Data Article

Dataset of seasonal mean volumes of phytoplankton cell size classes in Mediterranean shallow coastal lagoons

Silvia Pulinaa,c,*, Cecilia Teodora Sattab,c, Antonella Luglièc, Nicola Sechic, Bachisio Mario Padeddac

a Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, Italy
b AGRIS Sardegna, Agenzia per la Ricerca in Agricoltura, Italy
c Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Italy

A B S T R A C T

In this article, the floristic lists and the seasonal mean cell volumes of phytoplankton taxa observed in three Mediterranean lagoons are reported. These datasets include 40 species, 67 other taxa identified at least at genus level, and further 13 taxa attributed only at order or class level. These data are associated with Pulina et al. “Seasonal variations of phytoplankton size structure in relation to environmental variables in three Mediterranean shallow coastal lagoons” (Pulina et al., 2018) \cite{1}, where phytoplankton taxa were included in two different cell size classes (Utermöhl fraction of phytoplankton, cell size \(> 3 \mu m\); Picophytoplankton, cell size \(< 3 \mu m\)) and in which their seasonal variations were interpreted and discussed. © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications Table

Subject area	Biology
More specific subject area	Phytoplankton ecology
Type of data	Tables, text file

* Corresponding author at: Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Italy.
E-mail address: pulinasi@uniss.it (S. Pulina).

https://doi.org/10.1016/j.dib.2018.08.001
2352-2409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
How data was acquired

Inverted microscope (Zeiss, Axiovert 25), epifluorescence microscope (Zeiss, Axiovert 100)

Data format

Analyzed

Experimental factors

Water samples were collected and immediately fixed in 2% acid Lugol’s solution and in 2% formaldehyde for microscopic analyses

Experimental features

Phytoplankton cells were identified at microscope and measured with a manual micrometer. Cell volumes were calculated approximating the shape of each taxon to known solids or to solid compositions and applying the corresponding calculation formula

Data source location

University of Sassari, Sassari, Italy

Data accessibility

Data is with this article

Related research article

S. Pulina, C.T. Satta, B.M. Padedda, N. Sechi, A. Lugliè, Seasonal variations of phytoplankton size structure in relation to environmental variables in three Mediterranean shallow coastal lagoons, Estuar Coast Shelf Sci [1].

Value of the data

- Seasonal mean volumes of taxa from two different phytoplankton size classes were shown for the first time for Mediterranean transitional ecosystems.
- Floristic lists reported improve the overview on phytoplankton biodiversity in transitional ecosystems worldwide.
- The data presented can be compared to those of other transitional ecosystems worldwide for further insights on effects of seasonal environmental variations on phytoplankton size structure.

1. Data

In this paper, we report phytoplankton floristic lists and mean cell volumes from three shallow coastal lagoons located in north west Mediterranean Sea: Calich (CA), Santa Giusta (SG) and Corru S’Ittiri (CI) lagoons (Sardinia, Italy) [2] (Tables 1–3). These datasets include information on 40 species (10 species in CA, 19 in SG and 23 in CI), 67 taxa identified at least at genus level (25 genera in CA, 30 in SG and 35 in CI), and further 13 taxa attributed only at order or class level (6 taxa in CA, 9 in SG and 7 in CI). These data are associated with Pulina et al. “Seasonal variations of phytoplankton size structure in relation to environmental variables in three Mediterranean shallow coastal lagoons” [1]. Two cell size classes were considered, Utermöhl fraction of phytoplankton (UFP, cell size > 3 μm) and picophytoplankton (Pico, cell size < 3 μm). For each site, seasonal mean cell volume of every taxon observed was reported to show seasonal variation in values. The means were accompanied by standard deviations of different sampling stations in each lagoon and different months in each season.

2. Experimental design, materials and methods

Monthly samplings were performed from May 2011 to April 2012 in the three lagoons. Water was collected from superficial layers (~0.20 m) in different sampling stations (3 in CA and CI, 5 in SG) located following the salinity gradient in each site. Part of samples was immediately fixed with a 2% acid Lugol’s solution for UFP analyses, and with 2% formaldehyde for Pico analyses.

Lugol fixed samples were prepared according to Utermöhl technique [3] and were observed with an inverted microscope (Zeiss, Axiovert 25), using 100X and 200X of magnifications for the smaller UFP species, and 400X for the larger ones. UFP species were identified observing both fresh and fixed samples, following the taxonomic guides listed in Ref. [4]. Flagellate and not flagellate cells from 5 to
20 μm in size, not identified at least at class level, were grouped as Flagellates and Nanoplankton, respectively. For each sample, at least 20 randomly selected cells of each taxon were measured with a manual micrometer. Mean cell volume of each taxon was obtained associating its shape to a known solid or to a solid composition and applying the corresponding calculation formula [5].

Formaldehyde fixed samples were filtered onto 0.2-μm black-stained polycarbonate membranes (Nucleopore) to observe Pico with a microscope (Zeiss, Axiovert 100) equipped with green (BP520–560 nm/FT580 nm/LP590 nm) and blue (BP450–490 nm/FT510 nm/LP520 nm) filters set. For

Table 1	Mean volume (V, μm3) and standard deviation (SD) of Uthermöhl fraction of phytoplankton and picophytoplankton taxa observed in Calich Lagoon during the study period (- = the taxon has been observed once). BAC, Bacillariophyceae; CHL, Chlorophyceae; CHR, Chrysophyceae; CRY, Cryptophyceae; CYA, Cyanophyceae; DIC, Dictyochophyceae; DIN, Dinophyceae; EUG, Euglenophyceae; PRA, Prasinophyceae; RAP, Raphidophyceae; FLA, Flagellates; PICO, picophytoplankton.		
Summer	Autumn	Winter	Spring
BAC Asterionella formosa Hassall	1274 –	13,528 –	524 –
BAC Cerataulina pelagica (Cleve) Hendey	697 –	3414 –	144 –
BAC Chaetoceros peruvianus Brightwell	21 –	312 –	111 –
BAC Chaetoceros sp.	70 12	30 –	48 36
BAC Cyclotella sp. 1	114 –	16,934 –	14,977 –
BAC Cyclotella sp. 2	198 –	228 –	207 227 153 148
BAC Cylindrotheca closterium (Ehrenberg) Reimann & J.C. Lewin	2085 –	4786 –	2958 –
BAC Skeletonema sp. 1	198 –	228 –	207 227 153 148
BAC Skeletonema sp. 2	63 –	111 –	278 –
BAC Syne tro sp.	11,546 –	327 –	13,930 –
BAC Thalassionema nitzschioides (Grunow) Mereschkowsky	866 68 914 –	387 –	1123 –
BAC Thalassiosira sp.	513 46 –	724 –	1919 2089
BAC Pseudonitzschia spp.	88 64 65 –	63 2 65 19	
BAC Nitzschia sp.	2842 –	315 –	
BAC Nitzschia sp.	224 –	15 –	
BAC Chryso phyceae undetermined	165 153 265 127 130 35 219 25		
BAC Cryptophyceae undetermined	26 –		
BAC Cyanophyceae undetermined	4 –		
BAC Oscillatoriales undetermined	43 –		
BAC Dinophyceae undetermined	175 67 174 –		
BAC Dinophyceae undetermined	307 –	233 –	
BAC Dinophyceae undetermined	6593 21 7044 2514 5189 121		
BAC Dinophyceae undetermined	6367 –		
BAC Peridinum quinquecorne (F. Stein) Lindemann	3062 –	942 –	
BAC Peridinium quinquecorne Abé	1040 1057	1564 –	
BAC Scrippsiella sp.	3757 –		
BAC Dinophyceae undetermined	3757 –		
BAC Dinophyceae undetermined	1192 496 290 –		
BAC Dinophyceae undetermined	2451 95		
BAC Dinophyceae undetermined	1757 1433		
BAC Pyramimonas sp.	103 35		
BAC Pyramimonas sp.	25 116		
BAC Pyramimonas sp.	116 116		
BAC Pyramimonas sp.	0.34 0.07		
Table 2
Mean volume (\(V, \mu m^3\)) and standard deviation (SD) of Uthermöhl fraction of phytoplankton and picophytoplankton taxa observed in Santa Giusta Lagoon during the study period (– = the taxon has been observed once). BAC, Bacillariophyceae; CHL, Chlorophyceae; CHR, Chrysophyceae; CRY, Cryptophyceae; CYA, Cyanophyceae; DIC, Dictyochophyceae; DIN, Dinophyceae; EUG, Euglenophyceae; PRA, Prasinophyceae; RAP, Raphidophyceae; FLA, Flagellates; NAN, Nanoplankton; PICO, picophytoplankton.

	Summer	Autumn	Winter	Spring				
	\(V\)	\(SD\)	\(V\)	\(SD\)	\(V\)	\(SD\)	\(V\)	\(SD\)
BAC								
Biddulphia cf. antediluviana (Ehrenberg) Van Heurck	246,274	–						
Cerataulina sp.	34,127	–						
Chaetoceros curvisetus Cleve	62	–						
Chaetoceros spp.	139	134						
Cyclotella sp.	17	7	46	44	44	44		
Cylindrotheca closterium (Ehrenberg) Reimann & J. C. Lewin	107	46	42	–	212	0	36	18
Gainardia striata (Stoltherfoth) Hasle	8831	–						
Leptocylindrus sp.	654	0						
Licmophora sp.								
Nitzschia sp.	2072	–	7293	683	7720	–		
Pleurosigma / *Gyrosigma* sp.	12,953	–	66,382	75,560	250,501	–		
Pseudo-nitzschia sp.	170	–	170	–	260	269		
Rhizosolenia sp.	13,620	–	147	–	71	–		
Skeletonema sp.								
Striatella sp.	44,438	–	101,750	99,349	172,000	–	7546	–
Tabellaria sp.	44,438	–	101,750	99,349	172,000	–	7546	–
Tenuicilindrus belgicus (Meunier) D. Nanjappa & A. Zingone	147	–						
Thalassionema sp.	745	–						
Thalassiosira sp.	956	–						
Pennales undetermined 1	2012	553	5273	5896	23,617	–	46	61
Pennales undetermined 2	49	34	21	10	38	22		
Carteria sp.	28	–						
Crucigenia tetrapedia (Kirchner) Kuntze	8	–						
Monoraphydium sp. 1	12	–						
Monoraphydium sp. 2	20	–	12	4	20	–	18	–
Monoraphydium sp. 3	17	–						
Oocystis sp.	15	1	13	–	15	9		
Pediastrum duplex Meyen	8	–						
Chlorophyceae undetermined	481	153	66	–	300	274		
Cryptophyceae undetermined	51	15	55	6	49	6	89	44
Aphanizomenon sp.	48	51						
Nostocales undetermined	38	40	41	–				
Oscillatoriales undetermined	14	–	201	–				
Component	Species/Genus	Count	Count	Count	Count	Count	Count	
-----------	--------------	-------	-------	-------	-------	-------	-------	
DIC	*Apedinella* sp.	66	–	53	–	101	5	
DIN	Akashiwo sanguinea (K. Hirasaka) G. Hansen & Moestrup	8341	3419	14,364	–	12,291	8378	
DIN	*Alexandrium* sp. 1	6455	657	–	–	–	–	
DIN	*Alexandrium* sp. 2	16,689	–	–	–	–	–	
DIN	*Dinophysis* cf. acuminata Claparède & Lachmann	6449	–	–	–	6264	320	
DIN	*Gonyaulax* sp.	7533	–	11,484	–	–	–	
DIN	*Gyrodinium impudicum* S. Fraga & I. Bravo	2665	535	–	–	–	–	
DIN	*Heterocapsa* cf. rotundata (Lohmann) G. Hansen	136	60	112	78	102	46	
DIN	*Levanderina fissa* (Levander) Moestrup, Hakanen, G. Hansen, N. Daugbjerg & M. Ellegaard	4495	0	–	–	11,083	–	
DIN	*Peridinium quinquecorne* Abé	243	64	338	0	154	57	
DIN	*Prorocentrum* arcuatum Issel	–	–	–	–	6632	–	
DIN	*Prorocentrum cordatum* (= *Prorocentrum minimum*) (Ostenfeld) J.D. Dodge	351	–	1013	–	1013	1792	
DIN	*Prorocentrum micans* Ehrenberg	–	–	3919	0	4407	1539	
DIN	*Prorocentrum triestinum* J. Schiller	243	64	338	0	154	57	
DIN	*Prorocentrum* spp.	–	–	–	–	2747	–	
DIN	*Pyrophacus* sp.	16,245	0	–	–	–	–	
DIN	*Scrippsilla* spp.	5076	2128	3640	1736	12,592	–	
DIN	*Dinophyceae undetermined* 1	3623	5925	324	69	1631	–	
DIN	*Tripos fusus* (= *Ceratium fusus*) (Ehrenberg) F.Gómez	6514	–	–	–	–	–	
DIN	*Tripos* sp.	–	–	–	–	20,991	–	
DIN	*Dinophyceae undetermined* 2	3479	–	4178	–	2914	944	
EUG	*Eutreptiella* sp.	2538	0	950	–	950	–	
PRA	*Prasinophyceae undetermined*	43	32	108	32	73	–	
RAP	*Chattonella subsalsa* B. Biecheler	1900	–	–	–	–	–	
FLA	Flagellates	79	19	110	72	79	11	
NAN	Nanoplancton	13	1	20	–	38	–	
PICO	*Pico*	0.83	0.35	0.62	0.11	0.57	0.10	
PICO	*Pico*	1.62	1.34	1.59	0.21	1.89	0.30	
Table 3
Mean volume (V, μm3) and standard deviation (SD) of Uthermöhl fraction of phytoplankton and picophytoplankton taxa observed in Corru S’ittiri Lagoon during the study period (– = the taxon has been observed once). BAC, Bacillariophyceae; CHL, Chlorophyceae; CHR, Chrysophyceae; CRY, Cryptophyceae; CYA, Cyanophyceae; DIC, Dictyochophyceae; DIN, Dinophyceae; EUG, Euglenophyceae; PRA, Prasinophyceae; RAP, Raphidophyceae; FLA, Flagellates; PICO, picophytoplankton.

Taxon	Summer	Autumn	Winter	Spring					
	V	SD	V	SD	V	SD	V	SD	
BAC Amphiprora spp.	11,038	3740	4329	255	6857	–	231	–	
BAC Amphora sp.	132	139	2723	0	145	121	231	–	
BAC Chaetoceros minimus (Levander) D. Marino et al.	57	0	57	–	–	57	–		
BAC Chaetoceros spp.	230	249	793	548	415	243	555	–	
BAC Cylindrotheca closterium (Ehrenberg) Reimann & J.C. Lewin	349	0	585	334	1316	1577	349	–	
BAC Cocconeis sp.	833	0	833	–	9139	6776	2244	–	
BAC Diploneis sp.	492	0	492	–	492	–	492	–	
BAC Grammatophora sp.	2007	0	2007	–	2007	–	2007	–	
BAC Licmophora sp.	4348	–	9139	6776	–	–	–	–	
BAC Navicula spp.	345	92	395	12	708	–	498	128	
BAC Nitzschia cf. sigma (Kützing) W. Smith	417	–	417	–	417	–	417	–	
BAC Nitzschia longissima (Brébisson) Ralfs	822	0	822	–	822	–	822	–	
BAC Nitzschia spp.	349	0	585	334	1316	1577	349	–	
BAC Pleurosigma/ Gyrosigma sp.	38,244	27,533	47,286	–	38,244	27,533	47,286	–	
BAC Pseudo-nitzschia sp.	140	51	296	137	156	–	110	–	
BAC Rhizosolenia setigera Brightwell	2146	1374	998	766	324	–	2728	1420	
BAC Skeletonema sp.	8233	9080	2828	–	99	–	7194	–	
BAC Synedra sp.	363	–	1332	113	542	252	363	–	
BAC Thalassiosira sp.	73	74	158	69	69	69	69	69	
BAC Carteria sp.	113	–	113	–	113	–	113	–	
BAC Chlorella sp.	135	0	19	–	17	–	17	–	
BAC Dictyospherium pulchellum H. C. Wood	15	0	19	–	17	–	17	–	
BAC Kirchneriella sp.	77	–	77	–	77	–	77	–	
BAC Monoraphidium minutum (Nägeli) Komárková-Legnerová	20	1	20	1	20	1	20	1	
BAC Monoraphidium arcuatum (Komshikov) Hindák	77	–	77	–	77	–	77	–	
BAC Pediastrum boryanum (Turpin) Meneghini	207	0	158	69	69	–	361	–	
BAC Pediastrum tetras (Ehrenberg) Ralfs	36	–	40	–	32	–	32	–	
BAC Chrysophyceae undetermined	56	34	37	–	2477	–	2477	–	
CRY	Cryptomonas sp.	526	275	721	–				
CRY	Plagioselmis sp.	37	8	44	–	44	–		
CRY	Cryptophyceae undetermined	35	8	139	138	140	58	47	3
CYA	Anabaena sp.	87	0	–	76	16			
CYA	Anabaenopsis sp.	58	0	58	–				
CYA	Chroococcus sp.	31	13	24	–				
CYA	Pseudanabaena sp.	10	7	11	5	4	–		
CYA	Oscillatoriales undetermined	37	0	37	–	37	–		
DIC	Apedinella sp.	–	–	–	–				
DIN	Akashiwo sanguinea (K. Hirasaka) G. Hansen & Moestroup	8537	0	12,291	8378	8537	–	8341	3419
DIN	Alexandrium minutum Halim	6141	0	–	–				
DIN	Alexandrium sp.	5672	0	–	–				
DIN	Bysmatrum sp.	2449	–	–					
DIN	Dinophys cf. acuminata Claparède & Lachmann	3956	1040	6726	2295	8348	921	7523	–
DIN	Gonyaulax spinifera (Claparède & Lachmann) Diesing	13,582	0	–	–	13,582	–	–	
DIN	Gymnodinium litoralis A. Reñé	1474	192	1593	–	2174	562	–	–
DIN	Gymnodinium sp.	980	351	–	–	1165	–	–	
DIN	Heterocapsa sp.	371	57	319	21	164	50	813	–
DIN	Peridinium quinquecorne Abé	3543	963	5605	1345	4850	–	4719	798
DIN	Prorocentrum cordatum (= Prorocentrum minimum) (Ostenfeld) J.D. Dodge	569	0	–	–				
DIN	Prorocentrum micans Ehrenberg	3881	464	–	–	6367	–	–	
DIN	Prorocentrum triestinum J. Schiller	821	119	334	143	1072	22	–	
DIN	Prorocentrum sp.	6214	–	–	–	6214	–	–	
DIN	Scrippsiella spp.	3393	202	4331	998	3908	–	5044	–
DIN	Dinophyceae undetermined	4629	311	4954	–	4601	–	332	–
EUG	Eutreptiella marina da Cunha	668	306	–	–	–	999	–	–
EUG	Euglenophyceae undetermined	1076	647	1421	–	–	1965	–	–
PRA	Tetraselmis sp.	3185	0	–	–	–	2820	–	–
PRA	Prasinophyceae undetermined	62	22	38	–	78	–	–	
PICO	Picocyanobacteria	1.06	0.40	0.99	0.57	0.79	0.55	0.52	0.21
PICO	Picoeukariotes	0.71	0.16	1.52	0.11	0.77	0.22	–	–
each sample, about 200 randomly selected cells of each group (autotrophic picocyanobacteria and autotrophic picoeukaryotes) were measured with a manual micrometer. Mean volume was calculated assuming the shape of cell spherical or cylindrical with hemispheric ends, using the formulas described in [6].

Transparency document. Supplementary material

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.08.001.

References

[1] S. Pulina, C.T. Satta, B.M. Padedda, N. Sechi, A. Lugliè, Seasonal variations of phytoplankton size structure in relation to environmental variables in three Mediterranean shallow coastal lagoons, Estuar. Coast. Shelf Sci. 212 (2018) 95–104.
[2] S. Pulina, C.T. Satta, B.M. Padedda, A.M. Bazzoni, N. Sechi, A. Lugliè, Picophytoplankton seasonal dynamics and interactions with environmental variables in three Mediterranean coastal lagoons, Estuar. Coast 40 (2017) 469–478.
[3] H. Utermöhl, Zur vervollkommung der quantitativen phytoplankton-methodik, Mitt d Internat Vereinig f, Limnologie 9 (1958) 1–39.
[4] S. Pulina, B.M. Padedda, C.T. Satta, N. Sechi, A. Lugliè, Long-term phytoplankton dynamics in a Mediterranean eutrophic lagoon (Cabras Lagoon, Italy), Plant Biosyst. 146 (1) (2012) 259–272.
[5] Recommendations for marine biological studies in the Baltic Sea, in: L. Edler (Ed.), Phytoplankton and Chlorophyll University of Lund, Sweden, 5 (1979) 1–38.
[6] G. Bratbak, Bacterial biovolume and biomass estimation, Appl. Environ. Microbiol. 49 (1985) 1488–1493.