Sir protein–independent repair of dicentric chromosomes in Saccharomyces cerevisiae

David F. McCleary, David Lee Steakley, and Jasper Rine*
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720

ABSTRACT Sir2 protein has been reported to be recruited to dicentric chromosomes under tension, and such chromosomes are reported to be especially vulnerable to breakage in sir2Δ mutants. We found that the loss of viability in such mutants was an indirect effect of the repression of nonhomologous end joining in Sir1Δ mutants and that the apparent recruitment of Sir2 protein to chromosomes under tension was likely due to methodological weakness in early chromatin immunoprecipitation studies.

INTRODUCTION Sir proteins are necessary for the establishment and maintenance of heterochromatic gene silencing in the budding yeast Saccharomyces cerevisiae (reviewed in Rusche et al., 2003; Kueng et al., 2013). Sir2 is an NAD+–dependent protein deacetylase that primarily removes acetyl modifications from N-terminal tails of histones H3 and H4 (Imai et al., 2000; Landry et al., 2000a,b; Smith et al., 2000). These deacetylated histone tails serve as high-affinity binding surfaces for Sir3 and Sir4 at telomeres and the silent mating loci (Hecht et al., 1995). Sir-mediated heterochromatin formation represses transcription and recombination through the occlusion of factors necessary for these processes (Singh and Klar, 1992; Gottschling, 1992; Loo and Rine, 1994; Steakley and Rine, 2015). In many organisms, heterochromatin forms near and at the centromere, where it contributes to the fidelity of chromosome segregation (reviewed in Allshire and Karpen, 2008; Allshire and Ekwall, 2015). The Sir2, Sir3, and Sir4 genes encode proteins that assemble into a complex (Moazed et al., 1997) that is essential for the proper regulation of cell type. Haploid yeast express a single mating-type locus allele, designated either MATα or MATα. Yeast also have additional copies of MATα and MATα genes at the HMRα and HMLα loci, respectively, which are transcriptionally silenced by the Sir proteins (Rine et al., 1979; Rine and Herskowitz, 1987; Klar et al., 1981).

Yeast strains with the HO allele can switch their mating type by undergoing a double-stranded DNA break at the MAT locus followed by gene conversion, with MAT being the recipient of genetic information from one of these silenced donor loci. MATα and MATα haploid cells can mate, producing an a/α diploid. Two proteins encoded by the MAT alleles, a1 and a2, form a heterodimer that represses haploid-specific genes, including some of those responsible for nonhomologous end joining, which is relevant to this study (Aström et al., 1999; reviewed in Haber, 2012).

Unlike in Schizosaccharomyces pombe and most other eukaryotes, Saccharomyces centromeres have stood out as an exception due to their lack of heterochromatin. However, there is a report of a role for S. cerevisiae Sir2 in maintaining chromatin compaction when a chromosome is under artificial tension (Thrower and Bloom, 2001). This study used a strain with a second centromere whose function was made conditional by being under the control of the GAL1 promoter (hereafter GALCEN3 after Thrower and Bloom (2001)) 45 kb to the left of the endogenous centromere on chromosome III (Figure 1A). In cells grown in medium containing glucose, the promoter is inactive, and the conditional centromere is functional. In cells grown in medium containing galactose, the promoter is active, significantly inhibiting the function of this second centromere. The strain also contains a 10.1-kb lacO array between the centromeres and a LacI-GFP fusion gene to allow visualization of chromosome stretching during anaphase (Thrower and Bloom, 2001).

If microtubules emanating from opposite spindle poles attach to two functional centromeres on a single chromosome during mitosis, the chromosome will usually break (Brock and Bloom, 1994). Dramatic stretching of the chromosome is observed by microscopy in sir2Δ and ku70Δ/80Δ mutants before a break occurs. The extent of stretching was reported as consistent with near-complete loss of higher-order chromosome structure. In addition to stretching, sir2Δ and ku70Δ/80Δ mutants also suffered a significant drop in viability.
Sir 2/3/4 complex preservation of dicentric viability is an indirect effect of mating type

There were reports of Sir proteins having a role in DNA repair (e.g., Tsukamoto et al., 1997), but these were proven to be indirect effects of mating type, since sir mutants have the properties of a/α diploids in which nonhomologous end joining is repressed (Aström et al., 1999; Lee et al., 1999). To test whether the vulnerability of dicentric chromosomes in sir mutants was also an indirect effect of mating type, we deleted HML in the MATa sir3Δ dicentric strain. This strain, despite being Sir−, expressed only a-specific cell-type genes. This deletion restored viability to wild-type levels (Figures 2 and 3). Sir2/3/4 repression of transcription at HML was therefore sufficient to prevent loss of viability in MATa cells with a dicentric chromosome.

Sir2 does not occupy chromatin between centromeres of a dicentric chromosome

We reevaluated the previously reported Sir2 enrichment at the lacO array during growth in glucose medium, when the dicentric chromosome would have the potential to create tension on the operator array, taking advantage of the enhanced sensitivity of quantitative PCR (qPCR) over the endpoint-PCR analyses used previously (Thrower and Bloom, 2001). We fused a C-terminal 13x-myc tag to Sir2 in the dicentric strain and used an anti-myc monoclonal antibody (Evan et al., 1985), which we have used in multiple different studies to detect Sir2 with specificity and sensitivity, and in the context of the Sir2/3/4 complex, which our results indicated was relevant to these observations (Thurtle and Rine, 2014; Ellahi et al., 2015). In addition to the lacO array, we measured enrichment of Sir2 at multiple other genomic positions that would experience tension in the dicentric state (Figure 4A). As a positive control, we observed 13x-myc-Sir2 enrichment at HMLα1, which was lost when cells were grown in 5 mM nicotinamide (NAM), an inhibitor of Sir2 (Figure 4B). Although Sir2 enrichment would not be expected for any experimental primer sets when cells were grown in galactose medium, enrichment would be expected in cells grown in glucose medium if Sir2 were recruited to chromatin under tension. Contrary to the results of the previous study, 13x-myc-Sir2 was not enriched at any of the regions tested in either galactose or glucose medium, with or without NAM (Figure 4, C–F). We observed inner kinetochore protein Mif2 enrichment at both centromeres but not at HML, demonstrating that our inability to detect 13x-myc-Sir2 at centromeres did not stem from a general inability to detect bound proteins in these regions by ChIP. The binding of Mif2 was unaffected by NAM treatment but increased upon activation of the conditional centromere GALCEN3 by switching from galactose to dextrose medium.
Strain with a dicentric chromosome was lost in cells lacking Sir protein function. However, rather than reflecting a role of Sir2 in controlling the probability that a chromosome would break under tension, our work established that preservation of viability by Sir protein function was mediated indirectly through the role of the Sir 2/3/4 complex in maintaining cell-type identity via repression of the mating-type genes at HML and HMR. This drop in viability was likely a result of repression of the nonhomologous end-joining repair pathway by the a1/α2 repressor in Sir− mutants. Restoration of haploid

DISCUSSION

Double-strand DNA breaks can be repaired by either homologous recombination with a sister chromatid or nonhomologous end joining. Typically, homologous recombination is the preferred mechanism except for breaks that occur in haploids in G1, where there is no sister chromatid or homologous chromosome to guide repair (Aström et al., 1999; Lee et al., 1999). The repair of a dicentric chromosome broken by the forces of chromosome segregation is imperfectly amenable to homologous repair because the force that breaks a chromosome also moves the sister chromatid away from one of the two broken fragments. In addition, at some frequency, both of the sister dicentric chromatids would be broken in the same cell cycle. Hence, nonhomologous end joining would be expected to play a significant role in the repair of double-stranded DNA breaks created by missegregation of dicentric chromosomes.

The a/α diploid yeast and haploid Sir− mutants that express both HMLα and HMRα repress nonhomologous end joining at least 20-fold (Aström et al., 1999; Lee et al., 1999), favoring repair via homologous recombination (Shrivastav et al., 2008). As shown here and reported earlier (Thrower and Bloom, 2001), the viability of a

FIGURE 2: Quantitative viability decreases in Sir− mutants rescued by deletion of HMLα. Data represent CFUs in glucose medium, in which the second centromere is functional, normalized to CFUs in galactose medium, in which the second centromere is mostly nonfunctional. (A) All colonies, regardless of size, were counted. (B) Only large colonies were counted.

(Supplemental Figure S1). The dependence of Mif2 binding at GALCEN3 on growth in dextrose was consistent with data showing that Mif2 is mostly evicted from a conditional centromere that has been inactivated by galactose-induced transcription (Collins et al., 2005).

FIGURE 3: Loss of viability and colony phenotypes in Sir− mutants rescued by deletion of HMLα. Left, strains grown on galactose medium, in which the second centromere should be mostly inactive. Right, strains grown on glucose medium, in which the second centromere should be active. sir3Δ strain (middle) is less viable than wild type (top), and colony size and shape change when grown on glucose medium, consistent with increased DNA damage. Deletion of HMLα in a sir3Δ background (bottom) restores these phenotypes to wild type. Close-up views of representative colonies are shown below.
Tension, as well as at the over, we failed to detect Sir2 enrichment at additional regions under between the potentially tensioned pair of centromeres in anaphase-

method than used previously yet failed to reveal enrichment of Sir2 the intervening years. Our ChIP experiments used a more sensitive detected at regions of chromatin that were under tension and the ear cate that aberrant repression of nonhomologous end joining in Sir

phenotypes, the rescue of sir3 viability loss by deletion of HMLα, and the previously known repression of nonhomologous end joining by the a1/a2 heterodimer (Frank-Vaillant and Marcand, 2001) indicate that aberrant repression of nonhomologous end joining in Sir mutants was responsible for loss of viability.

The discrepancy between our finding that Sir2 could not be detected at regions of chromatin that were under tension and the earlier work is most likely due to methodological improvements over the intervening years. Our ChIP experiments used a more sensitive method than used previously yet failed to reveal enrichment of Sir2 between the potentially tensioned pair of centromeres in anaphase-enriched cultures under any experimental condition tested. Moreover, we failed to detect Sir2 enrichment at additional regions under tension, as well as at the lacO array, yet did detect robust Sir2 enrichment at HMLα, as expected. We suggest that the repetitive nature of the lacO array was responsible for the artifactual signal of Sir2 enrichment. The earlier work used primers that flanked a lacO sequence that is repeated 32 times in the 10.1-kb lacO array. In addition, the primers used in the earlier study were insufficiently specific, possibly as a result of the repetitive nature of the array. When we performed qPCR using these primers, the dissociation curve revealed their suboptimum performance, with multiple products of various sizes being amplified. Although it is not clear how many PCR cycles were used in the previous study, the presence of 32 lacO octamer repeats means that it might have been the equivalent of five cycles (2^5) too many.

In summary, the enhanced loss of viability of dicentric chromosomes in Sir^−^ mutants can be attributed to an indirect effect on the repression of nonhomologous end joining, and we found no evidence of recruitment of Sir2 to DNA under tension between two centromeres. As a final yet important point, we have no reason to doubt any of the microscopy data from the earlier work.

MATERIALS AND METHODS

Yeast strains and media

Genotypes of strains used in this study are given in Supplemental Table S1. A conditionally dicentric strain KBY3615 was kindly provided by K. Bloom (University of North Carolina, Chapel Hill, Chapel Hill, NC),

Genotype	Description
sir2Δ::NATMX	JAN1A::SIR2::NATMX (JRY10189)
sir3Δ::NATMX	JAN1A::SIR3::NATMX (JRY10192)
ku70Δ::KANMX	JAN1A::SIR2::NATMX (JRY10195)
hmlΔ::KANMX	JAN1A::SIR2::NATMX (JRY10198)

Yeast strains and media

MATERIALS AND METHODS

Yeast strains and media

Genotypes of strains used in this study are given in Supplemental Table S1. A conditionally dicentric strain KBY3615 was kindly provided by K. Bloom (University of North Carolina, Chapel Hill, Chapel Hill, NC), sir2Δ::NATMX (JRY10189), sir3Δ::NATMX (JRY10192), sir4Δ::NATMX (JRY10195), ku70Δ::KANMX (JRY10198), and Sir2−\-3xMyc::KANMX (JRY10204) strains were constructed in KBY3615 using standard yeast methodology. sir3Δ::NATMX, hmlΔ::KANMX (JRY10201) was constructed in JRY10192 using standard yeast methodology. Cultures were maintained at 30°C in YP medium (2% peptone and 1% yeast extract) with 2% galactose (YPD), for which conditional centromeres were fully functional.

Quantitative viability of strains under dicentric conditions

Viability of dicentric strains was determined by plating equal numbers of galactose-grown cells (as measured by OD600 cell density) on both YPGal and YPD and counting colony-forming units (CFUs) after 4 d of growth. CFU count on YPD was normalized to CFU count on YPGal for each strain to measure relative viability under dicentric conditions.

ChIP and qPCR

Cells for ChIP experiments were grown and treated as previously described (Thrower and Bloom, 2001), taking care to collect cells enriched for anaphase after release from 20 μg/ml nocodazole. Anaphase enrichment was confirmed by microscopy, defined as >80% of cells with large buds and bilobed nuclei. The cells were fixed with 1% formaldehyde for 20 min and processed for ChIP analysis as previously described (Steakley and Rine, 2015) using EZView Red.
Anti-c-Myc Affinity Gel (E6654-1ML; Sigma-Aldrich, St. Louis, MO) for pull down of 13x-c-myc-Sir2. Cultures containing 5 mM NAM were included as a negative control for Sir2 function (Landry et al., 2000a,b). For pull down of kinetochore protein Mi2f2, chromatin was precleared with 45 µl of 50% (vol/vol) Protein A Sepharose CL-4B beads (17-0780-01; GM Healthcare, Uppsala, Sweden) for 1 h before being incubated overnight with polyclonal anti-Mi2f2 antibody (1:2000), generously provided by Arshad Desai (Ludwig Institute for Cancer Research, San Diego, CA; Akiyoshi et al. 2009). Chromatin was then incubated with 45 µl of 50% (vol/vol) Protein A Sepharose CL-4B beads for 3 h before being washed and treated as previously described (Steakley and Rine, 2015). qPCR of input and immunoprecipitated (IP) DNA was performed using Thermo Scientific DyNamo HS SYBR Green PCR Kits (F-410L; Thermo Scientific, Waltham, MA) and a Stratagene Mx3000P qPCR system (Agilent Technologies, Waldbronn, Germany). Primers that detect HMLα1 were used as a positive control for Sir2 binding. Primers that detect KCC4, GAL-CEN3, CEN3, and the LEU2/IacO junction were also used. Sequences of qPCR oligonucleotides are included in Supplemental Table S2. IP enrichment values were normalized to input enrichment values, as well as to relative enrichment using primers that detect ACT1, for which Sir2 has been shown not to bind [|IP(primers)/IN(primers)|]/|IP(control)/IN(control)].

ACKNOWLEDGMENTS

We thank Kerry Bloom for providing the conditionally dicentric strain and for helpful discussions during the preparation of the manuscript. We thank Arshad Desai for generously providing the anti-Mi2f2 antibody. We also thank members of our lab for useful discussions during the course of this work. This work was supported by National Institutes of Health Predoctoral Fellowship 5 F31 AG047795-03 to D.F.M., National Science Foundation Predoctoral Fellowship DGE 1106400 to D.L.S., and National Institutes of Health Grant GM31105 to J.R.

REFERENCES

Akiyoshi B, Nelson CR, Ranish JA, Biggins S (2009). Quantitative proteomic analysis of purified yeast kinetochores identifies a P1 regulatory subunit. Genes Dev 23, 2887–2899.

Allshire RC, Ekwall K (2015). Epigenetic regulation of chromatin states in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 20, 900–903.

Allshire RC, Karpen GH (2008). Epigenetic regulation of centromeric chromatin. Mol Biol Cell 19, 5649–5660.

Akiyoshi B, Nelson CR, Ranish JA, Biggins S (2005). De novo kinetochore assembly requires the centromeric histone H3 variant. Mol Biol Cell 16, 5649–5660.

Ellahi A, Thurtle DM, Rine J (2015). The chromatin and transcriptional landscape of native Saccharomyces cerevisiae telomeres and subtelomeric domains. Genetics 200, 505–521.

Evans GI, Lewis GK, Ramsay G, Bishop JM (1985). Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5, 3610–3616.

Frank-Vaillant M, Marcand S (2001). NHEJ regulation by mating type is exercised through a novel protein, Lii2p, essential to the ligase IV pathway. Genes Dev 15, 3005–3012.

Gottschling DE (1992). Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc Natl Acad Sci USA 89, 4062–4065.

Haber JE (2012). Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 191, 33–64.

Hecht A, Laroche T, Straht-Bolsinger S, Gasser SM, Grunstein M (1995). Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80, 583–592.

Imai S, Armstrong CM, Kaebellein M, Guarente L (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800.

Krar AJ, Stratham JN, Broach JR, Hicks JB (1981). Regulation of transcription in expressed and unexpressed mating type cassettes of yeast. Nature 289, 239–44.

Kueng S, Oppikofer M, Gasser SM (2013). Sir proteins and the assembly of silent chromatin in budding yeast. Annu Rev Genet 47, 275–306.

Landry J, Slama JT, Sternglanz R (2000a). Role of NAD(+)-in the deacetylase activity of the Sir2-like proteins. Biochem Biophys Res Commun 278, 685–690.

Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R (2000b). The silencing protein Sir2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 97, 5807–5811.

Lee SE, Pâques F, Sylvan J, Haber JE (1999). Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr Biol 9, 767–770.

Loo S, Rine J (1994). Silencers and domains of generalized repression. Science 264, 1768–1771.

Moazed D, Kistler A, Axelrod A, Rine J, Johnson AD (1997). Silent information regulator protein complexes in Saccharomyces cerevisiae: a Sir2/Sir4 complex and evidence for a regulatory domain in Sir4 that inhibits its interaction with Sir3. Proc Natl Acad Sci USA 94, 2186–2191.

Rine J, Herskowitz I (1987). Four genes responsible for a position effect on silent chromatin in budding yeast. Annu Rev Genet 21, 5649–5660.

Singh J, Klar AJ (1992). Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. Genes Dev 6, 186–196.

Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C, et al. (2000). A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 97, 6658–6663.

Steakley DL, Rine J (2015). On the mechanism of gene silencing in Saccharomyces cerevisiae. G3 (Bethesda) 5, 1751–1763.

Thrower DA, Bloom K (2001). Dicentric chromosome stretching during anaphase reveals roles of Sir2/Ku in chromatin compaction in budding yeast. Mol Biol Cell 12, 2800–2812.

Thurtle DM, Rine J (2014). The molecular topography of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72, 481–516.

Shrivastav M, De Haro LP, Nickoloff JA (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res 18, 134–147.

Shrivastav M, De Haro LP, Nickoloff JA (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res 18, 134–147.

Singh J, Klar AJ (1992). Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. Genes Dev 6, 186–196.

Smets SM, Vermeiren P, Martin E, Gadal F, Halfon J, Herskowitz I (1997). Telomere-proximal DNA in Saccharomyces cerevisiae. Nature 397, 6658–6663.

Steakley DL, Rine J (2015). On the mechanism of gene silencing in Saccharomyces cerevisiae. G3 (Bethesda) 5, 1751–1763.

Thrower DA, Bloom K (2001). Dicentric chromosome stretching during anaphase reveals roles of Sir2/Ku in chromatin compaction in budding yeast. Mol Biol Cell 12, 2800–2812.

Thurtle DM, Rine J (2014). The molecular topography of silenced chromatin in Saccharomyces cerevisiae. Genes Dev 28, 245–258.

Tsuikamoto Y, Kato J, Ikeda H (1997). Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388, 900–903.

Valencia M, Bentele M, Vaze MB, Herrmann G, Kraus E, Lee SE, Schär P, Haber JE (2001). NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature 414, 666–669.

Volume 27 September 15, 2016

Repair of dicentric chromosomes in yeast | 2883