Quantum entanglement is a fundamental property of coherent quantum states and an essential resource for quantum computing. In large-scale quantum systems, the error accumulation requires concepts for quantum error correction. A first step toward error correction is the creation of genuinely multipartite entanglement, which has served as a performance benchmark for quantum computing platforms such as superconducting circuits, trapped ions and nitrogen-vacancy centres in diamond. Among the candidates for large-scale quantum computing devices, silicon-based spin qubits offer an outstanding nanofabrication capability for scaling-up. Recent studies demonstrated improved coherence times, high-fidelity all-electrical control, high-temperature operation and quantum entanglement of two spin qubits.

Here we generated a three-qubit Greenberger–Horne–Zeilinger state using a low-disorder, fully controllable array of three spin qubits in silicon. We performed quantum state tomography and obtained a state fidelity of 88.0%. The measurements witness a genuine Greenberger–Horne–Zeilinger class quantum entanglement that cannot be separated into any biseparable state. Our results showcase the potential of silicon-based spin qubit platforms for multiquantum algorithms.

Silicon-based quantum dots are promising candidates for quantum computing hardware due to their great potential for high-density integration using semiconductor nanofabrication technologies. For the single electron spins in silicon, key ingredients, such as single-qubit gate fidelities that exceed 99.9% (refs. 10,13), a two-qubit coupling to any reservoir, can be initialized and measured by the combinations of a resonant SWAP gate and energy-selective tunnelling (see Fig. 1c for the bias configuration). The middle spin qubit (Q3), which does not directly couple to any reservoir, can be initialized and measured by the combinations of a resonant SWAP gate and energy-selective tunnelling (see Extended Data Fig. 1 for the details). With this initialization and measurement procedure, we obtained high initialization fidelities (>99% for all qubits) and readout fidelities of \(F_{\text{int}} = 87.9\% \) (Q1), \(F_{\text{int}} = 82.9\% \) (Q2) and \(F_{\text{int}} = 89.9\% \) (Q3).

The single-qubit control is performed by electric dipole spin resonance. A magnetic field gradient created by a cobalt micro-magnet placed on top of the quantum dot array enables a fast and addressable single-qubit control. To demonstrate this, we measured the Rabi patterns for the single electron spins (Fig. 2a–c). The resonance frequencies of the three qubits were separated by \(\delta E_2 \approx 435.4\text{ MHz} \) (between Q1 and Q2) and \(\delta E_3 \approx 523.2\text{ MHz} \) (between Q2 and Q3) due to the micromagnet field gradient. These large separations ensure that our single-qubit drive (with \(f_{\text{spin}} = 6\text{ MHz} \)) does not rotate the other spins. We then characterized the \(T_\text{1} \) relaxation times, \(T_\text{2} \) inhomogeneous dephasing times and \(T_\text{2H} \) Hahn echo times (Extended Data Fig. 2). We found that \(T_\text{1} = 4.30 \pm 0.08\text{ ms} \) (Q1), \(2.67 \pm 0.09\text{ ms} \) (Q2) and \(1.31 \pm 0.02\text{ ms} \) (Q3), which are long enough to perform single-shot spin readout, but shorter than those typically expected for electron spins in silicon, probably due to spin–valley mixing. The dephasing times of \(T_\text{2} = 1.82 \pm 0.07\text{ µs} \) (Q1), \(1.69 \pm 0.08\text{ µs} \) (Q2) and \(1.69 \pm 0.04\text{ µs} \) (Q3) are similar to those reported for natural silicon spin-1/2 qubits and are most probably limited by the fluctuation of 4.7% Si nuclear spins in natural silicon. Hahn echo extends the dephasing times to \(T_\text{2H} = 28.1 \pm 0.8\text{ µs} \) (Q1), \(20.5 \pm 0.2\text{ µs} \) (Q2) and \(45.8 \pm 0.4\text{ µs} \) (Q3). The average single-qubit fidelities were examined through the Clifford-based randomized benchmarking and found to be 99.43 ± 0.01% (Q1), 99.57 ± 0.01% (Q2) and 99.91 ± 0.004% (Q3) (Fig. 2d–f; see Methods and Extended Data Fig. 3 for details of randomized benchmarking implementation). We note that these fidelities were measured with all the qubits initialized to spin-down. The single-qubit control for multiquantum input states, however, can be degraded by the residual exchange interactions unless they are low enough compared to \(f_{\text{spin}} \). In this experiment, the residual exchange was relatively large between Q2 and Q3, which resulted in a reduction of the single-qubit gate fidelities of Q2 (Q3) by ~0.6 (0.5)%.
The single-qubit phases can be compensated by single-qubit Z rotations, which we implement by shifting the reference phase of any exchange interaction \(J_{ij} \) between the neighbouring spin qubits \(Q_i \) and \(Q_j \) acts as an effective Ising type interaction \((h\delta E_j/4)\sigma_z^i \otimes \sigma_z^j\) under the large micromagnet local Zeeman gradient \(\delta E_j \), where \(\delta E_j = \sqrt{\delta E_{j1}^2 + \delta E_{j2}^2} - \delta E_{j0} \) and \(h \) is Planck’s constant \(\hbar \). The time evolution under this interaction for a period of \((2\delta E_j)^{-1}\) is equivalent to a CZ gate between \(Q_i \) and \(Q_j \) up to local single-qubit phases. The single-qubit phases can be compensated by single-qubit Z rotations, which we implement by shifting the reference phase of any subsequent microwave pulses in the software. To control \(f_{12} \) (\(f_{23} \)) in the time domain, we utilized fast gate voltage pulses applied on the B2 (B3) gate (Fig. 1b). When turned on, \(f_{12} \) and \(f_{23} \) are nominally 2.8 and 12.5 MHz, respectively (Extended Data Fig. 5a–d). Additional linear compensations were applied to the plunger gates P1, P2 and P3 to keep the triple-dot charge configuration near the symmetric operation point (Methods). At this point, the charge-noise-induced dephasing was minimized as \(f_{ij} \) became first-order insensitive to detuning fluctuations \(\delta \omega \).

We combined the single-qubit and CZ gates to perform a three-qubit entangling operation. Although three qubits can be entangled simply by sequentially applying CZ gates between neighbouring qubits (\(CZ_{12} \) and \(CZ_{23} \)), as demonstrated in other systems \(^3\), the qubits are vulnerable to low-frequency noise during manipulation. To fully leverage the long intrinsic phase coherence times of spins, we implemented a decoupled three-qubit entangling operation by extending a decoupled CZ gate \(^{11}\) to a three-qubit system (Fig. 2g). In this sequence, the CZ gates are separated into CZ/2 gates with \(\pi \) pulses inserted in the middle, where the CZ/2 gate is defined as \(\text{diag}(1,1,1,\phi) \). As in the standard Hahn echo experiments, the \(\pi \) pulses reverse the non-conditioned phase accumulation during free evolution, and therefore decouple the quasi-static single-qubit phase noise (for example, the low-frequency nuclear magnetic and charge noises and the local phase accumulated by the CZ pulses). The action of our three-qubit operation was measured by the quantum gate sequence shown in Fig. 2g. \(Q_2 \) was used as a control qubit and the phase of the second \(\pi/2 \) pulse (\(\phi \)) was varied to detect the phase accumulation on \(Q_2 \) and \(Q_3 \). Figure 2h,i shows the spin-up probabilities of \(Q_2 \) and \(Q_3 \), respectively, measured as a function of \(\phi \). The additional Z rotations at the end were required to adjust the additional phases that originated from the \(\pi \) pulses. The exchange pulse durations were tuned up so that the conditional phase accumulation was \(\sim \pi \). The phases are typically calibrated to within \(\pm 0.01 \% \) from the target values. As a benchmark of our CZ gate quality, we measured the fidelities of two-qubit Bell states using \(Q_2 \) and \(Q_3 \). We obtained an average Bell state fidelity of 94.1\% and concurrence of 0.929 (Extended Data Fig. 6), which compare favourably to the values previously reported in other silicon quantum-dot-based qubit devices (fidelities of 78–89\% and concurrences of 0.73–0.82 (refs. 9,11,12)). The result indicates that our CZ gate fidelity is reasonably high, although further assessment using two-qubit Clifford-based randomized benchmarking \(^{12}\) is necessary to extract the CZ gate fidelity, which remains for future study.

Now we turn to the generation of three-qubit entanglement. Figure 3a shows our quantum gate sequence to generate a three-qubit GHZ state \(|\text{GHZ}\rangle = (|↑↑↑⟩ + |↓↓↓⟩)/\sqrt{2} \). The sequence is similar to that in Fig. 2g, but with the first rotation on \(Q_2 \) replaced with a Y/2 gate and the other X (X/2) gates replaced with Y (Y/2) gates. After the state preparation, we applied a single-qubit pre-rotation \((I/X/2,Y/2)\) on each qubit to rotate the measurement.

Fig. 1 | Device and experimental setup. a, False-coloured scanning electron microscope image of the device. Scale bar, 100 nm. Three layers of overlapping aluminium gates are fabricated on top of a Si/SiGe heterostructure wafer. The plunger (green) and barrier (purple) gates are used to control the confinement potential and accumulate the reservoirs. The screening gates (ochre) restrict the electric field of the plunger and barrier gates. The lower channel is used as a triple-quantum-dot array and the upper channel is used as a charge sensor. Gates P1, P2, P3, B2 and B3 are connected to high-bandwidth coaxial cables to apply fast voltage pulses. The microwave pulses are applied to the lower screening gate. b, Cross-sectional schematic of the device. The black solid line in the silicon quantum well (Si QW) illustrates the triple-quantum-dot confinement potential. The silicon quantum well (Si QW) shows a typical phase diagram in silicon (110) with a Ge barrier, where the screening gates (ochre) restrict the electric field of the plunger and barrier gates. The microwave pulses are applied to the lower screening gate. The colour plot shows the demodulated voltage of the radio-frequency sensor quantum dot as a function of the voltages applied to the P1 and P3 gates.
Fig. 2 | Single-qubit and controlled phase operations. All the qubits were initialized to spin-down before the manipulation stage. a–c, Single-qubit Rabi chevron patterns of each qubit. Each spin state was read out right after the manipulation stage without a sequential readout for the three spins. The frequency offsets are 17,789.15 MHz (Q1) (a), 18,224.5 MHz (Q2) (b) and 18,747.7 MHz (Q3) (c). d–f, Single-qubit randomized benchmarking results for each qubit. The visibilities were 0.894, 0.746 and 0.794 for Q1 (d), Q2 (e) and Q3 (f). For each data point, we averaged over 16 random Clifford sequences. The errors represent the estimated standard errors for the best-fit values. g, Quantum gate sequence used to tune up the decoupled CZ gates that target both qubits Q1 and Q3. A similar gate sequence, but with the target and control qubits swapped, was used to tune up the unconditional phase accumulated on Q2 during the exchange pulses. X (X/2) denotes a π (π/2) rotation around the x axis and the rotations around the y and z axes are defined in a similar manner. ϕ/2 indicates a π/2 rotation around an axis in the xy plane—with ϕ = 0 (0.5π), it is around the x (y) axis. h, i, Measured Q1 and Q3 spin-up probabilities for two different control bit states of Q2. The filled (open) circles represent the result when Q2 is spin-down (up). The solid lines are the sinusoidal fitting curves. From the phase offsets of the sinusoids, we obtained the conditional phase shifts of (1.004 ± 0.005)π radian for Q1 and (1.003 ± 0.004)π radian for Q3. Note that we also applied a small (<0.1π) phase correction to each qubit to account for the imperfect cancellation of the non-conditional phase accumulation during the echo sequence. The errors represent the estimated standard errors for the best-fit values.
axis. For each of the 27 combinations of pre-rotations, we averaged 2,000 single-shot readout outcomes to obtain the eight probabilities projected to the computational basis. The measurement errors were removed by correcting the obtained probabilities based on the spin-up and -down readout fidelities (Methods). We reconstructed a density matrix ρ using a maximum likelihood estimation so that ρ is a physical, that is, Hermitian, positive-semidefinite and unit trace (Methods). Figure 3b shows the real part of the measured density matrix $\text{Re}(\rho)$ in the computational basis (see Extended Data Fig. 7 for the imaginary part). As expected for a GHZ state, there are four peaks at the corners. Figure 3c shows the expectation values for non-trivial 63 Pauli operators, which are also in a good agreement with the ideal GHZ state shown as the open black boxes. By comparing the measured state with the ideal one, we obtained a state fidelity of $F_{\text{GHZ}} = \langle \text{GHZ}|\rho|\text{GHZ} \rangle = 0.880 \pm 0.007$, which is comparable with the value obtained in the first demonstration in a superconducting transmon three-qubit device and high enough to test quantum algorithms.

To understand the properties of the generated state, we evaluated entanglement witness operators. The measured state fidelity is useful to distinguish two types of maximally entangled three-qubit states, the GHZ-class and W-class states. Only the GHZ-class state becomes completely separable after loss and/or measurement of one-qubit information, and therefore is a useful type for quantum error correction. Our measured state strictly belongs to the GHZ-class because any W-class state ρ_W satisfies $\langle \text{GHZ}|\rho_W|\text{GHZ} \rangle \leq 0.75$. To further infer the degree of the generated three-qubit entanglement, we evaluated a witness function $M = \langle \text{XXX} \rangle - \langle \text{XYX} \rangle - \langle \text{YXY} \rangle - \langle \text{YYX} \rangle$, which satisfies the Mermin–Bell inequality $|M| \leq 2$, for any biseparable states. We measured $M = 3.47 \pm 0.05$, which violates the inequality by more than 28 standard deviations. The violation requires the readout error removal, but it is, nonetheless, an important indication of a three-qubit entanglement.

We believe that there is still room to enhance the state fidelity by efforts to improve the quantum gates. The obtained state fidelity is comparably limited by the eight single-qubit and four CZ/2 gates in the GHZ-state generation protocol in Fig. 3a. Although the single-qubit gates are expected to have higher fidelities (>99%) than the CZ gates, they will have a non-negligible contribution to the measured state infidelity of 12%. In Fig. 3d–f, the single-qubit gate fidelities are limited by the nuclear spin fluctuations in the isotopically natural silicon quantum well and can be improved by using an isotopically enriched 28Si/SiGe material. In contrast, improvement of the decoupled CZ gate fidelity will require the reduction of charge noise, which may be possible with optimization of the device structure.

In conclusion, we show the operation of a three-qubit device in silicon and performed the generation and measurement of a three-qubit GHZ state. We implemented a high-fidelity, individual electrical control of three spin qubits using an on-chip micromagnet. Furthermore, we utilized a combination of barrier-controlled exchange and decoupling pulses to implement high-fidelity two-qubit CZ gates. We then combined the single- and two-qubit gates with a three-spin initialization and measurement to generate a three-qubit GHZ state. The generated state was fully characterized by quantum-state tomography and confirmed to have properties of a genuine three-qubit GHZ-class entanglement. We anticipate that our results will enable the exploration of multispin correlations and demonstration of multiqubit algorithms, such as quantum error correction in scalable silicon-based quantum computing devices.

During the completion of this Letter, we became aware of a related experiment that demonstrates control and measurement of a germanium-based four-spin qubit device.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41565-021-00925-0.

Received: 29 November 2020; Accepted: 30 April 2021; Published online: 7 June 2021

References
1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

Fig. 3 | Three-qubit entanglement generation and measurement. a, Quantum gate sequence used for the GHZ state generation and measurement. It is similar to the double CZ sequence in Fig. 2g. The key difference is that the first control pulse for Q_1 is replaced with a Y/2 pulse to prepare a superposition state. In addition, the X pulses are replaced with the Y pulses to obtain a final state with the desired phase components. b, Real part of the measured density matrix in the computational basis. The imaginary part can be found in Extended Data Fig. 7. The error represents one sigma from the mean. c, Measured expectation values for Pauli operators. An obvious expectation value, $\langle \text{III} \rangle = 1$, is omitted in the plot. The open boxes represent the expectation values for an ideal three-qubit GHZ state (0, 1 or −1).
2. Dicarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. *Nature* **467**, 574–578 (2010).

3. Neeley, M. et al. Generation of three-qubit entangled states using superconducting phase qubits. *Nature* **467**, 570–573 (2010).

4. Hähnner, H. et al. Scalable multiparticle entanglement of trapped ions. *Nature* **438**, 643–646 (2005).

5. Neumann, P. et al. Multiparticle entanglement among single spins in diamond. *Science* **323**, 1326–1330 (2009).

6. Pla, J. J. et al. A single-atom electron spin qubit in silicon. *Nature* **489**, 541–544 (2012).

7. Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. *Nature* **496**, 334–338 (2013).

8. Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. *Nat. Nanotechnol.* **9**, 981–985 (2014).

9. Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. *Phys. Rev. A* **64**, 052312 (2001).

10. Veldhorst, M. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. *npj Quantum Inf.* **3**, 34 (2017).

11. Veldhorst, M., Ennink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. *Nat. Commun.* **8**, 1766 (2017).

12. Zajac, D. M., Hazard, T. M., Ma, X., Nielsen, E. & Petta, J. R. Scalable gate architecture for densely packed semiconductor spin qubits. *Phys. Rev. Appl.* **6**, 054013 (2016).

13. Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. *Nature* **560**, 352–356 (2019).

14. Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. *Nat. Electron.* **2**, 151–158 (2019).

15. Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. *Nature* **555**, 633–637 (2018).

16. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. *Phys. Rev. A* **64**, 052312 (2001).

17. Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. *npj Quantum Inf.* **3**, 34 (2017).

18. Veldhorst, M., Ennink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. *Nat. Commun.* **8**, 1766 (2017).

19. Zajac, D. M., Hazard, T. M., Ma, X., Nielsen, E. & Petta, J. R. Scalable gate architecture for densely packed semiconductor spin qubits. *Phys. Rev. Appl.* **6**, 054013 (2016).

20. Xue, X. et al. Repetitive quantum non-demolition measurement and soft decoding of a silicon spin qubit. *Phys. Rev. X* **10**, 021006 (2020).

21. Qiao, H. et al. Coherent multi-spin exchange coupling in a quantum-dot spin chain. *Phys. Rev. X* **10**, 31006 (2020).

22. Zajac, D. M., Hazard, T. M., Ma, X., Nielsen, E. & Petta, J. R. Scalable gate architecture for densely packed semiconductor spin qubits. *Phys. Rev. Appl.* **6**, 054013 (2016).

23. Angus, S. J., Ferguson, A. J., Dzurak, A. S. & Clark, R. G. Gate-defined quantum dots in intrinsic silicon. *Nano Lett.* **7**, 2051–2055 (2007).

24. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. *Nature* **430**, 431–435 (2004).

25. Sigillito, A. I., Gullans, M. J., Edge, L. F., Borselli, M. & Petta, J. R. Coherent transfer of quantum information in silicon using resonant SWAP gates. *npj Quantum Inf.* **5**, 110 (2019).

26. Takeda, K., Nori, A., Yoneda, J., Nakajima, T. & Tarucha, S. Resonantly driven singlet-triplet spin qubit in silicon. *Phys. Rev. Lett.* **124**, 117701 (2020).

27. Tokura, Y., Van Der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. *Phys. Rev. Lett.* **96**, 047202 (2006).

28. Takeda, K. et al. A fault-tolerant addressable spin qubit in a natural silicon quantum dot. *Sci. Adv.* **2**, e1600694 (2016).

29. Borjans, F., Zajac, D. M., Hazard, T. M. & Petta, J. R. Single-spin relaxation in a synthetic spin–orbit field. *Phys. Rev. Appl.* **11**, 044063 (2018).

30. Knill, E. et al. Randomized benchmarking of quantum gates. *Phys. Rev. A* **77**, 012307 (2008).

31. Meunier, T., Calado, V. E. & Vandersypen, L. M. K. Efficient controlled-phase gate for single-spin qubits in quantum dots. *Phys. Rev. B* **83**, 121403(R) (2011).

32. Martins, F. et al. Noise suppression using symmetric exchange gates in spin qubits. *Phys. Rev. Lett.* **116**, 116801 (2016).

33. Reed, M. D. et al. Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation. *Phys. Rev. Lett.* **116**, 110402 (2016).

34. Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. *Nature* **508**, 500–503 (2014).

35. Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. *Nature* **482**, 382–385 (2012).

36. Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. *Nat. Commun.* **5**, 66 (2014).

37. Mermin, N. D. Extreme quantum entanglement in a superposition of macroscopically distinct states. *Phys. Rev. Lett.* **65**, 1838 (1990).

38. Conners, E. J., Nelson, J., Qiao, H., Edge, L. F. & Nich, J. M. Low-frequency charge noise in Si/SiGe quantum dots. *Phys. Rev. B* **100**, 165305 (2019).

39. Hendrickx, N. W. et al. A four-qubit germanium quantum processor. *Nature* **591**, 580–585 (2021).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. © The Author(s), under exclusive licence to Springer Nature Limited 2021
Methods
Sample fabrication. The triple quantum dot device was fabricated using an isotopically natural, undoped Si/STe heterostructure with a mobility of 300,000 cm²/V·s at an electron density of \(n = 3 \times 10^{11} \) cm⁻² and a temperature of 2 K. Phosphorus ion implantation was used to make the ohmic contacts. Standard electron-beam lithography and lift-off techniques were used to fabricate the overlapping aluminum gates and the micromagnet. The micromagnet is a stack of Ti/Cu/Al films with thicknesses of 10/250/20 nm. The 20-nm-thick aluminum film is expected to serve as an anti-oxidation layer.

Measurement setup. The sample was cooled down in a dry dilution refrigerator (Oxford Instruments Triton) to a base electron temperature of ~40 mK. The d.c. gate voltages were supplied using a four-channel digital-to-analog converter (QDevil ApS QDAC). Homemade cryogenic low-pass filters with a cutoff frequency of 160 MHz were used to filter its outputs. Each low-pass filter comprised lumped-constant microstrip resonator, inductor and low-pass filter7. The gate voltage pulses were generated by an arbitrary waveform generator (Tektronix AWG5208) and filtered by Mini Circuits SBLP-39 + Bessel low-pass filters.

The microwave pulses for single-electric dipole spin resonance were generated using three I/Q modulated signal generators (two Keysight E8257D and a Keysight E8257D with a Marki microwave MMIC M26661 I/Q mixer). The waveforms for I/Q modulation were sideband modulated by 20 MHz from the baseband generator (Tektronix AWG5208) and filtered by Mini Circuits SBLP-39 + Bessel low-pass filters.

The microwave pulses for spin-orbit coupling measurements were generated using two I/Q modulated signal generators (two Keysight E8257D and a Keysight E8257D with a Marki microwave MMIC M26661 I/Q mixer). The waveforms for I/Q modulation were sideband modulated by 20 MHz from the baseband frequencies to avoid an unintentional spin rotation due to leakage (a typical frequency of 160 Hz were used to filter its outputs. Each low-pass filter comprised lumped-constant microstrip resonator, inductor and low-pass filter7). The waveforms for I/Q modulation were sideband modulated by 20 MHz from the baseband generator (Tektronix AWG5208) and filtered by Mini Circuits SBLP-39 + Bessel low-pass filters.

The microwave pulses for single-electric dipole spin resonance were generated using three I/Q modulated signal generators (two Keysight E8257D and a Keysight E8257D with a Marki microwave MMIC M26661 I/Q mixer). The waveforms for I/Q modulation were sideband modulated by 20 MHz from the baseband generator (Tektronix AWG5208) and filtered by Mini Circuits SBLP-39 + Bessel low-pass filters.

Extended Data Fig. 3b shows the results of another experimental run with a slightly different readout condition and more symmetric readout fidelities (\(F_{\downarrow} = 0.937 \) and \(F_{\uparrow} = 0.962 \)). The difference is a shift of 100 µV on the P1 gate voltage and we expect the same gate fidelities as in Extended Data Fig. 3a. For this data set, we obtained gate fidelities of 99.75 ± 0.01%, 99.78 ± 0.01% and 99.76 ± 0.01% from the fittings of \(F_{\downarrow} \), \(F_{\uparrow} \) and \(F_{\downarrow} - F_{\uparrow} \), respectively. The saturation value was fixed to 0.488 in the fitting of \(F_{\downarrow} \) and \(F_{\uparrow} \). These fidelities are in reasonable agreement with that obtained by fitting the difference \(F_{\downarrow} - F_{\uparrow} \) in the different readout condition (Extended Data Fig. 3a).

These results show that, especially when the readout is asymmetric, as in Fig. 2d–f, it is more accurate and efficient to use \(F_{\downarrow} - F_{\uparrow} \) instead of using just one of \(F_{\downarrow} \) and \(F_{\uparrow} \).

Fidelity reduction due to residual exchange coupling. The fidelities in Fig. 2d–f were measured with all the qubits initialized to the spin-down state and the microwave frequencies were adjusted to the resonance conditions with the \(|\downarrow\downarrow\rangle \) state as an initial configuration. For this configuration, with the input states \(|\downarrow\uparrow\uparrow\rangle \) and \(|\uparrow\uparrow\downarrow\rangle \) input states, there is a \(f_{\text{off}} = 1.2 \) MHz frequency detuning when we performed the Q2 and Q3 single-qubit gates. For simplicity, we neglected \(f_{\text{off}} \), which was measured to be small as \(f_{\text{off}} = 1.2 \) MHz is a substantial fraction of \(f_{\text{off}} \). The control fidelities decrease too much. To mitigate this, we deliberately detuned our Q2 and Q3 single-qubit control frequencies by +0.6 MHz from the resonance conditions calibrated with the \(|\downarrow\downarrow\rangle \) state as an initial configuration. In this case, for the input states \(|\downarrow\downarrow\uparrow\rangle \) and \(|\uparrow\uparrow\downarrow\rangle \), there is a frequency detuning of ~0.6 MHz. In turn, for the input states \(|\downarrow\downarrow\downarrow\rangle \) and \(|\uparrow\uparrow\downarrow\rangle \), the frequency-detuning decreases to 0.6 MHz. The frequency offset of 0.6 MHz is 10% of \(f_{\text{off}} \) and comparable to the value in a previous two-qubit demonstration1. To infer the average control fidelities for multiqubit input states in this configuration, we performed randomized benchmarking experiments with the control qubit initialized to \(|\downarrow\rangle \) in half of the experiments and \(|\uparrow\rangle \) in the other half of the experiments (Extended Data Fig. 3c). Here, we just initialized Q2 to a spin-down state because the effect of \(f_{\text{off}} \) is small. For the Q3 (Q2) single-qubit gate, we obtained a fidelity of 99.86 ± 0.05 (99.38 ± 0.03)%. By comparing these fidelities with those in Figs. 2e,f, we found fidelity reductions of ~0.6% for Q3 and ~0.5% for Q2.

Exchange gates. The exchange interactions were controlled through gate voltage pulses. To keep the quantum dot potential near the symmetric operation point during the exchange pulses, we utilized the virtual gate technique5. We measured the gate-voltage-induced shift of the charge transition line of every quantum dot to extract the lever arms of the gates P1, P2, P3, B2 and B3. From the measured lever arms, we constructed the virtual barrier gates \(V_{\text{bar}} \) and \(V_{\text{bar}} \) as follows:

\[
(-0.218, 0.018, 0.005) V_{\text{bar}} = (\delta V_{1}, \delta V_{2}, \delta V_{3}, \delta V_{3}, \delta V_{3}),
\]

\[
(0.018, 0.024, 0.226) V_{\text{bar}} = (\delta V_{1}, \delta V_{2}, \delta V_{3}, \delta V_{3}, \delta V_{3}).
\]

We typically used the virtual barrier gate voltage pulses \(V_{\text{bar}} = 0.13 \) V and \(V_{\text{bar}} = 0.075 \) V to turn on \(f_{\text{off}} = 2.57 \pm 0.02 \) MHz and \(f_{\text{off}} = 12.50 \pm 0.02 \) MHz, respectively (Extended Data Fig. 3a,b). The residual exchange interactions were measured to be \(f_{\text{off}} = 0.1 \) MHz and \(f_{\text{off}} = 1.17 \pm 0.01 \) MHz using Ramsey interferometry (Extended Data Fig. 3c,d). \(f_{\text{off}} = 0.1 \) MHz was below our detection limit and had a negligible effect on our results in which we was noticed in Supplementary Note 1. In these conditions, we measured the atomic qubit linewidths and affected the single-qubit control fidelities. This effect was mitigated by shifting the qubit drive frequencies of Q2 and Q3 by 0.6 MHz from their resonance frequencies measured with all the qubits initialized to spin-down. Although the tunnel coupling between the middle and right quantum dots could be quenched by reducing the d.c. voltage applied on the B3 gate, this resulted in a drastic reduction of the \(T_1 \) relaxation time of \(Q_3 \). The valley splitting of the right quantum dot most probably changes with the barrier gate voltage13 and enhances the spin–valley hotspot relaxation at the magnetic field used. Although the external magnetic field could be tuned to avoid the spin–valley relaxation, we were not able to take this approach due to the limited microwave frequency range available in our measurement setup.

State tomography. To remove the state preparation and measurement errors, we characterized the initialization and readout fidelities. First, we measured the initialization fidelity of each qubit using a similar scheme as that in Watson et al.12. As we did not see any enhancement of the initialization fidelities even after waiting for 50 ms (longer than \(T_1 \)) at the single-qubit operation point, we concluded that the initialization fidelities were high (>99%) for all the qubits. As these are much higher than the readout fidelities, throughout this work the initialization fidelities are ignored. The spin-down (up) readout fidelity \(F_{\downarrow} (F_{\uparrow}) \) was determined from the measured spin-up probability after the standard initialization (X) gate. Typically, the fidelities were measured to be \(F_{\downarrow} = 0.906, F_{\downarrow} = 0.852, F_{\downarrow} = 0.948, F_{\uparrow} = 0.711, F_{\uparrow} = 0.955 \) and \(F_{\uparrow} = 0.844 \). The readout fidelities in the main text were defined as \(F_{\uparrow} = (F_{\downarrow} + F_{\uparrow})/2 \). The spin-up readout fidelities of Q2 and Q3 were largely limited by the spin relaxation during the sequential readout. Using these parameters, we corrected...
the measured probabilities $P_{ij} = \langle P_{ij} \rangle_{\text{projected}}$ as $P = (F_i \otimes F_j \otimes F_k)^{-1} P_{ij}$, where $F_i = \begin{pmatrix} F_{ii} & 1 - F_{ii} \\ 1 - F_{ii} & F_{ii} \end{pmatrix}$ and P is the probability used for the input of the maximum likelihood estimation. This means that we assumed no correlation in the readout errors. Without this readout error removal, we obtained a GHZ state fidelity of 0.458 for the same data as used in Fig. 3.

A maximum likelihood estimation was performed to restrict the density matrix to be physical. A physical density matrix can be written as $\rho = T^\dagger T / Tr(T^\dagger T)$, where T is a complex lower triangular matrix with real diagonal elements.

Assuming that the measured single-shot probabilities followed multinomial maximum likelihood estimation results were obtained by the Monte Carlo method. This means that we assumed no correlation in the readout errors. Without this readout error removal, we obtained a GHZ state fidelity of 0.458 for the same data as used in Fig. 3.

The errors of the projection outcomes for linearly independent pre-rotations $(I, X/2, Y/2, X)$ were calculated from the corresponding I rotation outcomes. The errors of the maximum likelihood estimation results were obtained by the Monte Carlo method assuming that the measured single-shot probabilities followed multinomial distributions. We fitted each of the resulting distributions with a Gaussian function to extract its standard deviation.

Data analysis software. All the curve fittings were performed using non-linear least-squares minimization and curve-fitting for Python (LmFit). For minimization of the cost function in the maximum likelihood estimation, we used the minimize function in SciPy.

Data availability All data in this study are available from the Zenodo repository at https://doi.org/10.5281/zenodo.4722605. Source data are provided with this paper.

References
40. Mueller, F. et al. Printed circuit board metal powder filters for low electron temperatures. Rev. Sci. Instrum. 84, 044706 (2013).
41. Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Fast single-charge sensing with a rf quantum point contact. Appl. Phys. Lett. 91, 162101 (2007).
42. Noiri, A. et al. Radio-frequency detected fast charge sensing in undoped silicon quantum dots. Nano Lett. 20, 947–952 (2020).
43. Andrews, R. W. et al. Quantifying error and leakage in an encoded Si/SiGe triple-dot qubit. Nat. Nanotechnol. 14, 747–750 (2019).
44. Hensgens, T. et al. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature 548, 70–73 (2017).
45. Jones, A. M. et al. Spin-blockade spectroscopy of Si/Si–Ge quantum dots. Phys. Rev. Appl. 12, 014026 (2019).
46. Newville, M., Stensitzki, T., Allen, D. & Ingargiola, A. LMFIT: non-linear least-square minimization and curve-fitting for Python. Zenodo https://zenodo.org/record/118134 YH16007SUS (2014).
47. Jones, E., Oliphant, T. & Peterson, P. SciPy: open source scientific tools for Python. Science Open https://www.scienceopen.com/document?id=ab12905a-8a5b-43d8-a2bb-defc771410b9 (2001).

Acknowledgements
We thank the Microwave Research Group at Caltech for technical support. This work was supported financially by Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST) (JPMJCR15N2 and JPMJCR1675), MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) grant no. JPMXS0118069228, JST Moonshot R&D grant no. JPMJMS2065 and JSPS KAKENHI grant nos. 16H02204, 17K14078, 18H01819, 19K14640 and 20H00237. T.N. acknowledges support from the Murata Science Foundation Research Grant and JST, PRESTO grant no. JPMJPR2017.

Author contributions
K.T. and A.N. fabricated the device and performed the measurements. T.N., J.Y. and T.K. contributed the data acquisition and discussed the results. K.T. wrote the paper with inputs from all the co-authors. S.T. supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41565-021-00925-0.
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41565-021-00925-0.
Correspondence and requests for materials should be addressed to K.T. or S.T.
Peer review information Nature Nanotechnology thanks Joseph Kerckhoff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | Initialization and measurement protocol. Initialization and readout procedure. The spin readout and initialization for Q₁ is performed near the (111)–(011) boundary, whereas for Q₂ and Q₃ it is performed near the (111)–(110) boundary. Note that Q₂ cannot be directly read out through the reservoir as the co-tunnelling rate between the (111) and (101) states is too small compared to the spin relaxation rate $T₁^{-1}$. The dwell times are 450 μs for Q₃ initialization, 750 μs for Q₁ initialization, 300 μs for Q₃ readout and 750 μs for Q₁ readout. The resonant SWAP pulses are 0.25 μs long and it corresponds to an exchange Rabi frequency of 2 MHz. The resonance frequency is typically around 410 MHz. The readout dwell time of Q₃ is compromised for the finite $T₁$ relaxation times of Q₁ and Q₂ and it results in imperfect spin-down initialization after the readout stage. Therefore, in order to increase the initialization fidelities, we use an explicit initialization stage which is redundant in the ideal case where all the three spins are initialized to spin-down after the readout stage.
Extended Data Fig. 2 | Single-qubit characterization. All qubits are initialized to spin-down before the manipulation stage and only one of the qubits is read out right after the manipulation stage unless noted. The exchange interactions are turned off. All errors represent the estimated standard errors for the best-fit values. a–d. T_1 measurements. First, a spin-up state is prepared using an X pulse. Then we vary the waiting time of t_w at the single-qubit manipulation point before performing single-shot measurement. In this T_1 measurement, all three spins are sequentially read out and therefore the visibilities of Q_1 and Q_2 are decreased by T_1 relaxation during the readout stage. Note that the visibility of Q_3 is unaffected by the sequential readout.
e–h. Ramsey interferometry measurements. First, a $\pi/2$ pulse (+2 MHz detuned from the resonance frequency) is applied to rotate the spin state to the xy-plane in the Bloch sphere. After an evolution time of t_{evol}, another $\pi/2$ pulse is applied to project the spin state in the z-axis for measurement. The black solid curves are the fit with Gaussian decay. The integration time is 75.8 sec for all qubits.
i–l. Hahn echo measurements. Each fitting curve is given by $P_{\uparrow}(t_{\text{evol}}) = A e^{-\left(t_{\text{evol}}/T_{2\text{e}}^\ast\right)^\gamma} + B$, where A and B are the constants to account for the readout fidelities and γ is an exponent. The exponents are found to be $\gamma = 1.79 \pm 0.12$ (Q1), 2.75 ± 0.10 (Q2) and 2.61 ± 0.09 (Q3).
Extended Data Fig. 3 | Additional randomized benchmarking measurements. a, Measurement result with an asymmetric readout condition. \(F_1 (F_0) \) is the spin-up probability when the recovery Clifford gate is chosen so that the ideal final spin state is spin-up (-down). The data points at \(m = 0 \) are measured without any random Clifford gates applied. Only an X pulse is applied in the case of \(F_1 \) and no pulse is applied in the case of \(F_0 \). The dashed line shows a constant 0.462, the expected saturation value derived from the readout asymmetry. b, Measurement result with a more symmetric readout condition.
Extended Data Fig. 4 | Randomized benchmarking with detuned microwave frequency. **a**, Randomized benchmarking sequence for Q$_2$ fidelity measurement. **b**, Randomized benchmarking measurement result of Q$_2$ with a frequency detuning of 0.6 MHz. For each of the control bit (Q$_3$) states, the measurement is performed for 16 sets of random Clifford gate sequences. The sequence fidelity shows an average of the results for the two control bit configurations. The errors represent the estimated standard errors for the best-fit values. **c, d**, Similar randomized benchmarking measurement performed for Q$_3$. The errors represent the estimated standard errors for the best-fit values.
Extended Data Fig. 5 | Measurements of exchange interactions. All errors represent the estimated standard errors for the best-fit values.

a, b, Controlled-rotation for Q₁ and Q₂. The measurement is performed to probe \(J'_{12} \). First, Q₁ and Q₂ are initialized to spin-down. To prepare a spin-up control qubit (Q₂) state, an X pulse is applied. After tuning on \(J'_{12} \) by a gate voltage pulse, a low-power Gaussian microwave pulse (truncated at ±2\(\sigma \)) is applied to induce a controlled-rotation. The filled (open) circles show the measured spin-up probabilities with the control qubit spin-down (up). The solid lines are Gaussian fitting curves. From the separation of the two peaks, we obtain \(J'_{12} = 2.75 \pm 0.02 \) MHz.

c, d, Similar controlled rotation measurement for Q₂ and Q₃. We obtain \(J'_{23} = 12.50 \pm 0.02 \) MHz from this measurement.

e, f, Ramsey experiment to extract \(J_{12}^{\text{off}} \). We perform two Ramsey measurements of Q₁ with different control qubit (Q₂) states. The difference of qubit frequency detuning is equivalent to \(J_{12}^{\text{off}} \). The red circles are the measured Q₁ spin-up probabilities and the black solid curve shows a fit with Gaussian decay. From the oscillation frequency of the decay curve, we extract \(\delta f_{\downarrow} = 2.28 \pm 0.01 \) MHz. Measurement similar to the one in f when Q₂ is spin-up. We extract \(\delta f_{\uparrow} = 2.21 \pm 0.01 \) MHz. Since the difference between \(\delta f_{\downarrow} \) and \(\delta f_{\uparrow} \) is below the stochastic fluctuation of the frequency detuning, we conclude that \(J_{12}^{\text{off}} \) is below our detection limit. Note that each frequency error shows one standard deviation of the fitting parameter.

h–j, Ramsey experiments to extract \(J_{23}^{\text{off}} \). We obtain \(J_{23}^{\text{off}} = \delta f_{\uparrow} - \delta f_{\downarrow} = 1.17 \pm 0.01 \) MHz from these measurements.
Extended Data Fig. 6 | Bell state tomography using \(Q_2 \) and \(Q_3 \). As a benchmark of our two-qubit CZ gate, we perform Bell state tomography on \(Q_2 \) and \(Q_3 \). The experiment is a reduced version of the three-qubit GHZ state tomography. The readout errors are removed using the measured readout fidelities and maximum likelihood estimation is used to reconstruct the density matrices.

a, Quantum gate sequence for Bell state creation and state tomography. By modifying the phase gates after the second \(CZ/2 \) pulse, we can create all four Bell states.

b–e, Real parts of the measured density matrices for four Bell states, \(\Phi^+ = (|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle)/\sqrt{2} \) (b), \(\Phi^- = (|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle)/\sqrt{2} \) (c), \(\Psi^+ = (|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle)/\sqrt{2} \) (d), and \(\Psi^- = (|\downarrow\uparrow\rangle - |\uparrow\downarrow\rangle)/\sqrt{2} \) (e). We obtain the state fidelities relative to the target states of 0.942 (\(\Phi^+ \)), 0.933 (\(\Phi^- \)), 0.950 (\(\Psi^+ \)) and 0.940 (\(\Psi^- \)), and the concurrences of 0.950 (\(\Phi^+ \)), 0.906 (\(\Phi^- \)), 0.923 (\(\Psi^+ \)) and 0.935 (\(\Psi^- \)).
Extended Data Fig. 7 | Imaginary part of the experimental GHZ state. The imaginary part is all zero for an ideal GHZ state. Here, the maximum absolute value of the matrix elements is 0.09.