PhyDOSE: Design of Follow-up Single-cell Sequencing Experiments of Tumors

Leah Weber1*, Nuraini Aguse1*, Nicholas Chia2,3 and Mohammed El-Kebir1

1 University of Illinois at Urbana-Champaign, Department of Computer Science
2 Microbiome Program, Center for Individualized Medicine, Mayo Clinic
3 Division of Surgical Research, Department of Surgery, Mayo Clinic

RECOMB-CCB 2020
June 18, 2020

*These authors contributed equally to this work
Cancer is an evolutionary process
Cancer is an evolutionary process

- Founder Cell
- Advantageous Mutations
- Clonal Expansion
- Heterogeneous Tumor

Phylogenetic Tree

- Identify treatment targets
- Understand metastatic development
- Compare evolutionary patterns across patients
DNA sequencing of tumors

Bulk DNA Sequencing ($)

Single-cell DNA Sequencing ($$$)
DNA sequencing of tumors

Bulk DNA Sequencing ($)

Single-cell DNA Sequencing ($$$)

Cancer Cell Fractions

Fraction	Value
1	0.09
2	0.36
3	0.45
4	0.25
DNA sequencing of tumors

Bulk DNA Sequencing ($)

Single-cell DNA Sequencing ($$$)

Cancer Cell Fractions

| 1 | 0.09 | 0.36 | 0.45 | 0.25 |

Solution Space
DNA sequencing of tumors

Bulk DNA Sequencing ($)

Cancer Cell Fractions

Single-cell DNA Sequencing ($$$)

Solution Space
DNA sequencing of tumors

Bulk DNA Sequencing ($)

DNA sequencing of tumors

Single-cell DNA Sequencing ($$$)

Cancer Cell Fractions

Cancer Cell Fractions	T1	T2	T3		
	1	0.09	0.36	0.45	0.25

Solution Space

Cancer Cell Fractions	0	1	1	0	0	0	0	0	?	0	1	1	0
c1	1	0	0	0	0	0							
c2	1	1	0	0	0								
c3	0	0	0	1	0								
c4	1	0	0	1	0								
c5	1	?	0	1	1								
c6	1	0	0	1	0								

False Negative
Phylogeny inference from DNA sequencing

Method	Bulk Sequencing Data	Single-cell Data
SCITE [Jahn et al., 2016]		X
OncoNEM [Ross & Markowetz, 2017]		X
SPPhyR [El-Kebir, 2018]		X
SiCloneFit [Zafar et al., 2019]		X
PhiSCS [Malikic et al., 2019a]	X	X
B-SCITE [Malikic et al. 2019b]	X	X

How many single-cells should you sequence to minimize costs?

7? 1 million?
Key idea: Design a cost-effective single-cell sequencing experiment using bulk DNA data

Cancer Cell Fractions:
- 1
- 0.09
- 0.36
- 0.45
- 0.25

Input Parameters:
- # of cells to sequence

PhyDOSE

of cells to sequence
Outline

- Problem statement
- Methods
- Complexity
- Simulation study
- Application to real data
- Conclusions and future work

11

Input Parameters

of cells to sequence

Cancer Cell Fractions

Solution Space

PhyDOSE

T1 T2 T3

1 0.09 0.36 0.45 0.25
Key idea: Bulk data guides cost effective single-cell experiment design

\[
T_1
\]

\[
\text{SINGLE-CELL SEQUENCING POWER CALCULATION (SCS-PC)}
\]

Given a set \(T \) of candidate phylogenies, frequencies \(f \)

\[
T
\]

\[
T_2
\]

\[
T_3
\]

Cancer Cell Fractions \(f \)

\[
\begin{array}{c|c|c|c|c}
\text{Index} & 1 & 0.09 & 0.36 & 0.45 & 0.25 \\
\end{array}
\]
Key idea: Bulk data guides cost effective single-cell experiment design

Single-cell Sequencing Power Calculation (SCS-PC)

Given a set \mathcal{T} of candidate phylogenies, frequencies \mathbf{f} and confidence level γ,

Cancer Cell Fractions \mathbf{f}	Confidence Level $\gamma = 0.95$
1 0.09 0.36 0.45 0.25	
Key idea: Bulk data guides cost effective single-cell experiment design

Single-cell Sequencing Power Calculation (SCS-PC)

Given a set \mathcal{T} of candidate phylogenies, frequencies \mathbf{f} and confidence level γ, find the minimum number k^* of single cells needed to determine the true phylogeny \mathcal{T} among \mathcal{T} with probability at least γ.

Cancer Cell Fractions \mathbf{f}	Confidence Level				
1	0.09	0.36	0.45	0.25	$\gamma = 0.95$

$\mathbf{k^*}$
Solving the SCS-PC

True phylogeny unknown
Key idea: condition on each tree being the true tree and solve SCS-PC

\[T = T_1 \]

SCS Power Calculation for Phylogeny T

Given a set \mathcal{T} of candidate phylogenies and a phylogeny $T \in \mathcal{T}$, frequencies \mathbf{f} and confidence level γ,

\[
\begin{array}{c|c|c|c|c}
\text{Cancer Cell Fractions} & 1 & 0.09 & 0.36 & 0.45 & 0.25 \\
\hline
\text{Confidence Level} & \gamma = 0.95 \\
\end{array}
\]
Key idea: condition on each tree being the true tree and solve SCS-PC

\[T = T_1 \]

SCS Power Calculation for Phylogeny \(T \)

(\(T \)-SCS-PC)

Given a set \(\mathcal{T} \) of candidate phylogenies and a phylogeny \(T \in \mathcal{T} \), frequencies \(f \) and confidence level \(\gamma \), find the minimum number \(k^* \) of single cells needed such that the probability of a successful SCS experiment is greater than or equal to \(\gamma \).

\[
k^* = \arg \min_k P(\text{Success} \mid T, \mathcal{T}, k, f) \geq \gamma
\]

Confidence Level

\[\gamma = 0.95 \]

\[k^* \]
What is a successful experiment given T?

Cancer Cell Fractions f

$\begin{bmatrix} 1 & 0.09 & 0.36 & 0.45 & 0.25 \end{bmatrix}$

T

SCOPIT
[Davis et al. 2019]
What is a successful experiment given T?

Cancer Cell Fractions f

	0.09	0.36	0.45	0.25

T

6 cells

Clonal Prevalence u

	0.1	0.09	0.36	0.2	0.25

\mathbf{k}

\mathbf{p}

Success $\sim \text{Mult}(p, k)$

SCOPIT

[Davis et al. 2019]
What is a successful experiment given T?

Cancer Cell Fractions f

T

$\begin{array}{cc}
1 & 0.09 \\
0.36 & 0.45 \\
0.25 & \\
\end{array}$

6 cells

$\begin{array}{cc}
? & \cdots \\
? & \\
\end{array}$

Clonal Prevalence u

$\begin{array}{cc}
0.1 & 0.09 \\
0.36 & 0.2 \\
0.25 & \\
\end{array}$

k

p

Success $\sim \text{Mult}(p, k)$

$\begin{array}{cccccccc}
6 & 0 & 0 & 0 & 0 & 0 & \\
5 & 1 & 0 & 0 & 0 & 0 & \\
\vdots & & & & & & \\
1 & 2 & 1 & 1 & 1 & 1 & \\
2 & 1 & 1 & 1 & 1 & 1 & \\
\end{array}$

SCOPIT

[Davis et al. 2019]
What is a successful experiment given \(T \)?

\[\text{Cancer Cell Fractions } \mathbf{f} \]

\[\begin{array}{c}
1 & 0.09 & 0.36 & 0.45 & 0.25 \\
\end{array} \]

\[\downarrow \]

\[T \]

\[\begin{array}{c}
\text{6 cells} \\
\text{k} \\
\end{array} \]

\[\downarrow \]

\[\text{Clonal Prevalence } \mathbf{u} \]

\[\begin{array}{c}
0.1 & 0.09 & 0.36 & 0.2 & 0.25 \\
\end{array} \]

\[\downarrow \]

\[p \]

\[\text{Success } \sim \text{Mult}(p, k) \]

\[\begin{array}{c}
6 & 0 & 0 & 0 & 0 \\
5 & 1 & 0 & 0 & 0 \\
\vdots \\
1 & 2 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 \\
\end{array} \]

\[\text{SCOPIT} \]

[Davis et al. 2019]

But we don’t always need to observe all clones for a successful experiment!
Key idea: distinguishing feature

\[T = T_1 \]
Key idea: distinguishing feature

Success is defined as observing a distinguishing feature.
Probabilistic model

Cancer Cell Fractions f

0.09 0.36 0.45 0.25

Clonal Prevalence u

0.09 0.36 0.55

Success is defined as observing a distinguishing feature.
Probabilistic model

Cancer Cell Fractions f

1 0.09 0.36 0.45 0.25

Success is defined as observing a distinguishing feature.

Success $\sim \text{Mult}(p, k)$

Clonal Prevalence u

$\begin{array}{ccc}
0.09 & 0.36 & 0.55 \\
\end{array}$

p

$\begin{array}{ccc}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 1 & 1 \\
1 & 2 & 0 \\
2 & 1 & 0 \\
\end{array}$

Probability $p = 0.149$

Success is defined as observing a distinguishing feature.
Power calculation for fixed tree T

Cancer Cell Fractions f

- 1 0.09 0.36 0.45 0.25

Confidence Level

$\gamma = 0.95$

? cells

$k^* = \arg \min_k P(\text{Success} \mid T, T, k, f \geq \gamma$

Clonal Prevalence u

- 0.09 0.36 0.55
Power calculation for fixed tree T

Cancer Cell Fractions \mathbf{f}

\[1 \quad 0.09 \quad 0.36 \quad 0.45 \quad 0.25 \]

Clonal Prevalence \mathbf{u}

\[0.09 \quad 0.36 \quad 0.55 \]

Confidence Level

$\gamma = 0.95$

$\mathbf{p} = \{ ? \ldots ? \}$

$\mathbf{k}^* = 32$ is the solution to the T-SCS-PC problem.

$k^* = \arg \min_k P(\text{Success} \mid T, \mathcal{T}, k, \mathbf{f}) \geq \gamma$

k prob.

k	prob.
3	0.15
4	0.25
...	
15	0.75
...	
32	0.95
Solving the SCS-PC

Taking the maximum yields and upper bound

\[k^* = 32 \]

\(k^* = 32 \)

\(k^* = 32 \)

\(k^* = 4 \)

\(k^* = 32 \) is the solution to the SCS-PC problem.
Solving the SCS-PC

Taking the maximum yields and upper bound

$k^* = 32$

Adjust for false negatives

$k^* = 32$

$k^* = 32$

$k^* = 4$

Account for multiple distinguishing features

$k^* = 32$ is the solution to the SCS-PC problem.
T-SCS-PC is NP-hard by reduction from Set Cover

Lemma: Let \((\mathcal{J}, T_0, \mathbf{f}, \gamma = \epsilon)\) be the T-SCS-PC instance corresponding to Set Cover instance \((\mathcal{U}, \mathcal{F})\). A minimum cover has size \(k^*\) if and only if \(k^*\) is the smallest integer such that
\[
\Pr(Y_{k^*} \mid u(T_0, \mathbf{f})) \geq \gamma
\]
Simulation design

- 100 replications
- SCOPIT comparison
- SPhyR phylogeny inference
- $\gamma = 0.95$
SCOPIT comparison

- 100 replications
- SCOPIT comparison
- SPhyR phylogeny inference
- $\gamma = 0.95$
Phylogeny inference with SPhyR

- 100 replications
- SCOPIT comparison
- SPhyR phylogeny inference
- $\gamma = 0.95$
Morita et al. (2020) performed high throughput targeted microfluidic single cell DNA sequencing on a cohort of 77 patients with AML. Based on the published variant allele frequencies, we enumerated between 2 and 316 candidate trees for 24 patients and used PhyDOSE to estimate k^*.

PhyDOSE k^ compared with the original number of cells sequenced*

- Morita et al. (2020) performed high throughput targeted microfluidic single cell DNA sequencing on a cohort of 77 patients with AML.
- Based on the published variant allele frequencies, we enumerated between 2 and 316 candidate trees for 24 patients and used PhyDOSE to estimate k^*.
PhyDOSE-IT and phydoser R package

https://phydose.shinyapps.io/PhyDOSE-IT/ https://github.com/elkebir-group/phydoser
Conclusions and future work

PhyDOSE Conclusions

- Proposes cost-efficient single-cell experiment design to yield high-fidelity phylogenies
- Agnostic to the type of single-cell sequencing technology used
- Available as both a web-application and an R package

Future Work

- Optimally determine the number of cells to sequence across multiple biopsies
- Explore evolutionary models beyond the infinite sites model
- Formulate and solve the RE-SCS-PC problem
 - Find out next time what it means to me...
Acknowledgements

El-Kebir group

- Mohammed El-Kebir
- Nuraini Aguse
- Yuanyuan Qi
- Jiaqi Wu
- Sarah Christensen
- Palash Sashittal
- Juho Kim
- Jackie Oh
- Chuanyi Zhang

UIUC Center for Computational Biotechnology and Genomic Medicine (grant: CSN 1624790)

National Science Foundation (CCF-1850502)