Author’s Accepted Manuscript

Lactobacillus *rhamnosus* GG conditioned media modulates acute reactive oxygen species and nitric oxide in J774 murine macrophages

Yashaswini S Nanjundaiah, David A Wright, Anwar R Baydoun, William T O’Hare, Zulfiquur Ali, Zahangir Khaled, Mosharraf H Sarker

PII: S2405-5808(16)30024-3
DOI: http://dx.doi.org/10.1016/j.bbrep.2016.03.003
Reference: BBREP194

To appear in: *Biochemistry and Biophysics Reports*

Received date: 11 January 2016
Revised date: 1 March 2016
Accepted date: 3 March 2016

Cite this article as: Yashaswini S Nanjundaiah, David A Wright, Anwar R Baydoun, William T O’Hare, Zulfiquur Ali, Zahangir Khaled and Mosharraf H Sarker, Lactobacillus *rhamnosus* GG conditioned media modulates acute reactive oxygen species and nitric oxide in J774 murine macrophages, *Biochemistry and Biophysics Reports*, http://dx.doi.org/10.1016/j.bbrep.2016.03.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain...
Lactobacillus *rhamnosus* GG conditioned media modulates acute reactive oxygen species and nitric oxide in J774 murine macrophages

Yashaswini S Nanjundaiah\(^a\), David A Wright\(^1\), Anwar R Baydoun\(^b\), William T O'Hare\(^a\), Zulfiquar Ali\(^a\), Zahangir Khaled\(^c\), Mosharraf H Sarker*\(^a\)

\(^a\)School of Science and Engineering, Teesside University, TS1 3BA, UK

\(^b\)School of Life and Medical Sciences, University of Hertfordshire, AL10 9AB, UK

\(^c\)Methodist Medical Center, Peoria, Illinois, USA

*Corresponding author. Dr. Mosharraf Sarker, School of Science and Engineering, Teesside University, TS1 3BA, UK. Tel: +44-1642-242550, Fax: +44-1642-242401. E-mail address: m.sarker@tees.ac.uk

Abstract
Phagocytes such as macrophages are capable of detecting and killing pathogenic bacteria by producing reactive oxygen and nitrogen species. Formation of free radicals in macrophages may be regulated by probiotics or by factors released by probiotics but yet to be identified. Thus, studies were carried out to determine whether cell-free conditioned medium obtained from cultures of Lactobacillus rhamnosus (LGG-CM) regulate production of reactive oxygen species (ROS) and/or nitric oxide (NO) in macrophages. J774 macrophages in culture were loaded with either H2-DCFDA for monitoring ROS or with DAFFM-DA for NO detection. Free radical production was measured on a fluorescence microplate reader and changes were analysed by Cumulative sum (CuSum) calculations. Low concentration of LGG-CM (10% LGG-CM) or LPS did not cause any significant change in basal levels of ROS or NO production. In contrast, high concentration of LGG-CM (75% and 100%) significantly enhanced ROS generation but also significantly reduced NO level. These findings are novel and suggest for the first time that probiotics may release factors in culture which enhance ROS production and may additionally reduce deleterious effects associated with excessive nitrogen species by suppressing production of NO. These events may account, in part, for the beneficial bactericidal and anti-inflammatory actions ascribed to probiotics and may be of clinical relevance.

Keywords: Probiotic bacteria, in vitro, ROS, nitric oxide, CUSUM

1. Introduction
Macrophages as professional phagocytes have been considered prominent participants in the response to acute infection and play a significant role in preventing infecting bacteria multiplying and damaging the host environment. Macrophages have complex mechanisms equipped with specialised receptors to recognise their targets. Upon internalisation of receptor-bacterial complex, macrophages initiate killing of the ingested microbes partly through the generation of free radicals species [1]. However, excessive production of ROS and NO during phagocytic activity may also contribute to the inflammatory process which although beneficial in killing bacteria may result in deleterious consequences, especially following an interaction of NO with superoxide radicals to form reactive nitrogen species (RNS) such as peroxynitrite.

There is considerable interest in the role of probiotic bacteria in the modulation of immune functions. It has been shown that probiotic bacteria activate host innate immune function by influencing phagocytic activity of their immune cells [2], and also by regulating release of pro and anti-inflammatory cytokines [3] or free radicals [4, 5]. Secretory products from probiotic bacteria or its conditioned medium have also been shown immunomodulatory and also providing health beneficial effects on the human gut epithelium both in vivo and in vitro [6,7, 8]. However the exact mechanism via which the secretory products or conditioned medium cause their actions is currently not known, nor is it clear whether they could regulate ROS and NO production or mediate bacterial killing as is seen with whole cell probiotic cultures. In this study, we have therefore evaluated the influence of cell free Lactobacillus rhamnosus GG conditioned medium (LGG-CM) on ROS and NO production by the J774
macrophage cell line, and further evaluated this acutely during their phagocytic process of \textit{E.coli} in real time. Fluorescence analysis was used to monitor ROS or NO generation on a real time basis and the data were analysed using CuSum which offers a simple and rapid method for identifying sustained changes in real time under experimental situations \cite{9, 10}. This is however the first study to investigate a real time changes in acute ROS and NO productions using CuSum in \textit{in vitro} experiments. Findings of this study may have clinical implications for balanced ROS and NO production to enhance bacterial killing while protecting against deleterious collateral tissue damage by activated macrophages.

2. Materials and methods

2.1 Materials

Dulbecco's modified Eagle medium (DMEM; 1000 mg/L glucose, 4 mM L-glutamine and 110 mg/L sodium pyruvate) was purchased from Gibco, UK. Foetal bovine serum and penicillin/streptomycin were from Sigma-Aldrich, UK. The LGG was grown from Culturelle® tablets. The fluorescent dyes H$_2$DCF-DA and DAFFM-DA were purchased from Molecular probes and Santa Cruz biotechnology respectively.

2.1 Cell culture and treatments

The murine macrophage cell line J774 was cultured in DMEM supplemented with 10 % fetal bovine serum (FBS) and 1 % Penicillin/Streptomycin. Cells were seeded at a density of 50,000 cells/well in special clear bottom 96 well plates (Costar) and allowed to attach overnight.
Overnight cultures of *E. coli* HfrC were prepared by inoculation into nutrient broth (Oxoid, UK) and incubated at 37°C with oscillation at 150 rpm. Quantification of *E. coli* were performed by the agar spread plate method and also by measuring optical density reading at 600 nm.

### 2.3 The cell-free LGG-CM

The cell-free LGG-CM was prepared as described previously [8]. In brief LGG were harvested from nutrient broth by centrifugation and washed twice with phosphate-buffered saline (PBS). Following centrifugation, LGG pellet was incubated in DMEM (10^7 colony-forming units (CFU)/mL) and cultured overnight at 37°C. LGG-CM was produced by filtering the cultured DMEM through a sterile filter of 0.2 µm pore size.

### 2.4 Determination of ROS and NO production from LGG-CM treated macrophages

Accumulation of intracellular ROS and NO produced by J774 murine macrophages in 96 well tissue culture plates were measured using a fluorescence microplate reader (Biotek). After removing the growth medium, the cells were washed once with pre-warmed PBS. Macrophages were then loaded with fresh medium containing 5 µM H₂DCFDA or 5 µM DAFFMDA for 45 minutes at 37°C in 5% CO₂ in a humidified cell culture incubator to measure ROS and NO respectively [11]. The dye solution was then removed and cells again carefully washed twice with pre-warmed PBS. The prepared treatments were added to the cells in the presence and absence of *E. coli* at a multiplicity of 50:1. The fluorescence measurements were taken every two minutes approximately for the first 60 minutes to monitor ROS or NO production during bacterial ingestion and from 60 minutes to 280 minutes to monitor NO
production during the digestion period. The fluorescence was measured at 485 nm excitation and 528 nm emissions.

2.5 Data analysis

Data are expressed as the mean ± standard error of the mean (S.E.M) as indicated in individual experiments. Statistical difference between the means was determined by one-way analysis of variance (ANOVA) followed by Dunnett multiple comparison post-hoc test. The analyses were performed using Prism version 3.00 for windows (GraphPad Software, USA).

CuSum was used in the analysis of fluorescence measurements to compare the rate of free radical production. The CuSum methodology is a simple technique that has frequently been applied to elucidate trends in time domain data. It works by comparing each data point to a reference or target value (k) and then cumulatively summing the differences \[12,13\]. If the underlying mean of the data points is constant the method produces a straight line whose slope is determined by the difference between the mean value and the chosen reference value. Small random variations are smoothed so the technique can reveal differences and changes in the mean value \[13\].

When analysing the data sets, raw experimental values (test values) were plotted out against time. The average of fluorescence measurements from control macrophages was used as \(k\), the ‘target value’. This was then used to calculate the CuSum values. The first CuSum \(C_o\) value is calculated using equation 1.

\[
C_o = F_o - k \quad \ldots \ldots \quad (1)
\]
Where $F_o$ is the first fluorescence reading in the time series and $k$ is the ‘target’ or reference value. The next and subsequent CuSum values are calculated using equation 2 and 3

$$C_1 = C_0 + (F_1 - k) \ldots \ldots (2)$$

and then

$$C_2 = C_1 + (F_2 - k) \ldots \ldots \ldots \ldots \ldots (3)$$

and so on, where $C_n$ is the $n^{th}$ CuSum value and $F_n$ is the $n^{th}$ fluorescence reading in the time series.

3. Results

3.1 CuSum analysis of free radical and nitric oxide production

Figure 1A and 1B show the characteristics of data for ROS and NO generation by J774 cells over an initial 60 minutes period acquired from controls and from cells treated with either menadione for ROS or L-arginine for NO production. Although there were small differences in the extent of change of fluorescence readings between control and experimental plates, the random variation in the measurements made these differences difficult to follow when the raw data were plotted. Smoothing of the data using the CuSum analysis clarified the difference between control and experimental results. The data in figure 1C shows the CuSum values for the same measurements presented as raw data in figure 1A. While the control line has no net slope (as F values did not change relative to k) the experimental line has an obvious slope (the F values were greater than k). This is also seen when comparing Figure 1B and 1D. The calculated gradient (m values from linear trendline equation $y = mx + c$ from CuSum values) of ROS production from untreated macrophages was 0.
However, the gradient of 0.5 mM menadione treated macrophages was 0.3. The gradient of NO production from untreated cells was 0.05 while from 100 μM L-arginine was found to be 0.29.

3.2 Effects of LGG-CM on ROS and NO production in murine J774 macrophages

The raw data in figure 2A and 2B did not show any clear trends or differences between the treatments. By comparison, the CuSum plots (Figure 2C & 2D) shows graded responses to higher concentrations of LGG-CM alone or together with LPS. In these studies, calculated CuSum gradient of ROS production in controls and in cells treated with 10% LGG-CM were 0.0009 and 0.0088 respectively. There was however an increased rate of ROS production in response to 75% LGG-CM and 100% LGG-CM treatments with gradients of 0.275 and 0.919 respectively. Cells treated with 20 μgml⁻¹ LPS showed little effect on ROS production. Addition of LPS to 75% LGG-CM seems to potentiate the effect in this individual experiment; however, average data demonstrated no additional effect of LPS on higher concentration of LGG-CM mediated ROS production. In figure 2D, NO levels were found to be reduced to higher concentrations of LGG-CM. Both LPS and 10% LGG-CM had little effect on NO level acutely.

3.3 Effects of LGG-CM on ROS production in murine J774 macrophages ingesting and digesting E. coli

The effects of LGG-CM on ROS production was investigated in the ingestion and digestion phase of phagocytosis by the J774 macrophages. Confirming the previous data above, LGG-CM treated macrophages at concentrations of 75% and 100%
significantly increased the rate of ROS production acutely during the first 60 minutes of incubation (ingestion phase). These effects were not altered in the presence of LPS. Furthermore, treatment with LPS alone or 10% LGG-CM did not induce any changes in the extent of ROS production when compared to control (Figure 3A). However, the rate of ROS productions during the digestion period (from 60 to 280 minutes of incubation) was found to be significantly slower than the rate of ROS production during the ingestion period (Figure 3B). In our experiments the DMEM used to grow the bacteria did not have any significant effect on ROS or NO generation when used independently.

In figure 3C and 3D similar findings as above were observed when *E. coli* was added to all the above treatments. In the presence of *E. coli*, higher concentration of LGG-CM (75 % LGG and 100 % LGG) caused a significant increases in free radical production during the first 60 minutes of incubation (ingestion phase) as well as in the digestion phase. ROS production during the digestion period (from 60 to 280 minutes of incubation), however, shows a diminished rate as found above with higher LGG-CM treatment alone (in absence of *E. coli*).

### 3.4 LGG-CM decreases extent of nitric oxide in murine J774 macrophages

Macrophages were exposed to 20 μg ml⁻¹ LPS, plus 100 μM arginine and various dilutions of LGG-CM or combinations of respective LGG-CM and LPS. Continuous measurements of NO carried out for the first 60 minutes (ingestion period) showed that there were significant reductions in the extent of NO in response to higher concentrations of LGG-CM treatments of macrophages (P ≤ 0.05; Figure 4A). There was no further change in NO level when *E.coli* was added to the treatments (Figure 4C). LPS together with low concentration of LGG-CM (10%) alone and in
combination of *E.coli* had no effect on NO production by J774 cells. However, there was an elevated level of NO production from macrophages treated with 100μM arginine in presence of LPS (figure 4A &B).

Measurement of NO by J774 macrophages was also measured between 60 minutes to 280 minutes (digestion period) to see if there was any change in levels of NO during this period. No further significant change of NO were observed to various treatments with LGG-CM during the digestion period. However, there appeared to be a small increase of NO level to LPS or *E.coli* and low LGG-CM and *E.coli* treatments during the digestion period (figure 4D).

### 4. Discussion

Much interest has been generated in recent years regarding the role of probiotics in immunomodulation. In this study LGG (a probiotic strain of human origin with widely evidenced health effects) was used. Cell free LGG-CM has also been shown to have immunomodulation effectiveness similar to live bacteria [14] and this effect is thought to be due to the presence of low molecular weight proteins [15; 16] or other soluble factors such as cell membrane polysaccharides [17] and glycoproteins [18] released by the probiotic bacteria into the culture medium. Whether any of these play a role in our studies is now being investigated. The LGG-CM has also been shown to modulate macrophage activity by enhancing phagocytic digestion of *E.coli* acutely [19]. The factors that may be present have not yet been identified nor has there been any clear demonstration that conditioned medium from cultures of probiotics regulates ROS and/or NO production or mediate bacterial killing. Studies were therefore initiated to address these issues using the fluorescent probes H$_2$-DCFDA and DAFFM-DA to detect ROS and NO respectively in cultured J774 macrophages.
More importantly, measurements were carried out in real time and in the presence and absence of live bacteria (\textit{E. coli}) to establish whether or how free radical generation may be influenced during the phases of ingestion and digestion of bacteria. In this study LPS (20 μg/ml-1), LGG-CM and E. coli HfrC had no effect of macrophage growth within the experimental period (unpublished data). LGG-CM medium did not show any influence on the growth of \textit{E.coli} up to 24 hours.

In this study, CuSum analysis was adopted due to the noisy nature of the data generated in real time using fluorescence probes. This technique has proved useful in monitoring the acute changes in the rate of free radical generation from pre-existing levels. The interpretation is most robust when detecting a subtle change or irregular fluctuations or shifts in free radical production as seen in the measurement of circadian change of Blood pressure for 24 hours in hypertensive subjects \[10\] or in sustained change in air pollution level over few months \[20\]. The CuSum method is quite simple as it perceives the variation without assuming any functional form of the data. If the measured fluorescence value of free radical production from the experiment is equal to the target value (average fluorescence from untreated cells) the slope would be zero. But if the measured fluorescence value of free radical production from the experiment is greater than the target value, the slope will be a positive and vice versa. The greater the difference between the measured fluorescence value and the target value then the greater will be the slope. The slope of the plot over any given time period (the change in the CuSum over that period divided by the period duration) indicates the average deviation of free radicals generation from mean control ROS generation during that period. The CUSUM plot facilitates the calculation of relative rate of ROS or NO production and the derivation
between treatments. This was therefore considered an appropriate tool to use to analyse data generated from our studies.

In the present study, LGG-CM significantly increased the rate of ROS production and reduced the rate of NO production acutely in macrophage. The rapid increase of ROS generation was significantly higher within the first 60 minutes of treatment followed by lower rate of ROS production for the further 280 minutes. This pattern of ROS production was also maintained when macrophages were exposed to both non-pathogenic *E. coli* HfrC and LGG-CM together. LPS or diluted LGG-CM (10%) did not induce any significant ROS or NO production acutely. Both menadione and L-arginine were used as positive control for ROS and NO respectively. The 20 μg ml⁻¹ LPS, *E. coli* HfrC and LGG-CM were found to be well tolerated by J774 macrophage during the study period as the MTT assay did not show any evident of cytotoxicity (unpublished data).

Production of ROS and NO by macrophages are essential factors for macrophage mediated host defence mechanisms. Following phagocytosis, macrophages kill pathogens in the phagosome through ROS, generated by the activation of NADPH oxidase. Upon activation, the NADPH oxidase transfer electrons from cytosolic NADPH to molecular oxygen releasing superoxide into the phagosomal lumen. Inside the phagosome, oxygen free radical then converted rapidly to hydrogen peroxide (H₂O₂) by superoxide dismutase which in turn reacts with iron to generate highly reactive hydroxyl radicals (HO⁻). H₂O₂ can also be converted by myeloperoxidase into hypochlorous acid and chloramines. Collectively, these highly reactive, toxic ROS and other reactive nitrogen species (RNS) are shown to be highly effective as antimicrobial agents [21].
In macrophage NO is produced due to activation of inducible nitric oxide synthase (iNOS). However, unlike superoxide, NO is synthesized on the cytoplasmic side of phagosomes and diffuses across membranes to reach intraphagosomal targets where it can interact with ROS to generate a range of RNS, including nitrogen dioxide, peroxynitrite, dinitrogen trioxide, dinitrosyl iron complexes, nitrosothiols and nitroxyl radicals [22]. In the phagosome ROS and RNS synergize to exert highly toxic effects on microorganisms leading to inhibit their replication and ultimately death.

Excessive ROS and RNS generation causes oxidative stress which has been implicated in many disease processes. Disproportionate or prolonged ROS and RNS generation may result in non-specific oxidation of biomolecules and contribute to tissue injury. High ROS production has also been implicated to cause deleterious suppression of NF-κB mediated cell survival factors [23]. In gut epithelial cells, LGG has been shown to induce an increased ROS production through NADPH activation. However, this increase in ROS has also been suggested to play a role as an anti-inflammatory agent by inhibiting NF-κB through oxidative inactivation of the key regulatory enzyme Ubc12 [24, 25]. Similar suppression of NF-κB activation was also demonstrated in liver cells to probiotic treatment [26]. However, this suppression was due to reduced activity of Jun N-terminal kinase (JNK); a regulatory enzyme found to be modulated by ROS [27]. It seems that ROS mediated suppression of NF-κB may account for the physiological regulation of inflammatory susceptibility of the cells to native commensal bacteria.

Farnell et al. demonstrated that formalin killed LGG produces increased oxidative burst in chicken heterophils [28]. They found that this oxidative burst to probiotics bacteria was rapid and occurs in less than an hour. LGG has also been shown to produce ROS within 30 minutes of exposure in murine immature intestinal epithelia.
cell line [25]. It is plausible that dynamic changes of ROS production would be involved in the activation of signalling process. Detection of oscillating ROS signals in plant root hairs clearly demonstrates such possibility [29]. Mittler postulated that maintaining a nontoxic steady-state level of ROS, while allowing for the transient accumulation of ROS in particular subcellular locations could have physiological significance and could act as signals [30].

Previous studies have reported differential kinetics of ROS and NO production by macrophages in response to parasite infections. Gantt et al. detected ROS production 40 minutes after addition of opsonised promastigote to murine or human macrophages, whereas they were unable to detect any NO production even after 4 hour of infection [31]. They were only able to detect NO after 48 hours of infection. These observations are consistent with our studies where we also observed a rapid ROS production from macrophages, but failed to detect any enhanced acute NO production. Reduce rate of NO production from the control in our study is probably due to inactivation of NO by ROS. Interestingly there is evidence in the central nervous system that SOD could increase the toxic effects of NO by inhibiting the superoxide mediated inactivation of NO [32]. Nitric oxide can rapidly react with superoxide to generate the stable peroxynitrite anions. This pattern of elevated level of ROS leading to decrease in NO bioavailability has been described in endothelial cells [33]. Scavenging of superoxide by SOD has also been shown to increase the half-life of endothelium-derived relaxing factor (EDRF/NO) and to preserve the biological activity of NO [34]. Thus, it is likely that the acute reduced rate of NO production to LGG-CM in our study is probably due to enhanced ROS generation in macrophages.
In summary we have shown for the first time that by using CuSuM it has become possible to detect subtle changes in the trend in free radical production from macrophages treated with various treatments and thus can be used as a successful tool in analysing noisy \textit{in vitro} data.

It is clear that LGG-CM may have some soluble components which activate macrophage to significantly increase the rate of ROS production both in the presence and absence of E. coli. In contrast, macrophages treated with LGG-CM demonstrated a significant decrease in the rate of NO accumulation. This skewing modulation of ROS and NO production is probably beneficial to the host as excessive production of NO might not only be useful to accelerate bacterial killing mechanism but could also potentially damage the host tissue. The ability of probiotic to differentially regulate NO and ROS generation may have clinical implications in several pathological conditions associated with bacterial infection and may prove useful in improving intestinal homeostasis.

\textbf{Acknowledgments}

This work was supported by the Teesside University Research Fund.

\textbf{References}

[1] Fang, F.C., Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2 (2004) 820-832.
[2] Kotzamandis, C., Kourelis, A., A., Litopoulou-Tzanetaki, E., Tzanetakis, N. & Yiangu, M. Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains. Int. J. Food Microbiol. 140 (2010) 154–163.
[3] Morita, H., He, F., Fuse, T., Ouehand, A. C., Hashimoto, H., Hosoda, M., Mizumachi, K., & Kurisaki, J. I. Cytokine production by the murine macrophage cell line J774.1 after exposure to lactobacilli. Biosci. Biotechnol. Biochem. 2002; 66:1963-1966.
[4] Kumar, A., Wu, H., Collier-Hyams, L.S., Hansen, J.M., Li, T., Yamoah, K., Pan, Z.Q., Jones, D.P. & Neish, A.S. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J. 2007; 26: 4457-4466.

[5] Lin, P.W., Myers, L.E.S., Ray, L., Song, S.C., Nasr, T.R., Berardinelli, A.J., Kundu, K., Murthy, N., Hansen, J.M. & Neish, A.S. Lactobacillus rhamnosus blocks inflammatory signalling in vivo via reactive oxygen species generation. Free Radic. Biol. Med. 2009; 47 :1205-1211

[6] Bauerl, C., Perez-Martinez, G., Yan, F., Polk, D.B. & Monedero, V. Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23. J Mol Microbiol Biotechnol; 2010; 19: 231–241.

[7] Yan, F., Cao, H., Cover, T.L., Washington, M.K., Shi, Y., Liu,L., Chaturvedi,R., Peek, R.M Jr., Wilson,K.T & Polk,D.B. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR dependent mechanism. J Clin Invest. 2011; 121 (6), 2242–2253.

[8] Tao, Y., Drabik, K.A., Waypa, T.S., Musch, M.W., Alverdy, J.C., Schneewind, O., Chang, E.B. & Petrof, E.O. Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells, Am J Physiol - Cell Physiology. 2006; 290: C1018-C1030.

[9] Hu,Q.,Chen,J.,Liu,M-Q., Liu,P-L.,Kong,D-G, Zhao,J-C. Early warning CUSUM plans for surveillance of infectious diseases in Wuhan, China. Afr. J. Microbiol. Res. 2012; 6 : 4989-4992.

[10] Stanton, A., Cox, J., Atkins, N., O’Malley, K. & O’Brien, E. Cumulative sums in quantifying circadian blood pressure patterns. Hypertension. 1992; 19: 93-101.

[11] Kalyanaraman, B., Darley-Usmar, V., Davies, K.J.A., Dennery, P.A., Forman, H.J., Grisham, M.B., Mann, G.E., Moore, K., Roberts II, L.J. & Ischiropoulos, H. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 2012; 52: 1-6.

[12] Tam, D. A theoretical analysis of cumulative Sum slope (CUSUM-Slope) statistic for detecting signal onset (begin) and offset (end) trends from background noise level. The Open Statistics and Probability Journal. 2009; 1: 43-51.

[13] Blau, D.J., Resche-Rigon, M., Godiris-Petit, G., Nizard, R.S. & Porcher, R. Quality control of surgical and interventional procedures: a review of the CUSUM. Quality and safety in health care. 2007; 16: 203-207

[14] Peña J. A and Versalovic J. Lactobacillus rhamnosus GG decreases TNF-a production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. Cell. Microbiol. 2003; 5: 277–285.

[15] Yan F and Polk D.B. Characterization of a probiotic-derived soluble protein which reveals a mechanism of preventive and treatment effects of probiotics on intestinal inflammatory diseases. Gut Microbes. 2012; 3: 25–28.

[16] Ruiz, L., Arancha Hevia, A., Bernardo, D., Margolles, A., & Sanchez, B. Extracellular molecular effectors mediating probiotic attributes. FEMS Microbiol Lett. 2014; 359: 1–11.

[17] Lebeer, S., Vanderleyden, J., De Keersmaecker, S.C. Host interactions of probiotic bacterial surface molecules. Nat. Rev. Microbiol. 2010; 8: 171-184.

[18] Fletcher, C.M., Coyne, M.J., Bentley, D.L., Villa, O.F., and Comstock, L.E. Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem. Proc Natl Acad Sci USA, 2007; 104: 2413–2418.
[19] Vincenti, J.E. The influence of cell-free Lactobacillus rhamnousus GG supernatant on the phagocytic activity of macrophages. Bioscience Horizons. 2010; 3: 105-112.
[20] Barrat B., Atkinsonb, R., Anderson H.R., Beevera S., Kelly F., Mudway I., and Wilkinson P. Investigation into the use of the CUSUM technique in identifying changes in mean air pollution levels following introduction of a traffic management scheme. Atmospheric Environment 2007; 41: 1784–1791.
[21] Flannagan, R.S., Cosio,G. & Grinstein,S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 2009; 7: 355-66.
[22] Brüne, B., Dehne, D., Grossmann, N., Jung, M., Namgaladze, D., Schmid, T., von Knethen., A. & Weigert A. Redox Control of Inflammation in Macrophages. Antioxidants & redox signalling. 2013; 19: 595-637.
[23] Storz,P. & Toker,A. Protein kinase D mediates a stress-induced NF-kB activation and survival pathway. The EMBO Journal. 2003; 22: 109-120.
[24] Kumar, A., Wu, H., Collier-Hyams, L.S., Hansen, J.M., Li, T., Yamoah, K., Pan, Z.Q., Jones, D.P. & Neish, A.S. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J. 2007; 26: 4457-4466.
[25] Lin, P.W., Myers, L.E.S., Ray, L., Song, S.C., Nasr, T.R., Berardinelli, A.J., Kundu, K., Murthy, N., Hansen, J.M. & Neish, A.S. Lactobacillus rhamnosus blocks inflammatory signalling in vivo via reactive oxygen species generation. Free Radic. Biol. Med. 2009; 47 :1205-1211.
[26] Li, Z., Yang,S., Lin,H., Huang, J., Watkins,P.A., Moser, A.B., Desimone, C., Song, X.Y. & Diehl, A.M. Probiotics and antibodies to TNF inhibit inflammatory activity and improve non-alcoholic fatty liver disease. Hepatology. 2003; 37: 343-50.
[27] Zhang,Y. and Chen,F. Reactive oxygen species (ROS), Troublemakers between Nuclear factor-kB (NF-kB) and c-Jun NH2-terminal kinase (JNK). Cancer res. 2004; 64 : 1902-1905.
[28] Farnell, M.B., Donoghue, A.M., Solis De Los Santos, F., Blore, P.J., Hargis, B.M., Tellez, G. & Donoghue, D.J. Up regulation of oxidative burst and degranulation in chicken heterophils stimulated with probiotic bacteria. Poultry science. 2006; 85: 1900-1906.
[29] Monshausen, G.B., Bibikova,T.N., Messerli,M.A., Shi,C. & Gilroy,S. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proc. Natl. Acad. Sci. 2007; 104: 20996-1001.
[30] Mittler,R., Vanderauwera,S., Gollery,M. & Breusegem,F.V. Reactive oxygen gene network of plants. Trends plant Sci. 2004; 9: 490-498.
[31] Gantt,K.R., Goldman, T.L., McCormick, M.L., Miller, M.A., Jeronimo, S.M., Nascimento, E.T., Britigan, B.E. & Wilson, M.E. Oxidative responses of human and murine macrophages during phagocytosis of Leishmania chagasi. J. of Immunol. 2001; 167: 893-901.
[32] Oury,T.D., Ho,Y.S., Piantadosi,C.A & Crapo,J.D. Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc. Natl. Acad. Sci. 1992; 89: 9715-9719.
[33] Hsieh, H. J., Liu, C. A., Huang, B., Tseng, A. H., & Wang, D. L. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci, 2014; 21
[34] Gryglewski, R.J., Palmer,R.M. & Moncada,S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986; 320: 454-456.
Figure 1: Measurement of ROS and NO production by J774 macrophages. Figure 1A illustrates the profile of ROS production from control and menadione treated macrophages and Fig 1C represents the corresponding CuSum plots. Figure 1B illustrates the profile of NO production from arginine treated macrophages and Figure 1D represents the corresponding CuSum plots. The above graphs are representative of at least 3 independent experiments.

Figure 2: ROS and NO production from j774 macrophages in the presence of LPS and LGG-CM. Figure 2 (A, C, E, & G) represents raw data of ROS and NO production recorded over 280 minutes for control cells and cells exposed to 75% LGG-CM, LPS ($\mu$g.ml$^{-1}$) and figure 2 (B, D, F & H) represents its corresponding CuSum plot. The random variation evident in this figure makes it very difficult to detect differences between control (o) and the treatment (●) to estimate the extent of ROS or NO production. However, their corresponding CuSum plots clearly demonstrates the gradient of ROS and NO production to different treatments.

Figure 3: Effect of LGG-CM on ROS production in J774 macrophage in the absence and presence of $E.\ coli$. Experiments were performed to investigate ROS production during the course of ingestion phase (3A and 3C) and digestion phase (3B and 3D)
of phagocytosis. Macrophages were treated with cell free LGG-CM both in the presence (Figure 3C and 3D) and absence of *E. coli* (Figure 3A and 3B). The rate is estimated as average slope of the CuSum curve. Each value is a mean ± S.E.M (n=7). A * denotes p<0.05 and ** denotes p<0.01.

Figure 4: Decrease in NO from J774 macrophages to LGG-CM. Experiments were performed to investigate the RNS production during the course of bacterial uptake (4A and 4B) and digestion (4C and 4D). Macrophages were treated with cell free LGG-CM, both in the presence and absence of *E. coli*. Each value is a mean ± S.E.M of 3 to 7 experiments. * denotes p<0.05 and ** denotes p<0.01.
Highlights

- Effect of cell free Lactobacillus rhamnosus conditioned media (LGG-CM) was examined on acute production of ROS and NO by J774 macrophages.
- LGG-CM treatments increase the rate of ROS generation but reduced NO acutely in J774 macrophages.
- ROS production rate during ingestion was higher than the digestion phase.
- LGG-CM may enhance bacterial killing by enhancing ROS generation.
- LGG-CM may regulate NO mediated inflammation via ROS.
Figures

1A

![Graph showing ROS production](image)

1B

![Graph showing NO production](image)

1C

![Graph showing ROS production](image)

1D

![Graph showing NO production](image)
3A 3B 3C 3D

Rate (min⁻¹) ROS production
-2 -2 0 0 2 2 4 4 6 6 8 8
control LPS 10%LGG 10%LGG+LPS 75%LGG 75%LGG+LPS 100%LGG 100%LGG+LPS

Rate (min⁻¹) ROS production
-2 -2 0 0 2 2 4 4 6 6 8 8
control+ E.coli LPS+E.coli 10%LGG+E.coli (10%LGG+LPS)+E.coli 75%LGG+E.coli (75%LGG+LPS)+E.coli 100%LGG+E.coli (100%LGG+LPS)+E.coli

* ** ** **
* ** ** **
* ** ** **

* ** ** **
* ** ** **
* ** ** **
