Counterexamples of the Geometrization Conjecture

Sze Kui Ng
Department of Mathematics, Hong Kong Baptist University, Hong Kong
Email: szekuing@hotmail.com

Abstract
In this paper we propose counterexamples to the Geometrization Conjecture and the Elliptization Conjecture.

Mathematics Subject Classification: 57M50, 57M27, 57N10, 57N16.

1 A counterexample of the Geometrization Conjecture

A version of the Thurston’s Geometrization Conjecture states that if a closed (oriented and connected) 3-manifold is irreducible and atoroidal, then it is geometric in the sense that it can either have a hyperbolic geometry or have a spherical geometry [1][2][3]. In this paper we propose counterexamples to this conjecture by using the Dehn surgery method of constructing closed 3-manifolds [4][5].

Let K_{1RT} denote the right trefoil knot with framing 1. Let K_r^E denote the figure-eight knot with framing r where $r = \frac{p}{q}$ is a rational number (p and q are co-prime integers) such that $r > 4$.

We then consider a Dehn surgery on the framed link $L = K_{1RT} \cup K_r^E$ where the linking is of the simplest Hopf link type.

We have that the Dehn surgery on K_{1RT} gives the Poincaré sphere M_{1RT} which is with spherical geometry and with a finite nontrivial fundamental group [1][2][4][6][7]. Then the Dehn surgery on K_r^E gives a hyperbolic manifold M_r^E [1][2][6][7]. We want to show that the 3-manifold M_L obtained from surgery on L is irreducible and atoroidal, and is not geometric. From this we then have that M_L is a counterexample of the Geometrization Conjecture.

Let us first show that M_L is irreducible and atoroidal. From [9] we have the following quantum invariant $\mathcal{W}(K_{1RT})$ of M_{1RT}:

$$\mathcal{W}(K_{1RT}) = R^2 R_1^{-1} R_2 W(C_1) W(C_2)$$

(1)

where the indexes of the R-matrices R_1 and R_2 are 1 and -1 respectively (These R-matrices are the monodromies of the Knizhnik-Zamolodchikov equation; the notation $W(K)$ denotes the generalized Wilson loop of a knot K and is a quantum representation of K [9]). Thus the indexes of R_1 and R_2 are nonzero and are different. In [9] we call this property as the maximal non-degenerate property.

Now let us consider the manifold M_L. Since K_{1RT} and K_r^E both have the maximal non-degenerate property we have that there is no degenerate degree of freedom for the quantum representation of M_L by using the link L. From this we have that L is a minimal link for the
Deln surgeries obtaining M_L [9] (We shall later give more explanations on the definition of minimal link and the related theorems on the classification of 3-manifolds by quantum invariant of 3-manifolds). It follows that the quantum invariant of M_L is given by the quantum representation of L and is of the following form:

$$\check{\pi}(L) = P_L \check{\pi}(K_{RT}^1) \check{\pi}(K_E^r)$$

(3)

where P_L denotes the linking part of the representation of L.

In this quantum invariant [3] of M_L we have that $\check{\pi}(K_{RT}^1)$ and $\check{\pi}(K_E^r)$ representing K_{RT}^1 and K_E^r respectively are independent of each other and that the framed knots K_{RT}^1 and K_E^r are independent of each other in the sense that the framed knots K_{RT}^1 and K_E^r do not wind each other in the form as described by the second Kirby move [4][8].

We have that the quantum invariant [3] of M_L uniquely represents M_L because L is minimal (We shall explain this point in the next section). This means that there are no nontrivial symmetry transforming it to another representation of M_L with two framed knots such that their quantum representations are different from the two quantum representations $\check{\pi}(K_{RT}^1)$ and $\check{\pi}(K_E^r)$ in [3].

Let us then first show that M_L is irreducible. Since the quantum invariant [3] of M_L uniquely represents M_L and represents topological properties of M_L we have that the linking part P_L of [3] is a topological property of M_L and thus cannot be eliminated. From this linking of $W(K_{RT}^1)$ and $\check{\pi}(K_E^r)$ in [3] we have that the invariant [3] of M_L cannot be written as a free product form $\check{\pi}(K_{RT}^1) \check{\pi}(K_{RT}^2)$ or two unlinked framed knots K_{RT}^1 and K_{RT}^2 where each $\check{\pi}(K_{RT}^i), i = 1, 2$ gives a closed 3-manifold. From this we have that M_L cannot be written as a connected sum of two closed 3-manifolds. This shows that M_L is irreducible.

Then we want to show that M_L is atoroidal. Since the toroidal property of a 3-manifold M is about the existence of an infinite cyclic subgroup $Z \oplus Z$ in $\pi_1(M)$ and is a property derived from closed curves in M only we have that this toroidal property is derived from framed knots only since framed knots are closed curves for constructing 3-manifolds. Now since L is minimal we have that the representation [3] uniquely represents M_L and thus it gives all the topological properties of M_L. From this we have that if M_L has the toroidal property then this property can only be derived from the two framed knot components K_{RT}^1 and K_E^r. Now we have that the 3-manifolds M_{RT}^1 and M_E^r are both atoroidal and that the fundamental group of M_{RT}^1 is finite [1][2][6][7]. Thus the two framed knot components K_{RT}^1 and K_E^r do not give the toroidal property of M_L. This shows that M_L does not have the toroidal property. Thus M_L is atoroidal.

Let us explicitly compute the fundamental group $\pi_1(M_L)$ of M_L to give another proof for that M_L is atoroidal. We have that $L = K_{RT}^1 \cup K_E^r$ is of the Hopf link type. Thus by a computation similar to the computation of the link group of the Hopf link which is a direct product of the two knot groups of the two unknotted forming the Hopf link we have that the fundamental group $\pi_1(M_L)$ of M_L is a direct product of the fundamental groups $\pi_1(M_{RT}^1)$ and $\pi_1(M_E^r)$:

$$\pi_1(M_L) = \pi_1(M_{RT}^1) \ast \pi_1(M_E^r)$$

(4)

where $\pi_1(M_{RT}^1) \ast \pi_1(M_E^r)$ denotes the direct product of the fundamental groups $\pi_1(M_{RT}^1)$ and $\pi_1(M_E^r)$. Now since the 3-manifolds M_{RT}^1 and M_E^r are both atoroidal and that the fundamental group $\pi_1(M_{RT}^1)$ is finite we have that $\pi_1(M_L)$ does not contain a subgroup of the form $Z \oplus Z$. This shows that M_L does not have the toroidal property. Thus M_L is atoroidal.

Now since the quantum invariant [3] uniquely represents M_L we have that the two components $\check{\pi}(K_{RT}^1)$ and $\check{\pi}(K_E^r)$ are topological properties of M_L. Then since $\check{\pi}(K_{RT}^1)$ (or K_{RT}^1) gives spherical geometry property to M_L and $\check{\pi}(K_E^r)$ (or K_E^r) gives hyperbolic geometry property to M_L we have that M_L is not geometric. Indeed, since the two independent components $\check{\pi}(K_{RT}^1)$ and $\check{\pi}(K_E^r)$ of [3] represent the manifolds M_{RT}^1 and M_E^r respectively (and thus represent the fundamental groups $\pi_1(M_{RT}^1)$ and $\pi_1(M_E^r)$ of M_{RT}^1 and M_E^r respectively) we have that the fundamental group $\pi_1(M_L)$ of M_L contains the direct product $\pi_1(M_{RT}^1) \ast \pi_1(M_E^r)$ of the fundamental groups $\pi_1(M_{RT}^1)$ and $\pi_1(M_E^r)$. Now let $\tilde{M_L}$ denote the universal covering space of M_L. Then we have that $\pi_1(M_L)$ acts isometrically on $\tilde{M_L}$. Now since $\pi_1(M_{RT}^1)$ of the Poincaré sphere M_{RT}^1 is not a
subgroup of the isometry group of the hyperbolic geometry H^3 and $\pi_1(M_E)$ is not a subgroup of
the isometry group of the spherical geometry S^3 we have that $\pi_1(M_{RT}) \ast \pi_1(M_E)$ is not a subgroup of
the isometry group of H^3 and is not a subgroup of the isometry group of S^3. Thus $\pi_1(M_L)$ is
not a subgroup of the isometry group of H^3 and is not a subgroup of the isometry group of S^3.
It follows that M_L is not the hyperbolic geometry H^3 and is not the spherical geometry S^3. This
shows that M_L is not geometric, as was to be proved. Now since M_L is irreducible and atoroidal
and is not geometric we have that M_L is a counterexample of the Geometrization Conjecture.

2 Minimal link and classification of closed 3-manifolds

In this section we give more explanations on the definition of minimal link and the related theorems
on the classification of closed 3-manifolds by quantum invariant used in the above counterexample.

We have the following theorem of one-to-one representation of 3-manifolds obtained from framed
knots K^\mp [9]:

Theorem 1 Let M be a closed (oriented and connected) 3-manifold which is constructed by a
Dehn surgery on a framed knot K^\mp where K is a nontrivial knot and M is not a lens space. Then
we have the following one-to-one representation of M:

$$\overline{W}(K^\mp) : = R^{2p}R_1^{-m}R_2^{-am}W(C_1)W(C_2)$$

(5)

where $m \neq 0$ (m is also denoted by m_1 in [9]) is the index of a nontrivial knot (which may or may
not be the knot K such that M is also obtained from this knot by Dehn surgery) and $am \neq 0$ is
an integer related to m, p and q such that $am \neq m$ (Thus [9] is with the maximal non-degenerate
property).

We remark that if M is a lens space we can also define a similar quantum invariant $\overline{W}(K^\mp)$
for M which however is not of the above maximal non-degenerate form [9].

Let us then consider a 3-manifold M which is obtained from a framed link L with the minimal
number n of component knots where $n \geq 2$ (where the minimal number n means that if M can
also be obtained from another framed link then the number of component knots of this framed
link must be $\geq n$). In this case we call L a minimal link of M. From the generalized second Kirby
moves (which generalizes second Kirby move from integer to rational number [9] and for simplicity
we shall call them again as the second Kirby moves) we may suppose that L is in the form that

the components K_i^{-m}, $i = 1, ..., n$ of L do not wind each other in the form described by the second
Kirby move. In this case we say that this minimal L is in the form of maximal non-degenerate
state where the degenerate property is from the winding of one component knot with the other
component knot by the second Kirby moves. Thus this L has both the minimal and maximal
property as described. Then we want to find a one-to-one representation (or invariant) of M from
this L. Let us write $W(L)$, the generalized Wilson loop of L, in the following form [9]:

$$W(L) = P_L \prod_i W(K_i^{-m})$$

(6)

where P_L denotes a product of R-matrices acting on a subset of $\{W(K_i), W(K_{ic}), i = 1, ..., n\}$
where $W(K_i^{-m})$ are independent (This is from the form of L that the component knots K_i are
independent in the sense that they do not wind each other by the second Kirby moves). Then we
consider the following representation (or invariant) of M:

$$\overline{W}(L) : = P_L \prod_i \overline{W}(K_i^{-m})$$

(7)

where we define $\overline{W}(K_i^{-m})$ by [9] and they are independent. We then have the following theorem:
Theorem 2 Let \(M \) be a closed (oriented and connected) 3-manifold which is constructed by a Dehn surgery on a minimal link \(L \) with the minimal number \(n \) of component knots (and with the maximal property). Then we have that (7) is a one-to-one representation (or invariant) of \(M \).

Proof. We want to show that (7) is a one-to-one representation (or invariant) of \(M \). Let \(L' \) be another framed link for \(M \) which is also with the minimal number \(n \) (and with the maximal property). Then we want to show \(\mathbf{W}(L) = \mathbf{W}(L') \).

For the case \(n = 1 \) this is true by the above theorem for manifolds \(M \) obtained from minimal framed knot \(K_{E}^{\pm} \).

Let us consider \(n \geq 2 \). Since the components of \(L \) do not wind each other as described by the second Kirby move we have that the components of \(L \) are independent of each other. Thus there is no nontrivial homeomorphism changing these components \(\mathbf{W}(K_{i}^{\pm}) \) except those homeomorphisms involving the second Kirby moves for the winding of the components of \(L \) with each other. Then under the second Kirby moves we have that the components of \(L \) wind each other and thus will reduce the independent degree of freedom to be less than \(n \). Thus to restore the degree of freedom to \(n \) these homeomorphisms must also contain the first Kirby moves of adding unknots with framing \(\pm 1 \). In this case these unknots can be deleted and thus \(L \) is not minimal and this is a contradiction. Thus there is no nontrivial homeomorphism changing the components \(\mathbf{W}(K_{i}^{\pm}) \) of \(\mathbf{W}(L) \) except those homeomorphisms consist of only the second Kirby moves for the winding of the components of \(L \) with each other.

Now suppose that \(\mathbf{W}(L) \neq \mathbf{W}(L') \). Then there exists nontrivial homeomorphism of changing \(L \) to \(L' \) for changing the components \(\mathbf{W}(K_{i}^{\pm}) \) of \(\mathbf{W}(L) \) to the components of \(\mathbf{W}(L') \). This is impossible since there are no nontrivial homeomorphism for changing these components \(\mathbf{W}(K_{i}^{\pm}) \) except those homeomorphisms consist of only the second Kirby moves for the winding of the components of \(L \) with each other. Thus \(\mathbf{W}(L) = \mathbf{W}(L') \).

Thus we have that (7) is a one-to-one representation (or invariant) of \(M \), as was to be proved.

As a converse to the above theorem let us suppose that the representation (7) uniquely represents \(M_{L} \) in the sense that there are no nontrivial symmetry transforming the \(n \) independent components of \(\mathbf{W}(L) \) to other \(n \) independent components of \(\mathbf{W}(L') \) where the link \(L' \) also gives the manifold \(M_{L} \). Then from the above proof we see that the link \(L \) is a minimal (and maximal) link for obtaining \(M_{L} \).

Remark. Let \(L \) be a minimal (and maximal) framed link. Then from the above proof we have that the components of \(L \) are independent of each other in the sense that if we transform a component framed knot of \(L \) to an equivalent framed knot by a homeomorphism then the other components of \(L \) are not affected by this transformation.

Now let us consider the framed link \(L = K_{RT}^{1} \cup K_{E}^{-1} \) in the above section. We have that the knot components \(K_{RT}^{1} \) and \(K_{E}^{-1} \) of \(L \) do not wind each other in the form as described by the second Kirby move. Thus we have that their corresponding quantum invariants \(\mathbf{W}(K_{RT}^{1}) \) and \(\mathbf{W}(K_{E}^{-1}) \) are independent. Then \(\mathbf{W}(K_{RT}^{1}) \) and \(\mathbf{W}(K_{E}^{-1}) \) are in the maximal non-degenerate form which is invariant under all homeomorphisms except the second Kirby moves which are excluded (Indeed for \(\mathbf{W}(K_{RT}^{1}) \) there is a homeomorphism transforming \(K_{RT}^{1} \) to \(K_{E}^{-1} \). Then the informations of these two frame knots are included in \(\mathbf{W}(K_{RT}^{1}) \) and thus \(\mathbf{W}(K_{RT}^{1}) \) is invariant under this homeomorphism. Then since \(\mathbf{W}(K_{RT}^{1}) \) is in the maximal non-degenerate form there are no degenerate degree of freedoms for other homeomorphisms except the second Kirby moves which reduce the degree of freedom of \(L \). Similarly for \(\mathbf{W}(K_{E}^{-1}) \). Thus \(L \) is a minimal (and maximal) link of \(M_{L} \) and the representation (7) is the quantum invariant of \(M_{L} \).
A counterexample of the Elliptization Conjecture

The above counterexample of the Geometrization Conjecture is with an infinite fundamental group. Let us in this section propose a counterexample which is with a finite fundamental group to the Geometrization Conjecture. This example is then also a counterexample of the Thurston’s Elliptization Conjecture which states that if a closed (oriented and connected) 3-manifold is irreducible and atoroidal and is with a finite fundamental group then it is geometric in the sense that it can have a spherical geometry \[W \].

Let us consider a Dehn surgery on the framed link \(L = K_{RT}^1 \cup K_{RT}^1 \) where the linking \(\cup \) is of the simplest Hopf link type. We want to show that the 3-manifold \(M_L \) obtained from this surgery is a counterexample of the Elliptization Conjecture.

As similar to the above example we have that this \(L \) is minimal and the 3-manifold \(M_L \) is uniquely represented by the following quantum invariant:

\[
\overline{W}(L) = P_L \overline{W}(K_{RT}^1) \overline{W}(K_{RT}^1)
\]

where \(P_L \) denotes the linking part of the representation of \(L \).

Then as similar to the above example we have that this 3-manifold \(M_L \) is irreducible and atoroidal. Let us then show that \(M_L \) is with a finite fundamental group and is not geometric. Since the quantum invariant \(\overline{W} \) uniquely represents \(M_L \) we have that the two components \(\overline{W}(K_{RT}^1) \) are topological properties of \(M_L \). Then we have that the fundamental group \(\pi_1(M_L) \) of \(M_L \) contains the direct product \(\pi_1(M_{RT}) \ast \pi_1(M_{RT}) \).

Further as similar to the above example because \(L \) is of the Hopf link type we have that \(\pi_1(M_L) = \pi_1(M_{RT}) \ast \pi_1(M_{RT}) \). Now since the fundamental group \(\pi_1(M_{RT}) \) is finite we have that the fundamental group \(\pi_1(M_L) \) is also finite.

Now let \(\tilde{M}_L \) denote the universal covering space of \(M_L \). Then we have that \(\pi_1(M_L) \) acts isometrically on \(\tilde{M}_L \). We want to show that \(\tilde{M}_L \) is not the 3-sphere \(S^3 \). Suppose this is not true. Then since \(\pi_1(M_L) \) contains and equals to the direct product \(\pi_1(M_{RT}) \ast \pi_1(M_{RT}) \) we have that the direct product \(\pi_1(M_{RT}) \ast \pi_1(M_{RT}) \) is a subgroup of the isometry group of \(S^3 \). Now since \(S^3 \) is a fully isotropic manifold containing no boundary (\(S^3 \) is closed) there is no way to distinguish two identical but independent subgroups \(\pi_1(M_{RT}) \) of the isometry group of \(S^3 \). From this we have that the direct product \(\pi_1(M_{RT}) \ast \pi_1(M_{RT}) \) can only act on \(S^3 \times S^3 \) where each \(\pi_1(M_{RT}) \) acts on a different \(S^3 \) and cannot act on the same \(S^3 \) such that \(\pi_1(M_{RT}) \ast \pi_1(M_{RT}) \) acts on \(S^3 \) (Comparing to the hyperbolic case we have that the direct product of two subgroups of the isometry group of the hyperbolic geometry \(H^3 \) may act on \(H^3 \) since \(H^3 \) has nonempty boundary which can be used to distinguish two identical but independent subgroups of the isometry group of \(H^3 \)). Thus the direct product \(\pi_1(M_{RT}) \ast \pi_1(M_{RT}) \) is not a subgroup of the isometry group of \(S^3 \) (We can also prove this statement by the fact that \(\pi_1(M_{RT}) \) is a nonabelian subgroup of the rotation group \(O(4) \) which is the isometry group of \(S^3 \)). Indeed since \(\pi_1(M_{RT}) \) is nonabelian it must act on a space with dimension \(\geq 3 \). Thus \(\pi_1(M_{RT}) \ast \pi_1(M_{RT}) \) must act on a space with dimension \(\geq 6 \). Now \(O(4) \) can only act on a space with dimension \(4 \) we have that \(\pi_1(M_{RT}) \ast \pi_1(M_{RT}) \) is not a subgroup of \(O(4) \). This is a contradiction. This contradiction shows that \(M_L \) is not the 3-sphere \(S^3 \). Thus \(M_L \) is not geometric. Now since \(M_L \) is irreducible and atoroidal and is with finite fundamental group and is not geometric we have that \(M_L \) is a counterexample of the Elliptization Conjecture.

References

[1] W. Thurston, The geometry and topology of 3-Manifolds, Princeton University, 1978.

[2] W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.

[3] A. Casson and D. Jungreis, Convergence groups and Seifert fibered 3-manifolds, Invent. Math. 118 441-456 (1994).
[4] D. Rolfsen, *Knots and links*, 2nd edn, Publish or Perish (1990).

[5] W.B.R. Lickorish. *A representation of orientable combinatorial 3-manifolds*. Ann. of Math. 76 531-538 (1962).

[6] A. Hatcher and W. Thurston, *Incompressible surfaces in 2-bridge knot complements*, Inv. Math. 79 (1985) 225-246.

[7] M. Brittenham and Y.-Q. Wu, *The classification of exceptional Dehn surgeries on 2-bridge knots*, Comm. Anal. Geom. 9 (2001) 97-113.

[8] R. Kirby. *A calculus for framed links in S^3*, Invent. Math. 45 35-56 (1978).

[9] S. K. Ng, *Quantum invariant of 3-manifolds and Poincaré Conjecture*, [math.QA/0008103](http://arxiv.org/abs/math.QA/0008103).