Autologous Tumor Lysate-Pulsed Dendritic Cell Immunotherapy with Cytokine-Induced Killer Cells Improves Survival in Gastric and Colorectal Cancer Patients

Daiqing Gao1*, Changyou Li1, Xihe Xie1, Peng Zhao1, Xiaofang Wei1, Weihong Sun1, Hsin-Chen Liu2, Aris T. Alexandrou2, Jennifer Jones3, Ronghua Zhao3, Jian Jian Li2*

1 Biotherapy Center, Qingdao Center Hospital, The Second Affiliated Hospital, Qingdao University Medical College, Qingdao, China, 2 Department of Radiation Oncology, NCI-Designated Comprehensive Cancer Center, University of California at Davis Sacramento, Sacramento, California, United States of America, 3 Department of Medicine, University of Saskatchewan, Saskatoon, Canada

Abstract

Gastric and colorectal cancers (GC and CRC) have poor prognosis and are resistant to chemo- and/or radiotherapy. In the present study, the prophylactic effects of dendritic cell (DC) vaccination are evaluated on disease progression and clinical benefits in a group of 54 GC and CRC patients treated with DC immunotherapy combined with cytokine-induced killer (CIK) cells after surgery with or without chemo-radiotherapy. DCs were prepared from the mononuclear cells isolated from patients using IL-2/GM-CSF and loaded with tumor antigens; CIK cells were prepared by incubating peripheral blood lymphocytes with IL-2, IFN-γ, and CD3 antibodies. The DC/CIK therapy started 3 days after low-dose chemotherapy and was repeated 3–5 times in 2 weeks as one cycle with a total of 188.3 ± 79.8 × 10^6 DCs and 58.8 ± 22.3 × 10^6 CIK cells. Cytokine levels in patients’ sera before and after treatments were measured and the follow-up was conducted for 98 months to determine disease-free survival (DFS) and overall survival (OS). The results demonstrate that all cytokines tested were elevated with significantly higher levels of IFN-γ and IL-12 in both GC and CRC cohorts of DC/CIK treated patients. By Cox regression analysis, DC/CIK therapy reduced the risk of post-operative disease progression (p<0.01) with an increased OS (>0.01). These results demonstrate that in addition to chemo- and/or radiotherapy, DC/CIK immunotherapy is a potential effective approach in the control of tumor growth for post-operative GC and CRC patients.

Introduction

Gastric cancer (GC) and colorectal cancer (CRC) are major malignant diseases of alimentary tract. While GC is the most common cancer in the Asian-Pacific region, CRC is ranked as the fourth most common malignancy worldwide, with about 1.2 million new cases and 609,051 deaths annually [1]. Surgical resection with or without adjuvant chemo- and/or radiation therapy remains the key modality for GC and CRC, but unfortunately shows limited clinical benefits due to high rate of tumor metastasis. Although current adjuvant chemo-radiation therapy has been shown to extend patient survival in the presence of recurrent lesions [2,3], severe side effects usually limit the efficacy of this anti-cancer modality [2–4]. To further improve the overall survival for GC and CRC patients, it is critical to explore novel approaches to control tumor metastasis with or without the use of traditional chemo-and/or radiotherapy.

The dendritic cells (DCs) play a crucial role in the induction of antigen-specific T-cell responses to provide active immunotherapy [5–7]. Clinical studies using specifically designed DC-targeted cancer cell vaccines demonstrated different clinical benefits. Patients with lymphoma [8,9], metastatic melanoma [10,11], colon cancer, and non-small cell lung cancer [12] showed that vaccination with tumor antigen-pulsed DCs, either isolated directly from blood or generated ex vivo from blood precursors, elicited antigen specific immune reaction and, in some cases, significant tumor responses. In fact, application of an active immunotherapy regimen, Sipuleucel-T (APC8015) used by activating peripheral blood mononuclear cells (PBMCs) with a prostate acid phosphatase (PAP), a fusion protein of prostate cancer antigen, with GM-CSF, resulted in approximately 4 month-prolonged median survival in prostate cancer patients [13–15], and was approved by FDA for the treatment of metastatic prostate cancers [14,16,17]. CIK cells are a subset of natural killer T lymphocytes (NKT) that are predominantly CD3+CD56+ type II NKT cells [18], and such cells can be generated ex vivo by incubating peripheral blood lymphocytes with an agonistic anti-CD3 monoclonal antibody, interleukin (IL)-2, IL-1β and interferon (IFN)-γ. CIK cells, supported by encouraging clinical trial results in both autologous and allogeneic contexts, are
known to cytolically eliminate tumor cells [19]. In contrast to lymphokine-activated killer (LAK) cells, which are cytotoxic effector T-cells stimulated predominantly in response to high concentration of interleukin-2 (IL-2), CIK cells exhibit enhanced tumor cell lytic activity [20,21], higher proliferation rate [22], and relatively lower toxicity [23]. Although passive immunotherapy by adoptive transfer of T cells is believed to be effective in the control of primary tumors, it is unclear whether passive immunotherapy is effective in the long-term control of tumor relapse [24]. On the other hand, the active immunotherapy using tumor-specific vaccines, such as DC vaccine, has the potential benefit to significantly enhance tumor-specific effector and memory T cells. The anti-tumor responses triggered by DC/CIK therapy have been reported in a number of ex vivo [25–29] and in vivo [30] studies as well as in preliminary clinical trials in patients with non-Hodgkin’s and Hodgkin’s lymphoma [31,32] and non-small cell lung cancer with few side effects [33]. In the present study, clinical benefits are evaluated in a group of 54 GC and CRC patients treated with DC immunotherapy combined with cytokine-induced killer (CIK) cells after surgery with or without chemo-radiotherapy. The results demonstrate improved rates of DFS and OS with elevated levels of IFN-γ and IL-12 in both GC and CRC cohorts of DC/CIK treated patients.

Patients and Methods

Study design, patient recruitment, and data collection

We conducted the study with patients treated in the Department of Surgery and Center of Biological Therapy, Qingdao Central Hospital, Qingdao, China from 2005 to 2010 (Table 1). Patients were recruited with the following criteria: 1) 18 years and older, 2) pathologically confirmed GC or CRC, 3) underwent surgical resection of primary tumors, 4) no evidence of tumor metastasis or recurrence before receiving cell-based immunotherapy, 5) having completed chemo-and/or radiotherapy for at least 1 month, and 6) signing the consent form. Patients in the control group were recruited with demographic and clinical pathological characteristics. A total of 27 patients were randomly assigned to cell-based immunotherapy and 27 patients were included in the control group. Tumors were staged according to the International Union Against Cancer’s (UICC) classification based on pTNM subsets. All patients’ informed consents were obtained and the procedures of the study were reviewed and approved by the Ethic Review Board of Qingdao Central Hospital. After cell-based immunotherapy, all patients obtained follow-up by hospital visits and/or telephone interviews in at least every 6 months. Local tumor recurrence and distant metastasis were examined by imaging analyses. DFS (disease-free survival, the time interval between surgery and tumor recurrence) and OS (overall survival, the time between surgery and last follow-up) were collected in the project research database. DFS and OS rates were calculated in both treatment and control groups from the dates of surgery and the follow-ups were completed for all patients by August 2011, including the patients with 12 month or longer period after immunotherapy.

DC vaccine and CIK cellular therapy

A dosage of 1×10^6 units IL-2 (Quangang Pharma Co. Shandong, China) in 250 ml physiological saline was prepared as DC infusion.

Table 1. Demographic and pathological data of patients recruited for treatment and control groups*

	Treatment	Control	P
Age	61.56±12.82	64.48±12.77	0.41
Sex (male/female)	16/11	16/11	1.00
Diagnosis (gastric/colorectal)	14/13	14/13	1.00
Differentiation (well/moderate/poor)	13/14	14/13	0.76
Tumor (T1-2/T3-4)	6/21	4/23	0.73
Lymph nodes (N negative/N positive)	7/20	15/12	0.03
TNM stage (I II/III IV)	5/22	16/11	<0.01
Radiotherapy	0	0	1.00
Chemotherapy	13	22	0.04
Radiotherapy and Chemotherapy	1	5	0.02
Metastasis/recurrence(gastric/colorectal)	2/5	7/12	<0.05

*All patients were recruited as control and treatment groups following the protocol approved by Ethics Committee at Qingdao Central Hospital Informed Consent.

doi:10.1371/journal.pone.0093886.t001

Figure 1. Following up of DC/CIK therapy and control patients. The prognoses of patients were recorded up to 98 months after the dates of surgery in both treatment and control groups.
doi:10.1371/journal.pone.0093886.g001
and intravenously administrated to patients in the treatment group, once a day for 5 consecutive days. Three to six days post-
IL-2 injection, mononuclear cells (4–6 x 10⁸) were collected from total 6–9 liters of circulating blood by COBE Spectra
Apheresis System (Gambro BCT, Inc., Colorado, USA) and stored in 120–150 ml plasma. If the mononuclear cells were less than 4 x 10⁹/
Liter, GM-CSF (150 μg) were subcutaneously applied to the patients—once a day for 1–3 days before further collection of
mononuclear cells was processed.

Antigen preparation
Tumor antigen was prepared by following the established protocol [34,35] from human AGS gastric cancer or LS-174T
colon cancer cells. Tumor cells were cultured for 2–3 passages (1–2 x 10⁶), and collected, and washed with normal saline for 3 times,
and lysed by freezing-thawing three times, and analyzed with ultrasonic cell disruption. Lysates from tumor cells were then
fractionated by centrifugation (1200 rpm x 5 min), and the supernatant was collected and filtered with a 0.22 filter (Carrighowhill, Co. Cork, Ireland), and protein concentration in the supernatant was measured before storage at −80°C.

Preparation of DC and CIK cells
Mononuclear cells were isolated from the collected cells from peripheral blood of GC and CRC patient by following an
established method [36,37] using Ficoll (GE Healthcare life Science, Shanghai, China). Isolated cells were suspended in RPMI
1640 medium at a concentration of 1 x 10⁷ ml⁻¹ and cultured in 175 cm² cell culture flasks at 37°C, 5% CO₂ for 2 hrs. Adherent
cells were cultured in serum free DC culture medium (CellGenix, Freiburg, Germany) containing 20 ng/mL interleukin 4 (IL-4) and
50 ng/mL GM-CSF at 37°C, 5% CO₂ for 6 days. DC culture medium containing prepared tumor antigen was then added in
cultured cells to a final concentration of 50 μg/mL, and cultured for another 2 days. Matured DCs were examined by flow
cytometry for DC markers CD83 and HLA-DR. Preparations were tested as bacteria and pyrogen free. A portion of the
prepared DC was infused into the patients and the remaining DCs were tested as bacteria and pyrogen free. A portion of the
rest of suspensions cells were kept in culture for another 7 days. Cells were then kept in normal saline with 1% albumin, and the
supernatant was collected and filtered with a 0.22 filter (Carrighowhill, Co. Cork, Ireland), and protein concentration in the
supernatant was measured before storage at −80°C.

DC vaccine and CIK cell administration
Patients in the treatment group received one cycle of low dose chemotherapy starting on the day after mononuclear cells
collection with Carmofure (100 mg, po., bid) for 5–6 days. The infusion of DCs and CIK cells was started on day 2 or day 3 after
chemotherapy. Prepared DC cells were divided into two parts: one part was mixed with CIK cells in 250 ml normal saline containing
1500 U/mL IL-2 and 1% albumin, and infused into the patients intravenously. The other part was suspended in 1.5 ml normal saline and injected subcutaneously into the area of draining lymph nodes adjacent to the tumor sites. The treatment was repeated 3–5 times in 2 weeks as one cycle. Patients with advanced stage
diseases received 2 cycles of the treatment, while early stage patients were treated with one cycle. The immune responses of
patients were monitored before and after the treatment by measuring serum levels of IFN-γ, IL-2, IL-6, IL-10, and IL-12
determined by ELISA (R&D systems, Minneapolis, MN, USA). The time schedules of DC and CIK preparation and infusion were shown in Figure 1.

Statistical analysis
Data was presented as percentages, means with standard deviation (mean ± SD), or median with 95% confidence intervals
(95% CI). Chi square test, Student’s t-test or Mann-Whitney test, Pearson’s linear or Spearman rank tests were used for analysis as
appropriate. Treatment outcome was analyzed by Kaplan–Meier survival curves with log rank test, and multivariate Cox
proportional hazards regression tests. Statistical significance was set at p<0.05. All statistical analyses were performed using SPSS
16.0 for Windows (SPSS, Chicago, IL, USA).

Results
Baseline information
A total of 54 patients with histological confirmed gastric or colorectal adenocarcinoma were randomly recruited into this
study consisting of 27 patients in each group. The demographic and clinical pathological data of patients in the treatment and
control groups were presented in Table 1. Half of the patients in the treatment group and all patients in control group had received
at least one cycle of chemo-radiation before enrollment. Immuno-
therapy was initiated at least one month after the termination of chemo- and/or radiation therapy and follow-up time was 98
months for all patients in treatment and control groups.

Characteristics of DC/CIK cells for cell infusion
The average number of cells infused into patients in one cycle
was 188.3±79 x 10⁶ for DCs and 58.8±22.3 x 10⁶ for CIK cells.
Cells expressing DR and CD11c, CD83 (DC markers), and CD3/CD8, CD3/CD56 (CIK cell markers) were analyzed. DCs
prepared from GC patients were 88%-91% positive for DR/
CD11c and 85%-71% positive for CD83 (Fig. 2A, B). CIK cells
prepared from GC patients showed 73%-46% positive for CD3/
84%-71% positive for CD3/CD56 (Fig. 2C, D). In addition, DC
cells from CRC patients were 87%-80% positive for CD3/CD8 and 42%-16% positive for CD3/CD56 respectively (Fig. 3C, D). The overall cytolytic efficacy of CIK cells from all patients was enhanced ~2.5 fold. These results indicate that the majority of the DCs and CIK cells prepared from patients were mature and functional.

Serum cytokine levels after DC/CIK therapy
We examined serum levels of a group of cytokine for each
patient before and after DC/CIK treatments (Figure 4 for GC (A)
and CRC (B)). The levels of IL-2, IL-6 and IL-10 slightly
enhanced, with no statistical significance in the sera of GC and
CRC patients (Fig. 4A, B). However, serum IFN-γ levels were significantly increased in both GC and CRC patients,
indicating that DC/CIK therapy may specifically promote a Th1
immune response to mediate tumor killing effect of DC/CIK therapy.

Disease-free survival (DFS) and overall survival (OS) of patients after cell-based immunotherapy

As shown in Figures 5 and 6, DFS and OS were both significantly prolonged in patients in DC/CIK treatment groups (GC: 5-year DFS rate: 66%, OS rate: 66%; CRC: 5-year DFS rate: 66%, OS rate: 75%) compared with the patients in control groups (GC: 5-year DFS rate: 34%, OS rate: 34%; CRC: 5-year DFS rate: 8%, OS rate: 15%; p<0.01). To examine the differential response of GC and CRC, we analyzed two cohorts (GC: p<0.05; CRC: p<0.01) and found that CRC are more sensitive to DC/CIK therapy than GC. In addition, analysis with multivariate Cox proportional regression confirmed that DC/CIK therapy significantly and independently reduced the risk of post-operative disease progression (Odd ratio: 0.09, 95% CI: 0.02–0.42; p<0.01) or patient deceases (Odd ratio: 0.05, 95% CI: 0.01–0.37; p<0.01) after adjusting for age, sex, tumor grade, TNM stages, and previous chemo- and/or radiation treatments.

Potential adverse effects of cell-based immunotherapy

The most common adverse effect observed in all patients receiving DC/CIK therapy was fever, which occurred in 9 of 27 treated patients (33%) in the range of 37.5–40°C. All patients recovered spontaneously or after antipyretic treatment with non-steroid medicine. No other significant complications accompanying cell-based immunotherapy were observed.

Discussion

Cancer immunotherapy had shown a potential efficacy in tumor growth control and patient survival [14,38,39] as the news released that “Instead of using surgery, chemotherapy, or radiotherapy, researchers from the National Institutes of Health are finding so-far limited but inspiring success in a new approach for fighting cancer, using the immune system to attack the tumors the way it would be a cold or flu.” [CNN.com (August 2006)]. Although extensively studied in cells and animal models, the clinical data regarding the exact benefit of immunotherapy in patient survival and disease progression remain to be further investigated [17,40]. Despite limited size of cohorts, this study demonstrates a remarkable enhancement in the post-surgical control of tumor recurrence and survival rates in GC and CRC patients treated with combined DC/CIK therapy. It has been well established that...
the DCs prime naive T-cells and DC vaccine combined with CIK cell therapy has achieved encouraging promise as a novel therapeutic approach for disease control in specific cancers [41]. DCs [6,7,42] have the capability to present tumor antigens to T lymphocytes and induce the specific cytotoxic T cells against tumor antigens [43]. Sipuleucel-T, the first DC vaccine, was approved for clinical application by FDA in USA to treat asymptomatic metastatic castrate-resistant prostate cancer, improving patients’ OS in phase III trial [14]. Additional promising results were reported in recent phase III trials using tumor vaccine to treat various late stage cancers [44], including melanoma, follicular lymphoma, CRC, and NSCLC. Studies in the clinics have established that DCs capture and process tumor-associated antigens and secrete cytokines to initiate an immune response [45].

In addition to DC vaccine, CIKs are induced by cytokines and possess nonspecific cytotoxicity against tumors [24]. CIK cells can kill tumor cells directly, but have significantly short term antitumor efficacy and they are less likely to control tumor outgrowth in the long-term [24]. In contrast, DC vaccine is shown to induce tumor-specific effector and memory T cells [24]. Therefore, the combination of DC vaccine with CIK treatment may have a potential higher cytotoxic activity and specificity in the effector T cells, which shows both short and long term anti-tumor efficacy. In agreement with the clinical benefits observed in other clinical trials[44], our study suggests that DC/CIK treatment can significantly enhance patient survival, prompting its future clinical investigation.

Although a number of pro-inflammatory cytokines were elevated in the DC/CIK treated patients, only two Th1 cytokines, IL-12 and IFN-γ, showed a significant increase in patients' sera in our study. Studies demonstrated that IFN-γ and IL-12 play critical roles in immunotheraphy using DC and CIK [28,33]. Tumor cells are highly heterogeneous [46] and a specific tumor may contain cells with both high and low MHC-I populations [47,48]. Interestingly, MHC-I expression shows heterogeneous among tumor cells and radiation promotes the immunological recognition of the tumor cells by immune cells via MHC-I [49]. However, probably due to the heterogeneity in a given tumor, a single type of immune therapy may only be effective in a subpopulation of cancer patients. Similarly, tumor cells with higher MHC-I

Figure 5. (A) The overall survival rate of the gastric cancer patients. The 1-, 3-, and 5-year survival rates in the treatment group was 93%, 82%, and 66%, compared with the control 79%, 42%, and 34% respectively. B) Disease free survival rate of the gastric cancer patients. The 1-, 3-, and 5-year survival rates in the treatment groups (red box marked) were 86%, 73%, and 66%, compared with the control 79%, 42%, and 34% respectively. The cumulative survival curves in A and B were analyzed by the Kaplan-Meier method.

doi:10.1371/journal.pone.0093886.g005
expression may be more sensitive to DC vaccine therapy while cells with lower MHC-I expression may be killed by CIK. Our results support that combined DC/CIK therapy may promote tumor cell cytotoxicity by targeting different populations of tumor cells, such as those with various levels of MHC-I.

The doses of DC and CIK to the patients in this study were determined based on previous dose escalating test, and found to be safe in all patients. It should be noted that in the current study, data were derived from patients treated with a modified regimen, i.e., before lymphocyte collection by intravenously administration of IL-2 to improve function and number of lymphocytes, which may contribute a significant role in DC/CIK therapy. In addition, patients also received 1 cycle of low dose chemotherapy prior to the DC and CIK infusion, which may also affect the overall effectiveness of DC/CIK therapy. We hypothesized that a 3-day gap is critical for sufficient “washout” of chemotherapeutic agent, so as not to affect the effectiveness of infused DC and CIK. Patients in the control group had been previously treated with at least 1 cycle of chemotherapy, comparable to patients enrolled in the immunotherapy group (Table 1 and Figures, 5, 6). The potential effects of low dose chemotherapy before cell infusion [28] may also induce tumor cell killing, up-regulate the expression of tumor antigen and contribute to the composition of host immune cells. Therefore, further studies will be conducted with larger patient cohorts. In conclusion, this clinical study indicates that the combination of DC vaccine and CIK therapy may significantly improve the disease-free survival in gastric and colorectal cancer patients.

Acknowledgments

We thank Dr. William Murphy and Dr. Cheikh Menaa at the NCI-designed comprehensive cancer center of University of California at Davis for helpful discussions, and the prodigious support of doctors and nurses in the biotherapy center, Qingdao Central Hospital.

Author Contributions

Conceived and designed the experiments: DG CL JJ RZ JL. Performed the experiments: DG CL XX PZ XW WS HL JJ RZ JL. Analyzed the data: DG CL RZ JL. Contributed reagents/materials/analysis tools: DG JL. Wrote the paper: DG AA JL.
References

1. Jenal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90.

2. Ottoman RE, Langdon EA, Rochlin DB, Smart CR. (1963) Side-Effects of Combined Radiation and Chemotherapy in the Treatment of Malignant Tumours. Radiology 81: 1014–1017.

3. Palesly JA, Wang W, Javel MM, Yang GY (2004) Side effects of therapy: case 3. Gastric cancer after radiotherapy of pediatric Hodgkin's disease. J Clin Oncol 22: 2567–2569.

4. Boulikas T, Vougiouka M (2004) Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs (review). Oncol Rep 11: 539–595.

5. Frankenberger B, Schendel DJ (2012) Third generation dendritic cell vaccines for tumor immunotherapy. Eur J Cell Biol 91: 53–58.

6. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449: 419–420.

7. Huber ML, Haynes L, Parker C, Iversen P (2012) Interdisciplinary critique of Sipuleucel-T. Nat Rev Drug Discov 11: 559–595.

8. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, et al. (1996) Vaccination of melanoma patients with peptide–or tumor lysate-pulsed dendritic cells. Nat Med 2: 32–38.

9. Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, et al. (1999) Idiotypope pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99: 1517–1526.

10. Nestle FO, Aligaja S, Gillett M, Sun Y, Grabbe S, et al. (1998) Vaccination of melanoma patients with peptide–or tumor lysate-pulsed dendritic cells. Nat Med 4: 324–332.

11. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, et al. (1999) Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190: 1659–1678.

12. Fong L, Hou Y, Rivas A, Benike C, Yuan A, et al. (2001) Altered peptide ligand vaccination with HLA ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A 98: 8009–8014.

13. Higano CS, Aligaja S, Gillett M, Sun Y, Grabbe S, et al. (1998) Vaccination of melanoma patients with peptide–or tumor lysate-pulsed dendritic cells. Nat Med 4: 324–332.

14. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, et al. (2010) Enhanced killing of primary ovarian cancer by retargeting autologous cytokine-induced killer cells with bispecific antibodies: a preclinical study. Cancer Res Clin Oncol 112: 1859–1867.

15. Sun Y, Chen J, Cai P, Hu YH, Zhong GC, et al. (2010) [Therapy of relapsed or refractory non-Hodgkin’s lymphoma by antigen specific dendritic cell-activated lymphocytes]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 18: 219–223.

16. Leemhuis T, Wells S, Schefold C, Edlinger M, Negrin RS (2005) A Phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma. Biol Blood Marrow Transplant 11: 101–107.

17. Li H, Wang G, Yu J, Cao S, Wei F, et al. (2009) Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery. Cancer Chemother Pharmacol 11: 1076–1083.

18. Pan Y, Zhang J, Zhou L, Zuo J, Zeng Y (2006) In vivo anti-tumor immune response induced by dendritic cells transfected with EBV-LMP2 recombinant adenovirus. Biochem Biophys Res Commun 337: 551–557.

19. Pan Y, Chatfalo P, Nassy N, Harding C, Guo Z (2005) Synthesis and immunological properties of N-modified GM3 antigens as therapeutic cancer vaccines. J Med Chem 48: 873–883.

20. Mosevych V, Imanuyev O, Daniolov A, Daniolov A, Baldarova I (2007) Cell technologies in immunotherapy of cancer. Adv Exp Med Biol 601: 307–393.

21. Schadendorf D, Algarra SM, Bahtlo F, Cinat G, Drene B, et al. (2009) Immunotherapy of distant metastatic disease. Ann Oncol 20 Suppl 6:v11–v30.

22. Schadendorf D, Algarra SM, Bahtlo F, Cinat G, Drene B, et al. (2009) Immunotherapy of distant metastatic disease. Ann Oncol 20 Suppl 6:v11–v30.

23. Morse MA, Deng Y, Coleman D, Hull S, Kirell-Fisher E, et al. (1999) A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAPE)- pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 5: 1331–1337.

24. O’Neill D, Bhardwaj N (2005) Exploiting dendritic cells for active immunotherapy of cancer and chronic infection. Methods Mol Med 109: 1–18.

25. Madan RA, Schwaab T, Gulley JL (2012) Strategies for optimizing the clinical impact of immunotherapeutic agents such as sipuleucel-T in prostate cancer. J Natl Compr Canc Netw 10: 1505–1512.

26. O’Neill DW, Bhardwaj N (2007) Exploiting dendritic cells for active immunotherapy of cancer and chronic infections. Mol Biotechnol 36: 131–141.

27. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252.

28. van Bockhoven CL, Parish CR, Demangel C, Britton WJ, Alin JG (2004) Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 64: 4357–4363.

29. Schiller J (2012) Recent advances in therapeutic cancer vaccines. Cancer Biol Ther 22: 27–25.

30. Marten A, Zice K, Schotter B, Renouf S, Weinick S, et al. (2001) Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations. J Immunother 24: 502–510.

31. Duro N, Fan M, Candás D, Mena C, Liu HC, et al. (2012) HER2-associated radioresistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clin Cancer Res 18: 6634–6647.

32. Li CD, Zhang WY, Li HL, Jiang XX, Zhang Y, et al. (2005) Mesenchymal stem cells induced from human placenta suppress alloigenic umbilical cord blood lymphocyte proliferation. Cell Res 15: 539–547.

33. Beutler N, Hauka S, Piepel A, Kowalewski DJ, Uhlmann J, et al. (2013) A newatural tapasin isomorph lacking exon 3 modifies peptide loading complex function. Eur J Immunol 43: 1490–1497.

34. Sharma A, Bode B, Wenger RH, Lehmann K, Sartori AA, et al. (2011) Gamma-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo. PLoS One 6: e28127.