ON THE GENERIC LOCAL LANGLANDS CORRESPONDENCE
FOR GSpin GROUPS

VOLKER HEIERMANN AND YEANSU KIM

Abstract. In the case of split GSpin groups, we prove an equality of L-functions between automorphic local L-functions defined by the Langlands-Shahidi method and local Artin L-functions. Our method of proof is based on previous results of the first author which allow to reduce the problem to supercuspidal representations of Levi subgroups of GSpin, by constructing Langlands parameters for general generic irreducible admissible representations of GSpin from the one for generic irreducible supercuspidal representations of its Levi subgroups.

1. Introduction

The main purpose of this paper is to show that the automorphic local L-functions for split GSpin groups defined by the Langlands-Shahidi method are equal to Artin L-functions. Our proof goes through the local Langlands correspondence using a method established by the first author ([12, 13]). Briefly, the local Langlands correspondence asserts that there exists a ‘natural’ bijection between two different sets: Arithmetic objects (Galois or Weil-Deligne group) and analytic (automorphic) objects. The local Langlands correspondence is defined through the equality of Artin L-functions on the Galois side with automorphic L-functions. For example, in the case of GL_n ([10, 15]), the local Langlands correspondence is formulated by the equality of Artin L-functions and Rankin-Selberg L-functions for $GL_n \times GL_m$ ([17, 27]). On the automorphic side, Shahidi defined L-functions in the generic case using Eisenstein series. Rankin-Selberg L-functions are one of them ([27]).

In our paper, we study the Rankin product L-functions for $GL_m \times GSpin_k$ (L-functions from the Langlands-Shahidi method for GSpin groups) using functoriality from GSpin groups to general linear groups ([3, 4] and Section 4). To explain our results more precisely, let F denote a non-archimedean local field of characteristic zero. Let G_n (resp. GL_m) denote the split general spin group of semisimple rank n, i.e. $GSpin_{2n+1}$ or $GSpin_{2n}$, (resp. general linear group of semisimple rank m) over F and denote by G_n (resp. GL_m) the group of F-points of G_n (resp. GL_m). Let $\sigma \otimes \pi$ be an irreducible admissible generic representation of $M = M(F)$, where $M = GL_m \times G_n$ is the Levi subgroup of a standard parabolic subgroup P in G_{m+n}. There is a given list of L-functions attached to $\sigma \otimes \pi$ defined by Shahidi. In the GSpin case, we have two L-functions. The first L-function, denoted $L(s, \sigma \times \pi)$ ([3]), is the Rankin product L-function for $GL_m \times G_n$. The second L-function

Date: Dec 23, 2013.

Key words and phrases. The generic Arthur packet conjecture, Local Langlands correspondence, Langlands-Shahidi method.

The first author has benefited from help of the Agence Nationale de la Recherche with reference ANR-08-BLAN-0259-02.
is either the twisted symmetric square L-function or the twisted exterior square L-function (Section 3.1 for more details).

Note that Henniart [16] has recently proved that the twisted symmetric square L-functions and the twisted exterior square L-functions (the second L-functions) are Artin L-functions. In this paper, we prove the analogue result for the Rankin product L-functions for $GL_m \times G_n$ (the first L-functions). More precisely, we prove the following result (Theorem 4.11):

Theorem A. The L-functions from the Langlands-Shahidi method in the case of $GSpin$ groups are Artin L-functions, i.e., $L(s, \sigma \times \pi)$ is an Artin L-function.

Our main theorem follows from results of the first author and the special case when π is a supercuspidal representation. More precisely, in [12] the first author constructed the Langlands parameters, the objects on the arithmetic side of the local Langlands correspondence, which correspond to admissible representations of a connected reductive group over F after assuming the existence of the Langlands parameters that correspond to supercuspidal representations of its Levi subgroups. The Equality between L-functions from the Langlands-Shahidi method and Artin L-functions holds, if this is true in the supercuspidal case [13].

Note that in [12], first the Langlands parameters of discrete series representations of connected reductive groups over F are constructed from the Langlands parameters of supercuspidal representations of Levi subgroups. The proof is based on the classification of the supercuspidal support of discrete series representations in terms of poles of Harish-Chandra’s μ-function given in [11]. All this is subject to some additional assumptions on the Langlands parameters of supercuspidal representations. However, these assumptions are satisfied for a generic discrete series representation if the L-functions of a representation in its supercuspidal support agree with the corresponding Artin L-functions of its Langlands parameter. One has also that the γ-factors of a generic discrete series representation agree with the γ-factors of its Langlands parameter, if the equality of γ-factors is true for a representation in its supercuspidal support.

The Langlands parameters of arbitrary admissible irreducible representations are deduced from this with help of the Langlands classification and equality of L-functions and γ-factors holds under the analog conditions.

Therefore, by the results in [12] [13], it is possible to reduce Theorem A to the existence of Langlands parameters for generic supercuspidal representations with equality of L-functions (i.e. Theorem A in the case of supercuspidal representations). More precisely, let π_{sc} be an irreducible generic supercuspidal representation of G_n and let Π_{sc} be an irreducible admissible representation of GL_{2n}, which is the local functorial lift of π_{sc} constructed in [3]. We prove (Theorem 4.2)

Theorem A’ For any irreducible generic supercuspidal representation σ_{sc} of GL_m we have

$$L(s, \sigma_{sc} \times \pi_{sc}) = L(s, \sigma_{sc} \times \Pi_{sc}).$$

The L-functions on the right hand side, i.e. $L(s, \sigma_{sc} \times \Pi_{sc})$, are the Rankin-Selberg L-functions. The Rankin-Selberg L-functions are Artin L-functions due to the local Langlands correspondence for GL_n [10] [15]. Therefore, Theorem A’ implies
that the Rankin product \(L \)-functions for \(GL_m \times G_n \) in the generic supercuspidal case are Artin \(L \)-functions.

Let us briefly explain the proof of Theorem A’ here. Due to [30, Proposition 5.1], an irreducible generic supercuspidal representation \(\pi_{sc} \) can be embedded into a globally generic cuspidal representation. Therefore, we can use the global functional equation [30] to get the equality of \(\gamma \)-factors. Since \(L \)-functions from the Langlands-Shahidi method are completely determined by corresponding \(\gamma \)-factors in the tempered case (Definition 3.1), it is enough to show that the functorial lift \(\Pi_{sc} \) of \(\pi_{sc} \) is a tempered representation. (Theorem 4.2)

Furthermore, we describe the local transfer image of the functorial lift of a generic supercuspidal representation \(\pi_{sc} \) of \(G_n \) (Theorem 4.7) to show that the Langlands parameter of the local functorial lift \(\Pi_{sc} \) of \(\pi_{sc} \) factors through the \(L \)-group of \(G_n \) (Theorem 4.8). This Langlands parameter can then be considered as the Langlands parameter of the generic supercuspidal representation \(\pi_{sc} \) of \(G_n \).

Remark We also prove the equality of \(\gamma \)-factors in Theorem A and Theorem A’. More precisely, let \(\psi_F \) be a fixed non trivial additive character of \(F \) and \(\gamma(s, \sigma \times \pi, \psi_F) \) the complex function defined in [30, Theorem 3.5], where \(\pi \) and \(\sigma \) are as in Theorem A. Then, the \(\gamma(s, \sigma \times \pi, \psi_F) \)'s are Artin \(\gamma \)-factors. Furthermore, let \(\pi_{sc} \), \(\sigma_{sc} \) and \(\Pi_{sc} \) be as in Theorem A’. Then, \(\gamma(s, \sigma_{sc} \times \pi_{sc}, \psi_F) = \gamma(s, \sigma_{sc} \times \Pi_{sc}, \psi_F) \).

Our main result (Theorem A) has an interesting application to the structure of \(L \)-packets, the partition of the set of (equivalence classes of) irreducible admissible representations of a quasi-split reductive group \(H \) over a non-archimedean local field \(F \) given by the (in general conjectural) Langlands correspondence. More precisely, denote by \(W'_F \) the Weil-Deligne group, i.e. \(W'_F = W_F \times SL(2, \mathbb{C}) \), where \(W_F \) is the Weil group. Let \(\psi \) be an Arthur parameter for \(H \), i.e. a map \(W'_F \times SL(2, \mathbb{C}) \to \mathbb{L}^H \) that satisfies certain properties (See [33] for more details). There is a Langlands parameter \(\phi_\psi \) which corresponds to the Arthur parameter \(\psi \) which is defined by \(\phi_\psi(w) = \psi(w, \begin{pmatrix} |w|^\frac{1}{2} & 0 \\ 0 & |w|^\frac{1}{2} \end{pmatrix}) \). We consider the \(L \)-packet which is attached to this Langlands parameter \(\phi_\psi \). The following conjecture is called the generic Arthur packet conjecture ([33]):

Conjecture. Let \(\Pi(\phi_\psi) \) be the \(L \)-packet attached to the Langlands parameter \(\phi_\psi \) which corresponds to the Arthur parameter \(\psi \) of \(H \). Suppose that \(\Pi(\phi_\psi) \) has a generic member. Then it is a tempered \(L \)-packet.

Remark This conjecture is first formulated in [33] for any connected reductive group and strengthened in [21] for classical groups and \(GSpin \) groups. This conjecture can be considered as a local version of the generalized Ramanujan conjecture and the conjecture itself is related to the generalized Ramanujan conjecture ([1]).

Shahidi proved that, if the equality of \(L \)-functions (Theorem A in the \(GSpin \) case) through the local Langlands correspondence holds, then the generic Arthur packet conjecture ([33] and [21]) is also true. Therefore, our main theorem implies the following:
Theorem B. The generic Arthur packet conjecture is true for split $GSpin$ groups.

Remark The generic Arthur packet conjecture is also true in general when F is archimedean local field since the full local Langlands conjecture for real groups is a theorem in [24]. The equality of L-functions in this case is proved by Shahidi in [25].

The paper is organized as follows. In Section 2 and Section 3 we recall the standard notations and L-functions from the Langlands-Shahidi method [25, 26, 28, 29, 30] and the Global functorial lift from $GSpin$ to general linear groups obtained by Asgari and Shahidi [3, 4]. We also recall multiplicativity of γ-factors and L-functions with examples which support the proofs of theorems in Section 4. In Section 4, we construct Langlands parameters with equality of L-functions. More precisely, in Subsections 4.1 and 4.2, we first construct Langlands parameters that correspond to supercuspidal representations with equality of L-functions. Here, we use the image of the local functorial lift from $GSpin$ groups to general linear groups (Theorem 4.7). Then, in Subsection 4.3, we generalize those results, i.e. construction of Langlands parameters with equality of L-functions, to arbitrary irreducible admissible representations.

2. Notation

Let F denote a non-archimedean local field of characteristic zero, either archimedean or non-archimedean, k a number field (global field of characteristic zero) and $A = A_k$ its ring of adeles. If needed, we let $k_{v_0} = F$ for a place v_0 of k. Let G_n (resp. GL_m) denote the split general spin group of semisimple rank n, i.e. $GSpin_{n+1}$ or $GSpin_{2n}$, (resp. general linear group of semisimple rank m) over F or over k and write $^L G_n$ for the L-group of G_n. In the case of split $GSpin$ groups, $^L G_n$ is either $GSp_{2n}(\mathbb{C})$ or $GSO_{2n}(\mathbb{C})$. Let M be the Levi subgroup of a standard parabolic subgroup $P = MN$ in G_n. It corresponds to an ordered partition $s = (n_1, n_2, \ldots, n_k)$ of some n' with $n' \leq n$ and $n - n' \neq 1$. (The Levi subgroup M_s associated to the partition s is isomorphic to $GL_{n_1} \times GL_{n_2} \times \cdots \times GL_{n_k} \times G_{n-n'}$ (see [2]).

For any connected reductive group G defined over F or k, we denote by G (resp. G_n) its group of F-rational points (resp. F-rational points). To differentiate global representations from local representations, we use the symbol to denote global representations. For example, π in Sec 3.8 will denote an automorphic representation of G_n.

We denote the normalized induced representation $i^G_{P_s}(\rho_1 \otimes \cdots \otimes \rho_k \otimes \pi)$ by

$$\rho_1 \times \cdots \times \rho_k \times \pi$$

where $P_s = M_s N$ is the standard F-parabolic subgroup of G_n which corresponds to the partition s and each ρ_i (resp. π) is a representation of some GL_{n_i} (resp. $G_{n-n'}$). In particular, $i^G_{P_s}$ is a functor from admissible representations of M to admissible representations of G that sends unitary representations to unitary representations. We also denote the normalized induced representation $i^{GL_n}_{P}(\rho_1 \otimes \cdots \otimes \rho_k)$ by

$$\rho_1 \times \cdots \times \rho_k$$

where $P = MN$ is the standard F-parabolic subgroup of GL_n where $M \cong GL_{n_1} \times GL_{n_2} \times \cdots \times GL_{n_k}$ and each ρ_i is a representation of some GL_{n_i}.

3. Preliminaries

3.1. L-functions from the Langlands-Shahidi method.

Let us briefly explain how Shahidi defines local L-functions in the case of $GSpin$ groups. Let $M \cong GL_m \times G_n$ be the Levi subgroup of a maximal standard parabolic subgroup $P = MN$ of G_{m+n} and let $\sigma \otimes \pi$ be an irreducible admissible generic representation of $M = M(F) = GL_m \times G_n$. Denote by ρ_m the standard representation of $GL_m(\mathbb{C})$, by \tilde{R} the contragredient of the standard representations of L^G_k and by μ the similitude character of L^G_k. The adjoint action r of L^G_k, the L-group of M, on L^N_n, the Lie algebra of the L-group of N decomposes as $r = r_2$ or $r_1 \otimes r_2$ (Proposition 5.6) or (3, chapter 3), where

\[
\begin{cases}
 r_1 = \rho_m \otimes \tilde{R} & \text{and} & r_2 = \text{Sym}^2 \otimes \mu^{-1} & \text{if} & G_n = \text{GSpin}_{2n+1} \\
 r_1 = \rho_m \otimes \tilde{R} & \text{and} & r_2 = \lambda^2 \otimes \mu^{-1} & \text{if} & G_n = \text{GSpin}_{2n}
\end{cases}
\]

Shahidi first defined two complex functions $\gamma(s, \sigma \otimes \pi, r, \psi_F)$, called γ-functions, attached to $\sigma \otimes \pi$ and r_i for $i = 1, 2$, where ψ_F is a fixed non trivial additive character of F (Theorem 3.5)). Using γ-factors, Shahidi defined corresponding L-functions attached to $\sigma \otimes \pi$ and r_i, denoted $L(s, \sigma \otimes \pi, r_i)$ for $i = 1, 2$, in (30) by the following way:

Definition 3.1. If σ is tempered, define L-functions from the Langlands-Shahidi method as inverse of the normalized numerator of the γ-factors. One defines then L-functions for an arbitrary irreducible admissible generic representation using Langlands classification. The first L-function, i.e. $L(s, \sigma \otimes \pi, r_1)$, is the Rankin product L-function for $GL_m \times G_n$ which is denoted by $L(s, \sigma \times \pi)$ in (3), and the second L-function, i.e. $L(s, \sigma \otimes \pi, r_2)$, is either the twisted symmetric square L-function or the twisted exterior square L-function.

Remark 3.2. In the tempered case, the equality of γ-factors implies the equality of L-functions since the L-functions are completely determined by γ-factors in the tempered case.

There are several equivalent definitions of the notion of a tempered representation. Let us introduce one of them that we use throughout the paper.

Definition 3.3. Let G be a connected reductive group over F and put $G = G(F)$. An irreducible admissible representation π of G is called tempered if there exists an irreducible square-integrable, i.e. a discrete series representation, σ of a Levi subgroup M of G such that π can be embedded into $i^G_m \sigma$.

We introduce one important property below which is the multiplicativity of γ-factors. Specifically, assume $\sigma \otimes \pi \subset i^G_m \sigma'$, where $P' = M'N'$ is a standard parabolic of M and σ' is an irreducible admissible generic representation of M'. Let $\tilde{\omega}$ be the longest element in the Weyl group of A_0 in G modulo that of A_0 in M. Fix a reduced decomposition $\tilde{\omega} = \tilde{\omega}_{n-1} \cdots \tilde{\omega}_1$ as in Lemma 4.2.1. Then, for each j, $1 \leq j \leq n - 1$, there exists a unique root $\alpha_j \in \Delta$ such that $\tilde{\omega}(\alpha_j) < 0$. For each j, $2 \leq j \leq n - 1$, let $\overline{\omega}_j = \tilde{\omega}_{j-1} \cdots \tilde{\omega}_1$. Set $\overline{\omega}_1 = 1$. Then $\theta' \subset \Delta$ be such that $M' = M_{\theta'}$, i.e. the standard Levi factor of the standard parabolic subgroup that corresponds to θ', and let $\Omega = \theta_j \cup \{\alpha_j\}$, where $\theta_1 = \theta'$, $\theta_n = \tilde{\omega}(\theta')$, and $\theta_{j+1} = \tilde{\omega}(\theta_j), 1 \leq j \leq n - 1$. Then, the group $M_{\Omega'}$ contains M_{θ_j} as a Levi factor of a maximal parabolic subgroup and $\overline{\omega}_j(\sigma')$ is a representation of M_{θ_j}. The group
$L\mathbf{M}'$ acts on V_i as defined by $L\mathbf{M}$. Given an irreducible constituent of the action, there exists a unique j, $1 \leq j \leq n - 1$, which is sent under $\overline{\omega}_j$ to an irreducible constituent of the action of $L\mathbf{M}'_j$ on the Lie algebra of $L\mathbf{N}'_j$, whose adjoint action is denoted by $r'_{i(j)}$. We denote by $i(j)$ the index of this irreducible constituent and let S_j denote the set of all such j for which $i(j) = i$. Then, by part 3 of Theorem 3.5 of [30], we have

Theorem 3.4 (Multiplicativity of γ-factors). For each $j \in S_i$, let $\gamma(s, \overline{\omega}_j(\sigma'), r'_{i(j)}; \psi_F)$ be the corresponding γ-factor. Then,

$$\gamma(s, \sigma \otimes \pi, r_i; \psi_F) = \prod_{j \in S_i} \gamma(s, \overline{\omega}_j(\sigma'), r'_{i(j)}; \psi_F).$$

The following example gives the multiplicativity of γ-factors in the case of $GSpin$ groups. This example is used in the proof of Theorem 4.7.

Example 3.5. Let π be an irreducible admissible representation of G_n. By Jacquet’s quotient theorem, there exists a standard parabolic subgroup $P = MN$ of G_n, $\mathbf{M} = \mathbf{GL}_{n_1} \times \cdots \times \mathbf{GL}_{n_k} \times G_{n-n'}$, and an irreducible cuspidal representation $\rho_1 \otimes \rho_2 \otimes \cdots \otimes \rho_r \otimes \pi_{\text{cusp}}$ of M such that π is a subrepresentation of $\rho_1 \times \rho_2 \times \cdots \times \rho_r \times \pi_{\text{cusp}}$. (Here, each ρ_i is an irreducible cuspidal representation of some GL_{n_i} and π_{cusp} is an irreducible cuspidal representation of $G_{n-n'}$.) Then, for any irreducible cuspidal representation ρ of GL_m, we have

$$\gamma(s, \rho \times \pi, \psi_F) = \gamma(s, \rho \times \pi_{\text{cusp}}, \psi_F) \times \prod_{i=1}^r \gamma(s, \rho \times \rho_i, \psi_F) \gamma(s, \rho \times (\overline{\rho_i} \otimes \omega_x), \psi_F).$$

where ω_x is the central character of π.

Remark that the multiplicativity of L-functions does not hold in general since the L-functions in the numerator and those in the denominator of γ-factors might cancel each other. However, there are several cases of which multiplicativity of L-functions holds. Here, we include the following examples for the multiplicativity of L-functions in the case of general linear groups. These examples are used in the proof of Theorem 4.7.

Example 3.6. (a) (Proposition on page 351 of [17]) Let Π (resp. Π') be an irreducible tempered representation of GL_n (resp. $GL_{n'}$) of the form $\delta_1 \times \cdots \times \delta_d$ (resp. $\delta'_1 \times \cdots \times \delta'_{d'}$), where each δ_i (resp. δ'_i) is a discrete series representation of some GL_{n_i} (resp. $GL_{n'_i}$). Then, we have

$$L(s, \Pi \times \Pi') = \prod_{i,j} L(s, \delta_i \times \delta'_j).$$

(b) (Theorem on page 444 of [17]) Let δ be a discrete series representation of GL_n which can be realized as the unique irreducible subrepresentation, denoted $\delta([\nu^{-\frac{1}{2}} \rho, \nu^{-\frac{1}{2}} \rho])$, of $\nu^{-\frac{1}{2}} \rho \times \cdots \times \nu^{-\frac{1}{2}} \rho$ with ρ a unitary cuspidal representation of some GL ([5, 30]). Then, we have

$$L(s, \delta \times \overline{\delta}) = \prod_{i=0}^{t-1} L(s + i, \rho \times \overline{\rho}).$$

Let us conclude this Section by recalling one of the important global properties of the theory of L-functions which is the functional equations.
Theorem 3.7 (Global Functional Equation). Let \(\pi := \otimes \pi_v \) be a (global) generic cuspidal representation of \(G_n = G_n(\mathbb{A}) \). Let \(\gamma(s, \sigma_v \otimes \pi_v, r_{i,v}, \psi_{i,v}) \) and \(L(s, \sigma_v \otimes \pi_v, r_{i,v}) \) (for \(i = 1, 2 \)) be the local factors defined by Shahidi in the case of GSpin groups (Definition 3.7). Let \(S \) be a finite set of places of \(k \) such that for \(v \notin S \), \(G_n \times_k k_v, \pi_v \) and \(\chi_v \) are all unramified. Then we have the following equality:

\[
\prod_{v \notin S} L(s, \pi_v, r_{i,v}) = \prod_{v \in S} \gamma(s, \sigma_v \otimes \pi_v, r_{i,v}, \psi_{i,v}) \prod_{v \notin S} L(1 - s, \pi_v, \overline{r}_{i,v})
\]

3.2. Global functoriality.

Asgari and Shahidi studied the functorial lifts from automorphic representations of \(G_n \) to \(GL_{2n} \) (7). To state the main theorem in 7 (4), let \(k \) be global field and fix a Borel subgroup \(B \) in \(G_n \) with a maximal split torus \(T \), and denote the associated roots by \(R \) and the positive roots by \(R^+ \). For each \(\alpha \in R \) denote the root group homomorphism associated with \(\alpha \) by \(u_{\alpha} : G_n \to G \). We also denote unipotent radical of \(B \) by \(U \). To define a generic character of \(U(k) \backslash U \), we fix a splitting, i.e., the choice of Borel subgroup along with a collection of root vectors in \(U \), one for each simple root of \(T \). Then, using a fixed splitting, every \(u \in U \) can be written uniquely as \(u = \prod u_{\alpha}(x_{\alpha}) \), where the product runs over all simple roots. Let \(\psi_{\alpha} \) be a non-trivial continuous character of \(k \backslash \mathbb{A} \). Then \(\psi_k = \otimes \psi_{\alpha} \), where each \(\psi_{k_{\alpha}} \) is a non-trivial additive character of \(k_v \). Then we define a generic character \(\chi \) of \(U(k) \backslash U \) as

\[
\chi(u) = \psi_k(\sum _{\alpha } x_{\alpha })
\]

where the sum runs over all simple roots.

Now, we are ready to define the globally generic representations. An irreducible automorphic cuspidal representation \((\pi, V_\pi) \) of \(G_n \) is called globally generic if there exists a cuspid form \(f \in V_\pi \) such that

\[
\int_{U(k) \backslash U} f(ng)\chi^{-1}(n)dn \neq 0.
\]

The following theorem is Theorem 5.16 of 4:

Theorem 3.8 (4). Let \(\pi := \otimes \pi_v \) be a globally generic, irreducible, cuspidal, automorphic representation of \(G \), with central character \(\omega_\pi \). Write \(\chi = \otimes \chi_v \). Let \(S \) be a nonempty finite set of non-archimedean places \(\omega_\pi \) such that, for \(v \notin S \), we have that \(\pi_v \) and \(\chi_v \) are unramified. Then \(\pi \) has a unique functorial transfer to an automorphic representation \(\Pi = \otimes \Pi_v \) of \(GL_{2n} \) such that, for all \(v \notin S \), the homomorphism parametrizing the local representation \(\Pi_v \) is given by

\[
\Phi_v = \iota \circ \phi_v : W_v \to GL_{2n}(\mathbb{C}),
\]

where \(W_v \) denotes the local Weil group of \(k_v \), \(\phi_v : W_v \to L G_n \) the homomorphism parametrizing \(\pi_v \) and \(\iota : k G_n \to GL_{2n}(\mathbb{C}) \) the natural embedding. Moreover, the transfer \(\Pi \) satisfies

\[
\Pi \cong \tilde{\Pi} \otimes \omega_\pi \quad \text{and} \quad \omega_\Pi = \omega_\pi^\omega_{\Pi},
\]

The automorphic representation \(\Pi \) is an isobaric sum of the form

\[
\Pi = \Pi_1 \times \cdots \times \Pi_r = \bigoplus \Pi_i,
\]

where each \(\Pi_i \) is a unitary, cuspidal representation of \(GL_{n_i} \) such that, for \(T \) a sufficiently large finite set of places of \(k \) containing the archimedean places, the
Let \(\Pi \) be an irreducible unitary generic supercuspidal representation of \(\mathbb{G} \). In the proof of Theorem 3.8, using the natural embedding (3.1), Asgari and Shahidi constructed archimedean and non-archimedean unramified transfer with equality of \(\gamma \)-factors and L-functions in those cases (Chapter 6 of [3] or Proposition 3.20 and Proposition 3.25 of [4]).

Proposition 4.1 ([5, 1]). Let \(v_0 \) be an archimedean or non-archimedean place of \(k \) and let \(k_{v_0} = F \). Let \(\pi \) be an irreducible, admissible, generic representation of \(\mathbb{G}_n \). We further assume that \(\pi \) is unramified if \(v_0 \) is a non-archimedean place. Then, there exists a unique local functorial lift \(\Pi \) of \(\pi \) to \(GL_{2n} \) such that, for any irreducible, admissible, generic representation \(\sigma \) of \(GL_m \), we have

\[
\gamma(s, \sigma \times \pi, \psi_F) = \gamma(s, \sigma \times \Pi, \psi_F) \quad \text{and} \quad L(s, \sigma \times \pi) = L(s, \sigma \times \Pi).
\]

Now, we are ready to show the equality of L-functions for any place \(v \) of \(k \).

Theorem 4.2. Let \(v_0 \) be a non-archimedean place of \(k \) and let again \(k_{v_0} = F \). Let \(\pi \) be an irreducible unitary generic supercuspidal representation of \(\mathbb{G}_n \). Then there exists a unique generic representation \(\Pi \) of \(GL_{2n} \) such that for every irreducible unitary supercuspidal representation \(\rho \) of \(GL_m \) we have

\[
\gamma(s, \rho \times \pi, \psi_F) = \gamma(s, \rho \times \Pi, \psi_F) \quad \text{and} \quad L(s, \rho \times \pi) = L(s, \rho \times \Pi).
\]

In particular, \(\Pi = \delta_1 \times \cdots \times \delta_d \) with each \(\delta_i \) a discrete series representation, i.e., \(\Pi \) is tempered.

Proof. We can embed \(\pi \) (resp. \(\rho \)) into a (global) generic automorphic cuspidal representation \(\pi = \otimes_{w} \pi_w \) (resp. \(\rho = \otimes_{v} \rho_v \)) such that \(\pi_w \) (resp. \(\rho_v \)) is unramified for all other finite places \(w \neq v_0 \) and \(\pi_{v_0} = \pi \) (resp. \(\rho_{v_0} = \rho \)) ([5] Proposition 5.1). In the archimedean or non-archimedean unramified case, i.e., for \(w \neq v_0 \), we know the equality of \(\gamma \)-factors (Proposition 4.1). The global functional equation (Theorem 3.7) implies that

\[
\gamma(s, \rho \times \pi, \psi_F) = \gamma(s, \rho \times \Pi, \psi_F)
\]

for every irreducible supercuspidal representation \(\rho \) of \(GL_m \).

Using the multiplicativity of \(\gamma \)-factors, we get the equality \(\gamma(s, \sigma \times \pi, \psi_F) = \gamma(s, \sigma \times \Pi, \psi_F) \) for a discrete series representation \(\sigma \). The discrete series representation \(\sigma \) can be realized as the unique irreducible subrepresentation \(\delta([\nu^{−\frac{1}{2}} \rho, \nu^{−\frac{1}{2}} \rho]) \) of \(\nu^{−\frac{1}{2}} \rho \times \cdots \times \nu^{−\frac{1}{2}} \rho \) with \(\rho \) a unitary supercuspidal representation of some \(GL \) ([5, 17]). Since \(\Pi \) is generic and unitary, \(\Pi \) can be considered as full induced representation \(\nu^{r_1} \delta_1 \times \cdots \times \nu^{r_k} \delta_k \times \delta_{k+1} \times \cdots \times \delta_{k+l} \times \nu^{−r_k} \delta_k \times \cdots \times \nu^{−r_1} \delta_1 \) by the classification of unitary generic representations of \(GL \) with each \(\delta_i \) a discrete series representation of some \(GL \) and \(0 < r_k \leq \cdots \leq r_1 < \frac{1}{2} \) ([35]). Using the multiplicativity of \(\gamma \)-factors and the definition of \(\gamma \)-factors,

\[
\gamma(s, \sigma \times \pi, \psi_F) = \gamma(s, \sigma \times \Pi, \psi_F)
\]
in Theorem 3.8 is either cuspidal
is generic. Thus all of its local
representations of
Remark
4.4. Since the global functorial lift Π in Theorem 4.2 is either cuspidal or a full induced representation from cuspidals, Π is generic. Thus all of its local components are as well.

Definition 4.5. Let π and Π be as in Theorem 4.2. We shall call this Π the local functorial lift of π.

4.2. local transfer image and Langlands parameters: supercuspidal case.

We describe the image of the local transfer lift of the irreducible generic supercuspidal representations and construct its Langlands parameters. We first discuss the properties of poles of L-functions. The following lemma is a corollary of [30 Proposition 7.3].
Lemma 4.6. Let π denote an irreducible unitary generic supercuspidal representation of G_n and ρ an irreducible unitary generic supercuspidal representation of GL_m. Let, for $i = 1, 2$, $L(s, \rho \otimes \pi, r_i)$ be the L-functions for $GSpin$ groups from the Langlands-Shahidi method (see Section 3.1). Then,

(a) $L(s, \rho \otimes \pi, r_i)$ has a pole at $s = 0$ if and only if $L(s, \rho \widehat{\otimes} \pi, r_i)$ has a pole at $s = 0$.

(b) $L(s, \rho \otimes \pi, r_i) \sim L(-s, \rho \widehat{\otimes} \pi, r_i)$. Here \sim means that two L-functions are equal up to monomial in q^{-s}.

(c) $L(s, \rho \otimes \pi, r_i)$ can have poles only for $\text{Re}(s) = 0$.

Proof. From Lemma 5.3.2 in [32], we have

$$\gamma(s, \rho \otimes \pi, r_i, \psi_P) = \gamma(s, \rho \widehat{\otimes} \pi, r_i, \overline{\psi_P}).$$

Since π and ρ are tempered, $L(s, \rho \otimes \pi, r_i) = L(\overline{s}, \rho \otimes \pi, r_i)$. Therefore, $L(s, \rho \otimes \pi, r_i)$ has a pole at $s = 0$ if and only if $L(s, \rho \otimes \pi, r_i)$ has a pole at $s = 0$. This proves (a).

From Proposition 7.3 in [30], $L(s, \rho \otimes \pi, r_i)$ is of the form $\prod_j (1 - \alpha_j q^{-s})^{-1}$ with $|\alpha_j| = 1$. On the other hand, using $L(s, \rho \otimes \pi, r_i) = L(\overline{s}, \rho \otimes \pi, r_i)$ above, we have

$$L(-s, \rho \otimes \pi, r_i) = L(-\overline{s}, \rho \otimes \pi, r_i) = \prod_j (1 - \overline{\alpha}_j q^s)^{-1} = \prod_j (1 - \overline{\alpha}_j q^s)^{-1}(1 - \alpha_j q^{-s})^{-1}.$$

Therefore, $L(-s, \rho \otimes \pi, r_i) = \prod_j (1 - \alpha_j q^{-s})L(s, \rho \otimes \pi, r_i)$. This proves (b). (c) is a direct consequence of Proposition 7.3 in [30] since $L(s, \rho \otimes \pi, r_i)$ is of the form $\prod_j (1 - \alpha_j q^{-s})^{-1}$ with $|\alpha_j| = 1$. \hfill \Box

Theorem 4.7. Let π be an irreducible unitary generic supercuspidal representation of the group $GSpin_{2n+1}$ (resp. $GSpin_{2n}$) and let Π be its local functorial lift in the sense of Theorem 4.2. Then Π is of the form

$$\Pi \simeq \Pi_1 \times \cdots \times \Pi_d$$

where each Π_i is an irreducible unitary supercuspidal representation of some GL_{2n_i} such that $L(s, \Pi_i \otimes w_{\pi}, \lambda^2 \otimes \mu^{-1})$ (resp. $L(s, \Pi_i \otimes w_{\pi}, \text{Sym}^2 \otimes \mu^{-1})$) has a pole at $s = 0$, $\Pi_i \otimes (\omega_{\pi} \circ \det) \cong \Pi_i$ and $\Pi_i \not\cong \Pi_j$ for $i \neq j$.

Proof. We first consider the odd case, i.e., $GSpin_{2n+1}$. By Theorem 4.2 and its proof, we know that the local functorial lift Π is tempered and of the form

$$\Pi = \delta_1 \times \cdots \times \delta_d$$

with each δ_i a discrete series representation. In Theorem 4.2, we also prove that for any discrete series representation σ of GL_m, $L(s, \sigma \times \pi) = L(s, \sigma \times \Pi)$. We apply this equality of twisted L-functions with $\sigma = \delta_i$. Then, we have

$$(4.1) \quad L(s, \delta_i \times \pi) = L(s, \delta_i \times \Pi)$$

We now claim that each δ_i is in fact supercuspidal. We can realize δ_i as the unique irreducible subrepresentation $\delta([\nu^2 \frac{\lambda_i}{2} \rho_i, \nu^{-2} \frac{\lambda_i}{2} \rho_i])$ of $\nu^2 \frac{\lambda_i}{2} \rho_i \times \cdots \times \nu^2 \frac{\lambda_i}{2} \rho_i$, with ρ_i a unitary supercuspidal representation of some GL. Then, our claim becomes to show that $t_i = 1$.

Let us first study the L-function on the left hand side of the equation \[4.1\]. By the multiplicativity of γ-factors, we have
\[
\gamma(s, \tilde{\delta_i} \times \pi, \psi_F) = \prod_{k=0}^{t_i-1} \gamma(s - \frac{t_i - 1}{2} + k, \tilde{\rho_i} \times \pi, \psi_F).
\]

Since π and ρ_i are irreducible unitary generic supercuspidal representations, Lemma 4.6 (b) implies the following:
\[
L(1-s, \tilde{\rho_i} \times \pi) \sim L(s - 1, \rho_i \times \pi)
\]
where \sim denotes that two L-functions are equal up to a monomial in q^{-s}.

Therefore,
\[
\gamma(s, \tilde{\delta_i} \times \pi, \psi_F) \sim \frac{\prod_{k=0}^{t_i-1} (L(s - \frac{t_i - 1}{2} + k, \tilde{\rho_i} \times \pi))^{-1}}{\prod_{k=0}^{t_i-1} (L(s - \frac{t_i - 1}{2} + k - 1, \tilde{\rho_i} \times \pi))^{-1}} = \frac{(L(s + \frac{t_i - 1}{2}, \tilde{\rho_i} \times \pi))^{-1}}{(L(s - \frac{t_i - 1}{2} - 1, \tilde{\rho_i} \times \pi))^{-1}}.
\]

Since $\tilde{\delta_i} \times \pi$ is tempered, $L(s, \tilde{\delta_i} \times \pi)$ is the inverse of the normalized numerator of $\gamma(s, \tilde{\delta_i} \times \pi, \psi_F)$. Therefore, we have
\[
L(s, \tilde{\delta_i} \times \pi) = L(s + \frac{t_i - 1}{2}, \tilde{\rho_i} \times \pi).
\]

Since $\tilde{\rho_i} \times \pi$ is an irreducible unitary generic supercuspidal representation, Lemma 4.6 (c) implies that $L(s + \frac{t_i - 1}{2}, \tilde{\rho_i} \times \pi)$ can have poles only for $Re(s) = \frac{1-t_i}{2}$. Therefore, $L(s, \tilde{\delta_i} \times \pi)$ can only have poles on the line $Re(s) = \frac{1-t_i}{2}$.

Let us now consider the L-functions on the right hand side of the equation \[4.1\]. By multiplicativity of L-functions (17), [30] or Example 3.6 we have
\[
L(s, \tilde{\delta_i} \times \Pi) = \prod_{j=1}^{d} L(s, \tilde{\delta_i} \times \delta_j) \quad \text{and} \quad L(s, \tilde{\delta_i} \times \delta_j) = \prod_{k=0}^{t_i-1} L(s + k, \tilde{\rho_i} \times \rho_i).
\]

Consequently, $L(s, \tilde{\delta_i} \times \Pi)$ has a pole at $s = 1 - t_i$ since $L(s + t_i - 1, \tilde{\rho_i} \times \rho_i)$ has a pole at $s = 1 - t_i$. Therefore, Equation \[4.1\] implies that $L(s, \tilde{\delta_i} \times \pi)$ also has a pole at $s = 1 - t_i$. Since $L(s, \tilde{\delta_i} \times \pi)$ can have only poles at $\frac{1-t_i}{2}$, $t_i = 1$. Therefore, $\delta_i = \rho_i$ is supercuspidal and we can write
\[
\Pi = \rho_1 \times \cdots \times \rho_d,
\]
with each ρ_i supercuspidal. To see the other properties in the statement of the theorem, we consider the equality
\[
L(s, \tilde{\rho_i} \times \pi) = L(s, \tilde{\rho_i} \times \Pi).
\]

The right hand side has a pole at $s = 0$ of order equal to the number of j such that $\rho_j \simeq \rho_i$. But the left hand side can have at most a simple pole at $s = 0$, as $\tilde{\rho_i} \times \pi$ is supercuspidal. Hence we see that $\rho_i \not\simeq \rho_j$ if $i \neq j$ and $L(s, \tilde{\rho_i} \times \pi)$ has a simple pole at $s = 0$. Lemma 4.6 (a) implies that $L(s, \rho_i \otimes \pi, r_1)$ has a simple pole at $s = 0$ since $L(s, \tilde{\rho_i} \otimes \pi, r_1) := L(s, \tilde{\rho_i} \times \pi)$ has a simple pole at $s = 0$. Therefore, Theorem 8.1 of [30] implies that $\nu^s \rho_i \times \pi$ is reducible at $s = 1$ and $\tilde{\rho_i} \otimes (\omega_{\pi} \circ \Det) \simeq \rho_i$.

We finally come to the L-function condition. Proposition 7.3 and Corollary 7.6 of \cite{30} imply that the product
\[L(s, \rho_i \otimes \pi, r_1)L(2s, \rho_i \otimes \pi, r_2) \]
has a simple pole at $s = 0$, where $r_2 = \text{Sym}^2 \otimes \mu^{-1}$. By previous analysis, this pole is already accounted for by $L(s, \rho_i \otimes \pi, r_1)$. We conclude that $L(s, \rho_i \otimes \pi, \text{Sym}^2 \otimes \mu^{-1})$ has no pole at $s = 0$. On the other hand, from Lemma 3.14 and Remark 3.17 of \cite{19} we know that
\[L(s, \rho_i \times (\rho_i \otimes \omega^{-1}_\pi)) = L(s, \rho_i \otimes \omega^{-1}_\pi, \wedge^2 \otimes \mu^{-1})L(s, \rho_i \otimes \omega^{-1}_\pi, \text{Sym}^2 \otimes \mu^{-1}) \]
where ω_π is a central character of π.

Since $L(s, \rho_i \times (\rho_i \otimes \omega^{-1}_\pi))$ has a simple pole at $s = 0$, we conclude that $L(s, \rho_i \otimes \omega^{-1}_\pi, \wedge^2 \otimes \mu^{-1})$ has a pole at $s = 0$.

The even case, i.e. $GSpin_{2n}$, is similar to the odd case. One has just to change the roles of Sym^2 and \wedge^2. \qed

The following theorem shows that the Langlands parameter of the local functorial lift of an irreducible generic supercuspidal representation π of G_n factors through the L-group of G_n.

Theorem 4.8. Let π and Π be as in Theorem 4.7 and let $\phi_{11} : W_F \to GL_{2n}(\mathbb{C})$ be the local Langlands parameter that is attached to Π by the local Langlands correspondence for general linear groups (\cite{10} \cite{15}). Then ϕ_{11} factors through the L-group of G_n.

Proof. We first consider the odd case, i.e. $GSpin_{2n+1}$ groups. By Theorem 4.7 $\Pi \simeq \Pi_1 \times \cdots \times \Pi_d$ where each Π_i is an irreducible unitary supercuspidal representation of some GL_{2n_i} such that $L(s, \Pi_i \otimes \omega_\pi, \wedge^2 \otimes \mu^{-1})$ has a pole at $s = 0$, $\Pi_i \otimes (\omega_\pi \circ \text{det}) \cong \Pi_i$ and $\Pi_i \not\cong \Pi_j$ for $i \neq j$. Let $\phi_i = \phi_{11,i} : W_F \to \text{L}GL_{2n_i}$ be the local Langlands parameter attached to Π_i through the local Langlands correspondence for general linear groups (\cite{10} \cite{15}). Then Π has the local Langlands parameter $\phi_{11} = \phi_1 \oplus \phi_2 \oplus \cdots \oplus \phi_d$. Henniart proved that the twisted exterior square L-functions are Artin L-functions (\cite{16}). Therefore, the Artin L-function $L(s, (\wedge^2 \otimes \mu^{-1}) \circ (\phi_i \otimes \omega_\pi)) = L(s, \Pi_i \otimes \omega_\pi, \wedge^2 \otimes \mu^{-1})$ also has a pole at $s = 0$. This implies that $(\wedge^2 \otimes \mu^{-1}) \circ (\phi_i \otimes \omega_\pi)$ contains a trivial representation. Therefore, each ϕ_i factors through $GSpin_{2n_i}(\mathbb{C})$ for all i. Then, ϕ_{11} also factors through $GSpin_{2n}(\mathbb{C})$. The even case, i.e. $GSpin_{2n}$, is similar to the odd case. One has just to change the roles of Sym^2 and \wedge^2. \qed

4.3. The equality of L-functions and Langlands parameters: general case.

Denote, for an irreducible admissible generic representation ρ of GL_k, by ϕ_ρ the admissible homomorphism $W_F \to GL_k(\mathbb{C})$ attached to ρ by the local Langlands correspondence.

The following theorem follows from a special case of \cite{13} Theorem 3.2] with help of the local Langlands correspondence for GL_n \cite{10}:

Theorem 4.9. Let π be an irreducible admissible generic representation of G_n and σ be an irreducible admissible generic representation of GL_m. Fix a standard Levi subgroup $M = GL_{k_1} \times \cdots \times GL_{k_r} \times G_k$ of G_n and an irreducible generic supercuspidal representation $\pi_{sc} = \rho_1 \otimes \cdots \otimes \rho_r \otimes \tau$ of M, such that π is a subrepresentation of $i_p^G \pi_{sc}$.

Suppose that there is an admissible homomorphism \(\phi : W_F \to L G_k \) such that, for every irreducible supercuspidal representation \(\rho \) of every general linear group \(GL_l, l \geq 1 \), one has the equalities of local Rankin \(\gamma \)-factors
\[
\gamma(s, \rho \times \tau, \psi_F) = \gamma(s, \phi_\rho \otimes \phi_\tau, \psi_F)
\]
and the equality of local symmetric square (resp. exterior square) \(L \)-functions
\[
L(s, \rho \times \tau, \wedge^2) = L(s, \phi_\rho \otimes \wedge^2(\phi_\tau)), \quad \text{if } k \text{ is odd},
\]
\[
L(s, \rho \times \tau, \text{Sym}^2) = L(s, \text{Sym}^2(\phi_\rho \otimes \phi_\tau)) \quad \text{if } k \text{ is even}.
\]
Then the assumptions of [12, Theorem 6.3] are satisfied which attach to \(\pi \) an admissible homomorphism \(\phi_\pi : W'_F \to L G_n \).
Moreover, one has
\[
\gamma(s, \sigma \times \pi, \psi_F) = \gamma(s, \phi_\sigma \otimes \phi_\pi, \psi_F)
\]
and in particular,
\[
L(s, \sigma \times \pi) = L(s, \phi_\sigma \otimes \phi_\pi).
\]

Remark 4.10. One could add the equality of the symmetric/exterior square \(L \)-functions to the conclusions of the theorem, but we do not need it here.

Proof. Remark first that the equalities for local Rankin \(\gamma \)-factors and local Rankin \(L \)-functions associated to supercuspidal representations of \(GL_{n_1} \times GL_{n_2}, n_1, n_2 \) any integer \(\geq 1 \), follow from the local Langlands correspondence [10]. By this and the equality of the other \(L \)-functions, the assumptions of [13, Theorem 2.3] are satisfied, which implies that the Langlands parameter \(\phi_\pi : W'_F \to L G_n \) is well defined. The equality of the local Rankin \(\gamma \)-factors can be shown as in the proof of [13, Theorem 3.2], because in the product formula for the local Rankin \(\gamma \)-factors only Rankin \(\gamma \)-factors do appear (Example 3.5).

\(\blacksquare \)

Theorem 4.11. For \(\pi \) an irreducible admissible generic representation of \(G_n \) and \(\sigma \) an irreducible admissible generic representation of \(GL_m \), one has the equality of local \(\gamma \)-factors
\[
\gamma(s, \sigma \times \pi, \psi_F) = \gamma(s, \phi_\sigma \otimes \phi_\pi, \psi_F)
\]
and the equality of local \(L \)-functions
\[
L(s, \sigma \times \pi) = L(s, \phi_\sigma \otimes \phi_\pi).
\]

Proof. We apply theorem 4.9 with the notations therein: it follows from theorem 4.8 that the local Langlands parameter of the lift \(\Pi(\tau) \) of \(\tau \) to \(GL_{2k} \) defined in theorem 4.2 factors through the \(L \)-group of \(G_n \). Also by theorem 4.2 equality of the local Rankin \(\gamma \)-factors holds. It has been proved by G. Henniart [16, Theorem 1.4] that one has equality for the exterior square (resp. symmetric square) local \(L \)-functions. Consequently, theorem 4.9 can be applied and implies the equality for local Rankin \(\gamma \)-factors and \(L \)-functions as stated.

\(\blacksquare \)

Remark 4.12. One can approach theorem 4.9 also by using the classification of strongly positive representations of \(GSpin \) groups [20, 21, 22]. The method of the present paper uses Langlands parameters, which are not considered in those papers. Although no specific classification of discrete series representations is apparent in the present paper, this is hidden in the use of the main result of [11] on which [12, 13] are based.
Remark 4.13. In the case of classical groups, the equality of local factors are first proved in [8]. Our results can be used in the case of classical groups in a completely analogous manner to construct Langlands parameter. This gives a new and simple proof of the equality of L-functions in this case.

5. Erratum

The first author wants to use the opportunity to correct the statement of theorem 4.6 in [12] (see also proposition 4.9 of the same article), where it is said that in an L^2-pair (s, N) a complex connected reductive group G the nilpotent element N is determined by s up to a nonzero constant. Of course, if one denotes $N = \sum \alpha N_\alpha$ the decomposition of N relative to the decomposition of the Lie algebra of G into root spaces for the action of a maximal torus T, $s \in T$, only the roots α with $N_\alpha \neq 0$ are determined by s. (It is immediate by the definition of an L^2-pair that only these N_α can be nonzero, because $\alpha(s)$ must be equal to q. From proposition 5.8.5 in [6] it follows that all these N_α must in fact be nonzero.)

This result is used in [12] in the proof of the proposition 4.10 which associates to an L^2-pair (s, N) a morphism of algebraic groups $\phi : SL_2(C) \to G$ and says that this morphism is uniquely determined by s up to equivalence. However, unicity up to equivalence is still true, because the roots α such that $N_\alpha \neq 0$ must be linearly independent by the above and, consequently, if (s, N) and (s, N_1) are two L^2-pairs, it is always possible to find an element s_1 in the torus T, such that $Ad(s_1)N = N_1$. It follows that the morphism of algebraic groups $\phi_1 : SL_2(C) \to G$ associated to (s, N_1) can be obtained from ϕ by conjugating by s_1, which means that both are equivalent.

The first author thanks P. Schneider to have remarked to him the mistake in the statement of theorem 4.6 in [12].

6. Acknowledgment

The second author wants to express his deepest gratitude to his advisor, F. Shahidi for his constant encouragement and help. The part of this paper (Supercuspidal case) is based on the second author’s thesis [20] which F. Shahidi suggested as one of the projects.

References

1. J. Arthur, The endoscopic classification of representations: orthogonal and symplectic groups, Colloquium Publication Series, AMS.
2. M. Asgari, Local L-functions for split spinor groups, Can. J. Math. 54 (2002), 673-693.
3. M. Asgari and F. Shahidi, Generic transfer for general spin groups. Duke Math. J. 132 (2006), no 1, 137-190.
4. M. Asgari and F. Shahidi, Functoriality for general spin groups, preprint, available at [https://www.math.okstate.edu/~asgari/res.html]
5. J. Bernstein and A.V. Zelevinsky, Induced representations of reductive p-adic groups. I, Ann. Sci. École Norm. Sup. 10 (1977), 441-472.
6. R.W. Carter, Finite Groups of Lie type, Conjugacy classes and complex characters, John Wiley, New York, 1985.
7. J.W. Cogdell, H.H. Kim, I.I. Piatetski-Shapiro and F. Shahidi, On lifting from classical groups to GL_N, Publ. Math. Inst. Hautes Études Sci 93 (2001), 5-30.
8. J.W. Cogdell, H.H. Kim, I.I. Piatetski-Shapiro and F. Shahidi, Functoriality for the classical groups, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 163-233.
9. J.W. Cogdell, I.I. Piatetski-Shapiro, and F. Shahidi, Functoriality for quasi-split classical groups, On certain L-functions: Conference Proceedings on the occasion of Freydoon Shahidi’s 60th birthday. AMS/CMI.
10. M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, (2001).
11. V. Heiermann, Décomposition spectrale et représentations spéciales d’un groupe réductif p-adique, J. Inst. Math. Jussieu 3 (2004), 327-395.
12. V. Heiermann, Orbites unipotentes et pôles d’ordre maximal de la fonction µ de Harish-Chandra, Can. J. Math., 58, (2006), 1203-1228.
13. V. Heiermann, Unipotent Orbits and Local L-functions, J. reine angew. Math. 596, (2006), 103-114.
14. G. Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires, Invent. Math. 113 (1993), 339-350.
15. G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math. 139 (2000), 439-455.
16. G. Henniart, Correspondance de Langlands et fonctions L des carrés extérieur et symétrique, Int. Math. Res. Not. no. 4 (2010), 633-673.
17. H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464.
18. H.H. Kim, Applications of Langlands functoriality of odd orthogonal groups, Trans. Am. Math. Soc. 354 (2002), 2775-2796.
19. W. Kim, Standard module conjecture for GSpin groups, PhD Thesis, Purdue University, August 2005.
20. Y. Kim, L-functions from Langlands-Shahidi method for GSpin groups and the generic Arthur packet conjecture, PhD thesis, Purdue University, August 2013.
21. Y. Kim, Langlands-Shahidi L-functions for GSpin groups and the generic Arthur packet conjecture, In preparation.
22. Y. Kim, Strongly positive representations of odd GSpin groups and the Jacquet module method, preprint.
23. R.P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation Theory and Harmonic Analysis on Semisimple Lie Groups; Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101-170.
24. B. Liu, Genericity of representations of p-adic Sp2n and local Langlands parameters, Can. J. Math. 63 (5) (2011), 1107-1136.
25. F. Shahidi, Functional equation satisfied by certain L-functions, Comp. Math. 37 (1978), 171-208.
26. F. Shahidi, On certain L-functions, Amer. J. Math. 103:2 (1981), 297-355.
27. F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for GL(n), Amer. J. Math. 106(1984), 67-111.
28. F. Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52:4 (1985), 973-1007.
29. F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of Math. (2) 127 (1988), no. 3, 547-584.
30. F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273-330.
31. F. Shahidi, On multiplicativity of local factors. In Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), 279-289, Israel Math. Conf. Proc., 3, Weizmann, Jerusalem, (1990).
32. F. Shahidi, Eisenstein series and automorphic L-functions, volume 58 of American Mathematical Society Colloquium Publications. AMS, Providence, RI, (2010).
33. F. Shahidi, Arthur Packets and the Ramanujan Conjecture. Kyoto J. Math. (memorial issues for the late M. Nagata) 51:1 (2011), 1-23.
34. A. Silberger, The Langlands quotient theorem for p-adic groups, Math. Ann. 236 (1978), 95-104.
35. M. Tadić, Classification of unitary representations in irreducible representations of general linear groups(non-archimedean case), Ann. Sci. Éc. Norm. Supér., IV. Sér., 19 (1986), 335-382.
36. A.V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of $\text{GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.

Aix-Marseille Université, IML, FRE 3529, Campus de Luminy, Case 907, 13288 Marseille Cédex 9, France
E-mail address: volker.heiermann@univ-amu.fr

Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa city 52242
E-mail address: yeansu-kim@uiowa.edu