Scattering state of Klein-Gordon Particles by q-parameter hyperbolic Poschl-Teller potential

AkpanNdemIkt1, Hillary P. Obong1, Israel O. Owate1, Michael C. Onyeaju1 and Hassan Hassanabadi2

1 Theoretical Physics group, Department of Physics, University of Port Harcourt, P M B 5323 Choba, Port Harcourt - Nigeria.

2 Physics Department, University of Shahrood, Shahrood, Iran.

Abstract

The one-dimensional Klein-Gordon equation for equal vector and scalar q-parameter hyperbolic Poschl-Teller potential is solved in terms of the hypergeometric functions. We calculate in details the solutions of the scattering and bound states. By virtue of the conditions of equation of continuity of the wave functions, we obtained explicit expressions for the reflection and transmission coefficients and energy equation for the bound state solutions.

Keywords: scattering state, bound state, Klein-Gordon equation, reflection coefficient, Transmission coefficient

PACNos: 03.65.Ge, 03.65-w

*Corresponding author :ndemikotphysics@gmail.com
1 Introduction

The scattering states of the relativistic and non-relativistic wave equation in recent times have received a great attention in physics [1-9]. Scattering and bound state solutions of asymmetric Hulthen potential have been obtained by Arda et al [10]. Also, the bound state and scattering state of Klein-Gordon equation with effective mass formalism have been studied by Arda and Sever[11]. Aydogdu et al [12] examined the scattering and bound states of massive Dirac equation with Wood-Saxon potential. Villalba and Rojas [13] in their investigation had shown the relation between the bound state energy eigenvalues and transmission resonances for the Klein-Gordon particle with Woods-Saxon potential as the same for the Dirac particle. Hassanabadi et al[14-15] investigated the scattering state of relativistic spinless particles with Kink-like potential and scattering of Woods-Saxon potential in the framework of minimal length. The scattering states of relativistic and non-relativistic particles with Woods-Saxon potential and mass dependent Woods-Saxon have been studied by Alpdogan etal[16] and Arda et al[17]. Recently, Alpdogan studied the scattering of massive Dirac particles with generalized asymmetric Woods-Saxon potential[18]. Yanar et al studied the scattering and bound state of Duffin-Kemmer-Petiau particles with q-parametr hyperbolic Poschl-Teller potential[19] . The qHPT is defined as follows

\[V(x) = \frac{4\lambda(\lambda - 1)}{\cosh^2(\alpha x)} = 4\lambda(\lambda - 1) \left[\theta(-x) \frac{e^{2\alpha x}}{(1+qe^{2\alpha x})^2} + \theta(x) \frac{e^{-2\alpha x}}{(1+qe^{-2\alpha x})^2} \right] \]

(1)

where \(\theta(x) \) is the step function, \(q \) is the deformation parameter and \(q \neq 0, \lambda \) is the height of the potential ,\(\lambda \neq 0,\lambda \neq 1 \) and \(\alpha \) is the range of the potential barrier. This potential plays important role in describing the interactions in molecular, atomic and nuclear physics. One of the findings of physics is to understand the structures of nucleus, atoms, molecules and other material object. Thus, the sole aim of physicists is to create unique models that contain the physically motivated potential that will describe the interactions between particles. A few numbers of these potential models have been identified to describe the interaction in the nuclei and diatomic and polyatomic molecules [20-21]. The applications of the Poschl-Teller-like type potential for analyzing the bound states energy of \(\Lambda \)-particle in hypernuclei in nuclear physics had been reported [19]. Furthermore, the (qHPT) may found much usefulness in molecular, atomic and nuclear physics.
Understanding of our knowledge about fine scale systems have been gained by investigations scattering and bounded state of such a systems. Therefore, the scattering problem has become an interesting topic in relativistic or non-relativistic quantum mechanics. In the case of non-relativistic scattering problem, it has been shown that transmission and reflection coefficients take 1 and 0, respectively, as external potential has well-behaved at infinity for the zero energy limit [22-24]. However, reflection coefficient goes to zero while transmission coefficient goes to unity in the zero energy limit when external potential supports a half-bound state. This situation was called as transmission resonance [25] which is escorted by fluctuations phenomena. The transmission resonance concept has been recently generalized to the relativistic case [26].

In this work, we attempt to study the solution of scattering state of the Klein Gordon equation with equal vector and scalar (qHPT) potential. Our aim will be to calculate in details the reflection(R) and transmission (T) coefficients and obtained the bound state solution of the qHPT using the equation of continuity of the wave function.

2 Scattering state solutions of Klein-Gordon equation for the qHPT

The time-independent Klein-Gordon equation with equal scalar \(S(x) \) and vector \(V(x) \) potentials can be written as[27],

\[
\frac{d^2 \psi(x)}{dx^2} + \left\{ E^2 - m^2 - 2(E + m)V(x) \right\} \psi(x) = 0, \quad (h = c = 1),
\]

(2)

Where \(E \) is the relativistic energy of the particles and \(m \) is the mass of the particle. In order to obtain the scattering solution for qHPT, we consider both \(x < 0 \) and \(x > 0 \) at \(|E| > m \). We intend to study the scattering of equation (2), we now seek the wave function for the case \(x < 0 \). By substituting Eq.(1) into Eq. (2), we have

\[
\frac{d^2 \psi(x)}{dx^2} + \left\{ E^2 - m^2 - \frac{8\lambda(\lambda - 1)(E + m)e^{2ax}}{(1 + qe^{2ax})^2} \right\} \psi(x) = 0
\]

(3)

To solve equation (3), we used a new variable defined as \(z = -qe^{2ax} \) which yields

\[
z(1-z) \frac{d^2 \psi}{dz^2} + (1-z) \frac{d\psi}{dz} + \frac{1}{z(1-z)} \left\{ \gamma_1 z^2 + \gamma_2 z + \gamma \right\} \psi(z) = 0
\]

(4)

Where,
\[
\begin{align*}
\gamma_1 &= \frac{1}{4\alpha^2}(E^2 - m^2), \\
\gamma_2 &= \frac{2}{\alpha^2} \left(\frac{(E + m)\lambda(\lambda - 1) + m^2 - E^2}{q} \right), \\
\gamma_3 &= \frac{1}{4\alpha^2}(E^2 - m^2)
\end{align*}
\]
(5) (6) (7)

Defining the wave function in Eq.(4) as \(\psi(z) = z^\mu (1 - z)^\nu \varphi(z) \), then Eq.(4) turns into the hypergeometric differential equation [28],

\[
(1 - z) \frac{d^2 \varphi}{dz^2} + \left[1 + 2\mu - (1 + 2\mu + 2\nu)z \right] \frac{d\varphi}{dz} - (\mu + \nu + \delta)(\mu + \nu - \delta)\varphi(z) = 0
\]
(7)

Where \(\mu, \nu \) and \(\delta \) are defined as follows,

\[
\begin{align*}
\mu &= \text{ik} \frac{2}{\alpha}, \quad \nu = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 - \frac{8(E + m)\lambda(\lambda - 1)}{\alpha^2 q}}, \\
\delta &= \text{ik} \frac{2}{\alpha}, \quad k^2 = (E^2 - m^2)
\end{align*}
\]
(8)

Regarding properties of Hypergeometric functions the minus sign should be chosen for \(\nu \).

The solutions of equation (7) can be written in terms of the hypergeometric function as follows

\[
\varphi(z < 0) = A_z F_1(\mu + \nu + \delta, \mu + \nu - \delta, 1 + 2\mu, z) + B_z z^{-2\mu} F_1(-\mu + \nu + \delta, -\mu + \nu - \delta, 1 - 2\mu, z)
\]
(9)

The general solutions for \(x < 0 \), is given as

\[
\psi(z < 0) = A z^\mu(1 - z)^\nu F_1(\mu + \nu + \delta, \mu + \nu - \delta, 1 + 2\mu, z) + B z^{-\mu(1 - z)\nu} F_1(-\mu + \nu + \delta, -\mu + \nu - \delta, 1 - 2\mu, z)
\]
(10)

Next, we investigate the solution for \(x > 0 \). Again substituting Eq.(1) into Eq.(2) yield,

\[
\frac{d^2 \psi(x)}{dx^2} + \left\{ \frac{E^2 - m^2 - 8\lambda(\lambda - 1)(E + m)e^{-2\alpha x}}{(1 + qe^{-2\alpha x})^2} \right\} \psi(x) = 0
\]
(11)

Defining the new variable \(\tilde{z} = -qe^{-2\alpha x} \) and redefining the ansatz for the wave function as \(\psi(\tilde{z}) = \tilde{z}^\mu (1 - \tilde{z})^\nu f(\tilde{z}) \), the solutions of equation (11) becomes,

\[
\psi(\tilde{z} > 0) = C \tilde{z}^\mu(1 - \tilde{z})^\nu F_1(\tilde{\mu} + \tilde{\nu} + \tilde{\delta}, \tilde{\mu} + \tilde{\nu} - \tilde{\delta}, 1 + 2\tilde{\mu}, \tilde{z}) + D \tilde{z}^{-\mu(1 - \tilde{z})\nu} F_1(-\tilde{\mu} + \tilde{\nu} + \tilde{\delta}, -\tilde{\mu} + \tilde{\nu} - \tilde{\delta}, 1 - 2\tilde{\mu}, \tilde{z})
\]
(12)

Where,
\[\tilde{\mu} = \frac{ik}{2\alpha}, \tilde{\nu} = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 - \frac{8(E + m)\lambda(\lambda - 1)}{q\alpha^2}}, \]
(13)

Here we also should choose the minus sign for \(\tilde{\nu} \). We seek for the physical results of the problem under investigation, therefore in order to get this physical result, the solutions obtained have to be used with appropriate boundary conditions as \(x \to -\infty \) and \(x \to +\infty \).

Applying the asymptotic solution to Eq. (10) for \(x \to -\infty \), as \(L z \to 0 \) and \((1-z)^{\frac{1}{2}} \to 1 \), becomes,

\[\psi_L(x \to -\infty) = A \left(-\frac{1}{q} \right)^{\frac{ik}{2q\alpha}} e^{ikx} + B \left(-\frac{1}{q} \right)^{\frac{ik}{2q\alpha}} e^{-ikx} \]
(14)

In order to find a plane wave traveling from left to right, we set \(C = 0 \), in equation (12) and the asymptotic behavior of the right solution becomes,

\[\psi_R(x \to \infty) = D \left(-q \right)^{\frac{ik}{2q\alpha \mu}} e^{\frac{ik}{q\alpha \mu}} \]
(15)

Now in order to give an explicit expressions for the coefficients, we use the continuity conditions of the wave function and its derivative defined as,

\[\psi_L(x = 0) = \psi_R(x = 0), \]
\[\psi_L'(x = 0) = \psi_R'(x = 0) \]
(16)

Where the prime denote differential with respect to \(x \). Applying these conditions on the wave function and matching the wave function at \(x = 0 \), we get

\[AQ U_1 + BQ U_2 = DQ U_3 \]
(17)

\[A(Q_4 U_4 + Q_5 U_5 + Q_6 S U_6) + B(Q_7 U_7 + Q_8 U_8 + Q_9 S_2 U_9) = D(Q_{10} U_{10} + Q_{11} U_{11} + Q_{12} S_2 U_{12}) \]
(18)

Where the following abbreviations have been used

\[Q_4 = (\tilde{\mu} + \tilde{\nu})(\tilde{\mu} + \tilde{\nu} - \delta), Q_5 = (\tilde{\mu} + \tilde{\nu})(\tilde{\mu} + \tilde{\nu} - \delta), Q_6 = (\tilde{\mu} + \tilde{\nu})(\tilde{\mu} + \tilde{\nu} - \delta), \]

and

\[S_1 = (\mu + \nu + \delta)(\mu + \nu - \delta)/(1 + 2\mu), S_2 = (\mu + \nu + \delta)(\mu + \nu - \delta)/(1 + 2\mu), S_3 = (\tilde{\mu} + \nu + \delta)(\tilde{\mu} + \nu - \delta)/(1 + 2\mu) \]
(19)
\[U_1 = {}_2F_1(\mu + v + \delta, \mu + v - \delta, 1 + 2\mu, -q), U_2 = {}_2F_1(-\mu + v + \delta, -\mu + v - \delta, 1 - 2\mu, -q). \]
\[U_3 = {}_2F_1(-\bar{\mu} + \bar{v} + \bar{\delta}, \bar{\mu} + \bar{v} - \bar{\delta}, 1 - 2\bar{\mu}, -q), U_4 = {}_2F_1(\mu + v + \delta, \mu + v - \delta, 1 + 2\mu, -q). \]
\[U_5 = {}_2F_1(\mu + v + \delta, \mu + v - \delta, 1 + 2\mu, -q), U_6 = {}_2F_1(\mu + v + \delta + 1, \mu + v - \delta + 1, 2 + 2\mu, -q). \]
\[U_7 = {}_2F_1(-\mu + v + \delta, -\mu + v - \delta, 1 - 2\mu, -q), U_8 = {}_2F_1(-\mu + v + \delta, -\mu + v - \delta, 1 - 2\mu, -q). \]
\[U_9 = {}_2F_1(-\mu + v + \delta + 1, -\mu + v - \delta + 1, 2 - 2\mu, -q), U_{10} = {}_2F_1(-\bar{\mu} + \bar{v} + \bar{\delta}, -\bar{\mu} + \bar{v} - \bar{\delta}, 1 - 2\bar{\mu}, -q). \]
\[U_{11} = {}_2F_1(-\bar{\mu} + \bar{v} + \bar{\delta}, -\bar{\mu} + \bar{v} - \bar{\delta}, 1 - 2\bar{\mu}, -q), U_{12} = {}_2F_1(-\bar{\mu} + \bar{v} + \bar{\delta} + 1, -\bar{\mu} + \bar{v} - \bar{\delta} + 1, 2 - 2\bar{\mu}, -q). \] (20)

And the property of hypergeometric function
\[\frac{d}{ds} {}_2F_1(a, b, c, s) = \frac{ab}{c} {}_2F_1(a + 1, b + 1, c + 1, s) \] [29] has been used in obtaining Eq.(18). The one dimensional current density for the Klein-Gordon equation in terms of the relativistic units (\(\hbar = c = 1 \)) is given by [30]
\[J(x) = \frac{i}{2m} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) \] (21)

The reflection and transmission coefficients are defined in terms of current density as follows
\[R = \frac{j_{\text{ref}}}{j_{\text{inc}}} = \left| \frac{B}{A} \right|^2, \]
\[T = \frac{j_{\text{trans}}}{j_{\text{inc}}} = \left| \frac{D}{A} \right|^2. \] (22)

Now using these equations and after a tedious algebra, we obtain the reflection and transmission coefficients as,
\[R = \left| \frac{B}{A} \right|^2 = \left| \frac{Q_1 U_4 + Q_3 U_5 + Q_5 S_1 U_6 - \frac{Q U_1}{Q_3} (Q_{10} U_{10} + Q_{11} U_{11} + Q_{12} S_1 U_{12})}{Q U_2 (Q_{10} U_{10} + Q_{11} U_{11} + Q_{12} S_1 U_{12}) - (Q U_7 + Q U_8 + Q_9 S U_9)} \right|^2 \] (21)
\[T = \left| \frac{D}{A} \right|^2 = \left| \frac{Q_1 U_4 + Q_3 U_5 + Q_5 S_1 U_6 - \frac{Q U_1}{Q_3} (Q_{10} U_{10} + Q_{11} U_{11} + Q_{12} S_1 U_{12})}{Q U_2 (Q_{10} U_{10} + Q_{11} U_{11} + Q_{12} S_1 U_{12}) - (Q U_7 + Q U_8 + Q_9 S U_9)} \right|^2 \] (22)

We have depicted in Fig. 5 that sum of reflection and transmission coefficient approaches to unite.
3 Bound state solutions of Klein-Gordon Equation for the qHPT

In order to find the bound state solutions for the Klein-Gordon particle with qHPT, we map $8\lambda(\lambda - 1) \rightarrow -V_0$.

A. Bound state solutions in the negative region ($x < 0$)

The bound state solutions can be found in this region by changing the variable $\xi = -qe^{2\alpha x}$ and taking into consideration $8\lambda(\lambda - 1) \rightarrow -V_0$ and Eq.(3) becomes

$$z(1-z)\frac{d^2\psi}{dz^2} + (1-z)\frac{d\psi}{dz} + \frac{1}{z(1-z)}\left\{\beta_1z^2 + \beta_2z + \beta_3\right\}\psi(z) = 0 \quad (23)$$

Where,

$$\beta_1 = \frac{1}{4\alpha^2}(E^2 - m^2), \quad (24)$$
$$\beta_2 = -\frac{1}{2\alpha^2}\left(V_0(E + m) + (E^2 - m^2)\right) \quad (25)$$
$$\beta_3 = \frac{1}{4\alpha^2}(E^2 - m^2) \quad (26)$$

Taking a wave function of the form $\psi(z) = z^{\mu_1}(1-z)^{\nu_1} \phi(z)$, then Eq.(23) turns into the hypergeometric differential equation[28],

$$z(1-z)\frac{d^2\phi}{dz^2} + \left[1 + 2\mu_1 - (1 + 2\mu_1 + 2\nu_1)z\right]\frac{d\phi}{dz} - \left(\mu_1 + \nu_1 + \delta_1\right)(\mu_1 + \nu_1 - \delta_1)\phi(z) = 0 \quad (27)$$

with μ_1, ν_1 and δ_1 are defining as follows,

$$\mu_1 = \frac{ik}{2\alpha}, \quad \nu_1 = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 + \frac{(E + mV_0)}{\alpha^2 q}}, \quad (28)$$
$$\delta_1 = \frac{ik}{2\alpha}, \quad k^2 = (E^2 - m^2)$$

That for ν_1 the correct sign is minus. The general solutions for $x < 0$, is given as

$$\psi(z < 0) = A_1z^{\mu_1}(1-z)^{\nu_1} \frac{\Gamma(\mu_1 + \nu_1 + \delta_1, \mu_1 + \nu_1 - \delta_1, 1 + 2\mu_1, z)}{\Gamma(\mu_1 + \nu_1 + \delta_1 - 1, 1 - 2\mu_1, z)} + B_1z^{-\mu_1}(1-z)^{\nu_1} \frac{\Gamma(-\mu_1 + \nu_1 + \delta_1, -\mu_1 + \nu_1 - \delta_1, 1 - 2\mu_1, z)}{\Gamma(-\mu_1 + \nu_1 + \delta_1 - 1, 1 + 2\mu_1, z)} \quad (29)$$

B. Bound state solutions in the positive region ($x > 0$)

In the positive region, we defined the variable $\xi = -qe^{-2\alpha x}$ with $8\lambda(\lambda - 1) \rightarrow -V_0$ and taking the wave function $\psi(\xi) = \xi^{\mu_1}(1-\xi)^{\nu_1} \phi(\xi)$ and following the same procedures as the case of negative region, we obtain the solutions for the positive region as follows:
\(\psi(\tilde{z} > 0) = C_i \tilde{z}^{\mu_i} (1 - \tilde{z})^{\nu_i} z F_1(\tilde{\mu}_i + \tilde{v}_i + \tilde{\delta}_i, \tilde{\mu}_i + \tilde{v}_i - \tilde{\delta}_i, 1 + 2 \tilde{\mu}_i, \tilde{z}) \\
+ D_i \tilde{z}^{-\mu_i} (1 - \tilde{z})^{\nu_i} z F_1(-\tilde{\mu}_i + \tilde{v}_i + \tilde{\delta}_i, -\tilde{\mu}_i + \tilde{v}_i - \tilde{\delta}_i, 1 - 2 \tilde{\mu}_i, \tilde{z}) \)

(30)

Where,

\(\tilde{\mu}_i = \frac{ik}{2\alpha}, \tilde{v}_i = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 + \frac{2(E + mc^2/j)^2}{\alpha^2 q}} \)

\(\delta_i = \frac{ik}{2\alpha}, k^2 = (E^2 - m^2) \)

(31)

And as mention in above pages the minus sing should be chosen. In order to find the equation for the energy eigenvalues, we set \(B = D = 0 \) and used the conditions of continuity for the wave function as, \(\psi^L(x = 0) \) and \(\psi^R(x = 0) \) and we get

\[A_i a_i K_i = C_i b_i K_i \] (32)

\[A_i (a_2 K_3 + a_3 K_4 + a_5 K_5) = C_i (b_2 K_6 + b_3 K_7 + b_5 K_8) \] (33)

Where,

\[a_i = (-q)^{\mu_i} (1+q)^{\nu_i} K_i = \frac{2}{\alpha^2} F_1(\mu_i + \nu_i + \delta_i, \mu_i + \nu_i - \delta_i, 1 + 2 \mu_i; -q), b_i = (-q)^{\alpha_i} (1+q)^{\beta_i} \]

\[K_2 = \frac{2}{\alpha^2} F_1(\mu_i + \nu_i + \delta_i, \mu_i + \nu_i - \delta_i, 1 + 2 \mu_i; -q), a_2 = 2a_i \mu_i (-q)^{\alpha_i} (1+q)^{\beta_i}, a_3 = 2a_i \nu_i (-q)^{\alpha_i} (1+q)^{\beta_i}, \]

\[a_4 = 2a_i (-q)^{\alpha_i} (1+q)^{\beta_i}, K_3 = \frac{2}{\alpha^2} F_1(\mu_i + \nu_i + \delta_i, \mu_i + \nu_i - \delta_i, 1 + 2 \mu_i; -q), \]

\[K_4 = \frac{2}{\alpha^2} F_1(\mu_i + \nu_i + \delta_i, \mu_i + \nu_i - \delta_i, 1 + 2 \mu_i; -q), b_2 = 2a_i \mu_i (-q)^{\alpha_i} (1+q)^{\beta_i}, b_3 = 2a_i \nu_i (-q)^{\alpha_i} (1+q)^{\beta_i}, \]

\[b_4 = 2a_i (-q)^{\alpha_i} (1+q)^{\beta_i}, K_5 = \frac{2}{\alpha^2} F_1(\mu_i + \nu_i + \delta_i, \mu_i + \nu_i - \delta_i, 1 + 2 \mu_i; -q), \]

\[K_6 = \frac{2}{\alpha^2} F_1(\mu_i + \nu_i + \delta_i, \mu_i + \nu_i - \delta_i, 1 + 2 \mu_i; -q), K_7 = \frac{2}{\alpha^2} F_1(\mu_i + \nu_i + \delta_i, \mu_i + \nu_i - \delta_i, 1 + 2 \mu_i; -q), \]

\[K_8 = \frac{2}{\alpha^2} F_1(\mu_i + \nu_i + \delta_i, \mu_i + \nu_i - \delta_i, 1 + 2 \mu_i; -q) \] (34)

Equation (32) and (33) admit a solution if and only if its determinant is zero \([31]\). This thus provides a condition for getting the energy eigenvalues as

\[b_i a_i K_i + b_i a_i K_i + b_i a_i K_i = a_i b_i K_i, a_i b_i K_i + a_i b_i K_i + a_i b_i K_i \] (35)

The energy equation (35) is a complicated transcendental equation and can only be solved numerically.

4 Results and Discussion

The behaviours of the qHPT potential as a function of \(x \) are displayed in Fig. 1-4 for various values of qHPT potential parameters. For \(q = 0 \) and \(8\lambda(\lambda - 1) \rightarrow V_0 \), the qHPT potential turns
to Cusp potential which is consistent one reported in ref.[32]. However, if we map $E - M = \frac{2\mu}{h^2}$ and $E + M = E_{nl}$ in Eq.(35) our results reduced to the cusp potential for the non-relativistic regime as reported in Ref.[33].

5 Conclusions
We solved the relativistic spin-less Klein-Gordon particles for the qHPT potential and calculate the wave functions that describe the scattering states in terms of hypergeometric function. By mapping of the potential parameter of qHPT potential, we also solved the bound state solution of the Klein–Gordon equation. By virtue of the equation of continuity of the wave function and the asymptotic properties of the solutions of the wave function, we calculate in details the reflection, transmission coefficients and bound state solution by the vanishes of the determinant of the coefficients of the wave functions for the qHPT potential. This study can find many applications of physics especially in the interaction of nuclei in nuclear physics.

Acknowledgment
It’s our pleasure that we have faced to right and faithful comments of referees to a have better article.

References

[1] N Domhey, PKennedy and A. Calogeracos Phys. Rev. Letts. 85 1787 (2000)
[2] V M Vilalba and W Greiner Phys. Rev. A 71 05210, (2005)
[3] V M Vilalba and C. Rojas Phys. Letts. A 362 21 (2007)
[4] H Hassanabadi, E Maghsoodi, N Salehi, A N Ikot and S Zarrinkamar Euro. Phys. J. Plus 128 127 (2013)
[5] A N Ikot, H Hassanabadi, E Maghsoodi and B H Yazarloo Eur. Phys. J. Plus 129 218 (2014)
[6] A N Ikot, B H Yazarloo, E Maghsoodi, S Zarrinkamar and H Hassanabadi J. Ass. Arab. Uni. Basic & App. Sci. (2014) http://dx.doi.org/10.1016/j.jaubas.2014.03.005
[7] H Hassanabadi, S Zarrinkamar and A A Rajabi, Phys. Letts. B 718 1111 (2013)
[8] H Hassanabadi, S Zarrinkamar and E Maghsoodi, Eur. Phys. J. Plus 128 25 (2013)
[9] H Hassanabadi, Z Molaee and S Zarrinkamar Adv. High Energy Phys. Vol. 2014, Article ID 459345, 6 pages, http://dx.doi.org/10.1155/2014/459345
[10] A Arda and R Sever J. Math. Phys. 52 205004 (2011)
[11] O Aydogdu, A Arda and R Sever J. Math. Phys. 53 042016 (2012)
[12] O Aydogdu, A Arda and R Sever J. Math. Phys. 53 102111 (2012)
[13] V M Vilalba and C Rojas Phys. Rev. A 71 052101 (2005)
[14] H Hassanabadi, L Lu, E Maghsoodi, G Liu and S Zarrinkamar Anal. Phys. 342 (2014) 264
[15] H Hassanabadi, S Zarrinkamar and E Maghsoodi Phys. Letts. B 718 678 (2012)
[16] S Alpdogan, O Aydogdu and A Havare J. Phys. A: Math & Theor. 46 015301 (2013)
[17] A Arda, O Aydogdu and R Sever, *J. Phys. A: Math. Theor.* **43** 425204 (2010).
[18] S Alpdogan and A Havare, *Adv. High Ener. Phys.* Vol. 2014, Article ID 973847, http://dx.doi.org/10.1155/2014/973847.
[19] H Yanar, A Havare and K Sogut, *Adv. High Ener. Phys.* Vol. 2014, Article ID 840907, 9 pages, http://dx.doi.org/10.1155/2014/840907.
[20] A. Arai, *J. Math. Anal. Appl.* **158** 63 (1991).
[21] C Grosche, *J. Phys. A: Math. and Gen.* **38** 2947 (2005).
[22] L. D. Fadeev, Trudy Mat. Inst. Stekl. **73**, 314 (1964).
[23] P. Senn, *Am. J. Phys.* 56, 916 (1988).
[24] M. S. Bianchi, *J. Math. Phys.* 35, 2719 (1994).
[25] D. Bohm, Quantum Mechanics (Printice Hall, Englewood Cliffs, NJ), 1951.
[26] A. Calogeracos, N. Dombey, *Int. J. Mod. Phys. A* **14**(1999) 631-644.
[27] O Aydogdu, A Arda and R Sever, *J. Math. Phys.* **53** 102111 (2012).
[28] H Hassanabadi, E Maghsoodi, N Salehi, A. Ikot and S. Zarrinkamar, *Euro. Phys. J.* **Phys. A** **28** 127 (2013).
[29] M. Abramowitz and I. A. Stegun, *Hand book of Mathematical Functions* (New York: Dover), 1970.
[30] N Candemir and O Bayrak, *J. Math. Phys.* **54** 042104 (2013).
[31] O Panella, S Biondini and A Arda, arxiv:1002.3723v2 [Math-ph] 16 June, 2010.
[32] V M Villalba and C Rojas, *Int. J. Mod. Phys. A* **21** 313 (2006).
[33] Z Molaee, H Hassanabadi and S Zarrinkamar, *Commun. Theor. Phys.* **60** 25 (2013).
Fig. 1: The plot of the qHPT potential as a function of position with $q = 1, \alpha = 1, 2$ and 3 for $x < 0$ and $x > 0$ respectively.
Fig. 2: The plot of the qHPT potential as a function of position with $q = 3, \alpha = 1, 2$ and 3 for $x < 0$ and $x > 0$ respectively.
Fig. 3: The plot of the qHPT potential as a function of position with $q = 1, 3$ and 5 for $x < 0$ and $x > 0$ respectively.
Fig. 4: The plot of the qHPT potential as a function of position x with $q = 1, 0.75$ and 0.5 and $\alpha = 0.05$ for $x < 0$ and $x > 0$ respectively.

Fig. 5: Transmission (T) and Reflection (R) coefficients vs. E is depicted.