A Proposed Test of Charge Symmetry in Σ Decay

E.M. Henley

Department of Physics, FM-15 and Institute for Nuclear Theory, HN-12
University of Washington, Seattle, Washington 98195

and

G.A. Miller

Department of Physics, FM-15
University of Washington, Seattle, Washington 98195

Abstract

The semi-leptonic decays of Σ^{\pm} offer a vehicle for observing charge symmetry-breaking. The effect is expected to be about 6%, enhanced due to the replacement of two u quarks by d quarks. We propose that present experimental data be improved to search for this effect.
In the recent 1st International Symposium on *Symmetries in Subatomic Physics* Thomas\(^1\) discussed enhanced charge symmetry-breaking effects in the difference between the valence distribution of down quarks in the proton and up quarks in the neutron. The asymmetry is about 5-10 % for large values of Bjorken x, larger about than expected because there are two spectator u quarks in the proton and two spectator d quarks in the neutron.

There is a simpler process where the same enhancement occurs. This is a comparison of the semi-leptonic decay rates \(\Sigma^+ \rightarrow \Lambda^0 e^+ \nu_e\) to \(\Sigma^- \rightarrow \Lambda^0 e^- \bar{\nu}_e\). Since the \(\Sigma^+\) is \(uuu\) and the \(\Sigma^-\) is \(dds\), the rate comparison tests charge symmetry in a situation where two up quarks are replaced by two down ones.

As shown by Frampton and Tung\(^3\) and others\(^4\), the non-leptonic decay rate can be written as

\[
\Gamma = \left(\frac{G_F \sin \theta_c f_{\Sigma \Lambda}}{2^6 15 \pi^4 (1 + \delta)^3}\right) M_\Sigma^2 (3|f_1|^2 + 5|g_1|^2),
\]

where \(G_F\) is the Fermi coupling constant, \(\theta_c\) is the Cabibbo angle, and \(f_{\Sigma \Lambda}\) is an f-type SU(3) coefficient. Also we have defined

\[
M_- = M_\Sigma - M_\Lambda, \quad M_+ = M_\Sigma + M_\Lambda, \quad \delta = M_- / M_+,
\]

\(f_1\) is the matrix element of the weak vector current which we assume to be a dipole form factor \(f_1 = M_V^4 (q^2 + M_V^2)^{-2}\), with \(M_V \approx 0.84\) GeV, and \(q\) the 4-momentum transfer in the decay. In Eq. (1) \(g_1\) is the matrix element of the axial vector operator which we take as a number \(C_A\) times a form factor, \(g_1 = M_A^4 (q^2 + M_A^2)^{-2}\), where \(M_A \approx 1.05\) GeV. For \(\Sigma^\pm\) decay \(C_A\) is the matrix element of \(\bar{q} \gamma^\mu \gamma_5 \tau_\pm q\). If charge symmetry holds,

\[
|\Sigma^+ > = P_{cs} |\Sigma^- >,
\]

where the the charge symmetry operator\(^2\) \(P_{cs} = e^{i \pi T_2}\). This operator converts \(u\) quarks into \(d\) quarks and vice versa: \(P_{cs}|u> = -|d>\), \(P_{cs}|d> = |u>\). Charge symmetry leads to the result that \(C_A(\Sigma^+) = -C_A(\Sigma^-)\).
In this limit, we obtain

$$R \equiv \frac{\Gamma(\Sigma^-)}{\Gamma(\Sigma^+)} = \frac{[M_-(\Sigma^-)]^5}{[M_-(\Sigma^+)]^5} \frac{[1 + \delta(\Sigma^+)]^3}{[1 + \delta(\Sigma^-)]^3}$$

(4)

to an accuracy of better than 0.1%. The deviation from unity in Eq. 4 arises only from the difference in phase space factors caused by the mass difference between the Σ^+ and Σ^-. The difference of the form factors f_1 and g_1 for Σ^+ and Σ^- decay is negligible. The use of Eq. (4) and known masses of Σ^\pm, Λ^0, give

$$R = 1.665 \pm 0.009.$$

(5)

At present, the decay rates are given by $\Gamma(\Sigma^+) = (2.5 \pm 0.6) \times 10^5 s^{-1}$, $\Gamma(\Sigma^-) = (3.87 \pm 0.18) \times 10^5 s^{-1}$. This gives

$$R^{exp} = 1.6 \pm 0.4.$$

(6)

The present branching ratio of Σ^- is measured to about 5%, but that of Σ^+ only to 25%. These errors are much larger than typical charge symmetry breaking effects, which are typically of the order of 1-3%.

It is worthwhile to provide estimates of the size of the charge symmetry breaking effects of C_A. The simplest effect to consider is that of $|\Lambda^0 > -|\Sigma^0 >$ mixing. The physical $|\Lambda >$ and $|\Sigma^0 >$ are thought to be mixtures of pure isospin states

$$|\Lambda^0 > = |I = 0 > + \alpha |I = 1 >,$$

$$|\Sigma^0 > = -\alpha |I = 0 > + |I = 1 >,$$

(7)

with $\alpha \approx 0.013$ as estimated in Ref. 6. The quark-model origin of this effect is the charge symmetry breaking mass difference between up and down quarks which enters in the one-gluon exchange interaction. We estimate the matrix elements of the vector \hat{V} and axial-vector \hat{A} operators between the $|\Sigma^\pm >$ and the physical $\Lambda >$, using SU(6) wave
functions. The matrix element of \hat{V} between the $|I = 0\rangle$ and $|I = 1\rangle$ pure isospin states vanishes, so the effects of mixing in Eq. (1) are of second order in α in the ratio R and ignorable. A simple evaluation of the matrix element of \hat{A} reveals that

$$<\Lambda|\hat{A}|\Sigma^\pm> = -(\pm \frac{2}{3}\sqrt{3} - \frac{4}{3}\alpha),$$

so the ratio of the square of the matrix elements is

$$(\frac{g^+}{g^-})^2 \approx 1 - \frac{8}{3}\sqrt{3}\alpha \approx 6\%.$$ (9)

This is a relatively large effect. Other charge symmetry breaking effects occur in the wave functions, but these are much smaller. The Σ^+ decay involves a u in the Σ^+ changing into a d in the Λ, while Σ^- decay involves a d in the Σ^- changing into a u in the Λ. In the simplest bag or constituent quark model the u and d wave functions of the Σ and Λ would be the same, but the quark mass difference would cause the u wave function to differ from that of the d. However, that effect would give no charge asymmetry here because there is a single u and a single d wave function in both matrix elements. The charge asymmetry occurring via the effects of spatial wave function is therefore a subtle effect. In the MIT bag model\(^7\), a mass difference δm between the up and down quarks is required to explain the mass difference between the neutron and proton. Using $\delta m = 4.3$ MeV\(^8\) leads to the result that 4 MeV ($\equiv \Delta M$) of the 8.3 MeV difference ($M_{\Sigma^+} > M_{\Sigma^-}$) must be supplied by electromagnetic and one gluon exchange effects. The use of the bag model stability equations gives $\Delta R/\tilde{R} = \frac{4\Delta M}{3M} \approx 1/900$, This is barely perceptible, and therefore very sensitive to a host of corrections. In any case, it is small and can therefore be neglected.

We also make an estimate using the non-relativistic quark model. The variational principle, with harmonic oscillator trial wave functions\(^9\), is used to simplify this first calculation. The result is that $\Delta R/\tilde{R} = \frac{3\Delta M}{4M}$ for oscillator confinement and $\Delta R/\tilde{R} =$
Here \bar{R} and ΔR refer to the radius parameter of the harmonic oscillator wave functions. Computing the relevant overlaps gives a difference of 0.6 % (oscillator) or 1.2 % (linear) for the square of the matrix elements. There is extreme model dependence, but the effect is much smaller than the 6% expected from baryon mixing.

We would like to urge increased analysis of existing data or of new data to search for charge symmetry-breaking at the 1% level. Since this symmetry tests the effects of isospin mixing in the baryon wavefunction, it is of particular interest. No such asymmetry has yet been observed for a hadron.

This work was supported in part by the U.S. Department of Energy. A recent volume of Phys. Lett. B, containing Ref. 10, arrived in our library as we were about to submit this for publication. Ref. 10 concerns the same topic and obtains the same result for Σ^\pm semi-leptonic decays.

References

1. A. Thomas, at the 1st International Symposium on Symmetries in Subatomic Physics to be published, ed. by W.-H P. Hwang; E.N. Rodionov, A. W. Thomas and J.T. Londergan, “Charge Asymmetry of Parton Distributions”, IU/NTC 93-19,ADP-93-222/T139
2. G.A. Miller, B.M.K. Nefkens, and I. Slaus, Phys. Rept. 194, 1 (1990)
3. P.H. Frampton and W-K. Tung, Phys. Rev. D3, 3 (1971).
4. See e.g. M. Bourquin et al., Z. Phys. C12, 318 (1982).
5. Particle Data Group, Phys. Rev. D45, S1 (1992).
6. R.H. Dalitz and F. Von Hippel, Phys. Lett. 10, 153 (1964).
7. T. De Grande, , R.L. Jaffe, K. Johnson, and J. Kiskis, Phys. Rev. D12, 2060 (1975).
8. R. P. Bickerstaff and A.W. Thomas, Phys. Rev. D 25, 1869 (1982).

9. N. Isgur, p. 45, in “Nucleon Resonances and Nucleon Structure”, ed. by G.A. Miller, World Scientific, Singapore, 1992.

10. G. Karl, Phys. Lett. B 328, 149 (1994).