DAG removal was inhibited by exposure, however, both DAG levels and DGK activity returned (DGK) and of insulin receptor signaling. Following 30-min exposure transiently redistributed DGK isoforms insulin receptor activation, and GLUT4 translocation. Glucose on PKC activity, and transactivation of the insulin receptor; IRS, IR substrate.

Glucose Regulates Diacylglycerol Intracellular Levels and Protein Kinase C Activity by Modulating Diacylglycerol Kinase Subcellular Localization*

Claudia Miele1, Flora Paturzo1, Raffaele Teperino9, Fumio Sakane1, Francesca Fiory9, Francesco Oriente1, Paola Ungaro1, Rossella Valentino1, Francesco Beguinot1, and Pietro Formisano1,2

From the 1Dipartimento di Biologia e Patologia Cellulare e Molecolare & Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Federico II University of Naples, Via Pansini 5, Naples 80131, Italy and the 2Department of Biochemistry, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan

Although chronic hyperglycemia reduces insulin sensitivity and leads to impaired glucose utilization, short term exposure to high glucose causes cellular responses positively regulating its own metabolism. We show that exposure of L6 myotubes over-expressing human insulin receptors to 25 mM glucose for 5 min decreased the intracellular levels of diacylglycerol (DAG). This was paralleled by transient activation of diacylglycerol kinase (DGK) and of insulin receptor signaling. Following 30-min exposure, however, both DAG levels and DGK activity returned close to basal levels. Moreover, the acute effect of glucose on DAG removal was inhibited by >85% by the DGK inhibitor R59949. DGK inhibition was also accompanied by increased protein kinase C-α (PKCα) activity, reduced glucose-induced insulin receptor activation, and GLUT4 translocation. Glucose exposure transiently redistributed DGK isoforms α and δ, from the prevalent cytosolic localization to the plasma membrane fraction. However, antisense silencing of DGKδ, but not of DGKs expression, was sufficient to prevent the effect of high glucose on PKCα activity, insulin receptor signaling, and glucose uptake. Thus, the short term exposure of skeletal muscle cells to glucose causes a rapid induction of DGK, followed by a reduction of PKCα activity and transactivation of the insulin receptor signaling. The latter may mediate, at least in part, glucose induction of its own metabolism.

Prolonged hyperglycemia is a key contributor in development and progression of diabetic complications (1). It has also been established that chronically elevated glucose levels may worsen insulin sensitivity and impaire insulin control of glucose metabolism (2). This is due, at least in part, to persistent activation of conventional isoforms of the protein kinase C (PKC), which in turn, down-regulate insulin signaling either by direct phosphorylation of insulin receptor (IR) and insulin receptor substrates (IRs) or by indirect mechanisms (3–5). The latter include regulation of gene expression and stress-related responses (6, 7). Increased activity of the conventional PKC and elevated levels of diacylglycerol (DAG), the main endogenous activator, have also been documented in several tissues from animal models and diabetic individuals (4, 8–10). On the other hand, evidence exists indicating that glucose acutely activates its own utilization, both in vitro and in vivo (11–13). In vivo, these regulatory actions have been attributed to the mass action effect of glucose (14). Subsequently, it has been shown that acute hyperglycemia per se may increase muscle membrane content of GLUT4 (12, 15).

Although several studies have investigated the chronic effect of high glucose concentrations on PKC activity (2–4), the molecular mechanisms of the short term autoregulatory effect have been only partially elucidated. In a previous work we have shown that, in a skeletal muscle cell model, acute exposure to increasing glucose concentrations determined a parallel increase in glucose uptake and its intracellular metabolism (13). Glucose autoregulation involves PKCα retrotranslocation from the membrane to the cytoplasm and dissociation from the IR. This is followed by the transient trans-activation of the IR tyrosine kinase and a consequent induction of glucose uptake (13). However, how glucose acutely modulates PKCα remains to be investigated. The regulation of DAG intracellular levels by acute hyperglycemia represents an attractive hypothesis. DAG is a lipid second messenger with important signaling functions (3, 15). Generation and removal of diacylglycerol are indeed critical for different intracellular signaling pathways (16–18). In response to many extracellular stimuli DAG is generated through the action of phospholipases (mainly PLC and PLD) (17). The removal of DAG is largely operated by specific enzymes of the diacylglycerol kinase (DGK) family. DGK phosphorylates DAG to produce phosphatidic acid (PA) and plays an important role in signal transduction by modulating the balance between these two lipids (17). By controlling the cellular levels of DAG, DGK can serve as a negative regulator of PKC (16). To date, ten DGK isozymes have been identified in mammals and divided into five classes based on their primary structure (19, 20). DGKs feature a conserved catalytic domain at the C terminus and, within the regulatory domain at the N termi-

* This work was supported by the European Community’s FP6 EUGENE2 (Grant LSHM-CT-2004-512013), by grants from the Associazione Italiana per la Ricerca sul Cancro (to F. B. and P. F.), by the Ministero dell’Università e della Ricerca Scientifica (Grant FIRB RBNE0155LB to F. B. and P. F.), and by Telethon-Italy. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Both authors contributed equally to this work.

2 To whom correspondence should be addressed. Tel.: 39-081-746-3608; Fax: 39-081-746-3235; E-mail: fpietro@unina.it.

3 The abbreviations used are: PKC, protein kinase C; DAG, diacylglycerol; DGK, diacylglycerol kinase; PA, phosphatidic acid; 2-DG, 2-deoxyglucose; IR, insulin receptor; IRS, IR substrate.
DGK and Glucose Signaling

DAG, possess two or three cysteine-rich regions homologous to the C1A and C1B motifs of PKC (21). Moreover, these enzymes share other conserved motifs that are likely to play a role in lipid-protein and protein-protein interactions in various signaling pathways dependent on DAG and/or PA production (22).

The differences in the regulatory domains of the various subtypes, together with the differential tissue expression pattern of the different isoforms suggest that the regulation of DGKs varies among cell types and/or in response to different stimuli and that the DGK isoforms serve distinct although related functions (23, 24). DGK may serve as an off switch controlling PKC activation, thereby mediating the acute glucose regulation of its own metabolism. In the present work we have investigated the mechanism involved in acute regulation of PKCa activity by glucose. We have found that the acute exposure to high glucose concentration leads to a decrease in DAG levels and concomitantly impairs the enzymatic activity and translocation of PKCa. This effect is mediated by glucose action on DGK activity and subcellular localization.

EXPERIMENTAL PROCEDURES

Materials—Media and sera for tissue culture and the transfection reagent, N-[1-(2,3-diomeoyloxy)propyl]-N,N,N-trimethylammonium chloride/dioleoylphosphatidylethanolamine, were purchased from Invitrogen. Electrophoresis reagents were from Bio-Rad. Protein A-Sepharose beads was from Pierce. Protein A-Sepharose beads were from Pierce. Radiochemicals, Western blot, ECL reagents, and the DAG quantification test kit and the PKC enzyme assay system were purchased from Invitrogen. Electrophoresis reagents were from Bio-Rad. Protein A-Sepharose beads was from Pierce. Radiochemicals, Western blot, ECL reagents, and the DAG quantification test kit and the PKC enzyme assay system were purchased from Invitrogen. Electrophoresis reagents were from Bio-Rad. Protein A-Sepharose beads was from Pierce. Radiochemicals, Western blot, ECL reagents, and the DAG quantification test kit and the PKC enzyme assay system were purchased from Invitrogen. Electrophoresis reagents were from Bio-Rad. Protein A-Sepharose beads was from Pierce.

Cell Culture—The L6 cell clones expressing the wild-type human insulin receptors have been previously characterized and described (13). Cells were grown in Dulbecco’s modified Eagle’s medium containing 25 mM glucose and supplemented with 2% fetal bovineserum as described previously (13) and used at the myotube stage of differentiation.

Determination of DAG Cellular Content—DAG content was quantified radioenzymatically by incubating aliquots of the lipid extract with DAG kinase and [32P]ATP, as described by Preiss et al. (27). The manufacturer’s instructions for the commercially available DAG test kit were followed. The 32P-labeled PA was purified using chloroform/methanol/acidic acid (65:15:5, v/v) as a solvent system and quantified with a Storm 860 Phosphorlmerager (Amersham Biosciences).

Western Blot Analysis—Western blot analysis was performed as previously reported (12, 28). Briefly, cells were rinsed and incubated in glucose-free buffer (20 mM Hepes, pH 7.8, 120 mM NaCl, 5 mM KCl, 2.5 mM MgSO4, 10 mM NaHCO3, 1.3 mM CaCl2, 1.2 mM KH2PO4, 0.25% bovine serum albumin) for 3 h. The cells were subsequently incubated for 5 and 30 min in the same buffer supplemented with the indicated concentrations of glucose or R59949, as indicated. Then the cells were solubilized in lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 10 mM EDTA, 10 mM Na2PO4, 2 mM Na3VO4, 100 mM NaF, 10% glycerol, 1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml aprotinin) for 2 h at 4 °C. Cell lysates were clarified by centrifugation at 5000 × g for 20 min, separated by SDS-PAGE, and transferred into 0.45-µm Immobilon-P membranes (Millipore, Bedford, MA). Upon incubation with primary and secondary antibodies, immunoreactive bands were detected by ECL according to the manufacturer’s instructions.

Purified Plasma Membrane Preparations—Purified plasma membrane preparations were obtained as in Caruso et al. (13) with slight modifications. Briefly, the cells, after exposure to glucose or R59949 for the indicated times, were further incubated for 10 min in glucose-free buffer, washed in ice-cold phosphate-buffered saline, and homogenized in 500 µl of ice-cold fractionation buffer (20 mM HEPES-NaOH, pH 7.4, 250 mM sucrose, 25 mM sodium fluoride, 1 mM sodium pyrophosphate, 0.1 mM sodium orthovanadate, 2 µM microcystin LR, 1 mM benzamidine) by passing them 10 times through a 22-gauge needle. The cell lysates were centrifuged at 800 × g for 5 min at 4 °C. Supernatants were further centrifuged at 100,000 × g for 20 min at 4 °C. The final supernatants were collected and used as the cytosolic fraction. The membrane pellet was solubilized in Buffer A containing 1% Triton X-100 by bath sonication and centrifuged at 12,000 × g for 10 min at 4 °C, and the supernatant was used as the membrane fraction. Cytosolic and membrane fractions were then analyzed by Western blot. Purity (>90%) of the subcellular fractions was assessed by immunoblot with antibody against the β-subunit of the insulin-like growth factor-1 receptor (as control of membrane fraction) and against β-actin (as control of cytosolic fraction).

Determinations of 2-Deoxy-D-glucose Uptake—For 2-deoxyglucose (2-DG) uptake studies, cells were rinsed and incubated in glucose-free buffer (20 mM Hepes, pH 7.8, 120 mM NaCl, 5 mM KCl, 2.5 mM MgSO4, 10 mM NaHCO3, 1.3 mM CaCl2, 1.2 mM KH2PO4, 0.25% bovine serum albumin) for 3 h. The cells were subsequently incubated for 3 min in the same buffer supplemented with the indicated concentrations of glucose or/and R59949, washed again, and incubated for further 10 min in glucose-free buffer containing 2-DG (final concentration, 0.15 mM) and 0.5 µCi/assay [14C]-2-DG (13). The cells were finally lysed, and 2-DG uptake was determined by liquid scintillation counting.

Protein Kinase C Assays—Determination of PKC activity was achieved with a commercially available kit (Invitrogen, catalogue number 13161-013). This assay kit is based on measurement of phosphorylation of the synthetic peptide from myelin basic protein Ac-MBP (4–14) by PKC (in the presence of activators) as described by Yasuda et al. (29). PKC specificity is confirmed by using the PKC pseudosubstrate inhibitor peptide. For analyzing PKC activity, L6 cells were deprived from serum and glucose as described above and then exposed to 25 mM glucose as indicated. PKC activity was then quantitated in total cell lysates or cell fractions or in immunoprecipitates as previously reported (30) and according to the manufacturer’s instructions.

Briefly, cells were solubilized in the extraction buffer (20 mM Tris, pH 7.5, 0.5 mM EDTA, 0.5 mM EGTA, 0.5% Triton X-100, 25 mg/ml aprotinin, and 25 mg/ml leupeptin)
and then clarified by centrifugation at 10,000 × g for 15 min at 4 °C. Upon protein quantitation, equal aliquots of the extract were added to the lipid activators (10 μM phorbol 12-myristate, 13-acetate, 0.28 mg/ml phosphatidylserine, and 4 mg/ml diolein, final concentrations) and the α32P-substrate solution (50 mM Ac-MBP (4–14), 20 μM ATP, 1 mM CaCl2, 20 mM MgCl2, 4 mM Tris, pH 7.5, and 10 μCi/ml (3,000 Ci/mM) [γ-32P]ATP), in the presence or the absence of the substrate peptide and/or of the inhibitor. The samples were incubated for 20 min at room temperature and rapidly cooled on ice, and 20-μl aliquots were spotted on phosphocellulose disc papers (Invitrogen). Discs were washed twice with 1% H3PO4, followed by two additional washes in water, and the disc-bound radioactivity was quantitated by liquid scintillation counting.

DGK Antisense silencing—For antisense studies, a phosphorothioate DGKα oligodeoxynucleotide was generated with the following sequence, 5’TACCCGTTTCTGTTCACA-3’ and a phosphorothioate DGKδ oligodeoxynucleotide was generated with the following sequence, 5’TACCTGGTAAGAGGTCCCTG-3’. For control, scrambled oligodeoxyribonucleotides (POs) with the sequences 5’-CTTGATATTCGCCGTGG-ACC-3’ and 5’-GGTCACGTGCCACTTGGAC-3’ were also obtained. L6IR cells were grown in 6-well plates. The cells were then rinsed with 3 ml of serum-free Dulbecco’s modified minimum essential medium and 3 ml of medium containing 2 μg/ml N-[1-(2,3-diomeoyloxy)propyl]-N,N,N-trimethylammonium chloride/dioleoylphosphatidylethanolamine transfection reagent, and 4 μg/ml antisense were added for 16 h. The cells were washed with serum-free Dulbecco’s modified minimum essential medium and incubated for 18 h in the same medium supplemented with 0.25% bovine serum albumin. Transfected cells were exposed to 25 mM glucose as indicated and assayed for DAG levels and Pkα activation as described above.

DGK Enzymatic Assays—DGK activity was assayed in vitro as previously described (31). Briefly, octylglucoside/DAG-mixed micelles were prepared as follows: a mixture of 0.25 mM DAG, 55 mM octylglucoside, and phosphatidylserine (either 1 mM, resulting in 1.8 mol% in micelles, or 5 mM, resulting in 8.3 mol% in micelles) was resuspended in 1 mM diethylenetriaminepentaoctetate acid, pH 7.4, by vortex-mixing and sonication until the suspension appeared clear. 20 μl of mixed micelles was added to 70 μl of reaction mix (final concentration: 100 μM diethylenetriaminepentaacetate acid, pH 7.4, 50 mM imidazole-HCl, 50 mM NaCl, 12.5 mM MgCl2, 2 mM EGTA, 1 mM dithiothreitol, 1 mM [γ-32P]ATP). 10 μl of total homogenate was added to 90 μl of mixed-micelles reaction mix solution. The reaction was started by vortex-mixing for 3 s and sonication for 5 s. After 30-min incubation at 25 °C, the reaction was terminated by the addition of chloroform/methanol/1% perchloric acid (1:2:0.75, v/v), then vortex-mixed. 1% perchloric acid and chloroform (1:1, v/v) were added, and the mixture was centrifuged for 5 min at 2,000 rpm in a tabletop Sorval centrifuge at 25 °C. The organic phase was washed twice in 1% perchloric acid, and an aliquot was dried under a stream of nitrogen and spotted onto a silica gel 60 TLC plate. PA was separated by chloroform/acetone/methanol/acetic acid/water (10:4:3:2:1, v/v). The amount of [γ-32P]PA was measured by using a liquid scintillation spectrophotometer.

RESULTS

Glucose Effect on DAG Levels in L6 Skeletal Muscle Cells—We investigated whether the intracellular levels of DAG were changed by exposure of L6IR myotubes to high glucose concentrations. The L6IR (L6 Cl Wt1 and Wt2) are clones of L6 cells overexpressing human insulin receptors and have been previously generated and characterized (13). In both clones of L6IR myotubes, incubation with 25 mM glucose for 5 min induced a decrease in DAG levels of ~2-fold as compared with untreated cells (p < 0.001). Prolonging glucose exposure at 30 and 60 min, DAG levels were increased by 1.4- and 1.6-fold over basal levels, respectively (Fig. 1). To evaluate the specificity of glucose effect, DAG levels were measured in the same cells treated with 25 mM xylose. No variation occurred in DAG levels after xylose treatment (Fig. 1). In addition, acute glucose exposure of the cells following preincubation with 25 mM pyruvate in the glucose-free medium elicited similar effects (Fig. 1), indicating that glucose effect was not due to changes in osmolarity or to energy depletion.

Glucose Effect on DGK Activity in L6 Myotubes—To investigate the mechanism by which glucose regulates DAG levels, we measured cellular DGK activity in L6IR (L6 Cl Wt1 and Wt2) myotubes after exposure to 25 mM glucose for 5 and 30 min. After 5 min of glucose stimulation, the levels of PA were increased by 12-fold (p < 0.0001) (Fig. 2A). However, PA levels returned close to basal levels by prolonging the incubation with high glucose concentrations for up to 30 min. In addition, pharmacological inhibition of DGK with a well characterized non-isoform specific inhibitor, R59949 (1 mM), prevented the acute glucose-dependent increase in PA levels, suggesting that this increase was due to DGK activation. We next analyzed the
Effect of R59949 on the glucose-induced decrease in DAG levels (Fig. 2). Interestingly, in the presence of the DGK inhibitor, DAG levels were slightly increased by glucose stimulation for 5 min, compared with basal levels. Thus, glucose-induced reciprocal changes of PA and DAG were largely prevented by DGK inhibition.

Effect of DGK Inhibition on Glucose-induced PKC Activity and Translocation—To investigate the role of DGK in glucose regulation of the DAG/PKC pathway, we evaluated the effect of DGK inhibition on PKC activity and translocation to the plasma membrane after exposure to 25 mM glucose. As previously shown (13), incubation of L6hIR myotubes with 25 mM glucose for 5 min induced a 2-fold decrease in PKC activity (Fig. 3A). Inhibition of DGK activity with R59949 prevented the negative effect of glucose on PKC activity, which, instead, was increased by 1.5-fold over basal levels after 5 min of high glucose stimulation. Incubation with PA did not affect PKC activity in *in vitro* assays, suggesting that its accumulation was not responsible for PKC inhibition (data not shown). Treatment with R59949 also prevented glucose-induced cytosolic retro-translocation of PKC (Fig. 3B), indicating that DGK is involved in acute glucose regulation of PKC activity and translocation.

PKC may directly regulate DGK activity and modify intracellular DAG concentration (29). We therefore measured DAG levels in L6hIR cells after treatment with 100 mM bisindolylmaleimide as indicated. DAG levels were either immunoprecipitated with anti-PKC antibody or subjected to subcellular fractionation as described under “Experimental Procedures.” A, PKC activity was measured in anti-PKC immunoprecipitates as described under “Experimental Procedures.” B, PKC was immunoblotted from total lysates, plasma membranes (PM), and cytosolic preparations from the cells, as indicated. Detection of the blots shown in the figure was achieved by chemiluminescence. The autoradiographs shown are representative of three independent experiments. C, L6hIR cells were incubated with 25 mM glucose for the indicated times in absence or presence of bisindolylmaleimide. Determination of DAG levels was performed as described in the legend of Fig. 1. Bars represent the mean ± S.D. of values obtained from three independent experiments in triplicate. Asterisks denote statistically significant differences (***, p < 0.001).

FIGURE 2. **Glucose effect on DGK activity in L6 myotubes.** Two independent clones of L6hIR cells (L6 Cl Wt1 and Wt2) were grown as described under “Experimental Procedures” and in the legend to Fig. 1 and pre-treated with DGK inhibitor R59949 (1 mM) where indicated, then incubated with 25 mM glucose for 5 and 30 min. Total homogenates of the cells were assayed for DGK activity. [32P]Phosphatidic acid was separated by TLC and quantitated by densitometric analysis (A). Bars represent the mean ± S.D. of values obtained from three independent experiments. DAG levels were measured as described in the legend of Fig. 1 (B). Bars represent the mean ± S.D. of values obtained from four independent experiments in duplicate. Asterisks denote statistically significant differences (**: p < 0.01; ***, p < 0.001).

FIGURE 3. **Effect of DGK inhibition on glucose-induced PKC activity.** L6hIR cells were grown as described under “Experimental Procedures” and in the legend to Fig. 1 and incubated with 25 mM glucose for 5 min in absence or presence of 1 mM R59949 or 100 mM bisindolylmaleimide (BDM) as indicated. Cell lysates were either immunoprecipitated with anti-PKC antibody (A) or subjected to subcellular fractionation as described under “Experimental Procedures” (B). A, PKC activity was measured in anti-PKC immunoprecipitates as described under “Experimental Procedures.” B, PKC was immunoblotted from total lysates, plasma membranes (PM), and cytosolic preparations from the cells, as indicated. Detection of the blots shown in the figure was achieved by chemiluminescence. The autoradiographs shown are representative of three independent experiments. C, L6hIR cells were incubated with 25 mM glucose for the indicated times in absence or presence of bisindolylmaleimide. Determination of DAG levels was performed as described in the legend of Fig. 1. Bars represent the mean ± S.D. of values obtained from three independent experiments in triplicate. Asterisks denote statistically significant differences (***, p < 0.001).
upregulation in L6 myotubes upon blocking DGK with R59949 (Fig. 4A). Exposure of L6 cells to 25 mM glucose for 5 min was paralleled by a 2.3-fold increase in 2-deoxy-δ-glucose (2-DG) uptake (p < 0.001). Preincubation of the cells with R59949 or with the PI3K inhibitor LY294002 (100 μM) resulted in a >80% decrease in glucose-stimulated 2-DG uptake. In parallel with glucose uptake, the exposure to high glucose for 5 min increased GLUT4 content on the plasma membrane by ~5-fold above the basal levels (p < 0.01). A similarly sized decrease of GLUT4 in the intracellular membrane fraction was also observed. Upon treatment with either the DGK inhibitor, or with LY294002, however, GLUT4 was mainly localized in the intracellular compartment compared with the plasma membrane fraction (Fig. 4B).

Glucose Activation of DGK Isoforms—Several DGK isoforms have been identified to date (19–21). To identify that responsible for acute glucose effect on DAG/PKCα pathway, protein lysates of L6hIR myotubes were analyzed by Western blotting with isoform-specific DGK antibodies. We found that three isoforms of DGK (DGK-α, -δ, and -ζ) were preferentially expressed in these cells (Fig. 5A). Translocation to the plasma membrane regulates DGK activity and isoform-specific functions (19). Thus, L6hIR cells were stimulated with 25 mM glucose for 5 and 30 min, and subcellular fractionation experiments were performed (Fig. 5B). In unstimulated myotubes, DGKα and -δ were mainly cytosolic. After acute glucose exposure, DGKα and -δ isoforms were rapidly (5 min) recruited to the plasma membrane. Membrane expression of both isoforms was then reduced after 30 min, returning to basal levels. Moreover, glucose effect was neither mimicked by 2-DG (Fig. 5C), nor by pyruvate (data not shown). At variance with the other isoforms, DGKζ remained largely cytosolic both in basal conditions and after glucose exposure (data not shown). Moreover, stimulation with 25 mM glucose for 5 min induced a 6-fold increase of DGKζ-specific activity (Fig. 6). The activity of DGKζ was still higher than basal after 30 min (difference not statistically significant), but ~3-fold reduced, compared with the earlier time.

FIGURE 4. Effect of DGK inhibition on 2-DG uptake and GLUT4 localization. L6hIR cells were grown as described under “Experimental Procedures” and in the legend to Fig. 1 and incubated with 25 mM glucose for 5 min or with 10 mM insulin for 15 min in absence or presence of 1 mM R59949 or 100 μM LY294002 as indicated. Determination of 2-deoxyglucose uptake (A) and membrane preparation procedures (B) were performed after additional 10 min to allow glucose transporter translocation as described under “Experimental Procedures” (see also Ref. 13). Error bars represent mean ± S.D. of values obtained in three independent experiments in triplicate. Asterisks denote statistically significant different (***, p < 0.001). B, plasma membranes (PM) and intracellular membranes (IM) were obtained as previously described. The membranes were solubilized and blotted with GLUT4 antibodies. Alternatively, for determining the total levels of transporter, cells were solubilized and blotted with GLUT4 antibodies. Filters were revealed by ECL. The autoradiographs shown are representative of four independent experiments.
Effect of DGKδ and DGKα Antisense on Glucose-regulated DAG Levels and PKCα Activation—Next, we used specific DGKα and DGKδ phosphorothioate antisense oligonucleotides (DGKASα and DGKASδ). Treatment of L6hIR myotubes with DGKASα or DGKASδ led to a selective 70% reduction of the cellular content of DGKα and DGKδ expression, respectively (Fig. 7A). The expression levels of both DGK isoforms were not affected by transfecting the nonspecific scrambled phosphorothioate oligonucleotides (POα and POδ). Interestingly, inhibition of DGKδ with the specific antisense oligonucleotides prevented the negative effect of glucose on PKCα activation, which was actually increased by 3-fold over basal levels after 5 min of high glucose stimulation (Fig. 7B). At variance, inhibition of DGKα had no effect on PKCα activation. No changes of PKCα expression were observed, however. Glucose-stimulated 2-DG uptake was also reduced by ~80%, upon antisense inhibition of DGKδ, but not of DGKα (Fig. 7C). Moreover, consistent with a negative regulation of insulin signaling, glucose-induced activation of insulin receptor, IRS2 tyrosine phosphorylation and protein kinase B/Akt activation were strongly reduced upon R59949 and DGK-ASδ treatment of the cells (Fig. 8).

DISCUSSION

The ability of glucose to regulate its own metabolism has been extensively investigated (1–15). Although chronic exposure...
shown that PKC α activates the insulin receptor kinase (13). In particular, we have previously provided evidence that, in cultured skeletal muscle cells, high glucose concentrations transiently transactivate for the latter effect have been only partially defined. Our mechanisms (11–13). However, the molecular events responsible (36). Nevertheless, peripheral tissues, including skeletal muscle, may contribute to glucose disposal by insulin-independent (32, 33), short term hyperglycemia induces glucose utilization (13). In the present work we have further investigated the molecular mechanism by which glucose regulates PKC α activity. DAG is the key lipid physiologically regulating PKCα (14). We report that, at variance with chronic hyperglycemia (3), glucose treatment acutely reduces DAG levels. DAG metabolism is generally controlled by distinct pathways: (i) DAG lipase-mediated hydrolysis of fatty acyl chain to generate a monoacylglycerol and a free fatty acid; (ii) addition of CDP-choline or -ethanolamine to form phosphatidylcholine or phosphatidylethanolamine, or (iii) DGK-mediated phosphorylation of the free hydroxyl group to produce PA (22). Although we cannot exclude the former two possibilities, we show that acute glucose exposure induces DGK activation concomitantly to a reduction in PKCα activity and its cytosolic translocation. The finding that the nonspecific DGK inhibitor R59949 prevents glucose effect on its own uptake further supports the hypothesis that DGK activity plays a crucial role in glucose autoregulatory functions. Recently, another inhibitory compound, R59022, has been shown to stimulate glucose uptake in C2C12 skeletal muscle cells via a p38-mediated pathway (37). However, this stimulatory effect occurs upon 24 h incubation with the compound and may reflect cellular adaptation. Alternatively, different DGK isoforms might be independently involved.

Ten mammalian DGK isoforms have been identified to date (19, 20, 22). Except for DGKδ and -ε, all mammalian isoforms are highly expressed in the brain. DGKs are also highly expressed in muscle, with DGKδ and -ζ mainly expressed in striated muscle and DGKβ and -ε in cardiac muscle (38). Here we show that DGKα, -δ, and -ζ are expressed in L6 cells, and their total content is not regulated by glucose. At variance, acute glucose exposure induces DGKα and -δ to selectively translocate to the plasma membrane and induces a specific increase of DGK-δ activity. Stronger evidence indicates that DGKδ, rather than DGKα, is necessary for glucose to exert its function on PKCα activity and cytosolic translocation. Indeed, selective silencing of DGKδ is sufficient to prevent glucose effect on PKCα. These data are also in agreement with recent evidence indicating that DGKδ null mice feature increased PKCα activity (39). Other groups have demonstrated that DGKα activation is regulated by insulin, at least in the brain (40, 41), and Src-mediated phosphorylation at Tyr-334 is responsible for membrane translocation (40). In our experimental conditions, we failed to measure DGKα activity, possibly due to technical limitation of the precipitating antibody. However, antisense inhibition of DGKα in L6 myotubes did not produce effects on glucose-mediated PKCα activation. Collectively, our data suggest that DGKδ is the major candidate for mediating glucose regulation of its own uptake. In this regard, lower doses of DGKδ antisense oligonucleotides reduced DGKδ intracellular levels to a lesser extent and were still capable of reducing PKCα activation (data not shown). In addition, inhibition of DGKδ leads to a paradoxical glucose-induced increase of DAG levels (data not shown) and PKCα activity (Fig. 7). Thus, the rapid and transient translocation of DGKδ on the plasma membrane may mediate the acute removal of DAG, preceding the

![Diagram](image1.png)

FIGURE 8. Effect of DGK inhibition on insulin receptor signaling. L6hIR cells were grown as described under “Experimental Procedures” and in the legend to Fig. 1 and incubated with 25 mM glucose for 5 min in the absence or in the presence of R59949 and DGKδ (ASδ) antisense oligonucleotide. Total homogenates of the cells were immunoprecipitated with anti-insulin receptor (A) or IRS2 (B) antibodies and then analyzed by immunoblot with anti-phosphotyrosine antibodies (A and B). Alternatively, total homogenates were directly blotted with anti-phosphoSer-Akt antibodies (C). Filters were also re-probed with IR (A), IRS2 (B), and Akt (C) antibodies. All the filters were revealed by ECL. The autoradiographs shown are representative of four independent experiments.

DGK and Glucose Signaling

tonic inhibitory constraint on the receptor tyrosine kinase, thereby promoting activation of downstream molecules and stimulation of the glucose uptake (13). In the present work we have further investigated the molecular mechanism by which glucose regulates PKCα activity. DAG is the key lipid physiologically regulating PKCα (14). We report that, at variance with chronic hyperglycemia (3), glucose treatment acutely reduces DAG levels. DAG metabolism is generally controlled by distinct pathways: (i) DAG lipase-mediated hydrolysis of fatty acyl chain to generate a monoacylglycerol and a free fatty acid; (ii) addition of CDP-choline or -ethanolamine to form phosphatidylcholine or phosphatidylethanolamine, or (iii) DGK-mediated phosphorylation of the free hydroxyl group to produce PA (22). Although we cannot exclude the former two possibilities, we show that acute glucose exposure induces DGK activation concomitantly to a reduction in PKCα activity and its cytosolic translocation. The finding that the nonspecific DGK inhibitor R59949 prevents glucose effect on its own uptake further supports the hypothesis that DGK activity plays a crucial role in glucose autoregulatory functions. Recently, another inhibitory compound, R59022, has been shown to stimulate glucose uptake in C2C12 skeletal muscle cells via a p38-mediated pathway (37). However, this stimulatory effect occurs upon 24 h incubation with the compound and may reflect cellular adaptation. Alternatively, different DGK isoforms might be independently involved.

Ten mammalian DGK isoforms have been identified to date (19, 20, 22). Except for DGKδ and -ε, all mammalian isoforms are highly expressed in the brain. DGKs are also highly expressed in muscle, with DGKδ and -ζ mainly expressed in striated muscle and DGKβ and -ε in cardiac muscle (38). Here we show that DGKα, -δ, and -ζ are expressed in L6 cells, and their total content is not regulated by glucose. At variance, acute glucose exposure induces DGKα and -δ to selectively translocate to the plasma membrane and induces a specific increase of DGK-δ activity. Stronger evidence indicates that DGKδ, rather than DGKα, is necessary for glucose to exert its function on PKCα activity and cytosolic translocation. Indeed, selective silencing of DGKδ is sufficient to prevent glucose effect on PKCα. These data are also in agreement with recent evidence indicating that DGKδ null mice feature increased PKCα activity (39). Other groups have demonstrated that DGKα activation is regulated by insulin, at least in the brain (40, 41), and Src-mediated phosphorylation at Tyr-334 is responsible for membrane translocation (40). In our experimental conditions, we failed to measure DGKα activity, possibly due to technical limitation of the precipitating antibody. However, antisense inhibition of DGKα in L6 myotubes did not produce effects on glucose-mediated PKCα activation. Collectively, our data suggest that DGKδ is the major candidate for mediating glucose regulation of its own uptake. In this regard, lower doses of DGKδ antisense oligonucleotides reduced DGKδ intracellular levels to a lesser extent and were still capable of reducing PKCα activation (data not shown). In addition, inhibition of DGKδ leads to a paradoxical glucose-induced increase of DAG levels (data not shown) and PKCα activity (Fig. 7). Thus, the rapid and transient translocation of DGKδ on the plasma membrane may mediate the acute removal of DAG, preceding the
In conclusion, our data indicate that glucose activates DGK, followed by reduction in intracellular DAG levels and removal of PKCa from the plasma membrane (Fig. 9). It therefore removes the tonic inhibition exerted by PKCa on insulin receptor signaling and induces the transactivation of the insulin receptor cascade leading to GLUT4 membrane translocation and glucose uptake.

Acknowledgments—We thank Dr. J. J. Rochford (University of Cambridge, UK) and Prof. G. Portella (Dipartimento di Biologia e Patologia Cellulare e Molecolare, Federico II University of Naples) for providing important reagents and very helpful discussion.

REFERENCES

1. Stratton, I. M., Adler, A. I., Neil, H. A., Matthews, D. R., Manley, S. E., Cull, C. A., Hadden, D., Turner, R. C., and Holman, R. R. (2000) Br. Med. J. 321, 405–412
2. Thomas, E., Lin, Y. S., Dagher, Z., Saha, A., Luo, Z., Ido, Y., and Ruderman, N. B. (2002) Ann. N. Y. Acad. Sci. 967, 43–51
3. Shimueli, E., Alberti, K. G., and Record, C. O. (1993) J. Intern. Med. 234, 397–400
4. Way, K. J., Katai, N., and King, G. L. (2001) Diabet. Med. 18, 945–959
5. Miele, C., Riboulet, A., Maitan, M. A., Oriente, F., Romano, C., Formisano, P., Giudicelli, J., Beguinot, F., and Van Obberghen, E. (2003) J. Biol. Chem. 278, 47376–47387
6. Green, K., Brand, M. D., and Murphy, M. P. (2004) Diabetes 53, S10–S118
7. Stenina, O. I. (2005) Curr. Pharm. Res. 11, 2367–2381
8. Considine, R. V., Nyce, M. R., Allen, L. E., Morales, L. M., Triester, S., Serrano, J., Colberg, J., Lanza-Jacoby, S., and Caro, J. F. (1995) J. Clin. Invest. 95, 2938–2944
9. Ceolotto, G., Gallo, A., Miola, M., Sartori, M., Trevisan, R., Del Prato, S., Semplici, A., and Avogaro, A. (1999) Diabetes 48, 1316–1322
10. Wolf, B. A., Williamson, J. R., Easom, R. A., Chang, K., Sherman, W. R., and Turk, J. (1991) J. Clin. Invest. 87, 31–38
11. Capaldo, B., Santoro, D., Riccardi, G., Pernotti, N., and Sacca, L. (1986) J. Clin. Invest. 77, 1285–1290
12. Galante, P., Mosthaf, L., Kellerer, M., Berti, L., Tippman, S., Bossenmaier, B., Fujiwara, T., Okuno, A., Horikoshi, H., and Haring, H. U. (1995) Diabetes 44, 646–651
13. Caruso, M., Miele, C., Oriente, F., Maitan, M. A., Bifulco, G., Andreozzi, F., Condorelli, G., Formisano, P., and Beguinot, F. (1999) J. Biol. Chem. 274, 28637–28644
14. Sacca, L., Vitale, D., Cicala, M., Trimarco, B., and Ungano, B. (1981) Metabolism 30, 457–461
15. Nolte, L. A., Rincon, J., Wahlistrom, E. O., Craig, B. W., Zierath, J. R., and Wallberg-Henriksson, H. (1995) Diabetes 44, 1345–1348
16. Nishizuka, Y. (1984) Nature 308, 693–698
17. Hou, W., Arita, Y., and Morisset, J. (1996) Cell. Signal. 8, 487–496
18. Baginato, C., and Igal, R. A. (2003) J. Biol. Chem. 282, 29570–29581
19. Van Blitterswijk, W. J., and Hopoua, B. (2000) Cell. Signal. 12, 595–605
20. Topham, M. K. (2006) J. Cell. Biochem. 97, 474–484
21. Kai, M., Sakane, F., Imai, S., Wada, I., and Kanoh, H. (1994) J Biol. Chem. 269, 18492–18498
22. Ding, L., Bunting, M., Topham, M. K., McIntyre, T. M., Zimmerman, G. A., and Prescott S. M. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 5519–5524
23. Kanoh, H., Iwata, T., Ono, T., and Suzuki, T. (1986) J. Biol. Chem. 261, 5597–5602
24. Sakane, F., Imai, S., Kai, M., Wada, I., and Kanoh, H. (1996) J Biol. Chem. 271, 8394–8401
25. Preiss, J., Loomis, C. R., Bishop, D. G. W., Stein, R., Niedel, J. E., and Bell, R. M. (1986) J Bid. Chem. 261, 8597–8600
26. Fiory, F., Alberobello, A. T., Miele, C., Oriente, F., Esposito, I., and Corbo, V.,
29. Yasuda, I., Kishimoto, A., Tanaka, S., Tominaga, M., Sakurai, A., and Nishizuka, Y. (1990) Biochem. Biophys. Res. Commun. 166, 1220–1227
30. Formisano, P., Oriente, F., Miele, C., Caruso, M., Auricchio, R., Vigliotta, G., Condorelli, G., and Beguinot, F. (1998) J. Biol. Chem. 273, 13197–13202
31. Bregoli, L., Baldassare, J. I., and Raben, D. M. (2001) J. Biol. Chem. 276, 23288–23295
32. Yki-Jarvinen, H. (1998) Metab. Rev. 14, S45–S50
33. Stumvoll, M., Goldstein, B. J., and van Haften, T. W. (2005) Lancet 365, 1333–1346
34. Revers, R. R., Fink, R., Griffin, J., Olefsky, J. M., and Kolterman, O. G. (1984) J. Clin. Invest. 73, 664–672
35. Bell, G. I., and Polonsky, K. S. (2001) Nature 414, 788–791
36. Shulman, G. I. (2000) J. Clin. Invest. 106, 171–176
37. Takahashi, N., Nagamine, M., Tanno, S., Motomura, W., Kohgo, Y., and Okumura, T. (2007) Biochem. Biophys. Res. Commun. 360, 244–250
38. Topham, M. K., and Prescott, S. M. (1999) J. Biol. Chem. 274, 11447–11450
39. Crotty, T., Cai, J., Sakane, F., Taketomi, A., Prescott, S. M., and Topham, M. K. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 15485–15490
40. Fukunaga-Takenaka, R., Shirai, Y., Yagi, K., Adachi, N., Sakai, N., Merino, E., Merida, I., and Saito N. (2005) Genes Cell. 10, 311–319
41. Zulian, S. E., Ilincheta de Bosquero, M. G., and Giusto, N. M. (2006) J. Neurosci. Res. 84, 1012–1019
42. Imai, S., Sakane, F., and Kanoh, H. (2002) J. Biol. Chem. 277, 35323–35332
43. Andreozzi, F., Melillo, R. M., Carlomagno, F., Oriente, F., Miele, C., Fiori, F., Santopietro, S., Castellone, M. D., Beguinot, F., Santoro, M., and Formisano, P. (2003) Oncogene 22, 2942–2949
44. Standaert, M. L., Galloway, L., Karnam, P., Bandyopadhyay, G., Moscat, J., and Farese, R. V. (1997) J. Biol. Chem. 272, 30075–30082
45. Liu, L. Z., Zhao, H. L., Zuo, J., Ho, S. K., Chan, J. C., Meng, Y., Fang, F. D., and Tong, P. C. (2006) Mol. Biol. Cell 17, 2322–2330
46. Limatola, C., Schaap, D., Moolenaar, W. H., and Van Blitterswijk, W. J. (1994) Biochem. J. 304, 1001–1008