Addendum: Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders

Rim Shayakhmetov†, Maksim Kuznetsov†, Alexander Zhebrak†, Artur Kadurin†, Sergey Nikolenko†, Alexander Aliper† and Daniil Polykovskiy†

† Insilico Medicine, Hong Kong, Hong Kong, 2 Neuromation OU, Tallinn, Estonia

Keywords: deep learning, generative models, adversarial autoencoders, conditional generation, representation learning, drug discovery, gene expression

An Addendum on Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders

By Shayakhmetov R, Kuznetsov M, Zhebrak A, Kadurin A, Nikolenko S, Aliper A and Polykovskiy D (2020). Front. Pharmacol. 11:269. doi:10.3389/fphar.2020.00269

In the original article, we missed the parallel work by Méndez-Lucio et al. (2020). This work also tackles a similar problem of generating molecular structures from transcriptomic data. The authors proposed a conditional model based on the generative adversarial networks Goodfellow et al. (2014). Unlike their approach, our model is joint, allowing us to generate molecular structures for a given gene expression profile and vice versa.

REFERENCES

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). "Generative adversarial nets," in Advances in Neural Information Processing Systems. (Curran Associates, Inc), vol. 27, 2672–2680.

Méndez-Lucio, O., Baillif, B., Clevert, D.-A., Rouquie, D., and Wichard, J. (2020). De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat. Commun. 11, 1–10. doi: 10.1038/s41467-019-13807-w