Introduction: Health professionals’ own beliefs and practices, especially their smoking status, has been described to strongly influence their willingness to provide brief tobacco interventions (5 A’s) to their patients. This study examines the association between the smoking status of faculty members in US dental programmes and (1) practice pattern; (2) perceived confidence; and (3) perceived educational preparedness of new graduates in providing the 5 A’s to their patients.

Methods: This study presents data from the National Tobacco Survey of Personnel in Dental and Allied Academic Programs (TSPDAP) conducted in 2018. Faculty members in US dental/allied dental schools were invited to participate in this survey. Data were stratified based on the smoking status of the respondents as “never” and “ever” smokers (smoked <100 and ≥100 cigarettes during their lifetime, respectively). Multiple logistic regression models were used to calculate the adjusted odds ratios (aORs) and 95% confidence intervals (CIs).

Results: Data of 1896 participants were analysed, of whom 1032 (54.4%) were categorised as “ever” smokers. In the final regression model, low perceived barrier score was significantly associated with high practice pattern (aOR, 0.94; 95% CI, 0.92-0.97), high perceived confidence (aOR, 0.92; 95% CI, 0.90-0.95), and high perceived educational preparedness (aOR, 0.97; 95% CI, 0.94-0.98) in delivering the 5 A’s to patients. Similarly, high perceived effectiveness was significantly associated with high practice pattern (aOR, 1.08; 95% CI, 1.05-1.11), high perceived confidence (aOR, 1.10; 95% CI, 1.06-1.13), and high perceived educational preparedness (aOR, 1.06; 95% CI, 1.03-1.09) in delivering the 5 A’s to their patients. The smoking status of the dental personnel did not show any significant association with practice pattern, perceived confidence, or perceived educational preparedness in delivering the 5 A’s to their patients.

Conclusions: The smoking status of oral health care personnel was not significantly associated with their participation in tobacco cessation interventions.

© 2022 The Authors. Published by Elsevier Inc. on behalf of FDI World Dental Federation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Key words: Dental education Dental faculty Public health Smoking Tobacco cessation

Introduction
Smoking is the single greatest cause of preventable morbidity and mortality in the world and is regarded as one of the biggest public health threats in the current era. Cigarette smoking elevates the risk of nearly every oral condition that
dental professionals are tasked with treating and diminishes the chances of many dental treatments being successful. It has been estimated that by 2030, tobacco usage will become the greatest cause of death, especially amongst 35- to 69-year-old individuals worldwide. One of the goals of Healthy People 2020 was to increase the life expectancy and improve the quality of life amongst adults by reducing the prevalence of smoking. The FDI World Dental Federation (FDI) adopted a position statement and a strategic plan on tobacco control that urges its member associations to take decisive action in this area of public health. The consensus report from the 2nd European Workshop on Tobacco Use Prevention and Cessation urged oral health care professionals to act as advocates to promote population, community, and individual initiatives in support of tobacco use prevention and cessation counselling, including integration in undergraduate and graduate dental curricula.

Health professionals play an important role in the success of tobacco control and cessation interventions. The US Public Health Service (PHS) guidelines recommend the “5 A’s” approach to be adopted by all health professionals in helping their patients quit tobacco use. The 5 A’s approach, or the brief intervention, includes asking about tobacco use, advising tobacco users to quit, assessing readiness to make a quit attempt, assisting with the quit attempt, and arranging follow-up care. The tobacco control interventions offered by dental health care professionals have been reported to be efficient in motivating tobacco users to quit the addiction. Most treatments carried out by dental health care professionals require several appointments for the completion of treatment, thus enabling an ideal opportunity for providing tobacco cessation counselling and encouraging smokers to quit tobacco use.

Despite the evidence on the success of tobacco cessation interventions in dental care settings, the acceptance amongst dental health care professionals to routinely engage in these activities continues to be low. Some of the common reasons cited by dental health care professionals for not proactively participating in cessation activities are lack of financial reimbursement, time, perceived need, training, confidence/skills, patient resistance/lack of patient motivation, and lack of resources and referral system. Several studies across Europe and North America have assessed the effectiveness of tobacco prevention and cessation training offered to undergraduate students within dental and allied academic programmes. Academic institutions are in a unique position to provide the necessary training on tobacco counselling and cessation services for undergraduate students. It is with this objective in mind that the American Dental Education Association (ADEA) launched the Tobacco Control Project in 2001. Following this, a national survey amongst dental schools in the United States reported that almost all of the schools routinely used tobacco use evaluation forms during the patient history and examination process. One of the barriers that was identified in the ADEA survey was the lack of faculty training on cessation techniques. Since faculty members play a vital role in educating the students about tobacco cessation and prevention, assessing the faculty’s preparedness and confidence in engaging in these areas is critical.

Health professionals’ own beliefs and practices, especially their smoking status, has been described to strongly influence their willingness to provide tobacco prevention and cessation services to their patients. A national survey amongst multiple types of health professionals in the United States reported that the health professionals’ smoking status had an influence on their smoking cessation practices and beliefs. Compared to nonsmokers, a health professional who smokes may be less likely to believe that smoking posed a significant threat to the patients’ health. However, to the best of our knowledge, no study has assessed the influence of individual-level characteristics, specifically smoking status, on the dental faculty’s perception towards the provision of tobacco prevention and cessation services in an academic institution. Therefore, this study was designed to examine whether there was an association between the dentists’ smoking status (smoker vs nonsmoker) and (1) the practice pattern of delivering the 5 A’s to their patients, (2) perceived confidence in providing the 5 A’s to their patients, and (3) perceived educational preparedness of new graduates of the institution in providing the 5 A’s to their patients.

Materials and methods

Overview of the survey

This study analysed data collected from the Tobacco Survey of Personnel in Dental and Allied Academic Programs (TSPDAP), conducted in 2018. This includes pre- and postdoctoral dental programmes, dental hygiene programmes, and dental assisting programmes recognised by the Commission on Dental Accreditation (CODA). Institutional Review Board approval (Protocol #: 7042; Dated 16 October 2017) was obtained from the Centers for Disease Control and Prevention. The TSPDAP employed a complete enumeration approach (census) at both the programme and the person level. All personnel in accredited dental education programmes who met the inclusion criteria were eligible. The survey was administered electronically (via SurveyMonkey) and participation was voluntary. The number of programmes enumerated were 335 US dental hygiene programmes; 258 US dental assisting programmes; and 66 US predoctoral and US postdoctoral programmes in civilian institutions.

TSPDAP sampling frame construction

The target population for this study was faculty and staff in US dental and allied academic programmes recognised by CODA. Inclusion of different types of dental educational programmes was intended to allow comparison of curricula, training, knowledge, practices, and attitudes in relation to cessation counselling amongst different programme types. Individual-level criteria for inclusion included being a full-time or a part-time faculty member. The following groups were excluded: residents, teaching assistants, or work-study students who were currently under training. Completion of the sampling frame involved the following 3 steps:

1. Complete enumeration of all eligible programmes using information from CODA surveys of programmes. This included 66 US dental schools, 335 US dental
hygiene programmes, and 258 US dental assisting programmes.

(2) Complete enumeration of all personnel in each eligible programme using information from the individual programmes’ directories or catalogues. Most programmes had this information available on their online directory of faculty/staff or within online catalogues. For each individual staff or faculty, contact details were extracted, including emails and phone numbers.

(3) For personnel listed without an email address, cross-referencing with other supplemental sources of information was done to extract this information. Additional searches for email information were performed on professional networking sites such as LinkedIn, Research Gate, PubMed (corresponding author information), and professional organisation member directories.

Survey administration

The TSDAP questionnaire (Appendix 1) was administered using the “email invitation” option of SurveyMonkey. Reminder messages were sent at specified intervals to individuals who had not yet responded.

The main outcome variables of interest were tobacco cessation practice behaviours/perceptions. We measured these in 3 separate domains:

1. Practice pattern of delivering the 5 A’s to their patients.
2. Perceived confidence in providing the 5 A’s to their patients.
3. Perceived educational preparedness of new graduates of the institution in providing the 5 A’s to their patients.

The 10 items measured on each domain all correspond to the 5 A’s: (1) asking about cigarettes smoking; (2) asking about the use of any tobacco product other than cigarettes; (3) asking and recording the patient’s tobacco use pattern; (4) advising tobacco users by discussing the benefits of quitting tobacco use; (5) advising tobacco users by providing educational materials on benefits of quitting; (6) assessing tobacco users’ willingness to quit; (7) assisting tobacco users to set a day to quit; (8) assisting tobacco users by referring them to telephone quit lines; (9) assisting smoking users by offering smoking cessation medications; and (10) arranging and monitoring progress in quitting tobacco use. Each question was measured on a 4-point Likert-type scale, as those describing frequency (always [3], sometimes [2], rarely [1], and never [0]) or intensity of engagement (high [3], moderate [2], low [1], and none [0]). For each of these domains, we summed the scores for each item reported. The lowest possible score was 0 (the individual scored 0 on all 10 items for the domain), whilst the maximum possible score was 40 (the individual scored 4 on all 10 items on the domain). The 3 domains were dichotomised based on statistical distribution into affirmative (≥median score) and nonaffirmative (<median score).

Smoking status

An “ever” smoker was defined as someone who had smoked at least 100 cigarettes in their lifetime, and a “never” smoker was someone who smoked fewer than 100 cigarettes during their lifetime.

Data analyses

Chi-square analysis was used to compare between ever and never smokers across all demographic characteristics and other tobacco-related characteristics. Multiple logistic regression models, with coefficients and 95% confidence interval (CI) estimation, were fit separately to identify predictors for each of the 3 domains. Independent variables in the regression analysis included health professional’s smoking status, perceived effectiveness of implementing the 5 A’s framework, and barriers faced in implementing the 5 A’s framework along with the demographic variables and practice characteristics. All the models were adjusted for barrier score, effectiveness score, years since graduation, residence region, type of academic programme, dental or allied health programme, and the smoking status of the respondents. A composite score for perceived effectiveness and perceived barriers was obtained by summing the affirmative responses for each.

Separate analysis of each of the 3 domains was performed with the same predictors in the regression model, and their adjusted odds ratios (aORs) were estimated. All observed results are significant based on 2-tailed statistical tests with a critical alpha of 0.05. The data management and analysis were carried out using statistical software SPSS 26.0 (IBM Corp.).

Results

Of the total 3034 faculty members who gave informed consent and completed the online survey, only 1896 (62.5%) responses were found to be complete for the outcome variable, after adopting a listwise deletion approach. About 55% of the study sample were categorised as ever smokers. More than half of the respondents were women (57%), and respondents were mostly White (80%) (Table 1). The majority of the respondents were older than 50 years, were full-time faculty members, and were primarily working in dental schools. Almost all the respondents (90%) were academic faculty members, and about two-thirds were involved with predoctoral dental programmes. About 45% of the faculty members spent less than 10 hours per week seeing patients, and about 58% reported having received formal training in tobacco prevention and cessation services.

The overall perceived effectiveness of different tobacco cessation interventions within the entire study population showed that support from family (89.8%), peers (88.0%), prescription medication (88.9%), nicotine replacement therapy (86.6%), and counselling (81.6%) were perceived to be more effective than use of e-cigarettes (33.0%), quit lines (47.4%), web-based cessation material (38.8%), and self-help material (35.7%) (Table 2). However, a significantly higher percentage
Table 1 – Demographic and workplace-related characteristics between never and ever smokers.

Characteristics	Total	Never smokers	Ever smokers	P value*
	N (%)	n (%)	n (%)	
Overall	1896 (100.0)	864 (45.6)	1032 (54.4)	
Sex				
Male	801 (43.5)	316 (37.8)	485 (48.4)	<.001
Female	1039 (56.5)	521 (62.2)	518 (51.6)	
Age				
29 years or younger	25 (1.4)	20 (2.4)	5 (0.5)	<.001
30-39 years	190 (10.3)	90 (10.8)	100 (9.9)	
40-49 years	349 (18.7)	174 (20.8)	175 (17.4)	
50-59 years	511 (27.7)	243 (29.0)	268 (26.6)	
60-69 years	573 (31.2)	252 (30.1)	321 (31.8)	
70+ years	197 (10.7)	58 (6.9)	139 (13.8)	
Race/ethnicity				
White	1452 (79.8)	610 (73.8)	842 (84.9)	<.001
Black	61 (3.4)	25 (3.0)	36 (3.6)	
Hispanic	108 (5.9)	59 (7.1)	49 (4.9)	
Asian	169 (9.3)	122 (14.8)	47 (4.7)	
Other	30 (1.6)	11 (1.3)	19 (1.9)	
Region				
Midwest	480 (26.1)	208 (24.9)	272 (27.0)	.63
Northeast	526 (28.5)	246 (29.4)	280 (27.8)	
South	475 (25.7)	212 (25.3)	263 (26.1)	
West	364 (19.7)	171 (20.4)	193 (19.1)	
Workplace				
Dental programme	1378 (72.7)	626 (72.5)	752 (72.5)	.84
Allied dental programme	518 (27.3)	238 (27.5)	280 (27.5)	
Advanced profession				
General dentist	416 (22.0)	199 (23.1)	217 (21.0)	.53
Specialist dentist	567 (30.0)	261 (30.3)	306 (29.7)	
Dental assistant/dental therapist/other dental	310 (16.4)	140 (16.2)	170 (16.5)	
Dental hygienist	447 (23.5)	189 (21.9)	258 (25.0)	
Others	153 (8.1)	73 (8.5)	80 (7.8)	
Position				.049
Full-time	1413 (75.0)	660 (77.1)	753 (73.2)	
Part-time	471 (25.0)	196 (22.9)	275 (26.8)	
Educational setting dental where programme is located				.02
Dental school and affiliate	1327 (70.3)	614 (71.2)	713 (69.5)	
Medical school/hospital	46 (2.4)	31 (3.2)	15 (4.5)	
Community/junior college	319 (16.9)	129 (15.5)	190 (15.0)	
Technical college/institute	56 (3.0)	23 (2.7)	33 (3.5)	
School of allied health sciences	89 (4.7)	41 (4.8)	48 (4.7)	
Other	51 (2.7)	31 (2.6)	15 (2.8)	
Academic role				.84
Academic	1701 (89.7)	782 (90.6)	919 (89.1)	
Non-academic	195 (10.3)	82 (9.4)	113 (10.9)	
Training programme involved in				
Dental assisting	119 (6.3)	65 (7.5)	54 (5.3)	.21
Dental hygiene	461 (24.5)	191 (21.9)	270 (26.7)	
Dental therapy	15 (0.8)	7 (0.8)	8 (0.8)	
Other	123 (6.5)	64 (7.3)	59 (5.8)	
Predoctorial	1166 (61.9)	545 (62.5)	621 (61.4)	
Hours/week seeing patients				.45
1-10 hours	548 (45.5)	248 (44.7)	300 (46.2)	
11-20 hours	301 (25.0)	141 (25.3)	160 (24.6)	
21-35 hours	246 (20.4)	108 (19.5)	138 (21.2)	
36+ hours	110 (9.1)	58 (10.5)	52 (8.0)	
Received formal training for tobacco prevention/cessation				.7
No	506 (42.1)	236 (42.7)	270 (41.6)	
Yes	696 (57.9)	317 (57.3)	379 (58.4)	

* Chi-square test.
Missing values present.
* Significant associations are shown in bold.
of never smokers, as compared with ever smokers, considered e-cigarettes (36.0% and 30.4%, respectively; \(P = .04 \)) and quit lines (50.5% and 44.7%, respectively, \(P = .04 \)) to be effective tobacco cessation interventions.

Table 3 presents the perceived barriers to delivering smoking cessation counselling for never and ever smokers. Some of the frequently identified barriers within the overall population were high relapse rates (82.2%), little/no reimbursement for cessation counselling (81.8%), and limited coverage for cessation interventions (81.2%). A significantly higher proportion of never smokers believed that patients had more immediate problems than addressing tobacco differences (60.9%, \(P = .04 \)) when compared to ever smokers (50.5%). A significantly higher percentage of never smokers (59.6%, \(P = .03 \)) when compared to ever smokers (53.6%), reported other priorities to reduce their ability to provide tobacco cessation counselling. In comparison to ever smokers (8.8%), a higher proportion of never smokers (15.0%) believed that medical doctors were better than dentists at providing tobacco cessation counselling to their patients (\(P = .01 \)).

Table 4 presents the differences in the practice pattern, confidence, and preparedness in implementing brief 5 A’s intervention at the workplace. In our study, dental professionals, both never (36.1%) and ever smokers (35.1%), reported less confidence in prescribing tobacco cessation medications when compared to other nicotine replacement therapies.

Multiple logistic regression models were used to calculate the aOR and 95% CI for practice pattern, confidence, and preparedness (Table 5). After simultaneous adjustment for all the other variables in the model, low perceived barrier score was significantly associated with high practice pattern (aOR, 0.94; 95% CI, 0.92-0.97), high perceived confidence (aOR, 0.92; 95% CI, 0.90-0.95), and high perceived educational preparedness (aOR, 0.97; 95% CI, 0.94-0.98) in delivering the 5 A’s. Similarly, high perceived effectiveness was significantly associated with high practice pattern (aOR, 1.08; 95% CI, 1.05-1.11), high perceived confidence (aOR, 1.10; 95% CI, 1.06-1.13), and high perceived educational preparedness (aOR, 1.06; 95% CI, 1.03-1.09) in delivering the 5 A’s. Additionally, the variable of fewer years since graduation was significantly associated with higher perceived educational preparedness of recent graduates in delivering the 5 A’s (aOR, 0.90; 95% CI, 0.81-0.98). There were no significant associations for the other sociodemographic/workplace variables included in the models.

Discussion

This study assessed the association between smoking status of faculty members from the different US dental/allied dental schools and their self-efficacy and perception towards providing brief tobacco interventions at the workplace. The results of our study show that the smoking status of dental personnel did not influence their perception of tobacco cessation interventions. Only a few studies have assessed the relationship between the smoking status of dental professionals and their participation in smoking cessation initiatives.33-35

| Table 2 – Perceived effectiveness of tobacco cessation interventions at the workplace. |
|--|---------------------|---------------------|---------------------|
Effectiveness of:	Total N (%)	Never smokers n (%)	Ever smokers n (%)
Counselling from a dental professional	876 (73.1)	409 (74.1)	467 (72.2)
Counselling from a physician	968 (81.6)	448 (81.8)	520 (81.5)
Nicotine replacement therapy	1032 (86.6)	473 (86.5)	559 (86.8)
Prescription medication	1044 (88.9)	482 (89.1)	562 (88.6)
E-cigarettes	387 (33.0)	195 (36.0)	192 (30.4)
Quit lines	541 (47.4)	266 (50.5)	275 (44.7)
Web-based cessation materials	454 (38.8)	210 (38.9)	244 (38.7)
Self-help materials	421 (55.7)	198 (36.3)	223 (35.1)
Family support	1071 (89.8)	502 (91.6)	569 (88.4)
Peer support	1041 (88.0)	478 (87.9)	563 (88.1)

| Table 3 – Perceived barriers to delivering smoking cessation counselling. |
|--|---------------------|---------------------|---------------------|
Barrier	Total N (%)	Never smokers n (%)	Ever smokers n (%)
Little or no reimbursement for cessation	947 (81.8)	440 (82.6)	507 (81.3)
Limited coverage for cessation	939 (81.2)	443 (83.0)	496 (79.7)
Patients are not motivated to quit tobacco	809 (69.3)	383 (71.5)	426 (67.4)
Lack of resources	585 (50.3)	278 (51.8)	307 (49.0)
Patients who attempt to usually quit relapse	963 (82.2)	437 (81.8)	526 (82.4)
Patients have more immediate problems than tobacco	646 (55.3)	324 (60.9)	322 (50.5)
Other priorities reduce my ability to provide tobacco cessation counselling	659 (56.3)	320 (59.6)	339 (53.6)
My experience in intervening with tobacco users is limited	682 (57.7)	319 (59.1)	363 (56.5)
Physicians are better than dentists in providing tobacco cessation counselling	136 (11.6)	80 (15.0)	56 (8.8)

* Chi-square test. Significant associations are shown in bold.
Table 4 – The practice pattern, perceived confidence and perceived educational preparedness of new graduates of the institution in providing the 5 A's to their patients

Practice	Confidence	Perceived Preparedness
Asking about cigarettes smoking	53 (96.9)	37 (95.3)
Asking about the use of any tobacco product other than cigarettes	550 (98.6)	562 (98.7)
Asking and recording the patient's tobacco use pattern	527 (93.7)	592 (98.7)
Advise tobacco users by discussing the benefits of quitting	517 (93.7)	532 (91.8)
Advise tobacco users by providing educational materials on quit	507 (91.7)	520 (91.3)
Arrange and monitor progress in quitting tobacco use	527 (93.7)	532 (88.1)
Assess tobacco users willingness to quit	527 (93.7)	494 (86.7)
Assess tobacco users by referring them to telephone quitlines	517 (93.7)	473 (86.8)
Assess tobacco users by offering smoking cessation medications	507 (91.7)	371 (72.6)
Assist tobacco users to set a day to quit	527 (93.7)	371 (57.2)
Assist tobacco users by referring them to in-person quitline interventions	517 (93.7)	343 (63.1)
Assess tobacco users who are interested in quitting smoking	507 (91.7)	371 (57.2)
Ask patients about their smoking behaviour	527 (93.7)	371 (57.2)
Advise patients to try to quit	517 (93.7)	343 (63.1)
Advise patients to quit by offering smoking cessation medications	507 (91.7)	371 (57.2)

* Chi-square test. Significant associations are shown in bold. To the best of our knowledge, this is the first national survey amongst faculty members in dental/allied dental programmes in the United States to assess the factors contributing to tobacco cessation intervention programmes.

In a dental academic setting, there was no significant difference in active participation in cessation interventions related to the smoking status of the academic faculty, and this was in agreement with other published literature. A previous study in a US-based dental school that assessed students’ attitudes towards tobacco cessation reported that the students’ own smoking practices were not reflected in their attitudes and practices in tobacco cessation for their patients. However, many studies amongst medical health care workers have reported contradictory findings. Kawakami et al found that physicians who smoked were less likely to offer smoking cessation assistance to their patients when compared with their nonsmoking counterparts. Similarly, a large multinational survey amongst physicians from 16 countries reported that smoking physicians are less likely to initiate cessation interventions with their patients. In the same survey, it was reported that most physicians did not routinely ask their patients about their smoking behaviour at every clinic visit. In contrast, studies amongst dentists have reported an increasing trend in routinely providing tobacco cessation advice to patients. Most dental and dental hygiene schools in the United States require the students to enquire about patients’ tobacco usage and to provide tobacco cessation advice to smokers. The ADEA survey demonstrates that dental educators believe they have a role in both tobacco prevention and cessation services. Faculty members play a vital role in ensuring that the students are equipped with the necessary skills for providing tobacco cessation interventions to their patients. In the present study, dental faculty members were asked about their perception on the preparedness of new dental graduates in providing tobacco cessation intervention, and it was observed that the smoking status of the academic faculty did not affect their perception. Dental personnel were confident that recent graduates could adequately screen and record patients’ smoking behaviour as well as discuss the benefits of quitting.

Smoking status did not have any influence on perception of the self-reported barrier to tobacco cessation. But when adjusted for other variables in a linear regression model, barrier scores reported a significant association with self-efficacy and perception of preparedness towards providing tobacco cessation counselling, henceforth interfering with the professional’s confidence and practice pattern of providing effective cessation services. In contrast to a similar study from Japan, a higher proportion of participants in this study identified relapse rate, reimbursement, limited coverage for cessation interventions, and nonmotivated (to quit) patient as the perceived barriers in delivering smoking cessation counselling. Reimbursement as a barrier factor was consistent with other studies of similar interest. Our study was in agreement with other published literatures that report “lack of reimbursement” as a significant tobacco cessation barrier. A nationally representative survey in the United States also reported that dentists were more likely to participate in tobacco cessation counselling if they are sufficiently

Reimbursement as a barrier factor was consistent with other studies of similar interest. Our study was in agreement with other published literatures that report “lack of reimbursement” as a significant tobacco cessation barrier. A nationally representative survey in the United States also reported that dentists were more likely to participate in tobacco cessation counselling if they are sufficiently
reimbursed. Another study amongst dental practitioners in the US reported lack of financial incentives along with lack of training to be the most important barriers. Barriers to quit tobacco use can be decreased by improving the tobacco intervention curriculum. As highlighted in the literature, training plays an important role and henceforth emphasises the value of having a tobacco cessation curriculum.

There are several limitations in this study. First, the sampling frame excluded dental technology programmes as well as postdoctoral residency programmes not in a dental school. Therefore, the findings might not be generalisable to personnel in these programmes. Also, the response rate is quite low. Data were self-reported; thus, the findings are subject to misreporting. Third, despite adjustment for nonresponse bias by sex and dental education programme type, there might still be some differences between respondents and nonrespondents on certain factors that were not adjusted for. Since the study included only dentists working in an academic environment, the results of this study may not be generalisable to dentists working in other settings. Finally, social desirability bias could have influenced the responses. Taking into consideration these limitations along with the low magnitude of observed associations, caution must be exercised in deriving clinical implications based on the results of this study.

Although the smoking status of the oral health care personnel was not significantly associated with their participation in tobacco cessation interventions, this study identified several other factors that strongly influenced the providers’ perception towards the provision of brief tobacco interventions at the workplace. Increasing participation of dentists and allied members of the dental team in tobacco cessation, prevention, and control may accelerate progress made in reducing national prevalence of tobacco use, as well as tobacco-related health outcomes.

Conflict of interest

None disclosed.

Acknowledgements

The authors thank Dr Enihomo M. Obadan-Udoh and Dr Howard Pollick for critically reviewing the manuscript and providing valuable feedback. The authors also thank all the study participants.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.identj.2022.02.001.

Table 5 – Multiple logistic regression models for the correlates of practice pattern, perceived confidence and perceived educational preparedness of new graduates of the institution in providing the 5 A’s to their patients.

Variable	Practice 95% CI	Confidence 95% CI	Preparedness 95% CI			
	aOR Lower limit	Upper limit	aOR Lower limit	Upper limit	aOR Lower limit	Upper limit
Barrier score	0.94 0.92 0.97	0.92 0.90 0.95	0.97 0.94 0.98			
Effectiveness score	1.08 1.05 1.11	1.10 1.06 1.13	1.06 1.03 1.09			
Years since graduation	0.90 0.81 1.00	0.92 0.83 1.02	0.90 0.81 0.98			
Residence region	0.84 0.59 1.18	0.88 0.62 1.25	0.78 0.56 1.09			
Type of academic programme	1.10 0.94 1.18	1.10 0.97 1.23	1.08 0.96 1.21			
Cigarette smoking status	1.10 0.76 1.51	1.19 0.84 1.70	0.96 0.69 1.33			
Dental/allied	1.03 0.69 1.53	0.82 0.55 1.22	0.98 0.67 1.43			
Nagelkerke R² (%)	12.6	17.7	7.8			

aOR, adjusted odds ratio.
Significant associations are shown in bold.

REFERENCES

1. World Health Organization. The World Health Report 2006: Working Together for Health. World Health Organization; 2006.
2. Jones A, Gulbis A, Baker EH. Differences in tobacco use between Canada and the United States. Int J Public Health 2010;55(3):167–75.
3. World Health Organization. WHO Monograph on Tobacco Cessation and Oral Health Integration. Geneva, Switzerland: World Health Organization; 2017.
4. Bennett JE, Stevens GA, Mathers CD, et al. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet 2018;392(10152):1072–88.
5. Department of Health and Human Services. Healthy People 2020. Healthy People 2020. Office of Disease Prevention and Health Promotion.: US Department of Health and Human Services; 2020.
6. FDI World Dental Federation (FDI). The Role of Oral Health Practitioners in Tobacco Cessation. Adopted by the FDI General Assembly, Sydney, Australia: FDI; 2021 FDI World.
7. FDI World Dental Federation (FDI). Proceedings of the Annual FDI Conference. FDI World. London: FDI; 2000.
8. Ramseier CA, Warnakulasuriya S, Needleman IG, et al. Consensus report: 2nd European Workshop on Tobacco Use Prevention and Cessation for Oral Health Professionals. Int Dent J 2010;60(1):3–6.
11. Gorin SS, Heck JE. Meta-analysis of the efficacy of tobacco counseling by health care providers. Cancer Epidemiol Biomarkers Prev 2004;13(12):2012–22.

12. Binnie VI, McHugh S, Jenkins W, Borland W, Macpherson LM. A randomised controlled trial of a smoking cessation intervention delivered by dental hygienists: a feasibility study. BMC Oral Health 2007;7:5.

13. Shenkin JD, Horowitz AM, Drury TF, Kanellis M. Attitudes of pediatric dentists towards tobacco intervention for children and adolescents: a pilot survey. Pediatr Dent 2003;25(1):53–60.

14. Jannat-Khah DP. Dentists’ self-perceived role in offering tobacco cessation services: results from a nationally representative survey, United States, 2010–2011. Prev Chronic Dis 2014;11.

15. Walsh MM, Belek M, Prakash P, et al. The effect of training on the use of tobacco-use cessation guidelines in dental settings. J Am Dent Assoc 2012;143(6):602–13.

16. Virtue SM, Waldron EM, Darabos K, et al. Dental students’ attitudes toward tobacco cessation in the dental setting: a systematic review. J Dent Educ 2017;81(5):500–16.

17. Warnakulasuriya S. Effectiveness of tobacco counseling in the dental office. J Dent Educ 2002;66(9):1079–87.

18. Utiger O, Sofola OO. Smoking cessation counseling in dentistry: attitudes of Nigerian dentists and dental students. J Dent Educ 2011;75(3):406–12.

19. Albert DA, Severson H, Gordon J, et al. Tobacco attitudes, practices, and behaviors: a survey of dentists participating in managed care. Nicotine Tob Res 2005;7(Suppl 1):59–18.

20. Hu S, Pallonen U, McAlistier AL, et al. Knowing how to help tobacco users: dentists’ familiarity and compliance with the clinical practice guideline. J Am Dent Assoc 2006;137(2):170–9.

21. Ebn Ahmady AE, Golmohammadi S, Ayremlou S, Khoshnevisan MH, Lando HA. Tobacco cessation practices of senior dental students in Iran. Int Dent J 2011;61(6):302–6.

22. Anderson PL, Davis EL, McCall Jr. WD. Dental students’ attitudes toward tobacco cessation counseling. J Dent Educ 2014;78(1):56–63.

23. Ahmady AE, Golmohammadi S, Ayremlou S, Khoshnevisan MH, Lando HA. Tobacco cessation practices of senior dental students in Iran. Int Dent J 2011;61(6):302–6.

24. Dumitrescu AL, Ibric S, Ibric-Cioranu V. Opinions of Romanian dental students toward tobacco use interventions in the dental setting. J Cancer Educ 2016;31(1):172–80.

25. Yip JK, Hay JL, Ostroff JS, Stewart RK, Cruz GD. Dental students’ attitudes toward smoking cessation guidelines. J Dent Educ 2000;64(9):641–50.