Sequence analysis

Poretools: a toolkit for analyzing nanopore sequence data

Nicholas J. Loman1,* and Aaron R. Quinlan2,*

1Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK and 2Department of Public Health Sciences, University of Virginia, Charlottesville 22932, VA, USA

Associate Editor: Inanc Birol

ABSTRACT

Motivation: Nanopore sequencing may be the next disruptive technology in genomics, owing to its ability to detect single DNA molecules without prior amplification, lack of reliance on expensive optical components, and the ability to sequence long fragments. The MinIONTM from Oxford Nanopore Technologies (ONT) is the first nanopore sequencer to be commercialized and is now available to early-access users. The MinIONTM is a USB-connected, portable nanopore sequencer that permits real-time analysis of streaming event data. Currently, the research community lacks a standardized toolkit for the analysis of nanopore datasets.

Results: We introduce poretools, a flexible toolkit for exploring datasets generated by nanopore sequencing devices from MinIONTM for the purposes of quality control and downstream analysis. Poretools operates directly on the native FAST5 (an application of the HDF5 standard) file format produced by ONT and provides a wealth of format conversion utilities and data exploration and visualization tools.

Availability and implementation: Poretools is an open-source software and is written in Python as both a suite of command line utilities and a Python application programming interface. Source code is freely available in Github and is written in Python as both a suite of command line utilities and a Python application programming interface. Source code is freely available in Github at https://www.github.com/arq5x/poretools.

Associate Editor: Inanc Birol

Received and revised on July 29, 2014; accepted on August 11, 2014

1 INTRODUCTION

DNA sequencing with biological nanopores was proposed almost 20 years ago (Church \textit{et al.}, 1995). This approach relies on the direct electrical detection of single DNA strands in contact with an individual pore. Single molecule detection and the absence of a prior amplification step means that extremely long fragments can be sequenced without any loss in quality. In May 2014, Oxford Nanopore Technologies released MinIONTM, the first commercially available nanopore DNA sequencing device. MinIONTM is noteworthy for its portability, size (around the same length as an iPhoneTM and USB 3.0 connectivity, meaning it can be run on a standard Internet-connected laptop. Research groups throughout the world are actively evaluating this device for a broad range of applications. Sequencing with the MinION yields raw signals reflecting modulation of the ionic current at each pore by a DNA molecule. The resulting time-series of nanopore translocation, ‘events’, are base-called by proprietary software running as a cloud service. The resulting files for each sequenced read are stored in ‘FAST5’ format, an application of the HDF5 format. However, at present, no specific software is available to facilitate downstream analyses starting with this file format.

2 FEATURES AND METHODS

We have developed poretools, an open-source software toolkit that addresses the pressing need for methods to manipulate the FAST5 format and permit explorations of the raw nanopore event data and the resulting DNA sequences. Poretools provides an extensive set of data analysis methods that operate directly on either a single FAST5 file or a set of files from one or more sequencing runs. A Python programming library is provided to facilitate access to the FAST5 file structure and enable other researchers to extend the tools and create new analytical methods. In the following sections, we summarize the functionality currently available in poretools.

2.1 Format conversion

The most fundamental functionality provided by poretools is the ability to convert the output data resulting from a MinION run from HDF5/FAST5 format to either FASTA or FASTQ format to facilitate analyses with sequence alignment and/or assembly software. This is accomplished with the fasta and fastq commands in the poretools suite.

\begin{verbatim}
poretools fasta /path/to/fast5/example.fast5
poretools fastq /path/to/fast5/example.fast5
\end{verbatim}

At the time of writing, each MinION run generates individual HDF5/FAST5 files for each sequenced read. Consequently, there are often tens of thousands of individual files that must be stored for a single experiment. Poretools provides two different strategies for facilitating the analysis of such datasets. The first approach allows one to execute a poretools command on an entire directory of FAST5 files.

\begin{verbatim}
poretools fastq /path/to/fast5/directory/
\end{verbatim}

Alternatively, we provide a utility to combine a set of HDF5/FAST5 files into a single TAR file. This allows an entire run to be archived into one file and once combined, all other poretools commands are able to operate on each HDF5/FAST5 file therein. For example:

\begin{verbatim}
poretools combine -o run.tar /path/to/fast5/directory/poretools fastq run.tar
\end{verbatim}
2.2 Data exploration and visualization

There is a need to visualize MinION™ run performance to assess its quality and troubleshoot different fragmentation and library preparation strategies.

Poretools provides two utilities, `hist` and `yield_plot`, that characterize the fragment size distribution and display a collector’s curve of the overall sequencing yield, respectively. Example commands are provided here, with corresponding figures shown (Fig. 1A and B).

```
poretools hist /path/to/fast5/directory/
poretools yield_plot /path/to/fast5/directory/
```

As summarized in Table 1, `poretools` also provides several utilities for extracting the low-level details that led to each base called sequence (see Table 1 for details). In particular, the `events` utility reports the mean current observed for each nanopore translocation event, as well as the time (in milliseconds) of each event and the k-mer that was predicted to have occupied the

![Figure 1](https://example.com/fig1.png)

Fig. 1. Example `poretools` visualizations from a set of FAST5 files generated by a single MinION™ run. Panel A shows a histogram of read lengths. Panel B shows a collector’s curve of reads over time. Panel C shows an example squiggle plot of detected event transitions originating from MinION™

Table 1. Summary of currently supported operations in `poretools`

Command	Description
combine	Combine a set of FAST5 files in a TAR archive.
events	Extract each nanopore event for each read.
fasta	Extract FASTA sequences from a set of FAST5 files.
fastq	Extract FASTQ sequences from a set of FAST5 files.
hist	Plot read size histogram for a set of FAST5 files.
nucdist	Measure the nucleotide composition.
qualdist	Measure the quality score composition.
readstats	Extract signal information for each read over time.
squiggle	Plot the observed signals for FAST5 reads.
stats	Get read size stats for a set of FAST5 files.
tabular	Extract sequence information in TAB delimited format.
times	Return the start times from a set of FAST5 files.
winner	Extract the longest read from a set of FAST5 files.
yield_plot	Plot the sequencing yield over time.
The squiggle utility permits visualization of this information (Fig. 1C). The Oxford Nanopore base-calling software uses a Hidden Markov Model to predict a fragment’s sequence based on this event data. We anticipate that the events utility (and others) will help developers explore improved base-calling strategies.

2.3 Python library for data analysis

The utilities provided in the poretools suite will inevitably prove to be insufficient for every analysis that a researcher wishes to conduct. Recognizing this, we have developed a Python programming interface that researchers can use to directly access the sequence data, the raw nanopore event data and other metadata (e.g. the flowcell and run identifiers) contained in one or more FAST5 files. To demonstrate of the Python interface, the following code reports the start time, the specific nanopore and the based-called sequence for each FAST5 file in a sequencing run.

```python
from poretools import Fast5FileSet
fast5s = Fast5FileSet('/path/to/fast5/files/')
for fast5 in fast5s:
    start = fast5.get_start_time()
    porenum = fast5.get_channel_number()
    fq = fast5.get_fastq()
    print(porenum, start, fq.seq, fq.qual)
fast5.close()
```

3 DISCUSSION

The poretools software helps solve pressing requirements for analysis of nanopore sequencing data. By focusing on the Python development environment and adopting expected interface conventions as popularized by other popular bioinformatics tools such as samtools (Li et al., 2010) and bedtools (Quinlan et al., 2009), we expect that users will be able to rapidly exploit the functionality offered by this software. We anticipate that other toolkits will become available written in other programming languages. Further efforts are required for downstream analysis for common tasks including alignment and de novo assembly of both event and base-called sequence data from this platform.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to the employees of ONT for assistance during the MinION Access Programme™, with particular thanks to Zoe McDougall, Clive Brown, Daniel Turner, Stephanie Brooking, Roger Pettett and Stuart Reid. We would like to thank members of the MinION user community who have tested poretools and continue to provide feedback and bug reports.

Funding: N.J.L. is funded by a Medical Research Council Special Training Fellowship in Biomedical Informatics. A.R.Q. was supported by the NIH (NHGRI; 1R01HG006693-01).

Conflict of interest: none declared.

REFERENCES

Church, G.M. et al. (1998) Characterization of individual polymer molecules based on monomer-interface interaction. US patent no. 5,795,782 (filed March 1995) http://www.google.com/patents/US20120160687.

Li, H. et al. (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078–2084.

Quinlan, A.R. and Hall, I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842.