Upconversion luminescence and favorable temperature sensing performance of eulytite-type Sr$_3$Y(PO$_4$)$_3$:Yb$^{3+}$/Ln$^{3+}$ phosphors (Ln=Ho, Er, Tm)

Weigang Liua,b, Xuejiao Wangc,d, Qi Zhua,b, Xiaodong Lia,b, Xudong Suna,b and Ji-Guang Lic,d

aKey Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning, China; bInstitute of Ceramics and Powder Metallurgy, School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, China; cCollege of New Energy, Bohai University, Jinzhou, Liaoning, China; dResearch Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan

ABSTRACT

Phase-pure eulytite-type Sr$_3$Y$_{0.88}$(PO$_4$)$_3$:0.10Yb$^{3+}$/0.02Ln$^{3+}$ upconversion (UC) phosphors (Ln = Ho, Er, Tm) were synthesized via gel-combustion and subsequent calcination at 1250°C. Their UC luminescence, temperature-dependent fluorescence intensity ratio of thermally and/or non-thermally coupled energy levels, and performance of optical temperature sensing were systematically investigated. The phosphors typically exhibit green, orange-red and blue luminescence under 978 nm NIR laser excitation for Ln = Er, Ho and Tm, respectively, which were discussed from two- and three-photon processes. The 524 nm green (Er$^{3+}$), 657 nm red (Ho$^{3+}$) and 476 nm blue (Tm$^{3+}$) main emissions were analyzed to have average decay times of ~52 ± 2, 260.6 ± 0.7 and 117 ± 1 μs, respectively. It was shown that (1) the Er$^{3+}$ doped phosphor has a better overall performance of temperature sensing with thermally coupled $^4H_{11/2}$ and $^4S_{3/2}$ energy levels, whose maximum absolute (S_A) and relative (S_R) sensitivities are ~5.07 × 10$^{-3}$ K$^{-1}$ at 523 K and ~1.16% at 298 K, respectively; (2) the Ho$^{3+}$ doped phosphor shows maximum S_A and S_R values of ~0.019 K$^{-1}$ (298–573 K) and 0.42% at 573 K for the non-thermally coupled energy pairs of 5D_4/$^5F_{4,5}$ and 5D_4/$^5F_{4,5}$, respectively; (3) the Tm$^{3+}$ doped phosphor has a maximum S_A of ~12.74 × 10$^{-3}$ K$^{-1}$ at 573 K for the non-thermally coupled 3H_4/$^3P_{0,1}$ energy levels and a maximum S_R of ~1.74% K$^{-1}$ at 298 K for the thermally coupled $^3F_{2,3}$/$^3H_{4}$ levels. Advantages of the current phosphors in optical temperature sensing were also revealed by comparing with other typical UC phosphors.

ARTICLE HISTORY

Received 14 June 2019
Revised 20 August 2019
Accepted 20 August 2019

KEYWORDS

UC luminescence; optical temperature sensing; sensitivity

CLASSIFICATION

204 Optics / Optical applications; 501 Chemical analyses; 505 Optical / Molecular spectroscopy

1. Introduction

Upconversion (UC) luminescence is a process of converting low-energy light, usually near-infrared (NIR) or infrared, into high-energy light (ultraviolet or visible) through multiple absorption and/or energy transfer [1–3]. UC materials are drawing extensive attention due to their wide applications in the fields of solid-state lasers, multi-

CONTACT Ji-Guang Li (jiuguang@nims.go.jp) Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.

© 2019 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
color displays, optical communication, wavelength converters for solar cells, bio-imaging, optical temperature sensors, and so forth [1–4]. A UC phosphor is usually formed by doping a host lattice with a sensitizer/activator pair, and the Yb$^{3+}$/Ln$^{3+}$ combination (Ln = Ho, Er, Tm) is the most popular since the $^2F_{7/2}$-$^2F_{5/2}$ transition of Yb$^{3+}$ possesses a large absorption cross-section for ~980 nm NIR excitation light and can well resonate with the ladder-like energy levels of Ho$^{3+}$, Er$^{3+}$ and Tm$^{3+}$ activators [1–3]. The host lattice for UC should assure not only a satisfactory luminescence efficiency, but also excellent physicochemical stability, safety, and low toxicity. A handful of inorganic compounds have been developed as UC host so far, typically including fluorides [5,6], oxides [7,8], oxysulfides [9], phosphates [10,11] and other oxygenates [12–15], and new hosts are also under active exploration and/or perfection.

Optical temperature sensing with UC phosphor, most frequently investigated in the range of ~293–573 K, gained increasing research interest during recent years, which utilizes the fluorescence intensity ratio (FIR) of two emission bands that involve either thermally coupled or non-thermally coupled energy levels of the luminescent ion [4,16]. The FIR technique is usually independent of spectrum loss and excitation-power fluctuation, and may thus provide a high detection resolution and excellent sensitivity [17–19]. The FIR of thermally coupled emission levels is a function of temperature and obeys the Boltzmann distribution of electrons [11]. Since the energy separation ΔE of such levels is usually restricted to 200–2000 cm$^{-1}$ to avoid strong overlapping of two emission bands [16–19], the sensitivity of temperature sensing, which is proportional to ΔE, can hardly be further improved to a higher level according to the Boltzmann distribution. For this reason, the use of non-thermally coupled energy levels is being considered as an effective complement to a better sensitivity of FIR. Wang et al. [4] have recently reviewed the rare-earth ions, host lattices, electronic transitions and emission wavelengths that have been used for the purpose of optical temperature sensing, together with the temperature ranges of sensing and the absolute/relative sensitivities of FIR.

Eulytite-type orthophosphate $M_3A(PO_4)_3$ ($M = Ca, Sr$ or Ba; $A = La, Gd, Y$ or Lu) possesses high physical, chemical and structural stabilities [20,21], and may thus serve as an important family of phosphor hosts. It should be noted that many other types of inorganic compounds, such as GdPO$_4$ orthophosphate [22] and NaLn(WO$_4$)$_2$ tungstate (Ln = La-Lu, and Y) [23], also draw great interest for phosphor applications. For downconversion (DC) luminescence, You et al. [24] prepared Eu$^{2+}$/Mn$^{2+}$ co-doped Sr$_5$Lu(PO$_4$)$_3$, by solid-state reaction at 1300°C for 3 h in a CO atmosphere and investigated its luminescence and Eu$^{2+}$/Mn$^{2+}$ energy transfer; Liang et al. [25] produced Ba$_3$La$_5$(PO$_4$)$_3$:Ln$^{3+}$ (Ln = Tb, Eu) phosphors via solid reaction at 1200–1250°C for 5–8 h in a thermal carbon atmosphere for color-tunable luminescence; Xia et al. [26] synthesized a series of (Ba,Sr)$_3$Lu(PO$_4$)$_3$:Eu$^{2+}$ phosphors by solid reaction at 1300°C for 4 h under a 10%H$_2$-90%N$_2$ gas mixture, and the blue shift of Eu$^{2+}$ emission with increasing Sr/Ba ratio was discussed in detail; Xia et al. [27] also synthesized eulytite-type Ba$_3$ Eu(PO$_4$)$_3$ and Sr$_3$Eu(PO$_4$)$_3$ compounds via solid reaction at 1250°C for 10 h in air, and system-atically compared their crystal structures and photoluminescence; Guo et al. [28] prepared Ba$_3$ Y(PO$_4$)$_3$:Eu$^{2+}$/Mn$^{2+}$ phosphors by solid reaction at 1300°C for 4 h under a 10%H$_2$-90%N$_2$ gas mixture, and thoroughly investigated their phase formation, luminescence properties and Eu$^{2+}$–Mn$^{2+}$ energy transfer. We have recently synthesized by gel-combustion a series of Ba$_3$La$_5$(PO$_4$)$_3$:Ce$^{3+}$/Mn$^{2+}$ and Sr$_3$Y(PO$_4$)$_3$:Eu phosphors [20,21] and evaluated their luminescence. Our thorough literature survey, however, found that the UC luminescence of Yb$^{3+}$/Ln$^{3+}$ pair in eulytite-type $M_3A(PO_4)_3$ has rarely been investigated up to date, though examples exist for other phosphate hosts such as K$_2$Y(PO$_4$)$_2$ [11] and BiPO$_4$ [29]. It is noteworthy that Zhang et al. [14] synthesized in 2018 eulytite-type Ba$_3$La$_5$(PO$_4$)$_3$:Yb$^{3+}$/Ln$^{3+}$ phosphors (Ln = Er, Tm) via solid reaction at 1360°C for 5 h in air and studied their properties of temperature sensing with the thermally coupled energy levels of $^2H_{11/2}$/$^2S_{3/2}$ (Er$^{3+}$) and $^3F_{2,3}/^3H_4$ (Tm$^{3+}$). It was demonstrated that the absolute and relative sensitivities of FIR successively increase (maximum ~4.38 \times 10$^{-3}$ K$^{-1}$ at 498 K for Er$^{3+}$ and ~1.31 \times 10$^{-4}$ K$^{-1}$ at 503 K for Tm$^{3+}$) and decrease with increasing temperature for both Er$^{3+}$ and Tm$^{3+}$, respectively [14]. While not mentioned for Tm$^{3+}$, a two-photon process was discussed for the UC luminescence of Er$^{3+}$ [14]. The performance of temperature sensing with non-thermally coupled energy levels, however, was not investigated therein for the Ba$_3$La$_5$(PO$_4$)$_3$:Yb$^{3+}$/Ln$^{3+}$ UC phosphors (Ln = Ho, Er, Tm) via gel-combustion, followed by a thorough investigation of their UC luminescence and performance of optical temperature sensing with thermally coupled and/or non-thermally coupled energy levels. The high cation homogeneity of sol-gel processing allowed phase-
pure products to form by calcination at the lower temperature of 1250°C for 4 h. The current phosphors were also compared with other typical UC systems to show their advantages in optical temperature sensing. In the following sections, we report the synthesis, characterization and optical properties of Sr$_3$Y(PO$_4$)$_3$:Yb$^{3+}$/Ln$^{3+}$ UC phosphors.

2. Experimental details

2.1. Materials and synthesis

The starting reagents are 99.99% pure RE$_2$O$_3$ (RE = Y, Ho, Er or Tm; Huizhou Ruier Rare-Chem. Hi-Tech. Co. Ltd., Huizhou, China) and analytical grade ethylenediamine tetraacetic acid (C$_{10}$H$_{16}$N$_2$O$_{8}$, EDTA), ammonium hydroxide solution (25 wt%), nitric acid (65 wt%), NH$_4$H$_2$PO$_4$ and Sr(NO$_3$)$_2$ (Shenyang Chemical Reagent Factory, Shenyang, China). The nitrate solution of RE(NO$_3$)$_3$ and Sr(NO$_3$)$_2$ was prepared by dissolving the corresponding oxide with a proper amount of nitric acid, followed by evaporation at 95°C to remove the superfluous HNO$_3$ and dilution with distilled water.

For gel-combustion synthesis of Sr$_3$Y$_{0.88}$(PO$_4$)$_3$:0.10Yb$^{3+}$/0.02Ln$^{3+}$, stoichiometric amounts of RE(NO$_3$)$_3$ and Sr(NO$_3$)$_2$ were dissolved in an aqueous solution (20 ml) of EDTA-NH$_4$OH to chelate the RE$^{3+}$ and Sr$^{2+}$ cations (total cation to EDTA molar ratio = 1:1), followed by the addition of a stoichiometric amount of NH$_4$H$_2$PO$_4$. The mixture was evaporated by heating at 85°C under continuous magnetic stirring to form a sol and then a viscous white gel. Auto-ignition of the gel took place upon increasing the temperature to ~300°C on a resistance oven, which produced a loosely packed black precursor powder. The targeted phosphor was then produced by calcining the precursor in flowing oxygen (200 ml/min) at 1250°C for 4 h [20,21], using a heating rate of 8°C/min at the ramp stage.

2.2. Characterization

Phase identification was performed via X-ray diffractionmetry (XRD, SmartLab, Rigaku, Tokyo, Japan) under 40 kV/200 mA, using nickel-filtered Cu-Ka radiation (λ = 0.15406 nm) and a scanning speed of 4.0° 20 per minute. Crystal structure refinement of the product was carried out using the TOPAS 3.0 program [13], and the XRD data for this purpose were acquired in the step scan mode using a step size of 0.02° and an accumulation time of 1.8 s per step. Powder morphology was analyzed via field-emission scanning electron microscopy (FE-SEM, Model S-5000, Hitachi, Tokyo) under an acceleration voltage of 10 kV. UV-Vis spectroscopy was performed at room temperature on a UV-VIS-NIR spectrometer (Model UV-3600 Plus, Shimadzu Co., Kyoto, Japan) equipped with a 150-mm diameter integrating sphere (Model ISR-1503, Shimadzu Co.). UC luminescence of the phosphor was analyzed under 978 nm CW-laser excitation (Model KS3-12322-105, BWT Beijing Ltd., Beijing, China) on an FP-8600 fluorospectrophotometer (JASCO, Tokyo) installed with a heating controller (Model HPC-836, JASCO). Fluorescence decay kinetics was analyzed under 980 nm pulsed laser excitation on a steady-state and transient photoluminescence spectrometer (Model FLS1000, Edinburgh Instruments Ltd., Livingston, UK).

3. Results and discussion

3.1. Phase analysis and morphology

Figure 1(a) presents the powder XRD profiles for the three Sr$_3$Y$_{0.88}$(PO$_4$)$_3$:0.10Yb$^{3+}$/0.02Ln$^{3+}$ phosphors (Ln = Ho, Er or Tm), where it is evident that the patterns are similar to each other and match well with that of cubic structured eulytite-type Sr$_3$Y(PO$_4$)$_3$ in the standard diffraction file (JCPDS No. 00-44-0320; space group: I-43d). The sharp reflections also
indicate that the products were well crystallized. The synthesis temperature is about 100°C lower than that (1360°C) needed for the synthesis of Ba₃La[PO₄]₃ : Yb³⁺/Ln³⁺ (Ln = Er, Tm) via solid reaction [14], which may originate from the better cation homogeneity of sol-gel processing. The crystal structure of Sr₃ Y(PO₄)₃ can be viewed as a three-dimensional connection of [PO₄]³⁻ tetrahedrons and [(Sr/Y)-O] polyhedrons via corner sharing, where all the [PO₄]³⁻ are totally independent while the Sr/Y polyhedrons share edges with each other to form a three-dimensional network [26]. In such a structure, the Sr²⁺/Y³⁺ cations are randomly disordered over a single 16c crystallographic site (C₃ point symmetry) [30] but the [PO₄]³⁻ tetrahedrons show three different orientations in response to three sets of partially occupied oxygen positions O₁, O₂ and O₃ [31]. It is noteworthy that Sr²⁺ and Y³⁺ have different coordination environments although they occupy the same lattice site. Specifically, the Y³⁺ ion resides in Yo₅ octahedron distorted by three equally short and three equally long Y-O bonds [32] while the Sr²⁺ ions have the two coordination environments of CN = 6 and CN = 9 (CN: coordination number) [20]. Accordingly, Sr₃ Y(PO₄)₃ presents not only cation disorder but also disorder in the oxygen sublattice [20,32]. In this work, the Yb³⁺ and Ln³⁺ dopants were expected to replace Y³⁺ by valence and size preference (ionic radius r = 90.0, 90.1, 89.0, 88.0 and 86.8 pm for Y³⁺, Ho³⁺, Er³⁺, Tm³⁺ and Yb³⁺ under CN = 6; r = 118 and 131 pm for Sr²⁺ under CN = 6 and 9, respectively) [33]. Based on this information, Rietveld refinement of the XRD pattern was performed using the standard crystallographic data of isostructural Sr₃La[PO₄]₃ (ICSD No. 69432) as initial structure model. Figure 1(b) shows the experimental and calculated XRD profiles for the Sr₃Y₀.88(PO₄)₃:0.10Yb³⁺,0.02Er³⁺ representative, while the derived coordinates and site occupancy factors (SOF) of atoms are summarized in Table S1. The refinement was ended up with the well-acceptable reliability factors of Rwp = 8.28%, Rp = 6.12%, Rexp = 3.83% and χ² = 2.16, and yielded a lattice parameter (a = b = c) of ~10.1043 ± 0.0002 Å and cell volume V of ~1031.62 ± 0.05 Å³. Similar analysis found the a and V values of ~10.1045 ± 0.0004 Å and 1031.68 ± 0.12Å³ for the Yb³⁺/Ho³⁺ doped and ~10.1024 ± 0.0006 Å and 1031.04 ± 0.18 Å³ for the Yb³⁺/Tm³⁺ doped phosphor powders. The cell constants are all smaller than that (10.1091 Å) of Sr₃Y(PO₄)₃ in the standard diffraction file, owing to the smaller average ionic radius of Yb³⁺/Ln³⁺ pair, and tend to decrease toward a smaller Ln³⁺. The above results thus provided persuasive evidence of solid-solution formation.

FE-SEM observations (Figure 2(a–c)) reveal that the Sr₃Y₀.88(PO₄)₃:0.10Yb³⁺,0.02Ln³⁺ products contain aggregated primary particles/crystallites of ~2.0–6.0 μm, which is typical of a gel-combustion product [20,21], and the type of Ln has no appreciable influence on overall morphology of the powder. Elemental mapping via energy dispersive X-ray spectroscopy (EDS), with the Sr₃Y₀.88(PO₄)₃:0.10Yb³⁺,0.02Er³⁺ sample as a representative, found that all the elements of concern are quite evenly distributed among the particles (Figure 2(d–i)). EDS analysis (Figure S1) also indicated that the sample contains ~15.73 at% of Sr, 4.60 at% of Y, 0.54 at% of Yb, 0.11 at% of Er, 15.81 at% of P and 63.21 at% of O, and the derived Sr:Y:Yb:Er:P:O atomic ratio of 3.0:877:0.10:0.02:3.015:12.055 is very close to the theoretical value of 3.0:880:0.10:0.02:3.12. The above EDS and XRD analyses confirmed that a solid-solution product with the intended chemical composition has been formed.

Figure 3 shows the UV-Vis diffuse reflectance spectra of the Sr₃Y(PO₄)₃ :Yb³⁺/Ln³⁺ powders, where the broad band in the spectral range of
~200-360 nm and that centered at ~978 nm, which are common to the three samples, can be assigned to absorption by the Sr$_3$Y(PO$_4$)$_3$:host and 22F$_{5/2}$→ 22F$_{5/2}$ transition of Yb$^{3+}$, respectively. In addition, the Ho$^{3+}$ activator clearly shows transitions its 5I$_g$ →5S$_g$ (i= 2, 3, 4 and 5) transitions at ~453, 486, 541 and 644/657 nm (Figure 3(a)), Er$^{3+}$ exhibits transitions from the 4F$_{7/2}$, 2H$_{11/2}$, 4S$_{3/2}$ and 4H$_{9/2}$ energy states to 41S2 ground state at ~489, 523, 546, 654 nm (Figure 3(b)), and Tm$^{3+}$ shows transitions from the 3G$_{4,}$ 3H$_{2,3}$ and 3H$_{4}$ levels to 3H$_{6}$ ground state at ~474, 690 and 796 nm (Figure 3(c)), respectively. The results thus imply that the Sr$_3$Y(PO$_4$)$_3$:Yb$^{3+}$/Ln$^{3+}$ powders can effectively absorb 978 nm laser excitation for UC luminescence. The energy bandgap of Sr$_3$ Y(PO$_4$)$_3$:Yb$^{3+}$/Ln$^{3+}$ can be estimated from the reflectance spectra according to Equation (1) [34,35]

$$F(R_\infty)hv^n = A(hv - E_g)$$ (1)

where hv is the incident photon energy, A is a proportional constant, E_g is the value of bandgap, $n = 2$ for a direct transition or 1/2 for an indirect transition, and $F(R_\infty)$ is the Kubelka-Munk function which is defined as [36,37]

$$F(R_\infty) = (1 - R)^2/2R = K/S$$ (2)

where R, K and S are the reflection, absorption and scattering coefficients, respectively. The $[F(R)hv]^{1/2}$ vs hv plots are shown in Figure S2, where extrapolating the linear portions to $[F(R)hv]^{1/2} = 0$ yielded the similar E_g values of ~3.37 eV. The E_g value is also close to those reported for the isostructural Ba$_3$ La(PO$_4$)$_3$ (3.46 eV) [38], Ba$_2$Y(PO$_4$)$_3$ (3.15 eV) [39] and Sr$_3$Gd(PO$_4$)$_3$ (3.49 eV) [40] compounds synthesized by solid reaction.

3.2. Upconversion luminescence of the Sr$_3$ Y(PO$_4$)$_3$:Yb$^{3+}$/Ln$^{3+}$ phosphors

Yb$^{3+}$/Er$^{3+}$ is the most widely investigated sensitizer/activator pair for UC luminescence in various types of host lattices [9–19], since the 4F$_{7/2}$→4F$_{5/2}$ emission of Yb$^{3+}$ and the 4I$_{15/2}$→4F$_{5/2}$ excitation transition of Er$^{3+}$ have well-matching energies. Figure 4(a) shows the UC luminescence spectra of Sr$_3$Y$_{0.88}$(PO$_4$)$_3$:0.10Yb$^{3+}$,0.02Er$^{3+}$ under varying pumping power of 978 nm laser. It is seen that, in each case, the spectrum includes a blue (~486 nm, negligibly weak), green (~524/547 nm, dominantly strong) and red (~655 nm, strong) band in the visible-light region, which are assignable to transitions from the 4F$_{7/2}$, 2H$_{11/2}$/4S$_{3/2}$ and 4H$_{9/2}$ excited states to the 41S^2 ground state of Er$^{3+}$ [41,42], respectively. Increasing power of excitation did not bring about any change to peak position but monotonically raised the emission intensity of each band. The Commission International de L’Eclairage (CIE) chromaticity coordinates of UC luminescence are summarized in Figure 4(d) and Table S2, where it is clear that the emission color steadily drifted from yellowish green (color coordinates: (0.3288, 0.5102)) to green (color coordinates: (0.2671, 0.6276)) with increasing excitation power from 1.00 to 3.00 W. The color change agrees with the almost linearly increasing intensity ratio of green to red emission (I_{524}/I_{655} and I_{447}/I_{655}, Figure S3(a)). Under 2.00 W laser pumping, vivid and strong green emission was observed for Sr$_3$Y$_{0.88}$(PO$_4$)$_3$:0.10Yb$^{3+}$,0.02Er$^{3+}$ with naked eyes, as shown by the inset photograph taken for the appearance of luminescence in Figure 4(d).

The number of excitation photons required to populate the upper emitting state under unsaturated condition can be obtained from the relation $I_{em} \propto P^n$ [9,13], where I_{em} is the emission intensity, P is the pumping power, and n is the number of low-energy photons required to convert to one high-energy photon in the UC process. Figure 4(b) shows the $\log(I_{em})$-$\log(P)$ plot of the above relation, from which the n values were determined from the slope of the linear fitting to be ~2.58, 2.78, 2.50 and 1.61 for the UC peaks at ~486, 524, 547 and 655 nm, respectively. The results thus suggest that a three-photon process is primarily responsible for the 4F$_{7/2}$→4I$_{15/2}$ (486 nm), 2H$_{11/2}$→4I$_{15/2}$ (524 nm) and 4H$_{9/2}$→4I$_{15/2}$ (547 nm) emissions and a two-photon process for the 4F$_{9/2}$→4I$_{15/2}$ (655 nm) one. The process of UC is known to be virtually affected a number of factors, such as host composition, lattice defects, crystallinity, the content, distribution uniformity and actual lattice site of the sensitizer/activator pair, and so forth [1–4,12]. The results of this work
are consistent with those obtained from YbPO₄:Er [10] and NaLu(WO₄)₂:Yb/Er [12] UC phosphors, though a three-photon process was reported for all the \(^{2}H_{11/2}/F_{5/2} \rightarrow ^{1}I_{15/2}\) and \(^{4}F_{9/2} \rightarrow ^{4}I_{15/2}\) emissions of La₂O₂SO₄:Yb/Er [13] and a two-photon mechanism for each emission of La₃O₂S:Yb/Er [9], KMgF₃:Yb/Er [43], Ba₅Gd₃Zn₂O₁₁:Yb/Er [44], \(\alpha\)-NaYF₃:Yb/Er [45] and Na₂Y₂B₄O₉:Yb/Er [46]. The three basic mechanisms of excited state absorption (ESA), energy transfer (ET) and photon avalanche (PA) have been proposed for UC luminescence [1–3]. Since no power threshold was observed in the range of this study, the avalanche mechanism can be neglected. With the energy diagram constructed in Figure 4(c) by referring to previous studies, the UC luminescence of Sr₂Y₃(PO₄)₃:0.10Yb³⁺,0.02Er³⁺ was proposed to occur via the following processes:

1. The Yb³⁺ electrons are excited from the \(^{2}F_{7/2}\) ground state to the \(^{2}F_{5/2}\) level by absorbing the energy of one laser photon [ESA, \(^{2}F_{7/2}\) (Yb³⁺) + \(h\nu\) (978 nm) \(\rightarrow ^{2}F_{5/2}\) (Yb³⁺)], which transfer energy to Er³⁺ while returning to the \(^{2}F_{7/2}\) ground state and thus promotes Er³⁺ electrons from the \(^{4}I_{15/2}\) ground state to the \(^{4}I_{11/2}\) level [ET1, \(^{2}F_{5/2}\) (Yb³⁺) \(\rightarrow ^{2}F_{5/2}\) (Yb³⁺) + \(^{4}I_{15/2}\) (Er³⁺) \(\rightarrow ^{2}F_{5/2}\) (Yb³⁺) + \(^{4}I_{11/2}\) (Er³⁺)]; (2) After nonradiative relaxation to \(^{4}I_{13/2}\) [NR, \(^{4}I_{11/2}\) (Er³⁺) \(\sim ^{4}I_{13/2}\) (Er³⁺)], Er³⁺ electrons are raised to the \(^{4}F_{9/2}\) level via energy transfer of a second laser photon [ET2, \(^{2}F_{5/2}\) (Yb³⁺) + \(^{4}I_{13/2}\) (Er³⁺) \(\rightarrow ^{2}F_{7/2}\) (Yb³⁺) + \(^{4}F_{9/2}\) (Er³⁺)]; (3) A part of the \(^{4}F_{9/2}\) electrons radiatively relax to the \(^{4}I_{15/2}\) ground state, which produces the \(~655\ nm\) red emission (\(^{2}F_{9/2} \rightarrow ^{4}I_{15/2}\)), and the other part relax to the \(^{4}I_{11/2}\) state via NR \([^{4}I_{9/2} (Er^{3+}) \sim ^{4}I_{11/2} (Er^{3+})]\), followed by further excitation to the \(^{4}F_{9/2}\) level with a third laser photon [ET3, \(^{2}F_{5/2}\) (Yb³⁺) + \(^{4}I_{11/2}\) (Er³⁺) \(\rightarrow ^{2}F_{7/2}\) (Yb³⁺) + \(^{4}F_{9/2}\) (Er³⁺)]. The \(^{4}F_{9/2}\) electrons may directly jump back to the \(^{4}I_{15/2}\) ground state to produce the \(~486\ nm\) blue emission (\(^{4}F_{9/2} \rightarrow ^{4}I_{15/2}\)) and may relax to the \(^{2}H_{11/2}/S_{3/2}\) levels via NR, from which the \(~524/547\ nm\) green emissions can be resulted upon back-jumping of the electrons to the \(^{4}I_{15/2}\) ground level (\(^{2}H_{11/2}/S_{3/2} \rightarrow ^{4}I_{15/2}\)). The very weak \(^{4}F_{9/2} \rightarrow ^{4}I_{15/2}\) blue emission suggests that most of the excitation energy accumulated by ET3 relaxes to the \(^{2}H_{11/2}/S_{3/2}\) states to result in the strong green emission (Figure 4(a)). The gradually larger green to red intensity ratio (Figure S3(a)) may imply that the \(^{2}H_{11/2}/S_{3/2}\) levels gain population faster than \(^{4}F_{9/2}\) under a higher excitation power.

Figure 5(a) shows the UC luminescence spectra of Yb³⁺/Ho³⁺ codoped Sr₂Y₃(PO₄)₃ under varying excitation power, where the four groups of emission bands centered at \(~485\ nm\) (blue, negligible), 545 nm
(green, weak), 657 nm (red, overwhelmingly strong) and 767 nm (red in NIR, weak) can be assigned to $^5F_{3/2}\rightarrow^7I_{6}$, $^5I_{7/2}^\prime\rightarrow^7I_{6}$, $^5F_{5}\rightarrow^7I_{8}$ and $^5I_{4}\rightarrow^7I_{6}$ transitions of Ho$^{3+}$ [9–12], respectively. Raising excitation power from 1.00 to 3.00 W did not produce any new emission but successively improved the intensity of the existing luminescence. The CIE chromaticity coordinates of UC luminescence gradually drifted from orange [(0.6235,0.3676)] with increasing excitation power (Figure 4(d) and Table S2), which is due to the gradually larger red to green intensity ratio (I_{657}/I_{545}, Figure S3(b)). Under 2.00 W laser pumping, the phosphor exhibits a vivid and strong orange-red emission visible to naked eyes, as shown by the inset in Figure 4(d).

Analysis of the log(I_{em})-log(P) plots found n values of ~2.55, 2.88, 1.93 and 1.51 for the ~485, 545, 657 and 767 nm UC bands (Figure 5(b)), respectively, which indicate that a three-photon process is largely responsible for the $^5F_{3/2}\rightarrow^7I_{6}$ (485 nm) and $^5I_{7/2}^\prime\rightarrow^7I_{6}$ (545 nm) transitions while a two-photon process for the $^5F_{5}\rightarrow^7I_{8}$ (657 nm) and $^5I_{4}\rightarrow^7I_{8}$ (767 nm) transitions of Ho$^{3+}$. The UC luminescence of Y$_2$O$_3$:Yb$^{3+}$/Ho$^{3+}$/Zn$^{2+}$ (YOZ) [8] and BaZrO$_3$:Yb$^{3+}$/Ho$^{3+}$(BZ) [47] were also reported to involve three- ($^5F_{3/2}\rightarrow^7I_{6}$ of YOZ; $^5I_{7/2}^\prime\rightarrow^7I_{6}$ of BZ) and two- ($^5F_{5}\rightarrow^7I_{8}$ of YOZ; $^5F_{3/2}\rightarrow^7I_{8}$ of BZ) photon processes, although a three-photon process was suggested for all the emissions of La$_2$O$_2$:Yb/Ho [9], YbPO$_4$:Ho [10], NaLu(WO$_4$)$_2$:Yb/Ho [12] and La$_2$O$_2$SO$_4$:Yb/Ho [13] and a two-photon process for those of Sr$_2$(PO$_4$)$_3$:Cl,Yb/Ho [48]. With the energy level diagram constructed in Figure 5(c), the UC process of Sr$_3$Y$_{0.88}$(PO$_4$)$_3$:0.10Yb$^{3+}$,0.02Ho$^{3+}$ can be described with the following photon reactions:

1. ESA: $^2F_{7/2}$ (Yb$^{3+}$) + $h\nu$ (978 nm) \rightarrow $^2F_{5/2}$ (Yb$^{3+}$);
2. ET1: $^2F_{5/2}$ (Yb$^{3+}$) + 5I_8 (Ho$^{3+}$) \rightarrow $^2F_{7/2}$ (Yb$^{3+}$) + 5I_6 (Ho$^{3+}$);
3. NR: 5I_6 (Ho$^{3+}$) \rightarrow 5I_7 (Ho$^{3+}$);
4. ET2: $^2F_{5/2}$ (Yb$^{3+}$) + 5I_7 (Ho$^{3+}$) \rightarrow $^2F_{7/2}$ (Yb$^{3+}$) + 5F_5 (Ho$^{3+}$);
5. Emission: 5F_5 (Ho$^{3+}$) \rightarrow 5I_8 (Ho$^{3+}$) + $h\nu$ (657 nm);
6. NR: 5F_5 (Ho$^{3+}$) \rightarrow 5I_4 (Ho$^{3+}$);
7. Emission: 5I_4 (Ho$^{3+}$) \rightarrow 5I_8 (Ho$^{3+}$) + $h\nu$ (767 nm);
8. NR: 5F_4 (Ho$^{3+}$) \rightarrow 5I_5 (Ho$^{3+}$);
9. ET3: $^2F_{5/2}$ (Yb$^{3+}$) + 5I_5 (Ho$^{3+}$) \rightarrow $^2F_{7/2}$ (Yb$^{3+}$) + 5F_3 (Ho$^{3+}$);
10. Emission: 5F_3 (Ho$^{3+}$) \rightarrow 5I_8 (Ho$^{3+}$) + $h\nu$ (485 nm);
11. NR: 5F_3 (Ho$^{3+}$) \rightarrow 5F_4 (Ho$^{3+}$);
12. Emission: 5F_3 (Ho$^{3+}$) \rightarrow 5I_8 (Ho$^{3+}$) + $h\nu$ (545 nm).

Figure 5. UC luminescence spectra under different excitation power levels (a), the relationship between log(I_{em}) and log(P) (in Watt, b), and a scheme showing the energy levels and UC process (c) for the Sr$_3$Y$_{0.88}$(PO$_4$)$_3$:0.10Yb$^{3+}$,0.02Ho$^{3+}$ phosphor.
The overwhelmingly strong red emission (~657 nm) may have two origins: (1) most of the 5F_5 electrons excited by ET2 directly transit back to the 3I_6 ground state (the n= 2 channels), and (2) the 3F_3 electrons excited by ET3 decay to the 3F_3 level, followed by radiative transition to the 3I_6 state (the n= 3 channel). The linearly increasing I_{657nm}/I_{470nm} and I_{657nm}/I_{545nm} intensity ratios (Figure S3(b)) may imply that a higher excitation power leads to a faster population of the 3F_3 energy state.

Under 978 nm laser excitation, Sr$_2$Y$_{0.88}$(PO$_4$)$_3$:0.10Yb$^{3+}$, 0.02Tm$^{3+}$ phosphor exhibits four groups of emissions at ~476 nm (blue), ~650 nm (red), 695 nm (red, negligible) and ~795 nm (NIR) as shown in Figure 6(a), which correspond to the $^1G_4\rightarrow^3H_6$, $^1G_4\rightarrow^3F_4$, $^3F_{2,3}\rightarrow^3H_6$ and $^3H_4\rightarrow^3H_6$ transitions of Tm$^{3+}$, respectively. Increasing excitation power led to faster enhancement of blue emission, which became dominant when P reached ~1.50 W. The strong blue emission is evident from the appearance of UC luminescence under 2.00 W of laser pumping (Figure 4(d), the inset). It is also seen from Figure 4(d) and Table S2 that the emission color gradually drifted from light blue [(0.1764, 0.1781)] to deep blue [(0.1323, 0.1914)] with increasing excitation power from 1.00 to 3.00 W, which conforms to the gradually larger blue to red intensity ratio (I_{470nm}/I_{650nm}, Figure S3(c)). Analyzing the emission intensity against excitation power yielded slope (n) values of ~2.99 and 2.71 (around 3) for the ~476 nm ($^1G_4\rightarrow^3H_6$) and 650 nm ($^1G_4\rightarrow^3F_4$) UC bands and ~2.25 and 1.89 (around 2) for the ~795 nm ($^3F_{2,3}\rightarrow^3H_6$) and 795 nm ($^3H_4\rightarrow^3H_6$) ones (Figure 6(b)), which correspond to three- and two-photon UC mechanisms, respectively. Similar results were reported in the literature for β-NaLuF$_4$:Yb/Tm [10], Ba$_5$Gd$_4$Zn$_{21}$:Yb/Tm [49] and LiLa(MoO$_4$)$_2$:Yb/Tm [50], though a three-photon process was proposed for the UC emissions of NaLu(WO$_4$)$_2$:Yb/Tm [12], La$_2$O$_2$SO$_4$:Yb/Tm [13] and La$_2$O$_3$:Yb/Tm [51]. By referring to the energy level diagram shown in Figure 6(c), the processes that led to the observed UC luminescence may be presented as follows:

1. ESA: $[^3F_{2,3}(Yb^{3+})] + h\nu$ (978 nm) $\rightarrow ^2F_{5/2}$ (Yb$^{3+}$));
2. ET1: $[^2F_{5/2}(Yb^{3+})] + ^3H_6$ (Tm$^{3+}$) $\rightarrow ^2F_{7/2}$ (Yb$^{3+}$) + 3H_5 (Tm$^{3+}$));
3. NR: $[^1H_5(Tm^{3+})] \sim ^3F_4$ (Tm$^{3+}$));
4. ET2: $[^3F_{5/2}(Yb^{3+})] + ^3F_4$ (Tm$^{3+}$) $\rightarrow ^2F_{7/2}$ (Yb$^{3+}$) + $^3F_{2,3}$ (Tm$^{3+}$));
5. Emission: $^3F_{2,3}$ (Tm$^{3+}$) $\rightarrow ^3H_6$ (Tm$^{3+}$) + $h\nu$ (695 nm);
6. NR: $^3F_{2,3}$ (Tm$^{3+}$) $\rightarrow ^3H_4$ (Tm$^{3+}$));
7. Emission: 3H_4 (Tm$^{3+}$) $\rightarrow ^3H_6$ (Tm$^{3+}$) + $h\nu$ (795 nm);
8. ET3: $^2F_{2,3}(Yb^{3+}) + ^3H_4$ (Tm$^{3+}$) $\rightarrow ^2F_{7/2}$ (Yb$^{3+}$) + 1G_4 (Tm$^{3+}$);
9. Emission: 1G_4 (Tm$^{3+}$) $\rightarrow ^3H_4$ (Tm$^{3+}$) + $h\nu$ (476 nm) and 1G_4 (Tm$^{3+}$) $\rightarrow ^3F_4$ (Tm$^{3+}$) + $h\nu$ (650nm).

Figure 6. UC luminescence spectra under different excitation power levels (a), the relationship between $log(I_{em})$ and $log P$ (in Watt, b), and a scheme showing the energy levels and UC process (c) for the Sr$_2$Y$_{0.88}$(PO$_4$)$_3$:0.10Yb$^{3+}$, 0.02Tm$^{3+}$ phosphor.
The negligibly weak 695 nm red emission indicates that only a very limited number of the electrons excited by ET2 to the $3^{2}F_{2,3}$ level directly decay to the $^{3}H_{4}$ ground state. On the other hand, the much faster intensity increase of 476 nm blue emission suggests a preferential population of the $1^{3}G_{4}$ energy level under increasing excitation power.

Figure 7 exhibits fluorescence decay curves for the green emission of Er$^{3+}$ (524 nm, $^{2}H_{11/2} \rightarrow ^{4}I_{15/2}$ transition), red emission of Ho$^{3+}$ (657 nm, $^{5}F_{5} \rightarrow ^{1}I_{8}$ transition) and blue emission of Tm$^{3+}$ (476 nm, $^{3}F_{4} \rightarrow ^{3}H_{4}$). It was found that the decay curve can be well fitted with the second-order exponential equation $I(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + B$ in each case, where $I(t)$ is the fluorescence intensity at time t, A_1 and A_2 are pre-exponential constants, τ_1 and τ_2 stand for the decay time of exponential components, and B is a constant. The average lifetime (τ^*) can be calculated with the following formula [20,41]:

$$\tau^* = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$ (3)

The derived τ_1 and τ_2 values and their weights are tabulated in Table S3, from which τ^* values of \sim52 ± 2, 260.6 ± 0.7 and 117 ± 1 µs were obtained for the aforesaid emissions of Er$^{3+}$, Ho$^{3+}$ and Tm$^{3+}$, respectively. The short fluorescence lifetime would be beneficial to temporal and spatial resolution of temperature measurement.

3.3. Temperature sensing performance of Sr$_3$Y(PO$_4$)$_3$:Yb$^{3+}$/Ln$^{3+}$ UC phosphors

Figure 8(a,b) present the temperature-dependent UC spectra and relative emission intensity of Sr$_3$Y$_{0.88}$ (PO$_4$)$_3$:0.10Yb$^{3+}$/0.02Er$^{3+}$ phosphor under 1.00 W of 978 nm laser excitation, respectively. It is clear that the 524 nm green emission ($^{2}H_{11/2} \rightarrow ^{4}I_{15/2}$) gains intensity while the 547 nm green ($^{3}S_{3/2} \rightarrow ^{1}I_{15/2}$) and 655 nm red ($^{4}F_{9/2} \rightarrow ^{4}I_{15/2}$) emissions lose intensity with increasing temperature. The opposite trends observed for the two green bands can be ascribed to thermal coupling of the $^{2}H_{11/2}$ and $^{3}S_{3/2}$ levels [16–18], while intensity loss of the red emission is mostly due to enhanced non-radiative relaxation from the $^{4}F_{9/2}$ level by intensified lattice vibration at a higher temperature. The fluorescence intensity ratio (FIR) of thermally coupled $^{2}H_{11/2}$/$^{3}S_{3/2}$ levels follows Boltzmann distribution, and can be described as [11,16–19,44,52]

$$FIR = \frac{I_{524}}{I_{547}} = N \exp\left(-\frac{\Delta E}{kT}\right)$$ (4)

where ΔE is the energy gap between the $^{2}H_{11/2}$ and $^{3}S_{3/2}$ levels, k is the Boltzmann constant (0.695 K$^{-1}$ cm$^{-1}$), T is the absolute temperature, and N is a proportionality constant. Figure 8(c) shows the temperature dependence of I_{524}/I_{547} FIR, where it was found that the experimental data can be well fitted with the single-exponential equation of $\text{FIR}(I_{524}/I_{547}) = 9.7 \exp(-1026.5/T)$. The derived ΔE of \sim713 ± 4 cm$^{-1}$ agrees with the energy gap (700–800 cm$^{-1}$) between $^{2}H_{11/2}$ and $^{3}S_{3/2}$ [11]. Figure 8(d) shows I_{524}/I_{655} FIR for the non-thermally coupled levels of $^{2}H_{11/2}$ and $^{4}F_{9/2}$, where it was found that the experimental data can be satisfactorily fitted with the linear equation of $\text{FIR}(I_{524}/I_{655}) = 0.0036 T - 0.716$.

Absolute (S_Λ) and relative (S_Ω) sensitivities are two indispensable parameters for temperature sensing, which can be calculated using the following formulas [14,16–18,53]:

$$S_\Lambda = \frac{d(I/FIR)}{d(T)} = FIR \ast \frac{\Delta E}{kT^2}$$ (5)

$$S_\Omega = \left| \frac{1}{\text{FIR}} \frac{d(I/FIR)}{d(T)} \right| = \frac{\Delta E}{kT^2}$$ (6)

For the thermally coupled $^{2}H_{11/2}$/$^{3}S_{3/2}$ levels, it was observed that the S_Λ of I_{524}/I_{547} FIR first increases to reach its maximum of \sim5.07 \times 10$^{-3}$ K$^{-1}$ at 523 K and then slightly decreases (Figure 8(e)). The non-thermally coupled $^{2}H_{11/2}$/$^{4}F_{9/2}$ levels have an S_Λ of \sim3.6 \times 10$^{-3}$ K$^{-1}$ for I_{524}/I_{655} FIR, according to the linear fitting in Figure 8(d), which is generally smaller than the S_Λ of I_{524}/I_{547} FIR (Figure 8(e)). As compared to Table 1, our phosphor has a significantly better absolute sensitivity (S_Λ) than Yb$^{3+}$/Er$^{3+}$ codoped Y$_2$O$_3$ [7], K$_2$Y(PO$_4$)$_3$ [11], Ca$_3$La$_7$Si$_6$O$_{24}$ [18], NaYF$_4$ [52], and Ba$_3$La(PO$_4$)$_3$ [14].

The relative sensitivity (S_Ω) determined with Equation (6) presents a continuous decrease with increasing temperature for both I_{524}/I_{547} and I_{524}/I_{655} FIRs (Figure 8(f)), but the use of I_{524}/I_{655} produced a larger S_Ω than I_{524}/I_{547} on the whole. As presented in Table 1, the Sr$_3$Y$_{0.88}$(PO$_4$)$_3$:0.10Yb$^{3+}$/0.02Er$^{3+}$ phosphor has maximum S_Ω values of \sim1.16% (298 K) and
1.11% (298 K) for the I_{524}/I_{547} and I_{524}/I_{655} FIRs, respectively, which are slightly smaller than those of $K_3Y(PO_4)_2$:Yb/Er [11] and $NaYF_4$:Yb/Er [52] but are higher than those of Y_2O_3:Yb/Er [7], $Ca_3La_6Si_6O_{24}$:Yb/Er [18] and $Ba_3La(PO_4)_3$:Yb/Er [14]. Judged from S_A and S_R values, it can be concluded that $Sr_3Y_{0.88}(PO_4)_3$:0.10Yb$^{3+}$,0.02Er$^{3+}$ has a better performance of temperature sensing with thermally coupled $^2H_{11/2}/^4S_{3/2}$ instead of non-thermally coupled $^2H_{11/2}/^4F_{9/2}$ levels.

Figure 9(a) presents the temperature-dependent UC spectra of $Sr_3Y_{0.88}(PO_4)_3$:0.10Yb$^{3+}$,0.02Er$^{3+}$ under 1.00 W of 978 nm laser pumping, where it is seen that the green (543 nm; $^5F_{2} \rightarrow ^1I_{6}$), red (656 nm; $^5F_{3} \rightarrow ^1I_{4}$) and NIR (801 nm; $^1I_4 \rightarrow ^1I_{6}$) bands continuously lose intensity towards a higher temperature but at different rates (Figure 9(a), the inset). As analyzed in Figure 9(b,c), I_{656}/I_{543} FIR follows the linear equation of $FIR(I_{656}/I_{543}) = 0.019^*T + 6.7$, while I_{801}/I_{656} and I_{801}/I_{543} FIRs can be fitted with the single-exponential equations of $FIR(I_{801}/I_{656}) = 0.0007\exp(T/130.04)+0.073$ and $FIR(I_{801}/I_{543}) = 0.058\exp(T/173.01)+0.655$, respectively.

Though the S_A of I_{801}/I_{656} and I_{801}/I_{543} FIRs steadily increased from ~0.056 \times 10$^{-3}$ to 0.46 \times 10$^{-3}$ K$^{-1}$ and from ~1.68 \times 10$^{-3}$ to 9.39 \times 10$^{-3}$ K$^{-1}$ with the temperature increasing from 298 to 573 K (Figure 9(d)), respectively, the maximum values are yet lower than that of I_{656}/I_{543} FIR (~0.019 K$^{-1}$, Figure 9(b)). Accordingly, the maximum S_A is ~0.019 K$^{-1}$ for the $Sr_3Y_{0.88}(PO_4)_3$:0.10Yb$^{3+}$,0.02Er$^{3+}$ phosphor in the tested temperature range, which is lower than the values of $K_3Y(PO_4)_2$:Yb/Ho [11], $BaY_2Si_3O_{10}$:Yb/Ho [16] and $Ca_3La_6Si_6O_{24}$:Yb/Ho [18] but is higher than those of Y_2O_3:Yb/Ho [8] and $CaMoO_4$:Yb/Ho [54] (Table 1). Figure 9(e) demonstrates the relative sensitivities derived with Equation (6). While the S_R of I_{656}/I_{543}...
Table 1. A summary of S_A and S_R values, electronic transitions and temperature sensing ranges for some typical temperature sensing UC dophors doped with Yb$^{3+}$/ln$^{3+}$ pair.

Ln$^{3+}$	Host	Transition/wavelength (nm)	Range (K)	S_A (K^{-1}) (maximum)	S_R (K^{-1})	Ref.
Er$^{3+}$	Y$_2$O$_3$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	93-613	4.4×10^{-3} (427K)	886.08/T2	[7]
Er$^{3+}$	K$_2$YF$_4$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$, $4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	293-553	4.04×10^{-3} (553K)	1172.5/T2	[11]
Er$^{3+}$	Ba$_2$La$_2$(PO$_4$)$_3$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	293-553	4.38×10^{-3} (498K)	1002/T2	[14]
Er$^{3+}$	Ca$_2$La$_2$(Si$_2$O$_7$)$_3$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	293-553	3.91×10^{-3} (500K)	1008/T2	[18]
Er$^{3+}$	α-NaYF$_4$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	303-573	4.54×10^{-3} (541K)	1085.3/T2	[52]
Er$^{3+}$	β-NaYF$_4$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	303-573	4.84×10^{-3} (513K)	1025.8/T2	[52]
Ho$^{3+}$	Y$_2$O$_3$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	293-553	3.02×10^{-3} (673K)	1067.76/T2	[8]
Ho$^{3+}$	K$_2$Y(PO$_4$)$_3$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	303-523	$0.078(303-523K)$	0.20%/0(303K)	[11]
Ho$^{3+}$	Ba$_2$Y$_2$(Si$_2$O$_7$)$_3$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	303-523	$0.023(298-448K)$	0.49%/298K	[16]
Ho$^{3+}$	Ca$_2$La$_2$(Si$_2$O$_7$)$_3$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	293-533	$0.03(293-533K)$	0.15%/293K	[18]
Ho$^{3+}$	CaMoO$_4$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	303-543	6.6×10^{-3} (533K)	648.8/K2	[54]
Tm$^{3+}$	K$_2$Y(PO$_4$)$_3$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	293-553	0.304×10^{-3} (553K)	1910.1/T2	[11]
Tm$^{3+}$	Ba$_2$La$_2$(PO$_4$)$_3$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	303-503	0.131×10^{-3} (503K)	2.11%/503K	[14]
Tm$^{3+}$	KLuF$_4$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	303-503	0.145×10^{-3} (503K)	1249.85/T2	[56]
Er$^{3+}$	Sr$_2$Y(PO$_4$)$_3$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	296-573	5.07×10^{-3} (523K)	1026.5/K2	[This work]
Ho$^{3+}$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	303-543	3.6×10^{-3} (298-573K)	1.11%/298K		
Ho$^{3+}$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	303-543	$0.019(298-573K)$	0.16%/298K		
Ho$^{3+}$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	303-543	0.46×10^{-3} (573K)	0.35%/573K		
Ho$^{3+}$	$4_{11/2}^{2} \rightarrow 2_{15/2}^{2}$	303-543	9.39×10^{-3} (573K)	0.42%/573K		
Tm$^{3+}$	$F_2 \rightarrow 2E$	705-795	0.82×10^{-3} (573K)	1547.7/T2		
Tm$^{3+}$	$F_2 \rightarrow 2E$	705-795	1.53×10^{-3} (573K)	0.92%/298K		

Figure 9. Temperature-dependent emission spectra under 1.00 W of 978 nm laser excitation (a), the dependences of I_{543}/I_{543} (b) and I_{498}/I_{543} (c) F1Rs on the absolute temperature, the absolute sensitivity (S_A) of I_{498}/I_{543} and I_{543}/I_{543} F1Rs (d), and the relative sensitivities (S_R) of I_{543}/I_{543}, I_{498}/I_{543} and I_{543}/I_{543} F1Rs (e) of the Sr$_2$Y(PO$_4$)$_3$:0.10Yb$^{3+}$:0.02Ho$^{3+}$ phosphor. The inset on part (a) shows relative intensities of the 543, 565 and 801 nm emissions as a function of the absolute temperature. Note the different scales of the vertical axes in parts (d) and (e).
FIR gradually decreased from ~0.16% to 0.12% K\(^{-1}\), those of \(I_{801}/I_{656}\) and \(I_{801}/I_{543}\) FIRs monotonically increased from ~0.059% to 0.35% K\(^{-1}\) and from ~0.19% to 0.42% K\(^{-1}\), respectively. The maximum \(SR\) (0.42% K\(^{-1}\)) of this phosphor is higher than those of \(\text{Yb}^{3+}/\text{Ho}^{3+}\) co-doped \(K_3\text{Y(PO}_4)_2\) \[11]\) and \(\text{Ca}_3\text{La}_6\text{Si}_6\text{O}_{24}\) \[18]\, as compared in Table 1.

Figure 10(a) and (b), respectively, show temperature-dependent UC spectra and relative intensities of the emission bands for the \(\text{Sr}_3\text{Y}_{0.88}(\text{PO}_4)_3:0.10\text{Yb}^{3+},0.02\text{Tm}^{3+}\) phosphor under 1.00 W of 978 nm laser excitation. It was noticed that the intensities of \(^1G_4→^3H_6\) (476 nm), \(^1G_4→^3F_4\) (650 nm) and \(^3H_4→^3H_6\) (795 nm) emissions continuously decrease while that of \(^3F_{2,3}→^3H_6\) (695 nm) increases towards a higher temperature. Specifically, the 795 and 695 nm emissions were lowered by ~60% and enhanced by ~4.5 times at 573 K, respectively (Figure 10(b)), which is owing to the fact that \(^3F_{2,3}\) and \(^3H_4\) energy levels are thermally coupled and a higher temperature enhances population of the upper-lying \(^3F_{2,3}\) state \[11]\). Figure 10(c) plots the \(I_{695}/I_{795}\) FIR as a function of the absolute temperature, where it was found that the data can be satisfactorily fitted with the single-exponential equation of \(\text{FIR}(I_{695}/I_{795}) = 2.6\exp(-1547.7/T)\). The derived \(\Delta E\) value (1075.7 cm\(^{-1}\)) is significantly larger than that (713.42 cm\(^{-1}\)) between the thermally coupled \(^2H_{11/2}/^4S_{3/2}\) levels of \(\text{Er}^{3+}\), which suggests that \(\text{Yb}^{3+}/\text{Tm}^{3+}\) pair can be much better than \(\text{Yb}^{3+}/\text{Er}^{3+}\) in \(\text{Sr}_3\text{Y(PO}_4)_3\) for temperature sensing. For the thermally coupled \(^3F_{2,3}/^3H_4\) energy levels, the error (\(\delta\)) between estimated energy-gap (\(\Delta E_e\) ~1075.7 cm\(^{-1}\)) and experimentally measured energy-gap (\(\Delta E_m\) ~1709.9 cm\(^{-1}\) from Figure 10(c)) can be calculated with the following expression \[4,46,55\] to be ~37.1%.

Figure 10. Temperature-dependent emission spectra under 1.00 W of 978 nm laser excitation (a), relative intensities of the 476, 650, 695 and 795 nm emissions as a function of the measurement temperature (b), the dependences of \(I_{695}/I_{476}\) and \(I_{695}/I_{650}\) (d) FIRs on the absolute temperature, and the absolute (e) and relative (f) sensitivities for the \(I_{695}/I_{476}\), \(I_{695}/I_{650}\) and \(I_{695}/I_{795}\) FIRs of the \(\text{Sr}_3\text{Y}_{0.88}(\text{PO}_4)_3:0.10\text{Yb}^{3+},0.02\text{Tm}^{3+}\) phosphor. Note the different scales of the vertical axes in parts (b), (d), (e) and (f).
\[\delta = \frac{|\Delta E_e - \Delta E_m|}{\Delta E_n} \times 100\% \quad (7) \]

The \(\delta \) of this work is larger than the value (below 20%) [4] reported for Na(Lu,Gd)F\(_3\):Tm\(^{3+}\)/Yb\(^{3+}\) but is smaller than those (above 40%) [4] for Tm\(^{3+}\)/Yb\(^{3+}\) codoped NaNbO\(_3\) and Y\(_2\)O\(_3\).

Non-thermally coupled energy levels were also analyzed to see their performance of temperature sensing, and Figure 10(d) shows the dependences of \(I_{695}/I_{476} \) and \(I_{695}/I_{550} \) FIRs on absolute temperature. It is encouraging to see that both the FIRs continuously increase with increasing temperature and the experimental data can be well fitted with the single-exponential equations of FIR(\(I_{695}/I_{476} \)) = 0.001exp(T/111.7)+0.00014 and FIR(\(I_{695}/I_{550} \)) = 0.053exp(T/158.7)-0.224. As analyzed in Figure 10(e,f), the \(S_A \) and \(S_R \) values gradually increase and decrease with increasing temperature, respectively. It is also seen that \(I_{695}/I_{550} \) FIR has the largest \(S_A \) and \(I_{695}/I_{476} \) FIR has the smallest \(S_A \) on the whole. It is also seen from the Figures that the \(^{1}G_4 \rightarrow ^{3}F_4 \) (650 nm)/\(^{3}F_{2,3} \rightarrow ^{5}H_6 \) (695 nm) non-thermally coupled emissions have the largest \(S_A \) of \(~12.74 \times 10^{-3} \) K\(^{-1}\) at 573 K while the thermally coupled \(^{3}F_{2,3} \rightarrow ^{5}H_6 \) (695 nm)/\(^{5}H_4 \rightarrow ^{5}H_6 \) (795 nm) emissions have the largest \(S_R \) value of \(~1.74\% \) K\(^{-1}\) at 298 K. As compared in Table 1, the \(S_{3+} \) of Yb/Tm\(^{3+}\)/Yb\(^{3+}\)/Ho\(^{3+}\) phosphor has lower \(S_R \) but significant higher \(S_A \) than K\(_{60}(\text{PO}_4)_2\):Yb/Tm [11], Ba\(_3\)La(PO\(_4\))\(_3\):Yb/Tm [14] and KLuF\(_3\):Yb/Tm [56].

4. Conclusions

Eulytite-type Sr\(_3\)Y(PO\(_4\))\(_3\):0.10Yb\(^{3+}\),0.02Ln\(^{3+}\) phosphors (Ln = Ho, Er, Tm) were synthesized via gel-combustion, and their properties and mechanisms of UC luminescence as well as performances of optical temperature sensing with both thermally coupled and non-thermally coupled energy levels were systematically investigated. The main conclusions are summarized as follows:

(1) The Sr\(_3\)Y(PO\(_4\))\(_3\):Yb\(^{3+}\)/Ln\(^{3+}\) phosphors exhibit green (Ln = Er), orange-red (Ln = Ho) and blue (Ln = Tm) UC luminescence via two- and three-photon processes under 978 nm NIR laser excitation. The phosphors were analyzed to have the average decay times of \(~52 \pm 2\) 260.6 \pm 0.7 and 117 \pm 1 \(\mu s \) for the 524 nm green, 657 nm red and 476 nm blue emissions of Er\(^{3+}\), Ho\(^{3+}\) and Tm\(^{3+}\), respectively.

(2) Sr\(_3\)Y(PO\(_4\))\(_3\):Yb\(^{3+}\)/Er\(^{3+}\) exhibits a better performance of temperature sensing with the thermally coupled \(^{2}H_{11/2} \) and \(^{5}S_{3/2} \) energy levels, whose maximum absolute \(S_A \) and relative \(S_R \) sensitivities are \(~5.07 \times 10^{-3} \) K\(^{-1}\) at 523 K and \(~1.16\% \) at 298 K, respectively.

(3) Sr\(_3\)Y(PO\(_4\))\(_3\):Yb\(^{3+}\)/Ho\(^{3+}\) shows maximum \(S_A \) and \(S_R \) values of \(~0.019 \) K\(^{-1}\) (298–573 K) and \(~0.42\% \) at 573 K for the non-thermally coupled energy pairs of \(^3F_5/(^3F_4, ^5S_2) \) and \(^3I_4/^3F_5 \), respectively.

(4) Sr\(_3\)Y\(_{0.88}(\text{PO}_4)_2\):Yb\(^{3+}\)/Tm\(^{3+}\) has a maximum \(S_A \) of \(~12.74 \times 10^{-3} \) K\(^{-1}\) at 573 K for the non-thermally coupled \(^3F_{2,3} \rightarrow ^{5}H_6 \)\(^2\)G\(_4\)\(^{2+}\)\(^2\)F\(_4\) emissions and a maximum \(S_R \) of \(~1.74\% \) K\(^{-1}\) at 298 K for the thermally coupled \(^3F_{2,3} \rightarrow ^{5}H_6 \)\(^2\)H\(_4\)\(^{2+}\)H\(_4\) emissions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The work is supported in part by the National Natural Science Foundation of China (Grant No. 51702020).

ORCID

Xuejiao Wang [http://orcid.org/0000-0003-4327-2340]
Qi Zhu [http://orcid.org/0000-0001-5513-6309]
Ji-Guang Li [http://orcid.org/0000-0002-5625-7361]

References

[1] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev. 2004;104:139–173.
[2] Dong H, Sun LD, Yan CH. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev. 2015;44:1608–1634.
[3] Gai S, Li C, Yang P, et al. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev. 2014;114:2343–2389.
[4] Wang XF, Liu Q, Bu YY, et al. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 2015;5:86219–86236.
[5] Zhu Q, Song CY, Li XD, et al. Up-conversion monodispersed spheres of NaYF\(_4\):Yb\(^{3+}\)/Er\(^{3+}\)-green and red emission tailoring mediated by heating temperature, and greatly enhanced luminescence by Mn\(^{2+}\) doping. Dalton Trans. 2018;26:8646–8655.
[6] Li J, Li J-G, Zhu Q, et al. Room-temperature fluorination of layered rare-earth hydroxide nanosheets leading to fluoride nanocrystals and elucidation of down-/up-conversion photoluminescence. Mater Des. 2016;112:207–216.
[7] Du P, Luo HJ, Yue QY, et al. The simultaneous realization of high- and low-temperature thermometry in Er\(^{3+}\)/Yb\(^{3+}\)-codoped Y\(_2\)O\(_3\) nanoparticles. Mater Lett. 2015;143:209–211.
[8] Pandey A, Rai VK. Improved luminescence and temperature sensing performance of Ho\(^{3+}\)-Yb\(^{3+}\)-Zn\(^{2+}\): Y\(_2\)O\(_3\) phosphor. Dalton Trans. 2013;42:11005–11011.
[9] Li J-G, Wang XJ, Liu WG, et al. (La\(_{0.97}\)RE\(_{0.01}\)Yb\(_{0.02}\))\(_2\)O\(_5\) Nanophosphors converted from layered hydroxyl sulfate and investigation of upconversion photoluminescence (RE=Ho, Er). Nanoscale Res Lett. 2017;12:508.
[10] Li J-G, Wang ZH, Zhu Q, et al. Upconverting YbPO4:RE monophosphors (RE=Ho, Er, Tm). J Am Ceram Soc. 2018;101:4519–4525.

[11] Zhang J, Zhang YQ, Jiang XM. Investigations on upconversion luminescence of K2Y(PO4)3: Yb3+/Er3+/Ho3+/Tm3+ phosphors for optical temperature sensing. J Alloys Compd. 2018b;748:445–455.

[12] Shi XF, Molokeev MS, Wang XJ, et al. Crystal structure of NaLuW2O8·2H2O and down/upconversion luminescence of the derived NaLu(WO4)3: Yb3+ phosphors for optical temperature sensing. J Alloys Compd. 2018b;748:43–45.

[13] Shi XF, Molokeev MS, Wang XJ, et al. Eulytite-type orthophosphate phosphors. RSC Adv. 2015;5:46517–46524.

[14] Wang XJ, Hu ZP, Zhu Q, et al. La3O5S2O7:RE/Yb:RE upconversion phosphors for near infrared to visible and near infrared upconversion luminescence (RE=Ho, Er, Tm). J Am Ceram Soc. 2018;101:2701–2706.

[15] Cao JF, Zhang J, Li XW. Upconversion luminescence of Ba3La(PO4)3: Yb3+/Er3+/Tm3+ phosphors for optical temperature sensing. Appl Opt. 2018;57:1345–1350.

[16] Liao JS, Nie LL, Wang Q, et al. NaGd(WO4)2:Yb3+/Er3+ phosphors: hydrothermal synthesis, optical spectroscopy and green upconverted temperature sensing behavior. RSC Adv. 2016;6:35152–35159.

[17] Ge HQ, Zhang J. Investigation on luminescence properties of Ba2Y5Si10O30: eFi3+/Ho3+/Yb3+ for optical temperature sensing. J Mater Sci-Mater El. 2018;29:20033–20039.

[18] An SS, Zhang J. Temperature sensing based on upconversion luminescence of Er3+/Tm3+/Yb3+ doped Ca3Y6Si10O32 phosphors. Opt Mater. 2018;81:122–128.

[19] Zhang J, Hua ZH. Effect of dopant contents on upconversion luminescence and temperature sensing behavior in Ca3La5Si10O32: Yb3+/Er3+/Ho3+ phosphors. J Lumin. 2018;201:217–223.

[20] Tian YY, Tian Y, Huang P, et al. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YbPO4 nanoparticles prepared via molten salt route. Chem Eng J. 2016;297:26–34.

[21] Liu WG, Wang XJ, Li J-G, et al. Gel-combustion assisted synthesis of eulytite-type Sr3Y(PO4)3 as a single host for narrow-band Eu3+ and broad-band Eu2+ emissions. Ceram Int. 2017;43:15107–15114.

[22] Liu WG, Zhu Q, Wang XJ, et al. Multi-color luminescence and thermal stability of eulytite-type Ba3La3(PO4)3: Ce3+/Mn2+ phosphors via gel-combustion. J Alloys Compd. 2019;787:495–502.

[23] Wang ZH, Li J-G, Zhu Q, et al. EDTA-assisted phase synthesis of (Gd0.96RE0.03)PO4 nanowires (RE=Eu, Tb) and investigation of photoluminescence. Sci Technol Adv Mater. 2017;18:447–457.

[24] Shi XF, Li J-G, Wang XJ, et al. Facile hydrothermal crystallization of NaLu(WO4)2 (Ln=La-Lu, and Y), phase/morphology evolution, and photoluminescence. Sci Technol Adv Mater. 2017;18:741–754.

[25] Guo N, Zheng YH, Jia YC, et al. Warm-white-emitting from Eu2+/Mn2+ co-doped Sr2La(PO4)3 phosphor with tunable color tone and correlated color temperature. J Phys Chem C. 2012;116:1329–1334.

[26] Zhang CH, Liang HB, Zhang S, et al. Efficient sensitization of Eu2+ emission by Tb3+ in Ba3La(PO4)3 under VUV-UV excitation: energy transfer and tunable emission. J Phys Chem C. 2012;116:15932–15937.

[27] Wang ZY, Xia ZG, Molokeev MS, et al. Blue-shift of Eu2+ emission in (Ba,Sr)2La(PO4)3: Eu2+ eulytite solid-solution phosphors resulting from release of neighbouring-cation-induced stress. Dalton Trans. 2014;43:16800–16804.

[28] Ji HP, Huang ZH, Xia ZG, et al. Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. Dalton Trans. 2015;44:7679–7686.

[29] Guo N, Jia CZ, Li J, et al. Color tuning and energy transfer in Eu3+/Mn2+ doped Ba3Y(P04)3 eulytite-type phosphates. RSC Adv. 2015;5:46517–46524.

[30] Wang N, Fu ZL, Wei YL, et al. Investigation for the upconversion luminescence and temperature sensing mechanism based on BiP04: Yb3+/RE3+ (RE3+=Ho3+, Er3+ and Tm3+). J Alloys Compd. 2019;772:371–380.

[31] Yang ZF, Xu DH, Sun JY, et al. Characterization and luminescence properties of Sr3Gd(P04)3: Sm3+ orange-red phosphor. Opt Eng. 2015;54:105102.

[32] Dai PP, Lee SP, Chan TS, et al. Sr3Ce(P04)3:Eu2++a broadband yellow-emitting phosphor for near ultraviolet-pumped white light-emitting devices. J Mater Chem C. 2016;4:1170–1177.

[33] Arbib EH, Elouadi B, Chaminade JP, et al. The crystal structure of the phosphate eulytite Ba3Bi3(P04)3. Mater Res Bull. 2000;35:761–773.

[34] Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–767.

[35] Miao SH, Xia ZG, Zhang J, et al. Increased Eu2+ content and codoping Mn2+ induced tunable full-color emitting phosphor Ba3(35Ca45SiO4)2: Eu2+, Mn2+. Inorg Chem. 2014;53:10386–10393.

[36] Xia ZG, Zhang JQ, Lian LB. Novel red-emitting Ba3Tb(BO3)2Cl eulytite phosphor with efficient energy transfer for potential application in white light-emitting diodes. Inorg Chem. 2012;51:7202–7209.

[37] Deng DG, Yu H, Li YQ, et al. Ca3(PO4)2O2:Eu2+ red-emitting phosphor for solid-state lighting: structure, luminescent properties and white light emitting diode application. J Mater Chem C. 2013;1:1394–1399.

[38] Zhang XG, Zhou LY, Pang Q, et al. Novel broadband excited and linear red-emitting Ba3Y(BO3)2Cl: Ce3+, Tb3+, Eu2+ phosphor: luminescence and energy transfer. J Am Ceram Soc. 2014;97:2124–2129.

[39] Zhang W-L, Lin X-S, Zhang H, et al. Lone electron-pair mechanism based on BiPO4:Na2Eu3+–Yb3+ luminescence property of eulytite-type Ba3Bi3(PO4)3. Dalton Trans. 2016;45:1073–1081.

[40] Xu QG, Xu DH, Sun JY. Preparation and luminescence properties of orange-red Ba3Y(P04)3: Sm3+ phosphors. Opt Mater. 2015;42:210–214.

[41] Xu QG, Sun JY, Cui DP, et al. Synthesis and luminescence properties of novel Sr3Gd(P04)3: Dy3+ phosphor. J Lumin. 2015;158:301–305.

[42] Li L, Guo CF, Jiang S, et al. Green up-conversion luminescence of Yb3+/Er3+ co-doped CaLa2ZnO3 for optically temperature sensing. RSC Adv. 2014;4:6391–6396.

[43] Zhang J, Hao Z, Li J, et al. Observation of efficient population of the red-emitting state from the green state by non-multiphonon relaxation in the Er3+/Yb3+ system. Light: Sci Appl. 2015;4:e239.

[44] Wu M, Song EH, Chen ZT, et al. Single-band red upconversion luminescence of Yb3+/Er3+ via nonequivalent substitution in perovskite K(MgF3)2 nanocrystals. J Mater Chem C. 2016;4:1675–1684.
[44] Suo H, Guo CF, Li T. Broad-scope thermometry based on dual-color modulation up-conversion phosphor Ba₅Gd₂Zn₄O₂₁:Er³⁺/Yb³⁺. J Phys Chem C. 2016;120:2914–2924.

[45] Zhao JW, Sun YJ, Kong XG, et al. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF₄:Yb³⁺,Er³⁺ nano-crystals/submicroplates at low doping level. J Phys Chem B. 2008;112:15666–15672.

[46] Soni AK, Rai VK, Mahata MK. Yb³⁺ sensitized Na₂Y₂B₂O₇:Er³⁺ phosphors in enhanced frequency upconversion, temperature sensing and field emission display. Mater Res Bull. 2017;89:116–124.

[47] Li H, Zhang Y, Shao L, et al. Influence of pump power and doping concentration for optical temperature sensing based on BaZrO₃:Yb³⁺/Ho³⁺ ceramics. J Lumin. 2017;192:999–1003.

[48] Zhang J, Chen G, Hua Z. Up-conversion luminescence of novel Yb³⁺:Ho³⁺/Er³⁺ doped Sr₅(PO₄)₃Cl phosphors for optical temperature sensing. Opt Mater Express. 2017;7:2084–2089.

[49] Suo H, Guo C, Yang Z, et al. Thermometric and optical heating bi-functional properties of upconversion phosphor Ba₅Gd₂Zn₄O₂₁:Yb³⁺/Tm³⁺. J Mater Chem C. 2015;3:7379–7385.

[50] Hu WJ, Hu FF, Li XY, et al. Optical thermometry of a Tm³⁺/Yb³⁺ co-doped LiLa(MoO₄)₂ up-conversion phosphor with a high sensitivity. RSC Adv. 2016;6:84610–84615.

[51] Wang XI, Zhu Q, Li J-G, et al. La₂O₂S:Tm/Yb as a novel phosphor for highly pure near-infrared upconversion luminescence. Scripta Mater. 2018;149:121–124.

[52] Tong LL, Li XP, Hua RN, et al. Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF₄: Yb³⁺/Er³⁺:nano-/micro-crystals derived from a microwave-assisted hydrothermal route. J Lumin. 2015;167:386–396.

[53] Zhang J, Li XW, Chen GB. Upconversion luminescence of Ba₉Y₅Si₆O₂₄:Yb³⁺-Ln³⁺ (Ln=Er, Ho and Tm) phosphors for temperature sensing. Mater Chem Phys. 2018;206:40–47.

[54] Dey R, Kumari A, Soni AK, et al. CaMoO₄:Ho³⁺-Yb³⁺-Mg²⁺ upconverting phosphor for application in lighting devices and optical temperature sensing. Sens Actuators B. 2015;210:581–588.

[55] Soni AK, Rai VK, Kumar S. Cooling in Er³⁺: BaMoO₄ phosphor on codoping with Yb³⁺ for elevated temperature sensing. Sens Actuators B. 2016;229:476–482.

[56] Min Q, Bian W, Qi Y, et al. Temperature sensing based on the up-conversion emission of Tm³⁺ in a single KLuF₄ microcrystal. J Alloys Compd. 2017;728:1037–1042.