Isolation and molecular characterization of clinical and environmental dematiaceous fungi and relatives from Iran

Gholamreza Shokoohi1,2, Hamid Badali3,4, Bahram Ahmadi5, Kazuo Satoh6, Sadegh Nouripour-Sisakht7, Mahnaz Nikaeen8, Mohsen Gramishoar9, Niloofar Jalalizand10, Sahar Kianipour11, Hossein Mirhendi11*, Koichi Makimura12

1Department of Parasitology and Mycology, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
2Zoonosis Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
3Invasive Fungi Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
4Department of Medical Mycology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
5Department of Medical Laboratory Sciences, Faculty of Paramedical, Bushehr University of Medical Sciences, Bushehr, Iran
6General Medical Education and Research Center, Teikyo University, Tokyo, Japan
7Cellular and Molecular Research Center, Yasu University of Medical Sciences, Yasu, Iran
8Department of Environmental Health Engineering, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
9Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
10National Institute of Health Research Isfahan Health Research Station, Tehran University of Medical Sciences, Tehran, Iran
11Department of Medical Parasitology and Mycology, School of Medicine and Reference Mycology Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
12Medical Mycology, Graduate School of Medicine, Teikyo University, Tokyo, Japan

* Corresponding authors: Hossein Mirhendi
Department of Medical Parasitology and Mycology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Email: mirhendi@tums.ac.ir

Abstract

Background and Purpose: The frequency and genetic diversity of black fungi in environmental and clinical settings have not been fully studied in Iran. This study aimed to identify and evaluate intra- and inter-species DNA sequence variation and also understand the phylogenetic relationships of melanized fungi and relatives isolated from different geographical regions of Iran.

Materials and Methods: In total, 111 clinical and environmental strains of dematiaceous fungi were isolated, and their internal transcribed spacer ribosomal DNA (rDNA) regions were sequenced and analyzed.

Results: An inter-species nucleotide sequence diversity rate of 1 to 464 nucleotides was observed between the species. Intra-species differences were found in the strains of Alternaria alternata, Cladosporium cladosporioides, Alternaria tenuissima, Curvularia spicifera, Aureobasidium pullulans, Curvularia hawaiiensis, Neoscytalidium dimidiatum, Alternaria terricola, Alternaria chlamydospora, Didymella glomerata, and Drechslera dematioides by 0–59, 0–22, 0–4, 0–4, 0–3, 0–2, 0–2, 0–2, 0–2, 0–1, and 0–1 nucleotide, respectively.

Conclusion: The internal transcribed spacer rDNA is useful for the discrimination of several taxa of dematiaceous fungi. However, a better understanding of the taxonomy of species of Alternaria requires a larger rDNA region or a library of other gene sequences.

Keywords: Dematiaceous fungi, Iran, ITS rDNA region, Molecular identification

Introduction

Dematiaceous fungi are characterized by the presence of pale brown-to-dark melanin-like pigments in the cell wall, which are linked to the pathogenicity of these fungi [1, 2]. They comprise a large number of filamentous, yeasts, and yeast-like fungi and relatives, which are found in soil, air, wood, plant, and organic debris [3]. Numerous species in this group are known to cause cutaneous lesions and severe brain encephalitis. Besides, under suitable conditions, they may produce toxins that can pose serious health risks to humans and animals [1, 4, 5]. Moreover, some of these fungi are of industrial importance and may be used in the production of cellobiose dehydrogenase, citric acid, and pullulan [6].

Despite the increasing importance of dematiaceous fungal infections, little is known about their epidemiology, mode of transmission, or pathogenesis. Epidemiological studies of dematiaceous fungi provide awareness and accurate information on their prevalence. Furthermore, such studies help develop control strategies regarding infections caused by these fungi and improve the diagnosis and development of...
Molecular characterization of dematiaceous fungi

Shokoohi Gh et al.

Treatment options [7]. Correct identification to the species level is essential for epidemiological, pathological, toxicological, and industrial purposes, as well as for targeted antifungal therapy [7, 8].

For ages, phenotypic methods, including biochemistry, morphology, and physiology have formed the backbone of the identification and taxonomy of dematiaceous fungi [9, 10]. Due to the diversities and similarities among different species, morphological features may often be indistinct and inadequate for species identification [10, 11]. For accurate identification of these fungi, the focus has shifted towards molecular strategies with the advantages of limited hands-on activity, less required experience, and increased reliability and reproducibility compared with conventional diagnosis [12].

Usage of molecular methods to provide precise and timely information for health professionals is clearly advantageous. Molecular methods, in conjunction with conventional methods or alone, have great potential to develop the analysis of dematiaceous fungi [13]. Nevertheless, various factors, such as nonspecific genetic amplification from other sources (the environment or the host gene), samples containing a mixed infection, an incomplete database particularly related to GenBank, are the limitations to well describe the epidemiology by molecular methods [14].

Different DNA-based techniques have been used for the identification of black fungi, including polymerase chain reaction (PCR)-restriction fragments length polymorphism, amplified fragment length polymorphism, real-time PCR, arbitrarily primed PCR, rolling circle amplification, and sequence analysis of different regions of the DNA [15-20]. Partial small subunit (SSU), D1/D2 domain of the large subunit, and internal transcribed spacer (ITS) of the ribosomal DNA, chitin synthase (CHS) gene, and mitochondrial DNA (mtDNA) are examples of target DNAs for sequence-based identification [8, 21-23].

The D1/D2 domain is not a useful marker for the identification of some species that have identical sequences or an intra-species variation of less than 0.5% [8]. Likewise, sequence data of mtDNA and CHS are not available for all species in GenBank, and partial SSU sequences with little nucleotide variation make the SSU rRNA gene a relatively poor target for discrimination of these fungi [22]. In contrast, phylogenetic analysis and identification of black fungi and relatives based on sequencing of the ITS1 and ITS2 regions has shown to be useful and remains the gold standard target [22].

No study has been performed in Iran about the occurrence and distribution of black fungi in clinical and environmental settings. Therefore, the present research project aimed to identify and evaluate inter- and intra-species variation within, and also understand phylogenetic relationships of dematiaceous fungi isolated from different geographical parts of Iran. The preliminary data provided in this study could also be useful for improving the differentiation and diagnostic detection of black fungi in the epidemiological, clinical, environmental, and industrial settings.

Materials and Methods

Samples and fungi isolation

In total, 350 samples, including soil, plant, wood, organic debris, and air were randomly collected from different parts of the center, south, and southwest of Iran, i.e., Shiraz, Bushehr, Isfahan, Ahwaz, and Yasuj cities. This study was approved by the Ethics Committee of Tehran University of Medical Sciences, Tehran, Iran.

Approximately 20 g of each sample (except for air samples) was suspended in 100 mL sterile saline containing 200 U penicillin, 200 μg/ml streptomycin, and 200 μg/ml chloramphenicol. After initial incubation at room temperature for 30 min, 20 mL of sterile mineral oil was added to the solution, followed by vigorous shaking for 5 min. The samples were left for 20 min to let the debris settle down, and the oil-water interphase was carefully collected, inoculated onto the Sabouraud dextrose agar supplemented with 50 mg/L of chloramphenicol (Merck, Germany), Mycobiotic agar (Merck, Germany), homemade potato dextrose agar, and malt extract agar (MEA; Merck, Germany). Afterward, it was incubated for up to four weeks at 28 °C in darkness. The colonies of dematiaceous fungi were then isolated and stored on MEA prior to use [24].

In addition, samples were obtained from bathrooms and washing machines by using sterile cotton swabs moistened with physiological saline which were transported in tubes and inoculated onto MEA agar [25]. Air sampling was performed by the settled plate method using Sabouraud dextrose agar containing chloramphenicol (100 mg/L), gentamicin (40 mg/L), homemade potato dextrose agar, and MEA [26]. Plates were located for 30 min at different heights on the ground. All plates were incubated at 28 °C for at least 4 weeks until the appearance of slow-growing dark colonies [27].

A variety of clinical specimens, including nail, mouth, and sinus samples were collected from patients suspected of fungal infections and submitted to four medical mycology laboratories in Tehran, Isfahan, and Ahwaz, Iran. The fungi were grown on MEA at 28 °C followed by at least a five-day slide culture and preparation of mount in lactophenol aniline blue. The colonies were studied by observation of the macroscopic morphological features (i.e., growth rate, color, shape, size, and topography) and microscopic examination of the characteristics of the hyphae, conidiophores, conidia, and other conidiation properties [9].

Molecular characterization

Genomic DNA was extracted from the isolated colonies using the glass-bead phenol-chloroform method as previously described [3]. The ITS rDNA
regions were amplified using 0.25 μM of the fungal universal primers V9G and LS266, 12.5 μL of 2× premix (Ampliqon, Denmark), 1 μL of DNA template, and enough water to produce a final volume of 25 μL reaction mixture. The PCR cycles consisted of preheating at 94 °C for 5 min, 30 cycles of 30 s at 94 °C, 45 s at 60 °C, and 45 s at 72 °C followed by a final extension step of 7 min at 72 °C. The PCR products were subjected to 1.5% agarose gel electrophoresis and photographed under UV irradiation [3, 28].

### Sequencing and phylogenetic analysis

The PCR products were sequenced in one direction by the primer V9G using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems, Foster City, CA, USA) on an automated DNA sequencer (ABI PrismTM3730 Genetic Analyzer, Applied Biosystems) according to the instructions of the manufacturer. The obtained sequence data were imported into MEGA software (version 6), ambiguous regions were edited manually to improve alignment accuracy, and final identification of isolates was performed by comparing the obtained sequences with the reference sequences of the National Center for Biotechnology Information database.

Sequences were subjected to BioEdit software (version 7.0.5) for pairwise comparisons and multiple alignments to determine intra- and inter-species similarities and differences in nucleotides. The Maximum Likelihood method was applied to the phylogenetic analysis using unambiguously aligned sequences with the Tamura-Nei parameter with substitution model as implemented in the MEGA software (version 7) [29]. Bootstrap values equal to or greater than 70% were considered significant.

### Results

Clinical and environmental strains were collected during a 2-year period. In total, 111 strains of potential melanized fungi were isolated out of 350 samples collected from soil, air, and other different environmental sources. Colony characteristics of each colony were studied and subjected to species identification based on ITS-rDNA sequencing.

The PCR yielded a single band of approximately 950-1000 base pair (bp) on gel electrophoresis. Based on DNA sequencing, the clinical strains (n=9) comprised Alternaria alternata (n=1), Alternaria malorum (n=2), Neoscytalidium dimidiatum (n=2), Neoscytalidium novaehollandiae (n=1), Aureobasidium pullulans (n=1), Curvularia hawaiensis (n=1), and Cladosporium sphaerosperrnum (n=1) (Table 1).

The mean age and age range of patients were 51 and 27-65 years, respectively. Most patients were female (56%) and in the majority of cases, the infection had been present for a long time. In mycological tests, the characteristic mycelium was seen in direct examination of all nine specimens (Table 1). The patients resided in Tehran (66.67%), Isfahan (22.22%), and Ahwaz (11.11%), and none of them suffered from any other predisposing diseases (Table 1).

The environmental strains (n=102) were shown in Table 2. Nucleotide sequences of all isolates were deposited in GenBank under the accession numbers: KY788018–KY788126 and MF422634–MF422636.

Phylogenetic analyses of ITS sequences of the isolated black fungi revealed six orders, namely Pleosporales, Capnodiales, Dothidiales, Chaetothyriales, Botryosphaeriales, and Venturiales (Figure 1). Closely related genera, such as Alternaria, Curvularia, Drechslera, and Didymella species formed well-supported clades with a bootstrap value of 92% while Neoscytalidium and Exophiala clustered with a bootstrap value of 100% (Figure 1).

Remarkably, species of the order Pleosporales clustered into two clades: Clade 1 and 2. Clade 1 consisted of strains of Alternaria, Curvularia, and Drechslera species while Clade 2 included Didymella as a separate species. The phylogenetic tree revealed Curvularia and Drechslera in Clade 1, forming a sub-clade closely related to Alternaria species. Phylogenetic analysis showed that Cladosporium species belonged to the branch Capnodiales, forming a single group closely related to Dothidiales order (Figure 1).

In the tree constructed based on the ITS rDNA region, strains of Aureobasidium section Dothidiales were located next to the Chaetothyrials and Capnodiales sections. Member species of Ochroconis belonging to the Venturiales order branched far away from all the other orders of black fungi.

Table 3 shows the comparison between dematiaceous strains based on the number of differences in the nucleotide sequences. A sequence difference count matrix between these strains ranged from 1 to 464 nucleotides with the largest distance being observed between an Ochroconis species and C. sphaeroesperrnum. Meanwhile, intra-species differences were found within different strains of A. alternata, Cladosporium cladosporioides, Alternaria tenuissima Curvularia spicifera, A. pullulans, C. hawaiensis, N.,

### Table 1. Summary of characterization, source, and identification of dematiaceous fungi isolated from clinical specimens.

| No. | Age/gender/year | Source | City   | Direct examination | Isolated on culture | Accession nr. |
|-----|-----------------|--------|--------|--------------------|----------------------|---------------|
| 1   | 26/F/2016       | Sinus discharge | Tehran | Mycelium elements  | Alternaria alternata | KY788023      |
| 2   | 53/M/2016       | Sinus discharge | Isfahan | Mycelium elements  | Alternaria malorum   | KY788040      |
| 3   | 27/M/2013       | Skyn lesion | Isfahan | Mycelium elements  | Alternaria malorum   | JQ219160      |
| 4   | 57/F/2015       | Sinus discharge | Tehran | Mycelium elements  | Neoscytalidium dimidiatum | KY788092     |
| 5   | 49/F/2015       | Nail     | Tehran | Mycelium elements  | Neoscytalidium dimidiatum | KY788091     |
| 6   | 52/F/2016       | Nail     | Tehran | Mycelium elements  | Neoscytalidium novaehollandiae | KY788097 |
| 7   | 55/M/2014       | Nail     | Ahwaz   | Mycelium elements  | Aureobasidium pullulans | KY788108 |
| 8   | 65/M/2015       | Mouth lesion | Tehran | Mycelium elements  | Curvularia hawaiensis | KY788102     |
| 9   | 65/F/2014       | Nail     | Tehran | Mycelium elements  | Cladosporium sphaerosperrnum | KY788060 |
Figure 1. Phylogenetic analysis of black fungi species based on the analysis of ITS sequences. The evolutionary history was inferred using the Maximum likelihood method based on the Tamura–Nei model. A: Pleosporales, B: Botryosphaeriales, C: Chaetothyriales, D: Dothidiales, E: Capnodiiales, F: Venturiales
### Table 2. Environmental dematiaceous fungi isolated from different regions of Iran

| City (no.) | Source (no.) | Taxon name (no.) | ITS rDNA Accession nr. |
|------------|--------------|------------------|------------------------|
| Ahwaz (10) | Air (5)      | Alternaria tenuissima (2), Cladosporium cladosporoides (2), Didymella glomerata (1) | KY788031 & KY788045, KY788051 & KY788052, KY788126 |
|            | Soil (3)     | Alternaria alternata (1), C. cladosporoides (1), Aureobasidium pullulans (1) | KY788027, KY788053, KY788107 |
|            | Plant (1)    | Aertrychia tericola (1) | KY788085 |
|            | Organic debris (1) | | KY788084 |
| Bushehr (29) | Air (11) | A. alternata (2), Cladosporium sphaerospermum (2), Curvularia hauviasi (2), A. tenuissima (1), Alternaria malorum (1), A. tericola (1), Drechlera dematioides (1), Embellisia astragali (2) | KY788020 & KY788021, KY788061 & KY788062, KY788103 & KY788104, KY788029, MF422634, KY788072, KY788111, KY788122, KY788046 & KY788047, KY788098 & KY788099, KY788125, KY788112, KY788059, KY788025, KY788055, KY788093 |
|            | Soil (10) | Alternaria chlamydospora (2), Curvularia spicifera (2), A. tenuissima (1), Alternaria japonica (1), A. tericola (1), C. cladosporoides (1), C. sphaerospermum (1), D. dematioides (1) | KY788030 & KY788039, KY788073, KY788054, KY788028, KY788059, KY788076, KY788058, KY788094 |
|            | Plant (4) | A. tericola (2), Cladosporium cladosporoides (1), Neoexylidiun dimidiatum (1), C. cladosporioides (1), A. tenuissima (1), C. cladosporoides (1), N. dimidiatum (1) | KY788025 & KY788124, KY788044 & KY788045, KY788046 & KY788047, KY788048 & KY788050, KY788105 & KY788106, KY788036 & KY788037, KY788043, KY788049, MF422635 |
|            | Wood (4) | C. cladosporoides (1), A. tenuissima (1) | KY788087 & KY788088, KY788096, KY788086, KY788095 |
| Isfahan (18) | Air (8) | A. alternata (2), Alternaria sp. (2), C. cladosporoides (2), C. hauviasi (2) | KY788025 & KY788124, KY788044 & KY788045, KY788046 & KY788047, KY788048 & KY788050, KY788105 & KY788106, KY788036 & KY788037, KY788043, KY788049, MF422635 |
|            | Soil (5) | Alternaria tenuissima (2), Alternaria sp. (1), C. cladosporoides (1), Ochroconis constricta (1) | KY788010 |
|            | Plant (3) | A. tenuissima (2), N. dimidiatum (1), A. tericola (1), N. dimidiatum (1) | KY788010 |
|            | Wood (2) | C. cladosporii (1) | KY788074 & KY788075, KY788026, KY788030 |
| Shiraz (37) | Air (14) | D. glomerata (4), D. dematioides (2), A. alternata (2), A. tenuissima (1), A. malorum (1), A. tericola (1), A. pullulans (1), Ochroconis species (1), E. phaeomuriformis (1) | KY788015 & KY788016, KY788017 & KY788118, KY788114 & KY788119, KY788022, KY788034, KY788041, KY788077, KY788109, MF422636, KY788120 |
|            | Soil (11) | Alternaria cladosporioides (2), A. sphaerospermum (2), N. dimidiatum (2), A. tenuissima (1), Alternaria rosea (1), A. tericola (1), C. spicifera (1), A. pullulans (1) | KY788018 & KY788024, KY788065 & KY788066, KY788089 & KY788090, KY788033, KY788038, KY788079, KY788100, KY788110 |
|            | Plant (3) | Alternaria sp. (1), A. tericola (1), C. sphaerospermum (1) | KY788082, KY788083, KY788064 |
|            | Wood (5) | A. tericola (3), C. sphaerospermum (2), Aschroconis subtilis (1), A. tericola (1) | KY788078, KY788080 & KY788081, KY788063 & KY788069 |
|            | Organic debris (4) | C. sphaerospermum (2), Aschroconis subtilis (1), A. tericola (1) | KY788086 & KY788087, KY788088, KY788089, KY788094 |
| Yazd (8)   | Air (1) | C. specifera (1) | KY788010 |
|            | Soil (4) | A. tericola (2), A. alternata (1), A. tenuissima (1) | KY788074 & KY788075, KY788026, KY788030 |
|            | Plant (1) | C. cladosporoides (1) | KY788056 |
|            | Organic debris (1) | C. cladosporoides (1) | KY788076 |
|            |            |                    | KY788057 |

### Table 3. Sequence variation based on pairwise sequence comparison of rDNA genes of dematiaceous fungi.

| Taxa (Accession nr.) | ID |
|----------------------|----|
| Alternaria alternata (KY788013) | 1D |
| Alternaria alternata (KY788023) | 47D |
| Alternaria tenuissima (KY788015) | 54D |
| Alternaria rosea (KY788010) | 73 |
| Alternaria japonica (KY788012) | 49 |
| Alternaria malorum (KY788014) | 55 |
| Alternaria speciosa (KY788010) | 56 |
| Cladosporium cladosporioides (KY788010) | 263 |
| Cladosporium sphaerospermum (KY788010) | 263 |
| Cladosporium tericola (KY788020) | 4 |
| Ochroconis dematioides (KY788010) | 197 |
| Ochroconis tericola (KY788010) | 198 |
| Curvularia specifera (KY788020) | 114 |
| Curvularia aurantia (KY788010) | 114 |
| Curvularia Pubescens (KY788010) | 185 |
| Drechlera dematioides (KY788111) | 114 |
| Exophiala glomerata (KY788111) | 121 |
| Alternaria subtilis (KY788111) | 118 |
| Exophiala phaeomuriformis (KY788202) | 269 |
| Embellisia astragali (KY788122) | 70 |
| Ochroconis constricta (MF422635) | 366 |
| Ochroconis speciosa (MF422630) | 421 |
dimidiatum, Alternaria terricola, Alternaria clamydospora, Didymella glomerata, and Drechslera dematioides. In a study performed by Parham et al., who used the D1/D2 domain for the identification of black fungi, some species of the genus Cladosporium were found to have identical or highly similar sequences with substitutions only at one or two positions [8]. For such species, ITS-rDNA with greater nucleotide variation has a higher potential for discriminating between species than the D1/D2 domain [34, 35]. In recent years, DNA-based studies have shown multiple non-monophyletic genera within the Alternaria complex that do not always associate with species groups based on morphological characteristics.

In the present study, phylogenetic relationships constructed based on sequences of the ITS region from Alternaria isolates and other Pleosporaceae (Ulocladium species, Embellisia species) show the formation of a distinctive clade consisting of Alternaria, A. tenuissima (Alternaria section), A. malorum (Chalastospora section), Alternaria japonica (Japonica section), A. chlamydospora (Phragmosporae section), A. terricola (Ulocladioides section) and Embellisia astragali (Embellisiaoides section) supported by a bootstrap value of 91%. Results of the present study supported previous observations of the polyphyletic and paraphyletic relationship between Alternaria and the related taxa of Ulocladium and Embellisia.

Among our samples, C. hawaiiensis, C. spicifera, and D. dematioides were also isolated. Although the genus Curvularia can easily be distinguished from Bipolaris and Drechslera species by sequence analysis, there has been some difficulty in distinguishing them due to their conidial shape, size, and septation. The C. hawaiiensis, C. spicifera, and D. dematioides went together in our analysis, supported by a bootstrap value of 99%. Moreover, the closely related species, D. glomerata and Ascochyta rabiei formed a separate clade with bootstrap values of 100 (Figure 1).

In this study, Exophiala phaeomuriformis (belonging to the order Chaetothyriales) and two Ochroconis species were isolated. Ochroconis species
cause diseases in vertebrate animals and occasionally humans [36]. Phylogenetic analysis based on sequences of the ITS region from Ochrroconis isolates indicated that they stand on a separate branch (Figure 1). The N. dimidiatum and N. novaehollandiae were also among the isolates in the present study. The N. dimidiatum is phylogenetically closely related to N. novaehollandiae [37]. Results of the present research are consistent with those of a study performed by Polizzi et al. [38] which indicated that both species fell into the same clade supported by a bootstrap value of 100%.

Sequence variation between strains of dematiaceous fungi led to the observation of clusters with different sections of species. While intra-species sequence diversity of dematiaceous fungi, including A. malorum, Alternaria species, C. sphaerospermum, D. glomerata, and D. dematioides was low, interspecies nucleotide diversity between most species was quite high. These data advocated that the ITS domain is appropriately variable to be applicable to the identification of several taxa of dematiaceous fungi. The phylogenetic trees constructed from the sequence data revealed that species in the same order segregated into the same cluster.

It was recognized that ITS rDNA sequences do not always provide ample information to differentiate species in the genus Alternaria. The collected data showed a small degree of polymorphism between clinical and environmental isolates as well as a quite low degree of polymorphism within isolates of the same group (non-clinical or clinical group). This might indicate that environmental strains can be a source of human infection. Therefore, more studies on clinical isolates are critical to investigate this issue in greater detail.

Conclusion
In conclusion, identification of black fungi on the basis of morphological characteristics alone is unreliable for the correct determination of species. The ITS sequences were evaluated to be applicable for the identification of several taxa of black fungi. However, for Alternaria species, larger rDNA regions or other gene targets are critical for a better understanding of the taxonomy of this diverse group of fungi.

Acknowledgments
This study was supported by Tehran University of Medical Sciences, Tehran, Iran (grant No. 94-172 01-27-28538) and Teikyo University of Medical Mycology, Tokyo, Japan.

Authors’ contribution
Gh.Sh. and H.M. conceptualized and supervised the study. S.N.-S., N.J., S.K., M.N., K.M., and M.Gh. provided resources. Gh.Sh. performed the research. Gh.Sh. and B.A. performed formal analysis. Gh.Sh. and H.M. prepared the original draft. H.B., K.M., and K.S. review the draft and edited it. All authors commented on the manuscript. All authors read and approved the final manuscript.

Conflicts of interest
The authors declare that they have no conflicts of interest.

Financial disclosure
No financial interests related to the material of this manuscript have been declared.

References
1. Wong EH, Revankar SG. Dematiaceous molds. Infect Dis Clin North Am. 2016; 30(1):165-78.
2. Revankar SG, Sutton DA. Melanized fungi in human disease. Clin Microbiol Rev. 2010; 23(4):884-928.
3. Ael IG, Motamedi M, Shokouh NR, Farhang A, Mirhendi H. Molecular characterization of environmental Cladosporium species isolated from Iran. Curr Med Mycol. 2017; 3(1):1-5.
4. Ferrández-Pulido C, Martín-Gomez MT, Repiso T, Jiárez-Dobyanes C, Ferrer B, López-Lerma I, et al. Cutaneous infections by dematiaceous opportunistic fungi: diagnosis and management in 11 solid organ transplant recipients. Mycoses. 2019; 62(2):121-7.
5. Chowdhary A, Perfect J, de Hoog GS. Black molds and melanized yeasts pathogenic to humans. Cold Spring Harb Perspect Med. 2015; 5(8):a019570.
6. Ostry V. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008; 1(2):175-88.
7. Brandt M, Warnock D. Epidemiology, clinical manifestations, and therapy of infections caused by dematiaceous fungi. J Chemother. 2003; 15(Suppl 2):36-47.
8. Azib P, Fukushima K, Takizawa K, Nishimura K. Identification of pathogenic dematiaceous fungi and related taxa based on large subunit ribosomal DNA D1/D2 domain sequence analysis. FEMS Immunol Med Microbiol. 2004; 40(1):41-9.
9. Hoog GD, Guerrero J, Gene J, Figueras M. Atlas of clinical fungi. 2nd ed. Baard-Delft: Centraalbureau voor Schimmelcultures/Universitat Rovira Vírgili; 2000.
10. Badali H, Guedan C, Najafzadeh M, Bonifaz A, van den Ende AG, de Hoog G. Biodiversity of the genus Cladophialophora. Stud Mycol. 2008; 61:175-91.
11. Bensch K, Braun U, Groenewald JZ, Crous PW. The genus cladosporium. Stud Mycol. 2012; 72(1):1-401.
12. Van Den Ende AG, de Hoog G. Variability and molecular diagnostics of the neurotropic species Cladophialophora bantiana. Stud Mycol. 1999; 43:151-62.
13. Yew SM, Chan CL, Lee KW, Na SL, Tan R, Koh CC, et al. A five-year survey of dematiaceous fungi in a tropical hospital reveals potential opportunistic species. PloS One. 2014; 9(8):e104352.
14. Morshed MG, Lee MK, Jorgensen D, Isaac-Renton JL. Molecular methods used in clinical laboratory: prospects and pitfalls. FEMS Immunol Med Microbiol. 2007; 49(2):184-91.
15. Desnos-Ollivier M, Bretagne S, Dromer F, Lortholary O, Dannaoui E. Molecular identification of black-grain mycetoma agents. J Clin Microbiol. 2006; 44(10):3517-23.
16. Nagano Y, Elborn JS, Millar BC, Goldsmith CE, Rendall J, Moore JE. Development of a novel PCR assay for the identification of the black yeast, Exophiala (Wangiella) dermatitidis from adult patients with cystic fibrosis (CF). J Cyst Fibros. 2008; 7(6):576-80.
17. Sudhadham M, De Hoog G, Menken S, van den Ende AG, Siihanont P. Rapid screening for genotypes as possible markers of virulence in the neurotrophic black yeast Exophiala dermatitidis using PCR-RFLP. J Microbiol Methods. 2010; 80(2):138-42.
18. Badali H, de Hoog GS, Curfs-Breuker I, Klaassen CH, Meis JF. Use of amplified fragment length polymorphism to identify 42 Cladophialophora strains related to cerebral phaeohyphomycosis with in vitro antifungal susceptibility. J Clin Microbiol. 2010;
Molecular characterization of dematiaceous fungi

Shokoohi Gh et al.

48(7):2350-6.

19. Shi M, Li X, Feng J, Jia S, Xiao X, Chen C, et al. High-resolution melting analysis assay for identification of Fonsecaea species. J Clin Lab Anal. 2018; 32(2):e22257.

20. Hamzehi H, Yazdanparast SA, Davoudi MM, Khodavaisy S, Gedehkheyli M, Ansari S, et al. Use of rolling circle amplification to rapidly identify species of Cladosiphialaphora potentially causing human infection. Mycopathologia. 2013; 175(5-6):431-8.

21. Zeng J, De Hoog G. Exophiala spinifera and its allies: diagnostics from morphology to DNA barcoding. Med Mycol. 2008; 46(3):193-208.

22. Xu J. Fungal DNA barcoding. Genome. 2016; 59(11):913-32.

23. Gueidan C, Aptroot A, da Silva Cáceres ME, Badali H, Stenroos S. A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol Prog. 2014; 13(4):1027-39.

24. Vicente V, Attili-Angelis D, Pie M, Queiroz-Telles F, Cruz L, Najafzadeh M, et al. Environmental isolation of black yeast-like fungi involved in human infection. Stud Mycol. 2008; 61:137-44.

25. Wang X, Cai W, van den Ende AG, Zhang J, Xie T, Xi L, et al. Indoor wet cells as a habitat for melanized fungi, opportunistic pathogens on humans and other vertebrates. Sci Rep. 2018; 8(1):7685.

26. Lian X, De Hoog G. Indoor wet cells harbour melanized agents of cutaneous infection. Med Mycol. 2010; 48(4):622-8.

27. Yazdanparast S, Mohseni S, De Hoog G, Aslani N, Sadeh A, Badali H. Consistent high prevalence of Exophiala dermatitidis, a neurotropic opportunist, on railway sleepers. J Clin Mycol. 2017; 27(2):180-7.

28. Shokoohi G, Rasekh-Jahromi A, Solhjoo K, Hasannezhad A, Nourpour-Sisakht S, Ahmadi B, et al. Molecular characterization and antifungal susceptibility of Candida species isolated from vulvovaginitis in Jahrom City, south of Iran. Jundishapur J Microbiol. 2020; 13(10):e106825.

29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30(12):2725-9.

30. Shokoohi GR, Badali H, Mirhendi H, Ansari S, Rezaei-Matehkolaei A, Ahmadi B, et al. In vitro activities of luliconazole, lanoconazole, and efinaconazole compared with those of five antifungal drugs against melanized fungi and relatives. Antimicrob Agents Chemother. 2017; 61(11):e00635.

31. Kim MJ, Lee H, Choi YS, Kim GH, Huh NY, Lee S, et al. Diversity of fungi in creosote-treated crosstie wastes and their resistance to polycyclic aromatic hydrocarbons. Antonie Van Leeuwenhoek. 2010; 97(4):377-87.

32. Mohammadian E, Azanlou M, Babai-Ahari A. Diversity of culturable fungi inhabiting petroleum-contaminated soils in Southern Iran. Antonie Van Leeuwenhoek. 2017; 110(7):903-23.

33. Parham A, Ghahrib M, Ghasemi A, Barahimia A. Isolation of dematiaceous fungi from soil of Mashhad, Neyshabur (Northeast of Iran) and Isfahan (center of Iran) cities. Sci J Pure Appl Sci. 2014; 3(5):309-12.

34. Desoubeaux G, Garcia D, Bailly E, Augereau O, Bacle G, De Muret A, et al. Subcutaneous phaeohyphomycosis due to Phialomoniopsis ocellaris successfully treated by voriconazole. Med Mycol Case Rep. 2014; 5:4-8.

35. Desoubeaux G, Million A, Freychet B, de Muret A, Garcia-Hernos D, Bailly E, et al. Eumycetoma of the foot caused by Exophiala jeaneselmei in a Guinean woman. J Mycol Med. 2013; 23(3):168-75.

36. Giraldo A, Sutton DA, Samerpitak K, De Hoog GS, Wiederhold NP, Guarro J, et al. Occurrence of Ochroconis and Verruconis species in clinical specimens from the United States. J Clin Microbiol. 2014; 52(12):4180-201.

37. Shokoohi G, Ansari S, Abolghazi A, Gramishoar M, Nouri-pour-Sisakht S, Mirhendi H, et al. The first case of fingernail onychomycosis due to Neoscytalidium dimidiatum, molecular identification and antifungal susceptibility. J Mycol Med. 2020; 30(1):100920.

38. Polizzi G, Aiello D, Vitale A, Giuffrida F, Groenewald J, Crous P. First report of shoot blight, canker, and gummosis caused by Neoscytalidium dimidiatum on citrus in Italy. Plant Dis. 2009; 93(11):1215A.