Modelling the Distribution of *Dendrocygna javanica* in North Sumatera, Indonesia using Maximum Entropy Approach

Lazuardi, P Prastowo, E Prasetya*, H Prakasa
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, North Sumatera, Indonesia

*eko.prasetya@unimed.ac.id

Abstract. *Dendrocygna javanica* (Horsfield, 1821) is a species of bird that lives in the South, Southeast and South Asian regions, especially on the islands of Kalimantan, Java and Sumatra, Indonesia. *D. javanica* is a member of the genus Dendrocygna and the Anatidae family with a unique characteristic-making a continuous sound when flying and therefore often called the Lesser Whistling Teal. This study aims to predict the distribution model of *D. javanica* in North Sumatra, Indonesia. The study area ranges from the districts of Central Tapanuli, Mandailing Natal, Medan, Langkat, Deli Serdang, Tebing Tinggi, Tanjung Balai, Asahan, and Siantar. A total of 35 points obtained from the study area were analyzed using the Maximum Entropy 3.4.0 application. The environmental variables used in this analysis are global elevation, global land, solar radiation, bioclims, global aspects, precipitation, temperature, water vapor pressure, and wind speed. The Jacknife test is used to evaluate important variables for predicting the distribution model. The resulting MaxEnt model has high accuracy with a significant AUC value of 0.968. The distribution model approach using MaxEnt can promise the potential distribution of *D. javanica* in North Sumatra so that it can be used as an effective tool in planning bird conservation.

1. Introduction

Dendrocygna javanica [1] is a species of the genus *Dendrocygna* and the *Anatidae* family [2] widely distributed in the South and Southeast Asia region, including Pakistan, India, Sri Lanka, the eastern and southern regions of China, and Indonesia, including the islands of Kalimantan, Sumatra, and Java [3]. *D. javanica* in Indonesia is very potential to be developed [4] because the Indonesian people have long been using this bird as a source of nourishment [5].

Dendrocygna javanica inhabit areas of river mouths, marshes, rice fields and puddles that are still filled with rain water [6]. *D. javanica* often builds its nest near fresh water with dense vegetation that allows its chicks to reach water after hatching and increase the hiddenness and protection of the nest from predators [7]. According to [8], *D. javanica* usually prefer freshwater lakes with abundant vegetation where the larger food is aquatic plants, insects, and aquatic invertebrates.

In 2004, around 120,000 - 165,000 grouse had been consumed in Indonesia and around 95% were marketed in the Banjarmasin region of South Kalimantan [9]. In Indonesia, consumption of these birds continues to increase every year. Overcatching of this bird will result in extinction [10]. At the moment, *D. javanica* lives in the geographical range between 1 to 30.2 million square kilometers [11] with an estimated global population of around 200,000 – 2,000,000 individuals [12], leading The Birdlife International in 2016 to classify this species in the Least Concern category. It is also...
suggested that this species is not on the verge of extinction [13]. However, according to [11], this species experiences a trend of decreasing population [14].

Research on the potential, distribution, and conservation efforts are very few, as well as the declining trend of the population of *D. javanica* in the world, giving rise to predictions that *D. javanica* in the future will enter the endangered category. No effort is made to conserve this bird species. This study aims to predict the distribution model of *D. javanica* in North Sumatra as one of its distribution areas using the Maximum Entropy (MaxEnt) approach. This research is expected to provide important information about the distribution of *D. javanica* in North Sumatra so that it can be used as information in the conservation of these birds.

2. Material and Methods

2.1. Coordinate Point Collection

Exploration of the distribution of *Dendrocygna javanica* in North Sumatra was carried out during 2019. Coordinates in North Sumatra province were obtained from Central Tapanuli district (5 points), Mandailing Natal (4 points), Medan (7 points), Langkat (5 points), Deli Serdang (2 points), Tebing Tinggi (3 points), Tanjung Balai (2 points), Asahan (1 point), and Siantar (6 points). All samples obtained were wild birds, and not livestock areas. The coordinates are as many as 35 points as shown in Table 1.

Table 1. Sample coordinates of *Dendrocygna javanica* in North Sumatra, Indonesia

No.	Regency	Latitude	Longitude	No.	Regency	Latitude	Longitude
1.	Siantar	2.924135	99.074996	2.	Tanjung Balai	3.008833	99.794118
3.	Siantar	2.931893	99.031050	4.	Tanjung Balai	2.977474	99.616788
5.	Siantar	2.972437	99.021909	6.	Asahan	2.747390	99.715161
7.	Siantar	2.996952	99.017360	8.	Langkat	3.749266	98.517591
9.	Siantar	3.012327	99.067056	10.	Langkat	3.719763	98.387774
11.	Siantar	2.997037	99.094436	12.	Langkat	3.918540	98.493734
13.	Belawan	3.815001	98.679984	14.	Langkat	4.106646	98.195342
15.	Belawan	3.810718	98.646332	16.	Langkat	3.579607	98.307114
17.	Belawan	3.798555	98.634829	18.	Central Tapanuli	2.160599	98.183570
19.	Belawan	3.799583	98.591738	20.	Central Tapanuli	2.149278	98.209147
21.	Belawan	3.727638	98.654913	22.	Central Tapanuli	2.087000	98.252749
23.	Belawan	3.714275	98.707272	24.	Central Tapanuli	2.099360	98.270257
25.	Belawan	3.906517	98.584189	26.	Central Tapanuli	2.983300	98.328795
27.	Lubuk Pakam	3.601046	98.919785	28.	Mandailing Natal	1.101194	99.457963
29.	Lubuk Pakam	3.621776	98.966564	30.	Mandailing Natal	1.037554	99.567738
31.	Tebing Tinggi	3.266979	99.102027	32.	Mandailing Natal	0.673530	99.737723
33.	Tebing Tinggi	3.217103	99.070608	34.	Mandailing Natal	0.696705	99.742184
35.	Tebing Tinggi	3.348141	99.176280				
2.3. Species Distribution Prediction Model

The method used for modeling is Maximum Entropy or MaxEnt which looks for the best model among the many models produced [21,22] although the number of samples obtained is small [23,24]. Distribution prediction maps based on habitat suitability of D. javanica were created using the MaxEnt program version 3.4.0 [25] which was obtained freely from the Princeton website (http://www.cs.princeton.edu/~schapire/maxent). Maps are created by combining presence-only data with ecological layers. The MaxEnt program will estimate the probability distribution of maximum entropy for each environmental variable analyzed.

3. Result and Discussion

The Maxent model produces a map of species distribution based on habitat suitability on which the value of Area Under the Curve (AUC) represents model performance, response curves, and percentage table shows how each environment variable contributes to the Maxent model. The resulting map is a prediction model for the possibility of species presence in a region based on habitat suitability. The analysis is divided into four types of variables namely average temperature (1) land, elevation, slope, and aspect (2), bioclim of WorldClim (3), precipitation, solar radiation, wind speed, and water vapor pressure (4). AUC values on receiver operating characteristics obtained from the four types of variables are 0.845, 0.825, 0.933 and 0.937, respectively (Figure 1).

Area Under the Curve is a ranking approach to assess the performance of the model by determining the location of probable existence that has a higher rank than the background of the site (absence) at random [26]. The performance of the model is indicated by a high AUC value, where a value of 0.5-0.7 is considered low, 0.7-0.9 is considered useful and higher than 0.9 is considered highly accurate in measuring attendance and absence [27]. It is important to note that AUC values tend to be lower for species that have broad distribution coverage [28,29]. This study shows a useful model performance on the average temperature, land, elevation, slope, and aspect variables, and shows the performance of models that have high accuracy on bioclim variables, precipitation, solar radiation, wind speed, and water vapor pressure.
Figure 1. The results of the AUC curves in developing *D. javanica* habitat suitability model. Average temperature (A) land, elevation, slope, and aspect (B), bioclim from WorldClim (C), precipitation, solar radiation, windspeed, and water vapor pressure (D)

Figure 1 shows that the map produced in this study is highly accurate for use as a source of information on the distribution of *D. javanica* in North Sumatra, Indonesia. Numerous studies have shown that sample size affects the performance of species distribution models, and the results may be bad if some records are used [30,31]. AUC is the most widely used statistic for model evaluation. However, many studies have revealed that using only AUC values as a standard for measuring accuracy in distribution models might be misleading [32,33].

Table 3. The percentage of contribution by the environmental variable used to model the species distribution of the model's performance.

Data, Variable	Percent contribution	Data, Variable	Percent contribution				
Land, Elevation, Slope, and Aspect		Average Temperature					
Aspect Undefined or < 2%	41.8	Temperature August	69.9				
Elevation	24.2	Temperature September	20.8				
Slope 15 % ≤ Slope ≤ 30 %	14.1	Temperature April	2.4				
Slope 5 % ≤ Slope ≤ 10 %	7.5	Temperature February	2				
Aspect East: 45˚ < aspect ≤ 135˚	2.4	Temperature January	1.8				
Slope 5 % ≤ Slope ≤ 10 %	2.3	Temperature June	1.6				
Aspect South: 135˚ < aspect ≤ 225˚	1.9	Temperature October	1.2				
Slope 30 % ≤ Slope ≤ 45 %	1.8	Temperature November	0.1				
Land Land Type	1.6	Temperature July	0.1				
Aspect West: 225˚ < aspect ≤ 315˚	1.1	Temperature May	0				
WorldClim		Precipitation, solar radiation, windspeed, and water vapor pressure					
Bioclim Max Temperature of Warmest	28.6	Water vapor October	21.2				
Table 3 shows that land with a slope of less than 2%, the average temperature in August, Max Temperature of Warmest Month, and water vapor pressure in the month of October gives the greatest influence on the distribution of *D. javanica* in North Sumatra, Indonesia. Bioclim is a bioclimatic analysis and prediction system that was originally developed by [15]. Basically, Bioclim provides a means to predict the spatial distribution of plant and animal species [34–36]. Other than in Australia, Bioclim has also been successfully applied in Africa and North America [37].

D. javanica’s habitat is generally swampy or aquatic areas, hence the lack of slope. This is consistent with the results of research showing that the distribution area of *D. javanica* has inclination of less than 2% or undefined. The distribution of *D. javanica* is affected by anomalies of warm temperatures throughout the year based on analysis using Bioclim information. The reproductive season of *D. javanica* in the Indian and Burmese regions ranges from July to October [7]. Warm temperatures encourages these birds to soar in the air and mate with their females. *D. javanica* are also birds that like to migrate in October [38]. Preening in *D. javanica* was reported to be highest in October-November [39] in preparation for the birds’ mating season.

Results from the *D. javanica* distribution model in North Sumatra are presented in Figure 2. The distribution model is divided into 4 based on (1) average temperature, (2) land, elevation, slope, and aspect, (3), bioclim from WorldClim, and (4) precipitation, solar radiation, windspeed, and water vapor pressure. The distribution model image shows that the distribution of *D. javanica* in North Sumatra is found on most of the east coast of Sumatra and a small portion of the west coast of Sumatra. Medan Belawan, Langkat Regency, and Serdang Bedagai districts are the regions with the highest predictability. Meanwhile, a small part of the swamp area around the west coast of Central Tapanuli district also became suitable distribution areas for *D. javanica*. The Kualah and Panai river tributaries are also potential distribution areas based on land, elevation, slope, and aspect.

Data	Variable	Percent contribution	Data	Variable	Percent contribution	
Bioclim	Month Precipitation of Driest Month	21	Data	Water vapor pressure	August	21.2
Bioclim	Temperature Seasonality	13.3	Bioclim	Precipitation of Coldest Quarter	July	13.4
Bioclim	Precipitation of Warmest Quarter	6.9	Bioclim	Precipitation of Warmest Quarter	September	7.5
Bioclim	Mean Temperature of Wettest Quarter	4.8	Bioclim	Solar Radiation	January	5.8
Bioclim	Mean Temperature of Driest Quarter	4.6	Bioclim	Water vapor pressure	December	5.6
Bioclim	Precipitation of Wettest Month	4.3	Bioclim	Precipitation	May	2.2
Bioclim	Precipitation of Wettest Quarter	3.3	Bioclim	Solar Radiation	April	2.1
Bioclim	Precipitation Seasonality (Coefficient of Variation)	2	Bioclim	Solar Radiation	December	1.9
Figure 2. The distribution model of *D. javanica* based on average temperature (A) land, elevation, slope, and aspect (B), bioclim from WorldClim (C), precipitation, solar radiation, windspeed, and water vapor pressure (D) using MaxEnt analysis

D. javanica is spread over a limited area and mostly in bodies of water [40]. Least potential areas are mostly non-swamp and aquatic areas, which are unsuitable habitats for *D. javanica* who like watery areas. *Dendrocygna javanica* is a bird with the highest abundance in the Muara Tapus region, Central Tapanuli district, North Sumatra [41]. [42] reported that in the Batu Lima region, Asahan district, in the wet paddy fields and freshwater swamps there were hundreds of *D. javanica* foraging at dusk around March. *Dendrocygna javanica* is also found in swampy areas in the village of Rugemuk in Deli Serdang district, North Sumatra [43]. This data shows that the results of the study are in accordance with data that have been reported by previous studies.

The results obtained from this study support the statement that the potential distribution area predicted by MaxEnt is an overestimation when compared to the actual niche of species, namely
habitat, because the MaxEnt model only considers the existence of fundamental niche-based data compared to actual data [44,45]. In reality, a species fails to spread due to geographical barriers, human disruption, or competition [46]. To restore species diversity, it is important to consider the impact of climate change on species distribution [47]. This method promises in predicting the potential distribution of D. Javanica and may prove a valuable tool in species conservation management.

4. Conclusions
In this study, we successfully modeled Dendrocygna javanica based on habitat suitability using environmental variables. This study produces a map with a useful model working on the average temperature, land, elevation, slope, and aspect variables, as well as the model's performance with high accuracy on bioclim variables, precipitation, solar radiation, wind speed, and water vapor pressure. The resulting AUC values are 0.845, 0.825, 0.933 and 0.937, respectively. The contribution percentage of environmental variables to the highest model performance on the aspect (undefined or <2%) was 41.8%, the average temperature in August was 69.9%, the max temperature of warmest month was 28.6% and the water vapor pressure in October and August was 21.2 %. The method of D. javanica distribution modeling in North Sumatra, Indonesia, promises to predict potential distribution as a valuable tool in the conservation of Dendrocygna javanica.

References
[1] London T H-T of the L S of and 1821 U 1821 XIV. Systematic arrangement and description of birds from the island of Java Trans. Linn. Soc. London 1 133–200
[2] Salvadori T A 1985 Catalogue of the Birds in the British Museum. Vol. XXVII. (London: Trustees of the British Museum (Natural History))
[3] Miyabayashi Y and Mundkur T 1999 Atlas of key sites for Anatidae in the East Asian Flyway (Tokyo: Japan: Wetlands International)
[4] Siwi N and Wahyuni T H 2014 Identifikasi Morfologi dan Morfometri Organ pencernaan serta Sifat Kualitatif Warna Bulu Belibis Kembang (Dendrocygna Arcuata) dan Belibis Batu (Dendrocygna javanica) J. Peternak. Integr. 2 193–208
[5] Darmawan M P 2006 Keanekaragaman jenis burung pada beberapa tipe habitat di Hutan Lindung Gunung Lumut Kalimantan Timur (Institut Pertanian Bogor)
[6] Robiah S 2005 Studi habitat Belibis kecil (Dendrocygna javanica Horsfield, 1821) di muara Kali progo dan Rawa Sen daerah Istimewa Yogyakarta (Universitas Gadjah Mada)
[7] Aarif K M and Babu S 2010 Breeding Records of Lesser Whistling Teal (Dendrocygna javanica Horsfield) in Kerala, India News. Birdwatchers 50 70–1
[8] Bolen E G and Rylander M K 1976 Notes on the morphology and ecology of the Lesser Whistling Teal (Dendrocygna javanica) J. Bombay Nat. Hist. Soc. 72 648–54
[9] Suryana and Yasin M 2014 Konserervasi Burung Belibis di Lahan Rawa (Bogor: IAARD Press)
[10] Fredriksson G, Soeyitno A, Yudistira and Khasmir 2006 Monitoring perburuan dan perdagangan burung belibis kembang (Dendrocygna arculata) di danau Mahakam Kalimantan Timur, Indonesia, tahun 2005-2006 (Borneo Ecology and Biodiversity Conservation Institute (BEBSIC) & Balai Konservasi dan Sumber Daya Alam (BKSDA))
[11] BirdLife International 2016 Dendrocygna javanica
[12] Brazil M 2009 Birds of East Asia: eastern China, Taiwan, Korea, Japan, eastern Russia (London: Christopher Helm)
[13] IUCN 2016 The IUCN Red List of Threatened Species IUCN
[14] Delany S and Scott D 2006 Waterbird population estimates (Wageningen, The Netherlands: Wetlands International)
[15] Nix H A 1986 A biogeographic analysis of Australian elapid snakes Atlas elapid snakes Aust. 7 4–15
[16] Graham C H and Hijmans R J 2006 A comparison of methods for mapping species ranges and species richness Glob. Ecol. Biogeogr. 15 578–87
[17] Murienne J, Guilbert E and Grandclos P 2009 Species diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), an approach
using phylogeny and species distribution modelling *Biol. J. Linn. Soc.* 97 177–84

[18] Hijmans R J, Cameron S E, Parra J L, Jones P G and Jarvis A 2005 Very high resolution interpolated climate surfaces for global land areas *Int. J. Climatol.* 25 1965–78

[19] Fick S E and Hijmans R J 2017 WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas *Int. J. Climatol.*

[20] Fischer G, Nachtergaele F, Prieler S, Van Velthuizen H T, Verelst L and Wiberg D 2007 Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2007) IIASA, Laxenburg, Austria, FAO, Rome, Italy 10

[21] Elith J, Graham C H, P A R, Dudik M, Ferrier S, Guisan A, Hijmans R J, Hultemans F, Leathwick J R, Lehmann A, Li J, Lohmann L G, Loiselle B A, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J M, Peterson A T, Phillips S J, Richardson K, Scachetti-Pereira R, Schapiere R E, Soberon J, Williams S, Wisz M S and Zimmermann N E 2006 Novel methods improve prediction of species’ distributions from occurrence data *Ecography (Cop.).* 29 129–51

[22] Ortega-Huerta M A and Peterson A T 2008 Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods *Rev. Mex. Biodivers.* 79 205–16

[23] Wisz M S, Hijmans R J, Li J, Peterson A T, Graham C H and Guisan A 2008 Effects of sample size on the performance of species distribution models *Divers. Distrib.* 14 763–73

[24] Benito B M, Martinez-Ortega M M, Munoz L M, Lorite J and Penas J 2009 Assessing extinction-risk of endangered plants using species distribution models: a case study of habitat depletion caused by the spread of greenhouses *Biodivers. Conserv.* 18 2509–20

[25] Phillips S J, Anderson R P and Schapire R E 2006 Maximum entropy modelling of species geographic distributions *Ecol. Model.* 190 231–59

[26] Baldwin R A 2009 Use of Maximum Entropy Modeling in Wildlife Research *Entropy* 11 854–66

[27] Manel S, Ceri Williams H and Ormerod S J 2001 Evaluating presence-absence models in ecology: The need to account for prevalence *J. Appl. Ecol.* 38 921–31

[28] M. McPherson J and Jetz W 2007 Effects of species’ ecology on the accuracy of distribution models *Ecography (Cop.).* 30 135–51

[29] Evangelista P H, Kumar S, Stohlgren T J, Jarnevich C S, Crall A W, Norman J B and Barnett D T 2008 Modelling invasion for a habitat generalist and a specialist plant species *Divers. Distrib.* 14 808–17

[30] Hernandez P A, Graham C H, Master L L and Albert D L 2006 The effect of sample size and species characteristics on performance of different species distribution modeling methods *Ecography (Cop.).* 29 773–85

[31] Kadmon R, Farber O, Applications A D-E and 2003 U 2003 A systematic analysis of factors affecting the performance of climatic envelope models *Wiley Online Libr.* 13 853–67

[32] Austin M 2007 Species distribution models and ecological theory: A critical assessment and some possible new approaches *Ecol. Modell.* 200 1–19

[33] Lobo J M, Jiménez-Valverde A and Hortal J 2010 The uncertain nature of absences and their importance in species distribution modelling *Ecography (Cop.).* 33 103–14

[34] Lindenmayer D B, Nix H A, McMahon J P, Hutchinson M F and Tanton M T 1991 The conservation of Leadbeater’s possum, Gymnobelideus leadbeateri (McCoy): a case study of the use of bioclimatic modelling *J. Biogeogr.* 371–83

[35] Summer J and Dickman C R 199B Distribution and identity of species in the Antechinus stuartii–A. flavipes group (Marsupialia: Dasyuridae) in south-eastern Australia *Aust. J. Zool.* 46 27–41

[36] Jackson S and Claridge A 1999 Climatic modelling of the distribution of the mahogany glider (Petaurus gracilis), and the squirrel glider (P. norfolcensis) *Aust. J. Zool.* 47 47–57

[37] Lindenmayer D B, Mackey B G and Nix H A 1996 The bioclimatic domains of four species of commercially important eucalypts from south-eastern Australia *Aust. For.* 59 74–89

[38] Mazumdar S and Ghosh P 2005 Diversity and behaviour of waterfowl in Santragachi Jheel, West Bengal, India, during winter season *Indian Birds* 1 68–9
[39] Das J, Deka H and Saikia P K 2011 Diurnal activity budgeting of Large Whistling Teal Dendrocygna bicolor (Vieillot, 1816)(Anseriformes: Anatidae) in Deepor Beel wetlands, Assam, India. *J. Threat. Taxa* 2263–7

[40] Lazuardi L, Prastowo P, Wisnu Brata W and Prasetya E 2019 Habitat Characteristics Modelling Dendrocygna javanica (Horsfield, 1821) in North Sumatera, Indonesia, using GIS (Geographic Information System) Proceedings of the Proceedings of The 5th Annual International Seminar on Trends in Science and Science Education, AISTSSE 2018, 18-19 October 2018, Medan, Indonesia (EAI)

[41] Zuhalmi A and Prastowo P 2015 Diversity Bird in Brackish Marsh Muara Tapus Subdistrict Manduamas District Center of Tapanuli Province North Sumatera *BIOSAINS* 1

[42] Crossland A C, Sinambela S A, Sitorus A S and Sitorus A W 2009 The coastal zone of Asahan regency: An area of international importance for migratory waders in North Sumatra province, Indonesia *Stilt* 55 8–12

[43] Putra C, Hikmatullah D and Prawiradilaga D M 2015 Surveys at Bagan Percut, Sumatra, reveal its international importance to migratory shorebirds and breeding herons *Kukila* 18 46–59

[44] Pearson R G, Raxworthy C J, Nakamura M and Townsend Peterson A 2007 Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar *J. Biogeogr.* 34 102–17

[45] Kumar S and Stohlgren T J 2009 Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia *J. Ecol. Nat. Environ.* 1 94–8

[46] Yang X-Q, Kushwaha S P S, Saran S, Xu J and Roy P S 2013 Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills *Ecol. Eng.* 51 83–7

[47] Gastón A and García-Viñas J 2013 Evaluating the predictive performance of stacked species distribution models applied to plant species selection in ecological restoration *Ecol. Modell.* 263 103–8