UNIQUENESS OF GRIM HYPERPLANES FOR MEAN CURVATURE FLOWS

DITTER TASAYCO AND DETANG ZHOU

Abstract. In this paper we show that an immersed nontrivial translating soliton for mean curvature flow in \mathbb{R}^{n+1} ($n = 2, 3$) is a grim hyperplane if and only if it is mean convex and has weighted total extrinsic curvature of at most quadratic growth. For an embedded translating soliton Σ with nonnegative scalar curvature, we prove that if the mean curvature of Σ does not change signs on each end, then Σ must have positive scalar curvature unless it is either a hyperplane or a grim hyperplane.

1. Introduction

A mean curvature flow (MCF) in \mathbb{R}^{n+1} is the negative gradient flow of the volume functional, which can be analyzed from the perspective of partial differential equations as shown by Huisken in [4]. MCF is smooth in a short time and singularities must happen over a longer time. According to the rate of blow-up of the second fundamental form $A(t, p)$ of the hypersurface Σ_t, this finite time singularity T is called type-I, if there exists a constant C_0 such that

$$\sup_{p \in \Sigma_t} |A(t, p)|^2 \leq \frac{C_0}{(T - t)}$$

for all $t < T$. Otherwise this finite time singularity is called type-II.

We will deal with translating solitons which are important in study of type-II singularities.

A complete connected isometrically immersed hypersurface (Σ, Φ) in \mathbb{R}^{n+1} is called a translating soliton if its mean curvature vector satisfies

$$\vec{H} = w^\perp,$$

where $w \in \mathbb{R}^{n+1}$ is a unitary vector and w^\perp stands for the orthogonal projection of w onto the normal bundle of Φ. Let ν denote the unit normal along Φ, then it is equivalent to

$$H = -\langle \nu, w \rangle.$$

In particular, considering $f : \mathbb{R}^{n+1} \to \mathbb{R}$ defined by $f(x) = -\langle x, w \rangle$, then $\nabla f = -w$ and $H = \langle \nabla f, \nu \rangle$, therefore by definition translating solitons are f-minimal hypersurfaces. Since MCF is invariant under isometries,

2000 Mathematics Subject Classification. Primary: 53C21; Secondary: 53C42.

The second author was partially supported by CNPq and Faperj of Brazil.
without loss of generality we may suppose that \(w = (0, \ldots, 0, 1) \), then the function \(f \) is defined by \(f(x) = -x_{n+1} \) and the \(L_f \)-stability operator of \(\Sigma \) is given by

\[
L_f = \Delta_f + |A|^2
\]

There are some examples of translating solitons: vertical hyperplanes, grim hyperplanes, translating bowl solitons and translating catenoids. In this article we will give a characterization of grim hyperplanes in dimensions 2 and 3.

Recall that a grim hyperplane in \(\mathbb{R}^{n+1} \) is a hypersurface \(G \) of \(\mathbb{R}^{n+1} \) which can be represented parametrically via the embedding \(\Phi : (-\frac{\pi}{2}, \frac{\pi}{2}) \times \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n+1} \) defined by

\[
\Phi(t, y_1, \ldots, y_{n-1}) = (t, y_1, \ldots, y_{n-1}, -\ln (\cos t)).
\]

The grim hyperplane \(G \) satisfies the translating soliton equation with \(w = (0, \ldots, 0, 1) \) i.e. it is \(f \)-minimal for \(f(x_1, \ldots, x_{n+1}) = -x_{n+1} \). Also it has positive mean curvature. When \(n = 2 \) or 3, there exists a constant \(C > 0 \) such that

\[
\int_{B_R} |A|^2 e^{-f} \leq CR^2
\]

for all \(R \) sufficiently large. The aim of this article is to prove that indeed the grim hyperplanes are the only ones with these properties when \(n = 2, 3 \).

Theorem 1. Let \(\Phi : \Sigma^n \rightarrow \mathbb{R}^{n+1} \) be a translating soliton, with \(n = 2 \) or 3, which is not a hyperplane. Then \(\Sigma \) is a grim hyperplane if and only if \(H \equiv -\langle w, \nu \rangle \geq 0 \) and there exists \(C > 0 \) such that

\[
\int_{B_R} |A|^2 e^{-f} \leq CR^2,
\]

for all \(R \) sufficiently large, where \(B_R \) is the geodesic ball of radius \(R \) and \(f(x) = -\langle x, w \rangle \).

The expression (3) is not satisfied for \(n \geq 4 \) (see Proposition 1), thus Theorem 1 is sharp in this sense.

It has been known that if \(H \geq 0 \) on a translating soliton \(\Sigma \), then either \(H \equiv 0 \) on \(\Sigma \) and \(\Sigma \) is a hyperplane, or \(H > 0 \) everywhere on \(\Sigma \). Note that both hyperplane and grim hyperplane has vanishing scalar curvature. In [6], Martín-Sávás-Halilaj-Šmoczyk proved that flat hyperplane and grim hyperplane are the only translating soliton with vanishing scalar curvature. It would be interesting to ask if the following is true.

Problem: Let \(\Sigma \) be a translating soliton with nonnegative scalar curvature \(S \). Is it true that either \(S \equiv 0 \) on \(\Sigma \) and \(\Sigma \) is a hyperplane or grim hyperplane, or \(S > 0 \) everywhere on \(\Sigma \)?

This problem is related to a result proved by Huang-Wu in [3]. Let \(M \) be a closed embedded \(n \)-dimensional hypersurface in \(\mathbb{R}^{n+1} \) with nonnegative scalar curvature. Let \(M_t \) be a solution to the mean curvature flow with
initial hypersurface M. Then the scalar curvature of M_t is strictly positive for all $t > 0$.

For complete embedded translating solitons, we have

Theorem 2. Let $(Σ^n, g)$ be a embedded translating soliton with nonnegative scalar curvature S. Assume H does not change signs on each end. Then either $Σ$ is a hyperplane or a grim hypersurface; or $Σ$ has positive scalar curvature.

2. **Total weighted extrinsic curvature**

In this section we will give the asymptotic properties of the total weighted extrinsic curvatures of grim hyperplanes. We have

$$\partial_t = \sec(t) (\cos t, 0, \cdots, 0, \sin t).$$

We choose the unit normal $ν$ to G to be $ν = (\sin t, 0, \cdots, 0, −\cos t)$. A little computation shows that $\nabla \partial_t ν = (\cos t) \partial_t ν$ and $\nabla \partial_{y_i} ν = 0$ $(1 ≤ i ≤ n − 1)$.

Then the principal curvatures are $λ_1 = \cos t, λ_2 = \cdots = λ_n = 0$, thus on the coordinates $t, y_1, \ldots, y_{n−1}$ the mean curvature only depends on t and is given by $H(t) = \cos t$. Since $t ∈ (−\frac{\pi}{2}, \frac{\pi}{2})$, we have the norm of the second fundamental form is given by

$$|A| (t) = |H(t)|.$$

Now, consider the function $f : \mathbb{R}^{n+1} → \mathbb{R}$ defined by $f(x) = −x_{n+1}$, then

$$\langle \nabla f, ν \rangle = \cos t = H(t).$$

Proposition 1. The Grim Hyperplane G in \mathbb{R}^{n+1} satisfies

$$\lim_{R→+∞} \frac{1}{R^{n−1}} \int_{B_R} |A|^2 e^{-f} = |B^{n−1}(1)| π,$$

where B_R is the geodesic ball with center at 0 and radius R and $B^{n−1}(1)$ is the open ball in $\mathbb{R}^{n−1}$ of radius 1 and center at the origin.

Proof of Proposition 1. Observe that f and the metric on G in the coordinates $t, y_1, \ldots, y_{n−1}$ are given by

$$f(t) = \ln(\cos t)$$

and

$$g = \sec^2(t) dt^2 + dy_1^2 + \cdots + dy_{n−1}^2.$$

Thus

$$r = \int_0^t \sec(ξ) dξ = −\ln \left(\tan \left(\frac{1}{2} (\frac{π}{2} − t) \right) \right),$$

we have $t = \frac{π}{2} − η(r)$, where $η(r) = 2 \arctan(e^r)$. Then

$$g = dr^2 + dy_1^2 + \cdots + dy_{n−1}^2.$$

Besides that $|A|$ and f in the coordinates $r, y_1, \cdots, y_{n−1}$ are given by

$$|A|(r) = \sin(η(r)),$$
and
\[f(r) = \ln(\sin(\eta(r))). \]

Denoting by \(\| \cdot \| \) the standard norm of \(\mathbb{R}^{n-1} \), we have
\[B_R = \left\{ (r, y) \in \mathbb{R} \times \mathbb{R}^{n-1} : r^2 + \|y\|^2 \leq R^2 \right\} \]
\[= \left\{ (r, y) \in \mathbb{R} \times \mathbb{R}^{n-1} : -\sqrt{R^2 - \|y\|^2} \leq r \leq \sqrt{R^2 - \|y\|^2}, \|y\| \leq R \right\}. \]

Since \(-\eta'(r) = \sin(\eta(r))\) is an even function, then
\[
\int_{B_R} |A|^2 e^{-f} = \int_{\{\|y\| \leq R\}} \left[\int_{-\sqrt{R^2 - \|y\|^2}}^{\sqrt{R^2 - \|y\|^2}} \sin(\eta(r)) \, dr \right] \, dy
\]
\[= \int_{\{\|y\| \leq R\}} \left[\pi - 2\eta\left(\sqrt{R^2 - \|y\|^2}\right) \right] \, dy
\]
\[= \pi |B^{n-1}(1)| R^{n-1} - 2 \int_0^R \left(\int_{S^{n-2}_\rho} \eta\left(\sqrt{R^2 - \rho^2}\right) \, dA \right) \, d\rho
\]
\[= \pi |B^{n-1}(1)| R^{n-1} - 2 \text{area}(S^{n-2}) \int_0^R \eta\left(\sqrt{R^2 - \rho^2}\right) \rho^{n-2} \, d\rho.
\]

where we have used the co-area formula. Now, letting \(\rho = R \cos \theta \) and using the fact \(\text{area}(S^{n-2}) = (n-1) |B^{n-1}(1)| \), we have
\[
\frac{1}{R^{n-1}} \int_{B_R} |A|^2 e^{-f} = |B^{n-1}(1)| \left[\pi - 2(n-1) F_{n-1}(R) \right],
\]
where
\[
F_{n-1}(R) = \int_0^{\pi/2} \eta(R \cos \theta) \sin^{n-2} \theta \cos \theta d\theta.
\]

Observe that
\[
\lim_{R \to +\infty} \eta(R \cos \theta) \sin^{n-2} \theta \cos \theta = 0 \quad \text{for all } \theta \in \left[0, \frac{\pi}{2}\right].
\]

Fixing \(R > 0 \), we have \(|\eta(R \cos \theta) \sin^{n-2} \theta \cos \theta| \leq \frac{\pi}{2} \sin^{n-2} \theta \cos \theta \) for all \(\theta \in [0, \pi/2] \). Besides that
\[
\int_0^{\pi/2} \sin^{n-2} \theta \cos \theta d\theta = 1/(n-1).
\]

Then \(\lim_{R \to +\infty} F_{n-1}(R) = 0 \), and hence by (\ref{eq:5}), we get
\[
\lim_{R \to +\infty} \frac{1}{R^{n-1}} \int_{B_R} |A|^2 e^{-f} = |B^{n-1}(1)| \pi.
\]
3. Proofs of Theorem 1 and Theorem 2

We begin this section with the following lemma which is in a form more general than we need. The lemma may have its independent interest.

Lemma 1. Assume that on a complete weighted manifold \((M, \langle \cdot, \cdot \rangle, e^{-f} dv_{M}) \), the functions \(u, v \in C^2(M) \), with \(u > 0 \) and \(v \geq 0 \) on \(M \), satisfy

\[
\Delta f u + q(x) u \leq 0 \quad \text{and} \quad \Delta f v + q(x) v \geq 0,
\]

where \(q(x) \in C^0(M) \). Suppose that there exists a positive function \(\kappa > 0 \) on \(\mathbb{R}^+ \) satisfying the nonincreasing condition

\[
\int^{+\infty} \frac{t}{\kappa(t)} dt = +\infty,
\]

such that

\[
\int_{B_R} v^2 e^{-f} \leq \kappa(R)
\]

for all \(R \). Then there exists a constant \(C \) such that \(v = Cu \).

Remark 1. Without loss of generality, we can assume \(\kappa(t) \geq Ct^2 \). Some examples of \(\kappa(t) \) are \(Ct^2 \), \(Ct^2 \log(1 + t^2) \), \(Ct^2 \log(1 + t) \log \log(3 + t) \), \(\cdots \).

Proof of Lemma 1. Set \(w = \frac{v}{u} \), then \(v = uw \), thus by (7) we get

\[
\Delta f v = w \Delta f u + 2 \langle \nabla w, \nabla u \rangle + u \Delta f w \leq -w(qu) + 2 \langle \nabla w, \nabla u \rangle + u \Delta f w = -qv + 2 \langle \nabla w, \nabla u \rangle + u \Delta f w.
\]

Then

\[
\Delta f w \geq -2 \langle \nabla w, \nabla (\ln u) \rangle.
\]

On the other hand, let \(\varphi \in C^2_0(M) \), then by (7), we have

\[
\int_M \varphi^2 |\nabla w|^2 e^{-f} = \int_M \langle \varphi^2 \nabla w, \nabla w \rangle e^{-f}
\]

\[
= \int_M \langle \nabla (\varphi^2 w) , \nabla w \rangle e^{-f} - 2 \int_M \varphi w \langle \nabla \varphi, \nabla w \rangle e^{-f}
\]

\[
= - \int_M \varphi^2 w (\Delta f w) e^{-f} - 2 \int_M \varphi w \langle \nabla \varphi, \nabla w \rangle e^{-f}
\]

\[
\leq 2 \int_M \varphi^2 w \langle \nabla w, \nabla (\ln u) \rangle e^{-f} - 2 \int_M \varphi w \langle \nabla \varphi, \nabla w \rangle e^{-f}
\]

\[
= 2 \int_M \langle \varphi \nabla w, w (\varphi \nabla (\ln u) - \nabla \varphi) \rangle
\]

\[
\leq \frac{1}{2} \int_M \varphi^2 |\nabla w|^2 e^{-f} + 2 \int_M w^2 |\varphi \nabla (\ln u) - \nabla \varphi|^2 e^{-f}.
\]
Then
\[(10) \quad \int_M \varphi^2 |\nabla w|^2 e^{-f} \leq 4 \int_M w^2 |\varphi \nabla \ln u - \nabla \varphi|^2 e^{-f} \quad \forall \varphi \in C^2_o(M).\]

If \(\psi \in C^\infty_\circ(M)\), then \(\varphi = \psi u \in C^2_o(M)\). Besides that, a little computation shows
\[\varphi \nabla \ln u - \nabla \varphi = - (\nabla \psi) u,\]

Thus, from (10), we have
\[\int_M \psi^2 u^2 |\nabla w|^2 e^{-f} \leq 4 \int_M w^2 |\nabla \psi|^2 u^2 e^{-f} \quad \forall \psi \in C^\infty_\circ(M).\]

Define functions \(\beta, \xi\) on \([0, +\infty)\) as
\[\beta(t) := \int_0^t \frac{\tau}{\kappa(\tau)} d\tau,\]
and \(\xi\) is the inverse function of \(\beta\). From the hypothesis we know \(\beta'\) is nonincreasing and \(\xi'\) is nondecreasing functions on \([0, +\infty)\). Now, we now choose a cutoff function
\[\psi_R(x) = \begin{cases} 1, & \text{on } B_{\xi(R)}; \\ 2 - \frac{\beta(r(x))}{R}, & \text{on } B_{\xi(2R)} \setminus B_{\xi(R)}; \\ 0, & \text{on } M \setminus B_{\xi(2R)}. \end{cases}\]

where \(r(x) = d(x, p)\), \(p \in M\) is a fixed point and \(B_R\) is the geodesic ball with radius \(R\) and center \(p\). We see that \(|\nabla \psi_R| = \frac{\beta'(r)}{R} = \frac{r}{R\kappa(r)}\). Then, by [S], we get
\[\int_{B_{\xi(R)}} u^2 |\nabla w|^2 e^{-f} = \int_{B_{\xi(R)}} \psi_{R}^2 u^2 |\nabla w|^2 e^{-f} \leq \int_M \psi_{R}^2 u^2 |\nabla w|^2 e^{-f} \leq 4 \int_M v^2 |\nabla \psi_R|^2 e^{-f} = 4 \int_{B_{\xi(2R)} \setminus B_{\xi(R)}} v^2 |\nabla \psi_R|^2 e^{-f} = \frac{4}{R^2} \int_{\xi(R)} \left(\beta'(s)\right)^2 \int_{\partial B_s} v^2 e^{-f} dAd\tau.\]

Here we have used co-area formula. For convenience, we write \(V(s) = \int_{B_s} v^2 e^{-f} dV\). Therefore
\[V(s) = \int_0^s \int_{\partial B_r} v^2 e^{-f} dAd\tau \leq \kappa(s),\]
and
\[
\int_{B_{\xi(R)}} u^2 |\nabla w|^2 e^{-f} \leq \frac{4}{R^2} \int_{\xi(R)}^{(2R)} (\beta'(s))^2 V'(s) ds
\]

\[
= \frac{4}{R^2} \left[V(s)(\beta'(s))^2 \left(\frac{\xi(2R)}{\xi(R)} - \int_{\xi(R)}^{\xi(2R)} 2V(s)(\beta'(s)) d\beta'(s) \right) \right]
\]

\[
\leq \frac{4}{R^2} \left[V(s)(\beta'(s))^2 \left(\frac{\xi(2R)}{\xi(R)} - 2 \int_{\xi(R)}^{\xi(2R)} s d\beta'(s) \right) \right]
\]

\[
\leq \frac{4}{R^2} \left[V(s)(\beta'(s))^2 \left(\frac{\xi(2R)}{\xi(R)} - 2s\beta'(s) \right) \right]
\]

\[
\leq \frac{4}{R^2} \left[V(s)(\beta'(s))^2 \left(\frac{\xi(2R)}{\xi(R)} - 2s\beta'(s) \right) + R \right]
\]

Since
\[
V(s)(\beta'(s))^2 = V(s)\beta'(s)\beta'(s) \leq s\beta'(s),
\]
and \(\beta'(s) = \frac{\beta}{\kappa(s)} \), thus Remark \(\Box \) implies these terms are bounded, hence when \(R \to +\infty \), all the terms on the right hand side go to zero. So we get
\[
\int_M u^2 |\nabla w|^2 e^{-f} = 0.
\]

Then \(\nabla w \equiv 0 \), thus there is a constant \(C \) such that \(w \equiv C \) and hence \(v = Cu \). \(\square \)

Definition 1. A two-sided translating soliton \(\Sigma \) is said to be stable if
\[
\int_{\Sigma} \left[|\nabla \varphi|^2 - |A|^2 \varphi^2 \right] e^{-f} d\sigma \geq 0 \quad \text{for all} \quad \varphi \in C_0^\infty (\Sigma).
\]

As a consequence of Lemma \(\Box \) we have the following:

Corollary 1. Let \(\Phi : \Sigma^m \to \mathbb{R}^{n+1} \) be a stable translating soliton and let \(\omega \in C^2 (\Sigma) \) be a positive solution of the stability equation
\[
(12) \quad \Delta_f \omega + |A|^2 \omega = 0.
\]

Moreover, if \(H \geq 0 \) and there exists a constant \(C > 0 \) such that
\[
(13) \quad \int_{B_R} H^2 e^{-f} \leq CR^2 \quad \text{for all} \quad R \text{ large enough}.
\]

Then there exists a constant \(\tilde{C} \) such that \(H = \tilde{C} \omega \). In particular, if \(H \neq 0 \), then \(\tilde{C} \in \mathbb{R} \setminus \{0\} \) and \(H > 0 \).

Now, we include here a result due to Li and Wang (\[\overline{5} \]) which will be needed in the proof our main theorem.
Lemma 2. Suppose Σ is complete and there exists a nonnegative function $\varphi : \Sigma \to \mathbb{R}$, not identically zero, such that $(\Delta_f + q)(\varphi) \leq 0$. Then $\Delta_f + q$ is stable.

Proof. Let Ω be a compact subdomain in Σ and let u be the first eigenfunction satisfying
\begin{equation}
\begin{cases}
(\Delta_f + q)u = -\lambda_1(\Omega)u & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}
\end{equation}
We may assume that $u \geq 0$ on Ω. From regularity of u and Hopf Lemma, we have
\begin{itemize}
\item $u > 0$ in the interior of Ω.
\item $\frac{\partial u}{\partial \nu} < 0$ on $\partial\Omega$, where ν is the outward unit normal of $\partial\Omega$.
\end{itemize}
Thus, integration by parts on u and φ and also the hypothesis, we have
\begin{equation}
\int_{\Omega} u(\Delta_f \varphi) e^{-f} - \int_{\Omega} \varphi (\Delta_f u) e^{-f} = \int_{\partial\Omega} u \frac{\partial \varphi}{\partial \nu} e^{-f} - \int_{\partial\Omega} \varphi \frac{\partial u}{\partial \nu} e^{-f}
= -\int_{\partial\Omega} \frac{\partial u}{\partial \nu} \varphi e^{-f} \geq 0.
\end{equation}
From hypothesis and (14), we have
\begin{equation}
\begin{cases}
\Delta_f \varphi + Q\varphi \leq 0, \\
\Delta_f u + Qu = -\lambda_1(\Omega) u.
\end{cases}
\end{equation}
Since $u > 0$, multiplying the first inequality of (16) by u and the second equation by $-\varphi$, and finally both by e^{-f}, we have
\begin{equation}
u(\Delta_f \varphi) e^{-f} - \varphi (\Delta_f u) e^{-f} \leq \lambda_1(\Omega)(\varphi u) e^{-f}
\end{equation}
Since both $u > 0$ and $\varphi \geq 0$ are not identically zero, then combining (17) with (15), we have $\lambda_1(\Omega) \geq 0$ for all compact subdomains of Σ, then $\lambda_1(f, Q) \geq 0$, therefore $\Delta_f + q$ is stable.

We are now ready to give the proof of Theorem 1.

Proof of Theorem 1 Since $\Phi : \Sigma^n \to \mathbb{R}^{n+1}$ is a translating soliton, then the mean curvature H satisfies $\Delta_f H + |A|^2 H = 0$ (see Proposition 3 in [1]). Since $H \geq 0$ and Σ is a non-planar translating soliton, then H is not identically zero, thus by Lemma 2 Σ is stable and hence the weighted version of a result by Fischer-Colbrie and Schoen [2] guarantees there exists a non-constant positive C^2-function ω on Σ such that
\begin{equation}
\Delta_f \omega + |A|^2 \omega = 0.
\end{equation}
As $\frac{H^2}{n} \leq |A|^2$ and $|A|$ satisfies (3), then
\begin{equation}
\int_{B_R} H^2 e^{-f} \leq nC R^2.
\end{equation}
Then, by Corollary 1 and the condition that $H \geq 0$ and not identically zero, there is a constant $C_1 > 0$ such that

$$(20) \quad H = C_1 \omega.$$

In particular $H > 0$ everywhere on Σ. On the other hand, the Simons equation (see [1] or [6]) implies that

$$(21) \quad |A| \left(\Delta f |A| + |A|^2 |A| \right) = |\nabla A|^2 - |\nabla |A||^2 \geq 0.$$

Since $|A|$ satisfies (3), then by Lemma 1 \exists $C_2 \geq 0$ such that

$$(22) \quad |A| = C_2 \omega.$$

Besides that Σ^n is not a hyperplane, then $|A|$ is not identically zero, thus $C_2 > 0$. Then by (20) and (22) we have $|A|^2 H^{-2} = \text{constant} > 0$. In particular this function attains its local maximum on Σ. Theorem B in [6] says that Σ is a grim hyperplane if and only if the function $|A|^2 H^{-2}$ attains a local maximum. Therefore Σ is a grim hyperplane. \square

We now prove Theorem 2.

Proof of Theorem 2. To prove Theorem 2 we will need a result of Huang-Wu [3]. Denote by M_+ a connected component of $\{ p \in M, H \geq 0 \text{ at } p \}$ that contains a point of positive mean curvature. We say that the mean curvature H changes signs through Γ if Γ is a connected component of ∂M_+ and Γ intersects the boundary of a connected component of $M \setminus \partial M_+$. Theorem 2 of Huang-Wu [3] \ \ \ $S \geq 0$, says that if H changes sign along Γ then Γ is unbounded set. Since we have assumed that H does not changes signs at infinity, H has a sign. Hence either

1. $H \equiv 0$, or
2. $H \geq 0$ but does not vanish at least one point.

In case (1), Σ must be a hyperplane.

In case (2), if there is point $p \in \Sigma$, such that $S(p) = 0$ then $|A|^2 = H^2 - S \leq H^2$ and equality holds at p. Therefore the function $|A|^2 H^2$ is well defined and attains its maximum at p. By Theorem B in [6] it must be a grim hyperplane. \square

References

[1] Xu Cheng, Tito Mejia, and Detang Zhou, *Simons-Type Equation for f-Minimal Hypersurfaces and Applications*, J. Geom. Anal 25 (2015), no. 4, 2667–2686.

[2] Doris Fischer-Colbrie and Richard Schoen, *The structure of complete stable surfaces in 3-manifolds of nonnegative scalar curvature*, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211.

[3] Lan-Hsuan Huang and Damin Wu, *Hypersurfaces with nonnegative scalar curvature*, J. Differential Geom. 95 (2013), no. 2, 249–278, MR3128984

[4] Gerhard Huisken, *Flow by mean curvature of convex surfaces into spheres*, J. Differential Geom. 20 (1984), no. 1, 237–266, MR772132

[5] Peter Li and Jiaping Wang, *Weighted Poincaré inequality and rigidity of complete manifolds*, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 6, 921–982, DOI 10.1016/j.ansens.2006.11.001 (English, with English and French summaries). MR2316978
[6] Francisco Martín, Andreas Savas-Halilaj, and Knut Smoczyk, *On the topology of translating solitons of the mean curvature flow*, Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2853–2882, DOI 10.1007/s00526-015-0886-2. MR3412395

Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, RJ 24020, Brazil

E-mail address: ditter.y.t@gmail.com

E-mail address: zhou@impa.br