Quasistationarity in a model of classical spins with long-range interactions

Shamik Gupta and David Mukamel

Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
E-mail: shamik.gupta@weizmann.ac.il and david.mukamel@weizmann.ac.il

Received 30 January 2011
Accepted 15 February 2011
Published 14 March 2011

Online at stacks.iop.org/JSTAT/2011/P03015
doi:10.1088/1742-5468/2011/03/P03015

Abstract. Systems with long-range interactions, while relaxing towards equilibrium, sometimes get trapped in long-lived non-Boltzmann quasistationary states (QSS) which have lifetimes that grow algebraically with the system size. Such states have been observed in models of globally coupled particles that move under Hamiltonian dynamics either on a unit circle or on a unit spherical surface. Here, we address the ubiquity of QSS in long-range systems by considering a different dynamical setting. Thus, we consider an anisotropic Heisenberg model consisting of classical Heisenberg spins with mean-field interactions and evolving under classical spin dynamics. Our analysis of the corresponding Vlasov equation for time evolution of the phase space distribution shows that in a certain energy interval, relaxation of a class of initial states occurs over a timescale which grows algebraically with the system size. We support these findings by extensive numerical simulations. This work further supports the generality of occurrence of QSS in long-range systems evolving under Hamiltonian dynamics.

Keywords: classical Monte Carlo simulations, classical phase transitions (theory), metastable states, Boltzmann equation

ArXiv ePrint: 1011.0738
1. Introduction

Long-range interacting systems have attracted considerable interest in recent years [1]–[6]. These systems are characterized by an interparticle potential which in d dimensions decays at large separation, r, as $1/r^\alpha$, with $\alpha \leq d$. Examples include non-neutral plasmas [7], dipolar ferroelectrics and ferromagnets [8], self-gravitating systems [9], two-dimensional geophysical vortices [10], etc. Long-range interactions lead to non-additivity, whereby thermodynamic quantities scale superlinearly with the system size. This may result in equilibrium properties which are unusual for short-range systems, e.g., a negative microcanonical specific heat [11,12], inequivalence of statistical ensembles [13,14], and many others [15].

As for the dynamical properties, long-range systems often exhibit broken ergodicity [14,16] and intriguingly slow relaxation towards equilibrium [10,14], [17]–[20]. Such slow relaxation has been discussed in the context of self-gravitating systems (see, e.g., [21,22]), and has recently been demonstrated in a model of globally coupled particles (inertial rotors) moving on a unit circle and evolving under deterministic Hamilton dynamics. In this so-called Hamiltonian mean-field (HMF) model, it has been found that for a wide class of initial distributions, the relaxation time diverges with the system size [17]. For some energy interval, the relaxation proceeds through intermediate long-lived quasistationary states (QSS). These non-Boltzmann states exhibit slow relaxation of thermodynamic observables, and have a lifetime which grows algebraically with the system size [18,23]. As a result, the system in the thermodynamic limit never attains the Boltzmann–Gibbs equilibrium but remains trapped in the QSS. At other energies, however, relaxation occurs faster, on a timescale which grows logarithmically with the system size. Quasistationary states in the HMF model exhibit interesting features like anomalous diffusion and non-Gaussian velocity distributions [24]–[26]. Generalization of the model to include anisotropy terms in the energy [23], and to particles which are confined to move on a spherical surface rather than on a circle [27], have also shown the existence of QSS. All these models evolve under deterministic Hamiltonian dynamics. The robustness of quasistationarity to stochastic dynamical processes has also been analyzed,
where it is found that QSS exist only as a crossover phenomenon. Under such dynamics, these states have a finite relaxation time which is determined by the rate of the stochastic process [28]–[33].

In this work, we address the issue of ubiquity of QSS in long-range systems by examining a different dynamical model for their existence than the HMF model. To this end, we consider an anisotropic Heisenberg model with mean-field interactions. The model comprises globally coupled three-component Heisenberg spins evolving under classical spin dynamics. The dynamics is thus very different from the particle dynamics of previously studied long-range systems that have shown the existence of QSS.

Our model has an equilibrium phase diagram with a continuous transition from a low-energy magnetic phase to a high-energy non-magnetic phase. Analysis of the Vlasov equation for evolution of the phase space distribution shows that, as in previously studied models, our model exhibits relaxation over times that grow either logarithmically or algebraically with the system size. At low energies, a non-magnetic initial state is dynamically unstable. It relaxes to the stable magnetically ordered state on a logarithmic timescale. At higher energies, but within the magnetic phase, the non-magnetic state becomes linearly stable, and its relaxation to equilibrium occurs on an algebraically growing timescale so that QSS are observed. These results, obtained by analyzing the marginal stability of the Vlasov equation, are supported by extensive numerical simulations. This analysis yields further evidence for the occurrence of QSS in generic long-range systems.

2. The model

We start by defining the model of study. It consists of N globally coupled classical Heisenberg spins of unit length, $\mathbf{S}_i = (S_{ix}, S_{iy}, S_{iz}), i = 1, 2, \ldots, N$. In terms of spherical polar angles $\theta_i \in [0, \pi]$ and $\phi_i \in [0, 2\pi]$ for the orientation of the ith spin, one has $S_{ix} = \sin \theta_i \cos \phi_i, S_{iy} = \sin \theta_i \sin \phi_i, S_{iz} = \cos \theta_i$. The Hamiltonian of the model is given by

$$H = -\frac{J}{2N} \sum_{i,j=1}^{N} \mathbf{S}_i \cdot \mathbf{S}_j + D \sum_{i=1}^{N} S_{iz}^2,$$ \hspace{1cm} (1)

where the first term with $J > 0$ describes a ferromagnetic mean-field like coupling, while the last term gives the energy due to a local anisotropy. We take $D > 0$ such that at equilibrium the energy is lowered by having the magnetization $\mathbf{m} = (1/N) \sum_{i=1}^{N} \mathbf{S}_i$ pointing in the xy plane. The coupling constant J is scaled by $1/N$ to make the energy extensive, in accordance with the Kac prescription [34]. However, the system continues to remain non-additive in the sense that it cannot be trivially divided into independent macroscopic parts, as can be achieved with short-range systems. In this work, we take $J = 1$ and the Boltzmann constant $k_B = 1$.

The time evolution of the model (1) is governed by the set of first-order differential equations

$$\frac{d\mathbf{S}_i}{dt} = \{\mathbf{S}_i, H\}; \hspace{1cm} i = 1, 2, \ldots, N.$$ \hspace{1cm} (2)

doi:10.1088/1742-5468/2011/03/P03015
Here the Poisson bracket \(\{ A, B \} \) for two functions of the spins is obtained by noting that suitable canonical variables for a classical spin are \(\phi \) and \(S_z \), so that, in our model, \(\{ A, B \} \equiv \sum_{i=1}^{N}(\partial A/\partial \phi_i \partial B/\partial S_{iz} - \partial A/\partial S_{iz} \partial B/\partial \phi_i) \). It may be rewritten as [35]

\[
\{ A, B \} = \sum_{i=1}^{N} S_i \cdot \frac{\partial A}{\partial S_i} \times \frac{\partial B}{\partial S_i}.
\] (3)

Using the above relation, we obtain the equations of motion of the model:

\[
\dot{S}_{ix} = S_{iy}m_z - S_{iz}m_y - 2DS_{iy}S_{iz}, \quad (4)
\]

\[
\dot{S}_{iy} = S_{iz}m_x - S_{ix}m_z + 2DS_{ix}S_{iz}, \quad (5)
\]

\[
\dot{S}_{iz} = S_{ix}m_y - S_{iy}m_x. \quad (6)
\]

Note that the above equations of motion may also be obtained by considering the corresponding quantum equations and taking the limit of infinite spins.

From equation (6), one finds by summing over \(i \) that \(m_z \) is a constant of motion. The motion also conserves the total energy and the length of each spin. From equations (4)–(6), the time evolutions of the variables \(\theta_i \) and \(\phi_i \) are obtained as

\[
\dot{\theta}_i = m_x \sin \phi_i - m_y \cos \phi_i, \quad (7)
\]

\[
\dot{\phi}_i = m_x \cot \theta_i \cos \phi_i + m_y \cot \theta_i \sin \phi_i - m_z + 2D \cos \theta_i. \quad (8)
\]

Note that the Hamiltonians of the previously studied models of particles moving either on a unit circle [17] or on a spherical surface [27] may also be expressed in terms of spin variables. However, the dynamics of these models is rather different from that of the model considered here. Unlike the present model, all Poisson brackets of the spin variables of these models are set to zero, and the dynamics is generated by a kinetic energy term which is explicitly included in the Hamiltonians and which is absent in the present model. It is worthwhile to point out that even in the large \(D \) limit, when the \(z \)-component of the spins becomes vanishingly small, the dynamics is different from the HMF model with particles moving on a unit circle.

3. Equilibrium phase diagram

We now discuss the equilibrium phase diagram of our model. The canonical partition function \(Z \) is given by

\[
Z = \int \prod_i \sin \theta_i \, d\theta_i \, d\phi_i \exp \left[\frac{\beta N m^2}{2} - \beta D \sum_i \cos^2 \theta_i \right], \quad (9)
\]

where \(\beta \) is the inverse temperature, and \(m = (m_x^2 + m_y^2 + m_z^2)^{1/2} \). Since equation (1) describes a mean-field system, it is straightforward to write down expressions for equilibrium quantities like the average magnetization or the average energy. As mentioned above, for \(D > 0 \), the system orders in the \(xy \) plane. Choosing the ordering direction
as x without loss of generality, the average equilibrium magnetization along x, given by $\langle m_x \rangle = \langle \sin \theta \cos \phi \rangle$, is

$$\langle m_x \rangle = \frac{\int \sin^2 \theta \cos \phi \, d\theta \, d\phi \, e^{\beta \langle m_x \rangle \sin \theta \cos \phi - \beta D \cos^2 \theta}}{\int \sin \theta \, d\theta \, d\phi \, e^{\beta \langle m_x \rangle \sin \theta \cos \phi - \beta D \cos^2 \theta}}. \quad (10)$$

Close to the critical point, one may expand the above transcendental equation to leading order in $\langle m_x \rangle$ to get

$$\langle m_x \rangle \left(\int \sin \theta \, d\theta \, d\phi \, e^{-\beta_c D \cos^2 \theta} - \beta_c \int \sin^3 \theta \, d\theta \, d\phi \, e^{-\beta_c D \cos^2 \theta} \right) = 0. \quad (11)$$

The transition temperature β_c is obtained by equating the bracketed expression to zero, and may be seen to satisfy

$$\frac{2}{\beta_c} = 1 - \frac{1}{2\beta_c D} + \frac{e^{-\beta_c D}}{\sqrt{\pi\beta_c D} \text{Erf}[\sqrt{\beta_c D}]} \quad (12)$$

Here, $\text{Erf}[x] = 2/\sqrt{\pi} \int_0^x e^{-t^2} \, dt$ is the error function. The critical energy density, $\epsilon_c = D \langle \cos^2 \theta \rangle$, is

$$\epsilon_c = D \left(1 - \frac{2}{\beta_c} \right), \quad (13)$$

see figure 1. In model (1), where the phase transition is continuous, the canonical and microcanonical ensembles are expected to be equivalent [15,36], and equation (13) therefore also yields the microcanonical energy at the transition.
4. Relaxation towards equilibrium

To study the dynamical behavior of magnetization, we now analyze the Vlasov equation for evolution of the phase space density [7]. For any mean-field model like ours, this equation faithfully describes the N-particle dynamics for finite time and in the limit $N \to \infty$ [3,37]. For the model (1), we study the dynamics by examining a single particle, which is moving in the two-dimensional phase space of its canonical coordinates, ϕ and $S_z = \cos \theta$, due to the mean-field produced by all other particles. Here, and in the following, the particle index is suppressed for brevity. Let $g(\cos \theta, \phi, t)\,d\cos \theta\,d\phi$ be the probability density in this single-particle phase space, such that $g(\cos \theta, \phi, t)\,d\cos \theta\,d\phi$ gives the probability to find the particle with the z-component of its spin between $\cos \theta$ and $\cos \theta + d\cos \theta$ and the azimuthal angle between ϕ and $\phi + d\phi$ at time t. In terms of the canonical coordinates, ϕ and $\cos \theta$, the flow in the phase space is divergence free. Conservation of probability then implies vanishing of the total time derivative of g, that is,\[
\frac{dg}{dt} = \frac{\partial g}{\partial t} + \dot{\cos \theta} \frac{\partial g}{\partial \cos \theta} + \dot{\phi} \frac{\partial g}{\partial \phi} = 0,\]
where the dot represents the derivative with respect to time. More conveniently, we define a new function, $f(\theta, \phi, t) \equiv g(\cos \theta, \phi, t)$, such that $f(\theta, \phi, t)\,d\sin \theta\,d\phi$ gives the probability to find the particle with its angles between θ and $\theta + d\theta$ and between ϕ and $\phi + d\phi$ at time t. The equation for the evolution of f is straightforwardly obtained from that of g to yield $\frac{df}{dt} + \dot{\theta}(\frac{\partial f}{\partial \theta}) + \dot{\phi}(\frac{\partial f}{\partial \phi}) = 0$. Using equations (7) and (8) to substitute for $\dot{\theta}$ and $\dot{\phi}$ gives the Vlasov equation for time evolution of $f(\theta, \phi, t)$ as
\[
\frac{df}{dt} = \left[m_x \cos \phi - m_x \sin \phi \right] \frac{\partial f}{\partial \theta} - \left[m_x \cot \theta \cos \phi + m_y \cot \theta \sin \phi - m_z + 2D \cos \theta \right] \frac{\partial f}{\partial \phi}.\]

In the above equation, the magnetization components are given by $(m_x, m_y, m_z) = \int (\sin \theta' \cos \phi', \sin \theta' \sin \phi', \cos \theta') f(\theta', \phi', t) \sin \theta' \,d\theta'\,d\phi'$.

Now, consider an initial state prepared by sampling independently for each of the N spins the angle ϕ uniformly over $[0, 2\pi]$ and the angle θ uniformly over an arbitrary interval symmetric about $\pi/2$. Such a state will have the distribution
\[
f(\theta, \phi, 0) = \frac{1}{2\pi} p(\theta),\]
with $p(\theta)$, the distribution for θ, given by
\[
p(\theta) = \begin{cases}
\frac{1}{2 \sin a} & \text{if } \theta \in \left[\frac{\pi}{2} - a, \frac{\pi}{2} + a\right], \\
0 & \text{otherwise}.
\end{cases}\]

We call such an initial state a waterbag state, in analogy with a similar form of an initial state studied in the context of the HMF model. It is easily verified that this non-magnetic state has the energy
\[
\epsilon = \frac{D}{3} \sin^2 a,\]
and that the state is stationary under the Vlasov dynamics (15). Let us proceed to analyze the dynamical stability of such a state. Such stability analysis in the context of the HMF...
model was pursued in [18]. Here, we closely follow the treatment adopted in [23]. We consider finite but large system size N, and linearize the Vlasov equation (15) with respect to finite-size fluctuations $\delta f(\theta, \phi, t)$ by expanding $f(\theta, \phi, t)$ as

$$ f(\theta, \phi, t) = \frac{1}{2\pi} p(\theta) + \lambda \delta f(\theta, \phi, t). \tag{19} $$

Since the initial angles of the N spins are sampled independently, the small parameter λ is of order $1/\sqrt{N}$. After linearization, equation (15) yields the following equation for $\delta f(\theta, \phi, t)$:

$$ \frac{\partial \delta f}{\partial t} = \left[-m_x \sin \phi - m_y \cos \phi \right] \frac{1}{2\pi} \frac{dp(\theta)}{d\theta} - 2D \cos \theta \frac{\partial \delta f}{\partial \phi}, \tag{20} $$

where now m_x and m_y are linear in δf.

To study the linear dynamics, we note that at long times it is dominated by the mode corresponding to the largest eigenfrequency ω of the linearized equation (20). Since the perturbation $\delta f(\theta, \phi, t)$ is 2π-periodic in ϕ, one has the following expansion in terms of the Fourier modes $g_k(\theta, \omega)$, which is valid after a short initial transient (see [7], chapter 6):

$$ \delta f(\theta, \phi, t) = \sum_k g_k(\theta, \omega) e^{ik\phi + \omega t}. \tag{21} $$

The magnetization components are given by

$$ m_x = \pi \int_{\pi/2-a}^{\pi/2+a} \sin^2 \theta' d\theta' (g_{-1}(\theta', \omega) + g_1(\theta', \omega)) e^{i\omega t}, \tag{22} $$

$$ m_y = -i\pi \int_{\pi/2-a}^{\pi/2+a} \sin^2 \theta' d\theta' (g_{-1}(\theta', \omega) - g_1(\theta', \omega)) e^{i\omega t}. \tag{23} $$

It thus follows that the relevant eigenmodes of equation (20) have $k = \pm 1$. Using equation (21), and the above expressions for m_x and m_y in equation (20), we find that the coefficients $g_{\pm 1}(\theta, \omega)$ satisfy

$$ g_{\pm 1} = \int_{\pi/2-a}^{\pi/2+a} \frac{dp(\theta)}{d\theta} \frac{1}{2(2D \cos \theta \pm \omega)} \int_{\pi/2-a}^{\pi/2+a} g_{\pm 1}(\theta', \omega) \sin^2 \theta' d\theta'. \tag{24} $$

On multiplying both sides of the above equation by $\sin^2 \theta$ and then integrating over θ, we get

$$ I_\pm (1 - K_\pm) = 0, \tag{25} $$

where

$$ I_\pm = \int_{\pi/2-a}^{\pi/2+a} g_{\pm 1}(\theta, \omega) \sin^2 \theta d\theta, \tag{26} $$

and

$$ K_\pm = \int_{\pi/2-a}^{\pi/2+a} \frac{dp(\theta)}{d\theta} \frac{\sin^2 \theta}{2(2D \cos \theta \pm \omega)} d\theta. \tag{27} $$

doi:10.1088/1742-5468/2011/03/P03015
Since \(I_\pm \neq 0 \), it then follows from equation (25) that the frequency \(\omega \) is given by the condition

\[
K_\pm = 1. \tag{28}
\]

From equation (17), we get

\[
\frac{dp(\theta)}{d\theta} = \frac{1}{2\sin a} \left[\delta \left(\theta - \frac{\pi}{2} + a \right) - \delta \left(\frac{\pi}{2} + a - \theta \right) \right]. \tag{29}
\]

which, together with equations (27) and (28), gives the following expression for the largest eigenfrequency \(\omega \):

\[
\omega^2 = 4D^2 \sin^2 a - D \cos^2 a. \tag{30}
\]

Expressing the parameter \(a \) in the above equation in terms of the energy \(\epsilon \) in equation (18) finally yields

\[
\omega^2 = \epsilon(3 + 12D) - D. \tag{31}
\]

We thus see that the frequency \(\omega \) is real for \(\epsilon > \epsilon^* \), given by

\[
\epsilon^* = \frac{D}{3 + 12D}. \tag{32}
\]

see figure 1. Therefore, unstable modes do not exist in this energy range, so that the waterbag state (16) is linearly stable. Hence, a QSS is observed. In this case, in a finite system, such a state eventually relaxes to Boltzmann–Gibbs equilibrium on a timescale over which nonlinear correction terms should be added to the Vlasov equation [3].

On the other hand, for \(\epsilon < \epsilon^* \), the waterbag state is unstable. Consequently, the perturbation \(\delta f(\theta, \phi, t) \) grows exponentially fast towards Boltzmann–Gibbs equilibrium. Below \(\epsilon^* \), on setting \(\omega^2 = -\Omega^2 \) with real \(\Omega \), we get \(\delta f(\theta, \phi, t) = A e^{\pm i\phi + i\Omega t} \), where \(A \) is a constant. Consequently, the average magnetization behaves as

\[
m(t) \sim \frac{1}{\sqrt{N}} e^{\Omega t}; \quad \epsilon < \epsilon^*, \tag{33}
\]

before it relaxes to the equilibrium value. From the above equation, it follows that for \(\epsilon < \epsilon^* \), the relaxation timescale \(\tau(N) \) over which the magnetization acquires the equilibrium value of \(O(1) \) scales as \(\ln N \).

5. Numerical simulations

In order to verify these features, we performed numerical simulations of the dynamics by integrating the equations of motion (4)–(6) by using a fourth-order Runge Kutta method with time step equal to 0.01. For \(\epsilon < \epsilon^* \), the results presented in figure 2(a) show that the magnetization grows fast towards equilibrium. On scaling the magnetization by \(\sqrt{N} \), figure 2(b) shows a very good scaling collapse in accordance with the exponential growth predicted by equation (33). The growth rate \(\Omega \) is in agreement with that obtained from equation (31) by substituting \(\omega^2 = -\Omega^2 \). For energies \(\epsilon^* < \epsilon < \epsilon_c \), when the waterbag state (16) is linearly stable, figure 3 suggests a much longer relaxation time \(\tau(N) \sim N^{1.7} \). A similar scaling of the QSS relaxation time was also observed in the HMF model [18].

doi:10.1088/1742-5468/2011/03/P03015
6. Conclusions

In conclusion, we addressed the ubiquity of non-Boltzmann quasistationary states (QSS) during relaxation of long-range systems. This was done by studying an anisotropic Heisenberg model of globally coupled classical spins evolving under classical spin dynamics. Quasistationary states have earlier been shown to occur in long-range interacting systems composed of particles (inertial rotors) which are evolving under particle dynamics dictated by the underlying Hamiltonian. Thus, our model provides a different possible setting for the occurrence of QSS under spin dynamics. By analyzing the Vlasov equation for the time evolution of the phase space distribution, we demonstrated that in this model, relaxation of a class of initial states in a certain energy interval proceeds...
through intermediate QSS. These states have a lifetime that grows algebraically with the system size. This further establishes the possibility for long-range systems to exhibit quasistationarity under a broader class of dynamical processes.

Acknowledgments

We thank A Bar, O Cohen, T Dauxois, O Hirschberg, S Levit and S Ruffo for helpful discussions and comments on the manuscript. The support of the Israel Science Foundation (ISF) and the Minerva Foundation with funding from the Federal German Ministry for Education and Research is gratefully acknowledged.

References

[1] Dauxois T, Ruffo S, Arimondo E and Wilkens M (ed), Dynamics and thermodynamics of systems with long-range interactions, 2002 Springer Lecture Notes in Physics vol 602 (Berlin: Springer)
[2] Campa A, Gianantesi A, Morigi G and Sylos Labini F (ed), Dynamics and thermodynamics of systems with long-range interactions: theory and experiments, 2008 AIP Conf. Proc. 970
[3] Campa A, Dauxois T and Ruffo S, 2009 Phys. Rep. 480 57
[4] Dauxois T, Ruffo S and Cugliandolo L F (ed), 2010 Long-Range Interacting Systems (New York: Oxford University Press)
[5] Bouchet F, Gupta S and Mukamel D, 2010 Physica A 389 4389
[6] Mukamel D, 2010 Long-Range Interacting Systems ed T Dauxois, S Ruffo and L F Cugliandolo (New York: Oxford University Press) p 33
[7] Nicholson D R, 1992 Introduction to Plasma Physics (Malabar, FL: Krieger)
[8] Landau L D and Lifshitz E M, 1960 Electrodynamics of Continuous Media (London: Pergamon)
[9] Padmanabhan T, 1990 Phys. Rep. 188 285
[10] Chavanis P H, Dynamics and thermodynamics of systems with long-range interactions, 2002 Springer Lecture Notes in Physics vol 602, ed T Dauxois, S Ruffo, E Arimondo and M Wilkens (Berlin: Springer)
[11] Lynden-Bell D and Wood R, 1988 Mon. Not. R. Astron. Soc. 138 495
[12] Thirring W, 1970 Z. Phys. 235 339
[13] Barré J, Mukamel D and Ruffo S, 2001 Phys. Rev. Lett. 87 030601
[14] Mukamel D, Ruffo S and Schreiber N, 2005 Phys. Rev. Lett. 95 240604
Quasistationarity in a model of classical spins with long-range interactions

[15] Bouchet F and Barré J, 2005 J. Stat. Phys. **118** 1073
[16] Bouchet F, Dauxois T, Mukamel D and Ruffo S, 2008 Phys. Rev. E **77** 011125
[17] Antoni M and Ruffo S, 1995 Phys. Rev. E **52** 2361
[18] Yamaguchi Y Y, Barré J, Bouchet F, Dauxois T and Ruffo S, 2004 Physica A **337** 36
[19] Campa A, Giansanti A and Morelli G, 2007 Phys. Rev. E **76** 041117
[20] Joyce M and Worrakitpoonpon T, 2010 J. Stat. Mech. P10012
[21] Teles T N, Levin Y, Pakter R and Rizzato F B, 2010 J. Stat. Mech. P05007
[22] Gabrielli A, Joyce M and Marcos B, 2010 Phys. Rev. Lett. **105** 210602
[23] Jain K, Bouchet F and Mukamel D, 2007 J. Stat. Mech. P11008
[24] Latora V, Rapisarda A and Ruffo S, 1999 Phys. Rev. Lett. **83** 2104
[25] Latora V, Rapisarda A and Tsallis C, 2001 Phys. Rev. E **64** 056134
[26] Bouchet F and Dauxois T, 2005 Phys. Rev. E **72** 045103(R)
[27] Nobre F D and Tsallis C, 2003 Phys. Rev. E **68** 036115
[28] Baldovin F and Orlandini E, 2006 Phys. Rev. Lett. **96** 240602
[29] Baldovin F and Orlandini E, 2006 Phys. Rev. Lett. **97** 100601
[30] Baldovin F, Chavanis P H and Orlandini E, 2009 Phys. Rev. E **79** 011102
[31] Gupta S and Mukamel D, 2010 Phys. Rev. Lett. **105** 040602
[32] Gupta S and Mukamel D, 2010 J. Stat. Mech. P08026
[33] Chavanis P H, Baldovin F and Orlandini E, 2010 arXiv:1009.5603
[34] Kac M, Uhlenbeck G E and Hemmer P C, 1963 J. Math. Phys. **4** 216
[35] Mermin N D, 1967 J. Math. Phys. **8** 1061
[36] Barre J, Mukamel D and Ruffo S, *Dynamics and thermodynamics of systems with long-range interactions*, 2002 Springer Lecture Notes in Physics vol 602, ed T Dauxois, S Ruffo, E Arimondo and M Wilkens (Berlin: Springer)
[37] Braun W and Hepp K, 1977 *Commun. Math. Phys.* **56** 101

doi:10.1088/1742-5468/2011/03/P03015