TROPHY-U-01: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients With Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors

Scott T. Tagawa, MD, MS1; Arjun V. Balar, MD2; Daniel P. Petrylak, MD3; Arash Rezazadeh Kalebasty, MD4; Yohann Loriot, MD, PhD5; Aude Flechon, MD, PhD6; Rohit K. Jain, MD7; Neeraj Agarwal, MD8; Manojkumar Bupathi, MD, MS9; Philippe Barthelemy, MD, PhD10; Philippe Beuzeboc, MD, PhD11; Phillip Palmbo, MD, PhD12; Christos E. Kyriakopoulos, MD13; Damien Pouessel, MD, PhD14; Cora N. Sternberg, MD1; Quan Hong, MD15; Trishna Goswami, MD15; Loretta M. Itri, MD15; and Petros Grivas, MD, PhD16

PURPOSE
Patients with metastatic urothelial carcinoma (mUC) who progress on platinum-based combination chemotherapy (PLT) and checkpoint inhibitors (CPIs) have limited options that offer objective response rates (ORRs) of approximately 10% with a median overall survival (OS) of 7-8 months. Sacituzumab govitecan (SG) is a TROP-2–directed antibody-drug conjugate with an SN-38 payload that has shown preliminary activity in mUC.

METHODS
TROPHY-U-01 (ClinicalTrials.gov identifier: NCT03547973) is a multicohort, open-label, phase II, registrational study. Cohort 1 includes patients with locally advanced or unresectable or mUC who had progressed after prior PLT and CPI. Patients received SG 10 mg/kg on days 1 and 8 of 21-day cycles. The primary outcome was centrally reviewed ORR; secondary outcomes were progression-free survival, OS, duration of response, and safety.

RESULTS
Cohort 1 included 113 patients (78% men; median age, 66 years; 66.4% visceral metastases; median of three [range, 1-8] prior therapies). At a median follow-up of 9.1 months, the ORR was 27% (31 of 113; 95% CI, 19.5 to 36.6); 77% had decrease in measurable disease. Median duration of response was 7.2 months (95% CI, 4.7 to 8.6 months), with median progression-free survival and OS of 5.4 months (95% CI, 3.5 to 7.2 months) and 10.9 months (95% CI, 9.0 to 13.8 months), respectively. Key grade \geq 3 treatment-related adverse events included neutropenia (35%), leukopenia (18%), anemia (14%), diarrhea (10%), and febrile neutropenia (10%), with 6% discontinuing treatment because of treatment-related adverse events.

CONCLUSION
SG is an active drug with a manageable safety profile with most common toxicities of neutropenia and diarrhea. SG has notable efficacy compared with historical controls in pretreated mUC that has progressed on both prior PLT regimens and CPI. The results from this study supported accelerated approval of SG in this population.

J Clin Oncol 39:2474-2485. © 2021 by American Society of Clinical Oncology

INTRODUCTION
Patients with metastatic urothelial carcinoma (mUC) with disease progression after combination platinum-based chemotherapy and immune checkpoint inhibitors (CPIs) have limited treatment options.1 Following progression, the only widely available agents indicated per NCCN and ESMO guidelines have been taxanes and vinflunine (approved in the European Union). These agents have response rates of approximately 10% with a median overall survival (OS) of 7-8 months.2,3 The therapeutic landscape for mUC in the United States has been expanded by the accelerated US Food and Drug Administration (FDA) approvals of erdafitinib, a pan-fibroblast growth factor receptor inhibitor for patients with tumors harboring FGFR2- or FGFR3-activating mutation or fusion (following platinum-based chemotherapy), and enfortumab vedotin (EV), a nectin-4–directed antibody-drug conjugate (ADC) following platinum-based chemotherapy and CPI.4-10 Although both EV and erdafitinib have objective response rates (ORRs) of approximately 40%, most patients progress on these therapies. Moreover, erdafitinib is limited to patients with FGFR2/3 mutation or fusion (15%-20% of patients depending on cancer type).11 Hence, new agents are still needed. Trophoblast cell surface antigen 2 (Trop-2) is a transmembrane glycoprotein that is highly expressed on the surface of most epithelial cancer cells.12-16 Elevated Trop-2
CONTEXT

Key Objective
Patients with advanced or metastatic urothelial cancer (mUC) have limited treatment options after progression on platinum or checkpoint inhibitors (CPI). The TROPHY-U-01 study evaluated sacituzumab govitecan (SG), a trophoblast cell surface antigen 2–directed antibody-drug conjugate, in patients with locally advanced or unresectable or mUC who had progressed after prior platinum and CPI.

Knowledge Generated
Of 113 patients who received SG, central review confirmed an objective response rate (ORR) of 27% with six complete responses and 25 partial responses, confirming results from the prior phase I/II study demonstrating that SG is generally well tolerated and has significant anticancer activity in heavily pretreated patients with mUC who had progressed on platinum and CPI.

Relevance
The ORR of 27%, median duration of response of 7.2 months, and median overall survival of 10.9 months compare favorably with single-agent chemotherapy in this population, where ORR is approximately 10% and overall survival is 7 to 8 months.

METHODS

Study Participants
TROPHY-U-01 is a phase II study assessing the activity of SG in patients with locally advanced unresectable or mUC (Appendix Fig A1, online only). In cohort 1, eligible patients included adults with histologically confirmed, locally advanced UC or mUC who had disease progression following a platinum-containing regimen and CPI therapy. Patients who recurred within 12 months after completion of platinum therapy in the neoadjuvant or adjuvant setting were considered refractory to platinum therapy and permitted to enroll if they progressed after subsequent CPI therapy. All patients also were required to have measurable disease by RECIST v1.1, an Eastern Cooperative Oncology Group performance status of 0 to 1, adequate hepatic, renal, and hematologic function, and no known Gilbert syndrome. Patients must have recovered from all acute toxicities (except grade ≤ 2 neuropathy or alopecia) from prior therapy with a minimum washout period of 4 weeks from prior monoclonal antibody therapy and 2 weeks from prior chemotherapy, small-molecule therapy, or radiotherapy, and patients with treated, nonprogressive brain metastases were allowed to enroll. There was no requirement for tumor Trop-2 expression for enrollment (Appendix, online only).

Treatment
SG 10 mg/kg was administered intravenously on days 1 and 8 in a 21-day treatment cycle, until unacceptable toxicity, loss of clinical benefit, or withdrawal of consent. Hematopoietic growth factors or blood transfusions were allowed as clinically indicated. Pre-medication with a 2-drug antiemetic was recommended (followed by a 3-drug antiemetic for persistent nausea and vomiting), with premedication for infusion-related reactions and other supportive or palliative care recommended based on institution policy. The scheduled day 1 and day 8 infusions may have been delayed for up to 1 week for recovery of treatment-related toxicities with a maximum dose delay of 5 weeks permitted for any reason.

Assessments
For efficacy evaluations, computed tomography or magnetic resonance imaging scans were obtained at baseline
and at 6-week intervals from the initiation of treatment until completion of 12 cycles of therapy, after which the interval could be lengthened to every 9 weeks. Confirmatory computed tomography or magnetic resonance imaging scans were to be obtained 4 to 6 weeks after first evidence of response. Response was evaluated by blinded independent central review (BICR) using RECIST v1.1.

Safety evaluations included adverse events (AEs), standard laboratory safety evaluations, physical examinations, and vital signs. AEs were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events v5.0. Additional safety analyses examined the impact of UGT1A1 genotype status on the incidence of AEs in evaluable patients.

End Points

The primary objective of this phase II study was to determine the ORR per BICR. Secondary objectives included assessments of duration of response (DOR) and progression-free survival (PFS), both centrally reviewed, investigator-assessed ORR, OS, and safety.

Trial Oversight

All patients provided written informed consent. The Protocol (online only) was approved by the institutional review boards or independent ethics committees at the participating institutions and conducted in accordance with the Declaration of Helsinki and the International Conference on Harmonization Good Clinical Practice guidelines and other applicable local regulatory requirements and laws.

Statistical Analysis

Target enrollment was approximately 100 patients, based on a Simon two-stage design for 90% power to reject the null hypothesis of ORR ≥ 12%. A sample size of 100 provided sufficient power to ensure the lower boundary of the 95% CI calculated from the Clopper-Pearson exact method would exclude an ORR of ≤ 15%, assuming a 24% ORR (24 out of 100 responders). There was a preplanned interim analysis based on investigator assessment of data per RECIST v1.1 from cohort 1 after 35 response-evaluable patients were enrolled, with continued enrollment if four or more responses were observed. The initial stage demonstrated that 10 of 35 evaluable patients responded, which surpassed futility criteria to continue enrollment. Final analysis was based on BICR assessment of data per RECIST v1.1 from cohort 1. ORR, defined as a best overall response of complete response (CR) or partial response (PR), was calculated with 95% CI estimated by the Clopper-Pearson method. DOR, PFS, and OS were analyzed by

FIG 1. CONSORT diagram. CPI, checkpoint inhibitor; IV, intravenous; mUC, metastatic urothelial cancer.
the Kaplan-Meier method with medians and corresponding 95% CIs determined according to the Brookmeyer and Crowley formula with log-log transformation. Descriptive statistics were used to characterize and present treatment-related AEs (TRAEs).

RESULTS

Study Participants

From August 2018 to November 2019, 113 patients were enrolled and treated in cohort 1 (Fig 1); these patients form the population for all analyses with a data cutoff of September 18, 2020. Patients were predominantly men (78%), with a median age of 66 years (range, 33-90 years) (Table 1). Visceral disease was present in 75 patients (66.4%) and 38 (33.6%) patients had liver metastases. Of the 113 patients enrolled, 112 previously received CPI therapy. Patients received a median of three prior anti-cancer regimens (range, 1-8), with 21% (n = 24) receiving combination chemotherapy with carboplatin or 79% (n = 89) with cisplatin. The majority (84%) had at least one adverse Bellmunt prognostic risk factor (including performance status, hemoglobin < 10 g/dL, and the presence of liver metastases).36 Patients received a median of 6 cycles of SG (11 doses; range, 1-56 doses), with median treatment duration of 3.7 months (range, 0-20 months). The median relative dose intensity was 96.9% despite 31.0% requiring a single dose reduction. Only four (3.5%) patients required an infusion interruption. Most patients (n = 103) discontinued treatment, primarily because of cancer progression (n = 81) (Fig 1). As of the data cutoff date, 16 patients continued to receive study therapy.

Efﬁcacy

Clinical activity (based on BICR) was observed with an ORR of 27.4% (31 of 113) (95% CI, 19.5 to 36.6; Table 2) including six confirmed CR (5.3%) and 25 confirmed PR (22.1%) in an intent-to-treat analysis. The clinical benefit rate (deﬁned as CR plus PR plus stable disease ≥ 6 months)
was 37.2% (95% CI, 28.3 to 46.8; Table 2). Stable disease as best response was observed in 33.6% (38 of 113) of patients and 18.6% (21 of 113) had progressive disease as best response at data cutoff. SG showed efficacy in all evaluated subgroups, including patients with ≥2 prior lines of therapy, visceral and liver metastases at baseline, and by Bellmunt risk factor (Appendix Fig A2, online only). Interestingly, in the small subgroup of patients who received prior EV therapy (n = 10), three patients achieved PR, with 30% ORR (95% CI, 6.7 to 65.3). Of those three patients with PR, two had a best response of progressive disease with prior EV.

With a median follow-up duration of 9.1 months (range, 0-19.9 months), the median DOR was 7.2 months (95% CI, 4.7 to 8.6 months) (Table 2). The median time to objective response was 1.6 months (range, 1.2-5.5 months). Six (5.3%) patients achieved CR with DOR ranging from 1.4 to 13.7 months. A reduction in the size of target lesions was achieved by 77% (72 of 94) of patients with at least 1 post-baseline target lesion measurement by BICR (Fig 2A). The spider plot by BICR of best percent change from baseline in the sum of the diameters of the target lesions (Fig 2B) shows the reduction in the size of target lesions was durable in most patients, including many of those who did not have a documented confirmed response. The onset of response and DOR for responders (CR or PR) is summarized in the swimmer plot by BICR (Fig 2C), with 30 of 31 patients still alive at the time of data cutoff and four patients with ongoing response at the time of data cutoff. Median PFS was 5.4 months (95% CI, 3.5 to 7.2 months; range, 2.4-8.9 months), and median OS was 10.9 months (95% CI, 9.0 to 13.8 months; range, 3.8-19.8 months) (Fig 3).

Safety

Almost all patients (111 of 113; 98.2%) experienced at least 1 AE during the study, and 107 of 113 (94.7%) experienced a TRAE. The most common any-grade TRAEs that occurred in ≥20% of patients included diarrhea (65%), nausea (60%), fatigue (52%), alopecia (47%), neutropenia (46%), decreased appetite (36%), anemia (33%), vomiting (30%), and leukopenia (25%) (Table 3). These AEs were primarily managed with routine supportive care, including anti-diarrheal, antiemetics, hydration, and growth factor support, and/or dose reduction or delay. There was a low rate of treatment-related skin rash (6%), maculopapular rash (7%), ocular disorders (4%), peripheral neuropathy (4%; grade ≤2), and hyperglycemia (<1%; grade ≤2). About a third (39%) of patients had dose reduction because of TRAEs primarily for neutropenia, diarrhea, and fatigue. Dose interruption or delay because of TRAEs occurred in 45% of patients, most commonly because of neutropenia, leukopenia, and anemia. TRAEs led to discontinuations in 6% (n = 7) of patients primarily due to neutropenia or associated complications (ie, febrile neutropenia and sepsis).

Most common grade ≥3 TRAEs that occurred in ≥5% of patients included neutropenia (35%), leukopenia (18%), anemia (14%), diarrhea (10%), febrile neutropenia (10%), lymphopenia (7%), and urinary tract infection (6%) (Table 3). Notably, although treatment-related neutropenia of any grade occurred in almost half of the patients (46%), febrile neutropenia was relatively infrequent (n = 11; 10%). Neutropenia was managed through use of dose reductions or interruptions, while 30.1% of patients received growth factor support (18% received granulocyte colony-stimulating factor [G-CSF] in cycle 1 and the remainder received G-CSF in cycle 2 or later). Most cases of treatment-related diarrhea were grade 1 (n = 45; 40%), with 15% (n = 17) grade 2, 9% (n = 10) grade 3, and <1% (n = 1) grade 4.

Grade ≥3 serious TRAEs that occurred in more than 1 patient included febrile neutropenia (n = 10), diarrhea (n = 4), urinary tract infection (n = 4), sepsis (n = 2), and thrombocytopenia (n = 2). A single case of grade 2 interstitial lung disease occurred in a 76-year-old woman with
FIG 2. Tumor response to sacituzumab govitecan. (A) Waterfall plot showing best percent change from baseline in the sum of the diameters of the target lesions (longest for non-nodal and short axis for nodal lesions) in 94 patients (excludes 19 patients; 15 patients did not have post-baseline radiologic assessments and four patients lacked or had unevaluable target lesions at baseline or post-baseline). The dashed lines at +20% and −30% indicate thresholds for PD and partial response, respectively, according to RECIST v1.1. Target lesions were reduced in 77% of patients (72 of 94) with at least 1 post-baseline target lesion measurement. (B) Spider plot of tumor response by week. (C) Swimmer plot of response and duration. PD, progressive disease.
ischemic cardiomyopathy who had discontinued avelumab 2 months before enrolling in the trial; the patient recovered, and her condition resolved. There was one treatment-related death because of sepsis as a result of febrile neutropenia in a 65-year-old man with mUC, stage III chronic kidney disease, and medical history of lung cancer. Four days after receiving the last dose (cycle 3, day 1) of SG, the patient developed severe sepsis, with grade 4 febrile neutropenia and grade 3 thrombocytopenia. The patient was treated with broad-spectrum antibiotics and G-CSF; however, he was transitioned to inpatient hospice and subsequently died.

There were 105 (93%) evaluable patients for whom UGT1A1 genotype analysis was performed (Table 1). Neutropenia (all grade) was numerically more frequent in homozygous (*28/*28) patients (54%) and heterozygous (*1/*28) patients (51%) compared with wild-type (*1/*1) patients (38%). Similarly, grade ≥ 3 neutropenia occurred more frequently in homozygous patients (54%) compared with heterozygous (34%) and wild-type (31%) patients. The frequency of diarrhea was generally not higher in homozygous patients versus the other groups (69%, 75%, and 53%, for homozygous, heterozygous, and wild-type patients, respectively). The incidence of discontinuation was similar across homozygous, heterozygous, and wild-type patients (8%, 6%, and 7%, respectively); however, treatment interruption was more common numerically in homozygous patients compared with heterozygous or wild-type patients (69%, 36%, and 42%, respectively).

DISCUSSION

In this study, SG has demonstrated a clinically and statistically significant ORR (27%) in patients with pretreated locally advanced unresectable or mUC when administered after progression on platinum-based chemotherapy and immunotherapy compared with historical controls.6 The ORR reported here is also consistent with the 27% ORR seen in the earlier phase I/II study in the cohorts of patients with mUC who were treated with both CPI and platinum (n = 15).31 Responses lasted for a median of 7.2 months, with the longest ongoing response of 9.5 months at the time of data cutoff (September 18, 2020). The median PFS (5.4 months) and median OS (10.9 months) observed with SG compare favorably to that of single-agent chemotherapy (median 2.7-3.3 months PFS and approximately 7 months OS).31 Benefit with SG was also seen across multiple subgroups (including the small subgroup with prior exposure to EV), although some subgroups were small and warrant further investigation. Although the numbers are very small, responses in patients previously treated with EV highlight the different antigen target, linker, and payload delivered by SG, and support the hypothesis of nonoverlapping mechanisms of action and resistance.

Patients with mUC who have had disease progression after platinum-based chemotherapy and CPI therapy have poor outcomes and limited treatment options.6,7,37 Several single and combination therapies have been investigated to improve the safety and efficacy of currently available options. Single and combination chemotherapy (pemetrexed, vinflunine, nab-paclitaxel, docetaxel, and ifosfamide) have resulted in ORRs of approximately 5.0%-25.0% and median OS of only 4.0-7.5 months.38-41 Novel agents, such as oral moczetinostat (class I/IV histone deacetylase inhibitor) and rucaparib (PARP inhibitor) did not have notable clinical activity,42,43 whereas erdafitinib, the first FGFR2/3-targeting agent, achieved a 40% ORR in a single-arm phase II trial, and significantly exceeded historical controls in a biomarker-selected platinum refractory population.10

For those who do not receive maintenance immunotherapy, a CPI is now standard second-line treatment with a significant OS advantage over single-agent chemotherapy, such as taxane or vinflunine; however, only about 13%–21% of patients exhibit a response.5,44-47 Recent data indicate that the combination of the CPIs nivolumab and ipilimumab resulted in improved ORR compared with nivolumab alone in a nonrandomized trial; however, this combination remains investigational in UC.48 Furthermore, outcomes with single-agent chemotherapy after progression on CPI therapy remain short with no apparent difference compared with historic pre-CPI era data.49 ADCs represent a promising therapeutic modality for patients with refractory UC.7,28,37,50 One such ADC, EV, received accelerated FDA approval in patients who have received prior platinum-based chemotherapy and CPI therapy based on the EV-201 phase II trial, and most recently demonstrated OS survival benefit over single-agent taxane or vinflunine in the EV-301 trial.51 EV was associated with fatigue, skin toxicities, peripheral neuropathy, and hyperglycemia, among other toxicities, and cannot be used in those with baseline uncontrolled hyperglycemia and neuropathy.49,52 Erdafitinib has accelerated approval in the United States, but is appropriate only for patients harboring activating mutation or fusion in FGFR2 or FGFR3 genes.10

SG was found to be tolerable, and despite dose interruptions and delays, the dose intensity remained 96%. The AEs most commonly associated with SG were neutropenia and diarrhea, consistent with its SN-38 payload (irinotecan metabolite). These AEs are predictable and manageable, resulting in a low rate of treatment discontinuation (6%; n = 7). Few patients discontinued because of TRAEs (n = 7); very few discontinued because of neutropenia (n = 4) and no patients discontinued because of diarrhea, possibly because of the systemic rather than localized release of SN-38 metabolite. Proactive management using established guidelines is recommended for both neutropenia and diarrhea as well as common AEs such as nausea and vomiting.52 Other common toxicities associated with ADC therapy were quite low. AEs of rash, ocular toxicity, and peripheral neuropathy were infrequent and all were grade ≤ 2. Patients with known UGT1A1 homozygous *28/*28 genotype are at increased risk of neutropenia, and while prescreening is...
FIG 3. Kaplan-Meier analysis of (A) PFS, (B) OS, and (C) DOR. DOR, duration of response; OS, overall survival; PFS, progression-free survival.
not required, close monitoring is advised. It is theoretically possible that heterozygotes have lower enzymatic activity and higher risk of neutropenia, but this small, nonrandomized data set is not able to address this question.

Study limitations include moderate sample size, lack of biomarker analysis, and single-arm, open-label study design. While there were a limited number of UGT1A1 *28 homozygous patients to make any statistically valid observations, and despite the lack of a comparator arm, the final results for cohort 1 of this study confirm the interim findings and prior phase I/II results of SG as a tolerable and clinically active agent in patients with mUC.31,34 The safety results reported here are also consistent with previous reports in other cancers.28,30,53-55

SG (Trodelvy) has recently been approved by the FDA for the treatment of adult patients with unresectable locally advanced or metastatic triple-negative breast cancer who have received two or more prior systemic therapies, at least one of them for metastatic disease.56 The phase III confirmatory ASCENT trial that compared SG with chemotherapy of physician’s choice in triple-negative breast cancer reported a highly significant benefit for SG in all end points including ORR (35% v 5%), PFS (5.6 v 1.7 months), and OS (12.1 v 6.7 months).57 The clinically meaningful activity and safety profile of SG demonstrated in cohort 1 of the TROPHY-U-01 mUC trial led to the accelerated FDA approval of SG58 for patients with locally advanced or mUC who previously received a platinum-containing chemotherapy and either a programmed death-1 or a programmed death-ligand 1 inhibitor. The results will be corroborated in the ongoing phase III confirmatory trial of SG versus taxane or vinflunine in mUC (TROPiCS-04; ClinicalTrials.gov identifier: NCT04527991). Additional cohorts of TROPHY-U-01 continue to evaluate the role of SG in platinum-ineligible patients with mUC who progressed after CPI therapy. Cohort 3 is evaluating SG in combination with pembrolizumab in patients with mUC who are CPI-naive and progressed after prior platinum-based chemotherapies. Both cohorts 4 and 5 are evaluating SG as induction and maintenance therapy in platinum-naive patients with mUC who are not refractory to platinum-based therapy in the neoadjuvant setting either as a cisplatin combination (cohort 4) or in addition to both cisplatin and avelumab (cohort 5) during induction. Both cohorts 4 and 5 will also receive SG in addition to avelumab as maintenance therapy. In conclusion, the results of cohort 1 of the TROPHY-U-01 trial supported fast-track designation and accelerated FDA approval of SG for the treatment of mUC previously treated with platinum-based chemotherapy and CPI by the FDA.

AFFILIATIONS

1. Weill Cornell Medicine, New York, NY
2. Perlmutter Cancer Center at NYU Langone Health, New York, NY
3. Smilow Cancer Center, Yale School of Medicine, New Haven, CT
4. Norton Cancer Institute, Louisville, KY
5. Institut de Cancérologie Gustave Roussy, Villejuif, France
6. Centre Léon Bérard, Lyon, France
7. H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
8. Huntsman Cancer Hospital, Salt Lake City, UT
9. Rocky Mountain Cancer Centers, Littleton, CO
10. Hôpitaux Universitaires de Strasbourg/Institut de Cancérologie Strasbourg Europe, Strasbourg, France
11. Hôpital Foch, Suresnes, France
12. University of Michigan Comprehensive Cancer Center, Ann Arbor, MI

TABLE 3. Most Common TRAEs of Any Grade (Observed in ≥ 20% of Patients) or TRAEs Grade ≥ 3 (Observed in ≥ 5% of Patients) (N = 113)

Category	Event	All Grades (%)	Grade 3 (%)	Grade 4 (%)
Hematologic†	Neutropenia	46	22	12
	Leukopenia	25	12	5
	Anemia	33	14	0
	Lymphopenia	11	5	2
	Febrile neutropenia	10	7	3
GI	Diarrhea	65	9	1
	Nausea	60	4	0
	Vomiting	30	1	0
General disorders and administrative site conditions	Fatigue	52	4	0
Skin and subcutaneous tissue	Alopecia	47	0	0
Metabolism and nutrition	Decreased appetite	36	3	0
Infections and infestations	Urinary tract infection	8	6	0

Abbreviation: TRAEs, treatment-related adverse events.

†Neutrophil count decreased, WBC count decreased, lymphocyte count decreased, and hemoglobin decreased have been recorded to neutropenia, leukopenia, lymphopenia, and anemia, respectively, for summary purposes.
Sacituzumab Govitecan in Pretreated Metastatic Urothelial Carcinoma

AUTHOR CONTRIBUTIONS
Conception and design: Scott T. Tagawa, Arjun V. Balar, Yohann Loriot, Neeraj Agarwal, Cora N. Sternberg, Trishna Goswami, Loretta M. Itri, Petros Grivas

Provision of study materials or patients: Scott T. Tagawa, Arjun V. Balar, Daniel P. Petrylak, Yohann Loriot, Aude Flechon, Rohit K. Jain, Neeraj Agarwal, Philip Palmboos, Christos E. Kyriakopoulos, Damien Pouessel, Cora N. Sternberg, Trishna Goswami, Petros Grivas

Collection and assembly of data: Scott T. Tagawa, Daniel P. Petrylak, Arash Rezzaadeh Kalebast, Yohann Loriot, Aude Flechon, Rohit K. Jain, Neeraj Agarwal, Manojkumar Bupathi, Philippe Barthelemy, Philippe Beuzeboc, Philip Palmboos, Christos E. Kyriakopoulos, Damien Pouessel, Cora N. Sternberg, Quan Hong, Trishna Goswami, Loretta M. Itri

Data analysis and interpretation: Scott T. Tagawa, Arjun V. Balar, Daniel P. Petrylak, Arash Rezzaadeh Kalebast, Yohann Loriot, Rohit K. Jain, Neeraj Agarwal, Philippe Barthelemy, Christos E. Kyriakopoulos, Damien Pouessel, Cora N. Sternberg, Quan Hong, Trishna Goswami, Loretta M. Itri, Petros Grivas

Manuscript writing: All authors

Final approval of manuscript: All authors

ACKNOWLEDGMENT
The authors thank the patients and their caregivers for helping them realize the possibilities of this research. They thank the dedicated clinical trial investigators and their devoted team members participating in the TROPHY-U-01 trial. They thank Drs Usman Aziz and Charu Kanwal for their role in trial management and data analysis. The study was sponsored by Immunomedics, Inc, a subsidiary of Gilead Sciences, Inc, and was designed through a collaboration of the sponsor and the lead investigators. Medical writing and editorial assistance were provided by Peloton Advantage, an OPEN Health company, Parsippany, NJ, and was funded by Immunomedics, Inc, a subsidiary of Gilead Sciences, Inc.

REFERENCES
1. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Bladder Cancer Version 5.2020. https://www.nccn.org/professionals/physician_gls/
2. Petrylak DP, de Wit R, Chi KN, et al: Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): A randomised, double-blind, phase 3 trial. Lancet 390:2266-2277, 2017
3. Raggi D, Miceli R, Sonpavde G, et al: Second-line single-agent versus doublet chemotherapy as salvage therapy for metastatic urothelial cancer: A systematic review and meta-analysis. Ann Oncol 27:49-61, 2016
4. Siegel R, Miller KD, Jemal A, et al: Cancer statistics, 2019. CA Cancer J Clin 69:7-34, 2019
5. Sircar J, Martin BL, Hlatky MA, et al: Role of chemotherapy in locally advanced and metastatic urothelial cancer patients in Germany. J Cancer 9:1337-1348, 2018
6. Di Lorenzo G, Buonerba C, Bellelli T, et al: Third-line chemotherapy for metastatic urothelial cancer: A retrospective observational study. Medicine (Baltimore) 94:e2297, 2015
7. Vlachostergios PJ, Jakubowski CD, Niaz MJ, et al: Antibody-drug conjugates in bladder cancer. Bladder Cancer 4:247-259, 2018
8. Padcev [Package Insert]. Northbrook, IL, Astellas Pharma US, 2019
9. FDA Grants Accelerated Approval to Enfortumab Vedotin-ejfv for Metastatic Urothelial Cancer [Press Release]. Silver Spring, MD: US Food and Drug Administration, December 19, 2019. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-enfortumab-vedotin-ejfv-metastatic-urothelial-cancer
10. Loriot Y, Necchi A, Park SH, et al: Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med 381:338-348, 2019
11. de Almeida Carvalho LM, de Oliveira Saporii Avelar S, Haslam A, et al: Estimation of percentage of patients with fibroblast growth factor receptor alterations eligible for off-label use of erdafitinib. Netw New Open 2:e1916901, 2019
12. Trotolli M, Cantaneli P, Guerra E, et al: Ureaplastia of Trop-2 quantitatively stimulates human cancer growth. Oncogene 32:222-233, 2013
13. Avellini C, Licini C, Lazzarini R, et al: The trophoblast cell surface antigen 2 and miR-125b axis in urothelial bladder cancer. Oncotarget 8:58642-58653, 2017
14. Shvartsur A, Bonavida B: Trop2 and its overexpression in cancers: Regulation and clinical/therapeutic implications. Genes Cancer 6:84-105, 2015
15. Stepan LP, Trueblood ES, Hale K, et al: Expression of Trop2 cell surface glycoprotein in normal and tumor tissues: Potential implications as a cancer therapeutic target. J Histochem Cytochem 59:701-710, 2011
16. Goldenberg DM, Stein R, Sharkey RM: The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 9:28989-29006, 2018
17. Muhlmann G, Spizzo G, Gostner J, et al: TROP2 expression as prognostic marker for gastric carcinoma. J Clin Pathol 62:152-158, 2009
18. Ohmachi T, Tanaka F, Mimori K, et al: Clinical significance of TROP2 expression in colorectal cancer. Clin Cancer Res 12:3057-3063, 2006
56. Trodelvy [package insert]. Morris Plains, NJ, Immunomedics, Inc, 2021
57. Bardia A, Hurvitz SA, Tolaney SM, et al: Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med (in press)
58. FDA grants accelerated approval to sacituzumab govitecan for advanced urothelial cancer [press release]. Silver Spring, MD: US Food and Drug Administration, April 13, 2021. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-sacituzumab-govitecan-advanced-urothelial-cancer

Publish Your Research With Confidence With ASCO and Editage

ASCO has partnered with Editage to provide members and authors with expert manuscript preparation services that support you through every stage of your academic journey.

Learn more at asco.editage.com

ASCO Journals
DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

TROPHY-U-011: A Phase II Open-Label Study of Sutuzumab Govitecan in Patients With Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/wc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to U.S.-licensed physicians (Open Payments).

Scott Tagawa
Consulting or Advisory Role: Medivation, Astellas Pharma, Dendreon, Janssen, Bayer, Genentech, Endocyte, Immunomedics, Genmab, Karyopharm Therapeutics, Abbvie, Tolmar, QED Therapeutics, Angen, Sanofi, Pfizer, Clovis Oncology, Novartis, Genentech, POINT Biopharma, Blue Earth Diagnostics, Seattle Genetics, Alkido Pharma
Research Funding: Lilly, Sanofi, Janssen, Astellas Pharma, Progenics, Millennium, Amgen, Bristol-Myers Squibb, Dendreon, Rexahn Pharmaceuticals, Bayer, Genentech, Newlink Genetics, Inovio Pharmaceuticals, AstraZeneca, Immunomedics, Novartis, AVEO, Boehringer Ingelheim, Merck, Stem CentRx, Kanyopharm Therapeutics, Abbvie, Medivation, Endocyte, Exelixis, Clovis Oncology
Travel, Accommodations, Expenses: Sanofi, Immunomedics, Amgen
Uncompensated Relationships: Telix Pharmaceuticals, ATLAB Pharma, Phosplatin Therapeutics

Arjun Balar
Honoraria: Merck, Genentech/Roche, AstraZeneca/MedImmune
Consulting or Advisory Role: Immunomedics, Bristol Myers Squibb, Genentech/Roche, Merck, Cerulean Pharma, AstraZeneca/MedImmune, Pfizer/EMD Serono, Incyte, Seattle Genetics/Astellas, Nektar, DrugnaFy Therapeutics, GlaxoSmithKline
Research Funding: Immunomedics, Merck, Genentech/Roche, AstraZeneca/MedImmune, Seattle Genetics

Daniel Petylak
Stock and Other Ownership Interests: Bellicum Pharmaceuticals, TYME
Consulting or Advisory Role: Bayer, Exelixis, Pfizer, Roche, Astellas Pharma, AstraZeneca, Lilly, Amgen, Boehringer Ingelheim, Bristol Myers Squibb, Clovis Oncology, Incyte, Janssen, Pharmacyclics, Seattle Genetics, Urogen pharma, Advanced Accelerator Applications, Ipsen, Bicycle Therapeutics, Mirati Therapeutics, Monopteros Therapeutics
Research Funding: Progenics, Sanofi, Endocyte, Genentech, Merck, Astellas Medivation, Novartis, AstraZeneca, Bayer, Lilly, Innocrin Pharma, MedImmune, Pfizer, Roche, Seattle Genetics, Clovis Oncology, Bristol Myers Squibb, Advanced Accelerator Applications, Agensys, BioXcel Therapeutics, Eisai, Mirati Therapeutics, Replimune
Expert Testimony: Celgene, sanofi

Arash Rezaadad
Stock and Other Ownership Interests: ECOM Medical
Consulting or Advisory Role: Exelixis, AstraZeneca, Bayer, Pfizer, Novartis, Genentech, Bristol Myers Squibb, EMD Serono, Immunomedics, Gilead Sciences
Speakers’ Bureau: Janssen, Astellas Medivation, Pfizer, Novartis, Sanofi, Genentech/Roche, Eisai, AstraZeneca, Bristol Myers Squibb, Amgen, Exelixis, EMD Serono, Merck, Seattle Genetics/Astellas, Seattle Genetics/CytomX, Advanced Accelerator Applications, Ipsen, Bicycle Therapeutics, Mirati Therapeutics, Monopteros Therapeutics
Research Funding: Genentech, Exelixis, AstraZeneca, Bayer, Bristol Myers Squibb, Eisai, Macrogenics, Astellas Pharma, BeyondSpring Pharmaceuticals, BioClin Therapeutics, Clovis Oncology, Bavarian Nordic, Seattle Genetics, Immunomedics, Epizyme
Travel, Accommodations, Expenses: Genentech, Prometheus, Astellas Medivation, Janssen, Eisai, Bayer, Pfizer, Novartis, Exelixis, AstraZeneca

Yohann Loriot
Honoraria: Sanofi, Pfizer
Consulting or Advisory Role: Janssen, Astellas Pharma, Roche, AstraZeneca, MSD Oncology, MSD Oncology, Seattle Genetics, Bristol Myers Squibb, Immunomedics, Taiho Pharmaceutical
Research Funding: Sanofi, Janssen Oncology, MSD Oncology, AstraZeneca, Clovis Oncology, Exelixis, Boehringer Ingelheim, Incyte, Pfizer, Oncogenex, Medivation, CureVac, Nektar
Travel, Accommodations, Expenses: Astellas Pharma, Janssen Oncology, Roche, MSD Oncology, AstraZeneca, Seattle Genetics

Aude Flechon
Honoraria: MSD Oncology, AstraZeneca, Bristol Myers Squibb, Janssen-Cilag, Astellas Pharma, Pfizer, Sanofi/Aventis, Roche/Genentech, Bayer, Ipen, AAA HealthCare
Travel, Accommodations, Expenses: Astellas Pharma, Sanofi/Aventis, Janssen-Cilag, Pfizer, Bayer, Ipen, Bristol Myers Squibb, AstraZeneca, MSD Oncology, Roche/Genentech, AAA HealthCare

Rohit Jain
Honoraria: Alphasights
Consulting or Advisory Role: Taiho Oncology, Pfizer, Seattle Genetics/Astellas, Gilead Sciences, EMD Serono
Speakers’ Bureau: Seattle Genetics/Astellas

Neeral Agarwal
Consulting or Advisory Role: Pfizer, Medivation/Astellas, Bristol Myers Squibb, AstraZeneca, Nektar, Lily, Bayer, Foundation One Inc, Pharmacyclics, Foundation Medicine, Astellas Pharma, Lilly, Exelixis, AstraZeneca, Pfizer, Merck, Novartis, Lilly, Eisai, Seattle Genetics, EMD Serono, Janssen Oncology, AVEO, Calithera Biosciences, MEI Pharma, Genentech, Astellas Pharma
Research Funding: Bayer, Bristol Myers Squibb, GlaxoSmithKline, Takeda, Novartis, Pfizer, BN Immunomed Therapeutics, Exelixis, TRACON Pharma, Rexhan Pharmaceuticals, Amgen, AstraZeneca, Active BioTech, Bavarian Nordic, Calithera Biosciences, Celldex, Eisai, Genentech, Immunomedics, Janssen, Merck, Newlink Genetics, Prometheus, Sanofi

Manojkumar Bupathi
Honoraria: Bristol Myers Squibb, Exelixis, AstraZeneca, Pfizer, Astellas Pharma
Consulting or Advisory Role: Bristol Myers Squibb, AstraZeneca, Exelixis
Speakers’ Bureau: AstraZeneca, Bristol Myers Squibb, Pfizer, Exelixis, Astellas Pharma

Philippe Barthelemy
Honoraria: Ipsen, Bristol Myers Squibb, MSD, Astellas Pharma, Janssen-Cilag, Pfizer, Merck KGaA
Consulting or Advisory Role: Ipsen, Bristol Myers Squibb, MSD Oncology, Pfizer, Janssen-Cilag, AstraZeneca, Amgen
Travel, Accommodations, Expenses: Bristol Myers Squibb, Pfizer, Janssen-Cilag, Astellas Pharma, MSD, Ipen

Phillip Palmbos
Research Funding: Roche, Immunomedics

Christos Kyriakopoulos
Consulting or Advisory Role: Exelixis, Sanofi, AVEO, EMD Serono, Janssen Oncology
Research Funding: Sanofi

Damien Pouessel
Honoraria: Ipen, Janssen Oncology, Bristol Myers Squibb, AstraZeneca, Merck, Astellas Pharma
Consulting or Advisory Role: Astellas Pharma, AstraZeneca, Janssen Oncology, Pfizer, Sanofi
Research Funding: Incyte, Merck Sharp & Dohme, Roche, Bristol Myers Squibb, AstraZeneca, Janssen Oncology, Seattle Genetics
Travel, Accommodations, Expenses: Janssen Oncology, AstraZeneca, Pfizer

Cora Sternberg
Consulting or Advisory Role: BMS, MSD, Pfizer, Roche-Genentech, Incyte, AstraZeneca, Merck, Medscape, UroToday, Astellas Pharma, Sanofi-Genzyme, Immunomedics, now Gilead, Foundation Medicine, CCO Clinical, Janssen, NCI Research Funding: Pfizer, MSD, Astellas, BMS, Immunomedics, now Gilead, Anvias, Mirati

Quan Hong
Employment: Immunomedics, Gilead Sciences
Leadership: Immunomedics
Stock and Other Ownership Interests: Immunomedics

© 2021 by American Society of Clinical Oncology
Trishna Goswami
Employment: Immunomedics/Gilead
Leadership: Immunomedics/Gilead
Stock and Other Ownership Interests: Immunomedics/Gilead
Patents, Royalties, Other Intellectual Property: Patents around combinations with Trodelvy
Travel, Accommodations, Expenses: Immunomedics/Gilead

Loretta Itri
Employment: Immunomedics/Gilead
Leadership: Immunomedics/Gilead
Stock and Other Ownership Interests: Immunomedics
Consulting or Advisory Role: Immunomedics
Travel, Accommodations, Expenses: Immunomedics

Petros Grivas
Consulting or Advisory Role: Merck, Bristol Myers Squibb, AstraZeneca, Clovis Oncology, EMD Serono, Seattle Genetics, Foundation Medicine, Pfizer, Janssen, Bayer, Genzyme, Mirati Therapeutics, Exelixis, Roche, GlaxoSmithKline, Genentech, Immunomedics, Dyania Health, Infinity Pharmaceuticals, QED Therapeutics, 4D Pharma PLC
Research Funding: Pfizer, Clovis Oncology, Bavarian Nordic, Immunomedics, Bristol Myers Squibb, Debiopharm Group, Merck, QED Therapeutics, Kure It Cancer Research, GlaxoSmithKline, Mirati Therapeutics
No other potential conflicts of interest were reported.
Appendix

List of TROPHY cohort 1 investigators

The following investigators (listed by country) participated in the TROPHY-U-01 Cohort 1 study:

United States: Clarence Adoo, Neeraj Agarwal, Arjun V. Balar, Pranshu Bansal, Manojkumar Bupathi, Bradley Carthon, Christopher Chen, Mary Crow, Jorge Darcourt, Saby George, Petros Grivas, Elisabeth Heath, Rohit K. Jain, Christos E. Kyriakopoulos, Luke Nordquist, Rami Owera, Phillip Palmbos, Chandler Park, Daniel Petrylak, Joseph Pizazzato, Arash Rezazedeh, Scott Tagawa, Eddie Thara, Nicholas Vogelzang, and Shenhong Wu. France: Philippe Barthelemy, Philippe Beuzeboc, Aude Flechaton, Yohann Loriot, and Damien Pouessel.

Supplementary results

Efficacy by Investigator Assessment

Clinical activity (based on investigator’s assessment) was demonstrated with an objective response rate of 23% (26 of 113) (95% CI, 15.6 to 31.9) including six confirmed complete responses (CRs) (5.3%) and 20 confirmed partial responses (PRs) (17.7%). The clinical benefit rate (defined as CR plus PR plus stable disease [SD] ≥ 6 months) was 38.9% (95% CI, 29.9 to 48.6). SD as best response was observed in 43.4% (49 of 113) of patients and 20.4% (23 of 113) had progressive disease at data cutoff. Sacituzumab govitecan demonstrated efficacy in all subgroups evaluated, including patients with ≥ 2 prior lines of therapy, visceral and liver metastases at baseline, and by Bellmunt risk factor. Interestingly, in the small subgroup of patients who received prior therapy with enfortumab vedotin (n = 10), there was 1 responder who achieved a PR, with an objective response rate of 10% (95% CI, 0.25 to 44.5), six who had SD, and three who had a best response of progressive disease with sacituzumab govitecan.

With a median follow-up duration of 9.1 months, the median duration of response was 7.7 months (95% CI, 4.4 to 9.0 months). The median time to objective response was 1.6 months (range, 1.2-2.9 months). Six subjects achieved a CR with a duration of response ranging from 2.7 to 15.8 months. A reduction in the size of target lesions was achieved by 71% (70 of 99) of patients with at least one post-baseline target lesion measurement by investigator assessment. The median progression-free survival and median overall survival were 4.4 months (95% CI, 2.9 to 5.7 months) and 10.9 months (95% CI, 9.0 to 13.8 months), respectively.

Cohort 1: Patients with locally advanced unresectable or mUC (UC-predominant histology) who progressed after prior platinum-based and CPI-based therapies

Primary objective

ORR by central review

Secondary objectives

DOR

PFS

OS

Continue treatment until loss of clinical benefit or unacceptable toxicity

SG 10 mg/kg

Days 1 and 8, every 21 days

FIG A1. TROPHY-U-01 study design. EudraCT Number: 2018-001167-23; ClinicalTrials.gov identifier: NCT03547973; IMMU-132-06 study. CPI, checkpoint inhibitor; DOR, duration of response; mUC, metastatic urothelial cancer; ORR, objective response rate; OS, overall survival; PD-1, programmed death-1; PD-L1, programmed death-ligand 1; PFS, progression-free survival; SG, sacituzumab govitecan.
Subgroup	n/N	% (95% CI)	ORR (95% CI)
Overall	31/113	27.4 (19.46 to 36.63)	
Age			
< 50 years	2/8	25.0 (3.19 to 65.09)	
50-64 years	15/45	33.3 (20.00 to 48.95)	
≥ 65 years	14/60	23.3 (13.38 to 36.04)	
Race			
White	21/84	25.0 (16.19 to 35.64)	
Black	1/3	33.3 (0.84 to 90.57)	
Asian	2/3	66.7 (9.43 to 99.16)	
Other	0/1	NA (NA, NA)	
Not reported	7/22	31.8 (13.86 to 54.87)	
Ethnicity			
Hispanic or Latino	0/3	NA (NA, NA)	
Not Hispanic or Latino	26/94	27.7 (18.93 to 37.85)	
Not reported	5/16	31.3 (11.02 to 58.66)	
ECOG performance status			
Grade 0	14/32	43.8 (26.36 to 62.34)	
Grade 1	17/81	21.0 (12.73 to 31.46)	
UGT1A1 status			
Wild-type *1*1	10/45	22.2 (11.20 to 37.09)	
Heterozygous *1*28	15/47	31.9 (19.09 to 47.12)	
Homozygous *28*28	4/13	30.8 (9.09 to 61.43)	
Missing	2/8	25.0 (3.19 to 65.09)	
No. of prior therapies for metastatic disease			
≤ 2	10/36	27.8 (14.20 to 45.19)	
> 2	21/77	27.3 (17.74 to 38.82)	
No. of prior chemotherapies			
≤ 2	21/74	28.4 (18.50 to 40.05)	
> 2	10/39	25.6 (13.04 to 42.13)	
Baseline visceral metastasis involvement			
Yes	21/75	28.0 (18.24 to 39.56)	
No	10/38	26.3 (13.40 to 43.10)	
Baseline visceral metastasis, involvement of liver			
Yes	12/38	31.6 (17.50 to 48.65)	
No	19/75	25.3 (15.99 to 36.70)	
Bellmunt risk factor groups			
0	5/18	27.8 (9.69 to 53.48)	
1	19/54	35.2 (22.68 to 49.38)	
2	6/32	18.8 (7.21 to 36.44)	
3	1/9	11.1 (0.28 to 28.25)	

FIG A2. Forest plot showing ORR in different subgroups. Horizontal line represents CI. ECOG, Eastern Cooperative Oncology Group; NA, not available; ORR, objective response rate.