Updates of cancer hallmarks in patients with inborn errors of immunity

Yating Wang*a and Hassan Abolhassani*a,b

Purpose of review
The development of cancer in patients with genetically determined inborn errors of immunity (IEI) is much higher than in the general population. The hallmarks of cancer are a conceptualization tool that can refine the complexities of cancer development and pathophysiology. Each genetic defect may impose a different pathological tumor predisposition, which needs to be identified and linked with known hallmarks of cancer.

Recent findings
Four new hallmarks of cancer have been suggested, recently, including unlocking phenotypic plasticity, senescent cells, nonmutational epigenetic reprogramming, and polymorphic microbiomes. Moreover, more than 50 new IEI genes have been discovered during the last 2 years from which 15 monogenic defects perturb tumor immune surveillance in patients.

Summary
This review provides a more comprehensive and updated overview of all 14 cancer hallmarks in IEI patients and covers aspects of cancer predisposition in novel genes in the ever-increasing field of IEI.

Keywords
epigenetic, hallmarks of cancer, inborn errors of immunity, microbiome, primary immunodeficiency, senescence

INTRODUCTION
Inborn errors of immunity (IEI, previously labeled as primary immunodeficiency) are a group of diseases constituted approximately 500 known monogenic defects. One-third of identified genes have a direct role in tumorigenesis and the development of different types of cancer hallmarks.

Hallmarks of cancer were proposed with the rationale of better understanding human cancer etiological multistep processes. These hallmarks have also been further developed based on the cornerstone mechanisms discovered in different human malignancies. Currently, the last update of these hallmarks of cancer contains 14 major entities. There were 10 hallmarks proposed until 2011, which are 8 hallmark capabilities: sustaining proliferative signaling, evading growth suppressors, activating invasion and metastasis, enabling replicative immortality, inducing angiogenesis, resisting cell death [1], and 2 enabling characteristics: reprogramming cellular metabolism and avoiding immune destruction. Lately, additional two emerging hallmarks ‘Unlocking phenotypic plasticity’ and ‘Senescent cells’ and two enabling characteristics ‘Nonmutational epigenetic reprogramming’ and ‘Polymorphic microbiomes’ have been proposed (Fig. 1) [2**].

Previously, we mapped functional capabilities among 450 IEI germline mutations in 10 cancer-hallmarks to the distinguishable steps of malignancy pathogenesis [3**]. In this review, the integrative concept of new dimensions of four oncologic hallmarks associated with IEI is presented. Moreover, 55 novel genes with enigmatic pathogenic roles in different immune cell subsets have been discovered recently and updated in the International Union of Immunological (IUIS) classification [4**]. Therefore, we introduce and link these new genes with all the

*aDivision of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden and bResearch Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
Correspondence to Hassan Abolhassani, MD, MPH, PhD, Division of Clinical Immunology, Department of Biosciences and Nutrition, NEO, Blickagangen 16, Karolinska Institute, Stockholm SE-14157, Sweden. Tel: +46 8 5248 1117; e-mail: hassan.abolhassani@ki.se

Curr Opin Allergy Clin Immunol 2022; 22:352–363
DOI:10.1097/ACI.0000000000000863
This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
KEY POINTS

- Among four new emerging cancer hallmarks patients with monogenic inborn errors of immunity are more predisposed to nonmutational epigenetic reprogramming and polymorphic microbiomes.
- Epigenetic alteration is the most diverse and complicated cancer hallmark, which can be because of varied mutations affecting DNA methylation, histone modification, telomerase regulation, and transcription factor accessibility.
- Novel genes in inborn errors of immunity (updated since January 2020) found in malignant patients expands four main cancer hallmarks; mainly in avoiding immune destruction and tumor-promoting inflammation are predisposing patients to lymphoproliferation and lymphoma.

UNLOCKING PHENOTYPIC PLASTICITY

One of the main emerging hallmarks of cancer is unlocking phenotypic plasticity. Cellular differentiation is considered as a clear blockade for neoplasia. The majority of neoplastic cells escape the terminal differentiation through three main mechanisms including blocked differentiation, de-differentiation or trans-differentiation.

Blocked differentiation

Of note, many known IEI genes have a significant role in both adaptive and innate immune cell differentiation. Well described genes have been reported to be associated with terminal lymphocyte differentiation, including regulators of phosphoinositide 3-kinases.

FIGURE 1. Updates on recently discovered monogenic defects and newly described cancer hallmarks in different types of monogenic inborn errors of immunity according to the International Union of Immunological Societies classification. IUIS – Table1: immunodeficiencies affecting cellular and humoral immunity; IUIS – Table 2: combined immunodeficiencies with associated or syndromic features; IUIS – Table 3: predominant antibody deficiencies; IUIS – Table 4: diseases of immune dysregulation; IUIS – Table 6: defects in intrinsic and innate immunity; IUIS – Table 7: autoinflamatory disorders; IUIS – Table 9: bone marrow failure. IUIS, International Union of Immunological Societies.
(PI3Ks) pathway (PIK3CD and PIK3R1 required for CD4+ T-cell differentiation through AKT and mTOR pathway [5] and B-cell differentiation via FOXO activation [6–8]), the regulator of nuclear factor kappa B (NF-kB) pathway (NFKB1 and NFKB2 are required for plasmablast cell differentiation through the NF-kB signaling pathway [9,10]), MCM4 and MCM10 (required for natural killer (NK) cell differentiation) [11–13]. Moreover, X-linked IPEX syndrome (FOXp3 deficiency) and CD25 deficiency (IL2RA) affect T-cell differentiation into regulatory T cells and then result in lymphoproliferation and, subsequently, lymphoma [14,15]. Therefore, monogenic mutations in the genes, which can block the differentiation but not proliferation might be a tumor-predisposing factor because cancer cells enable to escape cell terminal development and resume proliferative expansion [16].

De-differentiation and trans-differentiation

Microphthalmia-associated transcription factor (MITF) acts as a master of melanocyte differentiation [17], and it has been clearly shown that low MITF levels are related to malignancy [18]. Malignancies in patients with PTEN deficiency might also be associated with MITF degradation and destabilization through deregulating humoral immune response via increasing the PI3K/AKT activity [19–21]. Trans-differentiation (or metaplasia) can also be identified in many IEI monogenic defects as a predisposing stage to the development of neoplasia, mainly in nonhematologic cancers [22]. IEI patients with chronic tissue damage and the subsequent unregulated inflammatory response can often lead to the formation of fibrotic tissue that prevents effective regeneration mainly in the lung (e.g. interstitial lung disease in common variable immunodeficiency) and liver (Tricho-Hepato-Enteric syndrome in TTC37 and SKIV2L deficiencies). The proposed pathology for this phenomenon linked the oxidative stress and cytokines released from innate immune cells inducing transdifferentiation of fibrogenic myofibroblasts, thereby contributing to fibrosis in the perportal parenchyma [23]. Other changes in unlocking phenotypic plasticity and differentiation can also induce IEI patients to develop malignancy via modification of epigenetic alteration of hematopoietic stem cells, which are separated in a distinct cancer hallmark.

NONMUTATIONAL EPIGENETIC REPROGRAMMING

The aberration of epigenetic regulation (DNA methylation, chromatin remodeling and histone modifications) on tumorigenesis is crucial and now is well described with hallmark abilities [24,25]. Fine-tuning of epigenetic processes in the immune system is required for punctual gene transcription during differentiation of the hematopoietic stem cell (HSC) and lymphoid and myeloid lineage commitment. Genetic defects in some IEI genes potentially can affect the DNA methylation signatures and histone modification patterns and contribute to the pathogenesis of clinical manifestations, including malignancy phenotype [26]. Moreover, this mechanism has been proposed as the main cause of some unknown IEI disorders without monogenic mutation but with high susceptibility to cancers including common variable immunodeficiency or IgA deficiency [27–29]. For instance, alteration in DNA methyltransferase associated with some transcription factors (namely PAX5, E2F and EBF1) have been shown to lead to the blockade of the early stages of B-cell development (from pro-B to pre-B cells) in selected patients with common variable immunodeficiency [30,31]. Moreover, studies on the DNA methylome of these patients highlighted the gross demethylation during the late stage of B-cell development mainly in the memory B-cell stage [32]. Some other IEI genetic defects are because of well known mutations in epigenetic factors including DNA methyltransferase 3 beta (DNMT3B) and its associated molecules ZBTB24, CDC7 and HELLs [33]. These defects are classified as immunodeficiency with centromeric instability and facial anomalies (ICF) syndrome. Genomic instability of pericentromeric and telomeric regions, and more generalized whole-genome hypomethylation have been observed. Although they are extremely rare syndromes with few patients followed until adulthood, cancers and mainly lymphoma because of abnormal early maturation of lymphocytes have been reported in some ICF patients [34]. The other two main IEI genes, which are controlling lymphocyte development and lineage commitment are activation-induced cytidine deaminase (AID) and Tet methylcytosine dioxygenase 2 (TET2). AID is not only responsible for converting cytosines in DNA to uracil during class-switch recombination and somatic hypermutation, but is also implicated in the demethylation of 5-methylcytosines (5mC) to thymine, particularly during early embryogenesis [35]. Similarly, TET2 in HSCs can oxidize 5mC to 5-hydroxymethylcytosine (5hmC) essential for the development of B and T cells [36]. Defects in both genes also have been reported to predispose IEI patients to hematological neoplasia [37].

Another level of epigenetic control at the DNA level, which has been connected to IEI genetic defects occurs at telomeric sequences. It is well known that the double-stranded repeat structure of telomeres protects genome stability together with
heterochromatin domains of subtelomeric regions during rapid-cell replications as one of the main characteristics of highly proliferative immune cells. Recombination between telomeric sequences or activity of telomerase as reverse transcriptase protects telomeric repeats [37]. Some IEI monogenic defects can lead to telomere decreasing to a critically short length and result in epigenetic defects at subtelomeres mainly at histone and DNA modifications. These patients (with mutations in DKC1, TERC, TERT, NOP10, NHP2 and TINF2 genes) are known as dyskeratosis congenita or Hoyeraal Hreidarson syndrome with the main feature of bone marrow failure and hematopoietic malignancies. All these proteins participate in the ribonucleoprotein complex of telomerase including the catalytic subunit (TERT), its RNA component (TERC), and the four major associated dyskerin proteins [38].

More recently, proteins that control the process of histone modifications have been identified as the main cause of syndromic IEI known as Kabuki syndrome. The main two proteins associated with this syndrome are histone KMT2D methyltransferase (on H3K4 position) and histone demethylase KDM6A (on H3K27 position) whose expression regulates embryogenesis, particularly the development of lymphocytes [39,40]. On the other hand, the predominant gene deletion associated with IEI in DiGeorge syndrome (22q11.2 microdeletion) is TBX1 (T-box 1), which is also a methyltransferase (on H3K4 position similar to KMT2D), and can lead to multiorgan defects and immunodeficiency mainly because of absence of thymus and thymic development of T cells [41]. Both patients with Kabuki syndrome and DiGeorge syndrome were reported to suffer from malignancies mainly lymphoma [3**].

Moreover, several transcription factors (TFs) that control the histone expression profile after specific immune activation or synapses perform epigenetic regulation on the promoters of targeted genes via their motif. Mutation in these transcription factors can be detected in certain types of IEIs [4**]. These monogenic defects will influence the epigenetic process, such as chromatin accessibility [42–44] and posttranscriptional modification [45,46]. One of the main TFs is IKAROS, encoded by the _IKZF1_ gene, which is considered a critical factor for early B-cell development through the energy–stress sensor AMPK pathway [47]. Mutations of _IKZF1_ are associated with defective development of T cells, B cells and NK cells [48,49]. _IKZF1_ monogenic mutations are considered the main predisposing reason for B-cell acute lymphoblastic leukemia (B-ALL) transformation in these patients [50] and are classified as ‘sustaining proliferative signaling’ hallmarks [3**]. As one of the proteins in the IKZF family, AIOLOS, which is encoded by _IKZF3_, the AIOLOS-G159R variant can cause defective IKAROS binding site activity by forming IKAROS-AIOLOS-G159R heterodimers, which are considered to cause heterodimeric transcription interference [51]. With higher susceptibility to Epstein–Barr virus (EBV) infection, patients with AIOLOS-G159R autosomal dominant variant developed B-cell lymphoma.

SENEGENT CELLS

Cellular senescence leads to ‘senescence-associated secretory phenotype (SASP)’, including over-production of chemokines, cytokines, chronic inflammation and processes alteration of nonsenescent neighboring cells, which has been verified to promote tumor development and malignant progression [52–55]. SASP is typically associated with the DNA damage response (DDR). Persistent DDR can promote SASP by increasing cytosolic chromatin fragments (CCFs) [56]. Thus, monogenic diseases of DNA repair may affect the induction of senescence markers [57]. For example, _ATM_ mutation is associated with mitochondrial dysfunction-induced SASP by triggering the STING-dependent pathway [58]. NBS1 mutation modulates SASP in stress-induced signaling activation of the P38/MK2 pathway [59]. Similarly, HSCs from IEI patients with telomeric dysfunction as mentioned above with dyskeratosis congenita or Hoyeraal Hreidarson syndromes can show high DNA damage levels and become senescent [60].

Apart from the DNA repair syndrome, SASP is a very common phenomenon in the disease of immune dysregulation due to uncontrolled chronic inflammatory reactions. These continued activations and inflammation lead to reduced expression of co-stimulatory CD28 or CD27 molecule on CD45RA+ CD4+ T cells and present a reduced antigen-dependent proliferation but increased inflammatory cytokine production. On the other hand, CD8+ T cells switch from the typical T-cell receptor (TCR)-mediated activity to an NK-like activity by expressing protein complexes typical of NK cells [61,62]. A typical known mutation associated with premature immunosenescence and accelerated inflammation is Tripeptidyl peptidase II (TPP2) deficiency. The homeostatic function of TPP2 is downstream of proteasomes in cytosolic proteolysis and contributes to antiapoptotic phenotype, particularly in CD8+ T cells. Although the majority of TPP2 cases are pediatric patients, lymphoproliferative diseases are one of the main manifestations of the disease [63,64].

POLYMORPHIC MICROBIOMES

Microbiomes, including commensal bacteria and fungi, are recently expansively identified for their
diverse impacts on the mucosal area of the gastrointestinal tract and respiratory system, and are considered to have an association with cancer phenotypes [2]. Over 50% of IEI patients present with gastrointestinal diseases, among which, CVID is associated with higher susceptibility to diverse complications, including chronic diarrhea, nodular lymphoid hyperplasia, liver and biliary tract diseases [65] and 10-fold increase in risk of gastrointestinal cancer compared with immune-competent individuals [66]. NFKB1 expression is necessary for epithelial cells to regulate the bacterial barrier [67]. Virulence factors produced by Helicobacter pylori have been proposed as one of the driving reasons leading to gastric cancer through aberrant Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling and inflammatory mediators by loss of NF-κB1[68]. Therefore, monogenic diseases will influence the susceptibility to develop malignancy, such as NFKB1 and NFKB2 deficiencies [66,69–71]. Microbiomes maintain homeostasis and avoid microbial translocation in the gastrointestinal system through the production of antimicrobial peptides (AMP) by a downstream MyD88-dependent pathway [72,73]. Of note, IEI genetic defects related to the MyD88 pathway (such as TLR3, TLR7, TLR8, IRAK4 and IKBA) may increase microbial translocation by dysregulating the immune system [74,75]. Microbiome-related metabolites influence the innate immunity of homeostatic interaction in the gastrointestinal system [76–79]. IEI monogenetic diseases have effects on the cellular pathways among innate cells in the gastrointestinal system, including monocytes, macrophages, innate lymphoid cells, γδT cells, and mucosal-associated invariant T (MAIT) cells and NK cells. Interferon-gamma (IFN-γ) is critical for gastrointestinal innate immunity against intracellular bacterial infections and drives immunostimulatory impact. In the microbiome of mucosal area, macrophages are stimulated and produce IL-1 and IL-23. γδT cells are activated by the IL-2 and IL-23, then produce IL-17 for further adaptive immunity [80]. MAIT cells particularly respond to a wide range of microorganisms and produce IL-17 and IFN-γ to perform immune stimulation [81]. Of note, IFN-γ receptor 1 (IFNγR1) deficiency and IFN-γ receptor 2 (IFNγR2) deficiency are linked to EBV-associated lymphoma and intestinal pseudotuberculosis by impairing the downstream immune cells binding and stimulating by IFN-γ [65].

Adaptive immunity against the mucosal microbiome can be affected by the mutations associated with Th17 cells, FOXP3 regulatory T cells, B cells, CD4+ T cells, CD8+ T cells, and follicular helper T (Tfh) cells. Therefore, the monogenic diseases that affect V(D)J recombination and class-switch recombination and reduce the diversity of the secretory IgA repertoire (eg. RAG1, RAG2, ATM, BLM and MSH6 deficiencies) and thus predispose towards microbiota dysbiosis and gastrointestinal tumorigenesis [65,79,82] Moreover, the function of controlling intestinal inflammation by IL-10 (IL10, IL10RA and IL10RB deficiencies) is of importance for promoting gut homeostasis [83–85]. Moreover, hypomorphic defects of cellular immunity by dysfunction of T cells can present long-term chronic diarrhea and gastrointestinal cancer development consequently due to dysbiosis.

NOVEL INBORN ERRORS OF IMMUNITY GENES ASSOCIATED WITH HALLMARKS OF CANCER

We reported that more than one-third of IEI monogenic defects have been linked with cancer hallmarks according to the IUIS classification of 2020 [3]. Among 55 novel IEI genes discovered during the last 2 years [4], although the number of patients is still very limited for each disease to guarantee the association or dissociation from malignancy, we have reported here 15 genes in which cancer is a component of the main clinical phenotype observed among these rare case reports and tried to classify them mechanistically based on the known cancer hallmarks (Table 1).

Avoiding immune destruction

Patients with DIAPH1 deficiency are predisposed to EBV infection, which may progress to the subsequent development of diffuse large B-cell lymphoma (DLBCL). Mutations in genes that coordinate CD8+ T-cell activation increase the susceptibility to herpes virus family infections. Also, DIAPH1 has been suggested as a necessary genetic factor of T-cell activation and formation, which probably modulates T-cell cytokoskeletal regulation [87,88]. TET2 coordinates B-cell transition activity to germinal centers via DNA methylation by oxidizing 5mC and epigenetic controls as mentioned in the above section [89]. However, loss of function of TET2 is associated with defective B-cell class-switch recombination and autoimmune lymphoproliferation, which is considered as the predisposition to B-lymphoma because of these abnormalities in the function of immune cells [90]. SYK (the spleen tyrosine kinase) plays a critical and complex role in several immune cellular processes. Classical immunoreceptors (BCRs, TCRs and FcRs) need SYK to regulate downstream through ITAMs-based (cytosolic immunoreceptor tyrosine-based activation motifs) signaling pathway, SYK is also involved in B-cell development, innate pathogen recognition and inflammasome activation [91]. SYK deficiency increases the risk of developing DLBCLs [92].
Table 1. Demographic and clinical presentation of patients with novel inborn errors of immunity monogenic defects and predisposition to lymphoproliferation and malignancies

IUIS	Gene	Protein	Pathway	Patient ID index of paper	Gender	Mutation	Malignancies	Predisposition to lymphoproliferation	Hallmarks	PMID	Year	
	IKZF1	IKAROS: zinc finger transcription factor	AMPK pathway	PALL 1-3	UN	R347C	B-ALL	Autoimmune disease, immune dysregulations, recurrent/severe bacterial infections	Sustaining proliferative signaling	PMID: 33392855	2021	
	SASH3	SLY, SH3-containing lymphocyte protein	TCR-signaling pathway	P1	M	R347C	LGL proliferation	Recurrent pulmonary infections, skin/salt tissue infections, warts	Avoiding immune destruction	PMID: 33876203	2021	
	IKZF2	HELIOS: zinc finger transcription factor	IFN-γ and IL-2-signaling pathways	P2	M	Y200X	HL	Chronic lymphadenopathy	Tumor-promoting inflammation	PMID: 34826260	2021	
	PC1	MCM10: minichromosomal maintenance complex member 10	DNA repair pathway	P1	M	R426C and R582X	HLH	Lymphadenopathy, CMV infection, NK Deficiency	Genome instability and mutation	PMID: 32865517	2020	
	DIAPH1	DIAPH1/mDIA1: evolutionarily conserved formin diaphanous homolog 1	Rho-mDia1 pathway	P1	M	c. 684+1G>A	DLBCL	Bacterial otitis media, candida, mycobacteria, VZV, HSV, EBV, Molluscus contagiosum	Avoiding immune destruction	PMID: 33662367	2021	
	P2	M	c. 684+1G>A	HL-like	P6	F	F9235X	Respiratory infections				
						F	G159R	EBV infection, recurrent sinopulmonary infections	Nonmutational epigenetic reprogramming, avoiding immune destruction, activating invasion and metastasis	PMID: 34155405	2021	
						F	G159R	B-cell lymphoma	EBV infection, recurrent sinopulmonary infections	Nonmutational epigenetic reprogramming, avoiding immune destruction, activating invasion and metastasis	PMID: 34155405	2021
						F	G159R	B-cell lymphoma	EBV infection, recurrent sinopulmonary infections	Nonmutational epigenetic reprogramming, avoiding immune destruction, activating invasion and metastasis	PMID: 34155405	2021
						F	G18R	Benign epithelial tumor	Recurrent sinopulmonary infections; Severe hypogammaglobulinemia	PMID: 34694366	2021	
						F	G18R	Severe HPV infection, CMV, EBV high, parainfluenza positive	Severe HPV infection, CMV, EBV high, heavy warts	Avoiding immune destruction	PMID: 34214472	2021
						F	G18R	Severe HPV infection; EBV high, heavy warts	Severe HPV infection, CMV, EBV high, heavy warts	Avoiding immune destruction	PMID: 34214472	2021
Table 1 (Continued)

IUIS	Gene	Protein	Pathway	Patient ID	Gender	Mutation	Malignancies	Predisposition to lymphoproliferation	Hallmarks	PMID	Year
	PIK3CG		PI3K-akt1-mTOR pathway	P1	F	R982fsX and R2021P	-	Antibody defects; lymphadenopathy/splenomegaly	Tumor-promoting inflammation	31955793	2019
				P1	F	R495 and N1085S	HU-like	Systemic inflammation	PMID: 33054089	2020	
CTNNB1	CTNNB1		AID-associated pathway	P1	F	M466V	-	Progressive hypogammaglobulinemia; autoimmune cytopenias; recurrent infections	Genomic instability and mutation	32484799	2020

Table 4

| RHOG | Rho G: Ras homolog gene G | Cytotoxic lymphocytes transduction pathway | P1 | M | E171K | HUH | Avoiding immune destruction | PMID: 33513601 | 2021 |

| SOCS1| SOCS1: suppressor of cytokine signaling 1 | Type I and type II IFN signaling pathway | P1 | M | A378fsX48 | - | Anemic and neutropenic; multisystem inflammatory syndrome; Evans syndrome; immune thrombocytopenia | Tumor-promoting inflammation | PMID: 32853638 | 2020 |

| TET2 | TET2: ten-eleven translocation methylcytosine dioxygenase 2 | Hematopoiesis cell differentiation and development | P4 | M | A999fsX76 | HL | Coeliac disease panniculitis | PMID: 32518946 | 2020 |

| TET2 | TET2: ten-eleven translocation methylcytosine dioxygenase 2 | Hematopoiesis cell differentiation and development | P2 | M | H1382X | Lymphoma | Recurrent respiratory tract infections; bronchectasis; herpes viral infection; lymphadenopathy; hepato-splenomegaly; auto immune cytopenias; auto antibodies | Non-mutational epigenetic reprogramming | PMID: 32518946 | 2020 |

| TET2 | TET2: ten-eleven translocation methylcytosine dioxygenase 2 | Hematopoiesis cell differentiation and development | P3 | F | Q1632X | Lymphoma | Recurrent respiratory tract infections; bronchectasis; herpes viral infection; lymphadenopathy; hepato-splenomegaly | - | PMID: 32518946 | 2020 |

Table 6

| NOS2 | NOS2: nitric oxide synthase 2 | dT3-dependent pathway | P1 | F | I391fsX26 | - | EBV infection; Fatal CMV infection | Activating invasion and metastasis | PMID: 33872655 | 2021 |

| ZNF1 | ZNF1: zinc finger nrf1-type domain containing protein 1 | dT3-dependent pathway | P1 | F | I391fsX26 | - | EBV infection; Fatal CMV infection | Activating invasion and metastasis | PMID: 33872655 | 2021 |
Table 1 (Continued)

Patient ID of paper	Gender	Mutation	Malignancies	Predisposition to lymphoproliferation	Hallmarks	PMID	Year
P1	M	P432L	-	Lymphadenopathy, infection: Clostridium septicum bacteremia	Tumor-promoting inflammation	33512449	2021
P2	M	P432L	-	Lymphadenopathy, infection: Pneumonia and otitis media	-	-	-
P3	M	F494L	-	Lymphadenopathy, infection: lymphadenitis	-	-	-
P4	M	P432L	-	Lymphadenopathy, infection: Nocardia	-	-	-
P5	M	P432L	-	Lymphadenopathy, idiopathic thrombocytopenia; lymphadenopathy; recurrent GI inflammation/infection	-	-	-
P6	M	G527D	-	Lymphadenopathy, infection: otitis media, fungal infections	-	-	-

TLR8, GOF

TLR8: toll-like receptor 8 TLR pathway

Patient ID of paper	Gender	Mutation	Malignancies	Predisposition to lymphoproliferation	Hallmarks	PMID	Year
P1	F	S550Y	-	Lymphadenopathy, hypogammaglobulinemia; recurrent infections; intestinal inflammation	Avoiding immune destruction	33782605	2021
P2	F	S550F	-	Hypogammaglobulinemia; recurrent infections; intestinal inflammation	-	-	-
P3	M	S550F	-	Hypogammaglobulinemia; recurrent infections; intestinal inflammation	-	-	-
P4	UN	P342T	-	Hypogammaglobulinemia; recurrent infections; intestinal inflammation	-	-	-
P5	UN	A450I	DLBCL	Hypogammaglobulinemia; recurrent infections; intestinal inflammation	-	-	-
P6	UN	A353T	DLBCL	Hypogammaglobulinemia; recurrent infections; intestinal inflammation	-	-	-

SYK, GOF

SYK: spleen tyrosine kinase ITAM-based signaling pathway

Patient ID of paper	Gender	Mutation	Malignancies	Predisposition to lymphoproliferation	Hallmarks	PMID	Year
P1	F	S550Y	-	Lymphadenopathy, hypogammaglobulinemia; recurrent infections; intestinal inflammation	Avoiding immune destruction	33782605	2021
P2	F	S550F	-	Hypogammaglobulinemia; recurrent infections; intestinal inflammation	-	-	-
P3	M	S550F	-	Hypogammaglobulinemia; recurrent infections; intestinal inflammation	-	-	-
P4	UN	P342T	-	Hypogammaglobulinemia; recurrent infections; intestinal inflammation	-	-	-
P5	UN	A450I	DLBCL	Hypogammaglobulinemia; recurrent infections; intestinal inflammation	-	-	-
P6	UN	A353T	DLBCL	Hypogammaglobulinemia; recurrent infections; intestinal inflammation	-	-	-

Table 7

AID, activation-induced cytidine deaminase; B-ALL, B-cell acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; CMV, cytomegalovirus; DLBCL, diffuse large B-cell lymphoma; EBV, Epstein–Barr virus; F, female; GI, gastrointestinal tract; GOF, gain-of-function; AMPK, AMP-activated protein kinase; HL, Hodgkin’s lymphoma; HLH, hemophagocytic lymphohistiocytosis; HPV, human papillomavirus; HSV, herpes simplex virus type 1; IFN-R, interferon-gamma; IL-2, interleukin 2; ITAM, immunoreceptor tyrosine-based activation motif; LGI, large granular lymphocytic; M, male; NK, natural killer cells; TCR, T-cell receptor; TLR, toll-like receptor; UN, unknown; VZV, varicella-zoster virus.
SLY, encoded by sterile alpha motif (SAM) and Src homology-3 (SH3) domain-containing 3 (SASH3), is a scaffolding protein with critical function in T-cell proliferation, TCR signaling activation and T-cell survival [93]. Patients with genetic defects in SASH3 present with immune dysfunction alongside tumor-predisposition clinical phenotypes, including large granular lymphocyte (LGL) proliferation and CD4+ T-cell lymphopenia. Another novel IEI with impairment in cytotoxic defects is because of the variants in AIOLOS, encoded by IKZF3. This protein is mainly expressed in B and T lymphocytes based on several animal models, especially in immature and recirculating B cells [94,95]. Patients with AIOLOS deficiency have abnormal T-cell subsets, combined immunodeficiency and high susceptibility to EBV infection, increasing the possibility of developing EBV-driven malignancy [51]. CD28 is an important co-stimulatory signal for CD4+ T-cell proliferation (via CD28/CD8 crosstalk) [96] and T-helper type-2 (Th2) development [97]. CD28 deficiency leads to the impairment of T-cell response and reduced ability to combat EBV, cytomegalovirus (CMV) and human papillomavirus (HPV). Multifocal, benign epithelial tumor at a late stage has been observed in patients with underlying CD28 deficiency [98]. Ras homology (RHO) GTPases can be triggered by antigen receptor activation in lymphocytes via ERM (ezrin–radixin–moesin) kinases, which are essential for normal hematopoietic cell development, including lymphocyte migration, morphological polarization and adhesion [99–101]. It has been shown that lack of nonredundant exocytosis function in cytotoxic T cells and NK cells in patients with RHOG deficiency, may result in the subsequent development of lymphoproliferation and hemophagocytic lymphohistiocytosis (HLH) [102].

Tumor-promoting inflammation

As a transcriptional repressor in lymphocytes, Helios, encoded by IKZF2, has a significant role in regulating effector T-cell activity, similar to the previous function described for IKZF1 [103,104]. Patients with IKZF2 deficiency present with chronic overactivation of proinflammatory cytokine production with this being the most likely driver of tumor predisposition [103] [mainly because of the up-regulation in both interferon-gamma (IFN-γ) and interleukin-2 (IL-2) downstream signaling pathways] [103]. In this group of patients, a variable clinical phenotype can be observed in different mutation sites [103,105], and lymphoma has been reported in patients with both underlying autosomal dominant and recessive forms of IKZF2 deficiency [103]. Suppressor Of Cytokine Signaling 1 (SOCS1) mutations lead to autoimmune diseases by increasing the JAK-STAT pathway activation with the production of IFN-γ, IL-2 and IL-4. A patient with heterozygous SOCS1 mutation has been reported with Hodgkin lymphoma [106]. Toll-like receptor 8 (TLR8), acts as an endosomal-sensing receptor mainly expressed in neutrophils and monocytes. Gain-of-function of TLR8 results in increases in the proinflammatory cytokines (IL-18, TNF-α and IFN-γ) through NF-kB pathway activation. Patients with TLR8 gain-of-function mutation developed T-LGL leukemia possibly through proinflammatory cytokines affecting the development of neutrophil differentiation and B-cell maturation [107]. PI3Kγ, encoded by PIK3CG, is mainly expressed in leukocytes. PI3Kγ deficiency results in immunoglobulin production impairment, inflammatory diseases and HLH-like diseases, considered related to dysfunction of the PI3K–AKT–mTOR pathway with abnormal cytokine and chemokine production and antigen receptor stimulation [108,109].

Genome instability and mutation

Monichromosome maintenance complex component 10 (MCM10) is involved in DNA replication and cell-cycle progression, which functionally stabilizes the replisome and maintains genome stability. Loss of function of MCM10 results in increasing chronic replication stress and decreasing cell viability [108,109], and overexpressed MCM10 has been described in a variety of cancer types [111]. Furthermore, MCM10’s additional role in NK-cell terminal differentiation, maturation, and function has been also verified [13]. The patients with MCM10 monogenic loss-of-function germline mutation result in decreased numbers of NK cells with NK-cell dysfunction, severe CMV infections and developed an HLH-like phenotype predisposing to malignancy development [13]. The recently discovered AID-interacting protein, CTNNBL1 plays an important interaction in assisting intracellular trafficking of AID and delivering AID to the appropriate Ig locus, enabling class-switch recombination and somatic hypermutation [112,113]. Biallelic defects of CTNNBL1 may result in increased off-target effects of AID, which may contribute to genome instability and increase the possibility of malignant transformation by the activation of oncogenes and chromosome translocations [114,115].

Activating invasion and metastasis

Monogenic IEI diseases underlying the susceptibility of various oncogenic viral infections have high
relevance to human malignancy. Among 55 novel IEI genes, patients underlying IKZF3 deficiency have a high susceptibility to EBV infections, which could lead to B-lymphocyte immortalization and further polyclonal proliferation through latent membrane protein 1 (LMP1) activation [51,116]. Similarly, NO52 (encoding NO synthase) deficiency has attenuated responses to herpes viruses including EBV, which can directly induce metastasis in cancer cells, and also result in a predisposition to severe CMV viral infection [117]. CD28 deficiency is associated with severe HPV infections, which can regulate the PS3 pathway through HPV E6 oncogene production and regulate cell mobility and invasion [118]. Genetic defects on ZNF71, which encode a double-stranded RNA (dsRNA) sensor, will increase the susceptibility to both RNA/DNA virus infections and directly trigger HLH-like diseases [118].

CONCLUSION
The concept of cancer hallmark assignments in patients with inborn errors of immunity is rapidly growing during recent years, and it is required that the causes of cancer predisposition in these monogenic diseases will be investigated using patient-oriented experimental studies and multiomics technologies to prove these hallmarks. Basic findings and confirmatory functional assays will pave the way for the acceleration of accurate prognosis estimation and targeted treatment.

Acknowledgements
None.

Financial support and sponsorship
This work was supported by the Anna-Greta Crafoords Grant, Jonas Söderquist scholarship, China scholarship council (CSC) scholarship and Ake Wibergs stiftelse.

Conflicts of interest
There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING
Papers of particular interest, published within the annual period of review, have been highlighted as:
• of special interest
•• of outstanding interest

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646–674.
2. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov 2022; •• 12:31–46. Latest updated new dimensions on the hallmarks of cancer for classifying the complexity of cancer phenotypes and genotypes into 14 hallmarks, conceptually. It is a powerful tool to comprehensively integrate the diversity, genetic, cellular biology and pathology of cancers into underlying principles and get an overall understanding.
3. Abolhassani H, Wang Y, Hammarstrom L, et al. Hallmarks of cancers: primary •• antibody deficiency versus other inborn errors of immunity. Front Immunol 2021; 12:720025. The comprehensive integrity conception of cancer hallmarks (published in 2011) and the IEI-associated cancer monogenic diseases (published in 2019) on various aspects, including pathology, clinical and immunological phenotypes, and oncogenic pathways. From a new point of view, providing new insight into the complexity of neoplastic diseases.
4. Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: •• 2022 update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2022; 1–35; DOI: 10.1007/s10875-022-01289-3 [Epub ahead of print] The Latest updated clinical and laboratory features of 485 monogenic gene defects, increase the susceptibility to infections, auto-immuno-inflammatory diseases and malignancy. IUUIS classification for inborn errors of immunity is a powerful tool for immunologists and geneticists comprehensively understand the cellular and molecular mechanisms related to human immune diseases.
5. Gigou M, Shang J, Pak Y, et al. Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc Natl Acad Sci U S A 2009; 106:20371–20376.
6. Janas ML, Hodgson D, Stamatialis Z, et al. The effect of deleting p110delta on the phenotype and function of PTEN-deficient B cells. J Immunol 2008; 180:739–746.
7. Suzuki A, Kaiso T, Oishi M, et al. Critical roles of Pten in B cell homeostasis and immunoglobulin class switch recombination. J Exp Med 2003; 197:657–667.
8. Omori SA, Cato MH, Anzelon-Mills A, et al. Regulation of class-switch recombination and plasma cell differentiation by phosphatidylinositol 3-kinase signaling. Immunity 2006; 25:545–557.
9. Rickert RC, Jelloula J, Miletic AV. Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol Rev 2011; 244:115–133.
10. Pan-Hammarstrom Q, Abolhassani H, Hammarstrom L. Defects in plasma cell differentiation are associated with primary immunodeficiency in human subjects. J Allergy Clin Immunol 2018; 141:1217–1219.
11. Gineus L, Cognet C, Kara N, et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest 2012; 122:821–832.
12. Hughes CR, Guasti L, Meirmaroudou E, et al. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J Clin Invest 2012; 122:814–820.
13. Mace EM, Paust S, Conte MI, et al. Human NK cell deficiency as a result of biallelic mutations in MCM10. J Clin Invest 2020; 130:5272–5286.
14. Jamee M, Zaki-Dizaji M, Lo B, et al. Clinical, immunological, and genetic features in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-like syndrome. J Allergy Immunol Pract 2020; 8:2747.e7–2760.e7.
15. Goudy K, Aydin D, Barzaghi F, et al. Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin Immunol 2013; 146:248–261.
16. Tijunen P, Lango Allen H, Burns SO, et al. Loss-of-function nuclear factor kappaB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. J Allergy Clin Immunol 2018; 142:1285–1296.
17. Levy C, Khalid M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogenesis. Trends Mol Med 2006; 12:406–414.
18. Goding CR, Amheiter H. MITF-the first 25 years. Genes Dev 2019; 33:983–1007.
19. Dressen GJ, Uspeurt H, Wentink M, et al. Increased PI3K/Akt activity and deregulated humoral immune response in human PTEN deficiency. J Allergy Immunol Pract 2020; 12:1020–1027.
20. Palmier M, Pel R, Nelvaig HR, et al. nTORC1-dependent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 2017; 8:14338.
21. Wang C, Zhao L, Su Q, et al. Phosphorylation of MITF by AKT affects its downstream targets and causes TPS3-dependent cell senescence. Int J Biochem Cell Biol 2016; 80:132–142.
22. Knapp D, Tanaka EM. Reprogramming and reprogramming. Curr Opin Genet Dev 2012; 22:485–493.
23. Eguizabal C, Montserrat N, Veiga A, et al. Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine. Semin Reprod Med 2013; 31:82–94.
24. Kanwral R, Gupta S. Epigenetic modifications in cancer. Clin Genet 2012; 81:303–311.
25. Lu Y, Chan YT, Tan HY, et al. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer Ther 2020; 19:79.
26. Romano R, Cillo F, Moracas C, et al. Epigenetic alterations in inborn errors of immunity. J Clin Immunol 2022; 11:1261.
27. Klaes F, Aziz G, Rafiemanesh H, et al. Malignancy in common variable immunodeficiency: a systematic review and meta-analysis. Expert Rev Clin Immunol 2019; 15:1105–1113.
28. Tak Maneesh A, Aziz G, Heydari A, et al. Epidemiology and pathophysiology of malignancy in common variable immunodeficiency? Allergol Immunopathol (Madr) 2017; 45:602–615.
Primary immune deficiency disease

29. Yazdani R, Azizi G, Abolhassani H, et al. Selective IgA deficiency: epidemiology, pathology, clinical phenotype, diagnosis, prognosis and management. Scand J Immunol 2017; 85:3–12.

30. Alammani M, Levinson BT, Gater ST, et al. Genome-wide DNA methylation analysis in precursor B-cells. Epigenetics 2014; 9:1588–1595.

31. Lee ST, Xiao Y, Muench MO, et al. A novel DNA methylation and gene expression analysis of early lymphoid cell development reveals a demethylation signature and transcription factor network. Nucleic Acids Res 2012; 40:11339–11351.

32. Rodríguez-Córtez VC, Del Pino-Molina L, Rodríguez-Urbena J, et al. Monzygotic twins discordant for common variable immuno deficiency reveal impaired DNA demethylation during naive-to-memory B-cell transition. Nat Commun 2015; 6:3735.

33. Jenness C, Giunta S, Muller MM, et al. HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome. Proc Natl Acad Sci U S A 2018; 115:E878–E885.

34. Kaeae F, Kaz mi-Dzai M, Hafezi N, et al. Clinical, immunologic and molecular spectrum of patients with immunodeficiencies, centromeric instability, and facial anomalies (ICF) syndrome: a systematic review. Endocr Metab Immune Disord Drug Targets 2021; 21:664–672.

35. Wijesinghe P, Bhagwat AS. Efficient diminution of 5-methylcytosine in DNA by human APOBECA3A, but not by AID or APOBECA3G. Nucleic Acids Res 2012; 40:9206–9217.

36. Kauainen E, Kuusiniemi O, Rajamaki et al. Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans. Nat Commun 2019; 10:1252.

37. Grill S, Nakajima K. Molecular mechanisms of telomere biology disorders. J Biol Chem 2021; 296:100064.

38. Wagner CL, Hanamantshu VS, Tolat CC Jr, et al. Short telomere syndromes cause a peripheral T-cell immunodeficiency. J Clin Invest 2018; 128:5222–5234.

39. Hoffman JD, Cripero KL, Sullivan KE, et al. Immunodeficiencies are a frequent manifestation of Kabuki syndrome. Am J Med Genet A 2005; 139:52–61.

40. Van Laarhoven PM, Netzel RL, Quintana AM, et al. Kabuki syndrome genes KMT2D and KDM6A: functional analyses demonstrate critical roles in cranio- facial, heart and brain development. Hum Mol Genet 2015; 24:4443–4453.

41. Baldini A, Fulcoli FG, Illingworth E. Tbx1: transcriptional and developmental impact signature and transcription factor network. Nucleic Acids Res 2012; 40:11339–11351.

42. Wang Y, Dan X, Hou Y, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 2019; 50:432.

43. Seng Y, Almamun M, Levinson BT, Gater ST, et al. Review of gastric cancer risk factors in patients with common variable immunodeficiency disorders, resulting in a proposal for a surveillance programme. Clin Exp Immunol 2011; 165:1–7.

44. O’Reilly LA, Putocki TL, Mielek LA, et al. Loss of NF-kappaB1 causes gastric cancer with aberrant inflammation and expression of immune checkpoint regulators in a STAT-1-dependent manner. Immunology 2018; 148:570.e8–583.e8.

45. Sokolova O, Naumann M. NF-kappaB signaling in gastric cancer. Toxins (Basel) 2019; 11:819.

46. Yang B, Dan X, Hou Y, et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 1994; 79:143–156.

47. Iowa SH, Laidlaw DL, Baggish JS, et al. Impact of constitutional TET2 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Immunol 2018; 38:11339–11351.

48. Sokolova O, Naumann M. NF-kappaB signaling in gastric cancer. Toxins (Basel) 2019; 11:819.

49. Hua T, Ginzheng W, Xuexi W, et al. Nuclear factor-kappaB1 is associated with gastric cancer in a Chinese population. Medicine (Baltimore) 2014; 93:13107.

50. Klemm C, Camacho-Ordonez N, Yang L, et al. Clinical and immunological phenotype of patients with primary immunodeficiency due to damaging mutations in NFKB2. Front Immunol 2020; 11:139.

51. Schiefelbein NL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011; 9:356–368.

52. Vaishrava S, Yamamoto M, Severson KM, et al. The antibacterial lectin Regligammina promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334:255–258.

53. Castagnoli T, Tahara T, Shiroueda R, et al. Functional promoter polymorphisms of NFkB1 influence susceptibility to the diffuse type of gastric cancer. Oncol Rep 2013; 30:9013–9019.

54. Aluri J, Cooper MA, Schuettpelz LG. Toll-like receptor signaling in the establishment and function of the immune system. Cells 2021; 10:1374.

55. Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 2014; 111:2247–2252.

56. Singh N, Gurav S, Swapnakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunology 2014; 140:128–139.

57. Schuttles J, Pandey S, Capitani M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 2018; 50:432–445.e7.

58. Wu K, Yuan Y, Yu H, et al. The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood 2020; 136:501–515.

59. Duan J, Chung H, Troy E, et al. Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. Cell Host Microbe 2010; 7:140–150.

60. Kier-Nielsen L, Patel O, Corbett AJ, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 2012; 491:717–723.

61. Scheppe J, Choi J, Skrabí-Beaumgartner A, et al. 14 years after discovery: clinical follow-up on 15 patients with inducible co-stimulator deficiency. Front Immunol 2017; 8:984.

62. Berg DJ, Davidson N, Kuhn R, et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 1996; 98:1010–1020.

63. Shafienejad N, Zaki-Dzai M, Sepahvandi R, et al. The clinical, molecular, and therapeutic features of patients with IL10II10R deficiency: a systematic review. Clin Exp Immunol 2022; 208:281–291.

64. Xue AJ, Miao SJ, Sun H, et al. Intestinal dysbiosis in pediatric Crohn’s disease patients with IL10RA mutations. World J Gastroenterol 2020; 26:3098–3106.

65. Hartono S, Ippoliti MR, Mastroianni M, et al. Gastrointestinal disorders associated with primary immunodeficiency diseases. Clin Rev Allergy Immunol 2021; 57:145–165.

66. Shafienejad N, Zaki-Dzai M, Sepahvandi R, et al. The clinical, molecular, and therapeutic features of patients with IL10II10R deficiency: a systematic review. Clin Exp Immunol 2022; 208:281–291.

67. Xue AJ, Miao SJ, Sun H, et al. Intestinal dysbiosis in pediatric Crohn’s disease patients with IL10RA mutations. World J Gastroenterol 2020; 26:3098–3106.

68. Panzargia L, Weinberger B. T cells, aging and senescence. Exp Gerontol 2017; 98:95–101.

69. Yang B, Dan X, Hou Y, et al. NAD+ supplementation prevents STING-induced senescence in striae telangiectasia by improving mitophagy. Aging Cell 2021; 20:e13329.
