A Comprehensive Survey on Crack detection of Bone using various techniques

S. Agnes Shifani a,*, D. Akshaya a, M. Kaviya a, K. Kiruthiga a,

a Department of Electronics and Communication Engineering, Jeppiaar Maamallan Engineering College, Chennai, Tamil Nadu, India.

* Corresponding Author: shifanie2110@gmail.com DOI: https://doi.org/10.34256/bsr2021

Received: 05-04-2020 Accepted: 19-07-2020

Abstract: Digital image processing plays a key role in manipulation of image and extracting the maximum amount of data from image with help of various algorithm. Digital image correlation algorithm determines the displacement and deformation of pattern across several images. Creating innovation are developing every day in various fields, particularly in restoration condition. Notwithstanding, still some old strategies are very famous. X-ray or CT images are one among the system for identification of bone cracks. during this article, we offer a comprehensive overview of various algorithm and techniques of displacement measurement generally and crack detection especially using digital image processing. we’ve been successful in highlighting each and each key feature and aspect of crack detection in bone which can take the add this domain further

Keywords: Digital Image Correlation, CT or X-Ray images Digital Image Processing.

1. Introduction

Digital image processing is the utilization of the advanced PC to process the advanced handling, pictures through the calculation [1]. As there are numerous subcategories or field upon computerized signal preparing, it has numerous focal points over simple picture handling It permits lot more extensive scope of calculations to be applied to the information and can keep away from issues, for example, the development of clamor and mutilation during preparing [2-5]. The age and advancement of computerized picture handling are primarily influenced by three components: first, the improvement of PCs; further the improvement of arithmetic (particularly the creation and improvement of discrete science hypothesis); and the latter is the interest for a wide scope of uses in condition, farming, military, modern and furthermore in medicinal science has expanded[6,7].

Digital Image Correlation (DIC) is a 3D full-field, non- contact and optical system to quantify and research about shape, distortion, vibration and strain on practically any material[8]. The system can be utilized with numerous tests including malleable, torsion, bowing and consolidated stacking for both static and dynamic applications[9-13]. This technique can be applied from little (miniaturized scale) to (full scale) enormous testing regions – and furthermore the outcomes are promptly practically identical with FEA results or by the strain checks. Advanced Image Correlation will successfully track the development of normally happening, or applied
surface example during the test or examination [14]. This is finished by examining the relocation of the examples inside discretized subsets or aspect components of the entire picture. The greatest connection in every window compares to the relocation, and this provides the vector length and guidance for every window [15]. With standard single camera or stereoscopic multi camera arrangements, 2D in-plane distortion or full 3D surface estimations are accomplished. Nearby subsidiary counts give the strain tensors over the whole surface, and a standard element of strain ace is the capacity to put a virtual strain check anywhere on the example surface after the test, gives extraordinarily exact strain information.

2. Literature Survey

This investigation [16] planned to look at exactness and accuracy mistakes of three Digital Volume Correlation (DVC) approaches in a specific 3D zero-strain condition for both trabecular and cortical bone examples, imaged over and over utilizing miniaturized scale CT. Both scalar normal mistakes and blunders influencing the individual parts of relocations and strains were determined. For each DVC approach, mistakes diminished asymptotically for bigger sub-volume estimates in the range investigated. Thinking about this specific arrangement of pictures, the worldwide methodology (SHIRT-FE) demonstrated a general preferred exactness and accuracy over the neighbourhood ones. The last show sensible outcomes for huge nodal separating, especially for trabecular bone.

This paper [17] offers an outline of the possibilities and constraints of advanced picture connection (DIC) as a strategy for estimating relocations and strain in biomechanical applications. This survey is basically proposed for bio-mechanists who are not yet acquainted with DIC. This survey incorporates more than 150 papers and covers distinctive dimensional scales, from the tiny level (tissue level) up to plainly visible one (organ level). As DIC includes a high level of calculation, and of administrator subordinate choices, dependability of dislodging and strain estimations by methods for DIC can’t be underestimated. Methodological issues and existing arrangements are outlined and thought about, while open issues are tended to. Points tended to include: arrangement strategies for the spot design on various tissues; programming settings; orderly and irregular mistake related with DIC estimation. Applications to hard and gentle tissues at various dimensional scales are portrayed and broke down as far as qualities and confinements. The possibilities and impediments of DIC are featured, additionally in examination with other test systems (strain measures, other optical procedures, computerized volume connection) and numerical techniques (limited component investigation), where collaborations and complementarities are talked about. So as to give a diagram available to various researchers working in the field of biomechanics, this paper purposefully doesn't report subtleties of the calculations and codes utilized in the various investigations.

Right now, portrayal of the principle systems and transducers utilized to quantify nearby and worldwide strains instigated by uniaxial stacking of murine tibiae is introduced. Miniaturized scale strain checks and advanced picture connection (DIC) were tried to gauge nearby strains, while a moving loop engine-based length transducer was utilized to quantify relative worldwide shortening. Nearby strain is the urgent parameter to be estimated when managing bone cell mechano-transduction, so we portrayed these systems in the exploratory conditions known to initiate cell mechano-sensing in vivo. The trial tests were performed utilizing tibia tests extracted from twenty-two C57BL/6 mice. To assess estimation repeatability, we processed the standard deviation of ten dull compressions to
the mean worth. This worth was lower than 3% for miniaturized scale strain checks, and in the scope of 7%–10% for DIC and the length transducer [18]. The coefficient of variety, i.e., the standard deviation to the mean worth, was about 35% for strain measures and the length transducer, and about 40% for DIC. These outcomes gave a far-reaching portrayal of three strategies for neighbourhood and worldwide bone strain estimation, recommending a potential field of use based on their favourable circumstances and impediments.

Human bone is one of the most well-known connective tissue of natural human structure. Comparable to the inner microstructure there are two principle sorts of bone tissue: minimized in the cortical zone and springy or trabecular in the interior zone. The permeable structure as a rule is side for the marrow. Thinking about the applicable capacity of that tissue, the porosity isn’t uniform. Permeable distance across increment from the cortical to the focal point of bones, as the associations of permeable expanding with the thickness of the bone tissue. The nearness of serum inside the permeable structure of bone tissue produce an alternate conduct in bones underneath loads, and related with the state of the heap is applied. The reaction of material is diverse in connection at the degree of serum inside the tissue and in connection of the heap activity heading. In same pressure condition the speed of stacking produce distinctive reaction related with the components of permeable and penetrability parameters. Right now, unique sort of bone tissue was researched. From Calcaneus, from skull and structure rib of human skeletal framework. The examples are

3. Literature Survey Table:

REF.NO	PURPOSE	INPUT	METHODOLOGY	OUTCOMES
[1]	A novel approach for bone fracture detection using image processing	X-Ray image	• Pre-processing	
• Edge detection				
Segmentation				
• Image classifier	Determination of type of fracture			
Reference	Title	Description	Techniques	Methodology
-----------	---	---	--	--
[2]	A review on strain measurement in bone mechanics using various techniques	Digital image (cortical bone) Computed tomography	• Strain methodology	Measurement of noise effect Identiﬁcation of inner stress
			• Digital volume/Image correlation	
			• Fiber Bragg grating sensors	
[3]	A scheme of deformation measurement for cancellous bones based on DIC methods	Porcine femur – specimen (A type of cortical bone)	• Preparation of specimen	Measurement of small deformations (Porous material)
			• Indentation test on cancellous bone	
[4]	A model-based approach to investigate The effect of a long bone fracture on ultrasonic strain electrography	Intact and fractured rabbit femur samples	• Specimen preparation and computed tomography (CT) data	Differentiation of fractured femurs from the intact one Detection of fractures in long bone
			• Acquisition	
			• Models of Simulation (3D slicer 4.5.0.1)	
			• Electrography simulations	
[5]	Bone fracture detection system using image processing and MATLAB	CT/MRI X-ray image	• Image enhancement	Automatic detection of crack in a leg bone
			• Image segmentation	Recognition of bone split
			• Feature extraction	
			• Image Classiﬁcation	
[6]	Automatic detection of fracture in femur bone using image processing	Foreground (suppress the background details of image) X-Ray	• Preprocessing	Classify and visualize the deformities in femur bone
			• Edge detection	
			• Support vector Machine (SVM)	
[7]	Advanced bone crack detection using image processing techniques	X-ray beam CT image	• Image fusion (CT and DWT)	Efficient and Precise crack characterization of bone crack
			• Edge detection	
			• Complex wavelet transform	
[8]	Crack detection in x-ray images using fuzzy index measure	Different image acquisition parameter (x-ray image)	• Adaptive threshold algorithm	Improve the accuracy of crack detection by increasing the error
			• Region splitting	
			• Image subtraction	
			• Morphological ﬁltering	
[9]	Long bone fracture detection using artificial neural networks based on contour features of X-ray images	X-Ray images	• Contour Histogram feature based fracture detection (CHFB)	To obtain high accuracy with reduced number of data through detected contour
			• Image Enhancement	
			• Contour Extraction	
[10]	Crack Detection of medical bone image using contrast Stretching Algorithm with help of edge detection	X-Ray image	• Histogram Equalization	To find out the accuracy of x-ray detection of crack bone
			• Contrast stretching algorithm	
			• Edge detection	
Quantitative analysis and fracture detection of pelvic bone X-Ray images

X-Ray images MRI image

- Gray level co-occurrence matrix (GLCM)
- Edge Detection
- Segmentation

Automatic Detection of Major and Minor Fracture Accurately

Digital image correlation techniques for strain measurement in a variety of biomechanical test models

Aluminium alloy Polyurethane foam specimen Laminated polyurethane foam specimen

- Compression
- Bending test
- Digital image correlation

To measure Strain in Bone and bone substitutes

Bone Fracture Detection from X-Ray image of human fingers using image processing

Electronic radiation, X-Ray image

- Edge Detection
- Segmentation
- ROI Detection

Bone fracture detection from X-Ray of human finger

Intelligent bone fracture Detection system

X-Ray image of different bone fracture

- Haar Wavelet Transform
- Scale-Invariant Feature Transform (SIFT) algorithm

Detection and classification of bone fracture

Detection of Vertebral Body Fractures based on Cortical Shell Unwrapping

X-ray images

- Spinal column segmentation and portioning
- Fracture line detection
- Cortical shell segmentation

To detect vertebral fracture on trauma

4. Conclusion

In this paper, a comprehensive survey on crack detection of bone using various techniques is completed. The digital image processing systems are exceptionally useful for examining the deformities of grouped surfaces by applying different techniques like Edge detection, image segmentation, image feature extraction, image enhancement, fiber Bragg grating sensors, image classification, strain methodology, digital image correlation Every different technique has its own benefits and negative marks. From this audit, it alright could also be comprehended that a couple of techniques gives more accurate result and error rate is additionally reduced.

References

[1] A. M. Tripathi, A. Upadhyay, A. S. Rajput, A. P. Singh, B. Kumar, (2017) Automatic detection of fracture in femur bones using image processing. In 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), IEEE, 1-5.
[2] D.B. Bhakare, P. A. Jawalekar, S. D. Korde, Novel Approach for Bone Fracture Detection Using Image Processing, *International Research Journal of Engineering and Technology (IRJET)*, 5 (2018) 193-195.

[3] B. Harinath, Sitrarasu, T.J. Nagalakshmi, Bone Fracture Detection System using Image Processing and Matlab, *International Journal of Innovative Technology and Exploring Engineering*, 8 (2019) 1459-1461.

[4] G. Ramyapriyanandhini. Advanced Bone Crack Detection Using Image Processing Techniques, *International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering*, 5 (2017) 80-83.

[5] C. H. Linda, G. W. Jiji, Crack Detection in X-Ray Images Using Fuzzy Index Measure, *Applied Soft Computing*, 11 (2011) 3571-3579.

[6] S. Tang, E. P. Sabonghy, A. Chaudhry, P. S. Shajudeen, M. T. Islam, N. Kim, R. Righetti, (2018) A Model-Based Approach to Investigate the Effect of a Long Bone Fracture on Ultrasound Strain Elastography, *IEEE Transactions on Medical Imaging*, 37 (12) 2704-2717.

[7] H. Xiong, S. Li, T. Xiao, (2015) A Scheme of Deformation Measurement for Cancellous Bones Based on The Digital Image Correlation Method, *In 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI)*, IEEE, 391-396.

[8] S. A. Shifani, V. Nanammal, R. Bhavani, A. A. Nishidha, (2017) A Review on Strain Measurement in Bone Mechanics Using Various Techniques, *In 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICICC)*, IEEE, 1-5.

[9] S. Hensley, M. Christensen, S. Small, D. Archer, E. Lakes, R. Rogge, Digital Image Correlation Techniques for Strain Measurement in A Variety of Biomechanical Test Models, *Acta of bioengineering and biomechanics*, 19 (2017) 1-9.

[10] A. K. Bharodiya, A. M. Gonsai, (2019) Bone fracture detection from X-ray image of human fingers using image processing. In *Emerging Trends in Expert Applications and Security*, Springer, Singapore, 47-53.

[11] J. Yao, J. E. Burns, H. Munoz, R. M. Summers, (2012) Detection of Vertebral Body Fractures Based on Cortical Shell Unwrapping, *In International Conference on Medical Image Computing and Computer-Assisted Intervention*, Springer, Berlin, Heidelberg, 509-516.

[12] S. Yelne, R. Tomar, A. Jadhao, R. Boriwar, Crack Detection of Medical Bone Image Using Contrast Stretching Algorithm with The Help of Edge Detection, *International Journal of Scientific Engineering and Technology*, 4 (2015) 223-227.

[13] R. Vijayakumar, G. Gireesh, (2013) Quantitative Analysis and Fracture Detection of Pelvic Bone X-Ray Images, *In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT)*, IEEE, 1-7.

[14] K. Dimililer, IBFDS: Intelligent Bone Fracture Detection System, *Procedia computer science*, 120 (2017) 260-267.

[15] A. Y. Yang, L. Cheng, M. Shimaponda-Nawa, H. Y. Zhu, (2019) Long-Bone Fracture Detection using Artificial Neural Networks based on Line Features of X-ray Images, *In 2019 IEEE Symposium Series on Computational Intelligence (SSCI)*, IEEE, 2595-2602.

[16] G. Tozzi, M. Palanca, L. Cristofolini, M. Viceconti, E. Dall’Ara, 3D Local Measurements of Bone Strain and Displacement: Comparison of Three Digital Volume Correlation Approaches, *Journal of Biomechanical Engineering*, 137 (2015) 1-14.

[17] M. Palanca, G. Tozzi, L. Cristofolini, The Use of Digital Image Correlation in The Biomechanical Area: A Review, *International biomechanics*, 3 (2016) 1-21.
[18] E. Rizzuto, B. Peruzzi, M. Giudice, E. Urciuoli, E. Pittella, E. Piuzzi, Z. Del Prete, (2019) Detection of the Strains Induced in Murine Tibias by Ex Vivo Uniaxial Loading with Different Sensors, Sensors, 19 (23) 1-19.

[19] M. Cammarata, F. Nicoletti, M. D. Paola, A. Valenza, G. Zummo, (2016) Mechanical Behaviour of Human Bones with Different Saturation Levels, Conference, 2nd International Electronic Conference on Materials, MDPI, 1-12.

[20] K. Madi, G. Aufort, A. Gasser, S. Forest, (2010) Prediction of The Elastic Modulus of The Trabecular Bone Based on X-Ray Computed Tomography, In 6th World Congress of Biomechanics (WCB 2010), Springer, Berlin, Heidelberg, 800-803.

Acknowledgement: NIL
Funding: NIL
Conflict of Interest: NIL

About the License: © 2020 The Authors. This work is licensed under a Creative Commons Attribution 4.0 International License which permits unrestricted use, provided the original author and source are credited.