Performance Assessment of Phase Change Materials Integrated with Building Envelope for Heating Application in Cold Locations

Qudama Al-Yasiri, and Márta Szabó

ABSTRACT

Phase change materials (PCMs) are increasingly investigated in the last years as successful strategy in many thermal energy storage applications. In the building sector, PCMs are utilised to improve building efficiency by reducing cooling/heating loads and promoting renewable energy sources, such as solar energy. This paper shows the recent research works on integrating PCMs with building envelope for heating purposes. The main PCM categories and their main characteristics are presented, focusing on PCM types applied for building heating applications. The main methods adopted to incorporate PCMs with building elements and materials are mentioned, and the popular passive and active incorporation techniques are discussed. Lastly, the main contribution to building energy saving is discussed in terms of heating applications. The analysed studies indicated that all PCMs could improve the building energy saving in the cold climates by up to 44.16% regardless of their types and incorporation techniques. Several conclusions and recommendations are derived from the analysed studies that are believed to be a guideline for further research.

Keywords: building efficiency, energy saving, passive heating, PCMs

I. INTRODUCTION

The building sector plays a key role in the global energy balance as it is the leading responsible sector for a significant share of final energy-use and CO2 emissions [1]. Besides, building envelope shares the biggest of this ratio as it manages the thermal load between the indoor and outdoor environments and controls the heating and cooling loads [2],[3]. Consequently, the use of efficient and sustainable technologies to increase building energy efficiency are progressively required [4],[5]. In this regard, the incorporation of phase change material (PCM) into building envelope components has been demonstrated to be a promising strategy for building thermal-energy performance improvement in terms of thermal comfort and energy-saving under various locations [6]-[8].

PCMs can store and release a considerable amount of heat as a latent heat during phase transition by around 5-14 times higher than the sensible heat storage materials, per unit volume [9]. They have been introduced as advanced thermal storage materials in many building applications to meet (or support) the thermal load on an annual basis. In general, PCMs are integrated into building envelope materials and elements, such as the roofs [10], walls [11],[12], floors [13], bricks [14], concretes [15], mortars [16], and transparent components [17],[18]. The main benefits of this integration are to save building energy by reducing thermal loads (cooling and heating loads), shaving and shifting peak load to off-load hours [19],[20]. The use of PCMs for heating purposes in buildings has a wide range of applications that can be summarised as presented in Figure 1.
In this paper, the integration of PCMs into building envelope for heating applications have been discussed. The paper comprises several sections to cover all aspects of PCM heating applications. Section II gives a general overview of PCM categories with their main characteristics and a list of PCM candidates used for building heating applications. Section III deals with the possible methods and incorporation techniques adopted in the literature, whereas section IV discusses PCM’s main contributions to the building energy saving. At last, several conclusions raised from the reviewed studies have been presented in section V.

II. PCM CHARACTERISTICS

Generally, PCMs are classified into three categories based on their chemical construction: organic, inorganic and eutectics. Organic PCMs are the widely available materials and further classified into paraffinic, and non-paraffinic PCMs such as salt hydrates, fatty acids, esters and glycols [21],[22]. Each category has its advantages and disadvantages resulted from their various characteristics [23]. PCM characteristics are requirements to be considered when studying their utilisation in buildings. These characteristics are mainly related to the PCM melting temperature, heat of fusion, thermal conductivity and density [7].

A. Melting temperature

Melting temperature is the temperature in which PCM’s melting process, and the state change from solid to liquid. Melting temperature is the topmost property of PCM starts, which controls the utilisation of PCM thermal storage capacity. The variation of air-solar temperature should be adequately studied for the location under study to select the proper PCM with suitable melting temperature. For instance, a study carried out under Portugal's climate conditions considered air-solar temperature annually. The study found that the temperature varied between the highest 44 °C in summer and the lowest 5 °C in winter period [24]. Therefore, the suggested optimal PCM melting temperatures should be in the range of 10 °C to 30 °C. In general, each PCM category has a different range of melting temperature, making it suitable for a particular application, as shown in Figure 2.

B. Heat of fusion

The heat of fusion is defined as the quantity of heat required to change 1 g of solid to liquid under no temperature change (adiabatic process). It sometimes calls as the latent heat of fusion [26], as indicated in Figure 3. In PCM applications, the higher heat of fusion value allows more heat to be stored, making it preferable. The heat of fusion is almost within the range of 120-280 kJ/kg, regardless of the type of PCM [27].

C. Thermal conductivity

Thermal conductivity is the ability of PCM to conduct heat. It is commonly known that all PCMs have low thermal conductivity by nature. Therefore, many enhancement techniques have been applied to improve PCM thermal conductivity such as emersion of nanoparticles, metallic foam, expanded graphite, metal inserts, fins, and macroencapsulation with high thermal conductivity containers [29]-[34].
D. Density

Density is commonly expressed as the mass of a material to its volume. Together with PCM's thermal conductivity, the density highly influences the rate of heat charging and discharging [35]. It has been reported that the density of organic PCMs ranged from 700 kg/m3 to 900 kg/m3 and from 1300 to 1800 kg/m3 for inorganic PCMs [36].

A list of PCM characteristics for different categories suitable for building applications under hot climate conditions is listed in Table I gathered from the studies reported in the literature.

PCM type	Category	Melting temperature (°C)	Heat of fusion (kJ/kg)	Thermal conductivity (W/m. K)	Density (kg/m3)	Ref.
Paraffin wax	Paraffin	27–29	245	0.2 (Liquid)	770 (Liquid)	[37]
					880 (Solid)	
PureTemp 23	Paraffin	22.23-24.17	170.71	0.15 (Liquid)	830 (Liquid)	[38],[39]
					910 (Solid)	
RT-18	Paraffin	15-19	134	0.2	756	[40]
RT27	Paraffin	28	147	0.2 (Liquid)	750 (Liquid)	[41]
					870 (Solid)	
HS29	Paraffin	26-29	190	0.55 (Liquid)	1530 (Liquid)	[42]
				1.05 (Solid)	1681 (Solid)	
RT-27	Paraffin	28	179	0.2	750 (Liquid)	[43]
					870 (Solid)	
SP-25 A8	Hydrated salt	26	180	0.6	1380	[44]
Hydrated salt	Hydrated salt	29	175	1.0	1490	
CaCl$_2$.H2O	Hydrated salt	29.9	187	0.53 (Liquid)	1710 (Liquid)	[45]
				1.09 (Solid)	1530 (Liquid)	
CADE	Fatty acid	26.5	126.9	0.2 (Liquid)	817 (Liquid)	[46]
				0.12 (Solid)	754 (Solid)	
LA–MA–SA	Fatty acid	29.05	137.1	N/A	N/A	[47]
CA–MA–PA	Fatty acid	18.61	128.2	N/A	N/A	[48]
CA–PA	Fatty acid	26.2	177	2.2	784	[49]
CA–PA–SA	Fatty acid	19.93	129.4	N/A	N/A	[50]

III. POSSIBLE INCORPORATION METHODS AND TECHNIQUES

PCMs can be applied for new and existing buildings during installation or refurbishment stage. They can be incorporated with building envelope directly (by impregnation or direct mixing), or as a separated element (via encapsulation, shape and form stabilised methods) [6]. Furthermore, they can be installed and utilised within the building envelope in a passive or active technique.

In the passive technique, the charging and discharging heat to/from the PCM takes place passively without any external means. Therefore, PCM's thermal performance is influenced by conductive heat flux exchange rate and natural convection currents between the PCM and heat transfer fluid (HTF). In such a case, exchanging heat between the PCM and air (outside and inside environments) is the main key-factor of this technology [51]. Moreover, the passive technique requires high heat transfer surface temperature to accelerate heat charging and discharging time [52]. Possible incorporation methods of PCM with building elements are shown in Figure 4.
For active technique, the HTF is forced to charge the heat to the PCM using different means such as solar collectors, blowers and pumps. Hence, the PCM’s thermal performance and building element would be enhanced remarkably [54],[55]. The popularly investigated application in this method is utilising solar thermal energy to charge heat via solar collectors where air or water work as an HTF. For instance, when the water applied as an HTF, the heat harvested by solar collectors is transferred to the water and then, charged into the PCM integrated with the building envelope, as shown in Figure 5.

In general, PCM’s applicability into the building envelope, passively or actively, depends highly on PCM’s melting temperature and the daily range of temperatures during the day and night to ensure full melting/solidification of PCM [13]. The possible passive and active methods reported in the literature are represented in Figure 6.
IV. CONTRIBUTION OF PCM TO THE BUILDING ENERGY

For heating purposes under cold locations, PCMs mainly utilised in two ways: absorb the heat during day hours and release it during low-temperature nights. Secondly, restrict the heat escaping from the hot interior environment towards the exterior environment due to temperature difference. PCMs can absorb the heat resulting from relative high diurnal solar energy during day hours and release it during night hours due to temperature difference. Therefore, they can be applied as a heat supplier when it incorporates building envelope under cold climate conditions [58]. It has been reported that PCMs can increase the thermal storage of the building envelope, which is usually constructed from materials with low thermal inertia [59]. Seong and Lim [60] numerically studied the thermal benefits of PCMs have different melting temperatures incorporated lightweight building envelope under weather conditions of Seoul, Korea. Considering the contribution to the heating application, PCM of 21°C melting temperature performed the best in heating load reduction and indoor temperature increase on an annual basis. Results showed that PCM could improve the building efficiency in which the peak heating load was reduced by 3.19% and the indoor temperature increased by 0.86 °C. Araújo et al. [61] studied the potential of eight PCMs with different melting temperatures (RT 15, RT 18, RT 21, RT 22, RT 24, RT 25, RT 26 and RT 28) for residential building located in northern Portugal. Numerical results obtained by EnergyPluse dynamic tool indicated that the RT 22 showed the best performance in which the heating needs were reduced by 8.22 kWh/m²/year, representing heating energy saving of 13.2%. Hu and Yu [62] numerically studied the thermal response of building integrated with PCM (21.7 °C melting temperature) under Chinese cities’ diverse climate conditions. Considering the cold conditions of Nanjing, the maximum monthly heating loads reduction of 0.8 kWh/m² in November, 2.2 kWh/m² in December, 1.4 kWh/m² in January, 1.9 kWh/m² and 1.2 kWh/m² in March which represent energy saving by 14%, 10%, 4%, 9% and 13% respectively. The study concluded that the maximum energy saving obtained in the coldest months in the year emphasises the applicability of PCMs. Guarino et al. [63] numerically and experimentally tested PCM wallboard (18-24 °C melting temperature) combined the south-oriented interior surface wall opposing a highly glazed façade under cold climate conditions of Montreal, Canada. The study aimed to increase the wall’s thermal performance by storing the heat passes through the glazed façade to be released later. Results showed that the solar radiation was stored during day hours and released for 6-8 h after sunset which reduced the daily temperature swings (up to 10 °C) and heating requirements (more than 17%, yearly). Kong et al. [64] invented a hybrid system by coupling perlite-based composite PCM wallboard with a solar heating system. The hybrid system was placed to the inside of the tested room’s wall and compared with another reference room without PCM (woring with heating radiators) for three working days under winter conditions of Tianjin, China. The analysed results showed that the daily heating energy consumption was reduced by 44.16% in the room provided with hybrid system compared with the other room without PCM. Moreover, the study concluded that such system could maintain the required comfort environment and enhance buildings’ efficiency. A detailed summary of some similar studies is listed in Table II.

![Possible Practical PCM Incorporation Methods](Image)

Fig. 6. Possible incorporation methods of PCM into building envelope [57]

Table II: Summary of literature studies dealing with the contribution of PCM for building heating applications
PCM type (melting temperature, °C)

PCM24D (21.9)
RT21 (21)
BioPCM: Q25/M91 (25)
GH-20 (20–25.4)
n-Octadecane (18.80–37.83)
Beeswax (33.41–61.05)

DOI: http://dx.doi.org/10.24018/ejenergy.2021.1.1.5
V. CONCLUSION

PCMs are among booming technologies nowadays thanks to their remarkable potential as thermal energy storage in different applications. In building applications, it has been proven that PCMs can effectively improve the energy efficiency and maintain acceptable thermal comfort on an annual basis. The current paper discusses the potential of PCMs to improve the heating energy saving when incorporated building envelope under cold locations. In this regard, the following conclusions are derived from the analysed studies:

1) Generally, the melting temperature of PCMs used for building heating applications ranged between 15 °C – 30 °C regardless of the type of PCM.
2) Most of studied PCM types were organic (Paraffins, fatty acids and hydrated salts) as they have a suitable melting temperature for building applications. Besides, there is no eutectics were studied in such applications due to their high melting temperatures which are not suitable for such application.
3) Most of studies discussed the incorporation of PCMs for building thermal applications were investigated passively. Besides, very limited ones considered the active technique using solar thermal and other renewable systems due to the complexity of coupling PCM with active systems.
4) Solar thermal systems integrated PCMs for building heat application has a significant role to increase the benefits of utilizing solar energy and building efficiency. However, emerge other heat sources with PCMs is still out of scope which can be a novel heat recovery systems.
5) Number of numerical studies are much higher than the experimental studies mainly due to a variety of simulation tools and complexity of incorporation techniques, especially the active ones.
6) The main thermal contribution to energy saving reported in the literature for PCMs applied under cold climates was presented in terms of decreasing the heating loads and maintaining a suitable thermal comfort throughout the year.
7) Energy saving by up to 44.16% can be obtained from integrating PCMs with building envelope which represents a huge contribution for building energy-saving by PCM technology.

ACKNOWLEDGMENT

This work was supported by the Stipendium Hungaricum Scholarship Programme and the Mechanical Engineering Doctoral School, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.

REFERENCES

[1] International Energy Agency (IEA), “Technology Roadmap. Energy efficient building envelopes,” 2013. doi: 10.1007/SpringerReference_7300.
[2] E. Lambie and D. Saelens, “Identification of the building envelope performance of a residential building: A case study,” Energies, vol. 13, no. 10, pp. 1–28, 2020, doi: 10.3390/en13102469.
[3] Q. Al-Yasiri, M. A. Al-Furaij, and A. K. Alisha, “Comparative study of building envelope cooling loads in Al-Amarah city, Iraq,” J. Eng. Technol. Sci., vol. 51, no. 5, pp. 632–648, 2019, doi: 10.5614/j.engltechnolsci.2019.51.5.3.
[4] DOE-LUSAs, “An Assessment of Energy Technologies and Research Opportunities,” Chapter 5 Increasing Effic. Build. Syst. Technol., no. September, pp. 143–181, 2015, [Online]. Available: https://www.energy.gov/sites/prod/files/2017/03/f34/qtr-2015
[5] F. Darvishi, E. Markarian, N. Ziaie-tan, N. Ziaie, and A. Javanshir, “Energy performance assessment of PCM buildings considering multiple factors,” 5th Int. Conf. Power Gener. Syst. Renew. Energy Technol. PGRES T 2019, pp. 1–5, 2019, doi: 10.1109/PGRES T.2019.8882672.
[6] Q. Al-Yasiri and M. Szabo, “Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis,” J. Build. Eng., vol. 36, p. 102122, 2021, doi: 10.1016/j.jobe.2020.102122.
[7] A. Madad, T. Mouhib, and A. Mouchsen, “Phase change materials for building applications: A thorough review and new perspectives,” Buildings, vol. 8, no. 5, 2018, doi: 10.3390/buildings8050063.
[8] C. Piselli, M. Prabhakar, A. de Garcia, M. Saffari, A. L. Pisello, and L. F. Cabeza, “Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration,” Renew. Energy, vol. 162, 2020, doi: 10.1016/j.renene.2020.07.043.
[9] J. Z. Alvi, Y. Feng, Q. Wang, M. Imran, L. A. Khan, and G. Pei, “Effect of Phase Change Material Storage on the Dynamic Performance of a Direct Vapor Generation Solar Organic Rankine Cycle System,” Energies, vol. 13, no. 22, p. 5904, 2020, doi: 10.3390/en13225904.
[10] I. Gong, M. Zheng, Z. Yu, and X. Liu, “Adjustable insulation for enhancing the performance of phase change materials in buildings,” Int. J. Energy Res., vol. 44, no. 5, 2020, doi: 10.1002/er.5149.
[11] E. Tunçbilek, M. Arci, M. Krajič, S. Nižetić, and H. Karabay, “Thermal performance based optimization of an office wall containing PCM under intermittent cooling operation,” Appl. Therm. Eng., vol. 179, no. October 2020, p. 115750, 2020, doi: 10.1016/j.applthermaleng.2020.115750.
[12] M. Arcı, F. Bilgin, S. Nızetıc, and H. Karabay, “PCM integrated to external building walls. An optimization study on maximum activation of latent heat,” Appl. Therm. Eng., vol. 165, no. January 2020, p. 114560, 2020, doi: 10.1016/j.applthermaleng.2019.114560.
[13] N. Zhu, S. Li, P. Hu, S. Wei, R. Deng, and F. Lei, “A review on applications of shape-stabilized phase change materials embedded in building enclosure in recent ten years,” Sustain. Cities Soc., vol. 43, pp. 251–264, 2018, doi: 10.1016/j.scs.2018.08.028.
[14] M. Mahlabou et al., “Building bricks with phase change material (PCM): Thermal performances,” Constr. Build. Mater., vol. 269, no. February 2021, p. 121315, 2021, doi: 10.1016/j.conbuildmat.2020.121315.
[15] H.-D. Do Yun, K.-L. Ahn, S.-J. Jang, B.-S. S. Khil, W.-S. S. Park, and S.-W. W. Kim, “Thermal and Mechanical Behaviors of Concrete with Incorporation of Stratified-Based Phase Change Material (PCM),” Int. J. Constr. Struct. Mater., vol. 13, no. 1, p. 18, 2019, doi: 10.1186/s40069-018-0326-8.
[16] P. Sukontasukkul, T. Suttiphasip, W. Chalodhorn, and P. Chindaprasirt, “Improving the thermal properties of exterior plastering mortars with phase change materials with different melting temperatures: paraffin and polyethylene glycol,” Adv. Build. Energy Res., vol. 13, no. 2, pp. 220–240, Jul. 2019, doi: 10.1080/17512549.2018.1488614.
[17] I. Vigna, L. Bianco, F. Gioia, and V. Serra, “Phase change materials in transparent building envelopes: A Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis,” Energies, vol. 11, no. 1, 2018, doi: 10.3390/EN11010011.
[18] D. Li, Y. Wu, C. Liu, G. Zhang, and M. Arci, “Energy investigation of glazed windows containing Nano-PCM in different seasons,” Energy Convers. Manag., vol. 172, no. April, pp. 119–128, 2018, doi: 10.1016/j.enconman.2018.07.015.
[19] E. Tunçbilek, M. Arci, S. Bouadila, and S. Wonorahardjo, “Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region,” J. Therm. Anal. Calorim., vol. 141, no. 12, pp. 123456789, pp. 613–624, 2020, doi: 10.1007/s10973-020-09320-8.
[20] P. K. S. Rathore, S. K. Shukla, and N. K. Gupta, “Yearly analysis of peak temperature, thermal amplitude, time lag and decrement factor of a building envelope in tropical climate,” J. Build. Eng., vol. 31, no. April, p. 101459, 2020, doi: 10.1016/j.jobe.2020.101459.
[21] R. Zeinelabdein, S. Omer, and G. Gan, “Critical review of latent heat storage systems for free cooling in buildings,” Renew. Sustain. Energy Rev., vol. 82, no. October 2017, pp. 2843–2868, 2018, doi: 10.1016/j.rser.2017.10.046.
[22] K. Faraj, M. Khaled, J. Faraj, F. Hachem, and C. Castelain, “Phase change material thermal energy storage systems for cooling energy saving,” Sustain. Cities Soc., vol. 76, no. 2021, pp. 102790, 2021, doi: 10.1016/j.scs.2021.102790.
applications in buildings: A review," Renew. Sustain. Energy Rev., vol. 119, no. December 2018, p. 109579, 2020, doi: 10.1016/j.rser.2019.109579.
[23] S. S. Chandel and T. Agarwal, “Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase change materials," Renew. Sustain. Energy Rev., vol. 67, pp. 581–596, 2017, doi: 10.1016/j.rser.2016.09.070.
[24] M. Kheradmand, M. Azenha, J. L. B. de Aguiar, and J. Castro-Gomes, “Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings," Energy Build., in press, pp. 250–261, 2016, doi: 10.1016/j.enbuild.2015.10.131.
[25] R. Baetens, B. P. Jelle, and A. Gustavsen, “Phase change materials for building applications: A state-of-the-art review," Energy Build., vol. 42, no. 9, pp. 1361–1368, 2010, doi: 10.1016/j.enbuild.2010.03.026.
[26] M. B. Kirkham, “Chapter 3 - Structure and Properties of Water," in Principles of Soil and Plant Water Relations (Second Edition), Second Ed., M. B. Kirkham, Ed. Boston: Academic Press, 2014, pp. 27–40.
[27] S. L. Bardage, “6 - Performance of buildings," in Performance of Bio-based Building Materials, D. Jones and C. Brischke, Eds. Woodhead Publishing, 2017, pp. 335–383.
[28] L. Kancane, R. Vanaga, and A. Blumberga, “Modeling of Building Envelope’s Thermal Properties by Applying Phase Change Materials," Energy Procedia, vol. 95, pp. 175–180, 2016, doi: https://doi.org/10.1016/j.egypro.2016.09.041.
[29] C. Amaral, R. Vicente, P. A. A. Marques, and A. Barros-Timmons, “Phase change materials and carbon nanotubes for thermal energy storage: A literature review," Renew. Sustain. Energy Rev., vol. 79, no. May, pp. 1212–1228, 2017, doi: 10.1016/j.rser.2017.05.093.
[30] Z. A. Qureshi, H. M. Ali, and S. Kshuhosd, “Recent advances on thermal conductivity enhancement of phase change materials for energy storage: A review," Int. J. Heat Mass Transf., vol. 127, pp. 838–856, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.08.049.
[31] B. Shang, J. Hu, R. Hu, J. Cheng, and X. Luo, “Modularized thermal storage unit of metal foam/paraffin composite," Int. J. Heat Mass Transf., vol. 125, pp. 596–603, 2018.
[32] S. Nesci, M. Jurcević, M. Anci, V. A. Arusa, and G. Xie, “Nano-enhanced phase change materials and fluids in energy applications: A review," Renew. Sustain. Energy Rev., vol. 129, p. 109931, 2020.
[33] Q. Al-Yasiri and M. Szabó, “Influential aspects on melting and solidification of PCM energy storage containers in building envelope applications," Int. J. Green Energy, doi: https://doi.org/10.1080/15435075.2021.1900802.
[34] S. A. Shehzad, B. Alishaaraan, M. S. Kameel, M. Izadi, and T. Ambreen, “Influence of fin orientation on the natural convection of aqueous-based nano-encapsulated PCMs in a heat exchanger equipped with wing-like fins," Chem. Eng. Process. - Process Intensif., p. 108287, 2020, doi: https://doi.org/10.1016/j.cep.2020.108287.
[35] R. Peng et al., “Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems," Energy, vol. 172, pp. 580–591, 2019, doi: 10.1016/j.energy.2019.01.147.
[36] Y. Cui, J. Xie, J. Liu, J. Wang, and S. Chen, “A review on phase change material applications in building," Adv. Mech. Eng., vol. 9, no. 6, pp. 1–15, 2017, doi: 10.1177/1687814017700828.
[37] J. Sun et al., “Use of encapsulated phase change materials in lightweight building walls for annual thermal regulation," Energy, vol. 180, pp. 858–872, 2019, doi: 10.1016/j.energy.2019.05.112.
[38] L. Xing et al., “Use of useful phase change materials for a building application," Energy Build., vol. 182, pp. 45–50, 2019, doi: 10.1016/j.enbuild.2018.10.005.
[39] PureTemp Company, “PureTemp® Thermal Energy Storage Materials PureTemp 48 Technical Information," 2020, [Online]. Available: https://www.puretemp.com/stories/puretemp-23-tds.pdf.
[40] R. Vicente and J. Silva, “Brick masonry walls with PCM macrocapsules: An experimental approach," Appl. Therm. Eng., vol. 67, no. 1–2, pp. 24–34, 2014, doi: 10.1016/j.applthermaleng.2014.02.069.
[41] X. Sun, M. A. Medina, K. O. Lee, and X. Jin, “Laboratory assessment of residential masonry walls containing pipe-encapsulated phase change materials for thermal management," Energy, vol. 163, pp. 383–391, 2018, doi: 10.1016/j.energy.2018.08.159.
[42] S. Kumar, S. Arun Prakash, V. Pandyarajan, N. B. Geetha, V. Antony Aroul Raj, and R. Velraj, “Effect of phase change material integration in clay brick masonry composite in building envelope for thermal management of energy efficient buildings," J. Build. Phys., vol. 43, no. 4, pp. 351–364, 2019, doi: 10.17744/24529119876462.
[43] A. Castell, I. Martorell, M. Medrano, G. Pérez, and L. F. Cabeza, “Experimental study of using PCM in brick constructive solutions for passive cooling," Energy Build., vol. 42, no. 4, pp. 534–540, 2010, doi: 10.1016/j.enbuild.2010.09.022.
solaria in cold climates,” Appl. Energy, vol. 185, pp. 95–106, 2017, doi: 10.1016/j.apenergy.2016.10.046.

[64] X. Kong, L. Wang, H. Li, G. Yuan, and C. Yao, “Experimental study on a novel hybrid system of active composite PCM wall and solar thermal system for clean heating supply in winter,” Sol. Energy, vol. 195, no. February 2019, pp. 259–270, 2020, doi: 10.1016/j.solener.2019.11.081.

[65] V. D. Cao, T. Q. Bui, and A. L. Kjøniksen, “Thermal analysis of multi-layer walls containing geopolymer concrete and phase change materials for building applications,” Energy, vol. 186, p. 115792, 2019, doi: 10.1016/j.energy.2019.07.122.

[66] M. T. Plytaria, C. Tzivanidis, E. Bellos, I. Alexopoulos, and K. A. Antonopoulos, “Thermal behavior of a building with incorporated phase change materials in the South and the North Wall,” Computation, vol. 7, no. 1, 2019, doi: 10.3390/computation7010002.

[67] X. Wang, H. Yu, L. Li, and M. Zhao, “Experimental assessment on the use of phase change materials (PCMs)-bricks in the exterior wall of a full-scale room,” Energy Convers. Manag., vol. 120, pp. 81–89, 2016, doi: 10.1016/j.enconman.2016.04.065.

[68] S. G. Jeong, S. Wi, S. J. Chang, J. Lee, and S. Kim, “An experimental study on applying organic PCMs to gypsum-cement board for improving thermal performance of buildings in different climates,” Energy Build., vol. 190, pp. 183–194, 2019, doi: 10.1016/j.enbuild.2019.02.037.

[69] L. Navarro, A. de Gracia, A. Castell, and L. F. Cabeza, “Experimental study of an active slab with PCM coupled to a solar air collector for heating purposes,” Energy Build., vol. 128, pp. 12–21, 2016, doi: 10.1016/j.enbuild.2016.06.069.

[70] E. Meng, H. Yu, and B. Zhou, “Study of the thermal behavior of the composite phase change material (PCM) room in summer and winter,” Appl. Therm. Eng., vol. 126, pp. 212–225, 2017, doi: 10.1016/j.applthermaleng.2017.07.110.