Coronagraphic Low-Order Wavefront Sensor: Postprocessing Sensitivity Enhancer for High-Performance Coronagraphs

FRÉDÉRIC P. A. VOGT,1 FRANTZ MARTINACHE, OLIVIER GUYON, TAKASHI YOSHIKAWA, KAITO YOKOCHI, VINCENT GARREL, AND TARO MATSuo
National Astronomical Observatory of Japan, Subaru Telescope, Hilo, HI 96720; frantz@naoj.org

Received 2011 March 10; accepted 2011 November 7; published 2011 December 2

ABSTRACT. Detection and characterization of exoplanets by direct imaging requires a coronagraph designed to deliver high-contrast at small angular separation. To achieve this, an accurate control of low-order aberrations, such as pointing and focus errors, is essential to optimize coronagraphic rejection and avoid the possible confusion between exoplanet light and coronagraphic leaks in the science image. Simulations and laboratory prototyping have shown that a coronagraphic low-order wavefront sensor (CLOWFS), using a single defocused image of a reflective focal-plane ring, can be used to control tip-tilt to an accuracy of $10^{-3} \lambda/D$. This article demonstrates that the data acquired by CLOWFS can also be used in postprocessing to calibrate residual coronagraphic leaks from the science image. Using both the CLOWFS camera and the science camera in the system, we quantify the accuracy of the method and its ability to successfully remove light due to low-order errors from the science image. We also report the implementation and performance of the CLOWFS on the Subaru Coronagraphic Extreme-AO (SCExAO) system and its expected on-sky performance. In the laboratory, with a level of disturbance similar to that encountered in a post-AO beam, CLOWFS postprocessing has achieved speckle calibration to $1/300$ of the raw speckle level. This is about 40 times better than could be done with an idealized PSF subtraction that does not rely on CLOWFS.

1. INTRODUCTION

Since the discovery of 51 Pegasi by Mayor & Queloz (1995), several hundred extrasolar planets have been uncovered, for the most part via indirect detection methods such as radial velocity measurements of the reflex motion of their host star and photometric transit. Direct imaging was recently able to produce the first high-contrast images of solid planetary candidates orbiting nearby main-sequence stars: Fomalhaut (Kalas et al. 2008), Beta Pictoris (Lagrange et al. 2009), and HR 8799 (Marois et al. 2008; Lafrenière et al. 2009). Following up on these direct detections, Janson et al. (2010) obtained the first direct extrasolar planet spectrum, opening the way to better characterization of planetary atmospheres. These direct detections are currently limited to planets at large orbital separations of several dozens of AU and only probe a small fraction of the distribution of known extrasolar planets, for which the median orbital separation is likely closer to 1 AU.

At a near-infrared wavelength, an 8 m class telescope provides sufficient angular resolution ($40 \text{ mas at } \lambda = \sim 1.6 \mu\text{m}$) to be able to detect companions in the habitable zone of nearby stars ($d < 30 \text{ pc}$). High-contrast imaging near the diffraction limit, however, requires very good control and calibration of the wavefront aberrations in the optical system. From the ground, this task is complicated by the rapidly changing atmospheric wavefront creating speckled images. While adaptive optics (AO) offers a major improvement, performance is still limited, and the direct imaging of planets often requires post-processing techniques such as angular differential imaging (ADI; Marois et al. 2006), which is most efficient at large ($\gtrsim 10 \lambda/D$) angular separations.

In the near future, high-contrast imaging systems employing new coronagraphic and wavefront control techniques will greatly improve our ability to image exoplanets. These extreme-AO systems include the Gemini Planet Imager (GPI; Macintosh et al. 2006), ESO’s Spectro-Polarimetric High-Contrast Exoplanet Research (SPHERE; Beuzit et al. 2008), and Subaru’s SCExAO (Martinache & Guyon 2009). They will use efficient coronagraphs and high-speed high-order wavefront corrections to reduce speckles in the coronagraphic image. The images of the HR 8799 planetary system obtained by Serabyn et al. (2010) on a well-corrected 1.5 m aperture using a high-performance coronagraph demonstrate the relevance of this approach.

Imaging companions close to the edge of the occulting mask in a coronagraph (which is $\sim 40 \text{ mas on SCExAO}$), however, remains an unachieved feat. The current state of the art for point-spread function (PSF) calibration is an optimized version of ADI called locally optimized combination of images (LOCI), introduced by Lafrenière et al. (2007). LOCI can calibrate high-order aberrations to a very high level of contrast (12 magnitudes

1Current address: Mount Stromlo and Siding Spring Observatories, Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611, Australia.
and higher), but like any technique relying on ADI, only for angular separations greater than $10 \lambda/D$. Detection at the edge of a $\sim 1 \lambda/D$ occulter is extremely sensitive to low-order aberrations such as pointing and focus.

Of these aberrations, pointing is especially critical, since near the occulter, a tip-tilt excursion along a given direction mimics the signal of a true companion in a coronagraphic image. This issue, first identified for a high-contrast spaceborne coronagraph, has been addressed by Guyon et al. (2009) with the coronagraphic low-order wavefront sensor (CLOWFS), a scheme using the light occulted by a modified focal-plane mask as an accurate pointing tracker.

The idea of tracking using the light that is otherwise lost in the coronagraphic focal plane is not a novelty. For instance, it was successfully implemented on the Lyot project (Digby et al. 2006). The calibration unit of GPI also uses the light occulted by the focal-plane mask to measure low-order aberrations after reimaging the pupil in a Shack-Hartmann-type wavefront sensor (Wallace et al. 2010): pointing performance with this scheme reaches 2 mas for typical expected observing conditions.

Maximum sensitivity to pointing errors is reached when the light from opposite edges of the pupil is allowed to interfere, which naturally happens in the focal plane. In this respect, while robust to a wide range of errors, a Shack-Hartmann sensor does not appear to be optimal to measure pointing: because it splits the pupil into subpupils, this capability is lost, resulting in lesser performance than a focal-plane-based wavefront-sensing scheme (Guyon 2005).

The originality of the CLOWFS design resides in its dual-zone focal-plane mask, designed to suppress a strong offset to the signal, carrying most of the power but no information, in a manner reminiscent of stroboscopy. The suppression of this offset turns the otherwise imperceptible changes due to small pointing errors into a macroscopic change of the CLOWFS image. Using this scheme, Guyon et al. (2009) were able to stabilize tip-tilt at the level of $10^{-3} \lambda/D$ in a closed-loop system for $\lambda = 633 \text{ nm}$, in a laboratory experiment. The current implementation of CLOWFS on SCExAO exhibits pointing residuals of less than 0.2 mas, with a 50 Hz frame rate.

While this level of performance is quite remarkable, we demonstrate in this work that additional calibration can be achieved in postprocessing and can lead to an improved subtraction of coronagraphic leaks due to low-order aberrations in a long exposure. Using the SCExAO system as a test bed, we experimentally demonstrate a 40 times improvement of the detection limit over a classical calibration procedure at angular separation of a few λ/D.

This article is organized as follows: In § 2, we introduce how to use CLOWFS for postprocessing of coronagraphic images. In § 3, we describe the implementation of the concept on the SCExAO experiment of the Subaru telescope, and we present our results in § 4. In § 5, we summarize our results and discuss possible updates to the presented CLOWFS configuration.

2. CLOWFS POSTPROCESSING PRINCIPLE

A high-performance PSF calibration procedure such as LOCI (Lafrenière et al. 2007), is based on a direct analysis of the science data alone. Yet near the edge of the coronagraphic mask, it is impossible, from such data only, to distinguish between the signal of an actual faint companion and the one of a systematic tip-tilt excursion off the coronagraphic mask at a given azimuth, which would be, for instance, due to a vibration. Data acquired with CLOWFS during a long exposure on the science camera can, however, be used to discriminate the two situations in postprocessing.

The scheme proposed in this article is a form of adaptive optics PSF reconstruction, which uses measurements acquired in a wavefront sensor to estimate the long-exposure PSF in the science camera (Veran et al. 1997; Gendron et al. 2006). Adaptive optics PSF reconstruction has been implemented on several adaptive optics systems (Harder & Chelli 2000; Jolissaint et al. 2010) and relies on the fact that the wavefront sensor, by measuring residual wavefront errors at a fixed spatial sampling, can be used to estimate the inner part of the PSF in the science camera. This estimation can be done at the wavefront-sensing sampling speed (typically 100 Hz to 1 kHz) and is then averaged for the duration of the science exposure. In this article, we reconstruct the very inner part of the coronagraphic PSF using CLOWFS telemetry. Compared with previous implementations of adaptive optics PSF reconstruction, our scheme is better suited to high-contrast coronagraphic imaging, as it uses a sensor that is highly sensitive to low-order aberrations and is free of noncommon path errors. Our PSF reconstruction is limited to the very inner part of the coronagraphic PSF, however, and is most effective in the $1 \lambda/D$-wide area immediately around the focal-plane mask. At larger angular separation, wavefront errors can create speckles without producing a signal in the CLOWFS camera, and other calibration approaches must be used to reconstruct the PSF: for example, telemetry from a higher-order wavefront sensor, differential spectral imaging, or the ADI/LOCI technique. We also propose to use a new empirical image-based PSF reconstruction algorithm, where CLOWFS images are matched to science camera images to reconstruct the PSF, as opposed to relying on a model of the adaptive optics system. This empirical approach is more robust, simple to implement, and made possible in our case by the small number of modes measured by the CLOWFS.

A thorough description of the theory and hardware implementation of CLOWFS was provided by Guyon et al. (2009). Here, it suffices to remember that it operates due to an optimized dual-zone focal-plane mask, absorbing at its center, and is reflective in an annulus whose outer edge defines the inner working angle of the system ($1.5 \lambda/D$ for SCExAO). Figure 1 shows the actual implementation of CLOWFS on SCExAO. A lens reimages the reflective ring of the occulting mask on a detector deliberately placed out of focus, referred to as the CLOWFS camera.
During the (long) exposure on the science camera, the CLOWFS camera acquires a continuous stream of short (typically millisecond) exposures. An example of one such CLOWFS camera image is provided in Figure 2: variations of the distribution of intensity in this image are used to identify drifts in pointing, as well as changes in focus. Guyon et al. (2009) demonstrated that over a small range ($\sim 0.2 \lambda / D$) of pointing errors, a linear model relates the changes in CLOWFS images to the actual pointing error, and they took advantage of this in a closed-loop system, stabilizing the pointing at the level of $10^{-3} \lambda / D$ over extended periods of time (~ 1 hr).

Additional calibration of the coronagraphic leaks due to the residual tip-tilt error can be achieved in postprocessing. This calibration relies on the one-to-one correspondence that exists between images simultaneously acquired on the science and the CLOWFS cameras. In either closed or open loops, recording CLOWFS images at a high temporal rate during a long exposure on the science camera can help predict the level of coronagraphic leaks attributable to pointing errors. A synthetic pointing leak image can be built and subtracted from the science image, to calibrate the low-order aberration residuals, ultimately improving contrast limits.

In its simplest version (see § 5 for a discussion of the possible complements), the postacquisition calibration of pointing errors with CLOWFS is a three-step procedure, described in the following sections and illustrated in Figure 3.

Step 1.—Calibrate the static optical configuration of the system (i.e., fine variations in optical path and alignment), using simultaneous pairs of images acquired with the science and the CLOWFS camera. This bank of pairs of images will be referred to as the dictionary (see § 2.1).

Step 2.—Track low-order modes during a long science exposure, continuously acquiring images at a fast frame rate with the CLOWFS camera (see § 2.2).

Step 3.—Postprocess the data by identifying a match for each CLOWFS image acquired during the science exposure in the dictionary (see § 2.2).
2.1. System Calibration: Building up the Dictionary

During step 1, pairs of simultaneous short-exposure images are acquired with the CLOWFS and science cameras on a calibration source (internal source or single star). Images for exposure k are, respectively, labeled DC_k and DS_k for the CLOWFS and science images. These images are stored into a database, called the dictionary.

After one such acquisition, as long as the optics remain stable, the CLOWFS image can be used as a key that points to a coronagraphic leak term (the corresponding science image). Later, any instant CLOWFS image can be compared with the entries in the dictionary: the best-matching entry in the dictionary allows the amount of coronagraphic leak to be predicted.

While slowly varying noncommon path errors can occur after the coronagraph, their effect can be kept small by minimizing the number of optics used after the CLOWFS focal-plane mask, as well as by regularly refreshing the content of the dictionary, to keep it up to date with the current status of the system.

A preliminary version of the dictionary can therefore be compiled in the laboratory prior to the actual observing, using a calibration source. However, to minimize systematic error terms, it must be completed with more up-to-date images acquired on a series of calibration (nonresolved) stars of spectral type and magnitude comparable with the science target, to get the best possible match. Ideally, during acquisition on the calibration star, one wants to cover a range of pointing errors that is larger than that experienced during the science exposure.

It is important to emphasize here that low-order aberrations errors are not explicitly calculated: instead, their consequences on the coronagraphic image are directly recorded, via the CLOWFS system. Being pragmatic, this approach eliminates the need for a high-fidelity (yet, most likely, imperfect) model of the coronagraph: ultimately, the ability to precisely characterize the coronagraphic leaks is determined by the coverage of the dictionary, which can be made arbitrarily large.

2.2. Computing and Subtracting Coronagraphic Leaks

During a long (i.e., typically greater than one second) exposure on the science camera, the CLOWFS camera acquires a sequence of short exposures (step 2), labeled C_s, that are saved along with the science camera image (see Fig. 3). To predict the coronagraphic leak in the science image, a matching algorithm (referred to as the match-maker algorithm [MMA]) identifies...
each image of the CLOWFS sequence \(C_i\) to the CLOWFS image of the dictionary \(DC_k\) that best matches it. Figure 2 shows the typical structure of one CLOWFS image. The region of interest within the image is defined as a disk circumscribing the ring visible in the image. The criterion used to evaluate the match is simply the pixel-to-pixel deviation between the two images, averaged over this region of interest:

\[
\sigma(C_i, DC_k) = \sqrt{\langle (C_i - DC_k)^2 \rangle}
\]

(1)

The operation is repeated for all images \(C_i\) of the CLOWFS sequence. The matching short-exposure science camera images \(DS_k\) of the dictionary are then co-added to form an estimate of the residuals in the long-exposure coronagraphic image that can be attributed to varying low-order aberrations during the exposure on the science target. This final image is simply subtracted from the long-exposure to calibrate these pointing-error residuals.

3. LABORATORY DEMONSTRATION

The experimental demonstration of the proposed post-processing technique was performed using the SCExAO bench in the Subaru laboratory (Martinache & Guyon 2009). Among extreme-AO systems, SCExAO specializes in the high-contrast characterization of the innermost \(<0.2"\) surrounding of stars and, in that scope, implements a high-performance phase-induced amplitude apodization (PIAA)-based (Guyon 2003) coronagraph that takes full benefit of the angular resolution of the 8 m Subaru Telescope. For our test, the special optics described by Lozi et al. (2009) were taken out of the beam, and SCExAO was reduced to a conventional near-IR Lyot coronagraph without a Lyot stop (see Aime & Soummer [2003] for an introduction to coronagraphy with apodized pupils). SCExAO is operated at the IR wavelength (\(H\) band) and uses two identical uncooled fast-readout InGaAs cameras (Xenics model XS-1.7-320).

The light source is a \(\lambda = 1.55\) \(\mu\)m laser diode, illuminating a 17 mm pupil mask emulating the Subaru Telescope pupil, producing the characteristic spikes in all the science images seen in this article. The focal-plane mask is 85 \(\mu\)m in radius and, given the f-number of the beam, gives a 4.75 \(\lambda/D\) inner working angle. Note that when the PIAA is inserted in the beam, the focal-plane scale is altered (Guyon et al. 2005) and the inner working angle becomes \(1.5\) \(\lambda/D\).

For this experiment, a 25 minute sequence of 15,000 pairs of 1 ms exposure images was acquired with the CLOWFS and coronagraphic cameras on the SCExAO test bed at a \(\sim10\) Hz frame rate.\(^2\) A series of 150 contiguous pairs of images in the middle of this sequence was isolated to simulate a long-exposure acquisition. The science images were dark-subtracted and co-added to simulate a single long-exposure coronagraphic image. The corresponding sequence of raw CLOWFS images was simply stored (they form the \(S_{ck}\) list of images). The other 14,850 pairs of images, labeled \(D_{ck}\) and \(D_{sk}\), were combined to form the dictionary. The approach is illustrated by Figure 4. The simulated science frame (i.e., co-addition of the 150 selected images) is located in Figure 4a, and other panels compare the effect of two calibration procedures: standard PSF subtraction, as explained in § 4.2, in Figure 4b and the proposed CLOWFS post-processing procedure in Figure 4c.

4. RESULTS

4.1. Best Match for a CLOWFS Image

For small wavefront aberrations, Guyon et al. (2009) showed that the CLOWFS image is a linear function of the low-order modes to be measured: typically, (but not restricted to) pointing, focus, and astigmatism. The approach proposed here only uses the average pixel-to-pixel deviation between two CLOWFS images, reducing the contribution of all these modes to a

\(^2\)During recent engineering observations with SCExAO, the CLOWFS loop was successfully closed, using 5–10 ms exposures at an improved 50 Hz frame rate.
single scalar, and does not attempt at separating the different contributions.

To assess the extent of the coverage of these low-order modes by the dictionary, one can arbitrarily pick one image as reference and calculate the deviation of each image of the sequence relative to this reference. Figure 5 illustrates one such experiment, using image index 5000 as reference. The value of this reduced CLOWFS signal ranges from $\sigma \sim 10$ (the level of readout noise of the detector used for this experiment) to $\sigma \sim 140$, with a mean at ~ 55. Note, for reference, that in this configuration, a pure pointing error of $0.4 \, \lambda / D$ induces a reduced CLOWFS signal ($\sigma \sim 110$).

The 25 minute sequence of signal was acquired with a strong source of vibration (an electric water pump) bolted to the bench, next to the focal plane. In addition to the slow trend that moves the average signal measured over the course of the sequence, the effect of the source of vibration used on the bench is obvious, as most of the recorded range of signal is explored in less than a minute.

4.2. Calibration of Coronagraphic Leaks

Figure 4 illustrates the significant improvement that the calibration of low-order-aberration-induced coronagraphic leaks with CLOWFS offers (Fig. 4c) over a more standard PSF subtraction (Fig. 4b).

The standard PSF subtraction shown in Figure 4b was derived from the data without knowledge of the CLOWFS frames. To simulate the standard acquisition of a PSF for calibration in a fair manner (in practice, this implies finding a single star of comparable brightness and spectral type, located at a comparable elevation), we randomly selected a number of images corresponding to the total science exposure duration from the science side of the dictionary and co-added them to form a second long-exposure frame simulation. Figure 4b shows the residuals after the PSF subtraction. While the outer part of the image is dominated by detector readout, the scientifically valuable central part of the field is dominated by residual speckle noise.

To produce the calibrated PSF shown in Figure 4c, the science images corresponding to indices selected by the MMA procedure are co-added to form a second long-exposure frame simulation. Figure 4b shows the residuals after the PSF subtraction. While the outer part of the image is dominated by detector readout, the scientifically valuable central part of the field is dominated by residual speckle noise.

To produce the calibrated PSF shown in Figure 4c, the science images corresponding to indices selected by the MMA procedure are co-added to form a second long-exposure frame simulation. Figure 4b shows the residuals after the PSF subtraction. While the outer part of the image is dominated by detector readout, the scientifically valuable central part of the field is dominated by residual speckle noise.

To produce the calibrated PSF shown in Figure 4c, the science images corresponding to indices selected by the MMA procedure are co-added to form a second long-exposure frame simulation. Figure 4b shows the residuals after the PSF subtraction. While the outer part of the image is dominated by detector readout, the scientifically valuable central part of the field is dominated by residual speckle noise.

While only one example is provided in Figure 4, a total of 200 different PSFs were also simulated, in order to provide a statistically relevant comparison between the CLOWFS and standard PSF subtraction residuals. Figure 7 shows all the radial profiles of raw standard-PSF-subtracted and CLOWFS-PSF-subtracted images. Each of the 200 simulated PSFs offers an improvement of the contrast over the entire field of view by
a factor of 10, in comparison with the raw image. In comparison, the CLOWFS PSF improves the calibration by almost 2 orders of magnitude between the inner working angle of the Lyot coronagraph (4.75 λ/D and \sim20 λ/D), where the contrast reaches the detector readout noise floor. In practice, a standard PSF subtraction would require a change of the pointing of the telescope to observe a calibration star. Such a change will change the structure of static aberrations, introducing a systematic error that will degrade the actual performance of the PSF subtraction, in comparison with what is presented here. On sky, CLOWFS-like calibrations are likely to prove to be even more advantageous.

5. CONCLUSION

The results presented in § 4 demonstrate that, used in postprocessing, CLOWFS improves the sensitivity of a coronagraph by a factor of 40, in comparison with more conventional—yet idealized—types of calibration. The method described here for this proof of concept is still quite rudimentary and could benefit from several improvements.

Instead of relying on an exhaustive search by a MMA-like algorithm on a massive database, necessarily containing redundant information, the dictionary could be simplified using approaches like principal component analysis, in which CLOWFS images would be projected onto a smaller subset of CLOWFS modes. In addition, an extended knowledge of several experimental parameters such as the telescope elevation, star color, or magnitude could be implemented in the dictionary to improve on the actual calibration.

The approach is nevertheless powerful, as it requires neither modeling of the coronagraph nor assumptions such as linearity of the response in order to work. The absence of such requirements makes it extremely robust and able to handle multiple situations and types of coronagraphic leaks.

The Subaru Coronagraphic Extreme-AO Project implements a CLOWFS used in a closed loop. The system architecture, however, allows for a simple implementation of the CLOWFS postprocessing, with no impact on the hardware, to calibrate residual coronagraphic leaks induced by low-order modes. CLOWFS on SCExAO currently generates a steady 4 Mbits s$^{-1}$ data stream. While not prohibitively large for an experiment, the storage of entire nights of CLOWFS data will quickly prove to be impractical as SCExAO enters a more aggressive observing phase. Eventually, the calibration of coronagraphic leaks using CLOWFS will require the matching to be performed on-the-fly, so that only the final coronagraphic leak image is actually saved.

Because it makes no assumption on targets and the current state of the optical bench, CLOWFS used for both live and postprocessing is likely to play a significant part in the success of SCExAO, focused on the detection of planetary companions at small angular separation.

Frédéric Vogt thanks Brian Elms for sharing his experience and the machining of parts used for this project.

REFERENCES

Aime, C., & Soummer, R. 2003, in EAS Pub. Ser. 8, Astronomy with High Contrast Imaging (Les Ulis: EDP Sciences), 79
Beuzit, J., Feldt, M., & Dohlen, K., et al. 2008, Proc. SPIE, 7014, 70148
Digby, A. P., Hinkley, S., & Oppenheimer, B. R., et al. 2006, ApJ, 650, 484
Gendron, E., Clénet, Y., Fusco, T., & Rousset, G. 2006, A&A, 457, 359
Guyon, O. 2003, A&A, 404, 379
———. 2005, ApJ, 629, 592
Guyon, O., Matsuo, T., & Angel, R. 2009, ApJ, 693, 75
Guyon, O., Pluzhnik, E. A., & Galicher, R., et al. 2005, ApJ, 622, 744
Harder, S., & Chelli, A. 2000, A&AS, 142, 119
Janson, M., Bergfors, C., Goto, M., Brandner, W., & Lafrenière, D. 2010, ApJL, 710, 35
Jolissaint, L., Christou, J., Wizinowich, P., & Tolstoy, E. 2010, Proc. SPIE, 7736, 77361F
Kalas, P., Graham, J. R., & Chiang, E., et al. 2008, Science, 322, 1345
Lafrenière, D., Marois, C., Doyon, R., & Barman, T. 2009, ApJL, 694, 148
Lafrenière, D., Marois, C., Doyon, R., Nadeau, D., & Artigau, É. 2007, ApJL, 660, 770
Lagrange, A., Gratadour, D., & Chauvin, G., et al. 2009, A&A, 493, L21
Lozi, J., Martinache, F., & Guyon, O. 2009, PASP, 121, 1232
Macintosh, B., Graham, J., & Palmer, D., et al. 2006, Proc SPIE, 6272, 62720L
Marois, C., Lafrenière, D., Doyon, R., Macintosh, B., & Nadeau, D. 2006, ApJ, 641, 556
Marois, C., Macintosh, B., & Barman, T., et al. 2008, Science, 322, 1348

Mayor, M., & Queloz, D. 1995, Nature, 378, 355
Serabyn, G., Mawet, D., & Burruss, R. 2010, BAAS, 41, 587
Veran, J.-P., Rigaut, F., Maitre, H., & Rouan, D. 1997, J. Opt. Soc. Am. A, 14, 3057
Wallace, J. K., Burruss, R. S., & Bartos, R. D., et al. 2010, Proc. SPIE, 7736, 77365D