Improvement of the C-glycosylation Step for the Synthesis of Remdesivir

Fei Xue, Xinbo Zhou, Ruijie Zhou, Xiaohan Zhou, Dian Xiao, Eric Gu, Xiaowen Guo, Ji Xiang, Ke Wang, Likai Yang, Wu Zhong, and Yong Qin*

Cite This: https://dx.doi.org/10.1021/acs.oprd.0c00310

ABSTRACT: The bulk supply of the antiviral C-nucleoside analogue remdesivir is largely hampered by a low-yielding C-glycosylation step in which the base is coupled to the pentose unit. Here, we disclose a significantly improved methodology for this critical transformation. By utilizing diisopropylamine as a cost-effective additive, the addition reaction furnishes an optimal yield of 75% of the desired ribofuranoside adduct, representing the highest yield obtained thus far for this key step. The method proved suitable for hectogram scale synthesis without column chromatographic operations.

KEYWORDS: diisopropylamine, C-glycosylation, remdesivir, COVID-19

INTRODUCTION

The global outbreak of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a severe threat to human health.1−5 Compared to its relatives (e.g., SARS-CoV and MERS-CoV), the new coronavirus exhibits a more significant person-to-person transmission tendency. Most importantly, no drugs or vaccines have thus far been approved to treat infections of SARS-CoV-2, which seems to render this pandemic uncontrollable, with the number of infected cases worldwide exceeding ten million. Under such circumstances, several existing antiviral drugs and drug candidates are actively evaluated for their therapeutic potential for this disease.6−8 Among them, remdesivir (GS-5734; Figure 1) represents one of the most promising compounds.8−10

Remdesivir is an investigational small-molecule drug originally developed to treat Ebola virus infections and later found to exhibit broad-spectrum activity against various RNA viruses.11−17 In particular, a recent study (published on February 4, 2020) clearly demonstrated that remdesivir was effective against SARS-CoV-2 in vitro with an EC\textsubscript{50} of 0.77 \textmu M in Vero E6 cells.17 Of note, approximately 1 week prior to this report, Holshue et al. disclosed that the first COVID-19 patient in the USA had gradually recovered after receiving a compassionate administration of remdesivir.18 Subsequently, a number of clinical trials have been launched worldwide to evaluate the efficacy and safety of remdesivir,19 and other compassionate use of this molecule has also been initiated,20 in the hope that it would benefit the treatment of the epidemic COVID-19. Although the earliest clinical trials conducted in China did not yield positive results in terms of reducing the death rate of severely affected patients due to insufficient data,21 preliminary data from a clinical trial led by the National Institute of Allergy and Infectious Diseases (NIAID) suggest a promising therapeutic effect of remdesivir.22 On May 1, 2020, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for remdesivir to treat COVID-19 patients.23 Once further evidence supports the broad clinical use of remdesivir, the bulk supply of the active pharmaceutical ingredients required for the production of remdesivir would be an urgent concern.23

Structurally, remdesivir consists of three fragments: an adenine analogue (base), a pentose unit, and a phosphoramidate side chain. A key challenge in the preparation of this C-nucleoside analogue is the coupling of the ribose and base moieties. Previously, two-generation syntheses of remdesivir, including three different methods for accessing ribofuranoside 4, have been developed by chemists at Gilead Sciences (2 + 3 to 4; Figure 2).11,12,14−27 Temporary silyl protection of the free primary amine group in the base fragment 2 was required in the addition reaction between 2 and 3. Two silyl reagents (i.e., trimethylchlorosilane and 1,1,4,4-tetramethyl-1,4-dichloro disilylethylene (5)) were employed to generate the corresponding
protected intermediates 6 and 7, respectively. In the first generation synthesis, subjection of bromide 2a and ribolactone 3 to the conditions of TMSCl and n-BuLi at −78 °C furnished the desired C-glycosylation product 4 in a low yield of 25% (method A; Figure 2).24,25 Alternatively, the use of disilane 5 and NaH in this transformation could deliver 4 in a reported yield of 60% on 4.4 g scale (method B; Figure 2).12,26,27 The authors of the original studies added that “the efficiency of both conditions (in the first generation synthesis) was suboptimal as the yields were capricious and highly dependent on the cryogenic temperatures and the rate of n-BuLi addition required for the transformation.”12 In the second generation synthesis (method C; Figure 3), iodide 2b was employed as the source of the base unit, with a combination of TMSCl, PhMgCl, and i-PrMgCl·LiCl reagents, which resulted in a 40% yield of 4.11,12 We attempted to reproduce these documented procedures on a decagram scale11,25,26 which resulted in the isolation of 4 with yields in the range 21–42% (see Table S1 in the Supporting Information). Evidently, none of the three above approaches efficiently addressed this problematic synthetic step, and the aforementioned techniques are not suitable for scale-up preparation of remdesivir. Until very recently, during the course of our manuscript preparation, the Gilead scientists reported an optimization of method C for the critical C-glycosylation step, in which NdCl3 and n-Bu4NCl were employed to facilitate the addition of lactone 3 with TMS-protected amine 2b (Method D; Figure 2).29 The 282 kg scale-up synthesis of compound 4 with a 69% yield proved the reliability of this method. In this report, we describe an alternative improvement for the C-glycosylation step, which renders the synthesis of remdesivir simple and efficient, with the aim of meeting the demand for its large-scale synthesis.

RESULTS AND DISCUSSION

Efficient protection of the free amine group in 2 would be essential for the successful addition reaction of base 2 to lactone 3. We envisioned that the addition of a secondary amine might be helpful for improving the reaction efficiency (Figure 3). First, the secondary amine could serve to activate disilane 5 through the formation of a disilyl substituted cyclic quaternary amine salt 8,30 thereby promoting the exchange of the silyl groups between the inactive primary amine in 2 and the secondary amine to form cyclic disilazane 7. Second, a stabilized lithium intermediate 9 could be formed in the presence of the secondary amine after lithium−halogen exchange with 7, which would subsequently facilitate the
addition of the base motif to lactone 3 to yield the desired ribofuranoside 4.

With the above working hypothesis in mind, we initiated our studies by performing the reactions with bromide 2a (1.0 g scale) and lactone 3 employing disilane 5 in the presence of n-BuLi with various secondary amines (Table 1). When secondary amines bearing two linear alkyl groups (such as diethylamine, dipropylamine, and dibutylamine) were used, the addition reactions proceeded to afford 4 in moderate yields (41–54%, entries 1–3). To our delight, bulkier alkyl substituents in the secondary amine were beneficial for improving the reaction efficiency. As a result, conducting the reaction in the presence of diisopropylamine led to the generation of 4 in 74% yield (entry 4). Notably, similar results were obtained with other bulky secondary amines: diisobutylamine (71%, entry 5), dicyclohexylamine (70%, entry 6), and 2,2,6,6-tetramethylpiperidine (74%, entry 7). For the purposes of comparison, the use of tertiary amines was likewise evaluated. For instance, we performed the addition reaction of 2a and 3 under the identical conditions of entry 4, except for the replacement of diisopropylamine with diisopropylethylamine, which resulted in a lower yield (49%, entry 8).

Table 2. Further Optimization Studies and Scale-up Synthesis

Entry	Scale of 2a (g)	Equiv of 3	Concentration (mol/L)	Yield (%)
1	10.0	2.0	0.08	75b
2	10.0	2.0	0.20	74b
3	10.0	2.0	0.25	70b
4	10.0	1.8	0.20	62b
5	10.0	1.6	0.20	59b
6	180.0	2.0	0.20	62c

Reactions were conducted with 1.1 equiv of 5, 1.1 equiv of i-Pr2NH, and 4.3 equiv of n-BuLi unless otherwise stated. Yields were calculated based on the materials isolated through column chromatography. aThe yield was obtained after recrystallization.

Based on the above preliminary results, we then carried out scale-up experiments employing diisopropylamine as an additive (Table 2). A 10-g-scale addition of 2a to lactone 3 was performed according to the conditions described in Table 1, leading to the generation of adduct 4 in 75% yield (entry 1). To further improve the practicality of the addition process, we sought to reduce the amount of solvent and increase the reaction concentration. Specifically, a 74% yield was observed when conducting the reaction at the concentration of 0.20 mol/L (entry 2), comparable to that of 0.08 mol/L (entry 1), while the reaction at 0.25 mol/L led to a slightly diminished yield (70%, entry 3). Moreover, the effect of the equivalents of lactone 3 was investigated. Lowering the loading of 3 delivered...
inferred results (i.e., 1.8 equiv, 62%, entry 4; 1.6 equiv, 59%, entry 5) compared to that obtained with 2.0 equiv of 3. With the optimized reaction conditions (entry 2), a 180-g-scale experiment was conducted, which proceeded smoothly to provide 4 with a 62% yield and 99.3% purity after recrystallization without the need for column chromatographic operations (entry 6).

CONCLUSION

In summary, the crucial C-glycosylation step that ordinarily limits the overall efficiency of remdesivir synthesis has been significantly improved by the use of a cost-effective secondary amine, diisopropylamine. Thus, subjecting the base unit 2a and ribolactone 3 to the optimal reaction conditions delivered up to a 75% yield of the anticipated ribofuranoside 4, which, to the best of our knowledge, represents the highest yield obtained for this critical transformation thus far. Furthermore, the procedure is amenable to hectarom scale synthesis without column chromatographic operations, and as such would be highly advantageous for the large-scale manufacture of the antiviral, remdesivir.

EXPERIMENTAL DETAILS

General Information. All reagents were purchased from commercial suppliers and were used without further purification. The product of the decagram scale synthesis was purified by flash column chromatography on silica gel (200–300 meshes) from the Anhui Liangchen Silicon Material Company in China. 1H NMR and 13C NMR spectra were recorded on Varian INOVA-400/54, Agilent DD2–600/54 and calibrated by using deuterated dimethyl sulfoxide (DMSO-d$_6$). 1H NMR: δ = 2.50. 13C NMR: δ = 39.5) unless otherwise noted. High-resolution mass spectra (HRMS) were recorded on Agilent LC-MSD TOF ESI mass spectrometers.

General Procedure for Synthesis of Compound 4 by Using Different Amines. To an oven-dried round-bottom flask equipped with a stir bar was added 7-bromopyrrolo[2,1-f][1,2,4]triazin-4-amine (2a, 1.00 g, 4.694 mmol, 1.0 equiv). The flask was evacuated and backfilled with argon three times. Under the protection of argon, anhydrous THF (40 mL) was added and the mixture was stirred at room temperature for 5 min before a solution of 1,2-bis(chlorodimethylsilyl) ethane (5, 1.11 g, 5.163 mmol, 1.1 equiv) in anhydrous tetrahydrofuran (20 mL) was added. The resulting mixture was stirred for 10 min. Then diisopropylamine (7.3 mL, 51.63 mmol, 1.1 equiv) was added. After stirring at room temperature for 5 min, the resulting mixture was cooled to −78 °C over 20 min. At this point, n-ButLi (2.5 M in n-hexane, 81 mL, 201.8 mmol, 4.3 equiv) was added dropwise over 45 min through the additional funnel to the mixture. Note: the dropwise addition of n-ButLi is essential for this exothermic step. The addition time depends on the volume of n-ButLi, during which the reaction temperature should be kept below −78 °C. In the decagram scale case, a 45 min period could guarantee the complete formation of lithium intermediate. After the additional funnel was rinsed by anhydrous THF, a solution of lactone 3 (39.3 g, 93.88 mmol, 2.0 equiv) in anhydrous THF (50 mL) was added dropwise over 20 min under the argon atmosphere, and the reaction was allowed to stir at −78 °C for 2 h. Then the cold bath was removed, and the mixture was slowly warmed to 0 to 10 °C. The reaction was quenched by adding 1 M citric acid (200 mL) and stirred vigorously for 15 min. Then the layers were separated, and the aqueous layer was extracted with EtOAc (3 × 200 mL). The organic layers were combined and washed sequentially with water (1 × 250 mL), saturated aqueous NaHCO$_3$ (1 × 250 mL), and brine (1 × 250 mL). The organic phase was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (50% EtOAc in petroleum ether to 100% EtOAc to 10% MeOH in EtOAc) to give 4 as a white foam.

Decagram Scale Synthesis of Compound 4 under the Optimized Reaction Conditions. An oven-dried three-neck round-bottom flask equipped with a stir bar and an additional funnel was charged with 7-bromopyrrolo[2,1-f][1,2,4]triazin-4-amine (2a, 10.0 g, 46.94 mmol, 1.0 equiv). The above flask was evacuated and backfilled with argon three times. Under the protection of argon, anhydrous THF (80 mL) was added and the mixture was stirred at room temperature for 5 min before a solution of 1,2-bis(chlorodimethylsilyl) ethane (5, 11.1 g, 51.63 mmol, 1.1 equiv) in anhydrous tetrahydrofuran (20 mL) was added. The resulting mixture was stirred for 10 min. Then diisopropylamine (7.3 mL, 51.63 mmol, 1.1 equiv) was added. After stirring at room temperature for 5 min, the resulting mixture was cooled to −78 °C over 20 min. At this point, n-ButLi (2.5 M in n-hexane, 81 mL, 201.8 mmol, 4.3 equiv) was added dropwise over 45 min through the additional funnel to the mixture. Note: the dropwise addition of n-ButLi is essential for this exothermic step. The addition time depends on the volume of n-ButLi, during which the reaction temperature should be kept below −78 °C. In the decagram scale case, a 45 min period could guarantee the complete formation of lithium intermediate. After the additional funnel was rinsed by anhydrous THF, a solution of lactone 3 (39.3 g, 93.88 mmol, 2.0 equiv) in anhydrous THF (50 mL) was added dropwise over 20 min under the argon atmosphere, and the reaction was allowed to stir at −78 °C for 2 h. Then the cold bath was removed, and the mixture was slowly warmed to 0 to 10 °C. The reaction was quenched by adding 1 M citric acid (200 mL) and stirred vigorously for 15 min. Then the layers were separated, and the aqueous layer was extracted with EtOAc (3 × 200 mL). The organic layers were combined and washed sequentially with water (1 × 250 mL), saturated aqueous NaHCO$_3$ (1 × 250 mL), and brine (1 × 250 mL). The organic phase was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was subjected to silica gel column chromatography (50% EtOAc in petroleum ether to 100% EtOAc to 10% MeOH in EtOAc) to give 4 as a white foam.

Decagram Scale Synthesis of Compound 4 under the Optimized Reaction Conditions. An oven-dried three-neck round-bottom flask equipped with a stir bar and an additional funnel was charged with 7-bromopyrrolo[2,1-f][1,2,4]triazin-4-amine (2a, 10.0 g, 46.94 mmol, 1.0 equiv) and anhydrous THF (1.44 L) under an atmosphere of nitrogen at 20 °C. The mixture was stirred for 10 min before a solution of 1,2-bis(chlorodimethylsilyl) ethane (5, 200.0 g, 0.929 mol, 1.1 equiv) was added.
equiv) in anhydrous tetrahydrofuran (360 mL) was added at the same temperature. The resulting mixture was stirred for 15 min. Then diisopropylamine (94.1 g, 131 mL, 0.929 mol, 1.1 equiv) was added. After stirring for 10 min, the reaction was cooled to −85 to −78 °C. At this point, n-BuLi (4, 2.5 M in n-hexane, 1.45 L, 3.634 mol, 4.3 equiv) was added dropwise over 4 h while maintaining the reaction temperature below −78 °C during the exothermic addition, and the resulting mixture was allowed to stir at −85 to −78 °C for 30 min. Next, a solution of lactone 3 (707.2 g, 1.69 mol, 2.0 equiv) in anhydrous THF (900 mL) was added dropwise over 3 h while maintaining the temperature between −85 to −78 °C. After the reaction was stirred at the same temperature for another 2 h, it was allowed to warm slowly to 0 to 10 °C. The reaction was quenched by the addition of 1 M citric acid (3.6 L), and the temperature was maintained below 25 °C while vigorously stirring for 10 min. Then the layers were separated, and the aqueous layer was extracted with EtOAc (3 × 3.6 L). The organic layers were combined and washed sequentially with water (1 × 3.6 L), saturated aqueous NaHCO3 (1 × 3.6 L), and brine (1 × 3.6 L). The organic phase was then concentrated in vacuo at 30 °C to remove the majority of organic solvents. The residual solvents were removed by adding tert-butyl methyl ether (2 × 3.6 L) and evaporated at 30 °C under reduced pressure. The mixture was finally concentrated in vacuo to a total batch volume of 540 mL, whereupon n-heptane (3600 mL) was added. The resulting mixture was heated to 50 °C and stirred at this temperature for 30 min. Then it was allowed to cool to 0 °C. The resulting pale yellow solid was collected by filtration. The filter cake was rinsed with n-heptane (540 mL) and dried under vacuum at 30 °C to afford a pale yellow solid of product 4 (291.5 g, 62%). Purity: 99.3% (Flow rate: 1.0 mL/min; Column: Waters XTERRA MS C18 Column, 4.6 mm × 150 mm, 3.5 μm; Temperature: 45 °C; Mobile phase A: water with 0.1% (v/v) trifluoroacetic acid; Mobile phase B: acetonitrile with 0.1% (v/v) trifluoroacetic acid; Gradient elution: mobile phase A/B = 95:5 (0–5 min) to mobile phase A/B = 5:95 (5–32 min) to mobile phase A/B = 95:5 (32–40 min), tR = 19.272 min).

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.oprd.0c00310.

NMR spectra of compounds (PDF)

AUTHOR INFORMATION

Corresponding Authors

Wu Zhong — National Engineering Research Center for the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; orcid.org/0000-0002-0536-620X; Email: zhwongwu@bmi.ac.cn

Yong Qin — Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, China; orcid.org/0000-0003-3434-5747; Email: yongqin@scu.edu.cn

Authors

Fei Xue — Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, China

Xibin Zhou — National Engineering Research Center for the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China

Ruijie Zhou — Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, China

Xiaohan Zhou — Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan Province, China

Dian Xiao — National Engineering Research Center for the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China

Eric Gu — Shanghai Syncores Technology Inc. Ltd., Shanghai 201203, China

Xiaowen Guo — Shanghai Syncores Technology Inc. Ltd., Shanghai 201203, China

Ji Xiang — Shanghai Syncores Technology Inc. Ltd., Shanghai 201203, China

Ke Wang — Chengdu Open Pharmaceutical Co., Ltd., Qionglai 611500, Sichuan Province, China

Likai Yang — Chengdu Open Pharmaceutical Co., Ltd., Qionglai 611500, Sichuan Province, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.oprd.0c00310

Author Contributions

†F.X. and X.Z. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Wu Zhong thanks National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (2018ZX099710103 and 2020YFC0841700), Yong Qin thanks financial support from the National Natural Science Foundation of China (21921002 and 21991114) and Special Funds for Prevention and Control of COVID-19 of Sichuan University, and Likai Yang thanks the Chengdu Municipal Science and Technology Bureau (2020-YF08-00002-GX). We are grateful to Prof. Chunming Cui (Nankai University) for helpful discussions.

REFERENCES

(1) Chan, J.-F.-W.; Yuan, S.; Kok, K.-H.; To, K. K.-W.; Chu, H.; Yang, J.; Xing, F.; B Nurs, J. Liu.; Yip, C. C.-Y.; Poon, R. W.-S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus in Wuhan, China. N. Engl. J. Med. 2020, 382, 717–723.

(2) Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China. N. Engl. J. Med. 2020, 382, 727–733.

(3) Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K. S. M.; Lau, E. H. Y.; Wong, J. Y.; et al. Early transmission
dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. *N. Engl. J. Med.* 2020, 382, 1192–1207.

(4) Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* 2020, 579, 270–273.

(5) Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus associated with human respiratory disease in China. *Nature* 2020, 579, 265–269.

(6) Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). *Nat. Rev. Drug Discovery* 2020, 19, 149–150.

(7) Jean, S.-S.; Lee, P.-L.; Hsu, P.-R. Treatment options for COVID-19: The reality and challenges. *J. Microbiol., Immunol. Infect.* 2020, 53, 436–443.

(8) De Savi, C.; Hughes, D. L.; Kvaerner, L. Quest for a COVID-19 cure by Repurposing Small-Molecule Drugs: Mechanism of Action, Clinical Development, Synthesis at Scale, and Outlook for Supply. *Org. Process Res. Dev.* 2020, 24, 940–976.

(9) Ko, W.-C.; Rolain, J.-M.; Lee, N.-Y.; Chen, P.-L.; Huang, C.-T.; Lee, P.-L.; Hsu, P.-R. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. *Int. J. Antimicrob. Agents* 2020, 55, 105933.

(10) Amirian, E. S.; Levy, J. K. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. *One Health* 2020, 9, 100128.

(11) Warren, T. K.; Jordan, R.; Lo, M. K.; Ray, A. S.; Mackman, R. L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H. C.; et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. *Nature* 2016, 531, 381–385.

(12) Siegel, D.; Hui, H. C.; Doerrfeler, E.; Clarke, M. O.; Chun, K.; Zhang, L.; Neville, S.; Carra, E.; Lew, W.; Ross, B.; et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f]triazin-4-amino adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses. *J. Med. Chem.* 2017, 60, 1648–1661.

(13) Lo, M. K.; Jordan, R.; Arvey, A.; Sudhamans, J.; Shrivastava-Ranjpan, P.; Hotard, A. L.; Flint, M.; McMullan, L. K.; Siegel, D.; O. Clarke, M.; et al. GS-5734 and its parent nucleoside analog inhibit filo-, Pneumo-, and paramyxoviruses. *Sci. Rep.* 2017, 7, 43395.

(14) Sheahan, T. P.; Sims, A. C.; Graham, R. L.; Menachery, V. D.; Gralinski, L. E.; Case, J. B.; Leist, S. R.; Pyrc, K.; Feng, J. Y.; Trantcheva, I.; et al. Broad-spectrum antiviral GS-5734 inhibits both Pneumo-, and paramyxoviruses. *Sci. Transl. Med.* 2017, 9, eaal3653.

(15) Brown, A. J.; Won, J. J.; Graham, R. L.; Dinnon, K. H.; Sims, A. C.; Feng, J. Y.; Cihlar, T.; Denison, M. R.; Baric, R. S.; Sheahan, T. P. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. *Antiviral Res.* 2019, 169, 104541.

(16) Sheahan, T. P.; Sims, A. C.; Leist, S. R.; Schäfer, A.; Won, J. J.; Brown, A. J.; Montgomery, S. A.; Hogg, A.; Babusis, D.; Clarke, M. O.; et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. *Nat. Commun.* 2020, 11, 222.

(17) Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Res.* 2020, 30, 269–271.

(18) Holsclaw, M. L.; DeBolt, C.; Lindquist, S.; Lofy, K. H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First case of 2019 novel coronavirus in the United States. *N. Engl. J. Med.* 2020, 382, 929–936.

(19) www.clinicaltrials.gov.

(20) Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M. L.; Lescure, F.-X. Compassionate Use of Remdesivir for Patients with Severe Covid-19. *N. Engl. J. Med.* 2020, 382, 2327–2336.

(21) Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. *Lancet* 2020, 395, 1569–1578.

(22) http://www.gilead.com/news-and-press/press-room/press-releases/2020/5/gileads-investigational-antiviral-remdesivir-receives-us-food-and-drug-administration-emergency-use-authorization-for-the-treatment-of-covid19.

(23) Jarvis, L. M. Scaling up remdesivir amid the coronavirus crisis. *Chem. Eng. News* 2020, https://cen.acs.org/biological-chemistry/infectious-disease/Scaling-remdesivir-amid-coronavirus-crisis/98/web/2020/04.