Iridium-catalyzed asymmetric ring-opening reactions of oxabicyclic alkenes with secondary amine nucleophiles

Dingqiao Yang*, Ping Hu, Yuhua Long, Yujuan Wu, Heping Zeng, Hui Wang and Xiongjun Zuo

Abstract

Iridium-catalyzed asymmetric ring-opening reactions of oxabicyclic alkenes with various aliphatic and aromatic secondary amines are reported for the first time. The reaction gave the corresponding trans-1,2-dihydronaphthalenol derivatives in good yields with moderate enantioselectivities in the presence of 2.5 mol % [Ir(COD)Cl]₂ and 5 mol % bisphosphine ligand (S)-p-Tol-BINAP. The trans-configuration of 3f was confirmed by X-ray crystallography.

Introduction

Substituted dihydronaphthalenes are important molecules with different biological activities [1-5]. Therefore, the synthesis of these molecules has been an attractive research topic in recent years. Among the many reported methods for the preparation of the dihydronaphthalene skeleton, transition metal-catalyzed asymmetric ring-opening (ARO) of oxabicyclic alkenes is one of the most attractive because this reaction could potentially create two chiral centers in a single step.

Pioneering work in this field was first described by Caple et al. [6] and the group of Lautens [7-9]. In the past decades, the group of Lautens and others reported rhodium-catalyzed asymmetric ring-opening of oxabenzonorbornadiene with a wide range of nucleophiles including thiols [10], phenols [11], organoboronic acids [12,13], dialkylzincs [14,15], carboxylates [16], sulfur nucleophiles [17], and various amines [18,19].

In addition to rhodium catalysts, other transition metal catalysts may be used for asymmetric ring-opening reactions of oxabicyclic alkenes. These include complexes of copper [20-25], palladium [14,15,26-31], iron [32], and nickel [33-36]. Recently, we reported for the first time iridium-catalyzed asym-
metric ring-opening of N-Boc-azabenzenorbornadiene with a wide range of secondary amines [37].

In this article, we will report ARO reactions of oxabicyclic alkenes with aliphatic and aromatic secondary amine nucleophiles using iridium-complex catalysts, which provide a fast and efficient access to chiral molecules with the dihydronaphthalene skeleton.

Results and Discussion

The ARO reaction involves many components of the chemical agents; we first attempted to optimize the ligand to iridium catalyst system (Scheme 1). In our initial experiments, we chose an achiral 1,1′-bis(diphenylphosphino)ferrocene (DPPF) ligand to validate the catalytic activity of the iridium complex. The product 2a was obtained in high yield (80%) in the presence of 2.5 mol % [Ir(COD)Cl]$_2$ and 5 mol % DPPF in THF after 5 h.

Encouraged by this result, we then ran the asymmetric version of the same reaction using different kinds of chiral bisphosphine ligands as shown in Scheme 1. We first examined ferrocenyl bisphosphine ligand, (R,S)-PPF-P'Bu$_2$, which was identified as the ligand giving the best reactivity and excellent enantioselectivity in Rh-catalyzed system [11-15]. Unfortunately, the desired ring-opened product 2a was obtained only in low yield (47%) with reasonable enantioselectivity (51% ee) in the iridium-catalyzed system. This suggested that (R,S)-PPF-P'Bu$_2$ was not an ideal ligand in iridium-catalyzed reactions, which prompted us to screen other ligands. Among the several chiral ligands we had tested, (S)-BINAP and (S)-p-Tol-BINAP were found to give better yields and reasonable enantioselectivities. Moreover, in the case of (S)-p-Tol-BINAP, the enantioselectivity is slightly higher than for (S)-BINAP (52% ee vs 35% ee); therefore, we decided to use (S)-p-Tol-BINAP as the ligand for this ring-opening reaction.

Using (S)-p-Tol-BINAP as our standard ligand, we next investigated the effect of different solvents on reactivity and enantioselectivity (Table 1). Among the solvents examined for asymmetric ring-opening of oxabenzenorbornadiene 1a, THF was found to be the best in terms of yield and enantioselectivity (Table 1, entry 6). Reactions in toluene and dioxane afforded the desired product 2a in 70% and 76% yields, respectively. However, the enantioselectivities were slightly lower (Table 1, entries 3 and 4). On the other hand, temperature had a remarkable impact on reactivity and enantioselectivity. At room temperature, the reaction failed to give the corresponding ring-opened product 2a (Table 1, entry 7). A sluggish reaction was observed at 65 °C (Table 1, entry 8), whereas at a higher temperature, such as 100 °C, the reaction gave a better yield and moderate enantioselectivity (Table 1, entry 9).

Based on the above findings, we decided to use the following reaction condition as a standard to run the ARO reactions, which consisted of 2.5 mol % [Ir(COD)Cl]$_2$, 5 mol % (S)-p-Tol-BINAP, and 3.0 equiv of substituted N-alkylaniline in THF.

![Scheme 1: Identification of optimal chiral ligand for iridium-catalyzed asymmetric ring-opening of oxabenzenorbornadiene 1a with N-methylaniline.](image)

a Isolated yield after silica gel column chromatography.

b Determined by HPLC with a Chiralcel AD column.
Table 1: Screening conditions for iridium-catalyzed asymmetric ring-opening of oxabenzonorbornadiene 1a with N-methylaniline.

Entry	Solvent	Temperature (°C)	Time (h)	Yield (%)	ee (%)
1	DME	100	12	48	16
2	CH₃CN	90	12	36	21
3	Toluene	110	8	70	34
4	Dioxane	110	8	76	46
5	THF	100	12	65	50
6	THF	80	8	87	52
7	THF	25	48	n.r.	–
8	THF	65	12	58	53
9	THF	100	5	89	46

The reaction was carried out with 1a (0.34 mmol) and 3.0 equiv of N-methylaniline (1.0 mmol) in a solvent (2.0 mL) in the presence of [Ir(COD)Cl]₂ (2.5 mol %) and (S)-p-Tol-BINAP (5.0 mol %). Isolated yields after silica gel column chromatography. Determined by HPLC with a Chiralcel AD column.

Table 2: Scope of ring-opening of oxabenzonorbornadiene 1a with substituted N-alkylaniline.

Entry	R³	R⁴	Product	Time (h)	Yield (%)	ee (%)
1	CH₃	H	2a	8	87	52
2	CH₂CH₃	H	2b	12	75	56
3	CH₂CH=CH₂	H	2c	24	48	74
4	Cyclohexyl	H	–	60	n.r.	–
5	CH₃	2-Cl	–	24	n.r.	–
6	CH₃	3-Cl	2d	24	56	72
7	CH₃	4-Cl	2e	12	70	55
8	CH₃	4-F	2f	12	65	51
9	CH₃	4-Br	2g	12	71	65
10	CH₃	4-NO₂	–	60	n.r.	–
11	CH₃	4-OCH₃	2h	6	85	50

The reaction was carried out with 1a (0.34 mmol) and 3.0 equiv of substituted N-alkylaniline (1.0 mmol) in THF (2.0 mL) at 80 °C in the presence of [Ir(COD)Cl]₂ (2.5 mol %) and (S)-p-Tol-BINAP (5.0 mol %). Isolated yields after silica gel column chromatography. Determined by HPLC with a Chiralcel AD column.

at 80 °C. The results of the ARO of oxabenzonorbornadiene 1a are shown in Table 2.

The results demonstrated that the size of the alkyl group on nitrogen in the nucleophile significantly influenced the reactivity and enantioselectivity. For instance, in the reaction of 1a with N-methylaniline, which has a small group on N-atom, the ring-opening product 2a was obtained in 87% yield and 52% ee (Table 2, entry 1), whereas in the reaction of 1a with N-ethylaniline, which has a larger group on N-atom, the yield decreased to 75%, but the enantioselectivity was slightly increased (Table 2, entry 2). When N-allylaniline was used as a nucleophile, we obtained the product 2e in 48% yield with 74% ee (Table 2, entry 3). The reaction using N-cyclohexylaniline failed to give any ring-opened product because of the steric hindrance of the bulky group (Table 2, entry 4).

We then investigated the effect of substituent groups on the aromatic ring of N-methylaniline. In 4-chloro-N-methylaniline, the reaction gave the desired product 2e in high yield with moderate enantioselectivity (Table 2, entry 7). When 3-chloro-N-methylaniline was used, the corresponding product 2d was obtained in slightly lower yield with slightly higher enantioselectivity (Table 2, entry 6). However, the reaction failed to
Table 3: ARO of oxabenzonorbornadiene 1a with various aliphatic secondary amines.\(^a\)

Entry	HNR\(^b\)R\(^d\)	Additive\(^b\)	Product	Time (h)	Yield (%)\(^c\)	ee (%)\(^d\)
1	HN	–	2i	24	16	45
2	NH\(_4\)F	NH\(_3\)F	2i	24	32	40
3	NH\(_3\)Cl	NH\(_3\)Cl	2i	24	45	43
4	NH\(_3\)Br	NH\(_3\)Br	2i	24	60	45
5	NH\(_4\)I	NH\(_4\)I	2i	12	90	49
6	NH\(_4\)I	NH\(_4\)I	2j	20	72	65
7	NH\(_4\)I	NH\(_4\)I	2k	8	88	53
8	NH\(_4\)Cl	NH\(_4\)Cl	2l	15	78	56

\(^a\)The reaction was carried out with 1a (0.34 mmol) and 3.0 equiv of aliphatic secondary amine (1.0 mmol) in THF (2.0 mL) at 80 °C in the presence of [Ir(COD)Cl\(_2\)] \((2.5 \text{ mol \%})\) and (S)-\(p\)-Tol-BINAP, 5 mol % (S)-\(p\)-Tol-BINAP, and 3.0 equiv of secondary amine nucleophiles in THF, at reflux. The results are summarized in Table 4 and Table 5.

Having examined a wide range of secondary amines, it was found that the sterically hindered nucleophiles enhanced the enantioselectivities (up to 89% ee). Inspired by this observation, we then examined more sterically hindered substrate 1b or 1c in the presence of 2.5 mol % [Ir(COD)Cl\(_2\)], 5 mol % (S)-\(p\)-Tol-BINAP, and 3.0 equiv of secondary amine nucleophiles in THF, at reflux. The results are summarized in Table 4 and Table 5.

To evaluate the scope of the reaction, we also examined various aliphatic secondary amines under optimized reaction conditions, and the results are summarized in Table 3. In most cases, aliphatic secondary amines reacted smoothly with 1a to give the corresponding ring-opened products (2i–l) in high yields (up to 90%) with enantioselectivity ranging between 49% ee and 65% ee (Table 3, entries 5–8). We also found that the halide ions might play an important role in transition metal-catalyzed ARO reactions, in which the reactivity and enantioselectivity could be significantly improved by choosing a suitable halide ion. It was found that the reaction yields and enantioselectivities increased in the order of F<Cl<Br<I (Table 3, entries 2–5). But under the optimized reaction conditions, only a low yield (16%) was obtained without halide ion additives (Table 3, entry 1). Therefore, simply changing the halide ligand on the iridium catalyst from chloride to iodide or bromide leads to improvements in the reactivity and enantioselectivity. On the other hand, the difference in enantioselectivity between the fluoro and the iodo complexes is particularly striking with piperidine as the nucleophile. With the Ir–F catalyst, 2i is formed in only 32% yield and 40% ee. Changing to the Ir–I complex gives 2i in 90% yield and 49% ee (Table 3, entries 2 and 5).

Having examined a wide range of secondary amines, it was found that the sterically hindered nucleophiles enhanced the enantioselectivities (up to 89% ee). Inspired by this observation, we then examined more sterically hindered substrate 1b, which contained methoxy groups on the 5- and 8-positions, with various secondary amines provided ring-opened products 3a–j in yields from 65% to 83% and enantioselectivities from 41% to 89%. We further found...
Entry	HNR3R4	Product	Time (h)	Yield (%)b	ee (%)c
1		3a	12	81	76
2		3b	20	70	81
3		3c	8	68	43
4		3d	12	65	45
5		3e	12	74	54
6		3f	12	70	89
7		3g	6	83	41
8		3h	12	71	63
9		3i	12	79	54
10		3j	12	75	56

*The reaction was carried out with 1b (0.34 mmol) and 3.0 equiv of secondary amine (1.0 mmol) in THF (2.0 mL) at reflux in the presence of [Ir(COD)Cl]2 (2.5 mol %) and (S)-p-Tol-BINAP (5.0 mol %). The NH4I additive is 1.0 equiv relative to 1b. Isolated yields after silica gel column chromatography. Determined by HPLC with a Chiralcel AD column.

Based on our studies in this article, the reaction mechanism is proposed as shown in Scheme 2. The chiral dimeric iridium complex A is first formed. The dimer A is cleaved by solvation (THF) to become monomer B. The oxygen atom and the double bond of oxabenzonorbornadiene 1a are then reversibly coordi-
Table 5: Iridium-catalyzed asymmetric ring-opening reaction of substrate 1c.a

Entry	Nucleophile	Ligand	Product	Time (h)	Yield (%)	ee (%)
1	2-Piperazin-1-ylbenzonitrile	(S)-p-Tol-BINAP	4a	24	70	37
2	4-Fluorophenylpiperazine	(S)-p-Tol-BINAP	4b	24	68	49
3	2-Fluorophenylpiperazine	(S)-p-Tol-BINAP	4c	24	73	38
4	1-(4-Methoxyphenyl)piperazine	(S)-p-Tol-BINAP	4d	24	62	59
5	3,4-Dichlorophenylpiperazine	(S)-p-Tol-BINAP	4e	24	27	16

aConditions: [Ir(COD)Cl]2 (2.5 mol %) and ligand (5.0 mol %) were dissolved in THF and stirred for 10–20 min. Then NH4I was added and the mixture stirred for another 10–20 min. The substrate 1c was added and the mixture heated to reflux. The nucleophiles were added on the first sign of reflux.

Isolated yields after silica gel column chromatography. Determined by HPLC with a Chiralcel AD column or AD column.

Figure 1: ORTEP plot for 3f.

nated to the iridium center of the catalyst to give the intermediate C. Oxidative insertion of C into the C–O bond forms D. Then, attack of the secondary amine nucleophile along with configurational inversion is proposed to occur in an SN2' displacement of the iridium catalyst. The trans-1,2-dihydropyridine product 2 is subsequently released and the iridium monomer B is regenerated.

Conclusion

In summary, we have explored the iridium-catalyzed ARO reaction of oxabicyclic alkenes with N-alkylated anilines or N-substituted piperazine nucleophiles; the reactions gave the desired products in moderate to good yields with good enantioselectivities. The iridium-catalyzed ARO reactions described in this article featured lower cost compared with rhodium-catalyzed ARO reactions, which provided potential applications in asymmetric synthesis of chiral building blocks. The 1,2-trans-configuration of the product was confirmed by X-ray crystallography. The search for an optimized ligand aiming to enhance enantioselectivity and the extension of this reaction to other types of substrates and nucleophiles are currently under investigation in our labs.

Experimental

General procedure (I) for the asymmetric ring-opening reactions of oxabenzonorbornadiene 1a with substituted N-alkylaniline: A 5.0 mL round-bottom flask fitted with a reflux condenser was flame-dried under a stream of nitrogen and cooled to room temperature. [Ir(COD)Cl]2 (5.8 mg, 2.5 mol %) and (S)-p-Tol-BINAP (10.7 mg, 5 mol %) were
simultaneously added, followed by an addition of anhydrous tetrahydrofuran (2.0 mL). After they were stirred for about 10 min, oxabenzonorbornadiene 1a (50.0 mg, 0.347 mmol) was added and the resulting mixture was heated to reflux. On the first sign of reflux, nucleophile (3.0 equiv to 1a) was added. The temperature was continuously increased to 80 °C until the reaction was complete as determined by thin layer chromatography. The reaction mixture was then concentrated in vacuo and purified by column chromatography (silica gel: 200–300 mesh) to give the target product.

\[(1S,2S)-2\text{-[Methyl(phenyl)amino]-1,2-dihyronaphthalen-1-ol (2a): Following the general procedure (I), 2a was obtained as a colorless oil (76.0 mg, 87%).} \]

See Supporting Information for details of the syntheses of the new compounds 2b-l, 3a-j, and 4a-d.
Supporting Information

Experimental procedures and full characterization data for all the new compounds including optical rotations, IR, ¹H NMR and ¹³C NMR, MS and elemental analysis are provided in the Supporting Information. In addition, X-ray structure data for compound 3f are given.

Supporting Information File 1
Experimental and analytical data
[http://beilstein-journals.org/bjoc/content/supplementary/1860-5397-5-53-S1.doc]

Acknowledgments

We are grateful to the National Natural Science Foundation of China (No. 20772036) and the Natural Science Foundation of Guangdong Province (No. 8251063101000002 and No. 7005804) for the financial support.

References

1. Johnson, B. M.; Chang, P. T. L. Analytical Profiles of Drug Substances and Excipients; 1996; Vol. 24, p 443. (For reviews.)
2. Snyder, S. E.; Aviles-Garay, F. A.; Chakraborti, R.; Nichols, D. E.; Watts, V. J.; Mailman, R. B. J. Med. Chem. 1995, 38, 2395–2409. doi:10.1021/jm00013a015
3. Kamal, A.; Gayatri, L. Tetrahedron Lett. 1996, 37, 3359–3362. doi:10.1016/0040-4020(96)00546-1
4. Kim, K.; Guo, Y.; Sulikowski, G. A. J. Org. Chem. 1995, 60, 6866–6871. doi:10.1021/jo00128a043
5. Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V.; Fiorentini, F.; Olgiati, V.; Ghiglieri, A.; Govoni, S. J. Med. Chem. 1995, 38, 942–949. doi:10.1021/jm00006a013
6. Caple, R.; Chen, G. S.; Nelson, J. D. J. Org. Chem. 1971, 36, 2874–2876. doi:10.1021/jo00680a032
7. Lautens, M. Synlett 1993, 177–185. doi:10.1055/s-1993-22393
8. Lautens, M.; Colucci, J. T.; Hiebert, S.; Smith, N. D.; Bouchain, G. Org. Lett. 2002, 4, 1879–1882. doi:10.1021/ol025872f
9. Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36, 48–58. doi:10.1021/ar010112a
10. Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. Org. Lett. 2002, 4, 2803–2806. doi:10.1021/ol0264105
11. Lautens, M.; Fagnou, K.; Taylor, M. Org. Lett. 2000, 2, 1677–1679. doi:10.1021/ol005729r
12. Lautens, M.; Dockendorff, C.; Fagnou, K.; Malicki, A. Org. Lett. 2002, 4, 1311–1314. doi:10.1021/ol0256602
13. Murakami, M.; Igawa, H. Chem. Commun. 2002, 390–391. doi:10.1039/b108808d
14. Lautens, M.; Hiebert, S.; Renaud, J.-L. Org. Lett. 2000, 2, 1971–1973. doi:10.1021/ol000652a
15. Lautens, M.; Renaud, J.-L.; Hiebert, S. J. Am. Chem. Soc. 2000, 122, 1804–1805. doi:10.1021/ja993427i
16. Lautens, M.; Fagnou, K. Tetrahedron 2001, 57, 5067–5072. doi:10.1016/S0040-4020(01)00351-9
17. Leong, P.; Lautens, M. J. Org. Chem. 2004, 69, 2194–2196. doi:10.1021/jo035730e
18. Lautens, M.; Fagnou, K.; Yang, D.-Q. J. Am. Chem. Soc. 2003, 125, 14884–14892. doi:10.1021/ja034845z
19. Webster, R.; Böing, C.; Lautens, M. J. Am. Chem. Soc. 2009, 131, 444–445. doi:10.1021/ja807942m
20. López, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2004, 126, 12784–12785. doi:10.1021/ja046632t
21. López, F.; van Zijl, A. W.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2006, 409–411. doi:10.1039/b513887f
22. Tissot-Crosset, K.; Polet, D.; Alexakis, A. Angew. Chem., Int. Ed. 2004, 43, 2426–2428. doi:10.1002/anie.200353744
23. Falcioni, C. A.; Tissot-Crosset, K.; Alexakis, A. Angew. Chem., Int. Ed. 2006, 45, 5995–5998. doi:10.1002/anie.200601855
24. Arrayás, R. G.; Cabrera, S.; Carretero, J. C. Org. Lett. 2003, 5, 1333–1336. doi:10.1021/ol034283m
25. Bertozzi, F.; Pineschi, M.; Macchia, F.; Arnold, L. A.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2002, 4, 2703–2705. doi:10.1021/ol026220u
26. Lautens, M.; Dockendorff, C. Org. Lett. 2003, 5, 3695–3698. doi:10.1021/ol035369i
27. Li, M.; Yan, X.-X.; Hong, W.; Zhu, X.-Z.; Cao, B.-X.; Sun, J.; Hou, X.-L. Org. Lett. 2004, 6, 2833–2835. doi:10.1021/ol0488161
28. Zhang, T.-K.; Mo, D.-L.; Dai, L.-X.; Hou, X.-L. Org. Lett. 2008, 10, 3689–3692. doi:10.1021/ol801294b
29. Cabrera, S.; Arrayás, R. G.; Carretero, J. C. Angew. Chem. 2004, 116, 4034–4037. doi:10.1002/ange.200460087
30. Chen, C.-L.; Martin, S. F. Org. Lett. 2004, 6, 3581–3584. doi:10.1021/ol0485171
31. Imamoto, T.; Saltoh, Y.; Koide, A.; Ogura, T.; Yoshida, K. Angew. Chem. 2007, 119, 8790–8793. doi:10.1002/ange.200702513
32. Nakamura, M.; Matsu, K.; Inoue, T.; Nakamura, E. Org. Lett. 2003, 5, 1373–1375. doi:10.1021/ol034375b
33. Lautens, M.; Chiu, P.; Ma, S.; Rovis, T. J. Am. Chem. Soc. 1995, 117, 532–533. doi:10.1021/ja00106a062
34. Lautens, M.; Ma, S. J. Org. Chem. 1996, 61, 7246–7247. doi:10.1021/jo961615a
35. Lautens, M.; Rovis, T. J. Org. Chem. 1997, 62, 5246–5247. doi:10.1021/jo971115x
36. Rayabarapu, D. K.; Cheng, C.-H. Chem.–Eur. J. 2003, 9, 3164–3169. doi:10.1002/chem.200204506
37. Yang, D.-Q.; Long, Y.-H.; Wang, H.; Zhang, Z.-M. Org. Lett. 2008, 10, 4723–4726. doi:10.1021/ol801768e

Page 8 of 9
License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at:

doi:10.3762/bjoc.5.53