Administration of Yunnan Baiyao improved clinical prognosis of emergency craniotomy in patients with moderate-to-severe TBI: a randomized controlled trial

Lifeng Chen
Chinese PLA General Hospital

Hongzhen Jiang
Chinese PLA General Hospital

Guoqiang Xing (gxing99@yahoo.com)
Affiliated Hospital of North Sichuan Medical College
https://orcid.org/0000-0002-4706-3063

Bing Guan
Chinese PLA General Hospital

Yang Yang
Chinese PLA General Hospital

Anwar Ahmed
Uniformed Services University of the Health Sciences

Xiaodong Ma
Chinese PLA General Hospital

Research

Keywords: traumatic brain injury, emergency craniotomy, Yunnan Baiyao anti-hemorrhage drug, Glasgow Coma & Outcome Scales, serum S100B and SOD proteins

DOI: https://doi.org/10.21203/rs.3.rs-41559/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Although emergency craniotomy has been performed to reduce the mortality of traumatic brain injury (TBI), it is associated with secondary injury and poor prognosis. The efficacy of a wound-healing medicine Yunnan Baiyao (YB) was compared with a TBI medicine Xingnaojing (XNJ) and orthodox therapy (OT).

Method: Eighty patients (39±7 yrs.) with moderate-to-severe TBI (Glasgow Coma Scale(GOS), 3–12) received craniotomy before randomly assigned to (n=20) 7 days treatment of: 1) OT; 2) OT+XNJ (20 ml i.v. drip/daily); 3) OT+low dose-YB (oral, 1,000 mg/day); 4) OT+high dose-YB, 2,000 mg/day). Serum S100B and superoxide dismutase (SOD), Glasgow Outcome Scale (GOS) and Karnofsky Performance Scale (KPS) were evaluated.

Results: GCS score was lowest on admission that improved more quickly and became significantly higher in XNJ, I-YB, h-YB groups than in OT group (P<0.01). S100B peaked higher but declined more slowly and became significantly higher in OT than in other groups (P<0.01). By Day 7, S100B declined to 20% below baseline in other groups but remained 19.4% above baseline in OT group. OT lost 38% SOD activity on Day 3 and regained 69% of SOD activity on Day 7 whereas other groups lost 16.7~23.4% SOD on Day 3 but regained 91.8~99.5% activity on Day 7 (P<0.01). GOS and KPS scores were significantly greater (−25~−30%) in the XNJ, I-YB, h-YB groups than in OT group 1–3 months post-surgery.

Conclusion: YB is significantly better than OT and non-inferior to XNJ in improving postoperative recovery and clinical prognosis after emergency craniotomy in patients with moderate-to-severe TBI.

Introduction

Traumatic brain injury (TBI) is a major cause of mortality and disability with more than 27 million new cases reported worldwide in 2016[1]. TBI is complicated with intracerebral hemorrhage, edema, hydrocephalus, elevated intracranial pressure (ICP), coagulopathy and stress. Although orthodox treatments (OT) such as hyperosmolar therapy, sedation, barbiturate coma, hypothermia therapy and ventricular drainage have been used in TBI management, they are often not effective.

Surgical removal of intracranial hematoma and fractured brain tissue (craniotomy/decompression craniectomy) can reduce the mortality of severe TBI, incidence of ICP, and length of hospital stay in TBI patients [2–4]. Surgery, however, could also worsen the clinical outcomes of TBI [5, 6], partly due to secondary injury, increased gastrointestinal bleeding and inflammatory complications [4, 7–11].

Timely appropriate drug treatment after craniotomy could potentially reduce the impact of secondary injuries and improve the prognosis [12]. So far, all experimental drugs for treatment of TBI failed in clinical trials [13]. According to the "Guidelines for the Management of Severe Traumatic Brain Injury" (2017, US): high doses of hormones, magnesium ions and albumin increase the risk of mortality in patients with acute TBI whereas calcium antagonists, glutamate receptor antagonists, free radical scavengers, bradykinin antagonists, peptide drugs and mitochondrial functional protective agents are ineffective in the treatment of acute TBI [14].

Herbal medicine, as a monotherapy or adjuvant therapy, has been reported to have improved clinical outcomes of TBI [15–17]. Yunnan Baiyao (YB) is a well-known wound healing medicine since World War II in Asia and it has recently been shown to be more effective for treating TBI-induced bleeding [18–20]. Administration of YB induced significantly greater anti-hemorrhage effect (92%) than pantoloc (71%) in TBI-induced gastrointestinal bleeding, brain edema and secondary brain injury [21–24]. Preoperative administration of YB significantly reduced blood loss and improved hemostasis and safety of bimaxillary orthognathic surgery [25].

Intravenous Xingnaojing (XNJ) is a modified intravenous injection of a traditional coma medicine Angong Niuhuang Pill (ANP) that has been used for detoxification, detumescence, recovery of cerebral microcirculation, coma and disturbance of consciousness, ischemic stroke and intracerebral hemorrhage in China [26–30]. XNJ differ from YB in major active ingredients (Moschus, Fructus Gardeniae, Curcumae Radix and Borneolum Syntheticum vs. Panax Notoginseng and Rhizoma Paridis) that could serve as a positive control for YB, with potential differences in mechanism of therapeutic action and efficacy for TBI.

S100B is a glial-specific calcium-binding protein that promote neuronal survival at low concentration but exacerbates neurovascular inflammatory responses and apoptosis at high concentration after TBI [31]. Serum S100B protein is a valid biomarker of TBI severity [32–40]. Extracellular SOD is the only extracellular scavenger of superoxide anion (O$_2^-$) and radicals which are major causes of oxidative damage and secondary injury of TBI [41–44].

So far, no study has examined the impact of YB on postoperative recovery and clinical prognosis after craniotomy. In this prospective randomized controlled trial, we tested the hypothesis that YB adjuvant therapy may have therapeutic effects on postoperative recovery and clinical prognosis after craniotomy in patients with moderate-to-severe TBI.

Methods

Participants and treatments

This randomized controlled trial included 80 age- and severity-matched TBI patients, admitted to the Emergency Department before transferred to the Neurosurgery Department for emergency craniotomy at Chinese PLA General Hospital between September 2010 and October 2011. The inclusion criteria include: 1) diagnosed with moderate-to-severe TBI (within 8 hours of TBI, Glasgow Coma Scale score, 3 – 12), without injury to other organs; 2) intracranial...
contusion/laceration, intracranial/epidural/subdural hematoma and other organic lesions confirmed by computed tomography (CT); 3) between 15 and 65 years of age; 4) received emergency craniotomy within 12 hours of TBI. The exclusion criteria included: 1) severe multiple or combined injuries; 2) history of severe chronic illness; 3) participated in any drug trial one month prior to this trial; 4) had malignant tumor or other diseases in the nervous or immune systems; 5) pregnant and lactating women; 6) with more than 400 ml blood transfusion during treatment; 7) uncooperative; 8) automatic discharge or death; 9) had a second craniotomy; 10) history of allergy to YB or intravenous XNJ. All study procedures were conducted in accordance with the Helsinki Declaration of 1975, in adherence to CONSORT guidelines (http://www.consort-statement.org/), and were approved by the Ethics Committee of Chinese PLA General Hospital. The clinical trial is retro-registered (ChiCTR2000030280 and ChiMCTR2000003057, respectively). The primary outcomes include changes in postoperative scores of Glasgow Coma Scale (GCS) and post-discharge scores of Glasgow Outcome Scale (GOS) and Karnofsky Performance Scale (KPS). The secondary outcome is changes in serum S100B protein and serum superoxide dismutase (SOD) activity.

The sample size was calculated according to the hypothesis that the expected means ± standard deviation of GOS in three adjunct treatment groups would be 4.0 ± 0.8 after the intervention. The expected means ± standard deviation of GOS in the OT group would be about 3.0 ± 0.8 after the intervention. The α level was set as 0.05 and the power was set as 0.85 (β level as 15%). The calculated sample size is 17 per group, and the total sample size was 68. With an expected 15% dropout rate (n = 10.88), at least 80 patients would be required, with 20 participants per group.

At admission, TBI patients underwent complete medical history inquiry, physical examination, routine laboratory tests and cranial CT scan. The demographic and general clinical diagnosis at admission include scoring, degree of Glasgow Coma Scale (GCS), type and cause of injury, and type of craniotomy. Emergency craniotomy included intracranial hematoma evacuation, inactivated brain tissue resection, bone flap decompression and so on.

After surgery, patients were randomly assigned to one of the four following treatments for 7 days using a predetermined randomization code generated by a random number generator according to the order of admission: 1) orthodox treatment (OT); 2) OT plus Xingnaojing (XNJ) (intravenous drip of 20 ml Xingnaojing in 500 ml normal saline, daily, Wuxi Jimin Xinshanhhe Pharmaceutical Co., Ltd., China); 3) OT plus low dose Yunnan Baiyao (l-YB) (1,000 mg, q.i.d) (Yunnan Baiyao Group Co., Ltd., China, oral or via stomach tube, q.i.d.); 4) OT plus high dose YB (h-YB) (2,000 mg, q.i.d). Orthodox treatments (OT) include dehydration, hemostasis, diuresis, prophylactic dose of antibiotics, hormone therapy, prevention of epilepsy and other necessary symptomatic treatments. Medical treatment was administered daily. Changes in clinical symptoms including vital signs, conscious state, pupil changes, etc. were scored daily.

The GCS was used to evaluate disturbance of consciousness with eye opening, speech condition and motor response (mild = 13–15, moderate = 8–12, severe = 3–7, Appendix 1). The Glasgow Outcome Scale (GOS) and Karnofsky Performance Scale (KPS, Appendix 2&3) were performed at 30 and 90 days after surgery to evaluate clinical prognosis. The outcome of GOS was classified as good (4–5), bad (2–3) and death (1). KPS reflects changes in physical strength, functional rehabilitation and the abilities of daily life and work. A score of > 80 points indicates independent, adequate capability of self-care in daily life; a score of 60 ~ 70 points indicate semi-dependent in daily life and a score of < 60 points indicates lack of self-care capability.

Five ml of venous blood was drawn on admission and on Days 1, 3, 5, and 7 after surgery. After 2000r/min centrifugation, the serum was stored at −80°C, and thawed at 4°C overnight before assaying. Serum S100B was determined by an enzyme-linked immunosorbent assay (Elisa) kit for human serum S100B protein (Randy D Company, USA) and serum superoxide dismutase (SOD) activity was determined by pyrogallol autoxidation method (PAM) using the SOD detection kit (Fujian Fuyuan Biotechnology Co., Ltd., China).

Statistical analysis

Normally distribution of GCS, S100B, SOD, GOS and KPS were confirmed and presented as mean ± SD. General linear model of repeated measures was performed to measure the effects of treatments, time and treatment*time interactions. Changes and change rate (%) at each postoperative observation time over the baseline (on admission) were also analyzed using independent t-tests, ANOVA or nonparametric tests (Mann–Whitney U-test) as appropriate (SPSS 24, USA). For categorical variables, χ² test was conducted. Pearson correlations between experimental variables were calculated. A two-tailed P value < 0.05 was considered statistically significant.

Result

Clinical characteristics of TBI patients

Traffic accident was the main cause of TBI and brain contusion was the primary damage type in this study (Table 1). There were no baseline differences in demographic and clinical characteristics including age, gender, GCS score, type and cause of TBI and type of craniotomy between the treatment groups: OT, OT + XNJ, OT + l-YB and OT + h-YB (Table 1).
Table 1
Clinical characteristics, GCS score, main causes and damage type of the participants.

Characteristics/ No. of cases	OT (n = 20)	XNJ (n = 20)	l-YB (n = 20)	h-YB (n = 20)	χ²	P
Male: Female	12:8	11:9	13:7	12:8	0.417	0.937
Age, y, mean(min-max)	41.7 ± 10.54	43.1 ± 10.66	42.3 ± 14.05	42.3 ± 9.65	0.461	0.927
Degree of injury						0.568
Severe: Moderate	10:10	8:12	8:12	12:8		
Admission time (hours from injury) mean(min-max)	4.7(1.5–8)	5.3(2.5–12)	4.8(2–7.5)	5.1(2–8)	0.59	0.899
Causes of TBI (N/%)					3.628	0.989
Traffic accident	9(45)	7(35)	7(35)	8(40)		
Falling	4(20)	5(25)	4(20)	3(15)		
Blow	5(25)	3(15)	4(20)	4(20)		
tumble	2(10)	3(15)	3(15)	3(15)		
crush	0(0)	2(10)	2(10)	2(10)		
Damage type (N/%)					2.296	0.999
Epidural hematoma	2(10)	3(15)	2(10)	3(15)		
Subdural hematoma	5(25)	6(30)	6(30)	4(20)		
Brain contusion	10(50)	9(45)	9(50)	10(50)		
Intracerebral hematoma	2(10)	1(5)	1(5)	1(5)		
Multiple hematoma	1(5)	1(5)	2(10)	2(10)		
Operation method (N/%)						0.572
Decompressive craniectomy	12(60)	8(40)	9(45)	11(55)	2.000	0.978
Intracranial hematoma evacuation	10(50)	11(55)	11(55)	10(50)	0.201	0.978
Inactivated brain tissue resection	10(50)	9(45)	9(45)	10(50)	0.201	0.978
	a Chi-square Test;					
	b K Independent Samples test.					

OT, Orthodox therapy; XNJ,OT + Xingnaojing; l-YB,OT + low-dose Yunnan Baiyao; h-YB, OT + high dose Yunnan Baiyao

Repeated measure analysis and ANOVA showed significant Time effect (P < 0.001) and Time x Treatment interaction (P < 0.001) in GCS scores (Tables 2 & 3, Fig. 1A) that was lowest on admission in all groups but improved more quickly and became significantly greater in XNJ, l-YB, h-YB groups than in OT group since Day 3 (P < 0.01) (Table 2, Fig. 2A). Moreover, the improvement rate in GCS were significantly greater in h-YB than in l-YB and XNJ groups on Days 3, 5 and 7 (P < 0.01, all)(Figs. 2B&2C) which may also reflex a relatively lower baseline GCS value in the h-YB group (7·30 ± 2·43) than in OT, XNJ and l-YB groups (8·10 ± 2·38, 8·60 ± 2·50, 8·50 ± 2·48, respectively).

Table 2
Repeated measure analysis of Glasgow Coma Scale, Serum S100B and SOD proteins, Glasgow Outcome Scale and Karnofsky Performance Scale after emergency craniotomy in patients with moderate-to severe TBI show significant treatment effects and time * treatment interaction of OT, XNJ, l-YB and h-YB therapies.

No. of cases	Treatment	Time	Time * Treatment
	F, P	F, P	F, P
GCS (N, 80)	1·57, 0·20	250-8, 0·00	6·16, 0·00
S100B (N, 80)	40·4, 0·00	1482·8, 0·00	27·3, 0·00
SOD (N, 80)	19·1, 0·00	456·1, 0·00	22·8, 0·00
GOS (N,80)	4·60, 0·005	138·6, 0·00	0·839, 0·477
KPS (N, 80)	7·04, 0·00	378·0, 0·00	0·489, 0·691
Table 3
Evaluation of postoperative recovery and clinical prognosis after craniotomy and treatments of orthodox therapy, Xingnaojing, low and high doses of Yunnan Baiyao adjuvant therapies in patients with moderate-to-severe TBI (means ± SD)

OT (n = 20)	OT + XNJ (n = 20)	OT + I-YB (n = 20)	OT + h-YB (n = 20)									
Days	p (a)	p (a)p (b)	p (a)p (b)	p (a)p (b)								
GCS Score	Admission	8·10 ± 2·38 /	8·60 ± 2·50 /	8·50 ± 2·48 /	7·30 ± 2·43 /	0·52	0·52	0·61	0·31			
1	8·20 ± 2·29	0·063	8·80 ± 2·33	0·059	0·40	8·70 ± 2·16	0·061	0·48	7·35 ± 2·16	0·057	0·23	
3	8·30 ± 1·95	0·056	9·90 ± 2·00	0·018	0·01	9·90 ± 1·97	0·016	0·01	9·80 ± 1·77	0·022	0·02	
5	9·35 ± 2·06	0·029	10·90 ± 1·58	< 0·001	0·01	10·65 ± 1·69	< 0·001	0·02	10·95 ± 1·43	< 0·001	0·001	
7	10·10 ± 1·80	0·021	11·85 ± 1·93	< 0·001	0·01	11·55 ± 1·70	< 0·001	0·01	11·30 ± 1·53	< 0·001	0·03	
S100B protein (µg/l)	Admission	2·08 ± 0·14 /	1·99 ± 0·18	0·07	2·00 ± 0·15	0·11	2·00 ± 0·16	0·09				
1	2·74 ± 0·15	0·13	2·67 ± 0·13	0·13	2·81 ± 0·14	0·11	2·73 ± 0·14	0·09				
3	3·38 ± 0·23	0·001	2·99 ± 0·34	< 0·001	0·01	3·20 ± 0·32	0·05	3·12	0·30	0·01		
5	2·84 ± 0·20	< 0·001	1·83 ± 0·23	< 0·001	0·01	1·93 ± 0·29	< 0·001	0·01	1·94 ± 0·18	< 0·001		
7	2·48 ± 0·23	< 0·001	1·57 ± 0·29	< 0·001	0·01	1·59 ± 0·23	< 0·001	0·01	1·51 ± 0·25	< 0·001		
Serum SOD activity (U/ml)	Admission	1·14 ± 0·83	/	1·12 ± 0·81	/	1·15 ± 0·73	/	1·15 ± 0·77	/			
1	1·05 ± 0·75	0·83	1·05 ± 0·93	0·83	1·01 ± 0·65	0·12	1·03 ± 0·67	0·42				
3	7·4 ± 7·5	0·01	9·5 ± 6·0	0·01	9·1 ± 6·0	0·01	9·4 ± 6·0	0·01				
5	80 ± 5·85	0·01	1·04 ± 7·89	0·01	1·01 ± 7·92	0·01	1·01 ± 7·82	0·01				
7	83 ± 7·71	0·01	1·12 ± 9·83	0·01	1·07 ± 9·23	0·01	1·10 ± 9·05	0·01				
GOS Score	Days	2·90 ± 1·07 /	3·80 ± 0·95 /	3·70 ± 0·57 /	3·70 ± 0·87 /	/						
3	3·65 ± 0·99	/	4·35 ± 0·81	/	4·45 ± 0·61	/	4·30 ± 0·80	/				
1	3·90 ± 2·12	/	6·25 ± 20·49	/	5·95 ± 10·99	/	5·85 ± 17·25	/				
3	5·70 ± 20·80	/	7·80 ± 18·53	/	7·75 ± 15·17	/	7·60 ± 17·55	/				
KPS Score	Days	0·10 ± 0·85	0·063	0·20 ± 0·89	0·059	0·72	0·20 ± 0·89	0·061	0·72	0·05 ± 0·89	0·057	0·86
3	0·20 ± 1·36	0·056	1·30 ± 0·73	0·018	0·01	1·40 ± 0·82	0·016	0·01	2·50 ± 1·32	0·022	0·01	
5	1·25 ± 0·79	0·029	2·30 ± 1·22	< 0·001	0·03	2·15 ± 0·93	< 0·001	0·01	3·65 ± 1·35	< 0·001	0·01	
7	2·00 ± 0·86	0·021	3·25 ± 1·02	< 0·001	0·01	3·05 ± 1·00	< 0·001	0·02	4·00 ± 1·17	< 0·001	0·01	
Change in Score Score	Days	0·65 ± 0·17	0·68 ± 0·19	0·57	0·80 ± 0·10	0·02	0·73 ± 0·09	0·09				
S100B (µg/l)	Days	1·30 ± 0·18	0·99 ± 0·29	< 0·001	1·19 ± 0·26	0·17	1·12 ± 0·21	0·02				
5	0·75 ± 0·19	< 0·001	0·16 ± 0·25	< 0·001	< 0·01	< 0·06	0·16	0·001				
7	0·40 ± 0·23	< 0·001	0·42 ± 0·33	< 0·001	< 0·01	< 0·49	0·13	0·001				

(a) Within group comparison vs. baseline at admission

(b) Compared with OT

OT = Orthodox therapy; XNJ = OT + Xingnaojing, I-YB = OT + low-dose Yunnan Baiyao, h-YB = OT + high dose Yunnan Baiyao
Months	Change in SOD (U/ml)	OT (n = 20)	OT + XNJ (n = 20)	OT + l-YB (n = 20)	OT + h-YB (n = 20)
3	-40.05 ± 9.22	-23.65 ± 3.97	< 0.001	-21.35 ± 2.56	< 0.001
5	-33.83 ± 11.04	-13.80 ± 4.09	< 0.001	-14.02 ± 2.07	< 0.001
7	-31.33 ± 11.44	-9.20 ± 3.56	< 0.001	-5.47 ± 2.07	< 0.001

Months	Change in GOS	OT (n = 20)	OT + XNJ (n = 20)	OT + l-YB (n = 20)	OT + h-YB (n = 20)
3	0.75 ± 0.44	/	/	/	/
5	0.60 ± 0.50	/	/	/	/
7	0.35 ± 0.35	/	/	/	/

Months	Change in KPS	OT (n = 20)	OT + XNJ (n = 20)	OT + l-YB (n = 20)	OT + h-YB (n = 20)
3	18.00 ± 7.68	/	/	/	/
5	18.00 ± 7.68	/	/	/	/
7	18.00 ± 7.68	/	/	/	/

Days	(%) Change in GCS	OT (n = 20)	OT + XNJ (n = 20)	OT + l-YB (n = 20)	OT + h-YB (n = 20)
1	1.98 ± 10.72	0.063	4.02 ± 12.20	0.059,0.60	0.061,0.52
3	5.29 ± 16.70	0.056	18.76 ± 15.55	0.018,0.06	0.016,0.03
5	18.31 ± 13.55	0.029	33.58 ± 27.70	< 0.001,0.09	< 0.001,0.14
7	29.47 ± 20.63	0.021	44.36 ± 28.26	< 0.001,0.12	< 0.001,0.14

Days	(%) Change in S100B	OT (n = 20)	OT + XNJ (n = 20)	OT + l-YB (n = 20)	OT + h-YB (n = 20)
1	31.68 ± 9.41	0.26	34.94 ± 12.50	0.003	0.07
3	62.49 ± 9.51	0.004	50.56 ± 15.97	0.49	0.12
5	36.49 ± 9.82	< 0.001	-7.70 ± 13.02	< 0.001	-9.29 ± 7.97
7	19.44 ± 11.29	< 0.001	-20.51 ± 16.17	< 0.001	-24.71 ± 8.24

Days	(%) Change in SOD	OT (n = 20)	OT + XNJ (n = 20)	OT + l-YB (n = 20)	OT + h-YB (n = 20)
1	-9.56 ± 8.93	-7.08 ± 5.49	0.15	-14.22 ± 0.92	0.008
3	30.00 ± 19.76	/	17.50 ± 20.21	0.03	21.25 ± 13.10

Months	(%) Change in GOS	OT (n = 20)	OT + XNJ (n = 20)	OT + l-YB (n = 20)	OT + h-YB (n = 20)
3	30.00 ± 19.76	/	17.50 ± 20.21	0.03	21.25 ± 13.10
5	30.58 ± 14.56	/	30.58 ± 14.56	/	34.65 ± 18.76

Months	(%) Change in KPS	OT (n = 20)	OT + XNJ (n = 20)	OT + l-YB (n = 20)	OT + h-YB (n = 20)
3	30.00 ± 19.76	/	17.50 ± 20.21	0.03	21.25 ± 13.10
5	30.58 ± 14.56	/	30.58 ± 14.56	/	34.65 ± 18.76

Serum S100B and SOD

Significant effects of Treatment, Time and Time x Treatment interaction (P < 0.001) were found in serum S100B concentration that increased rapidly after surgery and peaked in all groups on Days 3 before fell more rapidly and became significantly lower (P < 0.01) in the XNJ, l-YB and h-YB groups than in the OT group on Days 3, 5 and 7 (Tables 2 & 3, Fig. 1B). The change and rate of change (%) in serum S100B was significantly greater (P < 0.05) in l-YB than in OT.
group on Day 1 of the treatment, and significantly greater (P < 0.01) in the OT group than in XNJ and h-YB groups on Day 3 of the treatment whereas reduction and percentage reduction in serum S100B level was significantly greater in XNJ, I-YB and h-YB groups than in OT group since Day 5 of treatment (Figs. 3B&C). On Day 7, S100B declined to 20.5%, 20.1% and 24.7% below baselines in the XNJ, I-YB, h-YB groups, respectively whereas it remained 19.4% above baseline in OT group.

Significant effects of Treatment, Time and Time x Treatment interaction (P < 0.001) were found in SOD (Tables 2 & 3). Serum SOD activity declined rapidly after craniotomy and reached nadir on Days 3 day in all groups with a greater reduction found in the OT group (38.3%) than in XNJ, I-YB and h-YB groups (16.7%, 23.4% and 20.7%) (Table 3, Fig. 1C). Serum SOD then bounced back more rapidly and became significantly higher in the XNJ, I-YB and h-YB groups than in the OT group after Day 3 of surgery (P < 0.01). ANOVA show no significant difference in SOD activity between the XNJ, I-YB and h-YB groups except it was significantly lower in I-YB group than in XNJ group on Day 7 after surgery (P > 0.05) (Figs. 4B&C). Chang and rate of change over the baseline showed the greatest SOD deficits on Day 3 in all groups (Figs. 4B&C). By Day 7, XNJ, I-YB and h-YB groups resumed most of the baseline SOD activities (99.5%, 91.8% and 94.8%, respectively) compared to OT group (69.2%) (P < 0.01).

GOS and KPS scores

The mean scores of GOS and KPS showed continued improvement in clinical prognosis in all patients after 1 and 3 Months of surgery, with the patients in the XNJ, I-YB and h-YB groups showing consistent better clinical prognosis than the OT group (P < 0.01, all). GOS and KPS scores, however, were similar between XNJ, I-YB and h-YB groups (P > 0.05) (Table 3, Figs. 5&6). One month after the surgery the scores of GOS (3.80 ± 0.95, 3.70 ± 0.57, 3.70 ± 0.87) and KPS (62.50 ± 20.49, 59.50 ± 10.99, 58.50 ± 17.25) in the XNJ, I-YB, h-YB groups were 27.5%~31% and 50%~60% significantly greater than that in OT group (2.90 ± 1.07 and 39.00 ± 21.25)(P < 0.01, all), respectively. Similar differences remained 3 months after surgery.

Correlations between experimental variables

GCS score was significantly correlated with GOS/KPS scores in pooled TBI patients and in each of the treatment groups (P < 0.01) (Table 4), indicating a critical impact of postoperative recovery during the acute phase of post-surgery on long-term clinical prognosis of TBI. It is noticed that the correlation between GOS/KPS and GCS scores improved progressively from Day 1 till Day 7 after surgery. However, the reduced level of correlation between most variables immediately after the surgery (Day 1) indicates a disruptive effect of craniotomy.
	GCSa	GCS1	GCS3	GCS5	GCS7	GOS1	GOS3	KPS1	KPS3	S100a	S1001	S1003	
GCSa													
	GCSa	GCS1	GCS3	GCS5	GCS7	GOS1	GOS3	KPS1	KPS3	S100a	S1001	S1003	
--------	------	------	------	------	------	------	------	------	------	-------	-------	-------	
Sig. (2-tailed)	0.000	0.004	0.000	0.000	0.000	0.000	0.002	0.001	0.000	0.000	0.000	0.000	
N	80	80	80	80	80	80	80	80	80	80	80	80	
S1003	Pearson Correlation	-0.324**	-0.289**	-0.353**	-0.380**	-0.376**	-0.414**	-0.387**	-0.446**	-0.429**	-0.638**	-0.405**	
Sig. (2-tailed)	0.003	0.009	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
N	80	80	80	80	80	80	80	80	80	80	80	80	
S1005	Pearson Correlation	-0.146	-0.125	-0.423**	-0.419**	-0.427**	-0.456**	-0.483**	-0.544**	-0.527**	-0.444**	0.200	0.517**
Sig. (2-tailed)	0.197	0.269	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.075	0.000	
N	80	80	80	80	80	80	80	80	80	80	80	80	
S1007	Pearson Correlation	-0.333**	-0.283**	-0.567**	-0.627**	-0.630**	-0.606**	-0.535**	-0.655**	-0.616**	-0.493**	-0.514**	-0.526**
Sig. (2-tailed)	0.003	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.000	
N	80	80	80	80	80	80	80	80	80	80	80	80	
SODa	Pearson Correlation	0.329**	0.381**	0.390**	0.361**	0.346**	0.250**	0.327**	0.230**	0.336**	-0.027	0.039	-0.037
Sig. (2-tailed)	0.003	0.000	0.000	0.001	0.002	0.025	0.003	0.040	0.002	0.814	0.728	0.747	
N	80	80	80	80	80	80	80	80	80	80	80	80	
SOD1	Pearson Correlation	0.335**	0.347**	0.324**	0.288**	0.313**	0.270**	0.249**	0.249**	0.296**	0.075	-0.087	0.026
Sig. (2-tailed)	0.002	0.002	0.003	0.010	0.005	0.016	0.026	0.026	0.008	0.510	0.442	0.818	
N	80	80	80	80	80	80	80	80	80	80	80	80	
SOD3	Pearson Correlation	0.213	0.244*	0.495**	0.523**	0.507**	0.492**	0.485**	0.532**	0.561**	-0.244*	-0.091	-0.396**
Sig. (2-tailed)	0.058	0.029	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.029	0.423	0.000	
N	80	80	80	80	80	80	80	80	80	80	80	80	
SOD5	Pearson Correlation	0.189	0.192	0.436**	0.455**	0.478**	0.477**	0.418**	0.527**	0.519**	-0.158	-0.075	-0.304**
Sig. (2-tailed)	0.093	0.087	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.162	0.510	0.006	
N	80	80	80	80	80	80	80	80	80	80	80	80	
SOD7	Pearson Correlation	-0.260*	-0.260*	-0.535**	-0.551**	-0.553**	-0.540**	-0.467**	-0.581**	-0.569**	-0.224*	-0.154	-0.363**
Sig. (2-tailed)	0.020	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.046	0.172	0.001	
N	80	80	80	80	80	80	80	80	80	80	80	80	
GCSa	GCS1	GCS3	GCS5	GCS7	GOS1	GOS3	KPS1	KPS3	S100a	S1001	S1003		
------	------	------	------	------	------	------	------	------	-------	-------	-------		
GCSa	Pearson Correlation	1	.934*	.821**	.948**	.953**	.912**	.888**	.866**	.877**	-.513*	-.482*	
	Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.021	0.032	0.007	
	N	20	20	20	20	20	20	20	20	20	20	20	
GCS1	Pearson Correlation	.934*	1	.919**	.913**	.914**	.783**	.779**	.752**	.733**	-.454*	-.302	-.613**
	Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.044	0.195	0.004	
	N	20	20	20	20	20	20	20	20	20	20	20	
GCS3	Pearson Correlation	.821**	.919**	1	.903**	.829**	.620**	.604**	.579**	.582**	-.429	-.295	-.488*
	Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.004	0.005	0.007	0.007	0.059	0.206	0.029	
	N	20	20	20	20	20	20	20	20	20	20	20	
GCS5	Pearson Correlation	.948**	.913**	.903**	1	.926**	.804**	.788**	.754**	.775**	-.498*	-.418	-.492**
	Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.025	0.067	0.028	
	N	20	20	20	20	20	20	20	20	20	20	20	
GCS7	Pearson Correlation	.953**	.914**	.829**	.926**	1	.823**	.789**	.786**	.766**	-.453*	-.457*	-.555**
	Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.045	0.043	0.011	
	N	20	20	20	20	20	20	20	20	20	20	20	
GOS1	Pearson Correlation	.912**	.783**	.620**	.804**	.823**	1	.910**	.990**	.931**	-.552*	-.589**	-.631**
	Sig. (2-tailed)	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.012	0.006	0.003	
	N	20	20	20	20	20	20	20	20	20	20	20	
GOS3	Pearson Correlation	.888**	.779**	.604**	.788**	.789**	.910**	1	.910**	.971**	-.530*	-.418	-.614**
	Sig. (2-tailed)	0.000	0.000	0.005	0.000	0.000	0.000	0.000	0.000	0.016	0.067	0.004	
	N	20	20	20	20	20	20	20	20	20	20	20	
KPS1	Pearson Correlation	.886**	.752**	.579**	.754**	.786**	.990**	.910**	1	.934**	-.568*	-.590**	-.643**
	Sig. (2-tailed)	0.000	0.000	0.007	0.000	0.000	0.000	0.000	0.000	0.009	0.006	0.002	
	N	20	20	20	20	20	20	20	20	20	20	20	
KPS3	Pearson Correlation	.877**	.733**	.582**	.775**	.766**	.931**	.971**	.934**	1	-.613*	-.498*	-.602**
	Sig. (2-tailed)	0.000	0.000	0.007	0.000	0.000	0.000	0.000	0.000	0.004	0.025	0.005	
	N	20	20	20	20	20	20	20	20	20	20	20	
S100a	Pearson Correlation	-.513*	-.454*	-.429	-.498*	-.453*	-.552*	-.530*	-.568**	1	.401	.695**	
	Sig. (2-tailed)	.021	.044	.059	.025	.045	.012	.016	.009	.004	.080	.001	
	N	20	20	20	20	20	20	20	20	20	20	20	
S1001	Pearson Correlation	-.482*	-.302	-.295	-.418	-.457*	-.589**	-.418	-.590**	-.498*	0.401	1	.378

Table 5: Correlations of the variables of the orthodox treatment group (N = 20)
	GCSa	GCS1	GCS3	GCS5	GCS7	GOS1	GOS3	KPS1	KPS3	S100a	S1001	S1003
Sig. (2-tailed)	0.032	0.195	0.206	0.067	0.043	0.006	0.067	0.006	0.025	0.080	0.100	
N	20	20	20	20	20	20	20	20	20	20	20	20
S1003	Pearson Correlation	-.587**	-.613**	-.488*	-.492*	-.555*	-.631**	-.614**	-.643**	-.602**	.695**	.378
Sig. (2-tailed)	0.007	0.004	0.029	0.028	0.011	0.003	0.004	0.002	0.005	0.001	0.100	
N	20	20	20	20	20	20	20	20	20	20	20	20
S1005	Pearson Correlation	-.710**	-.737**	-.638**	-.654**	-.731**	-.554*	-.711**	-.570**	-.675**	.516*	.207
Sig. (2-tailed)	0.000	0.000	0.002	0.002	0.000	0.011	0.000	0.009	0.001	0.020	0.381	0.021
N	20	20	20	20	20	20	20	20	20	20	20	20
S1007	Pearson Correlation	-.731**	-.528*	-.380	-.632**	-.753**	-.759**	-.744**	-.735**	-.772**	.421	.650**
Sig. (2-tailed)	0.000	0.017	0.098	0.003	0.000	0.000	0.000	0.000	0.000	0.064	0.002	0.048
N	20	20	20	20	20	20	20	20	20	20	20	20
SODa	Pearson Correlation	0.166	0.280	0.428	0.340	0.263	0.001	0.157	-0.048	0.126	0.007	0.229
Sig. (2-tailed)	0.485	0.232	0.060	0.143	0.262	0.997	0.510	0.841	0.596	0.977	0.331	0.895
N	20	20	20	20	20	20	20	20	20	20	20	20
SOD1	Pearson Correlation	0.021	-0.004	0.167	0.118	0.014	0.031	0.074	-0.013	0.133	0.017	0.154
Sig. (2-tailed)	0.930	0.987	0.482	0.621	0.952	0.897	0.757	0.958	0.575	0.944	0.517	0.473
N	20	20	20	20	20	20	20	20	20	20	20	20
SOD3	Pearson Correlation	0.317	0.347	.448*	.451*	.350	0.167	0.285	0.113	0.266	-0.311	0.073
Sig. (2-tailed)	0.174	0.134	0.048	0.131	0.481	0.223	0.635	0.257	0.182	0.759	0.081	
N	20	20	20	20	20	20	20	20	20	20	20	20
SOD5	Pearson Correlation	-0.112	-0.236	-0.091	-0.008	-0.051	-0.060	-0.171	-0.091	0.113	0.048	-0.243
Sig. (2-tailed)	0.637	0.317	0.704	0.974	0.832	0.801	0.470	0.704	0.636	0.839	0.303	0.796
N	20	20	20	20	20	20	20	20	20	20	20	20
SOD7	Pearson Correlation	0.236	0.176	0.339	0.363	0.316	0.164	-0.003	0.116	0.055	-0.149	-0.324
Sig. (2-tailed)	0.316	0.458	0.144	0.116	0.175	0.491	0.992	0.627	0.819	0.531	0.163	0.577
N	20	20	20	20	20	20	20	20	20	20	20	20

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

a. group = 1
	GCSa	GCS1	GCS3	GCS5	GCS7	GOS1	GOS3	KPS1	KPS3	S100a	S1001	S1003	S1005
**	1	.934*	.972*	.939*	.926*	.805*	.616*	.760*	.709*	-.006	-.420	-.104	.084
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.004	0.000	0.981	0.065	0.664	.726			
N	20	20	20	20	20	20	20	20	20	20	20	20	20
**	.934*	1	.968**	.953*	.942*	.741**	.511*	.694*	.600**	.008	-.434	-.039	.166
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.021	0.001	0.005	0.972	0.056	0.869	.484		
N	20	20	20	20	20	20	20	20	20	20	20	20	20
**	.972**	.968**	1	.974**	.967**	.792**	.574**	.740**	.663**	.050	-.416	-.036	.131
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.008	0.000	0.001	0.833	0.068	0.882	.581		
N	20	20	20	20	20	20	20	20	20	20	20	20	20
**	.939**	.953*	.974**	1	.970**	.768**	.511*	.701**	.605**	.058	-.382	.076	.248
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.021	0.001	0.005	0.808	0.096	0.750	.293		
N	20	20	20	20	20	20	20	20	20	20	20	20	20
**	.926**	.942*	.967**	.970**	1	.815**	.539*	.757**	.655**	-.024	-.379	.048	.229
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.014	0.000	0.002	0.921	0.099	0.841	.331		
N	20	20	20	20	20	20	20	20	20	20	20	20	20
**	.805*	.741**	.792**	.768**	.815**	1	.776**	.972**	.872**	-.066	-.383	-.093	-.036
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.782	0.096	0.696	.881		
N	20	20	20	20	20	20	20	20	20	20	20	20	20
**	.616**	.511*	.574**	.511*	.539*	.776**	1	.830**	.958**	-.134	-.538	-.349	-.283
Sig. (2-tailed)	0.004	0.021	0.008	0.021	0.014	0.000	0.000	0.574	0.014	0.132	.226		
N	20	20	20	20	20	20	20	20	20	20	20	20	20
**	.760**	.694**	.740**	.701**	.757**	.972**	.830**	1	.915**	-.139	-.337	-.125	-.078
Sig. (2-tailed)	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.560	0.146	0.598	0.745	
N	20	20	20	20	20	20	20	20	20	20	20	20	20
**	.709**	.600**	.663**	.605**	.655**	.872**	.958**	.915**	1	-.210	-.489**	-.302	-.162
Sig. (2-tailed)	0.000	0.005	0.001	0.005	0.002	0.000	0.000	0.000	0.374	0.029	0.195	0.496	
N	20	20	20	20	20	20	20	20	20	20	20	20	20
**	-.006	.008	0.050	0.058	-.024	-.066	-.134	-.139	-.210	1	.242	.493*	.246
Sig. (2-tailed)	.981	.972	.833	.808	.921	.782	.574	.560	.374	.303	.027	.297	
N	20	20	20	20	20	20	20	20	20	20	20	20	20
**	-.420	-.434	-.416	-.382	-.379	-.383	-.538*	-.337	-.489*	.242	1	.472*	.281

Table 6: Correlations of the variables of the Xingnajing (XNJ) treatment group (N = 20)
	GCSa	GCS1	GCS3	GCS5	GCS7	GOS1	GOS3	KPS1	KPS3	S100a	S1001	S1003	S1005
Sig. (2-tailed)	0.065	0.056	0.068	0.096	0.099	0.096	0.014	0.146	0.029	0.303	0.035	0.230	
N	20	20	20	20	20	20	20	20	20	20	20	20	20
S1003 Pearson Correlation	-0.104	-0.039	-0.036	0.076	0.048	-0.093	-0.349	-0.125	-0.302	0.493*	0.472*	1	.649**
Sig. (2-tailed)	0.664	0.869	0.882	0.750	0.841	0.696	0.132	0.598	0.195	0.027	0.035	0.002	
N	20	20	20	20	20	20	20	20	20	20	20	20	20
S1005 Pearson Correlation	0.084	0.166	0.131	0.248	0.229	-0.036	-0.283	-0.078	-0.162	0.246	0.281	.649**	1
Sig. (2-tailed)	0.726	0.484	0.581	0.293	0.331	0.881	0.226	0.745	0.496	0.297	0.230	0.002	
N	20	20	20	20	20	20	20	20	20	20	20	20	20
S1007 Pearson Correlation	-.710**	-.689**	-.720**	-.780**	-.747**	-.547*	-.359	-.439	-.419	.075	.493*	.046	-.318
Sig. (2-tailed)	0.000	0.001	0.000	0.000	0.000	0.012	0.120	0.053	0.066	0.755	0.027	0.849	0.172
N	20	20	20	20	20	20	20	20	20	20	20	20	20
SODa Pearson Correlation	0.362	0.345	0.348	0.371	0.357	0.433	.487*	0.437	.568**	-.094	-.214	-.216	0.033
Sig. (2-tailed)	0.117	0.136	0.133	0.107	0.123	0.057	0.030	0.054	0.009	0.693	0.365	0.359	0.891
N	20	20	20	20	20	20	20	20	20	20	20	20	20
SOD1 Pearson Correlation	0.400	0.369	0.425	0.430	0.434	.530*	0.378	.489*	.483*	0.241	-.090	0.042	0.033
Sig. (2-tailed)	0.080	0.110	0.062	0.058	0.056	0.016	0.101	0.029	0.031	0.306	0.704	0.859	0.890
N	20	20	20	20	20	20	20	20	20	20	20	20	20
SOD3 Pearson Correlation	.463*	.440	.488*	.473*	.481*	.544*	.460*	.497*	.553*	0.149	-.291	-.100	-.058
Sig. (2-tailed)	0.040	0.052	0.029	0.035	0.032	0.013	0.041	0.026	0.011	0.530	0.213	0.676	0.807
N	20	20	20	20	20	20	20	20	20	20	20	20	20
SOD5 Pearson Correlation	.413	.378	.441	.449*	.449*	.535*	.371	.480*	.471*	0.269	-.115	0.060	0.024
Sig. (2-tailed)	0.070	0.100	0.052	0.047	0.047	0.015	0.107	0.032	0.036	0.252	0.629	0.801	0.921
N	20	20	20	20	20	20	20	20	20	20	20	20	20
SOD7 Pearson Correlation	.518	.477*	.540*	.547*	.546*	.617**	.477*	.556*	.580**	0.178	-.251	-.028	0.033
Sig. (2-tailed)	0.019	0.034	0.014	0.013	0.013	0.004	0.033	0.011	0.007	0.453	0.286	0.907	0.890
N	20	20	20	20	20	20	20	20	20	20	20	20	20

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

a. group = 2
Table 7

Correlations of the variables of the low dose Yunnan Baiyao (l-YB) group (N = 20)

	GCSa	GCS1	GCS3	GCS5	GCS7	GOS1	GOS3	KPS1	KPS3	S100a	S1001	S1003	S1005
GCSa Pearson Correlation	1	.935**	.958**	.970**	.954**	.705**	.754**	.839**	.804**	-.502*	-.479*	-0.256	-0.159
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.024	0.033	0.275	0.504	(
N	20	20	20	20	20	20	20	20	20	20	20	20	20
GCS1 Pearson Correlation	.935**	1	.935**	.950**	.909**	.564**	.675**	.660**	.716**	-.274	-.317	-.204	0.039
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.010	0.001	0.002	0.000	0.243	0.173	0.389	0.871	(
N	20	20	20	20	20	20	20	20	20	20	20	20	20
GCS3 Pearson Correlation	.958**	.935**	1	.966**	.944**	.673**	.702**	.775**	.730**	-.472*	-.485*	-.242	-.201
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.036	0.030	0.303	0.395	(
N	20	20	20	20	20	20	20	20	20	20	20	20	20
GCS5 Pearson Correlation	.970**	.950**	.966**	1	.965**	.647**	.727**	.781**	.783**	-.469*	-.462*	-.209	-.100
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.037	0.040	0.376	0.676	(
N	20	20	20	20	20	20	20	20	20	20	20	20	20
GCS7 Pearson Correlation	.954**	.909**	.944**	.965**	1	.721**	.770**	.832**	.811**	-.510*	-.518*	-.259	-.137
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.022	0.019	0.269	0.565	(
N	20	20	20	20	20	20	20	20	20	20	20	20	20
GOS1 Pearson Correlation	.705**	.564**	.673**	.647**	.721**	1	.716**	.897**	.698**	-.421	-.231	-.174	-.222
Sig. (2-tailed)	0.001	0.010	0.001	0.002	0.000	0.000	0.000	0.065	0.326	0.463	0.347	(
N	20	20	20	20	20	20	20	20	20	20	20	20	20
GOS3 Pearson Correlation	.754**	.675**	.702**	.727**	.770**	.716**	1	.827**	.932**	-.287	-.247	.028	-.080
Sig. (2-tailed)	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.220	0.293	0.906	0.737	(
N	20	20	20	20	20	20	20	20	20	20	20	20	20
KPS1 Pearson Correlation	.839**	.660**	.775**	.781**	.832**	.897**	.827**	1	.844**	-.597**	-.412	-.194	-.328
Sig. (2-tailed)	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.005	0.711	0.413	0.158	(
N	20	20	20	20	20	20	20	20	20	20	20	20	20
KPS3 Pearson Correlation	.804**	.716**	.730**	.783**	.811**	.698**	.932**	.844**	1	-.362	-.263	-.131	-.079
Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.116	0.264	0.583	0.742	(
N	20	20	20	20	20	20	20	20	20	20	20	20	20
S100a Pearson Correlation	-.502*	-.274	-.472*	-.469*	-.510*	-.421	-.287	-.597**	1	.778**	.595**	.564**	(
Sig. (2-tailed)	0.024	0.243	0.036	0.037	0.022	0.065	0.220	0.005	0.116	0.000	0.006	0.010	(
N	20	20	20	20	20	20	20	20	20	20	20	20	20
S1001 Pearson Correlation	-.479*	-.317	-.485*	-.462*	-.518*	-.231	-.247	-.412	-.263	.778**	1	.418	.553*
Our data suggest that GCS and SOD are positive predictors and S100B is a negative predictor of clinical prognosis.

Similarly, serum SOD activity was positively correlated with GCS/GOS/KPS scores (P < 0.01) in the pooled and in the 3 co-treatment groups but not in the OT group (Table 4). Similarly, SOD level on postoperative Day 7 is a better predictor of GCS/GOS/KPS scores than SOD on other days in the pooled and 3 adjuvant treatment groups but not the OT group. Our data suggest that GCS and SOD are positive predictors and S100B is a negative predictor of clinical prognosis.

Discussion

Serum S100B levels were negatively correlated with GCS/GOS/KPS scores in pooled patients and in each treatment group (Tables 4–8). This and other analysis suggest that a higher S100B level on admission day or on Day 7 are better predictors of poor TBI outcomes (low GCS/GOS/KPS scores). In contrast, serum SOD activity was positively correlated with GCS/GOS/KPS scores (P < 0.01) in the pooled and in the 3 co-treatment groups but not in the OT group (Table 4). Similarly, SOD level on postoperative Day 7 is a better predictor of GCS/GOS/KPS scores than SOD on other days in the pooled and 3 adjuvant treatment groups but not the OT group. Our data suggest that GCS and SOD are positive predictors and S100B is a negative predictor of clinical prognosis.
Although emergency craniotomy has been performed to reduce the mortality rate of TBI, it is associated with secondary injury and unfavorable outcomes [5, 6]. Effective agents are needed to reduce these side effects. In this study, the wound-healing medicine YB were compared with a positive control medicine XNJ, and orthodox therapy in craniotomized patients with moderate-to-severe TBI. Repeated-measure analysis showed significantly better clinical prognosis of YB and XNJ adjuvant treatments than OT. The significant greater improvement rate in GCS after high dose YB than after low dose YB and XNJ treatment indicates a dose-dependent therapeutic effects of YB on postoperative recovery.

GCS is a scale to quantify disruption of consciousness (DOC) during acute phase of TBI. Although GCS score improved in all groups, the improvement was greater in YB and XNJ groups than in OT group three days after surgery. While GCS scores were similar between XNJ and YB groups, the rate of change were significantly greater in the high dose YB group than in low dose YB and in XNJ groups, respectively. Effective recovery from DOC has significant impact on the overall well-being, cognition recovery and clinical prognosis of TBI patients. In this study, the GCS score on Days 7 was highly correlated with the clinical outcome scores of GOS (r = 0.79, P < 0.01) and KPS (r = 0.80, P < 0.01) after 30 days of surgery, indicating a intrinsic relationship between acute postoperative recovery and long-term clinical prognosis of TBI.

The GOS scores at 3 months after surgery were significantly higher in the l-YB (4.45 ± 0.61), h-YB (4.3 ± 0.8) and XNJ (4.35 ± 0.81) groups than in the OT (3.65 ± 0.99) group. GOS is a prognostic criterion of TBI, with the score ≥ 4 classified as good outcome whereas KPS reflects the functional recovery and disability of TBI patients. The KPS scores at 3 months after surgery were significantly higher in the l-YB (76.50 ± 17.55), h-YB (77.50 ± 15.17) and XNJ (78.00 ± 18.53) groups than in the OT (57.00 ± 20.80) group, indicating an almost adequate recovery in the 3 co-treatment groups. A KPS score of more than 80 points indicates independent, adequate capability of self-care in daily life; a score of 60 to 70 points indicate semi-dependent in daily life and a score of below 60 points indicates dependent, lack of self-care capability in daily life.

The attenuated elevation in serum S100B levels after YB and XNJ treatments indicates attenuated brain injury after YB and XNJ adjuvant therapy. While no difference found on admission and on Day 1, serum S100B peaked three days after surgery in all groups before declined more rapidly in YB and XNJ groups that became significantly lower than in the OT group since Days 3 and became below baseline levels on Day 7. Increased serum s100b is a biomarker of astrocyte injury and an early predictor of high intracranial pressure and mortality in TBI patients. [35–40] Other studies show that serum S100b level outperforms clinical diagnosis for identification of intracranial injury after TBI [45]. In this study, serum S100b on admission and on Days 7 after DC were negatively correlated with GCS scores (r = -0.35, P < 0.01, r = -0.63, P < 0.01, respectively) and with 183 Months after discharge scores of GOS (r = -0.44, P < 0.01, r = -0.61, P < 0.01, respectively) and KPS (r = -0.49, P < 0.01, r = -0.66, P < 0.01!, respectively), indicating that serum S100b is a negative predictor for both acute brain tissue damage and long-term clinical prognosis. Our results agree with the report that early postoperative serum s100b levels predict ongoing brain damage after meningioma surgery [46]. It has been reported that elevated serum S100B may have extracerebral origins including traumatized tissues and is a predictive index of overall injury and prognosis after trauma/surgery [35].

In contrast, serum SOD activity was positively correlated with GCS, GOS and KPS scores in pooled TBI patients and in h-YB and XNJ groups, and to a less extent, in l-YB group but not in the OT group. And the level of correlation increased from admission till postoperative Day 7. A significant negative correlation between serum SOD activity and serum S100B concentration was found on Day 7 only in pooled patients. Our results are in agreement with a recent clinical study of 56 patients with severe TBI whose blood SOD and total antioxidant capacity after 7 and 14 days of TBI were significant predictors of clinical outcomes (GOS score ≥ 4) three months later [47].

Serum superoxide dismutase (SOD) activity reflects the body's defense against free radicals-induced damage. Massive production and release of superoxide and radicals after TBI can cause artery dilation, edema and hemostasis [48, 49] whereas SOD can dose-dependently scavenge excess superoxide anion, reduce brain edema and attenuates acute brain injury after subarachnoid hemorrhage [42]. Other studies have shown that blood-brain barrier (BBB) permeability, anti-oxidative and anti-apoptotic capability, brain edema, cerebral blood flow, cognitive and behavioral function, and necrotic cavity volume are CuZn-SOD dose-dependently protected in heterozygous and homozygous transgenic mice with human CuZn-SOD gene [50] and in other SOD-upregulating TBI models [49, 51, 52].

In this study, both YB and XNJ treatments resulted in similar improvements in neuroprotection and clinical prognosis. However, some differences do exist. The h-YB resulted in significant (rate of) increase in GCS score than l-YB and XNJ three days after surgery, suggesting more effective intervention after high dose YB administration whereas XNJ therapy resulted in more consistent and significantly less (rate of) reduction in SOD activity than YB, indicating a greater antioxidant potential of XNJ than YB. The greater loss in SOD activity in l-YB group than in h-YB group on Day 1 and 3 and a great rate of increase in S100b points indicates dependent, lack of self-care capability in daily life.

Intracranial bleeding, edema and coagulopathy are major predictors of mortality and morbidity of TBI that still lacks of effective therapy[9, 53, 54]. YB and its major active ingredient Notoginseng saponins (PNS) have dual anti-hemorrhage and anti-hemostasis properties [19, 55]. YB showed significantly better anti-bleeding efficacy (92.30%) than pantoloc (71.20%) in severe TBI-induced stress gastrointestinal bleeding and ulcer [21, 22] and is more effective in controlling gastrointestinal tract inflammation in colitis model of inflammatory bowel disease (IBD), by suppressing pro-inflammatory cytokine expression (including TNFα, IL-12p40, and IL-17) and T- and B-lymphocytes, and but promoting intestinal epithelial wound-healing/repairing [56]. Gastrointestinal bleeding and dysfunction are common complications of TBI (developed in up to 80% of severe TBI) [7, 57–59]. Intracerebral hemorrhage destroys gut mucosa and intestinal barrier, increases plasma levels of malondialdehyde (MDA) and reactive oxygen species (ROS), endotoxin, inflammatory cytokines and oxidative stress, but decreases SOD activity in mice [8]. Although the mechanism is unknown, TBI-induced stress and intracranial bleeding-induced intracranial pressure may trigger massive increases in sympathetic activity responsible for gastrointestinal lesions [60–62].

This pilot study has limitations. Parameters including GI bleeding, systemic inflammation and mortality rate were not recorded nor the lesion size and hemorrhage volume after emergency craniotomy. The hemodynamics and anticoagulant properties of YB in TBI remains to be studied. A potential cause-
effect relationship may exist between S100b and SOD inductions and that needs to be further explored.

Conclusion

Yunnan Baiyao adjuvant therapy is non-inferior to the positive control medicine Xingnaojing but is more effective than orthodox mono-therapy in improving postoperative recovery and clinical outcomes after emergency craniotomy in patients with moderate-to-severe TBI. The therapeutic effects of YB appear to be dose-dependent and regulated partly through attenuated disruption in S100b- and SOD-pathways. If proved in different cohorts, YB could be used to control TBI-induced morbidity and mortality especially in situations of limited resources.

Abbreviations

- ANP: Angong Niuhuang Pill
- BBB: blood-brain barrier
- CONSORT:
- CT: computed tomography
- DOC: disruption of consciousness
- GI: gastrointestinal (tract)
- GCS: Glasgow Coma Scale
- GOS: Glasgow Outcome Scale
- h-YB: high dose Yunnan Baiyao
- IBD: inflammatory bowel disease
- ICP: intracranial pressure
- KPS: Karnofsky Performance Scale
- l-YB: low dose Yunnan Baiyao
- MDA: malondialdehyde
- OT: orthodox therapy
- PNS: Notoginseng saponins
- ROS: reactive oxygen species
- S100B
- SOD: superoxide dismutase
- TBI: traumatic brain injury
- XNJ: Xingnaojing, a TBI medicine approved in China
- YB: Yunnan Baiyao (a wound-healing medicine)

Declarations

Ethical Approval and Consent to participate

All study procedures were conducted in accordance with the Helsinki Declaration of 1975 and were approved by the Medical Ethics Committee of Chinese PLA General Hospital. Each participant signed legal consent forms. Informed consent was obtained from all subjects.

Consent for publication

All authors have approved the manuscript for submission.
Availability of Data and materials

The raw data could be available from the corresponding authors upon reasonable request and with permission of the study sponsor.

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be a potential conflict of interest.

Funding

This study received no external funding.

Author Contributions

Project conception and organization (XM, GX, BG); clinical examinations and follow up evaluations, (HJ, LC); histological examinations (HJ); statistical analysis (GX, AA, YY), figures and tables (GX), literature and interpretation (GX), manuscript preparation (LC, YY, GX).

Acknowledgements

The authors wish to thank Yu-Zhen Qian and Evan Xing for assistance in manuscript preparation.

Chinese Clinical Trial Registry (ChiCTR) trial registration number

ChiCTR2000030280, 02/27/2020, Retrospectively registered

References

1. Injury GBDTB, Spinal Cord Injury C: Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019, 18:56-87.
2. Rutigliano D, Egnor MR, Priebe CJ et al: Decompressive craniectomy in pediatric patients with traumatic brain injury with intractable elevated intracranial pressure. J Pediatr Surg 2006, 41:83-87; discussion 83-87.
3. Shim HK, Yu SH, Kim BC, Lee JH, Choi HJ: Relationship between Clinical Outcomes and Superior Sagittal Sinus to Bone Flap Distance during Unilateral Decompressive Craniectomy in Patients with Traumatic Brain Injury: Experience at a Single Trauma Center. Korean J Neurotrauma 2018, 14:99-104.
4. Lu G, Zhu L, Wang X, Zhang H, Li Y: Decompressive Craniectomy for Patients with Traumatic Brain Injury: A Pooled Analysis of Randomized Controlled Trials. World Neurosurg 2020, 133:e135-e148.
5. Qiu W, Guo C, Shen H et al: Effects of unilateral decompressive craniectomy on patients with unilateral acute post-traumatic brain swelling after severe traumatic brain injury. Crit Care 2009, 13:R185.
6. Su TM, Lan CM, Lee TH, Hsu SW, Tsai NW, Lu CH: Risk factors for the development of posttraumatic hydrocephalus after unilateral decompressive craniectomy in patients with traumatic brain injury. J Clin Neurosci 2019, 63:62-67.
7. Muller P, Jirsch D, D’Sousa J, Kerr C, Knapp C: Gastrointestinal bleeding after craniotomy: a retrospective review of 518 patients. Can J Neurol Sci 1988, 15:384-387.
8. Cheng Y, Zan J, Song Y, Yang G, Shang H, Zhao W: Evaluation of intestinal injury, inflammatory response and oxidative stress following intracerebral hemorrhage in mice. Int J Mol Med 2018, 42:2120-2128.
9. Glass NE, Vadlamani A, Hwang F, Sifri ZC, Kunac A, Bonne S, Pentakota SR, Yonclas P, Mosenthal AC, Livingston DH et al: Bleeding and Thromboembolism After Traumatic Brain Injury in the Elderly: A Real Conundrum. J Surg Res 2019, 235:615-620.
10. Raso Vasquez AO, Kertai MD, Fontes ML: Postoperative thrombocytopenia: why you should consider antiplatelet therapy? Curr Opin Anaesthesiol 2018, 31:61-66.
11. Tapper J, Skrifvars MB, Kivisaari R, Siironen J, Raj R: Primary decompressive craniectomy is associated with worse neurological outcome in patients with traumatic brain injury requiring acute surgery. Surg Neurol Int 2017, 8:141.
12. Rubiano AM, Carney N, Chesnut R, Puyana JC: Global neurotrauma research challenges and opportunities. Nature 2015, 527:S193-197.
13. Loane DJ, Stoica BA, Faden AI: Neuroprotection for traumatic brain injury. Handb Clin Neurol 2015, 127:343-366.
14. Carney N, Totten AM, O'Reilly C et al: Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80:6-15.
15. Lee B, Leem J, Kim H et al: Herbal medicine for acute management and rehabilitation of traumatic brain injury: A protocol for a systematic review. Medicine (Baltimore) 2019, 98:e14145.
16. Wang JC, Wang QH, Tian JX: Therapeutic effect of integrated traditional Chinese and Western
601 medicine on patients with mental disorders caused by traumatic brain injury. Chin J Pract Nerv Dis 2015, 18:50-52.

17. Xing Z, Xia Z, Peng W et al: Xuefu Zhyu decoction, a traditional Chinese medicine, provides neuroprotection in a rat model of traumatic brain injury via an anti-inflammatory pathway. Sci Rep 2016, 6:20040.

18. Ladas EJ, Karlrik JB, Rooney D et al: Topical Yunnan Baiyao administration as an adjunctive therapy for bleeding complications in adolescents with advanced cancer. Support Care Cancer 2012, 20:3379-3383.

19. Yang B, Xu ZQ, Zhang H et al: The efficacy of Yunnan Baiyao on haemostasis and antiulcer: a systematic review and meta-analysis of randomized controlled trials. Int J Clin Exp Med 2014, 7:461-482.

20. Zhao WZ, Diao N, Gu YX, Zhu XT, Li MS: Efficacy of Yunnan Baiyao as an adjuvant treatment for active ulcerative colitis: an open-label randomized controlled study. Nan Fang Yi Ke Da Xue Xue Bao 2016, 36:1186-1191.

21. Xu G, Ma PY: Clinical Observation of Omeprazole Combined with Yunnan Baiyao in Treating 80 Cases of Severe Head Injury with Stress Ulcer and gastrointestinal bleeding. Practice of Clinical Medicine (CN) 2009, 18:353-354.

22. Wang T, Dong X: Clinical observation of Yunnan Baiyao therapy on 52 cases of severe brain injury-induced stress ulcer and gastrointestinal bleeding. Medical Journal of Industrial Enterprise (CN) 2010, 23:3-4.

23. Chen RJ, Jinn TR, Chen YC, Chung TY, Yang WH, Tzen JT: Active ingredients in Chinese medicines promoting blood circulation as Na+/K+ -ATPase inhibitors. Acta Pharmacol Sin 2011, 32:141-151.

24. Xu C, Wang W, Wang B et al: Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. J Ethnopharmacol 2019, 236:443-465.

25. Tang ZL, Wang X, Yi B, Li ZL, Liang C, Wang XX: Effects of the preoperative administration of Yunnan Baiyao capsules on intraoperative blood loss in bimaxillary orthognathic surgery: a prospective, randomized, double-blind, placebo-controlled study. Int J Oral Maxillofac Surg 2009, 38:261-266.

26. Guo Y, Yan S, Xu L, Zhu G, Yu X, Tong X: Use of angong niuhuang in treating central nervous system diseases and related research. Evid Based Complement Alternat Med 2014, 2014:346918.

27. Peng W, Yang J, Wang Y et al: Systematic review and meta-analysis of randomized controlled trials of xingnaojing treatment for stroke. Evid Based Complement Alternat Med 2014, 2014:210851.

28. Wu L, Zhang H, Xing Y et al: Meta-Analysis of the Effects of Xingnaojing Injection on Consciousness Disturbance. Medicine (Baltimore) 2016, 95:e2875.

29. Xu M, Su W, Xu QP, Huang WD: Effect of Xingnaojing injection on cerebral edema and blood-brain barrier in rats following traumatic brain injury. Chin J Traumatol 2010, 13:158-162.

30. Xu YM, Wang XC, Zhang SJ et al: Role of Xingnaojing combined with naloxone in treating intracerebral haemorrhage: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2018, 97:e12967.

31. Li DR, Zhu BL, Ishikawa T, Zhao D, Michiue T, Maeda H: Immunohistochemical distribution of S-100 protein in the cerebral cortex with regard to the cause of death in forensic autopsy. Leg Med (Tokyo) 2006, 8:754-760.

32. Rothermundt M, Peters M, Prehn JH, Arolt V: S100B in brain damage and neurodegeneration. Microsc Res Tech 2003, 60:614-632.

33. Steiner J, Bernstein HG, Bielau H et al: Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci 2007, 8:2.

34. Streitberger DP, Arelin K, Kratzsch J et al: Validating serum S100B and neuron-specific enolase as biomarkers for the human brain - a combined serum, gene expression and MRI study. PLoS One 2012, 7:e43284.

35. Anderson RE, Hansson LO, Nilsson O, Djilai-Merzoug R, Settergren G: High serum S100B levels for trauma patients without head injuries. Neurosurgery 2001, 48:1255-1258; discussion 1258-1260.

36. Bokesch PM, Appachi E, Cavaglia M, Mossad E, Mee RB: A glial-derived protein, S100B, in neonates and infants with congenital heart disease: evidence for preexisting neurologic injury. Anesth Analg 2002, 95:889-892, table of contents.

37. Berger RP, Pierce MC, Wisniewski SR, Adelson PD, Kochanek PM: Serum S100B concentrations are increased after closed head injury in children: a preliminary study. J Neurotrauma 2002, 19:1405-1409.

38. Berger RP, Pierce MC, Wisniewski SR et al: Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatrics 2002, 109:E31.

39. Petzold A, Green AJ, Keir G et al: Role of serum S100B as an early predictor of high intracranial pressure and mortality in brain injury: a pilot study. Crit Care Med 2002, 30:2705-2710.

40. Papa L, Edwards D, Ramia M: Exploring Serum Biomarkers for Mild Traumatic Brain Injury. In: Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. edn. Edited by Kobeissy FH. Boca Raton (FL); 2015.

41. Kim GW, Kondo T, Noshita N, Chan PH: Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Stroke 2002, 33:809-815.

42. Yunoki M, Kawauchi M, Ukita N et al: Effects of lecithinized superoxide dismutase on traumatic brain injury in rats. J Neurotrauma 1997, 14:739-746.

43. Zaghloul N, Patel H, Codipilly C et al: Overexpression of extracellular superoxide dismutase protects against brain injury induced by chronic hypoxia. PLoS One 2014, 9:e108168.

44. Zhou M, Dominguez R, Baudry M: Superoxide dismutase/catalase mimetics but not MAP kinase inhibitors are neuroprotective against oxygen/glucose deprivation-induced neuronal death in hippocampus. J Neurochem 2007, 103:2212-2223.

45. Jones CMC, Harmon C, McCann M, Gunyan H, Bazarian JJ: S100B outperforms clinical decision rules for the identification of intracranial injury on head CT scan after mild traumatic brain injury. Brain Inj 2020:1-8.

Page 19/39
46. Einav S, Shoshan Y, Odavia H, Matot I, Hersch M, Itshayek E: Early postoperative serum S100 beta levels predict ongoing brain damage after meningioma surgery: a prospective observational study. Crit Care 2006, 10:R141.

47. Muballe KD, Sewani-Rusike CR, Longo-Mbenza B, Iputo J: Predictors of recovery in moderate to severe traumatic brain injury. J Neurosurg 2018;1-10.

48. Kontos HA, Wei EP: Superoxide production in experimental brain injury. J Neurosurg 1986; 64:803-807.

49. Muir JK, Tynan M, Caldwell R, Ellis EF: Superoxide dismutase improves posttraumatic cortical blood flow in rats. J Neurotrauma 1995; 12:179-188.

50. Mikawa S, Kinouchi H, Kamii H et al: Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice. J Neurosurg 1996; 85:889-891.

51. Rashno M, Sarkaki A, Farbood Y et al: Therapeutic effects of chrysin in a rat model of traumatic brain injury: A behavioral, biochemical, and histological study. Life Sci 2019; 228:285-294.

52. Liao R, Wood TR, Nance E: Superoxide dismutase reduces monosodium glutamate-induced injury in an organotypic whole hemisphere brain slice model of excitotoxicity. J Biol Eng 2020; 14:3.

53. Podolsky-Gondim GG, Furlanetti LL, Viana DC, Ballestero MFM, de Oliveira RS: The role of coagulopathy on clinical outcome following traumatic brain injury in children: analysis of 66 consecutive cases in a single center institution. Childs Nerv Syst 2018; 34:2455-2461.

54. Albert V, Arulselvi S, Agrawal D, Pati HP, Pandey RM: Early posttraumatic changes in coagulation and fibrinolysis systems in isolated severe traumatic brain injury patients and its influence on immediate outcome. Hematol Oncol Stem Cell Ther 2019; 12:32-43.

55. Xu D, Huang P, Yu Z, Xing DH, Ouyang S, Xing G: Efficacy and Safety of Panax notoginseng Saponin Therapy for Acute Intracerebral Hemorrhage, Meta-Analysis, and Mini Review of Potential Mechanisms of Action. Front Neurol 2014; 5:274.

56. Li R, Alex P, Ye M, Zhang T, Liu L, Li X: An old herbal medicine with a potentially new therapeutic application in inflammatory bowel disease. Int J Clin Exp Med 2011; 4:309-319.

57. Hang CH, Shi JX, Li JS, Wu W, YinHX: Alterations of intestinal mucosa structure and barrier function following traumatic brain injury in rats. World J Gastroenterol 2003; 9:2776-2781.

58. Halloran LG, Zfass AM, Gayle WE, Wheeler CB, Miller JD: Prevention of acute gastrointestinal complications after severe head injury: a controlled trial of cimetidine prophylaxis. Am J Surg 1980; 139:44-48.

59. Gudeman SK, Wheeler CB, Miller JD, Halloran LG, Becker DP: Gastric secretory and mucosal injury response to severe head trauma. Neurosurgery 1983; 12:175-179.

60. Li ZM, Wang LX, Jiang LC, Zhu JX, Geng FY, Qiang F: Relationship between plasma cortisol levels and stress ulcer following acute and severe head injury. Med Princ Pract 2010; 19:17-21.

61. Alain-Pascal BB, Wei HJ, Chen X, Zhang JN: Evaluation of stress hormones in traumatic brain injury patients with gastrointestinal bleeding. Chin J Traumatol 2010; 13:25-31.

62. Lucena AF, Tiburcio RV, Vasconcelos GC, Ximenes JD, Cristino Filho G, Graca RV: Influence of acute brain injuries on gut motility. Rev Bras Ter Intensiva 2011; 23:96-103.

Appendix 1

Gladgow Coma Scale
Table 8

	GCSa	GCS1	GCS3	GCS5	GCS7	GOS1	GOS3	KPS1	KPS3	S100a	S1001	S1003	S1
Correlation													
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Sig. (2-tailed)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N	20	20	20	20	20	20	20	20	20	20	20	20	20

Correlations of the variables of the high dose Yunnan Baiyao (h-YB) group (N = 20)
	GCSa	GCS1	GCS3	GCS5	GCS7	GOS1	GOS3	KPS1	KPS3	S100a	S1001	S1003	S1	
	Sig. (2-tailed)	0.124	0.135	0.009	0.017	0.008	0.024	0.081	0.015	0.074	0.000	0.164	0.1	
N		20	20	20	20	20	20	20	20	20	20	20	20	
S1003	Pearson Correlation	-.584**	-.519*	-.395	-.575**	-.488*	-.427	-.281	-.428	-.285	.736**	0.324	1	
	Sig. (2-tailed)	0.007	0.019	0.085	0.008	0.029	0.060	0.230	0.060	0.224	0.000	0.164	0.1	
N		20	20	20	20	20	20	20	20	20	20	20	20	
S1005	Pearson Correlation	-.471*	-.501*	-.550*	-.609**	-.281	-.462*	-.403	-.421	.538*	.621**	0.246	1	
	Sig. (2-tailed)	0.036	0.024	0.012	0.090	0.004	0.231	0.040	0.078	0.065	0.014	0.004	0.296	
N		20	20	20	20	20	20	20	20	20	20	20	20	
S1007	Pearson Correlation	-.718**	-.676**	-.645**	-.755**	-.769**	-.568**	-.471*	-.629**	-.507**	.871**	.672**	.800**	.51
	Sig. (2-tailed)	0.000	0.001	0.002	0.000	0.000	0.009	0.036	0.003	0.022	0.000	0.001	0.000	0.1
N		20	20	20	20	20	20	20	20	20	20	20	20	
SODa	Pearson Correlation	.652**	.705**	.712**	.723**	.707**	.438	.536*	.566**	.597**	-.300	-.309	-.162	-0
	Sig. (2-tailed)	0.002	0.001	0.000	0.000	0.000	0.054	0.015	0.009	0.005	0.200	0.184	0.495	0.1
N		20	20	20	20	20	20	20	20	20	20	20	20	
SOD1	Pearson Correlation	.637**	.690**	.715**	.692**	.717**	.446*	.574**	.579**	.627**	-.280	-.304	-.094	-0
	Sig. (2-tailed)	0.003	0.001	0.000	0.001	0.000	0.049	0.008	0.008	0.003	0.232	0.192	0.693	0.1
N		20	20	20	20	20	20	20	20	20	20	20	20	
SOD3	Pearson Correlation	.624**	.680**	.684**	.727**	.693**	.448*	.514*	.557*	.566**	-.424	-.416	-.258	-0
	Sig. (2-tailed)	0.003	0.001	0.001	0.000	0.001	0.048	0.020	0.011	0.009	0.063	0.068	0.271	0.1
N		20	20	20	20	20	20	20	20	20	20	20	20	
SOD5	Pearson Correlation	.645**	.694**	.719**	.717**	.711**	.437	.539*	.563**	.597**	-.308	-.324	-.138	-0
	Sig. (2-tailed)	0.002	0.001	0.000	0.000	0.000	0.054	0.014	0.010	0.005	0.186	0.163	0.561	0.1
N		20	20	20	20	20	20	20	20	20	20	20	20	
	Pearson Correlation	.616**	.658**	.712**	.719**	.689**	.469*	.531*	.580**	.588**	-.339	-.379	-.148	-0
	Sig. (2-tailed)	0.004	SOD7	0.000	0.000	0.001	0.037	0.016	0.007	0.006	0.144	0.100	0.533	0.1
N		20	20	20	20	20	20	20	20	20	20	20	20	

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

a. group = 4
GCS (Glasgow Coma Scale)

Score	Eye opening	Score	Verbal response	Score	Motor response
4	Spontaneous opening	5	Oriented responses with the patient being coherent and answering appropriately	6	Conscious obeying of the motor commands given
3	Eye opening to auditory stimulus	4	Confused answering with the patient disoriented	5	Movement towards pressure/pain stimulus
2	Eye opening to pain stimulus	3	Inappropriate words with the patient saying words but not sentences	4	Withdrawal from pain/pressure stimulus
1	No eye opening	2	Incomprehensible sounds	3	Flexor reaction
		1	No verbal response	2	Extensor reaction
				1	No motor response

GCS is an established method to quantify the conscious state of TBI patients. The score was used to evaluate the degree of disturbance of consciousness with eye opening, speech condition and motor response (mild = 13 to 15, moderate = 8 to 12, severe = 3 to 7 points)

Appendix 2

Gladgow Outcome Scale

Score	State	Description
1	Dead	Dead
2	Persistent vegetative state	Patient exhibits no obvious cortical function.
3	Severe disability	Patient depends upon others for daily support due to mental or physical disability or both.
4	Moderate disability	Patient is independent as far as daily life is concerned. The disabilities found include varying degrees of dysphasia, hemiparesis, or ataxia, as well as intellectual and memory deficits and personality changes.
5	Recover	Resumption of normal activities even though there may be minor neurological or psychological deficits.

GOS is the commonly used prognostic criterion for evaluating TBI prognosis with five grades: dead, persistent vegetative state, severe disability (conscious but disabled), moderate disability (disabled but independent) and recovery. The outcome was classified as good (GOS 4 to 5), bad (GOS 2 to 3) and death (GOS = 1)

Appendix 3

Karnofsky Performance Scale

Score	Description
100	Normal no complaints; no evidence of disease.
90	Able to carry on normal activity; minor signs or symptoms of disease.
80	Normal activity with effort; some signs or symptoms of disease.
70	Cares for self; unable to carry on normal activity or to do active work.
60	Requires occasional assistance, but is able to care for most of his personal needs.
50	Requires considerable assistance and frequent medical care.
40	Disabled; requires special care and assistance.
30	Severely disabled; hospital admission is indicated although death not imminent.
20	Very sick; hospital admission necessary; active supportive treatment necessary.
10	Moribund; fatal processes progressing rapidly.
0	Dead

KPS is an index to evaluate the ability of daily life and work. It includes 10 items with the range of score from normal (100) to dead (0). A score of more than 80 points indicates independent, adequate capability of self-care in daily life; a score of 60 to 70 points indicate semi-dependent in daily life and a score of
below 60 points indicates dependent, lack of self-care capability in daily life. KPS reflects the recovery of functional activity and disability in patients with craniocerebral injury.

Figures

Repeated measure analysis show significant differences and patterns of change in Glasgow Coma Scale (GCS) (A); serum S100B concentration (B); serum superoxide dismutase (SOD) activity (C); Glasgow Outcome Scale (GOS) (D); and Karnofsky Performance Scale (KPS) (E), after treatment of orthodox therapy (OT), Xingnaojing (XNJ) adjuvant treatment, low-dose Yunnan Baiyao (l-YB) and high-dose Yunnan Baiyao adjuvant treatments in craniotomized patients with moderate-to-severe TBI.
Repeated measure analysis show significant differences and patterns of change in Glasgow Coma Scale (GCS) (A); serum S100B concentration (B); serum superoxide dismutase (SOD) activity (C); Glasgow Outcome Scale (GOS) (D); and Karnofsky Performance Scale (KPS) (E), after treatment of orthodox therapy (OT), Xingnaojing (XNJ) adjuvant treatment, low-dose Yunnan Baiyao (l-YB) and high-dose Yunnan Baiyao adjuvant treatments in craniotomized patients with moderate-to-severe TBI.
Repeated measure analysis show significant differences and patterns of change in Glasgow Coma Scale (GCS) (A); serum S100B concentration (B); serum superoxide dismutase (SOD) activity (C); Glasgow Outcome Scale (GOS) (D); and Karnofsky Performance Scale (KPS) (E), after treatment of orthodox therapy (OT), Xingnaojing (XNJ) adjuvant treatment, low-dose Yunnan Baiyao (l-YB) and high-dose Yunnan Baiyao adjuvant treatments in craniotomized patients with moderate-to-severe TBI.
Figure 2

Differences in GSC, change and rate of change in GCS score between the treatment groups. A) GCS score was lowest on admission in all groups but improved more quickly and became significantly greater in XNJ, l-YB, h-YB groups than in OT group on Days 3, 5 and 7 (P<0·01); B) the improvement in GCS and; C) rate of improvement (%) in GCS were significantly greater in XNJ, l-YB, h-YB groups than in OT group after 3, 5 and 7 days of emergency craniotomy (P<0·01) and greater in h-YB than in l-YB and XNJ groups after 3, 5 and 7 days of emergency craniotomy (P<0·05, all). *, P<0·05, **P<0·01 vs. OT; a, P<0·05, aa, P<0·01 vs. XNJ; b, P<0·05, bb, P<0·01 vs. l-YB
Figure 2

Differences in GCS, change and rate of change in GCS score between the treatment groups. A) GCS score was lowest on admission in all groups but improved more quickly and became significantly greater in XNJ, l-YB, h-YB groups than in OT group on Days 3, 5 and 7 (P<0.01); B) the improvement in GCS and; C) rate of improvement (%) in GCS were significantly greater in XNJ, l-YB, h-YB groups than in OT group after 3, 5 and 7 days of emergency craniotomy (P<0.01) and greater in h-YB than in l-YB and XNJ groups after 3, 5 and 7 days of emergency craniotomy (P<0.05, all). *, P<0.05, **P<0.01 vs. OT; a, P<0.05, aa, P<0.01 vs. XNJ; b, P<0.05, bb, P<0.01 vs. l-YB
Differences in GSC, change and rate of change in GCS score between the treatment groups. A) GCS score was lowest on admission in all groups but improved more quickly and became significantly greater in XNJ, l-YB, h-YB groups than in OT group on Days 3, 5 and 7 (P<0·01); B) the improvement in GCS and; C) rate of improvement (%) in GCS were significantly greater in XNJ, l-YB, h-YB groups than in OT group after 3, 5 and 7 days of emergency craniotomy (P<0·01) and greater in h-YB than in l-YB and XNJ groups after 3, 5 and 7 days of emergency craniotomy (P<0·05, all). * P<0·05, ** P<0·01 vs. OT; a P<0·05, aa P<0·01 vs. XNJ; b P<0·05, bb P<0·01 vs. I-YB
Figure 3

Differences in serum S100b protein concentration A), change B) and rate of change C) of serum S100b in craniotomized TBI patients. A) S100B concentration increased sharply after admission and peaked in all groups on Days 3 before it fell more rapidly and became significantly lower (P<0·01) in the XNJ, l-YB and h-YB groups than in the OT group after 3, 5 and 7 days of emergency craniotomy; B) & C) Increases and percentage increase in serum S100B was significantly greater (P<0·01) in OT than in XNJ and h-YB groups on Day 3 whereas reduction and reduction rate was significantly greater in XNJ, l-YB and h-YB groups than in OT group after 5 and 7 days of emergency craniotomy. * P<0·05, ** P<0·01 vs. OT; a, P<0·05, aa, P<0·01 vs. XNJ.
Figure 3

Differences in serum S100b protein concentration A), change B) and rate of change C) of serum S100b in craniotomized TBI patients. A) S100B concentration increased sharply after admission and peaked in all groups on Days 3 before it fell more rapidly and became significantly lower (P<0·01) in the XNJ, l-YB and h-YB groups than in the OT group after 3, 5 and 7 days of emergency craniotomy; B) & C) Increases and percentage increase in serum S100B was significantly greater (P<0·01) in OT than in XNJ and h-YB groups on Day 3 whereas reduction and reduction rate was significantly greater in XNJ, l-YB and h-YB groups than in OT group after 5 and 7 days of emergency craniotomy. *, P<0·05, **P<0·01 vs. OT; a, P<0·05, aa, P<0·01 vs. XNJ.
Figure 3

Differences in serum S100b protein concentration A), change B) and rate of change C) of serum S100b in craniotomized TBI patients. A) S100B concentration increased sharply after admission and peaked in all groups on Days 3 before it fell more rapidly and became significantly lower (P<0·01) in the XNJ, I-YB and h-YB groups than in the OT group after 3, 5 and 7 days of emergency craniotomy; B) & C) Increases and percentage increase in serum S100B was significantly greater (P<0·01) in OT than in XNJ and h-YB groups on Day 3 whereas reduction and reduction rate was significantly greater in XNJ, I-YB and h-YB groups than in OT group after 5 and 7 days of emergency craniotomy · *, P<0·05, **P<0·01 vs. OT; a, P<0·05, aa, P<0·01 vs. XNJ.

Figure 4

Differences in serum superoxide dismutase (SOD) activity A), change B) and rate of change C) in SOD activity. A) Serum SOD activity declined rapidly after craniotomy and reached nadir on Days 3 day in all groups with a greater reduction in the OT group (38·3%) than in XNJ, I-YB and h-YB groups (16·7%, 23·4% and 20·7%) before increased more rapidly and became significantly higher in the XNJ, I-YB and h-YB groups than in the OT group after 3, 5 and 7 days of emergency craniotomy (P<0·01). By Days 7, XNJ, I-YB and h-YB groups resumed more of the baseline SOD activities (99·5%, 91·8% and 94·8%, respectively) than OT group (69·2%) (P<0·01). *, P<0·05, **P<0·01 vs. OT; a, P<0·05, aa, P<0·01 vs. XNJ.
Differences in serum superoxide dismutase (SOD) activity A), change B) and rate of change C) in SOD activity. A) Serum SOD activity declined rapidly after craniotomy and reached nadir on Days 3 in all groups with a greater reduction in the OT group (38.3%) than in XNJ, l-YB and h-YB groups (16.7%, 23.4% and 20.7%) before increasing more rapidly and becoming significantly higher in the XNJ, I-YB and h-YB groups than in the OT group after 3, 5 and 7 days of emergency craniotomy (P<0.01). By Days 7, XNJ, I-YB and h-YB groups resumed more of the baseline SOD activities (99.5%, 91.8% and 94.8%, respectively) than OT group (69.2%) (P<0.01). *, P<0.05, **P<0.01 vs. OT; a, P<0.05, aa, P<0.01 vs. XNJ.
Glasgow Outcome Scale (GOS) score shows continued improvement in clinical prognosis in all patients after 30 and 90 days of emergency craniotomy, with the XNJ, l-YB and h-YB groups showing consistent better clinical prognosis than the OT group (P<0.01). A GOS score of 4-5 is classified as good outcome. *, P<0.05, **, P<0.01 vs. OT.
Glasgow Outcome Scale (GOS) score shows continued improvement in clinical prognosis in all patients after 30 and 90 days of emergency craniotomy, with the XNJ, I-YB and h-YB groups showing consistent better clinical prognosis than the OT group (P<0.01). A GOS score of 4-5 is classified as good outcome. *, P<0.05, **, P<0.01 vs. OT.
Glasgow Outcome Scale (GOS) score shows continued improvement in clinical prognosis in all patients after 30 and 90 days of emergency craniotomy, with the XNJ, l-YB and h-YB groups showing consistent better clinical prognosis than the OT group (P<0.01). A GOS score of 4-5 is classified as good outcome. *, P<0.05, **, P<0.01 vs. OT
Figure 6

Karnofsky Performance Scale (KPS) score show continued improvement in functional rehabilitation and the ability of daily life and work in all patients after 30 and 90 days of emergency craniotomy, with the XNJ, l-YB and h-YB groups showing better clinical prognosis than the OT group (P<0.01). A score of more than 80 points indicates independent, adequate capability of self-care in daily life; a score of 60 to 70 points indicate semi-dependent in daily life. *, P<0.05, **, P<0.01 vs. OT
Karnofsky Performance Scale (KPS) score show continued improvement in functional rehabilitation and the ability of daily life and work in all patients after 30 and 90 days of emergency craniotomy, with the XNJ, I-YB and h-YB groups showing better clinical prognosis than the OT group (P<0·01). A score of more than 80 points indicates independent, adequate capability of self-care in daily life; a score of 60 to 70 points indicate semi-dependent in daily life. *, P<0·05, **, P<0·01 vs. OT.
Karnofsky Performance Scale (KPS) score show continued improvement in functional rehabilitation and the ability of daily life and work in all patients after 30 and 90 days of emergency craniotomy, with the XNJ, YB and h-YB groups showing better clinical prognosis than the OT group (P<0.01). A score of more than 80 points indicates independent, adequate capability of self-care in daily life; a score of 60 to 70 points indicate semi-dependent in daily life. *, P<0.05, **, P<0.01 vs. OT.