJ, Rossi R, Babhulkar S. Total knee arthroplasty for severe valgus deformity. J Bone Joint Surg Am. 2005;87(Suppl 1(Pt 2):271–84. doi:10.2106/JBJS.E.00308.

15. Zhou CD. [application of ligament reinforcement technique in primary total knee arthroplasty]. Chin Med J. 2009;89(21):1509–11.

16. Krackow KA, Jones MM, Teeny SM, Hungerford DS. Primary total knee arthroplasty in patients with fixed valgus deformity. Clin Orthop Relat Res. 1991(273):9–18.

17. Williot A, Rosset P, Favard L, Brilhaut J, Burdin P. Total knee arthroplasty in valgus knee. Orthop Traumatol Surg Res. 2010. doi:10.1016/j.otsr.2010.03.009.

18. Miyasaka KC, Ranawat CS, Mullaji A. 10- to 20-year followup of total knee arthroplasty for valgus deformities. Clin Orthop Relat Res. 1997(345):29–37.

19. Keblish PA. The lateral approach to the valgus knee. Surgical technique and analysis of 53 cases with over two-year follow-up evaluation. Clin Orthop Relat Res. 1991(271):52–62.

20. Boyer P, Boubilil D, Magrino B, Massin P, Huten D, Guepar G. Total knee replacement in the fixed valgus deformity using a lateral approach: Role of the automatic iliotibial band release for a successful balancing. Int Orthop. 2009;33(6):1577–83. doi:10.1007/s00264-008-0698-5.

21. Stern SH, Moeckel BH, Insall JN. Total knee arthroplasty in valgus knees. Clin Orthop Relat Res. 1991(273):5–8.

22. Hirschmann MT, Hoffmann M, Krause R, Jenabzadeh RA, Arnold MP, Friederich NF. Anterolateral approach with tibial tubercle osteotomy versus standard medial approach for primary total knee arthroplasty: Does it matter? BMC Musculoskelet Disord. 2010;11:167. doi:10.1186/1471-2474-11-167.

23. Mertl P, Jarde O, Blejwas D, Vives P. [lateral approach of the knee with tibial tubercle osteotomy for prosthetic surgery]. Rev Chir Orthop Reparatrice Appar Mot. 1992;78(4):264–7.
24. Wolff AM, Hungerford DS, Krackow KA, Jacobs MA. Osteotomy of the tibial tubercle during total knee replacement. A report of twenty-six cases. J Bone Joint Surg Am. 1989;71(6):848–52.

25. Nakano N, Matsumoto T, Muratsu H, Matsushita T, Takayama K, Matsuzaki T, et al. Results of total knee arthroplasty with nexgen lps-flex for osteoarthritis in the valgus knee: A study of 26 patients followed for a minimum of 2 years. Eur J Orthop Surg Traumatol. 2015;25(2):375–80. doi:10.1007/s00590-014-1505-1.

26. Elkus M, Ranawat CS, Rasquinhia VJ, Babhulkar S, Rossi R, Ranawat AS. Total knee arthroplasty for severe valgus deformity. Five to fourteen-year follow-up. J Bone Joint Surg Am. 2004;86(12):2671–6. doi:10.2106/00004623-200412000-00013.

27. Apostolopoulos AP, Nikolopoulos DD, Polyzois I, Nakos A, Liarokapis S, Stefanakis G, et al. Total knee arthroplasty in severe valgus deformity: Interest of combining a lateral approach with a tibial tubercle osteotomy. Orthop Traumatol Surg Res. 2010;96(7):777–84. doi:10.1016/j.otsr.2010.06.008.

28. Nikolopoulos DD, Polyzois I, Apostolopoulos AP, Rossas C, Moutsios-Rentzos A, Michos IV. Total knee arthroplasty in severe valgus knee deformity: Comparison of a standard medial parapatellar approach combined with tibial tubercle osteotomy. Knee Surg Sports Traumatol Arthrosc. 2011;19(11):1834–42. doi:10.1007/s00167-011-1474-4.

29. Weiner DS, Tank JC, Jonah D, Morscher MA, Krahe A, Kopits S, et al. An operative approach to address severe genu valgum deformity in the ellis-van creveld syndrome. J Child Orthop. 2014;8(1):61–9. doi:10.1007/s11832-014-0552-9.

30. Meloni MC, Hoedemaeker RW, Violante B, Mazzola C. Soft tissue balancing in total knee arthroplasty. Joints. 2014;2(1):37–40.

31. Bremer D, Orth BC, Fitzek JG, Knutsen A. [briard's sagittal sliding osteotomy of the lateral condyle in total knee arthroplasty of the severe valgus knee]. Oper Orthop Traumatol. 2012;24(2):95–108. doi:10.1007/s00064-011-0064-4.

32. Mullaji AB, Shetty GM. Lateral epicondylar osteotomy using computer navigation in total knee arthroplasty for rigid valgus deformities. J Arthroplasty. 2010;25(1):166–9. doi:10.1016/j.arth.2009.06.013.

33. Huang CC, Jiang CC, Hsieh CH, Tsai CJ, Chiang H. Local bone quality affects the outcome of prosthetic total knee arthroplasty. J Orthop Res. 2016;34(2):240–8. doi:10.1002/jor.23003.

34. Hahn MH, Won YY. Bone mineral density changes after total knee replacement in women over the age of 65. J Bone Metab. 2013;20(2):105–9. doi:10.11005/jbm.2013.20.2.105.

35. Bernatz JT, Brooks AE, Squire MW, Illgen RI 2nd, Binkley NC, Anderson PA. Osteoporosis is common and undertreated prior to total joint arthroplasty. J Arthroplasty. 2019;34(7):1347–53. doi:10.1016/j.arth.2019.03.044.

Figures
Figure 1

X-ray image of a 63-year-old woman with RA and genu valgum (Ellison classification: moderate) in bilateral knee joints. (a) Image of full-length bilateral lower extremities before the operation. (b) Anteroposterior and lateral X-ray images of the right knee before the operation. (c) Anteroposterior and lateral X-ray images of the right knee immediately after operation.