Desktop laboratory of bound states in the continuum in metallic waveguide with dielectric cavities

Evgeny Bulgakov, 1 Artem Pilipchuk, 1 and Almas Sadreev1,*
1Kirensky Institute of Physics Federal Research Center KSC SB RAS 660036 Krasnoyarsk Russia
(Dated: August 4, 2022)

We consider dielectric cavities whose radiation space is restricted by two parallel metallic planes. The TM solutions of the Maxwell equations of the system are equivalent to the solutions of periodical arrays of dielectric cavities. The system readily allows to achieve bound states in the continuum (BICs) of any type including topological BICs as dependent on position and orientation of the cavities relative to the planes. That extremely facilitates experimental studies in comparison to infinite arrays of the cavities. We show the effect of merging of topologically protected BICs that pushes the square asymptotic of the Q-factor into the power degree 4 or even 6.

I. INTRODUCTION

Since the famous paper by Gustav Mie [1] engineering of dielectric cavities in optics and photonics has been a long-standing area of implementation various ideas and approaches to enhance the quality factor Q due to its paramount importance in both applied and fundamental research. Conventionally, light can be confined in closed or Hermitian system where access to radiation channels is prohibited due to, for example, metallic covering or embedding the resonant frequencies of cavity into band gap of photonic crystal [2]. However that way conflicts with necessity of easy manipulation of light confined in the cavity. On the other hand, although the compact dielectric resonator is in air its Q-factor is very restricted due to embedding into the radiation continuum whose spectrum is given by light cone $\omega = ck$ with no cutoff. In principle the problem can be solved cardinally if to address to infinitely long periodical structures, for example, gratings. The periodicity quantizes the directions of radiation leakage by means of diffraction orders and brings cutoffs. As a result the periodical structures support bound states in the radiation continuum (BICs) [3–16]. However, in practice an increasing of the number of cavities in periodical arrays is limited by material losses [18] and structural fluctuations [19]. Moreover grating slabs yield isolated dielectric cavities in compactness. In view of that breakthrough in the engineering of dielectric cavities was achieved owing to avoided crossing of resonances of single cavity [20–24] or different cavities [25, 26].

In spite of reporting unprecedent values of the Q-factor in these cavities that can not achieve infinity because the isolated cavity in air can not support the true BICs [27, 28]. In other words, although the multipolar radiation with low orders of orbital momentum can be suppressed due to avoided crossing of resonances the higher order multipolar radiation still remains [24, 25, 29, 30]. In the present paper we propose compromise solution of the problem by restriction of radiation space by two parallel metallic planes separated by a distance d. Then, for instance, the single dielectric cylinder inserted between the planes, as depicted in Fig. 1 (a), is equivalent to the infinite periodical array of cylinders with the period d in which BICs were considered by many scholars [7, 10, 12, 13, 16, 33–39]. The equivalency follows from the Dirichlet boundary conditions at perfectly conducting metal surface for the TM solutions of the Maxwell equations. Respectively, two identical cavities between the planes are equivalent to two periodical arrays of rods which support Fabry-Perot BICs [8, 40].

Moreover, the case of metallic waveguide of rectangular cross-section allows to remove another typical theoretical approximation of infinitely long cylinders rods as shown in Fig. 1 (a)-(d). Examples of equivalent arrays of dielectric cavities are sketched in Fig. 2. Thus, the metallic waveguide with one or two dielectric insets is converting into desktop laboratory of variety of BICs. While achievement of the BICs in gratings often requires tuning of geometrical parameters, the present case of desktop laboratory allows to achieve the BICs by simple variation of the waveguide’s width, position or orientation of dielectric inset inside the waveguide. However, the main advantage of this laboratory is related to material losses and structural fluctuations which fast saturate growth of the Q-factor with the number of cavities in periodic arrays [18, 19, 41] that prevents to clearly unveil the BICs.

The existence of symmetry protected (SP) BICs near rigid symmetric obstacle cylinder placed symmetrically in between parallel walls with Neumann or Dirichlet boundary conditions imposed upon them was proven on papers [42? ?]. After, Linton al [43] and Duan et al [44] have examined the cases of accidental BICs for slender rods of arbitrary cross-section placed non-symmetrically in waveguide. We develop these results for the case of dielectric rods

* Corresponding Author; almas@tnp.krasn.ru
of circular and rectangular cross-section and find a threshold for dimensions and permittivity of the rod below which the BICs do not exist. Once the rod is shifted relative to center line we obtain equivalent dimerised chain of rods as shown in Fig. 2 (c). There are only a few reports of BICs in dimerised arrays of dielectric cavities [45, 46]. Moreover, the rectangular rod inserted between metallic planes brings new parameter to vary, the angle of orientation of the rod as shown in Fig. 2 (d). That, in turn, opens a way for realization of topologically protected BICs with winding numbers \(m = \pm 1 \) in two-parametric space of angle and frequency or angle and distance between rods.

II. CYLINDER BETWEEN TWO METALLIC PLANES

We start consideration with single dielectric cylinder of the radius \(R \) inserted parallel to metallic planes as depicted in Fig. 1 (a). In what follows all quantities are measured in terms of the distance between plates \(d \) with \(x \)-axis is directed along the waveguide and \(z \)-axis is directed along the rod. Because of boundary conditions for the electric field \(E_z(x = 0, d) = 0 \) the solutions of the Maxwell equations of the system are equivalent to the solutions in periodical infinite array of rods at the \(\Gamma \)- or \(X \)-point as sketched in Fig. 2 (a).

There are two distinct cases for these solutions. The case of dielectric inset symmetrically disposed between two parallel metallic planes is equivalent to periodical array of rods with the period \(d \) as shown in Fig. 2 (a) and (b). Fig. 2 (c) presents the case of cylinder shifted from the center line of waveguide by distance \(\Delta \). Then the TM solutions of the system coincide with the solutions of the binary array of cylinders with double period \(2d \). The equivalence of the solutions allows us to use well known analytical approaches developed for periodical arrays of dielectric resonators [47, 48]. We complement these approaches by COMSOL MultiPhysics numerical calculations for the rods of circular and rectangular cross-sections.

In Fig. 3 we show typical examples of the SP BICs with azimuthal indices \(m = 1 \) and \(m = 2 \) for the case of symmetrical position of dielectric cylinder with the refractive index \(n \) (Fig. 2 (a)). It is clear that in order the dielectric rod could trap the EM wave with definite wavelength \(\frac{2\pi}{k} \) its radius \(R \) has to be comparable with the
Figure 2. (Color online) Periodical arrays of dielectric rods whose solutions at the Γ-point are equivalent to the solutions of Maxwell equations of rods placed between two parallel metallic planes shown by solid thick lines. The original rod is shown by red while its images at metallic planes are shown by gray. Cylindrical (a) and rectangular (b) rods positioned symmetrically between planes are equivalent to the periodical array of rods with period d. Cylindrical rod shifted by distance y_0 from center line (c) and rectangular rod rotated by the angle ϕ makes the system equivalent to dimerised chain. (e) Two rods positioned non-symmetrically (f) or two rotated rectangular rods (g) and (h) are equivalent to two dimerised chains.

characteristic wavelength inside the rod $\frac{2\pi}{R}$ Therefore the curve of existence of the SP BICs can be evaluated as $Rn_{k^{BIC}}(n,R) \approx 1$. Numerical behavior and comparison with this evaluated formula is shown in Fig. 3. Since the diameter of rod can not exceed distance between mirrors we obtain that BICs can not exist for $nk_{BIC} \geq 2$. For non-symmetric position of the rod inside the waveguide the SP BICs transform to accidental BICs at tuned rod’s radius or refractive index. In the equivalent system of binary periodical array of rods (see Fig. 2 (c)) these BICs correspond to the BICs at Γ-point. Phase diagrams of existence of the accidental BICs are plotted in Fig. 4.

III. RECTANGULAR ROD BETWEEN TWO METALLIC PLANES

First of all, the rectangular rod is interesting by that Linton et al [43] have shown existence of accidental BICs under assumption that the aspect ratio a/b is sufficiently large and the rod is metallic. Moreover, rectangular rod brings new parameter to vary, rotation angle relative to the frame of metallic waveguide as shown in Fig. 2 (d). Fig. 5 (a) shows curves of accidental BICs versus dimensions of rectangular quartz rod $a \times b$. Insets show evolution of two accidental BIC modes (electric field E_z directed along the rod). In fact, there are more curves which differ by number of nodal
Figure 3. (Color online) Curves of existence of the SP BICs vs refractive index and radius of circular rod. Insets show patterns of SP BICs (Electric field E_z).

Figure 4. (Color online) Curves of existence of accidental BICs in two-parametric space of refractive index of the rod and (a) frequency, (b) radius of the rod for $\Delta = 0$; (c) frequency, (d) displacement of the rod for $R = 0.18$; (e) frequency, (f) radius of the rod for $\Delta = 0.3$. Insets show the accidental BICs for certain parameters.
lines cross to the waveguide. TM propagating channels are given by simple formula \(k^2 = k_x^2 + \pi^2 p^2, p = 1, 2, 3, \ldots \) where \(k_x \) is the wave vector of TM waves along the waveguide. We consider only the BICs embedded into the continuum of the first propagating channel of the waveguide with \(p = 1 \) and frequencies below the cutoff of the second propagating channel \(\pi < k < 2\pi \).

First, one can see that the curves of BICs follow to analysis of Linton et al obtained by different mathematical techniques [43] for the case of Dirichlet BC at the walls of rectangular rod, i.e., metallic rod. These accidental BICs shown in Fig. 5 (a) have clear physical origin. Far from the rod accidental BICs follow to the evanescent mode \(p = 2 \) which is orthogonal to the first propagating channel \(p = 1 \) and therefore can not go out. The dielectric rod perturbs the evanescent mode and the perturbation strength depends on size and refractive index of the rod. The more the index and size the more perturbation. In spite of difference between the metallic and dielectric rods the accidental BIC exists at \(b \to 0 \). However, BIC’s frequency is limited by the cutoff \(2\pi \) of the second channel and the localization range diverges for \(k \to 2\pi \) as insets in Fig. 5 (b) show.

Figure 5. (Color online) Curves of existence of the accidental BICs. (a) As dependent on cross-section of rectangular quartz rod \(a \times b \) at \(\Delta = 0.25 \) with refractive index \(n = 2.05 \). (b) The frequency of BICs vs aspect ratio of rectangular rod.

IV. FABRY-PEROT BICS: TWO RODS INSIDE WAVEGUIDE

Two identical circular rods inserted symmetrically inside the waveguide as shown in Fig. 1 (e) make the system equivalent to periodic double arrays of subwavelength dielectric cylinders. Such arrays were studied by Ndangili and Shabanov with analytic TM solutions for BICs in the limit of thin cylinders [40]. Underlying physical mechanism for BICs is the Fabry-Perot one [49] in which each array perfectly reflects electromagnetic waves at definite frequency \(k_c \). Then, two arrays serve as ideal mirrors which are able to capture electromagnetic wave with frequency \(k_c \) at discrete distances roughly equal to integer number of half wavelength \(\pi/k_c \). Fig. 6 demonstrates the effect of total reflection of TM waves by (a) cylindrical and (b) rectangular rods positioned symmetrically inside the waveguide. The effect of
total reflection by rod inserted into waveguide exists irrespective to position of the rod inside the waveguide. In Fig. 6 (b) one can see the well known effect of collapse of Fano resonance for \(\phi \to 0 \) and \(\Delta = 0 \) at which the scattering function tends to the SP BIC [50]. Fig. 6 (c) shows that total reflection \((T = 0)\) is achieved owing to variation of cylindrical rod radius. However, the variation of the rod size is difficult in the experiment. Fig. 6 (d) demonstrates that the problem can be easily solved by orientation of rectangular rod relative to waveguide.

![Figure 6](image)

Figure 6. (Color online) Transmittance vs frequency (upper panels) for (a) cylindrical rod with \(R = 0.4, \Delta = 0 \), (b) rectangular rod with cross-section \(0.6 \times 0.3\) and \(\Delta = 0.01\). Transmittance zeros (bottom panels) vs frequency of incident wave and (c) radius of cylindrical rod, (d) orientation angle of rectangular rod for \(\Delta = 0\). The refractive index of the rods is \(n = 2.05\) in all cases.

In Fig. 7 (a) we show results of numerical calculations for the case of two circular quartz rods inserted symmetrically (see Fig. 2 (c)) with patterns of Fabry-Perot BICs for different distances between cylindrical rods. That case is equivalent to the case of two periodic arrays considered in Refs. [40, 51]. It is interesting that similar type of BICs exist even for non symmetrical position of circular rods an one can see from Fig. 7 (b). In Fig. 8 we show curves of the Fabry-Perot BICs in two-parametric space of the rotation angle of rods \(\phi\) and distance between them \(L\) for two distinct cases of rods rotation: in-phase and anti-phase.

One of the ways to experimentally confirm BICs is observation of singularities in the wave transmission in waveguide.
At the BIC point the total reflection coalesces with the full transmission [52] which can be defined as collapse of Fano resonance [50]. In Fig. 9 we present typical examples of such singular points in parametric space of incident light frequency and orientation angle of rectangular rods. Moreover, one can see that the transmission peaks follow the resonant frequencies of the system shown by solid lines in Fig. 9. There are two equivalent cases $\phi = 0$ and $\phi = \pi/2$ which were considered in Refs. [8, 53]. In both cases we observe two solutions for BICs whose frequencies are considered as splitting due to interaction of rods. As a result we obtain the symmetric and anti symmetric hybridized solutions shown in insets of Fig. 9. If the rods were in air the splitting of frequencies would decrease as $1/L^2$ [54]. However a presence of parallel metal planes cardinally changes the interaction between two rods to cancel L-dependence.

\section*{V. TOPOLOGICALLY PROTECTED BICS MERGE INTO SP OR ACCIDENTAL BICS}

Topologically protected (TP) BICs were reported by many scholars [34, 55–60] which originate from the merging of several BICs in the momentum space. Very recently Huang \textit{et al} [61] have demonstrated TP BICs in coupled acoustic resonators which arise from the merging of BICs in parametric space of frequency and coupling strength. The importance of the TP BICs is that they are robust to the fabrication imperfection, and that the degree of enhancement of the Q-factor of quasi BICs changes from standard quadratic to the fourth or even to the sixth degree. Here we demonstrate the cases of merging of two accidental BICs with winding numbers $m = \pm 1$ into one non-robust accidental BIC with $m = 0$. The phase singularities arise if some complex function $\Psi(k, \phi) = u(k, \phi) + iv(k, \phi) = |\Psi(k, \phi)|exp(i\theta(k, \phi))$ has nodal point in some two-dimensional parametric space, for example, frequency and angle of
Figure 9. (Color online) Transmittance of electromagnetic waves over the waveguide vs frequency and rotation angle of rods as shown in insets. Lines show resonant frequencies as function of the rotation angle \(\phi \). The parameters are \(a = 0.6, b = 0.3L = 1. \)

orientation \((k, \phi)\) or \((k, \Delta)\). Then the winding number of the singularity is given by

\[
 m = \text{sgn} \left(\frac{\partial u}{\partial k} \frac{\partial v}{\partial \phi} - \frac{\partial u}{\partial \phi} \frac{\partial v}{\partial k} \right)
\]

or

\[
 m = \oint d\mathbf{l} \nabla \theta.
\]

As the parametric space we have chosen the frequency \(k \) and the angle of rotation \(\phi \) while for the function \(\Psi \) we have chosen \(\frac{1}{E_z}(x, y) \) at some fixed space point \((x, y)\) where \(E_z \) is the \(z \)-th component of electric field for the TM solution of the Maxwell equations. Fig. 10 shows as the phase of this function in an anticlockwise sense, i.e., gives us \(m = 1 \). The merging is shown in Fig. 11 in which evolution of TP BIC with \(m = \pm 1 \) in two-parametric space of radius and

shift of dielectric cylinder is plotted by solid green line while the accidental BIC with \(m = 0 \) occurs only at \(R = 0.1656 \) and \(\Delta = 0 \).

These two TP BICs with \(m = \pm 1 \) are not distinguishable because are related by the inverse \(y \rightarrow -y \). However Fig. 12 (a) brightly demonstrates effect of annihilation of two TP BICs which merge into the SP BIC with zero winding number when rod with the critical radius \(R_c = 0.1656 \) takes the symmetrical position \(\Delta \rightarrow 0 \). Owing to Log Log scale of dependence we obtain that \(Q \sim \Delta^{-1} \). If the radius of rod were different from the critical one we would have

Figure 10. (Color online) The phase of function \(\theta = \text{Arg} \left(\frac{1}{E_z} \right) \) vs frequency and the rotation angle of dielectric rectangular rod \(0.6 \times 0.3 \) for the case of inphase rotation for the parameters highlighted by open circle in Fig. 9.
standard quadratic behavior $Q \sim \frac{1}{\Delta^2}$. First, these phenomenon was demonstrated in periodical array of cylindrical rods in which two off-Γ BICs with winding numbers $m = \pm 1$ were merged into the SP BIC at Γ point with $m = 0$ [34]. This phenomenon is similar to the case of merging of BICs observed in the photonic system, where topological charges move toward the Γ-point in first Brillouin zone at momentum space [33, 55, 58, 62]. It is important to note that the merging of BICs does not mean existence of two BICs at the same point of parametric space, i.e., degeneracy of BICs. In fact, for approaching to the merging point accidental BICs vanish compared to the SP BIC.

Fig. 13 demonstrates similar effects for the case of rectangular rod $a \times b$ in two-parametric space of its length a and position Δ. At the merging point of two TP BICs with SP BIC the behavior of Q-factor turns into $Q \sim \frac{1}{\Delta^6}$ as shown in Fig. 12 (b).

The case of two rectangular rods brings a novelty of the merging of three BICs, two Fabry-Perot BICs with winding numbers $m = \pm 1$ and one SP BIC with $m = 0$. Respectively, beyond the point of merging (marked by star in Fig. 8 (b)) we have standard quadratic behavior of the Q-factor as demonstrated in Fig. 14 (a). However, at the points of merging marked by open circles in 8 (b) we obtain strong dependence $Q \sim \frac{1}{\Delta^2}$ as Fig. 14 (b) shows. Crossover the degree of enhancement of the Q-factor is related to bifurcation of imaginary parts of TP BICs as Fig. 11 and 13 show. That result follows from the algebra of bifurcation [34, 58, 61, 63, 64].

One can see in Fig. 8 points in which SP BICs at $\phi = 0, 90^\circ$ (dash-dot blue lines) coalesce with Fabry-Perot BICs evolving with angle of in phase or anti phase rotation of rods shown by solid green and dash gray lines. These Fabry-Perot BICs have morphology cardinally different from the SP BICs as seen from insets in Fig. 8. For each angle $\phi \neq 0$ the Fabry-Perot BIC has to be tuned by distance between rods L making an analogy with accidental BICs. Fig. 16 demonstrates rich variety of merging effects of BICs with different winding numbers in the three-parametric space of frequency, distance between the rectangular rods and rotation angle.
VI. CONCLUSIONS AND DISCUSSION

A simple system of plane waveguide consisted of two parallel metal planes with integrated one or two dielectric quartz or silicon rods demonstrates abundance of various BICs classified as symmetry protected (SP), accidental, Friedrich-
Moreover, we show numerous points of merging of different topologically protected BICs in two-parametric space. These events give rise to change the power degree in asymptotic behavior of the Q-factor that has principal importance for numerous applications of BICs. First, this phenomenon of BICs merging was observed in the photonic system, where topological charges move toward the Γ-point in first Brillouin zone at momentum space [33, 55, 58, 62?]. Quite recently the two-parametric space was expanded onto the frequency and coupling strength of two acoustic resonators [61]. In the present paper we go further by introducing parameters determining position of rods, distance between them, orientation of rectangular shaped rods and frequency. It is important that all parameters can be easily varied experimentally in comparison to the case of topologically protected BICs in momentum space in the one- and two-dimensional periodical arrays of dielectric particles. It is clear that one can consider three-parametric space in which we can observe the lines of TP BICs.

Finally, we discuss the extend to which extend the present system of plane metallic waveguide with integrated dielectric rod is preferable compared to periodic array of rods with account of material losses. The comparison crucially depends on the frequency range in which BICs are supposed to be observed. For example, in GHz range the Q factor of SP BICs in the GHz range in the array of ceramic disks is saturated by a value 4000 [18]. While the array of Si disks with $\text{tan} = 4 \cdot 10^{-4}$ we have $Q_{\text{max}} = 2500$. In this range the silver surface can be considered as perfectly conducting material, and therefore the main contribution is due to material losses of rod integrated into waveguide. Fig. 17 presents results of COMSOL Multiphysics computations which show the frequency of SP BICs and its Q-factor versus the radius of rod that shows considerable gain of the present system compared to the periodical array of rods in the GHz range. In the optical range the main adverse factor is the surface impedance of silver metal that considerably restricts the Q-factor as shown in Fig. 17 by use of data of Ref. [?]. Nevertheless in red line range the Q-factor of the SP BIC can exceed a value 2000.

![Figure 16](image16.png)

Figure 16. (Color online) Dependence of frequency (a) and the Q-factor (b) of the SP quasi BIC vs radius of Si rod in the GHz range with account of material losses of rod.

![Figure 17](image17.png)

Figure 17. (Color online) Dependence of Q-factor of the SP quasi BIC vs wavelength for the rod integrated into silver waveguide in the optical range with account of surface impedance of silver.
We are grateful to Lujun Huang, Andrey Miroshnichenko and Yi Xu for discussions. The research was supported by Russian Science Foundation with Grant number 22-12-00070.

[1] G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metall?sungen, Annalen der Physik 330, 377 (1908).
[2] J. J. D., M. R. D., and W. J. N., Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, NJ, 1995).
[3] P. Vincent and M. Nevi'ere, Corrugated dielectric waveguides: A numerical study of the second-order stop bands, Appl. Phys. 20, 345 (1979).
[4] A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem, 17, 305 (1994).
[5] V. Astratov, J. Culshaw, R. Stevenson, D. Whittaker, M. Skolnick, T. Krauss, and R. de la Rue, Resonant coupling of near-infrared radiation to photonic band structure waveguides, 17, 2050 (1999).
[6] S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, Quasiguised modes and optical properties of photonic crystal slabs, Physical Review B 66, 10.1103/physrevb.66.045102 (2002).
[7] S. Shipman and S. Venakides, Resonant transmission near nonrobust periodic slab modes, Phys. Rev. E 71, 026611 (2005).
[8] D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Bound states in the continuum in photonics, Phys. Rev. Lett. 100, 183902 (2008).
[9] Chia Wei Hsu, Bo Zhen, Jeongwon Lee, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Observation of trapped light within the radiation continuum, Nature 499, 188 (2013).
[10] E. N. Bulgakov and A. F. Sadreev, Bloch bound states in the radiation continuum in a periodic array of dielectric rods, Phys. Rev. A 90, 053801 (2014).
[11] Yang Yi, Peng Chao, Liang Yong, Li Zhengbin, and S. Noda, Analytical perspective for bound states in the continuum in photonic crystal slabs, Physical Review Letters 113, 037401 (2014).
[12] D. Bykov and L. Doskelovich, $\omega = kx$ Fano line shape in photonic crystal slabs 92, 10.1103/physreva.92.013845 (2015).
[13] Z. Hu and Y. Y. Lu, Standing waves on two-dimensional periodic dielectric waveguides, 17, 065601 (2015).
[14] C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Bloch surface eigenstates within the radiation continuum, Light: Science & Applications 2, e84 (2013).
[15] X. Gao, C. W. Hsu, B. Zhen, X. Lin, J. D. Joannopoulos, M. Soljačić, and H. Chen, Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs, Scientific Reports 6, 10.1038/srep31908 (2016).
[16] Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, Transition from optical bound states in the continuum to leaky resonances: Role of substrate and roughness, ACS Photonics 4, 723 (2017).
[17] S. Lee and R. Magnusson, Band flips and bound-state transitions in leaky-mode photonic lattices (2018), arXiv preprint arXiv:1804.02598.
[18] Z. F. Sadrieva, M. A. Belyakov, M. A. Balezin, P. V. Kapitanova, E. A. Nenasheva, A. F. Sadreev, and A. A. Bogdanov, Experimental observation of a symmetry-protected bound state in the continuum in a chain of dielectric disks, Phys. Rev. A 99, 053804 (2019).
[19] E. Maslova, M. Rybin, A. Bogdanov, and Z. Sadrieva, Bound states in the continuum in periodic structures with structural disorder, Nanophotonics 10, 4313 (2021).
[20] M. Rybin, K. Koshelev, Z. Sadrieva, K. Samusev, A. Bogdanov, M. Limonov, and Y. Kivshar, High-Q Supercavity Modes in Subwavelength Dielectric Resonators, Phys. Rev. Lett. 119, 243901 (2017).
[21] A. Bogdanov, K. Koshelev, K. Samusev, M. Rybin, S. Gladyshev, Z. Sadrieva, K. Samusev, Y. Kivshar, and M. F. Limonov, Bound states in the continuum and fano resonances in the strong mode coupling regime, Adv. Photonics 1, 1 (2019).
[22] K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, Nonradiating photonics with resonant dielectric nanostructures, Nanophotonics 8, 725 (2019).
[23] M. Odit, K. Koshelev, S. Gladyshev, K. Ladutenko, Y. Kivshar, and A. Bogdanov, Observation of supercavity modes in subwavelength dielectric resonators, Advanced Materials 2003804 (2020).
[24] L. Huang, L. Xu, M. Rahmani, D. Neshov, and A. Miroshnichenko, Pushing the limit of high-Q mode of a single dielectric nanocavity, Advanced Photonics 3, 10.1117/1.ap.3.1.016004 (2021).
[25] E. Bulgakov, K. Pichugin, and A. Sadreev, Mie resonance engineering in two disks, MDPI Photonics 8, 49 (2021).
[26] K. Pichugin, A. Sadreev, and E. Bulgakov, Ultrahigh-Q system of a few coaxial disks, Nanophotonics 10, 4341 (2021).
[27] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. (Springer, Berlin, 1998).
[28] M. G. Silveirinha, Trapping light in open plasmonic nanostructures, Phys. Rev. A 90, 023813 (2014).
[29] K. Koshelev, A. Bogdanov, and Y. Kivshar, Meta-optics and bound states in the continuum, Science Bulletin 17, 065601 (2018).
[30] W. Chen, Y. Chen, and W. Liu, Multipolar conversion induced subwavelength high-q kerker supermodes with unidirectional radiations, Laser & Photonics Reviews 13, 1900067 (2019).
1. Zhen Hu and Ya Yan Lu, Standing waves on two-dimensional periodic dielectric waveguides, J. Optics 17, 065601 (2015).
2. Lijun Yuan and Ya Yan Lu, Bound states in the continuum on periodic structures: perturbation theory and robustness, Optics Letters 42, 4490 (2017).
3. Lijun Yuan and Ya Yan Lu, Bound states in the continuum on periodic structures: perturbation theory and robustness, Opt. Lett. 42, 4490 (2017).
4. E. Bulgakov and D. N. Maksimov, Bound states in the continuum and polarization singularities in periodic arrays of dielectric rods, Physical Review A 96, 063833 (2017).
5. E. Bulgakov and D. Maksimov, Light enhancement by quasi-bound states in the continuum in dielectric arrays, Optics Express 25, 14134 (2017).
6. Lijun Yuan and Ya Yan Lu, Bound states in the continuum on periodic structures surrounded by strong resonances, Physical Review A 97, 043828 (2018).
7. D. R. Abujetas, J. J. Sánchez, and J. A. Sánchez-Gil, Narrow fano resonances in si nanocylinder metasurfaces: Refractive index sensing, 125, 183103 (2019).
8. Z. Hu, L. Yuan, and Y. Y. Lu, Resonant field enhancement near bound states in the continuum on periodic structures 101, 10.1103/physreva.101.043825 (2020).
9. Z. Hu, L. Yuan, and Y. Y. Lu, Bound states with complex frequencies near the continuum on lossy periodic structures 101, 10.1103/physreva.101.013806 (2020).
10. R. F. Ndangali and S. Shabanov, Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders, J. Math. Phys. 51, 102901 (2010).
11. M. Sidorenko, O. Sergaeva, Z. Sadrieva, C. Roques-Carmes, P. Muraev, D. Maksimov, and A. Bogdanov, Observation of an accidental bound state in the continuum in a chain of dielectric disks, Phys. Rev. Appl. 15, 034041 (2021).
12. D. Evans and R. Porter, Trapped modes embedded in the continuous spectrum, The Quarterly Journal of Mechanics and Applied Mathematics 52, 263 (1998).
13. C. Linton, M. McIver, P. McIver, K. Ratcliffe, and J. Zhang, Trapped modes for off-centre structures in guides, Wave Motion 36, 67 (2002).
14. Y. Duan, W. Koch, C. Linton, and M. McIver, Complex resonances and trapped modes in ducted domains, J. Fluid Mech. 571, 119 (2007).
15. A. Overvig, S. Shrestha, and N. Yu, Dimerized high contrast gratings, Nanophotonics 7, 1157 (2018).
16. Q. Song, M. Zhao, L. Liu, J. Chai, G. He, H. Xiang, D. Han, and J. Zi, Observation of bound states in the continuum in the dimerized chain, Phys. Rev. A 100, 023810 (2019).
17. K. Yasumoto and H. Jia, Modeling of photonic crystals by multilayered periodic arrays of circular cylinders, in Electromagnetic Theory and Applications for Photonic Crystals, edited by K. Yasumoto (MIT Press, Cambridge, MA, 2006) pp. 527–579.
18. T. Kushta and K. Yasumoto, Electromagnetic scattering from periodic arrays of two circular cylinders per unit cell, Progress In Electromagnetics Research 29, 69 (2000).
19. A. F. Sadreev, Interference traps waves in an open system: bound states in the continuum, Rep. Progr. Phys. 84, 055901 (2021).
20. C. Kim, A. Satanin, Y. Joe, and R. Cosby, Resonant tunneling in a quantum waveguide: Effect of a finite-size attractive impurity, Phys. Rev. B 60, 10962 (1999).
21. V. Liu, M. Povinelli, and S. Fan, Resonance-enhanced optical forces between coupled photonic crystal slabs, Optics Express 17, 21897 (2009).
22. A. Sadreev, E. Bulgakov, and I. Rotter, Bound states in the continuum in open quantum billiards with a variable shape, Phys. Rev. B 73, 235342 (2006).
23. H. Chen, H. Wang, K. Yin Wong, and D. Lei, High-q localized surface plasmon resonance based on bound states in the continuum for enhanced refractive index sensing, Opt. Lett. 47, 609 (2022).
24. E. N. Bulgakov, K. N. Pichugin, and A. F. Sadreev, Evolution of the resonances of two parallel dielectric cylinders with distance between them, Phys. Rev. A 100, 10.1103/physreva.100.043808 (2019).
25. E. Bulgakov and D. N. Maksimov, Topological bound states in the continuum in arrays of dielectric spheres, Physical Review Letters 118, 267401 (2017).
26. S. Mukherjee, J. Gomis-Bresco, P. Pujol-Closa, D. Artigas, and L. Torner, Topological properties of bound states in the continuum in geometries with broken anisotropy symmetry, Phys. Rev. A 98, 10.1103/physreva.98.063826 (2018).
27. W. Liu, B. Wang, Y. Zhang, J. Wang, M. Zhao, F. Guan, X. Liu, L. Shi, and J. Zi, Circularly polarized states spawning from bound states in the continuum, Physical Review Letters 123, 10.1103/physrevlett.123.116104 (2019).
28. J. Jin, X. Yin, L. Ni, M. Soljačić, B. Zhen, and C. Peng, Topologically enabled ultrahigh-q guided resonances robust to out-of-plane scattering, Nature 574, 501 (2019).
29. T. Yoda and M. Notomi, Generation and annihilation of topologically protected bound states in the continuum and circularly polarized states by symmetry breaking, Phys. Rev. Lett. 125, 10.1103/physrevlett.125.053902 (2020).
30. M.-S. Hwang, H.-C. Lee, K.-H. Kim, K.-Y. Jeong, S.-H. Kwon, K. Koshelev, Y. Kivshar, and H.-G. Park, Ultralow-threshold laser using super-bound states in the continuum, Laser and Photonics Reviews 14134 (2020).
31. L. Huang, B. Jia, Y. K. Chiang, S. Huang, C. Shen, F. Deng, T. Yang, D. A. Powell, Y. Li, and A. E. Miroshnichenko, Topological supercavity resonances in the finite system, 2201.05324v1.
32. Bo Zhen, Chia Wei Hsu, Ling Lu, A. D. Stone, and M. Soljačić, Strong resonances on periodic arrays of cylinders and optical bistability with weak incident waves, Phys. Rev. Lett 113, 257401 (2014).
[63] Lijun Yuan and Ya Yan Lu, Strong resonances on periodic arrays of cylinders and optical bistability with weak incident waves, Phys. Rev. A 95, 023834 (2017).

[64] Y. Zeng, G. Hu, K. Liu, Z. Tang, and C.-W. Qiu, Dynamics of topological polarization singularity in momentum space, Physical Review Letters 127, 10.1103/physrevlett.127.176101 (2021).