Meta-analysis of the quantity of calcium excretion associated with the net acid excretion of the modern diet under the acid-ash diet hypothesis1–4

Tanis R Fenton, Michael Eliasziw, Andrew W Lyon, Suzanne C Tough, and David A Hanley

ABSTRACT

Background: The acid-ash diet hypothesis of osteoporosis suggests that acid from the modern diet causes a demineralization of the skeleton, and mobilized bone calcium is excreted. A systematic approach has not been used to summarize the findings of the numerous studies about the hypothesis.

Objectives: The purpose of this meta-analysis was to estimate the quantity of net acid excretion and calciuria associated with the modern diet, to assess the association between acid excretion and calcium excretion, and to assess the influence of urine preservatives on calcium measurement.

Design: We systematically searched for trials of the acid-ash hypothesis and conducted a meta-analysis.

Results: Twenty-five of 105 studies met the inclusion criteria. The estimated quantity of net acid excretion from the weighted average of the control diets from 11 studies was 47 mEq/d. The increase in urinary calcium with a change in renal net acid excretion depended on whether the urine was acidic or alkaline ($P < 0.001$). A significant linear relation was observed between net acid excretion and calcium excretion for both acidic and alkaline urine ($P < 0.001$). The estimated change in urine calcium associated with a change of 47 mEq of net acid excretion in acidic urine was 1.6 mmol/d (66 mg/d) of calcium.

Conclusion: Evidence suggests a linear association between changes in calcium excretion in response to experimental changes in net acid excretion. However, this finding is not evidence that the source of the excreted calcium is bone or that this calciuria contributes to the development of osteoporosis. Am J Clin Nutr 2008; 88:1159–66.

INTRODUCTION

Cross-sectional studies suggest that osteoporosis develops from a gradual loss of bone mineral that is thought to begin as early as 25–30 y of age (1). A person with osteoporosis can readily experience a bone fracture, without trauma, and these fractures are associated with pain, disability, diminished quality of life, increased need for institutionalization, and increased rate of mortality (2–4). Ideally, as the pathogenesis of osteoporosis is understood, effective strategies to prevent the disease will be developed.

The acid-ash diet hypothesis of osteoporosis suggests that modern diets promote this disease through the metabolic production of acid that causes demineralization of the skeleton (5–8). Respected researchers, authors of medical textbooks and numerous review articles, as well as writers for lay audiences and complementary medicine have regarded the acid-ash hypothesis as the primary risk factor for bone health, and some advocate alternate diets and dietary supplements predicted under this hypothesis to reduce the risk of osteoporosis (9–15). According to this hypothesis, osteoporosis develops as the skeletal pool of calcium is gradually diminished over time as skeletal calcium is lost in the urine.

The chemical composition of urine is altered by diet; consequently, urine was used by many researchers to infer the extent of dietary acid anions consumed. In those studies net acid excretion (NAE) in urine is the calculated variable used to infer excess of dietary acid anions less dietary base cations (9, 16). Numerous studies have reported an association between NAE, a measure of acid excreted in urine, and the quantity of urinary calcium excreted. NAE was defined as NAE = titratable acid + $\mathrm{NH}_4^+ - \mathrm{HCO}_3^-$ and was manipulated by changing the diet or providing acidic or basic salts to subjects.

Calcium forms insoluble salts in urine with pH > 6.5 (17). The insoluble calcium is not measured when urine calcium is analyzed by laboratories (17, 18), which may create a measurement error for the association between the NAE and calcium excretion. It is possible that some or the entire amount of calcium seen with more acidic urine is due to better measurement of calcium in the acidic urine, and the presumed cause and effect relation could be due to confounding by measurement error.

To date, a systematic approach has not been used to summarize the findings from the numerous studies about the acid-ash diet hypothesis. The purpose of this study is to 1) estimate the quantity of net acid, 2) estimate calcium excretion in the urine associated with the modern diet, and 3) assess whether there is a linear

1 From the Departments of Community Health Sciences (TRF, ME, SCT, and DAH), Medicine and Oncology (DAH), and Pathology and Laboratory Medicine (AWL), University of Calgary, Calgary, AB, Canada; the Calgary Health Region, Calgary, AB, Canada (TRF, AWL, SCT, and DAH); and the Calgary Laboratory Services, Calgary AB, Canada (AWL).

2 The funding sources had no influence on the interpretation of results.

3 Supported by doctoral fellowships from the University of Calgary and the Alberta Heritage Fund for Medical Research.

4 Address reprint requests to TR Fenton, Clinical Nutrition, 1403 29 Street NW, Calgary AB Canada T2N 2T9. E-mail: tanisfenton@shaw.ca. Received May 15, 2008. Accepted for publication June 26, 2008.
association between NAE and calcium excretion among free-living adults. In addition, we assess whether the quantitative difference in calcium observed between acidic and alkaline urine might be due to lower solubility of calcium in alkaline urine.

SUBJECTS AND METHODS

Literature search for the meta-analysis

Literature relating to the acid-ash diet hypothesis was identified through computerized searches using, but not limited to, the following keywords or textwords: acid-base equilibrium, bone or bones, bone density, calcification, calcium, excretion, net acid excretion, acid excretion, biopsy, fracture(s), and bone mineral density. The databases searched included Medline back to 1966, Cochrane Database of Systematic Reviews, CINAHL back to 1982, EMBASE back to 1980, and the Cochrane Controlled Trials Register up to July 2007. Reference lists were reviewed for additional relevant studies.

Selection criteria for the literature

Studies that examined the acid-ash diet hypothesis were included if they manipulated subjects’ acid-base intake through foods or supplemental salts such as potassium bicarbonate and reported the change of NAE and the outcome of calcium excretion. The databases searched included Medline back to 1966, Cochrane Database of Systematic Reviews, CINAHL back to 1982, EMBASE back to 1980, and the Cochrane Controlled Trials Register up to July 2007. Reference lists were reviewed for additional relevant studies.

Table 1

Studies included in the meta-analysis about change in net acid excretion and changes in calcium excretion or bone mineral density

Study	Year	Intervention	Subjects	Design	Blinded study	Accounted for losses	Calcium treatment	Calcium intake
Weber et al (19)	1976	NH₄Cl	6	CO	No	No	0	1000
Schuette et al (20)	1980	Amount of protein	11	CO	No	No	0	800
Hegsted et al (21)	1981	Amount of protein	6	CO	No	No	0	500
Lutz and Linkswiler (22)	1981	Amount of protein	8	CO	No	No	0	700
Schuette et al (23)	1981	Amount of protein	8	CO	No	No	0	500
Lutz (24)	1984	Amount of protein and NaHCO₃	6	CO	No	No	8	500
Lemann et al (25)	1986	NH₄Cl	5	CO	No	No	0	1300
Breslau et al (26)	1988	Type of protein	15/10	LSD	No	No	9	400
Lewis et al (27)	1989	Calcium sources	8	LSD	No	No	0	1600
Trilok and Draper (28)	1989	Amount of protein	8	CO	No	No	1	800
Remer and Manz (16)	1994	Amount of protein and methionine	6	CO	No	No	3	?
Sebastian et al (9)	1994	KHCO₃	18	CO	No	No	12	650
Dahl et al (29)	1995	Lentils	10	RCO	No	No	≥14	Usual
Frassetto et al (30)	2000	KHCO₃	19	CO	No	No	—	Usual
Sellmeyer et al (31)	2002	Potassium citrate	60	RCT	Yes	No	18	500
Maurer et al (32)	2003	HCO₃⁻	9	CO	No	No	5	1000
Roughhead et al (33)	2003	Amount of protein	15	RCO	No	Yes	20	600
Ince et al (34)	2004	Amount of protein	42	RCO	No	Yes	5	Same
Marangella et al (35)	2004	Potassium citrate	52	Trial	No	No	?	?
Getman et al (36)	2005	Cranberry juice	12	RCO	No	No	5	400
Kerstetter et al (37)	2005	Amount of protein	13	RCO	No	No	10	800
Roughhead et al (38)	2005	Meat or soy	13	RCO	No	Yes	21	700
Spence et al (39)	2005	Soy compared with milk protein	15	RCO	Yes	No	14	1100
Jajoo et al (40)	2006	Grains or fruit and vegetables	20	RCT	No	No	13	≥600
Kerstetter et al (41)	2006	Amount of protein	20	RCO	No	No	14	800

1 None of the studies concealed the allocation to groups. CO, crossover study; RCO, randomized crossover study; LSD, Latin square design; RCT, randomized controlled trial; trial, nonrandomized trial.

2 Subjects received calcium before outcome measurement.
Acid-ash interventions included alteration of food or nutrient intakes or administration of acidic or alkaline salts, such as potassium bicarbonate or ammonium chloride. The manipulations to alter diet acid load included changes in food intake (16, 20–24, 26–29, 33, 34, 36–41); sulfur-containing amino acids (16, 23); supplements of potassium bicarbonate (9, 30), ammonium chloride (19, 25), or potassium citrate (31, 35); substitution of sodium or potassium chloride with the bicarbonate salts (22, 32); or a combination of food and salts (24, 27). None of the non-English language studies met the criteria for acceptance (43, 44).

Many studies, including some that were well quoted, were not included in the meta-analysis for the following reasons: no presentation of numerical results (44–47), no quantification of NAE (48–56), no measurement of urinary calcium (57, 58), or more than one intervention performed at the same time (59). Numerous studies were observational and were not included because there was no manipulation of intakes (15, 58, 60–83). Other studies did not qualify for the meta-analysis because the urine collection was for periods shorter than 24 h (43, 84–91), all of the subjects had a chronic condition (92–99), subjects were in a state of weight loss (100, 101), the studies only included children (15, 61, 63, 65–67, 69, 81, 87, 102–104), the studies only included animals (105–107), or they were in vitro animal bone studies (108–121). The search also located numerous narrative review articles on the acid-ash hypothesis (5, 7, 8, 13, 122–129).

Methodologic quality of the studies of the acid-ash diet hypothesis

The studies were assessed for the following 8 indicators of methodologic quality (130, 131): randomization to groups or order of treatments, concealment of randomization, blinding of intervention, complete follow-up, blinding of outcome measurement, intent-to-treat analysis, control of calcium intakes, and duration of control of the subject’s calcium intakes before urine measurements. Subjects were allocated to treatment groups or to the order of treatment by randomization in 12 of the 25 studies included in this review (Table 1). None of the studies described any concealment of allocation to groups. Only 3 studies mentioned any attempt to mask or blind subjects to their group allocation (31, 39, 132). None of the studies reported using an intention-to-treat analysis. In addition, only 8 of the studies reported whether all of the subjects completed the interventions (29, 31, 33–35, 38, 39, 41). Sixteen of the studies controlled the subject’s calcium intakes (Table 1), 11 of these for the recommended 7 d before measurement of the outcomes (133). In summary, the methodologic quality of the studies was limited; therefore, it is possible that the findings from these studies may provide biased estimates of the effect of the acid load on calcium excretion (131).

Methods of the meta-analysis

Some studies reported more than one intervention, and each comparison to the control was included in the meta-analysis; in all, 34 comparisons and 509 observations were included (Table 2). For those studies that measured the outcomes for one intervention at multiple points in time (33, 38), the outcomes were averaged together to provide one set of acid excretion and calcium values for each intervention. We made an estimate of the NAE of the modern diet by taking a weighted average of the control diets of the studies.

A regression analysis, weighted by study sample size, was used to assess whether there was evidence of a relation across the studies and to estimate the change of calcium excretion for every unit change of NAE (134) with the use of STATA 10 (Stata Corp, College Station, TX). Whether the urine was treated with acid to improve calcium solubility was considered a potential effect modifier for this regression analysis. Studies were categorized as acidic if 1) the urine was treated with acid before analysis or 2) if the mean urine pH was < 6.5 (17) in both treatment arms. Researchers were contacted to clarify whether the urine samples were treated with acid before analysis if this detail was not clear in the report (16, 22, 34). To estimate the relation between NAE and calcium excretion among free-living adults and to avoid overinfluence to the regression by extreme cases, the changes of NAE were restricted to those changes that could be achieved through diet of free-living adults who are not taking an acid supplement (NH4Cl); therefore, the 2 extreme cases of NAE > 200 were not included (19, 25). Repeating the regression without the restriction did not change the findings.

RESULTS

The estimated average quantity of NAE from the average of the control diets was 47 mEq/d (range = 31 (34) to 71 (9) mEq/d), based on the weighted average of 24-h urine measures (n = 208) of the control arm (which may represent the modern diet) from 11 studies that reported this information (9, 16, 19, 26, 29, 30, 33–36, 39).

Although 5 of the 25 studies did not show greater calcium excretion with higher NAE (27, 29, 33, 35, 38), a significant relation was observed between NAE and calcium excretion for both acidic and alkaline urine for the studies once combined in the meta-analysis. The interventions in the studies that did not show the relation of interest included changes of food intake in well-controlled metabolic studies (33, 38), calcium carbonate compared with milk (27), a potassium citrate supplement (35), and a substitution of soy protein with lentils (29). In one study in which soy protein was substituted with lentils, urine calcium excretion significantly decreased (P < 0.01) despite a nonsignificant increase in NAE (29).

Whether the urine was acidic (pH < 6.5 or acid treated) significantly modified the relation between NAE and calcium excretion. A significant interaction was observed because the difference in the rates of increase in urinary calcium with the change in renal NAE depended on whether the urine was acidic (P < 0.001; Figure 1).

The change of calcium excretion with each milliequivalent change of NAE was 0.035 mmol/d of calcium (95% CI: 0.032, 0.038; P < 0.001) and was 0.023 (95% CI: 0.022, 0.025; P < 0.001) for alkaline urine. For a change of 47 mEq of NAE in acidic urine (in which calcium is more soluble and more readily absorbed salts (22, 32); or a combination of food and salts (24, 27). None of the non-English language studies met the criteria for acceptance (43, 44).

Many studies, including some that were well quoted, were not included in the meta-analysis for the following reasons: no presentation of numerical results (44–47), no quantification of NAE (48–56), no measurement of urinary calcium (57, 58), or more than one intervention performed at the same time (59). Numerous studies were observational and were not included because there was no manipulation of intakes (15, 58, 60–83). Other studies did not qualify for the meta-analysis because the urine collection was for periods shorter than 24 h (43, 84–91), all of the subjects had a chronic condition (92–99), subjects were in a state of weight loss (100, 101), the studies only included children (15, 61, 63, 65–67, 69, 81, 87, 102–104), the studies only included animals (105–107), or they were in vitro animal bone studies (108–121). The search also located numerous narrative review articles on the acid-ash hypothesis (5, 7, 8, 13, 122–129).

Methodologic quality of the studies of the acid-ash diet hypothesis

The studies were assessed for the following 8 indicators of methodologic quality (130, 131): randomization to groups or order of treatments, concealment of randomization, blinding of intervention, complete follow-up, blinding of outcome measurement, intent-to-treat analysis, control of calcium intakes, and duration of control of the subject’s calcium intakes before urine measurements. Subjects were allocated to treatment groups or to the order of treatment by randomization in 12 of the 25 studies included in this review (Table 1). None of the studies described any concealment of allocation to groups. Only 3 studies mentioned any attempt to mask or blind subjects to their group allocation (31, 39, 132). None of the studies reported using an intention-to-treat analysis. In addition, only 8 of the studies reported whether all of the subjects completed the interventions (29, 31, 33–35, 38, 39, 41). Sixteen of the studies controlled the subject’s calcium intakes (Table 1), 11 of these for the recommended 7 d before measurement of the outcomes (133). In summary, the methodologic quality of the studies was limited; therefore, it is possible that the findings from these studies may provide biased estimates of the effect of the acid load on calcium excretion (131).

Methods of the meta-analysis

Some studies reported more than one intervention, and each comparison to the control was included in the meta-analysis; in all, 34 comparisons and 509 observations were included (Table 2). For those studies that measured the outcomes for one intervention at multiple points in time (33, 38), the outcomes were averaged together to provide one set of acid excretion and calcium values for each intervention. We made an estimate of the NAE of the modern diet by taking a weighted average of the control diets of the studies.

DISCUSSION

The findings of this meta-analysis show that there is evidence of a linear association between average results for calcium excretion in response to the changes of NAE. The estimated NAE of the modern diet, based on a meta-analysis of the control arms
of the studies designed to represent the modern diet, was 47 mEq/d. Given the rate of change of urinary calcium in response to the change of NAE, if the 47 mEq/d of acid was neutralized, by diet or supplements, the predicted would be equal to 1.6 mmol/d change in urinary calcium. These findings alone are not evidence that the source of the extra calcium is from the bones or that this calciuria contributes to the development of osteoporosis.

This relation between calcium excretion and NAE was shown in the meta-analysis of 25 studies despite 5 studies that did not show this relation. The relations remained significant after removal of the 3 outlying study results, which indicated that the finding of a linear association was not due solely to the outlying cases.

The findings of relations between NAE and calcium excretion in both acidic and alkaline urine suggest that calcium insolubility does not explain all of the higher concentration of calcium in acidic urine. The significant difference seen between the acid-treated and non–acid-treated urine (P < 0.001) shows that some

Study	Intervention	Control of calcium intake	Change in NAE¹	Change in urinary calcium	Acid treated²	Maximum urinary pH	Acidic urine³	
Weber et al (19)	Whole food diet ± NH₄Cl	6	Yes	216	9.1	No	5.97	
Schuette et al (20)	Amount protein	11	Yes	37	2.15	Yes	—	
Hegsted et al (21)	Amount protein	6	Yes	38.1	2.48	Yes	—	
Lutz and Linkswiler (22)	Amount protein	8	Yes	56.0	2.05	Yes	—	
Schuette et al (23)	Amount protein	8	Yes	32	1.20	Yes	—	
Schuette et al (18)	Amount protein	8	Yes	46.5	3.56	Yes	—	
Lutz (24)	NaHCO₃	6	No	60	1.5	Yes	6.9	
Lutz (24)	Amount protein	6	Yes	39	2.25	Yes	6.1	
Lemann et al (25)	NH₄Cl	5	Yes	209	7.3	No	6.7	
Breslau et al (26)	Vegetarian compared with carnivorous⁴	10	Yes	−27.1	1.1	No	6.55	No
Breslau et al (26)	Ovo-vegetarian compared with carnivorous⁴	15	Yes	−13	−0.7	No	6.32	Yes
Lewis et al (27)	CaCO₃ compared with milk	8	Yes	21.3	−0.6	Yes	6.67	
Lewis et al (27)	CaCO₃ compared with CaCl₂	8	Yes	28.0	0.6	Yes	6.67	
Trilok and Draper (28)	Amount protein	8	Yes	16.46	1.39	No	6.67	
Remer and Manz (16)	Methionine	6	No	42.9	0.9	No	6.7	
Remer and Manz (16)	Medium protein⁴	6	No	45.6	2.0	No	6.7	
Remer and Manz (16)	High protein	6	No	111.4	2.4	No	6.7	
Sebastian et al (9)	Constant daily diet ± KHCO₃	18	Yes	−58.1	−1.6	Yes	—	
Dahl et al (29)	Lentils¹ compared with soy protein	10	Yes	3.1	−0.9	Yes	—	Yes
Frassetto et al (30)	KHCO₃ compared with placebo⁴	19	No	−38	−0.7	No	—	No
Sellmeyer et al (31)	Potassium citrate	60	Yes	−53	−1.25	No	—	
Maurer et al (32)	HCO₃[−] compared with Cl[−]	9	Yes	−71	−0.6	No	7.07	No
Roughhead et al (33)	High meat compared with low meat	15	Yes	23.1	−0.08	No	6.02	
Ince et al (34)	High protein⁴ compared with low protein	42	Yes	−21.5	−1.1	Yes	—	Yes
Marangella et al (35)	Self-selected diet ± potassium citrate	52	No	−21	0.275	Yes	6.33	Yes
Gettman et al (36)	Slightly acid-ash metabolic diet⁴ + water or cranberry juice	12	Yes	8.6	0.4	Yes	5.97	Yes
Kerstetter et al (37)	Amount protein	13	Yes	68.9	1.66	No	—	
Roughhead et al (38)	Meat⁴ or soy	13	Yes	−11	0.05	No	6.33	
Spence et al (39)	Milk protein⁴ compared with soy protein	15	Yes	1.6	1.03	Yes	—	Yes
Jajoo et al (40)	Grains	20	—	17	0.09	No	—	
Jajoo et al (40)	Fruit or vegetables	20	—	7.8	0.49	No	—	
Kerstetter et al (41)	Meat or soy	20	Yes	−24	−0.07	No	—	
Kerstetter et al (41)	Amount soy	20	Yes	28.6	0.83	No	—	
Kerstetter et al (41)	Amount meat	20	Yes	18.4	1.52	No	6.41	

¹ Refers to experimental NAE – control NAE.
² Refers to whether the urine was acid treated.
³ Refers to whether the urine was acidic because of treatment with acid or naturally acidic in both arms of the study.
⁴ Control arms used to calculate the NAE, which may represent the modern diet.
of the difference in calcium concentration between acidic and alkaline urine was due to preanalytic bias (eg, the lower solubility of calcium in alkaline urine). It is possible that the addition of acid to the urine after collection was insufficient to make all of the calcium soluble and that some measurement error remained. Because there was a difference in measurable calcium between the urine treated with acid compared with urine not so treated, we recommend that future studies of urine calcium acidify the urine to assure analytic consistency (17).

The measurement of calcium in urine is influenced by additional factors such as the concentration of calcium and other constituents, the timing of the acidification, and how long the samples are stored before analysis (18). An important methodologic consideration for future studies is that the measurement of urine pH and NAE must be conducted in urine samples that are not acidified. Therefore, future studies of the acid-ash hypothesis require use of both acidified samples, to improve the measurement of calcium, and nonacidified samples, for the measurement of pH. It would therefore be necessary to either divide the urine sample into aliquots of acidified and unaltered samples or collect acidified and nonacidified samples on different days. Because the timing of the acidification of the samples may influence the final solubility of the urine, the estimates may be influenced if this acidification is done only after all of the samples are collected. These factors contribute sources of error in the estimates of calcium excretion.

The quantity of excess calcium in the urine associated with the modern diet is sufficient in quantity that the acid-ash hypothesis could more than explain the bone loss that results in osteoporosis. Specifically, if this calcium loss estimated from short-term studies were extrapolated over time without adaption, a continuous loss of 66 mg/d (1.6 mmol/d) would lead to 24 g/y or 480 g over 20 y. Adult humans have ≈1150 g of calcium in their skeletons (135). A loss of 480 g is almost half of the skeletal calcium and consistent with severe osteoporosis. However, this observation is not evidence that the source of the extra calcium is from bone or that this calciciuria contributes to the development of osteoporosis because changes in the excretion of calcium are not a direct measure of osteoporosis as are changes in bone strength as measured by fragility fractures or bone biopsy. It is possible that the cause of changes in NAE and calciciuria also alter intestinal absorption of calcium, and there may be little or no bone calcium loss affected by these processes (37). Our study shows that the quantity of calcium excreted in the urine is of sufficient quantity that the acid-ash hypothesis could explain the cause of osteoporosis; further research is needed to determine the exact fluxes of calcium between intestinal absorption, bone mineralization, and urinary excretion. These findings are not evidence that the source of the excreted calcium is bone or that this calciciuria contributes to the development of osteoporosis.

We thank Sue Ross for assistance with editing.

The author’s responsibilities were as follows—TRF and AWL: designed the study; TRF: searched the literature, extracted the data, performed the statistical analysis and graphic representation, and wrote the manuscript; ME: directed the study’s statistical analysis and graphic representation; AWL: contributed to data analysis and writing of the manuscript; SCT and DAH: helped design the study and interpret the findings. None of the authors had a personal or financial conflict of interest.

REFERENCES
1. Tenenhouse A, Joseph L, Kreiger N, et al. Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 2000;11:897–904.
2. Adachi JD, Ioannidis G, Pickard L, et al. The association between osteoporotic fractures and health-related quality of life as measured by the Health Utilities Index in the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 2005;14:895–904.
3. Adachi JD, Ioannidis G, Berger C, et al. The influence of osteoporotic fractures on health-related quality of life in community-dwelling men and women across Canada. Osteoporos Int 2001;12:903–8.
4. Brown JP, Josse RG. 2002 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada. Can Med Assoc J 2002;167(suppl):S1–34.
5. Remer T. Influence of diet on acid-base balance. Semin Dial 2000;13:221–6.
6. New SA. Intake of fruit and vegetables: implications for bone health. Proc Nutr Soc 2003;62:889–99.
7. Barzel US, Massey LK. Excess dietary protein can adversely affect bone. J Nutr 1998;128:1051–3.
8. Frassetto L, Morris RC Jr, Sellmeyer DE, Todd K, Sebastian A. Diet, evolution and aging—the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet. Eur J Nutr 2001;40:200–13.
9. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC Jr. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 1994;330:1776–81.
10. Institute of Medicine (IOM). Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC: National Academies Press, 2004:187.
11. Burns L, Ashwell M, Berry J, et al. UK Food Standards Agency Optimal Nutrition Status Workshop: environmental factors that affect bone health throughout life. Br J Nutr 2003;89:835–40.
12. Burtis CA, Ashwood ER, Tietz NW. Tietz textbook of clinical chemistry. Philadelphia, PA: WB Saunders, 1999:1262–3.
13. New SA. Nutrition Society Medal Lecture. The role of the skeleton in acid-base homeostasis. Proc Nutr Soc 2002;61:151–64.
14. DuBose TD. Acid-base disorders. In: Brenner BM, ed. Brenner and Rector’s the kidney. Philadelphia, PA: Saunders, 2000:935–7.
15. Alexy U, Kersting M, Remer T. Potential renal acid load in the diet of children and adolescents: impact of food groups, age and time trends. Public Health Nutr 2007;11:300–6.
16. Remer T, Manz F. Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein. Am J Clin Nutr 1994;59:1356–61.
and phosphate on the precipitation of calcium and magnesium salts in urine. Clin Chem Lab Med 2006;44:185–91.

18. Ng RH, Menon M, Ladensohn JH. Collection and handling of 24-hour urine specimens for measurement of anaytes related to renal calculi. Clin Chem 1984;30:467–71.

19. Weber HP, Gray RW, Dominguez JH, Lemann J Jr. The lack of effect of chronic metaphosphoric acidosis on 25-OH-vitamin D metabolism and serum parathyroid hormone in humans. J Clin Endocrinol Metab 1976;43:1047–55.

20. Jajoo R, Song L, Rasmussen H, Harris SS, Dawson-Hughes B. Dietary acid-base balance, bone resorption, and calcium excretion. J Am Coll Nutr 2006;25:224–30.

21. Kerstetter JE, Wall DE, O’Brien KO, Caseria DM, Insogna KL. Meat and soy protein affect calcium homeostasis in healthy women. J Nutr 2006;136:1890–5.

22. Last JM. A dictionary of epidemiology. New York, NY: Oxford University Press, 2001.

23. Block GD, Wood RJ, Allen LH. A comparison of the effects of feeding sulfur amino acids and protein on urinary calcium in man. Am J Clin Nutr 1980;33:2128–36.

24. Leskovar R. “[Drinking the waters” as a therapeutic exercise in the ionic range]. MMW Munch Med Wochenschr 1975;117:437–42 (in German).

25. Lennon EJ, Lemann J Jr, Lizov JR. The effects of diet and stoel composition on the net external acid balance of normal subjects. J Clin Invest 1966;45:1601–7.

26. Lemann J Jr, Lizov JR, Lennon EJ. The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest 1966;45:1608–14.

27. Lemann J Jr, Pleuss JA, Gray RW, Hoffmann RG. Potassium administration reduces and potassium deprivation increases urinary calcium excretion in healthy adults [corrected]. Kidney Int 1991;39:973–83.

28. Blatherwick NR. The specific role of food in relation to the composition of the urine. Arch Intern Med 1914;409–50.

29. Bittner R, Maciejewski J, Czekalski S, Waligora A. [Interrelationship between renal metabolism of electrolytes and the process of urine acidification]. Pol Tyg Lek 1972;27:1836–9 (in Polish).

30. Tschope W, Ritz E. Sulfur-containing amino acids are a major determinant of urinary calcium. Miner Electrolyte Metab 1985;11:137–9.

31. Breslau NA, Brinkley L, Hill KD, Pak CY. Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J Clin Endocrinol Metab 1988;66:140–6.

32. Lewis NM, Marcus MS, Belting AR, Gregor JL. Calcium supplements and milk: effects on acid-base balance and on retention of calcium, magnesium, and phosphorus. Am J Clin Nutr 1989;49:527–33.

33. Trilok G, Draper HH. Sources of protein-induced endogenous acid production and excretion by human adults. Calcif Tissue Int 1993;44:335–8.

34. Dahl WJ, Whiting SJ, Stephen AM. Dietary lentils and calcium balance in adult men. Nutr Res 1995;15:1587–98.

35. Frassetto LA, Nash E, Morris RC Jr, Sebastian A. Comparative effects of potassium chloride and bicarbonate on thiazide-induced reduction in urinary calcium excretion. Kidney Int 2000;58:748–52.

36. Sellmeyer DE, Schloetter M, Sebastian A. Potassium citrate prevents protein-induced hypercalciuria in older men and women. J Nutr 1981;111:2106–16.

37. Roughead ZK, Hunt JR, Johnson LK, Badger TM, Lykken GI. Controlled substitution of soy protein for meat protein: effects on calcium, sulfur amino acid, and phosphorus intake. J Nutr 1981;111:533–62.

38. Roughead ZK, Hunt JR, Johnson LK, Badger TM, Lykken GI. Controlled substitution of soy protein for meat protein: effects on calcium, sulfur amino acid, and phosphorus intake. J Nutr 1981;111:533–62.

39. Ince BA, Anderson EJ, Neer RM. Lowering dietary protein to U.S. renal acid, urinary cyclic AMP, and hydroxyproline excretion as affected by level of protein, sulfur amino acid, and phosphorus intake. J Nutr 1981;111:533–62.

40. Gettman MT, Ogan K, Brinkley LJ, Adams-Huet B, Pak CY, Pearle MS. Effect of cranberry juice consumption on urinary stone risk factors. J Urol 2005;174:590–4.

41. Kerstetter JE, O’Brien KO, Caseria DM, Wall DE, Insogna KL. The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. J Clin Endocrinol Metab 2005;90:26–31.

42. Roughead ZK, Hunt JR, Johnson LK, Badger TM, Lykken GI. Controlled substitution of soy protein for meat protein: effects on calcium, retention, bone, and cardiovascular health indices in postmenopausal women. J Clin Endocrinol Metab 2005;90:181–9.

43. Schuette SA, Zemel MB, Linkswiler HM. Studies on the mechanism of protein-induced hypercalciuria in older men and women. J Nutr 1980;110:305–15.

44. Lemann J Jr, Gray RW, Maierhofer WJ, Cheung HS. The importance of renal net acid excretion as a determinant of fasting urinary calcium excretion. Kidney Int 1986;29:743–6.

45. Lennon EJ, Lemann J Jr, Litzow JR. The effects of diet and stool composition on the net external acid balance of normal subjects. J Clin Invest 1966;45:1601–7.

46. Lemann J Jr, Lizov JR, Lennon EJ. The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest 1966;45:1608–14.
with indexes of bone health in premenopausal and perimenopausal women. Am J Clin Nutr 2004;79:131–8.

65. Pryne CJ, Ginty F, Paul AA, et al. Dietary acid-base balance and intake of bone-related nutrients in Cambridge teenagers. Eur J Clin Nutr 2004;58:1462–71.

66. Tylavsky FA, Holliday K, Danisch R, Womack C, Norwood J, Carbone L. Fruit and vegetable intakes are independent predictors of bone size in early pubertal children. Am J Clin Nutr 2004;79:311–7.

67. Alexy U, Remer T, Manz F, Neu CM, Schoenau E. Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr 2005;82:1107–14.

68. Rafferty K, Davies KM, Heaney RP. Potassium intake and the calcium economy. J Am Coll Nutr 2005;24:100–6.

69. Vatanparast H, Baxter-Jones A, Faulkner RA, Bailey DA, Whiting SJ. Positive effects of vegetable and fruit consumption and calcium intake on bone mineral accrual in boys during growth from childhood to adolescence: the University of Saskatchewan Pediatric Bone Mineral Accrual Study. Am J Clin Nutr 2005;82:700–6.

70. Macdonald HM, New SA, Fraser WD, Campbell MK, Reid DM. Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr 2005;81:923–33.

71. Rylander R, Remer T, Berkemeyer S, Vornmann J. Acid-base status affects renal magnesium losses in healthy, elderly persons. J Nutr 2006;136:2374–7.

72. Remer T, Berkemeyer S, Rylander R, Vornmann J. Muscularity and acidosis in addition to net acid excretion as predictors of 24-h urinary pH in young adults and elderly. Eur J Clin Nutr 2007;61:605–9.

73. Whiting SJ, Boyle JL, Thompson A, Mirwald RL, Faulkner RA. Dietary protein, phosphorus and potassium are beneficial to bone mineral density in adults consuming adequate dietary calcium. J Am Coll Nutr 2002;21:402–9.

74. Hu JF, Zhao XH, Parpia B, Campbell TC. Dietary intakes and urinary excretion of calcium and acids: a cross-sectional study of women in China. Am J Clin Nutr 1993;53:398–406.

75. Manz F, Remer T, Decker-Spliehoff E, et al. Effects of a high protein intake on renal acid excretion in bodybuilders. Z Ernahrungswiss 1995;34:10–5.

76. Reeves NE, Stone KL, Sebastian A, Cummings SR. A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Study of Osteoporotic Fractures Research Group. Am J Clin Nutr 2001;73:118–22.

77. Tucker KL, Hanann MT, Kiel DP. The acid-base hypothesis: diet and bone in the Framingham Osteoporosis Study. Eur J Clin Nutr 2001;40:231–7.

78. Houillier P, Normand M, Frossart M, Blanchard A, Jungers P, Paillard M. Calciuretic response to an acute acid load in healthy subjects and hypercalciuric calcium stone formers. Kidney Int 1996;50:987–93.

79. Whiting SJ, Anderson DJ, Weeks SJ. Calciuretic effects of protein and potassium bicarbonate but not of sodium chloride or phosphate can be detected acutely in adult women and men. Am J Clin Nutr 1997;65:1465–72.

80. Schwille PO, Schmiedl A, Herrmann U, Schwille R, Fink E, Manoharan M. Acute oral calcium-sodium citrate load in healthy males. Effects on acid-base and mineral metabolism, oxalate and other risk factors of stone formation in urine. Methods Find Exp Clin Pharmacol 1997:19:417–27.

81. Duff TL, Whiting SJ. Calciuretic effects of short-term dietary loading of protein, sodium chloride and potassium citrate in prepubescent girls. J Am Coll Nutr 1998;17:148–54.

82. Herrmann U, Schwille PO, Schmiedl A, Fan J, Manoharan M. Acute effects of calcium citrate supplementation of a test meal on mineral homeostasis, oxalate, and calcium oxalate crystallization in the urine of healthy humans—preliminary results in patients with idiopathic calcium urolithiasis. Biomed Pharmacother 1999;53:264–73.

83. Bell JA, Whiting SJ. Effect of fruit on net acid and urinary calcium excretion in an acute feeding trial of women. Nutrition 2004;20:492–3.

84. Oster PJ, Engel K, Kildeberg P. Renal response to acute acid loading—concurrent physiological approach. Scand J Urol Nephrol 2004;38:62–8.

85. Whiting SJ, Mairhead JA. Measurement of net acid excretion by use of paper strips. Nutrition 2005;21:961–3.

86. Thomas WC Jr, Lewis AM, Bird ED. Effect of alkali administration on calcium metabolism. J Clin Endocrinol Metab 1967;27:1328–36.

87. Lau K, Wolf C, Nussbaum P, et al. Differing effects of acid versus neutral phosphate therapy of hypercalciuria. Kidney Int 1979:16:736–42.

88. Heyburn PJ, Robertson WG, Peacock M. Phosphate treatment of recurrent calcium stone disease. Nephron 1982:32:314–9.

89. Sakkhae K, Nicar M, Hill K, Pak CY. Contrasting effects of potassium citrate and sodium citrate therapies on urinary chemistries and crystallization of stone-forming salts. Kidney Int 1983;24:348–52.

90. Uribarri J, Douyon H, Oh MS. A re-evaluation of the urinary parameters of acid production and excretion in patients with chronic renal acidosis. Kidney Int 1984;26:18:103–12.

91. Normand M, Cayotte JL, Houillier P, Peuchant A, Paillard M. [Egerated calciuretic calciuretic response to an acute acid load in patients forming renal calcium stones]. Nephrologie 1993:14:283–5 (in French).

92. Kamel KS, Cheema-Dhadi S, Halperin ML. Studies on the pathophysiology of the low urine pH in patients with uric acid stones. Kidney Int 2002;61:988–94.

93. Pak CY, Peterson RD, PoinDEX J. Prevention of spinal bone loss by potassium citrate in cases of calcium urolithiasis. J Urol 2002;168:31–4.

94. Jourdan M, Gock C, Margen S, Bradfield RB. Sulphate, acid-base, and mineral balances of obese women during weight loss. Am J Clin Nutr 1980;33:236–43.

95. Reddy ST, Wang CY, Sakkhae K, Brinkley L, Pak CY. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am J Kidney Dis 2002;40:265–74.

96. Shoahl AT, Sato A. Acid-base metabolism: determination of base balance. J Biol Chem 1923;58:235–55.

97. Cole DE, Zlotkin SH. Increased sulfate as an etiological factor in the formation of urinary stones. Pediatrics 1967;40:265–74.

98. Kamel KS, Cheema-Dhadi S, Halperin ML. Studies on the pathophysiology of the low urine pH in patients with uric acid stones. Kidney Int 2002;61:988–94.

99. Sulyok E. Effect of NH4Cl-induced metabolic acidosis on urinary calcium excretion in young infants. Acta Paediatr Acad Sci Hung 1977;18:103–12.

100. Camien MN, Smith LM, Reilly TJ, Simmons DH. Determination of total cation-coupling mineral elements in feces and urine and its relation to renal “net acid” excretion. Proc Soc Exp Biol Med 1966;123:686–91.

101. Barzel US. The effect of excessive acid feeding on bone. Calcif Tissue Res 1969;4:94–100.

102. Sugira I, Inagaki K, Noda Y, Nagai T, Nabeshima T. Acid load during total parenteral nutrition: comparison of hydrochloric acid and acetic acid on plasma acid-base balance. J Parenter Enteral Nutr 1985;9:42.

103. Cole DE, Zlotkin SH. Increased sulfate as an etiological factor in the formation of urinary stones. Pediatrics 1967;40:265–74.

104. Kamel KS, Cheema-Dhadi S, Halperin ML. Studies on the pathophysiology of the low urine pH in patients with uric acid stones. Kidney Int 2002;61:988–94.

105. Camien MN, Smith LM, Reilly TJ, Simmons DH. Determination of total cation-coupling mineral elements in feces and urine and its relation to renal “net acid” excretion. Proc Soc Exp Biol Med 1966;123:686–91.

106. Barzel US. The effect of excessive acid feeding on bone. Calcif Tissue Res 1969;4:94–100.

107. Sugiura S, Inagaki K, Noda Y, Nagai T, Nabeshima T. Acid load during total parenteral nutrition: comparison of hydrochloric acid and acetic acid on plasma acid-base balance. J Nutr 2000;130:264:C694–701.

108. Krieger NS, Sessler NE, Bushinsky DA. Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. Proc Natl Acad Sci USA 1995;92:3154–8.

109. Bushinsky DA, Sessler NE, Krieger NS. Greater unidirectional calcium efflux from bone during metabolic, compared with respiratory, acidosis. Am J Physiol 1992;262:F425–31.

110. Carano A, Schlesinger PH, Athanasou NA, Teitelbaum SL, Blair HC. Acid and base effects on avascular osteoclast activity. Am J Physiol 1993;264:C694–701.

111. Arnett TR, Boydé A, Jones SJ, Taylor ML. Effects of medium acidification by alteration of carbon dioxide or bicarbonate concentrations
on the resorptive activity of rat osteoclasts. J Bone Miner Res 1994;9:375–9.

112. Arnett TR, Spowage M. Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. Bone 1996;18:277–9.

113. Krieger NS, Parker WR, Alexander KM, Bushinsky DA. Prostaglandins regulate acid-induced cell-mediated bone resorption. Am J Physiol Renal Physiol 2000;279:F1077–82.

114. Meghji S, Morrison MS, Henderson B, Arnett TR. pH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis. Am J Physiol Endocrinol Metab 2001;280:E112–9.

115. Bushinsky DA, Parker WR, Alexander KM, Krieger NS. Metabolic, but not respiratory, acidosis increases bone PGE(2) levels and calcium release. Am J Physiol Renal Physiol 2001;281:F1058–66.

116. Krieger NS, Frick KK, Bushinsky DA. Cortisol inhibits acid-induced bone resorption in vitro. J Am Soc Nephrol 2002;13:2534–9.

117. Krieger NS, Bushinsky DA, Frick KK. Cellular mechanisms of bone resorption induced by metabolic acidosis. Semin Dial 2003;16:463–6.

118. Brandao-Burch A, Utting JC, Orriss IR, Arnett TR. Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif Tissue Int 2005;77:167–74.

119. Krieger NS, Frick KK, LaPlante SK, Michalenka A, Bushinsky DA. Regulation of COX-2 mediates acid-induced bone calcium efflux in vitro. J Bone Miner Res 2007;22:907–17.

120. Arnett TR. Extracellular pH regulates bone cell function. J Nutr 2008;138(suppl):415S–8S.

121. Whiting SJ, Cole DE. The comparative effects of feeding ammonium carbonate, ammonium sulfate, and ammonium chloride on urinary calcium excretion in the rat. Can J Physiol Pharmacol 1987;65:2202–4.

122. Bleich HL, Moore MJ, Lemann J Jr, Adams ND, Gray RW. Urinary calcium excretion in human beings. N Engl J Med 1979;301:535–41.

123. Kleinman CR, Lemann J Jr. Acid production. In: Maxwell MI, Kleeman CR, Narins RG, eds. Clinical disorders of fluid and electrolyte metabolism. New York, NY: McGraw Hill, 1987:159–73.

124. Alpern RJ, Sakkhae K. The clinical spectrum of chronic metabolic acidosis: homeostatic mechanisms produce significant morbidity. Am J Kidney Dis 1997;29:291–302.

125. Frassetto LA, Todd KM, Morris RC Jr, Sebastian A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am J Clin Nutr 1998;68:576–83.

126. Oh MS. New perspectives on acid-base balance. Semin Dial 2000;13:212–9.

127. Remer T. Influence of nutrition on acid-base balance–metabolic aspects. Eur J Nutr 2001;40:214–20.

128. Sebastian A, Frassetto LA, Selimeyer DE, Merriam RL, Morris RC Jr. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors. Am J Clin Nutr 2002;76:1308–16.

129. Lemann J Jr, Bushinsky DA, Hamm LL. Bone buffering of acid and base in humans. Am J Physiol Renal Physiol 2003;285:F811–32.

130. Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials. BMC Med Res Methodol 2001;1:2.

131. Altman DG, Schulz KF, Moher D, et al. The revised CONSORT statement: recommendations for improving the quality of reports of parallel group randomized trials. Ann Intern Med 2001;134:663–94.

132. Jehle S, Zanetti A, Muser J, Hulter RN, Krapf R. Partial neutralization of the acidogenic Western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia. J Am Soc Nephrol 2006;17:3213–22.

133. Institute of Medicine (IOM). Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D and fluoride. Washington, DC: National Academies Press, 1997.

134. Greenland S. Meta-analysis. In: Rothman KJ, Greenland S, eds. Modern epidemiology. Philadelphia, PA: Lippincott Williams & Wilkins, 1998:657.

135. Pellegrino ED, Biltz RM. The composition of human bone in uremia. Medicine (Baltimore) 1965;44:397–418.

136. Pellegrino ED, Biltz RM. The composition of human bone in uremia. Medicine (Baltimore) 1965;44:397–418.