Effect of Ethanol Extract of Phyllanthus niruri Leaf on Carbon Tetrachloride Induced Hepatotoxicity and Oxidative Stress in Rats

Ojeaburu S. Ifidon1* and Kelly Oriakhi2

1Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.
2Department of Medical Biochemistry, School of Basic Medical Sciences, University of Benin, Benin City, Nigeria.

ABSTRACT

The hepatoprotective effect of the ethanol extract of Phyllanthus niruri in carbon tetrachloride-induced hepatotoxicity in rat was investigated in this study. The rats were divided into 7 groups; group I (normal control) was given distilled water only, group II rats were administered carbon tetrachloride (CCl4) in olive oil; (1:1 v/v) 3 mL/kg (i.p) once weekly for 28 days (7th, 14th, 21th, and 28th day), while group III, IV and V rats were administered CCl4 as described for group II rats and treated with ethanol extract of P. niruri leaves (200, 500 and 1000 mg/kg body weight) once daily from the 7th to 28th day. Group VI rats were given 500mg/kg body weight of the extract only. Fasting blood serum samples and homogenates of livers from the rats were analysed for selected biochemical parameters. Carbon tetrachloride caused increases in serum alanine amino transferase (ALT), aspartate amino transferase (AST), gamma glutamyl transpeptidase (y-GGT) and alkaline phosphatase (ALP). It also caused increases in liver total cholesterol, triglyceride, and malondialdehyde (MDA) levels. Carbon tetrachloride also caused significant reductions in serum total protein, albumin, bilirubin as well as liver superoxide dismutase and catalase activities. The plant extract was able to attenuate all the biochemical parameters to levels comparable to those of the control group. In conclusion, the findings of this study showed that the ethanol leaf extract of P. niruri possesses hepatoprotective and antioxidant properties.

Keywords: Hepatoprotective, Antioxidant, Carbon tetrachloride, P. niruri.

Introduction

The liver is considered as one of the largest organs in the human body, playing a vital role in the metabolism of carbohydrates, proteins and lipids.1 The metabolism of xenobiotics to a large extent takes place in the liver and the by-product of such metabolism sometimes becomes more toxic than the parent compound.2 This could lead to liver damage and ultimately to the emergence of liver disease. The by-products include oxygen containing molecules that are deleterious to cell component through oxidation. The liver contains considerable amounts of polysaturated fatty acids that are prone to free radicals modification and attendant membrane damage. In the case of chronic alcohol consumption, there are lipid peroxidation, necrosis, and eventually liver damage,3 accompanied by decreased expression and activity of peroxisome proliferator activated receptor alpha (PPAR), which is involved in fatty acid oxidation, and increased sterol regulatory element binding protein-2 (SREBP-2) and SREBP-1c levels. The latter being transcriptional factors associated with the regulation of cholesterogenic and lipogenic enzymes, respectively, leading to fat accumulation in the hepatocytes.3 The toxicant carbon tetrachloride (CCl4), is converted by cytochrome P450 oxidase, to trichloromethyl radical (CCl3·). Trichloromethyl radicals are converted to the more toxic trichloromethyl peroxyl radical (CCl3O2) in the presence of oxygen4. These metabolites react with polyunsaturated fatty acids of the cell membrane to abstract hydrogen atom with attendant initiation of lipid peroxidation with attendant reduction in the levels and activities of superoxide dismutase (SOD) and catalase (CAT). Reduced SOD and CAT activities significantly enhance the oxidative stress (OS) status of the liver.5 The stressed status of the liver cells (parenchymal and nonparenchymal cells), especially activate Kupffer cells and mediate the hepatic inflammatory processes by inducing the production of tumor necrosis factor-α (TNF-α) and other cytotoxic cytokines.6 A previous study showed that the production of these inflammatory factors is associated with the nuclear factor κ B (NF-κ B) pathway and also contributes to increased activating protein 1 (AP-1) expression in liver after CCl4 treatment.7 However it is conceivable that plants have intrinsic antioxidant activities which could attenuate CCl4-induced liver damage. One of such plant is Phyllanthus niruri. P. niruri is a small plant widely distributed in tropical and subtropical regions of Central and South America, India and Indonesia, Africa and the West Indies.8,9 It is a herb of Euphorbiaceae family that grows up to 60 cm.10 Ethnobotanical survey revealed the hepatoprotective activity of this plant and it is validated by some researchers that extracts from the plant have hepatoprotective activities, antioxidant, lipid lowering, anti-diabetic and anti-inflammatory activities.11-13 It is based on this background that this study investigated the effect of ethanol extract of P. niruri leaf on Carbon tetrachloride Induced Hepatotoxicity and oxidative stress in Rats.

Materials and Methods

Chemicals and Reagents

The chemicals used were purchased from Sigma (MO, USA). All reagents and chemicals used were of analytical grade.
Results and Discussion

The effect of ethanol extract of *P. niruri* leaves in carbon tetrachloride induced hepatotoxicity and oxidative stress in rats were evaluated. Therefore, the present study was designed to validate the ethnomedicinal use of *P. niruri* leaves in the treatment of liver diseases.

Administration of CCl₄ caused significant (p < 0.05) increases in ALT, AST and γ-GGT activities when compared to normal control, but the increases in ALP activity were not significant (p > 0.05) when compared to normal control (Table 1). Treatment of the rats with ethanol leaf extract at a dose of 200 mg/kg body weight caused significant (p ≤ 0.05) decreases in ALT and γ-GGT activities when compared to CCl₄ treated group(Table 1, group III). However, there was a non-significant reduction in AST activity compared to CCl₄ treated group. Similarly, treatment of rats with 500 and 1000 mg/kg of the extract also caused significant (p<0.05) reduction in serum ALT, AST, ALP and γ-GGT levels when compared with CCl₄ intoxicated group in a dose dependent manner (Table 1, group IV and V). Rats exposed to the extract only at a dose of 500 mg/kg (group VI) had significant (p<0.05) decreased in serum ALT, AST and γ-GGT levels when compared to normal control (Table 1).

Administration of CCl₄ caused significant (p < 0.05) reduction in serum total protein and albumin, but increase in total bilirubin levels relative to control (Fig. 1). However, treatment with the extract at concentrations of 200, 500 and 1000 mg/kg body weight caused significant (p < 0.05) increased in total protein and albumin but decreased bilirubin levels in dose dependent manner respectively, relative to group II (CCl₄ only). The rise in serum ALP, total bilirubin and reduction in total protein and albumin levels in CCl₄ intoxication have been attributed to loss in structural integrity of the liver cell membrane and leakage of these cytoplasmic enzymes into the blood by others. In experimental animals carbon tetrachloride undergoes dechlorination caused by cytochrome P-450 dependent mixed function oxidase in the endoplasmic reticulum to form trichloromethyl radical (CCl₃) which combine with cellular lipids and proteins in the presence of oxygen to induce lipid peroxidation. These interactions alter the structure of the endoplasmic reticulum and other membranes, cause loss of metabolic enzyme activities, reduction of protein synthesis and loss of glucose-6-phosphatase activities, leading to liver injury. However, protection of hepatocytes and stabilization of plasma membrane against the damage caused by hepatotoxic is indicated by decreases in the levels of serum transaminases and alkaline phosphatase levels. Also, concurrent depletion of raised bilirubin levels suggests the stability of the biliary function during injury with CCl₄. The effects of the extract on total cholesterol and triacylglycerol in carbon tetrachloride exposed rats are presented in Fig.2. Treatment with CCl₄ gave rise to significant (p ≤ 0.05) increases in the concentrations of total cholesterol and triacylglycerol relative to the control. The extract however reduced the cholesterol and triacylglycerol levels when compared to the CCl₄ group only. Exposure of rat to CCl₄ increases the synthesis of triacylglycerol and cholesterol from acetate and also the rate of lipid esterification. The increase synthesis of cholesterol by CCl₄ might positively affects the transport of acetate into the liver cell, resulting in an increased substrate availability, thereby lowering β-oxidation of fatty acids, hydrolysis of triglycerides, suppression of

Hepatotoxicity assessment

The hepatic enzymes ALT, AST, γ-GPT and ALP were used as the biochemical indicators of the acute liver injury. ALT and AST were determined by the method of Reitman and Frankel, while γ-GPT was determined by the method described by Teirz. Serum alkaline phosphatase (SALP) was determined according to the method of Klen et al.

Total protein and bilirubin were determined using Radox kit based on established methods.

Antioxidant Assay

Lipid peroxidation was assessed by measuring the formation of thiobarbituric acid-reactive substances (TBARS) as described by Aust and buege. Catalase (CAT) activity was determined according to the method of Abru. Superoxide dismutase (SOD) activity was determined according to the method of Misra and Fridovich.
Table 1: Effect of extract on the activities of serum enzymes in CCl₄ exposed rats.

Treatment	ALT(U/L)	AST(U/L)	ALP(U/L)	γ-GT(U/L)
Group I (control)	54.00 ± 4.50	64.6 ± 4.80	25.00 ± 2.22	57.57 ± 4.35
Group II	98.60 ± 1.60	99.80 ± 1.80	28.40 ± 2.73	185.34 ± 7.30
Group III	51.00 ± 2.70	96.25 ± 0.15	23.50 ± 0.05	114.13 ± 2.70
Group IV	54.75 ± 1.70	71.75 ± 0.05	29.25 ± 2.78	111.17 ± 2.78
Group V	58.33 ± 1.50	58.33 ± 0.20	26.33 ± 2.20	103.32 ± 0.05
Group VI	23.30 ± 0.30	59.23 ± 0.08	22.33 ± 0.08	45.23 ± 0.45

Values are Mean ± SEM, n = 5 rats in each group. a as compared with the normal saline (control) group; b as compared with the CCl₄ only group. Group I (Control); Group II (CCl₄ only); Group III (CCl₄ + 200 mg extract); Group IV (CCl₄ + 500 mg extract); Group V (CCl₄ + 1000 mg extract); Group VI (500 mg extract only).

Figure 1: Effect of extract on serum protein and bilirubin levels in CCl₄ exposed rats.
* as compared with the normal saline (control) group; ** as compared with the CCl₄ only group. Group I (Control); Group II (CCl₄ only); Group III (CCl₄ + 200 mg extract); Group IV (CCl₄ + 500 mg extract); Group V (CCl₄ + 1000 mg extract); Group VI (500 mg extract only).

Figure 2: Effect of extract on serum total cholesterol and triacylglycerol in CCl₄ exposed rats.
* as compared with the normal saline (control) group; ** as compared with the CCl₄ only group. Group I (Control); Group II (CCl₄ only); Group III (CCl₄ + 200 mg extract); Group IV (CCl₄ + 500 mg extract); Group V (CCl₄ + 1000 mg extract); Group VI (500 mg extract only).

Figure 3: Effect of extract on antioxidant enzymes activities in rats exposed to CCl₄.
* as compared with the normal saline (control) group; ** as compared with the CCl₄ only group. Group I (Control); Group II (CCl₄ only); Group III (CCl₄ + 200 mg extract); Group IV (CCl₄ + 500 mg extract); Group V (CCl₄ + 1000 mg extract); Group VI (500 mg extract only).

Figure 4: Effect of extract on malondialdehyde levels in rats exposed to CCl₄.
* as compared with the normal saline (control) group; ** as compared with the CCl₄ only group. Group I (Control); Group II (CCl₄ only); Group III (CCl₄ + 200 mg extract); Group IV (CCl₄ + 500 mg extract); Group V (CCl₄ + 1000 mg extract); Group VI (500 mg extract only).
lyosomal triacylglyceride lipase activity and also the content of unsaturated fatty acids, while de novo fatty acid synthesis and saturated fatty acids increases. All this boosts the availability of fatty acids and leads to increased esterification.

In CCl4 exposed rat liver superoxide dismutase (SOD) and catalase (CAT) activities were decreased (Figure 3) and lipid peroxidation as evidenced by malondialdehyde (MDA) level was increased (Figure 4), increased in the CCl4 administered animals. The SOD and CAT activities are found to be significantly \(p \leq 0.05 \) increased compared to control group (Figure 3). The elevated level of MDA in CCl4 treated group was significantly \(p \leq 0.05 \) reduced when compared to control group (Figure 4). However, treatment of CCl4 exposed rats with extract at doses of 200 mg/kg bw, 500 mg/kg bw, 1000 mg/kg bw significantly \(p \leq 0.05 \) increased SOD and CAT activities but a significant \(p \leq 0.05 \) reduction in MDA levels (Figures 3 and 4).

The body has an effective antioxidant system against free radicals and reactive oxygen species induced damage in which the endogenous enzymatic and non-enzymatic antioxidants such as SOD, CAT and MDA play important roles.\(^{29,30}\) The enzymatic antioxidant enzymes work in tandem to protect biological cells from injury/damage. The elevated level of MDA indicates excessive formation of free radicals and activation of lipid peroxidation system resulting in hepatic damage. Histology of liver section of normal control rats showed normal hepatic cells each with well-defined cytoplasm, nucleus and nucleolus and distinct central vein (Figure 5A). The CCl4 intoxicated rats showed total loss of hepatic architecture with centrilobular hepatic necrosis, fatty changes vacuolization and congestion of sinusoids, kuffer cell hyperplasia, crowding of central vein and apoptosis (Figure 5B). Treatment with CCl4 exposed rat at doses of 200, 500 and 1000 mg/kg bw of extract showed protective effect against CCl4 induced damage in a dose dependent manner (Figure 5C-E). The extract at a dose of 500 mg/kg bw showed no evidence of tissue toxicity when administered alone. The result thus obtained is in the agreement with the work carried out by previous researchers. They reported the hepatoprotective activity of methanol extract of \(P. \text{niruri} \) leaves on CCl4 induced damage in rat.

Conclusion

The results of this study showed that ethanol leaf extract of \(P. \text{niruri} \) possesses antioxidant and hepatoprotective activities against CCl4-induced liver toxicity in rats. Thus, justify the use of the plant in herbal medicine for treatment of liver diseases.

Conflict of interest

The authors declare no conflict of interest.

Authors’ Declaration

The authors hereby declare that the work presented in this article is original and that any liability for claims relating to the content of this article will be borne by them.

Acknowledgments

The authors acknowledge the assistance of the laboratory staff of the Department of Biochemistry, Faculty of Life Sciences, University of Benin.

References

1. Juza RM, Pauli EM. Clinical and surgical anatomy of the liver: a review for clinicians. Clin Anat. 2014; 27:764-769.
2. Magdaleno F, Białaszczak CC, Nieto, N. Key events participating in the pathogenesis of alcoholic liver disease. Biomol. 2017; 7(1):9.
3. Weber LW, Boll M, Stamp FA. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol, 2003; 33(3):105–136.
4. Boll M, Weber LW, Becker E, Stampfl A. Mechanism of carbon tetrachloride induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. Z Naturforsch 2001; 56(7–8):649–659.

5. Sevanian A, Ursini G. Lipid peroxidation in membrane and low-density lipoproteins: similarities and differences. Free Rad Biol Med. 2000; 29:306–311.

6. Akamatsu K, Yamasaki Y, Nishikawa M, Takakura Y, Hashida M. Synthesis and pharmacological activity of a novel water soluble hepatocyte-specific polymeric prodrug of prostaglandin E (1) using lactosylated poly (L-glutamic hydrazide) as a carrier. Biochem Pharmacol. 2001; 62:1531–1536.

7. Schmiedeberg P, Biempica L, Czaja MJ. Timing of proto-oncogene expression varies in toxin-induced liver regeneration. J Cell Physiol. 1993; 154:294–300.

8. Mehrota R, Rawat S, Kulshreshtha DK, Patnaik GK, Dhawan BN. In vitro studies on the effect of certain natural products against hepatitis B virus. Ind J Med Res. 1990; 92:133–138.

9. Unander DW, Webster BS, Blumberg, BS. Usage and bioassays in Phyllanthus (Euphorbiaceae). IV. Clustering of antiviral uses and other effects. J Ethnopharmacol. 1995; 45:1–18.

10. Patihanker VV, Raut KS, Charde RM, Vyas, JV. Phyllanthus niruri: A magic herb. Res J Pharm. 2011; 1(4):1–9.

11. Chandra R. Lipid lowering activity of Phyllanthus amarus. Planta Med. 2005; 71:306–312.

12. Kasuya UAL, Leite DFP, De Melo LV, Rehder, VLG, Calixto, JB. Anti-inflammatory properties of extracts, fractions and lignans isolated from Phyllanthus amarus. Planta Med. 2005; 71:721–726.

13. Mellingter CG, Carbonero ER, Cipriani TR, Gorin PAJ, Iacomini M. Xylans from the Medicinal Herb Phyllanthus niruri. J Nat Prod. 2005; 68:129–135.

14. NIH. Guidelines for the care and use of laboratory animals. NIH Reivsed 1985. Publication No. 85-23.

15. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamate-oxaloacetate and Pyruvate transaminase, Am J Clin Pathol. 1957; 28:56–63.

16. Teitz NN. Determination of Gamma glutamyl Transferase, Fundamentals of Clinical Chemistry ed 3 Philadelphia, W.B Saunders Co, 1987; 391 p.

17. Klen B, Read PA, Babson LA. Rapid method for the quantitative determination of serum alkaline phosphatase. Clin Chem. 1960; 6:269–275.

18. Tietz NW. ed. Clinical Guide to Laboratory Tests, 3rd Ed. Philadelphia: W.B. Saunders; 1995.

19. Jendrassik L, Grof P. Determination of Direct and Indirect Bilirubin. Biochemische Zeitschrift. 1938: 297–81.

20. .Buege, JA and Aust SD. Microsomal Lipid Peroxidation. Meth Enzymol. 1978; 52:302–310.

21. Asru KS. Colorimetric assay of catalase. Anal Biochem. 1972; 47:389–394.

22. Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for Superoxide dismutase. J Biol Chem. 1972; 247:3170–3175.

23. Sallie R, Tredger JM, William R. Drugs and the liver. Part I. Testing liver function. Biopharm Drug Disp. 1991; 12:251–259.

24. Recknagel RO. A new direction in the study of carbon tetrachloride hepatotoxicity. Life Sci. 1983; 33:401–408.

25. De Groot H, Noll T. The crucial role of low stedy state oxygen pressures in haloalkane free radical mediated lipid peroxidation. Biochem Pharmacol. 1986; 35:15–19.

26. Gravel E, Albano E, Dianzani MU, Poli G, Slater TF. Effects of carbon tetrachloride on isolated rat hepatocytes: inhibition of protein and lipoprotein secretion. Biochem J. 1979; 178:509–512.

27. Boll M, Weber LWD, Becker E, Stampfl A. Pathogenesis of carbon tetrachloride-induced hepatocyte injury. Bioactivation of CC34 by cytochrome P450 and effects on lipid homeostasis. Z Naturforsch. 2001; 56c:111–121.

28. Fromenty B, Pessayre D. Inhibition of mitochondrial ß-oxidation as a mechanism of hepatotoxicity. Pharmacol. Ther.1995; 67:101–154.

29. Blokhina O, Virolainen E, Fagersted KV. Antioxidants: oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2001; 91:179–194.

30. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement and significant. Am J Clin Nutr. 1993; 57:715S–724S.