Exp-function method for the conformable space-time fractional STO, ZKBBM and coupled Boussinesq equations

Handan Çerdi̇k Yaslan and Ayse Girgin

Department of Mathematics, Pamukkale University, Denizli, Turkey

ABSTRACT
In the present paper, new analytical solutions for the conformable space-time fractional Sharma-Tasso-Olver (STO), Zakharov Kuznetsov Benjamin Bona Mahony (ZKBBM) and coupled Boussinesq equations are obtained by using the Exp-function method. The obtained traveling wave solutions are presented by exponential functions. Simulations of the obtained solutions are given at the end of the paper.

1. Introduction
Conformable fractional derivative has been defined by Khalil et al. (Khalil, Horani, Yousef, & Sababheh, 2014). Whereas other derivatives such as Riemman-Liouville, Caputo, Grünwald-Letnikov are defined with complex formulas, conformable fractional derivative is defined with simple formula. The applicability of the conformable derivative model has been theoretically and practically verified by investigating the chloride ions transport in reinforced concrete (Khitab, Lorente, & Ollivier, 2005; Thomas & Bamforth, 1999). Conformable fractional partial differential equations have been also used in modeling electromagnetic fields of media, quantum mechanics (see, for example (Anderson & Ulness, 2015; Zhao, Pan, & Luo, 2018).

In the solitary wave theory, traveling waves are particularly interesting. They appear in many areas such as elastic media, plasmas, solid state physics, condensed matter physics, electrical circuits, optical fibers, chemical kinematics, fluids, bio-genetics, etc. Three types of traveling waves are given as (Kichenassamy & Olver, 1992; Whitham, 1999): the solitary waves, which are localized traveling waves, asymptotically zero at large distances, the periodic solutions, the kink waves which rise or descend from one asymptotic state to another. Solitonic solutions of nonlinear partial differential equations have been investigated in (Dai & Wang, 2008; Dai & Xu, 2015; Ding et al., 2017; Wang, Zhang, & Dai, 2016).

Exp-function method has been proposed to seek traveling wave solutions of nonlinear differential equations in (He & Wu, 2006). The method has been also applied to the following nonlinear evolution equations: Drinfel’d-Sokolov-Wilson system, Burgers-type equation, Schrodinger equation, Calogero-Bogoyavlenskii-Schiff equation, Zakharov equations, Cahn-Hilliard equation, Allen-Cahn equation and Steady-State equation (see, for example (Abdou, 2008; Abdou, Soliman, & Basomy, 2007; Ali, Iqbal, & Mohyud-Din, 2016; Ayub, Khan, & Mahmood-Ul-Hassan, 2017; El-Wakil, Madkour, & Abdou, 2007; Gurefe & Misirli, 2011; Mohyud-Din, Noor, & Noor, 2010; Parand & Rad, 2012; Wu & He, 2007). However, its applications to fractional nonlinear evolution equations have been studied. For example, nonlinear fractional Telegraph equation, Kolmogorov-Petrovskii-Piskunovequation (Guner & Bekir, 2017), fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver equation (Zheng, 2013), fractional reaction-diffusion and nonlinear fractional wave equations (Bekir, Guner, Bhraw, & Biswas, 2015), nonlinear fractional Zoomeron equation (Guner, Bekir, & Bilgil, 2015), fractional Boussinesq-Like equations (Rahmatullah, Ellahi, Mohyud-Din, & Khan, 2018), fractional Kawahara equation and fractional advection-diffusion-reaction equation (Guner &
2. Description of conformable fractional derivative and its properties

For a function \(f: (0, \infty) \rightarrow \mathbb{R} \), the conformable fractional derivative of \(f \) of order \(0 < \alpha < 1 \) is defined as (see, for example, Khalil et al., 2014)

\[
T_\alpha^\alpha f(t) = \lim_{\varepsilon \to 0} \frac{f(t + \varepsilon t^{1-\alpha}) - f(t)}{\varepsilon}.
\]

Some important properties of the conformable fractional derivative are as follows:

\[
T_\alpha^\alpha (af + bg)(t) = aT_\alpha^\alpha f(t) + bT_\alpha^\alpha g(t), \quad \text{for all } a, b \in \mathbb{R},
\]

\[
T_\alpha^\alpha (t^n) = \mu t^{\mu-1} - \frac{\mu}{c_0} t^{-\mu},
\]

\[
T_\alpha^\alpha (f(g(t))) = t^{1-\alpha} g'(t)f'(g(t)).
\]

3. Analytic solutions to the conformable space-time fractional STO equation

Conformable space-time fractional STO equation is denoted by (Sontakke & Shaikh, 2016; Taghizadeh et al., 2013)

\[
T_\alpha^\alpha u + 3c(T_\beta^\beta u)^2 + 3c\alpha^2 T_\beta^\beta u + 3c\alpha T_\beta^\beta T_\alpha^\alpha u + cT_\beta^\beta T_\beta^\beta u = 0, \quad 0 < \alpha \leq 1, \quad 0 < \beta \leq 1.
\]

Note that for \(\alpha = \beta = 1 \), conformable space-time fractional STO equation is reduced to classical STO equation. Classical STO equation is a prominent double nonlinear dispersive model. Here \(c \neq 0 \) is a constant, \(u = u(x, t) \) is a field variable, \(x \) is the spatial coordinate in the propagation direction and \(t \) is the temporal coordinates, which occur in different contexts in mathematical physics. The dissipative \(u_{xx} \) term provides damping at small scales, and the nonlinear term \(u^3u_x \) stabilizes by transferring energy between large and small scales.

Using the following transformation for Eq. (3)

\[
u(x, t) = U(\xi), \quad \xi = kx + m\frac{x^\alpha}{\beta}, \quad (4)
\]

where \(k \) and \(m \) are non zero arbitrary constants, and integrating resulting equation with zero constant we have

\[
kU + 3c\alpha^2UU' + cmU^3 + cm^3U'' = 0. \quad (5)
\]

According to Exp-function method, the solution of Eq. (5) can be expressed in the following form

\[
U(\xi) = \sum_{n=0}^{N} a_n \exp[\xi^n] \sum_{m=0}^{N} b_m \exp[\xi^m], \quad (6)
\]

where \(t, s, h, l \) are positive integers which are known to be further determined, \(a_i \) and \(b_j \) are unknown constants.

Substituting Eq. (6) into Eq. (5) and balancing in the obtained equation, we get \(r = s = h = l = 1 \), so Eq. (6) reduces to

\[
U(\xi) = \frac{a_1 \exp[\xi] + a_0 + a_{-1} \exp[-\xi]}{b_1 \exp[\xi] + b_0 + b_{-1} \exp[-\xi]}. \quad (7)
\]

By substituting Eq. (7) into Eq. (5), and collecting all the terms with the same power of \(e^\xi (s = 164

Atik, 2016) have been solved by using Exp-function method. Here, fractional derivatives have been defined in Jumarie modified Riemann-Liouville sense. In (He, 2013; Jia, Hu, Chen, & Jai, 2015), the method has been applied to the nonlinear fractional evolution equations with local fractional.

In recent years, many techniques have been used to obtain analytical and numerical solutions of the fractional STO, ZKBBM and coupled Boussinesq equations. Time fractional STO equation with Jumarie’s modified Riemann-Liouville derivative has been solved by using the iterative method, simplest equation method, Khater and modified trial equation method in (Bibi, Mohyud-Din, Khan, & Ahmed, 2017; Bulut & Pandir, 2013; Sontakke & Shaikh, 2016; Taghizadeh, Mirzazadeh, Rahimian, & Akbari, 2013), respectively. Time fractional STO equations with Caputo derivative and conformable derivative have been studied in (Rezazadeh, Khodadad, & Manafian, 2017; Song et al., 2009), respectively. Improved tanh-coth method has been applied to the space-time fractional STO equation with Jumarie’s modified Riemann-Liouville derivative in (Cesar & Gomez, 2015),(\(G'/G^2 \)) expansion method, sub-equation method, Jacobi elliptic function method and exponential rational function method have been applied to the space-time fractional ZKBBM equation with Jumarie’s modified Riemann-Liouville derivative in (Aksoy, Kaplan, & Bekir, 2016; Alzaidy, 2013; Gepreel, 2014; Mohyud-Din & Bibi, 2018), respectively. Traveling wave solutions for the space-time fractional coupled Boussinesq equations with the Jumarie modified Riemann-Liouville derivative have been obtained by using the modified extended tanh method (Shallal, Jabbar, & Ali, 2018). Time fractional coupled Boussinesq equations with the conformable derivative have been solved by using \(\exp(-\phi(\xi)) \) method and modified Kudryashov method in (Hosseini, Bekir, & Ansari, 2017; Hosseini & Ansari, 2017).

In general, STO, ZKBBM and coupled Boussinesq equations have been studied for the case of time fractional in the literature. For the space-time fractional STO, ZKBBM and coupled Boussinesq equations, Jumarie’s modified Riemann-Liouville derivatives have been used. In this paper, we consider space-time fractional STO, ZKBBM and coupled Boussinesq equations. Here, fractional derivatives are defined in conformable sense. Applying Exp-function method we have obtain analytic solutions including exponential functions for conformable space-time fractional STO, ZKBBM and coupled Boussinesq equations.
where \(\alpha, \beta \) are real-valued constants. It is well known that ZK (Zakharov Kuznetsov) equation models are weakly nonlinear ion-acoustic waves in strongly magnetized lossless plasmas. ZK-BBM equation is the conjunction of ZK equation and BBM (Benjamin-Bona-Mahony) equation that models shallow water waves.

Substituting Eq. (4) into Eq. (10) and integrating resulting equation with zero constant we have

\[
(k + m)U - \alpha mU^2 - \beta m^2kU'' = 0. \tag{11}
\]

Substituting Eq. (6) into Eq. (11) and balancing in the obtained equation, we get \(r = s = h = l = 1 \), so Eq. (6) reduces to Eq. (7). By substituting Eq. (7) into Eq. (11), and collecting all the terms with the same power of \(e^t \) \((s = 3, 2, 1, 0, -1, -2, -3) \), we can obtain a set of algebraic equations for the unknowns \(a_0, a_1, a_{-1}, b_0, b_1, b_{-1}, k, m \):

\[
a_1b_2^2 + a_1b_1b_0 - a_1b_0^2m - a_0b_1m = 0,
\]
\[
a_1b_2b_1 + a_0b_2b_0 - a_0b_1b_0 + 2a_1b_2b_0 + 2a_1b_1b_0 - 2a_1b_0b_0 = 0,
\]
\[
a_1b_2^2 + a_1b_1b_0 - a_1b_0^2m - a_0b_1m = 0,
\]
\[
a_1b_2b_1 + a_0b_2b_0 - a_0b_1b_0 + 2a_1b_2b_0 + 2a_1b_1b_0 - 2a_1b_0b_0 = 0,
\]
\[
\text{Solving the algebraic equations in the Mathematica, we obtain the following set of solutions:}
\]

Case 1:

\[
a_1 = a_1, \quad a_0 = a_0, \quad a_{-1} = \frac{a_0^2}{4a_1},
\]
\[
b_1 = \frac{a_1}{k}, \quad b_0 = 0, \quad b_{-1} = -\frac{a_0^2}{4a_1k}, \quad k = -c_3.
\]

where \(a_1 \) and \(a_0 \) are free parameters.

\[
u_1(x,t) = \frac{a_1 \exp \left(-c_3x + m_1^2t + \frac{m_2}{2} \right) + a_0 \exp \left(-c_3x - m_1^2t + \frac{m_2}{2} \right)}{2m_1 \exp \left(-c_3x + m_1^2t + \frac{m_2}{2} \right) - \frac{m_1}{2m_2} \exp \left(-c_3x - m_1^2t + \frac{m_2}{2} \right)}
\]

Case 2:

\[
a_1 = a_1, \quad a_0 = a_0, \quad a_{-1} = 0,
\]
\[
b_1 = \frac{a_1}{k}, \quad b_0 = -\frac{a_0^2}{4a_1k}, \quad b_{-1} = -\frac{a_0^2}{4a_1k}, \quad k = -c_3.
\]

where \(a_1 \) and \(a_0 \) is free parameter.

\[
u_1(x,t) = \frac{a_1 \exp \left(-c_3x + m_1^2t + \frac{m_2}{2} \right) + a_0 \exp \left(-c_3x - m_1^2t + \frac{m_2}{2} \right)}{2m_1 \exp \left(-c_3x + m_1^2t + \frac{m_2}{2} \right) - \frac{m_1}{2m_2} \exp \left(-c_3x - m_1^2t + \frac{m_2}{2} \right)}
\]

4. **Analytic solutions to the conformable space-time fractional ZKBBM equation**

Conformable space-time fractional ZKBBM equation is given in the following form (Mohyud-Din & Bibi, 2018; Shakeel & Tauseef Mohyud-Din, 2015)

\[
T_3^\alpha u + T_3^\beta u - 2a_0T_3^\alpha u - bT_3^{1/2}T_3^0 u = 0, 0 < x \leq 1, 0 < \beta \leq 1,
\]

\[
\text{Figure 1. 3D plot of the obtained traveling wave solutions} \quad u_1(x,t) \quad \text{of Eq. (3).}
\]
\[a_1 = \frac{b_1 bm^2}{a(1 + m^2 b)}, \quad a_0 = -\frac{2b_0 m^2}{a(1 + m^2 b)}, \]
\[a_{-1} = \frac{bb_0 m^2}{4b_1 a(1 + m^2 b)}, \]
\[b_1 = b_1, \quad b_0 = b_0, \quad b_{-1} = \frac{b_0^2}{4b_1}, \quad k = \frac{m}{1 + bm^2}, \]

where \(b_1 \) and \(b_0 \) are free parameters.

5. Analytic solutions to the conformable space-time fractional coupled Boussinesq equations

Finally, we consider the conformable space-time fractional coupled Boussinesq equations (Hosseini et al., 2017; Hosseini & Ansari, 2017)

\[T^a_{\alpha} u + T^b_{\beta} v = 0, \quad 0 < \alpha \leq 1, \quad 0 < \beta \leq 1. \]

Boussinesq type equations can be considered as the first model for nonlinear, dispersive wave propagation and describe the surface water waves whose horizontal scale is much larger than the depth of the water (Madsen, Murray, & Sorensen, 1991).

Substituting Eq. (4) into Eqs. (13)–(14) we obtain the following differential equations

\[kU' + mV' = 0, \]

\[(15) \]
Integrating Eqs. (15)–(16) and using $V = -\frac{k}{m}U$ we have

$$-\frac{k^2}{m}U + \lambda m U - \mu m^3 U''' = 0. \quad (17)$$

By balancing in Eq. (17), we set $r = s = h = l = 1$, so Eq. (6) reduces to form of the Eq. (7). By substituting Eq. (7) into Eq. (17) and collecting all the terms with the same power of e^s ($s = 3, 2, 1, 0, -1, -2, -3$), we can obtain a set of algebraic equations for the unknowns $a_0, a_1, a_{-1}, b_0, b_1, b_{-1}, k, m$:

$$\lambda a_1 b_1 m^2 - a_1 b_1 k^2 = 0,$$
$$b_0 \lambda a_1^2 m^2 - 2 b_0 a_1 b_1 k^2 + b_0 \mu a_1 b_1 m^4 + 2 a_0 \lambda a_1 b_1 m^2 - a_0 b_1 k^2 - a_0 \mu b_1 m^4 = 0,$$
$$\lambda a_0^2 b_1 m^2 + 2 \lambda a_0 a_1 b_0 m^2 - 2 a_0 b_0 b_1 k^2 + \mu a_0 b_1 m^4 + b_{-1} \lambda a_{-1}^2 m^2 - a_{-1} b_{-1} k^2 - \mu a_{-1} b_{-1} m^4 = 0,$$
$$- a_1 b_0^2 m^2 - 2 b_{-1} a_1 b_1 k^2 + 4 b_{-1} \mu a_1 b_1 m^4 + 2 a_0 a_{-1} b_0 m^2 - 2 a_0 b_0 b_{-1} k^2 + b_0 \mu a_{-1} b_{-1} m^4 + b_{-1} \lambda a_{-1}^2 m^2 - a_{-1} b_{-1} k^2 - \mu a_{-1} b_{-1} m^4 = 0,$$
$$\lambda a_{-1} b_{-1} m^2 - a_{-1} b_{-1} k^2 = 0.$$

Solving the algebraic equations in the Mathematica, we obtain the following set of solution:

$$a_1 = \frac{b_1 m^2 \mu}{\lambda}, \quad a_0 = -\frac{2 b_0 m^2 \mu}{\lambda}, \quad a_{-1} = \frac{b_{-1}^2 m^2 \mu}{4 b_1 \lambda},$$
$$b_1 = b_1, \quad b_0 = b_0, \quad b_{-1} = \frac{b_{-1}^2}{4 b_1}, \quad k = \pm m^2 \sqrt{\mu},$$

where b_1 and b_0 are free parameters.

$$u(x,t) = \frac{b_1 m^2 \mu}{\lambda} \exp\left(\pm m^2 \sqrt{\frac{\mu}{\lambda}} \frac{t^2}{\alpha} + \frac{\mu x^2}{\beta}\right) - \frac{2 b_0 m^2 \mu}{\lambda} \exp\left(\pm m^2 \sqrt{\frac{\mu}{\lambda}} \frac{t^2}{\alpha} - \frac{\mu x^2}{\beta}\right),$$

$$v(x,t) = \pm m \sqrt{\mu} U\left(\pm m^2 \sqrt{\frac{\mu}{\lambda}} \frac{t^2}{\alpha} + \frac{\mu x^2}{\beta}\right).$$
6. Results and discussion

In this section, the solutions (8), (12) and (18) of fractional STO, ZKBBM and coupled Boussinesq equations are simulated as traveling wave solutions for various values of the physical parameters in Figures 1–6. Figure 1 and Figure 2 show kink wave solution \(u_1(x, t) \) in Eq. (8). 3D plot of the obtained solution \(u_1(x, t) \) is given for \(a = 0.75, \beta = 1, a_1 = 1, a_0 = -5, c = 1, m = 1 \). Figure 2 also illustrates the same solution with 2D plot for \(-20 < x < 20\) at \(t = 1\). Figure 3 and Figure 4 show singular kink wave solution \(u(x, t) \) in Eq. (12). Figure 3 is 3D plot of the singular kink wave solution \(u(x, t) \) for \(a = 0.5, \beta = 1, b_0 = 1, b_1 = -2, a = 2, b = 1, m = -0.5, -20 < x < 20, 0 < t < 20\). Figure 4 shows 2D plot of the traveling wave solution \(u(x, 1) \) for the same parameters. Figure 5 and Figure 6 show solitary wave solution \(u(x, t) \) in Eq. (18). Figure 5 is 3D plot of the traveling wave solution \(u(x, t) \) in Eq. (18) for \(a = 0.75, \beta = 1, b_0 = 1, b_1 = 1, \lambda = 1, \mu = 1, m = 0.5, -20 < x < 20, 0 < t < 10\). Figure 6 also illustrates the same solution with 2D plot for \(-20 < x < 20\) at \(t = 1\).

Note that the 3D graphs describe the behavior of \(u \) in space \(x \) at time \(t \), which represents the change of amplitude and shape for each obtained solitary wave solutions. 2D graphs describe the behavior of \(u \) in space \(x \) at fixed time \(t = 1 \). All graphics are drawn by the aid of Mathematica 10.

7. Conclusion

In this paper, Exp-function method has been applied to the conformable space-time fractional STO, ZKBBM and coupled Boussinesq equations. The method can be used directly without requiring linearization, discretization or perturbation. New solitary wave solutions for conformable space-time fractional STO, ZKBBM and coupled Boussinesq equations have been obtained. It has been checked that all of the obtained solutions satisfy the corresponding equations.

168

Figure 5. 3D plot of the obtained traveling wave solutions \(u(x, t) \) of Eqs. (13)–(14).

Figure 6. 2D plot of the obtained traveling wave solutions \(u(x, 1) \) of Eqs. (13)–(14).
Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Ayse Girgin http://orcid.org/0000-0002-2972-7583

References

Abdou, M. A. (2008). New explicit exact solutions of nonlinear evolution equations using the generalized auxiliary equation method combined with exp-function method. *International Journal of Nonlinear Science*, 6, 208–215.

Abdou, M. A., Soliman, A. A., & Basyony, S. T. (2007). New application of exp-function method for improved Boussinesq equation. *Physics Letters A*, 369(5-6), 469–475. doi:10.1016/j.physleta.2007.05.039

Aksoy, E., Kaplan, M., & Bekir, A. (2016). Exponential rational function method for spacetime fractional differential equations. *Wave Random Complex*, 26(2), 142–151. doi:10.1080/17455030.2015.1125037

Ali, A., Iqbal, M. A., & Mohyud-Din, S. T. (2016). Solitary wave solutions Zakharov-Kuznetsov–Benjamin-Bona-Mahony (ZK-BBM) equation. *Journal of Egyptian Mathematical Society*, 24, 44–48. doi:10.1016/j.joems.2014.10.008

Alzaidy, J. F. (2013). Fractional sub-equation method and its applications to the space time fractional differential equations in mathematical physics. *British Journal of Mathematics & Computer Science*, 3(2), 153–163. doi:10.9734/BJMCS/2013/2908

Anderson, D. R., & Ulness, D. J. (2015). Properties of the Katugampola fractional derivative with potential application in quantum mechanics. *Journal of Mathematical Physics*, 56(6), 063502. doi:10.1063/1.4922018

Ayub, K., Khan, M. Y., & Mahmood-Ul-Hassan, Q. (2017). Solitary and periodic wave solutions of Calogero-Bogoyavlenskii-Schiff equation via exp-function methods. *Computer Mathematical Application*, 74(12), 3231–3241. doi:10.1016/j.camwa.2017.08.021

Bekir, A., Guner, O., Bhray, A. H., & Biswas, A. (2015). Solving nonlinear fractional differential equations using expansion methods by G'/G-expansion methods. *Roman Journal Physics*, 60, 360–378.

Bibi, S., Mohyud-Din, S. T., Khan, U., & Ahmed, N. (2017). Khater method for nonlinear Sharma Tasso-Olever (STO) equation of fractional order. *Results Physics*, 7, 4440–4450. doi:10.1016/j.rinp.2017.11.008

Bulut, H., & Pandir, Y. (2013). Modified trial equation method to the nonlinear fractional Sharma-Tasso-Olever equation. *International Journal of Modeling and Optimization*, 3, 353–357. doi:10.7763/ijmo.2013.V3.297

Cesar, A., & Gomez, S. (2015). A nonlinear fractional Sharma-Tasso-Olever equation: New exact solutions. *Journal of Applied Mathematics and Computing*, 466, 385–389.

Dai, C. Q., & Wang, Y. Y. (2008). Exact travelling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method. *Physics Scripta*, 78, 1–6.

Dai, C. Q., & Xu, Y. J. (2015). Exact solutions for a Wick-type stochastic reaction Duffing equation. *Application Mathematical Model*, 39(23–24), 7420–7426. doi:10.1016/j.apm.2015.03.019

Ding, D. J., Jin, D. Q., & Dai, C. Q. (2017). Analytical solutions of differential-difference sine-gordon equation. *Thermal Science*, 21(4), 1701–1705. doi:10.2298/TSSCI160809056D

El-Wakil, S. A., Madkour, M. A., & Abdou, M. A. (2007). Application of exp-function method for nonlinear evolution equations with variable coefficient. *Physics Letters A*, 369(1–2), 62–69. doi:10.1016/j.physleta.2007.04.075

Gepreel, K. A. (2014). Explicit Jacobi elliptic exact solutions for nonlinear partial fractional differential equations. *Advance Differential Equation*, 286, 1–14.

Guner, O., & Atik, H. (2016). Soliton solution of fractional-order nonlinear differential equations based on the exp-function method. *Optik*, 127(20), 10076–10083. doi:10.1016/j.ijleo.2016.07.070

Guner, O., & Bekir, A. (2017). The Exp-function method for solving nonlinear space-time fractional differential equations in mathematical physics. *Journal of Association Arab University Basic Application*, 24, 277–282.

Guner, O., Bekir, A., & Bilgil, H. (2015). A note on exp-function method combined with complex transform method applied to fractional differential equations. *Advance Nonlinear Analysis*, 4, 201–208.

Gurefe, Y., & Misirli, E. (2011). Exp-function method for solving nonlinear evolution equations with higher order nonlinearity. *Computer Mathematical Application*, 61(8), 2025–2030. doi:10.1016/j.camwa.2010.08.060

He, J. H. (2013). Exp-function method for fractional differential equations. *International Journal of Nonlinear Science Numerical Simulation*, 14, 363–366.

He, J. H., & Wu, X. H. (2006). Exp-function method for nonlinear wave equations. *Chaos Soliton Fract.*, 30(3), 700–708. doi:10.1016/j.chaos.2006.03.020

Hosseini, K., & Ansari, R. (2017). New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. *Wave Random Complex*, 27(4), 628–636.

Hosseini, K., Bekir, A., & Ansari, R. (2017). Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp (−|φ|α)-expansion method. *Optimal Quants Electron*, 49, 1–11.

Jia, Z., Hu, M., Chen, Q., & Jai, S. (2015). Local fractional differential equations by the exp-function method. *International Journal of Numerical Methods for Heat & Fluid Flow*, 25(8), 1845–1849. doi:10.1108/HFF-05-2014-0144

Khali, R., Horani, M. A., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. *The Journal of Computational and Applied Mathematics*, 264, 65–70. doi:10.1016/j.cam.2014.01.002

Khitab, A., Lorente, S., & Ollivier, J. P. (2005). Predictive model for chloride penetration through concrete. *Magnetic Concrete Research*, 57(9), 511–526. doi:10.1680/macr.2005.57.9.511

Kichenassamy, S., & Olver, P. (1992). Existence and nonexistence of solitary wave solutions to higher-order model evolution equations. *SIAM Journal on Mathematical Analysis*, 23(5), 1141–1166. doi:10.1137/05230364

Madsen, P. A., Murray, R., & Sorensen, O. R. (1991). A new form of the Boussinesq equations with improved linear dispersion characteristics. *Coast English Journal*, 15(4), 371–388. doi:10.1016/0378-3839(91)90017-8

Mohyud-Din, S. T., & Bibi, S. (2018). Exact solutions for nonlinear fractional differential equations using...
\((G'/G^2) \)-expansion method. *American Economic Journal*, 57, 1003–1008. doi:10.1016/j.aej.2017.01.035

Mohyud-Din, S. T., Noor, M. A., & Noor, K. I. (2010). Exp-function method for traveling wave solutions of modified ZakharovKuznetsov equation. *Journal of King Saud University-Science*, 22, 213–216. doi:10.1016/j.jksus.2010.04.015

Parand, K., & Rad, J. A. (2012). Exp-function method for some nonlinear PDE’s and a nonlinear ODE’s. *Journal of King Saud University-Science*, 24, 1–10. doi:10.1016/j.jksus.2010.08.004

Rahmatullah, R., Ellahi, S. T., Mohyud-Din, U. & Khan, (2018). Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method. *Results Physics*, 8, 114–120.

Rezagadeh, H., Khodadad, F. S., & Manafian, J. (2017). New structure for exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation via conformable fractional derivative. *Applied Application Mathematics*, 12, 405–414.

Shakeel, M., & Tauseef Mohyud-Din, S. (2015). New \((G'/G)\)-expansion method and its application to the Zakharov-KuznetsovBenjamin-Bona-Mahony (ZKBBM) equation. *Journal of Association Arabic University Basic Application*, 18, 66–81. doi:10.1016/j.jaubas.2014.02.007

Shallal, M. A., Jabbar, H. N., & Ali, K. K. (2018). Analytic solution for the space-time fractional Klein-Gordon and coupled conformable Boussinesq equations. *Results Physics*, 8, 372–378. doi:10.1016/j.rinp.2017.12.051

Song, L., Wang, Q., & Zhang, H. (2009). Rational approximation solution of the fractional Sharma-Tasso-Oliver equation. *The Journal of Computational and Applied Mathematics*, 224(1), 210–218. doi:10.1016/j.cam.2008.04.033

Sontakke, B. R., & Shaikh, A. (2016). Solving time fractional sharma tasso oliever equation using fractional complex transform with iterative method. *British Journal of Mathematics & Computer Science*, 19(1), 1–10. doi:10.9734/BJMCS/2016/29039

Taghizadeh, N., Mirzazadeh, M., Rahimian, M., & Akbari, M. (2013). Application of the simplest equation method to some time-fractional partial differential equations. *Ain Shams Engineering Journal*, 4(4), 897–902. doi:10.1016/j.asej.2013.01.006

Thomas, M. D., & Bamforth, P. B. (1999). Modelling chloride diffusion in concrete: Effect of fly ash and slag. *Cement and Concrete Research*, 29(4), 487–495. doi:10.1016/S0008-8846(98)00192-6

Wang, Y. Y., Zhang, Y.-P., & Dai, C. Q. (2016). Re-study on localized structures based on variable separation solutions from the modified tanh-function method. *Nonlinear Dynamics*, 83(3), 1331–1339. doi:10.1007/s11071-015-2406-5

Whitham, G. B. (1999). *Linear and nonlinear waves*. New York: Wiley.

Wu, X. H., & He, J. H. (2007). Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method. *Computer Mathematical Application*, 54(7–8), 966–986. doi:10.1016/j.camwa.2006.12.041

Zhao, D., Pan, X., & Luo, M. (2018). A new framework for multivariate general conformable fractional calculus and potential applications. *Physica A*, 510, 271–280. doi:10.1016/j.physa.2018.06.070

Zheng, B. (2013). Exp-function method for solving fractional partial differential equations. *Science World Journal*, 2013, 1–8. doi:10.1155/2013/465723