Abstract

KCNH2 is one of the 59 medically actionable genes recommended by the American College of Medical Genetics for reporting of incidental findings from clinical genomic sequencing. However, half of the reported KCNH2 variants in the ClinVar database are classified as variants of uncertain significance. In the absence of strong clinical phenotypes, there is a need for functional phenotyping to help decipher the significance of variants identified incidentally. Here, we report detailed methods for assessing the molecular phenotype of any KCNH2 missense variant. The key components of the assay include quick and cost-effective generation of a bi-cistronic vector to co-express Wild-type (WT) and any KCNH2 variant allele, generation of stable Flp-In HEK293 cell lines and high-throughput automated patch clamp electrophysiology analysis of channel function. Stable cell lines take 3–4 weeks to produce and can be generated in bulk, which will then allow up to 30 variants to be phenotyped per week after 48 h of channel expression. This high-throughput functional genomics assay will enable a much more rapid assessment of the extent of loss of function of any KCNH2 variant.

Keywords: automated patch clamp; electrophysiology; KCNH2; long QT; ion channel

Introduction

KCNH2 encodes the human ether-a-go-go-related gene (hERG) potassium channel [1, 2], which is responsible for the rapid component of the delayed rectifier potassium current, I_{Kr}, a major contributor to cardiac repolarization [3]. Loss-of-function variants in KCNH2, leading to reduced I_{Kr} current, result in prolongation of the cardiac action potential and cause congenital long QT syndrome Type 2 (LQTS2) [4]. Loss of function may be caused by reduced synthesis, misfold, and reduced trafficking of channels to the cell membrane, altered gating or altered ion permeability of assembled channels [5]. Variants may also cause a dominant loss of function when co-expressed with WT alleles [6].

Methods that are available to assess the in-vitro phenotype of KCNH2 variants include the use of Western blot [6, 7], surface enzyme-linked immunosorbent assay (ELISA) [8, 9], or manual patch-clamp electrophysiology [10, 11]. Patch-clamp assays are
the gold standard for assessing function as they can assay levels of expression as well as altered gating and ion permeability all in the one assay. Until recently, patch clamp assays were limited by their low throughput (a few cells per day). This limitation, however, has been overcome by the introduction of high-throughput automated patch clamp systems, which permit the analysis of the function for a large number of ion-channel variants, for example, KCNH2 [8], KCNQ1 [12], SCN5A [13], KCNB1 [14], and CACNA11 [15].

As hERG1a protein expresses as a tetrameric potassium ion-channel potential dominant-negative effects will not be captured if phenotyping only the homozygous variant. To fill the unmet clinical need for the classification of clinically detected KCNH2 variants we need a high-throughput electrophysiology assay that can phenotype heterozygous KCNH2 variants.

Here, we describe the methods for (i) designing the heterozygous expression vector; (ii) generation of the stable Flp-In HEK293 cell lines in a high-throughput manner; and (iii) cell culture routine and cell preparation for use on automated patch clamp systems. These protocols have been previously tested on a small number of heterozygous KCNH2 variants [8] and has since been optimized into a high-throughput manner, including automated data analysis.

Materials and methods

Designing of DNA vector to express heterozygous KCNH2 variant

To co-express variant and WT hERG1a protein, we subcloned an internal ribosome entry site (IRES) into the pcDNA™/FRT/TO vector (Thermofisher, cat. # V652020). The variant KCNH2 cDNA was sub cloned into the vector before the IRES and the WT KCNH2 cDNA was sub cloned after the IRES site. Previously, we showed using co-expression of hERG1a and hERG1b isoforms that placing the variant prior to the IRES and the WT after the IRES gave expression levels that most closely matched functionally equivalent expression of the two alleles [8]. To maximize the efficiency of gene synthesis and subcloning of variants we introduced one restriction site (NsiI) into the variant KCNH2 cDNA and silenced three restriction sites (BstXI, BstEII, and SbfI) in the WT KCNH2 cDNA. Thus, the variant KCNH2 cDNA was divided into five regions, separated by BstEII, NsiI, and SbfI, so that any heterozygous KCNH2 variant vector can be generated from a synthesised gene block regardless of the location of the variant. We outsource this to GenScript Inc. (Piscataway, NJ, USA) (see Fig. 1).

Generation of Flp-In™ TM T™ rex HEK293 KCNH2 variant cell lines

The pipeline for generating a large number of Flp-In HEK293 KCNH2 variants cell lines was optimized for establishment of 100 Flp-In HEK293 cell lines per round. The protocol is described as follow.

Day 0: Reviving Flp-In HEK293 parental cell (Thermofisher, cat. # R78007)

- A minimum of 40 million cells is required for 100 transfections.
- Thaw parental Flp-In HEK293 cells by incubating cryogenic vials in 37°C water bath for up to 3 min.
- Transfer cell suspension into a 15 mL centrifugate tube that contains 4 mL BZ-DMEM [DMEM (Thermofisher, cat. # 10566016)] supplemented with 10% FBS (Sigma-Aldrich, cat. # 12007Q), 10 ug/mL Blasticidin (InvivoGen, cat. # ant-bl-1) and 100 ug/mL Zeocin (Thermofisher, cat. # R25005).
- Centrifuge cells at 200g for 3 min. Aspirate old media and resuspend cells with BZ-DMEM, then dispense them into T75 flasks.
- Propagate cells to 80% confluence.

Day 1: Prepare parental Flp-In HEK293 cells for transfection

- Passaging cells from T75 flasks.
- Aspirate media, wash with 5 mL DPBS (Thermofisher, cat. # 14190144) and aspirate. Digest cells with 1 mL TrypLE (Thermofisher, cat. # 12563011) and incubate flask at 37°C, 5% CO2 for 4 min before adding 4 mL of BZ-DMEM to inactivate TrypLE.
- Combine all cell suspensions into a T75 flask and count cells using Countess ll (Thermofisher, cat. # AMQAX1000). Transfer 40 million cells into a fresh T75 flask and adjust the cell density to 200,000 cells per mL by adding fresh BZ-DMEM into the flask.
- Transfer 2 mL of cell suspension from the T75 flask into 101 wells (17 × 6-well plates), which will include one well for negative control.

Day 2: Transfection of heterozygous hERG vector DNA into parental Flp-In HEK293

- Prepare 100 wells (using 96-well plate format) that contain 520 ng of POG44 Flp-Recombinase Expression Vector (Thermofisher, cat. # V600520) and 2.3 uL of P3000 (Thermofisher, cat. # L3000015), add 60 ng of a different heterozygous KCNH2 vector DNA into each well before adding 70 uL of Opti-MEM (Thermofisher, cat. # 31985070) into each well.
- In a separate set of 101 wells (one additional well is for transfecting the negative control) (using 96-well plate format) add 2.3 ul of lipofectamine 3000 (Thermofisher, cat. # L3000015) and 70 ul of Opti-MEM into each well.
- Mix the DNA mixture and lipofectamine 3000 mixture by transferring the DNA mixture to the lipofectamine mixture and incubate at room temperature for at least 15 min.
- Replace the culture media of all the six-well plates with 1.5 mL prewarmed Opti-MEM per well and add transfection reagent into each well.
- Return cells back into the 37°C, 5% CO2 incubator for 5 h before replacing the culture media with 2 mL B-DMEM (Thermofisher, cat. # 10566016) supplemented with 10% FBS (Sigma-Aldrich, cat. # D9891) into the media of each flask and propagate cells to near confluency, typically takes around 3 days.

Day 3: Preparation of transfected Flp-In HEK293 for antibiotic selection process
- Passaging cells from each well into T25 flask
 - Aspirate media, wash with 1 mL DPBS and aspirate. Digest cells with 0.15 mL TrypLE and incubate flask at 37°C, 5% CO2 for 4 min before adding 1 mL of B-DMEM to inactivate TrypLE.
 - Transfer all of the cell suspension from each well into a separate T25 flask that contains 4 mL of fresh B-DMEM.
- Replace the culture media in each T25 flask with BH-DMEM (Thermofisher, cat. # 10687010) at 2-day intervals.
- Count cell using Countess ll and seed appropriate cell density for automated patch clamp electrophysiology
- Induce expression by adding 200 ng/uL doxycycline (Sigma-Aldrich, cat. # D9891) into the media of each flask and propagate cells for 48–52 h.

Days 18–25: Freezing down heterozygous KCNH2 Flp-In HEK293
- Passaging cells when they reach 80% confluency.
 - Aspirate media, wash with 2 mL DPBS and aspirate. Digest cells with 0.35 mL TrypLE for 4 min at 37°C, 5% CO2 incubator before adding 2 mL of BH-DMEM to inactivate TrypLE.
 - Transfer all of the cell suspension into a 15 mL tube and centrifuge at 200 g for 3 min.
- Freezing cells
 - Aspirate old media from the tube and resuspend cells with 2 mL cold BH-DMEM supplemented with 10% sterile DMSO (Sigma-Aldrich, cat. # D2438).
 - Dispense 1 mL per cryogenic vial and place them in an insulated container (Thermosthaker, cat. # 5100-0001) for slow cooling. Place the insulated container in −80°C freezer and transfer the vials to liquid nitrogen vapour phase for long-term storage the next day.

Cell culture routine of heterozygous KCNH2 Flp-In HEK293 for automated patch clamp electrophysiology
The cell culture routine was established to allow the phenotyping of 10 variants and 2 controls (WT and negative controls) on a 384-well plate. This process can be up-scaled to 30 variants if desired.

Day 1: Reviving heterozygous KCNH2 Flp-In HEK293 cells from cryogenic storage
- Thaw positive control (WT:WT), negative control (blank Flp-In HEK293) and 10 heterozygous variants by incubating these cryogenic vials in 37°C water bath for 3 min. This step is typically done on a Tuesday.
- Aspirate media, wash with 5 mL BH-DMEM and dispense them into individual T25 flasks.
- Propagate cells to near confluence, typically takes around 3 days.

Day 4/7/9/11: Recovery of heterozygous KCNH2 Flp-In HEK293
- Passaging cells for 1 week to recover and synchronize cell growth
 - Aspirate media, wash with 2 mL DPBS and aspirate. Digest cells with 0.35 mL TrypLE and incubate flask at 37°C, 5% CO2 for 4 min before adding 2 mL of BH-DMEM to inactivate TrypLE.
 - Count cell using Countess ll and seed appropriate cell density into a fresh T25 flask that contains 4.5 mL of fresh BH-DMEM.
- Aspirate old media and resuspend cells with 5 mL BH-DMEM and centrifuge at 200 g for 3 min.

Day 14: Seed heterozygous KCNH2 Flp-In HEK293 for patch clamp experiment
- Passaging 12 Flp-In HEK293 cell lines
 - Aspirate media, wash with 2 mL DPBS and aspirate. Digest cells with 0.35 mL TrypLE and incubate flask at 37°C, 5% CO2 for 4 min before adding 2 mL of BH-DMEM to inactivate TrypLE (negative control uses B-DMEM).
 - Count cell using Countess ll and seed 1 million cells into a fresh T75 flask that contains 10 mL of fresh BH-DMEM.

Day 15: Induce the expression of heterozygous KCNH2 Flp-In HEK293
- Induce expression by adding 200 ng/uL doxycycline (Sigma-Aldrich, cat. # D9891) into the media of each flask and propagate cells for 48–52 h.

Day 17: Harvest cells for automated patch clamp experiment
- Passaging 12 Flp-In HEK293 cell lines
 - Aspirate media, wash with 5 mL DPBS and aspirate. Digest cells with 1 mL Accumax (Sigma-Aldrich, cat. # A7089) and incubate at 37°C, 5% CO2 for 4 min.

- Initial stage of cell recovery
 - To recover cells following digest, add 5 mL of cold standard extracellular recording solution (in mM: NaCl 140, KCl 5, CaCl2, 2, MgCl2, 2, HEPES 5, Glucose 10, pH = 7.3).
MgCl₂ 1, HEPES 10, d-glucose 5; adjusted to pH 7.4 with NaOH) and incubate the flasks at 4°C for up to 15 min.

- Single-cell suspension
- Breaking cells into single cells by triturating the cell suspension 3–5 times and transfer the cell suspension into a 15 mL tube and centrifuge at 200g for 3 min.
- Aspirate the supernatant and resuspend cells with 5 mL of divalent-free extracellular recording solution (in mM: NaCl 140, KCl 5, HEPES 10, D-Glucose 5; adjusted to pH 7.4 with NaOH) in a 15 mL centrifugation tube, which will achieve a cell density between 0.5–1 million cells/mL depending on the confluency of cells. In our experience this range of cell densities does not affect the rate of cell catch on the SyncroPatch.

- Final stage of cell recovery
- Rotate these tubes on a roller at 4°C for 30 min and transfer 3–4 mL of each cell suspension to a 12-well trough and rotate it at 300 rpm on a cell hotel that is maintained at 10°C on the SyncroPatch 384PE for up to 1 h.

Table 1: Recording solutions

mM	NaCl	KCl	CaCl₂	MgCl₂	HEPES	Glucose	KG	EGTA
Internal (pH 7.2 with KOH)	10	10	5	10	110	10		
Divalent-free extracellular (pH 7.4 with NaOH)	140	5	10	5				
High calcium extracellular (pH 7.4 with NaOH)	140	5	10	1	10	5		
Standard extracellular (pH 7.4 with NaOH)	140	5	2	1	10	5		

Operation of SyncroPatch 384PE automated patch clamp

Operation of the SyncroPatch 384PE is according to the manufacturer’s instruction. Briefly, upon initiating the Biomek and PatchControl software, the robotic platform of Biomek is first reset by performing home axis and followed by executing the module ‘system flush’ with water in PatchControl software after the tubes for the water and waste have been clamped. Place a box of tips and set up the internal solution (in mM: Kf 110, KCl 5, CaCl₂ 10, MgCl₂ 1, HEPES 10, D-Glucose 5; adjusted to pH 7.2 with KOH), box of tips and set up the internal solution (in mM: Kf 110, KCl 5, CaCl₂ 10, MgCl₂ 1, HEPES 10, D-Glucose 5; adjusted to pH 7.4 with NaOH) and standard extracellular recording solution (Table 1). Enter the name for the 12 Flp-In HEK293 cell lines and with NaOH) and standard extracellular recording solution to dilute the calcium back down to 2.75 mM. Cells were caught using –70 mbar whilst whole cell configuration is achieved by using a pressure of –250 mbar. Finally, voltage protocols are run. These can be configured for individual requirements. We typically record 1 s steady-state activation, onset of inactivation and 3 s steady-state deactivation protocols [8]. At the end of the recording, the plate is discarded and a technical replicate is performed with a new plate. The system is flushed with 80% ethanol with a blank plate prior to system shut down.

Voltage protocols and data analysis

Prior to analysing the current traces, all recordings were assessed using the following quality control parameters: seal resistance > 300 MΩ, capacitance between 5 and 50 pF, series resistance <20 MΩ and leak corrected current measured at –120 mV leak step is within ±40 pA of the baseline (Table 2). The QC assessment and data analysis were performed using custom written python scripts (see https://git.victorchang.edu.au/projects/SADA/repos/syncropatch_automated_analysis/browse; a sample data for WT is also available at https://doi.org/10.26190/7tqy-gc11, the data that support the findings of this study are available upon reasonable request). In addition, if the number of wells that pass QC for analysis of gating parameters is <10% of the recordings that have passed the plate recording QC parameters then these variants are classified as not analysed (N/A) for the relevant gating parameters in the result.

Peak current density

Cells were depolarized to –40 mV for 1 s then hyperpolarized to –120 mV. Peak current density was measured as the peak amplitude of the tail current (see Fig. 4A, asterisks indicate where the peak tail current amplitudes were measured). Membrane capacitance was used to normalize the current density for comparison between recordings.

\[V_{0.5} \] of activation

The voltage dependence of activation was measured using a 1 s isochronal activation protocol; cells were depolarized to potentials from –50 to +70 mV in 10 mV increments for 1 s before stepping to –120 mV to record tail currents (see Fig. 5A, the tail currents correspond to the dashed box highlighted in the voltage protocol). To determine the mid-point of the voltage dependence of activation (\(V_{0.5} \)), the –120 mV peak tail currents recorded after each depolarizing voltage step, \(I \), were fit with a Boltzmann distribution using the following equation:

\[I = I_{\text{max}}/(1 + e^{(V_{0.5} - V_0)/k}) \]

Equation 1

where, \(V_{0.5} \) is the half-maximum activation voltage, \(V_0 \) is the baseline peak tail current.

Table 2: Quality control parameters for the six WT plates (including negative control)

Parameter	Value
Seal resistance	>300 MΩ
Capacitance	5–50 pF
Series resistance	<20 MΩ
Leak corrected current	±40 pA of the baseline
% of wells passing all QC	1201/1206 wells

Downloaded from https://academic.oup.com/biomethods/article/6/1/bpab003/6178785 by guest on 22 July 2021
test potential, is the slope factor, and is the maximum tail current (see Fig. 5A, i).

Channel deactivation
The rate of hERG channel deactivation was measured by depolarising cells to +40 mV for 1 s before repolarizing cells to potentials in the range +20 to −150 mV in 10 mV decrements for 3 s (see Fig. 6A, the tail currents correspond to the dashed box highlighted in the voltage protocol). The tail current represents the recovery from inactivation followed by channel deactivation. To determine the time constant of deactivation, the decaying portion of the tail current recordings were fit with a double exponential function (red line). The overall time constant of deactivation was calculated as a weighted sum of the two components (i.e. fast and slow components of deactivation) using the following equation:

\[\tau_{\text{weighted}} = \left(\frac{A_{\text{fast}} \tau_{\text{fast}} + A_{\text{slow}} \tau_{\text{slow}}}{A_{\text{fast}} + A_{\text{slow}}} \right) \]

where, is the current amplitude and is the time constant.

We also directly measured the extent of channel deactivation at 500 ms, by measuring the peak current at −50 mV (indicated by in Fig. 6A, i) and 500 ms later (indicated by * in Fig. 6A, i), which is reported as the current decay ratio at 500 ms (see Fig. 6C).

Channel inactivation
The rate of onset of inactivation was measured using a triple pulse protocol where cells were depolarized to +40 mV for 1 s to fully activate and then inactivate the channels before stepping to −110 mV for 10 ms to allow channels to recover from inactivation into the open state. Membrane potential was then depolarized to voltages in the range +60 to −20 mV (in 10 mV decrements) to inactivate channels (see Fig. 7A, the tail currents correspond to the red line highlighted in the voltage protocol). To determine the time constant for the onset of inactivation, we fitted a single exponential to the inactivating current trace (red line). To minimize the impact of poor voltage clamp control during large outward current traces we only fitted the exponential function to the current trace after it had fallen to <500 pA. A second estimate of the effects of variants on inactivation were obtained by measuring the ratio of the peak tail current amplitudes at −50 mV (indicated by * in Fig. 7C) and −120 mV (indicated by † in Fig. 7C) recorded from the deactivation protocol (see above).

Results and discussion
To enable cost-effective gene fragment synthesis, Nsil was introduced into the variant KCNH2 cDNA and BstXI, BstEll, and SbfI within the WT KCNH2 cDNA were silenced. Together with the 5’ HindIII and 3’ BsmBI, gene synthesis of any fragments (either P1, P2, P3, P4, or P5) that harbour specific KCNH2 variants can be synthesized and subcloned into the heterozygous KCNH2 vector (Fig. 1). The heterozygous KCNH2 vector can then be used to generate isogenic heterozygous KCNH2 Flp-In HEK293 cell lines for functional phenotyping [8].

As the phenotyping patch clamp experiment is performed using a high-throughput automated patch clamp system (SyncroPatch 384FE), we have optimized the high throughput generation of Flp-In HEK293 cell lines as well. A total of up to 100 Flp-In HEK293 cell lines can be generated per round (see Figure 2: Overview of PatchControl software. Example of −120 mV tail currents for unmodified (columns 1–6) and modified (columns 7–11) WT hERG channels, as well as, a negative control (column 12). In this example, out of a total of 384 wells, 86% of wells have seal resistance >500 MΩ (green), 4% have a seal resistance in the range 300–500 MΩ and 10% of wells have seal resistance <300 MΩ (grey).
Materials and methods) with very high efficiency when individual transfection reagents are used (i.e. lipofectamine 3000 and P3000 reagent were prepared individually for each transfection using multichannel pipettes in a 96-well format). Typically, stable isogenic heterozygous KCNH2 Flp-In HEK293 clones will be ready for cryo-preservation 3 weeks post transfection.

Generation of stably integrated heterozygous KCNH2 doxycycline inducible Flp-In HEK293 cell lines enabled us to obtain a very high number of cells that are expressing the hERG potassium channel. In this study, of the 2112 wells seeded with KCNH2 Flp-In HEK293 cells, 1908 wells had seal resistance >300 MΩ (90% of wells). Out of these wells, 1841 wells (96.5%) have ‘hooked’ tail currents. This compares very favourably with previous analyses of transient transfection which achieved ~80% transfection efficiency as detected by flow cytometry [12].

To phenotype heterozygous KCNH2 Flp-In HEK293 cell lines we used a SyncroPatch 384PE automated patch clamp electrophysiology system (Nanion Technologies, Munich, Germany). We found that the medium resistance, single hole chips, were suitable for performing the patch clamp experiment on Flp-In HEK293 cells. It is worth noting that the incubation of these Flp-In HEK293 cells with cold standard extracellular recording solution immediately after the treatment with accumax (see Materials and methods) is essential to achieve a good seal resistance; in our experience this enables >80% with seal resistances >500 MΩ (green panels in Fig. 2). However, it is worth noting that this cold incubation step is likely to be cell type and cell line dependent.

The SyncroPatch assay was designed to phenotype 10 variants in parallel (columns 2–11 in Fig. 2) together with a positive (column 1; WT) and a negative control (column 12; blank Flp-In HEK293), that is, the assay is designed to produce equal number of patch clamp experiments for WT, variants and negative control per plate. Each experiment is also run in duplicate to achieve a total of 64 patch clamp experiments per variant.

The leak current can be corrected by the PatchControl software to produce leak-corrected current traces but to prevent over or under correction, a 50 ms step at −120 mV was implemented at the beginning for all protocols. Recordings were excluded from analysis when the leak corrected current at this −120 mV is >± 40 pA (Fig. 3). Most of the recordings corrected by the PatchControl software is good (panels i and ii) or acceptable (panel iii). Overall, in the WT data presented in this study, <1%
of wells were excluded due to failing the ±40 pA threshold criterion (see Table 2).

As the restriction sites of the heterozygous KCNH2 vector were modified to WTNsil:WT(BstX1/BstEll/Sbf1)-silenced to allow affordable gene fragment synthesis and subcloning of variants, we first compared our modified WT construct with an unmodified WT:WT hERG1a, which shows the modification of the restriction sites has not affected the channel expression level (Fig. 4B).

We also included three other KCNH2 variants with gating or trafficking defects (R56Q—accelerated deactivation, T618S—enhanced inactivation and F805C—trafficking deficient) to illustrate how the molecular phenotypes of different KCNH2 variants can be assessed using the automated patch clamp phenotyping assay.

We first measured the tail current amplitude at –120 mV after the channel was depolarized at +40 mV for 1 s (Fig. 4A). In this example, F805C (panel v) is a known trafficking deficient variant [16] and the analysis of tail current amplitude can unambiguously identify its loss-of-function phenotype (Fig. 4B). In addition to the loss-of-function phenotype as a result of having reduced hERG expression, abnormal hERG channel gating can also reduce hERG function. Steady-state activation is the transition of the channel from closed to open conformation and the $V_{0.5}$ of activation can be measured by fitting the tail current amplitudes using Boltzmann function (Fig. 5A). R56Q has the modest shift in the $V_{0.5}$ of activation (~10 mV), while the other variants tested in this study had WT-like $V_{0.5}$ values (Fig. 5B).

For those variants that are capable of passing current at –50 mV (Fig. 6A, i–iii), some of them might accelerate channel deactivation (i.e. transition from open to closed conformation more rapidly) and cause loss-of-function phenotype (panel iii). The decay of the current can be fitted using a double exponential function to derive the weighted time constant of channel deactivation. For example, R56Q deactivates twice as fast compared to WT channels (Fig. 6B). The weighted time constant includes both the fast and slow components of channel deactivation. In addition, the current amplitude ratio is taken at 500 ms from the peak, which predominantly reflects the fast component (Fig. 6C) and has the capability to detect those variants that have slower channel deactivation in the physiological time range. Identifying fast deactivating variants is important as these variants can reduce protective I_{Kr} current that is critical for suppressing premature depolarizations or ectopic beats [17].
For the two variants that are incapable of passing current at –50 mV (see Fig. 6), F805C is mostly trafficking defective whilst T618S has an enhanced inactivation (Fig. 7A, iv and 7B). This enhanced inactivation causes loss-of-function as the channel does not pass current at –50 mV (Fig. 7C, ii). This loss-of-function phenotype can also be quantified by taking the ratio between the –50 and –120 mV tail current amplitudes (Fig. 7C). A smaller value than control is an indicative of loss-of-function phenotype due to enhanced inactivation phenotype (Fig. 7D).

In conclusion, we have developed an efficient workflow that allows high-throughput functional phenotyping of any KCNH2 variant by integrating specially design cloning strategy,
generation of heterozygous KCNH2 Flp-In HEK293 cells and high-throughput automated patch clamp electrophysiology (Fig. 8). This phenotyping assay has the potential to assist in the classification of KCNH2 variants, which will hopefully improve the diagnosis and management of LQTS2 patients and more importantly reduce the number of variants that are classified as VUS. However, before this can be considered it will be important to establish the robustness of this assay in predicting the loss of function of variants for which there is already strong clinical data to indicate whether the variants are pathogenic or benign as per the recommendations proposed by Brnich et al. [18].

Acknowledgements

We would like to thank Jeffrey McArthur and acknowledge the Victor Chang Cardiac Research Institute Innovation Centre, funded by the New South Wales Government, Australia. We also thank Soren Wohlthath, Hank Levesen, and Richard Cooke for help with development of analysis scripts.

Funding

J.I.V. was supported by the National Health and Medical Research Council (App1116948) and a NSW Health Cardiovascular Disease (CVD) Senior Scientist Grant.

Conflict of interest statement. None declared.

References

1. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 1995; 81:299–307.
2. Trudeau MC, Warmeke JW, Ganetzky B, Robertson GA. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 1995; 269:92–5.
3. Vandenbergh JJ, Perry MD, Perrin MJ et al. HERG K(+) channels: structure, function, and clinical significance. Physiol Rev 2012; 92:1393–478.
4. Curran ME, Splugowski I, Timothy KW et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995; 80:795–803.
5. Delisle BP, Anson BD, Rajamani S, January CT. Biology of cardiac arrhythmias: ion channel protein trafficking. Circ Res 2004; 94:1418–28.
6. Anderson CL, Kuzmicki CE, Childs RR et al. Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2 long QT syndrome. Nat Commun 2014; 5:5535.
7. Perry MD, Ng CA, Phan K et al. Rescue of protein expression defects may not be enough to abolish the pro-arrhythmic phenotype of long QT type 2 mutations. J Physiol 2016; 594:4031–49.
8. Ng CA, Perry MD, Liang W et al. High-throughput phenotyping of heteromeric human ether-a-go-go-related gene potassium channel variants can discriminate pathogenic from rare benign variants. Heart Rhythm 2020; 17:492–500.
9. Foo B, Barbier C, Guo K et al. Mutation-specific peripheral and ER quality control of hERG channel cell-surface expression. Sci Rep 2019; 9:8066.
10. Ke Y, Ng CA, Hunter MJ et al. Trafficking defects in PAS domain mutant Kv11.1 channels: roles of reduced domain stability and altered domain-domain interactions. Biochem J 2013; 454:69–77.
11. Anderson CL, Delisle BP, Anson BD et al. Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 2006; 113:365–73.
12. Vanoye CG, Desai RR, Fabre KL et al. High-throughput functional evaluation of KCNQ1 decrypts variants of unknown significance. Circ Genom Precis Med 2018; 11:e002345.
13. Glazer AM, Wada Y, Li B et al. High-throughput reclassification of SCN5A variants. Am J Hum Genet 2020; 107:111–23.
14. Kang SK, Vanoye CG, Misra SN et al. Spectrum of KV 2.1 dysfunction in KCNB1-associated neurodevelopmental disorders. Ann Neurol 2019; 86:899–912.
15. Heyne HO, Baez-Nieto D, Iqbal S et al. Predicting functional effects of missense variants in voltage-gated sodium and calcium channels. Sci Transl Med 2020; 12 eaay6848.
16. Ficker E, Obejero-Paz CA, Zhao S, Brown AM. The binding site for channel blockers that rescue misprocessed human long QT syndrome type 2 ether-a-go-go-related gene (HERG) mutations. J Biol Chem 2002; 277:4989–98.
17. Lu Y, Mahaut-Smith MP, Varghese A et al. Effects of premature stimulation on HERG K(+) channels. J Physiol 2001; 537:843–51.
18. Brnich SE, Abou Tayoun AN, Couch FJ et al. Recommendations for application of the functional evidence PS3/B3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med 2019; 12:3.