Finite-time interval observer design for discrete-time switched systems: A linear programming approach

Fei Sun, Jun Huang, Xiang Ma and Xiao Wen

Abstract
This paper deals with the finite-time interval observer design method for discrete-time switched systems subjected to disturbances. The disturbances of the system are unknown but bounded. The framework of the finite-time interval observer is established and the sufficient conditions are derived by the multiple linear copositive Lyapunov function. Furthermore, the conditions which are expressed by the forms of linear programming are numerically tractable by standard computing software. One example is simulated to illustrate the validity of the designed observer.

Keywords
Finite-time interval observers, discrete-time switched systems, linear programming

Introduction
State estimation is very important since it can be used in stabilization, synchronization, fault diagnosis and detection and so on. As we know, the uncertainties always exist in the real systems. When we design the observers for uncertain systems, the uncertainties should be taken into account. For the purpose of estimation of bounds of the states, the definition of interval observer (IO) was first introduced by Gouze et al. Then, the IO design method has been established for a large amount of systems, such as linear systems, linear parameter varying systems, singular systems, discrete systems, impulsive systems and so on.

If we consider a linear discrete system without disturbance, that is, \( x(k+1) = Ax(k) + Bu(k) \), the task of IO design is to find a gain \( L \) such that the corresponding upper (or lower) error system \( e^+(\cdot)(k+1) = (A - LC)e^+(\cdot)(k) \) is both positive and stable. Equivalently, it is desired that \( A - LC \) is both non-negative and Schur stable. Whereas it only requires that \( A - LC \) is Schur stable in the context of conventional observers. From the aspect of computation, the non-negative of \( A - LC \) is not easy to be verified by existing toolbox. Thus, the design of IO is much more complicated than that of conventional observer. In order to overcome the drawback, Mazenc and Bernard, Chebotarev et al., Zheng et al. and Wang et al. employed the coordinate transformation method to get more freedom of the construction of the IO. Actually, the IOs designed in these works are a class of asymptotical IOs.

The investigation of switched systems has drawn considerable attention in recent years. Switched systems are ubiquitous in many practical systems, such as traffic networks, chemical engineering systems, circuit systems and so on. It is known that the works on IOs of switched systems are still challenging. He and Xie and Ifqir et al. designed the IOs for switched systems under the assumption that \( A_i - LC_i \) is the Metzler matrix. In order to improve the former results, Guo and Zhu and Ethabet et al. presented the IO design approaches for uncertain discrete-time and continuous-time switched systems using coordinate transformation, respectively. Recently, Huang et al. improved the result of Guo and Zhu using the zonotope method, designed an asynchronous IO for switched systems. In addition, the functional IO for linear discrete-time systems with disturbances and fixed-time observer for switched systems were also studied by Che et al. and Gao et al. respectively. However the finite-time interval observer (FTIO) for discrete-time switched systems has not been reported.

School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China

Corresponding author:
Jun Huang, School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215131, China.
Email: cauchyhot@163.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Motivated by above discussion, the goal of this paper is to design FITO for discrete-time switched systems. In the light of definition of finite-time stability, the observer gains are selected such that the observation errors are bounded in finite time. The contribution of this work can be concluded as the following aspects:

1. The bounds of the original systems can be recovered in a prescribed time interval.
2. The existence conditions of the IO are derived by the multiple linear copositive Lyapunov function (MLCLF), which is a useful tool when dealing with switched systems.
3. The derived conditions are given by linear programming (LP) constraints which are more tractable than linear matrix inequalities.

The rest of paper is organized as follows. In section “Problem statement and preliminary,” the plant as well as the structure of FITO is given. In section “Main result,” using MLCLF, sufficient conditions in the forms of LP are presented. Finally, in section “Numerical example,” two examples are simulated to demonstrate the validity of the proposed method.

Notations: throughout this paper, $x^T$ is the transposition of the vector $x$, and $A^T$ is the transposition of the matrix $A$. $\|x\|$ represents the $1$-norm of the vector $x$. The symbols $\leq$, $<$, $\geq$ and $>$ are understood component-wise for any vector or matrix. $E^+$ represents $\max\{E, O\}$, where $O$ is the zero matrix, and $E^-$ equals to $E^+ - E$. $\hat{x}(x)$ and $g(x)$ denote the maximum value and the minimum value of the elements of $x$, respectively.

**Problem statement and preliminary**

Consider the following plant

$$
\begin{align*}
\dot{x}(k+1) &= A_h(k)x(k) + B_h(k)u(k) + E_h(k)w(k), \\
y(k) &= C_h(k)x(k), \\
\dot{x}(0) &= x(0) \\
\end{align*}
$$

(1)

where $x(k) \in \mathbb{R}^n$, $u(k) \in \mathbb{R}^m$ and $y(k) \in \mathbb{R}^p$ are the state, input and output, respectively. $w(k) \in \mathbb{R}^r$ is the perturbation with $w^- \leq w(k) \leq w^+$, where $w^-$ and $w^+$ are the given vectors. $\theta(k)$ is the switching signal and $\theta(k) \in S = \{1, 2, \ldots, N\}$. $A_h(k) \in \mathbb{R}^{n \times n}$, $B_h(k) \in \mathbb{R}^{n \times m}$, $E_h(k) \in \mathbb{R}^{n \times r}$ and $C_h(k) \in \mathbb{R}^{p \times n}$ are the given matrices. $x(0) \in \mathbb{R}^n$ and $\dot{x}(0) \in \mathbb{R}^n$ are the known vectors. For simplicity, $\theta(k)$ is short for $\theta$, and the system (1) becomes

$$
\begin{align*}
\dot{x}(k+1) &= A_{\theta}(k)x(k) + B_{\theta}(k)u(k) + E_{\theta}(k)w(k), \\
y(k) &= C_{\theta}(k)x(k), \\
\dot{x}(0) &= x(0) \\
\end{align*}
$$

(2)

**Definition 1.** The interval frame $\{\dot{x}(k), x(k)\}$ is called an asymptotical IO for (1) if for $\forall k > 0$

$$
\begin{align*}
\lim_{k \rightarrow m}\|\dot{x}(k) - x(k)\|_1 &= \alpha, \\
\lim_{k \rightarrow m}\|x(k) - x(k)\|_1 &= \beta,
\end{align*}
$$

where $\alpha$ and $\beta$ are the positive constants.

**Remark 1.** Definition 1 is just the extension of Definition 2 in Ramı et al. when the discrete case is discussed. In the light of positive switched system, we use the MLCLF to analyze stability of the error; thus, 1-norm is employed to describe the bound of the error in this paper.

**Definition 2.** The interval frame $\{\dot{x}(k), x(k)\}$ is called an FTIO if there exists $K > 0$ such that

$$
\begin{align*}
\|\dot{x}(0) - x(0)\|_1 &\leq \alpha_1 \Rightarrow \|\dot{x}(k) - x(k)\|_1 \leq \alpha_2, \forall k \in [0, K], \\
\|x(k) - x(k)\|_1 &\leq \beta_1 \Rightarrow \|x(k) - x(k)\|_1 \leq \beta_2, \forall k \in [0, K],
\end{align*}
$$

(3)

where $\alpha_1$, $\alpha_2$, $\beta_1$ and $\beta_2$ are the positive constants, and $\alpha_1 < \alpha_2$, $\beta_1 < \beta_2$.

**Remark 2.** From the aspect of application, the FTIO is necessary. Definition 1 is known to characteristic of the error in infinite-time interval, but Definition 2 is with respect to the boundedness of the error in finite time. In fact, an FTIO may not be an asymptotical IO and vice versa.

We now extend the results of Farina and Rinaldi to positive switched systems. The system is considered as

$$
\begin{align*}
\dot{x}(k+1) &= M_\theta x(k) + f_\theta(k), \\
x(0) &= x_0 \geq 0,
\end{align*}
$$

(5)

where $x(k) \in \mathbb{R}^n$, and $\theta$ is the switched law. $M_\theta \in \mathbb{R}^{n \times n}$ is the constant matrix, and $f_\theta(k) \in \mathbb{R}^n \geq 0$.

**Lemma 1.** The system (5) is positive if and only if the matrix $M_\theta \geq 0$.

Then, we construct the IO for the system (2), which has the following form

$$
\begin{align*}
\dot{x}(k+1) &= A_{\theta}x(k) + B_{\theta}u(k) + E_{\theta}^+ w^+ - E_{\theta}^- w^-, \\
&\quad + L_\theta(y(k) - C_{\theta}\dot{x}(k)), \\
\dot{\dot{x}}(k+1) &= A_{\theta}x(k) + B_{\theta}u(k) + E_{\theta}^+ w^+ - E_{\theta}^- w^-, \\
&\quad + L_\theta(y(k) - C_{\theta}\dot{x}(k)), \\
\dot{\dot{x}}(0) &= x^+(0), \\
\dot{x}(0) &= x^-(0).
\end{align*}
$$

(6)

Let $\tilde{x}(k) \leq x(k) \leq \overline{x}(k)$ and $e^-(k) = x(k) - \tilde{x}(k)$. Comparing (6) with (2), we have
\[
\begin{aligned}
\{ e^+(k+1) = (A_\theta - L_\partial C_\theta)^T e^+(k) + \Gamma^+ \} \\
\{ e^-(k+1) = (A_\theta - L_\partial C_\theta)^T e^-(k) + E_\theta w(k) - \Gamma^- \}, \\
e^-(0) \geq 0, e^+(0) \geq 0,
\end{aligned}
\]  
(7)

where \( \Gamma^+ = E_\theta^T w^+ - E_\theta^- w^- \) and \( \Gamma^- = E_\theta^T w^- - E_\theta^- w^- \).

**Definition 3.** Consider the system (7). Let \( c_1, c_2, c_3, c_4, K \) and \( h \) be the positive constants with \( c_1 < c_2 \) and \( c_3 < c_4 \). If \( \forall w(k) : \sum_{k=0}^{K-1} |w(k)| \leq h^{2,28} \)

\[
\begin{aligned}
\| e^+(0) \|_1 &\leq c_1 \Rightarrow \| e^+(k) \|_1 \leq c_2, \forall k \in [0, K], \\
\| e^-(0) \|_1 &\leq c_3 \Rightarrow \| e^-(k) \|_1 \leq c_4, \forall k \in [0, K],
\end{aligned}
\]

(8)

(9)

then the upper and lower error system (7) is finite-time bound (FTB).

**Definition 4.** Denote the switching number of \( \theta \) on the interval \([l_1, l_2]\) by \( N_\theta(l_1, l_2) \). If

\[
N_\theta(l_1, l_2) \leq N_0 + (l_2 - l_1)/\tau^*
\]

holds for given \( N_0 \geq 0 \) and \( \tau^* > 0 \), then \( \tau^* \) is the average dwell time (ADT). In what follows, \( N_0 \) is supposed to be 0.

**Lemma 2.** Let \( \Theta(k) \in R^n \) with \( \Theta^-(k) \leq \Theta(k) \leq \Theta^+(k) \), then the following holds

\[
W^+ \Theta^-(k) - W^- \Theta^+(k) \leq W\Theta(k) \leq W^+ \Theta^+(k) - W^- \Theta^-(k),
\]

where \( W \in R^{m \times n} \) is any given constant matrix.

**Main result**

In this section, the performance analysis of the error system (7) is presented.

**Theorem 1.** Let \( \nu > 1 \) and \( \varphi > 1 \) be the two constants. If there are vectors \( v_i \in R^j > 0, v_i \in R^j > 0, z_i \in R^j \), and the prescribed vector \( \xi_i \in R^j > 0 \) for \( i, j \in S, i \neq j \) such that

\[
(A_i^T - \nu I)v_i + C_i^T z_i < 0
\]

(10)

\[
v_i \leq 0
\]

(11)

\[
\xi_i^T v_i (\xi_i^T v_i A_i + \xi_i^T C_i) \geq 0
\]

(12)

and the observer gain \( L_i \) has the following form

\[
L_i = -\frac{\xi_i^T v_i}{\xi_i^T v_i}
\]

(13)

then the upper and lower error system (7) satisfies the property of positive and FTB. Furthermore, denote that

\[
\max_{i \in S} \left\{ (\Gamma_i^+)^T v_i \right\} = \lambda
\]

(14)

\[
\max_{i \in S} \left\{ ||E_i^T v_i||_1 \right\} = \gamma
\]

(15)

(16)

where \( \lambda, \delta \) and \( \gamma > 0 \) are the constants, then ADT satisfies

\[
\tau^* \geq \max \left\{ \frac{K \ln g}{\ln \mu_1 - \ln \xi_i - K \ln \nu} \right\}
\]

(17)

where \( \mu_1 = c_2 l_1, \mu_2 = c_4 l_2, \xi_1 = c_1 l_2 + yh + |\lambda| K, \xi_2 = c_3 l_2 + yh + |\delta| K \) with

\[
l_1 = \min_{i \in S} \{ g(v_i) \},
\]

\[
l_2 = K(\varphi(0)), \mu_1 > \xi_1 v^X \) and \( \mu_2 > \xi_2 v^m \).

**Proof.** From Definition 2 and Definition 3, the following proof will be divided into steps:

First, by (13), we obtain

\[
A_i - L_i C_i = A_i + \frac{\xi_i^T v_i}{\xi_i^T v_i} C_i
\]

(18)

which follows from (12) that

\[
A_i - L_i C_i = A_i + \frac{\xi_i^T v_i}{\xi_i^T v_i} C_i \geq 0
\]

(19)

By Lemma 2, we have \( \Gamma^+ = E_\theta^- w(k) \geq 0 \) and \( E_\theta^- w(k) - \Gamma^- \geq 0 \). That means \( e^-(0) \geq 0 \) and \( e^+(0) \geq 0 \), so that the residual error of the system is bounded by the designed observer. Thus, in view of Lemma 1, the error system (7) is positive. We have

\[
\acute{x}(k) \leq x(k) \leq \bar{x}(k)
\]

Second, the following error system is considered

\[
\begin{aligned}
\{ e^+(k+1) &= (A_\theta - L_\partial C_\theta)^T e^+(k) + \Gamma^+ \\
e^-(0) &\geq 0
\end{aligned}
\]

(20)

Let \( \{k_p, p = 1, 2, \ldots \} \) with \( 0 < k_1 < k_2 < \ldots \) be the switching time sequence. If \( \theta(k_i) = i \in S \), then the MLCLF is chosen as follows

\[
V_i(k) = (e^+(k))^T v_i, i \in S.
\]

(21)

When \( K \in [k_p, k_{p+1}] \), taking the backward difference of \( V_i(k) \) yields

\[
\nabla V_i(K) = V_i(K) - V_i(K-1)
\]

(22)

Substituting (13) into (22) results in

\[
\nabla V_i(k) = (e^+(K-1))^T (A_i^T - C_i^T z_i - v_i)
\]

(23)

By (10), (14) and (16), we can obtain
that is

\[ V_i(K) \leq v_i V_i(K) - 1 + \lambda \| w(K - 1) \|_1. \]

(24)

Suppose that \( \theta(k_{p-1}) = j_i \). It follows from (11) and (26) that

\[ V_i(K) \leq g \rho K V_i(k_p) + \gamma \sum_{s = k_p}^{K-1} \| w(s) \|_1 + \lambda \sum_{s = k_p}^{K-1} \rho K^{K-1-s}. \]

(27)

Repeating (26) and (27) yields

\[ V_i(K) \leq g \rho K V_i(k_p) + \gamma \sum_{s = k_p}^{K-1} \| w(s) \|_1 + \lambda \sum_{s = k_p}^{K-1} \rho K^{K-1-s} \]

\[ \leq g \rho K V_i(0) + \gamma \sum_{s = 0}^{K-1} \| w(s) \|_1 + \lambda \sum_{s = 0}^{K-1} \rho K^{K-1-s} \]

\[ \leq g \rho K V_i(0) + \gamma \sum_{s = 0}^{K-1} \| w(s) \|_1 + |\lambda| \sum_{s = 0}^{K-1} \rho K^{K-1-s}. \]

(28)

From Definition 4, we have \( N_\theta \leq N_0 + K/\tau + \gamma \). Since \( \nu > 1 \) and \( \sum_{s = 0}^{K-1} \| w(s) \|_1 \leq h \), the above equality (28) becomes

\[ V_i(K) \leq g \rho K V_i(0) + \gamma h + |\lambda| K. \]

(29)

It is the fact that

\[ \begin{cases} V_i(K) = (e^+(K))^T V_i(K) \geq l_1 \| e^+(K) \|_1, \\ V_i(0) = (e^+(0))^T V_i(0) \geq l_2 \| e^+(0) \|_1. \end{cases} \]

(30)

Substituting (30) into (29) results in

\[ l_1 \| e^+(K) \|_1 \leq g \rho K \| l_2 \| e^+(0) \|_1 + \gamma h + |\lambda| K. \]

(31)

In view of (17) and \( \nu = 1 \), (31) implies that

\[ \rho \leq \frac{\mu_1}{l_1} \left( l_2 \| e^+(0) \|_1 + \gamma h + |\lambda| K \right) \]

(32)

When \( \| e^+(0) \|_1 \leq c_1 \), it is deduced from (32) that

\[ \| e^+(K) \|_1 \leq \frac{\mu_1}{l_1} (c_1 l_2 + \gamma h + |\lambda| K). \]

(33)

Considering the expressions \( \mu_1 = c_2 l_1 \), \( \zeta_1 = c_1 l_2 + \gamma h + |\lambda| K \), (33) means

\[ \| e^+(K) \|_1 \leq c_2 \]

(34)

Let us turn to the following error system

\[ \begin{cases} e^-(k + 1) = (A_\theta - L_0 C_\theta) e^-(k) + E_\theta w(k) - \Gamma^\theta, \\ e^-(0) \geq 0. \end{cases} \]

(35)

The MLCLF candidate is chosen as

\[ \tilde{V}_i(K) = (e^-(K))^T V_i, i \in S. \]

(36)

By the same treatment as that in the upper error system, one can get

\[ \tilde{V}_i(K) = g \rho N(0, K)^T \left( \tilde{V}_i(0) + \gamma h + |\delta| K \right) \]

(37)

By (17), we have

\[ \| e^-(K) \|_1 \leq \frac{\mu_2}{l_2} \left( l_2 \| e^-(0) \|_1 + \gamma h + |\delta| K \right) \]

(38)

In view of \( \mu_2 = c_2 l_1 \), \( \zeta_2 = c_1 l_2 + \gamma h + |\delta| K \), when \( \| e^-(0) \|_1 \leq c_3 \), we obtain

\[ \| e^-(K) \|_1 \leq c_4 \]

(39)

In view of Definition 3, the system (7) satisfies the property of FTB. Thus, we can conclude that (6) is an FTIO for the system (2).

Remark 3. The constraints (10)–(12) are the existence conditions of the FTIO (6), while the expressions (14)–(16) are used for the estimation of the boundness of the error. However, the feasible solutions cannot be solved from the conditions (10)–(12) by the MATLAB because of the term \( (\xi_i^T v_i)^2 \) in (12). Thus, we need to derive the equivalent forms instead of (10)–(12).

We now give the following theorem, which is necessary from the aspect of computation.

Theorem 2. Let \( \nu > 1 \) and \( \rho = 1 \) be the two constants. Assume that \( L_i \) is determined by (13) and \( \tau^* \) satisfies (17). If there exist vectors \( v_i \in R^d_{+} > 0 \), \( v_j \in R^d_{+} > 0 \), \( z_i \in R^d \), and the prescribed vector \( \xi_i \in R^d \neq 0 \) for \( i, j \in S, i \neq j \) such that

\[ (A_i^T - \rho I) v_i + C_i^T z_i < 0 \]

(40)

\[ v_i \leq \rho v_j \]

(41)

\[ \xi_i^T v_i \geq 0 \]

(42)

\[ \xi_i^T v_i A_i + \xi_i^T C_i \geq 0 \]

(43)
Step 1: solve the estimation of the error, we employ the following steps:

\[(A_i^T - v I)v_i + C_i^T z_i < 0 \quad (44)\]
\[v_i \leq 0 v_j \quad (45)\]
\[\xi_i^T v_i < 0 \quad (46)\]
\[\xi_i^T v_i A_i + \xi i z_i^T C_i \leq 0 \quad (47)\]

the upper and lower error system (7) is positive and FTB.

**Proof.** Let us consider the bilinear constraint (12). If \(\xi_i^T v_i > 0\), then (12) means that \(\xi_i^T v_i A_i + \xi i z_i^T C_i \geq 0\). If \(\xi_i^T v_i < 0\), then (12) implies that \(\xi_i^T v_i A_i + \xi i z_i^T C_i \leq 0\). Thus, the conditions (40)–(43) or (44)–(47) indicate (10)–(12).

**Remark 4.** In order to design the IO (6) and give the estimation of the error, we employ the following steps:

Step 1: solve \(z_i, v_i\) (40)–(43) or (44)–(47) by LP in MATLAB.
Step 2: determine \(L_i\) by (13) and \(\lambda, \delta, \gamma\) by (14)–(16), respectively.
Step 3: compute \(\mu_1, \xi_1, \mu_2\) and \(\xi_2\) with \(\mu_1 > \xi_1 v_i^2\) and \(\mu_2 > \xi_2 v_i^2\).
Step 4: estimate \(c_2\) and \(c_4\).

From Remark 4, \(c_2\) and \(c_4\) are only the bounded constants when we obtain the feasible solutions from the sufficient conditions. From the aspect of practice, \(c_2\) and \(c_4\) are both expected to be minimal. Thus, the following theorem is stated.

**Theorem 3.** If the following convex optimization problem can be solved

\[
\begin{align*}
\min c_2, c_4 \\
\text{subject to:} \\
(A_i^T - v I)v_i + C_i^T z_i < 0 \\
v_i \leq 0 v_j \\
\xi_i^T v_i > 0 \\
\xi_i^T v_i A_i + \xi i z_i^T C_i \geq 0
\end{align*}
\]

or

\[
\begin{align*}
\min c_2, c_4 \\
\text{subject to:} \\
(A_i^T - v I)v_i + C_i^T z_i < 0 \\
v_i \leq 0 v_j \\
\xi_i^T v_i < 0 \\
\xi_i^T v_i A_i + \xi i z_i^T C_i \leq 0
\end{align*}
\]

then the IO (6) is an optimal FTIO.

**Remark 5.** By Theorem 1, \(c_2\) is dependent on \(\gamma, \delta, l_2\) and \(\varepsilon_1\), while \(c_4\) is dependent on \(\gamma, \delta, l_2\) and \(c_3\). It is also the fact that \(\gamma, \lambda, \delta, l_2\) are determined, once \(v_i\) is fixed. In order to minimize the error estimation, \(c_2\) should be chosen as small as possible by computing (48) or (49), and it is the same with \(c_4\). A suggested algorithm is given as follows: the first step updates all the parameters such as \(v, \varphi\) by the path-following method proposed in Hassibi et al. \(^3\) and the second step fixes the parameters \(v, \varphi\) to solve \(v_i\). We repeat the above two steps until \(c_2\) and \(c_4\) reach the minimum values.

**Numerical example**

Consider the system (2) with two modes, and the system matrices are given as

\[
A_1 = \begin{bmatrix} 1.2 & 2.2 \\ 1.8 & 1.6 \end{bmatrix}, A_2 = \begin{bmatrix} 1.5 & 1.6 \\ 2.5 & 2.3 \end{bmatrix}, B_1 = \begin{bmatrix} 1.3 & 1.2 \\ 1.5 & 1.7 \end{bmatrix}, B_2 = \begin{bmatrix} 2.1 & 1.9 \\ 1.8 & 1.4 \end{bmatrix}
\]

\[
C_1 = \begin{bmatrix} 1.5 & 1.4 \\ 1.1 & 1.2 \end{bmatrix}, C_2 = \begin{bmatrix} 1.3 & 1.6 \\ 1.5 & 1.7 \end{bmatrix}
\]

\[
E_1 = \begin{bmatrix} 0.7 & -1 \\ -0.8 & 0.5 \end{bmatrix}, E_2 = \begin{bmatrix} -0.6 & 0.5 \\ 0.4 & -0.9 \end{bmatrix}
\]

For the purpose of simulation, \(u(k), \omega(k), x_0, x_0^+\) and \(x_0^-\) are chosen as follows

\[
u(k) = \begin{bmatrix} \sin^2 k \\ \cos 2k \end{bmatrix}, \omega(k) = \begin{bmatrix} 0.1 \cos^2 k \\ 0.1 \sin k \end{bmatrix}, x_0 = \begin{bmatrix} 5 \\ 10 \end{bmatrix}
\]

\[
x_0^+ = \begin{bmatrix} 10 \\ 20 \end{bmatrix}, x_0^- = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

Let \(\xi_1 = [1; 2], \xi_2 = [2; 1], K = 4\). By solving the sufficient conditions of Theorem 3, we have

\[
v_1 = \begin{bmatrix} 49.656 \\ 24.453 \end{bmatrix}, z_1 = \begin{bmatrix} -58.4805 \\ -23.2261 \end{bmatrix}, v_2 = \begin{bmatrix} 53.543 \\ 40.9385 \end{bmatrix}
\]

\[
z_2 = \begin{bmatrix} -19.9887 \\ -44.6094 \end{bmatrix}, v = 1.775, \varphi = 1.3
\]

Thus, we can determine the observer gain

\[
L_1 = \begin{bmatrix} 0.3784 & 0.1503 \\ 0.7567 & 0.3005 \end{bmatrix}, L_2 = \begin{bmatrix} 0.2701 & 0.6027 \\ 0.135 & 0.3014 \end{bmatrix}
\]

Figure 1. Switching signal \(\theta(k)\) with ADT property.
Figure 2. We can see that $x(k) - \tilde{x}(k)$ and $\dot{x}(k)$ are always positive and bounded. And it is the same in Figure 3. The response of errors is presented in Figures 4 and 5, where the errors are bounded within 1.5 and 4 s. Thus, the errors are FTB.

Conclusion

An FTIO design framework for discrete-time switched systems subjected to disturbances is presented. The framework of the FTIO is constructed and the stability conditions are obtained using the MLCLF. Different from the works herein, such as in the literature, all the conditions established are given by the forms of LP. Besides, the errors can be kept in a bounded neighborhood for a given time interval. In the future, the FTIO design method for nonlinear switched systems will be investigated.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This work was supported by the National Natural Science Foundation of China (grant no. 61403267) and the Undergraduate Training Program for Innovation and Entrepreneurship, Soochow University (grant no. 201910285033Z).

ORCID iD

Jun Huang (https://orcid.org/0000-0002-1389-5128

References

1. Gouze J, Rapaport A and Hadj-Sadok Z. Interval observers for uncertain biological systems. Ecol Modell 2000; 133(1–2): 45–56.
2. Rami M, Cheng C and Prada C. Tight robust interval observers: an LP approach. In: Proceedings of IEEE conference on decision and control, Cancun, Mexico, 9–11 December 2008, pp. 2967–2972. New York: IEEE.
3. Mazenc F and Bernard O. Interval observers for linear time-invariant systems with disturbances. Automatica 2011; 47(1): 140–147.
4. Wang Y, Bevly D and Rajamani R. Interval observer design for LPV systems with parametric uncertainty. Automatica 2015; 60(10): 79–85.
5. Chebotarev S, Efimov D, Raissi T, et al. Interval observers for continuous time LPV systems with L1/L2 performance. Automatica 2015; 58(8): 82–89.
6. Efimov D, Perruquetti W, Raissi T, et al. Interval observers for time-varying discrete-time systems. IEEE Trans Autom Control 2013; 58(12): 3218–3224.
7. Zheng G, Efimov D, Bejarano F, et al. Interval observer for a class of uncertain nonlinear singular systems. Automatica 2016; 71(9): 159–168.
8. Briat C and Khammash M. Interval peak-to-peak observers for continuous-and discrete-time systems with persistent inputs and delays. Automatica 2016; 74(12): 206–213.
9. Wang Z, Lim C and Shen Y. Interval observer design for uncertain discrete-time linear systems. Syst Control Lett 2018; 116(6): 41–46.
10. H. Degue K, Efimov D, Ny J L. Interval Observer Approach to Output Stabilization of Linear Impulsive Systems. IFAC PapersOnLine, 2017; 50(1): 5085–5090.

11. Zhang W, Su H, Zhu F, et al. Improved exponential observer design for one-sided Lipschitz nonlinear systems. Int J Robust Nonlinear Control 2016; 26: 3958–3973.

12. Ding S, Ju HP and Chen C. Second-order sliding mode controller design with output constraint. Automatica 2020; 112: 108704.

13. Hamdi F, Manamanni N, Messai N, et al. Hybrid observer design for linear switched system via differential Petri nets. Nonlinear Anal Hybrid Syst 2009; 3(3): 310–322.

14. Liberzon D. Switching in systems and control. Berlin: Springer, 2012.

15. Zhao Y, Zhang W, Su H, et al. Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication. IEEE Trans Syst Man Cybern Syst. Epub ahead of print 26 September 2018. DOI: 10.1109/TSMC.2018.2868482.

16. Antsaklis P. A brief introduction to the theory and applications of hybrid systems. Proc IEEE 2000; 88(7): 879–887.

17. Kowalewski S, Schulz C and Strusberg O. Continuous-discrete interactions in chemical processing plants. Proc IEEE 2000; 88(7): 1050–1068.

18. Buisson J, Richard P and Cormerais H. On the stabilization of switching electrical power converters. In: Proceedings of Hybrid Systems: Computation and Control, Zurich, 9–11 March 2005; pp. 184–197. Berlin: Springer.

19. He Z and Xie W. Control of non-linear switched systems with average dwell time: interval observer-based framework. IET Control Theory Appl 2016; 10(1): 10–16.

20. Ethabet H, Rabehi D, Efifimov D, et al. Interval estimation for continuous-time switched linear systems. Automatica 2018; 90(4): 230–238.

21. Huang J, Ma X, Che H, et al. Further result on interval observer design for discrete-time switched systems and application to circuit systems. IEEE Trans Circuits Syst II Expr Br. Epub ahead of print 5 December 2019. DOI: 10.1109/TCSII.2019.2957945.

22. Huang J, Ma X, Zhao X, et al. An interval observer design method for asynchronous switched systems. IET Control Theory Appl 2020; 14(8): 1082–1090.

23. Che H, Huang J, Zhao X, et al. Functional interval observer for the discrete-time systems with disturbances. Applied Mathematics and Computation. Epub ahead of print 2020; DOI: 10.1016/j.amc.2020.125352.

24. Gao F, Wu Y and Zhang Z. Global fixed-time stabilization of switched nonlinear systems: a time-varying scaling transformation approach. IEEE Trans Circuits Syst II Expr Br 2019; 66(11): 1890–1894.

25. Du H, Lin X and Li S. Finite-time stability and stabilization of switched linear systems. In: Proceedings of the 48th IEEE conference on decision and control (CDC), Shanghai, China, 15–18 December 2010, pp. 1938–1943. New York: IEEE.

26. Zhang J, Han Z and Zhu F. Robust finite-time stability and stabilization of switched positive systems. IET Control Theory Appl 2014; 8(1): 67–75.

27. Fang L, Ma L, Ding S, et al. Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint. Appl Math Comput 2019; 358: 63–79.

28. Zhao J, Raïssi T and Li S. Non-fragile saturation control of nonlinear positive Markov jump systems with time-varying delays. Nonlinear Dyn 2019; 97(2): 1495–1513.

29. Zarreri S, Oufroukh N, Ichalal D, et al. Switched interval observer for uncertain continuous-time systems. In: Proceedings of 20th IFAC WC, Toulouse, 9–14 July 2017.

30. Guo S, Zhu F. Interval observer design for discrete-time switched system. IFAC PapersOnLine, 2017; 50(1): 5073–5078.

31. Denis E and Leonid F. Interval estimation for LPV systems applying high order sliding mode techniques. Automatica 2012; 48(9): 2365–2371.

32. Hassibi A, How J and Boyd S. A path-following method for solving BMI problems in control. In: Proceedings of the 1999 American control Conference, San Diego, CA, 2–4 June 1999, pp. 1385–1389. New York: IEEE.