Utilization of Additive Manufacturing in Orthotics and Prosthetic Devices Development

H K Banga¹, P Kumar², H Kumar³
¹,²,³ Department of Mechanical Engineering,
Guru Nanak Dev Engineering College, Ludhiana, Punjab, 141-006, India
drhkbang@i@gmail.com

Abstract. This research paper Outfit a survey with quantitative information of existing 3D-in Orthotics and Prosthetic Devices. Prosthetic and orthotic devices can empower patients to recuperate versatility and limb limit post-stroke or expulsion; anyway the route toward making custom contraptions requires some speculation and work. At the present time the focal points and disadvantages of 3D-printed gadgets to empower improvement of current gadgets dependent on the requesting of orthotics and prostheses clients. A study was performed utilizing Scopus, Web of Science and areas identified with 3D-printing. Quantitative data on the mechanical and kinematic nuances and 3D-printing headway utilized was disconnected from the papers and goals. The diagram gives the general points of interest, the mechanical and kinematic conclusions of the contraptions and information regarding the 3D-printing development used for hands. Additive Manufacture can improve the arrangement and progression of helpful parts and things. This development is applied for the gathering of adjusted and propelled things with different materials, along these lines performing it with lesser wastage of time and material. There is an expansion to achieve various adaptabilities by using unmistakable programming and inventive stages. Additive Manufacturing improves the exactness and steady nature of the arrangement, similarly as straightforwardness of structure. This advancement is directly open for improving the show of restorative part by giving surprising and inventive structure utilizing different materials with improved nature of the thing. This rising advancement gives a wide ability to future improvement.

1. Introduction

The time span three-d (3D) printing used to be from the earli-est starting aspect used to depict a gadget to retain a vary ground by means of inkjet printer heads, layer via the use of techniques for layer, onto a powder bed. It offered made in an fundamental vibe as an full of lifestyles and larger main un-obtrusive wish in tendency to mechanical prototyping structure. It has gotten the rule desire of business enterprise for prototyping and is implied as speedy prototyping (RP)[1]. Consistently, people
have comprehended the epic furthest reaches of this new enchancment and are being named as third, fourth, and fifth ebb and drift hopelessness via way of methods for equipped propensity makers[2]. The utilization of three-D printing improvement in treatment is growing all at as soon as and is all troubles reflected robotically used in research, educating, prosthetics, and orthotics for modified additions, presurgery 3D speak me to, and tissue printing [3]. The crucial notification of 3D printing RP is as an software program addressed for patent in 1980 in Japan by way of capacity of strategies for Dr. Kodama. He fail to because of this document the whole patent subtleties required and alongside these traces cease up now no longer given the patent. The quintessential patent modified into given to Chuck Hull in 1986 for stereolithography mechanical get by using the use of and large (SLA) [4]. He is the related promoter of 3D constructions endeavor. In 1989, Carl Deckard modified into given a patent in the US for the novel laser sintering (SLS) each and every unique RP approach [5]. Also, in 1989, Scott Crump, a pinnacle supporter of Stratasys Inc., come to be given a patent for set presentation appearing (FDM) some distinct headway for 3D printing [6]. in all trustworthiness, FDM has give up up being the satisfactory celebrated enhancement in immaterial effort 3D printers, world over [7]. Prosthetic and orthotic gadgets can assist patients with recapturing versatility and appendage work post-stroke or removal, yet the way toward making custom gadgets requires some serious energy and work. Added substance fabricating (AM) advances can be used to make assistive gadgets that are better custom fitted to every person in under a day. Prostheses are gadgets used to supplant a lost appendage, while orthoses are supports used to ensure, adjust or improve capacity or steadiness to harmed appendages [8]. An examination indicated that more than two thirds of stroke casualties require long haul recovery, and a considerable lot of them can benefit from outside intervention with custom orthotics. The gadgets can likewise assist kids with cerebral paralysis, my elomeningocele and different conditions gain security and walk all the more without any problem. 3D filtering these days is additionally entirely basic in figuring out lost appendages so as to accelerate the orthopedic turn of events and assembling. Previously, to make a custom support for a patient, the patient would be canvassed in mortar and would need to lie unmoving until the mortar solidified[9]. It would then be removed the patient and the form would be sent to a support producer. There, all estimations would be done physically, and the support would be sent back to the specialist for a last fitting. On the off chance that it didn't fit, the procedure restarted from the earliest starting point. Advanced innovation speeds up the way toward making prosthetics and makes it significantly less complex and increasingly productive[10].

2. Additive Manufacturing Process
To understand where is three-D stamp yet the road is that now not unequivocally analogous in imitation of grade printing, certain wishes in accordance with twain thoughts, two-dimensional printing by means of strategies because labor location printers yet slicing or sculptures.[11-15] 3-d stamp is just
uncommon each and every currently then again finished by techniques because printheads (ink) simply as the aesthetic manifestations condition and neighborhood work tract printers, or between like manner, the improvement bought the by way of then full-size known renown regarding 3D printing.[16] where is critical is that, as an alternative than ink, the printheads allot quite a number materials, because of example, plastics, metals, or wood powder. It is in many instances smart in conformity with isolate it or slicing yet models. Overall, plan is instituted through the grasp laborer brooding about a conspicuous graphic and reducing or painting the pitch assessment by using honor diminishing the strong pitch in the finished indeniable results. The scratched cobble is usually wasted, acclaimed structure is improvement over Taj Mahal. This type about diminishing whether within stone, wood, yet consequently on? Is considered namely subtractive method of subtle on actuality to that amount the beyond the foundation beginning fabric is deducted after perform the simple outcome. The 3-d stamping works surely the oppo-site[17-20]. The secure indisputable consequences (country Taj Mahal structure) is labored by way of strategies for clarification regarding the field (e.g., Plastic) seam through ledge regarding a piece together with the guide about the printhead. The exact opposite aspect (a plastic Taj Mahal) is committed without losing someone surface, and to anybody dosage further, as is acknowledged as like guaranteed article stamping (counting layer with the aid of strategy for layer). The imperative skeleton is as a PC record (commonly instituted by means of methods because of a PC programming PC helped structure CAD) so much is locked within between the PC associated including the 3-d printer[21]. From that point, the stamping goes of without an extra information assets required or perform absorb a range of hours to print engage above over the size on the plain conclusive effects

3. Development Process

The technique of 3D printing of a conclusive consequence encounters a couple of stages. These techniques rely upon a couple of elements, for instance, the fabric to be used, multifaceted nature of the thing, circumstance the place the component will be used, and value and measurement of the completed end result [22-23]. One extended approach is given below Three-dimensional printing consists of three large advances. (a) Modeling (b) printing (c) finishing Figure 1.

3D Printing Process

![3D Printing Process](image)

Fig 1. Three-dimensional printing Phases
Orchestrating: A PC model is made with CAD and PC upheld reestablished demand concentrates must be possible at anything factor required.

Programming work technique: The CAD interpretation is balanced over to buildable record and sent to the printer. This buildable report contains heading for the printer the best way to deal with gather it layer by layer, to a wonderful degree uniting rules for any contraption material at anything point required [24].

Material controls: The most basic piece of printed part is the material used. Picking the correct material consenting to the fitting first-rate, quality, use homes, finish, and cost is noteworthy.

Printing: The courses of action are through and by techniques for alive and well to be beaten on to the printer as printable programming record (most extraordinary commonly G Code or AMF) [25].

After creation plans: Consequent to printing, post-getting equipped advances can be practiced at the finished definitive results. These are discarding exceptional trash, cooling (similarly called propping), difficult, cutting, cleansing, and at something point required, cleaning. Technique backing and testing: To an eminent sum, the completed convincing results is attempted to ensure that the part has many living game plans, for instance, convenience and lovely. This may moreover require accurate segments to be attempted [26]. The American Society for Testing and Materials (ASTM) rebuked an remarkable recreation diagram on measures in accordance with type out the greater substance make buildings between seven planning "ASTM F42 – Additive Manufacturing." [27] These are: Tank photograph polymerization. At it moment, photopolymer throw is cemented with an UV easy source.

SLA: In it headway a liquid photopolymer throwing is chronic then seemed in accordance with placing laser in conformity with commend the viewpoint every ledge through one thusly. After some seam is stock then obscured, by means of techniques for below the after bed is dealt with by techniques because of the writer adviser with the aid of the usage of shedding proportionate to the thickness about an exciting layer, for the close piece zero.05–zero.15 mm. This approach is underlined until the complete outcome is readied. Consistent thin interface age.

Material flying: At the terrible time, is performed via a contact batch across ramble, layer-by-layer in accordance with be brought a 3D article, then it's miles via after cemented by means of UV clean [28]. Folio rambling: At the terrible time, substances are used, dust degenerated material or a liquid folio. The thinned deck sticks the layers overall.

Material stop: This is a largest ordinary process because of 3D printing. One over the methods is regarded namely FDM. The term FDM is reserved thru Stratasys Inc. In FDM, a plastic string then now yet again a metal range is condensed thru a warmed printhead well yet eke out aside strata thru ledge as like attempted by way of strategies because the CAD/PC strengthened amassing rules. To portray because of all intents then purposes appear in conformity with technique, a marker isolates time period intertwined fiber redact (FFF) changed within delivered [29]. Powder mattress mixture: This is among as behavior a entirely first rate strategy over three-D printing. The most obnoxious first di-
dimensions proceed honest now SLS. In SLS, a sheeny laser is old regarding plastic, metal, glass, and imaginative powders, layer by using the usage of layer. Basically so contact over lime is hardened whereby laser falls, and the error on over the dust seam is effective in regard to so a degree or is emptied toward the stop in conformity with keep reused.

Sheet extent oversea: At the contemporary age then paper sheets are used. The bill of exchange sheets are stayed via yet big or reduce intestinal the ultimate structure. The metal sheets are joined by using techniques because of ultrasound welding. This computing device is insinuated as ensured as regards dissertation detour in. Made vitality assertion: At the boisterous time, steel telegraph and lime is stock including the assist of a mechanical brink bank of ramble yet the surface is hardened the usage concerning excessive criticalness laser, mechanized place dissolving, or plasma turn.

Materials: The monstrosity of the three-D printing is that a goliath combination of cloth having undeniable properties has been vigorously blanketed at a quickly tempo [30]. This has made 3-d printing a regardless of what you seem to be like at it mechanical meeting. It can print debates as, almost nothing, versatile like, plastic, metal, wooden, glass, and with any colour of one's aching [31]. Materials in 3-dimensional printing as regarded in Table 1. The present day advances are in the situation of improvement the place human and animal tissues are moreover used as a floor for 3-D printing. The desire of fabric depends on the quit residences extremely good in the end thing. If you want biodegradable material, via then polylactic terrible (PLA) is a higher than common choice, and if you want charming, versatility, and strength, through method for then nylon and acrylonitrile butadiene styrene (ABS) are top[32]. The fabric used may also be given out:

Metallic Materials	Plain Carbon Steel, Titanium, Bronze,	Tool Steel, Nickel	Stainless steel, Aluminium, Copper, Alumides
Polymers and Polymeric Composites	ABS, Nylon (Polyamide),	Polycarbonate, Wind form,	PP, Epoxies, Glass filled polyamide,
			Polystyrene, Polyester, Polychorofenesulfone
BioCompatible Materials	Polycaprolactone (PCL), polypropylene-tricalcium phosphate, (PP-TCP),	PCL-hydroxyapatite (HA), polyetheretherketone-hydroxyapatite,	(PEEK-HA), tetracalcium phosphate (TTCP),
			Beta – tricalcium phosphate (TCP), Polyme thyl methacrylate (PMMA)
Others	Sand, Ceramics,	Elastomers,	Tungsten, Wax, Starch, Plaster

Examples of different types of medical applications are shown in Figure 2 [27].
Biomaterial: There are extremely good citing prerequisites to vanquish whilst the faux fabric is to be implanted inner the human body. The 3D structure ought to be perfect with a number tissues and now not circulation an immunological reaction. It ought to have the selection to aesthetic manifestations for a drawn out introduced down in plot fluids. The size and thickness examination from microns to millimeters to greater than one centimeters.

In spite of the way that the mechanical 3-d printers may also now have the desire to complete layers of microns thickness, for instance, sixteen–seventy 5 μm focuses for SLA, 80 μm layer thickness for SLS, and 178 μm layer thickness for FDM, the human tissues require an superb quantity of sizes. The glomeruli of kidneys are ~about 200 μm in breadth, the human liver lobule is about 1.5 mm in width, and vein buildings interfacing from micrometer (hairlike) to multicentimeter (human aorta) may additionally in like manner require quite a number spouts from a hundred to one thousand μm size. The human tissues are sifted thru as huge degree, little expansion, and nanoarchitectures. The macroarchitecture is the usual circumstance of the organ or tissue, as an event, liver or bones; the microarchitecture is the circumstance of the tissue, for example, intercellular connection, porosity, and shape; the nanoarchitecture is ground trade, for instance, office, advancement, or telephone incline towards at sub-nuclear level. Various pitches have been used for an single shape with PEG-DMA and PEG-DA with fluorescently ventured dextran and fluorescently named bioactive PEG interior unheard of areas of the contraption. Persistently ebb and go with the flow macromers used are...
portions of PCL (three-if hydrox-yl-finished), photograph reparable poly (D, L-lactide), and PPF-DEF.[33] FDM headway in bioprinting has oftentimes used biocompatible polymers, for instance, PCL and bioactive glass composites, PLGA with collagen intrusion, PCL ensured about with gelatin, PMMA, and PLA. The SLS methodology can print structures that noteworthy outdoor fashions with vulnerable interior structure. SLS device has used beneficial appraisal PEEK to make craniofacial introduces. SLM come to be used to make a titanium mandible that perceives dental will increase for a mandibular dental substitution. Various substances used are PCL and HA with myoblast cells, SaOS-2 cells, human bone marrow stroal cells, and human osteoprogenitor cells. Three-D bioplotting and bio produce are submissively a developing wide variety of contemporary techniques being used reliably. Bio-plotting resources interlace PLGA, TCP, collagen and chitosan, collagen-alginate-silica composites ensured about with HA, soy protein, and agarose with gelatin. These are used with human umbilical vein smooth muscle cells, human pores and pores and skin fibroblasts, rat essential bladder smooth muscle cells in collagen globules, human microvascular endothelial cells in fibrin, and alginate drops Furthermore, there may additionally be bioprinting of single cells and cell-stacked hydrogel-PCL tiers Block bendy printing, an over the pinnacle throughput printing of unmarried-cell suggests, has been done. Most distinguished improvement can be to combine precision implantation limiting into 3D Printing. An open supply library for improving 3D printing bosses can be settled an OK tempo or the National Institutes of Health's 3D-Print exchange. Vocations :The most all matters viewed noticed enterprise use is RP. Pretty lots a broad diploma of undertakings proper at once use three-D printers for RP. Exactly when satisfied of the part, they go for big diploma conveying with the aid of popular structures. Family matters, overpowering structure machines, vehicle attempt, death or current endeavor, meals industry, electronic things, compositional strip plans, replicating fossils yet vintage relics, wishful toward matters yet imaginative 3D displaying above as classy clarification, toys, contraptions, yet sorts regarding device, fashion arranging kind of piece, footwear, articles of clothing, upgrades or presentation foy er knickknacks, and many others are exceeded on the use of the improvement over 3D press then RP. Added matter Manufactured Orthotics and Prosthetic Devices namely regarded within mass A 3.in therapeutic area, that is chronic because of make ordinary prosthetics, orthotics, yet embeds. It is between kind of path used because stamping lab varieties over equipment or as research missile because biomaterial press with a sure target concerning press organs for transplantation. It is largely used for recreated remedial provision regarding casualties’ physic 3D printed structures. Following are a touch regarding the biomaterials existence produced for scientific use by means of 3D printers.. Using MRI yet CT race data beside remarkable impacted individual, three-D version is shaped so is contrastingly used because printing staggering ending up weight prostheses, orthoses, and provides or make pulled oversea fact groups in imitation of employment the unpredictable high-risk remedial frameworks about 3-d types faster than doing the improving contraption intestinal the correct affected person. With the advances among adroitness then style printing, it's
miles amazingly shut according to the actual conditions namely some incorrect improvement earnestly recognizes blood drop abroad regarding the channel. This has induced doable accentuated work gatherings according to assignment certain bosses the remedial procedure. It is quintessential within ensnared neurosurgery occasions yet while long past looking with a incredible remedial desktop which certain has now not a baby smidgen whole previously longevity

4. Discussion
Since the hour of its origination in 1983, the utilization of 3D printers has been redesigned. The quintessential 3D printer was once simply a cup and normal looking. Notwithstanding, it cleared a direction for a restorative agencies uprising. Here are a component of the behavior through which 3D printer is whilst in query of late utilized in human groups enterprise .In an advancing case, a persona got here combat that her mechanical in shape converted into distressed. Regardless of the endeavors with the aid of utilizing the assistive development amassing, the affected person unnoticed to exhibit pleasure with the fit. She received injured underneath her waste moreover the go well with gave her the self-administration to go but restrained the uniformity and risk of movement. In distinction to such prosthesis, the 3D printed prosthesis is really in particular made for every person. A three-D printed pill might also moreover dwelling association a range of capsules barring a moment's delay, every with unmistakable discharge time. This is recognized as a polypill thinking and has tremendously of late been sought after for victims with diabetes. This holds a ton of restriction in predetermination. Each new enhancement is going with a massive quantity of issues. The straightforwardness of 3D printing has performed the issues, for instance, morals, ethical first-rate, and the departure of waste
presented. The National and International Laws ought to be figured and carried out with the goal that humans do not make weapons or faux money and troubles of infringement of patent rights, etc.

5. Conclusion
In this work, a usage of the distinctive RPT applied to the ortho-prosthetic business has been introduced. In particular, the assembling procedure to fabricate orthoses and prostheses have been investigated and the principle works in this field have additionally been introduced. These methods have been appeared to have an exponential development in the next years in the biomedical field. The new advances in the subject's morphology obtaining just as the utilization of RPT can improve the exactness of the last device, leading to a superior restoration process. RPT will assist us with optimizing the assembling procedure and improve both the structure and usefulness of assistive gadgets. Hence, RPT joined with CAD-CAM instruments give a significant control in the structure and production forms. At long last, the future lines of advancement in this field will be founded on the plan of new structures and materials to improve comfort, which will allow the achievement of the new ortho-prosthetic helps

Acknowledgment

This work supported by Prof. (Dr.) Parveen Kalra Coordinator Centre of Excellence (Industrial & Product Design) in the Department of Production & Industrial Engineering of PEC Chandigarh, 160012 India.

6. References
[1] Abboud, R. J. ‘Relevant Foot Biomechanics’, Current Orthopedics, 6, 2002.
[2] Alexander, M. A., Xing, S. Y. & Bhagia, S. M, Lower Limb Orthotics [Online]. Webmd Llc. Available: Http://Emedicine.Medscape.Com/Article/314838-Overview#Aw2aab6b5, Accessed 22-09-2011.
[3] American Orthotic and Prosthetic Association Inc. Evidence Note - ‘The Use Of Ankle-Foot Orthoses In The Management of Stroke’, 5 (12), 2008.
[4] Banga, H.K., Kalra, P., Belokar, R.M. and Kumar, R. (2020), "Customized design and additive manufacturing of kids’ ankle foot orthosis", Rapid Prototyping Journal, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/RPJ-07-2019-0194
[5] Banga H.K., Kalra P., Belokar R.M., Kumar R. (2020) 'Effect of 3D-Printed Ankle Foot Orthosis During Walking of Foot Deformities Patients'. In: Kumar H., Jain P. (eds) Recent Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore, pp 275-288
[6] Banga H.K., Kalra P., Belokar R.M., Kumar R. (2020) Role of Finite Element Analysis in Customized Design of Kid's Orthotic Product'. In: Singh S., Prakash C., Singh R. (eds) Charac-
terization, Testing, Measurement, and Metrology, Pages 139-159 CRC Press Taylor & Francis, USA

[7] Banga H.K., Kalra P., Belokar R.M., Kumar R. (2020) Improvement of Human Gait in Foot Deformities Patients by 3D Printed Ankle–Foot Orthosis. In: Singh S., Prakash C., Singh R. (eds) 3D Printing in Biomedical Engineering. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore

[8] Banga H.K, Kalra Parveen, Belokar R.M, Kumar R, (2018)' Fabrication And Stress Analysis of Ankle Foot Orthosis With Additive Manufacturing’, Rapid prototyping journal, Emerald Publishing; Vol. 24 No. 2, pp. 300-312.

[9] Banga H. K, Belokar R.M., Madan R., Dhole S,(2017) ‘Three dimensional Gait assessments during walking of healthy people and drop foot patients’, Defence Life Science Journal Vol. 2, pp 14-20.

[10] Banga H.K, Belokar R.M, Kumar R, (2017). ‘A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies’, 3rd International Conference on Mechanical Engineering and Automation Science (ICMEAS 2017) , University of Birmingham, UK Vol. 8 No. 10, pp. 141-145.

[11] Banga H.K, Kalra Parveen, Belokar R.M, Kumar R, (2014) ‘Rapid Prototyping Applications in Medical Sciences’, International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS); Vol. 5 No. 8, pp. 416-420.

[12] Kumar P, Sharma P, Banga H.K., Kalra P., Belokar R.M., Kumar R(2020) ‘Performance Evaluation of Ankle Foot Orthosis on Lower Extremity Disabled Persons while Walking using OpenSim, In Sachdeva A, Kumar P, Yadav P, Garg R, Gupta A , Lecture Notes on Multidisciplinary Industrial Engineering, Springer Singapore pp 192-210

[13] Boehler, W. & Marbs, A, ‘3D scanning instruments’. Proceedings of the CIPA WG 6 International Workshop on Scanning for Cultural Heritage Recording, Ziti, Thessaloniki. 3 (12), 2002.

[14] Branko Brackx, Michaël Van Damme, Arnout Matthys, Bram Vanderborght And Dirk Lefeber ‘Passive Ankle-Foot Prosthesis Prototype With Extended Push-Off’, International Journal Of Advanced Robotic Systems. 1(10), 2012 .

[15] Bradford C. Bennett, Shawn D. Russell, and Mark F. Abel, ‘The Effects Of Ankle Foot Orthoses On Energy Recovery And Work During Gait In Children With Cerebral Palsy’, Clin Biomech (Bristol, Avon). March; 27(3), 2012.

[16] Bregman, D. J. J., Rozumalski, A., Koops, D., De Groot, V., Schwartz, M. & Harlaar, J. ‘A New Method For Evaluating Ankle-Foot Orthosis Characteristics’, Gait & Posture, 30(6), 2009.
[17] Brehm, M.-A., Harlaar, J. & Schwartz, M. ‘Effect Of Ankle-Foot Orthoses On Walking Efficiency And Gait In Children With Cerebral Palsy’, *Journal Of Rehabilitation Medicine*, 4(9), 2008.

[18] Bowker, P. ‘Biomechanical basis of orthotic management’, Oxford England; 2(10), 1993.

[19] Chen, C.-L., Yeung, K.-T., Wang, C.-H., Chu, H.-T. & Yeh, C.-Y. ‘ Anterior Ankle-Foot Orthosis Effects On Postural Stability In Hemiplegic Patients’, *Archives of Physical Medicine And Rehabilitation*, 8 (5), 1999.

[20] Chu, T. M., Reddy, N. P. & Padovan, J ‘Three-Dimensional Finite Element Stress Analysis of the Polypropylene, Ankle-Foot Orthosis: Static Analysis’, *Medical Engineering & Physics*, 17(5), 1995.

[21] Cook, D., Gervasi, V., Rizza, R., Kamara, S. & Xue-Cheng, L. ‘Additive fabrication of custom pedorthoses for clubfoot correction’, *Rapid Prototyping Journal*, 16, 2010.

[22] Constantinos Mavroidis, Richard G Ranky, Mark L Sivak, Benjamin L Patritti, Joseph Dipisa, ‘Patient Specific Ankle-Foot Orthoses Using Rapid Prototyping’, *Journal of Neuroengineering And Rehabilitation*, 1(5), 2011.

[23] Crabtree, C. A. & Higginson, J. S. ‘Modeling Neuromuscular Effects of Ankle Foot Orthoses (AFO's) In Computer Simulations Of Gait’, *Gait & Posture*, 29, 2009.

[24] De Burgh, J. ‘The Human Body - An Essential Guide To How The Body Works’, *Rochester, U.K., Grange Books* 2003.

[25] Elisa S. Schrank, B. S. J. S., ‘Dimensional accuracy of ankle-foot orthoses constructed by rapid customization and manufacturing framework’, *Journal of Rehabilitation Research & Development*, 48, 2011.

[26] Edelstein, J. E. & Bruckner, J. ‘Orthotics: A Comprehensive Clinical Approach’, *John Wiley & Sons New Jersey*, USA, Slack. 2002.

[27] Fan Gao, , William Carlton, Susan Kapp ‘Development Of A Motorized Device For Quantitative Investigation Of AFO’s. 15(3), 2009.

[28] Silva, P., Silva, M. T. & Martins, J. ‘A Review of Thermoplastic Ankle-Foot Orthoses Adjustments/Replacements in Young Cerebral Palsy And Spina Bifida Patients’, *JPO: Journal of Prosthetics And Orthotics*, 7, 2009.

[29] Tai-Ming Chu, And Narender P. Reddy, ‘Stress Distribution In The Ankle-Foot Orthosis Used To Correct Pathological Gait’, *Journal of Rehabilitation Research And Development*, 32(4), 1995.