Combined analysis of neutron star natal kicks using proper motions and parallax measurements for radio pulsars and Be X-ray binaries

Igoshev, A.P.; Chruslinska, M.; Dorozsmai, A.; Toonen, S.

DOI
10.1093/mnras/stab2734

Publication date
2021

Document Version
Final published version

Published in
Monthly Notices of the Royal Astronomical Society

Citation for published version (APA):
Igoshev, A. P., Chruslinska, M., Dorozsmai, A., & Toonen, S. (2021). Combined analysis of neutron star natal kicks using proper motions and parallax measurements for radio pulsars and Be X-ray binaries. Monthly Notices of the Royal Astronomical Society, 508(3), 3345-3364. https://doi.org/10.1093/mnras/stab2734
Combined analysis of neutron star natal kicks using proper motions and parallax measurements for radio pulsars and Be X-ray binaries

Andrei P. Igoshev 1, Martyna Chruslinska 2, Andris Dorozsmai 3 and Silvia Toonen 3,4

1 Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
2 Institute of Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands
3 Institute of Gravitational Wave Astronomy, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
4 Anton Pannekoek Institute for Astronomy, University of Amsterdam, NL-1090 GE Amsterdam, the Netherlands

ABSTRACT
Supernova explosion and the associated neutron star (NS) natal kicks are important events on a pathway of a binary to become a gravitational wave source, an X-ray binary, or a millisecond radio pulsar. Weak natal kicks often lead to binary survival, while strong kicks frequently disrupt the binary. In this article, we aim to further constrain NS natal kicks in binaries. We explore binary population synthesis models by varying prescription for natal kick, remnant mass, and mass accretion efficiency. We introduce a robust statistical technique to analyse combined observations of different nature. Using this technique, we further test different models using parallax and proper motion measurements for young isolated radio pulsars and similar measurements for Galactic Be X-ray binaries (BeXs). Our best model for natal kicks is consistent with both measurements and contains a fraction of \(w = 0.2 \pm 0.1 \) weak natal kicks with \(\sigma_1 = 45^{+25}_{-15} \) km s\(^{-1}\), the remaining natal kicks are drawn from the high-velocity component, same as in previous works: \(\sigma_2 = 336 \) km s\(^{-1}\). We found that currently used models for natal kicks of NSs produced by electron capture supernova (ecSN; combination of Maxwellian \(\sigma = 265 \) km s\(^{-1}\) and \(\sigma = 30 \) km s\(^{-1}\) for electron capture) are inconsistent or marginally consistent with parallaxes and proper motions measured for isolated radio pulsars. We suggest a new model for natal kicks of ecSN, which satisfy both observations of isolated radio pulsars and BeXs.

Key words: methods: statistical – binaries: general – stars: massive – stars: neutron – pulsars: general – X-rays: binaries.

1 INTRODUCTION
Neutron stars (NSs) often receive a significant birth velocity (natal kick) at the moment of supernova explosion (Lyne & Lorimer 1994). On one hand, this kick is frequently strong with amplitude \(|v| > 100 \) km s\(^{-1}\) (in some cases reaching \(800 \) km s\(^{-1}\)) while typical velocity dispersion of NS progenitors is \(< 20 \) km s\(^{-1}\). On the other hand, formation of certain Galactic double neutron stars (DNSs) systems and presence of pulsars in globular clusters (with escape velocities \(\leq 50 \) km s\(^{-1}\)) clearly require small natal kicks (Tauris et al. 2017). It is unclear whether the NS natal kick velocity distribution is broad and extends from \(\approx 0 \) to \(1000 \) km s\(^{-1}\), or if NSs with some particular characteristics are formed with much weaker natal kicks (\(0-30 \) km s\(^{-1}\)).

The problem of estimating the NS natal kick distribution has two parts, which were not sufficiently addressed in the previous research on the subject: (1) NSs receiving weak natal kick should be less common among isolated radio pulsars because they less frequently disrupt the binary and (2) different formation channels could lead to different velocity distributions. In studies of observed velocity distribution of radio pulsars (e.g. Hobbs et al. 2005; Verbunt, Igoshev & Cator 2017; Igoshev 2020), young pulsar velocities were assumed to be equal to the isolated NS natal kick velocities and the influence of binarity of the NS progenitors was never analysed.

Individual velocities of radio pulsars (mode of activity typical for young, magnetized NSs with fast rotation; see e.g. Deller et al. 2019) are estimated based on VLBI measurements of parallaxes and proper motions. Individual velocities for high-mass X-ray binaries (HMXBs) and DNSs are estimated based on analysis of orbital properties (see e.g. Dewi, Podsiadlowski & Pols 2005; Beniamini & Piran 2016; Tauris et al. 2017).

On the one hand, young radio pulsars with reliably measured parallaxes and proper motions seem to be isolated (Igoshev & Perets 2019). Also, recent analysis of all radio pulsars recorded in the ATNF pulsar catalogue\(^1\) (Manchester et al. 2005) found an upper limit of 5.3 per cent on the fraction of radio pulsars with wide binary companions (Antoniadis 2020, 2021). Close binary companions with orbital periods shorter than \(\sim 10 \) yr (time-scales comparable with observation spans for radio pulsars) are easy to detect using the pulsar timing technique (Edwards, Hobbs & Manchester 2006). On the other hand, progenitors of NSs are massive (\(\geq 7 \) M\(_{\odot}\)) and the majority of such stars are formed in binaries. A fraction of truly isolated massive stars is less than 15 per cent (Moe & Di Stefano 2017). This large discrepancy between the fraction of massive stars in binaries and the fraction of radio pulsars in binaries can be explained by a supernova

\(^1\) ATNF pulsar catalogue http://www.atnf.csiro.au/research/pulsar/psrcat.
explosion, which often disrupt a binary due to mass-loss and NS natal kick (see e.g. Renzo et al. 2019).

A stronger natal kick is more likely to disrupt a binary and leave behind an isolated radio pulsar, while an NS formed with natal kick weaker or comparable to orbital velocity of the secondary (typically less than 100 km s$^{-1}$) is more likely to remain bound within the binary. Therefore, a universal natal kick distribution (if it exists) should be probed simultaneously using binaries with NS and isolated radio pulsars. A particular class of systems that can be used in such an analysis, and is explored in this study, is the population of Be X-ray binaries (BeXs). Those are HMXBs hosting NS, whose formation path involves a phase of (stable) mass transfer before the supernova explosion (e.g. Vinciguerra et al. 2020).

In this article, we aim to model the observed velocities of isolated radio pulsars and the peculiar velocities of Galactic BeXs using the binary population synthesis. Our approach is an extension to one suggested by Andrews et al. (2015). First, we identify the model that best describes the population of BeXs and then we vary the parameters of the natal kick distribution only. To allow for a qualitative comparison of different models, we introduce a new likelihood method for parallaxes and proper motion measurements, which allows us to directly use the results of binary stellar population synthesis as a model for peculiar velocities.

While we were preparing this article, Willcox et al. (2021) published a study on a similar topic. The author used a non-parametric description for the natal kicks of core-collapse NSs. They found that electron capture supernova (ecSN) events should only occur in stars stripped of hydrogen envelope to satisfy observed transverse velocities of isolated radio pulsars. This research does not take into account a comparison with BeXs and leaves us the opportunity to investigate low natal kicks.

This article is structured as follows: in Section 2, we give a brief overview for BeXs, ecSN, and modelling efforts; in Section 3, we introduce observational data sets for young isolated radio pulsars and BeXs, and perform simple analysis of peculiar velocities for BeXs. In Section 4, we describe our binary population synthesis. In Section 5, we present results for these exploratory models. In Section 6, we introduce our combined analysis and discuss ecSN explosion in details, which is followed by a discussion and conclusion in Sections 7 and 8, respectively.

2 Be X-ray Binaries and Electron Capture Supernova Explosions

Be stars are B spectral type stars with enhanced emission lines (see e.g. review by Reig 2011). Their emission spectral lines are formed in decretion disc. The secondary star rotates faster than 70 per cent (e.g. review by Reig 2011). Their emission spectral lines are formed in Be stars with enhanced emission lines (see e.g. Miyaji et al. 1980; Nomoto 1984; Nomoto & Kondo 1991; & Tout 2004 – as also used in this study). It should be noted that masses of the isolated Be stars and Be X-ray stars differ. The most common masses of isolated Be stars are around 3 M_\odot while Be stars in Be X-ray systems are more massive with masses of $8 M_\odot$. Vinciguerra et al. (2020) suggested that the mass distribution of Be stars in binaries could be a good indicator for the mass accretion efficiency. A large sample of BeXs is observed in the Small Magellanic Cloud (SMC) where researchers discovered ≈70 active systems.

Prišeg (2020) recently analysed proper motions of BeXs in the Galaxy using the Gaia DR2. He found that transverse systemic velocities of BeXs are 29 ± 11 km s$^{-1}$ for short-period binaries and 16 ± 8 km s$^{-1}$ for long-period binaries. He confirmed that this difference is statistically significant. In another recent analysis by Bodaghee et al. (2021), researchers used cross-correlation function between position of HMXBs in SMC and OB associations. They found that initial systemic velocities (called kick velocities) are in the range 2–34 km s$^{-1}$. In this work, we plan to analyse the parallaxes and proper motions of BeXs using the new Gaia EDR3.

Over the years, it was suggested that NS born in binaries could receive very different natal kicks due to supernova explosion mechanisms that prevail or only operate in binaries, such as: (1) the ecSN explosion (Nomoto 1984, 1987) and (2) the explosion of ultrastripped helium stars (e.g. Tauris et al. 2013). The latter mechanism relies on a reduction of ejecta mass (Janka 2017), while the former mechanism leads to weaker natal kicks because stellar cores of ecSN progenitors are easier to explode and less asymmetric (responsible for formation of the natal kick) are developed (Podsiadlowski et al. 2004). All of these mechanisms are related to mass transfer in close interacting binaries, which constitute up to 70 per cent of all massive binaries (Sana et al. 2012). Once again, NSs formed through these mechanisms will more frequently stay in a binary due to reduced kick and mass-loss.

EcSN progenitors are believed to originate from stars that are too lightweight to ignite oxygen in their cores (stars that ignite oxygen eventually undergo core-collapse supernova explosion (CCSN)) and too heavy to end up as oxygen–neon white dwarfs. Such stars develop degenerate ONeMg cores after the carbon burning phase that exceed the Chandrasekhar limit $\sim 1.37 M_\odot$ and they can collapse to NS in the process triggered by electron captures on magnesium and neon (e.g. Miyaji et al. 1980; Nomoto 1984; Nomoto & Kondo 1991; Woosley & Heger 2015; Jones et al. 2016). The range of initial masses allowed for ecSN progenitors is expected to be narrow for single stars, but can be effectively broadened by binary interactions, allowing for massive degenerate ONeMg core formation from initially more/less massive progenitors (e.g. Podsiadlowski et al. 2004; Doherty et al. 2017; Poelarends et al. 2017; Siess & Lebreuilly 2018). EcSNe are typically implemented in binary population synthesis codes based on the helium core mass of a star at the beginning of the AGB stage $M_{C,BAGB}$ (with the commonly adopted ecSN progenitor $M_{C,BAGB}$ range [1.8, 2.25] M_\odot, following Hurley, Pols & Tout 2000; Eldridge & Tout 2004 – as also used in this study). It should be noted that the exact limits on this mass range are very sensitive to the adopted assumptions about the stellar and binary physics (e.g. the treatment of convection and overshooting/mixing in stellar interiors, wind mass-loss rates, treatment of mass transfer, e.g. Poelarends et al. 2008; Jones et al. 2016; Doherty et al. 2017; Siess & Lebreuilly 2018) and depend on metallicity (e.g. Poelarends et al. 2008, but see Doherty et al. 2017 – where the metallicity dependence is shown to be very limited). Furthermore, a fraction of the ecSN progenitors estimated that way may not collapse to NS, but undergo a partial thermonuclear explosion and instead leave behind a white dwarf (e.g. Jones et al. 2016).

Overall, the evolution of the binary after supernova explosion was modelled multiple times in the literature (see e.g. Hills 1983; Dewey & Cordes 1987; Brandt & Podsiadlowski 1995; Kalogera 1996; Fryer, Burrows & Benz 1998). Multiple studies were focused...
on the influence of NS natal kicks on the rate of compact binary mergers, especially in relation to gravitational wave progenitors (e.g. Lipunov, Postnov & Prokhorov 1997; Tauris et al. 2017). More recently, Kuranov, Popov & Postnov (2009) performed binary population synthesis assuming that ecSNe are only produced in binaries. They also assumed that NSs born in such explosions receive a significantly smaller natal kick than seen in truly isolated NS population. They demonstrated that a contribution of ecSN, which disrupted their parent binary, is negligible in comparison to the amount of isolated and binary origin NS with large velocities. The result of their population synthesis showed that the final velocity distribution of isolated NSs followed closely the distribution of natal kicks in isolated NSs besides a small region around 30 km s\(^{-1}\). In this region, they saw a slight increase (amplitude of a few percents) in the number of NSs. Such a difference is impossible to notice when sample size of parallaxes and proper motions of isolated radio pulsars is limited by 20–100 measurements.

3 DATA

In this article, we study parallaxes and proper motion measurements. For young (spin-down ages less than 3 Myr) isolated radio pulsars, we use the same catalogue as Igoshev (2020; see their table 1 and table A1 for details), which includes VLBI measurements by Brisken et al. (2002, 2003), Chatterjee et al. (2001, 2004, 2009), Kirsten et al. (2015), and Deller et al. (2009, 2019). For BeXs we use Gaia EDR3 (Gaia Collaboration 2016, 2021, Lindegren et al. 2021). We describe in detail our analysis of BeXs. The result of similar analysis for isolated radio pulsars is available in the article by Igoshev (2020).

3.1 Gaia EDR3 parallaxes and proper motions of Galactic Be X-ray binaries

We use the Gaia EDR3 catalogue to identify BeXs. The identification procedure is similar to Igoshev & Perets (2019). Namely, we use the catalogue of HMXBs by Liu, van Paradijs & van den Heuvel (2006) and check the type of these systems in the Simbad database (Wenger et al. 2000). To proceed with identification, we request all stars from the Gaia EDR3 around the position of each HMXB in a radius of 15 arcsec. We select from these stars only ones with Gaia G magnitude in the range \(|G – V| < 1.5\) (V is visual magnitude available in Simbad) located at the smallest angular separation from the catalogue coordinate. We notice that the astrometry analysis procedure improved significantly since Gaia DR2 (Lindegren et al. 2018, 2021), and precision checks related to astrometric_ch2_al and astrometric_n_good_obs_al are already implemented. Therefore, we select only stars with five- and six-parameter astrometric solutions with values of renormalized unit weight error close to 1, namely 0.6 < ruwe < 1.4 (Lindegren et al. 2021). We additionally filter out all measurements with formal errors of parallax \(\sigma_\pi / \sigma_\epsilon < 3\). After this procedure we end up with 45 systems. We summarize the BeXs identified in Gaia EDR3 in Table A1.

At the next stage, we inspect the catalogue and remove all systems with unknown spectral type or spectral type different from Be or Oe. In particular, we remove multiple wind-fed supergiant systems because the formation of these systems does not require an angular momentum transfer from primary to the secondary star, therefore these systems could have been formed via the dynamically unstable mass transfer or without any mass transfer at all. In Appendix A, we list some systems where we perform an additional literature search to decide if they are to be included in the velocity analysis or not. Our final list contains 31 objects.

We plot location of these BeXs projected to the Galactic plane in Fig. 1. We also plot the cumulative distribution of nominal velocities in same Figure, where the nominal velocity in a particular direction (e.g. right ascension) is computed as

\[
\nu' = c \frac{\mu_\alpha}{\sigma_\pi},
\]

where \(c = 4.74\) is a numerical coefficient to transform proper motion measurements \(\mu_\alpha\) [mas yr\(^{-1}\)] and parallax measurements \(\sigma_\pi\) [mas] to units [km s\(^{-1}\)]. The transverse nominal velocities of BeXs are computed as the following:

\[
\nu_v = \sqrt{\left(c \frac{\mu_\alpha}{\sigma_\pi} - \Delta v_\alpha(l,b,1/\sigma_\pi)\right)^2 + \left(c \frac{\mu_\beta}{\sigma_\pi} - \Delta v_\beta(l,b,1/\sigma_\pi)\right)^2}.
\]

Here, \(\Delta v_\alpha(l,b, D)\) and \(\Delta v_\beta(l,b, D)\) are the corrections for the rotation of the Galaxy at location with Galactic coordinates \(l\) and \(b\) and distance \(D\) from the Earth. Exact equations for these corrections can be found in appendix B by Verbunt et al. (2017). It is easy to see in Fig. 1 (right-hand panel) that these transverse velocities are limited by 80 km s\(^{-1}\) and half of the velocities are below \(\approx 20\) km s\(^{-1}\). Typical velocity dispersion inside regions where OB stars formed are below 10 km s\(^{-1}\) (de Bruijne 1999; Kiminki & Smith 2018). These star formation regions could have a velocity dispersion of \(\approx 5\) km s\(^{-1}\) in respect to regular Galactic rotation (Reid et al. 2014). We also analyse velocities of spectroscopic binaries with primary of B type (possible progenitors of BeXs). All details are summarized in Appendix E. We find that these stars have velocities, which can be described as a sum of two Maxwellians with \(w = 0.2, \sigma = 3\) km s\(^{-1}\), and \(\sigma_2 = 11\) km s\(^{-1}\) (see black dashed line in the right-hand panel of Fig. 1). Therefore, some BeXs have velocities that are clearly above the ones typical for their binary progenitors.

3.2 Peculiar velocities for Be X-ray binaries

We analyse the parallaxes and proper motions of BeXs from Table A1 using the same maximum likelihood technique as was developed and described in detail by Verbunt & Cator (2017) and Verbunt et al. (2017). Brief summary of the method is available in Appendix B. The results of this analysis are summarized in Table 1, and we plot these velocity distributions in Fig. 1 (right-hand panel). A visual inspection confirms that the sum of two Maxwellians describes the peculiar velocities of BeXs significantly better than a single Maxwellian. The values for \(\sigma_1\) and \(\sigma_2\) which we found in our analysis are similar to one by Prišegėn (2020).

For completeness, we perform the same analysis using newer measurements for solar rotation speed \(v_\odot = 233\) km s\(^{-1}\) and distance towards the Galactic Centre \(R_\odot = 8.122\) kpc (see e.g. Mróz et al. 2019). Results are also available in Table 1. Different values for Galactic rotation parameters could change the distribution for peculiar velocities of BeXs by a couple of km s\(^{-1}\). These new values are within the confidence interval of values estimated using the old \(v_\odot\) and \(R_\odot\).

Binary surviving the supernova explosion receives a peculiar velocity comparable to orbital speed of the exploded star. Therefore, the peculiar velocity of BeX is a complicated function of mass transfer, natal kick strength, and orientation, as well as orbital parameters at the moment of supernova explosion. Therefore, it is necessary to use a realistic binary population synthesis to meaningfully analyse Be X-ray peculiar velocities.

Renzo et al. (2019) computed peculiar velocities of binaries with NS. The authors did not model BeXs specifically, but looked at the
velocity distribution of all main-sequence NS binaries including ones which will never be seen as BeX. Therefore, a direct comparison of results by Renzo et al. (2019) with Gaia parallaxes and proper motions of BeXs is difficult. Thus, we perform our own binary population synthesis. Details of this synthesis are described in the following section.

4 MODEL EXPLORATION

4.1 Formation paths for Be X-ray binaries and isolated radio pulsars

In this article, we concentrate on isolated radio pulsar and BeXs formed via binary interactions in Milky Way (MW or Galaxy). We also examine BeXs population in SMC to allow for comparison with work by Vinciguerra et al. (2020). We do not consider objects formed via dynamical formation channel in crowded environments such as globular clusters. The main advantages of restricting analysis to isolated radio pulsars and BeXs are that formation of these binaries could only weakly depend on poorly understood common envelope stage (CE; Ivanova et al. 2013) and stars in these systems are not expected to undergo ultrastripped SN (which could lead to weaker natal kicks).

2 A small fraction of isolated radio pulsars could originate from massive stars which is a result of a merger after common envelope stage. However, that is not the dominant channel and we disregard such cases.

4.1.1 Isolated radio pulsars

A significant fraction (up to 85 per cent) of NS progenitors are born in binaries or stellar multiples (Kobulnicky & Fryer 2007; Sana et al. 2012; Moe & Di Stefano 2017). A strong natal kick and fast mass-loss during the SN explosion often leads to binary disruption. A fraction of 86% of NS born in binaries may end up as isolated free-floating NSs (Renzo et al. 2019) for natal kicks drawn from Maxwellian distribution with $\sigma = 265 \pm 31$ km s$^{-1}$ (Hobbs et al. 2005) and treatment of binary disruption by Tauris & Takens (1998). Thus, a high fraction of the observed isolated radio pulsars (Antoniadis 2021) does not contradict their expected binary origin.

NS could operate as an isolated radio pulsar up to Gyr depending on their initial rotational period, magnetic field strength, and evolution history. In practice, most NSs fade or stop emitting radio after 100 Myr (see e.g. Faucher-Giguère & Kaspi 2006). The radio emission produced by pulsars is strongly beamed, so we miss up to 90 per cent of pulsar population simply due to geometry (Tauris & Manchester 1998).

In our simulations, we assume that every NS is born as a radio pulsar which operates for 100 Myr. We do not integrate their motion in the Galactic gravitational potential and we do not take beaming and sensitivity of modern pulsars survey into account. Those factors become much more important when the whole population of radio pulsars is considered, in particular old pulsars, which could travel a significant distance within the Galaxy. Therefore, our synthetic pulsars can only be compared with young radio pulsars (spin-down ages $\tau < 3$ Myr). The velocities of our synthetic pulsars stay representative of the natal kicks, but get some correction due to the binary origin. A primary effect of binary origin is that low natal kick NSs stay more frequently bound in a binary and therefore are excluded from isolated radio pulsar population. There is no indication that beaming or radio luminosity correlates with natal kick velocity or orientation, so these factors are probably irrelevant in natal kick studies.

However, there is a bias that could affect the result of our research and is poorly understood at the moment. Pulses with well-measured parallaxes and proper motions typically have high Galactic latitudes (Deller et al. 2019). The low natal kick pulsars should be concentrated towards the galactic plane and might be less represented in VLBI measurements. Future pulsar population synthesis is necessary to quantify the role of this effect on analysis of NS natal kicks.
Be star masses 3–5 M_\odot. On the other hand, if 50–75 per cent of transferred mass is successfully accreted by the secondary, the peak of the Be star mass distribution shifts towards 8–10 M_\odot, as it is expected from observations.

4.2 Assumptions for the binary population synthesis

We briefly summarize the details of 14 evolutionary models which we consider in this paper in Table 2. We use the binary population synthesis code StBa\(^3\) (Portegies Zwart & Verbunt 1996; up-to-date description is available, Toonen, Nelemans & Portegies Zwart 2012). For our exploratory runs, we model the evolution of 100 000 zero-age main-sequence (ZAMS) binaries with primaries mass ranging from 6 to 40 M_\odot. The primary masses are sampled from a power-law distribution with an exponent of -2.35 (Salpeter 1955). We restrict the mass of the secondary to the range $q \in [0.001, 1]$ where $q = M_2/M_1$. We draw mass ratio from the uniform distribution (Duchêne & Kraus 2013). For the stellar evolution simulations in the Galaxy, we use the solar metallicity 0.02; for the SMC, we use a metallicity of 3.5 \times 10\(^{-3}\). The semimajor axis distribution is chosen in the form of power law with exponent of -1 ranging from Roche lobe radius to $10^6 R_\odot$ (Abt 1983). The eccentricity distribution is thermal (Ambartsumian 1937; Heggie 1975). We assume 100 per cent binary fraction (see Section 7.1 for test of a smaller binary fraction).

We consider two mass accretion efficiency schemes: following the default StBa implementation and a fixed semiconservative case. The default mass accretion efficiency implemented in StBa is based on Pols & Marinus (1994). The accretion rate is limited by

$$\dot{m}_\text{max} = \dot{m}_\text{KH} \left(10^{-B} \log \frac{R_L}{R_{\text{ms}}} \right),$$

(3)

where all parameters correspond to accretor: R_L the Roche lobe radius, \dot{m}_KH is the Kelvin–Helmholtz time-scale accretion rate, and R_{ms} is the main-sequence radius. Numerical coefficient B is different for different types of stars and can be found in table 1 of Pols & Marinus (1994). This \dot{m}_max corresponds to the condition that accretor stays within its Roche lobe. Equation (3) is based on detailed simulations of stellar evolution for stars with masses below 17 M_\odot.

Vinciguerra et al. (2020) analysed a range of fixed mass accretion efficiencies α and found that values of $\alpha = 0.5$ and $\alpha = 0.75$ could explain the distribution of Be masses in BeXs. They noticed that a fixed value of $\alpha = 0.5$ describes the observed population of BeXs in SMC best in terms of masses of Be stars and period distributions. There is no consensus on the unique mass accretion efficiency. For example, de Mink, Pols & Hilditch (2007) showed using detailed binary evolution simulations that there exists a spread in mass accretion efficiency. There are a few works where authors showed that the mass accretion efficiency should be less than 0.5 (e.g. Petrovic, Langer & van der Hucht 2005; Kruckow et al. 2018).

Nevertheless, in our work we follow prescription by Vinciguerra et al. (2020). We implement a semiconservative mass transfer where the accretion rate is limited by

$$\dot{m}_\text{max} = \frac{1}{2} \dot{m},$$

(4)

where \dot{m} is the mass transfer rate set by donor expansion.

Another factor that could affect the final orbital parameters of binary is the relation between NS mass and the mass of its progenitor.

\(^3\)The code is publicly available at https://github.com/amusecode/SeBa.
Thus, in one of the variations we use the fitting equations by Fryer et al. (2012) delayed explosion. We also modify the maximum mass of a new born NS from 1.8 to 2.1 M_{\odot}. In another variation we draw masses of NS from bimodal mass distribution found by Antoniadis et al. (2016) for millisecond radio pulsars, implemented as follows: for 42.5 per cent of all NSs we draw masses using normal distribution with mean $1.393 M_{\odot}$ for 42.5 per cent of all NSs we draw masses using normal distribution with mean $1.393 M_{\odot}$ and standard deviation of $\sigma_{\text{ns}} = 0.064$, for remaining NSs we draw masses from another normal distribution with mean $1.807 M_{\odot}$ and standard deviation of $\sigma_{\text{ns}} = 0.178$. Note that in this procedure the NS mass is drawn randomly from the distribution, independent of its progenitor properties.

As for the natal kick, we consider seven different prescriptions. In our models A and B, we assign to each newly born NS a natal kick drawn from Maxwellian velocity distribution (see e.g. equation B2) with $\sigma = 265$ km s$^{-1}$ (Hobbs et al. 2005). In model E we assume NS receives no natal kick. Some isolated radio pulsars still receive a small velocity due to Blaauw effect (Blaauw 1961). In models C, D, F natal kick is chosen from two Maxwellians with $\sigma_1 = 56$ km s$^{-1}$ and $\sigma_2 = 336$ km s$^{-1}$ for 20 per cent of NSs and with $\sigma_2 = 336$ km s$^{-1}$ for remaining NSs (Igoshev 2020).

In our model G0, H0, and J0 we select helium giants (evolved stars stripped of hydrogen envelope) and check if their initial helium core mass is within the ecSN mass range. We assume that such stars undergo an ecSN, receiving weak natal kicks drawn from the Maxwellian velocity distribution with $\sigma = 30$ km s$^{-1}$. In these three models, we assume that ecSN occurs exclusively in stars which lost their hydrogen envelope due to mass transfer in line with original idea by Podsiajowski et al. (2004), and more recently used by Willcox et al. (2021). In our models G1, H1, and J1 we also check if effectively isolated stars have helium core mass at the beginning of AGB in ranges as mentioned in Table 2. Such stars are also considered to undergo ecSN and receive a natal kick drawn from the Maxwellian velocity distribution with $\sigma = 30$ km s$^{-1}$.

In our optimal (statistical) model K, we vary the fraction of weak natal kicks w and parameter of Maxwellian distribution σ_1 for weak natal kicks while keeping the parameter σ_2 for strong kicks fixed at value $\sigma_2 = 336$ km s$^{-1}$. In our model L (physically motivated), we use the prescription of the ecSN from H1 (model producing enough BeXs in the SMC) and assume that core-collapse SN receive single Maxwellian natal kick with parameter $\sigma = 336$ km s$^{-1}$ while ecSN receive natal kick drawn from the Maxwellian velocity distribution with $\sigma = 45$ km s$^{-1}$.

To analyse the population synthesis simulation results, we proceed as follows. First, we keep track of the unbound NSs which formed in supernova explosion of the primary star. Primary star becomes isolated NS 17 times more frequently than the secondary star in our calculations, so we do not look at the velocities of secondaries which form NSs. Second, we select binaries which, at some point of their evolution, have the NS primary and main sequence secondary more massive than 3 M_{\odot} (i.e. the potential BeXs). We mark each of those binaries as

(i) Be X if it experienced a mass transfer from the primary to the secondary star on thermal time-scale prior to SN explosion, see Fig. 2.

(ii) CE if the binary experienced only CE stage prior to SN explosion.

(iii) Effectively single if the binary experienced no mass transfer prior to SN explosion.

(iv) Mixed if the binary experienced multiple mass transfer episodes of different nature prior to SN explosion.

In order to find the fraction of currently observable systems with particular orbital parameters we follow the procedure by Vinciguerra et al. (2020; see Appendix D). We use the star formation history by Rubele et al. (2015) to model the population of SMC and a constant star formation rate $1.65 M_{\odot}$ yr$^{-1}$ for MW. We also keep track of the systemic velocities for BeXs. In our combined analysis, we use velocities of isolated NS and systemic velocities of BeXs weighted with the star formation rate for the MW.

We examine the outcome of models D and H0 and noticed that addition of secondary NSs is hardly noticeable. We estimate that the histogram for isolated NS velocities changes at the level less than 0.5 per cent.

Table 2. List of models with relevant assumptions: Fryer and Antoniadis stand for a relation between progenitor and remnant masses based on Fryer et al. (2012) delayed explosion and Antoniadis et al. (2016), respectively. Hobbs corresponds to single Maxwellian natal kick with parameter $\sigma = 265$ km s$^{-1}$ (Hobbs et al. 2005); Igoshev corresponds to sum of two Maxwellians natal kick with $w = 0.2$, and parameters $\sigma_1 = 56$ km s$^{-1}$ and $\sigma_2 = 336$ km s$^{-1}$ (Igoshev 2020); Optimum stands for sum of two Maxwellians natal kick with $w = 0.2$, and parameters $\sigma_1 = 45$ km s$^{-1}$ and $\sigma_2 = 336$ km s$^{-1}$. In model L core collapse SN receive natal kick in form of single Maxwellian with $\sigma = 336$ km s$^{-1}$ and ecSN receive single Maxwellian natal kick with $\sigma = 45$ km s$^{-1}$. The asterisk (*) means that ecSN occurs only in stars stripped of their hydrogen envelope. N_{SMC} is the total number of BeXs predicted by each model in the SMC.

Model	Natal kick	Remnant mass	Mass accretion efficiency	ecSN	Mass range for ecSN	$2\Delta C$	N_{SMC}
A	Hobbs	Fryer	Default	No	99.98	200	
B	Hobbs	Antoniadis	Default	No	107.8	210	
C	Igoshev	Fryer	Default	No	50.44	320	
D	Igoshev	Fryer	Semiconservative	No	1.3	180	
E	No kick	Fryer	Semiconservative	No	2080.24	820	
F	Hobbs	Fryer	Semiconservative	No	11.9	60	
G0	Hobbs	Fryer	Semiconservative	Yes	1.83-2.25 (⋆)	12.4	90
G1	Hobbs	Fryer	Semiconservative	Yes	1.83-2.25	8.82	100
H0	Hobbs	Fryer	Semiconservative	Yes	1.63-2.45 (⋆)	10.9	170
H1	Hobbs	Fryer	Semiconservative	Yes	1.63-2.45	7.84	180
J0	Hobbs	Fryer	Semiconservative	Yes	1.6-2.25 (⋆)	10.66	90
J1	Hobbs	Fryer	Semiconservative	Yes	1.6-2.25	6.22	100
K	Optimum	Fryer	Semiconservative	No	-	140	
L	New ecSN	Fryer	Semiconservative	Yes	1.63-2.45	5.18	140
5 RESULTS: EXPLORATORY MODELS

With our exploratory model, we investigate the influence of four factors on formation of BeXs in SMC (see Table 2). These factors are as following: (1) natal kick distribution, (2) dependence between remnant mass and progenitor mass, (3) mass accretion efficiency during the mass transfer from primary to secondary, and (4) different natal kick for ecSN explosion.

5.1 Nataal kicks

Our models A and C are identical, except for the natal kick prescription, which are described following Hobbs et al. (2005) or Igoshev (2020), respectively. Fig. 3 shows that the natal kick has little effect on the Be star mass distribution. However, it significantly affects the distribution of eccentricities (see Fig. 4). In case of model A, the peak of the distribution is shifted towards higher eccentricities (∼0.9 compared to ∼0.5 in model C) and the low eccentricity systems – prevailing in the observed sample, are rare. However, the limited size of the observed BeX sample with measured eccentricities and potential biases (see Section 7.3) do not allow for any strong conclusions from this comparison. The natal kick prescription affects the total number of BeXs. In particular, in SMC, the prescription by Igoshev (2020) produces 1.6 times more BeXs than with the Hobbs et al. (2005) prescription. The natal kick prescription affects the distribution of measured velocities for both Galactic isolated radio pulsars and BeXs (see Fig. 5). The natal kick in form of Hobbs et al. (2005) produces multiple BeXs with systemic velocities above 100 km s⁻¹ independently of assumptions about mass transfer.

We therefore restrict our further analysis to the discussion of the distributions of velocities of young radio pulsars and systemic velocities of BeXs in the Galaxy. Those distributions are very sensitive to the adopted natal kick prescription.

Comparing models D (natal kick distribution following Igoshev 2020) and E (no natal kick), one can notice that in the no-kick scenario the size of surviving BeX population is significantly increased (SMC could have up to 820 BeXs) and that BeXs with NS that formed with no kick have eccentricities below 0.3. However, if all NSs are formed with zero natal kick, the velocity distribution of radio pulsars is indistinguishable from the velocity distribution of massive stars (peaking at 1–2 km s⁻¹ and showing a sharp decay at 5 km s⁻¹), which is clearly incompatible with observations.

5.2 Dependence between remnant mass and progenitor mass

Our models A and B are identical, except for how we assign the NS mass depending on the mass of the progenitor. Figs 3 and 4 show that the distributions of Be masses and orbital elements are barely affected by the choice of prescription for the NS mass. The total number of BeXs in SMC is also comparable for both prescriptions. The exact choice of this dependence does not affect the distribution of isolated pulsar velocities and weakly affects the distribution of Be X-ray velocities (see Fig. 5). Therefore, we do not discuss the implications of alternative choice for relation between mass of the remnant and progenitor.

5.3 Mass accretion eficiency

Our models C and D are identical, except for the mass accretion efficiency. We confirm conclusions of Vinciguerra et al. (2020), showing that the mass accretion efficiency is a key variable influencing the Be star mass distribution of the simulated BeXs. Using the default f_{SB} mass accretion efficiency prescription (model C), we find that the Be star mass distribution peaks at 4–5 M_\odot – which is incompatible with observations. In model D, with (fixed) semiconservative mass accretion efficiency the distribution of Be star masses peaks at 10–11 M_\odot, more in line with the observed distribution (see Fig. 3). Those conclusions are insensitive to the adopted natal kick prescription.

The mass accretion efficiency also controls the total number of BeXs in the SMC. For example, model F, which differs from model A only by prescription of this parameter, predicts 60 BeXs while model A predicts 200. Fig. 3 shows that fixed semiconservative mass accretion efficiency transforms systems, which could form BeX, to systems passing through a CE stage, especially in the Be mass range of 3–7 M_\odot. That is why the number of BeXs in model F is significantly less than in model A.

The mass accretion efficiency weakly affects the distribution of synthetic binaries on $P – e$ plot. This parameter is not important when comparing velocities of isolated radio pulsars. But the mass accretion efficiency is an important parameter for velocities of BeXs. The distribution of synthetic velocities for BeXs is very different for model C in comparison to model D. The model D is much more similar to the observed distribution. More quantitative comparison is available in Section 6.

5.4 Electron capture supernova explosions

The model of electron capture explosions has multiple hidden dimensions. Even with our simplified prescription used in population synthesis to completely specify the model, we have to make the following assumptions: (1) choose a mass range for helium core needed to get ecSN, (2) choose if effectively isolated stars also produce ecSN, and (3) choose the magnitude of the natal kick, which is received by NS born in ecSN. It is not viable to restrict all these parameters in our study especially given the lack of observations for ecSN events. But it is worth to mention that current ecSN models are underconstrained and have to be further restricted by detailed simulations of supernova explosions and observations. In this section, we compare typical outcomes of assumptions (1) and (2) mentioned above.

We show the result of exploratory calculations for model H0 with ecSN explosions in Figs 3 and 4. A more detailed analysis is provided in Section 6.3. The model F has exactly the same assumptions as model H0 but no ecSN. Comparing these models, we see that allowing for ecSN increases the total number of BeXs. It also increases a fraction of binaries with lower eccentricities ($e \approx 0.4$) which makes it more similar to observations. This comparison does not depend much on observational selection. The model F produces ≈ 60 BeXs which is not enough to explain all systems observed in the SMC. This model produces even fewer synthetic binaries in the region where orbital period and eccentricities are easiest to measure (orbital periods in range 10–100 d and $e < 0.5$). For model H0, the Be mass distribution peaks close to the value found by Vinciguerra et al. (2020) for their preferred model computed with the COMPAS population synthesis code but with similar assumptions. The total expected number of BeXs in SMC in this model is ≈ 170. In comparison to all other models that do not include any ecSN, the peak of the period distribution is shifted towards values of ≈ 100 to ≈ 1000 d.

Models where ecSN occurs only in stripped stars (G0, J0, H0) produce synthetic radio pulsars with velocities very similar to the...
Figure 3. Histogram for mass of the secondary stars for simulated systems for different models. We perform the simulation using the SMC star formation history. Models A, B, C assume default S+BeA mass transfer accretion efficiency prescription. Models D, E, F, H0, and L assume semiconservative mass transfer accretion efficiency and provide a better match to the mass distribution of Be stars in BeXs. Plots for the remaining models are available in the online supplementary materials.

Hobbs et al. (2005) distribution (see Fig. 5). All models with ecSN produce Galactic Be X-ray velocities that reasonably match observations. Models where ecSN occur also in effectively isolated stars (G1, J1, H1) produce many more isolated NS with velocities $v < 100 \text{ km s}^{-1}$. The fraction of these NSs depend on the mass range assumed for ecSN progenitors: a wider mass range (H1) produces more slowly moving isolated radio pulsars and nearly two times more BeXs than a narrower range (G1).
Figure 4. Orbital periods and eccentricities for simulated binary systems for different models. Black hexagons are locations of observed BeXs in SMC by Coe & Kirk (2015). Histogram shows density of Be X-ray systems only. Plots for the remaining models are available in the online supplementary materials.
A. P. Igoshev et al.

Figure 5. Left-hand panels: The velocity distribution of synthetic isolated NSs (histograms) compared with natal kick distributions by Hobbs et al. (2005) (dot and dashed blue line) and Igoshev (2020) (dashed black line). The low-velocity peak of the distribution Igoshev (2020) is noticeably higher than the same peak of the histogram for model D because a large fraction of these NSs stay bound in binaries. The SFH corresponds to MW. Only a fraction of 5–7 per cent of these systems could be ever discovered in radio surveys because of the beaming. Right-hand panels: The peculiar velocity distribution of BeXs obtained in simulations and restored based on Gaia EDR3 observations (black dashed line; normalization is chosen arbitrarily). Top panels: Models without ecSN. Bottom panels: Models with ecSN. It is worth noticing that model G1 (ecSN occurs also in effectively single stars) produces significantly more low-velocity isolated NSs in the velocity range of 10–100 km s\(^{-1}\) in comparison to model G0 (ecSN occurs only in stripped stars). Plots for the remaining models are available in the online supplementary materials.

6 COMBINED ANALYSIS

In this section, we introduce our combined analysis that allows for a comparison between the observed velocities of young isolated radio pulsars, peculiar velocities of BeXs, and the binary population synthesis models. This kind of analysis allows us to examine multiple formation channels (with different natal kick prescriptions) simultaneously.

6.1 Structure of the combined analysis

The best representation of velocity distribution for pulsars and BeXs, which one can obtain using the binary population synthesis code is the histogram of three-dimensional velocities (see example in Fig. 5). Therefore, it is important to develop a technique that allows to quantitatively compare these histograms with observations taking into account observational uncertainties. In our view, such a comparison can be achieved by using binned velocity distribution. We define the binned velocity distribution as a function of parameters \(\vec{m}\):

\[
f_v(v, \vec{m}) = \sum_{i=1}^{N} m_i v^2 v_h(v),
\]

where function \(v_h(v)\) is a rectangular function (piece-wise constant) and it is equal to 1 in the range of velocities \([i\Delta v, (i + 1)\Delta v]\) and is equal to 0 otherwise, \(\Delta v\) is the size of velocity bin. The factor of \(v^2\) is present in \(f_v(\vec{m})\) because it is a part of Jacobian for the spherical coordinate system. The vector of parameters \(\vec{m}\) is normalized in such a way that

\[
\int_0^\infty f_v(\vec{m})dv = \sum_{i=1}^{N} m_i \Delta v^3 \left(\frac{(i+1)^3 - i^3}{3}\right) = 1.
\]

This velocity distribution is also part of the joint probability for parallaxes and proper motion measurements (see Appendix C). Therefore, given measured parallaxes and proper motions for BeXs and isolated radio pulsars we can compute a likelihood for a
Our algorithm has four significant advantages over natal kick studies that were performed in the past (e.g. Hobbs et al. 2005; Verbunt et al. 2017; Igoshev 2020): (1) it allows to include effects related to binary evolution, (2) it allows to rigorously test any velocity distribution that can be implemented in the population synthesis code using exactly the same form of the likelihood function, (3) it can be easily extended to include more observational information for any given binary formation channel, and (4) it is straightforward to extend this analysis and include Markov chain Monte Carlo sampler to study correlations between parameters, if necessary.

6.2 Results of the combined analysis

Our exploratory model D (see Figs 5 and 4) seems to fit well all available observational constraints: (1) a peak of Be masses is located around 11 M\(_{\odot}\), (2) it produces \(\approx 180\) BeXs in SMC (compatible with estimates of 120 HMXBs by Maravelias et al. 2019 and Haberl & Sturm 2016), (3) BeXs with measured periods and eccentricities coincide with maximum density of simulated systems (could be affected by observational selection), (4) it leads to natal kick distribution of isolated radio pulsars that is the most compatible with the one found in the recent work by Igoshev (2020) (left-hand panel Fig. 5), and (5) the velocity distribution of BeXs provides a reasonable match to the observation-based distribution of the systemic velocities of Galactic BeXs estimated in Section 3 (right-hand panel Fig. 5).

Further in this section, we use model D as our base model. We only vary the parameters that describe the low velocity part of the natal kick distribution \((w_1, \sigma_1)\). We do not vary parameter \(\sigma_2\) because: (1) only the isolated pulsar population, whose velocity distribution is relatively well constrained (Igoshev 2020), is sensitive to large velocities and (2) it is numerically expensive to study three parameters instead of two. We assume \(\sigma_2 = 336\) km s\(^{-1}\), as found by Igoshev (2020).

We show the results of the optimization procedure in Figs 7 and 8. The acceptable values are concentrated in the top left corners of the corresponding figures. The confidence regions are somewhat noisy due to the stochastic nature of our models. Nevertheless, we can determine the maximum likelihood value from the combined analysis as \(w = 0.2 \pm 0.1\) and \(\sigma_1 = 45^{+25}_{-15}\) km s\(^{-1}\) and fixed high-velocity component at \(\sigma_2 = 336\) km s\(^{-1}\). Based on our combined analysis we can completely exclude \(w = 0\), i.e. the situation in which only the high natal kick velocity component of the distribution is present. We also rule out cases with \(w > 0.5\), i.e. when more than half of the NS population is born with weak natal kicks. The default parameters of model D are compatible with the optimal model but are slightly less preferred.

6.3 Electron capture supernova explosions

In this section, we test a hypothesis that slowly moving radio pulsars \((|v| < 100\) km s\(^{-1}\)) are predominantly produced via ecSN. It is clear that describing the NS formation in the ecSN based on the fixed (either ZAMS or M\(_{\odot}\)BAGB) mass limits is a severe simplification and the uncertainties in the models are considerable. None the less, given the fact that such prescription is widely used in population synthesis, it is instructive to discuss whether our analysis can rule out such a scenario.

\[\Delta \text{AIC} = 2 \Delta \mathcal{L} = 2 \log \left(\frac{L_1}{L_2} \right) \]
\[p \sim \exp(-\mathcal{L})\]
In order to rigorously test the origin of weak natal kicks via ecSN, we run six binary stellar evolution synthesis models (H0, H1, G0, G1, J0, and J1 models in Table 2). In these models, core collapse supernova explosions lead to natal kicks described by the Maxwellian velocity distribution with \(\sigma = 265 \text{ km s}^{-1} \) and ecSN lead to natal kicks with \(\sigma = 30 \text{ km s}^{-1} \). Our basic mass range is \([1.63, 2.45] \; M_{\odot}\); ecSN occurs also in effectively single stars) impart Maxwellian natal kicks with \(\sigma = 45 \text{ km s}^{-1} \). This model has 2\(\Delta \mathcal{L} = 5.18 \) which means \(p = 0.075 \). This model produces 140 BeXs in the SMC. Therefore, this model describes both observations of isolated radio pulsars and BeXs well. It is worth mentioning that it is unclear if ecSN could physically occur in effectively isolated stars (i.e. stars that have not passed through the stage of stable mass transfer).

In comparison to Willcox et al. (2021), we do require ecSN to occur in effectively isolated stars. The main reason for this is that Willcox et al. (2021) used a non-parametric description for natal kick of NSs. This prescription already describes the natal kicks of isolated radio pulsars (this is how it was obtained in first place). Therefore, it is necessary for Willcox et al. (2021) to suppress the production of slowly moving isolated NS from binaries, which is done by prohibiting ecSN events in effectively isolated stars. In our case, the core collapse NS have natal kicks drawn from the Maxwellian velocity distribution with \(\sigma = 336 \text{ km s}^{-1} \) instead of drawing natal kicks from observed parallaxes and proper motions. It means that a very small fraction of NSs have velocities below 50–100 km s\(^{-1}\). To add NS in this velocity range we do require ecSN in effectively isolated stars.

7 DISCUSSION

7.1 Consequence of binary fraction 85 per cent

In our basic simulations, we assume 100 per cent binary origin for progenitors of isolated radio pulsars. In reality, a fraction of NS could be formed from truly isolated progenitors. To check how sensitive our simulations are to this assumption, we perform additional simulations modifying model K by assuming that 15 per cent of isolated radio
On the other hand, the response of BeXs is not that trivial. The minimum is located around \(w \approx 0.25\) and \(\sigma_1 = 50\) km s\(^{-1}\). The results of our simulations in Fig. 10. from a Maxwellian distribution with

We add to each simulated pulsar and BeX a random velocity drawn

The result of optimization is

To quantify the effect of the velocity dispersion on our results, we perform our combined analysis once again, including only synthetic BeXs with orbital periods in range 10–250 d to make it more comparable with observations. We show results in Fig. 13. This result is more noisy because fewer BeXs are included in the analysis. The result of optimization is

Effects of observational selection

Although our model D seems to satisfy a large number of observational constraints, it is worth mentioning that some of these constraints are a matter of strong observational selection. For example, there are only seven measurement of orbital periods and eccentricities for BeXs in the SMC (see e.g. Fig. 4). That is because eccentricity and orbital periods are difficult to obtain from X-ray observations. Many BeXs are only seen close to their periastron passages for a short period of time. These observations are sufficient to identify presence of the BeXs and measure NS spin period (if it is less than \(\approx 500\) s; Laycock et al. 2010), but do not allow to constrain the orbital period and especially eccentricity. In the case of SMC, many BeXs were discovered in RXTE scans. This technique is biased against the long-period binaries (Laycock et al. 2010; Vinciguerra et al. 2020). Only two BeXs with spin period longer than 1000 s are known within the Galactic sample, while our simplified simulations contain systems with much longer periods. Such systems might not be seen as Be X-ray pulsars because NS does not come close enough to interact with the decretion disc. Thus, some of those systems might be seen as single Be stars. The effect of this selection is the following: systemic velocity correlates with orbital and spin period. In Fig. 12, we show the natal kick of NS as the function of the final orbital period and eccentricity for BeXs. The Galactic BeXs have measured orbital periods ranging 10–250 d (see e.g. Ragužova & Popov 2005). In this range of orbital periods, we see binaries that receive a natal kick ranging from extremely small values \(\approx 10–15\) km s\(^{-1}\) to large values \(>500\) km s\(^{-1}\). Therefore, our analysis should be able to probe the full range of kick values. It seems that due to these selection effects we may preferentially miss the low kick systems in the observed sample (there are hardly any high kick binaries in the long orbital period part of the population). But if we limit the model sample to the range of orbital periods probed observationally, their velocity distribution would be different. We check how important it is for the result of the optimization procedure below.

We perform our combined analysis once again, including only synthetic BeXs with orbital periods in range 10–250 d to make it more comparable with observations. We show results in Fig. 13. This result is more noisy because fewer BeXs are included in the analysis. The result of optimization is

7Note that the observed velocity of NS born in binaries is the sum of natal kick and orbital velocity, while observed velocities of NSs born from truly isolated stars consist of the natal kick only.
In the case of natal kick distribution by Igoshev (2020), the shape of systemic velocity distribution is conserved. Overall, even after applying this severe (and quite unreasonable) observational selection, our models A and D predict very different velocities for BeXs. Therefore, the effect of real observational selection is probably much less significant.

7.4 Applicability of our results

Our result can be applied to model binary stellar evolution especially concerning the first supernova explosion. If the readers are concerned with modelling of isolated pulsar population, it is much better to use results by Igoshev (2020) because the velocity distribution of isolated radio pulsars prefers slightly larger velocities than what results from the full natal kick distribution (NS with weaker kicks is preferentially bound in binaries).

Figure 10. Likelihood profiles obtained for parallaxes and proper motions of isolated radio pulsars (left-hand panel) and BeXs (right-hand panel) in the case when initial velocity dispersion is added to simulations. Blue dot corresponds to the maximum likelihood: $w = 0.2$ and $\sigma_1 = 50 \text{ km s}^{-1}$ (left-hand panel), and $w = 0.15$ and $\sigma_1 = 10 \text{ km s}^{-1}$ (right-hand panel). Orange triangle corresponds to parameters of model D. Dashed line corresponds to 95 per cent confidence interval and solid lines correspond to 99 per cent confidence interval.

Figure 11. Likelihood profiles obtained for parallaxes and proper motions of isolated radio pulsars and BeXs in the case when initial velocity dispersion is added to simulations. Blue dot corresponds to the maximum likelihood $w = 0.25$ and $\sigma_1 = 45 \text{ km s}^{-1}$. Orange triangle corresponds to parameters of model D. Dashed line corresponds to 95 per cent confidence interval and solid lines correspond to 99 per cent confidence interval.

Figure 12. Distribution of natal kicks for synthetic BeXs (colour) as a function of their orbital period and eccentricity. We show here the results of simulations D for MW metallicity. Grey region shows a range of orbital periods measured for Galactic BeXs based on Raguzova & Popov (2005).

One should be cautious when using our natal kick distribution to model the formation of DNS systems. Formation of such systems contains additional phases of interaction that may affect the formation of the second NS (and the related natal kick) and that cannot be constrained with BeX observations. In particular, the secondary star in the progenitor of a merging DNS is thought to be almost completely stripped of its envelope before the SN (i.e. it undergoes the so-called ultrastripped SN). Such stars might receive a very different natal kick. It is not feasible to test this hypothesis using the isolated radio pulsars and BeX populations because the required extreme stripping is thought to occur during the late phases of mass transfer in compact binaries, where the secondary star is stripped by the first-born compact object. The natal kicks of DNSs have to be tested using the observational information on millisecond radio pulsar and DNS populations.

Note that our best natal kick velocity distribution resembles those found by Fryer et al. (1998). The authors find that a fraction of ≈ 30 per cent of NS should receive almost no kick while the high-velocity pulsars form with natal kicks of the order of $600–700 \text{ km s}^{-1}$.
7.5 Caveat

In our analysis we treat merged stars as effectively isolated. Merger occurs in $\approx 22.3^{+26}_{-9}$ per cent of binaries according to simulations by Renzo et al. (2019). Some of these stars could explode as supernova and form isolated radio pulsars which will effectively increase a number of radio pulsars with isolated progenitors. We assume that natal kicks of these NSs will be drawn from the same distribution as natal kicks of NS born from initially isolated progenitors. This assumption has a caveat that these merger products might have a different structure of the core and might result in a different supernova explosion with somewhat different natal kick distribution for produced NSs. This hypothesis is worth of future investigation.

8 CONCLUSIONS

In this work, we revisit the natal kick velocity distribution of NSs in light of the available constraints of the observed populations of isolated radio pulsars and BeXs.

We introduce a framework that allows us to test any natal kick velocity distribution by confronting the velocity distributions of the mock isolated radio pulsars and BeX populations with the distributions obtained from observations. We modelled BeXs self-consistently to account for the effects of binary interactions.

Observational distributions of velocities are obtained using the parallaxes and proper motion measurements from radio interferometry for isolated radio pulsars (similar to the earlier study of isolated pulsars velocities by Verbunt et al. 2017 and Igoshev 2020), and peculiar velocities of Galactic BeXs from Gaia EDR3.

As a starting point for our analysis, we simulate the population of BeXs in the SMC and identify evolutionary models that can reasonably reproduce the demographics of the population: the size of the population and the mass distribution of Be stars. We also discuss the resulting distributions of orbital parameters (periods and eccentricities), however, in that case the potential severe observational selection effects limit the meaningful conclusions from the comparison with observations. Similarly as Vinciguerra et al. (2020), we find that the properties of the population are strongly affected by the assumptions about the mass transfer phase prior to NS formation. We find that the properties of the SMC BeXs are best reproduced if we assume that their progenitors evolve through a phase of stable, semiconservative mass transfer, consistent with the results of Vinciguerra et al. (2020). Therefore, in our default model for the formation of (Galactic and SMC) BeXs we require an episode of the stable, semiconservative mass transfer.

We identify the following comparison metrics: (1) total number of SMC BeXs, (2) dependence of eccentricity on orbital period, (3) mass of Be stars, and (4) velocities of Galactic radio pulsars and BeXs. We find that the natal kick distributions significantly affect...
the total number of produced BeXs in the SMC, the eccentricities of BeXs, and the velocities of both Galactic radio pulsars and BeXs. The exact dependence between remnant and progenitor mass hardly affects any of our metrics. The mass accretion efficiency affects the total number of BeXs, Be mass, and distribution of velocities for Galactic BeXs.

We find that using the bimodal Maxwellian natal kick distribution from Igoshev (2020) (based on the isolated radio pulsar data) we can obtain a reasonable match of the model with the observation-based distribution of Galactic systems. We further apply our framework to find the optimal parameters of the low-velocity component of this distribution in light of the additional constraints from BeXs. The optimization procedure results in a fraction of NS forming with kicks in the low-velocity component of \(w = 0.2 \pm 0.1 \) and the Maxwellian parameter \(\sigma_1 = 45^{+5}_−12 \) km s\(^{-1}\) and we fix \(\sigma_2 = 336 \) km s\(^{-1}\).

Finally, we show that the natal kick prescription commonly used in population synthesis studies: combining the distribution from Hobbs et al. (2005) and allowing for low-velocity NS formation in ecSN with a Maxwellian distribution with \(\sigma = 30 \) km s\(^{-1}\) is incompatible with observations of isolated radio pulsars if ecSN occurs only in stripped stars. If ecSN occurs also in effectively isolated stars, this distribution is marginally compatible with observations. It is possible to improve this model and suggest that core collapse supernova explosions impart a natal kick with a Maxwellian distribution with \(\sigma = 336 \) km s\(^{-1}\) while ecSN occurs in both effectively isolated and stripped stars with helium core mass in the range 1.63–2.25 M\(_\odot\) at the base of asymptotic giant branch. These NS receive Maxwellian natal kick with \(\sigma = 45 \) km s\(^{-1}\). This model is slightly less preferable than our statistical model K, but it is still compatible with all available observations. This model can be improved further when a larger sample of low-velocity pulsars becomes available. Whether it is physically possible to form an NS in ecSN explosions in this broad mass range is unclear at the moment. Further modelling is required to resolve this issue.

ACKNOWLEDGEMENTS

AIP is grateful to Prof. Gijs Nelemans, Eva Laplace, Dr Serena Vinciguerra, Anastasia Frantsuzova, and Prof. Sergei Popov, and all participants of SEBA and binary stellar evolution meeting for multiple fruitful discussions. AI was supported by STFC grant no. ST/S000275/1. ST acknowledge support from the Netherlands Organisation for Scientific Research (NWO). This work was undertaken on ARC4, part of the High Performance Computing facilities at the University of Leeds, UK. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. MC acknowledges support from the Netherlands Organisation for Scientific Research (NWO).

DATA AVAILABILITY STATEMENT

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

Abt H. A., 1983, ARA&A, 21, 343
Ambartsumian V. A., 1937, Astron. Zh., 14, 207
Andrews J. J., Farr W. M., Kalogera V., Willems B., 2015, ApJ, 801, 32
Antoniadis J., 2020, Res. Notes Am. Astron. Soc., 4, 223
Antoniadis J., 2021, MNRAS, 501, 1116
Antoniadis J., Tauris T. M., Ozel F., Barr E., Champion D. J., Freire P. C. C., 2016, preprint (arXiv:1605.01665)
Beniamini P., Piran T., 2016, MNRAS, 456, 4089
Bildsten L. et al., 1997, ApJS, 113, 367
Blauau, A., 1961, Bull. Astron. Inst. Neth., 15, 265
Bodaghee A. et al., 2021, ApJ, 919, 81
Bozzo E., Pavan L., Ferrigno C., Falanga M., Campana S., Paltani S., Stella L., Walter R., 2012, A&A, 544, A118
Brandt N., Podsadlowski P., 1995, MNRAS, 274, 461
Brisken W. F., Benson J. M., Goss W. M., Thorsett S. E., 2002, ApJ, 571, 906
Brisken W. F., Fruchter A. S., Goss W. M., Herrneit R. M., Thorsett S. E., 2003, AJ, 126, 3000
Casares J., Ribó M., Ribas I., Paredes J. M., Martí J., Herrero A., 2005, MNRAS, 364, 899
Chatterjee S., Cordes J. M., Lazio T. J. W., Goss W. M., Fomalont E. B., Benson J. M., 2001, ApJ, 550, 287
Chatterjee S., Cordes J. M., Vlemmings W. H. T., Arzoumanian Z., Goss W. M., Lazio T. J. W., 2004, ApJ, 604, 339
Chatterjee S. et al., 2009, ApJ, 698, 250
Chevalier C., Ilievski S. A., 1998, A&A, 330, 201
Chruslinska M., Belczynski K., Klenczi J., Benacquista M., 2018, MNRAS, 474, 2937
Coe M. J., Kirk J., 2015, MNRAS, 452, 969
Cox N. L. J., Kaper L., Mokiem M. R., 2005, A&A, 436, 661
de Brujine J. H. J., 1999, MNRAS, 310, 585
de Mink S. E., Pols O. R., Hilditch R. W., 2007, A&A, 467, 1181
Deller A. T., Tingay S. J., Bailes M., Reynolds J. E., 2009, ApJ, 701, 1243
Deller A. T. et al., 2019, ApJ, 875, 100
Dewey R. J., Cordes J. M., 1987, ApJ, 321, 780
Dewi J. D. M., Podsadlowski P., Pols O. R., 2005, MNRAS, 363, L71
Doherty C. L., Gil-Pons P., Siess L., Lattanzio J. C., 2017, Publ. Astron. Soc. Aust., 34, e056
Duchêne G., Kraus A., 2013, ARA&A, 51, 269
Edwards R. T., Hobbs G. B., Manchester R. N., 2006, MNRAS, 372, 1549
Eldridge J. J., Tout C. A., 2004, MNRAS, 353, 87
Faucher-Giguère C.-A., Kaspi V. M., 2006, ApJ, 643, 332
Fryer C., Burrows A., Benz W., 1998, ApJ, 496, 333
Fryer C. L., Belczynski K., Wiktowiak G., Domink M., Kalogera V., Holz D. E., 2012, ApJ, 749, 91
Gaia Collaboration, 2016, A&A, 595, A1
Gaia Collaboration, 2021, A&A, 649, A1
Gamen R., Barbá R. H., Walborn N. R., Morrell N. I., Arias J. I., Maiz Apellániz J. S., Sota A., Alfaro E. J., 2015, A&A, 583, L4
González-Galán A., Negueruela I., Castro N., Simón-Díaz S., Lorenzo J., Vilardell F., 2014, A&A, 566, A131
Haberl F., Sturm R., 2016, A&A, 586, A81
Heggie D. C., 1975, MNRAS, 173, 729
Hills J. G., 1983, ApJ, 267, 322
Hobbs G., Lorimer D. R., Lyne A. G., Kramer M., 2005, MNRAS, 360, 974
Hurley J. R., Pols O. R., Tout C. A., 2000, MNRAS, 315, 543
Igoshev A. P., 2020, MNRAS, 494, 3663
Igoshev A. P., Perets H. B., 2019, MNRAS, 486, 4098
Igoshev A. P., Perets H. B., Michaely E., 2020, MNRAS, 494, 1448
Ivanova N. et al., 2013, A&AR, 21, 59
Janka H.-T., 2017, ApJ, 837, 84
Jones S., Röpke F. K., Pakmor R., Seitenzahl I. R., Olthmann S. T., Edelmann P. V. F., 2016, A&A, 593, A72
Kalogera V., 1996, ApJ, 471, 352
Kiminki M. M., Smith N., 2018, MNRAS, 477, 2068
Kirsten F., Vlemmings W., Campbell R. M., Kramer M., Chatterjee S., 2015, A&A, 577, A111
Kobulnicky H. A., Fryer C. L., 2007, ApJ, 670, 747
Kriz S., Harmanec P., 1975, Bull. Astron. Inst. Czech., 26, 65
Kruckow M. U., Tauris T. M., Langer N., Kramer M., Izard R. G., 2018, MNRAS, 481, 1908

MNRAS 508, 3345–3364 (2021)
APPENDIX A: CATALOGUE OF GALACTIC BE X-RAY BINARIES

We found the following information about individual HMXBs in the literature.

[KRL2007b] 335 also known as IGR J18450—0435 is a supergiant system (Sguera et al. 2007). This system is excluded from analysis.

2MASS J16393220—4944305 also known as IGR J16195—4945 is a supergiant system (Lutovinov et al. 2013). This system is excluded from analysis.

2MASS J12342037+4738002 also known as IGR J21343+4738 is B1Ve star (Reig & Zezas 2014). This system is included in the analysis.

UCAC2 4813819 also known as IGR J00370+6073 is a supergiant system (Casares et al. 2005). This system is excluded from analysis.

V* GP Vel also known as Vela X-1 is a supergiant system (see e.g. Bildsten et al. 1997). This system is excluded from analysis.

4U 1907+09 is a supergiant system (Cox, Kaper & Mokiem 2005). This system is excluded from analysis.

SS 188 also known as IGR J092623-3736 is a supergiant system (Bozzo et al. 2012). This system is excluded from analysis.

V* V479 Sct is a possible counterpart of LS 5039 which seems to be a black hole (Casares et al. 2005). This system is excluded from analysis.

6122 is a supergiant system (Sakamaki & Negoro 2017). This system is excluded from analysis.

6073 also known as IGR J00370+6073 is a supergiant system (see e.g. Bildsten et al. 1997). This system is excluded from analysis.

GP Vel also known as Vela X-1 is a supergiant system (see e.g. Bildsten et al. 1997). This system is excluded from analysis.

4U 1907+09 is a supergiant system (Cox, Kaper & Mokiem 2005). This system is excluded from analysis.

4U 1907+09 is a supergiant system (Cox, Kaper & Mokiem 2005). This system is excluded from analysis.

SS 188 also known as IGR J092623-3736 is a supergiant system (Bozzo et al. 2012). This system is excluded from analysis.

V* V479 Sct is a possible counterpart of LS 5039 which seems to be a black hole (Casares et al. 2005). This system is excluded from analysis.

6073 also known as IGR J00370+6073 is a supergiant system (see e.g. Bildsten et al. 1997). This system is excluded from analysis.

GP Vel also known as Vela X-1 is a supergiant system (see e.g. Bildsten et al. 1997). This system is excluded from analysis.

4U 1907+09 is a supergiant system (Cox, Kaper & Mokiem 2005). This system is excluded from analysis.

SS 188 also known as IGR J092623-3736 is a supergiant system (Bozzo et al. 2012). This system is excluded from analysis.

V* V479 Sct is a possible counterpart of LS 5039 which seems to be a black hole (Casares et al. 2005). This system is excluded from analysis.

BD+60 73 also known as IGR J00370+6122 is a supergiant system (González-Galán et al. 2014). This system is excluded from analysis.

EM* AS 14 also known as TYC 3681-695-1 is B1-2 III-Ve star (Smith, Lopes de Oliveira & Motch 2016). This system is included in the analysis.

HD 74194 also known as LM Vel is a supergiant system (Gamen et al. 2015). This system is excluded from analysis.

SUPPLEMENTARY INFORMATION

Supplementary data are available at MNRAS online.
HD 63666 is a dwarf star, so it cannot be HMXB (Chevalier & Ilovaisky 1998). This system is excluded from analysis.

HD 49978 is a subdwarf system (Kudritzki & Simon 1978). This system is excluded from analysis.

IGR J17544–2619 is a supergiant system (Pellizza, Chaty & Negueruela 2006). This system is excluded from analysis.

SS 433 is a microaccretion with accretion disc around the compact object (Marion 1984). The spectral type might be A and accretion does not proceed through the decretion disc. This system is excluded from analysis.

HD 226868 also known as Cyg X-1 is probably HMXB with a black hole (Orosz et al. 2011). This system is excluded from analysis.

APPENDIX B: MAXIMUM LIKELIHOOD ANALYSIS OF THE VELOCITY DISTRIBUTION

The maximum likelihood technique was described in complete detail by Verbunt et al. (2017). Here, we briefly summarize the most important details. The joint probability to measure parallax and proper motion for a star given velocity distribution \(f(v, \sigma) \) with parameters \(\sigma \) can be written as

\[
P(\sigma_i^v, \mu_{\alpha i}, \mu_{\delta i}, D, v_x, v_y, v_z) \propto f(D, f(v, \sigma)) \times \exp\left[-\frac{(1-D/\sigma_i^v)^2}{2\sigma_0^2}\right] \times \exp\left[-\frac{(\mu_{\alpha i}(D) + c_{\alpha i}/D - \mu_{\alpha i}^0)^2}{2\sigma_0^2}\right] \times \exp\left[-\frac{(\mu_{\delta i}(D) + c_{\delta i}/D - \mu_{\delta i}^0)^2}{2\sigma_0^2}\right]
\]

(B1)

Here, \(f(D) \) is the initial distribution for actual distance \(D \) which depends on location in the sky. Values \(\sigma_i^v, \mu_{\alpha i}, \mu_{\delta i} \) correspond to measured parallax and proper motion components for star with index \(i \) in catalogue. Values of \(\mu_{\alpha i}(D) \) and \(\mu_{\delta i}(D) \) stay for values of proper motions which appears due to the rotation of the Galaxy at distance \(D \). They depend on location in the sky. Coefficients \(A_{\alpha} \) and \(A_{\delta} \) allow a transformation of velocity \(v \) to component of proper motion along \(\alpha \) and \(\delta \) directions. Values \(\sigma_{\alpha}, \sigma_{\delta} \) and \(\sigma_{v} \) correspond to measurement errors for parallax and proper motion components. Coefficient \(c = 4.74 \) allows a transformation of measurements to units of km s\(^{-1}\).
The Maxwellian velocity distribution for individual velocity components v_a, v_b, and v_c consists of normal distributions:

$$f_v^M(\vec{v}, \sigma) = \frac{1}{2\pi \sqrt{2\pi \sigma^3}} \exp \left(-\frac{(v_a^2 + v_b^2 + v_c^2)}{2\sigma^2} \right). \quad (B2)$$

Sum of two Maxwellsians has the following form:

$$f_v^{2M}(\vec{v}, \sigma) = w f_v^M(\vec{v}, \sigma) + (1-w) f_v^M(\vec{v}, \sigma_2). \quad (B3)$$

The actual velocity components v_a, v_b, and v_c and distances D are not known. Therefore, we integrate the joint probability equation (B1) over all unknown variables:

$$P(\sigma', \mu_{v_{\alpha}L}, \mu_{v_{\beta}L}) = \int \int P(\sigma', \mu_{v_{\alpha}L}, \mu_{v_{\beta}L}, D, \tilde{v})d\tilde{v}dD. \quad (B4)$$

Some of these integrations are performed analytically and some numerically. Practical equations used for calculations of this joint probability can be found in section 4 by Verbunt et al. (2017). As soon as exact model for velocity distribution is chosen and measured values are fixed this joint probability becomes likelihood for a model parameter:

$$L_i(\sigma) = P(\sigma', \mu_{v_{\alpha}L}, \mu_{v_{\beta}L}|\sigma). \quad (B5)$$

Working with multiple independent measurements we introduce log-likelihood:

$$\mathcal{L}(\sigma) = -2 \sum_{i=1}^{N} \log L_i(\sigma). \quad (B6)$$

This log-likelihood is maximized further to find the best parameter σ or a vector of parameters $\tilde{\sigma}$.

APPENDIX C: BINNED VELOCITY DISTRIBUTION

First, we introduce a local polar coordinate system to describe the velocity vector:

$$v_a = v \sin \psi_1 \cos \psi_2 = A_a v \quad (C1)$$

$$v_b = v \sin \psi_1 \sin \psi_2 = A_b v \quad (C2)$$

$$v_c = v \cos \psi_1. \quad (C3)$$

Our binned velocity distribution is based on individual velocity components and defined as following:

$$f_v^B(\vec{v}, \bar{m}) = m_y v^2 \quad (C4)$$

if $\Delta v < \sqrt{v_a^2 + v_b^2 + v_c^2} \leq \Delta v(f+1)$. We substitute the binned velocity distribution in equation (B1). It is possible to analytically compute the most inner integral over absolute value of velocity:

$$I_{k,i,j} = m_i \int_{\Delta v(i+1)}^{\Delta v(i)} v \exp \left[-\frac{1}{2} \left(A_a v + D(\mu_{v_{\alpha}}D) - \mu_{v_{\alpha}L}^2 \right) \right] dv. \quad (C5)$$

This integral has following form:

$$I_m = m_i e^{-A_3} \int_{\Delta v(i+1)}^{\Delta v(i)} v \exp \left(-A_1 v^2 - A_2 v \right) dv, \quad (C6)$$

with the following values:

$$A_1 = \frac{c^2 A_a^2}{2\sigma_a^2 D^2} + \frac{c^2 A_b^2}{2\sigma_b^2 D^2} \quad (C7)$$

$$A_2 = \frac{c A_a (\mu_{v_{\alpha}}D - \mu_{v_{\alpha}L})}{D \sigma_a^2} + \frac{c A_b (\mu_{v_{\alpha}}D - \mu_{v_{\alpha}L})}{D \sigma_b^2}. \quad (C8)$$

$$A_3 = \frac{(\mu_{v_{\alpha}}D - \mu_{v_{\alpha}L})^2}{2\sigma_a^2} + \frac{(\mu_{v_{\alpha}}D - \mu_{v_{\alpha}L})^2}{2\sigma_b^2}. \quad (C9)$$

The result of integration for equation (C5) is:

$$I_v = m_i \exp \left(\frac{E^2 - A_3}{A_1 \sqrt{A_1}} \right) \left(\frac{\sqrt{\pi}}{4} \left[1 + 2E^2 \right] \text{erf}(\sqrt{A_1}v + E) \right) - \frac{1}{2} \left(2E - 1 \right) \exp \left(-\left(\sqrt{A_1}v + E \right)^2 \right) \left| \frac{A_1 i + 1}{A_1 i} \right|, \quad (C10)$$

where $E = A_2/(2\sqrt{A_1})$.

$$P(\sigma', \mu_{v_{\alpha}L}, \mu_{v_{\beta}L}|m_i) = m_i \int_0^{D_{\text{max}}} f_D(D), \times \int I_i(D, \psi_1, \psi_2, \sigma)d\Omega dD \quad (C11)$$

These integrals are computed numerically following the same procedure as described by Verbunt et al. (2017). For each individual pulsar and for each velocity bin we can compute the likelihood as:

$$L_i^{\psi_k\psi_k+1} = P(\sigma', \mu_{v_{\alpha}L}, \mu_{v_{\beta}L}|1). \quad (C12)$$

because model is described using a constant parameter m_k, we can move this parameter out of all integrations. In this case, the likelihood for a particular model but for a single pulsar can be computed as:

$$L_i = \sum_{k=1}^{N} m_k L_i^{\psi_k\psi_k+1}. \quad (C13)$$

And the complete log-likelihood is computed then as:

$$\mathcal{L}(\bar{m}) = -2 \sum_{i=1}^{N} \log \left(\sum_{k=1}^{N} m_k L_i^{\psi_k\psi_k+1} \right). \quad (C14)$$

This equation has an interesting property. Given the data it is possible to compute numerically expensive part $L_i^{\psi_k\psi_k+1}$ just once and substitute this matrix into equation (C14) together with m_k obtained from a model to get the log-likelihood.

The most natural usage of the log-likelihood equation (C14) is simply to minimize it. This exercise is, however, quite useless at the moment because a number of young pulsars and BeXs is quite small, therefore not enough pulsars are seen in each velocity bin to really constrain the velocity distribution. However, if a binary evolution model provides a model for velocity distribution of isolated radio pulsars or BeXs, equation (C14) provides a natural way to test such a model against real measurements. Given a fact that velocity bins have exactly the same extent in model and $L_i^{\psi_k\psi_k+1}$, the relation between m_k and relative number of objects in velocity bin h_k is as following:

$$m_k = \frac{3h_k}{\Delta v^2 ((i+1)^3 - i^3)}. \quad (C15)$$

Therefore, after we separate BeXs and isolated NS from the results of the population synthesis we prepare a histogram with a step in velocity of 33.4 km s$^{-1}$ for normal radio pulsars and 10 km s$^{-1}$ for BeXs and compute m_k which is further used in calculations of likelihood according to equation (C14).
APPENDIX D: CALCULATION OF DISTRIBUTIONS FOR SECONDARY MASS, ORBITAL PERIODS ETC

Here, we use same approach as Vinciguerra et al. (2020). Namely we assume that orbital properties do not change during the BeX stage. In this case each individual binary contributes a weight of

\[w = \frac{1}{M_{\text{tot}}} \int \text{SFH}(-t)dt, \]

(D1)

where \(M_{\text{tot}} \) is the total stellar mass required to produce 100,000 high-mass binaries. We use the star formation history (SFH) for SMC by Rubele et al. (2015). It is a piece-wise function, so we can replace integral with a sum:

\[w = \frac{1}{M_{\text{tot}}} \sum_i \text{SFH}(-t_i)\Delta t_i. \]

(D2)

Further we plot a histogram for each individual orbital parameter using these weights.

APPENDIX E: VELOCITIES OF SPECTROSCOPIC B BINARIES

It is important to check if the velocity dispersion of BeX progenitors is indeed small and comparable to \(\approx 10-15 \text{ km s}^{-1} \). We estimate the velocity dispersion using our code (see Appendix B), parallaxes, and proper motions measured by Gaia. In order to perform this analysis, we use the catalogue of spectroscopic binaries by Pourbaix et al. (2004). Our choice for the catalogue can be explained as the following: isolated B stars could be formed as a result of binary stellar evolution (walk away and ran away stars) which changes their velocities significantly. As for the spectroscopic binaries, we select those where primary did not evolve of the main sequence yet, thus these binaries probably did not interact yet. Although a small fraction of these stars could move fast because of triple and multiple stars disruption or due to OB association dissolution, this sample should provide us some information about velocity dispersion of B stars before any interaction occurs.

From this catalogue, we select only binaries where the primary is main-sequence B star without any chemical peculiarity. Chemical peculiarity could appear as a result of mass transfer or supernova explosion which could change the velocity of the system. Further we find optical counterpart for each star in the Gaia EDR3. After choosing only stars with good quality astrometry (relative error of parallax is less than 0.33), we have a list of 117 systems.

At the next step we run our analysis for velocities. For model with single Maxwellian distribution we obtain \(\sigma = 11 \text{ km s}^{-1} \). For model which is a sum of two Maxwells, we obtain a fraction of low-velocity objects \(w = 20 \pm 8 \) with \(\sigma_1 = 3 \text{ km s}^{-1} \), remaining binaries have parameter \(\sigma_2 = 11 \text{ km s}^{-1} \). The model with two Maxwellian is more probable. Overall, we confirm that velocity dispersion of progenitors for BeXs is \(\sigma = 11 \text{ km s}^{-1} \).