Morphogenesis, pigment content, phytohormones and yield of tomatoes under the action of gibberellin and tebuconazole

V. V. Rogach*, V. G. Kuryata*, I. V. Kosakivska**, L. V. Voitenko**, M. M. Shcherbatyuk**, T. I. Rogach*

*Vinnytsya Mykhailo Kotsyuynsky State Pedagogical University, Vinnytsya, Ukraine
**M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Article info
Received 12.03.2022
Received in revised form 11.04.2022
Accepted 12.04.2022

One of the main tasks of contemporary plant physiology is regulation of growth and development of cultivated plants in order to optimize the productive process. The scientific community focuses its attention on the use of natural activators and growth inhibitors. We investigated the effect of foliar treatment with 0.005% solution of gibberellic acid and 0.025% solution of the anti-gibberellic preparation tebuconazole on morphogenesis, leaf mesostructure, content of photosynthetic pigments, balance of endogenous phytohormones and productivity of tomatoes. The vegetation experiment was carried out in the conditions of soil-sand culture in vessels with a 10-liter volume. The treatment was carried out in the budding phase. Morphometric parameters were measured every 10 days. The mesostructure of the middle tier leaves was studied in the fruit formation phase, and the chlorophyll content was determined in the raw material by spectrophotometric method. Analytical determination of endogenous phytohormones – indolyl-3-acetic (IAA), gibberellic acid and abscisic (ABA) acids and cytokinins – zeatin (Z), zeatin-O-glucoside (ZG), zeatinriboside (Znila) and isopenytenyl-ladenosine (iPA) was performed by high performance liquid chromatography – mass spectrometry (HPLC-MS). With gibberellic acid treatment plant height increased significantly, while with tebuconazole it decreased. Gibberellic acid increased the number of leaves per plant, and tebuconazole did not change it. The preparations increased the number of leaf blades per leaf, the total number of leaf blades per plant, the weight of the raw material of leaves, the area of leaf blades and the area of the leaves at the end of the study period. The dry matter weight of stems and roots under the action of gibberellic acid increased, and during the treatment of tebuconazole decreased. Gibberellic acid increased the dry matter of the whole plant, and tebuconazole did not change it. Under the action of tebuconazole the content of chlorophyll in the leaves increased, while under the action of gibberellic acid it decreased. Both regulators increased the volume of columnar parenchyma cells. Gibberellic acid increased the size of spongy parenchyma cells, while tebuconazole did not change them. It is revealed that the action of exogenous gibberellic acid in stems and leaves increased the content of endogenous IAA and gibberellic acid, and tebuconazole decreased their content. The ABA content in stems and leaves increased with tebuconazole treatments and decreased with exogenous gibberellic acid. The total cytokinin content in the leaves was higher than in the stems in both the control and the experiment samples. Growth regulators induced an increase in the cytokinin pool in leaves and a decrease in stems. Gibberellic acid increased the content of all five forms of cytokinins in the leaves, and tebuconazole increased only two isoforms. In the stems under the action of both growth regulators the content of Z decreased and iP increased. The content of ZR and IPA in stems increased after the application of the retardant and decreased under the action of growth stimulant. The ZG content exceeded the control after gibberellic acid treatment and was in trace concentrations under the action of tebuconazole. Growth regulators optimized the productivity of tomato plants: under the action of gibberellic acid there was a considerable increase in the number of fruits per plant, and after the use of tebuconazole the average weight of one fruit significantly increased. The obtained results demonstrated that anatomical-morphological and structural-functional rearrangements in tomato plants under the action of exogenous gibberellic acid and tebuconazole occurred against the background of changes in the balance and distribution of endogenous hormones. Increased photosynthetic activity, stimulation of growth processes of some plant organs and inhibition of others increased the biological crop capacity.

Keywords: Lycopersicon esculentum; growth stimulants and inhibitors; morphometry; leaf apparatus; plant hormones; crop capacity.

Introduction

The hormonal system is one of the most important factors that regulate plant growth and morphogenesis (Zhou et al., 2020). In studying the mechanisms of action of phytohormones, treatment of organs with exogenous native phytohormones or their synthetic analogues or modifiers is widely used, followed by analysis of fast and slow feedback, changes in metabolism and hormonal status of the whole plant (Raderracher, 2016; Zhou et al., 2020). Nonetheless, the lack of experiments with exogenous hormones only is obvious, because intact plants have a complex interaction between individual endogenous hormones, and plant treatment with a hormone, analogue or modifier, leads to changes in synthesis and metabolism (Wen et al., 2018; Kuryata et al., 2019; Cavalcante et al., 2020) and in the ratio of other components of the hormonal complex (Soumya et al., 2017; Mao et al., 2018; Qiu et al., 2019), which, in their turn, can lead to changes in morphological and physiological programs (Jabir et al., 2017; Khodanitska et al., 2019; Song et al., 2019). In particular, exogenous use of GA3 significantly affects the entire hormonal complex of plants. Treatment of sugar cane seedlings with exogenous GA3 increased IAA and decreased ABA, but did not affect cytokinin content (Qiu et al., 2019). GA3 at concentrations of 100, 200 and 300 mg/L increased the content of endogenous GA3 and IAA in the first and sixth leaves of camellia (Wen et al., 2018). After foliar treatment with exogenous HA25, the balance of phytohormones in tomatoes changed. The content of active GA3, SC, IAA and ABA increased under the action of the growth stimulant (Khallow et al., 2017). After treatment of Brassica campestris L. plants with...
exogenous GA\textsubscript{3} acid under conditions of cold stress in the tops of the shoots, an increase in the content of endogenous GA\textsubscript{3}, IAA and cytokinins was observed (Song et al., 2019). We have previously found that pre-treatment of plants in the budding phase with exogenous GA\textsubscript{3} caused an increase in the content of endogenous GA\textsubscript{3}, IAA and ABA in zucchini leaves and stems (Rogach et al., 2020). It is shown that after treatment with exogenous GA\textsubscript{3}, the content of endogenous IAA and ABA decreased while GA\textsubscript{3} increased in the stems of sweet pepper plants. Native phytohormone enhanced the accumulation of endogenous GA\textsubscript{3} and IAA and inhibited ABA in sweet pepper leaves (Rogach et al., 2021).

Gibberellin-like compounds and industrial growth regulators made on their basis are widely used in agricultural production to intensify histo- and morphogenesis, accelerate cell proliferation and differentiation. It results in a more branched root system, strengthened leaf apparatus, which can provide active synthesis that is sent to generative and storage organs. Consequently, an increase in plant height due to elongation of the internode was recorded in sugarcane (Qin et al., 2019). Treatment of camellias with GA\textsubscript{3} at doses of 100, 200 and 300 mg/L increased the content of chlorophyll in the leaves, its fluorescence parameters and the rate of photosynthesis (Wen et al., 2018). Foliar treatment with exogenous GA\textsubscript{3} significantly reduced the negative effects of salinity, enhanced growth and increased yields of \textit{Solanum lycopersicum} L. plants (Khalilouf et al., 2017). We previously found that exogenous GA\textsubscript{3} increased the linear size of eggplant and pepper plants, the number of leaves on the plant, the raw weight of the leaves and the dry weight of the whole plant increased under the action of the preparation. Under the action of the growth stimulant, the chlorenchyma thickened, the cell volume of the columnar parenchyma increased, but the chlorophyll content in the leaves decreased. Such changes in the leaf apparatus under the action of GA\textsubscript{3} led to an increase in the quantitative indicators of the productivity elements of eggplant and peppers (Rogach et al., 2020, 2021).

The approach “from the opposite” can be compelling and informative enough. It consists in the effect on plants of inhibitors of certain phytohormones, followed by the study of the relationship between the components of the whole hormonal complex. One of the most common groups of inhibitors are antihormone preparations – retardants (Kim et al., 2018; Ahmad et al., 2019) and ethylene producers (Shevchuk et al., 2019).

The inhibitory effect of retardants, depending on the chemical structure, is known to be determined by blocking the synthesis, or reducing the activity of already synthesized gibberellins (Radnemacher, 2016). However, in the contemporary scientific literature one can find some research papers that analyze changes in the hormonal complex of plants during their treatment with individual retardants. In particular, paclobutrazol at a concentration of 50 mg/L reduced the content of GA\textsubscript{3} in radish leaves (Jabir et al., 2017) and in flax plants (Kim et al., 2018) to trace concentrations. The same preparation at a dose of 1 g/m2 crown inhibited the synthesis of GA\textsubscript{3}, GA\textsubscript{4} and GA\textsubscript{5} in mango plants (Cavalcante et al., 2020). Medium and high concentrations of paclobutrazol decreased the content of GA\textsubscript{3} and IAA and increased the content of ABA in magnolia leaves. The decrease in GA\textsubscript{3} content was clearly correlated with the increase in the content of IAA and ABA (Shi et al., 2021). One of the most active retardants of the triazole group is uniconazole. High and medium doses increased the content of ABA and decreased the content of GA\textsubscript{3} and IAA in magnolia plant leaves. The increase in ABA content was clearly correlated with a decrease in the amount of GA\textsubscript{3} (Shi et al., 2021).

Rapeseed plants were treated with uniconazole at doses of 0.5, 1.0, 1.5 and 2.0 mg/L, which led to a decrease in GA\textsubscript{3} and IAA and an increase in cytokinins and ABA in roots and shoots (Zuo et al., 2020). Spraying plants of \textit{Brassica campestris} L. with uniconazole inhibited growth, slowed down the process of budding and flowering, changed the content of endogenous gibberellins (Song et al., 2019). Gibberellin inhibitors – uniconazole and paclobutrazol inhibited the synthesis of gibberellins in mango fruits (Cavalcante et al., 2020). We have previously found that EW-250 decreased the content of endogenous GA\textsubscript{3}, IAA and increased ABA in eggplant leaves and stems during budding treatment (Rogach et al., 2020). The application of this preparation in sweet pepper culture caused a decrease in the levels of GA\textsubscript{3}, IAA and ABA in the stems. Under the action of the retardant, the level of ABA in the leaves did not change, while GA\textsubscript{3} and IAA decreased it (Rogach et al., 2021).

Inhibition of apical and intercalary meristems due to inhibition of gibberellin synthesis under the influence of retardants led to a decrease in the linear size of plants and consequently reduced the demand for assimilates for growth of one of the largest plant acceptors – stems. At the same time, the compensatory increase in the activity of lateral and marginal meristems led to increased branching of the shortened stem and redistribution of excess plastic substances for growth and formation of lateral plant organs – leaves and fruit. In particular, paclobutrazol and prohexadione in closed soil at concentrations of 40, 80 and 160 ppm inhibited linear growth and enhanced stem branching in flaxseed, accelerated seed maturation and increased fruit yield. Under the action of paclobutrazol, the oil content in the seeds decreased, and under the influence of prohexadione it increased (Kim et al., 2018). Paclobutrazol increased the chlorophyll content of lily leaves due to chlorophyll and enhanced the transportation and utilization of photosynthates in maize (Ahmad et al., 2019). The same preparation at a dose of 50 g/L increased the rate of photosynthetic processes in radish plants (Jabir et al., 2017). Uniconazole in all applied concentrations reduced the height of magnolia plants by shortening the internodes and did not affect the stem diameter and reduced the number of nodes on the plant (Shi et al., 2021). The same preparation at doses of 0.5, 1.0, 1.5 and 2.0 mg/L caused a decrease in the stem linear size and its thickening in rapeseed plants in direct proportion to the dose. The retardant increased leaf area and dry matter mass of shoot and root in low and medium concentrations (Zuo et al., 2020). Spraying plants of \textit{Brassica campestris} L. with uniconazole inhibited growth, slowed down the process of budding and flowering (Song et al., 2019).

Gibberellic inhibitors – uniconazole and ethephon – inhibited the growth of maize plants, promoted better dry matter accumulation and faster grain filling. The use of triazole-derived retardant uniconazole turned out to be more effective than ethylene-producing ethephon (Ahmad et al., 2019). The retardants metconazole and paclobutrazol enhanced carbohydrate accumulation in mangoes (Cavalcante et al., 2020). We previously found that EW-25 reduced the linear size of eggplant and pepper plants, under the action of the preparation the number of leaves on the plant, the weight of the raw substance of the leaves and the dry matter of the whole plant increased. Under the action of the retardant, the chlorenchyma thickened, the cell volume of the columnar parenchyma and the chlorophyll content in the leaves increased. Such changes in the leaf apparatus under the action of EW-25 led to an increase in the quantitative indicators of the productivity elements of eggplant and pepper (Rogach et al., 2020; Rogach et al., 2021).

Therefore, the analysis of the literature testified to the fact that the exogenous use of GA\textsubscript{3} and its retardant inhibitors, especially from the group of triazoles, often leads to the same result – optimizing the production process of crops and increasing their yields, despite the opposite changes in the hormonal field, that are conditioned. Anyway, the literature possesses virtually no comparative systematic studies of the regulation of growth rate, morphogenesis, formation of photosynthetic apparatus and hormonal status of plants of nightshade vegetables under the action of GA\textsubscript{3} and triazole-derived retardants. Furthermore, the components of the regulation system of donor-acceptor relations in plants under the action of these preparations remain unknown.

Taking into consideration the aforementioned, the aim of the research was to study the effect of exogenous growth regulators – GA\textsubscript{3} and EW-250 – on morphogenesis, photosynthetic pigment content, endogenous phytohormone balance and productivity of \textit{Lycopersicon esculentum} Mill. tomato plants. Moreover, it required determining the role of morphological, mesostructural and hormonal components in the regulation of donor-acceptor relations.

Materials and methods

The vegetation experiment was carried out in the conditions of soil-sand culture in opaque plastic vessels with a 10-litre capacity. Grey forest podzolic coarse-grained medium-loam soil was used in a 3:1 mixture with

\textit{BioSyst. Divers.}, 2022, 30(2)

151
sand. The plants were grown under controlled conditions at a temperature of $+20\pm17^\circ\text{C}$ (day/night), light intensity was 190 $\mu\text{mol} \text{m}^{-2} \text{s}^{-1}$, photoperiod was 16/8 hours (day/night), relative humidity was 65 ± 5%, substrate humidity was maintained at 60% of total moisture content. They were watered daily with Kroop's solution at the rate of 250 mL per vessel.

Bobcat tomato plants were sprayed once to make leaves completely wet with 0.005% solution of gibberellic acid (GA$_3$, Power-Grown, USA) and 0.025% solution of tebuconazole (EW-250) (Bayer, Germany) in the budding phase. Control plants were sprayed with distilled water.

The repetition of the vegetation experiment is tenfold.

Analysis of morphological parameters was performed every 10 days from the day of treatment. Individual organs were weighed on laboratory scales to determine their mass. Leaf area was determined by cutting (Official methods of analysis of Association of Analytical Chemists International (18th ed.) Association of Analytical Chemists, Gaithersburg, Maryland). The average area of leaf blades was determined by multiplying the length of the leaf blade by its width and by a conversion factor of 0.75.

Leaf mesostructure was analyzed during carpogenesis (30th day after treatment). For anatomical analysis, the leaves of the middle tier were selected, which had completely finished growing. The plant material was stored in a mixture of equal parts of ethyl alcohol, glycerin, water with the addition of 1% formalin. The size of individual chlorenchyma cells was determined on preparations obtained by partial maceration of leaf tissues. Macerating agent – 5% solution of acetic acid in hydrochloric acid (2 mol/L). The dimensions of the anatomical elements were determined on a microscope Mikromed-1 (Lomo-Microsystems, RF) using an ocular micrometer MOV-1-15 × (Lomo-Microsystems, RF). It was done thirty-five times.

The chlorophyll content was determined in the raw material by spectrophotometric method on a spectrophotometer SF-16 (RF). The experiment was repeated five times (Official methods of analysis of Association of Analytical Chemists International (18th ed.). Association of Analytical Chemists, Gaithersburg, Maryland).

In order to determine phytohormones a portion of the material (2 g) was triturated in liquid nitrogen and homogenized in 10 mL of extraction solution (methanol, water, formic acid in a ratio of 15:4:1) and extracted for 24 hours. The extracts were centrifuged at 30 minutes at 15,000 rpm at a temperature of $+4^\circ\text{C}$ in a K-vacuum rotary evaporator at a temperature not exceeding + 4 °C in a K-vacuum evaporator (Poland). Further purification of phytohormones was performed with 100% methanol, cytokinins – with alkaline eluent: 60 mL of 5% solution of acetic acid in hydrochloric acid (2 mol/L). The dimensions of the anatomical elements were determined on a microscope Mikromed-1 (Lomo-Microsystems, RF) using an ocular micrometer MOV-1-15 × (Lomo-Microsystems, RF). It was done thirty-five times.

The cholorophyll content was determined in the raw material by spectrophotometric method on a spectrophotometer SF-16 (RF). The experiment was repeated five times (Official methods of analysis of Association of Analytical Chemists International (18th ed.). Association of Analytical Chemists, Gaithersburg, Maryland).

In order to determine phytohormones a portion of the material (2 g) was triturated in liquid nitrogen and homogenized in 10 mL of extraction solution (methanol, water, formic acid in a ratio of 15:4:1) and extracted for 24 hours. The extracts were centrifuged at 30 minutes at 15,000 rpm at a temperature of $+4^\circ\text{C}$ in a K-vacuum rotary evaporator at a temperature not exceeding + 4 °C in a K-vacuum evaporator (Poland). Further purification of phytohormones was performed with 100% methanol, cytokinins – with alkaline eluent: 60 mL of 5% solution of acetic acid in hydrochloric acid (2 mol/L). The dimensions of the anatomical elements were determined on a microscope Mikromed-1 (Lomo-Microsystems, RF) using an ocular micrometer MOV-1-15 × (Lomo-Microsystems, RF). It was done thirty-five times.

The cholorophyll content was determined in the raw material by spectrophotometric method on a spectrophotometer SF-16 (RF). The experiment was repeated five times (Official methods of analysis of Association of Analytical Chemists International (18th ed.). Association of Analytical Chemists, Gaithersburg, Maryland).

In order to determine phytohormones a portion of the material (2 g) was triturated in liquid nitrogen and homogenized in 10 mL of extraction solution (methanol, water, formic acid in a ratio of 15:4:1) and extracted for 24 hours. The extracts were centrifuged at 30 minutes at 15,000 rpm at a temperature of $+4^\circ\text{C}$ in a K-vacuum rotary evaporator at a temperature not exceeding + 4 °C in a K-vacuum evaporator (Poland). Further purification of phytohormones was performed with 100% methanol, cytokinins – with alkaline eluent: 60 mL of 5% solution of acetic acid in hydrochloric acid (2 mol/L). The dimensions of the anatomical elements were determined on a microscope Mikromed-1 (Lomo-Microsystems, RF) using an ocular micrometer MOV-1-15 × (Lomo-Microsystems, RF). It was done thirty-five times.

The cholorophyll content was determined in the raw material by spectrophotometric method on a spectrophotometer SF-16 (RF). The experiment was repeated five times (Official methods of analysis of Association of Analytical Chemists International (18th ed.). Association of Analytical Chemists, Gaithersburg, Maryland).

Foliar treatment of tomatoes in the budding phase with 0.005% aqueous solution of GA$_3$, and 0.025% aqueous solution of EW-250 influenced the rate of growth processes. During the growing season, the height of the shoots was dominated by plants treated with GA$_3$ solution, while with application of the retardant in the first half of the growing season, plant growth did not differ significantly from the control sample, and in the second – it slowed down. In the phase of fruit formation, the linear size of plants treated with GA$_3$, exceeded the control sample by 23.6%, while under the action of EW-250 they were 8.6% lower than the control sample (Fig. 1).

Since the leaf is the main donor of plastic substances in the plant, the analysis of the influence of growth regulators on the leaf apparatus was carried out. It turned out that after treatment with GA$_3$, the number of leaves on the plant increased by 16.1%, and under the action of EW-250 it did not change compared to the control sample (Fig. 2). GA$_3$ and EW-250 increased the number of leaf blades per leaf by 11.8 and 22.4%, respectively (Fig. 3). The consequence of such changes in the leaf apparatus was an increase in the total number of leaf plates on the plant, both during GA$_3$ treatment (29.8%) and after the application of EW-250 (19.8%, Fig. 4).

Under the action of growth regulators, the leaf raw matter mass increased. In particular, under the influence of GA$_3$, this figure increased by 0.91 times per plant, while after treatment with retardant – only 0.22 times (Table 1). GA$_3$ increased the stem and root raw weight, while EW-250 decreased it. During GA$_3$ treatment, the stem weight increased 1.22 times.
and the root weight 0.75 times. Under the influence of EW-250, the mass of stems and roots tended to decrease compared to the control sample (Table 1). Growth regulators also affected the accumulation of dry matter of the whole plant. In the fruit formation phase, GA3 induced an increase in dry weight of 0.93 times, while EW-250 did not change it (Table 1).

The effect of foliar treatment with solutions of gibberellic acid and tebuconazole

Note

Table 1

The effect of foliar treatment with solutions of gibberellic acid and tebuconazole on the mass of vegetative organs of Lycopersicon esculentum Mill. plants, gb. Bobcat (n = 10, x ± SE)

Parameter	Control sample	Gibberellic acid	Tebuconazole
Mass of leaf raw matter, g	4.24 ± 0.16	8.08 ± 0.38**	5.15 ± 0.17**
Mass of stem raw matter, g	6.48 ± 0.27	14.41 ± 0.67***	5.98 ± 0.28
Mass of root raw matter, g	5.05 ± 0.23	8.81 ± 0.32***	4.73 ± 0.15
Mass of dry matter of the whole plant, g	4.52 ± 0.18	8.72 ± 0.36***	4.45 ± 0.28
Number of flowers per plant, pcs.	2.21 ± 0.08	3.88 ± 0.14***	4.05 ± 0.18***

Note: treatment of plants was in the budding phase; determination of indicators was in the fruit formation phase; * P < 0.05; ** P < 0.01; *** P < 0.001, one line was compared by the difference between the mean values, calculated according to the ANOVA criterion with the Bonferroni correction.

Leaf mesostructural organization is an important indicator that determines the effectiveness of the photosynthetic apparatus of the plant and significantly affects its productivity. It is found that after treatment with EW-250 chlorophylla thickened by 28.6 ± 1.41 μm, and after the use of GA3 it thickened by 24.4 ± 1.21 μm. In general, the thickness of the leaf blade after the application of EW-250 increased by 15.1%, while with GA3 treatment it decreased by 12.8%. Exogenous GA3 and EW-250 increased the volume of columnar parenchymal cells by 29.8% and 92.2%, respectively. The size of spongy parenchyma cells increased only with growth stimulant treatment (Table 2).

The effects of foliar treatment of plants with GA3 and EW-250 solutions on the distribution of endogenous IAA, GA3, and ABA in tomato organs were studied. Under the action of exogenous GA3 in stems and leaves there was an increase in the content of endogenous IAA on 47.2% and 185.5%, while content of EW-250 was reduced by 20.0% and 59.2%, respectively (Fig. 6). Exogenous GA3 increased the content of endogenous GA3 in stems and leaves by 51.4% and 61.1%, correspondingly, while EW-250 decreased its content by 39.9% and 55.5%, respectively. The content of ABA increased by 67.2% for EW-250 treatments and decreased by 37.6% after the use of exogenous GA3 in stems, and EW-250 increased its content by 26.7%, and GA3 decreased by 50.6% in leaves.

Growth regulators affected the cytokinin content in the aboveground vegetative tomato organs. Five forms of cytokinins were identified in leaves and stems under control conditions: zeatin (Z), zeatinriboside (ZR), zeatin-O-glucoside (ZG), isopentenyladenine (iP), and isopentenyladenosine (iPA) (Table 3).
Discussions

The amount of cytokinins as well as iP in leaves in the GA3 and EW-250 versions and iP in leaves in the EW-250 version. The total content of cytokinins in the leaves was higher than in the stems, both in the control and in the experimental variants. EW-250 induced a decrease in the cytokinin pool in stems by 11.6% and an increase in its leaves by 68.0%, respectively. When using exogenous GA3, the cytokinin pool increased in leaves by 59.7% and decreased in stems by 33.1%. GA3 increased the content of all 5 forms of cytokinins in the leaves, and EW-250 only two (iPA and iP). In the stems under the action of both growth regulators the content of C decreased and that of iP increased. The content of ZR and iPA in the stems increased after the application of the retardant and decreased under the action of the growth stimulant. ZG content exceeded control upon GA3 treatment and the hormone was virtually absent after EW-250 administration.

The results of our research revealed a positive effect of growth regulators on the tomato productivity. GA3 and EW-250 growth regulators increased the number of flowers per plant by 1.67 ± 0.06 and 1.84 ± 0.09 per plant, respectively. Moreover, after foliar treatment with GA3 and EW-250 solutions, the number of fruits on tomato plants increased by 44.3% and 29.6%, correspondingly (Table 4). There was a significant increase in fruit diameter under the action of the retardant and the absence of such changes after the use of growth stimulants. The average weight of one fruit under the action of GA3 remained virtually unchanged and increased after treatment with EW-250 by 41.1%. The change in the quantitative indicators of productivity elements under the action of growth regulators has led to an improvement in the biological productivity of the crop. The most significant fruit yield from the plant increased after the use of EW-250 and amounted to 205.4 ± 10.24 g per plant. When treated with GA3 solution, this parameter increased to 119.1 ± 2.91 g per plant (Table 4).

In both stems and leaves, cytokinins were predominantly Z and ZR, as well as iP in leaves in the GA3 and EW-250 versions and iP in leaves in the EW-250 version. The total content of cytokinins in the leaves was higher than in the stems, both in the control and in the experimental variants. EW-250 induced a decrease in the cytokinin pool in stems by 11.6% and an increase in its leaves by 68.0%, respectively. When using exogenous GA3, the cytokinin pool increased in leaves by 59.7% and decreased in stems by 33.1%. GA3 increased the content of all 5 forms of cytokinins in the leaves, and EW-250 only two (iPA and iP). In the stems under the action of both growth regulators the content of C decreased and that of iP increased. The content of ZR and iPA in the stems increased after the application of the retardant and decreased under the action of the growth stimulant. ZG content exceeded control upon GA3 treatment and the hormone was virtually absent after EW-250 administration.

The results of our research revealed a positive effect of growth regulators on the tomato productivity. GA3 and EW-250 growth regulators increased the number of flowers per plant by 1.67 ± 0.06 and 1.84 ± 0.09 per plant, respectively. Moreover, after foliar treatment with GA3 and EW-250 solutions, the number of fruits on tomato plants increased by 44.3% and 29.6%, correspondingly (Table 4). There was a significant increase in fruit diameter under the action of the retardant and the absence of such changes after the use of growth stimulants. The average weight of one fruit under the action of GA3 remained virtually unchanged and increased after treatment with EW-250 by 41.1%. The change in the quantitative indicators of productivity elements under the action of growth regulators has led to an improvement in the biological productivity of the crop. The most significant fruit yield from the plant increased after the use of EW-250 and amounted to 205.4 ± 10.24 g per plant. When treated with GA3 solution, this parameter increased to 119.1 ± 2.91 g per plant (Table 4).

Table 2

Parameter	Control sample	Gibberellic acid	Tebuconazole
Leaf blade thickness, μm	190.2 ± 6.2	165.8 ± 0.07***	218.9 ± 0.90***
Upper epidermis thickness, μm	201.6 ± 0.54	139.3 ± 0.59***	147.2 ± 0.20***
Chlorophylla, μm	158.3 ± 5.3	141.6 ± 4.1**	190.3 ± 9.3***
Lower epidermis thickness, μm	11.91 ± 0.39	10.25 ± 0.32**	11.05 ± 0.23***
Columnar parenchyma cell volume, μm³	5111 ± 255	6635 ± 310***	9822 ± 311***
Length of the spongy parenchyma cells, μm	18.31 ± 0.51	21.66 ± 0.40***	18.38 ± 0.37
Width of spongy parenchyma cells, μm	15.39 ± 0.46	18.80 ± 0.40***	16.37 ± 0.39

Note: see Table 1.

Table 3

Organ	Parameter	Control sample	Gibberellic acid	Tebuconazole
Zeanin	62.6 ± 3.0	17.5 ± 0.8***	47.9 ± 2.2***	
Zeaninose	42.5 ± 2.1	36.6 ± 1.7	45.5 ± 2.1	
Zeanin-O-glucoside	10.8 ± 0.5	15.5 ± 0.7***	traces	
Isopentenyldelamin	3.6 ± 0.1	10.8 ± 0.44***	10.4 ± 0.4***	
Isopentenyldelaminose	4.3 ± 0.2	23.4 ± 0.1***	5.5 ± 0.3*	
The amount of cytokinin	123.7 ± 6.2	82.8 ± 4.1***	1093 ± 5.4	
Zeanin	146.9 ± 2.3	61.4 ± 3.0*	23.4 ± 1.2***	
Zeaninose	134.6 ± 6.7	161.4 ± 8.1	289 ± 1.4***	
Zeanin-O-glucoside	traces	43.3 ± 2.1***	traces	
Isopentenyldelamin	13.4 ± 0.7	453.2 ± 2.4***	1140 ± 0.7***	
Isopentenyldelaminose	153.4 ± 1.4	232.9 ± 11.0***	223.3 ± 10.1***	
The amount of cytokinin	194.9 ± 9.7	311.3 ± 15.6*	366.4 ± 16.3***	

Note: see Table 1.
mones under the influence of exogenous gibberellins were observed in the organs of tomato plants (Khalloufi et al., 2017) and zucchini (Song et al., 2019).

Table 4

Parameter	Control sample	Gibberellic acid	Tebuconazole
Fruit diameter, cm	5.02 ± 0.18	5.25 ± 0.22	6.03 ± 0.28*
Average fruit weight, g	57.45 ± 2.67	58.86 ± 2.88	81.05 ± 4.74**
Number of fruits per plant, pcs.	4.33 ± 0.11	6.25 ± 0.33***	5.61 ± 0.19***
Weight of fruit from one plant, g	248.8 ± 9.9	367.9 ± 12.8***	454.7 ± 20.2***

Note: treatment of plants was in the budding phase, determination of indicators was in the fruit opening phase. * - P < 0.05; ** - P < 0.01; *** - P < 0.001, one row was compared by the difference between the mean values calculated by the ANOVA criterion with the Bonferroni correction.

It is found that the application of exogenous GA3 and EW-250 led to significant changes in the growth rate of tomato plants, as indicated by our previous studies (Rogach et al., 2020, 2021). The increase in the linear shoot size of GA3-treated plants and the raw material masses of stem and leaf roots correlated with the increase in the content of endogenous growth stimulating hormones GA3 and IAA in stems and leaves. On the contrary, EA-250 reduced GA3 and IAA in tomato stalks and leaves, while ABA increased with inhibition of stem growth and increase in crude weight of all vegetative organs during GA3 treatments and leaf weight of EW-250. It is found that there was a relatively low content of GA3 in the control and experimental variants against the background of a sufficiently high level of ABA in tomato stems and leaves. The results obtained are similar to our previous ones (Rogach et al., 2020, 2021) and those of other authors (Ahmad et al., 2017), in particular when using similar regulators on tomato plants (Khalloufi et al., 2017) and flax (Kim et al., 2018).

The IAA content in tomato stems and leaves after retardant application was lower than in the control sample. One of the main centers of auxin biosynthesis is located at the top of the shoot (Khalloufi et al., 2017), which, in our opinion, led to a significant content of endogenous IAA in tomato stem tissues in the control sample and a GA3 variant.

Exogenous GA3 is shown to enhance growth and formation processes (Rogach et al., 2020, 2021). Under the action of the retardant, the growth of the stem in height was inhibited, butbranching intensified and more leaves were laid (Kuryata et al., 2019). As a result of slowing down the linear growth of the stem, plastic substances were directed to the formation of new leaves.

The synthesis of chlorophyll in plants is known to be under the control of phytohormones of the cytokinin group (Rogach et al., 2020, 2021). It is revealed that under the action of EW-250, in contrast to GA3, the content of chlorophyll increased (Rolacht, 2017). The obtained results are consistent with the nature of the accumulation of cytokinins in the leaves of experimental plants. Under GA3 and EW-250, the amount of cytokinins did not exceed the control by 59.7% and 88.0%, respectively.

Anatomical-morphological and physiological-chemical changes under the action of growth regulators were realized through the restructuring of donor-acceptor relations and redistribution of flows of plastic substances between vegetative and generative organs (Kuryata et al., 2019; Poprotska et al., 2019). Exogenous GA3 contributed to the formation of a more powerful leaf apparatus, increasing the number of leaves, their weight and area. After treatment with EW-250, these figures remained virtually unchanged compared to control samples. Increased photosynthetic activity enhanced the donor function of the leaf as well as the number of generative organs intensified the acceptance of newly formed plastic substances, which ultimately increased crop productivity. Therefore, the application of exogenous multiplex-vegetative growth regulators – GA3 and EW-250 in soil-sandy culture changed the growth rate of eggplants, affected the number of leaves on the plant, weight of raw material, leaf surface area and mesostructure of leaves, chlorophyll content, balance of endogenous phytohormones in aboveground vegetative organs, which led to the activation of the photosynthetic apparatus, resulting in increased biological crop capacity.

Conclusions

The research results demonstrate that exogenous growth regulators of plants with different directions of GA3 effect (native stimulant hormone) and EW-250 (triazole-derived retardant), modulating the dynamics and distribution of endogenous plant phytohormones Lycopersicon esculentum Mill. Bobcat hybrid variety induced changes in morphogenesis, structure and function of the leaf apparatus and optimized crop capacity. It is found that foliar treatment with GA3 increased plant height, while EW-250 inhibited stem elongation. Growth regulators induced formation of new leaves, accumulation of their biomass, increasing the area of a single leaf blade and the area of leaves on the plant. GA3 also increased the biomass of stems and roots, and the dry matter mass of the whole plant was greater than in the control sample of both growth regulators. EW-250 increased the amount of chlorophyll (a + b) in the leaves. EW-250 thickened the leaf blades due to the growth of chlorenchyma cells while GA3 significantly reduced their thickness. At the same time, an increase in the volume of cells of the columnar parenchyma was observed under the action of both preparations, yet the use of EW-250 turned out to be more effective.

Moreover, exogenous GA3 increased the content of endogenous IAA and GA3 in stems and leaves. Conversely, EW-250 reduced GA3 and IAA levels in tomato stems and leaves, and increased ABA levels. Treatment of plants with the studied growth regulators caused a decrease in the pool of cytokinins (CK) in the stems and led to its increase in the leaves. After spraying with GA3 solution, the level of iP and ZR increased. Under the action of the retardant, the increase in the CK pool occurred exclusively due to iP and ZR.

Hence, anatomical-morphological and structural-functional rearrangements in tomato plants under the action of GA3 and EW-250 are caused by changes in the balance and distribution of endogenous hormones. Increased photosynthetic activity, stimulation of growth processes of some plant organs and inhibition of others increased the biological crop capacity. The obtained results give a new practical approach to increasing tomato yield. Nevertheless, some questions about the molecular and physiological mechanisms of influence of the studied growth regulators require further investigation.

References

Ahmad, I., Kamran, M., Meng, X., Ali, S., Bilgicaguir, B., Cai, T., Liu, T., & Han, Q. (2019). Effects of plant growth regulators on soil filling, endogenous hormone contents and maize production in semiarid regions. Journal of Plant Growth Regulation, 38(4), 1467–1480.

Cavalcante, I. H. L., Nogueira e Silva, G. J., Cavacini, A. J., Araujo and Araniz, R., Tonetto de Freitas, S., Oliveira de Sousa, K. A., Almeida da Silva, M. A., and Gornes da Cunha, J. (2020). Tebuconazole on inhibition of gibberellin biosynthesis and flowering management in mango. Erwerbsobstbau, 62(1), 89–95.

Jahir, B. M. O., Kinuthia, K. B., Farouq, M. A., Awad, F. N., Everlyne, M. M., Ahmadzai, Z., & Liu, L. (2017). Effects of gibberellic and gibberellin biosynthesis inhibitor (paclobutrazol) applications on radish (Raphanus sativus L.) taproot expansion and the presence of authentic hormones. International Journal of Agriculture and Biology, 19(4), 779–786.

Khodanitska, O. O., Kuryata, V. G., Shevchuk, O. A., Tkachuk, O. O., Poprotska, I. V. (2019). Effect of retardant chlormequat chloride and growth stimulant trep-toluron treatment on the growth and productivity of lineer plants. Romanian Journal of Ecology, 9(2), 119–126.

Kim, B.-K., Han, C.-M., Shin, J.-H., & Kwon, T.-Y. (2018). Effects of paclobutrazol and prohexadione-ca on seed yield, and content of oils and gibberelin in flax grown in a greenhouse. Korean Journal of Crop Science, 63(3), 265–271.

Koskiviväinen, I. V., Vassy, V. A., Voyerenko, L. V., Shcherbeniuk, M. M., Romanenko, K. O., & Babenko, L. M. (2020). Endogenous phytohormones of fern Polystichum aculeatum (L.) Roth gametophytes at different stages of morphogenesis in vitro culture. Cytology and Genetics, 54(1), 23–30.

Kuryata, V. G., Polovynyi, S. V., Shevchuk, O. A., & Tkachuk, O. O. (2019). Morphogenesis and the effectiveness of the production process of oil poppy under the complex action of retardant chlormequat chloride and growth stimulant trepentoluron. Ukrainian Journal of Ecology, 9(1), 127–134.

Poprotska, I., Kuryata, V., Khodanitska, O., Polovynyi, S., & Golovan, I. (2019). Effect of gibberellin and retardants on the germination of seeds with different criteria of reserve substances under the conditions of skoto- and photomorphoge- nesis. Biologija, 65(4), 296–307.

Qi, J., Chen, R. F., Luo, H. M., Fan, Y. G., Huang, X., Liu, J. X., Xiong, F. Q., Zhou, H. W., Gan, C. K., Wu, J. M., & Li, Y. R. (2019). Effects of exogenous...
GA3 and DPC treatments on levels of endogenous hormone and expression of key gibberellin biosynthesis pathway genes during stem elongation in sugar-cane. Sugar Tech, 21, 936–948.

Rademacher, W. (2016). Chemical regulators of gibberellin status and their application in plant production. Annual Plant Reviews, 49, 395–403.

Rogach, V. V., Karyata, V. G., Kosakivska, I. V., Voitenko, L. V., Shcherbatyiuk, M. M., & Rogach, T. I. (2021). Morphogenesis, pigment content, phytohormones and productivity of sweet pepper under the action of gibberellin and tebuconazole. Regulatory Mechanisms in Biosystems, 12(2), 294–300.

Rogach, V. V., Voitenko, L. V., Shcherbatyiuk, M. M., Kosakivska, I. V., & Rogach, T. I. (2020). Morphogenesis, pigment content, phytohormones and productivity of eggplants under the action of gibberellin and tebuconazole. Regulatory Mechanisms in Biosystems, 11(1), 129–135.

Shchuk, O. A., Tkachuk, O. O., Karyata, V. G., Khodanitska, O. O., & Polyvanyi, S. V. (2019). Features of leaf photosynthetic apparatus of sugar beet under retardants treatment. Ukrainian Journal of Ecology, 9(1), 115–120.

Shi, X., Chen, S., & Jia, Z. (2021). The dwarfing effects of different plant growth retardants on Magnolia wufengensis L. Y. Ma et L. R. Wang. Forests, 12(1), 19.

Song, S.-W., Lei, Y.-L., Huang, X.-M., Su, W., Chen, R.-Y., & Hao, Y.-W. (2019). Crosstalk of cold and gibberellin effects on bolting and flowering in flowering Chinese cabbage. Journal of Integrative Agriculture, 18(5), 992–1000.

Soumya, P. R., Kumar, P., & Pal, M. (2017). Paclobutrazol: A novel plant growth regulator and multi-stress ameliorant. Indian Journal of Plant Physiology, 22, 267–278.

Tkach, Y. I., Tsyluryk, O. I., Rudakov, Y. M., & Kozechko, V. I. (2021). Efficiency of post-emergence (“insurance”) herbicides in soybean crops of the Northern Steppe of Ukraine. Agrology, 4(4), 165–173.

Tsyluryk, O. I., Tkach, Y. I., Honchar, N. V., & Kozechko, V. I. (2021). Effectiveness of soil-applied and post-emergence herbicides in crops of scarlet goshbeak (Erythrina crysanthus) of the Northern Steppe of Ukraine. Agrology, 4(2), 85–92.

Van Emden, H. F. (2008). Statistics for terrified biologists. Blackwell, Oxford.

Wen, Y., Su, S. C., Ma, L. Y., & Wang, X. N. (2018). Effects of gibberellic acid on photosynthesis and endogenous hormones of Camellia oleifera Abel. in 1st and 6th leaves. Journal of Forest Research, 23(5), 309–317.

Zhou, Q., Gao, B., Li, W.-F., Mao, J., Yang, S.-J., Li, W., Ma, Z.-H., Zhao, X., & Chen, B.-H. (2020). Effects of exogenous growth regulators and bud picking on grafting of grapevine hard branches. Scientia Horticulturae, 264, 109–186.

Zuo, Q., Wang, L., Zheng, J., You, J., Yang, G., Long, S., & Liu, J. (2020). Effects of uniconazole rate on agronomic traits and physiological indexes of rapeseed blanket seedling. Oil Crop Science, 5(4), 198–204.