2MASS J06164006-6407194: THE FIRST OUTER HALO L SUBDWARF

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Cushing, Michael C. et al "2MASS J06164006-6407194: THE FIRST OUTER HALO L SUBDWARF." The Astrophysical Journal 696.1 (2009): 986.
As Published	http://dx.doi.org/10.1088/0004-637x/696/1/986
Publisher	American Astronomical Society
Version	Original manuscript
Citable link	http://hdl.handle.net/1721.1/52700
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
ABSTRACT

We present the serendipitous discovery of an L subdwarf, 2MASS J06164006−6407194, in a search of the Two Micron All Sky Survey for T dwarfs. Its spectrum exhibits features indicative of both a cool and metal poor atmosphere including a heavily pressure broadened K I resonant doublet, Cs I and Rb I lines, molecular bands of CaH, TiO, CrH, FeH, and H$_2$O, and enhanced collision induced absorption of H$_2$. We assign 2MASS J0616−6407 a spectral type of sdL5 based on a comparison of its red optical spectrum to that of near solar-metallicity L dwarfs. Its high proper motion ($\mu = 1.′′405\pm0.008$ yr$^{-1}$), large radial velocity ($V_{rad} = 454\pm15$ km s$^{-1}$), estimated uvw velocities (94, -573, 125) km s$^{-1}$ and Galactic orbit with an apogalacticon at \sim29 kpc are indicative of membership in the outer halo making 2MASS J0616−6407 the first ultracool member of this population.

Subject headings: infrared: stars — stars: low-mass, brown dwarfs — subdwarfs — stars: individual (2MASS J06164006−6407194)

1. INTRODUCTION

Ultracool subdwarfs are metal-poor stars and brown dwarfs that have spectral types later than \simsdM7/esdM7 (Burgasser et al. 2005) and $T_{\text{eff}} \lesssim 3000$ K (Leggett et al. 2000). Since cool subdwarfs are typically members of the thick disc or halo population, they exhibit large space motions relative to the Sun ($< V > = -202$ km s$^{-1}$; Gizis 1997) and thus are often identified as high proper-motion stars (e.g., Giclas et al. 1971, 1978; Luyten 1979; Pokorny et al. 2004; Lépine & Shara 2005). Due to their intrinsic faintness and paucity in the solar neighborhood, only \sim40 ultracool subdwarfs are currently known (Burgasser et al. 2007; Lépine & Scholz 2008). Such small numbers stand in stark contrast to the over one thousand near solar-metallicity ultracool dwarfs (spectral types later than M7 and $T_{\text{eff}} \lesssim 2400$ K) that have been discovered in the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006), the Sloan Digital Sky Survey (SDSS; York et al. 2000), and the Deep Near Infrared Southern Sky Survey (Epchtein et al. 1997), many of which populate the L and T spectral classes1 (Kirkpatrick 2005).

Of the roughly 40 ultracool subdwarfs known, only three, 2MASS J0532346+8246465 (hereafter 2MASS J0532+8246; Burgasser et al. 2008), 2MASS J16262034+3925190 (hereafter 2MASS J1626+3925; Burgasser 2004), and SDSS 1256−0224 (Sivarani et al. 2009) are classified as L subdwarfs2. The spectra of all three L subdwarfs exhibit Cs I and Rb I lines, pressure-broadened K I lines, CaH, FeH, CrH and H$_2$O bands, and enhanced collision induced H$_2$ absorption (CIA, e.g., Linsky 1969; Borysow et al. 1997), all features indicative of very cool (Kirkpatrick et al. 1999; Leggett et al. 2001; Reid et al. 2001) and metal-depleted atmospheres.

1 A compendium of known L and T dwarfs is given at http://DwarfArchives.org

2 LSR 1610−0040 was originally classified as an L subdwarf by Lépine et al. (2003) but observations by Cushing & Vacca (2006), Reiners & Basri (2009), and Dahn et al. (2008a) indicate that it is probably a peculiar M dwarf/subdwarf binary.
In this paper, we present the discovery of a fourth L subdwarf, 2MASS J06164006−6407194 (hereafter 2MASS J0616−6407) found in a search of the 2MASS database for T dwarfs. The discovery of 2MASS J0616−6407, along with followup near-infrared imaging and spectroscopy, and red-optical spectroscopy is presented in §2. In §3 we discuss the spectral classification and kinematics of 2MASS J0616−6407.

2. OBSERVATIONS

2.1. Source Identification

2MASS J0616−6407 was identified as a T dwarf candidate by Looper et al. (2007) in the course of a search for T dwarfs in the 2MASS All Sky Survey Database. It was selected based on its very blue near-infrared color ($J−K_s < 0.02$) and lack of any optical counterpart within 5″ in the USNO-A2.0 catalog or the Digital Sky Survey (DSS) I and II images. A finder chart for 2MASS J0616−6407 is given in Figure 1 and pertinent properties are listed in Table 1. Below we describe followup near-infrared imaging and spectroscopy and red-optical spectroscopy.

2.2. Near Infrared Spectroscopy

2MASS J0616−6407 was observed with the Ohio State InfraRed Imager/Spectrometer (OSIRIS) mounted at the 4.1 m SOAR Telescope on 2007 March 12 (UT). We used the 1′′ wide slit which provides a resolving power of $R = \lambda/\Delta\lambda \sim 1400$ across the 1 to 2.2 μm wavelength range in three spectral orders. A series of six 180 sec integrations were obtained along the 24′′-long slit. The A0 V star HD 53191 was also observed to correct for telluric absorption and to flux-calibrate the final spectrum. The data were reduced using a modified version (v3.4) of the Spextool data reduction package (Cushing et al. 2004). Wavelength calibration was accomplished using the OH airglow lines in the science frames. The spectra from the 3 orders were then corrected for telluric absorption using the observations of the A0 V standard stars and the technique described in Vacca et al. (2003). The 3 spectral orders were then merged into a single spectrum covering the 1.2−2.3 μm wavelength range. The final spectrum was then rebinned to one pixel per resolution element in order to increase the signal-to-noise ratio (S/N) of the spectrum.

The spectrum of 2MASS J0616−6407 is shown in Figure 2 (middle). The S/N of the spectrum is low, ranging from ~8 in the J and H bands to ~4 in the K band, but is nevertheless adequate to confirm that 2MASS J0616−6407 is not a T dwarf (the $J−K_s$ color of 2MASS J0616−6407 corresponds to a spectral type of \simT4) since the spectrum lacks the prominent CH bands found in the spectra of T dwarfs (Burgasser et al. 2002, Geballe et al. 2002). Also shown in Figure 2 are the spectra of the two other L subdwarfs with published spectra, 2MASS J0532+8246 (Burgasser et al. 2003) and 2MASS J1626+3925 (Burgasser 2004). All three spectra exhibit blue continua due to enhanced collision induced absorption (CIA) of H$_2$ centered at 2.4 μm and broad absorption bands of H$_2$O centered at 1.4 and 1.9 μm indicating that 2MASS J0616−6407 is an L subdwarf.

2.3. Red Optical Spectroscopy

2.3.1. Magellan/LDSS-3

Red optical spectra of 2MASS J0616−6407 were obtained on 2006 May 10 (UT) with LDSS-3 on Magellan. The VPH-red grism (660 lines/mm) with a 0.75′′ wide (4 pixels) longslit mask was used, with the slit aligned to the parallactic angle. This configuration provides 6050–8500 Å resolving power of $R \approx 1800$ and dispersion along the chip of ~1.2 Å/pixel. The OG590 longpass filter was used to eliminate second order light shortward of 6000 Å. Two low-read exposures of 1800 s each were obtained at an airmass of 1.49–1.60. We also observed the G2 V star HD 44611 immediately after and at a roughly similar airmass (1.77) for telluric absorption correction. The flux standard LTT 7987 (a.k.a. GJ 2147; Hamuy et al. 1994) was observed on the previous night using an identical slit and grism combination. All spectral observations were accompanied by HeNeAr arc lamp and flat-field quartz lamp exposures for dispersion and pixel response calibration.

LDSS-3 data were reduced in the IRAF environment 3

3 IRAF is distributed by the National Optical Astronomy Ob-
TABLE 1
PROPERTIES OF 2MASS J0616−6407

Parameter	Value
$\alpha_{(J2000.0)}$	6$''$.16+0.06
$\delta_{(J2000.0)}$	-64°07'19''4
2MASS J	16.40±0.113 mag
2MASS H	16.27±0.228 mag
2MASS K_s	>16.381 mag
μ_α ($J2000.0$)	1405±8 mas yr$^{-1}$
μ_δ ($J2000.0$)	-51±18 mas yr$^{-1}$
V_{rad}	45±15 km s$^{-1}$
d	57±39 pc
V_{tan}	379±60 km s$^{-1}$
u	94±10 km s$^{-1}$
v	-57±31 km s$^{-1}$
w	125±53 km s$^{-1}$

a. 2MASS coordinates at epoch 1998.95 (UT).

b. The read flag is 0 and the quality flag is U indicating that no flux was detected at the position and that the value is an upper limit.

c. We follow the convention that the u is positive towards the Galactic Center ($l=0$, $b=0$).

Tody (1989). Raw images were first corrected for amplifier bias voltage, stitched together, and subtracted by a median-combined set of slow-read bias frames taken during the afternoon. These processed images were then divided by a median-combined, bias-subtracted and normalized set of flat field frames. The LTT 7987 and HD 44611 spectra were optimally extracted first using the APALL task with background subtraction. The spectrum of 2MASS J0616−6407 was then extracted using the G star dispersion trace as a template. Dispersion solutions were determined from arc lamp spectra extracted using the same dispersion trace; solutions were accurate to ~0.08 pixels, or ~0.1 Å. Flux calibration was determined using the tasks STANDARD and SENSFUNC with observations of LTT 7987, adequate over the spectral range 6000–10000 Å. Corrections to telluric O$_2$ (6855–6955 Å B-band, 7580–7740 Å A-band) and H$_2$O (7160–7340 Å, 8125–8350 Å, 9270–9680 Å) absorption bands were determined by linearly interpolating over these features in the G dwarf spectrum, dividing by the uncorrected spectrum, and multiplying the result with the spectrum of 2MASS J0616−6407. The two spectra of 2MASS J0616−6407 were then coadded to improve S/N. We measured the radial velocity of 2MASS J0616−6407 using the Rb doublet (7948 Å), Na I (8183, 8195 Å), and Cs I (8521 Å) lines. The observed line positions determined by Gaussian fits were compared against the rest wavelengths (Rachenco et al. 2008, September 19) to derive a heliocentric radial velocity (after correcting for the Earth’s orbital velocity) of 480±30 km s$^{-1}$, where the error in the radial velocities arises primarily from the scatter in the line positions. We defer further discussion of the spectrum to the next section.

![Fig. 2.— Near infrared spectra of 2MASS J1626+3925 (sdL4; Burgasser et al. 2007), 2MASS J0616−6407, and 2MASS J0532+8246 (sdL7; Burgasser et al. 2003). The spectra are normalized to unity at 1.3 μm and offset by constants (dotted lines). Prominent atomic and molecular absorption features are indicated. The S/N of the 2MASS J0616−6407 spectrum is not high enough to detect the 1.25 μm K I doublet.](image)

2.3.2. Gemini/GMOS Spectroscopy

2MASS J0616−6407 was also observed with the Gemini Multi-Object Spectrograph (Hook et al. 2004) mounted on the Gemini South Telescope on 2007 September 13 (UT). We used the 0’75 wide slit and R400 grating which yields a spectrum from 5900 to 10100 Å with a resolving power of $R \sim 1300$. The OG515 filter was used to suppress stray light from shorter wavelengths. A total of five 1800 sec exposures were acquired at two different central wavelengths and at two positions along the slit. Standard calibration frames including flatfield and CuAr lamp images as well as observations of the G2 V star HD 60402 for telluric correction were also obtained. The flux standard EG 21 (Hamuy et al. 1994) was observed on 2007 September 14 (UT) with the same instrument setup.

The data were first reduced using the IRAF Gemini GMOS package. The raw frames were first bias subtracted (with a bias created using GBIAS) and flatfielded (with a normalized flat field created with GSFLAT). The OH sky lines were then subtracted and...
then spectra were optimally extracted using the GSEXTRACT routine. Wavelength calibration was achieved using the CuAr lamp images. The spectra were then flux calibrated using the observations of EG 21 and the GSCALIBRATE routine. Telluric correction was achieved by linearly interpolating over regions of O$_2$ and H$_2$O absorption in the spectrum of HD 60402, dividing by the raw spectrum of HD 60402, and then multiplying the results into the flux-calibrated spectrum of 2MASS J0616−6407.

Unfortunately, the resulting spectrum exhibits strong noise spikes at the wavelengths of nearly all the OH sky lines. Fringing in the detector makes the subtraction of the OH sky lines using low order polynomials difficult. We therefore re-extracted the raw spectrum of 2MASS J0616−6407 so that we could first pair subtract the images with the 2MASS J0616−6407 at different positions along the slit. Although this did not completely eliminate the strong residuals, it did improve the spectrum dramatically. Finally we measured a radial velocity of +445 ± 18 km s$^{-1}$ using the same technique described in the previous section. The radial velocity measurements from the LDSS-3 and GMOS spectra agree within the errors and a weighted average of the two values gives 454 ± 15 km s$^{-1}$.

The LDSS-3 and GMOS spectra are shown in Figure 3. The GMOS spectrum has a S/N of 10 to 20 while the LDSS-3 has a lower S/N. The spectra exhibit band heads of CaH (7035 Å), TiO (7053, 8432 Å), CrH (8611 Å), FeH (8692, 9896 Å), and atomic lines of K I (7665, 7699 Å), Na I (8183, 8195 Å), and Cs I (8521 Å). The heavily pressure-broadened K I doublet, strong CrH and FeH band heads, and Cs I and Rb I lines are hallmark spectral features of L dwarfs (Kirkpatrick et al. 1999) while the presence of the CaH and TiO band heads are consistent with known late-type M and L subdwarf spectra (Burgasser et al. 2007). Overall the spectra agree well except longward of ∼9200 Å where the LDSS-3 spectrum is systematically higher than the GMOS spectrum. Burgasser et al. (2007) found a similar offset between LDSS-3 and GMOS spectra of ultracool M subdwarfs and ascribed it to an unknown flux calibration error and/or the fact that the 9200 Å telluric H$_2$O band was not corrected in their GMOS data. Our GMOS spectrum of 2MASS J0616−6407 has been corrected for telluric absorption so we can eliminate this as the cause of the mismatch. Since the cause remains unknown, we restrict further analysis to λ < 9200 Å.

2.4. Near Infrared Imaging

An image of 2MASS J0616−6407 was taken on 2008 Jan 17 (UT) using the 1.5m telescope at CTIO with the Caméra PANoramique Proche InfraRouge (CPAPIR; Artigau et al. 2004) wide field-IR imager in the J band. The object was observed close to the meridian at an air-mass of 1.2 and with seeing conditions ∼1"5. We used a 9-point dither pattern with 10" offsets. Each exposure was ∼60 seconds amounting to a total integration time of ∼9 minutes. Science frames were first sky-subtracted using a sky frame created by median-combining all of the science data taken on a given night and then flat-fielded using a normalized dome flat. Individual frames were shifted and stacked to form the final combined image. The reduced science frame was astrometrically calibrated using the 2MASS Point Source catalogue. We used a basic, six parameter, least-squares, linear transformation.
to obtain an astrometric solution for the CPAPIR image. The field-of-view of CPAPIR is \(\sim 30'' \) so there were over 1600 2MASS reference stars to calibrate CPAPIR to 2MASS. We limited our reference stars to the 450 stars with \(12 < J < 15 \) as objects in this intermediate magnitude range transformed with the smallest residuals from epoch to epoch. The solution reference stars were required to transform with total absolute residuals against 2MASS of \(< 0.2 \) pixels (see Faherty et al. 2008 for more details). We measure a proper motion of \(\mu_\alpha = +1404 \pm 8 \) mas yr\(^{-1} \) and \(\mu_\delta = -51 \pm 18 \) mas yr\(^{-1} \) over the 9.1 yr baseline between the CPAPIR image and the discovery 2MASS image. The errors were computed by combining the residuals of the astrometric solution, which accounted for 0.16 pixels, with the plate scale of CPAPIR (\(\sim 1'' \) pixel\(^{-1} \)) under the given baseline. The positional uncertainty for 2MASS J0616–6407 was also calculated by comparing the residuals of transforming the X,Y position for our target over consecutive dithered images. However this uncertainty was negligible compared to the contribution from the astrometric solution.

3. ANALYSIS

3.1. Spectral Classification

Determining the spectral type of 2MASS J0616–6407 is not straightforward because an L subdwarf spectral classification scheme has yet to be rigorously defined in either the red optical or the near infrared due to the few examples known. The depth of the 1.4 H\(_2\)O band and the shape of the H band (see Figure 2) suggests that 2MASS J0616–6407 has a near infrared spectral type intermediate between that of 2MASS J1626+3925 and 2MASS J0532+8246, perhaps sdL4 to sdL6. In order to derive a spectral type based on the red optical spectrum, we followed Burgasser et al. (2007) and compared the GMOS spectrum of 2MASS J0616–6407 to the spectra of field L dwarf spectral standards (Kirkpatrick et al. 1999). The best match is the L5 dwarf DENIS-P J1228.2–1547 resulting in an optical spectral type of sdL5 for 2MASS J0616–6407. Note that a similar comparison in the near infrared is impossible because L dwarf spectral standards have yet to be defined at these wavelengths (see however Kirkpatrick et al., in preparation). Figure 4 shows the red optical spectra of both 2MASS J0616–6407 and DENIS-P J1228.2–1547 (grey). The strengths of the CrH and FeH band heads, width of the K 1 doublet, and overall 8000–9000 Å slope of the two spectra agree well. Also shown in Figure 4 are the spectra of 2MASS J0532+8246 and 2MASS J1626+3925 along with their respective L dwarf standards. The strength of the features in the spectrum of 2MASS J0616–6407 are intermediate between that of 2MASS J1626+3925 and 2MASS J0532+8246 in good agreement with its derived spectral type of sdL5.

3.2. Kinematics

Although the high proper motion and large radial velocity of 2MASS J0616–6407 suggest that 2MASS J0616–6407 is a high velocity star and thus possibly a member of the halo population, a distance is required in order to compute space velocities. We estimated a spectrophotometric distance to 2MASS J0616–6407 in the following way. First we performed a weighted linear fit of the 2MASS \(M_J, M_H, \) and \(M_K_S \) values with respect to spectral type of the ultracool subdwarfs with known parallaxes (Monet et al. 1992; Dahn et al. 2008b; Schilbach et al. 2008; Burgasser et al. 2008), LHS 377 (sdM7), LSR 2036+5059 (sdM7.5), LSR J1425+7102 (sdM8), SSSPM 1013–1356 (sdM9.5), 2MASS J1626+3925 (sdL4) and 2MASS J0532+8246 (sdL7) and find,

\[
M_J = 8.02 + 0.313 \times \text{SpType}, \quad \text{Cov} = \begin{pmatrix} 0.137 & -0.0114 \\ -0.0114 & 0.00106 \end{pmatrix}
\]

\[(1)\]

\[
M_H = 7.77 + 0.300 \times \text{SpType}, \quad \text{Cov} = \begin{pmatrix} 0.148 & -0.0125 \\ -0.0125 & 0.00120 \end{pmatrix}
\]

\[(2)\]

\[
M_K_S = 7.44 + 0.320 \times \text{SpType}, \quad \text{Cov} = \begin{pmatrix} 0.172 & -0.0152 \\ -0.0152 & 0.00151 \end{pmatrix}
\]

\[(3)\]

where SpType=7 for M7, SpType=10 for L0, etc., and \(\text{Cov} \) is the covariance matrix of the fit. For those dwarfs
with two parallax measurements, we used the weighted average of the two values to compute their absolute magnitudes. Figure 5 shows the absolute magnitudes of the two variables along with those of single field M and L dwarfs from Dahn et al. (2002) and references therein. In comparison to the field dwarfs, the L subdwarfs appear overluminous in the J band and underluminous in the K band. If we assume that the effective temperature scale of the L dwarfs and subdwarfs are similar (see however Cushing et al. 2006), we can ascribe this behavior to a change in metallicity. At a fixed T_{eff} and q, L dwarfs become brighter in the J band and fainter in the K band with decreasing metallicity (Burrows et al. 2004) due primarily to the increasing importance of CII H$_2$ absorption in the K band.

We estimate a distance of 57±9 pc for 2MASS J0616−6407 using the absolute J and H magnitudes derived using Equations 1 and 2 for a spectral type of sdL5 (2MASS J0616−6407 has only an upper limit in the K_s band). The value is the weighted average of the two spectrophotometric distance estimates and the error includes the covariance terms and an error of ±0.5 a subtype in the spectral type. The estimated distance and proper motion of 2MASS J0616−6407 imply a tangential velocity V_{tan} of 379±60 km s$^{-1}$ which is roughly an order of magnitude greater than the median value of field L dwarfs (Vrba et al. 2004; Faherty et al. 2008) and confirms that 2MASS J0616−6407 is a member of the halo population. Indeed Faherty et al. (2008) found no MLT dwarfs with $V_{\text{tan}} > 170$ km s$^{-1}$ in their sample of 634 L and T dwarfs and 456 M dwarfs. We have also computed $(u, v, w)^4$ velocities of 2MASS J0616−6407 with respect to the Local Standard of Rest (LSR) following Johnson & Soderblom (1987) updated with the J2000.0 galactic coordinate transformations of Murray (1989).

Following the convention that the u is positive towards the Galactic Center ($l=0, b=0$), we find $(u, v, w)=(94, -573, 125)$±(10, 31, 53) km s$^{-1}$ after correcting for a solar velocity with respect to the LSR of (10.00, 5.25, 7.17) km s$^{-1}$ (Dehnen & Binney 1998). The LSR moves at $\Theta_{\text{LSR}}=220$ km s$^{-1}$ (Θ and v point in the direction of Galactic rotation, $l=90, b=0$; Kerr & Lynden-Bell 1986) in the rest frame of the Galaxy so 2MASS J0616−6407 has a highly retrograde orbit with $\Theta=−353$ km s$^{-1}$. The stars in the inner halo of the Galaxy have slightly prograde orbits with $\Theta=0$ to 50 km s$^{-1}$ while the stars in the outer halo have retrograde orbits with $\Theta=−40$ to $−70$ km s$^{-1}$ (Carollo et al. 2007). The rotation of 2MASS J0616−6407 around the center of the Galaxy clearly indicates that 2MASS J0616−6407 is a member of the outer halo.

Based on its (u, v, w) velocities we also computed the Galactic orbit of 2MASS J0616−6407 following Burgasser et al. (2009). We examined two simplified versions of the Galactic potential model described in Dehnen & Binney (1998) composed of spherically-symmetric halo and bulge mass distributions and an axisymmetric, thin exponential disk. The two Galactic mass models were parameterized according to Binney & Tremaine (2008, Table 2.3), which fit the measured rotation curve of the Galaxy but bracket the allowable ratios of disk to halo mass at the Solar radius. The orbit of 2MASS J0616−6407 was integrated using a second-order leapfrog method (kick-drift-kick) with a constant timestep of 1 kyr over ±1 Gyr centered on the present epoch. Energy was conserved to better than 1 part in 10^{-4} over the full length of the simulation, with the error dominated by the resolution of the grid on which the disk force and potential were interpolated. The Z component of angular momentum was conserved to 1 part in 10^{-13}.

Figure 6 shows the orbit of 2MASS J0616−6407 based on the halo-dominant mass model, plotted in the rest frame of the Galaxy. The X coordinate is defined to be positive towards the Galactic Center to align with our definition of u, and the Sun is located at $(−8.5, 0, 0.027)$ kpc (Kerr & Lynden-Bell 1986; Chen et al. 2001). Prograde motion in this reference frame is counterclockwise, so the orbit of 2MASS J0616−6407 is clearly retrograde.

\[^4\] We follow the convention that lower case letters refer to velocities with respect to the LSR while upper case letters refer to velocities with respect to the Sun (Mihalas & Binney 1981).
as well as wide and eccentric, with R extending from 8 to 36 kpc \((e \sim 0.7\) from max/min R) over the simulation period. The orbit of 2MASS J0616−6407 also exhibits a fairly broad range of inclinations, with Z spanning ±10 kpc \((\text{max } |i| \sim 15\degree)\). For the disk-dominant mass model, the orbit is even wider \((\text{extending out to 40 kpc})\) but with similar eccentricity and inclination range. The breadth of this orbit and its retrograde motion support the conclusion that 2MASS J0616−6407 is a member of the outer halo, as this population dominates at \(R > 14-20\) kpc \((\text{Carollo et al.} 2007)\). We note that our conclusions remain unchanged if 2MASS J0616−6407 is an equal magnitude binary.

4. DISCUSSION

The Galactic orbit of 2MASS J0616−6407 is distinctly different from that of other late-type subdwarfs \((\text{e.g., LSR J0822+1700, 2MASS J0532+8246, LSR J1425+7102, SDSS J1256−0224})\) which all have perigalacticons of \(\lesssim 1\) kpc and apogalacticons near the Sun \((\text{Lépine et al.} 2004, \text{Burgasser et al.} 2008, \text{Dahn et al.} 2008, \text{Burgasser et al.} 2009)\). As noted by \text{Burgasser et al.} \((2009)\), these other subdwarfs have kinematic properties which are consistent with membership in the inner halo of the Galaxy. 2MASS J0616−6407 is therefore the first late-type subdwarf that is a member of the outer halo and therefore may represent a new class of L subdwarfs. In particular, the inner halo is comprised of stars with a peak metallicity of \([\text{Fe/H}] \sim −1.6\) while the outer halo has a peak near \(-2.2\) \((\text{Carollo et al.} 2007)\). This suggests that 2MASS J0616−6407 may be even more metal-poor than the other late-type subdwarfs known. However, the techniques needed to derive accurate metallicities of late-type subdwarfs are in their infancy \((\text{e.g., Burgasser et al.} 2007, 2009)\) and consequently an accurate measurement of the metallicity of 2MASS J0616−6407 must await future work. Finally we
note that the discovery of additional outer halo ultracool subdwarfs will be difficult given their intrinsic faintness and the large amount of time that they spend away from the solar neighborhood.

We thank Bill Vacca for fruitful discussions about the reduction of optical spectra and John Bochanski and Andrew West for clarifications on the Galactic orbit geometry. This publication makes use of data from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center, and funded by the National Aeronautics and Space Administration and the National Science Foundation, the SIMBAD database, operated at CDS, Strasbourg, France, NASA’s Astrophysics Data System Bibliographic Services, the M, L, and T dwarf compendium housed at DwarfArchives.org and maintained by Chris Gelino, Davy Kirkpatrick, and Adam Burgasser, and the NASA/ IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. OSIRIS is a collaborative project between the Ohio State University and Cerro Tololo Inter-American Observatory (CTIO) and was developed through NSF grants AST 90-16112 and AST 92-18449. CTIO is part of the National Optical Astronomy Observatory (NOAO), based in La Serena, Chile. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

Facilities: Gemini (GMOS), SOAR (OSIRIS), LDSS-3 (Magellan), CPAPIR (CTIO).
REFERENCES

Artigau, E., Doyon, R., Vallee, P., Riopel, M., & Nadeau, D. 2004, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 5492, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. A. F. M. Moorwood & M. Iye, 1479–1486

Bessell, M. S. 1982, Proceedings of the Astronomical Society of Australia, 4, 417

Binney, J., & Tremaine, S. 2008, Galactic Dynamics: Second Edition (Galactic Dynamics: Second Edition, by James Binney and Scott Tremaine. ISBN 978-0-691-13026-2 (HB). Published by Princeton University Press, Princeton, NJ USA, 2008.)

Borysow, A., Jørgensen, U. G., & Zheng, C. 1997, A&A, 324, 185

Burgasser, A. J. 2004, ApJ, 614, L73

Burgasser, A. J., Cruz, K. L., & Kirkpatrick, J. D. 2007, ApJ, 657, 494

Burgasser, A. J., & Kirkpatrick, J. D. 2006, ApJ, 645, 1485

Burgasser, A. J., et al. 2002, ApJ, 564, 421

—. 2003, ApJ, 592, 1186

Burgasser, A. J., Kirkpatrick, J. D., & Lépine, S. 2005, in ESA Special Publication, Vol. 560, 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, ed. F. Favata, G. A. J. Hussain, & B. Battrick, 237

Burgasser, A. J., Vrba, F. J., Lépine, S., Munn, J. A., Lugtenbuhl, C. B., Henden, A. A., Guetter, H. H., & Canzian, B. C. 2008, ApJ, 672, 1159

Burgasser, A. J., Witte, S., Helling, C., & Hauschildt, P. H. 2009, ApJ, submitted

Burrows, A., Sudarsky, D., & Hubeny, I. 2006, ApJ, 640, 1063

Carollo, D., et al. 2007, Nature, 450, 1020

Chen, B., et al. 2001, ApJ, 553, 184

Cushing, M. C., & Vacca, W. D. 2003, PASP, 115, 389

Cushing, M. C., & Vacca, W. D., & Rayner, J. T. 2004, PASP, 116, 302

Dahn, C. C., et al. 2008a, ApJ, 686, 548

—. 2008b, ArXiv e-prints, 806

—. 2002, AJ, 124, 1170

Dehnen, W., & Binney, J. J. 1998, MNRAS, 298, 387

Ephrussi, N., et al. 1997, The Messenger, 87, 27

Faherty, J. K., Burgasser, A. J., Cruz, K. L., Shara, M. M., Walter, F. M., & Gelino, C. R. 2008, ArXiv e-prints, 809

Geballe, T. R., et al. 2002, ApJ, 564, 466

Gíclas, H. L., Burnham, R., & Thomas, N. G. 1971, Lowell proper motion survey Northern Hemisphere. The G numbered stars. 8991 stars fainter than magnitude 8 with motions > 0.·26/year (Flagstaff, Arizona: Lowell Observatory, 1971)

Gíclas, H. L., Burnham, Jr., R., & Thomas, N. G. 1978, Lowell Observatory Bulletin, 8, 89

Gizis, J. E. 1997, AJ, 113, 806

Hamuy, M., Suntzeff, N. B., Heathcote, S. R., Walker, A. R., Gigoux, P., & Phillips, M. M. 1994, PASP, 106, 566

Hook, I. M., Jørgensen, I., Allington-Smith, J. R., Davies, R. L., Metcalfe, N., Murowinski, R. G., & Crampton, D. 2004, PASP, 116, 425

Johnson, D. R. H., & Soderblom, D. R. 1987, AJ, 93, 864

Kerr, F. J., & Lynden-Bell, D. 1986, MNRAS, 221, 1023

Kirkpatrick, J. D. 2005, ARA&A, 43, 195

Kirkpatrick, J. D., et al. 1999, ApJ, 519, 802

Leggett, S. K., Allard, F., Hauschildt, P. H., Kerr, T. H., & Rayner, J. 2000, ApJ, 535, 965

Leggett, S. K., Allard, F., Geballe, T. R., Hauschildt, P. H., & Schweitzer, A. 2001, ApJ, 548, 908

Lépine, S., Rich, R. M., & Shara, M. M. 2003, ApJ, 591, L49

Lépine, S., & Scholz, R.-D. 2008, ArXiv e-prints, 804

Lépine, S., & Shara, M. M. 2005, AJ, 129, 1483

Lépine, S., Shara, M. M., & Rich, R. M. 2004, ApJ, 602, L125

Linsky, J. L. 1969, ApJ, 156, 989

Looper, D. L., Kirkpatrick, J. D., & Burgasser, A. J. 2007, AJ, 134, 1102

Luyten, W. J. 1979, LHS catalogue. A catalogue of stars with proper motions exceeding 0.′5 annually (Minneapolis: University of Minnesota, 1979, 2nd ed.)

Mihalas, D., & Binney, J. 1981, Galactic astronomy: Structure and kinematics /2nd edition/ (San Francisco, CA, W. H. Freeman and Co., 1981. 608 p.)

Monet, D. G., Dahn, C. C., Vrba, F. J., Harris, H. C., Pier, J. R., Lugtenbuhl, C. B., & Ables, H. D. 1992, AJ, 103, 638

Murray, C. A. 1989, A&A, 218, 325

Pokorny, R. S., Jones, H. R. A., Hambly, N. C., & Pinfield, D. J. 2004, A&A, 421, 763

Ralchenko, Y., Kramida, A. E., Reader, J., & NIST ASD Team. 2008, September 19, NIST Atomic Spectra Database (version 3.1.5), Tech. rep., National Institute of Standards and Technology, Gaithersburg, MD., http://physics.nist.gov/asd3

Reid, I. N., Burgasser, A. J., Cruz, K. L., Kirkpatrick, J. D., & Gizis, J. E. 2001, AJ, 121, 1710

Reiners, A., & Basri, G. 2006, AJ, 131, 1806

Saumon, D., Bergeron, P., Lunine, J. I., Hubbard, W. B., & Burrows, A. 1994, ApJ, 424, 333

Schilbach, E., Roeser, S., & Scholz, R. . 2008, ArXiv e-prints

Sivarani, T., Lépine, S., Kembhavi, A. K., & Guchup, J. 2009, ApJ, accepted (astroph 0901.3382)

Reid, I. N., Burgasser, A. J., Cruz, K. L., Kirkpatrick, J. D., & Gizis, J. E. 2001, AJ, 121, 1710

Reiners, A., & Basri, G. 2006, AJ, 131, 1806

Saumon, D., Bergeron, P., Lunine, J. I., Hubbard, W. B., & Burrows, A. 1994, ApJ, 424, 333

Schilbach, E., Roeser, S., & Scholz, R. . 2008, ArXiv e-prints

Sivarani, T., Lépine, S., Kembhavi, A. K., & Guchup, J. 2009, ApJ, accepted (astroph 0901.3382)

Skrutskie, M. F., et al. 2006, AJ, 131, 1163

Tody, D. 1986, in Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Vol. 627, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. D. L. Crawford, 733

Vacca, W. D., Cushing, M. C., & Rayner, J. T. 2003, PASP, 115, 389

Vrba, F. J., et al. 2004, AJ, 127, 2948

York, D. G., et al. 2000, AJ, 120, 1579