Abstract

I consider magnetic Schrödinger operator in dimension $d = 2$ assuming that coefficients are smooth and magnetic field is non-degenerating. Then I extend the remainder estimate $O(\mu^{-1}h^{-1} + 1)$ derived in [Ivr1] for the case when V/F has no stationary points to the case when it has non-degenerating stationary points. If some of them are saddles and $\mu^3 h \geq 2$ then asymptotics contains correction terms of magnitude $\mu^{-1}h^{-1}\log\mu^3h$.

0 Introduction

I consider spectral asymptotics of the magnetic Schrödinger operator

\begin{equation}
A = \frac{1}{2} \left(\sum_{j,k} P_j g^{jk}(x) P_k - V \right), \quad P_j = D_j - \mu V_j
\end{equation}

where g^{jk}, V_j, V are smooth real-valued functions of $x \in \mathbb{R}^2$ and (g^{jk}) is positive-definite matrix, $0 < h \ll 1$ is a Planck parameter and $\mu \gg 1$ is a coupling parameter. I assume that A is a self-adjoint operator and all the conditions are satisfied in the ball $B(0, 1)$.

In contrast to my recent papers [Ivr3, Ivr4, Ivr5] I assume that all the coefficients are very smooth; in contrast to [Ivr4] I consider only two-dimensional case here and in contrast to [Ivr6] I assume that magnetic field is non-degenerate. So I am completely in frames of

*Work was partially supported by NSERC grant OGP0138277.
section 6 [Ivr1] where I just forgot to consider the case of \(V/F \) having non-degenerating stationary points. My analysis will be sketchy, more details I will publish in the future. Thus this note together with Chapter 6 of [Ivr1] and with [Ivr6] completely covers generic 2-dimensional smooth case. One can generalize these results to non-smooth case using approach of [Ivr3].

Let \(g = \det(g^{jk})^{-1} \), \(F_{12} = \partial x_1 V_2 - \partial x_2 V_1 \) and \(F = |F_{12}g^{-\frac{1}{2}}| \) which is a scalar intensity of the magnetic field, \(g = \det(g^{jk})^{-2} \). I assume that both \(V \) and \(F \) are disjoint from 0:

\[
\sum_{jk} g^{jk} \xi_j \xi_k \geq \varepsilon |\xi|^2 \quad \forall \xi \in \mathbb{R}^2,
\]

\[
V \geq \varepsilon_0,
\]

\[
F \geq \varepsilon_0.
\]

In this note I am going to consider the case when \(V/F \) has non-degenerate critical points and I will recover the same asymptotics and remainder estimate as either \(\mu \leq Ch^{-\frac{4}{3}} \) or \(V/F \) has no saddle points in the domain in question and there will be correction terms of magnitude \(\mu^{-1}h^{-1}|\log(\mu^3h)| \) associated with saddle points as \(\mu \geq 2h^{-\frac{1}{3}} \).

I am interested in asymptotics of \(\int e(x,x,0)\psi(x)\,dx \) as \(\mu \to +\infty, h \to 0 \) where \(e(x,y,\tau) \) is the Schwartz kernel of the spectral projector of \(A \) and \(\psi \in C_0^\infty(B(0, \frac{1}{2})) \).

Theorem 1. Let operator \(A \) defined by (1) with real-valued \(g^{jk}, V_j, V \) be self-adjoint in \(L^2(X) \). Further \(g^{jk}, V_j, V, \psi \) be smooth enough in \(B(0,1) \) and conditions (2) – (4) be fulfilled and there, let \(B(0,1) \subset X \). Finally, let all critical points of \(V/F \) in \(B(0,1) \) be non-degenerate. Then

(i) As \(1 \leq \mu \leq h^{-\frac{1}{2}} \) the standard asymptotics holds (i.e. (5) – (6) without correction terms);

(ii) As \(h^{-\frac{1}{2}} \leq \mu \leq Ch^{-1} \) the following asymptotics holds

\[
|\int \left(e(x,x,0) - \mathcal{E}^{MW}(x,0) \right)\psi(x)\,dx - \sum_j \mathcal{E}^{MW}_{\text{corr}}(x_j)\psi(x_j)| \leq C\mu^{-1}h^{-1} + C
\]

with summation over all saddle points \(x_j \) of \(V/F \) where

\[
\mathcal{E}^{MW}(x,0) = \frac{1}{2\pi} \sum_{n \geq 0} \theta \left(\tau - V(x) - (2n + 1)F\mu h \right) F\mu h^{-1}
\]

is magnetic Weyl expression, and

\[
\mathcal{E}^{MW}_{\text{corr}} = \kappa \log \left((\sigma + \mu^{-2})(1 + \mu^{-1}h^{-1}) \right)
\]
where

$$\sigma(x) = \min_{n \in \mathbb{Z}^+} |V + (2n + 1)F\mu h|$$

and κ is defined by (13); further, as $C(h|\log h|)^{-1} \leq \mu \leq \epsilon h^{-1}$ one must include in $E_{\text{corr}}^{\text{MW}}$

$$E_{\text{corr}}^{\text{MW}}(x) = \kappa_2 \mu h \log \left((\sigma + h^2)(1 + \mu^{-1}h^{-1})\right)$$

again associated with saddle points.

Theorem 2. Let operator A defined by (1) with real-valued g_{jk}, V_j be self-adjoint in $L^2(X)$. Further g_{jk}, V_j, V, ψ be smooth enough in $B(0, 1)$ and conditions (2), (4) be fulfilled and there, let $B(0, 1) \subset X$. Further, let $h^{-1} \leq \mu$ and $V = -(2n + 1)\mu h F + W$ with smooth bounded W. Finally, let each critical point of W/F in $B(0, 1)$ be either non-degenerate or satisfy $|W| \geq \epsilon_0$. Then asymptotics (5) holds with extra correction term $\mu h \int \psi(x) dx$ as $\mu \leq C\mu^{-3}|\log h|^{-1}$; for larger μ correction term contains also more complicated $O(\mu h^3|\log h|)$ terms.

Remark 3. One can drop condition (3) by rescaling arguments after main theorem 1 is established.

1 Ideas of the proof: weak magnetic field case

As $\mu \leq h^{-1+\delta}$ in zone $\{|\nabla V| \geq \rho = C(\mu h)^{\frac{1}{2}}h^{-\delta}\}$ one can apply weak magnetic field approach (see section 6.3 of [Ivr1]) and derive remainder estimate $O(\mu^{-1}h^{-1} + \rho^2\mu^{-1})$; furthermore, with logarithmic uncertainty principle replacing the standard microlocal uncertainty principle (see [BrIvr, Ivr3]) one can derive this remainder estimate with $\rho = C(\mu h)^{\frac{1}{2}}|\log h|$. This leads to the proof of the standard asymptotics with the remainder estimate $O(\mu^{-1}h^{-1})$ as $\mu \leq C(h|\log h|)^{-1}$. Furthermore, based on the canonical form (10) (see next section) one can prove the same asymptotics and the remainder estimate with $\rho = C(\mu h)^{\frac{1}{2}}$ and therefore achieve remainder estimate $O(\mu^{-1}h^{-1})$ as $\mu \leq C\mu^{-\frac{1}{2}}$, thus proving Theorem 1(i).

1) Where here and below δ, δ', \ldots denote arbitrarily small positive exponents.
2 Ideas of the proof: intermediate and strong magnetic field cases

To prove Theorem 1(ii) and calculate correction term let me remind that according to section 6.4 of [Ivr1] one can reduce microlocally operator (1) to the canonical form

$$\sim \sum_{m,l,k:m+l \geq 1} a_{mnk}(x_2, hD_2) \left(h^2 D_1^2 + \mu^2 x_1^2 \right)^{m} \mu^{2-2m-2l} (\mu^{-1} h)^{2k}, \quad \hbar = \mu^{-1} h. $$

Then replacing harmonic oscillator \(\left(h^2 D_1^2 + \mu^2 x_1^2 \right) \) by its eigenvalues \((2n + 1)\mu h \) \(n \in \mathbb{Z}^+ \) one arrives to the family of 1-dimensional \(\hbar \)-pdos \(A_n(x_2, hD_2; \mu^{-2}, \hbar) \) with symbols which modulo \(O(\mu^{-2} + \mu^{-1} h) \) are \(\left(V + (2n + 1)\mu h \right) \circ \Psi \) where \(\Psi : \mathbb{R}^2 \to \mathbb{R}^2 \) is a map with \(| \det D \Psi | = F^{-1} \).

Since I am interested in the energy level 0, I am most interested in the operator \(A_n \) which is not elliptic in the point in question i.e. in operator with \(n = \bar{n} \) delivering minimum to \(|V + (2n + 1)\mu h F| \) (which I have already denoted by \(\sigma \)).

Furthermore, according to formula (6.6.24) of [Ivr1] symbol of \(A_n \) with \(n = \bar{n} \) is equal modulo \(O(\mu^{-4} + h^2) \) to

$$F \left(-(VF^{-1}) + (2n + 1)\mu h + \mu^{-2} \omega_1 \right) \circ \Psi, $$

$$\omega_1 = \frac{1}{8} \kappa V^2 F^{-2} - \frac{1}{4} VF^{-1} L(VF^{-1})$$

where \(\kappa \) and \(L \) are scalar curvature and the Laplace-Beltrami operator associated with the metric \(F^{-1} g^{jk} \).

Then according to the theory of 1-dimensional operators the standard Weyl spectral asymptotics holds for each of them with the remainder estimate \(O(1) \) and thus the remainder estimate for the original problem is \(O(\mu^{-1} h^{-1}) \); however the principal part of such asymptotics includes the full symbol of operator, including terms of magnitude \(\mu^{-2} \) and \(h^{-2} \); however as \(\mu \geq C h^{-\frac{1}{2}} \) one can skip terms \(O(\mu^{-4}) \) and \(O(\mu^{-2} h^2) \) in \(A_n \) without penalty; further, as \(\mu \leq C (h|\log h|)^{-1} \) one can skip terms \(O(h^2) \) in \(A_n \) without penalty as well.

However to preserve remainder estimate one must compensate skipping \(O(\mu^{-2}) \) terms in \(A_n \) by the corresponding correction term and one can see easily that this correction term is equal to \(\kappa_0 \mu^{-2} h^{-2} \) plus the correction term associated with 1-dimensional operator

$$x_2 hD_2 + k^{-1}(w + \mu^{-2} \omega_1)$$

in zone \(\{|x_2| + |\xi_2| \leq \rho = C(\mu h)^{\frac{1}{2}}\} \) where

$$k = | \det \text{Hess}(V/F)|^{\frac{1}{2}} \quad w = \left(-\frac{V}{F} + (2\bar{n} + 1)\mu h \right), \quad \sigma = |w|.$$
and k, w, σ, ω_1 are calculated in the critical point in question; this latter correction term is $O(\mu^{-1} h^{-1} |\log \mu^3 h|)$ for saddle points and $O(\mu^{-1} h^{-1})$ for maxima and minima and therefore only saddle points should be considered (i.e. critical points with $\text{det Hess}(V/F) < 0$).

Since this asymptotics should be consistent with one obtained by weak magnetic field approach $\kappa_0 = 0$ and the correction term in question is associated with perturbation $\mu^{-2} k^{-1} \omega_1$ in zone $|x_2| + |\xi_2| \leq \rho$ and thus modulo $O(\mu^{-1} h^{-1})$ it is
\[
(2\pi)^{-1} \mu h^{-1} F \sqrt{g} \times \omega_1 k^{-1} \mu^{-2} \times \log \left(\frac{\rho}{|w|^2 + \mu^{-1}} \right)
\]
which can be rewritten in (7) with
\[
(14) \quad \kappa = -\left(4\pi\right)^{-1} \left(\frac{1}{8} V^2 F^{-1} - \frac{1}{4} V L (VF^{-1}) \right) |\text{det Hess}(V/F)|^{-\frac{3}{2}} \sqrt{g}
\]
calculated at this point.

Actually, this is correct only as $\mu \leq C(h|\log h|)^{-1}$; for $C(h|\log h|)^{-1} \leq \mu \leq C h^{-1}$ one should not discard an extra term ωh^2 in A_n but this term will contribute above $O(\mu^{-1} h^{-1})$ only as $n = \bar{n}$ and it generates $\mathcal{E}^{\text{MW corr}}_2$. This leads to the proof of Theorem 1(ii).

3 Ideas of the proof: superstrong magnetic field case

As $\mu \geq \epsilon h^{-1}$ the same approach works but now only a single $n = \bar{n}$ produces non-trivial contribution while contribution of every $n < \bar{n}$ is $(2\pi)^{-1} \mu h^{-1} \int F \psi dx$ and contribution of every $n > \bar{n}$ is 0 (modulo negligible terms). So one should just repeat the same analysis where now $\rho = \epsilon$. One should not discard ωh^2 in A_n even if there are no critical points and this term produces extra correction term. This leads to the proof of Theorem 2.

References

[BrIvr] M. Bronstein, V. Ivrii. Sharp Spectral Asymptotics for Operators with Irregular Coefficients. Pushing the Limits, Comm. Partial Differential Equations, 28 (2003) 1&2, 99–123.

[Ivr1] V. Ivrii. Microlocal Analysis and Precise Spectral Asymptotics, Springer-Verlag, SMM, 1998, xv+731.

[Ivr2] V. Ivrii. Sharp Spectral Asymptotics for operators with irregular coefficients. II. Boundary and Degenerations, Comm. Partial Differential Equations, 28 (2003) 1&2, 125–156.
[Ivr3] V. Ivrii. Sharp spectral asymptotics for operators with irregular coefficients. III Schrödinger operator with a strong magnetic field, (to appear).

[Ivr4] V. Ivrii. Sharp spectral asymptotics for operators with irregular coefficients. IV. Multidimensional Schrödinger operator with a strong magnetic field. Full-rank case, (to appear).

[Ivr5] V. Ivrii. Sharp spectral asymptotics for operators with irregular coefficients. V. Multidimensional Schrödinger operator with a strong magnetic field. Non-full-rank case, (to appear).

[Ivr6] V. Ivrii. Sharp Spectral asymptotics for two-dimensional Schrödinger operator with a strong degenerating magnetic field, (to appear).

September 23, 2018
Department of Mathematics,
University of Toronto,
100, St.George Str.,
Toronto, Ontario M5S 3G3
Canada
ivrrii@math.toronto.edu
Fax: (416)978-4107