Splenic Infarct as the Presenting Manifestation of Essential Thrombocythemia

Shalaka Khade, MD,1 Sudeep Khera, MD,1 Vaibhav Kumar Varshney, MS, MCh,2 Deepak Kumar Sharma, MD,3 Raghav Nayar, MS,2 Abhishek Purohit, MD, DM1

1Department of Pathology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India. 2Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India 3Department of Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India

Background: Essential thrombocythemia is a chronic myeloproliferative neoplasm characterized by thrombotic and hemorrhagic complications. Essential thrombocythemia can be considered a risk factor for thrombotic events.

Case Report: A 34-year-old female presented with sudden onset of abdominal pain from splenic infarction for which she underwent splenectomy. Bone marrow examination performed because of increasing thrombocytosis led to a diagnosis of essential thrombocythemia. Postoperatively, she was maintained on low-dose aspirin and doing well at follow-up.

Conclusion: Our patient had an undiagnosed case of essential thrombocythemia and presented with symptoms related to splenic infarction. To the best of our knowledge, few cases of splenic infarction consequent to essential thrombocythemia have been reported.

Keywords: Splenic infarction, thrombocythemia—essential, thrombosis

Address correspondence to Sudeep Khera, MD, Department of Pathology, All India Institute of Medical Sciences, Basni, Phase II, Jodhpur, Rajasthan, India 342005. Tel: +91 772 685 9981. Email: drsudeepkhera@gmail.com

INTRODUCTION

Essential thrombocythemia, a chronic myeloproliferative neoplasm, is characterized by persistent thrombocytosis. While essential thrombocythemia is frequently diagnosed incidentally,1 some cases present with thrombotic or hemorrhagic complications.2 The increased risk of hemorrhagic complications can be associated with extreme thrombocytosis, but the cause of thrombotic complications is not well understood. Thrombotic complications vary from mild disturbances to severe events.3 Although thrombotic complications are known to occur in essential thrombocythemia, few cases have been reported with splenic infarction as the presenting feature. Splenic infarction is an uncommon diagnosis that can be caused by trauma, embolization, infection, hematologic conditions, or malignancy.4 Splenic infarction occurs as a result of occlusion of the splenic artery or one of its branches by an embolus or in situ thrombosis. The spleen has a rich vascular supply and receives approximately 5% of cardiac output, making it susceptible to emboli formation.5 Also, the spleen is commonly affected by hematologic malignancies, which can increase the risk of thrombosis.6,7 We describe a patient with essential thrombocythemia who presented with symptoms arising from splenic infarction.

CASE REPORT

A 34-year-old female presented with severe pricking pain in the left upper abdomen that began 6 days prior, was not relieved with oral analgesics, and was associated with multiple episodes of nonprojectile vomiting. The patient had no history of hypertension or cardiovascular disease and no relevant family history. The primary workup, a blood transfusion, and initial imaging had been done elsewhere before the patient was referred to our institute for further management. Imaging indicated an evolving pseudopancreatic cyst with an ischemic insult of the spleen. On examination in our emergency department, the patient had stable vital signs and tender, moderate splenomegaly. Contrast-enhanced computed tomography repeated at our institution revealed splenic infarction with contained splenic rupture, mild ascites, and left-sided pleural effusion.

Hemoglobin was 7.6 g/dL (reference range, 12-15 g/dL), total leukocyte count was 27 × 10^9/L (reference range, 4-11 × 10^9/L), and platelet count was 970 × 10^9/L (reference range, 150-450 × 10^9/L). Serum iron studies and serum ferritin revealed evidence of iron deficiency; total iron-binding capacity was 547 μg/dL (reference range, 240-450 μg/dL) and iron was 22 μg/dL (reference range, 60-170 μg/dL).

The patient’s case was reviewed in the hematology clinic. The patient was administered iron sucrose 5 mL of 5 mg/mL solution diluted in 100 mL normal saline for 3 consecutive days as per the advice of the hematologist. The patient was initiated on low-dose aspirin because of thrombocytosis. She was managed conservatively for 6 days, during which complete blood counts, iron studies, and inflammatory
markers (high sensitivity C-reactive protein and erythrocyte sedimentation rate) were evaluated. She was started on broad-spectrum antibiotics (meropenem injection 1 g intravenously 3 times daily) and continued on the same iron therapy as mentioned above because of leukocytosis and thrombocytosis. Full procoagulant workup (serum homocysteine, fibrinogen, antinuclear antibodies, protein C, protein S, antithrombin III) was negative.

After ruling out all possible causes of secondary thrombosis and given the nonresolution of the patient's symptoms, the decision was made to operate. Our routine protocol is to provide vaccination 14 days before elective splenectomy against Haemophilus influenza, pneumococcus, and meningococcus. Because the patient was taken for surgery on a semi-emergency basis, she could not be vaccinated preoperatively, so vaccination was planned for the postoperative period. She underwent exploratory laparotomy with splenectomy and drainage of the lesser sac collection (approximately 100 mL), which was sterile on culture. Densely thickened and inflamed omentum was wrapped around a devascularized and ruptured spleen.

Histopathologic examination of the splenectomy specimen revealed predominantly infarcted areas with only focally preserved splenic parenchyma, indicating massive splenic infarction (Figure).

Postoperatively, the patient’s platelet count progressively increased (reaching 1,638 × 10⁹/L during the next 8 days), presumably as an acute response to splenectomy. Other reactive causes such as connective tissue disorders, hemolytic anemia, medications, and inflammatory states were ruled out based on history and ancillary laboratory investigations. The ongoing increase in platelet count led us to perform a bone marrow examination on the eighth day of admission that revealed a cellular bone marrow with marked megakaryocytic prominence. Megakaryocytes displayed large to giant forms with abundant mature cytoplasm and conspicuously hypersegmented staghorn–like nuclei. These findings were consistent with essential thrombocythemia.

After a hospital stay of 10 days, the patient was discharged on oral cefuroxime 500 mg twice daily, aceclofenac 100 mg twice daily, and pantoprazole 40 mg once daily for 5 days. She returned for follow-up after 7 days for suture removal and laboratory investigations.

Molecular studies were performed to complete the workup for essential thrombocythemia. The test was negative for the BCR-ABL1 mutation, but the JAK2 V617F mutation was detected, meeting the criteria of essential thrombocythemia. The patient was vaccinated 1 month postoperatively and maintained on oral aspirin 75 mg once daily. She was followed up every 3 months during the first year and every

Figure. (A) Peripheral blood smear (Leishman stain, magnification ×100) shows increased platelets and platelet clumps. (B) Bone marrow aspirate (Giemsa stain, magnification ×40) shows cellular marrow with megakaryocytes cluster (inset: hyperlobated megakaryocyte). (C) Bone marrow biopsy shows increased number of megakaryocytes with hyperlobated nuclei (hematoxylin and eosin stain [H&E], magnification ×40). (D) Photograph of resected spleen with pale cut surface. (E) Photomicrograph of spleen shows infarcted areas (H&E, magnification ×40).
Anagrelide is an alternative second-line therapy in patients who do not tolerate hydroxyurea or do not respond to aspirin.17

CONCLUSION
Although hemorrhagic and thrombotic complications are known to occur with essential thrombocythemia, splenic infarction is rare. Early recognition with risk stratification and management of essential thrombocythemia could help avert such thrombotic manifestations.

ACKNOWLEDGMENTS
The authors have no financial or proprietary interest in the subject matter of this article.

REFERENCES
1. Ashorobi D, Gohari P. Essential thrombocytosis. In: StatPearls [Internet]. StatPearls Publishing. Updated June 26, 2021. Accessed May 23, 2022. www.ncbi.nlm.nih.gov/books/NBK539709/
2. Griesshammer M, Bangerter M, van Vliet HH, Michiels JJ. Aspirin in essential thrombocythemia: status quo and quo vadis. Semin Thromb Hemost. 1997;23(4):371-377. doi:10.1055/s-2007-996111
3. Yuan J, Wu Y, Hao J, Hu W. The comorbidity of acute ischemic stroke and splenic infarction resulting from essential thrombocythemia. Neurol Sci. 2018;39(10):1787-1790. doi:10.1007/s10072-018-3462-7
4. Schattner A, Adi M, Kitroser E, Klepfish A. Acute splenic infarction at an academic general hospital over 10 years: presentation, etiology, and outcome. Medicine (Baltimore). 2015;94(36):e1363. doi:10.1097/MD.00000000000001363. Erratum in: Medicine (Baltimore). 2016;95(2):e2431. Ami, Schattner [corrected to Schattner, Ami]; Meital, Adi [corrected to Adi, Meital]; Ella, Kitroser [corrected to Kitroser, Ella]; Abraham, Klepfish [corrected to Klepfish, Abraham]. Erratum in: Medicine (Baltimore). 2016;95(2):e2431.
5. Wilkins BS. The spleen. Br J Haematol. 2002;117(2):265-274. doi:10.1046/j.1365-2121.2002.03425.x
6. Austin SK, Lambert JR. The JAK2 V617F mutation and thrombosis. Br J Haematol. 2008;143(3):307-320. doi:10.1111/j.1365-2121.2008.07258.x. Erratum in: Br J Haematol. 2008;143(3):451.
7. Yoshida K, Kurihara I, Fukuchi T, Sugawara H. Acute splenic infarction presenting as an unusual manifestation of essential thrombocytosis.

Table. Cases of Essential Thrombocythemia With Splenic Infarction

Study	Age/Sex	Symptoms	Platelet count, × 10^9/L
Yamauchi et al, 1985	64/M	Fever, left abdominal pain	584
Aoyama et al, 1988	48/M	Left back pain	927
Tohyama and Haruhiko, 1996	68/F	Epigastic pain	856
Oki et al, 2008	65/F	Lower abdominal pain, vomiting, diarrhea	1,665
Bachmeyer and Elalamy, 2011	64/F	Left hypochondrial pain radiating to back	540
Picón-Corone et al, 2011	22/M	Right sided abdominal pain (cholecystitis)	2,060
Kim et al, 2012	46/M	Splenic infarctions, myocardial infarction, cerebral infarction	>600
Yuan et al, 2018	63/F	Numbness and weakness in right extremities	448
Yoshida et al, 2019	31/M	Left hypochondrial pain	436
Present case, 2022	34/F	Left upper abdominal pain, vomiting	970

6 months during subsequent years. Her platelet count stabilized to 380 × 10^9/L after 1 month, so she did not require chemotherapy. She continues to do well after 18 months of follow-up with no evidence of infection.

DISCUSSION
This report demonstrates a previously undiagnosed case of essential thrombocythemia in a patient who presented with symptoms related to splenic infarction. Our patient presented with sudden onset of acute abdominal pain that could be a consequence of thrombotic episode leading to massive splenic infarction. To the best of our knowledge according to a literature search, few cases of splenic infarction as a result of essential thrombocythemia have been reported (Table).3,7-14 Other rare presentations of essential thrombocythemia that have been reported are aortic thrombosis, cerebral infarct, and one case of multiple venous and arterial thromboses of the gallbladder causing acute cholecystitis.3,11-14 One patient demonstrated major vascular complications of essential thrombocythemia, including multiple splenic infarctions, and in later years, the patient developed cerebral infarction and myocardial infarction.14

Various retrospective studies demonstrated that the frequency of thrombotic complications ranges from 31% to 83%; however, the occurrence of deep vein thrombosis including splenic, portal, and hepatic vein thrombosis is very low, around 4%.2 Although risk factors such as age, duration of thrombocythemia, and history of thrombosis have been postulated in some reports, no clear correlation has been established.11,15 Yoshida et al postulated increased platelet count and dysfunctional cell surface causing increased adhesion of platelets as the mechanism of thrombosis in essential thrombocythemia.7 Essential thrombocythemia can be considered a risk factor for thrombotic events. Early diagnosis and management of essential thrombocythemia can help prevent major thrombotic events such as massive splenic infarction, cerebral infarction, and aortic infarction.5 Establishing some working criteria for early identification of individuals who are at increased risk is important. Risk stratification by considering history of thrombosis, JAK2 and MPL mutations, and age can be beneficial, and treatment can be planned accordingly.16 Treatment for essential thrombocythemia includes cytotherapeutic therapy with hydroxyurea.

Ochsner Journal
Khade, S

thrombocythaemia with normal platelet count. BMJ Case Rep. 2019;12(7):e229387. doi: 10.1136/bcr-2019-229387

8. Yamaguchi H, Noda K, Inokuchi T, et al. A case of essential thrombocythemia with splenic infarction. J Kyushu Hematol Soc. 1985;33:47-52.

9. Aoyama S, Makino H, Terada Y, Takazakura E. A case of essential thrombocythemia associated with splenic infarction. Article in Japanese. Nihon Naika Gakkai Zasshi. 1988;77(3):394-398. doi: 10.2169/naika.77.394

10. Tohyama H, Haruhiko F. A case of essential thrombocythemia with complication of spleen infarction, successfully treated by interferon α. Biotherapy. 1996;10:1557-1561.

11. Oki M, Moriuchi M, Kawada H, Ogawa Y, Ando K. A case of essential thrombocythemia presenting with aortic thrombosis. Tokai J Exp Clin Med. 2008;33(4):135-137.

12. Bachmeyer C, Elalamy I. Aortic thrombus and splenic infarcts indicating essential thrombocythemia. Article in French. Rev Med Interne. 2011;32(9):e102-e104. doi: 10.1016/j.revmed.2010.08.020

13. Picón-Coronel G, Chablé-Montero F, Angeles-Ángeles A, Albores-Saavedra J. Multiple venous and arterial thromboses of the gallbladder causing acute cholecystitis. A previously undescribed complication of essential thrombocythemia. Ann Hepatol. 2011;10(3):365-369. doi: 10.1016/s1665-2681(19)31552-2

14. Kim KT, Sohn SI, Cho KH. Cerebral infarct in a patient with a history of systemic arterial and venous thrombosis from essential thrombocythemia. J Stroke Cerebrovasc Dis. 2012;21(8):913.e9-913.e10. doi: 10.1016/j.jstrokecerebrovasdis.2012.01.005

15. Besses C, Cervantes F, Pereira A, et al. Major vascular complications in essential thrombocythemia: a study of the predictive factors in a series of 148 patients. Leukemia. 1999;13(2):150-154. doi: 10.1038/sj.leu.2401270

16. Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia treatment algorithm 2018. Blood Cancer J. 2018;8(1):2. doi: 10.1038/s41408-017-0041-8

17. Accurso V, Santoro M, Mancuso S, et al. The essential thrombocythemia in 2020: what we know and where we still have to dig deep. Clin Med Insights Blood Disord. 2020;13:2634853520978210. doi: 10.1177/2634853520978210

This article meets the Accreditation Council for Graduate Medical Education and the American Board of Medical Specialties Maintenance of Certification competencies for Patient Care and Medical Knowledge.

©2022 by the author(s); licensee Ochsner Journal, Ochsner Clinic Foundation, New Orleans, LA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (creativecommons.org/licenses/by/4.0/legalcode) that permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.