New record of commensal scale worms, *Arctonoe vittata* (Grube, 1855) and *Hyperhalosydna striata* (Kinberg, 1856) (Polychaeta: Polynoidae) from Korean waters

Taeseo Park¹,², Sang-kyu Lee³ and Won Kim²,*

¹Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
²School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
³Marine Research Centre, National Park Research Institute, Yeosu 59769, Republic of Korea

*Correspondent: wonkim@plaza.snu.ac.kr

Two scale worms of the family Polynoidae, *Arctonoe vittata* (Grube, 1855) and *Hyperhalosydna striata* (Kingberg, 1856) were found for the first time from Korea by SCUBA diving survey. The two species are free-living organisms or associated commensally with a wide variety of other invertebrates. Specimens of *A. vittata* were collected from the East Sea and were closely associated with asteroids, holothuroids, gastropods and nudibranchs species. Specimens of *H. striata* were collected from Jeju-do Island, and of these, one specimen was collected in a tube of eunicid species. The two species can be easily distinguished from their congeners by distinct morphological characteristics as follows: (1) *A. vittata* has pigmented band near segment eight and two kinds of neurochaetae; (2) *H. striata* has reddish-brown longitudinal striped elytra. The morphological key characteristics of both species agreed well with their original descriptions and redescriptions. In this study, the descriptions, detailed illustrations and ecological photographs of two species based on Korean materials were provided.

Keywords: *Arctonoe*, commensal scale worm, *Hyperhalosydna*, Polychaeta, Polynoidae

© 2016 National Institute of Biological Resources
DOI:10.12651/JSR.2016.5.3.517
conducted under camera lucida, and digital line drawings were carried out with Adobe Illustrator CS6. Underwater photographs of the live specimens were taken using a Canon EOS 5D Mark II with Aquatica housing and Inon Z240 underwater strobes. Voucher specimens are housed at the National Institute of Biological Resources (NIBR), Incheon, Korea.

Systematic Account

Family Polynoidae Malmgren, 1867
Subfamily Lepidonotinae Willey, 1902
Genus *Arctonoe* Chamberlin, 1920
유령비늘갯지렁이속 (신칭)

Arctonoe Chamberlin, 1920: 6B.
Halosyndodes Seidler, 1924: 134.

Diagnosis. Body elongated, flattened, with numerous segments (around 100 and more). Numerous pairs of elytra on segments 2, 4, 5, 7, alternate segments to 21, 23, 26, 28, 29, 31, 33, continuing on alternate segments to end of body, some specimens having asymmetrical elytra sequence. Prostomium bilobed without prostomial peaks, with well defined lateral ceratophores inserted at anterior margin and converging ventrally. Antennae, tentacular cirri, dorsal cirri smooth. Facial tubercle poorly developed. Tentacular segment not visible dorsally, buccal segment with or without nuchal fold. Parapodia subbiramous. Notochaetae short, serrated, unidentate with notched tips, neurochaetae stouter, longer, unidentate hooked tips and/or with notched tips.

Arctonoe vittata (Grube, 1855) 유령비늘갯지렁이 (신칭) (Figs. 1, 3)
Polynoe vittata Grube, 1855: 82.
Polynoe lordi Johnson, 1897: 175, Pl. 7, figs. 35, 44, Pl. 8, fig. 51.
Acholoe vittata Marenzeller, 1902: 576, Taf. III, fig. 13.
Arctonoe lia Chamberlin, 1920: 6, Pl. 1, figs. 1–4, Pl. 2, figs. 1–3.
Halosyndodes vittata Seidler, 1924: 134; Monro, 1928: 312; Okuda, 1936: 565–568, figs. 4–5.
Arctonoe vittata Hartman, 1939: 29–30, Pl. 3, figs. 33–37; 1948: 11, fig. 2a–f; 1968: 49, figs. 1–3; Berkeley and Berkeley, 1948: 20, figs. 24–25; Pettibone, 1953: 57, Pl. 28, fig. 251, Pl. 29, figs. 259–271; Uschakov, 1955: 132, fig. 23E–1; Imajima and Hartman, 1964: 19; Hanley, 1989: 4, figs. 1A–F, 2A–L.

Material examined. 3 inds., Gangwon-do, Goseong-gun, Jugwang-myeon, Oho-ri, 4 Apr. 2009, depth 20 m, T Park (NIBRIV0000287225–7); 1 ind., Gangwon-do, Goseong-gun, Jungwang-myeon, Oho-ri, 23 Mar. 2010, depth 23 m, T Park and HJ Kil (NIBRIV0000226000); 3 inds., Gyeongsangbuk-do, Uijin-gun, Buk-myeon, Nagok-ri, Gijam point, 3 Aug. 2010, depth 11.8 m, T Park (NIBRIV0000287228, NIBRIV0000326189–90); 1 ind., Gyeongsangbuk-do, Uijin-gun, Buk-myeon, Nagok-ri, 24 Aug. 2010, depth 15 m, T Park (NIBRIV0000326191); 1 ind., Gangwon-do, Goseong-gun, Jugwang-myeon, Oho-ri, Goraebawi point, 16 Sep. 2010, depth 20 m, T Park, Y Eun (NIBRIV0000225978); 1 ind., Gangwon-do, Goseong-gun, Jugwang-myeon, Oho-ri, Daeseom point, 28 Jul. 2014, depth 12 m, T Park, (NIBRIV0000304745); 2 inds., Gangwon-do, Goseong-gun, Jugwang-myeon, Oho-ri, Goraebawi point, 29 Jul. 2014, depth 25 m, T Park (NIBRIV0000304746, 51); 2 inds., Gangwon-do, Goseong-gun, Jugwang-myeon, Oho-ri, Gangjeongseongae point, 30 Jul. 2014, depth 35 m, D Jung (NIBRIV000304754–5), 1 ind., Gyeongsangbuk-do, Ulleung-gun, Ulleung-eup, Dokdo-ri, 4 Jun. 2015, depth 15 m, SH Kim (NIBRIV0003242999); 1 ind., Gyeongsangbuk-do, Ulleung-gun, Ulleung-eup, Dokdo-ri, 11 Jun. 2015, depth 15 m, T Park (NIBRIV0000226138).

Description. Based on 16 specimens. Body elongated, flattened, with 45–82 segments, widest part of body about 1/3 from head, tapering rapidly anteriorly, gradually posteriorly. Length 12–57.8 mm, widest width 3–6.3 mm including parapodium. Body surface variably pigmented. Some specimens with brown streaky transverse bands across dorsal surface, and one broad band near segment 8 (Fig. 1A, Table 1).

Elytra large, smooth, usually attached on segments 2, 4, 5, 7, 9, 11, 13, (14), alternate segments to 23, 26, 28, 29, 31, thereafter attachment pattern variable among specimens, some specimens having asymmetrical elytra sequence (Table 1). Elytra tubercles, fringe of papillae absent (Fig. 1C). First pair of elytra overlapping medially covering prostomium but rest of dorsum exposed medially.

Prostomium bilobed, wider than long, prostomial peaks absent. Four small subequal eyes on posterior half. Palps not long, stout, abruptly tapering to tips, often with dark subterminal pigment bands. Three antennae; median antenna with large cylindrical ceratophore and short, smooth, clavate style, with long filiform terminal tip; lateral antennae with distinct ceratophores thinner and shorter than median ceratophores, styles similar with median style but shorter (Fig. 1A, B).

Tentacular (first) segment achaetous, invisible dorsally. Lateral tentaculophores large, with two pairs of dorsal and ventral subequal cirri similar in length and shape to median antenna. Facial tubercle not well developed. Buccal (second) segment without nuchal fold, with first pair of elytra, subbiramous parapodia, noto and neurochaetae. Ventral buccal cirri longer than following ven-
Fig. 1. *Arctonoe vittata* (Grube, 1855), NIBRIV0000326189. A, Anterior end without elytra, dorsal view (arrow indicates dorsal cirrophore); B, Anterior end, ventral view; C, anterior elytron pairs; D, Posterior end, dorsal view; E, Cirrigerous parapodium from segment 6, anterior view; F, Notochaeta from segment 6; G, Superior neurochaeta from segment 6; H, Inferior neurochaeta from segment 6; I, Posterior end, ventral view; J, Posterior segments with nephridial papillae, ventral view. Scale bar: A–D = 0.5 mm; E, I, J = 0.2 mm; F–H = 0.05 mm.
tral cirri (Fig. 1A, B).

Parapodia subbiramous. Notopodium small, digitiform, on anterodorsal face of large neuropodium. Neuropodium notched dorsally and ventrally with rounded pre-, postchaetal lobes (Fig. 1E). Dorsal cirrophores on elytraless segment, large, cylindrical, styles basally cylindrical with subterminal inflation and long filiform tips (Fig. 1A). Ventral cirrip short, subulate (Fig. 1E). Nephridial papillae well developed from segment 6 (Fig. 1J).

Notochaetae short, slightly curved with subterminal serrations and notched tips (Fig. 1F). Notochaetae often lacking in median and posterior segments. Neuropodia long, thick, present on all chaetigerous segments. Superior neuropodia slender with prominent serration ravs and notched tips (Fig. 1G). Inferior neuropodia stouter, with relatively faint serration ravs and curved hooked tips (Fig. 1H).

Pygidium small, anus terminal, anal cirri similar to dorsal cirri but longer (Fig. 1D).

Remark. Genus Arctonoe Chamberlin, 1920 has three nominal species; A. vittata, A. fragilis (Baird, 1863) and A. pulchra (Johnson, 1897). Among these species, only A. vittata has been reported from northern part of eastern Asian waters (Osuka, 1936; Uschakov, 1955; Imajima and Hartman, 1964; Imajima, 1988; 2001) (Fig. 5). Arctonoe vittata is easily distinguished from its congener by two kinds of neurochaetae (curved hooked tip and notched tip) (Fig. 1F–H) and by pigmented dorsal band near segment 8 (Fig. 1A), in contrast to only hooked tip neurochaetae and absence of pigmented dorsal band in A. fragilis and A. pulchra. The present Korean specimens well agree with morphological characteristics of A. vittata in this respect. According to the original description of Polyneoe vittata by Grube (1855), the elytra were arranged on segments 2, 4, 5, and alternating segments to 26, 28, 29, 31, and subsequently on alternating segments to the end of the body. Later, Pettibone (1953) reported irregular elytra attachment patterns in elongated individuals based on specimens from Puget Sound and adjacent waters. Some of the present Korean specimens show irregularity in elytra attachment and seem closely related in individual size, as reported by Pettibone (1953) (Table 1).

Arctonoe vittata is both free-living and associated commensally with other invertebrates such as asteroids, gastropods or other tube dwelling polychaetes (Hanley, 1989; Ruff, 1995). However, all present specimens were associated with other invertebrates (Fig. 3, Table 2). Especially, some specimens were collected inside the mantle cavity of nudibranchs; Cadlina japonica Baba, 1937; Triopha catalinae (Cooper, 1863) for the first time. This is the first discovery of the symbiotic relationship between A. vittata and nudibranchs (Fig. 3F–H).

According to Pettibone (1953) and Ruff (1995), body coloration of A. vittata tends to be adapted to their host coloration. Among present Korean specimens, some individuals were well adapted in host coloration (Fig. 3A, D, H, I), while, some individuals show different body coloration from their hosts (Fig. 3B, E, G, J). Previous studies have reported that A. vittata individuals compete over hosts frequently (Palmer, 1968; Britayev, 1991) and switch hosts to increase survival rate (Tokaji et al., 2014). Therefore, A. vittata individuals with different coloration from the hosts seem to move to a new host and are not yet adapted to the new host’s coloration.

Genus Hyperhalosydna Augener, 1922

 몽개비늘것지렁이속(신청)

Halosydnoides Augener, 1922: 6.

Lucopia Pillai, 1965: 115.

Diagnosis. Body elongated, flattened, segments 46 to 51. Twenty two pairs of elytra on segments 2, 4, 5, 7, alternate segments to 39, 41 and 42. Elytra without fringe papillae. Prostomium bilobed, with two palps and three antennae. Ceratophore of median antenna large, inserted in anterior notch of prostomium. Lateral antennae inserted terminally on distal ends. Tentacular segment not visible dorsally, tentaculophores lateral to prostomium without chaetae. Buccal segment without mualch fold. Parapodia subbiramous, notopodium small, Neuropodium larger, deeply cut dorsally and ventrally. Notochaetae few in number, small, with rows of fine serrations below blunt or fine tips. Neurochaetae stout, with several rows of spine below bidentate tips. Nephridial papillae well developed. Anus dorsal on last two to four segments.

Hyperhalosydna striata (Kinberg, 1856)

 몽개비늘것지렁이속(신청)(Figs. 2, 4)

Lepidonostris striata Kinberg, 1856: 384.

Polyneoe fulvovittata Grube, 1876: 63; 1878: 33, 34, Pl. III, fig. 1.

Polyneoe platycirrus McIntosh, 1885: 111, Pl. III, fig. 4, Pl. XVI, fig. 2, Pl. XIX, fig. 3, Pl. VIII, figs. 14–15, Pl. IX, fig. 1; Knox, 1951: 62.

Halosydnoides carinata Moore, 1903: 417, Pl. XXIII, figs. 16–17.

Hyperhalosydna striata: Augener, 1922: 4; 1927: 105; Fauvel, 1932: 26; 1939: 260; Hartman, 1938: 113; 1954: 622; 1975: 194; Imajima & Hartman, 1964: 21; Uschakov, 1982: 96, Pl. XXV, 1–5.

Lucopia maginicirra Pillai, 1965: 117, figs. 2G–H, 3A–C.

Material examined. 1 ind., Jeju-do, Seogwipo-si, near Beomseom (islet), 25 Feb. 2009, depth 25 m, T Park
Fig. 2. Hyperhalosydna striata (Kinberg, 1856). NIBRIV0000326200. A, Anterior end with elytra, dorsal view; B, Proboscis, frontal view; C, Right elytron from segment 11; D, Posterior end, dorsal view; E, Anterior end without elytra, dorsal view (arrow indicate dorsal cirrophore); F, Notopodium with notochaeta (arrow) from segment 14; G, Cirrigorous parapodium from segment 14, anterior view; H, Posterior end, ventral view; I, Posterior segments with nephridial papillae, ventral view; J, Neurochaeta from segment 14. Scale bar: A–E, H = 1 mm; F, J = 0.05 mm; G = 0.3 mm; I = 0.2 mm.
Fig. 3. Various host invertebrates of *Arctonoe vittata* (Grube, 1855) found in this study. A, *Solaster dawsoni* Verrill, 1880; B and C, *Aphelasterias japonica* (Bell, 1851); D, *Haliotis discus hannai* Ino, 1953; E, *Scelidotoma gigas* (Martens, 1881); F, *Triopha catalinae* (Cooper, 1863); G and H, *Cadlina japonica* Baba, 1937; I, *Niveotectura pallida* (Gould, 1859); J, *Apostichopus japonicus* (Selenka, 1867).
Table 1. Elytra attachment and pigmentation variations of *Arctonoe vittata* from Korea.

Specimen No.	Body segments	Length/Width (mm)	Dorsum pigmentation	Elytra attached on segments 2,4,5,7,9,11,13 and there after: (...) means alternate sequence; R: right, L: left	No. of elytra
NIBRIV0000225978	Incomplete	36.6/4.8	Band on segment 8,	15,...,23,26,28,29,31,...,51,52,54,56,...	?
			Irregular through		
			dorsum		
NIBRIV0000226000	59	26.9/4.5	Band on segment 8	15,...,23,26,28,31,...,57	28 pairs
NIBRIV0000226138	71	45/4.8	Based on segment 8–9	14,...,26,29,31,32,34,36,...,58,...,70,71 (L)	36 pairs
				14,...,26,29,31,32,...,58,61,62,65,...,71 (R)	
NIBRIV0000287225	Incomplete	19.4/4.1	Band on segment 8	15,...,23,26,28,29,31,~ (L)	?
				15,...,23,27,28,30,~ (R)	
NIBRIV0000287226	70	52.2/5.3	Band on segment 6–8	15,...,23,26,28,29,31,...,42,43,44,46,...,68 (L)	36 pairs
				15,...,23,26,28,29,31,...,41,42,43,44,45,47,...,67 (R)	
NIBRIV0000287227	53	36.8/6.3	Band on segment 8,	15,...,23,26,28,29,31,...,37,38,40,...,52	27 pairs
			Irregular until segment 35		
NIBRIV0000287228	45	14.2/3.7	Band on segment 7–8	15,...,23,26,28,29,31,...,41,42	22 pairs
NIBRIV0000326189	45	12/3	Band on segment 8–9,	15,...,23,26,28,29,31,...,43	22 pairs
			Irregular through		
			dorsum		
NIBRIV0000326190	53	21.4/4.5	Band on segment 8	15,...,23,26,28,29,31,...,51	26 pairs
NIBRIV0000326191	Incomplete	42.9/5.7	Band on segment 7–8	15,...,23,26,28,29,31,...,55,~	?
			Irregular through		
			dorsum		
NIBRIV0000304745	49	32/3.8	Based on segment 7–8	15,...,23,26,28,29,31,...,37,38,40,...,46	24 pairs
			Irregular through		
			dorsum		
NIBRIV0000304746	68	51.2/4.5	Based on segment 8–9	15,...,23,26,28,29,31,...,33,35,36,37,...,65 (L)	34 pairs
				15,...,23,26,28,29,31,...,53,54,55,...,65 (R)	
NIBRIV0000304751	69	53.4/4.3	Based on segment 8	15,...,23,26,28,29,31,...,66	34 pairs
NIBRIV0000304754	56	25/2.8	Based on segment 7–8	15,...,23,26,28,29,31,...,39,40,...,54	28 pairs
NIBRIV0000304755	64	28.6/3.4	Based on segment 8,	15,...,23,26,28,29,31,...,45,46,...,62 (L)	32 pairs
			Irregular through	15,...,23,26,28,29,31,...,33,34,35,36,37,39,...,45,46,...,62 (R)	34 (R)
			dorsum		
NIBRIV0000324299	82	57.8/6.3	Based on segment 8–9	15,...,23,26,28,29,31,...,65,66,67,68,69,...,77,79	42 pairs
Table 2. Host species of Arctonoe vittata (Grube, 1855) and Hyperhalosydna striata (Kinberg, 1856).

Species	Host group	Host species	Literature
Arctonoe vittata	Asteroid	Apherelastaria japonica	Britayev, 1991; Present study
		Asterias amurensis	Okuda, 1936; Britayev, 1991; Tokaji et al., 2014
		Asterias rathbuni	Britayev et al., 1989; Britayev, 1991
		Crossaster papposus	Pettibone, 1953; Britayev, 1991
		Dermasterias imbricata	Johnson, 1901; Hartman, 1944; Hartman & Reish, 1950; Pettibone, 1953; Wagner et al., 1979; Britayev, 1991; Ruff, 1995
		Evasterias retifera	Tokaji et al., 2014
		Evasterias echinosoma	Britayev, 1991
		Henricia leviuscula	Pettibone, 1953; Britayev, 1991
		Leptasterias camtschatica	Britayev, 1991
		Luidia foliolata	Moore, 1908; Britayev, 1991
		Pteraster tesselatus	Pettibone, 1953; Britayev, 1991
		Solaster dawsoni	Britayev, 1991; Present study
		Solaster endeca	Britayev, 1991
		Solaster papposus	(Crossaster papposus)
		Solaster stimpsoni	Pettibone, 1953; Britayev, 1991
	Cnidarian	Metridium senile	Britayev, 1991
	Gastropod	Acmaea nitra	Pettibone, 1953; Britayev, 1991
		Acmaea pallida	Britayev, 1991; Present study
		= (Niveotectura pallida)	
		Cidarina cidaris	Berkeley & Berkeley, 1948; Britayev, 1991
		Diodora aspera	Baird, 1865; Johnson, 1901; Hanley, 1989; Berkeley, 1923; Pettibone, 1953; Britayev, 1991; Ruff, 1995
	Polychaetes	Fusitriton oregonensis	Pettibone, 1953
		Haliothis kamtschakata	Okuda, 1936; Britayev, 1991
		Haliothis discus hannai	Present study
		Patelloydia sp.	Okuda, 1936
		Puncturella cuculata	Pettibone, 1953; Britayev, 1991
		Puncturella multistrigata	(Cranopis cuculata)
		= (Cranopis multistrigata)	Berkeley & Berkeley, 1948; Britayev, 1991
		Tugalia gigas	Tokaji et al., 2014; Present study
		= (Scelidotoma gigas)	
	Nudibranchia	Cadilla japonica	Present study
		Triophia catalinae	Present study
	Polyplacophora	Cryptochiton stelleri	Johnson, 1897; 1901; Hartman, 1944; Hartman & Reish, 1950; Pettibone, 1953; Webster, 1968; Britayev, 1991; Ruff, 1995
	Holothuroid	Parastichopus californicus	Britayev, 1991
		= (Apostichopus californicus)	Britayev, 1991; Present study
		Stichopus japonicas	Britayev, 1991
		= (Apostichopus japonicus)	Britayev, 1991
		Amphirite robusta	Berkeley & Berkeley, 1948; Britayev, 1991
		= (Neoamphirite robusta)	
		Neoamphirite sp.	Britayev, 1991
		Thelepus crispus	Berkeley, 1923; Britayev, 1991
Hyperhalosydna striata	Polychaete	Eunicidae spp.	Hanley & Burke, 1991; Present study

BRIV0000326194); 2 inds., Jeju-do, Seogwipo-si, near Supseom (islet), 30 Apr. 2009, depth 10 m, T Park (NIBR IV0000326198), (NIBRIV0000326201, associated with eunicid species); 1 ind., Jeju-do, Jeju-si, Udo-myeon (island), Boseopbonguji point, 20 Oct. 2011, depth 22 m, T Park and Y Eun (NIBRIV0000326196); 2 inds., Jeju-do, Seogwipo-si, near Supseom (islet), 30 Oct. 2013, depth 34.5 m, T Park (NIBRIV0000326199–200).

Description. Based on 6 specimens. Body elongated, flattened, tapering anteriorly and posteriorly. Length 30–42 mm, widest width 4–7 mm including parapodium. Body tinged with reddish-brown pigment on ceratophores,
cirrophores, styles of antennae and cirri (Fig. 2A, E).

Twenty two pairs of elytra on segment 2, 4, 5, 7, 9, alternate segments to 39, 41, and 42. Elytra large, overlapping medially and posteriorly, covering dorsum. Elytra with five reddish-brown longitudinal stripes and white spot above elytreophore. Surface of elytron smooth except for a band of numerous microtubercles along outer edge (Fig. 2A, C).

Prostomium bilobed, wider than long, without cephalic peaks. Two pairs of eyes, anterior eyes large, lying dorsolaterally near widest part of prostomium; posterior eyes smaller, lying near rear of prostomium. Palps long, stout basally, tapering to abruptly tapered tips. Three antennae; median antenna with large cylindrical ceratophore, basally cylindrical style, subterminally swollen and abruptly tapered filiform tip; lateral antennae with ceratophores inserted terminally on prostomium thinner than median ceratophores, styles similar with median style but thinner and shorter (Fig. 2E). Everted proboscis dorsally and ventrally with total 18 soft papillae, and two pairs of jaws (Fig. 2B).

Tentacular (first) segment achaetous, invisible dorsally. Lateral tentaculophores moderate length, with two pairs of dorsal and ventral tentacular cirri, dorsal tentacular cirri longer than ventral cirri; styles smooth, slender, with slight subterminal swelling and abruptly tapered filiform tip. Facial tubercle small, well developed. Buccal (second) segment without nuchal fold, with first pair of elytra, subbiramous parapodia, noto and neurochaetae. Ventral buccal cirri longer than following ventral cirri (Fig. 2A, E).

Parapodia subbiramous. Notopodium small, digitiform, with distal groove on anterodorsal face of large neuropodium. Neuropodium notched dorsally and ventrally with bluntly rounded pre-, postchaetal lobes (Fig. 2G, I). Dorsal cirrophores on elytraless segment, large, cylindrical, styles basally cylindrical with slight subterminal swelling and abruptly tapered filiform tips (Fig. 2E). Ventral cirri short, subulate. Nephridial papillae well developed from segment 8 (Fig. 2I).

Notochaetae very small, often absent, mostly hidden between notopodial lobes or by acicular, slightly curved, with several rows of spines below unidentate tips (Fig. 2F). Neurochaetae much larger, numerous, with several rows of spines below bidentate tips (Fig. 2J).

Pygidium small, with pair of anal cirri similar to dorsal cirri (Fig. 2H). Anus dorsally on last 3–4 chaetigers (Fig. 2D).

Remarks. Genus Hyperhalosydna Augener, 1922 consists of three species; *H. striata*, *H. alleni* (Day, 1934) and *H. bicornis* Averincev, 1978. Among these species, only *H. striata* has been reported from southern part of
eastern Asian waters (Moore, 1903; Okuda, 1936; Uschakov, 1982; Uchida, 1988; 1992; Imajima, 2001) (Fig. 5). *Hyperhalosydna striata* is easily distinguishable from its congeners by unique striped elytra (Fig. 2A, C). Examined specimens agree well with previous redescriptions of Hanley and Burke (1991) and Wehe (2006). The number of elytron pairs on adults of this species reportedly show a considerable variation (Marenzeller, 1902; Rullier, 1965). Later, Hanley and Burke (1991) and Wehe (2006) confirmed the number of elytron pairs as constant 22. All specimens examined from this study agree with this number.

Previous records of this species make no mention of commensal association except Hanley and Burke (1991). Thirteen individuals were closely related with eunicid polychaetes and this commensal association was confirmed in this study (Fig. 4A).

ACKNOWLEDGEMENTS

We would like to thank Mr. Jin Ho Park (Seoul National University) and Dr. Sa Heung Kim (In the Sea Korea) for their valuable assistance with collecting specimens. Comments from three anonymous reviewers are much appreciated.

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment of the Republic of Korea (NIBR201401201).

REFERENCES

Augener, H. 1922. Revision der australischen Polychaetentypen von Kinberg. Arkiv för Zoologi 14(8):1–42 [Available from http://www.biodiversitylibrary.org/item/30164
Augener, H. 1927. Die Polychaeten der Sammlung Thilenius von Neuseeland und Samoa. Mitteilungen aus dem zoologischen Museum, Berlin 13(2):338–363.

Averincev, V.G. 1978. The Polychaetous Annelids of the Aphroditiformia of the Shelf and Upper Bathial of Australian and New Zealand Region and of Macquarie Island (on the Base Data of 16th Cruise of R/V DM. Mendeleev). Transactions of the P.P. Shirvov Institute of Oceanology Academy of Sciences of the USSR. Moscow 113:51–72.

Baba, K. 1937. Opistobranchia of Japan (I). Journal of the Department of Agriculture, Kyushu Imperial University 5(4):195–236, 4 pls.

Baird, W. 1863. Descriptions of several new species of worms belonging to the Annelida Errantia and Sedentaria or Tubicolia of Milne Edwards. Proceedings of the Zoological Society of London 1863:106–110.

Baird, W. 1865. Contributions toward a Monograph of the species of annelids belonging to the Aphroditacea, containing a list of the known species and a description of some new species contained in the National collection of the British Museum. Journal of the Proceedings of the Linnean Society of London Zoology 8(31–32):172–202.

Barel, C.D.N. and P.G.N. Kramers. 1977. A survey of the marine animals, V.A. Sveshnicov. Department of Agriculture, Kyushu Imperial University. 74.

Berkeley, E. 1923. Polychaetous annelids from the Nanaimo district. Part I. Syllidae to Sigalionidae. Contributions to Canadian Biology, Ottawa 1:203–218. [Available from http://www.nrcresearchpress.com/doi/abs/10.1139/f22-011#V5fhyKU8s].

Berkeley, E. and C. Berkeley. 1948. Canadian Pacific Fauna. 9. Annelida. 9b(1) Polychaeta Errantia. Fishery Research Board Canada, Toronto.

Britayev, T.A. 1989. The symbiotic Polychaetes: Morphology, Ecology and Distribution. In: Symbiosis among marine animals, V.A. Svshevnicov (ed.), Moscow: A.N. Severtzov Institute, Russian Academy of Sciences. pp. 60–74.

Britayev, T.A. 1991. Life cycle of the symbiotic scaleworm Arctonoe vittata (Polychaeta: Polynoidae). Ophelia Suppl. 5:305–312.

Britayev, T.A., A.V. Smurov, A.V. Adrianov, A.G. Bazhin and A.V. Rzhavsky. 1989. Ecology of symbiotic Polychaete Arctonoe vittata according to the peculiarity of starfish Asterias rathbunae ecology. In: Symbiosis among marine animals, V.A. Svshevnicov (ed.), Moscow: A.N. Severtzov Institute, Russian Academy of Sciences. pp. 102–127.

Chamberlin, R.V. 1920. The polychaetes collected by the Canadian Arctic Expedition, 1913–18. Report of the Canadian Arctic Expedition 1913–18. 9B:1–41, plates 1–6. [Available from http://www.biodiversitylibrary.org/item/115940#page/1/mode/1up].

Clark, R.B. 1956. Capitella capitata as a commensal, with a bibliography of parasitism and commensalism in the polychetes. Annals and Magazine of Natural History 12:433–448.

Cooper, J.G. 1863. On new or rare Mollusca inhabiting the coast of California. No. 2 Proceeding of the California Academy of Natural Sciences 3:56–60.

Day, J.H. 1934. On a collection of South Africa Polychaeta, with a catalogue of the species recorded from South Africa, Angola, Mosambique and Madagascar. Zoological Journal of Linne Society, London 39(263):15–82.

Fauvel, P. 1932. Annelida Polychaeta of the Indian Museum, Calcutta. Memoirs of the Indian Museum 12(1):1–262. [Available from http://faunaofindia.nic.in/PDFVolumes/memos/012/01/0001-0262.pdf].

Fauvel, P. 1939. Annélides Polychètes de l’Indochine recueillies par M. C. Dawydoff. Commentations, Pontificia Academia Scientiaria, ann. 3:243–368.

Grube, A.E. 1855. Beschreibungen neuer oder wenig bekannter Anneliden. Archiv für Naturgeschichte, Berlin 21(1):81–136, pls 3–5. [Available from: http://www.biodiversitylibrary.org/page/6651101#page/89/mode/1up].

Grube, A.E. 1876. Bemerkungen über die Familie der Aphroditidae. Gruppe Polynoina, Acocœa, Polylepidea. Jahres­Bericht der Schlesische Gesellschaft fuer vaterlandische Cultur, Breslau 53:46–72.

Grube, A.E. 1878. Annulata Semperiana. Beiträge zur Kenntniss der Annelidenfauna der Philippinen. Memoires de L’Academie Imperiale des Sciences de St. Petersbourg Ser. 7. 25(8):1–300. [Available from http://dx.doi.org/10.5962/bhl.title.85345].

Hanley, J.R. 1989. Revision of the scaleworm genera Arctonoe Chamberlin and Gastrolepidea Schmarda (Polychaeta, Polynoidae) with the erection of a new subfamily, Arc­tonoinae. The Beagle, Records of the Northern territory Museum of Arts and Sciences 6:1–34.

Hanley, J.R. and M. Brueke. 1991. Polychaeta Polynoidae: Scaleworms of the Chesterfield Islands and Fairway Reefs, Coral Sea. Mémoires du Muséum national d’Histoire naturel (A) 151:9–82.

Hartman, O. 1939. The types of the polychaete worms of the families Polynoidae and Polyodontiidae in the United States National Museum and the description of a new genus. Proceedings of the United States National Museum, 86(3046):107–134. [Available from http://www.biodiversitylibrary.org/item/32496#page/135/mode/1up].

Hartman, O. 1938. Polychaetous annelids. Part I. Aphroditidae to Pisoniidae. Allan Hancock Pacific Expeditions 7(1). [Available from http://www.biodiversitylibrary.org/item/88616#page/13/mode/1up].

Hartman, O. 1944. Polychaetous annelids from California including the descriptions of two new genera and nine new species. Allan Hancock Pacific expeditions 10(2):239–290, 8 pls. [Available from http://www.biodiversitylibrary.org/page/4680192#page/253/mode/1up].
Hartman, O. 1948. The polychaetous annelids of Alaska. Pacific Science 2(1):3–58 [Available from http://hdl.handle.net/10125/8890].

Hartman, O. 1954. Marine Annelids from the Northern Marshall Islands. Geological Survey Professional Paper 260-Q:618–644 [Available from http://pubs.usgs.gov/pp/0260q/report.pdf].

Hartman, O. 1968. Atlas of the Errantiate Polychaeta from California. Allan Hancock Foundation, California.

Hartman, O. 1975. Polychaetous Annelids of the Indian Ocean including an account of the species collected by members of the International Indian Ocean Expeditions, 1963-64 and a catalogue and bibliography of the species from India. Journal of the Marine Biological Association of India 16(1):191–252.

Hartman, O. and D.J. Reish. 1950. The marine annelids of Oregon. Oregon State Monographs Studies in Zoology 6:1–64.

Imajima, M. 1988. Polychaetous worms in the Ishikari Bay. Memoirs of the National Science Museum 21:123–129 (in Japanese).

Imajima, M. 2001. Annelida, Polychaeta II. Seibutsu kenkyuyo Publishing Co, Tokyo.

Imajima, M. and O. Hartman. 1964. The Polychaetous Annelids of Japan. Part 1. Allan Hancock Foundation Occasional Papers (26).

Johnson, H.P. 1897. A preliminary Account of the Marine Annelids of the Pacific Coast with descriptions of new species. Part 1: The Euphrosynidae, Amphionimidae, Palmyridae, Polynoidae and Sigalionidae. Proceedings of the California Academy of Science 1:153–198.

Johnson, H.P. 1901. The Polychaeta of the Puget Sound region. Proceedings of the Boston Society of Natural History 29(18):381–437, 19 pls.

Kinberg, J.G.H. 1856. Nya slägten och arter af Annelider, Öfversigt af Kongl. Vetenskaps-Akademiens Förhandlingsar Stockholm 12(10):381–388 [Available from: http://www.biodiversitylibrary.org/item/54201?page=395 mode/lup].

Knox, G.A. 1951. The Polychaetous annelids of Banks Peninsula. Pt. II. A rock bottom fauna from 80 fathoms. Records of the Canterbury Museum 5(5):312–329.

Marenzeller, E. von. 1902. Südjapanische Anneliden. 3. Aphroditea, Eunicea. Denkschriften der Akademie der Wissenschaften, Wien 72:563–582 [Available from http://biodiversitylibrary.org/page/7219570].

Martin, D. and T.A. Britayev. 1998. Symbiotic polychaetes: review of known species. Oceanography and Marine Biology, An Annual Review 36:217–340.

McIntosh, W.C. 1885. Report on the Annelida Polychaeta collected by H.M.S. Challenger during the years 1873-1876. Report on the Scientific Results of the Voyage of H.M.S.Challenger during the years 1872-76 Ser. Zoology, 12:1–554 [Available from http://www.19thcentury science.org/HMSC/HMSC-Reports/Zool-34/htm].

Monro, C.C.A. 1928. Notes on some unnamed Polynoids in the British Museum. Annals and Magazine of Natural History Ser. 10(1):311–316, 3 figs.

Moore, J.P. 1903. Polychaeta from the coastal slope of Japan and from Kamchatka and Bering Sea. Proceedings of the Academy of Natural Sciences of Philadelphia 55:401–490 [Available from http://www.biodiversitylibrary.org/part/14715].

Moore, J.P. 1908. Some polychaetous annelids of the North Pacific of North America. Proceedings of the Academy of Natural Sciences of Philadelphia 60:321–364.

Okuda, S. 1936. Japanese Commensal Polynoids. Annotatio­nes zoologicae Japonenses 15(4):561–571.

Palmer, J.B. 1968. An annalysis of the distribution of a commensal polynoid on it host. Ph.D. Thesis, University of Oregon.

Paris, J. 1955. Commensalisme et parasitisme chez les annélides polychètes. Vie et Milieu 6:525–536.

Pettibone, M.H. 1953. Some scale-bearing polychaetes of Puget Sound and adjacent waters. University of Washington Press, Seattle.

Pillai, T.G. 1965. Annelida Polychaeta from the Philippines and Indonesia. Ceylon Journal of Science (Biological Sciences) 5(2):110–177 [Available from http://dl.nsf.ac.uk/handle/1/7733].

Ruff, R.E. 1995. Family Polynoidae Malmgren, 1867. In: J.A. Blake, B. Hilbig and P.H. Scott (eds.), Taxonomic Atlas of the Benthic Fauna of the Santa Maria Basin and Western Santa Barbara Channel. Volume 5-The Annelida Part 2. Polychaeta: Phyllocodida (Syllidae and scale-bearing families), Amphinomida, and Eunicida. Santa Barbara Museum of Natural History, Santa Barbara. pp. 1–378.

Rullier, F. 1965. Contribution á la faune des Annélides Poly­chêtes de l’Australie. University of Queensland Papers. Department of Zoology 2(9):163–201.

Seidler, H.J. 1924. Beiträge zur Kenntnis der Polynoiden, I. Archiv für Naturgeschichte, Berlin 89A(11) [Available from http://biodiversitylibrary.org/page/13211981].

Tokaji, H., K. Nakahara and S. Goshima. 2014. Host switching improves survival rate of the symbiotic polychaete Arctonoe vittata. Plankton & Benthos Research 9(4):189–196.

Uchida, H. 1988. Polychaeta fauna in Wakayama Prefecture (1). Nanki-seibutsu, the Nanki Biological Society 30(2): 75–86 (in Japanese).

Uchida, H. 1992. Guide to seashore animals of Japan with color pictures and keys. Vol. 1. Osaka: Hoikusha (Annelida, Polychaeta) (in Japanese).

Uschakov, P.V. 1955. Polychaeta of the Far Eastern Seas of Russia (in Russian).

Uschakov, P.V. 1982. Polychaetes of the Suborder Aphroditiformia of the Arctic Ocean and the Northwestern Part of the Pacific, Families Aphroditidae and Polynoidae. FAUNA SSSR, Mnogoshchetinkovyye chervi (Fauna of HMSC~Reports/Zool~34/htm/doc. html].
the USSR, Polychaeta), Moscow [Available from http://www.annelida.net/translation/transl.html].

Wagner, R.H., D.W. Phillips, J.D. Standing and C. Hand. 1979. Commensalism or mutualism: attraction of a sea star towards a symbiotic polychaete. Journal of Experimental Marine Biology and Ecology 39:205–210.

Webster, S.K. 1968. An investigation of the commensals of Cryptochiton stellaris (Middendorf, 1846) in the Monterey Peninsula area, California. The Veliger 11:121–125.

Wehe, T. 2006. Revision of the scale worms (Polychaeta: Aphroditoida) occurring in the seas surrounding the Arabian Peninsula. Part I: Polynoidae. Fauna of Arabia 22:23–197.