Grammatical Gender, Neo-Whorfianism, and Word Embeddings: A Data-Driven Approach to Linguistic Relativity

Katharina Kann
New York University, USA
kann@nyu.edu

Abstract

The relation between language and thought has occupied linguists for at least a century. Neo-Whorfianism, a weak version of the controversial Sapir–Whorf hypothesis, holds that our thoughts are subtly influenced by the grammatical structures of our native language. One area of investigation in this vein focuses on how the grammatical gender of nouns affects the way we perceive the corresponding objects. For instance, does the fact that key is masculine in German (der Schlüssel), but feminine in Spanish (la llave) change the speakers’ views of those objects? Psycholinguistic evidence presented by Boroditsky et al. (2003, §4) suggested the answer might be yes: When asked to produce adjectives that best described a key, German and Spanish speakers named more stereotypically masculine and feminine ones, respectively. However, recent attempts to replicate those experiments have failed (Mickan et al., 2014). In this work, we offer a computational analogue of Boroditsky et al. (2003, §4)'s experimental design on 9 languages, finding evidence against neo-Whorfianism.

1 Introduction

During his tenure as a graduate student, 20th-century American linguist Benjamin Whorf conducted field work on Hopi, an Uto-Aztecan language spoken in Southern Arizona. To his surprise, he found that Hopi does not mark the tense of a verb in the way many Western European languages do (Whorf, 1956). Thus, according to Whorf, a Hopi speaker must infer whether an action takes place in the past, present or future only from the sentential context in which the verb occurs. This finding inspired Whorf to start questioning whether language influences thought, a position that has come to be known as linguistic relativity (Whorf et al., 2012). Ultimately, Whorf went on to hypothesize that the Hopi perceive time differently as a result of their language’s grammar, kicking off a more encompassing debate on the relation of language and thought and engendering one of the larger controversies in linguistics to date (Deutscher, 2010).

While influential, the strong version of what has come to be known as the Sapir–Whorf hypothesis has been disapproved. For instance, even though languages differ in the color terms they employ, e.g., Korean has one word that represents both green and blue, the development of color terminology and perception is subject to universalist constraints due to biology (Berlin and Kay, 1969). Recent years, however, have witnessed a resurgence of a milder strain of the hypothesis, alternatively known as neo-Whorfianism or the weak Sapir–Whorf hypothesis (Boroditsky, 2003). One prominent controversial research direction investigates this hypothesis with respect to grammaticalized notions of gender and tense. Based on experimental evidence obtained from native German and Spanish speakers, Boroditsky (2003, §4.6) argued that grammatical gender affects how speakers view objects in their native language. Similarly, differences in the usage of tense in Mandarin and English were found to affect how the respective speakers view time (Boroditsky, 2001). In this work, we focus on the influence of grammatical gender and how we can use NLP tools to shed light on the validity of this aspect of neo-Whorfianism.

The gist of Boroditsky et al. (2003, §4)'s hypothesis is that speakers of languages that mark grammatical gender perceive nouns, even inanimate ones, differently depending on the noun’s gender. They sought psycholinguistic evidence for this claim, arguing that speakers will more often choose stereotypically masculine adjectives to describe grammatically masculine inanimate nouns

1Whorf’s claim has subsequently been challenged. Later analyses of Hopi grammar suggest that the language marks two tenses: future and non-future (Malotki, 1983).

2The hypothesis is named after both Benjamin Whorf and his Ph.D. advisor Edward Sapir.
and stereotypically feminine adjectives to describe grammatically feminine inanimate nouns. To give a concrete example, the German word for key, Schlüssel, happens to be masculine, so speakers are more likely to use words such as heavy, jagged, and hard. In contrast, the Spanish word for key, llave, happens to be feminine, so speakers are more likely to use stereotypically feminine words such as elegant, pretty, and delicate. However, Mickan et al. (2014) failed to replicate this experiment, leaving the validity of the findings questionable.

In this work, we provide evidence against Boroditsky et al. (2003, §4)’s hypothesis using NLP techniques. We contend that if this instance of neo-Whorfianism is true, then we should see a reflection of it in corpus co-occurrence counts. We propose two experiments, based on word embeddings trained on large corpora, to investigate how speakers of different languages use certain nouns. Our results on 9 languages suggest that the grammatical gender of inanimate nouns does not influence how they are used in context, taking credence away from Boroditsky et al. (2003, §4)’s claims. However, we caution that it is important not to overstate the findings of one study; we see our results as providing further evidence in the linguistic relativity debate against neo-Whorfianism from a largely orthogonal source.

2 Background

2.1 Grammatical Gender

In this section, we provide a brief overview of grammatical gender systems since those play an important role in Boroditsky et al. (2003, §4)’s, and hence our, experiments. Languages range from encoding no grammatical gender on inanimate nouns, like English or Mandarin Chinese, to distinguishing tens of gender-like noun classes, as found in the Bantu languages of Africa (Corbett, 1991). In this work, we will exclusively consider gendered languages of Indo-European and Afro-Asiatic (Semitic) stock; they all distinguish either two or three genders: the bipartite distinctions masculine-feminine and the tripartite distinction masculine-feminine-neuter. An important assumption of our study is the tenet that the gender assigned to inanimate objects is arbitrary.

All languages we experiment on exhibit concord in grammatical gender, i.e., articles and adjectives that modify a noun must agree with that noun in gender as well as in other features. Consider the German and Spanish translations of the English sentence: The beautiful key is on the table.

La llave bonita está sobre la mesa. (1)

Der schöne Schlüssel liegt auf dem Tisch. (2)

Here, German employs the masculine article der as Schlüssel is masculine; had Schlüssel been feminine, German speakers would say die Schlüssel. Spanish exhibits a similar behavior, making use of la, rather than el, as llave is feminine. For a thorough treatment of the subject, see Corbett (2006).

A key part of our experimental design will be stripping side effects of the grammatical concord from articles, adjectives, and verbs, thus removing overt signals of the noun’s gender.

2.2 Morphological Tagging and Lemmatization

Our study will make use of NLP tools that automate bits of linguistic analysis: morphological tagging and lemmatization. Both will be explained here.

In languages that exhibit inflectional morphology, we may decompose a word into a bundle of morpho-syntactic features and a lemma, its canonical form. Formally, we denote a word in a natural language as \(w \), and a sentence of length \(n \) as \(w = w_1 \cdots w_n \). Each word can be factored into a lemma \(\ell \) and a bundle of morphological features \(m \). For instance, we may think of the German word Schlüssel as the lemma \(\ell = \text{Schlüssel} \) and the features \(m = [\text{POS}=n, \text{GEN}=\text{masc}, \text{NUM}=sg, \text{CASE}=\text{gen}] \). Each morphological feature in \(m \) is an attribute–value pair. Attributes encompass lexical properties...
such as gender, number, and case, taking values such as masculine, singular and genitive, respectively. Following Booij (1996), we may divide the morphological attributes into two categories: inherent and contextual. Inherent categories are those that are embedded in the lemma itself: the lemma Schlüssel without any additional inflection reveals POS=n and GEN=masc. However, the sentential context dictates that NUM=sg and CASE=gen. We write \(m \) for a sequence of morphological tags and \(\ell \) for a sequence of lemmata. A morphologically tagged Russian example sentence is given in Fig. 1.

In general, each word in a sentential context will have exactly one lemma and one bundle of morpho-syntactic attributes. We may think of a decomposed sentence of length \(n \) as an interleaved trisequence: \(\langle w_1, \ell_1, m_1 \rangle \cdots \langle w_n, \ell_n, m_n \rangle \), where \(w_i \) is the \(i \)th word, \(\ell_i \) is its lemma, and \(m_i \) is the set of its morphological features.

Several techniques exist to map sentences to the lemmata of their words together with their morpho-syntactic attributes. The task of mapping a sentence to a sequence of morphological tags, in above notation \(w \mapsto m \), is known as morphological tagging. The task of mapping a sequence of words to a sequence of lemmata, i.e., \(w \mapsto \ell \), is known as lemmatization. Performing the tasks jointly can improve performance (Müller et al., 2015).

2.3 Word Embeddings

In our experiments, we will make strong use of embeddings of words into \(\mathbb{R}^d \). Given a fixed vocabulary \(V = \{v_1, \ldots, v_V\} \) of word types, we will denote the embedding of a type \(v \) as \(e(v) \in \mathbb{R}^d \).

We employ the word2vec (Mikolov et al., 2013a; Goldberg and Levy, 2014) toolkit, in particular the skip-gram model, for the creation of our word embeddings. Skip-gram may be considered a form of matrix factorization; specifically, it factorizes a matrix of probabilities \(X \in \mathbb{R}^{V \times |V|} \), where \(X_{ij} \) denotes the probability that \(v_i \) co-occurs with \(v_j \) within a certain context window. For instance, a symmetric context window of size 5 is a common choice. This asks how often \(v_j \) occurs within five positions to the left or right of \(v_i \). Under this interpretation, word2vec is an instance of exponential-family PCA (Collins et al., 2001; Cotterell et al., 2017). The output of word2vec is a mapping of word types to a vector space: \(e : V \to \mathbb{R}^d \). We highlight that the model only considers words categorically, i.e., it is unable to look at the surface form of the word. This is relevant as there are sub-word indicators of gender, e.g., feminine nouns in Spanish often end in -a.

In practice, embeddings are taken as a proxy for lexical semantic meaning—words that have similar meanings should be closer together in the space. This idea has a long history in NLP; Firth (1957) famously quipped, “You shall know a word by the company it keeps.” As we will discuss in §3, are we interested in how well the embeddings for inanimate nouns encode the respective genders.

3 Neo-Whorfianism and Word Embeddings: What is the Link?

Our primary contribution is the development of a computational analogue of the previously conducted psycholinguistic study by Boroditsky et al. (2003, §4), mentioned in §1. While, naturally, the signals in a big-data analysis are different than those extracted from subjects in a laboratory, we find it useful to first describe the original work.

3.1 The Psycholinguistic Experiment

To test the hypothesis that the grammatical gender assigned to inanimate objects, even though it is not (and, in fact, cannot be) a direct reflection of natural gender (since the latter is not defined for inanimate nouns), has an influence on the manner in which speakers perceive those objects, Boroditsky et al. (2003, §4) use the following experimental procedure. They created a list of 24 words in German and Spanish that were selected to be translations of each other. Importantly, the same number of masculine and feminine nouns were present in each language; however, all nouns had different genders in German and Spanish. We show a list of stimuli for the experiment in Tab. 2, taken from Boroditsky and Schmidt (2000, Appendix A). Then, native speakers of each language were brought into the laboratory and asked to describe the nouns with

bg	es	fr	he	it	pl	ro	ru	sk	
all	96.6	98.5	98.4	96.5	98.2	96.5	98.1	96.5	95.0
OOV	82.1	91.7	89.6	79.6	91.2	86.9	89.0	88.1	86.6

Table 1: Token-level lemmatization accuracy obtained by lemming on the test splits of the UD treebanks for all languages when evaluated on all tokens or just OOVs.
the first three adjectives that came to mind. (Note the that the experiment took place in English, even though each subject’s native language was either German or Spanish.) As a second step, a group of native English speakers were asked to judge the elicited adjectives as either −1 (feminine) or +1 (masculine), which yielded a gender rating. Using this rating, Boroditsky et al. (2003, §4) found a correlation between the genderedness of the German and Spanish speakers’ choice of adjectives in the first experiment and the English speakers’ rating of how gendered each adjective was. This was taken to be a very conservative test for neo-Whorfian effects regarding gender, as the experiment took place in English, which lacks grammatical gender.

As a qualitative example, they report that the German-speaking participants described “key,” which is masculine in German, as hard, heavy, and jagged, whereas the Spanish-speaking participants described “key,” which is feminine in Spanish, as beautiful, elegant, and fragile. They argue that these findings show that the manner in which German and Spanish speakers think about inanimate objects is influenced by the grammatical gender that the language assigns to their nouns.

The findings of Boroditsky et al. (2003, §4) have not gone uncontested. Mickan et al. (2014) report two unsuccessful attempts to replicate the experiments described in §3. They also note that, while the study is widely cited, the experiments, along with their experimental stimuli, were never published in their own right, but rather merely described in a summary book chapter. Nevertheless, the idea that grammatical gender may influence thought has taken off with much ink spilled on the subject in the popular press. Indeed, in partial response to the popularity of the idea, McWhorter (2014) authored an entire volume, The Language Hoax, with the explicit purpose of removing much of the hype surrounding neo-Whorfian claims.

3.2 Neo-Whorfianism, Gender, and Word Embeddings

How can we use NLP to test the claims investigated in §3.1? We contend that the thrust of Boroditsky et al. (2003, §4)’s argument may be reduced to one of basic lemma co-occurrence counts in a large corpus. If German speakers are more likely to describe a Schlüssel (key) with a stereotypically masculine adjective, i.e., jagged, rather than with a stereotypically feminine one, i.e., delicate, we should reasonably expect this predisposition to manifest itself in corpus counts: grammatically masculine nouns should have stereotypically masculine adjectives modifying them with higher frequency, while feminine nouns should be more likely to be modified by stereotypically feminine ones.

Linking this idea to NLP, recall from §2.3 that co-occurrence counts are the primary signal for training word embeddings, one of the most popular lexical semantic representations of meaning at the type level. Expanding on Firth (1957)’s original statement, we further ask if you shall also know the word’s grammatical gender from its kept company? Operationalizing this, we will attempt to predict the gender of a noun type from its word embedding under several experimental conditions. This is a reformulation of Boroditsky et al. (2003, §4)’s experimental paradigm. The original experiment asked the participants to generate adjectives given a noun stimulus, whereas we look at the spontaneously written contexts of nouns in large corpora.

In more detail, Boroditsky et al. (2003, §4)’s participants are given nouns as stimuli, whose gender they assume the participants have access to in their internal representation of the lexicon. (Recall that gender is an inherent morphological property, as discussed in §2.1.) Then, those participants are asked to generate adjectives that would be good descriptors for those nouns, i.e., they generate contexts for those nouns. The contexts are then scored in a second experiment, where English speakers

English	Spanish	German
apple	manzana	Apfel
arrow	flecha	Pfeil
boot	bota	Stiefel
broom	escoba	Besen
moon	luna	Mond
spoon	cucharra	Löffel
star	estrella	Stern
toaster	tostador	Roster
pumpkin	calabaza	Kürbis

The findings of Boroditsky et al. (2003, §4) have not gone uncontested. Mickan et al. (2014) report two unsuccessful attempts to replicate the experiments described in §3. They also note that, while the study is widely cited, the experiments, along with their experimental stimuli, were never published in their own right, but rather merely described in a summary book chapter. Nevertheless, the idea that grammatical gender may influence thought has taken off with much ink spilled on the subject in the popular press. Indeed, in partial response to the popularity of the idea, McWhorter (2014) authored an entire volume, The Language Hoax, with the explicit purpose of removing much of the hype surrounding neo-Whorfian claims.
We induce word embeddings under four experimental conditions: (i) **forms**: the embeddings are trained on forms (the original corpus), (ii) **lemmata**: the embeddings are trained on lemmata (the whole corpus is lemmatized), (iii) **nouns**: the embeddings are trained on lemmatized nouns where the rest of the corpus is left unlemmatized, (iv) **¬nouns**: the embeddings are trained on unlemmatized nouns and the rest are lemmatized.

Hypotheses. We compare the ability of the classifier to predict the gender of the noun in the word conditions outlined above and, additionally, compare the results to a majority-class baseline. We hypothesize the classifier to easily be able to predict the gender from conditions (i) **forms** and (iii) **nouns** since the primary cue for gender is the concord exhibited by the context words. Indeed, we see no a-priori reason why (i) should perform significantly differently than (iii). The conditions (ii) **lemmata** and (iv) **¬nouns** are more interesting: If the inherent gender in the inanimate nouns influences the choice of context lemmata, as Boroditsky et al. (2003, §4) believe, then we hypothesize the classifier to easily be able to predict the gender from the embeddings in (ii) **lemmata** and (iv) **¬nouns** better than a majority-class baseline. However, if speakers are uninfluenced by grammatical gender, then we should fail to predict grammatical gender from context. We note (i) and (iii) are skylines since (ii) and (iv) contain less gender-related information.

4 Experimental Setup

The goal of both our experiment and that of Boroditsky et al. (2003, §4) is to determine whether the words that occur in the context of a noun are influenced by its grammatical gender. In our experiment, we opt to represent a context by its word embedding and try to predict the gender of a (inanimate) noun given its word embedding.

Extracting the gender of a word from its vector representation is often trivial for many languages due to certain grammatical artifacts: e.g., in Spanish, nouns are usually accompanied by a gender-specific article (el or la). Thus, in order to obtain meaningful experimental results, we need to control for such obvious indicators, i.e., lemmatize our corpora and train lemma embeddings instead of embeddings for all inflected forms. Indeed, word embeddings famously capture gender, as evinced by Mikolov et al. (2013b)’s (approximate) equation

\[e(\text{king}) - e(\text{man}) + e(\text{woman}) \approx e(\text{queen}). \]

Recall from §2.3 that our embeddings do not have access to subword information, so clues for a noun’s gender must come from context.

4.1 Word Embedding Comparison

We induce word embeddings under four experimental conditions: (i) **forms**: the embeddings are trained on forms (the original corpus), (ii) **lemmata**: the embeddings are trained on lemmata (the whole corpus is lemmatized), (iii) **nouns**: the embeddings are trained on lemmatized nouns where the rest of the corpus is left unlemmatized, (iv) **¬nouns**: the embeddings are trained on unlemmatized nouns and the rest are lemmatized.

Lemmatizer. We choose the LEMMING (Müller et al., 2015) package4 for lemmatization. LEMMING is a conditional random field (Lafferty et al., 2001) with artisanal feature templates. While occasionally surpassed in performance, LEMMING is competitive with neural state-of-the-art models, while remaining robust in low-resource settings and being fast to train (Heigold et al., 2017). For

4http://cistern.cis.lmu.de/lemming/
all languages in our experiments, we keep LEMMING’s defaults as our hyperparameters and train it on the training and development splits of the corresponding Universal Dependencies (UD) tree-banks (Nivre et al., 2017). Since errors during lemmatization could significantly alter our experiments, we make use of the dev splits to ensure that a high lemmatization performance is reached. Tab. 1 shows the resulting token-based accuracies of our final models, both on the entire UD test sets and on out-of-vocabulary words only. The latter serves as a lower-bound; it corresponds to the (extreme) case where none of the words of the corresponding Wikipedia corpus appear in the union of the UD training and development sets.

Experimental Languages. We choose 9 experimental languages randomly from UD: Bulgarian (bg), French (fr), Hebrew (he), Italian (it), Polish (pl), Romanian (ro), Russian (ru), Slovak (sk), Spanish (es). The only imposed condition is that they have ≥80% performance on lemmatizing out-of-vocabulary words on the UD development set. This is to ensure that our lemmatizer is reasonably leak-free for rare words. We drop neuter words in languages that exhibit a neuter, such as Bulgarian and Russian.

Word Vectors. We employ the skip-gram model from the Word2Vec package to induce 100-dimensional embeddings. We use negative sampling with 10 samples. For all languages, the vectors are trained on corpora lemmatized in the way we just described; namely, we make use of multilingual Wikipedia editions from March 2018. All words with a frequency below 5 are ignored, and we compare symmetric context window sizes of 2, 5 and 10, finding 2 works the best.

4.3 Experiment 1: Gender Classification

Our gender prediction problem constitutes a binary classification task, where the classes are masculine and feminine and the input is the word embedding of a noun. We employ a multi-layer perceptron (MLP) for this classification, defining the probability of the gender g given a noun type v, as

$$p(g \mid v) = \text{softmax}(W_2 \tanh (W_1 e(v) + b_1) + b_2) \quad (3)$$

where we feed in the noun’s embedding $e(v)$ into the network, $W_1 \in \mathbb{R}^{d' \times d}$ and $W_2 \in \mathbb{R}^{2 \times d'}$ are weight matrices, $b_1 \in \mathbb{R}^{d'}$ and $b_2 \in \mathbb{R}^{2}$ are bias vectors. Eq. (3) represents a network of depth 2, but we consider depth-k networks where k is a hyperparameter. We additionally consider the non-linearities ReLU and sigmoid.

Training Set. To learn the parameters of Eq. (3), we construct the following training set. Given the lemmatized and morphologically analyzed Wikipedias discussed in §4.2, we construct a lexicon as follows. For every lemma type that occurs more than 50 times, we find the gender, extracted from the morphological tag of each token, that most frequently occurs among its tokens in the corpus. This yields a lexicon of lemma-gender pairs. Note that this training set will include animate words as we are unable to exclude them easily. However, we will only evaluate on inanimate nouns; see below.

Evaluation Set. For the evaluation, we focus exclusively on the same common, inanimate words in all languages. We use the NorthEuraLex dataset (Dellert and Jäger, 2017), which is a multi-way concept-aligned dictionary. In order to avoid biological gender interfering with grammatical gender and, thus, influencing our experiments, we manually annotate all concepts as animate or inanimate and exclude all animate nouns. For instance, we keep eye, lake, and circle, while discarding words like wife, dog, or son. The list containing all concepts in our evaluation set can be found in App. A. We take care to remove these words from the train-
Training and Hyperparameters. The model is implemented in PyTorch (Paszke et al., 2017). We train our models on the training sets using Adam (Kingma and Ba, 2015) with a base learning rate of 0.1 for all models. All models are trained for 50 epochs. Hyperparameters include network depth ($k \in [1, 5]$), size of the hidden layer (taken from \{100, 200, 300\}) and type of nonlinearity (taken from \{tanh, sigmoid, ReLU\}). We randomly partition the evaluation set in half 10 times and sweep the hyperparameters on each dev partition, performing early stopping. Final results average the performance on test across these splits.

Results and Discussion. The gender-prediction accuracies from the four embeddings conditions are shown in Fig. 2. As discussed, classification accuracy is highest for conditions (i) forms and (iii) nouns, i.e., embeddings trained on the corpora where the context words are unaltered. In these conditions, we see unlemmatized forms as context, our classifier handily surpasses the majority-class baseline with differences up to 30 points. All differences are significant ($p < 0.05$). On the other hand, inspecting conditions (ii) lemmata and (iv) ~nouns, we see that performance of each is rarely better than the majority-class baseline and in no case is statistically better ($p < 0.05$). Thus, despite a relatively extensive hyperparameter search, we are unable to reliably predict grammatical gender from the context words along. This negative result provides evidence against Boroditsky et al. (2003, §4)’s hypothesis that the inherent gender of the word will have an effect on the context words that a speaker uses for inanimate nouns.

4.4 Experiment 2: A Gender Dimension

In addition to Experiment 1, we would also like to analyze the degree to which words are more masculine or feminine using their word embeddings, which, in turn, tells us how masculine or feminine their contexts are. A high-level overview of how we can achieve this is as follows. We may isolate genderedness by fixing one of the dimensions of the word embeddings to be the gender dimension. Then, we seek a method that will shift the information regarding gender into that dimension. In effect, we need a method which maps every word to a scalar quantity which corresponds to how gendered the word is, allowing us to compare individual words and to discover those whose gender is more saliently encoded in the embeddings. We adopt the ultra-dense strategy developed by Rothe et al. (2016), which we will describe below.

Learning Ultra-Dense Embeddings. Given an embedding $e(v) \in \mathbb{R}^d$ of a word v, we are interested in learning a real orthogonal matrix $Q \in \mathbb{R}^{d \times d}$ in order to create a new embedding $e'(v) = Q e(v)$. Defining Q to be real orthogonal ensures that no information is lost or gained as a result of the transformation—the dot product, and, thus, the cosine similarity between vectors will be preserved. In order to learn a transformation that moves gender information to certain components of the embeddings, let S be the set of of all pairs of distinct nouns that have the same gender and let D be the set of all pairs of distinct nouns that have a different gender. Let $P \in \mathbb{R}^{d \times d}$ be a matrix with all entries being zero except for P_{11}, which is 1. Now, we minimize the following objective

$$
\mathcal{O}(Q; S, D) = \sum_{(v, v') \in S} \| P Q (e(v) - e(v')) \|^2_2
- \sum_{(v, v') \in D} \| P Q (e(v) - e(v')) \|^2_2
$$

with respect to the matrix Q subject to the constraint that $Q^\top Q = I$; that is, Q is real orthogonal.

Stochastic Projected Gradient. The above objective can be optimized using a stochastic projected-gradient-style algorithm (Bertsekas, 1999). This algorithm alternates between two steps until convergence: (i) A stochastic gradient step: During this step, one element is randomly sampled from each of S and D. Then, the gradient of Eq. (4) is computed with respect to Q, and Q is updated.
We start with a quantitative analysis; we consider words are more gendered than others. Here, we where the context words have been lemmatized. A projection step: After obtaining a new matrix \(\eta \) is chosen by the Adam optimizer.

Algorithm 1

\[
\text{Stochastic Projected Gradient Algorithm}
\]

1: \textbf{input} \(S, \mathcal{D} \triangleright \text{same- and different-gender pairs} \)
2: \(Q \leftarrow I \)
3: \textbf{for} \(t = 1 \) \textbf{to} \(T \) \textbf{do}
4: \((v_S, v_S') \sim \text{uniform}(S) \)
5: \((v_D, v_D') \sim \text{uniform}(\mathcal{D}) \)
6: \(\tilde{S} \leftarrow \{ (v_S, v_S') \}; \tilde{D} \leftarrow \{ (v_D, v_D') \} \)
7: \(Q' \leftarrow \eta \cdot \nabla_Q \rho (Q; \tilde{S}, \tilde{D}) \)
8: \(U \Sigma V^\top \leftarrow \text{SVD} (Q') \)
9: \(Q \leftarrow UV^\top \)

by taking a step in the direction of the gradient. (ii) A projection step: After obtaining a new matrix \(Q' = Q + \eta \cdot \nabla_Q \rho \) during the gradient update where \(\eta \) is the learning rate, we no longer have the guarantee that \(Q' \) is orthogonal. Thus, we must perform a projection step to orthogonalize \(Q' \). This can be achieved through singular value decomposition (SVD). We compute the SVD: \(Q' = U \Sigma V^\top \), where \(U, \Sigma \) and \(V^\top \) are guaranteed to be real as \(Q' \) is real. Then, we may define \(Q = UV^\top \), which is the closest to \(Q' \) under the Frobenius norm (Horn and Johnson, 2012). Pseudocode for this algorithm is given in Alg. 1.

Training Details. Our learning rate schedule \(\eta_t \) (see Alg. 1) is chosen by the Adam optimizer (Kingma and Ba, 2015). We run \(T = 1000 \) iterations. Upon termination, we extract a scalar-valued gender quantity as follows: \([P Q e(w)]_{11} \), i.e., the first component of the new embedding. We train on half the NorthEuraLex data and test on the other half, using the splits described in §4.3.

Analyzing the Data. The gender dimension admits both a quantitative and a qualitative analysis. We start with a quantitative analysis; we consider Spearman’s \(\rho \) between the gender dimension and the grammatical gender of the nouns, marking masculine as 0 and feminine as 1. The results are shown in Tab. 4. They mirror those found in experiment 1 (§4.3): we are unable to find correlation significantly different than 0 for any of the cases where the context words have been lemmatized (conditions (i) lemmata and (ii) ~nouns). On the contrary, when the context words are left unlemmatized (conditions (i) forms and (iii) nouns), we are generally able to find a significant correlation. Qualitatively, the gender dimension tells us which words are more gendered than others. Here, we perform a case study of our Spanish test set. The five words with the most masculine and most feminine gender dimension are displayed in Tab. 3 in the (i) forms and (ii) lemmata conditions. The qualitative analysis shows the same trend.

5 Other Related Work

In the realm of NLP, the closest work to ours deals with bias in word embeddings. Many have observed that word embeddings encode the biases present in the data they were trained on. For instance, Bolukbasi et al. (2016) and Zhao et al. (2017) note that the engineer embedding has a higher cosine similarity with man than with woman, reflecting a structural imbalance in the gender of the profession; they propose to debias the embeddings such that gender no longer plays a role.

6 Conclusion

Using word embeddings in 9 different languages trained on lemmatized corpora, we investigated whether adjective choice is influenced by the grammatical gender of inanimate nouns. This question has larger implication in the debate on the relation between language and thought. We developed a computational analogue of Boroditsky et al. (2003, §4)’s experimental paradigm and showed that context in which a noun occurs, stripped of its overt gender markings, is no longer predictive of the inherent gender of the original, inanimate noun. These negative results contradict Boroditsky et al. (2003, §4)’s claims.

Any scientific study should be viewed with a healthy dose of skepticism, especially one, such as ours, that considers a controversial question. We believe our big-data study should be taken as complementary evidence in the context of the larger debate that inanimate nouns’ gender does not influence the way speakers describe them in a corpus.
Acknowledgments

I would like to thank Hanna Wallach, Lawrence Wolf-Sonkin, and Ryan Cotterell for discussions and contributions, and they approve this acknowledgment. Except for the addition of author information, these acknowledgments, and minor changes this paper is unchanged from a manuscript written in 2018.

References

Brent Berlin and Paul Kay. 1969. Basic color terms: Their universality and evolution. University of California Press.

Dimitri P. Bertsekas. 1999. Nonlinear Programming. Athena scientific Belmont.

Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam Tauman Kalai. 2016. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In NIPS.

Geert Booij. 1996. Inherent versus contextual inflection and the split morphology hypothesis authors. In Yearbook of Morphology 1995, pages 1–16. Springer Netherlands.

Lera Boroditsky. 2001. Does language shape thought? Mandarin and English speakers’ conceptions of time. Cognitive Psychology, 43:1–22.

Lera Boroditsky. 2003. Linguistic relativity. Encyclopedia of Cognitive Science.

Lera Boroditsky and Lauren A. Schmidt. 2000. Sex, syntax, and semantics. In Proceedings of the Annual Meeting of the Cognitive Science Society.

Lera Boroditsky, Lauren A. Schmidt, and Webb Phillips. 2003. Sex, syntax, and semantics. Language in Mind: Advances in the Study of Language and Thought, pages 61–79.

Michael Collins, Sanjoy Dasgupta, and Robert E. Schapire. 2001. A generalization of principal components analysis to the exponential family. In NIPS.

Greville G. Corbett. 1991. Gender. Cambridge University Press.

Greville G. Corbett. 2006. Agreement. Cambridge University Press.

Ryan Cotterell, Adam Poliak, Benjamin Van Durme, and Jason Eisner. 2017. Explaining and generalizing skip-gram through exponential family principal component analysis. In EACL.

Johannes Dellert and Gerhard Jäger. 2017. NorthEuraLex. Version 0.9.

Guy Deutscher. 2010. Through the language glass: Why the world looks different in other languages. Metropolitan Books.

John R. Firth. 1957. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis.

Yoav Goldberg and Omer Levy. 2014. word2vec explained: Deriving mikolov et al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.

Georg Heigold, Guenter Neumann, and Josef van Genabith. 2017. An extensive empirical evaluation of character-based morphological tagging for 14 languages. In EACL.

Roger A. Horn and Charles R. Johnson. 2012. Matrix Analysis. Cambridge University Press.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In ICLR.

John Lafferty, Andrew McCallum, and Fernando CN Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML.

Ekkehart Malotki. 1983. Hopi time: A linguistic analysis of the temporal concepts in the Hopi language, volume 20. Walter de Gruyter.

John McWhorter. 2014. The language hoax: Why the world looks the same in any language. Oxford University Press.

Anne Mickan, Maren Schiefke, and Anatol Stefanowitsch. 2014. Key is a llave is a schlussel: A failure to replicate an experiment from Boroditsky et al 2003. Yearbook of the German Cognitive Linguistics Association, 2(1):39.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013b. Linguistic regularities in continuous space word representations. In NAACL-HLT.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and Hinrich Schütze. 2015. Joint lemmatization and morphological tagging with lemming. In EMNLP.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Jesus Aranzabe, Masayuki Asahara, Atiziber Atutxa, Miguel Ballesteros, John Bauer, Kepa Bengoetxea, Riyaz Ahmad Bhat, Eckhard Bick, Cristina Bosco, Gosse Bouma, Sam Bowman, Marie Candito, Gülşen Cebiroğlu Eryiğit, Giuseppe G. A. Celano, Fabrizio Chalub, Jinho Choi, Çağrı Côltekin, Miriam Connor, Elizabeth Davidson, Marie-Catherine de Marneffe, Valeria de Paiva, Arantzaz Diaz de Ilarraza, and Dobrovoljc. 2017. Universal dependencies 2.0.
Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in pytorch. In NIPS-W.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze. 2016. Ultradense word embeddings by orthogonal transformation. In NAACL-HLT.

Benjamin Lee Whorf. 1956. The Hopi language, Toreva dialect.

Benjamin Lee Whorf, John B. Carroll, Stephen C. Levinson, and Penny Lee. 2012. Language, thought, and reality: Selected writings of Benjamin Lee Whorf. MIT Press.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. 2017. Men also like shopping: Reducing gender bias amplification using corpus-level constraints. In EMNLP.
Concept ID	English
Abend::N	evening
Abhäng::N	slope
Abstand::N	gap
Ader::N	vein
Alter::N	age
Angelegenheit::N	matter
Anhöhe::N	elevation
Anzahl::N	count
Apfel::N	apple
Arbeit::N	work
Arm::N	arm
Art::N	sort
Arznei::N	medicine
Asche::N	ashes
Ast::N	limb
Atem::N	breath
Auge::N	eye
Bach::N	brook
Band::N	ribbon
Bart::N	beard
Bau::N	lair
Bauch::N	belly
Baum::N	tree
Beere::N	berry
Bein::N	leg
Berg::N	mountain
Besen::N	broom
Bett::N	bed
Beutel::N	pouch
Bild::N	picture
Birke::N	birch
Blatt::N	leaf
Blume::N	flower
Blut::N	blood
Boden::N	ground, soil
Bogen[Waffe]:::N	bow
Boot::N	boat
Brei::N	mush
Brett::N	board
Brief::N	letter
Brot::N	bread
Brunnen::N	well
Brust::N	breast, chest
Brücke::N	bridge

Concept ID	English		
Buch::N	book		
Buchstabe::N	character		
Bucht::N	cove		
Busen::N	bosom		
Butter::N	butter		
Bündel::N	bundle		
Dach::N	roof		
Decke::N	blanket		
Deckel::N	cover		
Donner::N	thunder		
Dorf::N	village		
Dreck::N	filth		
Ecke::N	corner		
Ei::N	egg		
Eimer::N	bucket		
Eis::N	ice		
Eisen::N	iron		
Ellenbogen::N	elbow		
Ende::N	end		
Entfernung::N	distance		
Erde::N	earth		
Erzählung::N	story		
Essen::N	meal		
Faden::N	thread		
Falle::N	trap		
Farbe::N	paint		
Feder::N	feather		
Fehler::N	mistake		
Fell::N	fur		
Fenster::N	window		
Ferse::N	heel		
Festland::N	land		
Fett::N	fat		
Feuer::N	fire		
Fieber::N	fever		
Figur::N	figure		
Finger::N	finger		
Fingernagel::N	fingernail		
Fleisch::N	meat		
Fluss::N	river		
Flügel::N	wing		
Frost::N	frost		
Funke::N	spark		
Fuß::N	foot		
Fußboden::N	floor		
Gabel::N	fork		
Concept ID	English	Concept ID	English
------------	---------	------------	---------
Gang::N	walk	Herz::N	heart
Gast::N	guest	Heu::N	hay
Gedanke::N	thought	Hilfe::N	help
Gedächtnis::N	memory	Himmel::N	sky
Gegend::N	area	Hitz::N	heat
Gegenstand::N	item	Holz::N	wood
Gehirn::N	brain	Honig::N	honey
Geist::N	spirit	Horn::N	horn
Geld::N	money	Hose::N	trousers
Gelächter::N	laughter	Hunger::N	hunger
Genick::N	nape	Hälfte::N	half
Geruch::N	odour	Höhe::N	height
Geschenk::N	gift	Höhlle::N	cave
Geschirr::N	dishes	Hügel::N	hill
Geschmack::N	flavour	Insel::N	island
Geschäft::N	business	Jahr::N	year
Gesicht::N	face	Kamm::N	comb
Gespräch::N	talk	Kampf::N	fight
Gesundheit::N	health	Kante::N	edge
Getreide::N	corn	Kehle::N	throat
Gewalt::N	violence	Kessel::N	kettle
Gewehr::N	gun	Kiefer[Anatomie]:N::N	jaw
Gewicht::N	weight	Kiefer[Baum]:N::N	pine
Gipfel::N	summit	Kinn::N	chin
Glas::N	glass	Kirche::N	church
Glück::N	happiness	Kissen::N	pillow
Gold::N	gold	Kiste::N	box
Grab::N	grave	Klau::N	claw
Gras::N	grass	Kleidung::N	clothes
Grenze::N	border	Knie::N	knee
Griff::N	handle	Knochen::N	bone
Grube::N	pit	Knopf::N	button
Grund::N	reason	Knoten::N	knot
Größe::N	size	Kohle::N	coal
Gürtel::N	belt	Kopf::N	head
Haar::N	hair	Korn::N	grain
Haken::N	hook	Kragen::N	collar
Hals::N	neck	Kralle::N	claw
Hand::N	hand	Krankheit::N	illness
Handfläche::N	palm	Kreis::N	circle
Handtuch::N	towel	Kreuz::N	cross
Haufen::N	heap	Krieg::N	war
Haus::N	house	Kummer::N	grief
Haut::N	skin	Kälte::N	chill
Heim::N	home	Körper::N	body
Hemd::N	shirt		
Concept ID	English	Concept ID	English
-------------------	---------	-------------------	---------
Küste::N	coast	Nahrung::N	food
Laden::N	shop	Name::N	name
Lagerfeuer::N	campfire	Nase::N	nose
Land::N	country	Netz::N	net
Last::N	load	Nest::N	nest
Laut::N	sound	Leben::N	life
Leber::N	liver	Neuigkeit::N	news
Leder::N	leather	Norden::N	north
Lehm::N	clay	Oberschenkel::N	thigh
Leine::N	leash	Ohr::N	ear
Leiter::N	ladder	Ort::N	place
Leute::N	people	Osten::N	east
Licht::N	light	Pfad::N	path
Lied::N	song	Pfeil::N	arrow
Linie::N	line	Pilz::N	mushroom
Lippe::N	lip	Rand::N	fringe
Loch::N	hole	Rauch::N	smoke
Luft::N	air	Raureif::N	hoarfrost
Lust::N	desire	Preis::N	price
Länge::N	length	Puppe::N	doll
Lärm::N	noise	Quelle::N	source
Löffel::N	spoon	Rand::N	fringe
Lüge::N	lie	Rauch::N	smoke
Macht::N	power	Raureif::N	hoarfrost
Magen::N	stomach	Rede::N	speech
Meer::N	sea	Reichtum::N	wealth
Menge::N	amount	Regen::N	rain
Messer::N	knife	Regenbogen::N	rainbow
Milch::N	milk	Reichtum::N	wealth
Mittag::N	noon	Reihe::N	row
Mitte::N	middle	Riefen::N	strap
Monat::N	month	Rinde::N	bark
Mond::N	moon	Ring::N	ring
Moor::N	moor	Rohr::N	pipe
Morgen::N	morning	Ruder::N	oar
Mund::N	mouth	Ruf::N	call
Muster::N	pattern	Ruhe::N	calm
Märchen::N	fairy tale	Rätsel::N	puzzle
Mütze::N	cap	Rücken::N	back, spine
Nabel::N	navel	Saat::N	seed
Nachricht::N	message	Sachen::N	thing
Nacht::N	night	Sack::N	sack
Nadel::N	needle	Salz::N	salt
Nagel::N	nail	Sand::N	sand
Nagel[Anatomie]::N	nail	Schaden::N	damage
Concept ID	English	Concept ID	English
-----------	-----------	-----------	-----------
Schale::N	husk	Stoff::N	cloth
Schatten::N	shadow	Straße::N	road
Schaufel::N	shovel	Strich::N	stroke
Schaum::N	foam	Strömung::N	current
Scheibe::N	slice	Stuhl::N	chair
Schlaf::N	sleep	Stärke::N	strength
Schlinge::N	noose	Stück::N	piece
Schlitten::N	sleigh	Stütze::N	bracket
Schloss::N	lock	Sumpf::N	swamp
Schluss::N	conclusion	Suppe::N	soup
Schmerz::N	pain	Süden::N	south
Schmutz::N	dirt	Sünde::N	sin
Schnee::N	snow	Tag::N	day
Schnur::N	string	Tanne::N	fir
Schnurrbart::N	moustache	Tasche::N	bag
Schritt::N	step	Tasse::N	cup
Schuh::N	shoe	Tee::N	tea
Schul::N	fault	Teil::N	part
Schulter::N	shoulder	Tisch::N	table
Schwanz::N	tail	Tod::N	death
See::N	lake	Ton::N	tone
Sehne::N	sinew	Topf::N	pot
Seite::N	side	Tür::N	gate
Silber::N	silver	Traum::N	dream
Sinn::N	meaning	Tropfen::N	drop
Ski::N	ski	Träne::N	tear
Sonne::N	sun	Tuch::N	scarf
Spaten::N	spade	Tür::N	door
Speise::N	dish	Ufer::N	shore
Spiegel::N	mirror	Unglück::N	misfortune
Spiel::N	game	Verstand::N	mind
Spitze::N	tip	Volk::N	nation
Sprache::N	language	Wahrheit::N	truth
Spur::N	track	Wald::N	forest
Staat::N	state	Wange::N	cheek
Stab::N	staff	Ware::N	ware
Stadt::N	town	Wasser::N	water
Stamm::N	trunk	Weg::N	way
Stange::N	pole	Weide::N	pasture
Staub::N	dust	Weide[Baum]::N	willow
Stein::N	stone	Welle::N	wave
Stern::N	star	Welt::N	world
Stiefe::N	boot	Westen::N	west
Stimme::N	voice	Wetter::N	weather
Stirn::N	forehead	Wiege::N	cradle
Stock::N	stick	Wiese::N	meadow
Concept ID	English		
------------	---------		
Wind::N	wind		
Winkel::N	angle		
Woche::N	week		
Wolke::N	cloud		
Wolle::N	wool		
Wort::N	word		
Wunde::N	wound		
Wunsch::N	wish		
Wurzel::N	root		
Zahn::N	tooth		
Zaun::N	fence		
Zeh::N	toe		
Zeichen::N	sign		
Zeit::N	time		
Zeitung::N	newspaper		
Zunge::N	tongue		
Zweig::N	branch		
Zwiebel::N	onion		
Ärmel::N	sleeve		
Öl::N	oil		