Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots

Rui-Zi Hu(胡睿梓), Sheng-Kai Zhu(朱圣凯), Xin Zhang(张鑫), Yuan Zhou(周圆), Ming Ni(倪铭), Rong-Long Ma(马荣龙), Gang Luo(罗刚), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), and Guo-Ping Guo(郭国平)

1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2 CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3 Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
4 Beijing Superstring Academy of Memory Technology, Beijing 100176, China
5 Origin Quantum Computing Company Limited, Hefei 230026, China

(Received 20 April 2023; revised manuscript received 21 June 2023; accepted manuscript online 3 July 2023)

The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process are sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. We then analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage, we ensure the accuracy of the extrapolated probability. We then prove that the efficiency and robustness of this method are 60 times larger than those of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout of up to 0.7 K/1.5 T in the future.

Keywords: quantum computation, quantum dot, quantum state readout

PACS: 03.67.Lx, 03.67.–a, 68.65.Hb

DOI: 10.1088/1674-1056/ace3a9

1. Introduction

Spin qubits in gate-defined silicon quantum dots (QDs) are promising for realizing quantum computation due to their long coherence time,1,2 small footprint,3 potential scalability,4 and industrial manufacturability.5,6 In isotopically purified Si devices, the single-qubit gate fidelity has attained 99.9%,7,8 and a two-qubit gate fidelity above 99% has been reported.9–11 However, the corresponding readout fidelities are lower than 99%, which significantly reduces the overall fidelity of the gate operation. The Elzerman single-shot readout method is usually used,12,13 which utilizes the spin-state-dependent tunneling rate or quantum capacitance to measure the spin qubits with extra charge sensors or dispersive sensing techniques.14–16 The spin states are distinguished by comparing the readout traces x with the threshold voltages x_i within the readout time t_i. However, this process is sensitive to x_i and t_i, and will lower the overall fidelity of the gate operations.

Several methods have been developed to optimize the readout fidelity F_R and visibility V_R, as well as to find out the corresponding optimal threshold voltage x_i and readout time t_i, e.g., wavelet edge detection,17 the analytical expression of the distribution,18,19 statistical techniques,21 neural network,20 digital processing,22 and the Monte–Carlo method.23 Among these methods, the Monte–Carlo method is now widely used to numerically simulate the distributions of the experimental data in Si-MOS QDs,24 Si/SiGe QDs,25 Ge QDs,26 single donors,27 and nitrogen-vacancy centers.28 A high-fidelity readout in a silicon single spin qubit has recently been achieved.29 Even so, the readout visibility V_R is limited by the environment and experimental setup, e.g., the external magnetic field relative to the electron temperature (B_{ext}/T_e), relaxation time (T_1), tunneling rate ($\Gamma_{in,out}$), measurement bandwidth, sample rate (T_3), and filter frequency.30

Here, we describe a threshold-independent method for the single-shot readout of semiconductor spin qubits. By considering the rate equations30–33 and the Monte–Carlo method, we simulate the single-shot readout process and extract V_R as a function of readout time t_i and threshold voltage x_i. We demonstrate that the measured probability of the excited spin state (P^e_i) is linearly dependent on V_R in Eq. (5). Since the slope is the prepared probability of the excited spin state (P^e_i) and is robust to t_i and x_i, it is convenient to use P^e_i in-
stead of P_{th} to realize a threshold-independent data processing method. We then analyzed the error of the fitting process, finding that the error from the bin edges caused a discrepancy between the result and the expected value. We ensured accurate extrapolated probability by choosing readout time t_r and threshold voltage x_t. Moreover, we use an effective area (A_{eff}) to show the effectiveness of the threshold-independent method, which is approximately 60 times larger than the commonly used method, i.e., the threshold-dependent method. Finally, we discussed the influence of T_τ on the effective area of both the threshold-independent method and the threshold-dependent method with a fixed external magnetic field, and also provide a preliminary demonstration for a single-shot readout at 0.7 K/1.5 T in the future.

2. Result and discussion

2.1. Single-shot readout

Figure 1 outlines the processes of single-shot readout. The double quantum dots (DQDs) in our experiment resemble the device in Ref. [34]. (N_\uparrow, N_\downarrow) in the charge stability diagram in Fig. 1(a) represent the electrons occupied in the left and right QD. To measure the spin state of the first electron in the left QD, we deploy consecutive three-stage pulses, which consist of “empty”, “load” & “wait” and “readout” at (0,0)–(1,0) transition line, illustrated by “E”, “W” and “R” in black circles in Fig. 1(a). Figure 1(b) shows the corresponding energy states. Here, we assume that the excited spin state is $|\uparrow\rangle$. The location of the readout stage is carefully calibrated to ensure that the Fermi level of the reservoir is between the electrochemical potentials of spin-up and spin-down states.

The readout traces were measured by amplifying the single-electron transistor (SET) current (I_S) with a room temperature low noise current amplifier (DLCPA-200) and a JFET preamplifier (SIM910), and then low-pass filtering the amplified signal using an analog filter (SIM965) with a bandwidth of 10 kHz. The blue and red curves represent spin up and spin down traces measured at point R, respectively. We distinguish the different spin states by comparing the maximum value of each readout trace with the threshold voltage within the readout time.

The state-to-charge (STC) conversion is realized by distinguishing two different traces in the readout phase, as shown in Fig. 1(c). Single electron tunneling onto or off the QD causes a change in the readout trace x. We distinguish the different spin states in the QD by comparing readout trace x with the threshold voltage x_t. If x remains below the threshold during the readout phase, we assume it is a $|\downarrow\rangle$ state, and vice versa. We then emptied QDs by raising the electrochemical potential and waited for enough time. After the empty stage, we loaded a new electron with a random spin state and waited for the next readout stage.

We measured the electron spin relaxation time by repeating this three-stage pulse and changing the waiting time in the loading stage. Figure 1(d) shows typical exponential decay of the measured spin-up probability $P^{\uparrow}_{\text{th}} = \rho \cdot e^{-t/T_\tau} + \alpha$, where ρ is the amplitude and α is the dark count. Additionally, we can manipulate the spin qubit by using a similar pulse and a microwave pulse, as reported in Ref. [35].

![Fig. 1](image)

2.2. The readout visibility

We demonstrated a maximum visibility $V^R = 85.4\%$ while measuring the spin relaxation time, as shown in Fig. 2(a). $V^R = F^R + F^\downarrow - 1$ is calculated from the simulated data via the Monte–Carlo method. F^R and F^\downarrow are the readout fidelities of $|\downarrow\rangle$ and $|\uparrow\rangle$. In Fig. 2(b), we simulated the distribution of the single-shot signal with a high accuracy (R squared ≈ 0.98) of the corresponding fitting process (the right-hand inset in Fig 2(b)). The insets in Fig 2(b) show the fitting results of the averaged readout traces (\bar{x}) and the probability density function (PDF) of the maximum traces (x_{max}) of the readout phase for every single measurement. The details of the simulation process and the insets in Fig. 2(b) are discussed in Section 1 of the supplementary materials.[23,27,30–32] By fitting \bar{x} with the rate equations, we obtained the tunneling rates of the STC conversion as shown in the left-hand inset of Fig. 2(b): $\Gamma^-_{\text{out}} = 6.0 \pm 0.1 \text{ kHz}$, $\Gamma^+_{\text{out}} = 27 \pm 2 \text{ Hz}$ and $\Gamma^+_{\text{th}} = 1.39 \pm 0.04 \text{ kHz}$.
In the traditional methods, STC conversion visibility (V_{STC}) and electrical detection visibility (V_E) need to be optimized to obtain a high readout visibility V_R. Instead, the threshold-independent single-shot readout method does not need to perform such a cumbersome operation. Here, we introduce the steps of this novel method. First, we calculated V_{STC} as a single peaked function of readout time t_r with the knowledge of tunneling rates as shown in Fig. 2(c). The details of this part are described in Section 2 of the supplementary materials. For exceeding 99% V_{STC}, the following three criteria are given in Ref. [30]: $E_c/T_c > 13$, $T_1 \cdot T_{\text{out}} > 100$ and $T_1/T_{\text{out}} > 12$. Here, we have $T_1 = 50$ kHz, $B_{\text{ext}} = 1.5$ T and $T_1 = 180.5 \pm 8.1$ mK, as mentioned in Ref. [34]; thus, the disagreement of the condition $E_c/T_c = 11.22 < 13$ limits the maximum V_{STC} to 97.15%. Figure 2(d) also shows the readout visibility V_R as a single peaked function of t_r (details are discussed in Section 4 of the supplementary materials). However, the optimal readout time t_{opt} for V_{STC} is different from that for V_R. Thus, to obtain the maximum V_R, we should consider the readout time t_r and threshold voltage x_i together.

Due to the lack of a simple analytical expression for the distribution of x_{max}, V_R cannot be obtained directly. Here, we obtain V_E by factorizing V_R into $V_{\text{STC}} = F_{\text{STC}} + F_{\text{STC}} - 1$ and $V_E = F^+_E + F^-_E - 1$, as the following formula shows:

$$V_R = F^+_R + F^-_R - 1 = V_{\text{STC}} \times V_E.$$

Here, readout fidelities F^+_R and F^-_R are given by

$$F^+_R = F^+_{\text{STC}} F^+_E + (1 - F^+_{\text{STC}})(1 - F^+_E),$$

the corresponding readout visibility V_R is obtained from the Monte–Carlo method and the STC visibility V_{STC} is calculated as above. Thus, we have the electrical detection visibility $V_E = V_R / V_{\text{STC}}$ indirectly. Figure 2(d) shows the maximum V_E and the corresponding optimal threshold voltage x_i versus readout time t_r. Considering the increasing or constant nature of the maximum value x_i as t_r increases in each readout trace, it can be inferred that the optimal threshold voltage x_i follows a monotonically non-decreasing pattern. Meanwhile, the longer t_r we consider, the more noise is added to the trace. Therefore, it is obvious that V_E will decrease as t_r increases.

2.3. Relation between P^M_i, P^I_i, and V_R

We now focus on the details of readout visibility V_R. First, we illustrate the relationship between V_R and readout time t_r along with threshold voltage x_i via the Monte–Carlo method in Fig. 3(a). As mentioned in Subsection 2.2, x_i corresponding to the maximum electrical detection visibility V_E increases as t_r increases. The STC visibility V_{STC} is a uni-modal function of t_r. Therefore, V_R increases first and then decreases along the t_r axis, and x_i of the maximum V_R increases along the x_i axis as t_r increases.

We then drew the spin-up probability ρ in the same range in Fig. 3(b) for comparison. The expression $\rho = P^M_i |_{t_{\text{wait}} = 0} - \alpha$ is obtained by fitting the experimental data of the spin relaxation process with an exponential function $P^M_i = \rho \cdot e^{-t/T_1} + \alpha$. Here, $\alpha = P^M_i |_{t_{\text{wait}} \to \infty}$ is the dark count of the spin relaxation process. Figures 3(a) and 3(b) show that the readout visibility V_R and probability ρ are consistent in the scaled color images.

To analyze this consistency, we focus on the details of Eq. (1). As shown in Fig. 3(c), we note the spin-up probability
at the beginning of the readout phase as the prepared probability \(P_{↓} \). Throughout the STC conversion, the probability of the tunneling events detected within readout time \(t_r (P(t)) \) depends on the condition probability that electrons in \(|↓\rangle (F_{↓}^{\text{STC}}) \) or \(|↑\rangle (1-F_{↑}^{\text{STC}}) \) tunnel out:

\[
P(t) = F_{↓}^{\text{STC}} P_{↓} + (1 - F_{↓}^{\text{STC}})(1 - P_{↑}). \tag{3}
\]

Similarly, by comparing the maximum of each readout traces \(x_{\text{max}} \) with threshold voltage \(x_t \), the electron is measured with \(P_{\text{M}} \) throughout the electrical detection (\(F_{↓}^{E}, F_{↑}^{E} \)):

\[
P_{\text{M}} = P(t)F_{↓}^{E} + (1 - P(t))(1 - F_{↑}^{E}). \tag{4}
\]

We factorized Eq. (4) into sectors with and without \(P_{↓} \) and substituted Eq. (2) into Eq. (4) to obtain the expression

\[
\rho = 1 - F_{↑}^{R}. \tag{5}
\]

The relation between the measured probability \(P_{\text{M}} \), prepared probability \(P_{↓} \), and readout visibility \(V_{R} \) can then be extracted by substituting Eq. (1) into Eq. (4)

\[
P_{\text{M}} = P_{↓} \times V_{R} + \rho. \tag{6}
\]

Equation (5) reveals that the measured probability \(P_{\text{M}} \) linearly depends on the readout visibility \(V_{R} \) and dark count \(\rho \). Here, the slope is the prepared probability \(P_{↓} \) and the intercept is the dark count. By substituting Eq. (5) into the definition of the probability \(\rho = P_{\text{M}} \mid_{x_{\text{max}} \rightarrow 0} - \rho \), we got \(\rho = P_{↓} \mid_{x_{\text{max}} \rightarrow 0} \times V_{R} \). Since \(P_{↓} \) only depends on the “wait” process, the probability \(\rho \) is proportional to the readout visibility \(V_{R} \) in the readout process, and this proportional relation between \(\rho \) and \(V_{R} \) explains their consistency in the scaled color images shown in Figs. 3(a) and 3(b). Since \(P_{↓} \) only depends on the “wait” process, we try to apply the threshold-independent data process methods in Subsection 2.4.

2.4. Threshold-independent data process

We calculated the extrapolated probability (\(P_{↓}^{E} \)) for each \(t_r \) and \(x_t \) by applying Eq. (5) directly

\[
P_{↓}^{E} = (P_{↓} - \rho)/V_{R}. \tag{7}
\]

Here, \(P_{↓}^{E} \) is the extrapolated probability and can be calculated from \(V_{R} \) and \(\rho \). Since \(P_{↓} \) is independent of the threshold voltage \(x_t \) and readout time \(t_r \), we speculated that the extrapolated probability \(P_{↓}^{E} \) is also threshold independent with no constraints on \(x_t \) and \(t_r \). We calculate the contour map of \(P_{↓}^{E}/P_{↓} - 1 \), as shown in Fig. 4(a). The region inside the blue, cyan, and green curves represent the area where \(P_{↓}^{E}/P_{↓} - 1 < 1\% \), \(5\% \) and \(10\% \), respectively. We compared the regions with the visibility \(V_{R} \) map in Fig. 4(a). The pink shadow represents where \(V_{R} > 80\% \), and the red star represents the position of \(V_{R_{\text{max}}} \). There is a discrepancy between \(P_{↓}^{E}/P_{↓} - 1 \) and the \(V_{R} \) map, revealing that the optimal \(x_t \) and \(t_r \) for the readout visibility \(V_{R} \) are not optimal for \(P_{↓}^{E} \).

In Section 5 of the supplementary materials, we will use the simulated traces to illustrate that the region \(|P_{↓}^{E}/P_{↓} - 1| < 1\% \) almost covers the whole considered region under ideal circumstances. We calculated the cumulative error (CE) and absolute value of error between the distribution of experimental and simulated traces as a function of threshold voltage \(x_t \). The shape of the CE curve demonstrates that the error in the fitting process comes from the bin edges. The features of the bin edge error are shown in the contour map of \(|P_{↓}^{E}/P_{↓} - 1| \) in Figs. 22(b) and 22(c) in the supplementary materials.

In the valley region between the two peaks, errors from bin edges are minimal, as shown in the map of the distribution of \(x_{\text{max}} \) in Fig. 4(a). The outline of the valley region in Fig. 4(b) resembles that of \(|P_{↓}^{E}/P_{↓} - 1| < 1\% \) and \(5\% \) in Fig. 4(a). As a compromise method, we can choose \(x_t \) around the minimum between two peaks of the distribution of \(x_{\text{max}} \) instead of \(x_t \) at \(V_{R_{\text{max}}} \).

By using the threshold-independent method to processing the experimental data, we calculated the extrapolated probability \(P_{↓}^{E} \), \(t_r \) and threshold voltage \(x_t \) at \(V_{R_{\text{max}}}, (P_{↓}^{E}(V_{R_{\text{max}}})) \), along with the simulated traces to illustrate that the region with the visibility
with the minimum between two peaks in PDF of the maximum of each readout trace s_{max} with the same t_{r} (PDF). Figure 4(c) shows $P^E_{t_r}$ as a function of waiting time of the spin decaying process t_{wait}, and we plot measured probability P^M for comparison. The results demonstrate that the threshold-independent method suppresses dark count α and increases probability $\rho = P^M|_{t_{\text{wait}}=0} - \alpha$, and $P^E_{t_r}$(PDF) calculated via the compromise method is slightly different from $P^E_{t_r}(V_{\text{max}})$. x_t and readout time t_r in a wider range with only a 1% loss of accuracy.

Finally, we tried to use the area where $|P^E_{t_r}/P^M_{t_r} - 1| < 1\%$ as A_{eff} to quantify the accuracy and efficiency of different data processing methods. For comparison, we use the area of where $|P^M/P^E_{t_r} - 1| < 1\%$ as A_{eff} for the commonly used threshold-dependent method. The A_{eff} of the threshold-independent method is 60 times larger than that of the threshold-dependent method, meaning that we can choose threshold voltage x_t and readout time t_r in a 60 times larger range and maintain 99% accuracy. In addition, the threshold-independent method is more robust and can calibrate the measured result from the interference of the experimental hardware limitation.

2.5. Influence of the electron temperature

We try to characterize the influence of T_e. Reference [30] assumes that the tunneling rate follows a Fermi distribution

$$
\Gamma_{\uparrow, \downarrow}^{\text{out}} = |1 - f(\varepsilon \pm E_z/2, T_e)| \Gamma_{\uparrow, \downarrow}^{\text{in}},
\Gamma_{\uparrow, \downarrow}^{\text{in}} = f(\varepsilon \pm E_z/2, T_e) \Gamma_{\uparrow, \downarrow}^{\text{in}},
$$

where $f(\varepsilon \pm E_z/2, T_e)$ is the Fermi–Dirac function with $-\varepsilon$ for $|\downarrow\rangle$ and $+\varepsilon$ for $|\uparrow\rangle$, $\Gamma_{\uparrow, \downarrow}^{\text{out}}$ (in $\Gamma_{\uparrow, \downarrow}^{\text{in}}$) is the maximum tunnel out (in) rate, $\Gamma_{\uparrow, \downarrow}^{\text{out}}$ ($\Gamma_{\uparrow, \downarrow}^{\text{in}}$) are tunneling rates of corresponding spin state, and ε is the energy splitting between the Fermi energy of the electron reservoir and the average energy of $|\uparrow\rangle$ and $|\downarrow\rangle$ electrons in QD. Therefore, $\varepsilon \pm E_z/2$ ($\varepsilon - E_z/2$) represents the energy splitting between the Fermi energy of the electron reservoir and the energy state of $|\uparrow\rangle$ (|$\downarrow\rangle$) electron in QD.

By defining $R_G = \Gamma_{\uparrow, \downarrow}^{\text{out}}/\Gamma_{\uparrow, \downarrow}^{\text{in}}$, ε can be obtained as follows:

$$
\varepsilon = -k_B T_e \ln \left(\frac{1 - R_G}{R_G} \frac{1}{e^{\varepsilon/k_B T_e} - e^{\varepsilon/k_B T_e}} \right).
$$

We extracted the maximum tunneling rates $\Gamma_{\uparrow, \downarrow}^{\text{out}}$ and $\Gamma_{\uparrow, \downarrow}^{\text{in}}$ by substituting ε into Eq. (7).

We then tried to simulate the single-shot readout process at different electron temperatures T_e. Assuming that tunneling rates $\Gamma_{\uparrow, \downarrow}^{\text{out}}$ and $\Gamma_{\uparrow, \downarrow}^{\text{in}}$ are not associated with T_e, we directly substituted T_e into Eq. (7) to calculate the tunneling rates. We used the Monte–Carlo method to generate the simulated traces with a fixed external magnetic field $B_{\text{ext}} = 1.5$ T at different T_e. The left-hand y-axis in Fig. 4(d) shows the A_{eff} of both the threshold-independent method and the threshold-dependent method at different T_e. The right-hand y-axis shows the corresponding readout visibility V^R. The simulation results show that the A_{eff} of the threshold-independent methods is 60 times greater than that of the threshold-dependent method when $T_e < 0.1$ K. As T_e increases, A_{eff} of the threshold-independent methods decreases. It is larger than that of the threshold-dependent method until $T_e = 0.7$ K. When $T_e > 0.7$ K, the corresponding $V^R < 0.5$. Here, we can give the boundary condition of the threshold-independent method as $T_e = 0.7$ K when $B_{\text{ext}} = 1.5$ T.

3. Summary

We described a threshold-independent method of the single-shot readout data process based on the linear dependence of measured probability $P^M_{t_r}$ with the corresponding readout visibility V^R and dark count α. Due to the error during the fitting process from bin edges, the extrapolated probability deviates from the prepared probability. For compromise, the region of readout time t_r and threshold voltage x_t are reduced to the minimum of the distribution of the maximum of each readout trace s_{max} to ensure that the accuracy loss of extrapolated probability $P^E_{t_r}$ is less than 1%. We then used A_{eff} to quantify the efficiency of the threshold-independent method and the threshold-dependent readout. The result shows that the A_{eff} of the threshold-independent method is more than 60 times larger than that of the threshold-dependent method. Moreover, we simulated the single-shot readout process at different electron temperatures T_e. We broaden the boundary condition of the single-shot readout to 0.7 K with $B_{\text{ext}} = 1.5$ T, where $V^R = 0.5$. The significance of employing the threshold-independent method will progressively increase as the experiment advances towards the fault-tolerance threshold of the logic qubit, particularly when operating under high electron temperature conditions [36–38].

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant Nos. 12047368, 92165207, 12034018, and 62004185), the Anhui Province Natural Science Foundation (Grant No. 2108085J03), the USTC Tang Scholarship, and this work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

References

[1] Muhonen J T, Dehollain J P, Laucht A, et al. 2014. Nat. Nanotech. 9 986
[2] Zhang X, Li H O, Cao G, et al. 2019. Nat. Science Review 6 32
[3] Dodson J P, Holman N, Thorgrimsson B, et al. 2020. Nanotechnology 31 505001
[4] Li R, Petit L, Franke D P, et al. 2018. Science Advances 4 eaar3960

010304-5
[5] Camenzind L C, Geyer S, Fuhrer A, et al. 2022 *Nat. Electron.* **5** 178
[6] Zwerver A M J, Krahenmann T, Watson T F, et al. 2022 *Nat. Electron.* **5** 184
[7] Yoneda J, Takeda K, Otsuka T, et al. 2018 *Nat. Nanotech.* **13** 102
[8] Chan K W, Huang W, Yang C H, et al. 2018 *Phys. Rev. Applied* **10** 044017
[9] Xue X, Russ M, Samkharadze N, et al. 2022 *Nature* **601** 343
[10] Noiri A, Takeda K, Nakajima T, et al. 2022 *Science Advances* **8** eabn5130
[11] Mills A R, Guinn C R, Gullans M J, et al. 2022 *Science Advances* **8** eabn5130
[12] Elzerman J, Hanson R, van Beveren L W, et al. 2004 *Nature* **430** 431
[13] Zajac D, Hazard T, Mi X, Nielsen E, and Petta J R 2016 *Phys. Rev. Applied* **6** 054013
[14] Pakkiam P, Timofeev A V, House M G, et al. 2018 *Phys. Rev. X* **8** 041032
[15] West A, Hensen B, Jouan A, et al. 2019 *Nat. Nanotech.* **14** 437
[16] Zheng G, Samkharadze N, Noordam M L, et al. 2019 *Nat. Nanotech.* **14** 742
[17] Prance J R, Bael B J V, Simmons C B, et al. 2015 *Nanotechnology* **26** 215201
[18] Nowack K C, Shafiei M, Laforest M, et al. 2011 *Science* **333** 1269
[19] D’Anjou B and Coish W A 2014 *Phys. Rev. A* **89** 012313
[20] Gorman S K, He Y, House M G, et al. 2017 *Phys. Rev. Applied* **8** 034019
[21] Struck T, Lindner J, Hollmann A, Schauer F, Schmidbauer A, Bougeard D and Schreiber L R 2021 *Scientific Reports* **11** 16203
[22] Mizokuchi R, Tadokoro M and Kodera T 2020 *Appl. Phys. Express* **13** 121004
[23] Morello A, Pla J J, Zwanenburg F A, et al. 2010 *Nature* **467** 687
[24] Veldhorst M, Hwang J C C, Yang C H, et al. 2014 *Nat. Nanotech.* **9** 981
[25] Kawakami E, Scarlino P, Ward D R, et al. 2014 *Nat. Nanotech.* **9** 666
[26] Vučič L, Kukvička J, Watzinger H, et al. 2018 *Nano Lett.* **18** 7141
[27] Büch H, Mahapatra S, Rahman R, et al. 2013 *Nat. Commun.* **4** 2017
[28] Robledo L, Childress L, Bernien H, et al. 2011 *Nature* **477** 574
[29] Adam R Mills, et al. 2022 *Science Advances* **8** eabn5130
[30] Keith D, Gorman S, Kranz L, et al. 2019 *New J. Phys.* **21** 063011
[31] Xiao M, House M and Jiang H W 2010 *Phys. Rev. Lett.* **104** 096801
[32] Tracy L A, Lu T M, Bishop N C, et al. 2013 *Appl. Phys. Lett.* **103** 143115
[33] House M G, Xiao M, Guo G, et al. 2013 *Phys. Rev. Lett.* **111** 126803
[34] Zhang X, Hu R Z, Li H O, et al. 2020 *Phys. Rev. Lett.* **124** 257701
[35] Hu R Z, Ma R L, Ni M, et al. 2021 *Nanomaterials* **11** 2486
[36] Huang W, Yang C H, Chan K W, et al. 2019 *Nature* **569** 532
[37] Petit L, Eenink H G J, Russ M, et al. 2020 *Nature* **580** 355
[38] Takeda K, Noiri A, Nakajima T, et al. 2021 *Nat. Nanotech.* **16** 965