Abstract—We address the error floor problem of low-density parity check (LDPC) codes on the binary-input additive white Gaussian noise (AWGN) channel, by constructing a serially concatenated code consisting of two systematic irregular repeat-accumulate (IRA) component codes connected by an interleaver. The interleaver is designed to prevent stopping-set error events in one of the IRA codes from propagating into stopping set events of the other code. Simulations with two 128-bit rate 0.707 IRA component codes show that the proposed architecture achieves a much lower error floor at higher SNRs, compared to a 16384-bit rate 1/2 IRA code, but incurs an SNR penalty of about 2 dB at low to medium SNRs. Experiments indicate that the SNR penalty can be reduced at larger blocklengths.

I. INTRODUCTION

LDPC codes, introduced by Gallager in the early 1960s [1], have received great interest since researchers in the late 1990s and early 2000s ([2], [3], [4]) showed that they can perform within less than 0.1dB of the Shannon limit for a number of important communication channels, including the binary erasure channel and the binary-input AWGN channel. However, for the above-cited codes, near-capacity performance typically holds only above bit error rates (BERs) of 10^{-5} or 10^{-6}; at lower BERs, the nearly vertical (and highly negative) slope of the BER vs. SNR curve levels off into an “error floor” with a smaller magnitude slope.

As there are several important applications that require BERs of 10^{-12} or lower (e.g., mass storage, broadband satellite communications), a number of recent publications have proposed LDPCs specially designed to reduce the error floor. IRA codes, introduced in [5] by Jin, Khandekar, and McEliece, feature a section H_2 of the parity check matrix H that contains only weight-two columns (except for one weight-1 column), and consists of “1”s down the main diagonal and the diagonal just below it. A lemma proved in [6] shows that if the H_2 section contains all the weight two columns of H, then it helps lower the error floor because H_2 contains the maximum number of degree-two variable nodes without a cycle among them. Extended IRA (e-IRA) codes, introduced in [6], are a generalization of systematic IRA codes wherein the remaining section (“H_1”) of the H matrix assumes a more general form; design rules for lowering the error floor of e-IRA codes by optimizing the degree distributions of H_1 are given in [6]. IRA codes and e-IRA codes have the low decoding complexity characteristic of LDPC codes, and the low encoding complexity characteristic of turbo codes [5], [6], [7].

LDPC error floors are caused by connected sets of cycles called “stopping sets” [8]. Codes with larger stopping sets generally have lower error floors. The design technique in [9] attempts to maximize stopping set size by maximizing the average number of connections leading outside small cycles, referred to as the ACE distance d_{ACE}; simulations showed that LDPC codes with larger d_{ACE} had lower error floors. More recently, the authors of [10] proposed a method of directly estimating the variable and check nodes in the smallest stopping sets, along with a code design algorithm to directly maximize the size of these sets. The design algorithm in [10] resulted in codes with significantly lower error floors than those designed according to [9].

The contribution of the present paper is a method of designing serially concatenated IRA codes that achieve lower error floors than single IRA codes of equivalent rate and block size. Two systematic component codes, with block length and rate equal to the square roots of those of a comparable full-length IRA code, are connected in series, with an interleaver between them. This architecture is similar to that of turbo product codes [11], except that, rather than employing the row-column interleaver of product codes, we design the interleaver to avoid the convergence problems that lead to error floors. We use the method of [10] to estimate the stopping sets of the component codes. Then the stopping set data is used to design the interleaver so that, as much as possible, stopping set error events of one of the component codes are not mapped into stopping set variable nodes of the other code. Since each component code has the ability to successfully decode the other code’s non-convergent blocks, convergence problems are greatly reduced, resulting in a lowered error floor at high SNR. Because of the IRA component codes, the concatenated system has relatively low encoding complexity compared to a general irregular LDPC code. The decoding complexity is about twice that of the comparable full-length IRA code, due to the need for outer iterations between the component codes.

This paper is organized as follows. Section II summarizes the encoder and decoder architectures. Section III presents the interleaver design. Section IV presents simulation results, and section V concludes the paper.

II. CONCATENATED IRA ENCODER AND DECODER

A block diagram of the concatenated encoder is shown in Fig. I. It consists of two systematic IRA component codes connected by an interleaver (denoted by π). In the following discussion, we visualize the concatenated system as a product code, with the two encoders operating on rows and columns.
The source data is arranged in a two-dimensional block of size $K \times K$. The rows of the source block are first encoded with the outer $[N, K]$ systematic IRA code, yielding a $K \times N$ coded block in which the first K elements of each row are systematic bits. Then the $K \times N$ coded block is passed through the interleaver. The purpose of the interleaver is to minimize the intersection between the stopping set error events of the row and column component codes. After the interleaver, each K-bit column is encoded with the inner $[N, K]$ systematic IRA code, producing an $N \times N$ code word block. The overall code rate is $R = K^2/N^2$. The identical variable-node degree distributions of the two component codes are chosen to optimize their performances in the waterfall region according to the design algorithm given in [5], subject to the constraint that all weight-2 columns appear in the H_2 section of the parity check matrix; the constraint helps lower the error floors of the component codes. All example codes designed in this paper is used a fixed check node degree of 10. The variable-to-check node connections in the component codes are optimized using the ACE algorithm of [9], in order to further lower the error floors. In our examples, the variable-to-check node connections in the component codes are different, so that the codes have different stopping sets; however, the interleaver design described in section III also works if the component codes are identical.

The decoder for the concatenated system employs iterative message passing between the decoders for the two component codes. The decoder block diagram is shown in Fig. 2. It consists of column and row decoders connected by the interleaver and de-interleaver. The received channel data is decoded column by column by a standard $[N, K]$ IRA decoder employing the sum-product algorithm (SPA, [12]) on the code’s Tanner graph; the column decoder uses the extrinsic information from the row decoder as a priori information. The column decoder outputs a $K \times N$ block of extrinsic information LLRs. The column decoder’s output extrinsic information is then passed through the interleaver and used as prior information by the row decoder. The row decoder makes use of the de-interleaved channel information and the prior information to decode the data row by row, and outputs a $K \times N$ block of LLRs to be used for final decoding decisions, along with a $K \times N$ block of extrinsic LLRs for the column decoder to use during the next iteration.

III. Interleaver Design

The reasons to encode/decode using the structure described above rather than using a single $[N^2, K^2]$ IRA code are as follows. The performance of an LDPC code at high SNR (i.e., in the error floor region) is not determined by the code’s minimum distance, but rather by sets of interconnected short cycles (called stopping sets) that prevent the decoder from converging to a valid codeword. If we can design the interleaver to prevent the mapping of stopping set error events from one of the component codes into stopping set nodes of the other code, then the concatenated structure will help improve the performance at high SNR.

The definition of a stopping set used in this paper is as follows. A variable-node set is called a stopping set if all its neighbors are connected to this set at least twice [9]. In LDPC codes at high SNR, error events occur on the smallest stopping sets with higher probability than on larger stopping sets or non-stopping sets. To simplify, if a variable node is a part of a stopping set, we call it a sensitive node.

Here is an example of how an error event from one IRA component code could propagate into the other one. Suppose variable nodes (6, 9, 25) are sensitive nodes of the column component code and that errors occur on these positions. Since each column uses the same component code, errors will occur on these positions on most columns, i.e., at the end of column decoding, most positions of rows (6, 9, 25) are errors. If we do nothing but directly input these rows to the row decoder, the outputs will have a large number of errors (perhaps even larger then the number of input errors) due of the bad prior information. If we pass the output extrinsic information from the column decoder through an interleaver before it is fed to the row decoder, the errors will not be concentrated on rows (6, 9, 25) and hence can be corrected more easily. Therefore, we postulate two interleaver design rules for the concatenated system:

1. Spread concentrated errors all over the data block.
2. Avoid mapping the sensitive nodes of the row (column) component code into the sensitive nodes of the column (row) component code.

The sensitive positions of a component code can be determined by employing the stopping set detection algorithm of [10]. For a given starting variable node, the algorithm in [10] finds a stopping set containing that node, but does not guarantee that the detected set is minimal; thus, some relatively less-sensitive nodes may be included in the set. To find the most sensitive nodes, we repeatedly run the detection algorithm by starting from every variable node in the code, and count the accumulated times each node appears in a
stopping set; the higher the count, the more sensitive the node. Fig. 3 shows the results of running the algorithm of [10] over the [181, 128] row component IRA code by starting from each variable node. In Fig. 3 the maximum sensitivity count is 181. It is clear from the figure that some nodes are highly sensitive, and that most of the parity bits (bits 129-181) have high sensitivity counts.

Based on the above design rules, we design the interleaver by starting with a random interleaver and imposing additional constraints. First, a relatively good $K \times N$ random interleaver is found by simulation. Then the stopping sets of the row and column component codes are detected using the method of [10]. For given sensitive nodes i and j of the row/column component codes $i \in \{I_0, I_1, \ldots, I_n\}$ and $j \in \{J_0, J_1, \ldots, J_m\}$, where $\{I_0, I_1, \ldots, I_B\}$ and $\{J_0, J_1, \ldots, J_m\}$ are the sensitive nodes of the row and column component codes respectively, we modify the random interleaver so that no element in the jth row before passing through the interleaver is located in the ith column after passing through the interleaver. If the random interleaver maps any element in row j to column i (the “bad mapping” condition), then that element is re-mapped to a random position in the output block, and the element formerly at that random position is mapped into the position of the element in row j; this re-mapping continues until either no bad mappings are found or all the possible positions in the interleaver have been checked, in which case no interleaver solution is possible. Since the stopping set detection algorithm yields a large set, we select only the most sensitive nodes (i.e., the nodes with highest sensitivity counts) in a histogram like that of Fig. 5 to design the interleaver at the beginning. Then we increase the number of selected sensitive nodes step by step until we cannot find a solution for the interleaver.

IV. SIMULATION RESULTS

The Monte Carlo simulation results for the proposed concatenated IRA code structure on the binary-input AWGN channel are shown in Fig. 4. In the figure, the right-most curve (marked by ‘+’ symbols) is the performance of a single IRA component code with source block length $K = 128$ bits and code rate 0.707. The second rightmost curve (marked ‘x’) is the proposed concatenated code with block size $K^2 = 16384$, rate 0.5, and a random interleaver; the random interleaver was found by (non-exhaustive) search over a large number of randomly generated interleavers. The solid line with circle markers is the same code structure as the second curve, but uses an interleaver based on the design rules proposed in section III; this designed interleaver used the random interleaver of the ‘x’ curve as the design’s starting point. The dashed line with star markers is the BER of a rate $1/2$, block length $K^2 = 65536$ concatenated IRA code with optimized interleaver. For comparison, we also simulated single long block length IRA codes with rate 0.5; the solid line is with source block length 16384 and the dashed line is with source block length 65536.

All the single IRA code simulations were run until either a valid codeword was decoded, or 100 iterations were performed. For both the 16384-bit concatenated curves the decoder was run for a total of 10 outer iterations between the component codes, and the component codes were each iterated 10 times per outer iteration. Component decoding (on a given row or column) was terminated before 10 iterations if a valid codeword was decoded. The concatenated iteration schedule was determined experimentally, and therefore may not be optimal. (Further optimization of the iteration schedule using, e.g., EXIT charts [13], will be the focus of future work.) The complexity of the 16384-bit concatenated decoder is thus approximately twice that of the 16384-bit single IRA code, although at higher SNR the complexity of the concatenated system is relatively higher because termination events for the concatenated code eliminate only single rows or columns from the iteration, not the entire codeword. The 65536-bit concatenated decoder was run for a total of 10 outer iterations with 20 inner iterations per outer iteration, so its decoding complexity is about four times that of the single 65536-bit IRA code.

From the figure it is clear that, although the concatenated 16384-bit IRA code has an SNR penalty in the waterfall region (about 2.1 dB SNR at BER 10^{-5}) compared to the single 16384-bit IRA code of equivalent rate, it has a much lower error floor. There is a crossover point between these two codes’ BER curves at a BER of about 10^{-7}, and the BER of the concatenated IRA code decreases much faster than that of the single IRA code at high SNR. By comparing the 16384-bit concatenated codes’ performance with different interleavers, we see that the proposed interleaver design can achieve significant gains (about 0.7 dB at 10^{-5} and 0.3 dB at 10^{-7}) over the random interleaver used as the design starting point, which means the idea of separating the component codes’ stopping sets works.
The $K = 128$ example component codes are quite short. We conjecture that when the block length is increased the penalty in the waterfall region will decrease, since the component IRA codes will asymptotically approach capacity as the block length increases. This conjecture is partly supported by the smaller SNR penalty (about 1.7 dB at BER 10^{-5}) of the 65536-bit rate-1/2 concatenated code compared to the equivalent-rate 65536-bit IRA code, although part of the improvement over the 16384-bit codes may be due to the increased decoder iterations allocated to the 65536-bit concatenated system.

V. Conclusions

This paper has demonstrated that serial concatenation of two IRA codes connected by an appropriately designed interleaver can greatly lower the level and slope of the BER curve in the high SNR region, compared to a single IRA code of equivalent length and rate. We believe that the proposed approach will also work with more general LDPCs as component codes, including, e.g., e-IRA codes or codes optimized with the error-floor lowering algorithm of [10]. Future work will focus on reducing the SNR penalty of the concatenated codes in the waterfall region through more rigorous optimization of the iteration schedule, and through use of longer block length component codes.

ACKNOWLEDGMENT

The authors would like to thank the National Science Foundation for providing support for the work presented in this paper, under grant CCF-0635390.

REFERENCES

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.
[2] D. J. C. MacKay, “Good error correcting codes based on very sparse matrices,” IEEE Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.
[3] T. J. Richardson and R. L. Urbanke, “The Capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599-618, Feb. 2001.
[4] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, Feb. 2001.
[5] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes," in Proc. 2nd. Int. Symp. Turbo Codes and Related Topics, Brest, France, Sept. 2000, pp. 1-8.
[6] M. Yang, W. E. Ryan, and Y. Li, “Design of efficiently encodable moderate-length high-rate irregular LDPC codes,” IEEE Trans. Commun., vol. 52, pp. 564-571, Apr. 2004.
[7] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes," IEEE Trans. Commun., vol. 44, pp. 1261-1271, Oct. 1996.
[8] C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke, “Finite length analysis of low-density parity-check codes on the binary erasure channel," IEEE Trans. Inform. Theory, vol. 48, pp. 1570-1579, June 2002.
[9] T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel, “Selective avoidance of cycles in irregular LDPC code construction," IEEE Trans. Commun., vol. 52, pp. 1242-1247, Aug. 2004.
[10] S. H. Lee, K. S. Kim, J. K. Kwon, Y. H. Kim, and J. Y. Ahn, “Design of an LDPC code with low error floor," in Proc. IEEE Int. Symp. Info. Theory (ISIT 2005), Adelaide, Australia, Sept. 2005, pp. 990-994.
[11] R. M. Pyndiah, “Near-optimum decoding of product codes: block turbo codes," IEEE Trans. Commun., vol. 46, pp. 1003-1010, Aug. 1998.
[12] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm," IEEE Trans. Inform. Theory, vol. 47, pp. 498-519, Feb. 2001.
[13] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes," IEEE Trans. Commun., vol. 49, pp. 1727-1737, Oct. 2001.