The Half-Logistic Lomax Distribution for Lifetime Modeling

Masood Anwar and Jawaria Zahoor

Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad, Pakistan

Correspondence should be addressed to Masood Anwar; masoodanwar@comsats.edu.pk

Received 7 August 2017; Revised 30 November 2017; Accepted 14 December 2017; Published 1 February 2018

Academic Editor: Chin-Shang Li

1. Introduction

The commonly used lifetime distributions (exponential, gamma, Weibull, Lomax, lognormal, etc.) have a limited range of behavior and do not provide adequate fit to complex data sets in different sciences. Generalizations of these distributions offer more flexibility and provide reasonable parametric fits to complex data sets. Motivated by the various applications of Lomax and half-logistic distributions in areas of income and wealth inequality, firm size, size of cities, queuing problems, actuarial science, medical and biological sciences, and engineering, we propose a two-parameter continuous lifetime distribution by compounding the half-logistic and the Lomax distribution called half-logistic Lomax (HLL) distribution.

The Lomax [1] (or Pareto Type-II) distribution was introduced to model business failure data. For more detail about the Lomax distribution, we refer the readers to Rady et al. [2], Tahir et al. [3], and the references therein. In literature, there are several generalizations of the Lomax distribution. Abdul-Moniem [4] developed the exponentiated Lomax distribution, and Al-Awadhi and Ghitany [5] introduced the discrete Poisson–Lomax distribution by using the Lomax distribution as a mixing distribution for the Poisson parameter. Asgharzadeh et al. [6] proposed the Pareto Poisson–Lindely distribution, and Cordeiro et al. [7] investigated the gamma-Lomax distribution and studied its properties. Ghitany et al. [8] and Gupta et al. [9] considered the Marshall–Olkin approach and extended the Lomax distribution, and Lemonte and Cordeiro [10] proposed and studied the McDonald-Lomax, the beta Lomax, and the Kumaraswamy Lomax distributions. Other models constitute flexible family of distributions in terms of the variates of shapes and hazard functions; see, for example, Al-Zahrani and Sagor [11], El-Bassiouny et al. [12], Rady et al. [2], Kilany [13], and Tahir et al. [3]. These generalizations of the Lomax distribution are considered to be useful life distribution models.

The cumulative distribution function (cdf) of Lomax distribution is given by

$$H(x; \alpha, \beta) = 1 - (1 + \beta x)^{-\alpha}, \quad x > 0,$$

where $\alpha > 0$ is a shape parameter and $\beta > 0$ is a scale parameter. The probability density function (pdf) corresponding to (1) is

$$h(x; \alpha, \beta) = \alpha \beta (1 + \beta x)^{-(\alpha+1)}, \quad x > 0.$$
Cordeiro et al. [14] define the cdf of the new type I half-logistic-G (TIHL-G) family of distributions by

\[F(x; \lambda, \theta) = \frac{\int_0^{-\ln[1-G(x;\theta)]} 2\lambda e^{-\lambda t} \, dt}{(1 + e^{-\lambda t})^2} = 1 - \frac{[1 - G(x;\theta)]^{\lambda}}{1 + [1 - G(x;\theta)]^{\lambda}}. \]

where \(G(x;\theta) \) is the baseline cdf depending on a parameter vector \(\theta \) and an additional shape parameter \(\lambda > 0 \). As a special case, if \(\lambda = 1 \), then the TIHL-G is the half-logistic-G (HL-G) distribution with cdf

\[F(x;\theta) = \frac{G(x;\theta)}{1 + G(x;\theta)}, \]

where \(G(x;\theta) = 1 - G(x;\theta) \).

The corresponding pdf to (4) is given by

\[f(x;\theta) = \frac{2g(x;\theta)}{[1 + G(x;\theta)]^2}, \quad \text{where} \quad g(x) = \frac{dG(x)}{dx}. \]

This paper aims to provide a new lifetime model with a minimum number of parameters by compounding the half-logistic and the Lomax distribution called half-logistic-Lomax (HLL) distribution. The proposed distribution is heavy-tailed and has a decreasing or upside-down bathtub (or unimodal) shaped hazard rates depending on its parameters. Upside-down bathtub shaped hazard rates are common in reliability, engineering, and survival analysis. The HLL distribution can also be applied in engineering as the Lomax [1] distribution and can be a useful alternative to other well-known densities in lifetime applications. It is interesting to note that the HLL distribution is a special case of Marshall-Olkin–Lomax distribution introduced by Ghitany et al. [8]. We obtain some mathematical properties of the proposed distribution and parameters of the model are estimated by the maximum-likelihood estimation method.

The rest of this paper is organized as follows. In Section 2, we introduce the half-logistic-Lomax distribution and provide plots of its density function. In Section 3, we investigate various mathematical properties of the HLL distribution including survival and hazard rate function, quantile function, moments, mean residual life function, mean deviation from the mean and the median, entropies, and order statistics. In Section 4, estimation of parameters is given by MLE method and the asymptotic distribution of the estimators is studied via Fisher's information matrix. Simulation results on the behavior of the MLEs are presented in Section 5. A real data application is conducted in Section 6. Finally, in Section 7, we conclude that the HLL distribution is the best model as compared to other competing models.

2. The HLL Distribution

We define the half-logistic-Lomax (HLL) density function by inserting (1) and (2) into (5). So, we obtain

\[f(x;\alpha,\beta) = \frac{2\alpha\beta(1 + \beta x)^{-(\alpha+1)}}{[1 + (1 + \beta x)^{-\alpha}]^2}, \quad x > 0; \quad \alpha, \beta > 0. \]

The corresponding cumulative density function (cdf) follows from (1) and (4) and is given by

\[F(x) = \frac{\left[1 - (1 + \beta x)^{-\alpha}\right]}{[1 + (1 + \beta x)^{-\alpha}]}. \]

Hereafter, we will denote a random variable \(X \) having pdf (6) by \(X \sim \text{HLL}(\alpha,\beta) \). The limit of the HLL density (6) as \(x \to \infty \) is 0 and the limit as \(x \to 0 \) is \(\alpha\beta/2 \). Figure 1 depicts some of the possible shapes of density (6) for selected parameter values. The mode of density (6) is obtained from solving \([d \log f(x)]/dx |_{x=x_0} = 0 \), which is given by

\[\text{Mode} = x_0 = \frac{1}{\beta} \left(1 - \frac{1}{\alpha+1}\right)^{1/\alpha} - 1. \]

3. Mathematical Properties

This section describes mathematical properties of the HLL distribution.
3.1. The Survivor and Hazard Rate Functions. Using (6) and (7), the survival function (sf) and hazard rate function (hrf) of \(X \) are, respectively, given by

\[
S(x) = \frac{2}{1 + (1 + \beta x)^\alpha},
\]

\[
h(x) = \frac{\alpha\beta}{1 + \beta x} \left[1 + (1 + \beta x)^{-\alpha}\right].
\]

The limit of \(h(x) \) as \(x \to 0^+ \) is \(\frac{\alpha\beta}{2} \); that is, \(h(0) \) is bounded from below and continuous in its parameters. The limit of \(h(x) \) as \(x \to \infty \) is 0. According to Glaser [15], we determine the parameter intervals for which the hazard rate function of the HLL distribution is decreasing or upside-down bathtub. Let

\[
\eta(x) = -\frac{d}{dx} \ln f(x) = \frac{\beta[(\alpha + 1) - (\alpha - 1)(1 + \beta x)^{-\alpha}]}{(1 + \beta x)^2[1 + (1 + \beta x)^{-\alpha}]}.
\]

Then its first derivative is given by

\[
\eta'(x) = \frac{\beta^2 \left[2(\alpha^2 - 1)(1 + \beta x)^{\alpha - 2} + (\alpha - 1)(1 + \beta x)^{-2} - (\alpha + 1)(1 + \beta x)^{2(\alpha - 1)}\right]}{[1 + (1 + \beta x)^\alpha]^2}.
\]

If \(0 < \alpha \leq 2 \), then \(\eta'(x) < 0 \) for all \(x \). Then the hazard rate function is decreasing. By Glaser’s theorem [15], it is sufficient to show that there exists \(x_0 > 0 \) such that \(\eta'(x) > 0 \) for all \(x \in (0, x_0) \). \(\eta'(x_0) = 0 \) implies that \(x_0 = (1/\beta)[((\alpha - 1)/(\alpha + 1))^{1/\alpha} - 1] \) and \(\eta'(x) < 0 \) for all \(x > x_0 \), which implies unimodal shape of the hazard rate function. For \(\alpha > 2 \), \(\eta'(x) > 0 \) for all \(x < x_0 \) and \(\eta'(x) < 0 \) for all \(x > x_0 \). Thus, the hazard rate function is upside-down bathtub-shaped for \(\alpha > 2 \). Figure 2 illustrates some of the possible shapes of hazard rate function for selected values of the parameters.

3.2. Quantile and Random Number Generation. The cumulative distribution function is given by (7). Inverting \(F(x) = u \), we obtain

\[
F^{-1}(x) = \frac{1}{\beta} \left[\left(\frac{1 - u}{1 + u}\right)^{1/\alpha} - 1 \right], \quad 0 < u < 1.
\]

Equation (12) can be used to simulate the HLL variable.

3.3. Moments. The following theorem gives moments of the HLL distribution and its mean moments and cumulants.
Theorem 1. The rth moment about the origin of $X \sim \text{HLL}(\alpha, \beta)$ is given by

$$
\mu'_r = E[X^r] = \frac{2\alpha \beta}{\beta^r} \sum_{k=1}^\infty \sum_{j=0}^r \binom{r}{j} \frac{k(-1)^{r+j+k-1}}{(k\alpha - j)},
$$

(13) $r = 1, 2, \ldots$.

Proof. We have

$$
E[X^r] = \frac{2\alpha \beta}{\beta^r} \int_0^\infty x^r \frac{(1 + \beta x)^{-(\alpha+1)}}{[1 + (1 + \beta x)^-\alpha]^2} dx.
$$

(14) Setting $y = (1 + \beta x), dx = dy/\beta$ yields

$$
E[X^r] = \frac{2\alpha}{\beta^r} \int_1^\infty (y - 1)^r y^{-(\alpha+1)} (1 + y^{-\alpha})^{-2} \, dy
$$

$$
= \frac{2\alpha}{\beta^r} \int_1^\infty \left\{ \sum_{j=0}^r \frac{\binom{r}{j}}{j!} y^{j-k\alpha-1} (-1)^{r+j} \right\} dy
$$

$$
\times \sum_{k=1}^\infty (-1)^{k-1} k (y^{-\alpha})^{k-1} \frac{dy}{(k\alpha - j)}
$$

(15)

$$
= \sum_{k=1}^\infty \sum_{j=0}^r \frac{\binom{r}{j}}{j!} \frac{(-1)^{r+j+k-1}}{(k\alpha - j)} k (y^{-\alpha})^{k-1} \, dy
$$

$$
= \sum_{j=0}^r s(r, j) \mu_j,
$$

where

$$
s(r, j) = \frac{1}{j!} \left[\frac{d^j}{dx^j} x^{(r)} \right]_{x=0}
$$

(20) is the Sterling number of the first kind which counts the number of ways to permute a list of r items into j cycles.

Theorem 3. The moment generating function of $X \sim \text{HLL}(\alpha, \beta)$ is given by

$$
M_X(t) = 2\alpha e^{-t/\beta} \sum_{k=1}^\infty \sum_{i=0}^\infty \binom{t}{i} \frac{1}{(k\alpha - i)!} k(-1)^{k-1}
$$

(21)

Proof. We have

$$
E[e^{tX}] = \frac{2\alpha \beta}{\beta} \int_0^\infty e^{tx} \frac{(1 + \beta x)^{-(\alpha+1)}}{[1 + (1 + \beta x)^-\alpha]^2} dx.
$$

(22) Setting $y = (1 + \beta x)dx = dy/\beta$ yields

$$
E[e^{tX}] = 2\alpha e^{-t/\beta} \int_0^\infty y^{-(\alpha+1)} e^{ty/\beta} [1 + y^{-\alpha}]^{-2} \, dy
$$

(23) After simplification, we get

$$
M_X(t) = 2\alpha e^{-t/\beta} \sum_{k=1}^\infty \sum_{i=0}^\infty \binom{t}{i} \frac{1}{(k\alpha - i)!} k(-1)^{k-1}
$$

(24)
3.4. Mean Residual Life (MRL) Function. The MRL function is important in reliability, survival analysis, actuarial sciences, economics, and social sciences for characterizing lifetime distributions. It also plays an important role in repair and replacement strategies and summarizes the entire residual life function.

Theorem 4. The MRL function of \(X \sim HLL(\alpha, \beta) \) is given by

\[
m(x) = E(X - x \mid X > x) = \frac{1}{\beta} \left[1 + (1 + \beta x)^\alpha \right] \sum_{k=1}^{\infty} (-1)^{k-1} \frac{(1 + \beta x)^{-k\alpha}}{(k\alpha - 1)}. \tag{25}\]

Proof. The MRL function is defined as

\[
m(x) = E(X - x \mid X > x) = \frac{1}{1 - F(x)} \int_x^{\infty} [1 - F(t)] dt. \tag{26}\]

Therefore, we have

\[
m(x) = \frac{1}{\beta} \left[1 + (1 + \beta x)^\alpha \right] \int_x^{\infty} \frac{y^{-\alpha}}{[1 + y^{-\alpha}]} dy. \tag{27}\]

Setting \(y = (1 + \beta x) \), \(dx = \frac{dy}{\beta} \) yields

\[
m(x) = \frac{1}{\beta} \left[1 + (1 + \beta x)^\alpha \right] \int_{(1 + \beta x)^\alpha}^{\infty} \frac{y^{-\alpha}}{[1 + y^{-\alpha}]} \frac{dy}{\beta}. \tag{28}\]

After simplification, we get (25). \(\square \)

3.5. Mean Deviations. The mean deviations about mean and median are, respectively, defined by

\[
\delta_1(\mu) = 2\mu F(\mu) - 2\mu + 2 \int_0^\mu x f(x) \, dx, \tag{29}\]
\[
\delta_2(M) = 2MF(M) - M - \mu + 2 \int_M^\mu x f(x) \, dx. \tag{30}\]

Theorem 5. The mean deviations about mean and median deviation about median of \(X \sim HLL(\alpha, \beta) \) are given by

\[
\delta_1(\mu) = \frac{-4\mu}{[1 + (1 + \beta \mu)^\alpha]} + \frac{4\alpha}{\beta} \sum_{k=1}^{\infty} k (-1)^{k-1} \left[\frac{1}{(k\alpha - 1)(1 + \beta \mu)^{k\alpha}} - \frac{1}{k\alpha (1 + \beta \mu)^{k\alpha}} \right]. \tag{31}\]

\[
\delta_2(M) = M \left[\frac{1 + BM\alpha}{[1 + BM\alpha]} - 1 \right] - \frac{2}{\beta} \sum_{k=1}^{\infty} \frac{1}{k\alpha (k\alpha - 1)} + \frac{4\alpha}{\beta} \sum_{k=1}^{\infty} k (-1)^{k-1} \left[\frac{1}{(k\alpha - 1)(1 + \beta M)^{k\alpha}} - \frac{1}{k\alpha (1 + \beta M)^{k\alpha}} \right]. \tag{32}\]

Proof. Let \(I = \int_0^\infty x f(x) \, dx \).

By inserting pdf of the HLL into (29) and setting \(y = (1 + \beta x) \), \(dx = \frac{dy}{\beta} \), we get

\[
I = \frac{2\alpha}{\beta} \int_0^\infty \left[y^{-\alpha} - y^{-(\alpha + 1)} \right] \left(1 + y^{-\alpha} \right)^{-2} \, dy. \tag{33}\]

Using the series representation \((1 + w)^{-2} = \sum_{k=1}^{\infty} k(-1)^{k-1} w^{k-1} \), where \(k \) is a positive integer, we get

\[
I = \frac{2\alpha}{\beta} \sum_{k=1}^{\infty} k (-1)^{k-1} \left[\frac{1}{(k\alpha - 1)(1 + \beta \mu)^{k\alpha}} - \frac{1}{k\alpha (1 + \beta \mu)^{k\alpha}} \right]. \tag{34}\]

Setting \(I \) into (29) and after some manipulations we get the desired result.

Similarly, the measure \(\delta_2(M) \) can be obtained. \(\square \)

3.6. Entropies. The entropy of a random variable \(X \) is a measure of variation of uncertainty. Two popular entropies are the Rényi and Shannon entropies.

The Rényi entropy is defined as

\[
I_R(\gamma) = \frac{1}{1 - \gamma} \log \left\{ \int_0^\mu f_\gamma(x) \, dx \right\}, \tag{35}\]

where \(\gamma > 0, \gamma \neq 1 \).

The Rényi entropy for the HLL distribution is given by

\[
\int_0^\mu f_\gamma(x) \, dx = (2\alpha\beta)^{r} \cdot \frac{2\alpha}{\beta} \int_0^{(1 + \beta \mu)^\alpha} \left[1 + (1 + \beta \mu)^{-\gamma(\alpha + 1)} \right]^{-y} \, dy. \tag{36}\]

Setting \(y = (1 + \beta \mu) \), \(dx = \frac{dy}{\beta} \) yields

\[
\int_0^\mu f_\gamma'(x) \, dx = \frac{(2\alpha\beta)^{r}}{\beta} \int_0^{\infty} y^{-(\alpha + 1)} \left[1 + y^{-\alpha} \right]^{-2\gamma} \, dy = \frac{(2\alpha\beta)^{r}}{\beta} \sum_{j=0}^{\infty} \frac{(-1)^j (2\gamma)_j}{j! \left(\gamma \alpha + j \alpha + \gamma - 1 \right)}. \tag{37}\]

Thus, we have

\[
I_R(\gamma) = \frac{1}{1 - \gamma} \log \left\{ \frac{(2\alpha\beta)^{r}}{\beta} \sum_{j=0}^{\infty} \frac{(-1)^j (2\gamma)_j}{j! \left(\gamma \alpha + j \alpha + \gamma - 1 \right)} \right\}. \tag{38}\]

Another entropy measure defined by \(E[-\log \{ f(x) \}] \) is known as the Shannon entropy and plays a similar role as the kurtosis measure in comparing the shapes of densities and measuring tail heaviness. We have

\[
E[-\log \{ f(x) \}] = -\log (2\alpha\beta) + (\alpha + 1) E \left[\log (1 + \beta x) \right] + 2 E \left[\log \left(1 + (1 + \beta x)^{-\alpha} \right) \right]. \tag{39}\]
3.7. Order Statistics. Let X_1, X_2, \ldots, X_n be a random sample of size n from a distribution with pdf $f(x)$ and cdf $F(x)$. Let $X_{1:n}, X_{2:n}, \ldots, X_{n:n}$ denote the corresponding order statistics. Then the pdf and cdf of $X_{r:n}$ are

$$f_{r:n}(x) = \frac{1}{B(r, n-r+1)} f(x) [F(x)]^{r-1} [1 - F(x)]^{n-r},$$

$$F_{r:n}(x) = \sum_{k=r}^{n} \binom{n}{k} [F(x)]^k [1 - F(x)]^{n-k},$$

where $B(a, b)$ is the complete beta function.

Theorem 6. Let $f(x)$ and $F(x)$ be the pdf and cdf of $X \sim \text{HLL}(\alpha, \beta)$. Then the pdf and cdf of $X_{r:n}$ are

$$f_{r:n}(x) = \frac{1}{B(r, n-r+1)} 2\alpha\beta (1 + \beta x)^{-\alpha-1} [1 + (1 + \beta x)^{-\alpha}]^2,$$

$$F_{r:n}(x) = \sum_{k=r}^{n} \binom{n}{k} \left[\frac{1 - (1 + \beta x)^{-\alpha}}{1 + (1 + \beta x)^{-\alpha}} \right]^k,$$

where $B(a, b)$ is the complete beta function.

Proof. Inserting (6) and (7) into (44), we get the result.

4. **Estimation and Asymptotic Distribution**

We consider the maximum-likelihood estimation of the parameters α, β. The distributional properties of $\hat{\alpha}$, $\hat{\beta}$ are obtained using Fisher information matrix.

4.1. **Maximum-Likelihood Estimation.** Let x_1, x_2, \ldots, x_n be a random sample of size n from HLL(α, β) distribution. Then the corresponding likelihood function is

$$L(\alpha, \beta) = (2\alpha\beta)^n \prod_{i=1}^{n} \left[\frac{1 + \beta x_i}{1 + (1 + \beta x_i)^{-\alpha}} \right].$$

The log-likelihood function is given by

$$\ell(x; \alpha, \beta) = n \log (2\alpha\beta) - (\alpha + 1) \sum_{i=1}^{n} \log (1 + \beta x_i)$$

$$- 2 \sum_{i=1}^{n} \log \left[1 + (1 + \beta x_i)^{-\alpha} \right].$$

Calculating the first-order partial derivatives of (46) with respect to α, β and equating them to zero, we get the following nonlinear equations:

$$\frac{\partial \ell}{\partial \alpha} = n - \sum_{i=1}^{n} \log (1 + \beta x_i) + 2 \sum_{i=1}^{n} \frac{\log (1 + \beta x_i)}{1 + (1 + \beta x_i)^{\alpha}} = 0,$$

$$\frac{\partial \ell}{\partial \beta} = - (\alpha + 1) \sum_{i=1}^{n} \frac{x_i}{1 + (1 + \beta x_i)}$$

$$+ 2 \alpha \sum_{i=1}^{n} \frac{x_i}{[1 + (1 + \beta x_i)^{-\alpha}]} = 0.$$

To find out the maximum-likelihood estimates (MLEs) of α, β, we have to solve the above nonlinear equations. Apparently, there is no closed form solution in α, β. We have to use a numerical technique method, such as Newton-Raphson method, to obtain the solution.

4.2. **Asymptotic Distribution.** The normal approximation for the large-sample for the MLE can be used to compute confidence intervals (CIs). For finding the observed information matrix of α, β, we compute the second-order partial derivatives of L (46) in the appendix.

The variance-covariance matrix may be approximated by $\Sigma = I^{-1}$, where I is the observed information matrix. Since Σ involves the parameters α, β, we replace the parameters by the corresponding MLEs in order to obtain an estimate of Σ, which is denoted by $\hat{\Sigma} = \hat{I}^{-1}$, where $\hat{I}_{ij} = I_{ij}$, when $(\hat{\alpha}, \hat{\beta})$ is replaced by α, β. Using these results, an approximate $100(1 - \theta)%$ CI for α, β, respectively, is given by

$$\hat{\alpha} \pm z_{\theta/2} \sqrt{\hat{\Sigma}_{11}},$$

$$\hat{\beta} \pm z_{\theta/2} \sqrt{\hat{\Sigma}_{22}},$$

where $z_{\theta/2}$ is the upper $(\theta/2)$th percentile of the standard normal distribution.
5. Simulation Study

The assessment of the maximum-likelihood estimates is based on a simulation study. The following steps were followed:

1. Generate 5,000 samples of size \(n \) from (6). The HLL variables are generated using \(X = \frac{1}{\beta} \left(\frac{1-U}{1+U} \right)^{1/\alpha} - 1 \) given in (12), where \(U \sim \text{Uniform}(0,1) \).
2. Compute the MLEs for the 5,000 samples, say \((\tilde{\alpha}_i, \tilde{\beta}_i)\) for \(i = 1, 2, \ldots, 5000 \).
3. Compute the mean square errors (MSE) for each parameter.

We repeat these steps for \(n = 10, 20, \ldots, 100 \) with \(\alpha = 2, \beta = 1 \). The comparison is based on MSES. Figure 3 plots the MSES of the MLEs of two parameters. The assessment based on this simulation study is that the MSES for each parameter decrease to zero with increasing sample size.

6. Application

6.1. Cancer Data. We have considered a real data set, which records the remission times (in months) of a random sample of 128 bladder cancer patients reported in [17]. We have fitted the HLL distribution to the dataset using MLE and compared the proposed distribution with the following distributions:

(i) The Lomax distribution, introduced by Lomax [1], with pdf is

\[f_{\text{Lomax}}(x) = \frac{\alpha \beta}{(1+\beta x)^{\alpha}} \left(1 - \left(\frac{\beta}{\beta + x} \right)^\alpha \right)^{a-1}, \quad \text{where } x, \alpha, \beta > 0. \quad (49) \]

(ii) The McLomax distribution, introduced by Lemonte and Cordeiro [10], with pdf is

\[
\begin{align*}
f_{\text{McLomax}}(x) &= \frac{c \alpha \beta}{(\beta + x)^{\alpha}} \left(1 - \left(\frac{\beta}{\beta + x} \right)^\alpha \right)^{a-1} \\
&\cdot \left[1 - \left(\frac{\beta}{\beta + x} \right)^\alpha \right]^{\eta \gamma},
\end{align*}
\]

where \(x, \alpha, \beta, a, c > 0, 0 \leq \eta \).

(iii) The beta Lomax (BLomax) distribution is a submodel of McLomax for \(c = 1 \) with pdf

\[
\begin{align*}
f_{\text{BLomax}}(x) &= \frac{\alpha \beta}{(\beta + x)^{\alpha}} \left(1 - \left(\frac{\beta}{\beta + x} \right)^\alpha \right)^{a-1} \\
&\cdot \left[1 - \left(\frac{\beta}{\beta + x} \right)^\alpha \right]^{\eta \gamma},
\end{align*}
\]

where \(x, \alpha, \beta, a > 0, 0 \leq \eta \).

(iv) The Kumaraswamy Lomax (KwLomax) distribution is a submodel of McLomax for \(a = c \), with pdf

\[
\begin{align*}
f_{\text{KwLomax}}(x) &= \frac{\alpha \beta}{(\beta + x)^{\alpha}} \left(1 - \left(\frac{\beta}{\beta + x} \right)^\alpha \right)^{a-1} \\
&\cdot \left[1 - \left(\frac{\beta}{\beta + x} \right)^\alpha \right]^{\eta \gamma},
\end{align*}
\]

where \(x, \alpha, \beta, a > 0, 0 \leq \eta \).

(v) The Exponentiated Standard Lomax (ESLomax) distribution, considered by Gupta et al. [18], with pdf is

\[
f_{\text{ESLomax}}(x) = \frac{\alpha \beta}{(\eta + 1)} \left(1 - \left(\frac{\beta}{\beta + x} \right)^\alpha \right)^{a-1} \\
\cdot \left[1 - \left(\frac{\beta}{\beta + x} \right)^\alpha \right]^{\eta \gamma},
\]

where \(x, \alpha, \beta, a > 0 \).

(vi) The Lomax-Logarithmic (LL) distribution, introduced by Al-Zahrani and Sagor [11], with pdf is

\[
f_{\text{LL}}(x) = \frac{(\eta - 1) \alpha \beta}{(1+\beta x)^{\alpha-1}} \left(1 - \left(\frac{1+\beta x}{\eta} \right)^{\alpha} \right)^{a-1} \\
\cdot \left[1 - \left(\frac{1+\beta x}{\eta} \right)^{\alpha} \right]^{\eta \gamma},
\]

where \(x, \alpha, \beta, \eta > 0 \).

For identification of the shape of the hazard function of the cancer data set, we use a graphical method based on the Total Time on Test (TTT) plot [19]. Let \(T \) be a random variable with nonnegative values, which represents the survival time. The empirical TTT curve is constructed by plotting \(T(r/n) = \frac{\sum_{i=1}^{\lfloor r/\eta \rfloor} Y_{rn} + (n-r)Y_{rn}}{\sum_{i=1}^{\lfloor r/\eta \rfloor} Y_{rn}} \) against \(r/n \), where \(r = 1, 2, \ldots, n \) and \(Y_{rn} \) are the order statistics of the sample. If the empirical TTT transform is straight...
Table 1: Descriptive statistics.

Mean	Median	Mode	SD	Variance	Skewness	Kurtosis	Min.	Max.
9.37	6.40	5.0	10.51	110.43	3.287	15.48	0.08	79.05

Table 2: MLEs (standard errors in parentheses) and the measures AIC, BIC, HQIC, and CAIC for cancer data.

Model	Estimates	Measures						
	α	β	γ	δ	AIC	BIC	HQIC	CAIC
HLL	5.2814	0.0367	(2.0847)	(0.0177)	827.69	833.40	830.01	827.79
Lomax	13.9384	121.0225	(15.368)	(142.714)	831.67	837.37	833.98	831.76
McLomax	0.8085	11.2929	(3.364)	(15.818)	829.82	844.09	835.62	830.31
BLomax	3.9191	23.9281	(18.192)	(142.714)	828.14	839.55	832.78	828.46
KwLomax	0.3911	12.2973	(2.386)	(17.316)	827.88	839.29	832.52	828.21
ESLomax	1.0877	4.6575	(0.086)	(0.686)	856.61	862.31	833.98	856.71
LL	4.8696	20.1652	(2.1317)	(18.3747)	830.88	839.44	834.36	831.07

Figure 4: Empirical TTT plot for the cancer data.

The AdequacyModel package version 1.0.8 available for the programming language R [20].

6.2 Simulated Data

Here, we used a simulation study to check the flexibility of the proposed distribution. We have generated a sample of size $n = 100$ from the six distributions and compared the fit of the HLL distribution with competing models.

The details of generated samples with the specified values of the parameters from the six models are as follows:
Table 3: MLEs (standard errors in parentheses) and the measures AIC, BIC, HQIC, and CAIC for simulated data from Lomax distribution with $\alpha = 1.5$ and $\beta = 1$.

Model	α	β	a	η	c	AIC	BIC	HQIC	CAIC
HLL	1.8032	1.2386				257.03	262.24	259.14	257.16
Lomax	2.2441	0.5337				257.39	262.60	259.50	257.52
McLomax	2.7515	2.3568	0.9418	-0.1016	2.8189	262.90	275.93	268.17	263.54
Blomax	1.4533	2.2421	0.9361	0.6659		260.90	271.32	265.12	261.32
KwLomax	8.7573	2.0767	0.9188	-0.7243		260.90	271.32	265.12	261.32
ESLomax	1.5909	1.1335				258.50	263.70	266.00	258.62
LL	2.6536	0.3359	0.5196			258.96	266.77	262.12	259.21

Table 4: MLEs (standard errors in parentheses) and the measures AIC, BIC, HQIC, and CAIC for simulated data from McLomax distribution with parameters $\alpha = 5.25$, $\beta = 2.55$, $a = 1.45$, $\eta = 0.67$, and $c = 3.81$.

Model	α	β	a	η	c	AIC	BIC	HQIC	CAIC
HLL	1.2207	2.4477				268.28	273.50	270.39	268.41
Lomax	1.4243	1.0314				267.49	272.70	269.60	267.61
McLomax	14.1535	3.2796	0.8091	-0.8197	2.9511	266.95	279.97	272.22	267.58
Blomax	1.9585	3.7068	0.6586	0.3007		265.67	276.09	269.89	266.09
KwLomax	0.3924	7.1769	0.6896	6.1821		265.39	275.81	269.61	265.81
ESLomax	1.2764	0.8217				264.94	270.15	267.04	265.06
LL	8.8655	0.03389	0.0359			264.02	271.83	267.18	264.27

1. Lomax distribution with $\alpha = 1.5$ and $\beta = 1$ (see Table 3)
2. McLomax distribution with parameters $\alpha = 5.25$, $\beta = 2.55$, $a = 1.45$, $\eta = 0.67$, and $c = 3.81$ (see Table 4)
3. Blomax distribution with parameters $\alpha = 0.85$, $\beta = 12.55$, $a = 1.75$, and $\eta = 4.67$ (see Table 5)
4. KwLomax distribution with parameters $\alpha = 0.85$, $\beta = 12.55$, $a = 1.75$, and $\eta = 4.67$ (see Table 5)
5. ESLomax distribution with parameters $\alpha = 2.5$ and $a = 1.15$ (see Table 6)
6. LL distribution with parameters $\alpha = 2.75$, $\beta = 0.45$, and $\eta = 0.75$ (see Table 8)

The comparison is based upon the formal goodness-of-fit tests given above. The values of best fitted model are highlighted in the tables. Based on the goodness-of-fit tests, we conclude that the HLL distribution has better fit than the other competing models.

7. Concluding Remarks

In this paper, we introduce a two-parameter HLL distribution by compounding the half-logistic and the Lomax distributions. The shape of hazard function of the new compounding distribution can be monotonically decreasing or upside-down bathtub (unimodal). Some mathematical and statistical properties of the new model including moments and moment generating functions, mean deviations from mean and median, quantile function, mean residual life function, mode, median, order statistics, and entropies are studied.
Table 5: MLEs (standard errors in parentheses) and the measures AIC, BIC, HQIC, and CAIC for simulated data from BLomax distribution with parameters $\alpha = 0.85$, $\beta = 12.55$, $a = 1.75$, and $\eta = 4.67$.

Model	α	β	a	η	c	AIC	BIC	HQIC	CAIC
HLL	24.4487	0.0112				533.90	539.11	536.01	534.02
	(13.7405)	(0.0065)							
Lomax	23.6200	0.0881				544.04	549.25	546.15	544.17
	(11.025)	(0.0038)							
McLomax	1.335	16.4494	1.4939	9.3587	2.4534	534.96	547.99	540.23	535.60
	(9.1629)	(73.1176)	(0.3012)	(78.4737)	(3.8777)				
BLomax	2.0366	93.9001	1.7237	13.8059		534.39	543.91	537.71	533.91
	(26.5471)	(159.3791)	(0.2569)	(194.682)					
KwLomax	0.9258	35.7112	1.5236	21.0737		533.05	543.47	537.27	533.47
	(2.386)	(17.316)	(0.228)	(139.842)					
ESLomax	1.3483	15.0645				561.43	566.64	563.53	561.55
	(0.1185)	(0.8554)							
LL	10.6838	0.0392				535.87	543.69	539.04	536.12
	(5.5325)	(0.0261)							

Table 6: MLEs (standard errors in parentheses) and the measures AIC, BIC, HQIC, and CAIC for simulated data from KwLomax distribution with parameters $\alpha = 0.85$, $\beta = 12.55$, $a = 1.75$, and $\eta = 4.67$.

Model	α	β	a	η	c	AIC	BIC	HQIC	CAIC
HLL	3.2092	0.1872				454.88	460.09	456.99	455.02
	(1.0615)	(0.0847)							
Lomax	5.2637	0.0650				455.74	460.95	457.85	455.87
	(3.0135)	(0.0436)							
McLomax	36.3053	64.3913	1.4745	-0.6614	26.4402	455.68	468.70	460.95	456.32
	(49.9841)	(87.0837)	(0.2732)	(0.1299)	(21.5904)				
BLomax	20.4375	8.2358	1.6963	-0.8265		455.46	465.89	459.68	455.89
	(18.192)	(1.3201)	(0.3709)	(0.0270)					
KwLomax	1.4823	3.9164	1.5331	0.8043		455.73	466.15	459.95	456.15
	(2.386)	(7.0316)	(0.3464)	(8.0144)					
ESLomax	1.3936	2.6629				457.01	462.22	459.12	457.13
	(0.1429)	(0.4120)							
LL	3.9058	0.1236				457.48	465.30	460.65	457.73
	(2.9870)	(0.1943)							

Table 7: MLEs (standard errors in parentheses) and the measures AIC, BIC, HQIC, and CAIC for simulated data from ESLomax distribution with parameters $\alpha = 2.5$ and $a = 1.15$.

Model	α	β	a	η	c	AIC	BIC	HQIC	CAIC
HLL	2.9230	1.4697				70.15	75.35	72.25	70.27
	(0.8789)	(0.6175)							
Lomax	4.4945	0.5392				71.43	76.64	73.54	71.55
	(2.3241)	(0.3345)							
McLomax	9.2546	0.8577	1.9039	-0.6952	2.5132	72.37	85.40	77.65	73.01
	(18.1860)	(0.7067)	(0.9458)	(0.5267)	(3.9407)				
BLomax	0.5806	0.4735	1.6416	3.3194		70.61	81.04	74.83	71.04
	(1.7619)	(0.3488)	(0.4155)	(13.6281)					
KwLomax	2.4388	0.5530	1.6260	-0.0069		70.64	81.07	74.86	71.07
	(1.1386)	(0.6732)	(0.1428)	(79.064)					
ESLomax	3.4021	1.3948				67.33	72.54	69.44	67.46
	(0.4127)	(0.1956)							
LL	3.1584	1.2813				72.86	80.68	76.03	73.12
	(1.3691)	(1.4460)							
Table 8: MLEs (standard errors in parentheses) and the measures AIC, BIC, HQIC, and CAIC for simulated data from LL distribution with parameters $\alpha = 2.75$, $\beta = 0.45$, and $\eta = 0.75$.

Model	α	β	$\alpha \beta$	$\alpha \eta$	c	AIC	BIC	HQIC	CAIC
HLL	1.8358	1.2344				252.97	258.19	255.08	253.10
	(0.4189)	(0.4553)							
Lomax	2.181	0.5669				253.22	258.43	255.33	253.34
	(0.6717)	(2.408)							
McLomax	0.7992	1.2223	0.9887	1.6530	1.9169	259.10	272.12	264.37	259.73
	(2.8691)	(1.7168)	(0.1874)	(10.1760)	(3.9962)				
BLomax	1.6711	1.7124	1.0130	0.2907		257.21	267.63	261.43	257.63
	(94.5364)	(1.0299)	(0.1929)	(73.1088)					
KwLomax	8.6899	1.7774	0.9917	-0.7481		257.22	267.64	261.44	257.64
	(7.6698)	(0.8502)	(0.2342)	(0.2298)					
ESLomax	1.6418	1.4189		2.8691		254.10	259.31	256.21	254.23
	(0.2057)	(0.1530)		(10.1760)					
LL	1.9522	1.0375	3.1618			255.07	262.89	258.24	255.32
	(0.5707)	(1.7363)	(11.1845)						

We estimate the model parameters by maximum likelihood and determined the observed information matrix. We present a simulation study to illustrate the performance of MLEs. The flexibility and potentiality of the proposed model are illustrated by means of a real data set. We hope that the HLL distribution may attract wider range of applications in areas such as engineering, survival and lifetime data, economics, meteorology, hydrology, and others.

Appendix

Elements of Observed Information Matrix

The elements of 2×2 observed information matrix (I) are given by

\[
I_{11} = \frac{\partial^2 l}{\partial \alpha^2} = -\frac{n}{\alpha^2} + 2 \sum_{i=1}^{n} \left(1 + \beta x_i\right)^a \left[\log(1 + \beta x_i)\right]^2, \\
I_{12} = I_{21} = \frac{\partial^2 l}{\partial \alpha \partial \beta} = \left(-\frac{n}{1 + \beta x_i} + 2 \sum_{i=1}^{n} \left[1 + \beta x_i\right] + \alpha x_i \log(1 + \beta x_i)\right) + 2 \sum_{i=1}^{n} \left[\left(1 + \beta x_i\right)^{a+1} \left[1 + (1 + \beta x_i)^{\alpha}\right]^2, \right. \text{(A.1)} \]

\[
I_{22} = \frac{\partial^2 l}{\partial \beta^2} = -\frac{n}{\beta^2} + (\alpha + 1) \sum_{i=1}^{n} \frac{x_i^2}{(1 + \beta x_i)^2} \\
- 2a \sum_{i=1}^{n} \frac{x_i^2}{(1 + \beta x_i) \left[1 + (1 + \beta x_i)^{\eta}\right]}, \]

Disclosure

The authors acknowledge that the abstract of the manuscript had been presented in a conference paper under the link http://archive.stat.uconn.edu/lida17/program.pdf.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

The authors have equally contributed to this work. All authors read and approved the final manuscript.

References

[1] K. S. Lomax, "Business failures: another example of the analysis of failure data," *Journal of the American Statistical Association*, vol. 49, no. 268, pp. 847–852, 1954.

[2] E.-H. A. Rady, W. A. Hassanein, and T. A. Elhaddad, "The power Lomax distribution with an application to bladder cancer data," *SpringerPlus*, vol. 5, 1838 pages, 2016.

[3] M. H. Tahir, G. M. Cordeiro, M. Mansoor, and M. Zubair, "The Weibull-Lomax distribution: properties and applications," *Hacettepe Journal of Mathematics and Statistics*, vol. 44, no. 2, pp. 455–474, 2015.

[4] I. B. Abdul-Moniem, "Recurrence relations for moments of lower generalized order statistics from exponentiated Lomax distribution and its characterization," *International Journal of Mathematical Archive*, vol. 3, pp. 2144–2150, 2012.

[5] S. A. Al-Awadhi and M. E. Ghitany, "Statistical properties of Poisson-Lomax distribution and its application to repeated accidents data," *Journal of Applied Statistical Science*, vol. 10, no. 4, pp. 2035–2040, 2001.

[6] A. Asgharzadeh, H. S. Bakouch, and L. Esmaeili, "Pareto Poisson-Lindley distribution with applications," *Journal of Applied Statistics*, vol. 40, no. 8, pp. 1717–1734, 2013.
[7] G. M. Cordeiro, E. M. Ortega, and B. z. Popović, “The gamma-Lomax distribution,” *Journal of Statistical Computation and Simulation*, vol. 85, no. 2, pp. 305–319, 2015.

[8] M. E. Ghitany, F. A. Al-Awadhi, and L. A. Alkhalifa, “Marshall-Olkin extended Lomax distribution and its application to censored data,” *Communications in Statistics—Theory and Methods*, vol. 36, no. 9-12, pp. 1855–1866, 2007.

[9] R. C. Gupta, M. E. Ghitany, and D. K. Al-Mutairi, “Estimation of reliability from Marshall-Olkin extended Lomax distributions,” *Journal of Statistical Computation and Simulation*, vol. 80, no. 7-8, pp. 937–947, 2010.

[10] A. J. Lemonte and G. M. Cordeiro, “An extended Lomax distribution,” *Statistics*, vol. 47, no. 4, pp. 800–816, 2013.

[11] B. Al-Zahrani and H. Sagor, “Statistical analysis of the Lomax-logarithmic distribution,” *Journal of Statistical Computation and Simulation*, vol. 85, no. 9, pp. 1883–1901, 2015.

[12] A. H. El-Bassiouny, N. F. Abdo, and H. S. Shahen, “Exponential Lomax distribution,” *International Journal of Computer Applications*, vol. 121, no. 13, pp. 24–29, 2015.

[13] N. M. Kilany, "Weighted Lomax distribution," *SpringerPlus*, vol. 5, no. 1, article no. 1862, 2016.

[14] G. M. Cordeiro, M. Alizadeh, and P. R. D. Marinho, "The type I half-logistic family of distributions," *Journal of Statistical Computation and Simulation*, vol. 86, no. 4, pp. 707–728, 2016.

[15] R. E. Glaser, "Bathtub and related failure rate characterizations,” *Journal of the American Statistical Association*, vol. 75, no. 371, pp. 667–672, 1980.

[16] I. S. Gradshteyn and I. M. Ryzhik, *Tables of Integrals, Series, and Products*, Academic Press, New York, NY, USA, 2007.

[17] E. T. Lee and J. W. Wang, *Statistical Methods for Survival Data Analysis*, John Wiley and Sons, New York, NY, USA, 3rd edition, 2003.

[18] R. C. Gupta, P. L. Gupta, and R. D. Gupta, “Modeling failure time data by Lehman alternatives,” *Communications in Statistics—Theory and Methods*, vol. 27, no. 4, pp. 887–904, 1998.

[19] M. V. Aarset, "How to identify a bathtub hazard rate," *IEEE Transactions on Reliability*, vol. 36, no. 1, pp. 106–108, 1987.

[20] R Core Team, *R: A Language and Environment for Statistical Computing*, R Foundation for Statistical Computing, Austria, 2015, https://www.R-project.org/.
