On the lattice of the σ-permutable subgroups of a finite group

Alexander N. Skiba
Department of Mathematics and Technologies of Programming,
Francisk Skorina Gomel State University,
Gomel 246019, Belarus
E-mail: alexander.skiba49@gmail.com

Abstract

Let $\sigma = \{\sigma_i | i \in I\}$ be some partition of the set of all primes \mathbb{P}, G a finite group and $\sigma(G) = \{\sigma_i | \sigma_i \cap \pi(G) \neq \emptyset\}$.

A set \mathcal{H} of subgroups of G is said to be a complete Hall σ-set of G if every member $\neq 1$ of \mathcal{H} is a Hall σ-subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ-subgroup of G for every $\sigma_i \in \sigma(G)$. A subgroup A of G is said to be σ-permutable in G if G possesses a complete Hall σ-set and A permutes with each Hall σ-subgroup H of G, that is, $AH = HA$ for all $i \in I$.

We characterize finite groups with distributive lattice of the σ-permutable subgroups.

1 Introduction

Throughout this paper, G always denotes a finite group. Moreover, we use $\mathcal{L}(G)$ to denote the lattice of all subgroups of G. \mathbb{P} is the set of all primes, $\pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. As usual, $\pi(G)$ is the set of all primes dividing the order $|G|$ of G. The subgroups A and B of G are said to be permutable if $AB = BA$. In this case they also say that A permutes with B. If A permutes with all Sylow subgroups of G, then A is called S-permutable in G [1]. Recall also that an element a of the lattice \mathcal{L} is called meet-distributive [2, p. 136] if $a \wedge (b \lor c) = (a \wedge b) \lor (a \wedge c)$ for all $b, c \in \mathcal{L}$.

In what follows, $\sigma = \{\sigma_i | i \in I\}$ is some partition of \mathbb{P}, that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$.

A set \mathcal{H} of subgroups of G is a complete Hall σ-set of G [3] if every member $\neq 1$ of \mathcal{H} is a Hall σ_i-subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i-subgroup of G for every i such that $\sigma_i \cap \pi(G) \neq \emptyset$. G is said to be σ-full if it possesses a complete Hall σ-set.

Definition 1.1. We say that a subgroup A of G is said to be σ-quasinormal or σ-permutable in G [4] if G is σ-full and A permutes with each Hall σ_i-subgroup H of G for all $i \in I$.

\footnotesize{Keywords: finite group, σ-permutable subgroup, subgroup lattice, modular lattice, distributive lattice}

Mathematics Subject Classification (2010): 20D10, 20D30, 20E15
Remark 1.2. (i) If G possesses a complete Hall σ-set \mathcal{H} such that $AH^x = H^xA$ for all $H \in \mathcal{H}$ and all $x \in G$, then A is σ-permutable in G (see Proposition 3.1 below).

(ii) G is called σ-decomposable (Shemetkov [3]) or σ-nilpotent (Guo and Skiba [6]) if $G = H_1 \times \cdots \times H_t$, where $\{H_1, \ldots, H_t\}$ is a complete Hall σ-set of G. It is not difficult to show that G is σ-nilpotent if and only if every subgroup of G is σ-permutable in G.

(iii) In the classical case when $\sigma = \sigma^0 = \{\{2\}, \{3\}, \ldots\}$: G is σ^0-nilpotent if and only if G is nilpotent; a subgroup A of G is σ^0-permutable in G if and only if it is S-permutable in G.

(iv) In the other classical case when $\sigma = \sigma^\pi = \{\pi, \pi'\}$: G is σ^π-nilpotent if and only if it is π-decomposable, that is, $G = O_\pi(G) \times O_{\pi'}(G)$; a subgroup A of a π-separable group G is σ^π-permutable in G if and only if A permutes with all Hall π-subgroups and with all Hall π'-subgroups of G.

(v) If G is σ-full, the set $\mathcal{L}_{\sigma_{\text{per}}}(G)$ of all σ-permutable subgroups of G is partially ordered with respect to set inclusion. Moreover, $\mathcal{L}_{\sigma_{\text{per}}}(G)$ is a lattice since $1 \in \mathcal{L}_{\sigma_{\text{per}}}(G)$ and, by Lemma 2.1 below, for any $A_1, \ldots, A_n \in \mathcal{L}_{\sigma_{\text{per}}}(G)$ the subgroup $\langle A_1, \ldots, A_n \rangle$ is the least upper bound for $\{A_1, \ldots, A_n\}$ in $\mathcal{L}_{\sigma_{\text{per}}}(G)$.

The conditions under which the lattice $\mathcal{L}_{\text{sn}}(G)$ of all subnormal subgroups of G is modular or distributive are known (see [2 Theorems 9.2.3, 9.2.4]). It is well-known also that the lattice $\mathcal{L}_n(G)$ of all normal subgroups of G is modular if and only if in every factor group G/R, any two G/R-isomorphic normal subgroups coincide (see [7] and [2 Theorem 9.1.6]). Kegel proved [8] that the set $\mathcal{L}_S(G)$ of all S-permutable subgroups of G forms a sublattice of the lattice $\mathcal{L}_{\text{sn}}(G)$. Since $\mathcal{L}_n(G) \subseteq \mathcal{L}_S(G) \subseteq \mathcal{L}_{\text{sn}}(G)$, where both inclusions in general are strict, it seems natural to ask: Under what conditions the lattice $\mathcal{L}_S(G)$ is modular or distributive? Moreover, in view of Remark 1.2(v), it makes sense to consider the following general

Question 1.3 (See Questions 6.10 and 6.11 in [3]). Under what conditions the lattice $\mathcal{L}_{\sigma_{\text{per}}}(G)$ is modular or distributive?

Note that if $K \trianglelefteq H$ and $K, H \in \mathcal{L}_{\sigma_i}(G)$, where $\mathcal{L}_{\sigma_i}(G)$ is the set of all σ-permutable σ_i-subgroups of G, then $O^{\sigma_i}(G)$ normalizes both subgroups K and H (see Lemma 2.4(1) below) and hence we can consider $O^{\sigma_i}(G)$ as a group of operators for H/K (assuming, as usual, that $(hK)^a = h^aK$ for all $hK \in H/K$ and $a \in O^{\sigma_i}(G)$).

We do not know under what conditions on G the lattice $\mathcal{L}_{\sigma}(G)$ is modular. Nevertheless, we give a full answer to the second part of Question 1.3.

Theorem A. Suppose that G is σ-full. Let $D = G^{\text{nil}}$ and $\mathcal{L} = \mathcal{L}_{\sigma}(G)$. Then the lattice \mathcal{L} is distributive if and only if the following conditions hold:

(i) Every two members of \mathcal{L} are permutable.

(ii) The lattice $\mathcal{L}_n(G)$ of all normal subgroups of G is distributive.

(iii) G/D is cyclic and D is a meet-distributive element of \mathcal{L}.

2
In every factor group $\bar{G} = G/R$, any two $O^{\sigma_i}(\bar{G})$-isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K}, where $\bar{K}, \bar{H}, \bar{L} \in \mathcal{L}_{\sigma}(\bar{G})$ for some i, coincide.

In this theorem G^{σ_N} denotes the σ-nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ-nilpotent quotient G/N.

Theorem A remains to be new for each special partition of \mathbb{P}. In particular, in the case when $\sigma = \sigma^0$ we get from Theorem A the following

Corollary 1.4. Let $D = G^{\sigma_0}$ be the nilpotent residual of G and $\mathcal{L} = \mathcal{L}_S(G)$. Then the lattice \mathcal{L} is distributive if and only if the following conditions hold:

1. Conditions (i), (ii) and (iii) in Theorem A hold for G.
2. In every factor group $\bar{G} = G/R$, any two $O^{\sigma}(\bar{G})$-isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K}, where $\bar{K}, \bar{H}, \bar{L} \in \mathcal{L}_{\sigma}(\bar{G})$ and p is a prime, coincide.

In this corollary $\mathcal{L}_{\sigma}(\bar{G})$ denotes the set of all S-permutable p-subgroups of \bar{G}.

In the case when $\sigma = \sigma^\pi$ (see Remark 1.2(iv)) we get from Theorem A the following fact.

Corollary 1.5. Let D be the π-decomposable residual of G, that is, the smallest normal subgroup of G with π-decomposable quotient G/D. Suppose that G is π-separable and let $\mathcal{L} = \mathcal{L}_{\sigma}(G)$. Then the lattice \mathcal{L} is distributive if and only if the following conditions hold:

1. Conditions (i), (ii) and (iii) in Theorem A hold for G.
2. In every factor group $\bar{G} = G/R$, any two $O^{\sigma}(\bar{G})$-isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K}, where $\bar{K}, \bar{H}, \bar{L} \in \mathcal{L}_{\sigma}(\bar{G})$ and π is a prime, coincide.
3. In every factor group $\bar{G} = G/R$, any two $O^{\sigma}(\bar{G})$-isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K}, where $\bar{K}, \bar{H}, \bar{L} \in \mathcal{L}_{\sigma}(\bar{G})$ and π' are σ-permutable π'-subgroups of \bar{G}, coincide.

The proof of Theorem A consists of many steps and the next theorems are two of them.

Theorem B. Suppose that G is σ-full. Then $\mathcal{L}_{\sigma}(G)$ is a sublattice of the lattice $\mathcal{L}(G)$.

Corollary 1.6 (Kegel [8]). The set $\mathcal{L}_S(G)$ of all S-permutable subgroups of G forms a sublattice of the lattice $\mathcal{L}(G)$.

There are at least three different proofs of Corollary 1.6 (see, for example, [8, 9, 14]). One more, the shortest one, gives the proof of Theorem B.

Theorem C. A σ-nilpotent subgroup A of G is σ-permutable in G if and only if each characteristic subgroup of A is σ-permutable in G.

Corollary 1.7 (See [9] or [14] Theorem 1.2.17]). Let A be a nilpotent subgroup of G. Then the following statements are equivalent:

(i) A is S-permutable in G.

(ii) Each Sylow subgroup of A is S-permutable in G.

3
(iii) Each characteristic subgroup of A is S-permutable in G.

2 Proof of Theorems B and C

Lemma 2.1 (See [10, A, Lemma 1.6]). Let A, B and H be subgroups of G. If \(AH = HA\) and \(BH = HB\), then \(⟨A, B⟩H = H⟨A, B⟩\).

A subgroup \(A\) of \(G\) is called \(\sigma\)-subnormal in \(G\) \([1]\) if there is a subgroup chain \(A = A_0 \leq A_1 \leq \cdots \leq A_t = G\) such that either \(A_{i-1} \leq A_i\) or \(A_i/(A_{i-1})A_i\) is \(\sigma\)-primary for all \(i = 1, \ldots, t\).

The importance of this concept is related to the following result.

Lemma 2.2 (See [1] Theorem B). Let \(A\) be a subgroup of \(G\). If \(G\) possesses a complete Hall \(\sigma\)-set \(\mathcal{K}\) such that \(AH^x = H^xA\) for all \(H \in \mathcal{K}\) and all \(x \in G\), then \(A\) is \(\sigma\)-subnormal in \(G\).

Lemma 2.3 (See Lemma 2.6 in [4]). Let \(A, K\) and \(N\) be subgroups of \(G\). Suppose that \(A\) is \(\sigma\)-subnormal in \(G\) and \(N\) is normal in \(G\).

1. \(A \cap K\) is \(\sigma\)-subnormal in \(K\).
2. If \(|G : A|\) is a \(\sigma\)-number, then \(O^{\sigma_i}(A) = O^{\sigma_i}(G)\).
3. \(AN/N\) is \(\sigma\)-subnormal in \(G/N\).
4. If \(A\) is a \(\sigma\)-group, then \(A \leq O_{\sigma_i}(G)\).
5. If \(H \neq 1\) is a Hall \(\sigma_i\)-subgroup of \(G\), then \(A \cap H \neq 1\) is a Hall \(\sigma_i\)-subgroup of \(A\).
6. If \(K\) is \(\sigma\)-subnormal in \(G\) and the subgroups \(A\) and \(K\) are \(\sigma\)-nilpotent, then \(⟨A, K⟩\) is \(\sigma\)-nilpotent.

Proof of Theorem B. In fact, in view of Lemmas 2.1 and 2.2, it is enough to show that if \(A\) and \(B\) are \(\sigma\)-subnormal subgroups of \(G\) such that for a Hall \(\sigma\)-subgroup \(H\) of \(G\) we have \(AH = HA\) and \(BH = HB\), then \(A \cap H = H(\cap A)\). Assume that this is false and let \(G\) be a counterexample of minimal order. Then \(G\) is not a \(\sigma\)-group, since otherwise we have \(H = G\) and so \(G = (A \cap B)H = H(A \cap B)\).

Let \(E = AH \cap BH\). Then \(A \cap E\) and \(B \cap E\) are \(\sigma\)-subnormal subgroups in \(E\) by Lemma 2.3(1). Moreover, \(AH \cap E = H(A \cap E) = (A \cap E)H\). Similarly, \((B \cap E)H = H(B \cap E)\). Hence the hypothesis holds for \((A \cap E, B \cap E, H, E)\). Assume that \(E \leq G\). Then the choice of \(G\) implies that \(A \cap B = (A \cap E) \cap (B \cap E)\) is permutable with \(H\). Hence \(E = G\), so \(G = AH = BH\). Thus \(|G : A|\) and \(|G : B|\) are \(\sigma\)-numbers. Hence by Lemma 2.3(2) we have \(O^{\sigma_i}(A) = O^{\sigma_i}(G) = O^{\sigma_i}(B)\). Therefore, since \(G\) is not a \(\sigma\)-group, it follows that \(V = A_G \cap B_G \neq 1\). Moreover, \(A/V\) and \(B/V\) are \(\sigma\)-subnormal subgroups of \(G/V\) by Lemma 2.3(3). Also we have

\[(A/V)(HV/V) = AH/V = HA/V = (HV/V)(A/V)\]

and \((B/V)(HV/V) = (HV/V)(B/V)\), where \(HV/V\) is a Hall \(\sigma_i\)-subgroup of \(G/V\). Hence the choice
of G implies that
\[(A \cap B/V)(HV/V) = ((A/V) \cap (B/V))(HV/V) =
\]
\[= (HV/V)((A/V) \cap (B/V)) = (HV/V)(A \cap B/V).
\]
But then
\[(A \cap B)H = (A \cap B)HV = HV(A \cap B) = H(A \cap B).
\]
This contradiction completes the proof of the result.

Lemma 2.4 (See Lemmas 2.8, 3.1 and Theorem B in [4]). Let A and B be subgroups of G. Suppose that G possesses a complete Hall σ-set \mathfrak{H} such that $AH^x = H^xA$ for all $H \in \mathfrak{H}$ and all $x \in G$. Then:

1. If A is a σ_i-group, then $O^{\sigma_i}(G) \leq N_G(A)$.
2. A/A_G is σ-nilpotent.
3. If B is a σ_i-group and $O^{\sigma_i}(G) \leq N_G(B)$, then G possesses a complete Hall σ-set \mathcal{L} such that $BL^x = L^xB$ for all $L \in \mathcal{L}$ and all $x \in G$.

Proposition 2.5. Let A be a σ-nilpotent σ-subnormal subgroup of G and V a characteristic subgroup of A. Let H be a Hall σ_i-subgroup of G. If $AH = HA$, then $VH = HV$.

Proof. Assume that this proposition is false and let G be a counterexample with $|G|+|V|+|A|$ minimal.

By hypothesis, $A = A_1 \times \cdots \times A_t$, where $\{A_1, \ldots, A_t\}$ is a complete Hall σ-set of A. Hence $V = (A_1 \cap V) \times \cdots \times (A_t \cap V)$, where $\{A_1 \cap V, \ldots, A_t \cap V\}$ is a complete Hall σ-set of V. We can assume without loss of generality that A_k is a σ_k-subgroup of A for all $k = 1, \ldots, t$.

It is clear that $A_i \cap V$ is characteristic in A for all $i = 1, \ldots, t$. Therefore, if $A_i \cap V < V$, then $(A_i \cap V)H = H(A_i \cap V)$ by the choice of G and so for some $j, j = 1$ say, we have $A_1 \cap V = V$ since otherwise we have
\[VH = ((A_1 \cap V) \times \cdots \times (A_t \cap V))H = H((A_1 \cap V) \times \cdots \times (A_t \cap V)) = HV.
\]
Thus $V \leq A_1$. It is clear that A_1 is a σ-subnormal subgroup of G, so in the case when $i = 1$ we have $V \leq A_1 \leq H$ by Lemma 2.3(5). But then $VH = H = HV$, a contradiction. Thus $i > 1$.

Now we show that $A_1H = HA_1$. Indeed, it is clear that $A = A_1 \times V \times A_i$ and A_i is σ-subnormal in G. Thus $A_i \leq H$ by Lemma 2.3(5). Therefore
\[AH = HA = (A_1 \times V \times A_i)H = (A_1 \times V)H = (A_1 \times V)H,
\]
where $A_1 \times V$ is a σ-subnormal σ_i-subgroup of G. Then $A_1 \times V$ is σ-subnormal in $(A_1 \times V)H$ by Lemma 2.3(1). Hence $H \leq N_G(A_1 \times V)$ by Lemma 2.3(2). Since A_1 is a characteristic subgroup of $A_1 \times V$, we have $H \leq N_G(A_1)$ and so $A_1H = HA_1$. Therefore $H \leq N_G(A_1)$ by Lemma 2.3(2). But V
is a characteristic subgroup of A_1 since V is characteristic in A by hypothesis and $A = A_1 \times \cdots \times A_t$. Therefore $H \leq N_G(V)$ and so $VH = HV$, a contradiction. The proposition is proved.

Corollary 2.6. Let A be a σ-nilpotent subgroup of a σ-full group G. Then the following statements are equivalent:

(i) A is σ-permutable in G.

(ii) Each Hall σ_i-subgroup of A is σ-permutable in G for all i.

(iii) Each characteristic subgroup of A is σ-permutable in G.

Proof. By hypothesis, $A = A_1 \times \cdots \times A_t$, where $\{A_1, \ldots, A_t\}$ is a complete Hall σ-set of A. Then A_i is characteristic in A for all $i = 1, \ldots, t$. Therefore (ii), (iii) \Rightarrow (i).

(i) \Rightarrow (ii), (iii) This follows from Proposition 2.5.

The corollary is proved.

Proof of Theorem C. This directly follows from Corollary 2.6.

3 Proof of Theorem A

Proposition 3.1. Let A be a subgroup of G. If G possesses a complete Hall σ-set \mathcal{H} such that $AL^x = L^xA$ for all $L \in \mathcal{H}$ and all $x \in G$, then A is σ-permutable in G.

Proof. Assume that this proposition is false and let G be a counterexample with $|G| + |A|$ minimal. Then for some i and some Hall σ_i-subgroup H of G we have $AH \neq HA$. Let $\mathcal{H} = \{H_1, \ldots, H_t\}$. We can assume without loss of generality that H_k is a σ_k-group for all $k = 1, \ldots, t$. Let $V = H_i$.

First we show that $A_G = 1$. Indeed, assume that $R = A_G \neq 1$. Then $\mathcal{H}_0 = \{H_1R/R, \ldots, H_tR/R\}$ is a complete Hall σ-set of G/R such that

$$AL^x/R = (A/R)(LR/R)^xR = (LR/R)^xR(A/R) = L^xA/R$$

for all $LR/R \in \mathcal{H}_0$ and all $xR \in G/R$. On the other hand, HR/R is Hall σ_i-subgroup of G/R. Hence the choice of G implies that

$$AH/R = (A/R)(HR/R) = (HR/R)(A/R) = HA/R$$

and so $AH = HA$, a contradiction. Therefore $A_G = 1$, hence $A = A_1 \times \cdots \times A_t$, where $\{A_1, \ldots, A_t\}$ is a complete Hall σ-set of A by Lemma 2.4(2). Moreover, Lemma 2.2 implies that A is σ-subnormal in G.

First assume that $A = A_1$ is a σ_j-group. If $j = i$, then $A \cap H = A$ by Lemma 2.3(5) and so $AH = H = HA$. Hence $j \neq i$. By hypothesis, $AV^x = V^xA$ for each $x \in G$. Then $V^x \leq N_G(A)$ for all $x \in G$ by Lemma 2.3(1)(2). Hence $V^G \leq N_G(A)$. But then $H \leq V^G \leq N_G(A)$, which implies that $AH = HA$. This contradiction shows that $t > 1$.

6
The subgroups A_1, \ldots, A_t are characteristic in A, so $A_1 L^x = L^x A_1$ for all $L \in \mathcal{H}$ and all $x \in G$ by Proposition 2.5. Therefore the minimality of $|G| + |A|$ implies that $A_i H = H A_i$ for all $i = 1, \ldots, t$, so $A H = H A$. This contradiction completes the proof of the result.

Lemma 3.2. Let $R \leq V$ and H be subgroups of a σ-full group G. Suppose that H is σ-permutable in G and R is normal in G. Then:

(1) If V/R is a σ-permutable subgroup of G/R, then V is a σ-permutable subgroup of G.

(2) The subgroup HR/R is σ-permutable in G/R.

Proof. (1) Let $i \in I$ and H be a Hall σ_i-subgroup of G. Then HR/R is a Hall σ_i-subgroup of G/R, so

$$VH/R = (V/R)(HR/R) = (HR/R)(V/R) = HV/R$$

by hypothesis and hence $VH = HV$.

(2) By hypothesis, G possesses a complete Hall σ-set $\mathcal{H} = \{H_1, \ldots, H_t\}$ and $HL^x = L^x H$ for all $L \in \mathcal{H}$ and all $x \in G$. Then $\mathcal{H}_0 = \{H_1 R/R, \ldots, H_t R/R\}$ is a complete Hall σ-set in G/R and

$$(HR/R)(LR/R)^xR = HL^xR/R = L^x HR/R = (LR/R)^xR (HR/R)$$

for all $LR/R \in \mathcal{H}_0$ and $xR \in G/R$. Therefore HR/R is σ-permutable in G/R by Proposition 3.1.

The lemma is proved.

Lemma 3.3 (See Lemma 5.2 in [11]). Let \mathcal{L} be a modular sublattice of the lattice $\mathcal{L}(G)$, and $U, V, N \in \mathcal{L}$ with $N \leq \langle U, V \rangle$. If U permutes both with $V \cap UN$ and VN, then U permutes with V.

Proposition 3.4. Let G be σ-full and $\mathcal{L} = \mathcal{L}_{\sigma}(G)$. Then: (i) \mathcal{L} is a sublattice of $\mathcal{L}_{\sigma_{per}}(G)$, and (ii) If \mathcal{L} is distributive, then $AB = BA$ for all $A, B \in \mathcal{L}$.

Proof. (i) Let $A, B \in \mathcal{L}$. The subgroups A and B are σ-subnormal in G by Lemma 2.2, so $A, B \leq O_{\sigma_i}(G)$ by Lemma 2.3(4). Thus $\langle A, B \rangle$ is a σ_i-subgroup of G and this subgroup is σ-permutable in G by Lemma 2.1. Finally, $A \cap B$ is also a σ_i-subgroup of G and this subgroup is σ-permutable in G by Theorem B. Thus we have (i).

(ii) Suppose that this assertion is false and let G be a counterexample with $|G| + |A| + |B|$ minimal. Thus $AB \neq BA$ but $A_1 B_1 = B_1 A_1$ for all $A_1, B_1 \in \mathcal{L}$ such that $A_1 \leq A, B_1 \leq B$ and either $A_1 \neq A$ or $B_1 \neq B$. Let $V = \langle A, B \rangle O^{\sigma}(G)$ and $R = \langle A, B \rangle \cap O^{\sigma_i}(G)$. Then V is σ-subnormal in G.

(1) $\mathcal{L}_{\sigma_i}(V)$ is a sublattice of \mathcal{L}.

Indeed, let $H \in \mathcal{L}_{\sigma_i}(V)$. Then H is σ-subnormal in V by Lemma 2.2 and so, because of Lemma 2.3(4), $H \leq O_{\sigma_i}(V) \leq O_{\sigma_i}(G)$. Therefore H permutes with each Hall σ_{i}-subgroup of G. On the other hand, each Hall σ_{j}-subgroup W of G, where $j \neq i$, is contained in V by Lemma 2.3(5) since $|W|$ divides $|V|$, so $HW = WH$. Hence $H \in \mathcal{L}_{\sigma_i}(G)$, which implies (1).

(2) $V = G$, so $\langle A, B \rangle \leq G$.

7
Claim (1) implies that the hypothesis holds for $\mathcal{L}_{\sigma_i}(V)$ and so in the case when $V \neq G$ the choice of G implies that $AB = BA$. Thus $G = \langle A, B \rangle O^{\sigma_i}(G)$. Therefore, since $O^{\sigma_i}(G) \leq N_G(\langle A, B \rangle)$ by Lemma 2.4(1), $\langle A, B \rangle$ is normal in G.

(3) $R = 1$.

Assume that $R = \langle A, B \rangle \cap O^{\sigma_i}(G) \neq 1$. First we show that $BRA = \langle A, B \rangle R$. Indeed, let H/R be a σ_i-subgroup of G/R. Then H is a σ_i-group since $\langle A, B \rangle \leq O_{\sigma_i}(G)$. Moreover, Lemma 3.2(1)(2) implies that H/R is σ-permutable in G/R if and only if H is σ-permutable in G. Therefore the lattice $\mathcal{L}_{\sigma_i}(G/R)$ is isomorphic to the interval $[G/R]$ in the distributive lattice \mathcal{L}. Therefore, by the minimality of G, $(AR/R)(BR/R) = (BR/R)(AR/R)$ by Lemma 3.2(2) and so $BRA = \langle A, B \rangle R$.

Now we show that $BRA = BR$. Assume that this is false. Then $A \cap BR < A$. But Theorem B implies that $A \cap BR$ is σ-permutable in G, so the minimality of $|G| + |A| + |B|$ implies that B permutes with $A \cap BR$. Also, B permutes with RA since $B(RA) = \langle A, B \rangle R$, so $AB = BA$ by Lemma 3.3, Part (i) and Theorem B. This contradiction shows that $A \leq BR$, so $BRA = BR$. But $R \leq O^{\sigma_i}(G) \leq N_G(B)$ by Lemma 2.4(1), hence B is normal in BR and since $A \leq BR$ it follows that $AB = BA$. This contradiction shows that we have (3).

Final contradiction. Claims (2) and (3) imply that

$$G = \langle A, B \rangle O^{\sigma_i}(G) = \langle A, B \rangle \times O^{\sigma_i}(G),$$

so every subgroup H of $\langle A, B \rangle$ is $O^{\sigma_i}(G)$-invariant. It follows that every subgroup of $\langle A, B \rangle$ is σ-permutable in G by Lemma 2.4(3) and Proposition 3.1. Hence $\mathcal{L}(\langle A, B \rangle)$ is a sublattice of the distributive lattice \mathcal{L}. Thus $\langle A, B \rangle$ is cyclic by the Ore theorem by [2] Theorem 1.2.3], so $AB = BA$, a contradiction. The proposition is proved.

Corollary 3.5. If the lattice $\mathcal{L} = \mathcal{L}_{\sigma}(G)$ is distributive, then every two members A and B of \mathcal{L} are permutable.

Proof. Suppose that this corollary is false and let G be a counterexample with $|G| + |A| + |B|$ minimal.

Let R be a minimal normal subgroup of G. Lemma 3.2 implies that $\mathcal{L}_{\sigma}(G/R)$ is isomorphic to the interval $[G/R]$ in the modular lattice $\mathcal{L}_{\sigma_{\text{per}}}(G)$. Therefore, Lemma 3.2(2) and the minimality of G imply that $(AR/R)(BR/R) = (BR/R)(AR/R)$. It follows that $RAB = \langle A, B \rangle R$ is a subgroup of G, so $A_G = 1$ and $B_G = 1$. Hence, because of Lemma 2.4(2), A and B are σ-nilpotent. The minimality of $|G| + |A| + |B|$ implies that for some i we have $A, B \leq O_{\sigma_i}(G)$ and so $A, B \in \mathcal{L}_{\sigma_i}(G)$. But $\mathcal{L}_{\sigma_i}(G)$ is a sublattice of the distributive lattice $\mathcal{L}_{\sigma}(G)$ by Proposition 3.4(i). Therefore $AB = BA$ by Proposition 3.4(ii), a contradiction. The corollary is proved.

Lemma 3.6 (See [12] p. 59]). A modular lattice \mathcal{L} is distributive if and only if \mathcal{L} has no distinct elements a, b and c such that $a \vee b = a \vee c = b \vee c$ and $a \wedge b = a \wedge c = b \wedge c$.

Lemma 3.7 (See [2] Theorem 1.6.2]). Let $G = A \times B$, $f : A \to B$ is an isomorphism and $C = \{aa^f \mid a \in A\}$. Then $G = AC = BC$ and $A \cap C = 1 = B \cap C$.

8
Lemma 3.8 (See Corollary 2.4 and Lemma 2.5 in [3]). The class of all \(\sigma \)-nilpotent groups \(\mathfrak{N}_\sigma \) is closed under taking products of normal subgroups, homomorphic images and subgroups.

In view of Proposition 2.2.8 in [13], we get from Lemma 3.8 the following

Lemma 3.9. If \(N \) is a normal subgroup of \(G \), then \((G/N)^{\mathfrak{N}_\sigma} = G^{\mathfrak{N}_\sigma} N/N \).

Proof of Theorem A. Necessity. First note that every two members of \(L \) are permutable by Theorem B. Moreover, since the lattice \(L_n(G) \) is a sublattice of the lattice \(L \), it is distributive. Since \(G/D = G/G^{\mathfrak{N}_\sigma} \) is \(\sigma \)-nilpotent by Lemmas 3.8 and 3.9, every subgroup \(E \) of \(G \) satisfying \(D \leq E \leq G \) is \(\sigma \)-permutable in \(G \) by Lemma 3.2(1) and Remark 1.2(ii). Hence \(L(G/D) = L_{\sigma\text{-perm}}(G/D) \) is distributive and so \(G/D \) is cyclic by the Ore theorem [2, Theorem 1.2.3]. It is clear also that \(D \) is a meet-distributive element of \(L \). Thus Conditions (i)-(iii) hold on \(G \).

Now we show that Condition (iv) holds on \(G \). First note that since, in view of Lemma 3.2, the lattice \(L_{\sigma\text{-perm}}(G/R) \) is isomorphic to the interval \([G/R]\) in the distributive lattice \(L \), it is enough to consider the case when \(\bar{G} = G \) and \(\bar{K} = K, \bar{H} = H, \bar{L} = L \in L \).

Suppose that \(H \neq L \). Then \(H \neq K \). Let \(K < H_0 \leq H \), where \(H_0 \) covers \(K \) in \(L \), and let \(L_0/K = (H_0/K)^f \), where \(f : H/K \rightarrow L/K \) is a \(O^{\sigma_i}(G) \)-isomorphism. For \(g \in O^{\sigma_i}(G) \) and \(l_0K = (hK)^f \in L_0/K, \) where \(h \in H \), we have

\[
(l_0K)^g = ((hK)^f)^g = ((hK)^g)^f = (h^gK)^f = (h_0K)^f,
\]

where \(h_0 \in H_0 \) since \(H_0 \) is \(O^{\sigma_i}(G) \)-invariant by Lemma 2.4(1). Hence \((l_0K)^g \in L_0/K \). It follows that \(L_0 \) is \(O^{\sigma_i}(G) \)-invariant and so \(L_0 \) covers \(K \) in \(L \) since the inverse map \(f^{-1} : L/K \rightarrow H/K \) is a \(O^{\sigma_i}(G) \)-isomorphism too.

First assume that \(H_0 \neq L_0 \) and let \(E_0/K = \{ hK(hK)^f \mid hK \in H_0/K \} \). Then

\[
(H_0/K)(L_0/K) = (H_0/K) \times (L_0/K).
\]

Indeed, if \(H_0^x \neq H_0 \) for some \(x \in L_0 \), then (i) and the fact that \(H_0 \) and \(L_0 \) cover \(K \) in \(L \) would imply that \(\{ K; H_0; H_0^x; L_0; H_0L_0 \} \) would be a diamond in the distributive lattice \(L \), contradicting Lemma 3.6. Hence, by Lemma 3.7, \(E_0/K \) is a subgroup of \((H_0/K) \times (L_0/K) \) and we have

\[
(H_0/K) \times (L_0/K) = (H_0/K) \times (E_0/K) = (L_0/K) \times (E_0/K).
\]

Note that if \(g \in O^{\sigma_i}(G) \) and \(hK(hK)^f \in E_0/K \), then

\[
(hK(hK)^f)^g = (hK)^g((hK)^f)^g = (h^gK)(h^gK)^f \in E_0/K
\]
since \(f_{H_0/K} \) is a \(O^{\sigma_i}(G) \)-isomorphism from \(H_0/K \) onto \(L_0/K = (H_0/K)^f \). Hence \(E_0/K \) is \(O^{\sigma_i}(G) \)-invariant, so \(O^{\sigma_i}(G) \leq N_G(E_0) \). Therefore \(H_0, L_0 \) and \(E_0 \) are distinct elements of \(L \) such that \(H_0 \cap L_0 = H_0 \cap E_0 = L_0 \cap E_0 = K \) and \(H_0L_0 = H_0E_0 = L_0E_0 \), which is impossible by Lemma
3.6 since \(H_0L_0 \) is a \(\sigma \)-permutable subgroup of \(G \). Therefore \(H_0 = L_0 \). Now \(f \) induces a \(O^{\sigma_i}(G) \)-isomorphism \(f' : H/H_0 \to L/H_0 \) and an obvious induction yields that \(H = L \). Hence we have (iv).

Sufficiency. This follows from the following

Proposition 3.10. Let \(D = G^{\sigma_0} \) and \(\mathcal{L} = \mathcal{L}_{\sigma_{\text{per}}}(G) \). Suppose that the following conditions hold:

(i) Every two members of \(\mathcal{L} \) are permutable.

(ii) The lattice \(\mathcal{L}_n(G) \) of all normal subgroups of \(G \) is distributive.

(iii) \(G/D \) is cyclic and \(D \) is a meet-distributive element of \(\mathcal{L} \).

(iv) In every factor group \(\bar{G} = G/R \), any two \(O^{\sigma_i}(\bar{G}) \)-isomorphic sections \(\bar{H}/\bar{K} \) and \(\bar{L}/\bar{K} \), where \(\bar{K}, \bar{H}, \bar{L} \in \mathcal{L}_{\sigma_i}(\bar{G}) \) (for some \(i \)) and the subgroups \(\bar{H} \) and \(\bar{L} \) cover \(\bar{K} \) in \(\mathcal{L}_{\sigma_{\text{per}}}(\bar{G}) \), coincide.

Then \(\mathcal{L} \) is distributive.

Proof. Suppose that this is false and let \(G \) be a counterexample of minimal order.

First note that if \(A, B, C \in \mathcal{L}_{\sigma_{\text{per}}}(G) \) and \(A \leq C \), then

\[
C \cap \langle A, B \rangle = C \cap AB = A(C \cap B) = \langle A, C \cap B \rangle
\]

by Condition (i), so the lattice \(\mathcal{L}_\sigma(G) \) is modular. Hence, by Lemma 3.6, there are distinct \(\sigma \)-permutable subgroups \(A, B \) and \(C \) of \(G \) such that for some \(\sigma \)-permutable subgroups \(E \) and \(T \) of \(G \) we have \(E = A \cap B = A \cap C = B \cap C \) and \(T = AB = AC = BC \).

(1) The lattice \(\mathcal{L}_{\sigma_{\text{per}}}(G/R) \) is distributive for each non-identity normal subgroup \(R \) of \(G \).

In view of the choice of \(G \), it is enough to show that Conditions (i), (ii), (iii) and (iv) hold for \(G/R \).

Let \(K/R, H/R \in \mathcal{L}_{\sigma_{\text{per}}}(G/R) \). Then \(K, H \in \mathcal{L}(G) \) by Lemma 3.2(1) and so \(KH = HK \) by Condition (i), which implies that \((K/R)(H/R) = (H/R)(K/R) \). It is clear also that the lattice \(\mathcal{L}_n(G/R) \) is isomorphic to some sublattice of the lattice \(\mathcal{L}_n(G) \), so \(\mathcal{L}_n(G/R) \) is distributive. Thus Conditions (i) and (ii) hold on \(G/R \).

By Lemma 3.9 we have

\[
(G/R)^{\mathcal{L}_n} = G^{\mathcal{L}_n} R/R = DR/R.
\]

Thus

\[
(G/R)/(G/R)^{\mathcal{L}_n} = (G/R)/(DR/R) \simeq G/DR \simeq (G/D)/(GR/D)
\]

is cyclic by Condition (iii). Conditions (i) and (iii) imply that

\[
D \cap \langle K, H \rangle = D \cap \langle D \cap K, D \cap H \rangle = (D \cap K)(D \cap H)
\]

since \(D \cap K \) and \(D \cap H \) are \(\sigma \)-permutable in \(G \) by Theorem B, so

\[
(G/R)^{\mathcal{L}_n} \cap \langle (K/R), (H/R) \rangle = (DR/R) \cap (K/R)(H/R) = (DR \cap KH)/R = R(D \cap KH)/R =
\]
\[R(D \cap K)(D \cap H)/R = ((D \cap K)R/R)((D \cap H)R/R) = \]
\[= ((DR/R) \cap (K/R))((DR/R) \cap (H/R)) = ((G/R)^{3T} \cap (K/R)), (G/R)^{3T} \cap (H/R)). \]

Hence \((G/R)^{3T}\) is a meet-distributive element of \(L_{oper}(G/R)\). Thus Condition (iii) hold on \(G/R\). Finally, Condition (iv), evidently, hold on \(G/R\). Thus we have (1).

(2) \(E_G = 1\) (In view of Lemma 3.2, this follows from Claim (1), Lemma 3.6 and the choice of \(G\)).

(3) \(A_G B_G \cap A_G C_G \cap B_G C_G = 1\).

Since \(A \cap B = E\), we have \(B_G \cap A_G \leq E_G = 1\) by Claim (2). Similarly, \(B_G \cap C_G = 1\) and \(A_G \cap C_G = 1\). Therefore

\[(A_G B_G \cap A_G C_G) \cap B_G C_G = A_G(B_G \cap A_G C_G) \cap B_G C_G = \]
\[= A_G(B_G \cap A_G)(B_G \cap C_G) \cap B_G C_G = \]
\[= A_G \cap B_G C_G = (A_G \cap B_G)(A_G \cap C_G) = 1 \]

by Claim (ii).

(4) The subgroup \(T\) is \(\sigma\)-nilpotent.

Note that

\[T/A_G B_G = AB/A_G B_G = (AAG_B G/A_G B_G)(BAG_B G/A_G B_G), \]

where

\[AA_G B_G/A_G B_G \simeq A/A \cap A_G B_G = \]
\[= A/A_G(A \cap B_G) \simeq (A/A_G)/((A_G(A \cap B_G)/A_G) \]

and

\[BAG_B G/A_G B_G \simeq (B/B_G)/(B_G(B \cap A_G)/B_G) \]

are \(\sigma\)-nilpotent by Lemma 2.4(2). The subgroups \(AA_G B_G/A_G B_G\) and \(BAG_B G/A_G B_G\) are \(\sigma\)-subnormal in \(G/A_G B_G\) by Lemmas 2.2 and 3.2(2). Hence \(T/A_G B_G\) is \(\sigma\)-nilpotent by Lemma 2.3(6). Similarly, \(T/A_G C_G\) and \(T/C_G B_G\) are \(\sigma\)-nilpotent. Hence from Claim (3) it follows that \(T \simeq T/(A_G B_G \cap A_G C_G \cap B_G C_G)\) is \(\sigma\)-nilpotent by Lemma 3.8.

(5) For some prime \(i\), there are distinct \(\sigma_i\)-subgroups \(A_i, B_i, C_i \in \mathcal{L}\) such that \(H_i = A_i B_i = A_i C_i = B_i C_i\) and \(K_i = A_i \cap B_i = A_i \cap C_i = B_i \cap C_i\) are \(\sigma\)-permutably subnormal subgroups of \(G\).

Let \(\sigma_i \in \sigma(T)\), that is, \(\sigma_i \cap \pi(T) \neq \emptyset\). Then, by Claim (4), \(H_i = O_{\sigma_i}(T)\) is the Hall \(\sigma_i\)-subgroup of \(T\) and \(A_i = O_{\sigma_i}(A)\), \(B_i = O_{\sigma_i}(B)\) and \(C_i = O_{\sigma_i}(C)\) are the Hall \(\sigma_i\)-subgroups of \(A\), \(B\) and \(C\), respectively. Hence \(H_i = A_i B_i = A_i C_i = B_i C_i\). Moreover, \(A_i, B_i\) and \(C_i\) are \(\sigma\)-permutably subnormal in \(G\) by Theorem C. It is clear also that \(K_i = A_i \cap B_i = A_i \cap C_i = B_i \cap C_i = O_{\sigma_i}(E)\).

Suppose that \(A_i = B_i\). Then \(H_i = A_i B_i = A_i = B_i = K_i \leq C_i \leq H_i\). Hence \(A_i = B_i = C_i\). Therefore, since \(A \neq B \neq C\) and \(A \neq C\), there is \(\sigma_i \in \sigma(T)\) such that \(A_i \neq B_i \neq C_i\) and \(A_i \neq C_i\). Finally, \(H_i\) and \(K_i\) are \(\sigma\)-permutably subnormal subgroups of \(G\) by Condition (i), so we have (5).
There are distinct σ_i-subgroups $A_0, B_0, C_0 \in \mathcal{L}$ such that $H_0 = A_0B_0 = A_0C_0 = B_0C_0$ and $K_0 = A_0 \cap B_0 = A_0 \cap C_0 = B_0 \cap C_0$ are σ-permutable subgroups of G and A_0, B_0, C_0 are normal subgroups of $O^{\sigma_i}(G)$.

Let $A_0 = A_i \cap D$, $B_0 = B_i \cap D$ and $C_0 = C_i \cap D$. Then A_0, B_0 and C_0 are σ-permutable σ_i-subgroups of G by Claim (5) and Theorem B. Moreover, Claim (5) implies that

$$K_0 = A_0 \cap B_0 = A_i \cap B_i \cap D = A_i \cap C_i \cap D = A_0 \cap C_0 = B_i \cap C_i \cap D = B_0 \cap C_0.$$ Since D is a meet-distributive element of \mathcal{L} by Condition (iii),

$$H_0 = D \cap A_iB_i = (D \cap A_i)(D \cap B_i) = A_0B_0 = A_0C_0 = D \cap A_iC_i = D \cap B_iC_i = B_0C_0.$$ Now we show that A_0, B_0, C_0 are distinct elements of \mathcal{L}. First note that

$$|H_i : K_i| = |A_i : K_i||B_i : K_i| = |A_i : K_i||C_i : K_i| = |B_i : K_i||C_i : K_i|,$$

so $|A_i : K_i| = |B_i : K_i| = |C_i : K_i|$. Hence $|A_i| = |B_i| = |C_i|$. Suppose that $A_0 = B_0$. Then

$$D \cap H_i = D \cap A_iB_i = (D \cap A_i)(D \cap B_i) = A_0B_0 = A_0 = B_0 = D \cap K_i.$$ Hence $K_iD \cap H_i = K_i(D \cap H_i) = K_i$ is normal in H_i and

$$DH_i/DK_i \simeq H_i/(H_i \cap K_iD) = H_i/K_i(H_i \cap D) = H_i/K_i$$

is cyclic since G/D is cyclic by Condition (iii). On the other hand, $H_i/K_i = (A_i/K_i)(B_i/K_i)$, where $|A_i/K_i| = |B_i/K_i|$, so $A_i/K_i = B_i/K_i = 1$, which implies that $A_i = B_i$. This contradiction shows that $A_0 \neq B_0$. Similarly, one can show that $A_0 \neq C_0$ and $B_0 \neq C_0$. Finally, A_0, B_0, C_0 are normal subgroups of $O^{\sigma_i}(G)$ by Lemma 2.4(1), and Claim (5) and Theorem B imply that K_0 and H_0 are σ-permutable in G.

(7) A_0/K_0 and B_0/K_0 are $O^{\sigma_i}(G)$-isomorphic.

From Claim (6) we get that

$$H_0/K_0 = (A_0/K_0) \times (B_0/K_0) = (A_0/K_0) \times (C_0/K_0) = (B_0/K_0) \times (C_0/K_0).$$

Therefore

$$A_0/K_0 \simeq ((A_0/K_0) \times (C_0/K_0))/(C_0/K_0) = (H_0/K_0)/(C_0/K_0)$$

and

$$B_0/K_0 \simeq ((B_0/K_0) \times (C_0/K_0))/(C_0/K_0) = (H_0/K_0)/(C_0/K_0)$$

are $O^{\sigma}(G)$-isomorphisms by Lemma 2.4(1). Hence we have (7).

Final contradiction. Let $f : A_0/K_0 \to B_0/K_0$ be a $O^{\sigma_i}(G)$-isomorphism. Let $K_0 < X \leq A_0$, where X covers K_0 in \mathcal{L}. Then X/K_0 is a chief factor of $O^{\sigma_i}(G)$ by Lemma 2.4(3) and Proposition 3.1, so $L/K_0 = f(A_0/K_0)$ is also a chief factor of $O^{\sigma}(G)$. Hence L covers K_0 in \mathcal{L} by Lemma 2.4(1). Now f induces a $O^{\sigma}(G)$-isomorphism from X/K_0 onto L/K_0 and so $L = T$ by Condition (iv). Hence $K_0 < A_0 \cap B_0$, contrary to (6).

The proposition is proved.
References

[1] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of Finite Groups*, Walter de Gruyter, Berlin-New York, 2010.

[2] R. Schmidt, *Subgroup lattices of groups*, Walter de Gruyter, Berlin-New York, 1994.

[3] A.N. Skiba, On some results in the theory of finite partially soluble groups, *Commun. Math. Stat.*, 4(3) (2016), 281–309.

[4] A.N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups, *J. Algebra*, 436 (2015), 1-16.

[5] L.A. Shemetkov, *Formations of finite groups*, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.

[6] W. Guo, A.N. Skiba, Finite groups with permutable complete Wielandt sets of subgroups, *J. Group Theory*, 18 (2015), 191-200.

[7] G. Pazderski, On groups for which the lattice of normal subgroups is distributive, *Beiträge Algebra Geom.*, 24 (1987), 185–200.

[8] O.H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, *Math. Z.*, 78 (1962), 205–221.

[9] P. Schmid, Subgroups permutable with all Sylow subgroups, *J. Algebra*, 207 (1998), 285–293.

[10] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin-New York, 1992.

[11] T. Kimber, Modularity in the lattice of Σ-permutable subgroups, *Atch. Math.*, 83 (2004), 193–203.

[12] G. Grätzer, *General Lattice Theory*, Birkhäuser Verlag, Basel and Stuttgard, 1978.

[13] A. Ballester-Bolinches, L.M. Ezquerro, *Classes of Finite Groups*, Springer-Verlag, Dordrecht, 2006.