TRANSITION METAL ION COMPLEXES OF SCHIFF-BASES.
SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL PROPERTIES

Zahid H. Chohan*1, Asifa Munawar1 and Claudiu T. Supuran2

1Department of Chemistry, Islamia University, Bahawalpur, Pakistan
2Università degli Studi, Dipartimento di Chimica, Laboratorio di Chimica Inorganica e Bioinorganica, Via Gino Capponi 7, 50121 Florence, Italy

ABSTRACT
Some novel transition metal [Co(II), Cu(II), Ni(II) and Zn(II)] complexes of substituted pyridine Schiff-bases have been prepared and characterized by physical, spectral and analytical data. The synthesized Schiff-bases act as deprotonated tridentate for the complexation reaction with Co(II), Ni(II) and Zn(II) ions. The new compounds, possessing the general formula [M(L)₂] where [M=Co(II), Cu(II), Ni(II) and Zn(II)] and HL=HL¹, HL², HL³ and HL⁴] show an octahedral geometry. In order to evaluate the effect of metal ions upon chelation, the Schiff bases and their complexes have been screened for antibacterial activity against the strains such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The complexed Schiff bases have shown to be more antibacterial against one more bacterial species as compared to uncomplexed Schiff-bases.

INTRODUCTION
Much attention has been devoted by bioinorganic as well as by medicinal chemists to the relationship between the metal ions and their complexes as antitumour and antibacterial agents. In vivo studies have indicated that some biologically active compounds may become more carcinostatic and bacteriostatic upon chelation. Such interactions of transition metal ions with amino acids, peptides and nucleic acids, are of immense biological importance. Several reviews showed that the metallo-organic chemistry of such compounds greatly influence their biological action highlighting the catalytic function metals in many biological processes.

Several studies have revealed that by condensation of salicylaldehyde with different heterocyclic compounds, derivatives with potent antibacterial and antifungal activity are obtained. Osman et al prepared thiazole derived compounds of salicylaldehyde which were found to be highly potent antibacterial against Bacillus cereus and antifungal, against Aspergillus niger. Several compounds incorporating piperazinyl guanidine, when condensed with salicylaldehyde were found to exhibit cardiovascular and vasodepressive activity. Studies of Shah et al also showed thiazolidinone-derived salicylaldehydes to possess good antimicrobial activity. Keeping in view the significance of metals in biology, we have previously reported several series of biologically active compounds and have evaluated the role of metal ions on their biological activity. In continuation to the same research topic, we report here some novel substituted pyridine Schiff bases obtained from salicylaldehyde. We have also studied the effect of substituents as well as metals ions on the biological activity of these derivatives.

EXPERIMENTAL
Material and Methods
All chemicals and solvents used were of Analar grade. All metal(II) salts were used as chlorides. IR spectra were recorded on a Philips Analytical PU 9800 FTIR spectrophotometer. UV-Visible spectra were obtained in DMF on a Hitachi U-2000 double-beam spectrophotometer. C, H and N analyses was carried out by Butterworth Laboratories Ltd. Conductance of the metal complexes was determined in DMF on a Hitachi YSI-32 model conductometer. Magnetic measurements were made on solid complexes using the Gouy method. Melting points were recorded on a Gallenkamp apparatus and are uncorrected.

(Fig. 1) Structure of the Schiff bases
Preparation of Schiff base (HL)

Salicylaldehyde (1.2 g, 1.1 mL, 0.01 M) in ethanol (10 mL) was added to an ethanol solution (20 mL) of 2-amino-5-hydroxypyridine (1.0 g, 0.01 M). Then 2-3 drops of conc. H₂SO₄ were added and the mixture refluxed for 2 h. On cooling, a solid product was formed which was filtered, washed with ethanol, then with ether and dried. Crystallization from hot ethanol gave HL₁. The same method was applied for the preparation of HL₂, HL₃ and HL₄ by using the corresponding reagents in the same molar ratio.

Preparation of cobalt(II) complex of HL

A warm ethanol solution (20 mL) of HL₁ (0.4 g, 0.002 M) was added to a magnetically stirred solution of cobalt chloride hexahydrate (0.24 g, 0.001 M) in distilled water (25 mL). The mixture was refluxed for 1 h and cooled to room temperature. On cooling, pink precipitates were formed which were filtered, washed with ethanol, acetone and ether, and dried by suction. Crystallization from aqueous ethanol (30:70) gave the desired metal complex (1). All other metal complexes were prepared respectively following the same method.

Antibacterial studies

The synthesized metal complexes, in comparison to the uncomplexed Schiff-bases were screened for their antibacterial activity against pathogenic bacterial strains, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The paper disc diffusion method⁴⁹ reported elsewhere was adopted for the determination of antibacterial activity.

RESULTS AND DISCUSSION

Physical properties

The Schiff bases (HL₁-HL₄) (Fig. 1) were prepared by refluxing an appropriate amount of 5-hydroxy-, nitro-, methoxy- or bromo-substituted 2-aminopyridine and salicylaldehyde in hot ethanol in 1:1 molar ratio respectively. The structures of these Schiff bases were established with the help of their IR, NMR, and microanalytical data (Tables 1 and 2). These Schiff bases were then used for the complexation with Co(II), Cu(II), Ni(II) and Zn(II) ions. All of the synthesized metal complexes [(1)-(16)] (Table 3) were air and moisture stable. These were prepared by the stoichiometric reaction of the corresponding metal salts (as chlorides) and the Schiff base in molar ratios M:L of 1:2. The complexes are intensely colored, amorphous solids, which decompose above 200 °C. They are insoluble in common organic solvents such as ethanol, methanol, chloroform or acetone, but soluble in DMSO and DMF. Molar conductance values of the soluble complexes in DMF showed low values (12-19 ohm⁻¹ cm² mol⁻¹) indicating them to be non-electrolytic.

Table I. Physical, spectral and analytical data of the Schiff bases

Schiff base	IR (cm⁻¹)	Calc (Found) %	M.P (°C)	Yield (%)
HL₁	3425 (br, Ph-OH), 3432 (br, Py-OH), 1630 (s, HC=N), 1620 (s, C=N).	67.3 4.7 13.1 (67.8) (4.5) (13.0)	118	78
HL₂	3430 (br, OH), 1635 (s, HC=N), 1620 (s, C=N).	59.3 3.7 17.3 (59.5) (3.9) (17.5)	126	70
HL₃	3430 (br, OH), 1635 (s, HC=N), 1625 (s, C=N).	68.4 5.2 12.3 (68.3) (5.5) (12.0)	137	75
HL₄	3430 (br, OH), 1635 (s, HC=N), 1625 (s, C=N).	52.2 2.9 10.1 (52.6) (3.2) (10.3)	148	74

s=sharp, br=broad

Infrared spectra

IR spectra of the Schiff bases showed the absence of bands at 1735 and 3420 cm⁻¹ due to carboxyl ν(C=O) and ν(NH₂) stretching vibrations and, instead, appearance of a strong new band at ~1635 cm⁻¹ assigned to the azomethine, ν(HC=N) linkage. It suggested that amino and aldehyde moieties of the starting reagents are absent and have been converted into the azomethine moiety (Fig.1). The comparison of the IR spectra of the Schiff bases and their metal chelates (Table 4) indicated that the Schiff bases were principally coordinated to the metal atom in three ways, representing thus the ligands acting in a tridentate manner.
The band appearing at 1635 cm\(^{-1}\) due to the azomethine was shifted to lower frequency by -10-15 cm\(^{-1}\) indicating participation of the azomethine nitrogen in the complexation.

The band at 1620 cm\(^{-1}\) assigned to pyridine ring v(C=N) nitrogen also shifted to lower frequency by -15-25 cm\(^{-1}\) which was indicative of the involvement of ring nitrogen of pyridine in chelation.

A band appearing at 3425 cm\(^{-1}\) assigned to v(OH) in the Schiff base compounds was not found in the spectra of their metal complexes indicating deprotonation and coordination of the hydroxyl oxygen to the metal atom.

Further conclusive evidence of the coordination of these Schiff base compounds with the metals, was shown by the appearance of weak low frequency new bands at 525-530 and 455-460 cm\(^{-1}\). These were assigned\(^3\) to the metal-nitrogen v(M-N) and metal-oxygen v(M-O) respectively. These new bands were observable only in the spectra of the metal complexes and not in the spectra of its uncomplexed Schiff base compounds thus confirming participation of these hetero groups (O or N) in the coordination.

NMR spectra

The \(^1\)H NMR spectra of the Schiff bases and of their Zn(II) complexes taken in DMSO-d\(_6\) are listed in Table 2. The Schiff bases exhibited signals due to all the expected protons in their expected region and have been identified from the integration curve found to be equivalent to the total number of protons deduced from their proposed structures. These were compared with the reported\(^2\) signals of the known identical compounds and give further support for the compositions of the new ligands as well as their complexes suggested by their IR and elemental analyses data. Comparison of the chemical shifts of the uncomplexed Schiff bases with those of the corresponding complex show that some of the resonance signals experience shifts upon the complexation. In each case, the protons assigned due to heteroaromatic (HC=N), azomethine (HC=N),...
hydroxyl group (OH) and substituted aromatic were found at around \(\sim 8.8, 7.3, 9.9 \) and \(6.8-7.7 \) ppm in the spectra of the ligands. The protons due to heteroaromatic, azomethine and substituted aromatic undergo shift towards downfield by 0.9-1.0 ppm in the complexes indicating coordination of these groups with the metal atom. Also, protons due to hydroxyl group (OH) were found absent in the spectra of the complexes. The absence of these signals suggested the deprotonation of the hydroxyl group and the involvement of the oxygen atom in complexation.

Table 3. Physical and analytical data of the metal(II) chelates

No	Metal chelate/ Mol. Formula	Yield (%)	M.P (°C) (decomp)	B.M. (μ eff)	Calc (Found)%
1	[Co(L')₃] C₂₄H₁₈CoN₄O₄	60	218-220	4.2	59.4 (59.1)
2	[Co(L')₃] C₂₄H₂₀CoN₄O₄	56	222-222	4.7	53.0 (53.4)
3	[Co(L')₃] C₂₄H₂₂CoN₄O₄	58	222-223	4.5	60.8 (60.7)
4	[Cu(L')₃] C₂₄H₂₄CoBr₂N₄O₄	61	225-227	4.3	45.2 (45.6)
5	[Cu(L')₃] C₂₄H₂₆CoBr₂N₄O₄	57	228-230	1.4	58.8 (58.7)
6	[Cu(L')₃] C₂₄H₂₈CoBr₂N₄O₄	58	221-214	1.5	60.3 (60.5)
7	[Cu(L')₃] C₂₄H₃₀CoBr₂N₄O₄	60	226-228	1.4	44.8 (45.1)
8	[Ni(L')₃] C₂₄H₁₈NiN₄O	61	220-222	3.3	59.4 (59.5)
9	[Ni(L')₃] C₂₄H₂₀NiN₄O	56	225-228	3.1	53.1 (53.4)
10	[Ni(L')₃] C₂₄H₂₂NiN₄O	58	228-230	3.4	60.9 (60.7)
11	[Ni(L')₃] C₂₄H₂₄NiN₄O	60	222-224	3.2	45.2 (45.5)
12	[Zn(L')₃] C₂₄H₁₈ZnN₄O	60	215-217	Dia	58.6 (58.9)
13	[Zn(L')₃] C₂₄H₂₀ZnN₄O	58	218-220	Dia	52.4 (52.7)
14	[Zn(L')₃] C₂₄H₂₂ZnN₄O	61	222-224	Dia	60.1 (60.2)
15	[Zn(L')₃] C₂₄H₂₄ZnN₄O	62	225-227	Dia	44.7 (44.5)

Magnetic moments and UV-visible spectra

The room temperature magnetic moment of the solid cobalt (II) complexes was found to lie in the range (4.2-4.7 B.M), indicative of three unpaired electrons per Co (II) ion in an octahedral environment. The Cu (II) complexes showed \(μ e \) values in the range (1.4-1.6 B.M) indicative of one unpaired electron per Cu (II) ion suggesting these complexes within the range consistent to spin-free distorted octahedral geometry. Similarly the In (II) complexes showed \(μ e \) values in the range (3.1-3.4 B.M), corresponding to two unpaired electrons per Zn(II) ion for their ideal six-coordinated configuration. The Zn(II) complexes were all found diamagnetic.

The electronic spectra of the Co(II) chelates showed three bands observed at 8780-8815, 17560-18425 and 30210-30575 cm\(^{-1}\) which may be assigned to \(^{4}T_{1g} \rightarrow ^{2}T_{2g}(F) \), \(^{4}T_{1g} \rightarrow ^{2}A_{2g}(F) \) and \(^{4}T_{1g} \rightarrow ^{2}T_{1g}(P) \) transitions respectively and are suggestive of the octahedral geometry around the cobalt ions.

The Cu(II) complexes showed three absorption bands between 10 Dq band for a distorted octahedral geometry corresponding to the transitions \(2E_g \rightarrow 2T_{2g} \). The bands at 22152-22355 and 30550-30645 cm\(^{-1}\) may be due to intra-ligand charge transfer transitions.
The Ni(II) complexes exhibited three spin-allowed bands at 815-10145, 15945-16250 and 28540-2910 cm⁻¹ assignable respectively, to the transitions $^{3}A_{2g}(F) \rightarrow ^{3}T_{2g}(F)(v_1)$, $^{3}A_{2g}(F) \rightarrow ^{3}T_{1g}(F)(v_2)$ and $^{3}A_{2g}(F) \rightarrow ^{3}T_{2g}(F)(v_3)$ which were characteristic of their octahedral geometry (Fig. 2).

Table 4. IR and UV-visible spectral data of the metal(II) chelates

No	IR (cm⁻¹)	λ_{max} (cm⁻¹)
1	1625 (s, HC=N), 1580 (s, C=N), 525 (ms, M-N), 455 (ms, M-O)	30210, 18425, 8815
2	1620 (s, HC=N), 1585 (s, C=N), 525 (ms, M-N), 455 (ms, M-O)	30575, 17850, 8795
3	1620 (s, HC=N), 1590 (s, C=N), 530 (ms, M-N), 460 (ms, M-O)	30545, 17950, 8810
4	1620 (s, HC=N), 1590 (s, C=N), 530 (ms, M-N), 460 (ms, M-O)	30550, 17560, 8780
5	1625 (s, HC=N), 1585 (s, C=N), 525 (ms, M-N), 455 (ms, M-O)	30565, 22255
6	1620 (s, HC=N), 1580 (s, C=N), 530 (ms, M-N), 455 (ms, M-O)	30575, 22350
7	1625 (s, HC=N), 1585 (s, C=N), 525 (ms, M-N), 460 (ms, M-O)	30654, 22265
8	1625 (s, HC=N), 1585 (s, C=N), 530 (ms, M-N), 455 (ms, M-O)	30550, 22180
9	1620 (s, HC=N), 1580 (s, C=N), 530 (ms, M-N), 455 (ms, M-O)	28540, 16275, 9815
10	1620 (s, HC=N), 1585 (s, C=N), 525 (ms, M-N), 460 (ms, M-O)	29210, 15945, 10145
11	1625 (s, HC=N), 1590 (s, C=N), 530 (ms, M-N), 460 (ms, M-O)	28875, 16250, 9980
12	1620 (s, HC=N), 1585 (s, C=N), 525 (ms, M-N), 455 (ms, M-O)	28910, 16155, 9875
13	1625 (s, HC=N), 1590 (s, C=N), 530 (ms, M-N), 455 (ms, M-O)	28450
14	1620 (s, HC=N), 1595 (s, C=N), 530 (ms, M-N), 460 (ms, M-O)	28510
15	1620 (s, HC=N), 1585 (s, C=N), 525 (ms, M-N), 460 (ms, M-O)	28475
16	1625 (s, HC=N), 1585 (s, C=N), 525 (ms, M-N), 455 (ms, M-O)	28500

s=sharp, ms=medium sharp

The diamagnetic zinc(II) complexes did not show any d-d bands and their spectra are dominated only by charge transfer bands. The charge transfer band at 28450-28510 cm⁻¹ was assigned due to transition $^{2}E_{g} \rightarrow ^{2}T_{2g}$ possibly in an octahedral environment.

(Fig. 2) Proposed structure of the metal(II) complex

Antibacterial properties

The title Schiff bases and their metal chelates were evaluated for their antibacterial activity against the strains Escherichia coli (a), Staphylococcus aureus (b) and Pseudomonas aeruginosa (c). The compounds were tested at a concentration of 30 μg/0.01 mL in DMF solution using the paper disc diffusion method. The susceptibility zones were measured in diameter (mm) and the results are reproduced in Table 5. The susceptibility zones measured were the clear zones around the discs killing the bacteria. All the Schiff bases and their complexes individually exhibited varying degrees of inhibitory effects on the growth of the tested bacterial species. The antibacterial results evidently show that the activity of the Schiff base compounds became more pronounced when coordinated to the metal ions. All metal ions have varying antibacterial influence on bacterial species. The Co(II) complex of HL₁ was more antibacterial against one species and less against the other as compared to the Co(II) complex of the other Schiff bases. Same results were found for other metal complexes. It is however, not possible to make out exactly which metal ion is playing more antibacterial role against one or the other bacterial species but, it is definitive that metal ions do play a significant role in enhancing the antibacterial activity of antibacterial agents on chelation. It is suggested that in the chelated complex, the positive charge of the metal ion is partially shared with the donor atoms and there is π-electron delocalization over the whole chelate ring. This increases the lipophilic character of the metal chelate and favors its permeation through lipid layers of the bacterial membranes. It is
also suspected that factors such as solubility, dipole moment and cell permeability mechanisms are also influenced by the presence of the metal ions, which are responsible in enhancing this role of metals as bactericidal. Our in vitro studies are in progress, which would help us in determining further the actual mechanism involved in enhancing this activity.

Table 5. Antibacterial activity data of the Schiff bases and its metal(II) chelates

Schiff Base/ Chelate	Microa	bialsb	psecsc
HL'	++	+	++
HL'	++	++	++
HL'	+++	++	+++
HL'	+++	++	+++
1	+++	+++	+++
2	+++	+	+++
3	+++	+++	+++
4	++++	+++	+++
5	++++	+	+++
6	++++	++	+++
7	++	+++	+
8	+++	+++	+++
9	+++	+++	+++
10	++++	++	+++
11	++++	+++	++++
12	+++	+++	++++
13	++++	++	++++
14	++++	+	+++
15	++++	+++	+++
16	++++	+++	+++

a= Escherichia coli, b= Staphylococcus aureus, c= Pseudomonas aeruginosa
Inhibition zone diameter mm (% inhibition): +, 6-10 (27-45 %); ++, 10-14 (45-64 %); ++++, 14-18 (64-82 %); ++++, 18-22 (82-100 %). Percent inhibition values are relative to inhibition zone (22 mm) of the most active compound with 100 % inhibition.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the Department of Pathology, Qaid-e-Azam Medical College, Bahawalpur, Pakistan, in undertaking the antibacterial studies.

REFERENCES

1. A. Scozzafava, L. Menabuoni, F. Mincione, G. Mincione and C.T. Supuran, Bioorg. Med. Chem. Lett, 11, 575 (2001).
2. A. Scozzafava and C. T. Supuran J. Med. Chem, 43, 3677 (2000).
3. G. Alzuet, J. Casanova, J. Borras, S. García-Granda, A. Gutierrez-Rodriguez and C. T. Supuran, Inorganica Chimica Acta, 273, 334 (1998).
4. C.T. Supuran, A. Scozzafava Eur. J. Med. Chem, 35, 867(2000).
5. D. R. Williams, The Metals of Life", Van Nostrand, London, (1971).
6. R. J. P. Williams, "Quart. Rev. 24, 331 (1970).
7. R. J. P. William, "Bioinorganic Chemistry", American Chemical Society, Washington, (1971).
8. D. H. Brown, W. E. Smith, J. W. Teape and A. J. Lewis, J. Med. Chem, 23, 729 (1980).
9. B. Rosenberg and L. V. Camp, Cancer. Res, 30, 1799 (1970).
10. M. J. Clare and J. D. Heeschele, Bioinorg. Chem, 2, 187 (1973).
11. V. L. Narayanan, M. Nasr and K. D. Paull, in "Tin-Based Antitumor Drugs", M. Gielen (Ed), NATO ASI Series, Vol. H37, Springer Verlag, Berlin (1990).
12. A. J. Crowe, in "Metal Based Antitumor Drugs", M. Gielen (Ed), Vol 1, Freund, London (1988).
13. M. J. Seven and L. A. Johnson, "Metal Binding in Medicine", Lippincott Co, Philadelphia, PA. 4th Ed (1960).
14. R. S. Srivastava, Ind. J. Chem, 29A, 1024 (1990).
15. V. K. Patel, A. M. Vasanwola and C. R. Jejurkas, Ind. J. Chem, 28A, 719 (1989).
16. A. Scozzafava and C. T. Supuran, J. Med. Chem, 43, 3677 (2000).
17. C. T. Supuran, A. Scozzafava, L. Menabuoni, F. Mincione, F. Briganti and G. Mincione, Metal-Based Drugs, 6, 67 (1999).
18. C. T. Supuran, F. Mincone, A. Scozzafava, F. Briganti, G. Mincone and M. A. Ilies, *Eur. J. Med. Chem.*, **33**, 247 (1998).

19. C. T. Supuran, A. Scozzafava, I. Saramet, M. D. Banciu, *J. Enzyme. Inhib.*, **13**, 177 (1998).

20. C. T. Supuran and A. Scozzafava, *J. Enzyme. Inhib.*, **12**, 37 (1997).

21. G. Mincone, A. Scozzafava and C. T. Supuran, *Metal-Based Drugs*, **4**, 27 (1997).

22. A. Scozzafava and C. T. Supuran, *Metal-Based Drugs*, **4**, 19 (1997).

23. J. M. Pratt, *Inorganic Chemistry of Vitamin B^12*, Academic Press, London (1970).

24. S. K. Shapiro and F. Schlenk, “Transmethylation and Methionine Biosynthesis”, University of Chicago Press, Chicago (1965).

25. J. M. Walshe, *Brit. J. Hospit. Med.*, **6**, 45 (1970).

26. E. Ochial, *Coord. Chem. Rev.*, **3**, 49 (1968).

27. F. Frieden, *Sci. Amer.*, **218**, 102 (1968).

28. R. J. P. William, *Chem. Rev.*, **1**, 13 (1968).

29. E. Sinn and C. M. Harris, *Coord. Chem. Rev.*, **4**, 391 (1969).

30. M. Barboiu, C. T. Supuran, A. Scozzafava, C. Guran, P. Diaconescu, M. Bojin, V. Iluc and L. Cot, *Metal-Based Drugs*, **6**, 101 (1999).

31. D. de Vos, P. Clements, S. M. Pyke, D. R. Smyth and E. R. T. Tieckink, *Metal-Based Drugs*, **6**, 31 (1999).

32. M. Geraghtly, M. McCann, M. Devereux, F. Cronin, M. Curran and V. McKee, *Metal-Based Drugs*, **6**, 41 (1999).

33. K. Sharma and R. V. Singh, *Metal-Based Drugs*, **7**, 1 (2000).

34. T. Pandey and R. V. Singh, *Metal-Based Drugs*, **7**, 7 (2000).

35. A. Mastrolirenzo and C. T. Supuran, *Metal-Based Drugs*, **7**, 49 (2000).

36. A. Scozzafava, L. Menabuoni, F. Mincone, G. Mincone and C. T. Supuran, *Bioorg. Med. Chem. Lett.*, **11**, 575 (2001).

37. C. Walsh, *Science*, **409**, 226 (2001).

38. R. V. Singh, *Synth. React. Inorg. Met.-Org. Chem.*, **16**, 21 (1986).

39. M. A. Mohammad, M. M. El-Enamy and E. L. Basies, *Egypt. J. Pharm. Sci.*, **22**, 9 (1981).

40. A. M. Osman, K. Hassan, M. E. Kashaf and M. A. Hassan, *J. Ind. Chem. Soc.*, **56**, 521 (1979).

41. B. Dash and M. Patra, *Ind. J. Chem.*, **19B**, 894 (1980).

42. V. H. Shah and A. R. Parkash, *Ind. J. Chem.*, **54**, 41 (1982).

43. Z. H. Chohan and S. K. A. Sherazi, *Synth. React. Inorg. Met.-Org. Chem.*, **29**, 105 (1999).

44. Z. H. Chohan and S. Kausar, *Metal-Based Drugs*, **7**, 17 (2000).

45. Z. H. Chohan and M. Praveen, *Appl. Organometal. Chem.*, **14**, 376 (2000).

46. Z. H. Chohan and M. Praveen, *Synth. React. Inorg. Met.-Org. Chem.*, **30**, 175 (2000).

47. Z. H. Chohan and M. Praveen, *Appl. Organometal. Chem.*, (In Press).

48. Z. H. Chohan, *Metal-Based Drugs*, **7**, 177 (2000).

49. Z. H. Chohan, M. A. Farooq and M. S. Iqbal, *Metal-Based Drugs*, **7**, 133 (2000).

50. W. J. Geary, *Coord. Chem. Rev.*, **7**, 81 (1971).

51. L. J. Bellamy, “The Infrared Spectra of Complex Molecules”, 3rd Ed, Methuen, London, (1966).

52. M. Yongxiang, Z. Zhengzhi, M. Yun and Z. Gang, *Inorg. Chim. Acta*, **165**, 185 (1989).

53. K. Nakamoto, “Infrared Spectra of Inorganic and Coordination Compounds”, 2nd Ed, Wiley Interscience, New York, (1970).

54. D. H. Williams and I. Fleming, “Spectroscopic Methods in Organic Chemistry”, 4th Ed, McGraw Hill, London, (1989).

55. Z. Hong-Yun, C. Dong-Li, C. Pei-Kun, C. De-Ji, C. Guang-Xia and Z. Hong-Quan, *Polyhedron*, **11**, 2313 (1992).

56. B. N. Figgis, “Introduction to Ligand Fields”, J. Wiley, New York, (1976).

57. B. P. Lever, “Inorganic Electronic Spectroscopy”, Elsevier, Amsterdam, (1984).

58. D. Liehr, *J. Phys. Chem.*, **67**, 1314 (1967).

59. T. M. Dunn, J. Lewis and R. C. Wilkins, *The Visible and Ultraviolet Spectra of Complex Compounds in Modern Coordination Chemistry*, Interscience, New York, (1960).

60. A. B. P. Lever, J. Lewis and R. S. Nyholm, *J. Chem. Soc.*, **4761** (1964).

61. R. L. Carlin, “Transition Metal Chemistry”, Ed, R. L. Carlin, Vol 1, Marcel Decker, New York, (1965).

62. D. W. Meek, R. S. Drago and T. S. Piper, *Inorg. Chem.*, **1**, 285 (1962).

63. R. S. Drago, “Physical Methods in Inorganic Chemistry”, Reinhold, New York, (1965).

64. B. N. Figgis and J. Lewis, *Prog. Inorg. Chem.*, **6**, 87 (1964).