Abstract: The field of stem cell therapeutics is moving ever closer to widespread application in the clinic. However, despite the undoubted potential held by these therapies, the balance between risk and benefit remains difficult to predict. As in any new field, a lack of previous application in man and gaps in the underlying science mean that regulators and investigators continue to look for a balance between minimizing potential risk and ensuring therapies are not needlessly kept from patients. Here, we attempt to identify the important safety issues, assessing the current advances in scientific knowledge and how they may translate to clinical therapeutic strategies in the identification and management of these risks. We also investigate the tools and techniques currently available to researchers during preclinical and clinical development of stem cell products, their utility and limitations, and how these tools may be strategically used in the development of these therapies. We conclude that ensuring safety through cutting-edge science and robust assays, coupled with regular and open discussions between regulators and academic/industrial investigators, is likely to prove the most fruitful route to ensuring the safest possible development of new products.
Concise review: workshop review: understanding and assessing the risks of stem cell-based therapies. Stem Cells Translational Medicine, 4(4):389-400. DOI: https://doi.org/10.5966/sctm.2014-0110
Review

Understanding and assessing the risks of stem cell-based therapies

James A. Heslop2, Thomas G. Hammond3, Ilaria Santeramo4, Agnès Tort Piella5, Isabel Hopp6, Jing Zhou7, Roua Baty8, Enrique I. Graziano8, Bernabé Proto Marco6, Alexis Caron7, Patrik Sköld8, Peter W. Andrews9, Melissa A. Baxter10, David Hay11, Junnat Hamdam12, Michaela E. Sharpe13, Sara Patel14, David R. Jones15, Jens Reinhardt16, Erik H.J. Danen17, Uri Ben-David18, Glyn Stacey19, Petter Bjöquist20, Jacqueline Piner21, John Mills22, Cliff Rowe23, Giovanni Pellegrini24, Swaminathan Sethu25, Daniel J. Antoine2, Michael J. Cross2, Patricia Murray4, Dominic P. Williams26, Neil R. Kitteringham2, Chris E.P. Goldring27 and B. Kevin Park2

1 IMI SafeSIMET, Avenue de la Toison d’Or 56-60 B-1060, Brussels, Belgium
2 MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, the Institute of Translational Medicine, the University of Liverpool, Liverpool L69 3GE, UK
3 Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, Pharmazentrum, University of Basel, Switzerland
4 The Institute of Translational Medicine, the University of Liverpool, Liverpool L69 3GE, UK
5 The Institute of Integrative Biology, the University of Liverpool, Liverpool L69 72B, UK
6 Laboratorios Almirall, S. A. Laurea Miro, 408-410, 08980 Sant Feliu de Llobregat, Barcelona, Spain
7 SANOFI - Research & Development, Disposition, Safety and Animal Research, 3, digue d’Alfortville, 94140 Alfortville, France
8 Uppsala biomedicinska centrum BMC, Husarg. 3 Uppsala University, Sweden
9 Centre for Stem Cell Biology, Department of Biomedical Science, the University of Sheffield, Western Bank, Sheffield, S10 2TN UK
10 Developmental & Regenerative Biomedicine, School of Biomedicine, Faculty of Human and Medical Sciences, 3rd Floor AV Hill, the University of Manchester, Oxford Road, Manchester, M13 9PT, UK
11 MRC Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, U.K
12 Department of Gastroenterology, Hepatology and Infectious diseases, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
13 OakMore Solutions Ltd, Uplees Road, Faversham, Kent, ME13 0QG, U.K
14 ReNeuron Limited, 10 Nugent Road, Surrey Research Park, Guildford, Surrey GU2 7AF, UK
15 Medicines and Healthcare Products Regulatory Agency (MHRA), 151 Buckingham Palace Road, Victoria, London SW1W 9SZ, UK
16 Paul Ehrlich Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
17 Faculty of Science, Leiden Academic Centre for Drug Research, Toxicology, Leiden, Netherlands
18 Stem Cell Unit, Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
19 UK Stem Cell Bank, National Institute for Biological Standards and Control, MHRA, Hertfordshire, EN6 3QG, UK
20 Cellectis AB, Arvid Wallgrens Backe 20, SE-413 46, Göteborg, Sweden
21 GSK, David Jack Centre for R&D, Park Road, Ware, Hertfordshire, SG12 0DP, United Kingdom
22 Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, Cheshire, UK
23 CN-bio Innovations Limited, Centre for Innovation & Enterprise, Oxford University Begbroke Science Park, Begbroke, Oxfordshire, OX5 1PF, UK
24 Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, Zurich, CH-8057
25 School of Bio Sciences & Technology and Centre for Biomaterials Science & Technology, VIT University, Vellore, India. 632014
26 Translational Safety, Drug Safety and Metabolism, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Rd, Cambridge, CB4 0FZ

*These authors contributed equally

†Present address: Cell Therapy Catapult, Biomedical Research Centre, R&D 16th Floor Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT, UK
Abstract

The field of stem cell therapeutics is moving ever closer to widespread application in the clinic. However, despite the undoubted potential held by these therapies, the balance between risk and benefit remains difficult to predict. As in any new field, a lack of previous application in man and gaps in the underlying science mean that regulators and investigators continue to look for a balance between minimizing potential risk and ensuring therapies are not needlessly kept from patients. Here, we attempt to identify the important safety issues, assessing the current advances in scientific knowledge and how these may translate to clinical therapeutic strategies in the identification and management of these risks. We also investigate the tools and techniques currently available to researchers during pre-clinical and clinical development of stem cell products, their utility and limitations and how these tools may be strategically used in the development of these therapies. We conclude that ensuring safety through cutting-edge science and robust assays, coupled with regular and open discussions between regulators and academic/industrial investigators are likely to prove the most fruitful route to ensuring the safest possible development of new products.

Abbreviations: (human/murine) induced pluripotent stem cell, (h/m)iPSC; (human/murine) embryonic stem cell, (h/m)ESC; mesenchymal stem cell, MSC; hematopoietic stem cells, HSCs; adult stem cell, ASC; graft versus host disease, GVHD; major histocompatibility complex; MHC; minor histocompatibility complex, mHC; Oct4, Sox2, Klf4, c-Myc, OSKM; human leukocyte antigen, HLA; Magnetic Resonance imaging, MRI; computed tomography, CT; positron emission tomography, PET; single photon emission computed tomography, SPECT; superparamagnetic iron oxide particles, SPIO; 9-[4-[18F]Fluoro-3-(hydroxymethyl)butyl]guanine, [18F]FHBG; perfluorocarbon, PFC; fluorine-19, 19 F; single nucleotide polymorphism, SNP; Food and drug administration, FDA; Medicines and healthcare products regulatory agency, MHRA. QD, quantum dots; G/RFP, green or red fluorescent protein
I. Introduction

The field of stem cell therapeutics is moving towards widespread clinical application. Whilst it is vital that this development continues, the safety of these therapies must also be considered. Here we outline the known risks of stem-cell therapeutics (Figure S1) and discuss how they can be assessed and managed through preclinical and clinical trials. This review is the output of an IMI SafeSciMET workshop held at the University of Liverpool.

II. Stem cell risk factors

A key issue in the understanding of the safety concerns is the breadth of the human stem cell field, with several cell types falling under the umbrella term of ‘stem cell’:

- **Human embryonic stem cells (h)ESCs** are pluripotent cells, first isolated from human embryos in 1998 by James Thompson.
- **Induced pluripotent stem cells (hiPSCs)** were first reported in 2006 by Shinya Yamanaka, demonstrating the reprogramming of somatic cells from mice and later humans, using 4 transcription factors: Oct4, Sox2, Klf4 and c-Myc (OSKM), to a pluripotent stem cell-like state.
- **Adult stem cell (ASCs)** covers several cell types including mesenchymal and hematopoietic stem cells and tissue-specific progenitors which reside in the human body throughout an individual’s life and in comparison to pluripotent stem cells, generally have a more limited expansion and differentiation capacity.

Some adult stem cell-based therapies are clinically available, such as bone marrow transplants containing hematopoietic stem cells, skin grafts for burns patients, cord blood cells for blood disease therapies and mesenchymal stem cells for graft vs host disease (GVHD) in children (Canada and New Zealand).

Additionally, over 3000 trials associated with stem cells are currently collated in the international clinical trial registry platform (www.who.int/trialsearch). The majority of these are adult stem cell-based therapies, likely attributable to the longer established use of these cells.

The registry also includes the first pluripotent-based therapies to be subjected to clinical trials; table 1 highlights the narrow scope of these hESC-derived therapeutics, with 8 of the 9 treatments associated with macular dystrophy or degeneration. Moreover, the first human trial using hiPSCs has recently been approved for macular degeneration therapy. This is due to the high retinal epithelial cell differentiation purity and the ease of access to the eye for treatment reducing the risk profile of the treatment, making it an ideal starting point for hESC/hiPSC therapies.

Despite the basic technology being in place to produce a wider range of therapies, many aspects of the field, including safety, remain incompletely understood, contributing to the cautious translation from theoretical benefits to clinical application

II.1 Tumorigenic potential

A major concern over the use of stem cell therapies is the perceived risk of tumorigenicity. This is exemplified by the investigation of a brain tumor which had developed in a child four years after being
treated with fetal neural stem cells for ataxia telangiectasia. Subsequent analysis found that the tumor was derived from the transplanted material, thus demonstrating the risks which are associated with stem cell-based therapies.

The capacity for undifferentiated pluripotent stem cells to form teratomas in vivo is of particular concern. Therefore, it is unlikely that any therapy would directly transplant undifferentiated pluripotent stem cells, with in vitro differentiation the most likely route before transplantation. However, the risk remains that not all cells will be fully differentiated. One study showed that despite functional liver engraftment, hESC-derived hepatocyte-like cells transplanted into immunocompromised mice developed splenic and liver tumors containing endodermal and mesodermal cell types. Teratomas have also been shown to be able to form from as little as 0.2% SSEA-1-positive pluripotent cells, demonstrating that, even at high levels of purity, teratoma formation potential remains.

It is therefore vital to prevent undifferentiated cells passing through to the differentiated cell population. Such techniques include small molecules targeting stearoyl-CoA desaturase-1, which selectively causes cell death in undifferentiated iPSC/ESCs. However, the removal of all pluripotent cells cannot be confirmed with current analytical techniques as these are not reliably sensitive enough. Therefore, it is important to take other factors, such as the disease and the number of cells transplanted into account, as this will likely alter the chances of subsequent teratoma formation. Recent work has alleviated some concerns, a non-human primate model for autologous transplants showed that iPSC-derived mesodermal stromal-like cells went on to form functional tissue, without teratoma formation.

Human studies are the only true way to ascertain the teratoma risk in man. The first human studies were conducted by Geron in 2009, using hESC-derived oligodendrocyte progenitor cells for spinal injury treatment. Despite the trials having to be halted for financial reasons, no subsequent reports of tumor formation have emerged in those who were treated. Clinical trials investigating the use of hESC- and iPSC-derived retinal pigmented epithelial cells in macular degeneration are currently ongoing and just starting, respectively, with no tumorigenic safety concerns reported as yet. If successful, these trials are likely to alleviate some of the tumorigenic concerns surrounding pluripotent stem cells.

Pluripotent cells can be cultured indefinitely in vitro, making scale-up production relatively straightforward. However, during expansion the cells are susceptible to chromosomal aberrations and karyotype abnormalities, potentially due to the artificial conditions in which the cells are cultured, increasing the potential for post-transplant malignancy. Pioneering work has investigated these aberrations, commonly found at chromosomes 1, 12, 17 and 20, at higher resolution; however, it remains to be seen if the ‘culprit’ genes can be identified for screening. It is clear that smaller genomic changes also occur, often at a level not readily detected by standard G-banding; the significance of these changes to safety is unclear. Much work has been focused on the removal of pluripotent stem cells from the transplanted material; however techniques which allow for the removal for genotypically compromised cells would be of equal benefit to the therapeutic safety profile. Karyotypic changes are not limited to pluripotent cells, with ASCs also thought to develop abnormalities during in vitro culture; however, these findings have been debated, as demonstrated by the correspondence between Sensebe et al., and Ben-David et al.
iPSCs have additional safety concerns. The development of non-integrative reprogramming techniques, utilizing direct transfection of proteins or mRNAs, Sendai viruses or episomal plasmids, has reduced concerns regarding incomplete promoter silencing and genomic disruptions of traditional techniques37-40. Some have also replaced the oncogenic-associated OSKM factors with Sall4, Nanog, Esrrb, and Lin2841; these factors are thought to be less efficient, but derive higher quality iPSCs with reduced aberrations in histone variant 2A.X, which has been shown to be a key determinant of iPSC/ESC quality and developmental potential42. Others have utilized microRNAs and small molecules to reprogram somatic cells43, 44; however, at the time of writing, these reports are yet to be repeated.

Additional studies investigating the genomic integrity of iPSCs have shown that DNA damage sustained during reprogramming may not be fully repaired in the resulting cells45. Furthermore, reprogramming cord blood cells reduced the number of DNA mutations when compared to patient-derived dermal fibroblasts46, suggesting that reprogramming from neonatal material may be theoretically safer, albeit more challenging to obtain.

II. Immunogenic potential

Maintaining immunological tolerance of stem cell transplants is crucial. Rejection is considered to be due to a mismatch in expression of human leukocyte antigens (HLA), minor histocompatibility complex (mHC) antigens and ABO blood group antigens following allogeneic transplant (Figure S2). Generally, allogeneic matching for both HLA and mHC is not feasible due to extensive polymorphisms.

Undifferentiated ASC immunogenicity studies are particularly important, as, unlike pluripotent cells, they can be administered without differentiation. MSCs have a unique capacity amongst ASCs to modulate the immune response through a HLA-independent47 dampening of inflammatory cytokine release48-50. Additional low HLA-I and no extracellular HLA-II48 alongside little or no expression of B- and T-cell co-stimulatory molecules51, 52 on MSCs, suggest a potential to both modulate and avoid immune surveillance.

Hematopoietic stem cells (HSCs) have also demonstrated some immune avoidance capabilities53, 54. However, HSCs are known to be susceptible to GVHD and can be rejected, representing a major cause of patient morbidity and mortality55. Interestingly, MSCs have been used for the treatment of GVHD (Prochymal49)9, 56, 57. This has led some to suggest that MSCs could be used as part of the stem cell transplant to reduce the potential for graft rejection58 and has been shown to reduce T cell activation in animal models59.

Due to tumorigenic risk, clinical administration of pluripotent stem cells is likely to be in the form of a differentiated population, thus any immunogenic assessment should focus on the resulting cell-type60. It is generally accepted that there is little to no immune rejection in autologous cells, even following in vitro culture. Therefore, research has focused on developing stem cells which are genetically identical to the recipient. Recently, somatic cell nuclear transfer was achieved in humans, allowing for the isolation of hESCs expressing the donor genotype61, 62. However, with mitochondrial DNA from the oocyte unaltered, complete mHC compatibility is unlikely, meaning that immunosuppressant therapy may be required.

iPSC-based therapy remains the most promising technique to realizing pluripotent autologous therapy. Whilst initial reports suggested immunogenicity was still seen in syngeneic transplants63, two
subsequent studies found no evidence of acute or chronic immunogenicity towards differentiated iPSCs (both spontaneous and directed) when the cells were syngeneically administered to mice. Further, de Almeida et al., reported that, in contrast to rejected iPSCs, autologous iPSC-derived endothelial cells were accepted in mice, demonstrating a comparable tolerogenic response to primary endothelial cells. Direct comparison of autologous and allogeneic transplanted iPSC-derived neurons in non-human primates also revealed minimal immune response in autologous transplants; whereas allogeneic transplants were immunogenic. Therefore, current evidence points towards immunological tolerance of autologous terminally differentiated transplanted stem cells.

The timescale and costs associated with personalized therapies may mean that they are used as an alternative option when HLA matching cannot be achieved from stem cell banks containing carefully selected donor cell-lines. A second consideration is for disorders in which their etiology is genetically-linked, and whether patient-derived transplanted material containing the diseased genotype would have therapeutic efficacy; such cases may require gene correction technology, if HLA-type cannot be matched, as shown to be possible in monogenic conditions such as alpha-1-antitrypsin deficiency.

One emerging method of overcoming these issues is through encapsulation of the transplanted cells. This may reduce the risk of tumor formation and immune rejection, whilst maintaining efficacy through the movement of factors (e.g. cytokines) across a semi-permeable membrane. Such techniques are currently being developed for use in diseases such as diabetes and may represent an elegant solution to a complex problem. Notwithstanding the clear potential, the development of such a system is not trivial, and despite sustained efforts and sequential developments, the translation to a clinically effective technology has yet to be achieved.

II.III Biodistribution

Biodistribution encompasses the migration, distribution, engraftment and long term survival of the transplanted material.

Different routes of administration result in differential dissemination patterns; therefore, the appropriate method must be chosen, considering the target pathology and the therapeutic objectives. Systemic administration can lead to cells becoming entrapped in the lung or microvasculature, causing dangerous side-effects, such as the pulmonary embolisms reported following intravenous administration of adipose-tissue derived stem cells. Therefore, the use of vasodilators or the administration in an artery close to the target tissue, have been proposed to reduce these risks.

However, arterial administration may still cause microvascular occlusions and thus, where possible, the ideal delivery method would be directly to the targeted organ/area. Such techniques allow for maximal cell delivery and therapeutic outcome; however, in organs such as the liver or pancreas, the invasive nature of the direct cell transplantation may require thorough risk-benefit assessments.

Successful delivery may result in just 10% viability after transplantation due to physical stress, inflammation, hypoxia or immunogenic rejection, meaning that very high numbers of cells may be required to achieve therapeutic benefit. As cell number increases, so does the potential for engraftment outside of the targeted tissues. It is therefore important to identify the cell location in
order to fully assess the consequences of ectopic engraftment. A recent study of neural stem cells in a rat model of spinal cord injury showed ectopic engraftment 9-10 weeks post-transplant at various points along the spinal cord and brainstem. Due to their size these were hypothesised to have travelled in small numbers via the cerebral spinal fluid, colonized and further proliferated, highlighting the concerns regarding ectopic engraftment, even in a direct transplant model.

The half-life of the transplanted material is another factor which can alter the level of risk. If short, the risk associated with the transplanted material is reduced accordingly. However, if the transplant does not have a capacity for long term survival and thus suffers from a loss of efficacy, chronic diseases may require repeated administration and thus an understanding of the likely dosing regime is another key consideration for risk assessment.

II. Pre-clinical and clinical assessment

One of the major limitations of stem cell therapeutics is the heterogeneous character and limited experience of their development. Consequently, there is currently no specific European (European Medicines Agency, EMA) or UK (Medicines and Healthcare Products Regulatory Agency, MHRA) regulatory guidance that addresses technical aspects of the drug development program in detail, e.g. type, size and duration of non-clinical studies.

Regulators have attempted to address these problems by drafting guidelines and reflection papers, whenever the necessity becomes apparent. The “Guideline on human cell-based medicinal products (EMEA/CHMP/410869/2006)” was adopted in 2008, before the unifying regulation on advanced therapy a medicinal product came into force, and gives a generic overview on the requirements for the licensing of cell-based medicinal products; however, the information provided is not very detailed. A subsequent reflection paper on stem cell-based medicinal products (CAT/571134/09) was adopted in 2011, focusing more specifically on stem-cell based medicinal products and also discusses the experiences gained with cell-based products, including a summary of the challenges associated with biodistribution and immunogenicity studies. However, since no detailed requirements are defined, the applicant is still required to implement an appropriate development program that addresses the product-specific risks.

It is highly advisable that any institution aiming to initiate the development of a new product engages in early, open discussions with the regulatory bodies. Most regulatory agencies develop structures to facilitate the interaction with developers (e.g. the MHRA innovation office and the EMA innovation task force) and may provide scientific advice based on the concepts and already existing data to assist the product development process.

For the development of advanced therapy medicinal products, a risk-based approach can be used as a matrix to decide which non-clinical data are needed based on the risk of the medicinal product. This is an optional pathway determined by the product developer, which encompasses the identification of the potential intrinsic (cell-related) and extrinsic (manufacture-related) risks associated with the medicinal product and the subsequent development and implementation of the appropriate assays to assess these risks.
This is further outlined in the “Guideline on the risk-based approach according to annex I, part IV of Directive 2001/83/EC applied to advanced therapy medicinal products” (EMA/CAT/CPWP/686637/2011). The annex of the guideline provides some non-exhaustive examples to better illustrate this concept. Likewise, (non-binding) guidance documents are also provided by the Food and Drug Administration (FDA) in the USA.

The importance of regulation is highlighted by the report on the unregulated use of fetal brain-derived olfactory ensheathing cells for the treatment for spinal cord injuries. The authors found little-to-no benefit from the treatment and complications, including meningitis and reports of patient mortality. Whilst this is an extreme example, many unregulated stem cell treatments are now available across the world (well reviewed by Zarzeczny et al., 91). In 2011, Celltex® began offering ASC-based therapies in Texas, USA without FDA approval, igniting debate about the regulation of stem cell therapeutics. Subsequently, the FDA has won a recent court battle to regulate proliferated stem cells as biological drugs and documents encapsulating these new regulatory powers are in preparation.

III.1 Tumorigenic and immunogenic pre-clinical and clinical trials/assays

In terms of both tumor- and immunogenicity, risk is increased when the model is not predictive, so it is important to match the targeted disease phenotype to the animal or in vitro assay. Traditional medicinal product development routes may be appropriate (i.e. going from simple to complex, in vitro to in vivo and animal to human). However, some therapies may require multi-model studies to provide the fullest understanding of both efficacy and safety, whilst other therapies may not require an animal model as there may be little relevance. Future pre-clinical assessments may also use iPSC-derived cells as a source of a diseased phenotype as the most clinically relevant assay of therapeutic safety and efficacy.

Tumorigenicity assays

The tumorigenic potential of cell-based therapies needs to be assessed throughout product development. In vitro techniques, such as karyotyping, can be used to assess genomic integrity with regard to duplications, translocations and other chromosomal aberrations. More in-depth investigations may be required detect smaller changes; however, without known associated changes, attributing risk is difficult. Immune-deficient rodent models may be used to assess the tumorigenic potential of the transplanted material. Deep tissue assessment by q-PCR or histopathological analysis is usually required to confirm ectopic tumor formation, but future investigations may utilize improvements in real-time cell tracking for greater information with regard to tumor location/development, particularly in clinical trials. These techniques are evaluated in table 2.

Additionally, a recent study showed that whilst teratomas were formed in immune-deficient models, immune-competent models rejected autologous iPSCs; therefore formation of a human iPSC-derived teratoma in an immune-deficient pre-clinical model may not always translate to the clinical situation. The xenogeneic nature of such transplants may consequently require pre-clinical studies using syngeneic/allogeneic species-specific transplants before the development of human equivalents.

Immunogenicity assays
Developing relevant immunogenicity assays remains challenging. Early in product development, using the equivalent therapy in a different species for autologous or allogeneic investigations, as shown by Morizane et al67, may provide the most informative results, if technically and financially viable.

Immune-competent and immune-deficient in vivo models lack immunogenic clinical relevance for human cells in most situations; however, in some cases they can provide useful information:

- Immune-competent models may be used to investigate the use of stem cells in immune-privileged locations, such as the eye12 or as a model of allogeneic transplants.
- Immune-deficient animals varying in the extent of immune-depletion (i.e. loss of specific immune cell types) may be useful in investigating specific mechanisms of rejection97.
- Humanized models, such as the trimera mouse, have human immune cells, improving relevance98. However, such models would again be limited to allogeneic investigations.

It is important to recognize that species differences and xenogeneic transplantation are likely to cause species-dependent translational issues in all discussed in vivo models99, potentially making in vitro assays, such as mixed lymphocyte reactions, more informative of the final human-based product.

III.II Biodistribution in pre-clinical and clinical trial/assays

Biodistribution informs both the efficacy and safety of the treatment. Whilst histopathology and PCR remain the gold standard for assessing deep tissues, here we focus on cell labelling due to its ability to monitor cell distribution/migration in real-time100. Such techniques are important for ascertaining the migratory/distribution patterns and are also informative in a tumorigenic (ectopic tumor formation) and immunogenic (loss of cells through immune rejection) context.

Cellular imaging strategies are composed of the imaging technique and the labelling agent (figure S3). The imaging technique is usually chosen in conjunction with the labelling agent, which can be classified in two main categories: direct and indirect labelling101, summarized in table 3.

Direct Labelling

Direct labelling requires the introduction of the labelling agents into the cells before transplantation. The number of molecules introduced into the cell is then used as a surrogate for cell number.

Radionuclides used for cell imaging have different physical half-lives, determining the length of time cells can be monitored non-invasively100; these are mainly detected using single photon emission computed tomography (SPECT) and/or positron emission tomography (PET; table 3). Studies have shown as little as $6.2 \times 10^3-2.5 \times 10^4$ cells can be detected using these methods102. However, short radionuclide half-lives mean that cell-tracking is limited to hours rather than weeks. Indium-111 oxine has a relatively long half-life (~2.8 days)102 and has been shown to successfully track MSCs in preclinical models for up to 7 days103; however, signal leakage and alteration of cell phenotype limits translatability104. Clinically, hematopoietic stem cells labelled with 18F-FDG for acute and chronic myocardial infarction treatment were successfully tracked by PET after 20 hours105.

The use of iron oxide-labelling for MRI is non-ionizing and makes it possible to trace the cells over longer periods of time106. The most common labelling agent in pre-clinical/clinical trials is superparamagnetic iron oxide particles (SPIO), which offers the highest sensitivity and has been used...
to track neural stem cells in a patient for up to 3 weeks107. Generally, MRI has lower sensitivity than SPECT/PET. The number of cells used for SPIO tracking in man ranges from 3.71×10^5 to 17.4×10^6 cells108 whilst de Vries et al were able to detect 1.5×10^5 dendritic cells \textit{in vivo}109.

Alternatively, Perfluorocarbon (PFC) probes and contrast agent Fluorine-19 (19 F) can be used to label cells110. The low signal-to-noise ratio and the absence of background make the quantification of pool of cells feasible. The amount of 19 F typically varies between 10^{11} and 10^{13} per cell, potentially dependent on the cytoplasmic volume. Empirically, is has been estimated that the minimum sensitivity of cell detection would be $10^4 - 10^5$ cells per voxel (value in a tri-dimensional grid)110. This system has been successfully exploited to monitor stem cells therapies111-113 and are promising for clinical applications110 with some PFC and Fluorine-19 approved by the FDA114.

Indirect Labelling

Indirect labelling is the introduction of a reporter gene encoding for a fluorescent protein or a product recognizable by a reporter probe18. This system is highly controllable because only viable cells are able to transcribe the reporter gene115.

In MRI-based gene reporter systems, the transduced gene is typically an intracellular metalloprotein (e.g. transferrin, ferritin, tyrosinase), that traps large quantities of iron in the cytoplasm for non-invasive detection100, 115. However, the trapped iron produces long-term background which masks the viability of the cell102. Some have therefore suggested that the only transduced gene currently suitable for MRI cell tracking is Lysine-rich protein116.

In the SPECT and PET reporter gene imaging systems, a gene reporter (enzyme or receptor) requires an exogenously administered probe (tracer) to allow the localization and quantification of the stem cell product.

The most commonly used PET/SPECT reporter gene systems are:

- Intracellular enzymes (e.g. herpes simplex virus 1 thymidine kinase) (PET/SPECT).
- Mutant form of a dopamine receptor, a cell membrane protein that binds the radionuclide probe (3-(2'-[18F]-fluoroethyl)-spiperone)(PET).
- Sodium-iodide symporter, a thyroid transmembrane protein, which transports iodine into the cell (PET and SPECT).

A number of groups successfully monitored ESCs117 and MSCs118, 119 in animal models, using gene reporter systems. These studies reported a reliable correlation in terms of localization, magnitude and duration of the cells in vivo when compared to conventional methods (immunohistochemistry and PCR). The short half-life of the probes allows a defined continuous imaging period of no more than a few hours117. However, being non-invasive, monitoring of the stem cells at regular intervals was possible for up to 4 weeks117-119. Quantitative information can be extrapolated from the percentage of injected radioisotope/gram of tissue, allowing for the quantification of the area(s) covered by the cells, but not the exact cell number118.

The use of indirect labelling is rare in a clinical setting as genomic alterations are required120. However, the FDA has approved the PET reporter probe 9-[4-[18F] Fluoro-3-(hydroxymethyl) butyl]guanine ([18F]FHBG; IND #61,880)121 for the treatment of grade IV of glioblastoma multiforme. The group
successfully tracked the T-cells and also reported $[^{18}\text{F}]$FHBG accumulation in the cytolytic T-cells\(^\text{121}\), with no significant adverse effects\(^\text{122}\). Guidelines on how to administer and safely monitor $[^{18}\text{F}]$-FHBG in humans have been made available\(^\text{123}\).

Optical imaging techniques are limited by exponential signal loss as depth increases, caused by scattering phenomena that occur when photons pass through the tissue\(^\text{100, 115}\). Photoacoustic tomography overcomes this problem. A short laser pulse irradiates the target tissue, causing a partial absorption of the pulse energy and conversion into heat. This increases local pressure through thermo-elastic waves and is subsequently detected by ultrasonic transducers placed outside the tissue. The image is generated by collecting all thermo-elastic waves from the arrival time\(^\text{124, 125}\). Such technology has been used to track human MSCs labeled with gold nanocages in a rodent model successfully for 7 days\(^\text{126}\).

III. Other risks associated with the translation to the clinic

Stem cells are not static products; consequently, cell culture and manufacturing conditions may introduce immunogenic alterations. For example, fetal bovine serum and sialic acid derivative Neu5G, found in stem cell culture conditions, have both been shown to alter the immunogenicity of stem cells\(^\text{127, 128}\). Therefore, certified animal component-free products should be used wherever possible.

Good Manufacturing Practice must also be followed, as well as microbiological control of clinical grade stem cell products and aspects of viral safety and other contaminants. Similar practices should be applied to pre-clinical research in order to allow predictable translation of therapies to the clinic. Despite highly-controlled conditions in both cell preparations and clinical settings, infections (commonly respiratory-related) remain a risk for patients who have received allogeneic stem cell transplants which require immune-suppression therapy\(^\text{129}\). Further, the donor viral status must also be assessed, with screening for hepatitis and HIV commonplace in HSC transplants\(^\text{130}\).

Scaffolds, aiding engraftment or delivery of cells, should also be considered for immunological potential. Such devices have been used to improve the survival of MSCs in brain injury models\(^\text{131, 132}\) and some groups are attempting to use decellularized organs\(^\text{133}\) as 3D scaffolds for stem cell-derived repopulation\(^\text{134-136}\). Biological scaffolds offer greater similarity to the host extracellular matrix, improving engraftment; however, they are usually xenogeneic/allogeneic in origin\(^\text{137}\) and thus have immunogenic potential. Various techniques have been used in an attempt to remove/mask antigenic epitopes, DNA and damage-associated molecular pattern signals\(^\text{138-141}\). However, a comparative rodent study demonstrated that across 5 commercially available scaffolds, differential immunogenic responses were found, including chronic inflammation and fibrous tissue, all of which differed from an autologous control\(^\text{142}\).

Scaffolds derived from synthetic origin are generally considered to be less immunogenic. Several synthetic biodegradable polymers have been approved by the FDA for medical applications\(^\text{143-145}\), and consequently may be used in the same site without further safety assessment. However, novel materials/uses are required to undergo safety testing in compliance with the ISO 10993 International Standard (ISO 10993: Biological evaluation of medical devices).

IV. Conclusions
Stem cell therapies have the potential to offer alleviation from a range of chronic and debilitating diseases. Despite continued advances, much work remains in understanding and reducing the risks associated with stem cell therapeutics.

Improvements in *in vitro* techniques are required, such as gene aberration-free expansion and improved differentiation purity alongside the identification of risk factors which can be routinely screened before transplantation. Further, models which can better predict immunological responses and cell imaging techniques with increased duration and depth capabilities would also be beneficial.

However, this work must remain focused on the clinical outcome. The most important consideration is the risk-benefit assessment for the patient as whilst the cells, like many drugs, may not be perfectly safe, the patient benefit may far outweigh the potential risks. Therefore, each treatment should be determined on a case-by-case basis with regulatory input, ensuring that the risk of the therapy is appropriate for the given condition and patient.

Acknowledgements

The review article was supported by the SafeSciMet programme, a European Community project under the Innovative Medicines Initiative (IMI) Programme through Grant Agreement number 115012. Additional support was provided by the Medical Research Council Centre for Drug Safety Science (grant number G0700654) and the UK Regenerative Medicine Platform Safety Hub (grant number MR/K026739/1).

References

1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. *Science*. 1998;282:1145-1147.
2. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. *Cell*. 2006;126:663-676.
3. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. *Cell*. 2007;131:861-872.
4. Sarugaser R, Hanoun L, Keating A, et al. Human Mesenchymal Stem Cells Self-Renew and Differentiate According to a Deterministic Hierarchy. *PLoS ONE*. 2009;4:e6498.
5. Huber TL. Dissecting hematopoietic differentiation using the embryonic stem cell differentiation model. *Int J Dev Biol*. 2010;54:991-1002.
6. Copelan EA. Hematopoietic Stem-Cell Transplantation. *New England Journal of Medicine*. 2006;354:1813-1826.
7. Gallico GG, O’Connor NE, Compton CC, et al. Permanent Coverage of Large Burn Wounds with Autologous Cultured Human Epithelium. *New England Journal of Medicine*. 1984;311:448-451.
8. Chao NJ, Emerson SG, Weinberg KI. Stem Cell Transplantation (Cord Blood Transplants). ASH Education Program Book. 2004;2004:354-371.
9. Zheng G-P, Ge M-H, Shu Q, et al. Mesenchymal stem cells in the treatment of pediatric diseases. World J Pediatr. 2013;9:197-211.
10. Cyranoski D. Next-generation stem cells cleared for human trial. Nature. 2014.
11. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713-720.
12. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nature reviews. Immunology. 2003;3:879-889.
13. Amariglio N, Hirshberg A, Scheithauer BW, et al. Donor-Derived Brain Tumor Following Neural Stem Cell Transplantation in an Ataxia Telangiectasia Patient. PLoS Med. 2009;6:e1000029.
14. Andrews PW, Matin MM, Bahrami AR, et al. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochemical Society transactions. 2005;33:1526-1530.
15. Payne CM, Samuel K, Pryde A, et al. Persistence of functional hepatocyte-like cells in immune-compromised mice. Liver International. 2011;31:254-262.
16. Fujikawa T, Oh S-H, Pi L, et al. Teratoma Formation Leads to Failure of Treatment for Type I Diabetes Using Embryonic Stem Cell-Derived Insulin-Producing Cells. The American Journal of Pathology. 2005;166:1781-1791.
17. Ben-David U, Gan QF, Golan-Lev T, et al. Selective Elimination of Human Pluripotent Stem Cells by an Oleate Synthesis Inhibitor Discovered in a High-Throughput Screen. Cell Stem Cell. 2013;12:167-179.
18. Nguyen PK, Nag D, Wu JC. Methods to assess stem cell lineage, fate and function. Advanced drug delivery reviews. 2010;62:1175-1186.
19. Hong So G, Winkler T, Wu C, et al. Path to the Clinic: Assessment of iPSC-Based Cell Therapies In Vivo in a Nonhuman Primate Model. Cell Reports. 2014.
20. Alper J. Geron gets green light for human trial of ES cell-derived product. Nat Biotech. 2009;27:213-214.
21. Frantz S. Embryonic stem cell pioneer Geron exits field, cuts losses. Nat Biotech. 2012;30:12-13.
22. Sverdlov ED, Mineev K. Mutation rate in stem cells: an underestimated barrier on the way to therapy. Trends in Molecular Medicine. 2013;19:273-280.
23. Amps K, Andrews PW, Anyfantis G, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology. 2011;29:1132-1144.

24. Ben-David U, Benvenisty N. High Prevalence of Evolutionarily Conserved and Species-Specific Genomic Aberrations in Mouse Pluripotent Stem Cells. Stem Cells. 2012;30:612-622.

25. Fazeli A, Liew CG, Matin MM, et al. Altered patterns of differentiation in karyotypically abnormal human embryonic stem cells. International Journal of Developmental Biology. 2011;55:175-180.

26. Hovatta O, Jaconi M, Töhönen V, et al. A Teratocarcinoma-Like Human Embryonic Stem Cell (hESC) Line and Four hESC Lines Reveal Potentially Oncogenic Genomic Changes. PLoS ONE. 2010;5:e10263.

27. Lund RJ, Nikula T, Rahkonen N, et al. High-throughput karyotyping of human pluripotent stem cells. Stem Cell Research. 2012;9:192-195.

28. Mayshar Y, Ben-David U, Lavon N, et al. Identification and Classification of Chromosomal Aberrations in Human Induced Pluripotent Stem Cells. Cell stem cell. 2010;7:521-531.

29. Närvä E, Autio R, Rahkonen N, et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nature Biotechnology. 2010;28:371-377.

30. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews Cancer. 2011;11:268-277.

31. Ben-David U, Mayshar Y, Benvenisty N. Large-Scale Analysis Reveals Acquisition of Lineage-Specific Chromosomal Aberrations in Human Adult Stem Cells. Cell stem cell. 2011;9:97-102.

32. Hyka-Nouspikel N, Desmarais J, Gokhale PJ, et al. Deficient DNA Damage Response and Cell Cycle Checkpoints Lead to Accumulation of Point Mutations in Human Embryonic Stem Cells. Stem Cells. 2012;30:1901-1910.

33. Draper JS, Smith K, Gokhale P, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol. 2004;22:53-54.

34. Lee AS, Tang C, Rao MS, et al. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nature medicine. 2013;19:998-1004.

35. Sensebé L, Tarte K, Galipeau J, et al. Limited acquisition of chromosomal aberrations in human adult mesenchymal stromal cells. Cell Stem Cell. 2012;10:9-10.

36. Ben-David U, Mayshar Y, Benvenisty N. Significant Acquisition of Chromosomal Aberrations in Human Adult Mesenchymal Stem Cells: Response to Sensebé et al. Cell Stem Cell. 2012;10:10-11.
37. González F, Boué S, Belmonte JCI. Methods for making induced pluripotent stem cells: Reprogramming à la carte. Nature Reviews Genetics. 2011;12:231-242.
38. Warren L, Manos PD, Ahfeldt T, et al. Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell stem cell. 2010;7:618-630.
39. Kim D, Kim C-H, Moon J-I, et al. Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell stem cell. 2009;4:472-476.
40. Fusaki N, Ban H, Nishiyama A, et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85:348-362.
41. Buganim Y, Markoulaki S, van Wietmarschen N, et al. The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection. Cell Stem Cell. 2014;15:295-309.
42. Wu T, Liu Y, Wen D, et al. Histone Variant H2A.X Deposition Pattern Serves as a Functional Epigenetic Mark for Distinguishing the Developmental Potentials of iPSCs. Cell Stem Cell. 2014;15:281-294.
43. Miyoshi N, Ishii H, Nagano H, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 2011;8:633-638.
44. Hou P, Li Y, Zhang X, et al. Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds. Science. 2013;341:651-654.
45. González F, Georgieva D, Vanoli F, et al. Homologous Recombination DNA Repair Genes Play a Critical Role in Reprogramming to a Pluripotent State. Cell Reports. 2013;3:651-660.
46. Su R-J, Yang Y, Neises A, et al. Few Single Nucleotide Variations in Exomes of Human Cord Blood Induced Pluripotent Stem Cells. PLoS ONE. 2013;8:e59908.
47. Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandinavian journal of immunology. 2003;57:11-20.
48. Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental hematology. 2003;31:890-896.
49. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815-1822.
50. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental hematology. 2002;30:42-48.
51. Majumdar MK, Keane-Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. Journal of biomedical science. 2003;10:228-241.

52. Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75:389-397.

53. Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138:271-285.

54. Zheng J, Umikawa M, Zhang S, et al. Ex vivo expanded hematopoietic stem cells overcome the MHC barrier in allogeneic transplantation. Cell Stem Cell. 2011;9:119-130.

55. Locatelli F, Lucarelli B, Merli P. Current and future approaches to treat graft failure after allogeneic hematopoietic stem cell transplantation. Expert opinion on pharmacotherapy. 2014;15:23-36.

56. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439-1441.

57. Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371:1579-1586.

58. Kim EJ, Kim N, Cho SG. The potential use of mesenchymal stem cells in hematopoietic stem cell transplantation. Experimental & molecular medicine. 2013;45:e2.

59. Maitra B, Szekely E, Gjini K, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone marrow transplantation. 2004;33:597-604.

60. Draper JS, Pigott C, Thomson JA, et al. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. Journal of anatomy. 2002;200:249-258.

61. Tachibana M, Amato P, Sparman M, et al. Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Cell. 2013;153:1228-1238.

62. Chung Young G, Eum Jin H, Lee Jeoung E, et al. Human Somatic Cell Nuclear Transfer Using Adult Cells. Cell Stem Cell. 2014;14:777-780.

63. Zhao T, Zhang ZN, Rong Z, et al. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212-215.

64. Guha P, Morgan JW, Mostoslavsky G, et al. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12:407-412.

65. Araki R, Uda M, Hoki Y, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature. 2013;494:100-104.
66. de Almeida PE, Meyer EH, Koooreman NG, et al. Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat Commun. 2014;5.

67. Morizane A, Doi D, Kikuchi T, et al. Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in the Brain of a Nonhuman Primate. Stem Cell Reports. 2013;1:283-292.

68. Taylor CJ, Bolton EM, Pocock S, et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366:2019-2025.

69. Taylor Craig J, Peacock S, Chaudhry Afzal N, et al. Generating an iPSC Bank for HLA-Matched Tissue Transplantation Based on Known Donor and Recipient HLA Types. Cell stem cell. 2012;11:147-152.

70. Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nature Biotechnology. 2008;26:739-740.

71. Yusa K, Rashid ST, Strick-Marchand H, et al. Targeted gene correction of alpha-1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011;478:391-394.

72. Zhang W, Zhao S, Rao W, et al. A novel core-shell microcapsule for encapsulation and 3D culture of embryonic stem cells. Journal of Materials Chemistry B. 2013;1:1002-1009.

73. Salick M, Boyer R, Koonce C, et al. Differentiation of Human Embryonic Stem Cells Encapsulated in Hydrogel Matrix Materials. In: Proulx T, ed. Experimental and Applied Mechanics, Volume 6: Springer New York; 2011:415-421.

74. Tuch BE, Hughes TC, Evans MDM. Encapsulated pancreatic progenitors derived from human embryonic stem cells as a therapy for insulin-dependent diabetes. Diabetes/Metabolism Research and Reviews. 2011;27:928-932.

75. Schulz TC, Young HY, Agulnick AD, et al. A Scalable System for Production of Functional Pancreatic Progenitors from Human Embryonic Stem Cells. PLoS ONE. 2012;7:e37004.

76. Lee SH, Hao E, Savinov AY, et al. Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies. Transplantation. 2009;87:983-991.

77. Kirk K, Hao E, Lahmy R, et al. Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape. Stem Cell Research. 2014;12:807-814.

78. Freimark D, Pino-Grace P, Pohl S, et al. Use of Encapsulated Stem Cells to Overcome the Bottleneck of Cell Availability for Cell Therapy Approaches. Transfusion medicine and
hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie. 2010;37:66-73.

79. Moscoso I, Barallobre J, de Ilarduya OM, et al. Analysis of different routes of administration of heterologous 5-azacytidine-treated mesenchymal stem cells in a porcine model of myocardial infarction. Transplantation proceedings. 2009;41:2273-2275.

80. Li L, Jiang Q, Ding GL, et al. Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study. J Cerebr Blood F Met. 2010;30:653-662.

81. Jung JW, Kwon M, Choi JC, et al. Familial Occurrence of Pulmonary Embolism after Intravenous, Adipose Tissue-Derived Stem Cell Therapy. Yonsei Med J. 2013;54:1293-1296.

82. Schrepfer S, Deuse T, Reichenspurner H, et al. Stem Cell Transplantation: The Lung Barrier. Transplantation proceedings. 2007;39:573-576.

83. Syková E, Jendelová P, Urdzíková L, et al. Bone marrow stem cells and polymer hydrogels - Two strategies for spinal cord injury repair. Cellular and Molecular Neurobiology. 2006;26:1113-1129.

84. Walczak P, Zhang J, Gilad AA, et al. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008;39:1569-1574.

85. Bacou F, Boubaker El Andalousi R, Daussin PA, et al. Transplantation of Adipose Tissue-Derived Stromal Cells Increases Mass and Functional Capacity of Damaged Skeletal Muscle. Cell Transplant. 2004;13:103-111.

86. Steward O, Sharp Kelli G, Matsudaira Yee K. Long-Distance Migration and Colonization of Transplanted Neural Stem Cells. Cell. 2014;156:385-387.

87. Goldring CE, Duffy PA, Benvenisty N, et al. Assessing the safety of stem cell therapeutics. Cell Stem Cell. 2011;8:618-628.

88. Hyun I, Lindvall O, Ährlund-Richter L, et al. New ISSCR Guidelines Underscore Major Principles for Responsible Translational Stem Cell Research. Cell stem cell. 2008;3:607-609.

89. Halme DG, Kessler DA. FDA regulation of stem-cell-based therapies. The New England journal of medicine. 2006;355:1730-1735.

90. Dobkin BH, Curt A, Guest J. Cellular Transplants in China: Observational Study from the Largest Human Experiment in Chronic Spinal Cord Injury. Neurorehabilitation and Neural Repair. 2006;20:5-13.

91. Zarzeczny A, Caulfield T, Ogbogu U, et al. Professional Regulation: A Potentially Valuable Tool in Responding to “Stem Cell Tourism”. Stem Cell Reports.3:379-384.

92. Cyranoski D. Stem cells in Texas: Cowboy culture. Nature. 2013;494:166-168.
93. Cyranoski D. FDA's claims over stem cells upheld. Nature. 2012;487:14.
94. Nature News. Biomedical briefing. Nature medicine. 2014;20:226-227.
95. MacIsaac ZM, Shang H, Agrawal H, et al. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells. Experimental cell research. 2012;318:416-423.
96. Kanemura H, Go MJ, Shikamura M, et al. Tumorigenicity Studies of Induced Pluripotent Stem Cell (iPSC)-Derived Retinal Pigment Epithelium (RPE) for the Treatment of Age-Related Macular Degeneration. PLoS ONE. 2014;9:e85336.
97. Sharpe ME, Morton D, Rossi A. Nonclinical safety strategies for stem cell therapies. Toxicol Appl Pharmacol. 2012;262:223-231.
98. Reisner Y, Dagan S. The Trimera mouse: generating human monoclonal antibodies and an animal model for human diseases. Trends in biotechnology. 1998;16:242-246.
99. Macchiarini F, Manz MG, Palucka AK, et al. Humanized mice: are we there yet? The Journal of experimental medicine. 2005;202:1307-1311.
100. Rodriguez-Porcel M, Wu JC, Gambhir SS. Molecular imaging of stem cells. StemBook. Cambridge (MA); 2008.
101. Kuchmiy AA, Efimov GA, Nedospasov SA. Methods for in vivo molecular imaging. Biochemistry. Biokhimia. 2012;77:1339-1353.
102. Kraitchman DL, Bulte JW. In vivo imaging of stem cells and Beta cells using direct cell labeling and reporter gene methods. Arteriosclerosis, thrombosis, and vascular biology. 2009;29:1025-1030.
103. Kraitchman DL, Tatsumi M, Gilson WD, et al. Dynamic Imaging of Allogeneic Mesenchymal Stem Cells Trafficking to Myocardial Infarction. Circulation. 2005;112:1451-1461.
104. Brenner W, Aicher A, Eckey T, et al. 111In-Labeled CD34+ Hematopoietic Progenitor Cells in a Rat Myocardial Infarction Model. Journal of Nuclear Medicine. 2004;45:512-518.
105. Kang WJ, Kang HJ, Kim HS, et al. Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2006;47:1295-1301.
106. McColgan P, Sharma P, Bentley P. Stem Cell Tracking in Human Trials: A Meta-Regression. Stem Cell Rev Rep. 2011;7:1031-1040.
107. Zhu J, Zhou L, XingWu F. Tracking neural stem cells in patients with brain trauma. The New England journal of medicine. 2006;355:2376-2378.
108. Zhang WY, Ebert AD, Narula J, et al. Imaging cardiac stem cell therapy: translations to human clinical studies. Journal of cardiovascular translational research. 2011;4:514-522.
109. de Vries IJM, Lesterhuis WJ, Barentsz JO, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotech. 2005;23:1407-1413.

110. Ahrens ET, Zhong J. In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR in biomedicine. 2013;26:860-871.

111. Partlow KC, Chen J, Brant JA, et al. 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2007;21:1647-1654.

112. Boehm-Sturm P, Mengler L, Wecker S, et al. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One. 2011;6:e29040.

113. Bible E, Dell'Acqua F, Solanky B, et al. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI. Biomaterials. 2012;33:2858-2871.

114. Ruiz-Cabello J, Barnett BP, Bottomley PA, et al. Fluorine (19F) MRS and MRI in biomedicine. NMR in biomedicine. 2011;24:114-129.

115. Gu E, Chen WY, Gu J, et al. Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics. 2012;2:335-345.

116. Gilad AA, McMahon MT, Walczak P, et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotech. 2007;25:217-219.

117. Wu JC, Spin JM, Cao F, et al. Transcriptional profiling of reporter genes used for molecular imaging of embryonic stem cell transplantation. Physiological genomics. 2006;25:29-38.

118. Gyongyosi M, Blanco J, Marian T, et al. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circulation. Cardiovascular imaging. 2008;1:94-103.

119. Pei Z, Lan X, Cheng Z, et al. Multimodality Molecular Imaging to Monitor Transplanted Stem Cells for the Treatment of Ischemic Heart Disease. PLoS ONE. 2014;9:e90543.

120. Ray P, De A. Reporter Gene Imaging in Therapy and Diagnosis. Theranostics. 2012;2:333-334.

121. Yaghoubi SS, Campbell DO, Radu CG, et al. Positron Emission Tomography Reporter Genes and Reporter Probes: Gene and Cell Therapy Applications. Theranostics. 2012;2:374-391.

122. Yaghoubi SS, Couto MA, Chen CC, et al. Preclinical safety evaluation of 18F-FHBG: a PET reporter probe for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk's expression. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2006;47:706-715.
123. Yaghoubi SS, Gambhir SS. PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]FHBG. Nat Protoc. 2006;1:3069-3075.
124. Wang L, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science (New York, N.Y.). 2012;335:1458-1462.
125. Yao J, Wang LV. Photoacoustic tomography: fundamentals, advances and prospects. Contrast media & molecular imaging. 2011;6:332-345.
126. Zhang YS, Wang Y, Wang L, et al. Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy. Theranostics. 2013;3:532-543.
127. Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:8932-8937.
128. Martin MJ, Muotri A, Gage F, et al. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature medicine. 2005;11:228-232.
129. Dokos C, Masjosthusmann K, Rellensmann G, et al. Fatal human metapneumovirus infection following allogeneic hematopoietic stem cell transplantation. Transplant Infectious Disease. 2013;15:E97-E101.
130. Centers for Disease Control and Prevention. Guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients. MMWR. Recommendations And Reports: Morbidity And Mortality Weekly Report. Recommendations And Reports / Centers For Disease Control. Vol 49. United States: U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control, Epidemiology Program Office; 2000:1.
131. Tate CC, Shear DA, Tate MC, et al. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. Journal of tissue engineering and regenerative medicine. 2009;3:208-217.
132. Guan J, Zhu Z, Zhao RC, et al. Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats. Biomaterials. 2013;34:5937-5946.
133. Guyette JP, Gilpin SE, Charest JM, et al. Perfusion decellularization of whole organs. Nat Protoc. 2014;9:1451-1468.
134. Zhou Q, Li L, Li J. Stem cells with decellularized liver scaffolds in liver regeneration and their potential clinical applications. Liver international : official journal of the International Association for the Study of the Liver. 2014.

135. Sabetkish S, Kajbafzadeh AM, Sabetkish N, et al. Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix liver scaffolds. Journal of biomedical materials research. Part A. 2014.

136. Bonandrini B, Figliuzzi M, Papadimou E, et al. Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue engineering. Part A. 2014;20:1486-1498.

137. Badyla #, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: Structure and function. Acta biomaterialia. 2009;5:1-13.

138. Fishman JM, Lowdell MW, Urbani L, et al. Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:14360-14365.

139. Crapo PM, Gilbert TW, Badyla #. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233-3243.

140. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17:424-432.

141. Daly KA, Liu S, Agrawal V, et al. Damage associated molecular patterns within xenogeneic biologic scaffolds and their effects on host remodeling. Biomaterials. 2012;33:91-101.

142. Valentin JE, Badyla #, McCabe GP, et al. Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. The Journal of bone and joint surgery. American volume. 2006;88:2673-2686.

143. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1-16.

144. Willerth SM, Sakiyama-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. StemBook. Cambridge (MA); 2008.

145. Demirbag B, Huri PY, Kose GT, et al. Advanced cell therapies with and without scaffolds. Biotechnology journal. 2011;6:1437-1453.

146. Ben-David U, Mayshar Y, Benvenisty N. Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nature Protocols. 2013;8:989-997.

147. Hay DC, Pernagallo S, Diaz-Mochon JJ, et al. Unbiased screening of polymer libraries to define novel substrates for functional hepatocytes with inducible drug metabolism. Stem Cell Res. 2011;6:92-102.
148. Desmarais JA, Hoffmann MJ, Bingham G, et al. Human Embryonic Stem Cells Fail to Activate CHK1 and Commit to Apoptosis in Response to DNA Replication Stress. Stem Cells. 2012;30:1385-1393.

149. Tang C, Lee AS, Volkmer JP, et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nature Biotechnology. 2011;29:829-834.

150. Ben-David U, Nudel N, Benvenisty N. Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nature Communications. 2013;4.

151. Benevento M, Munoz J. Role of mass spectrometry-based proteomics in the study of cellular reprogramming and induced pluripotent stem cells. Expert Rev Proteomics. 2012;9:379-399.

152. Reiland S, Salekdeh GH, Krijgsveeld J. Defining pluripotent stem cells through quantitative proteomic analysis. Expert Rev Proteomics. 2011;8:29-42.

153. Sinden JD, Muir KW. Stem cells in stroke treatment: the promise and the challenges. Int J Stroke. 2012;7:426-434.

154. Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335:1458-1462.

155. de Almeida PE, van Rappard JR, Wu JC. In vivo bioluminescence for tracking cell fate and function. American journal of physiology. Heart and circulatory physiology. 2011;301:H663-671.

156. Welling MM, Duijvestein M, Signore A, et al. In vivo biodistribution of stem cells using molecular nuclear medicine imaging. J Cell Physiol. 2011;226:1444-1452.

157. Cromer Berman SM, Walczak P, Bulte JW. Tracking stem cells using magnetic nanoparticles. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology. 2011;3:343-355.

158. Rosen AB, Kelly DJ, Schuld AJT, et al. Finding Fluorescent Needles in the Cardiac Haystack: Tracking Human Mesenchymal Stem Cells Labeled with Quantum Dots for Quantitative In Vivo Three-Dimensional Fluorescence Analysis. Stem Cells. 2007;25:2128-2138.

159. Lin S, Xie X, Patel MR, et al. Quantum dot imaging for embryonic stem cells. BMC Biotechnol. 2007;7:67.

160. Eisenblätter M, Ehrchen J, Varga G, et al. In Vivo Optical Imaging of Cellular Inflammatory Response in Granuloma Formation Using Fluorescence-Labeled Macrophages. Journal of Nuclear Medicine. 2009;50:1676-1682.

161. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92:897-965.
Figure legends

Figure S1: Therapeutic risks of stem cells. Diagram demonstrating the main inherent safety concerns associated with stem cell therapeutics. These can be divided into 3 main categories: biodistribution: cell migration, distribution, engraftment and long-term survival; immunogenicity: graft-vs-host disease and other inflammatory/fibrotic conditions; tumorigenicity: genomic aberrations or insertions, cell purity (i.e. transplanted population containing iPSCs/ESCs with inherent teratoma potential) and cell of origin (i.e. the reduced risk of tumorigenicity with ASCs compared to iPSCs/ESCs, ESCs compared to iPSCs, and neonatal compared with adult cell-derived iPSCs).

Figure S2: Schematic demonstrating the described potential mechanisms of immune recognition and rejection of stem cell grafts. (1) MHC-I incompatibility. CD8+ve cytotoxic T-cells recognize the MHC-I as non-self (e.g. allogeneic transplants) and with additional detection of co-stimulatory molecules, elicit an immunogenic response leading to rejection. (2) MHC-II incompatibility. MHC-II-expressing antigen-presenting cells, present to CD4+ve T helper cells resulting in cytokine-induced inflammation and/or activation of B or T cell responses. (3) Minor histocompatibility complex (mHC) incompatibility. A selection of proteins expressed in the cell, including mitochondria derived proteins, may bind to and be presented by MHC-I. These can be recognized as mHC antigens, and lead to immune-rejection. (4) ABO blood group antigen incompatibility. ABO blood group antigens can be detected by antibodies and activate the complement system. (5) Natural killer (NK) cell rejection. When bound to the MHC-I molecule, NK cell binding to NK cell lysis receptors and subsequent cell-
killing is inhibited. In the absence of MHC-I, NK cells are free to bind to NK cell lysis receptors, and consequently elicit cell-killing. Undifferentiated stem cells are generally considered not to express MHC-II, NK cell lysis receptors NKp30, NKp46, CD16 and NKp44 or co-stimulatory molecules CD40, B7.1 and B7.2. Furthermore, stem cells are only considered to express low levels of MHC-I, although expression can be induced by IFN-γ. Expression of all of these molecules on the fully differentiated derivative however, is an important consideration when considering immunogenic tolerance.

Figure S3: Stem cell imaging techniques. Representative diagram of the two main cell imaging strategies: direct labelling and indirect labelling. Direct methods require the labelling of the cell with a non-integrative product, such as quantum dots, which reside in the cytoplasm and can be detected via MRI, PET, SPECT or fluorescent imaging depending on the technique. Indirect labelling requires a genetic modification of the cell, through the insertion of a gene reporter, which is then detected by the appropriate imaging technique. Details of each technique are listed in table 3.

ICTRP Trial ID	Disease	Cell type	Trail stage	Country	Financial support	Registration date
NCT02122159	Myopic Macular Degeneration	hESC-derived Retinal Pigmented Epithelial cells	I/II	USA	University of California, Los Angeles	01/04/2014
NCT02057900	Ischemic Heart Disease	Human Embryonic Stem Cell-derived CD15+ Isl-1+ Progenitors	I	France	Assistance Publique - Hôpitaux de Paris	17/09/2013
NCT Number	Disease Description	Stem Cell Source	Phase	Location	Sponsor	Start Date
------------	---------------------	------------------	-------	----------	---------	------------
NCT01691261	Acute Wet Age Related Macular Degeneration	hESC-derived Retinal Pigmented Epithelial cells	I	USA/UK	Pfizer	19/09/2012
NCT01674829	Advanced Dry Age-related Macular Degeneration	hESC-derived Retinal Pigmented Epithelial cells	I/II	South Korea	CHA Bio & Diostech	22/08/2012
NCT01625559	Stargardt's Macular Dystrophy	hESC-derived Retinal Pigmented Epithelial cells	I	South Korea	CHA Bio & Diostech	18/06/2012
NCT01469832	Stargardt's Macular Dystrophy	hESC-derived Retinal Pigmented Epithelial cells	I/II	UK	Advanced Cell Technology	08/11/2011
NCT01344993	Advanced Dry Age Related Macular Degeneration	hESC-derived Retinal Pigmented Epithelial cells	I/II	USA	Advanced Cell Technology	28/04/2011
NCT01345006	Stargardt's Macular Dystrophy	hESC-derived Retinal Pigmented Epithelial cells	I/II	USA	Advanced Cell Technology	28/04/2011

Table 1: List of embryonic stem cells clinical trials currently collated in the International Clinical Trial Registry Platform (ICTRP) by the World Health Organization. Only clinical trials phase I-III included.
Assay	Intended use	Advantages	Disadvantages
Karyotyping (G-banding and/or Spectral)			

23, 25 | Assess genetic integrity | Unbiased genome coverage. Can detect balanced translocations and inversions. Cell-level resolution | Low genome resolution. Low throughput |
| Comparative Genomic Hybridization arrays

24, 26, 27, 29 | Assess genetic integrity | High genome resolution. Can probe specific zones | Does not detect changes in ploidy. Unable to detect balanced translocations and inversions. Population level resolution |
| Comparative Large Scale Expression analysis (e-Karyotyping)

28, 31, 146 | Assess genetic integrity Assess cell differentiation | High genome resolution. Can probe specific zones. Expression profile and genetic integrity test at the same time. | Indirect test for genetic integrity. Does not detect changes in ploidy. Unable to detect balanced translocations and inversions. Population level resolution |
| Single Nucleotide Polymorphism analysis

23, 26, 29 | Assess genetic integrity | High genome resolution. Can probe specific zones. | Does not detect changes in ploidy. Unable to detect balanced translocations and inversions. Population level resolution |
| Standard histology and cell microscopy

97, 147 | Assess cell differentiation | Cell-level resolution. Can detect incomplete and immature phenotypes or transformation | Significant experience required. Invasiveness for in vivo and clinical use. Cannot discriminate between host and graft. Low throughput |
| Standard molecular biology expression tools (northern and western blotting, ELISA, 2D protein gels, PCR related techniques)

25, 32, 148 | Assess cell behavior and differentiation | Can detect incomplete and immature phenotypes or transformation. Can discriminate between host and graft (depending on technique and application) | Invasiveness for in vivo and clinical use. Population level resolution |
in-situ hybridization and immunolabelling of endogenous transcripts/antigens (including bioluminescence and cell sorting techniques)	Assess cell behavior and differentiation	Cell level resolution. Combines histology and gene expression Can detect incomplete or immature phenotypes. Can discriminate between host and graft (with adequate probe or antibody)	Invasiveness for *in vivo* and clinical use. Low throughput

| **Mass spectrometry proteomics**^{151, 152} | Assess cell behavior and differentiation | High throughput. Unbiased proteome coverage. Can detect incomplete or immature phenotypes. Can discriminate between host and graft (with labelling) | Significant experience required. Sensitivity can be an issue for low abundance proteins. Invasiveness for *in vivo* and clinical use. |

| **Standard toxicology studies**¹⁵³ | Assess toxicity and tumor formation potential in animals and humans | Well established. Allows basic metabolic profiling of the host | Requires combined use of other techniques (i.e. histology, profiling, etc.) |

| **3D imaging techniques (MRI, CT, PET scans)**¹⁵³ | Assess tumour formation in animals and humans. Assess status of graft/device Assess host status | Non-invasive. Good spatial data. Radioactive labelling (PET) can detect specific targets. | Only morphological data (MRI and CT). Use of X-rays (CT) and/or radioactive reagents (PET). Requires expensive infrastructure. |

| **Photoacoustic imaging**^{125, 154} | Assess tumor formation in animals and humans | Non-invasive | Low skin penetration |

| **Bioluminescence imaging**¹⁵⁵ | Assess tumor formation in animals and humans | Non-invasive | Low skin penetration |

Table 2: Available assays to assess the tumorigenic risk of stem cell therapeutics, describing the main uses of each technique along with advantages and disadvantage
Strategy	Imaging Modality	Overview	Sensitivity	Spatial resolution	Duration of track	Advantages	Disadvantages
Direct Cell Labelling	MRI 100, 101, 115, 156, 157	This technique is based on registration of change in electromagnetic properties of hydrogen atoms within a high-strength static magnetic field after a series of repetitive radiofrequency pulses and gradients.	- 10^{-3}-10^{-5} mol/L				
- 25-100 μm
- Cell Lifetime (Diluted over time) | - High spatial and temporal resolution
- Combines functional and morphological visualization
- No exposure to ionizing radiation
- Clinically applicable
- Additional anatomical and pathological information | - Signal dilution over time
- Low sensitivity
- No discrimination between live and dead cells
- May effect proliferation and cell morphology
- Long term tracking is challenging
- Difficult quantification
- Requires large amount of contrast probe
- Accumulation of contrast probes can be toxic
- Needs expensive equipment | |
| Radionuclide imaging (PET and SPECT)100, 101, 115, 158 | Ex vivo cellular uptake of radionuclides as a contrast agent (depending on the isotope used the tracking period is different). | - 10^{-10}-10^{-12} mol/L
- 1-2 mm
- Dependent on isotope half life | - Picomolar sensitivity
- Good tissue penetration
- Translation to clinical applications | - Low spatial resolution
- Emission of ionizing radiation
- Signal dilution over time | - Leakage of radionuclides
- Limited time window
- Low spatial resolution
- Emission of ionizing radiation
- Signal dilution over time | |
| Optical fluorescence imaging100, 158-160 | Cells are labelled ex vivo with quantum dots (QDs) or fluorophores. | - 10^{-9}-10^{-12} mol/L
- 2-3mm
- 2-14 days (imaging), 8 weeks (QDs: histology) | - High sensitivity
- High photostability (QDs) | - Low resolution
- Limited tissue penetration
- No clinical application
- QDs potentially cytotoxic | |
Table 3: List of strategies used to directly or indirectly label stem cells in vivo. The table offers an overview of all methods in use for the labelling and the tracking of stem cells, with pros and cons. It should be noted that for the photoacoustic tomography, the technique itself is so new that drawbacks have still to be underlined. The different techniques are further reviewed by James and Gambhir.161 QD quantum dots; G/RFP, green or red fluorescent protein.

Strategy	Labelling Methodology	Pros	Cons
Indirect Cell Labelling			
Fluorescent Imaging161	Cells are transduced with a gene which encodes for a fluorescent protein (GFP, RFP, etc)	- \(10^{-9} - 10^{-12}\) mol/L	
- Up to 2 mm
- CellLifetime | - Longitudinal studies of stem cell viability
- No alteration of cell phenotype or differentiation capacity
- Controllable system |
| Bioluminescence Imaging155,162 | Cells are transduced with a bioluminescent reporter gene | - \(10^{-15} - 10^{-17}\) mol/L
- 3-5 mm
- Cell lifetime | - Reduced false positives
- High sensitivity
- Low costs
- Versatile | - Genetic modification
- Not suitable for clinical use, unless with a combinatorial approach |
| Photoacoustic Tomography124,125,163,164 | Cells are transduced with a gene which replies to Photoacoustic waves with waves that are collected to produce a 3D image. Gold nanoparticles can also be used | - \(10^{-11} - 10^{-12}\) mol/L (gold nanoparticles)
- Up to 7 cm
- Cell lifetime | - Low scattering in tissues
- Multi-scale high resolution imaging of biological structures
- 100% sensitivity
- Background-free detection
- Speckle-free | - Genetic modification |