Research Article

Yang Yu, Xin Xin, Shanxiang Zhang, Jinxia Sui, Jing Yu, Xiaoxiong Wang*, and Yun-Ze Long*

Silver-loaded carbon nanofibers for ammonia sensing

https://doi.org/10.1515/epoly-2020-0056
received March 30, 2020; accepted July 04, 2020

Abstract: Carbon nanofibers (CNFs) were prepared by electrospinning, and silver (Ag) ions were grown on the surface of the CNFs by in situ solution synthesis. The structure and morphology of obtained Ag-doped CNFs (Ag-CNFs) were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The gas sensibility of the composite fiber was investigated by ammonia (NH₃) obtained by natural volatilization from 1 to 4 mL of NH₃ solution at room temperature. It was found that the fibers exhibited a sensitive current corresponding to different NH₃ concentrations and a greater response at high concentrations. The sensing mechanism was discussed, and the good absorptivity was demonstrated. The results show that Ag-CNF is a promising material for the detection of toxic NH₃.

Keywords: electrospinning, carbon nanofibers, sensors

1 Introduction

In recent years, many studies have focused on the development of low-cost, flexible, multi-application, and lightweight sensors with stable operation, high sensitivity, fast response, and low operating temperature. At present, displacement sensors (1–3), strain sensors (4,5), humidity sensor (6,7), pressure sensors (8,9), temperature sensors (10,11), and gas sensors (12,13) have been widely explored. Electrospinning is a low-cost, simple, highly efficient, and promising method for the preparation of one-dimensional (1D) micro-/nanofibers (14,15). It can be used to prepare polymer, organic, inorganic and multi-component composite nanofibers, having been widely used in nanoelectronics, nanosensors, drug release, and catalysts (16–21). Compared to thin-film sensors, fiber-based sensors produced by electrospinning have higher sensitivity and faster response time (22–25), having been used to detect multiple chemicals, including NH₃, NO₂, CO, N₂H₄, formaldehyde, ethanol, and other organic gases (26–30).

Nowadays, metal oxide semiconductors and solid electrolytes sensors occupy most of the markets for gas sensors (31,32). However, both of them need to work at higher temperatures (hundreds to more than 1,000°C), consume large power, and have low sensitivity, poor anti-interference ability, and inconvenient use. With the development of nanotechnology, a large number of research reports on carbon-based gas sensors have been published in recent years, which show good analytical sensitivity at room temperature (33,34), such as carbon nanotubes (CNTs), graphene, graphene oxide and activated carbon (35–39). 1D CNFs have high surface adsorption capacity, good electrical conductivity, electronic ballistic transmission characteristics, and other excellent properties, becoming one of the ideal materials for the fabrication of nanoscale gas sensors with high sensitivity, fast response, small size, and low energy consumption (40–42). Among the many CNFs, the CNFs prepared based on the polyacrylonitrile (PAN) are the most common ones with high tensile strength (43–45), low production cost, and suitable for large-scale production.

Ammonia is a common irritating gas. It is widely used in chemical and agricultural fields and has corrosive and irritating effects on human skin and mucous membranes. This study found that carbon materials have good response characteristics to NH₃. Silver and its compounds are one of the most important antibacterial materials. They have high bactericidal
activity and biocompatibility and have antibacterial effects against bacteria, fungi, and even viruses. Many studies have modified nanomaterials based on this property of Ag, such as Ag-CNT, Ag/ZNO, and so on, see Table 1 for details (46–54). This study describes an antibacterial NH3 sensor based on the CNFs. Ag-CNFs were prepared by electrospinning and impregnation. We measured and analyzed the response characteristics to NH3 by focusing on the change in resistance of Ag-CNFs and found that it exhibits good NH3 sensing performance in 1–4 mL of NH3 solution. Ag-CNFs can be used as an NH3 gas sensor at room temperature that is inexpensive to produce, flexible, sensitive, and antibacterial.

2 Experimental section and characterization

2.1 Materials

Silver nitrate (AgNO3, ≥99.8%), 2,2-dimethylolbutanoic acid (DMBA), N,N-dimethylformamide (DMF), and NH3 solution (25–28%) were purchased from Sinopharm Chemical Reagent Co., Ltd, China. The PAN (MW = 1,50,000) was purchased from Sigma-Aldrich, USA.

2.2 Preparation of pure PAN fibers by electrospinning

The PAN–DMF solution having a polymer mass ratio of 12% was prepared by stirring at room temperature for 4 h by a magnetic stirrer. Self-assembled equipment was used for electrospinning, including a high-voltage power supply, propulsion pumps, and aluminum foil as the receiver. The spinning solution was placed in a plastic syringe and mounted on a propulsion pump. The aluminum foil was placed perpendicular to the horizontal plane and connected to the ground. The volume feed rate, applied voltage, and tip-to-collector distance were 1 mL/h, 15 kV, and 10 cm, respectively. The spinning temperature was 20°C and the humidity was 50%.

2.3 Preparation of Ag-CNFs

The pure PAN fiber obtained by electrospinning was subjected to a two-stage heating process. First, the pre-oxidation process was carried out by heating at 260°C for 140 min and the heating rate was 2°C/min. Then, the temperature was raised to 900°C for 120 min at a rate of 5°C/min in an argon atmosphere. Finally, natural cooling is performed to obtain CNFs. Since the Ag nanostructure has antibacterial properties, it is compounded onto the CNF to protect it (55,56). AgNO3 (10 mM) was mixed with 20 mL water to soak the CNFs for 3 h. CNFs were taken out and washed with DMBA until no bubbles generated. Then, it was dried at 60°C for 4 h to obtain Ag-CNFs.

2.4 Sensor assembly

A simple gas sensor was assembled by sandwiching Ag-CNFs between two copper electrodes (copper sheets), and the size of the composite was 20 × 60 × 2 mm³. Two copper wires were fixed to the copper electrodes by soldering. Copper wire was used to connect an electrical performance measurement system that responds to changes in current in an NH3 environment.

2.5 Characterization

The samples were characterized by XRD at room temperature. Scanning electron microscopy (SEM, JSM-6390) was used to observe the surface morphology of pure PAN fibers, CNFs and Ag-CNFs. Electrical properties were tested by a Keithley 6487 high resistance meter system (Washington, USA) at room temperature.
2.6 Simulation by COMSOL Multiphysics

COMSOL Multiphysics has been increasingly used in the process of simulating gas sensing mechanism. And in this article, COMSOL is applied to demonstrate the distribution of NH₃ in Ag-CNFs. The model of transport of diluted species has been used and the boundary concentration of NH₃ around Ag-CNFs has been set as 0.5 mol/m³ to make simulation results more obvious. The temperature has been set as 20°C and the porosity of Ag-CNFs is 0.1.

3 Results and discussion

3.1 XRD

X-ray diffraction is a powerful tool for characterizing the structure of materials. The diffraction peaks of the nanofibers are indexed by standard cards of C and Ag (PDF No. 80-0017 and 87-0717). A comparison of the XRD patterns of the CNFs and Ag-CNFs with the standard map is shown in Figure 1. It can be seen that the diffraction peaks appear in the spectra of both samples, indicating a good crystallinity. The main peak of the CNFs is at 44°, corresponding to the (111) plane of C. The main peak of Ag-CNFs at 44° corresponds to the (200) crystalline plane of Ag and the (111) plane of C, and the second-largest peak at 38° corresponds to the (111) plane of Ag. This confirms that the Ag-ions are effectively modified on the surface of the CNFs.

3.2 SEM

Figure 2a shows the morphology of the as-spun pure PAN nanofibers prepared by electrospinning with a smooth surface and uniform diameter. Its average diameter is 320 ± 24.67 nm. To avoid fiber melting or fusion, we oxidized PAN nanofibers at 260°C to convert C–C and C≡N to C≡C and C≡N bonds (57,58), followed by carbonization at 900°C. After carbonization, a significant color change from white to black was observed, and the morphology of the obtained CNFs is shown in Figure 2b. It can be seen that CNFs have uniform diameter distribution, have no significant change in appearance, and maintain fibrous morphology, which is related to the entanglement network and flexibility of pure PAN fibers. The average diameter of the CNFs is 301 ± 26.20 nm. It is reduced by ~20 nm than pure PAN fiber, derived from the volatilization of DMF as a solvent and the disappearance of O and H components in PAN. The SEM image in Figure 2b shows that the nanofibers are slightly curved. This is because the defects in the PAN fiber itself will be inherited in the CNF fiber (59). In the figure, it can be observed that the PAN fiber precursors have a certain phenomenon of adhesion and merging due to problems such as residual solvent during the spinning process. Manocha et al. tested the shrinkage of PAN fibers when heated at 200–1,000°C. The shrinkage of fibers happened in three temperature sections 200–350°C, 600–800°C, and 800–1,000°C and was mainly concentrated in the first two stages. Under the combined effect of shrinkage stress and defects, the fibers become bent (60). Ag-CNFs were obtained by Ag-ion modification of CNFs with AgNO₃ solution, and its morphology is as shown in Figure 2c. It can be seen that there are micron-/nanoscale Ag particles on the surface of the fiber, which proves the feasibility of the inorganic salt impregnating the surface of the nanofiber to form a nanostructure (61).

3.3 NH₃ sensing measurement

We tested the NH₃ sensing performance of Ag-CNFs at room temperature. The Ag-CNF sensor was placed in a sealed container and the concentration of NH₃ was controlled by the natural evaporation of the NH₃ solution. The voltage across the sensor was 0.2 V. The structure of test device is shown in Figure 3. The electrical properties of the sensor were measured at different NH₃ concentrations. Figure 4 shows the electrical response of Ag-CNFs to 1, 2, 3, and 4 mL of the NH₃ solution, in a closed container, the density of 1–4 mL of NH₃ after volatilization is 0.0754, 0.1508, 0.2262, and 0.3016 mol/m³, indicating
the effect of NH$_3$ on electrical transport behavior. It can be seen that a high concentration of NH$_3$ results in a bigger current, meaning that the resistance of the sensor decreases and the conductivity is improved. A sensor exposed to a higher concentration of NH$_3$ solution exhibits a larger current change, that is, as the gas concentration increases, the sensor response becomes larger. In addition, the sensor current remains stable at the same NH$_3$ concentration, indicating that Ag-CNFs have good NH$_3$ sensing properties.

This is due to the adsorption of NH$_3$ by Ag-CNFs, as shown in Figure 4. Ag-CNFs is exposed to NH$_3$ (Figure 5a). The NH$_3$ molecule adheres to the pores on the surface of the sample that is not electrically conductive compared with the state after adsorption, increasing the cross section of the conductive path, as shown in Figure 5b. The resistance of Ag-CNFs adsorbed with NH$_3$ decreased and the current increased. When the surface adsorption reaches saturation, NH$_3$ molecules begin to diffuse from the surface to the inside. When the adsorption process is completed, the conductive regions of the Ag-CNFs are stabilized and the current is constant (Figure 5c). The higher the concentration of NH$_3$, the larger the corresponding current change, indicating its better adsorption performance.

When the Ag-CNFs are in the NH$_3$ environment, the NH$_3$ concentration on the surface will increase rapidly. As the time in the NH$_3$ environment increases, the internal NH$_3$ concentration will gradually increase until it reaches saturation. The equation of gas diffusion in this simulation can be described by:

$$D_{e,i} = \frac{\varepsilon_p D_{F,i}}{\tau_{F,i}}$$

where $D_{e,i}$ is gas diffusion coefficient in Ag-CNFs, ε_p is porosity of Ag-CNFs, $\tau_{F,i}$ is effective diffusivity constant, and $D_{F,i}$ is gas diffusion coefficient in free air. The effective diffusion coefficient model can be described by Millington–Quirk model or Freundlich equation:

$$\tau_{F,i} = \varepsilon_p^{-\frac{1}{3}}$$

$$k_{P,i,F} = K_{F,i} N_{F,i} \frac{c^{N_{F,i} - 1}}{c_{ref,i}}$$

Figure 2: (a) SEM images and diameter distribution histogram of pure PAN fibers, (b) CNFs, and (c) Ag-CNFs.

Figure 3: Schematic diagram of the device for Ag-CNF testing NH$_3$ concentration, the voltage applied during the test is 0.2 V.

Figure 4: Sensing properties of Ag-CNFs for NH$_3$ at different NH$_3$ contents. After adding NH$_3$ water, it was allowed to stand for 10 min, and the power-on test time was 1 min.
where $k_{P,i,F}$ is adsorbate constant of NH$_3$, $N_{P,i}$ is adsorbent constant of Ag-CNFs, $K_{F,i}$ is Freundlich constant, $N_{F,i}$ is Freundlich exponent, and $c_{ref,i}$ is reference concentration. In fact, Millington–Quirk model describes better in this case, because Freundlich equation focuses too much on the surface state. And, the simulation result is shown in Figure 6. This figure demonstrated the adsorption of NH$_3$ molecules on Ag-CNFs by different colors and inward diffusion. As previously imagined, NH$_3$ adsorption mainly happened on the surface, and after a certain period of diffusion, NH$_3$ would appear in deeper parts, but with much lower concentration. It showed that diffusion on fibers with smaller diameters will reach equilibrium faster, which has a quicker response at low NH$_3$ concentration. In case of this report, this means that in a given period, the NH$_3$ concentration will be reflected more obviously by the change of resistance and this explains the high sensitivity of the sensor.

Ag-CNF-based sensors can be used not only for toxic gas alarm systems, but also for characterizing food spoilage. When animals, plants, and foods prepared by them are decomposed by enzymes produced by micro-organisms, abnormal odors may occur. If the protein is decomposed, it will produce harmful gases such as NH$_3$ and H$_2$S. Human senses may be more difficult to capture trace amounts of gas from food spoilage in a timely manner. By putting Ag-CNFs sensors together with food, we can get information on food spoilage in a sensitive and timely manner, avoiding food poisoning caused by consumption.

Gas sensors involve physical and chemical adsorption and other reasons. The chemical gas sensor itself requires a long time of adsorption and desorption processes, so the repeatability problem of the gas sensor has always been a problem in the field. When the gas is to be measured, there are differences in the same concentration response multiple times in a short time, but after a longer time interval and calibration, better repeatability can be obtained (62,63). With further research on the sensor, optimizing the conditions of electrospinning PAN, and to get finer fibers, continuous operation of the gas sensor reliability will be improved due to the larger specific surface area.

4 Conclusions

In summary, Ag-CNFs were successfully prepared by electrospinning and in situ solution polymerization, prepared into an NH$_3$ sensor at room temperature. The surface of the CNFs was modified with Ag nanoparticles having antibacterial properties to protect the fibers. It can be used to detect NH$_3$ naturally evolved from 1 to 4 mL of NH$_3$ solution in a closed vessel and has a high response at higher NH$_3$ concentrations. This work can provide a viable way to create a low-cost, high-sensitivity, stable, detectable NH$_3$ concentration sensor for use in toxic gas alarm systems and characterize food spoilage.
Acknowledgments: This work was supported by the National Natural Science Foundation of China (51673103) and the Postdoctoral Scientific Research Foundation of Qingdao (2016014).

References

(1) Mehta A, Mohammed WS, Johnson EG. Multimode interference-based fiber-optic displacement sensor. IEEE Photon Technol Lett. 2003;15(8):1129–31.

(2) Ragar D, Mamin HJ, Erlundsson R, Stern JE, Terris BD, Terris BD. Force microscope using a fiber-optic displacement sensor. Rev Sci Instrum. 1998;59(11):2337–40.

(3) Zhu J, Jiang S, Hou H, Agarwal S, Greiner A. Low density, thermally stable, and intrinsic flame retardant poly(bis(benzimidazo)benzophenanthroline-dione) sponge. Macromol Mater Eng. 2018;303(4700615).

(4) Zhao X, Wu Z, Zhi Y, An YH, Cui W, Li L, et al. Improvement for the performance of solar-blind photodetector based on β-Ga2O3 thin films by doping Zn. J Phys D Appl Phys. 2017;50(8):08102.

(5) Tong L, Wang X, He X, Nie G, Zhang J, Zhang B, et al. Electrically conductive TPU nanofibrous composite with high stretchability for flexible strain sensor. Nanoscale Res Lett. 2018;13(1):86.

(6) Guo Y, Gao Z, Wang X, Sun L, Yan X, Yan S, et al. A highly stretchable humidity sensor based on spanex covered yarns and nanostructured polyaniline. RSC Adv. 2018;8(1078–82).

(7) You M, Yan X, Zhang J, Wang X, He X, Yu M, et al. Colorimetric humidity sensors based on electropolymerized polyaniline/CoCl2 nanofibrous membranes. Nanoscale Res Lett. 2017;12(1):360.

(8) Shirinov AV, Schomburg WK. Pressure sensor from a PVDF film. Sens Actuators A. 2008;142(1):48–55.

(9) Xia G, Huang Y, Li F, Wang L, Pang J, Li L, et al. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Front Chem Sci Eng. 2020. doi: 10.1007/s11705-019-1901-5.

(10) Bao X, Dhlwayo J, Heron NA, Webb DJ, Jackson DA. Experimental and theoretical studies on a distributed temperature sensor based on brillouin scattering. J Lightwave Technol. 1995;13(7):1340–8.

(11) Zhang S, Yu F. Piezoelectric materials for high temperature sensors. J Am Ceram Soc. 2011;94(10):3153–70.

(12) He XX, Li JT, Jia XS, Tong L, Wang XX, Zhang J, et al. Facile fabrication of multi-hierarchical porous polyimine composite as pressure sensor and gas sensor with adjustable sensitivity. Nanoscale Res Lett. 2017;12(1):476.

(13) Zhang H, Tang C, Long Y, Zhang J, Huang R, Li J, et al. High-sensitivity gas sensors based on arranged polyimine/PMMA composite fibers. Sens Actuators A. 2014;219:123–7.

(14) Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–70.

(15) Jiang S, Chen Y, Duan G, Mei C, Greiner A, Agarwal S. Electrospun nanofiber reinforced composites: a review. Polym Chem. 2018;9(20):2685–720.

(16) Ding B, Kim J, Miyazaki Y, Shiratori S. Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sens Actuators B. 2004;101(3):373–80.

(17) Schiffman J, Schauer C. A review: electrospraying of bio-polymer nanofibers and their applications. J Macromol Sci Part C. 2008;48(2):317–52.

(18) Liu X, Li M, Han G, Dong J. The catalysts supported on metallized electrospun polyacrylonitrile fibrous mats for methanol oxidation. Electrochim Acta. 2010;55(8):2983–90.

(19) Ma P, Dai C, Jiang S. Thiouetherimide-modified cyanate ester resin with better molding performance for glass fiber reinforced composites. Polymers. 2019;11(9):1458.

(20) Jiang S, Agarwal S, Greiner A. Low-density open cellular sponges as functional materials. Angew Chem Int Ed. 2017;56(49):15520–38.

(21) Dong W, Liu J, Mou X, Liu G, Huang X, Yan X, et al. Performance of polyvinyl pyrrolidone-isatis root antibacterial wound dressings produced in situ by handheld electrospinner. Colloids Surf B. 2020;188:110766.

(22) Aussawasathien D, Sahasitthiwat S, Menbangpung L. Electrophoresis camphorsulfonic acid doped poly(o-toluidine)–polystyrene composite fibers: chemical vapor sensing. Synth Met. 2008;158(7):295–63.

(23) Ji S, Li Y, Yang M. Gas sensing properties of a composite composed of electrospun poly(methyl methacrylate) nanofibers and in situ polymerized polyamine. Sens Actuators B. 2008;133(2):644–9.

(24) Pinto NJ, Ramos I, Rojas R, Wang P, Johnson AT. Electric response of isolated electrospun polyaniline nanofibers to vapors of aliphatic alcohols. Sens Actuators B 2008;129(2):621–7.

(25) Zhao L, Duan G, Zhang G, Yang H, He S, Jiang S. Electrospun functional materials toward food packaging applications: a review. Nanomaterials. 2020;10(1):150.

(26) Yao K, Chen J, Li P, Duan G, Hou H. Robust strong electrospun polyimide composite nanofibers from a ternary polyamic acid blend. Compos Commun. 2019;15:92–5.

(27) Xu W, Ding Y, Yu Y, Jiang S, Chen L, Hou H. Highly foldable PANi@CNTs/PU dielectric composites toward thin-film capacitor application. Mater Lett. 2017;192(Apr.1):25–28.

(28) Xian-Sheng J, Cheng-Chun T, Xu Y, Gui-Feng Y, Jin-Tao L, Hong-Di Z, et al. Flexible polyimine/poly(methyl methacrylate) composite fibers via electrospinning and in situ polymerization for ammonia gas sensing and strain sensing. J Nanomaterials. 2016;2016:1–8.

(29) Li Y, Wang H, Cao X, Yuan M, Yang M. A composite of polyelectrolyte-grafted multi-walled carbon nanotubes and in situ polymerized polyamine for the detection of low concentration triethylamine vapor. Nanotechnology. 2008;19(1):015503.

(30) Matsuguchi M, Ito J, Sugiymama G, Sakai Y. Effect of NH3 gas on the electrical conductivity of polyimine blend films. Synth Met. 2002;128(1):15–19.

(31) Pinto NJ. Electrospun conducting polymer nanofibers as the active material in sensors and diodes. J Phys Conf. 2013;421:012004.

(32) Virji S, Huang J, Kaner RB, Weiller BH. Polyamine nanofiber gas sensors? Examination of response mechanisms. Nano Lett. 2004;4(3):491–6.

(33) Park Y, Song H, Lee C, Lee J. Fabrication and its characteristics of metal-loaded TiO2/SnO2 thick-film gas sensor for detecting dichloromethane. J Ind Eng Chem. 2008;14(6):818–23.

(34) Suehiro J, Zhou G, Imakiire H, Ding W, Harra M. Controlled fabrication of carbon nanotube NO2 gas sensor using
dielectrophoretic impedance measurement. Sens Actuators B. 2005;108(1/2):398–403.

(35) Lee JH. Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B. 2009;140(1):319–36.

(36) Penza M, Rossi R, Alvisi M, Signore MA, Falconieri M. Characterization of metal-modified and vertically-aligned carbon nanotube films for functionally enhanced gas sensor applications. Thin Solid Films. 2009;512(22):6211–6.

(37) Basu S, Bhattacharyya P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators B. 2012;173:1–21.

(38) Peng S, Cho K, Qi P, Dai H. Ab initio study of CNT NO2 gas sensor. Chem Phys Lett. 2004;387(4–6):271–6.

(39) Singh B, Verma A, Kaushal A, Bdkin I, Chakravarty S, Bhardwaj N, et al. Novel low cost liquefied petroleum gas (LPG) sensor based on activated carbon for room temperature sensing application. Sens Lett. 2014;12(1):24–30.

(40) Lu R, Shi K, Zhou W, Wang L, Tian C, Pan K, et al. Highly dispersed Ni-decorated porous hollow carbon nanofibers: fabrication, characterization, and NO2 gas sensors at room temperature. J Mater Chem. 2012;22(47):24814–20.

(41) Jang J, Bae J. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor. Sens Actuators B. 2007;122(1):7–13.

(42) Lee J, Kwon OS, Shin DH, Jang J. WO3 nanoneedle-decorated hybrid carbon nanofibers for NO2 gas sensor application. J Mater Chem A. 2013;1(32):9099–106.

(43) Richard B, Millington LA, Robert C. US Patent 3322489, 1967. Google Scholar.

(44) Yoneshiga I, Teranishi H. Japanese Patent 2775/70, 1970. Google Scholar.

(45) Cato AD, Edie DD. Flow behavior of mesophase pitch. Carbon. 2003;41(7):1411–7.

(46) Lin Z, Young S, Hsiao CH, Chang S. Adsorption sensitivity of Ag-decorated carbon nanotubes toward gas-phase compounds. Sens Actuators B. 2013;188(Nov.):1230–4.

(47) Lin ZD, Young SJ, Hsiao CH, Chang SJ. Improved field emission properties of Ag-decorated multi-walled carbon nanotubes. IEEE Photon Technol Lett. 2013;25(11):1017–9.

(48) Young SJ, Wang TH. ZnO nanorods adsorbed with photochemical Ag nanoparticles for IOT and field electron emission application. J Electrochem Soc. 2018;165(8):B3043–45.

(49) Uddin AS, Kumar PS, Hassan K, Kim HC. Enhanced sensing performance of bimetallic Al/Ag-CNF network and porous PDMS-based triboelectric acetylene gas sensors in a high humidity atmosphere. Sens Actuators B. 2018;258:857–69.

(50) Sanzone G, Zimbone M, Cacciato G, Ruffino F, Carles R, Privitera V, et al. Ag/TiO2 nanocomposite for visible light-driven photocatalysis. Superlattices Microstruct. 2018;123:394–402.

(51) Miaoy, He S, Zhong Y, Yang Z, Tiju WW, Liu T. A novel hydrogen peroxide sensor based on Ag/SnO2 composite nanotubes by electrospinning. Electrochim Acta. 2013;99:117–23.

(52) Huang YP, Miaoy Y, Jj SS, Tiju WW, Liu TX. Electrospun carbon nanofibers decorated with Ag–Pt bimetallic nanofibers for selective detection of dopamine. ACS Appl Mater Interfaces. 2014;6:12449–56.

(53) Koo Y, Littlejohn G, Collins B, Yun Y, Shanov V, Schulz MJ, et al. Synthesis and characterization of Ag–TiO2–CNT nanoparticle composites with high photocatalytic activity under artificial light. Composites Part B. 2014;57:105–11.

(54) Zhang X, Lin Z, Chen B, Zhang W, Sharma S, Gu W, et al. Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors. J Power Sources. 2014;246:283–9.

(55) Kim Y, Lee DK, Cha HG, Kim CW, Kang YS. Synthesis and characterization of antibacterial Ag–SiO2 nanocomposite. J Phys Chem C. 2007;111(9):3629–35.

(56) Gong P, Li H, He X, Wang K, Yang X. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology. 2007;18(28):285604.

(57) Moon SC, Farris RJ. Strong electrospun nanometer-diameter polycrylonitrile carbon fiber yarns. Carbon. 2009;47(12):2829–39.

(58) Zhu J, Wei S, Rutman D, Haldolagarachige N, Young DP, Guo Z. Magnetic polycrylonitrile-Fe@Fe3O4 nanocomposite fibers – Electrospinning, stabilization and carbonization. Polymer. 2011;52(13):2947–55.

(59) Ge H-Y, Liu H-S, Chen J. The formation and heredity of defects from PAN precursor to carbon fiber. Synthetic Fiber in China; 2009;38(2):21–25.

(60) Manocha LM, Bahi OP, Jain GC. Length changes in PAN fibres during their pyrolysis to carbon fibres. Angew Makromol Chem. 1978;67(11):1–29.

(61) Zhu J, Chen M, Qu H, Wei H, Guo J, Luo Z, et al. Positive and negative magnetoresistance phenomena observed in magnetic electrospun polycrylonitrile-based carbon nano-composite fibers. J Mater Chem C. 2013;2(4):715–22.

(62) Shaalan NM, Rashad M, Abdel-Rahim MA. Repeatability of indium oxide gas sensors for detecting methane at low temperature. Mater Semiicon Proc. 2016;56:260–4.

(63) Xie GZ, He H, Zhou Y, Xie T, Jiang Y, Tai HL. Gas sensors based on MWCNTs-PVDF composite films for 1,2-dichloroethane vapor detection. J Mater Sci Mater Electron. 2014;25(11):5095–100.