Health, academic plastic surgeons may consider partnering with other institutions to continue pioneering advances in the field.

Reference Citations:
1. Okike K, Kocher MS, Mehlan CT, Bhandari M. Industry-sponsored research. Injury. 2008;39(6):666–680. doi:10.1016/j.injury.2008.02.013.
2. National Institutes of Health (NIH) Congressional Budget Statements. https://www.nih.gov/about-nih/who-we-are/nih-director/congressional-testimonies. Accessed February 26, 2017.
3. Blumenthal D. Academic-industrial relationships in the life sciences. N Engl J Med. 2003;349(25):2452–2459. doi:10.1056/NEJMhpr035460.

Leadership Trends in Academic Plastic Surgery

Presenter: Julia A. Cook, MD

Co-Authors: Sarah E. Sasor, MD; Stephen P. Duquette, MD; Matthew P. Landman, MPH, MD; Sunil Tholpady, MD, PhD; Michael W. Chu, MD

Affiliation: Indiana University School of Medicine, Indianapolis, IN

INTRODUCTION: Effective leaders are critically important to the success and stability of a surgical division. The selection of an appropriate candidate, therefore, involves multiple variables. Previous studies have investigated institutional factors that contribute to a successful candidate. The purpose of this study is to evaluate educational and research trends in academic plastic surgery versus general surgery division chairs.

METHODS: Plastic and general surgery division chairs from Accreditation College for Graduate Medical Education (ACGME)-approved programs were evaluated for gender, advanced degrees, fellowship completion, national society leadership positions, and National Institute of Health (NIH) funding. Data was collected using institutional and national society websites and NIH Research Portfolio Online Reporting Tools. Significance of binary values was determined using a Chi-square goodness-of-fit test.

RESULTS: Seventy-three plastic surgery and 236 general surgery programs were identified. The majority of surgeons in leadership positions were males with M.D. degrees in both plastic surgery (92%, 100%) and general surgery (95%, 98%).

Thirteen plastic surgeons (18%) and 43 general surgeons (18%) had advanced degrees in addition to their medical degree. Plastic surgery leaders were significantly more likely to have an additional Doctorate degree (12.3%) compared to general surgeons (6.3%), \(X^2 (1, N=56) = 4.18, p=0.04\). General surgery chairs had a significantly higher proportion of Masters degrees (12%) compared to plastic surgeons (5.5%), \(X^2 (1, N=56) = 4.52, p=0.03\).

Plastic surgery chairs were more often fellowship trained (90%) than general surgeons (78%), \(X^2 (1, N=236) = 5.09, p=0.02\). A significant proportion of plastic surgery leaders held presidential positions in national societies (41%) compared to general surgery leaders (15%), \(X^2 (1, N=236) = 23.16, p<0.01\). Overall, 27% percent of division chairs had active NIH funding – there was no difference between plastic and general surgeons.

CONCLUSION: The choice in leadership plays a vital role in the development of a surgical division. Male gender was associated with leadership positions in both plastic and general surgery. Additional Doctorate degrees, fellowship training, and national society presidential appointments were more highly associated with plastic surgery leaders as compared to general surgery leaders. Efforts should be made to increase diversity and support faculty in pursuing advanced training.

Considerations for EHR Selection for the Plastic Surgeon: A Case Study

Presenter: Saira Naim Haque, PhD, MHSA

Co-Author: Enamul Haque, MD

Affiliation: RTI International, RTP, NC

The purpose of this paper is to identify considerations in Electronic Health Record (EHR) selection for the plastic surgery practice. While EHR uptake has increased in the United States due to Meaningful Use Incentives, many of the system advancements have been geared toward the primary care practice, and not surgical subspecialties. This case study reports on experience with
EHR and practice management system selection for a private practice surgery practice. Methods include documentation of selection criteria and experience with vendor demonstrations.

The results point to the importance of identifying physician and staff system needs prior to contacting vendors. Identifying needs can inform development of checklists for system functionality during vendor demonstrations. Items to include on the checklist include integration of administrative and clinical workflows, and integration with other systems. Functionality specific to plastic surgery practices include ease of uploading and annotating pictures, management of inventory, documentation of skincare needs and purchase history, and integration with practice management software for insurance and private billing. Other functionality needs include patient engagement and provision of relevant patient education materials.

This paper will report on system selection experience from identifying EHR vendors through implementation and outline lessons learned and best practices. Plastic surgeons, practice managers and other end-users will benefit from a more thorough understanding of their requirements for an EHR and practice management system, and identification and prioritization of criteria and consistent checklists and questions to guide vendor demonstration. Then selection can be made based on functionality and price.

Reference Citations:
1. Jamoom JA, Yang N, Hing E. Adoption of Certified Electronic Health Record Systems and Electronic Information Sharing in Physician Offices: United States, 2013 and 2014. NCHS Data Brief No. 236, January 2016. Hyattsville, MD: National Center for Health Statistics. 2016.

Affiliation: Hofstra Northwell School of Medicine, Manhasset, NY

INtroduction: Patient satisfaction surveys are an increasingly important part of healthcare, influencing the practice of physicians.1 Given the changing landscape of health insurance and reimbursement, providers seek to satisfy patients in order to maintain and grow patient loyalty and market share. Press Ganey has developed tools to assess physician and department performance that are in use by 50% of hospitals in the US and over 10,000 healthcare organizations.2 The authors sought to evaluate the factors that influence patient satisfaction, specifically in plastic surgery patients, both locally and nationally.

METHODS: A 26 item Press Ganey survey was distributed to patients of 686 participating plastic surgeons nationwide, including those at the authors’ home institution. The responses from January to December 2016 were retrospectively analyzed with Pearson correlation coefficients. A common surrogate for overall patient satisfaction and loyalty is response to the Press Ganey survey item “Likelihood to recommend provider to others.” This “Likelihood to recommend” was used as the primary outcome measure and correlated with the other 25 items.

RESULTS: There were 411 survey responses from patients seen by plastic surgeons in the Northwell health system and 36,836 responses from patients seen nationally. Items that were not well correlated (r<0.5) with “Likelihood to recommend” were ease of getting speaking on telephone, wait time, and courtesy of registration staff. The items that were best correlated (r>0.8) with “Likelihood to recommend” were confidence in care provider, how inclusive the care provider was in decision making, and the provider’s concern for questions. The confidence in the care provider and overall perception of the care provider were the most correlated with a patient’s likelihood to recommend the provider to prospective patients.

CONCLUSION: In an evolving patient centric culture, patients’ confidence and trust of the provider are more important than perception of the office environment to maintaining patient loyalty and market share.

Reference Citations:
1. Long, C., Tsay, E. L., Jacobo, S. A., Popat, R., Singh, K., & Chang, R. T. (2016). Factors Associated with