ON TAME \(\mathbb{Z}/p\mathbb{Z} \)-EXTENSIONS WITH PRESCRIBED RAMIFICATION

FARSHID HAJIR, CHRISTIAN MAIRE, RAVI RAMAKRISHNA

Abstract. The tame Gras-Munnier Theorem gives a criterion for the existence of a \(\mathbb{Z}/p\mathbb{Z} \)-extension of a number field \(K \) ramified at exactly a set \(S \) of places of \(K \) prime to \(p \) (allowing real Archimedean places when \(p = 2 \)) in terms of the existence of a dependence relation on the Frobenius elements of these places in a certain governing extension. We give a new and simpler proof of this theorem that also relates the set of such extensions of \(K \) to the set of these dependence relations. After presenting this proof, we then reprove the key Proposition \(3 \) using the more sophisticated Wiles-Greenberg formula based on global duality.

1. Introduction:

Let \(D \in \mathbb{Z} \) be squarefree and odd. Our convention is that \(\infty | D \) if \(D < 0 \). It is a standard result that there exists a quadratic extension \(K/\mathbb{Q} \) ramified at exactly the set \(\{ v : v | D \} \) if and only if \(D \equiv 1 \pmod{4} \). The key is how the Frobenius elements of \(v | D \) lie in the Galois group of the ‘governing extension’ \(\mathbb{Q}(i)/\mathbb{Q} \). Let \(\sigma_v \) denote Frobenius at \(v \) in this extension with \(\sigma_\infty \) being the nontrivial element of \(\text{Gal}(\mathbb{Q}(i)/\mathbb{Q}) \). We frame this as the following theorem:

Theorem There exists a quadratic extension \(K/\mathbb{Q} \) ramified exactly at a tame (not containing 2 but allowing \(\infty \)) set \(S \) of places if and only if \(\sum_{v \in S} \sigma_v \) is the trivial element in \(\text{Gal}(\mathbb{Q}(i)/\mathbb{Q}) \).

In [GM] this result was generalized to \(\mathbb{Z}/p\mathbb{Z} \)-extensions of a general number field \(K \). For a fixed prime \(p \) and set \(S \) of tame places, set

\[
V_S = \{ x \in K^\times \mid (x) = J^p; \ x \in K^\times_p \ \forall \ v \in S \}.
\]

Note \(K^\times_p \subset V_S \) for all \(S \) and \(S \subset T \implies V_T \subseteq V_S \). Let \(\mathcal{O}_K^\times \) and \(\text{Cl}_K[p] \) be, respectively, the units of \(K \) and the \(p \)-torsion in the class group of \(K \). It is a standard result that \(V_\emptyset / K^\times_p \) lies in the exact sequence (see Proposition 10.7.2 of [NSW]):

\[
0 \to \mathcal{O}_K^\times \otimes \mathbb{F}_p \to V_\emptyset / K^\times_p \to \text{Cl}_K[p] \to 0.
\]

Set \(K' = K(\mu_p) \), \(L = K'(\sqrt[4]{\mathbb{Q}(i)}) \) and let \(r_1 \) and \(r_2 \) be the number of real and pairs of complex embeddings of \(K \). We call \(L/K' \) the governing extension for \(K \). When \(K = \mathbb{Q} \) and \(p = 2 \) we see \(L = \mathbb{Q}(i) \) and have recovered the field of the theorem above.

\[
\begin{aligned}
L &:= K'(\sqrt[4]{\mathbb{Q}(i)}) \\
K' &:= K(\mu_p) \\
K &
\end{aligned}
\]

The second author was partially supported by the ANR project FLAIR (ANR-17-CE40-0012) and by the EIPHI Graduate School (ANR-17-EURE-0002). The third author was partially supported by Simons Collaboration grant #524863. He also thanks FEMTO-ST for its hospitality and wonderful research environment during his visit there in the spring of 2022. All three authors were supported by ICERM for a Research in Pairs visit in January, 2022.
As L is obtained by adjoining to K' the pth roots of elements of K (not K'), one easily shows that places v'_1, v'_2 of K' above a fixed place v of K have Frobenius elements in $\text{Gal}(L/K')$ that differ by a nonzero scalar multiple. We abuse notation and for any v' of K' above v in K denote Frobenius at v' by σ_v. The theorem of [GM] (also see Chapter V of [G]) below and Theorem 1 implicitly use this abuse of notation.

Theorem (Gras-Munnier) Let p be a prime and S a finite set of tame places (allowing Archimedean places if $p = 2$) of K. There exists a $\mathbb{Z}/p\mathbb{Z}$-extension of K ramified at exactly the places of S if and only if there exists a dependence relation $\sum_{v \in S} a_v \sigma_v = 0$ in the \mathbb{F}_p-vector space $\text{Gal}(L/K')$ with all $a_v \neq 0$.

The original proof uses class field theory in a fairly complicated way. Theorem 1 is a generalization of the Gras-Munnier Theorem. We first give a short proof that uses only one element of class field theory, (2.1) below, and elementary linear algebra. We easily prove Proposition 3 from the extension of the Gras-Munnier Theorem. We first give a short proof that uses only one element of class field theory, (2.1) below, and elementary linear algebra. We easily prove Proposition 3 from the Wiles-Greenberg formula whose proof requires the full strength of global duality. Denote by G_S the Galois group over K of its maximal extension pro-\mathfrak{p} unramified outside S. Our main result is:

Theorem 1. Let p be a prime and S a finite set of tame places of a number field K (allowing Archimedean places if $p = 2$). The sets

$$\left\{ f \in H^1(G_S, \mathbb{Z}/p\mathbb{Z}) \mid \text{the extension } K_f/K \text{ fixed by } \text{Ker}(f) \text{ is ramified exactly at the places of } S \right\}$$

and

$$\{ \text{The dependence relations } \sum_{v \in S} a_v \sigma_v = 0 \text{ in } \text{Gal}(L/K') \text{ with all } a_v \neq 0 \}$$

have the same cardinality.

It is an easy exercise to see both sets have cardinality at most one when $p = 2$, so the bijection is natural in this case.

We thank Brian Conrad for pointing out to us a proof of Lemma 4(ii) and Peter Uttenthal for helpful suggestions.

2. Proof of the Gras-Munnier Theorem

For any field E set $\delta(E) = \left\{ \begin{array}{ll} 1 & \mu_p \subseteq E \\ 0 & \mu_p \not\subseteq E \end{array} \right.$. Observe that by Dirichlet’s unit theorem $\text{Gal}(L/K')$ is an \mathbb{F}_p-vector space of dimension $r_1 + r_2 - 1 + \delta(K) + \dim Cl_K[p]$. The standard fact from class field theory that we need (see §11.3 of [K] or §10.7 of [NSW]) is a formula of Shafarevich and Koch for the dimension of the space of $\mathbb{Z}/p\mathbb{Z}$-extensions of K unramified outside a tame set Z:

$$\dim H^1(G_Z, \mathbb{Z}/p\mathbb{Z}) = -r_1 - r_2 + 1 - \delta(K) + \dim(V_Z/K^{\times p}) + \left(\sum_{v \in Z} \delta(K_v) \right).$$

Fix a tame set S noting that $H^1(G_S, \mathbb{Z}/p\mathbb{Z})$ may include cohomology classes that cut out $\mathbb{Z}/p\mathbb{Z}$-extensions of K that could be ramified at proper subsets of S. If $\delta(K_v) = 0$ for $v \in S$, there are no ramified $\mathbb{Z}/p\mathbb{Z}$-extensions of K_v and thus no $\mathbb{Z}/p\mathbb{Z}$-extensions of K ramified at v, so we always assume $\delta(K_v) = 1$. Then, as we vary Z from \emptyset to S one place at a time, $\dim(V_Z/K^{\times p})$ may remain the same or decrease by 1. In these cases $\dim H^1(G_Z, \mathbb{Z}/p\mathbb{Z})$ increases by 1 or remains the same respectively.
Let \(W \subset Gal(L/K') \) be the \(\mathbb{F}_p \)-subspace spanned by \(\langle \sigma_v \rangle_{v \in S} \), the Frobenius elements of the places in \(S \). We will show the set of dependence relations on these Frobenius elements all of whose coefficients are nonzero has the same cardinality as the set of \(\mathbb{Z}/p\mathbb{Z} \)-extensions of \(K \) ramified exactly at the places of \(S \). Let \(I := \{ u_1, u_2, \ldots, u_r \} \subset S \) be such that \(\{ \sigma_{u_1}, \sigma_{u_2}, \ldots, \sigma_{u_r} \} \) form a basis of \(W \) and let \(D := \{ w_1, w_2, \ldots, w_s \} \subset S \) be the remaining elements of \(S \). We think of the \(\sigma_{u_i} \) as independent elements and the \(\sigma_{w_j} \) as the dependent elements. As we vary \(X \) in \(\{ \} \) from \(\emptyset \) to \(I \) by adding in one \(u_i \) at a time, we are adding 1 through the \(\delta(K_{u_i}) \) term to the right side of \((2.1) \), but \(\dim V_X/K^{\times p} \) becomes one dimension smaller, so both sides remain unchanged. Then, as we add in the places \(w_j \) of \(D \) to get to \(S = I \cup D \) we have \(V_I/K^{\times p} = V_S/K^{\times p} \). Thus

\[
(2.2) \quad H^1(G_{\emptyset}, \mathbb{Z}/p\mathbb{Z}) = H^1(G_I, \mathbb{Z}/p\mathbb{Z}) = \dim H^1(G_S, \mathbb{Z}/p\mathbb{Z}) - s \implies \dim \frac{H^1(G_S, \mathbb{Z}/p\mathbb{Z})}{H^1(G_{\emptyset}, \mathbb{Z}/p\mathbb{Z})} = s.
\]

We can write each \(\sigma_{w_j} \) as a linear combination of the \(\sigma_{u_i} \) in a unique way:

\[
R_j : \sigma_{w_j} - \sum_{i=1}^r F_{j i} \sigma_{u_i} = 0.
\]

For \(X \subset S \) let \(R_X \) be the \(\mathbb{F}_p \)-vector space of all dependence relations on the elements \(\{ \sigma_v \}_{v \in X} \subset Gal(L/K') \). We prove a preliminary result in the spirit of Theorem \(1 \).

Lemma 2. The set \(\{ R_1, R_2, \cdots, R_s \} \) forms a basis of the \(\mathbb{F}_p \)-vector space of dependence relations on the \(\sigma_{u_i} \) and \(\sigma_{w_j} \).

Proof. Consider any dependence relation \(R \) among the \(\sigma_{u_i} \) and \(\sigma_{w_j} \). We can eliminate each \(\sigma_{w_j} \) by adding to \(R \) a suitable multiple of \(R_j \). We are then left with a dependence relation on the \(\sigma_{u_i} \), which are independent, so it is trivial, proving the lemma. \(\square \)

Proposition 3. For any \(X \subset S \), \(\dim R_X = \dim \left(\frac{H^1(G_X, \mathbb{Z}/p\mathbb{Z})}{H^1(G_{\emptyset}, \mathbb{Z}/p\mathbb{Z})} \right). \)

Proof. Lemma \(2 \) and \((2.2) \) prove this for \(X = S \). Apply the same proof to \(X \subset S \). \(\square \)

Proof of Theorem 1. Proposition \(3 \) does not complete the proof as \(R_S \) may contain dependence relations with support properly contained in \(S \) and \(H^1(G_S, \mathbb{Z}/p\mathbb{Z}) \) may contain elements giving rise to extensions of \(K \) ramified at proper subsets of \(S \).

Proof Theorem 1. The set of dependence relations with support *exactly* in \(S \) is

\[
(2.3) \quad R_S \setminus \bigcup_{v \in S} R_{S \setminus \{ v \}},
\]

those with support contained in \(S \) less the union of those with proper maximal support in \(S \). For any sets \(A_i \subset S \) it is clear that

\[
\bigcap_{i=1}^k R_{A_i} = R_{\bigcap_{i=1}^k A_i},
\]

so by inclusion-exclusion

\[
(2.4) \quad \# \bigcup_{v \in S} R_{S \setminus \{ v \}} = \sum_{v \in S} \#R_{S \setminus \{ v \}} - \sum_{v \neq w \in S} \#R_{S \setminus \{ v, w \}} + \cdots
\]
Similarly the set of cohomology classes giving rise to \(\mathbb{Z}/p\mathbb{Z} \)-extensions ramified exactly at the places of \(S \) (up to unramified extensions) is
\[
H^1(G_S, \mathbb{Z}/p\mathbb{Z}) \setminus \bigcup_{v \in S} H^1(G_{S \setminus \{v\}}, \mathbb{Z}/p\mathbb{Z})/H^1(G_{\emptyset}, \mathbb{Z}/p\mathbb{Z}).
\]

Since for any sets \(A_i \subseteq S \) we have
\[
\bigcap_{i=1}^k \frac{H^1(G_{A_i}, \mathbb{Z}/p\mathbb{Z})}{H^1(G_{\emptyset}, \mathbb{Z}/p\mathbb{Z})} = \frac{H^1(G_{\cap_{i=1}^k A_i}, \mathbb{Z}/p\mathbb{Z})}{H^1(G_{\emptyset}, \mathbb{Z}/p\mathbb{Z})},
\]

we see
\[
\# \bigcup_{v \in S} \frac{H^1(G_{S \setminus \{v\}}, \mathbb{Z}/p\mathbb{Z})}{H^1(G_{\emptyset}, \mathbb{Z}/p\mathbb{Z})} = \sum_{v \in S} \frac{H^1(G_{S \setminus \{v\}}, \mathbb{Z}/p\mathbb{Z})}{H^1(G_{\emptyset}, \mathbb{Z}/p\mathbb{Z})} - \sum_{v \notin w \in S} \frac{H^1(G_{S \setminus \{w\}}, \mathbb{Z}/p\mathbb{Z})}{H^1(G_{\emptyset}, \mathbb{Z}/p\mathbb{Z})} + \ldots
\]

Proposition 3 implies the terms on the right sides of (2.4) and (2.6) are equal so the left sides are equal as well. The result follows from (2.3), (2.5) and applying Proposition 3 with \(X = S \). \(\square \)

3. A proof via the Wiles-Greenberg formula

As the association of dependence relations and cohomology classes in Theorem 1 resembles a duality result, we now prove Proposition 3 using the Wiles-Greenberg formula, which follows from local duality. We assume familiarity with local and global Galois cohomology and their duality theories.

As we will need to apply the Wiles-Greenberg formula, we henceforth assume its hypothesis that \(Z \) is a set of places of \(K \) containing all those above infinity and \(p \). For each \(v \in Z \), let \(G_v := \text{Gal}(K_v/K_v) \) and consider a subspace \(L_v \subset H^1(G_v, \mathbb{Z}/p\mathbb{Z}) \). Under the local duality pairing (see Chapter 7, §2 of [NSW])
\[
H^1(G_v, \mathbb{Z}/p\mathbb{Z}) \times H^1(G_v, \mu_p) \to H^2(G_v, \mu_p) \cong \frac{1}{p} \mathbb{Z}/\mathbb{Z}
\]

\(L_v \) has an annihilator \(L_v^\perp \subset H^1(G_v, \mu_p) \). Set
\[
H^1_{\perp}(G_Z, \mathbb{Z}/p\mathbb{Z}) := \text{Ker} \left(H^1(G_Z, \mathbb{Z}/p\mathbb{Z}) \to \bigoplus_{v \in Z} \frac{H^1(G_v, \mathbb{Z}/p\mathbb{Z})}{L_v} \right)
\]

and
\[
H^1_{\perp \perp}(G_Z, \mu_p) := \text{Ker} \left(H^1(G_Z, \mu_p) \to \bigoplus_{v \in Z} \frac{H^1(G_v, \mu_p)}{L_v^\perp} \right).
\]

We call \(\{L_v\}_{v \in Z} \) and \(\{L_v^\perp\}_{v \in Z} \) the Selmer and dual Selmer conditions and \(H^1_{\perp}(G_Z, \mathbb{Z}/p\mathbb{Z}) \) and \(H^1_{\perp \perp}(G_Z, \mu_p) \) the Selmer and dual Selmer groups.

We state two results that we need for our second proof of Proposition 3. As Lemma 4 (ii) is perhaps not so well-known, we include a sketch of its proof.

Lemma 4. (i) Suppose \(v \nmid p \). Then \(H^1_{\perp}(G_v, \mathbb{Z}/p\mathbb{Z}) \) and \(H^1_{\perp}(G_v, \mu_p) \), the unramified cohomology annihilators, are exact annihilators of one another under the local duality pairing.
(ii) Suppose \(v|p \). Recall \(K'_v = K_v(\mu_p) \). The annihilator in \(H^1(G_v, \mu_p) \) of \(H^1_{\perp}(G_v, \mathbb{Z}/p\mathbb{Z}) \subset H^1(G_v, \mathbb{Z}/p\mathbb{Z}) \) is \(H^1_f(G_v, \mu_p) \), the peu ramifiée classes, namely those \(f \in H^1_f(G_v, \mu_p) \) whose fixed field \(L_{vf} \) of \(\text{Ker}(f|G_{K'_{K_v}}) \) arises from adjoining the \(p \)th root of a unit \(u_f \in K_v \).

Proof. (i) This is standard - see 7.2.15 of [NSW].
(ii) Cohomology taken over Spec(\(\mathcal{O}_{K_v} \)) in what follows is flat. Here
\[
H^1_f(G_v, \mu_p) = H^1(\text{Spec}(\mathcal{O}_{K_v}), \mu_p) = \mathcal{O}_{K_v}^\times / \mathcal{O}_{K_v}^{xp} \subset K_v^\times / K_v^{xp}
\]
where the containment is codimension one as \mathbb{F}_p-vector spaces. Recall
\[\mathbb{Z}/p\mathbb{Z} \simeq H^1_{nr}(G_v, \mathbb{Z}/p\mathbb{Z}) = H^1(\text{Spec}(\mathcal{O}_{K_v}), \mathbb{Z}/p\mathbb{Z}) \]
and by Lemma 1.1 of Chapter III of [M] we have the injections
\[H^1(\text{Spec}(\mathcal{O}_{K_v}), \mathbb{Z}/p\mathbb{Z}) \hookrightarrow H^1(G_v, \mathbb{Z}/p\mathbb{Z}) \text{ and } H^1(\text{Spec}(\mathcal{O}_{K_v}), \mu_p) \hookrightarrow H^1(G_v, \mu_p) \]
and the pairing
\[H^1(\text{Spec}(\mathcal{O}_{K_v}), \mathbb{Z}/p\mathbb{Z}) \times H^1(\text{Spec}(\mathcal{O}_{K_v}), \mu_p) \to H^2(\text{Spec}(\mathcal{O}_{K_v}), \mu_p) = 0 \]
which is consistent with the local duality pairing
\[H^1(G_v, \mathbb{Z}/p\mathbb{Z}) \times H^1(G_v, \mu_p) \to H^2(G_v, \mu_p) = \frac{1}{p} \mathbb{Z}/\mathbb{Z}. \]
As $H^1(\text{Spec}(\mathcal{O}_{K_v}), \mathbb{Z}/p\mathbb{Z}) = H^1_{nr}(G_v, \mathbb{Z}/p\mathbb{Z})$ and $H^1(\text{Spec}(\mathcal{O}_{K_v}), \mu_p) = H^1_{V}(G_v, \mu_p)$ are, respectively, dimension 1 and codimension 1 in $H^1(G_v, \mathbb{Z}/p\mathbb{Z})$ and $H^1(G_v, \mu_p)$, they are exact annihilators of one another, proving (ii).

\section*{Theorem (Wiles-Greenberg)} Assume Z contains all places above $\{p, \infty\}$. Then
\[\dim H^1_{L}(G_{Z}, \mathbb{Z}/p\mathbb{Z}) - \dim H^1_{L}(G_{Z}, \mu_{p}) = \dim H^0(\mathcal{O}_{Z}, \mathbb{Z}/p\mathbb{Z}) - \dim H^0(G_{Z}, \mu_{p}) + \sum_{v \in Z} (\dim L_{v} - \dim H^0(G_{v}, \mathbb{Z}/p\mathbb{Z})). \]

See 8.7.9 of [NSW] for details of this result.

\section*{Second proof of Proposition 3} Recall X is tame and write $X := X_{<\infty} \cup X_{\infty}$. Set $Z := Z_{p} \cup X_{<\infty} \cup Z_{\infty}$ where $Z_{p} := \{v : v|p\}$ and Z_{∞} is the set of all real Archimedean places of K (so $X_{\infty} \subseteq Z_{\infty}$). We assume for all $v \in X_{<\infty}$ that $N(v) \equiv 1 \mod p$.

Recall that for a complex Archimedean place v of K we have $G_{v} = \{e\}$ so the Selmer and dual Selmer conditions are trivial. For a real Archimedean place v, $\dim H^1(G_{v}, \mathbb{Z}/2\mathbb{Z}) = \dim H^1(G_{v}, \mu_{2}) = 1$ and the pairing between them is perfect - see Chapter I, Theorem 2.13 of [M]. It is easy to see in this case that the unramified cohomology groups are trivial.

In the table below we choose $\{M_{v}\}_{v \in Z}$ and $\{N_{v}\}_{v \in Z}$ so that $H^1_{L}(G_{Z}, \mathbb{Z}/p\mathbb{Z}) = H^1(\mathcal{O}_{\emptyset}, \mathbb{Z}/p\mathbb{Z})$ and $H^1_{L}(G_{Z}, \mathbb{Z}/p\mathbb{Z}) = H^1(G_{X}, \mathbb{Z}/p\mathbb{Z})$. The previous paragraph and Lemma 3 justify the stated dual Selmer conditions of the table.

$v \in Z_{p}$	M_{v}^{1}	M_{v}^{1}	N_{v}	N_{v}^{1}
$v \in X_{>\infty}$	$H_{nr}(G_{v}, \mathbb{Z}/p\mathbb{Z})$	$H_{nr}(G_{v}, \mu_{p})$	$H_{nr}(G_{v}, \mathbb{Z}/p\mathbb{Z})$	$H_{nr}(G_{v}, \mu_{p})$
$v \in Z_{\infty}$	$H_{nr}(G_{v}, \mathbb{Z}/2\mathbb{Z})$	$H_{nr}(G_{v}, \mathbb{Z}/2\mathbb{Z})$	$H_{nr}(G_{v}, \mathbb{Z}/p\mathbb{Z})$	$H_{nr}(G_{v}, \mu_{p})$
$v \in X_{<\infty}$	$H_{nr}(G_{v}, \mathbb{Z}/p\mathbb{Z})$	$H_{nr}(G_{v}, \mu_{p})$	$H_{nr}(G_{v}, \mathbb{Z}/p\mathbb{Z})$	$H_{nr}(G_{v}, \mu_{p})$

Applying the Wiles-Greenberg formula for $\{M_{v}\}_{v \in Z}$ and $\{N_{v}\}_{v \in Z}$ and subtracting the first equation from the second:
\[\dim H^1(G_{X}, \mathbb{Z}/p\mathbb{Z}) - \dim H^1(\mathcal{O}_{\emptyset}, \mathbb{Z}/p\mathbb{Z}) = \dim H^1_{L}(G_{Z}, \mathbb{Z}/p\mathbb{Z}) - \dim H^1(\mathcal{O}_{\emptyset}, \mathbb{Z}/p\mathbb{Z}) \]
\[= \dim H^1_{L}(G_{Z}, \mathbb{Z}/p\mathbb{Z}) - \dim H^1(\mathcal{O}_{\emptyset}, \mathbb{Z}/p\mathbb{Z}) + \sum_{v \in Z} (\dim N_{v} - \dim M_{v}) \]

For $v \in X_{<\infty}$ local class field theory implies $\dim H^1_{nr}(G_{v}, \mathbb{Z}/p\mathbb{Z}) = 1$ and $\dim H^1(G_{v}, \mathbb{Z}/p\mathbb{Z}) = 2$ so
\[\dim N_{v} - \dim M_{v} = \begin{cases} 0 & v \in Z_{p} \\ 1 & v \in X_{\infty}, \ p = 2 \\ 0 & v \in Z_{\infty} \setminus X_{\infty} \\ 1 & v \in X_{<\infty} \end{cases} \]
and we have

\[(3.1) \quad \dim \left(\frac{H^1(G_X, \mathbb{Z}/p\mathbb{Z})}{H^1(G_0, \mathbb{Z}/p\mathbb{Z})} \right) = \dim H^1_{\mathcal{X}}(G_Z, \mu_p) - \dim H^1_{\mathcal{M}}(G_Z, \mu_p) + \#X.\]

To prove Proposition 3 we need to show this last quantity is \(\dim R_X = s\), the dimension of the space of dependence relations on the set \(\{\sigma_v\}_{v \in X} \subset W = Gal(K'(\sqrt[p]{\alpha})/K').\)

An element \(f \in H^1_{\mathcal{M}}(G_Z, \mu_p)\) gives rise to the field diagram below where \(L_f/K'\) is a \(\mathbb{Z}/p\mathbb{Z}\) extension peu ramifiée at \(v \in Z_p\), with no condition on \(v \in Z_\infty\) and unramified at \(v \in X_{<\infty}\). We show the composite of all such \(L_f\) is \(K'(\sqrt[p]{\alpha})\).

\[
\begin{array}{c}
L_f := K'(\sqrt[p]{\alpha}) \\
K' := K(\mu_p) \\
\downarrow \\
K
\end{array}
\]

Kummer Theory implies \(\alpha_f \in K'/K'^{\times p}\), which decomposes into eigenspaces under the action of \(Gal(K'/K)\). If it is not in the trivial eigenspace, then \(Gal(L_f/K')\) is not acted on by \(Gal(K'/K)\) via the cyclotomic character, a contradiction, so we may assume (up to \(p\)th powers) \(\alpha_f \in K\). Since \(L_f/K'\) is unramified at \(v \in X_{<\infty}\), we see that at all such \(v\) that \(\alpha_f = u\pi_v^{p^r}\) where \(u \in K_v\) is a unit. At \(v \in Z_p\) being peu ramifiée implies that locally at \(v \in X_p\) we have \(\alpha_f = u\pi_v^{p^r}\) where \(u \in K_v\) is a unit. Together, these mean that the fractional ideal \((\alpha_f)\) of \(K\) is a \(p\)th power, which implies that \(\alpha_f \in V_0\). Conversely, if \(\alpha \in V_0\), then, recalling that \(\alpha = J^p\) for some ideal of \(K\), we have that \(K'(\sqrt[p]{\alpha})/K'\) is a \(\mathbb{Z}/p\mathbb{Z}\)-extension peu ramifiée at \(v \in Z_p\), with no condition at \(v \in Z_\infty\). Thus \(\alpha\) gives rise to an element \(f_\alpha \in H^1_{\mathcal{M}}(G_Z, \mu_p)\) so \(L := K'(\sqrt[p]{\alpha})\) is the composite of all \(L_f\) for \(f \in H^1_{\mathcal{M}}(G_Z, \mu_p)\).

An element \(f \in H^1_{\mathcal{X}}(G_Z, \mu_p)\) gives rise to a \(\mathbb{Z}/p\mathbb{Z}\)-extension of \(K'\) peu ramifiée at \(v \in Z_p\) and split completely at \(v \in X\). We denote the composite of all these fields by \(D \subset K'(\sqrt[p]{\alpha})\).

\[
\begin{array}{c}
L := K'(\sqrt[p]{\alpha}) \\
D \\
K' := K(\mu_p) \\
\downarrow \\
K
\end{array}
\]

Recall that \(r\) is the dimension of the space \(\langle \sigma_v \rangle_{v \in X} \subset Gal(L/K')\). Clearly \(D\) is the field fixed of \(\langle \sigma_v \rangle_{v \in X}\) so \(\dim_{\mathbb{Q}_p} Gal\left(K'\left(\sqrt[p]{\alpha} \right)/D \right) = r = \#I\) from the first section of this note. Thus

\[
\dim H^1_{\mathcal{X}}(G_Z, \mu_p) = \dim(V_0/K^{\times p}) - r
\]

so

\[
\dim H^1_{\mathcal{X}}(G_Z, \mu_p) - \dim H^1_{\mathcal{M}}(G_Z, \mu_p) + \#X = \\
(\dim(V_0/K^{\times p}) - r) - \dim(V_0/K^{\times p}) + (r + s) = s = \dim R_X
\]
and we have shown the the left hand side of (3.1) is $\dim R_X$ proving Proposition 3.

We have now proven Proposition 3 using the Wiles-Greenberg formula. The rest of the proof of Theorem 1 follows as in the previous section.

References

[G] G. Gras, Class Field Theory: from theory to practice, corr. 2nd ed., Springer Monographs in Mathematics, Springer (2005), xiii+507 pages.

[GM] Gras, G. and Munnier, A., Extensions cycliques T-totalement ramifiées, Publ. Math. Besançon, 1997/98.

[K] Koch, H. Galois Theory of p-extensions, Springer 2002.

[M] Arithmetic duality Theorems, Academic press, 1986 First Edition. Second edition available https://www.jmilne.org/math/Books/ADTnot.pdf

[NSW] Neukirch, J.; Schmidt, A.; Wingberg, K. Cohomology of Number Fields, Springer. Second edition, second corrected printing 2013.