Spectrophotometric determination of sulphacetamide sodium via diazotization and coupling reaction

Rana S. Al-Safar¹ and Nabeel S. Othman². *

¹Northern Technical University, Mosul Technical Institute, Mosul, Iraq
²Department of Chemistry, College of Science, University of Mosul, Mosul, Iraq
nsn20002004@yahoo.com

ABSTRACT

A simple spectrophotometric method has been suggested for the assay of sulphacetamide sodium (SAAMS) through diazotization and coupling. The method include the reaction of SAAMS with sodium nitrite in acidic medium of hydrochloric acid to produce the corresponding diazonium salt-SAAMS(D-SAAMS), which is coupled with 2,4-dihydroxybenzophenone (2,4-DHPB) in presence of sodium hydroxide to produce orange azo dye, water-soluble and stable which shows maximum absorbance at 497.5 nm. The absorbance was found to increase linearly with the increasing amounts of SAAMS in the solution from 10 to 250 µg in 10 ml (1-25 µg.ml⁻¹). Two important factors were calculated to show the sensitivity of the method: molar absorptivity and Sandell’s sensitivity index, have the values 2.27×10⁴ l.mol⁻¹.cm⁻¹ and of 0.011198 µg.cm⁻² respectively. Both values demonstrated good sensitivity to the proposed method. SAAMS has been estimated successfully in eyes drops.

Keywords: Sulphacetamide, 2,4-Dihydroxybenzophenone ; Spectrophotometric ; sodium; Diazotization; coupling.

INTRODUCTION

SAAM is broadly used in medicine according of its excellent inhibitory effect on the growth in many types of bacteria. SAAM is sodium derivative of N-[(4-aminophenyl) sulphonyl]acetamide. SAAMS has the chemical structure as illustrate in scheme 1: Its molecular weight is 254.2 g mol⁻¹. [1].
Scheme 1: The chemical structure of SAAMS.

SAAMS has been determined by several analytical methods or techniques such as volumetric – method[2,3], HPLC[4,5],HPLC,TLC [6], SPE-UPLC[7], SPE/LC/MS[8],spectrophotometric [9,10,11,12,13,14,15,16],solid phase extraction–spectrophotometric [17]; micellar electrokinetic chromatography[18],electro-determination using graphite sensor[19] and potentiometric determination[20]. The objective of the current work to provide an optimized spectrophotometric procedure for determination of SAAMS in its pharmaceutical preparation based on diazotization of SAAMS and coupling reaction with 2,4-DHBP in alkaline medium to form a highly colored azo dye that has been proved successfully for the assay of SAAMS in pharmaceutical formulation(eyes drops).

EXPERIMENTAL
Apparatus

CECELL Recording Spectrophotometric ,within 1cm quartz cells have been used in all measurements.

Materials and there reagents

All chemicals used are of analytical rank. SAAMS was obtained from the State Establishment for Drug Productions and Medical Appliances(SDI).

SAAMS solution,50 µg.ml⁻¹

SAAMS solution was prepared by dissolving 0.0100 g of SAAMS (Sigma company) in 100 ml DW in a volumetric flask and 50 ml of above standard solution was diluted to 100 ml with DW in a volumetric flask.

Solution of 2,4-DHBP, 0.4% (w/v%)

A 0.4g of 2,4-DHBP was dissolved in 50 ml ethanol and then dilution of solution to 100 ml with distilled water in a volumetric flask.

Aqueous solutions of sodium nitrite (0.1%), sulpha mic acid (3%), sodium hydroxide (1M) and 1MHCl also have been prepared and used in the present work.

Drug solution(eyes drops),50 µg.ml⁻¹

1-Abeselpha-10
The solution was prepared by mixing 3 containers of abeselpha-10 eyes drop (100 mg SAAMS/ ml), 1 ml of mixture was diluted to 100 ml with DW in a volumetric flask, only 5 ml of above solution was needed to be diluted to 100 ml with DW in a volumetric flask to get eyes drops solution of 50 µg.ml⁻¹.

2-Abeselpha-20

The procedure for abeselpha-20 (200 mg SAAMS/ml) is the same as in abeselpha-10 eyes drops but with only 2.5 ml instead of 5 ml in the second dilution was diluted.

Analytical procedure

Into a series of 10 ml volumetric flasks an increasing volumes of SAAMS (50 µg.ml⁻¹) were transferred to cover the range of the calibration graph 1 to 25 µg.ml⁻¹, then 1 ml of 1 M HCl and 1 ml of 0.1% NaNO₂ solutions were added and lifted for 3 minutes, only 0.2 ml of 3% sulphamic acid solution was added and shake continuously for 2 minutes to remove the excess of HNO₂, then 1 ml of 0.4% 2,4-DHBP reagent and 1.5 ml of sodium hydroxide (1 M) solutions were added before dilution with DW to the mark. Absorbance of orange azo dye at 497.5 nm versus the reagent blank has been measured. The linear relationships between 1 to 25 µg.ml⁻¹ (10 to 250 µg.10 ml⁻¹ (Fig.1) with good value of determination coefficient (R²).

![Figure 1: Calibration curve of SAAMS determination.](image)

By applying the following mathematical relationships[21], the value of the detection limit (LOD) and the value of the quantitative estimate limit (LOQ) are calculated as follows:

\[
\text{LOD} = \frac{3\sigma_B}{S}
\]

\[
\text{LOQ} = \frac{10\sigma_B}{S}
\]

S = Slope for the standard curve.

\(\sigma_B\) = Standard deviation of 10 blank solutions.
The results obtained for the values of LOD and LOQ equal to 0.028085 μg.ml⁻¹ and 0.093617 μg.ml⁻¹ respectively.

RESULTS AND DISCUSSION

All parameters affected the absorption of colored dye were investigated and the optimum conditions of the reaction have been selected.

Principle of the method

SAAMS treatment with nitrous acid (prepared in the bulk solution) to form D-SAAMS.

\[
\text{HNO}_2 + \text{H}_2\text{NSO}_3\text{H} \rightarrow \text{N}_2\uparrow + \text{H}_2\text{SO}_4 + \text{H}_2\text{O}
\]

The last step of the proposed method include coupling reaction of D-SAAMS with 2,4-DHBP in alkaline medium to yield an orange azo dye, which shows maximum absorption at 497.5nm (Scheme 2).

Study of the optimum reaction conditions

Choice of diazotized agent
Several aromatic coupling agents have been tested for optimum condition. The results in Table (1) show that 2,4-DHBP gave the most sensitive ($\varepsilon = 2.234 \times 10^4$ l.mol$^{-1}$.cm$^{-1}$) in alkaline medium. Therefore, it has been fixed as an optimum reagent.

Coupling agent, (0.4%) soln.	Structure	Absorbance	λ_{max} (nm)	Color of azo dye	ε (l.mol$^{-1}$.cm$^{-1}$)
4,4-Dihydroxy diphenyl sulphate	![Structure](image)	0.191	333.5	Yellow	0.97×10^4
2,4-dihydroxy benzophenone	![Structure](image)	0.458	497.5	Orange	2.234×10^4
1,2-phenylene diamine	![Structure](image)	0.305	415.5	Yellow	1.556×10^4

Type of acid and its quantity

The obtained results by adding various amounts of different type of acids HCl, HNO$_3$, H$_2$SO$_4$ and CH$_3$COOH showed that HCl gave the highest absorbance with a highest stability of color and also the amount of HCl has been studied, the optimum amount 1ml has been recommended in the subsequence experiments.

Effect of sodium nitrite quantity and time needed on absorbance

Different quantities of sodium nitrite have been added to show which of them had given a complete diazotation of SAAMS, the results showed that 1ml of 0.1% sodium nitrite with 3 minutes standing time gave the highest absorbance, so that it has been recommended in the subsequent experiments.

Effect the quantity of sulphamic acid and the time needed.

The excess amounts of HNO$_2$ were unwanted affording to its side reactions, so that it is eliminated via adding various amount of sulphamic acid [22]. The results obtained that 0.2 ml of 3% of sulphamic acid with 2 minute shaking gave the highest absorbance for azo dye and it was fixed in the subsequence experiments.

Effect of 2,4-dihydroxy benzophenone amount:
Various amounts of 2,4-DHBP (0.2-1.2 ml) has been added, the highest absorbance of the orange azo dye achieved by adding of 1 ml with the best determination coefficient (R^2) over a range of determination concentration from 25 to 100 µg.10 ml$^{-1}$ (Table 2).

Table 2: Effect of the amount of 2,4-dihydroxybenzoic acid reagent on absorbance.

2,4- DHBP soln. (ml)	SAAMS (µg) in 10 ml	R2			
	25	50	75	100	
0.2	0.188	0.384	0.432	0.455	0.9021
0.5	0.192	0.390	0.662	0.823	0.9956
1.0	0.210	0.455	0.699	0.932	0.9999
1.2	0.198	0.450	0.623	0.928	0.9942

Effect of base

The preliminary experiments indicated that the orange formed azo dye was made in alkaline medium. Different base strong and weak solutions have been used and their impact on absorbance of forming dye has been studied. The result indicated that the coupling reaction needs strong alkaline medium and NaOH gave the highest value of absorbance than other weak bases used, and its choose (Table 3), although the sodium bicarbonate gave the highest colour contrast but the azo dye is not stable.

Table 3: The effect of various base on A and $\Delta \lambda$.

Base*Solution (1M)	A	λ_{max} (nm)	$\Delta \lambda$ (nm)**
NaOH	0.460	497.5	145
KOH	0.454	500	147
NaCO3	0.434	447	162
NaHCO3	0.452	496	194
NH4OH	0.432	445	125

*1.5 ml added. ** $\Delta \lambda$ = Colour contrast = λ_{max} for azo dye - λ_{max} for blank.
The amount of NaOH has been studied by another experiment. The results illustrated in Table 4, indicated that 1.5 ml of NaOH was the optimum volume.

Table 4: The optimum amount of NaOH.

NaOH soln. (ml)	Absorbance of µg SAAMS/10 ml			
	25	50	75	100
0.5	0.08	0.232	0.463	0.612
1.0	0.122	0.385	0.544	0.703
1.5	0.192	0.458	0.663	0.873
2	0.181	0.432	0.612	0.860

The stability of the dye

Absorbance was measured after the completion of all components of reaction and dilution to mark with distilled water directly and after every five minutes for one hour. The results in Table 5 show very good stability of the formed azo dye.

Table 5: Effect of time on absorbance of azo dye.

Time (min.)	Abs. / µg SAS in 10 ml		
	50 µg	75 µg	100 µg
After dilution			
5	0.468	0.639	0.884
10	0.465	0.634	0.876
15	0.467	0.630	0.878
20	0.465	0.631	0.869
25	0.465	0.632	0.869
30	0.465	0.632	0.869
35	0.465	0.632	0.869
40	0.465	0.632	0.869
45	0.465	0.629	0.869
50	0.460	0.629	0.869
55	0.460	0.629	0.866
60 (1hr)	0.460	0.629	0.866
Final Absorption Spectra

Absorption spectra of orange azo dye made from coupling of D-SAAMS with 2,4-DHBP in presence of sodium hydroxide, against its corresponding reagent blank shows extreme absorption at 497.5 nm (Figure 2).

![Absorption Spectra](image)

Figure 2. The absorption spectra for 60 µg/10 ml of SAAMS measured against blank(A), distilled water(B) and blank against distilled water(C).

The nature of the dye

For the purpose of knowing the correlation ratio of SAAMS with reagent 2,4-DHBP, a continuous variation method (Job’s method) [23] has been applied according to the steps. Following. A number of solutions containing different volumes (0.5-2.5) ml of SAAMS and (2.5-0.5) ml of reagent 2,4-DHBP were prepared at a concentration of 4.520×10^{-3} M for each, with the addition of the rest of the solutions under optimum conditions, and the absorption of these solutions was measured against their blank solutions at the wavelength of 497.5 nm. Figure (3) shows the ratio of the SAAMS coupling with reagent 2,4-DHBP is 1:1.
Figure 3. Job's method curve for azo dye resulting from coupling of SAAMS with 2,4-DHBP reagent.

The 1:1 reaction ratio was confirmed by the molar ratio method[23], and Figure 4 confirms that the 1:1 reaction ratio is the same result that obtained by Job's method.

Figure 4. Mole ratio curve for azo dye resulting from coupling of SAAMS with 2,4-DHBP reagent.

The azo dye stoichiometric(1:1) resulted from Fig.3 and Fig.4, so that the proposed chemical structure for the orange azo dye should be as in Scheme 3.

Scheme 3. Orange azo dye.

Estimation of SAAMS in its formulations.
The strength of suggested procedure for spectrophotometric determination of SAAMS was checked by the analysis of SAAMS in different two eyes drops formulations. Table 6 contained the results by using of the linear relationship for calibration curve.

Table 6 : The results of application part.

Pharmaceutical Preparation	Amount taken , µg	Recovery*, %	Relative error*, %	Relative standard deviation*, %
Apsolpha-10	50	99.8	-0.21	±0.22
	150	100.1	+0.03	±0.05
	200	99.5	-0.05	±0.04
Apsulpha-20	50	99.8	-0.44	±0.22
	150	99.9	-0.06	±0.06
	200	99.5	-0.05	±0.04

For the purpose of proving that the proposed method is of high accuracy and control, and given the inability to use the standard method [1] fixed in the British Pharmacopoeia, the standard addition method [24] was used to estimate SAAMS in its pharmaceutical preparations and the results are shown in Figures (5) and (6) which are represented. The standard addition curves for the determination of SAAMS in pharmaceutical preparations (eyes drops) for concentrations 100 and 150 micrograms / 10 ml). Table (7) represents the recovery of SAAMS.

Figure 5. The curve of estimation of SAAMS in pharmaceutical preparation [APSULPHA-10(API)] is represented by the standard addition method.
Figure 6. The curve of estimation of SAAMS in pharmaceutical preparation [APSULPHA-20(API)] is represented by the standard addition method.

Table 7: Recovery of SSAAMS from pharmaceutical preparation (eyes drops) by the standard addition method.

Drug	Drug solution, μg taken	Drug solution, μg founded	Recovery%
APSULPHA-10(API)	100	100.14	100.14
	150	147.29	98.19
APSULPHA-20(API)	100	100.83	100.83
	150	151.04	100.69

The results above indicated the validity of applying this method in estimating SAAMS in the drug preparation (eye drops).

Comparison spectrophotometric methods

A comparison was made between main analytical spectral variables of the proposed method and two methods in literature using in estimating SAAMS (Table 8).

Table 8: Comparison of some analytical variables of the proposed method with other spectral methods

Analytical parameter	Present method	Literature method(16)	Literature method(13)
Reagent used	2,4-DHBP	p-Chloranilic acid	8-hydroxy-7-iodoquinoline-5-sulfonic acid
The results obtained indicate that there is no doubt that the present method is sensitive and of wide application to estimate the compound under study.

CONCLUSIONS

The proposed method is accurate and sensitive spectrophotometric procedure and suitable for the estimation of SAAMS in its drug formulation (eyes drops) without excipients interference.

REFERENCES

1. "British Pharmacopeia" on CD-ROM, 7th Edn. System Simulation Ltd The Stationary Office, London. 2007.
2. Amin, DA. and Shaba, BA. Application of bromine reagent to the assay of sulpha drug, Microchem. J. 1988; 37(1) : 30-35. https://DOI.org/10.1016/0026-265X(88)90163-4.
3. Soliman SO, Belal, SA and Bediar MO. 1984. Improvement of end-point detection non-aqueous titration of sulphacetamide sodium Talanta, 31(4):285-286. [DOI: 10.1016/0039-9140(84)80279-9](https://DOI.org/10.1016/0039-9140(84)80279-9).
4. Xu S, Wu L. Determination of sulphacetamide sodium and sulphanilamide in shao tang ointment by high performance liquid chromatography. Se Pu. 1999 Mar;17(2):206-7. https://www.ncbi.nlm.nih.gov/sars-cov-2/.
5. Shaaban HE, Gorcki TA. High – efficiency liquid chromatography using sub-2µm columns elevated temperature for the analysis of sulphonamides in wastewater. Chromatographyia. 2011; 74 (1) :9-17. [DOI:10.1007/s10337-011-2038-y](https://DOI.org/10.1007/s10337-011-2038-y).
6. El-Ragehy NA, Hegazy, MA, Abdelhamid, G, Tawfik, SA. Validated chromatographic methods for the simultaneous determination of sulphacetamide sodium and prednisolone acetate in their ophthalmic suspension. J Chroma. Sci.. 2017 November-December; 55(10): 1000–1005. doi: 10.1093/chromsci/bmx064.

7. Herrera, AN, Borges, HA , Afonoso, MA , Palenzuela AN, Delgado AN. .2013. Comparison between magnetic and non magnetic multi-walled carbon nanotubes-dispersive SPE combined with Ultra-high performance liquid chromatography for the determination of sulphonamide antibiotics in water samples. Talanta , 116: 695-703. DOI: 10.1016/j.talanta.2013.07.060

8. Hui-zhen WU , Ming-rong QI, Jian-mei WA, Zhang HU, Jun-wei MA, Zu-guang LI, Maw-rong LE.. Simultaneous determination of sulfonamides and metabolites in manure samples by one-step ultrasound/microwave-assisted SLS dispersive extraction and liquid chromatography-mass spectrometry. Anal and Bioanal Chem. 2015; 407(13) :3545-54. DOI: 10.1007/s00216-015-8503-y

9. Sultan SA . Spectrophotometric assay of sulphacetamide sodium in ophthalmic preparation using 2,6-DHT as a new coupling agent. Raf. J. Sci. 2019; 28(3) :116-127.DOI: 10.33899/rjs.2019.163164.

10. Samar DA, Al-Haidari IB, Alaa MO. Spectrophotometric determinations of sulphacetamide following simple diazotization and coupling with chromotropic acid. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 2013;26 (3) :81-95. http://kecbu.uobaghdad.edu.iq/jih/index.php/j/article/view/440

11. Othman, NA, and Kadder RA . Application of trifluoperazine hydrochloride as a chromogenic reagent for spectrophotometric determination of sulphacetamide sodium application to ophthalmic preparations. Raf. J.Sci. 2006; 17(4) : 92-103. https://www.iasj.net/iasj/?func=fulltext&ald=43679

12. AL – Talib, SA., Yunis DE,AL-Abachi, RA QA. Spectrophotometric assay of some sulphonamide drugs via oxidative coupling. AL-Taqani. 2009; 22(2) :1-8. https://www.iasj.net/iasj/?func=fulltext&ald=34795.

13. AL-Uzri WA, Fadi, GA. Spectrophotometric determination of sulphacetamide in pharmaceutical preparation using. 8-hydroxy 7-idoquinoine-5-sulphonic acid as chromogenic agent. Asia J Sci. 2017;29(4) : 782-786. DOI:10.24233/ajchem.2017.20301

14. Raauf, AY, Ali HU,Musa LU. Spectrophotometric determination of sulphacetamide in pure form and pharmaceutical formulations with metol and potassium hexacyano ferrate(III) AJPS 2012;12(2) :189-199. http://ajps.uomustansiriyah.edu.iq/index.php/AJPS/article/view/264/220.

15. Sofia AH, Noureen AN, Muhammad AL ,Iqbal AH. Validation of a stability-indicating spectrometric method for the determination of sulphacetamide sodium in pure form and ophthalmic preparations. J Pharm Bioallied Sci. 2017 Apr-Jun; 9(2): 126–134. DOI: 10.4103/jpbs.JPBS_184_16

16. Hassan MA, Ibrahim, HU,AL – Sabha TH. Spectrophotometric assay of some nitrogen containing drugs in pharmaceutical formulation using p- chloranilic acid reagent. J. Advances in Chem. 2014 April; 9 (1) : 1798-1809. DOI: 10.24297/jac.v9i1.2299
17. Upadhyay, KA, Asthana, AN, Tiwari N. Solid phase extractive spectrophotometric determination of some sulfa drugs Asian Journal of Pharma and Clin Res. 2012; 5: 222-226. https://innovareaacademics.in/journal/ajpcr/Vol5Suppl2/1039.pdf

18. Gallego, LE, Arroyo PE. Determination of prednisolone acetate, sulphacetamide and phenylephrine in local pharmaceutical preparations by micellar electrokinetic chromatography J. Pham. Biomed. Anal. 2003; 31(5) : 873-884. DOI: 10.1016/s0731-7085(02)00666-0.

19. Yadav, Sk., Choubey, PK., Agrawal BH, Goyal, RA. Carbon nanotube embedded poly 1,5- dianinonaphthalene modified pyrolytic graphite sensor for the determination of sulphaecamide in pharmaceutical formulations. Talanta. 2014 January;118: 96-103. DOI: 10.1016/j.talanta.2013.09.061

20. El-Ragehy NA, Hegazy MA, Abdel HA, Tawfik SA. Validated potentiometric method for the determination of sulphacetamide sodium; application to its pharmaceutical formulations and spiked rabbit aqueous humor. Bulletin of Faculty of Pharmacy, Cairo University. 2018 December ; 56(2): 207-212, https://doi.org/10.1016/j.bfopcu.2018.08.002.

21. Valcarcel MI. Principles of analytical chemistry. Berlin: Springer Verlag ; 2000.

22. Bashir WA, Othman NA. Spectrophotometric determination of benzocaine by diazotisation –coupling method with N– (1-naphthyl)ethy-lenediamine dihydrochloride–application to pharmaceutical preparation. J.Edu.Sci, 2005,17:48-60. DOI. 10.33899/edusj.2005.162863.

23. Robert De LE. Principles of quantitative chemical analysis. International ed. Singapore: McGraw-Hill;1997.

24. David.HA .Modern analytical chemistry. Boston: Mc Graw-Hill ;2000.