Signals of W' and Z' bosons at the LHC in the $SU(3) \times SO(5) \times U(1)$ gauge-Higgs unification

Shuichiro Funatsu1, Hisaki Hatanaka2, Yutaka Hosotani3, Yuta Orikasa4 and Naoki Yamatsu5

1Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, Hubei 430079, China
2Osaka, Osaka 536-0014, Japan
3Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
4Institute of Experimental and Applied Physics, Czech Technical University in Prague, Husova 240/5, 110 00 Prague 1, Czech Republic
5Department of Physics, Kyushu University, Fukuoka 819-0395, Japan

Abstract

The $pp \to \{W, W'\} \to l\nu$ and $pp \to \{\gamma, Z, Z'\} \to l^+l^-$ ($l = e, \mu$) processes in the $SU(3)_C \times SO(5) \times U(1)_X$ gauge-Higgs unification (GHU) models are studied, where W' and Z' bosons are Kaluza-Klein (KK) exited states of the electroweak gauge bosons. From the experimental data collected at the Large Hadron Collider, constraints on the KK mass scale and the Aharonov-Bohm phase are obtained. One can explore the KK mass scale in the GUT inspired GHU model up to 18 TeV for the luminosity 300 fb$^{-1}$ and 22 TeV for the luminosity 3000 fb$^{-1}$ at $\sqrt{s} = 14$ TeV.
Introduction

Experimental results at the Large Hadron Collider (LHC) collected at a center-of-mass energy $\sqrt{s} = 13$ TeV during the year 2015-2018 have been presented by ATLAS \footnote{1, 4} and CMS \footnote{5, 6} groups. No direct signals of new physics beyond the standard model (SM) have been observed at the LHC so far. In many models such as the sequential standard model, left-right symmetric model, grand unified theories (GUT) and models with an extra dimension, there appear W' or Z' bosons \footnote{7-10}. Physics of W' and Z' bosons at the LHC has been an important subject \footnote{11-33}.

The gauge-Higgs unification (GHU) is one of the approaches to the gauge hierarchy problem \footnote{34-44}. GHU models are constructed in higher dimensional spacetime and the Higgs boson is identified as a part of an extra-dimensional component of gauge bosons. Hence physics of the Higgs boson is governed by the gauge principle and the Higgs boson mass is generated by quantum corrections in GHU models. Many GHU models are proposed for the electroweak unification \footnote{45-59} and GHU models for the grand unification are also presented \footnote{60-69}. Among them two types of $SU(3)_C \times SO(5) \times U(1)_X$ GHU models in the warped spacetime have been studied. One of them is called the “A-model”, where quark-lepton multiplets are introduced in the vector representation of $SO(5)$ \footnote{45-49}. The other is called the “B-model”, where quark-lepton multiplets are introduced in the spinor representation of $SO(5)$ \footnote{50-54} which has been motivated from the study of the $SO(11)$ gauge-Higgs GUT \footnote{60-63}, and is called the GUT inspired GHU model.

In $SU(3)_C \times SO(5) \times U(1)_X$ GHU models Kaluza-Klein (KK) exited states of the electroweak gauge bosons appear as W' or Z' bosons. In our previous work, the constraint $\theta_H \lesssim 0.11$ and $m_{KK} \gtrsim 8$ TeV has been derived in the A-model from the LHC data at $\sqrt{s} = 8$ TeV, where θ_H is the Aharonov-Bohm (AB) phase in the fifth dimension and m_{KK} is the KK mass scale \footnote{47}. The W boson mass (m_W) is related to the KK mass scale through θ_H as $m_W \simeq O(0.1) \times m_{KK} \sin \theta_H$ \footnote{50}. Thus the KK scale can be two orders of magnitude larger than the electroweak scale for $\theta_H \simeq 0.1$. The effect of Z' bosons is also significant for future linear colliders with polarized electron and positron beams. Because of the large asymmetries in the Z' couplings to left- and right-handed fermions, some observables in the GHU A-model deviate from those in the SM even at $\sqrt{s} = O(100)$ GeV with the use of polarized beams \footnote{48, 49}. In the $e^+ e^- \rightarrow \mu^+ \mu^-$ process at the International Linear Collider (ILC) with $\sqrt{s} = 250$ GeV \footnote{70, 72}, the deviation of the forward-backward asymmetry from the SM prediction becomes -2% with the right-handed electron beam for $\theta_H \simeq 0.09$. The deviation can be seen with 250 fb$^{-1}$ data. The Higgs decay branching
ratios are found to be nearly the same as those in the SM [45], whereas the Higgs triple and quartic couplings deviate 9% and 37% from those in the SM, respectively [46]. It is not easy to distinguish GHU models from the SM from the Higgs data at the ILC.

The effects of \(Z' \) bosons in the GHU B-model at the ILC have been studied in Ref. [53]. The deviation of the forward-backward asymmetry from the SM prediction is about \(-1\%\) in the \(e^+e^-\rightarrow\mu^+\mu^- \) process at the 250 GeV ILC with polarized left-handed electron beams for \(\theta_H \approx 0.10 \), where the KK mass scale is 13 TeV. The deviation of the differential left-right asymmetry reaches to about \(-20\%\) in the forward region with the same parameters. The A-model and B-model can be distinguished by the dependence in the forward-backward asymmetry and left-right asymmetry on the polarization of electron and positron beams, as the two models exhibit opposite dependence on the polarization.

Another specific feature of the GHU B-model is the appearance of the two step phase transitions at \(T \sim 2.6 \text{ TeV} \) and \(T = 163 \text{ GeV} \) [54]. At sufficiently high temperature, the effective potential has a minimum at \(\theta_H = \pi \). The two phases \(\theta_H = 0 \) and \(\theta_H = \pi \) become degenerate at \(T \sim m_{KK} \), where the two phases have \(SU(2)_L \times U(1)_Y \) and \(SU(2)_R \times U(1)_{Y'} \) symmetry, respectively. As the temperature becomes lower, the \(\theta_H = 0 \) state becomes the true vacuum and a first-order phase transition from \(\theta_H = \pi \) to \(\theta_H = 0 \) takes place at \(T \sim 2.6 \text{ TeV} \). This transition is called the left-right phase transition. At \(T = 163 \text{ GeV} \), the electroweak symmetry breaking (EWSB) occurs and the Higgs boson acquires a vacuum expectation value (VEV). This electroweak phase transition is found to be weakly first order.

In this paper, the \(pp \rightarrow l\nu \) and \(pp \rightarrow l^+l^- \ (l = e, \mu) \) processes in the GHU A-model and B-model at the LHC are studied. Because significant differences between observables in the SM and those in the GHU models at the ILC are predicted [48, 49, 53], effects of \(W' \) and \(Z' \) bosons are expected to be significant at the LHC as well. The decay widths of these KK gauge bosons are large because of the large couplings to fermions. As a consequence, \(W' \) and \(Z' \) bosons appear not as narrow peaks but as broad resonances in cross sections. Collider signals for these \(W' \) and \(Z' \) bosons with large decay widths are not studied well, and will be studied in this paper. Experimental results for the \(pp \rightarrow l\nu \) and \(pp \rightarrow l^+l^- \) processes at the LHC at \(\sqrt{s} = 13 \text{ TeV} \) with up to 140 fb\(^{-1} \) data have been published [1–3,5]. The constraint on the A-model is updated and is given by \(\theta_H \lesssim 0.08 \) and \(m_{KK} \gtrsim 9.5 \text{ TeV} \). The constraint on the B-model is given by \(\theta_H < 0.10 \) and \(m_{KK} > 13 \text{ TeV} \). At \(\sqrt{s} = 14 \text{ TeV} \) with the luminosity 300 fb\(^{-1} \), the discovery significance of the \(pp \rightarrow e^+e^- \) process in the A-model is 6.49 for \(m_{KK} = 9.5 \text{ TeV} \), and the discovery significance of the \(pp \rightarrow e\nu \) process in the B-model can be maximally 5.08 for \(m_{KK} = 15 \text{ TeV} \) and can be 1.64 for \(m_{KK} \approx 18 \text{ TeV} \). At the future High Luminosity LHC (HL-LHC) [73, 75], the
discovery significance of the $pp \to e\nu$ process in the B-model can be maximally 1.61 for $m_{KK} \simeq 22$ TeV.

The paper is organized as follows. In Sec. 2, the outline of the GHU A-model and B-model is introduced. In Sec. 3, definitions of differential cross sections are given. In Sec. 4, we evaluate differential cross sections for $pp \to l\nu$ and $pp \to l^+l^-$ processes and constrain the parameters from the experimental results at the LHC Run 2. In Sec. 5, the predictions for future LHC experiments are shown. Section 6 is devoted to a summary and discussions.

2 Model

The $SU(3)_C \times SO(5) \times U(1)_X$ GHU A-model and B-model have been given in Ref. [46] and Ref. [50], in which the action, orbifold boundary conditions (BCs), wave functions and formulae to determine the mass spectrum of each field are explained. The details of the models are not repeated here. In this section, we briefly introduce the models and explain definitions of relevant parameters.

The $SU(3)_C \times SO(5) \times U(1)_X$ GHU models are defined on the Randall-Sundrum warped spacetime with the metric given by

$$ds^2 = g_{MN}dx^M dx^N = e^{-2\sigma(y)}\eta_{\mu\nu}dx^\mu dx^\nu + dy^2,$$

(2.1)

where $M, N = 0, 1, 2, 3, 5$, $\mu, \nu = 0, 1, 2, 3$, $y = x^5$, $\eta_{\mu\nu} = \text{diag}(-1, +1, +1, +1)$, $\sigma(y) = \sigma(y + 2L) = \sigma(-y)$, and $\sigma(y) = ky$ for $0 \leq y \leq L$. In terms of the coordinate $z = e^{ky}$ ($1 \leq z \leq z_L = e^{kL}$) in the region $0 \leq y \leq L$, the metric is written by

$$ds^2 = \frac{1}{z^2}\left(\eta_{\mu\nu}dx^\mu dx^\nu + \frac{dz^2}{k^2}\right).$$

(2.2)

The bulk region $0 < y < L$ ($1 < z < z_L$) is an anti-de Sitter (AdS) spacetime. The UV and IR branes are located at $y = 0$ ($z = 1$) and $y = L$ ($z = z_L$), respectively. The parameter k is AdS curvature. The KK mass scale is given by $m_{KK} \equiv \pi k/(z_L - 1) \simeq \pi k z_L^{-1}$ for $z_L \gg 1$.

The gauge bosons of the $SU(3)_C$, $SO(5)$, and $U(1)_X$ gauge groups are expressed by $A^{SU(3)_C}_M$, $A^{SO(5)}_M$, and $A^{U(1)_X}_M$, respectively. The BCs for each gauge boson are given by

$$\left(\begin{array}{c} A_\mu \\ A_y \end{array}\right) (x, y_j - y) = P_j \left(\begin{array}{c} A_\mu \\ -A_y \end{array}\right) (x, y_j + y) P_j^{-1},$$

(2.3)

where $(y_0, y_1) = (0, L)$. Concretely, $P_0 = P_1 = I_3$ for $A^{SU(3)_C}_M$, $P_0 = P_1 = 1$ for $A^{U(1)_X}_M$, $P_0 = P_1 = P_5^{SO(5)} = \text{diag}(I_4, -I_4)$ for $A^{SO(5)}_M$ in the vector representation and $P_4^{SO(5)} = \text{diag}(I_4, -I_4)$.
diag \((J_2, -J_2)\) in the spinor representation, respectively. By the orbifold BCs, \(SU(3)_C \times \text{SO}(5) \times U(1)_X\) is broken to \(SU(3)_C \times \text{SO}(4) \times U(1)_X \simeq SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X\). \(A^{SU(3)_C}_\mu, A^{U(1)_X}_\mu\) and \(\text{SO}(5)/\text{SO}(4)\) part of \(A^{\text{SO}(5)}_y\) have zero modes. The zero modes of \(A^{\text{SO}(5)}_y\) correspond to the Higgs doublet in the SM. At this stage the \(\text{SO}(4) \simeq SU(2)_L \times SU(2)_R\) part of \(A^{\text{SO}(5)}_y\) also have zero modes. A brane scalar field \(\Phi_{(1,4)}(x)\) is introduced on the UV brane, which spontaneously breaks \(\text{SO}(4) \times U(1)_X\) symmetry to \(SU(2)_L \times U(1)_Y\) symmetry. Finally, \(SU(2)_L \times U(1)_Y\) symmetry is dynamically broken to \(U(1)_{EM}\) symmetry by an AB phase in the fifth dimension. Only \(\gamma, W^\pm\) and \(Z\) appear as gauge bosons at low energies. At higher energies, in addition to their KK modes \(\gamma^{(n)}\), \(W^\pm(n)\) and \(Z(n)\), the KK modes of the broken \(SU(2)_R\) gauge bosons, \(W^{\pm(n)}_R\) and \(Z^{(n)}_R\) can be excited. \(\gamma^{(n)}, Z^{(n)}\) and \(Z^{(n)}_R\) appear as \(Z'\) bosons, and \(W^{\pm(n)}\) and \(W^{\pm(n)}_R\) appear as \(W'\) bosons in \(SU(3)_C \times \text{SO}(5) \times U(1)_X\) GHU models.

The 4D Higgs boson doublet \(\phi_H(x)\) is the zero mode of \(A^{\text{SO}(5)}_z = (kz)^{-1}A^{\text{SO}(5)}_y\):

\[
A^{(j_5)}_z(x, z, y) = \frac{1}{\sqrt{k}} \phi_j(x)u_H(z) + \cdots, \quad u_H(z) = \sqrt{\frac{2}{z_L^2 - 1}} z,
\]

\[
\phi_H(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_2 + i\phi_1 \\ \phi_4 - i\phi_3 \end{pmatrix}.
\] (2.4)

Without loss of generality, we set \(\langle \phi_1 \rangle, \langle \phi_2 \rangle, \langle \phi_3 \rangle = 0\) and \(\langle \phi_4 \rangle \neq 0\), which is related to the AB phase \(\theta_H\) in the fifth dimension by \(\langle \phi_4 \rangle = \theta_H f_H\), where

\[
f_H = \frac{2}{g_w} \sqrt{\frac{k}{L(z_L^2 - 1)}}.
\] (2.5)

The representations and BCs of the matter fields are different between the A-model and B-model, where the matter fields are introduced both in the bulk and on the UV brane. The matter fields of these two models are listed in Table [1]. In the A-model, the SM quarks and leptons are identified with the zero modes of the \(\text{SO}(5)\)-vector fermions \(\Psi^\alpha_a\) \((a = 1, ..., 4\) and \(\alpha = 1, 2, 3\)). The BCs for those fields are given by

\[
\Psi^\alpha_a(x, y_j - y) = P^{\text{SO}(5)}_5 \gamma^5 \Psi^\alpha_a(x, y_j + y).
\] (2.6)

Meanwhile, in the B-model, the SM quarks and leptons are identified with the zero modes of the \(\text{SO}(5)\)-spinor and singlet fermions \(\Psi^{\alpha}_{(3,4)}, \Psi^{\pm\alpha}_{(3,1)}, \) and \(\Psi^{\alpha}_{(1,4)}\) \((\alpha = 1, 2, 3\)). These fields obey the following BCs:

\[
\Psi^{\alpha}_{(3,4)}(x, y_j - y) = -P^{\text{SO}(5)}_4 \gamma^5 \Psi^{\alpha}_{(3,4)}(x, y_j + y),
\]

\[
\Psi^{\pm\alpha}_{(3,1)}(x, y_j - y) = \mp \gamma^5 \Psi^{\pm\alpha}_{(3,1)}(x, y_j + y),
\]

\[
\Psi^{\alpha}_{(1,4)}(x, y_j - y) = -P^{\text{SO}(5)}_4 \gamma^5 \Psi^{\alpha}_{(1,4)}(x, y_j + y).
\] (2.7)
With BCs (2.7), the \(SU(2)_L \) (\(SU(2)_R \)) components of \(\Psi^{\alpha}_{(3,4)} \) and \(\Psi^{+\alpha}_{(1,4)} \) have the left-(right-)handed zero modes and \(\Psi^{-\alpha}_{(3,1)} \) (\(\Psi^{\alpha}_{(3,1)} \)) has the left-(right-)handed zero modes, respectively. These zero modes mix with each other through the AB phase \(\theta_H \) and brane interactions.

There are matter fields having no zero modes, which is referred as the dark fermions. Those dark fermions are necessary to have dynamical EWSB with suitable value of \(\theta_H \). Dark fermions do not couple directly with the quarks and leptons and the lightest modes of dark fermions have masses about \(m_{KK}/2 \). Decay of the first KK gauge bosons to dark fermions are either forbidden or negligible. The details of the dark fermions are given in Ref. [50].

Table 1: Matter fields. Brane fields and the symmetry at the UV brane are also shown.

\(\)	A-model	B-model
quark	\(\Psi_{1}^{a} : (3,5)_{+}^{\frac{1}{3}} \), \(\Psi_{2}^{a} : (3,5)_{-}^{-\frac{1}{3}} \)	\(\Psi_{1}^{a} : (3,4)_{+}^{\frac{1}{3}} \), \(\Psi_{2}^{a} : (3,1)_{+}^{\frac{1}{3}} \)
lepton	\(\Psi_{3}^{a} : (1,5)_{0} \), \(\Psi_{4}^{a} : (1,5)_{-1} \)	\(\Psi_{3}^{a} : (1,4)_{+}^{\frac{1}{3}} \), \(\Psi_{4}^{a} : (1,4)_{-\frac{1}{3}} \)
dark fermion	\(\Psi_{F}^{\pm} : (1,4)_{+}^{\pm\frac{1}{2}} \)	\(\Psi_{F}^{\pm} : (1,4)_{+}^{\pm\frac{1}{2}} \)
brane fermion	\(\hat{\chi}_{1,2,3,R}^{q} : (3,2,1)_{+}^{\frac{1}{6},+\frac{1}{6},-\frac{1}{6}} \), \(\hat{\chi}_{1,2,3,R}^{d} : (1,2,1)_{+}^{\frac{1}{6},-\frac{1}{6},-\frac{1}{6}} \)	\(\chi : (1,1)_{0} \)
brane scalar	\(\hat{\Phi} : (1,1,2)_{+}^{\frac{1}{2}} \)	\(\hat{\Phi}_{(1,4)} : (1,4)_{+}^{\frac{1}{2}} \)
symmetry of brane interactions	\(SU(3)_{C} \times SO(4) \times U(1)_{X} \)	\(SU(3)_{C} \times SO(5) \times U(1)_{X} \)

The procedure to determine the model parameters is explained in Refs [46, 50, 52]. With specified parameters, masses and couplings are all determined. It has been shown that one can introduce the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the GHU B-model while flavor changing neutral currents (FCNCs) are naturally suppressed [51]. The tree-level FCNCs exist only in the down-type quark sector and the magnitude of their couplings is of the order of \(O(10^{-6}) \). In this paper, the CKM matrix is not introduced for simplicity.

As benchmark points, eight parameter sets are taken as shown in Table 2. These benchmark points are chosen for the following reason. In the A-model, there are two free parameters \(z_{L} \) (or \(m_{KK} \)) and \(n_{F} \) (the number of dark fermions). The effects of \(n_{F} \) on physics of the gauge bosons, Higgs bosons, quarks and leptons turn out very small. Once a set of parameters \((n_{F}, z_{L}) \) is set, \(\theta_H \) is determined and couplings among these fields are
determined by θ_H. Hence a relevant free parameter is effectively θ_H only. The value of n_F affects a lower limit of θ_H and a dark fermion mass. For a larger n_F, the lower limit of θ_H is smaller and the lowest mode of the dark fermion has a lower mass. We take $n_F = 4$, where the lower limit of θ_H is $\theta_H \simeq 0.08$. The top quark and Higgs boson mass cannot be reproduced for $n_F = 4$ and $\theta_H < 0.08$ in the A-model. In the B-model, there are four free parameters in the dark fermion sector, and z_L and θ_H are not uniquely determined. These parameters are constrained to reproduce the top quark mass and EWSB. The top quark mass is realized only for $z_L \gtrsim 10^{8.1}$, and the EWSB is triggered only for $z_L \lesssim 10^{15.5}$ for $\theta_H = 0.10$. Consistent parameter sets are obtained only for $10^{8.1} \lesssim z_L \lesssim 10^{15.5}$ \[52\]. We set $\theta_H = 0.10$ and choose, as typical values, integral values of m_{KK}/TeV in the allowed region. To check the θ_H-dependence, $\theta_H = 0.11$, 0.10, 0.09 are chosen for $m_{KK} = 13 \text{ TeV}$.

Name	θ_H	m_{KK}	z_L	k	$m_{W_R^{(1)}}$	$\Gamma_{W_R^{(1)}}$	$m_{W_R^{(1)}}$	$\Gamma_{W_R^{(1)}}$
A1	0.10	8.063	2.900×104	7.443×107	6.585	0.236	6.172	0.098
A2	0.09	8.721	1.700×104	4.719×107	7.149	0.271	6.676	0.101
A3	0.08	9.544	1.010×104	3.068×107	7.855	0.356	7.305	0.105
BL	0.10	11	1.980×108	6.933×1011	8.713	5.925	8.420	0.218
BH	0.10	13	3.865×1011	1.599×1015	10.20	9.812	9.951	0.368
B$^+$	0.11	13	1.021×1014	4.223×1017	10.15	11.75	9.951	0.445
B$^-$	0.09	13	2.470×1010	1.022×1013	10.26	7.993	9.951	0.291

Table 2: Masses and widths of $W^{(1)}$ and $W_R^{(1)}$ are listed. Those in the A-model are shown for $\theta_H = 0.10$, 0.09, 0.08 in the upper table. Those in the B-model are shown for $\theta_H = 0.10$ and three $m_{KK} = 11$, 13, 15 TeV in the middle table and for $m_{KK} = 13$ TeV and three $\theta_H = 0.11$, 0.10, 0.09 in the lower table.

The masses and decay widths of the $W^{(1)}$ and $W_R^{(1)}$ bosons are shown in Table 2 where the decay widths are calculated by the couplings shown in Tables 3-7 and 8. Those of the $\gamma^{(1)}$, $Z^{(1)}$ and $Z_R^{(1)}$ bosons are shown in Refs. [49,53]. The masses of $W^{(1)}$, $Z^{(1)}$ and $\gamma^{(1)}$ bosons are almost degenerate and about 0.8 times the KK mass scale. The masses of $W_R^{(1)}$ and $Z_R^{(1)}$ bosons are slightly lighter than those of $W^{(1)}$ and $Z^{(1)}$ bosons.

The couplings among particles depend on the behavior of their wave-functions. In the $\theta_H \to 0$ limit, W and W_R bosons are purely $SU(2)_L$ and $SU(2)_R$ gauge bosons. In the A-model, zero modes of left-handed quarks and leptons are $SU(2)_L \times SU(2)_R$ bidoublets, whereas right-handed quarks and leptons are singlets. W and W_R bosons do not couple with right-handed quarks and leptons, as those couplings are determined by overlap integrals of their wave-functions. $W^{(1)}$ and $W_R^{(1)}$ bosons are localized near the IR
Table 3: Coupling constants of 1st KK W boson to fermions in units of $g_w/\sqrt{2}$ are listed for A-model, where $\sin^2 \theta_W = 0.23126$. The value less than 10^{-4} is written as 0. The W boson couplings are $g_{W_{ff'}}^L = 1.00$ for $ff' \neq tb$ and $g_{W_{tb}}^L = 0.9993$ for A1, $g_{W_{tb}}^L = 0.9994$ for A2 and A3. The couplings of the first KK W_R boson to fermions are exactly zero.

Table 4: Coupling constants of charged vector bosons, W' bosons, to fermions in units of $g_w/\sqrt{2}$ are listed for $\theta_H = 0.10$ and $m_{KK} = 13$ TeV (B) in Table 2, where $\sin^2 \theta_W = 0.2306$. The value less than 10^{-4} is written as 0.

On the other hand, the $W^{(1)}$ couplings with left-handed fermions are large in the B-model. The zero modes of the left- and right-handed quarks and leptons in the B-model are purely $SU(2)_L$ and $SU(2)_R$ components, respectively. Therefore $W^{(1)}$ mainly couples with left-handed quarks and leptons and $W^{(1)}_R$ mainly couples with right-handed ones for small θ_H. In contrast to the A-model, the zero modes of left-handed quarks and leptons are localized near the IR brane and the zero modes of right-handed quarks and leptons are localized near the UV brane in the B-model. Hence, the $W^{(1)}$ couplings with left-handed fermions are large, numerically being of $O(1) \times g_w/\sqrt{2}$. In contrast to it, the $W^{(1)}_R$ couplings with left-handed fermions are small, numerically being of $O(10^{-2}) \times g_w/\sqrt{2}$. The $W^{(1)}$ and $W^{(1)}_R$ couplings with right-handed fermions are tiny and negligible except for $W^{(1)}_R \bar{t}_R b_R$ coupling. Because of the large $W^{(1)}$ couplings with left-handed fermions,
Table 5: Coupling constants of charged vector bosons, W' bosons, to fermions in units of $g_w/\sqrt{2}$ are listed for $\theta_H = 0.10$ and $m_{KK} = 11$ TeV (BL) in Table 2 where $\sin^2 \theta_W^0 = 0.2306$. Other information is the same as in Table 4.

ff'	$g_W^{L}ff'$	$g_W^{R}ff'$	$g_W^{L}(1)ff'$	$g_W^{R}(1)ff'$	$g_{W'}^{L}(1)ff'$	$g_{W'}^{R}(1)ff'$
$e\nu_e$	0.9977	0	5.0203	0	0.0127	0
$\mu\nu_\mu$	0.9977	0	4.7423	0	0.0121	0
$\tau\nu_\tau$	0.9977	0	4.5451	0	0.0116	0
ud	0.9977	0	4.8329	0	0.0118	0
cs	0.9977	0	4.6229	0	0.0112	0
tb	0.9982	0	3.1365	0	0.0082	0

The coupling constants are defined as $g_{W'} = g_w/\sqrt{2}$. The decay width of $W^{(1)}$ becomes very wide, which is numerically $\Gamma_{W^{(1)}}/m_{W^{(1)}} = 0.68 - 1.27$ as shown in Table 2.

The contribution from the higher KK modes are calculated in Ref. [53] and found to be small. Numerically, the deviation of the $e^+e^- \rightarrow \mu^+\mu^-$ cross section with the first and second KK modes from the deviation with only the first KK modes is $O(1\%)$ for $\sqrt{s} < 3$ TeV. Thus we take only the first KK modes into account in the following.

3 Differential Cross Sections

In this section, formulae for the cross sections of the $pp \rightarrow l^+l^-$ and $pp \rightarrow l\nu$ processes are summarized [76, 77].

The cross section of the $pp \rightarrow l^+l^-$ process, $\sigma_{pp \rightarrow l^+l^-}$, is written in terms of the parton-level cross section $\sigma_{ff \rightarrow l^+l^-}(s)$ as

$$\sigma_{pp \rightarrow l^+l^-} = \sum_f \int_0^s ds_1 \int_0^1 \frac{dx_1}{s_1} \sigma_f (x_1, \sqrt{s_1}) \left(F_f(x_1, Q)F_f(x_2, Q) + F_f(x_2, Q)F_f(x_1, Q) \right)$$

$$= \sum_f \int_0^s ds \int_{s/s_{pp}}^{s_{pp}} dx_1 \frac{2}{x_1 s_{pp}} \sigma_f (x_1, \sqrt{s}) F_f \left(\frac{s}{x_1 s_{pp}}, \sqrt{s} \right),$$

(3.1)
Table 7: Coupling constants of charged vector bosons, W' bosons, to fermions in units of $g_w/\sqrt{2}$ are listed for $\theta_H = 0.11$ and $m_{KK} = 13$ TeV (B$^+$) in Table 2 where $\sin^2 \theta_W^0 = 0.2305$. Other information is the same as in Table 4.

ff'	$g^L_{Wff'}$	$g^R_{Wff'}$	$g^L_{W^{(1)}ff'}$	$g^R_{W^{(1)}ff'}$	$g^L_{W^{'(1)}ff'}$	$g^R_{W^{'(1)}ff'}$
ee	0.9971	0	6.2134	0	0.0190	0
$\mu \nu$	0.9971	0	5.9455	0	0.0182	0
$\tau \nu$	0.9971	0	5.7724	0	0.0177	0
ud	0.9971	0	6.0342	0	0.0185	0
cs	0.9971	0	5.8391	0	0.0179	0
tb	0.9974	0	5.0226	0	0.0155	−0.0309

Table 8: Coupling constants of charged vector bosons, W' bosons, to fermions in units of $g_w/\sqrt{2}$ are listed for $\theta_H = 0.09$ and $m_{KK} = 13$ TeV (B$^-$) in Table 2 where $\sin^2 \theta_W^0 = 0.2307$. Other information is the same as in Table 4.

ff'	$g^L_{Wff'}$	$g^R_{Wff'}$	$g^L_{W^{(1)}ff'}$	$g^R_{W^{(1)}ff'}$	$g^L_{W^{'(1)}ff'}$	$g^R_{W^{'(1)}ff'}$
ee	0.9981	0	5.2761	0	0.0108	0
$\mu \nu$	0.9981	0	4.9979	0	0.0103	0
$\tau \nu$	0.9981	0	4.8056	0	0.0099	0
ud	0.9981	0	5.0926	0	0.0105	0
cs	0.9981	0	4.8810	0	0.0101	0
tb	0.9985	0	3.7015	0	0.0078	−0.0397

where $F_f(x_{1,2},Q)$ are the parton distribution function (PDF) at an energy scale Q and we take $Q = \sqrt{s}$ in this paper. By introducing the invariant mass of the lepton pair denoted as $m_{ll} \equiv \sqrt{s}$, the differential cross section with respect to the invariant mass is written as

$$\frac{d\sigma_{pp \rightarrow l^+l^-}}{dm_{ll}} = \sum_f \int_{m_{ll}^2/S_{pp}}^{1} dx_1 \frac{4m_{ll}}{x_{1s_{pp}}} \sigma_{ff \rightarrow l^+l^-}(s = m_{ll}^2) F_f(x_1, m_{ll}) F_{\bar{f}}(s = m_{ll}^2, m_{ll}) \cdot (3.2)$$

Similarly, the cross section of the $pp \rightarrow l\nu$ process, $\sigma_{pp \rightarrow l\nu}$, is written as

$$\sigma_{pp \rightarrow l\nu} = \sum_{f, f'} \int_{s_{pp}}^{s_{pp}} ds \int_{-1}^{1} d\cos \theta \int_{s_{pp}}^{1} dx_1 \frac{2}{x_{1s_{pp}}} \sigma_{ff \rightarrow l\nu}(s) \cdot d\cos \theta \cdot F_f(x_1, \sqrt{s}) F_{f'}(\frac{s}{x_{1s_{pp}}}, \sqrt{s}), \quad (3.3)$$

where $\sigma_{ff \rightarrow l\nu}(s)$ is the parton-level cross section. The cross section of the $pp \rightarrow l\nu$ process is explored by measuring the transverse mass (m_T) or the transverse momentum of the charged-lepton (p_T). These two parameters are related as $m_T = \sqrt{2p_T E_T^{\text{miss}} (1 - \cos \phi)}$, where E_T^{miss} is the missing energy and ϕ is the angle between the charged-lepton and missing transverse momentum in the transverse plane. For pp collisions at high energies, the transverse momentum of the parton may be ignored. $\phi \approx \pi$ and the masses of the
The decay widths of the \(Z \) factors of the differential cross sections and are determined to minimize the Ref. [2]. For simplicity, we assume that the acceptance and efficiency are independent of as shown in Fig. 1. Hence we follow the analysis in the “destructive interference” case in processes. To see the and ManeParse [79] to numerically evaluate the cross sections.

In Refs [46, 47]. In this section, we update the constraints by using the LHC run 2 data.

4 Constraints from LHC Experiments

Constraints on the GHU A-model from the early stage of LHC experiment are estimated in Refs [46][47]. In this section, we update the constraints by using the LHC run 2 data. Constraints on the GHU B-model are obtained as well. We use CT10 [78] for the PDF and ManeParse [79] to numerically evaluate the cross sections.

First, we recall the constraints on the \(Z' \) bosons from the \(pp \to e^+e^- \) and \(\mu^+\mu^- \) processes. To see the \(\theta_H \) and \(m_{KK} \) dependence, the differential cross sections \(d\sigma(pp \to \mu^+\mu^-)/dM_{\mu\mu} \) are shown for the parameter sets (B\(^L\), B\(^H\)) and (B\(^+\), B\(^-\)) in Fig. 1. The decay widths of the \(Z' \) bosons are large, and therefore we refer the constraint from the non-resonant searches in the dilepton final states at the ATLAS group [2]. The \(d\sigma(pp \to l^+l^-)/dM_{ll} \) in the GHU model is \(O(1)\)% smaller for \(M_{ll} \simeq 500 \text{ GeV} \) and 20–30% smaller for \(M_{ll} \simeq 1000 \text{ GeV} \), and becomes larger for \(M_{ll} \gtrsim 2500 \text{ GeV} \) than that in the SM as shown in Fig. 1. Hence we follow the analysis in the “destructive interference” case in Ref. [2]. For simplicity, we assume that the acceptance and efficiency are independent of the invariant mass. Therefore the acceptance times efficiency are introduced as constant factors of the differential cross sections and are determined to minimize the \(\chi^2 \) values in

\[
\sigma_{pp \to ll} = \sum_{f, f'} \int_{m_{pp}}^{\sqrt{s_{pp}}} dm_{ll} \int_{m_{pp}}^{m_{ll}} dx_{1} \frac{8m_T}{x_{1}s_{pp}m_{ll}} \sqrt{1 - \frac{m_T^2}{m_{ll}^2}} \left(\frac{m_{ll}^2}{x_1s_{pp}}, m_{ll} \right) \times \left(\frac{d\sigma_{f \bar{f} \to ll}(s)}{d\cos \theta} \right|_{\cos \theta = +1} + \left(\frac{d\sigma_{f \bar{f} \to ll}(s)}{d\cos \theta} \right|_{\cos \theta = -1} \right).
\]

The differential cross section with respect to the transverse mass is

\[
\frac{d\sigma_{pp \to ll}}{dm_T} = \sum_{f, f'} \int_{m_T}^{\sqrt{s_{pp}}} dm_{ll} \int_{m_{pp}}^{m_{ll}} dx_{1} \frac{8m_T}{x_{1}s_{pp}m_{ll}} \sqrt{1 - \frac{m_T^2}{m_{ll}^2}} \left(\frac{m_{ll}^2}{x_1s_{pp}}, m_{ll} \right) \times \left(\frac{d\sigma_{f \bar{f} \to ll}(s)}{d\cos \theta} \right|_{\cos \theta = +1} + \left(\frac{d\sigma_{f \bar{f} \to ll}(s)}{d\cos \theta} \right|_{\cos \theta = -1} \right).
\]
Figure 1: Differential cross sections $d\sigma(pp \rightarrow \mu^+ \mu^-)/dM_{\mu\mu}$ for $\sqrt{s} = 13$ TeV. The differential cross section in the SM is shown by the black solid line. In the left figure, the differential cross sections with fixed $\theta_H = 0.10$ and $m_{\text{KK}} = 11$ TeV (BL), 13 TeV (B), 15 TeV (BH) are shown. In the right figure, the differential cross sections with fixed $m_{\text{KK}} = 13$ TeV and $\theta_H = 0.11$ (B$^+$), $\theta_H = 0.10$ (B), $\theta_H = 0.09$ (B$^-$) are shown.

The number of events is obtained by integrating the differential cross sections over the signal regions (SRs). The CRs and SRs for each process are CR: $[310, 1030]$ GeV and SR: $[2770, 6000]$ GeV for $pp \rightarrow e^+e^-$ and CR: $[320, 1250]$ GeV and SR: $[2570, 6000]$ GeV for $pp \rightarrow \mu^+\mu^-$, respectively. N_{GHU} and N_{SM} denote the number of events in the GHU model and that in the SM, respectively. The number of signal events N_{sig} is defined as the excess of N_{GHU} from N_{SM}: $N_{\text{sig}} \equiv N_{\text{GHU}} - N_{\text{SM}}$. N_{SM} is 1.2 for $pp \rightarrow e^+e^-$ and $N_{\text{SM}} = 1.8$ for $pp \rightarrow \mu^+\mu^-$. N_{sig} for the parameter sets (A1, A2, A3) are $(21, 10, 4.9)$ for $pp \rightarrow e^+e^-$ and $(18, 8.6, 4.0)$ for $pp \rightarrow \mu^+\mu^-$. N_{sig} for the five parameter sets in the B-model are shown in Table 9. The observed (expected) upper limits at 95% confidence level (CL) on N_{sig} are 4.4 (5.0) and 3.8 (4.0) for $pp \rightarrow e^+e^-$ and $pp \rightarrow \mu^+\mu^-$, which disfavors the parameter sets B$^+$ and BL at 95% CL. The parameter sets A1 and A2 are disfavored by the expected upper limits at 95% CL for $pp \rightarrow e^+e^-$ and $pp \rightarrow \mu^+\mu^-$. Next, we consider the constraints on the W' bosons from the $pp \rightarrow e\nu$ and $\mu\nu$ processes. We consider the constraint from the ATLAS group 3. The CRs and SRs are not specified there. The differential cross sections in the GHU model are larger than that in the SM above $M_T \sim 2300$ GeV for the parameter sets (BL, B, BH) and (B$^+$, B, B$^-$). Therefore we take the SRs as SR: $[2300, 6000]$ GeV for $pp \rightarrow e\nu$ and SR: $[2400, 6000]$ GeV for $pp \rightarrow \mu\nu$, respectively. We take the CRs as CR: $[310, 1030]$ GeV for $pp \rightarrow e\nu$ and CR: $[300, 1050]$ GeV for $pp \rightarrow \mu\nu$. $N_{\text{SM}} = 6.8$ for $pp \rightarrow e\nu$ and $N_{\text{SM}} = 3.8$ for $pp \rightarrow \mu\nu$. N_{sig} for the five parameter sets are shown in Table 10. The observed (expected) upper limits at 95% CL on N_{sig} are 3.4 (8.4) and 8.6 (7.7) for $pp \rightarrow e\nu$ and $pp \rightarrow \mu\nu$, respectively. Therefore the parameter sets B, B$^+$ and BL are disfavored by the expected upper limits.
$pp \to e^+e^-$	$pp \to \mu^+\mu^-$					
	m_{KK}		m_{KK}			
	11 TeV	13 TeV	15 TeV	11 TeV	13 TeV	15 TeV
θ_H	0.11	5.7	2.7	4.9	3.1	2.1
	0.10	6.1	3.9	4.9	3.1	2.1
	0.09	2.4		1.6		

Table 9: The number of signal events in the GHU B-model $N_{\text{sig}} \equiv N_{\text{GHU}} - N_{\text{SM}}$, where $N_{\text{SM}} = 1.2$ for $pp \to e^+e^-$ and $N_{\text{SM}} = 1.8$ for $pp \to \mu^+\mu^-$. The second and third columns show N_{sig} for $pp \to e^+e^-$ and $pp \to \mu^+\mu^-$ processes, respectively. The observed (expected) upper limits at 95% CL on N_{sig} are 4.4 (5.0) and 3.8 (4.0) for $pp \to e^+e^-$ and $pp \to \mu^+\mu^-$, respectively.

at 95% CL for $pp \to \ell\nu$. The parameter sets (A1, A2, A3) are not excluded from the $pp \to \ell\nu$ and $pp \to \mu\nu$ processes because of the large W' mass and small gauge couplings.

$pp \to \ell\nu$	$pp \to \mu\nu$					
	m_{KK}		m_{KK}			
	11 TeV	13 TeV	15 TeV	11 TeV	13 TeV	15 TeV
θ_H	0.11	17	6.9	13	7.3	4.3
	0.10	22	12	10		
	0.09	6.9		4.2		

Table 10: The number of signal events in the GHU B-model $N_{\text{sig}} \equiv N_{\text{GHU}} - N_{\text{SM}}$, where $N_{\text{SM}} = 6.8$ for $pp \to \ell\nu$ and $N_{\text{SM}} = 3.8$ for $pp \to \mu\nu$. The second and third columns show N_{sig} for $pp \to \ell\nu$ and $pp \to \mu\nu$ processes. The observed (expected) upper limits at 95% CL on N_{sig} are 3.4 (8.4) and 8.6 (7.7) for $pp \to \ell\nu$ and $pp \to \mu\nu$, respectively.

5 For Future LHC Experiments

In this section, we estimate the numbers of events of the $pp \rightarrow \{W,W'\} \rightarrow l\nu$ and $pp \rightarrow \{\gamma,Z,Z'\} \rightarrow l^+l^-$ processes at $\sqrt{s} = 14$ TeV with the luminosity 300 fb$^{-1}$ (LHC Run 3) and 3000 fb$^{-1}$ (HL-LHC). Other background processes are ignored and the acceptance and efficiency are not taken into account. The numbers of events N_{GHU} and N_{SM} are estimated by integrating the differential cross sections times luminosity from m_{min} to 6 TeV, where m_{min} is determined by the condition

$$
\frac{d\sigma_{pp\rightarrow l\nu}^{\text{GHU}}}{dm_{T}}\Big|_{m_{T}=m_{\text{min}}} = \frac{d\sigma_{pp\rightarrow l\nu}^{\text{SM}}}{dm_{T}}\Big|_{m_{T}=m_{\text{min}}},
$$

(5.1)
or
\[
\frac{d\sigma_{pp\to l^+l^-}}{dm_{ll}} \bigg|_{m_{ll}=m_{\text{min}}} = \frac{d\sigma_{SM}^{pp\to l^+l^-}}{dm_{ll}} \bigg|_{m_{ll}=m_{\text{min}}}. \tag{5.2}
\]

The discovery significance is given by
\[
Z \equiv \sqrt{2 \left(N_{\text{GHU}} \ln \frac{N_{\text{GHU}}}{N_{\text{SM}}} + N_{\text{SM}} - N_{\text{GHU}} \right)}. \tag{5.3}
\]

Although the formula (5.3) is derived in the large number limit, we use this formula independent of the numbers of events for simplicity. For a given \(Z \), the corresponding \(p \)-value, which is defined as the probability of obtaining a larger excess, is the same as \(p = 1 - F(\mu + Z\sigma) \), where \(F \) is the Gaussian cumulative distribution function, \(\mu \) is a mean and \(\sigma \) is a standard deviation. Usually, an excess larger than 5\(\sigma \) is qualified as a discovery. Therefore, we estimate the parameter set which gives \(Z \simeq 5 \). The \(p = 0.05 \) corresponds to the discovery significance \(Z = 1.64 \), and a model is allowed at a 95\% CL for \(Z < 1.64 \). We calculate the \(p \)-value by assuming that events follow the Poisson distribution.

In the A-model, the differential cross section of the \(pp \to l\nu \) process is almost equal to that in the SM for \(m_{KK} > 8 \) TeV at \(\sqrt{s} = 14 \) TeV. For the parameter set A3, the differential cross section of \(pp \to e^+e^- \) process is larger above \(m_{\text{min}} = 2.287 \) TeV. With the luminosity 300 fb\(^{-1} \), \(N_{\text{GHU}} = 70.1 \), \(N_{\text{SM}} = 28.8 \) and the corresponding discovery significance is 6.49. The numbers of events and discovery significance of \(pp \to \mu^+\mu^- \) process are smaller than those of the \(pp \to e^+e^- \) process.

For the B-model, the discovery significance of the \(pp \to e\nu \) process is larger than that of the \(pp \to \mu\nu \) and \(pp \to l^+l^- \) processes for the same parameter sets considered bellow.

We choose parameter sets \(z_L \simeq O(10^{12}) \) with integral \(m_{KK}/\text{TeV} \). The results for the \(pp \to e\nu \) and \(pp \to e^+e^- \) processes are summarized in Tables 11 and 12. The masses and decay widths of the \(W' \) and \(Z' \) for those parameters are shown in Tables 13, 14, 15, 16, 17.

For \(\theta_H = 0.09 \) and \(m_{KK} = 15 \) TeV, it is found that \(m_{\text{min}} = 2.482 \) TeV, \(N_{\text{GHU}} = 63 \) and \(N_{\text{SM}} = 31 \) at the LHC Run 3, where the discovery significance is \(Z = 5.08 \). When about 63 events are observed for the \(pp \to e\nu \) process in the transverse mass range 2.5 TeV \(\lesssim m_T \lesssim 6.0 \) TeV at the LHC Run 3, the discovery of new physics is expected, and the GHU model becomes viable. The numbers of events of the GHU (SM) in each bin are 67.5 (92.5), 29.7 (21.6), 24.1 (7.1), 6.3 (0.56) and 1.4 (0.05) for [2000, 2500] GeV, [2500, 3000] GeV, [3000, 4000] GeV, [4000, 5000] GeV and [5000, 6000] GeV, respectively.

By interpolating the numerical results shown in Table 11 we obtain \(Z = 1.64 \) for \(\theta_H = 0.0727 \) and \(m_{KK} = 18.44 \) TeV, where \(N_{\text{GHU}} = 9.75 \) and \(N_{\text{SM}} = 5.48 \). Hence,
Table 11: The model parameters, lower limits of integral, numbers of events and discovery significance of the \(pp \to e\nu \) process at \(\sqrt{s} = 14 \text{ TeV} \) with the luminosity 300 fb\(^{-1}\).

\(\theta_H \)	\(m_{KK} \) (TeV)	\(z_L \)	\(m_{\text{min}} \) (TeV)	\(N_{GHU} \)	\(N_{SM} \)	significance
0.09	15	\(3.196 \times 10^{12} \)	2.482	63.0	30.8	5.08
0.08	17	\(5.001 \times 10^{12} \)	2.831	22.5	12.0	2.69
0.07	19	\(1.431 \times 10^{12} \)	3.263	6.86	3.91	1.34
0.06	22	\(9.479 \times 10^{11} \)	3.854	1.39	0.877	0.508

Table 12: The model parameters, lower limits of integral, numbers of events and discovery significance of the \(pp \to e^+e^- \) process at \(\sqrt{s} = 14 \text{ TeV} \) with the luminosity 300 fb\(^{-1}\).

\(\theta_H \)	\(m_{KK} \) (TeV)	\(z_L \)	\(m_{\text{min}} \) (TeV)	\(N_{GHU} \)	\(N_{SM} \)	significance
0.09	15	\(3.196 \times 10^{12} \)	2.790	19.0	7.96	3.33
0.08	17	\(5.001 \times 10^{12} \)	3.142	7.29	3.40	1.83
0.07	19	\(1.431 \times 10^{12} \)	3.568	2.43	1.26	0.925
0.06	22	\(9.479 \times 10^{11} \)	4.152	0.562	0.335	0.357

Table 13: Masses and decay widths of \(W^{(1)} \), \(W^{(1)}_R \), \(Z^{(1)} \), \(Z^{(1)}_R \) and \(\gamma^{(1)} \) are listed. \(m_{W^{(1)}} \approx m_{Z^{(1)}} \approx m_{\gamma^{(1)}} \) with 4 digits of precision. \(m_{W^{(1)}} \) and \(m_{Z^{(1)}} \) are exactly equal.

as a rough estimate, the upper limit of the KK scale testable at the LHC Run 3 is \(m_{KK} \approx 18.44 \text{ TeV} \). At the HL-LHC, the total integrated luminosity 3000 fb\(^{-1}\) of data is going to be collected \cite{73,75}. For \(\theta_H = 0.06 \) and \(m_{KK} = 22 \text{ TeV} \), \(N_{GHU} = 13.9 \) and \(N_{SM} = 8.77 \) at \(\sqrt{s} = 14 \text{ TeV} \) with the 3000 fb\(^{-1}\) luminosity. The discovery significance is \(Z = 1.61 \) and the corresponding p-value is \(p = 0.0627 \). The GHU B-model is testable up to \(m_{KK} \approx 22 \text{ TeV} \).

We add that backgrounds coming from other processes, acceptance and efficiency have not been taken into account in the evaluation in this section.

6 Summary and Discussions

In this paper we studied the \(pp \to \{W, W'\} \to l\nu \) and \(pp \to \{\gamma, Z, Z'\} \to l^+l^- \) \((l = e, \mu) \) processes in the \(SU(3)_C \times SO(5) \times U(1)_X \) GHU models. Due to the behavior of the wave functions of various fields in the fifth dimension, the \(Z' \) couplings of right- and left-
\begin{table}
\centering
\begin{tabular}{cccccccc}
\hline
\textit{ff}' & \textit{g}_{W,ff}' & \textit{g}_{W,ff} & \textit{g}_{W,ff} & \textit{g}_{W,ff} & \textit{g}_{W,ff} & \textit{g}_{W,ff} & \textit{g}_{W,ff}' \\
\hline
\textit{e} & 0.9981 & 0 & 5.9277 & 0 & 0.0121 & 0 & 0 \\
\textit{\mu} & 0.9981 & 0 & 5.6554 & 0 & 0.0116 & 0 & 0 \\
\textit{\tau} & 0.9981 & 0 & 5.4764 & 0 & 0.0113 & 0 & 0 \\
\textit{ud} & 0.9981 & 0 & 5.7462 & 0 & 0.0118 & 0 & 0 \\
\textit{cs} & 0.9981 & 0 & 5.5457 & 0 & 0.0114 & 0 & 0 \\
\textit{tb} & 0.9983 & 0 & 4.6551 & 0 & 0.0097 & 0 & -0.0330 \\
\hline
\end{tabular}
\caption{Coupling constants of vector bosons are listed for $\theta_H = 0.09$ and $m_{KK} = 15$ TeV in Table 13, where $\sin^2 \theta^0_{W} = 0.2307$. The above table shows the couplings of W' bosons to fermions in units of $g_W/\sqrt{2}$. The below table shows the couplings of Z' bosons to fermions in units of $g_W = e/\sin \theta^0_{W}$. Their corresponding γ boson coupling constants are the same as those in the SM. The values less than 10^{-4} are written as 0.}
\end{table}

handed quarks become relatively large in the GHU A-model and B-model, respectively. The largest decay width of the Z' bosons is found to be $\Gamma_{Z(1)}/m_{Z(1)} \sim 0.1$ in the A-model and $\Gamma_{Z(1)}/m_{Z(1)} \sim 0.8$ in the B-model. The W' couplings of left-handed quarks also become large in the GHU B-model, and $\Gamma_{W(1)}/m_{W(1)} \sim 1$. In contrast to it, the $W'(1)$ couplings in the A-model remain small with $\Gamma_{W(1)}/m_{W(1)} \sim 0.04$.

The differential cross sections of the $pp \rightarrow l^+l^-$ processes in the GHU models are smaller than those in the SM for the invariant mass $m_{ll} \lesssim 2$ TeV. From the searches for events in the dilepton final states at $\sqrt{s} = 13$ TeV with up to 140 fb$^{-1}$ of data [2], the A-model is constrained as $\theta_H \lesssim 0.08$ and $m_{KK} \gtrsim 9.5$ TeV, and the B-model is constrained as $\theta_H \lesssim 0.10$ and $m_{KK} \gtrsim 13$ TeV.

The differential cross sections of the $pp \rightarrow l\nu$ processes in the GHU B-model are also smaller than those in the SM for the transverse mass $m_T \lesssim 2$ TeV. The constraint on the
f	g_{Zf}^L	g_{Zf}^R	$g_{Zf}^{(1)L}$	$g_{Zf}^{(1)R}$	$g_{Zf}^{(1)L}$	$g_{Zf}^{(1)R}$	$g_{Zf}^{(1)L}$	$g_{Zf}^{(1)R}$
ν_e	0.5693	0	3.4026	0	0.0977	0	0	0
ν_μ	0.5693	0	3.2475	0	0.0977	0	0	0
ν_τ	0.5693	0	3.1459	0	0.0977	0	0	0
e	-0.3061	0.2632	-1.8294	-0.0559	-1.0837	0	-2.8658	0.1022
μ	-0.3061	0.2632	-1.7461	-0.0559	-1.0365	0	-2.7352	0.1022
τ	-0.3061	0.2632	-1.6914	-0.0559	-1.0056	0	-2.6496	0.1021
u	0.3938	-0.1754	2.2823	0.0372	0.3534	0	1.8525	-0.0681
c	0.3938	-0.1754	2.2035	0.0372	0.3417	0	1.7885	-0.0681
t	0.3940	-0.1752	1.8561	-0.3108	0.2902	-0.7020	1.5067	0.5702
d	-0.4815	0.0877	-2.7908	0.1127	0.3455	-0.1751	-0.9262	-0.2052
s	-0.4815	0.0877	-2.6944	0.1421	0.3341	-0.2142	-0.8943	-0.2588
b	-0.4815	0.0877	-2.2696	0.2833	0.2837	-0.4014	-0.7533	-0.5161

Table 15: Coupling constants of vector bosons are listed for $\theta_H = 0.08$ and $m_{KK} = 17$ TeV in Table 13, where $\sin^2 \theta_W = 0.2308$.

B-model from the searches for events in the lepton and missing transverse mass final states at $\sqrt{s} = 13$ TeV with up to 140 fb$^{-1}$ of data is severe compared with the constraint from those in the dilepton final states. The constraint on the B-model is $\theta_H < 0.10$ and $m_{KK} > 13$ TeV. The A-model is consistent with the experimental data due to the narrow decay width of the $W^{(1)}$ boson.

At $\sqrt{s} = 14$ TeV with the luminosity 300 fb$^{-1}$, signals of Z' bosons in the A-model can be seen in the $pp \rightarrow l^+l^-$ processes for $\theta_H = 0.08$ and $m_{KK} = 9.5$ TeV. In the B-model, signals of W' bosons can be seen in the $pp \rightarrow ev$ process for $m_{KK} \lesssim 15$ TeV and $\theta_H \gtrsim 0.09$. The upper limit of the KK scale in the B-model can be pushed to $m_{KK} \simeq 18$ TeV with the luminosity 300 fb$^{-1}$ and to $m_{KK} \simeq 22$ TeV with luminosity 3000 fb$^{-1}$.

At the ILC, the effects of Z' bosons in fermion pair production processes can be seen even at $\sqrt{s} = 250$ GeV by using polarized electron and positron beams. For $m_{KK} < 22$ TeV, the deviations of the cross section for the $e^+e^- \rightarrow \mu^+\mu^-$ process in the GHU B-model from that in the SM are $O(1\%)$ for a left-handed electron beam and $O(0.1\%)$.
The table below lists the coupling constants of vector bosons for $\theta_H = 0.07$ and $m_{KK} = 19$ TeV in Table 13, where $\sin^2 \theta_W = 0.2309$. With a right-handed electron beam at $\sqrt{s} = 250$ GeV, where the statistical uncertainty with the 250 fb$^{-1}$ luminosity data is about 0.1% [53]. To reduce theoretical uncertainties, further studies beyond the tree-level are necessary.

Collider physics of radions, KK gravitons and KK gluons are also important subjects in models defined on a higher dimensional spacetime [81, 82]. For instance, KK gluons mediate dijet and $t\bar{t}$ production processes at hadron colliders. In the $t\bar{t}$ production processes, the forward-backward asymmetry [83, 84] and the charge asymmetry [85, 86] have been measured, which so far have been consistent with the SM predictions. Effects of KK gluons in the $pp \rightarrow t\bar{t}$ process need be studied in the GHU models as well. KK gluons in the GHU B-model have large couplings to left-handed fermions with a large decay width just as KK photons. Broad excesses of the differential cross sections are foreseen at the LHC in the process mediated by KK gauge bosons, and the polarization dependence of the cross sections should be confirmed at the ILC by using polarized beams. Observing

ff'	g_{Wff}^L	g_{Wff}^R	$g_{W(1)ff}^L$	$g_{W(1)ff}^R$	$g_{W(1)ff}^L$	$g_{W(1)ff}^R$
$e\nu_e$	0.9988	0	5.8583	0	0.0073	0
$\mu\nu_\mu$	0.9988	0	5.5850	0	0.0069	0
$\tau\nu_\tau$	0.9988	0	5.4046	0	0.0067	0
ud	0.9987	0	5.763	0	0.0067	0
cs	0.9987	0	5.4745	0	0.0068	0
tb	0.9989	0	4.5622	0	0.0057	−0.0336

Table 16: Coupling constants of vector bosons are listed for $\theta_H = 0.07$ and $m_{KK} = 19$ TeV in Table 13, where $\sin^2 \theta_W = 0.2309$. with a right-handed electron beam at $\sqrt{s} = 250$ GeV, where the statistical uncertainty with the 250 fb$^{-1}$ luminosity data is about 0.1% [53]. To reduce theoretical uncertainties, further studies beyond the tree-level are necessary.
Table 17: Coupling constants of vector bosons are listed for \(\theta_H = 0.06 \) and \(m_{KK} = 22 \text{ TeV} \) in Table 13, where \(\sin^2 \theta_W = 0.2311 \).

these characteristic signals may provide a strong indication for the existence of the extra dimension.

Acknowledgments

This work was supported in part by European Regional Development Fund-Project Engineering Applications of Microworld Physics (Grant No. CZ.02.1.01/0.0/0.0/16_019/0000766) (Y.O.), by the National Natural Science Foundation of China (Grants No. 11775092, No. 11675061, No. 11435003 and No. 11947213) (S.F.), by the International Postdoctoral Exchange Fellowship Program (S.F.), and by Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Grant No. JP19K03873 (Y.H.) and Grant No. JP18H05543 (N.Y.).
References

[1] G. Aad et al. [ATLAS Collaboration], “Search for high-mass dilepton resonances using 139 fb$^{-1}$ of pp collision data collected at $\sqrt{s} = 13$ TeV with the ATLAS detector”, Phys. Lett. B 796, 68-87 (2019).

[2] G. Aad et al. [ATLAS Collaboration], “Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector”, JHEP 11, 005 (2020) [erratum: JHEP 04, 142 (2021)].

[3] G. Aad et al. [ATLAS Collaboration], “Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, Phys. Rev. D 100 (2019) no.5, 052013.

[4] G. Aad et al. [ATLAS Collaboration], “Search for new resonances in mass distributions of jet pairs using 139 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, JHEP 03 (2020), 145.

[5] A. M. Sirunyan et al. [CMS Collaboration], “Search for resonant and nonresonant new phenomena in high-mass dilepton final states at $\sqrt{s} = 13$ TeV”, JHEP 07, 208 (2021).

[6] A. M. Sirunyan et al. [CMS Collaboration], “Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JHEP 05 (2020), 033.

[7] A. Leike, “The Phenomenology of extra neutral gauge bosons”, Phys. Rept. 317 (1999), 143-250.

[8] P. Langacker, “The Physics of Heavy Z' Gauge Bosons”, Rev. Mod. Phys. 81 (2009), 1199-1228.

[9] C. Csaki, C. Grojean and J. Terning, “Alternatives to an Elementary Higgs”, Rev. Mod. Phys. 88 (2016) no.4, 045001.

[10] P.A. Zyla et al. [Particle Data Group], “Review of Particle Physics”, PTEP 2020 (2020) no.8, 083C01.

[11] E. Accomando, D. Becciolini, S. De Curtis, D. Dominici, L. Fedeli and C. Shepherd-Themistocleous, “Interference effects in heavy W'-boson searches at the LHC”, Phys. Rev. D 85 (2012), 115017.
[12] E. Accomando, D. Becciolini, A. Belyaev, S. Moretti and C. Shepherd-Themistocleous, “Z' at the LHC: Interference and Finite Width Effects in Drell-Yan”, JHEP 10 (2013), 153.

[13] D. Barducci, A. Belyaev, S. De Curtis, S. Moretti and G. M. Pruna, “Exploring Drell-Yan signals from the 4D Composite Higgs Model at the LHC”, JHEP 04 (2013), 152.

[14] D. Greco and D. Liu, “Hunting composite vector resonances at the LHC: naturalness facing data”, JHEP 12 (2014), 126.

[15] D. Liu, L. T. Wang and K. P. Xie, “Prospects of searching for composite resonances at the LHC and beyond”, JHEP 01 (2019), 157.

[16] L. Edelhäuser, T. Flacke and M. Krämer, “Constraints on models with universal extra dimensions from dilepton searches at the LHC”, JHEP 08 (2013), 091.

[17] N. Deutschmann, T. Flacke and J. S. Kim, “Current LHC Constraints on Minimal Universal Extra Dimensions”, Phys. Lett. B 771 (2017), 515-520.

[18] K. S. Agashe, J. Collins, P. Du, S. Hong, D. Kim and R. K. Mishra, “LHC Signals from Cascade Decays of Warped Vector Resonances”, JHEP 05 (2017), 078.

[19] T. Han, I. Lewis, R. Ruiz and Z. g. Si, “Lepton Number Violation and W' Chiral Couplings at the LHC”, Phys. Rev. D 87 (2013) no.3, 035011 [erratum: Phys. Rev. D 87 (2013) no.3, 039906].

[20] C. W. Chiang, T. Nomura and K. Yagyu, “Phenomenology of E_6-Inspired Leptophobic Z' Boson at the LHC”, JHEP 05 (2014), 106.

[21] D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, “Heavy Vector Triplets: Bridging Theory and Data”, JHEP 09 (2014), 060.

[22] M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, “Constraints on Z' models from LHC dijet searches and implications for dark matter”, JHEP 09 (2016), 018.

[23] A. Das, S. Oda, N. Okada and D. s. Takahashi, “Classically conformal $U(1)'$ extended standard model, electroweak vacuum stability, and LHC Run-2 bounds”, Phys. Rev. D 93 (2016) no.11, 115038.

[24] M. Mitra, R. Ruiz, D. J. Scott and M. Spannowsky, “Neutrino Jets from High-Mass W_R Gauge Bosons in TeV-Scale Left-Right Symmetric Models”, Phys. Rev. D 94 (2016) no.9, 095016.
[25] S. Amrith, J. M. Butterworth, F. F. Deppisch, W. Liu, A. Varma and D. Yallup, “LHC Constraints on a $B - L$ Gauge Model using Contur”, JHEP 05 (2019), 154.

[26] C. W. Chiang, G. Cottin, A. Das and S. Mandal, “Displaced heavy neutrinos from Z' decays at the LHC”, JHEP 12 (2019), 070.

[27] F. F. Deppisch, S. Kulkarni and W. Liu, “Searching for a light Z' through Higgs production at the LHC”, Phys. Rev. D 100 (2019) no.11, 115023.

[28] E. Accomando, F. Coradeschi, T. Cridge, J. Fiaschi, F. Hautmann, S. Moretti, C. Shepherd-Themistocleous and C. Voisey, “Production of Z'-boson resonances with large width at the LHC”, Phys. Lett. B 803 (2020), 135293.

[29] A. Hayreter, X. G. He and G. Valencia, “LHC constraints on W', Z' that couple mainly to third generation fermions”, Eur. Phys. J. C 80 (2020) no.10, 912.

[30] A. Das, P. S. B. Dev, Y. Hosotani and S. Mandal, “Probing the minimal $U(1)_X$ model at future electron-positron colliders via the fermion pair-production channel”, arXiv:2104.10902 [hep-ph].

[31] E. E. Boos, V. Bunichev, L. Dudko and M. Perfilov, “Interference between W' and W in single-top quark production processes,” Phys. Lett. B 655 (2007), 245-250.

[32] E. E. Boos, V. Bunichev, M. N. Smolyakov and I. P. Volobuev, “Testing extra dimensions below the production threshold of Kaluza-Klein excitations,” Phys. Rev. D 79 (2009), 104013.

[33] E. E. Boos, V. Bunichev, M. Perfilov, M. N. Smolyakov and I. P. Volobuev, “The specificity of searches for W', Z' and γ' coming from extra dimensions”, JHEP 06 (2014), 160.

[34] Y. Hosotani, “Dynamical Mass Generation by Compact Extra Dimensions”, Phys. Lett. 126B, 309 (1983).

[35] Y. Hosotani, “Dynamics of Nonintegrable Phases and Gauge Symmetry Breaking”, Ann. Phys. 190, 233 (1989).

[36] A. T. Davies and A. McLachlan, “Gauge Group Breaking By Wilson Loops”, Phys. Lett. B 200 (1988) 305.

[37] A. T. Davies and A. McLachlan, “Congruency Class Effects in the Hosotani Model”, Nucl. Phys. B 317 (1989) 237.
[38] H. Hatanaka, T. Inami and C. S. Lim, “The Gauge hierarchy problem and higher dimensional gauge theories”, Mod. Phys. Lett. A 13, 2601 (1998).

[39] H. Hatanaka, “Matter representations and gauge symmetry breaking via compactified space”, Prog. Theor. Phys. 102, 407 (1999).

[40] M. Kubo, C. S. Lim and H. Yamashita, “The Hosotani mechanism in bulk gauge theories with an orbifold extra space S^1/Z_2”, Mod. Phys. Lett. A 17 (2002), 2249-2264.

[41] G. Burdman and Y. Nomura, “Unification of Higgs and Gauge Fields in Five Dimensions”, Nucl. Phys. B 656 (2003) 3.

[42] C. Csaki, C. Grojean and H. Murayama, “Standard model Higgs from higher dimensional gauge fields”, Phys. Rev. D 67 (2003) 085012.

[43] C. A. Scrucca, M. Serone and L. Silvestrini, “Electroweak symmetry breaking and fermion masses from extra dimensions”, Nucl. Phys. B 669 (2003), 128-158.

[44] A. D. Medina, N. R. Shah and C. E. M. Wagner, “Gauge-Higgs Unification and Radiative Electroweak Symmetry Breaking in Warped Extra Dimensions”, Phys. Rev. D 76 (2007) 095010.

[45] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa and T. Shimotani, “Novel universality and Higgs decay $H \to \gamma\gamma$, gg in the $SO(5) \times U(1)$ gauge-Higgs unification”, Phys. Lett. B 722, 94 (2013).

[46] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa and T. Shimotani, “LHC signals of the $SO(5) \times U(1)$ gauge-Higgs unification”, Phys. Rev. D 89, no. 9, 095019 (2014).

[47] S. Funatsu, H. Hatanaka, Y. Hosotani and Y. Orikasa, “Collider signals of W' and Z' bosons in the gauge-Higgs unification”, Phys. Rev. D 95, no. 3, 035032 (2017).

[48] S. Funatsu, H. Hatanaka, Y. Hosotani and Y. Orikasa, “Distinct signals of the gauge-Higgs unification in e^+e^- collider experiments”, Phys. Lett. B 775, 297 (2017).

[49] S. Funatsu, “Forward-backward asymmetry in the gauge-Higgs unification at the International Linear Collider”, Eur. Phys. J. C 79 (2019) no.10, 854.

[50] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa and N. Yamatsu, “GUT inspired $SO(5) \times U(1) \times SU(3)$ gauge-Higgs unification”, Phys. Rev. D 99 (2019) no.9, 095010.
[51] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa and N. Yamatsu, “CKM matrix and FCNC suppression in $SO(5) \times U(1) \times SU(3)$ gauge-Higgs unification”, Phys. Rev. D 101 (2020) no.5, 055016.

[52] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa and N. Yamatsu, “Effective potential and universality in GUT-inspired gauge-Higgs unification”, Phys. Rev. D 102 (2020) no.1, 015005.

[53] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa and N. Yamatsu, “Fermion pair production at e^-e^+ linear collider experiments in GUT inspired gauge-Higgs unification”, Phys. Rev. D 102 (2020) no.1, 015029.

[54] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa and N. Yamatsu, “Electroweak and Left-Right Phase Transitions in $SO(5) \times U(1) \times SU(3)$ Gauge-Higgs Unification”, Phys. Rev. D 104 (2021) no.11, 115018.

[55] Y. Matsumoto and Y. Sakamura, “Yukawa couplings in 6D gauge-Higgs unification on T^2/Z_N with magnetic fluxes”, PTEP 2016, no. 5, 053B06 (2016).

[56] K. Hasegawa and C. S. Lim, “Majorana neutrino masses in the scenario of gauge-Higgs unification”, PTEP 2018, no. 7, 073B01 (2018).

[57] J. Yoon and M. E. Peskin, “Competing forces in five-dimensional fermion condensation”, Phys. Rev. D 96, no. 11, 115030 (2017).

[58] J. Yoon and M. E. Peskin, “Dissection of an $SO(5) \times U(1)$ gauge-Higgs unification model”, Phys. Rev. D 100, no. 1, 015001 (2019).

[59] M. Kakizaki and S. Suzuki, “Higgs potential in gauge-Higgs unification with a flat extra dimension”, Phys. Lett. B 822 (2021), 136637.

[60] Y. Hosotani and N. Yamatsu, “Gauge-Higgs grand unification”, PTEP 2015 (2015) 111B01.

[61] Y. Hosotani and N. Yamatsu, “Electroweak symmetry breaking and mass spectra in six-dimensional gauge-Higgs grand unification”, PTEP 2018 (2018) no. 2, 023B05.

[62] C. Englert, D. J. Miller and D. D. Smaranda, “Phenomenology of GUT-inspired gauge-Higgs unification”, Phys. Lett. B 802 (2020), 135261.

[63] C. Englert, D. J. Miller and D. D. Smaranda, “The Weinberg angle and 5D RGE effects in a $SO (11)$ GUT theory”, Phys. Lett. B 807 (2020), 135548.
[64] C. S. Lim and N. Maru, “Towards a realistic grand gauge-Higgs unification,” Phys. Lett. B 653 (2007), 320-324.

[65] M. Kakizaki, S. Kanemura, H. Taniguchi and T. Yamashita, “Higgs sector as a probe of supersymmetric grand unification with the Hosotani mechanism”, Phys. Rev. D 89 (2014) no.7, 075013.

[66] K. Kojima, K. Takenaga and T. Yamashita, “The Standard Model Gauge Symmetry from Higher-Rank Unified Groups in Grand Gauge-Higgs Unification Models”, JHEP 1706 (2017) 018.

[67] N. Maru and Y. Yatagai, “Fermion Mass Hierarchy in Grand Gauge-Higgs Unification”, PTEP 2019 (2019) no.8, 083B03.

[68] N. Maru and Y. Yatagai, “Improving fermion mass hierarchy in grand gauge–Higgs unification with localized gauge kinetic terms,” Eur. Phys. J. C 80 (2020) no.10, 933.

[69] A. Angelescu, A. Bally, S. Blasi and F. Goertz, “Minimal SU(6) Gauge-Higgs Grand Unification”, arXiv:2104.07366 [hep-ph].

[70] D. M. Asner, T. Barklow, C. Calancha, K. Fujii, N. Graf, H. E. Haber, A. Ishikawa, S. Kanemura, S. Kawada and M. Kurata, et al. “ILC Higgs White Paper”, arXiv:1310.0763 [hep-ph].

[71] K. Fujii, C. Grojean, M. E. Peskin, T. Barklow, Y. Gao, S. Kanemura, H. Kim, J. List, M. Nojiri and M. Perelstein, et al. “Physics Case for the 250 GeV Stage of the International Linear Collider”, arXiv:1710.07621 [hep-ex].

[72] P. Bambade, T. Barklow, T. Behnke, M. Berggren, J. Brau, P. Burrows, D. Denisov, A. Faus-Golfe, B. Foster and K. Fujii, et al. “The International Linear Collider: A Global Project”, arXiv:1903.01629 [hep-ex].

[73] P. Azzi, S. Farry, P. Nason, A. Tricoli, D. Zeppenfeld, R. Abdul Khalek, J. Alimena, N. Andari, L. Aperio Bella and A. J. Armbruster, et al., “Report from Working Group 1: Standard Model Physics at the HL-LHC and HE-LHC”, CERN Yellow Rep. Monogr. 7 (2019) 1–220, arXiv:1902.04070.

[74] M. Cepeda, S. Gori, P. Ilten, M. Kado, F. Riva, R. Abdul Khalek, A. Aboubrahim, J. Alimena, S. Alioli and A. Alves, et al., “Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC”, CERN Yellow Rep. Monogr. 7 (2019) 221–584, arXiv:1902.00134.
[75] X. Cid Vidal, M. D’Onofrio, P. J. Fox, R. Torre, K. A. Ulmer, A. Aboubrahim, A. Albert, J. Alimena, B. C. Allanach and C. Alpigiani, et al., “Report from Working Group 3: Beyond the Standard Model physics at the HL-LHC and HE-LHC”, CERN Yellow Rep. Monogr. 7 (2019) 585–865, [arXiv:1812.07831].

[76] F. Halzen and A. D. Martin, “Quarks and Leptons: An introductory course in modern particle physics”, John Wiley & Sons, (1984).

[77] M. E. Peskin and D. V. Schroeder, “An Introduction to Quantum Field Theory”, Addison-Wesley Publishing Company, (1995).

[78] H. L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin and C. P. Yuan, “New parton distributions for collider physics”, Phys. Rev. D 82 (2010), 074024.

[79] D. B. Clark, E. Godat and F. I. Olness, “ManeParse : A Mathematica reader for Parton Distribution Functions”, Comput. Phys. Commun. 216 (2017), 126-137.

[80] G. Cowan, K. Cranmer, E. Gross and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011), 1554 [erratum: Eur. Phys. J. C 73 (2013), 2501].

[81] K. Agashe, M. Ekhterachian, D. Kim and D. Sathyan, “LHC Signals for KK Graviton from an Extended Warped Extra Dimension”, JHEP 11 (2020), 109.

[82] R. Escribano, M. Mendizabal, M. Quirós and E. Royo, “On Broad Kaluza-Klein Gluons”, JHEP 05 (2021), 121.

[83] T. A. Aaltonen et al. [CDF and D0 Collaborations], “Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron”, Phys. Rev. Lett. 120 (2018) no.4, 042001.

[84] A. M. Sirunyan et al. [CMS Collaboration], “Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV”, JHEP 06 (2020), 146.

[85] M. Aaboud et al. [ATLAS and CMS Collaborations], “Combination of inclusive and differential t¯t charge asymmetry measurements using ATLAS and CMS data at √s=7 and 8 TeV”, JHEP 04 (2018), 033.

[86] [ATLAS Collaboration], “Inclusive and differential measurement of the charge asymmetry in t¯t events at 13 TeV with the ATLAS detector”, ATLAS-CONF-2019-026.