THE CODIMENSION-THREE CONJECTURE FOR
HOLONOMIC DQ-MODULES

FRANÇOIS PETIT

ABSTRACT. We prove an analogue for holonomic DQ-modules of
the codimension-three conjecture for microdifferential modules re-
cently proved by Kashiwara and Vilonen.

1. Introduction

Problems of extension of analytic objects have been influential in
complex analysis and complex analytic geometry. In 1966, Serre asked
the following question in \[20\]. Let \(X \) be an analytic space and let \(S \) be
a closed analytic subset of \(X \)

\[\text{Si codim } S \geq 3, \text{ est-il vrai que tout faisceau localement libre (ou } \]
\[\text{même seulement réflexif) sur } X - S \text{ est prolongeable?} \]

This question stimulated intense activity around problems of extension
of coherent analytic sheaves. One of the major results in this area was
an extension theorem due to Trautmann, Frisch-Guenot, and Siu (see
\[4, 21, 22\]) answering Serre’s question.

Theorem 1.1 (Trautmann, Frisch-Guenot, and Siu). Let \(X \) be a com-
plex manifold, let \(S \) be a closed analytic subset of \(X \) and \(j : X \setminus S \to X \)
be the open embedding of \(X \setminus S \) into \(X \). If \(F \) is a reflexive coherent
\(\mathcal{O}_{X \setminus S} \)-module and \(\text{codim } S \geq 3 \) then \(j_* F \) is a coherent \(\mathcal{O}_X \)-module.

In the 1970’s, Sato, Kashiwara and Kawai introduced and studied
systematically the theory of microdifferential systems (see \[18\]). The
codimension-three conjecture was formulated by Kashiwara at the end
of the 1970’s and based on his study of holonomic systems with regular
singularities. This conjecture is concerned with the extension of a holo-
nomic microdifferential system over an analytic subset of the cotangent
bundle of a complex manifold. It was recently proved by Kashiwara
and Vilonen (see \[13\]).

Theorem 1.2 (\[13 \text{ Theorem } 1.2\]). Let \(X \) be a complex manifold and
\(\mathcal{E}_X \) the sheaf of microdifferential operators on \(T^* X \), \(U \) an open subset
of \(T^* X \), \(\Lambda \) a closed Lagrangian analytic subset of \(U \), and \(Y \) a closed
analytic subset of \(\Lambda \) such that \(\text{codim}_X Y \geq 2 \). Let \(\mathcal{M} \) be a holonomic

The author was supported by the EPSRC grant EP/G007632/1.
\(^\ddagger\)If \(\text{codim } S \geq 3 \), is it true that any locally free (or even only reflexive) sheaf on
\(X - S \) is extendable?
$(\mathcal{E}_X|_{U \setminus Y})$-module whose support is contained in $\Lambda \setminus Y$. Assume that \mathcal{M} possesses an $(\mathcal{E}_X(0)|_{U \setminus Y})$-lattice. Then \mathcal{M} extends uniquely to a holonomic module defined on U whose support is contained in Λ.

The proof of the conjecture was made possible by the deep result of Kashiwara and Vilonen extending Theorem 1.1 to coherent sheaves over $\mathcal{O}_X^h := \mathcal{O}_X[[h]]$.

Theorem 1.3 (13 Theorem 1.6). Let X be a complex manifold and Y be a closed analytic subset of X and $j : X \setminus Y \to X$ the open embedding of $X \setminus Y$ into X. If \mathcal{N} is a coherent reflexive $\mathcal{O}_{X \setminus Y}^h$-module and $\text{codim} \ Y \geq 3$ then $j_* \mathcal{N}$ is a coherent \mathcal{O}_X^h-module.

The techniques involved in the proof of this result are inspired by ideas coming from deformation quantization (see [12]).

Deformation Quantization modules (DQ-modules for short) on symplectic manifolds provide a generalization of microdifferential modules to arbitrary symplectic manifolds (see [12]). It is therefore natural to try to extend the codimension-three conjecture to holonomic DQ-modules, and that is what we do here.

The case of DQ-modules is strictly more general than the case of microdifferential modules. Indeed, in forthcoming work, we will explain how to recover the codimension-three conjecture for formal microdifferential operators from the statement for DQ-modules (the converse is not true). Although, our result is more general, it relies fundamentally on the tools elaborated by Kashiwara and Vilonen and our proof follows their general strategy. The main difference between the two approaches is that they are working in a conical setting whereas we are not. Hence, we have to implement their strategy differently.

One of the important aspects of the codimension-three conjecture for microdifferential modules is that it provides essential information on the structure of the stack of microlocal perverse sheaves through the microlocal Riemann-Hilbert correspondence (see [1], [2], [23]). However, the interpretation of the codimension-three conjecture for holonomic DQ-modules in terms of perverse sheaves is not yet clear since the analogue of microlocal perverse sheaves is not known for DQ-modules. It is an interesting problem to define such objects.

Here are the precise statements of the results we are proving.

Theorem 1.4. Let X be a complex manifold endowed with a DQ-algebroid stack \mathcal{A}_X such that the associated Poisson structure is symplectic. Let Λ be a closed Lagrangian analytic subset of X and Y a closed analytic subset of Λ such that $\text{codim}_\Lambda Y \geq 3$. Let \mathcal{M} be a holonomic $((\mathcal{A}_{X,\Lambda}^h)|_{X \setminus Y})$-module, whose support is contained in $\Lambda \setminus Y$. Assume that \mathcal{M} has an $\mathcal{A}_X|_{X \setminus Y}$-lattice. Then \mathcal{M} extends uniquely to a holonomic module defined on X whose support is contained in Λ. and
Theorem 1.5. Let X be a complex manifold endowed with a DQ-algebroid stack \mathcal{A}_X such that the associated Poisson structure is symplectic. Let Λ be a closed Lagrangian analytic subset of X and Y a closed analytic subset of Λ such that $\text{codim}_\Lambda Y \geq 2$. Let M be a holonomic $\mathcal{A}_{X,\text{loc}}^\text{loc}$-module whose support is contained in Λ and let M_1 be an $\mathcal{A}_{X,\text{loc}}^\text{loc}|_{X \setminus Y}$-submodule of $M|_{X \setminus Y}$. Then M_1 extends uniquely to a holonomic $\mathcal{A}_{X,\text{loc}}^\text{loc}$-submodule of M.

We hope that the submodule version of the codimension-three conjecture for DQ-modules may have applications to the representation theory of Cherednik algebras, via the localization theorem due to Kashiwara and Rouquier (see [9]).

Let us describe briefly the proof of the above statements. As we already remarked, we follow the general strategy of Kashiwara and Vilonen (see [13]). Keeping the notations of the theorems 1.4 and 1.5 and denoting by $j : X \setminus Y \to X$ the open embedding of $X \setminus Y$ into X, the problem essentially amount to show that $j_* M$ and $j_* M_1$ are coherent. This is a local question. By adapting a standard technique in several complex variables in [18] to the case of DQ-modules, proving the coherence of a DQ-module amounts to proving the coherence of the pushforward of this module by a certain projection, the restriction of which to the support of the module is finite. Taking the pushforward by the aforementioned projection reduce the non-commutative problem to a commutative one. Then it is possible to use Theorem 1.3 to establish the coherence of the direct image of $j_* M$ and $j_* M_1$ by this specific projection.

This paper is organised as follows. In the second section, we review some notions of the theory of DQ-modules and prove a few facts concerning holonomic DQ-modules that we will need later on. In the third section, we adapt the coherence criterion from [13] corresponding to Proposition 4.1 and 4.4 of [13] to the case of DQ-modules. In [13], it is indicated that the statements for microdifferential modules can be proved by using the Weierstrass preparation and division theorems for microdifferential operators. In the case of DQ-modules, we follow a different route. We first recall the corresponding statement for coherent analytic sheaves and then lift these statements to the world of DQ-modules. In the fourth section, we prove the analogue of [13, Proposition 4.2] for DQ-modules. The proof is significantly more complicated than in the case of microdifferential modules since the duality theory for DQ-modules is entirely stated in terms of kernels and not of morphisms. Thus, one has to identify the actions of all the kernels involved in the duality with their corresponding operations on sheaves. In the short fifth section, we adapt the reduction technique of [18] to a non-conic setting and prove the version of the codimension-three conjecture for holonomic DQ-modules in the sixth section. Finally, in the
last section, we present a conjecture due to Pierre Schapira which extends the codimension-three conjecture for holonomic DQ-modules to all Poisson manifolds.

Acknowledgments. I would like to express my gratitude to Masaki Kashiwara and Pierre Schapira for many enlightening explanations. It is a pleasure to thank Iain Gordon for his support and many useful discussions as well as Michael Wemyss, Thibault Lemanissier, Chris Dodd, Gwyn Bellamy and Evgeny Shinder for useful conversation and Will Donovan for proof-reading part of this paper.

2. DQ-modules

In this section, we recall and prove some results concerning the general theory of DQ-modules.

We denote by \(\mathbb{C}^\hbar := \mathbb{C}[[\hbar]] \) the ring of formal power series with coefficients in \(\mathbb{C} \) and by \(\mathbb{C}^{\hbar,\text{loc}} := \mathbb{C}((\hbar)) \) the field of Laurent series with complex coefficients. In all this section, \((X, \mathcal{O}_X) \) is a complex manifold.

2.1. DQ-algebras. In this subsection, we review some facts concerning DQ-algebra.

We define the following sheaf of \(\mathbb{C}^\hbar \)-algebras

\[
\mathcal{O}_X^\hbar := \lim_{\leftarrow n \in \mathbb{N}} \mathcal{O}_X \otimes_{\mathbb{C}^{\hbar,\text{loc}}} (\mathbb{C}^{\hbar}/\hbar^n\mathbb{C}^{\hbar}).
\]

Definition 2.1. A star-product denoted \(\star \) on \(\mathcal{O}_X^\hbar \) is a \(\mathbb{C}^\hbar \)-bilinear multiplicative law satisfying

\[
f \star g = \sum_{i \geq 0} P_i(f, g) \hbar^i \quad \text{for every } f, g \in \mathcal{O}_X,
\]

where the \(P_i \) are bi-differential operators such that for every \(f, g \in \mathcal{O}_X \), \(P_0(f, g) = fg \) and \(P_i(1, f) = P_i(f, 1) = 0 \) for \(i > 0 \). The pair \((\mathcal{O}_X^\hbar, \star) \) is called a star-algebra.

Example 2.2. Let \(U \) be an open subset of \(T^* \mathbb{C}^n \) endowed with a symplectic coordinate system \((x; u) \) with \(x = (x_1, \ldots, x_n) \) and \(u = (u_1, \ldots, u_n) \). Then there is a star-algebra \((\mathcal{O}_U^\hbar, \star) \) on \(U \) given by

\[
f \star g = \sum_{\alpha \in \mathbb{N}^n} \frac{\hbar^{|\alpha|}}{\alpha!} (\partial_x^\alpha f)(\partial_u^\alpha g).
\]

This star-product is called the Moyal-Weyl star-product.

Remark 2.3. On a symplectic manifold all the star-algebras are locally isomorphic.

Definition 2.4. (i) A DQ-algebra \(\mathcal{A}_X \) on \(X \) is a \(\mathbb{C}^\hbar \)-algebra locally isomorphic to a star-algebra as a \(\mathbb{C}^\hbar \)-algebra.

(ii) For a DQ-algebra \(\mathcal{A}_X \), we set \(\mathcal{A}_X^\text{loc} := \mathbb{C}^{\hbar,\text{loc}} \otimes_{\mathbb{C}^\hbar} \mathcal{A}_X \).
There is a unique \mathbb{C}-algebra isomorphism $A_X/\hbar A_X \sim \mathcal{O}_X$. We write $\sigma_0 : A_X \rightarrow \mathcal{O}_X$ for the epimorphism of \mathbb{C}-algebras defined by $A_X \rightarrow A_X/\hbar A_X \sim \mathcal{O}_X$.

This induces a Poisson bracket $\{\cdot, \cdot\}$ on \mathcal{O}_X defined as follows:

for every $a, b \in A_X$, $\{\sigma_0(a), \sigma_0(b)\} = \sigma_0(\hbar^{-1}(ab - ba))$.

Notation 2.5. If \mathcal{A}_X is a DQ-algebra, we denote by \mathcal{A}_X^{op} the opposite algebra \mathcal{A}_X^{op}. If X and Y are two manifolds endowed with DQ-algebras \mathcal{A}_X and \mathcal{A}_Y, then $X \times Y$ is canonically endowed with the DQ-algebra $\mathcal{A}_{X \times Y} := \mathcal{A}_X \boxtimes \mathcal{A}_Y$ (see [12, §2.3]).

2.2. DQ-modules. We refer the reader to [12] for an in-depth study of DQ-modules. In this section, we briefly recall some general results that we will subsequently use.

Let (X, \mathcal{O}_X) be a complex manifold endowed with a DQ-algebroid stack \mathcal{A}_X. We denote by $\text{Mod}(\mathcal{A}_X)$ the Grothendieck category of modules over \mathcal{A}_X, by $D(\mathcal{A}_X)$ its derived category and by $D^{\text{coh}}(\mathcal{A}_X)$ the bounded derived category of DQ-modules with coherent cohomology and if Z is a closed analytic subset of X we denote by $D^{\text{coh}}(\mathcal{A}_X, Z)$ the full subcategory of $D^{\text{coh}}(\mathcal{A}_X)$ the objects of which are supported in Z. We use similar notations for $\mathcal{A}^{\text{loc}}_X$-modules.

We denote by for the forgetful functor $for : \text{Mod}(\mathcal{A}^{\text{loc}}_X) \rightarrow \text{Mod}(\mathcal{A}_X)$ the left adjoint of which is given by $(\cdot)^{\text{loc}} : \text{Mod}(\mathcal{A}_X) \rightarrow \text{Mod}(\mathcal{A}^{\text{loc}}_X)$

$$N \mapsto A^{\text{loc}}_X \otimes A_X N.$$

Definition 2.6. Let $\mathcal{M} \in \text{Mod}(\mathcal{A}_X)$. We say that

(i) \mathcal{M} has no \hbar-torsion if the map $\mathcal{M} \xrightarrow{\hbar} \mathcal{M}$ is a monomorphism,

(ii) the module \mathcal{M} is of uniform \hbar-torsion if there exists $k \in \mathbb{N}$ such that $\hbar^k \mathcal{M} = (0)$. The smallest such a $k \in \mathbb{N}$ is called the index of \hbar-torsion of \mathcal{M} and is denoted $\text{tor}_\hbar(\mathcal{M})$,

(iii) \mathcal{M} is of \hbar-torsion if it is locally of uniform \hbar-torsion.

Finally, we recall the following lemma.

Lemma 2.7. Let $\mathcal{M} \in \text{Mod}^{\text{coh}}(\mathcal{A}_X)$. Then \mathcal{M} is the extension of a module without \hbar-torsion by a \hbar-torsion module.

2.2.1. Duality theory for DQ-modules. We briefly recall the main features of the duality theory for DQ-modules and refer the reader to [12] Ch. 6 for a detailed study.

Let X be a complex manifold endowed with a DQ-algebroid stack \mathcal{A}_X. We denote by $\delta : X \hookrightarrow X \times X$ the diagonal embedding of X into $X \times X$ and set $\mathcal{C}_X := \delta_* \mathcal{A}_X$. The object \mathcal{C}_X is an $\mathcal{A}_{X \times X}^{\text{op}}$-module simple along the diagonal.
We denote by ω_X the dualizing complex for \mathcal{A}_X-modules. It is a bi-invertible $(\mathcal{A}_X \otimes \mathcal{A}_X^*)$-module. Since the category of bi-invertible $(\mathcal{A}_X \otimes \mathcal{A}_X^*)$-modules is equivalent to the category of $\mathcal{A}_X \times \mathcal{A}_X^*$-modules simple along the diagonal we will regard ω_X as an $\mathcal{A}_X \times \mathcal{A}_X^*$-module simple along the diagonal and will still denote it by ω_X. By [12, Theorem 6.2.4], we have

Lemma 2.8. Let X be a complex symplectic manifold. There is a canonical isomorphism

$$\omega_X \cong \mathcal{C}_X[d_X]$$

of $\mathcal{A}_X \times \mathcal{A}_X^*$-modules.

We set

$$D'_{\mathcal{A}_X} : \mathcal{D}(\mathcal{A}_X)^{op} \to \mathcal{D}(\mathcal{A}_X)$$

$$\mathcal{M} \mapsto R\mathcal{H}om_{\mathcal{A}_X}(\mathcal{M}, \mathcal{A}_X).$$

We use a similar notation for \mathcal{A}_X^{loc}-modules.

Notation 2.9. (i) Consider a product of manifolds $X_1 \times X_2 \times X_3$, we write it X_{123}. We denote by p_i the i-th projection and by p_{ij} the (i, j)-th projection (e.g., p_{13} is the projection from $X_1 \times X_1^* \times X_2$ to $X_1 \times X_2$).

(ii) We write \mathcal{A}_i and \mathcal{A}_{ij} instead of \mathcal{A}_{X_i} and $\mathcal{A}_{X_i \times X_j}$ and similarly with other products. We use the same notations for \mathcal{C}_{X_i}.

Recall Definitions 3.1.2 and 3.1.3 of [12].

Definition 2.10. Let $\mathcal{K}_i \in \mathcal{D}^b(\mathcal{A}_{i\mathfrak{a}})$ $(i = 1, 2, j = i + 1)$. One sets

$$\mathcal{K}_1 \otimes_{\mathcal{A}_2} \mathcal{K}_2 = (\mathcal{K}_1 \otimes_{\mathcal{A}_{2\mathfrak{a}}} \mathcal{K}_2) \otimes_{\mathcal{A}_{2\mathfrak{a}}} \mathcal{C}_{X_2}$$

$$= p_{12}^{-1} \mathcal{K}_1 \otimes_{p_{12}^{-1} \mathcal{A}_{1\mathfrak{a}2}} \mathcal{A}_{123} \otimes_{p_{23}^{-1} \mathcal{A}_{2\mathfrak{a}}} p_{23}^{-1} \mathcal{K}_2,$$

$$\mathcal{K}_1 \circ_{\mathcal{X}_2} \mathcal{K}_2 = R\mathcal{p}_{13}! \left(\mathcal{K}_1 \otimes_{\mathcal{A}_2} \mathcal{K}_2 \right),$$

$$\mathcal{K}_1 \ast_{\mathcal{X}_2} \mathcal{K}_2 = R\mathcal{p}_{13*} \left(\mathcal{K}_1 \otimes_{\mathcal{A}_2} \mathcal{K}_2 \right).$$

Remark 2.11. (a) There is a morphism $\mathcal{K}_1 \otimes_{\mathcal{A}_2} \mathcal{K}_2 \to \mathcal{K}_3 \otimes_{\mathcal{A}_3} \mathcal{K}_2$ which is an isomorphism if $X_1 = \text{pt}$ or $X_3 = \text{pt}$.

(b) If the projection $p_{13} : \text{Supp}(\mathcal{K}_1) \times_{\mathcal{X}_2} \text{Supp}(\mathcal{K}_2) \to X_1 \times X_3$ is proper then, $\mathcal{K}_1 \circ_{\mathcal{X}_2} \mathcal{K}_2 \simeq \mathcal{K}_1 \ast_{\mathcal{X}_2} \mathcal{K}_2$.

We have the following duality results.

Theorem 2.12 ([12, Theorem 3.3.6]). Let (X_i, \mathcal{A}_i) $(i = 1, 2, 3)$ be a complex manifold endowed with a DQ-algebroid \mathcal{A}_i. Let Z_i be a closed
subset of $X_i \times X_{i+1}$ and assume that $Z_1 \times X_2 Z_2$ is proper over $X_1 \times X_3$. Set $Z = p_{13}(p_{12}^{-1}Z_1 \cap p_{23}^{-1}Z_2)$. Let $K_i \in \mathcal{D}_{\text{coh},Z}^b(A_{(i+1)^*})$ ($i = 1, 2$). Then the object $K_1 \circ K_2$ belongs to $\mathcal{D}_{\text{coh},Z}^b(A_{13^*})$ and we have a natural isomorphism

$$\mathcal{D}_{A_{12^*}}^*(K_1) \circ X_{2^*} \circ \mathcal{D}_{A_{13^*}}^*(K_2) \xrightarrow{\sim} \mathcal{D}_{A_{13^*}}^*(K_1 \circ K_2).$$

Definition 2.13. (i) An A_X-module \mathcal{N} is a submodule of an A_X^{loc}-module \mathcal{M} if there exist a monomorphism $\mu : \mathcal{N} \rightarrow \text{for}(\mathcal{M})$ in Mod(A_X).

(ii) Let \mathcal{N} be an A_X-submodule of an A_X^{loc}-module \mathcal{M}. We say that \mathcal{N} generates \mathcal{M} if μ^{loc} is an isomorphism.

(iii) A coherent A_X-submodule of a coherent A_X^{loc}-module \mathcal{M} is called an A_X-lattice of \mathcal{M} if \mathcal{N} generates \mathcal{M}.

We recall the definition of good module and refer the reader to [12, p. 74] for a thorough treatment of this notion.

Definition 2.14. (i) A coherent A_X^{loc}-module is good if, for any relatively compact open subset U of X, there exists an $A_X|_U$-lattice of $\mathcal{M}|_U$.

(ii) One denotes by $\text{Mod}_{\text{gd}}(A_X^{\text{loc}})$ the full subcategory of $\text{Mod}_{\text{coh}}(A_X^{\text{loc}})$ the objects of which are the good modules.

(iii) One denotes by $D_{\text{gd}}(A_X^{\text{loc}})$ the full subcategory of $D_{\text{coh}}(A_X^{\text{loc}})$ the objects of which have good cohomology.

The Theorem 2.12 extends to A_X^{loc}-modules by replacing $D_{\text{coh}}^b(A_X)$ with $D_{\text{gd}}^b(A_X^{\text{loc}})$. Hence, we have the following statement for A_X^{loc}-modules.

Theorem 2.15. Let (X_i, A_i) ($i = 1, 2, 3$) be a complex manifold endowed with a DQ-algebroid A_i. Let Z_i be a closed subset of $X_i \times X_{i+1}$ and assume that $Z_1 \times X_2 Z_2$ is proper over $X_1 \times X_3$. Set $Z = p_{13}(p_{12}^{-1}Z_1 \cap p_{23}^{-1}Z_2)$. Let $K_i \in D_{\text{gd},Z}^b(A_{(i+1)^{\text{loc}}})$ ($i = 1, 2$). Then the object $K_1 \circ K_2$ belongs to $D_{\text{gd},Z}^b(A_{13^{\text{loc}}})$ and we have a natural isomorphism

$$\mathcal{D}_{A_{12^{\text{loc}}}}^*(K_1) \circ X_{2^{\text{loc}}} \circ \mathcal{D}_{A_{13^{\text{loc}}}}^*(K_2) \xrightarrow{\sim} \mathcal{D}_{A_{13^{\text{loc}}}}^*(K_1 \circ K_2).$$

2.3. **Holonomic DQ-modules.** In this subsection we will be concerned with DQ-modules on complex symplectic manifolds. Thus, we first recall some notions of symplectic geometry.

Definition 2.16. Let (X, ω) be a complex symplectic manifold.

(i) A locally closed complex analytic subvariety Λ of X is isotropic if there exists a dense open complex manifold $A' \subset A$ such that $\omega|_{A'} = 0$.

(ii) A subvariety Λ in X is co-isotropic if for every function f and g such that $f|_{\Lambda} = g|_{\Lambda} = 0$ then $\{f, g\} = 0$ on Λ where $\{\cdot, \cdot\}$ is the Poisson bracket associated to the symplectic form ω.
(iii) A locally closed complex analytic subvariety Λ of X is Lagrangian if it is isotropic and co-isotropic.

Following [12], we review the notion of holonomic DQ-modules. In this section, X is a complex manifold of dimension d_X endowed with a DQ-algebroid \mathcal{A}_X such that the associated Poisson structure is symplectic and we set $n = \frac{d_X}{2}$.

Definition 2.17. (i) An $\mathcal{A}_X^{\text{loc}}$ module M is holonomic if it is coherent and if its support is a Lagrangian subvariety of X.
(ii) An \mathcal{A}_X-module N is holonomic if it is coherent, without \hbar-torsion and N^{loc} is a holonomic $\mathcal{A}_X^{\text{loc}}$-module.

Recall the following lemma.

Lemma 2.18 ([9, Lemma 2.1]). Let r be an integer and M be a coherent $\mathcal{A}_X^{\text{loc}}$-module so that $\text{Ext}^j_{\mathcal{A}_X^{\text{loc}}}(M, \mathcal{A}_X^{\text{loc}}) = 0$ for any $j > r$. Then $H_Y^j(M) = 0$ for any closed analytic subset Y of X and any $j < \text{codim} Y - r$.

Holonomic DQ-modules enjoy the following properties.

Lemma 2.19 ([12, Lemma 7.2.2]). Let M be a holonomic $\mathcal{A}_X^{\text{loc}}$-module. Then $\mathcal{D}'_{\mathcal{A}_X^{\text{loc}}}(M)[d_X/2]$ is concentrated in degree zero and is holonomic.

Lemma 2.20. Let M be a holonomic $\mathcal{A}_X^{\text{loc}}$-module supported in a Lagrangian subvariety Λ of X and Y a closed analytic subset of Λ. Then $H_Y^j(M) = 0$ for $0 \leq j < \text{codim} \Lambda Y$.

Proof. Recall that $n = \frac{d_X}{2}$. It follows from Lemma 2.19 that we have $\text{Ext}^j_{\mathcal{A}_X^{\text{loc}}}(M, \mathcal{A}_X^{\text{loc}}) = 0$ for any $j > n$. Then by Lemma 2.18 $H_Y^j(M) = 0$ for $0 \leq j < \text{codim} \Lambda Y$. □

Lemma 2.21. Let $n = \frac{d_X}{2}$ and N be a holonomic \mathcal{A}_X-module. Then $\text{Ext}^j_{\mathcal{A}_X}(N, \mathcal{A}_X) = 0$ for $j < n$ and $\text{Ext}^n_{\mathcal{A}_X}(N, \mathcal{A}_X)$ has no \hbar-torsion.

Proof. Since N has no \hbar-torsion, we have $\text{Supp}(N^{\text{loc}}) = \text{Supp}(N)$. Thus, $\text{Supp}(\text{gr}_h N) = \text{Supp}(N^{\text{loc}})$ is Lagrangian. It follows that
\[
\text{codim} \text{Supp}(\text{gr}_h N) = n.
\]

This implies that $H^j(\text{gr}_h R\text{Hom}_{\mathcal{A}_X}(N, \mathcal{A}_X)) \simeq \text{Ext}^j_{\mathcal{O}_X}(\text{gr}_h N, \mathcal{O}_X) = 0$ for $j < n$.

Thus, by Proposition 1.4.5 of [12], $\text{Ext}^j_{\mathcal{A}_X}(N, \mathcal{A}_X) = 0$ for $j < n$ and $\text{Ext}^n_{\mathcal{A}_X}(N, \mathcal{A}_X)$ has no \hbar-torsion. □

Proposition 2.22. Let M a holonomic $\mathcal{A}_X^{\text{loc}}$-module such that it has a lattice \mathcal{N}. Then $\text{Ext}^n_{\mathcal{A}_X}(\text{Ext}^n_{\mathcal{A}_X}(N, \mathcal{A}_X), \mathcal{A}_X)$ is a lattice of M.
Proof. We set \(F = \mathcal{E}xt^n_{A_X}(\mathcal{N}, A_X) \). By functoriality, there is a morphism

\[
\mathcal{R}\text{Hom}_{A_X}(F, A_X) \rightarrow \mathcal{R}\text{Hom}_{A_X^{\text{loc}}}(A_X^{\text{loc}} \otimes A_X, A_X^{\text{loc}})
\]

and

\[
A_X^{\text{loc}} \otimes F = A_X^{\text{loc}} \otimes \mathcal{E}xt^n_{A_X}(\mathcal{N}, A_X) \simeq \mathcal{E}xt^n_{A_X^{\text{loc}}}(\mathcal{M}, A_X^{\text{loc}}).
\]

Thus, we have a morphism

\[
\mathcal{R}\text{Hom}_{A_X}(F, A_X) \rightarrow \mathcal{R}\text{Hom}_{A_X^{\text{loc}}}(\mathcal{E}xt^n_{A_X^{\text{loc}}}(\mathcal{M}, A_X^{\text{loc}}), A_X^{\text{loc}}).
\]

Since \(\mathcal{M} \) is a holonomic module

\[
\mathcal{R}\text{Hom}_{A_X^{\text{loc}}}(\mathcal{E}xt^n_{A_X^{\text{loc}}}(\mathcal{M}, A_X^{\text{loc}}), A_X^{\text{loc}}) \simeq \mathcal{M}[-n].
\]

Taking the degree \(n \) cohomology, we obtain a morphism

\[
\gamma : \mathcal{E}xt^n_{A_X}(\mathcal{E}xt^n_{A_X}(\mathcal{N}, A_X), A_X) \rightarrow \mathcal{M}
\]

such that

\[
\gamma^{\text{loc}} : [\mathcal{E}xt^n_{A_X}(\mathcal{E}xt^n_{A_X}(\mathcal{N}, A_X), A_X)]^{\text{loc}} \rightarrow \mathcal{M}^{\text{loc}} \simeq \mathcal{M}
\]

is an isomorphism.

By Lemma 2.21, \(\mathcal{E}xt^n_{A_X}(\mathcal{E}xt^n_{A_X}(\mathcal{N}, A_X), A_X) \) has no \(\mathbb{h} \)-torsion. Thus, \(\text{Ker} \mathcal{R} \gamma \) has no \(\mathbb{h} \)-torsion. Hence, there is a monomorphism \(\text{Ker} \mathcal{R} \gamma \hookrightarrow (\text{Ker} \gamma)^{\text{loc}}. \) Since, \(A_X^{\text{loc}} \otimes \) is an exact functor, \((\text{Ker} \mathcal{R} \gamma)^{\text{loc}} \simeq \text{Ker}(\gamma^{\text{loc}}) \) and \(\text{Ker}(\gamma^{\text{loc}}) = (0). \) It follows that \(\text{Ker} \mathcal{R} \gamma = (0). \) \(\square \)

3. A coherence criterion

The aim of this section is to establish Proposition 3.20 which is a coherence criterion for DQ-modules. Recall that if \(X \) is a topological space and \(F \) is a sheaf of Abelian group on \(X \), the support of \(F \) denoted \(\text{Supp}(F) \) is the complementary of the union of open sets \(U \subset X \) such that \(F|_U = 0. \) Following [13], we define the notion of \(p \)-finite sheaf.

Definition 3.1. Let \(X \) and \(Y \) be two Hausdorff spaces and let \(p : X \rightarrow Y \) be a continuous map. Let \(F \) be a sheaf of Abelian groups. The sheaf \(F \) is \(p \)-finite if the restriction of \(p \) to the support of \(F \) is a finite morphism.

3.1. A coherence criterion: the case of \(\mathcal{O}_X \)-modules. We prove an equivalence between certain categories of \(\mathcal{O}_X \)-modules and also a coherence criterion for \(\mathcal{O}_X \)-modules. We will use these results to deduce their analogue for DQ-modules. The statements of this subsection should be compared with [7].

In all this subsection, we let \(D \) be an open subset of some \(\mathbb{C}^p \), we set \(X = D \times \mathbb{C}^n \) and

\[
p : D \times \mathbb{C}^n \rightarrow D
\]

the projection \(D \times \mathbb{C}^n \ni (y, z) \mapsto y. \)
We write $\text{Mod}_{\text{coh}}(\mathcal{O}_X)$ for the category of coherent \mathcal{O}_X-modules on X and we denote by $\text{Mod}_{\text{coh}}^{p-\text{fin}}(\mathcal{O}_X)$ the full sub-category of $\text{Mod}_{\text{coh}}(\mathcal{O}_X)$ the objects of which are the p-finite modules.

We set $\mathcal{O}_D[t] := \mathcal{O}_D[t_1, \ldots, t_n]$ and recall that the sheaf $\mathcal{O}_D[t]$ is a Noetherian sheaf of ring (cf. [8, Theorem A.31]).

The projection $p : X \to D$ clearly induces a morphism of ringed spaces $(p, p^1) : (X, \mathcal{O}_X) \to (D, \mathcal{O}_D[t])$. We consider the following functors

$$p_* : \text{Mod}(\mathcal{O}_X) \to \text{Mod}(\mathcal{O}_D[t]) \quad p^1 : \text{Mod}(\mathcal{O}_D[t]) \to \text{Mod}(\mathcal{O}_X)$$

$$\mathcal{F} \mapsto p_* \mathcal{F} \quad \mathcal{G} \mapsto \mathcal{O}_X \otimes_{\mathcal{O}_D[t]} p^{-1} \mathcal{G}.$$

Proposition 3.2. The functors p^1 is left adjoint to p_*. □

Proposition 3.3. The functor p^1 is exact.

Proof. This follows from the fact that \mathcal{O}_X is flat over $p^{-1} \mathcal{O}_D[t]$ (cf. [15, Example 4.11]). □

Notation 3.4. We denote by $\text{Mod}_{\mathcal{O}_D-\text{coh}}(\mathcal{O}_D[t])$ the full subcategory of $\text{Mod}_{\text{coh}}(\mathcal{O}_D[t])$ the objects of which are also \mathcal{O}_D-coherent modules.

Proposition 3.5. If $\mathcal{F} \in \text{Mod}_{\text{coh}}^{p-\text{fin}}(\mathcal{O}_X)$, then $p_* \mathcal{F} \in \text{Mod}_{\mathcal{O}_D-\text{coh}}(\mathcal{O}_D[t])$.

Proof. The sheaf $p_* \mathcal{F}$ is clearly an $\mathcal{O}_D[t]$-module and it is \mathcal{O}_D-coherent since $p|_{\text{Supp}(\mathcal{F})}$ is finite. □

Proposition 3.6. If $\mathcal{G} \in \text{Mod}_{\mathcal{O}_D-\text{coh}}(\mathcal{O}_D[t])$, then $p^1 \mathcal{G} \in \text{Mod}_{\text{coh}}^{p-\text{fin}}(\mathcal{O}_X)$.

Proof. Since \mathcal{G} is a coherent \mathcal{O}_D-module, it is a coherent $\mathcal{O}_D[t]$-module.

Since \mathcal{O}_X and $\mathcal{O}_D[t]$ are coherent sheaves of rings, it implies that $p^1 \mathcal{G}$ is a coherent \mathcal{O}_X-module.

Let $y \in D$. Consider $\text{Ann}_{\mathcal{O}_D[t]}(\mathcal{G})$ the annihilator of \mathcal{G} in $\mathcal{O}_D[t]$. Since \mathcal{G} is coherent, we have

$$\text{Ann}_{\mathcal{O}_D[t]}(\mathcal{G})_y \simeq \text{Ann}_{\mathcal{O}_{D,y}[t]}(\mathcal{G}_y).$$

The t_i, $1 \leq i \leq n$ define $\mathcal{O}_{D,y}$-linear endomorphisms $T_i : \mathcal{G}_y \to \mathcal{G}_y, m \mapsto t_i \cdot m$, $1 \leq i \leq n$. And \mathcal{G}_y is a finitely generated module over $\mathcal{O}_{D,y}$.

Thus, their exist monic polynomials $\omega_{i,y} \in \mathcal{O}_{D,y}[t_i]$ such that $\omega_{i,y}(T_i) = 0$. This implies that $\omega_{i,y} \in \text{Ann}_{\mathcal{O}_{D,y}[t]}(\mathcal{G}_y)$. It is well known that

$$\text{Supp}(p^1 \mathcal{G}) = \{ x \in X | \text{Ann}_{\mathcal{O}_X}(p^1 \mathcal{G})_x \subset \mathfrak{m}_x \}$$

where \mathfrak{m}_x is the maximal ideal of $\mathcal{O}_{X,x}$. Since p^1 is exact and \mathcal{G} is coherent,

$$\text{Ann}_{\mathcal{O}_X}(p^1 \mathcal{G}) \simeq p^1 \text{Ann}_{\mathcal{O}_D[t]}(\mathcal{G}).$$

It follows that

$$\text{Supp}(p^1 \mathcal{G}) = \{ x \in X | \mathcal{O}_{X,x,\mathcal{O}_{D,y}[t]} \otimes_{\mathcal{O}_{D,y}[t]} \text{Ann}_{\mathcal{O}_{D,y}[t]}(\mathcal{G}_y) \subset \mathfrak{m}_x \}.$$
This means that if an element \(x_0 = (y_0, z_0) \) of \(X \) belongs to \(\text{Supp}(p^*\mathcal{G}) \) then, for every \(1 \leq i \leq n \), \(\omega_{i,y_0}(z) = 0 \). The \(\omega_{i,y_0}(t_i) \) being monic polynomials, they have a finite number of roots. This implies that \(p^{-1}(y) \) is finite.

Let us prove that \(p|_{\text{Supp}(p^*\mathcal{G})} \) is closed. Since being closed is a property local on the base, it is sufficient to check that \(p|_\Lambda : \Lambda \to U_i \) is closed for a covering \((U_i)_{i \in I}\) of \(D \).

Let \(y_0 \in D \) and consider the polynomials \(\omega_{i,y_0}(t_i) \in \mathcal{O}_{D,y_0}[t_i] \), \(1 \leq i \leq n \) previously defined. There exists an open neighbourhood \(U \) of \(y_0 \) such that the \(w_i(t_i) \in \mathcal{O}_D[t_i]|_U \) are well defined and belong to \(\text{Ann}_{\mathcal{O}_D[t]}(\mathcal{G})|_U \). It follows immediately that they induce Weierstrass polynomials \(\omega_i(y, z_i) \in \text{Ann}_{\mathcal{O}_X}(p^*\mathcal{G})|_{U \times \mathbb{C}^n} \).

We set \(Z = \{(y, z) \in U \times \mathbb{C}^n | \omega_1(y, z_1) = \ldots = \omega_n(y, z_n) = 0\} \) and \(\Lambda = \text{Supp}(p^*\mathcal{G}) \cap U \times \mathbb{C}^n \). We have the following commutative diagram

\[
\begin{array}{ccc}
\Lambda & \xrightarrow{p|_\Lambda} & U \\
\downarrow{i_\Lambda} & & \downarrow{p|_Z} \\
Z & & \\
\end{array}
\]

The map \(i_\Lambda \) is a closed immersion. Thus, we are reduced to show that \(p|_Z \) is a closed map. This follow immediately by repeated applications of the Continuity of the Roots theorem (see \([5, \text{p.52}]\)). \(\square \)

Lemma 3.7. Let \((T, \mathcal{O}_T)\) be a closed analytic subspace of \((X, \mathcal{O}_X)\) such that \(\mathcal{O}_T \) is \(p \)-finite.

(i) If \(x \in X \) and \(y = p(x) \), then for every \(x_i \in p^{-1}(y) \), such that \(x_i \neq x \), \(\mathcal{O}_{X,x_i} \otimes_{\mathcal{O}_{D,y_i}[t]} \mathcal{O}_{T,x_i} = 0 \).

(ii) \(p^*p_*\mathcal{O}_T \simeq \mathcal{O}_T \).

Proof. (i) It follows from Propositions 3.5 and 3.6 that \(p^*p_*\mathcal{O}_T \) is a \(p \)-finite coherent \(\mathcal{O}_X \)-module. Thus,

\[
(p^*p_*\mathcal{O}_T)_x \simeq \bigoplus_{x_i \in p^{-1}(y)} \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{D,y}[t]} \mathcal{O}_{T,x_i}
\]

is finitely generated \(\mathcal{O}_{X,x} \)-module. Moreover, \(\mathcal{O}_{X,x} \) is a Noetherian ring. This implies that \(\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{D,y}[t]} \mathcal{O}_{T,x_i} \) is also a finitely generated \(\mathcal{O}_{X,x} \)-module. Since \(x_i \neq x \), there exists a polynomial \(P \in \mathcal{O}_{D,y}[t] \) such that \(P(x) = 0 \) and \(P(x_i) \neq 0 \). Denoting by \((P)\) the ideal generated by \(P \) in \(\mathcal{O}_{X,x} \), we have that \((P)\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{D,y}[t]} \mathcal{O}_{T,x_i} = \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{D,y}[t]} \mathcal{O}_{T,x_i} \) and \((P)\) is included in the maximal ideal of \(\mathcal{O}_{X,x} \). Hence, Nakayama’s lemma implies that \(\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{D,y}[t]} \mathcal{O}_{T,x_i} = 0 \).

(ii) It is a direct consequence of (i). \(\square \)

Theorem 3.8 below is well-known to experts and should be compared with \([7, \text{Section 3}]\). We give a proof for the convenience of the reader.
Theorem 3.8. The functors

\[
\text{Mod}^{p-\text{fin}}_{\text{coh}}(\mathcal{O}_X) \xrightarrow{p_*} \text{Mod}_{\mathcal{O}_D-\text{coh}}(\mathcal{O}_D[t])
\]

are equivalences of categories inverse to each other.

Proof. Consider the morphism

\[(3.1) \quad p^\# p_* \mathcal{F} \to \mathcal{F}. \]

We prove that it is an isomorphism. We set \(T = \text{Supp}(\mathcal{F}) \) and we define \(\mathcal{O}_T = \mathcal{O}_X / \text{Ann}_{\mathcal{O}_X}(\mathcal{F}) \). Let \(x \in X \) and set \(y = p(x) \). Since \(p|_T \) is finite, we have

\[
(p^\# p_* \mathcal{F})_x \simeq \mathcal{O}_{X,x} \otimes_{\mathcal{O}_{D,y}[t]} \mathcal{F}_x
\]

\[
\simeq \bigoplus_{x_i \in p^{-1}(y)} \mathcal{O}_{X,x_i} \otimes_{\mathcal{O}_{D,y}[t]} \mathcal{F}_{x_i}
\]

By lemma \[3.7\] \(\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{D,y}[t]} \mathcal{O}_{T,x_i} = 0 \) if \(x \neq x_i \). It follows that \((p^\# p_* \mathcal{F})_x \simeq \mathcal{F}_x\). Then the morphism \((3.1)\) is an isomorphism.

Consider the map

\[(3.2) \quad \mathcal{G} \to p_* p^\# \mathcal{G}. \]

We prove it is an isomorphism.

Let \(y \in D \). Then the map \((3.2)\) induces a morphism

\[(3.3) \quad \mathcal{G}_y \to (p_* p^\# \mathcal{G})_y. \]

We construct the inverse of the morphism \((3.3)\). Since \(p|_{\text{Supp}(p^\# \mathcal{G})} \) is finite, we have

\[
(p_* p^\# \mathcal{G})_y \simeq \bigoplus_{x_i \in p^{-1}(y)} \mathcal{O}_{X,x_i} \otimes_{\mathcal{O}_{D,y}[t]} \mathcal{G}_y \simeq (\bigoplus_{x_i \in p^{-1}(y)} \mathcal{O}_{X,x_i}) \otimes_{\mathcal{O}_{D,y}[t]} \mathcal{G}_y.
\]

As already explained, the \(t_i, 1 \leq i \leq n \) define \(\mathcal{O}_{D,y}[t] \)-linear endomorphisms \(T_i : \mathcal{G}_y \to \mathcal{G}_y, v \mapsto t_i \cdot v \), \(1 \leq i \leq n \) and \(\mathcal{G}_y \) is a finitely generated module over \(\mathcal{O}_{D,y}[t] \). Thus, there exists monic polynomials \(\omega_{i,y} \in \mathcal{O}_{D,y}[t] \) such that \(\omega_{i,y}(T_i) = 0 \). We set \(\mathcal{Q} = (\mathcal{O}_X / \langle \omega_1, \ldots, \omega_n \rangle \mathcal{O}_X) \) and denote by \(m \) the cardinal of \(p^{-1}(y) \). By the generalized Weierstrass division theorem (\[5 \text{ Ch. 2 \S 4}\]) for any choice of \(m \) germs \(f_j \in \mathcal{Q}_{x_j}, 1 \leq j \leq m \), there exists a uniquely determined polynomial \(r \in \mathcal{O}_{D,y}[t] \) whose degree in \(t_i \) is less than \(\deg \omega_i, 1 \leq i \leq n \) and such that the residue epimorphism \(\mathcal{O}_{X,x_j} \to \mathcal{Q}_{x_j} \) maps \(r \) onto \(f_j \) for all \(j = 1, \ldots, m \). We define the morphism

\[
\phi : (\bigoplus_{x_i \in p^{-1}(y)} \mathcal{O}_{X,x_i}) \otimes_{\mathcal{O}_{D,y}[t]} \mathcal{G}_y \to \mathcal{G}_y
\]

\[
(f_{x_i})_{x_i \in p^{-1}(y)} \otimes n \mapsto r n
\]
where r is the polynomial obtained via the generalized Weierstrass division Theorem. It is immediate that ϕ is the inverse of the morphism (3.2).

We now prove the following coherence criterion.

Proposition 3.9. Let F be a O_X-module and assume that F is a p-finite O_X-module. Then F is a coherent O_X-module if and only if $p_* F$ is a coherent O_D-module.

Proof. (i) Assume that F is coherent. Since $p|_{\text{supp}(F)}$ is finite, $p_* F$ is coherent.

(ii) Assume that $p_* F$ is coherent. The functor $p^!$ and p_* are adjoint. We denote by $\varepsilon : p^! p_* F \rightarrow F$ the counit of the adjunction and by $\eta : F \rightarrow p_* p^! F$ the unit of the adjunction. Recall that the natural transformation

$$p_* \eta_F : p_* p^! p_* F \rightarrow p_* F$$

is the identity. Thus $p_* \varepsilon$ is an epimorphism of sheaves.

Let Q be the cokernel of $\varepsilon_F : p^! p_* F \rightarrow F$. By Propositions 3.5 and 3.6, $p^! p_* F$ is a p-finite coherent O_X-module and Q is also a p-finite sheaf since $\text{Supp}(Q) \subset \text{Supp}(F)$. It follows that we have a right exact sequence of p-finite sheaves

$$(3.4) \quad p^! p_* F \xrightarrow{\varepsilon_F} F \rightarrow Q \rightarrow 0.$$

Since all the sheaves in the exact sequence (3.4) are p-finite, we obtain by applying the functor p_* the right exact sequence

$$p_* p^! p_* F \xrightarrow{p_* \varepsilon_F} p_* F \rightarrow p_* Q \rightarrow 0.$$

Since $p_* \varepsilon_F$ is an epimorphism of sheaves, it follows that $p_* Q \simeq 0$ which implies that $Q \simeq 0$. Thus, ε_F is an epimorphism. It results that F is a locally finitely generated O_X-module and that $\text{Ann}_{O_X}(p^! p_* F) \subset \text{Ann}_{O_X}(F)$. Setting $O_T = O_X/\text{Ann}_{O_X}(p^! p_* F)$, it follows from the inclusion $\text{Ann}_{O_X}(p^! p_* F) \subset \text{Ann}_{O_X}(F)$ that F is a O_T-module. Moreover,

$$O_{X,x} \otimes_{O_{D,y}[t]} F_{x_i} \simeq O_{X,x} \otimes_{O_{D,y}[t]} O_{T,x_i} \otimes_{O_{T,x_i}} F_{x_i},$$

and by Lemma 3.7,

$$O_{X,x} \otimes_{O_{D,y}[t]} O_{T,x_i} = 0 \text{ if } x_i \neq x.$$
Then we have the following commutative diagram.

\[
\begin{array}{c}
\bigoplus_{x_i \in p^{-1}(y)} \mathcal{O}_{X,x} \otimes \mathcal{F}_{x_i} \xrightarrow{i} \mathcal{F}_x \\
\mathcal{F}_x \xrightarrow{\sim} \mathcal{F}_x
\end{array}
\]

Hence, \(p^\# p_* \mathcal{F} \simeq \mathcal{F} \) which implies that \(\mathcal{F} \) is coherent.

3.2. A coherence criterion: the case of DQ-modules. We now focus our attention on DQ-modules and prove an analogue for DQ-modules of Theorem 3.8 and Proposition 3.9.

Let \(M \) be an open subset of \(\mathbb{C}^n \). We set \(X = T^*M \) and denote by \(\rho : T^*M \to M \) the projection on the base. We denote by \(\mathcal{A}_X \) the Moyal-Weyl star-algebra on \(X \) and define the algebra

\[
\mathcal{B}_M = \mathcal{O}_M^h \otimes \mathbb{C}[\hbar \partial_1, \cdots, \hbar \partial_n].
\]

Then

\[
\mathcal{B}_M^{\text{loc}} \simeq \mathcal{O}_M^{h,\text{loc}} \otimes \mathbb{C}[\partial_1, \cdots, \partial_n].
\]

Definition 3.10. We say that a \(\mathcal{B}_M \)-submodule \(\mathcal{L} \) of a coherent \(\mathcal{B}_M^{\text{loc}} \)-module \(\mathcal{N} \) is a finiteness \(\mathcal{B}_M \)-lattice of \(\mathcal{N} \) if \(\mathcal{L} \) is a \(\mathcal{B}_M \)-lattice of \(\mathcal{N} \) and it is coherent as a \(\mathcal{O}_M^h \)-module.

We denote by \(\text{Mod}_{\text{fgd}}(\mathcal{B}_M^{\text{loc}}) \) the abelian full-subcategory of \(\text{Mod}(\mathcal{B}_M^{\text{loc}}) \) the objects of which are the \(\mathcal{B}_M^{\text{loc}} \)-modules admitting locally a finiteness lattice.

Let \((x, u) \) be a symplectic coordinate system on \(X = T^*M \). Then

\[
\rho : X \to M \\
(x, u) \mapsto x.
\]

We denote by \(\text{Mod}_{\text{coh}}^f(\mathcal{A}_X) \) (resp. \(\text{Mod}_{\text{coh}}^f(\mathcal{A}_X^{\text{loc}}) \)) the full sub-category of \(\text{Mod}_{\text{coh}}(\mathcal{A}_X) \) (resp. \(\text{Mod}_{\text{coh}}(\mathcal{A}_X^{\text{loc}}) \)) the objects of which are the \(\rho \)-finite modules.

Remark 3.11. A coherent \(\rho \)-finite \(\mathcal{A}_X^{\text{loc}} \)-module \(\mathcal{M} \) is holonomic.

We have a morphism of \(\mathbb{C}^h \)-algebras

\[
\rho^1 : \rho^{-1} \mathcal{O}_M^h \to \mathcal{A}_X, \rho^1(x_i) = x_i \text{ for } 1 \leq i \leq n.
\]

There is also a monomorphism of \(\mathbb{C}^h \)-algebras from \(\rho^{-1} \mathcal{B}_M \) to \(\mathcal{A}_X \) defined as follows.

\[
\psi : \rho^{-1} \mathcal{B}_M \to \mathcal{A}_X, \quad x_i \mapsto x_i, \quad \hbar \partial_i \mapsto u_i.
\]

(3.5)
We set

$$
\rho^\flat : \text{Mod}(B_M) \to \text{Mod}(A_X) \quad \rho^\sharp : \text{Mod}(B^{\text{loc}}_M) \to \text{Mod}(A^{\text{loc}}_X)
$$

$$
\mathcal{N} \mapsto A_X \otimes_{\rho^{-1}B_M} \rho^{-1}\mathcal{N} \quad \mathcal{N} \mapsto A^{\text{loc}}_X \otimes_{\rho^{-1}B^{\text{loc}}_M} \rho^{-1}\mathcal{N}.
$$

Proposition 3.12. The functors ρ^\flat and ρ_* (resp. ρ^\sharp and ρ_*) form the adjoint pair (ρ^\flat, ρ^*) (resp. (ρ^\sharp, ρ^*)).

Proof. Clear. \(\square\)

Proposition 3.13. The functor ρ^\flat (resp. ρ^\sharp) is exact.

Proof. We need to prove that for every B_M-module \mathcal{N}

$$
H^i(A_X \overset{L}{\otimes}_{\rho^{-1}B_M} \rho^{-1}\mathcal{N}) = 0 \quad \text{for} \quad i < 0.
$$

which is equivalent to prove that for every $z \in X$ and every $\mathcal{N} \in \text{Mod}(B_M)$

$$
H^i(A_{X,z} \overset{L}{\otimes}_{\rho^{-1}B_{M,z}} \rho^{-1}\mathcal{N}_z) = 0 \quad \text{for any} \quad i < 0.
$$

For that purpose, we adapt the proof of Theorem 1.6.6 of [12]. Let $z \in X$. We set $A = A_{X,z}$, $B = B_{M, \rho(z)}$, $N = \mathcal{N}_{\rho(z)}$, $Q = \mathcal{O}_{X,z}$ and $R = \mathcal{O}_{M,z}[t_1, \ldots, t_n]$. Then the problem reduces to show that $\text{Tor}_B^i(A, N) = 0$ for all $i < 0$. Since, Tor commute with filtrant colimit, we can further assume that N is a B-module of finite type. Furthermore, every finitely generated B-module is an extension of a B-module without \hbar-torsion by a module of \hbar-torsion. So, we just need to treat the case of modules without \hbar-torsion and the case of \hbar-torsion modules.

(i) We assume that N has no \hbar-torsion, then

$$
\text{gr}_\hbar(A \overset{L}{\otimes}_B N) \simeq Q \otimes_R N/\hbar N.
$$

Moreover, N is a finitely generated B-module. Hence, $A \overset{L}{\otimes}_B N$ belongs to $D^b_f(A)$. It follows from Theorem 1.6.1 of [12] that $A \overset{L}{\otimes}_B N$ is cohomologically complete. Hence, Proposition 1.5.8 of [12] implies that $A \overset{L}{\otimes}_B N$ belongs to $D^{\geq 0}(\mathbb{C}^b)$.

(ii) We assume that N is of \hbar-torsion. Clearly $N = \bigcup_{k \in \mathbb{N}} N_k$ where $N_k = \{n \in N | \hbar^k n = 0\}$ and

$$
A \overset{L}{\otimes}_B N_1 \simeq Q \overset{L}{\otimes}_R N_1 \simeq Q \otimes_R N_1.
$$

Thus, $A \overset{L}{\otimes}_B N_1$ is concentrated in degree zero. By recursion, we extend this to all the N_k. Since Tor_B commutes with filtrant colimits
Tor^i_B(A, N) = 0 for i ≠ 0. It follows that for any finitely generated module N, A \otimes B is concentrated in degree zero.

The result for \rho^♯ follows immediately since \rho^♯ is the composition of \rho^* with the exact functor \mathbb{C}^h_{X, \text{loc}} \otimes .

Proposition 3.14. If \mathcal{M} \in \text{Mod}^{\rho-\text{fin}}_{\text{coh}}(A_X), then \rho_* \mathcal{M} \in \text{Mod}_{\mathcal{O}_M-\text{coh}}(B_M).

Proof. Let \mathcal{M} \in \text{Mod}^{\rho-\text{fin}}_{\text{coh}}(A_X). The sheaf \rho_* \mathcal{M} is clearly a B_M-module and by Grauert’s direct image theorem for DQ-modules (cf. [12, Thm 3.2.1]) \rho_* \mathcal{M} is \mathcal{O}_M^h-coherent.

Proposition 3.15. If \mathcal{N} \in \text{Mod}_{\mathcal{O}_M-\text{coh}}(B_M), then \rho^* \mathcal{N} \in \text{Mod}^{\rho-\text{fin}}_{\text{coh}}(A_X).

Proof. The coherence of \rho^* \mathcal{N} is clear. Now, assume that \mathcal{N} has no \hbar-torsion. Then

\text{Supp}(\rho^* \mathcal{N}) = \text{Supp}(\text{gr}_h \rho^* \mathcal{N}) = \text{Supp}(\rho^*(\mathcal{N}/\hbar \mathcal{N})).

It follows that \rho^* \mathcal{N} \in \text{Mod}^{\rho-\text{fin}}_{\text{coh}}(A_X).

Let \mathcal{N} be a module of \hbar-torsion with \text{tor}_h(\mathcal{N}) = 1. We have the following isomorphism

\rho^* \mathcal{N} \simeq A_X \otimes_{\rho^{-1}B_M} \rho^{-1} \mathcal{N}
\simeq \mathcal{O}_X \otimes_{\rho^{-1} \mathcal{O}_M[t]} \rho^{-1} \mathcal{N}
\simeq \rho^* \mathcal{N}.

Thus, \rho^* \mathcal{N} is a \rho-\text{finite} A_X-module.

Let \mathcal{N} be a module of \hbar-torsion with \text{tor}_h(\mathcal{N}) = k, k \geq 2. Assume that \rho^* \mathcal{P} is \rho-\text{finite} for each B_M-submodule \mathcal{P} of \mathcal{N} which is of uniform \hbar-torsion with \text{tor}_h(\mathcal{P}) = k - 1. Let \mathcal{Q} be a submodule of \mathcal{N} which is of \hbar-torsion with \text{tor}_h(\mathcal{Q}) = k. Then we have the following short exact sequence

0 \to \hbar \mathcal{Q} \to \mathcal{Q} \to \mathcal{Q}/\hbar \mathcal{Q} \to 0.

Moreover, \rho^* is an exact functor, then

0 \to \rho^*(\hbar \mathcal{Q}) \to \rho^* \mathcal{Q} \to \rho^*(\mathcal{Q}/\hbar \mathcal{Q}) \to 0.

So, \text{Supp}(\rho^* \mathcal{Q}) \subset \text{Supp}(\rho^*(\hbar \mathcal{Q})) \cup \text{Supp}(\rho^*(\mathcal{Q}/\hbar \mathcal{Q})) which implies that \rho^* \mathcal{Q} is \rho-\text{finite}.

Assume that \mathcal{N} is of \hbar-torsion. Thus, there exists an open covering \{(U_i)_{i \in I} \} of \mathcal{M} such that \text{tor}_h(\mathcal{N}|_{U_i}) = k_i with k_i \in \mathbb{N}. We set \rho_i := \rho|_{\rho^{-1}(U_i)} \circ \rho^{-1}(U_i). It follows from the previous cases that \rho_i^* \mathcal{N}|_{U_i} is \rho_i-\text{finite}. Since being finite for a morphism is a property local on the base, it follows that \rho^* \mathcal{N} is \rho-\text{finite}.
Let $N \in \text{Mod}_{\mathcal{O}^\bullet_M-\text{coh}}(\mathcal{B}_M)$. Then N is the extension by an object of $\text{Mod}_{\mathcal{O}^\bullet_M-\text{coh}}(\mathcal{B}_M)$ of h-torsion of an object of $\text{Mod}_{\mathcal{O}^\bullet_M-\text{coh}}(\mathcal{B}_M)$ without h-torsion. It follows from what is preceding that $\rho^\flat N$ is ρ-finite. □

The following proposition is the analogue for DQ-modules of [13, Lemma 4.3].

Proposition 3.16. The functors

$$
\text{Mod}_{\rho-\text{fin}}(\mathcal{A}_X) \xrightarrow{\rho^*} \text{Mod}_{\mathcal{O}^\bullet_M-\text{coh}}(\mathcal{B}_M)
$$

are equivalences of categories and inverse to each other.

Proof. Once again, we will use the fact that a coherent DQ-module is the extension of a coherent DQ-module without h-torsion by a DQ-module of h-torsion. Let $M \in \text{Mod}_{\rho-\text{fin}}(\mathcal{A}_X)$. The adjunction between ρ^* and ρ^\flat provides the map

$$
(3.6) \quad \rho^\flat \rho^* M \rightarrow M.
$$

(i) Assume that M has no h-torsion. Applying the gr_h functor to (3.6), we get

$$
(3.7) \quad \rho^\flat \rho^* (M/hM) \rightarrow (M/hM).
$$

The module (M/hM) belongs to $\text{Mod}_{\rho-\text{fin}}(\mathcal{O}_X)$, thus by the Theorem 3.8, it follows that the morphism (3.7) is an isomorphism. Since M and $\rho^\flat \rho^* M$ are complete and have no h-torsion, it follows that the morphism (3.6) is an isomorphism.

(ii) Assume that M is of h-torsion with $\text{tor}_h(M) = 1$. Then we have the following commutative diagram

$$
\begin{array}{ccc}
\rho^\flat \rho^* M & \longrightarrow & M \\
\downarrow & & \downarrow \\
\rho^\flat \rho^* M & \sim & M
\end{array}
$$

which implies that the map (3.6) is an isomorphism.

(iii) If M is a module of h-torsion with $\text{tor}_h(M) = k$, the fact that the morphism (3.6) is an isomorphism is proved by recursion on the index of h-torsion.

(iv) Assume that M is of h-torsion. Let $z = (x, u)$ a point of $X = T^* M$. Consider the stalk of morphism (3.6) at z

$$
(3.8) \quad (\rho^\flat \rho^* M)_z \rightarrow M_z.
$$

If $\rho^{-1}(x) \cap \text{Supp}(M) = \emptyset$, it is clear that (3.8) is an isomorphism. Assume that $\rho^{-1}(x) \cap \text{Supp}(M) = \{z_1, \ldots, z_s\}$. Since M is coherent we can find open pairwise disjoint neighbourhoods U_1', \ldots, U_s' of z_1, \ldots, z_s such that $\rho(U_i') = \ldots = \rho(U_s')$ and $M|_{U_i'}$ is of h-torsion with $\text{tor}_h(M|_{U_i'}) = k_i$. It follows from Proposition 8.4 that there exists an
open subset V of M such that $\rho^{-1}(V)$ is an open neighbourhood of z_1, \ldots, z_s and $\text{tor}_h(M|_{T\cap V}) = k$ with $k = \max_{1 \leq i \leq s}\{k_i\}$.

Using the fact that the morphism \((3.6) \) is an isomorphism for h-torsion modules with index of h-torsion equal to k, it follows that

\[
(\rho^s \rho_* M)|_{\rho^{-1}(V)} \rightarrow M|_{\rho^{-1}(V)}.
\]

is an isomorphism which proves the claim.

(v) Let M be a ρ-finite A_X-module. Then M is the extension of a ρ-finite module without h-torsion by a ρ-finite module of h-torsion. Using the preceding cases the result follows immediately.

The proof that the unit $\id \rightarrow \rho_* \rho^s$ is an isomorphism is simpler and follows a similar path. \(\square \)

Lemma 3.17. Let $M \in \text{Mod}_{\text{coh}}^{f,\text{fin}}(A_X^{\text{loc}})$ then, M is locally good on the base i.e. there exists an open covering $(U_i)_{i \in I}$ of M such that for every $i \in I$, $M|_{\rho^{-1}(U_i)}$ is good.

Proof. If $\rho^{-1}(x) \cap \text{Supp}(M) = \emptyset$, then there exists a neighbourhood V of x such that $M|_{V \times \mathbb{C}^n} = 0$ and 0 is a lattice of M on $V \times \mathbb{C}^n$. Assume that $\rho^{-1}(x) \cap \text{Supp}(M) = \{z_1, \ldots, z_s\}$. Since M is coherent, we can find open pairwise disjoint neighbourhoods U'_1, \ldots, U'_s, of z_1, \ldots, z_s such that $\rho(U'_i) = \ldots = \rho(U'_s)$ and such that $M|_{U'_i}$ admits a lattice M_i for $1 \leq i \leq s$. It follows from Proposition 3.14 that there exists pairwise disjoint neighbourhoods U_1, \ldots, U_s of z_1, \ldots, z_s such that $U_i \subset U'_i$ and $V = \rho(U_1) = \ldots = \rho(U_s)$. Denoting by $\gamma_i : U_i \hookrightarrow V \times \mathbb{C}^n$ the inclusion of U_i into $V \times \mathbb{C}^n$ we have the isomorphism

\[
M|_{V \times \mathbb{C}^n} \sim \prod_{i=1}^s \gamma_i^* \gamma_i^{-1}(M|_{V \times \mathbb{C}^n}).
\]

It follows immediately that $\prod_{i=1}^s \gamma_i^* \gamma_i^{-1} M_i$ is a lattice of $M|_{V \times \mathbb{C}^n}$. \(\square \)

The following proposition is the analogue for DQ-modules of [13, Proposition 4.4].

Proposition 3.18. The functors

\[
\text{Mod}_{\text{coh}}^{f,\text{fin}}(A_X^{\text{loc}}) \xrightarrow{\rho_*} \text{Mod}_{\text{f,gd}}(B_M^{\text{loc}})
\]

are equivalences of categories and inverse to each other.

Proof. Using Lemma 3.17 the proof of the proposition reduces to Proposition 3.16. \(\square \)

We will need the following coherence criterion (see [12, Theorem 1.3.6]) in order to establish Proposition 3.20.

Theorem 3.19. Let (T, \mathcal{O}_T) be a complex manifold endowed with a DQ-algebra A_T. Let M be a locally finitely generated A_T-module. Then M is coherent if and only if $h^n M / h^{n+1} M$ is a coherent \mathcal{O}_T-module for any $n \geq 0$.
Proposition 3.20. (i) Let \mathcal{M} be a ρ-finite A_X-module. Then \mathcal{M} is a coherent A_X-module if and only if $\rho_{*}\mathcal{M}$ is a coherent O_{M}^{h}-module.

(ii) Let \mathcal{M} be a ρ-finite A_{X}^{loc}-module.

(a) If \mathcal{M} is a coherent A_{X}^{loc}-module, then $\rho_{*}\mathcal{M}$ is a coherent $O_{M}^{h,\text{loc}}$-module.

(b) If $\rho_{*}\mathcal{M}$ is a coherent $O_{M}^{h,\text{loc}}$-module and has a coherent O_{M}^{h}-lattice \mathcal{L} such that \mathcal{L} is a B_{M}-module, then \mathcal{M} is a coherent A_{X}^{loc}-module.

Proof. (i) The first direction is Proposition 3.14. Let us prove the converse. Let \mathcal{M} be a ρ-finite module and assume that $\rho_{*}\mathcal{M}$ is coherent. We denote by $\varepsilon : \rho^{\flat}\rho_{*} \to \text{id}$ the co-unit and by $\eta : \text{id} \to \rho_{*}\rho^{\sharp}$ the unit of the adjunction $(\rho^{\sharp}, \rho_{*})$. Recall that the natural transformation

$$\rho_{*} \eta \rho^{\flat} \Rightarrow \rho_{*} \rho^{\sharp} \Rightarrow \rho^{*}$$

is the identity. Thus, $\rho_{*}\varepsilon$ is an epimorphism of sheaves. By an argument similar to the one of the proof of Proposition 3.9, we show that $\varepsilon_{\mathcal{M}}$ is an epimorphism of sheaves which implies that \mathcal{M} is locally finitely generated.

The restriction of ρ_{*} to the category $\text{Mod}^{\rho-\text{fin}}(A_{X})$ is exact and the sheaves \mathcal{M}, $h^{n}\mathcal{M}$ and $h^{n}\mathcal{M}/h^{n+1}\mathcal{M}$ are ρ-finite. This implies that

$$h^{n}\rho_{*}\mathcal{M}/h^{n+1}\rho_{*}\mathcal{M} \simeq \rho_{*}(h^{n}\mathcal{M})/\rho_{*}(h^{n+1}\mathcal{M}) \simeq \rho_{*}(h^{n}\mathcal{M}/h^{n+1}\mathcal{M}).$$

This means that the sheaf $\rho_{*}(h^{n}\mathcal{M}/h^{n+1}\mathcal{M})$ is a coherent O_{M}^{h}-module and hence, a coherent O_{M}-module since $\text{tor}_{h}(\rho_{*}(h^{n}\mathcal{M}/h^{n+1}\mathcal{M})) = 1$. By Proposition 3.9, $h^{n}\mathcal{M}/h^{n+1}\mathcal{M}$ is a coherent O_{X}-module. It follows from Theorem 3.19 that \mathcal{M} is a coherent A_{X}-module.

(ii) The point (a) is clear. Let us prove (b). Let \mathcal{M} be a ρ-finite module such that $\rho_{*}\mathcal{M}$ is a coherent $O_{M}^{h,\text{loc}}$-module and has a coherent O_{M}^{h}-lattice \mathcal{L} such that \mathcal{L} is a B_{M}-module. This implies that $\rho^{\flat}\mathcal{L} \in \text{Mod}_{\text{coh}}^{\rho-\text{fin}}(A_{X})$.

By an argument similar to the one of the proof of Proposition 3.9, we obtain that the co-unit

$$(3.9) \quad \rho^{\flat}\rho_{*}\mathcal{M} \to \mathcal{M}$$

is an epimorphism. Moreover, there is a canonical map

$$(3.10) \quad \rho^{\flat}\mathcal{L} \to \rho^{\flat}\rho_{*}\mathcal{M}.$$

Composing the maps (3.9) and (3.10), we get

$$(3.11) \quad \theta : \rho^{\flat}\mathcal{L} \to \rho^{\flat}\rho_{*}\mathcal{M} \to \mathcal{M}.$$

Moreover, $\theta^{\text{loc}} : (\rho^{\flat}\mathcal{L})^{\text{loc}} \to \mathcal{M}^{\text{loc}} \simeq \mathcal{M}$ is an epimorphism. This implies that $(\text{Im} \theta)^{\text{loc}} \simeq \mathcal{M}$. The A_X-module $\text{Im} \theta$ is ρ-finite and the morphism (3.11) induces the epimorphism $\rho^{\flat}\mathcal{L} \to \text{Im} \theta$. Thus, $\rho_{*}\text{Im} \theta$ is a locally finitely generated O_{M}^{h}-submodule of the coherent $O_{M}^{h,\text{loc}}$-module $\rho_{*}\mathcal{M}$. It follows by [12, Lemma 2.3.13] that $\rho_{*}\text{Im} \theta$ is a coherent O_{M}^{h}-module.
Then point (i) implies that $\text{Im} \theta$ is a coherent \mathcal{A}_X-module. Hence, \mathcal{M} is a coherent $\mathcal{A}_X^{\text{loc}}$-module. \qed

Remark 3.21. If U is an open subset of X, the above criterion can also be used to prove the coherence of a $\rho|_U$-finite $\mathcal{A}_X|_U$-module \mathcal{M}. Indeed, if $i: U \hookrightarrow \rho(U) \times \mathbb{C}^n$ denotes the inclusion of U into $\rho(U) \times \mathbb{C}^n$ then, by Corollary 8.2, $i_* \mathcal{M}$ is a $\rho|_{\rho(U) \times \mathbb{C}^n}$-finite $\mathcal{A}_{\rho(U) \times \mathbb{C}^n}$-module the coherence of which is equivalent to the coherence of \mathcal{M}.

4. A duality result

In this section, we prove the analogue for DQ-modules of [13, Propositions 4.2 & 4.6]. We let X be an open subset of T^*M and shrinking M is necessary we assume that $\rho(X) = M$. We denote by \mathcal{A}_X the Moyal-Weil star-algebra on X and, on M, we consider the trivial star-algebra $\mathcal{A}_M := \mathcal{O}_M^h \mathcal{A}_X$. We endow $M \times X$ with the star-algebra $\mathcal{A}_{M \times X} = \mathcal{O}_M^h \mathcal{A}_X$. Following page 61 of [12] the star-product on $\mathcal{A}_{M \times X}$ is given by

$$f \star g = \sum_{i \geq 0} \hbar^i (m \boxtimes P_i)(f, g) \quad \text{for every } f, g \in \mathcal{O}_{M \times X}$$

where the P_i are the bi-differential operators defining the star-product on \mathcal{A}_X and m is the multiplication of function on \mathcal{O}_M^h.

Consider the projection $\rho : X \to M$ and define

$$\gamma_{\rho} : X \times X \to M \times X \quad \delta_{\rho} : X \to M \times X$$

$$(x, s) \mapsto (\rho(x); s) \quad x \mapsto (\rho(x); x).$$

Notice that $\delta_{\rho} = \gamma_{\rho} \circ \delta$. We define the morphism

$$\gamma_{\rho}^1 \cdot \gamma_{\rho}^{-1} \mathcal{A}_{M \times X} \to \mathcal{A}_{X \times X}$$

$$f \mapsto f \circ \gamma_{\rho}.$$ It follows from the formula defining the star-product on $\mathcal{A}_{M \times X}$ and $\mathcal{A}_{X \times X}$ that γ_{ρ}^1 is a morphism of \mathbb{C}^h-algebras.

The $\mathcal{A}_X \otimes \mathcal{A}_X$-module \mathcal{A}_X is bi-invertible. Thus, by [12, Lemma 2.4.1] $\delta_* \mathcal{A}_X$ has a structure of $\mathcal{A}_{X \times X}$-modules. By adjunction, γ_{ρ}^1 induces a morphism of algebra $\mathcal{A}_{M \times X} \to \gamma_{\rho} \mathcal{A}_{X \times X}$ which, in turn, induces on $\gamma_{\rho}^{-1} \delta_* \mathcal{A}_X \simeq \delta_* \mathcal{A}_X$ a structure of $\mathcal{A}_{M \times X}$-module. Since δ_{ρ} is finite, $\delta_{\rho} \mathcal{A}_X$ is a coherent $\mathcal{A}_{M \times X}$-module.

We denote by $\mathcal{D}^h_{\rho \text{-fin}}(\mathcal{A}_X)$ the full subcategory of $\mathcal{D}^h(\mathcal{A}_X)$ the objects of which have ρ-finite cohomology and define the functor

$$\rho^* : \text{Mod}(\mathcal{A}_M) \to \text{Mod}(\mathcal{A}_X)$$

$$\mathcal{N} \mapsto \rho^{-1} \mathcal{N} \otimes_{\rho^{-1} \mathcal{A}_{\rho^{-1} M}} \mathcal{A}_X$$
Lemma 4.1. Let $\mathcal{M} \in \mathsf{D}^b_{\pi\text{-}\mathsf{fin}}(\mathcal{A}_X)$ and $\mathcal{N} \in \mathsf{D}^b(\mathcal{A}_{M^*})$. Then
\[
\delta_{\rho_*}\mathcal{A}_X \circ \mathcal{M} \simeq R\rho_*\mathcal{M},
\]
\[
\mathcal{N} \circ \delta_{\rho_*}\mathcal{A}_X \simeq L\rho^*\mathcal{N}.
\]

Proof. These formulas are direct consequences of the projection formula. \hfill \square

Lemma 4.2. Let $\mathcal{M} \in \mathsf{D}^b_{\text{coh},\pi\text{-}\mathsf{fin}}(\mathcal{A}_{X^*})$ (resp. in $\mathsf{D}^b_{\text{sg},\pi\text{-}\mathsf{fin}}(\mathcal{A}^{\text{loc}}_{X^*})$). Then we have the following isomorphisms
(4.1) \[
(\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \circ \mathcal{M} \Rightarrow \rho_*\mathcal{M} \quad \text{in } \mathsf{D}^b_{\text{coh}}(\mathcal{A}_{M^*}),
\]
(4.2) \[
(\omega_{\mathcal{M}*}^{\text{loc}} \circ \mathsf{D}'_{l_{\mathcal{A}_{M^*}}}(\delta_{\rho_*}\mathcal{A}^{\text{loc}}_{X^*})) \circ \mathcal{M} \Rightarrow \rho_*\mathcal{M} \quad \text{in } \mathsf{D}^b_{\text{sg}}(\mathcal{A}_{M^*}).
\]

Proof. We prove formula (4.1). Let $\mathcal{N} \in \mathsf{D}^b_{\text{coh}}(\mathcal{A}^\text{loc}_{M^*})$. We have
\[
\mathsf{RHom}_{A_{M^*}}(\mathcal{N}, (\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \circ \mathcal{M}) \simeq
\]
\[
\simeq \mathsf{R}\Gamma(M, \mathsf{RHom}_{A_M} (\mathcal{N}, (\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \circ \mathcal{M})).
\]

and
\[
\mathsf{RHom}_{A_{M^*}}(\mathcal{N}, (\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \circ \mathcal{M}) \simeq
\]
\[
\simeq \mathsf{D}'_{A_{M^*}}(\mathcal{N}) \mathsf{L}_{A_{M^*}} \left[(\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \circ \mathcal{M} \right]
\]
\[
\simeq \mathsf{D}'_{A_{M^*}}(\mathcal{N}) \mathsf{L}_{A_{M^*}} \mathsf{R}\rho_{M_*} (\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \mathsf{L}_{p_{X^*}^{-1}} \mathsf{A}_{X^*} \mathsf{M}
\]
\[
\simeq \mathsf{R}\rho_{M_*} (p_{p_{X^*}^{-1}}^{-1} \mathsf{D}'_{A_{M^*}}(\mathcal{N}) \mathsf{L}_{A_{M^*}} \left[(\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \mathsf{L}_{p_{X^*}^{-1}} \mathsf{A}_{X^*} \mathsf{M} \right]
\]

Applying $\mathsf{R}\Gamma(M; \cdot)$, we get
\[
\mathsf{R}\Gamma(M; \mathsf{R}\rho_{M_*} \mathsf{L}_{p_{X^*}^{-1}} \mathsf{D}'_{A_{M^*}}(\mathcal{N}) \mathsf{L}_{A_{M^*}} \left[(\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \mathsf{L}_{p_{X^*}^{-1}} \mathsf{A}_{X^*} \mathsf{M} \right]) \simeq
\]
\[
\simeq \mathsf{R}\Gamma(M \times X; p_{p_{X^*}^{-1}}^{-1} \mathsf{D}'_{A_{M^*}}(\mathcal{N}) \mathsf{L}_{A_{M^*}} \left[(\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \mathsf{L}_{p_{X^*}^{-1}} \mathsf{A}_{X^*} \mathsf{M} \right]
\]
\[
\simeq \mathsf{R}\Gamma(X; \mathsf{R}\rho_{X_*} \mathsf{L}_{p_{X^*}^{-1}}^{-1} \mathsf{D}'_{A_{M^*}}(\mathcal{N}) \mathsf{L}_{A_{M^*}} \left[(\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \mathsf{L}_{p_{X^*}^{-1}} \mathsf{A}_{X^*} \mathsf{M} \right])
\]
\[
\simeq \mathsf{R}\Gamma(X; (\mathsf{D}'_{A_{M^*}}(\mathcal{N}) \mathsf{L}_{A_{M^*}} \left[(\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \mathsf{L}_{p_{X^*}^{-1}} \mathsf{A}_{X^*} \mathsf{M} \right])
\]
\[
\simeq \mathsf{R}\Gamma(X; \mathsf{D}'_{A_{M^*}}(\mathcal{N}) \mathsf{L}_{A_{M^*}} \left[(\omega_{\mathcal{M}*} \circ \mathsf{D}'_{A_{M,X^*}}(\delta_{\rho_*}\mathcal{A}_X)) \mathsf{L}_{p_{X^*}^{-1}} \mathsf{A}_{X^*} \mathsf{M} \right]).
\]
Applying Theorem 2.12 we obtain
\[
\mathrm{R} \Gamma(X; [\mathcal{D}'_{\mathcal{A}_M^a}(\mathcal{N})] \circ_{\mathcal{A}_M^a} \omega_{\mathcal{M}^a} \circ \mathcal{D}'_{\mathcal{A}_M^a} \circ (\delta_{\rho^*} \mathcal{A}_X)] \circ_{\mathcal{A}_X}^\mathcal{L} \mathcal{M})) \simeq \\
\simeq \mathrm{R} \Gamma(X; \mathcal{D}'_{\mathcal{A}_X^a}(\mathcal{N} \circ_{\mathcal{A}_M^a} \delta_{\rho^*} \mathcal{A}_X)) \circ_{\mathcal{A}_X}^\mathcal{L} \mathcal{M})) \\
\simeq \mathrm{R} \mathrm{Hom}_{\mathcal{A}_X^a}(L\rho^* \mathcal{N}, \mathcal{M}) \\
\simeq \mathrm{R} \mathrm{Hom}_{\mathcal{A}_M^a}(\mathcal{N}, R\rho_* \mathcal{M})
\]

It follows from the Yoneda Lemma that
\[
(\omega_{\mathcal{M}^a} \circ \mathcal{D}'_{\mathcal{A}_M^a} \circ (\delta_{\rho^*} \mathcal{A}_X)) \circ_{\mathcal{A}_X} \mathcal{M} \simeq R\rho_* \mathcal{M}.
\]

The construction of the morphism (4.2) is similar. First, one assumes that \(\mathcal{N} \in \mathcal{D}_{\text{gd}}^b(\mathcal{A}_X^\text{loc}) \) and instead of using Theorem 2.12 one uses Theorem 2.13 and get the desired isomorphism.

Finally, we get the following duality result which is the analogue for DQ-modules of Proposition 4.2.

Proposition 4.3. Let \(\mathcal{M} \in \text{Mod}_{\text{coh}}^{\rho \text{-fin}}(\mathcal{A}_X) \) (resp. in \(\text{Mod}_{\text{gd}}^{\rho \text{-fin}}(\mathcal{A}_X^\text{loc}) \)). Then we have
\[
\rho_* \mathcal{E}xt^k_{\mathcal{A}_X}(\mathcal{M}, \mathcal{A}_X) \simeq \mathcal{E}xt^k_{\mathcal{O}_M^b}(\rho_* \mathcal{M}, \mathcal{O}_M^b),
\]
\[
\rho_* \mathcal{E}xt^k_{\mathcal{A}_X^\text{loc}}(\mathcal{M}, \mathcal{A}_X^\text{loc}) \simeq \mathcal{E}xt^k_{\mathcal{O}_M^b,\text{loc}}(\rho_* \mathcal{M}, \mathcal{O}_M^b,\text{loc}).
\]

where \(n = d_X/2 = d_M \).

Proof. We only prove formula (4.3), the proof of formula (4.4) being very similar. Applying Theorem 2.12 with \(X_1 = M, X_2 = X \) and \(X_3 = \text{pt}, K_1 = \delta_{\rho^*} \mathcal{A}_X \) and \(K_2 = \mathcal{M} \in \mathcal{D}_{\text{coh}, \rho \text{-fin}}(\mathcal{A}_X) \) and using lemma 1.2 we get that
\[
\mathcal{D}'_{\mathcal{M}}(\rho_* \mathcal{M}) \simeq \mathcal{D}'_{\mathcal{M}}(\delta_{\rho^*} \mathcal{A}_X \circ X) \\
\simeq \mathcal{D}'_{\mathcal{M}^a} \circ_{\mathcal{A}_M^a} \omega_{\mathcal{M}^a} \circ \mathcal{D}'_{\mathcal{M}}(\mathcal{M}) \\
\simeq \omega_{\mathcal{M}^a} \circ_{\mathcal{A}_M^a} \mathcal{D}'_{\mathcal{M}^a} \circ_{\mathcal{A}_M^a} \mathcal{D}'_{\mathcal{M}^a}[d_X] \\
\simeq \omega_{\mathcal{M}^a} \circ_{\mathcal{A}_M^a} \mathcal{D}'_{\mathcal{M}^a} \circ_{\mathcal{A}_M^a} \mathcal{D}'_{\mathcal{M}^a}(\mathcal{M})[d_X - d_M] \\
\simeq \rho_* \mathcal{D}'_{\mathcal{M}}(\mathcal{M})[d_X - d_M].
\]

Taking the cohomology and using the fact that \(\rho \) : \(\text{Supp}(\mathcal{M}) \rightarrow M \) is finite, we get that
\[
\rho_* \mathcal{E}xt^k_{\mathcal{A}_X}(\mathcal{M}, \mathcal{A}_X) \simeq \mathcal{E}xt^k_{\mathcal{O}_M^b}(\rho_* \mathcal{M}, \mathcal{O}_M^b).
\]

\(\square \)

We will need the following result (see [3, 17]).
Theorem 4.4 (Popescu, Bhatwadekar, Rao). Let R be a regular local ring, containing a field, with maximal ideal m and $t \in m \setminus m^2$. Then every finitely generated projective module over the localized ring $R_t = R[t^{-1}]$ is free.

As a consequence of Proposition 4.3 and Theorem 4.4, we get the analogue for DQ-modules of [13, Proposition 4.6].

Proposition 4.5. Let $M \in \text{Mod}^\rho_{\text{coh}}(\mathcal{A}_X^{\text{loc}})$. The sheaf $\rho_* M$ is locally free over $\mathcal{O}_M^{\text{b,loc}}$.

Proof. The question is local on M and ρ-finite coherent modules are locally good on the base. Then there exists an open covering $(U_i)_{i \in I}$ of M such that for every $i \in I$, $\mathcal{M}|_{\rho^{-1}(U_i)}$ is good. Once, one has restricted \mathcal{M} to such an U_i the proof is exactly the same as in [13, Proposition 4.6]. We include it for the sake of completeness.

By Lemma 3.11, M is holonomic. Then

$$\text{Ext}^k_{\mathcal{A}_X^{\text{loc}}} (M, \mathcal{A}_X^{\text{loc}}) = 0 \quad \text{for} \quad k \neq \frac{d_X}{2}.$$

It follows from Proposition 4.3 that

$$\text{Ext}^k_{\mathcal{O}_M^{\text{b,loc}}} (\rho_* \mathcal{M}, \mathcal{O}_M^{\text{b,loc}}) = 0 \quad \text{for} \quad k \neq 0.$$

By taking the stalk at $m \in M$, we get that

$$(4.5) \quad \text{Ext}^k_{\mathcal{O}_M^{\text{b,loc},m}} (\rho_* \mathcal{M}_m, \mathcal{O}_M^{\text{b,loc},m}) = 0 \quad \text{for} \quad k \neq 0.$$

The ring $\mathcal{O}_M^{\text{b,loc},m}$ is a Noetherian ring with finite global dimension. This combined with equation (4.5) imply that $\rho_* \mathcal{M}_m$ is a finitely generated projective module.

It follows from Theorem 4.4 that $\rho_* \mathcal{M}_m$ is a finitely generated free module. Since $\rho_* \mathcal{M}$ is a coherent $\mathcal{O}_M^{\text{b,loc}}$-module, this implies that $\rho_* \mathcal{M}$ is a locally free sheaf. \square

5. Geometric preliminary

Let X be a complex manifold and Z be a closed analytic subset of X and $p \in X$. We denote by $C_p(Z)$ the tangent cone of Z in X at p. We refer the reader to [24] and [10] for a thorough study of the notion of tangent cone and to [16] for a gentle introduction.

The following result can be found in [19, Ch. III Proposition 1.1.3].

Proposition 5.1. Let X be a complex manifold, let Z be a closed analytic subset of X and let p be a point of X. The set $C_p(Z)$ is a closed analytic (even algebraic) subset of T_pX, conic for the action of \mathbb{C}^* on T_pX.

Lemma 5.2 ([24, Lemma 8.11]). Let X be a complex manifold, let Z be a closed analytic subset of X and $p \in X$. Then $\dim C_p(Z) = \dim_p Z$. If Z is of constant dimension near p then, $C_p(Z)$ is of constant dimension.
We will need the following results which is a special case of \cite[Proposition 3.2.3]{6}.

Proposition 5.3. Let \((X, p)\) be a germ of analytic space, \((Y, q)\) be a germ of complex manifold of dimension \(d_X\) and \(f : (X, p) \to (Y, q)\) be a germ of analytic map. If \(d_p f : (C_p(X), 0) \to (T_q Y, 0)\) is finite, then \(f : (X, p) \to (Y, q)\) is finite.

We will need the following result to prove Proposition 5.5.

Lemma 5.4 (\cite[Lemma 7.3]{11}). Let \(X\) be a complex manifold, \(Y\) be a closed complex subvariety of \(X\) and \(f : X \to \mathbb{C}\) be a holomorphic function. Set \(Z := f^{-1}(0), Y' := (Y \setminus Z) \cap Z\). Consider a \(p\)-form \(\eta\), a \((p-1)\)-form \(\theta\) on \(X\) and set \(\omega = df \wedge \theta + f\eta\).

Assume that \(\omega|_Y = 0\). Then \(\theta|_{Y'} = 0\) and \(\eta|_{Y'} = 0\).

Proposition 5.5. Let \((X, \omega)\) be a symplectic complex manifold, \(\Lambda\) be a closed isotropic analytic subset of \(X\) and \(p \in \Lambda\). The tangent cone \(C_p(\Lambda)\) of \(\Lambda\) at \(p\) is an isotropic subset of the symplectic vector space \((T_p X, \omega_p)\).

Proof. We adapt the proof of \cite[Proposition 7.1]{11} to our needs. Let \((x; u)\) be a local symplectic coordinate system on \(X\) such that
\[p = (0; 0), \quad \omega_p = \sum_{i=1}^{n} du_i \wedge dx_i. \]
Consider the deformation to the normal cone \(\tilde{X}_p\) of \(X\) along \(p\). We have the following diagram
\[
\begin{array}{ccc}
X & \xleftarrow{q} & \tilde{X}_p \\
\downarrow & & \downarrow \\
p & \xleftarrow{q} & q^{-1}(p).
\end{array}
\]
Let \((x; \xi, t)\) be the coordinate system on \(\tilde{X}_p\). Then
\[
q(x; \xi, t) = (x; t\xi),
\]
\[
T_p X \cong \{(x; \xi, t) \in \tilde{X}_p | t = 0\},
\]
\[
C_p(\Lambda) \cong q^{-1}(\Lambda) \setminus t^{-1}(0) \cap t^{-1}(0).
\]
The last isomorphism is a direct consequence of the sequential description of the tangent cone.

Taking the pull-back of \(\omega\) by \(q\), we get
\[
q^* \omega = \sum_{i=1}^{n} d(t\xi_i) \wedge dx_i = dt \wedge (\sum_{i=1}^{n} \xi_i \wedge dx_i) + t \sum_{i=1}^{n} d\xi_i \wedge dx_i.
\]
The form \(q^* \omega\) vanishes on \((q^{-1}(\Lambda))_{\text{reg}}\). Hence, by Lemma \ref{5.4} the form \(\sum_{i=1}^{n} d\xi_i \wedge dx_i\) vanishes on \(C_p(\Lambda)\) which proves the claim.
Proposition 5.6 (\cite{14} Proposition 1.6.1). Let \((E, \omega)\) be a symplectic vector space and let \(\Lambda\) be an isotropic homogeneous analytic subset of \(E\). Then there is a Lagrangian linear subspace \(\lambda\) such that \(\Lambda \cap \lambda \subset \{0\}\).

Corollary 5.7. Let \((E, \omega)\) be a symplectic complex vector space of finite dimension. Let \(\Lambda\) be Lagrangian analytic subset of \(E\) and let \(p\) be a point of \(\Lambda\). Then there exists a linear Lagrangian subspace \(\lambda\) of \(E\) such that \(\lambda \cap C_p(\Lambda) \subset \{0\}\).

Proposition 5.8. Let \((E, \omega)\) be a complex symplectic vector space of finite dimension, let \(U\) be an open subset of \(E\), let \(\Lambda\) be a closed Lagrangian analytic subset of \(U\) and let \(p \in \Lambda\). There exists a linear Lagrangian subspace \(\lambda\) of \(E\), an open neighbourhood \(V\) of \(p\), an open neighbourhood \(M\) of \(\pi_{\lambda}(p)\) the image of \(p\) by the canonical projection \(\pi_{\lambda}: E \to E/\lambda\), such that the map \(\rho := \pi_{\lambda}|_V: V \to M\), is finite when restricted to \(\Lambda \cap V\).

Proof. Since \(U\) is an open subset of a \(E\), we identify \(T_pU\) and \(E\). It follows from Propositions 5.1 that \(C_p(\Lambda)\) is an algebraic subset of \(E\) conic for the action of \(\mathbb{C}^*\) on \(E\). By Proposition 5.7 there exist a Lagrangian linear subspace \(\lambda\) of \(E\) such that \(C_p(\Lambda) \cap \lambda \subset \{0\}\). The quotient map \(\pi_{\lambda}: E \to E/\lambda\) induces a germ of analytic map \(\rho: (\Lambda, p) \to (E/\lambda, \pi_{\lambda}(p))\). We consider the differential \(d_p\pi_{\lambda}: (C_p(\Lambda), 0) \to (E/\lambda, 0)\). Since \(d_p\rho = \pi_{\lambda}\), we have

\[(d_p\rho)^{-1}(0) = \pi_{\lambda}^{-1}(0) \cap C_p(\Lambda) \subset \{0\}\.

Thus, the germ of map \(d_p\rho: (C_p(\Lambda), 0) \to (E/\lambda, 0)\) is finite and \(\dim_p\Lambda = \dim E/\lambda\) which implies that the germ of analytic map \(\rho: (\Lambda, p) \to (E/\lambda, \pi_{\lambda}(p))\) is finite. \(\square\)

6. The codimension-three conjecture

As indicated in the introduction the strategy to prove the codimension-three conjecture for DQ-modules is to reduce the non-commutative statement to a commutative problem where it is possible to apply Theorem 1.3 due to Kashiwara and Vilonen.

6.1. Proof of the Theorem 1.4. The aim of this subsection is to prove the codimension-three conjecture for DQ-modules. Let us recall Theorem 1.4.

Theorem. Let \(X\) be a complex manifold endowed with a DQ-algebroid stack \(\mathcal{A}_X\) such that the associated Poisson structure is symplectic. Let \(\Lambda\) be a closed Lagrangian analytic subset of \(X\), and \(Y\) be a closed analytic subset of \(\Lambda\) such that \(\text{codim}_\Lambda Y \geq 3\). Let \(\mathcal{M}\) be a holonomic \((\mathcal{A}_X^{\text{loc}}|_{\Lambda \setminus Y})\)-module, whose support is contained in \(\Lambda \setminus Y\). Assume that \(\mathcal{M}\) has
an $\mathcal{A}_X|_{X \setminus Y}$-lattice. Then \mathcal{M} extends uniquely to a holonomic module defined on X whose support is contained in Λ.

Let X, Λ, Y and \mathcal{M} as in Theorem [13]. We write $j : X \setminus Y \to X$ for the open embedding of $X \setminus Y$ into X.

6.1.1. *Unicity of the extension.* We prove the unicity of the extensions of \mathcal{M} to X. As in [13], we have

Proposition 6.1. Let \mathcal{M}' be an extension of \mathcal{M}. Then \mathcal{M}' is isomorphic to $j_! \mathcal{M}$.

Proof. Let \mathcal{M}' be an extension of \mathcal{M}. We have the following exact sequence.

$$0 \to H^0_Y(\mathcal{M}') \to \mathcal{M}' \to j_! j^{-1} \mathcal{M}' \to H^1_Y(\mathcal{M}') \to 0.$$

By definition of an extension, $j^{-1} \mathcal{M}' \simeq \mathcal{M}$. The above exact sequence becomes

$$0 \to H^0_Y(\mathcal{M}') \to \mathcal{M}' \to j_! \mathcal{M} \to H^1_Y(\mathcal{M}') \to 0.$$

Since, codim$_\Lambda Y = 3$, it follows by Lemma [2.20] that $H^i_Y(\mathcal{M}') \simeq 0$ for $i = 0, 1$. This implies that $\mathcal{M}' \simeq j_! \mathcal{M}$. \qed

6.1.2. *The support of the extension is Lagrangian.* As in [13], we have

Proposition 6.2. The support of $j_! \mathcal{M}$ is a closed Lagrangian analytic subset of X.

Proof. The module \mathcal{M} is holonomic. Thus, Supp(\mathcal{M}) is a complex analytic Lagrangian subset of $X \setminus Y$ and Supp($j_! \mathcal{M}$) = Supp(\mathcal{M}).

By the Remmert-Stein theorem the set Supp(\mathcal{M}) is a closed analytic subset of X of dimension $d_X/2$ and is isotropic since the closure of an isotropic subset is isotropic. \qed

6.1.3. *Proof of the coherence.* The only thing that remain to prove is that the $\mathcal{A}_X^{\text{loc}}$-module $j_! \mathcal{M}$ is coherent. We will need the following proposition.

Proposition 6.3. Let X be a complex manifold and Y be a closed analytic subset of X and $j : X \setminus Y \to X$ be the inclusion of $X \setminus Y$ into X. If \mathcal{N} is a coherent reflexive $\mathcal{O}_{X \setminus Y}$-module. Then

$$(j_! \mathcal{N})^{\text{loc}} \simeq j_!(\mathcal{N}^{\text{loc}}).$$

Proof. By adjunction between j^{-1} and j_*, we have

$$j^{-1} j_* \mathcal{N} \to \mathcal{N}.$$

Then

$$j^{-1}(\mathcal{C}^h_{X \setminus Y} \otimes j_* \mathcal{N}) \to \mathcal{C}^h_X \otimes \mathcal{N}.$$

Finally we get a canonical map $\phi : (j_! \mathcal{N})^{\text{loc}} \to j_!(\mathcal{N}^{\text{loc}})$.

Since N is reflexive, it has no torsion and in particular no \hbar-torsion. Thus, the morphism ϕ is a monomorphism.

The morphism ϕ is an epimorphism. Indeed, let U be a connected open subset of X and $u \in (j_* (N^{\text{loc}}))(U)$. Locally on $U \setminus Y$, there exist $n \in \mathbb{N}$ such that $\hbar^n u \in N$. Let us show that this is true globally.

Let $\phi_n : N^{\text{loc}} \to N^{\text{loc}}/\hbar^{-n}N$ with $n \in \mathbb{N}$. Assume that there exist $x \in U \setminus Y$ such that $\phi_n(u)_x = 0$. Set $v = \phi_n(u)$. Let us show that $\text{supp}(v)$ is open in $U \setminus Y$. There is the following isomorphism

$$N^{\text{loc}} \setminus \hbar^{-n}N \simeq \bigcup_{m \in \mathbb{N}} \hbar^{-m}N \setminus \hbar^{-n}N.$$

Thus, locally v belongs to some $\hbar^{-m}N \setminus \hbar^{-n}N$. Moreover, the $\hbar^{-m}N \setminus \hbar^{-n}N$ are $\mathcal{O}_{X \setminus Y}$-modules without $\mathcal{O}_{X \setminus Y}$-torsion this implies that the support of their sections is open. Thus, the support of v is a union of open sets which implies that $\text{supp}(v)$ is open. Since Y is a closed analytic subset of U different from U, it follows that $U \setminus Y$ is connected. The support of v is open and closed and is different from $U \setminus Y$. Hence, we have $\text{supp}(v) = \emptyset$. This implies that $u \in \hbar^{-n}N(U \setminus Y)$. It follows that ϕ is an epimorphism.

We now address the question of the coherence of $j_* \mathcal{M}$. Let us briefly recall the setting. We consider a complex symplectic manifold X, Λ is a closed Lagrangian analytic subset of X and Y is a closed analytic subset of Λ such that $\text{codim}_\Lambda Y \geq 3$. The problem of showing that a certain DQ-module is coherent is a local problem. Thus, we just need to work in the neighbourhood U of a point $p \in Y$. As pointed out in [13], we can assume, by working inductively on the dimension of the singular locus of Y that p is a smooth point of Y.

By Proposition 5.8, we know that there exists a Lagrangian linear subspace λ of E, an open neighbourhood V of p in U and an open neighbourhood M of $\pi_\lambda(p)$ in E/λ such that the map $\rho : V \to M$ is finite when restricted to $\Lambda \cap V$. By shrinking U, we can assume that $U = V$ and that Y is smooth. As ρ is an open map we can also assume that $M = \rho(U)$. We set $N = \rho(Y)$, then the map

$$\rho|_Y : Y \to N$$

is an isomorphism. We denote by ρ' the restriction of ρ to $U \setminus \rho^{-1}(N)$, that is

$$\rho' : U \setminus \rho^{-1}(N) \to M \setminus N.$$

Writing $i : U \setminus \rho^{-1}(N) \hookrightarrow U \setminus Y$ for the inclusion, we have the following Cartesian square

$$
\begin{array}{ccc}
U \setminus \rho^{-1}(N) & \xrightarrow{j \circ i} & U \\
\rho' \downarrow & & \downarrow \rho \\
M \setminus N & \xrightarrow{j'} & M.
\end{array}
$$
Let (e1, . . . , en; f1, . . . , fn) of E such that fi ∈ λ for 1 ≤ i ≤ n. Let (x, u) be the coordinates system associated to this basis. Then ρ(x, u) = x. Finally, we can assume that the star-algebra on U is the Moyal–Weil star-algebra since on a symplectic variety all the star-algebras are locally isomorphic. Then we are in the setting of subsection 3.2 and section 4.

We set Y′ = ρ−1(N) and we consider the restriction of M and N to U \ Y′ and still write M and N for their restriction. By assumption M has a lattice N on U \ Y′. Since M is holonomic, it follows from Proposition 2.22 that the module

\[\mathcal{N}' := \mathcal{E}xt^n_{\mathcal{A}_{U\backslash Y'}}(\mathcal{E}xt^n_{\mathcal{A}_{U\backslash Y'}}(N, \mathcal{A}_{U\backslash Y'}), \mathcal{A}_{U\backslash Y'}) \]

with n = dx/2 is a lattice of M. Moreover, using Proposition 4.3 we have the isomorphism

\[\rho'_s\mathcal{N}' \simeq \rho'_s\mathcal{E}xt^n_{\mathcal{A}_{U\backslash Y'}}(\mathcal{E}xt^n_{\mathcal{A}_{U\backslash Y'}}(N, \mathcal{A}_{U\backslash Y'}), \mathcal{A}_{U\backslash Y'}) \]

\[\simeq \mathcal{E}xt^0_{\mathcal{O}^h_{M\backslash N}}(\mathcal{E}xt^0_{\mathcal{O}^h_{M\backslash N}}(\rho'_s\mathcal{N}, \mathcal{O}^h_{M}), \mathcal{O}^h_{M}). \]

Then ρ′sN′ is the dual of a sheaf. Thus, it is reflexive since the dual of a sheaf is always reflexive. By Proposition 3.20, ρ′sN′ is a coherent \(\mathcal{O}^h_{M\backslash N} \)-module. Applying Theorem 1.3 we obtain that \(j'_s\rho'_s\mathcal{N}' \) is a coherent \(\mathcal{O}^h_{M} \)-module. By Proposition 6.3, \((j'_s\rho'_s\mathcal{N})^{\text{loc}} \simeq j'_s((\mathcal{N})^{\text{loc}}) \) and using the projection formula, we have

\[\mathcal{O}^{h,\text{loc}}_{M\backslash N} \otimes \mathcal{O}^h_{M\backslash N} \simeq \rho'_s(\mathcal{A}^{\text{loc}}_{U\backslash Y'}(N, \mathcal{A}_{U\backslash Y'})) \]

\[\simeq \rho'_s\mathcal{M}. \]

We have just shown that the \(\mathcal{B}_M \)-module \(j'_s\rho'_s\mathcal{N}' \) is a \(\mathcal{O}^h_{M} \)-lattice of the \(\mathcal{O}^{h,\text{loc}}_{M} \)-module \(j'_s\rho'_s\mathcal{M} \) and it is also a \(\mathcal{B}_M \)-submodule of \(j'_s\rho'_s\mathcal{M} \). Moreover, we have the following commutative diagram

\[\rho_s(j \circ i)_*\mathcal{M} \xrightarrow{\sim} j'_s\rho'_s\mathcal{M} \]

\[\rho_s(j \circ i)_*\mathcal{N}' \xrightarrow{\sim} j'_s\rho'_s\mathcal{N}'. \]

It follows that \(\rho_s(j \circ i)_*\mathcal{M} \) has a coherent \(\mathcal{O}^h_{M} \)-lattice which is also a \(\mathcal{B}_M \)-submodule of \(\rho_s(j \circ i)_*\mathcal{M} \). By Proposition 5.20 (ii) (b), it follows that \((j \circ i)_*\mathcal{M} \) is coherent.

We consider the analytic set \(Y'' = Y' \cap \Lambda \). Since, the restriction of ρ to Λ is a finite holomorphic map it follows that \(\text{codim}_\Lambda Y'' \geq 3 \). We denote by \(l : U \backslash Y'' \rightarrow U \backslash Y \) the inclusion. We now remember that we had implied the restriction of \(\mathcal{M} \) to \(U \backslash Y' \) i.e. that \(\mathcal{M} \) stands for \(i^{-1}\mathcal{M} \). We claim that \(j_*i_*i^{-1}\mathcal{M} \) and \(j_*\mathcal{M} \) are extensions of \(l^{-1}\mathcal{M} \).
Indeed, by adjunction between i_* an i^{-1} and functoriality of j_*, we get the map
\[j_*i_*i^{-1}M \to j_*M. \]
This leads immediately to the following commutative diagram.
\[
\begin{array}{ccc}
(j \circ l)^{-1}j_*i_*i^{-1}M & \to & (j \circ l)^{-1}j_*M \\
\downarrow & & \downarrow \\
l^{-1}i_*i^{-1}M & \sim & l^{-1}M.
\end{array}
\]
By Proposition 6.1 asserting the unicity of extension in the setting of the codimension-three conjecture, we have that $j_*M \simeq j_*i_*i^{-1}M$ which proves that j_*M is a coherent A^loc_X-module.

6.2. Proof of the Theorem 1.5. The aim of this section is to prove Theorem 1.5. As explained in [13], it is easier to prove an equivalent version of this statement for quotient of a given module. We state this version below.

Theorem 6.4. Let X be a complex manifold endowed with a DQ-algebroid stack A_X such that the associated Poisson structure is symplectic. Let Λ be a closed Lagrangian analytic subset of X, and Y be a closed analytic subset of Λ such that $\text{codim}_X Y \geq 2$. Let M be a holonomic (A^loc_X)-module whose support is contained in Λ and let M_2 be a $A^\text{loc}_X|_{X \setminus Y}$-module which is a quotient of $M|_{X \setminus Y}$. Then $\text{Im}(M \to j_*M_2)$ is a coherent A^loc_X-module.

Proof. The proof is formally the same as the proof of [13, Theorem 5.1]. All the results needed for the DQ-modules version have been proved earlier in this paper. \[\square\]

7. A conjecture of Pierre Schapira

DQ-modules are defined on any complex Poisson manifolds. The two extreme cases of Poisson bracket are on one hand the trivial bracket and on the other hand the case of non-degenerate Poisson brackets that is to say the case of symplectic manifolds. Furthermore, it appears from the proofs of the codimension-three conjecture for holonomic DQ-modules and holonomic microdifferential modules that holonomicity should be thought as a shifted version of reflexivity. Indeed, if M is an holonomic DQ-module over a DQ-algebra A_X, then
\[M \sim \text{Ext}^n_{A^\text{loc}_X} (\text{Ext}^n_{A^\text{loc}_X} (M, A^\text{loc}_X), A^\text{loc}_X). \]

This situation has led to the following conjecture which extends the codimension-three conjecture for DQ-modules on symplectic manifolds to DQ-modules on any complex Poisson manifolds.
Definition 7.1. Let \((X, \mathcal{A}_X)\) be a complex manifold endowed with a DQ-algebroid \(\mathcal{A}_X\) and \(\mathcal{M}\) a coherent \(\mathcal{A}_X\)-module. We say that \(\mathcal{M}\) is \(d\)-reflexive if

(i) \(\mathcal{M}\) has no \(h\)-torsion,
(ii) \(\text{Ext}^j_{\mathcal{A}_X}(\mathcal{M}, \mathcal{A}_X) = 0\) for \(j < d\),
(iii) \(\mathcal{M} \xrightarrow{\sim} \text{Ext}^d_{\mathcal{A}_X}(\text{Ext}^d_{\mathcal{A}_X}(\mathcal{M}, \mathcal{A}_X), \mathcal{A}_X)\).

Conjecture (Schapira). Let \((X, \mathcal{A}_X)\) be a complex manifold endowed with a DQ-algebroid \(\mathcal{A}_X\). Let \(Y\) be a closed complex analytic subset of \(X\) such that \(\text{codim}_X Y \geq d + 3\) and denote by \(j: X \setminus Y \hookrightarrow X\) the open inclusion of \(X \setminus Y\) into \(X\). Let \(\mathcal{M}\) be a coherent \(\mathcal{A}_X|_{X\setminus Y}\)-module. If \(\mathcal{M}\) is \(d\)-reflexive, then \(j_* \mathcal{M}\) is a coherent \(\mathcal{A}_X\)-module.

The proof of the codimension-three conjecture for holonomic DQ-modules cannot be adapted to prove this statement. Indeed, the proof relies on the fact that locally on a complex symplectic manifold there is up to isomorphism only one star-algebra. A possible approach would be to, first prove the theorem for a first order associative deformation of \(\mathcal{O}_X\) and then to extend it to DQ-algebras by techniques similar to the one used in the proof of [13, Theorem 1.6].

8. Appendix

In this appendix, we collect some easy results concerning \(p\)-finite sheaves. We include them for the sake of completeness.

Lemma 8.1. Let \(Y\) and \(Z\) be two Hausdorff spaces, \(X = Y \times Z\), \(p: X \to Y\) be the projection onto \(Y\), \(U\) be an open subset of \(X = Y \times Z\) and \(F\) a closed subset of \(U\) such that \(p|_F\) is closed. Then \(F\) is closed in \(p(U) \times Z\).

Proof. Let \((u_n, v_n)_{n \in \mathbb{N}}\) be a sequence of points of \(F\) converging towards \((l_1, l_2) \in p(U) \times Z\). Since \(p|_F: F \to Y\) is closed, \(p(F)\) is a closed subset of \(Y\). Thus, the limit \(l_1\) of the sequence \((u_n)_{n \in \mathbb{N}}\) belongs to \(p(F)\). Consider \(K = \{u_n\}_{n \in \mathbb{N}} \cup \{l_1\} \subset p(F)\). It is a compact set and \(p|_F\) is continuous thus \(p|_F^{-1}(K)\) is closed. Moreover, for every \(n \in \mathbb{N}\), \((u_n, v_n) \in p|_F^{-1}(K)\). Thus, \((l_1, l_2) \in F\). It follows that \(F\) is closed in \(p(U) \times Z\). \(\square\)

A direct consequence of the above result is the following statement.

Corollary 8.2. Let \(Y\) and \(Z\) be two Hausdorff spaces, \(X = Y \times Z\), \(p: X \to Y\) the projection onto \(Y\), \(U\) an open subset of \(X\) and \(i: U \hookrightarrow p(U) \times Z\) the inclusion of \(U\) into \(p(U) \times Z\). Let \(\mathcal{F}\) be a sheaf of Abelian groups on \(U\) such that \(p|_{\text{Supp}(\mathcal{F})}\) is a finite map. Then \(i_* \mathcal{F}\) is a \(p|_{p(U) \times Z}\)-finite sheaf.

Recall the following elementary result concerning finite maps (see [5, Ch 2 §3]).
Theorem 8.3. Let S be a Hausdorff space and let $f : S \to T$ be a finite map. Let x_1, \ldots, x_t be the distinct points of a fiber $f^{-1}(y)$, $y \in f(S)$ and let U_1', \ldots, U_t' be pairwise disjoint open neighbourhoods of x_1, \ldots, x_t in S. Then any neighbourhood V' of y contains an open neighbourhood V of y with the following properties:

1. $U_1 := U_1' \cap f^{-1}(V), \ldots, U_t := U_t' \cap f^{-1}(V)$ are pairwise disjoint open neighbourhoods of x_1, \ldots, x_t in S.

2. $f^{-1}(V) = \bigcup_{i=1}^t U_j$; in particular $f(U_j) \subset V$ for all j.

3. All of the induced maps $f_{U_j,V} : U_j \to V$ are finite.

Proposition 8.4. Let Y and Z be two Hausdorff spaces, $X = Y \times Z$ and $p : X \to Y$ the projection onto Y. Let R be a sheaf of rings and F be a p-finite sheaf of R-modules on X. Let x_1, \ldots, x_t be the distinct points of a fiber $p|_{\text{Supp}(F)}^{-1}(y)$ with $y \in p|_{\text{Supp}(F)}(\text{Supp}(F))$ and let U_1', \ldots, U_t' be pairwise disjoint open neighbourhoods of x_1, \ldots, x_t in X such that $V' := p(U_i') = \ldots = p(U_t')$. Then there exists $U_i \subset U_i'$ for $1 \leq i \leq t$ pairwise disjoint open neighbourhoods of x_1, \ldots, x_t in X such that $V := p(U_i) = \ldots = p(U_t)$. Let $\gamma_i : U_i \to V \times Z$ the inclusion of U_i into $V \times Z$. Then there is an isomorphism of $R|_{V \times Z}$-module

$$\phi : F|_{V \times Z} \to \prod_{i=1}^t \gamma_i* \gamma_i^{-1}(F|_{V \times Z}).$$

Proof. Let F be a p-finite sheaf of R-modules. We write S for the support of F. It is a closed subset of X. By assumption $p|_S : S \to Y$ is finite. Let x_1, \ldots, x_t be the distinct points of a fiber $p|_S^{-1}(y)$, $y \in p(X)$ and let U_1', \ldots, U_t' be pairwise disjoint open neighbourhoods of x_1, \ldots, x_t in X such that $V' := p(U_1') = \ldots = p(U_t')$. We set $\Omega_i := S \cap U_i'$ for $1 \leq i \leq t$. Then by Theorem 8.3 there exists an open subset V of V' such that

1. $U_i := U_i' \cap p^{-1}(V)$ and $\Omega_i := \Omega_i' \cap p^{-1}(V)$ are pairwise disjoint open neighbourhoods of x_1, \ldots, x_t respectively in X and S.

2. $p^{-1}(V) \cap S = \bigcup_{i=1}^t \Omega_j$ and $p(U_j) = V$ for $1 \leq j \leq t$.

3. All of the induced maps $p_{\Omega_j, V} : \Omega_j \to V$ are finite.

Let $\gamma_i : U_i \to V \times Z$ be the inclusion of U_i into $V \times Z$. The adjunction between γ_i and γ_i^{-1} provides a natural map

$$F|_{V \times Z} \to \gamma_i* \gamma_i^{-1}(F|_{V \times Z}).$$

This induces a map

$$\phi : F|_{V \times Z} \to \prod_{i=1}^t \gamma_i* \gamma_i^{-1}(F|_{V \times Z}).$$

Let $x = (y, z) \in S \cap V \times Z$. Then there exists a unique j_0 such that $x \in \Omega_{j_0} \subset U_{j_0}$. This implies that ϕ_x is an isomorphism.
Now, assume that \(x \in V \times Z \) does not belongs to \(S \cap V \times Z \). For every \(1 \leq i \leq t \), \(\Omega_i \) is closed in \(U_i \) and \(p_{\Omega_i,V} \) is finite. It follows from Lemma \(\textbf{5.1} \) that \(\Omega_i \) is closed in \(V \times Z \). This implies that \(\text{Supp}(\gamma_i^* \gamma_i^{-1}(F|_{V \times Z})) = \Omega_i \). It follows that
\[
\mathcal{F}_x \simeq \prod_{i=1}^{t} [\gamma_i^* \gamma_i^{-1}(F|_{V \times Z})]_x \simeq 0.
\]
It results that \(\phi_x \) is an isomorphism. Thus, \(\phi \) is an isomorphism of sheaves. \(\square \)

\textbf{References}

[1] E. Andronikof. A microlocal version of the Riemann-Hilbert correspondence. \textit{Topol. Methods Nonlinear Anal.}, 4(2):417–425, 1994.

[2] E. Andronikov. Microlocalization of perverse sheaves. \textit{J. Math. Sci.}, 82(6):3754–3758, 1996. Algebra, 3.

[3] S. M. Bhatwadekar and R. A. Rao. On a question of Quillen. \textit{Trans. Amer. Math. Soc.}, 279(2):801–810, 1983.

[4] J. Frisch and J. Guenot. Prolongement de faisceaux analytiques cohérents. \textit{Invent. Math.}, 7:321–343, 1969.

[5] H. Grauert and R. Remmert. \textit{Coherent analytic sheaves}, volume 265 of \textit{Grundlehren der Mathematischen Wissenschaften}. Springer-Verlag, Berlin, 1984.

[6] M. Herrmann, S. Ikeda, and U. Orbanz. \textit{Equimultiplicity and blowing up}. Springer-Verlag, Berlin, 1988. An algebraic study, With an appendix by B. Moonen.

[7] C. Houzel. \textit{Géométrie analytique locale, II. Théorie des morphismes finis}. Séminaire Henri Cartan, 13 no. 2, Exposé No. 19, 1960-1961.

[8] M. Kashiwara. \textit{\(D \)-modules and microlocal calculus}, volume 217 of \textit{Translations of Mathematical Monographs}. American Mathematical Society, Providence, RI, 2003.

[9] M. Kashiwara and R. Rouquier. Microlocalization of rational Cherednik algebras. \textit{Duke Math. J.}, 144(3):525–573, 2008.

[10] M. Kashiwara and P. Schapira. \textit{Sheaves on manifolds}, volume 292 of \textit{Grundlehren der Mathematischen Wissenschaften}. Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel.

[11] M. Kashiwara and P. Schapira. Constructibility and duality for simple holonomic modules on complex symplectic manifolds. \textit{Amer. J. Math.}, 130(1):207–237, 2008.

[12] M. Kashiwara and P. Schapira. \textit{Deformation quantization modules}, volume 345 of \textit{Astérisque}. Soc. Math. France, 2012.

[13] M. Kashiwara and K. Vilonen. Microdifferential systems and the codimension-three conjecture. \textit{ArXiv e-prints}, arXiv:1209.5124, 2012.

[14] M. Kashiwara and T. Kawai. On holonomic systems of microdifferential equations. III. Systems with regular singularities. \textit{Publ. Res. Inst. Math. Sci.}, 17(3):813–979, 1981.

[15] B. Malgrange. \textit{Ideals of differentiable functions}. Tata Institute of Fundamental Research Studies in Mathematics, No. 3. Tata Institute of Fundamental Research, Bombay, 1967.

[16] D. Mumford. \textit{The red book of varieties and schemes}, volume 1358 of \textit{Lecture Notes in Mathematics}. Springer-Verlag, Berlin, 1999.
[17] D. Popescu. On a question of Quillen. *Bull. Math. Soc. Sci. Math. Roumanie (N.S.)*, 45(93)(3-4):209–212 (2003), 2002.

[18] M. Sato, T. Kawai, and M. Kashiwara. Microfunctions and pseudo-differential equations. In *Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau)*, pages 265–529. Lecture Notes in Math., Vol. 287. Springer, Berlin, 1973.

[19] P. Schapira. *Microdifferential systems in the complex domain*, volume 269 of *Grundlehren der Mathematischen Wissenschaften*. Springer-Verlag, Berlin, 1985.

[20] J.-P. Serre. Prolongement de faisceaux analytiques cohérents. *Ann. Inst. Fourier (Grenoble)*, 16(fasc. 1):363–374, 1966.

[21] Y. Siu. Extending coherent analytic sheaves. *Ann. of Math. (2)*, 90:108–143, 1969.

[22] G. Trautmann. Ein Kontinuitätssatz für die Fortsetzung kohärenter analytischer Garben. *Arch. Math. (Basel)*, 18:188–196, 1967.

[23] I. Waschkies. The stack of microlocal perverse sheaves. *Bull. Soc. Math. France*, 132(3):397–462, 2004.

[24] H. Whitney. Tangents to an analytic variety. *Ann. of Math. (2)*, 81:496–549, 1965.

FRANCOIS PETIT, THE MAXWELL INSTITUTE, SCHOOL OF MATHEMATICS, JAMES CLERK MAXWELL BUILDING, THE KING’S BUILDINGS, MAYFIELD ROAD, EDINBURGH, EH9 3JZ, UK.

E-mail address: f.petit@ed.ac.uk