Effectiveness of ketamine-propofol sedation for reducing respiratory adverse events compared to propofol sedation: A Meta-Analysis of randomized controlled trials

Ting Wen (kongzhongchenke@126.com)
First Affiliated Hospital of Nanchang University

Shibiao Chen
First Affiliated Hospital of Nanchang University

Lili Zhao
First Affiliated Hospital of Nanchang University

Yang Zhang
First Affiliated Hospital of Nanchang University

Original research

Keywords: ketamine, propofol, sedation, adverse event, meta-analysis

DOI: https://doi.org/10.21203/rs.3.rs-84973/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective

The objective of our review was to determine whether ketamine-propofol had an advantage in reducing respiratory adverse events compared to propofol for procedural sedation.

Methods

Electronic databases including Web of Science, The Cochrane Library, PubMed, Medline, Embase, Google Scholar were searched to identify potential studies. All randomized controlled studies from their inception to May 2020 comparing ketamine-propofol sedation with propofol sedation were identified. Pooled analysis and subgroup analysis were conducted using Stata software. The quality assessment of all included studies was completed by using the Cochrane Collaboration’s tool for assessing risk of bias.

Results

A total of 21 studies involving 3669 individuals were included. The most common respiratory adverse events (all reported per 100 sedations) were: hypoxia(KP 10.9%; P 17.0%), respiratory depression(KP 6.9%; P 14.9%), central apnea(KP 5.9%; P 8.0%). Pooling these 21 studies, subjects with ketamine-propofol had significant lower incidence of respiratory adverse events than those with propofol (RR: 0.55, 95% CI: 0.41–0.74). When stratified by study population, no significant difference was observed in reducing respiratory adverse events between ketamine-propofol sedation and propofol sedation among children (RR: 0.74, 95% CI: 0.46–1.20). However, significant differences were discerned definitely among adults(RR: 0.48, 95% CI: 0.39–0.60).

Conclusion

In summary, Our results suggested hypoxia, respiratory depression, central apnea were most common respiratory adverse events in propofol sedation. However, ketamine-propofol sedation had an advantage in reducing the incidence of respiratory adverse events compared with propofol sedation, especially in adults.

Introduction

Procedural sedation is the use of sedative and dissociative drugs to provide sedation and motor control during painful or unpleasant diagnostic and therapeutic procedures. In the last few decades, this procedure has become an important part of clinical practice for each physician. A reliable sedation method must be both effective and safe. It is hard to meet this requirement for a single drug. So combining different sedative and dissociative drugs for procedural sedation has attracted the attention of researchers.

As a solitary agent, propofol is widely used for procedural sedation. Although propofol is able to achieve rapid and effective sedation, it may cause some respiratory adverse events. Recently some researchers have found the use of a ketamine-propofol combination for procedural sedation has an advantage in reducing respiratory adverse events compared to propofol sedation[17, 18, 19].

Here, we searched all randomized controlled trials reporting ketamine-propofol sedation versus propofol sedation for procedural sedation. Pooled analysis and subgroup analysis were conducted to determine whether ketamine-propofol had an advantage in reducing respiratory adverse events compared to propofol sedation. Understanding the effectiveness of ketamine-propofol sedation for reducing respiratory adverse events compared to propofol sedation would help in determining preferred medications used for procedural sedation.

Materials And Methods

Data sources

Electronic databases including Web of Science, The Cochrane Library, PubMed, Medline, Embase, Google Scholar were searched to identify potential studies. All randomized controlled trials from their inception to May 2020 reporting ketamine-propofol sedation versus propofol sedation for reducing respiratory adverse events were included. There were no language restrictions. The above search strategy was implemented with the following keywords: “ketofol” OR “ketamine” OR “ketanest” OR “ketalar” AND ”propofol” AND “adverse events” OR “complications”.

Inclusion and Exclusion Criteria
Included studies met the following criteria: (i) randomized controlled trials, (ii) human studies comparing effectiveness of ketamine-propofol sedation with propofol sedation for reducing respiratory adverse events (see Table 1), (iii) the incidence of respiratory adverse events could be compared between patients with ketamine-propofol and propofol. We excluded ineligible studies according to the following criteria: (i) Studies reporting the other sedative agents for procedural sedation were excluded, (ii) overlapping with previous published data or articles.

Quality assessment

The quality assessment of all included studies was completed by using the Cochrane Collaboration's tool for assessing risk of bias (see Figure 1). Risk of bias tables for every study included the following domains: random sequence generation, allocation concealment, blinding of participants/personnel, blinding of outcomes assessment, incomplete outcome data, and selective outcome reporting. If there were different opinions, we discussed to decide the final conclusion. Two researchers respectively performed the risk of bias assessment.

Data Extraction

According to search strategy, two researchers respectively screened potential literature, and identified eligible studies. After reading full text of included studies, they created a database to extract baseline data of each study, including name of authors, publication year, study design, number of individuals, were extracted the data on name of the first author, number of patients in the analysis, outcome variables.

Statistical Analysis

All data about the incidence of respiratory adverse events were binary count data, reported as risk ratio (RR). RR was calculated by dividing the "risk of respiratory adverse events in ketamine-propofol group" by the "risk of respiratory adverse events in propofol group". The Cochran's Q test (significance level at \(P < 0.10 \)) was used to estimate heterogeneity among included studies. The \(I^2 \) statistic was also used to quantify heterogeneity across studies. If \(I^2 \) was more than 50%, which prompted that there was potential heterogeneity, random effects model was chose to pool data. On the contrary, fixed effects model was chose. Egger's test was used to assess the publication bias. According to the distribution of respiratory adverse events, subgroup analysis were conducted to explore the potential sources of heterogeneity.

Results

Characteristics of Studies

After searching electronic databases including Web of Science, The Cochrane Library, PubMed, Medline, Embase, Google Scholar, 1412 potentially titles were reviewed. According to search strategy, 1332 studies were excluded. Only 81 studies were preliminarily identified and went forward to the data extraction stage. After reviewing the full-texts of those studies, 14 studies were excluded for irrelevant studies, 26 were excluded for studies assessing other medications, 13 were excluded for animal studies, 7 observational studies were also excluded. Therefore, 21 studies were included into the meta-analysis to pool data (Figure 2). The main characteristics of those 21 studies were listed in the Table 2.

Table 3 showed the distribution of respiratory adverse events. The most common respiratory adverse events (all reported per 100 sedations) were: hypoxia (KP 10.9%; P 17.0%), respiratory depression (KP 6.9%; P 14.9%), central apnea (KP 5.9%; P 8.0%).

Respiratory adverse events

After pooling these 21 studies, subjects with ketamine-propofol had significant lower incidence of respiratory adverse events than those with propofol (RR: 0.55, 95% CI: 0.41–0.74) (see Figure 3). \(I^2 \) was 60.0%, which prompted that there was potential heterogeneity.

When stratified by study population, no significant difference was observed in reducing respiratory adverse events between ketamine-propofol sedation and propofol sedation among children (RR: 0.74, 95% CI: 0.46–1.20). However, significant differences were discerned definitely among adults (RR: 0.48, 95% CI: 0.39–0.60). (See Table 4).

Test of Heterogeneity and Publication Bias

Pooling all included studies, \(I^2 \) was 60.0%, which prompted that there was mild heterogeneity. But after implementing the stratified analysis, \(I^2 \) was 46.6% in children, 50.7% in adults, which indicated the population factor may be the source of heterogeneity. Egger's test was used to assess the publication bias. P value was greater than 0.05, which revealed the absence of publication bias.

Discussion
As a normative method of managing sedation and analgesia agents, procedural sedation and analgesia (PSA) was administered by physicians in almost all clinical departments[22]. Since first proposed decades before, PSA was implemented by using many agents such as morphine, ketamine, propofol. But each of them has advantages and disadvantages. In order to alleviate patients' unpleasant procedures, medications must be both effective and safe.

There were two pharmacologic approaches applied in administering PSA[23]. The first pharmacologic approach was single agent approach, which always applied to specific clinical situation, and may cause some adverse events. The other pharmacologic approach was a balanced agent approach, which allowed a combination of 2 or more agents, and may produce a complementary effect.

Recently some researchers paid attention to the use of a ketamine-propofol combination for PSA[17, 18, 19]. A portion of them supported that ketamine-propofol had an advantage in reducing respiratory adverse events compared to propofol sedation. But some of them obtained negative results. So we implemented the meta-analysis to determine whether ketamine-propofol had an advantage in reducing respiratory adverse events compared to propofol sedation.

According to the distribution of respiratory adverse events, the most common respiratory adverse events in propofol sedation were: hypoxia, respiratory depression, central apnea. The cause of the results may be due to propofol reduces genioglossus muscle activity. The low activity of genioglossus muscle increases airway resistance, and increases the collapsibility of the upper airway. This can aggravate obstructive sleep apnea in patients sedated with propofol. Obstructive sleep apnea leads to increased transmural left and right ventricular pressures, increased sympathetic activity like increased blood pressure and heart rate, and alveolar hypoxia and hypercapnia which may cause pulmonary arteriolar vasoconstriction leading to increased pulmonary artery pressures. So it is also known as a risk factor for heart failure and pulmonary hypertension. The use of a ketamine-propofol combination for procedural sedation may have an advantage in reducing the incidence of such complications.

When stratified by study population, no significant difference was observed in reducing respiratory adverse events between ketamine-propofol sedation and propofol sedation among children (RR: 0.74, 95% CI: 0.46–1.20). However, significant differences were discerned definitely among adults (RR: 0.48, 95% CI: 0.39–0.60). The cause of the results may be due to there were a lower plasma clearance of propofol in children than that of in adults. Some studies had found the variability in plasma clearance and subsequent influence on plasma concentrations may potentially impact on the incidence of propofol(ketamine) adverse effects[24, 25].

Limitations

Similar to other systematic reviews and meta-analyses, our results are limited by clinical trial quality. And there are substantial statistical and clinical heterogeneity. Different studies have different dose standards for anesthetics. Some of the trials used an initial dose of approximately 1 mg/kg of the study drug in the propofol group, but comparators varied with respect to the initial dose, ratios, and administration of the study drug in the K-P group.

Conclusion

Our results suggested hypoxia, respiratory depression, central apnea were most common respiratory adverse events in propofol sedation. However, ketamine-propofol sedation had an advantage in reducing the incidence of respiratory adverse events compared with propofol sedation, especially in adults.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All data generated or analysed during this study are included in this published article. Please contact the author for further data requests.

Competing interests
The authors declare that they have no competing interests.

Funding

This research was carried out without funding.

Authors’ contributions

TW and SBC designed the study. LLZ and YZ made an analysis of data and drafted the manuscript. All authors took part for a writing process, and approved the final manuscript.

Acknowledgements

The authors would like to thank Dr Shaolong Lin for assisting with managing and obtaining references.

References

1. David H, Shipp J. A randomized controlled trial of ketamine/propofol versus propofol alone for emergency department procedural sedation. Ann Emerg Med. 2011;57:435–41.

2. Andolfatto G, Abu-Laban RB, Zed PJ, et al. Ketamine-propofol combination (ketofol) versus propofol alone for emergency department procedural sedation and analgesia: a randomized double-blind trial. Ann Emerg Med. 2012;59:504–12.

3. Saws A, Davis V, Youngquist S, et al. combined Ketamine and Propofol Sedation Vs Propofol Sedation for Emergency Department Procedures: A Prospective Randomized Trial: 611. Acad Emerg Med. 2011;18:233.

4. Miner JR, Moore JC, Austad EJ, et al. Randomized, double-blinded, clinical trial of propofol, 1: 1 propofol/ketamine, and 4: 1 propofol/ketamine for deep procedural sedation in the emergency department. Ann Emerg Med. 2015;65:479–88.

5. Ferguson I, Bell A, Treston G, et al. Propofol or Ketofol for Procedural Sedation and Analgesia in Emergency Medicine—the POKER Study: a randomized double-blind clinical trial. Ann Emerg Med. 2016;68:574–82.

6. Frizelle HP, Duranteau J, Samii K. A comparison of propofol with a propofol-ketamine combination for sedation during spinal anesthesia. Anesth Analg. 1997;84:1318–22.

7. Frey K, Sukhani R, Pawlowski J, et al. Propofol versus propofol-ketamine sedation for retrobulbar nerve block: comparison of sedation quality, intraocular pressure changes, and recovery profiles. Anesth Analg. 1999;89:317–21.

8. Badrnathe S, Avramov MN, Shadrick M, et al. The use of a ketamine-propofol combination during monitored anesthesia care. Anesth Analg. 2000;90:858–62.

9. Vora KS, Prabodhachandran MS, Bhosale GP, et al. Comparison of admixtures of propofol-thiopentone, propofol-ketamine and propofol in ambulatory surgery. J Anaesth Clin Pharmacol. 2005;21:413.

10. Singh R, Batra YK, Bharti N, et al. Comparison of propofol versus propofol-ketamine combination for sedation during spinal anesthesia in children: randomized clinical trial of efficacy and safety. Pediatr Anesth. 2010;20:439–44.

11. Chiaretti A, Ruggiero A, Barbi E, et al. Comparison of propofol versus propofol–ketamine combination in pediatric oncologic procedures performed by non-anesthesiologists. Pediatr Blood Cancer. 2011;57:1163–7.

12. Abdellatif AA. Ketofol for outpatient transrectal ultrasound guided prostate biopsy. ASJA. 2012;5:11–22.

13. Fabbri LP, Nucera M, Marsili M, et al. Ketamine, propofol and low dose remifentanil versus propofol and remifentanil for ERCP outside the operating room: Is ketamine not only a “rescue drug”? Med Sci Monitor. 2012;18:CR575.

14. Aydogan H, Aydogan T, Uyanikoglu A, et al. Propofol-ketamine combination has shorter recovery times with similar hemodynamics compared to propofol alone in upper gastrointestinal endo-scopy in adults. A randomized trial. Acta Med. 2013;29:77–82.

15. Yuce HH, Kucuk A, Altay N, et al. Propofol-ketamine combination has favorable impact on orientation times and pain scores compared to propofol in dilatation and curettage. A randomized trial. Acta Med. 2013;29:539–44.

16. De Oliveira Jr GS, Fitzgerald PC, Hansen N, et al. The effect of ketamine on hypventilation during deep sedation with midazolam and propofol: a randomised, double-blind, placebo-controlled trial. Eur J Anaesth. 2014;31:654–62.

17. Tandon M, Pandey VK, Dubey GK, et al. Addition of sub-anaesthetic dose of ketamine reduces gag reflex during propofol based sedation for upper gastrointestinal endoscopy: a prospective randomised double-blind study. Indian J Anaesth. 2014;58:436–41.

18. Canpolat DG, Yildirim MD, Aksu R, et al. Intravenous ketamine, propofol and propofol-ketamine combination used for pediatric dental sedation: A randomized clinical study. Pak J Med Sci. 2016;32:682–7.
19. Tutal ZB, Gulec H, Dereli N, et al. Propofol-ketamine combination: a choice with less complications and better hemodynamic stability compared to propofol? On a prospective study in a group of colonoscopy patients. Irish J Med Sci. 2016;185:699–704.

20. Kapadia CM, Gupta V, Sanwatsarkar S, et al. A comparative study of combination of intravenous(I/V) ketamine + propofol(ketofol) and I/V propofol alone for anaesthesia in pediatric patients undergoing magnetic resonance imaging(MRI). Indian J Res. 2018;7:36–8.

21. Schmitz A, Weiss M, Kellenberger C, et al. Sedation for magnetic resonance imaging using propofol with or without ketamine at induction in pediatrics—A prospective randomized double-blinded study. Pediatr Anesth. 2018;28:264–74.

22. De Robertis E, Longrois D, Fuchs-Buder T. Safety and quality of procedural sedation and analgesia practice for adult patients throughout Europe: A step forward. Eur J Anaesth. 2018;35:1–3.

23. Poonai N, Canton K, Ali S, et al. Intranasal ketamine for procedural sedation and analgesia in children: A systematic review. PloS One. 2017;12:e0173253.

24. Li Y, Jackson KA, Slon B, et al. CYP2B6* 6 allele and age substantially reduce steady-state ketamine clearance in chronic pain patients: impact on adverse effects. Brit J Cin Pharmaco. 2015;80:276–84.

25. Nonaka M, Gotoda T, Kusano C, et al. Safety of gastroenterologist-guided sedation with propofol for upper gastrointestinal therapeutic endoscopy in elderly patients compared with younger patients. Gut Liver. 2015;9:38.

Tables

Table 1 Definition of the respiratory adverse events

Item	Definition
Hypoxia	An oxygen saturation of <92% at any time during the procedure
Central apnea	A pause in respiratory effort, defined as an absent end tidal CO₂ waveform>6 s during the procedure
Respiratory depression	Hypopneic hypoventilation, defined as a decrease in ETCO₂>10 mmHg recorded during the procedure or by physician report of partial upper airway obstruction
Complete upper airway obstruction	Ventilatory effort without air exchange, defined by an absent ETCO₂ waveform with physician report of ventilatory effort
Laryngospasm	Partial or complete airway obstruction caused by involuntary closure of the vocal cords not relieved by routine airway repositioning or insertion of a nasal or oral airway, by physician report

Table 2 The quality assessment of all included trials in our study
Study	Random sequence generation	Allocation concealment	Blinding of participants/personnel	Blinding of outcomes assessment	Incomplete outcome data	Selective outcome reporting
David 2011[1]	Low	Low	Low	High	Low	Low
Andolfatto 2012[2]	Low	Low	Low	High	Low	Low
Sawas 2013[3]	Low	Unclear	Unclear	High	Low	Low
Miner 2015[4]	Low	Low	Low	High	Low	Low
Ferguson 2016[5]	Low	Low	Low	High	Low	Low
Frizelle 1997[6]	Low	Low	Low	High	Low	Low
Frey 1999[7]	Low	Low	Low	High	Low	Low
Badrinath 2000[8]	Low	Low	Low	High	Low	Low
Vora 2005[9]	Low	Low	Low	High	Low	Low
Singh 2010[10]	Low	Unclear	Unclear	High	Low	Low
Chiaretti 2011[11]	Low	Unclear	Unclear	High	Low	Low
Abdellatif 2012[12]	Low	Low	Low	High	Low	Low
Fabbri 2012[13]	Low	Low	Low	High	Low	Low
Aydogan 2013[14]	Low	Unclear	Unclear	High	Low	Low
Yuce 2013[15]	Low	Unclear	Unclear	High	Low	Low
De Oliveira 2014[16]	Low	Low	Low	High	Low	Low
Tandon 2014[17]	Low	Low	Low	High	Low	Low
Canpolat 2016[18]	Low	Unclear	Unclear	High	Low	Low
Tutil 2016[19]	Low	Low	Low	High	Low	Low
Kapadia 2018[20]	Low	Unclear	Unclear	High	Low	Low
Schmitz 2018[21]	Low	Low	Low	High	Low	Low
Summary score	Low risk of bias	Unclear risk of bias	Unclear risk of bias	High risk of bias	Low risk of bias	Low risk of bias

Table 3 The main characteristics of 21 included studies in our meta-analysis
Study	Dose of K-P	Dose of propofol	Route of treatment	Number of Participants	Procedure
David 2011	0.5 mg/kg K, 1 mg/kg P	1 mg/kg	intravenous	193	fracture/dislocation, Suturing, Foreign body removal, Chest tube insertion
Andolfatto 2012	0.75 mg/kg K-P	0.75 mg/kg	intravenous	284	fracture/dislocation, Incision and drainage, Laceration repair, Chest tube insertion, Cardioversion
Sawas 2013	Unclear	Unclear	intravenous	99	emergency Incision, drainage of abscess and cardioversion
Miner 2015	0.5 mg/kg K-P	1 mg/kg	intravenous	271	emergency Incision, drainage of abscess and cardioversion
Ferguson 2016	0.5 mg/kg K-P	0.5 mg/kg	intravenous	573	fracture reduction, drainage of abscess, Shoulder reduction and cardioversion
Frizelle 1997	0.1 mg/kg K, 0.4 mg/kg P	0.5 mg/kg	intravenous	34	orthopedic
Frey 1999	30 mg K, 100 mg P	100 mg	intravenous	39	retrobulbar block
Badrinath 2000	0.94-1.88mg/ml K, 9.4mg/ml P	9.4mg/ml	intravenous	58	breast biopsy
Vora 2005	10ml 1 % P, 10ml 0.5 % K	20ml1 % P	intravenous	53	gynaecological
Singh 2010	0.4 mg/kg K, 1.6 mg/kg P	2 mg/kg	intravenous	36	abdominal surgeries
Chiaretti 2011	0.5 mg/kg K, 2 mg/kg P	2 mg/kg	intravenous	113	lumbar punctures, bone marrow aspirations
Abdellatif 2012	0.83 mg/kg K, 0.83 mg/kg P	0.83 mg/kg	intravenous	75	digital rectal examination
Fabbri 2012	5 μg/kg/min K, 1 mg/kg/h P	1 mg/kg/h	intravenous	288	endoscopic retrograde cholangiopancreatograhy
Aydogan 2013	5mg K, 15mg P	20mg	intravenous	99	gastrointestinal endoscopy
Yuce 2013	Unclear	Unclear	intravenous	150	dilatation and curettage
De Oliveira 2014	0.5mg/kg K, 6.5 mg/kg P	6mg/kg	intravenous	47	breast lumpectomony
Tandon 2014	0.15 mg/kg K, 152 mg P	167 mg	intravenous	247	upper gastrointestinal endoscopy
Canpolat 2016	0.5 mg/kg K, 0.5 mg/kg P	1 mg/kg	intravenous	37	tooth extraction
Tutil 2016	0.5 mg/kg K-P	0.5mg/kg	intravenous	86	colonoscopy
Kapadia 2018	Unclear	Unclear	intravenous	28	magnetic resonance imaging
Schmitz 2018	1mg/kg K, 5 mg/kg/h P	10 mg/kg/h	intravenous	287	magnetic resonance imaging
Table 4 The distribution of respiratory adverse events in 21 included studies					
Study	Respiratory adverse events			Respiratory depression	
---	---	---	---	---	---
		KP(%)	P(%)	KP(%)	P(%)
David 2011		NA	NA	NA	NA
Andolfatto 2012		38/142 (26.8)	36/142 (25.4)	15/142 (10.6)	13/142 (9.2)
Sawas 2013		NA	NA	NA	NA
Miner 2015		6/85 (7.1)	11/90 (12.2)	6/85 (7.1)	11/90 (12.2)
Ferguson 2016		17/281 (6.0)	23/292 (7.9)	11/281 (3.9)	16/292 (5.5)
Frizelle 1997		2/20 (10.0)	3/20 (15.0)	0/20 (0.0)	1/20 (5.0)
Frey 1999		NA	NA	NA	NA
Badrinath 2000		NA	NA	NA	NA
Vora 2005		NA	NA	4/30 (13.3)	12/30 (40.0)
Singh 2010		NA	NA	NA	NA
Chiaretti 2011		1/59 (1.7)	7/62 (11.3)	NA	
Abdellatif 2012		4/35 (11.4)	29/35 (82.9)	NA	
Fabbri 2012		NA	NA	NA	NA
Aydogan 2013		NA	NA	NA	NA
Yuce 2013		NA	NA	NA	NA
De Oliveira 2014		NA	NA	NA	NA
Tandon 2014		NA	NA	NA	NA
Canpolat		NA	NA	NA	NA
Table 5 Subgroup analysis

Item	Number of studies	Pooled OR (95% CI)	Heterogeneity (%)
In children	5	0.74 (0.46-1.20)	46.6
In adults	13	0.48 (0.39-0.60)	50.7

Figures

Figure 1
Flow chart of study selection process
Study ID	RR (95% CI)	Weight
David 2011	0.81 (0.49, 1.35)	8.58
Andolfatto 2012	0.95 (0.66, 1.37)	9.79
Sawas 2013	0.81 (0.55, 1.22)	9.48
Miner 2015	0.90 (0.61, 1.34)	9.51
Ferguson 2016	0.82 (0.47, 1.42)	8.27
Frizelle 1997	0.50 (0.10, 2.43)	2.73
Frey 1999	0.50 (0.26, 0.95)	7.53
Badrinath 2000	0.74 (0.46, 1.19)	8.90
Vora 2005	0.07 (0.00, 1.12)	1.03
Singh 2010	0.33 (0.04, 2.94)	1.63
Chiaretti 2011	0.15 (0.02, 1.18)	1.78
Abdellatif 2012	0.08 (0.03, 0.20)	5.19
Fabbri 2012	0.36 (0.17, 0.75)	6.81
Aydogan 2013	0.33 (0.01, 7.99)	0.83
Yuce 2013	1.00 (0.06, 15.70)	1.07
De Oliveira 2014	0.14 (0.01, 2.63)	0.97
Tandon 2014	0.21 (0.07, 0.60)	4.75
Canpolat 2016	0.14 (0.01, 2.60)	0.88
Tural 2016	0.05 (0.00, 0.86)	1.03
Kapadia 2018	0.20 (0.01, 3.85)	0.94
Schmitz 2018	1.18 (0.68, 2.05)	8.23
Overall (I-squared = 80.0%, p = 0.000)	0.55 (0.41, 0.74)	100.00

Figure 2

Forest plot of studies comparing ketamine-propofol with propofol in respiratory adverse events.