Orai1, 2, 3 and STIM1 promote store-operated calcium entry in pulmonary arterial smooth muscle cells

Jian Wang1,2,3, Chuyi Xu1,3, Qiuyu Zheng1,3, Kai Yang1, Ning Lai1, Tao Wang1, Haiyang Tang1,2 and Wenju Lu1

Previous studies have demonstrated that besides the classic canonical transient receptor potential channel family, Orai family and stromal interaction molecule 1 (STIM1) might also be involved in the regulation of store-operated calcium channels (SOCs). An increase in cytosolic free Ca2+ concentration promoted by store-operated Ca2+ entry (SOCE) in pulmonary arterial smooth muscle cells (PASMCs) is a major trigger for pulmonary vasconstriction and proliferation and migration of PASMCs. In this study, our data revealed the following: (1) in both rat distal pulmonary arteries and PASMCs, chronic hypoxia exposure upregulated the expression of Orai1 and Orai2, without affecting Orai3 and STIM1; (2) either heterozygous knockout of HIF-1α in mice or knockdown of HIF-1α in PASMCs abolished the hypoxic upregulation of Orai2, but not Orai1, suggesting the hypoxic upregulation of Orai2 depends on HIF-1α and (3) using small interference RNA knockdown strategies, Orai1, 2, 3 and STIM1 were all shown to mediate SOCE in hypoxic PASMCs. Together, these results suggested that the components of SOCs, including Orai1, 2, 3 and STIM1, may lead to novel therapeutic targets for the treatment of chronic hypoxia-induced pulmonary hypertension.

Cell Death Discovery (2017) 3, 17074; doi:10.1038/cddiscovery.2017.74; published online 27 November 2017

INTRODUCTION

According to consensus of the Fifth World Symposium of Pulmonary Hypertension held in Nice, France, in 2013, chronic hypoxia-induced pulmonary hypertension (CHPH) belongs to group 3 of pulmonary hypertension (PH). PH group 3 is due to lung diseases and/or hypoxia, including chronic obstructive pulmonary disease, sleep-disordered breathing, alveolar hypventilation disorders, diffuse parenchymal lung diseases, chronic exposure to high altitude and developmental abnormalities.

CHPH is characterized by excessive contraction, proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which progressively leads to the thickening and remodeling of distal pulmonary arteries (PAs). The increase of intracellular free calcium concentration ([Ca2+]i) is a major trigger for pulmonary vasoconstriction and the proliferation and migration of PASMCs. Among the multiple pathways that can lead to increase in [Ca2+]i, the hypoxia-induced enhanced store-operated Ca2+ entry (SOCE) through store-operated calcium channels (SOCs) largely accounts for the elevated [Ca2+]i in PASMCs. STIM1 and Orai1 to endoplasmic reticulum (ER)/sarcoplasmic reticulum (SR)–plasma membrane (PM) junctions. The duration of Orai1 activation can be sustained with prolonged store depletion. Among the three Orai homologs, Orai1 contributes the most to mediate SOCE. Soon after Orai1 was discovered in 2006, Orai2 was reported as another component of SOCs. Similar with Orai1, Orai2 and Orai3 are highly Ca2+-selective corresponding to the characteristic of CRAC (Ca2+-release-activated Ca2+) channels. Orai3 was only found in mammals, with a tissue distribution at least as wide as that of Orai1. Orai3 combines with Orai1 to form a hexameric CRAC channel, and at least one native Orai1 subunit is contained in the complex. Orai1 and Orai3 arrange as pentamer to form the arachidonic acid-regulated calcium (ARC) channels, whose characteristics are similar to CRAC channels, but are store-independent. However, whether the Orai contribute to hypoxia-induced enhancement of SOCE remains largely unknown.

Stromal interaction molecule 1 (STIM1), a single-pass transmembrane protein, has been well known to predominantly localize in the ER/ER membrane where it acts as a Ca2+-sensor and mediates SOCE. Global deletion of STIM1 in mice is lethal indicating that STIM1 is indispensable in organismal physiology of mammals. The homolog STIM2 shares 61% structural homology with STIM1. When Ca2+ depleted in ER/ER calcium pool, STIM1 departs ER/ER membrane and translocates to cell membrane, where it activates SOCCs and initiates the SOCE. Previous studies have reported in HEK293, epithelial cells, SH-SY5Y nerve sarcoma cells or smooth muscle cells that silencing of STIM1 gene could dominantly eliminate SOCE. Our previous study

1State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China and 2Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ 85721-0202, USA.
Correspondence: W Lu (wlu92@yahoo.com)

Received 21 June 2017; revised 5 August 2017; accepted 24 August 2017; Edited by N Barlev
indicating that STIM1 was quantitatively more important than STIM2 in activation of SOCCs in distal PASMCs.34 Besides mediating SOCE, STIM1 also contributes to store-independent Ca2+ entry, more specifically the activation of arachidonic ARC-selective channels.35,36 ARC channels have very similar biophysical characteristics to SOCCs, have been shown to contribute to receptor-operated Ca2+ entry, and are also dependent on STIM1 for activation. However, ARC channels are dependent on a PM pool of STIM1, rather than ER/SR located STIM1.36 Moreover, unlike SOCCs, which consist of six homomeric Orai1 subunits, activated ARC channels consist of both Orai1 and Orai3 subunits. Recent investigations have revealed that STIM1 acts as a sensor of Ca2+ concentration in ER/SR and could also sense reactive oxygen species (ROS) overproduction, temperature variation, hypoxic stress and pH changes in the cells, indicating that STIM1 might be a stress sensor sensing a range of cellular stress conditions.37–40 In our previous study, we elucidated that knockdown of STIM1 abolishes acute hypoxia (4% O2, 15 min)-induced enhancement of SOCE.34 Considering SOCE largely accounts for the elevated [Ca2+]i and STIM1 protein expression (Figures 1e and f).

RESULTS

Chronic hypoxia increased expression of Orai1 and Orai2, but not Orai3 and STIM1 in distal PA

Distal PA were isolated from rats exposed to either normoxia or hypoxia (10% O2) for 21 days. Orai1 and Orai2 mRNA levels were increased in hypoxic PASMCs, whereas Orai3 and STIM1 expression were not affected by hypoxia. Knockdown of HIF-1α by small interference RNA transfection abolished the hypoxic upregulation of Orai2, but not Orai1 in PASMCs.

Heterozygote of HIF-1α (HIF-1α+/−) transgenic mice exhibited abolished CH upregulation of Orai2, but not Orai1. Consider that HIF-1 acts as a master regulator in hypoxic PASMCs, we further determined whether CH upregulation of Orai1 and Orai2 is HIF-1α-dependent. As described before,41 HIF-1α heterozygous transgenic mice (HIF-1α+/−) and their littermates were subjected to either normoxic or chronic hypoxic exposure for establishment of CPH mice model. First, in the distal PAs isolated from wild-type HIF-1α+/− mice, CH (10% O2, 21 days) increased Orai1 and Orai2 by 144.7 ± 18.1% and 250.2 ± 105.9% in mRNA levels, and 101.6 ± 8.8% and 35.2 ± 7.8% in protein levels, compared with their respective normoxic controls (Figure 2). Then, in the distal PAs isolated from HIF-1α+/− mice, the expression of Orai2 on mRNA and protein levels were decreased by 64.3 ± 9.9% and 38.5 ± 11.9%, respectively, compared with those of HIF-1α+/− mice.

Knockdown of HIF-1α by small interference RNA transfection abolished the hypoxic upregulation of Orai2, but not Orai1 in PASMCs. Besides the HIF-1α transgenic mice, we also used specific small interference RNA (siRNA) against HIF-1α (siHIF-1α) to evaluate the role of HIF-1α in hypoxic upregulation of Orai1 and Orai2 in cultured PASMCs. First, the expression of HIF-1α protein was decreased by 71.7 ± 7.7% from hypoxic exposed PASMCs treated with siHIF-1α, compared with that of the hypoxic non-targeted siRNA (siNT) control, indicating effective knockdown. Then, in hypoxic PASMCs, knockdown of HIF-1α largely abolished the hypoxic upregulation of Orai2, while not affecting the hypoxic upregulation of Orai1 (Figure 3). In combination, these results demonstrated that the hypoxic upregulation of Orai2, but not Orai1, is HIF-1α-dependent.

Knockdown of Orai1 significantly reversed the hypoxic elevation of basal [Ca2+]i and SOCE

PASMCs were transfected with either siNT or Orai1-specific siRNA (siOrai1) and then subjected to exposure of prolonged hypoxia (4% O2, 60 h). Compared with that of the siNT control, the knockdown efficiency of Orai1 was 76.1 ± 2.2% and 54.2 ± 2.9% at mRNA and protein levels, respectively (Figures 4a–c). Meanwhile, the expression of Orai2 or Orai3 was not affected by Orai1 knockdown.

Figure 1. Expression of Orai and STIM1 in distal PAs from rats exposed to normoxia or hypoxia (10% O2) for 21 days. Orai1 (a), Orai2 (b), Orai3 (c) and STIM1 (d) mRNA relative to 18 s was measured by qRT-PCR. Orai1, 2, 3 and STIM1 proteins were determined by western blotting (e and f). Representative blots (e) and mean intensity (f) for Orai1, 2, 3 and STIM1 blots relative to α-actin. Bar values are mean ± S.E.M. (n = 5 in each group). *P < 0.05 versus respective normoxic control. Brackets indicate ± S.E.
Knockdown of Orai1 significantly attenuated the hypoxia-enhanced basal \([\text{Ca}^{2+}]_i\) by 17.7 ± 4.2% (Figure 4e), and the hypoxia-elevated SOCE, reflected by both calcium restoration and Mn\(^{2+}\) quenching. On one hand, calcium restoration experiment revealed that compared to the normoxic control, prolonged hypoxia induced a 11.8 ± 3.6% increase in PASMCs. Knockdown of Orai1 significantly attenuated the hypoxia-enhanced SOCE by 77.1 ± 4.4% (Figures 4d and f). Interestingly, treatment of siOrai1 could also decrease SOCE by 60.9 ± 2.5% in normoxic PASMCs. On the other hand, the Mn\(^{2+}\) quenching experiment represented similar results. Prolonged hypoxia increased SOCE to 56.5 ± 0.9% compared to that of 33.7 ± 12.3% in normoxic PASMCs, while knockdown of Orai1 significantly decreased the hypoxia-enhanced SOCE to 39.7 ± 1.3% (Figures 4g and h). Different with the calcium restoration experiment, knockdown of Orai1 did not affect the rate of quenching in normoxic PASMCs. The rate of quenching was 34.1 ± 3.6% in normoxic PASMCs treated with siOrai1 versus 33.7 ± 12.3% in normoxic control (Figure 4h).

Knockdown of STIM1 significantly reversed the hypoxic elevation of basal \([\text{Ca}^{2+}]_i\), and SOCE

In addition to Orai1, we also determined the role of STIM1 in the dysregulated intracellular calcium homeostasis in hypoxic PASMCs. Cells were transfected with either siNT or STIM1-specific siRNA (siSTIM1) and then subjected to exposure of prolonged hypoxia (4% O\(_2\), 60 h). Compared to that of the siNT control, the knockdown efficiency of STIM1 was 83.5 ± 2.1% and 77.4 ± 16.4% at mRNA and protein levels, respectively (Figures 5a–c). First, compared with that of the normoxic control, prolonged hypoxia induced a 64.1 ± 9.5% increase in PASMCs. Knockdown of STIM1 significantly attenuated the hypoxia-enhanced SOCE by 78.5 ± 2.9% (Figures 5d and f). Similar to Orai1, treatment of siSTIM1 could also decrease SOCE by 37.3 ± 9.5% in normoxic PASMCs. On the other hand, the Mn\(^{2+}\) quenching experiment represented similar results. Prolonged hypoxia increased SOCE to 56.5 ± 0.9% compared to that of 33.7 ± 12.3% in normoxic PASMCs, while knockdown of STIM1 significantly decreased the hypoxia-enhanced SOCE to 39.7 ± 1.3% (Figures 5g and h). Different with the calcium restoration experiment, knockdown of STIM1 did not affect the rate of quenching in normoxic PASMCs. The rate of quenching was 34.1 ± 3.6% in normoxic PASMCs treated with siSTIM1 versus 33.7 ± 12.3% in normoxic control (Figure 5h).

Figure 2. Knockdown of HIF-1α abolished the chronic hypoxia-upregulated Orai2 expression, while not affecting the upregulation of Orai1 in distal PAs of transgenic mice. HIF-1α\(^{+/+}\) and HIF-1α\(^{-/-}\) mice were subjected to chronic hypoxia (10% O\(_2\), 21 days) or normoxia. Orai1 (a) and Orai2 (b) mRNA relative to 18s was measured by qRT-PCR. Orai1 and Orai2 proteins were determined by western blotting (c, d and e). Representative blots (c) and mean intensity (d and e) for Orai1 and Orai2 blots relative to α-actin. Bar values are mean ± S.E.M. (n = 5 in each group). *P < 0.05 versus respective normoxic control. #P < 0.05 versus respective HIF-1α\(^{+/+}\) control. Brackets indicate ± S.E.
hypoxia increased SOCE to 50.9 ± 6.9%, compared to that of 32.0 ± 9.3% in normoxic PASMCs, while knockdown of Orai1 significantly decreased the hypoxia-enhanced SOCE to 32.0 ± 9.3% (Figures 5g and h). In addition, knockdown of STIM1 did not affect the rate of quenching in normoxic PASMCs (Figure 5h).

Knockdown of either Orai2 or Orai3 markedly inhibited the hypoxic elevation of basal [Ca2+]i and SOCE. Consistent with the previous studies, we discovered that downregulation of Orai2 significantly attenuated the hypoxia-enhanced SOCE to 32.0 ± 9.3% (Figures 6d and 7d). These results suggested that all the three Orai homologs can contribute to the regulation of SOCE in PASMCs.

DISCUSSION

As is well known, during the PH development, the hypoxic elevation of [Ca2+]i due to enhanced SOCE has a key element in promoting the pulmonary vasoconstriction and proliferation, together acting as primary vessel pathology feature underlying the pathogenesis of PH. According to our previous studies, we have proved the hypoxic upregulation of either the SOCC core components (such as TRPC1 and TRPC6)41 or the important SOCC-regulated proteins (such as caveolin-1),42 all contributed to the hypoxic-triggered SOCE in PASMCs. However, whether the other SOCE-related proteins STIM1 and Orais also contribute to this process remains unknown. Therefore, in this study, by using comprehensive knockdown of STIM1 or Orais, our results suggested that knockdown of either Orai1, Orai2, Orai3 or STIM1 could significantly reverse prolonged hypoxia-induced increases of SOCE and basal [Ca2+]i, in cultured rat distal PASMCs.

Consistent with the previous studies, we discovered that hypoxic exposure significantly upregulated the expression of HIF-1α protein both in PAs and PASMCs. Moreover, hypoxia induced a significant upregulation of Orai1 and Orai2 at both mRNA and protein levels, but not Orai3. To determine whether the hypoxia-upregulated Orai1 and Orai2 depend on HIF-1α, we included both the HIF-1α+/− transgenic mice as in vivo model and specific HIF-1α siRNA knockdown in cultured PASMCs as in vitro model. Our data showed that loss of HIF-1α by using either heterozygous HIF-1α mice or siRNA knockdown markedly abolished the hypoxic upregulation of Orai2, but not Orai1, suggesting only the hypoxic upregulation of Orai2 is HIF-1α-dependent, whereas the hypoxic upregulation of Orai1 is dependent on other mechanism. We further determine whether Orai1 has a role in the regulation of SOCE. After knockdown Orai2, we found that downregulation of Orai2 significantly attenuated the hypoxia-increased SOCE and basal [Ca2+]i in cultured rat distal PASMCs. These results suggest that the hypoxic upregulation of Orai2 contributes to the elevation of SOCE and basal [Ca2+]i, via stabilizing the expression of HIF-1α, whereas the hypoxia-elevated pathway of Orai1 expression is independent of HIF-1α. In view of the key role of HIF-1α in the development of CHPH, the Orai2 may be considered a potential target retarding pulmonary vasoconstriction and proliferation. In addition, much work have been done in evaluating the role of Orai1 in the regulation of SOCE. Similar to Orai2, downregulation of Orai1 reversed the increase of SOCE and basal [Ca2+]i, caused by CH, suggesting hypoxia-elevated Orai1 enhance SOCE and basal [Ca2+]i. But the transcriptional
Figure 4. Knockdown of Orai1 inhibited chronic hypoxia-induced increases of basal [Ca2+], and SOCE in rat distal PASMCs. (a) Expression of Orai1, 2, 3 mRNA relative to 18 s mRNA measured by qRT-PCR in non-targeted small interfering RNA (siNT)- or siRNA targeted to Orai1 (siOrai1)-treated PASMCs. *P < 0.05 versus siNT. (b) Western blot showing expression of Orai1, 2, 3 and β-actin protein in PASMCs treated with siNT or siOrai1. (c) Mean ratios of Orai1, 2 and 3 proteins relative to β-actin protein measured by western blotting in siNT- and siOrai1-treated PASMCs. *P < 0.05 versus siNT. (d) Representative traces of different treatments on the time course of F340/F380 before and after restoration of extracellular Ca2+ in distal PASMCs perfused with Ca2+-free KRB solution containing 10 μM CPA, 0.5 mM EGTA and 5 μM nifedipine. (e) The effect of Orai1 silencing on hypoxia-induced changes of basal [Ca2+], in PASMCs. Basal [Ca2+], is determined as the average F340/F380 level during 0–5 min perfusion. *P < 0.05 versus normoxic control. #P < 0.05 versus hypoxic siNT control. (f) The effect of Orai1 silencing on hypoxia-induced changes of SOCE in PASMCs. SOCE is determined as the peak increase of F340/F380 level following calcium restoration between 15 and 30 min perfusion. Bar values are means ± S.E.M. (n = 5 experiments in 74–116 cells). *P < 0.05 versus normoxic control. #P < 0.05 versus hypoxic siNT control. (g) SOCE is determined by measuring the time course of fura-2 fluorescence intensity excited at 360 nm before and after adding 200 μM Mn2+ in Ca2+-free KRB solution containing 10 μM CPA and 5 μM nifedipine in PASMCs. Data at each time point were normalized to fluorescence at time 0 (F/F0). (h) Average quenching of fura-2 fluorescence by Mn2+. Data are expressed as the percentage decrease in fluorescence at time 10 min from time 0. Bar values are means ± S.E.M. (n = 5 experiments in 88–109 cells). *P < 0.05 versus normoxic control. #P < 0.05 versus Hypoxic siNT control. Brackets indicate ± S.E.

Orai and STIM1 promote SOCE in PASMCs
J Wang et al

Official journal of the Cell Death Differentiation Association

Cell Death Discovery (2017) 17074
Knockdown of STIM1 inhibited chronic hypoxia-induced increases of basal [Ca^{2+}]_i and SOCE in rat distal PASMCs. (a) expression of STIM1 mRNA relative to 18 s mRNA measured by qRT-PCR in non-targeted small interfering RNA (siNT)- or siRNA targeted to STIM1 (siSTIM1)-treated PASMCs. *P < 0.05 versus siNT. (b) Western blot showing expression of STIM1 and β-actin protein in PASMCs treated with siNT or siSTIM1. (c) mean ratios of STIM1 protein relative to β-actin protein measured by Western blotting in siNT- and siSTIM1-treated PASMCs. *P < 0.05 versus siNT. (d) Representative traces of different treatments on the time course of F340/F380 before and after restoration of extracellular Ca^{2+} in distal PASMCs perfused with Ca^{2+}-free KRB solution containing 10 μM CPA, 0.5 mM EGTA and 5 μM nifedipine. (e) The effect of STIM1 silencing on hypoxia-induced changes of basal [Ca^{2+}]_i in PASMCs. Basal [Ca^{2+}]_i is determined as the average F340/F380 level during 0–5 min perfusion. *P < 0.05 versus normoxic control. #P < 0.05 versus hypoxic siNT control. (f) The effect of STIM1 silencing on hypoxia-induced changes of SOCE in PASMCs. SOCE is determined as the peak increase of F340/F380 level following calcium restoration between 15 and 30 min perfusion. Data are expressed as the percentage decrease in fluorescence at time 10 min from time 0. Bar values are means ± S.E.M. (n = 5 experiments in 87–133 cells). *P < 0.05 versus normoxic control. #P < 0.05 versus hypoxic siNT control. Brackets indicate ± S.E.
Figure 6. Knockdown of Orai2 inhibited chronic hypoxia-induced increases of basal [Ca2+], and SOCE in rat distal PASMCs. (a) Expression of Orai1, 2 and 3 mRNA relative to 18 s mRNA measured by qRT-PCR in non-targeted small interfering RNA (siNT)- or siRNA targeted to Orai2 (siOrai2)-treated PASMCs. *P < 0.05 versus siNT. (b) Western blot showing expression of Orai1, 2, 3 and β-actin proteins in PASMCs treated with siNT or siOrai2. (c) Mean ratios of Orai1, 2 and 3 proteins relative to β-actin protein measured by western blotting in siNT- and siOrai2-treated PASMCs. *P < 0.05 versus siNT. (d) Representative traces of different treatments on the time course of F340/F380 before and after restoration of extracellular Ca2+ in distal PASMCs perfused with Ca2+-free KRB solution containing 10 μM CPA, 0.5 mM EGTA and 5 μM nifedipine. (e) The effect of Orai2 silencing on hypoxia-induced changes of basal [Ca2+] in PASMCs. Basal [Ca2+] is determined as the average F340/F380 level during 0–5 min perfusion. *P < 0.05 versus normoxic control. #P < 0.05 versus hypoxic siNT control. (f) The effect of Orai2 silencing on hypoxia-induced changes of SOCE in PASMCs. SOCE is determined as the peak increase of F340/F380 level following calcium restoration between 15 and 30 min perfusion. *P < 0.05 versus normoxic control. #P < 0.05 versus hypoxic siNT control. (g) SOCE is determined by measuring the time course of fura-2 fluorescence intensity excited at 360 nm before and after adding 200 μM Mn2+ in Ca2+-free KRB solution (0 Ca2+) containing 10 μM CPA and 5 μM nifedipine in PASMCs. Data at each time point were normalized to fluorescence at time 0 (F/F0). (h) Average quenching of fura-2 fluorescence by Mn2+. Data are expressed as the percentage decrease in fluorescence at 10 min from time 0. Bar values are means ± S.E.M. (n = 5 experiments in 102–115 cells). *P < 0.05 versus normoxic control. #P < 0.05 versus hypoxic siNT control. Brackets indicate ± S.E.
upregulation mechanisms for Orai1 were not evaluated clearly, what we do is at a beginning of this pathway so that further study need to be developed next. Unlike Orai1 and Orai2, we did not observe an upregulation of Orai3 expression upon hypoxic exposure, while knockdown of Orai3 could also significantly reversed the hypoxic elevation of SOCE and basal $[Ca^{2+}]_{i}$. Notably, we also observed that after knockdown of Orai3, the expression of Orai1 was decreased by $\sim 30\%$ (Figures 7a–c). As we know, Orai3 was reported to be an important component of ARC entry.43 Shuttleworth et al.44 reported that STIM1 is required for ARC channel activation and that both Orai1 and Orai3 contribute subunits to ARC channels. Using various preassembled concatenated

Figure 7. Knockdown of Orai3 inhibited chronic hypoxia-induced increases of basal $[Ca^{2+}]_{i}$ and SOCE in rat distal PASMCs. (a) Expression of Orai1, 2 and 3 mRNA relative to 18 s mRNA measured by qRT-PCR in non-targeted small interfering RNA (siNT)- or siRNA targeted to Orai3 (siOrai3)-treated PASMCs. *P < 0.05 versus siNT. (b) Western blot showing expression of Orai1, 2, 3 and β-actin proteins in PASMCs treated with siNT or siOrai3. (c) Mean ratios of Orai1, 2 and 3 proteins relative to β-actin protein measured by western blotting in siNT- and siOrai3-treated PASMCs. *P < 0.05 versus siNT. (d) Representative traces of different treatments on the time course of F340/F380 before and after restoration of extracellular Ca^{2+} in distal PASMCs perfused with Ca^{2+}-free KRB solution containing 10 μM CPA, 0.5 mM EGTA and 5 μM nifedipine. (e) The effect of Orai3 silencing on hypoxia-induced changes of basal $[Ca^{2+}]_{i}$ in PASMCs. Basal $[Ca^{2+}]_{i}$ is determined as the average F340/F380 level during 0–5 min perfusion. *P < 0.05 versus normoxic control. (f) The effect of Orai3 silencing on hypoxia-induced changes of SOCE in PASMCs. SOCE is determined as the peak increase in F340/F380 level following calcium restoration between 15 and 30 min perfusion. Bar values are means ± S.E.M. (n = 5 experiments in 98–121 cells). #P < 0.05 versus hypoxic siNT control. (g) SOCE is determined by measuring the time course of fura-2 fluorescence intensity excited at 360 nm before and after adding 200 μM Mn$^{2+}$ in Ca^{2+}-free KRB solution containing 10 μM CPA and 5 μM nifedipine in PASMCs. Data at each time point were normalized to fluorescence at time 0 (F/F0). (h) Average quenching of fura-2 fluorescence by Mn$^{2+}$. Data are expressed as the percentage decrease in fluorescence at time 10 min from time 0. Bar values are means ± S.E.M. (n = 5 experiments in 81–115 cells). *P < 0.05 versus hypoxic siNT control. Brackets indicate ± S.E.
Orai1–Orai3 multimers, Shuttleworth group further reported that
the molecular architecture of ARC channels is a pentameric
assembly of three Orai1 and two Orai3 subunits. Moreover,
Charlotte Dubois et al. demonstrated in vitro models that
enhanced Orai3 expression favors heteromerization with Orai1 to
form a novel channel to support store-independent Ca2+ entry.
Thus, one possible explanation is that as Orai3 could not form
SOC Cs by its own, knockdown of Orai3 might cause a proportion
of Orai1 that could not combine with Orai3 to form CRAC or ARC
channels, thus entered a pathway of protein degradation.
Therefore, the loss of hypoxia-enhanced SOCE could be explained
by the loss of Orai1. Regarding this point, additional studies need
to be conducted in the near future to uncover the detail
mechanisms about whether Orai3 has a direct impact on the
specification of hypoxia-induced PH and the SOCE.

In the previous study, Ng et al. found that Orai1 and STIM1,
both as TRPC1, can form molecular complex to mediate SOCE
in mouse PASMCs, suggesting a central role of STIM1 in SOCE. Hou
et al. found that CH upregulated the expression of STIM1 both
on mRNA and protein levels in rat distal PA. That is contradictory
to the findings of our present study. In the present study,
we found that whether at mRNA level or at protein level, CH failed to
alter the expression of STIM1. Hou et al. found that knockdown
of STIM1 using STIM1-specific siRNA reversed the enhancement of
SOC Es in rat PASMCs exposed to prolonged hypoxia. This finding is
consistent with the results of our present study. But the PASMCs
used by Hou et al. were passaged for 3–8 times, while our cells
were primary cultured. We believe that the characteristics of
PASMCs may vary through the process. Moreover, we used Mn2+
quenching method to assess SOCE, which is also different of the
study conducted by Hou et al. As is known to all, Mn2+ quenching
is the gold standard of SOCE assessment, for it can eliminate the
effect of ER/SR releasing Ca2+ to the cytoplasm, thus reflecting the
Ca2+ influx from the extracellular. In our present study, we found that knockdown of STIM1 reversed CH-increased basal Ca2+
in rat distal PASMCs, and the effect of STIM1 silencing on CH-
enhanced SOCE was verified by Mn2+ quenching method.
Together, we found that knockdown of STIM1 attenuated SOCE
in hypoxic PASMCs, suggesting a triggering role of STIM1 in
initiating SOCE upon intracellular calcium store depletion.

An outline was shown in Figure 8. In summary, in this study, we
found the following: (1) chronic hypoxic exposure stabilized the
expression of HIF-1α, leading to upregulation of Orai2 and a
subsequent enhancement of SOCE and basal [Ca2+]i, whereas
hypoxia upregulates the expression of Orai1 in a HIF-1α-
independent manner; and (2) knockdown of either STIM1 or Orai
family proteins (Orai1, Orai2 and Orai3) could attenuate the
hypoxia-elevated SOCE and basal [Ca2+]i, in PASMCs. As elevation
of basal [Ca2+]i, leads to contraction, proliferation and migration of
PASMCs, eventually the pathogenesis of CHPH, blockage of the
elevation of basal [Ca2+]i, would reverse the process and prevent the
genesis of CHPH. Our results added knowledge that the Orais
and STIM1 could act as novel therapeutic targets for the treatment
against CHPH.

MATERIALS AND METHODS

Animals

Animal protocols were approved by the Animal Care and Use Committee
of Guangzhou Medical University. Sprague–Dawley rats (male, 175–300 g)
were purchased from Guangdong Medical Laboratory Animal Center
(Guangzhou, China). PASMCs were used by Hou et al.49 All mice were housed in specific
pathogen-free facilities. Littermate mice from HIF-1α+/HIF-1α− mating
were genotyped at 3–4 weeks old.

Exposure of animals to chronic hypoxia

Rats (male, 175–300 g) or mice (male, 8 weeks old) were placed in a
hypoxia chamber for 21 days to establish the chronic hypoxia-induced PH
animal model, as previously described. The chamber was continuously
flushed with a mixture of room air and N2 to maintain 10 ± 0.5% O2 and
CO2 0.5%. The chamber O2 concentration was continuously monitored
using a PRO-OX unit (RCI Hudson, Anaheim, CA, USA). Animals were exposed to room air for 10 min twice a week for changing cage and
replenishing food and water. Normoxic control animals were kept in room
air next to the hypoxic chamber.

Isolation of distal PA and culture of PASMCs

The distal intrapulmonary arteries (fourth generation) were dissected
from normoxic or chronic hypoxic rats and mice, as we previously described. PASMCs were enzymatically isolated and plated onto 25 mm
glass coverslips (Fisher Scientific, Pittsburgh, PA, USA). Rat PASMCs
were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 1 g/l
d-glucose (Life Technologies, Carlsbad, CA, USA) with 10% fetal bovine
serum (Life Technologies) and 1% penicillin–streptomycin (MP Biomedicals,
Solon, OH, USA) until 60–70% confluence prior each experiment.

siRNA transfection and prolonged hypoxic exposure of PASMCs

siRNAs targeting to rat HIF-1α (siHIF-1α), Orai1 (siOrai1), Orai2 (siOrai2),
Orai3 (siOrai3), STIM1 (siSTIM1) and siNT used as negative control were
transfected using HiPerFect Transfection Reagent (Qiagen, Valencia, CA)
with 50 nM siHIF-1α or 100 nM siOrai1, siOrai3, siSTIM1, siNT or
70% confluence prior each experiment.

Measurement of intracellular Ca2+ concentration

After incubation with 7.5 μM fura-2 (Invitrogen, Carlsbad, CA, USA) for
60 min at 37 °C under an atmosphere of 5% CO2–95% air, coverslips with
PASMCs were mounted in a closed polycarbonate chamber clamped in a
heated aluminum platform (PH-2; Warner Instrument, Hamden, CT, USA)
and incubated in Krebs-Henseleit bicarbonate (KRB) buffer containing
5 μM nifedipine to prevent calcium entry through L-type VDCCs
and 10 μM CPA to deplete SR calcium stores. KRB perfusate also contained
0.5 mM EGTA to chelate any residual Ca2+. SOCE was assessed in two ways.
First, we measured [Ca2+]i at 12 s intervals before and after restoration of
extracellular [Ca2+]i to 2.5 mM. SOCE was evaluated from the increase in
[Ca2+]i caused by restoration of extracellular [Ca2+]i in the continued
presence of cyclopiazonic acid (CPA) and nifedipine. Second, we
monitored fura-2 fluorescence excited at 360 nm at 30 s intervals before
and after addition of MnCl2 (200 μM) to the cell perfusate. SOCE was evaluated from the rate at which fura-2 fluorescence was quenched by

Figure 8. Schematic representation of the hypothesized regulation–
signaling axis of HIF-1α/Orai/STIM1 mechanism.
Mn²⁺, which enters the cell as a Ca²⁺ surrogate and reduces fura-2 fluorescence on binding to the dye. Fluorescence excited at 360 nm is the same for Ca²⁺-bound and Ca²⁺-free fura-2; therefore, changes in fluorescence can be assumed to be caused by Mn²⁺ alone. Quenching was quantified as the change in F360 (ΔF360) measured from 5 to 15 min and expressed as a percentage of F360 at 5 min.

Real-time quantitative PCR

Total RNA in de-endothelialized distal PA and PASMCs was extracted using TRIzol method. Reverse transcription was performed using PrimeScript RT Reagent Kit (Takara, Japan). The reaction mixture contained 1 μg total RNA in a 20 μl volume. cDNA was quantified by qRT-PCR using Quantitect SYBR Green PCR Master Mix (Qiagen) in a iCycler IQ real-time PCR detection system (BioRad, USA) using the following conditions: 95 °C for 15 min and 45 cycles, each at 94 °C for 15 s, 57.5 °C for 20 s and 72 °C for 20 s. The volume of each qRT-PCR reaction mixture was 25 μl containing 300 nM forward and reverse primers and cDNA template from 50 ng RNA. Primer sequences of rat Orai1, Orai2, Orai3, STIM1 and 18S were designed using Primer3 software (http://simgene.com/Primer3), and are shown as follows, where S is sense and A is antisense:

Primer	Sense Primer	Antisense Primer
Orai1-S	5′-GGAGCCCTCAAGGCACACT-3′	3′-GCTGACCGACTCGTACCA-5′
Orai1-A	5′-GAGCCTCAAGGCACACTCC-3′	3′-GGCGCCACTTATAGGCTG-5′
Orai2-S	5′-CCACCTAGCCTCTCATCTGG-3′	3′-GCACCAGGATATTTGGGTT-5′
Orai2-A	5′-GCCAGCTTACGGTTTCTGG-3′	3′-GCTGACCGAGATTGTGACCA-5′
Orai3-S	5′-ATGCAAGTACGGTTATCTGG-3′	3′-CTGAGCAGGAATTTGGCTTC-5′
Orai3-A	5′-CCGTCACGTCTAACCATCCAA-3′	3′-GGCCCTCCTAACCATCCAA-5′

Identity of the qPCR products was confirmed by (1) a single sharp peak in the melting curve performed after cDNA amplification, (2) a single band of the expected size resolved by agarose gel electrophoresis and (3) DNA sequencing. Melting curves were performed at 95 °C for 1 min and 55 °C for 1 min, followed by 80 increments of 0.5 °C at 10 s intervals. qRT-PCR detection threshold cycle (Ct) values were generated by iCycler IQ software. Relative concentration of each transcript was calculated using Pfaffl method. Efficiency for each gene was determined from five-point serial dilutions of positive control cDNA samples.

Western blotting

Total proteins in tissues or cells were extracted in ice-cold RIPA buffer (Biorad, Hercules, CA, USA) using the following conditions: 95 °C for 20 s. The volume of each qRT-PCR reaction mixture was 25 μl containing 300 nM forward and reverse primers and cDNA template from 50 ng RNA. Primer sequences of rat Orai1, Orai2, Orai3, STIM1 and 18S were designed using Primer3 software (http://simgene.com/Primer3), and are shown as follows, where S is sense and A is antisense:

Primer	Sense Primer	Antisense Primer
Orai1-S	5′-GGAGCCCTCAAGGCACACT-3′	3′-GCTGACCGACTCGTACCA-5′
Orai1-A	5′-GAGCCTCAAGGCACACTCC-3′	3′-GGCGCCACTTATAGGCTG-5′
Orai2-S	5′-CCACCTAGCCTCTCATCTGG-3′	3′-GCACCAGGATATTTGGGTT-5′
Orai2-A	5′-GCCAGCTTACGGTTTCTGG-3′	3′-GCTGACCGAGATTGTGACCA-5′
Orai3-S	5′-ATGCAAGTACGGTTATCTGG-3′	3′-CTGAGCAGGAATTTGGCTTC-5′
Orai3-A	5′-CCGTCACGTCTAACCATCCAA-3′	3′-GGCCCTCCTAACCATCCAA-5′

Identity of the qPCR products was confirmed by (1) a single sharp peak in the melting curve performed after cDNA amplification, (2) a single band of the expected size resolved by agarose gel electrophoresis and (3) DNA sequencing. Melting curves were performed at 95 °C for 1 min and 55 °C for 1 min, followed by 80 increments of 0.5 °C at 10 s intervals. qRT-PCR detection threshold cycle (Ct) values were generated by iCycler IQ software. Relative concentration of each transcript was calculated using the Pfaffl method. Efficiency for each gene was determined from five-point serial dilutions of positive control cDNA samples.

Statistical analysis

Statistical analyses were conducted using Student's t-test for two groups and one-way ANOVA for multiple groups of data. Differences were considered significant when P < 0.05. Data are presented as means ± S.E. M; ‘n’ refers to the sample size (that is, the number of the animals providing PAs or primary culture of PASMCs).

ACKNOWLEDGEMENTS

This work was funded by the grants from the National Natural Science Foundation of China (81170502, 81520108001, 81630004, 81470246 and 81220108001), Guangzhou Department of Education (13C08 and 12A001S), Guangzhou Science and Technology Programme Projects (201607002030), and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme of China.

COMPETING INTERESTS

The authors declare no conflict of interest.

PUBLISHER’S NOTE

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

1. Simonneau G, Gatouillot MA, Adatia I, Celermajer D, Denton C, Ghofrani A et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013; 62(25 Suppl): D34–D41.
2. Golovina VA, Platoshyn O, Bailey CL, Wang J, Limusuvan A, Sweeney M et al. Uregulated TRIP and enhanced capacitative Ca(2+) entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 2001; 280: H746–H755.
3. Brough GH, Wu S, Gioffi D, Moore TM, Li M, Dean N et al. Contribution of endo-genously expressed Trp1 to a Ca2+-selective, store-operated Ca2+ entry pathway. FASEB J 2001; 15: 1727–1737.
4. Jiang Q, Lu W, Yang K, Hadadi C, Fu X, Chen Y et al. Sodium tannosine IIA sulfonate inhibits hypoxia-induced enhancement of SOCE in pulmonary arterial smooth muscle cells via the PKG-PPAR-gamma signaling axis. Am J Physiol Cell Physiol 2016; 311: C136–C149.
5. Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G et al. Orai and STIM1 promote SOCE in PASMCs. J Cell Death 2013; 176: H746–H755.
6. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L et al. ORAI and store-operated calcium in smooth muscle cells via the PKG-PPAR-gamma signaling axis. Am J Physiol Cell Physiol 2016; 311: C136–C149.
7. Varnai P, Haskard D, Balla T. STIM and Orai: the long-awaited constituents of the endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS Lett 2010; 584: 280–286.
8. Simonneau G, Gatzoulis MA, Adatia I, Cellermajer D, Denton C, Ghofrani A et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2013; 62(25 Suppl): D34–D41.
17 Mercer IC, Dehaven WJ, Smyth JT, Wedel B, Boyles RR, Bird GS et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 2006; 281: 24979–24990.

18 Dehaven WJ, Smyth JT, Boyles RR, Putney JJ. Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 2007; 282: 17548–17556.

19 Lis A, Peinelt C, Beck A, Farve S, Montelli-Zoller M, Fleig A et al. CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 2007; 17: 794–800.

20 Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992; 355: 353–356.

21 Hoth M, Penner R. Calcium release-activated calcium current in rat mast cells. J Physiol 1993; 465: 359–386.

22 Cai X. Molecular evolution and structural analysis of the Ca(2+) release-activated calcium channel Orai. J Biol Chem 2010; 285: 1284–1291.

23 Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS et al. Biochemical and functional characterization of Orai proteins. J Biol Chem 2007; 282: 16232–16243.

24 Hou X, Pedli L, Diver MM, Long SB. Crystal structure of the calcium release-activated calcium channel Orai. Science 2012; 338: 1308–1313.

25 Mignen O, Thompson JL, Shuttleworth TJ. Both Orai1 and Orai3 are essential components of the arachidonate-regulated Ca2+-selective (ARC) channels. J Physiol 2008; 586: 185–195.

26 Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JJ et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005; 15: 1235–1241.

27 Manji SS, Parker NJ, Williams RT, van Stekelenburg L, Pearson RB, Dziedek M et al. STIM1: a novel phosphoprotein located at the cell surface. Biochem Biophys Acta 2000; 1481: 147–155.

28 Roos J, DiGregorio PJ, Yeromin AV, Ohslen K, Lioudyno M, Zhang S et al. Clinical and conserved component of store-operated Ca2+ channel function. J Cell Biol 2005; 169: 435–445.

29 Oh-hora M, Rao A. Calcium signaling in lymphocytes. Curr Opin Immunol 2008; 20: 250–258.

30 Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441: 179–185.

31 Wu MM, Buchanan J, Luik RM, Lewis RS. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 2006; 174: 803–813.

32 Wang Y, Deng X, Hewavitharana T, Soboloff J, Gill DL. Stim, ORAI and TRPC components of the arachidonate-regulated Ca2+-selective (ARC) channels. Channels (Austin) 2012; 6: 370–378.

33 Putney JJ. Capacitative calcium entry: sensing the calcium stores. J Cell Biol 2005; 169: 381–382.

34 Wu W, Wang J, Peng G, Shimoda LA, Sylvester JT. Knockdown of stromal interaction molecule 1 attenuates store-operated Ca2+ entry and Ca2+ responses to acute hypoxia in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 2009; 297: L17–L25.

35 Shuttleworth TJ. STIM and Orai proteins and the non-capacitative ARC channels. Front Biosci (Landmark Ed) 2012; 17: 847–860.

36 Thompson JL, Shuttleworth TJ. A plasma membrane-targeted cytotoxic domain of STIM1 selectively activates ARC channels, an arachidonate-regulated store-independent Orai channel. Channels (Austin) 2012; 6: 370–378.

37 Hawkins BJ, Jirinko KM, Malilankaraman K, Lien YC, Wang Y, Bhanumathy CD et al. S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 2010; 190: 391–405.