Doubly-charmed baryon production in Z boson decay

Xuan Luo, Ying-Zhao Jiang, Gui-Yuan Zhang, and Zhan Sun

Department of Physics, Guizhou Minzu University,
Guiyang 550025, People’s Republic of China.

(Dated: June 15, 2022)

Abstract

In this paper, we carry out a detailed study of doubly-charmed baryon production in Z boson decay, on the basis of the nonrelativistic QCD factorization. With the inclusion of the di-quark states $(cc)[^{3}S_{1}]_{3}$ and $(cc)[^{1}S_{0}]_{6}$, the branching ratio of $B_{Z\rightarrow \Xi_{cc}+X}$ is predicted to be of the 10^{-5} order, indicating its experimental measurability. By comparing to the Λ_{c}^{+} yield in Z decay, we predict $R_{\Xi_{cc}^{+}}(=\frac{\Gamma(Z\rightarrow\Xi_{cc}^{+})\times B(\Xi_{cc}^{+}\rightarrow\Lambda_{c}^{+}K^{-}\pi^{+})}{\Gamma(Z\rightarrow\Lambda_{c}^{+})}) = (0.85^{+0.10}_{-0.07}) \times 10^{-4}$ and $R_{\Xi_{cc}^{++}}(=\frac{\Gamma(Z\rightarrow\Xi_{cc}^{++})\times B(\Xi_{cc}^{++}\rightarrow\Lambda_{c}^{+}K^-\pi^{+}\pi^{+})}{\Gamma(Z\rightarrow\Lambda_{c}^{+})}) = (1.70^{+0.20}_{-0.14}) \times 10^{-4}$, which are at clear variance with the SELEX measurements but comparable with the values given by the LHCb and Belle collaborations.

PACS numbers: 12.38.Bx, 12.39.Jh, 13.38.Dg

*Electronic address: zhansun@cqu.edu.cn
I. INTRODUCTION

The doubly-charmed baryon (labeled as Ξ_{cc}), which is assumed to contain two c quarks and a light quark q (q = u, d, s) based on the quark model [1–5], can provide unique test for the quantum chromodynamics (QCD). The past decades have seen the rapid developments of the Ξ_{cc} related studies, including both experimental and theoretical aspects.

By reconstructing Ξ_{cc}^{+} (ccu) via its decay into Λ_{c}^{+}K^{−}π^{+}, the SELEX collaboration reported a large production rate of Ξ_{cc}^{+} (i.e. \(R_{\Xi_{cc}^{+}} = \frac{\sigma(\Xi_{cc}^{+}) \times B(\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+}K^{−}π^{+})}{\sigma(\Lambda_{c}^{+})} = 9\% \)) [6], which, however, was even not confirmed by the FOCUS collaboration [7] that is at the same collider of SELEX. In 2013, the LHCb Collaboration performed its first search for Ξ_{cc}^{+}, reporting the upper limit of \(R_{\Xi_{cc}^{+}} \) is from 1.5 \times 10^{-2} (corresponding to the Ξ_{cc} lifetime of 100 fs) to 3.9 \times 10^{-4} (400 fs) [8], which is recently updated to be from 6.5 \times 10^{-3} (40 fs) to 9 \times 10^{-4} (160 fs) for \(\sqrt{s} = 8 \) TeV, and from 4.5 \times 10^{-4} (40 fs) to 1.2 \times 10^{-4} (160 fs) for \(\sqrt{s} = 13 \) TeV [9]. The LHCb data appear to be at clear variance with the SELEX-measured \(R_{\Xi_{cc}^{+}} \). Comparing to Ξ_{cc}^{+}, Ξ_{cc}^{++} (uud) has a much longer lifetime and is then much easier to be tagged from the LHC background [10]. In 2017, the LHCb collaboration firstly detected the decay channel Ξ_{cc}^{++} \rightarrow \Lambda_{c}^{+}K^{−}π^{+}π^{+} with \(\Lambda_{c}^{+} \rightarrow pK^{−}π^{+} \) [11], and then observed the decay channels of Ξ_{cc}^{++} \rightarrow Ξ_{cc}^{+}π^{+} [12] and Ξ_{cc}^{++} \rightarrow Ξ_{cc}^{+}π^{+}π^{+} [13]. In 2019, LHCb achieved the first measurement of the Ξ_{cc}^{++} production in proton-proton collision [14], reporting \(R_{\Xi_{cc}^{++}} = \frac{\sigma(\Xi_{cc}^{++}) \times B(\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+}K^{−}π^{+}π^{+})}{\sigma(\Lambda_{c}^{+})} = (2.22 \pm 0.27 \pm 0.29) \times 10^{-4} \). Besides the hadroproduction, the Ξ_{cc} production in e^{+}e^{-} annihilation has also been measured [15]–[17]. The upper limits of \(\sigma(e^{+}e^{-} \rightarrow Ξ_{cc}^{++} + X) \) given by the Belle collaboration are comparable with the theoretical predictions; the values of \(R_{\Xi_{cc}^{++}} \) are measured to be \(\sim 10^{-4} \).

In addition to the direct productions [18]–[54], such as the hadro-, photo-, and electroproductions, the indirect Ξ_{cc} yield in decays [55]–[58], which is indeed very complementary to the direct case, is also of great interest to study the doubly-charmed baryon. For example, Niu. et al. pointed out about \(10^3 \) Ξ_{cc} events can be accumulated through higgs decay in one running year at the proposed HL-LHC; Li. et al. indicated the branching ratio of \(B_{\Upsilon(1S) \rightarrow Ξ_{cc} + X} \) can be significant and can be well measured as the \(\Upsilon(1S) \) decay to \(J/\psi + c + \bar{c} + X \). In addition to these decay processes, the Z boson decay could also provide a uniquely good chance for the Ξ_{cc}-related study. At the LHC, \(\sim 10^9 \) Z events are expected to be generated per year [59], which would be largely increased by the HE(L)-LHC upgrade program. The
The proposed future e^+e^- collider, CEPC [60], equipped with “clean” background and enormous Z production events ($\sim 10^{12}$/year), would also be beneficial to hunt Ξ_{cc} yield through Z decay. Thus, it appears promising to measure Z decaying into inclusive Ξ_{cc}. Moreover, heavy-quarkonium production in Z decay (such as $Z \to J/\psi + X$), which is analogue to our concerned Ξ_{cc} case, has triggered increasing attentions and has accumulated abundant experimental data [61]. Taken together, we, in this paper, would perform a detailed study of $Z \to \Xi_{cc} + X$, presenting the estimations of $R_{\Xi_{cc}^{++}}$ in the course of Z decay.

The rest of the paper is organized as follows: In Sec. II, we give a description on the calculation formalism. In Sec. III, the phenomenological results and discussions are presented. Section IV is reserved as a summary.

II. CALCULATION FORMALISM

A. General Formalism

The production of the doubly-charmed baryon is often assumed to be factorized into two steps [18, 28, 44]. The first procedure is to produce a c-quark pair ($cc)[n]$ by the perturbative calculable hard processes, with subsequent nonperturbative transition into a bounding diquark $\langle cc\rangle[n]$ that can be described by a matrix element, $h_{[n]}$. The next step is the hadronization of $\langle cc\rangle[n]$ into a physical colorless baryon Ξ_{ccq} ($q = u, d, s$) by grabbing a light quark with possible soft gluons from the hadron; during the hadronization, the “direct evolution mechanism” assumes the total evolving probability to be 100%, among which the fragmentation probabilities into Ξ_{ccu}, Ξ_{ccd}, and Ξ_{ccs} account for 43%, 43%, and 14%, respectively [10, 47, 62].

Within the nonrelativistic QCD (NRQCD) framework [63], the differential decay width of $Z \to \Xi_{cc} + X$ can be expressed as

$$d\Gamma = d\hat{\Gamma}_{Z \to (cc)[n] + X} \langle O_{\Xi_{cc}}(n) \rangle,$$

where $\hat{\Gamma}_{Z \to (cc)[n] + X}$ is the perturbative calculable short distance coefficients (SDCs), representing the production of a configuration of the $(cc)[n]$ intermediate state. At the leading order of v_c (the relative velocity of the two constituent c quarks in the diquark),\(^1\) n takes on

\(^1\) The contributions of the P-wave processes would at least be v_c^2 suppressed to that of the S-wave processes.
either $[^3S_1]_3$ or $[^1S_0]_6$, due to the symmetry of identical particles in the diquark state. The subscripts $3(6)$ (as will be depicted in later section) denote the color state of the diquark. The universal long distance matrix element $\langle \mathcal{O} \Xi_{cc}(n) \rangle$ stands for the transition probability of the c-quark pair into the diquark multiplied by the subsequent fragmentation probability into Ξ_{cc}, i.e., $h([[^3S_1]_3][[^1S_0]_6]) \times 100\%$ based on the “direct evolution mechanism”.

B. Amplitudes

The SDCs in Eq. (1) can be written as

$$\hat{\Gamma}_{Z \to (cc)[n] + \bar{c} + \bar{c}} = |\mathcal{M}|^2 d\Phi_3,$$

where $|\mathcal{M}|^2$ and $d\Phi_3$ are the squared matrix element and the standard 3-body phase space, respectively. For $Z \to (cc)[n] + \bar{c} + \bar{c}$, there are in total 8 Feynman diagrams, half of which are shown in Fig. 1. The other 4 ones can be obtained by exchanging the two identical c-quark lines inside the diquark. Because we have set $v_c = 0$, the two portions of 4 diagrams contribute identically; in this case, we only need to calculate the 4 diagrams in Figure 1 and multiply a factor of 2^2. Simultaneously we should introduce an additional factor of $1/(2!2!)$ to deal with the identities of the two constituent c quarks inside the diquark and the two final-state \bar{c} quarks.

Φ_3

For example, the P-wave contributions just account for about $3\% - 5\%$ of the total cross sections of the hadroproduced Ξ_{cc} \cite{4}.

\footnote{For example, the P-wave contributions just account for about $3\% - 5\%$ of the total cross sections of the hadroproduced Ξ_{cc} \cite{4}.}
According Fig. 1, one can obtain

\[
\begin{align*}
\mathcal{M}_1 &= -\kappa \bar{u}(p_{12})(-i\gamma^\nu)(v(p_2)\bar{u}(p_{11})(-i\gamma^\nu)(m_c + \bar{p}_1 + \bar{p}_2)\bar{\ell}(p_0)(c + \gamma^5)v(p_3),
\mathcal{M}_2 &= -\kappa \bar{u}(p_{12})(-i\gamma^\nu)(m_c + \bar{p}_1 + \bar{p}_3)\bar{\ell}(p_0)(c + \gamma^5)v(p_2)\bar{u}(p_{11})(-i\gamma^\nu)v(p_3),
\mathcal{M}_3 &= -\kappa \bar{u}(p_{12})\ell(p_0)(c + \gamma^5)(m_c - \bar{p}_1 - \bar{p}_2 - \bar{p}_3)(-i\gamma^\nu)v(p_2)\bar{u}(p_{11})(-i\gamma^\nu)v(p_3),
\mathcal{M}_4 &= -\kappa \bar{u}(p_{12})(-i\gamma^\nu)v(p_2)\bar{u}(p_{11})\ell(p_0)(c + \gamma^5)(m_c - \bar{p}_1 - \bar{p}_2 - \bar{p}_3)(-i\gamma^\nu)v(p_3),
\end{align*}
\]

where \(\kappa = -\frac{\alpha_s g^2}{4\cos\theta_w \sin\theta_w} \) with \(C \) denoting the color factor. \(c(p_0) \) is the polarization vector of the initial \(Z \) boson. The coefficient \(c \) reads

\[
c = \frac{8}{3} \sin^2 \theta_w - 1. \tag{4}
\]

The momenta of the constituent quarks in the diquark follow as

\[
p_{11} = \frac{m_c}{M_{cc}}p_1 + q \quad \text{and} \quad p_{12} = \frac{m_c}{M_{cc}}p_1 - q, \tag{5}
\]

where \(m_c = M_{cc}/2 \) is implicitly adopted to ensure the gauge invariance of the hard scattering amplitude; \(q(\approx 0) \) is the relative momentum between the two constituent \(c \) quarks inside the diquark.

By inserting the charge conjugate matrix \(C = -i\gamma^2\gamma^0 \) that satisfies the following equations [44],

\[
CC^{-1} = 1, \quad v^T(p)C = -\bar{u}(p), \quad C^{-1}u(p)^T = v(p),
\]

\[
C^-(\gamma^\mu)^T C = -\gamma^\mu, \quad C^-(\gamma^\mu\gamma^5)^T C = \gamma^\mu\gamma^5,
\]

\[
C^{-1}s_f^T(k, m)C = s_f(-k, m), \tag{6}
\]

the amplitudes in Eq. (3) can be rewritten as

\[
\begin{align*}
\mathcal{M}_1 &= -\kappa \bar{u}(p_{12})(-i\gamma^\nu)\Pi_{\mu\nu}^{[n]}(m_c + \bar{p}_1 + \bar{p}_2)\bar{\ell}(p_0)(c + \gamma^5)v(p_3),
\mathcal{M}_2 &= -\kappa \bar{u}(p_{12})(-i\gamma^\nu)(m_c - \bar{p}_1 - \bar{p}_3)\bar{\ell}(p_0)(c + \gamma^5)\Pi_{\mu\nu}^{[n]}(-i\gamma^\nu)v(p_3),
\mathcal{M}_3 &= -\kappa \bar{u}(p_{12})\ell(p_0)(c - \gamma^5)(m_c + \bar{p}_1 + \bar{p}_2 + \bar{p}_3)(-i\gamma^\nu)\Pi_{\mu\nu}^{[n]}(-i\gamma^\nu)v(p_3),
\mathcal{M}_4 &= -\kappa \bar{u}(p_{12})(-i\gamma^\nu)\Pi_{\mu\nu}^{[n]}(m_c - \bar{p}_1 - \bar{p}_2 - \bar{p}_3)(-i\gamma^\nu)v(p_3)
\end{align*}
\]

\[
(7)
\]
where $\Pi_q^{[\alpha]}$ denotes the spin projector operators \[65\],

$$
\Pi_q^{[1S_0]} = \frac{1}{\sqrt{8m_c^3}} \left(\frac{q}{2} - m_c \right) \gamma^5 \left(\frac{q}{2} + m_c \right),
$$

$$
\Pi_q^{[3S_1]} = \frac{1}{\sqrt{8m_c^3}} \left(\frac{q}{2} - m_c \right) \hat{q} \left(\frac{q}{2} + m_c \right). \tag{8}
$$

\section*{C. Color Factor}

According to Fig. 1, the color factor C can be expressed as

$$
C = T_{im}^a T_{jn}^a, \tag{9}
$$

where $a = 1 \cdots 8$ is the color indices of the incoming gluon; $i, j = 1, 2, 3$ and $m, n = 1, 2, 3$ denote the color indices of the two constituent c quarks in the diquark and that of the two final-state \bar{c} quarks, respectively. By the fact that $3 \otimes 3 = \bar{3} \oplus 6$ in SU$_c$(3) group, the diquark can be either in anti-triplet $\bar{3}$ or in sextuplet 6 color state; in this case, we introduce the function $G_{ijk}^k_N$ to describe the diquark color, $k = 3$ and $N = \sqrt{2}$ being the color indices of the diquark and the normalized factor, respectively. G_{ijk} is identical to the antisymmetric ε_{ijk} (3) or the symmetric f_{ijk} (6), which satisfies the following equations

$$
\varepsilon_{ijk} \varepsilon_{i'j'k} = \delta_{ii'} \delta_{jj'} - \delta_{ij} \delta_{i'j'},
$$

$$
f_{ijk} f_{i'j'k} = \delta_{ii'} \delta_{jj'} + \delta_{ij} \delta_{i'j'}. \tag{10}
$$

\section*{III. PHENOMENOLOGICAL RESULTS}

The input parameters in our calculations are set as

$$
m_Z = 91.1876 \text{ GeV}, \quad m_c = 1.8 \pm 0.05 \text{ GeV},
$$

$$
\sin^2 \theta_w = 0.23116, \quad \alpha = 1/137. \tag{11}
$$

According to the velocity scaling rule of NRQCD, we adopt the usual assumption that the matrix elements $h^{[3S_1]}_3$ and $h^{[1S_0]}_6$ have the equal values \[13, 28, 44\], which are given by the wave function at the origin \[22, 44\]

$$
h^{[3S_1]}_3 = h^{[1S_0]}_6 = |\Psi_{cc}(0)|^2 = 0.039 \text{ GeV}^3. \tag{12}
$$
μ_r	m_c (GeV)	$\Gamma[^3S_1]_{\bar{3}}$	$\Gamma[^1S_0]_6$	Γ_{Total}	$B(\times 10^{-5})$
1.75	16.36	58.87	75.23	3.015	
$2m_c$	1.80	14.59	52.51	67.10	2.689
1.85	13.33	48.01	61.34	2.458	
$m_Z/2$	1.80	4.79	17.21	22.00	0.882
1.85	4.05	14.57	18.62	0.746	

We summarize the predicted decay widths of $Z \to \Xi_{cc} + X$ in Tab. I. Inspecting the data, one can find the branching ratio of $Z \to \Xi_{cc} + X$ amounts to $\sim 10^{-5}$, which is comparable with the color-singlet predictions of $B_{Z \to J/\psi + X}$ [66, 67]. In the predictions of the total decay width, the state of $(cc[^3S_1]_{\bar{3}}$ plays the leading role, more than three times bigger in magnitude than that of $(cc[^1S_0]_6$. Varying m_c around the default value of 1.8 GeV by ± 0.05 GeV would arouse a 10% variation of the decay width.

Based on the aforementioned capability of hunting Z boson at LHC and CEPC, about 10^4 (LHC) and 10^7 (CEPC) Ξ_{cc} production events arisen from Z decay would be collected in one running year at the two colliders. By further considering the decay chains of $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ ($\sim 5\%$ [8]) or $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ ($\sim 10\%$ [11, 68]) with the cascade decay $\Lambda_c^+ \to pK^- \pi^+$ ($\sim 5\%$ [8]), we would accumulate about 10 and 10^4 reconstructed $\Xi_{cc}^{+(++)}$ events at LHC and CEPC, respectively. Note that, the proposed HL(E)-LHC upgrade program may largely increase the Ξ_{cc} yield events.

We are now in a position to estimate the ratio of the production rate of $\Xi_{cc}^{+(++)}$ in Z decay to that of Λ_c^+. According to $B_{Z \to \Lambda_c^+} = B_{Z \to \Xi_{cc}^+} \times f_{c \to \Lambda_c} = 0.12 \times 0.057 = 6.84 \times 10^{-3}$, [61, 69] we have

$$R_{\Xi_{cc}^+} = \frac{\Gamma(Z \to \Xi_{cc}^+) \times B(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\Gamma(Z \to \Lambda_c^+)} = 0.85^{+0.10}_{-0.07} \times 10^{-4},$$

$$R_{\Xi_{cc}^{++}} = \frac{\Gamma(Z \to \Xi_{cc}^{++}) \times B(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)}{\Gamma(Z \to \Lambda_c^+)} = 1.70^{+0.20}_{-0.14} \times 10^{-4},$$

where $\mu_r = 2m_c$ and the uncertainties are caused by $m_c = 1.8 \pm 0.05$ GeV. From the ratios one can perceive the predicted $R_{\Xi_{cc}^{+(++)}}$ in Z decay is comparable with the measurements of LHCb (13 TeV) [9, 14] and Belle collaborations [15], while still significantly below the
Fig. 2: Ξ_{cc} energy distributions in $Z \to \Xi_{cc} + X$ with z defined as $\frac{2E_{\Xi_{cc}}}{m_Z}$.

SELEX-reported $R_{\Xi_{cc}^\pm}$.

At last, we give the predictions of the Ξ_{cc} energy distributions in Fig. 2. The peak of $\frac{d\Gamma}{dz}|_{(cc)[^3S_1]_3}$ is around $z = 0.75$ and $\frac{d\Gamma}{dz}|_{(cc)[^1S_0]_6}$ peaks near $z = 0.7$. That the peak of Ξ_{cc} energy distribution in $Z \to \Xi_{cc} + X$ lies in the large z region can primarily be attributed to the dominance of the c-quark fragmentation mechanism.

IV. SUMMARY

In this manuscript, we apply the NRQCD factorization to study the Z boson decaying into inclusive doubly-charmed baryon. By including the contributions of the di-quark states $(cc)[^3S_1]_3$ and $(cc)[^1S_0]_6$, the branching ratio of $B_{Z \to \Xi_{cc} + X}$ is predicted to be $\sim 10^{-5}$, following which as high as $10^4(7)$ Ξ_{cc} events from Z decay are expected to be accumulated at LHC (CEPC) per year. By comparing to the measurements on $B_{Z \to \Lambda_{cc}^{++} + X}$, we predict $R_{\Xi_{cc}^\pm}(= \frac{\Gamma(Z \to \Xi_{cc}^\pm) \times B(\Xi_{cc}^\pm \to \Lambda_{cc}^{++} K^- \pi^+)}{\Gamma(Z \to \Lambda_{cc}^0)} = (0.85 \pm 0.10) \times 10^{-4}$ and $R_{\Xi_{cc}^{++}}(= \frac{\Gamma(Z \to \Xi_{cc}^{++}) \times B(\Xi_{cc}^{++} \to \Lambda_{cc}^{++} K^- \pi^+ \pi^+)}{\Gamma(Z \to \Lambda_{cc}^0)} = (1.70 \pm 0.20) \times 10^{-4}$, where the uncertainties are estimated using alternative choices of the c-quark mass. Our prediction of $R_{\Xi_{cc}^{++}(++)}$ in the course of Z decay is still inconsistent with the SELEX data but compatible with the LHCb- and Belle-measured values.

V. ACKNOWLEDGMENTS

Acknowledgments: This work is supported in part by the Natural Science Foundation of China under the Grant No. 12065006, and by the Project of GuiZhou Provincial Department of Science and Technology under Grant No. QKHJC[2020]1Y035. and No.
QKHJC[2019]1167.

[1] M. Gell-Mann, “A Schematic Model of Baryons and Mesons,” Phys. Lett. 8 (1964), 214-215. doi:10.1016/S0031-9163(64)92001-3

[2] G. Zweig, “An SU(3) model for strong interaction symmetry and its breaking. Version 1,” CERN-TH-401.

[3] D. Ebert, R. N. Faustov, V. O. Galkin, A. P. Martynenko and V. A. Saleev, “Heavy baryons in the relativistic quark model,” Z. Phys. C 76 (1997), 111-115. doi:10.1007/s002880050534

[4] S. M. Gerasyuta and D. V. Ivanov, “Charmed baryons in bootstrap quark model,” Nuovo Cim. A 112 (1999), 261-276. doi:10.1007/BF03035848

[5] C. Itoh, T. Minamikawa, K. Miura and T. Watanabe, “Doubly charmed baryon masses and quark wave functions in baryons,” Phys. Rev. D 61 (2000), 057502. doi:10.1103/PhysRevD.61.057502

[6] M. Mattson et al. [SELEX], “First Observation of the Doubly Charmed Baryon Ξ_{cc}^+,” Phys. Rev. Lett. 89 (2002), 112001. doi:10.1103/PhysRevLett.89.112001

[7] S. P. Ratti, “New results on c-baryons and a search for cc-baryons in FOCUS,” Nucl. Phys. B Proc. Suppl. 115 (2003), 33-36. doi:10.1016/S0920-5632(02)01948-5

[8] R. Aaij et al. [LHCb], “Search for the doubly charmed baryon Ξ_{cc}^+,” JHEP 12 (2013), 090. doi:10.1007/JHEP12(2013)090

[9] R. Aaij et al. [LHCb], “Search for the doubly charmed baryon Ξ_{cc}^+,” Sci. China Phys. Mech. Astron. 63 (2020) no.2, 221062. doi:10.1007/s11433-019-1471-8

[10] X. G. Wu, “A new search for the doubly charmed baryon Ξ_{cc}^+ at the LHC,” Sci. China Phys. Mech. Astron. 63 (2020) no.2, 221063. doi:10.1007/s11433-019-1478-x

[11] R. Aaij et al. [LHCb], “Observation of the doubly charmed baryon Ξ_{cc}^{++},” Phys. Rev. Lett. 119 (2017) no.11, 112001. doi:10.1103/PhysRevLett.119.112001

[12] R. Aaij et al. [LHCb], “First Observation of the Doubly Charmed Baryon Decay Ξ_{cc}^{++} → Ξ_c^+π^+,” Phys. Rev. Lett. 121 (2018) no.16, 162002. doi:10.1103/PhysRevLett.121.162002

[13] R. Aaij et al. [LHCb], “Measurement of the Lifetime of the Doubly Charmed Baryon Ξ_{cc}^{++},” Phys. Rev. Lett. 121 (2018) no.5, 052002. doi:10.1103/PhysRevLett.121.052002.
[14] R. Aaij et al. [LHCb], “Measurement of Ξ_{cc}^{++} production in pp collisions at $\sqrt{s} = 13$ TeV,” Chin. Phys. C 44 (2020) no.2, 022001. doi:10.1088/1674-1137/44/2/022001.

[15] B. Aubert et al. [BaBar], “Search for doubly charmed baryons $\Xi(cc)^+$ and $\Xi(cc)^{++}$ in BABAR,” Phys. Rev. D 74 (2006), 011103. doi:10.1103/PhysRevD.74.011103.

[16] R. Chistov et al. [Belle], “Observation of new states decaying into Lambda(c)+ K- pi+ and Lambda(c)+ K0(S) pi-,” Phys. Rev. Lett. 97 (2006), 162001. doi:10.1103/PhysRevLett.97.162001.

[17] Y. Kato et al. [Belle], “Search for doubly charmed baryons and study of charmed strange baryons at Belle,” Phys. Rev. D 89 (2014) no.5, 052003. doi:10.1103/PhysRevD.89.052003.

[18] C. H. Chang, J. P. Ma, C. F. Qiao and X. G. Wu, “Hadronic production of the doubly charmed baryon $\Xi(cc)$ with intrinsic charm,” J. Phys. G 34 (2007), 845. doi:10.1088/0954-3899/34/5/006.

[19] S. J. Brodsky, S. Groote and S. Koshkarev, “Resolving the SELEX–LHCb double-charm baryon conflict: the impact of intrinsic heavy-quark hadroproduction and supersymmetric light-front holographic QCD,” Eur. Phys. J. C 78 (2018) no.6, 483. doi:10.1140/epjc/s10052-018-5955-1.

[20] A. F. Falk, M. E. Luke, M. J. Savage and M. B. Wise, “Heavy quark fragmentation to baryons containing two heavy quarks,” Phys. Rev. D 49 (1994), 555-558. doi:10.1103/PhysRevD.49.555.

[21] V. V. Kiselev, A. K. Likhoded and M. V. Shevlyagin, “Double charmed baryon production at B factory,” Phys. Lett. B 332 (1994), 411-414. doi:10.1016/0370-2693(94)91273-4.

[22] S. P. Baranov, “On the production of doubly flavored baryons in p p, e p and gamma gamma collisions,” Phys. Rev. D 54 (1996), 3228-3236. doi:10.1103/PhysRevD.54.3228.

[23] A. V. Berezhnoy, V. V. Kiselev, A. K. Likhoded and A. I. Onishchenko, “Doubly charmed baryon production in hadronic experiments,” Phys. Rev. D 57 (1998), 4385-4392. doi:10.1103/PhysRevD.57.4385.

[24] D. A. Gunter and V. A. Saleev, “Hadronic production of doubly charmed baryons via charm excitation in proton,” Phys. Rev. D 64 (2001), 034006. doi:10.1103/PhysRevD.64.034006.

[25] V. V. Kiselev, A. K. Likhoded and M. V. Shevlyagin, “Production of doubly charmed baryons at energy $s^{*}(1/2) = 10.58$-GeV,” Phys. Atom. Nucl. 58 (1995), 1018-1021.

[26] A. V. Berezhnoy and A. K. Likhoded, “Quark-hadron duality and production of charmonia
and doubly charmed baryons in e+ e− annihilation,” Phys. Atom. Nucl. 70 (2007), 478-484. doi:10.1134/S1063778807030052.

[27] V. V. Braguta, V. V. Kiselev and A. E. Chalov, “Pair production of doubly heavy diquarks,” Phys. Atom. Nucl. 65 (2002), 1537-1544. doi:10.1134/1.1501666.

[28] J. P. Ma and Z. G. Si, “Factorization approach for inclusive production of doubly heavy baryon,” Phys. Lett. B 568 (2003), 135-145. doi:10.1016/j.physletb.2003.06.064.

[29] E. Braaten, M. Kusunoki, Y. Jia and T. Mehen, “Lambda+(c) / Lambda-(c) asymmetry in hadroproduction from heavy quark recombination,” Phys. Rev. D 70 (2004), 054021. doi:10.1103/PhysRevD.70.054021.

[30] S. Y. Li, Z. G. Si and Z. J. Yang, “Doubly heavy baryon production at gamma gamma collider,” Phys. Lett. B 648 (2007), 284-288. doi:10.1016/j.physletb.2007.03.029.

[31] Z. J. Yang and T. Yao, “Doubly heavy baryon production at polarized photon collider,” Chin. Phys. Lett. 24 (2007), 3378-3380. doi:10.1088/0256-307X/24/12/025.

[32] H. Y. Bi, R. Y. Zhang, X. G. Wu, W. G. Ma, X. Z. Li and S. Owusu, “Photoproduction of doubly heavy baryon at the LHeC,” Phys. Rev. D 95 (2017) no.7, 074020. doi:10.1103/PhysRevD.95.074020.

[33] J. Jiang, X. G. Wu, Q. L. Liao, X. C. Zheng and Z. Y. Fang, “Doubly Heavy Baryon Production at A High Luminosity e+e− Collider,” Phys. Rev. D 86 (2012), 054021. doi:10.1103/PhysRevD.86.054021.

[34] J. Jiang, X. G. Wu, S. M. Wang, J. W. Zhang and Z. Y. Fang, “A Further Study on the Doubly Heavy Baryon Production around the Z0 Peak at A High Luminosity e+e− Collider,” Phys. Rev. D 87 (2013) no.5, 054027. doi:10.1103/PhysRevD.87.054027.

[35] A. P. Martynenko and A. M. Trunin, “Relativistic corrections to the pair double heavy diquark production in e+e− annihilation,” Phys. Rev. D 89 (2014) no.1, 014004. doi:10.1103/PhysRevD.89.014004.

[36] G. Chen, X. G. Wu, Z. Sun, Y. Ma and H. B. Fu, “Photoproduction of doubly heavy baryon at the ILC,” JHEP 12 (2014), 018. doi:10.1007/JHEP12(2014)018.

[37] Z. J. Yang, P. F. Zhang and Y. J. Zheng, “Doubly Heavy Baryon Production in e+e− Annihilation,” Chin. Phys. Lett. 31 (2014), 051301. doi:10.1088/0256-307X/31/5/051301.

[38] A. P. Martynenko and A. M. Trunin, “Pair double heavy diquark production in high energy proton–proton collisions,” Eur. Phys. J. C 75 (2015) no.3, 138. doi:10.1140/epjc/s10052-015-
3358-0.

[39] W. K. Lai and A. K. Leibovich, “$\Lambda_c^+ / \Lambda_c^−$ and $\Lambda_b^0 / \bar{\Lambda}_b^0$ production asymmetry at the LHC from heavy quark recombination,” Phys. Rev. D 91 (2015) no.5, 054022. doi:10.1103/PhysRevD.91.054022.

[40] S. Koshkarev and V. Anikeev, “Production of the doubly charmed baryons at the SELEX experiment – The double intrinsic charm approach,” Phys. Lett. B 765 (2017), 171-174. doi:10.1016/j.physletb.2016.12.010.

[41] S. Koshkarev, “Production of the Doubly Heavy Baryons, B_c Meson and the All-charm Tetraquark at AFTER@LHC with Double Intrinsic Heavy Mechanism,” Acta Phys. Polon. B 48 (2017), 163. doi:10.5506/APhysPolB.48.163.

[42] S. Groote and S. Koshkarev, “Production of doubly charmed baryons nearly at rest,” Eur. Phys. J. C 77 (2017) no.8, 509. doi:10.1140/epjc/s10052-017-5086-0.

[43] X. Yao and B. Müller, “Doubly charmed baryon production in heavy ion collisions,” Phys. Rev. D 97 (2018) no.7, 074003. doi:10.1103/PhysRevD.97.074003.

[44] C. H. Chang, C. F. Qiao, J. X. Wang and X. G. Wu, “Estimate of the hadronic production of the doubly charmed baryon Ξ_{cc} under GM-VFN scheme,” Phys. Rev. D 73 (2006), 094022. doi:10.1103/PhysRevD.73.094022.

[45] G. Chen, X. G. Wu, J. W. Zhang, H. Y. Han and H. B. Fu, “Hadronic production of Ξ_{cc} at a fixed-target experiment at the LHC,” Phys. Rev. D 89 (2014) no.7, 074020. doi:10.1103/PhysRevD.89.074020.

[46] X. C. Zheng, C. H. Chang and Z. Pan, “Production of doubly heavy-flavored hadrons at $e^+e^−$ colliders,” Phys. Rev. D 93 (2016) no.3, 034019. doi:10.1103/PhysRevD.93.034019.

[47] G. Chen, C. H. Chang and X. G. Wu, “Hadronic production of the doubly charmed baryon via the proton–nucleus and the nucleus–nucleus collisions at the RHIC and LHC,” Eur. Phys. J. C 78 (2018) no.10, 801. doi:10.1140/epjc/s10052-018-6283-1.

[48] A. V. Berezhnoy, I. N. Belov and A. K. Likhoded, “Production of doubly charmed baryons with the excited heavy diquark at LHC,” Int. J. Mod. Phys. A 34 (2019) no.06n07, 1950038. doi:10.1142/S0217751X19500386.

[49] G. Chen, X. G. Wu and S. Xu, “Impacts of the intrinsic charm content of the proton on the Ξ_{cc} hadroproduction at a fixed target experiment at the LHC,” Phys. Rev. D 100 (2019) no.5, 054022. doi:10.1103/PhysRevD.100.054022.
C. H. Chang, J. X. Wang and X. G. Wu, “GENXICC: A Generator for hadronic production of the double heavy baryons \(\Xi(cc), \Xi(bc) \) and \(\Xi(bb) \),” Comput. Phys. Commun. 177 (2007), 467-478. doi:10.1016/j.cpc.2007.05.012.

C. H. Chang, J. X. Wang and X. G. Wu, “GENXICC2.0: An Upgraded Version of the Generator for Hadronic Production of Double Heavy Baryons \(\Xi(cc), \Xi(bc) \) and \(\Xi(bb) \),” Comput. Phys. Commun. 181 (2010), 1144-1149. doi:10.1016/j.cpc.2010.02.008.

X. Y. Wang and X. G. Wu, “GENXICC2.1: An Improved Version of GENXICC for Hadronic Production of Doubly Heavy Baryons,” Comput. Phys. Commun. 184 (2013), 1070-1074. doi:10.1016/j.cpc.2012.10.022.

Z. Sun and X. G. Wu, “The production of the doubly charmed baryon in deeply inelastic \(ep \) scattering at the Large Hadron Electron Collider,” JHEP 07 (2020), 034. doi:10.1007/JHEP07(2020)034.

Q. Qin, Y. F. Shen and F. S. Yu, “Discovery potentials of double-charm tetraquarks,” Chin. Phys. C 45, no.10, 103106 (2021). doi:10.1088/1674-1137/ac1b97.

J. J. Niu, L. Guo, H. H. Ma, X. G. Wu and X. C. Zheng, “Production of semi-inclusive doubly heavy baryons via top-quark decays,” Phys. Rev. D 98 (2018) no.9, 094021. doi:10.1103/PhysRevD.98.094021.

J. J. Niu, L. Guo, H. H. Ma and X. G. Wu, “Production of doubly heavy baryons via Higgs boson decays,” Eur. Phys. J. C 79 (2019) no.4, 339. doi:10.1140/epjc/s10052-019-6842-0.

S. Y. Li, Z. Y. Li, Z. G. Si, Z. J. Yang and X. Zhang, “Doubly heavy baryon \(\Xi_{cc} \) production in \(\Upsilon(1S) \) decay,” Phys. Rev. D 104 (2021) no.11, 114003. doi:10.1103/PhysRevD.104.114003.

P. H. Zhang, L. Guo, X. C. Zheng and Q. W. Ke, “Excited doubly heavy baryon production via \(W^+ \) boson decays,” Phys. Rev. D 105 (2022), 034016. doi:10.1103/PhysRevD.105.034016.

Q. L. Liao, Y. Yu, Y. Deng, G. Y. Xie and G. C. Wang, “Excited heavy quarkonium production via \(Z^0 \) decays at a high luminosity collider,” Phys. Rev. D 91 (2015) no.11, 114030. doi:10.1103/PhysRevD.91.114030.

J. B. Guimarães da Costa et al. [CEPC Study Group], “CEPC Conceptual Design Report: Volume 2 - Physics & Detector,” [arXiv:1811.10545 [hep-ex]].

P. A. Zyla et al. [Particle Data Group], “Review of Particle Physics”, PTEP 2020 (2020) 083C01.

T. Sjostrand, S. Mrenna and P. Z. Skands, “PYTHIA 6.4 Physics and Manual,” JHEP 05
(2006), 026. doi:10.1088/1126-6708/2006/05/026.

[63] G. T. Bodwin, E. Braaten and G. P. Lepage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” Phys. Rev. D51 (1995) 1125, Erratum: [Phys. Rev. D55 (1997) 5853], doi:10.1103/PhysRevD.55.5853, 10.1103/PhysRevD.51.1125.

[64] A. V. Berezhnoy, I. N. Belov and A. K. Likhoded, “Production of Excited States of Doubly Heavy Baryons at the Large Hadron Collider,” Phys. Atom. Nucl. 83 (2020) no.6, 892-898. doi:10.1134/S1063778820060058.

[65] A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, “NLO production and decay of quarkonium,” Nucl. Phys. B 514 (1998), 245-309. doi:10.1016/S0550-3213(97)00801-8.

[66] V. D. Barger, K. m. Cheung and W. Y. Keung, “Z BOSON DECAYS TO HEAVY QUARKO-NIUM,” Phys. Rev. D 41 (1990), 1541. doi:10.1103/PhysRevD.41.1541.

[67] E. Braaten, K. m. Cheung and T. C. Yuan, “Z0 decay into charmonium via charm quark fragmentation,” Phys. Rev. D 48 (1993), 4230-4235. doi:10.1103/PhysRevD.48.4230.

[68] F. S. Yu, H. Y. Jiang, R. H. Li, C. D. Liü, W. Wang and Z. X. Zhao, “Discovery Potentials of Doubly Charmed Baryons,” Chin. Phys. C 42 (2018) no.5, 051001. doi:10.1088/1674-1137/42/5/051001.

[69] L. Gladilin, “Fragmentation fractions of c and b quarks into charmed hadrons at LEP,” Eur. Phys. J. C 75 (2015) no.1, 19. doi:10.1140/epjc/s10052-014-3250-3.