Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India

Ruohan Wu 1, Joel Podgorski 1,2, Michael Berg 2 and David A. Polya 1*

1 Department of Earth and Environmental Sciences, School of Natural Sciences & Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UNITED KINGDOM;

2 Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, SWITZERLAND;

* Correspondence: david.poya@manchester.ac.uk (D.A.P.)

Supplementary Materials

8 Tables & 7 Figures
NO.	Variables	Abbreviation	Unit	Type	Resolution	Data Sources
1	Actual evapotranspiration	AET	mm/year	Continuous	1km	Trabucco and Zomer, 2010
2	Aridity		dimensionless	Continuous	1km	Trabucco and Zomer, 2009
3	Calcisols		%	Continuous	250m	ISRIC, 2017
4	Fluvisols		%	Continuous	250m	ISRIC, 2017
5	Gleysols		%	Continuous	250m	ISRIC, 2017
6	Potential evapotranspiration	PET	mm/year	Continuous	1km	Trabucco and Zomer, 2009
7	Precipitation		mm/year	Continuous	1km	Hijmans et al., 2005
8	Priestly-Taylor Alpha Coefficients	PTALCOE	dimensionless	Continuous	1km	Trabucco and Zomer, 2010
9	Slope		degree	Continuous	1km	The World Bank, 2017
10	Soil and sedimentary deposit thickness	ASSDT	meters	Continuous	1km	Pelletier et al., 2016
11	Soil cation exchange capacity	Soil CEC	meq / 100g clay	Continuous	250m	ISRIC, 2017
12	Soil organic carbon content	ORCDRC	k / kg	Continuous	250m	ISRIC, 2017
13	Soil organic carbon density	OCDENS	kg / m³	Continuous	250m	ISRIC, 2017
14	Soil organic carbon stock	OCSTHA	ton/ha	Continuous	250m	ISRIC, 2017
15	Soil pH		dimensionless	Continuous	250m	ISRIC, 2017
16	Soil water capacity	WWP	%	Continuous	250m	ISRIC, 2017
17	Solonchaks		%	Continuous	250m	ISRIC, 2017
18	Temperature		°C	Continuous	1km	Hijmans et al., 2005
19	Topographic wetness index	TWI	dimensionless	Continuous	1km	Hengl, 2018
20	Volume percentage of coarse fragments	CRFVOL	%	Continuous	250m	ISRIC, 2017
21	Water table depth	WTD	meters	Continuous	1km	Fan et al., 2013
22	Weight percentage of clay particles	CLYPPT	%	Continuous	250m	ISRIC, 2017
23	Weight percentage of sand particles	SNDPPT	%	Continuous	250m	ISRIC, 2017
24	Weight percentage of silt particles	SLTPPT	%	Continuous	250m	ISRIC, 2017
25	Acid plutonic rocks		dimensionless	Categorical	polygon	Hartmann & Moosforf, 2012
26	Basic volcanic rocks		dimensionless	Categorical	polygon	Hartmann & Moosforf, 2012
27	Metamorphic rocks		dimensionless	Categorical	polygon	Hartmann & Moosforf, 2012
28	Sedimentary rocks		dimensionless	Categorical	polygon	Hartmann & Moosforf, 2012
Table S2 Parameter values for prevalence ratio of arsenic-induced skin cancer and incidence rate of arsenic-induced inner cancer. Estimated by Brown et al. (1989) and NRC (1999, 2001).

	q_1	q_2	k	m
Skin Cancer				
Male	7.936×10^{-10}	1.640×10^{-12}	2.950	6.873
Female	6.291×10^{-11}	3.265×10^{-13}	3.231	9.000
Lung cancer				
Male	1.4672×10^{-11}	0	3.9195	21.4946
Female	0	6.1194×10^{-14}	3.5137	17.0978
Bladder cancer				
Male	0	7.3394×10^{-17}	5.1306	14.7025
Female	0	2.2225×10^{-13}	3.4732	33.0365
Liver cancer				
Male	3.6947×10^{-14}	4.9984×10^{-13}	2.9054	16.8998
Female	2.8015×10^{-8}	4.9395×10^{-13}	2.7282	25.9420

Table S3 Independent variables appearing in logistic regressions using thresholds of 10 µg/L, 5 µg/L, 4 µg/L, 3 µg/L, 2 µg/L, and 1 µg/L for groundwater arsenic and which passed the Hosmer-Lemeshow goodness-of-fit test. See Table S1 for explanation of variable abbreviations.

Thresholds	Variables
10 µg/L	aridity, PET, slope, WWP
5 µg/L	aridity, ASSDT, CRFVOL, DTM, PET, fluvisols, slope, SNDPPT, soil_CEC, temperature, WWP
4 µg/L	ASSDT, calcisols, CLYPPT, CRFVOL, DTM, PET, fluvisols, slope, sndppt, soil pH, WTD, WWP
3 µg/L	aridity, CRFVOL, TWI, PET, fluvisols, slope, soil pH, temperature, WTD
2 µg/L	aridity, CRFVOL, TWI, PET, slope, soil pH, temperature
1 µg/L	evapotranspiration, temperature
Table S4 Comparison of the goodness of fit of the logistic regression models for thresholds of 10 µg/L for groundwater arsenic with various variable combinations passing the Hosmer-Lemeshow goodness-of-fit test. Goodness of fit indicated by AUC values for modelling the entire dataset. Mean AUC and AIC values on testing datasets also tabulated. Coefficients of normalized variables give an indication of the relative importance of each variable within a given model. Preferred variable model as determined by highest AUC value indicated in bold.

NO.	Variable Combinations (coefficients of normalized variables)	AUC	Mean AUC	Mean AIC
1	slope (-23.90)	0.7711	0.7681	131.5031
2	aridity (-8.19), slope (-30.35)	0.8092	0.8085	125.4225
3	PET (3.55), slope (-23.72)	0.8132	0.8089	123.7148
4	slope (-23.26), WWP (-3.55)	0.7999	0.7974	127.0251
5	aridity (-10.81), slope (-31.12), WWP (-3.50)	0.8175	0.8167	117.1626
6	**PET (3.47), slope (-25.19), WWP (-3.55)**	**0.8275**	**0.8247**	**119.3607**
Table S5 Comparison of the goodness of fit of the logistic regression models for thresholds of 5 µg/L for groundwater arsenic with various variable combinations passing the Hosmer-Lemeshow goodness-of-fit test. Goodness of fit indicated by AUC values for modelling the entire dataset. Mean AUC and AIC values on testing datasets also tabulated. Coefficients of normalized variables give an indication of the relative importance of each variable within a given model. Preferred variable model as determined by highest AUC value indicated in bold.

NO.	Variable Combinations (coefficients of normalized variables)	AUC	Mean AUC	AIC
1	aridity (-6.17), temperature (4.57)	0.7688	0.7737	231.2336
2	ASSDT (1.57), PET (3.14)	0.7779	0.7822	224.0768
3	TWI (6.76), PET (3.14)	0.7589	0.7631	228.3559
4	PET (3.99), fluvisols (3.22)	0.7599	0.7628	228.1875
5	PET (3.61), slope (-11.54)	0.7746	0.7785	227.1861
6	aridity (-5.32), fluvisols (2.84), temperature (4.40)	0.7912	0.7956	223.9598
7	ASSDT (1.18), PET (2.67), slope (-10.51)	**0.7937**	**0.7983**	**218.7494**
8	ASSDT (1.28), PET (3.35), Soil CEC (-2.54)	0.7811	0.7858	220.1722
9	CRFVOL (-2.82), PET (3.79), fluvisols (2.97)	0.7841	0.7885	225.0644
10	TWI (6.01), PET (3.18), Soil CEC (-2.78)	0.7738	0.7787	224.2508
11	TWI (6.03), PET (2.85), WWP (-2.27)	0.7811	0.7848	225.3846
12	TWI (5.26), SNDPPT (2.93), temperature (3.84)	0.7758	0.7810	226.237
13	PET (3.39), fluvisols (2.63), slope (-10.99)	0.7910	0.7953	221.4558
14	PET (3.84), fluvisols (3.01), Soil CEC (-2.58)	0.7739	0.7791	222.9548
15	PET (3.62), slope (-11.40), SNDPPT (2.88)	0.7809	0.7858	223.6855
16	PET (3.69), slope (-9.69), Soil CEC (-2.76)	0.7853	0.7909	223.8178
17	PET (3.38), slope (-10.28), WWP (-2.45)	0.7930	0.7975	222.6845
Table S6 Comparison of the goodness of fit of the logistic regression models for thresholds of 4 µg/L for groundwater arsenic with various variable combinations passing the Hosmer-Lemeshow goodness-of-fit test. Goodness of fit indicated by AUC values for modelling the entire dataset. Mean AUC and AIC values on testing datasets also tabulated. Coefficients of normalized variables give an indication of the relative importance of each variable within a given model. Preferred variable model as determined by highest AUC value indicated in bold.

NO.	Variable Combinations (coefficients of normalized variables)	AUC	Mean AUC	AIC
1	ASSDT (1.09), TWI (5.24)	0.7277	0.7263	279.3212
2	ASSDT (1.36), PET (2.79)	0.7435	0.7405	277.1803
3	calcisols (2.56), TWI (8.26)	0.7210	0.7208	279.4668
4	TWI (6.06), PET (2.67)	0.7400	0.7393	280.2533
5	TWI (5.27), fluvisols (2.14)	0.7289	0.7299	291.3026
6	PET (3.50), fluvisols (3.30)	0.7487	0.7483	278.7497
7	PET (3.02), slope (-9.15)	0.7438	0.7427	280.8296
8	ASSDT (1.15), CRFVOL (-2.38), PET (2.31)	0.7457	0.7427	276.9598
9	ASSDT (0.10), TWI (4.86), PET (2.18)	0.7541	0.7522	271.9397
10	ASSDT (1.02), PET (2.78), fluvisols (2.52)	0.7638	0.7622	272.8171
11	ASSDT (1.01), PET (2.44), slope (-7.10)	0.7573	0.7553	273.4258
12	calcisols (2.06), TWI (6.66), PET (2.05)	0.7493	0.7496	277.181
13	CRFVOL (-2.69), PET (3.11), fluvisols (3.45)	0.7670	0.7661	273.7767
14	**TWI** (4.83), **PET** (2.76), **fluvisols** (2.58)	**0.7680**	**0.7680**	**274.4554**
15	TWI (5.72), PET (2.39), SNDPPT (2.50)	0.7444	0.7451	276.1734
16	TWI (5.50), PET (2.71), Soil CEC (-2.20)	0.7449	0.7456	276.887
17	TWI (6.65), PET (3.59), Soil pH (-3.37)	0.7380	0.7386	276.1097
18	TWI (5.58), PET (2.96), WWP (-1.79)	0.7486	0.7492	272.4696
19	PET (3.46), fluvisols (3.07), slope (2.53)	0.7653	0.7660	273.9498
20	PET (3.45), fluvisols (2.92), WTD (-4.36)	0.7619	0.7614	270.9427
21	PET (2.81), slope (-9.66), SNDPPT (2.54)	0.7540	0.7544	277.0629
22	ASSDT (1.56), CLYPPT (4.95), PET (2.90), sndppt (4.99)	0.7524	0.7518	274.8691
23	calcisols (2.19), TWI (7.01), PET (3.27), Soil pH (-3.68)	0.7530	0.7440	272.4391
24	TWI (6.16), PET (3.16), SNDPPT (2.26), Soil pH (-3.28)	0.7465	0.7471	277.8261
Table S7 Comparison of the goodness of fit of the logistic regression models for thresholds of 3 µg/L for groundwater arsenic with various variable combinations passing the Hosmer-Lemeshow goodness-of-fit test. Goodness of fit indicated by AUC values for modelling the entire dataset. Mean AUC and AIC values on testing datasets also tabulated. Coefficients of normalized variables give an indication of the relative importance of each variable within a given model. Preferred variable model as determined by highest AUC value indicated in bold.

NO.	Variable Combinations (coefficients of normalized variables)	AUC	Mean AUC	AIC
1	aridity (-4.98), TW1 (3.97)	0.6981	0.6977	358.9264
2	aridity (-6.13), slope (-7.89)	0.7143	0.7143	352.2671
3	aridity (-7.97), temperature (3.08)	0.7487	0.7491	347.5423
4	TW1 (4.36), PET (2.93)	0.7166	0.7167	351.5099
5	PET (4.19), fluvisols (2.68)	0.7161	0.7159	341.7448
6	PET (3.20), slope (-5.93)	0.7167	0.7162	353.2016
7	aridity (-6.53), TW1 (3.59), temperature (2.18)	0.7456	0.7457	344.3414
8	aridity (-4.27), PET (2.15), slope (-6.28)	0.7363	0.7364	346.9731
9	aridity (-6.99), fluvisols (1.97), temperature (2.94)	0.7575	0.7675	344.3026
10	aridity (-7.31), slope (-5.54), temperature (2.27)	0.7547	0.7550	342.7834
11	aridity (5.25), Soil pH (3.97), temperature (-3.24)	0.7574	0.7575	342.0068
12	TW1 (3.41), PET (2.24), Soil pH (-4.86)	0.7162	0.7163	346.5254
13	PET (3.41), fluvisols (2.24), slope (-4.86)	0.7283	0.7282	346.3579
14	aridity (-7.24), CRFVOL (-2.32), PET (3.49), Soil pH (-3.90)	0.7373	0.7372	346.5548
15	aridity (-5.13), TW1 (4.25), PET (3.05), Soil pH (-3.79)	0.7419	0.7418	344.4279
16	aridity (-8.69), TW1 (3.51), Soil pH (-3.28), temperature (2.27)	0.7559	0.7559	341.8046
17	aridity (-6.06), PET (2.88), slope (-6.16), Soil pH (-3.41)	0.7426	0.7424	342.9930
Table S8 Comparison of the goodness of fit of the logistic regression models for thresholds of 2 µg/L for groundwater arsenic with various variable combinations passing the Hosmer-Lemeshow goodness-of-fit test. Goodness of fit indicated by AUC values for modelling the entire dataset. Mean AUC and AIC values on testing datasets also tabulated. Coefficients of normalized variables give an indication of the relative importance of each variable within a given model. Preferred variable model as determined by highest AUC value indicated in bold.

NO.	Variable Combinations (coefficients of normalized variables)	AUC	Mean AUC	AIC
1	aridity (-5.31)	0.6622	0.6630	409.9315
2	PET (3.27)	0.6756	0.6759	409.3184
3	aridity (-4.77), CRFVOL (-2.13)	0.6825	0.6811	407.2433
4	aridity (-4.38), TWI (3.00)	0.6713	0.6718	402.4405
5	aridity (-3.40), PET (2.09)	0.6988	0.6989	402.8651
6	aridity (-4.78), slope (-3.46)	0.6774	0.6781	400.3215
7	**aridity (-5.99), temperature (1.95)**	**0.7069**	**0.7087**	**404.6537**
8	TWI (2.70), PET (2.66)	0.6894	0.6870	400.5975
9	PET (2.83), slope (-3.21)	0.6869	0.6870	403.6573
10	aridity (-3.21), PET (1.92), slope (-3.29)	0.7034	0.7038	396.3125
11	aridity (-5.28), PET (2.78), Soil pH (-2.84)	0.6889	0.6892	399.0279
12	aridity (-4.15), CRFVOL (-1.98), PET (2.74), Soil pH (-2.79)	0.6980	0.6984	400.6386
13	aridity (-4.81), PET (2.36), slope (-3.11), Soil pH (-2.96)	0.6921	0.6913	399.2147
Fig. S1 Frequency diagram of Gujarat groundwater arsenic concentrations (n = 398; CGWB, 2016) used in the modelling.
Fig. S2 ROC curves of final logistic regression models with (a) 10 µg/L, (b) 5 µg/L, (c) 4 µg/L, (d) 3µg/L, (e) 2 µg/L, and (f) 1 µg/L as thresholds for groundwater arsenic in Gujarat state, India.
Fig. S3 Plots of sensitivity (true-positive rate), specificity (true-negative rate) and accuracy against cutoffs of the final logistic regression models with (a) 10 µg/L, (b) 5 µg/L, (c) 4 µg/L, (d) 3 µg/L, and (e) 2 µg/L as thresholds for groundwater arsenic in Gujarat state, India.
Fig. S4 Hazard maps showing the probability of the geospatially modelled occurrences of groundwater arsenic concentration exceeding thresholds of (a) 10 µg/L, (b) 5 µg/L, (c) 4 µg/L, (d) 3 µg/L, and (e) 2 µg/L in Gujarat state, India.
Fig. S5 Spatial distribution of predictor variables in the final logistic regression models of groundwater arsenic hazard distribution in Gujarat.
Fig. S6 Pseudo-contour map of geospatially modelled groundwater arsenic hazard distribution in Gujarat using a cut-off value (0.5) for all concentrations.
Fig. S7 Spatial distribution of soil organic carbon content at 1 – 2 m depth in Gujarat. (ISRIC, 2017)