HSP70 Domain II of Mycobacterium tuberculosis Modulates Immune Response and Protective Potential of F1 and LcrV Antigens of Yersinia pestis in a Mouse Model

Lalit Batra1, Shailendra K. Verma1*, Durgesh P. Nagar2, Nandita Saxena2, Prachi Pathak1, Satish C. Pant2, Urmil Tuteja1

1 Microbiology Division, Defence Research & Development Establishment, Gwalior, India, 2Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India

Abstract

No ideal vaccine exists to control plague, a deadly dangerous disease caused by Yersinia pestis. In this context, we cloned, expressed and purified recombinant F1, LcrV antigens of Y. pestis and heat shock protein70 (HSP70) domain II of M. tuberculosis in E. coli. To evaluate the protective potential of each purified protein alone or in combination, Balb/C mice were immunized. Humoral and cell mediated immune responses were evaluated. Immunized animals were challenged with 100 LD50 of Y. pestis via intra-peritoneal route. Vaccine candidates i.e., F1 and LcrV generated highly significant titres of anti-F1 and anti-LcrV IgG antibodies. A significant difference was noticed in the expression level of IL-2, IFN-γ and TNF-α in splenocytes of immunized animals. Significantly increased percentages of CD4+ and CD8+ T cells producing IFN-γ in spleen of vaccinated animals were observed in comparison to control group by flow cytometric analysis. We investigated whether the F1, LcrV and HSP70(II) antigens alone or in combination can effectively protect immunized animals from any histopathological changes. Signs of histopathological lesions noticed in lung, liver, kidney and spleen of immunized animals on 3rd day post challenge whereas no lesions in animals that survived to day 20 post-infection were observed. Immunohistochemistry showed bacteria in lung, liver, spleen and kidney on 3rd day post-infection whereas no bacteria was observed on day 20 post-infection in surviving animals in LcrV, LcrV+HSP70(II), F1+LcrV, and F1+LcrV+HSP70(II) vaccinated groups. A significant difference was observed in the expression of IL-2, IFN-γ, TNF-α, CD4+/CD8+ and CD4+ CD8+ T cells secreting IFN-γ in the F1+LcrV+HSP70(II) vaccinated group in comparison to the F1+LcrV vaccinated group. Three combinations that included LcrV+HSP70(II), F1+LcrV or F1+LcrV+HSP70(II) provided 100% protection, whereas LcrV alone provided only 75% protection. These findings suggest that HSP70(II) of M. tuberculosis can be a potent immunomodulator for F1 and LcrV containing vaccine candidates against plague.

Introduction

Plague caused by Y. pestis (a Gram negative bacterium) is a zoonotic infectious disease that has profoundly affected the course of history [1,2] and troubles human populations, leading to millions of deaths. According to the World Health Organization (WHO), plague has been classified as a re-emerging infectious disease [3]. Rodents are the reservoirs for Y. pestis and the fleas transmit the bacteria from rodent to rodent. Infected fleas also transmit bubonic plague, the most common form of the disease from rodents to humans [4–6]. Humans are infected accidentally after bites from fleas having Y. pestis, by direct contact with blood and tissues of infected animals, or by direct aerosol transmission. The aerosol transmission develops lethal pulmonary plague. The intentional aerosolization of Y. pestis in human population is the main concern of bioterrorism [7]. Plague can be treated with antibiotics at early stage. It has been reported that antibiotic-resistant strains of Y. pestis bacilli have been isolated in Madagascar and Mongolia [8,9] and showed naturally acquired multi-drug-resistant variants of Y. pestis [10]. These studies suggest that there is an urgent need to develop an effective vaccine that can provide long term protection and to counter the drug resistant variants of Y. pestis.

Administration of live attenuated Y. pestis vaccine provides protection against plague in animal models [11,12]. These live attenuated plague vaccines are accessible in some countries, like Russia [13]; however, in the United States and Europe, these vaccines have never been licensed most probably due to several risk factors associated with the use of live-attenuated or whole cell killed vaccine in terms of side effects and administration of numerous antigens from live/killed vaccines [13–16]. Hence it is very much essential to develop new generation vaccines. Earlier
studies using F1/LcrV-based vaccines that protect mouse models and cynomolgus macaques against aerosolized *Y. pestis* but they confer poor and inconsistent protection in African Green monkey models [17,18]. Further in order to improve the efficacy of F1/LcrV-based vaccines, several approaches are in progress. Amongst these, genetically modified antigens [19], use of alternate adjuvants [20,21] and delivery systems [22,23] are very important as these approaches are certainly promising. It is noteworthy to mention that F1-negative *Y. pestis* strains persists [24], and LcrV variants of *Y. pestis* may pose serious challenge for any vaccine with respect to cross-protection [25,26]. With this background, one possible strategic approach could be the inclusion of additional antigen/s that might play the role of an immunomodulator/s or an immunoregulator/s to augment the immune response in the subunit vaccine preparation to encounter the possible disease threat.

It has been established in the recent studies that subunit vaccines protect mouse models by inducing F1/LcrV-specific humoral immune response; however, to achieve complete protection cell mediated immune response mainly relies on the type-1 cytokines *i.e.*, IFN-γ and TNF-α [27–29]. These findings suggest that the efficacy of subunit vaccines might be improved if they induce *Y. pestis*-specific IFN-γ and TNF-α secreting memory T cells in addition to F1/LcrV-specific humoral immunity. In this scenario, it would be highly valuable to modulate the immune response of F1/LcrV antigens to create an effective plague vaccine. In context to this, the heat shock proteins 70 are well documented to augment the immune response for the development of vaccine initiatives [30–35]. It has been proven that the role of HSP70([II]) in stimulating effective T-cell responses [36] to pathogen-specific antigens. As reported earlier, HSP70([II]) of *M. tuberculosis* is known to play crucial role in antigen processing and presentation by MHCs [37]. Huang et al. [36] demonstrated the role of fusion construct using ovalbumin-HSP70, domain II [38], amino acid (161–370) of HSP70 from *M. tuberculosis*, is sufficient to elicit ovalbumin specific CD8+ cytotoxic T lymphocytes (CTLs).

Here, in order to evaluate the HSP70([II]) as an immunomodulator, we have cloned *caf1* and *lcrV* genes of *Y. pestis* and hsp70([II]) gene of *M. tuberculosis*. The encoding proteins were expressed in *E. coli* and purified up to homogeneity. In order to evaluate the protective efficacy, Balb/C mice were immunized with purified proteins F1, LcrV, and HSP70([II]) alone or in combinations. Humoral and cell mediated immune responses were also evaluated. Immunized animals were challenged with 100 LD$_{50}$ of *Y. pestis* via intra-peritoneal route. Significantly high IgG response was observed in the sera of immunized mice with F1 and LcrV alone or in combinations. Three combinations i.e., LcrV+HSP70([II]), F1+LcrV and F1+LcrV+HSP70([II]) provided 100% protection. HSP70([II]) modulated cellular immune response as the significantly elevated levels of IL-2, IFN-γ, TNF-α and IFN-γ secreting CD4$^+$/CD8$^+$ T cells were noticed in spleen of F1+LcrV+HSP70([II]) group in comparison to the F1+LcrV group. These findings describe the role of HSP70([II]) and propose future perspectives for development of new generation plague vaccine.

Materials and Methods

Ethics statement

Institutional Animal Ethics Committee (IAEC) of Defence Research and Development Establishment “approved” all the protocols for experiments conducted using mice wide registration number 37/Go/C/1999/CPCSEA and Institutional Biosafety committee (IBSC) wide protocol no: IBSC/21/MB/UT/12 as per the institutional norms. The principles of good laboratory animal care were followed all through the experimental process. The mice were maintained in accordance with recommendations of committee for the purpose of control and supervision of experiments on animals, Govt. of India.

Bacterial strains and reagents

A virulent strain of *Y. pestis* (clinical isolate, designated as S1) recovered from a patient during a sporadic outbreak of primary pneumatic plague occurred in Northern India in 2002 [39,40] was used for challenging experiments. Frozen stock of *Y. pestis* was streaked on Brain Heart Infusion (BHI) agar plate and incubated at 28°C for 48 h. A single colony from BHI agar plate was further inoculated in 5 ml of BHI broth and grown at 28°C for 48 h and the colonies (CFU/ml) were counted. All live *Y. pestis* cultures and animal experiments were performed in BSL-3 facility, DRDE, Gwalior. *E. coli* host strain BL21 (DE3) and DH5α were purchased from Invitrogen, USA. The expression vector pET28a+ was from Novagen, USA.

Cloning of caf1, lcrV and hsp70([II]) genes in pET vector

Y. pestis S1 strain was grown in BHI broth at 28°C and the genomic DNA was isolated by DNeasy Blood and Tissue kit (Qiagen, USA). The genomic DNA of *M. tuberculosis* was a generous gift from DFRL, Mysore, India. The genes *caf1* and *lcrV* of *Y. pestis* and *hsp70([II])* of *M. tuberculosis* were amplified by polymerase chain reaction (PCR). The details of used oligos in this study are given in Table 1. The individual amplicon was ligated into pET28a+ vector using compatible restriction sites. The individual ligated product was transformed into chemically competent cells of *E. coli* host strain DH5α and the positive clones were selected on Luria Bertani (LB) agar plates supplemented with kanamycin (50 μg/ml). The plasmid DNA was...
isolated by using QIAprep Spin Miniprep Kit (Qiagen, USA) from overnight grown culture corresponding to individual clone.

Expression and purification of recombinant F1, LcrV and HSP70(II) proteins

In order to express the recombinant antigens, E. coli host strain BL21 (DE3) cells were transformed with individual recombinant construct corresponding to caf1, lcrV and hsp70(II). The positive transformants were selected on LB agar plates containing kanamycin (50 μg/ml) and were inoculated into 5 ml of LB medium with kanamycin and grown at 37°C. Cultures at logarithmic phase (OD600 ~ 0.75) were induced with 1 mM isopropylthiogalactoside (IPTG) and grown for 3 h. The cultures were pelleted and the cells were lysed in sample buffer and analysed by SDS–PAGE. The recombinant F1 was purified using Ni-NTA column (Qiagen, USA) under denaturing conditions analyzed by SDS–PAGE. The recombinant F1 was purified using 8 M urea following our earlier standardized protocol [41]. Recombinant LcrV and HSP70(II) were purified in native condition and the purity of the recombinant proteins was analysed using 8 M urea following our earlier standardized protocol [41]. The positive transformants were selected on LB agar plates containing kanamycin and grown at 37°C. Cultures at logarithmic phase (OD600 ~ 0.75) were induced with 1 mM isopropylthiogalactoside (IPTG) and grown for 3 h. The cultures were pelleted and the cells were lysed in sample buffer and analysed by SDS–PAGE. The recombinant F1 was purified using Ni-NTA column (Qiagen, USA) under denaturing conditions analyzed by SDS–PAGE. The recombinant F1 was purified using 8 M urea following our earlier standardized protocol [41]. Recombinant LcrV and HSP70(II) were purified in native condition and the purity of the recombinant proteins was analysed using 8 M urea following our earlier standardized protocol [41].

Immunization of mice

Immunogenicity of recombinant proteins alone or in combination and protection of immunized mice against virulent Y. pestis (S1 strain) was evaluated in 6–8 week old female Balb/C mice. The animals were taken in three batches and divided into 3 groups/batch (8 mice/group) i.e., Control group; HSP70(II) group; F1 group; LcrV group; F1+HSP70(II) group; LcrV+ HSP70(II) group; F1+LcrV group and F1+LcrV+HSP70(II) group (Figure 1d [A]). The animals of batch-I were used for evaluation of cell mediated immune response (cytokine profiling and the estimation of CD4+ and CD8+ T cells) and batch-III for histopathological/immunohistochemical studies. All the animal groups were immunized subcutaneously with 10 μg/mouse of each purified corresponding antigen/s as designated by their group name in formulation with aluminium hydroxide gel (0.35% in sterile phosphate buffer saline, PBS). The animals of control group were injected with PBS only. The prime dose was given on day 0 followed by two boosters on day 14 and 21. Blood was collected after first and second booster from each group on day 0, 21 and 28, sera were separated for IgG antibody response (Figure 1d [B]).

Evaluation of humoral immune response

IgG titer. Titers of anti-F1 and anti-LcrV antibodies were assayed in the hyper-immune sera collected after first and second boosters on day 14 and 28 using indirect ELISA. Briefly, ELISA plates (Nunc-Immuno Plate, Denmark) were coated with each individual antigen i.e., F1 and LcrV (0.1 μg/well) in 0.05 M carbonate-bicarbonate buffer, pH 9.6 for overnight at 4°C. The plates were washed thrice with PBS containing 0.05% tween 20 (PBS-T) and blocked with 200 μl of 3% bovine serum albumin (BSA) in PBS for 2 h at 37°C. For anti-F1 antibody, test sera from animal groups viz; control, F1, F1+HSP70(II), F1+LcrV F1+ LcrV+HSP70(II) after first and second booster were serially diluted (twofold) in PBS starting from 1:1000 to 1:128000 and 1:4000 to 1:512000 respectively. For anti-LcrV antibody, test sera from animal groups viz; control, LcrV, LcrV+HSP70(II), F1+LcrV F1+LcrV+HSP70(II) after first and second booster were serially diluted (twofold) in PBS starting from 1:1000 to 1:256000 and 1:5000 to 1:1280000 respectively. The sera were taken in triplicate wells (100 μl/well) and incubated for 1 h at 37°C. The ELISA plates were washed five times with PBS-T. Rabbit anti-mouse (IgG) antibodies conjugated to hors eradish peroxidase, HRP (Sigma, USA) were diluted 1:20000 in PBS, added to wells and incubated for 1 h at 37°C. After five washings, the plates were incubated with o-phenylenediamine dihydrochloride as substrate (100 μl/well) for 10 min. The reaction was stopped by 2N H2SO4 and the absorbance was read at 490 nm in an ELISA reader (Biotek Instruments, USA).

Evaluation of cell mediated immune response

Cytokine profiling. Three mice from all the eight groups of batch-II were randomly selected, sacrificed and their spleens were removed aseptically. The cytokine estimation was performed using the method published earlier [43]. Briefly, single cell suspension of splenocytes was prepared by maceration of spleens. The splenocytes from each mouse (1×10^6 cells/well) were suspended in a 24-well tissue culture plate in triplicates. The cultures were stimulated with particular antigen/s alone or in combination (5 μg/ml each antigen) corresponding to their designated groups or Concanavalin A (Con A, 5 μg/ml; Sigma, USA). The culture supernatants from the wells were collected after 48 h. The expression of cytokines i.e., TNF-α, IFN-γ, IL-2, IL-4 and IL-10 were measured...
by ELISA using BD OptEIA Kit (BD Biosciences, USA) according to the manufacturer’s instructions. The levels of cytokines were determined with the help of standard curves generated using recombinant cytokines (BD Biosciences, USA) and presented as picograms per millilitre (pg/ml).

Flow cytometric analysis of IFN-γ producing CD4+ and CD8+ T cells. Three mice from all the eight groups of batch-II were randomly selected, sacrificed and splenocytes were prepared and suspended as described earlier. For estimating frequency of antigen-specific IFN-γ secreting CD4 and CD8 population, splenocytes were stimulated with particular antigen/s alone or in combination (5 µg/ml each antigen) corresponding to their designated groups. Anti-mouse CD28 antibody was used for costimulation and Brefeldin A (1.0 µg/well, Golgistop) was added to prevent secretion of cytokines. Following 6 h incubation, cells were treated with FACS lysing solution (BD Biosciences) to lyse the RBCs and then splenocytes were washed with FACS staining buffer (BD Biosciences). Later, cells were subjected to surface staining with FITC labelled rat anti-Mouse CD4 and CD8a monoclonal antibodies (BD Biosciences) for 30 min at room temperature in dark. After permeabilization with BD cytofix/cytoperm Kit (BD Biosciences), cells were treated with PE labelled rat anti-mouse IFN-γ monoclonal antibodies (BD Biosciences) for 30 min at room temperature in dark. Unstimulated specimens were used to measure spontaneous cytokine production. Stained cells were washed with cold PBS and then acquired in Becton Dickinson FACS Calibur Flow-Cytometer. A total of 10,000 live events, according to forward and side-scatter parameters were accumulated and analyzed using CellQuest Pro software.

Protection studies

In order to determine the protective efficacy, all the immunized animals of batch-I were challenged with virulent *Y. pestis* (S1 strain) with 100 LD$_{50}$ (1 LD$_{50}$ = 105 CFU/mouse) by intraperitoneal route on day 60 after the prime vaccination. The virulence and the LD$_{50}$ of *Y. pestis* (S1 strain) have been characterized earlier by our group [40]. Survival of the animals was monitored for 30 days after challenge (Figure 1d [B]). Infection was confirmed by isolation and growth of *Y. pestis* on blood agar plate from the different organs viz; lung, liver, spleen and kidney of dead animals.

Histopathological studies

For histopathology, all the immunized animals of batch-III were challenged as described earlier for protection studies. At 3rd day post infection, three mice in each group were sacrificed and the organs viz; lung, liver, spleen and kidney were collected. The tissues were placed into 10% neutral buffered formalin, dehydrated in serial alcohol gradient (70, 80, 90 and 100%), cleared with xylene, infiltrated in wax (Leica TP-1020) and embedded in
paraffin [44]. Three animals from each survived group i.e., LcrV; LcrV+HSP70(II); F1+LcrV and F1+LcrV+HSP70(II) on day 20 post infection and three naïve control animals (neither immunized nor challenged) were sacrificed. As described above, their tissues were removed and fixed in 10% neutral buffered formalin for paraffin block preparation. Various sections of 4–5 μm thickness were prepared (Microm HM-360) and stained with haematoxylin and cosin (HE) and analysed under light microscope (Leica, DMLB).

Immunohistochemistry
For the presence of Y. pestis, the tissues sections were also used for immunohistochemical studies [45]. Briefly, sections were deparaffinized, cleared with xylene and rehydrated. The tissues sections were washed with PBS and subjected to antigen- retrieval by boiling in 0.1 M citrate buffer [pH 6.0] for 10 min. The sections were then incubated with 3% H2O2 in methanol for 10 min to block the endogenous peroxidase activity and blocked with 5% skimmed milk in PBS for 2 h. The tissue sections were incubated with mouse anti-F1 antibody at 1:1000 dilutions for overnight at 4°C. After three washings with PBS (each for 5 min), sections were incubated with FITC-labelled rabbit anti mouse secondary antibody for 1 h at room temperature and again washed thrice with PBS. The tissue sections were cover slipped using PBS/glycerine (1:3) and observed under fluorescence microscope (Leica, Germany) using Leica application suit software.

Statistical analysis
Statistical comparisons for IgG titers, cytokine levels and IFN-γ secreting CD4+ and CD8+ T cells were performed. Analysis was done using SigmaStat 3.5, by one way ANOVA. All Pairwise Multiple Comparison Procedure (Fisher LSD Method). **P<0.01; *** P<0.001. Gehan-Breslow-Wilcoxon test was used to compare the protective potential against Y. pestis infection amongst different vaccinated. Survival curve analysis (percentage survivals) was done by Kaplan Meier’s method △△△△P<0.0001. △△△P<0.001).

Accession numbers
The genes caf1, lcrV of Yersinia pestis and hsp70(II) of M. tuberculosis were used in this study for primer designing under the NCBI accession AF074611.1, NC003131.1 and CP002992.1 respectively. The gene sequences to lcrV and caf1 from Y. pestis (S1 strain, an Indian clinical isolate) were submitted to GenBank at NCBI under the Accession No. KF682423 and KF682424 respectively.

Results
Cloning, expression and purification of recombinant F1, LcrV and HSP70(II)
The genes caf1 (513 bp) encoding F1 (~17 kDa), lcrV (981 bp) encoding LcrV (~38 kDa) of Y. pestis and hsp70(II) (630 bp) encoding a domain II of HSP70 (~23 kDa) of M. tuberculosis were cloned in the pET 28a vector. The in-frame and the orientation of the cloned genes were confirmed by nucleotide sequencing (Chromous, Biotech, India). The schematic diagram (Figure 1a) of the three recombinant proteins represents the location of histidine tag and orientation of open reading frame. The nucleotide sequences to lcrV and caf1 genes from Y. pestis (S1 strain, an Indian clinical isolate) were submitted to GenBank at NCBI under the Accession No. KF682423 and KF682424 respectively. The recombinant constructs corresponding to F1, LcrV and HSP70(II) were transformed in BL-21 (DE3). Small-scale cultures of the positive clones were subjected to IPTG induction to identify clones capable of expressing the predicted size of recombinant proteins. The expression profile of recombinant proteins F1, LcrV and HSP70(II) were analysed by SDS-PAGE. A typical induction experiment comparing the polypeptide SDS-PAGE profiles of un-induced and IPTG-induced cultures for F1, LcrV and HSP70(II) are shown in Figure 1b [A], [B] and [C] respectively.

To facilitate the purification of the recombinant proteins, the constructs were designed to carry the 6×His tag either at N-terminus or C-terminus. Lysis under native conditions revealed the association of recombinant F1 with the pellet fraction, demonstrating that the F1 protein was insoluble. However, LcrV and HSP70(II) were associated with supernatant fractions, demonstrating that LcrV and HSP70(II) were soluble. The purification of the LcrV and HSP70(II) was carried out in native conditions, however, F1 carried out by solubilizing in 8 M urea and purified by Ni-NTA affinity chromatography. The purified recombinant proteins were analysed by SDS-PAGE as shown in Figure 1c. The proteins i.e., F1 [A]; LcrV [B] and HSP70(II) [C] observed to be almost pure. The concentrations of the purified proteins were estimated and the yield of F1, LcrV and HSP70(II) was 14, 20 and 25 mg/L of shake flask cultures respectively. In a western blot experiment, anti-histidine antibody recognized these proteins corresponding to their molecular weights. Immunoblot with hyper immune sera against F1, LcrV and HSP70(II) recognized the corresponding proteins (Figure S1). The endotoxin content performed by LAL assay of purified protein was less than 5EU per 25 μg of each purified protein.

Humoral immune response elicited by vaccine formulations
To evaluate the IgG endpoint titers in all the vaccinated groups, total IgG were measured to F1 and LcrV in sera samples collected seven days after first and second boosters respectively. The cut-off value for the assays was calculated as the mean OD (+2 SD) from sera of control group assayed at 1:100 dilution. The endpoint IgG titers were calculated as reciprocal of the highest serum dilution giving an OD more than the cut-off.

F1-specific IgG. The IgG endpoint titer to F1 was 6.4×10^4 in sera from F1+LcrV+HSP70(II) group whereas it was 3.2×10^6 from F1; F1+HSP70(II) and F1+LcrV groups after first booster. The IgG endpoint titer after second booster was 2.56×10^6 from F1+LcrV+HSP70(II) group and 1.28×10^6 from F1+LcrV group. However, it was 1.28×10^5 from F1+HSP70(II) group and only 6.4×10^5 from F1 group (Figure 2A). HSP70(II) significantly increased the IgG response in the immunized groups i.e., F1+HSP70(II) and F1+LcrV+HSP70(II) in comparison to F1, and F1+LcrV groups respectively.

LcrV-specific IgG. The IgG endpoint titer to LcrV was 1.28×10^5 in sera from F1+LcrV+HSP70(II) and F1+LcrV groups whereas it was 3.2×10^4 from LcrV group and 6.4×10^5 from LcrV+ HSP70(II) group after first booster. The IgG endpoint titer after second booster was 6.4×10^5 from F1+LcrV+HSP70(II) group and 3.2×10^5 from F1+LcrV group. However, it was 3.2×10^5 from F1+LcrV+HSP70(II) group and 1.6×10^6 from LcrV group (Figure 2B). HSP70(II) significantly increased the IgG response in the immunized groups i.e., LcrV+HSP70(II) and F1+LcrV+HSP70(II) in comparison to LcrV and F1+LcrV groups respectively.

Cell mediated immune response elicited by vaccine formulations
Cytokine estimation. Cytokine profiles of all immunized animal groups were determined by estimating the levels of IL-2,
IL-4, IL-10, IFN-γ and TNF-α in supernatants of splenocytes stimulated with specific antigen/s. Significantly high (***P<0.001) expression levels of IL-2 (Figure 3A), and TNF-α (Figure 3C) were noticed in all the immunized animal groups in comparison to control group. In case of IFN-γ (Figure 3B), a significant difference (**P<0.01; ***P<0.001) was noticed to all the immunized groups with respect to control except F1 group. No significant difference was noticed in the expression levels of IL-4 and IL-10 (Figure S2). Splenocytes from all groups responded to ConA non-specifically. The significant difference was observed in the expression level of IFN-γ (**P<0.01) in F1+LcrV+HSP70(II); LcrV+HSP70(II) and F1+HSP70(II) groups in comparison to F1+LcrV; LcrV groups respectively. In the case of TNF-α, a significant difference (**P<0.01) was observed in F1+LcrV+HSP70(II) group in comparison to F1+LcrV group. The expression level of cytokines (IL-2, IL-4, IL-10, IFN-γ and TNF-α) in animal groups have been shown in Table 2.

Figure 2. Measurement of serum IgG antibody titers in immunized Balb/C mice. [A] Sera collected after first booster (14th day) and second boosters (21st day) from immunized groups (F1, F1+HSP70(II), F1+LcrV, F1+LcrV+HSP70(II)) were measured for F1-specific IgG by indirect ELISA. [B] Determination of LcrV-specific serum antibody titer in the sera from immunized groups (LcrV, LcrV+HSP70(II), F1+LcrV, F1+LcrV+HSP70(II)). Data are represented in mean antibody titers with SD of eight Balb/C mice in each group. The cut-off value for the assays was calculated as the mean OD (+2 SD) from sera of control group assayed at 1:100 dilution. Serum endpoint IgG titers were calculated as the reciprocal of the highest serum dilution giving an OD more than the cut-off. Analysis was done by one way ANOVA, All Pairwise Multiple Comparison Procedure (Fisher LSD Method). **P<0.01; ***P<0.001; # P<0.05.

doi:10.1371/journal.pntd.0003322.g002

Figure 3. Measurement of cytokines expressed by splenocytes of immunized mice groups. Cytokines expressed by splenocytes collected from mice immunized with F1, F1+HSP70(II), LcrV, LcrV+HSP70(II), F1+LcrV+HSP70(II) and HSP70(II) including control group were measured. Concentrations of cytokines detected in splenocytes supernatant after 48 h of stimulation with specific antigens (5 μg/ml) are shown. Graphs showed concentrations of (A) IL-2, (B) IFN-γ, (C) TNF-α in picograms per millilitre (pg/ml). Each bar represents the average of 8 mice/group ± S.D and is representative of three independent experiments. Analysis was done by one way ANOVA, All Pairwise Multiple Comparison Procedure (Fisher LSD Method). *P<0.05; **P<0.01; ***P<0.001; # P<0.05

doi:10.1371/journal.pntd.0003322.g003

Figure 4. (A) CD4+ T cells (Figure 4A) and CD8+ T cells (Figure 4B) to all the immunized groups in comparison to control group. We also noticed a remarkable significant difference (**P<0.01) for both CD4+ and CD8+ T cells in F1+LcrV+HSP70(II) group in comparison to F1+LcrV group.

Figure 5. (A) Enumeration of IFN-γ secreting CD4+ T cells by FACS. FACS analysis was performed for CD4+ and CD8+ T cell population producing IFN-γ in the splenocytes of all the immunized animal groups including control group. After stimulating splenocytes with specific antigen/s, an increased percentage of CD4+ T (Figure 4A) and CD8+ T cells expressing IFN-γ (Figure 5A) was observed in all vaccinated groups in comparison to control group. The population count (%) of IFN-γ secreting CD4+ T cells for Control, F1, F1+HSP70(II), LcrV, LcrV+HSP70(II), F1+LcrV, F1+LcrV+HSP70(II) and HSP70(II) groups was 0.46±0.12, 1.75±0.23, 1.16±0.12, 0.925±0.1, 0.98±0.12, 2.48±0.02, 4.43±0.52 and 4.985±0.04 respectively. The population count (%) of IFN-γ secreting CD4+ T cells for Control, F1, F1+HSP70(II), LcrV, LcrV+HSP70(II), F1+LcrV, F1+LcrV+HSP70(II) and HSP70(II) groups was 0.53±0.06, 1.17±0.04, 1.125±0.16, 0.91±0.43, 1.38±0.19, 2.72±0.99, 4.42±0.11 and 1.84±0.14 respectively. As shown by graphical representations, a significant difference (**P<0.01; ***P<0.001) was noticed in the IFN-γ secreting CD4+ T cells (Figure 4B) and CD8+ T cells (Figure 5B) to all the immunized groups in comparison to control group. We also noticed a remarkable significant difference (**P<0.01) for both CD4+ and CD8+ T cells in F1+LcrV+HSP70(II) group in comparison to F1+LcrV group.

Figure 6. In order to compare the protective efficacy, the immunized animals were challenged with 100 LD₅₀ of virulent Y. pestis including control group. Survivals of the animals were monitored for 30 days post challenge (Figure 6). Three vaccine combinations [LcrV+HSP70(II), F1+HSP70(II), F1+LcrV+HSP70(II)] resulted in 100% protection from the Y. pestis challenged mice (P<0.0001), whereas the LcrV and F1+HSP70(II) vaccinated mice were only 75% (P<0.001) and 12.5% protected, respectively. There was no protection observed in control, HSP70(II) and F1 groups. Y. pestis was recovered from the spleen, lung, liver and kidney of dead animals which succumbed to the challenge and identified by the growth on blood agar. Survived animals were sacrificed 30 days post-challenge, and autopsied for any bacterial presence in their organs like spleen, lung, liver and kidney. Vaccinated animals that survived the challenge appeared to clear Y. pestis from the mice since no growth was observed on blood agar plates from spleens, lungs, livers, and kidneys.

Histopathological observations following Y. pestis infection

On day 3 and 20 after challenge with virulent Y. pestis (S1 strain), the lung, liver, kidney and spleen of the immunized groups including control group were isolated, fixed and prepared for HE staining. Normal mice that were neither immunized with plague vaccines or PBS nor infected with Y. pestis were used as naive controls.

The animals sacrificed on day 3 after infection, histopathological lesions were observed in the lung tissues (Figure 7a). Normal alveolar pattern with normal alveolar septa, air duct, alveoli and bronchioles with intact epithelium were observed from naive

PLOS Neglected Tropical Diseases | www.plosntds.org 6 December 2014 | Volume 8 | Issue 12 | e3322
control group (Figure 7a [A]) whereas all the vaccinated including control group, lung parenchyma showed inflammation including neutrophil infiltration into the airways and alveoli as shown by arrow (Figure 7a [B]). The significant lung lesions were congestion, hemorrhage, granulocavascular degeneration of bronchiolo associated lymphoid tissue, bronchial lumen occlusion and pseudomembrane formation (Figure 7a [B-I]). Survived animals from LcrV; LcrV+HSP70(II); F1+LcrV and F1+LcrV+HSP70(II) vaccinated groups effectively recovered as no histopathological lesions were observed (Figure 7a [J-M]).

In spleen (Figure 7b), normal architecture with white pulp consisting of lymphatic follicles and red pulp consisting of sinusoidal and other element of blood were observed from naive control mice (Figure 7b [A]) whereas all the vaccinated animals including control group showed reduced density of white pulp follicles and congestion in the red pulp, lymphoid follicle depletion (arrow), lacking of lymphocytes, exhibiting higher number of myeloid and erythroid lineage cells and also presence of megakaryocytes as shown by bold arrow (Figure 7b [B-I]). Survived animals from LcrV; LcrV+HSP70(II); F1+LcrV and F1+LcrV+HSP70(II) vaccinated groups showed regression of splenic lesions except LcrV group that offered less protection and few megakaryocytes were seen (Figure 7b [J-M]).

In kidney (Figure 7c), normal glomerulus, Bowman’s space and renal parenchyma were observed from naive control mice (Figure 7c [A]) whereas the vaccinated and control group showed parenchymal granular degeneration (bold arrow), fragmentation of the chromatin material and renal tubule showing cloudy swelling with hydropic degeneration shown by arrow (Figure 7c [B-I]). Survived animals from LcrV; LcrV+HSP70(II); F1+LcrV and F1+LcrV+HSP70(II) vaccinated groups restored the normal appearance of renal capsule, glomeruli and renal tubules (Figure 7c [J-M]).

In liver (Figure 7d), normal hepatic cord arrangement, hepatic lobes and hepatocytes with normal hepatic parenchyma were observed in naive control mice (Figure 7d [A]) whereas vaccinated and control groups, liver histology exhibited granulocavascular degeneration of hepatocytes (arrow), perinuclear clumping of the cytoplasm and obliteration of the chromatin material, few perportal and intraparenchymal small aggregates of macrophages and neutrophils were seen (Figure 7d [B-I]). Survived animals from LcrV; LcrV+HSP70(II); F1+LcrV and F1+LcrV+HSP70(II) vaccinated groups recovered hepatic lesions, less infiltration of mononuclear cells and vacuolar degeneration (Figure 7d [J-M]).

Localization of *Y. pestis* within infected animal tissues

To study the dissemination of *Y. pestis* from peritoneal cavity to various vital organs i.e., lung, spleen, liver and kidney by immunohistochemistry were performed. The immunized animals including PBS control were sacrificed on day 3 after infection to

Table 2. Expression level of cytokines in different animal groups.

S.N.	Groups	IL-2 (pg/ml)	IFN-γ (pg/ml)	TNF-α (pg/ml)	IL-4 (pg/ml)	IL-10 (pg/ml)
1	Control	6.66±0.40	445.22±68.64	53±2.61	52.5±4.56	132.47±22.5
2	F1	24.11±0.47	621.07±107.1	201.66±13.03	34.79±0.58	130.89±4.93
3	F1+HSP70(III)	33.62±2.21	1344.82±127.67	267.06±12	30.15±1.05	144.58±4.93
4	LcrV	52.5±2.46	761.86±82.5	553.77±42.92	32.16±1.69	203.78±20.51
5	LcrV+HSP70(II)	96.61±1.69	1533.29±151.41	596.86±50	50.27±1.49	238.74±16.57
6	F1+LcrV	70.68±0.85	965.85±110.76	620.12±15.98	54.75±3.07	255.77±23.14
7	F1+LcrV+HSP70(II)	131.9±4.9	1761.63±122.34	794.27±90.79	55.25±1.09	250.38±12.18
8	HSP70(II)	71.89±2.9	1165.72±310.45	710.93±105.83	54.41±2.73	239.71±6.54

 DOI:10.1371/journal.pntd.0003322.t002

Figure 4. Flow cytometric analysis showing the percentage of IFN-γ producing CD4+$^+$ T cells in the spleens of immunized Balb/ C mice following in vitro stimulation with specific antigens as indicated and anti-CD28 [A]. Graphical representation showing the significant difference in the percentage of IFN-γ producing CD4+$^+$ T cells in the spleen of different immunized animal groups after stimulation with specific antigens in comparison to the PBS control group. Each bar represents the average of 3 mice/group ± S.D [B]. Analysis was done by one way ANOVA, All Pairwise Multiple Comparison Procedure (Fisher LSD Method). *P<0.01; **P<0.001; ***P<0.001. doi:10.1371/journal.pntd.0003322.g004

Figure 5. Flow cytometric analysis showing the percentage of IFN-γ producing CD8+$^+$ T cells in the spleens of immunized Balb/ C mice following in vitro stimulation with specific antigens as indicated and anti-CD28 [A]. Graphical representation showing the significant difference in the percentage of IFN-γ producing CD8+$^+$ T cells in the spleen of different immunized animal groups after stimulation with specific antigens in comparison to the PBS control group. Each bar represents the average of 3 mice/group ± S.D [B]. Analysis was done by one way ANOVA, All Pairwise Multiple Comparison Procedure (Fisher LSD Method). *P<0.05; **P<0.01; ***P<0.001; *P<0.001. doi:10.1371/journal.pntd.0003322.g005

Subunit Vaccine Development against Plague
localize *Y. pestis* by immunohistochemistry in lung, spleen, liver and kidney (Figure 8). No bacterium was observed in lung, liver, spleen and kidney isolated from the naive control group whereas the clumping of *Y. pestis* was observed from all the vaccinated animals including control group by immunohistochemistry (Figure 8). On day 20 after infection, survived animals from LcrV; LcrV+HSP70(II); F1+LcrV and F1+LcrV+HSP70(II) groups were sacrificed for bacterial localization. No bacterial presence was observed in any of the survivors by immunohistochemistry (Fig. 8).

Discussion

Y. pestis suppresses the host immune system in susceptible animal species, but the infection survived animals can effectively overcome the re-infection. This hints the possibility of developing effective vaccine that can boost the immune defense mechanisms against plague. Although intensive studies are in progress for several decades on plague [46] there is no safe and efficient vaccine till date. The F1/V based subunit vaccine candidate that evokes mainly humoral immune response, although has shown promising results in animal models, its efficacy in humans is not yet evaluated [47]. Further, the next-generation plague vaccines that are yet to be developed should also evoke cell-mediated immune response [28]. Humoral and cellular immunity potentially contribute to vaccine efficacy [48]. Humoral immunity relies upon production of antibodies by plasma B cells which effectively neutralizes extracellular pathogens while cellular immunity relies upon cytokine-producing capacities of T cells and is particularly effective in eradicating intracellular pathogens [49].

The protection evoked by cell-mediated immune response against intracellular pathogens mainly relies on Th1 type of immune response. Subunit Vaccine Development against Plague

![Figure 6. Determination of survival of Balb/C mice infected with *Y. pestis*.](image)

The immunized and PBS control groups (8 mice/group) were challenged with 100 LD$_{50}$ of *Y. pestis* (S1 strain). The protective efficacy of vaccine candidate alone or in mixture of antigens was determined by Kaplan Meier’s method to compare percentage survivals (****P<0.0001, ***P<0.001).

![Figure 7. Histopathology of the organs collected from the immunized group animals on 3rd and 20th day post infection with *Y. pestis* and the naive control animals that were neither immunized nor challenged with *Y. pestis*.](image)

Tissue sections were stained with hematoxylin and eosin for pathological examination. Tissue sections were collected from naive control and immunized animals on 3rd day post infection i.e., Naive control (A); PBS control (B); HSP70(II) (C); F1 (D); F1+HSP70(II) (E); LcrV (F); LcrV+HSP70(II) (G); F1+LcrV (H); F1+LcrV+HSP70(II) (I). Tissue sections were collected from the survived animal groups on 20th day post infection i.e., LcrV (J); LcrV+HSP70(II) (K); F1+LcrV (L); F1+LcrV+HSP70(II) (M). Photomicrograph represents the histopathology of Lung [a]: the arrows in the panel B indicate the infiltration of neutrophils. Photomicrograph of spleen [b]: in the panel B, reduced density of white pulp follicle and congestion in the red pulp, lymphoid follicle depletion shown by arrow and the presence of megakaryocytes shown by bold arrow. Photomicrograph of kidney [c]: the granular degeneration of parenchyma was observed in the panel B (bold arrows) and swelling in renal tubules (arrows). Photomicrograph of liver [d]: in the panel B, the hepatocytes degeneration was observed as indicated by arrow.

doi:10.1371/journal.pntd.0003322.g006
response, considered by the development of pathogen-derived antigen specific IFN-γ and TNF-α secreting T cells [30,51]. The Y. pestis replicates in macrophages of host and has developed a competent mechanism for the depletion of the NK cells that finally decreasing IFN-γ expression. The IFN-γ suppression obliterates the inflammatory response that is responsible for development of adaptive immunity [52]. It has been proved that STAT4-deficient mice with low level of IFN-γ were showing inadequate protection against Y. pestis infection despite producing high IgG antibody titers [53]. These findings indicate that high IgG titers may not be sufficient for vaccine efficacy. In case of plague, to develop an effective vaccine should evoke both humoral as well as strong Th1 type of cellular immune responses. Th1 type of immunity can assist to evoke the humoral immune response and to produce the long term memory cells. In vivo experiments proved that the administration of IFN-γ and TNF-α provide protection to mice against virulent Y. pestis challenge [54]. These evidences suggest that cellular immunity priming Y. pestis antigen specific Th1 CD4+ T cell is important for protection against plague.

It is quite evident from the earlier studies that heat shock proteins (HSPs) are known to elicit potent T-cell responses not only to model antigens [31,55] but also to the pathogen-derived antigens [35,56]. HSP70(II) of M. tuberculosis is one of the examples to these various antigens, has been proven to evoke the T-cell response by several groups [31,35,55]. Ovalbumin-HSP70(II) [domain II] fusion constructs elicit ovalbumin-specific CD8+ cytotoxic T lymphocytes [36]. It has been demonstrated by Suzue and Young in 1996 that HSP70(II) of M. tuberculosis enhance the humoral and cellular immune response to the p24 protein of HIV1 [30].

In the present study, we evaluated three recombinant proteins F1, LcrV from Y. pestis and HSP70(II) (domain II) from M. tuberculosis. In order to augment the immune responses, HSP70(II) was formulated with F1 and LcrV and the animals were immunized with different combinations of antigen/s in formulation with aluminium hydroxide gel, a human compatible adjuvant. Sera from mice immunized with LcrV; LcrV+HSP70(II); F1+LcrV; F1+LcrV+HSP70(II) group had higher LcrV-specific IgG titers in comparison to F1-specific IgG titers in F1; F1+HSP70(II); F1+LcrV and F1+LcrV+HSP70(II) groups. HSP70(II) significantly induced high F1 and LcrV-specific serum IgG titers in F1+HSP70(II); LcrV+HSP70(II) and F1+LcrV+HSP70(II) immunized groups in comparison to F1, LcrV and F1+LcrV groups respectively. There are four IgG subclasses viz; IgG1, IgG2a, IgG2b, and IgG3 to provide the immunity against most of the infectious agents. In cell-mediated immune response, there is a change in the predominant immunoglobulin class or classes of the specific antibody produced. T-cells and their cytokines are mainly responsible to control the switch of these isotypes.

Th1 type of immune response signals via STAT4 to produce cytokines such as IFN-γ and IL-2 to favour a strong cellular immunity, whereas IL-4 signals via STAT-6 to favour a humoral immune response and thus biased towards Th2 type of immune response [53]. In this study, we observed significantly high level of Th1 type of cytokines i.e., IL-2, IFN-γ and TNF-α in the
HSP70(II) groups, three animals from each group were sacrificed in the liver, kidney and spleen of immunized animals on the 3rd day post challenge. To examine the histopathological changes in survived animals of LcrV, LcrV + HSP70(II) and F1 + LcrV and HSP70(II) groups respectively. In case of IL-2, a significant difference was observed in LcrV+HSP70(II) and F1+LcrV+HSP70(II) in comparison to LcrV and F1+LcrV groups respectively whereas TNF-α was observed in F1+LcrV+HSP70(II) group in comparison to F1+LcrV group. No significant difference in the expression level of Th2 type of cytokines (IL-4 and IL-10) was noticed. CD4+ T cells play an important role in the development of cellular immune responses and maintenance of memory CD8+ T cell responses [57]. The roles for CD8+ T cells during Y. pestis infection is not yet clear, but Y. pestis maintains virulence in the host by suppressing the production of Th1 type of cytokines [58]. Here, IFN-γ secreting CD4+ and CD8+ T cells were enumerated by flow cytometric analysis. A significant difference was observed in IFN-γ secreting CD4+ and CD8+ T cells in all vaccinated groups in comparison to control group. HSP70(II) significantly increased the IFN-γ secreting CD4+ and CD8+ T cells in F1+LcrV+HSP70(II) immunized group in comparison to F1+LcrV group.

Histopathological assessment is valuable for evaluating the efficacy of new plague vaccines and for better understanding of the pathogenesis of the disease progression. To investigate whether the F1, LcrV and HSP70(II) antigens alone or in combination can effectively protect immunized animals from any histopathological alterations. Signs of histopathological lesions were noticed in lung, liver, kidney and spleen of immunized animals on the 3rd day post challenge. To examine the histopathological changes in survived animals of LcrV; LcrV+HSP70(II) and F1+LcrV and F1+LcrV+HSP70(II) groups, three animals from each group were sacrificed on the 20th day post infection. The survived animals did not display any histopathological lesions in all the examined tissues. Immunohistochemistry showed bacteria in lung, liver, spleen and kidney on the 3rd day post infection whereas no bacterium was observed on the 20th day post infection in survived animals of LcrV, LcrV+HSP70(II), F1+LcrV and F1+LcrV+HSP70(II) vaccinated groups.

Several lines of evidence suggest that the outer surface proteins F1 and LcrV of Y. pestis are considered as the leading vaccine candidates and have been formulated to develop a subunit plague vaccine in the recent past [59–61,48]. F1+LcrV combination can fully protect rodent models against lethal Y. pestis challenge [47,62] however these vaccines provide poor and inconsistent protection (between 0 and 75%) in African Green monkeys [16]. Although these antigens are poorly immunogenic however their immunogenicity could be enhanced in formulation with Alum adjuvant [58] or by making a fusion protein with a molecular adjuvant like flagellin [63]. In this study, F1 and LcrV antigens have been formulated with HSP70(II) as an immunomodulator to augment the immune response of these two vaccine candidates. In mouse model, LcrV alone provided 75% protection whereas LcrV+HSP70(II) formulation provided 100% protection. F1 alone completely failed to protect whereas F1+HSP70(II) provided 12.5% protection. F1+LcrV and F1+LcrV+HSP70(II) provided 100% protection. Our finding proved that HSP70(II) enhanced the protective potential of F1 and LcrV vaccine candidates in mouse model however these formulations need to be tested in non human primates.
11. Fedorova VA, Corbel MJ (2009) Prospects for new plague vaccines. Expert Rev Vaccines 8: 1721–1738.
12. Meyer KF, Cavanaugh DC, Bartelloni PJ, Marshall Jr JD (1974) Plague immunization. I. Past and present trends. J Infect Dis 129: S13–S18.
13. Belkis A, Martinez M, Friedlander A, Vogel P, et al. (2002) Determination of the virulence of the pigment-producing deficient and pigment-producing d-plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of plague. Vaccine 20: 2206–2214.
14. Smiley ST (2000) Current challenges in the development of vaccines for pneumonic plague. Expert Rev Vaccines 7: 209–221.
15. Bashaw J, Norris S, Weeks S, Trevino S, Adamovicz JJ, et al. (2007). Development of in vitro correlate assays of immunity to infection with Yersinia pestis. Clin Vaccine Immunol 14: 849–856.
16. Lin JS, Szaba FM, Kummer LW, Chromy BA, Smiley ST (2011) Yersinia pestis YopE contains a dominant C681 T cell epitope that confers protection in a mouse model of pneumonic plague. J Immunol 187: 987–994.
17. DePrest JL, Anderson DM, Markerton M, O’Keane KA, DePoalo RW, et al. (2006) Immunogenicity and protective immunity against bubonic plague and pneumonic plague by immunization of mice with the recombinant V10 antigen, a variant of LevY. Infect Immun 74: 4910–4914.
18. Annuomi K, Meyers JL, Rogers TE, Fast RL, Bassert ADL, et al. (2009) CpG oligodeoxynucleotides augment the murine immune response to the Yersinia pestis F1-V vaccine in bubonic and pneumonic models of plague. Vaccine 27: 2220–2229.
19. Honko AN, Srinagananthan N, Lees CJ, Miziel SB (2006) Flaglin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect Immun 74: 1113–1120.
20. Chiuchiolo MJ, Boyer JL, Krause A, Senina S, Hackett NR, et al. (2006) Protection via immunity against respiratory tract challenge with Yersinia pestis in mice immunized with an adenoovirus-based vaccine vector expressing V antigen. J Infect Dis 194: 1249–1257.
21. Huang SS, Li H, Hong PD, Yeh MK (2014) Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague. Int J Nanomedicine 9: 1537–1542.
22. Friedlander AM, Welkos SL, Worsham PL, Andrews GP, Heath, et al. (1995) Characterization of virulence in non-human primates infected with Yersinia pestis F1 capsule of Yersinia pestis. Infect Immun 63: 251–259.
23. Bashaw J, Norris S, Weeks S, Trevino S, Adamovicz JJ, et al. (2007). Development of in vitro correlate assays of immunity to infection with Yersinia pestis. Clin Vaccine Immunol 14: 849–856.
24. Friedlander AM, Welkos SL, Worsham PL, Andrews GP, Heath, et al. (1995) Determination of the virulence of the pigment-producing deficient and pigment-producing d-plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of plague. Vaccine 20: 2206–2214.
25. Smiley ST (2000) Current challenges in the development of vaccines for pneumonic plague. Expert Rev Vaccines 7: 209–221.
26. Bashaw J, Norris S, Weeks S, Trevino S, Adamovicz JJ, et al. (2007). Development of in vitro correlate assays of immunity to infection with Yersinia pestis. Clin Vaccine Immunol 14: 849–856.
27. Elvin SJ, Williamson ED (2004) Plague in: vaccines for biodefense, supplement to vaccine. Vaccine 22: 56–60.
28. Vaher CJL, Sha J, Kiretle ML, Cao A, Tiner BI, et al. (2014) Deletion of Braun Lipopolysaccharide-Activating Protease-Encoding Genes Attenuates Yersinia pestis in Mouse Models of Bubonic and Pneumonic Plague. Infect Immun 82: 2485–2503.
29. Parent MA, Berggren KN, Kummer LW, Wilhelmen LB, Szaba FM, et al. (2005) Cell-mediated protection against pulmonary Yersinia pestis infection. Infect Immun 73: 7904–7910.
30. Ma X (2003) TNF-alpha and IL-12: a balancing act in macrophage functioning. Microbes Infect 5: 121–126.
31. Schroder K, Hertogz P, Ravalji T & Hum DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75: 163–189.
32. Baer F, Welkos SL, Worsham PL, Andrews GP, Heath, et al. (1995) Determination of the virulence of the pigment-producing deficient and pigment-producing d-plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of plague. Vaccine 20: 2206–2214.
33. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Nat Rev Immunol 3: 1035–1042.
34. Parent MA, Wilhelm LB, Kummer LW, Szaba FM, Mullarky IK, et al. (2006) Gamma interferon, tumor necrosis factor alpha, and nitric oxide synthase 2, key elements of cellular immunity, perform critical protective functions during humoral defense against lethal pulmonary Yersinia pestis infection. Infect Immun 74: 1338–1346.
35. Ryoo AI, Del RG, Soto M, Quijada L, Martinez AC, et al. (1998) Characterization of the immunostimulatory properties of Leishmania infantum HSP70(II) by fusion to the Escherichia coli maltose binding protein in normal and neutrophil Balb/C mice. Infect Immun 66: 147–152.
36. Chen CH, Wang TL, Hung CF, Yang Y, Young RA, et al. (2000) Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70(II) gene. Cancer Res 60: 1033–1042.
37. Kaesch SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2: 251–262.
38. Brubaker RR (2003) Interleukin-10 and inhibition of innate immunity to Yersinia: roles of Yops and Levr (Y antigen). Infect Immun 71: 3673–3681.
39. Williamson ED, Eley SM, Griffin KF, Green M, Russell P, et al. (1995) A new improved subunit vaccine for plague: the basis of protection. FEMS Immunol Med Microbiol 12: 223–230.
40. Anderson GW, Jr., Heath DG, Bolt CR, Welkos SL, Friedlander AM (1998) Short- and long-term efficacy of single-dose subunit vaccines against Yersinia pestis in mice. Am J Trop Med Hyg 58: 793–799.
41. Heath DG, Anderson GW, Jr., Mavro EM, Welkos SL, Andrews GP, et al. (1999) Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion protein vaccine. Vaccine 16: 1131–1137.
42. Williamson ED, Packer PJ & Waters EL (2011) Recombinant F1-V vaccine protects macaques against pneumonic plague. Vaccine 29: 4771–4777.
43. Mizel SB, Graff AH, Srinagananthan N, Ervin S, Lees CJ, et al. (2009) Flaglin−F1-V fusion protein is an effective plague vaccine in mice and two species of nonhuman primates. Clin Vaccine Immunol 16: 21–28.