RETRIEVAL-EXTINCTION AND RELAPSE PREVENTION: REWRITING MALADAPTIVE DRUG MEMORIES?

Eloise J Kuijer*1,2, Antonio Ferragud*1, & Amy L Milton1
1Department of Psychology, University of Cambridge, UK
2Leiden University Medical Centre, The Netherlands

(*) These authors contributed equally to this work.

Abstract: 212 words
Manuscript: 2988 words
Figures and or tables: 1

Corresponding author:
Dr Amy L Milton
Department of Psychology
University of Cambridge
Downing Site
Cambridge
CB2 3EB
UK
Email: alm46@cam.ac.uk

Running title: "Retrieval-extinction and relapse prevention"

Keywords: memory reconsolidation, extinction, retrieval-extinction, addiction, rat
ABSTRACT

Addicted individuals are highly susceptible to relapse when exposed to drug-associated conditioned stimuli (‘drug cues’) even after extensive periods of abstinence. Until recently, these maladaptive emotional drug memories were believed to be permanent and resistant to change. The rediscovery of the phenomenon of memory reconsolidation - by which retrieval of the memory can, under certain conditions, destabilize the previously stable memory before it restabilizes in its new, updated form - has led to the hypothesis that it may be possible to disrupt the strong maladaptive drug-memories that trigger relapse. Furthermore, recent work has suggested that extinction training ‘within the reconsolidation window’ may lead to a long-term reduction in relapse without the requirement of pharmacological amnestic agents. However, this so-called 'retrieval-extinction' effect has been inconsistently observed in the literature, leading some to speculate that rather than reflecting memory updating, it may be the product of a facilitation of extinction. In this review, we will focus on which factors might be responsible for the retrieval-extinction effects on preventing drug-seeking relapse and how inter-individual differences may influence this therapeutically promising effect. Better understanding of the psychological and neurobiological mechanisms underpinning the 'retrieval-extinction' paradigm, and individual differences in boundary conditions, should provide insights with the potential to optimise the translation of ‘retrieval-extinction’ to clinical populations.
1. Introduction

Addiction is a chronic, relapsing disorder characterised by loss of control over drug use, high motivation for drug, and persistence in drug use despite adverse consequences (American Psychiatric Association 2013). Those who become addicted show a high propensity to relapse following periods of abstinence. Re-exposure to previously drug-associated cues is one major precipitant of relapse: people, places and paraphernalia repeatedly paired with drug become conditioned to the drug high in a pavlovian manner, and these pavlovian conditioned stimuli (CSs) subsequently induce relapse (de Wit & Stewart 1981).

Drug-associated CSs influence relapse through at least three psychologically and neurobiologically dissociable processes (Milton & Everitt 2010). Until recently, these maladaptive CS-drug memories were believed to be permanent and resistant to change. However, following the rediscovery of memory reconsolidation (Nader et al 2000) interest grew in exploiting this process to develop new forms of treatment for mental health disorders including addiction. One such strategy would be pharmacological disruption of drug memory reconsolidation with administration of amnestic agents (see Milton & Everitt 2010, for review). Here, we focus on an alternative strategy aiming to capitalise on the hypothesised updating function of reconsolidation; reactivating a memory and introducing ‘CS-no US’ information through the procedure known as ‘extinction within the reconsolidation window’ or ‘retrieval-extinction’. Due to the relative paucity of drug memory retrieval-extinction studies in the literature, we will extrapolate general principles from retrieval-extinction studies of both fear and drug memories, focusing on the influence of individual differences.

2. Retrieval-extinction as a non-pharmacological memory interference method

A potential limitation of pharmacological approaches to target memory reconsolidation is the requirement for amnestic agents. Although drugs such as propranolol, the β-adrenergic receptor antagonist used in many reconsolidation studies, are safe to use in humans, many amnestic agents (e.g. protein synthesis inhibitors) are less well-tolerated. Consequently, there has been great interest in capitalising on the hypothesised role of reconsolidation in memory updating (Lee 2009) with the use of ‘retrieval-extinction’ procedures.

‘Retrieval-extinction’ was first described for pavlovian fear memories, and involves reactivating the memory in a brief re-exposure session, followed by a separate prolonged re-exposure/extinction session after a short delay (typically 10-60 minutes, but theoretically within 3-4 hours of the opening of the ‘reconsolidation window’). The retrieval-extinction procedure persistently attenuates recovery of fear memories in both rats (Monfils et al 2009) and humans (Schiller et al 2010), although this has not been universally replicated (e.g. see Luyten & Beckers 2017).

Shortly after the discovery of retrieval-extinction, a seminal paper (Xue et al 2012) showed that retrieval-extinction could reduce drug-seeking in rodents trained on cocaine- or opiate-conditioned place preference (CPP) or intravenous cocaine self-administration. Furthermore, retrieval-extinction was shown in the same study to reduce craving elicited by heroin CSs in human outpatient heroin abusers. This has potentially profound impact for addiction treatment, as a relatively minor adjustment to prolonged exposure therapy greatly improved treatment outcomes. Consequently, there has been intense research interest in retrieval-extinction from both preclinical and clinical addiction researchers.
Reductions in CPP following the retrieval-extinction procedure have been replicated with cocaine (Sartor & Aston-Jones 2014) and morphine (Ma et al 2012). Retrieval-extinction also reduces alcohol-seeking in rats (Cofresí et al 2017, Millan et al 2013, Willcocks & McNally 2014) and nicotine-seeking in human smokers (Germeroth et al 2017). However, despite its efficacy in reducing drug-seeking, there remains a lack of definitive evidence that retrieval-extinction for drug memories depends critically upon memory-updating and reconsolidation mechanisms, and not the facilitation of extinction. In several studies where retrieval-extinction effectively reduced one measure of drug-seeking, it was ineffective at reducing other measures: it did not prevent spontaneous recovery of morphine CPP 4 weeks post-intervention (Ma et al 2012) and it did not retard the reacquisition of alcohol-seeking, as would be expected if the original cue-alcohol memory had been erased (Willcocks & McNally 2014). Furthermore, the finding that extinction training prior to memory reactivation reduces subsequent alcohol-seeking contradicts the hypothesis that memory destabilisation is critical for the retrieval-extinction effect (Millan et al 2013). This is consistent with our previous report that drugs that block fear memory destabilisation do not prevent the reduction in fear produced by the retrieval-extinction procedure (Cahill et al 2019).

However, it may be premature to conclude that retrieval-extinction simply represents a facilitation of extinction that does not engage memory reconsolidation mechanisms. Some molecular evidence suggests that retrieval-extinction recruits immediate early genes associated with memory reconsolidation, at least for fear memories (Tedesco et al 2014) and that antagonism of L-type voltage-gated calcium channels, which are necessary for memory destabilisation (Suzuki et al 2008) prevents the reduction in subsequent responding normally observed following retrieval-extinction for a food-associated CS (Flavell et al 2011). These apparently conflicting findings are difficult to reconcile, but we propose that individual differences may determine whether reconsolidation or extinction mechanisms are engaged under a given set of experimental conditions. In turn, this may account for the inconsistent reports of retrieval-extinction in the literature.

3. The influence of individual differences on the efficacy of retrieval-extinction

Individual differences pose a potential challenge to the translation of retrieval-extinction to the clinical situation. A relatively understudied phenomenon in retrieval-extinction, individual differences in acquisition of extinction influence the efficacy of retrieval-extinction for preventing the recovery of fear memories (Shumake et al 2018) and in turn, the capacity for fear extinction learning correlates with CO2 reactivity and orexin expression in the lateral hypothalamus (Monfils et al 2019). To date, there have been no studies examining the impact of these mechanisms on the retrieval-extinction of appetitive memories, but drawing on findings from the fear literature, we consider three factors that are likely to influence retrieval-extinction for drug memories: individual differences in reconsolidation boundary conditions, the attribution of incentive value to appetitive cues, and the influence of stress on mnemonic processes.

3.1. Individual differences in boundary conditions

Not all instances of memory retrieval lead to memory reconsolidation; instead, there are hypothesised ‘boundary conditions’ that determine whether a retrieved memory destabilises and reconsolidates. There is extensive evidence that memory destabilisation depends upon a ‘mismatch’ between what is expected and what actually occurs, formalised as ‘prediction error’ (Pedreira & Maldonado 2003, Pedreira et al 2004, Sevenster et al 2012, Sevenster et al
2013, Sevenster et al 2014, though see Yang et al 2019, for a discussion of whether uncertainty may also induce memory destabilisation). The relationship between prediction error and memory lability is not monotonic, however, as extensive prediction error – for example, during extended periods of reinforcer omission – leads not to reconsolidation of the original memory, but rather consolidation of a new extinction memory, and thus extinction learning. The relationship between reconsolidation and extinction has been extensively investigated for fear memories, with converging evidence showing that the two mnemonic processes are separated by a ‘limbo’ period in which the original memory becomes again insensitive to disruption (Cassini et al 2017, Flavell & Lee 2013, Merlo et al 2018, Merlo et al 2014, Sevenster et al 2014). To date this has been studied at the population level with strong conditioning parameters, which may mask individual variability. For drug memories, where individual drug use histories show greater variability, it may be hypothesised that the extent of prediction error required to engage reconsolidation, limbo and extinction mechanisms may differ between individuals. Thus, considering the widely accepted boundary conditions of memory strength and age (Kwak et al 2012, Suzuki et al 2004), the extent of re-exposure required for reactivating a cue-drug memory may individually vary.

3.2. Individual differences in attribution of incentive value to cues

An increasingly large body of research has characterised how individual differences in the attribution of incentive value to drug-associated CSs influence subsequent drug self-administration and relapse (see Robinson et al 2018, for review). There is variation in the degree to which individuals are attracted to discrete CSs associated with reward (‘sign-tracking’) as compared to the location of the reward itself (‘goal-tracking’), usually measured by pavlovian conditioned approach using an autoshaping procedure (Meyer et al 2012). These behaviours are hypothesised to reflect endophenotypes correlated with differences in dopaminergic signalling within the motivational circuitry (Flagel et al 2011) and differential reliance on model-based (goal-directed) and model-free (habitual) motivational systems (Lesaint et al 2015). There is also evidence that goal-trackers condition more readily than sign-trackers to contextual cues predictive of reinforcement (Morrow et al 2011, Saunders et al 2014), although this has not been universally replicated (Vousden et al in press).

Considering that Sign-trackers and goal-trackers appear to learn differentially about discrete and contextual cues. This may influence whether they perceive the retrieval-extinction procedure to be the same as the previous learning experience (favouring reconsolidation updating) or as a different learning experience (favouring the formation of a new extinction memory). We speculate that sign-trackers and goal-trackers may attribute the retrieval-extinction experience to different ‘latent causes’ (Dunsmoor et al 2015). Considering that sign-trackers also appear to be resistant to pavlovian extinction (Ahrens et al 2016), the relative paucity of studies of the influence of these endophenotypes on retrieval-extinction is surprising. Those that have been conducted used a slightly different procedure, classifying rats as ‘orienters’ and ‘non-orienters’ to pavlovian CSs, which are broadly similar to sign-tracking and goal-tracking. Both groups showed reduced spontaneous recovery of a fear memory (Olshavsky et al 2013), but when the appetitive CS-reward memory was targeted for retrieval-extinction, only the orienters/sign-trackers showed reduced appetitive responses (Olshavsky et al 2014). This may suggest a shift in the boundaries between reconsolidation, limbo and extinction, such that the same re-exposure session may have induced reconsolidation-based updating in the sign-trackers, but limbo or extinction in the goal-trackers, reflecting the increased sensitivity of goal-trackers to contextual cues (including interoceptive, temporal cues) that distinguish the retrieval session from previous learning.
3.3. Individual differences in the effects of stress on extinction

The discrepancies within and between studies of ‘retrieval-extinction’ could potentially be explained by different individual stress levels during either the reconsolidation or the extinction session(s), whether stress is induced through re-exposure to an aversive CS or by frustration by the omission of an appetitive drug reward (e.g. Ginsburg & Lamb 2018). The effect of stress is usually to impair reconsolidation, as has been reviewed previously (Akirav & Maroun 2013), so here we focus on the effects of stress on extinction.

The relationship between stress and extinction is complicated, depending critically upon the degree and timing of stress relative to extinction learning and retrieval. Mimicking stress through administration of low doses of exogenous glucocorticoids enhances, whilst high doses impair, consolidation (Roozendaal 2003). This depends upon activation of glucocorticoid receptors in the amygdala, which modulate both the acquisition and consolidation of fear extinction (Yang et al 2006) in an NMDA receptor-dependent manner (Yang et al 2007). These dose effects of glucocorticoids depend critically on the receptors activated, with glucocorticoid receptors and mineralocorticoid receptors having differential roles in contextual fear extinction (Blundell et al 2011, Ninomiya et al 2010).

Timing of stress relative to extinction learning or retrieval is determined whether stress enhances or impairs the behavioral expression of the extinction memory, as articulated in the STaR (Stress Timing affects Relapse) model (Meir Drexler et al 2019). This model proposes that stress or glucocorticoid administration prior to extinction learning increases consolidation of the extinction memory such that it is less context-specific (de Quervain et al 2011), and that post-extinction stress or glucocorticoid administration also enhances its consolidation, but in a context-dependent manner. By contrast, stress or glucocorticoid administration immediately before an extinction retrieval test impairs extinction retrieval, leading to increased fear. However, though the STaR model (Meir Drexler et al 2019) is well supported by evidence from human studies of contextual fear, the evidence from discrete fear learning (summarised in Table 1) is not always consistent with stress enhancing extinction consolidation. The studies presented here show generally that stress, either behaviourally induced or by corticosterone administration, has a neutral or even detrimental effect on the distinct phases of extinction and retrieval. However, in the acquisition or consolidation of extinction in contextual fear, a few studies show enhancing potential. Importantly, for extinction of maladaptive appetitive drug associations, no studies indicate enhancing therapeutic potential of stress. The contrast of stress effects between different types of memory, likely reflecting the different effects of stress hormones in the hippocampus, which is required for contextual fear learning, and the amygdala, required for both contextual and discrete fear learning (McEwen et al 2016).

To our best knowledge, the effects of stress have not been systemically investigated in the context of retrieval-extinction. Based on the STaR model (Meir Drexler et al 2019) it may be possible to optimise retrieval-extinction using well-timed glucocorticoid administration.

However, based on Table 1, we would only expect this to work for contextual fear extinction, and to have a limited or even detrimental effect for appetitive memories, regardless of whether retrieval-extinction is mediated by an extinction or reconsolidation mechanism. Importantly, differences in stress state would be predicted to affect the acquisition, consolidation, and retrieval of extinction, thus potentially explaining the large variation between retrieval-extinction studies.

4. Optimising retrieval-extinction for the disruption of drug memories
Considering the influence of these individual differences on retrieval-extinction, how might the procedure be individually optimised?

4.1. Optimising memory reactivation

Reconsolidation deficits are highly selective to the reactivated memory (Doyère et al. 2007, Dębiec et al. 2006), which could limit the efficacy of reactivation based on presentation of conditioned stimuli (CSs). Furthermore, individual differences exist in attention and engagement with conditioned stimuli (Meyer et al. 2012), which could account for differences in the efficacy of retrieval-extinction, such as those seen with appetitive memories (Olshavsky et al. 2014).

US presentation can also be used to reactivate memories. It was first shown in studies of fear memory that unsignalled re-exposure to footshock could destabilise the fear memory and make it susceptible to disruption with protein synthesis inhibition (Dębiec et al. 2010). Similarly, re-exposure to the US induced susceptibility to retrieval-extinction, and led to reductions in fear to all CSs associated with the US, rather than individual CS-US associations (Liu et al. 2014). US-based reactivation has also been shown to extensively reduce reactivation-induced CREB expression, compared to CS-based reactivation (Huang et al. 2017).

A similar US-based reactivation approach has been used in studies of drug memory reconsolidation. In rats extensively trained to self-administer cocaine, reactivation of the drug memory through experimenter-administered injections of cocaine, followed by drug memory extinction, reduced reinstatement, spontaneous recovery and renewal (Luo et al. 2015). Importantly, the retrieval-extinction effect was also observed when instead of cocaine, the stimulant methylphenidate was administered. As noted by the authors (Luo et al. 2015), this overcomes the difficult ethical issue of administering an illegal drug to a patient who is trying to maintain abstinence. However, these findings do raise questions regarding the mechanism by which US-based reactivation occurs. It may reactivate a ‘US engram’ in the brain, propagating destabilisation along the network of associated CSs. Alternatively, US exposure could lead to experiencing of interoceptive cues that reactivate the drug memory, in a less generalised manner, which may account for the increased efficacy of US-based reactivation procedures. A specific test of the latter hypothesis would be to determine whether drug isoforms that do not cross the blood-brain-barrier – and so could only produce central effects through the detection of peripheral interoceptive cues – would be as effective in reactivating the memory as drugs that do cross the blood-brain-barrier. To our knowledge, this remains to be investigated.

4.2. Optimising extinction

The fact that there are no standardised procedures to destabilise memory makes the interpretation of studies failing to replicate retrieval-extinction difficult. Although memory destabilisation – at least for pavlovian memories – is thought to depend on inducing a ‘violation of expectations’ or ‘prediction error’ (Pedreira et al. 2004, Sevenster et al. 2013, Sevenster et al. 2014), it is widely accepted that the relationship between prediction error and memory destabilisation is complex. As noted above, re-exposure to a single previously fear-associated CS will induce memory reconsolidation, but greater re-exposure (with more prediction error) leave the original memory intact and instead promote the consolidation of an extinction memory after a ‘limbo’ period (Lee et al. 2006, Merlo et al. 2018, Merlo et al. 2014). Therefore, the relationship between prediction error and memory destabilisation is not linear,
leading some to hypothesise that destabilisation may instead be driven by the attribution of an unexpected experience to the same underlying ‘latent cause’ as has been experienced in the original consolidation of the memory (Dunsmoor et al 2015, Gershman et al 2017). The difficulty in empirically determining whether an experience is attributed to the same or different latent cause – which could also differ between individuals – leads us to hypothesise that the failures to replicate the retrieval-extinction effect may be due to engaging the facilitation of extinction, rather than destabilisation of the original memory. One major challenge in distinguishing between these two accounts of retrieval-extinction is the reliance on a single behavioural readout. We have previously argued (Cahill & Milton 2019) that corroborating molecular evidence would be useful in this respect.

Certainly, our own data are more consistent with a ‘facilitation of extinction’ account of retrieval-extinction. We observed (Cahill et al 2019) the retrieval-extinction effect for fear memories despite behavioural manipulations of prediction error and selective pharmacological blockade of the D1-subtype of dopamine receptor, which is required for memory destabilisation (Merlo et al 2015). Furthermore, considering studies showing facilitation of extinction following exposure to a novel environment (de Carvalho Myskiw et al 2013, Liu et al 2015), we have recently observed a ‘retrieval-extinction’ effect when cocaine self-administering rats are exposed to a novel context prior to extinction training, rather than a memory reactivation session (Ferragud et al., unpublished observations). This may indicate that at least some of the published putative retrieval-extinction effects could be due to the facilitation of learning by a proximal behavioural experience. This phenomenon, in which novelty exposure facilitates subsequent learning, is known as ‘behavioural tagging’ (Moncada et al 2011, Moncada & Viola 2007). One test of the ‘facilitation of extinction’ account of retrieval-extinction would be to expose animals to a novel context prior to extinction training, rather than a memory reactivation session; if the ‘retrieval-extinction’ effect persists despite a lack of memory reactivation, this would cast doubt on the reconsolidation-based account of the phenomenon.

Determining whether retrieval-extinction depends upon reconsolidation or extinction mechanisms is of great potential importance in optimising this therapeutic strategy. For example, if dependent primarily on extinction mechanisms, then it may be possible to facilitate retrieval-extinction further with the administration of drugs such as the glutamate receptor partial agonist D-cycloserine (Das & Kamboj 2012). However, the use of drugs to enhance retrieval-extinction may reduce the non-pharmacological appeal of the intervention. Alternatively, if individual differences determine whether reconsolidation-update or extinction mechanisms are engaged by the retrieval-extinction procedure, then identification of these differences – for example, by classifying individuals as sign-trackers or goal-trackers, or determining stress reactivity – could be used to optimise the retrieval-extinction procedure by targeting the dominant mnemonic process in each individual.

5. Conclusions

Although the mechanisms underlying retrieval-extinction remain unclear, and retrieval-extinction has not been universally replicated, this process has great potential for the treatment of drug addiction. Understanding the contribution of individual differences to the boundary conditions underlying reconsolidation, limbo and extinction, and how these interact with factors such as the attribution of incentive value to appetitive stimuli and stress, may provide insight into the apparent inconsistencies in the literature, and guide future optimisation of retrieval-extinction for clinical use.
Acknowledgments
AF was supported by a UK Medical Research Council Programme Grant (MR/N02530X/1) awarded to Professor Barry Everitt, Professor Trevor Robbins, Professor Jeff Dalley, Dr David Belin and AM. AM is the Ferreras-Willetts Fellow in Neuroscience at Downing College, University of Cambridge. EK was supported by an Erasmus studentship.

Author contributions
EK, AF and AM wrote and critically edited the manuscript.

Conflicts of interest
The authors state that they have no conflicts of interest to declare.
REFERENCES

Abrari K, Rashidy-Pour A, Sennanian S, Fathollahi, Y. 2008. Administration of Corticosterone after Memory Reactivation Disrupts Subsequent Retrieval of a Contextual Conditioned Fear Memory: Dependence upon Training Intensity. *Neurol. Learn. Mem.* 89: 178–84.

Ahrens AM, Singer BF, Fitzpatrick CJ, Morrow JD, Robinson TE. 2016. Rats that sign-track are resistant to pavlovian but not instrumental extinction. *Behav. Brain Res.* 296: 418-30

Akirav I, Maroun, M. 2007. The Role of the Medial Prefrontal Cortex-Amygdala Circuit in Stress Effects on the Extinction of Fear. *Neural Plasticity* 2007: 30873.

Akirav I, Maroun M. 2013. Stress modulation of reconsolidation. *Psychopharm.* 226: 747-61

Akirav I, Segev A, Motanis H, Maroun M. 2009. D-Cycloserine into the BLA Reverses the Impairing Effects of Exposure to Stress on the Extinction of Contextual Fear, but Not Conditioned Taste Aversion. *Learn. Mem.* 16: 682–86.

American Psychiatric Association. 2013. *The Diagnostic and Statistical Manual of Mental Disorders (5th ed.)*. Arlington, VA: American Psychiatric Publishing.

Baran SE, Armstrong CE, Niren DC, Hanna JJ, Conrad CD. 2009. Chronic Stress and Sex Differences on the Recall of Fear Conditioning and Extinction. *Neurobiol. Learn. Mem.* 91: 323–32.

Blundell J, Blaiss CA, Lagace DC, Eisch AJ, Powell CM. 2011. Block of glucocorticoid synthesis during re-activation inhibits extinction of an established fear memory. *Neurol. Learn. Mem.* 95: 453-60

Brinks V, de Kloet ER, Oitzl MS. 2009. Corticosterone Facilitates Extinction of Fear Memory in BALB/c Mice but Strengthens Cue Related Fear in C57BL/6 Mice. *Exp. Neurol.* 216: 375–82.

Cahill EN, Milton AL. 2019. Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. *Psychopharm.* 236: 111-132.

Cahill EN, Wood MA, Everitt BJ, Milton AL. 2019. The role of prediction error and memory destabilization in extinction of cued-fear within the reconsolidation window. *Neuropsychopharm.*: doi: 10.1038/s41386-018-0299-y

Cai W-H, Blundell J, Han J, Greene RW, Powell CM. 2006. Postreactivation Glucocorticoids Impair Recall of Established Fear Memory. *J. Neuroscience.* 26: 9560–66.

Cassini LF, Flavell CR, Amaral OB, Lee JLC. 2017. On the transition from reconsolidation to extinction of contextual fear memories. *Learn. Mem.* 24: 392-99

Cofresí R, Lewis SM, Chaudhri N, Lee HJ, Monfils MH, Gonzales RA. 2017. Postretrieval extinction attenuates alcohol cue reactivity in rats. *Alcoholism, Clinical and Experimental Research* 41: 608-17

Das RK, Kamboj SK. 2012. Maintaining clinical relevance: considerations for the future of research into D-cycloserine and cue exposure therapy for addiction. *Biol Psychiatry* 72: e29-30

de Carvalho Myskiw J, Benetti F, Izquierdo I. 2013. Behavioral tagging of extinction learning. *Proc. Natl. Acad. Sci. USA* 110: 1071-76

de Quervain DJ-F, Bentz D, Michael T, Bolt OC, Wiederhold BK, et al. 2011. Glucocorticoids enhance extinction-based psychotherapy. *Proc. Natl. Acad. Sci. USA* 108: 6621-25

Deschaux O, Zheng X, Lavigne J, Nachon O, Cleren C, Moreau J-L, Garcia R. 2013. Post-Extinction Fluoxetine Treatment Prevents Stress-Induced Reemergence of Extinguished Fear. *Psychopharmacology* 225: 209–16.

de Wit H, Stewart J. 1981. Reinstatement of cocaine-reinforced responding in the rat. *Psychopharm.* 75: 134-43
Doyère V, Dębiec J, Monfils MH, Schafe GE, LeDoux JE. 2007. Synapse-specific reconsolidation of distinct fear memories in the lateral amygdala. *Nat. Neurosci.* 10: 414-16

Dunsmoor JE, Niv Y, Daw N, Phelps EA. 2015. Rethinking extinction. *Neuron* 88: 47-63

Dębiec J, Doyere V, Nader K, LeDoux JE. 2006. Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. *Proc. Natl. Acad. Sci. USA* 103: 3428-33

Dębiec J, Díaz-Mataix L, Bush DEA, Doyère V, LeDoux JE. 2010. The amygdala encodes specific sensory features of an aversive reinforcer. *Nat. Neurosci.* 13: 536-37

Eagle AL, Singh R, Kohler RJ, Friedman AL, Liebowitz CP, Galloway MP, Enman NM, Jutkiewicz EM, Perrine SA. 2015. Single Prolonged Stress Effects on Sensitization to Cocaine and Cocaine Self-Administration in Rats. *Behav. Brain Res.* 284: 218–24.

Ebrahimian F, Naghavi FS, Yazdi F, Sadeghzadeh F, Taslimi Z, Haghparast A. 2016. Differential Roles of Orexin Receptors within the Dentate Gyrus in Stress- and Drug Priming-Induced Reinstatement of Conditioned Place Preference in Rats. *Behav. Neurosci.* 130: 91–102.

Erb S, Shaham Y, Stewart J. 1998. The Role of Corticotropin-Releasing Factor and Corticosterone in Stress- and Cocaine-Induced Relapse to Cocaine Seeking in Rats. *J. Neurosci.* 18: 5529–36.

Farrell MR, Sayed JA, Underwood AR, Wellman CL. 2010. Lesion of Infrastructural Cortex Occludes Stress Effects on Retrieval of Extinction but Not Fear Conditioning. *Neurobiol. Learn. Mem.* 94: 240–46.

Flavell CR, Barber DJ, Lee JLC. 2011. Behavioural memory reconsolidation of food and fear memories. *Nature Communications* 2: 504

Flavell CR, Lee JLC. 2013. Reconsolidation and extinction of an appetitive pavlovian memory. *Neurobiol. Learn. Mem.* 104: 25-31

Garcia R, Spennato G, Nilsson-Todd L, Moreau J-L, Deschaux O. 2008. Hippocampal Low-Frequency Stimulation and Chronic Mild Stress Similarly Disrupt Fear Extinction Memory in Rats. *Neurobiol. Learn. Mem.* 89: 560–66.

Germeroth LJ, Carpenter MJ, Baker NL, Froeliger B, LaRowe SD, Saladin ME. 2017. Effect of a Brief Memory Updating Intervention on Smoking Behavior: A Randomized Clinical Trial. *JAMA Psychiatry* 74: 214-23

Gershman SJ, Monfils MH, Norman KA, Niv Y. 2017. The computational nature of memory modification. *eLife* 6: e23763

Ginsburg BC, Lamb RJ. 2018. Frustration stress (unexpected loss of alternative reinforcement) increases opioid self-administration in a model of recovery. *Drug Alcohol Depend.* 182: 33-39

Gourley SL, Kedves AT, Olausson P, Taylor JR. 2009. A History of Corticosterone Exposure Regulates Fear Extinction and Cortical NR2B, GluR2/3, and BDNF. *Neuropsychopharmacology* 34: 707–16.

Graf EN, Wheeler RA, Baker DA, Ebben AL, Hill JE, McReynolds JR, Robble MA, et al. 2013. Corticosterone Acts in the Nucleus Accumbens to Enhance Dopamine Signaling and Potentiates Reinstatement of Cocaine Seeking. *J. Neurosci* 33: 11800–810.

Huang B, Zhu H, Zhou Y, Liu X, Ma L. 2017. Unconditioned- and conditioned-stimuli induce differential memory reconsolidation and β-AR-dependent CREB activation. *Frontiers in Neural Circuits* 11: 53
Izquierdo A, Wellman CL, Holmes A. 2006. Brief Uncontrollable Stress Causes Dendritic Retraction in Infralimbic Cortex and Resistance to Fear Extinction in Mice. *J. Neurosci.* 26: 5733–38.

Karimi S, Attarzadeh-Yazdi G, Yazdi-Ravandi S, Hesam S, Azizi P, Razavi Y, Haghparast A. 2014. Forced Swim Stress but Not Exogenous Corticosterone Could Induce the Reinstatement of Extinguished Morphine Conditioned Place Preference in Rats: Involvement of Glucocorticoid Receptors in the Basolateral Amygdala. *Behav. Brain Res.* 264: 43–50.

Keller SM, Schreiber WB, Stanfield BR, Knox D. 2015. Inhibiting Corticosterone Synthesis during Fear Memory Formation Exacerbates Cued Fear Extinction Memory Deficits within the Single Prolonged Stress Model. *Behav. Brain Res.* 287: 182–86.

Kirby ED, Muroy SE, Sun WG, Covarrubias D, Leong MJ, Barchas LA, Kaufer D. 2013. Acute Stress Enhances Adult Rat Hippocampal Neurogenesis and Activation of Newborn Neurons via Secreted Astrocytic FGF2. *ELife* 2: e00362.

Knox, D, Nault T, Henderson C, Liberzon I. 2012. Glucocorticoid Receptors and Extinction Retention Deficits in the Single Prolonged Stress Model. *Neuroscience* 223: 163–73.

Knox D, George SA, Fitzpatrick CJ, Rabinak CA, Maren S, Liberzon I. 2012. Single Prolonged Stress Disrupts Retention of Extinguished Fear in Rats. *Learn. Mem.* 19: 43–49.

Kwak C, Choi JH, Bakes JT, Lee K, Kaang BK. 2012. Effect of intensity of unconditional stimulus on reconsolidation of contextual fear memory. *The Korean Journal of Physiology & Pharmacology* 16: 293-96

Leão RM, Cruz FC, Planeta CS. 2009. Exposure to Acute Restraint Stress Reinstates Nicotine-Induced Place Preference in Rats. *Behav. Pharm.* 20: 109–13.

Lee J. 2009. Reconsolidation: maintaining memory relevance. *Trends Neurosci* 32: 413-20

Lee JLC, Milton AL, Everitt BJ. 2006. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. *J Neurosci.* 26: 10051-56

Lesaint F, Sigaud O, Clark JJ, Flagel SB, Khamassi M. 2015. Experimental predictions drawn from a computational model of sign-trackers and goal-trackers. *J. Physiol. (Paris)* 109: 78-86

Liu J, Zhao L, Xue Y, Shi J, Suo L, et al. 2014. An unconditioned stimulus retrieval-extinction procedure to prevent the return of fear memory. *Biol Psychiatry*: doi: 10.1016/j.biopsych.2014.03.027

Liu J-F, Yang C, Deng J-H, Yan W, Wang H-M, et al. 2015. Role of hippocampal β-adrenergic and glucocorticoid receptors in the novelty-induced enhancement of fear extinction. *J Neurosci.* 35: 8308-21

Luo Y-X, Xue Y-X, Liu J-F, Shi H-S, Jian M, et al. 2015. A novel UCS memory retrieval-extinction procedure to inhibit relapse to drug seeking. *Nature Communications* 6: 7675

Luyten L, Beckers T. 2017. A preregistered, direct replication attempt of the retrieval-extinction effect in cued fear conditioning in rats. *Neurobiol. Learn. Mem.* 144: 208-15

Ma X, Zhang J-J, Yu L-C. 2012. Post-retrieval extinction training enhances or hindrs the extinction of morphine-induced conditioned place preference in rats dependent on the retrieval-extinction interval. *Psychopharm.* 221: 19-26

Manvich DF, Stowe TA, Godfrey JR, Weinshenker D. 2016. A Method for Psychosocial Stress-Induced Reinstatement of Cocaine Seeking in Rats. *Biol. Psychiat.* 79: 940–46.

Maroun M, Ioannides PJ, Bergman KL, Kavushansky A, Holmes A, Wellman CL. 2013. Fear Extinction Deficits Following Acute Stress Associate with Increased Spine Density and Dendritic Retraction in Basolateral Amygdala Neurons. *Eur. J. Neurosci.* 38: 2611–20.
McEwen BS, Nasca C, Gray C. 2016. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. *Neuropsychopharmacology.* 41: 3-23

Meir Drexler S, Merz CJ, Jentsch VL, Wolf OT. 2019. How stress and glucocorticoids timing-dependently affect extinction and relapse. *Neurosci. Biobehav. Rev.* 98: 145-53

Meng S, Quan W, Qi X, Su Z, Yang S. 2014. “Effect of Baclofen on Morphine-Induced Conditioned Place Preference, Extinction, and Stress-Induced Reinstatement in Chronically Stressed Mice. *Psychopharmacology* 231: 27–36.

Miracle, Angela D., Michael F. Brace, Kellie D. Huyck, Samantha A. Singler, and Cara L. Wellman. 2006. “Chronic Stress Impairs Recall of Extinction of Conditioned Fear.” *Neurobiology of Learning and Memory* 85 (3): 213–18. https://doi.org/10.1016/j.nlm.2005.10.005.

Merlo E, Milton AL, Everitt BJ. 2018. A novel retrieval-dependent memory process revealed by the arrest of ERK1/2 activation in the basolateral amygdala. *J Neurosci.* 38: 3199-207

Merlo E, Milton AL, Goozée ZY, Theobald DEH, Everitt BJ. 2014. Reconsolidation and extinction are dissociable and mutually exclusive processes: behavioral and molecular evidence. *J Neurosci.* 34: 2422-231

Merlo E. Ratano P, Ilioi EC, Robbins MALS, Everitt BJ, Milton AL. 2015. Amygdala dopamine receptors are required for the destabilization of a reconsolidating appetitive memory. *eNeuro* 2: e0024-14.2015 1-14

Meyer PJ, Lovic V, Saunders BT, Yager LM, Flagel SB, et al. 2012. Quantifying individual variation in the propensity to attribute incentive salience to reward cues. *PLoS One* 7: e38987

Millan EZ, Milligan-Saville J, McNally GP. 2013. Memory retrieval, extinction, and reinstatement of alcohol seeking. *Neurobiol. Learn. Mem.* 101: 26-32

Milton AL, Everitt BJ. 2010. The psychological and neurochemical mechanisms of drug memory reconsolidation: implications for the treatment of addiction. *Eur. J. Neuro.* 31: 2308-19

Monfils MH, Cowansage KK, Klann E, LeDoux JE. 2009. Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. *Science* 324: 951-55

Monfils MH, Lee HJ, Keller NE, Roquet RF, Quevedo S, et al. 2019. Predicting extinction phenotype to optimize fear reduction. *Psychopharmac.* 236: 99-110

Morrow JD, Maren S, Robinson TE. 2011. Individual variation in the propensity to attribute incentive salience to an appetitive cue predicts the propensity to attribute motivational salience to an aversive cue. *Behav. Brain Res.* 220: 238-43

Nader K, Schafe GE, LeDoux JE. 2000. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. *Nature* 406: 722-26

Ninomiya EM, Martynhak BJ, Zanoveli JM, Correia D, da Cunha C, Andreatti R. 2010. Spironolactone and low-dose dexamethasone enhance extinction of contextual fear conditioning. *Progress in Neuro-Psychopharmacology & Biological Psychiatry* 34: 1229-35

Olshavsky ME, Jones CE, Lee HJ, Monfils M-H. 2013. Appetitive behavioral traits and stimulus intensity influence maintenance of conditioned fear. *Frontiers in Behavioral Neuroscience* 7: 179
Olshavsky ME, Song BJ, Powell DJ, Jones CE, Monfils MH, Lee HJ. 2014. Updating appetitive memory during reconsolidation window: critical role of cue-directed behavior and amygdala central nucleus. *Frontiers in Behavioral Neuroscience* 7: 186

Pedreira ME, Maldonado H. 2003. Protein synthesis subserves reconsolidation or extinction depending on reminder duration. *Neuron* 38: 863-69

Pedreira ME, Pérez-Cuesta LM, Maldonado H. 2004. Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. *Learn. Mem.* 11: 579-85

Robinson TE, Carr C, Kawa AB. 2018. The propensity to attribute incentive salience to drug cues and poor cognitive control combine to render sign-trackers susceptible to addiction. In *Sign-Tracking and Drug Addiction*, ed. A Tomie, J Morrow. Ann Arbor, MI: Michigan Publishing

Roozendaal B. 2003. Systems mediating acute glucocorticoid effects on memory consolidation and retrieval. *Progress in Neuropsychopharmacology and Biological Psychiatry* 27: 1213-23

Sartor GC, Aston-Jones G. 2014. Post-retrieval extinction attenuates cocaine memories. *Neuropsychopharmacol.* 39: 1059-65

Saunders BT, O'Donnell EG, Aurbach EL, Robinson TE. 2014. A cocaine context renews drug seeking preferentially in a subset of individuals. *Neuropsychopharmacol.* 39: 2816-23

Sawamura T, Klengel T, Armario A, Jovanovic T, Norrholm SD, Ressler KJ, Andero R. 2016. Dexamethasone Treatment Leads to Enhanced Fear Extinction and Dynamic Fkbp5 Regulation in Amygdala. *Neuropsychopharmacol.* 41: 832–46.

Schiller D, Monfils MH, Raio CM, Johnson DC, LeDoux JE, Phelps EA. 2010. Preventing the return of fear in humans using reconsolidation update mechanisms. *Nature* 463: 49-54

Sevenster D, Beckers T, Kindt M. 2012. Retrieval per se is not sufficient to trigger reconsolidation of human fear memory. *Neurobiol. Learn. Mem.* 97: 338-45

Sevenster D, Beckers T, Kindt M. 2013. Prediction error governs pharmacologically induced amnesia for learned fear. *Science* 339: 830-33

Sevenster D, Beckers T, Kindt M. 2014. Prediction error demarcates the transition from retrieval, to reconsolidation, to new learning. *Learn. Mem.* 21: 580-84

Shumake J, Jones C, Auchter A, Monfils MH. 2018. Data-driven criteria to assess fear remission and phenotypic variability of extinction in rats. *Philosophical Transactions of the Royal Society B*: doi: 10.1098/rstb.2017.0035

Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S. 2004. Memory reconsolidation and extinction have distinct temporal and biochemical signatures. *J Neurosci.* 24: 4787-95

Suzuki A, Mukawa T, Tsukagoshi A, Frankland PW, Kida S. 2008. Activation of LYGCCs and CB1 receptors required for destabilization of reactivated contextual fear memories. *Learn. Mem.* 15: 426-33

Taslimi Z, Sarihi A, Haghparast A. 2018. Glucocorticoid Receptors in the Basolateral Amygdala Mediated the Restraint Stress-Induced Reinstatement of Methamphetamine-Seeking Behaviors in Rats. *Behav. Brain Res.* 348: 150–59.

Taubenfeld SM, Riceberg JS, New AS, Alberini CM. 2009. Preclinical Assessment for Selectively Disrupting a Traumatic Memory via Postretrieval Inhibition of Glucocorticoid Receptors. *Biol. Psychiatri.* 65: 249–57.

Tedesco V, Roquet RF, DeMis J, Chiamulera C, Monfils MH. 2014. Extinction, applied after retrieval of auditory fear memory, selectively increases zinc-finger protein 268 and phosphorylated ribosomal protein S6 expression in prefrontal cortex and lateral amygdala. *Neurobiol. Learn. Mem.* 115: 78-85
Vousden GH, Paulcan S, Robbins TW, Eagle DM, Milton AL. (in press). Checking responses of goal- and sign-trackers are differentially affected by threat in a rodent analogue of obsessive-compulsive disorder. Learn. Mem.

Wang H, Xing X, Liang J, Bai Y, Lui Z, Zheng X. 2014. High-Dose Corticosterone after Fear Conditioning Selectively Suppresses Fear Renewal by Reducing Anxiety-like Response. Pharmacol. Biochem. Behav. 124: 188–95.

Wilber AA, Walker AG, Southwood CJ, Farrell MR, Lin GL, Rebec GV, Wellman CL. 2011. Chronic Stress Alters Neural Activity in Medial Prefrontal Cortex during Retrieval of Extinction. Neuroscience 174: 115–31.

Willcocks AL, McNally GP. 2014. An extinction retrieval cue attenuates renewal but not reacquisition of alcohol seeking. Behav. Neurosci. 128: 83-91

Woodruff ER, Greenwood BN, Chun LE, Fardi S, Hinds LR, Spencer RL. 2015. Adrenal-Dependent Diurnal Modulation of Conditioned Fear Extinction Learning. Behav. Brain Res. 286: 249–55.

Xing X, Wang H, Liang J, Bai Y, Liu Z, Zheng X. 2014. Mineralocorticoid Receptors in the Ventral Hippocampus Are Involved in Extinction Memory in Rats. Psych Journal 3: 201–13.

Xue Y, Luo Y, Wu P, Shi H, Xue L, et al. 2012. A memory retrieval-extinction procedure to prevent drug craving and relapse. Science 336: 241-5

Yamamoto S, Morinobu S, Fuchikami M, Kurata A, Kozuru T, Yamawaki S. 2008. Effects of Single Prolonged Stress and D-Cycloserine on Contextual Fear Extinction and Hippocampal NMDA Receptor Expression in a Rat Model of PTSD. Neuropsychopharmacology 33 (9): 2108–16.

Yang Y, Jie J, Li J, Chen W, Zheng X. 2019. A novel method to trigger the reconsolidation of fear memory. Behav. Res. Ther. 122: 103461

Yang Y-L, Chao P-K, Lu K-T. 2006. Systemic and intra-amygdala administration of glucocorticoid agonist and antagonist modulate extinction of conditioned fear. Neuropsychopharmac. 31: 912-24

Yang Y-L, Chao P-K, Ro L-S, Wo Y-P, Lu K-T. 2007. Glutamate NMDA receptors within the amygdala participate in the modulatory effect of glucocorticoids on extinction of conditioned fear in rats. Neuropsychopharmac. 32: 1042-51

15
This study was the only one in the CS-US category where conditioned taste aversion was used to establish the CS-US association. All others used classical cue-fear conditioning, where a fear-related US, typically an electrical shock, is paired to a CS, typically a tone.

The fluoxetine was given for 21 days after extinction. The behavioral stress consisted of elevated platform prior to retrieval. The decrease in freezing could also be interpreted as an enhancing effect of fluoxetine on the consolidation of extinction, rather than retrieval, or could be ascribed to the general anxiolytic effects of fluoxetine.

Type of memory	Mnemonic phase	Effect	Method of stress induction	Refs	Secondary Intervention	Total Effect	Refs
CS-US fear conditioning and extinction	Acquisition or consolidation of extinction	Impaired	Behavioural	(Izquierdo et al. 2006; Maroun et al. 2013; Knox et al. 2012a; Sawamura et al. 2016; Keller et al. 2015; Farrell et al. 2010; Akirav and Maroun 2007; Akirav et al. 2009; Yamamoto et al. 2008)	Dexamethasone	Rescued	(Sawamura et al. 2016)
					Metapyrone	Exacerbated	(Keller et al. 2015)
					Infra-limbic lesion	Impaired	(Farrell et al. 2010)
					Diazepam	Rescued	(Akirav and Maroun 2007)
					D-cycloserine	No effect	(Akirav et al. 2009)
					D-cycloserine	Rescued	(Yamamoto et al. 2008)
No effect	Behavioural	(Miracle et al. 2006; Wilber et al. 2011; Knox et al. 2012b; Garcia et al. 2008)	(Akirav et al. 2009)	(Yamamoto et al. 2008)			
CORT	(Wang et al. 2014)	(Maroun et al. 2013; Farrell et al. 2010; Miracle et al. 2006; Wilber et al. 2011; Knox et al. 2012b; Garcia et al. 2008; Xing et al. 2014; Deschaux et al. 2013)	Fluoxetine	Rescued	(Deschaux et al. 2013)		
Retrieval of extinction	Impaired	Behavioural	(Maroun et al. 2013; Farrell et al. 2010; Miracle et al. 2006; Wilber et al. 2011; Knox et al. 2012b; Garcia et al. 2008; Xing et al. 2014; Deschaux et al. 2013)	Infra-limbic lesion	Rescued	(Farrell et al. 2010)	
No effect	CORT	(Wang et al. 2014)	(Akirav et al. 2009)	(Yamamoto et al. 2008)			

1 This study was the only one in the CS-US category where conditioned taste aversion was used to establish the CS-US association. All others used classical cue-fear conditioning, where a fear-related US, typically an electrical shock, is paired to a CS, typically a tone.

2 This study used classical cue-fear conditioning but used only the context for extinction.

3 The fluoxetine was given for 21 days after extinction. The behavioral stress consisted of elevated platform prior to retrieval. The decrease in freezing could also be interpreted as an enhancing effect of fluoxetine on the consolidation of extinction, rather than retrieval, or could be ascribed to the general anxiolytic effects of fluoxetine.
Context-fear conditioning and extinction	Acquisition or consolidation of extinction	Impaired Behavioural	(Akirav and Maroun 2007; Akirav et al. 2009; Yamamoto et al. 2008)	D-cycloserine	Rescued (Akirav et al. 2009; Yamamoto et al. 2008)	Diazepam	Rescued (Akirav and Maroun 2007)
Abbreviations: ADX (adrenalectomized); CORT (corticosterone)							
CORT	(Gourley et al. 2009)	Mifepristone	Mimicked (Gourley et al. 2009)				
No effect Behavioural	(Knox et al. 2012b)						
Enhanced Behavioural	(Kirby et al. 2013)						
CORT	(Abrari et al. 2008; Cai et al. 2006; Blundell et al. 2011)						
Instrumental conditioning for drug reward and cued extinction	Acquisition or consolidation of extinction	No effect Behavioural	(Eagle et al. 2015; Manvich et al. 2016)				
Retrieval of extinction	No effect Behavioural	(Eagle et al. 2015)					
Enhanced reinstatement	Behavioural	(Manvich et al. 2016; Erb et al. 1998; Graf et al. 2013)	ADX	Rescued (Erb et al. 1998; Graf et al. 2013)			
CORT	(Graf et al. 2013)	Mifepristone	No effect (Graf et al. 2013)				

Table 1. Modulation of different phases of extinction by behavioral stress, glucocorticoid administration, and secondary interventions

Note that this table includes only rodent studies. Other exclusions consists of: studies that applied the stress before conditioning when this had a significant effect on conditioning, e.g. studies using early life stress, or when they did not provide any conditioning data as this renders it impossible to conclude on the effects on extinction alone. For the effects on retrieval of extinction as determined by performance during reinstatement, only studies were included which targeted the stress specifically to the extinction session, and not to the reinstatement session. Also, papers which did not provide controls for stress/CORT induction were excluded. No papers on

4 Reinstatement was not cocaine-primed
5 Reinstatement was cocaine-primed
6 This effect was only observed when animals received a priming dose of cocaine versus saline prior to the reinstatement test
retrieval of extinction within contextual fear, nor papers which used CORT to induce stress in instrumental conditioning were found after these exclusions. Specific excluded papers, as it is beyond the scope of this table: effect of strain in mice (Brinks et al. 2009); diurnal changes in corticosterone (Woodruff et al. 2015); gender (Baran et al. 2009); exposure to novel context (Liu et al. 2015); conditioning using conditioned place preference (Karimi et al. 2014; Taslimi et al. 2018; Leão et al. 2009; Ebrahimian et al. 2016; Meng et al. 2014; Taubenfeld et al. 2009). Severity of behavioural stress induction, nor CORT dose showed no clear effect, and is thus for clarity not included.