Marginal integrity of flowable and packable bulk fill materials used for class II restorations —A systematic review and meta-analysis of in vitro studies

Agnieszka GERULA-SZYMAŃSKA¹, Kinga KACZOR¹, Katarzyna LEWUSZ-BUTKIEWICZ² and Alicja NOWICKA²

¹ Doctoral Studies of the Faculty of Dentistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
² Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Szczecin, Poland

Corresponding author, Alicja NOWICKA; E-mail: nowicka6@gmail.com

This systematic review evaluates the marginal integrity of flowable and packable bulk fill composite materials placed in class II cavities. Electronic databases inclusive of MEDLINE, Scopus, and Web of Science were searched without restriction to date. The titles and abstracts of publications gathered from database searches were screened by reviewers according to the inclusion and exclusion criteria. From as initial yield of 142 articles ten studies were subject to qualitative analysis. The authors emphasized that marginal integrity in enamel and dentin does not significantly differ between flowable and packable bulk fill composites used for class II restorations. Moreover, their marginal integrity was comparable to conventional resin composites with incremental techniques. The adhesive system used with a total etch technique and assessed margin located in enamel resulted in better marginal integrity.

Keywords: Bulk fill, Class II cavity, Composite material, Marginal integrity

INTRODUCTION

Increased patient motivation toward esthetic, biocompatible, cost-effective, and clinically durable restorations has led research toward improving the in vivo effectiveness and longevity of resin adhesive bonds to tooth structures in direct resin restorations⁴⁻⁵. With the advancement of dental materials and clinical techniques, composites have become the most widely used direct restorative materials⁹. The polymerization of resin-based composites generates stress due to contraction⁴⁻⁵, which affects marginal integrity. To avoid clinical consequences such as postoperative sensitivity, marginal discoloration, dental microcracking, gap formation, and pulpal irritation, the incremental layering technique is recommended for placing the composite in a cavity²⁻⁶⁻⁸. Up to now it has been a standard to achieve an adequate bonding of composite to tooth tissue⁹. It results in better light penetration and better polymerization of the composite resin, reduced cavity configuration factor, cuspal deflection, or polymerization shrinkage stresses, and ensures that the resin adheres better to cavity walls⁸⁻¹⁰. However, the technique also has many disadvantages, such as the possibility of trapping voids or contaminants between layers, the long time required to place the restoration, or difficulties placing the material after conservative cavity preparation¹⁻⁴,¹⁰.

The bulk fill composite materials were introduced to overcome these disadvantages¹¹. These materials can be divided into flowable (low-viscosity) and packable/sculptable (high-viscosity). High-viscosity bulk fill materials are much more resistant to slumping and contain more inorganic fillers, whereas low-viscosity (or flowable) bulk fill composites generally adapt better on the cavity wall, especially on irregular surfaces⁵. The significantly better marginal integrity of flowable tested materials (SDR, Sonic Fill, Filtek Bulk Fill) is claimed to be due to their flow consistency during application¹¹. On the other hand, they exhibit lower mechanical properties than packable bulk fill materials due to their lower filler content¹²⁻¹³. Generally, such materials are claimed to be curable to a thickness of at least 4 mm, resulting in a need for fewer increments and, thus, time¹²⁻¹³. The manufacturers claim that, when using bulk fill materials, the quality of restoration does not differ from conventional composite resin materials, but the time needed to place the filling is reduced up to 30%. Moreover, the manufacturers state that the polymerization shrinkage of these materials is even less than that of commonly used flowable and conventional resin-based composites, and that the flexural strength is similar to that of conventional composite resins¹⁴. Some studies have shown that bulk fill composites can be cured to an acceptable post-cure depth according to the manufacturers’ claim¹⁵. Higher curing depth has been achieved by either higher translucency of the resin material, to allow deeper penetration of the polymerizing light, or adding new photo initiators¹⁴,¹⁶. The resin composition of these materials is comparable to that of conventional materials¹⁷, and bulk fill resin composites exhibit comparable bottom/top hardness ratios to conventional materials at recommended manufacturer thickness¹⁸. However, the risk of thick layers is that the restoration is not completely cured, especially in cavities with a depth of more than 5 mm, which often appear in clinical practice and are not exactly measured by clinicians. In addition, due to the great translucency, there is a possibility that there may not be an exact color match to the tooth tissue¹⁹. In view of the relatively recent introduction of bulk fill composites, many clinical
Among numerous parameters determining the preservation of a restoration placed in a cavity, marginal integrity and absence of leakage seem to take part as the most important. It is observed especially in class II cavities, in which the problem of microleakage becomes more pronounced at the cervical margins\(^1,2,5)\) because of the difficulty accessing the cavity, the risk of incomplete polymerization around the gingival wall due to the construction of a cement-enamel junction or lack of enamel, and the presence of cementum at the cervical margin, interfering with adequate adhesion. Although a perfect marginal seal is not achievable clinically, a good marginal quality should be the main aim for clinicians\(^1\).

The application of dyes represents the most commonly used method because of its simplicity\(^27\). It is fast and easy to perform, which validates the choice of this method in many studies\(^29\), but the defects outweigh the advantages. This method enables visualization of the inner margin of the filling–tooth border only after cutting the tooth through, resulting in irreversible damage to the sample\(^27\). Furthermore epoxy resin was reported as an adequate material for replicating details of silicone impressions in the indirect study of dentin surfaces\(^31\).

This review aims to organize current knowledge on the marginal integrity of flowable and packable bulk fill composites used for class II restorations and analyzed by SEM. The null hypothesis was that marginal integrity in enamel and dentin does not significantly differ between flowable and packable bulk fill composite materials used for class II restorations.

MATERIALS AND METHODS

Data sources

This systematic review is reported in accordance with the PRISMA Statement guidelines. Eligible studies were \(\textit{in vitro}\) surveys that assessed the marginal integrity of bulk fill materials placed in class II cavities with the use of SEM. Included studies should follow a question: Do the flowable and packable bulk fill composite materials allow the same marginal integrity to be obtained in class II restorations? Studies were selected based on a search strategy for each international electronic database (National Library of Medicine —MEDLINE/PubMed, Scopus, and Web of Science). The search strategy is presented in Table 1. The search and selection of studies was performed without any restriction on date or time of observation. The last search was performed on March 9th, 2018. Articles identified in the databases were imported into Endnote\(^\text{TM}\) Basic (Thompson Reuters, Philadelphia, PA, USA) to remove duplicates.

Resources selection

Two reviewers (A.G-SZ. and K.K.) independently assessed the titles and abstracts of all of the studies. Only articles assessing the marginal integrity of flowable or/and packable bulk fill composite materials were considered. The evaluation of the results must have been performed using SEM. Included studies should be executed on permanent human teeth. Descriptive studies, reviews, case reports, articles negligible for PICO, study using a method other than SEM and articles assessing primary or animal teeth were excluded. Any disagreement regarding the eligibility of the included studies was resolved through discussion and consensus or by a third reviewer (A.N.).

Risk of bias assessment

The risk of bias was evaluated independently by two

Database	Search combination
MEDLINE (PubMed)	((bulk fill\[TIAB\] OR bulk-fill\[TIAB\] OR bulk fill composite\[TIAB\] OR bulk fill \(\text{dent}a\)l composite resin\[TIAB\] OR bulk fill resin\[TIAB\] OR bulk fill resin composite\[TIAB\] OR adhesive\[TIAB\] OR gap formation\[TIAB\] OR marginal adaptation\[TIAB\] OR marginal integrity\[TIAB\] OR marginal quality\[TIAB\] OR microleakage\[TIAB\]) AND (sem\[TIAB\] OR scanning electron microscope\[TIAB\] OR class II\[TIAB\]))
Scopus	((TITLE-ABS-KEY (bulk fill) OR TITLE-ABS-KEY (bulk-fill) OR TITLE-ABS-KEY (bulk fill composite) OR TITLE-ABS-KEY (bulk fill resin) OR TITLE-ABS-KEY (bulk fill dental composite resin)) AND (adhesion OR gap formation OR marginal adaptation OR marginal integrity OR microleakage) OR TITLE-ABS-KEY (sem) OR TITLE-ABS-KEY (scanning electron microscope) OR TITLE-ABS-KEY (class II))
Web of Science	(((TS=(bulk fill) OR TS=(bulk-fill) OR TS=(bulk fill composite) OR TS=(bulk fill resin) OR TS=(bulk fill dental composite resin)) AND (adhesion OR gap formation OR marginal adaptation) OR TS=(microleakage) OR TS=(scanning electron microscope) OR TS=(class II))
Data extraction

Data were extracted from all of the trial documents containing demographic data (author, year), the number of cavities and size of test groups, the materials used (bulk fill composite, conventional composite and bonding agents), the aging/storage parameters, and the outcomes evaluated. If any information was missing, the authors of the studies were contacted via e-mail to retrieve the missing data. If authors did not give any answer, the missing information was not included.

Data analysis

The meta-analysis was conducted using the random and fixed-effects model. To test the heterogeneity among studies the Cochran Q test and I² statistics were used, with an error of p<0.10 and I² above 25, 50 and 75%, indicating low, moderate and high heterogeneity, respectively. A p-value<0.05 was considered statistically significant. All analyses were performed with MedCalc Statistical Software version 17.9.7 (MedCalc Software, Ostend, Belgium).

RESULTS

A total of 142 potentially relevant records were found in the databases. A flowchart summarizing the article selection process according to the PRISMA Statement is shown in Fig. 1. After removing duplicates, examining the titles and abstracts, and full text analyses, a total of 10 articles fulfilled the selection criteria and were included in this review. Twelve studies were excluded due to the use of the dye penetration method.

Six different types of bulk fill composite materials were evaluated (Table 2). Three of the materials are flowable materials placed in bulk, dedicated to use with the conventional composite as the capping material: SDR, Venus Bulk Fill, x-tra base. Two of the materials...
are packable materials, which the manufacturers claim to be used especially as posterior restorations exposed to heavy occlusal loading: Tetric EvoCeram Bulk Fill, Tetric N Ceram Bulk Fill, Sonic Fill combines the features of flowable and packable bulk fill material, while it is sonic activated when placed in the cavity. According to the application technique and no need to be covered by a conventional composite, the authors of articles included to this systematic review and meta-analysis included Sonic Fill as the packable one. The studies included and variables collected are shown in Table 3. Included studies were published between 2011 and 2018 due to the bulk fill materials being relatively new on the market and the limited research assessing marginal integrity.

In this review all included studies in general scored medium risk of bias (Table 4). Of the 10 studies included, none of them showed high risk of bias, four presented medium risk of bias\(^{4,14,43,44}\) and six presented low risk of bias\(^{5,16,45-47}\). Articles received poor scores in the fields of teeth randomization, sample size calculation and blinding of the examiner.

Out of ten qualified studies, one did not present numerical results\(^{16}\), two presented results of marginal integrity in micrometers as either mean values of the interfacial gap distances\(^5\) or median dentin gap formation and range\(^44\) and seven studies\(^2,4,16,43,45-47\) presented the result as the percentage of continuous margin. Within those seven studies, one performed by Roggendorf \(^{46}\) compared the marginal integrity of SDR when using different types of adhesives and another one by Gamarra \(^{45}\) investigated the marginal adaptation and microleakage of SonicFill composite with different photopolymerization techniques. Figure 2 shows the results of five studies that evaluated different types of bulk fill materials and presented good marginal integrity as the percentage of continuous margin.

A meta-analysis was performed only with the 3 studies that presented the most homogenous datasets\(^2,4,45,47\). The outcomes of the identified studies were divided into two analyses based on the part of the restoration margin, where the marginal integrity was assessed (enamel or dentine). Results are presented in Fig. 3. All tested materials, both flowable and packable, presented similar results. There were significant decreases of the mean values observed, when comparing the results before and after thermomechanical loading, regardless of the material tested. The differences were statistically significant \((p<0.05)\). The heterogeneity among the studies was low in part concerning marginal integrity in enamel (21.47%), but high in the part concerning marginal integrity in dentine (74.61%).

Bonding agents used in included studies were both those requiring etching (OptiBond FL\(^4,4,45\), Tetric N-Bond\(^2,5\), Excite F\(^2,5\), XP Bond\(^16,46\), Syntac\(^46\)) and self-etch adhesives (Tetric N-Bond Self Etch\(^2,5\), AdheSE\(^2,5,14\), Xeno V\(^46\), Adper Prompt L-pop\(^46\), iBondSE\(^46\), p90 Sytem Adhesive\(^46\), SEBond\(^47\)). For all surveys, where both self-etch and total-etch technique was used, etch-

Table 2 Bulk fill materials used in studies

Material	Consistency	Manufacturer	Composition									
SDR	Flowable	Dentsply	Barium aluminofluoroborosilicate glass, strontium aluminofluorosilicate glass, modified urethane dimethacrylate resin, ethoxylated bisphenol-A-dimethacrylate (EBPADMA), triethylene glycol dimethacrylate (TEGDMA), camphoroquinone photoinitiator, butylated hydroxytoluene (BHT), UV stabilizer, titanium dioxide, iron oxide pigments									
Sonic Fill	Flowable, sound	Kerr	Glass, oxide, chemicals (10–30%), 3-trimethoxysilylpropyl methacrylate (10–30%), silicon dioxide (5–10%), ethoxylated bisphenol-A-dimethacrylate (1–5%), bisphenol-A-bis(2-hydroxy-3-methacryloxypropyl) ether (1–5%), triethylene glycol dimethacrylate (1–5%)									
Tetric Evo Ceram	Packable	Ivoclar	Dimethacrylates (19.7% by weight), prepolymer (17% by weight), bariom Glass fillers, ytterbium trifluoride, Mixed oxide (62.5% by weight), additives, initiators, stabilizers, pigments (<1% by weight)									
Venus Bulk Fill	Flowable	Kulzer	UDMA, EBADMA, inorganic fillers such as Ba-Al.-F silicate Glass, YbF\(_3\) and SiO\(_2\) filler particles size 0.02–5.0 micrometers, approximately 65% by weight and 38 vol%									
x-tra base	Flowable	VOCO	Monomers: Bis-EMA, MMA Fillers: 75 wt%, 58 vol% Si glass									
Study	Year	Cavities	Materials	Aging/storage	Percentage of continuous margins before/after TMC (%)	Results						
--------------	-------	----------	--------------------------------	---	--	--						
Agarwal et al.	2015	80	I. Sonic Fill¹	24 h of storage in distilled water at 37°C	Cervical enamel: I. 94.42/82.40	Internal: I. 59.54						
			II. SDR+Ceram X¹	After thermo-cycled for 2,500 cycles (cyclic immersion at 57/55°C with dwell	II. 76.62/65.66	II. 55.66						
			III. Tetric N-Ceram Bulk Fill¹	time of 2 min and transfer time of 5 s)	III. 92.13/81.49	III. 49.725						
			IV. Tetric N Flo+Tetric N Ceram¹	Thermo-cycled for 5,000 cycles (cyclic immersion at 57/55°C with dwell	IV. 93.53/81.58	IV. 56.65						
				time of 15 s and transfer time of 15 s)								
Al-Harbi et al.	2015	91	TC – Tetric Ceram HB²	Thermo-cycled for 5,000 cycles (cyclic immersion at 57/55°C with dwell	ENAMEL self etch/total etch:							
			TC+EF – Tetric EvoFlow+Tetric Ceram²	time of 15 s and transfer time of 15 s)	TC 7.3/3.4	CEMENTUM sel etch/Total etch:						
			TC+SD – SDR+Tetric Ceramⁱ	Thermo-cycled for 5,000 cycles (cyclic immersion at 57/55°C with dwell	TC+EF 9.1/6.1	TC 15.5/9.5						
			TN – Tetric N-Ceram Bulk Fill<sup	i</sup>	time of 15 s and transfer time of 15 s)	TC+SD 8.8/6.4	TC 16.3/13.4					
			TE – Tetric Evo Ceram Bulk Fill^e	Mechanical loaded for 1,000 cycles between 25 and 100 N at 20 Hz	SF 6.9/6.8	TC 8.4/6.8						
			P9 – Filtek P90^f		TN 8.7/6.7	SF 14.1/14.0						
					TE 8.4/6.8							
Al-Harbi et al.	2016	91	TC – Tetric Ceram HB²	Thermo-cycled for 5,000 cycles (cyclic immersion at 57/55°C with dwell	ENAMEL self etch/total etch:							
			TC+EF – Tetric EvoFlow+Tetric Ceram²	time of 15 s and transfer time of 15 s)	TC 8.5/6.9	CEMENTUM sel etch/Total etch:						
			TC+SD – SDR+Tetric Ceramⁱ	Thermo-cycled for 5,000 cycles (cyclic immersion at 57/55°C with dwell	TC+EF 9.4/4.9	TC 70.0/82.3						
			SF – SonicFillⁱ	time of 15 s and transfer time of 15 s)	TC+SD 9.4/9.3	TC 70.0/82.3						
			TN – Tetric N-Ceram Bulk Fillⁱ	Mechanical loaded for 1,000 cycles between 25 and 100 N at 20 Hz	SF 93.1/94.6	TC 70.0/82.3						
			TE – Tetric Evo Ceram Bulk Fill^e		TN 94.1/94.1							
			P9 – Filtek P90^f		TE 94.0/86.1							
Benetti et al.	2015	96	1. Venus Bulk Fill^e	Stored in distilled water for 10 min		1. median 10.2 range 3.6–31.7						
			2. SDR^e		2. median 6.1 range 3.3–33.0							
			3. x-tra base^e		3. median 9.3 range 5.2–36.6							
			4. Tetric Evo Ceram Bulk Fill^e		4. median 6.6 range 3.2–21.1							
			5. SonicFill^e		5. median 7.1 range 3.9–18.0							
			6. Tetric Evo Ceram^e		6. median 6.2 range 3.0–12.3							
Campos et al.	2014	40	A. Venus Bulk Fill/Venus Diamond^e	24 h storage in distilled water at 37°C		1. median 10.2 range 3.6–31.7						
			B. Tetric EvoCeram Bulk^e Fill/Tetric EvoCeram^e	After thermo-cycled for 600 cycles (cyclic immersion at 57/50°C with dwell	2. median 6.1 range 3.3–33.0							
			C. Surefill SDR/Ceram-X^e	time of 2 min and transfer time of 5 s)	3. median 9.3 range 5.2–36.6							
			D. Sonic Fill^e		4. median 6.6 range 3.2–21.1							
			E. Ceram-X/Ceram-X^e (control)	Mechanical loaded for 240,000 cycles between at max 49 N at 1.7 Hz	5. median 7.1 range 3.9–18.0							
					6. median 6.2 range 3.0–12.3							
Study	Year	Class	Material/Adhesive	Marginal integrity as the percentage of the entire margin length (%)	Percentages of continuous margins before/after loading (%)	Percentage of the entire margin length before/after TMC (%)	Percentage of continuous marginal adaptation before/after loading (%)					
------------------------	------	---------	-----------------------------	---	--	--	---					
De Assis et al. 16	2016	Class II (n=10)	1. SDR/conservative\(^1\) 2. SDR/extended\(^1\) 3. TPH3 Spectrum/conservative\(^1\) 4. TPH3 Spectrum/extended\(^1\)	24 h storage in distilled water at 37°C	1. Sonic Fill\(^e\) –conventional polymerization 20 s at 1,200 mW/cm\(^2\) (24 J/cm\(^2\)) 2. Sonic Fill\(^e\) –conventional polymerization 40 s at 1,200 mW/cm\(^2\) (48 J/cm\(^2\)) 3. Sonic Fill\(^e\) –soft-start polymerization 5 s at 650 mW/cm\(^2\) and 15 s at 1,200 mW/cm\(^2\), (21.25 J/cm\(^2\)) 4. Sonic Fill\(^e\) –soft-start polymerization 10 s at 650 mW/cm\(^2\) and 30 s at 1,200 mW/cm\(^2\), (42.5 J/cm\(^2\))	24 h storage in distilled water at 37°C	1. 95.9 2. 94.4 3. 93.5 4. 90.9	1. 95.9/87.4 2. 96.8/62.4 3. 96.0/90.0 4. 94.8/69.2	1. 96.9/92.8 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2	
Gamarra et al. 18	2018	Class II MOD (n=10)	1. Sonic Fill\(^e\) –conventional polymerization 20 s at 1,200 mW/cm\(^2\) (24 J/cm\(^2\)) 2. Sonic Fill\(^e\) –conventional polymerization 40 s at 1,200 mW/cm\(^2\) (48 J/cm\(^2\)) 3. Sonic Fill\(^e\) –soft-start polymerization 5 s at 650 mW/cm\(^2\) and 15 s at 1,200 mW/cm\(^2\), (21.25 J/cm\(^2\)) 4. Sonic Fill\(^e\) –soft-start polymerization 10 s at 650 mW/cm\(^2\) and 30 s at 1,200 mW/cm\(^2\), (42.5 J/cm\(^2\))	24 h storage in distilled water at 37°C	1. 95.9 2. 94.4 3. 93.5 4. 90.9	24 h storage in distilled water at 37°C After thermo-cycled for 2,500 cycles (cyclic immersion at 5°/55°C with dwell time of 30 s)	1. 95.9/87.4 2. 96.8/62.4 3. 96.0/90.0 4. 94.8/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2		
Heintze et al. 14	2015	Class II (n=8)	A. Tetric EvoCeram Incremental\(^a\) B. Tetric EvoCeram Bulk Fill\(^a\) C. Tetric EvoCeram Incremental\(^c\) D. Tetric EvoCeram Bulk Fill\(^c\)	24 h storage in distilled water at 37°C	1. Sonic Fill\(^e\) –conventional polymerization 20 s at 1,200 mW/cm\(^2\) (24 J/cm\(^2\)) 2. Sonic Fill\(^e\) –conventional polymerization 40 s at 1,200 mW/cm\(^2\) (48 J/cm\(^2\)) 3. Sonic Fill\(^e\) –soft-start polymerization 5 s at 650 mW/cm\(^2\) and 15 s at 1,200 mW/cm\(^2\), (21.25 J/cm\(^2\)) 4. Sonic Fill\(^e\) –soft-start polymerization 10 s at 650 mW/cm\(^2\) and 30 s at 1,200 mW/cm\(^2\), (42.5 J/cm\(^2\))	24 h storage in distilled water at 37°C After thermo-cycled for 10,000 cycles (cyclic immersion at 5°/55°C)	1. 95.9 2. 94.4 3. 93.5 4. 90.9	24 h storage in distilled water at 37°C After thermo-cycled for 2,500 cycles (cyclic immersion at 5°/55°C with dwell time of 30 s)	1. 95.9/87.4 2. 96.8/62.4 3. 96.0/90.0 4. 94.8/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2
Roggendorf et al. 80	2011	Class II (n=10)	1. SDR+CeramX mono\(^l\) 2. SDR+CeramX mono\(^k\) 3. SDR+Tetric Evo Ceram\(^h\) 4. SDR+Filtek Supreme XT\(^j\) 5. SDR+Venus Diamond\(^d\) 6. CeramX mono\(^l\) 7. CeramX mono\(^k\) 8. Tetric Evo Ceram 9. Filtek Supreme XT 10. Venus Diamond	21 days storage in distilled water at 37°C	1. 95.9 2. 94.4 3. 93.5 4. 90.9	24 h storage in distilled water at 37°C	1. 95.9/87.4 2. 96.8/62.4 3. 96.0/90.0 4. 94.8/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2		
Shahidi et al. 40	2017	Class II MOD (n=10)	TET –Tetric Evo Ceram\(^g\) SDR –SDR+CeramX mono\(^l\) ELS1 –ELSflow+ELS\(^g\) ELS2 –ELS\(^g\) SOF –Sonic Fill\(^g\)	24 h storage in saline at room temperature	1. 95.9 2. 94.4 3. 93.5 4. 90.9	24 h storage in saline at room temperature	1. 95.9/87.4 2. 96.8/62.4 3. 96.0/90.0 4. 94.8/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2	1. 96.9/87.4 2. 96.9/87.2 3. 98.1/91.2 4. 94.1/69.2		

a: dheSE, **b:** Adper Prompt L-pop, **c:** Excite F, **d:** iBond self-etch, **e:** OptiBond FL, **f:** P90 System Adhesive, **g:** SE Bond, **h:** Syntac, **i:** Tetric N-Bond, **j:** Tetric N-Bond Self-Etch, **k:** Xeno V, **l:** XP Bond
Table 4 Quality assessment and risk of bias

Author	The same type of teeth	Teeth or samples randomization	Teeth free of caries	Similar size of sample	Materials used according to manufacturers’ instructions	Control group	Sample size calculation	Blinding of the examiner	Risk of bias
Agarwal et al.	YES	NO	YES	YES	YES	YES	NO	NO	Medium
Al.-Harbi et al.	YES	YES	YES	YES	YES	YES	NO	NO	Low
Al-Harbi et al.	YES	YES	YES	YES	YES	YES	NO	NO	Low
Benetti et al.	YES	NO	YES	YES	NO	YES	NO	NO	Medium
Campos et al.	YES	NO	YES	YES	NO	YES	NO	NO	Medium
De Assis et al.	YES	NO	YES	YES	YES	YES	NO	YES	Low
Gamarra	YES	YES	YES	YES	YES	YES	NO	YES	Low
Heintze et al.	YES	NO	YES	YES	YES	YES	NO	NO	Medium
Roggendorf et al.	YES	YES	YES	YES	YES	YES	NO	YES	Low
Shahidi et al.	YES	YES	YES	YES	YES	YES	NO	NO	Low

Fig. 2 Good marginal adaptation expressed as the percentage of gap free margins (%) in studies using SEM analysis.
*: results after thermomechanical loading, E: extended preparation of the cavity, C: conservative preparation of the cavity, TE: total-etch technique, SE: self-etch technique
and-rinse adhesives performed better than self-etch adhesives\(^{2,5,14,46}\). Aging and the types of adhesives had no significant influence on the difference in marginal integrity between flowable and packable bulk fill resin composites.

Authors of the included studies emphasized, that there were no significant differences in terms of marginal integrity for both layering and bulk filling technique\(^{5,16,43,47}\). The bulk fill composites did not significantly improve marginal integrity compared to the conventional group\(^{2,4}\).

DISCUSSION

Long-term adhesion of dental materials used in conjunction with bonding agents is an important factor for clinical success, especially in the case of materials shrinking during polymerization, which can lead to a marginal gap and microleakage, caries, or postoperative pathological hypersensitivity reaction in the pulp of the tooth. Among many factors defining the quality of materials that restore lost tooth tissues, marginal integrity seems to be the most important\(^ {1,8}\). Due to enhanced translucency and the incorporation of a specific photoactive group, the polymerization kinetics of bulk fill materials are claimed to be better controlled, enabling the composite base to be injected and cured in layers up to a depth of 4 or even more millimeters\(^{9}\). The use of the bulk fill technique undoubtedly simplifies the restorative procedure and saves clinical time in cases of deep, wide cavities\(^ {44}\). In addition to the depth of cure, curing composites in bulk potentially affects polymerization shrinkage stress. Polymerization shrinkage stress is a serious concern for clinicians because it has been associated with postoperative sensitivity and bond failure\(^ {48}\). Despite important improvements in dental adhesives and materials, class II composite restorations with cervical margins in dentine are sensitive to marginal discontinuity\(^ {4}\). About 80% of marginal caries develop at the gingival-cervical margin of class II restorations\(^ {49}\). To the best of our knowledge this review is the first such article comparing information on the marginal integrity of flowable and packable bulk fill materials in class II cavities, which can help clinicians choose suitable materials and possibly save time while restoring class II cavities. The null hypothesis was confirmed because the flowable and packable bulk fill composites assessed in the analyzed studies presented similar results regarding marginal integrity.

The replica SEM method is a well-established procedure that allows for qualitative and quantitative evaluation of the margin\(^ {2}\). Moreover, it can be applied for in vitro and in vivo screening of restorations\(^ {2}\). Using SEM analysis of the marginal integrity of replicas, the results were more precise and expressed as a percentage of the continuous gap-free margin before and after thermocycling\(^ {2,4,16,43,45,47}\). According to the authors of included studies, despite the difference in physical parameters used, all results indicated better marginal integrity in enamel than in dentine\(^ {4,43,47}\), with the worst results in the internal margin\(^ {43}\). A high variability before and after thermocycling and mechanical loading was also noted\(^ {4,43,47}\), which suggests that further surveys need to be conducted under similar conditions, as they reflect the clinical situation accurately. It is believed that the existing occlusive load of the oral cavity and the thermal
changes favor the formation of a marginal gap at the contact surface between the tooth and material10. Meta-analysis presented in this review showed a significant decrease of the mean values of the marginal integrity after thermomechanical loading. The decrease was observed both for the flowable (SDR, Venus Bulk Fill) and packable (Sonic Fill, Tetric N Ceram Bulk Fill, Tetric Evo Ceram Bulk Fill) bulk fill composite materials. Gap formation was larger for x-tra base and Venus Bulk Fill than conventional composite, and not much difference in gap formation was observed between the conventional resin composite and SDR, Tetric EvoCeram Bulk Fill, or Sonic Fill44. The bulk fill composites did not meaningly improve the marginal integrity compared to conventional composite5. In the studies using SEM analysis, Sonic Fill had satisfactory results among bulk fill materials, probably due to the initial flowability induced by the sonic energy and the low volumetric shrinkage and high filler loading compensating for bulk curing by reducing polymerization contraction stress9. Tetric EvoCeram Bulk Fill, a packable bulk fill material, seemed to have the most repeatable results, possibly because of high filler volume and lower polymerization contraction than flowable bulk fill materials12,44. The influence of the kind of bonding agent was evaluated in two reports14,46. Within the same adhesive system, the percentage of regular margin was not much influenced by either the incremental technique or the evaluation method; the type of filling technique and filling material also had no significant influence on the results14. However, in recent studies, phosphoric acid-etching remained the most reliable method for achieving a fatigue-resistant enamel bond125,60. All of the studies showed that a bonding agent requiring total etching results in better marginal integrity in enamel and dentine. In terms of stability and degradation resistance, the total-etch bonding technique has been reported to produce more reliable resin-dentin hybrid layers than self-etch adhesives, particularly at the enamel margin5. The bond in self-etching adhesive systems is based on mild acid demineralization, the formation of stable calcium salts, and a weak chemical bond to hydroxyapatite46.

There is no standardized method for assessing marginal integrity. Therefore, the variations in the results may be explained by differences in restorative materials, flowable liners, bonding systems, and especially testing procedures5. In addition, different polymerization sources or restoring cavities with different designs or C-factors can decrease the marginal microleakage30. There is also no standardized protocol for thermocycling, as several different regimens have been proposed to simulate clinical function8. Taking this into consideration, one standardized protocol for thermocycling, mechanical loading, and assessment should be introduced to obtain the most reliable results.

CONCLUSION

The present review indicates that flowable and packable bulk fill composites present similar marginal integrity when used for the restoration of class II cavities. However, more long-term clinical studies are needed to fully assess their mouth conditions.

CLINICAL SIGNIFICANCE

According to the general desire to simplify the procedure of filling cavities, bulk fill composites may prove to be commonly used materials.

ACKNOWLEDGMENTS

The authors have no conflicts of interest to declare related to this study.

REFERENCES

1) Orlowski M, Tarczydlo B, Chalas R. Evaluation of marginal integrity of four bulk-fill dental composite materials: in vitro study. Sci World J 2015; 2015: 701262.
2) Al-Harbi F, Kaisarly D, Bader D, El Gezawi M. Marginal integrity of bulk versus incremental fill class II composite restorations. Oper Dent 2016; 41: 146-156.
3) Kim RJ, Kim YJ, Choi NS, Lee IB. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoreion of interfacial debonding in bulk-fill composites. J Dent 2015; 43: 430-439.
4) Campos EA, Ardu S, LeFever D, Jasse FF, Bortolotto T, Krejci I. Marginal adaptation of class II cavities restored with bulk-fill composites. J Dent 2014; 42: 575-581.
5) Al-Harbi F, Kaisarly D, Michna A, ArHejasie A, Bader D, El Gezawi M. Cervical interfacial bonding effectiveness of class II bulk versus incremental fill resin composite restorations. Oper Dent 2015; 40: 622-635.
6) Hirata R, Clozza E, Giannini M, Farrokhmanesh E, Janal M, Tovar N, et al. Shrinkage assessment of low shrinkage composites using micro-computed tomography. J Biomed Mater Res B Appl Biomater 2015; 103: 798-806.
7) van Dijken JW, Pallesen U. Posterior bulk-filled resin composite restorations: A 5-year randomized controlled clinical study. J Dent 2016; 51: 29-35.
8) Jawed NU, Abidi SYA, Qazi FUR, Ahmed S. An in-vitro evaluation of microleakage at the cervical margin between two different class II restorative techniques using dye penetration method. J Coll Physicians Surg Pak 2016; 26: 748-752.
9) van Ende A, De Munck J, Van Landuyt KL, Poitevin A, Peumana M, Van Meerbeek B. Bulk-filling of high C-factor posterior cavities: effect on adhesion to cavity-bottom dentin. Dent Mater 2013; 29: 269-277.
10) Bayraktar Y, Erkan E, Hamidi MM, Colak H. One-year clinical evaluation of different types of bulk-fill composites. J Investig Clin Dent 2017; 8: DOI: 10.1111/jicd.12210.
11) Cebeci MA, Cebeci F, Cengiz MF, Cetin AR, Arpag OF, Ozturk B. Elution of monomer from different bulk fill dental composite resins. Dent Mater 2015; 31: 141-149.
12) Flury S, Peutzfeldt A, Lussi A. Influence of increment thickness on microhardness and dentin bond strength of bulk fill resin composites. Dent Mater 2014; 30: 1104-1112.
13) X Li, Pongprueksa P, Van Meerbeek B, De Munck J. Curing profile of bulk-fill resin-based composites. J Dent 2015; 43: 664-672.
14) Heintze SD, Monreal D, Peschke A. Marginal quality of class II composite restorations placed in bulk compared to an incremental technique: evaluation with SEM and stereomicroscope. J Adhes Dent 2015; 17: 147-154.
15) Alrahlah A, Silikas N, Watts DC. Post-cure depth of cure of bulk fill dental resin-composites. Dent Mater 2014; 30: 149-154.

16) De Assis FS, Lima SNL, Tonetto MR, Bhandi SH, Pinto SC, Malaquias P, et al. Evaluation of bond strength, marginal integrity, and fracture strength of bulk- vs incrementally-filled restorations. J Adhes Dent 2016; 18: 317-323.

17) Alshahi RZ, Salim NA, Sung R, Satterthwaite JD, Silikas N. Qualitative and quantitative characterization of monomers of uncured bulk-fill and conventional resin-composites using liquid chromatography/mass spectrometry. Dent Mater 2015; 31: 711-720.

18) Alshahi RZ, Salim NA, Satterthwaite JD, Silikas N. Post-irradiation hardness development, chemical softening, and thermal stability of bulk-fill and conventional resin-composites. J Dent 2015; 43: 209-218.

19) Alkurdi RM, Abboud SA. Clinical evaluation of class II composite: Resin restorations placed by two different bulk-fill techniques. J Orofac Sci 2016; 8: 34-39.

20) Atabeck D, Aktaş N, Sakaryali D, Bani M. Two-year clinical performance of sonic-resin placement system in posterior restorations. Quintessence Int 2017; 48: 743-751.

21) Colak H, Tokay U, Uzgur R, Hamidi MM, Ercan E. A prospective, randomized, double-blind clinical trial of one nano-hybrid and one high-viscosity bulk-fill composite restorative systems in class II cavities: 12 months results. Niger J Clin Pract 2017; 20: 822-831.

22) van Dijken JW, Pallesen U. A randomized controlled three year evaluation of “bulk-filled” posterior resin restorations based on stress decreasing resin technology. Dent Mater 2014; 30: 245-251.

23) van Dijken JW, Pallesen U. Randomized 3-year clinical evaluation of class I and II posterior resin restorations placed with a bulk-fill resin composite and a one-step self-etching adhesive. J Adhes Dent 2015; 17: 81-88.

24) van Dijken JW, Pallesen U. Bulk-filled posterior resin restorations based on stressdecreasing resin technology: a randomized, controlled 6-year evaluation. Eur J Oral Sci 2017; 125: 303-309.

25) Karaman E, Keskin B, Inan U. Three-year clinical evaluation of class II posterior composite restorations placed with different techniques and flowable composite linings in endodontically treated teeth. Clin Oral Investig 2017; 21: 709-716.

26) Yazici AR, Antontson SA, Kutuk ZB, Ergin E. Thirty-six-month clinical comparison of bulk fill and nanoFill composite restorations. Oper Dent 2017; 42: 478-485.

27) Heintze SD. Clinical relevance of tests on bond strength, microleakage and marginal adaptation. Dent Mater 2013; 29: 59-84.

28) Déjou J, Sindres V, Camps J. Influence of criteria on the results of in vitro evaluation of microleakage. Dent Mater 1996; 12: 342-349.

29) Joloski J, Carrabba M, Aragoneses JM, Forner L, Vichi A, Ferrari M. Microleakage of class II restorations and microtensile bond strength to dentin of low-shrinkage composites. Am J Dent 2013; 26: 271-277.

30) Scotti N, Comba A, Gambino A, Paolino DS, Alovisi M, Pasqualini D, et al. Microleakage at enamel and dentin margins with a bulk fills flowable resin. Eur J Dent 2014; 8: 1-8.

31) Frankenberger R, Krämer N, Lohbauer U, Nikolaeenko SA, Reich SM. Marginal integrity: Is the clinical performance of bonded restorations predictable in vitro? J Adhes Dent 2007; 9 Suppl 1: 107-116.

32) Kaczor K, Gerula-Szymańska A, Smektała T, Safranow K, Lewusz K, Nowicka A. Effects of different etching modes on the nanoleakage of universal adhesives: A systematic review and meta-analysis. J Esthet Restor Dent 2018; 287-298.

33) Sarkis-Onofre R, Skupien JA, Cenci MS, Moraes RR, Pereira-Cenci T. The role of resin cement on bond strength of glass-fiber posts luted into root canals: a systematic review and meta-analysis of in vitro studies. Oper Dent 2014; 39: E31-E44.

34) Alkhdhairy FI, Ahmad ZH. Comparison of shear bond strength and microleakage of various bulk-fill bioactive dentin substitutes: an in vitro study. J Contemp Dent Pract 2016; 17: 997-1002.

35) Garoushi SK, Hatem M, Lasilla LVJ, Vallittu PK. The effect of short fiber composite base on microleakage and load-bearing capacity of posterior restorations. Acta Biomater Odontol Scand 2015; 1: 6-12.

36) Kalmowicz J, Phebus JG, Owens BM, Johnson WW, King GT. Microleakage of class I and II composite resin restorations using a sonic-resin placement system. Oper Dent 2015; 40: 653-661.

37) Koyuturk AE, Tokay U, Sari ME, Ozmen B, Cortcu M, Acar H, et al. Influence of the bulk fill restorative technique on microleakage and microtensile of class II restorations. Pediatr Dent 2014; 24: 148-152.

38) Miletić V, Perić D, Milošević M, Manojlović D, Mitrovic N. Local deformation fields and marginal integrity of sculptable bulk-fill, low-shrinkage and conventional composites. Dent Mater 2016; 32: 1441-1451.

39) Moorthy A, Hogg CH, Dowling AH, Grufferty BF, Benetti AR, Fleming GJ. Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. J Dent 2012; 40: 500-506.

40) Rengo C, Spagnuolo G, Ametrano G, Goracci C, Nappo A, Rengo S, et al. Marginal leakage of bulk fill composites in class II restorations: A microCT and digital microscope analysis. Int J Adhes Adhes 2015; 60: 123-129.

41) Swapna MU, Koshy S, Kumar A, Nanjappa N, Benjamin S, Nainan MT. Comparing marginal microleakage of three bulk fill composites in class II cavities using confocal microscope: An in vitro study. J Conserv Dent 2015; 18: 409-413.

42) Tomaszewksa IM, Kears JO, Ilie N, Fleming GJ. Bulk fill restoratives: to cap or not to cap — that is the question? J Dent 2015; 43: 309-316.

43) Agarwal RS, Hiremath H, Agarwal J, Garg A. Evaluation of cervical marginal and internal adaptation using newer bulk fill composites: An in vitro study. J Conserv Dent 2015; 18: 56-61.

44) Benetti AR, Havndrup-Pedersen C, Honore D, Pedersen MK, Pallesen U. Bulk-fill resin composites: Polymerization contraction, depth of cure, and gap formation. Oper Dent 2015; 40: 190-200.

45) Gamarras VSS, Borges GA, Júnior LHB, Spohr AM. Marginal adaptation and microleakage of a bulk-fill composite resin photopolymerized with different techniques. Odontology 2018; 106: 56-63.

46) Roggendorf MJ, Kramer N, Appelt A, Naumann M, Frankenberger R. Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. J Dent 2011; 39: 643-647.

47) Shahidi C, Krejci I, Dietschi D. In vitro evaluation of marginal adaptation of direct class II composite restorations made of different “low-shrinkage” systems. Oper Dent 2017; 42: 273-283.

48) Do T, Church B, Verissimo C, Hackmyer SP, Tantbirojn D, Simon JF, et al. Cuspal flexure, depth-of-cure, and bond integrity of bulk-fill composites. Pediatr Dent 2014; 36: 473-484.

49) Mjör IA. The location of clinically diagnosed secondary caries. Quintessence Int 1998; 29: 315-317.

50) Pfeutzfeldt A, Asmusen E. Determinants of in vitro gap formation of resin composites. J Dent 2004; 32: 109-115.