Interaction of bZIP transcription factor TGA6 with salicylic acid signaling modulates artemisinin biosynthesis in *Artemisia annua*

Zongyou Lv1,2,3, Zhiying Guo4, Lida Zhang1, Fangyuan Zhang1, Weimin Jiang5, Qian Shen1, Xueqing Fu1, Tingxiang Yan1, Pu Shi1, Xiaolong Hao1, Yanan Ma1, Minghui Chen1, Lei Li1, Lei Zhang4,6,*, Wansheng Chen2,3,* and Kexuan Tang1,*

1 Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
2 Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
3 Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
4 Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
5 College of Life Sciences and Environment, Hengyang Normal University, Hengyang, Hunan, 421008, China
6 State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China

*Correspondence: chenws126@126.com, zhanglei@smmu.edu.cn, or kxtang@sjtu.edu.cn

Received 10 October 2018; Editorial decision 22 March 2019; Accepted 22 March 2019

Editor: Nick Smirnoff, University of Exeter, UK

Abstract

Artemisinin is a sesquiterpene lactone produced by the Chinese traditional herb *Artemisia annua* and is used for the treatment of malaria. It is known that salicylic acid (SA) can enhance artemisinin content but the mechanism by which it does so is not known. In this study, we systematically investigated a basic leucine zipper family transcription factor, AaTGA6, involved in SA signaling to regulate artemisinin biosynthesis. We found specific in vivo and in vitro binding of the AaTGA6 protein to a ‘TGACG’ element in the AaERF1 promoter. Moreover, we demonstrated that AaNPR1 can interact with AaTGA6 and enhance its DNA-binding activity to its cognate promoter element ‘TGACG’ in the promoter of AaERF1, thus enhancing artemisinin biosynthesis. The artemisinin contents in AaTGA6-overexpressing and RNAi transgenic plants were increased by 90–120% and decreased by 20–60%, respectively, indicating that AaTGA6 plays a positive role in artemisinin biosynthesis. Importantly, heterodimerization with AaTGA3 significantly inhibits the DNA-binding activity of AaTGA6 and plays a negative role in target gene activation. In conclusion, we demonstrate that binding of AaTGA6 to the promoter of the artemisinin-regulatory gene AaERF1 is enhanced by AaNPR1 and inhibited by AaTGA3. Based on these findings, AaTGA6 has potential value in the genetic engineering of artemisinin production.

Keywords: Artemisinin, *Artemisia annua*, salicylic acid, transcription factor.

Introduction

Malaria is a serious disease that threatens the health of more than 212 million people (World Health Organization, 2016). The sesquiterpene artemisinin is produced in the glandular trichomes of the Chinese medicinal plant *Artemisia annua*...
Salicylic acid (SA), a phenolic compound, plays an important role in plant defense responses against pathogens (Raskin et al., 1990). Many studies have indicated that NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) is an important modulator of plant immunity in SA signal transduction (Després et al., 2000; Kinkema et al., 2000; Zhou et al., 2000; Mukhtar et al., 2009; Spoel et al., 2009; Wu et al., 2012). NPR1 contains ankyrin repeats and a BTB/POZ (broad-complex, tramtrack, and bric-a-brac/pox virus and zinc finger) domain (Rochon et al., 2006; Boyle et al., 2009). The ankyrin repeat domain is thought to be involved in interactions with TGA transcription factors (Després et al., 2003) and the BTB/POZ domain is necessary for the DNA binding activity of the TGA transcription factors. Under the stimulation of SA, TGA2 can be incorporated into a transactivating complex with the BTB/POZ domain (residues 80–91) of NPR1 and form an enhanceosome (Fan and Dong, 2002; Rochon et al., 2006). There are 10 TGA transcription factors in Arabidopsis, and three TGAs (TGA2/5/6, termed class II TGAs) interact with NPR1 via strong binding (Zhang et al., 1999; Després et al., 2000; Zhou et al., 2000).

TGA factors are the basic region/leucine zipper motif (bZIP) transcription factors involved in the regulation of pathogen defense, stress signaling, flower development, and seed maturation by binding to the

\(as-1 \)

element (Lam and Lam, 1995; Xiang et al., 1997; Zhang et al., 1999; Després et al., 2000; Zhou et al., 2000). The class II TGA proteins are the essential molecular linkers of the SA and jasmonic acid/ethylene signaling networks for defense responses (Zander et al., 2010; Van der Does et al., 2013). Moreover, class II TGA factors can interact with NPR1 to form an enhanceosome complex at the PR-1 promoter, indicating that they have redundant roles in modulating gene expression in the process of defense (Rochon et al., 2006). In addition, in vivo assays indicate that some homodimers and heterodimers are formed between TGA factors (Foster et al., 1994; Lam and Lam, 1995).

Much research has shown that SA regulates the biosynthesis of secondary metabolites (Pu et al., 2009; Okada et al., 2009). SA can improve the artemisinin content (Pu et al., 2009; Yu et al., 2012), but the mechanism of the process is still unknown. In general, AP2/ERF transcription factors are targets of SA (Van der Does et al., 2013; Zander et al., 2014). AP2/ERF transcription factors have a conserved AP2 DNA-binding domain of ~60 amino acid residues. In plants, the AP2/ERF family plays important roles in the modulation of secondary metabolite biosynthesis. The AP2/ERF proteins AaERF1 and AaERF2 are involved in enhancing transcription levels of the artemisinin biosynthetic pathway genes ADS and CYP71AV1. Artemisinin levels are increased by 19–67% and 24–51% in AaERF1- and AaERF2-overexpressing plants, respectively, suggesting that AaERF1/AaERF2 play important roles in sesquiterpenoid biosynthesis (Yu et al., 2012). Several other AP2/ERF transcription factors have also been shown to regulate artemisinin production, including AaORA (Lu et al., 2013) and AaTAR1 (Tan et al., 2015).

In this study, we examined the SA-mediated molecular mechanisms that modulate artemisinin biosynthesis and found that a bZIP transcription factor AaTGA6 specifically targets the promoter of AaERF1. In addition, we demonstrated that AaNPR1 acts as a transcriptional co-activator and interacts with AaTGA6, forming an enhanceosome at the AaERF1 promoter. AaTGA3 interacts with AaTGA6 to form a heterodimer and this exerts a negative effect on the DNA-binding activity of AaTGA6. Finally, we provided evidence of AaTGA6-mediated artemisinin synthesis by the AaNPR1-AaTGA6-AaTGA3 complex, which modulates AaERF1 to influence the accumulation of artemisinin. This network may provide a reference for other medicinal plants.

Materials and methods

Plant material

Seeds of *Artemisia annua* L. (Qinghao) ‘Hu Hao 1’ from Chongqing, China, were surface-sterilized with 75% ethanol for 1 min and then sterilized using 20% (v/v) NaOCl (sodium hypochlorite) for 20 min (Shen et al., 2016). All seeds were washed three times for 5 min in sterilized water, planted on MS medium (Murashige and Skoog, 1962), and incubated with a photoperiod of 16/8 h light/dark with 7500 lux at 26°C.

Seeds of *Nicotiana benthamiana* were sown in a soil mixture (vermiculite:perlite:peat moss, 7:0.5:2) and incubated under the same conditions. The tobacco leaves were used for infiltration experiments after 5 weeks.

Plant hormone treatments

For plant hormonal treatment, 1-month-old *A. annua* seedlings were sprayed with 1 mM SA (Sigma-Aldrich; adjusted to pH 7.0 with NaOH) (Pu et al., 2009) and then sampled at 0, 0.5, 1, 3, 6, 12, and 24 h for RNA isolation.

RNA isolation and qPCR analysis

Total RNA was extracted using an RNAprep Pure Plant Kit (Tiangen Biotech) (Lv et al., 2016). Samples of 500 ng of total RNA were used for first-strand cDNA synthesis using a cDNA synthesis kit (TaKaRa Biotech) according to the manufacturer’s instructions. For qPCR, the diluted cDNA was used as a template, and SYBR Green (Kapa Biosystems)
was used to detect transcript levels. The β-Actin gene of *A. annua* was used as an internal control (Zhang *et al.*, 2015; Lv *et al.*, 2016; Shen *et al.*, 2016). The primers used for qPCR are listed in Supplementary Table S1.

Dual-LUC assay

AaTGA6, AaTGA3, AaNPR1, N-AaNPR1, C-AaNPR1, N-AaTGA6, and *C-AaTGA6* were individually subcloned into the pPH vector to generate the effector. The promoters of *AeERF1* and *ADS* were fused to the vector pGreenIII0800 to generate a reporter. The reporter and effector constructs were then separately transformed into *Agrobacterium tumefaciens* to generate a reporter. The reporter and effector constructs were individually subcloned into the vector pEG201 to generate AaTGA6-pEG201. Plasmids of *AaNPR1* and *AaTGA3* were subcloned into the vector pEG202 to generate *AaNPR1-pEG202* and *AaTGA3-pEG202; AaTGA6* was subcloned into the vector pEG201 to generate *AaTGA6-pEG201*. Plasmids of *AaNPR1-pEG201, AaTGA3-pEG202,* and *AaTGA6-pEG201* were transformed into *A. tumefaciens* strain GV3101. The bacterial cells were resuspended in MS medium with 10 mM methylester sulfonate and 150 μM acetosyringone at OD600=0.6 and then incubated at room temperature for 3 h. The bacteria-harborating constructs were infiltrated into tobacco leaves according to Zhang *et al.* (2015). The leaves were collected after 48 h for dual-LUC assays using a Dual-Luciferase Reporter Assay System according to the manufacturer's instructions (Promega). Three independent biological replicates were measured for each sample.

Y2H, BIFC, and pull-down analysis

For yeast two-hybrid (Y2H) assays, the ORF of *AaTGA6* was cloned into the yeast GAL4-DNA-binding domain vector GBKT7 (Clontech) and used as bait. The ORFs of *AaTGA3* and *AaNPR1* were fused to the vector GADT7 as prey. The plasmids of bait and prey were co-transformed into the yeast strain AH109 (Clontech) by the LiAC-polyethylene glycol method (Gietz and Schiestl, 2007). The transformants were reconfirmed on Leu- and Trp-deficient synthetic dropout (SD) medium plates. The interactions of *AaTGA6* with *AaNPR1* and *AaTGA3* were tested on SD-Leu–Trp–His or SD–Ade–Leu–Trp–His plates with 3-amino-1,2,4-triazole. At least five independent clones were analysed.

For the bimolecular fluorescence complementation (BIFC) assays, *AaNPR1* and *AaTGA3* were subcloned into the vector pEG202 to generate *AaNPR1-pEG202* and *AaTGA3-pEG202; AaTGA6* was subcloned into the vector pEG201 to generate *AaTGA6-pEG201*. Plasmids of *AaNPR1-pEG201, AaTGA3-pEG202,* and *AaTGA6-pEG201* were transformed into *A. tumefaciens* strain GV3101. The *A. tumefaciens*-harborring sets of constructs were resuspended in MS liquid medium buffer with 10 mM methylester sulfonate and 150 μM acetosyringone at OD600=0.6 and then incubated at room temperature for 3 h. Tobacco leaves were infiltrated with the *A. tumefaciens* suspensions. Yellow fluorescence was observed by confocal laser microscopy.

For pull-down assays, His, *AaTGA6*-His, GST, *AaTGA3*-GST, and *AaNPR1*-GST were expressed *E. coli* Rosetta (DE3) (Novagen). The recombinant proteins were purified using glutathione sepharose beads (Amersham Biosciences) and Ni-NTA agarose beads (QIAGEN). The pull-down assays were conducted according to Bratzel *et al.* (2010).

Y1H assays

To detect whether *AaTGA6* could interact with the ‘TGACG’ box in yeast, yeast one-hybrid (Y1H) assay were used and examined according to Zhang *et al.* (2015).

EMSA analysis

To test whether *AaTGA6* could interact with the ‘TGACG’ box, an electrophoretic mobility shift assay (EMSA) was performed. The ORF regions of *AaTGA6, AaNPR1,* and *AaTGA3* were cloned into the PET28A vector (Novagen) and the resulting constructs (AaTGA6–PET28, AaNPR1–PET28, and AaTGA3–PET28) were introduced into *E. coli* strain BL21(DE3). The purification of the AaTGA6–PET28, AaNPR1–PET28, and AaTGA3–PET28 fusion proteins was performed by Ni-NTA agarose, according to the manufacturer's instructions (QIAGEN). The 40-bp oligonucleotides were the recognition sites of *AaTGA6*, labeled by digoxin as probes for the EMSA studies, and the sequences are shown in Supplementary Table S1. The EMSA reactions were performed using a DIG Gel Shift Kit, 2nd Generation, according to the manufacturer's instructions (Roche). After the EMSA reaction, the products were loaded on a 5% polyacrylamide gel (acrylamide:bisacrylamide, 37.5:1; Bio-Rad) by applying a voltage of 80 V for electrophoresis. The DNA–protein complex was transferred to a nylon membrane for 120 min at 30 V. The membrane was then cross-linked at 120 MJ. The detection was performed according to instructions from Roche.

RNA-seq analysis

Total RNA samples were isolated from 1-month-old plants of *A. annua* and sequenced on a HiSeq 4000 (Illumina Inc.). RNA-seq analysis was performed according to Shi *et al.* (2018).

Quantification of artemisinin using HPLC-ELSD

Artemisinin was quantified using HPLC-ELSD (evaporative light-scattering detection). Young leaves at the upper levels of secondary branches of *A. annua* were collected and dried at 50 °C for 24 h and ground into powder (Nair *et al.*, 2013). The powdered samples (0.1 g) were used for artemisinin detection with a Waters Alliance 2695 HPLC system (Zhang *et al.*, 2009).

Accession Numbers

Sequence data from this article are deposited in the GenBank databases under the following accession numbers: *AaNPR1* (MH201457), *AaNPR2* (MH201458), *AaNPR3* (MH201459), *AaNPR4* (MH201460), *AaNPR5* (MH201461), *AaTGA1* (MH201462), *AaTGA2* (MH201463), *AaTGA3* (MH201464), *AaTGA4* (MH201465), *AaTGA5* (MH201466), and *AaTGA6* (MH201467). The accession number of Raw RNA-seq data is available from the NCBI Sequence Read Archive (PRJNA524494).

Results

Characterization of *AaTGA6*

A regulation of artemisinin content has previously been shown to increase the transcript level of *ADS* in the artemisinin biosynthetic pathway in *A. annua* (*Supplementary Fig. S2*) (Pu *et al.*, 2009; Yu *et al.*, 2012). We hypothesized that the TGA transcription factors might modulate the expression level of *ADS*, either directly or indirectly. According to transcriptome sequencing, we first analysed the data and obtained the gene sequences of NPRs and TGAs in *A. annua*. There were six basic leucine zipper (bZIP) transcription factors of TGA (*AaTGA1, AaTGA2, AaTGA3, AaTGA4, AaTGA5,* and *AaTGA6*) and five NPR genes (*AaNPR1, AaNPR2, AaNPR3, AaNPR4,* and *AaNPR5*) in the transcriptome database of *A. annua*. We constructed a phylogenetic tree to identify TGA transcription factors in *A. annua*, which showed that *AaTGA6* clustered with *AtTGA2/AtTGA5/AtTGA6* (Fig. 1A). Previous studies have indicated that monocot and dicot plants share a conserved sequence and function in NPR1 (Kuai and Desprã, 2016). *AaNPR1* may play a co-activator role in genetic relationship with AtNPR1 (Fig. 1B), indicating that *AaNPR1* may play a co-activator role in genetic relationship with AtNPR1 (Kuai and Desprã, 2016). The gene sequences of NPRs and TGAs in *A. annua* were six basic leucine zipper (bZIP) transcription factors of TGA (*AaTGA1, AaTGA2, AaTGA3, AaTGA4, AaTGA5,* and *AaTGA6*) and five NPR genes (*AaNPR1, AaNPR2, AaNPR3, AaNPR4,* and *AaNPR5*) in the transcriptome database of *A. annua*. We constructed a phylogenetic tree to identify TGA transcription factors in *A. annua*, which showed that *AaTGA6* clustered with *AtTGA2/AtTGA5/AtTGA6* (Fig. 1A). Previous studies have indicated that monocot and dicot plants share a conserved sequence and function in NPR1 (Kuai and Desprã, 2016). *AaNPR1* may play a close phylogenetic relationship with AtNPR1 (Fig. 1B), indicating that *AaNPR1* may play a co-activator role in *A. annua*. To investigate which TGAs had the potential to affect the accumulation of artemisinin, we used qPCR to monitor mRNA levels of *AaTGA1–6* in the different tissues (roots, stems, leaves, and buds) and different leaves (leaf 0–leaf 7; Ma *et al.*, 2018). Most of TGA factors were mainly expressed in the roots, buds, and in leaves 4–7 (*Supplementary Fig. S3*).
The artemisinin biosynthetic pathway genes ADS, CYP71AV1, DBR2, and ALDH1 are mainly expressed in young leaves and buds (Lommen et al., 2006; Lu et al., 2013), and our qPCR assays showed a significantly higher expression level of AaTGA6 in these tissues (Fig. 1C, D), indicating that AaTGA6 may be the principle TGA that regulates artemisinin biosynthesis. In addition, AaTGA3 had similar expression patterns to AaTGA6, although at much lower levels.

AaTGA6 was localized to the nucleus in A. annua (Supplementary Fig. S4A) and may have been involved in artemisinin biosynthesis (Fig. 1C). We performed dual-LUC assays and these indicated that AaTGA6 was active in the transcription of ADS (Supplementary Fig. S4C).

AaTGA6 activates the transcription of AaERF1 in vivo

Previous studies have indicated that the AP2/ERF transcription factor ORA59 is the direct target of class II TGA transcription factors (Zander et al., 2014), and we hypothesized that AaTGA6 could directly modulate AP2/ERF transcription factor expression levels. Three AP2/ERF transcription factors (AaERF1, AaERF2, and AaORA) involved in artemisinin biosynthesis have been identified (Yu et al., 2012; Lu et al., 2013). We scanned the promoter region of AaERF1/AaERF2/AaORA and found ‘TGACG’ elements existing in the promoter of AaERF1 (Supplementary Fig. S5).

To survey the target transcription factors of AaTGA6, we performed deep RNA sequencing. One-month-old A. annua seedlings were treated with 1 mM SA, sampled at 0, 1, 5, and 7 h, and sequenced using the Illumina platform. According to the resulting heat map the expression levels of 101 genes were significantly enhanced under SA treatment, (P<0.01; Supplementary Fig. S6). Thus, all the available evidence indicated that AaERF1 may be a candidate target for modulation by AaTGA6. Further studies were therefore focused on the relationship between AaTGA6 and AaERF1. Using a dual-LUC assay, we examined whether AaTGA6 activated the transcription of AaERF1 in vivo. The results showed that AaTGA6 activated the expression of AaERF1 promoters, as evidenced by a higher value of LUC/REN than the control (Fig. 2B). AaTGA6 may therefore have great potential for increasing the artemisinin content in A. annua.

A Y1H assay was performed and demonstrated that AaTGA6 bound directly to the AaERF1 promoter in vivo (Fig. 2D). In addition, an EMSA analysis was performed to demonstrate the DNA-binding activity of AaTGA6. A retarded band of AaTGA6 was observed when AaTGA6 was added to the binding mixture (Fig. 2E, lane 2). To further test the binding specificity, the competition probe concentration was increased and this increased the number of retarded bands (Fig. 2E, lanes 3–6). Certain sequences that flank the conserved region ‘TGACG’ also played key roles in AaTGA6 binding. When the flanking sequences were mutated, the DNA-binding effects of AaTGA6 were changed (Supplementary Fig. S7). These results indicated that AaTGA6 specifically recognized the ‘TGACG’ sequence within the AaERF1 promoter.
AaTGA6 modulates artemisinin biosynthesis

The class II TGA transcription factors (AtTGA2/5/6) can interact with AtNPR1, which is known as a mediator protein between TGA2/5/6 and the PR1 gene in Arabidopsis (Fan and Dong, 2002). We hypothesized that AaNPR1 might interact with the class II TGA transcription factor AaTGA6 in A. annua, and therefore performed a yeast two-hybrid (Y2H) assay. As shown in Fig. 3A, the interaction between AaNPR1 and AaTGA6 was confirmed. In addition, we performed YFP BiFC assays and pull-down assays, which also confirmed the interaction (Fig. 3B, C).

AaTGA6 interacts with AaNPR1

The class II TGA transcription factors (AtTGA2/5/6) can interact with AtNPR1, which is known as a mediator protein between TGA2/5/6 and the PR1 gene in Arabidopsis (Fan and Dong, 2002). We hypothesized that AaNPR1 might interact with the class II TGA transcription factor AaTGA6 in A. annua, and therefore performed a yeast two-hybrid (Y2H) assay. As shown in Fig. 3A, the interaction between AaNPR1 and AaTGA6 was confirmed. In addition, we performed YFP BiFC assays and pull-down assays, which also confirmed the interaction (Fig. 3B, C).

AaNPR1 enhances the binding of AaTGA6 to the ‘TGACG’ sequence

Previous studies have shown that NPR1 increases the binding of TGA2 to its cognate promoter element, as-1 (Després et al., 2000). The transcription factor ABF2 substantially enhances the binding of ANAC096 to the NACRS elements at the RD29A promoter (Xu et al., 2013). To determine whether it behaved in a similar way, we investigated the effect of AaNPR1 on the binding of AaTGA6 to the ‘TGACG’ sequence within the AaERF1 promoters. Dual-LUC assays were performed in the presence or absence of in vitro-translated AaNPR1, AaTGA6, or both. We found that the relative reporter activity of LUC/REN was low in the presence of AaNPR1 or AaTGA6, but in the presence of both the activation of LUC/REN significantly increased (Fig. 4B). In addition, AaNPR1 also activated the promoter of AaERF1.

Surprisingly, the amino-terminal regions of AaNPR1 alone (N-AaNPR1, 1–351 residues) seemed to have a high level of activation of the AaERF1 promoters (Supplementary Fig. S8). Since full-length AaNPR1 could activate the transcription of AaERF1, we hypothesized that N-AaNPR1 or C-AaNPR1 might also activate it. A dual-LUC assay showed that N-AaNPR1 exhibited high transcriptional activities at the AaERF1 promoters (Supplementary Fig. S8).

To gain further insights into the role of AaNPR1, EMSA assays were performed in the presence or absence of AaTGA6, AaNPR1, or both. No migrating band was observed when AaNPR1 was present in the binding mixture (Fig. 4C, lane 2) and a retarded band was detected when AaTGA6 was present (Fig. 4C, lane 3). However, the addition of AaNPR1 to the AaTGA6 binding mixture substantially increased the number of migrating bands (Fig. 4C, lane 4). These results confirmed that AaNPR1 enhanced the binding of AaTGA6 to the ‘TGACG’ sequence within the AaERF1 promoters.

AaTGA3 interacts with AaTGA6 and inhibits its binding to the ‘TGACG’ sequence

Previous studies have indicated that heterodimers are preferentially formed in bZIP transcription factors (Ehlert et al., 2006). We had found that AaTGA3 had similar expression patterns to AaTGA6 in young leaves and buds (Fig. 1C, D) and we hypothesized that AaTGA6 might form heterodimers with other TGAs. Y2H, BiFC, and pull-down assays demonstrated that AaTGA3 could interact with AaTGA6 (Fig. 5A–C). To verify the biological significance of the interaction, dual-LUC assays were performed and indicated
Fig. 3. Interactions between AaNPR1 and AaTGA6. (A) Yeast two-hybrid assays. Yeast cells were plated on synthetic dropout media either without Leu and Trp (SD-TL), without Leu, Trp, and His (SD-TLH), or without Leu, Trp, His, and Ade but containing 80 mM 3-AT (SD-TLHA+3AT). (B) Interactions between AaNPR1 and AaTGA6 examined by BIFC in *N. benthamiana* leaves. AaNPR1 and AaTGA6 were fused in the vectors pEarleyega202 and pEarleyega201, respectively. (C) Pull-down assays showing the interaction of AaTGA6 and AaNPR1. Prokaryotic expression of AaTGA6 and AaNPR1 proteins fused to His or a GST tag were subjected to GST pull-down, and the proteins were detected by immunoblotting using a GST antibody. (This figure is available in colour at *JXB* online.)

Fig. 4. AaNPR1 enhances the DNA-binding activity of AaTGA6. (A) Schematic diagram of the reporter and effector constructs used in the transient dual-LUC assays. (B) Transient dual-LUC analysis showing that AaNPR1 increases AaTGA6 activation of the transcription of *AaERF1*. LUC/REN represents the luciferase/Renilla ratio of *n*=3 independent experiments; Significant differences were determined using Student’s *t*-test: *P*<0.05. (C) EMSA analysis showing that AaNPR1 enhances the DNA-binding activity of AaTGA6. (This figure is available in colour at *JXB* online.)
that AaTGA3 substantially repressed the binding of AaTGA6 to its cognate promoter element ‘TGACG’ in the promoter of AaERF1 (Fig. 6B). We also confirmed the inhibition using EMSA analysis, which showed that co-incubation of AaTGA3 with AaTGA6 resulted in a weak retarded band, indicating that AaTGA3 inhibition was functional in the EMSA assay (Fig. 6C, lane 3).
The data presented above indicated that *AaTGA6* was predominantly modulated at the mRNA level of *AaERF1*, the positive regulator of artemisinin. We therefore overexpressed *AaTGA6* in *A. annua*. Driven by the double-35S promoter, the *AaTGA6* was infused into the plasmid PHB to generate the overexpression vector *AaTGA6*-PHB. There was no significant difference in the phenotype between the transgenic lines and the wild-type under normal growth conditions (Supplementary Fig. S9).

Three overexpression and three RNAi lines of transgenic plants were selected for further study and qPCR was employed to determine the expression levels of *AaTGA6*. The results showed that the relative mRNA levels were increased by 11- to 15-fold in the overexpression plants and decreased by 70–90% in the RNAi plants (Fig. 7A, B). As key catalysis genes involved in the artemisinin biosynthetic pathway, the expression levels of *ADS, CYP71AV1, DBR2,* and *ALDH1* were also evaluated and were found to be increased in the *AaTGA6* overexpression lines by between 1- to 7-fold (Fig. 7A). The artemisinin content in the overexpression plants was increased by 90–120% compared with the wild-type (Fig. 7C). In the *AaTGA6*-RNAi plants, the expression levels of *ADS, CYP71AV1, DBR2,* and *ALDH1* were reduced by between 20–70% (Fig. 7B) and the artemisinin content was decreased by 20–60% compared with the wild-type (Fig. 7D).

Discussion

AaTGA6 modulates artemisinin content by directly binding to the promoter of *AaERF1*

The AP2/ERF transcription factors are often targeted by TGA factors, such as TGA2/5/6, which directly bind to the
cis-element ‘TGACG’ of the promoter of ORA59 (Zander et al., 2014). Previous studies have indicated that three AP2/ERF transcription factors, namely, AaERF1, AaERF2 and AaORA, play important roles in the regulation of artemisinin biosynthesis (Yu et al., 2012; Lu et al., 2013). Our promoter sequence analysis indicated that only the that of AaERF1 harbored the ‘TGACG’ cis-element. Since we found that AaTGA6 was an important modulator for the regulation of artemisinin content in A. annua (Fig. 7C), we first established its target gene by transcriptome sequencing. Six highly significantly different transcription factors were found in the transcriptome, including AaERF1 (Supplementary Fig. S6). In AaTGA6-RNAi transgenic plants, the levels of AaERF1 mRNA decreased, which coincided with decreased artemisinin content (Fig. 7D), so we postulated that AaERF1 was the direct target of AaTGA6, and Fig. 2 shows that AaTGA6 directly activated the promoter of AaERF1. Therefore, the results are consistent with previous studies showing that AP2/ERF transcription factors are direct targets of class II TGA factors.

N-AaNPR1 activates the promoter of AaERF1

Previous studies have indicated that NPR1 may act with a receptor for SA and play important roles in immune responses by interacting with NPR3/NPR4 (Fu et al., 2012; Wu et al., 2012; Ding et al., 2018), and thus NPR1 plays an important role in SA signaling. There were five NPR genes in A. annua. NPR1 contains two domains: an ankyrin repeat domain and a BTB/POZ domain, which was first cloned by Cao et al. (1997). Ankyrin repeats play important roles in the interaction with TGA transcription factors, and the BTB/POZ domain is the enhancer for the transactivation function of the TGA2–NPR1 compound (Boyle et al., 2009). To investigate the functions of the different domains of N-AaNPR1 in A. annua, we analysed the activation of N-AaNPR1 (1–351 residues) and C-AaNPR1 (352–570 residues) using dual-LUC assays. N-AaNPR1 showed a high level of AaERF1 transactivation activity, while C-AaNPR1 had a low level of activity (Supplementary Fig. S8).

The N-terminus of AaNPR1 had a SKP1/BTB/POZ domain, which might be involved in the transactivation activity of AaERF1 (Sedgwick and Smerdon, 1999). Previous studies have indicated that the BTB/POZ domain may play a specific role in protein–protein interactions (Bardwell and Treisman, 1994). We assume that N-AaNPR1, which is cloned as a modulator of AaERF1 and enhanced its transactivation activity, may interact with other proteins. The reason for this may be that the BTB/POZ domain of N-AaNPR1 represses the C-terminal transactivation domain (Wu et al., 2012).

AaNPR1 increases the DNA-binding activity of AaTGA6

TGA factors act as regulatory components of the SA signaling pathway. The class II TGA transcription factors, such as TGA2, TGA5, and TGA6 in Arabidopsis, have been demonstrated to regulate the as-1 element of PR-1 (Zhang et al., 1999; Després et al., 2000). AP2/ERF transcription factors are potential targets of class II TGA transcription factors (Van der Does et al., 2013; Zander et al., 2014). We determined that AaTGA6 belongs to the class II TGA transcription factors (Fig. 1A) and can activate the promoter of AaERF1 (Fig. 4D). It has previously been shown that AaERF1 is an important modulator of artemisinin biosynthesis (Yu et al., 2012). We postulated that AaTGA6 may bind to the promoter of AaERF1 directly, and this was supported by the results of the Y1H assays and EMSAs (Fig 2D, E). Hence, AaTGA6 enhances artemisinin content by directly binding to the promoter of AaERF1.

Y2H and BiFC assays indicated that AaTGA6 appeared to interact with AaNPR1 (Fig 3A–C), which is consistent with previous results in Arabidopsis (Zhang et al., 1999; Zhou et al., 2000). However, it was unclear whether AaNPR1 enhanced the DNA–binding activity of AaTGA6. Dual-LUC assays and EMSAs were employed and clearly demonstrated that AaNPR1 was required for more efficient binding of AaTGA6 to the ‘TGACG’ element in the AaERF1 promoter (Fig. 4). These results are consistent with previous findings that NPR1 causes an increase in DNA-binding activity in Arabidopsis (Zhang et al., 1999; Després et al., 2000).

AaTGA3 plays a negative role in artemisinin biosynthesis

There are many kinds of highly concentrated secondary metabolites in glandular trichomes with pharmaceutical, pesticidal, flavor- and fragrance-related activities (Duke, 1994). Artemisinin is an important product of the glandular trichome of A. annua, and it has a phytotoxic effect on most plants, including itself (Duke, 1994). To avoid autotoxicity hazards, plants may limit the production of artemisinin by a putative feedback mechanism (Arsenault et al., 2010).

AaERF1 has previously been shown to be a positive regulator of artemisinin biosynthesis (Yu et al., 2012). We found that AaTGA6 activated the promoter of AaERF1, while AaTGA3 behaved in the opposite manner (Fig. 6B). The interaction of AaTGA3 with AaTGA6 (Fig. 5A–C) reflected the fact that heterodimerization between them occurs (Llorca et al., 2014). Thus, AaTGA3 inhibits the binding of AaTGA6 to its cognate promoter element ‘TGACG’ in the promoter of AaERF1 and participates in a negative feedback loop of artemisinin biosynthesis. This may be a mechanism by which A. annua protects itself from autotoxicity.

Mode of regulation of artemisinin by the AaNPR1-AaTGA6-AaTGA3 complex

Our results showed that AaTGA6 can increase artemisinin content by binding to the promoter of AaERF1, which encodes a transcription factor that plays an important role in the modulation of artemisinin content by directly binding to the promoters of ADS and CYP71AV1 (Yu et al., 2012). In addition, we found that AaNPR1 interacts with AaTGA6 to enhance its DNA-binding activity. However, there may be feedback inhibition of artemisinin biosynthesis in A. annua, as we showed that another transcription factor, AaTGA3, suppresses the transcription activity of AaERF1 by interacting with AaTGA6. Thus,
SA modulation of artemisinin content may be mediated by the AaNPR1-AaTGA6-AaTGA3 complex (Fig. 8).

Supplementary data

Supplementary data are available at JXB online.

Fig. S1. The artemisinin biosynthesis pathway in *A. annua*.

Fig. S2. Expression levels of ADS, CYP71AV1, DBR2, and ALDH1 in *A. annua* under SA treatment.

Fig. S3. Expression levels of *AaTGA1*–6 in different organs in *A. annua*.

Fig. S4. Subcellular location and transient dual-LUC assays of AaTGA6 expressed in tobacco leaves.

Fig. S5. Promoter sequences of *AaERF1, AaERF2*, and *AaORA*.

Fig. S6. Heat map of expression of SA-related genes in *A. annua*.

Fig. S7. Results of EMSAs to test the binding of AaTGA6-His to mutant ‘TGACG’ motifs in the promoter of *AaERF1*.

Fig. S8. Dual-LUC assays showing that N-AaNPR1 can activate the promoter of *AaERF1*.

Fig. S9. Phenotypes of transgenic *A. annua* plants with either overexpression or knockdown of AaTGA6, compared with the wild-type.

Table S1. List of primers used in this study.

References

Arsenault PR, Vail D, Wobbe KK, Erickson K, Weathers PJ. 2010. Reproductive development modulates gene expression and metabolite levels with possible feedback inhibition of artemisinin in *Artemisia annua*. Plant Physiology 154, 958–968.

Bardwell VJ, Treisman R. 1994. The POZ domain: a conserved protein–protein interaction motif. Genes & Development 8, 1664–1677.

Bouwmeester HJ, Wallaart TE, Janssen MH, van Loo B, Jansen BJ, Posthumus MA, Schmidt CO, De Kraker JW, König WA, Franssen MC. 1999. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52, 843–854.

Boyle P, Le Su E, Rochon A, Shearer HL, Murmu J, Chu JY, Fobert PR, Després C. 2009. The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. The Plant Cell 21, 3700–3713.

Brazel F, López-Torrejón G, Koch M, Del Pozo JC, Calonje M. 2010. Keeping cell identity in Arabidopsis requires PRC1 Ring-finger homologs that catalyze H2A monoubiquitination. Current Biology 20, 1853–1859.

Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57–63.

Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR. 2003. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. The Plant Cell 15, 2181–2191.

Després C, DeLong C, Glaze S, Liu E, Fobert PR. 2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. The Plant Cell 12, 279–290.

Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, Zhang Y. 2018. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173, 1454–1467.e15.

Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO. 1994. Localization of artemisinin and artemether in foliar tissues of glanded and glandless biotypes of *Artemisia annua* L. International Journal of Plant Sciences 155, 365–372.

Duke SO. 1994. Glandular trichomes-a focal point of chemical and structural interactions. International Journal of Plant Sciences 155, 617–620.

Ehlerdt A, Weitmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Dröge-Laser W. 2006. Two-hybrid protein–protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. The Plant Journal 46, 890–900.

Fan W, Dong X. 2002. *In vivo* interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. The Plant Cell 14, 1377–1389.

Foster R, Izawa T, Chua NH. 1994. Plant bZIP proteins gather at ACGT elements. FASEB Journal 8, 192–200.

Fu QZ, Yan S, Saleh A, et al. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486, 228–232.

Gietz RD, Schiestl RH. 2007. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols 2, 38–41.
and in disease resistance to Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway. 2013. AaORA, a trichome-specific AP2/ERF transcription factor of Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L, Lv Z, Wang G, Artemisia annua senescence of 2006. 5 2014. bZIPs and WRKYs: two large Lorca CM, Potschin M, Zentgraf U. receptor signaling and impair alpha cell identity. Cell 86–100. 168 et al Li J, Casteels T, Frogne T, Kuai X, Desprã SC. 3778–3785. 23 Lam E, Lam YK. 38 Kinkema M, Fan W, Dong X. 2000. Nuclear localization of NPR1 is re- 2009. New Phytologist, 261–276. proteasome-mediated turnover of the transcription coactivator NPR1 plays Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X. 2009. Prot-eases-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137, 860–872.

Tan H, Xiao L, Gao S, Li Q, Chen J, Xiao Y, Ji Q, Chen R, Chen W, Zhang L. 2015. TRICHOME AND ARTEMISININ REGULATOR 1 is required for the trichome development and artemisinin biosynthesis in Artemisia annua. Molecular Plant 8, 1396–1411.

Tang K, Shen Q, Yan T, Fu X. 2014. Transgenic approach to increase artemisinin content in Artemisia annua. L. Plant Cell Reports 33, 605–615.

Teoh KH, Polichuk DR, Reed DW, Covello PS. 2009. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87, 635–642.

Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS. 2006. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Letters 580, 1411–1416.

Van der Does D, Leon-Reyes A, Koornneef A, et al. 2013. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-A2J by targeting GCC promoter motifs via transcription factor ORA59. The Plant Cell 25, 744–761.

Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A. 2012. Production of amorpha-4,11-diene in yeast, and its conversion to dihydroartemisinic acid, pre-cursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences, USA 109, E111–E118.

World Health Organization. 2016. World malaria report. Geneva: World Health Organization.

Wy Z, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports 1, 639–647.

Xiang C, Miao Z, Lam E. 1997. DNA-binding properties, genomic organization and expression pattern of TGA4, a new member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Molecular Biology 34, 403–415.

Xu ZY, Kim SY, Hyeon do Y, et al. 2013. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. The Plant Cell 25, 4708–4724.

Yu ZX, Li JX, Yang CG, Hu WL, Wang LJ, Chen XY. 2012. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Molecular Plant 5, 353–365.

Zander M, La Camera S, Lamotte O, Métraux JP, Gatz C. 2010. Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. The Plant Journal 61, 200–210.

Zander M, Thurman C, Gatz C. 2014. TGA transcription factors activate a trichome-specific acid-suppressible branch of the ethylene-induced defense program by regulating ORA45 expression. Plant Physiology 165, 1671–1683.

Zhang F, Xu V, Lv Z, et al. 2015. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Molecular Plant 8, 163–175.

Zhang L, Jing F, Li F, Li M, Wang Y, Wang G, Sun X, Tang K. 2009. Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnology and Applied Biochemistry 52, 199–207.

Zhang Y, Fan W, Kinkema M, Li X, Dong X. 1999. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proceedings of the National Academy of Sciences, USA 96, 6523–6528.

Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, Olsen DJ, Ross AR, Covello PS. 2008. The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. The Journal of Biological Chemistry 283, 21501–21508.

Zhang Z, Colvin CJ, Johnson BK, Kirchoff PD, Wilson M, Jorgensen-Muga K, Larsen SD, Abramovitch RB. 2011. Inhibitors of Mycobacterium tuberculosis DohRST signaling and persistence. Nature Chemical Biology 7, 219–225.

Zhou JM, Trefy Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF. 2000. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Molecular Plant-Microbe Interactions 13, 191–202.
