Insulin Resistance is Associated with Subclinical Vascular Injury in Patients with a Kidney Disease

Maria M. Adeva-Andany, Carlos Fernández-Fernández, Lucía Adeva-Contreras, Natalia Carneiro-Freire, Alberto Domínguez-Montero and David Mouriño-Bayolo

Abstract: Patients with kidney disease have a strikingly high cardiovascular risk in the absence of conventional cardiovascular risk factors, including smoking or elevation of cholesterol associated with low-density lipoprotein. Kidney failure remains independently associated with increased cardiovascular risk in patients with diabetes, underlining the specific adverse influence of kidney disease on cardiovascular risk. Vascular injury develops in asymptomatic patients with kidney failure early in the course of the disease. Defective arterial vasodilation, increased arterial stiffness, increased intima-media thickness, and vascular calcification develop in patients with kidney disease long before clinical evidence of cardiovascular events. Even mildly reduced kidney function is associated with a subclinical vascular disease, which is a predictor of worse cardiovascular outcome in patients with kidney failure, similar to the general population and patients with diabetes. Insulin resistance is a typical feature of kidney disease that occurs during the entire span of the disorder, from mild dysfunction to the dialysis phase. Insulin resistance (or its clinical manifestations, the metabolic syndrome or its components) is independently associated with a subclinical vascular injury in patients with kidney disease. Additionally, the risk of developing incident kidney disease and the rapid decline in kidney function is higher in patients with insulin resistance. Animal protein consumption increases dietary acid load and intensifies insulin resistance. Consistently, meat intake promotes diabetes, cardiovascular disease, and kidney failure, while the consumption of plant-based food is protective against the development of the vascular disease. Insulin resistance is a robust cardiovascular risk factor in the general population, patients with diabetes, and patients with kidney disease.

Keywords: Cardiovascular risk, arterial vasodilation, arterial stiffness, pulse pressure, left ventricular hypertrophy, arterial pressure, intima-media thickness, vascular calcification.

1. INTRODUCTION

Prospective studies show that the risk of cardiovascular disease is more elevated in patients with altered Glomerular Filtration Rate (GFR) compared with individuals with normal GFR. The curve that relates GFR and cardiovascular risk is U-shaped, indicating that both reduced GFR (kidney disease) and elevated GFR (glomerular hyperfiltration) increase to the same extent, the risk of cardiovascular events (Fig. 1) [1-9]. Meta-analyses including data from the general population, groups with a high risk of vascular disease, and Chronic Kidney Disease (CKD) cohorts reveal that reduced kidney function is independently associated with cardiovascular disease and all-cause mortality. The Chronic Kidney Disease Epidemiology Collaboration equation categorizes more accurately the risk for mortality and end-stage kidney disease compared to the Modification of Diet in Renal Disease (MDRD) equation across a broad range of populations [10-13]. The particular importance of CKD as a predictor of cardiovascular disease and all-cause mortality is highlighted by a meta-analysis that shows that the mortality risk is comparable in patients with CKD, irrespective of the presence or absence of diabetes [14]. Consistently, patients with CKD have a higher probability of dying from cardiovascular disease than of progressing to stage 5 and starting renal replacement therapy. In a prospective study that recruited CKD patients with estimated GFR (MDRD equation) between 15 and 90 ml/min/1.73 m², only 3.1% of patients with CKD stage 2-4 progressed to renal replacement therapy while 24.9% died during a 5.5-year observation period. Death was more common than dialysis at all stages [15]. Accordingly, impaired kidney function is independently associated with a vascular injury in a comprehensive histopathologic study of arterial vessels in 100 autopsy subjects [16].

The strikingly high cardiovascular risk associated with CKD is not explained by standard cardiovascular risk factors, but insulin resistance due to activation of glucagon secretion is a typical feature of kidney failure and causes vas-
cicular injury [17]. Insulin resistance is a robust cardiovascular risk factor both in the general population and in patients with previous cardiovascular disease, having been implicated in the occurrence of cardiovascular events in these population groups, independently of other cardiovascular risk factors [18-23]. Diabetes, like CKD, is associated with markedly elevated cardiovascular morbidity and mortality explained by hyperglycemia or traditional cardiovascular risk factors such as smoking or hypercholesterolemia. Intensive glycemic control with insulin fails to reduce significant macrovascular complications compared with conventional glycemic control so that cardiovascular disease continues to develop in patients with diabetes despite adequate glycemic control with insulin. In contrast, enhancement of insulin sensitivity with metformin reduces diabetes complications and all-cause mortality in patients with diabetes [24, 25]. Consistently, multiple investigations link insulin resistance with an elevated risk of symptomatic cardiovascular events in patients with type 1 and type 2 diabetes, either lean or obese, independently of other cardiovascular risk factors [26-38]. Further, insulin resistance is independently associated with subclinical vascular disease, including defective vasodilatation, arterial stiffness, intima-media thickening, and vascular calcification in the general population [39-49]. Insulin resistance is also associated with a subclinical vascular injury in patients with diabetes, independently of standard cardiovascular risk factors. Patients with type 2 diabetes experience a long period of insulin resistance before the clinical diagnosis of the disease, unlike patients with type 1 diabetes. Asymptomatic vascular damage injury is not typically present in patients with type 1 diabetes when they are first diagnosed due to insulin deficiency, whereas subclinical vascular injury is evident in patients with screen-detected type 2 diabetes, indicating that insulin resistance has a crucial effect on the development of the vascular disease. Numerous investigations confirm the association between insulin resistance and subclinical vascular disease in patients with diabetes independently of traditional cardiovascular risk factors [47, 50-61]. In addition, insulin resistance contributes to the development of kidney disease in community-dwelling individuals and to the progression of kidney failure in patients with CKD [62-65].

Animal protein consumption, including unprocessed and processed meat (sausages, salami, bacon, hotdogs, ham), has been consistently associated with insulin resistance, assessed by hyperinsulinemic-euglycemic clamps, the homeostasis model assessment of insulin resistance (HOMA-IR) or the presence of metabolic syndrome or its components (obesity, arterial hypertension, reduced HDL-c, hypertriglyceridemia, glomerular hyperfiltration, microalbuminuria, low urine pH), which are the clinical expression of insulin resistance. The association between animal protein consumption and insulin resistance is independent of body mass index. Weight loss fails to enhance insulin sensitivity in the presence of a diet high in animal products [66-70]. The association between animal protein intake and insulin resistance is particularly apparent during pregnancy, a condition associated with physiological maternal insulin resistance. The intake of unprocessed and processed meat before pregnancy is strongly associated with a higher risk of gestational diabetes, after adjustment for confounders, including body mass index. In contrast, a higher intake of vegetable protein is independently associated with a lower risk of gestational diabetes. Further, the substitution of red meat or processed meat with healthy protein sources, such as nuts or legumes, is associated with a lower risk of gestational diabetes. On the contrary, substituting 5% of energy from vegetable protein with animal protein is associated with a 29% greater risk of gestational diabetes [71, 72].

Accordingly, vegetable food consumption enhances insulin sensitivity, independent of body mass index and other confounding variables. Therefore, replacing sources of animal protein with plant protein improves insulin resistance [22, 66, 67, 69, 70, 73-80].

The aggravation of insulin resistance due to animal protein consumption promotes type 2 diabetes. There is compelling evidence that dietary habits that include animal protein increase the risk of type 2 diabetes, whereas dietary patterns with an elevated content of high-quality vegetable protein contribute to the prevention of the disease. High-quality plant-based foods include nuts, whole grains (rice, wheat, corn), legumes (beans, lentils, soybeans, peas, chickpeas, peanuts), vegetables, and fruits. Accordingly, it has been repeatedly documented that population groups that change their dietary habits from traditional diets rich in vegetable protein to western-type dietary patterns with an elevated content of animal products endure a dramatic increase in the rate of type 2 diabetes mediated by the intensification of insulin resistance [81-89].

Dietary habits have a crucial effect on cardiovascular risk. Consumption of animal products is associated with a markedly increased risk of cardiovascular disease (coronary heart disease, stroke, and peripheral vascular disease), while consumption of plant-based foods reduces the risk of cardiovascular disease, independently of traditional cardiovascular risk factors. There is an inverse relationship between consumption of vegetable food and cardiovascular mortality independently of body mass index and other confounders. Accordingly, population groups that modify their dietary routine, increasing animal products while reducing vegetable food, experience a remarkable escalation in the rate of cardiovascular disease. Investigations that directly compare the effect of animal versus vegetable protein on cardiovascular risk...
risk confirm the differential effect of the two sources of protein. Intake of animal products increases cardiovascular risk, whereas vegetable foods have the opposite effect. Consistently, replacing sources of animal protein with plant protein reduces cardiovascular disease risk [90-94].

In patients with CKD, large prospective cohort studies confirm that dietary habits with elevated consumption of plant-based food enhance insulin sensitivity and are independently associated with lower overall mortality in this population group. A diet rich in legumes, cereals, whole grains, fruits and vegetables, and low in meat and refined sugars is protective from all-cause mortality in patients with CKD, like in the general population, patients with diabetes, and patients with prior cardiovascular disease (Fig. 2) [95-97].

Animal protein ingestion, unlike vegetable protein, activates glucagon secretion. The rise in plasma glucagon associated with animal protein ingestion remains for at least four hours after the intake of animal protein and this response is intensified in patients with diabetes. Other conditions that typically feature hyperglucagonemia include kidney disease, glomerular hyperfiltration, and diabetes [98-100]. Glucagon is the primary hormone that causes insulin resistance. In turn, insulin resistance plays an important role in the development of the vascular disease, although underlying pathogenic mechanisms remain elusive. Glucagon opposes protein synthesis in the skeletal muscle by increasing L-leucine oxidation. This amino acid has a crucial anabolic effect promoting protein synthesis in the skeletal muscle via activation of the kinase target of rapamycin. Glucagon attenuates the anabolic effect of L-leucine by promoting the oxidation of this amino acid. Accordingly, conditions that feature glucagon-induced insulin resistance are typically associated with the blunted ability to synthesize proteins in the skeletal muscle that may result in sarcopenia [101, 102].

Glucagon-induced suppression of protein synthesis in the skeletal muscle increases the availability of amino acids to produce glucose in the liver (gluconeogenesis) [103-105].

The role of the kinase target of rapamycin in the structure and function of the arterial wall is mostly unknown, but inhibitors of this enzyme, such as sirolimus and everolimus, have a beneficial effect on the vascular system. Clinical studies have documented that these agents improve cardiovascular outcomes in patients with coronary disease of native arteries, cardiac allograft vasculopathy, and kidney transplant recipients [106-111].

2. INSULIN RESISTANCE IS ASSOCIATED WITH SUBCLINICAL VASCULAR INJURY IN PATIENTS WITH CHRONIC KIDNEY DISEASE

Patients free of known cardiovascular disease with any degree of CKD experience subclinical vascular damage, including impaired vasodilation, arterial stiffening, increased intima-media thickness of the arterial wall, and vascular calcification (Fig. 3). Subclinical vascular disease in patients with CKD is linked to insulin resistance, while no correlation with conventional cardiovascular risk factors, such as elevated low-density lipoprotein-associated cholesterol (LDL-c), has been found (Table 1). Vascular injury in asymptomatic subjects with CKD is an independent predictor of future cardiovascular events among these patients.

2.1. Arterial Vasodilation in Patients with Chronic Kidney Disease

Normal arteries respond with vasodilation to either hyperemia (flow-mediated vasodilation) or administration of acetylcholine, methacholine, sodium nitroprusside, and nitroglycerin (glyceryl-trinitrate). This normal vasodilatory response is impaired in patients with CKD of any degree from mild to the dialysis stage. Both brachial artery flow-mediated vasodilation [112-116] and the vasodilatory response to acetylcholine or methacholine [117, 118] and glyceryl-trinitrate or sodium nitroprusside [112, 113, 117] are attenuated in patients with CKD compared to control subjects, independently of traditional cardiovascular risk factors.

The presence of defective arterial vasodilation increases cardiovascular risk in patients with CKD. In a prospective study with a median follow-up of 41 months, multivariate Cox analysis shows that defective flow-mediated vasodilation predicts cardiovascular outcomes independently of founders among patients with CKD stages 1-5 [115].

Impaired vasodilation in asymptomatic CKD patients is not justified by smoking or hypercholesterolemia, but seve-
ral investigations have shown an independent association between insulin resistance and defective vasodilatory response [114, 116, 117, 119, 120]. In nondiabetic patients with stage 3-5 CKD and healthy control subjects, insulin resistance evaluated by the HOMA-IR index is related to decreased brachial flow-mediated vasodilation after adjusting for traditional cardiovascular risk factors [114, 119]. In patients with stage 1-5 CKD, brachial artery flow-mediated dilatation was lower in patients with the metabolic syndrome (the clinical expression of insulin resistance) compared to patients without the metabolic syndrome, suggesting that insulin resistance is associated with defective flow-mediated vasodilation in patients with CKD of any degree [120]. Components of the metabolic syndrome, such as hypertriglyceridemia and hypertension, are independent predictors of defective arterial vasodilation in asymptomatic patients with a wide range of renal function from early-stage CKD to pre-dialysis. However, no correlation with serum cholesterol is observed [116, 117, 120]. In patients with essential hypertension followed-up for 4.5 years in a prospective study, the vasodilatory response to acetylcholine was inversely related with insulin resistance [HOMA-IR values], so that more insulin-resistant patients had reduced vasodilatory response compared with more insulin-sensitive subjects. Impaired vasodilatory response to acetylcholine at baseline was independently associated with progression to type 2 diabetes, suggesting that insulin resistance underlies the defective vascular response [121].

2.2. Arterial Stiffness in Patients with Chronic Kidney Disease

Asymptomatic patients with any stage of CKD experience systemic arterial stiffness independently of standard cardiovascular risk factors, compared to healthy controls [116, 122-128]. Predialysis and dialysis patients endure arterial stiffness to a similar extent [114, 129, 130]. In patients with diabetes, arterial stiffness worsens with kidney failure [131, 132]. The stiffening of the arterial wall increases systolic blood pressure, pulse pressure [systolic blood pressure minus diastolic blood pressure] and cardiac afterload, promoting left ventricular hypertrophy (Fig. 4). Accordingly, patients with CKD have greater systolic blood pressure, pulse pressure, and left ventricular mass compared to control population groups [114, 133, 134].

![Fig. (4). Simplified cardiovascular consequences associated with arterial stiffness.](image)

Similar to the general population, aortic stiffness is an independent predictor of future cardiovascular events and all-cause mortality in CKD patients. Prospective studies have shown that elevated aortic pulse-wave velocity and pulse

Table 1. Insulin resistance is independently associated with a subclinical vascular injury in patients with chronic kidney disease.

Population Group	Insulin Resistance	Subclinical Vascular Disease	References
Chronic kidney disease (CKD) stage 3-5	HOMA-IR	Decreased brachial flow-mediated vasodilation	[114, 119]
Patients with stage 1-5 CKD	Metabolic syndrome	Reduced brachial artery flow-mediated vasodilation	[120]
Patients with a wide range of renal function	Hypertriglyceridemia Hypertension	Defective arterial vasodilation	[116, 117, 120]
Patients with CKD	HOMA-IR	Increased arterial stiffness	[114, 128, 140]
Patients with CKD	Metabolic syndrome	Increased arterial stiffness	[114, 116, 127-129, 134, 140-142]
Non-diabetic patients with CKD stage 3-5	HOMA-IR	Increased intima-media thickness	[119]
Diabetic and nondiabetic patients with CKD	Metabolic syndrome	Increased carotid intima-media thickness	[143, 144, 146]
Patients on maintenance hemodialysis	Hypertriglyceridemia and reduced HDL-c	Increased carotid intima-media thickness	[129, 143]
Diabetic and nondiabetic patients with CKD	HOMA-IR	Subclinical coronary artery calcification	[157, 185, 186]
Predialysis patients with CKD	Hypertriglyceridemia and reduced HDL-c	Increased coronary artery calcification	[155]
Predialysis patients with CKD	Hypertriglyceridemia and reduced HDL-c	Increased abdominal aortic calcification	[183]
Dialysis patients	Dyslipidemia related to insulin resistance	Increased coronary artery calcification	[168]
Kidney transplant recipients	Metabolic syndrome	Rapid progression of coronary artery calcification	[170, 171, 189, 190]
pressure (reflecting increased aortic stiffness) are independent risk factors for all-cause mortality and cardiovascular disease in patients with CKD [135, 136] as well as maintenance hemodialysis [137-139].

Insulin resistance has been associated with subclinical arterial stiffness in patients with CKD. In asymptomatic CKD patients with or without diabetes, several studies have found an independent association between elevated HOMA-IR values and arterial stiffness (increased pulse-wave velocity) [114, 128, 140]. Comparable results are obtained when insulin resistance is ascertained by the presence of the metabolic syndrome or its components. Asymptomatic CKD patients with metabolic syndrome have increased arterial stiffness compared to those without metabolic syndrome [114, 128, 140, 141]. In addition, arterial stiffness is associated positively with age, waist circumference, and blood pressure and negatively with high-density lipoprotein-associated cholesterol (HDL-c) level, independently of confounding variables, in asymptomatic patients with a wide range of kidney dysfunction, suggesting that insulin resistance is a determinant factor of subclinical arterial stiffness in patients with any degree of CKD [114, 116, 127, 128, 140]. The triglyceride-glucose index (calculated as: In [fasting triglycerides (mg/dl) x fasting glucose (mg/dl) / 2] has been reported to be a surrogate marker of insulin resistance. In a cross-sectional study including 2,830 participants from the Northern Shanghai Study, multivariable logistic regression revealed that increased triglyceride-glucose index was associated with a higher risk of arterial stiffness, after adjustment for confounders, suggesting that insulin resistance increases the risk of arterial stiffness independently of other cardiovascular risk factors [142]. Insulin resistance (assessed by the HOMA-IR index) is an independent predictor of left ventricular hypertrophy (a sign of arterial stiffness) in a study population of patients with CKD and healthy controls free of cardiovascular disease and diabetes [134]. Patients on hemodialysis are more insulin-resistant (they have reduced HDL-c and elevated triglyceride levels) and show increased arterial stiffness compared to control individuals. However, the two groups have similar smoking habits and LDL-c [129].

2.3. Intima-media Thickness in Patients with Chronic Kidney Disease

The width of the arterial wall can be noninvasively evaluated by ultrasonography usually performed at the carotid artery site. Arterial intima-media thickness is greater in asymptomatic patients with any stage of CKD compared to healthy subjects, independently of standard cardiovascular risk factors. Even a minor deterioration in kidney function is associated with increased carotid intima-media thickness [115, 119, 125, 134, 143-146]. Increased intima-media thickness develops early in the course of kidney disease, having been demonstrated in the carotid artery and the femoral artery in young patients aged 10 to 20 years with stages 2 to 4 CKD [147]. Kidney failure remains an independent risk factor for increased carotid intima-media thickness in patients with type 2 diabetes [144, 148]. Arterial thickening is comparable in predialysis patients with CKD and patients on chronic hemodialysis. Multiple regression analyses indicate that the presence of renal failure but not being treated with dialysis is associated with increased carotid artery intima-media thickness, independent of other covariates [129, 143, 149].

Like in the general population, longitudinal studies show that subclinical thickening of the carotid wall is a strong predictor of future cardiovascular events and mortality in patients with CKD [150, 151]. Carotid intima-media thickness is also a predictor of calcification of the radial artery in patients with stage 5 CKD (pre-dialysis and hemodialysis), independent of the dialysis status [152].

Traditional cardiovascular risk factors such as hypercholesterolemia or smoking fail to explain the development of subclinical thickening of the arterial wall in CKD patients. However, insulin resistance is independently correlated with increased carotid intima-media thickness in asymptomatic patients with different stages of kidney failure [119, 129, 143, 144, 146]. In asymptomatic nondiabetic patients with CKD stage 3-5, insulin resistance assessed by the HOMA-IR is related to increased carotid intima-media thickness after adjusting for traditional cardiovascular risk factors [149]. In CKD patients with and without diabetes, subclinical carotid intima-media thickness is independently associated with clinical manifestations of insulin resistance, such as arterial pressure and low HDL-c [143, 144, 146].

Patients on maintenance hemodialysis with increased carotid intima-media thickness show elevated triglyceride and decreased HDL-c levels compared to control subjects [129, 143].

2.4. Vascular Calcification in Patients with Chronic Kidney Disease

Vascular calcification is markedly prevalent among asymptomatic patients with any degree of CKD. In these patients, calcification of the arterial wall is widespread across the vasculature and is usually detected non-invasively in the coronary arteries and the abdominal aorta. Vascular calcification begins to develop early in asymptomatic patients with CKD, having been observed in children and young patients [153-155].

Subclinical calcification of the coronary arteries is a common complication of CKD; its prevalence ranges from 40% to 66%. In patients with CKD, coronary artery calcification is more severe and extensive compared to control subjects, frequently affecting more than one coronary artery [153, 155-159]. Several population-based studies, such as the Framingham Offspring Study, the Dallas Heart Study, and the Chronic Renal Insufficiency Cohort Study, have documented a cross-sectional association between kidney failure and subclinical coronary artery calcification, independent of conventional cardiovascular risk factors [160-162]. A similar association between kidney function and coronary artery calcification has been found in a prospective cohort analysis from the Spokane Heart Study, a longitudinal study of community-dwelling adults who were assessed every 2 years for
coronary artery calcification. Multivariate models revealed that reduced kidney function independently predicted coronary artery calcification [163]. Prospective studies reveal that subclinical coronary artery calcification in CKD patients progresses more rapidly compared to subjects with normal kidney function. The faster rate of progression is similar across ethnicities [164-167]. Replacement therapy with dialysis or kidney transplantation does not stop or reverse coronary artery calcification. In young adults with childhood-onset CKD undergoing dialysis, subclinical coronary artery calcification is highly prevalent (92%) and progresses rapidly in the absence of conventional cardiovascular risk factors [154, 168-171].

Prospective analyses show that coronary artery calcification also progresses after kidney transplantation [170]. Autopsy studies reveal that coronary arteries obtained from CKD patients exhibit extensive calcified plaques that occupy a higher proportion of the media compared with subjects without kidney failure. Likewise, the intima-media thickness of the coronary arteries is higher in patients with kidney disease versus control subjects [172-174].

The prevalence of calcification of the abdominal aorta is strikingly high in asymptomatic patients with CKD either prior to dialysis (70.6%-86.3%) or after initiating this procedure (70.8%) [175-179]. In patients with moderate kidney failure (mean estimated GFR of 43.2 ml/min/1.73 m2), the prevalence of subclinical abdominal aortic calcification evaluated by non-contrast computed tomography scan has been reported to be 86.3% [177].

Abdominal aortic calcification evaluated by the scoring system described by Kaupilia using a lateral lumbar X-ray is associated with GFR (measured by iohexol clearance). In addition, there is a positive relationship between abdominal aortic calcification and pulse pressure and left ventricular mass, after adjustment for confounders, suggesting that patients with CKD experience wide vascular damage that increases both stiffness and calcification of the arterial wall [179]. The severity and progression of subclinical aortic calcification associated with CKD are greater when diabetes is also present compared to control groups [158, 180].

Prospective studies show that subclinical coronary artery calcification [159, 165, 181, 182] and abdominal aortic calcification [175, 177, 183] are independent predictors of cardiovascular events and all-cause mortality in asymptomatic patients with CKD. In a meta-analysis of prospective studies, subgroup analysis of patients with end-stage renal disease revealed that the presence of calcification in any arterial wall is associated with a 3-4-fold higher risk for cardiovascular events and overall mortality [184].

Subclinical vascular calcification develops in patients with CKD in the absence of traditional cardiovascular risk factors. However, insulin resistance has been independently associated with vascular calcification in asymptomatic patients with any degree of CKD. A number of cross-sectional studies have shown that insulin resistance evaluated by the HOMA-IR score is an independent risk factor for subclinical coronary artery calcification in diabetic and nondiabetic CKD patients with a broad range of kidney failure. Higher HOMA-IR values are positively associated with a greater prevalence of subclinical coronary artery calcification in patients with CKD, after adjustment for cardiovascular risk factors [157, 185, 186]. Clinical features of insulin resistance, such as high triglyceride level, has been identified as an independent determinant of coronary artery calcification [155] and abdominal aortic calcification [183] in patients with CKD.

In patients with diabetes and CKD, vascular calcification is more severe, suggesting that insulin resistance, which is typically present in the two conditions, may be an underlying common cause of vascular injury [158, 161, 167, 175, 180, 187, 188]. In patients on dialysis, a prospective study shows that coronary artery calcification progresses over time compared to baseline values. Rapid progression of coronary artery calcification is associated with high triglyceride and low HLD-c concentration (dyslipidemia typically related to insulin resistance), while no correlation with other lipid levels could be found [168]. Prospective cohort studies in renal transplant recipients with no prior history of cardiovascular disease reveal that clinical features of insulin resistance, such as the metabolic syndrome, high triglyceride level, and elevated arterial pressure, predict rapid progression of coronary artery calcification, independently of confounding variables. However, an association of coronary artery calcification with LDL-c was not identified. The prevalence of coronary artery calcification at baseline was higher in more insulin-resistant recipients compared with insulin-sensitive participants [170, 171, 189]. Consistently, metabolic syndrome is an independent cardiovascular risk factor in renal transplant recipients in a prospective study with an 8-year follow-up. Recipients with the metabolic syndrome at baseline (1 year after transplant) had an increased risk of cardiovascular events at follow-up compared with those without the metabolic syndrome [190].

3. INSULIN RESISTANCE IS A RISK FACTOR FOR THE DEVELOPMENT AND PROGRESSION OF KIDNEY DISEASE

Systemic vascular injury associated with insulin resistance may affect kidney vasculature to induce kidney damage in the general population and to accelerate the loss of kidney function in patients with CKD (Table 2). Dietary patterns with an elevated content of animal protein and a low amount of plant-based food induce insulin resistance and contribute to the deteriorating kidney function.

3.1. Insulin Resistance Increases the Risk of Developing Kidney Disease in the General Population

Both cross-sectional and prospective observational investigations show that insulin resistance is a risk factor for developing kidney disease in the general population, independently of confounding factors.
Table 2. Insulin resistance is independently associated with an increased risk of kidney disease and the progression of kidney failure.

Type of Study	Population Group	Insulin Resistance	Risk of Kidney Disease	Reference
Cross-sectional	General population US	HOMA-IR	Strong association between insulin resistance and the risk of kidney disease	[191]
Cross-sectional	General population US	Metabolic syndrome	Strong relation between metabolic syndrome and the risk of kidney disease	[192]
Cross-sectional	1,678 non-diabetic subjects	HOMA-IR	HOMA-IR was associated with reduced kidney function	[194]
Cross-sectional	General population	Metabolic syndrome	Graded relation between metabolic syndrome and kidney disease	[193]
Cross-sectional	Kidney transplant	Metabolic syndrome	Insulin resistance is associated with impaired allograft function	[202]
Prospective	General population	Metabolic syndrome	Association between metabolic syndrome and kidney disease	[201]
Prospective	Community-based cohort	Hyperinsulinemic euglycemic clamp	Insulin resistance is associated with new-onset kidney disease	[197]
Prospective	Community-based cohort	HOMA-IR	HOMA-IR is associated with the risk of developing kidney disease	[204]
Prospective	General population	Metabolic syndrome	Progressive relation of metabolic syndrome and kidney disease	[206]
Prospective	MDRD study	Metabolic syndrome	Blood pressure and HDL-c predicted progression of kidney failure	[213]
Prospective	ARIC study	Dyslipidemia of insulin resistance	Dyslipidemia of insulin resistance predicted decline in renal function	[214]
Prospective	Patients with kidney disease	Metabolic syndrome	Metabolic syndrome increases the risk of kidney failure progression	[216]
Prospective	Patients with kidney disease	HOMA-IR	Higher HOMA-IR predicts worsening of kidney function	[218]

Insulin resistance or its clinical features are strongly and independently associated with an increased prevalence of CKD in large community-based cross-sectional studies [191-193].

In 2003, the cross-sectional relationship of insulin resistance to the risk of prevalent CKD was examined among non-diabetic participants of the Third National Health and Nutrition Examination Survey (NHANES III), conducted between the years 1988 and 1994. CKD was defined as an estimated GFR < 60 ml/min/1.73 m², calculated by the MDRD formula. The prevalence of CKD was progressively higher with increasing levels of serum insulin and HOMA-IR after adjustment for confounding variables. A strong, positive, and dose-response association between insulin resistance and risk of CKD among non-diabetic individuals from the US general population was observed [191]. A similar result has been obtained in another population group. HOMA-IR was associated with the likelihood of reduced kidney function in a cross-sectional analysis of 1,678 subjects without diabetes [194]. In 2004, the cross-sectional association between the metabolic syndrome and risk for CKD was examined in the NHANES III study, which confirmed the previous results. Kidney failure was defined as an estimated GFR < 60 ml/min/1.73 m², calculated by the MDRD equation. A strong, positive, and independent relationship between metabolic syndrome and risk for prevalent CKD was identified. In addition, the risk for kidney disease increased progressively with a higher number of components of the metabolic syndrome after adjustment for confounding variables [192]. A similar graded relationship between increasing components of the metabolic syndrome and augmented prevalence of CKD has been confirmed in the NKF (National Kidney Foundation) Kidney Early Evaluation Program study [193]. The association between insulin resistance and increased prevalence of CKD is consistent across ethnic groups, including American Indians and population groups from Japan, Thailand, Sweden, and China [195-201]. In renal transplant recipients, a cross-sectional study shows that clinical manifestations of insulin resistance such as systolic blood pressure and hypertriglyceridemia are independently associated with impaired allograft function beyond one year post-transplant, after adjustment for established risk factors [202]. Diet is a major determinant of the acid load that must be excreted by the kidney to maintain acid-base balance. Dietary habits with a high content of meat, fish, and cheese and low content of legumes, vegetables, and fruits typically increase the dietary acid load and intensify insulin resistance. The association of dietary acid load with kidney disease was examined among 12,293 participants in the NHANES 1999-2004. The dietary acid load was assessed by estimating acid excretion from nutrient intake and body surface area. Kidney disease was defined as estimated GFR < 60 ml/min/1.73 m², calculated by the MDRD equation. The higher dietary acid load was independently associated with kidney failure [203].

Insulin resistance is an independent predictor of incident kidney disease in longitudinal studies, evaluated either by the hyperinsulinemic-euglycemic clamp [197] or by the HOMA-IR index [201, 204]. Higher insulin resistance at baseline is associated with a greater risk of new-onset kidney disease during follow-up independently of confounding factors, suggesting that insulin resistance is involved in the develop-
ment of kidney failure at an early stage. Community-based prospective studies involving different ethnic groups have consistently documented an independent association between baseline components of the metabolic syndrome and the risk of developing CKD at follow-up. Additionally, the risk for incident CKD increases progressively with a higher number of components of the metabolic syndrome at baseline, after adjustment for confounding factors [196, 198, 201, 204-210]. The prospective relationship between dietary protein sources and dietary acid load with incident CKD was evaluated in the Atherosclerosis Risk in Communities study among participants without baseline CKD. Red and processed meat consumption [high dietary acid load that increases insulin resistance] is associated with a greater risk of developing incident CKD. In contrast, higher dietary intake of nuts and legumes is associated with a lower risk of new-onset kidney disease in this community-based sample [211, 212].

3.2. Insulin Resistance Accelerates the Decline of Kidney Function in Patients with Chronic Kidney Disease

In addition, prospective studies show that insulin resistance predicts the decline of kidney function in patients with CKD independently of other risk factors.

Longitudinal studies show that insulin resistance [evaluated by its clinical manifestations or the HOMA-IR index] contributes to the progression of renal disease in patients with CKD.

In 1997, the MDRD study investigated baseline factors that predicted the decline of kidney function in patients with CKD. The renal clearance of 125I-iothalamate was used to measure GFR. Higher arterial pressure and lower HDL-c were independent predictors of progression in patients with GFR between 25 and 55 ml/min/1.73 m2 [213]. The Atherosclerosis Risk in Communities study obtained a comparable result in 2000. Among 12,728 participants with baseline serum creatinine less than 2 mg/dl in men and less than 1.8 mg/dl in women, higher triglycerides and lower HDL-c at baseline predicted a future decline in renal function independently of confounders over 2.9 years of follow-up. These associations were significant in participants with and without diabetes. In contrast, LDL-c had no predictive value concerning the loss of kidney function [214]. Consistently, prospective cohort studies reveal that the occurrence of metabolic syndrome is an independent determinant of CKD progression. Patients with CKD and metabolic syndrome have a higher risk of progression than those CKD patients without metabolic syndrome. In addition, the risk of a rapid decline in GFR increases gradually with the increase in the number of metabolic syndrome components [201, 204, 215, 216]. Comparable findings have been obtained when insulin resistance is evaluated by the HOMA-IR index. Insulin resistance is an independent predictor of kidney function loss in longitudinal studies. A higher HOMA-IR value at study entry independently predicts the deterioration of kidney function in CKD patients [199, 204, 217, 218]. The prospective association between dietary acid load and progression of CKD to end-stage kidney disease was investigated in partici-
Insulin Resistance is Associated with Subclinical Vascular Injury

HDL-c = High-Density Lipoprotein-associated Cholesterol

HOMA-IR = Homeostasis Model Assessment-Insulin Resistance

LDL-c = Low-density Lipoprotein-associated Cholesterol

MDRD = Modification of Diet in Renal Disease

NHANES = National Health and Nutrition Examination Survey

CONSENT FOR PUBLICATION
Not applicable.

FUNDING
None.

CONFLICT OF INTEREST
The authors have no conflicts of interest, financial or otherwise.

ACKNOWLEDGEMENTS
We are very grateful to Ms. Gema Souto for her continuous support.

REFERENCES
[1] Munter P, He J, Hamm L, Loria C, Whelton PK. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol 2002; 13(3): 745-53. PMID: 11856780
[2] Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351(13): 1296-305.
http://dx.doi.org/10.1056/NEJMoa041031 PMID: 15385656
[3] Brugts JJ, Knetsch AM, Mattace-Raso FU, Hofman A, Witteman JC. Renal function and risk of myocardial infarction in an elderly population: the Rotterdam Study. Arch Intern Med 2005; 165(22): 2659-65.
http://dx.doi.org/10.1001/archinte.165.22.2659 PMID: 16344425
[4] Meisinger C, Döring A, Löwel H. KORA Study Group. Chronic kidney disease and risk of incident myocardial infarction and all-cause and cardiovascular disease mortality in middle-aged men and women from the general population. Eur Heart J 2006; 27(10): 1245-50.
http://dx.doi.org/10.1093/eurheartj/ehi880 PMID: 16611670
[5] Van Biesen W, De Bacquer D, Verbeke F, Delangle J, Lameire N, Vanholder R. The glomerular filtration rate in an apparently healthy population and its relation with cardiovascular mortality during 10 years. Eur Heart J 2007; 28(4): 478-83.
http://dx.doi.org/10.1093/eurheartj/ehi455 PMID: 17223665
[6] Hallan S, Astor B, Romundstad S, Aasarod K, Kvenild K, Coresh J. Association of kidney function and albuminuria with cardiovascular mortality in older vs younger individuals: The HUNT II Study. Arch Intern Med 2007; 167(22): 2490-6.
http://dx.doi.org/10.1001/archinte.167.22.2490 PMID: 18071172
[7] Cox HJ, Bhandari S, Rigby AS, Kilpatrick ES. Mortality at low and high estimated glomerular filtration rate values: a ‘U’ shaped curve. Nephron Clin Pract 2008; 1(1): 67-72.
http://dx.doi.org/10.1159/000151720 PMID: 18758185
[8] Tonelli M, Klarenbach SW, Lloyd AM, et al. Higher estimated glomerular filtration rates may be associated with increased risk of adverse outcomes, especially with concomitant proteinuria. Kidney Int 2011; 80(12): 1306-14.
http://dx.doi.org/10.1038/ki.2011.280 PMID: 21849971
[9] Di Angelantonio E, Chowdhury R, Sarwar N, Aspelund T, Danesh J, Gudnason V. Chronic kidney disease and risk of major cardiovascular disease and non-vascular mortality: prospective population based cohort study. BMJ 2010; 341: e4986.
http://dx.doi.org/10.1136/bmj.c4986 PMID: 20884698
[10] Matsushita K, van der Velde M, Astor BC, et al. Chronic Kidney Disease Prognosis Consortium. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010; 375(9731): 2073-81.
http://dx.doi.org/10.1016/S0140-6736(10)60674-5 PMID: 20483451
[11] Matsushita K, Mahmoodi BK, Woodward M, et al. Chronic Kidney Disease Prognosis Consortium. Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 2012; 307(18): 1941-51.
http://dx.doi.org/10.1001/jama.2012.3954 PMID: 22570462
[12] Mahmoodi BK, Matsushita K, Woodward M, et al. Chronic Kidney Disease Prognosis Consortium. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet 2012; 380(9854): 1649-61.
http://dx.doi.org/10.1016/S0140-6736(12)61272-0 PMID: 23013602
[13] Hallan SI, Matsushita K, Sang Y, et al. Chronic Kidney Disease Prognosis Consortium. Age and association of kidney measures with mortality and end-stage renal disease. JAMA 2012; 308(22): 2349-60.
http://dx.doi.org/10.1001/jama.2012.16817 PMID: 23111824
[14] Fox CS, Matsushita K, Woodward M, et al. Chronic Kidney Disease Prognosis Consortium. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 2012; 380(9854): 1662-73.
http://dx.doi.org/10.1016/S0140-6736(12)61350-6 PMID: 23013602
[15] Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med 2004; 164(6): 659-63.
http://dx.doi.org/10.1001/archinte.164.6.659 PMID: 15037495
[16] Selvin E, Najar SS, Comish TC, Hulushka MK. A comprehensive histopathological evaluation of vascular medial fibrosis: insights into the pathophysiology of arterial stiffening. Atherosclerosis 2010; 208(1): 69-74.
http://dx.doi.org/10.1016/j.atherosclerosis.2009.06.025 PMID: 19632677
[17] Adeva-Andany MM, Fernández-Fernández C, Carneiro-Freire N, Castro-Quintela E, Pedre-Piñeiro A, Seco-Filgueira M. Insulin resistance underlies the elevated cardiovascular risk associated with kidney disease and glomerular hyperfiltration. Rev Cardiovasc Med 2020; 21(1): 41-56.
http://dx.doi.org/10.31083/j.rcm.2020.01.5102 PMID: 32259093
[18] Eddy D, Schlessinger L, Kahn R, Peskin B, Scheufler R. Relationship of insulin resistance and related metabolic variables to coronary artery disease: a mathematical analysis. Diabetes Care 2009; 32(2): 361-6.
http://dx.doi.org/10.2337/dc08-0854 PMID: 19017770
[19] Kodama S, Saito K, Tanaka S, et al. Fasting and post-challenge glucose as quantitative cardiovascular risk factors: a meta-analysis. J Atheroscler Thromb 2012; 19(4): 385-96.
http://dx.doi.org/10.5551/jat.10975 PMID: 22420096
[20] Haffner SM, Mykkänen L, Festa A, Burke JP, Stern MP. Insulin-resistant prediabetic subjects have more atherogenic risk factors than insulin-sensitive prediabetic subjects: implications for preventing coronary heart disease during the prediabetic state. Circulation 2000; 101(9): 975-80.
http://dx.doi.org/10.1161/01.CIR.101.9.975 PMID: 10704163
[21] Gast KB, Tjeerdema N, Stijnen T, Smit JW, Dekkers OM. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS One 2012; 7(12): e52036.
Zhang X, Li J, Zheng S, Luo Q, Zhou C, Wang C. Fasting insulin, insulin resistance, and risk of cardiovascular or all-cause mortality in non-diabetic adults: a meta-analysis. Biosci Rep 2017; 37(5): BSR20170947.

Pyörälä M, Miettinen H, Laakso M, Pyörälä K. Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policiemen Study. Circulation 1998; 98(5): 398-404. http://dx.doi.org/10.1161/01.CIR.98.5.398 PMID: 9714089

UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-53. http://dx.doi.org/10.1016/S0140-6736(98)07019-6 PMID: 9742976

UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metforin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352(9131): 854-65. http://dx.doi.org/10.1016/S0140-6736(98)07037-8 PMID: 9742977

Martin FI, Stocks AE. Insulin sensitivity and vascular disease in insulin-dependent diabetics. BMJ 1968; 2(5597): 81-2. http://dx.doi.org/10.1136/bmj.2.5597.81 PMID: 5646096

Orchard TJ, Olson JC, Erbey JR, et al. Insulin resistance-related factors, but not glyceria, predict coronary artery disease in type 1 diabetes: 10-year follow-up data from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Care 2003; 26(5): 1374-9. http://dx.doi.org/10.2337/diacare.26.5.1374 PMID: 12716791

Kilpatrick ES, Rigby AS, Atkin SL. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the Diabetes Control and Complications Trial. Diabetes Care 2007; 30(3): 707-12. http://dx.doi.org/10.2337/dc06-1982 PMID: 17327345

Bergman BC, Howard D, Schauer IE, et al. Features of hepatic and skeletal muscle insulin resistance unique to type 1 diabetes. J Clin Endocrinol Metab 2012; 97(5): 1663-72. http://dx.doi.org/10.1210/jc.2011-3172 PMID: 22362823

Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA 1990; 263(21): 2893-8. http://dx.doi.org/10.1001/jama.1990.03440210043030 PMID: 2338751

Bristow WR, Abrahms C, Moiritz T, et al. VADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360(2): 129-39. http://dx.doi.org/10.1056/NEJMoA0808341 PMID: 19092145

Gerstein HC, Miller ME, Byington RP, et al. Action to control cardiovascular risk in diabetes study group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358(24): 2545-59. http://dx.doi.org/10.1056/NEJMoA0802743 PMID: 18539917

Turnbull FM, Abrahms C, Anderson RJ, et al. Control Group. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 2009; 52(11): 2288-98. http://dx.doi.org/10.1007/s00125-009-1470-0 PMID: 19655124

Patel A, MacMahon S, Chalmers J, et al. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358(24): 2560-72. http://dx.doi.org/10.1056/NEJMoA0802987 PMID: 18539916

Ray KK, Seshasai SR, Wijeysundera S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 2009; 373(9677): 1765-72. http://dx.doi.org/10.1016/S0140-6736(09)60697-8 PMID: 19465231

Alexander CM, Landsman PB, Teutsch SM, Haffner SM. Third National Health and Nutrition Examination Survey (NHANES II-1); National Cholesterol Education Program (NCEP). NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 2003; 52(5): 1210-4. http://dx.doi.org/10.2337/diabetes.52.5.1210 PMID: 12716754

Ninomiya JK, L’Italien G, Criqui MH, Whyte JL, Gamst A, Chen RS. Association of the metabolic syndrome with history of myocardial infarction and stroke in the Third National Health and Nutrition Examination Survey. Circulation 2004; 109(1): 42-6. http://dx.doi.org/10.1161/01.CIR.0000108926.04022.6C PMID: 14676144

Zoungas S, Patel A, Chalmers J, et al. ADVANCE Collaborative Group. Severe hypoglycemia and risks of vascular events and death. N Engl J Med 2010; 363(15): 1410-8. http://dx.doi.org/10.1056/NEJMoa1003795 PMID: 20925543

Stehouwer CD, Henry RM, Ferreira I. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia 2008; 51(4): 527-39. http://dx.doi.org/10.1007/s00125-007-0918-3 PMID: 18239908

van Poeple NM, Westendorp IC, Bots ML, et al. Variables of the insulin resistance syndrome are associated with reduced arterial distensibility in healthy non-diabetic middle-aged women. Diabetologia 2003; 45(12): 1655-62. http://dx.doi.org/10.1007/s00125-003-1372-7 PMID: 14661730

Ras RT, Streppel MT, Draijer R, Zock PL. Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta-analysis. Int J Cardiol 2013; 168(1): 344-51. http://dx.doi.org/10.1016/j.ijcard.2012.09.047 PMID: 23041097

Tomsa A, Klinepeker Bartz S, Krishnamurthy R, Krishnamurthy R, Bach F. Endothelial function in youth: a biomarker modulated by adiposity-related insulin resistance. J Pediatr 2016; 178: 171-7. http://dx.doi.org/10.1016/j.jpeds.2016.07.025 PMID: 27546204

Kasayama S, Saito H, Mukai M, Koga M. Insulin sensitivity independently influences brachial-ankle pulse-wave velocity in non-diabetic subjects. Diabetes Metab 2005; 31(12): 1701-6. http://dx.doi.org/10.1111/j.1661-2447.2005.00178.x PMID: 16401315

Park JS, Nam JS, Cho MH, et al. Insulin resistance independently influences arterial stiffness in normoglycemic normotensive postmenopausal women. Menopause 2010; 17(4): 779-84. http://dx.doi.org/10.1097/gme.0b013e3181ed3d60 PMID: 20159757

Juonala M, Järvisalo MJ, Mäki-Torkko N, Kähönen M, Viikari JS, Raitakari OT. Risk factors identified in childhood and decreased arterial stiffness in adulthood: the Cardiovascular Risk in Young Finns Study. Circulation 2005; 112(10): 1486-93. http://dx.doi.org/10.1161/circulationaha.104.520161 PMID: 16172286

Rajala U, Laakso M, Päivänsalo M, Pelkonen O, Suramo I, Keinänen-Kiukaanniemi S. Low insulin sensitivity measured by both insulin resistance syndrome are associated with reduced arterial distensibility in healthy non-diabetic middle-aged women. Diabetes 2003; 52(5): 1210-4. http://dx.doi.org/10.1161/01.CIR.0000108926.04022.6C PMID: 14676144

Koskinen J, Magnusson CG, Sinaiko A, et al. Childhood age and associations between childhood metabolic syndrome and adult risk for metabolic syndrome, type 2 diabetes mellitus and carotid intima-media thickness: The International Childhood Cardiovascular Cohort Consortium. J Am Heart Assoc 2017; 6(8): e005632. http://dx.doi.org/10.1161/JAHA.117.005632 PMID: 28862940

Winkler G, Salamon F, Porochnev M, et al. Intimal-medical
Insulin Resistance is Associated with Subclinical Vascular Injury

Henry RM, Kostene PJ, Spijkerman AM, et al. Hoorn Study. Arterial stiffness increases with deteriorating glucose tolerance status: the Hoorn Study. Circulation 2003; 107(16): 2089-95. http://dx.doi.org/10.1161/01.CIR.0000065222.34933.FC PMID: 12695300

Rhee EJ, Kim JH, Park HJ, et al. Increased risk for development of coronary artery calcification in insulin-resistant subjects who developed diabetes: 4-year longitudinal study. Atherosclerosis 2016; 245: 132-8. http://dx.doi.org/10.1016/j.atherosclerosis.2015.12.010 PMID: 26724523

Salomaa V, Riley W, Kark JD, Nardo C, Folsom AR. Non-insulin-dependent diabetes mellitus and fasting glucose and insulin concentrations are associated with arterial stiffness indexes. The ARIC Study. Atherosclerosis Risk in Communities Study. Circulation 1995; 91(5): 1432-43. http://dx.doi.org/10.1161/01.CIR.91.15.1432 PMID: 7867184

Urbina EM, Kimball TR, Khoury PR, Daniels SR, Dolan LM. Increased arterial stiffness is found in adolescents with obesity or obesity-related type 2 diabetes mellitus. J Hypertens 2010; 28(8): 1692-8. http://dx.doi.org/10.1097/JH.0b013e32833a6132 PMID: 20647860

Naka KK, Papathanassiou K, Bechioulis A, et al. Determinants of vascular function in patients with type 2 diabetes. Cardiovasc Diabetol 2012; 11: 127. http://dx.doi.org/10.1186/1475-2840-11-127 PMID: 23062182

Bjornstad P, Maahs DM, Wong ND, Nelson JC, Granston T, et al. Increased dietary proteins and risk of type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Br J Nutr 2017; 117(6): 882-93. http://dx.doi.org/10.1017/S0007114517000745 PMID: 28397639

Nakamoto M, Uemura H, Sakai T, et al. Inverse association between soya food consumption and insulin resistance in Japanese adults. Public Health Nutr 2015; 18(11): 2031-40. http://dx.doi.org/10.1017/S136898001400247X PMID: 25382603

Barnard ND, Scialli AR, Turner-McGrievy G, Lanou AJ, Glass J, et al. Plant-based diet and weight loss therapy eliminates the weight-loss-induced improvement in insulin action in obese postmenopausal women. Cell Rep 2016; 17(3): 849-61. http://dx.doi.org/10.1016/j.celrep.2016.09.047 PMID: 27732859

Zhang C, Schulze MB, Solomon CG, Hu FB. A prospective study of dietary patterns, meat intake, and the risk of gestational diabetes mellitus. Diabetologia 2006; 49(11): 2604-13. http://dx.doi.org/10.1007/s00125-006-0422-1 PMID: 16957814

Bao W, Bowers K, Tobias DK, Hu FB, Zhang C. Prepregnancy dietary protein intake, major dietary protein sources, and the risk of gestational diabetes mellitus: a prospective cohort study. Diabetes Care 2013; 36(7): 2001-8. http://dx.doi.org/10.2337/dc12-1818 PMID: 23378620

Virtanen HEK, Koskinen TT, Voutilainen S, et al. Intake of dietary protein and risk of type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Br J Nutr 2017; 117(6): 882-93. http://dx.doi.org/10.1017/S0007114517000745 PMID: 28397639

Orlich MJ, Fraser GE. Vegetarian diets and glycemic control in diabetes: a systematic review and meta-analysis. Cardiovasc Diagn Ther 2014; 4(5): 373-82. http://dx.doi.org/10.3978/j.issn.2223-3652.2014.10.04 PMID: 25418424

Thompson RL, Khanal N, Cade JE. Meat consumption and blood pressure: a systematic review and meta-analysis. Br J Nutr 2014; 111(9): 1562-76. http://dx.doi.org/10.1017/S0007114513004728 PMID: 24931531

If you have any further questions or need additional assistance, feel free to ask!
[80] Leenders M, Slujs I, Ros MM, et al. Fruit and vegetable consumption and mortality: European prospective investigation into cancer and nutrition. Am J Epidemiol 2013; 178(4): 590-602. http://dx.doi.org/10.1093/aje/kws006 PMID: 23599238

[81] Ke Q, Chen C, He F, et al. Association between dietary protein intake and type 2 diabetes varies by dietary pattern. Diabetol Metab Syndr 2018; 10: 48. http://dx.doi.org/10.1186/s13098-018-0350-5 PMID: 29983752

[82] Jayedi A, Shab-Bidar S. Dietary acid load and risk of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective observational studies. Clin Nutr ESPEN 2018; 23: 10-8. http://dx.doi.org/10.1016/j.clnesp.2017.12.005 PMID: 29460782

[83] Zhao LG, Zhang QL, Liu XL, Wu H, Zheng JL, Xiang YB. Dietary protein intake and risk of type 2 diabetes: a dose-response meta-analysis of prospective studies. Eur J Nutr 2019; 58(4): 1351-67. http://dx.doi.org/10.1007/s00394-018-1737-7 PMID: 29858629

[84] Ye J, Yu Q, Mai W, Li P, Liu X, Wang Y. Dietary protein intake and its potential role in type 2 diabetes: a dose-response meta-analysis of prospective cohort studies. Acta Diabetol 2019; 56(8): 851-70. http://dx.doi.org/10.1007/s00592-019-01320-x PMID: 30929078

[85] Chen Z, Franco OH, Lamballais S, et al. Dietary patterns and type 2 diabetes: The Rotterdam Study. Clin Nutr 2020; 39(1): 10-8. http://dx.doi.org/10.1016/j.clnut.2019.01.021 PMID: 30739809

[86] Slikov D, Brouwer-Brolsma EM, Berendes AAM, et al. Protein intake and the incidence of pre-diabetes and diabetes in 4 population-based studies: the PREVIEW project. Am J Clin Nutr 2019; 109(5): 1310-8. http://dx.doi.org/10.1093/ajcn/nqy388 PMID: 31051540

[87] Craig WJ. Health effects of vegan diets. Am J Clin Nutr 2009; 89(5): 1627S-33S. http://dx.doi.org/10.3945/ajcn.2009.26736N PMID: 19279075

[88] Vang A, Singh PN, Lee JW, Haddad EH, Brinegar CH. Meats, processed meats, obesity, weight gain and occurrence of diabetes among adults: findings from Adventist Health Studies. Ann Nutr Metab 2008; 52(2): 96-104. http://dx.doi.org/10.1159/000121365 PMID: 18349528

[89] Snowdon DA, Phillips RL. Does a vegetarian diet reduce the occurrence of diabetes? Am J Public Health 1985; 75(5): 507-12. http://dx.doi.org/10.2105/AJPH.75.5.507 PMID: 3985239

[90] Snowdon DA, Phillips RL, Fraser GE. Meat consumption and fatal ischemic heart disease. Prev Med 1984; 13(5): 490-500. http://dx.doi.org/10.1016/0091-7435(84)90017-3 PMID: 6527990

[91] Sinha R, Cross AJ, Graubard BI, Leitzmann MF, Schatzkin A. Meat intake and the incidence of type 2 diabetes among adult women: findings from the nurses’ health study. Am J Clin Nutr 2011; 103(2): 465-73. http://dx.doi.org/10.3945/ajcn.110.112359 PMID: 21678145

[92] Sousa JE, Costa MA, Abizaid AC, et al. Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation 2001; 104(17): 2007-11. http://dx.doi.org/10.1161/01.CIR.0000128850.84227.FD PMID: 11673337

[93] Grube E, Sonoda S, Ikeno F, et al. Influence of dietary protein in the sarcopenia of aging. Am J Clin Nutr 2009; 89(5): 1627S-33S. http://dx.doi.org/10.1093/aje/kwt006 PMID: 23599238

[94] Unger RH, Aguilar-Parada E, Müller WA, Eisentraut AM. Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest 1970; 49(4): 837-48. http://dx.doi.org/10.1172/JCI101629 PMID: 4986215

[95] Müller WA, Faloona GR, Aguilar-Parada E, Unger RH. Abnormal alpha-cell function in diabetes. Response to carbohydrate and protein ingestion. N Engl J Med 1970; 283(3): 109-15. http://dx.doi.org/10.1056/NEJM197007161803031 PMID: 4912452

[96] Pae D, Cheng KN, Ford GC, Halliday D. Influence of glucagon on protein and leucine metabolism: a study in fasting man with induced insulin resistance. Br J Surg 1990; 77(7): 791-4. http://dx.doi.org/10.1002/bjs.1800770723 PMID: 1974474

[97] Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol 1987; 253(2 Pt 1): E208-13. http://dx.doi.org/10.2105/ajpci.n.1987.253.2.E208 PMID: 3303968

[98] Mancini D, Pinney S, Burkhoff D, Monteil C, de Ligny BH, Joannidès R, Monteil C, de Ligny BH, et al. Use of rapamycin slows progression of cardiac transplantation vasculopathy. Circulation 2003; 108(1): 48-53. http://dx.doi.org/10.1161/01.CIR.0000070421.38604.2B PMID: 12742978

[99] Joannides R, Monteil C, de Ligny BH, et al. Immunosuppressant regimen based on sirolimus decreases aortic stiffness in renal transplant recipients. Circulation 2005; 111(11): 2414-22. http://dx.doi.org/10.1161/01.CIR.0000123001.63679.d7 PMID: 15626644

[100] Paolotti E, Marsano L, Bellino D, Cassottana P, Cannella G. Effect of everolimus on left ventricular hypertrophy of de novo kidney transplant recipients: a 1 year, randomized, controlled trial. Transplantation 2012; 93(5): 503-8. http://dx.doi.org/10.1097/TP.0b013e318242bc28 PMID: 22318246

[101] Rylko-Bin D, Bornfeldt KE, Sonnenburg WK, et al. Calmodulin-s-
Insulin Resistance is Associated with Subclinical Vascular Injury

C. J. J. 1997; 100(10): 2611-21. http://dx.doi.org/10.1172/JCI119850 PMID: 9366577

Thambirajah J, Landray MJ, McGlynn FJ, Jones HJ, Wheeler DC, Townsend RD, In. Abnormalities of endothelial function in patients with preclinical renal injury. Heart 2000; 82(3): 205-9. http://dx.doi.org/10.1136/heart.83.2.205 PMID: 10648498

Nakanishi T, Ishigami Y, Otaki Y, et al. Impact of vascular responses to reactive hyperemia and nitric oxide in chronic renal failure. Nephron 2002; 92(3): 259-32. http://dx.doi.org/10.1159/0000064078 PMID: 12372934

Doga G, Irish A, Chan D, Watts G. Insulin resistance, inflammation, and blood pressure determine vascular dysfunction in CKD. Am J Kidney Dis 2006; 48(6): 926-34. http://dx.doi.org/10.1053/j.akd.2006.08.008 PMID: 17162147

Yilmaz M, Stenvinkel P, Sonmez A, et al. Vascular health, systemic inflammation and progressive reduction in kidney function; clinical determinants and impact on cardiovascular outcomes. Nephrol Dial Transplant 2011; 26(1): 3537-43. http://dx.doi.org/10.1093/ndt/grr081 PMID: 21378154

Lilikarnatakul P, Dhaun N, Melville V, et al. Blood pressure and not uraemia is the major determinant of arterial stiffness and endothelial dysfunction in patients with chronic kidney disease and minimal co-morbidity. Atherosclerosis 2011; 216(1): 217-25. http://dx.doi.org/10.1016/j.atherosclerosis.2011.01.045 PMID: 21376233

Annuk M, Lind L, Linde T, Fellström B. Impaired endothelial-dependent vasodilatation in renal failure in humans. Nephrol Dial Transplant 2001; 16(2): 302-6. http://dx.doi.org/10.1093/ndt/16.2.302 PMID: 11158404

Periccone F, Maio R, Tripepi G, Zoccali C. Endothelial dysfunction and mild renal insufficiency in essential hypertension. Circulation 2004; 110(7): 821-5. http://dx.doi.org/10.1161/01.CIR.0000138745.21879.27 PMID: 15289371

Banerjee D, Recio-Mayoral A, Chitalia N, Kaski JC. Insulin resistance, and blood pressure determine vascular dysfunction in CKD. Annuk M, Lind L, Linde T, Fellström B. Impaired endothelial-dependent vasodilatation in renal failure in humans. Nephrol Dial Transplant 2001; 16(2): 302-6. http://dx.doi.org/10.1093/ndt/16.2.302 PMID: 11158404

Periccone F, Maio R, Sciaccia A, et al. Endothelial dysfunction and C-reactive protein are risk factors for diabetes in essential hypertension. Diabetes 2008; 57(1): 167-71. http://dx.doi.org/10.2337/db07-1189 PMID: 17928395

Aoun S, Blacher J, Safar ME, Mourad JJ. Diabetes mellitus and renal failure: effects on large artery stiffness. J Hum Hypertens 2001; 15(10): 693-700. http://dx.doi.org/10.1080/10434560110012553 PMID: 11607799

Mourad JJ, Pannier B, Blacher J, et al. Creatinine clearance, pulse wave velocity, carotid compliance and essential hypertension. Kidney Int 2002; 62(6): 2195-201. http://dx.doi.org/10.1046/j.1523-1755.2002.00173.x PMID: 12427145

London GM, Blacher J, Pannier B, Guérin AP, Marchais SJ, Safar ME. Arterial wave reflections and survival in end-stage renal failure. Hypertension 2001; 38(3): 434-8. http://dx.doi.org/10.1161/01.HYP.38.3.434 PMID: 11566918

Karras A, Haymann JP, Bozec E, et al. Nephro Test Study Group. Large artery stiffening and remodeling are independently associated with all-cause mortality and cardiovascular events in chronic kidney disease. Hypertension 2012; 60(6): 1451-7. http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.197210 PMID: 24028070

London GM, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM. Impact of arterial stiffness on survival in end-stage renal disease. Circulation 1999; 99(18): 2434-9. http://dx.doi.org/10.1161/01.CIR.99.18.2434 PMID: 10318666

Shoji T, Emoto M, Shinohara K, et al. Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end-stage renal disease. J Am Soc Nephrol 2006; 17(8): 2245-52. http://dx.doi.org/10.1681/ASN.2005101038 PMID: 16837632

Verhave JC, Frischer P, du Cailar G, Ribstein J, Safar ME, Minmann A. Elevated pulse pressure is associated with low renal function in elderly patients with isolated systolic hypertension. Hypertension 2005; 45(4): 586-91. http://dx.doi.org/10.1161/01.HYP.0000158843.60830.cf PMID: 15738348

Lai S, Coppola B, Dimko M, et al. Vitamin D deficiency, insulin resistance, and ventricular hypertrophy in the early stages of chronic kidney disease. Ren Fail 2014; 36(1): 58-64. http://dx.doi.org/10.1080/0886022X.2013.832308 PMID: 24028070

Shoji T, Emoto M, Shinohara K, et al. Diabetes mellitus, aortic stiffness, and ventricular hypertrophy in the early stages of chronic kidney disease. Ren Fail 2014; 36(1): 58-64. http://dx.doi.org/10.1080/0886022X.2013.832308 PMID: 24028070

London GM, Blacher J, Pannier B, Guérin AP, Marchais SJ, Safar ME, London GM. Impact of arterial stiffness on survival in end-stage renal disease. Circulation 1999; 99(18): 2434-9. http://dx.doi.org/10.1161/01.CIR.99.18.2434 PMID: 10318666

Shoji T, Emoto M, Shinohara K, et al. Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end-stage renal disease. J Am Soc Nephrol 2001; 12(10): 2117-24. http://dx.doi.org/10.1681/ASN.2012120117 PMID: 11566240

Tozawa M, Iseki K, Iseki C, Takahata S. Pulse pressure and risk of total mortality and cardiovascular events in patients on chronic hemodialysis. Kidney Int 2002; 61(2): 717-26. http://dx.doi.org/10.1046/j.1523-1755.2002.00173.x PMID: 11849415

Shinohara K, Shoji T, Tsujimoto Y, et al. Arterial stiffness in pre-dialysis patients with uremia. Kidney Int 2004; 65(3): 936-43. http://dx.doi.org/10.1111/j.1523-1755.2004.00486.X PMID: 14871413

Lilikarnatakul P, Dhaun N, Melville V, Kerr D, Webb DJ, Goddard J. Risk factors for metabolic syndrome independently predict arterial stiffness and endothelial dysfunction in patients with chronic kidney disease and minimal comorbidity. Diabetes Care 2012; 35(8): 1747-50. http://dx.doi.org/10.2337/dc12-12345 PMID: 22648437

Zhai S, Yu S, Chi C, et al. Association between macro- and microvascular damage and the triglyceride glucose index in community-dwelling elderly individuals: the Northern Shanghai Study. Cardiovasc Diabetol 2019; 18(1): 95. http://dx.doi.org/10.1186/s12933-019-0898-x PMID: 31345238
Insulin Resistance is Associated with Subclinical Vascular Injury

Adesemun GA, Rivera ME, Thota S, Joffe M, Rosas SE. Metabolic syndrome and coronary artery calcification in renal transplant recipients. Transplantation 2008; 86(5): 728-32.
PMID: 18791455

Courvraud C, Kazyro A, Simula-Faivre D, Chalopin JM, Ducloix D. Metabolic syndrome and atherosclerotic events in renal transplant recipients. Transplantation 2007; 83(12): 1577-81.
PMID: 17589340

Chen J, Muntrp P, Hamm LL, et al. Insulin resistance and risk of chronic kidney disease in nondiabetic US adults. J Am Soc Nephrol 2003; 14(2): 469-77.
PMID: 12538749

Chen J, Muntrp P, Hamm LL, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med 2004; 140(3): 167-74.
PMID: 14757614

Onat A, Hergenç G, Uyarel H, et al. Association between mild renal dysfunction and insulin resistance or metabolic syndrome in a random nondiabetic population sample. Kidney Blood Press Res 2007; 30(2): 88-96.
PMID: 17159048

Nerpin E, Risterus U, Ingelsson E, et al. Insulin sensitivity measured with euglycemic clamp is independently associated with glomerular filtration rate in a community-based cohort. Diabetes Care 2008; 31(8): 1550-5.
PMID: 18509205

Lucove J, Vuppuruturi S, Heiss G, North K, Russell M. Metabolic syndrome and the development of CKD in American Indians: the Strong Heart Study. Am J Kidney Dis 2008; 51(1): 21-8.
PMID: 18155529

Cheng HT, Huang JW, Chiang CK, Yen CJ, Hung KY, Wu KD. Metabolic syndrome and insulin resistance as risk factors for development of chronic kidney disease and rapid decline in renal function in elderly. J Clin Endocrinol Metab 2012; 97(4): 1268-76.
PMID: 22102169

Hu W, Wu XJ, Yi YJ, Hao HR, Yu WN, Zhou HW. Metabolic syndrome is independently associated with a mildly reduced estimated glomerular filtration rate: a cross-sectional study. BMC Nephrol 2017; 18(1): 192.
PMID: 28610620

Hu Y, Shi LX, Zhang Q, Peng NC. Increased risk of chronic kidney diseases in patients with metabolic syndrome: a 3-year Prospective cohort study. Curr Med Sci 2019; 39(2): 204-10.
PMID: 31016511

Vries AP, Bakker SJ, van Son WJ, et al. The metabolic syndrome is associated with impaired long-term renal allograft function; not all component criteria contribute equally. Am J Transplant 2004; 4(10): 1675-83.
PMID: 15367224

Banerjee T, Crews DC, Wesson DE, et al. Centers for Disease Control and Prevention Chronic Kidney Disease Surveillance Team. Dietary acid load and chronic kidney disease among adults in the United States. BMC Nephrol 2014; 15: 137.
Huh JH, Yadav D, Kim JS, et al. An association of metabolic syndrome and chronic kidney disease from a 10-year prospective cohort study. Metabolism 2017; 67: 54-61.
http://dx.doi.org/10.1016/j.metabol.2016.11.003 PMID: 28081778

Kurella M, Lo JC, Chertow GM. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol 2005; 16(7): 2134-40.
http://dx.doi.org/10.1681/ASN.2005010106 PMID: 15901764

Ninomiya T, Kiyohara Y, Kubo M, et al. Metabolic syndrome and CKD in a general Japanese population: the Hisayama Study. Am J Kidney Dis 2006; 48(3): 383-91.
http://dx.doi.org/10.1053/j.ajkd.2006.06.003 PMID: 16931211

Lee CC, Sun CY, Wu IW, Wang SY, Wu MS. Metabolic syndrome loses its predictive power in late-stage chronic kidney disease progression—a paradoxical phenomenon. Clin Nephrol 2011; 75(2): 141-9.
http://dx.doi.org/10.5410/CNP75141 PMID: 21255544

Kobayashi H, Tokudome G, Hara Y, et al. Insulin resistance is a risk factor for the progression of chronic kidney disease. Clin Nephrol 2009; 71(6): 643-51.
http://dx.doi.org/10.5410/CNP71643 PMID: 19473633

Banerjee T, Crews DC, Wesson DE, et al. Centers for Disease Control and Prevention Chronic Kidney Disease Surveillance Team. High dietary acid load predicts ESRD among adults with CKD. J Am Soc Nephrol 2015; 26(7): 1693-700.
http://dx.doi.org/10.1681/ASN.2014040332 PMID: 25677388