Research on Multi-node Frame Early Warning System of Power Grid Based on Abnormal Data Extraction

Bing Sui*, Xiaodong Chen¹, Zhengwen Li¹, Jun Zhao¹, Jingfu Tian¹

¹ Liaoning Electric Power Dispatching and Control Center, State Grid Corporation of China, Shenyang Liaoning 110000, China

*E-mail: sw8w123456@126.com

Abstract: Nowadays, the collection of electrical energy measurement data is mainly completed by smart meters, electrical energy data monitoring equipment and electrical energy data management equipment. Due to system defects, equipment failures and human factors, it is prone to abnormal data collection. The design concept of online early warning system for extracting abnormal features of electrical energy data based on multi-node real-time computing framework is proposed in the paper to analyze the hardware and software of the online early warning system for extracting abnormal features of electrical energy data.

1. Introduction
The electric energy collection and billing system is a subsystem supported by smart grid operation, which is the basis for economic operation, scientific dispatching, assessment and settlement of the grid. What is more, the traditional solution to the abnormal alarm of electrical energy data is to store the received whole-day electricity data in the database at 24:00 on the day, and then the relevant formula data and balance data are calculated by querying the original electricity data in the database. From these calculation results, it is analyzed whether there are abnormal power consumption data. However, throughout the process, the obtained formula data results are lagging. Meanwhile, for a large amount of real-time power data, the traditional architectural approach is not applicable. Therefore, how to realize the online early warning of abnormal electrical energy data and timely solve the hidden dangers that affect the safety of electrical energy data will be an urgent problem to be solved in the design and development of the power grid[1-3].

2. Early Warning System Software Design
Based on multi-node big data framework, early warning system software is developed with the help of Java language programming. Moreover, the whole can be divided into three layers, and each layer is further divided into multiple modules and multiple sub-processes in detail. What is more, each module contacts and interacts with each other to form an online analysis system based on the network topology, that is, the software running network. The software design of early warning system is shown in Figure 1[4].
As can be seen in Figure 1, the early warning system software is mainly divided into data acquisition layer, data transmission layer, and data analysis layer the three levels. What is more, the data collection layer compresses the data that will be written to the multi-node message bus including data producers and data consumers through regularly reading the offline data of the database, analyzing and processing the interactive file data with CIM/E format in real time, as well as handling the collected communication message data timely. Moreover, data collection layer is the data producer of the message bus, and data analysis layer monitors and consumes the data, which pushes the consumption data into the Storm multi-node computing framework to perform online calculation based on the established abnormal data recognition model topology. Additionally, multi-node cache for static data throughput is designed to speed up the calculation speed, where is no need to save the data in the entire analysis process, and the analysis result is stored in the database as the end node of the calculation[5-6].

Whether the electrical energy is abnormal is judged by the bus power report, and the abnormal electrical energy needs to be judged at different voltage levels. For example, the standard given for the power unbalance rate is as in the line environment of 220kV and 110kV, and the normal unbalance rate is ±2%. The method for calculating the standard unbalance rate is shown below.

$$\lambda = \frac{C_i - R_i}{R_i}$$ (1)

In formula (1), λ represents the standard unbalance rate, C refers to the total output power, and R is the total input power. Additionally, i indicates the variable at a specific voltage level.

Both the total input power R and the total output power C represent the total power input and output generated in the bus at the same voltage level i. In other words, the total output power is the total output energy of each outlet at a specific time point on the basic bus of the set voltage level, and the total input power refers to the total electrical energy input by each incoming line at a specific voltage level and time point[7].

The standard electrical energy value, which is known, is compared with the collected data, and when the result is greater than the normal value, the platform will edit the warning information and release the warning information through 3 information release methods.

3. Abnormal Characteristics Database of Electric Energy Data
The data mining library for abnormal characteristics of electric energy data performs large data mining and cluster analysis on the abnormal characteristics of electric power in various aspects such as grid models, measurement data, electric energy data, and balance data through extracting and dispatching EMS system data, TMR system data, power consumption information data, and subdividing models of various data indicators. Meanwhile, according to the contribution of various measurement checkpoint
assessment indicators, the trend of power change, and the degree of abnormal deviation, the abnormalities are divided into model, data, balance, and maintenance four categories, as shown in Table 1. In addition, for different dimensions, the characteristics of its abnormal data is analyzed to provide differentiated and personalized services[8-10].

Category 1	Category 2	Model class	Relationship problem
Consistency problem	Model conflict	Consistency problem	No corresponding voltage registration found
	Naming convention	The key value is empty	The first and last stations on the line are the same
	The key value is empty	Factory station can't find area	The definition of the first end of the line does not exist
	Model conflict	Relationship problem	The meter cannot find the corresponding device
	Naming convention	Model matching problem	The main transformer is not matched when matching the winding
	The key value is empty	Name matching failed	Name matching failed
	Factory station can't find area	Auto association failed	Auto association failed
	Relationship problem	Model matching problem	Meter wiring error
	Model conflict	Abnormal collected data	Zero base code is empty
	Consistency problem	Name matching failed	Suspected table change
	Consistency problem	Auto association failed	Incorrect acquisition parameters
	Consistency problem	Model matching problem	Calculation battery error
	Consistency problem	Data class	Incorrect mother level configuration
	Model conflict	Abnormal collected data	Incorrect mother level configuration
	Consistency problem	Data class	Start and stop service
	Consistency problem	Abnormal collected data	Location
	Consistency problem	Abnormal collected data	Maintenance class

The abnormal types in Table 1 are associated with the repair function software functional modules of system design, where Model class abnormality corresponds to the edit module of model management and parameter maintenance.

Data abnormality correspond to functional modules such as data reprocessing, data recall, data editing, meter rotation, magnification change, and parameter editing.

Balanced abnormality corresponds to functional modules such as calculation configuration, model maintenance, and recalculation; Maintenance class abnormality corresponds to the operation and
maintenance interface of the underlying platform, which includes functions such as starting and stopping services and log positioning.

Through the closed-loop governance process from finding abnormal tags to putting them into the corresponding data, a set of plug-in data governance system is established, which continuously and iteratively optimizes the abnormality identification and processing capabilities to provide reliable data quality guarantee for business systems.

4. Online Analysis and Detection Process of Abnormal Electricity Driven by Real-time Data
The online early warning system based on multi-node real-time computing framework for electrical energy data anomaly feature extraction has realized the real-time drive of collecting electricity data with the help of TMR, EMS-CIME file based on EMS system and event message based on marketing system. Besides, the system calculates the relevant electricity formula data and balance data online. In addition, by verifying the rationality of the data and analyzing the balance results, the data on abnormal electrical energy is judged and pushed to the warning server in real time.

![Figure 2 Multi-node real-time computing framework online warning real-time processing flow](image)

Figure 2 is the online warning real-time processing flow based on TMR’s daily freezing of collected power data under the framework of multi-node real-time computing.

5. Conclusion
Based on the design of the collected data index characteristics during extracting abnormal data, a multi-node framework early warning system for the power grid is established in the paper to avoid the occurrence of electric power safety accidents, so that the online early warning function for extracting abnormal features of electric energy data can be realized. Moreover, data flow test proves that the system proposed in the paper has practical effect, which provides reference and improvement suggestions for the early warning system currently being applied.
References

[1] Hongwen Hui, Chengcheng Zhou, Shenggang Xu, Fuhong Lin, A Novel Secure Data Transmission Scheme in Industrial Internet of Things, China Communications, vol. 17, no. 1, pp. 73-88, 2020.

[2] Fuhong Lin, Yutong Zhou, Xingshuo An, Ilsun You, Kim-Kwang Raymond Choo, Fair Resource Allocation in an Intrusion-Detection System for Edge Computing: Ensuring the Security of Internet of Things Devices, in IEEE Consumer Electronics Magazine, vol. 7, no. 6, pp. 45-50, 2018. doi: 10.1109/MCE.2018.2851723.

[3] Jingtao Su, Fuhong Lin, Xianwei Zhou, Xing Lv, Steiner tree based optimal resource caching scheme in fog computing, China Communications, vol. 12, no.8, pp. 161-168, 2015

[4] Hongwen Hui, Chengcheng Zhou, Shenggang Xu, Fuhong Lin, A Novel Secure Data Transmission Scheme in Industrial Internet of Things, China Communications, vol. 17, no. 1, pp. 73-88, 2020.

[5] Li Li, Hua Kui, Jiang Yunpeng, et al. Review of key technology research on multi-source heterogeneous data processing of transmission lines [J]. Guangdong Electric Power. 2018 (08)

[6] Ma Qiang, Guan Chong, Bai Yingwei, et al. Research on equipment association technology of power grid business system based on big data [J]. Automation and Instrumentation. 2018 (04)

[7] Du Xiuming, Qin Jiafeng, Guo Shiyao, et al. Text mining of typical failure cases of power equipment [J]. High Voltage Technology. 2018 (04)

[8] Yan Danfeng, Zhu Qiao, Tang Ye, et al. Visualization of transmission and transformation equipment status data [J]. Computer Applications. 2017 (S1)

[9] Yu Zhenhua, Yang Shiyong, Shu Zhengyu, et al. Research on identification and classification method of power grid operation monitoring information based on clustering [J]. Hubei Electric Power. 2016 (04)

[10] Wang Teng, Jiao Xuwei, Gao Yang. A periodic time series anomaly detection algorithm based on Attention-GRU and iForest [J]. Computer Engineering and Science. 2019 (12)