Review Article

Experimental evidence for use of *Acorus calamus* (asarone) for cancer chemoprevention

Bhrigu Kumar Dasa,b, AHM Viswanatha Swamya, Basavaraj C. Kotia, Pramod C. Gadad a,b,*

a KLE College of Pharmacy (A Constituent Unit of KLE Academy of Higher Education and Research, Belagavi), Vidyanagar, Hubballi, 580 031, Karnataka, India

b Off-campus Basic and Applied Sciences Research Centre of KLE Academy of Higher Education and Research at KLE College of Pharmacy, Vidyanagar, Hubballi, 580 031, Karnataka, India

ARTICLE INFO

Keywords:
Evidence-based medicine
Oncology
Biochemistry
Cancer research
Cell biology
Molecular biology

ABSTRACT

Cancer is one of the major non-communicable diseases posing substantial challenges in both developing and developed countries. The options available for treatment of different cancer are associated with various limitations, including severe toxicity, drug resistance, poor outcomes and a high risk of relapse. Hence, an increased attention and necessity for screening of various phytochemicals from natural sources for superior and safer alternative has been ongoing for several decades. In recent years, phytochemicals like galantamine, erwinaze, rivastigmine, resveratrol from natural sources have been found to be important therapeutic targets for the treatment of various diseases including cancer, neurodegeneration, diabetes, and cardiovascular effects. *Acorus calamus* (Sweet flag), and/or its bioactive phytochemical alpha (α)- and beta (β)-asarone, is a well-known drug in the traditional system of medicine which possesses anti-tumor and chemo-preventive activities as evident from numerous pre-clinical studies both in-vitro and in-vivo. In this article, we critically review the current available scientific evidences of *A. calamus* and/or asarone for cancer chemoprevention based on preclinical in-vitro and in-vivo models. In addition, we also have compiled and discussed the molecular targets of mechanism(s) involved in the anti-cancer activity of *A. calamus* /asarone. Still, extensive in-vivo studies are necessary using various animal models to understand the molecular mechanism behind the pharmacological activity of the bioactive phytochemicals derived from *A. calamus*. It is strongly believed that the comprehensive evidence presented in this article could deliver a possible source for researchers to conduct future studies pertaining to *A. calamus* and/or its bioactive phytochemicals asarone for cancer chemoprevention.

1. Introduction

The cancer is a major non-communicable disease posing substantial social and economical challenges in both developing and developed countries. The rapid rise in cancer mortality rates accounting together for China, India and Russia is nearly twofold high compared to the UK and the USA. The number of factors contributed for rapid rise in cancer incidence in the growing economies include changes in lifestyles (food habit, decreased physical activity and sedentary lifestyles), low socio-income populations with minimum cancer care facility, different contaminants of the environment, increase in aged populations, and increase in oncogenic communicable infective organisms \cite{1,2}. According to International Agency for Research on Cancer GLOBOCAN project, the rise in the cancer burden in India will nearly be double in the next 20 years and is predicted to be more than 1.7 million cases by 2035 \cite{2,3}.

In the current scenario, the options available for treatment of different cancer are associated with various limitations, including severe toxicity, drug resistance, poor outcomes and a high risk of relapse. Hence, an increased attention and necessity for screening of various phytochemicals from natural sources for superior and safer alternative has been ongoing for several decades. The chemo-preventive agents available from the different parts of plants are used in the form of alternative and evidence-based complementary system of medicine along with the current chemotherapy and/or radiation therapy \cite{4}. The recent research focus has shifted to the molecular mechanisms of these natural phytoconstituents on various signal transduction mechanisms controlling the cell growth and the cell cycle.

Acorus calamus (L.) (Sweet flag), a member of the family Acoraceae, generally used alone or in combination with other herbs in Indian and Chinese traditional medicine has generated great interest and is found to

* Corresponding author.

\textit{E-mail address:} gadadpramod@gmail.com (P.C. Gadad).

https://doi.org/10.1016/j.heliyon.2019.e01585

Received 13 November 2018; Received in revised form 20 April 2019; Accepted 24 April 2019

2405-8440/© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
be beneficial [5]. *Acorus gramineus* (S.) and *Acorus tatarinowii* (S.) (Acoraceae), the other plants from *Acorus* species are officially listed in the Chinese Pharmacopoeia [6, 7]. The plant is widely cultivated in different parts of temperate and sub-temperate regions of the world and is native to India, Sri Lanka, Japan, China, Burma, Mongolia, Southern Russia, Europe and Northern USA [8, 9]. The habit of the herbaceous perennial plant *A. calamus*, is semi-aquatic and terrestrial with creeping rhizomes. The rhizomes are bitter in taste, highly branched, pinkish or pale green in color and citrus in odor [8, 10]. In this review, we have summarized and discussed the anti-cancer properties of *A. calamus* and/or its main bioactive phytochemicals asarone (alpha (α)- and, beta (β)-asarone) and related mechanisms based on *in-vitro* and *in-vivo* experimental evidences.

1. Chemical constituents of *Acorus calamus*

In general, *A. calamus* consists of various phytoconstituents namely glycosides (xanthone), volatile oil, sesquiterpenes, monoterpenes, flavonoids, steroids, saponins, lignin, tannins, mucilage, alkaloid and polyphenolic compounds [11, 12]. The two main bioactive aromatic constituents isolated from the rhizomes of *A. calamus* are alpha (α)-asarone (1,2,4-trimethoxy-5-[(E)-prop-1-enyl] benzene) and beta (β)-asarone (1, 2, 4-trimethoxy-5-[(Z)-prop-1-enyl] benzene). Beside these, it also contains the other essential oil such as calamenol, calameon and calamen. The chemical structures of the various constituents of *A. calamus* are illustrated in Fig. 1 [5,13,14].

1.2. Ethnomedicinal and pharmacological properties of *Acorus calamus*

The traditional use of *Acorus calamus* in Indian Ayurvedic system is widely accepted. The plant has been used to cure several diseases like asthma, fever, cough, epilepsy, hysteria, skin diseases, depression, haemorrhoids, diarrhoea, insomnia, dysentery, kidney and liver problems, mental retardation, bronchitis and as a sedative. The external application of the paste of *A. calamus* on rheumatism, inflamed joints and rheumatic fever improves the pain and swelling in people. The natives of Alberta use *A. calamus* for prevention of headache, toothache, hangover and as a disinfectant for teeth. Further, in Western herbal medicine, the plant is mainly employed for gastrointestinal related problems like bloating, gas, colic and poor digestive function. In China, it is used by ethnic groups to cure constipation, digestive problems and for decreasing swelling. The plant is also found to reduce the stress-induced suppression of immunity and improves the immunity in experimental rats. The pharmacological studies have established numerous beneficial properties including anti-oxidant, anti-inflammatory, anti-cancer, anti-ulcer, anti-fungal, anti-allergic, anti-diabetic, anti-microbial, wound healing, neuroprotective, radioprotective, pesticidal, insecticidal and cardioprotective effects and others which are depicted in Fig. 2. The plant had a long antiquity and numerous ethnomedicinal, pharmacological and economic applications. Several medicinal practices allow to surpass diverse cultural barriers thereby gaining its widespread usage. Henceforth, considering and incorporating both ecological and socio-economic aspects is important when the demand of the products increased with respect to trade commodities and distant market [10, 11, 15, 16, 17, 18].

The recent publications indicate the growing interest in the potential of *A. calamus* and its main constituents as chemo preventive agent/s (Fig. 3). Various experimental investigations of *A. calamus* and its main constituents with cultured human malignant cell lines and animal models have confirmed antitumor and cancer preventive activities. The subsequent section provides a brief understanding into the anticancer properties of *A. calamus* and/or its bioactive phytochemicals (α)- and (β)-asarone.

2. Main text

2.1. In-vitro anti-cancer properties of *A. calamus* or asarone

2.1.1. Effect of (β)-asarone in human glioblastoma U251 cells

The most common type of primary malignant brain tumor accounts for 82 % cases of malignant gliomas. Glioblastoma is characterized by rapid growth, enhanced angiogenesis and capacity for higher invasion. Although, the current combination therapy has doubled the survival rate in patients with glioblastoma but it remains enormously poor due to severe toxicity, drug resistance and high rates of recurrence [19, 20]. Qi

Fig. 1. Chemical structures of various constituents obtained from *A. calamus*.

Fig. 2. Chemical structures of various phytoconstituents obtained from *A. calamus*.
et al. studied the cytotoxic effect of (β)-asarone in human glioblastoma U251 cells. They studied the cell death by fluorescent staining using YO-PRO-1 and propidium iodide (PI), which revealed that the cells treated by (β)-asarone underwent apoptotic and necrotic death. A proteomic based strategy was carried out to characterize the U251 cells treated with or without (β)-asarone to clarify the differential protein targets. In total, seven up-regulated and nine down-regulated proteins were identified by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF/TOF) mass spectrometer. The identified proteins were analyzed by gene ontology (GO) based on cellular components, molecular function and biological processes. Among them, four important proteins namely heterogeneous nuclear ribonucleoprotein H1 (H), isoform CRA_b (hnRNP H1 isoform CRA_b), heterogeneous nuclear ribonucleo-protein A2/B1, isoform CRA a (hnRNP A2/B1 isoform CRA

Fig. 2. Schematic representation of various pharmacological activity of A. calamus and/or its bioactive phytochemicals asarones (alpha (α)-and, beta (β)-asarone).

Fig. 3. Number of publications per year on A. calamus and/or its bioactive phytochemicals asarones. The PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/) was searched with the keywords “Acorus calamus and cancer” and “asarone and cancer.”
B.K. Das et al. Heliyon 5 (2019) e01585

They concluded that (β)-asarone might contribute to the treatment by promoting Temozolomide’s (TMZ) entry into the glioma cells and can inhibit the expression of P-gp and MDR1 mRNA better than single TMZ. This data was further supported by examining the expression of P-gp with different methods and all of the results showed that the expression of P-gp and MDR1 mRNA level decreased in the (β)-asarone, TMZ and co-administration groups, whereas the co-administration group showed better effect [24]. The above study was further continued by Wang et al, focusing on the effect of (β)-asarone induced cell death in U251 cells. They concluded that (β)-asarone can inhibit the progression of glioma U251 cells by arresting the cell cycle in G0/G1 phase and promoting autophagy possibly through P53/Bcl-2/Belin-1 and P53/AMPK/mTOR signal transduction pathway [25] (Table 1; Figs.4, 5, and 6).

2.1.2. Effect of (β)-asarone in human colorectal cancer

The incidence of the colorectal cancer (CRC) is the third most common type of cancer and a leading cause of cancer-related mortality in developed and developing countries [26]. The effectiveness of chemotherapeutic agents is often limited due to high occurrence of severe side effects and drug resistance. Hence, search for new treatment strategies

Cell lines	Treatment	Targets/Possible molecular events	Reference
Glioblastoma (U251 cells)	(β)-asarone	Apoptosis (YO-PRO-1 and PI staining). Inhibition of the expression of hnRNP H1, hnRNPA2/B1 and cathepsin D.	[21]
	(240 and 360 μM)	Suppression of the invasion (Boydjen chamber invasion assay). Inhibition of adhesion (Matrigel coated).	[22]
	(30 and 60 μM)	Inhibition of the expression of hnRNP A2/B1 in a concentration and time-dependent way.	
		↑ expression of matrix metalloproteinases (MMP-9) and p-STAT3. Apoptosis (Annexin V/Pi staining).	[23]
	(60, 120, 240 and 480 μM)	Cell cycle arrest at G0 phase. Inhibition of the expression of hnRNP A2/B1 in a concentration and time-dependent way.	
		Ratio of Bcl-xS/Bcl-xL ↑ in the expression of multi drug resistance-1 (MDR1) mRNA expression.	
		Promoted the activation of the death receptor proteins TRAIL and FasL. Cleavage of caspase 8 and caspase 3.	
		↑ in the expression of cleaved-BID and cellular protein cytochrome C.	
		↑ in the expression of cell cycle related proteins p21 and p27 and ↓ in expression of cyclin D, cyclin E, G2/M and CDR2.	
Glioblastoma (U251 cells)	(β)-asarone	↑ in the cell proliferation in the medicated groups (CCK-8 assay).	[24]
	(360 μM)	↑ in the expression of P-glycoprotein (P-gp) in the medicated groups.	
		↑ in the expression of multi drug resistance-1 (MDR1) mRNA expression.	
	(β)-asarone	↑ in the cell proliferation in the medicated groups (CCK-8 assay).	[25]
	(360 μM)	Cell cycle arrest at G0/G1 phase. Formation of autophagosome (double-membrane autophagosomes and single-membrane autolysosomes) was observed.	
		↑ in the expression of autophagic markers like Beclin-1 and LC3-II/I and ↓ in the expression of p62.	
Colon cancer (LoVo cells)	(β)-asarone	↑ in the expression of P53 mRNA, P53, AMPK and pAMPK and ↓ in the expression of P53, mTOR and pmTOR.	[27]
	(200 and 400 μM)	↑ in the rate of cell viability (MTT assay). Ultra-structure changes of the LoVo cells indicating apoptosis (Hoechst staining).	

(continued on next page)
for CRC is ongoing since several decades. In a study undertaken by Zou et al., the anticancer properties by upregulation of caspases activity through the mitochondrial pathway in human colon cancer cells was determined. The (β)-asarone showed dose- and time-dependent cell viability in human LoVo colon cancer cells and induced cell apoptosis by enhancing the in vivo cytotoxicity of vincristine. Further, the relative mRNA expression levels of pro- and anti-apoptotic factors were determined particularly focusing on the change of mitochondrial membrane potential (MMP) via activation of caspase-9, caspase-3 and the ratio of Bcl-2/Bax and Bcl-xL/Bax [27]. The suppression of cellular senescence is one of the features of colorectal cancer and has been linked to the increase in the percentage mitotic index of root tip cells and cell viability (PI) and 4',6-diamidino-2-phenylindole dilactate (DAPI) staining). 3.2.1.3 Effect of (β)-asarone/alcoholic extracts of A. calamus in human gastric cancer cells

β-asarone cause the reduction in P-gp expression and P-glycoprotein (P-gp).

β-asarone significantly enhanced the vincristine induced cytotoxicity in human gastric cancer cells

β-asarone effectively targets cell proliferation (MTT assay).

β-asarone cause the inhibition of cell proliferation (MTT assay).
The effect of (β)-asarone was studied on three types of differentiated human gastric cancer cell lines such as SGC-7901, BGC-823 and MKN-28. The (β)-asarone inhibits the proliferation of gastric cancer cells in a dose-dependent manner and induces early apoptosis. Further, transwell and wound-healing assays reveals that (β)-asarone inhibited the migration of BGC-823 cells in a concentration-dependent manner. Finally, mRNA and protein expression changes for studying the mechanism of action on the apoptosis of gastric cancer cells was carried out with western blotting and RT-PCR technique. This study clearly depicts that (β)-asarone inhibited the gastric cancer cell growth by upregulating the expression of caspases, proapoptotic proteins, RECK, E-cadherin and by downregulating the expression of antiapoptotic proteins, matrix metalloproteinases and N-cadherin [30]. Haghighi et al. investigated the anti-cancer and anti-angiogenic activity of the alcoholic extracts and essential oil of *A. calamus* on gastric cancer cell line (AGS) and compared with primary human fibroblast cell line (HSkMC). The growth inhibitory effects of the extracts and essential oil have a concentration and time dependent significant reduction in the proliferation of AGS cells and cell cycle arrest at G1 phase. Further, the tube formation assay showed anti-angiogenic effects of the extracts and essential oil. It was finally supported by the downregulation of Oct4 and Nucleostemin after treatment of the cells with the extracts as confirmed by flowcytometry and quantitative RT-PCR [31] (Table 1; Figs. 4, 5, and 6).

2.1.4. Effect of (β)-asarone/ethanolic extracts of *A. calamus* in human prostate cancer cells

Prostate cancer is the most commonly diagnosed cancer and remains the third-leading cause of cancer death in men [32]. The pro-angiogenic factor - vascular endothelial growth factor A (VEGF-A) is believed to be the single most significant angiogenic factor in prostate cancer for accelerating all stages of angiogenesis making it a desirable target. A recent study suggested that the ethanolic extract of *A. calamus* root possesses a dose and time dependent anticancer, apoptotic and anti-angiogenic activities on prostate cancer cell line. Koca et al. examined whether ethanolic extract of *A. calamus* marks the survival and apoptosis as well as inhibits the angiogenesis. The effect of *A. calamus* extract on the cell viability showed a dose-response relationship of cell survival. The Poly-(ADP-ribose) polymerase (PARP) cleavage involved in the apoptotic process was found to be at higher expression in *A. calamus* extract treated cells. It was also supported by the suppression of mRNA expression of the pro-angiogenic factor VEGF-A in LNCaP cells treated with the *A. calamus* extract [33]. Shenvi et al. reported the anti-cancer assay of nitro derivatives of (β)-asarone using PC-3 (prostate cancer) cell line along with four other different types of human cancer cell lines by using MTT assay. The nitration derivative compounds of (β)-asarone...
exhibited an increase in activity compared to \((\beta)-asarone\) confirming its cytotoxic activity in all the cell lines [34] (Table 1; Figs. 4 and 5).

2.1.5. Effect of novel lectins from Acorus species in murine cancer cells

Lectins, the major proteins of many monocotyledonous plants are polyclonal activators towards human lymphocytes. In a study performed by Bains et al, they reported two novel lectins derived from the rhizomes of \(A.\) calamus and \(A.\) gramineus possessing significant mitogenic activity towards human lymphocytes and inhibitory activity towards murine macrophage cancer cell lines. They employed macrophage cancer cell lines (P388D1 and J774), T cell lymphoma (A20) and B cell lymphoma (WEHI-279) for MTT assay to study the inhibitory activity of the novel lectins. Both the novel lectins (\(A.\) calamus and \(A.\) gramineus) showed inhibitory activity towards the murine cancer cell lines as measured by \(^{3}H\)-thymidine incorporation confirming its inhibitory potential [35] (Table 1).

2.1.6. Effect of green silver nanoparticles synthesized from \(A.\) calamus rhizome extract in human cervical cancer (HeLa) and lung adenocarcinoma (A549) cell lines

The use of the inert metals such as gold, silver, and platinum in the field of nanomedicine is gaining interest for synthesizing metallic nanoparticles having high therapeutic potential for various uses. Green synthesis of silver nanoparticles using various medicinal plants have shown to exhibit \(in\)-\(vitro\) anticancer activities. Keeping view of the above evidences, Nakkala et al. carried out the \(in\)-\(vitro\) cytotoxic effects of green silver nanoparticles synthesized from \(A.\) calamus rhizome extract (ACAgNPs) in human cervical cancer (HeLa) and lung adenocarcinoma (A549) cell lines. The anti-proliferative effect expressed as % inhibition of cell proliferation through MTT assay were found within the acceptable concentration of 100 mg/L. The apoptotic cell death was confirmed further through acridine orange/ethidium bromide (AO/EB) and annexinV-Cy3 staining techniques being supported by the nuclear changes (fragmentation and condensation) through staining with propidium iodide (PI) and 4\(\text{,}\)6-diamidino-2-phenylindole dilactate (DAPI) and flow cytometry. Collectively, all these findings suggested the cytotoxic activity of green silver nanoparticles synthesized with \(A.\) calamus rhizome extract [36] (Table 1).

2.2. \(in\)-\(vivo\) anti-cancer effect of \(A.\) calamus

Beside \(in\)-\(vitro\) investigation, \(in\)-\(vivo\) studies provided the evidence supporting that \(A.\) calamus and/or its bioactive phytochemicals asarone have potential anti-cancer pharmacological effect. Here, we discussed the detailed evidence about the anti-cancer effect of \(A.\) calamus and/or its bioactive phytochemicals asarone.

Zou et al. evaluated the anti-cancer property of \((\beta)-asarone\) in nude mice through LoVo cancer xenografts model. The experimental animals treated with \((\beta)-asarone\) at 50 mg/kg/d b.w. concentration suppressed the tumor volume significantly in comparison to placebo controls. Further, to determine that the tumors in the \((\beta)-asarone\) treated group were inhibited through apoptosis, the isolated tumors was subjected to TUNEL assay. It was confirmed that fragmentation of DNA was observed in the growth-inhibited tumors for the nude mice suggesting the
apoptotic changes [27]. Furthermore, another study carried by Liu et al. revealed that (β)-asarone treatment reduced the incidence and number of tumor formation against the genotoxic colonic chemical carcinogen DMH (1, 2-dimethyhydrazine) in C57-CD1 (ICR) mice. Moreover, the reduction in the tumor volume in xenografts model of colorectal cancer in BABL/c nude mice through administration of SW480 or HT-29 cells was observed in the (β)-asarone treated group. It was further supported by data that (β)-asarone induced senescence in human colorectal cancer via activation of lamin B1 by promoting the tumor protein (p53, p21) expressions [28]. Our earlier study reported that (β)-asarone treatment protects the rats from the diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) which was confirmed by the changes in the levels of serum liver biomarkers (ALT, AST, ALP, TB and DB). Reduction in the incidence and number of tumor formation.

Table 2
In-vivo anti-cancer effect of A. calamus and/or its bioactive phytochemicals asarone (α- and, beta (β)-asarone).

Model/Animal used	Treatment	Targets/Effects/Possible molecular events	Reference
LoVo cancer xenograft model (Nude mice)	(β)-asarone (50 mg/kg/d b.w.; p.o.)	Suppression of the tumor volume. Apoptosis as confirmed by fragmentation of DNA in the growth-inhibited tumors (TUNEL assay).	[27]
DMH (1, 2-dimethyl hydrazine) induced colorectal cancer (C57-CD1 (ICR) mice)	(β)-asarone (50, 100 and 200 μg/kg d.b.w.; p.o.)	Induction of senescence in human colorectal cancer via activation of lamin B1 by promoting the tumor protein (p53, p21) expressions.	
Human colorectal cancer (SW480 and HT-29 xenograft model) (BABL/c nude mice)	(β)-asarone (50, 100 and 200 μg/kg d.b.w.; i.v.)	↓ in the levels of serum liver biomarkers (ALT, AST, ALP, TB and DB).	
Diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) (wistar Albino rats)	(β)-asarone (25 μg/kg d.b.w.; p.o.)	↑ in the levels of cancer biomarkers (DNA, RNA and AF1), Suppression of the tumor growth.	
Glioma U251 tumor xenograft model (Nude mice)	(β)-asarone (25 and 50 μg/kg d.b.w.; p.o.)	↑ in the apoptotic rate (TUNEL assay). ↑ in the level of apoptotic proteins (cleaved caspase-3 and p27).	
Dalton’s ascites lymphoma induced tumor (Swiss Albino mice)	Methanolic extracts of A. calamus (100 and 200 mg/kg/d b.w.; i.p.)	↑ in the levels of serum liver biomarkers (ALT, AST and ALP).	

Abbreviations: b.w.: body weight; d: day; p.o.: per oral route; i.v.: intravenous route i.p.: intraperitoneal route.

Table 3
In-vitro and in-vivo anti-oxidant effect of A. calamus and/or its bioactive phytochemicals asarone (α- and, beta (β)-asarone).

Model/Animal used/Cell lines	Treatment	Targets/Effects/Possible molecular events	Reference
In-vitro anti-oxidant activity	Essential oils of A. calamus (5-25) μL/mL	The oils isolated from the rhizome and leaves in all the different seasons exhibited antioxidant activity as confirmed by 2, 2-diphenyl picryl hydrazyl (DPPH), reducing power (RP) and chelating properties of Fe³⁺.	[45]
In-vitro anti-oxidant and free radical scavenging activity	Aqueous extracts of A. calamus (25-400) g/mL	Results showed that the aqueous extracts have a potential free radical scavenging activity as confirmed by DPPH, nitric oxide, superoxide radical, ferrous chelation, RP and phomphonolipidum assay.	[46]
In-vitro anti-oxidant activity	(α)-asarone (10-100) μg/mL	It exhibited a dose-dependent DPPH radical scavenging, RP, superoxide radical and hydroxyl radical scavenging activity.	
Ischemia-induced brain infarction oxidative stress (wistar rats)	(β)-asarone (10, 20 and 30 mg/kg/d b.w.; p.o.)	↑ in the levels of reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S transferase (GST) and catalase (CAT) activity in the hippocampus.	
Senescence- accelerated prone 8 (SAMP-8) (Alzheimer's mediated oxidative stress) (micrones)	(β)-asarone (34 mg/kg/d b.w.; p.o.)	↑ in the level of lipid peroxidation (LPO) content in the hippocampus.	
High-fat diet (HFD) induced metabolic abnormalities oxidative stress (wistar rats)	(β)-asarone (12.5, 25, and 50 mg/kg/d b.w.; p.o.)	↑ levels of GSH and ↓ levels of MDA in liver homogenate.	
Noise stress-induced oxidative stress in brain (wistar rats)	(α)-asarone (3, 6, and 9 mg/kg/d b.w.; i.p.)	↑ in the levels of SOD and LPO content in the brain.	
Brain enzymatic antioxidant activities (Swiss OF1 mice)	(α)-asarone (100 mg/kg/d b.w.; i.p.)	↑ in the levels of CAT, GPx, GSH, Vitamin C and E in the brain.	
y-radiation induced alterations in oxidative stress (swiss Albino mice)	(α)-asarone (50 mg/kg/d b.w.; p.o.)	↑ in the levels of SOD and LPO content in both areas of the brain (cerebral cortex and hippocampus).	
Scopolamine induced cognitive deficits mediated oxidative stress (ICR mice)	(α)-asarone (3, 10 and 30 mg/kg/d b.w.; i.p.)	↑ in the levels of SOD and LPO content in hippocampus.	
Noise stress-induced oxidative stress in brain (wistar Albino rats)	(β)-asarone (9 mg/kg/d b.w.; i.p.)	↑ in the levels of CAT, GPx, GSH, Vitamin C and E in hippocampus.	
Dalton’s ascites lymphoma induced tumor (swiss Albino mice)	Methanolic extracts of A. calamus (100 and 200 mg/kg/d b.w.; i.p.)	↑ in the kidney antioxidant enzyme level of SOD, CAT, GPx, GSH, LPO and Vitamin E.	

Abbreviations: b.w.: body weight; d: day; p.o.: per oral route; i.v.: intravenous route i.p.: intraperitoneal route.
Table 4
Acute toxicity studies of A. calamus and/or its bioactive phytochemicals asarone (alpha (α)-and, beta (β)-asarone).

Animal species/strain/ gender	Median lethal dose (LD₅₀)	Reference
BALB/c mice (male)	245.2 mg/kg b.w.;	[39]
Rat	1010 mg/kg b.w.;	[40]
Mice	184 mg/kg b.w.;	[40]
Swiss mice (male)	>1000 mg/kg b.w.;	[56]
BALB/c mice (both gender)	1.56 g/kg b.w.; i.v.	[28]

Abbreviations: b.w.: body weight; p.o.: per oral route; i.v.: intravenous route.

Furthermore, the expression of apoptotic proteins in tumor tissues was observed by the increase level of cleaved caspase-3 in the treated group. A dose-dependent decrease of the expression of hnrNPA2/B1 and CKD2, increase ratio of Bcl-xS/Bcl-xL and along with that increase expression of p27 was observed for the treated group compared with that of the vehicle group. Finally, the results obtained in this study demonstrates that β-asarone-induced apoptosis and cell cycle arrest of U251 cells may be linked to the suppression of hnrNPA2/B1-mediated signaling pathway [23] (Table 2).

2.3. Anti-oxidant properties of A. calamus or asarone

Anti-oxidants are known free radical scavengers that allow the cells to rejuvenate from cellular damage by neutralizing the highly reactive oxygen compounds [38]. The anti-oxidant effect of A. calamus or asarone was reported by different in-vitro and in-vivo studies (Table 3). The bioactive compounds of the plant showed up/down regulation of certain endogenous enzymatic and non-enzymatic parameters which ultimately proves their ability to scaveng free radicals. Various reports suggest that the A. calamus or asarone are effective against number of oxidative stress models viz., ischemia-induced brain infarction oxidative stress, γ-radiation induced alterations in oxidative stress, noise stress-induced oxidative stress in brain etc.

2.4. Toxicity profile of A. calamus or asarone

In acute toxicity studies, A. calamus and/or its bioactive phytochemicals asarone were found to be safe at lower doses as summarized in Table 4. An acute toxicity study of (α)-asarone (150, 200, 250, 300 and 350 mg/kg b.w.; i.p.) was undertaken by Morales et al. in male BALB/c mice for 14 days. The most frequent clinical signs observed among the animals were ptosis, ataxia, piloerection and dyspnea [39]. In another study Liu et al. tested the effect of (β)-asarone (0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 g/kg b.w.; i.v.) on BALB/c mice to evaluate the preliminary toxicity. They reported that the animals that received (β)-asarone did not exhibit any behavior change within 24 h of treatment. Further they performed a long-term toxicity test for 90 days at the dosages of 10, 20 and 50 mg/kg/d. Results showed a dose-dependent toxicology with increase in number of white blood cells (WBC) and decrease in number of red blood cells (RBC) at 10 mg/kg. Additionally, the levels of serum K+ decreased at the dose of 20 mg/kg and Cl− increased in 50 mg/kg treated mice [28].

In sub-acute toxicity study, Sprague Dawley rats treated with (β)-asarone (100 mg/kg/d b.w.; i.p.) exhibited characteristic weight loss and decreased food consumption. Additionally, the weight of heart and thymus were reduced and weight of adrenals was increased. Furthermore, there was no significant changes in haematological and biochemical parameters indicating hepatotoxicity [40]. In a two-year feeding study, Osborne-Mendel fed the male rats with a diet containing either (β)-asarone or calamus oil (400, 800 or 2000 mg/kg). The rats developed an increased incidence of leiomyosarcomas in small intestine. Microscopic analysis revealed cardiac atrophy, fat infiltration and fibrosis in heart of the animals. Further, rats fed with the Jammu oil of calamus (0, 50, 100 or 500 mg/kg) for two years developed early mortality, liver and heart lesions at a dose of 5000 mg/kg [40].

3. Conclusions

Cancer is one of the growing health problems worldwide, posing a threat to human social and economic conditions. Regardless of the advanced treatment modality available for the treatment of cancer such as chemotherapy, surgical resection, radiotherapy and phototherapy, the survival rate has not been enhanced because of its high recurrence, toxic side-effects and metastasis rate. Hence, on-going efforts in search of anti-cancer agents derived from natural sources with low toxicity and greater enhancement of survival is gaining interest among many researchers. Based on the available literature, it appears that natural phytochemicals obtained from the plants, have been explored for their anti-cancer activity. Acorus calamus, commonly known as the ‘sweet flag’ has a rich history in the Indian and Chinese traditional medicine and found to be a popular remedy with great efficacy for various diseases. The information presented in this review focuses and summarizes the anti-cancer activity of A. calamus and/or its bioactive phytochemicals asarones (alpha (α)-and, beta (β)-asarone) including the underlying molecular mechanisms. Collectively, the mechanism underlying cancer chemo-prevention of A. calamus and/or its bioactive phytochemicals asarone includes variation of all kinds of cancer hallmarks. These includes regulation of cell proliferation and cell cycle arrest, induction of apoptosis, inhibition of angiogenesis as modulated via different signal transduction pathways. Still, extensive in-vivo studies are necessary using various models to understand the molecular mechanism behind the pharmacological activity of the bioactive phytochemicals derived from A. calamus. We believe that the evidence presented in this article could be a possible source for researchers to conduct future studies pertaining to A. calamus and/or its bioactive phytochemicals asarone for cancer chemoprevention.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development and the writing of this article.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

Authors acknowledge the support of The Principal, KLE College of Pharmacy, Vidyanagar, Hubballi, Karnataka, India for extending the facilities to prepare this article.
