Charge Photogeneration and Recombination in Fluorine-Substituted Polymer Solar Cells

Rong Hu1*, Yurong Liu1, Jun Peng2, Jianjun Jiang2, Mengyao Qing2, Xiaochuan He3, Ming-Ming Huo4 and Wei Zhang2,5,6*

1School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, China, 2School of Physics and Materials Science, Guangzhou University, Guangzhou, China, 3Songshan Lake Materials Laboratory, Dongguan, China, 4Qingdao Branch, Naval Aeronautical University, Qingdao, China, 5Research Center for Advanced Information Materials (CAIM), Guangpu Research and Graduate School of Guangzhou University, Guangzhou, China, 6Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, China

In this contribution, we studied the effect of fluorine substitution on photogenerated charge generation, transport, and recombination in polymer solar cells. Two conjugated polymer materials, PBDTTT-E (fluorine free) and PTB7 (one fluorine substitution), were compared thoroughly. Meanwhile, various characterization techniques, including atomic force microscopy, steady-state spectroscopy, transient absorption spectroscopy, spectroelectrochemistry, and electrical measurements, were employed to analyse the correlation between molecular structure and device performance. The results showed that the influence of fluorine substitution on both the exciton binding energy of the polymer and the carrier recombination dynamics in the ultrafast timescale on the polymer was weak. However, we found that the fluorine substitution could enhance the exciton lifetime in neat polymer film, and it also could increase the mobility of photogenerated charge. Moreover, it was found that the SOMO energy level distribution of the donor in a PTB7:PC71BM solar cell could facilitate hole transport from the donor/acceptor interface to the inner of the donor phase, showing a better advantage than the PBDTTT-E:PC71BM solar cell. Therefore, fluorine substitution played a critical role for high-efficiency polymer solar cells.

Keywords: polymer solar cells, fluorine substitution, charge transport, charge recombination, power conversion efficiency

INTRODUCTION

In the field of solar energy, polymer solar cells (PSCs) have attracted much attention owing to their flexibility, low cost, light weight, material diversification, and large-area solution processing (Kim et al., 2007; Arias et al., 2010; Lu et al., 2018). Recently, the photovoltaic systems of halogenated polymers represented by PM6 or D18 blended with non-fullerene have achieved the power conversion efficiency (PCE) of 16%-18% (Lin et al., 2020; Liu et al., 2020; Li C. et al., 2021), even up to 19.6% (Wang et al., 2021), showing a bright application prospect.

Fluorine (F) substitution is an important method to adjust the conformation, optical, and electrical properties of polymers (Dunitz and Taylor, 1997; Jackson et al., 2013; Zhang et al., 2014; Zhang et al., 2017; Chao et al., 2018; Dehnen et al., 2021) owing to its great electronegativity and strong electron-
Halogen-Substituted Polymer Solar Cells

In this work, the photovoltaic materials, PBTDTTT-E (Mn > 40,000, PDI: 1.8–2.0), PTB7 (Mn > 40,000, PDI: 1.8–2.0), and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM), were purchased from Solarner Material Inc. (Beijing). Their chemical structures and energy levels are shown in Figure 1. The structure of the PSC device was fabricated by using an inverted configuration, that is, indium tin oxide (ITO) substrate/zinc oxide (ZnO)/photocative layer/molybdenium oxide (MoO3)/silver (Ag). ITO glass was cleaned with deionized water, acetone, chloroform, and isopropyl alcohol in an ultrasonic cleaner, and then, ITO glass needed to be dried in a heat oven. The ZnO electron transport layer was spin-coated (3,000 rpm, 30s) with a colloidal precursor solution (zinc acetate: 2-methoxyethanol:ethanolamine = 1 g:10 ml:0.28 ml). After that, the wet ZnO layer was annealed on a hotplate at 200°C for 1 h in air. The active layer precursor solutions, PBTDTTT-E (or PTB7): PC71BM (10 mg/ml:15 mg/ml), were co-dissolved in chlorobenzene solvent on a 50°C hotplate at the stirring condition of 500 rpm for 12 h, respectively. In addition, to obtain better device performance, about 3% (in volume) 1,8-diiodooctane (DIO) was added to the active layer precursor solution 1 h before spin coating. Afterwards, a 30 µl active layer precursor solution was spin-coated on the ZnO layer with a speed of 1,000 rpm for 60 s. MoO3 (8 nm) and Ag electrode (100 nm) layers were sequentially evaporated on the surface of the active layer, and a shadow mask was used to obtain an effective area of the device (0.075 cm2) in a vacuum chamber.

Morphology Characterization and the J–V Test

The morphology of PBTDTTT-E:PC71BM and PTB7:PC71BM active layers was characterized by atomic force microscopy (AFM-5500, Agilent) using the tapping mode. The current density–voltage (J–V) curve of the device was tested by using an electrochemical workstation (Chenhua, CIH760E) with a linear sweep voltammetry (LSV) method. A light source with an intensity of 100 mW/cm² was corrected by a standard silicon solar cell before testing. The external quantum efficiency (EQE) test of the device was conducted according to the literature (Hu et al., 2021a). Space charge-limited current measurement (SCLC) of PSC devices was performed using previous methods (Shang et al., 2020). All measurements were carried out at room temperature.

Steady-State Optical Absorption, Photoluminescence, and Spectroelectrochemistry Measurements

The steady-state optical absorption of the active layer was tested on a UV-Vis-NIR spectrometer (Agilent, Cary5000).
Photoluminescence measurement of the neat polymer device with the applied bias was carried out previously (Su et al., 2021). The steady-state absorption spectra of polymer cations in the solution and solid state film were obtained by the SEC method. The configuration and operating condition of the SEC measurements were determined using established techniques (Hu et al., 2021b; Hu et al., 2018). In this study, the oxidation potential for the solution and solid state film was applied at 1.5 V to obtain a polymer cation. All of the SEC spectra were obtained from the difference between absorption spectra with and without the oxidation potential. All measurements were carried out in air at room temperature.

RESULTS AND DISCUSSION

Photovoltaic Performance of Devices

Figure 2 and Table 1 show the J–V, EQE characteristic curves, and photovoltaic parameters of PBDTTT-E:PC71BM and PTB7:PC71BM solar cells, respectively. As for the PBDTTT-E:PC71BM solar cell, it shows an open-circuit voltage (V_{OC}) of 0.632 V, a short-circuit current density (J_{SC}) of 13.62 mA/cm², and a fill factor (FF) of 64.0%, then achieving an average PCE of 5.51%. Furthermore, these photovoltaic parameters, V_{OC}, J_{SC}, FF, and PCE, are improved to 0.727 V, 15.21 mA/cm², 66.6%, and 7.36% in the PTB7:PC71BM solar cell, respectively. Obviously, the photoelectric conversion efficiency is enhanced due to the fluorination of the TT unit. As for V_{OC}, the PTB7-based device shows ~0.1 V higher than that of the PBDTTT-E:PC71BM device. It is well known that V_{OC} of PSCs is related to the HOMO energy level of the donor and the lowest unoccupied molecular orbital (LUMO) energy level of the acceptor (V_{OC} = \frac{1}{2} (|E_{HOMO}^{Donor} - |E_{LUMO}^{PCBM}|) + 0.3) (Dennler et al., 2008). In this study, the difference between the HOMO of PTB7 and the LUMO of PC71BM is ~0.2 eV larger than that between PBDTTT-E and PC71BM (cf. Figure 1). Thus, the higher V_{OC} of PTB7-based device could be attributed to the lower HOMO of PTB7. To analyse the J_{SC} of the two devices, EQE characteristics are depicted in Figure 2B, and the PTB7:PC71BM device exhibits a greater EQE characteristic in the wavelength regions of 380–550 nm and 650–800 nm compared with the PBDTTT-E:PC71BM device. In the field of PSCs, EQE is usually determined by charge photogeneration and recombination processes; that is, charge photogeneration efficiency is determined by photon absorption efficiency (η_a), exciton diffusion and dissociation efficiency (η_{ed}), charge transfer and transport efficiency (η_{ct}), and charge collection efficiency (η_{cc}). EQE = η_a x η_{ed} x η_{ct} x η_{cc} (Dang et al., 2013; Lam et al., 2014). Herein, we found that PTB7:PC71BM and PBDTTT-E:PC71BM films almost had similar absorption characteristics, as shown in Figure 3. This indicates η_a showing the little difference in two blended films. Besides, their device configurations and fabrication processes are same, that is, ITO/ZnO (30 nm)/active layer/MoO3 (8 nm)/Ag (100 nm); thus, the η_a should be same. Therefore, the reasonable possibility is the photovoltaic conversion difference (η_{ed} and η_{ct}) of two active layers to determine the EQE. FF is an important factor to evaluate the quality of polymer solar cells. Usually, it is the result of the competition between charge recombination (or loss) and charge transport. In this work, the FF of the PTB7-based device (66.6%) was higher than that of the PBDTTT-E:PC71BM device (64%), which could be attributed to the less charge loss in the PTB7-based device.

Steady-State Absorption and Photoluminescence Characteristics of Active Layers

To analyze the effect of fluorine substitution on the absorption of active layers, the absorption features of PBDTTT-E, PTB7, and PC71BM are depicted in Figure 1. The absorption spectra of polymer cations show the little difference in two blended layers to determine the EQE. FF should be same. Therefore, the reasonable possibility is the photovoltaic conversion difference (η_{ed} and η_{ct}) of two active layers to determine the EQE.
PBDTTT-E:PC_{71}BM, and PTB7:PC_{71}BM active layers were tested by using a spectrometer, as shown in Figure 3. As for the neat PBDTTT-E layer, it exhibits a main absorption band in the wavelength range of 500–800 nm with two absorption peaks at 680 and 626 nm. The former absorption peak is often referred to as the vibronic progression of the electronic state \((0'\rightarrow 0)\), whereas the latter peak is considered as the \((1'\rightarrow 0)\) vibronic absorption of electronic transition, and their both are in relation to the aggregation state of co-polymers (Clark et al., 2009; Hu et al., 2014; Huo et al., 2014; Fauvell et al., 2016). Herein, the relative absorption intensity of the 626 nm peak of the neat PTB7 film \((A_{1'\rightarrow 0}/A_{0'\rightarrow 0})\) is slightly enhanced comparing with that of the PBDTTT-E film, suggesting that the fluorine substituent can influence the co-planar conformation and optical absorption of the polymer (Leclerc et al., 1993; Huo et al., 2013). Comparing with the neat film, the absorption band of the blend film is red-shift, and the absorption intensity is significantly strengthened in the wavelength range of 300–600 nm due to the absorption of PC_{71}BM, suggesting that PC_{71}BM could also influence the aggregation state and optical absorption of the polymers. As for the blend active layers, PTB7:PC_{71}BM and PBDTTT-E:PC_{71}BM have similar absorption characteristics in the 300–800 nm region, indicating that \(n_a\) of the two active layers is not the dominant factor to determine the photoelectric conversion performance of devices.

To further study the effect of fluorine substitution on the binding energy of polymer exciton, the PL spectra of neat polymer devices under the various bias electrical field were conducted, as shown in Figure 4. In the field of PSCs, the primary photogenerated species in most of the conjugated polymers is Frenkel-type exciton; thus, “hole–electron” binding energy is usually much higher than room temperature \(k_BT\) energy (25 meV, \(k_B\) Boltzmann’s constant, and \(T\), thermodynamic temperature) due to the weak inter-molecular interaction and low dielectric constant (Hedley et al., 2016; Wang et al., 2020). Hence, polymer exciton is hardly dissociated in the neat polymer device at room temperature. Figure 4 shows the PL spectra of neat PBDTTT-E and PTB7 devices after photoexcitation at 532 nm under the different biases. It can be seen that the PL intensity of neat PBDTTT-E and PTB7 devices is unchanged with the external bias range of 0 to \(-2\) V, indicating this electric field has a weak influence on the dissociation of polymer excitons. Interestingly, the PL intensity of the two neat polymer devices is...
FIGURE 4 | Normalized PL spectra of (A) neat PBDTTT-E and (B) PTB7 devices after photoexcitation at 532 nm under the various bias electrical field. The inset picture presents the normalized PL intensity of PBDTTT-E and PTB7 devices changed with the bias voltages.

FIGURE 5 | 3D AFM topography of (A) PBDTTT-E, (B) PTB7, (C) PBDTTT-E:PC71BM, and (D) PTB7:PC71BM active layers.
gradually decreased under the high external bias (≈ -2 V). We notice that the ~80% PL intensity of the two devices is quenched at a bias of -10 V, indicating 80% of polymer excitons are dissociated by this electric field energy. By using the electric field at -10 V, we estimated exciton binding energies in PBDTTT-E and PTB7 devices are 0.232 and 0.226 eV, respectively (Li H. et al., 2012; Su et al., 2021). Evidently, the neat PTB7 device has similar exciton binding energy with the PBDTTT-E device. Thus, fluorine substitution in PTB7 has a weak influence on exciton binding energy.

Morphology Characterization of Active Layers

To examine the effect of fluorine substitution on the morphology of active layers, the 3D surface features of PBDTTT-E, PTB7, PBDTTT-E:PC$_{71}$BM, and PTB7:PC$_{71}$BM active layers were depicted by using an AFM tester, as shown in Figure 5. Figure 5A shows the surface morphology of the neat PBDTTT-E active layer. It exhibits an overall surface roughness of 0.98 nm (root-mean-square, RMS) in the area of $2 \times 2 \, \mu m^2$. Figure 5B shows the morphology of the PTB7 active layer. Its surface roughness is measured as 1.15 nm, which is coarser than the PBDTTT-E active layer, indicating that the fluorine-substituted TT unit facilitates the aggregation of the polymer. Figure 5C depicts the morphology of the PBDTTT-E:PC$_{71}$BM active layer; it has a higher roughness (2.94 nm) than the neat PBDTTT-E film. Similarly, the surface roughness of the active layer increases from 1.15 to 3.12 nm when PTB7 was blended with PC$_{71}$BM (Figure 5D). The increased roughness of blend films could be attributed to the formation of donor/acceptor phase separation structures (Zhang et al., 2021). Besides, the PTB7:PC$_{71}$BM layer shows a larger roughness than the PBDTTT-E:PC$_{71}$BM layer, which implies a more pronounced phase separation in the PTB7-based active layer. In PSCs, a blended active layer with appropriate phase separation is expected to facilitate carrier transport and suppress carrier recombination, leading to the efficient PSC device (Guo et al., 2009).

Transient Absorption and Kinetics Characteristics of PBDTTT-E and PTB7 Films

In the field of organic solar cells, time-resolved spectroscopy, including transient absorption and transient fluorescence, is a powerful tool for studying the charge photogeneration process (Po et al., 2010; Zhang et al., 2019). In this study, transient
FIGURE 7 | (A) Normalized TA kinetics of the neat PBDTTT-E and PTB7 active layers at 900 and 700 nm and (B) normalized kinetics of the blend PBDTTT-E:PC71BM and PTB7:PC71BM active layers at 900 nm; the photoexcitation energy and excitation fluency are 600 nm and 2.18 × 10¹³ photons·cm⁻²·pulse⁻¹. Normalized TA bleaching kinetics (700 nm) of the PBDTTT-E:PC71BM (C) and PTB7:PC71BM (D) active layer after photoexcitation at 600 nm under the different excitation fluencies (2.18 × 10¹³ and 3.73 × 10¹³ photons·cm⁻²·pulse⁻¹).

FIGURE 8 | (A-C) Spectroelectrochemical spectra of PBDTTT-E, PTB7, PBDTTT-E:PC71BM, and PTB7:PC71BM in solution and films. The applied oxidation bias was controlled at 1.5 V.
TABLE 2 | Transition energies (in eV) of the characteristic spectral features of polymer cations in the solution and neat and blend active layer.

State	PBDTTT-E cations (peaks)	PTB7 cations (peaks)				
	Bleaching	P2	P1	Bleaching	P2	P1
Solution	1.82, 1.96	1.09	—	1.82, 2.02	1.14	—
Neat film	1.75, 1.93	1.10	—	1.84, 1.95	1.14	-0.79
Blend film	1.75, 1.90	1.09	—	1.84, 1.99	1.15	-0.79

absorption spectroscopy was conducted to analyse the excited state and charge photogeneration characteristics from the perspective of molecular structure difference. As seen from Figures 6A,B, PBDTTT-E and PTB7 show similar spectra dynamics in the wavelength range of 550–900 nm in the time range of 0–2.5 ns. Herein, the negative spectra (550–750 nm) are attributed to the bleaching signal. The positive signal band (>750 nm) is the absorption of excited states at different delay times. Figures 6C,D show the transient absorption spectra of PBDTTT-E:PC71BM and PTB7:PC71BM active layers after photoexcitation at 600 nm (it can excite the polymer phase in the blend film predominantly at this excitation energy) under an excitation fluency of 2.18 × 10^{13} photons·cm^{-2}·pulse^{-1}. Here, the transient absorption spectra of blend active layers are significantly different from those of the neat films. First, the recovery of the ground-state bleaching spectra and the attenuation of the excited-state absorption spectra are much slower. Second, in the near infrared region, the transient absorption spectra of blend active layers longer than 1 ps is very similar to the steady-state absorption spectra of polymer cation (PBDTTT-E^{**} and PTB7^{**}, cf. Figure 8). Accordingly, the transient absorption spectrum of the blend films longer than 1 ps is attributed to the spectral dynamics of charge species.

To understand charge photogeneration dynamics in the active layers, the TA kinetics of neat and blend films need to be analyzed. Figure 7A shows the TA kinetics of neat PBDTTT-E and PTB7 films at 900 nm under the similar excitation condition. It can be seen that the kinetics can be fitted by a bi-exponential decay function, which is a predominated fast decay and a much slower decay in the ns timescale. The fast decay components of PBDTTT-E and PTB7 films are 69.6 ± 5.4 ps and 108.1 ± 11.6 ps, respectively. The fast decay component could be attributed to the decay of excitons in neat polymer films (Su et al., 2021). The slower decay component in PBDTTT-E and PTB7 films exhibits a long lifetime of 1,598 ± 386 ps and 2,292 ± 1,140 ps, which could be attributed to the decay of photogenerated charge (Guo et al., 2009; Guo et al., 2010). We note that the exciton lifetime of PTB7 is longer than that of PBDTTT-E. Assuming the exciton diffusion coefficients of these two neat films are comparable, a longer exciton lifetime would result in a longer exciton diffusion length, which is a critical factor for enhancing the exciton dissociation efficiency in blend films.

For the kinetics in the blend films after photoexcitation polymers predominately at 900 nm, we note that all the kinetics decays are very slow, as shown in Figure 7B. Interestingly, no fast decay corresponding to the exciton dissociation of the polymer is observed in the kinetics, indicating the exciton diffusion and dissociation processes happen within the instrumental response function of 200 fs. In polymer solar cells, the size of the donor phase can determine the exciton diffusion coefficient and exciton lifetime in the blend film. The short exciton lifetime in blend films suggests all the photogenerated excitons can arrive at the D/A interface very quick. In other words, the size of the donor phase is very small in both PBDTTT-E:PC71BM and PTB7:PC71BM active layers.

Geminate recombination and non-geminate (or bimolecular) recombination are two channels of charge loss during the process of the free charge transport in polymer solar cells. Herein, in order to clarify the charge recombination characteristics in PBDTTT-E:PC71BM and PTB7:PC71BM active layers, the 600 nm excitation energy with varying excitation fluencies (2.18 × 10^{13} and 3.73 × 10^{13} photons·cm^{-2}·pulse^{-1}) was used to excite the active layers, as shown in Figures 7C,D. It can be seen that both PBDTTT-E:PC71BM and PTB7:PC71BM active layers exhibit similar decay behaviors in the time range of 0–3 ns under the low and high excitation fluencies. Hence, it can be inferred that the non-geminate recombination process is negligible at the ultrafast timescale. Based on this, we speculate that the difference of charge loss between PBDTTT-E:PC71BM and PTB7:PC71BM may originate from the bimolecular recombination process at a longer timescale (>3 ns). Besides, the kinetics shows a slow-rise process at the early timescale in Figures 7C,D. By examining TA spectra at varying delay time (Figures 6C,D), we find that the bleaching is red-shifting with delay time, which can be attributed to the transport of free carriers from high-energy states to lower-energy states. Herein, the detection wavelength of 700 nm is on the side of the red-shift of the bleaching peak, and thus, the kinetics at 700 nm would show a slow rise with the shift of the bleaching peak. Meanwhile, we also note that the rise time of the kinetics in Figures 7C,D is comparable to the red-shift time of the bleaching peak. Therefore, the rise process in the kinetics could be attributed to the charge transport induced the shifting of bleaching peaks in TA spectra.

Spectral Characterization of the PBDTTT-E and PTB7 Radical Cations in Solution, Neat, and Blended Films

The generation and transport of charge species are very important for the photocurrent of polymer solar cells. Polymer-positive polaron and -negative polaron could be generated by the photoexcitation process, and their transient absorption features usually have a P1 band and P2 band in the near infrared region, corresponding to the electron transition from HOMO to SOMO and SOMO to LUMO energy levels, respectively (Österbacka et al., 2000; Jiang et al., 2003). In this contribution, to analyze the effect of fluorine substitution on the charge transport in active layers, we employed an electrochemical method to produce PBDTTT-E^{**} and PTB7^{**} cations under the...
oxidation potential. Note that the steady-state absorption spectra of the polymer cation and transient absorption spectra of polymer transient polarons should be similar under the electrochemical and photoinduction methods.

Figure 8A shows the characteristic absorption spectra of PBDTTT-E\(^{+}\) and PTB7\(^{+}\) in solution. The negative spectra band at 1.67–2.36 eV is designated as the electrobleaching signal that is induced by the oxidation depletion of a polymer molecule under the applied potential. Meanwhile, the positive absorption spectra appear in the near infrared region, which can be attributed to the absorption of the polymer radical cation. The positive absorption spectra and negative electrobleaching suggest a correlation between the generation process of the polymer cation and transient absorption spectra of polymer \(+\) and \(-\). In the blend films, we also observe a similar blue-shift characteristic for the P2 peak with ~0.04 eV after PBDTTT-E via fluorine substitution. As for PBDTTT-E via fluorine substitution, we find the P2 peak energy in the neat film is ~0.01 eV higher than that in the blend film, while the P2 peak energy in the neat film is ~0.01 eV lower than that in the blend film for PTB7\(^{+}\). As mentioned above, a higher P2 energy would suggest a lower SOMO level of PTB7\(^{+}\) in the blend film is lower than that in the neat PTB7 film. On the contrary, the SOMO level energy of PBDTTT-E\(^{+}\) in the blend film is higher than that in the neat film. In polymer solar cells, there are two situations for the donor phase in the blend film: one is the polymers at the D/A interface, and the other is the polymers in the center of the donor phase which is similar to that in the neat polymer film. Considering these two situations in blend films, we deduce the SOMO energy level of PTB7\(^{+}\) in the center of the donor phase is higher than that at the interface. This energy level distribution could facilitate the hole transport from the interface into the center of the donor phase and suppress the charge recombination processes. On the contrary, for the PBDTTT-E blend film, the energy level distribution is not conducive to the transport of holes at the interface.

Electrical Characteristics of Devices

To further quantitatively analyze the charge transport property in PSCs, SCLC measurement was carried out to estimate the charge carrier mobility according to the literature (Zhang et al., 2014, and the \(J-V\) curves are shown in Figure 9A. Hole mobility \(\mu_h\) can be calculated using the Mott–Gurney law follows:

\[
J = \frac{9}{8} \epsilon_s \epsilon_0 \mu_h \frac{V^2}{d^2}
\]

Here, \(\epsilon_r\) is the relative permittivity of the conjugate polymer \((\epsilon_r = 3)\), \(\epsilon_0\) is the vacuum dielectric constant \((8.85 \times 10^{-12} \text{ F m}^{-1})\), \(V\) is the applied bias, and \(d\) is the thickness of the active layer. We obtained the thicknesses of neat films and

![Figure 9](image_url)
blend films as ~90 and ~110 nm. By calculation, the hole mobilities are 4.1×10^{-3}, 4.5×10^{-3}, 3.1×10^{-3}, and 3.4×10^{-4} cm2 V$^{-1}$ s$^{-1}$ in PBDTTT-E, PTB7, PBDTDTT-E:PC$_{71}$BM, and PTB7:PC$_{71}$BM devices, respectively. Apparently, PTB7-based devices have higher hole mobilities than PBDTTT-E-based devices, suggesting that fluorine substitution has an important effect on transport efficiency (η_M). To further analyse charge carrier recombination characteristics in blend devices, EIS measurements of devices were conducted under the dark condition, as shown in Figure 9B. The results of the two blend devices were analysed with an equivalent circuit (inset picture of Figure 9B). Herein, R1 contains the electrodes, the active layer/metal electrode interface, and the active layer. The constant-phase element (CPE) is usually used to simulate the dielectric effect of the device for better fitting. R2 is often considered as a charge-transfer (or recombination) resistor. Thus, it reflects the charge carrier recombination. In this work, all EIS spectra were fitted by a simulation function installed in the measurement software (Zview2), and the fitting parameters are shown in Table 3. R1 values are 38.57 and 23.36 Ω in PBDTTT-E:PC$_{71}$BM and PTB7:PC$_{71}$BM devices, respectively, indicating that the PTB7:PC$_{71}$BM device has a small photocurrent loss at the active layer or interface. Besides, the PTB7:PC$_{71}$BM device shows a smaller R2 value (53,200 Ω) than the PBDTTT-E:PC$_{71}$BM device (76,286 Ω). Hence, it implies that the PTB7-based device is more favorable for suppressing charge recombination during the charge transport process. CPE values also indicate a better charge transport channel in the PTB7:PC$_{71}$BM device.

CONCLUSION

In summary, we have spectroscopically characterized the exciton and polaron species in the neat PBDTTT-E (PTB7) and the blend PBDTTT-E (PTB7):PC$_{71}$BM active layers and investigated their charge transport and charge recombination behaviors. PTB7 and PBDTTT-E showed a small photocurrent loss at the active layer or interface. Besides, the PTB7:PC$_{71}$BM device shows a smaller R2 value (53,200 Ω) than the PBDTTT-E:PC$_{71}$BM device (76,286 Ω). Hence, it implies that the PTB7-based device is more favorable for suppressing charge recombination during the charge transport process. CPE values also indicate a better charge transport channel in the PTB7:PC$_{71}$BM device.

REFERENCES

Arias, A. C., MacKenzie, J. D., McCulloch, I., Rivnay, J., and Salleo, A. (2010). Materials and Applications for Large Area Electronics: Solution-Based Approaches. Chem. Rev. 110, 3–24. doi:10.1021/cr900150b

Bhatta, R. S., and Tsige, M. (2014). Chain Length and Torsional Dependence of Exciton Binding Energies in P3HT and PTB7 Conjugated Polymers: A First-Principles Study. Polymer 55, 2667–2672. doi:10.1016/j.polymer.2014.04.022

Chao, P., Mu, Z., Wang, H., Mo, D., Chen, H., Meng, H., et al. (2018). Chlorination of Side Chains: A Strategy for Achieving a High Open Circuit Voltage over 1.0 V in Benzo[1,2-B:4,5-B′]dithiophene-Based Non-fullerene Solar Cells. ACS Appl. Energ. Mater. 1, 2365–2372. doi:10.1021/acsama.8b00506

Chen, F. X., Xu, J. Q., Liu, Z. X., Chen, M., Xia, R., Yang, Y., et al. (2018). Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells. Adv. Mater. 30, 1803769. doi:10.1002/adma.201803769

Chen, H., Hu, Z., Wang, H., Liu, L., Chao, P., Qu, J., et al. (2018). A Chlorinated π-Conjugated Polymer Donor for Efficient Organic Solar Cells. Joule 2, 1623–1634. doi:10.1016/j.joule.2018.05.010

Chen, L., Wu, M., Shao, G., Hu, J., He, G., Bu, T., et al. (2018). A Helical Perylene Diimide-Based Acceptor for Non-fullerene Organic Solar Cells: Synthesis, Morphology and Exciton Dynamics. R. Soc. Open Sci. 5, 172041. doi:10.1098/rsos.172041

Clark, J., Chang, J.-F., Spaso, F. C., Friend, R. H., and Silva, C. (2009). Determining Exciton Bandwidth and Film Microstructure in Polythiophene Films Using

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

RH and WZ designed this work. RH carried out the J–V, EIS, and SEC experiments. YL provided AFM and absorption data. JP provided PL data. JJ and MQ provided assistance for data analysis. XH provided TA data. M-MH provided contribution suggestions of the manuscript. RH wrote the manuscript. WZ helped to revise the manuscript. All authors contributed to the manuscript and approved the final version.

FUNDING

This work was funded by the National Natural Science Foundation of China (21903017), Major Cultivation Project of Chongqing University of Arts and Sciences (P2020CL01), the Science and Technology Research Program of the Chongqing Municipal Education Commission (KJQN20191319 and KJQN20201323), General program of Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0874, cstc2019jcyj-msxmX0875, and cstc2019jcyj-msxmX0411), Guangzhou Science and Technology Planning Project (202102010443), and Young Talents Program of Guangzhou University (Grant No. RQ2020080).
Linear Absorption Spectroscopy. *Appl. Phys. Lett.* 94, 163306. doi:10.1063/1.3110969

Clarke, T. M., and Durrant, J. R. (2010). Charge photogeneration in Organic Solar Cells. *Chem. Rev.* 110, 6736–6767. doi:10.1021/cr900271s

Dang, M. T., Hirsch, L., Wanzet, G., and Wuest, J. D. (2013). Controlling the Morphology and Performance of Bulk Heterojunctions in Solar Cells. Lessons Learned from the Benchmark Poly(3-Hexylthiophene):[6,6]-Phenyl-C61-Butyric Acid Methyl Ester System. *Chem. Rev.* 113, 3734–3765. doi:10.1021/cr300005u

Dehnen, S., Schafer, L. L., Lectta, T., and Togni, A. (2021). Fluorine: A Very Special Element and its Very Special Impacts on Chemistry. *Inorg. Chem.* 60, 17419–17425. doi:10.1021/acs.inorgchem.0c03559

Dennler, G., Scharber, M. C., Ameri, T., Denk, P., Forberich, K., Waldauf, C., et al. (2008). Design Rules for Donors in Bulk Heterojunction Tandem Solar Cells–Towards 15% Energy–Conversion Efficiency. *Adv. Mater.* 20, 579–583. doi:10.1002/adma.200702337

Dunitz, J. D., and Taylor, R. (1997). Organic Fluorine Hardly Ever Accepts Hydrogen Bonds. *Chem. Eur. J.* 3, 89–98. doi:10.1002/chem.19970030115

Fauvell, T. J., Zheng, T., Jackson, N. E., Ratner, M. A., Yu, L., and Chen, L. X. (2009). Near-IR Femtosecond Transient Absorption Spectroscopy of Ultrastable Polaron and Triplet Exciton Formation in Polythiophene Films with Different Regioregularities. *J. Am. Chem. Soc.* 131, 16688–16690. doi:10.1021/ja906621a

Guo, J., Okhita, H., Benten, H., and Ito, S. (2009). Near-IR Femtosecond Transient Absorption Spectroscopy of Ultrastable Polaron and Triplet Exciton Formation in Polythiophene Films with Different Regioregularities. *J. Am. Chem. Soc.* 131, 16688–16690. doi:10.1021/ja906621a

He, X., Mukherjee, S., Watkins, S., Chen, M., Qin, T., Thomsen, L., et al. (2014). Influence of Fluorination and Molecular Weight on the Morphology and Performance of PTB7:PC71BM Solar Cells. *J. Phys. Chem. C* 118, 9918–9929. doi:10.1021/jp502122w

Hedley, C. J., Ruseckas, A., and Samuel, I. D. W. (2016). Light Harvesting for Organic Photovoltaics. *Chem. Rev.* 117, 796–837. doi:10.1021/acs.chemrev.6b00215

Huang, L., Zhang, H., Xiao, B., Liu, Y., Wang, C., et al. (2021). Effects of BT2A as the Third Component on the Charge Carrier Generation and Recombination Behavior of PTB7:PC71BM Photovoltaic System. *Front. Chem. Sci. Eng.* 15, 127–137. doi:10.1007/s11705-020-1936-7

Hu, R., Zhang, L., Qin, J., Xu, J., Li, W., et al. (2020). 18% Efficiency in Low-Temperature Solution-Processable Organic Solar Cells. *Sci. Bull.* 65, 275–279. doi:10.1016/j.scib.2020.01.001

Huang, L., and Lu, L. (2014). Understanding Low Bandgap Polymer PTB7 and Optimizing Polymer Solar Cells Based on it. *Adv. Mater.* 26, 4413–4430. doi:10.1002/adma.201400384

Hu, R., Liu, Y., Chen, Z., Tang, H., Xu, W., Li, J., et al. (2012). An Aqueous Solvent Treatment for Efficient Polymer Solar Cells. *RSC Adv.* 2, 10231–10237. doi:10.1039/c2ra21193a

Liang, Y., Xu, X., Tsai, S. T., Wu, Y., Li, G., et al. (2010). For the Bright Future: Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. *Adv. Mater.* 22, E135–E138. doi:10.1002/adma.200903528

Liu, Y., Lin, Y., Nugarla, M. I., Firdaus, Y., Scaccabarozzi, A. D., Anis, F., et al. (2020). A Simple N-Dopant Derived from Disulfan Boosts the Efficiency of Organic Solar Cells to 18.3. *ACS Energy Lett.* 5, 3663–3671. doi:10.1021/acsenergylett.0c01949

Liu, X., Zhang, L., Xiao, B., Liu, Y., Wang, C., et al. (2021). Effects of BT2A as the Third Component on the Charge Carrier Generation and Recombination Behavior of PTB7:PC71BM Photovoltaic System. *Front. Chem. Sci. Eng.* 15, 127–137. doi:10.1007/s11705-020-1936-7

Liu, Q., Jiang, Y., Jin, K., Qin, J., Xu, J., Li, W., et al. (2020). 18% Efficiency Organic Solar Cells. *Sci. Bull.* 65, 275–279. doi:10.1016/j.scib.2020.01.001

Li, H., and Lu, L. (2014). Understanding Low Bandgap Polymer PTB7 and Optimizing Polymer Solar Cells Based on it. *Adv. Mater.* 26, 4413–4430. doi:10.1002/adma.201400384

Lu, S., Sun, Y., Ren, K., Liu, K., Wang, Z., and Qu, S. (2018). Recent Development in ITO-Free Flexible Polymer Solar Cells. *Polymers* 10, 5. doi:10.3390/polym10010005

Matheson, A. B., Ruseckas, A., Pearson, S. J., and Samuel, I. D. W. (2019). Hole Delocalization as a Driving Force for Charge Pair Dissociation in Organic Photovoltaics. *Mater. Horiz.* 6, 1050–1056. doi:10.1039/c8mh01204k

Moritomo, Y., Yonezawa, K., and Yasuda, T. (2016). Carrier Formation Dynamics in Prototypical Organic Solar Cells as Investigated by Transient Absorption Spectroscopy. *Int. J. Photoenergy* 2016, 1–17. doi:10.1155/2016/910546

Ostberka, R., An, C. P., Jiang, X. M., and Vardeny, Z. V. (2000). Two-dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals. *Science* 287, 839–842. doi:10.1126/science.287.5454.839

Po, R., Maggini, M., and Camaioni, N. (2010). Polymer Solar Cells: Recent Approaches and Achievements. *J. Phys. Chem. C* 114, 695–706. doi:10.1021/jp9061362

Shang, Q., Yu, J., Hu, R., Liu, Z., Cheng, J., Li, Y., et al. (2020). Enhanced Charge Transport in Conventional Polymer Solar Cells with a Perovskite-type LaNiO3 Layer. *ACS Appl. Mater. Inter.* 12, 13051–13066. doi:10.1021/acsami.9b22049

Sharma, R., Gupta, V., Lee, H., Borse, K., Dutt, R., Sharma, C., et al. (2018). Charge Carrier Dynamics in P3HT:PT-2OD:PCBM Organic Solar Cells. *Org. Electro.* 62, 441–447. doi:10.1016/j.orgel.2018.08.018

Sharma, R., Lee, H., Gupta, V., Kim, H., Kumar, M., Sharma, C., et al. (2016). Photo-physics of PTB7, PCBM and ICBA Based Ternary Solar Cells. *Org. Electro.* 34, 111–117. doi:10.1016/j.orgel.2016.04.022

Su, X., Hu, R., Wen, G., Zou, X., Qing, M., Peng, J., et al. (2021). Understanding of Photophysical Processes in DIO Additive-Treated PTB7:PC71BM Solar Cells. *Crystals* 11, 1139. doi:10.3390/crystals11091139

Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., et al. (2014). The Origin of High Efficiency in Low-Temperature Solution-Processable Bilayer Organic-Metal Halide Hybrid Solar Cells. *Energy Environ. Sci.* 7, 399–407. doi:10.1039/C3EE43161D

Wang, J., Zheng, Z., Yu, Y., Wang, Y., Liu, X., Zhang, S., et al. (2021). A Tandem Organic Photovoltaic Cell with 19.6% Efficiency Enabled by Light Distribution Control. *Adv. Mater.* 33, 2102787. doi:10.1002/adma.202102787
Wang, R., Zhang, C., Li, Q., Zhang, Z., Wang, X., and Xiao, M. (2020). Charge Separation from an Intra-moiety Intermediate State in the High-Performance PM6:Y6 Organic Photovoltaic Blend. *J. Am. Chem. Soc.* 142, 12751–12759. doi:10.1021/jacs.0c04890

Wu, M., Yi, J.-P., Chen, L., He, G., Chen, F., Sfeir, M. Y., et al. (2018). Novel Star-Shaped Helical Perylene Diimide Electron Acceptors for Efficient Additive-free Nonfullerene Organic Solar Cells. *ACS Appl. Mater. Inter.* 10, 27894–27901. doi:10.1021/acsami.8b06126

Zhang, M., Guo, X., Zhang, S., and Hou, J. (2014). Synergistic Effect of Fluorination on Molecular Energy Level Modulation in Highly Efficient Photovoltaic Polymers. *Adv. Mater.* 26, 1118–1123. doi:10.1002/adma.201304427

Zhang, Q., Kelly, M. A., Bauer, N., and You, W. (2017). The Curious Case of Fluorination of Conjugated Polymers for Solar Cells. *Acc. Chem. Res.* 50, 2401–2409. doi:10.1021/acs.accounts.7b00326

Zhang, T., An, C. B., Lv, Q., Qin, J., Cui, Y., Zheng, Z., et al. (2021). Optimizing Polymer Aggregation and Blend Morphology for Boosting the Photovoltaic Performance of Polymer Solar Cells via a Random Terpolymerization Strategy. *J. Energ. Chem.* 59, 30–37. doi:10.1016/j.jechem.2020.11.021

Zhang, W., Hu, R., Li, D., Huo, M.-M., Ai, X.-C., and Zhang, J.-P. (2012). Primary Dynamics of Exciton and Charge Photogeneration in Solvent Vapor Annealed P3HT/PCBM Films. *J. Phys. Chem. C* 116, 4298–4310. doi:10.1021/jp211653x

Zhang, W., Hu, R., Zeng, X., Su, X., Chen, Z., Zou, X., et al. (2019). Effect of Post-Thermal Annealing on the Performance and Charge Photogeneration Dynamics of PFBT4T-2OD/PC71BM Solar Cells. *Polymers* 11, 408. doi:10.3390/polym11030408

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.