Laboratory Characterization and Astrophysical Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL.

A. López1, B. Tercero1, Z. Kisiel2, A. M. Daly3,4, C. Bermúdez4, H. Calcutt5, N. Marcelino6, S. Viit7,5, B.J. Drouin3, I. R. Medvedev7, C. F. Neese8, L. Pszczółkowski3, J. L. Alonso8, and J. Cernicharo9

1 Centro de Astrobiología (CSIC-INTA). Departamento de Astrofísica Molecular. Ctra. de Ajalvir Km 4, 28850 Torrejón de Ardoz, Madrid, Spain.
2 Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland.
3 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA.
4 Grupo de Espectroscopia Molecular (GEM), Unidad Asociada CSIC, Edificio Quíftima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico Uva, Universidad de Valladolid, 47011, Valladolid, Spain
5 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6B, UK.
6 NRAO, 520 Edgemont Road, Charlottesville, VA 22902, USA.
7 Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435 USA
8 Ohio State University, 191 W. Woodruff Ave., Columbus, OH 43210 USA.
9 e-mail: alopez@cab.inta-csic.es; terceromb@cab.inta-csic.es; kisiel@ifpan.edu.pl; adam.m.daly@nrl.navy.mil; chcalcutt@star.ucl.ac.uk; nmarcelin@nrao.edu; sv@star.ucl.ac.uk; brian.j.drouin@jpl.nasa.gov; ivan.medvedev@wright.edu; cbermu@qf.uva.es; hcalcutt@star.ucl.ac.uk; nmarceli@nrao.edu;

Received ; accepted

ABSTRACT

Context. Laboratory characterization (18-1993 GHz) and astronomical detection (IRAM-30m: 80-280 GHz, Orion-KL) of CH3CHCN (vinyl cyanide) in its ground and vibrationally excited states.

Aims. Improving the understanding of rotational spectra of vibrationally excited vinyl cyanide with new laboratory data and analysis. The laboratory results allow searching for these excited state transitions in the Orion-KL line survey. Furthermore, rotational lines of CH3CHCN contribute to the understanding of the physical and chemical properties of the cloud.

Methods. Laboratory measurements of CH3CHCN made on several different frequency-modulated spectrometers were combined in a single broadband 50-1000 GHz spectrum and its assignment was confirmed by Stark modulation spectra recorded in the 18-40 GHz region and by ab-initio anharmonic force field calculations. For analyzing the emission lines of vinyl cyanide detected in Orion-KL we used the excitation and radiative transfer code (MADEX) at LTE conditions.

Results. Detailed characterisation of laboratory spectra of CH3CHCN in 9 different excited vibrational states \((v'_1=1, v'_2=1, v'_3=2, v=0, v=1, v=2, v=3, v=4)\) and detection of transitions in the \(v'_1=2\) and \(v'_1=3\) states for the first time in Orion-KL, and of those in the \(v'_1=1\) \(v'_2=1, v'_3=1)\) dyad of states for the first time in space. The rotational transitions of the ground state of this molecule emerge from four cloud components of hot core nature which trace the physical and chemical conditions of high mass star forming regions in the Orion-KL Nebula. The lowest energy vibrationally excited states of vinyl cyanide such as \(v'_1=1\) (at 328.5 K), \(v'_1=1\) (at 478.6 K), \(v'_1=2\) (at 657.8 K), the \(v'_1=1, v'_2=1, v'_3=1)\) dyad (at 806.4/809.9 K), and \(v'_1=3\) (at 987.9 K) are populated under warm and dense conditions, so they probe the hottest parts of the Orion-KL source. The vibrational temperatures derived for the \(v'_1=1, v'_2=2, v'_3=1)\) states are 252±76 K, 242±121 K, and 227±68 K, respectively; all of them close to the mean kinetic temperature of the hot core component (210 K). The total column density of CH3CHCN in the ground state is \((3.0\pm 1.0)\times 10^{15}\) cm\(^{-2}\). We report the detection of methyl isocyanide (CH3NC) for the first time in Orion-KL and a tentative detection of vinyl isocyanide (CH2CHNC) and give column density ratios between the cyanide and isocyanide isomers obtaining a \(N(\text{CH}_3\text{NC})/N(\text{CH}_2\text{CHNC})\) ratio of 0.02.

Conclusions. Laboratory characterisation of many previously unassigned vibrationally excited states of vinyl cyanide at microwave to THz frequencies allowed us to detect these molecular species in Orion-KL. Column density and rotational and vibrational temperatures for CH3CHCN in their ground and excited states, as well as for the isotopologues, have been constrained by means of a sample of more than 1000 lines in this survey.

Key words. ISM: abundances – ISM: molecules – Stars: formation – Line: identification – Methods: laboratory: molecular – Radio lines: ISM

1. Introduction

The rotational spectrum of vinyl cyanide (CH3CHCN) was studied in 1954 by Wilcox and collaborators, and somewhat later by Costain & Stoicheff (1959) who also investigated the singly-
substituted 13C species as well as the 15N and the CH$_2$CDCN species. This molecule was detected for the first time in the interstellar medium (ISM) in 1973 toward the Sagittarius B2 (Sgr B2) molecular cloud (Gardner & Winnewisser 1975). Since then, CH$_3$CHCN has been detected toward different sources such as Orion (Schilke et al. 1997), the dark cloud TMC-1 (Matthews & Sears 1983), the circumstellar envelope of the late-type star IRC+10216 (Augé & Puget 2008), and the Titan atmosphere (Capone et al. 1981). CH$_2$CHCN is one of the molecules whose high abundance and significant dipole moment allow radioastronomical detection even of its rare isotopologue species. Hence, vinyl cyanide makes an important contribution to the millimeter and submillimeter spectral emissions covered by high sensitivity facilities such as ALMA and the Herschel Space Telescope. However, there has not yet been a comprehensive study of its low-lying vibrational excited states.

Vinyl cyanide is a planar molecule (six intermolecular distances and five independent bond angles) and is a slightly asymmetric prolate rotor with two non-zero electric dipole moment components, which leads to a rich rotational spectrum. The first detailed discussion of the vinyl cyanide microwave spectrum was in 1973 by Berry & Winnewisser. Subsequent studies of the rotational spectrum of vinyl cyanide resulted in the determination of its electrical dipole moment components by Stolze & Sutter (2018). These values were later improved by Krasnicki & Kiel (2011) who reported the values $\mu_D=3.821(3)$ D, $\mu_H=0.687(8)$ D, and $\mu_{TOT}=3.882(3)$ D. Additional studies upgraded the molecular structure as Demaison et al. (1994), Colmont et al. (1997), and Krasnicki et al. (2011) derived successively more refined structural parameters from the rotational constants. The 13N nuclear quadrupole hyperfine structure has been studied by Colmont et al. (1997), Stolze & Sutter (1985), and Baskakov et al. (1996). Kisiel et al. (2009) updated the rotational constants by simultaneously fitting the rotational lines of CH$_2$CHCN in its ground and the lowest excited state $v_1=1$, and also fitting the ground states of the 13C and the 15N isotopologues. More detailed analysis of the isotopologue spectra was later reported by Krasnicki et al. (2011). The ground state rotational a-type and b-type transitions of the parent vinyl cyanide have been assigned up to $J=129$ with measurements in the laboratory reaching 1.67 THz (Kisiel et al. 2009). They showed the influence of temperature on the partition function and consequently on the spectrum of vinyl cyanide. Fig. 1 of Kisiel et al. (2009) identifies this effect and the dominance of the millimeter and submillimeter region by the $K=2$ transitions. However, at high frequencies (THz region) the b-type R-branch rotational transitions are one order of magnitude more intense than those of a-type due to smaller values of the rotational quantum numbers J.

The rotational transitions of CH$_2$CHCN in several of the lowest vibrational excited states, $v_1=1,2,3$, and $v_1=1$, were assigned by Cazzoli & Kisiel (1988), and the measurements were extended by Demaison et al. (1994) ($v_1=1$ and the ground state). The data for $v_1=3$ was more limited hindering the determination of all sextic or even quartic constants. Recently, the analysis of broadband rotational spectra of vinyl cyanide revealed that there are perturbations between all pairs of adjacent vibrational states extending upwards from the ground state (g.s.), see Fig. 2 of Kisiel et al. (2009), Kisiel et al. (2012) covered a broader frequency region (90-1900 GHz), identifying and fitting the perturbations in frequencies of rotational transitions due to α, β, or γ-axis Coriolis-type or Fermi type interactions between the four lowest states of vinyl cyanide (g.s., $v_1=1$, $v_1=1$, and $v_1=2$). The need for perturbation treatment of the $v_1=0$ ($v_1=1$, $v_1=2$) dyad at about 560 cm$^{-1}$ and the $3v_1=2v_1=2v_1=2$ triad of states at about 680 cm$^{-1}$ was also identified, and initial results for the dyad were reported in Kisiel et al. (2011). Thus a meticulous analysis aiming towards an eventual global fit of transitions in all states of vinyl cyanide is necessary. The low resolution, gas-phase infrared spectrum of vinyl cyanide and its vibrational normal modes were studied by Halverson et al. (1948) and by Khilii et al. (1999). Partial rotational resolution of the vibration-rotation spectrum of the two lowest wavenumber modes was also reported in the far-infrared study by Cole & Green (1973).

The first detection in the ISM of vinyl cyanide was in 1973 by means of the $v_1=2$ transition in emission toward Sgr B2 and was confirmed in 1975 by Gardner & Winnewisser (1975), suggesting the presence of the simplest olefin in the ISM, CH$_2=CH$ (ethylene) based on the evidence of the reactive vinyl radical. Betz (1981) observed for the first time the non-polar organic molecule CH$_2=CH$ toward the red giant C-rich star IRC+10216, specifically the v_3 band in the rotation-vibration spectral region (28 THz). Owing to the symmetry of ethylene the dipole rotational transitions are forbidden, and Occhiogrosso et al. (2013) estimated a column density of 1.26x1013 cm$^{-2}$ in standard hot cores for this molecule based on the abundance of its derivative molecule, i.e. hydrocarbon methylacetylene (CH$_2$CHCN).

The dense and hot molecular clouds such as Orion and Sgr B2 give rise to emission lines of vibrationally excited states of vinyl cyanide. Rotational transitions in the two lowest frequency modes $v_1=1$ and $v_1=2$ were detected in Orion by Schilke et al. (1997) (as tentative detection of 3 and 2 lines, respectively) and in Sgr B2 by Nummelin & Bergman (1999) (64 and 45 identified lines, respectively). The latter authors also made the tentative detection transitions in the 2ν_1 mode (5 lines). Recently, Belloche et al. (2013) detected six vibrational states in a line survey of Sgr B2(N) ($v_1=1,2,3$, $v_1=5$, $v_1=1$) among which they detected the higher-lying vibrational states for the first time in space.

On the other hand, the ground states of rare isotopologues have been well characterized in the laboratory (Colmont et al. 1997; Müller et al. 2008; Kiel et al. 2009; Krasnicki et al. 2011). All monosubstituted species containing 13C, 15N, and D, as well as those of all 13C-monosubstituted species of H$_2$C=CDCN, of both cis- and trans- conformers of HDC=CHCN, HDC=CDCN, and D$_2$C=CDCN have been characterized. The double 13C and 15N species have also been assigned by Krasnicki et al. (2011). The detection of 13C species of vinyl cyanide in the ISM was carried out toward Sgr B2 by Müller et al. (2008) with 26 detected features.

The millimeter line surveys of Orion-KL carried out with the IRAM 30-m telescope by Tercero and collaborators (Tercero et al. 2010; Tercero et al. 2011; Tercero et al. 2013) presented initially 8000 unidentified lines. Many of these features (near 4000) have been subsequently identified as lines arising from isotopologues and vibrationally excited states of abundant species such as ethyl cyanide and methyl formate thanks to a close collaboration with different spectroscopic laboratories (Demyk et al. 2007; Margulês et al. 2007; Carvalhal et al. 2009; Margulês et al. 2010; Tercero et al. 2012; Motiyenko et al. 2007; Daly et al. 2013; Coudert et al. 2013; Haykal et al. 2014). In this work we followed the procedure of our previous papers, searching for all isotopologues and vibrationally excited states of vinyl cyanide in this line survey. These identifications are essential to probe new molecular species which contribute to reduce the number of U-lines and helps to reduce the line confusion in the spectra. At this point we were ready to begin the search for new molecular species in this cloud providing clues to the formation
A. López et al.: Vibrationally excited Vinyl Cyanide in Orion-KL.

Fig. 1. All vibrational levels of vinyl cyanide up to 1000 cm⁻¹. The levels in red are those for which rotational transitions have been analysed in this work. The boxes identify sets of levels treated by means of coupled fits accounting for interstate perturbations.

of complex organic molecules on the grain surfaces and/or in the gas phase (see the discovery of methyl acetate and gauche ethyl formate in Tercero et al. 2013, the detection of the ammonium ion in Cernicharo et al. 2013, and the first detection of ethyl mercaptan in Kolesnikova et al. 2014).

We report extensive characterization of 9 different excited vibrational states of vinyl cyanide (see Fig. 1) positioned in energy immediately above ν₁₁ = 2, which, up to this point, has been the highest vibrational state subjected to a detailed study (Kisiel et al. 2012). The assignment is confirmed by using the Stark modulation spectrometer of the spectroscopic laboratory (GEM) of the University of Valladolid and ab initio calculations. The new laboratory assignments of ν₁₁ = 2, ν₁₁ = 3, and ν₁₀ = 1 correspond to (ν₁₁ = 1, ν₁₂ = 1) vibrational modes of vinyl cyanide and were used successfully to identify these three states in Orion-KL, the latter for the first time in the ISM. We also detected the ν₁₁ = 1 and ν₁₀ = 1 excited states in Orion-KL, as well as the ground state, the ¹³C isotopologues (see Sect. 4.2.1).

Because isomerism is a key issue for a more accurate understanding of the formation of interstellar molecules, we report observations of some related isocyanide isomers. Bolton et al. (1970) carried out the first laboratory study of the pure rotation (10-40 GHz) spectrum of vinyl isocyanide and also studied its 200-4400 cm⁻¹ vibrational spectrum. Laboratory measurements were subsequently extended up to 175 GHz by Yamada & Winnewisser (1975) and the hyperfine structure of some cm-wave lines was measured by Bestmann & Dreizler (1982). In Section 4.5 we searched for all isocyanides corresponding to the detected cyanides in Orion-KL: methyl cyanide (Bell et al. 2014), ethyl cyanide (Daly et al. 2013), cyanoacetylene (Esplugues et al. 2013b), cyanamide, and vinyl cyanide. In this study, we have tentatively detected vinyl isocyanide (CH₂CHNCl) in Orion-KL (see Section 4.3). In addition, we observed methyl isocyanide (CH₃NC) for the first time in Orion-KL – firstly observed by Cernicharo et al. (1988) in the Sgr B2(OH) source –, and we provide a tentative detection of ethyl isocyanide and isomers HCCN and HNCCC of isocyanoacetylene. After the detection of cyanamide (NH₂CN) by Turner et al. (1975) in Sgr B2, we report the tentative detection of this molecule in Orion, as well as a tentative detection for isocyanoamide.

Finally, in Sect. 5 and 6 we discuss and summarize all results.

2. Experimental

The present spectroscopic analysis is based largely on the broadband rotational spectrum of vinyl cyanide compiled from segments recorded in several different laboratories. That spectrum provided a total of 1170 GHz of coverage and its makeup was detailed in Table 1 of Kisiel et al. (2012). In the present work the previous spectrum has been complemented by two additional segments: 50-90 GHz and 140-170 GHz, recorded at GEM by using cascaded multiplication of microwave synthesizer output. The addition of these segments provides practically uninterrupted laboratory coverage of the room-temperature rotational spectrum of vinyl cyanide over the 50-640 GHz region, which is key to the analysis of vibrational state transitions.

Another laboratory technique brought in by GEM is Stark spectroscopy at cm-wave frequencies. The Stark-modulation technique has the useful property of preferentially recording a given low-J rotational transition by a suitable choice of the modulation voltage. This is particularly the case for the lowest-J, Kᵥ=1 transitions. Due to asymmetry splitting these transitions are significantly shifted in frequency relative to other transitions for the same J value. An example spectrum of this type is shown in Fig. 2 where all, but some of the weakest lines, correspond to the 4₃₋₃₃ transition in either a vibrational state of the parent vinyl cyanide or in the ground state of an isotopic species. Such spectra are particularly useful for initial assignment since vibrationally induced frequency differences from the ground state are near additive. Relative intensities of transitions also give an immediate measure of relative population of assigned vibrational states and isotopic species.

The analysis of the spectra was carried out with the AABS graphical package for Assignment and Analysis of Broadband Spectra (Kisiel et al. 2005, 2012) freely available on the PROSPE database (Kisiel, 2001). The AABS package was complemented by the SPFIT/SPCAT program package (Pickett, 1991) used for setting up the Hamiltonian, fitting and prediction.

Supporting ab initio calculations were carried out with GAUSSIAN 09 and CFOUR packages. The key parameters for vibrational assignment are vibrational changes in rotational constants, which require relatively lengthy anharmonic force field

1. http://info.ifpan.edu.pl/~kisiel/prospe.htm
2. http://spec.jpl.nasa.gov
3. Frisch, M. J.; Trucks, G. W.; Schlegel, et al., Gaussian 09, Revision B.01; Gaussian: Wallingford, CT, 2010.
4. Stanton, J. F., Gauss, J.; Harding, M. E. et al., CFOUR, a quantum chemical quantum package with integrated packages MOLECULE (Almlof, J.; Taylor, P. R.) and ECP routines (Mitin A. V.; Wullen, van C.), http://www.cfour.de
calculations. Two strategies were used for this purpose: a relatively long basis set combined with a basic electron correlation correction (MP2/6-311+G(d,p)) and a more thorough correlation correction with a relatively simple basis set (CCSD(T)/6-31G(d,p)). The final results minimally favored the second approach but, in practice, both were found to be equally suitable.

3. Laboratory spectroscopy

3.1. Analysis of the excited vibrational states

An overview of the results of the spectroscopic analysis is provided in Table 1 and the determined spectroscopic constants necessary for generating linelists are given in Table 2 and A.1-A.4.

Initial assignment was based on a combination of several techniques: inspection of Stark spectra such as that in Fig. 2, the use of the concept of harmonic behaviour of rotational constant changes on vibrational excitation (linear additivity of changes), and ab initio calculations of vibration-rotation constants. The final assignment of vibrational states is confirmed by the comparison of values of experimental vibration-rotation changes in rotational constants relative to the ground state with computed ab initio values, as listed in Table A.5 that are available online.

Preliminary studies revealed a multitude of perturbations in rotational frequencies that necessitated the use of fits that accounted for interactions between vibrational states. The grouping of energy levels visible in Fig. 1 suggested that the last state studied in detail, namely \(^3 \Pi \), was possible to break the treatment down into three isolated polyads. The symmetry classification of vibrational states (\(\lambda \) and \(\lambda' \), \(C_j \) point group) is marked in Fig. 1 and states of different symmetry need to be connected by \(a \)- and \(b \)-type Coriolis interactions, while states of the same symmetry are coupled via \(c \)-type Coriolis and Fermi interactions. The Hamiltonian and the techniques of analysis used to deal with this type of problem have been described in detail in Kisiel et al. (2009, 2012). This type of analysis is far from trivial, but its eventual success for the polyads near 560, 680, and 790 cm\(^{-1}\) is confirmed in Table 1 by the magnitudes of the deviations of fit in relation to the numbers of fitted lines and their broad frequency coverage. In the most extensive of the present analyses, that for the \(\nu_1=1 \Rightarrow (\nu_1=1, \nu_{15}=1) \) dyad the fit encompasses almost 4000 lines and, in addition to \(^R \)-type transitions includes \(^bQ\)- and \(^R\)-types. We use the 10\(\sigma \) cutoff criterion of SPFIT to prevent lines perturbed by factors outside the model from unduly affecting the fit and a moderate number of such lines (191) are rejected for this dyad. These are confidently assigned lines, generally in high-\(J \) tails of some transition sequences for higher values of \(K_a \), but their incompatibility suggests that there is hope for a final global fit with coupling between the polyads. At the present stage the success of the perturbation fits is further reflected by additive vibrational changes in values of quartic centrifugal distortion constants, and by the relative changes in perturbation constants between the two dyads listed in Table A.5, which are similar to those found for the well studied case of ClONO\(_2\) (Kisiel et al., 2009). Unlike the situation in the ground state of vinyl cyanide (Kisiel et al., 2009), the perturbations visible in the presently studied polyads are not a spectroscopic curiosity but affect the strongest, low-\(K_a \), \(^R\)-type transitions. Such transitions occur in the mm- and submm-wave regions which are normally the choice for astrophysical studies. This effect is illustrated by the scaled plots in Fig. 3, which, in the absence of perturbations, would have the form of near horizontal, very smoothly changing lines. Perturbations lead to the marked spike shaped features in these plots. Since evaluation of the Hamiltonian is made in separate blocks for each value of \(J \) the perturbations affecting the two coupling states should have mirror image form, as seen in Fig. 3. The scaled nature of these plots hides the fact that perturbations to the frequencies of many lines are considerable. For example, the peak of the rightmost spike in Fig. 3 corresponds to a perturbation shift of close to \(50 \times 64 \) MHz, namely \(3.2 \) GHz. The frequencies of \(^R\)-transitions corresponding to the maximum perturbation peaks visible in Fig. 3 are 154.1, 183.4, 301.4, 456.5 and 620.8 GHz for \(\nu_0 \), and 131.9, 174.9, 290.3, 443.3, 604.9 GHz for \(\nu_1=1, \nu_{15}=1 \). A significant number of transitions around such peaks are also clearly perturbed. The perturbations are not limited to frequency but also extend to intensities, which for pure rotation transitions near the perturbation maxima are often significantly decreased. The considerable energy level mixing in such cases leads instead to appearance of transitions between the perturbing vibrational states. Such transitions could only be predicted accurately in the final stages of the perturbation analysis, but were easily found in the compiled broadband laboratory spectrum, and are explicitly identified in the data files. Fortunately, the linelists generated from perturbation fits with the use of the SPCAT program reflect both frequency and intensity perturbations. Accounting for such effects at laboratory experimental accuracy is therefore the key to successful astrophysical studies.

Above the \(\nu_0=1, \nu_{15}=1 \) dyad the density of vibrational states rapidly increases. The complexity of a thorough analysis appears to be too forbidding at this stage but it is possible to check how successfully some of these states can be encompassed by single state, effective fits. The \(\nu_1 \) vibrational state seems to be the most isolated and its analysis could be taken up to \(K_a=7 \) and transition frequencies of \(570 \) GHz. In contrast, the easy to locate \(4 \nu_1=1 \) state exhibited very incomplete sequences of transitions even at low values of \(K_a \), so that its analysis could only be taken up to \(K_a=5 \). The very fragmentary nature of line sequences for this state illustrates the limitations of single state approaches, but it nevertheless provides a useful starting point for any future work. The complete results of fit and the primary data files for the SPFIT program for all coupled and single-state effective fits are available online, while the predicted linelists will be incorporated in the JPL database.

3.2. Vibrational energies

In Table 1 we report a consistent set of vibrational energies for the studied excited states of vinyl cyanide, evaluated by taking advantage of results from the various perturbation analyses. The values for \(3 \nu_1 \) and \(4 \nu_1 \) are from \(\nu_1 \) and the anharmonicity coefficient \(x_{11,11} \) from Kisiel et al. (2012). The value for \(\nu_1=1 \) comes from \(\nu_1 \) and \(\nu_{15} \) augmented by \(\nu_1=1, \nu_{15}=1 \), calculated at the CCSD(T)/cc-PVDZ level that was benchmarked in Kisiel et al. (2012) as the optimum level for evaluating this type of constant for vinyl cyanide. The remaining vibrational energies in the lower dyad and the triad are evaluated using the precise \(\Delta E \) values from the perturbation analyses. Finally \(\nu_{10} \) comes from \(\nu_0 \) and \(\nu_1 \) augmented by ab initio \(\nu_{10} \) from Halverson et al. (1948).

\[\text{http://info.ifpan.edu.pl/~kisiel/data.htm} \]
A. López et al.: Vibrationally excited Vinyl Cyanide in Orion-KL.

Fig. 2. The room-temperature laboratory spectrum of vinyl cyanide in the region of the $4_{13} - 3_{12}$ rotational transition recorded with a Stark modulation spectrometer. All marked lines are for the $4_{13} - 3_{12}$ transition in a given vibrational or isotopic species and display a characteristic pattern of negative lobes due to the non-zero field cycle of Stark modulation. Dotted lines connect vibrational states analysed as perturbing polyads, red denotes vibrational states analysed in the present work, and asterisks identify states detected presently in Orion-KL. It can be seen that laboratory analysis is now available for excited vibrational state transitions that are comparable in room-temperature intensity to those for 13C isotopologues in terrestrial natural abundance.

Table 1. Spectroscopic data sets for excited vibrational states of CH$_2$CHCN acquired in this work.

excited state	E_{vib}	ΔE	N_{final}	N_{unfinal}	σ_{fit}	σ_{rms}	J range	K_a range	frequency range
v_{10}	560.5	0	2135a	136	0.324	1.446	2 - 99	0 - 22	37.0 - 1893.4
$v_{11}v_{15}$	562.9	2.391494(5)		1837b	0.382	1.872	3 - 100	0 - 20	39.0 - 1783.5
$2v_{15}$	663.5	0	1329c	52	0.265	1.980	1 - 70	0 - 17	18.6 - 1191.3
v_{14}	681.8	1.831812(2)		1287d	0.228	1.467	5 - 70	0 - 18	58.3 - 1891.1
$3v_{11}$	686.6	23.16415(3)		1250e	0.309	2.329	2 - 69	0 - 17	28.0 - 1196.5
$v_{10}v_{11}$	787.5	0	842f	3	0.137	1.289	3 - 68	0 - 12	37.1 - 639.3
$2v_{11}v_{15}$	793.9	6.44502(3)		860g	0.164	1.551	3 - 69	0 - 12	37.3 - 640.0
v_9	869.0	0	373h	7	0.167	1.665	1 - 63	0 - 7	18.5 - 570.3
$4v_{11}$	916.7	225	17	0.250	2.496	3 - 43	0 - 5	37.4 - 410.9	

Notes. (a)Estimated vibrational energy (see text in Sect. 3.2). (b)Energy difference relative to the lowest level in the relevant polyad obtained from the perturbation analysis. (c)The number of distinct frequency fitted lines. (d)The number of confidently assigned lines rejected from the fit at the 10σ cutoff criterion. (e)Deviation of fit for the vibrational subset. (f)Unitless deviation of fit for the vibrational subset. (g)Frequency coverage of transitions in the data set. (h,i,j)Transitions fitted jointly in a single fit accounting for interstate perturbations.

4. Astronomical detection of vinyl cyanide species

Thanks to these new laboratory data we identified and detected the $v_{10} \equiv v_{11} \equiv v_{15} = 1$ vibrational modes of CH$_2$CHCN for the first time in space. A consistent analysis of all detected species of vinyl cyanide have been made in order to outline the knowledge of our astrophysical environment. We also report the detection of methyl isocyanide for the first time in Orion KL and a tentative detection of vinyl isocyanide, and calculate abundance ratios between the cyanide species and their corresponding isocyanide isomers.

4.1. Observations and overall results

4.1.1. 1D Orion-KL line survey

The line survey was performed over three millimeter windows (3, 2, and 1.3 mm) with the IRAM 30-m telescope (Granada, Spain). The observations were carried out between September 2004 and January 2007 pointing toward the IRc2 source at $\alpha_{2000.0} = 5^h 35^m 14.5^s$, $\delta_{2000.0} = -5^\circ 22' 30.0"$. All the observations were performed using the wobbler switching mode with a beam throw in azimuth of $\pm 120^\circ$. System temperatures were in the range of 100-800 K from the lowest to the highest frequencies. The intensity scale was calibrated using the atmospheric transmission model (ATM, Cernicharo 1985; Pardo et al. 2001a). Focus and pointing were checked every 1-2 hours. Backends provided a spectrum of 1-1.25 MHz of spectral resolution. All spectra were single side band reduced. For further infor-
Table 2. Spectroscopic constants in the diagonal blocks of the Hamiltonian for the $v_{10} \leftrightarrow v_{11}v_{15}$ and the $v_{11}v_{10} \leftrightarrow 2v_{11}v_{15}$ dyads of vibrational states in vinyl cyanide compared with those for the ground state.

	v_{10}	$v_{11}v_{15}$	$v_{11}v_{10}$	$2v_{11}v_{15}$	
A/MHz	49850.69655(43)	49550.03(63)	49890.72(61)	48861.72(62)	49124.87(56)
B/MHz	4971.212565(37)	4965.6692(98)	4992.6723(70)	4984.979(32)	5011.494(25)
C/MHz	4513.828516(39)	4509.6228(13)	4531.6029(13)	4517.9357(31)	4540.0924(32)
Δ_ϕ (kHz)	2.244058(13)	2.20646(19)	2.26839(18)	2.24034(23)	2.28278(27)
Δ_ϕ (kHz)	-85.6209(35)	-89.854(83)	-80.615(83)	-88.79(17)	-63.97(17)
δ_ϕ (kHz)	2715.4213(94)	2591.5(31)	2522.4(31)	2225.16(26)	1842.15(15)
δ_ϕ (kHz)	0.4566499(32)	0.44642(11)	0.465487(70)	0.46094(18)	0.47422(18)
Φ_ϕ (mHz)	24.4935(22)	22.099(24)	25.225(14)	25.212(82)	24.683(96)
L_{11} (mHz)	0.00064338(17)	0.006345(26)	0.006244(26)	0.006038(38)	0.005952(39)
L_{11} (mHz)	-0.00425(40)	0.0541(96)	0.0324(86)	-0.126(17)	-0.244(23)
L_{11} (mHz)	-7.7804(39)	-5.74(11)	-5.18(11)	0.59(23)	1.52(22)
L_{11} (mHz)	384.762(63)	399.73(71)	-86.81(11)	428.396(39)	-1858.389
L_{11} (mHz)	0.0236193(79)	0.020405(22)	0.0021005(36)	0.002185(23)	0.002136(22)
L_{11} (mHz)	0.14283(40)	0.1151(27)	0.1698(18)	0.145(13)	0.135(14)
L_{11} (mHz)	37.011(58)	51.4(2)	38.0(11)	17.1(27)	-5.6(38)
P_{11} (mHz)	-0.000026315(71)	-0.0000263(15)	-0.00000202(14)	[0.]	[0.]
P_{11} (mHz)	-0.0001717(29)	-0.011718(86)	-0.00659(91)	[0.]	[0.]
P_{11} (mHz)	0.4279(30)	-0.0703(85)	[0.]	[0.]	[0.]
P_{11} (mHz)	0.012(12)	4.00(18)	-9.63(17)	[0.]	[0.]
P_{11} (mHz)	-61.41(17)	-55.629(4)	462.9(45)	[0.]	[0.]
P_{11} (mHz)	-0.000011602(36)	-0.0000165(13)	[0.]	[0.]	[0.]
P_{11} (mHz)	-0.00056(20)	[0.]	[0.]	[0.]	[0.]
P_{11} (mHz)	-0.14364(6)	-1.79(11)	-0.86(12)	[0.]	[0.]
P_{11} (mHz)	8.91(18)	[0.]	9.21(43)	[0.]	[0.]
ΔE_{ϕ} (MHz)	0.000000156(31)	-0.000147(14)	[0.]	[0.]	[0.]
ΔE_{ϕ} (MHz)	-0.00001977(57)	[0.]	[0.]	[0.]	[0.]
ΔE_{ϕ} (MHz)	0.00867(15)	0.0286(23)	-0.3457(49)	[0.]	[0.]
ΔE_{ϕ} (MHz)	0.0	71695.20(16)	0.0	193216.69(90)	64450(23)
N_{line}	4490.0	2135.55	1837.136	842.3	860.7
σ_{line} (MHz)	0.144	0.324	0.382	0.137	0.164
σ_{line} (MHz)	0.713	1.446	1.872	1.289	1.551

Notes. (a) Parentheses enclose standard errors in units of the last quoted digit of the value of the constant, square parentheses enclose assumed values.

(b) The fitted vibrational energy difference relative to the lowest vibrational state in the respective dyad.

(c) The number of distinct frequency fitted lines and the number of lines rejected at the 10σ fitting criterion of the SPFIT program.

(d) The coupled fit for different vibrational subset.

(e) The data of the IRAM 30-m line survey of Orion-KL is available in ASCII format on request to B. Tercero and J. Cernicharo and will be available at the IRAM web page.

According to previous works, we characterize at least four different cloud components overlapping in the beam in the analysis of low angular resolution line surveys of Orion-KL (see e.g. Blake et al. 1987, Blake et al. 1996, Tercero et al. 2010, Tercero et al. 2011): (i) a narrow (~4 km s⁻¹ line-width) component at $v_{LSR} \simeq 9$ km s⁻¹ delineating a north-to-south extended ridge or ambient cloud, a extended region with: $T_k \simeq 60$ K, $n(H_2) \simeq 10^6$ cm⁻³; (ii) a compact ($d_{los} \simeq 15''$) and quiescent region, the compact ridge, ($v_{LSR} \simeq 7$-8 km s⁻¹, $\Delta v \simeq 3$ km s⁻¹, $T_k \simeq 150$ K, $n(H_2) \simeq 10^6$ cm⁻³); (iii) the plateau a mixture of out-
flows, shocks, and interactions with the ambient cloud \((\mathcal{V}_{\text{LSR}} \approx 6-10 \text{ km s}^{-1}, \Delta \mathcal{V} \geq 25 \text{ km s}^{-1}, T_{K} \approx 150 \text{ K}, n(H_2) \approx 10^6 \text{ cm}^{-3}, \text{ and } d_{\text{sub}} \approx 30\)\); (iv) a hot core component \((\mathcal{V}_{\text{LSR}} \approx 5 \text{ km s}^{-1}, \Delta \mathcal{V} \approx 5-15 \text{ km s}^{-1}, T_{K} \approx 250 \text{ K}, n(H_2) \approx 5 \times 10^5 \text{ cm}^{-3}, \text{ and } d_{\text{sub}} \approx 10^4\).

Nevertheless, we found a more complex structure of that cloud (density and temperature gradients of these components and spectral features at a \(\mathcal{V}_{\text{LSR}} \) of 15.5 and 21.5 km s\(^{-1}\) related with the outflows) in our analysis of different families of molecules (see e.g. Tercero et al. 2011, Daly et al. 2013, Esplugues et al. 2013a).

4.1.2. 2D survey observations

We also carried out a two dimensional line survey with the same telescope in the ranges 85–95.3, 105–117.4, and 200.4–298 GHz (N. Marcelino et al. private communication) during 2008 and 2010. This 2D survey consists of maps of 140×140 arcsec\(^2\) area with a sampling of 4 arcsec using On-The-Fly mapping mode with reference position 10 arcminutes West of Orion-KL. The EMIR heterodyne receivers were used for all the observations except for 220 GHz frequency setting, for which the HERA receiver array was used. As backend we used the WILMA back-end spectrometer for all spectra (bandwidth of 4 GHz and 2 MHz of spectral resolution) and the FFTS (Fast Fourier Transform Spectrometer, 200 kHz of spectral resolution) for frequencies between 245–259, 264.4–278.6, and 289–298 GHz. Pointing and focus were checked every 2 hours giving errors less than 3 arcsec. The data were reduced using the GILDAS package removing bad pixels, checking for image sideband contamination and emission from the reference position, and fitting and removing first order baselines. Six transitions of CH\(_2\)CHCN have been selected to study the spatial extent of their emission with this 2D line survey.

4.2. Results

4.2.1. Detection of CH\(_2\)CHCN, its vibrationally excited states and its isotopologues in Orion-KL

Vinyl cyanide shows emission from a large number of rotational lines through the frequency band 80-280 GHz. The dense and hot conditions of Orion-KL populate the low-lying energy excited states. Here, we present the first interstellar detection of the \(\nu_{15}=1 \leftrightarrow (\nu_{11}=1, \nu_{15}=1) \) vibrational excited state.

Figures 4-8 and A1 (available online) show selected detected lines of the g.s. of vinyl cyanide as well as various vibrationally excited states of the main isotopologue CH\(_2\)CHCN: in plane C-C\(^\equiv\)N bending mode \((\nu_{11}=1, 228.1 \text{ cm}^{-1} \text{ or } 328.5 \text{ K}), \) out of plane C-C\(^\equiv\)N bending mode \((\nu_{11}=1, 332.7 \text{ cm}^{-1} \text{ or } 478.6 \text{ K}), \) in plane C-C\(^\equiv\)N bending mode \((\nu_{12}=2, 457.2 \text{ cm}^{-1} \text{ or } 657.8 \text{ K}), \) combination state \((\nu_{10}=1 \leftrightarrow (\nu_{11}=1, \nu_{15}=1), 560.5/562.9 \text{ cm}^{-1} \text{ or } 806.4/809.9 \text{ K}), \) and in plane C-C\(^\equiv\)N bending mode \((\nu_{11}=3, 686.6 \text{ cm}^{-1} \text{ or } 987.9 \text{ K}). \) The latter is in the detection limit, so we will not address the perturbations of this vibrational mode.

In addition, we detected the following isotopologues of vinyl cyanide in its ground state: \(^{13}\)CH\(_2\)CHCN, CH\(_3\)CH\(^{13}\)CHCN, and CH\(_3\)CH\(^{15}\)CN (see Fig. 9). For CH\(_3\)CH\(^{15}\)N and the deuterated species of vinyl cyanide, DCH\(_3\)CHCN, HCDCHCN, and CH\(_3\)CDCN (see Fig. A2), we only provided a tentative detection in Orion-KL because of the small number of lines with an uncertainty in frequency less than 2 MHz (up to \(\mathcal{K}_a=7.5.15 \) for DCH\(_3\)CHCN, HCDCHCN, and CH\(_3\)CDCN, respectively), the weakness of the features, and/or their overlap with other molecular species.

Tables A6-A13 (available online) show observed and laboratory line parameters for the ground state, the vibrationally excited states, and the \(^{13}\)C-vinyl cyanide isotopologues. Spectroscopic constants were derived from fits with the MADEX code (Cernicharo 2012) to the lines reported by Krasnicki \& Kisiel (2011). All these parameters have been implemented in MADEX to obtain the predicted frequencies and the spectroscopic line parameters. We have displayed rotational lines that are not strongly overlapped with lines from other species. Observational parameters have been derived by Gaussian fits (using the GILDAS software) to the observed line profiles that are not blended with other features. For moderately blended and weak lines we show observed radial velocities and intensities given directly from the peak channel of the line in the spectra, so contribution from other species or errors in baselines could appear for these values. Therefore, the main beam temperature for the weaker lines \((T_{MB}<0.1 \text{ K})\) must be considered as an upper limit.

\footnote{http://www.iram.fr/IRAMFR/GILDAS}
From the derived Gaussian fits, we observe that vinyl cyanide lines reflect the spectral line parameters corresponding to hot core/plateau components (v$_{\text{LSR}}$ between 2-3 km s$^{-1}$ for the component of 20 km s$^{-1}$ of line width, and 5-6 km s$^{-1}$ for the component of 6 km s$^{-1}$ of line width). As shown by Daly et al. (2013) there is a broad component associated to the hot core that limits the accuracy of the derived velocities for the hot core and this broad component. Our velocity components for CH$_3$CH-CN obtained by Daly et al. (2013). Besides, for the vibrationally excited states we found contribution of a narrow component with a v$_{\text{LSR}}$ of 3-6 km s$^{-1}$ and a line width of \approx 7 km s$^{-1}$.

We rely on catalogs8 to identify possible contributions from other species overlapping the detected lines (Tercero 2012), but it should be necessary to perform radiative transfer modeling with all the known molecules in order to assess precisely how much the contamination from other species influences the vinyl cyanide lines.

Table 3 shows the number of lines of vinyl cyanide identified in this work. Our identifications are based on a whole inspection of the data and the modeled synthetic spectrum of the molecule we are studying (where we obtain the total number of detectable lines) and all species already identified in our previous papers. We consider blended lines those that are close enough to other stronger features. Unblended features are those which present the expected radial velocity (matching our model with the peak channel of the line) (see e.g. lines at 115.00 and 174.36 GHz in Fig. 5 or line a 247.55 GHz in Fig. 8), and there are not another species at the same observed frequency (\pm 3 MHz) with significant intensity. Partially blended lines are those which present either a mismatch in the peak channel of the line (generally, these lines also present a mismatch in intensity, see e.g. line at 152.0 GHz in Fig. 6) or significant contribution from another species at the peak channel of the feature (see e.g. line at 108.16 GHz in Fig. 8). If for the unblended frequencies we do not found the line we are looking for, then we do not claim detection, so in the detected species we do not accept missing lines. For species with quite strong lines (g.s., v_{11}=1, and v_{15}=1), most of the totally and partially blended lines are weaker due to the high energy of their transitions (see Tables A.6, A.8, and A.11). We observed a total number of \approx 640 unblended lines of vinyl cyanide species. Considering also the moderately blended lines this number rises to \approx 1100. We detected lines of vinyl cyanide in the g.s. with a maximum upper level energy value of about 1400-1450 K corresponding to a J_{max}=30 and a (K_a)$_{\text{max}}$=24. For the vibrational states we observed transitions with maximum quantum rotational numbers of (K_a)$_{\text{max}}$=20,15,17,16,15 from the lowest energy vibrational state to the highest (i.e. from v_{11}=1 to v_{15}=3) and the same J_{max}=30 value up to the maximum E_{upp} between 1300-1690 K.

8 Cernicharo private catalogs, CDMS (Müller et al. 2001), Müller et al. 2005, and JPL (Pickett et al. 1998)
Fig. 5. Observed lines from Orion-KL (histogram spectra) and model (thin red curves) of CH$_2$CHCN of $v_{11}=1$. The cyan line corresponds to the model of the molecules we have already studied in this survey (see text Sect. 4.4.2) including the CH$_2$CHCN species. A v_{LSR} of 5 km s$^{-1}$ is assumed.

Table 3. Number of identified lines of CH$_2$CHCN species.

Species	Detectable	Unblended	Partially blended	Totally blended
CH$_2$CHCN g. s. (a-type)	350	204 (59%)	85 (24%)	61 (17%)
CH$_2$CHCN $v_{11}=1$	307	111 (36%)	75 (25%)	121 (39%)
CH$_2$CHCN $v_{11}=2$	253	59 (23%)	35 (14%)	159 (63%)
CH$_2$CHCN $v_{11}=3$	245	30 (12%)	33 (14%)	182 (74%)
CH$_2$CHCN $v_{15}=1$	287	68 (24%)	62 (22%)	157 (55%)
CH$_2$CHCN $v_{10}=1,v_{15}=1$	474	65 (14%)	64 (14%)	345 (73%)
(13C)-CH$_2$CHCN	348	102 (29%)	115 (33%)	131 (38%)

4.2.2. CH$_2$CHCN maps

Figure 10 shows maps of the integrated emission of six transitions in the g.s. of CH$_2$CHCN at different velocity ranges. From line 1 to 6 (top to bottom): 12$_{1,12}^{-11}_{1,11}$ (110839.98 MHz, $E_{upp}=36.8$ K), 24$_{0,24}^{-23}_{0,23}$ (221766.03 MHz, $E_{upp}=134.5$ K), 24$_{2,23}^{-23}_{2,22}$ (226256.88 MHz, $E_{upp}=144.8$ K), 26$_{1,26}^{-25}_{1,25}$ (238726.81 MHz, $E_{upp}=157.4$ K), 26$_{2,25}^{-25}_{2,24}$ (244857.47 MHz, $E_{upp}=167.9$ K), and 24$_{10,15}^{-23}_{10,14}$ and 24$_{10,14}^{-23}_{10,13}$ (228017.34 MHz, $E_{upp}=352.0$ K). These maps reveal the emission from two cloud components: a component at the position of the hot core at velocities from 2 to 8 km s$^{-1}$ and a component with a slight displacement of the intensity peak at the extreme velocities. The intensity peak of the central velocities coincides with that of the -CN bearing molecules found by Guélin et al. 2008 (maps of one transition of ethyl and vinyl cyanide) and Daly et al. 2013 (maps of four transitions of ethyl cyanide). We note a more compact structure in the maps of.
Fig. 6. Observed lines from Orion-KL (histogram spectra) and model (thin red curves) for the $v_{15}=1$ vibrational state of CH$_2$CHCN. The cyan line corresponds to the model of the molecules we have already studied in this survey (see text Sect. 4.4.2) including the CH$_2$CHCN species. A v$_{LSR}$ of 5 km s$^{-1}$ is assumed.

Fig. 7. Observed lines from Orion-KL (histogram spectra) and model (thin red curves) for the $v_{11}=2$ vibrational state of CH$_2$CHCN. The cyan line corresponds to the model of the molecules we have already studied in this survey (see text Sect. 4.4.2) including the CH$_2$CHCN species. A v$_{LSR}$ of 5 km s$^{-1}$ is assumed.

the transitions at 352.0 K. Our maps do not show a more extended component found in the ethyl cyanide maps by Daly et al. (2013). We have obtained an angular source size between 7'- 10' (in agreement with the hot core diameter provided by different authors, see e. g. Crockett et al. 2014, Neil et al. 2013, Beuther & Nissen 2008) for central and extreme velocities assuming emission within the half flux level and corrected for the size of the telescope beam at the observed frequency. These integrated intensity maps allow us to provide the offset position with respect to IRc2 and the source diameter parameters needed for modeling the vinyl cyanide species (see Sect. 4.4.1).
4.3. Rotational diagrams of CH$_3$CHCN (g.s., $v_{11}=1,2,$ and $v_{15}=1$)

In order to obtain an estimate of the rotational temperature (T_{rot}) for different velocity components we made rotational diagrams which related the molecular parameters with the observational ones (Eq. 1 see eg. Goldsmith & Langer 1999), for CH$_3$CHCN in its ground state (Fig. 11) and for the lowest vibrationally excited states $v_{11}=1, 2,$ and $v_{15}=1$ (Fig. 12). Assumptions such as LTE approximation and optically thin lines (see Sect. 4.4.4) are required in this analysis. We have taken into account the effect of dilution of the telescope which was corrected by calculation of the beam dilution factor (Demyk et al. 2008, Eq. 2):

$$\frac{N_u}{N_{ul}} = \frac{8 \pi k^2 W_{\text{obs}}}{h^3 A_u g_u} \ln(\frac{N}{Q_{\text{rot}}}) - \frac{E_{\text{app}}}{kT_{\text{rot}}} + \ln b,$$

$$b = \frac{\Omega_k}{\Omega_A} = \frac{\theta_k^2}{\theta_k^2 + \theta_A^2},$$

where N_u is the column density of the considered vinyl cyanide species in the upper state (cm$^{-2}$), g_u is the statistical weight in the upper level, W_{obs} (K cm$^{-1}$) is the integrated line intensity ($W_{\text{obs}}=\int T_{MB,\text{obs}}(v)dv$), A_u is the Einstein A-coefficient for spontaneous emission, N (cm$^{-2}$) is the total column density of the considered vinyl cyanide species, Q_{rot} is the rotational partition function which depends on the rotational temperature derived from the diagrams, E_{app} (K) is the upper level energy, and T_{rot} (K) is the rotational temperature. In Eq. 2 b is the beam dilution factor, Ω_k and Ω_A are the solid angle subtended by the source and the beam of the telescope, respectively, and θ_k and θ_A are the angular diameter of the source and the beam of the telescope, respectively. We note that the factor b increases the fraction N_u/g_u in Eq. 1 and yields a higher column density than if it were not considered.

For the g.s. we used 117 transitions free of blending with upper level energies from 20.4 to 683.1 K with two different velocity components, one with $v_{\text{LSR}}=4.6$ km s$^{-1}$ and $\Delta v=4.7$ km s$^{-1}$, and the second one with $v_{\text{LSR}}=2.4$ km s$^{-1}$ and $\Delta v=14-20$ km s$^{-1}$. For the vibrationally excited states we considered 43 (40-550 K), 24 (30-380 K), and 33 (25-370 K) transitions with line profiles that can be fitted to a single velocity component ($v_{\text{LSR}}=4-6$ km s$^{-1}$ and $\Delta v=5-7$ km s$^{-1}$) for $v_{11}=1, 2$ and $v_{15}=1$, respectively.

The scatter in the rotational diagrams of CH$_3$CHCN g.s. is mainly due to the uncertainty of fitting two Gaussian profiles to the lines with the CLASS software. Rotational diagrams of the vibrationally excited states ($v_{11}=1$ and $v_{15}=1$) are less scattered because there is only one fitted Gaussian to the line profile. For the rotational diagram of the $v_{11}=2$ state, the scatter is mostly due to the weakness of the observed lines for this species. We have done an effort in order to perform the diagrams with unblended lines; however, some degree of uncertainty could come from non-obvious blends. The individual errors of the data points (error bars) are those derived by error propagation in the calculated uncertainty of $ln(N_u/g_u)$, taking only into account the uncertainty of the integrated intensity of each line (W) provided by CLASS and an error of 20% for the source diameter. The uncertainty of the final values of T_{rot} and N has been calculated with the statistical errors given by the linear least squares fit for the slope and the intercept.

We assumed the same source diameter of 10$''$ for the emitting region of the two components for the g.s. and the single component of the vibrationally excited states. In Fig. 11 the upper panel shows points in the diagram related with the wide and narrow components for the CH$_3$CHCN g.s. We observed two tendencies in the position of the data points up to starting from an upper state energy of ±200 K. From the narrow component, we derived two different rotational temperatures and column densities, $T_{\text{rot}}=125\pm16$ K and $N=(1.3\pm0.1)\times10^{15}$ cm$^{-2}$, and $T_{\text{rot}}=322\pm57$ K and $N=(1.0\pm0.2)\times10^{15}$ cm$^{-2}$. Likewise, from the wide component, we have determined cold and hot temperatures of about $T_{\text{rot}}=90\pm14$ K and $T_{\text{rot}}=227\pm130$ K, and column densities of $N=(2.9\pm0.5)\times10^{15}$ cm$^{-2}$ and $N=(1.2\pm0.9)\times10^{15}$ cm$^{-2}$, respectively.

Fig. 8. Observed lines from Orion-KL (histogram spectra) and model (thin red curves) for combined vibrationally excited states of CH$_3$CHCN in the $v_{11}=1\leftrightarrow v_{11}=1, v_{15}=1$ dyad. The cyan line corresponds to the model of the molecules we have already studied in this survey (see text Sect. 4.4.2) including the CH$_3$CHCN species. A v_{LSR} of 5 km s$^{-1}$ is assumed.
Therefore, as expected, derived rotational temperatures depend
general, these values increased or decreased when we decreased
is less significant also due to the correction on the partition func-
creasing the source diameter. The e
of the three vinyl cyanide excited states
state. The subindex in A v
species. A v
in Fig. 9. Observed lines from Orion-KL (histogram spectra) and model (thin red curves) of 13C isotopes for CH2CHCN in the ground state. The subindex in 13C (i=1, 2, 3) corresponds to the position of the isotope in the molecule (13CH2;13CH3;CN). The cyan line corresponds to the model of the molecules we have already studied in this survey (see text Sect. 4.4.2) including the CH2CHCN species. A vLSR of 5 km s⁻¹ is assumed.

In order to quantify the uncertainty derived from the assumed source size, we have also performed the rotational diagram of CH2CHCN g. s. adopting a source diameter of both 5" and 15". The main effect of changing the source size on the rotational diagram is a change in the slope and in the scatter. Table 4 shows the derived values of N and T rot assuming different source sizes. Therefore, as expected, derived rotational temperatures depend clearly on the assumed size with a tendency to increase T rot when increasing the source diameter. The effect on the column density is less significant also due to the correction on the partition function introduced by the change in the rotational temperatures; in general, these values increased or decreased when we decreased or increased the source size, respectively (see Table 4).

In Fig. 12 the panels display the rotational diagrams of the three vinyl cyanide excited states v1=1, v1=2, and v1=2 sorted by vibrational energy from top to bottom. In the x-axis we show the rotational energy which has been corrected from the vibrational energy in order to estimate the appropriate column density. We also observed the same tendency of the data points quoted above. The rotational temperature and the column density conditions for the v1=1 were T rot=125±14K and (2.9±0.3)×10¹⁴ cm⁻², and T rot=322±104K and N=(3±1)×10¹⁴ cm⁻². For the v1=1 state we determine T rot=100±20K and N=(1.2±0.2)×10¹⁴ cm⁻², and T rot=250±10K and N=(2.4±0.1)×10¹⁴ cm⁻². For the v1=2 state were T rot=123±68K and N=(1.0±0.5)×10¹⁴ cm⁻², and T rot=333±87K and N=(1.3±0.3)×10¹⁴ cm⁻². Owing to the weakness of the emission lines of the v1=3 and v0=1⇔(v1=1, v1=3) vibrational modes, we have not performed rotational diagrams for these species.

Figure 13 displays the combined rotational diagram for ground state of CH2CHCN and v1=1, v1=2, and v1=2 excited states. The upper panel is referred to the rotational level energies of the vinyl cyanide states, whereas the bottom panel shows the positions of the different rotational diagrams in upper level energy when taking into account the vibrational energy for the excited states.

Owing to the large range of energies and the amount of transitions in these rotational diagrams we consider the obtained results (T rot) as a starting point in our models (see Section 4.4.1).

4.4. Astronomical modeling of CH2CHCN in Orion-KL

4.4.1. Analysis: The Model

From the observational line parameters derived in Sect. 4.2.1 (radial velocities and line widths), the displayed maps, and the rotational diagram results (two components –cold and hot– for each derived Gaussian fit to the line profiles), we consider that the emission of CH2CHCN species comes mainly from the four regions shown in Table 5 related with the hot core (those with Δv=6-7 km s⁻¹) and plateau/hot core (those with Δv=20 km s⁻¹) components. Daly et al. (2013) found that three components related with the hot core were enough to...
properly fit their ethyl cyanide lines. The named “Hot Core 1” and "Hot Core 3" in [Daly et al. (2013)] are similar to our "Hot narrow comp." and "Cold wide comp." of Table 5 respectively. Interferometric maps performed by [Guelin et al. (2008)] of ethyl and vinyl cyanide and those of [Widicus Weaver & Friedel (2013)] of CH3CH2CN (the latter authors affirm that in their observations CH3CN, CH2CN, and CH3CN are cospatial) show that the emission of these species comes from different cores at the position of the hot core and IRc7. The radial velocities found in the line profiles of vinyl cyanide (between 3-5 km s⁻¹) in this work together with the cited interferometric maps, could indicate that the four components of Table 5 are dominated by the emission of the hot core. For the vibrationally excited states and for the isotopologues we found that two components (both narrow components) are sufficient to reproduce the line profiles (see Table 5). We note that for v11=1 and v15=1 we need a somewhat higher value in the line width. This difference is probably due to a small contribution of the wide component in these lines.

Table 4. N and T_{rot} from rotational diagrams of CH2CHCN g. s. assuming different source sizes.

	Hot narrow comp.	Cold narrow comp.	Hot wide comp.	Cold wide comp.
	$\nu_{15}=4-6$ km s⁻¹ $\Delta v=6-7$ km s⁻¹	$\nu_{15}=2-4$ km s⁻¹ $\Delta v=14-20$ km s⁻¹	$\nu_{15}=4-6$ km s⁻¹ $\Delta v=6-7$ km s⁻¹	$\nu_{15}=2-4$ km s⁻¹ $\Delta v=14-20$ km s⁻¹
d_{obs}=5'	N=(2.3±0.7)×10² cm⁻² $T_{rot}=$(334±89) K	N=(3.8±0.8)×10² cm⁻² $T_{rot}=$(100±20) K	N=(1.1±0.9)×10² cm⁻² $T_{rot}=$(213±112) K	N=(4.8±0.7)×10² cm⁻² $T_{rot}=$(71±5) K
d_{obs}=10'	N=1.0±0.2×10³ cm⁻² $T_{rot}=$(323±75) K	N=1.3±0.1×10³ cm⁻² $T_{rot}=$(125±16) K	N=1.2±0.9×10³ cm⁻² $T_{rot}=$(227±130) K	N=2.9±0.5×10³ cm⁻² $T_{rot}=$(90±14) K
d_{obs}=15'	N=(6.9±1.9)×10³ cm⁻² $T_{rot}=$(326±85) K	N=(1.0±0.2)×10³ cm⁻² $T_{rot}=$(166±55) K	N=(9±6)×10³ cm⁻² $T_{rot}=$(250±125) K	N=(1.0±0.1)×10³ cm⁻² $T_{rot}=$(100±20) K

Spectroscopic (Sect. 2) and observational parameters – radial velocity (vLSR); line width (Δv); temperature from rotational diagrams (T_{rot}); source diameter (d_{obs}) and offsets from the maps – were introduced in an excitation and radiative transfer code (MADEX) in order to obtain the synthetic spectrum. We have taken into account the telescope dilution and the position of the components with respect to the pointing position (IRc2). LTE conditions have been assumed owing to the lack of collisional rates for vinyl cyanide, which prevents a more detailed analysis of the emission of this molecule. Nevertheless, we expect a good approximation to the physical and chemical conditions due to the hot and dense nature of the considered components. Rotational temperatures (which coincide with the excited and kinetic temperatures in LTE conditions) have been slightly adapted from those of the rotational diagrams in order to obtain the best fit to the line profiles. These models allow us to obtain column density results for each species and components independently. The sources of uncertainty that were described in [Fercero et al. (2011)] have been considered. For the CH2CHCN g.s., v11=1, and v15=1 states we have adopted...
an uncertainty of 30%, while for the 13C isotopologues and the $v_{11}=2$, $v_{11}=3$, and $v_{10}=1\leftrightarrow(v_{11}=1, v_{13}=1)$ states we have adopted a 50% uncertainty. Due to the weakness and/or high overlap with other molecular species we only provided upper limits to the column densities of monodeuterated vinyl cyanide and the 15N isotopologue.

4.4.2. Column densities

The column densities that best reproduce the observations are shown in Table 5 and used for the model in Figs. 4-9 and 11 (available online). Although the differences between the intensities of the model and that of the observations are mostly caused by blending with other molecular species, isolated vinyl cyanide lines confirm good agreement between model and observations. We found small differences between the column density values from the model and those from the rotational diagram, likely because of the source diameters taken into account in the determination of the beam dilution for the two components.

In Figs. 4-9, 15, 16 and 18 a model with all already studied species in this survey is included (cyan line). The considered molecules and published works containing the detailed analysis for each species are the following: OCS, CS, H$_2$CS, HCS$^+$, CCS, CCCS species in Tercero et al. (2010); SiO and SIS species in Tercero et al. (2011); SO and SO$_2$ in Esplugues et al. (2013); HCO$_3$N and HCCN species in Esplugues et al. (2013b); CH$_3$CN in Bell et al. (2014); CH$_2$COOCH$_3$ and t$_9$-CH$_2$COOH in Tercero et al. (2013); CH$_3$CH$_2$SH, CH$_2$SH, CH$_3$OH, CH$_3$CH$_2$OH in Kolesniková et al. (2014); 13C-CH$_3$CN in Demyk et al. (2007); CH$_3$CH$_2$CN, CH$_3$CH$_2$CN, and CH$_3$DCH$_2$CN in Margulès et al. (2009); CH$_3$CH$_3$CN species in Daly et al. (2013); 13C-HCOOCH$_3$ in Carvajal et al. (2009); DCOOCH$_3$ and HCOOCH$_3$ in Margulès et al. (2010); 15O-HCOOCH$_3$ in Tercero et al. (2012); HCOOCH$_2$D in Coudert et al. (2013); 13C-HCOOCH$_3$ $v_7=1$, and HCOOCH$_3$ $v_7=1$ in Havkala et al. (2014); NH$_2$CHO $v_{12}=1$ and NH$_2$CHO in Motyenko et al. (2007); CH$_3$CH$_2$CN species in this work; also HCOOCH$_3$ $v_7=2$ and CH$_3$COOH from López et al. in preparation.

We obtained a total column density of vinyl cyanide in the ground state of $(6.2\pm2)\times10^{15}$ cm$^{-2}$. This value is a factor 7 higher than the value in the Orion-KL hot core of Schilke et al. (1997), who detected the vinyl cyanide g.s. in the frequency range from 325 to 360 GHz with a column density (averaged over a beam of 10$''$-12$''$) of 8.2×10^{14} cm$^{-2}$ and a T$_{\text{rot}}$ of 96 K. The difference between both results is mostly due to our more detailed model of vinyl cyanide which includes four components, two of them with a source size of 5$''$ (a factor two lower than the beam size in Schilke et al. 1997). Sutton et al. (1995) also derived a column density of 1×10^{15} cm$^{-2}$ (beam size of 13.7$''$) toward the hot core position. These authors found vinyl cyanide emission.
Fig. 12. Rotational diagrams for the vibrationally excited states of vinyl cyanide \(v_{11}=1, \) \(v_{15}=1, \) and \(v_{11}=2 \) as function of rotational energy (upper level energy corrected from the vibrational energy of each state) sorted by increasing vibrational energy from top to bottom.

Table 5. Physico-chemical conditions of Orion-KL from ground and excited states of \(\text{CH}_2\text{CHCN}. \)

\(d_{\text{osc}} \) (°)	\(\Delta V_{\text{FWM}} \) (km s\(^{-1}\))	\(v_{\text{LSR}} \) (km s\(^{-1}\))	\(T_{\text{ex}} \) (K)	\(N_{\text{CH}_2\text{CHCN}} \) (cm\(^{-2}\))	\(N_{\text{CH}_2\text{CHCN}(v_{11})} \) (cm\(^{-2}\))	\(N_{\text{CH}_2\text{CHCN}(v_{15})} \) (cm\(^{-2}\))	\(N_{\text{CH}_2\text{CHCN}(v_{11})} \) (cm\(^{-2}\))	\(N_{\text{CH}_2\text{CHCN}(v_{15})} \) (cm\(^{-2}\))
T=125±14 K	N=(2.9±0.3)\(\times 10^{15} \) cm\(^{-2}\) and T=322±14 K	N=(3.9±0.3)\(\times 10^{15} \) cm\(^{-2}\)						
T=100±20 K	N=(1.2±0.2)\(\times 10^{15} \) cm\(^{-2}\) and T=250±10 K	N=(2.4±0.1)\(\times 10^{15} \) cm\(^{-2}\)						
T=130±8 K	N=(1.0±0.5)\(\times 10^{15} \) cm\(^{-2}\) and T=332±8 K	N=(1.3±0.3)\(\times 10^{15} \) cm\(^{-2}\)						

Hot narrow comp.	Cold narrow comp.	Hot wide comp.	Cold wide comp.
5	10	5	10
2	2	0	0
6(7*)	6(7*)	20	20
5	5	3	3

Note. Physico-chemical conditions of Orion-KL from vinyl cyanide (see text 4.4.1). * 7 km s\(^{-1}\) is only considered for \(v_{11}=1 \) and \(v_{15}=1 \) states.

toward the compact ridge position but at typical hot core velocities. Previous authors derived beam averaged column densities between \(4\times 10^{13} \) and \(2\times 10^{14} \) cm\(^{-2}\) (Johansson et al. 1984, Blake et al. 1987, Turner 1991, Ziurys & McGonagle 1993). The column density of \(\text{CH}_2\text{CHCN} \) \(v_{11}=1, \) \((1.0±0.3)\(\times 10^{15} \) cm\(^{-2}\), is four times smaller than that derived for the ground state in the same components. Besides, we derived a column density of \((3±2)\times 10^{14}, \) \((5±2)\times 10^{14}, \) \((5±2)\times 10^{14} \) cm\(^{-2}\), for the \(v_{11}=2, v_{11}=3, v_{15}=1, \) and
4.4.3. Isotopic abundances

It is now possible to estimate the isotopic abundance ratio of the main isotopologue \((^{12}\text{C}, ^{14}\text{N}, ^1\text{H})\) with respect to \(^{13}\text{C}, ^{15}\text{N}, \) and \(\text{D}\) isotopologues, from the obtained column densities shown in Table 5. For estimating these ratios, we assume the same partition function for both the main and the rare isotopologues.

\(^{12}\text{C}/^{13}\text{C}\): The column density ratio between the normal species and each \(^{13}\text{C}\) isotopologue in Orion-KL, on taking into account the associated uncertainties, varies between 4-20 for the hot narrow component and between 10-43 for the cold narrow component. The solar isotopic abundance \((^{12}\text{C}/^{13}\text{C})_{\odot}=90\) [Anders & Grevesse 1989] corresponds roughly to a factor 2-22 higher than the value obtained in Orion. The \(^{12}\text{C}/^{13}\text{C}\) ratio indicates the degree of galactic chemical evolution, so the solar system value could point out earlier epoch conditions of this region [Wyckoff et al. 2000, Savage et al. 2002]. The following previous estimates of the \(^{12}\text{C}/^{13}\text{C}\) ratio in Orion-KL from observations of different molecules have been reported: 43±7 from CN [Savage et al. 2002], 30-40 from HCN, HNC, OCS, \(^2\text{H}_2\text{CO}, \text{CH}_3\text{OH}\) [Blake et al. 1987], 57±14 from \(^3\text{H}_2\text{O}\) [Persson et al. 2007], 35 from methyl formate [Carvajal et al. 2009, Haykal et al. 2014], 45±20 from CS-bearing molecules [Tercero et al. 2010], 73±22 from ethyl cyanide [Daly et al. 2013], and 3±17 from cyanoacetylene in the hot core [Esplugues et al. 2013b]. Taking into account the weakness of the \(^{13}\text{C}\) lines, the derived ratios are compatible with a \(^{12}\text{C}/^{13}\text{C}\) ratio between 30-45 found by other authors.

Nevertheless, our results point out a possible chemical fractionation enhancement of the \(^{13}\text{C}\) isotopologues of vinyl cyanide. The intensity ratios derived in Sect. 4.4.4 also indicate this possibility. This ratio might be underestimated if the lines from the g.s. were optically thick. However, our model for the assumed sizes of the source yields values of \(\tau\) (optical depth) that are much lower than unity (see Sect. 4.4.4). In Sgr B2(N), Müller et al. (2008) derived from their observations of \(^2\text{H}_2\text{CHCN} \text{a }^{12}\text{C}/^{13}\text{C}\) ratio of 21±6.

\(^{14}\text{N}/^{15}\text{N}\): We obtained an average lower limit value for \(\text{N}/(\text{CH}_3\text{CN}^{14}\text{N})/\text{N}/(\text{CH}_3\text{CN}^{15}\text{N})\) of \(\geq 33\) for the two involved components. In Daly et al. (2013) (see Appendix B) we provided a \(^{13}\text{N}/^{15}\text{N}\) ratio of 256±128 by means of ethyl cyanide, in agreement with the terrestrial value [Anders & Grevesse 1989] and with the value obtained by Adande and Ziurys (2012) in the local interstellar medium. The latter authors performed an evaluation of the \(^{14}\text{N}/^{15}\text{N}\) ratio across the Galaxy (toward 11 molecular clouds) through CN and HNC. They concluded that this ratio exhibits a positive gradient with increasing distance from the Galactic center (in agreement with chemical evolution models where \(^{15}\text{N}\) has a secondary origin in novae).

D/H: For a tentative detection of mono-deuterated forms of vinyl cyanide we derived a lower limit D/H ratio of \(\leq 0.12\) (for HCDCHCN and DCHCHCN) and \(\leq 0.09\) (for CH_{2}CDCN) for the hot narrow component, whereas we obtain \(\leq 0.04\) (for HCDCHCN and DCHCHCN) and \(\leq 0.03\) (for CH_{2}CDCN) for the cold component. Studies of the chemistry of deuterated species in hot cores carried out by Rodgers & Millar (1996) conclude that the column density ratio D/H remains practically unaltered during a large period of time when D and H-bearing molecules are released to the gas phase from the ice mantles of dust grains. These authors indicate that the observations of deuterated molecules give insight into the processes occurring on the grain mantles by inferring the fractionation of their parent molecules. Furthermore, the fractionation also helps us to trace...
the physical and chemical conditions of the region (Roueff et al. 2005). Values of this ratio were given by Marqueses et al. (2010) from observations of deuterated methyl formate obtained $N(\text{DCOOH})/\text{HCOOCH}_{3}$=0.04 for the hot core; Tercero et al. (2010) estimated an abundance ratio of $N(\text{HDCS})/\text{N}(\text{H}_{2}\text{CS})$ being 0.05±0.02, also for the hot core component; Neil et al. (2013) provided a $N(\text{HDCO})/N(\text{H}_{2}\text{CO})$ ratio in the hot core of ≤0.005; Pardo et al. (2011) derived a value between 0.004-0.01 in the plateau by means of the hot core component. We do not observe a clear decline of this ratio neither with the increasing of upper state energies above 150 K even for transitions of optically thick lines, we should expect these large opacities for the four cloud components shown in Table 5. Table 6 shows the opacities for the physical components assumed in Table 5. The MADEX code gives us the line opacity for each transition.

4.4.4. Line opacity

The MADEX code gives us the line opacity for each transition to obtain the maximum total opacity of 0.26 (sum of the opacity of all cloud components) for the 30-30-29-29 transition at 275558 MHz. This value corresponds with a maximum correction of about 3-5% for our column density results. In fact, column densities have to rise a factor 4 in order to obtain a total opacity of 0.95 implying a large mismatch (a factor 3-4 in the line intensity) between model and observations.

Figure 14 shows the $^{12}\text{C}/^{13}\text{C}$ ratios of the observed line intensities for a given transition against its upper level energy and its frequency. As for the rotational diagrams, unbinned lines have been used for deriving these ratios. We observe that most of these ratios are between 15 and 25 and we do not observe a clear decline of this ratio neither with the increasing of upper state energy nor with the increasing of the frequency. In case of optically thin lines, we should expect these large opacities for lines at the end of the 1.3 mm window (240-280 GHz) where the upper state energies are above 150 K even for transitions of K_{a}=0. Figure 14 suggests that the CH$_{2}$CHCN g.s. lines have $\tau<1$. Nevertheless, if the bulk of the emission comes from a small region ($\sim1''$), opacities will be larger than 1.

From Fig. 14 we can estimate the average intensity ratios for each ^{13}C isotopologue being 20 ± 6, 18 ± 5, and 19 ± 6 for $^{12}\text{C}^{13}\text{C}^{1}$, $^{12}\text{C}^{13}\text{C}^{2}$, and $^{12}\text{C}^{13}\text{C}^{1}$, respectively. These results, together with the $^{12}\text{C}/^{13}\text{C}$ column density ratio derived in Sect. 4.4.3, suggest possible chemical fractionation enhancement of the ^{13}C isotopologues of vinyl cyanide.

4.4.4. Vibrational temperatures

We can estimate the vibrational temperature between the different vibrational modes of the vinyl cyanide according to:

$$
\frac{N(\text{CH}_2\text{CHCN} \ nu_i)}{N(\text{CH}_2\text{CHCN})} = \exp(-\frac{E_{nu_i}}{kT}) \cdot f_{nu_i},
$$

(3)

where nu_i identifies the vibrational mode, E_{nu_i} is the energy of the corresponding vibrational state (328.5, 478.6, 657.8, 806.4,809.9, and 987.9 K for $nu_1=1$, $nu_2=1$, $nu_1=2$, $nu_1=3$, respectively). T_{vib} is the vibrational temperature, f_{nu_i} is the vibrational partition function, $N(\text{CH}_2\text{CHCN} \ nu_i)$ is the column density of the vibrational state, and $N(\text{CH}_2\text{CHCN})$ is the total column density of vinyl cyanide. Taking into account the relation $N(\text{CH}_2\text{CHCN})=N_{\nu_i} \cdot f_{nu_i}$ and assuming the same partition function for these species in the ground and in the vibrationally excited states, we only need the energy of each vibrational state and the calculated column density to derive the vibrational temperatures. The vibrational temperature (T_{vib}) is given as a lower limit, since the vibrationally excited gas emitting region may not coincide with that of the ground state.

From the column density results, the T_{vib} in the hot narrow component for each vibrationally excited level were 268 ± 80 K, 246 ± 74 K, 265 ± 132 K, 402 ± 201 K, and 385 ± 192 K for $nu_1=1$, $nu_2=1$, $nu_1=2$, $nu_1=3$, respectively. In the same way, the T_{vib} in the cold narrow component for each vibrationally excited level were 237 ± 71 K, 208 ± 62 K, 220 ± 110 K, 324 ± 162 K, and 385 ± 260 K for $nu_1=1$, $nu_2=1$, $nu_1=2$, $nu_1=3$, respectively. The average vibrational temperature for $nu_1=1$, $nu_1=2$, and $nu_1=3$, from both narrow components was 252 ± 76 K, 242 ± 121 K, and 227 ± 68 K, respectively. In the case of $nu_1=1$, $nu_2=1$, and $nu_1=3$, the derived T_{vib} is larger than the T_{rot} in the hot narrow component (320 K), which could suggest an inner and hotter region for the emission of these vibrationally excited states of vinyl cyanide. Moreover, a tendency to increase the vibrational temperature with the vibrational energy of the considered state is observed. Vibrational transitions imply ro-vibrational states that may be excited by dust IR photons or collisions with the most abundant molecules in the cloud. Nevertheless, collisional rates are needed to evaluate the excitation mechanisms. The observed differences between T_{rot} and T_{vib} indicate either a far-IR pumping of the highly excited vibrational levels or the presence of a strong temperature gradient towards the inner regions. Some internal heating might be reflected in temperature and density gradients due to processes such as, for example, star formation.

4.5. Detection of isocyanide species

We searched for the isocyanide counterparts of vinyl, ethyl, and methyl cyanide, cyanocacetylene, and cyramide in our line survey. In this section we report the first detection towards Orion-KL of methyl isocyanide and a tentative detection of vinyl isocyanide. The first to sixth columns of Table 7 show the cyanide and isocyanide molecules studied in Orion-KL, their column density values in the components where we assumed emission from the isocyanides, the column density ratio between the cyanide and its isocyanide counterpart, the same ratios obtained by previous authors in Sgr B2 and TMC-1 sources, and the differences of the bond energies between the -CN and -NC isomers. Vinyl isocyanide (CH$_{3}$CHNHC) is an isomer of the unsaturated hydrocarbon vinyl cyanide. The structure differences between the vinyl cyanide and isocyanide are due to the CNC and CCN linear bonds and their energies, where CCN displays shorter bond distances. The bonding energy difference between vinyl cyanide and isocyanide is 8658 cm$^{-1}$ (24.8 kcal mol$^{-1}$) (Remijan et al. 2005), with the cyanide isomer being more stable than the isocyanide. We have tentatively detected vinyl isocyanide in our line survey (Fig. 15), with 28 unbinned lines and 26 partially blended lines from a total of 96 detectable lines. This detection is just above the confusion limit. In Table A.1.4 we show spectroscopic and observational parameters of...
Table 6. Line opacities

Transition	Freq. (MHz)	E_{app} (K)
$^{14}_{12}$-10$_{10}$	103575.4	29.9
$^{14}_{12}$-11$_{11}$	133030.7	67.3
$^{16}_{15}$-17$_{11}$	167728.4	77.1
$^{23}_{22}$-22$_{22}$	212788.7	123.8
$^{25}_{24}$-24$_{24}$	237712.0	182.8
$^{26}_{25}$-25$_{25}$	257646.2	181.4
$^{30}_{29}$-29$_{29}$	275588.1	207.4

τ values for different components:

Hot narrow comp.	Cold narrow comp.	Hot wide comp.	Cold wide comp.
$da_{uu}=10^{0}$	$da_{uu}=15$	$da_{uu}=10^{4}$	$da_{uu}=15$
$N=1.0x10^{5}$ cm$^{-2}$	$N=3.0x10^{4}$ cm$^{-2}$	$N=8.2x10^{1}$ cm$^{-2}$	$N=9.2x10^{14}$ cm$^{-2}$

τ values for different components:

Transition	Freq. (MHz)	E_{app} (K)
$^{11}_{10}$-10$_{10}$	103575.4	29.9
$^{14}_{12}$-11$_{11}$	133030.7	67.3
$^{16}_{15}$-17$_{11}$	167728.4	77.1
$^{23}_{22}$-22$_{22}$	212788.7	123.8
$^{25}_{24}$-24$_{24}$	237712.0	182.8
$^{26}_{25}$-25$_{25}$	257646.2	181.4
$^{30}_{29}$-29$_{29}$	275588.1	207.4

τ values for different components:

Hot narrow comp.	Cold narrow comp.	Hot wide comp.	Cold wide comp.
$da_{uu}=5^{0}$	$da_{uu}=10$	$da_{uu}=5^{4}$	$da_{uu}=10$
$N=3.0x10^{5}$ cm$^{-2}$	$N=1.0x10^{5}$ cm$^{-2}$	$N=9.0x10^{14}$ cm$^{-2}$	$N=1.3x10^{15}$ cm$^{-2}$

Note. Opacities for some lines of CH$_3$CN g.s. at different frequencies considering different source diameters and column densities (see text, Sect. 4.3.4).

Table 7. Column densities of the isocyanide species and N(-CN)/N(-NC) ratios.

Molecule	N_{TOTAL} (cm$^{-2}$)	$[N$(-NC$)]$/$[N$(-CN$)]$	Isomerization energy (cm$^{-1}$)
CH$_3$CHCN	$(\pm 1)\times10^{7}$	$\leq(1.0\pm0.5)\times10^{1}$	5$\times10^{-3}$ 8658(a)
CH$_3$CHN	$(3.2\pm0.9)\times10^{15}$	$\leq(3.2\pm0.6)\times10^{14}$	$\leq3x10^{3}$ 8697(a)
CH$_3$NC	$(6.0\pm3.0)\times10^{13}$	$(2\pm1)\times10^{3}$	$(3.5\pm3)\times10^{-3}$ 9486(a)
CH$_3$CH$_2$CN	$(7\pm2)\times10^{6}$	$\leq(3\pm0.6)\times10^{14}$	$\leq3x10^{3}$ 8697(a)
CH$_3$CH$_2$NC	$(4\pm1)\times10^{5}$	$\leq3x10^{3}$	$\leq3x10^{3}$ 8697(a)
HCCCN	$(3\pm1)\times10^{13}$	$(8\pm4)\times10^{3}$	$(2-5)\times10^{3}$ 6614(d)
HNC$_3$	$(3\pm1)\times10^{13}$	$(8\pm4)\times10^{3}$	$(2-6)\times10^{3}$ $(2-6)\times10^{3}$ 17745(d)
NH$_2$CN	$(3\pm1)\times10^{13}$ 18537(g)
NH$_2$NC	$(5\pm2)\times10^{13}$ 18537(g)

Note. Derived column densities for the cyanide and isocyanide species (Col. 2). Columns 3-5 show the ratio between the cyanide and its isocyanide isomer in this work and that derived from other authors in Sgr B2 and TMC-1, Col. 6 gives the energy difference for the isomerization between the isocyanide species and its corresponding cyanide. (a) Remijan et al. 2005. (b) Cernicharo et al. 1988. (c) Irvine & Schloerb 1984. (d) Kawaguchi et al. 1992a. (e) Oishi & Kaifu 1998. (f) Kawaguchi et al. 1992b. (g) Turner et al. 1975.

detected lines of vinyl isocyanide (rotational constants were derived fitting all experimental data from Bolton et al. 1970; Yamada & Winniewski 1975; and Bestmann & Breitzig 1982; the dipole moments were from Bolton et al. 1970). For modeling this molecule we assume the same physical conditions as those found for the vinyl cyanide species (we consider both narrow components). We derived a column density of $\leq(3\pm2)\times10^{14}$ cm$^{-2}$ (hot narrow component) and $\leq(5\pm3)\times10^{13}$ cm$^{-2}$ (cold narrow component). We estimate a N(CH$_3$CHCN)/N(CH$_3$HCN) ratio of $\leq0.10\pm0.05$, while Remijan et al. 2005 derived a ratio of about ≤0.005 toward Sgr B2 with an upper limit for the vinyl isocyanide column density of $\leq1.1\times10^{15}$ cm$^{-2}$.

Molecule	N_{TOTAL} (cm$^{-2}$)	$[N$(-NC$)]$/$[N$(-CN$)]$	Isomerization energy (cm$^{-1}$)
CH$_3$CHCN	$(\pm 1)\times10^{7}$	$\leq(1.0\pm0.5)\times10^{1}$	5$\times10^{-3}$ 8658(a)
CH$_3$CHN	$(3.2\pm0.9)\times10^{15}$	$\leq(3.2\pm0.6)\times10^{14}$	$\leq3x10^{3}$ 8697(a)
CH$_3$NC	$(6.0\pm3.0)\times10^{13}$	$(2\pm1)\times10^{3}$	$(3.5\pm3)\times10^{-3}$ 9486(a)
CH$_3$CH$_2$CN	$(7\pm2)\times10^{6}$	$\leq(3\pm0.6)\times10^{14}$	$\leq3x10^{3}$ 8697(a)
CH$_3$CH$_2$NC	$(4\pm1)\times10^{5}$	$\leq3x10^{3}$	$\leq3x10^{3}$ 8697(a)
HCCCN	$(3\pm1)\times10^{13}$	$(8\pm4)\times10^{3}$	$(2-5)\times10^{3}$ 6614(d)
HNC$_3$	$(3\pm1)\times10^{13}$	$(8\pm4)\times10^{3}$	$(2-6)\times10^{3}$ $(2-6)\times10^{3}$ 17745(d)
NH$_2$CN	$(3\pm1)\times10^{13}$ 18537(g)
NH$_2$NC	$(5\pm2)\times10^{13}$ 18537(g)
Fig. 14. 12C/13C ratios of the observed line intensities for a given transition in function of the upper level energy (top panel) and the frequency (bottom panel).

Fig. 15. Observed lines from Orion-KL (histogram spectra) and model (thin red curves) of vinyl isocyanide in its ground state. The cyan line corresponds to the model of the molecules we have already studied in this survey (see text Sect. 4.4.2) including the CH$_3$CHCN species. We consider the detection as tentative. A v_{LSR} of 5 km s$^{-1}$ is assumed.

Methyl cyanide (CH$_3$CN) is a symmetric rotor molecule whose internal rotor leads to two components of symmetry A and E. The column densities of the ground state obtained for both A and E sub-states using an LVG model were derived by Bell et al. (2014) in Orion-KL. They fitted separately different series of K-ladders transitions ($J=6-5, J=12-11, J=13-12, J=14-13$). We averaged the model results for these four series at the IRc2 position deriving a column density of 3.1×10^{16} cm$^{-2}$ and a kinetic temperature of ≈ 265 K. The CH$_3$CN molecule has a metastable isomer named methyl isocyanide (CH$_3$NC)
that has been found in dense interstellar clouds (Sgr B2) by Cernicharo et al. (1988) and Remijan et al. (2005). The bonding energy difference between methyl isocyanide and isocyanide is 9486 cm\(^{-1}\) (27.1 kcal mol\(^{-1}\)) [Remijan et al. 2005]. We observed methyl isocyanide in Orion-KL for the first time (Fig. 16 available online). For modeling the weak lines of methyl isocyanide we assume a hot core component ([Bell et al. 2014]). Rotational constants were derived from a fit to the data reported by Bauer & Bogey (1970), Pracna et al. (2011). The constants \(H_J, L_L, \text{and} L_{J,J,K}\) have been fixed to the values derived by Pracna et al. (2011). The constants \(A\) and \(D_K\) were from Pliva et al. (1995). Dipole moment was that of Gripp et al. (2000). We derived a column density of \((3.0 \pm 0.9) \times 10^{13}\) cm\(^{-2}\) for each \(A\) and E symmetry sub-states. We determined a \(N(\text{CH}_3\text{NC})/N(\text{CH}_3\text{CN})\) ratio of 0.002 (assuming the three hot core components of those showed above, which is a factor 15-25 lower than the value obtained by Cernicharo et al. (1988) toward Sgr B2. DeFrees et al. (1985) by means of chemical models predicted this ratio in dark clouds in the range of 0.1-0.4.

Ethyl cyanide (\(\text{CH}_3\text{CH}_2\text{CN}\)) is a heavy asymmetric rotor with a rich spectrum. In our previous paper (Daly et al. 2013), three cloud components were modeled in LTE conditions in order to determine the column density of this molecule. We obtained a total column density of \((7 \pm 2) \times 10^{16}\) cm\(^{-2}\) for this species.

The bonding energy difference between ethyl cyanide and isocyanide is 8697 cm\(^{-1}\) (24.9 kcal mol\(^{-1}\)) [Remijan et al. 2005]. The spectroscopic parameters used for ethyl isocyanide (\(\text{CH}_3\text{CH}_2\text{NC}\)) were obtained from recent measurements in Lille up to 1 THz by Margulès et al. (2014, in preparation). For \(\text{CH}_3\text{CH}_2\text{NC}\) we provide an upper limit to its column density of \((2 \pm 1) \times 10^{14}\) cm\(^{-2}\). Then, we derived a \(N(\text{CH}_3\text{CH}_2\text{NC})/N(\text{CH}_3\text{CH}_2\text{CN})\) ratio of 0.003. This value is 100-fold lower than the upper limit value obtained by Remijan et al. (2005) toward Sgr B2 of \(\leq 0.3\).

We observe that the upper limit for the \(\text{CH}_2\text{CHCN}\) column density is 5-fold higher than the value of methyl isocyanide, and holds a similar order of magnitude relationship with the upper limit column density of the tentatively detected ethyl isocyanide.

Cyanoacetylene (HCCCN) is a linear molecule with a simple spectrum. Its lines emerge from diverse parts of the cloud [Esplugues et al. 2013b], although mainly from the hot core. The model of the HCCCN lines was set up using LVG conditions. The authors determined a total column density of \((3.5 \pm 0.8) \times 10^{13}\) cm\(^{-2}\).

Isocyanoacetylene (HCCNC) is a stable isomer of cyanoacetylene and has an energy barrier of 6614 cm\(^{-1}\) (18.9 kcal mol\(^{-1}\)). Owing to high overlap problems in our data we only found one line of HCCNC free of blending at 99354.2 MHz. In order to obtain an upper limit for its column density we assumed the same physical components as those of Esplugues et al. (2013b). Spectroscopic parameters were derived fitting the lines reported by Guarnieri et al. (1992b), dipole moment was taken from Gripp et al. (2000). We obtained an upper limit to the HCCNC column density of \(\leq (3 \pm 1) \times 10^{13}\) cm\(^{-2}\).

We estimated an upper limit for the \(N(\text{HCCNC})/N(\text{HCCCN})\) ratio of \(\leq 0.008\). HCCNC was observed for the first time toward TMC-1 (three rotational lines in the frequency range 40-90 GHz) by Kawaguchi et al. (1992a). They obtained a \(N(\text{HCCNC})/N(\text{HCCCN})\) ratio in the range 0.02-0.05 in that dark cloud, which is around 2-6 times higher than our upper limit. Ohishi & Kaita (1998) provided an upper limit value of \(\leq 0.001\) also in TMC-1. This molecule has also been detected in the envelope of the carbon star IRC+10216 by Gensheimer (1997).

The other carbene-type isomer of HCCCN is 3-imino-1,2-propadienylidene (HNCCC) that was predicted to have a relative energy of about 17744.6 cm\(^{-1}\) with respect to HCCCN (Kawaguchi et al. 1992b). We provided a tentative detection of this isomer in our survey (Fig. A.3 available online). Its column density, \((3 \pm 1) \times 10^{13}\) cm\(^{-2}\), has been obtained by assuming the same cloud components as those of Esplugues et al. (2013b).
Spectroscopic parameters were derived from a fit to lines reported by Kawaguchi et al. (1992a) and Botschwina et al. (1992), and three lines observed in IRC+10216 with an accuracy of 0.3 MHz. Dipole moment was that of Botschwina et al. (1992). We derived a $N/(HNCC)/N/(HCCCN)$ upper limit ratio of 0.008. Kawaguchi et al. (1992a) obtained a $N/(HNCC)/N/(HCCCN)$ ratio in the range 0.002-0.006 in TMC-1.

After the detection of cyanamide (NH$_2$CN) by Turner et al. (1975), Cummins et al. (1986), and Belloche et al. (2013) in Sgr B2, we report a tentative detection of cyanamide (NH$_2$CN) in Orion-KL (see Fig. A.2 available online). Frequencies, energies, and line intensities for O’-NH$_2$CN and O’-NH$_2$HCN were those published in the JPL catalog (based on the works of Read et al. 1986 and Birk 1988). We estimated a column density $\lesssim(3\pm1)\times10^{13}$ cm$^{-2}$ (O’-O’) by assuming that its lines are coming only from one component (hot core) at 200 K (v_{LSR}=5 km s$^{-1}$, $\Delta v=5$ km s$^{-1}$, $d_{rot}=10^{10}$, offset=2”). NH$_2$CN is an isomer differing only in the CN group, so that, the isomerization energy between the cyanamide and isocyanamide (NH$_3$NC) is 18537 cm$^{-1}$ (Vincent & Dykstra 1980). In this work, we also provided only an upper limit column density of isocyanamide (O’-O’) being $\lesssim(5\pm1)\times10^{13}$ cm$^{-2}$. Spectroscopic parameters were derived fitting the rotational lines reported by Schäfer et al. (1981). Dipole moment was that of Ichikawa et al. (1982) from ab-initio calculations.

In Table 7, we give values of interconversion energies between cyanide and isocyanide molecules. These interconversion barriers are rather high, and it is unlikely that under astronomical environments such as the hot cores the isocyanide isomers are produced by rearrangement of the corresponding cyanide species. Remijan et al. (2005), proposed that non-thermal processes (such as shocks or enhanced UV flux in the surrounding medium) may be the primary route to the formation of interstellar isocyanides by the conversion of the cyanide to its isocyanide counterpart. Nevertheless, other formation routes have to be explored in order to explain their presence in environments dominated by thermal processes. Dissociative recombination reactions on the gas phase probably lead to the formation of the cyanide or isocyanide molecules. Depending on the structure of the protonated hydrocarbon and the branching ratios of the dissociative recombination pathway, H$_2$C$_3$N$_2$ might produce cyanocetylene and isocyanocetylene, and similarly C$_2$H$_3$N$_2$ could yield methyl cyanide and methyl isocyanide (Green & Herb 1979). DeFrees et al. (1985) found that the calculated ratio of the formation of the protonated precursor ions (CH$_3$CN$^+$ and CH$_3$NCH$^+$) was in agreement with the detection of CH$_3$NC in dark clouds (Irving & Schloerb 1984). In the same way, the recombination reaction of C$_2$H$_3$N$_2$ could give ethyl isocyanide (Bouchoux et al. 1992). Once the isocyanides are formed they remain as metastable species due to the high barrier quoted above supporting the possible existence of isolated isocyanides (Vincent & Dykstra 1980). On the other hand, a recent experimental study of the interaction of the diatomic radical CN and the π-system C$_2$H$_4$ confirms that the possible pathway to CH$_2$CHNC becomes negligible even at temperatures as high as 1500 K (Balucani et al. 2006, Leonori et al. 2012). Since the cyanide molecules are strongly related to the dust chemistry (Blake et al. 1987, Charnley et al. 1992, Caselli et al. 1993, Rodgers & Charnley 2001, Garrod et al. 2008, Belloche et al. 2013), we also can infer a probable origin for the isocyanide species from reactions on grain mantles.

5. Discussion

5.1. Abundances and column density ratios between the cyanide species

Table 8 shows the ground state abundances in the hot core (or hot core + plateau) component of the studied species in this work, and the column density ratios between vinyl cyanide and other cyanide molecules. Results provided by different authors in Orion-KL, in the well studied star forming region Sgr B2, in the star forming complex G34.3+0.2 (hot core), and in the dark molecular cloud TMC-1, are also given in this table.

For Orion-KL our study covers a wide frequency range allowing detailed modeling of the molecular emission. Moreover, the molecular abundances obtained from other authors, and shown in Table 8 are often obtained with different telescopes and different assumptions on the size and physical conditions of Orion-KL. For this reason, these abundances are given in Table 8 for comparison purposes, but we will focus on the results obtained in this work that have been derived from a common set of assumptions, sizes, and physical conditions for Orion-KL.

In order to estimate molecular abundances for the cyanide and isocyanide species we assume that the column density of H$_2$ (N(H$_2$) is 4.2×10^{15} cm$^{-2}$ for the hot core, 2.1015 cm$^{-2}$ for the plateau, and 7.5x1022 cm$^{-2}$ for the extended ridge and for the extended ridge, as derived by Tercero et al. (2010).

The total abundance for the CH$_3$CHCN ground state, derived from all the components (hot core + mix hot core-plateau) (see Table 5), was $X(CH_3CHCN)/N(H_2)=(2.0\pm0.6)\times10^{-6}$. By means of the derived vibrational temperatures we can estimate the vibrational partition function that follows the equation (4) for a Boltzmann distribution in both narrow components (1.7 and 1.5 for hot and cold narrow components, respectively) and correct the ground state column density to the total one (see Sect. 4.4.5). Taking into account these results for the vibrational partition function, we obtained $X(CH_3CHCN)\simeq(3.1\pm0.9)\times10^{-8}$.

\[f_v = 1 + \sum_{j=1}^{n} d_j \exp(-\frac{E_j}{kT_{vib}}) \]

where d_j is the degeneracy of the vibrational mode j, and for low T$_{vib}$ leads to $f_v = 1$.

Assuming the column density values of CH$_3$CN of Bell et al. (2014), the abundance for CH$_3$CN ground state in the hot core component was $\simeq1.0\times10^{-7}$. In order to estimate the correction to the column density of CH$_3$CN from excited vibrational states, we have derived the column density of this molecule in its $v_3=1$ lower energy state (525.2 K) and found a N(CH$_3$CN,v=1) of 1.4×10^{25} cm$^{-2}$ and T$_{vib}$=159 K (considering only the hot core and plateau components). Hence, the vibrational partition function is ~1.04 and $X(CH_3CN)\sim X(CH_3CHCN)$ for methyl cyanide.

For ethyl cyanide we use the column density results of Daly et al. (2013) (see Appendix B). We determine the $X(CH_3CH_2CN)/N(H_2)$ ratio being $1.8\pm0.5\times10^{-7}$ for the ground state. Assuming the vibrational temperatures obtained in Daly et al. (2013) $\simeq160\pm50$ K, $\simeq185\pm55$ K, and $\simeq195\pm95$ K, for v_3/v_2 (E$_{v_3}$=306.3/315.4 K), v_3 (E$_{v_3}$=531.2 K), and v_2 (E$_{v_2}$=763.4 K)–, the estimated vibrational partition function is 1.4, so we derived an abundance ratio $X(2.5\pm0.8)\times10^{-7}$ for ethyl cyanide.

Esplugues et al. (2013b) derived an abundance of 7.3×10^{-9} for HC$_3$N (hot core + plateau) in the ground state.

Assuming a mean vibrational temperature of 360 K in the hot core calculated by these authors, the vibrational partition function from v_5 (E$_{v_5}$=954.48), v_6 (E$_{v_6}$=718.13), and v_7=1...
We have investigated the observed column densities of CH$_2$CHCN, CH$_3$CN, CH$_3$CH$_2$CN, HCCCN, and CN using a time and depth dependent gas-grain chemical model, UCL$_{CHEM}$. UCL$_{CHEM}$ is a two-phase model which follows the collapse of a prestellar core (Phase I), followed by the warming and evaporation of grain mantles (Phase II). In Phase II we increase the dust and gas temperature up to 300 K, to simulate the presence of a nearby infrared source in the core. For the hot core component we model both a 10 M_{\odot} and 15 M_{\odot} star, with a final density of 107 cm$^{-3}$. During the collapse, atoms and molecules collide with, and freeze on to, grain surfaces. The depletion efficiency is determined by the fraction of the gas-phase material that is frozen on to the grains, which is dependent on the density, the sticking coefficient and other properties of the species and grains (see Rawlings et al. 1992). In our modelling we have explored the uncertainty in grain properties and sticking coefficients by varying the depletion percentage. Initial atomic abundances are taken from Sofia & Meyer (2001), as in Viti et al. (2004). Gas-phase reaction rate coefficients are taken from the UMIST database of Woodall et al. (2007), however, some have been updated with those from the KIDA database (Wakelam 2009). We also include some simple grain-surface reactions (mainly hydrogenation) as in Viti et al. (2004). While COMs (complex organic molecules) may also form via surface reactions involving heavier (than hydrogen) species (e.g. Garrod et al. 2008), the mobility of most heavy species on grains has not been experimentally investigated; hence, for this qualitative analysis, we chose to adopt a simpler model where only the most efficient surface reactions occur: in this way we can give a lower limit to the formation of COMs which may be augmented by multiple complex reactions should they occur. In Phase I non-thermal desorption is considered as in Roberts et al. (2007).

Within our grid of models we find that models where we simulate a 10 M_{\odot} star and 100% of CO frozen onto grain surfaces most accurately reproduce the observed column densities of CH$_2$CHCN, CH$_3$CN, CH$_3$CH$_2$CN, and CH$_3$CH$_2$CN. Figure 17 shows the column density as a function of time during phase II for this model. The column density produced by the model for HCCCN is an order of magnitude higher than the observed value. Whilst our models simulate both gas phase and grain surface reactions for all of these species, the grain surface reactions are essential in order to reproduce the observed column densities. We therefore conclude that we are missing some grain surface destruction routes for HCCCN and consequently overproduced this species in our models. Moreover, the deep decreased of the CN abundance when CH$_2$CH$_2$CN appears is observationally confirmed by the lack of the hot core component in the CN lines even at the HIFI frequencies (Crockett et al. 2014).

For details of the same surface chemistry approach see Viti et al. (2004) and Bell et al. (2014).
On the other hand, the reliably address other vibrational components of the 3\(\text{CH}_2\text{CHCN} \) triad. We also note that Belloche et al. (2013) have recently detected the combination state (7,15,8) integrated-frequency maps, and Gaussian fits in order to optimize the laboratory coverage of the rotational spectrum of vinyl cyanide and the analysis of its vibrationally excited states to provide ample basis for detection of transitions from further excited vibrational states at even higher vibrational energies. Laboratory basis for detecting states up to as high as \(v_9 \) (1250 K) is now available. On the other hand, as implied by Fig. [1] and results for 4\(v_{11} \), considerable further spectroscopic analysis is required for satisfactory understanding of states above \(v_9 \).

6. Summary

Vinyl cyanide is one of the most abundant molecules in Orion-KL and a possible precursor of alanine. This study of the vinyl cyanide species contributes to improve the knowledge of the physical and chemical conditions of this high-mass star forming region. We have performed an identification of the ground state of \(\text{CH}_2\text{CHCN} \) and of its vibrationally excited states (up to 988 K) in the Orion-KL Nebula thanks to a new spectroscopic laboratory analysis using Stark modulation and frequency-modulated spectrometers. Our results are based on rotational diagrams, integrated-frequency maps, and Gaussian fits in order to op-

Molecule	Orion-KL X R	Sgr B2 X R	G34.3+0.2 X R	TMC-1 X R	
\(\text{CH}_2\text{CHCN} \)	\((2.0\pm0.6)\times10^{-6}\)†	\(6.2\times10^{-8}(j)\)	\(3.0\times10^{-10}(n)\)	\(1.0\times10^{-9}(p)\)	
\(\text{CH}_3\text{CN} \)	\((1.0\pm0.3)\times10^{-7}\)†	\(0.20(d)\)	\(3.0\times10^{-8}(k)\)	\(0.40(e)\)	\(7.5\times10^{-10}(p)\)
\(\text{CH}_3\text{CH}_2\text{CN} \)	\((1.8\pm0.5)\times10^{-7}\)†	\(0.11(b)\)	\(6.0\times10^{-10}(k*)\)	\(0.72(e)\)	
\(\text{HCCCN} \)	\((7\pm2)\times10^{-9}\)†	\(2.9(i)\)	\(5.0\times10^{-9}(k)\)	\(1.0\times10^{-8}(n)\)	\(0.20(n)\)
\(\text{NH}_2\text{CN} \)	\((7\pm2)\times10^{-11}\)†	\(286(e)\)	\(9.0\times10^{-11}(k*)\)	\(1.4(e)\)	

Note. Abundances (X) and column density ratios between vinyl cyanide and some studied cyanides (R) in Orion-KL and other sources. † This work. (a) Sutton et al. (1995), hot core, telescope beam ~13.7". (b) Blake et al. (1987), hot core, telescope beam ~30". (c) Persson et al. (2007), hot core, source size 10". (d) Bell et al. (2014), hot core (different components between 5-10") + plateau (10"). (e) Turner (1991), (f) Johansson et al. (1984). (g) Schilke et al. (1997). (h) Daly et al. (2013), hot core (4-10") and mix hot core-plateau (25"). (i) Esplugues et al. (2013b), hot core (7-10") and plateau (20"). (j) Müller et al. (2008). (k) Nummelin et al. (2000) small source-size averaged. (k*) Nummelin et al. (2000) beam averaged. (l) Remijan et al. (2005). (m) Belloche et al. (2009). (n) Mehringer & Snyder (1998). (o) Belloche et al. (2013). (p) Ohishi & Kaihara (1998). (q) Minh & Irving (1991)).

5.3. Further issues for \(\text{CH}_2\text{CHCN} \)

Further observations with telescopes with higher sensitivity and spatial resolution, such as ALMA (Atacama Large Millimeter/submillimeter Array), could provide additional detections of other vibrationally excited states above 600 cm\(^{-1}\), such as the outstanding states in the 3\(v_{11} / 2v_{15} / v_{14} \) triad of states near 680 cm\(^{-1}\) for which the spectroscopy is reported presently. In this study, we found that the \(v_{11} = 3 \) (987.9 K or 686.6 cm\(^{-1}\)) vibrational mode was near the detection limit so we could not reliably address other vibrational components of the 3\(v_{11} / 2v_{15} / v_{14} \) triad. We also note that Belloche et al. (2013) have recently detected the combination state \(v_{15} = v_{11} = 1 \) (809.9 K) but has not yet reported detection of \(v_{10} \) (806.4 K) state toward Sgr B2(N).
timize the physical and chemical parameters that simulate the best synthetic spectrum of CH$_2$CHCN (using MADEX) that fits the observation conditions of the Orion-KL region in an accurate way. We have found N(CH$_2$CHCN)=$(6\pm2)\times10^{15}$ cm$^{-2}$ from four cloud components of hot core/plateau nature (320-90 K). A total abundance of $(3.1\pm0.9)\times10^{-8}$ for vinyl cyanide is provided in this work. We have detected the CH$_2$CHCN $v_{11}=2,3$ vibrational modes for the first time in Orion-KL and the CH$_2$CHCN $v_{10}=1\leftrightarrow(v_{11}=1,v_{15}=1)$ excited state for the first time in the space.

We have seen that these species together with those of the three monodeuterated species of vinyl cyanide, contribute with more than 1100 observed lines in the 80-280 GHz domain covered by the Orion line survey. We highlight the importance for spectroscopic catalogs to introduce vibrationally excited species in the astronomical detections.

The column density ratios between the vinyl cyanide g.s. and the vibrationally excited states have been used in order to obtain temperatures at which the vibrational modes are excited, and to correct the ground column density from the vibrational partition function. The high vibrational temperature ($T_{\text{rot}}>T_{\text{tor}}$) for the states $v_{10}=1\leftrightarrow(v_{11}=1,v_{15}=1)$ and $v_{11}=3$ suggests a temperature gradient toward the inner regions of the hot core. To infer the population mechanism of the vibrationally excited states (collisions and/or infrared radiation) collisional rates are needed.

Owing to the importance of isomerism for understanding in a more precise way the formation of interstellar molecules, we have included the study of ethyl isocyanide, methyl isocyanate, isocyanocetylene, 3-imino-1,2-propadienylidene, and isocyananamide in our work. We have provided the detection of methyl isocyanide for the first time in Orion-KL, and tentative detections for the rest.

Finally, we have investigated the studied column densities of CH$_2$CHCN, CH$_3$CN, CH$_3$CH$_2$CN, and HCCCCN using a time dependent gas-grain chemical model (UCL CHEM) reproducing reasonably well the observed column densities for these molecules, although with an overestimation for that of HCCCCN; this is probably due to the efficiency for its formation on the grains being too high: a detailed investigation of the formation and destruction route for this species in chemical models is beyond the scope of this work; more quantitative models ought to be able to reproduce this molecule by investigating the efficiency of the formation of HCCCCN on the grains.

Acknowledgements. We thank the anonymous referee who provided comments that improved this manuscript. We thank INTA-CSIC, and the Spanish MINECO and Junta de Castilla y León for funding support from grants the CONSOLIDER program "ASTROMOL" CSD2009-00038, AYA2009-07304, AYA2012-32032, CTQ2010-19008, and VA175U13. C.B. thanks also the Spanish MINECO for the FPI grant (BES-2011-047695). The IFPAN authors acknowledge a grant from the Polish National Science Centre, decision number DEC2011/02/A/ST2/00298. Portions of this research were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

Adande, G. R. and Ziarys, L. M., 2012, ApJ, 744, 194
Anderson, R. J. & Gwinn, W. D., 1968, J. Chem. Phys., 49, 39, 88
Agúndez, M., Cernicharo, J., Pardo, J.R., et al., 2008, Astronomy and Space Sci., 313, 229
Anders, E. and Grevesse, N., 1989, Geochim. Cosmochim. Acta, 53, 197
Balucani, N., Asvany, O., Huang, L. C. L., et al., 2000, ApJ, 545, 892
Baskakov, O. I., Dyubko, S. F., Ilyushin, V. V., et al., 1996, J. Mol. Spectrosc., 179, 94
Bauer, A. and Bogey, M., 1970, C. R. Acad. Sci. Paris, 271B, 892
Bell, T., Cernicharo, J., Viti, S. et al., 2014, A&A, 218, 72
Belloche, A., Garrod, T. D., Müller, H. S. P., et al., 2009, A&A, 499, 215
Belloche, A., Müller, H. S. P., Menten, K. M., Schilke, P., and Comito, C., 2013, A&A, 559, A47
Bera, P. P., Lee, T. J., and Schaefer, H. F., 2009, J. Chem. Phys., 131, 074303
Bestmann, G. & Dreizler, H., 1982, Z. Naturforsch, 37a, 58
Betz, A., L., 1981, ApJ, 244, L103

Fig. 17. Time evolution of the column densities of CH$_3$CHCN, CH$_3$CN, CH$_3$CH$_2$CN, HC$_3$N, and CN for a hot core chemical model.
Turner, B. E., Kyslyakov, A. G., Liszt, H. S., and Kaifu, N., 1975, ApJ, 201, L149
Turner, B. E., 1991, ApJSS, 76, 617
Vigren, E., Hamberg, M., Zhaunerchyk, V., et al., 2009, ApJ, 695, 317
Vincet, M. A., & Dykstra, C. E., 1980, J. Chem. Phys., 73, 3838
Viti, S., Collings, M. P., Dever, J. W., McCoustra, M. R. S., and Williams, D. A.,
2004, MNRAS, 354, 1141
Welbel, V., 2009, American Astronomical Society Meeting, 214, 402.15,
BAAS, 41, 665
Widicus Weaver, S. L. and Friedel, D. N. 2012, ApJS, 201, 16
Wilcox, W. S., Goldstein, J. H., and Simmons, J. W., 1954, J. Chem. Phys., 22,
516
Woodall, J., Agúndez, M., Markwick-Kemper, A.J. & Millar, T.J., 2007, A&A,
466, 1197
Wyckoff, S., Kleine, M., Peterson, B. A., Wehinger, P. A., and Ziurys, L. M.,
2000, ApJ, 535, 991
Yamada, K., & Winnewisser, M., 1975, Z. Naturforsch, A, 30a, 672
Ziurys, L. M., & McGonagle, D., 1993, ApJSS, 89, 155
Appendix A: Online Tables and Figures

Table A.1. Spectroscopic constants in the diagonal blocks of the Hamiltonian for the \(2v_{15} \leftrightarrow v_{14} \leftrightarrow 3v_{11} \) triad of vibrational states in vinyl cyanide compared with those for the ground state.

	ground state	\(2v_{15} \)	\(v_{14} \)	\(3v_{11} \)
\(\Delta /\text{kHz} \)				
\(\Delta J /\text{kHz} \)	2.244058(13)	2.23613(25)	2.26543(26)	2.31540(32)
\(\Delta K /\text{kHz} \)	-85.6209(35)	-101.725(13)	-81.531(12)	-62.131(12)
\(\Delta L /\text{kHz} \)	2715.4213(94)	4021.39(65)	2752.53(50)	1416.57(67)
\(\delta J /\text{kHz} \)	0.4566499(32)	0.44884(16)	0.45991(16)	0.48731(24)
\(\delta K /\text{kHz} \)	24.4935(22)	26.477(90)	27.126(82)	32.642(96)
\(\Phi /\text{Hz} \)	0.0064338(17)	0.006223(44)	0.006097(45)	0.006248(56)
\(\Phi_{J} /\text{Hz} \)	-0.00425(40)	0.129(16)	0.063(15)	0.094(17)
\(\Phi_{K} /\text{Hz} \)	-7.7804(39)	-25.21(11)	-7.03(10)	4.74(10)
\(\Phi_{L} /\text{Hz} \)	384.762(63)	1391.8(35)	395.8(16)	-317.0(41)
\(\phi_{J} /\text{Hz} \)	0.002309553(79)	0.002184(22)	0.002218(23)	0.002359(33)
\(\phi_{K} /\text{Hz} \)	0.14283(40)	0.126(16)	0.088(16)	0.252(17)
\(\phi_{L} /\text{Hz} \)	37.011(58)	66.2(24)	42.9(21)	27.1(21)
\(L_{J} /\text{mHz} \)	-0.000026315(71)	[0.]	[0.]	[0.]
\(L_{JK} /\text{mHz} \)	-0.001077(29)	[0.]	[0.]	[0.]
\(L_{JL} /\text{mHz} \)	0.4279(30)	[0.]	[0.]	[0.]
\(L_{KL} /\text{mHz} \)	0.012(12)	9.07(38)	3.62(38)	3.64(22)
\(L_{K} /\text{mHz} \)	-61.411(17)	-658.984(84)	-77.6(88)	161.3(94)
\(L_{K} /\text{mHz} \)	-0.00001602(36)	[0.]	[0.]	[0.]
\(L_{KK} /\text{mHz} \)	-0.00956(20)	[0.]	[0.]	[0.]
\(L_{KL} /\text{mHz} \)	-0.1436(46)	[0.]	[0.]	0.988(40)
\(L_{L} /\text{mHz} \)	8.91(18)	16.3(10)	8.03(88)	-25.43(69)
\(P_{K} /\text{mHz} \)	-0.00001563(31)	[0.]	[0.]	[0.]
\(P_{KK} /\text{mHz} \)	-0.00019777(57)	[0.]	[0.]	[0.]
\(P_{KL} /\text{mHz} \)	0.00867(15)	[0.]	[0.]	[0.]
\(\Delta E /\text{MHz} \)	0.0	549163.34(55)	694443.66(90)	
\(\Delta E /\text{cm}^{-1} \)	0.0	18.31182(2)	23.16415(3)	
\(N_{\text{lines}} \)	4490.0	1329.52	1287.53	1250.81
\(\sigma_{\text{fit}} /\text{MHz} \)	0.144	0.265	0.228	0.309
\(\sigma_{\text{rms}} /\text{MHz} \)	0.713	1.980	1.467	2.329

Notes. *(a)*Round parentheses enclose standard errors in units of the last quoted digit of the value of the constant, square parentheses enclose assumed values.

*(b)*The fitted vibrational energy difference relative to the lowest vibrational state in the triad.

*(c)*The number of distinct frequency fitted lines and the number of lines rejected at the 10\(\sigma \) fitting criterion of the SPFIT program.

*(d)*Deviations of fit for the different vibrational subsets.

*(e)*The coupled fit for the complete triad encompasses 3866 lines, at an overall \(\sigma_{\text{fit}} \) of 0.269 MHz and requires also the use of constants reported in Table A.3.
Table A.2. Spectroscopic constants in the off-diagonal blocks of the Hamiltonian for the \(v_{10} \leftrightarrow v_{11}v_{15} \) and \(v_{11}v_{10} \leftrightarrow 2v_{11}v_{15} \) dyads of vibrational states in vinyl cyanide.

\(v_{10} \leftrightarrow v_{11}v_{15} \)	\(v_{11}v_{10} \leftrightarrow 2v_{11}v_{15} \)	\(v_{10} \leftrightarrow 2v_{11}v_{15} \)	\(v_{11}v_{10} \leftrightarrow 2v_{11}v_{15} \)
\(G_a/\text{MHz} \)	1623.(13)	1557.(34)	643.32(46)
\(G_b/\text{MHz} \)	0.2192(48)	0.4834(45)	0.01663(17)
\(G_c/\text{MHz} \)	6.432(76)	3.67(10)	0.00766(38)
\(G_d/\text{MHz} \)	0.0001240(23)		
\(F_{bc}/\text{MHz} \)	4.151(90)	9.447(88)	
\(F_{bc}/\text{MHz} \)			

Notes. (a) Round parentheses enclose standard errors in units of the last quoted digit of the value of the constant, and only the constants with non-zero values are listed.
(b) These constants complement those in the diagonal blocks listed in Table A.1.

Table A.3. Spectroscopic constants in the off-diagonal blocks of the Hamiltonian for the \(2v_{15} \leftrightarrow v_{14} \leftrightarrow 3v_{11} \) triad of vibrational states in vinyl cyanide.

\(2v_{15} \leftrightarrow v_{14} \)	\(v_{14} \leftrightarrow 3v_{11} \)	\(2v_{15} \leftrightarrow 3v_{11} \)
\(G_a/\text{MHz} \)	5852.21(58)	223.63(15)
\(G_b/\text{MHz} \)	0.01958(32)	-2.790(18)
\(G_c/\text{MHz} \)	-0.000000324(61)	-0.1703(17)
\(G_d/\text{MHz} \)	-0.0000335(23)	W
\(G_e/\text{MHz} \)	0.001503(51)	W
\(F_{bc}/\text{MHz} \)	0.4557(30)	W
\(F_{bc}/\text{MHz} \)		W
\(W_{x}/\text{MHz} \)	0.8521(24)	W
\(W_{x}/\text{MHz} \)	0.000000540(82)	W
\(W_{x}/\text{KHz} \)	0.00847(15)	W
\(W_{x}/\text{KHz} \)	-0.000000700(44)	W
\(W_{x}/\text{KHz} \)	0.00000523(16)	W

Notes. (a) Round parentheses enclose standard errors in units of the last quoted digit of the value of the constant, and only the constants with non-zero values are listed.
(b) These constants complement those in the diagonal blocks listed in Table A.2.
Table A.4. Spectroscopic constants in the effective rotational Hamiltonian for the v_9 and $4v_{11}$ excited vibrational states of vinyl cyanide.

	v_9	$4v_{11}$
A/MHz	49828.53(89)a	47495.5(22)
B/MHz	4953.0854(34)	5047.5125(98)
C/MHz	4501.1911(18)	4545.1778(85)
Δ_i/kHz	2.2025(18)	2.3223(66)
Δ_j/kHz	-92.279(81)	-56.27(34)
Δ_K/kHz	2500.1(135)	-87.5(29)
δ_i/kHz	0.4392(11)	0.4766(46)
δ_K/kHz	11.17(53)	28.9(48)
Φ_J/Hz	0.00469(72)	0.0368(68)
Φ_{JK}/Hz	-2.22(36)	5.3(31)
Φ_{KJ}/Hz	-28.6(17)	-32.1(13)
Φ_J/Hz	[0.]	104900.(42879)
ϕ_J/Hz	0.00145(38)	-0.0185(36)
ϕ_{JK}/Hz	-0.93(18)	7.6(18)
ϕ_{KJ}/Hz	-159.4(48)	1131.1(532)
N_{lines}^b	373, 7	225, 17
σ_{fit}/MHz	0.167	0.250
σ_{rms}	1.665	2.496

Notes. aRound parentheses enclose standard errors in units of the last quoted digit of the value of the constant, square parentheses enclose assumed values. bThe number of distinct frequency fitted lines and the number of confidently assigned lines rejected at the 10σ fitting criterion of the SPFIT program.
Table A.5. Vibrational changes in rotational constants\(^a\) for the studied excited vibrational states in vinyl cyanide.

\(v_1\)	\(\text{exp.}\)	\(\text{calc. I}^b\)	\(\text{calc. II}^c\)	\(\text{exp.}\)	\(\text{estimated}^d\)	
\(11\)	\(-680.2411(15)^e\)	\(-782\)	\(-674.20\)	\(v_{11}/v_{15}\)	\(40.02(61)\)	\(271\)
\(15\)	\(951.3883(18)\)	\(1002\)	\(900.77\)	\(2v_{15}\)	\(2013.674(35)\)	\(1903\)
\(10\)	\(-300.67(63)\)	\(-369\)	\(-326.14\)	\(3v_{11}\)	\(-1860.399(47)\)	\(-2041\)
\(14\)	\(494.2055(11)\)	\(606\)	\(566.66\)	\(v_{0}		
_{11}\)	\(-988.98(62)\)	\(-981\)				
\(9\)	\(-22.17(89)\)	\(-37\)	\(39.53\)	\(2v_{11}/v_{15}\)	\(-725.83(56)\)	\(-409\)
\(9\)	\(-18.1272(34)\)	\(-17.52\)	\(-18.47\)	\(2v_{11}/v_{15}\)	\(40.2814(98)\)	\(42.25\)
\(9\)	\(-12.6374(11)\)	\(-12.35\)	\(-13.27\)	\(2v_{11}/v_{15}\)	\(26.2639(85)\)	\(25.44\)
\(4v_{11}\)	\(-2355.2(22)\)	\(76.2999(98)\)	\(78.24\)	\(31.3493(85)\)	\(32.55\)	

Notes.\(^{(a)}\) The tabulated values for each state are differences relative to the ground state constants: \((A_v - A_0), (B_v - B_0),\) and \((C_v - C_0),\) all in MHz.

\(^{(b)}\) From anharmonic force field calculation at the MP2/6-311++G(d,p) level.

\(^{(c)}\) From anharmonic force field calculation at the CCSD(T)/6-31G(d,p) level.

\(^{(d)}\) Estimated from experimental changes listed in the second column by assuming their additivity.
Fig. A.1. Observed lines from Orion-KL (histogram spectra) and model (thin red curves) of CH$_2$CHCN of $v_{11}=3$. The cyan line corresponds to the model of the molecules we have already studied in this survey (see text Sect. 4.4.2) including the CH$_2$CHCN species. A v_{LSR} of 5 km s$^{-1}$ is assumed.
Fig. A.2. Observed lines from Orion-KL (histogram spectra) and model (thin red curves) of deuterated isotopes for CH$_2$CHCN in the ground state. The subindex of D$_i$ (i=1, 2, 3) are corresponded with the position of the isotope in the molecule (D$_1$CD$_2$CD$_3$CN). The cyan line corresponds to the model of the molecules we have already studied in this survey (see text Sect. 4.4.2) including the CH$_2$CHCN species. A v$_{LSR}$ of 5 km s$^{-1}$ is assumed.

Fig. A.3. Observed lines from Orion-KL (histogram spectra) and model (thin red curves) of 3-imino-1,2-propadienyllidene in its ground state. The cyan line corresponds to the model of the molecules we have already studied in this survey (see text Sect. 4.4.2) including the CH$_2$CHCN species. A v$_{LSR}$ of 5 km s$^{-1}$ is assumed.
Fig. A.4. Observed lines from Orion-KL (histogram spectra) and model (thin red curves) of cyanamide in its ground state. The cyan line corresponds to the model of the molecules we have already studied in this survey (see text Sect. 4.4.2) including the CH$_2$CHCN species. A v_{LSR} of 5 km s$^{-1}$ is assumed.

Fig. A.5. Observed lines from Orion-KL (histogram spectra) and model (thin red and blue curves) of isocyanamide in its ground state. The cyan line corresponds to the model of the molecules we have already studied in this survey (see text Sect. 4.4.2) including the CH$_2$CHCN species. A v_{LSR} of 5 km s$^{-1}$ is assumed.
Table A.6. Detected lines of CH₂CHCN g.s.

Transition	Predicted frequency (MHz)	S_0	E_u	v_{LSR}	Δv	T_{MB}	$\int T_{MB}dv$
$J_{K_a,K_c} - J'_{K'_a,K'_c}$		(K)	km s$^{-1}$	km s$^{-1}$	(K)	(K km s$^{-1}$)	
9$_{1,9}$-8$_{1,8}$	83207.507	8.89	22.1	5.0$^{(1)}$	0.24$^{(2)}$		
9$_{0,9}$-8$_{0,8}$	84946.003	9.00	20.4	4.4$^{(1)}$	0.24$^{(2)}$		
9$_{2,8}$-8$_{1,7}$	85302.649	8.56	29.1	5.2$^{(1)}$	0.24$^{(2)}$		

Notes. Emission lines of CH₂CHCN ground state present in the spectral scan of the Orion-KL from the radio-telescope of IRAM 30-m. Column 1 indicates the line transition, Col. 2 gives the predicted frequency in the laboratory, Col. 3 the line strength, Col. 4 upper level energy, Col. 5 observed radial velocities relative to the local system rest (v_{LSR}), Col. 6 the line width, Col. 7 main beam temperature, and Col. 8 shows the area of the line. † blended with the previous line. * noise level. ** hole in the observed spectrum.

1. (1) peak channel line observed velocity. (2) peak channel line intensity. (3) blended with CH₃CCH. (4) blended with 34SO$_₂$. (5) blended with 3CH_2OH. (6) blended with 34SiC. (7) blended with 31THCCHCN. (8) blended with CH$_3$OH. (9) blended with CH$_3$COOH $v_0=0$. (10) blended with CH$_3$O. (11) blended with U-line. (12) blended with CH$_3$CHCN. (13) blended with CH$_3$CHCN $v_{1,2}=1$. (14) blended with CH$_3$OCH$_3$. (15) blended with HCOOCCH$_3$. (16) blended with H$_2$C33S. (17) blended with CH$_3$CH$_2$CN. (18) blended with CH$_3$CH$_2$CHCN. (19) blended with CH$_3$CH$_2$CHCN $v_{1,2}=1$. (20) blended with HCOOCCH$_3$. $v_0=0$. (21) blended with CH$_3$CHCN $v_{0,2}=1$. (23) blended with H$_2$C33S. (24) blended with CH$_3$CHCN $v_{1,2}=1$. (25) blended with CH$_3$CHO. (26) blended with 33SiO. (27) blended with (CH$_3$)$_2$CO. (28) blended with SiS. (29) blended with HCCCN. (30) blended with SO$_2$. (31) blended with CH$_3$CN. (32) blended with HCCCN $v_0=1$. (33) blended with CH$_3$CHCN $v_{0,2}/v_{1,2}$. (34) blended with H$_2$CO. (35) blended with HCCCN $v_0=1$. (36) blended with HCOO13CH$_3$. (37) blended with SO$_2$ $v_2=1$. (38) blended with CO. (39) blended with C$_2$H$_2$. (40) blended with CH$_3$CN. (41) blended with CH$_3$CHCN $v_{1,2}=1$. (42) blended with HDCCO. (43) blended with HDCC. (44) blended with H13COOCH$_3$. (45) blended with 34SO. (46) blended with CH$_3$SH. (47) blended with 28SiO. (48) blended with CH$_3$CN $v_0=1$. (49) blended with SO. (50) blended with HCN. (51) blended with HDO. (52) blended with NO. (53) blended with HCO$^+$. (54) blended with NH2CHO. (55) blended with CH$_3$CH$_2$CN. (56) blended with CH$_3$CH$_2$OH.

(This table is available in its entirety at CDS via http://cdsweb.u-strasbg.fr. A portion is shown here for guidance regarding its form and content.)
Table A.7. Detected b-type lines of CH$_2$CHCN g.s.

Transition	Predicted frequency (MHz)	S_{ij}	E_u (K)	$v_{LSR}^{(1)}$ (km s$^{-1}$)	Observed frequency (MHz)	Observed v$_{LSR}$ (K)	T$_{MB}$ (K)
18$_{1,18}$-17$_{0,18}$	95212.208	11.40	81.7	4.95$^{(3)}$	95212.2	0.03	0.01
20$_{1,20}$-20$_{0,20}$	108813.600	11.40	99.7	3.74	108814.0	0.02	0.01
18$_{1,18}$-18$_{0,18}$	113831.149	14.00	87.1	5.48	113831.0	0.02	0.02
29$_{1,28}$-29$_{0,28}$	131168.734	22.70	209.5	3.88$^{(5)}$	131169.2	0.04	0.01
17$_{0,16}$-16$_{0,16}$	136855.602	11.00	69.0	4.75$^{(4)}$	136855.7	0.05	0.02
39$_{2,38}$-39$_{1,38}$	199913.795	22.40	369.5	5.41	199913.5	0.02	0.02
20$_{1,20}$-19$_{0,19}$	200364.538	14.20	95.2	6.62	200363.4	0.08	0.06
24$_{0,24}$-23$_{1,23}$	211519.057	18.10	134.5	6.62$^{(4)}$	211518.4	0.12	0.07

Notes. Emission b-type lines of CH$_2$CHCN ground state present in the spectral scan of the Orion-KL from the radio-telescope of IRAM 30-m. Column 1 indicates the line transition, Col. 2 gives the predicted frequency in the laboratory, Col. 3 the line strength, Col. 4 upper level energy, Col. 5 observed radial velocities relative (v_{LSR}), Col. 6 observed centroid frequencies assuming a v_{LSR} of 5 km s$^{-1}$, Col. 7 observed mean beam temperature, and Col. 8 mean beam temperature obtained with the model. † blended with the last one. (1) peak line observed velocity. (2) peak line intensity. (3) blended with v_{LSR} = 1. (4) blended with U-line. (5) blended with DCOOCH$_3$.

(This table is available in its entirety at CDS via http://cdsweb.u-strasbg.fr/. A portion is shown here for guidance regarding its form and content.)
Table A.8. Detected lines of CH$_2$CHCN $v_{11}=1$.

Transition $J_{K,K'} - J'_{K',K''}$	Predicted frequency (MHz)	S_{ij}	E_u (K)	v_{LSR} km s$^{-1}$	Δv km s$^{-1}$	T_{MB} (K)	$\int T_{MB} dv$ (K km s$^{-1}$)
9$_{1,9}$-8$_{1,8}$	83398.992	8.89	350.6	5.4$^{(13)}$	0.08$^{(2)}$		
9$_{0,9}$-8$_{0,8}$	85167.948	9.00	349.0	5.3$^{(1)}$	0.03$^{(2)}$		
21$_{12,20}$-20$_{19}$	199781.116	20.80	442.2	5.0$^{(1)}$	0.21$^{(2)}$		
21$_{17,15}$-20$_{14}$	199974.194	18.70	538.2	2.9$^{(1)}$	0.48$^{(3)}$		
21$_{11,14}$-20$_{13}$	199974.194$^{(1)}$	19.10	538.2	2.9$^{(1)}$	**$^{(2)}$**		
21$_{16,16}$-20$_{15}$	199976.624$^{(1)}$	19.30	510.6	6.6$^{(1)}$	**$^{(2)}$**		
21$_{6,15}$-20$_{14}$	199976.631$^{(1)}$	19.30	510.6	6.6$^{(1)}$	**$^{(2)}$**		

Notes. Emission lines of CH$_2$CHCN $v_{11}=1$ present in the spectral scan of the Orion-KL from the radio-telescope of IRAM 30-m. Column 1 indicates the line transition, Col. 2 gives the predicted frequency in the laboratory, Col. 3 the line strength, Col. 4 upper level energy, Col. 5 observed radial velocities relative to the local system rest (v_{LSR}), Col. 6 the line width, Col. 7 main beam temperature, and Col. 8 shows the area of the line. † blended with the previous line. ** hole in the observed spectrum.

(1) peak channel line observed velocity. (2) peak channel line intensity. (3) blended with U-line. (4) blended with H$^+$ (H 42α). (5) blended with 13CH$_3$OH. (6) blended with OCS. (7) blended with (CH$_3$)$_2$CO. (8) blended with H 49β. (9) blended with CH$_3$CH$_2$CN. (10) blended with 33SO$_2$. (11) blended with CH$_3$OH. (12) blended with CH$_3$OCH$_3$. (13) blended with 13CS. (14) blended with CH$_3$CH$_2$CN $v_{30}=1$. (15) blended with HCOOCH$_3$. (16) blended with CH$_3$CCH$_3$. (17) blended with 13CH$_3$CN. (18) blended with CH$_3$CH$_2$CN v_{11}/v_{21}. (19) blended with H$_2$CO. (20) blended with CH$_2$CHC$_2$H. (21) blended with 34SO$_2$. (22) blended with CH$_2$CHCN v_{10}/v_{11}. (23) blended with HCOO13CH$_3$. (24) blended with H13COOCH$_3$. (25) blended with CH$_2$CHCN $v_{11}=1$. (26) blended with 29SiO. (27) blended with HCCCN v=0. (28) blended with H$_2$CCO. (29) blended with SO$_2$. (30) blended with CH$_2$CHCN $v_{11}=2$. (31) blended with CH$_3$CN $v_{30}=1$. (32) blended with CH$_3$C13CN. (33) blended with HCCCN $v_{30}=1$. (34) blended with H$_2$CCC. (35) blended with NH$_2$CHO. (36) blended with CH$_2$OH. (37) blended with SO17O. (38) blended with CCCS. (39) blended with HNCO. (40) blended with CH$_3$CH$_2$CN $v_{11}=1$. (41) blended with HCCCN $v_{30}=1$. (42) blended with HCCCN $v_{30}=2$. (43) blended with HDCCO. (44) blended with CH$_3$OD. (45) blended with H$_2$CS. (46) blended with CH$_2$CH$_2$CN. (47) blended with 34S18O. (48) blended with CH$_2$COOH $v_{21}=0$. (49) blended with HCCCN $v=3$. (50) blended with CH$_2$DCCH. (51) blended with SO18O. (52) blended with O13C18S. (53) blended with HNC17O. (54) blended with CH$_3$C15N. (55) blended with CH$_3$CN. (56) blended with CH$_3$C15N. (57) blended with SO. (58) blended with CH$_2$CHC$_2$H. (59) blended with H$_2$OCS. (60) blended with H$_2$C13S. (61) blended with H$_2$CS.

(This table is available in its entirety at CDS via http://cdsweb.u-strasbg.fr. A portion is shown here for guidance regarding its form and content.)
Table A.9. Detected lines of CH₂CHCN ν₁=2.

Transition	Predicted frequency (MHz)	S_J	E_J (K)	ν_{LSR} km s⁻¹	Δν km s⁻¹	T_{MB} (K)	∫ T_{MB}dv
J_{K_a,K_c} - J'_{K_a,K_c}							
9_{1,9}-8_{1,8}	83586.209	8.89	680.0	(3,4)	...		
9_{0,0}-8_{0,8}	85384.841	8.99	678.3	6.8(1)	0.02(2)		
9_{2,8}-8_{2,7}	85787.036	8.56	686.8	(5)	...		
...		
14_{0,14}-13_{0,13}	131846.587	14.00	705.5	(7)	...		
14_{2,13}-13_{2,12}	133257.141	13.70	714.2	8.0(1)	0.07(2)		
14_{0,0}-13_{0,8}	133664.633	11.40	781.4	5.9(1)	0.04(2)		
14_{6,6}-13_{6,7}	133664.633†	11.40	781.4	5.9(1)	"		
14_{5,10}-13_{5,9}	133666.986†	12.20	758.4	6.8(1)	"		
14_{5,9}-13_{5,8}	133667.002†	12.20	758.4	6.8(1)	"		
...		
21_{2,20}-20_{2,19}	199292.525	20.80	771.7	(29)	...		
21_{7,15}-20_{7,14}	200537.645	18.70	866.4	3.8(1,6)	0.30(2)		
21_{7,14}-20_{7,13}	200537.645†	18.70	866.4	3.8(1,6)	"		
21_{6,16}-20_{6,15}	200546.938	19.30	839.2	0.9(3,8)	0.18(2)		
21_{6,17}-20_{6,16}	200546.947†	19.30	839.2	0.9(3,8)	"		
21_{8,14}-20_{8,13}	200551.088†	18.00	897.1	7.1(3,8)	"		
21_{8,13}-20_{8,12}	200551.088†	18.00	897.1	7.1(3,8)	"		
...		

Notes. Emission lines of CH₂CHCN ν₁=2 present in the spectral scan of the Orion-KL from the radio-telescope of IRAM 30-m. Column 1 indicates the line transition, Col. 2 gives the predicted frequency in the laboratory, Col. 3 the line strength, Col. 4 upper level energy, Col. 5 observed radial velocities relative to the local system rest (v_{LSR}), Col. 6 the line width, Col. 7 main beam temperature, and Col. 8 shows the area of the line. † blended with the previous line. ** hole in the observed spectrum.

(1) peak channel line observed velocity. (2) peak channel line intensity. (3) blended with H 53β. (4) blended with Si^{17}O. (5) blended with HCOOCH₃. (6) blended with U-line. (7) blended with HNCO. (8) blended with CH₂CH₂CN. (9) blended with CH₂CHCN ν₁=1. (10) blended with CH₂CHCN. (11) blended with SO₂. (12) blended with 13CO₂. (13) blended with 13CH₂OH. (14) blended with (CH₃)₂CO. (15) blended with CH₂CHCN. (16) blended with CH₂OH. (17) blended with CH₃CHO. (18) blended with CH₂CH₂CN ν₁=1 ν₂=19. (19) blended with CH₂CH₂CN ν₂=1. (20) blended with H 54β. (21) blended with NO. (22) blended with H¹³COOCH₃. (23) blended with CH₂CHCN ν₁=1 ν₂=3 υ₁ν₂. (24) blended with CH₂CHOH. (25) blended with CH₂CH₂CN. (26) blended with H₂CO. (27) blended with CH₃CH₂O. (28) blended with [CH₃]₂C. (29) blended with HC¹³CCN. (30) blended with HCC¹³CN. (31) blended with HCCCN ν₁=2. (32) blended with HCCCN ν₁=ν₂=1. (33) blended with CH₂CH₂C¹³N. (34) blended with CH₃CHCN ν₁=1. (35) blended with CH₂¹³CHCN. (36) blended with NH₂CHO. (37) blended with ¹³CH₂CHCN. (38) blended with HCCCN ν₁=2. (39) blended with CH₃CHO. (40) blended with ¹²CH₂. (41) blended with ¹³CH₂. (42) blended with HCCCN. (43) blended with H¹³CCCN. (44) blended with CH₂CH¹³CN. (45) blended with SO₂ ν₁=1. (46) blended with CH₂¹³CHCN. (47) blended with DCOOCH₃. (48) blended with CH₂CN. (49) blended with H₂CS. (50) blended with CH₂COOH ν₁=0. (52) blended with ¹³CCO. (53) blended with CH₂¹³CHCN. (54) blended with CH₂COO. (55) blended with H₂CCCN. (56) blended with CH₂CN ν₁=1. (57) blended with HDCCO. (58) blended with ¹³CH₂C¹³N. (59) blended with HCO⁻. (60) blended with ¹³CH₂CN. (61) blended with HCOO¹³CH₂. (62) blended with t-CH₂CH₂OH (63) blended with H¹³NCO. (64) blended with H₂C¹³O.

(This table is available in its entirety at CDS via http://cdsweb.u-strasbg.fr. A portion is shown here for guidance regarding its form and content.)
| Transition & $J_{K_a,K_c} - J_{K'_a,K'_c}$ & Predicted frequency (MHz) & S_o & E_a & v_{LSR} & Δv & T_{MB} & $\int T_{MB} dv$ |
|---|---|---|---|---|---|---|---|---|
| 9_{1,9}-8_{1,8} | 83769.181 | 8.89 | 1007.6 (3) | ... |
| 9_{0,0}-8_{0,8} | 85596.639 | 8.99 | 1006.1 (3) | ... |
| 9_{2,8}-8_{2,7} | 86022.191 | 8.56 | 1014.4 (4) | ... |
| 9_{5,5}-8_{5,4} | 86148.048 | 6.22 | 1057.9 | 4.5 (3) | 0.01 (2) |
| 9_{4,4}-8_{4,3} | 86148.048† | 6.22 | 1057.9 | 4.5 (3) | " |

Notes. Emission lines of CH$_3$CHCN $v_1=3$ are present in the spectral scan of the Orion-KL from the radio-telescope of IRAM 30-m. Column 1 indicates the line transition, Col. 2 gives the predicted frequency in the laboratory, Col. 3 the line strength, Col. 4 upper level energy, Col. 5 observed radial velocities relative to the local system rest (v_{LSR}), Col. 6 the line width, Col. 7 main beam temperature, and Col. 8 shows the area of the line. † blended with the previous line. * noise level. ** hole in the observed spectrum.

(1) peak channel line observed velocity, (2) peak channel line intensity, (3) blended with U-line, (4) blended with HCOOH$_3$, (5) blended with CH$_3$OCH$_3$, (6) blended with CH$_3$CN, (7) blended with CH$_3$CH$_2$CN, (8) blended with H$_2$O$_6$, (9) blended with CH$_3$CHCN $v_1=1$, (10) blended with CH$_3$OH, (11) blended with O$_3$C34S, (12) blended with CH$_3$CH$_2$CN, (13) blended with 13SO$_2$, (14) blended with 13CS, (15) blended with H13COOH$_3$, (16) blended with CH$_2$CHOH, (17) blended with (CH$_3$)$_2$CO, (18) blended with SO$_2$, $v_2=1$, (19) blended with CH$_3$CH$_2$CN $v_1=1$, (20) blended with HDO, (21) blended with CH$_3$OD, (22) blended with SO$_2$,13O, (23) blended with HCCCN, (24) blended with 29SiO, (25) blended with CH$_3$CH$_2$CN, (26) blended with 13CH$_2$CHCN, (27) blended with CH$_3$CH$_2$CN $v_1=1$, (28) blended with HCC13NC $v_1=1$, (29) blended with CHDCHCN, (30) blended with CH$_3$CH$_2$CN, (31) blended with H$_2$CCO, (32) blended with SO$_2$, (33) blended with CH$_3$CH$_2$CN $v_2=1$, (34) blended with H$_2$CS, (35) blended with 33SO$_2$, (36) blended with DCOOH$_3$, (37) blended with c-C$_3$H$_2$, (38) blended with CH$_2$CHCN, (39) blended with 13CH$_2$OH, (40) blended with HN$_3$CO, (41) blended with 13CH$_3$CH$_2$CN, (42) blended with HNC18O, (43) blended with SO18O, (44) blended with 13CCCN $v_1=1$, (45) blended with HCOO13CH$_3$, (46) blended with $^{[1-1]}$CH$_3$CH$_2$OH, (47) blended with t-CH$_3$CH$_2$OH, (48) blended with D$_2$CO, (49) blended with CH$_2$C13N, (50) blended with NH$_2$CHO, (51) blended with CH$_3$CN $v_1=1$, (52) blended with 34SO, (53) blended with 33SO, (54) blended with CH$_2$COOH $v_1=0$, (55) blended with CH$_3$OD, (56) blended with H13CN, (57) blended with HCCCS, (58) blended with HDCCO, (59) blended with CH$_3$CH$_2$CN $v_1=2$, (60) blended with CH$_2$DCN, (61) blended with DCCCN. (This table is available in its entirety at CDS via http://cdsweb.u-strasbg.fr. A portion is shown here for guidance regarding its form and content.)
Table A.11. Detected lines of CH$_3$CHCN $v_{15}=1$.

Transition	Predicted frequency (MHz)	S_{ij}	E_u (K)	v_{LSR} (km s$^{-1}$)	Δv (km s$^{-1}$)	T_{MB} (K)	$\int T_{MB} dv$ (K km s$^{-1}$)
9$_{1,9}$-8$_{0,8}$	83349.865	8.89	500.9	(3)
9$_{0,9}$-8$_{0,8}$	85075.547	9.00	499.1	5.6$^{(3)}$	0.03$^{(2)}$
9$_{2,8}$-8$_{2,7}$	85416.767	8.56	508.0	(4)
9$_{4,6}$-8$_{4,5}$	85528.061	7.22	534.5	4.0$^{(3)}$	0.02$^{(2)}$
9$_{3,5}$-8$_{3,4}$	85528.107†	7.22	534.5	4.2$^{(3)}$	“
9$_{5,5}$-8$_{5,4}$	85532.951	6.22	554.4	4.1$^{(3)}$	0.02$^{(2)}$
9$_{3,4}$-8$_{3,3}$	85532.951†	6.22	554.4	4.1$^{(3)}$	“
...
14$_{0,14}$-13$_{0,13}$	131504.447	14.00	526.2	6.6$^{(1,11)}$	0.11$^{(2)}$
14$_{2,13}$-13$_{2,12}$	132709.220	13.70	535.3	6.1$^{(3)}$	0.08$^{(2)}$
14$_{4,10}$-13$_{3,9}$	133073.970	12.20	581.7	(4)
14$_{3,9}$-13$_{3,8}$	133073.979†	12.20	581.7	(4)
...
21$_{12,20}$-20$_{0,19}$	198556.992	20.80	592.6	5.5$^{(3)}$	0.16$^{(2)}$
21$_{16,16}$-20$_{0,15}$	199658.717	19.30	663.4	4.3$^{(2)}$
21$_{15,15}$-20$_{0,14}$	199658.722†	19.30	663.4	4.3$^{(2)}$
21$_{14,14}$-20$_{0,13}$	199669.152	18.70	692.0	4.3$^{(2)}$
21$_{13,13}$-20$_{0,12}$	199669.152†	18.70	692.0	4.3$^{(2)}$
21$_{11,11}$-20$_{0,10}$	199683.011	19.80	639.2	4.3$^{(2)}$
21$_{15,15}$-20$_{0,15}$	199683.411†	19.80	639.2	4.3$^{(2)}$
...

Notes. Emission lines of CH$_3$CHCN $v_{15}=1$ present in the spectral scan of the Orion-KL from the radio-telescope of IRAM 30-m. Column 1 indicates the line transition, Col. 2 gives the predicted frequency in the laboratory, Col. 3 the line strength, Col. 4 upper level energy, Col. 5 observed radial velocities relative to the local system rest (v_{LSR}), Col. 6 the line width, Col. 7 main beam temperature, and Col. 8 shows the area of the line. † blended with the previous line. ± hole in the observed spectrum.

(1) peak channel line observed velocity. (2) peak channel line intensity. (3) blended with HCOOCH$_3$. (4) blended with CH$_3$CHCN. (5) blended with CH$_3$CHCN $v_{15}=1$. (6) blended with U-line. (7) blended with CCH. (8) blended with H$_3$OH. (9) blended with CH$_3$CHCN. (10) blended with CH$_3$OH. (11) blended with 13COOH $v_{15}=0$. (12) blended with t-CH$_3$OH. (13) blended with CH$_3$CO. (14) blended with CH$_3$CN. (15) blended with SO$_2$. (16) blended with SO$_2$. (17) blended with 13CH$_3$CH$_2$CN. (18) blended with CH$_3$C13N. (19) blended with DNCO. (20) blended with CH$_3$CH$_2$CN $v_{15}=1$. (21) blended with 13CH$_3$C13CN $v_{15}=1$. (22) blended with H$_3$COOCCH$_3$. (23) blended with HCOOCH$_3$. (24) blended with CH$_3$CHO. (25) blended with CH$_3$OCOD. (26) blended with CH$_3$CO. (27) blended with H$_2$CCO. (28) blended with NS. (29) blended with CH$_3$DCCH. (30) blended with CH$_3$CHCN $v_{20}=1$. (31) blended with 13OCS. (32) blended with SiS. (33) blended with HCCCN. (34) blended with CH$_3$CH$_2$C13N. (35) blended with H$_2$C$_2$. (36) blended with CH$_3$CH$_2$CH$_2$OH. (37) blended with SO13O. (38) blended with CH$_3$CHO. (39) blended with HCCCN $v_{15}=1$. (40) blended with H$_2$CO. (41) blended with HN13CO. (42) blended with HCCCN $v_{15}=1$. (43) blended with 33SO$_2$. (44) blended with OCS. (45) blended with DNCS. (46) blended with CH$_2$CN $v_{15}=1$. (47) blended with HCCCN $v_{15}=2$. (48) blended with H13CCCN $v_{15}=1$. (49) blended with 13CH$_3$CHCN. (50) blended with HCCCN $v_{15}=1$. (51) blended with H13CCCN $v=0$. (52) blended with CH$_3$CHCN $v_{15}=1$. (53) blended with CH$_3$CN. (54) blended with CH$_3$C13N. (55) blended with HCOO13CH$_3$. (56) blended with CH$_3$CHCN. (57) blended with 14SO$_2$. (58) blended with HDCS. (59) blended with O13CS. (60) blended with CH$_3$CHCN $v_{15}=3$. (61) blended with HCCCN.
\(\nu_7 = 3 \) (62) blended with DCOOCH\(_3\). (63) blended with H\(^{13}\)COOCH\(_3\). (64) blended with NH\(_2\)CHO. (65) blended with CH\(_3\)OD. (66) blended with g.-CH\(_2\)CH\(_2\)OH.

(This table is available in its entirety at CDS via http://cdsweb.u-strasbg.fr. A portion is shown here for guidance regarding its form and content.)
Table A.12. Detected lines of CH$_3$CHCN $\nu_0=1
\leftrightarrow(\nu_1=1,\nu_3=1)$.

Transition $J_{K_a,K_c} - J'_{K'_a,K'_c}$	Predicted frequency (MHz)	S_{ij}	E_u (K)	v_{LSR} (km s$^{-1}$)	Observed frequency (MHz)	Observed T_{MB} (K)	Model T_{MB} (K)
$9_{1,0,9} - 8_{1,0,8}$	83116.219	8.89	830.7	4.4	83116.4	0.02	0.01
$9_{1,3,1} - 8_{1,8,1}$	83527.527	8.89	834.3	1.9	83528.4	0.03	0.01
$9_{0,0,0} - 8_{0,8,0}$	84834.239	8.99	829.0	7.4	84833.6	0.01	0.01
$9_{2,2,0} - 8_{2,8,0}$	85222.373	8.55	837.7	(3)
$14_{0,14,0} - 13_{1,13,0}$	131110.736	14.00	856.1	(22)
$14_{2,13,0} - 13_{2,12,0}$	132389.964	13.70	864.9	3.0	132390.8	0.04	0.04
$14_{5,10,0} - 13_{3,9,0}$	132761.289	12.20	910.1	(5)
$14_{5,9,0} - 13_{3,8,0}$	132761.289†	12.20	910.1	(5)
$14_{6,9,0} - 13_{3,8,0}$	132767.225	11.40	933.6	(5)
$14_{6,8,0} - 13_{3,7,0}$	132767.225†	11.40	933.6	(5)
$21_{2,20,0} - 20_{2,19,0}$	198041.306	20.80	922.0	(16)
$21_{2,20,1} - 20_{2,19,1}$	199062.857	20.80	926.1	6.0	199062.2	0.08	0.10
$21_{1,6,0} - 20_{1,13,0}$	199190.101	19.30	991.0	7.5 (16)	199188.4	0.15	0.15
$21_{1,5,0} - 20_{1,14,0}$	199190.107†	19.30	991.0	7.5 (16)	199188.4	“ “	0.15
$21_{1,4,0} - 20_{1,11,0}$	199196.532	18.70	1018.8	4.0	199197.1	0.14	0.13
$21_{1,3,0} - 20_{1,14,0}$	199196.532†	18.70	1018.8	4.0	199197.1	“ “	0.13

Notes. Emission lines of CH$_3$CHCN $\nu_0=1 \leftrightarrow(\nu_1=1,\nu_3=1)$ present in the spectral scan of the Orion-KL from the radio-telescope of IRAM 30-m. The quantum number v is corresponded with the vibrational level, and take the value $v=0$ and $v=1$ whether the state is $\nu_0=1$ or $(\nu_1=1,\nu_3=1)$, respectively. Column 1 indicates the line transition, Col. 2 gives the predicted frequency in the laboratory, Col. 3 the line strength, Col. 4 upper level energy. Col. 5 observed radial velocities relative to the local system rest (v_{LSR}). Col. 6 observed centroid frequencies assuming a v_{LSR} of 5 km s$^{-1}$. Col. 7 observed main beam temperature, y Col. 8 mean beam temperature obtained with the model. † blended with the last one. ** hole in the observed spectrum.

(1) peak channel line observed velocity. (2) peak channel line intensity. (3) blended with 33SO. (4) blended with HCS$^+$. (5) blended with U-line. (6) blended with HCOOCH$_3$. (7) blended with SO$_2$. (8) blended with CH$_3$CH$_2$CN. (9) blended with (CH$_2$)$_2$CO. (10) blended with CH$_2$OCH$_3$. (11) blended with CH$_3$OH. (12) blended with HDCS. (13) blended with 13CH$_3$OH. (14) blended with CH$_3$CH$_2$CN. (15) blended with CH$_2$CHCN. (16) blended with CH$_3$CH$_2$CN. (17) blended with 34SO$_2$. (18) blended with CH$_3$C15N. (19) blended with CH$_3$CN $\nu_3=1$. (20) blended with c-C$_3$H$_2$O. (21) blended with CH$_3$CH$_3$CN. (22) blended with CH$_3$CHCN $\nu_3=1$. (23) blended with SO$_2$. (24) blended with CH$_3$CH$_2$CN $\nu_3=1$. (25) blended with CH$_3$CH$_2$CO. (26) blended with CH$_3$CN. (27) blended with CH$_3$CHCN. (28) blended with CH$_3$CH$_2$CN $\nu_3=1$. (29) blended with CH$_3$CN $\nu_3=1$. (30) blended with CH$_3$CHO. (31) blended with CH$_3$CH$_2$CN $\nu_3=1$. (32) blended with CH$_3$CH$_2$CN. (33) blended with H$_2$C$_2$OCH$_3$. (34) blended with SO$_2$. (35) blended with OC18S. (36) blended with SO$_2$. (37) blended with HCCCN $\nu_3=1$. (38) blended with CH$_2$CH$_3$CN. (39) blended with H$_2$CS. (40) blended with NH$_2$CHO. (41) blended with H$_2$CS. (42) blended with 33SO$_2$. (43) blended with CH$_2$C13CH$_3$. (44) blended with CH$_3$CH$_2$CN. (45) blended with CH$_3$CN $\nu_3=1$. (46) blended with CH$_3$CN. (47) blended with COOCH$_3$. (48) blended with HC13CCN $\nu_3=0$. (49) blended with SiS. (50) blended with 13CS. (51) blended with H$_2$CO. (52) blended with HCCCN. (53) blended with t-CH$_3$CH$_2$CN. (54) blended with CH$_3$C18OH. (55) blended with C18O. (56) blended with O18S18O. (57) blended with HDCO. (58) blended with HCCCN $\nu_3=1$. (59) blended with HNC18O. (60) blended with SO$_2$. (61) blended with CO. (62) blended with HCCCN $\nu_3=2$. (63) blended with HCCCN $\nu_3=3$. (64) blended with CH$_3$COOH $\nu_3=0$. (65) blended with CH$_3$CH$_2$CN $\nu_3=1$. (66) blended with CH$_2$C$_2$N. (67) blended with CH$_3$CN $\nu_3=1$. (68) blended with CCCS. (69) blended with HCC13CN. (70) blended with 35SO. (71) blended with H15CCCN. (72) blended with HDO. (73) blended with CH$_3$CN. (74) blended with CH$_3$CCH. (75) blended with HDCS. (76)
blended with CH$_3^{13}$CN. (77) blended with HCOOH. (78) blended with SiO. (79) blended with SiO $v=1$. (80) blended with DCOOH. (81) blended with HCN. (82) blended with H$_2$C34S. (83) blended with NH$_2$CHO $v_{12}=1$. (84) blended with CH$_2$CHC15N. (85) blended with CH$_3$OD. (86) blended with DCHCHCN.

(This table is available in its entirety at CDS via http://cdsweb.u-strasbg.fr. A portion is shown here for guidance regarding its form and content.)
Table A.13. Detected lines of 13C$_1$, 13C$_2$, and 13C$_3$ isotopologues of CH$_2$CHCN.

Transition $J_{K_a,K_c} - J'_{K_a',K_c'}$	Predicted frequency (MHz)	S_{ij}	E_o (K)	v_{LSR} $^{(1)}$ (km s$^{-1}$)	Observed frequency (MHz)	Observed T_{MB} (K) $^{(1)}$	T_{MB} (K)
Detected lines of 13CH$_2$CHCN							
9$_{4,2}$-8$_{2,4}$	84961.208	7.22	54.1	0.86	84962.9	0.01	0.01
9$_{4,2}$-8$_{2,4}$	84961.208†	7.22	54.1	0.65	84962.9		
9$_{4,2}$-8$_{2,4}$	84963.011†	6.22	73.0	5.50	84963.011		
9$_{4,2}$-8$_{2,4}$	84963.011†	6.22	73.0	5.50	84963.011		
9$_{3,2}$-8$_{2,6}$	85278.270	8.56	28.9	8.17 $^{(2)}$	85277.4	0.02	0.01
14$_{3,2}$-13$_{3,1}$	130481.709	14.00	47.2	5.48	130481.5	0.09	0.03
14$_{3,2}$-13$_{3,1}$	132191.757	12.20	100.2	4.38 $^{(2)}$	132192.0	0.13	0.05
14$_{3,2}$-13$_{3,1}$	132191.770†	12.20	100.2	4.41 $^{(2)}$	132192.0		
14$_{6,5}$-13$_{6,8}$	132194.320†	11.40	123.3	7.81 $^{(2)}$	132194.320		
14$_{6,5}$-13$_{6,8}$	132194.320†	11.40	123.3	7.81 $^{(2)}$	132194.320		
21$_{3,2}$-20$_{3,1}$	198336.172	18.70	207.7	4.26	198336.7	0.18	0.18
21$_{3,2}$-20$_{3,1}$	198336.172†	18.70	207.7	4.26	198336.7		
21$_{4,1}$-20$_{4,0}$	198366.544†	19.30	180.4	4.83	198366.544		
21$_{4,1}$-20$_{4,0}$	198366.552†	19.30	180.4	4.84	198366.552		
21$_{5,1}$-20$_{5,0}$	198358.019	18.00	239.1	1.45 $^{(2)}$	198358.019	0.12	0.07
Table A.13, continued.

Transition	Predicted frequency (MHz)	S_{ij}	E_u (K)	$v_{LSR}^{(1)}$	Observed frequency (MHz)	Observed T_{MB} (K)$^{(1)}$	Model T_{MB} (K)
$J_{K_a,K_c} - J'_{K'_a,K'_c}$							
21$_{8,12}$-20$_{8,12}$	198358.019†	18.00	239.1	1.45$^{(2)}$	“”	“”	“”

Detected lines of CH$_3$CH13CN

v_{LSR}	Frequency	S_{ij}	E_u	v_{LSR}	Observed frequency	Observed T_{MB}	Model T_{MB}
9$_{3,3}$-8$_{3,4}$	85041.672	6.22	74.4	2.61$^{(2)}$	85042.4	0.02	0.01
9$_{3,2}$-8$_{3,3}$	85041.672†	6.22	74.4	2.61$^{(2)}$	“”	“”	“”
9$_{5,2}$-8$_{5,3}$	85053.074	5.00	98.1	3.16	85055.4	0.01	0.01
9$_{6,2}$-8$_{6,3}$	85053.074†	5.00	98.1	3.16	“”	“”	“”
9$_{5,5}$-8$_{5,6}$	85055.519†	8.00	39.9	5.47	“”	“”	“”
10$_{0,10}$-9$_{0,9}$	93864.835	9.99	24.8	3.50$^{(2)}$	93865.2	0.02	0.01

Notes. Emission lines of of 13CH$_3$CHCN, CH$_2$CH13CN and CH$_2$CH13CN isotopologues in its ground state present in the spectral scan of the Orion-KL from the radio-telescope of IRAM 30-m. Column 1 indicates the line transition, Col. 2 gives the predicted frequency in the laboratory, Col. 3 the line strength, Col. 4 upper level energy, Col. 5 observed radial velocities relatives (v_{LSR}), Col. 6 observed centroid frequencies assuming a v_{LSR} of 5 km s$^{-1}$, Col. 7 observed mean beam temperature, and Col. 8 mean beam temperature obtained with the model. † blended with the last one.

(1) peak line intensity. (2) blended with U-line. (3) blended with HCOOCH$_3$. (4) blended with CH$_3$CHC15N. (5) blended with DCOOCH$_3$. (6) blended with HCOO13CH$_3$. (7) blended with CH$_3$CH13CN. (8) blended with g$_-$CH$_2$CH$_2$OH. (9) blended with H$_2$CCS. (10) blended with CH$_3$CH$_2$CN v_{13}/v_{21} (11) blended with CH$_3$CCD. (12) blended with t-CH$_3$CH$_2$OH. (13) blended with CH$_3$CH$_2$CN. (14) blended with CH$_3$CHCN v_{11}=1. (15) blended with CH$_3$COOH $v_0=0$. (16) blended with (CH$_3$)$_2$CO. (17) blended with CH$_2$CHCN $v_{10}/v_{11}/v_{15}$. (18) blended with H$_3$COOH$_3$. (19) blended with SO$_{18}$O. (20) blended with C$_2$H$_5$CHO. (21) blended with SO$_{17}$O. (22) blended with 13CN. (23) blended with CH$_2$CH13CN. (24) blended with CH$_2$CH$_2$CN. (25) blended with HCOOCH$_3$ $v_1=1$. (26) blended with 13CH$_2$CHCN. (27) blended with NH$_2$D. (28) blended with 13CH$_3$OH. (29) blended with 33SO$_2$. (30) blended with SO$_2$ $v_2=2$.

(This table is available in its entirety at CDS via http://cdsweb.u-strasbg.fr. A portion is shown here for guidance regarding its form and content.)
Table A.14. Detected lines of vinyl isocyanide (CH$_2$CHNC).

Transition	Predicted frequency (MHz)	S_{ij}	E_u (K)	v_{LSR}	Observed frequency (MHz)	Observed T_{MB} (K)	Model T_{MB} (K)
$J_{K_a,K_c} - J'_{K'_a,K'_c}$							
9,2,8-8,2,7	92222.557	8.56	31.0	2.74	92223.3	0.02	0.01
9,3,7-8,3,6	92376.457	8.00	42.2	8.82(3)	92375.3	0.03	0.01
9,4,6-8,4,6	92379.404	5.00	102.0	5.48(7)	92379.3	0.01	0.01
9,6,3-8,6,2	92379.404†	5.00	102.0	5.48(7)	92379.3	0.01	0.01
9,3,8-8,3,5	92386.902	8.00	42.2	6.95	92386.3	0.02	0.01
:	:	:	:	:	:	:	:
9,2,12-12,2,11	133062.524	12.70	53.6	3.41(6)	133063.2	0.04	0.03
13,3,10-12,3,9	133566.376	12.30	64.8	6.48	133565.7	0.04	0.03
13,3,11-12,3,10	134563.575	12.70	53.9	4.75(7)	134563.7	0.08	0.04
14,0,14-13,0,13	141702.008	14.00	51.3	5.82	141701.6	0.04	0.04
:	:	:	:	:	:	:	:
19,2,17-18,2,16	198094.397	18.80	103.3	4.50(10)	198094.8	0.09	0.10
19,1,18-18,1,17	198245.681	18.90	97.7	8.79	198242.9	0.10	0.10
20,3,3-19,3,17	205532.002	19.50	123.5	8.41	205529.7	0.10	0.10
21,1,21-20,1,20	208561.673	20.90	112.7	2.99	208563.0	0.15	0.12
:	:	:	:	:	:	:	:

Notes. Emission lines of vinyl isocyanide (CH$_2$CHNC) present in the spectral scan of the Orion-KL from the radio-telescope of IRAM 30-m. Column 1 indicates the line transition, Col. 2 gives the predicted frequency in the laboratory, Col. 3 the line strength, Col. 4 upper level energy, Col. 5 observed radial velocities relatives (v_{LSR}), Col. 6 observed centroid frequencies assuming a v_{LSR} of 5 km s$^{-1}$, Col. 7 observed mean beam temperature, and Col. 8 mean beam temperature obtained with the model. † blended with the last one.

(1) peak line observed velocity, (2) peak line intensity, (3) blended with HCOOCH$_3$ v_1=1. (4) blended with HCOOCH$_3$. (5) blended with H13COOCH$_3$. (6) blended with CH$_3$CHCN. (7) blended with U-line. (8) blended with SO18O. (9) blended with DCOOCH$_3$. (10) blended with O-H$_2$CS. (11) blended with HCDCHCN. (12) blended with CH$_3$CH$_2$CN. (13) blended with (CH$_2$)$_2$CO. (14) blended with CH$_3$CH$_2$C15N. (15) blended with HCOO13CH$_3$.

(This table is available in its entirety at CDS via http://cdsweb.u-strasbg.fr. A portion is shown here for guidance regarding its form and content.)
Appendix B: Typographical error in Daly et al. (2013)

Table B.1. Physico-chemical conditions of Orion-KL from CH$_3$CH$_2$CN

	Hot core 1	Hot core 2	Hot core 3
d_{soc} (")	4	10	25
offset (")	5	5	5
v_{exp} (km s$^{-1}$)	5	13	22
v_{LSR} (km s$^{-1}$)	5	3	3
T_{EUL} (K)	275	110	65

N(CH$_3$CH$_2$CN) (cm$^{-2}$) $(6\pm2)\times10^{16}$ $(8\pm2)\times10^{15}$ $(3.0\pm0.9)\times10^{15}$ $(7\pm2)\times10^{16}$

N(CH$_3$CH$_2$CN $v_{13} = 1/v_{21} = 1$) (cm$^{-2}$) $(8\pm2)\times10^{15}$ $(1.1\pm0.3)\times10^{15}$ $(4\pm1)\times10^{14}$ $(1.0\pm0.3)\times10^{16}$

N(CH$_3$CH$_2$CN v_{20}) (cm$^{-2}$) $(3\pm1)\times10^{15}$ $(4\pm1)\times10^{14}$ $(1.7\pm0.5)\times10^{14}$ $(4\pm1)\times10^{15}$

N(CH$_3$CH$_2$CN v_{12}) (cm$^{-2}$) $(1.2\pm0.6)\times10^{15}$ $(1.6\pm0.5)\times10^{14}$ $(6\pm3)\times10^{13}$ $(1.4\pm0.7)\times10^{15}$

N(CH$_3$CH$_2$CN) (cm$^{-2}$) $(7\pm2)\times10^{14}$ $(1.9\pm0.6)\times10^{14}$ $(7\pm2)\times10^{13}$

N(CH$_3$C13N) (cm$^{-2}$) $(7\pm2)\times10^{14}$ $(1.9\pm0.6)\times10^{14}$ $(7\pm2)\times10^{13}$

N(CH$_3$C15N) (cm$^{-2}$) $(7\pm2)\times10^{14}$ $(1.9\pm0.6)\times10^{14}$ $(7\pm2)\times10^{13}$

N(CH$_3$C18N) (cm$^{-2}$) $(2\pm1)\times10^{14}$ $(5\pm3)\times10^{13}$ $(1.7\pm0.8)\times10^{13}$

N(CH$_3$CHDCH$_2$CN) (cm$^{-2}$) $\leq 6\times10^{14}$ $\leq 2\times10^{14}$ $\leq 6\times10^{13}$

N(CH$_3$CDCH$_2$CN) (cm$^{-2}$) $\leq 7\times10^{14}$ $\leq 1\times10^{14}$ $\leq 6\times10^{13}$

N(CH$_3$CHDCN) (cm$^{-2}$) $\leq 6\times10^{14}$ $\leq 2\times10^{14}$ $\leq 6\times10^{13}$

Note. Physico-chemical conditions of Orion-KL from the analysis of ethyl cyanide emission lines in the range of 80-280 GHz. In bold type, we display the revised values by a factor 2. The other values are the same. The revised values corresponded to the hot narrow component (1) for the ground and excited states. Vibrational temperatures are not affected while isotopic ratios have to be changed by the same correction factor.

Table B.2. Isotopic abundances for CH$_3$CH$_2$CN in the Orion-KL region.

Isotopic abundance (ratio X)	12C/13C	14N/15N	H/D
12C/13C	14N/15N	H/D	
Isotopic abundance (ratio X)	73\pm22	256\pm128	0.012\pm0.005

Note. Owing to the error in the column densities of hot narrow component for the ground and excited states, isotopic abundances are increased by a factor less than 2 for 12C/13C and 14N/15N ratios of ethyl cyanide. On the other hand, the H/D ratio is decreased by a factor 2.