MICROGLIA ARE NOT BRAIN MACROPHAGES?

Marin Zhelezov* and Anton B. Tonchev

Department of Anatomy and Cell Biology, Medical University, Varna, Bulgaria

Microglia are commonly referred to as the brain’s macrophages, which leads to confusion due to the presence of several other macrophage populations in the central nervous system. The morphological, molecular and ontological differences between these cells are subtle. They need to be clearly defined in the light of the new evidence suggesting that microglia originate not in the bone marrow, but from yolk sac, or, possibly, pericyte progenitors. Recent paradigm shift redefines the specific roles of microglia during brain development, health and disease. Microglia have emerged as key players in important events such as neurogenesis, programmed cell death, elimination of synapses and remodeling of neural circuits. These novel discoveries imply a need for a better morphological and molecular differentiation of mononuclear phagocyte populations and their subtypes in the brain. This may improve our knowledge of their specific contributions and possible pharmacological manipulation in brain health and disease. Biomed Rev 2018; 29: 99-108

Keywords: brain, macrophages, microglia, monocyte-macrophage system, pericytes, epiblast, memory, disease

INTRODUCTION: MACROPHAGE HETEROGENITY IN THE CENTRAL NERVOUS SYSTEM

Microglia are the main mononuclear phagocytes of the brain and are commonly referred to as “brain tissue macrophages”, similar to other tissue macrophages such as the Kupffer cells in the liver. However the central nervous system (CNS) contains several other populations of immune cells, including B-, T- and NK-cells, dendritic cells, as well as at least three separate groups of resident macrophages, namely, meningeal, perivascular and choroid plexus macrophages, which are strategically located at the interface between the parenchyma and the circulation (1–3). These other CNS macrophages were once virtually ignored, however recent evidence (4) has shed light onto their specific functions in the brain. It is virtually impossible to distinguish microglia from other brain macrophages and monocytes, entering from the blood based on morphological criteria alone (5–7). In addition, many of the markers that these cells express are overlapping (3). This challenge was recently addressed in comparative transcriptomic studies, aimed at identifying specific molecular signatures of the diverse populations of macrophages (8–13). Currently, microglial cells can be precisely distinguished from other
brain macrophages via specific expression of transmembrane protein 119 (TMEM119), P2Y purinoceptor 12 (P2RY12) and Sal-like protein 1 (SALL1) (9, 12, 14).

INSIGHTS FROM ONTOGENY

Originally it was thought that microglia arise from the neuroectoderm, a view which later changed in favor of a blood monocytic origin and dominated for decades (15). However, this was recently challenged by convincing evidence, demonstrating that microglia derive from the embryonic yolk sac (YS) (16–18). Yolk sac erythromyeloid precursors generate macrophages which migrate and colonize the embryonic brain (19, 20). It is also the site of origin of perivascular and meningeal macrophages. Interestingly, choroid plexus macrophages were shown to have dual embryonic and adult hematopoietic origins (3, 21). They are the only macrophage population in the brain that does not maintain its numbers in adulthood by self-renewal (21–24).

Despite the strong evidence for the YS origin of microglial progenitors, there was a long ongoing debate whether peripheral cells from the blood can enter the brain parenchyma and contribute to the microglial population. Originally, it was thought that, the CNS is an immune privileged site, protected by the blood-brain barrier (BBB) from cell entry from the circulation (25, 26). Indeed, experiments using parabiotic chimeric mice with shared circulation show that, under physiological conditions, there is a constant entry of monocytes to peripheral organs such as liver and spleen, but not into the brain (27). In addition, adult microglia can recover their numbers following genetic or chemical depletion (22, 28) and can maintain their population with little contribution from blood cells (16, 27, 29, 30).

It is considered that recruitment of circulating monocytes occurs only when the BBB is open, for example after irradiation or bone marrow transplantation (3, 15). Under such pathological conditions, bone marrow derived precursors can generate microglia-like cells (31–33) and, due to perceived functional similarity, were referred to as “blood-derived microglia”, which has contributed to an ongoing confusion (5, 34–36). Recent evidence demonstrated that these infiltrating cells have unique functions which cannot be provided by resident microglial cells (37–39).

Monocyte-macrophage system, microglia and pericytes

A very important alternative hypothesis concerning the origin of the monocyte-macrophage system (MMS) is the presumption that all members of this system originate from a common embryonal pluripotent ancestor (3, 15, 30, 40–42). Sheng et al (30) presumed that all adult macrophages, resident or infiltrating, are derived from the fetal hematopoietic stem cells with the exception of microglia and partially epidermal Langerhans cells, which are yolk sac-derived. However, the hematopoietic stem cells are also epiblast derivatives, which have been migrated to the yolk sac and from there to the aortagonad-mesonephros region, the liver (Kupfer cells), the spleen, and the bone marrow (42, 43). Thus, the numerous variants of the microglia-macrophage system are the result of the different phases and places of development and differentiation of the cells with common embryonal origin.

In this respect, one may hypothesize that as common precursors of the MMS come very probably the embryonic pericyte progenitors and the pluripotent pericytes in adult vertebrates. There is strong evidence that pluripotent pericyte progenitor cells arise in the epiblast of the embryonal blastocyst (21, 30, 44–46).

In the microvasculature the pericytes lie in periendothelial position within true microvascular niches as resting, reserve adult stem cells for tissue generation, maintenance, repair and regeneration (46). In fact, the pericytes can be considered as representants, respectively as the adult stem cells, of the embryonic epiblast in the adult, mature organism. Thus, it is noteworthy that the pericytes represent a highly immature form of pluripotent stem cells that maintain their phenotype throughout the whole life within the true microvascular niches.

Findings that pericytes possess macrophage properties (47–49) and are capable to build macrophages and microglia in the CNS (50–52) provide evidence that pericytes are able to transform themselves into microglial cells by virtue of an activation process in which the astrocytic neuroglia appears to play a decisive role.

The presumption that microglia may originate as progeny of activated pericytes is supported by newer studies demonstrating that microglial repopulation after experimental inhibitor cessation occurs by proliferation and differentiation of cells expressing nestin, which, interestingly, is also expressed by pericytes as well as their progeny (53, 54). The same process was observed in an experiment with regenerating testicular Leydig cells which originate from nestin-expressing pericytes (55).

In this respect, very informative are the electron microscopic results illustrating that some microglia cells lie within the expansions of basal lamina of capillaries (pericytal microglia) (56). There is evidence that these cells can break out of
Microglia are not brain macrophages?

their basal lamina enclosure and enter the brain neuropil and were thus termed interstitial microglia. It seems likely that these authors were unable to observe the transdifferentiation (a kind of metaplasia) of the pericytic transit amplifying cells in microglia. These results provide additional evidence that the activated pericytes, situated within the true microvascular niches, may be the ancestors of the microglia.

There is also evidence for a close resemblance between the pericytes and the microglia concerning not only their location, but also marker substances, resting and activation conditions, plasticity and origin (52). As well as their close interrelationship with the developing and differentiated vasculature reinforces the presumption that both cell types may have similar origin.

Taken together, there is a real possibility that all members of MMS, including pericytes, originate from the same ancestor, namely the embryonal epiblast. The epiblast stem cells migrate via the mesoderm toward different regions which are able to undergo embryonal vasculogenesis and to generate primitive vascular plexuses (e.g. yolk sac and dorsal aorta) (57, 58). These stem cells (are also pericyte progenitors) become distributed throughout the whole organism, where remain enclosed in the microvascular niches as resting adult stem cells. In the brain, via the process of transdifferentiation and maturation, variable forms of microglia and other cell phenotypes may arise.

The described differences in ontogeny can provide further insights for the functional differentiation of CNS myeloid cells. Importantly, in the mouse, immature microglia colonizes the embryonic brain at approximately day 9.5, which coincides with neurogenesis, before astrocytes and oligodendrocytes are generated (59). This allows microglia to participate in a number of key developmental events in the CNS, as discussed below.

MICROGLIAL ROLES DURING DEVELOPMENT AND DISEASE

Microglia constitute around 10% of all cells in the brain (60). They exhibit a number of morphological states, associated with changes in function and gene expression. During development these cells adopt an “amoeboid” morphology with large, round body and short, thick branches, showing higher levels of phagocytic activity. In contrast, adult microglia have a small body with numerous, fine, highly branched processes (61).

Under pathological conditions, secretory changes in microglia are accompanied with morphological changes similar to those during development (Fig. 1). These activated cells were traditionally classified as either M1 (“toxic”) or M2 (“protective”) type. Newer evidence has challenged this view, demonstrating a continuum of microglial forms with overlapping gene expression (62).

Once microglial cells were thought to remain quiescent under physiological conditions, maintaining a “resting” state and only “activate” in pathological processes. Thus, microglia

![Diagram](image)

Figure 1. Functions of microglia at different stages of activation. Ramified microglia is primarily involved in immune surveillance, as well as synaptic pruning and plasticity. Under pathological conditions it transforms to an amoeboid form with a pro-inflammatory profile, including secretion of growth factors and clearance of debris.

Biomed Rev 29, 2018
were thought to play a primarily passive role in brain homeostasis and were long ignored. However, a number of recent studies showed substantial microglial involvement in a large number of key events during both normal development and disease, which has led to a paradigm shift, placing microglia as “central players” in brain disease (63).

Immune surveillance
Time-lapse recordings demonstrated that microglia are highly dynamic cells, which actively survey their cell-specific territory and can scan the entire brain parenchyma in just a few hours (64). Their fine processes continuously contact neural elements, including axons and dendritic spines, being able to significantly change their motility, following extracellular stimuli such as neuronal activity (65, 66) and the release of neurotransmitters (65, 67). Indeed, it has been shown that microglia preferentially contact and neurons with higher levels of activity, thus attenuating their action (65).

Synaptic pruning during development
During CNS development microglia contribute to the process of synaptic pruning by engulfing synapses, thus shaping neuronal circuits (68–70). Evidence from the mouse visual system has demonstrated neuronal activity and sensory experience as important factors for this process (68, 70). Molecules of the classical-complement cascade have been recognized as key players in microglial synaptic modification (70–73). Microglial cells express a C3 receptor and are able to phagocytose immature C3-expressing synapses (71, 73). Importantly, disruption of microglial synaptic pruning during development results in defects in neuronal wiring (70).

Programmed neuronal death during development
The excess neurons produced by neurogenesis during development and in the adult die via programmed cell death, consequently being phagocytosed by microglial cells (74, 75). Interestingly, microglia do not simply take a passive scavenging role but can induce neuronal apoptosis themselves via the release of a variety of neurotoxic factors (76–79).

Learning and memory
Microglial involvement in neurogenesis and synaptic modification suggests important roles of these cells in two key processes associated with learning and memory, namely adult neurogenesis (80, 81) and activity-dependent, long-term synaptic plasticity (82) which has been supported by a growing number of studies (83–92).

Role in disease
It is now considered that microglia contribute to both neurodevelopmental and neurodegenerative disease. Experimental deletion of microglia-specific receptors in rodents leads to defects of the laminar positioning of neocortical interneurons, as well as the outgrowth of forebrain dopaminergic axons (93). Perturbed synaptic pruning and modification by microglia during development may disrupt connectivity in ways, associated with diseases such as autism and schizophrenia (94). This is supported by postmortem studies, demonstrating several microglial alterations in brains from individuals with autism, especially in regions, involved in executive function control, such as the dorsolateral prefrontal cortex (95–97).

Microglia are key players in neuroinflammation, which is associated with virtually all neurodegenerative diseases (98). A staggering amount of evidence has elucidated multiple mechanisms of microglial involvement in conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis, multiple sclerosis, glaucoma, and neuropathic pain (59, 63).

FUNCTIONS OF RESIDENT MACROPHAGES IN THE CNS
The resident CNS macrophages, namely, perivascular, meningeal and choroid plexus macrophages are poorly understood. Perivascular macrophages share similarities with microglia, in terms of their transcriptional profile and marker expression, including Iba1, CD11b, CX3CR1 and others (21, 99). However, their transcriptional profile differentiates them from monocytes in blood (21).

Under normal conditions they continuously extend and retract numerous processes along blood vessels, suggesting a role in immune surveillance (2, 21, 100), whereas under inflammatory conditions they may regulate recruitment of leukocytes from the periphery (101). In addition, they may play a role in BBB establishment (102).

Yolk sac-derived resident macrophages have been described in both mouse and human meninges (21). Little is known for their physiologic functions. Peripheral macrophages play a role in regulating the proliferation of lymphatic endothelial cells and it is thought that meningeal macrophages have similar functions, although it is now known whether they are part of the newly discovered brain glymphatic system (2, 103). There is evidence that, under experimental conditions, meningeal macrophages, together with dendritic cells, are involved in antigen presentation to T cells during autoimmune diseases (2, 104).

Although choroid plexus macrophages are poorly under-
stood, their specific location close to the ependymal cells’ microvilli (21) suggests involvement in cerebrospinal fluid release. Interestingly, they are present in circumventricular organs (CVOs) as well (105). These latter organs are highly vascularized special structures, located close to the brain ventricles. They contain fenestrated capillaries and lack a blood-brain barrier, thus performing both sensory and secretory roles by sampling the blood and releasing substances into the cerebrospinal fluid (105, 106).

Table 1 provides examples of microglial and brain macrophage functions.

CONCLUSION

In light of microglia’s recently discovered crucial roles during development and brain disease, there is a need to elucidate the key structural and functional differences between these heterogenous populations of cells. This brings the promise of precise targeted pharmacological interventions in the future to modulate CNS function and pathology.

ACKNOWLEDGEMENTS

The authors’ sincere thanks are for Professor Michail S. Davidoff (Institute of Anatomy, University Medical Center Hamburg – Eppendorf, Hamburg, Germany) for his creative reading of the manuscript of the present Dance round.

CONFLICT OF INTERESTS

There are no conflicts of interests to disclose.

Table 1. A summary of microglial and brain macrophage functions

Microglia	Perivascular macrophages	Meningeal macrophages	Choroid plexus macrophages
Development:	• Immune surveillance	• Immune surveillance	• cerebrospinal fluid release
• Synaptic pruning	• Regulate recruitment of leucocytes	• Regulate proliferation of lymphatic endothelial cells	role in circumventricular organs
• Regulate laminar positioning of neurons	• BBB establishment	• Antigen presentation	
• Promote cell death			
Adult:	• Immune surveillance		
• Synaptic plasticity			
• Monitor neuronal activity			
• Participate in neuroinflammation			
• Clearance of debris			
8. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. *Nat Immunol* 2012;13(11):1118–1128. DOI: 10.1038/ni.2419
9. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabrieley G, et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. *Nat Neurosci* 2014;17(1):131–43. DOI: 10.1038/nn.3599
10. Gosselin D, Link VM, Romanski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. *Cell* 2014;159(6):1327–40. DOI: 10.1016/j.cell.2014.11.023
11. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. *Cell* 2014;159(6):1312–1326. DOI: 10.1016/j.cell.2014.11.018
12. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, et al. New tools for studying microglia in the mouse and human CNS. *Proc Natl Acad Sci USA* 2016;113(12):E1738–1746. DOI: 10.1073/pnas.1525528113
13. Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: Insights from genome-wide transcriptional profiling. *Immunity* 2016;44(3):505–515. DOI: 10.1016/j.immuni.2016.02.013
14. Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakowski NR, Gautier EL, et al. Sall1 is a transcriptional regulator defining microglia identity and function. *Nat Immunol* 2016;17(12):1397–1406. DOI: 10.1038/ni.3585
15. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. *Front Cell Neurosci* 2013;7:45. DOI: 10.3389/fncel.2013.00045
16. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. *Science* 2010;330(6005):841–845. DOI: 10.1126/science.1194637
17. Hoeffel G, Ginhoux F. Ontogeny of tissue-resident macrophages. *Front Immunol* 2015; 6:486. DOI: 10.3389/fimmu.2015.00486
18. Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. *Immunity* 2016;44(3):439-449. DOI: 10.1016/j.immuni.2016.02.024
19. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguermo EG, et al. Microglia emerge from erythro-myeloid precursors via Pu. 1-and Irf8-dependent pathways. *Nat Neurosci* 2013;16(3):273–80. DOI: 10.1038/nn.3318
20. Gomez E, Klaproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. *Nature* 2015;518(7540):547–551. DOI: 10.1038/nature13989
21. Goldmann T, Wieghofer P, Jordao MJC, Prutek F, Hagemeyer N, Frenzel K, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. *Nat Immunol* 2016;17(7):797–805. DOI: 10.1038/ni.3423
22. Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P, et al. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain. *Cell Rep* 2017;18(2):391–405. DOI: 10.1016/j.celrep.2016.12.041
23. Réu P, Khosravi A, Bernard S, Mold JE, Salehpour M, Alkass K, et al. The Lifespan and Turnover of Microglia in the Human Brain. *Cell Rep* 2017;20(4):779–784. DOI: 10.1016/j.celrep.2017.07.004
24. Tay TL, Mai D, Dautzenberg J, Fernandez-Klett F, Lin G, Sagar, et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. *Nat Neurosci*. 2017;20(6):793–803. DOI: 10.1038/nn.4547
25. Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. *J Clin Invest* 2010;120(5):1368–1379. DOI: 10.1172/JCI141911
26. Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. *Nat Rev Immunol* 2012;12(9):623–35. DOI: 10.1038/ nri3265
27. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. *Nat Neurosci* 2007;10(12):1538–43. DOI: 10.1038/nn2014
28. Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, et al. Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. *Immunity* 2015;43(1):92–106. DOI: 10.1016/j.immuni.2015.06.012
29. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes. *Immunity* 2013;38(4):792–804. DOI: 10.1016/j.immuni.2013.04.004
Microglia are not brain macrophages?

30. Sheng J, Ruedl C, Karjalainen K. Most Tissue-Resident Macrophages Except Microglia Are Derived from Fetal Hematopoietic Stem Cells. *Immunity* 2015;43(2):382–393. DOI: 10.1016/j.immuni.2015.07.016

31. Flügel A, Bradl M, Kreutzberg GW, Graeber MB. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. *J Neurosci Res* 2001;66(1):74–82. DOI: 10.1002/jnr.1198

32. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch U-K, Mack M, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. *Nat Neurosci* 2007;10(12):1544–53. DOI: 10.1038/nn2015

33. Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, et al. Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. *Proc Natl Acad Sci USA* 2012;109(44):18150–18155. DOI: 10.1073/pnas.1210150109

34. Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, et al. Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. *Proc Natl Acad Sci USA* 2012;109(44):18150–18155. DOI: 10.1073/pnas.1210150109

35. Eglitis MA, Mezey É. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. *Proc Natl Acad Sci USA* 1997;94(8):4080–4085. DOI: 10.1073/pnas.94.8.4080

36. Bechmann I, Goldmann J, Kvac AD, Kwidzinski E, Simbürger E, Naftolin F, et al. Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. *FASEB J* 2005;19(6):647–649. DOI: 10.1096/fj.04-2599fje

37. Simard AR, Soulet D, Gowin G, Julien J-P, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. *Neuron* 2006;49(4):489–502. DOI: 10.1016/j.neuron.2006.01.022

38. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, et al. Infiltrating Blood-Derived Macrophages Are Vital Cells Playing an Anti-inflammatory Role in Recovery from Spinal Cord Injury in Mice. *PLoS Med.* 2009;6(7):e1000113. DOI: 10.1371/journal.pmed.1000113

39. Shechter R, Raposo C, London A, Sagi I, Schwartz M. The Glial Scar-Monocyte Interplay: A Pivotal Resolution Phase in Spinal Cord Repair. *PLoS ONE.* 2011;6(12):e27969. DOI: 10.1371/journal.pone.0027969

40. Gardner RL, Rossant J. Investigation of the fate of 4.5 day post-coitum mouse inner cell mass cells by blastocyst injection. *J Embryol Exp Morphol* 1979; 52: 141–152

41. Fogg M, Sibon C, Miled C, Jung S, Aucoin M, Itskovich E, Benhar I, Kalchenko V, Mack M, Yovel G, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. *Nature* 2015; 518(7540): 547-551. DOI: 10.1038/nature13989

42. Davidoff MS. The Leydig cells of the testis originate from the microvascular pericytes. *Biomed Rev* 2017; 28: 5-25. DOI: http://dx.doi.org/10.14748/bmr.v28.4448

43. Virgintino D, Girolamo F, Errede M, Capobianco C, Robertson D, Stallcup WB, et al. (2007) An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. *Angiogenesis* 10(1): 35-45. DOI: 10.1007/s10456-006-9061-x

44. Balabanov R, Washington R, Wagnerova J, Dore-Duffy P. CNS microvascular pericytes express macrophage-like function, cell surface integrin aM, and macrophage marker ED-2. *Microvasc Res* 1996; 52(2): 127-142. DOI: 10.1006/mvre.1996.0049

45. Thomas WE. Brain macrophages: on the role of pericytes and perivascular cells. *Brain Res Brav Rev* 1999; 31(1): 42-57. DOI: 10.1016/S0165-0173(99)00024-7

46. Guillemot GF, Brew BJ. Microglia, macrophages perivascular macrophages, and pericytes: a review of function and identification. *J Leukoc Biol* 2004; 75(3): 388-3297. DOI: 10.1189/jlb.0303114

47. Andreien WL. The neuroglia elements in the human brain. *Br Med J* 1893; 2:227–230

48. Rezaie P, Hanisch U-K. Historical Content, Chapter 2. In: M.-E. Tremblay, A. Sierra, editors *Microglia in Health and Disease*. Springer Science+Business Media New York 2014; pp 7-46. DOI 10.1007/978-1-4939-1429-6_2
52. Barón M, Gallego A. The relation of the microglia with the pericytes in the cat cerebral cortex. Z. Zellforsch 1972;128(1): 42-57. DOI:10.1007/BF00306887
53. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 2014; 82(2):380–397. DOI: 10.1016/j.neuron.2014.02.040
54. Pacini S, Petrini I. Are MSCs angiogenic cells? New insights on human nestin-positive bone-marrow-derived multipotent cells. Front Cell Dev Biol 2014;2, Article 20. DOI: 10.3389/fcell.2014.00020
55. Davidoff MS, Mindendorff R, Enikolopov G, Rietmacher D, Holstein AF, Müller D. Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 2004;167: 935-944. DOI: 10.1083/jcb.200409107
56. Mori S, Leblond CP. Identification of microglia in light and electron microscopy. J Comp Neurol 1969;135(1): 57-79
57. Eichmann A, Bouvrée K, Pardanaud L. Vasculogenesis and angiogenesis in development. In: D Marmé, N Fusenig, editors. Tumor Angiogenesis. Basic Mechanisms and Cancer Therapy. Springer, 2008, pp. 31-45
58. Arora R, Papaioannou VE. The murine allantois: a model system for the study of blood vessel formation. Blood 2012; 120(13): 2562-2572. DOI:10.1182/blood-2012-03-390070
59. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 2018;18(4):225-242. DOI: 10.1038/nri.2017.125
60. Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something else? Science 2013;339(6116):156–161.
61. Zusso M, Methot L, Lo R, Greenhalgh AD, David S, Stifani S. Regulation of Postnatal Forebrain Amoeboid Microglial Cell Proliferation and Development by the Transcription Factor Runx1. J Neurosci. 2012;32(33):11285–98. DOI: 10.1523/JNEUROSCI.6182-11.2012
62. Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–91. DOI: 10.1038/nn.4338
63. Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23(9):1018–27. DOI: 10.1038/nm.4397
64. Nimmerjahn A. Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo. Science 2005;308(5726):1314–1318. DOI: 10.1126/science.1110647
65. Li Y, Du X, Liu C, Wen Z, Du J. Reciprocal Regulation between Resting Microglial Dynamics and Neuronal Activity In Vivo. Dev Cell 2012;23(6):1189–202. DOI: 10.1016/j.devcel.2012.10.027
66. Abiaga O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, et al. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling. PLOS Biol 2016;14(5):e1002466. DOI: 10.1371/journal.pbio.1002466
67. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–758. DOI: 10.1038/nn1472
68. Tremblay M-É, Lowery RL, Majewski AK. Microglial Interactions with Synapses Are Modulated by Visual Experience. PLoS Biol. 2010;8(11):e1000527. DOI: 10.1371/journal.pbio.1000527
69. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science. 2011;333(6048):1456–1458. DOI: 10.1126/science.1202529
70. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner. Neuron 2012;74(4):691–705. DOI: 10.1016/j.neuron.2012.03.026
71. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The Classical Complement Cascade Mediates CNS Synapse Elimination. Cell 2007;131(6):1164–1178. DOI: 10.1016/j.cell.2007.10.036
72. Hong S, Dissing-Olesen L, Stevens B. New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol 2016;36:128–134. DOI: 10.1016/j.conb.2015.12.004
73. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang H-Y, et al. Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. Cell 2016;165(4):921–935. DOI: 10.1016/j.cell.2016.04.001
Microglia are not brain macrophages?

74. Marín-Teva JL, Cuadros MA, Martín-Oliva D, Navascués J. Microglia and neuronal cell death. *Neuron Glia Biol* 2011;7(01):25–40. DOI: 10.1017/S1740925X12000014

75. Brown GC, Neher JJ. Microglial phagocytosis of live neurons. *Nat Rev Neurosci.* 2014;15(4):209. DOI: 10.1038/nrn3710

76. Frade JM, Barde Y-A. Microglia-derived nerve growth factor causes cell death in the developing retina. *Neuron* 1998;20(1):35–41. DOI: 10.1016/S0896-6273(00)80432-8

77. Marn-Teva JL, Dusart I, Colin C, Gervais A, Van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. *Neuron* 2004;41(4):535–547. DOI: 10.1016/S0896-6273(04)00069-8

78. Sedel F. Macrophage-Derived Tumor Necrosis Factor , an Early Developmental Signal for Motoneuron Death. *J Neurosci.* 2004;24(9):2236–2246. DOI: 10.1523/JNEUROSCI.4464-03.2004

79. Zhao C, Deng W, Gage FH. Mechanisms and Functional Implications of Adult Neurogenesis. *Cell* 2008;132(4):645–660. DOI: 10.1016/j.cell.2008.01.033

80. Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang H-L, et al. Hippocampal Neurogenesis Regulates Forgetting During Adulthood and Infancy. *Science.* 2014;344(6184):598–602. DOI: 10.1126/science.1248903

81. Bliss TVP, Collingridge GL, Morris RGM. Synaptic plasticity in health and disease: introduction and overview. *Philos Trans R Soc B Biol Sci* 2013;369(1633):20130129–20130129. DOI: 10.1098/rstb.2013.0129

82. Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia Shape Adult Hippocampal Neurogenesis through Apoptosis-Coupled Phagocytosis. *Cell Stem Cell* 2010;7(4):483–495. DOI: 10.1016/j.stem.2010.08.014

83. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, et al. CX3CR1 Deficiency Leads to Impairment of Hippocampal Cognitive Function and Synaptic Plasticity. *J Neurosci* 2011;31(45):16241–16250. DOI: 10.1523/JNEUROSCI.3667-11.2011

84. Tremblay M-E, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. The Role of Microglia in the Healthy Brain. *J Neurosci* 2011;31(45):16064–16069. DOI: 10.1523/JNEUROSCI.4158-11.2011

85. Gemma C, Bachstetter AD. The role of microglia in adult hippocampal neurogenesis. *Front Cell Neurosci* 2013;7:229. DOI: 10.3389/fncel.2013.00229

86. Koeglsperger T, Li S, Brenneis C, Saulnier JL, Mayo L, Carrier Y, et al. Impaired glutamate recycling and GluN2B-mediated neuronal calcium overload in mice lacking TGF-β1 in the CNS: Tgf-β1 and hippocampal glutamate homeostasis. *Glia* 2013;61(6):985–1002. DOI: 10.1002/glia.22490

87. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, et al. Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. *Cell.* 2013;155(7):1596–609. DOI: 10.1016/j.cell.2013.11.030

88. Sipe GO, Lowery, RL, Tremblay M-è, Kelly EA, Lamantia CE, Majewska AK. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. *Nat Commun* 2016;7:10905. DOI: 10.1038/ncomms10905

89. George J, Cunha RA, Mulle C, Amédée T. Microglia-derived purines modulate mossy fibre synaptic transmission and plasticity through P2X 4 and A 1 receptors. Maccaferri G, editor. *Eur J Neurosci* 2016;43(10):1366–1378. DOI: 10.1111/ejn.13191

90. Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, et al. Microglia Modulate Wiring of the Embryonic Forebrain. *Cell Rep* 2014;8(5):1271–1279. DOI: 10.1016/j.celrep.2014.07.042

91. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. *Ann Neurol* 2005;57(1):67–81. DOI: 10.1002/ana.20315
96. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, et al. Microglial Activation and Increased Microglial Density Observed in the Dorsolateral Prefrontal Cortex in Autism. *Biol Psychiatry* 2010;68(4):368–376. DOI: 10.1016/j.biopsych.2010.05.024
97. Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, et al. Microglia in the Cerebral Cortex in Autism. *J Autism Dev Disord* 2012;42(12):2569–2584. DOI: 10.1007/s10803-012-1513-0
98. Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. *Annu Rev Immunol* 2017;35(1):441–468. DOI: 10.1146/annurev-immunol-051116-052358
99. Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K. Microglia derived from aging mice exhibit an altered inflammatory profile. *Glia* 2007;55(4):412–424. DOI: 10.1002/glia.20468
100. Daneman R. The blood-brain barrier in health and disease. *Ann Neurol* 2012;72(5):648–672. DOI: 10.1002/ana.23648
101. Pollfiet MMJ, Zwijnenburg PJG, van Furth AM, van der Poll T, Dopp EA, Renardel de Lavalette C, et al. Meningeal and Perivascular Macrophages of the Central Nervous System Play a Protective Role During Bacterial Meningitis. *J Immunol* 2001;167(8):4644–4650. DOI: 10.1128/CMR.17.4.942-964.2004
102. Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H, et al. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. *Sci Rep* 2017;7(1):3855. DOI: 10.1038/s41598-017-03994-1
103. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. *Nature* 2015;523(7560):337–341. DOI: 10.1038/nature14432
104. Kivisäkk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM, et al. Localizing central nervous system immune surveillance: Meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. *Ann Neurol* 2009;65(4):457–469. DOI: 10.1002/ana.21379
105. Kaur C, Ling E-A. The circumventricular organs. *Histol Histopathol* 2017;32(9):879–892. DOI: 10.14670/HH-11-881
106. Bill BR, Kozh V. Choroid plexus in developmental and evolutionary perspective. *Front Neurosci* 2014;8. DOI: 10.3389/fnins.2014.00363