Orientation in Social Networks*

HU Yanqing · FAN Ying · DI Zengru

DOI: 10.1007/s11424-017-6210-9
Received: 20 September 2016 / Revised: 13 January 2017
© The Editorial Office of JSSC & Springer-Verlag Berlin Heidelberg 2017

Abstract Stanley Milgram’s small world experiment presents “six degrees of separation” of our world. One phenomenon of the experiment still puzzling us is that how individuals operating with the social network information with their characteristics can be very adept at finding the short chains. The previous works on this issue focus whether on the methods of navigation in a given network structure, or on the effects of additional information to the searching process. In this paper, the authors emphasize that the growth and shape of network architecture is tightly related to the individuals’ attributes. The authors introduce a method to reconstruct nodes’ intimacy degree based on local interaction. Then we provide an intimacy based approach for orientation in networks. The authors find that the basic reason of efficient search in social networks is that the degree of “intimacy” of each pair of nodes decays with the length of their shortest path exponentially. Meanwhile, the model can explain the hubs limitation which was observed in real-world experiment.

Key words Navigation, small world network, social network.

1 Introduction

China has a famous shortest poem titled life: Net (by poet Bei Dao). This one word poem tells us that any one in the world is living in the invisible social networks. In the 1960s, Stanley Milgram has revealed a striking feature of these networks by his famous experiment[1]. He showed us that any two people can be linked by a short chain of friends. The average length of the chains is about six, which is quite remarkably close to Karinthys prediction 40 years earlier[2]. This fascinating result has been popularized in the 1990s by John Guare’s successful
play “six degrees of separation”\cite{3} and has been known as small world phenomena. More recent empirical studies using the Internet have demonstrate the similar conclusion\cite{4−8}.

Actually, Milgram’s experiment showed us two issues of special interest: First, is the existence of short paths, and second, is the ability of people at finding them efficiently. The first issue has been extensively studied, especially with the Watts-Strogatz Small-World Network (SW) model (see Ref. \cite{9,10} and references therein for review, such as \cite{11,12}). Here we focus only on the second issue that we still lack an equally complete understanding.

Kleinberg first noticed the searching problem and presented excellent models with perfect mathematical analysis\cite{13,14}. He modeled the social network as a lattice based network with some long-range connections. Under the condition that every node knows the lattice coordinates of his immediate neighbors (acquaintances) and the target, the letter delivering process was: Each letter holder (node) forwards the letter across a connection that brings it as close as possible to the target in lattice distance. Kleinberg found that the network is searchable when the long-range connections obey a special distribution. Moreover, he has given some results on hierarchical network models\cite{15}. Watts, et al.\cite{16} presented a hierarchical network based model which is more approximate to the real-world social network and got some interesting results by numerical simulation. There also exist some other models try to present a framework of the second issue such as combining random walks and targeting searches at nodes with high degree\cite{17}. Greedy routing and its modification have been studied extensively by computer and social scientists\cite{18−24}.

The above studies on network navigation have indeed captured some basic features of Milgram’s experiment, such as the letter delivering process is mainly based on geographic proximity and similarity of profession. But they all need some special network structures. So can we develop an approach to navigate networks efficiently without any requirement for network structure?

From the original Milgran’s experiment to modern empirical studies\cite{11}, we know that the letter holder chose his next recipient based on their location, profession, education, and other interests. It seems that without the information in addition to the network structure, it is impossible to search networks efficiently. So some researchers have suggested to overlap another network that describe the relationships of individuals’ attributes such as location or profession to social network, so that the social network is searchable when we combine the information of these two networks\cite{25}. But we argue that the alleged additional information to networks is indeed tightly related to social networks. Obviously, the probability of acquaintance is actually related to the proximity between individuals’ attributes. The structural properties of social network should be shaped by these factors. The formation and evolution of social networks are affected or even determined by the individual characters. That is why the individuals’ attributes could give us some information about network structures and the social networks can be searched efficiently based on these factors. Recently, just when we prepared this manuscript, Boguñá, et al.\cite{26} have also indicated that social distances among individuals have a role in shaping the network architecture and that, at the same time, these distances can be used to navigate the network. They discussed the effects of hidden metric space to the node similarity.
and navigability of networks.

From above arguments, we know that the individuals' attitudes and network structures are correlated with each other tightly. The individuals' attitudes affect the network evolution and thus they should be embedded in the network topology. Then, the problem becomes: can we recover the embedded information about the nodes in networks and use it to realize the effective searching?

In this paper, we introduce a method to get nodes' intimacy through local interactions. Then we present an approach of orientation in network based on the “intimacy degree”. We assign an n-dimensional vector to each node to describe its attribute. This vector could have the information of other nodes in the network through a series of acquaintance. It could be abstracted from the network structure and can measure the “intimacy degree” of a node with any other nodes. A pair of nodes will be more intimacy if they are close to each other and less intimacy if they are far away in the network. The process of delivering letter in the network is that the current letter holder always forwards the letter to the candidate who has the largest intimacy with the target. It has been demonstrated in the following discussion that our approach is very efficient and can be used in many network searching problems.

2 Intimacy Degree

Now we will reconstruct the individual's attributes related with the network structure. Based on the assumption that social network topology contains the individuals' attributes that affect the network evolution. Here, an individual’s attributes on the network could be described as its intimacy degree with other nodes. The intimacy can be regarded as the integration of the similarities of the occupations, hobbies, locations, or nationalities etc. Suppose there is a connected network with n nodes. We assign an n-dimensional vector \(v_i \) to each node \(i \). Its \(j \)th element \(v_i(j) \) denotes the degree of intimacy of node \(i \) to node \(j \). If \(i = j \), we set \(v_i(j) = a \) \((a \geq 1)\), which indicates the intimacy degree of each node to itself is a constant \(a \) always. In the initial, for each \(i \) and \(j \), we set \(v_i(j) = a \) when \(i = j \), otherwise, \(v_i(j) = 0 \). Each time we update the intimacy vectors of every node by local interaction parallelly. Suppose node \(i \) has \(k \) neighbors (in this paper, we say node \(h \) is a neighbor of node \(i \) always means that there is an edge form node \(i \) to node \(h \), if the network is a directed network), which are \(N_1^i, N_2^i, \ldots, N_k^i \). \(v_{N_1^i}, v_{N_2^i}, \ldots, v_{N_k^i} \) are \(k \) intimacy vectors of the \(k \) neighbors. Then \(v_i \) can be updated through the interaction with its neighbors according to the following three steps:

1) Renew the vector by summarize all the related vectors of the neighbors: \(v_i = \sum_{h=1}^{k} v_{N_h^i} \);
2) Set \(v_i(i) = 0 \), and re-scale all the other elements \(v_i = \frac{v_i}{\sum_{j=1}^{n} v_i(j)} \);
3) Set the element: \(v_i(i) = a \).

In a word, we always keep \(v_i(i) = a \), and the sum of all the other elements of \(v_i \) is 1. The intimacy vectors will be converge within \(O(\ln n) \) steps of evolution (Figure 1). So by a proper steps of iteration, the intimacy vector of every node can be given. The element \(v_i(j), (j \neq i) \) denotes the comparative intimacy of node \(i \) to node \(j \). Our crucial findings are that the degree of intimacy of each pair of nodes decays with the length of their shortest path exponentially.
in statistical sense (see Theorem 1 and Figure 2). It indicates that the degree of intimacy of each pair nodes is dominated by the shortest path between them in statistical sense. Does it contravene to common sense? Suppose people only know $\frac{1}{w}$ of his neighbor’s information, where $w > 1$. Then one will know only $\frac{1}{ww}$ of information about his neighbor’s neighbor. In this way we can easy conclude that degree of intimacy of each pair of nodes (here we regard the amount of information one knows about the other as intimacy degree) decays with the length of their shortest path exponentially.

![Convergence speed](image)

Figure 1 Convergence speed. d signifies the average value of all the absolute differences of the intimacy degree between T and $T - 1$ steps. The numerical experiments are done in WS (each node link it’s two nearest neighbors and one random long rang connection), K (Kleinberg one dimensional small world networks, each node link it’s two nearest neighbors and one long rang connection with clustering exponent $\alpha = 1$), and BA (scale-free network model with average degree 3) networks respectively. Size All the networks is $n = 1000$ and the results are the average of 50 realizations. From the plot we can see that the d drop with T exponentially.

3 Orientation

Obviously, in Milgram’s experiment, current message holder always try to forward the message to a immediate neighbor who seems can send the message to the target most quickly. How to chose the suitable neighbor? Suppose every one has only the local information, that means each node knows and only knows his neighbor’s intimacy vectors, We may think that people will always send the message to the neighbor who has the largest intimacy degree with the target. So the orientation is the process that the current message holder i sends the message to its neighbor h, which has the most intimacy degree with the target t. And then node h will send the message in the same way until it reaches the target t. We can strictly prove that the degree of intimacy will decline inversely to the degree of the node by which intimacy passes (Sup. Theorem 1). It implies that “highly connected individuals (hubs) appears to have limited relevance to the kind of social search” which was observed in real-world experiment[4]. Moreover we also can prove that for a connected network, the chosen neighbor h is more intimate with
Figure 2 Average Intimacy degrees decline exponentially with the shortest path length. The simulations are done in the same networks as in Figure 1. (A) $a = 100$, the intimacy vectors evolved 100 time steps. (B) $a = 1$, the intimacy vectors evolved 10 times. Each point denotes the average intimacy degree and the corresponding length of the shortest path. From the two plots, we can safely conclude that the intimacy degree of each pair of nodes decays with the length of their shortest path exponentially. The slope approximate $-\ln H$, where $H = a(k + 1) - 1$ theoretically (see Theorem 1). In plot (a), $H = 302$ and in plot (b), $H = 5$. They are consistent well with simulations.

node t compared to node i after the sufficient evolution steps (see Theorem 2). This means that the message will not pass a node twice in the one sending process and always can reach the target t.

In order to demonstrate our model works well in finding short chains, we define accuracy and success to evaluate the performance of our algorithm. Here accuracy L_s/L_{search} means the consistence when the paths searched from algorithm is compared with the shortest paths, and success is the rate of success searches to reach the target in a given time steps, where, L_s is the sum of total shortest path lengths and L_{search} is the corresponding sum of total searched path lengths. We do the numerical experiments on following three types artificial network: WS network which was presented by Watts and Strogatz[9], K network which was presented by Kleinberg[13] and BA network which was presented by Albert and Barabási[11]. All artificial networks have 1000 nodes and the average degree is 3. Specially, the K network is based on 1-dimensional lattice, each node connects the two nearest neighbors and has one long-rang connection with clustering exponent $\alpha = 1$. The numerical results indicate our algorithm works well (as shown in Figure 3).

The time complexity for the evolution of intimacy vectors is $O(\log(n)n^2)$. When intimacy vectors are established, the expectation of the time complexity for search is only $O(\log(n))$ in small world networks. The time complexity here is worse than the Dijkstra algorithm ($O(n^2)$) but better than the Floyd algorithm ($O(n^3)$).
Figure 3 Orientation ability. The numerical experiments is done in the in the same networks as in Figure 1. The horizontal axis D means the evolving time for intimacy degree is $D \times AL$ (AL is the average shortest path length). Accuracy is defined as the value of $\frac{L_s}{L}$, where L_s, L denote the total length of the paths of successful searches and the corresponding total length of shortest path length, respectively. Success is defined as the $\frac{S_s}{S}$, where S_s, S denote the total number of success searches and the corresponding total number of searches respectively. If within the searching steps of $2 \times AL$ in each network, the message has not reached the target, the searching is defined as a failure search. From the plot we can conclude that when the evolved time is comparative to the average length of the shortest path, Orientation will work very well.

4 Conclusions

In conclusion, the intimacy based orientation can well explain the small world phenomena. It shows that the individuals can search the short path in social networks with only the local information. The basic reason is that the intimacy degree of the individuals will decay with the length of the shortest path exponentially. Moreover, it also can explain why successful social search is conducted primarily through intermediate to weak strength ties, does not require highly connected “hubs” to succeed. This phenomenon was observed in real-world experiment[4] and cannot be explained by the previous researches. However, in the real world, people do not really count the intimacy vector to find the shortest path in the network. Our algorithm suggest only a method to navigation in the networks. For application, the space complexity (for each node, we need an n-dimensional vector) of Orientation is higher than the previous algorithm such as Navigation[14]. But it is a decentralized algorithm naturally and the space complicity is not a challenging problem in decentralized computing system. We can also use community structures in networks to reduce the space complexity. Our orientation method has potential applications in P2P search system, traffic navigation system, Internet routing and so on in the future.
5 Supplementary

In a network, if there exists a path from node \(p_m \) to node \(p_0 \): \(p_m \rightarrow p_{m-1} \rightarrow \cdots \rightarrow p_0 \), then there must be a corresponding intimacy spreading path \(p_0 \rightarrow p_1 \rightarrow \cdots \rightarrow p_m \) which we call intimacy spreading path form \(p_0 \) to \(p_m \). That’s to say we send message alone \(p_m \rightarrow p_{m-1} \rightarrow \cdots \rightarrow p_0 \), and get nodes information alone \(p_0 \rightarrow p_1 \rightarrow \cdots \rightarrow p_m \). It is obvious that there exists an intimacy spreading path from \(p_0 \) to \(p_m \), there must be a path from \(p_m \) to \(p_0 \).

Theorem 1 Suppose \(a >> 1 \) and there exist a constant \(H \) such that for any positive \(m \),
\[
\prod_{i=1}^{m}(k_i a + k_i - 1) \approx H^m \text{ in statistic sense, where } k_i \text{ is the out degree of node } i \text{ (it is strict in lattice based networks). Then intimacy degree of } p_m \text{ possessed about } p_0 \text{ will decay with the length of their shortest path exponentially, and will decay inversely to the degree of the node by which intimacy passes.}
\]

Proof Suppose that \(p_i \) has \(k_i \) neighbors, \(N^1_{p_i}, N^2_{p_i}, \ldots, N^k_{p_i} \) denote all the neighbors of \(p_i \) and \(p_0 \) is a neighbor of \(p_i \), \(v^i_j(y) \) denotes the intimacy degree of node \(x \) to node \(y \) after \(T \) steps evolution, \(v^i_j(y) = a \) if \(y = x \), otherwise 0. Without losing generality we let \(p_0 = N^1_{p_i} \).

\[v_0 \rightarrow p_1 \rightarrow \cdots \rightarrow p_m \text{ is an intimacy spreading path from } p_0 \text{ to } p_m.\]

\[\vdash \text{from the process to get the intimacy vectors, we have}\]
\[v_{p_1}^T(p_0) = \frac{\sum_{i=1}^{k_1} v_{p_1}^{T-1}(p_0) v_{N^1_{p_1}}^{T-1}(p_0)}{\sum_{i=1}^{k_1} v_{N^1_{p_1}}^{T-1}(j) - \sum_{i=1}^{k_1} v_{N^1_{p_1}}^{T-1}(p_1)} = \frac{a + \sum_{i=2}^{k_1} v_{N^1_{p_1}}^{T-1}(p_0)}{k_1 a + k_1 - \sum_{i=1}^{k_1} v_{N^1_{p_1}}^{T-1}(p_1)}.\]

\[0 < v_{N^1_{p_1}}^{T-1}(p_0) \leq 1, i = 1, 2, \ldots, k_1; \cdots \frac{a}{k_1 a + k_1} \leq v_{p_1}^{T-1}(p_0) \leq \frac{a+k_1}{k_1 a}; \cdots a \gg 1, \vdash v_{p_1}^T(p_0) \approx \frac{1}{k_1}, T = 1, 2, \ldots, +\infty. \]

Case 1 (see Figure 4 case 1): Suppose that there exists only one shortest path \(p_0 \rightarrow p_{m-1} \rightarrow \cdots \rightarrow p_0 \) from \(p_m \) to \(p_0 \), then when the intimacy of \(p_0 \) spread to \(p_i \) currently alone \(p_0 \rightarrow p_1 \rightarrow \cdots \rightarrow p_m \).

Then the first intimacy degree (It means the intimacy degree possessed in the first time of one pair of nodes) \(v_{p_1}(p_0) = \frac{v_{p_1}^1(p_0)}{k_1 a + k_1 + \sum_{i=1}^{k_1} v_{N^1_{p_1}}^{1}(p_0)} \approx \frac{v_{p_1}^1(p_0)}{k_1 a + k_1 - k_m} = \frac{v_{p_1}^1(p_0)}{k_1 a + k_1 - 1} \) where, \(N^1_{p_i}, N^2_{p_i}, \cdots, N^k_{p_i} \) are \(k_i \) neighbors of \(p_i \) and \(N^1_{p_{i-1}} = p_{i-1} \). The above equation also implies the intimacy degree will decay inversely \((\frac{1}{k a})\) to the degree of the node by which intimacy passes.

In this way we have: \(v_{p_m}(p_0) = \frac{v_{p_m}^1(p_0)}{k_1 a + k_1 + \sum_{i=1}^{k_1} v_{N^1_{p_1}}^{1}(p_0)} \approx \frac{v_{p_m}^1(p_0)}{k_1 a + k_1 - k_m} = \frac{v_{p_m}^1(p_0)}{k_1 a + k_1 - 1} \approx H^m. \) Then we have \(v_{p_m}(p_0) \approx a H^{-m} \).

Case 2 (see Figure 4 case 2): When there are \(r \) independent (means there is no common node for each pair of shortest paths) shortest intimacy spreading paths from \(p_0 \) to \(p_m \) through \(r \) neighbors of \(p_m \). Assume the length of the shortest intimacy spreading paths from \(p_0 \) to \(p_m \) is \(m \), then we can easily get that \(v_{p_m}(p_0) \approx \frac{a H^{-m}}{r a m + k_1} \approx a H^{-m} \).

Case 3 (see Figure 4 case 3): When there are \(r \) shortest intimacy spreading paths from \(p_0 \) to \(p_m \) in which \(\beta \) shortest intimacy spreading paths are dependent and other \(r - \beta \) are independent. All the situations are equal to this situation: All of the \(\beta \) dependent intimacy spreading paths encounter at node \(p \) and they are independent from \(p_0 \) to \(p \) and there only
one shortest intimacy spreading path for \(p \) to \(p_m \). Assume that the length of shortest intimacy spreading paths from \(p_0 \) to \(p \) is \(m \), from \(p_0 \) to \(p_m \) is \(m_1 \) and \(p \) to \(p_m \) is \(m_2 = m - m_1 \).

According to case 1 and case 2 we have \(v_{p_m}(p_0) \approx (r - \beta)aH^{-m} + (taH^{-m_1})H^{-m_2} = raH^{-m} \).

Now, the task we face is to prove \(v_{p_m}(p_0) \approx raH^{-m} \) for any \(T \geq m \).

Obviously, \(v_T(p_0) \) equal the sum of each step \((m \rightarrow T)\) first intimacy degree, then we have:

\[
raH^{-m} = v_{p_m}(p_0) \leq v_T(p_0) \leq raH^{-m} + a \left[\frac{K^{m+1}}{a^{m+1}} + \frac{K^{m+2}}{a^{m+2}} + \ldots + \frac{K^T}{a^T} \right],
\]

where \(K \) is the maximum out degree of all nodes.

Thus,

\[
v_{p_m}(p_0) \leq raH^{-m} + a \left[\int_{m+1}^{+\infty} \frac{K^x}{a} \, dx \right] \leq raH^{-m} + 2a \frac{K^{m+1}}{a^{m+1}}.
\]

\[
\therefore \lim_{a \to \infty} \frac{2aK^{m+1}}{a^{m+1}} = 0, \therefore \text{ for sufficient large } a, \ v_{p_m}(p_0) \approx raH^{-m}. \]

Figure 4 The plot represents three cases in the proof. Case 1 denotes there are only one intimacy spreading shortest path from \(p_0 \) to \(p_m \). Case 2 shows there are two dependent shortest pathes and case 3 denotes 3 independent shortest pathes in which two pathes encounter at node \(p \).

Theorem 2 For a connected network and \(a > 1 \). If \(i \) is not the target \(t \) then there must be at least one neighbor \(q \) of node \(i \), \(q \) is more intimate with target \(t \) compared to node \(i \) after sufficient long time evolution. This means that the message will not pass a node twice in the one sending process and always can reach the target \(t \).

Proof \(\therefore \) the network is connected, \(\therefore \) node \(i \) at lest has a neighbor.
Assume that i has k_i neighbors which are $N^1_i, N^2_i, \cdots, N^{k_i}_i$.
\[v_i^{+\infty}(j) = \frac{v_1^{+\infty}(j) + v_2^{+\infty}(j) + \cdots + v_{k_i}^{+\infty}(j)}{k_i a + k_i - \sum_{d=1}^{k_i} v_d^{+\infty}(i)} \]
and $k_i a + k_i - \sum_{d=1}^{k_i} v_d^{+\infty}(i) > k_i$
\[\therefore v_i^{+\infty}(j) < \max\{v_1^{+\infty}(j), v_2^{+\infty}(j), \cdots, v_{k_i}^{+\infty}(j)\} \]

Therefore the above q must be existed and in the a sending process, the current message holder will always more intimacy with target t than the all previous message holder which implies that the message will not pass a node twice. Because the number of node of a network is finite, the message will and can reach the target t.

References

[1] Milgram S, The small world problem, Psych. Today, 1967, 2(1): 60–67.
[2] Karinthy F, Chains: Everything is Different, Budapest, 1929.
[3] Guare J, Six Degrees of Separation: A Play, Vintage, New York, 1990.
[4] Dodds P S, Muhamad R, and Watts D J, An experimental study of search in global social networks, Science, 2003, 301(5634): 827–829.
[5] Fiona M, Microsoft proves you ARE just six degrees of separation from anyone in the world, Mailonline, Science and Tech., 04th August 2008, http://www.dailymail.co.uk/sciencetech/article-1041077/Microsoft-proves-ARE-just-degrees-separation-world.html.
[6] Backstrom L, Boldi P, Rosa M, et al., Four degrees of separation, Proceedings of the 4th Annual ACM Web Science Conference, 2012, 22: 33–42.
[7] Zuo X and Iamnitchi A, A survey of socially aware peer-to-peer systems, ACM Computing Surveys (CSUR), 2016, 49(1): 9:1–9:28.
[8] West R, Paranjape A, and Leskovec J, Mining missing hyperlinks from human navigation traces: A case study of Wikipedia, Proceedings of the 24th International Conference on World Wide Web, ACM, 2015, 1242–1252.
[9] Watts D and Strogatz S, Collective dynamics of small world Networks, Nature, 1998, 393: 440–442.
[10] Strogatz S H, Exploring complex networks, Nature, 2001, 410(6825): 268–276.
[11] Albert R and Barabási A L, Statistical mechanics of complex networks, Reviews of Modern Physics, 2002, 74: 47–97.
[12] Newman M E J, The structure and function of complex networks, SIAM Review, 2003, 45: 167–256.
[13] Kleinberg J M, Navigation in a small world, Nature, 2000, 406: 845.
[14] Kleinberg J M, The small-world phenomenon: An algorithmic perspective, Proceedings of the 32nd ACM Symposium on Theory of Computing, 2000, 163–170.
[15] Kleinberg J M, Small-world phenomena and the dynamics of information, Advances in Neural Information Processing Systems (NIPS), 2001, 1: 431–438.
[16] Watts D J, Dodds P S, and Newman M E J, Identity and search in social networks, Science, 2002, 296: 1302–1305.
ORIENTATION IN SOCIAL NETWORKS

[17] Adamic L, Lukose R A, Punyani A R, et al., Search in power-law networks, Physical Review E Statistical Nonlinear & Soft Matter Physics, 2001, 64(4Pt2): 1515–1523.

[18] Liben-Nowell D, Novak J, Kumar R, et al., Geograph routing in social networks, Proceedings of the National Academy of Science, 2005, 102: 11623–11628.

[19] Fraigniaud P, Gavoille C, Kosowski A, et al., Universal augmentation schemes for network navigability: Overcoming the \sqrt{n}-barrier, Proc. Nineteenth Annual ACM Symp. on Parallel Algorithms and Architectures, 2007, 1–7.

[20] Fraigniaud P and Gavoille C, Polylogarithmic network navigability using compact metrics with small stretch, Proc. Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, ACM, 2008, 62–69.

[21] Sandberg O, Searching in a small world, university of gothenburg and chalmers technical university, Licentiate thesis, 2005.

[22] Martel C and Nguyen V, Analyzing kleinberg’s (and other) small-world models, PODC’04: Proceedings of the Twentythird Annual ACM Symposium on Principles of Distributed Computing, ACM Press, 2004, 179–188.

[23] Barriere L, Fraigniaud P, Kranakis E, et al., Efficient routing in networks with long range contacts, Proc. 15th Intr. Symp. on Dist. Computing, DISC 01, 2001, 270–284.

[24] Boynton L R, Fiatal T A, Burke S M, et al., Secure end-to-end transport through intermediary nodes, United States patent US 8, 127, 342, Feb. 28, 2012.

[25] Adamic L and Adar E, How to search a social network, Social Networks, 2005, 27: 187–203.

[26] Boguñá M, Krioukov D, and Claffy K C, Navigability of complex networks, Nature Physics, 2009, 5(1): 74–80.