Epidemiology, Pattern of Recurrence and Survival in Triple-negative Breast Cancer: A Retrospective Analysis

Dharmendra Singh, Niladri Roy, Sumana Maiti Das

Department of Radiotherapy, Institute of Post Graduate Medical Education and Research, Kolkata, India.

Abstract

Background: Breast cancer is the most common cancer in the world. Triple-negative breast cancer (TNBC) characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and Her2neu receptor. This study investigated the epidemiological characteristics and survival in non-metastatic TNBC.

Materials and methods: Data from medical records of patients with breast cancer between 20014 and 2018 were retrieved, and patients with TNBC were identified and analyzed for demographic and clinicopathological features. Survival analyses were performed using the Kaplan–Meier method for disease-free survival (DFS) and overall survival (OS).

Results: A total of 457 nonmetastatic breast cancer patients were registered at our institute from January 2014 to August 2018, of which 137 were triple-negative breast cancer (TNBC). This accounted for 29.9% of nonmetastatic breast cancer during this period. With the median age of 45 years at diagnosis, the most common presenting complaint was breast lump. The median duration of symptoms was 30 months. The most commonly affected age group was 41-50 years. The majority of the patients were in a locally advanced stage (69.3%) while 30.7% were in the early stage. 29.2% recurrence at 38 months of median follow up. Recurrence was statistically significantly correlating with age ≤ 35 (p = < 0.001), pathological stage (p = < 0.001), nodal status at diagnosis (p = < 0.001), perineural invasion (PNI) (p = < 0.001), number of positive lymph nodes (p = < 0.001). The mean DFS and OS were 43.6 and 46 months respectively. 3-year DFS and OS were 65.5% and 66.2 % respectively.

Conclusion: TNBCs are high-grade tumors mostly presented in locally advanced stages and most of the patients are young. TNBCs are clinically aggressive with high risk of metastasis to visceral organs. The survival of TNBCs in the Indian scenario is poor in comparison to Western populations, probably due to racial factors, socioeconomic factors and healthcare access facility.

Keywords: Triple-negative breast cancer- poor prognosis of TNBC- lymph node ratio- survival

Introduction

Breast cancer is the most common cancer diagnosed annually, as per GLOBOCAN 2018 data the incidence and mortality of breast cancer is 11.6% and 6.6% respectively [1]. Breast cancer is the leading cause of cancer-related death among women around the world. Breast cancer is the most frequently observed cancer (14% of the total cases) and it is the leading cause of cancer death (11-1% of the total cases) in India [2]. In India among the females breast cancer is the most common cancer with an incidence of 27.7%. In developing countries, about half the breast cancer cases and 60% of the deaths estimated to occur [3]. Breast cancer is one of the most complex diseases in terms of cellular origin, tumor pathology, molecular subtypes, gene mutations, metastatic pattern, disease progression, therapeutic response and clinical outcome [4-5]. Breast cancer can be subclassified into different subtypes on the basis immunohistochemical (IHC) protein overexpression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor type 2 (Her2neu) as luminal A (ER-positive; Her2neu-negative), luminal B (ER-positive; Her2neu-negative); Her2neu enriched
Asian Pacific Journal of Cancer Care• Vol 5• Issue 2

Dharmendra Singh, et al: Epidemiology, Pattern of Recurrence and Survival in Triple-negative Breast Cancer:

The triple-negative breast cancers (TNBC) are considered as most malignant subtypes as these subtypes are associated with increased tumor size, increased incidence of axillary lymph node involvement and poor prognosis as compared to other subtypes [8, 9-10]. TNBC accounts for approximately 12% to 17% of all invasive breast cancers in Western populations. This study was aimed to investigate the epidemiological characteristics and survival in non-metastatic TNBC presented at a tertiary care center at Kolkata.

Materials and Methods

Data from the medical records of patients attending the department of Radiotherapy at the Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata were retrieved between January 2014 to August 2018 of non-metastatic TNBC were identified and analyzed after approval from Institutional Ethics Committee. Tumors with IHC of ER, PR with expression ≤1% and a score of 0 or +1 for Her2neu considered as TNBC. IHC for Her2neu having a score of +2 were considered for fluorescence in situ hybridization (FISH) and those with FISH negative for Her2neu also considered as Her2neu negative. IHC done on formalin-fixed paraffin-embedded sections by polymer horseradish peroxidase technique. Patients with TNBCs classified histopathologically according to WHO classification [11]. Histological grade of tumors was determined using Nottingham histological score [12]. All the patients were staged according to the American Joint Committee on Cancer (AJCC TNM) 7th edition. Patients with stage I, IIA and a subset of IIB (T2N1M0) considered as early breast cancer (EBC) while a subset of stage IIB (T3N0M0), IIA, IIB and IIC as locally advanced breast cancer (LABC). The morphological parameters analyzed were tumor size, histological type, histological grade, Lymphovascular invasion (LVI), perineural invasion (PNI), number of involved lymph nodes, total number of lymph nodes in the specimen and lymph node ratio (ratio of involved lymph nodes to the total number of lymph nodes in the post-operative specimen).

Statistical analysis

Statistical evaluation was done using SPSS version 25. Baseline demographic and tumor characteristics of TNBC were analyzed. Univariate analysis of prognostic factors was done using the Log Rank test. Co-relation between tumor size and lymph node involvement, upfront surgery and recurrence rates, lymph node status and type of recurrence, and relapses were analyzed. Chi-square test was done to assess the statistical significance of these correlations. Survival estimation was done using the Kaplan Meier method. Multivariate analyses were performed using the Cox regression model. A ‘p’ value of <0.05 was considered statistically significant.

Results

A total of 457 nonmetastatic breast cancer patients were registered at our institute from January 2014 to August 2018, of which 137 were triple-negative breast cancer (TNBC). This accounted for 29.9% of nonmetastatic breast cancer during this period. 137 patients were eligible for this study as non-metastatic TNBC. The median age at diagnosis was 45 years (20-75). Clinical features including pain, lump, lump with pain, nipple discharge, and lump with ulcers were 19%, 48.9%, 15.3%, 1.5%, and 15.3% respectively. The tumor was right-sided in 49.6% and left-sided in 50.4% at presentation. The median duration of symptoms was 30 weeks (8 – 54). The age group distribution show 20-30 years, 31-40 years, 41-50 years, 51-60 years, 61-70 years, and > 70 years were 13.9%,
Table 1. Comparative Analysis of Different ClinicoPathological Parameters (N=137)

Variable	EBC Count	EBC N %	EBC N %	LABC Count	LABC N %	p-value
Age < 35	7	5.1	30	21.9	0.070	
Side	No	35	25.5	65	47.4	
Presenting complaints	Right	23	16.8	45	32.8	0.425
	Left	19	13.9	50	36.5	
Age Group	3	2.2	16	11.7	0.365	
Nodal status	No	2	1.5	13	9.5	
Pregnancies	Never	2	1.5	15	10.9	0.071
	One or more	40	29.2	80	58.4	
Breast feeding	Yes	40	29.2	80	58.4	0.071
	No	2	1.5	13	9.5	
NACT	Yes	4	2.9	30	21.9	0.006
	No	38	27.7	65	47.4	
Surgery upfront	Yes	38	27.7	65	47.4	0.006
	No	4	2.9	30	21.9	
Type of surgery	BCS	16	11.7	0	4.4	<0.001
Nodal status	MRM	26	19.0	95	69.3	
HPE subtype	Positive	19	13.9	65	47.4	0.010
	Negative	23	16.8	30	21.9	
Cribiform	ILC	2	1.5	8	5.8	0.081
Medullary		1	0.7	1	0.7	
NOS	35	25.5	85	62.0		
BR grade	Grade I	0	0.0	2	1.5	0.268
	Grade II	17	12.4	27	19.7	
	Grade III	25	18.2	66	48.2	
Pathological T	pT1	3	2.2	2	1.5	<0.001
	pT2	39	28.5	12	8.8	
	pT3	0	0.0	47	34.3	
	pT4	0	0.0	34	24.8	
Pathological N	pN0	23	16.8	30	21.9	<0.001
	pN1	19	13.9	14	10.2	
	pN2	0	0.0	37	27.0	
	pN3	0	0.0	14	10.2	

Continued Table 1.

Variable	EBC Count	EBC N %	EBC N %	LABC Count	LABC N %	p-value
Postoperative stage	Stage IA	3	2.2	0	0.0	<0.001
	Stage IIA	20	14.6	0	0.0	
	Stage IIB	19	13.9	18	13.1	
	Stage IIIA	0	0.0	33	24.1	
	Stage IIIB	0	0.0	30	21.9	
	Stage IIIC	0	0.0	14	10.2	
LNR group	Not available	2	1.5	9	6.6	<0.001
Chemotherapy regimen	AC à T	24	17.5	54	39.4	0.635
	TAC	18	13.1	39	28.5	
Axilla RT	Yes	37	27.0	89	65.0	0.03
	Not indicated	3	2.2	0	0.0	
SCF RT	Yes	34	24.8	89	65.0	<0.001
	Not indicated	6	4.4	0	0.0	
Site of recurrence	No recurrence	39	28.5	55	40.1	0.007
	Ipsilateral recurrence	1	0.7	4	2.9	
	Lung metastasis	0	0.0	6	4.4	
	Liver metastasis	0	0.0	10	7.3	
	Bone metastasis	0	0.0	2	1.5	
	Brain metastasis	2	1.5	14	10.2	
	Contralateral metastasis	0	0.0	4	2.9	
Recurrence	Yes	3	2.2	40	29.2	<0.001
	No	39	28.5	55	40.1	

EBC: early breast cancer; LABC-locally advanced breast cancer; NACT-neoadjuvant chemotherapy; HPE-histopathological examination; BR grade-Bloom-Richardson grade; T-pathological tumor size; N-pathological nodal status; LNR-lymph node ratio; LVI-Lymphovascular invasion; PNI-Perineural invasion; RT-radiation; SCF-supraclavicular; NOS- not otherwise specified
27%, 30.7%, 21.2%, 6.6%, and 0.7% respectively. The age group distribution of the patient concern to the stage given in Figure 1. 13.9% of patients were ≤ 35 years of age and 86.1% were > 35 years. The majority of the patients were post-menopausal with 53.3% and 46.7% were premenopausal. The nulliparity and history of breastfeeding were 12.4%, and 87.6% respectively. 10.9% of patients were unmarried and 89.1% of patients were married. The median age at first childbirth was 29 years. Most of the patients were considered for upfront surgery, 75.2% were considered for upfront surgery while 24.8% of patients received neoadjuvant chemotherapy (NACT) followed by surgical intervention. A modified radical mastectomy (MRM) was done in 88.3% of cases and 11.7% underwent breast conservative surgery (BCS). Adjuvant chemotherapy was considered in 98.5% of cases and 1.5% of patients defaulted for adjuvant chemotherapy. Chemotherapy regimen mostly consisted of anthracycline (A) and Cyclophosphamide (C) of 4 cycles followed by taxanes (T) of 4 cycles (4 x AC→4 X T) constituting 56.9% and followed by 6 cycles taxane, anthracycline and Cyclophosphamide (TAC) constituting 41.6% of cases. In the postoperative histopathological report review, it was observed that subtypes of invasive ductal breast

Table 2. Univariate Analysis

Variable	Disease-free Survival (DFS) %	p-value	Overall Survival (OS) %	p-value	
Age <35	Yes	32.5	36.3	< 0.001	
	No	47.8	< 0.001	49.8	< 0.001
Postmenopausal	Yes	48.2	48.3		
	No	36.9	0.003	40.38	0.003
Stage	EBC	51.5	51.5		
	LABC	38.7	< 0.001	40.7	< 0.001
Nodal status	Positive	33.5	38.4		
	Negative	55.3	< 0.001	55.3	< 0.001
LVI	Positive	42.1	43.1		
	Negative	49.5	0.041	50.2	0.020
PNI	Positive	39.6	40.3		
	Negative	48.9	< 0.001	55.5	< 0.01
Pathological T	T1	48.6	49.8		
	T2	46.4	45.4		
	T3	41.4	0.023	44.5	0.002
	T4	32.2	33.9		
Pathological N	N0	55.5	55.5		
	N1	41.0	40.8		
	N2	31.9	< 0.001	37.8	< 0.001
	N3	22.2	32.5		
carcinoma were not otherwise specified (NOS), cribriform, medullary and invasive lobular carcinoma as 87.6%, 7.3%, 3.6% and 1.5% respectively. The grading of the tumors were grade I, grade II, and grade III as 1.5%, 32.1% and 66.4% respectively of the tumors. Pathologically tumor size T1, T2, T3 and T4 were 3.6%, 37.2%, 34.3% and 24.8% respectively. The pathological nodal status of the tumors was N0, N1, N2 and, N3 as 38.7%, 24.1%, 27%, and 10.2% respectively. The lymph node positivity was statistically significantly associated with large tumor size (p=0.040), but not statistically significantly associated with LVI (p=0.074), PNI (p=0.139) and higher tumor grade (p=0.765). The median total number of lymph nodes removed during surgical intervention was nine (9) and the median number of positive lymph nodes was two (2). Lymph node ratio (LNR) was calculated as the ratio of the number of positive lymph nodes to the total number of lymph nodes removed during surgical intervention. The median LNR was 0.25 (0.00 – 1.00). LNR was not available in 8.02% (11) of patients as there were no pathologically identifiable nodal tissues were found in the postoperative specimen. Patients were classified as low risk, intermediate-risk, and high risk based on LNR.

Patients with LNR 0.00-0.20, 0.21-0.65, and > 0.65 were defined as low risk, intermediate-risk, and high risk respectively. LNR with low risk, intermediate risk, high risk, and not available were in 42.3%, 28.5%, 21.2%, and 8.02% respectively. Overall 61.3% of patients presented with node-positive disease while 38.7% presented with node-negative disease. Early breast cancer was seen in 30.7% and locally advanced breast cancer was observed in 69.3% of cases. Postoperative staging shows that stage I, II, III, IIIB, and IIC were 2.2%, 14.6%, 27%, 24.1%, 21.9% and 10.2% respectively. Lymphovascular invasion (LVI), perineural invasion (PNI), and margin positive were observed in 88.3%, 67.2%, and 1.5% respectively. Adjuvant radiation was indicated in 97.8% of cases, but taken by 92% of patients and adjuvant radiation was defaulted by 5.8% of cases. Twenty-nine percent of patients show recurrences at a median follow up of 38 months. Brain was the most common site of recurrence with 37.2%, liver 23.2%, lung 13.9%, ipsilateral 11.6%, contralateral metastasis 9.3% and bone 4.6% respectively. Comparative analysis of different clinicopathological parameters presented in Table 1. Recurrence was statistically significantly correlating...
with age at presentation (p=0.019; nominal by interval;
Etα=0.309), age ≤35 (p<0.001), pathological N status
(p<0.001), pathological stage (p<0.001), nodal status
at diagnosis (p<0.001), PNI (p<0.001), number
of positive lymph nodes (p<0.001), and LNR (p=
<0.001). Recurrence was not correlating statistically
significantly with pathological T status (p=0.084), LVI
(p=0.083), grade (p=0.58), and total number of lymph
nodes removed (p=0.32). The recurrence according to
stage and age group represented as in Figure 2. The
median DFS was not reached but mean DFS was 43.6
months (95% CI; 40.58 – 46.72). The median OS was 46
months (95% CI; 39.1 – 52.8). Three-year DFS and OS
were 65.5% and 66.2 % respectively. The Kaplan-Meier
estimate of survival for DFS (Figure 3A) and OS is
represented in (Figure 3B). The 3-year DFS for patients
with EBC and LABC was 92.5% and 55.8% respectively
(p<0.001), the Kaplan-Meier survival curve is
represented in Figure 4. In univariate analysis age ≤35,
stage, nodal status, pathological T status, and pathological
N status, have a significant impact on DFS and OS given
in the Table 2.

Discussion

TNBC is known for its heterogeneity and early
recurrence. One of the important things to consider in
TNBC is that the ineffectiveness of the therapies
targeted against ER, PR, and Her2neu receptors. Patients
expressing these receptors having different therapeutic
strategies due to the available number of anti-targeted
agents. Therefore, the non-TNBCs have a good prognosis
in comparison to TNBC. When TNBCs diagnosed earlier
and treated adequately, the survival rates are comparable
to non-TNBCs [13]. In this study TNBC accounted for
29.9% of non-metastatic breast cancer. Studies by
Indian authors have reported a wide range of TNBCs
from 11.8% to 31.9% [14-15]. Sarin et al. reported an
incidence of 20%, similarly Chintalapani et al. reported
an incidence of 19.3% of TNBC [16-17]. Murzata et al.
reported TNBC incidence in their study as 43.5% [18].
In our study the median age at presentation was 45 years
which was similar to other studies as Lakshmaiah et al.
and Suresh et al. the median age in their studies were 45
years and 49 years respectively [19-20]. Previous reports
have also suggested a younger age at diagnosis in TNBCs
(Hudis and Gianni, 2011; Sen et al., 2012). The median
age at presentation in the Western population in a study
was 53 years [21]. In this study the most commonly
involved age group was 41-50 years with 30.7% followed
by 31-40 years with 27%. A study by Chowdhary et al.
of 185 TNBC patients, almost reported the similar findings
[22]. In this study the tumor was right-sided in 49.6%
and left-sided in 50.4% at presentation. Doval et al. in
their study of 148 patients found 53.45% right-sided and
left-sided in 46.6% [23]. In our study the majority of the
patient were postmenopausal 53.3% which was similar
to that of a study by Chintalapani et al. in their study
56.6% of patients were postmenopausal while Lakshmaiah
et al. reported 40.47% of postmenopausal among the
analysis of 84 patients [19]. A study by Doval et al. shows
postmenopausal patients with 69.9%, which is higher than
our study [23]. These studies suggest that the hormonal
status of the patient in the postmenopausal state may have
a role in the tumor growth or angiogenesis (Demicheli
et al., 2004). In this study most of the patients (75.2%)
underwent upfront surgical intervention and the rest of
24.8% were considered for NACT followed by surgical
intervention. In this study MRM was the main surgical
intervention followed by BCS similar reports were also
found in other Indian studies [17, 24-19]. The type of
surgical procedure depends on the extent of the presenting
disease, patient’s preference, and access to tertiary health
care center. In this study majority of the patient were
pathological stage III (56.2%) and grade III (66.4%).
Indian literature regarding TNBC also reported similar
findings as most of the TNBC presented with stage III
[25, 23-19]. In this study the pathological T2 (37.2%) was
the most common finding followed by T3 (34.3%), similar
findings were reported by Lakshmaiah et al. in their study
with pathological T2 (35.7%), Hakim A, et al. in their
study also reported pathological T2 (31.4%) [26], while
Doval et al. reported pathological T2 (62.1%) in their study
which was not consistent with our study [23]. In our study
majority (61.3%) of patients presented with node-positive
almost similar findings were reported by Lakshmaiah et
al. in their study with 63% node-positive. Other Indian
studies reported axillary node positivity in their studies
from 50% to 74% [27, 18, 28] while Doval et al. reported
36.8% node-positive in their study [23], which was not
consistent with our study. In our study 30.7% of patients
were EBC and 69.3% were LABC. A study by Suhani
et al. reported 56.1% of patients of TNBC presented as
LABC [29]. Most of the Indian studies reported the
presentation of LABC from 35% to 60% [18, 26-23-19].
The recurrence rate in this study was 29.2% at the median
follow-up of 38 months. In this study the brain was the
most common site of recurrence followed by liver and
lung in TNBCs. Rathi et al. in their study reported lungs as
the most common site of recurrence [28]. The mean DFS
and OS were 43.6 and 46 months respectively. Three-year
DFS and OS were 65.5% and 66.2% respectively. Rathi
et al. reported 74.2% of 3-year DFS while Suresh et al.
and Sarin et al. reported 3-years DFS more than 80%
[28, 23-16]. The data from Chinese studies reported DFS
and OS 77.8% and 79.9% [30]. A study from the USA
reported a 3-year RFS of 63% and an OS of 71% [31].
These data reveals wide variability of survival outcomes
around the regions of the world. This may be due to stage
at presentation and survival analysis without stage IV
disease etc. In our study the lower DFS may be due to
a higher percentage of patients with LABC compared to
other Indian studies on TNBC. The survival was better in
EBC compared to LABC. The survival analysis revealed
that better DFS and OS are significantly associated with
EBC. The patients with EBC were managed with surgical
intervention followed by adjuvant systemic chemotherapy
and radiotherapy (when indicated) to reduce the risk of
recurrence. Those patients presented with LABC, the
majority of them were managed with NACT followed
by surgery and adjuvant chemotherapy and radiotherapy. Axillary lymph node involvement results in poor DFS and OS which is statistically significant. This node involvement is well known prognostic factor in breast cancer that can predict the recurrence. The result of this study is per other studies (Tian et al. 2008; Ovarcicek et al., 2011). The pathological feature LVI did not influence DFS or OS but PNI was associated with poor DFS and OS with statistical significance. TNBC responds well to anthracycline and taxane-based systemic chemotherapy, which provide good response to treatment, though it may result in early recurrence [32-33].

In conclusion, triple-negative breast cancers constitute a significant proportion of breast cancer which is ER-negative, PR-negative, and Her2neu negative. They are high-grade tumors mostly presented in locally advanced stages and most of the patients are young. Locally advanced TNBCs are clinically more aggressive than early breast cancers. TNBCs are clinically aggressive with high risk of metastasis to visceral organs compared to non-TNBCs. However TNBCs respond well to systemic chemotherapy, thus better and less toxic management options to be considered along with there is also a need for newer targeted therapy. The survival of TNBCs in the Indian scenario is less in comparison to the Western population, probably due to racial factors, socioeconomic factors and health care access facility. The present study has a limitation of selection bias which may be due to retrospective nature.

Financial support and sponsorship
Nil

Acknowledgments
We acknowledge the help extended by the Department of General Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India.

Conflicts of Interest
The authors have no conflicts of interest to declare.

References
1. World Health Organization. Global Health Observatory. Geneva: World Health Organization; 2018. Available from http://gco.iarc.fr/
2. Globocan India 2018. Population fact sheets p. 1-2. Available from http://www.gco.iarc.fr/today/data/factsheets/populations/356-india-factsheets.pdf
3. Ahmedin Jemal, DVM, Ph.D.; Freddie Bray, Ph.D.; Melissa M. Center, MPH; Jacques Ferlay, ME; Elizabeth Ward, Ph.D. Global Cancer Statistics; CA Cancer J Clin 2011;61:69–90.; DOI:10.3322/caac.20107
4. Idil Cetin, Mehmet Topcul; Triple Negative Breast Cancer; Asian Pac J Cancer Prev 15 (6), 2427-2431; DOI:http://dx.doi.org/10.7314/APJCPC.2014.15.6.2427
5. William D. Foulkes, M.B., B.S., Ph.D., Ian E. Smith, M.D., Jorge S. Reis-Filho, M.D., Ph.D.; Triple-Negative Breast Cancer; N Engl J Med 2010;363:1938-48.; DOI: 10.1056/NEJMra1001389.
6. Sattar HA. Female Genital System and Breast. In: Kumar V, Abbas AK, Aster JC. Robbins Basic Pathology. 9th Eds. Philadelphia, Elsevier 2013. Pp. 681-714.
7. Hashmi AA, Edhi MM, Naqvi H, Faridi N, Khurshid A, Khan M. Clinicopathological features of triple-negative breast cancers: An experience from Pakistan. Diagn Pathol. 2014;9:43.
8. T. Sorlie, C. M. Perou, and R. Tibshirani, “Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10869–10874, 2001.
9. T. Sorlie, R. Tibshirani, and J. Parker, “Repeated observation of breast tumor subtypes in independent gene expression data sets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, pp. 8418–8423, 2003.
10. N. U. Lin, A. Vanderplas, M. E. Hughes et al., “Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network,” Cancer, vol.118,no.22,pp.5463–5472,2012.
11. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de, Vijver MJ, eds. WHO classification of tumors of the breast, 4 edn. Geneva: World Health Organization 2012
12. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 1991;19:403–10.
13. Schwentner L, Wolters R, Kretz K, Wischnewsky MB, Kreienberg R, Rottscholl R, et al. Triple-negative breast cancer: The impact of guideline-adherent adjuvant treatment on survival – A retrospective multi-center cohort study. Breast Cancer Res Treat 2012;132:1073-80
14. Sharma B, Satyanarayana, Kalwar A, Sharma N, Kapoor A, Kumar N. Five year retrospective survival analysis of triple-negative breast cancer in North-West India. Indian J Cancer 2013;50:330-2.
15. Sharma M, Sharma JD, Sarma A, Ahmed S, Kataki AC, Saxena R, et al. Triple negative breast cancer in people of North East India: Critical insights gained at a regional cancer center. Asian Pac J Cancer Prev 2014;15:4507-11
16. Sarin R, Khandrika L, Hanitha R, Avula A, Batra M, Kaul S, et al. Epidemiological and survival analysis of triple-negative breast cancer cases in a retrospective multicenter study male breast cancer: Epidemiological data from the North of Peru. Indian J Cancer 2016;53:353-9.
17. Chintalapani SR, Bala S, Konatam ML, Gundeti S, Kuruva SP, Hui M. Triple-negative breast cancer: Pattern of recurrence and survival outcomes. Indian J Med Paediatr Oncol 2019;40:67-72.
18. Murtaza Akhtar, Subhraraj Dasgupta, Murtuza Rangwala; Triple-negative breast cancer: An Indian perspective. Breast Cancer: Targets and Therapy 2015;7:239–243; http://dx.doi. org/10.2147/BCTTT.S58442
19. Lakshmaiah KC, Das U, Suresh TM, Lokanatha D, Babu GK, Jacob LA, et al. A study of triple-negative breast cancer at a tertiary cancer care center in Southern India. Ann Med Health Sci Res 2014;4:933-7.
20. Suresh P, Batra U, Doval DC. Epidemiological and clinical profile of triple-negative breast cancer at a cancer hospital in North India. Indian J Med Paediatr Oncol 2013;34:89-95.
21. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res 2007;13(15 Pt 1):4429-34.
22. G. S. Chowdhury, Sarthak Mishra; An analysis of incidence and prevalence and prognostic outcomes for women with triple-negative breast cancer in an Indian setting;
International Journal of scientific research; Volume-8 | Issue-12 | December - 2019 | PRINT ISSN No. 2277 - 8179 | DOI: 10.36106/ijsr

23. Dinesh Chandra Doval, P Suresh, Rupal Sinha, Saud Azam, Vineet Talwar, Kapil Kumar, Anurag Mehta, Ullas Batra; Eight Year Survival Analysis of Patients with Triple Negative Breast Cancer in India; Asian Pacific Journal of Cancer Prevention, Vol 17, 2016; Asian Pac J Cancer Prev, 17 (6), 2995-2999

24. Satyanarayan V. and Ashok Akula, “Triple-negative breast cancer- experience at a tertiary care center, South India” International Journal of Current Research, 8, (11), 42382-42383.

25. Prabu MP, Raina V, Shukla NK, Mohanti BK, Deo SV. A study of triple-negative breast cancer at a Cancer Institute in India. J Clin Oncol 2011;29:15. [Suppl; Abstr e11548].

26. Hakim A et al. (2019), Epidemiology of Breast Cancer in a Single Institute in North India with High Incidence of Triple-Negative Breast Cancers. Int J Ped & Neo Heal.3:1, 27-31.

27. G M Reddy, Pooja K Suresh, R R Pai; Clinicopathological features of triple-negative breast carcinoma; Journal of Clinical and Diagnostic Research. 2017 Jan, Vol-11(1): EC05-EC08; DOI: 10.7860/JCDR/2017/21452.9187

28. Deepak Kumar Rath, S Chaudhary, M Sharma, et al. “Incidence and Clinical Profile of Triple-Negative Breast Cancer (TNBC).”IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), vol. 17, no. 1, 2018, pp. 04-06; DOI: 10.9790/0853-1701100406

29. Suhani, Parshad R, Kazi M, Scenu V, Mathur S, Dattagupta S, et al. Triple-negative breast cancers: Are they always different from non-triple-negative breast cancers? An experience from a tertiary center in India. Indian J Cancer 2017;54;658-63.

30. Li CY, Zhang S, Zhang XB, et al (2013). Clinicopathological and prognostic characteristics of triple-negative breast cancer (TNBC) in Chinese patients: a retrospective study. Asian Pac J Cancer Prev, 14, 3779-84.

31. Dawood S, Broglio K, Kau SW, et al (2009). Triple receptor negative breast cancer: the effect of race on response to primary systemic treatment and survival outcomes. J Clin Oncol, 27, 220-6

32. Liedke C, Mazouni C, Hess KR, et al (2008). Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol, 26, 1275-81.

33. Keam B, Im SA, Kim HJ, et al (2007). Prognostic impact of clinicopathological parameters in stage II/III breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: paradoxical features of the triple-negative breast cancer. BMC Cancer, 7, 203.

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.