Intersections and Distinct Intersections in Cross-intersecting Families

Peter Frankl1, Jian Wang2

1Rényi Institute, Budapest, Hungary
2Department of Mathematics
Taiyuan University of Technology
Taiyuan 030024, P. R. China

E-mail: 1peter.frankl@gmail.com, 2wangjian01@tyut.edu.cn

Abstract

Let F, G be two cross-intersecting families of k-subsets of \{1, 2, \ldots, n\}. Let $F \land G$, $I(F, G)$ denote the families of all intersections $F \cap G$ with $F \in F, G \in G$, and all distinct intersections $F \cap G$ with $F \neq G, F \in F, G \in G$, respectively. For a fixed $T \subset \{1, 2, \ldots, n\}$, let S_T be the family of all k-subsets of \{1, 2, \ldots, n\} containing T. In the present paper, we show that $|F \land G|$ is maximized when $F = G = S_{\{1\}}$ for $n \geq 2k^2 + 8k$, while surprisingly $|I(F, G)|$ is maximized when $F = S_{\{1,2\}} \cup S_{\{3,4\}} \cup S_{\{1,4,5\}} \cup S_{\{2,3,6\}}$ and $G = S_{\{1,3\}} \cup S_{\{2,4\}} \cup S_{\{1,4,6\}} \cup S_{\{2,3,5\}}$ for $n \geq 100k^2$. The maximum number of distinct intersections in a t-intersecting family is determined for $n \geq 3(t + 2)^3k^2$ as well.

1 Introduction

Let n, k be positive integers and let $[n] = \{1, 2, \ldots, n\}$ denote the standard n-element set. Let $\binom{n}{k}$ denote the collection of all k-subsets of $[n]$. Subsets of $\binom{n}{k}$ are called k-\textit{uniform hypergraphs} or k-\textit{graphs} for short. A k-graph F is called intersecting if $F \cap F' \neq \emptyset$ for all $F, F' \in F$. For a fixed set $T \subset [n]$, define the T-star S_T by $S_T = \{S \in \binom{n}{k}: T \subset S\}$. We often write S_p, S_{pq} and S_{pqr} for $S_{\{p\}}, S_{\{p,q\}}$ and $S_{\{p,q,r\}}$, respectively. One of the most fundamental theorems in extremal set theory is the following:

\textbf{Erdős-Ko-Rado Theorem (1)}. Suppose that $n \geq 2k$ and $F \subset \binom{n}{k}$ is intersecting. Then

\begin{equation}
|F| \leq \binom{n-1}{k-1}.
\end{equation}

Hilton and Milner \cite{Hilton-Milner} proved that S_1 is the only family that achieves equality in (1) up to isomorphism for $n > 2k$.

Two families $F, G \subset \binom{n}{k}$ are called cross-intersecting if any two sets $F \in F, G \in G$ have non-empty intersection. If $A \subset \binom{n}{k}$ is intersecting, then $F = A, G = A$ are cross-intersecting. Therefore the following result is a strengthening of (1).
Theorem 1.1 ([7]). Suppose that \(n \geq 2k \) and \(\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k} \) are cross-intersecting. Then

\[
|\mathcal{F}| |\mathcal{G}| \leq \binom{n-1}{k-1}^2.
\]

Let us introduce the central notion of the present paper.

Definition 1.2. For \(\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k} \) define

\[
\mathcal{F} \land \mathcal{G} = \{ F \cap G : F \in \mathcal{F}, G \in \mathcal{G} \}
\]

and

\[
I(\mathcal{F}, \mathcal{G}) = \{ F \cap G : F \in \mathcal{F}, G \in \mathcal{G}, F \neq G \}.
\]

Clearly \(\mathcal{F} \land \mathcal{G} = (\mathcal{F} \cap \mathcal{G}) \cup I(\mathcal{F}, \mathcal{G}) \). For \(\mathcal{F} = \mathcal{G} \), we often write \(I(\mathcal{F}) \) instead of \(I(\mathcal{F}, \mathcal{F}) \).

The first result of the present paper shows another extremal property of the full star.

Theorem 1.3. Suppose that \(n \geq 2k^2 + 8k \), \(\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k} \) are cross-intersecting. Then

\[
|\mathcal{F} \land \mathcal{G}| \leq \sum_{0 \leq i \leq k-1} \binom{n-1}{i}
\]

where equality holds if and only if \(\mathcal{F} = \mathcal{G} = S_1 \) up to isomorphism.

Corollary 1.4. Suppose that \(n \geq 2k^2 + 8k \), \(\mathcal{F} \subset \binom{[n]}{k} \) is intersecting. Then

\[
|\mathcal{F} \land \mathcal{F}| \leq \sum_{0 \leq i \leq k-1} \binom{n-1}{i}
\]

where equality holds if and only if \(\mathcal{F} = S_1 \) up to isomorphism.

One would expect that both Theorem 1.3 and Corollary 1.4 hold for \(n > ck \) for some absolute constant \(c \). Unfortunately, we could not prove it. We can demonstrate the same results for \(n > c'k^2 / \log k \) with a more complicated proof.

Let us now consider the probably more natural quantity \(|I(\mathcal{F}, \mathcal{G})| \), namely the case that intersections of identical sets are not counted. Quite surprisingly the pairs of families maximizing \(|I(\mathcal{F}, \mathcal{G})| \) is rather peculiar. The fact that we can prove the optimality of such a pair shows the strength of our methods.

Let us define the two families

\[
\mathcal{A}_1 = S_{12} \cup S_{34} \cup S_{145} \cup S_{236} \quad \text{and} \quad \mathcal{A}_2 = S_{13} \cup S_{24} \cup S_{146} \cup S_{235}.
\]

One can check that \(\mathcal{A}_1, \mathcal{A}_2 \) are cross-intersecting.

Proposition 1.5.

\[
|I(\mathcal{A}_1, \mathcal{A}_2)| = 4 \sum_{0 \leq i \leq k-2} \binom{n-4}{i} + 6 \sum_{0 \leq i \leq k-3} \binom{n-4}{i} + 4 \sum_{0 \leq i \leq k-4} \binom{n-4}{i} +
\]

\[
+ \sum_{0 \leq i \leq k-5} \binom{n-4}{i} + 2 \sum_{i \leq k-3} \binom{n-6}{i} + \sum_{0 \leq i \leq k-4} \binom{n-6}{i}.
\]
Proof. For any $A_1 \in \mathcal{A}_1$ and $A_2 \in \mathcal{A}_2$, there are $\binom{t}{1} \sum_{0 \leq i \leq k-2} \binom{n-4}{i}$ distinct intersections for $|A_1 \cap A_2 \cap \{1, 2, 3, 4\}| = 1$. There are $\binom{t}{2} \sum_{0 \leq i \leq k-3} \binom{n-4}{i}$ distinct intersections for $|A_1 \cap A_2 \cap \{1, 2, 3, 4\}| = 2$. There are $\binom{t}{3} \sum_{0 \leq i \leq k-4} \binom{n-4}{i}$ distinct intersections for $|A_1 \cap A_2 \cap \{1, 2, 3, 4\}| = 3$. There are $\sum_{0 \leq i \leq k-5} \binom{n-4}{i}$ distinct intersections for $|A_1 \cap A_2 \cap \{1, 2, 3, 4\}| = 4$. There are $2 \sum_{0 \leq i \leq k-3} \binom{n-6}{i}$ distinct intersections for $|A_1 \cap A_2 \cap \{1, 2, 3, 4\}| = 0$ and $|A_1 \cap A_2 \cap \{5, 6\}| = 1$. There are $\sum_{0 \leq i \leq k-4} \binom{n-6}{i}$ distinct intersections for $|A_1 \cap A_2 \cap \{1, 2, 3, 4\}| = 0$ and $|A_1 \cap A_2 \cap \{5, 6\}| = 2$. Thus the proposition follows.

Our main result shows that $|\mathcal{I}(\mathcal{F}, \mathcal{G})|$ is maximized by $\mathcal{A}_1, \mathcal{A}_2$ over all cross-intersecting families $\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k}$ for $n \geq 100k^2$.

Theorem 1.6. If $\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k}$ are cross-intersecting families and $n \geq 100k^2$, then $|\mathcal{I}(\mathcal{F}, \mathcal{G})| \leq |\mathcal{I}(\mathcal{A}_1, \mathcal{A}_2)|$.

Let $n \geq k > t$. A family $\mathcal{F} \subset \binom{[n]}{k}$ is called t-intersecting if any two members of it intersect in at least t elements. Note that for $n \leq 2k - t$ the whole set $\binom{[n]}{k}$ is t-intersecting. Thus we always assume that $n > 2k - t$ when considering extremal problems for t-intersecting families.

Define $\mathcal{A}(n, k, t) = \left\{ A \in \binom{[n]}{k} : |A \cap [t+2]| \geq t+1 \right\}$. This family was first defined in [2] and it is easily seen to be t-intersecting.

Proposition 1.7.

$$|\mathcal{I}(\mathcal{A}(n, k, t))| = \binom{t+2}{t} \sum_{0 \leq i \leq k-t-1} \binom{n-t-2}{i} + \binom{t+2}{t+1} \sum_{0 \leq i \leq k-t-2} \binom{n-t-2}{i} + \sum_{0 \leq i \leq k-t-3} \binom{n-t-2}{i}.$$

(5)

Proof. For any $A_1, A_2 \in \mathcal{A}(n, k, t)$, we have $|A_1 \cap A_2 \cap [t+2]| \geq t$. Note that $|A_i \cap [t+2]| \geq t+1$ for $i = 1, 2$. There are $\binom{t+2}{i} \sum_{0 \leq i \leq k-t-1} \binom{n-t-2}{i}$ distinct intersections for $|A_1 \cap A_2 \cap [t+2]| = t$. There are $\binom{t+2}{t+1} \sum_{0 \leq i \leq k-t-2} \binom{n-t-2}{i}$ distinct intersections for $|A_1 \cap A_2 \cap [t+2]| = t+1$. There are $\sum_{0 \leq i \leq k-t-2} \binom{n-t-2}{i}$ distinct intersections for $|A_1 \cap A_2 \cap [t+2]| = t+2$. Thus the proposition follows.

Our third result shows that $|\mathcal{I}(\mathcal{F})|$ is maximized by $\mathcal{A}(n, k, t)$ over all intersecting families $\mathcal{F} \subset \binom{[n]}{k}$ for $n \geq 3(t+2)^3k^2$.

Theorem 1.8. If $\mathcal{F} \subset \binom{[n]}{k}$ is a t-intersecting family and $n \geq 3(t+2)^3k^2$, then $|\mathcal{I}(\mathcal{F})| \leq |\mathcal{I}(\mathcal{A}(n, k, t))|$.

We should mention that this result was proved for the case $t = 1$ in [5].

3
Let us list some notions and results that we need for the proofs. Define the family of \(t \)-transversals of \(F \subset \binom{[n]}{k} \):

\[
T_t(F) = \{ T \subset [n]: |T| \leq k, |T \cap F| \geq t \text{ for all } F \in \mathcal{F} \}.
\]

Clearly, if \(F \) is \(t \)-intersecting then \(F \subset T_t(F) \) and vice versa. The \(t \)-covering number \(\tau_t(F) \) is defined as follows:

\[
\tau_t(F) = \min\{|T|: |T \cap F| \geq t \text{ for all } F \in \mathcal{F} \}.
\]

For \(t = 1 \), we often write \(T(F), \tau(F) \) instead of \(T_1(F), \tau_1(F) \), respectively. If \(F, G \) are cross-intersecting, then clearly \(F \subset T(G) \) and \(G \subset T(F) \).

Let us recall the following common notations:

\[F(i) = \{ F \setminus \{ i \}: i \in F \}, \quad F(i) = \{ F \in \mathcal{F}: i \notin F \}. \]

Note that \(|F| = |F(i)| + |F(i)| \).

Define \(\nu(F) \), the matching number of \(F \) as the maximum number of pairwise disjoint edges in \(F \). Note that \(\nu(F) = 1 \) iff \(F \) is intersecting. We need the following inequality generalising the Erdős-Ko-Rado Theorem.

Proposition 1.9 ([3]). Suppose that \(F \subset \binom{[n]}{k} \) then

\[
|F| \leq \nu(F) \binom{n-1}{k-1}.
\]

An intersecting family \(F \) is called non-trivial if \(\cap_{F \in \mathcal{F}} F = \emptyset \). We also need the following stability theorem concerning the Erdős-Ko-Rado Theorem.

Hilton-Milner Theorem ([6]). If \(n > 2k \) and \(F \subset \binom{[n]}{k} \) is non-trivial intersecting, then

\[
|F| \leq \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1.
\]

Let us list some inequalities that will be used frequently in the proof.

Proposition 1.10. Let \(n, k, \ell, t, p \) be positive integers with \(k > \ell, k > t \) and \(n > 2k + p \). Then

\[
\binom{n}{k} \leq \frac{n-p}{n-p(k+1)} \binom{n-p}{k},
\]

\[
\sum_{0 \leq i \leq k-\ell} \binom{n-t}{i} \leq \frac{n-t-p}{n-t-pk} \sum_{0 \leq i \leq k-\ell} \binom{n-t-p}{i},
\]

\[
\sum_{0 \leq i \leq k-\ell-1} \binom{n-t}{i} \leq \frac{k}{n-t-k} \sum_{0 \leq i \leq k-\ell} \binom{n-t}{i},
\]

\[
\text{for } \ell \geq t + 1, \sum_{t \leq j \leq \ell} \binom{\ell}{j} \geq \frac{1}{2t+2} \sum_{t \leq j \leq \ell+1} \binom{\ell+1}{j}.
\]

Proof. Note that

\[
\frac{(n-p)}{(n-k)(n-k-1) \cdots (n-k-p+1)} \geq \left(1 - \frac{k}{n-p} \right)^p \geq 1 - \frac{pk}{n-p}.
\]
Then (8) holds. By (8), we have for $i < k$
\[
\binom{n-t}{i} \leq \frac{n-t-p}{n-t-p(i+1)} \binom{n-t-p}{i} \leq \frac{n-t-p}{n-t-pk} \binom{n-t-p}{i},
\]
and thereby (9) follows. Since
\[
\frac{\binom{n-t}{i-1}}{\binom{n-t}{i}} = \frac{i}{n-t-i+1} \leq \frac{k}{n-t-k},
\]
we obtain (10).

For $\ell \geq 2t$, since
\[
\sum_{t \leq j \leq \ell} \binom{\ell}{j} \geq 2^{\ell-1} \quad \text{and} \quad \sum_{t \leq j \leq \ell+1} \binom{\ell+1}{j} \leq 2^{\ell+1},
\]
we see that
\[
\frac{\sum_{t \leq j \leq \ell} \binom{\ell}{j}}{\sum_{t \leq j \leq \ell+1} \binom{\ell+1}{j}} \geq \frac{1}{4}.
\]

For $t + 1 \leq \ell \leq 2t$,
\[
\sum_{t \leq j \leq \ell} \binom{\ell}{j} \geq \sum_{t \leq j \leq \ell} \frac{\ell+1-j}{\ell+1} \binom{\ell+1}{j} \\
\geq \sum_{t \leq j \leq \ell-1} \frac{\ell+1-j}{\ell+1} \binom{\ell+1}{j} + \frac{1}{\ell+1} \binom{\ell+1}{\ell} \\
\geq \frac{1}{\ell+1} \sum_{t \leq j \leq \ell-1} \binom{\ell+1}{j} + \frac{1}{\ell+1} \left(\binom{\ell+1}{\ell} + \binom{\ell+1}{1} \right) \\
> \frac{1}{2t+2} \sum_{t \leq j \leq \ell+1} \binom{\ell+1}{j}.
\]
Thus (11) holds.

2 Intersections in cross-intersecting families

In this section, we determine the maximum size of $F \cap G$ over all cross-intersecting families $F, G \subset \binom{n}{k}$. We also determine the maximum size of $(F_1 \cap G_1) \cup (F_2 \cap G_2)$ over all families $F_1, F_2, G_1, G_2 \subset \binom{n}{k}$ with F_1, G_1 being cross-intersecting and F_2, G_2 being cross-intersecting. This result will be used in Section 3.

First we prove a key proposition to the proof of Theorem 1.3.

Proposition 2.1. Let $F, G \subset \binom{n}{k}$ be cross-intersecting families and set $\mathcal{H} = \mathcal{I}(F, G) \cap \binom{n}{k-1}$. Then $\nu(\mathcal{H}) \leq 4$.

Proof. Suppose that $F_i \cap G_i = D_i$ are pairwise disjoint $(k-1)$-sets, $0 \leq i \leq 4$. Define x_i, y_i by $F_i = D_i \cup \{x_i\}, G_i = D_i \cup \{y_i\}$ and note that $x_i \neq y_i$. There are altogether 5×4 conditions $F_i \cap G_j \neq \emptyset$ to satisfy. Each of them is assured by either of the following three relations: $x_i \in D_j$, $y_j \in D_i$, $x_i = y_j$. From the first two types there are at most one for each x_i and y_j. Altogether at most $5 + 5 = 10$. If no multiple equalities (e.g. $x_1 = y_2 = y_3$)
exist, we get only at most 5 more relations and \(10 + 5 < 20\). Thus there must be places of coincidence, say by symmetry that of the form \(x_i = x_i^\prime\). Thus, again by symmetry, we may assume that \(x_i \not\in D_0\) for \(0 \leq i \leq 4\). Note that \(y_0 \in D_i\) holds for at most one value of \(i\). Without loss of generality assume \(y_0 \not\in D_i\), \(1 \leq i \leq 3\). By \(F_i \cap G_0 \neq \emptyset\), \(y_0 = x_i\), \(i = 1, 2, 3\). Look at \(y_1\). By symmetry assume \(y_1 \not\in D_2\). Now \(G_1 \cap F_2 \neq \emptyset\) implies \(y_1 = x_2\). Hence \(y_1 = x_1\), a contradiction. \(\square\)

Let \(D_1, D_2, D_3, D_4\) be pairwise disjoint \((k-1)\)-sets. Pick an element \(d_i \in D_i\), \(i = 1, 2, 3, 4\). Define \(x_i, y_i\) by \(x_1 = x_2 = y_1 = d_3\), \(x_3 = y_1 = d_2\) and \(x_4 = y_2 = y_3 = d_1\). Setting \(F_i = D_i \cup \{x_i\}, G_i = D_j \cup \{y_j\}\). One can check easily that \(F_i \cap G_j \neq \emptyset\) for \(1 \leq i \neq j \leq 4\). This example shows that Proposition 2.1 is best possible.

Proof of Theorem 1.3 We distinguish two cases. First we suppose that

\[
|F \cap G| > \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1. \tag{12}
\]

Since \(F, G\) are cross-intersecting, \(F \cap G\) is intersecting. By (7) and (12), without loss of generality, we assume that \(1 \in F\) for all \(F \in F \cap G\). We claim that \(1 \in H\) for all \(H \in F \cup G\). Indeed, if \(1 \notin H \in F\) for \(F \in F \cap G\) then \(H \cap F \neq \emptyset\) for \(F \in F \cap G\) yields

\[
|F \cap G| \leq \binom{n-1}{k-1} - \binom{n-k-1}{k-1}
\]

contradicting (12). We proved that \(1 \in H\) for all \(H \in F \cup G\) and thereby (3) holds.

Suppose next that (12) does not hold. By Proposition 2.1 and (6), we have for \(n \geq 5k\),

\[
|I(F, G) \cap \left[\binom{n}{k-1}\right]\right| \leq 4 \binom{n-1}{k-2} \leq 4 \frac{n-2}{n-k} \binom{n-2}{k-2} \leq 5 \binom{n-2}{k-2}.
\]

Since the remaining sets in \(I(F, G)\) are of size at most \(k - 2\), we have

\[
|I(F, G)| \leq 5 \binom{n-2}{k-2} + \sum_{0 \leq i \leq k-2} \binom{n}{i}.
\]

Moreover,

\[
|F \cap G| \leq \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1 \leq k \binom{n-2}{k-2}.
\]

Thus, for \(n \geq 2k + 1\) we have

\[
|F \cap G| \leq (k + 5) \binom{n-2}{k-2} + \sum_{0 \leq i \leq k-2} \binom{n}{i}
\]

\[
\leq \frac{(k + 5)(k-1)}{n-1} \binom{n-1}{k-1} + \frac{k}{n-k} \sum_{0 \leq i \leq k-1} \binom{n}{i}
\]

\[
\leq \frac{(k + 5)(k-1)}{n-1} \binom{n-1}{k-1} + \frac{k}{n-k} \sum_{0 \leq i \leq k-1} \binom{n-1}{i}.
\]

Note that \(n \geq 2k^2 + 8k\) implies

\[
\frac{(k + 5)(k-1)}{n-1} \leq \frac{1}{2}
\]
and

\[
\frac{k}{n-k} - \frac{n-1}{n-k} < \frac{k}{n-k} \left(1 + \frac{k}{n-k}\right) < \frac{k}{2k^2 + 7k} \left(1 + \frac{k}{2k^2}\right) = \frac{2k+1}{2k(2k+7)} \leq \frac{1}{2}
\]

Thus,

\[
|\mathcal{F} \cap \mathcal{G}| \leq \frac{1}{2} \binom{n-1}{k-1} + \frac{1}{2} \sum_{0 \leq i \leq k-1} \binom{n-1}{i} < \sum_{0 \leq i \leq k-1} \binom{n-1}{i}.
\]

Lemma 2.2. Suppose that \(n \geq 2k^2 + 9k \), \(\mathcal{F}_1, \mathcal{G}_1 \subset \binom{[n]}{k} \) are cross-intersecting and \(\mathcal{F}_2, \mathcal{G}_2 \subset \binom{[n]}{k} \) are cross-intersecting. Then

\[
|\mathcal{F}_1 \cap \mathcal{G}_1| \cup (\mathcal{F}_2 \cap \mathcal{G}_2)| \leq 2 \sum_{0 \leq i \leq k-1} \binom{n-2}{i} + \sum_{0 \leq i \leq k-2} \binom{n-2}{i}
\]

with equality holding if and only if \(\mathcal{F}_1 = \mathcal{G}_1 = S_1 \) and \(\mathcal{F}_2 = \mathcal{G}_2 = S_2 \) up to isomorphism.

Proof. By Theorem 1.3 for \(j = 1, 2 \)

\[
|\mathcal{F}_j \cap \mathcal{G}_j| \leq \sum_{0 \leq i \leq k-1} \binom{n-1}{i}.
\]

By Proposition 2.1 and (6), for \(j = 1, 2 \)

\[
|\mathcal{I}(\mathcal{F}_j, \mathcal{G}_j) \cap \binom{[n]}{k-1}| \leq 4 \binom{n-1}{k-2} \leq \frac{4(n-2)}{n-k} \binom{n-2}{k-2} \leq \frac{5}{n-k} \binom{n-2}{k-2}.
\]

Since the remaining sets in \(\mathcal{I}(\mathcal{F}_j, \mathcal{G}_j) \) are of size at most \(k-2 \), for \(j = 1, 2 \)

\[
|\mathcal{I}(\mathcal{F}_j, \mathcal{G}_j)| \leq 5 \binom{n-2}{k-2} + \sum_{0 \leq i \leq k-2} \binom{n}{i}.
\]

If \(|\mathcal{F}_j \cap \mathcal{G}_j| \leq \binom{n-1}{k-1} - \binom{n-k-1}{k-1} \leq k \binom{n-2}{k-2} \) for some \(j \in \{1, 2\} \), then for \(n \geq 2k + 2 \)

\[
|\mathcal{F}_1 \cap \mathcal{G}_1| + |\mathcal{F}_2 \cap \mathcal{G}_2| \leq \binom{n-1}{k-1} - \binom{n-k-1}{k-1} \leq k \binom{n-2}{k-2} \]

\[
\leq \binom{n-2}{k-2} + \sum_{0 \leq i \leq k-2} \binom{n}{i} + \sum_{0 \leq i \leq k-1} \binom{n-1}{i}
\]

\[
\leq \frac{(k+5)(k-1)}{n-k} \binom{n-2}{k-2} + \frac{n-2}{n-2k} \sum_{0 \leq i \leq k-2} \binom{n-2}{i} + \frac{n-2}{n-1-k} \sum_{0 \leq i \leq k-1} \binom{n-2}{i}.
\]

Note that \(n \geq 2k^2 + 9k \geq 10k \) implies

\[
\frac{(k+5)(k-1)}{n-k} \leq \frac{1}{2}, \quad \frac{n-2}{n-2k} \leq \frac{5}{4} \quad \text{and} \quad \frac{n-2}{n-1-k} \leq \frac{5}{4}.
\]

Thus,

\[
|\mathcal{F}_1 \cap \mathcal{G}_1| + (\mathcal{F}_2 \cap \mathcal{G}_2)| \leq \frac{1}{2} \binom{n-2}{k-1} + \frac{5}{4} \sum_{0 \leq i \leq k-2} \binom{n-2}{i} + \frac{5}{4} \sum_{0 \leq i \leq k-1} \binom{n-2}{i}
\]

\[
< 2 \sum_{0 \leq i \leq k-1} \binom{n-2}{i} + \sum_{0 \leq i \leq k-2} \binom{n-2}{i}.
\]
Thus we may assume that \(|\mathcal{F}_j \cap \mathcal{G}_j| \geq \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1\) for each \(j = 1, 2\). By Lemma 3.1, both \(\mathcal{F}_1 \cap \mathcal{G}_1\) and \(\mathcal{F}_2 \cap \mathcal{G}_2\) are trivial intersecting families. By the same argument as in Theorem 1.3, we see that there exist \(x, y\) such that \(\mathcal{F}_1 \cup \mathcal{G}_1 \subset S_x\) and \(\mathcal{F}_2 \cup \mathcal{G}_2 \subset S_y\). If \(x \neq y\), then we are done. If \(x = y\), then

\[
|\mathcal{F}_1 \cup \mathcal{G}_1| \leq |S_x \cap S_x|
\]

\[
= \sum_{0 \leq i \leq k-1} \binom{n-1}{i}
\]

\[
< 2 \sum_{0 \leq i \leq k-1} \binom{n-2}{i} + \sum_{0 \leq i \leq k-2} \binom{n-2}{i}.
\]

\(\Box\)

3 Distinct intersections in cross-intersecting families

In this section, we determine the maximum number of distinct intersections in cross-intersecting families.

For the proof, we need the following notion of basis. Two cross-intersecting families \(\mathcal{F}, \mathcal{G}\) are called saturated if any cross-intersecting families \(\tilde{\mathcal{F}}, \tilde{\mathcal{G}}\) with \(\mathcal{F} \subseteq \tilde{\mathcal{F}}, \mathcal{G} \subseteq \tilde{\mathcal{G}}\) have \(\mathcal{F} = \tilde{\mathcal{F}}\) and \(\mathcal{G} = \tilde{\mathcal{G}}\). Since \(\mathcal{F} \subseteq \tilde{\mathcal{F}}\) and \(\mathcal{G} \subseteq \tilde{\mathcal{G}}\) imply \(I(\mathcal{F}, \mathcal{G}) \subseteq I(\tilde{\mathcal{F}}, \tilde{\mathcal{G}})\), we may always assume that \(\mathcal{F}, \mathcal{G}\) are saturated when maximizing the size of \(I(\mathcal{F}, \mathcal{G})\). Let \(B(\mathcal{F})\) be the family of minimal (for containment) sets in \(T(\mathcal{G})\) and let \(B(\mathcal{G})\) be the family of minimal sets in \(T(\mathcal{F})\). Let us prove some properties of the basis.

Lemma 3.1. Suppose that \(\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k}\) are saturated cross-intersecting families. Then (i) and (ii) hold.

(i) Both \(B(\mathcal{F})\) and \(B(\mathcal{G})\) are antichains, and \(B(\mathcal{F}), B(\mathcal{G})\) are cross-intersecting,

(ii) \(B(\mathcal{F}) = \left\{ F \in \binom{[n]}{k} : \exists B \in B(\mathcal{F}), B \subset F \right\}\) and \(B(\mathcal{G}) = \left\{ G \in \binom{[n]}{k} : \exists B \in B(\mathcal{G}), B \subset G \right\}\).

Proof. (i) Clearly, \(B(\mathcal{F})\) and \(B(\mathcal{G})\) are both anti-chains. Suppose for contradiction that \(B \in B(\mathcal{F}), B' \in B(\mathcal{G})\) but \(B \cap B' = \emptyset\). If \(|B| = |B'| = k\), then \(B \in \mathcal{F}, B' \in \mathcal{G}\) follows from saturatedness, a contradiction. If \(|B| < k\), then there exists \(F \supseteq B\) such that \(|F| = k\) and \(|F \cap B'| = |B \cap B'| = 0\). By definition \(F \in T(\mathcal{G})\). Since \(\mathcal{F}, \mathcal{G}\) are saturated, we see that \(F \in \mathcal{F}\). But this contradicts the assumption that \(B'\) is a transversal of \(\mathcal{F}\). Since \(\mathcal{F}, \mathcal{G}\) are saturated, (ii) is immediate from the definition of \(B(\mathcal{F})\) and \(B(\mathcal{G})\). \(\Box\)

Let \(r(\mathcal{B}) = \max\{|B| : B \in \mathcal{B}\}\) and \(s(\mathcal{B}) = \min\{|B| : B \in \mathcal{B}\}\). For any \(\ell\) with \(s(\mathcal{B}) \leq \ell \leq r(\mathcal{B})\), define

\[
\mathcal{B}(\ell) = \left\{ B \in \mathcal{B} : |B| = \ell \right\}\quad \text{and}\quad \mathcal{B}(\leq \ell) = \bigcup_{i = s(\mathcal{B})}^{\ell} \mathcal{B}(i).
\]

It is easy to see that \(s(\mathcal{B}(\mathcal{G})) = r(\mathcal{F})\).

By a branching process, we establish an upper bound on the size of the basis.

Lemma 3.2. Suppose that \(\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k}\) are saturated cross-intersecting families. Let \(\mathcal{B}_1 = B(\mathcal{F})\) and \(\mathcal{B}_2 = B(\mathcal{G})\). For each \(i = 1, 2\), if \(s(\mathcal{B}_i) \geq 2\) and \(\tau(\mathcal{B}_i(\leq r_i)) \geq 2\) then

\[
\sum_{0 \leq \ell \leq k} \ell^{-2k-\ell+2}|\mathcal{B}_3(\leq \ell)| \leq 1.
\]
Proof. By symmetry, it is sufficient to prove the lemma only for \(i = 1 \). For the proof we use a branching process. During the proof a sequence \(S = (x_1, x_2, \ldots, x_\ell) \) is an ordered sequence of distinct elements of \([n]\) and we use \(\hat{S} \) to denote the underlying unordered set \(\{x_1, x_2, \ldots, x_\ell\} \). At the beginning, we assign weight 1 to the empty sequence \(S_0 \). At the first stage, we choose \(B_{1,1} \in B_1 \) with \(|B_{1,1}| = s(B_1) \). For any vertex \(x_1 \in B_{1,1} \), define one sequence \((x_1) \) and assign the weight \(s(B_1)^{-1} \) to it.

At the second stage, since \(\tau(B_1^{(\leq \ell_1)}) \geq 2 \), for each sequence \(S = (x_1) \) we may choose \(B_{1,2} \in B_1^{(\leq \ell_1)} \) such that \(x_1 \notin B_{1,2} \). Then we replace \(S = (x_1) \) by \(|B_{1,2}| \) sequences of the form \((x_1, y)\) with \(y \in B_{1,2} \) and weight \(\frac{w(S)}{|B_{1,2}|} \).

In each subsequent stage, we pick a sequence \(S = (x_1, \ldots, x_p) \) and denote its weight by \(w(S) \). If \(\hat{S} \cap B_1 \neq \emptyset \) holds for all \(B_1 \in B_1 \) then we do nothing. Otherwise we pick \(B_1 \in B_1 \) satisfying \(\hat{S} \cap B_1 = \emptyset \) and replace \(S \) by the \(|B_1|\) sequences \((x_1, \ldots, x_p, y)\) with \(y \in B_1 \) and assign weight \(\frac{w(S)}{|B_1|} \) to each of them. Clearly, the total weight is always 1.

We continue until \(\hat{S} \cap B_1 \neq \emptyset \) for all sequences and all \(B_1 \in B_1 \). Since \([n]\) is finite, each sequence has length at most \(n \) and eventually the process stops. Let \(S \) be the collection of sequences that survived in the end of the branching process and let \(S^{(\ell)} \) be the collection of sequences in \(S \) with length \(\ell \).

Claim 1. To each \(B_2 \in B_2^{(\ell)} \) with \(\ell \geq r_1 \) there is some sequence \(S \in S^{(\ell)} \) with \(\hat{S} = B_2 \).

Proof. Let us suppose the contrary and let \(S = (x_1, \ldots, x_p) \) be a sequence of maximal length that occurred at some stage of the branching process satisfying \(\hat{S} \subsetneq B_2 \). Since \(B_1, B_2 \) are cross-intersecting, \(B_1 \cap B_2 \neq \emptyset \), implying that \(p \geq 1 \). Since \(\hat{S} \) is a proper subset of \(B_2 \) and \(B_2 \in B_2 = B(G) \), it follows that \(\hat{S} \notin B(G) \subset T(F) \). Thereby there exists \(F \in F \) with \(\hat{S} \cap F = \emptyset \). In view of Lemma 3.1 (ii), we can find \(B_1' \in B_1 \) such that \(\hat{S} \cap B_1' = \emptyset \). Thus at some point we picked \(S \) and some \(B_1 \in B_1 \) with \(\hat{S} \cap B_1 = \emptyset \). Since \(B_1, B_2 \) are cross-intersecting, \(B_2 \cap B_1 \neq \emptyset \). Consequently, for each \(y \in B_2 \cap B_1 \), the sequence \((x_1, \ldots, x_p, y)\) occurred in the branching process. This contradicts the maximality of \(p \).

Hence there is an \(S \) at some stage satisfying \(\hat{S} = B_2 \). Since \(B_1, B_2 \) are cross-intersecting, \(\hat{S} \cap B_1' = B_2 \cap B_1' \neq \emptyset \) for all \(B_1' \in B_1 \). Thus \(\hat{S} \in S \) and the claim holds.

By Claim 1, we see that \(|B_2^{(\ell)}| \leq |S^{(\ell)}| \) for all \(\ell \geq r_1 \). Let \(S = (x_1, \ldots, x_\ell) \in S^{(\ell)} \) and let \(S_i = (x_1, \ldots, x_i) \) for \(i = 1, \ldots, \ell \). At the first stage, \(w(S_1) = 1/s(B_1) \). Assume that \(B_{1,i} \) is the selected set when replacing \(S_{i-1} \) in the branching process for \(i = 2, \ldots, \ell \). Clearly, \(x_i \in B_{i,i}, B_{1,2} \in B_1^{(\leq r_1)} \) and

\[
w(S) = \frac{1}{s(B_1)} \prod_{i=2}^{\ell} \frac{1}{|B_{1,i}|}.
\]

Note that \(s(B_1) \leq \ell, |B_{1,2}| = r_1 \leq \ell \) and \(|B_{1,i}| \leq k \) for \(i \geq 3 \). It follows that

\[
w(S) \geq \left(\ell^2 k^{\ell-2} \right)^{-1} = \ell^{-2} k^{-\ell+2}.
\]

Thus,

\[
\sum_{r_1 \leq \ell \leq k} \ell^{-2} k^{-\ell+2} |B_2^{(\ell)}| \leq \sum_{r_1 \leq \ell \leq k} \sum_{S \subseteq S^{(\ell)}} w(S) \leq \sum_{S \subseteq S} w(S) = 1.
\]

For the proof of Theorem 1.6 we also need the following lemma.
Lemma 3.3. Suppose that $\mathcal{F} \subset \binom{[n]}{k}$, $\mathcal{G} \subset \binom{[n]}{k-1}$ are cross-intersecting. Then

$$|\mathcal{I}(\mathcal{F}, \mathcal{G})| \leq 2\binom{n-1}{k-2} + (2k + 1)\binom{n-1}{k-3} + \sum_{0 \leq i \leq k-3} \binom{n}{i}.$$

Proof. Let $\mathcal{H}_1 = \mathcal{I}(\mathcal{F}, \mathcal{G}) \cap \binom{[n]}{k-1}$. We claim that $\nu(\mathcal{H}_1) \leq 2$. Otherwise, let $G_i = F_i \cap G_i$, $i = 1, 2, 3$, be three pairwise disjoint members in \mathcal{H}_1 with $F_i \in \mathcal{F}$, $G_i \in \mathcal{G}$. Define x_i by $F_i \setminus G_i = \{x_i\}$. By symmetry we may assume that $x_1 \notin G_3$. Then F_1, G_3 are disjoint, contradicting the fact that \mathcal{F}, \mathcal{G} are cross-intersecting. Thus $\nu(\mathcal{H}_1) \leq 2$.

If $\nu(\mathcal{H}_1) \leq 1$, then (1) implies $|\mathcal{H}_1| \leq \binom{n-1}{k-2}$. Since the remaining sets in $\mathcal{I}(\mathcal{F}, \mathcal{G})$ are all of size at most $k - 2$, it follows that

$$|\mathcal{I}(\mathcal{F}, \mathcal{G})| \leq \binom{n-1}{k-2} + \sum_{0 \leq i \leq k-3} \binom{n}{i}.$$

If $\nu(\mathcal{H}_1) = 2$, let $G_1 = F_1 \cap G_1, G_2 = F_2 \cap G_2$ be two disjoint members in \mathcal{H}_1 and let $\mathcal{H}_2 = \mathcal{I}(\mathcal{F}, \mathcal{G}) \cap \binom{[n]\setminus(F_1\cup F_2)}{k-2}$. We claim that \mathcal{H}_2 is intersecting. Suppose not, let $D_3 = F_3 \cap G_3, D_4 = F_4 \cap G_4$ be two disjoint members in \mathcal{H}_2. Define x_i by $F_i \setminus G_i = \{x_i\}$ for $i = 1, 2$ and define x_i, y_i, z_i by $x_i \notin G_3$ and $y_i \notin G_2 = \emptyset$, by symmetry we may assume that $z_3 \notin G_1$ and $y_3 \notin G_2$. Similarly, assume that $x_4 \notin G_1$ and $y_4 \notin G_2$. Since $F_1 \cap G_3 \neq \emptyset$ and $F_2 \cap G_3 \neq \emptyset$, we see that $z_3 \notin F_1 \cap F_2$. It follows that $x_1 = x_2 = z_3$. Similarly we have $x_1 = x_2 = z_4$. But then F_3, G_4 are disjoint, contradicting the fact that \mathcal{F}, \mathcal{G} are cross-intersecting. Thus \mathcal{H}_2 is intersecting. By (1) we have

$$|\mathcal{I}(\mathcal{F}, \mathcal{G}) \cap \binom{[n]}{k-2}| \leq |F_1 \cup F_2|\binom{n-1}{k-3} + \binom{n-2k}{k-3} \leq (2k + 1)\binom{n-1}{k-3}.$$

By (1) we obtain that

$$|\mathcal{I}(\mathcal{F}, \mathcal{G}) \cap \binom{[n]}{k-1}| \leq \binom{n-1}{k-2}.$$

Hence

$$|\mathcal{I}(\mathcal{F}, \mathcal{G})| \leq 2\binom{n-1}{k-2} + (2k + 1)\binom{n-1}{k-3} + \sum_{0 \leq i \leq k-3} \binom{n}{i}.$$ \hfill \Box

Corollary 3.4. Let $\mathcal{F}, \mathcal{G} \subset \binom{[n]}{k}$ be cross-intersecting families. If \mathcal{G} is a star, then

$$|\mathcal{I}(\mathcal{F}, \mathcal{G})| \leq 2\sum_{0 \leq i \leq k-2} \binom{n-1}{i} + \binom{n-2}{k-2} + (2k + 1)\binom{n-2}{k-3}.$$ (15)

Proof. Assume without loss of generality that \mathcal{F} and \mathcal{G} are saturated. Since \mathcal{G} is a star, we may assume that $\mathcal{G} \subset S_1$. Then $\{1\} \in \mathcal{I}(\mathcal{G})$ whence $\{1\} \in \mathcal{B}(\mathcal{F})$. By Lemma 3.1 (ii) $S_1 \subset \mathcal{F}$. Note that $\mathcal{F}(1) \subset \binom{[2,n]}{k}$, $\mathcal{G}(1) \subset \binom{[2,n]}{k-1}$ are cross-intersecting. By Lemma 3.3 we have

$$|\mathcal{I}(\mathcal{F}(1), \mathcal{G}(1))| \leq 2\binom{n-2}{k-2} + (2k + 1)\binom{n-2}{k-3} + \sum_{0 \leq i \leq k-3} \binom{n-1}{i}$$

$$\leq \sum_{0 \leq i \leq k-2} \binom{n-1}{i} + \binom{n-2}{k-2} + (2k + 1)\binom{n-2}{k-3}.$$
Thus,
\[
|I(\mathcal{F}, \mathcal{G})| \leq |I(S_1, S_1)| + |I(\mathcal{F}(\bar{1}), \mathcal{G}(1))|
\leq 2 \sum_{0 \leq i \leq k-2} \left(\binom{n-1}{i} + \binom{n-2}{k-2} + (2k+1) \binom{n-2}{k-3} \right).
\]

Now we are in position to prove the main theorem.

Proof of Theorem 1.6. Let \(B_1 = B(\mathcal{F}), B_2 = B(\mathcal{G}) \) and let \(s_1 = s(B_1), s_2 = s(B_2) \). Suppose first that \(\min\{s_1, s_2\} = 1 \). By symmetry let \(s_2 = 1 \), then \(\mathcal{G} \) is a star. By (15) and \(n \geq 2k+3 \), we have
\[
|I(\mathcal{F}, \mathcal{G})|
\leq 2 \sum_{0 \leq i \leq k-2} \left(\binom{n-1}{i} + \binom{n-2}{k-2} + (2k+1) \binom{n-2}{k-3} \right)
\leq 2 \sum_{0 \leq i \leq k-2} \left(\frac{n-4}{n-2} \binom{n-4}{k-2} + \frac{(2k+1)(k-2)}{n-1} \binom{n-4}{k-2} \right)
\leq 2 \sum_{0 \leq i \leq k-2} \left(\binom{n-4}{i} + \frac{(2k+1)(k-2)}{n-1} \binom{n-4}{k-2} \right)
\leq \frac{2(n-4)}{n-1-3k} \sum_{0 \leq i \leq k-2} \binom{n-4}{i} + \frac{(2k+1)(k-2)(n-4)}{(n-1)(n-3k)} \binom{n-2}{k-3}.
\]
Note that \(n \geq 63k \) implies
\[
\frac{2(n-4)}{n-1-3k} \leq \frac{21}{10}, \quad \frac{n-4}{n-2k} \leq \frac{11}{10}
\]
and \(n \geq 44k^2 \) implies
\[
\frac{(2k+1)(k-2)}{n-1} \leq \frac{11}{22}, \quad \frac{n-4}{n-3k} \leq \frac{11}{10}.
\]
Thus,
\[
|I(\mathcal{F}, \mathcal{G})| \leq \frac{21}{10} \sum_{0 \leq i \leq k-2} \binom{n-4}{i} + \frac{11}{10} \binom{n-4}{k-2} + \frac{1}{20} \binom{n-4}{k-2}
\leq \frac{13}{4} \sum_{0 \leq i \leq k-2} \binom{n-4}{i} < |I(A_1, A_2)|.
\]

Thus, we may assume that \(s_1, s_2 \geq 2 \). Let us partition \(\mathcal{F} \) into \(\mathcal{F}(s_1) \cup \ldots \cup \mathcal{F}(k) \) where \(F \in \mathcal{F}(\ell) \) if \(\max\{|B| : B \in B_1, B \subset F\} = \ell \). Similarly, partition \(\mathcal{G} \) into \(\mathcal{G}(s_2) \cup \ldots \cup \mathcal{G}(k) \) where \(G \in \mathcal{G}(\ell) \) if \(\max\{|B| : B \in B_2, B \subset G\} = \ell \).

Fix an \(F \in \mathcal{F}(\ell) \) with \(B_1 \subset F, B_1 \in \mathcal{B}_1(\ell) \). For an arbitrary \(G \in \mathcal{G} \), we have
\[
F \cap G = (B_1 \cap G) \cup ((F \setminus B_1) \cap G),
\]
where \(B_1 \cap G \neq \emptyset \) and \(|(F \setminus B_1) \cap G| \leq |F \setminus B_1| = k - \ell \). It follows that for \(s_1 \leq \ell \leq k \)
\[
|I(\mathcal{F}(\ell), \mathcal{G})| \leq |B_1(\ell)| (2^\ell - 1) \sum_{0 \leq i \leq k-\ell} \binom{n-1}{i}.
\]

11
Similarly, for \(s_2 \leq \ell \leq k \)

\[
\left| I(\mathcal{F}, \mathcal{G}^{(\ell)}) \right| \leq |\mathcal{B}^{(\ell)}_2| (2^\ell - 1) \sum_{0 \leq i \leq k - \ell} \binom{n - 1}{i}.
\]

Let \(\alpha \) be the smallest integer such that \(\tau(B^{(\ell)}_1) \geq 2 \) and let \(\beta \) be the smallest integer such that \(\tau(B^{(\ell)}_2) \geq 2 \). By symmetry, we may assume that \(\alpha \geq \beta \). We distinguish three cases.

Case 1. \(\beta \geq 3 \). Let \(\mathcal{F}' = \mathcal{F}(s_1) \cup \ldots \cup \mathcal{F}(\beta - 1) \). Note that \(\mathcal{F}' \) and \(\mathcal{G} \) are cross-intersecting and \(\mathcal{F}' \) is a star. By (15) and (16), we have

\[
\left| I(\mathcal{F}', \mathcal{G}) \right| \leq 2 \sum_{0 \leq i \leq k - 2} \binom{n - 1}{i} + \binom{n - 2}{k - 2} + (2k + 1) \binom{n - 2}{k - 3} < \frac{13}{4} \sum_{0 \leq i \leq k - 2} \binom{n - 4}{i}.
\]

Define

\[
f(n, k, \ell) = 2^\ell \ell^2 k^{\ell - 2} \sum_{0 \leq i \leq k - \ell} \binom{n - 1}{i}.
\]

and let

\[
\lambda_\ell = \ell^{-2} k^{-\ell + 2} |\mathcal{B}^{(\ell)}_1|.
\]

By (17), we see

\[
\sum_{\beta \leq \ell \leq k} \left| I(\mathcal{F}'^{(\ell)}, \mathcal{G}) \right| = \sum_{\beta \leq \ell \leq k} \lambda_\ell f(n, k, \ell).
\]

Since

\[
\frac{f(n, k, \ell)}{f(n, k, \ell + 1)} = \frac{\ell^2}{2k(\ell + 1)^2} \frac{\sum_{0 \leq i \leq k - \ell} \binom{n - 1}{i}}{\sum_{0 \leq i \leq k - \ell - 1} \binom{n - 1}{i}} \geq \frac{(n - 1 - k) \ell^2}{2k^2 (\ell + 1)^2} \geq 1 \text{ for } n \geq 5k^2,
\]

\(f(n, k, \ell) \) is decreasing as a function of \(\ell \). Moreover, by (14) we have

\[
\sum_{\beta \leq \ell \leq k} \lambda_\ell \leq 1.
\]

Hence,

\[
\sum_{\beta \leq \ell \leq k} \left| I(\mathcal{F}'^{(\ell)}, \mathcal{G}) \right| \leq f(n, k, \beta) \leq f(n, k, 3) = 72k \sum_{0 \leq i \leq k - 3} \binom{n - 1}{i}.
\]

Using (9) and (10), for \(n \geq 2k + 3 \) we have

\[
\sum_{\beta \leq \ell \leq k} \left| I(\mathcal{F}'^{(\ell)}, \mathcal{G}) \right| \leq 72k \sum_{0 \leq i \leq k - 3} \binom{n - 1}{i} \leq 72k^2 \frac{n - 1 - k}{n - 1 - k} \sum_{0 \leq i \leq k - 2} \binom{n - 1}{i} \leq 72k^2 \frac{n - 1 - 3}{n - 1 - k} \sum_{0 \leq i \leq k - 2} \binom{n - 4}{i}.
\]
Since $n \geq 100k^2 \geq 100k$, we infer
$$\frac{72k^2}{n - 1 - k} \leq \frac{8}{11} \text{ and } \frac{n - 1 - 3}{n - 1 - 3k} \leq \frac{33}{32}.$$ It follows that for $\beta \geq 3$
\begin{equation}
\sum_{\beta \leq \ell \leq k} |I(\mathcal{F}(\ell), \mathcal{G})| \leq \frac{3}{4} \sum_{0 \leq i \leq k - 2} \binom{n - 4}{i}.
\end{equation}
Using (19) and (21), we have
$$|I(\mathcal{F}, \mathcal{G})| \leq |I(\mathcal{F}', \mathcal{G})| + \sum_{\beta \leq \ell \leq k} |I(\mathcal{F}(\ell), \mathcal{G})| \leq 4 \sum_{0 \leq i \leq k - 2} \binom{n - 4}{i} < |I(\mathcal{A}_1, \mathcal{A}_2)|.$$

Case 2. $\beta = 2$ and $\alpha > 2$.
By (21) we have
$$\sum_{3 \leq \ell \leq k} |I(\mathcal{F}(\ell), \mathcal{G})| \leq \frac{3}{4} \sum_{0 \leq i \leq k - 2} \binom{n - 4}{i}.$$ Since $\alpha > 2$, it follows that $\mathcal{F}^{(2)}$ is a star. By (19) and (19), we have
$$|I(\mathcal{F}^{(2)}, \mathcal{G})| < \frac{13}{4} \sum_{0 \leq i \leq k - 2} \binom{n - 4}{i}.$$ Thus,
$$|I(\mathcal{F}, \mathcal{G})| \leq |I(\mathcal{F}^{(2)}, \mathcal{G})| + \sum_{\beta \leq \ell \leq k} |I(\mathcal{F}(\ell), \mathcal{G})| \leq 4 \sum_{0 \leq i \leq k - 2} \binom{n - 4}{i} < |I(\mathcal{A}_1, \mathcal{A}_2)|.$$

Case 3. $\beta = \alpha = 2$.
Since $\mathcal{B}_1^{(2)}, \mathcal{B}_2^{(2)}$ are cross-intersecting, we see that $\nu(\mathcal{B}_1^{(2)}) \leq 2$ and $\nu(\mathcal{B}_2^{(2)}) \leq 2$. Moreover, $\beta = \alpha = 2$ implies $\tau(\mathcal{B}_1^{(2)}) \geq 2$ and $\tau(\mathcal{B}_2^{(2)}) \geq 2$. It follows that $\mathcal{B}_1^{(2)}, \mathcal{B}_2^{(2)}$ are either both triangles or both subgraphs of K_3 with a matching of size two.

Case 3.1. $\mathcal{B}_1^{(2)}, \mathcal{B}_2^{(2)}$ are both triangles.
Without loss of generality, assume that $\mathcal{B}_1^{(2)} = \mathcal{B}_2^{(2)} = \{(1,2), (1,3), (2,3)\}$. By saturatedness, we have
$$\mathcal{F} = \mathcal{G} = \mathcal{A}_3 = \left\{ A \in \binom{[n]}{k} : |A \cap \{1,2,3\}| \geq 2 \right\}.$$ Therefore,
$$|I(\mathcal{F}, \mathcal{G})| = |I(\mathcal{A}_3, \mathcal{A}_3)|$$
\begin{align*}
&= 3 \sum_{0 \leq i \leq k - 2} \binom{n - 3}{i} + 3 \sum_{0 \leq i \leq k - 3} \binom{n - 3}{i} + \sum_{0 \leq i \leq k - 4} \binom{n - 3}{i} \\
&\leq \frac{n - 4}{n - 3 - k} \left(3 \sum_{0 \leq i \leq k - 2} \binom{n - 4}{i} + 3 \sum_{0 \leq i \leq k - 3} \binom{n - 4}{i} + \sum_{0 \leq i \leq k - 4} \binom{n - 4}{i} \right).
\end{align*}
Since $n \geq 13k$ implies $\frac{n - 4}{n - 3 - k} \leq \frac{13}{12}$, we obtain that
$$|I(\mathcal{F}, \mathcal{G})| < \frac{13}{4} \sum_{0 \leq i \leq k - 2} \binom{n - 4}{i} + \frac{13}{4} \sum_{0 \leq i \leq k - 3} \binom{n - 4}{i} + 2 \sum_{0 \leq i \leq k - 4} \binom{n - 4}{i} < |I(\mathcal{A}_1, \mathcal{A}_2)|.$$
Case 3.2. $B^{(2)}_1, B^{(2)}_2$ are both subgraphs of K_4 with a matching of size two.
By symmetry, we may assume that $(1, 3), (2, 4) \in B^{(2)}_1$ and $(1, 2), (3, 4) \in B^{(2)}_2$. We further assume that $B^{(2)}_1 \geq |B^{(2)}_2|$.

Case 3.2.1. $B^{(2)}_1 = \{(1, 3), (2, 4), (1, 4), (2, 3)\}$ and $B^{(2)}_2 = \{(1, 2), (3, 4)\}$.

Since \mathcal{F}, \mathcal{G} are saturated, we have $\mathcal{F} = \mathcal{F}^{(2)}$ and $\mathcal{G} = \mathcal{G}^{(2)}$. Thus,

$$|\mathcal{I}(\mathcal{F}, \mathcal{G})| = 4 \sum_{0 \leq i \leq k-2} \binom{n-4}{i} + 6 \sum_{0 \leq i \leq k-3} \binom{n-4}{i} + 4 \sum_{0 \leq i \leq k-4} \binom{n-4}{i}$$

$$+ \sum_{0 \leq i \leq k-5} \binom{n-4}{i} < |\mathcal{I}(A_1, A_2)|.$$

Case 3.2.2. $B^{(2)}_1 = \{(1, 3), (2, 4), (1, 4)\}$ and $B^{(2)}_2 = \{(1, 2), (3, 4), (1, 4)\}$.

Since \mathcal{F}, \mathcal{G} are saturated, we have $\mathcal{F} = \mathcal{F}^{(2)}$ and $\mathcal{G} = \mathcal{G}^{(2)}$. Thus,

$$|\mathcal{I}(\mathcal{F}, \mathcal{G})| = 4 \sum_{0 \leq i \leq k-2} \binom{n-4}{i} + 6 \sum_{0 \leq i \leq k-3} \binom{n-4}{i} + 4 \sum_{0 \leq i \leq k-4} \binom{n-4}{i}$$

$$+ \sum_{0 \leq i \leq k-5} \binom{n-4}{i} < |\mathcal{I}(A_1, A_2)|.$$

Case 3.2.3. $B^{(2)}_1 = \{(1, 3), (2, 4)\}$ and $B^{(2)}_2 = \{(1, 2), (3, 4)\}$.

By Lemma 3.1, we have $S_{13} \cup S_{24} \subset \mathcal{F}$ and $S_{12} \cup S_{34} \subset \mathcal{G}$. Let $\mathcal{F}' = \mathcal{F} \setminus (S_{13} \cup S_{24})$ and $\mathcal{G}' = \mathcal{G} \setminus (S_{12} \cup S_{34})$. Since $B^{(2)}_1, \mathcal{G}'$ are cross-intersecting, $G \cap \{1, 3\} \neq \emptyset$ and $G \cap \{2, 4\} \neq \emptyset$ for all $G \in \mathcal{G}'$. Moreover, $G \notin S_{12} \cup S_{34}$. It follows that $G \cap \{4\} = \{1, 4\}$ or $G \cap \{4\} = \{2, 3\}$ for all $G \in \mathcal{G}'$. Similarly, $F \cap \{4\} = \{1, 4\}$ or $F \cap \{4\} = \{2, 3\}$ for all $F \in \mathcal{F}'$. Let

$$\mathcal{F}'_{14} = \{F: F \in \mathcal{F}', F \cap \{4\} = \{1, 4\}\}, \mathcal{F}'_{23} = \{F: F \in \mathcal{F}', F \cap \{4\} = \{2, 3\}\}$$

and

$$\mathcal{G}'_{14} = \{G: G \in \mathcal{G}', G \cap \{4\} = \{1, 4\}\}, \mathcal{G}'_{23} = \{G: G \in \mathcal{G}', G \cap \{4\} = \{2, 3\}\}.$$

Since $\mathcal{F}'_{14}, \mathcal{G}'_{23}$ are cross-intersecting and $\mathcal{F}'_{23}, \mathcal{G}'_{14}$ are cross-intersecting, by (13) we have

$$|\mathcal{I}(\mathcal{F}'_{14} \cap \mathcal{G}'_{23}) \cup (\mathcal{F}'_{23} \cap \mathcal{G}'_{14})| \leq 2 \sum_{0 \leq i \leq k-3} \binom{n-6}{i} + \sum_{0 \leq i \leq k-4} \binom{n-6}{i}.$$

Note that $\mathcal{I}(\mathcal{F}'_{14}, \mathcal{G}' \setminus \mathcal{G}'_{23}) \subset \mathcal{I}(S_{13} \cup S_{24}, S_{12} \cup S_{34})$ and $\mathcal{I}(\mathcal{F}'_{23}, \mathcal{G}' \setminus \mathcal{G}'_{14}) \subset \mathcal{I}(S_{13} \cup S_{24}, S_{12} \cup S_{34})$. Thus,

$$|\mathcal{I}(\mathcal{F}, \mathcal{G})| = |\mathcal{I}(S_{13} \cup S_{24}, S_{12} \cup S_{34})| + |(\mathcal{F}'_{14} \cap \mathcal{G}'_{23}) \cup (\mathcal{F}'_{23} \cap \mathcal{G}'_{14})|$$

$$\leq 4 \sum_{0 \leq i \leq k-2} \binom{n-4}{i} + 6 \sum_{0 \leq i \leq k-3} \binom{n-4}{i} + 4 \sum_{0 \leq i \leq k-4} \binom{n-4}{i}$$

$$+ \sum_{0 \leq i \leq k-5} \binom{n-4}{i} + 2 \sum_{0 \leq i \leq k-3} \binom{n-6}{i} + \sum_{0 \leq i \leq k-4} \binom{n-6}{i}$$

$$= |\mathcal{I}(A_1, A_2)|.$$
Case 3.2.4. $B^{(2)} = \{(1, 3), (2, 4), (1, 4)\}$ and $B^{(2)}_2 = \{(1, 2), (3, 4)\}$.

By Lemma 3.1 (ii), we have $S_{13} \cup S_{24} \cup S_{14} \subset F$ and $S_{12} \cup S_{34} \subset G$. Let $F' = F \setminus (S_{13} \cup S_{24} \cup S_{14})$ and $G' = G \setminus (S_{12} \cup S_{34})$. Since $B^{(2)}_1$, G' are cross-intersecting, $G \cap [4] = \{1, 4\}$ for all $G \in G'$. Similarly, $F \cap [4] = \{2, 3\}$ for all $F \in F'$. Since F', G' are cross-intersecting, by (3) we have

$$|F'_{23} \cap G'_{14}| \leq \sum_{0 \leq r \leq k-3} \binom{n-5}{i} < 2 \sum_{0 \leq r \leq k-3} \binom{n-6}{i} + \sum_{0 \leq r \leq k-2} \binom{n-6}{i}.$$

Note that $I(F'_{23}, G \setminus G'_{14}) \subset I(S_{13} \cup S_{24}, S_{12} \cup S_{34})$. Thus,

$$|I(F, G)| = |I(S_{13} \cup S_{24}, S_{12} \cup S_{34})| + |F'_{23} \cap G'_{14}| \leq |I(A_1, A_2)|.$$

\[\square \]

4 Distinct intersections in a t-intersecting family

In this section, we determine the maximum number of distinct intersections in a t-intersecting family.

Since $F \subset \bar{F}$ implies $I(F) \subset I(\bar{F})$, we may always assume that F is saturated. Let $B = B_t(\bar{F})$ be the family of minimal (for containment) sets in $T_t(\bar{F})$.

Lemma 4.1. Suppose that $F \subset \binom{[n]}{k}$ is a saturated t-intersecting family. Then (i) and (ii) hold.

(i) B is a t-intersecting antichain,

(ii) $F = \{ H \in \binom{[n]}{k} : \exists B \in B, B \subset H \}$.

Proof. (i) Clearly, B is an anti-chain. Suppose for contradiction that $B, B' \in B$ but $|B \cap B'| < t$. If $|B| = |B'| = k$, then $B, B' \in F$ as F is saturated, a contradiction. If $|B'| < k$, then there exists $F' \supset B'$ such that $|F'| = k$ and $|F' \cap B| = |B' \cap B| < t$. By definition $F' \in T_t(F)$. Since F is saturated, we see that $F' \in F$. But this contradicts the assumption that B is a t-transversal. Since F is saturated, (ii) is immediate from the definition of B.

Let $r(B) = \max\{|B| : B \in B\}$ and $s(B) = \min\{|B| : B \in B\}$. For any ℓ with $s(B) \leq \ell \leq r(B)$ define

$$B^{(\ell)} = \{ B \in B : |B| = \ell \} \ \text{and} \ B^{(\leq \ell)} = \bigcup_{i=s(B)}^\ell B^{(i)}.$$

It is easy to see that $s(B_t(F)) = \tau_t(F)$.

Lemma 4.2. Suppose that $F \subset \binom{[n]}{k}$ is a saturated t-intersecting family and $B = B_t(F)$. If $s(B) \geq t + 1$ and $\tau_t(B^{(\leq r)}) \geq t + 1$, then

$$\sum_{r \leq \ell \leq k} \left(\binom{k}{t} \ell k^{r-t-1} \right)^{-1} |B^{(\ell)}| \leq 1.$$

(22)
Proof. For the proof we use a branching process. During the proof a sequence \(S = (x_1, x_2, \ldots, x_\ell) \) is an ordered sequence of distinct elements of \([n]\) and we use \(\hat{S} \) to denote the underlying unordered set \(\{x_1, x_2, \ldots, x_\ell\} \). At the beginning, we assign weight 1 to the empty sequence \(S_0 \). At the first stage, we choose \(B_1 \in F \) with \(|B_1| = s(B) \geq t + 1\). For any \(t \)-subset \(\{x_1, \ldots, x_\ell\} \subseteq B_1 \), define one sequence \((x_1, \ldots, x_\ell)\) and assign the weight \((s(B))^{-1}\) to it.

At the second stage, since \(\tau_t(B^{(\leq r)}) \geq t + 1 \), for each \(t \)-sequence \(S = (x_1, \ldots, x_\ell) \) we may choose \(B \in \mathcal{B}^{(\leq r)} \) such that \(|\hat{S} \cap B| < t \). Then we replace \(S = (x_1, \ldots, x_\ell) \) by \(|B \setminus \hat{S}|(t + 1)\)-sequences of the form \((x_1, \ldots, x_\ell, y)\) with \(y \in B \setminus \hat{S} \) and weight \(w(S) |B \setminus \hat{S}| \) to each of them. Clearly, the total weight is always 1.

We continue until \(|\hat{S} \cap B| \geq t \) for all sequences and all \(B \in \mathcal{B} \). Since \([n]\) is finite, each sequence has length at most \(n \) and eventually the process stops. Let \(\mathcal{S} \) be the collection of sequences that survived in the end of the branching process and let \(\mathcal{S}^{(\ell)} \) be the collection of sequences in \(\mathcal{S} \) with length \(\ell \).

Claim 2. To each \(B \in \mathcal{B}^{(\ell)} \) with \(\ell \geq r \) there is some sequence \(S \in \mathcal{S}^{(\ell)} \) with \(\hat{S} = B \).

Proof. Let us suppose the contrary and let \(S = (x_1, \ldots, x_\ell) \) be a sequence of maximal length that occurred at some stage of the branching process satisfying \(\hat{S} \subseteq B \). Since \(\mathcal{B} \) is \(t \)-intersecting, \(|B \cap B_1| \geq t \), implying that \(p \geq t \). Since \(\hat{S} \) is a proper subset of \(B \), there exists \(F \in \mathcal{F} \) with \(|\hat{S} \cap F| < t \). In view of Lemma 4.1 (ii) we can find \(B' \in \mathcal{B} \) such that \(|\hat{S} \cap B'| < t \). Thus at some point we picked \(S \) and some \(B \in \mathcal{B} \) with \(|\hat{S} \cap B| < t \). Since \(\mathcal{B} \) is \(t \)-intersecting, \(|B \cap B'| \geq t \). Consequently, for each \(y \in B \setminus (B \setminus \hat{S}) \) the sequence \((x_1, \ldots, x_\ell, y)\) occurred in the branching process. This contradicts the maximality of \(p \). Hence there is an \(S \) at some stage satisfying \(\hat{S} = B \). Since \(\mathcal{B} \) is \(t \)-intersecting, \(|\hat{S} \cap B'| \geq t \) for all \(B' \in \mathcal{B} \). Thus \(\hat{S} \in \mathcal{S} \) and the claim holds.

By Claim 2, we see that \(|\mathcal{B}^{(\ell)}| \leq |\mathcal{S}^{(\ell)}| \). Let \(S = (x_1, \ldots, x_\ell) \in \mathcal{S}^{(\ell)} \) and let \(S_i = (x_1, \ldots, x_i) \) for \(i = 1, \ldots, \ell \). At the first stage, \(w(S_1) = 1/((s(B))^{\ell}) \). Assume that \(B_i \) is the selected set when replacing \(S_{i-1} \) in the branching process for \(i = t + 1, \ldots, \ell \). Clearly, \(x_i \in B_i \), \(B_{t+1} \in \mathcal{B}^{(\leq r)} \) and

\[
 w(S) = \frac{1}{(s(B))^{\ell}} \prod_{i=t+1}^{\ell} \frac{1}{|B_i \setminus \hat{S}_{i-1}|}.
\]

Note that \(s(B) \leq r \leq \ell \), \(|B_{t+1} \setminus \hat{S}_t| \leq \ell \) and \(|B_i \setminus \hat{S}_{i-1}| \leq k \) for \(i \geq t + 2 \). It follows that

\[
 w(S) \geq \left(\left(\frac{\ell}{t} \right) \ell^{k-t-1} \right)^{-1}.
\]

Thus,

\[
 \sum_{r \leq \ell \leq k} \left(\left(\frac{\ell}{t} \right) \ell^{k-t-1} \right)^{-1} |\mathcal{B}^{(\ell)}| \leq \sum_{r \leq \ell \leq k} \sum_{S \in \mathcal{S}^{(\ell)}} w(S) \sum_{S \in \mathcal{S}} w(S) = 1.
\]

Lemma 4.3. Suppose that \(\tau_t(B^{(t+1)}) \geq t + 1 \). Then \(\mathcal{F} = \mathcal{A}(n, k, t) \).
Proof. Choose $B_1, B_2 \in \mathcal{B}^{(t+1)}$ and assume by symmetry that $B_i = [t] \cup \{t+i\}$ for $i = 1, 2$. Since $\tau_t(\mathcal{B}^{(t+1)}) \geq t+1$, we may choose $B_3 \in \mathcal{B}^{(t+1)}$ satisfying $[t] \not\subseteq B_3$. Now $|B_2 \cap B_3| \geq t$ implies $\{t+1, t+2\} \subseteq B_3$. Using $|B_3| = t+1$, by symmetry we may assume that $B_3 = [t+2] \setminus \{t\}$. Now take an arbitrary $F \in \mathcal{F}$. It is clear that $|F \cap B_i| \geq t$ can only hold for all $1 \leq i \leq 3$ if $|F \cap [t+2]| \geq t+1$. That is $\mathcal{F} \subseteq \mathcal{A}(n, k, t)$. Since \mathcal{F} is saturated, $\mathcal{F} = \mathcal{A}(n, k, t)$. □

Proof of Theorem 1.8. By (5) and (9), we have

$$|I(S_k)| = \sum_{0 \leq i \leq k-t-1} \binom{n-t}{i}$$

$$\leq \frac{n-t-2}{n-t-2k} \sum_{0 \leq i \leq k-t-1} \binom{n-t-2}{i}$$

$$< \left(\frac{t+2}{t}\right) \sum_{0 \leq i \leq k-t-1} \binom{n-t-2}{i}$$

$$< |I(\mathcal{A}(n, k, t))|.$$}

Thus, we may assume that $s = s(B) \geq t+1$. Let us partition \mathcal{F} into $\mathcal{F}^{(s)} \cup \ldots \cup \mathcal{F}^{(k)}$ where $F \in \mathcal{F}^{(t)}$ if $\max\{|B| : B \in \mathcal{B}, B \subseteq F\} = \ell$. Set

$$\mathcal{I}_\ell = \left\{ F \cap F' : F \in \mathcal{F}^{(t)}, F' \in \mathcal{F}^{(s)} \cup \ldots \cup \mathcal{F}^{(k)} \right\}.$$}

Then

$$|\mathcal{I}(\mathcal{F})| \leq \sum_{s \leq \ell \leq k} |\mathcal{I}_\ell|.$$}

The point is that for $F \in \mathcal{F}^{(t)}$ and $B \subseteq F, B \in \mathcal{B}^t$ for an arbitrary $F' \in \mathcal{F}$,

$$F \cap F' = (B \cap F') \cup ((F \setminus B) \cap F').$$}

Note that $|B \cap F'| \geq t$ and $|(F \setminus B) \cap F'| \leq |F \setminus B| = k-\ell$. It follows that for $s \leq \ell \leq k$

$$|\mathcal{I}_\ell| \leq \left(\sum_{\ell \leq j \leq \ell} \binom{\ell}{j}\right) |\mathcal{B}^{(t)}| \sum_{0 \leq i \leq k-\ell} \binom{n-t}{i}.$$}

(23)

Let α be the smallest integer such that $\tau_t(\mathcal{B}^{(\leq \alpha)}) \geq t+1$. The family $\mathcal{F}' = \cup_{i=1}^{\alpha-1} \mathcal{F}^{(i)}$ is a trivial t-intersecting family. By (9), we have for $n \geq 5k$

$$\left|\bigcup_{i=s}^{\alpha-1} \mathcal{I}_i \right| \leq |I(S_k)| = \sum_{0 \leq i \leq k-t-1} \binom{n-t}{i}$$

$$\leq \frac{n-t-2}{n-t-2k} \sum_{0 \leq i \leq k-t-1} \binom{n-t-2}{i}$$

$$\leq 2 \sum_{0 \leq i \leq k-t-1} \binom{n-t-2}{i}.$$}

(24)
If \(\alpha = s = t + 1 \), then \(B^{(t+1)} \) is a \(t \)-intersecting \((t + 1) \)-uniform family with \(t \)-covering number \(t + 1 \). By Lemma \(\ref{lem:t-intersecting} \), \(\mathcal{F} = \mathcal{A}(n, k, t) \) and there is nothing to prove. Thus we may assume that \(\alpha \geq t + 2 \).

Define

\[
 f(n, k, \ell) = \left(\sum_{t \leq j \leq t^+} \binom{t}{j} \right) \left(\binom{\ell}{t} \right) \ell k^{\ell-t-1} \sum_{0 \leq i \leq k-\ell} \binom{n-t}{i}
\]

and let

\[
 \lambda_\ell = \left(\left(\binom{\ell}{t} \ell k^{\ell-t-1} \right) \sum_{0 \leq i \leq k-\ell} \binom{n-t}{i} \right)^{-1} |B^{(\ell)}|.
\]

Then by \(\ref{eq:lambda_ell} \)

\[(25) \quad \sum_{\alpha \leq \ell \leq k} |\mathcal{I}_\alpha| = \sum_{\alpha \leq \ell \leq k} \lambda_\ell \cdot f(n, k, \ell).\]

By \(\ref{eq:bound} \) and \(\ref{eq:lambda_ell} \), we have

\[
 \frac{f(n, k, \ell)}{f(n, k, \ell + 1)} = \frac{\sum_{t \leq j \leq t^+} \binom{t}{j}}{\sum_{t \leq j \leq t^+} \binom{t+1}{j} (t+1)k^t} \cdot \frac{\binom{\ell}{t} \ell k^{\ell-t-1}}{\sum_{0 \leq i \leq k-\ell} \binom{n-t}{i}} \cdot \frac{\sum_{0 \leq i \leq k-\ell-1} \binom{n-t}{i}}{\sum_{0 \leq i \leq k-\ell} \binom{n-t}{i}} \geq \frac{1}{2(t+1)} \cdot \frac{(\ell + 1 - t)\ell}{(\ell + 1)^2 k} \cdot \frac{n - t - k}{k}.
\]

By \(\ell \geq t + 1 \geq 3 \), we have

\[
 \frac{\ell + 1 - t}{\ell + 1} \cdot \frac{\ell}{t + 2} \geq \frac{3}{4} \geq \frac{3}{2(t + 2)}.
\]

Then by \(n \geq \frac{4}{3}(t + 2)^2k^2 \)

\[
 \frac{f(n, k, \ell)}{f(n, k, \ell + 1)} \geq \frac{3(n - t - k)}{4(t + 1)(t + 2)k^2} \geq 1.
\]

Hence \(f(n, k, \ell) \) is decreasing as a function of \(\ell \). Moreover, \(\ref{eq:bound} \) implies \(\sum_{\alpha \leq \ell \leq k} \lambda_\ell \leq 1 \).

From \(\ref{eq:bound} \) we see

\[
 \sum_{\alpha \leq \ell \leq k} |\mathcal{I}_\ell| \leq f(n, k, \alpha) \leq f(n, k, t + 2).
\]

Therefore,

\[
 \sum_{\alpha \leq \ell \leq k} |\mathcal{I}_\ell| \leq \left(\binom{t+2}{t} + \binom{t+2}{t+1} + \binom{t+2}{t+2} \right) \left(\binom{t+2}{t} \right) (t+2)k \sum_{0 \leq i \leq k-t-2} \binom{n-t}{i}
\]

\[
 \leq \frac{(t+2)^2(t+1)(t^2 + 5t + 8)k}{4} \cdot \frac{k}{n - t - k} \sum_{0 \leq i \leq k-t-1} \binom{n-t}{i}
\]

\[
 \leq \frac{(t+2)^2(t+1)(t+2)(t+4)k^2(n-t-2)}{4(n-t-k)(n-t-2k)} \sum_{0 \leq i \leq k-t-1} \binom{n-t-2}{i}.
\]

Note that \(n \geq 5k \) implies

\[
 \frac{n - t - 2}{n - t - 2k} \leq 2
\]
and \(n \geq 3(t+2)^3k^2 \), \(t \geq 2 \) imply

\[
\frac{(t+2)^3(t+1)(t+4)k^2}{4(n-t-k)} \leq \frac{1}{2} \left(\binom{t+2}{2} - 2 \right).
\]

It follows that

\[
(26) \sum_{0 \leq i \leq k-t-1} \binom{n-t-2}{i} \leq \binom{n-t-2}{k-2}.
\]

By (24) and (26), we obtain that

\[
|I(F)| \leq \left| \bigcup_{s=0}^{\alpha-1} I_s \right| + \sum_{0 \leq \ell \leq k} |I_\ell| < |I(A(n,k,t))|,
\]

concluding the proof of the theorem. \(\square \)

5 Further problems and results

In their seminal paper [1] Erdős, Ko and Rado actually proved their main result for antichains. Namely, instead of considering \(k \)-graphs \(F \subset \binom{[n]}{k} \) they suppose that \(F \) is an antichain of rank \(k \), that is \(|F| \leq k \) for all \(F \in F \). The reason that this tendency has all but disappeared from recent research is that a \(t \)-intersecting antichain \(F \) of rank \(k \) which is not \(k \)-uniform can always be replaced by a \(t \)-intersecting family \(\tilde{F} \subset \binom{[n]}{k} \) with \(|\tilde{F}| > |F| \).

The way to do is to apply an operation on antichains discovered already by Sperner [8].

For a family \(A \subset \binom{[n]}{a} \) define its shade \(\sigma^+(A) \) by

\[
\sigma^+(A) = \left\{ B \in \binom{[n]}{a+1} : \exists A \in A, A \subset B \right\}.
\]

Sperner [8] proved that for \(a < n/2 \), \(|\sigma^+(A)| \geq |A| \) with strict inequality unless \(a = \frac{n-1}{2} \) and \(A = \binom{[n]}{\frac{n}{2}} \). Let \(F \subset \binom{[n]}{k} \) be a \(t \)-intersecting antichain of rank \(k \), \(n \geq 2k-t \). Suppose that \(a = \min\{|F| : F \in F\} \) and \(a < k \). Define

\[
F^{(a)} = \{ F \in F : |F| = a \} \quad \text{and} \quad \tilde{F} = (F \setminus F^{(a)}) \cup \sigma^+(F^{(a)}).
\]

Then not only is \(\tilde{F} \) a \(t \)-intersecting antichain of rank \(k \) with \(|\tilde{F}| > |F| \) but \(I(\tilde{F}) \supset I(F) \) can be checked easily as well. This shows that it was reasonable to restrict our attention to \(k \)-uniform families.

However there is a related, very natural problem.

Problem 5.1. Determine or estimate \(\max |I(A)| \) over all antichain \(A \subset 2^{[n]} \).

Example 5.2. Let \(\ell \leq \frac{n}{2} \) and define \(A = \binom{[n]}{n-\ell} \). Clearly,

\[
I(A) = \{ B \subset [n] : n - 2\ell \leq |B| < n - \ell \}.
\]

Choosing \(\ell = \lfloor n/3 \rfloor \), we have

\[
|I(A)| = 2^n - \sum_{0 \leq i \leq \lfloor n/3 \rfloor} \binom{n}{i} - \sum_{0 \leq j \leq n-2\lfloor n/3 \rfloor} \binom{n}{j}.
\]
Proposition 5.3. If $A \subset 2^{[n]}$ is an antichain, then $|I(A)| < 2^n - \sqrt{2^n}$.

Proof. Note that

$$|I(A)| \leq \binom{|A|}{2}.$$

Consequently, if $|A| \leq \sqrt{2^n}$ then $|I(A)| < 2^n/2 < 2^n - \sqrt{2^n}$. Thus we can assume $|A| > \sqrt{2^n}$. Since $A \cap I(A) = \emptyset$, we have

$$|I(A)| \leq 2^n - |A| < 2^n - \sqrt{2^n}.$$

Two families A, B are called cross-Sperner if $A \not\subset B$ and $B \not\subset A$ hold for all $A \in A$, $B \in B$. Set

$I(A, B) = \{A \cap B: A \in A, B \in B\}$.

Define

$$m(n) = \max\{|I(A, B)|: A, B \subset 2^{[n]} \text{ are cross-Sperner}\}.$$

Example 5.4. Let $[n] = X \cup Y$ be a partition. Define

$$A = \{A \cup Y: A \subset X\}, \quad B = \{X \cup B: B \subset Y\}.$$

Then

$I(A, B) = \{A \cup B: A \subset X, B \subset Y\}$

and

$$|I(A, B)| = 2^n - 2^{|X|} - 2^{|Y|} + 1.$$

Theorem 5.5. $m(n) = 2^n - 2 \cdot 2^{n/2} + 1$ holds for $n = 2d$ even.

Proof. The lower bound comes from the example with $|X| = \lfloor n/2 \rfloor$, $|Y| = \lceil n/2 \rceil$. Note that for $A, A' \in A, B, B' \in B$ the cross-Sperner property implies $A \not\subset A' \cap B', B \not\subset A' \cap B'$. In particular, $A \cap I(A, B) = \emptyset = B \cap I(A, B)$.

Cross-Sperner property implies $A \cap B = \emptyset$ and $[n] \not\in A \cup B \cup I(A, B)$. Thus

$$|A| + |B| + |I(A, B)| \leq 2^n - 1$$

or equivalently

$$|I(A, B)| \leq 2^n - |A| - |B| - 1.$$

(27)

Obviously,

$$|I(A, B)| \leq |A| \cdot |B|.$$

(28)

Suppose that $n = 2d$ (even). If $|A| + |B| \geq 2(2^d - 1)$, then (27) implies

$$|I(A, B)| \leq 2^n - 2 \cdot 2^d + 1.$$

If $\frac{|A| + |B|}{2} \leq 2^d - 1$ then the inequality between arithmetic and geometric mean yields via (28):

$$|I(A, B)| \leq \left(2^d - 1\right)^2 = 2^n - 2 \cdot 2^d + 1.$$

However the proof only gives $I(A, B) \leq 2^n - 2 \cdot 2^{n/2} + 1$ for $n = 2d + 1$.

Problem 5.6. For $n = 2d + 1$, does $m(n) = 2^n - 2^{d+1} - 2^d + 1$ hold?
References

[1] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313–320.

[2] P. Frankl, The Erdős-Ko-Rado theorem is true for $n = ckt$, Coll. Math. Soc. J. Bolyai 18 (1978), 365–375.

[3] P. Frankl, The shifting technique in extremal set theory, Surveys in Combinatorics 123 (1987), 81–110.

[4] P. Frankl, Improved bounds for Erdős’ matching conjecture, J. Combin. Theory, Ser. A 120 (2013), 1068–1072.

[5] P. Frankl, A. Kupavskii, S. Kiselev, On the maximum number of distinct intersections in an intersecting family, Discrete Math. 345 (2022), 112757. https://doi.org/10.1016/j.disc.2021.112757.

[6] A.J.W. Hilton, E.C. Milner, Some intersection theorems for systems of finite sets, Q. J. Math. 18 (1) (1967), 369–384.

[7] L. Pyber, A new generalization of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986), 85–90.

[8] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Zeitschrift 27 (1928), 544–548.