Intrinsic excitability mechanisms of neuronal ensemble formation

Tzitzitlini Alejandre-García, Samuel Kim, Jesús Pérez-Ortega and Rafael Yuste

Neurotechnology Center, Dept. Biological Sciences, Columbia University, New York, NY 10027, USA

Running Head: Mechanisms of neuronal ensembles

Correspondence to:
Tzitzitlini Alejandre-García
902 NWC Building 550 West 120 Street, Box 4822, New York, NY, 10027.
Email: at3415@columbia.edu

Conflict of Interest: The authors declare no competing financial interests

Acknowledgments: We thank James Holland, for his assistance and members of the Yuste Lab for useful comments. Supported by R01EY011787 and R01MH115900. R.Y. is an Ikerbasque Research Professor at the Donostia International Physics Center (DIPC). The authors have no competing financial interests to declare. S.K. and R.Y. conceived the project. S.K. and T.A. performed experiments and T.A. and R.Y. wrote the paper. T.A., S.K. and J.P. analyzed the data. All authors planned experiments, discussed results and edited the paper. R.Y. assembled and directed the team and secured funding and resources.
Abstract

Neuronal ensembles are coactive groups of cortical neurons, found in both spontaneous and evoked activity, which can mediate perception and behavior (Cossart et al., 2003; Buzsáki, 2010; Carrillo-Reid et al., 2019; Marshel et al., 2019). To understand the mechanism that lead to the formation of neuronal ensembles, we generated optogenetically artificial photo-ensembles in layer 2/3 pyramidal neurons in brain slices of mouse visual cortex from both sexes, replicating an optogenetic protocol to generate ensembles in vivo by simultaneous coactivation of neurons (Carrillo-Reid et al. 2016). Using whole-cell voltage-clamp recordings from individual neurons and connected pairs, we find that synaptic properties of photostimulated were surprisingly unaffected, without any signs of Hebbian plasticity. However, extracellular recordings revealed that photostimulation induced strong increases in spontaneous action potential activity. Using perforated patch clamp recordings, we find increases in neuronal excitability, accompanied by increases in membrane resistance and a reduction in spike threshold. We conclude that the formation of neuronal ensemble by photostimulation is mediated by cell-intrinsic changes in excitability, rather than by Hebbian synaptic plasticity or changes in local synaptic connectivity. We propose an “iceberg” model, by which increased neuronal excitability makes subthreshold connections become suprathreshold, increasing the functional effect of already existing synapses and generating a new neuronal ensemble.
Introduction

The function of brain is anchored on the activity of groups of connected neurons, forming microcircuits (Schüz and Braitenberg, 2001; Shepherd, 2004). These groups of coactive neurons, or ensembles (also known as assemblies or attractors), exhibit synchronous or correlated activity (Lorente De Nó, 1938; Hebb, 1949; Hopfield, 1982; Abeles, 1991; Cossart et al., 2003; Buzsáki, 2010; Miller et al., 2014; Yuste, 2015; Carrillo-Reid et al., 2016, 2019; Marshel et al., 2019), and appear critical for brain function (Hoshiba et al., 2017) and memory formation (Hebb, 1949). In the cerebral cortex, these states may arise from patterns of multineural activity that persist spontaneously after an initial stimulus, generating recurrent activity (reverberations) (Lorente de Nó, 1933; Churchland and Sejnowski, 1992). Cortical ensembles correlate with different functions of the animal, not just memory storage, but also representation of thoughts, and percepts as demonstrated in the primary visual cortex of awake mice during spontaneous and visually evoked activity patterns in neurons (Miller et al., 2014a; Carrillo-Reid et al., 2019; Marshel et al., 2019).

Moreover, the disorganization of neuronal ensembles is associated with neuropsychiatric disorders such as schizophrenia (Hamm et al., 2017).

One hypothesis of how an ensemble could be formed was first proposed by Donald Hebb in 1949. According to this rule, the persistent and repeated activation of connected neurons induce metabolic changes or growth of processes in one or both cells that strengthens those connections. One mechanism that fulfills Hebb’s rule is Long-Term Synaptic Potentiation (LTP), originally defined as a long-lasting increase in synaptic efficacy after a high frequency burst electrical stimulation (Bliss and Gardner-Medwin, 1973). Accordingly, changes in synaptic weights produces preferential connectivity that controls the flow of activity within and between neuronal ensembles (Hoshiba et al., 2017). Since its initial discovery (Bliss and Gardner-Medwin, 1973), LTP has been widely established as the cellular correlate for memory and learning. Indeed, recent
studies have supported the idea that Hebbian plasticity could underlie ensemble formation in vivo (Carrillo-Reid et al., 2016), since the two-photon optogenetic synchronous stimulation of a group of neurons 50 to 100 times bound them together into an imprinted ensemble which become spontaneously coactive. Therefore, co-activation of a group of neurons in awake mice can create a new stable artificial ensemble (Carrillo-Reid et al., 2016). This result is consistent with the Hebbian hypothesis on the formation of neuronal ensembles, but no direct evidence has yet been presented to demonstrate that the formation of ensembles depends on changes in synaptic connections in neuronal circuit.

As an alternative hypothesis, experimental evidence has revealed widespread activity-dependent cell-intrinsic mechanisms in cortical circuits (Ryan et al., 2015; Titley et al., 2017). This suggests that the formation and stability of an ensemble could be carried out by cell-autonomous intrinsic mechanisms (Abraham et al., 2019). This hypothesis is consistent with experiments where the activation of specific patterns of cellular activity in hippocampus recalls stored memories, even under treatment with protein synthesis inhibitor which should prevent LTP (Ryan et al., 2015; Tonegawa et al., 2015). Moreover, Purkinje cells can acquire and represent a specific input with a temporal pattern of activity, suggesting that patterns of activity may be imprinted intrinsically by the neurons itself (Johansson et al., 2014). Thus, changes excitability state of the neurons may contribute to ensemble consolidation, rather than the reinforcement of its synapses, as Hebb proposed (Disterholt and Oh, 2006; Pignatelli et al., 2019).

In order to test these alternative mechanisms of ensemble formation, we built photo-ensembles in mouse neocortical slices, following an in vivo optogenetic protocol (Carrillo-Reid et al., 2016). We then directly measured electrophysiological properties of photostimulated neurons, finding a lack of changes of synaptic properties yet generalized increases in cell-intrinsic excitability. We conclude that ensemble formation is a non-Hebbian phenomenon.
Materials and Methods

All procedures were performed in accordance with the U.S. National Institutes of Health and Columbia University Institutional Animal Care and Use Committee guidelines. Experiments were carried out on C57BL/6 transgenic mice (Vglut1-Cre, Jackson Laboratories; RRID:IMSR_JAX:00064) of both sexes at postnatal day of 1 - 2 months. Animals were housed on a 12h light-dark cycle with food and water ad libitum.

Viral injection, after 1 month postnatal, animals were anesthetized with 2% isoflurane on a headfixed stereotactic apparatus. After sterilizing the incision site, the skin was opened and, using an FG 1/4 dental drill, a small hole goes thin in the skull over visual primary cortex (2.5 mm lateral and 0.3 mm anterior from the lambda, 200 μm from pia). We injected 300 nL of virus at a rate of 30-40 nL/s, using a microsyringe pump (Micro 4), a Hamilton 7653-01 and a glass pipette. Once pipette was placed, we waited 5 min before and after virus injection and finally closing the scalp with sutures. Viruses injected were: Cre-dependent AAV-CAG-DIO-ChroME-P2A-H2B-mRuby3 (Addgene viral prep # 108912-AAV9) or AAVDJ-CaMKIIa-C1V1(E162T)-TS-p2A-EYFP-WPRE (Stanford University Gene Vector and Virus Core). Mice were used for electrophysiology experiments 2–3 weeks postinjection.

Brain slices, mice were anesthetized with ketamine/xylazine. After transcardiacal perfusion procedure and posterior cervical dislocation, brain sagittal slices were obtained as described (Ting et al., 2018). The brains were quickly dissected and cooled in a continuously gassed (95% O₂ and 5% CO₂) icy NMDG-HEPES artificial cerebrospinal fluid (aCSF). Transcardiacal perfusion and cutting solution, containing (in mM): 92 NMDG, 2.5 KCl, 1.25 NaH₂PO₄, 30 NaHCO₃, 20 HEPES, 25 glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl₂, and 10 MgSO₄ with pH titrated to 7.3–7.4 with HCl, or 222 Sucrose, 2.6 KCl, 27 NaHCO₃, 1.5 NaH₂PO₄, 2 MgSO₄, and 2 CaCl₂. 300 μm thick sagittal slices were cut on a Leica VT1200 S vibratome (Leica Biosystems) and
allowed to recover for 20 min at 34°C HEPES holding aCSF solution (in mM): 92 NaCl, 2.5 KCl, 1.25 NaH₂PO₄, 30 NaHCO₃, 20 HEPES, 25 glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 2 CaCl₂, and 2 MgSO₄. Titrate pH to 7.3–7.4 with NaOH. Finally, slices were transferred to aCSF containing the following (in mM): 124 NaCl, 2.5 KCl, 1.25 NaH₂PO₄, 24 NaHCO₃, 12.5 glucose, 5 HEPES, 2 CaCl₂·2H₂O, and 2 MgSO₄·7H₂O with pH titrated to 7.3–7.4, or 126 NaCl, 3 KCl, 1.145 NaH₂PO₄, 26 NaHCO₃, 10 Glucose, 2 MgSO₄, and 2 CaCl₂. Slices rested in dark for at least 1 hr before use.

Patch Clamp Recordings. Brain slices were carefully placed in the recording chamber on an upright microscope (Olympus, BX50WI), they were continuously perfused with gassed (95% O₂ and 5% CO₂) aCSF at 5 ml/min. All electrophysiological recordings were performed using patch pipettes, made from borosilicate glass (World Precision Instruments), pulled with a micropipette puller (DMZ-Universal puller), in order to get 4 – 6 MΩ as final resistances.

For whole-cell, patch pipettes were filled with intracellular solution containing the following (in mM): 130 K-gluconate, 20 KCl, 10 HEPES, 10 Na₂-phosphocreatine, 4 Mg-ATP, 0.03 Na₂-GTP, and titrated to pH 7.3 with KOH, or 135 K-MeSO₄, 5 KCl, 5 HEPES, 0.5 EGTA, 10 Na₂-phosphocreatine, 2 Mg-ATP, 0.5 Na₂-GTP, and titrated to pH 7.3 with KOH. For cell-attached, pipettes were filled with aCSF solution. For perforated patch clamp, pipette solution containing: 130 K-gluconate, 20 KCl, 10 HEPES, 2 MgCl₂, 4 Mg-ATP, 0.03 Na₂-GTP, and titrated to pH 7.3 with KOH. 50 – 100 ng/ml gramicidin (sigma Aldrich) dissolved in dimethyl sulfoxide (DMSO). To allow membrane sealing, the tip was immersed in clean pipette solution and then the pipette was back-filled with gramicidin containing solution.

In each case, the patch pipette was placed in contact with the cell with the aid of a SM-5 micromanipulator (Luigs & Neumann). Stimulation and data acquisition were sampled at 10 kHz and low pass filtered at 4kHz using a Multiclamp 700B amplified (Molecular Devices) and Im-
Patch© open access software http://impatch.ifc.unam.mx. Recordings were continued when leak current while < 25 pA or seal resistance > 1 GΩ. Recordings were analyzed with custom routines in MATLAB.

Imaging. To identify the target brain region, we used an upright microscope with a 4X/0.10 NA air objective (Olympus) before switching to 60X/0.90 W NA water immersion objective to confirm ChroME or C1V1 opsin expression on target cells. For ChroME, the mRuby3 fluorescent reporter was excited with monochromatic light transmitted through fiber optics into the microscope (Olympus 100 w high pressure mercury burner model BH2RFLT3). Emitted fluorescence was bandpassed with an Olympus U-49006 ET CY5 filter set: 620/60 ex, 520 dichroic mirror, and 700/75 em. For C1V1, the EYFP fluorescent reporter was visualized via a 500/24 excitation filter (Semrock), 520 dichroic mirror (Semrock), and 542/27 emission filter (Semrock). Fluorescence images were acquired (50 ms exposure; 10 Hz) using a camera (Orca-ER C4742-95, Hamamatsu) and shutter UNIBLITZ model VCM-D1 controlled by HC Image software (Hamamatsu). We visualized individual neurons' fluorescence deep (100 µm) into the brain slice exhibiting a clear L2/3 distinction, taken as evidence of C1V1 or mRuby3 as Cre promoter-driven expression.

Photostimulation. Optogenetic photostimulation of ChroMe opsin was performed using a 470 nm fiber-coupled LED (M470F1, Thorlabs), fiber optic cannula (M79L01, Thorlabs) and LED driver (M00329012, Thorlabs), while photostimulation of C1V1 was performed using a 617 nm fiber-coupled LED (M617F2, Thorlabs), fiber optic cannula (CFM14L10, Thorlabs) and LED driver (DC2200, Thorlabs). The photostimulation protocol aimed to mimic stimulation conditions used in previous in vivo experiments (Carrillo-Reid et al., 2016), in order to build artificial photo-ensembles. This photostimulation protocol consisted of trains of 10 Hz, 5 ms light pulses for 4 s followed by a 10 s rest.
Only neurons that exhibited action potentials or action currents in response to each LED pulse were included in the data analysis. Moreover, LED intensity applied throughout the protocol was the lowest necessary for induce action potentials or action currents. This procedure was carried out for every recording both photostimulated and unstimulated neurons (controls). For photostimulated neurons, the parameters were always monitored before and after ongoing photostimulation protocol (15 to 80 min). Photostimulation protocol was stopped every 15 or 20 min to monitor the parameters and then it was restarted. For unstimulated neurons, the same parameters were monitored at the beginning and then every 15 – 20 min until approximately 80 min after no photostimulation.

Experimental design. To generate photoensembles (Carrillo-Reid et al., 2016), we delivered Cre-dependent ChroME opsin (Mardinly et al., 2018), with virus injection in transgenic VGlu1-Cre mice, or C1V1 opsin in wild-type mice. No significant differences were found in experiments with both opsins and data were pooled together. Then, we localized the L2/3 pyramidal neurons in primary visual cortex of brain slices expressing ChroME or C1V1 (Figure 1A). Then, in order to test whether the maintenance of an imprinted photo-ensemble was due to reinforcement of synaptic connections among the neurons (Carrillo-Reid et al., 2016) or by cell-intrinsic regulation (Pignatell et al., 2019), we recorded and characterized passive and active electrical properties of the neurons using whole-cell, cell-attached and perforated patch-clamp recording of at least, two pyramidal neurons simultaneously *in vitro* (Figure 1B).

Once we obtained a patch, we compared cellular electrical properties before and after build the artificial photo-ensembles with the photostimulation protocol. For whole-cell recordings, we examined changes in evoked EPSCs and spontaneous EPSCs (sEPSCs) in response to photostimulation (Figure 1C); for cell-attached recordings we measured changes in spontaneous firing throughout the photostimulation (Figure 1D); for perforated patch clamp we explored
parameters like membrane resistance, rheobase, firing rate and the phase of action potentials (Figure 1E).

Statistical Analysis. Statistical details are showing in each figure legends. In general, group data are expressed as mean ± sem. Shapiro-Wilk was used for normality test. Student’s unpaired or paired t test were used for comparing parametric groups. Wilcoxon rank-sum and Mann-Whitney test were used for nonparametric analysis. Differences between two groups were considered significant when *p < 0.05, **p < 0.01 and ***p < 0.001. All statistics were performed using statistical functions in MATLAB.
Results

Lack of synaptic plasticity between photostimulated neurons

Our initial hypothesis, based on our previous results photo-imprinting ensembles in vivo (Carrillo-Reid et al., 2016), was that neuronal ensembles are built by Hebbian synaptic plasticity due to the simultaneous activation of pre and postsynaptic neurons. Thus, new ensembles could be formed by the creation of new synaptic connections or reinforcement or potentiation of existing ones. To explore this we first tested whether persistent and repeated optogenetic activation of connected neurons induced synaptic plasticity in one or both cells (Hebb, 1949; Cossell et al., 2015). In order to answer this question, we performed dual whole-cell recordings from adjacent neurons, which are more likely to be connected (Ko et al., 2011), of L2/3 pyramidal neurons expressing the opsins ChroME or C1V1 in cortical slices from adult animals (Figure 2A). Using patch clamp, we recorded simultaneously from pairs of neurons searching for monosynaptic connections in both directions (n = 5, 4 mice for photostimulated group and n = 5, 3 mice for unstimulated). For measuring membrane potential, we performed current-clamp recordings, injecting necessary current (between -10 to 10 pA) to keep neurons at -70 mV, close to their resting membrane potential. Under these conditions, we induced action potentials in presynaptic neurons with 10 current depolarizing pulses at the lowest intensity (amplitude: 400 to 600 pA, 2 ms, 20 Hz trains). For measuring synaptic currents, postsynaptic neurons were recorded in voltage-clamp at a holding potential of -70 mV. This membrane potential prevents the generation of voltage-dependent currents, and better isolate EPSCs. We classified connections as monosynaptic if EPSC latency was <2 ms relative to its corresponding presynaptic spike (Figure 2B; n = 10, 7 mice). We included in the analysis only cells that exhibited detectable EPSCs at the beginning and end of the recording, which lasted roughly 60 min, including the photostimulation. To confirm the stability in the connection until the end of the recording, we averaged 30
postsynaptic traces, showing 10 EPSCs elicited by the presynaptic train before and after photostimulation for a representative neuron (Figure 2C).

In these pairs of connected neurons, we examined if optogenetic photostimulation induced synaptic changes. Visual inspection failed to reveal any major alterations in EPSCs. To quantify this, we calculated the paired-pulse ratio (PPR), i.e. the ratio of amplitudes for the second to the first EPSC in the train (EPSC$_2$/EPSC$_1$) of cells before (0.7 ± 0.07 PPR) and after photostimulation (0.8 ± 0.08 PPR; $p = 0.2$ Wilcoxon rank-sum; $n = 5$, 4 mice) and compared it with a control group of unstimulated neurons before (0.75 ± 0.03 PPR) and after 30 min (0.7 ± 0.1 PPR; $p = 0.7$ Wilcoxon rank-sum; $n = 5$, 3 mice) (Figure 2D). No significant differences were observed in PPR of evoked EPSC when we compared the changes in PPR of photostimulated (-0.12 ± 0.04, change in PPR) versus unstimulated neurons (0.1 ± 0.1 change in PPR; $p = 0.5$ Mann Whitney’s).

Moreover, average peak currents of the first EPSC1 (EPSC$_1$) of photostimulated neurons showed no difference before (24 ± 9 pA) and after photostimulation (21 ± 10 pA; $p = 0.6$ Wilcoxon rank-sum; $n = 5$, 4 mice), similarly to unstimulated neurons before (15 ± 2 pA) and after 30 min (9 ± 2 pA; $p = 0.06$ Wilcoxon rank-sum; $n = 5$, 3 mice). The average change comparison between photostimulated (-4 ± 3 pA change in amplitude) and unstimulated neurons (-2 ± 2 pA change in amplitude) were also not statistically different ($p = 0.5$, Mann Whitney’s; Figure 2E). We concluded that synaptic plasticity was not altered after photostimulation. Our results suggest that, under our conditions, synaptic plasticity among connected neurons did not contribute to build photensembles.

Lack of changes in spontaneous synaptic inputs in photostimulated neurons

The previous results did not rule out the possibility that synaptic plasticity among non-connected or non-recorded neurons contributed to the generation of photensembles. To search for
evidence of synaptic plasticity in the neuronal population, we measured spontaneous EPSCs from recorded neurons and compared them before and after optogenetic stimulation (Figure 3A). Since the viral vector labels pyramidal cells extensively, we reasoned that a significant portion of a given cell’s presynaptic partners would also express ChroME or C1V1 and, thus, fire in response to photostimulation. If this leads to synaptic potentiation in the connections, we would expect to detect it as changes in amplitude of spontaneous EPSCs.

To test this, we recorded spontaneous EPSCs from connected and unconnected neurons. The changes in mean spontaneous EPSC frequency and amplitude were compared between photostimulated (n = 12 pairs, 7 mice) and unstimulated cells (n = 8 pairs, 4 mice). We found no statistically difference in spontaneous EPSCs frequency changes between them (-26 ± 25 % for photostimulated cells and -33 ± 18 % for unstimulated cells; p = 0.4, Mann Whitney’s); or any significant differences in spontaneous EPSCs amplitude (-13 ± 8 % for photostimulated cells and -17 ± 8 % for unstimulated cells; p = 0.9, Mann Whitney’s) (Figure 3B).

We were surprised by that lack of synaptic plasticity after potentiation, and reasoned that synaptic potentiation in connected or unconnected neurons was perhaps masked owing to intracellular washout by prolonged whole-cell recordings. To explore this, we recorded EPSPs using perforated patch clamp from neurons in current clamp, before and after photostimulation, but we also did not observe evidence of new evoked EPSP (n = 6, 3 mice; Figure 3C). Using perforated patch recordings, we also compared the number of spontaneous EPSPs before and after photostimulation (17 ± 2 EPSPs before and 17 ± 2 EPSPs after); instantaneous EPSPs frequency (4.5 ± 0.7 Hz before and 5.7 ± 0.6 Hz after) and EPSPs amplitudes (1.2 ± 0.2 mV before and 1.5 ± 0.2 mV after). None of these parameters showed significant differences (p = 0.4; p = 0.4 and p = 0.7 respectively; Wilcoxon’s test) (Figure 3D). Thus, both whole-cell and perforated recordings showed a similar lack of detectable changes in evoked or spontaneous synaptic inputs after photostimulation. We concluded that, under our experimental conditions, photostimulation of
neurons with the same optogenetic protocols that induce the formation of ensembles in vivo did not generate appreciable changes in synaptic properties.

Optogenetic stimulation increases neuronal spontaneous activity

During our whole cell recordings, we noticed that photostimulated neurons were often spontaneously coactive. Indeed, close inspection of the in vivo data indicated that, after photostimulation, neurons increase their spontaneous activity (Carrillo-Reid et al., 2016). To explore this possibility, we performed cell-attached recordings from neurons in slices to noninvasively investigate the effect of photostimulation on the spontaneous firing rate of neurons.

In these experiments, we observed progressive increases in spontaneous firing rate between optogenetic stimuli in 60% of the neurons (n = 17, 5 mice; Figure 4A). This increase in spontaneous activity persisted for 30 min after photostimulation (3 ± 3 peaks before vs. 49 ± 14 peaks after in 60 s window; p = 0.009; Wilcoxon’s test). This suggested that photostimulation increase neuronal excitability and it was not simply due to a rebound response after stimulation (Figure 4B).

To analyze with more detail this increase in spontaneous activity, the instantaneous firing frequency was measured in 60 s windows. We found significant increases in instantaneous frequency after photostimulation (0.15 ± 0.13 Hz before vs. 2 ± 0.7 Hz after; p = 0.009 Wilcoxon’s test; n = 17, 5 mice) (Figure 4C, 4D). But for unstimulated neurons, we found no significant differences in number of spikes (17 ± 8 spikes before vs. 20 ± 10 spikes after; p = 0.2; Wilcoxon’s test; n = 14, 2 mice) or instantaneous frequency (4 ± 1.7 Hz before vs. 5 ± 1.8 Hz after; p = 0.3 Wilcoxon’s test; n = 14, 2 mice) at the beginning and end of recording. This increase in spontaneous activity after photostimulation suggests that repeated photostimulation could increase neuronal excitability.
Photostimulation increases membrane excitability and input resistance

Our results indicated that the formation and stability of a cell ensemble could be mediated by cell-intrinsic increases in cellular excitability (Ryan et al., 2015; Titley et al., 2017; Abraham et al., 2019) rather than by reinforcement of its synapses (Disterhoft and Oh, 2006; Pignatelli et al., 2019). To explore cell-intrinsic mechanisms of ensemble formation, we recorded neurons with perforated patch clamp, before and after photostimulation, quantifying intrinsic electrophysiological parameters such as: current injection firing-dependence, membrane resistance, firing rate, frequency and I-V phase plots.

We first measured the membrane potential response to current injections with I-V plots. To do this, we kept the membrane potential at -70 mV and applied series of 500 ms current injections ranging from -100 pA to 160 pA, at 20 pA increments (Fig. 5A). In a representative neuron, we observed a clear and stable increase in evoked activity after 20 min of photostimulation for lower current steps (40, 60 and 80 pA), with no action potential in the first min with 40 pA, and 3 action potentials, 20 min later with the same current injection. Once the increase in response occurred, it did not change, in either direction, for duration of the recording (3 action potentials after 80 min of photostimulation with 40 pA of current injection) (Figure 5B).

A rise in the excitability could be related to an increase in membrane resistance (Marder and Goaillard, 2006). We used the I-V data with negative current steps to obtain resistance values, before and after photostimulation (Fig. 5C). We observed significant increases in input resistance when comparing the start of the photostimulation (293 ± 32 mΩ; n = 5, 4 mice) of and 30 min later (361 ± 30 mΩ; p = 0.0001; student’s t test). Meanwhile, resistances measurements in unstimulated neurons between the first minute of IV recording (287 ± 65 mΩ) and at 30 minutes (286 ± 55 mΩ) neurons did not show any changes (p = 0.9 student’s t test; n = 3, 3 mice; Fig. 5D).

We conclude that increases in excitability are associated with increases in membrane resistance.
Photostimulation induces increases in firing rate and frequency

To measure the physiological effect of the detected changes in membrane excitability in the population of photostimulated neurons, we measured firing rate, mean instantaneous frequency and mean frequency between the two first initial spikes for each current step of the I/V protocol, tabulating all parameters for photostimulated neurons and unstimulated procedures in response to each current step. (Table 1).

To compare firing rates, we averaged the number of spikes before and after photostimulation for each neuron (Fig. 6 A [left panel]). We found that increases in firing rate always occurred after 15 - 20 min of photostimulation at lower current steps (from 40 to 120 pA; n = 7, 5 mice). One of the most noticeable changes was found with 60 pA current steps (before: 2.6 ± 1 vs. after: 5 ± 1 spikes; p = 0.009; student’s t test; n = 7, 5 mice). However, no differences were found for highest current steps (140 and 160 pA; p = 0.1 and 0.2; student’s t test; n = 7, 5 mice). Unstimulated neurons did not show differences in firing rate, when we compared the firing rate at minute 1 vs. 30 minutes later for each current step (from 40 to 160 pA: p > 0.05; student’s t test; n = 3, 3 mice) (Fig. 6 A [central panel]). We also found difference in initial firing rate of photostimulated vs. unstimulated neurons (Table 2: for 40 to 80 pA: p < 0.05; unpaired student’s t test; n = 7, 5 mice for photostimulated neurons and n = 3, 3 mice for unstimulated) (Fig. 6 A [right panel]).

Similar results were found when analyzing the mean instantaneous firing frequencies, which also increased after photostimulation. The most significant increases happened with 40 to 80 pA current injection for the before and after comparison (see Table 1; p < 0.05; paired student’s t test) (Fig. 6 B and C [left panel]). One of the most noticeable changes was with the 60 pA current step (before: 6 ± 2 versus after: 10 ± 2.6 Hz; p = 0.007; student’s t test; n = 7, 5 mice). Meanwhile, unstimulated neurons did not show significant differences for lower current steps (40, 60 and 100 pA; p > 0.1; student’s t test; n = 3, 3 mice). However, for higher current steps (80,120 to 160 pA)
the mean firing frequency significantly decreased, when compared with the data at the first minute. (e.g. 16 ± 3 at min 1 vs. 15 ± 3 Hz 30 min after, for 120 pA step; p < 0.05; student’s t test) (Fig. 6 B [central panel]). We also found significant differences of mean frequency between photostimulated and unstimulated neurons for the lowest current steps (40 and 60 pA; see Table 2, p < 0.01; unpaired student’s t test; n = 7, 5 mice for photostimulated neurons and n = 3, 3 mice for unstimulated) but not for higher current steps (80 to 160 pA; p > 0.05; unpaired student’s t test) (Fig. 6 B [right panel]).

Finally, to evaluate the modification of firing properties that could facilitate burst induction, we measured the mean frequency of the two first spikes for each current step. Frequency increases occurred with 40 to 80 pA current steps after photostimulation (see Table 1; p < 0.05; paired student’s t test; n = 7, 5 mice) (Fig. 6 C [left panel]). The clearest change was for 40 pA current steps, where the mean frequency difference between before and after was 5.3 ± 1.5 Hz (p = 0.001; paired student’s t test). Unstimulated neurons did not show significant differences after 30 minutes of recordings for lower current steps (40 to 140 pA; p > 0.05; paired student’s t test). Only 160 pA current steps resulted in a significant mean frequency decrease (e.g. 42.5 ± 14 at min 1 vs. 38.5 ± 14 Hz 30 min after; p = 0.01; paired student’s t test) (Fig. 6 C [central panel]). We found significant changes in mean frequency between photostimulated and unstimulated neurons for lower current steps (40 and 60 pA; see Table 2; p < 0.01; unpaired student’s t test; n = 7, 5 mice for photostimulated neurons and n = 3, 3 mice for unstimulated), but not for higher current steps (80 to 160 pA; p > 0.05; unpaired student’s t test) (Fig. 6 C [right panel]). This set of results revealed that photostimulation produced a robust increase in current-dependent firing.
Lowering of firing threshold after photostimulation

Burst firing depends on the interplay between the afterhyperpolarizations (AHPs) and afterdepolarizations (ADPs) that follows the first action potential (Brumberg et al., 2000). To explore this, we evaluated the dynamic of action potentials using phase plot analysis. We used the first spikes from 60 pA current injections in the I-V dataset, because during this current step all neurons displayed action potentials before and after the photostimulation protocol. First, action potentials were detected after setting a threshold of >0.00015 in the first derivative of membrane potential waveform, a value which also corresponds to firing threshold. Voltage vs. time values (mV/ms) were plotted against the membrane potential (mV). In this analysis, action potentials are represented as a loop in which the starting point represents firing threshold (Fig. 7A). The majority of phase plots display a leftward offset, making evident a shift in firing threshold after 30 min of photostimulation (-37 ± 3 before vs. -42.7 ± 3 mV after; p = 0.008; Wilcoxon’ test; n = 8, 5 mice).

Consistent with this, we found a significant reduction in firing threshold before and after photostimulation (3.5 ± 1 mV; p = 0.0078 by Wilcoxon’s test; n = 8 cells, 5 mice). Analogous to long lasting changes in firing rate, the reduction in firing threshold was stable and did not increases more even 40 min after photostimulation protocol (3.7 ± 1 mV after 30 min vs. 4.2 ± 1 after 40 min; p = 0.9; Wilcoxon’s test; n = 8, 5 mice). Meanwhile, we found no statistically significant differences in firing threshold of unstimulated neurons, when comparing the beginning versus the end of recording (-40 ± 3 and -39 ± 3 mV respectively; p = 0.25; n = 3 cells, 3 mice) (Figure 7B).

We also documented a lowering of the threshold voltage when we compared the change in threshold voltage at the first minute (0.4 ± 0.2 mV), 30 min (3.7 ± 1 mV; p = 0.0078) and 40 min (4.2 ± 1 mV; p = 0.03 by Wilcoxon’s test; n = 8 cells) for photostimulated cells. Unstimulated neurons displayed no changes (0.6 ± 0.4 mV at the first min vs. -0.8 ± 0.5 mV 30 min later; p = 0.25; Wilcoxon’s test; n = 3, 3 mice) (Figure 7C). These decreases in threshold for
photostimulated neurons were significant, when compared to unstimulated neurons (3.7 ± 1 mV photostim vs. -0.8 ± 0.5 mV unstimulated neurons; p = 0.25; Mann Whitney’s test).

Altogether, these results indicate that photostimulation significantly increases membrane resistance and lowers firing threshold, which increases action potential firing. These effects nicely explain the increase in neuronal excitability previously observed (Figure 4). Thus, photostimulation could enable weak synaptic inputs to reach firing threshold, facilitating the formation or maintenance of a neuronal ensemble.
Discussion

The traditional view of a neuronal ensemble is that it is created by strengthening of its synaptic connections after repeated coactivation (Hebb, 1949; Carrillo-Reid et al., 2016; Hoshiba et al., 2017). However, recent results have questioned whether synaptic plasticity is the unique mechanism of neuronal ensembles formation (Zhang and Linden, 2003; Disterhoft and Oh, 2006; Ryan et al., 2015). Consistent with this, here we describe that the co-photostimulation of pairs of connected or unconnected neurons, the same manipulation that builds an artificial neuronal ensemble in vivo (Carrillo-Reid et al., 2016), do not induce detectable changes in synaptic plasticity. Instead, neurons become more active spontaneously after photostimulation, apparently due to increases in membrane resistance and reductions in action potential threshold, as cell-intrinsic mechanisms. Thus, neuronal excitability may increase the efficiency of existing synaptic connections between neurons in an ensemble, without necessarily altering synaptic plasticity.

Role of synaptic mechanisms in ensemble formation

The formation or maintenance of neuronal ensembles have been ascribed to increases in synaptic connectivity (Hebb, 1949; Carrillo-Reid et al., 2016; Hoshiba et al., 2017). Indeed, there is a preferential connectivity between neurons that corresponds with similar receptive fields (Cossell et al., 2015). An increased connectivity also probably underlies pattern completion in cortical ensembles (Carrillo-Reid et al., 2019). Thus, a few strong connections could drive local excitation of the majority of neurons with weak connections (Cossell et al., 2015). Here we mimic in vitro previous two-photon optogenetic photostimulation experiments in vivo to generate ensembles in layer 2/3 pyramidal cells from mouse primary visual cortex (Carrillo-Reid et al., 2016), and tested whether synaptic mechanisms were involved in ensemble formation. We measured the amplitude...
of evoked EPSC and PPR to examine whether synaptic efficiency between two connected neurons had changed (Bliss and Gardner-Medwin, 1973).

Disproving our initial hypothesis, our findings surprisingly indicated a lack of significant changes in synaptic parameters of connected neurons and we did not detect any new connections formed after photostimulation in previously unconnected neurons. Moreover, spontaneous synaptic inputs apparently also remained the same. Although we did not observe significant differences in any case, in spite of changes in synaptic plasticity being our initial hypothesis based on our previous in vivo data (Carrillo-Reid et al., 2016), it is possible that the in vitro conditions could have obscured these changes. A lack of synaptic plasticity may also be due to a suppression of neurotransmitter release (Fioravante and Regehr, 2011). Certainly, prolonged presynaptic stimulation could induce short-term synaptic depression (Schneggenburger et al., 2002). In any case, the heterogeneity have found in synaptic facilitation and depression, as seen in our data, matches other published reports (Schneggenburger et al., 2002). But because of these negative results, we suspected that mechanisms other than synaptic plasticity could be participating in the artificial ensemble consolidation or formation.

Cell-intrinsic mechanisms of ensemble formation

Indeed, although no changes were observed in synaptic parameters, robust activity-dependent increases in spontaneous firing were easily detected in photostimulated neurons. This was consistent with increases in spontaneous activity observed with calcium signals after photostimulation training in vivo (Carrillo-Reid et al., 2016). This suggests that the in vivo photostimulation protocol was accurately reproduced in our in vitro conditions.
An increase in cellular activity through cell-intrinsic mechanisms after prolonged firing is consistent with many functional studies in vertebrates, even under very different experimental protocols. For example: increases in excitability are found following LTP induction in visual cortex (Cudmore and Turrigiano, 2004) or in hippocampal CA1 (Xu, 2005), and after behavior training in CA1 (Disterhoft et al., 1986). Intrinsic excitability is also modified when an animal is exposed to novel sensorial experience (Brown et al., 2019) or after environmental enrichment (Valero-Aracama et al., 2015). Our results reveal an additional paradigm to induce a similar increase in spontaneous activity by direct postsynaptic photostimulation and imply that optogenetic imprinting of ensembles (Carrillo-Reid et al., 2016), increases postsynaptic excitability.

Modification of Intrinsic mechanisms by photostimulation

Our data reveal an intensity-dependent and persistent increase in firing rate after photostimulation. This may be due to the increase in membrane resistance and/or the decreases in rheobase that we observed. The synergy between these two mechanisms could make the neuron reach its firing threshold with smaller depolarizations. Thus, an increase in excitability is particularly relevant for lower current injections generated by weaker inputs. We propose that, after photostimulation, neurons shift to a more excitable state, revealing new connections, like an iceberg emerging out of the water (Figure 7). Therefore the same, unchanged synaptic inputs could bring neurons to threshold and induce increased output firing after photostimulation, improving their synaptic efficiency in postsynaptic pyramidal neurons (Zhang and Linden, 2003; Titley et al., 2017; Lisman et al., 2018; Debanne et al., 2019). Neuronal photostimulation would functionally alter the circuit, but without changing the synapses themselves and this phenomenon could occur very rapidly.
Modifications in sub- and suprathreshold membrane conductance that initiate an action potential or a burst could underlie increased excitability (Brumberg et al., 2000). In terms of passive properties, our results coincide with many others studies that have shown alterations in input resistance as the mechanism that can be responsible for increases in excitability (Disterhoft et al., 1986; Valero-Aracama et al., 2015; Brown et al., 2019; Pignatelli et al., 2019). Activity-dependent increase in input resistance have been shown in hippocampal neurons, where it has been proposed that the larger increase in excitability could be potentiated by a suppression of G protein-couple inwardly rectifying K^+ channels (GIRK channels) (Valero-Aracama et al., 2015); or by cAMP-responsive element-binding protein (CREB)-dependent control of excitability by reducing K^+ conductance (Yu et al., 2017; Lisman et al., 2018). Moreover, recent studies show that persisting firing could be mediated by an ether-à-gogo related gene (ERG) K^+ channel in neocortical pyramidal neurons (Cui and Strowbridge, 2018; Debanne et al., 2019). In this view, calcium entry induced by repetitive activation could modulate leak potassium currents in the neurons, which will ease their persistent activity.

Reported cell-intrinsic mechanisms that induce excitability seem to be cellular-type and perhaps also stimulation protocol-dependent (Angelo et al., 2012). Hence, diverse changes in action potential firing have been identified. One of the most common changes is a reduction in after-hyperpolarization (AHP) amplitude, described in hippocampal neurons (Disterhoft et al., 1986; Zhang and Linden, 2003; Disterhoft and Oh, 2006; Malik and Chattarji, 2012; Pignatelli et al., 2019). Nevertheless, we found a significant decrease in spike threshold as the most robust change in photostimulated neurons. This parameter also determines the firing frequency of neurons associated with voltage-dependent sodium or calcium currents. Changes in threshold appears to be common in cortical neurons after intrinsic plasticity induction (Cudmore and Turrigiano, 2004; Paz et al., 2009), but has also been found in hippocampal neurons (Xu, 2005; Malik and Chattarji, 2012; Valero-Aracama et al., 2015). Consistent with this, visual deprivation
increases spike threshold in pyramidal visual cortex, as an example of a mechanism that reduces neuronal excitability (Brown et al., 2019). It has been proposed that a regulation of the persistent sodium current could underlie the lowering of spike threshold, modulated by protein kinase C (Astman et al., 1998; Valero-Araracama et al., 2015), or protein kinase A activation-dependent of calcium influx (Cudmore and Turrigiano, 2004). Therefore, the intrinsic plasticity by optogenetic photostimulation that we report in L2/3 pyramidal neurons from visual cortex could result from modifications of voltage-gated ion channels and inward rectification by potassium channels. Future studies will examine the exact molecular mechanisms underlying these increases in excitability.

Intrinsic excitability in neuronal ensembles formation

Many studies have shown that Hebbian plasticity is required for intrinsic plasticity induction (Debanne et al., 2019). Thus, NMDA receptor activation is necessary to increase firing probability in neurons (Disterhoft et al., 1986; Cudmore and Turrigiano, 2004; Xu, 2005; Malik and Chattarji, 2012; Kim et al., 2016; Pignatelli et al., 2019). Behavioral training also induce neuronal excitability through Hebbian mechanisms (Disterhoft et al., 1986; Malik and Chattarji, 2012; Valero-Araracama et al., 2015). Other studies, agreeing with our results, have demonstrated that for increasing neuronal excitability, postsynaptic stimulation could be enough to improve synaptic efficiency (Stackman et al., 2002; Paz et al., 2009).

Our work provides evidence that supports the relevance of intrinsic mechanisms induced by photostimulation training in neuronal ensemble formation. The possibility to change the output pattern of a postsynaptic neuron through the modification of its firing properties could be a factor that promotes synaptic efficacy (Lisman, 1997; Brumberg et al., 2000). Thus, fast plasticity in
intrinsic excitability could have a major impact on network dynamics and could serve as an important information-storage mechanism which may contribute to memory formation (Xu, 2005; Marder and Goaillard, 2006; Lisman et al., 2018; Pignatelli et al., 2019) and to the generation of intrinsic circuit states, such as ensembles and attractors (Hopfield, 1982; Buzsáki, 2010; Miller et al., 2014b; Carrillo-Reid et al., 2016, 2019).
Abeles M (1991) Corticonics. Cambridge University Press.

Abraham WC, Jones OD, Glanzman DL (2019) Is plasticity of synapses the mechanism of long-term memory storage? npj Sci Learn 4:9.

Angelo K, Rancz EA, Pimentel D, Hundahl C, Hannibal J, Fleischmann A, Pichler B, Margrie TW (2012) A biophysical signature of network affiliation and sensory processing in mitral cells. Nature 488:375–378.

Astman N, Gutnick MJ, Fleidervish IA (1998) Activation of Protein Kinase C Increases Neuronal Excitability by Regulating Persistent Na + Current in Mouse Neocortical Slices. J Neurophysiol 80:1547–1551.

Bliss TVP, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J Physiol 232:357–374.

Brown APY, Cossell L, Margrie TW (2019) Visual Experience Regulates the Intrinsic Excitability of Visual Cortical Neurons to Maintain Sensory Function. Cell Rep 27:685-689.e4.

Brumberg JC, Nowak LG, McCormick DA (2000) Ionic Mechanisms Underlying Repetitive High-Frequency Burst Firing in Supragranular Cortical Neurons. J Neurosci 20:4829–4843.

Buzsáki G (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68:362–385.

Carrillo-Reid L, Han S, Yang W, Akrouh A, Yuste R (2019) Controlling Visually Guided Behavior by Holographic Recalling of Cortical Ensembles. Cell 178:447-457.e5.

Carrillo-Reid L, Yang W, Bando Y, Peterka DS, Yuste R (2016) Imprinting and recalling cortical ensembles. Science (80-) 353:691–694.

Churchland PS, Sejnowski TJ (1992) The computational brain. Cambridge, MA, US: The MIT Press.

Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP states in the neocortex. Nature 423:283–288.

Cossell L, Iacaruso MF, Muir DR, Houlton R, Sader EN, Ko H, Hofer SB, Mrsic-Flogel TD (2015) Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518:399–403.
Cudmore RH, Turrigiano GG (2004) Long-Term Potentiation of Intrinsic Excitability in LV Visual Cortical Neurons. J Neurophysiol 92:341–348.

Cui ED, Strowbridge BW (2018) Modulation of Ether-á-Go-Go Related Gene (ERG) Current Governs Intrinsic Persistent Activity in Rodent Neocortical Pyramidal Cells. J Neurosci 38:423–440.

Debanne D, Inglebert Y, Russier M (2019) Plasticity of intrinsic neuronal excitability. Curr Opin Neurobiol 54:73–82.

Disterhoft JF, Coulter DA, Alkon DL (1986) Conditioning-specific membrane changes of rabbit hippocampal neurons measured in vitro. Proc Natl Acad Sci 83:2733–2737.

Disterhoft JF, Oh MM (2006) Learning, aging and intrinsic neuronal plasticity. Trends Neurosci 29:587–599.

Fioravante D, Regehr WG (2011) Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269–274.

Hamm JP, Peterka DS, Gogos JA, Yuste R (2017) Altered Cortical Ensembles in Mouse Models of Schizophrenia. Neuron 94:153–167.e8.

Hebb DO (1949) The Organization of Behavior, New York: Wiley.

Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79:2554–2558.

Hoshiba Y, Wada T, Hayashi-Takagi A (2017) Synaptic Ensemble Underlying the Selection and Consolidation of Neuronal Circuits during Learning. Front Neural Circuits 11.

Johansson F, Jirenhed D-A, Rasmussen A, Zucca R, Hesslow G (2014) Memory trace and timing mechanism localized to cerebellar Purkinje cells. Proc Natl Acad Sci 111:14930–14934.

Kim T, Oh WC, Choi JH, Kwon H-B (2016) Emergence of functional subnetworks in layer 2/3 cortex induced by sequential spikes in vivo. Proc Natl Acad Sci 113:E1372–E1381.

Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD (2011) Functional specificity of local synaptic connections in neocortical networks. Nature 473:87–91.

Lisman J, Cooper K, Sehgal M, Silva AJ (2018) Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci 21:309–314.
Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 20:38–43.

Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. I. The area entorhinalis. J für Psychol und Neurol.

Lorente De Nó R (1938) Analysis of the activity of the chains of internuncial neurons. J Neurophysiol 1:207–244.

Malik R, Chattarji S (2012) Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons. J Neurophysiol 107:1366–1378.

Marder E, Goaillard J-M (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574.

Mardinly AR, Oldenburg IA, Pégard NC, Sridharan S, Lyall EH, Chesnov K, Brohawn SG, Waller L, Adesnik H (2018) Precise multimodal optical control of neural ensemble activity. Nat Neurosci 21:881–893.

Marshel JH, Kim YS, Machado TA, Quirin S, Benson B, Kadmon J, Raja C, Chibukhchyan A, Ramakrishnan C, Inoue M, Shane JC, McKnight DJ, Yoshizawa S, Kato HE, Ganguli S, Deisseroth K (2019) Cortical layer-specific critical dynamics triggering perception. Science 365.

Miller J -e. K, Ayzenshtat I, Carrillo-Reid L, Yuste R (2014a) Visual stimuli recruit intrinsically generated cortical ensembles. Proc Natl Acad Sci 111:E4053–E4061.

Miller JK, Ayzenshtat I, Carrillo-Reid L, Yuste R (2014b) Visual stimuli recruit intrinsically generated cortical ensembles. Proc Natl Acad Sci U S A 111:E4053-61.

Paz JT, Mahon S, Tiret P, Genet S, Delord B, Charpier S (2009) Multiple forms of activity-dependent intrinsic plasticity in layer V cortical neurones in vivo. J Physiol 587:3189–3205.

Pignatelli M, Ryan TJ, Roy DS, Lovett C, Smith LM, Muralidhar S, Tonegawa S (2019) Engram Cell Excitability State Determines the Efficacy of Memory Retrieval. Neuron 101:274-284.e5.

Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S (2015) Engram cells retain memory under retrograde amnesia. Science (80-) 348:1007–1013.

Schneggenburger R, Sakaba T, Neher E (2002) Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25:206–212.
Schüz A, Braitenberg V (2001) Cerebral Cortex: Organization and Function. In: International Encyclopedia of the Social & Behavioral Sciences, pp 1634–1640. Elsevier.

Shepherd GM (2004) The Synaptic Organization of the Brain (Shepherd GM, ed). Oxford University Press.

Stackman RW, Clark AS, Taube JS (2002) Hippocampal spatial representations require vestibular input. Hippocampus 12:291–303.

Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch C, Zeng H, Lein E (2018) Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method. J Vis Exp:e53825.

Titley HK, Brunel N, Hansel C (2017) Toward a Neurocentric View of Learning. Neuron 95:19–32.

Tonegawa S, Pignatelli M, Roy DS, Ryan TJ (2015) Memory engram storage and retrieval. Curr Opin Neurobiol 35:101–109.

Valero-Aracama MJ, Sauvage MM, Yoshida M (2015) Environmental enrichment modulates intrinsic cellular excitability of hippocampal CA1 pyramidal cells in a housing duration and anatomical location-dependent manner. Behav Brain Res 292:209–218.

Xu J (2005) Activity-Dependent Long-Term Potentiation of Intrinsic Excitability in Hippocampal CA1 Pyramidal Neurons. J Neurosci 25:1750–1760.

Yu X-W, Oh MM, Disterhoft JF (2017) CREB, cellular excitability, and cognition: Implications for aging. Behav Brain Res 322:206–211.

Yuste R (2015) From the neuron doctrine to neural networks. Nat Rev Neurosci 16:487–497.

Zhang W, Linden DJ (2003) The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4:885–900.
Table 1. Comparison of parameters associated with membrane excitability in intensity-dependent response, for photostimulated and unstimulated neurons.

pA	Number of spikes	Mean instant firing frequencies (Hz)	Mean frequencies of two first spikes (Hz)						
	Before	After	P Value	Before	After	P Value	Before	After	P Value
20	0.0	0.0	-	0.0	0.0	-	0.0	0.0	-
40	0 ± 0.07	2 ± 1	0.01 **	0	7 ± 1.9	0.001 ***	0 ± 0	7.4 ± 2	0.001 ***
60	2.6 ± 1	5 ± 1	0.009 **	6 ± 2	10 ± 2.6	0.007 **	7 ± 3	14 ± 6	0.006 **
80	5 ± 1	7 ± 0.8	0.009 **	11 ± 2.8	14.6 ± 3	0.04 *	14 ± 6	21 ± 8	0.05 *
100	7 ± 2	8 ± 0.8	0.03 *	15.4 ± 3	17.4 ± 3	0.06	25 ± 11	29.4 ± 15	0.1
120	8 ± 1.3	9 ± 1	0.04 *	18 ± 4.6	20 ± 3.7	0.3	37 ± 20	36.6 ± 18	0.9
140	9 ± 1.6	10.4 ± 1	0.1	22 ± 4	23 ± 3	0.6	51 ± 22	49 ± 21	0.6
160	9.8 ± 1	11 ± 0.5	0.2	24.2 ± 5	24.8 ± 4	0.7	57 ± 28	57 ± 28	0.9

Unstimulated neurons

pA	Number of spikes	Mean instant firing frequencies (Hz)	Mean frequencies of two first spikes (Hz)						
	Before	After	P Value	Before	After	P Value	Before	After	P Value
20	0.0	0.0	-	0.0	0.0	-	0.0	0.0	-
40	1 ± 2	1 ± 2	1.0	2.4 ± 4.2	2.2 ± 3.8	0.4	2.7 ± 5	2.4 ± 4	0.4
60	3 ± 2	2 ± 2	0.4	5.7 ± 5.7	4.8 ± 5	0.2	7 ± 8	6 ± 7	0.2
80	5 ± 2	4 ± 2	1	10 ± 4	9.3 ± 4.4	0.03 *	14 ± 7.4	12.4 ± 7	0.02 *
100	6 ± 2	6 ± 1.5	0.4	13.6 ± 4	13 ± 4.7	0.3	20 ± 8.6	21 ± 11.6	0.8
120	7 ± 1.8	6.3 ± 2	0.2	16 ± 5	15 ± 5	0.03 *	28.6 ± 15	24.7 ± 13	0.1
140	8 ± 2	7.7 ± 2	0.4	19 ± 5.5	16.7 ± 6	0.02 *	35 ± 20.5	32 ± 21	0.2
160	9 ± 2	8.3 ± 2	0.2	21 ± 6	19 ± 7	0.03 *	43 ± 25	39 ± 24.6	0.01 **

Table 1. Firing rate at minute 1 vs. 30 minutes later for each current step for the number of spikes, mean instant firing frequencies, mean frequencies of two first spikes. Comparation to determine the change in intensity-dependent response in photostimulated (n = 7, 5 mice) and unstimulated condition (n = 3, 3 mice). Data represent mean ± SEM. *p < 0.05, **p < 0.01 and ***p < 0.001 by student’s t test.
Table 2. Comparison of the changes in intensity-depended response for photostimulated vs. unstimulated neurons.

pA	Number of spikes	Mean instant firing frequencies (Hz)	Mean frequencies of two first spikes (Hz)						
	Photostim	Unstim	P Value	Photostim	Unstim	P Value	Photostim	Unstim	P Value
20	0.0	0.0	-	0.0	0.0	-	0.0	0.0	-
40	1.9 ± 1	0 ± 0	0.04 *	7 ± 0.4	-0.2 ± 2	0.0006 ***	-0.3 ± 0.5	7.4 ± 2	0.0006 ***
60	2.3 ± 2	-0.3 ± 0.5	0.02 *	3.4 ± 0.8	-1 ± 2	0.009 **	-1 ± 1	4.7 ± 2.5	0.007 **
80	2 ± 1	-1 ± 0	0.007 **	3.7 ± 0.3	-1 ± 4	0.07	-1.5 ± 0.3	6.8 ± 7.3	0.09
100	1 ± 1	-0.3 ± 0.5	0.06	2 ± 1	-0.8 ± 2.3	0.08	0.7 ± 5.5	4.3 ± 6.4	0.4
120	1 ± 1	-0.6 ± 0.5	0.02 *	1.5 ± 0.3	-1 ± 3	0.1	-3.9 ± 2.6	-0.3 ± 8.5	0.5
140	1.2 ± 1	-0.3 ± 0.5	0.1	0.6 ± 0.6	-2 ± 2.7	0.1	-3 ± 3.1	-2.5 ± 9.7	0.9
160	1 ± 1	-0.6 ± 0.5	0.1	0.5 ± 0.5	-2 ± 3.2	0.2	-4 ± 0.7	-0.4 ± 10	0.5

Table 2. Mean differences, at the first minute and 30 minutes after, for the number of spikes, mean instant firing frequencies, mean frequencies of two first spikes. Comparison of the changes in the intensity-depended for photostimulated response (n = 7, 5 mice) vs. unstimulated condition (n = 3, 3 mice). Data represent mean ± SEM. *p < 0.05, **p < 0.01 and ***p < 0.001 by unpaired student’s t test.
Figure 1. Experimental design.

(A). Example image of Ruby3 reporter fluorescent of ST-ChroMe opsin expression in L2/3 pyramidal neurons in primary visual cortex. Sagittal brain slices were obtained from virus injected mice. Scale bar: 200 µM. (B) Illustration of In vitro pair recording for evaluating monosynaptic connectivity between neurons. (C) Whole-cell recording of presynaptic action potentials elicited by 20 Hz train of 10 current injections (2 ms each), followed by the identification of a monosynaptic connection, with postsynaptic currents corresponding to presynaptic spikes. (D) Cell-attached and perforated current-clamp recording (E) at the beginning of direct optogenetic photostimulation protocol: 1 to 40 min of 10 Hz train, 5 ms light pulses for 4 s followed by 10 s of rest.
Figure 2. Lack of effect of photostimulation on evoked synaptic inputs

(A) Paired whole-cell recording of presynaptic and postsynaptic neurons during photostimulation. Fluorescent reporter expression of ST-ChroMe opsin in pyramidal neurons L2/3 of primary visual cortex from a mouse brain slice (p40). Scale bar: 40 μM. (B) Representative paired recording of synaptically connected neurons. Top: current-clamp recording of presynaptic action potentials in response to 10 pulses (2 ms each) at 20 Hz of current injection. Bottom: voltage-clamp recording of evoked EPSCs before (black) and after (red) 40 min of photostimulation. Each trace is the average of 30 successive responses evoked by presynaptic electrical stimulation. (C) Amplitude of evoked EPSCs remain unchanged after optogenetic photostimulation. Average amplitude of 30 successive EPSCs evoked in the representative neuron in B, before (black) and after (red) photostimulation. \(p = 0.7 \) by Student’s t test. Data represent mean ± SEM. (D) Mean Paired Pulse Ratio (PPR) remains unchanged before and after photostimulation (red; \(p = 0.2 \) by Wilcoxon’s test; \(n = 5 \) cells, 4 mice) and unstimulated neurons (green; \(p = 0.7 \) by Wilcoxon’s test, \(n = 5 \) cells,
3 mice). Right: comparison of change in mean PPRs plotted raw and as a box and whisker plot. p = 0.5 by Mann Whitney’s test; n = 5 cells per group. (E) Mean EPSC$_1$ amplitude without significant changes before and after photostimulation protocol (red; p = 0.6 by Wilcoxon’s test; n = 5 cells) and unstimulated neurons (green; p = 0.06 by Wilcoxon’s test, n = 5 cells). Right, comparison of change in mean EPSC$_1$ amplitudes plotted raw and as a box and whisker plot. p = 0.5 by Mann Whitney’s test; n = 5 cells per group.
Figure 3. Lack of effect of photostimulation on spontaneous synaptic inputs

(A) Representative paired whole-cell recording of non-connected neurons. Spontaneous EPSCs remained unchanged after optogenetic photostimulation. Top: current-clamp recording of presynaptic action potentials in response to 20 Hz-train current injection (neuron A). Bottom: voltage-clamp recording of 10 successive traces of spontaneous EPSCs without presynaptic spike's correspondence (neuron B), before (black) and after (red) 40 min of photostimulation protocol. (B) Spontaneous EPSCs frequencies of unstimulated and photostimulated neurons. Change correspond to: the numerical subtraction among the first minute of EPSCs frequency and 40 min after. Photostimulated neurons: red raw and box plot; neurons without photostimulation: green raw and box plot (p = 0.4 by Mann Whitney’s test; n = 8 for unstimulated neurons and n = 12 for photostimulated). Right: same as left but for spontaneous EPSC amplitudes. p = 0.9 by Mann Whitney’s test. (C) Same as A but in current-clamp perforated patch clamp recording of spontaneous EPSPs. (D) No significant difference in the number of spontaneous EPSPs, mean
of instantaneous frequency and mean of amplitudes, before and after 40 min of photostimulation protocol. Number of spontaneous EPSPs: \(p = 0.4 \); Instantaneous frequency average: \(p = 0.4 \); Amplitudes average: \(p = 0.7 \). Each by Wilcoxon’s test; \(n = 6 \) photostimulated cells.
Figure 4. Spontaneous firing rate increases after photostimulation

(A) Neurons increase spontaneous firing after direct optogenetic photostimulation. Representative cell-attached recording of a L2/3 pyramidal neuron that expressed ST-ChroM opsin. Left: black trace shows at the beginning of photostimulation protocol; blue lines indicated when the LED was ON. Right: red trace shows recording of the same cell after 30 min of photostimulation. (B) Spontaneous firing rate recording before (black trace) and after (red trace) 30 min of photostimulation. 60 % of the cells increased their spontaneous activity (firing rate) in response to the stimulation protocol and 40 % did not show changes, or instead showed a decrease in activity; n = 17. (C) Number of spikes increased after photostimulation. Left: comparing spontaneous firing rate before and after 30 min of photostimulation (red; **p < 0.01 by Wilcoxon’s test; n = 17 cells). Right: comparing spontaneous firing rate before and after 30 min without photostimulation (green; p = 0.2 by Wilcoxon’s test; n = 13 cells). (D) Same as in C but for instantaneous frequency of photostimulated neurons (**p < 0.01 by Wilcoxon’s test; n = 17 cells) and unstimulated neurons (p = 0.3 by Wilcoxon’s test; n = 13 cells).
Figure 5. Membrane input resistance increases after photostimulation

(A) Membrane potential excitability increases after photostimulation. Representative membrane voltage recordings with perforated patch-clamp (top) in response 500 ms series of current steps (bottom). Black traces show the membrane potential changes before photostimulation and red traces after 40 min. (B) Decrease in the rheobase after 20 min of photostimulation. Number of spikes in response to current steps of a representative photostimulated neuron, before photostimulation (at min 1): the action potentials were not evoked until 60 pA of current injection (black), after 20 min of photostimulation, neurons started to show action potentials at 40 pA of current injection. (C) IV plot show the relation between current injection and the membrane potential (Ohm’s law: Resistance = V/I). IV curves showed a modification in voltage membrane when we compared before and after 30 min of photostimulation (right graph). This change was not observed in the IV curves of unstimulated neurons (on the left). (D) Membrane resistance...
increases after photostimulation. ***p < 0.001 by student’s t test; n = 5 cells, 4 mice. Unstimulated neurons remained the same at minute 1 and 30 minutes after (p = 0.9 by student’s t test; n = 3, 3 mice).
Figure 6. Neuronal excitability increases after photostimulation

(A) Neuronal activity is increased after photostimulation for the lowest current steps. The thickest lines are average spikes of all neurons before (black) and after (red) photostimulation. Center: average spikes of unstimulated neurons, black line corresponds to first minute and green line to 30 minutes after. *p < 0.05 and **p < 0.01 by student’s t test. Right: numerical subtraction among the number of spikes in the first minute and 30 minutes after, photostimulated (red) and unstimulated neurons (green). *p < 0.05, **p < 0.01 by unpaired student’s t test; n = 7 for photostimulated neurons and n = 3 unstimulated neurons. Data represent mean ± SEM.

(B) Mean instant frequency increased for 40 to 80 pA of current steps after photostimulation. Same as A but for average of instantaneous frequency. *p < 0.05, **p < 0.01 and ***p < 0.001 by student’s t test. Right: numerical subtraction among instantaneous frequency in the first minute and 30 min after: *p < 0.05, **p < 0.01 and ***p < 0.001 by unpaired student’s t test.

(C) Frequency of the first
two action potentials increased through 40 to 80 pA of current steps after photostimulation. Same as A but for the average of first two action potentials frequency. *p < 0.05, **p < 0.01 and ***p < 0.001 by student’s t test. Right: Numerical subtraction among first two action potentials frequency in the first minute and 30 min after: *p < 0.05, **p < 0.01 and ***p < 0.001 by unpaired student’s t test.
Figure 7. Spike threshold decreases after photostimulation

(A) Firing threshold shifts to more negative potentials after photostimulation. First action potentials from recording under 60 pA steps before (black) and after (red) 30 min of photostimulation, aligned to their firing threshold. Right: Phase plot of action potentials: before start stimulation protocol (black), after 30 min (red) and after 80 min (orange). Arrow shows the firing threshold position.

(B) Firing threshold was detected for every cell before and after photostimulation, red paired dot plot (**p < 0.01 by Wilcoxon’s test; n = 8 cells). Right: unstimulated neurons, green paired dot plot (p = 0.3 by Wilcoxon’s test; n = 3 cells). (C) Voltage threshold change correspond to: numerical subtraction among two values firing threshold taken in the first min before photostimulation; then, numerical subtraction among first minute firing threshold and 30 min and 40 min later, red data (*p = 0.05 and **p = 0.01 by Wilcoxon’s test; n = 8 cells). Likewise, for unstimulated neurons, green data (p = 0.25 by Wilcoxon’s test; n = 3 cells). Photostimulated neurons: red box plot and
for unstimulated neurons: green box plot. (*p < 0.05 by Mann Whitney’s test; n = 8 for photostimulated and n = 3 for unstimulated cells).
Figure 8. Iceberg emergence model of ensemble formation.

(A) Emergence of ensembles after increases in neuronal excitability. Illustration of a diversity in responses to an input of a neuronal population, before and after coactivation (or photostimulation in the case of this study). Color corresponds to membrane potential in response to an input: white are resting membrane potentials, gray are subthreshold responses and red are suprathreshold ones, with firing of action potentials. After photostimulation neurons are more excitable, so the same inputs induce some of them to fire (red cells).

(B) Left: Iceberg emergence model: An iceberg with higher density keeps mostly underwater. (Right) But if its density decreases, the iceberg emerges above water. Density is an intrinsic property, and, by changing it, the iceberg changes its response to the same environment. Likewise, for a neuronal ensemble, membrane resistance and firing threshold are neuronal intrinsic property that are being modified, and they enhance its response to the same excitatory input intensity, resulting in an increase depolarization and action potentials.