An upper bound for the number of perfect matchings in graphs

Shmuel Friedland∗

Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago
Chicago, Illinois 60607-7045, USA
6 March, 2008

Abstract

We give an upper bound on the number of perfect matchings in an undirected simple graph \(G \) with an even number of vertices, in terms of the degrees of all the vertices in \(G \). This bound is sharp if \(G \) is a union of complete bipartite graphs. This bound is a generalization of the upper bound on the number of perfect matchings in bipartite graphs on \(n + n \) vertices given by the Bregman-Minc inequality for the permanents of \((0, 1)\) matrices.

2000 Mathematics Subject Classification: 05A15, 05C70.
Keywords and phrases: Perfect matchings, permanents, hafnians.

1 Introduction

Let \(G = (V, E) \) be an undirected simple graph with the set of vertices \(V \) and edges \(E \). For a vertex \(v \in V \) denote by \(\deg v \) the degree of the vertex \(v \). Assume that \(|V| \) is even. Denote by \(\text{perfmat} G \) the number of perfect matching in \(G \). Our main result states that

\[
\text{perfmat} G \leq \prod_{v \in V} ((\deg v)!)^{\frac{1}{2 \deg v}}, \tag{1.1}
\]

We assume here that \(0^\frac{1}{2} = 0 \). This result is sharp if \(G \) is a disjoint union of complete bipartite graphs. For bipartite graphs the above inequality follows from the Bregman-Minc inequality for the permanents of \((0, 1)\) matrices, conjectured by Minc [4] and proved by Bregman [2]. In fact, the inequality (1.1) is the analog of the Bregman-Minc inequality for the hafnians of \((0, 1)\) symmetric of even order with zero diagonal. Our proof follows closely the proof of the Bregman-Minc inequality given by Schrijver [6].

2 Permanents and Hafnians

If \(G \) is a bipartite graph on \(n + n \) vertices then \(\text{perfmat} G = \text{perm} B(G) \), where \(B(G) = [b_{ij}] \in \{0, 1\}^{n \times n} \) is the incidence matrix of the bipartite graph \(G \). Thus \(V = V_1 \cup V_2 \) and \(E \subset V_1 \times V_2 \), where \(V_i = \{v_{1,i}, \ldots, v_{n,i}\} \) for \(i = 1, 2 \). Then \(b_{ij} = 1 \) if and only if \((v_{i,1}, v_{j,2}) \in E \). Recall that the permanent of \(B \in \mathbb{R}^{n \times n} \) is given by \(\text{perm} B = \sum_{\sigma \in S_n} \prod_{i=1}^{n} b_{i \sigma(i)} \), where \(S_n \) is the symmetric group of all permutations \(\sigma : \langle n \rangle \to \langle n \rangle \).

Vice versa, given any \((0, 1)\) matrix \(B = [a_{ij}] \in \{0, 1\}^{n \times n} \), then \(B \) is the incidence matrix of the induced \(G(B) = (V_1 \cup V_2, E) \). Denote by \(\langle n \rangle := \{1, \ldots, n\} \), \(m + \langle n \rangle := \{m + 1, \ldots, m + n\} \).

∗Visiting Professor, Fall 2007 - Winter 2008, Berlin Mathematical School, Berlin, Germany
n} for any two positive integers m, n. It is convenient to identify V₁ = ⟨n⟩, V₂ = n + ⟨n⟩. Then rᵢ := ∑ₙᵢ=₁ bᵢᵢ is the i-th degree of i ∈ ⟨n⟩. The celebrated Bregman-Minc inequality, conjectured by Minc [1] and proved by Bregman [2], states
\[\text{perm} B \leq \prod_{i=1}^{n} (rᵢ) \frac{1}{rᵢ}. \] (2.1)

A simple proof Bregman-Minc inequality is given [6]. Furthermore the above inequality is generalized to nonnegative matrices. See [1, 5] for additional proofs of (2.1).

Proposition 2.1 Let G = (V₁ ∪ V₂, E) be a bipartite graph with #V₁ = #V₂. Then (2.1) holds. If G is a union of complete bipartite graphs then equality holds in (2.1).

Proof Assume that #V₁ = #V₂ = n. Clearly,
\[\text{perfmat}_G = \text{perm} B(G) = \text{perm} B(G)^\top = \sqrt{\text{perm} B(G)} \sqrt{\text{perm} B(G)^\top}. \]

Note that the i-th row sum of B(G)^\top is the degree of the vertex n + i ∈ V₂. Apply the Bregman-Minc inequality to perm B(G) and perm B(G)^\top to deduce (1.1).

Assume that G is the complete bipartite graph Kᵣᵣ on r + r vertices. Then B(Kᵣᵣ) = Jᵣ = {1}ᵣ×r. So perfmat Kᵣᵣ = r!. Hence equality holds in (1.1). Assume that G is a (disjoint) union of G₁, . . . , Gᵢ. Since perfmat G = ∏ᵢ=1 perfmat Gᵢ, we deduce (1.1) is sharp if each Gᵢ is a complete bipartite graph.

Let A(G) ∈ {0, 1}ᵐ×ᵐ be the adjacency matrix of an undirected simple graph G on m vertices. Note that A(G) is a symmetric matrix with zero diagonal. Vice versa, any symmetric (0, 1) matrix with zero diagonal induces an indirected simple graph G(A) = (V, E) on m vertices. Identify V with ⟨m⟩. Then rᵢ, the i-th row sum of A, is the degree of the vertex i ∈ ⟨m⟩.

Let K₂n be the complete graph on 2n vertices, and denote by M(K₂n) the set of all perfect matches in K₂n. Then α ∈ M(K₂n) can be represented as α = {(i₁, j₁), (i₂, j₂), . . . , (iₙ, jₙ)} with iₖ < jₖ for k ∈ ⟨n⟩. It is convenient to view (iₖ, jₖ) as an edge in K₂n. We can view α as an involution in S₂n with no fixed points. So for l ∈ ⟨2n⟩ α(l) is second vertex corresponding to l in the perfect match given by α. Vice versa, any fixed point free involution of (2n) induces a perfect match α ∈ M(K₂n). Denote by Sₘ the space of m × m real symmetric matrices. Assume that A = [aᵢⱼ] ∈ S₂n. Then the hafnian of A is defined as
\[\text{hafn} A := \sum_{\alpha = \{(i₁, j₁),(i₂, j₂), . . . , (iₙ, jₙ)\} \in \mathcal{M}(K₂n)} \prod_{k=1}^{n} a_{iₖ, jₖ}. \] (2.2)

Note that hafn A does not depend on the diagonal entries of A. Let i ≠ j ∈ ⟨2n⟩. Denote by A(i, j) ∈ S₂n₋₂ the symmetric matrix obtained from A by deleting the i, j rows and columns of A. The following proposition is straightforward, and is known as the expansion of the hafnian by the row, (column), i.

Proposition 2.2 Let A ∈ S₂n. Then for each i ∈ ⟨2n⟩
\[\text{hafn} A = \sum_{j \in ⟨2n⟩ \setminus \{i⟩} aᵢⱼ \text{hafn} A(i, j) \] (2.3)

It is clear that perfmat G = hafn A(G) for any G = ⟨⟨2n⟩⟩, E). Then (1.1) is equivalent to the inequality
\[\text{hafn} A \leq \prod_{i=1}^{2n} (rᵢ) \frac{1}{rᵢ}, \text{ for all } A \in \{0, 1\}^{⟨2n⟩×⟨2n⟩} \cap S₂n,₀ \] (2.4)

Our proof of the above inequality follows the proof of the Bregman-Minc inequality given by A. Schrijver [6].
3 Preliminaries

Recall that $x \log x$ is a strict convex function on $\mathbb{R}_+ = [0, \infty)$, where $0 \log 0 = 0$. Hence

$$\frac{\sum_{j=1}^r t_j}{r} \log \frac{\sum_{j=1}^r t_j}{r} \leq \frac{1}{r} \sum_{j=1}^r t_j \log t_j, \text{ for } t_1, \ldots, t_r \in \mathbb{R}_+. \tag{3.1}$$

Clearly, the above inequality is equivalent to the inequality

$$\left(\sum_{j=1}^r t_j\right)\prod_{j=1}^r t_j^{\frac{1}{r}} \leq \prod_{j=1}^r t_j^{\frac{1}{r}}, \text{ for } t_1, \ldots, t_r \in \mathbb{R}_+. \tag{3.2}$$

Here $0^0 = 1$.

Lemma 3.1 Let $A = [a_{ij}] \in \{0, 1\}^{(2n) \times (2n)} \cap S_{2n,0}$. Then for each $i \in \langle 2n \rangle$\)

$$(\text{hafn } A)_{hafn A} A \leq \prod_{j:a_{ij}=1} (\text{hafn } A(i,j))_{hafn A(i,j)} \cdot \tag{3.3}$$

Proof Let $t_j = \text{hafn } A(i,j)$ for $a_{ij} = 1$. Use (2.3) and (3.2) to deduce (3.3). ■

To prove our main result we need the following two lemmas.

Lemma 3.2 The sequence $(k!\frac{1}{1})_{k=1,\ldots}^{\infty}$ is an increasing sequence.

Proof Clearly, the inequality $(k!\frac{1}{1})_{k=1,\ldots}^{\infty} < ((k+1)!\frac{1}{1})_{k=1,\ldots}^{\infty}$ is equivalent to the inequality $(k!\frac{1}{1})_{k=1,\ldots}^{\infty} < ((k+1)!\frac{1}{1})_{k=1,\ldots}^{\infty}$, which is in turn equivalent to $k! < (k+1)!$, which is obvious. ■

Lemma 3.3 For an integer $r \geq 3$ the following inequality holds.

$$((r-1)!\frac{1}{r-2})_{r=1,\ldots}^{\infty} < \frac{2}{r-2} \tag{3.4}$$

Proof Raise the both sides of (3.1) to the power $r(r-1)(r-2)$ to deduce that (3.4) is equivalent to the inequality

$$(r-1)!^{(r-2)}((r-2)!)^{r-1} < ((r-1)!)^{2r(r-2)}. \tag{3.4}$$

Use the identities

$$r! = r(r-1)!, \quad (r-1)! = (r-1)(r-2)!, \quad 2r(r-2) = (r-1)(r-2) + r(r-1) - 2, \quad r(r-1) - 2 = (r+1)(r-2)$$

to deduce that the above inequality is equivalent to

$$(r-1)!^{(r-2)}((r-2)!)^{r-1} < (r-1)^{(r+1)(r-2)}. \tag{3.4}$$

Take the logarithm of the above inequality, divide it by $(r-2)$ deduce that (3.4) is equivalent to the inequality

$$(r-1) \log r + \frac{2}{r-2} \log(r-2)! - (r+1) \log(r-1) < 0.\tag{3.4}$$

This inequality is equivalent to

$$s_r := (r-1) \log \frac{r}{r-1} + 2(\frac{1}{r-2} \log(r-2)! - \log(r-1)) < 0 \text{ for } r \geq 3. \tag{3.5}$$

Clearly

$$(r-1) \log \frac{r}{r-1} = (r-1) \log(1 + \frac{1}{r-1}) < (r-1) \frac{1}{r-1} = 1.$$
Hence (3.5) holds if
\[
\frac{1}{r-2} \log (r-2)! - \log (r-1) < -\frac{1}{2}.
\] (3.6)

Recall the Stirling’s formula [3, pp. 52]
\[
\log k! = \frac{1}{2} \log (2\pi k) + k \log k - k + \frac{\theta_k}{12k} \text{ for some } \theta_k \in (0,1).
\] (3.7)

Hence
\[
\frac{\log(r-2)!}{r-2} < \frac{\log 2\pi(r-2)}{2(r-2)} + \log(r-2) - 1 + \frac{1}{12(r-2)^2}.
\]

Thus
\[
\frac{1}{r-2} \log (r-2)! - \log (r-1) < \frac{\log 2\pi(r-2)}{2(r-2)} + \frac{r-2}{r-1} + \frac{1}{12(r-2)^2} - 1.
\]

Since \(e^x\) is convex, it follows that \(1 + x \leq e^x\). Hence
\[
\frac{1}{r-2} \log (r-2)! - \log (r-1) < \frac{\log 2\pi(r-2)}{2(r-2)} - \frac{1}{r-1} + \frac{1}{12(r-2)^2} - 1.
\]

Note that
\[\frac{1}{r-2} + \frac{1}{12(r-2)^2} < 0\] for \(r \geq 3\). Therefore
\[
\frac{1}{r-2} \log (r-2)! - \log (r-1) < \frac{\log 2\pi(r-2)}{2(r-2)} - 1.
\] (3.8)

Observe next that that the function \(\frac{\log 2\pi x}{2x}\) is decreasing for \(x > \frac{e}{2\pi}\). Hence the right-hand side of (3.8) is a decreasing sequence for \(r = 3, \ldots\). Since \(\frac{\log 2\pi \cdot 3}{2 \cdot 3} = 0.4894\), it follows that the right-hand side of (3.8) is less than \(-0.51\) for \(r \geq 5\). Therefore (3.5) holds for \(r \geq 5\). Since
\[
s_3 = \log \frac{9}{16} < 0, \quad s_4 = \log \frac{128}{243} < 0
\]
we deduce the lemma.

The arguments of the Proof of Lemma 3.3 yield that \(s_r, r = 3, \ldots\), converges to \(-1\). We checked the values of this sequence for \(r = 3, \ldots, 100\), and we found that this sequence decreases in this range. We conjecture that the sequence \(s_r, r = 3, \ldots\) decreases.

4 Proof of generalized Bregman-Minc inequality

Theorem 4.1 Let \(G = (V,E)\) be undirected simple graph on an even number of vertices. Then the inequality (1.1) holds.

Proof We prove (2.4). We use the induction on \(n\). For \(n = 1\) (2.4) is trivial. Assume that theorem holds for \(n = m - 1\). Let \(n = m\). It is enough to assume that \(\text{hafn} \ A > 0\).

In particular each \(r_i \geq 1\). If \(r_i = 1\) for some \(i\), then by expanding \(\text{hafn} \ A\) by the row \(i\), using the induction hypothesis and Lemma 3.2 we deduce easily the theorem in this case.

Hence we assume that \(r_i \geq 2\) for each \(i \in \langle 2n \rangle\). Let \(G = G(A) = (\langle 2n \rangle, E)\) be the graph induced by \(A\). Then \(\text{hafn} \ A > 0\) is the number of perfect matchings in \(G\). Denote by \(\mathcal{M} := \mathcal{M}(G) \subset \mathcal{M}(K_{2n})\) the set of all perfect matchings in \(G\). Then \(#\mathcal{M} = \text{hafn} \ A\). We now follow the arguments in the proof of the Bregman-Minc theorem given in [4] with the corresponding modifications.
We now explain each step of the proof.

1. Trivial.

2. Use (3.3).

3. The number of factors of \(r_i \) is equal to \(\text{hafn} A \) on both sides, while the number of factors \(\text{hafn} A(i, j) \) equals to the number of \(\alpha \in \mathcal{M} \) such that \(\alpha(i) = j \).

4. Apply the induction hypothesis to each \(\text{hafn} A(i, j) \). Note that since the edge \((i, \alpha(i))\) appears in the perfect matching \(\alpha \in \mathcal{M} \), it follows that \(\text{hafn} A(i, \alpha(i)) \geq 1 \). Hence if \(j \in (2n) \setminus \{i, \alpha(i)\} \) and \(r_j = 2 \) we must have that \(a_{ij} + a_{\alpha(i)j} \leq 1 \).

5. Change the order of multiplication.

6. Fix \(\alpha \in \mathcal{M} \) and \(j \in (2n) \). Then \(j \) is matched with \(\alpha(j) \). Consider all other \(n - 1 \) edges \((i, \alpha(i))\) in \(\alpha \). \(j \) is connected to \(r_j - 1 \) vertices in \((2n) \setminus \{j, \alpha(j)\} \). Assume there are \(s \) triangles formed by \(j \) and the \(s \) edges out of \(n - 1 \) edges in \(\alpha \setminus \{j, \alpha(j)\} \). Then \(j \) is connected to \(t = r_j - 1 - 2s \) edges vertices \(i \in (2n) \setminus \{j, \alpha(j)\} \) such that \(j \) is not connected to \(\alpha(i) \). Hence there are \(2n - 2 - (2t + 2s) \) vertices \(k \in (2n) \setminus \{j, \alpha(j)\} \) such that \(j \) is not connected to \(k \) and \(\alpha(k) \). Therefore, for this \(\alpha \) and \(j \) we have the following terms in (5):

\[
(\text{hafn} A)^{(1)} 2n \text{hafn} A = \prod_{i=1}^{2n} (\text{hafn} A)^{(2)} \prod_{i=1}^{2n} (r_i \text{hafn} A \prod_{j,a_{ij}=1} (\text{hafn} A(i, j))^{(3)} \prod_{\alpha \in \mathcal{M}} ((\prod_{i=1}^{2n} r_i (\prod_{i=1}^{2n} \text{hafn} A(i, \alpha(i))))
\]

\[
\leq \prod_{\alpha \in \mathcal{M}} ((\prod_{i=1}^{2n} r_i) \prod_{j=1}^{2n} ((r_j!)^{(4)} \prod_{i=1}^{2n} (j) \prod_{j, a_{ij}, a_{\alpha(i)j}=1 (r_j-1)!}^{(4.1)}) \prod_{i=1}^{2n} (j)))^{(5)} = \prod_{\alpha \in \mathcal{M}} ((\prod_{i=1}^{2n} r_i) \prod_{j=1}^{2n} ((r_j!)^{(5)} \prod_{i=1}^{2n} (j)))^{(5)}
\]

\[
\leq \prod_{\alpha \in \mathcal{M}} ((\prod_{i=1}^{2n} r_i) \prod_{j=1}^{2n} ((r_j!)^{(6)} \prod_{i=1}^{2n} (j)))^{(6)} = \prod_{\alpha \in \mathcal{M}} ((\prod_{i=1}^{2n} r_i) \prod_{j=1}^{2n} ((r_j!)^{(7)} \prod_{i=1}^{2n} (j)))^{(7)} 2n \text{hafn} A.
\]
In the last step we used the equality $r_j - 1 = 2s + t$. Assume first that $r_j > 2$. Use Lemma 3.3 to deduce that (4.1) increases in t. Hence the maximum value of (4.1) is achieved when $s = 0$ and $t = r_j - 1$. Then (4.1) is equal to

$$\left(\frac{r_j!}{r_j} \right)^{2n-2r_j} \frac{2^{(r_j-1)}}{2^{r_j-1} \cdot (r_j-1)!}.$$

If $r_j = 2$ then, as we explained above, $s = 0$. Hence (4.1) is also equal to the above expression. Hence (6) holds.

7. Trivial.
8. Trivial.

Thus

$$(\text{hafn } A)^{2n} \leq \left(\prod_{i=1}^{2n} \left(\frac{1}{r_i!} \right)^{1/2} \right)^{2n} \text{hafn } A.$$

This establishes (2.4).

References

[1] N. Alon and J.H. Spencer, *The Probabilistic Method*, Wiley, New York, 1992.

[2] L.M. Bregman, Some properties of nonnegative matrices and their permanents, *Soviet Math. Dokl.* 14 (1973), 945-949.

[3] W. Feller, *An Introduction to Probability and Its Applications*, vol I, J.Wiley, 1958.

[4] H. Minc, Upper bounds for permanents of $(0, 1)$-matrices, *Bull. Amer. Math. Soc.* 69 (1963), 789-791.

[5] J. Radhakrishnan, An entropy proof of Bregman’s theorem, *J. Comb. Theory Ser. A* 77 (1997), 161-164.

[6] A. Schrijver, A short proof of Minc’s conjecture, *J. Comb. Theory Ser. A* 25 (1978), 80-83.