Fermion-Antifermion Condensate Contribution to the Anomalous Magnetic Moment of a Fundamental Dirac Fermion

Victor Elias and Kevin Sprague
Department of Applied Mathematics
The University of Western Ontario
London, Ontario N6A 5B7 CANADA

Running Head: Condensate Contribution to the Fermion Magnetic Moment

1Corresponding Author -
tel: 519-679-2111, ext 8785
fax: 519-661-3523
e-mail: zohar@apmaths.uwo.ca
Abstract

We consider the contribution of fermion-antifermion condensates to the anomalous magnetic moment of a fermion in a vacuum in which such condensates exist. The real part of the condensate contribution to the anomalous magnetic moment is shown to be zero. A nonzero imaginary part is obtained below the kinematic threshold for intermediate fermion-antifermion pairs. The calculation is shown to be gauge-parameter independent provided a single fermion mass characterizes both the fermion propagator and condensate-sensitive contributions, suggestive of a dynamically-generated fermion mass. The nonzero imaginary part is then argued to correspond to the kinematic production of the intermediate-state Goldstone bosons anticipated from a chiral-noninvariant vacuum. Finally, speculations are presented concerning the applicability of these results to quark electromagnetic properties.

Keywords: condensates, magnetic moment, quarks
1. INTRODUCTION

One of the key distinctions between quantum electrodynamics (QED) and quantum chromodynamics (QCD), field-theories of known-interaction physics with unbroken gauge symmetry, is the existence of QCD-vacuum condensates, a distinction that has not been adequately linked to the nonabelian character of the latter theory. In particular, the quark-antiquark condensate \(\langle \bar{q}q \rangle \) characterizes the chiral noninvariance of the QCD vacuum; QED has no corresponding electron-positron condensate. Although a dynamical breakdown in chiral invariance can be linked to a criticality-threshold in the size of the gauge coupling constant (Higashijima, 1984), such an argument might in-and-of itself suggest the possible existence of an electron-positron condensate in the electromagnetic potential of atomic nuclei with sufficiently large atomic number. In such a scenario, the only linkage between the non-abelian character of QCD and the existence of vacuum-condensates would be the large size of the running QCD coupling-constant anticipated in the low-momentum- (static-quark-) limit.

It is therefore of interest to explore whether the existence of such a condensate might alter well-understood static fermion properties of QED. In QCD, particularly QCD sum-rule applications (Shifman et al., 1979), such condensates characterize the vacuum expectation values of normal ordered products of fields (Pascual and Tarrach, 1984). For example (Elias et al., 1988; Yndurain, 1989), the quark-antiquark condensate characterizes the
QCD-vacuum expectation-value

\[<0| :\psi^a_i(y)\bar{\psi}^b_j(z) :|0> = -\frac{\delta^{ab}}{3} <\bar{q}q> \sum_{r=0}^\infty C_r \left[-im\gamma^\mu(y_\mu - z_\mu)\right]_{ij}^r , \quad (1.1a) \]

\[C_r = \begin{cases}
\frac{1}{[(r/2)!(r+2)/2]^{2r+2}}, & r \text{ even,} \\
\frac{1}{[(r-1)/2]!(r+3)/2]^{2r+2}}, & r \text{ odd.}
\end{cases} \quad (1.1b) \]

[i,j are Dirac indices and a,b are colour indices.] In principle, every Feynman amplitude whose Wick-Dyson expansion of time-ordered fields contains a term in which a fermion and antifermion field are contracted to form a propagator,

\[<0|T\psi^a_i(y)\bar{\psi}^b_j(z)|0> = \int \frac{d^4p}{(2\pi)^4} e^{-ip\cdot(y-z)} [S_F(p)]_{ij}^{ab} , \quad (1.2) \]

also contains a not-fully contracted term containing (1.1). It is precisely through such terms, methodologically, that QCD-vacuum condensates are introduced into the field-theoretical side of sum-rule calculations (Pascual and Tarrach, 1984). It should be noted that the only signature of nonabelian physics in the derivation of (1.1) is an overall colour-summation factor of 3(= \delta^{aa}) in the denominator, a factor that can easily be absorbed in a redefinition of the fermion-antifermion condensate \(\bar{f}f \) for the abelian case. [We will define \(\bar{f}f \) henceforth such that \(\delta^{ab} <\bar{q}q> \rightarrow <\bar{f}f> \) in (1.1a).] The result (1.1) can be otherwise understood as a solution to the free Dirac equation with the condensate entering through an appropriately chosen initial condition (Yndurain, 1989). This nonzero condensate is a reflection of the
nonperturbative content of the vacuum. Normal-ordered fields necessarily annihilate a purely-perturbative vacuum, which is why vacuum expectation values like the left-hand side of (1.1) are not incorporated into standard QED calculations, but are incorporated into the field-theoretical content of QCD sum-rules.

In this paper, we address whether the explicit fermion-antifermion condensate contribution to the anomalous QED magnetic moment of a fermion field is calculable through use of field-theoretical techniques for this contribution (Bagan et al., 1993 and 1994) adapted from QCD sum-rule applications. We are motivated to examine this particular property because it can be easily extracted from the leading corrections to the unrenormalized electromagnetic vertex-function without reference to self-energy, vacuum polarization, or bremsstrahlung graphs that enter into the determination of electromagnetic form-factor slopes.

In Section 2 of this paper, we provide a brief methodological review of how the anomalous magnetic moment $\mathcal{K}F_2(0)$ of a Dirac fermion with mass m is calculated in (purely-) perturbative QED. In Section 3, we modify this calculation, as indicated above, by including the contribution of vacuum expectation values (1.1) in the Wick-Dyson expansion of the unrenormalized QED vertex amplitude. We find that the real part of the $<\bar{f}f>$-contribution to $\mathcal{K}F_2(0)$ vanishes, but that an imaginary part develops for q^2 between zero and $4m^2$ which diverges in the $q^2 \to 0$ limit.
These results are discussed in Section 4. They are first shown to be
gauge parameter independent provided the same fermion mass characterizes
(1.1) and (1.2), results suggestive of a dynamical rather than a Lagrangian
origin for the common fermion mass. We then argue that a change in the
kinematic threshold for the production of physical elementary particle states
is the most sensible interpretation of the imaginary part obtained in Section
3, indicative of the production of Goldstone bosons anticipated from the
dynamical breakdown of chiral symmetry ($\langle \bar{f}f \rangle \neq 0$).

Up to this point in the paper, the question of condensate contributions to
the anomalous magnetic moment has been posed entirely in the abstract. In
Section 4, we discuss the applicability of the results of Section 3 to quarks,
as fundamental Dirac fermions which form nonzero $\langle \bar{q}q \rangle$ condensates
whose contribution to $K_F^2(0)$ is precisely of the type investigated in Section
3. Although quarks are confined, their QED magnetic moments and form-
factors are nevertheless of phenomenological interest for extracting baryon
magnetic moments (Beg et al., 1964, and Perkins, 1987) and form-factor
behaviour. In the absence of condensate contributions, $K_F^2(q^2)$ develops
an imaginary part when $q^2 > 4m^2$, corresponding to the production of on-
shell fermion-antifermion pairs. $\langle \bar{q}q \rangle$ contributions are seen to reduce
this threshold to $q^2 = 0$, which can most easily be understood (assuming
m is dynamical) to correspond to the kinematical production of massless
pions, the Goldstone bosons of the chiral symmetry breaking whose order-
parameter manifestation is the \(< \bar{q}q >\) condensate itself. Thus, the change in the onset of an imaginary part in \(K_F^2(q^2)\) may reflect the transition of QCD to low-energy hadronic physics.

2. THE ELECTROMAGNETIC VERTEX CORRECTION: A METHODOLOGICAL REVIEW

The purely-perturbative three-point Green’s function [Fig. 1] containing the truncated fermion-antifermion-photon vertex Green’s function \(-iQe\Gamma^\sigma(p_2,p_1)\) is expressed in terms of Heisenberg fields \(\psi_i, \bar{\psi}_j, A_\mu\) as follows:

\[
\left[G_\mu(p_2,p_1) \right]_{i\ell} = \left[\frac{-i}{(p_2-p_1)^2} \left(g_{\mu\sigma} - (1 - \xi) \frac{(p_2-p_1)_\mu(p_2-p_1)_\sigma}{(p_2-p_1)^2} \right) \right] \left[\frac{i}{\not{p}_2 - m} \right]_{ij} \\
\times \left[\frac{i}{\not{p}_1 - m} \right]_{k\ell} \frac{-ieQ\Gamma^\sigma_{jk}(p_2,p_1)}{\not{p}_2 - \not{p}_1},
\]

(2.1)

where \(i - \ell\) are Dirac indices. The unrenormalized one-loop vertex correction \(\Lambda^\mu\) within \(\Gamma^\mu (= \gamma^\mu + \Lambda^\mu + ...\) is obtained via a Wick-Dyson expansion of the vacuum expectation value in (2.1) evaluated in the interaction picture (Dirac indices have been dropped):

\[
< 0 | T\psi(x')A_\mu(0)\bar{\psi}(y') | 0 >_{\text{Heis}} = \left< 0 | T\psi(x') \exp \left[-iQe \int d^4w \bar{\psi}(w)\gamma^\tau\psi(w)A_\tau(w) \right] \times A_\mu(0)\bar{\psi}(y') | 0 >,
\]

(2.2)
The one-loop correction to G_μ in (2.1) is then found to be [Fig. 2]

$$[\Delta G_\mu(p_2, p_1)]^{1\text{-loop}} = (-iQe)^3 \int d^4x' \int d^4y' e^{ip_2 \cdot x'} e^{-ip_1 \cdot y'}$$

\[\times \left[\int d^4x \int d^4y \int d^4z <0|T\psi(x')\bar{\psi}(x)|0 > \gamma^\tau \right.\]
\[\times <0|T\psi(x)\bar{\psi}(y)|0 > \gamma^\sigma <0|T\psi(y)\bar{\psi}(z)|0 > \gamma^\rho \]
\[\times <0|TA_\tau(x)A_\rho(z)|0 >. \quad (2.3)\]

where the term in large square brackets is just the fully-contracted third-order term in the Wick-Dyson expansion of (2.2). Eq. (2.3) can be evaluated by explicit use of the configuration-space fermion and photon propagators

$$<0|T\psi(x)\bar{\psi}(y)|0 > = i \int \frac{d^4q}{(2\pi)^4} e^{-iq \cdot (x-y)} \frac{1}{\not{q} - m}, \quad (2.4)$$

$$<0|TA_\tau(x)A_\rho(z)|0 > = -i \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot (x-z)} g_{\tau\rho} \frac{\gamma^\sigma k^2}{k^2}. \quad (2.5)$$

We have omitted Dirac and colour indices from (2.4), as well as the gauge-dependent longitudinal term from (2.5), as it does not contribute to the vertex function. Upon substitution of configuration-space propagators (2.4,5) into (2.3) and integration over the configuration space variables $\{x', y', x, y, z\}$, one obtains a string of delta functions which, when integrated over, yield the usual momentum-space Feynman propagator functions:
\[[\Delta G_\mu(p_2, p_1)]_{\text{1-loop}}^{1-\text{loop}} \]
\[= (-ieQ)^3 \int \frac{d^4q_1}{(2\pi)^4} \int \frac{d^4q_2}{(2\pi)^4} \int \frac{d^4q_3}{(2\pi)^4} \int \frac{d^4q_4}{(2\pi)^4} \int \frac{d^4k_1}{(2\pi)^4} \int \frac{d^4k_2}{(2\pi)^4} \]
\[\times \left(\frac{i}{\not{q}_1 - m} \right) \gamma^\tau \left(\frac{i}{\not{q}_2 - m} \right) \gamma^\sigma \left(\frac{i}{\not{q}_3 - m} \right) \gamma^\rho \left(\frac{i}{\not{q}_4 - m} \right) \]
\[\times \left(\frac{-ig_{\mu\sigma}}{k_1^2} \right) \left(\frac{-ig_{\tau\rho}}{k_2^2} \right) (2\pi)^4 \delta^4(q_1 - p_2) \delta^4(q_4 - p_1) \]
\[\times \frac{\delta^4(p_2 - q_2 - k_2) \delta^4(q_2 - q_3 + k_1) \delta^4(q_3 - p_1 + k_2)}{\delta^4(p_2 - q_2 - k_2) \delta^4(q_2 - q_3 + k_1) \delta^4(q_3 - p_1 + k_2)} \]
\[= \left[\frac{-ig_{\mu\sigma}}{(p_2 - p_1)^2} \right] \left[\frac{i}{\not{p}_2 - m} \right] \left[\frac{i}{\not{p}_1 - m} \right] \left[\frac{-iQe}{k_1^2} \right] \left[\frac{-iQe}{k_2^2} \right] (2\pi)^4 \delta^4(q_1 - p_2) \delta^4(q_4 - p_1) \]
\[\times \left\{ -\frac{i(Qe)^2}{(2\pi)^4} \int \frac{d^4k_2}{k_2^2} \gamma^\tau \left(\frac{\not{p}_2 - \not{k}_2 + m}{(p_2 - k_2)^2 - m^2} \gamma^\sigma \left(\frac{\not{p}_1 - \not{k}_2 + m}{(p_1 - k_2)^2 - m^2} \gamma^\rho \left(\frac{\not{q}_1 - \not{q}_2 - \not{k}_2}{(q_1 - q_2 - k_2)^2 - m^2} \right) \right) \right\}_{jk} \right. \]

(2.6)

Factorization of the external legs is explicit in the final line of (2.6).

The curly bracketed expression in the final line of (2.6) corresponds to the unrenormalized vertex correction \([\Lambda^\sigma(p_2, p_1)]\). Specifically, one can define the unrenormalized vertex correction to be \(\bar{u}(p_2) \Lambda^\mu(p_2, p_1) u(p_1)\), where \([q^\mu \equiv p_2^\mu - p_1^\mu] \]

\[\Lambda^\mu(p_2, p_1) \equiv e^2 Q^2 \left[R(q^2) \gamma^\mu + \frac{2S(q^2)}{m}(p_1^\mu + p_2^\mu) \right], \quad (2.7) \]

such that the unrenormalized vertex is \(-ieQ \Gamma^\mu \equiv -ieQ (\gamma^\mu + \Lambda^\mu(p_2, p_1))\) with \(eQ\) the electromagnetic fermion charge. This unrenormalized vertex can be expressed as follows in terms of the renormalized vertex form factors \(F_1(q^2), \ \mathcal{K}F_2(q^2)\): \(\bar{u}(p_2) \ [\gamma^\mu + \Lambda^\mu(p_2, p_1)] u(p_1)\)
\[\bar{u}(p_2) \left[(1 + e^2 Q^2 R(q^2) + 4S(q^2)) \gamma^\mu - 2e^2 Q^2 S(q^2) i\sigma^{\mu\nu} q_\nu / m \right] u(p_1) \]
\[\equiv Z \bar{u}(p_2) \left[F_1(q^2) \gamma^\mu + i\sigma^{\mu\nu} q_\nu \mathcal{K} F_2(q^2) / 2m \right] u(p_1). \] (2.8)

The rescaling in the final line of (2.8) is accomplished through the renormalization condition that \(F_1(0) = 1 \), in which case the (divergent) constant \(Z \) is given to order-\(e^2 \) by
\[Z = 1 + e^2 Q^2 (R(0) + 4S(0)). \] (2.9)

To leading order in \(e^2 \), one then finds that
\[F'_1(q^2) = 1 + e^2 Q^2 \left[(R'(0) + 4S'(0))q^2 + \mathcal{O}(q^4) \right] + \mathcal{O}(e^4), \] (2.10)
\[\mathcal{K} F_2(q^2) = -4e^2 Q^2 S(q^2) + \mathcal{O}(e^4). \] (2.11)

The \(q^2 \to 0 \) limit of Eq. (2.11) gives the \(\mathcal{O}(\alpha) \) anomalous magnetic moment of QED, which (in contrast to \(F_1 \)) devolves solely from the vertex correction and is insensitive to additional (vacuum-polarization, self-energy, and bremsstrahlung) diagrams.

The purely perturbative contribution to this quantity can be extracted by straightforward methods from the unrenormalized vertex correction in (2.6):
\[
\left[\Lambda^\mu(p_2, p_1) \right]_{\text{pert}} = -i(Qe)^2 \int \frac{d^4k}{(2\pi)^4} \frac{\gamma^\tau (\not{p}_2 - \not{k} + m) \gamma^\mu (\not{p}_1 - \not{k} + m) \gamma^\tau \gamma^\rho}{k^2[(p_2 - k)^2 - m^2][(p_1 - k)^2 - m^2]} I(p_2, p_1)
\]
\[+ \left[2\gamma^\rho \gamma^\mu \not{p}_2 + 2 \not{p}_1 \gamma^\rho \gamma^\mu - 8m g^{\mu\rho} \right] I_\rho(p_2, p_1)
\]
\[- 2\gamma^\rho \gamma^\mu \gamma^\sigma I_{\rho\sigma}(p_2, p_1) \]. \] (2.12)
The integrals I, I_ρ and $I_{\rho\sigma}$ are respectively defined by

$$
[I(p_2, p_1); I_\rho(p_2, p_1); I_{\rho\sigma}(p_2, p_1)] \\
= \int \frac{d^n k}{(2\pi)^n} \frac{[1; k_\rho; k_\rho k_\sigma]}{(k^2 - \epsilon^2) [(k - p_2)^2 - m^2] [(k - p_1)^2 - m^2]}.
$$

(2.13)

In (2.13), ultraviolet divergences are regulated via dimensional regularization and infrared divergences are regulated via the “photon-mass” ϵ. These integrals are easily evaluated by standard methods. If we evaluate these integrals in terms of a set of constants $a_{0,1}$, $b_{0,1}$, ... such that

$$
I(p_2, p_1) = i \left\{ \frac{a_0}{m^2} + \frac{a_1 q^2}{m^4} + \mathcal{O}(q^4) \right\},
$$

(2.14)

$$
I_\rho(p_2, p_1) = i \left\{ \frac{(p_{1\rho} + p_{2\rho})}{m^2} \right\} \left\{ b_0 + b_1 q^2/m^2 + \mathcal{O}(q^4) \right\},
$$

(2.15)

$$
I_{\rho\sigma}(p_2, p_1) = \frac{ig_{\rho\sigma}}{m^2} \left\{ c_0 + c_1 q^2/m^2 + \mathcal{O}(q^4) \right\} \\
+ i \left\{ \frac{(p_{1\rho} p_{1\sigma} + p_{2\rho} p_{2\sigma})}{m^2} \right\} \left\{ d_0 + d_1 q^2/m^2 + \mathcal{O}(q^4) \right\} \\
+ i \left\{ \frac{(p_{1\rho} p_{2\sigma} + p_{2\rho} p_{1\sigma})}{m^2} \right\} \left\{ e_0 + e_1 q^2/m^2 + \mathcal{O}(q^4) \right\}
$$

(2.16)

we can then express the vertex correction (2.12) in the form (2.7):

$$
R(q^2) = [4a_0 - 16b_0 + 4c_0 + 4d_0 + 4e_0] \\
+ (q^2/m^2) [-2a_0 + 4a_1 + 4b_0 - 16b_1 + 4c_1] \\
+ 4d_1 - 2e_0 + 4e_1 + \mathcal{O}(q^4/m^4),
$$

(2.17)

$$
S(q^2) = [2b_0 - 2d_0 - 2e_0] \\
+ (q^2/m^2) [2b_1 - 2d_1 - 2e_1] + \mathcal{O}(q^4/m^4).
$$

(2.18)
The set of constants are determined via explicit evaluation of the integrals in (2.13):

\[
a_0 = \frac{1}{32\pi^2} \ln \left(\frac{\epsilon^2}{m^2} \right), \quad a_1 = \frac{1}{192\pi^2} \left[1 + \ln \left(\frac{\epsilon^2}{m^2} \right) \right];
\]

(2.19)

\[
b_0 = -\frac{1}{32\pi^2}, \quad b_1 = -\frac{1}{192\pi^2};
\]

(2.20)

\[
c_0 = \frac{1}{64\pi^2} \left[-\frac{2}{n-4} - \gamma_E - \ln \left(\frac{m^2}{4\pi\mu^2} \right) + \frac{1}{2} \right], \quad c_1 = \frac{1}{384\pi^2};
\]

(2.21)

\[
d_0 = -\frac{1}{96\pi^2}, \quad d_1 = -\frac{1}{640\pi^2};
\]

(2.22)

\[
e_0 = -\frac{1}{192\pi^2}, \quad e_1 = -\frac{1}{960\pi^2}.
\]

(2.23)

As is evident from comparison of (2.11) and (2.18), the anomalous magnetic moment is clearly finite,

\[
\mathcal{K}F_2(0) = -8e^2Q^2 (b_0 - d_0 - e_0) = e^2Q^2/8\pi^2,
\]

(2.24)

the famous result of Schwinger and Feynman (Schwinger, 1948, and Feynman, 1949). The F_1 form-factor slope in the vertex correction (2.10) is also a classical result of perturbative QED,

\[
F_1'(0) = e^2Q^2 \left[R'(0) + 4S'(0) \right]
\]

\[
= e^2Q^2 \left[-2a_0 + 4a_1 + 4b_0 - 8b_1 + 4c_1 - 4d_1 - 2e_0 - 4e_1 \right]
\]

\[
= -\frac{e^2Q^2}{24\pi^2m^2} \left[\frac{3}{4} + \ln \frac{\epsilon^2}{\mu^2} \right],
\]

(2.25)

although the removal of the photon mass from the physically measurable form-factor slope entails careful consideration of soft external-photon (bremsstrahlung) diagrams (Block and Nordsieck, 1937; Yennie et al., 1955).
3. \(<\bar{f}f>\) CONTRIBUTION TO \(\mathcal{K}\mathcal{F}_2(q^2)\)

In Figure 3a (3b), we replace the perturbative configuration-space propagator \(<0|T\psi(x)\bar{\psi}(y)|0>\) (\(<0|T\psi(y)\bar{\psi}(z)|0>\)) of Eq. (2.3) with the “non-perturbative propagator” (Yndurain, 1989) \(<0|:\psi(x)\bar{\psi}(y):|0>\) (\(<0|:\psi(y)\bar{\psi}(z):|0>\)), the vacuum-expectation value of the normal-ordered pair of fermion fields that also arises from the Wick-Dyson expansion. Such vacuum-expectation values are routinely disregarded in purely perturbative calculations, in which the vacuum is fully annihilated by Fock-space annihilation operators, but must be taken into consideration if the vacuum has nonperturbative content (Pascual and Tarrach, 1984). The configuration-space nonperturbative propagator necessarily entails a replacement of Eq. (2.4) with the following expression (Bagan, et al., 1994; see also Elias, et al., 1988 and Yndurain, 1989):

\[
<0|:\psi(x)\bar{\psi}(y):|0> = \int d^4k \ e^{-ik\cdot(x-y)}(\gamma \cdot k + m)\mathcal{F}(k), \tag{3.1a}
\]

where

\[
\int d^4k\mathcal{F}(k)e^{-ik\cdot x} \equiv - \bar{f}f > J_1(m\sqrt{x^2})/(6m^2\sqrt{x^2}), \tag{3.1b}
\]

with \(<\bar{f}f>\) identified as the (appropriately normalized) fermion-antifermion condensate of (1.1). As is evident from a comparison of (3.1a) to (2.4), the momentum-space expressions for the nonperturbative propagator contributions to Fig. 3a and Fig. 3b respectively entail the following alterations (Bagan, et al., 1994) in the final line of (2.6):
Fig(3a) : \[\frac{1}{(k_2 - p_1)^2 - m^2} \rightarrow -i(2\pi)^4 \mathcal{F}(k_2 - p_1); \quad (3.2) \]

Fig(3b) : \[\frac{1}{(k_2 - p_2)^2 - m^2} \rightarrow -i(2\pi)^4 \mathcal{F}(k_2 - p_2). \quad (3.3) \]

[The contribution vanishes from the graph in which both fermion internal-lines are simultaneously altered.] The net effect of these changes is to reproduce the Feynman amplitude given in (2.12), but with the Feynman integrals (2.13) altered as follows:

\[
\int \frac{d^n k}{(2\pi)^n} \frac{[1; k_\mu; k_\rho k_\sigma]}{(k^2 - \epsilon^2)[(k - p_2)^2 - m^2][(k - p_1)^2 - m^2]} \rightarrow -i \int \frac{d^4 k [1; k_\mu; k_\rho k_\sigma] \mathcal{F}(k - p_1)}{(k^2 - \epsilon^2)[(k - p_2)^2 - m^2]}
\]

\[
- i \int \frac{d^4 k [1; k_\mu; k_\rho k_\sigma] \mathcal{F}(k - p_2)}{(k^2 - \epsilon^2)[(k - p_1)^2 - m^2]}.
\quad (3.4)
\]

We have returned to explicit use of 4-dimensional integration because the new integrals are all UV-finite.

Thus we retain the form of the amplitude (2.12), but with the integrals \(I, I_\rho, I_\sigma\) now being given (after a trivial shift of integration variable) by

\[
I(p_2, p_1) = -i \int \frac{d^4 k \mathcal{F}(k)}{[(k + p_1)^2 - \epsilon^2][(k + p_2 - p_1)^2 - m^2]}
\]

\[
- i \int \frac{d^4 k \mathcal{F}(k)}{[(k + p_2)^2 - \epsilon^2][(k + p_1 - p_2)^2 - m^2]};
\quad (3.5)
\]

\[
I_\rho(p_2, p_1) = -i \int \frac{d^4 k (k_\rho + p_1) \mathcal{F}(k)}{[(k + p_1)^2 - \epsilon^2][(k + p_1 - p_2)^2 - m^2]}
\]

\[
- i \int \frac{d^4 k (k_\rho + p_2) \mathcal{F}(k)}{[(k + p_2)^2 - \epsilon^2][(k + p_2 - p_1)^2 - m^2]};
\quad (3.6)
\]
\[I_{\rho\sigma}(p_2, p_1) = -i \int \frac{d^4k(k_{\rho} + p_{\rho})(k_{\sigma} + p_{\sigma})F(k)}{[(k + p_1)^2 - \epsilon^2][(k + p_1 - p_2)^2 - m^2]} - i \int \frac{d^4k(k_{\rho} + p_{\rho})(k_{\sigma} + p_{\sigma})F(k)}{[(k + p_2)^2 - \epsilon^2][(k + p_2 - p_1)^2 - m^2]} . \] (3.7)

Using parametrizations analogous to (2.14-16),

\[I(p_2, p_1) = iA(q^2)/m^2, \] (3.8)

\[I_{\rho}(p_2, p_1) = i[(p_{1\rho} + p_{2\rho})/m^2]B(q^2), \] (3.9)

\[I_{\rho\sigma}(p_2, p_1) = i\rho_{\sigma}C(q^2) + i[(p_{1\rho}p_{1\sigma} + p_{2\rho}p_{2\sigma})/m^2]D(q^2) + i[(p_{1\rho}p_{2\sigma} + p_{2\rho}p_{1\sigma})/m^2]E(q^2), \] (3.10)

we proceed analogously to the derivation of (2.18) and find that the \(\langle \bar{f}f \rangle \) contribution to \(S(q^2) \) in (2.7) is now given to one-loop order by

\[\Delta S(q^2) = 2B(q^2) - 2D(q^2) - 2E(q^2). \] (3.11)

As in (2.24), the fermion-antifermion condensate contribution to the anomalous magnetic moment is then found to be

\[\Delta KF_2(0) = -8 \left(e^2Q^2 \right) (B(0) - D(0) - E(0)). \] (3.12)

To proceed further, we need to evaluate the integrals (3.6) and (3.7) that determine the explicit functions \(B(q^2), D(q^2) \) and \(E(q^2) \) of Eqs. (3.9) and (3.10). To evaluate \(B(q^2) \), we need to evaluate the integrals \(I_{\rho}(p_2, p_1) \)
in Eq. (3.6). Using a Feynman-parameter combination of the propagator denominators, we find for on-shell momenta \((p_1^2 = p_2^2 = m^2)\) that

\[
I_\rho(p_2, p_1) = -i \int_0^1 d\lambda \int \frac{d^4k (k_\rho + p_1\rho) \mathcal{F}(k)}{\{(k - (p_2\lambda - p_1))^2 - m^2\lambda^2 - \epsilon^2(1 - \lambda)^2\}^2}
- i \int_0^1 d\lambda \int \frac{d^4k (k_\rho + p_2\rho) \mathcal{F}(k)}{\{(k - (p_1\lambda - p_2))^2 - m^2\lambda^2 - \epsilon^2(1 - \lambda)^2\}^2} \tag{3.13}
\]

We will drop the photon mass \(\epsilon^2\), as any infrared divergences that might arise in the anomalous magnetic moment (as opposed to \(F_1(q^2)\)) cannot be removed by bremsstrahlung corrections. The integrals in (3.13) can be expressed in terms of the integrals (A.6,7) of the Appendix, with \(p \equiv p_1\lambda - p_2\) or \(p_2\lambda - p_1\), and with \(\mu = m\lambda\). For on-shell momenta, both definitions of \(p\) lead to \(p^2 = m^2(1 - \lambda)^2 + q^2\lambda\) with \(q^2 = (p_2 - p_1)^2\). The results we obtain are valid only for \(q^2 > 0\); the requirement that \(p^2 > 0\), as discussed immediately following (A.9), necessarily implies \(q^2 > 0\), as \(z\) in \(p^2 = m^2(1 - z)^2 + q^2z\) ranges over values between zero and one. We then see from (3.13) that

\[
I_\rho(p_2, p_1) = -i p_1\rho \int_0^1 d\lambda R_3(p_2\lambda - p_1, m\lambda)
- i p_2\rho \int_0^1 d\lambda R_3(p_1\lambda - p_2, m\lambda)
- i \int_0^1 d\lambda \int \frac{d^4k k_\rho \mathcal{F}(k)}{\{(k - (p_2\lambda - p_1))^2 - m^2\lambda^2\}^2}
- i \int_0^1 d\lambda \int \frac{d^4k k_\rho \mathcal{F}(k)}{\{(k - (p_1\lambda - p_2))^2 - m^2\lambda^2\}^2} \tag{3.14}
\]

where, from the Appendix to this paper, we define

\[
R_3(p, \mu) \equiv \int \frac{d^4k \mathcal{F}(k)}{\{(k - p)^2 - \mu^2\}^2}, \tag{3.15a}
\]
\[R_2(p, \mu) \equiv \int \frac{d^4k}{[(k-p)^2 - \mu^2]} \mathcal{F}(k). \] (3.15b)

The remaining integrals in (3.14) are of the form

\[\int \frac{d^4k}{[(k-p)^2 - \mu^2]^2} k^\rho \mathcal{F}(k) = A(p^2) p^\rho. \] (3.16)

If we contract \(p_\rho \) into both sides of (3.16) and use the identities \(p \cdot k = -\frac{1}{2}[(k-p)^2 - \mu^2] + \frac{k^2}{2} + \frac{\mu^2}{2} \) and \(k^2 \mathcal{F}(k) = m^2 \mathcal{F}(k) \) [eq. (A.4)], we find that

\[A(p^2) = -\frac{1}{2p^2} R_2(p, \mu) + \frac{m^2 + p^2 - \mu^2}{2p^2} R_3(p, \mu). \] (3.17)

Noting that \(\mu^2 = m^2 z^2, p^2 = m^2(1-z)^2 + q^2 z \), we then find that

\[I_\rho(p_2, p_1) = -ip_{1\rho} \int_0^1 dz R_3(p_2 z - p_1, m z)
- ip_{2\rho} \int_0^1 dz R_3(p_1 z - p_2, m z)
- i \int_0^1 dz (p_{2\rho} z - p_{1\rho}) \left[-\frac{1}{2[m^2(1-z)^2 + q^2 z]} R_2(p_2 z - p_1, m z)
+ \frac{2m^2(1-z) + q^2 z}{2[m^2(1-z)^2 + q^2 z]} R_3(p_2 z - p_1, m z) \right]
- i \int_0^1 dz (p_{1\rho} z - p_{2\rho}) \left[-\frac{1}{2[m^2(1-z)^2 + q^2 z]} R_2(p_1 z - p_2, m z)
+ \frac{2m^2(1-z) + q^2 z}{2[m^2(1-z)^2 + q^2 z]} R_3(p_1 z - p_2, m z) \right]. \] (3.18)

We see from (A.6) and (A.7) of the Appendix that \(R_2(p, \mu) \) and \(R_3(p, \mu) \) depend on \(p \) only through \(p^2 \):
\[R_2(p_1 z - p_2, mz) = R_2(p_2 z - p_1, mz) \equiv R_2[z], \quad (3.19a) \]
\[R_3(p_1 z - p_2, mz) = R_3(p_2 z - p_1, mz) \equiv R_3[z], \quad (3.19b) \]

and from (3.17) we find that

\[
A[z] \equiv A(m^2(1 - z)^2 + q^2 z) = \frac{[2m^2(1 - z) + q^2 z]R_3[z] - R_2[z]}{2[m^2(1 - z)^2 + q^2 z]} \quad (3.20)
\]

By comparing (3.18) to (3.9), we obtain

\[
B(q^2) = m^2 \int_0^1 dz [(1 - z)A[z] - R_3[z]] \quad (3.21)
\]

To find \(D(q^2) \) and \(E(q^2) \) in (3.10) we combine the propagator denominators of (3.7) to obtain

\[
I_{\rho\sigma} = -i \int_0^1 dz \int d^4k \frac{(k_\rho + p_1_\rho)(k_\sigma + p_1_\sigma)F(k)}{\{[k - (p_2 z - p_1)]^2 - m^2 z^2\}^2} \\
- i \int_0^1 dz \int d^4k \frac{(k_\rho + p_2_\rho)(k_\sigma + p_2_\sigma)F(k)}{\{[k - (p_1 z - p_2)]^2 - m^2 z^2\}^2} \\
= +i(p_1_\rho p_1_\sigma + p_2_\rho p_2_\sigma) \int_0^1 dz [2A[z] - R_3[z]] \\
- i(p_1_\rho p_2_\sigma + p_2_\rho p_1_\sigma) \int_0^1 dz [2zA[z]] \\
- i \int_0^1 dz k_\rho k_\sigma F(k) \frac{[k - (p_2 z - p_1)]^2 - m^2 z^2}{\{[k - (p_1 z - p_2)]^2 - m^2 z^2\}^2} \\
- i \int_0^1 dz k_\rho k_\sigma F(k) \frac{[k - (p_1 z - p_2)]^2 - m^2 z^2}{\{[k - (p_2 z - p_1)]^2 - m^2 z^2\}^2} \quad (3.22)
\]
The remaining integrals in (3.22) are of the form
\[\int \frac{d^4k}{\{(k-p)^2 - \mu^2\}^2} k\rho \sigma F(k) = X(p^2)g_{\rho\sigma} + Y(p^2)p_\rho p_\sigma, \tag{3.23} \]
in which case we see from comparison of (3.22) to (3.10) that
\[D(q^2) = m^2 \int_0^1 dz \left[2A[z] - R_3[z] - (1 + z^2)Y[z] \right], \tag{3.24} \]
\[E(q^2) = +m^2 \int_0^1 dz \left[-2zA[z] + 2zY[z] \right], \tag{3.25} \]
where
\[Y[z] \equiv Y(m^2(1 - z)^2 + q^2z). \tag{3.26} \]
Thus we see through comparison of (3.11) to (3.21), (3.24) and (3.25) that
\[\Delta S(q^2) = 2m^2 \int_0^1 dz \left[(1 - z)^2 Y[z] - (1 - z)A[z] \right]. \tag{3.27} \]
To determine \(Y[z] \), we first note from (A.4) in the Appendix that contraction of \(g^{\rho\sigma} \) into (3.23) yields the relation
\[m^2 R_3(p, \mu) = 4X(p^2) + p^2 Y(p^2). \tag{3.28} \]
Recalling that \(p \cdot k = -\frac{1}{2} [(k-p)^2 - \mu^2] + \frac{1}{2}(m^2 + p^2 - \mu^2) \), we see that contraction of \(p^\rho p^\sigma \) into (3.23) yields the relation
\[\frac{1}{4} R_1 - \frac{1}{2}(m^2 + p^2 - \mu^2) R_2(p, \mu) + \frac{1}{4}(m^2 + p^2 - \mu^2)^2 R_3(p, \mu) \]
\[= p^2 X(p^2) + (p^2)^2 Y(p^2), \tag{3.29} \]
where \(R_1 = \int d^4k F(k) = - < \bar{f}f > / 12m \), as shown in the Appendix. Given \(\mu = mz, p^2 = m^2(1 - z)^2 + q^2z \), one can then solve (3.28) and (3.29) for
\(Y(p^2) \) to obtain the following:

\[
Y[z] = -\frac{1}{3[m^2(1-z)^2 + q^2 z]} \left\{ m^2 R_3[z] \right. \\
- \frac{1}{(m^2(1-z)^2 + q^2 z)} \left[R_1 - 2(2m^2(1-z) + q^2 z) R_2[z] \right. \\
+ \left[2m^2(1-z) + q^2 z \right] R_3[z] \right\}. \quad (3.30)
\]

The integral (3.27) can be evaluated using the expressions (3.20) and (3.30) to express \(A[z] \) and \(Y[z] \) in terms of \(R_1, R_2[z] \) and \(R_3[z] \). We note from (A.6) and (A.7) of the Appendix that for \(p^2 = m^2(1-z)^2 + q^2 z, \mu^2 = m^2 z^2, \)

\[4m^2 > q^2 > 0, \]

that

\[
R_2[z] = \frac{<\bar{f}f>}{24m^3} \frac{[-2m^2(1-z) - q^2 z + i z \sqrt{4m^2 q^2 - q^4}]}{m^2(1-z)^2 + q^2 z}, \quad (3.31)
\]

\[
R_3[z] = \frac{<\bar{f}f>}{24m^3[m^2(1-z)^2 + q^2 z]} \left[1 + i \frac{[2m^2(1-z) + q^2 z]}{z \sqrt{4m^2 q^2 - q^4}} \right]. \quad (3.32)
\]

We note that \(R_2 \) and \(R_3 \) have developed imaginary parts when \(q^2 \) is between zero and \(4m^2 \); \(R_2 \) and \(R_3 \) are both real if \(q^2 > 4m^2 \). Such a branch cut between \(q^2 = 0 \) and \(q^2 = 4m^2 \) is also seen to occur in the quark-antiquark condensate contributions to two-point current-correlation functions (Bagan et al., 1986; Elias et al., 1993), and is discussed in detail in the section that follows. We find from substitution of (3.20) and (3.30-3.32) into (3.27) that

\[
\Delta S(q^2) = 2m^2 \int_0^1 dz(1-z) \left[-\frac{<\bar{f}f> (1-z)}{36m[m^2(1-z)^2 + q^2 z]^2} \\
- \frac{[5m^2(1-z)^2 + q^2 z(1-4z)]}{6[m^2(1-z)^2 + q^2 z]^2} R_2[z] \\
- \frac{[m^2 q^2 z(1-z)(3+5z) + q^4 z^2(1+2z)]}{6[m^2(1-z)^2 + q^2 z]^2} R_3[z] \right]. \quad (3.33)
\]
Explicit evaluation of the real and imaginary parts of (3.33) for $0 < q^2 < 4m^2$ yields the following results:

\[\text{Re}[\Delta S(q^2)] = 0, \quad (3.34) \]
\[\text{Im}[\Delta S(q^2)] = -\frac{<\bar{f}f>}{12m\sqrt{4m^2q^2 - q^4}}, \quad (3.35) \]

where $\Delta KF_2(q^2) = -4e^2Q^2\Delta S(q^2)$.

4. DISCUSSION

4.1 Gauge Invariance

In an arbitrary covariant gauge, the contribution of Fig 3a is proportional to

\[
\int d^4k \, D^{\tau\sigma}(k, \xi) \frac{F(k - p_1)\gamma_\tau(k - p_2 - m)\gamma_\mu(k - p_1 - m)\gamma_\sigma}{[(k - p_2)^2 - m^2]}
\equiv \Lambda^{(a)}(p_2, p_1) - (1 - \xi)\Lambda^{(a)}(p_2, p_1), \quad (4.1)
\]

as is evident from (3.3) and (2.6), where ξ is the photon-propagator gauge parameter

\[
D^{\tau\sigma}(k) = \frac{g^{\tau\sigma}}{k^2} - (1 - \xi)\frac{k^\tau k^\sigma}{k^4}. \quad (4.2)
\]

In (4.1), $\Lambda^{(a)}$ is the (Feynman-gauge) contribution we have already considered, and $\Lambda^{(a)}_\xi$ is the contribution arising from the second term in (4.2). Gauge-parameter independence is explicit provided $\bar{u}(p_2)\Lambda^{(a)}_\xi(p_2, p_1)u(p_1) = 0$; i.e., provided the $k^\tau k^\sigma/k^4$ term in $D^{\tau\sigma}$ does not contribute to the on-shell
vertex correction. To demonstrate this, we consider

\begin{align*}
\Lambda_{\xi}^\mu(p_2, p_1)u(p_1) &= \int \frac{d^4k \, \mathcal{F}(k - p_1) \, \gamma_\mu(k - \slashed{p}_2 - m)}{k^4[(k - p_2)^2 - m^2]} u(p_1) \\
\implies_{k - p_1 \to k} \int d^4k \frac{(k + \slashed{p}_1)(k + p_1 - \slashed{p}_2 - m)\gamma_\mu \mathcal{F}(k)(k - m)(k + \slashed{p}_1)u(p_1)}{((k + p_1)^2)^2 [(k + p_1 - p_2)^2 - m^2]} u(p_1) &= 0.
\end{align*}

(4.3)

\(\mathcal{F}(k)\) is a Dirac scalar that can be moved past gamma-matrices – we have moved it to the right in (4.3) in order to focus on the factors immediately preceding \(u(p_1)\):

\begin{align*}
\mathcal{F}(k)(k - m)(k + \slashed{p}_1)u(p_1) &= \mathcal{F}(k)(k^2 - m^2)u(p_1) \\
&= 0.
\end{align*}

(4.4)

The second to last line of (4.4) is a consequence of \(\slashed{p}_1u(p_1) = mu(p_1)\), and the final line is a consequence of \(k^2\mathcal{F}(k) = m^2\mathcal{F}(k)\), as discussed in the Appendix [eq. (A.4)]. Thus we see that \(\Lambda_{\xi}^\mu(p_2, p_1)u(p_1) = 0\). A virtually identical argument shows the gauge-dependent contribution from Fig. 3b annihilates \(\bar{u}(p_2)\) on-shell. Consequently, we see that the vertex correction \(\bar{u}(p_2)\Lambda^{(a)}(p_2, p_1)u(p_1)\) is manifestly gauge-parameter independent:

\(\bar{u}(p_2)\Lambda^{(a)}(p_2, p_1)u(p_1) = 0\).

This demonstration of gauge-parameter independence, however, is contingent upon having the same fermion mass enter the perturbative and nonpert-
turbative fermion propagators (2.4) and (3.1), as has been assumed throughout the previous section’s calculation. Any attempt to distinguish between these masses will destroy the gauge-parameter independence of the result (e.g., He, 1996). The gauge-parameter independence of electroweak two-point functions has similarly been shown (Ahmady, et al., 1989) to be contingent, for a given flavour, upon having the same fermion mass enter from nonperturbative vacuum expectation values (1.1) as appears in the corresponding fermion propagator function (1.2).

An entirely analogous situation arises in QCD when one considers the fermion-antifermion condensate contribution to the fermion two-point function. The apparent gauge-parameter dependence first seen for this contribution (Pascual and de Rafael, 1982) has been shown to disappear on-shell (Elias and Scadron, 1984) provided the mass that appears in the fermion propagator (2.4) is consistent with that appearing in the vacuum expectation value (1.1). Since this latter mass is necessarily dynamical, gauge-parameter independence suggests that the fermion mass appearing throughout the calculation of the previous section be understood to be dynamical rather than Lagrangian in origin (Elias and Scadron, 1984; Reinders and Stam, 1986), a reflection of the chiral noninvariance of the vacuum necessary for (1.1) to be nonzero (i.e., for $<\bar{f}f>\neq 0$).
4.2 Interpretation of Im($\Delta S(q^2)$)

As noted in the previous section, the integrals $R_2[z]$ and $R_3[z]$ are seen to contribute an imaginary part to the vertex function when q^2 is between 0 and $4m^2$, behaviour that is also evident in the fermion-antifermion condensate contributions to two-point functions (Bagan, 1986; Elias et al., 1993). Although imaginary parts of Feynman amplitudes are signals of physical intermediate states, the region $0 < q^2 < 4m^2$ is clearly beneath the $q^2 = 4m^2$ kinematic threshold for the production of a physical fermion-antifermion ($\bar{f}f$) pair. Nevertheless, this $0 < q^2 < 4m^2$ branch cut, when augmented by the purely-perturbative $\bar{f}f$-production branch cut beginning at $q^2 = 4m^2$, may be associated with the $q^2 = 0$ production threshold for Goldstone bosons associated with chiral symmetry breaking. The internal consistency of such a picture necessitates identification of m with a dynamical mass, as opposed to a mass that appears in the Lagrangian and that explicitly breaks Lagrangian chiral symmetry; e.g. the pion is massless only in the limit of Lagrangian chiral symmetry (zero current-quark mass). As noted above, such a dynamical fermion mass is expected to arise from the chiral-noninvariance of the QCD vacuum itself, and can be related directly to the $\langle \bar{f}f \rangle$ order-parameter characterizing chiral non-invariance (Politzer, 1976; Elias and Scadron, 1984). We have also seen above that such an interpretation is strongly suggested by gauge invariance. Thus it would appear that the nonzero imaginary part occurring in (3.35) may be a kinematic manifesta-
tion of the Goldstone theorem, suggesting that the theory now contains the zero-mass meson anticipated from a dynamical breakdown ($\langle f\bar{f} \rangle \neq 0$) of Lagrangian chiral symmetry.

4.3 Quarks?

Although the field-theoretical calculations presented in this paper have been posed almost entirely in the abstract, there are clear reasons to explore their applicability to the electromagnetic properties of quarks. Quarks couple to both QED and QCD interactions. Even though the latter are deemed entirely responsible for the existence of $\langle \bar{q}q \rangle$ condensates, such condensates necessarily contribute to Feynman amplitudes from which quark electromagnetic properties are extracted.

As remarked in the Introduction, such properties are of evident interest to quark-model estimates of hadron properties. For example, the construction of proton and neutron magnetic moments from the magnetic moments of Dirac-fermion quark constituents (Beg. et al., 1964), one of the very earliest successes of the nonrelativistic quark model, is sensible only if the quark masses employed are vastly larger ($\mathcal{O}(300 \text{ MeV})$) than those masses anticipated from the QCD Lagrangian ($\mathcal{O}(5-10 \text{ MeV})$). Thus, there is a clear phenomenological role for a dynamical mass in quark-model physics, even though such a larger mass may really represent the inverse length of a confinement radius.

Any application of the calculation presented in Section 3 to quark electro-
magnetic-properties needs to recognize that QED and QCD cannot be treated in isolation. Not only is the chiral-noninvariant QCD vacuum the “standard-model” vacuum that quarks actually experience, suggesting the need to include $<\bar{q}q>$-contributions; the photon exchanges of QED in isolation must also be augmented by gluon exchanges. Consequently, the spin-1 internal lines of Fig 3 represent photons and gluons, entailing substitution of $\left[e^2Q^2 + g_s^2 T(R)\right]$ for all factors of e^2Q^2 appearing in Section 3. This change becomes problematical in the $q^2 \to 0$ limit, a region believed to be inaccessible to perturbative QCD, though there exists evidence (and considerable prejudice) for a freezing out of the effective QCD coupling g_s to not-overly large values at small momentum transfers (Mattingly and Stevenson, 1992; Stevenson, 1994; Ellis et al., 1997; Baboukhadia et al., 1997; Gardi and Karliner, 1998). Similarly, the nonabelian character of QCD leads to a vastly richer set of gluon bremsstrahlung graphs contributing to $F_1(q^2)$; it is precisely for this reason we have focused on $K F_2$, a quantity insensitive to such graphs.

Subject to all these concerns, it is of interest to speculate on the applicability of the previous section’s results to phenomenological quark properties. Naively, the result (3.34) would imply the absence of a $<\bar{q}q>$ contribution to the quark magnetic moment, particularly if the divergence in the imaginary part at $q^2 = 0$ (3.35) is attributable to the production of zero-mass pions. Moreover, an alteration in the kinematic production threshold from

26
$4m^2$ to zero may reflect QCD’s transition from a quark-gluon gauge theory to true low-energy hadronic physics. As discussed above, m is understood in such a picture to be the $O(300\text{ MeV})$ dynamical quark mass characterizing the quark magneton in the static quark model. The success of such a picture appears not to be compromised by $\langle \bar{q}q \rangle$ effects, if (3.34) is taken at face-value.

When $q^2 > 4m^2$, however, the quark-condensate contribution to $KF_2(q^2)$ is entirely real:

$$\Delta S(q^2) = \frac{\langle \bar{q}q \rangle}{12m\sqrt{q^4 - 4m^4q^2}}.$$ \hspace{1cm} \text{(4.5)}

Even though m is understood here to be dynamical [$\langle \bar{q}q \rangle / m \sim m^2$ (Politzer, 1976; Elias and Scadron, 1984)], we have no explanation for the divergence in (4.5) as $q^2 \to 4m^2$ from above. One does see from (4.5) that the quark-condensate contribution to $KF_2(q^2)$ goes like $1/q^2$ in the large q^2-limit. Such behaviour also characterizes (up to logarithms) the purely-perturbative contributions to $KF_2(q^2)$ discussed in Section 2, and can be linked via quark-counting rules to the $1/Q^6$ behaviour of the nucleon form factor $F_2^N(Q^2)$ (Brodsky and Lepage, 1989).

Finally, we point out that the large-Q^2 behaviour of the quark-condensate contribution (4.5) is not suppressed relative to the purely-perturbative contribution. On dimensional grounds, one might expect an $O[m \langle \bar{q}q \rangle / Q^4]$ quark-condensate contribution that is suppressed relative to the purely per-
turbative contribution at short distances. Such behaviour is clearly unsupported by (4.5), which suggests that the nonperturbative order parameter $<\bar{q}q>$ may leave footprints even in the deep-inelastic domain.

ACKNOWLEDGEMENTS

We are grateful for discussions with D.G.C. McKeon, V. A. Miransky and T. G. Steele, and for support from the Natural Sciences and Engineering Research Council of Canada.
References

Ahmady, M.R., Elias, V., Mendel, R. R., Scadron, M.D., Steele, T. (1989) *Physical Review D: Particles and Fields*, **39**, 2764.

Baboukhadia, L. R., Elias, V., and Scadron, M.D. (1997) *Journal of Physics G: Nuclear and Particle Physics*, **23**, 1065.

Bagan, E., LaTorre, J. I., and Pascual, P. (1986) *Zeitschrift für Physik C - Particles and Fields*, **32**, 43.

Bagan, E., Ahmady, M. R., Elias, V., and Steele, T. G. (1993) *Physics Letters B*, **305**, 151.

Bagan, E., Ahmady, M. R., Elias, V., and Steele, T. G. (1994) *Zeitschrift für Physik C - Particles and Fields*, **61**, 157.

Beg, M. A. B., Lee, B. W., and Pais, A. (1964) *Physical Review Letters*, **13**, 514 and 650.

Bloch, F. and Nordsieck, A. (1937) *Physical Review*, **37**, 54.

Brodsky, S. J., and Lepage, G. P. (1989) Exclusive processes in quantum chromodynamics, in *Perturbative Quantum Chromodynamics*, A. H. Mueller, ed., World Scientific, Singapore, pp. 153-156.

Elias, V. and Scadron, M. D. (1984) *Physical Review D: Particles and Fields*, **30**, 647.
Elias, V., Steele, T. G., and Scadron, M. D. (1988) *Physical Review D: Particles and Fields*, **38**, 1584.

Elias, V., Murison, J. L., Scadron, M. D., and Steele, T. G. (1993) *Zeitschrift für Physik C - Particles and Fields*, **60**, 235.

Ellis, J., Karliner, M., and Samuel, M. A. (1997) *Physics Letters B*, **400**, 176.

Feynman, R. P. (1949) *Physical Review*, **76**, 749 and 769.

Gardi, E. and Karliner, M. (1998) Preprint [hep-ph/9802218].

Gradshteyn, I. S. and Ryzhik, I. M. (1980) *Table of Integrals, Series, and Products*, Academic Press, Orlando, p. 712 [eq. (6.623.3)].

He, H. (1996) *Zeitschrift für Physik C - Particles and Fields*, **69**, 287.

Higashijima, K. (1984) *Physical Review D: Particles and Fields*, **29**, 1228.

Mattingly, A. C., and Stevenson, P. M. (1992) *Physical Review Letters*, **69**, 1320.

Pascual, P. and de Rafael, E. (1982) *Zeitschrift für Physik C - Particles and Fields*, **12**, 127.

Pascual, P. and Tarrach, R. (1984) *QCD: Renormalization for the Practitioner*, Lecture Notes in Physics 194, Araki, H., Ehlers, J., Hepp, K.,
Kippenhahn, R., Weidenmüller, H. A., and Zittartz, J., eds., Springer-Verlag, Berlin, pp. 168-191.

Perkins, D. H. (1987) *Introduction to High Energy Physics*, Addison-Wesley, Reading, Mass., pp. 164-167.

Politzer, H. D. (1976) *Nuclear Physics B: Particle Physics*, 117, 397.

Reinders, L. J. and Stam, K. (1986) *Physics Letters B*, 180, 125.

Schwinger, J. (1948) *Physical Review*, 73, 416.

Shifman, M. A., Vainshtein, A. I., and Zakharov, V. I. (1979) *Nuclear Physics B: Particle Physics*, 147, 385 and 448.

Stevenson, P. M. (1994) *Physics Letters B*, 331, 187.

Yennie, D. R., Frautschi, S. C., and Suura, H. (1955) *Annals of Physics*, 13, 379.

Yndurain, F. J. (1989) *Zeitschrift für Physik C - Particles and Fields*, 42, 643.
APPENDIX: Feynman Integrals over the Nonperturbative Propagator Function $\mathcal{F}(k)$

The vacuum expectation value of a normal ordered pair of condensing fermion-antifermion fields may be expressed as follows (Bagan, et al., 1993 and 1994; Yndurain, 1989):

$$<0| : f(x) \bar{f}(0) : |0> = -\frac{<\bar{f}f>}{6m^2} (i\gamma^\mu \partial_\mu + m) \left[J_1 \left(m\sqrt{x^2} \right) / \sqrt{x^2} \right]$$

$$\equiv \int d^4k \, e^{-ikx} (\gamma^\mu k_\mu + m) \mathcal{F}(k), \quad (A.1)$$

where \mathcal{F} is the Fourier transform

$$\int d^4k \, e^{-ikx} \mathcal{F}(k) = -\frac{<\bar{f}f>}{6m^2} \frac{J_1 \left(m\sqrt{x^2} \right)}{\sqrt{x^2}} \quad (A.2)$$

which is well-defined for causal Minkowskian separations ($x^2 > 0$). The normalization chosen for $<\bar{f}f>$ is discussed in Section 1. The second line of (A.1) is a solution to the free-particle Dirac equation,

$$(i\gamma^\mu \partial_\mu - m) <0| : f(x) \bar{f}(0) : |0> = 0. \quad (A.3)$$

Application of (A.3) to the final expression on the right-hand side of (A.1) implies that (Bagan, et al., 1994)

$$k^2 \mathcal{F}(k) = m^2 \mathcal{F}(k). \quad (A.4)$$

Let us now consider the following integrals arising in the text:
\[R_1 \equiv \int d^4k \, F(k) = - \langle \bar{f} f \rangle / 12m \]
(A.5)

\[R_2(p, \mu) \equiv \int \frac{d^4k \, F(k)}{(p-k)^2 - \mu^2 + i|\epsilon|} = - \langle \bar{f} f \rangle / 24m^3p^2 \times \left[p^2 + m^2 - \mu^2 - \sqrt{[p^2 - (m-\mu)^2][p^2 - (m+\mu)^2]} \right], \]
(A.6)

\[R_3(p, \mu) \equiv \int \frac{d^4k \, F(k)}{[\eta p^2 + m^2 - \mu^2 + i|\epsilon|]^2} = \langle \bar{f} f \rangle \left[1 - \frac{p^2 + m^2 - \mu^2}{[p^2 - (m-\mu)^2][p^2 - (m+\mu)^2]} \right]. \]
(A.7)

Eqs. (A.6) and (A.7) are demonstrably valid only for \(p^2 > 0 \), as discussed below.

The integral \(R_1 \) is obtained from the \(x \to 0 \) limit of (A.2). To evaluate the integral \(R_2(p, \mu) \) we first utilize (A.4) to replace \(k^2 \) with \(m^2 \), and we then utilize the positivity of \(|\epsilon| \) to exponentiate the propagator:

\[R_2(p, \mu) = -i \int_0^\infty d\eta \, e^{i\eta(p^2 + m^2 - \mu^2 + i|\epsilon|)} \int d^4k \, e^{-ik(2\eta p)} F(k) \]

\[= i < \bar{f} f > \int_0^\infty d\eta \, e^{-\eta[p^2 + m^2 - \mu^2]} J_1 \left(\frac{2\eta m \sqrt{p^2}}{2\eta \sqrt{p^2}} \right), \]
(A.8)

where the final line of (A.8) is obtained directly from (A.2) with \(x \) replaced by \(2\eta p \). The resulting integral over \(\eta \) is evaluated through use of the tabulated integral (Gradshteyn and Ryzhik, 1980)

\[\int_0^\infty e^{-\eta\alpha} J_1(\eta\beta) d\eta/\eta = \frac{\sqrt{\alpha^2 + \beta^2} - \alpha}{\beta}, \quad (Re \alpha > |Im \beta|). \]
(A.9)
Since \(Re \alpha \) is identified with the positive infinitesimal \(|\epsilon|\) and \(\beta \) is identified with \(2m\sqrt{p^2} \) in (A.8), \(p^2 \) must be positive. The following results are obtained for physical (Minkowskian) momenta:

\[
R_2(p, \mu) = \frac{i <\bar{f} f>}{12m^2 \sqrt{p^2}} \left[-i \left[\sqrt{(p^2 + m^2 - \mu^2)^2 - 4m^2p^2} - (p^2 + m^2 - \mu^2) \right] \right],
\]

(A.10)
a result easily rearranged to yield (A.6).

To evaluate the integral \(R_3(p, \mu) \), we again utilize (A.4) to replace \(k^2 \) with \(m^2 \) and then exponentiate the propagator:

\[
R_3(p, \mu) = -\int_0^\infty d\eta \eta \ e^{i\eta(p^2+m^2-\mu^2+i|\epsilon|)} \int d^4k \ F(k) e^{-ik(2\eta p)}
\]

\[
= \frac{<\bar{f} f>}{12m^2 \sqrt{p^2}} \int_0^\infty d\eta \ e^{-\eta(\mu^2+i|\epsilon|)} J_1 \left(2\eta m \sqrt{p^2} \right).
\]

(A.11)
The final integral in (A.11) is evaluated through use of the integral

\[
\int_0^\infty e^{-\eta \alpha} J_1(\eta \beta) d\eta = \frac{\sqrt{\alpha^2 + \beta^2} - \alpha}{\beta \sqrt{\alpha^2 + \beta^2}},
\]

(A.12)
by taking the partial derivative of both sides of (A.9) with respect to \(\alpha \). Using (A.12), which is again demonstrably valid (\(|\epsilon| > |Im2\eta \sqrt{p^2}|\)) only for \(p^2 > 0 \), we easily obtain the result (A.7).

It is evident from these procedures that any Feynman integrals of the form

\[
R_{N+1}(p, \mu) \equiv \int \frac{d^4k \ F(k)}{[(p - k)^2 - \mu^2 + i|\epsilon|]^N}
\]

(A.13)
can be evaluated through use of (A.2) and (A.4), exponentiation of the denominator, and successive differentiations of (A.9):

\[
R_{N+1}(p, \mu) = \frac{(-i)^N}{(N-1)!} \int_0^\infty d\eta \, \eta^{N-1} e^{-\eta[|\epsilon|-i(p^2+m^2-\mu^2)]} \\
\times \int d^4k \, \mathcal{F}(k)e^{-ik(2\mu)} \\
= -\frac{(-i)^N}{(N-1)! 12 m^2 \sqrt{p^2}} \int_0^\infty d\eta \, \eta^{N-2} e^{-\eta[|\epsilon|-i(p^2+m^2-\mu^2)]} J_1 \left(2m\eta\sqrt{p^2}\right) \\
= \frac{i^N \langle \tilde{f} f \rangle}{(N-1)!12m^2\sqrt{p^2}} \frac{\partial^{N-1}}{\partial \alpha^{N-1}} \left(\frac{\sqrt{\alpha^2 + \beta^2} - \alpha}{\beta}\right)_{\alpha = -i(p^2+m^2-\mu^2)} \left(\beta = 2m\sqrt{p^2}\right). \quad (A.14)
\]
Figure Captions:

Figure 1: The fermion-antifermion-photon Green’s function.

Figure 2: The one-loop purely-perturbative contribution to the fermion-antifermion-photon Green’s function in configuration space.

Figure 3: The leading fermion-antifermion condensate contributions to the fermion-antifermion-photon Green’s function in configuration space, with nonperturbative propagators replacing internal fermion lines as indicated in (3.2) and (3.3).