Triphos derivatives and diphosphines as ligands in the ruthenium-catalysed alcohol amination with NH$_3$†

N. Nakagawa, E. J. Derrah, M. Schelwies, F. Rominger, O. Trapp and T. Schaub*

The ruthenium-triphos and diphosphine-catalysed amination of alcohols with ammonia is reported. Various types of triphos derivatives with electron-donating functional group were synthesized and used as ligands in the Ru-catalysed alcohol amination with NH$_3$. The triphos derivatives are effective for the formation of primary amines. On the other hand, if hemilabile diphosphines as tridentate ligands are used, mixtures of secondary-along with primary amines are obtained. It was found that even simple diphosphines can be used as ligands for the selective formation of the secondary amines. The diphosphine system allows a new entry to the Ru-catalysed formation of secondary amines.

Introduction

Amines are important building blocks in the manufacture of pharmaceuticals and agrochemicals. Intensive research has focused on the selective formation of primary, secondary and tertiary amines. One of the most straightforward and environmentally-friendly methods is the amination of alcohols using cheap and abundant ammonia (NH$_3$), which represents an atom efficient route towards this valuable class of organic compounds, along with water as the sole by-product. The amination of alcohols with ammonia is performed with heterogeneous catalysts on industrial scale. Using heterogeneous catalysts, it is in many cases difficult to control the selectivity as harsh reaction conditions are required. During the last decade, the amination of alcohols has been further developed with a series of homogeneous catalysts. In particular, ruthenium catalysts were identified to exhibit a high performance for the selective formation of primary amines and secondary amines. The combination of a ruthenium pre-catalyst and the tridentate phosphate ligand 1,1,1-tris(diphenylphosphinomethyl)ethane 1 (= triphos) was first published as one of the candidates in the alcohol amination by Beller and co-workers and investigated in detail by our laboratory (Scheme 1). We disclosed that the catalytic active species is a cationic ruthenium-triphos complex through experimental and computational investigations. Our previous report on this ruthenium catalysis described only the use of the commercial available triphos 1 and effects of other phosphine derivatives have still remained undisclosed and undeveloped. We herein report the synthesis and evaluation of triphos derivatives and the corresponding ruthenium complexes in order to gain an insight how variations of the triphos scaffold influence the ruthenium-catalysed amination of alcohols with NH$_3$. Our approach was to alter the coordination sphere of triphos-type Ru-complexes in order to change the selectivities in the corresponding amination reactions.

Results and discussion

Ligands

To evaluate the ligand influence on the catalytic performance of the ruthenium-catalysed amination of 1-octanol with NH$_3$,
the following triphos derivatives were used: triphos 1, the newly synthesised phenyl-p-tolyl-mixed triphos derivative 2, and the all-p-tolyl triphos derivative 3 (obtained via a modified procedure). We also examined diphosphines with an electron-donating functional group such as a pyridyl substituted derivative 4, which is potentially hemilabile ligand, as well as oxygen-substituted ones 5 and 6 (Fig. 1).

Synthesis of triphos derivatives via modified protocol

C_{3V} symmetrical triphos-type ligands such as 3 can be obtained using 1,1,1-tris(chloromethyl)ethane as a starting material. A route to C_{1} symmetric variants of the ligand with three different phosphine donors was reported by Huttner and Helmchen. However, since we were only interested altering one of the three donor groups of triphos, we chose 7 as key intermediate in our synthesis (Scheme 2). The substitution reaction of CH$_2$C(CH$_2$OMs)$_2$(CH$_2$Br) with an excess amount of lithium diphenylphosphide, followed by borane protection afforded a monomesyl diphosphine–borane compound 6-PG in 64% yield (Scheme 2a). After deprotection with DABCO, the intermediate 6 was obtained in 66% yield. We repeated this sequence using lithium di(p-tolyl)phosphide with monomesylate 6 and obtained the unsymmetrical triphos–borane 2-PG. The structure of 2-PG was confirmed by X-ray analysis (Fig. 2). Deprotection of 2-PG afforded the unsymmetrical triphos 2 in 27% overall yield. The same protocol was applied to the synthesis of all-p-tolyl triphos 3 (51% overall yield, Scheme 2b).

Synthesis of ruthenium complexes

Ruthenium complexes of the triphos derivatives 1–3 were prepared according to the reported protocol for Ru-triphos complex A (Scheme 3). When using 2 as a ligand, a mixture of three isomers is formed. 31P-NMR indicates that the three isomers differ in the position of the tolyl moiety. Elemental ana-
lysis confirms the composition of the mixture of B-1, B-2, and B-3. In case of the all-tolyl substituted ligand 3, only one complex (C) is formed like in the synthesis of A. The structure of C was determined by X-ray analysis (Fig. 3). The distance of Ru–P bonds in C is in the range of 2.27–2.38 Å which is similar like in the reported structure for RuHCl(CO)(triphos) A.13

We also conducted the preparation of the corresponding ruthenium complexes with pyridyl substituted diphosphine 4.9 Using this ligand, a mixture of three complexes was obtained:

the two isomers D-1 and D-2 as well as the dichloro ruthenium species D-3 (Scheme 4). The structure of D-3 was confirmed by X-ray analysis (Fig. 4). Regarding the structure of D-3, the carbonyl ligand is located trans to the pyridyl moiety. Although the reaction pathway towards D-3 is not confirmed, we propose that the chlorine atom on D-3 was derived from the CH₂Cl₂ solvent through the chlorine abstraction by ruthenium hydride species. Under these conditions, selective formation and complete separation of the three isomers turned out to be difficult. In addition, we failed to obtain the ruthenium–pyridyl diphosphine complex selectively in toluene as solvent. Therefore, we used the pyridyl diphosphine 4 directly in combination with [Ru(PPh₃)₃(CO)HCl] in the amination reaction to generate the desired complexes in situ (vide infra).

We were also successful to synthesise a novel hydroxyl-containing ruthenium complex E from 5 (Scheme 5). The structure of E was confirmed by X-ray analysis (Fig. 5). One PPh₃ ligand from the precursor remains on ruthenium which is con-
null
PPh₃ can play an important role (Scheme 6b). Although the mechanism of dialkylation is still unclear, it is possible to consider that dissociation of PPh₃ and chloride can provide more vacant sites on the ruthenium than in the triphos systems. The transient ketone or imine can coordinate at the vacant site and incorporate in the further alkylation. When octylamine as a starting material is used instead of 1-octanol, the formation of dioctylamine was only observed in small amounts (eqn (1)). Therefore, it is conceivable that the ruthenium–diphosphine complex possesses a poor ability on dehydrogenation of the primary amine. Presumably, in situ generated ketone or imine (from the starting alcohol) are the reactants for the dilakylation.

Table 1

Entry	Ru-phosphine catalyst	GC area ratio (%)	Selectivity of mono : di (%)	
1	A	96	1	97 : 3
2ᵇ	RuHCl(CO)(PPh₃)₃ + 1	93 <1 2	95 : 5	
3	RuHCl(CO)(PPh₃)₃	<1 <1 1	99	
4	B	90 <1 1	92 : 8	
5	C	86 11 3	88 : 12	
6	RuHCl(CO)(PPh₃)₃ + 4	14 66 3	17	
7	E	10 47 2	41	
8	F	6 51 2	38	
9	RuHCl(CO)(PPh₃)₃ + 6	10 88 4	10 : 90	
10	RuHCl(CO)(PPh₃)₃ + dppdpᶜ	11 86 2	11 : 89	
11	RuHCl(CO)(PPh₃)₃ + dpppᶜ	35 63 <1 1	36 : 64	
12ᶜ	RuHCl(CO)(PPh₃)₃ + dpppᶜ	<1 95 4 1	<1 : >99	
13ᶜ,ᵉ	RuHCl(CO)(PPh₃)₃ + dpppᶜ	5 87 6 2	8 : 92	

| | | | 5 | [5]ᶠ | [88]⁷ | [5]ᶠ | [2]ᶠ |

ᵃ 1-Octanol (3.0 g, 23.6 mmol) and 17 mL of toluene was used.ᵇ 0.22 mol% of ligand was used.ᶜ dppdp = 1,3-bis(diphenylphosphine)-2,2-dimethylpropane.ᵈ dppp = 1,3-bis(diphenylphosphino)propane.ᵉ 6 mL of toluene was used as a solvent.ᶠ p(NH₃) = 4 bar (~52 mmol). The calibrated GC yields against hexadecane as an internal standard.

Conclusions

A series of ruthenium-complexes bearing triphos derivatives and diphosphines with the electron-donating functional group were prepared and examined for the amination of primary alcohols with NH₃. Deviating the P-substituents on the triphos scaffold slightly affects the ratio of mono- and dialkylation, but these triphos derivatives are basically effective for the formation of the primary amines. The reaction mechanism of mono-alkylation can involve the formation of the cationic ruthenium complex based on our previous investigations. On the other hand, the use of hemilabile diphosphines leads to a mixture of the primary and secondary amines. It seems to be clearer after these results, that the origin of high selectivities towards the primary amines is related to the very stable ligand spheres of Ru/triphos and the Milstein type Ru/pincer.
The selective formation of the secondary amine was finally realized by using simple dppp as the ligand. The reaction mechanism of the ruthenium–diphosphine system can be influenced by dissociation of attaching PPh3 which is different to the triphos-based systems. So far, the preparation of secondary amines from alcohols with NH3 using homogeneous catalysts has been achieved by Milstein and co-worker with Ru catalyst, or by Fujita, Yamaguchi, and co-workers as well as in previous work from our laboratory using Ir catalysts. Compared with these studies, our current diphosphine system offers a simple protocol for the preparation of diamines with commercially available catalysts.

Experimental

General considerations

All reactions were carried out under a positive pressure of argon in an MBraun glovebox or using standard Schlenk line techniques. All nondeuterated solvents were dried using an MBraun SPS-800 solvent purification system and degassed prior to use. 3-Methyl-3-oxetanemethanol (a precursor of 7), and 1-octanol were purchased from Aldrich and distilled prior to use. Di-p-toly1 and di-phenylphosphines were purchased from ABCR, RuHCl(CO)(PPh3)3 was supplied by BASF and used without further purification. All other products were purchased from Aldrich and used without further purification. Liquid reagents including deuterium solvents were distilled prior to use, and all others were used without further purification. 1H, 13C{1H}, and 31P{1H} NMR spectra were recorded on a Bruker Avance 200, 400, or 600 MHz spectrometer. 1H and 13C chemical shifts are referenced to an external 85% solution of phosphoric acid. The 31C NMR data were assigned by HSQC and HMBC spectra. FAB and HR mass spectrometry was measured at the Mass Spectrometry Facility (Institute of the Organic Chemistry, University Heidelberg). Gas chromatography was performed on an Agilent 6890N modular GC base equipped with a split-mode capillary injection system and a flame ionization detector using a BGB-5 capillary column (Agilent 120-1033; 30 m × 0.32 mm × 0.25 μm; He flow 1.0 mL min⁻¹, program: initial 50 °C for 2 min, ramp 6 °C min⁻¹, 300 °C for 10 min). Starting materials and products had the following retention times: octylamine (tR = 14.54 min), 1-octanol (tR = 15.16 min), dioctylamine (tR = 31.34 min), and trioctylamine (tR = 41.71 min).

Synthesis of H3CC(CH2OMs)2(CH2Br) (7)

A 100 mL round-bottom Schlenk flask was charged with 25 mL dioxane and 3-methyl-3-oxetanemethanol (5.45 g, 53 mmol). Aqueous HBr (48%, 7.2 mL, 64 mmol) was slowly added over a 5–7 min period to give a light yellow solution that was slightly warm to the touch. The solution was refluxed for 3.5 h and the solvent was removed under vacuum (60 °C) to give H3CC(CH2OH)x(CH2Br) (9.38 g, 51 mmol, 96% yield) as an orange-brown solid. The product was used in the next step without further purification.

1H NMR (200.1 MHz, CD2Cl2, δ): 3.63 (s, 4H, CH2OH), 3.54 (s, 2H, CH2Br), 2.95 (s, 2H, OH), 0.91 (s, 3H, CH3).

A 500 mL round-bottom Schlenk flask was charged with H3CC(CH2OH)x(CH2Br) (4.08 g, 22.3 mmol), triethylamine (4.96 g, 0.49 mol) and 200 mL CH2Cl2. The colourless solution was cooled in an ice bath and neat methanesulfonyl chloride (5.36 g, 47 mmol) was added dropwise to give a colourless solution and white precipitate. The solution was stirred for 2 h
at 0 °C. The solution was concentrated to ~100 mL under vacuum and water (100 mL) was added. The organic layer was extracted and washed with another 100 mL of water, dried over MgSO₄, and the organic solvent was removed under vacuum to obtain H₃CC(CH₂OMes)₂(CH₂Br) 7 (6.14 g, 18 mmol, 81% yield) as a thick yellowish oil.

Synthesis of H₃CC(CH₂PPh₂-BH₃)₂(CH₂OMes) (6-PG)

A 500 mL round-bottom Schlenk flask was charged with HPPb₂ (7.99 g, 43 mmol) and 60 mL THF. The colourless solution was cooled in an ice bath and 2.5 M n-BuLi in hexane (19 mL, 47 mmol) was added drop wise via syringe to give a red/orange solution. The solution was stirred for 30 min before being transferred to a 100 mL addition funnel affixed to a 500 mL round-bottom Schlenk flask charged with H₃CC(H₂O-Mes)₂(CH₂Br) (7.28 g, 21 mmol) in 150 mL THF. The solution was cooled to -40 °C and the LiPb₂-solution was added slowly over a 2 h period. The temperature was maintained at -40 °C for 3 h before being slowly warmed up to room temperature and the orange mixture was stirred overnight. A solution of BH₃-SMe₂ (35 mL, 71 mmol) in THF (2.0 M) was slowly added to the white solid. The organic layer was separated and washed with 250 mL water, dried over MgSO₄ and the organic solvent was removed under vacuum. The white solid was loaded onto a silica column (10 × 4 cm) and eluted with a mixture of ether and petroleum ether. The first fraction was discarded. The second fraction was collected to give H₃CC(CH₂PPh₂-BH₃)₂(CH₂OMes) 6-PG (7.76 g, 14 mmol, 65% yield) as white powder after the solvent was removed under vacuum.

31P{¹H} NMR (810.0 MHz, CD₂Cl₂, δ): -27.2 (s); ¹H NMR (200.1 MHz, CD₂Cl₂, δ): 7.47–7.38 (m, 8 H, CH₂), 7.35–7.27 (m, 12 H, CH), 4.11 (s, 2H, CH₂OMes), 2.70 (s, 3H, CH₃S), 2.51–2.31 (m, 2H, CH₂P), 1.00 (s, 3H, CH₃).

Synthesis of H₃CC(CH₂PPh₂-BH₃)₂(CH₂(P-tol)-BH₃) (2-PG)

A 100 mL round-bottom Schlenk flask was charged with HP(p-tol)-₂ (0.344 g, 2.1 mmol) and 25 mL THF. The colorless solution was cooled in an ice bath and 2.5 M n-BuLi in hexane (0.89 mL, 2.2 mmol) was slowly added via syringe to give a red/orange solution. The solution was stirred for 30 min before drop wise addition to a 25 mL THF solution of H₃CC(CH₂PPh₂)₂(CH₂OMes) (845 mg, 1.58 mmol) in a 100 mL round-bottom Schlenk flask cooled to -40 °C. After the addition the solution was slowly warmed to room temperature and stirred overnight. The reaction mixture was additionally heated to reflux for 2 h. A solution of BH₃-SMe₂ (2.84 mL, 5.69 mmol) in THF (2.0 M) was slowly added to the reaction mixture. The resulting mixture was stirred overnight and the volatile compounds were removed under vacuum. 100 mL Et₂O and 100 mL water were added to the white solid. The organic layer was separated and the aqueous layer was extracted with Et₂O for 2 times. The combined organic layer was washed with 100 mL water for 2 times, and then dried over MgSO₄. After the removal of Et₂O under vacuum, the white residue in 20 mL hexane was diffused into hexane to give a white powder. The obtained powder was filtered off and washed 2 times with 10 mL hexane. After drying in vacuum, H₃CC(CH₂PPh₂-BH₃)₂(CH₂(P-tol)-₂-BH₃) 2-PG (0.710 g, 1.02 mmol, 65% yield) was obtained as a white powder.

**31P{¹H} NMR (810.0 MHz, CD₂Cl₂, δ): 9.2 (br, 2P); ¹H NMR (200.1 MHz, CD₂Cl₂, δ): 7.66–7.37 (m, 24 H, CH), 7.24–7.19 (m, 4 H, CH₂), 2.93–2.82 (m, 6H, CH₂P), 2.36 (s, 6H, CH₃S), -1.17 (broad in baseline, 9H, BH₃), 0.79 (s, 3H, CH₃).

Elemental Analysis Calc. (Found): C 74.39% (73.38%), H 7.55% (7.55%).

Synthesis of H₃CC(CH₂PPh₂)₂(CH₂(P-tol)-₂)₂ (2)

A 100 mL Teflon caped Schlenk flask was charged with H₃CC(CH₂PPh₂-BH₃)₂(CH₂(P-tol)-₂-BH₃) (11a, 0.689 g, 0.99 mmol), DABCO (0.390 g, 3.47 mmol), and 20 mL toluene. The head-space was evacuated and the flask was heated at 80 °C for 2 h under static vacuum. The solution was filtered through a small plug of silica (3 cm) on a glass filter frit and washed with toluene (2 × 100 mL). The solvent was removed from the supernatant to give H₃CC(CH₂PPh₂)₂(CH₂(P-tol)-₂) (2) (0.663 g, 0.99 mmol, quantitative yield) as a thick white oil.

31P{¹H} NMR (810.0 MHz, CD₂Cl₂, δ): 28.8 (t, Jₚₚ = 2.6 Hz, 1P); ¹H NMR (200.1 MHz, CD₂Cl₂, δ): 7.38–7.19 (m, 26 H, CH₂), 7.10–7.06 (m, 2 H, CH₃), 2.43–2.34 (m, 6H, CH₂P), 2.31 (s, 6H, CH₃), 0.93 (s, 3H, CH₃).
Synthesis of RuHCl(CO)(H₃CC(CH₂PPh₂)₂(CH₂P(p-tol))₃) (B)

A round-bottom Schlenk flask was charged with H₃CC(CH₂PPh₂)₃(CH₂P(p-tol))₃ (0.663 g, 1.0 mmol), RuHCl(CO)(PPh₃)₃ (0.881 g, 0.92 mmol) and 40 mL toluene. The colorless solution with an off white precipitate was heated at reflux for 2 h to give a light yellow precipitate. The solution was filtered through a filter frit, the yellow residue washed three times with 10 mL toluene and dried in vacuum to give RuHCl(CO)(H₃CC(CH₂PPh₂)₂(CH₂P(p-tol))₃) B (0.544 g, 0.66 mmol, 72% yield) as a isomeric mixture.

31P{¹H} NMR (81.0 MHz, CD₂Cl₂, δ): 48.5 (dd, ²J_PP = 40 Hz, ³J_PP = 230 Hz, 2H), 48.4 (dd, ²J_PP = 40 Hz, ³J_PP = 280 Hz, 2H), 46.2 (dd, ²J_PP = 40 Hz, ³J_PP = 18 Hz, 1P), 45.9 (dd, ²J_PP = 40 Hz, ³J_PP = 32 Hz, 1P), 12.2 (dd, ²J_PP = 40 Hz, ³J_PP = 32 Hz, 1P), −1.4 (dd, ²J_PP = 32 Hz, ³J_PP = 18 Hz, 1P), 0.58 (dd, ²J_PP = 32 Hz, ³J_PP = 18 Hz, 1P), −0.4 (dd, ²J_PP = 18 Hz, ³J_PP = 32 Hz, 1P, 1P).

IR (KBrib): 521, 558, 624, 713, 735, 804, 838, 1092, 1190, 1397, 1440, 1499, 1599, 1895 (m, ν_CO), 1.50–1.46 (m, 3H, CH₃), −6.02 (ddd, ²J_H = 93.6 Hz, ³J_H = 18.8 Hz, ⁴J_H = 14.9 Hz, 1H, RuH).

Reaction of RuHCl(CO)(PPh₃)₃ with H₃CC(CH₂PPh₂)₂(2-pyridyl) 4 (160 mg, 0.31 mmol, 1.2 equiv.), (PPh₃)₃RuHCl(CO) (250 mg, 0.26 mmol, 1 equiv.) and dichloromethane (40 mL). The yellow light solution was stirred at room temperature for 5 days to light yellow solution. The solution was filtered to remove a small amount of white precipitate and the volume was reduced to 2 mL. A fine yellow precipitate was heated at reflux for 2 h to give a light yellow precipitate. The solution was filtered off via a sinter frit and washed three times with 10 mL pentane. After drying in vacuum, RuHCl(CO)(H₃CC(CH₂P(p-tol))₃) C (499 mg, 0.57 mmol, 80% yield) was obtained as a yellow powder.

31P{¹H} NMR (81.0 MHz, CD₂Cl₂, δ): 46.5 (dd, ²J_PP = 40 Hz, ³J_PP = 18 Hz, 1P), 12.6 (dd, ²J_PP = 40 Hz, ³J_PP = 32 Hz, 1P), −0.8 (dd, ²J_PP = 32 Hz, ³J_PP = 18 Hz, 1P), ¹H NMR (200.1 MHz, CD₂Cl₂, δ): 7.33–6.58 (m, 24 H, CH), 2.52–2.08 (m, 15 H, CH₂ and CH₃), 1.50–1.46 (m, 3H, CH₃), −6.02 (ddd, ²J_H = 93.6 Hz, ³J_H = 18.8 Hz, ⁴J_H = 14.9 Hz, 1H, RuH).

Improved synthesis of H₃CC(CH₂P(p-tol))₃ (3)

A 500 mL round-bottom Schlenk flask was charged with HP(p-tol)₂ (3.06 g, 14 mmol) and 20 mL THF. The colorless solution was cooled in an ice bath and 2.5 M n-BuLi in hexanes (6 mL, 15 mmol) was slowly added via syringe to give a red/orange solution. The solution was stirred for 30 min before drop wise addition to a THF (100 mL) solution of H₃CC(CH₂OMes)₂(CH₂Br) (7.121 g, 3.6 mmol) in a 500 mL round-bottom Schlenk flask cooled to −40 °C. The resulting mixture was slowly warmed to room temperature, then heated at reflux overnight. A solution of BH₃·SMe₂ (8.0 mL, 16 mmol) in THF (2.0 M) was slowly added to the colorless solution. The resulting mixture was stirred for 2 h and the solvent was removed under vacuum. 100 mL Ether and 100 mL water were added to the white solid. The organic layer was separated and washed with 150 mL water, dried over MgSO₄ and the organic solvent was removed under vacuum. The residue was suspended in 20 mL diethyl ether, 20 mL hexane was added, the product filtered off and washed twice with 20 mL hexane. After drying in vacuum H₃CC(CH₂P(p-tol))₃·BH₃ (3-PG, 1.92 g, 2.6 mmol, 72% yield) was obtained as a white powder. A 100 mL Teflon capped Schlenk flask was charged with H₃CC(CH₂P(p-tol))₃·BH₃ (3-PG, 1.92 g, 2.6 mmol), DABCO (1.58 g, 14.1 mmol), and 20 mL toluene. The headspace was evacuated and the flask was heated at 80 °C for 2 days under static vacuum. The solution was filtered through a small plug of silica (3 cm) on a glass filter frit and the product extracted from the residue by washing it twice with 100 mL toluene. The solvent as removed from the combined organic layers to obtain a thick oil. After trituration of the oil with diethyl ether, a white powdered was formed, which was filtered of and dried in vacuum to give H₃CC(CH₂P(p-tol))₃, 3 (1.03 g, 0.18 mmol, 72% yield; 51% yield overall) as a sticky white solid. All spectroscopic data was consistent with those reported in the literature.
Synthesis of RuHCl(CO)(PPh3)[H3CC(CH2PPh2)2(CH2OH)] (E)

In a glovebox, a round-bottom Schlenk flask was charged with RuHCl(CO)(PPh3)3 (952 mg, 1.0 mmol) and 40 mL toluene. The colorless solution with an off white precipitate heated at reflux for 2 h, then the volume of toluene was reduced under vacuum to ca. 10 mL. In the glovebox, 10 mL pentane was added to the reaction mixture, forming a pale yellow powder. The precipitate was filtered off via a sinter frit and washed three times with 10 mL pentane. After drying in vacuum, RuHCl(CO)(PPh3)[H3CC(CH2PPh2)2(CH2OH)] E (0.610 g, 0.69 mmol, 69% yield) was obtained as a pale yellow powder. The 31P NMR indicated that the isolated compounds were the mixture of regioisomers of E.

Reaction and RuHCl(CO)(PPh3)[H3CC(CH2PPh2)2(CH2OH)] (E) with t-BuOK

In a glovebox, a round-bottom Schlenk flask was charged with RuHCl(CO)(PPh3)[H3CC(CH2PPh2)2(CH2OH)] E (0.114 g, 0.13 mmol), t-BuOK (14.4 mg, 0.13 mmol) and 5 mL toluene, forming a red solution at room temperature in 2 h. All volatile compounds were removed under vacuum, then 0.5 mL toluene and 5 mL pentane was added to a red powder. The resulting suspension was passed through a pad of celite, then a red filtrate was dried under vacuum to give alkoxo ruthenium complex F (81.3 mg, 0.096 mmol, 75% yield) as a deep red powder. The 1H and 31P NMR spectra of the obtained powder suggested that it was constituted of mainly alkoxo ruthenium complex F with some impurities including small amounts of the unreacted E.

Characteristics peaks of F are described below:

- 1H NMR (243.0 MHz, d8-THF, δ): 35.7 (dd, 3JPP = 276 Hz, 2JHP = 20 Hz), 33.5 (dd, 3JPP = 276 Hz, 2JHP = 20 Hz), 13.7 (dd, 3JPP = 20 Hz);
- 31P NMR (600.2 MHz, d8-THF, δ): -4.65 (dd, 3JHP = 113 Hz, 5JHP = 26 Hz, 2JHP = 13 Hz, 1H, RuH). CH3 peaks from t-Bu group were not observed in 1H NMR spectra.

Acknowledgements

CarLa (Catalyst Research Laboratory) is co-financed by Ruprechts-Karls-University Heidelberg (Heidelberg University) and BASF SE.

Notes and references

1. (a) B. R. Brown, *The Organic Chemistry of Aliphatic Nitrogen Compounds*, Oxford University Press, New York, 1994;
2. (b) S. A. Lawrence, *Amines: Synthesis, Properties and Applications*, Cambridge University Press, Cambridge, 2005;
(c) P. Roose, K. Eller, E. Henkes, R. Rossbacher and H. Höke, Amines, Aliphatic: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2015.

2 R. N. Salvatore, C. H. Yoon and K. W. Jung, Tetrahedron, 2001, 57, 7785.

3 (a) J. Kim, H. J. Kim and S. Chang, Eur. J. Org. Chem., 2013, 3201; (b) J. L. Klinkenberg and J. F. Hartwig, Angew. Chem., Int. Ed., 2011, 50, 86; (c) S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann and M. Beller, ChemCatChem, 2011, 3, 1853.

4 Recent reviews, see: (a) S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann and M. Beller, ChemCatChem, 2011, 3, 1852; (b) C. Gunanathan and D. Milstein, Chem. Rev., 2014, 114, 12024; (c) K. Shimizu, Catal. Sci. Technol., 2015, 5, 1412; (d) Q. Yang, Q. Wang and Z. Yu, Chem. Soc. Rev., 2015, 44, 2305.

5 (a) C. Gunanathan and D. Milstein, Angew. Chem., Int. Ed., 2008, 47, 8661; (b) D. Pingen, C. Müller and D. Vogt, Angew. Chem., Int. Ed., 2010, 49, 8130; (c) S. Imm, S. Bähn, L. Neubert, H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2010, 49, 8126; (d) G. Walther, J. Deutsch, A. Martin, F. E. Baumann, D. Fridag, R. Franke and A. Köckritz, ChemSusChem, 2011, 4, 1052; (e) W. Baumann, A. Spannenberg, J. Pfeffer, T. Haas, A. Köckritz, A. Martin and J. Deutsch, Chem. – Eur. J., 2013, 19, 17702; (f) D. Pingen, O. Diebolt and D. Vogt, ChemCatChem, 2013, 5, 2905; (g) D. Pingen, M. Lutz and D. Vogt, Organometallics, 2014, 33, 1623; (h) X. Ye, P. N. Plessow, M. K. Brinks, M. Schelwies, T. Schaub, F. Rominger, R. Pachiello, M. Limbach and P. Hofmann, J. Am. Chem. Soc., 2014, 136, 5923.

6 E. Balaraman, D. Srimani, Y. D. Posner and D. Milstein, Catal. Lett., 2015, 145, 139.

7 (a) S. Imm, S. Bähn, M. Zhang, L. Neubert, H. Neumann, F. Klasovsky, J. Pfeffer, T. Haas and M. Beller, Angew. Chem., Int. Ed., 2011, 50, 7599; (b) E. J. Derrah, M. Hanauer, P. N. Plessow, M. Schelwies, M. K. da Silva and T. Schaub, Organometallics, 2015, 34, 1872; (c) T. Schaub, B. Buschhaus, M. K. Brinks, M. Schelwies, R. Pachiello, J. P. Melder and M. Merger, WO 2012119927, 2012.

8 (a) H. Heidel, G. Huttner and G. Helmchen, Z. Naturforsch., B: Chem. Sci., 1993, 48, 1681; (b) A. Muth, O. Walter, G. Huttner, A. Asam, L. Zsolnai and C. Emerich, J. Organomet. Chem., 1994, 468, 149.

9 S. Doherty, E. G. Robins, M. Nieuwenhuysen, P. A. Champkin and W. Clegg, Organometallics, 2002, 21, 4147.

10 (a) T. Seitz, A. Muth and G. Huttner, Chem. Ber., 1994, 127, 1837; (b) Y.-T. Hsieh, C.-M. Cheng, M.-S. Peng and T.-S. Liu, J. Chem. Soc., Dalton Trans., 1994, 3499.

11 Attempts to install other diorganophosphino moiety or heteroatom such as P(o-tolyl)2, P(p-F-C6H4)2, PCy2, PiPr2, and NH3, were unsuccessful by using our approach.

12 K.-M. Sung, S. Huh and J.-M. Jun, Polyhedron, 1999, 18, 469.

13 RuHCl(CO)(triphos) A was characterised by X-ray analysis, see: S. Savourey, G. Lefèvre, J.-C. Berthert, P. Thuéry, C. Genre and T. Contat, Angew. Chem., Int. Ed., 2014, 53, 10466.

14 Preparation and characterization of RuHCl(CO)(dppp) (PPh3) from RuHCl(CO)(PPh3)3 and dppp was reported, see: (a) A. Santos, J. López, J. Montoya, P. Noheda, A. Romero and A. M. Echavarren, Organometallics, 1994, 13, 3605; (b) S. Huh, Y. Cho and J.-M. Jun, Polyhedron, 1994, 13, 1887.

15 Cyclohexanol and ammonia undergo the selective nonoalkylation with dppp ligand. See ref. 5e.

16 In Fig. 6, P(NH3) = 4.1–4.5 bar was used, which corresponded to approximately 53 mmol of NH3 in the autoclave.

17 (a) R. Yamaguchi, S. Kawagoe, C. Asai and K. Fujita, Org. Lett., 2008, 10, 181; (b) R. Kawahara, K. Fujita and R. Yamaguchi, J. Am. Chem. Soc., 2010, 132, 15108; (c) S. Wöckel, M. Schelweis, M. K. Brinks, F. Rominger, P. Hofmann and M. Limbach, Org. Lett., 2013, 15, 266.

18 Program SADABS 2012/1 for absorption correction, see: G. M. Sheldrick, Bruker Analytical X-Ray Division, Madison, Wisconsin, 2012.

19 L. González-Sebastián, M. Flores-Alamo and J. J. García, Organometallics, 2012, 31, 8200.