Characterization of the complete mitogenome of Haifa grouper, *Hyporthodus haifensis* (Perciformes: Serranidae), and its phylogenetic position within Epinephelini

Noel Vella and Adriana Vella

Department of Biology, Conservation Biology Research Group, University of Malta, Msida, Malta

ABSTRACT

The complete mitochondrial genome of the Haifa grouper, *Hyporthodus haifensis* (Ben-Tuvia, 1953), has been obtained, through Illumina next-generation sequencing, and annotated. This mitogenome was found to be 16,525 bp long and to contain 37 genes, a control region, and the L-strand replication origin. The overall base composition of the complete mitogenome for this species was found to be 28.55% A, 28.07% C, 16.32% G, and 27.06% T. This study also looked into the mitogenome phylogenetic relationships of *H. haifensis* within the tribe Epinephelini and adds to the genetic resources currently available for the species.

The Haifa grouper, *Hyporthodus haifensis* (Ben-Tuvia, 1953), belongs to the family Serranidae, subfamily Epinephelinae, tribe Epinephelini. The latter is composed of 16 genera and 171 species, with the genus *Hyporthodus* hosting 18 species (Heemstra and Randall 1993; Parenti and Randall 2020). Epinephelini species are renowned for their economic value, with many of them being listed in high-risk species categories by IUCN (2020). Some Epinephelini species, such as *Epinephelus marginatus*, are considered as flagship species (Buchholz-Sørensen and Vella 2016) thus frequently studied, while others, such as *H. haifensis*, are rarely considered and are occasionally misidentified at fisheries landing sites with other groupers, such as *Mycteroperca rubra*, *E. marginatus* and *Epinephelus caninus* or with other species from unrelated taxa, such as *Polyprion americanum* (Vella and Vella 2016; pers. obs.). The latest IUCN assessment listed *H. haifensis* as Least Concern from its previous Data Deficient status (Francour and Pollard 2018), though the same report indicates that the species is naturally rare and due to the lack of life-history information should be closely monitored.

A 14.8 kg *H. haifensis* specimen was caught in February 2017 by local artisanal fishermen off the coast of Malta (35° 45’ N, 14° 17’ E). A tissue sample was collected from this specimen and deposited at the Ichthyological Collection of the Conservation Biology Research Group, University of Malta (www.um.edu.mt, Adriana Vella, adriana.vella@um.edu.mt) under the voucher number CBRG 170202019. The genomic DNA was extracted from the tissue sample using GF-1 DNA Extraction Kit (Vivantis Technologies, Subang Jaya, Malaysia), and a DNA library of the whole genome was constructed. Next-generation sequencing was used to sequence 2 × 150 bp end reads through Illumina HiSeqX (Illumina, San Diego, CA). Sequences were paired, trimmed at Q ≥ 30 and the complete circular mitogenome was de novo assembled using Geneious R10 (Kearse et al. 2012). The *tRNA* genes were identified through secondary structures using tRNAscan-SE version 2.0 (Chan and Lowe 2019), while protein-coding genes (PCGs), *rRNA* genes and the control region were identified through homology with other Epinephelini species (Zhuang et al. 2013).

The complete mitogenome for *H. haifensis* is 16,525 bp long (MW015093), falling in the range of other mitogenomes of Epinephelini species, which range between 16,389 bp in the Striped grouper, *Epinephelus latifasciatus* (KC480177, Lai et al. 2013) to 17,227 bp in the Duskytail grouper, *Epinephelus bleekeri* (KF556648, Wu et al. 2015). The mitogenome studied here contains 13 PCGs, two *rRNA* genes, 22 *tRNA* genes, and two non-coding regions (control region and *Ol*) and follows the typical gene order of fish species (Satoh et al. 2016). The majority of the genes are encoded on the H-strand, except ND6 gene, eight *tRNA* genes, and *Ol*. The PCGs lengths range between 168 bp (ATP8) and 1839 bp (ND5). Most of the PCGs utilize ATG as their start codon except COX1 which uses GTG similar to most other fish species (Satoh et al. 2016), and
ATP6 which uses CTG. In general, the latter start codon for ATP6 is considered as unusual in fish species (Satoh et al. 2016), however, it was found to occur in 82% of the Epinephelini species included in Figure 1. Almost all genes have TAA as their stop codon, except ND3 that uses TAG, while COX2 and ND4 use the incomplete stop codon T–. The length of the 22 tRNA genes varies between 67 bp (Cys) to 77 bp (LeuUUR), and all produced the expected cloverleaf structure except for SerAGY that has the DHU arm missing.

The mitogenome of H. haifensis was aligned with that of other Epinephelini species using ClustalW (Thompson et al. 1994), and a phylogenetic tree was constructed using Bayesian Inference analysis through MrBayes version 3.2.6 (Huelsenbeck and Ronquist 2001) (Figure 1) using GTR G+I substitution model as determined by jModelTest version 2.1.7 (Darriba et al. 2012). This analysis placed H. haifensis on the same branch as Hyporthodus octofasciatus, forming a sister group to Triso dermopterus. All species grouped together according to their respective genera, except for the monotypic genus Cromileptes (represented by C. altivelis) which nested within the genus Epinephelus and the monotypic genus Aethaloperca (represented by A. rogaa) which nested within the genus Cephalopholis. The position of these two monotypic genera is consistent with observations noted using other genetic markers (Craig and Hastings 2007) and other smaller data sets of Epinephelini mitogenomes (Zhuang et al. 2013). This outcome further supports the need for a taxonomic revision of these monotypic taxa within their respective clades as indicated in Zhuang et al. (2013). This study adds to the genetic resources available for H. haifensis, which can be used as a tool to promote further research and effective conservation of this rare species.

Acknowledgments

The authors would like to thank Maltese fishermen and the Ministry for Sustainable Development, the Environment, and Climate Change for supporting this study.

Ethical approval

This study did not require ethical approval as it made use of muscle tissue collected from a dead specimen that was caught by a local fisherman and was sold at the local fish market.
Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The research disclosed in this publication has been funded through FINS project awarded to NV through the REACH HIGH Scholars Programme-Post Doctoral Grants and the BioCon_Innovate Research Excellence Grant from the University of Malta awarded to AV. The former is part-financed by the European Union, Operational Programme II – Cohesion Policy 2014–2020 ‘Investing in human capital to create more opportunities and promote the well-being of society’ – European Social Fund.

ORCID

Noel Vella http://orcid.org/0000-0003-0080-5709
Adriana Vella http://orcid.org/0000-0003-2246-5354

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov under the accession no. MW015093. The associated BioProject number is PRJNA661720.

References

Buchholz-Sørensen M, Vella A. 2016. Population structure, genetic diversity, effective population size, demographic history and regional connectivity patterns of the endangered Dusky grouper, Epinephelus marginatus (Teleostei: Serranidae), within Malta’s Fisheries Management Zone. PLOS One. 11(7):e0159864.
Chan PP, Lowe TM. 2019. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol. 1962:1–14.
Craig MT, Hastings PA. 2007. A molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini. Ichthyol Res. 54(1):1–17.
Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 9(8):772.
Francoeur P, Pollard DA. 2018. Hyporthodus haifensis. The IUCN red list of threatened species 2018: e.T132828A100570068.
Giglio VJ, Bender MG, Zapelini C, Ferreira CEL. 2017. The end of the line? Rapid depletion of a large-sized grouper through spearfishing in a subtropical marginal reef. Perspect Ecol Conserv. 15(2):115–118.
Heemstra PC, Randall JE. 1993. Groupers of the world. FAO fisheries synopsis no. 125, vol 16, Rome: FAO.
Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 17(8):754–755.
IUCN. 2020. The IUCN red list of threatened species. Version 2020-2. https://www.iucnredlist.org.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649.
Lai T, He B, Peng Z, Wang X, Pan L. 2013. Complete mitochondrial genome of the striped grouper Epinephelus latifasciatus (Serranidae, Epinephelinae). Mitochondrial DNA. 24(5):510–512.
Parenti P, Randall JE. 2020. An annotated checklist of the fishes of the family Serranidae of the world with description of two new related families of fishes. FishTaxa. 15:1–170.
Sadovy de Mitcheson Y, Craig MT, Bertoncini AA, Carpenter KE, Cheung WL, Choat JH, Cornish AS, Fennessy ST, Ferreira BP, Heemstra PC, et al. 2013. Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish Fish. 14(2):119–136.
Sadovy YJ. 1994. Grouper stocks of the western central Atlantic: the need for management and management needs. Ann Gulf Caribb Fish Inst Proc. 43:43–64.
Satoh TP, Miya M, Mabuchi K, Nishida M. 2016. Structure and variation of the mitochondrial genome of fishes. BMC Genom. 17:719.
Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22):4673–4680.
Vella A, Vella N. 2016. Genetic barcoding and preliminary phylogenetic analysis of Serranidae species from Maltese coastal waters, with a perspective on their Mediterranean phylogeography. Nat Eng Sci. 1(3):66–77.
Wu X, Xie Z, Yang L, Yang H, Yue L, Hou L, Zhang Y, Shu H. 2015. The complete mitochondrial genome of the duskytail grouper Epinephelus bleekerii (Serranidae: Epinephelinae). Mitochondrial DNA. 26(5):722–723.
Zhuang X, Qu M, Zhang X, Ding S. 2013. A comprehensive description and evolutionary analysis of 22 grouper (Perciformes, Epinephelidae) mitochondrial genomes with emphasis on two novel genome organizations. PLoS One. 8(8):e73561.