Comparison Among Garlic, Berberine, Resveratrol, *Hibiscus sabdariffa*, Genus *Zizyphus*, Hesperidin, Red Beetroot, *Catha edulis*, *Portulaca oleracea*, and Mulberry Leaves in the Treatment of Hypertension and Type 2 DM: A Comprehensive Review

Amira R. Amin¹, Rami B. Kassab², Ahmed E. Abdel Moneim², and Hatem K. Amin³

Abstract

Diabetes mellitus (DM) and hypertension are 2 of the most prevalent diseases with poor impact on health status worldwide. In most cases, they coexist with other metabolic disorders as well as cardiac, micro- and macrovascular complications. Many plants are known for their hypotensive, cardioprotective, and/or antidiabetic activities. Their active ingredients either identified and isolated or still utilized as herbal preparations of certain plant parts. The use of medicinal plants comprises the main basis for most of the traditional medicine (TM) systems and procedures. As conventional medicines seem insufficient to control such progressive diseases, herbal agents from TM could be used as adjuvant with good impact on disease control and progression as well as other coconmitant health conditions. The aim of this study is to compare the efficacy of 10 different herbal medicines of botanical origin or herbal preparations in the management of hypertension and its cardiovascular complications and type 2 DM along with various coexisting health disorders. These herbal medicines are garlic, berberine, resveratrol, *Hibiscus sabdariffa*, *Zizyphus* (*oxyphylla, mucronate, jujube, rugosa*), hesperidin, red beetroot, *Catha edulis*, mulberry leaves, and *Portulaca oleracea*.

Keywords

garlic, berberine, resveratrol, *Hibiscus sabdariffa*, *Zizyphus* (*oxyphylla, mucronate, jujube, rugosa*), hesperidin, red beetroot, *catha edulis* and mulberry leaves, *Portulaca oleracea*, diabetes, hypertension, hyperlipidemia, cardiovascular disease, antioxidant, anti-inflammatory, pharmacokinetics, lipid nanoparticles, drug interactions, oxidative stress, apoptosis

Received: December 25th, 2019; Accepted: April 4th, 2020.

Diabetes mellitus (DM) and hypertension constitute a great threat for human health as two of the most prevalent degenerative diseases all over the world. Over the years, many studies have been conducted on available and new treatments for both diseases and many of these were inspired from traditional medicine (TM); more than 400 traditional plant treatments for DM have been recognized, but little number out of these have received scientific and medical evaluation.¹ According to World Health Organization (WHO) 2003 and 2014 definitions, TM is all the natural remedies and techniques developed by indigenous cultures.² Traditional medicine is quite popular especially in cases when conventional medicine is insufficient for proper management. Herbal products are fundamental in most of the TM systems. Investigations carried out on herbal agents’ efficacy and safety lead to the adoption of many agents in conventional medicine systems as replacement or complementary agents. Furthermore, plant preparations and their isolated bioactive compounds play a very important role in the development of semisynthetic and synthetic medications.³

Hypertension is termed a silent killer. About 1 billion people around the world had been diagnosed with hypertension...
but scarcely the diagnosis is early enough. It is highly accepted that hypertension is one of the main factors leading to cardiovascular diseases as it contributes to more than 20% of heart attacks and 50% of all strokes. In spite of the large number of medications being available for hypertension, it is not completely controlled in a large proportion of victims. Some argue that adverse effects and complexity of regimens are the reasons for poor compliance, and the fact is that hypertension is a lifelong disorder that is never actually cured.

The limit for high blood pressure (BP), which requires therapeutic intervention, is now set to be any level higher than 140/90 mmHg. Blood pressure is the outcome of systemic vascular resistance multiplication with cardiac output. So, hypertension mostly occurs as a result of the inability of the heart to adjust the cardiac output according to venous return and preload or a factor that enhanced the vasoconstrictive tone. Various classes of medications are available for hypertension, which act directly on vascular smooth muscles on Ca or K channels or alter the sympathetic tone or act centrally. Cerebrovascular and renal complications are very common among hypertensive patients though the elevation in BP increases morbidity and mortality.

On the other hand, type 2 diabetes mellitus (T2DM) is a group of metabolic disorders due to endocrine defect in insulin production with various degrees of insulin resistance. This defect in carbohydrates metabolism is commonly accompanied with lipid metabolism disorders and oxidative stress with multiple micro- and macrovascular complications that can affect several body organs. Type 2 diabetes mellitus has steadily increasing prevalence and deleterious consequences on human health. About 422 million adults suffered from diabetes in 2014 and the number is growing. As this type is more common in elderly patients, late diagnosis is expected and medications’ side effects lead to further complications.

In terms of etiology, the elevation of blood glucose level is the main factor in all diabetic complications. It exerts additional load on the kidney, which attempts to normalize the glucose levels. The prolonged pressure particularly in late diagnosed T2DM leads to pathological alterations in glomerular structure and function, hence leading to diabetic nephropathy which commonly develops to end-stage renal disease. Furthermore, the state of insulin resistance due to accumulated fatty acids leads to micro- and macrovascular complications including diabetic retinopathy and neuropathy, which remain unrecognized until symptoms appear and become a serious threat of organ failure. Diabetes mellitus also leads to changes in plasma osmolarity and acid base balance which leads to diabetic ketoacidosis (DKA) or diabetic hyperosmolar coma.

The aim of this review is to discuss and compare the efficacy and safety profiles of 10 plant preparations and bioactive compounds from TM in the management of T2DM, hyperlipidemia, hypertension, and cardiovascular disorders (CVDs) as sole medicines and adjuvant for uncontrolled patients on first-line medications and their effect on the progression of these disorders and other coexisting diseases.

Garlic

Allium sativum (Figure 1) is widely used as a flavoring agent and a culinary spice. Its medical use began in ancient Egypt then in Greece, China, India, and many other countries. It is known

Figure 1. Different garlic preparations’ mechanisms of action. ACE, angiotensin converting enzymes; Ang II, angiotensin II; COX, cyclooxygenase; ERK, extracellular signal regulated kinases; LOX, lipoxygenase; MTP, microsomal triacyl glycerol transfer protein; NF-κB, nuclear factor kappa beta; NO, nitric oxide; PGE2, prostaglandin E2; SOD, sodium oxide dismutase; TC, total cholesterol; TG, triglyceride; TXB2, thromboxane B2; VSM, vascular smooth muscles.
as an antihypertensive and anti-atherosclerotic, and it is used to improve lipid profile. Most members of Allium species contain organosulfur compounds responsible for their flavor, odor as well as the biological activity. In many previous studies, allicin was believed to be the main active substance responsible for the antihypertensive effect of garlic but it is still unsettled with the fact whether it is responsible for hypolipidemic effect.15 Gardner et al’s clinical trial concluded that garlic which can release allicin readily in the gastro-intestinal tract (GIT) did not have any hypolipidemic effect. Therefore, allicin is considered a transient compound that decomposes to smaller organosulfur compounds, which may be responsible for the effect.15

Many forms of garlic are available for use such as powder, oil (capsules), raw or cooked garlic, and aged garlic extract (AGEx), each of these have different bioavailability due to different composition; for example, Rosenson et al17 reported that the powder formula is more effective than AGEx and oil in the reduction of triglycerides (TGs) and total cholesterol (TC). Furthermore, in a recent trial, AGEx was found to be safer than raw garlic when used for hypertension. Out of the most important sulfur-containing amino acids, S-1-propenylcysteine (S1PC) hypotensive activity was found to be superior to S-allyl cysteine (SAC).18

The antihypertensive mechanism of garlic is due to its angiotensin-converting enzyme inhibition (ACEinh).19,20 It enhances hydrogen sulfide and NO production and acts as a vasodilator agent.21,22 Although Ashraf et al23 argue that the hypotensive effect of garlic has nothing to do with NO, in addition, garlic inhibits thromboxane-B2 and prostaglandin-E2 synthesis, which have vasoconstrictive effect. Garlic is also useful in improving lipid profile as it affects the synthesis of TC and fatty acids.24 Garlic also inhibits microsomal triacylglycerol transfer protein expression, attenuating chylomicrons formation and release from the small intestines after a meal.25

Garlic activity as a hypotensive and hypolipidemic agent is very important in the prevention of CVD, atherosclerosis, and all of their associated mortalities. Another independent mechanism in the prevention of CVD progression and particularly cardiac modulation and hypertrophy is the maintenance of cell-cycle inhibitor p27kip1 levels and the prevention of ERK/1 phosphorylation.26 Additionally, garlic represses the inflammatory process through the modulation of cytokines profile and the stimulation of immune cells along with the suppression of induced NO synthase and cyclooxygenase 2 (COX2) activity.27,28 and retains the inactive form of nuclear factor kappa B i(NF-κB) by suppressing excessive lipoygenase (LOX and COX) synthesis.29,30

The organosulfur active constituents in different garlic formulations have antioxidant properties via direct scavenging capacity.31 Garlic also stimulates catalase (CAT) enzyme and increases the levels of endogenous antioxidants such as glutathione and other endogenous thiols, and these effects make garlic useful in the prevention of diabetes nephropathy and other complications of T2DM and CVD.29

Many studies that were conducted on the effect of AGEx on diabetic rats showed positive results as it is concluded that AGEx reduced blood glucose level (BGL) and glycated hemoglobin significantly, and increased serum insulin level along with its antioxidant effect.31 Garlic may have a beneficial effect in T2DM patients acting as insulin secretagogue and alleviating insulin resistance,25 and time-release garlic powder tablets decreased fasting blood glucose level (FBGL) and had some beneficial effect on hyperlipidemia as well.32 However, the results were not always consistent as a trial conducted on diabetic patients found that AGEx did not affect BGL, glycated hemoglobin, or lipid profile except for TG after 3 months of treatment and only reduced oxidative stress.33 Similarly, AGEx had no significant effect on hyperglycemia and hyperlipidemia, lipid profile, and even on oxidative stress and inflammatory process.34

Many trials concluded that garlic might be an efficient adjuvant for hypertensive, hypolipidemic patients and for those with high-risk CVD. A dose 480 mg of AGEx may be as potent as conventional antihypertensive medications.35 Various garlic preparations can potentiate anticoagulants efficacy which was proved in the study of Macan et al36 as garlic did not show any additional adverse effects when it was added to warfarin treatment and Ried et al37 proved that garlic on its own can normalize platelet functions.

Pharmacokinetic investigations documented that garlic does not alter CYP1A2, CYP2D6, or CYP3A4 activity and did not interact with drugs metabolized via these enzymes when it has been used up to 28 days. More prolonged administration leads to nonclinically significant reduction in CYP2E1 activity.38 The most common reported drug interaction with garlic is with HIV medication Saquinavir.39

Unpleasant body odor and halitosis are the most common and the only statistically significant adverse effects which might be alleviated by odor-free garlic preparations, and mild self-limited gastrointestinal side effects are frequently reported.40 Other adverse effects such as lung damage were reported in a study on rats41 as well as unexplained bowel obstruction, hematemesis, hematochezia, esophagitis, risk for deleterious side effects such as allergic reactions that could reach contact dermatitis or even anaphylaxis, generalized urticaria, pemphigus, skin burns when applied topically, angioedema, rhinitis, and asthma. Garlic affected infant behavior when administered in breastfeeding mothers, and chromosomal breakage, anemia, heart and kidney toxicity were reported as well.42,43

Genus Zizyphus

Genus Zizyphus (Figure 2) of family Rhamnaceae includes more than 100 species. Most members are small trees or shrubs found in many countries that have had a vital role in TM for a long time, as antipyretic, antimicrobial, antioxidant, and natural treatment for tumors.

We are going to discuss the biological activity of 4 different species of genus Zizyphus on T2DM, namely, Zizyphus oxyphylla,
Zizyphus rugosa, Ziziphus mucronata, and Zizyphus jujuba. Most members of genus Zizyphus are potential antioxidant agents such as lotus and spina cristi species.44,45

Zizyphus oxyphylla is widely used in TM commonly in Pakistan. The main active constituent is cyclopeptide alkaloids, flavonoids, and some phenolic compounds. Recently, Ahmad et al46 reported the identification of neutral cyclopeptide alkaloids which had never been reported in any plant before besides the 17-cyclopeptide alkaloids previously identified.47

Zizyphus oxyphylla is known as natural antidiabetic agent and its most important mechanism of action is its activity as α-glucosidase inhibitor.48 Furthermore, phenolic compounds, flavonoids, and quercetin glycosides are responsible for direct free radical scavenging ability due to the aromatic ring hydroxyl groups in their organic structure which would decrease the formation of advanced glycation end product.49 Zizyphus oxyphylla also has anti-inflammatory effect through LOX enzyme inhibition.46 Its acetylcholine esterase inhibition ability may have an important activity in patients with myasthenia gravis in addition to T2DM.50

Studies conducted on Z. oxyphylla toxicity are insufficient, however, in vivo trials did not report serious side effects except for cytotoxicity upon using root crude extract.51

Ziziphus rugosa potential activity as antidiabetic agent is very recently discovered. Its root contains triterpenoid compounds that can act as a potent α-glucosidase inhibitor in a noncompetitive manner through H-bond formation between the carboxyl group of C-28 and Arg312 and Gln350 of the enzyme rather than in a competitive manner in which the antidiabetic effect includes antioxidant activity owing to horridin flavonoid glycoside.52

Ziziphus mucronata, commonly known as buffalo thorn, is well known in many countries and mostly in Nigeria. It has a unique antidiabetic mechanism that differs from other species due to its insulinotropic properties53 along with their common mechanisms as antioxidants, α-glucosidase and α-amylase inhibitors.44,45

Long-term administration of Z. mucronata did not cause side effects. However, it might be regarded mutagenic and cause aneuploidy.56 Ziziphus mucronata was involved in disease outbreak in South Africa related to Coniodictyum chevalieri fungus.57 The most important limitation for its use is in patients with high risk of CVD and abnormal high lipid profiles, and it could be very hazardous due to hyperlipidemic constituents.53

Ziziphus jujuba is the last member we aim to mention in our review. Acting as an antioxidant, it prevents diabetic complications and reduces glycation end-product, which is mediated by its peptide content that have strong reducing capacity.58 Jujuboside B saponin constituents in Z. jujuba reduce thromboxane A2 (TXA2) level mediating its anti-inflammatory effect. Furthermore, it attenuates bleeding and decreases the risk of thromboembolism which might have a useful effect in CVD.59 Ziziphus jujuba is generally considered safe but dosing adjustment is still required.60

Mulberry Leaf

White mulberry (Figure 3) or Morus alba is grown in many countries all over the world. Its leaves are widely used in Asian countries specially China, Japan, and Korea for its antidiabetic, antimicrobial, anti-inflammatory, and cardioprotective properties.61

Figure 2. Species of genus Zizyphus mechanisms of action. AGE, advanced glycation end products; CVS, cardiovascular system; LOX, lipoxygenase enzyme; TXA2, thromboxane A2.
The main therapeutic application of *M. alba* is antidiabetic due to its properties attributed to the presence of 1-deoxynojirimycin (DNJ), the most abundant iminosugar in its constituents, along with dideoxy-1,4-imino-d-ribitol and 1,4-dideoxy-1,4-imino-d-arabinitol. This antidiabetic effect is mainly mediated through the competitive inhibition of α-glucosidase, α-amylase, and disaccharidases, e.g., sucrose and maltase enzymes. Furthermore, it alleviates insulin resistance via upregulation of some of the essential components of carbohydrates metabolism as insulin receptor (InsR), insulin receptor substrate 2 (IRS-2), and glycogen synthase kinase (GSK3) gene expression. Gallic acid content is also responsible for enhancing GLUT4 translocation. Mulberry leaves also increase PDX-1 pancreatic duodenal homeobox-1 transcriptional factor gene translocation and expression, which improves glucose uptake and decreases gluconeogenesis through increasing glucokinase, pyruvate carboxylase, glucose 6-phosphate, phosphoenolpyruvate carboxykinase, and GLUT2 gene expression.

In addition, it elicits an effect on diabetes nephropathy, which is mediated through the inactivation of transforming growth factor beta 1 that has a predominant role in the incidence of kidney and myocardial fibrosis. Furthermore, mulberry leaves have anti-apoptotic properties through the inactivation of apoptosis pathway components Bax, JNK, p38, and caspase-3 and the stimulation of Bcl-2, which suggests a valuable impact on kidney and neurodegenerative diseases. Potentiation of the activity of antioxidant enzymes such as superoxide dismutase (SOD), heme oxygenase-1 (HO-1), and glutathione reductase along with direct chelation properties due to phenolic contents quercetin, rutin, kaempferol, flavanol, and catechin all contribute to relieving oxidative stress and metal overload such as Fe and Cu.

Mulberry leaves improve the lipid profile and reduce the cholesterol levels through the enhancement of lipoprotein lipase mRNA expression, secretion of adiponectin, activation of peroxisome proliferator-activated receptors such as peroxisome proliferator activating receptor (PPAR)-α and PPAR-γ, and preservation of liver functions. Cardioprotective properties of ML can prevent pathological cardiac remodeling and hypertrophy through suppression of endothelin-1 (ET-1), and reduction of vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and E-selectin expression in the coronaries specially aorta making mulberry a potential therapeutic or adjuvant agent for either diagnosed CVD patients or high risk population.
Mulberry has anti-inflammatory effects and prevents thrombosis through the reduction of TBX2, COX2, tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interleukin-6 (IL-6) expression and synthesis affecting inflammation acute phase.67

The main limitation for mulberry leaves medical utilization is its short half-life due to the rapid metabolism of DNJ by CYP450 enzymes although other active constituents might be a subject for enterohepatic recirculation.75,76 1-Deoxynojirimycin bioavailability in mulberry leaf extract could be less than that in the purified form as its peak level is 15 µg/mL. This could be solved by co-administration of carboxymethyl cellulose which improves its pharmacokinetic profile and its antidiabetic activity.73,77 Additionally, DNJ represents a small percentage of mulberry active constituents which requires the administration of high doses consequently increasing the risk of side effects incidence.78,79 Several animal studies showed that mulberry extract caused reduction in leukocytes numbers, which required proper dosing without genotoxicity.61,80 The maximum safe dose of mulberry extract was higher than 5 g/kg in mice which proves its good safety and therapeutic index.81

Red Beetroot

The root of beet plant or Beta vulgaris is well known in North America, and it eliminates the unpleasant odor of garlic intake. It has promising antihypertensive properties owing to dietary nitrates and betalains contents.82,83 So, it is a dietary source for vasodilator NO.

Betalains, especially betanin and isobetanin, have electron donating capacity acting as reducing antioxidant agents that prevent radical oxidative stress (ROST) and its associated health hazards.84 Anti-inflammatory properties of red beetroot which might be attributed to betalains are mediated through the suppression of COX2 and NF-κB.82 Beetroot has prolonged antihypertensive effect because its metabolic processing might cause further release of NO.85 Betalains absorption rate is unknown yet but Frank et al.86 reported that very small fraction of betalains was eliminated in urine which suggests another route of elimination.

The most common limitation for red beetroot clinical utilization is the unmetabolized red colored betalains that lead to reddish discoloration of urine and stool, worrying the patient as it is usually confused with melena or hematochezia. Chronic administration of red beetroot also suppresses CYP450, CYP1A1/1A2, and CYP2E enzymes activity and affects all drugs metabolized through their pathways.85

Hibiscus sabdariffa

Hibiscus sabdariffa (Figure 4) is used worldwide as a drink prepared from dried flower calyx and epicalyx. It is known to have a good impact on hypertension, hyperlipidemia, tumors, and many other health problems.87,88

The hypotensive effect of H. sabdariffa is mediated through vascular smooth muscle relaxation activity via inhibition of potassium channel activation and calcium influx,89,90 along with cGMP pathway and phosphatidylinositol-3-kinase/protein kinase B pathway activation which stimulates NO synthase enzyme.91 Vasodilatation may also be mediated by cholinergic or histaminic pathway,92 and the constituent anthocyanins causes ACE inhibition.93 Hibiscus sabdariffa has multiple

Figure 4. Hibiscus sabdariffa mechanisms of action. AGE, advanced glycation end products; CTGF, connective tissue growth factor; ACE, angiotensin converting enzyme; CAT, catalase; CTGF, connective tissue growth factor; GSH, glutathione; NO, nitric oxide; SOD, sodium oxide dismutase.
cardioprotective mechanisms including augmentation of myocardial vasculature maintaining its nutritional supply and relieving high work load which diminishes the risk for hypertrophy. Furthermore, it reduces atherosclerosis progression by induction of myocardial cells apoptosis via p35 and p38 pathways. In addition to its hypolipidemic activity through reduction of cholesterol synthesis by HMG-CoA reductase inhibition, stimulation of hepatic lipase and inhibition of adipocytes differentiation were through induction of phosphorylation and activation of protein kinase B pathway (PI3-K/Akt). Its antioxidant activity is associated with antiatherosclerotic properties including reduction of low density lipoprotein (LDL) oxidation, formation of foam cell, and other steps of formation of atherosclerotic plaque. Free radical scavenging properties had also been reported along with xanthine oxidase inhibition properties that make it useful in cases of hyperuricemia and gout.

Polyphenolic extract can have a beneficial effect in prevention of diabetic complications as it attenuates advanced glycation end product (AGE) receptors and connective tissue growth factor expression. The limitations for H. sabdariffa utilization are the following: There is no reported effect for H. sabdariffa on metabolizing enzymes; however, possible interaction between H. sabdariffa and hydrochlorothiazide in hypertensive patients is documented. Anthocyanins are rapidly absorbed but have poor bioavailability because only small amounts are absorbed as intact glycosides and not hydrolyzed to the bioactive aglycones. Topical administration of H. sabdariffa is limited due to skin irritation and poor dermal absorption which could be solved by lipidic formulations that improves its permeation and enhances its antioxidant capacity. H. sabdariffa doses higher than 150 to 180 mg/kg/day elevated the levels of some plasma enzymes such as alanine amino transferase (ALT) and aspartate amino transferase (AST); however, others such as lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) were not affected. H. sabdariffa extracts could lead to reduction in epididymal sperm count and distortion in sperm cells and testicular tubules.

Berberine

Berberine (Figure 5) is a quaternary ammonium salt of the benzylisoquinoline from protoberberine alkaloids, which is mostly found in rhizomes, parks, and stems of many plants around the world like Berbers. The therapeutic activity of berberine as an antimicrobial, antitumor, anti-diabetic, anti-hypertensive, immunomodulatory, and hypolipidemic agent...
makes it one of the most important bioactive compounds that plays a vital role in TM.107

Berberine’s most prominent effect is the activation of AMP-activated protein kinase (AMPK) catabolic pathway that mediates most of its antidiabetic activities through increasing GLUT1 and GLUT4 transporters levels as well as increasing InsR mRNA and protein expression; therefore, berberine improves glucose uptake and glycolysis and alleviates insulin resistance.108-110 It inhibits retinol binding protein, which is involved in insulin resistance development.111 Berberine also acts as a-glucosidase and intestinal disaccharidases inhibitor along with the inhibition of sucrase-isomaltase complex (SI complex) mRNA expression,112,113 and through the stimulation of Akt pathway, it inactivates glycogen synthase kinase thus enhancing glycogen synthesis.114,115

In addition, berberine increases incretin levels through competitive inhibition of dipeptidyl peptidase-4, fitting optimally in the enzyme-binding pocket. Consequently, it stimulates insulin release following carbohydrates intake and improves the body’s glycemic response.116 Berberine has a more pronounced effect on GLP-1 as it increases GLP-1 secretion via stimulation of gut-expressed bitter taste receptors (TAS2R38, a subtype of bitter taste receptors) and enhances its biosynthesis by the activation of proglucagon gene and pro-hormone convertase 3 gene.117,118 Alteration of gut commensal bacteria \textit{Bifidobacterium} species is another suggested mechanism.119 Furthermore, berberine can relieve diabetes nephropathy through the stimulation of Nrf2 and its target genes reducing apoptosis-induced renal damage120 and has the ability to act as an acetylcholinesterase (ACHE) enzyme competitive inhibitor which could be of use in myasthenia gravis and glaucoma.121

Berberine improves lipid profile as it stabilizes LDL receptor mRNA and increases its expression, reduces TG and cholesterol synthesis, and increases high density lipoprotein (HDL) cholesterol levels. Improving endothelial function and the antioxidative capacity of berberine through enhancing SOD and GSH-px activity and inhibition of lipoprotein oxidation21,122 as well as the anti-inflammatory properties via inhibition of pro-inflammatory cytokines protein expression and release prevent complications of DM and CVD.109 Co-administration of berberine with statins has a beneficial additive effect because statins cholesterol lowering activity is associated with the upregulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) that leads to low density lipoprotein receptor (LDLR) breakdown suppressing their own hypolipidemic effects, therefore, berberine retains their cholesterol lowering ability and inhibits (PCSK9) mRNA expression.123

Berberine utilization with immunosuppressant cyclosporine can increase blood levels of cyclosporine and reduce the required doses to reach a therapeutic level with no additional side effects.124 On the other hand, its concomitant administration with metformin leads to drug-drug interaction due to its ability to act as a substrate for organic cation transporters, which is responsible for metformin transport leading to increased AUC of metformin and slowing down its clearance. It could be used as an antimicrobial agent like other common folk medicines such as Shilajit plant.125

The most important limitations for its use are its poor pharmacokinetic profile due to its highly hydrophobic nature, poor penetration and absorption. However, this can be solved by preparations such as solid lipid nanoparticles or phytosomes loaded with berberine-phospholipid complex (P-BER), which has much higher bioavailability.126,127

Liver is considered its main accumulation organ, while first-pass metabolism occurs mostly in small intestines. Berberine binds to ATP-binding cassette (ABC) transporters especially P-glycoprotein (P-gp) and multidrug resistance associated protein-1 (MRP1), which transport their substrates extracellularly decreasing its own absorption and the absorption of other substrates of these transporters. It also alters the activity of a number of CYP isoenzymes that may lead to several drug interactions. Berberine side effects are dose related, 200 to 1000 mg twice or thrice daily are regarded safe with no toxicity. However, animal studies showed that doses higher than 45 mg/kg resulted in more serious side effects such as gastrointestinal disturbance, dyspnea, heart damage, and hypotension.38,128-130

In a clinical trial, the gastrointestinal side effects of berberine start from doses of 500 mg three times daily in 34.5% of patients.129 Animal studies reported no adverse effect of berberine on pregnant mothers.131 However, another study noted that it could lead to jaundice, kernicterus, and mental disorders in newborns as berberine dislocates bilirubin from serum proteins.36 A research group concluded that berberine does not have cytotoxic or genotoxic properties.128 However, in the results of a more recent study, berberine could cause cytotoxicity, DNA damage, increase oxidative stress, and induce apoptosis.129

Resveratrol

Resveratrol (Figure 6) is a polyphenolic compound, which is found in many plants and beverages around the world. It is known to be responsible for the French paradox phenomenon that is explained by the high amounts of red wine consumed by the French.132 It has various medical applications in Alzheimer's disease, cancer, CVDs, diabetes, and other medical conditions.

As a hypotensive, cardioprotective agent, resveratrol has multiple mechanisms of actions. It improves vascular function and muscle contractility through the inhibition of myosin phosphatase-targeting subunit 1 (MYPT1) and myosin light chain (MLC) phosphorylation by angiotensin II via activation of 5’ AMP-activated protein kinase (AMPK) pathway and inhibition of rho-associated, coiled-coil-containing protein kinase 1 (ROCK) enzyme.133 Resveratrol also acts as a vasodilator through the inhibition of Ca2+ transportation extracellularly by the suppression of L-type Ca2+ channels activity and intracellularly by the inhibition of IP\textsubscript{3}-gated Ca2+ channels along with the activation of K channels particularly Kv1.1 subtypes.
KV1.1 and/or KV1.6 channels. Inhibition of Ca²⁺ activities plays a role in inhibition of platelet aggregation. In addition, TXA2 and its stable metabolite TXB2 are essential regulators to amplify platelet activation, secretion, and aggregation; resveratrol reduces TXB2 levels. It enhances acetylcholine vasorelaxant effect and attenuates angiotensin II and phenylephrine although many studies showed that it had no effect on normotensive patients.

Furthermore, resveratrol has antioxidant capacity as it enhances glutathione peroxidase and SOD activity and increases their mRNA expression. It also reduces the levels of reactive oxygen species specially 4-hydroxy-2-nonenal and its induced inactivation of LKB-1-AMPK pathway thus activating endothelial NO synthase or through prevention of endogenous nitric oxide synthase (eNOS) uncoupling as reported by Bhatt et al. Others mentioned additional mechanisms, as resveratrol increases tetrahydrobiopterin BH4 levels, which acts as a cofactor for eNOS and activates sirtuin 1 (SIRT1), which increases eNOS activation and expression. On the contrary, some studies such as Han et al. reported no effect of resveratrol on NO levels or stimulation.

Resveratrol activity as a cardioprotective agent includes its hypolipidemic effect mediated through its ability to suppress HMG CoA reductase enzyme expression along with reducing of TG levels. Additionally, it controls cytochrome P450 27-hydroxylase enzyme, which is responsible for cholesterol metabolism and elimination, and perpetuates mitochondrial functions as it protects mitochondrial fatty acids from oxidation. It has the ability to prevent cardiac remodeling and hypertension-induced hypertrophy through the inhibition of ET-1 expression and acting as ET-1 antagonist. However, Lekli et al. argue that resveratrol does not have an inhibitory effect on ET-1 receptors. Resveratrol also inhibits prohypertrophic signals (p70S6K) via activation of LKB-1-AMPK pathway. All the previous pathways are linked to pulmonary hypertension and ocular hypertension especially steroid-induced elevation of intraocular pressure (IOP). Resveratrol is an important hepatoprotective agent and prevents neurodegeneration, which makes it useful in alcoholic and nonalcoholic liver steatosis and Alzheimer.

Resveratrol is an important hepatoprotective agent and prevents neurodegeneration, which makes it useful in alcoholic and nonalcoholic liver steatosis and Alzheimer. The antidiabetic effect of resveratrol was investigated for many years. Lekli et al. reported that it can upregulate GLUT4 expression and prevent apoptosis which in addition to the hypolipidemic activity of resveratrol would have a great impact on DM and its complications. Furthermore, it appears to have a synergistic effect with metformin.

Medical application of resveratrol is limited by its poor bioavailability (0.5% only) due to extensive first pass metabolism in liver. Some researchers argue that resveratrol bioavailability in wine is much better than when orally administered. Lungs also play an important role in resveratrol metabolism. Another limitation is the wide variations in blood levels of resveratrol after absorption. However, its highly lipophilic nature provides high tissue concentration and high volume of distribution even for tiny amounts in different supplements. The poor bioavailability problem is currently solved by preparations such as Nano formulation that has much higher bioavailability and allows its topical and buccal application. Resveratrol is generally considered safe and has no toxic effects; nonetheless, one study reported that it leads to renal failure in 5 patients out of 24 enrolled subjects who received 5 g/day.
Hesperidin

Hesperidin (Figure 7), a flavanone glycoside found in citrus fruit peels, and its deglycated product hesperetin aglycone have an important role in TM in many countries as antioxidant, anti-inflammatory, and anti-allergic cardioprotective and they are used to reduce capillary fragility.\(^1^{60}\) Hesperidin reduces the BP through the stimulation of eNOs and NO production and the attenuation of sympathetic activity.\(^1^{61,162}\) Hesperitin acts as a direct vasodilator through the stimulation of voltage gated K\(^+\) channels and the inhibition of L-type Ca\(^{2+}\) channels.\(^1^{63,164}\) Hesperidin has anti-arrhythmic property due to its ability to prolong Q-wave/T-wave (QT) interval,\(^1^{65}\) and it also acts as a potent antioxidant through direct free radical scavenging mechanism and activation of erythroid 2-related factor 2, SOD, glutathione reductase, and CAT enzymes along with vitamin C and E and enhancing the production and activity of plasma protein thiols.\(^1^{66}\) Furthermore, hesperidin has a statin-like action as it decreases the expression HMG-CoA reductase enzyme and acyl CoA: cholesterol acyltransferase (ACAT) which leads to the reduction of serum and liver cholesterol along with the potentiation of LDL receptor activity.\(^1^{67}\)

Hesperidin acts as an anti-inflammatory agent through the inhibition of COX2 and NF-κB and the prevention of platelet aggregation.\(^1^{68-170}\)

Multiple studies were conducted to determine and evaluate the impact of hesperidin on T2DM and its complications. According to Wilcox et al.\(^1^{71}\) results that were proven by Akiyama et al.\(^1^{67}\) in vivo, hesperidin increased gene expression of adiponectin, PPAR-α and -γ. It also stimulates GK and inhibits G6PD and phosphoenolpyruvate carboxykinase activity enhancing glycolysis and attenuating gluconeogenesis, along with its ability to enhance GLUT4 gene expression.\(^1^{72,173}\)

Hesperidin has the ability to act as α-glucosidase inhibitor as well.\(^1^{74}\) All of these mechanisms lower blood glucose levels, decrease glycated hemoglobin percentage, and improve glycemic control in T2DM patients.

Antioxidant properties of hesperidin seem to contribute in its hypoglycemic effect by protecting the sulfhydryl groups of glycolytic enzymes\(^1^{75}\) and in its ability to prevent or reverse brain damage and diabetic neuropathy through maintaining normal levels of GSH and NP-SH enzymes, reducing malondialdehyde (MDA) levels, increasing nicotinic and muscarinic tones thus preventing cellular metabolic degradation.\(^1^{76,177}\)

Hesperetin has a good impact on microvascular complications as retinal vasculature damage through its anti-angiogenic properties as it reduces vascular endothelial growth factor and protein kinase C (PKC-β) genes expression. Vascular endothelial growth factor also known as vascular permeability factor which is a cytokine that plays a vital role in angiogenesis and mitosis which upon stimulation activates PKC-β and participates in diabetic retinopathy.\(^1^{78}\)
In addition, hesperidin is known for its antitumor properties. In vivo study on animal models indicated that hesperidin increased body weight and reduced incidence of lung, intestinal, breast tumor, and various types of carcinoma cell lines which is thought to be due to its anti-angiogenic, anti-inflammatory, apoptotic, and antioxidant properties. While, Fernández-Bedmar et al. suggested a dose-dependent cytotoxic behavior and inhibition of DNA 5' cytosine methylation affecting the epigenetics for tumor formation. It may be a beneficial add-on for chemotherapy regimens to decrease cisplatin-induced hepatotoxicity without altering its cytotoxicity. However, co-administration of hesperidin with cyclophosphamide ameliorated the cytotoxic effect of cyclophosphamide, and in vitro studies suggested the possible interaction between hesperidin and doxorubicin reducing the latter efficacy.

In vivo animal studies supported the claim that hesperidin has good impact on bone state and would be effective in osteoporosis, bone resorption, and remodeling disorders related to hormonal imbalance. As an example, hesperitin aglycone was found to prevent bone degradation associated with aromatase inhibitors and preserved bone mass density. Trzeciakiewicz et al. concluded that hesperidin enhanced osteoblast differentiation through bone morphogenetic protein (BMP) pathway. Another study showed that hesperidin efficacy in preventing bone resorption related to estrogen deficiency may be related to estrogenic action on estrogen receptors which reduces osteoclast count. This was supported by another study that investigated its efficacy on androgen deficiency induced bone loss. However, a clinical trial conducted by Martin et al. found no effect for hesperidin on bone Ca retention, but the risk for interaction between hesperidin and Ca could not be excluded and they did not investigate hesperidin activity on the other parameters as osteoblast and osteoclast number and activity.

Hesperidin administration elevates monoamine levels in the brain which explains its antidepressant properties. However, administration of K channel openers abolished its antidepressant effect as it is thought to be mediated through K channel inhibition as reported by Donato et al. Therefore, further investigation of the possible interactions between hesperidin and direct acting vasodilators as minoxidil and diazoxide is still required.

Another suspected interaction for hesperidin is with selective MAO-B inhibitor rasageline used in the treatment of Parkinsonism possibly due to the inhibition of CYP1A2 enzyme. A recent study concluded that hesperitin inhibits UDP-glucuronosyltransferase enzyme, a key enzyme in phase II metabolic pathway, that might lead to several drug-drug interactions with any drug metabolized by this enzyme.

One useful pharmacodynamic interaction of hesperidin is its synergistic interaction with diazepam and gabapentin on GABAA and benzodiazepine receptors; this mechanism is also related to its antioxidant and enhancement of neuronal survival and growth.

Catha edulis

Catha edulis (Figure 8), commonly known as “khat,” is a tree or large shrub that is endogenously found in the Arab peninsula specially in Yemen, some African countries such as Ethiopia and Kenya, and in western Asia. For centuries, khat had been used traditionally, mainly for its psychostimulant, euphoric, and analgesic activity. The leaves are chewed to release the active constituents slowly to be ingested with...
saliva. Chewing sessions can last from 3 to 7 hours. It is estimated that 10 million people worldwide chew khat leaves daily.195

Catha edulis contains various pharmacologically active compounds and more than 20 compounds were identified and isolated, but almost all of its pharmacological properties are attributed to cathinone. Cathinone is an alkaloid that decomposes rapidly in vivo by metabolism into norpseudoephedrine and norephedrine giving amphetamine-like action.196

There is a claim that agrees with a traditional belief that khat may have a beneficial effect on DM. Many studies have been conducted on this subject and the outcome showed non-consistent results. Taleb and Bechyné197 indicated that chewing khat leads to mild reduction in BGL in nondiabetic patients.

Heymann et al198 reported that khat delayed gastric emptying time, which supports and may explain the earlier finding. This study did not investigate the hypoglycemic effect of *C. edulis*. Murray et al199 found that it acted as an appetite depressant and Saif-Ali et al200 showed no statistically significant difference in BGL between khat chewer and nonchewer nondiabetic patients. In contrast, Ibrahim and Kotb201 reported that there is a strong correlation between chronic khat administration and T2DM developing.

A recent meta-analysis that included both animal and human studies concluded that *C. edulis* is associated with insignificant reduction in BGL in nondiabetic humans and animals. While it leads to a significant increase in BGL in humans diabetic patients.198 Based on the preceding results, *C. edulis* has no beneficial effect in T2DM but chewing is considered as a predisposing factor as well as a contributing factor for bad prognosis.

According to Ibrahim and Kotb201 *C. edulis* chewing resulted in an increase in serum cortisol and resistin levels while it decreased serum insulin level. The main active ingredient cathinone has structure and action similarity with amphetamine; thus, it stimulates catecholamines release and activates β-adrenergic receptors increasing adrenocorticotropic hormone release and serum cortisol level which takes part in the inhibition of insulin release.202 Additionally, the rise in catecholamines level stimulates glycosgenolysis in skeletal muscles.203 The rise in norepinephrine level along with elevated calcium and copper levels is the main mechanism for *C. edulis* associated rise in serum resistin concentration, which mediates insulin resistance and leads to glucose metabolism disorders.204,205

Catha edulis also reduces zinc levels which can affect DM in several ways as it is involved in insulin hexamer synthesis and in the protection of sulfhydryl groups of proteins and enzymes.206 As reported by Nascimento Marreiro et al,207 it worsens hyperglycemic symptoms leading to glucose urea and increased osmotic diuresis which increases Zn excretion leading to increased insulin resistance due to impaired insulin synthesis and increased oxidative stress and AGE formation. Excessive metal ions such as copper may bind to AGE and participate in peripheral neuropathy.208

Chewing khat is also associated with the elevation of BP, a trial reported a rise in BP by 15 mmHg after khat chewing.209 Blood pressure peaks were simultaneous with cathinone peaks 1.5 to 3.5 hours from the start of administration; another trial reported that chronic khat chewing elevated diastolic BP among Ethiopian adults with no significant effect on systolic BP.210 Similarly, Fikru et al211 reported the same result, however, there was a confounding factor of smoking and alcohol consumption, which could increase diastolic blood pressure (DBP) on their own. This hypertensive effect is thought to be related to the maintained cathinone levels and its peripheral vasoconstrictive effect, which is mediated either by the elevated catecholamines level or by direct action of cathinone on trace amine-associated receptors.212

Hypertension is not the only CVD related to khat consumption. Al-Motarreb et al203,213 concluded that khat increases predisposition for acute myocardial infarction between chewers as a result of its indirect sympathomimetic activity increasing both heart rate and peripheral vascular resistance impairing coronary artery perfusion, which increases oxygen consumption and work load on the heart along with catecholamine potentiation of platelet aggregation. Alkadi et al214 linked khat consumption to a rise in the levels of cardiac enzymes LDH and creatine kinase iso-enzyme (CK-MB). These vasoconstrictive, hypertensive properties of cathinone could also lead to cerebrovascular damage such as stroke or multiple types of cardiomyopathy and edema.212

Another complication is hemorrhoids, which is related to hypertension incidence as well as sympathetic relaxation of GIT peristalsis and increase in platelet activity as *C. edulis* alleviated the antiplatelet activity of aspirin.215

Tannins content in khat is related to the incidence of gastritis, esophagitis, and stomatitis and increased risk for duodenal ulcers due to astringent properties. Tannins also contribute to pseudoephedrine and the delayed gastric emptying in the incidence of constipation, the most common medical complaint from khat chewers.216

Catha edulis has a beneficial effect on body weight which is mainly related to its appetite suppressant activity explained by centrally mediated elevation of plasma leptin level which suppresses hunger feeling and decreases weight and lipids.217 This was proven by Al-Dubai et al218 that khat chewing leads to significant reduction in plasma TG level and increase in nonesterified fatty acids with no effect on cholesterol level. Triglyceride level reduction could also be mediated through lipolysis stimulation via beta 2 adrenergic receptors.219 On the other hand, Al-Zubairi et al220 conducted a trial found that *C. edulis* caused nonsignificant reduction in TG level. They reported rise in lipid peroxidation biomarkers and significant reduction in the body ability to handle ROS. ROS is one of the main causes for khat-related kidney and liver cell damage due to vasoconstriction and impaired organ blood flow explaining the elevation of liver enzymes ALT, ALP, and indirect bilirubin. It leads to high incidence of liver fibrosis, cirrhosis, and the presence of fat droplets in cortical tubules and acute tubular nephropathy.218,221,222
Impaired antioxidant capacity in khat chewers was explained by multiple theories as rise in thyroid hormone level which increases metabolic rates and ROS generation and reduction in glutathione levels accompanied with some contributing factors like smoking and alcohol consumption.223

There was a belief that khat consumption decreases weight gain during pregnancy. However, studies performed on pregnant women showed that C. edulis regular consumption decreases utero-placental blood flow due to vasoconstriction and thus impairs fetal growth leading to premature delivery, low birth weight, and increasing the risk for perinatal and young infant death.224 Khat appetite suppression decreases maternal calories and protein intake and contributes to the preceding risks. Islam et al.225 conducted a trial on pregnant rats, and as a result, they reported risk for the prevention of fetal DNA and proteins synthesis, incidence of fetal malformations, as well as mutagenic activity which may be related to flavonoids and alkaloid constituents.

Low and moderate doses of khat increase sexual desire and testosterone levels with inconsistent effect on performance, while higher doses decrease both desire and performance.226 Long-term consumption can lead to sexual impotence with decreasing spermatogenesis and testosterone concentration.224 This biphasic behavior can be explained by alteration in dopamine levels in central nervous system (CNS).227

Portulaca oleracea

Portulaca oleracea L. (Figure 9) is listed by WHO among the most commonly used plants for medicinal purposes such as cancer, ulcers, infections, hepatorenal diseases, CVDs, and DM. It is commonly known as purslane, pigweed, or rigla and is cultivated worldwide. Purslane has been used traditionally since the era of ancient Egyptians and is known to be of nutritive value as a rich source of amino acids.228

Being a natural source for omega 3 fatty acids and polysaccharides, the leaves of P. oleracea are known to have hypolipidemic properties. Purslane has the ability to increase HDL and decrease TG, LDL, and cholesterol significantly.229 The mechanism is related to the inhibition of acyltransferase and fatty acid synthase enzymes. This effect is also helpful in alleviating insulin resistance, which justifies purslane popular use for T2DM all over the world and as an adjuvant with close efficacy to metformin for better glycemic control. Many studies reported insulinotropic properties for purslane as it enhances insulin production and has synergistic impact on conventional secretagogue’s activity, eg, tolbutamide.230 Purslane also enhances glycolysis and stimulates LDH, phosphofructokinase, and pyruvate kinase. It was found that a dose of 400 g/(kg·day) exerts ideal antidiabetic effect.231 Its hypolipidemic properties are of value in treatment and prophylaxis of Figure 9. Portulaca oleracea mechanisms of actions. HDL, high density lipoprotein; ICAM-1, intracellular adhesion molecule-1; IL-6α, interleukin 6 receptor alpha; LDL, low density lipoprotein; MDA, malondialdehyde; SOD, sodium oxide dismutase; TG, triglyceride; TNF-α, tumor necrosis factor alpha; VCAM-1, vascular cell adhesion molecule; ICAM-1, intercellular adhesion molecule 1.
hypertension, coronary artery diseases, and further possible complications. Khodadadi et al.232 reported that purslane also reduces left ventricular pressure in a study conducted on animal models.

Additionally, purslane has a distinguished antioxidant capacity, which is attributed to high vitamin A content along with ascorbic acid and various flavonoids and polyphenolics. These provide direct free radical scavenging activity and enhance the activity of many enzymes such as glutathione reductase, glutathione peroxidase, SOD, and catalase.233 It was found that purslane can effectively reduce MDA levels and increase plasma thiols overall. This is valuable in preventing and managing DM complications, and the oxidative stress exerted by advanced glycation end products. The antioxidant activity of \textit{P. oleracea} takes part in its neuroprotective activity along with its dopamine and norepinephrine alkaloid contents, which restore normal neurotransmitter levels and have a beneficial impact on Parkinson’s disease. It also protects the brain from tissue hypoxia and has ACHE inhibitory effect, which supports its use in prevention and treatment of Alzheimer’s disease.234,235

The anti-inflammatory effect of purslane is mediated through the inhibition of tumor necrosis factor-\(\alpha\) (TNF-\(\alpha\)) and IL-6\(\alpha\) production and subsequent production of VCAM-1, ICAM-1, and E-selectin.228,236

Furthermore, \textit{P. oleracea} has the ability to reduce ALT, AST, gamma glutamyl transferase (GGT), and liver MDA and decrease both direct and indirect bilirubin acting as a hepatoprotective agent along with its wound healing and renal

Table 1. Most Recommended and the Contraindicated Herbal Medicine for Each Disease Subcategorized by the Concomitant Diseases.

Primary degenerative disorder	Concomitant diseases	Recommended herbal	Contraindicated herbal
Hypertension	CVD and hyperlipidemia	\textit{Hibiscus sabdariffa}	\textit{Catha edulis}
		Red beetroot	
		Hesperidin	
		Resveratrol	
		Garlic	
Liver disorders (steatosis—fatty liver)	Resveratrol	\textit{Hibiscus sabdariffa}, Berberine, (newborn)	\textit{Catha edulis}
Osteoporosis		Hesperidin	
Alzheimer		Resveratrol	\textit{Portulaca oleracea}
Parkinsonism		Hesperidin	\textit{Portulaca oleracea}
Cancer/hereditary tendency		Hesperidin	
Infectious diseases	Garlic	Resveratrol	
Glaucoma, elevated IOP			
Male reproductive disorders			
Diabetes mellitus	Myasthenia gravis and Alzheimer's	Berberine	\textit{Portulaca oleracea}
		\textit{Ziziphus oxyphylla}	
		\textit{Hibiscus sabdariffa}	
Elevated AGE and oxidative stress	\textit{Ziziphus species}	Berberine	\textit{Hesperidin}
		Hesperidin	
		Garlic	
Hyperlipidemia and CVD	\textit{Mulberry leaves}	Berberine	\textit{Portulaca oleracea}
		\textit{Portulaca oleracea}	
Renal and liver disorders	\textit{Mulberry leaves}	\textit{Portulaca oleracea}	\textit{Catha edulis}
Diabetic neuropathy	Hesperidin	\textit{Mulberry leaves}	\textit{Portulaca oleracea}
Diabetic nephropathy	Garlic	Berberine	
Diabetic retinopathy	Hesperidin	Berberine	
Menopausal symptoms/PCOS	Berberine		

CVD, cardiovascular disorder; IOP, intraocular pressure.
Purslane has immunomodulatory effects as it stimulates phagocytosis and is helpful against many resistant bacterial species such as Methicillin-resistant Staphylococcus aureus (MRSA). A recent study confirmed its synergistic effect with antibiotics such as macrolides. Purslane was proven to be generally safe and free from any cytotoxicity and its pharmacokinetics depends on the type of preparation and part used.

Conclusion

After reviewing the activity and mechanisms of actions of 10 common medicinal plants in the form of purified herbal compounds and/or herbal preparation of plant part, we concluded that Berberine, genus Ziziphus species, mulberry leaves, and P. oleracea are effective in T2DM, while garlic, Hibiscus sabdariffa, red beetroot, and resveratrol are potential competent antihypertensive agents. All of these 9 herbal medicine members are useful in ameliorating oxidative stress, complications of both inflammatory diseases and CVD. Hesperidin is proven as a possible treatment for both diseases. However, its utilization in CVD is the most wide spread application. On the other hand, C. edulis is to be avoided in both hypertension and T2DM patients and to be used only in healthy overweight people as an appetite depressant.

Tables 1 and 2 present our recommendations for suggested utilization of herbal medicine in the treatment of DM and hypertension along with various concomitant diseases.

Recommendations

Further investigations are required for standardization of the doses and the active constituents of these herbal agents to identify the minimum effective doses and their therapeutic windows. Hence, it avoids toxicity and possible drug interactions in conventional treatment regimens. In addition, the bioavailability of agents such as resveratrol and berberine has a potential for improvement through nanoparticles formulations. This requires investigations using more safe types with natural constitutes such as the lipid-based types specially lipo-protein nanoparticles.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID ID

Hatem K. Amin https://orcid.org/0000-0003-3757-5927

References

1. Abdel Baky A, Amin HK. Effect of Citrullus colocynthis in ameliorate the oxidative stress and nephropathy in diabetic experimental rats. Int J Pharm Stud Res. 2011;2(2):1-10.
2. Raja Ikram RR, Abd Ghani MK, Abdullah N, Ikram RRR, Ghani MKA. An analysis of application of health informatics in traditional medicine: a review of four traditional medicine systems. Int J Med Inform. 2015;84(11):988-996. doi:10.1016/j.ijmedinf.2015.05.007
3. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109(Suppl 1):69-75. doi:10.1289/ehp.01109s169
4. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28-e292. doi:10.1161/01.cir.0000441139.02102.80
5. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults. JAMA. 2014;311(5):507-507. doi:10.1001/jama.2013.284427
6. Bangalore S, Kumar S, Kjeldsen SE, et al. Antihypertensive drugs and risk of cancer: network meta-analyses and trial sequential analyses of 324,168 participants from randomised
trials. *Lancet Oncol.* 2011;12(1):65-82. doi:10.1016/S1470-2045(10)70260-6

7. Landsberg L, Aronne LJ, Beilin LJ, et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment-a position paper of the obesity Society and the American Society of hypertension. *Obesity.* 2013;21(1):8-24. doi:10.1002/oby.20181

8. Feix P, Sear JW. Hypertension: pathophysiology and treatment. *Continuing Education in Anaesthesia Critical Care & Pain.* 2004;4(3):71-75. doi:10.1093/bjaceaccp/mkh020

9. Amin HK, El-Sayed M-IK, Leheta OF. Homocysteine as a predictive biomarker in early diagnosis of renal failure susceptibility and prognostic diagnosis for end stages renal disease. *Ren Fail.* 2016;38(8):1267-1275. doi:10.1080/0886022X.2016.1209382

10. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus provisional report of a who consultation. *Diabet Med.* 1998;15(7):539-553. doi:10.1002/(SICI)1096-9166(199807)15:7<539::AID-DIA668>3.0.CO;2-S

11. World Health O. Global report on diabetes who library Cataloguing-in-Publication data. *JASN.* 2016;97:82-94.

12. Reda M, Amin HK. Mini - review : clinical and molecular compounds. Part 1: diagnosis and classification of diabetes mellitus and its complications. *Phytomedicine.* 2015;22(3):352-361. doi:10.1016/ j.phymed.2014.12.013

13. Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Garlic and anti-inflammation: a predictive biomarker in early diagnosis of renal failure. *World J Diabetes.* 2015;6(3):432-444. doi:10.4239/wjd.v6.i3.432

14. Rivlin RS. Historical perspective on the use of garlic. *J Nutr.* 2001;131(3):951S-954. doi:10.1093/jn/131.3.951S

15. Xiong XJ, Wang PQ, Li SJ, Li XK, Zhang YQ, Wang J. Garlic for hypertension: a systematic review and meta-analysis of randomized controlled trials. *Phytomedicine.* 2015;22(3):352-361. doi:10.1016/j.phymed.2014.12.013

16. Zeng T, Guo F-F, Zhang C-L, Song F-Y, Zhao X-L, Xie K-Q. A meta-analysis of randomized, double-blind, placebo-controlled trials for the effects of garlic on serum lipid profiles. *J Sci Food Agric.* 2012;92(9):1892-1902. doi:10.1002/jsfa.5557

17. Rosenson RS, Neil HAW, Vallance DT. Rosuvastatin: a new inhibitor of HMG-coA reductase for the treatment of dyslipidemia. *Expert Rev Cardiovasc Ther.* 2003;1(4):495-505. doi:10.1586/14779072.1.4.495

18. Matsutomo T, Ushijima M, Kodera Y, et al. Metabolic study on the antihypertensive effect of S -1-propenylcysteine in spontaneously hypertensive rats using liquid chromatography coupled with quadrupole-orbitrap mass spectrometry. *J Chromatogr B.* 2017;1046:147-155. doi:10.1016/j.jchromb.2017.01.029

19. Ashaq SM, Inamdar MN. Potential of garlic and its active constituent, s-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. *Phytomedicine.* 2010;17(3):1016-1026. doi:10.1016/j.phymed.2010.07.012

20. Hosseini M, Shafiee SM, Baluchnejadmojarad T. Garlic extract reduces serum angiotensin converting enzyme (ACE) activity in nondiabetic and streptozotocin-diabetic rats. *Pathophysiology.* 2007;14(2):109-112. doi:10.1016/j.pathophys.2007.07.002

21. Al-Qattan KK, Thomson M, Al-Mutawa’a S, Al-Hajeri D, Drobiho V, Ali M. Nitric oxide mediates the blood-pressure lowering effect of garlic in the rat two-kidney, one-clip model of hypertension. *J Nutr.* 2006;136(3 Suppl):774S-776. doi:10.1093/ jn/136.3.774S

22. Sun X, Xu DD, Thandapilly SJ. Allicin in garlic protects against coronary endothelial dysfunction and right heart hypertrophy in pulmonary hypertensive rats. *Am J Physiol Heart Circ Physiol.* 2006;291(5):H2431-H2438. doi:10.1152/ajpheart.00384.2006

23. Ashraf MZ, Hussain ME, Fahim M. Endothelium mediated vasorelaxant response of garlic in isolated rat aorta: role of nitric oxide. *J Ethnopharmacol.* 2004;90(1):5-9. doi:10.1016/j.jep.2003.06.001

24. Qidwai W, Ashfaq T. Role of garlic usage in cardiovascular disease prevention: an evidence-based approach. *Evid Based Complement Alternat Med.* 2013;2013(2):1-9. doi:10.1155/2013/125649

25. Islam MS, Choi H. Comparative effects of dietary ginger (Zingiber officinale) and garlic (Allium sativum) investigated in a type 2 diabetes model of rats. *J Med Food.* 2008;11(1):152-159. doi:10.1089/jmf.2007.634

26. Castro C, Lorenzo AG, González A, Cruzado M. Garlic components inhibit angiotensin II-induced cell-cycle progression and migration: involvement of cell-cycle inhibitor p27Kip1 and mitogen-activated protein kinase. *Mol Nutr Food Res.* 2009;54(6):781-787. doi:10.1002/mnfr.200900108

27. Arreola R, López-Roa RI, López-Roa RI, et al. Immunomodulation and anti-inflammatory effects of garlic compounds. *J Immunol Res.* 2015;2015:1-13. doi:10.1155/2015/401630

28. Park H-J, Jeon BT, Kim HC, et al. Aged red garlic extract reduces lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages and acute pulmonary inflammation through haeme oxygenase-1 induction. *Acta Physiol.* 2012;205(1):61-70. doi:10.1111/j.1748-1716.2012.02425.x

29. Wilson EA, Demmig-Adams B. Nutrition && Food Science Antioxidant, anti-inflammatory, and antimicrobial properties of garlic and onions. *Nutr Food Sci.* 2007;37(3):178-183.

30. Marice AD, Abd-Allah GM, El-Yamany MF. Renal oxidative stress and nitric oxide production in streptozotocin-induced diabetic nephropathy in rats: the possible modulatory effects of garlic (Allium sativum L.). *BMC Complement Altern Med.* 2009;9(2):432-444. doi:10.1186/1472-6882-9-432

31. Thomson M, Al-Qattan KK, Js D, Ali M. Anti-Diabetic and anti-oxidant potential of aged garlic extract (age) in streptozotocin-induced diabetic rats. *BMC Complement Altern Med.* 2015;16(1):17-17. doi:10.1186/s12906-016-0992-5

32. Sobenin IA, Andrianova IV, Demidova ON, Gorchakova T, Orekhov AN. Lipid-Lowering effects of time-released garlic powder tablets in double-blinded placebo-controlled randomized study. *J Atheroscler Thromb.* 2008;15(6):334-338. doi:10.5551/jat.E550
33. Balamash K, Alhar O, Wang Q, Ahmed N. Effect of Kyolic® aged garlic extract on glycemia, lipidaemia and oxidative stress in patients with type 2 diabetes mellitus. J Diab Res Clin Met. 2012;1(1):18-18. doi:10.7243/2050-0866-1-18

34. Atkin M, Laight D, Cummings MH. The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. J Diabetes Complications. 2016;30(4):723-727. doi:10.1016/j.jdiacomp.2016.01.003

35. Ried K, Frank OR, Stocks NP. Aged garlic extract reduces blood pressure in hypertensives: a dose-response trial. Eur J Clin Nutr. 2013;67(1):64-70. doi:10.1038/ejcn.2012.178

36. Macan H, Uykimpang R, Alconcel M, et al. Aged garlic extract may be safe for patients on warfarin therapy. J Nutr. 2006;136(3 Suppl):793S-795. doi:10.1093/jn/136.3.793S

37. Ried K, Travica N, Sali A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensives: the age at heart trial. J Integ Blood Press Control. 2016;9:9-21. doi:10.2147/IBPC. S93335

38. Hermann R, von Richter O. Clinical evidence of herbal drugs as uncontrolled stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. J Diabetes Complications. 2016;30(4):723-727. doi:10.1016/j.jdiacomp.2016.01.003

39. Borrelli F, Capasso R, Izzo AA. Garlic (Allium sativum L.): adverse effects and drug interactions in humans. Planta Med. 2007;73(1):1386-1397. doi:10.1055/s-0032-1315117

40. Varshney R, Garlic BMJ. And heart Disease1–3.

41. Ma S, Yin J. Anaphylaxis induced by ingestion of raw garlic. Foodborne Pathog Dis. 2012;9(8):773-775. doi:10.1089/fpd.2012.1133

42. Ackermann RT, Mulrow CD, Ramirez G, et al. Garlic shows anti ox50 10009 10. 1016/ j. jff. 2012. 08. 004

43. Ma S, Yin J. Anaphylaxis induced by ingestion of raw garlic. Foodborne Pathog Dis. 2012;9(8):773-775. doi:10.1089/fpd.2012.1133

44. Hammi KM, Jdey A, Abdelly C, Majdoub H, Ksouri R. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Ziziphus Lotus fruits using response surface methodology. Food Chem. 2015;184:80-89. doi:10.1016/j.foodchem.2015.03.047

45. Almeer RS, Mahmoud SM, Amin HK, Abdel Monem AE. Ziziphus spina-christi fruit extract suppresses oxidative stress and p38 MAPK expression in ulcerative colitis in rats via induction of Nrf2 and HO-1 expression. Food Chem Toxicol. 2018;115:49-62. doi:10.1016/j.fct.2018.03.002

46. Ahmad R, Ahmad N, Naqvi AA. "Ziziphus oxyphyla": Ethnobotanical, ethnopharmacological and phytochemical review. BioMed Pharmacother. 2017;91:970-998. doi:10.1016/j.biocypha.2017.04.129

47. Kaleem WA, Nisar M, Qayum M, Zia-Ul-Haq M, Adhikari A, De Feo V, Feo D V. New 14-membered cyclopeptide alkaloids from Ziziphus oxyphyla Edgew. Int J Mol Sci. 2012;13(9):11520-11529. doi:10.3390/ijms130911520

48. Choudhary MI, Adhikari A, Rasheed S, et al. Cyclopeptide alkaloids of Ziziphus oxyphyla Edgew as novel inhibitors of α-glucosidase enzyme and protein glycation. Phytochem Lett. 2011;4(4):404-406. doi:10.1016/j.phytol.2011.08.006

49. Ahmad R, Ahmad N, Naqvi AA, et al. Antioxidant and antiglycating constituents from leaves of Ziziphus oxyphyla and Cedrela serrata. Antioxidants. 2016;5(1):9-9. doi:10.3390/antiox5010009

50. Mazhar F, Khanum R, Ajaib M, Jahangir M. Potent AChE enzyme inhibition activity of Ziziphus oxyphyla: a new source of antioxidant compounds. Pak J Pharm Sci. 2015;28(6):2053-2059.

51. Bhatia A, Mishra T. Hypoglycemic activity of Ziziphus mauritiana aqueous ethanol seed extract in alloxan-induced diabetic mice. Pharm Biol. 2010;48(6):604-610. doi:10.3109/13880209.2010.533586

52. Sichaem J, Aree T, Lugsanangarm K, Tip-Pyang S. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from Ziziphus rugosa bark: enzyme kinetic and molecular docking studies with active metabolites. Pharm Biol. 2017;55(1):1436-1441. doi:10.1080/13880209.2017.1304426

53. Ibrahim MA, Islam MS. Effects of butanol fraction of Ziziphus mucronata root ethanol extract on glucose homeostasis, serum insulin and other diabetes-related parameters in a murine model for type 2 diabetes. Pharm Biol. 2017;55(1):416-422. doi:10.1080/13880209.2016.1242632

54. Mousinho NMDHC, van Tonder JJ, Steenkamp V, Holmes NM. In vitro anti-diabetic activity of Sclerocarya birrea and Ziziphus mucronata. Nat Prod Commun. 2013;8(9):1279-1284.

55. Olajuyigbe OQ, Afolayan AJ. Phenolic content and antioxidant property of the bark extracts of Ziziphus mucronata Willd. subsp. mucronata Willd. BMC Complement Altern Med. 2011;11:130-130. doi:10.1186/1472-6882-11-130

56. Bateman J, Chapman RD, Simpson D. Possible toxicity of herbal remedies. Scott Med J. 1998;43(1):7-15. doi:10.1177/003693309804300104

57. Maier W, Khoza T, Harmse N, Wingfield BD, Wingfield MJ. A disease epidemic on Ziziphus mucronata in the Kruger National Park caused by Coniodictyum chevalieri. Stud Mycol. 2006;55:279-288. doi:10.1177/sim.55.1.279

58. Memarpoo-Yazdi M, Mahaki H, Zare-Zardini H. Antioxidant activity of protein hydrolysates and purified peptides from Ziziphus jujuba fruits. Food Chem Toxicol. 2013;51(1):40-47. doi:10.1016/j.fct.2012.08.004

59. Seo EJ, Lee SY, Kang SS, Jung Y-S. Ziziphus jujuba and its active component jujuboside B inhibit platelet aggregation. J Nutr. 2001;161(6):813-816. doi:10.1091/are.1999.161.6.813

60. Maier W, Khoza T, Harmse N, Wingfield BD, Wingfield MJ. A disease epidemic on Ziziphus mucronata in the Kruger National Park caused by Coniodictyum chevalieri. Stud Mycol. 2006;55:279-288. doi:10.1177/sim.55.1.279

61. de OAM, do NMF, Ferreira MRA, et al. Evaluation of acute toxicity, genotoxicity and inhibitory effect on acute inflammation
of an ethanol extract of Morus alba L. (Moraceae) in mice. J Ethnopharmacol. 2016;194:162-168.

62. Mudra M, Ercan-Fang N, Zhong L, Furne J, Levitt M. Influence of mulberry leaf extract on the blood glucose and breast hydrogen response to ingestion of 75G sucrose by type 2 diabetic and control subjects. Diabetes Care. 2007;30(5):1272-1274. doi:10.2337/dc06-2120

63. Hansawasdi C, Kawabata J, Alpha-Glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia. 2006;77(7-8):568-573. doi:10.1016/j.fitote.2006.09.003

64. Król E, Jeszka-Skowron M, Krejpcio Z, Flaczyk E, Wójciak RW. The effects of supplementary mulberry leaf (Morus alba) polysaccharides on hyperglycemia and insulin resistance in normoglycemic and streptozotocin-induced male and female rats. Eur J Pharmacol. 2003;473(1-2):283-289. doi:10.1016/S0014-2999(03)00816-6

65. Riche DM, Riche KD, East HE, Barrett EK, May WL. Impact of mulberry leaf extract on type 2 diabetes (Mul-DM): a randomized, placebo-controlled pilot study. Complement Ther Med. 2017;32:105-108. doi:10.1016/j.ctim.2017.04.006

66. Gu Y, Zhang Y, Shi X, et al. Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabolomics. Talanta. 2010;81(3):766-772. doi:10.1016/j.talanta.2010.01.015

67. Hunyadi A, Herke I, Veres K, Erdei A, Simon A, Tóth G. Volatile glycosides from the leaves of Morus alba with a potential contribution to the complex anti-diabetic activity. Nat Prod Commun. 2014;9(2):145-147. doi:10.1177/1934578X140090201

68. Nazari M, Hajizadeh MR, Mahmoodi M, Mirzaei MR, Hassanshahi G. The regulatory impacts of Morus alba leaf extract on some enzymes involved in glucose metabolism pathways in diabetic rat liver. Clin Lab. 2013;59(5-6):497-504. doi:10.7754/Clin.Lab.2012.120611

69. Zhang Y, Ren C, Lu G, et al. Purification, characterization and inhibitory activity of a polysaccharide from mulberry leaf. Regul Toxicol Pharmacol. 2014;70(3):687-695. doi:10.1016/j.yrtph.2014.10.006

70. Jiao Y, Wang X, Jiang F, Wang S, Yan C. Antidiabetic effects of Morus alba type II polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J Ethnopharmacol. 2017;199:119-127. doi:10.1016/j.jep.2017.02.003

71. Park M-Y, Lee K-S, Sung M-K. Effects of dietary mulberry, Korean red ginseng, and banana on glucose homeostasis in relation to PPAR-alpha, PPAR-gamma, and IPI mRNA expressions. Life Sci. 2005;77(26):3344-3354. doi:10.1016/j.lfs.2005.05.043

72. Naowaboot J, Pannangpetch P, Kukongviriyapan V, et al. Mulberry leaf extract restores arterial pressure in streptozotocin-induced chronic diabetic rats. Nutr Res. 2009;29(8):602-608. doi:10.1016/j.nutres.2009.06.002

73. Guo C, Li R, Zheng N, Xu L, Liang T, He Q. Anti-Diabetic effect of Ramulus mori polysaccharides, isolated from Morus alba L., on STZ-diabetic mice through blocking inflammatory response and attenuating oxidative stress. Int Immunopharmacol. 2013;16(1):93-99. doi:10.1016/j.intimp.2013.03.029

74. Kim D-S, Ji HD, Rhee MH, et al. Antiplatelet activity of Morus alba leaves extract, mediated via inhibiting granule secretion and blocking the phosphorylation of extracellular-signal-regulated kinase and Akt. Evid Based Complement Alternat Med. 2014;2014:1-11. doi:10.1155/2014/639548

75. He J, Feng Y, Ouyang H-Z, et al. A sensitive LC-MS/MS method for simultaneous determination of six flavonoids in rat plasma: application to a pharmacokinetic study of total flavonoids from mulberry leaves. J Pharm Biomed Anal. 2013;84:189-195. doi:10.1016/j.jpb.2013.06.019

76. Nakagawa K, Kubota H, Tsuzuki T, et al. Validation of an ion trap tandem mass spectrometric analysis of mulberry 1-deoxynojirimycin in human plasma: application to pharmacokinetic studies. Biochim Biophys Acta. 2008;1782(8):2210-2213. doi:10.1017/bbb.80200

77. Kim JY, Kwon HJ, Jung JY, et al. Comparison of absorption of 1-deoxynojirimycin from mulberry water extract in rats. J Agri Food Chem. 2010;58(11):6666-6671. doi:10.1021/jf100322y

78. Liu Y, Li X, Xie C, et al. Prevention effects and possible molecular mechanism of mulberry leaf extract and its formulation on rats with Insulin-Insensitivity. PLoS One. 2016;11(4):e0152728. doi:10.1371/journal.pone.0152728.

79. Liu H-Y, Fang M, Zhang Y-Q. In vivo hypoglycaemic effect and inhibitory mechanism of the branch bark extract of the mulberry on STZ-induced diabetic mice. Sci World J. 2014;2014:1-11. doi:10.1155/2014/614265

80. de Oliveira AM. Mesquita M dA S, dA Silva GC, et al. evaluation of toxicity and antimicrobial activity of an ethanolic extract from leaves of Morus alba L. (Moraceae). Evid Based Complement Alternat Med. 2015;2015:1-7.

81. Lown M, Fuller R, Lightowler H, et al. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: results of a randomised double-blind placebo-controlled study. PLoS One. 2017;12(2):e0172239. doi:10.1371/journal.pone.0172239.

82. Clifford T, Howatson G, West D, Stevenson E. The potential benefits of red beetroot supplementation in health and disease. Nutrients. 2015;7(4):2801-2822. doi:10.3390/nu7042801

83. Coles LT, Clifton PM. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: a randomized, placebo-controlled trial. Nutr J. 2012;11(1):106-106. doi:10.1186/1475-2891-11-106

84. Ninfali P, Antonini E, Frati A, Scarpa E-S. C-Glycosyl flavonoids from leaves of Morus alba L. (Moraceae. Evid Based Complement Alternat Med. 2013;2013:1-11. doi:10.1002/ptr.5819

85. Hobbs DA, Kaffa N, George TW, Methven L, Lovegrove JA. Blood pressure-lowering effects of beetroot juice and novel beetroot-enriched bread products in normotensive male subjects. Br J Nutr. 2012;108(11):2066-2074. doi:10.1017/S000711451200190

86. Frank T, Stintzing FC, Carle R, et al. Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy individuals. J Agric Food Chem. 2008;56(8):3478-3483. doi:10.1021/jf072361n

87. de Oliveira AM. Mesquita M dA S, dA Silva GC. Evaluation of toxicity and antimicrobial activity of an ethanolic extract from leaves of Morus alba L. (Moraceae). Evid Based Complement Alternat Med. 2015;2015:1-7.
Haji Faraji M, Haji Tarkhani A. The effect of sour tea (Hibiscus sabdariffa) on essential hypertension. *J Ethnopharmacol*. 1999;56(3):231-236. doi:10.1016/S0378-8741(98)00157-3

Kim J-K, So H, Yoon M-J, et al. Hibiscus sabdariffa L. water extract inhibits the adipocyte differentiation through the PI3-K and MAPK pathway. *J Ethnopharmacol*. 2007;114(2):260-267. doi:10.1016/j.jep.2007.08.028

Ali BH, Al Wabel N, Blunden G. Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: a review. *Phytotest Res*. 2005;19(5):369-375. doi:10.1002/ptr.1628

Juliani HR, Welch CR, Wu Q, et al. Chemistry and quality of Hibiscus (Hibiscus sabdariffa) for developing the natural-product industry in Senegal. *J Food Sci*. 2009;74(2):S113-S121. doi:10.1111/j.1750-3841.2009.01076.x

Serban C, Sahebkar A, Ursoniu S, Andrica F, Banach M. Effect of sour tea (Hibiscus sabdariffa L.) on arterial hypertension. *J Hypertens*. 2015;33(6):1119-1127. doi:10.1097/HJH.0000000000000585

Ajay M, Chai HJ, Mustafa AM, Gilani AH, Mustafa MR. Mechanisms of the anti-hypertensive effect of Hibiscus sabdariffa L. calyces. *J Ethnopharmacol*. 2007;109(3):388-393. doi:10.1016/j.jep.2006.08.005

Ojeda D, Jiménez-Ferrer F, Zamplía A, Herrera-Arellano A, Tortoriello J, Alvarez L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. *J Ethnopharmacol*. 2010;127(1):7-10. doi:10.1016/j.jep.2009.09.059

Inuwa I, Ali BH, Al-Lawati I, Beegam S, Ziada A, Blunden G. Long-Term ingestion of Hibiscus sabdariffa calyx extract enhances myocardial capillarization in the spontaneously hypertensive rat. *Exp Biol Med*. 2012;237(5):563-569. doi:10.1258/ebm.2012.011357

Lo C-W, Huang H-P, Lin H-M, Chien C-T, Wang C-J. Effect of Hibiscus anthocyanins-rich extract induces apoptosis of proliferating smooth muscle cell via activation of p38 MAPK and p53 pathway. *Nutr Food Res*. 2007;51(12):1452-1460. doi:10.1002/nfr.200700151

Duangjai A, Ingkaninan K, Limpeanchob N. Potential mechanisms of hypcholesterolemaic effect of Thai spices/dietary extracts. *Nat Prod Res*. 2011;25(4):341-352. doi:10.1080/14786411003754249

Chen C-C, Chou F-F, Ho Y-C, et al. Inhibitory effects of Hibiscus sabdariffa L. extract on low-density lipoprotein oxidation and anti-hyperlipidemia in fructose-fed and cholesterol-fed rats. *J Sci Food Agric*. 2004;84(15):1989-1996. doi:10.1002/jsfa.1872

Chen C-C, Hsu J-D, Wang S-F, et al. Hibiscus sabdariffa extract inhibits the development of atherosclerosis in cholesterol-fed rabbits. *J Agric Food Chem*. 2003;51(18):5472-5477. doi:10.1021/jf030065w

Peng C-H, Chyau C-C, Chan K-C, Chan T-H, Wang C-J, Huang C-N. Hibiscus sabdariffa polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance. *J Agric Food Chem*. 2011;59(18):9901-9909. doi:10.1021/jf2022379

Ndu OO, Nworu CS, Ehiemere CO, Ndukwe NC, Ochiogu IS. Herb-Drug interaction between the extract of Hibiscus sabdariffa L. and hydrochlorothiazide in experimental animals. *J Med Food*. 2011;14(6):640-644. doi:10.1089/jmf.2010.0117

Frank T, Janssen M, Netzel M, et al. Pharmacokinetics of anthocyanidin-3-glycosides following consumption of Hibiscus sabdariffa L. extract. *J Clin Pharmacol*. 2005;45(2):203-210. doi:10.1177/0022372704270561

Pinsuwon S, Annuaikit T, Ungphailoon S, Itharat A. Lapsosom-containing Hibiscus sabdariffa calyx extract formulations with increased antioxidant activity, improved dermal penetration and reduced dermal toxicity. *J Med Assoc Thai*. 2010;93 Suppl 7:S216-226.

Akindahunsi AA, Olaleye MT. Toxicological investigation of aqueous-methanolic extract of the calyces of Hibiscus sabdariffa L. *J Ethnopharmacol*. 2003;89(3):161-164. doi:10.1016/S0378-8741(03)00276-9

Mahmoud YI. Effect of extract of Hibiscus on the ultrastructure of the testis in adult mice. *Acta Histochem*. 2012;114(4):342-348. doi:10.1016/j.acthis.2011.07.002

Wei W, Zhao H, Wang A, et al. A clinical study on the short-term effect of berberine in comparison to metformin on the metabolic characteristics of women with polycystic ovary syndrome. *Eur J Endocrinol*. 2012;166(1):99-105. doi:10.1530/EJE-11-0616

Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. *Metabolism*. 2010;59(2):285-292. doi:10.1016/j.metabol.2009.07.029

Imanshahidi M, Hosseinzadeh H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. *Phytotest Res*. 2008;22(8):999-1012. doi:10.1002/ptr.2399

Cok A, Plaisier C, Salie MJ, Oram DS, Chenge J, Louters LL. Berberine acutely activates the glucose transport activity of GLUT1. *Biochim Biophys Acta*. 2011;93(7):1187-1192. doi:10.1016/j.biocbi.2011.04.013

Pirllo A, Catapano AL, Berberine C.A.L. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. *Atherosclerosis*. 2015;243(2):449-461. doi:10.1016/j.atherosclerosis.2015.09.032

Zhang Y, Li X, Zou D, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. *J Clin Endocrinol Metab*. 2008;93(7):2559-2565. doi:10.1210/jc.2007-2404

Pang B, Zhao L-H, Zhou Q, et al. Application of berberine on treating type 2 diabetes mellitus. *J Endocrinol*. 2015;2015(3):1-12. doi:10.1155/2015/905749

Li Z-Q, Zuo D-Y, Qie X-D, Qi H, Zhao M-Q, Wu Y-L. Berberine acutely inhibits the digestion of maltose in the intestine. *J Ethnopharmacol*. 2012;142(2):474-480. doi:10.1016/j.jep.2012.05.022
113. Liu L, Yu Y-L, Yang J-S, et al. Berberine suppresses intestinal disaccharidases with beneficial metabolic effects in diabetic states, evidences from in vivo and in vitro study. *Naunyn Schmiedeberg’s Arch Pharmacal*. 2010;381(4):371-381. doi:10.1007/s00210-010-0502-0

114. Zdychová J, Komers R. Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. *Physiol Res*. 2005;54(1):1-16.

115. Mackenzie RW, Elliott BT. Akt/Pkb activation and insulin signaling: a novel insulin signaling pathway of type 2 diabetes. *Diabetes Metab Syndr Obes*. 2014;7:55-64. doi:10.2147/DMSO.S48260

116. Al-marsi IM, Mohammad MK, Tahaa MO. Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. *J Enzyme Inhib Med Chem*. 2009;24(5):1061-1066. doi:10.1080/14756360802610761

117. Yu Y, Hao G, Zhang Q, et al. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways. *Biochim Biophys Acta*. 2015;97(2):173-177. doi:10.1016/j.bcp.2015.07.012

118. Yu Y, Liu L, Wang X, et al. Modulation of glucagon-like peptide-1 release by berberine: in vivo and in vitro studies. *Biochim Pharmacol*. 2010;79(7):1000-1006. doi:10.1016/j.bcp.2009.11.017

119. Han J, Lin H, Huang W. Modulating gut microbiota as an anti-diabetic mechanism of berberine. *Med Sci Monit*. 2011;17(7):RA164-RA167. doi:10.25276/MSM.881842

120. Ni W-J, Ding H-H, Tang L-Q. Berberine as a promising anti-diabetic nephropathy drug: an analysis of its effects and mechanisms. *Eur J Pharmcol*. 2015;760:103-112. doi:10.1016/j.ejphar.2015.04.017

121. Abd El-Wahab AE, Ghareeb DA, Sarhan EEM, Abu-Serie MM, El Demellawy MA. In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: antioxidants, anti-acyethylcholinesterase, anti-diabetic and anticancer effects. *BMC Complement Altern Med*. 2013;13(1):218-218. doi:10.1186/1472-6882-13-218

122. Tang L-Q, Wei W, Chen L-M, Liu S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. *J Ethnopharmacol*. 2006;108(1):109-115. doi:10.1016/j.jep.2006.04.019

123. Di Pierro F, Villanova N, Agostini F, Marzocchi R, Soverini V, Marchesini G. Pilot study on the additive effects of berberine and oral type 2 diabetes agents for patients with suboptimal glycemic control. *Diabetes Metab Syndr Obes*. 2012;5:213-217. doi:10.2147/DMSO.S33718

124. Huang X-shan, Yang G-feng, Pan Y-chen, Huang X, Yang G, Pan Y. Effect of berberin hydrochloride on blood concentration of cyclosporine A in cardiac transplanted recipients. *Zhong Xi Yi Jie He Za Zhi*. 2008;28(8):702-704.

125. El-Sayed M-IK, Amin H-K, Al-Kaf A-G. Antimicrobial AHK. Anti-inflammatory, anti-oxidant and anti-ulcerogenic effects of Shilajit on gastric ulcer in rats. *American Journal of Biochemistry and Biotechnology*. 2012;8(1):25-37. doi:10.3844/ajbbsp.2012.25.37

126. Ding Y, Ye X, Zhu J, Zhu X, Li X, Chen B. Structural modification of berberine alkaloid and their hypoglycemic activity. *J Funct Foods*. 2014;7:229-237. doi:10.1016/j.jff.2014.02.007

127. Xue M, Yang M-xing, Zhang W, et al. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. *Int J Nanomedicine*. 2013;8:4677-4687. doi:10.2147/IJN.S51262

128. Kulkarni SK, Dhir A. Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. *Phytother Res*. 2010;24(3):317-324. doi:10.1002/ptr.2968

129. Lan J, Zhao Y, Dong F, et al. Meta-Analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. *J Ethnopharmacol*. 2015;161:69-81. doi:10.1016/j.jep.2014.09.049

130. Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. *Metabolism*. 2008;57(5):712-717. doi:10.1016/j.metabol.2008.01.013

131. Jahnke GD, Price CJ, Marr MC, Myers CB, George JD. Developmental toxicity evaluation of berberine in rats and mice. *Birth Defects Res B Dev Reprod Toxicol*. 2006;77(3):195-206. doi:10.1002/bdrb.20075

132. Zordoky BNM, Robertson IM, Dyck JRB. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. *Biochim Biophys Acta*. 2015;1852(6):1155-1177. doi:10.1016/j.bbadis.2014.10.016

133. Cao X, Luo T, Luo X, Tang Z. Resveratrol prevents AngII-induced hypertension via AMPK activation and RhoA/ROCK suppression in mice. *Hypertens Res*. 2014;37(9):803-810. doi:10.1038/hr.2014.90

134. Shen M, Zhao L, Wu R-xi, Yue S-qiang, Pei J-ming. The vasorelaxing effect of resveratrol on abdominal aorta from rats and its underlying mechanisms. *Vascul Pharmacol*. 2013;58(1-2):64-70. doi:10.1016/j.vph.2012.07.005

135. Novakovic A, Gojkovic-Bukarica L, Peric M, et al. The mechanism of endothelium-independent relaxation induced by the wine polyphenol resveratrol in human internal mammary artery. *J Pharmal Sci*. 2006;101(1):85-90. doi:10.1254/jphs.FP0050863

136. El-Sayed M-IK, Amin HA-K. Experimental research mechanism of endothelial cyto-protective and thrombo-resistance effects of sildenafi, vardenafi and tadalafl in male rabbit. *Aoms*. 2015;1(1):190-198. doi:10.5114/aoms.2013.33616

137. Edwards JA, Beck M, Riegger C, Bausch J. Safety of resveratrol with examples for high purity, trans-resveratrol, resVida(®. *Ann N Y Acad Sci*. 2011;1215(1):131-137. doi:10.1111/j.1749-6632.2010.05855.x

138. Akar F, Pekbas MB, Tufan C, et al. Resveratrol shows vasoprotective effect reducing oxidative stress without affecting metabolic disturbances in insulin-dependent diabetes of rabbits. *Cardiovasc Drugs Ther*. 2011;25(2):119-131. doi:10.1007/s10557-010-6255-7

139. Soylemez S, Sepici A, Akar F. Resveratrol supplementation gender independently improves endothelial reactivity and
supresses superoxide production in healthy rats. *Cardiovasc Drug Ther.* 2009;23(6):449-458. doi:10.1007/s10557-009-6198-z.

140. Carrizzo A, Puca A, Damato A, et al. Resveratrol improves vascular function in patients with hypertension and dyslipidemia by modulating no metabolism. *Hypertension.* 2013;62(2):359-366. doi:10.1161/HYPERTENSIONAHA.111.010099

141. Dolinsky VW, Chakrabarti S, Pereira TJ, et al. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. *Biochim Biophys Acta.* 2013;1832(10):1723-1733. doi:10.1016/j.bbcan.2013.05.018

142. Bhatt JK, Thomas S, Nanjan MJ. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. *Nutr Res.* 2012;32(7):537-541. doi:10.1016/j.nutres.2012.06.003

143. Han S, Uludag MO, Usanmaz SE, Ayaloglu-Butun F, Akcali KC, Demirel-Yilmaz E. Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. *Mel Biol Rep.* 2015;42(1):35-42. doi:10.1007/s11033-014-3737-x

144. Cho IJ, Ahn JY, Kim S, Choi MS, Ha TY. Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in rats and mice. *Biochim Biophys Acta.* 2013;1832(10):1723-1733. doi:10.1016/j.bbcan.2013.05.018

145. Franco JG, Lisboa PC, Lima NS, et al. Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning. *J Nutr Biochem.* 2013;24(6):960-966. doi:10.1016/j.jnutbio.2012.06.019

146. Voloshyna I, Hai O, Littlefield MJ, CarsonS S, Reiss AB. Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARγ and adenosine. *Eur J Pharmaco.* 2013;698(1-3):299-309. doi:10.1016/j.ejphar.2012.08.024

147. Rimbaud S, Ruiz M, Piquereau J, et al. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. *PLoS One.* 2011;6(10):e26391. doi:10.1371/journal.pone.0026391

148. Liu Z, Song Y, Zhang X, et al. Effects of resveratrol on hypertension-induced cardiac hypertrophy using the partially nephrectomized rat model. *Clin Exp Pharmacol Physiol.* 2005;32(12):1049-1054. doi:10.1111/j.1440-1681.2005.04303.x

149. Leik I, Szabo G, Juhasz B, et al. Protective mechanisms of resveratrol against ischemia/reperfusion-induced damage in hearts obtained from Zucker obese rats: the role of GLUT-4 and endothelin. *Am J Physiol Heart Circ Physiol.* 2007.

150. Razali N, Agarwal R, Agarwal P, et al. Role of adenosine receptors in resveratrol-induced intraocular pressure lowering in rats with steroid-induced ocular hypertension. *Clin Exp Ophthal.* 2015;43(1):54-66. doi:10.1111/coe.12375

151. Aguirre L, Portillo MP, Hijaona E, Bujanda L. Effects of resveratrol and other polyphenols in hepatic steatosis. *World J Gastroenterol.* 2014;20(23):7366-7380. doi:10.3748/wjg.v20.i23.7366

152. Ahmed T, Javed S, Javed S, et al. Resveratrol and Alzheimer’s disease: mechanistic insights. *Mol Neurobiol.* 2017;54(4):2622-2635. doi:10.1007/s12035-016-9839-9

153. Bruckbauer A, Zemel MB. Synergistic effects of metformin, resveratrol, and hydroxymethylbutyrate on insulin sensitivity. *Diabetes Metab Syndr Obes.* 2013;6:93-93. doi:10.2147/DMSO.S40840

154. Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. *Mol Nutr Food Res.* 2005;49(5):472-481. doi:10.1002/ mnfn.200500010

155. Sharan S, Nagar S. Pulmonary metabolism of resveratrol: in vitro and in vivo evidence. *Drug Metab Dispos.* 2013;41(5):1163-1169. doi:10.1124/dmd.113.051326

156. Boocock DJ, Faust GES, Patel KR, et al. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. *Cancer Epidemiol Biomarkers Prev.* 2007;16(6):1246-1252. doi:10.1186/1055-9965-EPI-07-0022

157. Hausenblas HA, Schoulda JA, Smoliga JM. Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus--systematic review and meta-analysis. *Mol Nutr Food Res.* 2015;59(1):147-159. doi:10.1002/mnfr.201400173

158. Amin AR, Amin HK. Lipoprotein nanoparticles in diagnosis and treatment of cancer. *MOJ Drug Des Dev Ther.* 2018;2(1):2-5.

159. Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-Based nanospions for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. *AAPS PharmSciTech.* 2011;12(1):279-286. doi:10.1208/s12249-011-9584-3

160. Rooibaksh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. *Lif Sci.* 2015;124:64-74. doi:10.1016/j.lfs.2014.12.030

161. Yamamoto M, Suzuki A, Hase T. Short-term effects of glucosyl hesperidin and hesperidin on blood pressure and vascular endothelial function in spontaneously hypertensive rats. *J Nutr Sci Vitaminol.* 2008;54(1):95-98. doi:10.3177/jnsv.54.95

162. Dobiaš L, Petrová M, Vojtko R, Kristová V. Long-term Treatment with Hesperidin Improves Endothelium-dependent Vasodilation in Femoral Artery of Spontaneously Hypertensive Rats: The Involvement of NO-synthase and Kv Channels. *Phytodier Res.* 2016;30(10):1665-1671. doi:10.1002/ptr.5670

163. Liu Y, Niu L, Cui L, et al. Hesperetin inhibits rat coronary constriction by inhibiting Ca2+ influx and enhancing voltage-gated K+ channel currents of the myocytes. *Eur J Pharmacol.* 2014;735:193-201. doi:10.1016/j.ejphar.2014.03.057

164. Scholz EP, Zitron E, Kiesecr C, et al. Orange flavonoid hesperidin modulates cardiac hERG potassium channel via binding to amino acid F656. *Diabetes Metab Cardiovasc Dis.* 2007;17(9):666-675. doi:10.1016/j.numecd.2006.06.002

165. Gandhi C, Upaganalwar A, Balaraman R. Protection against in vivo focal myocardial ischemia/reperfusion injury-induced arrhythmias and apoptosis by hesperidin. *Free Radic Res.* 2009;43(9):817-827. doi:10.1080/10715769090371656

166. Kamaraj S, Anandakumar P, Jagan S, Ramakrishnan G, Devaki T. Hesperidin attenuates mitochondrial dysfunction
167. Akiyama S, Katsumata S-Ichii, Suzuki K, Nakaya Y, Ishimi Y, Uehara M. Hypoglycemic and hypolipidemic effects of hesperidin and Cycloedrin-Clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. *Bioch Biotechnol Biochem*. 2009;73(12):2779-2782. doi:10.1271/bbb.90576

168. Ghorbani A, Nazari M, Jeddi-Tehrani M, Zand H. The citrus flavonoid hesperidin induces p53 and inhibits NF-κB activation in order to trigger apoptosis in NALM-6 cells: involvement of PPARγ-dependent mechanism. *Eur J Nutr*. 2012;51(1):39-46. doi:10.1007/s00394-011-0187-2

169. Kamaraj S, Ramakrishnan G, Anandakumar P, Jagan S, Devaki T. Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. *Biosci Biotechnol Biochem*. 2009;73(12):2779-2782. doi:10.1271/bbb.90576

170. Wilcox LJ, Borradaile NM, de Dreu LE, Huff MW. Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperidin, via reduced activity and expression of ACAT2 and MTP. *J Lipid Res*. 2001;42(5):725-734.

171. Jung UJ, Lee M-K, Park YB, Kang MA, Choi M-S. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. *Int J Biochem Cell Biol*. 2006;38(7):1134-1145. doi:10.1016/j.biocel.2005.12.002

172. Zhang B, Chen T, Chen Z, et al. Antiplatelet activity of hesperetin, a bioflavonoid, is mainly mediated by inhibition of PLC-gamma2 phosphorylation and cyclooxygenase-1 activity. *Atherosclerosis*. 2007;194(1):144-152. doi:10.1016/j.atherosclerosis.2006.10.011

173. Wilcox LJ, Borradaile NM, de Dreu LE, Huff MW. Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. *J Lipid Res*. 2001;42(5):725-734.

174. Zhang B, Chen T, Chen Z, et al. Synthesis and anti-hyperglycemic activity of hesperidin derivatives. *Bioorg Med Chem Lett*. 2012;22(23):7194-7197. doi:10.1016/j.bmcl.2012.09.049

175. Ibrahim SS. Protective effect of hesperidin, a citrus bioflavonoid, on diabetes-induced brain damage in rats. *J Appl Sci Res*. 2008;4(1):84-95.

176. Ashafaq M, Varshney L, Khan MHA, et al. Neuromodulatory effects of hesperidin in mitigating oxidative stress in streptozotocin induced diabetes. *Bionmed Res Int*. 2014;2014(2):1-9. doi:10.1155/2014/249031

177. Vinsagir A, Kandhare AD, Chakravarty S, Ghosh P, Bodhankar SL. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. *Pharm Biol*. 2014;52(7):814-828. doi:10.3109/13880209.2013.870584

178. Kumar B, Gupta SK, Srinivasan BP, Nag TC, Srivastava S, Saxena R. Hesperetin ameliorates hyperglycemia induced retinal vasculopathy via anti-angiogenic effects in experimental diabetic rats. *Vascul Pharmaceut*. 2012;57(5-6):201-207. doi:10.1016/j.vph.2012.02.007

179. Aranganathan S, Nalini N. Efficacy of the potential chemopreventive agent, hesperetin (Citrus flavonone), on 1,2-dimethylhydrazine induced colon carcinoma. *Food Chem Toxicol*. 2009;47(10):2594-2600. doi:10.1016/j.fct.2009.07.019

180. Nandakumar N, Jayaprakash R, Renganarajan T, Ramesh V, Balasubramanian MP. Hesperidin, a natural citrus flavonoglycoside, normalizes lipid peroxidation and membrane bound marker enzymes in 7, 12-dimethylbenz (a) anthracene induced experimental breast cancer rats. *Biomedicine & Preventive Nutrition*. 2011;1(4):255-262. doi:10.1016/j.biomut.2011.06.004

181. Fernández-Bedmar Z, Anter J, Alonso-Moraga A. Martín de las Mulas J, Millán-Ruiz Y, Gull-Luna F. demethylating and anti-hepatocarcinogenic potential of hesperidin, a natural polyphenol of citrus juices. *Mutat Res*. 2017;56(6):1653-1662.

182. Hosseinimierl SJ, Jalayer Z, Naghsivar F, Mahmoudzadeh A. Hesperidin inhibits cyclophosphamide-induced tumor growth delay in mice. *Integr Cancer Ther*. 2012;11(3):251-256. doi:10.1177/1534735412448959

183. Li F, Chow S, Cheung W-hoi, Chan FL, Chen S, Leung LK. The citrus flavonone hesperetin prevents letrozole-induced bone loss in a mouse model of breast cancer. *J Nutr Biochem*. 2013;24(6):1112-1116. doi:10.1016/j.jnutbio.2012.08.010

184. Trecciakiewicz A, Habauzit V, Mercier S, et al. Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signalling pathway. *J Nutr Biochem*. 2010;21(5):424-431. doi:10.1016/j.jnutbio.2009.01.017

185. Chiba H, Uehara M, Wu J, et al. Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovarioctomized mice. *J Nutr*. 2003;133(6):1892-1897. doi:10.1093/jn/133.6.1892

186. Chiba H, Kim H, Matsumoto A, et al. Hesperidin prevents androgen deficiency-induced bone loss in male mice. *Phytother Res*. 2014;28(2):289-295. doi:10.1002/ptr.5001

187. Martin BR, McCabe GP, McCabe L, et al. Effect of hesperidin with and without a calcium (Calciolex) supplement on bone health in postmenopausal women. *J Clin Endocrinol Metab*. 2016;101(3):923-927. doi:12.1010/jc.2015.3767

188. El-Marasy SA, Abdallah HMI, El-Shenawy SM, El-Khatib AS, El-Shabrawy OA, Kenawy SA. Anti-Depressant effect of hesperidin in diabetic rats. *Can J Physiol Pharmacol*. 2014;92(11):945-952. doi:10.1139/cjpp-2014-0281

189. Donato F, Borges Filho C, Giacomelli R, et al. Evidence for the involvement of potassium channel inhibition in the antidepressant-like effects of hesperidin in the tail suspension test in mice. *J Med Food*. 2015;18(7):818-823. doi:10.1089/jmf.2014.0074

190. Pingili R, Vemulapalli S, Mulpadi SS, Nuthakki S, Penyala S, Kilaru N. Pharmacokinetic interaction study between flavonones (hesperetin, naringenin) and rasagiline mesylate in Wistar rats. *Drug Dev Ind Pharm*. 2015;42(7):1110-1117. doi:10.3164/jdpi.2015.1115868

191. Liu D, Wu J, Xie H, et al. Inhibitory effect of hesperetin and naringenin on human UDP-glucuronosyltransferase enzymes: implications for Herb–Drug interactions. *Biol Pharm Bull*. 2016;39(12):2052-2059. doi:10.1248/bpb.b16-00581
impairs renal and hepatic functions in rats. *Bahrain Med Bull.* 2011;158(684):1-9.

222. Al-Mamary M, Al-Habori M, Al-Aghbari AM, Baker MM. Investigation into the toxicological effects of *Catha edulis* leaves: a short term study in animals. *Phytotest Res.* 2002;16(2):127-132. doi:10.1002/ptr.835

223. Al- Mamary M, Al- Habori M, Al- Aghbari AM, Baker MM. Investigation into the toxicological effects of *Catha edulis* leaves: a short term study in animals. *Phytother Res.* 2002;16(2):127-132. doi:10.1002/ptr.835

224. Farag RM, Gunaid AA, Qirbi AA. Effect of *khat* on the metabolism of erythrocytes. *Biochem Pharmacol.* 1989;38(4):563-566. doi:10.1016/0006-2952(89)90199-8

225. Mwenda JM, Arimi MM, Kyama MC, Langat DK. Effects of *khat* (*Catha edulis* Forsk.) consumption on reproductive functions: a review. *East Afr Med J.* 2004;80(6):318-323. doi:10.4314/eamj.v80i6.8709

226. Mohammed A, Engidawork E. Reproductive parameters are differentially altered following subchronic administration of *Catha edulis* f. (khat) extract and cathinone in male rats. *J Ethnopharmacol.* 2011;134(3):977-983. doi:10.1016/j.jep.2011.02.006

227. Abdulwaheb M, Makonnen E, Debella A, Abebe D. Effect of *Catha edulis* foresk (khat) extracts on male rat sexual behavior. *J Ethnopharmacol.* 2007;110(2):250-256. doi:10.1016/j.jep.2006.09.019

228. Zhou Y-X, Xin H-L, Rahman K, Wang S-J, Peng C, Zhang H. Portulaca oleracea L.: a review of phytochemistry and pharmacological effects. *Biomed Res Int.* 2015;2015:1-11. doi:10.1155/2015/925631

229. Dawei G, Qinwang L, Yusheng F. Hypoglycemic effects and mechanisms of *Portulaca oleracea* L. in streptozotocin-induced diabetic rats. *J Ethnopharmacol.* 2018;215:191-198. doi:10.1016/j.jep.2018.01.009

230. Anusha M, Venkateswaru M, Prabhalakaran V, Taj SS, Kumari BP, Ranganayakulu D. Hepatoprotective activity of aqueous extract of *Portulaca oleracea* in streptozotocin-induced diabetic rats. *Indian J Pharm Sci.* 2011;43(5):563-567. doi:10.4103/0253-7613.84973

231. Catap ES, Kho MJL, Jimenez MRR. In vivo nonspecific immunomodulatory and antispasmodic effects of common purslane (*Portulaca oleracea* Linn.) leaf extracts in ICR mice. *J Ethnopharmacol.* 2018;215:191-198. doi:10.1016/j.jep.2018.01.009

232. Fung KP, Han QB, Ip M, Yang XS, Lau CB, Chan BC. Synergists from *Portulaca oleracea* with macrolides against methicillin-resistant *Staphylococcus aureus* and related mechanism. *Hong Kong Med J.* 2017;23 Suppl 5(4):38-42.

233. Iranshahy M, Javadi B, Iranshahi M, et al. A review of traditional uses, phytochemistry and pharmacology of *Portulaca oleracea* L. *J Ethnopharmacol.* 2017;205:158-172. doi:10.1016/j.jep.2017.05.004