Charge stripping at high energy heavy ion Linacs

W Barth¹,²,³, A Fomichev⁴, L Grigorenko⁴, T. Kulevoy³,⁵, S Polozov³, S Yaramyshev²,³

¹ Helmholtz Institute Mainz, Germany
² GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
³ MEPhI National Research Nuclear University, Moscow, Russia
⁴ JINR Joint Institute for Nuclear Research, Dubna, Russia
⁵ NRC Kurchatov Institute - Institute for Theoretical and Experimental Physics, Moscow, Russia

E-mail: w.barth@gsi.de

Abstract. For each heavy-ion accelerator facility charge stripping is a key technology – the stripping charge state, its efficiency to produce ions in the selected charge state, and the beam quality after stripping substantially determine the entire accelerator performance. Modern heavy ion accelerator facilities such as the future Facility for Antiproton and Ion Research (FAIR) at GSI, Darmstadt, Germany provide for high-intensity heavy-ion beams beyond 200 MeV/u. Heavy ions generated in an ion source at comparatively low charge states are pre-accelerated in a Linac to a few MeV/u, after charge stripping the average charge state is increased and one (or several) ion charge states are selected for further acceleration. This enables more efficient acceleration up to the final beam energy, compared to acceleration of ions with a low charge state. C-foil stripping allows for highest mean charge state and best stripping efficiency into the desired charge state. Therefore minimum acceleration voltage could be expected utilizing C-foil stripping. Due to the high power deposited by the ions in the stripping media and radiation damages if solids are used, self-recovering stripper media must be used in any case. First layout scenarios for a 200 MeV/u heavy ion Linac considering efficient heavy ion stripping will be presented.

1. Introduction

Suitable charge stripper technologies are crucial to meet the challenging demands of modern state of the art heavy ion accelerator facilities, as the Radioisotope Beam Factory (RIBF) at RIKEN, Wako, Japan [1], the future Facility for Rare Isotope Beams (FRIB) at MSU, East Lansing, MI, USA [2], the High Intensity heavy ion Accelerator Facility (HIAF) at HIRFL, Lanzhou, China [3], and the future Facility for Antiproton and Ion Research (FAIR) at GSI, Darmstadt, Germany [4] to provide high intensity heavy ion beams beyond 200 MeV/u. Heavy ions generated in an ion source at comparatively low charge states are pre-accelerated to a few MeV/u, after charge stripping the average charge state is increased and one (or several) ion charge states are selected for further acceleration. This enables more efficient acceleration up to the final beam energy, compared to acceleration of ions with a low charge state [5].
After passing heavier gas targets the shape of the charge state distribution becomes broader and asymmetric. This behaviour is caused by an increased contribution of so-called “multi-electron processes” in the charge-changing collisions. In these processes, more than one electron is lost or captured by the ion. The cross sections for multi-electron loss are increasing for higher-Z targets. By using low-Z gases, like \(\text{H}_2 \) and \(\text{He} \) for stripping of \(^{238}\text{U} \)-beams, the cross sections for multi-electron processes are decreased resulting in narrower charge state distributions. The use of \(\text{H}_2 \) and \(\text{He} \) gas enables for increased stripping efficiencies and, thus, higher beam intensities behind the gas stripper for the targeted charge states.

For the application in accelerators it is important to note that an increased thickness of the stripping target affects the ion beam energy, as well as the beam emittance. The ion beam energy is an important parameter for the injection of the beam into the subsequent accelerator structures. Therefore, the energy loss in the stripper has to be taken into account when increasing the applied target thickness. The beam emittance is a crucial parameter for the accelerator performance. It is influenced by the angular straggling of the ions in the gas target as well as by increased space charge forces due to higher charge states of the stripped ions. However, multi-electron processes as well as the evolution of the beam emittance, passing the gas stripper, are not discussed here, but have to be considered later on during detailed accelerator investigations.

2. Charge stripping

A major issue associated with beam strippers for high intensity heavy ion accelerators is the large energy deposition per unit length. Using the code SRIM [6] the energy loss could be calculated. As an example, an Uranium ion at 16.5 MeV/u (FRIB stripper case) deposits 25.7 MeV/\(\mu \text{m} \) and has a range of 0.14 mm in a Carbon foil (2.25 g/cm\(^3\)), while a 1 GeV proton (i.e. SNS stripper) deposits about 0.44 keV/\(\mu \text{m} \) and has a range of 1.62 m. It means a ratio of close to 60000 in linear energy deposition. This much higher linear energy deposition produces significantly larger radiation damage effects in solids although the beam powers are quite lower (40 kW at the FRIB stripper and 1.4 MW at the SNS stripper). The thermal effects are also more severe. This becomes important when gas or liquid strippers are used avoiding the radiation damage to the solid lattice. Both stripper media could produce density variations, resulting in additional momentum spread of the stripped beam. The main challenges in the stripper design are the high power deposited by the ions in the stripping media (~ 30 MW/cm\(^2\)) and radiation damage, if solids are used. For that reason self-recovering stripper media should be used [7].

3. DERICA Project

The upcoming DERICA-project [8] is recently initiated at JINR (Dubna, Russia). Providing for 100 MeV/u Uranium beam from the DERICA driver Linac a two-step stripper approach is proposed. The baseline is one stripper (Str-1) applying a gas target at lower beam energy (\(\leq 10 \) MeV/u). As a further upgrade option, boosting the DERICA-Linac beam energy to its maximum, a high energy stripper (Str_2) in the form of a gas stripper device too, could provide for high intensity high charge state beam. In any case the Linac layout should provide for sufficient free space to install Str_2 and an adjacent charge analyzing system. A nitrogen, hydrogen or helium gas target [9-11] could be considered for gas stripping. In case the upcoming FRIB-project operates a high-velocity thin film of liquid lithium successfully, this option could be considered too [7].

4. Stripper charge states

In Fig. 1 the expected mean charge state after stripping of Uranium ions in two different stripper media (C-foil and N\(_2\)-gas target) at certain beam energies (up to 50 MeV/u) is depicted applying a simplified simulation code UNI-ABC [12]. Besides the simulations results, measured data, taken at GSI [4] and RIKEN [8] are shown, as well as the expected charge state range applying the liquid Lithium stripper/He-gas stripper [2, 11] at the FRIB heavy ion Linac. While the measured mean charge state data after solid state stripping could be confirmed in a wide range of beam energies, mean charge
states generated by gas strippers are not as easy to predict. As already stated, the mean charge state strongly depends on the target media, while complex atomic physics processes have to be taken into account [13].

The following results from UNI-ABC simulations for Uranium projectiles on a N₂ gas target have been used to estimate the expected mean charge state as function of the beam energy. As shown in Fig. 1, N₂-gas stripping results in relatively low mean charge states, but provides for stable and reliable target operation.

A higher stripping energy W stripper provides for higher charge states Zout and also higher acceleration at a certain voltage U₁; in other words, a lower voltage U₂ is necessary for acceleration to the desired (final) beam energy W final. As a consequence, one should spent more power (voltage) to accelerate lower charge state beams to the high energy (where stripping is more efficient). Obviously there is a minimum total acceleration voltage U tot, which could be estimated with a simplified calculation:

\[U_{tot} = U_1 + U_2 = \frac{W_{stripper}}{Z_{in}} + \frac{(W_{final} - W_{stripper})}{Z_{out}} \]

where Z out is non-linearly dependent on W stripper.

![Figure 1. Stripping of Uranium ions applying C-foil or gaseous targets.](image)

5. One stripper approach

W [MeV/u]	1.4	3.0	6.0	9.0	15.0	20.0	25.0	30.0	35.0
q (mean)	27	38	50	57	65	70	74	76	78
A/q	8.7	6.2	4.8	4.2	3.6	3.4	3.2	3.1	3.1
Uacc [MV]	869	625	492	446	415	412	418	429	443

As shown in Tab. 1 and Fig. 2, the minimum acceleration voltage needed to gain for 100 MeV/u of Uranium beam is achieved for a C-foil stripper device at 10 MeV/u or at 20 MeV/u for a N₂-gas target. The stripping energy is chosen according to the expected initial charge state delivered by the ion source and in particular according to the stripper target media (low-Z gaseous target, liquid or solid). Only about 10% of accelerating voltage (20% of RF-power) could be saved by choosing the most efficient C-foil stripping target instead of a N₂ gas target.
6. Two stripper approach

A second stripper to be inserted at higher beam energy is beneficial to reduce the accelerating voltage for a given Linac energy of 100 MeV/u by 10%, if two N$_2$-gas stripper devices are taken into account (Tab. 2 and Fig. 3). Applying C-foil stripping (Tab. 3, Fig. 4) potentially 11% of accelerating voltage could be saved. In both cases it is mandatory to set both strippers (Str_1 and Str_2) according to the charge state delivered by ion source and according the expected charge state after stripping in Str_1 resp. Str_2.

Table 2. N$_2$-Gas stripping of Uranium ions, final Uranium beam energy $W_{\text{final}} = 100$ MeV/u

W [MeV/u]	$\frac{A}{q}$	q (mean)
3.0	6.2	431
4.0	5.6	428
5.0	5.1	427
6.0	4.8	427
7.0	4.6	429
8.0	4.4	431
9.0	4.2	431
10.0	4.1	436

W [MeV/u]	$\frac{A}{q}$	q (mean)
3.0	38	399
4.0	43	399
5.0	47	396
6.0	50	395
7.0	52	395
8.0	55	396
9.0	57	398
10.0	59	400

Figure 2. One stage stripping approach; Uranium charge state from ion source is 34+.
Figure 3. Two stage Gas-stripping approach; Uranium charge state from ion source is 34+.

Table 3. C-Foil stripping of heavy ions, final Uranium beam energy $W_{\text{final}} = 100$ MeV/u

Accelerating Voltage [MV]	Stripper 2	Stripper 1
W [MeV/u]	A/q	q (mean)
10.0	3.30	72
15.0	3.05	78
20.0	2.92	82
25.0	2.84	84
30.0	2.79	85
35.0	2.74	87
40.0	2.71	88
45.0	2.70	88
50.0	2.68	89

Figure 4. Two stage foil-stripping approach; Ion source charge state is 34+.
7. Summary and Outlook
First considerations applying heavy ion stripping for the 100 MeV/u heavy ion driver Linac of the DERICA project have been carried out. A high Uranium charge state (34+) provided by an advanced heavy ion source (MS-ECRIS) is beneficial to reduce the accelerating voltage of the 100 MeV/u driver Linac and therefore the length of the accelerator and intrinsic Linac costs. In particular the stripper medium (gaseous, liquid or solid) is of highest importance for the entire Linac layout. C-foil stripping is the most promising stripping device to gain for highest mean charge state and best stripping efficiency into the desired charge state; therefore a minimum acceleration voltage could be expected utilizing C-foil stripping. Due to the high power deposited by the ions in the stripping media and radiation damages if solids are used, self-recovering stripper media must be used. Stripping in a N₂-gas target is successfully practiced at heavy ion accelerators since many decades. It is recommended to take N₂-gas stripping into account for the DERICA 100 MeV/u-Linac as a baseline, providing for most reliable heavy ion beam operation. Advanced stripper media, e.g. low-Z gas stripper targets (H₂-or He-gas targets) or liquid Lithium targets potentially provide for higher stripping charge states and higher stripping efficiency; also plasma stripping seems to be a very beneficial technology. Further R&D efforts are needed to investigate these ambitious stripping technologies. It is proposed to provide at first for a Linac design with one N₂-gas stripper (and an downstream charge separation system) at 10 MeV/u. This approach is close to best efficiency, if one stripper is applied. Space for high energy stripping at 35 MeV/u should be provided in the basic DERICA Linac-design. With a two stripper approach, applying gas stripper targets at 10 MeV/u (Str_1) and 35 MeV/u (Str-2), the Linac design could be optimized in terms of compactness, efficiency, reliability and last but not least in terms of costs. In addition a two stripper approach could boost for maximum Uranium beam energy at a given accelerating voltage during future DERICA-operation.

The HIM/GSI cw-Linac HELIAC (HElmholtz LInear ACcelerator) [14-21] design provides beam acceleration for a wide range of different ions (protons to uranium) above the design beam energy, featuring in the ambitious GSI-user program [22] applying heavy ion stripping as discussed in this paper, while the GSI-UNILAC is upgraded for short pulse high current FAIR-operation [23-30].

References
[1] Yano Y 2007 The RIKEN RI Beam Factory Project: A status report Nucl. Instr. Meth. Phys. Res., Sect. B 261 1009
[2] Wei J et al 2012 FRIB accelerator status and challenges LINAC2012 (Tel-Aviv, Israel) p 417
[3] Yang J et al High Intensity heavy ion Accelerator Facility (HIAF) in China Nucl. Instr. Meth. Phys. Res., Sect. B 317 263
[4] Barth W et al 2015 U28+-intensity record applying a H2-gas stripper cell Phys. Rev. ST Accel. Beams 18, 040101 URL https://link.aps.org/doi/10.1103/PhysRevSTAB.18.040101
[5] Scharrer P et al 2017 Measurements of charge state distributions of 0.74 and 1.4 MeV/u heavy ions passing through dilute gases Phys. Rev. ST Accel. Beams 20, 043503 URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.043503
[6] Ziegler J http://www.srim.org
[7] Grigorenko L et al 2019 Scientific problems of perspective accelerator-accumulative complex DERICA for research of radioactive isotopes Usp. Fiz. Nauk
[8] Kuboki H et al 2010 Charge-state distribution measurements of ²³⁸U and ¹³⁶Xe at 11 MeV/nucleon using gas charge stripper Phys. Rev. ST Accel. Beams ¹³, 093501
[9] Okuno H et al 2011 Low-Z gas stripper as an alternative to carbon foils for the acceleration of high-power uranium beams Phys. Rev. ST Accel. Beams ¹⁴, 033503
[10] Imao H et al 2013 R&D of helium gas stripper for intense U beams Cyclotrons2013 (Vancouver, BC, Canada) p 265
[11] Marti F 2012 Heavy Ion Strippers LINAC2012 (Tel-Aviv, Israel) p 1050
[12] Glatz J private communication

[13] Shevelko V et al 2018 Charge-state dynamics of 1.4- and 11-MeV/u uranium ions penetrating H2 and He gas targets Nucl. Instr. Meth. Phys. Res., Sect. B 428 p 56 DOI 10.1016/j.nimb.2018.04.048

[14] Barth W et al 2018 First heavy ion beam test with a superconducting multi gap CH-cavity Phys. Rev. ST Accel. Beams 21 020102 URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.020102

[15] Schwarz M et al 2019 Reference Beam Dynamics Layout for the SC CW Heavy Ion HELIAC at GSI Preprint submitted to Nucl. Instr. Meth. Phys. Res., Sect. A (to be published)

[16] Barth W et al 2018 Superconducting CH-Cavity Heavy Ion Beam Testing at GSI J. Phys. Conf. Ser. 1067 052007 http://dx.doi.org/10.1088/1742-6596/1067/5/052007

[17] Yaramyshev S et al 2018 Advanced Approach for Beam Matching along the Multi-Cavity SC CW Linac at GSI J. Phys. Conf. Ser. 1067 052005 http://dx.doi.org/10.1088/1742-6596/1067/5/052005

[18] Podlech H et al 2007 Superconducting CH structure Phys. Rev. ST Accel. Beams 10 080101

[19] Schwarz M et al 2018 Beam Dynamics Simulations for the New Superconducting CW Heavy Ion LINAC at GSI J. Phys. Conf. Ser. 1067 052006 http://dx.doi.org/10.1088/1742-6596/1067/5/052006

[20] Gusarova M et al 2018 Design of the two-gap superconducting rebuncher J. Phys. Conf. Ser. 1067 082005 http://dx.doi.org/10.1088/1742-6596/1067/8/082005

[21] Taletskiy K et al 2018 Comparative study of low beta multi-gap superconducting bunchers J. Phys. Conf. Ser. 1067 http://dx.doi.org/10.1088/1742-6596/1067/8/082006

[22] Block M et al 2010 Direct mass measurements above uranium bridge the gap to the island of stability Nature 463 p 785 doi:10.1038/nature08774

[23] Barth W et al 2017 High brilliance uranium beams for the GSI FAIR Phys. Rev. ST Accel. Beams 20 050101 URL https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.050101

[24] Barth W et al 2015 Heavy ion linac as a high current proton beam injector Phys. Rev. ST Accel. Beams 18 050102 URL https://link.aps.org/doi/10.1103/PhysRevSTAB.18.050102

[25] Adonin A and Hollinger R 2014 Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility Rev. Sci. Instr. vol. 85 02A727 URL https://link.aps.org/doi/10.1063/1.4833931

[26] Groening L et al 2008 Benchmarking of measurement and simulation of transverse rms-emittance growth Phys. Rev. ST Accel. Beams 11 094201 URL https://link.aps.org/doi/10.1103/PhysRevSTAB.11.094201

[27] Yaramyshev S et al 2015 Virtual charge state separator as an advanced tool coupling measurements and simulations Phys. Rev. ST Accel. Beams 18 050103 URL https://link.aps.org/doi/10.1103/PhysRevSTAB.18.050103

[28] Barth W et al 2007 Upgrade program of the high current heavy ion UNILAC as injector for FAIR Nucl. Instr. Meth. Phys. Res. Sect. A vol. 577 p 211 URL https://doi.org/10.1016/j.nima.2007.02.054

[29] Ratzinger U et al 2005 The 70 MeV p-injector design for FAIR AIP Conf. Proc. vol. 773 p 249

[30] Kleffner C et al 2017 Status of the FAIR pLinac IPAC17 (Copenhagen, Denmark) p 2208