TITLE:
Rapid and multiple-stage activation of the human amygdala for processing facial signals.

AUTHOR(S):
Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Matsuda, Kazumi; Usui, Keiko; Inoue, Yushi; Toichi, Motomi

CITATION:
Sato, Wataru ...[et al]. Rapid and multiple-stage activation of the human amygdala for processing facial signals. Communicative & integrative biology 2013, 6(4): e24562.

ISSUE DATE:
2013-07

URL:
http://hdl.handle.net/2433/178658

RIGHT:
© 2013 Landes Bioscience; This is an Open Access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may redistributed, reproduced and reused for non-commercial purposes, provided the original source is properly cited.
Rapid and multiple-stage activation of the human amygdala for processing facial signals

Wataru Sato,1,* Takanori Kochiyama,1 Shota Uono,2 Kazumi Matsuda,3 Keiko Usui,3 Yushi Inoue3 and Motomi Toichi2

1The Hakubi Project; Kyoto University; Inuyama, Aichi, Japan; 2Faculty of Human Health Science; Kyoto University; Kyoto, Japan; 3National Epilepsy Center; Shizuoka Institute of Epilepsy and Neurological Disorders; Shizuoka, Shizuoka, Japan

Keywords: amygdala, emotional facial expression, face, gamma oscillation, gaze, intracranial electroencephalography (EEG)

Human faces transmit multiple valuable signals, and neuroimaging studies have shown that the amygdala is active in response to facial stimuli. However, little has been known about the temporal profile of amygdala activation during facial signal processing until recently. Here we review three recent studies conducted by our group in which we recorded amygdala intracranial electroencephalography in humans. The subjects were engaged in tasks that required automatic processing of faces, eye gazes and emotional expressions. Time-frequency statistical parametric mapping analyses revealed that the amygdala showed gamma-band activation in response to emotional expressions, gazes and faces, with peak latencies at about 100 ms, 200 ms and 250 ms, respectively. These results suggest that: (1) the amygdala performs multiple-stage processing in response to these facial signals using different visual input routes, and (2) amygdala activation for processing all of these facial signals is rapid, which could be prior to or simultaneous with conscious awareness of faces.

Introduction

Human faces transmit multiple signals, such as faceness, eye gaze and emotional expression, all of which indicate valuable information during social interactions.1 Under evolutionary pressures, decoding of such facial signals would have helped humans take immediate collective action to tackle biologically significant events, such as encountering predators. Consistent with this notion, behavioral studies have demonstrated that the processing of facial signals is rapid and efficient. For example, faces were detected more rapidly than other stimuli,2,3 eye gazes automatically triggered attentional shifts4-5 even without awareness6,7 and emotional facial expressions were efficiently detected8,9 and processed without conscious awareness10,11.

Several neuroimaging studies have explored the neural mechanisms involved in implementing these rapid facial signal processes. These studies have reported that, in addition to the visual cortices such as the superior temporal sulcus and fusiform gyrus, the amygdala is activated by facial stimuli. For example, the amygdala showed stronger activity while subjects viewed faces compared with control stimuli such as mosaics,12,13 the amygdala became active in response to others’ gazes14,15 even when the gaze stimuli were presented without awareness16 and the amygdala was more activated by emotional facial expressions than by neutral expressions,17,18 even in response to subliminally presented stimuli19,20.

Based on these findings, some researchers have speculated that the amygdala plays a crucial role in the rapid processing of facial signals. For instance, the amygdala has been proposed to rapidly process faces,21 eyes22 and emotional expressions.23 This appears to be consistent with animal data, suggesting that the amygdala has a phylogenetic history associated with detecting biologically important signals.24,25 This hypothesis is also in accordance with anatomical evidence that the amygdala receives visual input via subcortical pathways involving the pulvinar and superior colliculus, bypassing the cortical visual areas.26,27

However, empirical data on the temporal aspects of face processing in the amygdala has been lacking. Hence, it has remained unclear whether the amygdala can be rapidly activated in response to facial stimuli and, if so, whether the amygdala can process multiple facial signals following a similar temporal profile. Although, as mentioned above, some neuroimaging studies reported amygdala activation in response to subliminal faces,16,19,20 brain activation to briefly presented stimuli might occur at later processing stages.28 Anatomical evidence of subcortical input also does not decisively support rapid amygdala activation because the amygdala also receives visual input via the cortical visual areas.29,30 Some magnetoencephalography (MEG) and electroencephalography (EEG) studies have reported temporal information regarding amygdala activation during facial signal processing.31,32 However, uncertainty regarding whether the activity of deep, complex brain structures such as the amygdala can be estimated from scalp signals remains.33

Information about the timing of amygdala activity during face processing is valuable because it can confirm or disconfirm...
received intracranial implantation of electrodes for preoperative investigation. Anatomical assessments using magnetic resonance imaging confirmed that the electrodes were successfully placed into the amygdala of all subjects. Field-potential data recorded in the amygdala were analyzed using statistical parametric analyses for time-frequency maps. We hypothesized that significant activation in response to facial signals would occur in the gamma frequency band (> 30 Hz), because a previous study demonstrated that this frequency was relevant for assessing amygdala activity.

In the first study, we tested amygdala activity while subjects observed faces (Fig. 1, upper left). As control stimuli, mosaics and houses were also presented. To test the inversion effect of faces, upright and inverted images were presented. Subjects were engaged in a dummy task to detect infrequently presented target stimuli. The results showed that the amygdala showed significant gamma-band activity, peaking around 250 ms, in response to both the contrasts between faces and mosaics and those between faces and houses, irrespective of whether the images were upright or inverted (Fig. 1, upper right).

In the second study, to investigate amygdala activity in response to eye gazes, facial stimuli depicting only the eye region were presented (Fig. 1, middle left). To investigate the effect of gaze direction, averted and straight gazes were used. Mosaics made from these stimuli were used as control stimuli. As in the first experiment, the subjects detected dummy targets. The comparison between eyes and mosaics, regardless of their directions, showed a significant cluster of gamma-band activity peaking at 200 ms (Fig. 1, middle right).

In the third study, we examined amygdala activity when subjects viewed fearful, happy and neutral facial expressions (Fig. 1, lower left). The subjects were asked to discriminate the gender of the faces. The contrast between fearful and neutral facial expressions revealed a significant gamma-band activation in the amygdala at 50–150 ms with a peak at 135 ms (Fig. 1, lower right).

Discussion

Our results demonstrated the different temporal profiles of amygdala gamma-band activity in response to faces vs. mosaics/houses, eye gazes vs. mosaics and fearful vs. neutral facial expressions. Specifically, the results showed that the amygdala first processes emotional facial expressions, at about 100 ms; it then processes eye gazes at about 200 ms; finally it processes faces, at about 250 ms. These data indicate that the amygdala performs facial signal processing at multiple time stages.

These results raise the possibility that the amygdala processes different facial signals based on information from different visual routes. Anatomical studies have indicated that, as

Our Studies

We conducted a series of experiments with six patients suffering from pharmacologically intractable focal epilepsy. The patients

![Figure 1. Examples of stimuli (left) and statistical parametric maps of the gamma-band range in which we observed significant activation (right) in studies 1 (upper), 2 (middle) and 3 (lower). Blue crosses indicate the location of activation foci.](image)
mentioned above, the amygdala receives visual inputs via the cortical visual areas related to face processing, as well as the subcortical routes including the pulvinar and superior colliculus. Regarding the processing of emotional stimuli, a previous neuroimaging study in a blindsight patient showed that the amygdala was activated while the patient viewed emotional facial expressions even after damage to the entrance of the cortical visual areas. Regarding the processing of faces and gazes, several previous MEG/EEG studies demonstrated that the face-specific visual analysis in the visual cortices occurred first during 150–200 ms. Some MEG/EEG studies also showed that cortical visual area activity at this time stage reflected the processing of eye gazes. Taken together, these findings suggest that the amygdala performs the processing for emotional facial expressions using coarse visual inputs via the subcortical pathways, and processes eye gazes and faces with fine-grained visual information processed through the cortical visual areas (Fig. 2, left and center).

At the same time, our results showed that the evident gamma-band activation of the amygdala was commonly elicited before 300 ms for the processing of faces, eye gazes and emotional facial expressions. Do the data support the hypothesis that the amygdala rapidly processes facial signals? What are the implications for the psychological functions of amygdala activity before 300 ms?

Several MEG/EEG studies have provided clues about the answers to these questions, indicating that neural activity at around 200–300 ms is associated with the conscious perception of visual stimuli. For example, a previous study showed that the EEG component corresponding to visual awareness of faces emerged at around 260–310 ms. These studies have consistently reported the enhanced negative deflection for seen vs. unseen stimuli in the posterior cortices, and such topography is consistent with neuroimaging evidence showing that the conscious perception of faces is related to activation of the cortical visual areas. Based on these data, our results suggest that the amygdala processes facial signals prior to or simultaneous with the conscious awareness of faces, which is the most rapid time stage introspectively accessible (Fig. 2, left and center).

In addition, several lines of research suggest that an important psychological function of this rapid amygdala activity in response to facial stimuli is to modulate the conscious awareness of faces. Neuroanatomical studies have shown that the amygdala has widespread projections to the visual cortices. Neuroimaging studies have demonstrated that amygdala activity modulated the activity of facial signal processing in the visual cortices, such as gaze direction and emotional expression. Regarding the temporal profiles of these modulatory effects on the cortical visual areas, several EEG studies have shown that negative deflection in the posterior cortices at about 200–300 ms was facilitated by emotional vs. neutral facial expressions. This heightened posterior negative deflection for emotional, compared with neutral, facial expressions was shown to be correlated with more rapid detection of emotional than neutral facial expressions. In this context, our data suggest that rapid facial signal processing in the amygdala might modulate the conscious awareness of faces, which has been demonstrated in several behavioral studies (Fig. 2, right).

However, it must be noted that several issues related to neurocognitive processes discussed remain unsettled. For example, debate regarding the visual input routes to the amygdala and whether the subcortical structures can process visual information about facial signals in a way that activates the amygdala persists. It remains possible that indirect pathways including other cortical regions, such as the posterior parietal cortex, may be responsible for the modulatory effect of the amygdala on the visual cortices. Further studies are necessary to clarify these issues.

In summary, our intracranial EEG recording studies have demonstrated that the gamma-band activation in the amygdala was elicited by emotional expressions, gazes and faces, with peak latencies at about 100, 200 and 250 ms, respectively. These results suggest that the amygdala performs multiple-stage processing for these facial signals using different visual input routes. The data also indicate that amygdala activation for processing all of these facial signals is rapid, which could be prior to or simultaneous with conscious awareness of the faces.

Disclosures of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References
1. Ekman P, Friesen WV. Unmasking the face: A guide to recognizing emotions from facial clues. Englewood Cliffs, NJ: Prentice-Hall, 1975
2. Purcell DG, Stewart AL. The face-detection effect. Bull Psychon Soc 1986; 24:118-20
3. Tottenham N, Leon AC, Casey BJ. The face behind the mask: a developmental study. Dev Sci 2006; 9:288-94; PMID:16669799; http://dx.doi.org/10.1111/j.1467-7687.2006.00491.x
4. Friesen CK, Kingston A. The eyes have it! Reflexive orienting is triggered by nonproactive gaze. Psychol Bull Rev 1998; 5:4-90-5; http://dx.doi.org/10.3758/BF03208827
5. Sato W, Kochiyama T, Uono S, Yoshikawa S. Automatic attentional shifts by gaze, gestures, and symbols. Psychologia 2010; 53:27-35; http://dx.doi.org/10.2117/psysoc.2010.27
6. Sato W, Okada T, Toichi M. Attentional shift by gaze is triggered without awareness. Exp Brain Res 2007; 183:87-94; PMID:17624520; http://dx.doi.org/10.1007/s00221-007-1025-x
Sato W. Koychuya T. Uno S. Matsuda K. Usui K. Inoue Y. et al. Temporal profile of amygdala γ oscillations in response to faces. J Cogn Neurosci 2012; 24:1420-33; PMID:21981674; http://dx.doi.org/10.1162/jocn_a_00142

Sato W., Koychuya T., Uno S., Matsuda K., Usui K., Inoue Y. et al. Rapid amygdala gamma oscillations in response to eye gaze. PLoS ONE 2011b; 6:e28188; PMID:21240541; http://dx.doi.org/10.1371/journal.pone.0028188

Sato W., Koychuya T., Uno S., Matsuda K., Usui K., Inoue Y. et al. Rapid amygdala gamma oscillations in response to fearful facial expressions. Neuropsychologia 2011a; 49:612-7; PMID:21182851; http://dx.doi.org/10.1016/j.neuropsychologia.2010.12.025

Kilner JM, Kebel SJ, Frisson KJ. Applications of random field theory to electrophysiology. Neurosci Lett 2005; 374:174-8; PMID:15663957; http://dx.doi.org/10.1016/j.neulet.2004.10.052

Oya H, Kawasaki H, Howard MA 3rd, Adolphs R. Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli. J Neurosci 2002; 22:9502-12; PMID:12147674

Valentine T. Upside-down faces: a review of the effect of inversion upon face recognition. Br J Psychol 1988; 79:71-91; PMID:3061544; http://dx.doi.org/10.1111/j.2044-8295.1988.tb04746.x

Moors J, De Gelder B, Weiskrantz L, Dolan RJ. Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain 2001; 124:1241-52; PMID:11353739; http://dx.doi.org/10.1093/brain/124.6.1241

Bentin S, Allison T, Puce A, Perez E, McCarthy G. Electrophysiological studies of face perception in humans. J Cogn Neurosci 1996; 8:5851-65; PMID:20740406; http://dx.doi.org/10.1162/089892996300067696

Genetti M, Khateb A, Heinzer S, Michel GM, Pegna AJ. Temporal dynamics of awareness for facial identity revealed with ERP. Brain Cogn 2009; 69:306-21; PMID:19218807; http://dx.doi.org/10.1016/j.bandc.2008.08.008

Andreas TJ, Schlupeck D, Homfray D, Matthews P, Bilodeau C. Activity in the fusiform gyrus predicts conscious perception of Rubin’s vase-face illusion. Neuroimage 2002; 17:890-901; PMID:12377163; http://dx.doi.org/10.1016/S1053-8119(02)00324-X

George N, Driver J, Dolan RJ. Seen gaze-direction modulates fusiform activity and its coupling with other brain areas during face processing. Neuroimage 2001; 13:1102-12; PMID:11535621; http://dx.doi.org/10.1016/S1053-8119(01)00076-9

Morris JS, Friston KJ, Buchel C, Frith CD, Young AW, Calder AJ, et al. A neurmodulatory role for the human amygdala in processing emotional facial expressions. Brain 1998; 121:475-57; PMID:9594487; http://dx.doi.org/10.1093/brain/121.1.47

Sato W., Koychuya T., Yoshikawa S., Matsumura M. Emotional expression boosters early visual processing of the face: ERP recording and its decomposition by independent component analysis. Neuroreport 2001; 12:799-14; PMID:11277663; http://dx.doi.org/10.1016/S1052-3027(01)00001-5

Balcou M, Pozzoli V. Face-selective processing and the effect of pleasant and unpleasant emotional expressions on ERP correlates. Int J Psychophysiol 2003; 49:67-74; PMID:12853131; http://dx.doi.org/10.1016/S0167-8760(03)00081-3

Sawada R, Sato W, Uno S, Koychuya T., Toichi M. Electrophysiological correlates of detecting emotional facial expressions. Paper presented at Kick-off Symposium for MRI Laboratory, Kokoro Research Center, Kyoto, Japan, 2013
54. Pessoa L, Adolphs R. Emotion processing and the amygdala: from a 'low road' to 'many roads' of evaluating biological significance. Nat Rev Neurosci 2010; 11:773-83; PMID:20959860; http://dx.doi.org/10.1038/nrn2920

55. Tamietto M, de Gelder B. Neural bases of the non-conscious perception of emotional signals. Nat Rev Neurosci 2010; 11:697-709; PMID:20811475; http://dx.doi.org/10.1038/nrn2889

56. Pourtois G, Scherfino A, Vuilleumier P. Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biol Psychol 2013; 92:492-512; PMID:23573657; http://dx.doi.org/10.1016/j.biopsycho.2012.02.007