Topical Review

Study of van der Waals bonding and interactions in metal organic framework materials

Sebastian Zuluaga1, Pieremanuele Canepa1, Kui Tan2, Yves J Chabal2 and Timo Thonhauser1

1 Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
2 Department of Materials Science and Engineering, University of Texas at Dallas, TX 75080, USA

E-mail: thonhauser@wfu.edu

Received 12 December 2013, revised 22 January 2014
Accepted for publication 24 January 2014
Published 11 March 2014

Abstract

Metal organic framework (MOF) materials have attracted a lot of attention due to their numerous applications in fields such as hydrogen storage, carbon capture and gas sequestration. In all these applications, van der Waals forces dominate the interaction between the small guest molecules and the walls of the MOFs. In this review article, we describe how a combined theoretical and experimental approach can successfully be used to study those weak interactions and elucidate the adsorption mechanisms important for various applications. On the theory side, we show that, while standard density functional theory is not capable of correctly describing van der Waals interactions, functionals especially designed to include van der Waals forces exist, yielding results in remarkable agreement with experiment. From the experimental point of view, we show examples in which IR adsorption and Raman spectroscopy are essential to study molecule/MOF interactions. Importantly, we emphasize throughout this review that a combination of theory and experiment is crucial to effectively gain further understanding. In particular, we review such combined studies for the adsorption mechanism of small molecules in MOFs, the chemical stability of MOFs under humid conditions, water cluster formation inside MOFs, and the diffusion of small molecules into MOFs. The understanding of these phenomena is critical for the rational design of new MOFs with desired properties.

Keywords: metal organic frameworks, van der Waals, vdW-DF, IR adsorption and Raman spectroscopy

(Some figures may appear in colour only in the online journal)
1. Introduction

Metal organic framework (MOF) materials are nano-porous materials comprised of metal centers, which are linked by organic ligands. Over the past decade, MOFs have attracted a surge of attention due to their extraordinary properties, useful for hydrogen storage [1–4], CO$_2$ capture [5–9], catalysis [10–12] and sensing [13] among others [14, 15]. Part of the success of MOFs also has to do with their often simple synthesis, i.e. by combining the organic ligands and the metallic salt in a solvothermal reaction [16, 17]. Most practical applications of MOFs rely on a specific interaction of the MOF with small molecules. This interaction—typically of a weak van der Waals type—has thus been at the center of many experimental and theoretical studies. It is exactly the understanding of this interaction that will allow us to interpret the properties of current MOFs better, and design new and improved MOFs with desired properties. For example, we do know that, in general, the surface area of the MOFs and the binding strength to the metal centers are the two main factors controlling the uptake of small molecules. However, the exact correlation between those properties is unclear [18]. Another example that concerns much current research, is trying to address the problem of low stability of MOFs under humid conditions. While some progress has been made [19–24], the newly found water-resistant MOFs often lack the desired specific molecular uptakes that are needed. Overall, progress has been slow to address such questions due to a lack of appropriate methods to study the molecular interactions inside MOFs. In the present review article we highlight a strategy, combining experiment and theory, that overcomes these problems and has been particularly successful in unraveling van der Waals interactions in MOFs.

The experimental study of those interactions often relies on powerful vibrational spectroscopy such as infrared (IR) absorption and Raman scattering, which indirectly provide information about the molecular adsorption process taking place in the MOF. The theoretical description with \textit{ab initio} methods, due to the typical size of MOF unit cells and their extended nature, rules out most highly accurate quantum-chemistry approaches and leaves density functional theory (DFT) as the only viable option. Historically, however, standard exchange–correlation functionals within DFT such as the local density approximation (LDA) and the generalized gradient approximation (GGA) only poorly capture van der Waals interactions. We will show here that the specially designed functional vdW-DF [25–27] is in fact capable of describing van der Waals interactions reliably and gives results in remarkable agreement with experiment.

This review article aims to showcase the importance of IR and Raman spectroscopy techniques combined with \textit{ab initio} simulations at the DFT level (utilizing vdW-DF) as a promising way to study and rationally design complex systems where van der Waals bonding plays a major role. To this end, this work is divided into several sections. In section 2, we give a description of the successes and failures of vibrational spectroscopic techniques to study van der Waals interactions. Then, in section 3, we present a description of the computer simulations used to describe and interpret complex spectroscopic experiments. In section 4, we present several relevant examples where the combination of experiment and theory explains the behavior of various MOF systems and provides much needed understanding. We conclude with a short summary and outlook in section 5.

2. Success and failure of vibrational spectroscopies to study van der Waals interactions

2.1. IR and Raman spectroscopy of small molecule adsorption in MOFs

IR and Raman spectroscopy provide complementary information about bonding configurations through their vibrational spectra. IR spectra reflect photon absorption during transitions from ground to first-excited vibrational levels (ν = 0 → 1) in the electronic ground state, requiring a dynamic dipole moment (associated with a change in the dipole moment during the vibrational motion) [28]. In contrast, Raman spectroscopy is based on photon scattering by molecules and has its origin in the electronic polarization caused by monochromatic visible radiation [28, 29]. Therefore, a vibrational mode is Raman active if the polarizability is modulated during the vibration [28, 29]. Strict selection rules exist for both spectroscopies, sometimes leading to complementary detection [29]. For example, the vibration of the homopolar diatomic molecule H$_2$ is not IR active (due to the absence of a fluctuating dipole associated with the symmetric stretching), but strongly Raman active. However, once the molecule interacts with the MOF, it undergoes a perturbation that slightly polarizes the originally symmetric molecule and makes it weakly IR active. This perturbation is usually accompanied by a red-shift of the H–H stretching modes, located at 4161.1 and 4155 cm$^{-1}$ for para and ortho H$_2$, respectively [30]. For the linear molecule CO$_2$, the symmetric stretch mode (ν$_1$) is Raman active but not IR active, whereas the antisymmetric modes (ν$_2$ and ν$_3$) are IR active [29].

Based on these principles, IR and Raman spectroscopy can be very useful tools to characterize the nature of
host/guest interactions [31–34] in MOFs. Particularly valuable information can be gained by identifying perturbations of the IR active modes. For example, the first spectroscopic evidence for the formation of an electron-donor–acceptor (EDA) complex between CO$_2$ and functional groups of MOFs was observed in a MOF of type MIL-53 and reported in later studies of the adsorption of CO$_2$ in amino-based MOFs [32, 33]. The adsorption of CO$_2$ molecules in MIL-53 leads to a modest red-shift from -10 to -15 cm$^{-1}$ of the stretching mode ν_3 and to a splitting of the bending mode ν_2 due to the removal of degeneracy of the in-plane and out-of-plane bends [32]. A similar splitting of ν_2 modes is common in many electron-donor–acceptor complexes of CO$_2$ with organic solvents or polymers possessing electron-donating functional groups—e.g., carbonyl groups—due to the interaction of the carbon atom of CO$_2$ as the electron acceptor [35, 36]. Moreover, significant perturbations of both ν(OH) and σ(OH) bands of hydroxyl groups (ν(OH) = 19 cm$^{-1}$ and σ(OH) = 30 cm$^{-1}$) suggest that oxygen atoms of the framework hydroxyl group act as the electron donor [32].

As evident from these examples (and many others), it is clear that IR and Raman spectroscopy, by themselves and even without the aid of theoretical calculations, can often provide insight into the interactions between guest molecules and the MOF. However, as we will see in the next section, in other cases the ‘blind’ application of these spectroscopic techniques can lead to a significant misinterpretation of the experimental data obtained. This can happen when IR and Raman spectroscopy are used as indirect probes—i.e. deducing other physical properties of the system from a simple red- or blue-shift in the spectrum. In such cases, theory and computer simulations are essential to derive a complete understanding, as they provide direct access to many properties of the system, and often provide interpretations that are unexpected from simple correlations in the experimental data.

2.2. Difficulty of IR and Raman spectroscopy to describe small molecule adsorption in MOFs

Despite the high sensitivity of spectroscopy to molecular interactions with the MOF, attention must be paid when interpreting the data to extract information about the interaction from vibrational frequency shifts, intensities and line widths [37, 38]. For example, it is commonly accepted that the magnitude of the IR shift of small adsorbed molecules in MOFs is directly related to their adsorption energy, and thus the IR shift can be used indirectly to estimate the relative adsorption energies. However, in our recent IR spectroscopy study of molecular hydrogen in a number of different MOF compounds [37], we find that there is no clear correlation between H$_2$ adsorption energies (determined by isotherm measurements) and the magnitude of the H$_2$ stretch shift. In fact, metal-formate M$_2$(HCOO)$_6$ (M = Co, Ni and Mn) compounds with the highest adsorption energy have the lowest hydrogen IR shift. In this case, we find that the IR shift is dominated by the environment (organic ligand, metal center and structure) [37], rather than by the adsorption energy to the metal.

Similarly, integrated areas for the specific IR bands were long considered to be directly correlated with the amount (loading) of adsorbed molecules, assuming that the dipole moment of the adsorbed species is not affected by loading or site geometry [39–41]. Based on this assumption, variable temperature IR was used to measure the absorbance of IR bands (including that of H$_2$ molecules) and estimate the adsorption energy [39, 41]. However, our theoretical and experimental findings for H$_2$ molecules in MOF74 with unsaturated metal centers indicate that large variations in the induced dipole moment take place as a function of loading, due to the interaction among adsorbed molecules [38]. In the case of Mg-MOF74, the effective charge of H$_2$ at the metal sites weakens (from 0.021 e to 0.015 e as the loading increases from 1 to 12 Hz/primitive cell) as the neighboring sites are occupied. Thus, the IR intensity is reduced by 50%, since it is proportional to the square of the effective charge or the dynamic dipole moment [38]. These findings suggest that the integrated areas of IR bands do not always correlate with the amount of H$_2$ adsorbed, and possible variations in dynamic dipole moments have to be taken into account.

In summary, IR and Raman spectroscopy can be very helpful tools when studying small molecule adsorption in MOFs. However, extreme caution is necessary when utilizing those methods to make assumptions about adsorption energies or loadings, as illustrated in the examples given above. Under these circumstances, theoretical input using first-principles calculations—specifically capable of dealing with van der Waals interactions—is critical to interpret experimental observations correctly.

2.3. Experimentation

Zecchina and coworkers first used transmission IR spectroscopy to study the fundamental aspects of the interaction between H$_2$ and MOFs, mainly in the low-temperature (<300 K) and low-pressure regime. By means of the variable temperature infrared (VTIR) spectroscopy method, the adsorption enthalpy was derived by measuring the intensity of absorption bands as a function of temperature [40, 42]. However, caution must be used when using the VTIR method since the dipole moment might change as a function of loading, as pointed out above. More recent work [24, 37, 38, 43] has investigated a series of small molecules (H$_2$, CO$_2$, CH$_4$, SO$_2$, H$_2$O, etc) using in situ IR absorption spectroscopy to quantify the effect of their interaction with different types of MOFs in a wide range of pressures (from 50 mTorr to 55 bar) and temperatures (10–423 K). In order to perform the IR measurements at and above room temperature, a portion (~10 mg) of MOF was lightly pressed onto a KBr support and mounted into a high-temperature, high-pressure cell (Specac product number P/N 5850c) and further heated in vacuum for activation. During the annealing, the removal of solvent molecules was monitored by in situ IR spectroscopy. Then, the activated sample was cooled to specific temperatures in order to perform the measurements at specific pressure gas exposures. Measurements were
performed in transmission using a liquid-N₂ cooled InSb/MCT detector. Similar measurements were also performed in a Janis PTSHI series cold refrigerator (CCR) system for low-temperature studies (<298 K). In addition to transmission IR, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was employed to investigate the dynamics of H₂ molecules adsorbed within the MOF74 compounds [33, 34]. Furthermore, DRIFTS has also been used to study the interactions between CO₂ and functional groups on the organic ligands of some MOFs under the controlled in situ cell environment [44–46].

Most recently, in situ Raman spectroscopy was also used to study the structural response mechanism of flexible metal organic frameworks Zn₂(bpdc)₂bpee [bpdc = 4,40-biphenyl dicarboxylate and bpee = 1,2-bis(4-pyridyl)ethylene] upon CO₂, N₂ and hydrocarbon molecules adsorption [47, 48]. In this case, Raman spectroscopy is more suitable because the phonon modes of the MOFs do not overwhelm the spectra as they do in the case of IR spectra, which include a large number of combination and overtone bands. By integrating a Linkam FTIR600 cooling/heating stage, the activated sample was measured under a controlled temperature and gas environment. The changes on specific bonds in the MOF structure, monitored by Raman spectroscopy, were correlated to the MOF structural changes and the guest–host interactions.

3. Computer simulations as a tool to interpret complex spectroscopic experiments

3.1. Ab initio modeling of materials

While very successful classical modeling techniques exist, such as force field simulations, which are suitable for studying very large systems, they are not capable of describing the electronic structure of materials and the intricate role it plays in many processes. In the case of MOF materials, we are most interested in electronic-structure changes during the adsorption and desorption of small molecules in their cavities, as well as a number of catalytic processes. As such, unless the cost is prohibitive, ab initio modeling techniques are the methods of choice. For an overview of widely used materials-modeling techniques, ranging from classical approaches to high-level quantum-chemistry methods, see [49].

Modeling MOF materials with ab initio methods presents a particular challenge. The adsorption/desorption of small molecules in MOFs is often governed by physisorption, i.e. weak van der Waals forces, which are difficult to capture correctly with ab initio methods. Correlated high-level quantum-chemistry approaches, such as Moller–Plesset perturbation theory and coupled-cluster methods [50], can describe van der Waals interactions, but their computational cost limits them to small systems (~100 and ~30 atoms, respectively [51]) and their application to large periodic systems, such as the MOFs of interest here, is unpractical [52–57].

Density functional theory (DFT) [58], on the other hand, has a much more favorable computational cost and can be used for systems with up to 1000 atoms—in linear-scaling DFT even up to 100000 atoms [51]. It is also easily implemented with periodic plane-wave basis sets, such that treating periodic systems becomes trivial. Unfortunately, with standard exchange–correlation functionals, DFT cannot reliably describe van der Waals interactions [59–62], a phenomenon where charge fluctuations in one part of the system correlate with fluctuations in another, resulting in an attractive force that is a truly nonlocal correlation effect [63]. It follows that standard local and semi-local functionals, such as LDA and GGA, cannot reliably account for these nonlocal effects and yield qualitatively erroneous predictions [64–67]. While very promising extensions exist [64], most notably DFT-D [68, 69], DFT-SAPT [70–72] and C₆-based methods [73, 74], they are semi-empirical, perturbative and not seamlessly self-consistent density functionals.

3.2. vdW-DF: a good compromise between cost and accuracy

We have overcome this problem and include van der Waals forces self-consistently in DFT [26] in the form of a van der Waals density functional (vdW-DF). Its accuracy is comparable to high-level quantum-chemistry approaches [75–77]. vdW-DF goes beyond standard DFT to include a truly nonlocal correlation $E_{\text{xc}}^{\text{nl}}$ in the exchange–correlation energy E_{xc}.

$$E_{\text{xc}}[n] = E_{\text{xc}}^{\text{revPBE}}[n] + E_{\text{xc}}^{\text{LDA}}[n] + E_{\text{xc}}^{\text{nl}}[n],$$

$$E_{\text{xc}}^{\text{nl}}[n] = \frac{1}{2} \int d\vec{r} d\vec{r}' n(\vec{r})\phi(\vec{r}, \vec{r}')n(\vec{r}')$$

where n is the electron density and revPBE [78] and LDA [79] are standard functionals. $E_{\text{xc}}^{\text{nl}}$ is determined by the kernel ϕ, which is a complicated function of the densities and their gradients at \vec{r} and \vec{r}', first developed by Langreth et al [25]. With the corresponding exchange–correlation potential $v_{\text{xc}}^{\text{nl}}(\vec{r}) = \delta E_{\text{xc}}^{\text{nl}}[n]/\delta n(\vec{r})$ [26], the method becomes self-consistent and permits the calculation of atomic forces—essential for structural optimization and molecular-dynamics simulations. Like high-level quantum-chemical methods, vdW-DF precludes bias through a full, self-consistent solution of the coupled Schrödinger equations for all valence electrons. Calculations automatically include direct and induced electrostatic effects, charge transfer effects and effects due to the non-nuclear centricity of the dispersion interaction as well as its deviations from the inverse sixth power at smaller than asymptotic separations.

vdW-DF can be implemented in standard plane-wave electronic-structure codes exploiting an efficient Fast Fourier transform algorithm [80]. This algorithm scales like standard DFT, and for large systems compute times are negligibly longer than for GGA calculations. We routinely use our own implementation to study hydrogen-storage materials with 300–400 atoms per unit cell [81, 82]. In particular, we have successfully used vdW-DF to study a variety of phenomena in remarkable agreement with experiment [24, 43, 48, 83–90].
3.3. Comparison between vdW-DF simulations and experiment

In MOF adsorption studies, there are ample opportunities for theory and experiment to interact. It is almost straightforward to compare vdW-DF optimized structures with diffraction experiments [91–93]. Of more interest is the comparison of calculated adsorption energies with measured heats of adsorption [94–98]. As pointed out above, IR spectroscopy can be a very powerful method to study the loading of MOFs, but caution is necessary. From the theoretical side, while the full calculation of IR spectra is possible [99], it is much easier and typically sufficient to calculate the IR peak positions—this has been done in a number of studies and shows very good agreement with experiment [83, 85, 97]. Comparison with IR experiments has also been made for vdW-DF calculations of small molecule diffusion [86]. vdW-DF calculations for an exhaustive list of elastic and transport properties of MOFs are also compared with experiment [92, 100, 101].

Table 1. Vibrational frequencies (cm$^{-1}$) of CO$_2$ physiadsorbed in MOF74. Data taken from [83].

System	Bending mode (v$_2$)	Asym. stretch mode (v$_3$)	
Exp.	Free CO$_2$	667	2349
	Mg-MOF74	658	2352
	Zn-MOF74	658	2338
Calc.	Free CO$_2$	646.6	2288.5
	Mg-MOF74	636.6	2288.0
	Zn-MOF74	637.6	2280.4

4. Examples of successful combined experimental/theoretical studies

4.1. Studying adsorption mechanisms of small molecules in MOFs

It has been shown that MOFs with unsaturated metal centers, such as MOF74 and HKUST-1, exhibit a fast and specific CO$_2$ absorption, which is a desirable property for capturing applications [47, 102–104]. Therefore, understanding their absorption mechanisms is critical for the rational design of improved MOFs. In this subsection we discuss and analyze CO$_2$ absorption in MOF74. We will show that the vdW-DF approach is critical in order to understand and correctly explain the corresponding experimental results. As an example, we review CO$_2$ absorption in Zn-MOF74 and Mg-MOF74 and show how the frequency of the asymmetric and stretching modes are modified upon adsorption [83].

The experimental IR absorption spectra results in figure 1 show that the unperturbed asymmetric stretch mode of CO$_2$ (2349 cm$^{-1}$) undergoes shifts of -11 cm$^{-1}$ and $+3$ cm$^{-1}$ upon adsorption on Zn-MOF74 and Mg-MOF74, respectively. But, what causes this shift? To answer this question, ab initio calculations were performed utilizing vdW-DF, finding three factors contributing to this shift, i.e. (i) the change in the CO$_2$ molecule length, (ii) the asymmetric distortion of the CO$_2$ molecule, and (iii) the direct influence of the metal center.

In table 1, we compare the IR spectroscopy data with results from frozen-phonon vdW-DF calculations, where the CO$_2$ molecule was adsorbed at the metal site of MOF74. In particular, the frozen-phonon calculations for the bending mode of CO$_2$ give a change in frequency of approximately -9 cm$^{-1}$ during adsorption on either metal, in excellent agreement with the experimental results. Furthermore, the calculations show that the asymmetric stretch mode of the CO$_2$ molecule exhibits red-shifts of -0.5 cm$^{-1}$ and -8.1 cm$^{-1}$ when adsorbed on Mg-MOF74 and Zn-MOF74, respectively, in reasonable agreement with the changes of $+3$ cm$^{-1}$ and -11 cm$^{-1}$ measured in experiments.

According to vdW-DF calculations [83], the CO$_2$ molecule binds more strongly to Mg-MOF74 than to Zn-MOF74, in agreement with experimental findings. Furthermore, the distance between the metal center and the CO$_2$ molecule is smaller in Mg-MOF74 than in Zn-MOF74. Also, the CO$_2$ molecule experiences a larger distortion upon adsorption in Mg-MOF74, see table 1 in [83]. Therefore, it is
surprising that the frequency shift of the asymmetric stretching mode (see \(v_3\) in table 1) for \(\text{CO}_2\) in Mg-MOF74 is smaller compared with that in Zn-MOF74, and a deeper investigation of what causes this peculiar result is warranted. As mentioned above, this result can be explained with the help of theory.

We will start with the change in the molecule length: in order to analyze this effect, phonon calculations of the free \(\text{CO}_2\) molecule were performed, where its length was set to the value when adsorbed in the MOF, keeping the carbon atom centered. Using this approach, frequency shifts of \(-1.6\ \text{cm}^{-1}\) and \(-3.7\ \text{cm}^{-1}\) were obtained for the cases of Mg- and Zn-MOF74, respectively. It is interesting to see that in the case of Mg-MOF74, the molecule experiences a marginal elongation of 0.0003 Å, while in the case of Zn-MOF74 an elongation of 0.0009 Å takes place. That is, the molecule that experiences the larger elongation exhibits the larger red-shift, as suggested by common sense.

The effect corresponding to the molecule’s asymmetric distortion was studied by placing the \(\text{CO}_2\) molecule exactly at the same geometry as when adsorbed in the MOF, but removing the surrounding MOF. By doing this, the only contributions to the change in frequency come from the elongation of the \(\text{CO}_2\) molecule and the asymmetric distortion of the carbon atom. The former has been reported in the paragraph above, so that the latter can easily be calculated. In this way, we find the shifts corresponding to the induced asymmetry of the \(\text{CO}_2\) molecule to be 1.1 \text{cm}^{-1} and 0.7 \text{cm}^{-1} for Mg-MOF74 and Zn-MOF74, respectively.

Finally, the effect of the metal center was studied by placing the free, undistorted \(\text{CO}_2\) molecule at the metal adsorption site with the same position and angle of the adsorbed system. By doing this, the change in frequency has its highest contribution coming from the oxygen–metal interaction. Using this configuration, the results show a frequency shift of the asymmetric stretching mode of the \(\text{CO}_2\) molecule of \(-5\ \text{cm}^{-1}\) for the Zn-MOF74 system. On the other hand, for Mg-MOF74 the frequency shift has a negligible value of \(-0.6\ \text{cm}^{-1}\). This is a striking result, since Mg and Zn have very similar valence structure with 3s and 4s electrons as the outermost valence states. This result shows that the fully occupied semi-core 3d electrons in Zn have an important effect on the interaction with the adsorbed \(\text{CO}_2\) molecules. Similar results are found in Co- and Ni-MOF74 structures. To shed more light on this situation, a charge-density analysis was performed, finding a depletion of electrons around the Zn atom upon adsorption of the \(\text{CO}_2\) molecule, while this depletion was not present for Mg-MOF74. Thus, the depletion of charge is an effect of the Zn d orbitals, which, in turn, also influences the charge distribution in the adsorbed \(\text{CO}_2\) molecule. Via this mechanism, the Zn d orbitals indirectly affect the IR frequency shift of the adsorbed \(\text{CO}_2\) molecule—explaining the differences between Mg-MOF74 and Zn-MOF74.

In summary, this van der Waals study of small molecule adsorption on MOFs is driven by experimental IR data. But, it is clear that the reasons for the observed IR frequency shifts are not necessarily intuitive and can only be explained with the help of detailed first-principles simulations.

4.2. Studying the chemical stability of MOFs under humid conditions

The stability of MOFs under humid conditions [105–110] is of great importance for the implementation of these systems in various applications and devices. For example, the MOF5 structure is very sensitive to water and its hydrogen uptake properties become compromised when it is exposed to humidity in ambient air. So, how can we design new MOFs that keep their desired properties while being water resistant?

In the case of MOF5, Yeng et al [105] reported the synthesis of methyl- and 2,5-dimethyl-modified versions. By introducing methyl into the linkers, the structure becomes less reactive to water and retains the same hydrogen uptake properties of MOF5 up to four days after being exposed to ambient air. While this is a specific case, resting on the specific interaction of water and \(\text{H}_2\) with the methyl-modified linkers, it can easily be generalized and it is again the interaction of small molecules—in this case water—with the MOF that is the focus of much ongoing research.

In this subsection, we review efforts to understand the MOF–water interaction, using as an example the prototypical metal-organic framework \(\text{M(bdc)(ted)}_{0.5}\) (\(\text{M} = \text{Cu, Zn, Ni, Co; bdc} = \text{1,4-benzenedicarboxylate; ted} = \text{triethylenediamine)}\). This MOF has shown promising properties towards the adsorption of gases, such as \(\text{H}_2\), \(\text{CO}_2\), and \(\text{CH}_4\) [111–113]. \(\text{M(bdc)(ted)}_{0.5}\) exhibits thermal stability up to 282°C, is highly porous, the \(\text{H}_2\) adsorption is exceptionally high, and it can also adsorb a large amount of hydrocarbons. This system was first synthesized and reported by Dybtsev et al in [113] and we will review here its water stability, as originally studied in [43]. A characteristic building block of this particular MOF is the incorporated ‘paddle-wheel’ building-block ted (triethylenediamine), which acts as a linker. In the presence of water, this paddle-wheel structure can be extracted from the framework and replaced by water molecules, forming M-MOF2 (we will refer to it as MOF2), as can be seen in figure 2. Obviously, with its normal linker missing, the \(\text{M(bdc)(ted)}_{0.5}\) structure loses stability and, in most cases, undergoes a non-reversible phase transition.

Figure 3 shows the powder x-ray diffraction (XRD) pattern of four hydrated \(\text{M(bdc)(ted)}_{0.5}\) systems (\(\text{M} = \text{Cu, Zn, Co and Ni}\) after exposure to 9.5 Torr of \(\text{D}_2\text{O}\) vapor and the corresponding activated (pristine) \(\text{M(bdc)(ted)}_{0.5}\) samples. Concerning the \(\text{Cu(bdc)(ted)}_{0.5}\) system, the XRD pattern confirms that the system is stable after exposure to \(\text{D}_2\text{O}\) gas up to a pressure of 6 Torr, see figure S10 in the supporting information of [43]. However, the top left panel of figure 3 shows that all the x-ray peaks are shifted to higher angles, except for the [001] peak, indicating that the \(\text{Cu(bdc)(ted)}_{0.5}\) system is partially hydrolyzed by the \(\text{D}_2\text{O}\) molecules. Even though the structure is only partially hydrolyzed, the original \(\text{Cu(bdc)(ted)}_{0.5}\) structure cannot be recovered after evacuation of water at a temperature of 150°C. In contrast, the left bottom panel of figure 3 clearly indicates that the \(\text{Zn(bdc)(ted)}_{0.5}\) system transforms into MOF2 after hydration. This transformation starts with the detachment of the tet group and the subsequent bonding of the \(\text{D}_2\text{O}\) molecules to the \(\text{Zn}^{2+}\) apical sites of the paddle-wheel building units.
through their oxygen atoms. Concerning the Ni(bdc)(ted)₀.₅ and Co(bdc)(ted)₀.₅ systems under humid conditions, the right bottom and right upper panels of figure 3 indicate that the Ni(bdc)(ted)₀.₅ maintains its structure after been exposed to 9.5 Torr of D₂O vapor, while the Co(bdc)(ted)₀.₅ is completely destroyed after exposure. Furthermore, the Co(bdc)(ted)₀.₅ structure cannot be recovered after annealing in vacuum up to 150°C, see figure S13 in the supplemental material of [43].

In order to explain the previous experimental results and give a clear explanation of how water interacts with the M(bdc)(ted)₀.₅, we review computational results obtained in [43] concerning the Ni(bdc)(ted)₀.₅ and Zn(bdc)(ted)₀.₅ systems. The energy ΔE needed to extract the paddle wheel and replace it with water molecules was calculated using the vdW-DF formalism as

\[ΔE_M(bdc)(ted)_0.5 = E[M(bdc)(ted)_0.5] + E[n \cdot H_2O] - E[MOF2 + n \cdot H_2O] - 1/2 E[(ted)], \]

where \(n \) is the number of water molecules in the MOF, \(E[M(bdc)(ted)_0.5] \) is the energy of the MOF with no water molecules in it (as seen in the left panel of figure 2), \(E[n \cdot H_2O] \) is the energy of \(n \) water molecules, \(E[MOF2 + n \cdot H_2O] \) is the energy of the \(M(bdc)(ted)_0.5 \) where the ‘exciting’ ted has been replaced with \(n \) water molecules (right panel of figure 2) and \(E[(ted)] \) is the energy of the ted. Table 2 shows the energies required to substitute the ted in the Zn and Ni(bdc)(ted)₀.₅ structures by 2, 4, 6, 8 and 10 water molecules. Note that negative ΔE values indicate that the replacement is energetically favorable. The table shows that Ni(bdc)(ted)₀.₅ is more resistant to water than Zn(bdc)(ted)₀.₅, as found in the spectra in figure 3, and the hydration of the latter is a spontaneous process. This is due to the strong H bonds between the water molecules, which stabilizes the coordination of the Zn metal centers. On the other hand, in the case of Ni(bdc)(ted)₀.₅, \(ΔE_M(bdc)(ted)_0.5 \) becomes negative only when the number of water molecules is six or greater.

Alternatively, one can calculate the energy \(ΔE_{M-MOF2} \) required for hydration of the MOF2 structure with \(n \) water molecules, using:

\[ΔE_{M-MOF2} = E[MOF2] + E[n \cdot H_2O] - E[MOF2 + n \cdot H_2O]. \]
Here, E_{MOF2} is the energy of the $M(bdc)_{0.5}$ ted, where the ted has been replaced by two molecules of water; the other terms in the equation have been previously defined, see equation (3). The right hand side of table 2 shows that for MOF2 the hydration of the Zn and Ni systems is a spontaneous process with an energy gain of approximately -55 kJ mol$^{-1}$ cell$^{-1}$ for higher loadings. This trend is almost independent of the metal.

In conclusion, the computational results explain the experimental findings in [43], indicating that the structural stability of the system depends on the amount of water present in the MOF. At lower loadings the system is stable, while at higher loadings the interaction of water with the paddle wheel leads to the irreversible decomposition of the structure.

4.3. Studying the formation of water clusters in fluorinated MOFs

The large internal surface area of MOFs makes them ideal for catalysis and fuel-cell applications, which have attracted a surge of interest [10–12, 16, 114, 115]. While some progress has been made—for example, Hurd et al [116] show intriguing results for β-PCMOF2 (proton conducting metal organic framework 2), capable of proton transport under anhydrous conditions at 150°C—in general, the low hydrothermal and chemical stability of MOFs prevents their implementation in catalytic and fuel-cell systems. In the recent past, thus, concerted efforts have focused on increasing the hydrothermal and chemical stability of MOFs prevents their implementation in catalytic and fuel-cell systems. In the recent past, thus, concerted efforts have focused on increasing the hydrothermal and chemical stability of MOFs [109, 117, 118].

A promising approach to increase the chemical and hydrothermal stability is fluorinated MOFs (FMOFs), where the H atoms have been replaced by F atoms [119–121]. Yang et al report interesting results for FMOF1, showing that the hydrogen-desorption isotherm does not follow the path of the adsorption isotherm [119], in fact, it shows an abrupt drop in the adsorption density at 14 bar. The authors highlight the fact that this behavior would allow FMOF1 to adsorb H$_2$ at high pressures and store it at low pressures.

In general, the walls of FMOF systems are hydrophobic, leading to an interesting side effect: the weak interaction of water molecules with the FMOF enhances the creation of water clusters inside its pores. In this subsection, we review the formation and behavior of water clusters inside FMOF1, as reported in [24]. As in previous sections, an understanding of the weak molecular interactions inside this system was gained by a combination of vdW-DF calculations and IR absorption spectra of water-exposed FMOF1 as a function of pressure. Note that the interaction between water molecules has a significant van der Waals component, which is well captured with vdW-DF [122], while the electrostatic interaction is suppressed by the wall hydrophobicity of FMOF1.

Experimental isotherm measurements of FMOF1 show that the adsorption of water is negligible compared to the water adsorption in other systems [121]. Furthermore, at low water pressures (800 mTorr–3 Torr), the IR adsorption measurements of H$_2$O adsorbed on FMOF1 show two peaks corresponding to red- (-13 cm$^{-1}$) and blue-shifts ($+9$ cm$^{-1}$) of the unperturbed scissor vibration mode (1621 cm$^{-1}$) of the water molecule, as can be seen in figure 4. On the other hand, as the pressure is increased to 9 Torr, new peaks associated with scissor vibration modes appear at 1639 and 1676 cm$^{-1}$, as can be seen in the top panel of figure 5.

In order to elucidate the appearance and nature of these peaks, vdW-DF vibration calculations were performed for various water clusters, i.e. the water dimer, trimer, tetramer, pentamer and ice; the results are shown in figure 6. Figure 6(a) shows the calculated modes convolved with Gaussian functions of 20 cm$^{-1}$ bandwidth, while panel (b) shows single-frequency values represented by peaks of 1 cm$^{-1}$ width. As expected, from the figure it can be seen that the bigger the water cluster, the greater the number of scissor modes. It is also important to note that for pressures under 3 Torr, the scissor vibrational modes in figure 4 span from...
MOFs have attracted a lot of attention due to their promising properties concerning the storage of hydrogen and capture of CO\textsubscript{2}. For example, in [128], Haldoupis et al identified key elements in the MOF’s pore structure and via molecular dynamic simulations they were able to predict the Henry constant and the activation energy for several guest molecules. In particular, the authors were able to identify several materials with promising properties towards the separation of gases, such as H\textsubscript{2}, CO\textsubscript{2}, and CH\textsubscript{4}. However, in their study, the authors assume that the MOFs are rigid structures, which can be a serious limitation, as we know that some MOFs experience a significant change in their structure upon adsorption of the guest molecules or other external stimuli due to their high flexibility.

In this subsection we review a combined in situ IR/vdW-DF study of small molecule diffusion in Mg-MOF74, as described in [87]. MOF74 was chosen for this study due to its unsaturated metal centers, which makes it highly reactive towards the adsorption of small molecules. Furthermore, Mg-MOF74 has shown promising properties towards the adsorption of CO\textsubscript{2} compared to other MOFs.

We start by showing results concerning the adsorption energies of H\textsubscript{2}, CO\textsubscript{2}, and H\textsubscript{2}O in the Mg-MOF74 structure, see table 3. This table shows that for low to moderate loadings the interaction between adsorbate molecules is negligible, except for H\textsubscript{2}O adsorption, where the repulsion between the H atoms of the water molecules slightly debilitates the H\textsubscript{2}O binding to the MOF. The adsorption energies for the adsorption of H\textsubscript{2} and CO\textsubscript{2}, obtained using the vdW-DF approach, are in excellent agreement with the experimental values of -0.11 ± 0.003 eV [98] and -0.49 ± 0.010 eV [104], respectively. Although not the focus of that particular study, table 3 also reveals a common problem of many MOFs: the adsorption energy of water (due to its large dipole moment) is typically significantly higher compared to, for example, H\textsubscript{2} and CO\textsubscript{2}. Thus, the presence of even small traces of water is a serious impediment to possible applications and devices, as anticipated in the previous section. Details about this problem are discussed in [90]. In addition to adsorption energies, calculations of the vibrational spectra show a frequency change after adsorption of $\Delta \nu_{\text{H}_2} = -30$ cm$^{-1}$, $\Delta \nu_{\text{CO}_2} = -13$ cm$^{-1}$ and $\Delta \nu_{\text{H}_2\text{O}} = -103$ cm$^{-1}$, in remarkable agreement with the IR spectroscopy measurements of $\Delta \nu_{\text{H}_2} = -36$ cm$^{-1}$, $\Delta \nu_{\text{CO}_2} = -8$ cm$^{-1}$ and $\Delta \nu_{\text{H}_2\text{O}} = -99$ cm$^{-1}$. Experimentally, there is also a small difference in the frequency change between low and high loading, resulting in red-shifts of -3 and -15 cm$^{-1}$ for the asymmetric stretch modes of CO\textsubscript{2} and H\textsubscript{2}O respectively (see supplemental material of [87]).

Computationally, we find $\Delta \nu_{\text{CO}_2} = -1$ cm$^{-1}$ and $\Delta \nu_{\text{H}_2\text{O}} = -18$ cm$^{-1}$, again in excellent agreement with experiment.

The diffusion of small molecules (H\textsubscript{2}, CO\textsubscript{2} and H\textsubscript{2}O) through the MOF is a complex process. An appropriate description of such processes typically requires computationally expensive first-principles molecular dynamic simulations. However, here we were able to avoid the use of molecular dynamics by finding four different diffusion paths that capture the important molecular transport mechanisms responsible for the macroscopic diffusion of H\textsubscript{2}, CO\textsubscript{2} and
H$_2$O in the MOF structure. These four paths are: (a) the guest molecule, adsorbed on one metal center, travels circularly from one metal center to the next. Note that this mechanism is not responsible for molecular transport into the MOF, but nevertheless is an important process for redistributing the molecular load. (b) The guest molecule, adsorbed on the metal center, diffuses along the c-axis to the next metal center. (c) The guest molecule travels through the center of the MOF’s channel, where all the metal centers are occupied by the same type of guest molecules. (d) The guest molecule, adsorbed on one of the metal centers, travels along the c-axis through a barrier made by adsorbed molecules and is adsorbed at the equivalent metal center two unit cells further down. See figure 7 for a graphical representation of these four diffusion paths. For these paths, diffusion barriers were then calculated utilizing vdW-DF combined with the climbing-image nudged elastic band (NEB) approach.

The energy barriers of the four diffusion paths are plotted in figure 8. Note that diffusion barriers corrected for the zero-point energy were also calculated, but are not reproduced here. From the figure it can be seen that water has the highest energy barrier for diffusion. Again, the presence of water inside the MOF is a serious issue, as the barrier for it to diffuse out is rather large. As expected, the energy barriers are comparable to the adsorption energies. In panel (a), it can be seen that a local minimum is located at 58% of the path for CO$_2$ diffusion. This local minimum has its origins in the presence of a secondary adsorption site in the MOF. Due to its low depth (5 meV), the secondary adsorption site is occupied only at high loadings. This secondary adsorption site for the CO$_2$ molecule was first reported by Queen et al in [130], where the authors conducted neutron powder diffraction experiments on the Mg-MOF74 as a function of the CO$_2$ loading. Paths (b)–(d) aim to simulate the diffusion of the guest molecule into the MOF. Note that the diffusion barriers in path (c) are ten times lower than the ones obtained in paths (a)–(d). This indicates that the interaction between the guest molecules in the middle of the channel and the ones adsorbed at the metal sites is small. Furthermore, it is important to highlight that the diffusion energy barrier of CO$_2$ in figure 8(c), i.e. 0.04 eV, becomes 0.03 eV when corrected for the zero-point energy. This value is in excellent agreement with the 0.03 eV energy barrier measured experimentally by Bao et al in [131].

In addition to vdW-DF calculations, in situ IR time-resolved spectroscopy measurements of the diffusion of CO$_2$ and H$_2$O in Mg-MOF74 were performed. When the experiments were first performed, the results were difficult to understand. In the case of CO$_2$, at first we observed a red-shift in the vibration frequency (asymmetric mode) of the guest molecules. As time passes, the IR spectrum measurements show a second shift (blue-shift) in the vibration frequencies.

Table 3. Adsorption energies ΔE of molecules in Mg-MOF74 in eV. Two different loadings are considered, i.e. one molecule per unit cell (low loading) and six molecules per unit cell (high loading). In addition, adsorption energies corrected for the zero-point energy (ΔE_{ZPE}) and thermal contribution (ΔH_{298} at 298 K) are given in eV. Data taken from [87].

Molecule	Loading	ΔE	ΔE_{ZPE}	ΔH_{298}
H$_2$	1	−0.15	−0.15	−0.15
	6	−0.16	−0.16	−0.16
CO$_2$	1	−0.50	−0.49	−0.50
	6	−0.50	−0.49	−0.50
H$_2$O	1	−0.79	−0.76	−0.76
	6	−0.76	−0.73	−0.73
of the guest molecules, leading to the original IR spectrum. The analogous behavior is observed for the corresponding experiment with H$_2$O. With the help of theory, we were able to construct a model that explains these effects. At first, molecules entering the MOF mostly adsorb in the pores close to the surface and 'clog' those. This causes the first experimentally observed red-shift. Those pores become highly loaded, which we were able to deduce from the calculated difference in frequency shift from the low- and high-loading situations. Then, after some time, molecules start to diffuse deeper into the MOF using mechanism (c), diffusing from pores with a high concentration of guest molecules to pores with lower concentration. This results in the second shift observed, i.e. blue-shifting back to the original spectrum.

To test our model, we compare the experimental timescale for the CO$_2$ and H$_2$O cases. The experiments show that it takes approximately two hours for the H$_2$O molecules and 22 min for the CO$_2$ molecules to go from the high-loading regime to the low-loading regime. The ratio between these two times is 5.45. On the other hand, having calculated the corresponding diffusion barriers (and calculating the pre-exponential factor in the Arrhenius equation with the help of transition-state theory), we can compute the same ratio and find based purely on our ab initio calculations a value of 5.43, validating our theoretical accuracy and transport model.

In summary, as in the previous subsections, only the combination of experiment and theory was able to present a complete picture of small molecule diffusion in MOF74. The theoretical atomistic model for the molecular transport explains experimental IR macroscopic evidence. The simulations also clarify the two-state mechanism, observed experimentally, which controls the macroscopic diffusion of these molecules in MOF74.

5. Summary and outlook

In this work, we have shown several examples of how the synergy of IR and Raman spectroscopy techniques, together with ab initio calculations at the DFT level utilizing vdW-DF, allow us to give a complete description of the van der Waals binding and interaction between guest molecules and the MOF. While originally many studies of MOFs focused on the adsorption of H$_2$ and CO$_2$, at the moment we see a vast expansion of this field, including many other molecules of interest, such as SO$_2$ and NO$_2$ [89, 132–135]. Interesting effects are also being studied, such as a pressure-dependent gate opening of MOFs [48, 136–138] and the response of MOFs to a variety of external stimuli. Due to the versatile building-block nature of MOFs, an almost innumerable number of MOFs might exist. However, more fundamental research is necessary to understand their properties and tailor them according to our needs. Nonetheless, at this point we have probably only seen a glimpse of their applicability for future applications and devices.

Acknowledgment

This work was entirely supported by Department of Energy Grant No. DE-FG02-08ER46491.

References

[1] Zhao D, Yuan D and Zhou H-C 2008 The current status of hydrogen storage in metal–organic frameworks Energy Environ. Sci. 1 222–35
[2] Sun D, Ma S, Ke Y, Collins D J and Zhou H-C 2006 An interweaving MOF with high hydrogen uptake J. Am. Chem. Soc. 128 3896–7
[3] Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, O’Keeffe M and Yaghi O M 2003 Hydrogen storage in microporous metal–organic frameworks Science 300 1127–1129
[4] Furukawa H, Miller M A and Yaghi O M 2007 Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks J. Mater. Chem. 17 3197–204
[5] An J and Rosi N L 2010 Tuning MOF CO$_2$ adsorption properties via cation exchange J. Am. Chem. Soc. 132 5578–9
[6] Liu J, Thallapally P K, Peter McGrail B, Brown D R and Liu J 2012 Progress in adsorption-based CO$_2$ capture by metal–organic frameworks Chem. Soc. Rev. 41 2308–22
[7] Mallick A, Saha S, Pachfule P, Roy S and Banerjee R 2010 Selective CO$_2$ and H$_2$ adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites J. Mater. Chem. 20 9073–80
[8] Grajcar L, Wiersum A D, Llewellyn P L, Chang J-S and Nachtigall P 2011 Understanding CO$_2$ adsorption in
CuBTC MOF: comparing combined DFT-quantum calculations with microcalorimetry experiments J. Phys. Chem. C 115 17925–33

[9] Pera-Titus M 2014 Porous inorganic membranes for CO2 capture: present and prospects Chem. Rev. 114 1413–92

[10] Farha O K, Shultz A M, Sarjeant A A, Nguyen S T and Hupp J T 2011 Active-site-accessible, porphyrinic metal–organic framework materials J. Am. Chem. Soc. 133 5652–5

[11] Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T and Hupp J T 2009 Metal–organic framework materials as catalysts Chem. Soc. Rev. 38 1450–9

[12] Shultz A M, Farha O K, Hupp J T and Nguyen S T 2009 A catalytically active, permanently microporous MOF with metalloporphin struts J. Am. Chem. Soc. 131 4204–5

[13] Kreno L E, Leong K, Farha O K, Allendorf M, Stroppa A, Barone P, Jain P, Perez-Mato J M and Picozzi S 2011 Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal organic framework Adv. Mater. 25 2284–90

[14] Stroppa A, Jain P, Barone P, Marsman M, Perez-Mato J M, Cheetham A K, Kroto H W and Picoczi S 2011 Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal organic framework Angew. Chem. Int. Edn 50 5847–50

[15] Kuppler R J, Timmons D J, Fang Q-R, Li J-R, Makal T A, Young M D, Yuan D, Zhao D, Zhuang W and Zhou H-C 2009 Potential applications of metal–organic frameworks Coord. Chem. Rev. 253 3042–66

[16] Stroppa A, Jain P, Barone P, Marsman M, Perez-Mato J M, Cheetham A K, Kroto H W and Picoczi S 2011 Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal organic framework Angew. Chem. Int. Edn 50 5847–50

[17] Yang Q et al 2013 A water stable metal–organic framework with optimal features for CO2 capture Angew. Chem. Int. Edn 52 10316–20

[18] Taylor J M, Dawson K W and Shimizu G K H 2013 A water-stable metal–organic framework with highly acidic pores for proton-conducting applications J. Am. Chem. Soc. 135 1193–6

[19] Li Y, Ju Z, Wu B and Yuan D 2013 A water and thermally stable metal–organic framework featuring selective CO2 adsorption Cryst. Growth Des. 13 4125–30

[20] Han S S, Choi S-H and van Duin A C T 2010 Molecular dynamics simulations of stability of metal–organic frameworks against H2O using the ReaxFF reactive force field Chem. Commun. 46 5713–5

[21] Demessence A, D’Alessandro D M, Foo M L and Long J R 2009 Strong CO2 binding in a water-stable, triazole-bridged metal–organic framework functionalized with ethylenediamine J. Am. Chem. Soc. 131 8784–6

[22] Nijem N et al 2013 Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal–organic framework J. Am. Chem. Soc. 135 12615–26

[23] Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Van der Waals density functional for general geometries Phys. Rev. Lett. 92 246401

[24] Shultz A M, Farha O K, Hupp J T and Nguyen S T 2009 Metal–organic framework materials as chemical sensors J. Phys. Rev. Lett. 92 246401

[25] Vitillo J G, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel P D C, Bordiga S and Zucchina A 2008 Role of exposed metal sites in hydrogen storage in MOFs J. Am. Chem. Soc. 130 8386–96

[26] Thomhauser T, Cooper V R, Li S, Puzder A, Hylgaard P and Langreth D C 2007 Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond Phys. Rev. B 76 125112

[27] Lee K, Murray É D, Kong L, Lundqvist B I and Langreth D C 2010 Higher-accuracy van der Waals density functional Phys. Rev. B 82 081101

[28] Nakamoto K 2009 Infrared and Raman Spectra of Inorganic and Coordination Compounds 6th edn (Hoboken, NJ: Wiley)

[29] Ferraro J R, Nakamoto K and Brown C W 2003 Introduction Raman Spectroscopy 2nd edn (San Diego, CA: Academic)

[30] Lequer J L C, Millward A R, Park K S and Yaghi O M 2004 Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal–organic framework J. Am. Chem. Soc. 126 135

[31] Gascon J, Aktay U, Hernandez-Alonso M D, van Klink G P M and Kapteijn F 2009 Amino-based metal–organic frameworks as stable, highly active basic catalysts J. Catal. 261 75–87

[32] Vimont A, Travers A, Bazin P, Lavalley J-C, Daturi M, Serre C, Ferey G, Bourrelly S and Llewellyn P L 2007 Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal–organic framework MIL-53 or Cr3+2(OH)(O2C-C6H4-CO2) Chem. Commun. 3291–3

[33] Kazarian S G, Vincent M F, Bright F V, Liotta C L and Eckert C A 1996 Specific intermolecular interaction of carbon dioxide with polymers J. Am. Chem. Soc. 118 1729–36

[34] Stavitski E, Pidko E A, Couch S, Remy T, Hensen E J M, Weckhuysen B M, Denayer J, Gascon J and Kapteijn F 2011 Complexity behind CO2 capture on NH2-MIL-53 Al Lang. M 27 3970–6

[35] Nijem N, Veyan J-F, Kong L, Wu H, Zhao Y, Li J, Langreth D and Chabal Y J 2010 Interaction of molecular hydrogen with microporous metal organic framework materials at room temperature J. Am. Chem. Soc. 132 1654–64

[36] Vitillo J G, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel P D C, Bordiga S and Zucchina A 2008 Role of exposed metal sites in hydrogen storage in MOFs J. Am. Chem. Soc. 130 8386–96

[37] Gascon J, Aktay U, Hernandez-Alonso M D, van Klink G P M and Kapteijn F 2009 Amino-based metal–organic frameworks as stable, highly active basic catalysts J. Catal. 261 75–87

[38] Lequer J L C, Millward A R, Park K S and Yaghi O M 2004 Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal–organic framework J. Am. Chem. Soc. 126 135

[39] Gascon J, Aktay U, Hernandez-Alonso M D, van Klink G P M and Kapteijn F 2009 Amino-based metal–organic frameworks as stable, highly active basic catalysts J. Catal. 261 75–87

[40] Lequer J L C, Millward A R, Park K S and Yaghi O M 2004 Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal–organic framework J. Am. Chem. Soc. 126 135

[41] Gascon J, Aktay U, Hernandez-Alonso M D, van Klink G P M and Kapteijn F 2009 Amino-based metal–organic frameworks as stable, highly active basic catalysts J. Catal. 261 75–87

[42] Lequer J L C, Millward A R, Park K S and Yaghi O M 2004 Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal–organic framework J. Am. Chem. Soc. 126 135
Lillerud K P 2005 Interaction of hydrogen with MOF-5 J. Phys. Chem. B 109 18237–42
[43] Tan K, Nijem N, Canepa P, Gong Q, Li J, Thonhauser T and Chabal Y J 2012 Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBU’s upon hydration Chem. Mater. 24 3153–67
[44] FitzGerald S A, Burkholder B, Friedman M, Hopkins J B, Pierce C J, Schloss J M, Thompson B and Rowssell J L C 2011 Metal-specific interactions of H2 adsorbed within isotoxictral metal–organic frameworks J. Am. Chem. Soc. 133 20310–8
[45] FitzGerald S A, Hopkins J, Burkholder B, Friedman M and Rowssell J L C 2010 Quantum dynamics of adsorbed normal- and para-H2, HD, and D2 in the microporous framework MOF-74 analyzed using infrared spectroscopy Phys. Rev. B 81 104305
[46] Windisch Jr C F, Thallapally P K and Peter McGrail B 2009 Adsorption of CO2 on COH[]COIII(CN)6]2 using DRIFTS Spectrochim. Acta A 74 629–34
[47] Nijem N et al 2011 Understanding the preferential adsorption of CO2 over N2 in a flexible metal–organic framework J. Am. Chem. Soc. 133 12849–57
[48] Nijem N, Wu H, Canepa P, Marti A, Balkus K J, Thonhauser T, Li J and Chabal Y J 2012 Tuning the gate opening pressure of metal–organic frameworks (MOFs) for the selective separation of hydrocarbons J. Am. Chem. Soc. 134 15201–4
[49] Kolb B and Thonhauser T 2012 Molecular biology at the quantum level: can modern density functional theory forge the path? Nano LIFE 02 1230006
[50] Szabo A and Ostlund N S 1996 Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Mineola, NY: Dover)
[51] Head-Gordon M and Artacho E 2008 Chemistry on the computer Phys. Today 61 58–63
[52] Marsman M, Grüneis A, Paier J and Kresse G 2009 Second-order Möller–Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set J. Chem. Phys. 130 184103
[53] Booth G H, Grüneis A, Kresse G and Alavi A 2012 Towards an exact description of electronic wavefunctions in real solids Nature 493 365–70
[54] Grüneis A, Marsman M and Kresse G 2010 Second-order Möller–Plesset perturbation theory applied to extended systems. II. Structural and energetic properties J. Chem. Phys. 133 074107
[55] Usyut D, Civalieri B, Maschio L, Dovesi R, Pisani C and Schütz M 2011 Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH J. Chem. Phys. 134 2141050
[56] Ayala P Y, Kudin K N and Scuseria G E 2001 Atomic orbital Laplace-transformed second-order Möller–Plesset theory for periodic systems J. Chem. Phys. 115 9698–707
[57] Maschio L, Usyut D, Manby F R, Casassa S, Pisani C and Schütz M 2007 Fast local-MP2 method with density-fitting for crystals. I. Theory and algorithms Phys. Rev. B 76 075101
[58] Hohenberg P and Kohn W 1964 Inhomogeneous electron gas Phys. Rev. 136 B864–87
[59] Shevlin S A and Guo Z X 2009 Density functional theory simulations of complex hydride and carbon-based storage materials Chem. Soc. Rev. 38 211–25
[60] Hobza P 2008 Stacking interaction Phys. Chem. Chem. Phys. 10 2581–3
[61] Šponer J, Riley K E and Hobza P 2008 Nature and magnitude of aromatic stacking of nucleic acid bases Phys. Chem. Chem. Phys. 10 2595–610
[62] Černý J and Hobza P 2007 Non-covalent interactions in biomacromolecules Phys. Chem. Chem. Phys. 9 5291–303
[63] Langreth D C et al 2009 A density functional for sparse matter J. Phys.: Condens. Matter 21 084203
[64] French R H et al 2010 Long range interactions in nanoscale science Rev. Mod. Phys. 82 1887–944
[65] Kristýán S and Palay P 1994 Can (semi)local density functional theory account for the London dispersion forces? Chem. Phys. Lett. 229 175–80
[66] Pérez-Jordá J M, Becke A D and San-Fabían E 1994 Automatic numerical integration techniques for polyatomic molecules J. Chem. Phys. 100 6520–34
[67] Meijer E J and Sprik M 1996 A density-functional study of the intermolecular interactions of benzene J. Chem. Phys. 105 8684–9
[68] Grimme S 2004 Accurate description of van der Waals complexes by density functional theory including empirical corrections J. Comput. Chem. 25 1463–73
[69] Grimme S 2006 Semiempirical GGA-type density functional constructed with a long-range dispersion correction J. Comput. Chem. 27 1787–99
[70] Heßelmann A and Jansen G 2003 The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange–correlation potential Phys. Chem. Chem. Phys. 5 5010–4
[71] Misquita A J and Szalewicz K 2002 Intermolecular forces from asymptotically corrected density functional description of monomers Chem. Phys. Lett. 357 301–6
[72] Williams H L and Chabalowski C F 2001 Using Kohn–Sham orbitals in symmetry-adapted perturbation theory to investigate intermolecular interactions J. Phys. Chem. A 105 646–59
[73] Tkatchenko A and Scheffler M 2009 Accurate molecule–van der Waals interactions from ground-state electron density and free-atom reference data Phys. Rev. Lett. 102 073005
[74] Tkatchenko A, DiStasio Jr R A, Head-Gordon M and Scheffler M 2009 Dispersion-corrected Moller–Plesset second-order perturbation theory J. Chem. Phys. 131 094106
[75] Cooper V, Thonhauser T, Puzder A, Schröder E, Landqvist B I and Langreth D C 2008 Stacking interactions and the twist of DNA J. Am. Chem. Soc. 130 1304–8
[76] Cooper V R, Thonhauser T and Langreth D C 2008 An application of the van der Waals density functional: hydrogen bonding and stacking interactions between nucleobases J. Chem. Phys. 128 204102
[77] Li H W, Kikuchi K, Nakamori Y, Ohba N, Miwa K, Towata S and Orimo S 2008 Dehydriding and rehydriding processes of well-crystallized Mg(BH4)3 accompanying with formation of intermediate compounds Acta Mater. 56 1342–7
[78] Zhang Y and Yang W 1998 Comment on ‘generalized gradient approximation made simple’ Phys. Rev. Lett. 80 890
[110] Saha D and Deng S 2010 Structural stability of metal organic framework MOF-177 J. Phys. Chem. Lett. 1 73–8

[111] Chen Y F, Lee J Y, Babarao R, Li J and Jiang J W 2010 A highly hydrophobic metal–organic framework Zn(BDC)(TED)_{0.5} for adsorption and separation of CH_{3}OH/H_{2}O and CO_{2}/CH_{4} : an integrated experimental and simulation study J. Phys. Chem. C 114 6602–9

[112] Lee J Y, Olson D H, Pan L, Emge T J and Li J 2007 Rigid and flexible: a highly porous metal–organic framework with unusual guest-dependent dynamic behavior Angew. Chem. Int. Edn 43 5033–6

[113] Kitagawa H 2009 Metal–organic frameworks: transported into fuel cell Nature Chem. 1 689–90

[114] Llabrè s i Xamena F X, Corma A and Garcia H 2007 Applications for metal–organic frameworks (MOFs) as quantum dot semiconductors J. Phys. Chem. C 111 80–5

[115] Hurd J A, Vaidhyananthan R, Thangadurai V, Ratcliffe C I, Moudrakovski I L and Shimizu G K H 2009 Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework Nature Chem. 1 705–10

[116] Ma S, Wang X-S, Yuan D and Zhou H-C 2008 A coordinatively linked Yb metal–organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity Angew. Chem. Int. Edn 47 4130–3

[117] Sun D, Ma S, Ke Y, Petersen T M and Zhou H-C 2005 Synthesis, characterization, and photoluminescence of isostructural Mn, Co, and Zn MOFs having a diamondoid structure with large tetrahedral cages and high thermal stability Chem. Commun. 2663–5

[118] Yang C, Wang X and Omary M A 2007 Fluorous metal–organic frameworks for high-density gas adsorption J. Am. Chem. Soc. 129 15454–5

[119] Yang C, Wang X and Omary M A 2007 Fluorous metal–organic frameworks for high-density gas adsorption J. Am. Chem. Soc. 129 15454–5

[120] Yang C, Wang X and Omary M A 2009 Crystallographic and simulation study of energetic, structural, and vibrational properties of small water clusters and ice i_{h} Phys. Rev. B 84 045116

[121] Skoulidas A I and Sholl D S 2005 Self-diffusion and transport diffusion of light gases in metal–organic framework materials assessed using molecular dynamics simulations J. Phys. Chem. B 109 15760–8

[122] Kolb B and Thonhauser T 2011 van der Waals density functional study of energetic, structural, and vibrational properties of small water clusters and ice i_{h} Phys. Rev. B 84 045116

[123] Skoulidas A I and Sholl D S 2005 Self-diffusion and transport diffusion of light gases in metal–organic framework materials assessed using molecular dynamics simulations J. Phys. Chem. B 109 15760–8

[124] Haldoupis E, Watanabe T, Nair S and Sholl D S 2012 Quantifying large effects of framework flexibility on diffusion in MOFs: CH_{4} and CO_{2} in ZIF-8 ChemPhysChem 13 3449–52

[125] Yang Q and Zhong C 2005 Molecular simulation of adsorption and diffusion of hydrogen in metal–organic frameworks J. Phys. Chem. B 109 11862–4

[126] Amirjalayer S, Taihpolsky M and Schmid R 2007 Molecular dynamics simulation of benzene diffusion in MOF-5: importance of lattice dynamics Angew. Chem. Int. Edn 46 463–6

[127] Skoulidas A I 2004 Molecular dynamics simulations of gas diffusion in metal–organic frameworks: argon in cubic J. Am. Chem. Soc. 126 1356–7

[128] Haldoupis E, Nair S and Sholl D S 2010 Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations J. Am. Chem. Soc. 132 7528–39

[129] Liu B, Yang Q, Xue C, Zhong C and Smit B 2008 Molecular simulation of hydrogen diffusion in interpenetrated metal–organic frameworks Phys. Chem. Chem. Phys. 10 3244–9

[130] Queen W L, Brown C M, Britt D K, Zajdel P, Hudson M R and Yaghi O M 2010 Site-specific CO_{2} adsorption and zero thermal expansion in an anisotropic pore network J. Phys. Chem. C 115 24915–9

[131] Bao Z, Yu L, Ren Q, Lu X and Deng S 2011 Adsorption of CO_{2} and CH_{4} on a magnesium-based metal organic framework J. Colloid Interface Sci. 353 549–56

[132] Ebrehim A M, Levasseur B and Bandozs T J 2013 Interactions of NO_{2} with Zr-based MOF: effects of the size of organic linkers on NO_{2} adsorption at ambient conditions Langmuir 29 1668–74

[133] Yu J, Ma Y and Balbuena P B 2012 Evaluation of the impact of H_{2}O, O_{2}, and SO_{2} on postcombustion CO_{2} capture in metal–organic frameworks Langmuir 28 8064–71

[134] Yu K and Schmidt J R 2013 Comment on ‘how well do metal–organic frameworks tolerate flue gas impurities?’ J. Phys. Chem. C 117 3192

[135] Ding L and Özgür Yazaydin A 2012 How well do metal–organic frameworks tolerate flue gas impurities? J. Phys. Chem. C 116 22978–91

[136] Coudert F-X, Mellot-Draznieks C, Fuchs A H and Boutin A 2009 Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal–organic frameworks J. Am. Chem. Soc. 131 11329–31

[137] Güciyener C, van den Bergh J, Gascon J and Kaptijn F 2010 Ethane/ethene separation turned on its head: selective ethane adsorption on the metal–organic framework ZIF-7 through a gate-opening mechanism J. Am. Chem. Soc. 132 17704–6

[138] Pera-Titus M and Farrusseng D 2012 Host-induced gate opening and breathing phenomena in soft porous crystals: building thermodynamically consistent isotherms J. Phys. Chem. C 116 1638–49