A NOTE ON THE NEBENHÜLLE OF SMOOTH COMPLETE HARTOGS DOMAINS

YUNUS E. ZEYTUNCU

Abstract. It is shown that a smooth bounded pseudoconvex complete Hartogs domain in \mathbb{C}^2 has trivial Nebenhülle. The smoothness assumption is used to invoke a theorem of D. Catlin from [2].

1. Introduction

Let \mathbb{D} denote the unit disc in \mathbb{C} and let $\psi(z)$ be a continuous and bounded function on \mathbb{D}. Let us consider the domain Ω in \mathbb{C}^2 defined by;

$$\Omega = \{(z_1, z_2) \in \mathbb{C}^2 \mid z_1 \in \mathbb{D}; |z_2| < e^{-\psi(z_1)}\}.$$

The domain Ω is a bounded complete Hartogs domain. Moreover, it is known that (see [8, page 129]) Ω is a pseudoconvex domain if and only if $\psi(z)$ is a subharmonic function on \mathbb{D}. In order to focus on pseudoconvex domains; we assume that $\psi(z)$ is a subharmonic function for the rest of the note.

Definition 1 ([4]). The nebenhülle of Ω, denoted by $N(\Omega)$, is the interior of the intersection of all pseudoconvex domains that compactly contain Ω. We say Ω has nontrivial Nebenhülle if $N(\Omega) \setminus \Omega$ has interior points.

Let \mathcal{F} be the set of functions $r(z)$ where $r(z)$ is a subharmonic function on a neighborhood of \mathbb{D} such that $r(z) \leq \psi(z)$ on \mathbb{D}. We define the following two functions;

$$R(z) = \sup_{r \in \mathcal{F}} \{r(z)\},$$

$$R^*(z) = \limsup_{D \ni \zeta \to z} R(z).$$

Note that $R^*(z)$ is upper semicontinuous and subharmonic on \mathbb{D}.

The following proposition from [6, Theorem 1] gives the description of $N(\Omega)$ for Ω a complete Hartogs domain as above.

Proposition 2. $N(\Omega) = \{(z_1, z_2) \in \mathbb{C}^2 \mid z_1 \in \mathbb{D}; |z_2| < e^{-R^*(z_1)}\}$.

AMS Subject Classification. Primary 32A07; Secondary 32T05.
This description does not give much information about the interior of the set difference $N(\Omega) \setminus \Omega$. When we drop the continuity assumption on $\psi(z)$; the well known Hartogs triangle gives an example of a domain for which $N(\Omega) \setminus \Omega$ has nonempty interior. On the other hand, the continuity assumption is not enough to avoid this phenomena as seen in the following example from [3].

Example. Let us take a sequence of points in D that accumulates at every boundary point of D and let us take a nonzero holomorphic function f on D that vanishes on this sequence. The function defined by $\psi(z) = |f(z)|$ is a subharmonic function and Ω, defined as above for this particular ψ, is a pseudoconvex domain. On the other hand, any pseudoconvex domain that compactly contains Ω has to contain the closure of the unit polydisc $D \times D$. Therefore, $N(\Omega) \setminus \Omega$ has nonempty interior.

This example suggests to impose more conditions on ψ or Ω to have trivial Nebenhülle. We prove the following theorem in this note.

Theorem 3. Suppose $\Omega = \{(z_1, z_2) \in \mathbb{C}^2 | z_1 \in D; |z_2| < e^{-\psi(z_1)}\}$ is a smooth bounded pseudoconvex complete Hartogs domain. Then $N(\Omega) = \Omega$, in particular Ω does not have nontrivial Nebenhülle.

Note that the smoothness assumption on the domain Ω is a stronger condition than the smoothness assumption on the function $\psi(z)$.

For the rest of the note; $O(\Omega)$ denotes the set of functions that are holomorphic on Ω, $C^\infty(\Omega)$ denotes the set of functions that are smooth up to the boundary of Ω and $A^\infty(\Omega)$ denotes the intersection of these two sets.

2. Proof of Theorem 3

Suppose $N(\Omega) \neq \Omega$ and take $p = (p_1, p_2) \in N(\Omega) \setminus \Omega$. By Proposition 2, we have $R^*(p_1) < \psi(p_1)$ and by semicontinuity of R^* and continuity of ψ; there exists a neighborhood \mathcal{U} of p_1 inside D such that for all $q_1 \in \mathcal{U}$ we have $R^*(q_1) < \psi(q_1)$. The neighborhood \mathcal{U} guarantees that $N(\Omega)$ contains a full neighborhood (in \mathbb{C}^2) of the the boundary point $(p_1, e^{-\psi(p_1)}) \in b\Omega$.

After this observation, we prove the following uniform estimate.

Lemma 4. Suppose $p \in N(\Omega)$ and f is a function that is holomorphic in a neighborhood of Ω. Then $|f(p)| \leq \sup_{q \in \Omega} |f(q)|$.

Proof. Assume otherwise, then $g(z_1, z_2) = \frac{1}{f(z_1, z_2) - f(p)}$ is a holomorphic function on some complete Hartogs domain Ω_1 that compactly contains Ω.

The domain Ω_1 is not necessarily pseudoconvex but its envelope of holomorphy $\tilde{\Omega}_1$ (which is a single-sheeted (schlicht) and complete Hartogs domain) is pseudoconvex (see [8, page 183]). Moreover, any function holomorphic on Ω_1 extends to a holomorphic function on $\tilde{\Omega}_1$.

In particular, $g(z_1, z_2)$ is holomorphic on $\tilde{\Omega}_1$ and therefore $p \notin \tilde{\Omega}_1$. But this is impossible since $p \in N(\Omega)$. This contradiction finishes the proof of the lemma.

Next, we state an approximation result that is a simpler version of the one in [1]. Let us take a holomorphic function f on Ω. We can expand f as follows:

$$f(z_1, z_2) = \sum_{k=0}^{\infty} a_k(z_1) z_2^k,$$

where $a_k(z_1)$ is a holomorphic function on \mathbb{D} for all $k \in \mathbb{N}$. Let us define the following functions, for any $N \in \mathbb{N}$,

$$(5) \quad P_N(z_1, z_2) = \sum_{k=0}^{N} a_k \left(\frac{z_1}{1 + \frac{1}{N}} \right) z_2^k.$$

It is clear that, each P_N is a holomorphic function in a neighborhood of Ω.

Lemma 6. Suppose $f \in A^\infty(\Omega)$. Then the sequence of functions $\{P_N\}$ converges uniformly to f on $\tilde{\Omega}$.

Proof. For $(z_1, z_2) \in \Omega$ and $k \geq 2$, we have;

$$|a_k(z_1) z_2^k| = \left| \frac{1}{k!} \left(\frac{(k-2)!}{2\pi i} \int_{|\zeta| = e^{-\psi(z_1)}} \frac{\partial^2}{\partial \zeta^2} f(z_1, \zeta) \zeta^{-k} d\zeta \right) \right| \leq \frac{1}{2\pi k(k-1)} \left(e^{-\psi(z_1)} \right)^k 2\pi e^{-\psi(z_1)} \left(\sup_{\Omega} \left| \frac{\partial^2}{\partial z_2^2} f \right| \right) \frac{1}{(e^{-\psi(z_1)})^{k-1}} \leq \frac{C}{k^2}$$

for some global constant C. This gives the uniform convergence. □

Since each P_N is holomorphic on a neighborhood of Ω; in particular it is holomorphic on $N(\Omega)$. By Lemma 4, the uniform convergence percolates onto $N(\Omega)$ and therefore we get a holomorphic extension of any function in $A^\infty(\Omega)$ to $N(\Omega)$. On the other hand, let us remember the following theorem from [2].
Theorem 7 (Catlin, [2]). On any smooth bounded pseudoconvex domain there exists a function in $A^\infty(\Omega)$ that does not extend holomorphically to a neighborhood of any boundary point.

In the first paragraph of this section we showed if $N(\Omega) \neq \Omega$ then $N(\Omega)$ contains a full neighborhood of a boundary point. This observation with the one in the previous paragraph contradict Theorem 7. Therefore we conclude the proof of Theorem 3.

Remark. In the description of Ω, the base domain is assumed to be the unit disc \mathbb{D}. However, the result is true when the base is any other planar domain D. The description in Proposition 2 and the remark about the envelope of holomorphies, in the proof of Lemma 4, are also valid for any base D. The approximation statement in Lemma 6 can be modified for any base D, see [1].

Remark. Note that $N(\Omega) = \Omega$ does not imply that Ω has a Stein neighborhood basis; see [3] Proposition 1] for a false proof and [7] for a counterexample.

References

[1] David E. Barrett and John Erik Fornæss. Uniform approximation of holomorphic functions on bounded Hartogs domains in \mathbb{C}^2. *Math. Z.*, 191(1):61–72, 1986.
[2] David Catlin. Boundary behavior of holomorphic functions on pseudoconvex domains. *J. Differential Geom.*, 15(4):605–625 (1981), 1980.
[3] Mihnea Coltoiu and Klas Diederich. Existence of 2-complete neighborhoods for pseudoconvex domains. *J. Geom. Anal.*, 8(1):21–25, 1998.
[4] Klas Diederich and John Erik Fornæss. Pseudoconvex domains: an example with nontrivial Nebenhülle. *Math. Ann.*, 225(3):275–292, 1977.
[5] Shawich Sato. On the Nebenhülle of bounded domains. *Kumamoto J. Sci. (Math.)*, 14(1):64–75, 1980/81.
[6] M. Shirinbekov. Stability of pseudoconvex domains. *Dokl. Akad. Nauk SSSR*, 287(2):286–289, 1986.
[7] Berit Stensønes. Stein neighborhoods. *Math. Z.*, 195(3):433–436, 1987.
[8] Vasilii Sergeevich Vladimirov. *Methods of the theory of functions of many complex variables*. Translated from the Russian by Scripta Technica, Inc. Translation edited by Leon Ehrenpreis. The M.I.T. Press, Cambridge, Mass.-London, 1966.

Department of Mathematics, Texas A&M University, College Station, TX 77843

E-mail address: zeytuncu@math.tamu.edu