Uniqueness and Ulam–Hyers–Rassias stability results for sequential fractional pantograph q-differential equations

Mohamed Houas1, Francisco Martínez2, Mohammad Esmael Samei3* and Mohammed K.A. Kaabar4*

Abstract

We study sequential fractional pantograph q-differential equations. We establish the uniqueness of solutions via Banach’s contraction mapping principle. Further, we define and study the Ulam–Hyers stability and Ulam–Hyers–Rassias stability of solutions. We also discuss an illustrative example.

MSC: 26A33; 34A08; 34B15

Keywords: Pantograph equations; Fractional pantograph q-differential equation; Uniqueness; Ulam–Hyers stability

1 Introduction

Differential equations involving q-difference calculus have become a strong tool in modeling many problems in engineering, physics, and mathematics [1–3]. Differential equations with fractional q-difference calculus have been studied by different researchers [4–8]. Many interesting topics concerning fractional q-differential equations (FqDEs) are devoted to the existence and stability of the solutions. In recent years, several scholars have studied the existence, uniqueness, and different types of Ulam stability (US) of solutions of FqDEs; see, for example, [9–12]. Recently, sequential fractional differential equations has been studied by many scholars [13–15].

In the current paper, we discuss the uniqueness and different types of US of solutions for pantograph equations. This equation appears in different fields of pure and applied mathematics such as probability, number theory, quantum mechanics, dynamical systems, etc. [16–18]. The classical form of the pantograph differential equations (PDEs) is given by

\[
\frac{dw(s)}{ds} = Aw(s) + Bw(\theta s), \quad s \in \Omega = [0, T], \theta \in J := (0, 1),
\]

\[
w(0) = w_0.
\]

Several authors have studied the existence, uniqueness, and US of solutions for the above PDEs involving different fractional derivatives. In [19] the authors discussed the existence...
and uniqueness of PDEs of the form

\[
\begin{cases}
C^v D^r w(s) = \varphi(s, w(s), w(\theta s)), & s \in \Omega, \theta \in J, \\
w(0) = w_0,
\end{cases}
\]

where \(C^v D^r\) is the Caputo fractional derivative of order \(v \in J\). In [20] the authors studied the existence, uniqueness, and stability of the following fractional pantograph \(q\)-differential equation (FPqDE):

\[
\begin{cases}
C^v D_q^r w(s) = \varphi(s, w(s), w(\theta s)), & s \in \Omega, \theta \in J, q \in J, \\
w(0) + \phi(w) = w_0,
\end{cases}
\]

where \(C^v D_q^r\) is the Caputo fractional \(q\)-derivative of order \(v \in J\). Recently, in [21] the authors discussed the existence and uniqueness of sequential \(\psi\)-Hilfer FPDEs of the form

\[
(H^{\sigma,\psi})_0^r w(s) = \varphi(s, w(s), w(\theta s)), & s \in \Omega, \theta \in J, r \in \mathbb{R},
\]

via conditions \(w(0) = 0, \sum_{j=1}^{p} \tilde{\eta}_j w(1\tilde{\eta}_j) + \sum_{j=1}^{n} \tilde{\eta}_j \int_{0}^{s} w(2\tilde{\eta}_j) + \sum_{j=1}^{m} \tilde{\eta}_j H^{\sigma,\psi} w(3\tilde{\eta}_j) = \Lambda,
\]

where \(\sigma, \eta > 0, j = 1, \ldots, n, \tilde{\eta}_j \in \mathbb{R}, \varepsilon \equiv \{k = 1, 2, 3\}, \Lambda \in \mathbb{R},\) and \(H^{\sigma,\psi}\) are the \(\psi\)-Hilfer derivatives of order \(\gamma \in \{\gamma_1, \gamma_2\}, 1 < \gamma_j < \gamma < 2, 0 < \sigma \leq 1, \int_{0}^{s} \psi_{\gamma}^\sigma\) are the \(\psi\)-Riemann Liouville fractional integrals, and \(\psi : \Omega \times \mathbb{R} \to \mathbb{R}\) is a continuous function.

In this work, we discuss the uniqueness and Ulam–Hyers–Rassias stability (UHRS) of solutions for the following sequential FPqDE:

\[
\begin{cases}
[C^v D_q^r + r C^\sigma D_q^r] w(s) = \varphi(s, w(s), w(\theta s), C^\sigma D_q^r w(\theta s)), & s \in \Omega, \\
w(0) = 0, \\
\lambda_1 w(T) = \lambda_2 w(\eta) + \Lambda, \\
\lambda_1 T^{\sigma-\sigma} \neq \lambda_2 \eta^{\sigma-\sigma},
\end{cases}
\]

where \(r \in \mathbb{R}^+, 1 < \gamma \leq 2, \sigma, \theta \in J, \eta \in \Omega, \Lambda, \lambda_1, \lambda_2 \in \mathbb{R}, C^\sigma D_q^r\) and \(C^\sigma D_q^r\) are the Caputo-type \(q\)-fractional derivatives, and \(\varphi : \Omega \times \mathbb{R}^3 \to \mathbb{R}\) is a given continuous function.

The outline of the paper is the following. In Sect. 2, we discuss the main definitions and lemmas by providing a necessary background of \(q\)-calculus, including the \(q\)-derivative and \(q\)-integral. In Sect. 3, we investigate the uniqueness for the FPqDE (1). In Sect. 5, we present an example to apply our outcomes.

2 Preliminaries on fractional \(q\)-calculus

In this section, we present essential \(q\)-derivative and \(q\)-integral notions. For more background information, we refer to [12, 22–24]. For a function \(w\), the \(q\)-derivative is defined by

\[
D_q^r [w](t) = \left(\frac{d}{ds} \right)_q w(s) = \frac{w(s) - w(qs)}{(1 - qs) t},
\]

(2)
for $s \in \mathbb{T} \setminus \{0\}$, where $\mathbb{T} = \mathbb{T}_{s_0} = \{0\} \cup \{s : s = s_0q^n\}$ for $n \in \mathbb{N}$ and $s_0 \in \mathbb{R}$, and [25]

$$D_q[w](0) = \lim_{n \to 0} D_q^n[w](t).$$

Also, the higher-order q-derivatives of the function u are defined by

$$D_q^n[w](s) = D_q[D_q^{n-1}[w]](s)$$

for $n \geq 1$, where $D_q^0[w](s) = w(s)$ [25]. In fact,

$$D_q^n[w](s) = \frac{1}{s^n(1-q)^n} \sum_{k=0}^{n} \frac{(1-q^{-n})^k}{(1-q)^k} q^k w(q^k s^n)$$

for $s \in \mathbb{T} \setminus \{0\}$ [2]. The operator $^C D_q^\nu$, the fractional q-derivative in the sense of Caputo [2, 26], of the function w is defined by

$$\begin{cases} ^C D_q^{v} w(s) = I_q^{v-n} D_q^n w(s), & v > 0, \\ ^C D_q^{0} w(s) = w(s), \end{cases}$$

where $n = [v]$. The fractional q-integral of the Riemann–Liouville type [2, 26] is given by

$$\begin{cases} I_q^{v} w(s) = \frac{1}{\Gamma_q(v)} \int_0^s (s - q^i)^{v-1} w(i) d_q i, & v > 0, \\ I_q^{0} w(s) = w(s), \end{cases}$$

where $\Gamma_q(v) = \frac{(1-qq^{-1})}{(1-q)^v}$, $v \in \mathbb{R} \setminus \{0, -1, -2, \ldots\}$, is called the q-gamma function and satisfies

$$\Gamma_q(v + 1) = [v]q \Gamma_q(v), \quad [\sigma]_q = \frac{1-q^\sigma}{1-q}, \quad \sigma \in \mathbb{R}.$$

We need the following lemmas [2, 26].

Lemma 2.1 Let $v, \sigma \geq 0$, and let φ be a function defined in $\mathbb{J} := [0, 1]$. Then we have the following formulas:

$$I_q^{v} I_q^{\sigma} \varphi(s) = I_q^{v+\sigma} \varphi(s), \quad ^C D_q^{v} I_q^{\sigma} \varphi(s) = \varphi(s).$$

Lemma 2.2 Let $v > 0$. Then

$$I_q^{v} ^C D_q^{v} \varphi(s) = \varphi(s) - \sum_{j=0}^{[v]-1} \frac{g^j}{\Gamma_q(j+1)} D_q^{j} \varphi(0).$$

Lemma 2.3 For $\sigma \in \mathbb{R}$, and $\epsilon > -1$, we have

$$I_q^{\epsilon} (s - \tilde{i})^{(\epsilon)} = \frac{\Gamma_q(\epsilon + 1)}{\Gamma_q(v + \epsilon + 1)} (s - \tilde{i})^{(v+\epsilon)}.$$
Let us now define the space

\[\mathcal{W} = \{ w : w, \mathcal{C}D^\nu_q w \in C(\Omega, \mathbb{R}) \} \]

equipped with the norm

\[\| w \|_W = \| w \| + \| \mathcal{C}D^\nu_q w \| = \sup_{s \in J} |w(s)| + \sup_{s \in J} |\mathcal{C}D^\nu_q w(s)|. \]

It is clear that \((\mathcal{W}, \| w \|_W)\) is a Banach space.

3 Uniqueness results

We prove the following auxiliary lemma, which is pivotal to define the solution for Problem (1).

Lemma 3.1 Let \(\lambda_1 T^{\nu-\sigma} \neq \lambda_2 \eta^{\nu-\sigma} \). For \(\psi \in C(\Omega, \mathbb{R}) \), the unique solution of the problem

\[
\begin{aligned}
[D^\nu_q + rD^\sigma_q] w(s) &= \psi(s), \quad s \in J, \\
w(0) &= 0, \\
\lambda_1 w(T) - \lambda_2 w(\eta) &= \Lambda, \quad \Lambda \in \mathbb{R},
\end{aligned}
\]

where \(r > 0, 1 < \nu \leq 2, 0 < \sigma \leq 1 \) and \(\eta, \omega \in \Omega \), is given by

\[
w(s) = \frac{1}{\Gamma(\nu)} \int_0^s (s - \sigma) \psi(t) \, \mathrm{d}q_t \]

\[
- \frac{r}{\Gamma(\nu - \sigma)} \int_0^\eta (\eta - \sigma) \psi(t) \, \mathrm{d}q_t \\
+ \frac{\sigma^{\nu-\sigma}}{\lambda_1 T^{\nu-\sigma} - \lambda_2 \eta^{\nu-\sigma}} \left[\frac{\lambda_2}{\Gamma(\nu)} \int_0^\eta (\eta - \sigma) \psi(t) \, \mathrm{d}q_t \right] \\
- \frac{r\lambda_2}{\Gamma(\nu - \sigma)} \int_0^\eta (\eta - \sigma) \psi(t) \, \mathrm{d}q_t \\
+ \frac{\sigma^{\nu-\sigma}}{\lambda_1 T^{\nu-\sigma} - \lambda_2 \eta^{\nu-\sigma}} \left[\frac{\lambda_1}{\Gamma(\nu)} \int_0^T (T - \sigma) \psi(t) \, \mathrm{d}q_t \right] \\
+ \frac{r\lambda_1}{\Gamma(\nu - \sigma)} \int_0^T (T - \sigma) \psi(t) \, \mathrm{d}q_t \]

\[
- \frac{\sigma^{\nu-\sigma}}{\lambda_1 T^{\nu-\sigma} - \lambda_2 \eta^{\nu-\sigma}} \Lambda.
\]

Proof We have

\[
[D^\nu_q + rD^\sigma_q] w(s) = \psi(s).
\]

Now we write the linear sequential FDE (6) as

\[
\mathcal{C}D^\nu_q \left[\mathcal{C}D^{\nu-\sigma}_q + r \right] w(s) = \psi(s).
\]
By taking the fractional q-integral of order σ for (7) we get

$$w(s) = I_q^v \psi(s) - r I_q^v w(s) + a_0 \frac{g^{v-\sigma}}{\Gamma_q(v + 1)} + b_0,$$

(8)

where a_0 and b_0 are arbitrary constants. By the boundary condition $w(0) = 0$ we conclude that $b_0 = 0$. Using the boundary condition $\lambda_1 w(T) - \lambda_2 w(\eta) = \Lambda$, we obtain that

$$a_0 = \frac{\Gamma_q(v - \sigma + 1)}{\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}} \left[\Lambda + \lambda_2 r I_q^v \psi(\eta) - r \lambda_2 I_q^v w(\eta) \right]$$

$$- \lambda_1 I_q^v \psi(T) + r \lambda_1 I_q^v w(T).$$

Substituting the values of a_0 and b_0 into (8), we obtain solution (5). This completes the proof. □

In view of Lemma 3.1, we can define the operator: $\mathcal{G} : \mathcal{W} \rightarrow \mathcal{W}$ by

$$\mathcal{G} w(s) = \frac{1}{\Gamma_q(v)} \int_0^s (s - q \dot{i})^{(v-1)} \psi(i, w(i), w(\theta i), C D_q^v w(\theta i)) \, dq \, i$$

$$- \frac{r}{\Gamma_q(v - \sigma)} \int_0^s (s - q \dot{i})^{(v-\sigma-1)} w(i) \, dq \, i$$

$$+ \frac{g^{v-\sigma}}{\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}} \left[\lambda_2 \int_0^\eta ((\eta - q \dot{i})^{(v-1)} \psi(i, w(i), w(\theta i), C D_q^v w(\theta i)) \, dq \, i \right.$$

$$- \frac{r \lambda_2}{\Gamma_q(v - \sigma)} \int_0^\eta ((\eta - q \dot{i})^{v-\sigma-1} w(i) \, dq \, i \right.$$$$- \frac{\lambda_1}{\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}} \left[\lambda_1 \int_0^T (T - q \dot{i})^{(v-1)} \psi(i, w(i), w(\theta i), C D_q^v w(\theta i)) \, dq \, i \right.$$

$$+ \frac{r \lambda_1}{\Gamma_q(v - \sigma)} \int_0^T (T - q \dot{i})^{(v-\sigma-1)} w(i) \, dq \, i \right.$$$$+ \frac{g^{v-\sigma}}{\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}} \Lambda.$$

(9)

For convenience, we denote

$$\nabla_1 := \frac{1}{\Gamma_q(v + 1)} \left[T^v + \frac{T^{v-\sigma}}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}|} \left(|\lambda_2 \eta^v + |\lambda_1 | T^v \right) \right].$$

(10)
\begin{align*}
 \nabla_2 & := \frac{r}{\Gamma_q(v - \sigma + 1)} \left[T^{v-\sigma} \right. \\
 & \quad + \frac{T^{v-\sigma}}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}|} \left(|\lambda_2| \eta^{v-\sigma} + |\lambda_1| T^{v-\sigma} \right), \\
 \Pi_1 & := \frac{T^{v-\sigma}}{\Gamma_q(v - \sigma + 1)} + \frac{\Gamma_q(v - \sigma + 1) T^{v-2\sigma}}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}| \Gamma_q(v - 2\sigma + 1)} \\
 & \quad \times \left(\frac{|\lambda_2| \eta^{v-\sigma}}{\Gamma_q(v + 1)} + \frac{|\lambda_1| T^{v}}{\Gamma_q(v + 1)} \right), \nonumber \\
 \Pi_2 & := \frac{r T^{v-2\sigma}}{\Gamma_q(v - 2\sigma + 1)} + \frac{\Gamma_q(v - \sigma + 1) T^{v-2\sigma}}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}| \Gamma_q(v - 2\sigma + 1)} \\
 & \quad \times \left(\frac{|\lambda_2| \eta^{v-\sigma}}{\Gamma_q(v + 1)} + \frac{|\lambda_1| T^{v}}{\Gamma_q(v + 1)} \right). \nonumber
\end{align*}

Our first result is based on Banach’s fixed point theorem.

Theorem 3.2 Let \(\varphi : \Omega \times \mathbb{R}^3 \to \mathbb{R} \) be a continuous function satisfying the condition

\((C1)\) there exist nonnegative constants \(\bar{\mu} \) such that for all \(s \in \Omega \) and \(w, \dot{w} \in \mathbb{R} \)

\((i = 1, 2, 3),\)

\[|\varphi(s, w_1, w_2, w_3) - \varphi(s, \dot{w}_1, \dot{w}_2, \dot{w}_3)| \leq \bar{\mu} \sum_{i=1}^3 |w_i - \dot{w}_i|. \]

If

\[\bar{\mu} (2 \nabla_1 + \Pi_1) + \nabla_2 + \Pi_2 < 1, \tag{11} \]

where \(\nabla_i, \Pi_i, i = 1, 2, \) are given by (10), then problem (1) has a unique solution on \(\Omega. \)

Proof Let us fix \(\Delta = \sup_{s \in \Omega} \varphi(s, 0, 0, 0, 0) \), choose

\[2 \Delta \nabla_1 + 2 \nabla_2 + \Delta \Pi_1 + \Pi_3 \leq \ell, \]

where \(B_\ell = \{ w \in \mathcal{W} : \|w\|_Y \leq \ell \} \) and

\[\nabla_3 := \frac{\Delta}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}|}, \]

\[\Pi_3 := \frac{\Gamma_q(v - \sigma + 1) T^{v-2\sigma} |\Delta|}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}| \Gamma_q(v - 2\sigma + 1)}. \]

Let \(\varphi^*(s) = \varphi(s, w(s), w(\theta s), C D_q^\sigma w(\theta s)) \). Then we show that \(\mathcal{S} B_\ell \subset B_\ell \). For \(w \in B_\ell \), we have

\[|\varphi^*_w(s)| = |\varphi(s, w(s), w(\theta s), C D_q^\sigma w(\theta s))| \]

\[\leq |\varphi(s, w(s), w(\theta s), C D_q^\sigma w(\theta s)) - \varphi(s, 0, 0, 0)| + |\varphi(s, 0, 0, 0)| \]

\[\leq \bar{\mu} \left(|w(s)| + |w(\theta s)| + |C D_q^\sigma w(s)| \right) + \Delta \]
We also have
\[\frac{\tilde{\mu}}{(2\|w\| + \|\mathcal{D}_q^w\|) + \Delta} = 2\tilde{\mu} \|w\| + \Delta \leq 2\tilde{\mu} \ell + \Delta. \]

Using this estimate, we get
\[
|\mathcal{G}(w)\| \leq \frac{1}{\Gamma_q(v)} \int_0^s (s - q\tilde{\iota})^{(v-1)} \left| \psi_w^*(\tilde{\iota}) \right| d_q \tilde{\iota} + \frac{k}{\Gamma_q(v - \sigma)} \int_0^s (s - q\tilde{\iota})^{(v-\sigma-1)} \left| w(\tilde{\iota}) \right| d_q \tilde{\iota}
\[
+ \frac{s^{v-\sigma}}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}|} \left[\frac{|\lambda_2|}{\Gamma_q(v)} \int_0^\eta (\eta - q\tilde{\iota})^{(v-1)} \right| \psi_w^*(\tilde{\iota}) \left| d_q \tilde{\iota} + \frac{r|\lambda_2|}{\Gamma_q(v - \sigma)} \int_0^s (s - q\tilde{\iota})^{(v-\sigma-1)} \left| w(\tilde{\iota}) \right| d_q \tilde{\iota}\right]
\[
+ \frac{s^{v-\sigma}}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}|} \left[\frac{|\lambda_1|}{\Gamma_q(v)} \int_0^T (T - q\tilde{\iota})^{(v-1)} \left| \psi_w^*(\tilde{\iota}) \right| d_q \tilde{\iota} + \frac{r|\lambda_1|}{\Gamma_q(v - \sigma)} \int_0^T (T - q\tilde{\iota})^{(v-\sigma-1)} \left| w(s) \right| d_q \tilde{\iota}\right]
\[
+ \frac{s^{v-\sigma} |\Lambda|}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}|}
\]
which implies that
\[
\|\mathcal{G}(w)\| \leq \frac{(\tilde{\mu} \ell + \Delta)}{\Gamma_q(v + 1)} \left[T^v \right.
\[
+ \frac{T^{v-\sigma}}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}|} \left(|\lambda_2| \eta^v + |\lambda_1| T^v \right)
\[
+ \frac{r}{\Gamma_q(v - \sigma + 1)} \left[T^{v-\sigma} \right.
\[
+ \frac{T^{v-\sigma}}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}|} \left(|\lambda_2| \eta^{v-\sigma} + |\lambda_1| T^{v-\sigma} \right) \ell
\[
+ \frac{|\Lambda|}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}|}
\]
\[
= (\tilde{\mu} \nabla_1 + \nabla_2) \ell + \Delta \nabla_1 + \nabla_3.
\]

We also have
\[
|\mathcal{D}_q^w \mathcal{G}(w)\| \leq \frac{1}{\Gamma_q(v - \sigma)} \int_0^s (s - q\tilde{\iota})^{(v-\sigma-1)} \left| \psi_w^*(\tilde{\iota}) \right| d_q \tilde{\iota} + \frac{r}{\Gamma_q(v - 2\sigma)} \int_0^s (s - q\tilde{\iota})^{(v-2\sigma-1)} \left| w(\tilde{\iota}) \right| d_q \tilde{\iota}
\[
+ \frac{r}{\Gamma_q(v - \sigma + 1)} \left[T^{v-2\sigma} \right.
\[
+ \frac{T^{v-2\sigma}}{|\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}|} \left(|\lambda_2| \eta^{v-\sigma} + |\lambda_1| T^{v-\sigma} \right)
\[
\times \left[\frac{|\lambda_2|}{\Gamma_q(v)} \int_0^\eta (\eta - q\tilde{\iota})^{(v-1)} \left| \psi_w^*(\tilde{\iota}) \right| d_q \tilde{\iota}\right].
\]
Thus we obtain
\[
\| C D_q^\sigma \mathcal{G}(w) \| \leq (\tilde{\mu} \ell + \Delta) \left[\frac{T^{v-\sigma}}{\Gamma_q(v - \sigma + 1)} \right. \\
+ \frac{\Gamma_q(v - \sigma + 1)T^{v-2\sigma}}{[\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}] \Gamma_q(v - 2\sigma + 1)} \times \left(\frac{[\lambda_2 |\eta^\nu|}{\Gamma_q(v + 1)} + \frac{[\lambda_1 T^\nu}{\Gamma_q(v + 1)} \right] \right. \\
+ \frac{\Gamma_q(v - \sigma + 1)T^{v-2\sigma}}{[\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}] \Gamma_q(v - 2\sigma + 1)} \times \left(\frac{[\lambda_2 |\eta^\nu|}{\Gamma_q(v + 1)} + \frac{[\lambda_1 T^\nu}{\Gamma_q(v + 1)} \right] \right. \\
+ \frac{\Gamma_q(v - \sigma + 1)T^{v-2\sigma}}{[\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}] \Gamma_q(v - 2\sigma + 1)} \times \left(\frac{[\lambda_2 |\eta^\nu|}{\Gamma_q(v + 1)} + \frac{[\lambda_1 T^\nu}{\Gamma_q(v + 1)} \right] \right. \\
+ \frac{\Gamma_q(v - \sigma + 1)T^{v-2\sigma}}{[\lambda_1 T^{v-\sigma} - \lambda_2 \eta^{v-\sigma}] \Gamma_q(v - 2\sigma + 1)} \times \left(\frac{[\lambda_2 |\eta^\nu|}{\Gamma_q(v + 1)} + \frac{[\lambda_1 T^\nu}{\Gamma_q(v + 1)} \right] \right.
\]
\[
= (\tilde{\mu} \Pi_1 + \Pi_2) \ell + \Delta \Pi_1 + \Pi_3.
\]

From the definition of \(\| \cdot \|_W \) we have
\[
\| \mathcal{G}(w) \|_W = 2 \| \mathcal{G}(w) \| + \| C D_q^\sigma \mathcal{G}(w) \|
\leq [2(\tilde{\mu} \nabla_1 + \nabla_2) + (\tilde{\mu} \Pi_1 + \Pi_2)] \ell
\]
\[
+ 2 \Delta \nabla_1 + 2 \nabla_3 + \Delta \Pi_1 + \Pi_3
\]
\[
\leq \ell,
\]
which implies that \(\mathcal{G} B_\ell \subset B_\ell \). For \(w, \hat{w} \in B_\ell \) and for all \(s \in \Omega \), we have
\[
| \mathcal{G} w(s) - \mathcal{G} \hat{w}(s) |
\leq \frac{1}{\Gamma_q(v)} \int_0^s (s - \hat{q})(\sigma - 1)|\phi^*_w(\hat{t}) - \phi^*_w(t)| d\hat{t}
\]
\[
+ \frac{r}{\Gamma_q(v - \sigma)} \int_0^s (s - \hat{q})(\sigma - 1)|w(\hat{t}) - \hat{w}(t)| d\hat{t}
\]
Using (C1), we get
\[\| \mathcal{G}(w) - \mathcal{G}(\hat{w}) \| \leq (\hat{\mu} \nabla_1 + \nabla_2)\|w - \hat{w}\|_{\mathcal{W}}. \]

We also have
\[
\left| ^C D_q^\nu \mathcal{G}(w) - ^C D_q^\nu \mathcal{G}(\hat{w}) \right| \\
\leq \frac{1}{\Gamma_q(\nu - \sigma)} \int_0^s (s - q_i)^{(\nu - \sigma - 1)} | \psi_w^*(s) - \psi_w^*(\hat{i}) | \, dq_i \\
+ \frac{r}{\Gamma_q(\nu - 2\sigma)} \int_0^s (s - q_i)^{(\nu - 2\sigma - 1)} | w(\hat{i}) | \, dq_i \\
+ \frac{\Gamma_q(\nu - \sigma + 1) s^{\nu - 2\sigma}}{\Gamma_q(v - 2\sigma + 1)} \\
\times \left[\frac{|\lambda_2|}{\Gamma_q(v)} \int_0^\eta (\eta - q_i)^{(\nu - \sigma - 1)} | \psi_w^*(\hat{i}) - \psi_w^*(\hat{i}) | \, dq_i \right] \\
+ \frac{r|\lambda_2|}{\Gamma_q(\nu - \sigma)} \int_0^\eta (\eta - q_i)^{(\nu - \sigma - 1)} | w(\hat{i}) | \, dq_i \\
+ \frac{|\lambda_1|}{\Gamma_q(v - \sigma + 1) s^{\nu - 2\sigma}} \\
\times \left[\frac{1}{\Gamma_q(v)} \int_0^T (T - q_i)^{(\nu - \sigma - 1)} | \psi_w^*(\hat{i}) - \psi_w^*(\hat{i}) | \, dq_i \right] \\
+ \frac{r|\lambda_1|}{\Gamma_q(v - \sigma)} \int_0^T (T - q_i)^{(\nu - \sigma - 1)} | w(\hat{i}) | \, dq_i. \]

By (C1) we can write
\[
\| ^C D_q^\nu \mathcal{G}(w) - ^C D_q^\nu \mathcal{G}(\hat{w}) \| \leq (\hat{\mu} \Pi_1 + \Pi_2)\|w - \hat{w}\|_{\mathcal{W}}. \]
Consequently, we obtain
\[
\|\mathcal{G}(w) - \mathcal{G}(\dot{w})\|_W = 2\|\mathcal{G}(w) - \mathcal{G}(\dot{w})\| + \|C_q^\nu \mathcal{G}(w) - C_q^\nu \mathcal{G}(\dot{w})\| \\
\leq \left[(2\nabla_1 + \Pi_1)\ddot{\mu} + \nabla_2 + \Pi_2\right]\|w - \dot{w}\|_W.
\]

By (11) we see that \(\mathcal{G}\) is a contractive operator. Consequently, by the Banach fixed point theorem, \(\mathcal{G}\) has a fixed point, which is a solution of problem (1). This completes the proof. \(\square\)

4 Ulam–Hyers–Rassias stability results
We discuss the Ulam-type stability of the \(q\)-fractional problem (1). For \(s \in \Omega\), we have the following \(q\)-fractional inequalities:
\[
\left|\left[C_q^\nu + rC_q^\sigma\right]\dot{w}(s) - \varphi_w^*(s)\right| \leq \tilde{\eta},
\]
\[
\left|\left[C_q^\nu + rC_q^\sigma\right]\dot{w}(s) - \varphi_w^*(s)\right| \leq \phi(s),
\]
and
\[
\left|\left[C_q^\nu + rC_q^\sigma\right]\dot{w}(s) - \varphi_w^*(s)\right| \leq \tilde{\eta}\phi(s),
\]
where \(\tilde{\eta} \in \mathbb{R}^+\), and \(\phi: \Omega \rightarrow \mathbb{R}^+\) is a continuous function. We further define the UHS, GUHS, UHRS, and GUHRS.

We say that problem (1) is
S1) UHS if there is \(\omega_{\nu, \tilde{\eta}} \in \mathbb{R}\), such that for each \(\tilde{\eta} > 0\) and each solution \(\dot{w} \in W\) of inequality (12), there exists a solution \(w \in W\) of problem (1) such that
\[
\|\dot{w} - w\|_W \leq \omega_{\nu, \tilde{\eta}};\]
S2) GUHS if there is \(\chi_{\nu} \in C(\mathbb{R}_+, \mathbb{R}_+)\), \(\chi_{\nu}(0) = 0\), such that for each solution \(\dot{w} \in W\) of inequality (12), there exists a solution \(w \in W\) of problem (1) such that
\[
\|\dot{w} - w\|_W \leq \chi_{\nu}(\tilde{\eta});\]
S3) UHRS with respect to \(\phi \in C(\Omega, \mathbb{R}_+)\) if there is \(\omega_{\nu, \phi} > 0\) such that for each \(\tilde{\eta} > 0\) and for each solution \(\dot{w} \in W\) of inequality (13), there exists a solution \(w \in W\) of problem (1) such that
\[
\|\dot{w} - w\|_W \leq \omega_{\nu, \phi}\tilde{\eta}\phi(s), \quad s \in \Omega;\]
S4) GUHRS with respect to \(\phi \in C(\Omega, \mathbb{R}_+)\) if there is \(\omega_{\nu, \phi} > 0\) such that for each solution \(\dot{w} \in W\) of inequality (12), there exists a solution \(w \in W\) of problem (1) such that
\[
\|\dot{w} - w\|_W \leq \omega_{\nu, \phi}\phi(s), \quad s \in \Omega.
\]

Remark 4.1 A function \(\dot{w} \in W\) is a solution of inequality (12) if there is \(h: \Omega \rightarrow \mathbb{R}\) (which depends on \(\dot{w}\) such that \(|h(s)| \leq \lambda\) for all \(s \in \Omega\) and
\[
\left[C_q^\nu + rC_q^\sigma\right]\dot{w}(s) = \varphi_w^*(s) + h(s), \quad s \in \Omega.
\]
Theorem 4.1 Let $\psi : \Omega \times \mathbb{R}^3 \to \mathbb{R}$ be a continuous function satisfying condition (C1). If
\[
\frac{\tilde{\mu}}{\Gamma_q(v + 1)} + \frac{r}{\Gamma_q(v - \sigma + 1)} < 1,
\]
then problem (1) is UHS.

Proof Let $\tilde{w} \in \mathcal{W}$ be a solution of inequality (12). Let us denote by $w \in \mathcal{W}$ the unique solution of the problem
\[
\begin{aligned}
\left\{ \begin{array}{l}
\left[C^v D_q^\nu + r C^v D_q^\sigma \right] w(s) = \psi^*_w(s), \quad s \in \Omega, q \in \mathcal{J}, \\
w(0) = \tilde{w}(0), \\
w(T) = \tilde{w}(T), \\
w(\eta) = \tilde{w}(\eta), \quad \eta \in \Omega,
\end{array} \right.
\end{aligned}
\]
r \in \mathbb{R},
1 < \nu \leq 2, 0 < \sigma \leq 1.

According to Lemma 3.1, we have
\[
w(s) = \Gamma^v_q \psi^*_w(s) - r \Gamma^{v-\sigma} q w(s) + a_0 \frac{s^{v-\sigma}}{\Gamma_q(v - \sigma + 1)} + b_0, \quad a_0, b_0 \in \mathbb{R},
\]
where $\psi^*_w(s) = \psi^*_w(s)$ for $s \in \Omega$. By integration of (12) we obtain
\[
\begin{aligned}
\left| w(s) - E^v_q \psi^*_w(s) + r E^{v-\sigma} q w(s) - a_1 \frac{s^{v-\sigma}}{\Gamma_q(v - \sigma + 1)} - b_1 \right|
\leq \frac{\tilde{\eta} s^\nu}{\Gamma_q(v + 1)} \leq \frac{\tilde{\eta} T^\nu}{\Gamma_q(v + 1)}.
\end{aligned}
\]

Then, for any $s \in \mathcal{J}$, we have
\[
\begin{aligned}
\tilde{w}(s) - w(s) &= \tilde{w}(s) - E^v_q \left[\psi^*_w(s) \right] + r E^{v-\sigma} q w(s) - a_1 \frac{s^{v-\sigma}}{\Gamma_q(v - \sigma + 1)} - b_1 \\
&\quad + E^v_q \left[\psi^*_w(s) - \psi^*_w(s) \right] - r E^{v-\sigma} q (\tilde{w}(s) - w(s)).
\end{aligned}
\]

By (C1) and (15) we can write
\[
\begin{aligned}
\| \tilde{w} - w \|_W &\leq \left| \tilde{w}(s) - E^v_q \left[\psi^*_w(s) \right] + r E^{v-\sigma} q w(s) - a_1 \frac{s^{v-\sigma}}{\Gamma_q(v - \sigma + 1)} - b_1 \right| \\
&\quad + \frac{1}{\Gamma_q(v)} \int_0^s (s - q i)^{(v-1)} | \psi^*_w(i) - \psi^*_w(i) | d q i \\
&\quad + \frac{r}{\Gamma_q(v - \sigma)} \int_0^s (s - q i)^{(v-\sigma)} | \tilde{w}(i) - w(i) | d q i \\
&\quad \leq \frac{\tilde{\eta} T^\nu}{\Gamma_q(v + 1)} + \frac{\tilde{\mu}}{\Gamma_q(v + 1)} \| \tilde{w} - w \|_W \\
&\quad + \frac{r}{\Gamma_q(v - \sigma + 1)} \| \tilde{w} - w \|_W.
\end{aligned}
\]
This implies that
\[
\| \dot{w} - w\|_{\mathcal{W}} \leq \frac{\hat{\eta} T^v}{\Gamma_q(v + 1)} + \left(\frac{\tilde{\mu}}{\Gamma_q(v + 1)} + \frac{r}{\Gamma_q(v - \sigma + 1)} \right) \| \dot{w} - w\|_{\mathcal{W}},
\]
from which it follows that
\[
\| \dot{w} - w\|_{\mathcal{W}} \left[1 - \left(\frac{\tilde{\mu}}{\Gamma_q(v + 1)} + \frac{r}{\Gamma_q(v - \sigma + 1)} \right) \right] \leq \frac{\hat{\eta} T^v}{\Gamma_q(v + 1)}.
\]
Then
\[
\| \dot{w} - w\|_{\mathcal{W}} \leq \frac{T^v}{\Gamma_q(v + 1)} \left[1 - \left(\frac{\tilde{\mu}}{\Gamma_q(v + 1)} + \frac{r}{\Gamma_q(v - \sigma + 1)} \right) \right] \hat{\eta} := \omega_\psi \hat{\eta}.
\]
Thus problem (1) is UHS. \(\square\)

If we put \(\chi_\psi = \omega_\psi \hat{\eta}\), \(\chi_\psi(0) = 0\), then problem (1) is GUHS.

Theorem 4.2 Let \(\varphi : \Omega \times \mathbb{R}^3 \to \mathbb{R}\) be a continuous function satisfying condition (C1), and let (14) hold. Suppose that there is \(\rho_\psi > 0\) such that
\[
\int_0^s \frac{(s - \tilde{q})^{(v-1)}}{\Gamma_q(v)} \phi(i) \, di \leq \rho_\psi \phi(s), \quad s \in \Omega,
\]
where \(\phi \in C(\Omega, \mathbb{R}_+)\) is nondecreasing. Then problem (1) is UHRS.

Proof Let \(\dot{w} \in \mathcal{W}\) is a solution of inequality (13). By Remark 4.1 we have
\[
\left| \dot{w}(s) - \int_q^s \psi_\psi w(s) + r \int_q^{s-\sigma} \dot{w}(s) - \frac{s^{v-\sigma} a_1}{\Gamma_q(v - \sigma + 1)} - b_1 \right| \leq \hat{\eta} \int_0^s \frac{(s - \tilde{q})^{(v-1)}}{\Gamma_q(v)} \phi(i) \, di.
\]

Let \(w \in \mathcal{W}\) be the unique solution of the problem
\[
\begin{align*}
\left[C \mathcal{D}_q^v + r C \mathcal{D}_q^{v-\sigma} \right] w(s) &= \varphi_\psi^*(s), \quad s \in \Omega, q \in J, \\
 w(0) &= \dot{w}(0), \\
 w(T) &= \dot{w}(T), \\
 w(\eta) &= \dot{w}(\eta), \quad \eta \in \Omega, \\
 r &> 0, \quad 1 < v \leq 2, \quad 0 < \sigma \leq 1.
\end{align*}
\]

So by Lemma 3.1 we have
\[
w(s) = \int_q^s \psi_\psi w(s) + r \int_q^{s-\sigma} w(s) - a_0 \frac{s^{v-\sigma}}{\Gamma_q(v - \sigma + 1)} - b_0.
\]
Then we get
\[
\|\dot{w} - w\|_W \leq \left| \psi_{\omega}(s) - \Gamma_q \psi_{\omega}(\dot{w}) + r \Gamma_q \psi_{\omega}(\dot{w}) - a_1 \frac{g^{v-\sigma}}{\Gamma_q (v - \sigma + 1)} - b_1 \right|
\]
\[
+ \Gamma_q \left[\psi_{\omega}(s) - \psi_{\omega}(\dot{w}) \right] + r \Gamma_q \psi_{\omega}(\dot{w}) - w(s),
\]
\[
\leq \hat{\eta} \int_0^s (s - \tilde{q})^{(v-1)} \left| \psi_{\omega}(\dot{w}) - \psi_{\omega}(\dot{w}) \right| d\eta^i
\]
\[
+ \frac{1}{\Gamma_q(v+1)} \int_0^s (s - \tilde{q})^{(v-1)} \left| \psi_{\omega}(\dot{w}) - \psi_{\omega}(\dot{w}) \right| d\eta^i
\]
\[
+ \frac{r}{\Gamma_q(v-\sigma + 1)} \int_0^s (s - \tilde{q})^{(v-\sigma - 1)} \left| (\dot{w}(\eta) - w(\eta)) \right| d\eta^i.
\]

From (C1) and (16) we can write
\[
\|\dot{w} - w\|_W \leq \hat{\eta}\rho_0\phi(s) + \left(\frac{\mu}{\Gamma_q(v + 1)} + \frac{r}{\Gamma_q(v - \sigma + 1)} \right) \|\dot{w} - w\|_W.
\]

Indeed,
\[
\|\dot{w} - w\|_W \left[1 - \left(\frac{\mu}{\Gamma_q(v + 1)} + \frac{r}{\Gamma_q(v - \sigma + 1)} \right) \right] \leq \hat{\eta}\rho_0\phi(s).
\]

Then
\[
\|\dot{w} - w\|_W \leq \left[\frac{\rho_0}{1 - \left(\frac{\mu}{\Gamma_q(v + 1)} + \frac{r}{\Gamma_q(v - \sigma + 1)} \right)} \right] \hat{\eta}\phi(s)
\]
\[
= \omega_{\rho_0,\phi}(s), \quad s \in \Omega.
\]

Hence problem (1) is stable in the UHR sense. \qed

5 An illustrative example

Example 5.1 Based on problem (1), we consider the following FqDE:

\[
\begin{cases}
\left[C D_q^{\frac{7}{13}} + \frac{1}{10} C D_q^{\frac{4}{5}} \right] w(s) \\
= \frac{2}{13} + \frac{20^2}{\eta^3 \pi^2 \sin(3\pi w(s))} + \frac{1}{13\pi^2} \sin(s) w(\frac{5}{6}s) \\
+ \frac{1}{13\pi^2} C D_q^{\frac{5}{6}} w(\frac{5}{6}s), \quad s \in [0, 1], \\
w(0) = 0,
\end{cases}
\]

(17)

and the q-fractional inequalities

\[
\begin{cases}
\left[C D_q^{\frac{7}{13}} + \frac{1}{10} C D_q^{\frac{4}{5}} \right] \dot{w}(s) - \phi(s, w(s), w(\frac{5}{6}s), C D_q^{\frac{5}{6}} w(\frac{5}{6}s)) \leq \hat{\eta},
\end{cases}
\]

and

\[
\begin{cases}
\left[C D_q^{\frac{7}{13}} + \frac{1}{10} C D_q^{\frac{4}{5}} \right] \dot{w}(s) - \phi(s, w(s), w(\frac{5}{6}s), C D_q^{\frac{5}{6}} w(\frac{5}{6}s)) \leq \hat{\eta}(s).
\end{cases}
\]
for $q \in J = [0, 1]$. It is clear that $v = \frac{3}{4} \in (1, 2]$, $r = \frac{1}{50} \in \mathbb{R}^+$, $\sigma = \frac{1}{5} \in (0, 1]$, $\theta = \frac{5}{6} \in \bar{J}$, $T = 1$, and

$$
\varphi \left(s, w(s), w \left(\frac{5}{6} s \right), \frac{C D^{\frac{3}{4}}_q w \left(\frac{5}{6} s \right)}{3^{\frac{1}{2}}} \right)
= \frac{2}{13} + \frac{20^2}{63^2 \pi^2} \arctan (3 \pi w(s))
+ \frac{1}{15^2 \pi} \sin(s) w \left(\frac{5}{6} \right) + \frac{1}{15^2 \pi} \frac{C D^{\frac{3}{4}}_q w \left(\frac{5}{6} \right)}{3^{\frac{1}{2}}}.
$$

For any $w_i, \hat{w}_i \in \mathbb{R}^3$, $i = 1, 2, 3$, and $s \in \bar{\Omega}$, we can write

$$
\left| \varphi(s, w_1, w_2, w_3) - \varphi(s, \hat{w}_1, \hat{w}_2, \hat{w}_3) \right|
= \left| \frac{2}{13} + \frac{20^2}{63^2 \pi^2} \arctan (3 \pi w(s))
+ \frac{1}{15^2 \pi} \sin(s) w \left(\frac{5}{6} \right) + \frac{1}{15^2 \pi} \frac{C D^{\frac{3}{4}}_q w \left(\frac{5}{6} \right)}{3^{\frac{1}{2}}}
- \left(\frac{2}{13} + \frac{20^2}{63^2 \pi^2} \arctan (3 \pi \hat{w}(s))
+ \frac{1}{15^2 \pi} \sin(s) \hat{w} \left(\frac{5}{6} \right) + \frac{1}{15^2 \pi} \frac{C D^{\frac{3}{4}}_q \hat{w} \left(\frac{5}{6} \right)}{3^{\frac{1}{2}}} \right) \right|
= \frac{20^2}{63^2 \pi^2} \left| \arctan (3 \pi w(s)) - \arctan (3 \pi \hat{w}(s)) \right|
+ \frac{1}{15^2 \pi} \left| \sin(s) w \left(\frac{5}{6} \right) - \sin(s) \hat{w} \left(\frac{5}{6} \right) \right|
+ \frac{1}{15^2 \pi} \left| \frac{C D^{\frac{3}{4}}_q w \left(\frac{5}{6} \right)}{3^{\frac{1}{2}}} - \frac{C D^{\frac{3}{4}}_q \hat{w} \left(\frac{5}{6} \right)}{3^{\frac{1}{2}}} \right|
\leq \frac{1}{15^2 \pi} \sum_{i=1}^{3} |w_i - \hat{w}_i|.
$$

Hence condition (C1) holds with $\bar{\mu} = \frac{1}{15 \pi}$. Now we discuss problem (17) for

$$
q = \left\{ \frac{1}{7}, \frac{1}{2}, \frac{8}{9} \right\}.
$$

By using equations (10), assuming that

$$
r = \frac{1}{50} \in \mathbb{R}, \quad \lambda_1 = \frac{1}{15} \in \mathbb{R}, \quad \lambda_2 = \frac{6}{17} \in \mathbb{R},
$$

$$
\Lambda = \frac{\sqrt{7}}{8} \in \mathbb{R}, \quad \eta = \frac{3}{4} \in \mathbb{R},
$$

in (17), and applying the MATLAB program (Algorithm 1), we have

\[
\begin{align*}
\nabla_1 &= \frac{1}{\Gamma_\nu(v + 1)} \left[T^{\nu_1} + \frac{T^{\nu_2}}{|\lambda_1 T^{\nu_1} - \lambda_2 T^{\nu_2}|} \left(|\lambda_2| T_0 + |\lambda_1| T_1 \right) \right] \\
&= \frac{1}{\Gamma_\nu\left(\frac{r}{v} + 1\right)} \left[1 + \frac{1}{\left| \frac{1}{15} - \frac{6}{17} \left(\frac{3}{4}\right)^{\frac{3}{5}} \right|} \left(\frac{6}{17} \left(\frac{3}{4}\right)^{\frac{3}{5}} + \frac{1}{15} \right) \right] \\
&\approx \begin{cases}
2.09415, & q = \frac{1}{7}, \\
1.26217, & q = \frac{1}{2}, \\
0.28702, & q = \frac{5}{6},
\end{cases} \\
\nabla_2 &= \frac{r}{\Gamma_\nu(v - \sigma + 1)} \left[T^{\nu_1} + \frac{T^{\nu_2}}{|\lambda_1 T^{\nu_1} - \lambda_2 T^{\nu_2}|} \left(|\lambda_2| T_0 + |\lambda_1| T_1 \right) \right] \\
&= \frac{r}{\Gamma_\nu\left(\frac{q}{v} - \frac{4}{5} + 1\right)} \left[1 + \frac{1}{\left| \frac{1}{15} - \frac{6}{17} \left(\frac{3}{4}\right)^{\frac{3}{5}} \right|} \left(\frac{6}{17} \left(\frac{3}{4}\right)^{\frac{3}{5}} + \frac{1}{15} \right) \right] \\
&\approx \begin{cases}
0.04507, & q = \frac{1}{7}, \\
0.02601, & q = \frac{1}{2}, \\
0.00574, & q = \frac{5}{6},
\end{cases} \\
\Pi_1 &= \frac{T^{\nu_1}}{\Gamma_\nu(v - \sigma + 1)} + \frac{\Gamma_\nu(v - \sigma + 1) T^{\nu_2}}{|\lambda_1 T^{\nu_1} - \lambda_2 T^{\nu_2}|} |\Gamma_\nu(v - 2\sigma + 1)| \\
&\times \left(\frac{|\lambda_2| T_0}{\Gamma_\nu(v - \sigma + 1)} + \frac{|\lambda_1| T_1}{\Gamma_\nu(v + 1)} \right) \\
&= \frac{1}{\Gamma_\nu\left(\frac{r}{v} - \frac{4}{5} + 1\right)} \left[1 + \frac{1}{\left| \frac{1}{15} - \frac{6}{17} \left(\frac{3}{4}\right)^{\frac{3}{5}} \right|} \left(\frac{6}{17} \left(\frac{3}{4}\right)^{\frac{3}{5}} + \frac{1}{15} \right) \right] \\
&\approx \begin{cases}
1.21962, & q = \frac{1}{7}, \\
0.64445, & q = \frac{1}{2}, \\
0.13680, & q = \frac{5}{6},
\end{cases} \\
\Pi_2 &= \frac{r T^{\nu_1}}{\Gamma_\nu(v - 2\sigma + 1)} + \frac{\Gamma_\nu(v - \sigma + 1) T^{\nu_2}}{|\lambda_1 T^{\nu_1} - \lambda_2 T^{\nu_2}|} |\Gamma_\nu(v - 2\sigma + 1)| \\
&\times \left(\frac{|\lambda_2| T_0}{\Gamma_\nu(v - \sigma + 1)} + \frac{|\lambda_1| T_1}{\Gamma_\nu(v + 1)} \right) \\
&= \frac{r}{\Gamma_\nu\left(\frac{q}{v} - \frac{8}{5} + 1\right)} \left[1 + \frac{1}{\left| \frac{1}{15} - \frac{6}{17} \left(\frac{3}{4}\right)^{\frac{3}{5}} \right|} \left(\frac{6}{17} \left(\frac{3}{4}\right)^{\frac{3}{5}} + \frac{1}{15} \right) \right] \\
&\approx \begin{cases}
0.43588, & q = \frac{1}{7}, \\
0.17436, & q = \frac{1}{2}, \\
0.03143, & q = \frac{5}{6},
\end{cases}
\end{align*}
\]
Table 1 Numerical results of ∇_1, ∇_2, Π_1, and Π_2 for $q = \frac{1}{4}$ in Example 5.1

n	$\frac{q}{4}$	$\Gamma_q(v + 1)$	$\Gamma_q(v - \sigma + 1)$	$\Gamma_q(v - 2\sigma + 1)$	∇_1	∇_2	Π_1	Π_2	Σ
1	1.14283	1.18028	3.79986	2.08868	0.04508	1.22423	0.44225	0.49497	
2	1.14027	1.18063	3.84742	2.09337	0.04507	1.22027	0.43678	0.48950	
3	1.13900	1.18068	3.85421	2.09404	0.04507	1.21971	0.43601	0.48873	
4	1.13905	1.18069	3.85518	2.09413	0.04507	1.21963	0.43590	0.48862	
5	1.13984	1.18069	3.85532	2.09415	0.04507	1.21962	0.43588	0.48860	
6	1.13984	1.18069	3.85534	2.09415	0.04507	1.21962	0.43588	0.48860	
7	1.13984	1.18069	3.85534	2.09415	0.04507	1.21962	0.43588	0.48860	
8	1.13984	1.18069	3.85534	2.09415	0.04507	1.21962	0.43588	0.48860	
9	1.13984	1.18069	3.85534	2.09415	0.04507	1.21962	0.43588	0.48860	

Tables 1, 2, and 3 show these results. Also, we can see a graphical representation of ∇_i, Π_i ($i = 1, 2$) and Σ in Figs. 1, 2, and 3. Using the given data, we find that

$$
\Sigma = (2\nabla_1 + \Pi_1)\tilde{\mu} + \nabla_2 + \Pi_2 \simeq \begin{cases}
0.48860, & q = \frac{1}{4} \\
0.20485, & q = \frac{5}{2} \\
0.03817, & q = \frac{3}{5}
\end{cases} < 1,
$$

Hence by Theorem 3.2 problem (17) has a unique solution. Also, from (14) we have

$$
\bar{\Sigma} = \frac{\tilde{\mu} + r}{\Gamma_q(v + 1)} - \Gamma_q(v - \sigma + 1) \simeq \begin{cases}
0.01818, & q = \frac{1}{4} \\
0.01052, & q = \frac{5}{2} \\
0.00233, & q = \frac{3}{5}
\end{cases} < 1.
$$
Table 3 Numerical results of ∇_1, ∇_2, Π_1, and Π_2 for $q = \frac{8}{9}$ in Example 5.1

n	$q = \frac{8}{9}$	$\Gamma_q(v + 1)$	$\Gamma_q(v - \sigma + 1)$	$\Gamma_q(v - 2\sigma + 1)$	∇_1	∇_2	Π_1	Π_2	Σ
1	21.16106	8.65603	14.61554	0.11280	0.00615	0.15435	0.11498	0.07129	0.07794
2	17.64177	8.77836	19.44710	0.13530	0.00606	0.14941	0.08641	0.09307	
3	15.46858	8.86537	23.71141	0.15431	0.00606	0.14652	0.07129	0.07794	
34	8.40872	9.26182	52.74519	0.28387	0.00575	0.13693	0.03186	0.03860	
35	8.39834	9.26262	52.82649	0.28422	0.00574	0.13692	0.03181	0.03855	
36	8.38914	9.26333	52.89874	0.28453	0.00574	0.13689	0.03177	0.03851	
37	8.38098	9.26396	52.96295	0.28481	0.00574	0.13689	0.03173	0.03847	
38	8.37284	9.26459	53.02751	0.28509	0.00574	0.13687	0.03170	0.03843	
39	8.36468	9.26516	53.09207	0.28537	0.00574	0.13687	0.03166	0.03840	
40	8.35652	9.26573	53.15663	0.28566	0.00574	0.13687	0.03162	0.03837	
41	8.34836	9.26629	53.22119	0.28594	0.00574	0.13687	0.03158	0.03834	
42	8.34020	9.26686	53.28575	0.28623	0.00574	0.13687	0.03154	0.03830	

Table 4 and Fig. 4 show these results and graphical representation of $\tilde{\Sigma}$ respectively. So by Theorem 4.1 problem (17) is UHS such that

$$\| \tilde{w} - w \|_{\mathcal{W}} \leq \frac{T^{\nu}}{\Gamma_q(v + 1)} \left[1 - \left(\frac{\mu}{\Gamma_q(v + 1)^{\nu}} + \frac{r}{\Gamma_q(v - \sigma + 1)^{\nu}} \right) \hat{\eta} \right]$$

$$= \frac{1}{\Gamma_q(\frac{7}{4} + 1)} \left[1 - \left(\frac{\mu}{\Gamma_q(\frac{7}{4} + 1)^{\nu}} + \frac{r}{\Gamma_q(\frac{7}{4} - \frac{1}{2})^{\nu}} \right) \hat{\eta} \right]$$

$$= \omega_\nu \hat{\eta} \simeq \begin{cases} 0.89356 \hat{\eta}, & q = \frac{1}{7}, \\ 0.53439 \hat{\eta}, & q = \frac{1}{2}, \\ 0.12046 \hat{\eta}, & q = \frac{8}{9}. \end{cases}$$

Let $\phi(s) = s^2$. Then

$$\int_0^s (s - q_i)^{v - 1} \frac{\phi(i)}{\Gamma_q(v)} dq_i = \int_0^s (s - q_i)^{\frac{v}{2} - 1} \frac{\sqrt{i^2}}{\Gamma_q(\frac{v}{2})} dq_i$$
Figure 1 Graphical representation of ∇_i for $q = \frac{1}{7}, \frac{1}{2}, \frac{8}{9}$ in Example 5.1

\[
\begin{align*}
0.88636, & \quad q = \frac{1}{7}, \\
0.64374, & \quad q = \frac{1}{2}, \\
0.46437, & \quad q = \frac{8}{9}
\end{align*}
\]

$\leq \bar{\rho}_q \times \varepsilon^2 = \bar{\rho}_q \phi(s)$.
Thus condition (16) is satisfied with $\phi(s) = s^2$ and

$$\rho_{\theta} = 0.88636, 0.64374, 0.46437$$
for $q \in \{\frac{1}{7}, \frac{1}{2}, \frac{8}{9}\}$, respectively. Table 5 shows these results. Also, we can see a graphical representation of

$$\int_0^s (s-q)^{(\nu-1)} \frac{\phi(i)}{\Gamma_q(i)} \, dq_i$$

for $s \in \Omega$ with step 0.1 in Fig. 5. From Theorem 4.2 it follows that problem (17) is UHRS such that

$$\|\hat{w} - w\|_{W^*} \leq \omega_{\nu, \eta} \eta \phi(s), \quad s \in \Omega.$$
Table 4 Numerical results of $\bar{\Sigma}$ for $q = \frac{1}{7}$ in Example 5.1

n	$\Gamma_q(v + 1)$	$\Gamma_q(v - \sigma + 1)$	$\bar{\Sigma}$	ω_q
1	1.14283	1.18028	0.01818	0.89123
2	1.14027	1.18063	0.01818	0.89323
3	1.13990	1.18068	0.01818	0.89351
4	1.13985	1.18069	0.01818	0.89355
5	1.13984	1.18069	0.01818	0.89356
6	1.13984	1.18069	0.01818	0.89356

$g = \frac{1}{7}$

q	$\bar{\Sigma}$	ω_q		
1	2.10842	2.02631		
2	1.99300	2.03657		
3	1.94055	2.04137		
4	1.91550	2.04369	0.01052	0.52761
13	1.89123	2.04597	0.01052	0.53438
14	1.89121	2.04597	0.01052	0.53439
15	1.89120	2.04597	0.01052	0.53439

$g = \frac{1}{2}$

q	$\bar{\Sigma}$	ω_q		
1	21.16106	8.65603		
2	17.64177	8.77836		
3	15.46858	8.86537		
4	13.99343	8.93115		
5	12.92932	8.98279		
6	12.12863	9.02441	0.0233	0.08264
53	8.32612	9.26821		
54	8.32504	9.26830		
55	8.32407	9.26837		
56	8.32322	9.26844		
57	8.32246	9.26850		
58	8.32178	9.26855		
59	8.32118	9.26860		
60	8.32065	9.26864	0.0233	0.12046

$g = \frac{8}{9}$

q	$\bar{\Sigma}$	ω_q		
1	2.10842	2.02631		
2	1.99300	2.03657		
3	1.94055	2.04137		
4	1.91550	2.04369	0.01052	0.52761
13	1.89123	2.04597	0.01052	0.53438
14	1.89121	2.04597	0.01052	0.53439
15	1.89120	2.04597	0.01052	0.53439

$g = \frac{1}{7}$

q	$\bar{\Sigma}$	ω_q		
1	21.16106	8.65603		
2	17.64177	8.77836		
3	15.46858	8.86537		
4	13.99343	8.93115		
5	12.92932	8.98279		
6	12.12863	9.02441	0.0233	0.08264
53	8.32612	9.26821		
54	8.32504	9.26830		
55	8.32407	9.26837		
56	8.32322	9.26844		
57	8.32246	9.26850		
58	8.32178	9.26855		
59	8.32118	9.26860		
60	8.32065	9.26864	0.0233	0.12046

Table 5 Numerical results of $\int_0^s \frac{(s-q)(v-1)}{\Gamma_q(v-1)} \phi_q d_q$ for $q \in \{\frac{1}{7}, \frac{1}{2}, \frac{8}{9}\}$ in Example 5.1

s	$g = \frac{1}{7}$	$g = \frac{1}{2}$	$g = \frac{8}{9}$
0.00	0.00000	0.00000	0.00000
0.10	0.00141	0.00102	0.00074
0.20	0.00978	0.00711	0.00513
0.30	0.03045	0.02211	0.01595
0.40	0.06814	0.04949	0.03570
0.50	0.12727	0.09243	0.06668
0.60	0.21205	0.15401	0.11109
0.70	0.32650	0.23713	0.17106
0.80	0.47453	0.34464	0.24861
0.90	0.65992	0.47928	0.34574
1.00	0.88636	0.64374	0.46437
6 Conclusion

In this research work, we have discussed the uniqueness and Ulam-type stability of solutions of sequential FPqDEs. We have established the uniqueness by applying Banach’s contraction mapping principle. Furthermore, studied the stability in the sense of UHS and UHRS. We have also provided an example to illustrate our results.

Appendix

Algorithm 1 (MATLAB lines for calculation ∇_i, Π_i, and $\Sigma, \dot{\Sigma}$ in Example 5.1)

```
clear;
format long;
syms t;
q=[1/7 1/2 8/9];
xq=q*y;
nu=7/4; sigma=4/5; r=1/50; uptheta=5/6; T = 1;
lambda_1=1/15; lambda_2=6/17; Lambda=sqrt(7)/8;
etta=3/4;
mu=1/(15^2*pi);
k=120;
t0 = 0;
column=1;
for s=1:xq
    for n=1:k
        paramsmatrix (n, column) = n;
        Gammanu_of_Gamma(q(s), nu+1, n);
        paramsmatrix (n, column+1) = Gammanu_of_Gamma(q(s), nu+1, n);
        nabla_1=1/Gammanu_of_Gamma(q(s), nu+1, n);
        paramsmatrix (n, column+2) = nabla_1;
        Gammanu_q=Gamma(q(s), nu+1, n);
        paramsmatrix (n, column+3) = Gammanu_q;
        nabla_2=r/Gammanu_q;
        paramsmatrix (n, column+4) = nabla_2;
        Gamma_nu=Gamma(nu, nu+1, n);
        paramsmatrix (n, column+5) = Gamma_nu;
        Pi_1=1/T*(nu-sigma)/abs(lambda_1+T*(nu-sigma));
        paramsmatrix (n, column+6) = Pi_1;
        Pi_2=1/T*(nu-sigma)/(lambda_1+T*(nu-sigma));
        paramsmatrix (n, column+7) = Pi_2;
    end
end
```
33 \(\star \text{Gammanu}_2\sigma \star (\text{abs}(\lambda_2) \star \eta^{\nu}/\text{Gammanu}) \star \)
34 \(+ \text{abs}(\lambda_1) \star T^{\nu}/\text{Gammanu} \);
35 \(\text{paramsmatrix}(n, \text{column}+6)\star \Pi_1; \)
36 \(\text{Pi}_2\star r\star T^{(\nu-2\star \sigma)}/\text{Gammanu}_2\sigma + \text{Gammanu}_\sigma \star \)
37 \(+ \text{abs}(\lambda_2) \star \eta^{(\nu-\sigma)}/\text{Gammanu}_\sigma \star \)
38 \(+ \text{abs}(\lambda_1) \star T^{(\nu-\sigma)}/\text{Gammanu}_\sigma \);
39 \(\text{paramsmatrix}(n, \text{column}+7)\star \Pi_2; \)
40 \(\text{paramsmatrix}(n, \text{column}+8)\star (2\star \text{nabla}_1+\Pi_1) \star \mu \star \text{nabla}_2+\Pi_2; \)
41 \(\text{paramsmatrix}(n, \text{column}+9)\star \mu/\text{Gammanu}+r/\text{Gammanu}_\sigma; \)
42 \(\text{end}; \)
43 \(\text{column} = \text{column} + 10; \)
44 \(\text{t0} = 0; \)
45 \(\text{column} = 1; \)
46 \(\text{for} \ s = 1:q \)
47 \(\text{row} = 1; \)
48 \(\text{t} = 0; \)
49 \(\text{while} \ t < T \)
50 \(\text{MR}(\text{row}, \text{column}) = t; \)
51 \(\text{MR}(\text{row}, \text{column}+1) = q\text{integral}(q(s), \sigma, t, k, \text{power}(t, 2)); \)
52 \(t = t + 0.1; \)
53 \(\text{row} = \text{row} + 1; \)
54 \(\text{end}; \)
55 \(\text{column} = \text{column} + 2; \)
56 \(\text{end}; \)

Acknowledgements
The third author was supported by Bu-Ali Sina University.

Funding
Not applicable.

Availability of data and materials
Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author contributions
MH: Actualization, methodology, formal analysis, validation, investigation, and initial draft. FM: Actualization, validation, methodology, formal analysis, investigation, and initial draft. MES: Actualization, methodology, formal analysis, validation, investigation, software, simulation, initial draft; he was the major contributor in writing the manuscript. MKAK: Actualization, methodology, formal analysis, validation, investigation, initial draft, supervision of the original draft, and editing. All authors read and approved the final manuscript.

Author details
1 Department of Mathematics, Faculty of Sciences and Technology, Khemis Miliana University, Khemis, Algeria.
2 Department of Applied Mathematics and Statistics, Technological University of Cartagena, Cartagena, Spain.
3 Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran. *Department of Mathematical Sciences, University of Malaysia, Kuala Lumpur 50603, Malaysia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 February 2022 Accepted: 3 July 2022 Published online: 18 July 2022

References
1. Agarwal, R.P.: Certain fractional \(q \)-integrals and \(q \)-derivatives. Proc. Camb. Philos. Soc. 66, 365–370 (1965).
https://doi.org/10.1017/S0305004100045060
2. Annaby, M.H., Mansour, Z.S.: \(q \)-Fractional Calculus and Equations. Springer, Cambridge (2012).
https://doi.org/10.1007/978-3-642-30898-7
3. Adjabi, Y., Samei, M.E., Matar, M.M., Alzabut, J.: Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions. AIMS Math. 6(3), 2796–2843 (2021)
4. Abdeljawad, T., Samei, M.E.: Applying quantum calculus for the existence of solution of q-integro-differential equations with three criteria. Discrete Contin. Dyn. Syst., Ser. S 14(10), 3351–3386 (2021)
5. Abdeljawad, T., Baleanu, D.: Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4682–4688 (2011). https://doi.org/10.1016/j.cnsns.2011.01.026
6. Rezapour, S., Samei, M.E.: On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation. Bound. Value Probl. 2020, 38 (2020). https://doi.org/10.1186/s13661-020-01342-3
7. Samei, M.E., Rezapour, S.: On a system of fractional q-differential inclusions via sum of two multi-term functions on a time scale. Bound. Value Probl. 2020, 135 (2020). https://doi.org/10.1186/s13661-020-01433-1
8. Rajković, P.M., Marinković, S.D., Stanković, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1, 311–323 (2007)
9. Abbas, S., Benchohra, M., Lalej, N., Zhou, Y.: Existence and Ulam stability for implicit fractional q-difference equations. Adv. Differ. Equ. 2019, 48 (2019)
10. Băleanu, D., Alzabut, J., Samei, M.E.: Existence and uniqueness of solutions for multi-term fractional q-integro-differential equations via quantum calculus. Adv. Differ. Equ. 2020, 218 (2020)
11. Etemad, S., Rezapour, S., Samei, M.E.: α-ψ-contractions and solutions of a q-fractional differential inclusion with three-point boundary value conditions via computational results. Adv. Differ. Equ. 2020, 475 (2019). https://doi.org/10.1186/s13662-019-2414-8
12. Ahmad, B., Ntouyas, S.K., Alsaedi, A.: Sequential fractional differential equations and inclusions with semi-periodic and nonlocal integro-multipoint boundary conditions. J. King Saud Univ., Sci. 31, 184–193 (2019)
13. Samei, M.E., Rezapour, S.: On a fractional Caputo–Hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property. Math. Methods Appl. Sci. 43(17), 9719–9734 (2020)
14. Kac, V., Cheung, P.: Quantum Calculus. Universitext. Springer, New York (2002). https://doi.org/10.1007/978-1-4613-03047-3
15. Samei, M.E., Rezapour, S., Samei, M.E.: Investigation of a class of singular fractional integro-differential quantum equations with multi-step methods. J. Math. Ext. 17(1), 1–54 (2021)
16. Hajiseyedazizi, S.N., Samei, M.E., Alzabut, J., Chu, Y.: On multi-step methods for singular fractional q-integro-differential equations. Open Math. 19, 1378–1405 (2021). https://doi.org/10.1515/math-2021-0093
17. Adams, C.R.: The general theory of a class of linear partial q-difference equations. Trans. Am. Math. Soc. 26, 283–312 (1924)
18. Rajković, P.M., Marinković, S.D., Stanković, M.S.: On q-analognes of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 10, 359–375 (2007)