ON THE CYCLE STRUCTURE OF REPEATED EXPONENTIATION MODULO A PRIME POWER

MIN SHA

Abstract. We obtain some results about the repeated exponentiation modulo a prime power from the viewpoint of arithmetic dynamical systems. Especially, we extend two asymptotic formulas about periodic points and tails in the case of modulo a prime to the case of modulo a prime power.

1. Introduction

For a positive integer M, denote by $\mathbb{Z}/M\mathbb{Z}$ the residue ring of \mathbb{Z} modulo M and $(\mathbb{Z}/M\mathbb{Z})^*$ the unit group. For an integer $k \geq 2$, we consider the following endomorphism of $(\mathbb{Z}/M\mathbb{Z})^*$,

$$f : (\mathbb{Z}/M\mathbb{Z})^* \to (\mathbb{Z}/M\mathbb{Z})^*, x \to x^k.$$

For any initial value $x \in (\mathbb{Z}/M\mathbb{Z})^*$, we repeat the action of f, then we get a sequence

$$x_0 = x, x_n = x_{n-1}^k, n = 1, 2, 3, \ldots$$

This sequence is known as the power generator of pseudorandom numbers. Studying such sequences in the cases that M is a prime or a product of two distinct primes, is of independent interest and is also important for several cryptographic applications, see [1, 6]. From the viewpoint of cryptography, there are numerous results about these sequences, see the papers mentioned in [2], more recently see [3] and its references.

If we view $(\mathbb{Z}/M\mathbb{Z})^*$ as a vertex set and draw a directed edge from a to b if $f(a) = b$, then we get a digraph. There are also many results in this direction, see [12] and the papers mentioned there, more recently see [8, 9, 10, 11].

As [2], in this article we will study $(\mathbb{Z}/M\mathbb{Z})^*$ under the action of f from the viewpoint of arithmetic dynamical systems, where M is a prime power. Especially we will extend two asymptotic formulas in [2] to the case of modulo a prime power.

It is easy to see that for any initial value $x \in (\mathbb{Z}/M\mathbb{Z})^*$ the corresponding sequence becomes eventually periodic, that is, for some positive integer $s_{k,M}(x)$ and tail $t_{k,M}(x) < s_{k,M}(x)$, the elements $x_0 = x, x_1, \ldots, x_{s_{k,M}(x)-1}$ are pairwise distinct and $x_{s_{k,M}(x)} = x_{t_{k,M}(x)}$. So we can define a tail function $t_{k,M}$ on $(\mathbb{Z}/M\mathbb{Z})^*$.

The sequence $x_{t_{k,M}(x)}, \ldots, x_{s_{k,M}(x)-1}$, ordered up to a cyclic shift, is called a cycle. The cycle length is $c_{k,M}(x) = s_{k,M}(x) - t_{k,M}(x)$. The elements in the cycle are called periodic points and their periods are $c_{k,M}(x)$. So we can define a cycle length function $c_{k,M}$ on $(\mathbb{Z}/M\mathbb{Z})^*$. In particular, [4, 5] gave lower bounds for the largest period.

2010 Mathematics Subject Classification. Primary 37P35; Secondary 11K45, 11B50.

Key words and phrases. Repeated powering, Periodic point, Tail, Primes in arithmetic progressions.
We denote by $P_r(k, M)$ and $P(k, M)$ respectively the number of periodic points with period r and the number of periodic points in $(\mathbb{Z}/M\mathbb{Z})^*$. Also, we denote by $C_r(k, M)$ and $C(k, M)$ respectively the number of cycles with length r and the number of cycles in $(\mathbb{Z}/M\mathbb{Z})^*$. We denote the average values of $c_{k,M}(x)$ and $t_{k,M}(x)$ over all $x \in (\mathbb{Z}/M\mathbb{Z})^*$ by $c_{k,M}$ and $t_{k,M}$ respectively,

$$c(k, M) = \frac{1}{\varphi(M)} \sum_{x \in (\mathbb{Z}/M\mathbb{Z})^*} c_{k,M}(x), \quad t(k, M) = \frac{1}{\varphi(M)} \sum_{x \in (\mathbb{Z}/M\mathbb{Z})^*} t_{k,M}(x),$$

where φ is the Euler totient function.

When M is an odd prime power, we will derive explicit formulas for $P_r(k, M)$ and $C_r(k, M)$ by the results in [10], and we will also derive explicit formulas for $c_{k,M}$ and $t_{k,M}$ which generalize those in [11].

For two integers $r, m \geq 1$, we call the limit of $\lim_{X \to \infty} \frac{1}{\pi(X)} \sum_{p \leq X} P_r(k, p^m)$ the asymptotic mean number of periodic points with period r in $(\mathbb{Z}/p^m\mathbb{Z})^*$ for different choices of prime p, and we denote it by $AP_r(k, m)$. Similarly, we can define the asymptotic mean number for cycles with length r and denote it by $AC_r(k, m)$. We will derive explicit formulas for $AP_r(k, m)$ and $AC_r(k, m)$.

For an integer $m \geq 1$, following [11], we study the average values of $P_r(k, p^m)$ and $t(k, p^m)$ over all primes $p \leq N$, \[S_0(k, m, N) = \frac{1}{\pi(N)} \sum_{p \leq N} P(k, p^m), \quad S(k, m, N) = \frac{1}{\pi(N)} \sum_{p \leq N} t(k, p^m). \]

where, as usual, $\pi(N)$ is the number of primes $p \leq N$. Following the method in [2], we will get asymptotic formulas for $S_0(k, m, N)$ and $S(k, m, N)$.

2. Preparations

For two integers l and n, we denote their greatest common divisor by $\gcd(l, n)$. For a positive integer n, we denote by $\tau(n)$ the number of its positive divisors. Theorem 4.9 in [7] tells us that

$$\lim_{X \to \infty} \frac{1}{\pi(X)} \sum_{p \leq X} \gcd(p - 1, n) = \tau(n). \tag{2.1}$$

For two integers $m \geq 1$ and $n \geq 2$, we denote the largest prime divisor of n by q. Then we have

$$\lim_{X \to \infty} \frac{1}{\pi(X)} \sum_{p \leq X} \gcd(p^{m-1}(p - 1), n) = \lim_{X \to \infty} \frac{1}{\pi(X)} \sum_{q < p \leq X} \gcd(p^{m-1}(p - 1), n) \tag{2.2}$$

$$= \lim_{X \to \infty} \frac{1}{\pi(X)} \sum_{q < p \leq X} \gcd(p - 1, n) = \tau(n).$$

Notice that if p is an odd prime, $\gcd(p^m - p^{m-1}, n)$ is the number of solutions of the equation $x^n = 1$ in $(\mathbb{Z}/p^m\mathbb{Z})^*$.
Given two integers \(a \) and \(n \) with \(\gcd(a, n) = 1 \), following the method in the proof of Formula (2) in [2], we can get

\[
(2.3) \quad \sum_{\substack{p \leq X \\ (\text{mod } n) \atop p \mid a}} p^m = \frac{X^{m+1}}{(m+1)\phi(n)\ln X} + O(X^{m+1}\ln^{-2}X).
\]

Then we have

\[
(2.4) \quad \sum_{\substack{p \leq X \\ (\text{mod } n) \atop p \mid a}} p^{m-1}(p-1) = \frac{X^{m+1}}{(m+1)\phi(n)\ln X} + O(X^{m+1}\ln^{-2}X).
\]

Following the same method in the proof of Formula (4) in [2], we have

\[
(2.5) \quad \sum_{\substack{p \leq X \\ (\text{mod } n) \atop p \mid a}} p^{m-1}(p-1) = O\left(\frac{X^{m+1}}{n} + X^m\right).
\]

3. Main Results

For two integers \(d \) and \(n \) satisfying \(\gcd(d, n) = 1 \), we denote the multiplicative order of \(n \) modulo \(d \) by \(\text{ord}_d n \). For an integer \(n \) and a prime \(p \), we denote \(v_p(n) \) the exact power of \(p \) dividing \(n \).

Let \(\mu \) be the Möbius function. For a real number \(a \), we denote \(\lfloor a \rfloor \) the least integer which is not less than \(a \).

Write \(k = p_1^{r_1} p_2^{r_2} \cdots p_s^{r_s} \geq 2 \), where \(p_1, \ldots, p_s \) are distinct primes, \(p_1 < p_2 < \cdots < p_s \) and \(n_1, \ldots, n_s \geq 1 \). Let \(m \) be a fixed positive integer.

Proposition 3.1. Let \(p \) be an odd prime and \(r \) be a positive integer. Write \(p^m - p^{m-1} = p_1^{r_1} \cdots p_s^{r_s} \cdot \rho \), where \(r_1, \ldots, r_s \geq 0 \) are integers and \(\gcd(p_1 \cdots p_s, \rho) = 1 \). We have

1. \(C_r(k, p^m) = \frac{1}{r} \sum_{d \mid r} \mu(d)\gcd(p^m - p^{m-1}, k^{r/d} - 1) \).
2. \(P_r(k, p^m) = \sum_{d \mid r} \mu(d)\gcd(p^m - p^{m-1}, k^{r/d} - 1) \).
3. \(P(k, p^m) = \rho \).
4. \(C(k, p^m) = \sum_{d \mid p} \frac{\varphi(d)}{\text{ord}_d k} \).
5. For any \(x \in (\mathbb{Z}/p^m \mathbb{Z})^* \), denote \(\text{ord}_{p^m} x \) by \(\text{ord}_x \), \(c_{k, p^m}(x) = \text{ord}_{\text{gcd}(\text{ord}_x, \rho)} k \).
6. \(c(k, p^m) = \frac{1}{\rho} \sum_{d \mid p} \varphi(d)\text{ord}_d k \).
7. For any \(x \in (\mathbb{Z}/p^m \mathbb{Z})^* \), denote \(\text{ord}_{p^m} x \) by \(\text{ord}_x \),

\[
t_{k, p^m}(x) = \max \left\{ \left\lfloor \frac{v_{p_1}(\text{ord}_x)}{n_1} \right\rfloor, \left\lfloor \frac{v_{p_2}(\text{ord}_x)}{n_2} \right\rfloor, \ldots, \left\lfloor \frac{v_{p_s}(\text{ord}_x)}{n_s} \right\rfloor \right\}.
\]

8. \(t(k, p^m) = \frac{1}{p_1^{r_1} \cdots p_s^{r_s}} \sum_{d \mid p_1^{r_1} \cdots p_s^{r_s}} \varphi(d) \max \left\{ \left\lfloor \frac{v_{p_1}(d)}{n_1} \right\rfloor, \left\lfloor \frac{v_{p_2}(d)}{n_2} \right\rfloor, \ldots, \left\lfloor \frac{v_{p_s}(d)}{n_s} \right\rfloor \right\} \).

Proof. (1) and (2) By Möbius inversion formula and Theorem 5.6 in [10].

(3) A special case of Corollary 3 in [12].

(4) By Theorem 2 and Theorem 3 in [12].

(5) By Lemma 3 and Theorem 2 in [12].
(6) Denote \(p_1^{s_1} \cdots p_r^{s_r} \) by \(w \), from (5), we have

\[
c(k, p^m) = \frac{1}{p^m - p^{m-1}} \sum_{x \in (\mathbb{Z}/p^m \mathbb{Z})^*} c_{k, p^m}(x)
\]

\[
= \frac{1}{p^m - p^{m-1}} \sum_{d|p^m} \sum_{n|w} \phi(d) \text{ord}_k
\]

\[
= \frac{1}{p^m - p^{m-1}} \sum_{d|p^m} \sum_{n|w} \phi(d) \text{ord}_k \frac{d}{\phi(d)} \sum_{\nu=0}^{\text{ord}_k} \nu \frac{w^{\nu}}{n^\nu}
\]

Furthermore, we have

\[
t(k, p^m) = \frac{1}{p^m - p^{m-1}} \sum_{d|p^m} \phi(d) \max \left\{ \left\lfloor \frac{v_{p_1}(d)}{n_1} \right\rfloor, \left\lfloor \frac{v_{p_2}(d)}{n_2} \right\rfloor, \ldots, \left\lfloor \frac{v_{p_s}(d)}{n_s} \right\rfloor \right\}
\]

(7) Let \(w_x \) be the factor of \(\text{ord}_x \) such that \(\frac{\text{ord}_x}{w_x} \) is the largest factor relatively prime to \(k \). By Lemma 3 in [12], we have \(t_{k, p^m}(x) \) is the least non-negative integer \(l \) such that \(w_x k^l \). In other words, \(t_{k, p^m}(x) \) is the least non-negative integer \(l \) such that \(v_{p_x}(\text{ord}_x) \leq ln_x \), for any \(1 \leq i \leq s \). Then we get the desired result.

(8) Notice that for any \(x \in (\mathbb{Z}/p^m \mathbb{Z})^* \), \(\text{ord}_x | (p^m - p^{m-1}) \), and there are \(\phi(\text{ord}_x) \) elements with the order \(\text{ord}_x \). By (7), we have

\[
t(k, p^m) = \frac{1}{p^m - p^{m-1}} \sum_{d | (p^m - p^{m-1})} \phi(d) \max \left\{ \left\lfloor \frac{v_{p_1}(d)}{n_1} \right\rfloor, \left\lfloor \frac{v_{p_2}(d)}{n_2} \right\rfloor, \ldots, \left\lfloor \frac{v_{p_s}(d)}{n_s} \right\rfloor \right\}
\]

Remark 3.2. If we put \(k = 2 \) and \(m = 1 \), then the formulas (3),(4),(6) and (8) correspond to Theorem 6 in [11].

Remark 3.3. Since the conclusions in [10] and [12] we apply are about the general case of modulo a positive integer, it is easy to get similar formulas for the case of \(p = 2 \).

Proposition 3.4. Let \(r \) be a positive integer, we have

\[
AP_r(k, m) = \sum_{d|r} \mu(d) \tau(k^{r/d} - 1),
\]

(3.1)

\[
AC_r(k, m) = \frac{1}{r} \sum_{d|r} \mu(d) \tau(k^{r/d} - 1).
\]

(3.2)

Proof. Combing (2.2) and Proposition 3.1 (1) and (2), we can get the desired formulas. \(\square \)

In the following, we denote by \(\Omega \) the set of positive \(S \)-units with \(S = \{p_1, \ldots, p_s\} \). Here a positive \(S \)-unit means a positive integer whose prime divisors all belong to \(S \).

Proposition 3.5. We have

\[
\lim_{N \to \infty} \frac{S_0(k, m, N)}{N^m} = \frac{1}{m+1} \left(\prod_{i=1}^{s} \frac{p_i^2}{p_i^2 - 1} - 1 \right).
\]
ON THE CYCLE STRUCTURE OF REPEATED EXPONENTIATION MODULO A PRIME POWER

Proof. Put \(Q = p_1 p_2 \cdots p_s \) and denote by \(\mathcal{U}_Q \) the set of integer \(u, 1 \leq u \leq Q \), such that \(\gcd(u, Q) = 1 \).

For each odd prime \(p \), let \(\rho_p \) be the largest divisor of \(p^m - p^{m-1} \) coprime to \(p_1 p_2 \cdots p_s \). It is easy to see

\[
\lim_{N \to \infty} \frac{S_0(k, m, N)}{N^m} = \frac{1}{N^{m \pi(N)}} \sum_{p \leq N} \rho_p.
\]

Notice that if a prime \(p > p_s \), then \(v_p(p^m - p^{m-1}) = v_p(p-1) \) for any \(1 \leq i \leq s \).

Hence, following the method in Theorem 2 of [2], we have

\[
\lim_{N \to \infty} \frac{S_0(k, m, N)}{N^m} = 1 - \sum_{q \in \Omega} \frac{1}{q^2}.
\]

Moreover, we have

\[
\sum_{q \in \Omega} \frac{1}{q^2} = \sum_{i_1, \ldots, i_s = 0}^{\infty} \frac{1}{(p_1^{i_1} \cdots p_s^{i_s})^2} - 1
\]

\[
= \sum_{i_1 = 0}^{\infty} \cdots \sum_{i_s = 0}^{\infty} \frac{1}{p_1^{i_1} \cdots p_s^{i_s}} - 1
\]

\[
= \prod_{i=1}^{s} \frac{p_i^2}{p_i^2 - 1} - 1.
\]

Hence, we get the desired result.

\[\square\]

Corollary 3.6. We have \(\frac{1}{k^x(m+1)} \frac{k^x}{N^m} < \lim_{N \to \infty} \frac{S_0(k, m, N)}{N^m} < \frac{2^x - 1}{m+1} \).

Proof. Notice that for any prime \(p \), we have

\[
1 + p^{-2} < \frac{p^2}{p^2 - 1} = 1 + \frac{1}{p^2 - 1} < 2.
\]

\[\square\]

Given \(q = p_1^{r_1} \cdots p_s^{r_s} \in \Omega \), we denote

\[
\psi(q) = \frac{1}{q} \sum_{d | q} \varphi(d) \max \left\{ \left\lfloor \frac{v_{p_1}(d)}{n_1} \right\rfloor, \ldots, \left\lfloor \frac{v_{p_s}(d)}{n_s} \right\rfloor \right\}
\]

Proposition 3.7. We have \(\lim_{N \to \infty} S(k, m, N) = \sum_{q \in \Omega} \frac{\psi(q)}{q} \).
Proof. Given \(q = p_1^{r_1} \cdots p_s^{r_s} \in \Omega \). Suppose \(r_1 \geq 1 \), we want to estimate \(\frac{1}{q} \sum_{d|q} \varphi(d) \left[\frac{\nu_k(d)}{n_1} \right] \).

For simplicity, we replace \(p_1, r_1 \) and \(n_1 \) by \(p, r \) and \(n \) respectively. By division algorithm, we write \(r = ln + d \) with \(0 \leq d < n \). We have

\[
\frac{1}{q} \sum_{d|q} \varphi(d) \left[\frac{\nu_k(d)}{n} \right] = \frac{1}{p^r} \sum_{d|p^r} \varphi(d) \left[\frac{\nu_k(d)}{n} \right]
\]

\[
= \frac{p-1}{p^r} \sum_{i=1}^{\lfloor \frac{n}{p^r} \rfloor} p^{i-1} \left[\frac{1}{n} \right]
\]

\[
= \frac{p-1}{p^r} \left(\sum_{i=1}^{n} p^{i-1} + \sum_{i=n+1}^{2n} 2p^{i-1} + \cdots + \sum_{i=(l-1)n+1}^{ln} lp^{i-1} + \sum_{i=ln+1}^{ln+d} (l+1)p^{i-1} \right)
\]

\[
= \frac{p-1}{p^r} \left[1 + 2p^n + \cdots + lp^{(l-1)n} \right] + \frac{(l+1)p^n (p^r-1)}{p^r}
\]

\[
\leq l + (l + 1) \leq 3r.
\]

Hence, we have

\[
\psi(q) \leq \frac{1}{q} \sum_{d|q} \varphi(d) \left(\left[\frac{\nu_k(d)}{n_1} \right] + \cdots + \left[\frac{\nu_k(d)}{n_s} \right] \right)
\]

\[
(3.3)
\]

\[
\leq 3(kr_1 + \cdots + kr_s)
\]

\[
\leq \frac{3}{\ln 2} \ln q = O(\ln q).
\]

Similarly to Proposition 3.5 by Proposition 3.1 (8), we have

\[
\lim_{N \to \infty} S(k, m, N) = \lim_{N \to \infty} \frac{1}{\pi(N)} \sum_{q \in \Omega} \psi(q) \sum_{u \in U_q} \sum_{p \leq N \ (p \equiv q u + 1 \text{ (mod q)})} 1.
\]

Then following the method in Theorem 2 of [2], we can get the desired result. \(\square \)

Corollary 3.8. We have \(\frac{1}{k} < \lim_{N \to \infty} S(k, m, N) < \frac{5\sqrt{p_1} \cdots \sqrt{p_s}}{(\sqrt{p_1} - 1) \cdots (\sqrt{p_s} - 1)} \).

Proof. On one hand we have

\[
\sum_{q \in \Omega} \frac{\psi(q)}{q} > \sum_{i_1 \geq n_1, \ldots, i_s \geq n_s} \frac{\psi(p_1^{i_1} \cdots p_s^{i_s})}{(p_1^{i_1} \cdots p_s^{i_s})^2}
\]

\[
= \frac{(p_1 - 1) \cdots (p_s - 1)}{p_1 \cdots p_s} \sum_{i_1 \geq n_1} \frac{1}{i_1} \cdots \sum_{i_s \geq n_s} \frac{1}{p_s}
\]

\[
= \frac{1}{k}.
\]

On the other hand, by (3.3) we have \(\psi(q) < 5 \ln q \), then we have

\[
\sum_{q \in \Omega} \frac{\psi(q)}{q} < \sum_{q \in \Omega} \frac{5 \ln q}{q}
\]

\[
< 5 \sum_{q \in \Omega} \frac{1}{q}
\]

\[
= 5 \sum_{i_1 = 0, \ldots, i_s = 0} \frac{1}{p_1^{i_1} \cdots p_s^{i_s}}
\]

\[
= \frac{5}{\sqrt{p_1} \cdots \sqrt{p_s}} \left(\frac{1}{\sqrt{p_1} - 1} \cdots \frac{1}{\sqrt{p_s} - 1} \right).
\]

\(\square \)
4. Remarks on the General Case

In this section, we will give some remarks on the case of modulo a positive integer.

We can deduce formulas for $C_r(k, M)$ and $P_r(k, M)$ directly from Theorem 5.6 in [10]. Corollary 3 in [12] has given a formula for $P(k, M)$. We can also derive a formula for $C(K, M)$ directly by applying Theorem 2 and Theorem 3 in [12].

Following the same methods, we can easily determine the cycle length function $c_{k, M}(x)$ and the tail function $t_{k, M}(x)$ on $(\mathbb{Z}/M\mathbb{Z})^*$, then we can get formulas for $c(k, M)$ and $t(k, M)$.

In fact, [12] and [10] can tell us more information about the properties of repeated exponentiation modulo a positive integer.

5. Acknowledgment

We would like to thank Prof. I.E. Shparlinski for suggesting this problem and for his helpful advice.

References

1. L. Blum, M. Blum and M. Shub, A simple unpredictable pseudo-random number generator, SIAM J. Comp., 15 (1986), 364-383.
2. W.-S. Chou and I.E. Shparlinski, On the Cycle Structure of Repeated Exponentiation Modulo a Prime, J. Number Theory, 107 (2004), 345-356.
3. E. D. El-Mahassni, On the Distribution of the Power Generator over a Residue Ring for Parts of the Period, Rev. Mat. Complut., 21 (2008), 319-325.
4. J. B. Friedlander, C. Pomerance and I. E. Shparlinski, Period of the power generator and small values of Carmichael’s function, Math. Comp., 70 (2001), 1591-1605.
5. P. Kurlberg and C. Pomerance, On the period of the linear congruential and power generators, Acta Arith., 119 (2005), 149-169.
6. J. C. Lagarias, Pseudorandom number generators in cryptography and number theory, Proc. Symp. in Appl. Math., Amer. Math. Soc., Providence, RI, 42 (1990), 115-143.
7. M. Nilsson, Cycles of monomials and perturbated monomial p-adic dynamical systems, Ann. Math. Blaise Pascal, 7(1) (2000), 37-63.
8. L. Somer, M. Křížek, Structure of digraphs associated with quadratic congruences with composite moduli, Discrete Math. 306 (2006) 2174-2185.
9. L. Somer, M. Křížek, On semiregular digraphs of the congruence $x^k \equiv y \pmod{m}$, Comment. Math. Univ. Carolin. 48 (2007), 41-58.
10. L. Somer, M. Křížek, On symmetric digraphs of the congruence $x^k \equiv y \pmod{m}$, Discrete Math. 309 (2009) 1999-2009.
11. T. Vasiga, J. Shallit, On the iteration of certain quadratic maps over $GF(p)$, Discrete Math. 277 (2004) 219-240.
12. B. Wilson, Power digraphs modulo n, Fibonacci Quart. 36 (1998) 229-239.