Hypohydration produced by high-intensity intermittent running increases biomarkers of renal injury in males

Loris A. Juett1 · Katharine L. Midwood1 · Mark P. Funnell1 · Lewis J. James1 · Stephen A. Mears1

Received: 24 February 2021 / Accepted: 31 August 2021 / Published online: 15 September 2021
© The Author(s) 2021

Abstract

Purpose Whilst there is evidence to suggest that hypohydration caused by physical work in the heat increases renal injury, whether this is the case during exercise in temperate conditions remains unknown. This study investigated the effect of manipulating hydration status during high-intensity intermittent running on biomarkers of renal injury.

Methods After familiarisation, 14 males (age: 33 ± 7 years; VO2peak: 57.1 ± 8.6 ml/kg/min; mean ± SD) completed 2 trials in a randomised cross-over design, each involving 6, 15 min blocks of shuttle running (modified Loughborough Intermittent Shuttle Test protocol) in temperate conditions (22.3 ± 1.0 °C; 47.9 ± 12.9% relative humidity). During exercise, subjects consumed either a volume of water equal to 90% of sweat losses (EU) or 75 mL water (HYP). Body mass, blood and urine samples were taken pre-exercise (baseline/pre), 30 min post-exercise (post) and 24 h post-baseline (24 h).

Results Post-exercise, body mass loss, serum osmolality and urine osmolality were greater in HYP than EU (P ≤ 0.024). Osmolality-corrected urinary kidney injury molecule-1 (uKIM-1) concentrations were increased post-exercise (P ≤ 0.048), with greater concentrations in HYP than EU (HYP: 2.76 [1.72–4.65] ng/mOsm; EU: 1.94 [1.1–2.54] ng/mOsm; P = 0.003; median [interquartile range]). Osmolality-corrected urinary neutrophil gelatinase-associated lipocalin (uNGAL) concentrations were increased post-exercise (P < 0.001), but there was no trial by time interaction effect (P = 0.073).

Conclusion These results suggest that hypohydration produced by high-intensity intermittent running increases renal injury, compared to when euhydration is maintained, and that the site of this increased renal injury is at the proximal tubules.

Keywords Renal injury · Water intake · Dehydration · NGAL · KIM-1

Introduction

The incidence of acute kidney injury (AKI; diagnosed using changes in serum creatinine) following prolonged endurance events (i.e. marathons and ultramarathons) is variable (Lipman et al. 2014; Hoffman and Weiss 2016; Mansour et al. 2017; Poussel et al. 2020), but has been reported to be as high as 85% (Kao et al. 2015), with some severe cases resulting in temporary dialysis (Hodgson et al. 2017). Whilst these studies are likely to have over-estimated AKI incidence, due to issues with measuring serum creatinine in close proximity to exercise (Hodgson et al. 2017), rises in serum creatinine following these events have been accompanied by rises in urinary neutrophil gelatinase-associated lipocalin (uNGAL) and urinary kidney injury molecule-1 (uKIM-1) (McCullough et al. 2020).
of uNGAL and uKIM-1, compared to when exercise was completed in a euhydrated state.

Methods

Subjects

Fourteen active (team sport/racquet sport players and/or runners) males (age 33 ± 7 years; height: 1.79 ± 0.06 m; body mass: 75.3 ± 7.6 kg; BMI: 23.6 ± 2.6 kg/m²; VO2peak: 57.1 ± 8.6 mL/kg/min) participated in this study. All subjects were healthy, non-smokers, with no previous kidney issues or illnesses. Exclusion criteria included regular use of anti-inflammatory medications or any current medical complications that may have impacted kidney function and/or the ability to complete the protocol. Whilst not all participants in the present study were team sport athletes, all participants were familiarised with the exercise protocol, so that it was not a novel stimulus for experimental trials. Ethical approval was granted by the Loughborough University Ethical Approvals (Human Participants) Sub-Committee.

Study design

Subjects completed a preliminary trial, a familiarisation trial and two experimental trials in a randomised, cross-over design. Trials involved completing a modified version of the Loughborough Intermittent Shuttle Test (LIST) (Nicholas et al. 2000) with (EU trial) and without (HYP trial) water ingestion, followed by a ~20.5 h recovery period. Familiarisation and experimental trials were separated by ≥ 7 days.

Preliminary trial

During this visit, subjects provided verbal and written informed consent, completed a health screen questionnaire and then had height and nude body mass (AFW-120 K, Adam Equipment Co., UK) measured. To determine VO2peak, subjects then performed an incremental running test on a motorised treadmill (Mercury h/p/cosmos, Nussdorf, Germany), involving sub-maximal and maximal phases. For the sub-maximal phase, the treadmill was initially set at a 1% incline and 8 km/h, increasing by 1 km/h every 4 min until heart rate exceeded 160 beats/min (Polar M400, Polar, Kempele, Finland). This final speed was used for the maximal phase, where the gradient started at 1% and increased by 1%/min, until volitional exhaustion. In the final minute of each sub-maximal stage and for the final minute of the maximal phase, expired gases were collected into a Douglas bag and analysed for oxygen (O2) and carbon dioxide (CO2) concentrations (Servomex 1400 Gas Analyzer, Servomex, Crowborough, UK), volume (Harvard Dry Gas
sumed water ad libitum, which was weighed and added to, measured. Throughout the familiarisation trial, subjects con-
jects then provided a urine sample and nude body mass was
position for 30 min before a blood sample was taken. Sub-
completing the adapted LIST, subjects rested in a seated
familiarisation trial sweat losses).

Familiarisation trial

Upon arrival, subjects provided a urine sample and nude
body mass was measured, before they completed a standard
warm-up on an indoor 20 m track (two repeats of: 3 min jog-
ging, followed by three 20 m sprints, both at a self-selected
pace, separated and followed by 2 min rest). Subjects then
began the main exercise protocol, which was an adapted
version of the LIST (the performance sprints included in a
regular LIST were replaced by a cruise at ~ 95% VO_{peak} to
reduce trial variability in exercise intensity). This comprised
of six 15 min blocks of exercise (90 min total) separated by
2 min rest, with a 10 min half-time rest between blocks three
and four. Each block was paced using audio cues (Nichol-
as et al. 2000) and consisted of ~ 11 repeated cycles of the
following sequence: 3 x walk (1.5 m/s), 1 x cruise (~ 95%
VO_{peak}), 3 x jog (~ 55% VO_{peak}) and 3 x cruise. Upon
completing the adapted LIST, subjects rested in a seated
position for 30 min before a blood sample was taken. Sub-
jects then provided a urine sample and nude body mass was
measured. Throughout the familiarisation trial, subjects con-
sumed water ad libitum, which was weighed and added to
body mass change (pre-exercise mass minus post-exercise
mass) to allow prescription of fluid intake in EU (90% of
familiarisation trial sweat losses).

Pre-trial standardisation

The day prior to their first experimental trial, subjects were
instructed to consume at least 40 mL/kg body mass of fluid
(marked water bottles were supplied to aid compliance)
and to complete a 24 h food/fluid intake diary. Subjects
were asked to replicate this in the 24 h before their second
experimental trial. They were also asked to refrain from
alcohol intake and strenuous exercise the day before trials.
Subjects were sent reminders regarding pre-trial standardi-
sation two days before experimental trials and all subjects
confirmed they had adhered to pre-trial requirements upon
arrival for experimental trials.

Experimental trials

Subjects reported to the laboratory between 6 and 10 am,
after an overnight fast (≥ 10 h without food or fluid). To
control diurnal effects, trial start time was standardised
within subjects. Upon arrival, subjects sat for 30 min before
a blood sample was taken, during which they completed
subjective feelings questionnaires (0–10 numbered scale;
0 = no symptom; 10 = maximum symptom) for headache,
nausea, dizziness, thirst, gastrointestinal (GI) comfort, GI
bloating, stomach fullness and urge to vomit. Thermal sen-
sation was measured on a scale of − 10 (extremely cold)
to +10 (extremely hot). After the blood sample, subjects pro-
vided a urine sample and their nude body mass was meas-
ured, before they consumed 3 mL water/kg body mass over
15 min. In EU, an additional water bolus was also provided
at this time (15% of sweat losses in the familiarisation trial).

Subjects completed the standardised warm-up, then began
the modified LIST. In EU, subjects consumed water equiva-
 lent to 10% of their sweat losses from the familiarisation
in the rest between the warm-up and the LIST and after each
block of the LIST, with an extra 5% at half-time (15%). In
HYP, to help reduce the unpleasant effects of mouth dry-
ness, subjects consumed 25 mL water in the rest periods
after the first, third and fifth blocks. Heart rate was continu-
osly monitored and then averaged for each block. Rating
of perceived exertion (RPE; 6–20), ambient temperature
and relative humidity (Kestrel 4400, Nielsen-Kellerman
Co, Boothwyn, USA) were measured immediately after each
block and subjective feelings questionnaires were completed
after block 3.

Upon completion of the LIST, subjects rested in a seated
position for 30 min and repeated the subjective feelings
questionnaires before a blood sample was taken, a urine
sample was collected, and nude body mass was measured.
Subjects then left the laboratory with food weighing scales
and were asked to record their ad libitum food and fluid
intake for the remainder of the day. This was subsequently
analysed using online software (Nutritics 2019, Dublin, Ire-
land). The following morning, subjects returned to the labo-
atory in a fasted state (≥ 10 h fast), 24 h post-baseline sub-
jective feelings questionnaires were completed, blood/urine
samples were collected, and nude body mass was measured.

Sample analysis

Blood samples were collected by venepuncture of an ante-
cubital vein. From each sample, 1 mL was dispensed into a
tube containing K_{2} EDTA (1.75 mg/L, Teklab, Durham, UK)
and used to determine haemoglobin concentration (cyan-
methaemoglobin method) and haematocrit (microcentrifu-
gation; Hawksley Microhaematocrit Centrifuge, Hawksley,
Worthing, UK), which were used to calculate changes in
plasma volume relative to baseline (Dill and Costill 1974).
The remaining blood was dispensed into a 5 mL tube con-
taining K_{2} EDTA (1.6 mg/L, Sarstedt Ltd, Leicester, UK),
which was stored on ice, and a 4.5 mL tube containing a
clotting catalyst (Sarstedt Ltd, Leicester, UK). These were
allowed to stand for a minimum of 20 min before being sepa-
rated by centrifugation (2200 g, 15 min, 4 °C). The resulting
plasma and serum were stored at −80 °C. All urine samples were measured for volume and osmolality (Osmocheck; Vitech Scientific, Horsham, UK), before being stored at −80 °C.

Serum samples were thawed and analysed for osmolality, using freezing-point depression (Osmomat Auto, Cryoscopic Osmometer, Gonotec, Berlin, Germany). The concentrations of creatinine, albumin, creatine kinase (CK), lactate dehydrogenase (LDH) and myoglobin in serum samples were determined using a bench-top analyser (ABX Pentra C400; Horiba medical, Northampton, UK). ELISAs were performed for plasma/urinary NGAL (Human NGAL ELISA Kit, BioPorto, Hellerup, Denmark) and urinary KIM-1 (KIM-1 Human ELISA Kit, Enzo Life Sciences, Lausen Switzerland), according to manufacturer’s instructions. Intra-assay coefficients of variation for plasma NGAL, uNGAL and uKIM-1 were 8.7, 8.8 and 6.8%, respectively.

Data and statistical analysis

To control for potential effects caused by shifts in body water, relevant plasma/serum markers were corrected for changes in plasma volume. Furthermore, to control for urine concentration, urinary biomarkers were corrected for urine osmolality. In both cases, uncorrected and corrected data were presented statistically and presented. Due to an error in data collection, data on subjective feelings questionnaires were analysed statistically and presented. Due to an error in data collection, data on subjective feelings questionnaires are presented as n = 12. Ad-libitum food and fluid intake data are presented as n = 11, as three subjects did not complete their diet diaries in sufficient detail to be accurately analysed.

Data analyses were performed using SPSS (version 23, SPSS, Chicago, USA). Data were checked for normality of distribution using a Shapiro–Wilk test. Data containing one factor (ad libitum food and fluid intake) were analysed using a paired t-test or Wilcoxon signed-rank test, as appropriate. A two-way repeated measures ANOVA was performed to analyse data containing two factors (hydration status × time; trial order × time). The Greenhouse–Geisser estimate was used to correct the degrees of freedom where the assumption of sphericity was violated. Significant ANOVA effects were followed up by post hoc paired t-tests or Wilcoxon signed-rank tests, as appropriate. Family-wise error rate was controlled using the Holm–Bonferroni adjustment. Datasets were determined to be significantly different when P ≤ 0.05. Normally distributed data are presented as (mean ± SD), and non-normally distributed data are presented as [median, interquartile range]. At the time of designing the present study, to our knowledge, there were no published data to inform the effect size of manipulating hydration status on uNGAL or uKIM-1 concentrations. Therefore, a power calculation performed in a prior study, that investigated the effect of muscle damage on uNGAL concentrations, indicated that 12 subjects would be required to detect the smallest relevant change, with a statistical power of 0.8 and an alpha of 0.05 (Junglee et al. 2013). This power calculation is also in agreement with more recently published data (Chapman et al. 2020).

Results

Trial conditions

Pre-exercise, body mass (HYP: 74.74 ± 7.79 kg, EU 74.83 ± 7.54 kg; P = 0.661), serum osmolality (HYP: 292 ± 2 mOsm/kgH2O, EU: 292 ± 3 mOsm/kgH2O; P = 0.911), haemoglobin (HYP: 15.8 ± 0.8 g/dL, EU: 15.9 ± 0.9 g/dL; P = 0.559), haematocrit (HYP: 43.1 ± 1.8%, EU 43.3 ± 1.9%; P = 0.739) and thirst sensation (HYP: 4 [3–6], EU 5 [3–6]; P = 0.926) were not different between trials, suggesting a similar hydration status at the start of trials. Ambient temperature (HYP: 22.2 ± 1.0 °C, EU: 22.3 ± 0.8 °C; P = 0.867) and relative humidity (HYP: 46.1 ± 14.1%, EU: 49.8 ± 12.2%; P = 0.144) were not different between the trials.

Hydration status measurements

There was a trial by time interaction effect for changes in body mass (Fig. 1A; P < 0.001), serum osmolality (Fig. 1B; P < 0.001), plasma volume (Fig. 1C; P = 0.013) and urine osmolality (Fig. 1D; P = 0.001). Post-exercise, serum osmolality (P < 0.001) and urine osmolality (P = 0.024) were greater in HYP than EU, but plasma volume was greater in EU than HYP (P = 0.002). Sweat loss from pre- to post-exercise was not different between the trials (HYP: 1.82 ± 0.25 kg, EU: 1.82 ± 0.31 kg; P = 0.932). However, post-exercise, body mass loss was greater in HYP compared to EU (HYP: 1.6 ± 0.23 kg, EU: 0.17 ± 0.22 kg; P < 0.001), as 90% of sweat losses were replaced with water ingestion in EU (1639 ± 262 mL; excluding 3 mL/kg body mass bolus pre-exercise). In both trials, body mass (Fig. 1A) decreased from baseline to post-exercise (P ≤ 0.020) and remained decreased at 24 h post-baseline (P ≤ 0.033). Serum osmolality (Fig. 1B) increased from baseline to post-exercise in HYP (P < 0.001) and decreased in EU (P < 0.001) but returned to baseline levels at 24 h in both trials (P ≥ 0.063). Plasma volume (Fig. 1C) did not change from baseline to post-exercise in HYP (P = 0.229) but increased in EU (P < 0.001). At 24 h, plasma volume was elevated from baseline in both conditions (HYP: P = 0.002, EU: P = 0.003). Urine osmolality (Fig. 1D) decreased from baseline to post-exercise in EU (P = 0.003) but did not change in HYP (P = 0.131). At 24 h, urine osmolality was elevated from baseline in both trials (P ≤ 0.004).
Biomarkers of renal injury

There were trial by time interaction effects ($P \leq 0.014$) for uKIM-1 (Fig. 2A) and uNGAL (Fig. 2C) concentrations, with both increased from baseline to post-exercise in HYP (uKIM-1: 2.3-fold increase, uNGAL: 3.4-fold increase; $P = 0.002$) but not in EU ($P \geq 0.300$). Post-exercise, uKIM-1 and uNGAL were both greater in HYP compared to EU (uKIM-1: $P = 0.012$; uNGAL: $P = 0.048$). At 24 h, uKIM-1 concentrations were elevated from baseline in HYP ($P = 0.002$) but not EU ($P = 0.230$), whereas uNGAL concentrations at 24 h were not different from baseline in either trial ($P \geq 0.140$). When correcting uKIM-1 for urine osmolality (Fig. 2B), there was a trial by time interaction effect ($P = 0.011$), with post-exercise osmolality-corrected uKIM-1 42% greater in HYP compared to EU ($P = 0.003$). In both trials, osmolality-corrected uKIM-1 increased from baseline to post-exercise (HYP: 2.6-fold increase, EU: 1.6-fold increase; $P \leq 0.048$), remaining elevated at 24 h in HYP ($P = 0.030$) but returning to baseline values at 24 h in EU ($P = 0.382$). Correcting uNGAL for urine osmolality (Fig. 2D) removed the trial by time interaction effect ($P = 0.073$) but created a time effect ($P = 0.015$), with osmolality-corrected uNGAL increasing from baseline to post-exercise ($P < 0.001$) and returning to baseline values at 24 h ($P = 0.452$). There was no trial by time interaction effect ($P = 0.171$) for plasma NGAL concentrations (Fig. 2E), but there was a time effect ($P < 0.001$), which increased from baseline to post-exercise ($P < 0.001$), returning to baseline values at 24 h ($P = 0.649$). Correcting plasma NGAL for plasma volume changes (Fig. 2F) suggested that plasma NGAL remained elevated at 24 h ($P = 0.026$) but did not alter the significance of any other results.

There were trial by time interaction effects ($P \leq 0.008$) for serum creatinine (Fig. 3A) and uric acid concentrations (Fig. 3C), which both increased from baseline to post-exercise in both trials ($P < 0.001$) and were greater in HYP than EU post-exercise (creatinine: $P = 0.015$; uric acid $P = 0.042$). At 24 h, creatinine concentrations returned to baseline in both trials ($P \geq 0.761$), whereas uric acid
Concentrations remained elevated from baseline in both trials ($P \leq 0.030$). Correcting creatinine (Fig. 3B) and uric acid (Fig. 3D) for plasma volume changes removed the trial by time interaction effect ($P \geq 0.234$), but the time effect ($P < 0.001$) remained, with plasma volume corrected serum creatinine and uric acid increasing from baseline to post-exercise ($P < 0.001$) and remaining elevated at 24 h ($P \leq 0.005$). When investigating effects of trial order, there were no trial effects ($P \geq 0.108$) or trial by time interaction effects ($P \geq 0.084$) for any of the biomarkers of renal injury measured, except plasma volume corrected uric acid (trial by time interaction effect: $P = 0.047$). However, with regards to plasma volume corrected uric acid, post-hoc tests revealed no significant differences between trials 1 and 2 at any time point ($P \geq 0.123$), suggesting no effects of trial order on renal injury.
Physiological response to exercise and perceptual measures

There was a trial effect for RPE (HYP: 15, 14–17, EU: 14, 13–15; \(P = 0.002 \)) and heart rate (HYP: 149 ± 12 beats/min, EU: 143 ± 13 beats/min; \(P = 0.004 \)). There was a trial by time interaction effect (\(P = 0.024 \)) for serum albumin, which increased from baseline to post-exercise in HYP [765, 745–825 to 804, 781–903, \(P = 0.004 \)] but not EU [779, 745–803 to 780, 766–799, \(P = 0.116 \]), with 24 h concentrations not different to baseline in both trials [24 h HYP: 776, 737–818, 24 h EU: 763, 725–818, \(P \geq 0.089 \)]. Post-exercise, serum albumin was greater in HYP than EU (\(P = 0.003 \)).

There was a trial by time interaction effect (\(P < 0.001 \)) for thirst (Table 1), with thirst greater in HYP than EU after block 3 of the LIST (\(P < 0.001 \)) and post-exercise (\(P = 0.012 \)). There was no trial by time interaction effect (\(P \geq 0.123 \)) for headache, nausea, dizziness or GI bloating (Table 1) and despite a trial by time interaction effect (\(P \leq 0.037 \)) for GI comfort, stomach fullness, urge to vomit and thermal sensation (Table 1), post hoc tests revealed no significant differences between trials at any time point (\(P \geq 0.056 \)).

Muscle damage

There were no trial effects (\(P \geq 0.169 \)) or trial by time interaction effects (\(P \geq 0.167 \)), but there were time effects (\(P \leq 0.039 \)) for serum myoglobin, LDH and CK concentrations (Table 2). Serum myoglobin and CK concentrations increased from baseline to post-exercise (\(P < 0.001 \)) and remained elevated from baseline at 24 h (\(P \leq 0.003 \)). Correction for plasma volume changes did not alter the significance of any serum myoglobin or CK results. Serum LDH concentration increased from baseline to post-exercise (\(P < 0.001 \)) but returned to baseline values at 24 h (\(P = 0.158 \)). However, correction for plasma volume changes suggested that LDH remained elevated from baseline at 24 h (\(P = 0.001 \)). When
investigating effects of trial order, there were no trial effects ($P \geq 0.168$) for serum myoglobin, LDH or CK and there were no trial by time interaction effects ($P \geq 0.051$) for LDH or CK. Despite a trial by time interaction effect ($P = 0.033$) for myoglobin, post hoc tests revealed no significant differences between trials 1 and 2 at any time point ($P \geq 0.165$), suggesting no effects of trial order on muscle damage.

Food and fluid intake

Post-exercise energy (HYP: 12,126 ± 1716 v EU: 11,871 ± 2459 kJ), protein (HYP: 134 ± 27 v EU: 133 ± 40 g), fat (HYP: 127 ± 36 v EU: 114 ± 43 g), carbohydrate (HYP: 303 ± 69 v EU: 317 ± 88 g), and sodium (HYP: 2768 ± 766 v EU: 2878 ± 892 mg) intake were not different between trials ($P \geq 0.345$). Post-exercise, the intake of water from drinks was greater in HYP (2997 ± 843 v 2348 ± 1166 g; $P = 0.01$), but the intake of water from foods did not differ between trials (867 ± 248 v 928 ± 210 g; $P = 0.444$). Total water intake for the day was greater in EU (4165 ± 902 v 5180 ± 1,336 g; $P = 0.001$). In HYP, post-exercise ad libitum water intake (including water from foods) was equal to 245 ± 58% of post-exercise body mass loss.

Discussion

The aim of the present study was to investigate the effect of manipulating hydration status during high-intensity intermittent running on biomarkers of renal injury. The main findings were that osmolality-corrected uNGAL and uKIM-1 were both elevated post-exercise, regardless of hydration status, and that post-exercise osmolality-corrected uKIM-1 was further increased when subjects were hypohydrated. These findings partially confirmed our hypothesis and suggest high-intensity intermittent running causes renal tubular injury and that hypohydration exacerbates this, even in the absence of heat stress. Therefore, this study presents novel data demonstrating that hypohydration exacerbates renal injury after just 90 min of exercise in temperate conditions (a common place exercise scenario world-wide).

Post-exercise, uKIM-1 concentrations were greater in the HYP than EUH, despite correction for urine osmolality. This indicates greater production of uKIM-1 in HYP, rather than a simple urine concentration effect, and suggests increased renal tubular injury in HYP. It could be argued that there was a trend for greater post-exercise

Table 1

| Subjective feelings questionnaires before exercise (pre/baseline), after the third block of the Loughborough Intermittent Shuttle Test (Block 3), post-exercise (post) and 24 h post-baseline in HYP ($n = 12$) and EU ($n = 12$) |
|---------------------------|---------------------------|---------------------------|---------------------------|
| | Pre Block 3 Post 24 h | Pre Block 3 Post 24 h |
| Thirst (0–10) | 4 [3–6] 6 [5–7] | 8 [6–9]b 3 [2–5] | 5 [3–6] 2 [1–3] |
| Headache (0–10) | 0 [0–0] 0 [0–0] | 1 [0–2] 0 [0–0] | 0 [0–0] 0 [0–0] |
| Nausea (0–10) | 0 [0–0] 0 [0–0] | 1 [0–2] 0 [0–0] | 0 [0–0] 0 [0–0] |
| Dizziness (0–10) | 0 [0–0] 1 [0–2] | 1 [0–3] 0 [0–0] | 0 [0–0] 0 [0–0] |
| GI bloating (0–10) | 0 [0–0] 0 [0–0] | 0 [0–1] 0 [0–0] | 0 [0–1] 0 [0–0] |
| GI comfort (0–10) | 0 [0–1] 1 [0–1] | 1 [0–3] 0 [0–1] | 0 [0–1] 0 [0–1] |
| Stomach fullness (0–10) | 0 [0–1] 0 [0–1] | 0 [0–0] 0 [0–0] | 0 [0–0] 0 [0–0] |
| Urge to vomit (0–10) | 0 [0–0] 0 [0–0] | 0 [0–0] 0 [0–0] | 0 [0–0] 0 [0–0] |
| Thermal sensation (−10 to 10) | 0 [0–0] 4 [4–4] | 5 [4–5] 0 [0–0] | 0 [0–0] 4 [4–4] |

Table 2

| Myoglobin, lactate dehydrogenase (LDH), LDH corrected for plasma volume changes (C LDH) and creatine kinase (CK) concentrations pre-exercise (pre/baseline), 30 min post-exercise (post) and 24 h post-baseline (24 h) in HYP ($n = 14$) and EU ($n = 14$) trials |
|---------------------------|---------------------------|---------------------------|---------------------------|
| Biomarker | Pre HYP | Pre EU | Post HYP | Post EU | 24 h HYP | 24 h EU |
| Myoglobin (ng/mL) | 35 [25–46] | 27 [22–45] | 139* [93–465] | 141* [85–239] | 50* [29–77] | 42* [30–53] |
| LDH (U/L) | 179 [167–184] | 169 [155–194] | 215* [203–232] | 198* [186–235] | 182 [167–203] | 178 [157–197] |
| C LDH (U/L) | 179 [167–184] | 169 [155–194] | 222* [209–230] | 214* [205–241] | 190* [171–211] | 186* [166–193] |
| CK (U/L) | 292 [154–460] | 215 [105–440] | 398* [237–864] | 342* [198–584] | 392* [255–1040] | 428* [222–699] |

Statistical analyses from two-way repeated measures ANOVA, followed by Holm–Bonferroni-corrected Wilcoxon signed-rank tests. *Represents a significant difference from pre. Data presented as median [interquartile range]
concentrations of osmolality-corrected uNGAL when hypohydrated, but this effect was not significant. Therefore, the differential responses of these biomarkers may provide insight into the location of renal injury that was exacerbated by hypohydration, as KIM-1 expression is increased in response to proximal tubular injury (Ichimura et al. 1998; Han et al. 2002; Kashani et al. 2017), whereas the main contributor to a rise in uNGAL is thought to be an increase in NGAL synthesis in the distal nephron (Paragás et al. 2011; Helanova et al. 2014; Bongers et al. 2017, 2018). However, even if post-exercise osmolality-corrected uNGAL concentrations were significantly greater in HYP, this would not necessarily be indicative of an increase in injury to the distal nephron, as a decrease in the proximal tubular reabsorption of NGAL can also contribute to a rise in uNGAL (Kashani et al. 2017; Schlader et al. 2019). Therefore, these findings suggest that hypohydration produced by high-intensity intermittent running likely exacerbates renal proximal tubular injury. This is in line with previous research by Chapman et al. (2020), which demonstrated that hypohydration produced by 2 h of simulated physical work in the heat (~39.7 °C) caused an increase (compared to when water was consumed to maintain euhydration) in osmolality-corrected urinary insulin-like growth factor-binding protein 7, indicating an increase in proximal tubular injury.

In the present study, whilst hypohydration appeared to exacerbate proximal tubular injury, the post-exercise elevations of osmolality-corrected uNGAL and uKIM-1, regardless of hydration status, suggest that the high-intensity intermittent running itself increased renal injury. This was likely due to a reduction in renal blood flow, which was not directly measured in the present study but was evidenced by post-exercise increases in serum uric acid, serum creatinine (although these can be influenced by muscle damage) (Knochel et al. 1974) and plasma NGAL (Schaub and Parikh 2016; Schlader et al. 2019), as well as the previously documented inverse correlation between renal blood flow and heart rate (Poortmans 1984). Given the high-intensity nature of the running in the present study, increases in sympathetic activity (Poortmans 1984; Zouhal et al. 2008) and core body temperature (Radigan and Robinson 1949; Smith et al. 1952; Sato et al. 2019) were likely contributors to a reduction in renal blood flow, which may lead to ischaemia and subsequent renal injury (Basile et al. 2012; Sato et al. 2019). In addition, post-exercise increases in serum myoglobin and uric acid, which were likely caused by muscle damage, may have also contributed to renal tubular injury via a reduction in renal blood flow, as well as other mechanisms (Blomberg et al. 2004; Sánchez-Lozada et al. 2008; Basile et al. 2012; Petejova and Martinek 2014; Roncal-Jimenez et al. 2018). Interestingly, the responses of muscle damage biomarkers in the present study’s population were similar to those of elite soccer players following a competitive match (Souglis et al. 2015).

Whilst the high-intensity intermittent running in the present study appeared to increase renal injury (likely via a reduction in renal blood flow), the lack of difference between trials with regards to post-exercise plasma NGAL suggests that the exacerbation of injury to the proximal tubules by hypohydration was not mediated by a further decrease in renal blood flow (Schaub and Parikh 2016; Schlader et al. 2019). The exacerbation of proximal tubular injury by hypohydration may have, therefore, been mediated by the rise in serum osmolality in HYP. This is indicative of intracellular fluid loss, where serum hyperosmolality draws fluid out of the intracellular fluid compartment via osmosis (Cheuvront and Kenefick 2014; James et al. 2019). This triggers the release of arginine vasopressin, which has been shown to increase renal oxygen consumption, possibly exacerbating renal injury by causing renal ischaemia and subsequent renal ATP depletion (Bragadottir et al. 2009; Basile et al. 2012; Cheuvront and Kenefick 2014). Evidence to support this potential mechanism comes from research in mice (Roncal-Jimenez et al. 2017) and humans, with Mansour et al. (2019) observing that post-exercise copeptin (a stable surrogate for arginine vasopressin) concentrations were greater in marathon runners with AKI than those without AKI.

Typically, an increase in serum osmolality is accompanied by a decrease in plasma volume (James et al. 2019). However, in HYP of the present study, post-exercise plasma volume was not reduced. This may have been due to a high osmotic pressure in the vascular space, as high-intensity exercise has been shown to generate high concentrations of lactate and vasopressin (Mears and Shirreffs 2013). These, combined with hypo-osmotic sweat losses, likely caused the serum hyperosmolality, which appeared to draw fluid from the intracellular compartment to the extracellular compartment (Cheuvront and Kenefick 2014; James et al. 2019). In EU, there was the expected increase in plasma volume as a result of the decreased serum osmolality. There was likely the same osmotic response to exercise, however, the fluid provided, particularly the last bolus, was sufficient to decrease serum osmolality and result in a temporary increase in plasma volume post-exercise.

Though maintaining euhydration during high-intensity intermittent exercise appeared to attenuate proximal tubular injury, it is important to acknowledge that the consumption of large amounts of water can increase the risk of exercise-associated hyponatremia (Rosner and Kirven 2007), evidenced in EU of the current study by a decrease in serum osmolality due the ingestion of plain water. However, no subject’s serum osmolality decreased to a concentration that would be deemed as dangerous (<280 mOsm/ kgH2O; Sahay and Sahay 2014), indicating that the hydration protocol
was also well tolerated, as evidenced by the lack of difference between trials in perceptual measures related to GI comfort. The hydration protocol also appeared to reduce the physiological strain of the high-intensity intermittent exercise, as measured by the lower heart rates and RPEs in EU, and may therefore have translated into differences in performance if this had been measured (Funnell et al. 2019; James et al. 2019). Whilst the hydration protocol in the present study appeared to attenuate proximal tubular injury, games players will typically drink fluid ad libitum, often consuming less than 50% of their sweat losses (Garth and Burke 2013; Funnell et al. 2017). Therefore, future research should investigate the effect of this rate of fluid ingestion during exercise on biomarkers of renal injury.

At 24 h post-baseline, there was evidence to suggest a decrease in body water in both trials, as seen by the lower body mass and increased urine osmolality compared to baseline. It is possible that the lower body mass may be at least partially explained by incomplete glycogen resynthesis, due to impairment of resynthesis by muscle damage (Zehnder et al. 2004) and insufficient carbohydrate intake (~4 g/kg body mass between post-exercise and 24 h in both trials) (Krstrup et al. 2011). It is not clear whether this is the case, though, as muscle glycogen was not measured in the present study, and studies that have measured muscle glycogen resynthesis following soccer-type exercise have produced contrasting findings (Zehnder et al. 2001; Krstrup et al. 2011).

Even if glycogen resynthesis was incomplete, this would not explain the elevated urine osmolality, which is indicative of a decrease in total body water. This apparent body water deficit at 24 h is unlikely to be due to an insufficient volume of water consumed in the recovery period, as it was also seen in EU. Moreover, in the 20.5 h recovery period of HYP, subjects rehydrated with a water volume equal to 245% of their body mass losses, which is well in excess of the 150% that has been shown to achieve rehydration in prior studies (Shirreffs et al. 1996; Evans et al. 2017). However, as the majority of the literature has focussed on short-term rehydration (≤ 6 h) (Evans et al. 2017), the optimal volume of fluid required to achieve rehydration over a longer time period (e.g. 20.5 h) remains unknown. Nonetheless, a more likely explanation for the apparent body water deficit at 24 h is inadequate sodium intake (Sawka et al. 2007). It is recommended that athletes rehydrate with fluid that has a sodium concentration of approximately 40–50 mmol/L (Maughan and Leiper 1995; Merson et al. 2008), but in HYP of the present study, when post-exercise sodium intake was expressed relative to total water intake, the concentration was approximately 30 mmol/L, with a similar amount consumed in EU. Therefore, inadequate sodium intake may have resulted in insufficient fluid retention (Maughan and Leiper 1995; Merson et al. 2008; Evans et al. 2017), and thus may explain the apparent body water deficit seen at 24 h in both trials.

Given that osmolality-corrected uKIM-1 remained elevated at 24 h in HYP and that there was evidence of a deficit in total body water at 24 h, renal injury was still present and may have been more likely or further increased if another bout of exercise was subsequently performed as is likely for team sports players. However, to our knowledge, the effect of bouts of exercise on consecutive days on uNGAL and uKIM-1 has only been investigated by one study, and whilst these biomarkers did not accumulate after three bouts of exercise performed on consecutive days (Bongers et al. 2017), this exercise was prolonged walking, which likely poses a lower risk of renal injury than more vigorous exercise. Therefore, more research is required to determine the effect of repeated bouts of vigorous exercise on novel biomarkers of renal injury, and the potential influence of hydration status.

In the present study, urine osmolality was used to correct the concentrations of uNGAL and uKIM-1, to account for changes in urine concentration. This is one of a variety of corrections that have been used in this field of research, including urinary creatinine (Junglee et al. 2012; Lippi et al. 2012; Bongers et al. 2017, 2018; Mansour et al. 2019; Chapman et al. 2020; Poussel et al. 2020) and urinary cystatin C (Bongers et al. 2017, 2018). The variety of correction factors used in the literature, along with variations in baseline concentrations (particularly with regards to uKIM-1), mean making comparisons between studies is challenging. Nonetheless, the post-exercise uNGAL concentrations in the present study are lower than those seen after prolonged endurance events (i.e. marathons and ultramarathons), which appear to be the type of exercise that produces the highest post-exercise uNGAL concentrations (Juett et al. 2021). This may be because the average exercise intensity during these events is only slightly lower than the present study, but exercise duration is longer and higher levels of muscle damage appear to be produced (McCullough et al. 2011; Mansour et al. 2019). In the context of exercise-associated renal injury, urine osmolality may be the most appropriate correction factor, as urinary creatinine and cystatin C may be increased during exercise because of muscle breakdown and decreased proximal tubular reabsorption, respectively (Conti et al. 2006; Junglee et al. 2012; Bongers et al. 2018). Some authors have also corrected urinary kidney injury biomarkers for urine flow rate (Junglee et al. 2013; Chapman et al. 2019, 2020). Whilst it is a limitation of the present study that urine flow rate was not measured, urine osmolality is regarded as an appropriate correction (Bongers et al. 2018; Schlader et al. 2019) and is more likely to become widely utilised, due to difficulties with precisely determining urine flow rate in many settings (Schlader et al. 2019). Another limitation of the present study is that certain mechanistic variables, such
as core body temperature, renal blood flow and vasopressin/copeptin, were not measured. However, the significant difference in post-exercise serum osmolality between trials means a difference in vasopressin between trials at this timepoint is extremely likely, as changes in serum osmolality during exercise are strongly correlated with changes in serum arginine vasopressin (Wade 1984).

In conclusion, the results from the present study suggest that high-intensity intermittent exercise may increase renal injury. Maintaining euhydration with water intake during this exercise was a safe and well-tolerated intervention that appeared to attenuate proximal tubular injury and physiological strain. However, the long-term effects of increases in biomarkers of renal injury following exercise are not well understood and should be the focus of future investigations.

Author contributions LAJ, MPF, LJJ and SAM contributed to the design of the study. LAJ, KLM MPF and SAM collected the data, and LAJ, KLM, LJJ and SAM analysed the data. The first draft of the manuscript was written by LAJ, LAJ, LJJ and SAM commented on the versions of the manuscript. All the authors approved the final version of the manuscript.

Funding No external funding was obtained for the current study.

Availability of data and material The datasets generated during the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest LAJ has previously had conference fees covered by Danone Nutricia. LJJ has previously received funding from PepsiCo Inc., Volac International and Entrinsic Beverage Company LLC for hydration-related studies, performed consultancy for PepsiCo Inc. and Lucozade, Ribena Suntry and had conference fees covered by PepsiCo Inc. and Danone Nutricia. In all cases, monies have always been paid to LJJ’s institution and not directly to LJJ. SAM has previously received funding from the European Hydration Institute and Entrinsic Beverage Company LLC and has had conference fees covered by Danone Nutricia.

Ethical approval This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Loughborough University Ethical Approvals (Human Participants) Sub-Committee.

Consent to participate All subjects provided verbal and written informed consent to participate.

Consent for publication Subjects signed informed consent to their data being published.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Basile DP, Anderson MD, Sutton TA (2012) Pathophysiology of acute kidney injury. Compr Physiol 2:1303–1353. https://doi.org/10.1002/cphy.c110041

Betts IA, Thompson D (2012) Thinking outside the bag (not necessarily outside the lab). Med Sci Sports Exerc 44:2040. https://doi.org/10.1249/MSS.0b013e318264523f

Blomberg LM, Blomberg MRA, Siegbahn PEM (2004) A theoretical study of myoglobin working as a nitric oxide scavenger. J Biol Inorg Chem 9:923–935. https://doi.org/10.1007/s00775-004-0585-5

Bongers CCWG, Alsady M, Nijenhuis T et al (2017) Impact of acute versus repetitive moderate intensity endurance exercise on kidney injury markers. Physiol Rep 5:e13544. https://doi.org/10.14814/phy2.13544

Bongers CCWG, Alsady M, Nijenhuis T et al (2018) Impact of acute versus prolonged exercise and dehydration on kidney function and injury. Physiol Rep 6:1–11. https://doi.org/10.14814/phy2.13734

Bragadottir G, Redfors B, Nygren A et al (2009) Low-dose vasopressin increases glomerular filtration rate, but impairs renal oxygenation in post-cardiac surgery patients. Acta Anaesthesiol Scand 53:1052–1059. https://doi.org/10.1111/j.1399-6576.2009.02037.x

Chapman CL, Johnson BD, Sackett JR, Parker MD, Schlater Z (2019) Soft drink consumption during and following exercise in the heat elevates biomarkers of acute kidney injury. Am J Physiol Regul Integr Comp Physiol 316:R189

Chapman CL, Johnson BD, Vargas NT et al (2020) Both hyperthermia and dehydration during physical work in the heat contribute to the risk of acute kidney injury. J Appl Physiol 128:715–728. https://doi.org/10.1152/japplphysiol.00787.2019

Cheuvront SN, Haymes EM (2001) Thermoregulation and marathon running. Sport Med 31:743–762. https://doi.org/10.2165/00007256-200131100-00004

Cheuvront SN, Kenefick RW (2014) Dehydration: physiology, assessment, and performance effects. Compr Physiol 4:257–285. https://doi.org/10.1002/cphy.c130017

Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81:442–448. https://doi.org/10.1038/jkd.2014.371

Colombini A, Machado M, Lombardi G et al (2014) Modifications of biochemical parameters related to protein metabolism and renal function in male soccer players after a match. J Sport Med Phys Fit 54:658–664

Conti M, Moutereau S, Zater M et al (2006) Urinary cystatin C as a specific marker of tubular dysfunction. Clin Chem Lab Med 44:288–291. https://doi.org/10.1515/CCLM.2006.050

Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248

Evans GH, James LJ, Shirreffs SM, Maughan RJ (2017) Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. J Appl Physiol 122:945–951. https://doi.org/10.1152/japplphysiol.00745.2016

Funnell MP, Dykes NR, Owen EJ et al (2017) Ecologically valid carbohydrate intake during soccer-specific exercise does not affect
Sánchez-Lozada LG, Soto V, Tapia E et al (2008) Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am J Physiol Ren Physiol 295:F1134–F1141. https://doi.org/10.1152/ajpren.00104.2008

Sato Y, Roncal-Jimenez CA, Andres-Hernando A et al (2019) Increase of core temperature affected the progression of kidney injury by repeated heat stress exposure. Am J Physiol Ren Physiol 317:F1111–F1121. https://doi.org/10.1152/ajpren.00259.2019

Sawka MN, Burke LM, Eichner ER et al (2007) American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc 39:377–390. https://doi.org/10.1249/mss.0b013e31802ca597

Schaub JA, Parikh CR (2016) Biomarkers of acute kidney injury and associations with short- and long-term outcomes. F1000Res. https://doi.org/10.12688/F1000RESEARCH.7998.1

Schlader ZJ, Hostler D, Parker MD et al (2019) The potential for renal injury elicited by physical work in the heat. Nutrients. https://doi.org/10.3390/nu11092087

Shirreffs SM, Taylor AJ, Leiper JB, Maughan RJ (1996) Post-exercise rehydration in man: effects of volume consumed and drink sodium content. Med Sci Sport Exerc 28:1260–1271

Smith JH, Robinson S, Peary M (1952) Renal responses to exercise, heat and dehydration. J Appl Physiol 4:659–665

Souglis A, Bogdanis GC, Giannopoulou I et al (2015) Comparison of inflammatory responses and muscle damage indices following a soccer, basketball, volleyball and handball game at an elite competitive level. Res Sport Med 23:59–72. https://doi.org/10.1080/15438627.2014.975814

Wade CE (1984) Response, regulation, and actions of vasopressin during exercise: a review. Med Sci Sport Exerc 16:506–511

Zehnder M, Rico-Sanz J, Kühne G, Boutellier U (2001) Resynthesis of muscle glycogen after soccer specific performance examined by 13C-magnetic resonance spectroscopy in elite players. Eur J Appl Physiol 84:443–447. https://doi.org/10.1007/s004210100389

Zehnder M, Muelli M, Buchli R et al (2004) Further glycogen decrease during early recovery after eccentric exercise despite a high carbohydrate intake. Eur J Nutr 43:148–159. https://doi.org/10.1007/s00394-004-0453-7

Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A (2008) Catecholamines and the effects of exercise, training and gender. Sport Med 38:401–423. https://doi.org/10.2165/00007256-200838050-00004

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.