Erythropoietin to reduce allogeneic red blood cell transfusion in patients undergoing total hip or knee arthroplasty

V. M. A. Voorn,1 A. van der Hout,1 C. So-Osman,2,3 T. P. M. Vliet Vlieland,4 R. G. H. H. Nelissen,4 M. E. van den Akker-van Marle,1 A. Dahan,5 P. J. Marang-van de Mheen1 & L. van Bodegom-Vos1

1Department of Medical Decision Making, Leiden University Medical Center, Leiden, The Netherlands
2Department of Transfusion Medicine and Centre for Clinical Transfusion Research, Sanquin Blood Supply Foundation, Leiden, The Netherlands
3Department of Internal Medicine, Groene Hart Hospital, Gouda, The Netherlands
4Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
5Department of Anaesthesiology, Leiden University Medical Center, Leiden, The Netherlands

Received: 18 September 2015, revised 14 March 2016, accepted 30 March 2016, published online 17 June 2016

Background and Objectives To determine the value of erythropoietin in reducing allogeneic transfusions, it is important to assess the effects, safety and costs for individual indications. Previous studies neither compared the effects of erythropoietin between total hip and total knee arthroplasty, nor evaluated the safety or costs. We performed a meta-analysis to assess the effects of erythropoietin in total hip and knee arthroplasty separately. Safety and costs were evaluated as secondary outcomes.

Materials and Methods A systematic literature search was performed to identify randomized controlled trials evaluating the effect of erythropoietin in total hip and knee arthroplasty until April 2014. Study data were extracted using standardized forms and pooled using a random-effects model. Strength of the evidence was evaluated using Cochrane’s Collaboration’s tool for risk of bias assessment.

Results Seven studies were included (2439 patients). Erythropoietin significantly reduced exposure to allogeneic transfusion in both hip (RR 0.45; 95%CI 0.33–0.61) and knee (RR 0.38; 95%CI 0.27–0.53) arthroplasty, without differences between indications (P = 0.44). Mean number of transfused red blood cell units was significantly decreased in erythropoietin-treated patients (mean difference –0.57; 95%CI –0.86 to –0.29)[unable to split]. No differences in thromboembolic or adverse events were found. Only one study evaluated costs, so that no pooled cost-effectiveness estimates could be given.

Conclusion Erythropoietin is effective in both hip and knee arthroplasty and can be considered as safe. However, the decision to use erythropoietin on a routine base should be balanced against its costs, which may be relatively high.

Key words: allogeneic red blood cell transfusion, erythropoietin, hip arthroplasty, knee arthroplasty, meta-analysis, patient blood management.

Introduction

Preoperative treatment with erythropoietin (EPO) is used in joint arthroplasty to correct preoperative anaemia, which is consequently a major risk factor for postoperative anaemia and allogeneic red blood cell (RBC)
transfusion [1]. To determine the value of EPO in reducing allogeneic transfusions, it is important to assess the effects, safety and costs of EPO for individual indications. Previous reviews [1–3] and a recently published meta-analysis [4] showed that it is in general effective to use EPO to reduce allogeneic transfusion in orthopaedic procedures. However, neither of these studies compared the effect of EPO for individual indications such as total hip arthroplasty (THA) and total knee arthroplasty (TKA), nor evaluated the safety or cost involved in using EPO [4].

We hypothesized that the effects of preoperative EPO to reduce allogeneic transfusion might be larger in THA than in TKA due to a larger postoperative drop in haemoglobin (Hb) in THA than in TKA [5]. This hypothesis is supported by lower transfusion rates in TKA compared to THA [6–9], with absolute differences up to 17% [8]. This might be due to differences in body mass index (BMI) [10, 11], comorbidities [10], anatomy of the surgical area and the extent of deep surgical dissection, leading to differences in blood loss [10, 12]. These confounders necessitate a stratified analysis of patient blood management in TKA and THA, because a difference in the effect of EPO between TKA and THA could cause overtreatment.

In addition to the effects of EPO to reduce allogeneic transfusion, both the safety and costs of EPO need to be taken into account before implementation in daily practice. EPO increases the risk for thromboembolic and vascular adverse events and other non-thromboembolic adverse events [3]. On the other hand, treating patients with allogeneic transfusion might also be complicated by transfusion reactions [13]. Other concerns are the increased risks of wound or prosthesis infection after allogeneic transfusion, but the literature about this effect is ambiguous [13–17].

Finally, also the costs of EPO treatment need to be considered. If EPO treatment is effective to reduce allogeneic transfusion, but the benefits of EPO do not outweigh the reduction in allogeneic transfusions which are relatively safe, there might be no advantage for routine use of EPO treatment in daily clinical practice.

Therefore, the aim of this meta-analysis was to assess the effect of EPO in reducing exposure to allogeneic transfusion and the mean number of RBC units transfused in both total hip and total knee arthroplasty. As secondary outcomes, the safety and costs of EPO were evaluated.

Materials and methods

Study selection

For this meta-analysis, Medline, Embase, Web of Science and the Cochrane library were systematically searched from inception through April 2014 without language restrictions [Appendix S1: Search strategy]. Two reviewers independently performed the screening of titles, abstract and full-text articles. Consensus in the selection process was reached through discussion. If consensus was not reached, a third reviewer was consulted.

Articles were eligible for inclusion if they reported results of randomized controlled trials (RCT) that compared the effects of EPO and control in adult (age > 18) patients undergoing elective THA or TKA. Studies had to report data on the number of patients exposed to allogeneic transfusion, or the mean number of allogeneic RBC units transfused. Administration of EPO should start prior to surgery. Excluded were studies in which the effect of EPO to augment preoperative autologous donation (PAD) was assessed. Studies with a combination of active comparisons were only included if both the intervention and control groups were equally exposed to the active treatment (active plus EPO compared to active only).

Data extraction

For each selected trial, the reviewers independently extracted study characteristics, primary (effect) and secondary (safety and cost) outcomes. When data could not be extracted separately for THA or TKA from the article, the authors of the study were contacted twice. When they did not respond, the article was excluded for the analyses. Study characteristics included type of surgery, description of the intervention (timing, dosage and frequency of EPO administration), description of the control group (placebo or no intervention), adjuvant usage of iron (oral or intravenous), usage of threshold for EPO eligibility, usage of threshold for allogeneic transfusion, comanminant interventions. Primary outcomes included the number of patients exposed to allogeneic transfusion and the mean number of RBC units transfused per patient. Secondary outcomes included the number of thromboembolic events, the number of adverse events and the costs per study arm (either EPO or control).

Statistical analysis

Data were analysed using Review Manager software (RevMan version 5.3 http://tech.cochrane.org/revman). Dichotomous and continuous data were pooled across trials using a random-effects model. For dichotomous data, a risk ratio was calculated using the Mantel–Haenszel method. For continuous data, a standardized mean difference was calculated. If studies compared different EPO dosages or regimens with controls, these EPO arms were combined. Statistical heterogeneity was examined by the I^2 test. The I^2
test describes the percentage of the total variation across studies due to heterogeneity rather than chance. A value of 0% indicates no observed heterogeneity, whereas values >50% indicate substantial heterogeneity [18].

The following a priori defined subgroup analyses with an explorative nature were performed to identify patient group(s) who might benefit from EPO use: ‘Hb cut-off level for EPO treatment’ including non-restricted use and restricted use; ‘EPO dosage’ including high dose (>1500 IU/kg bodyweight), low dose (<1500 IU/kg bodyweight) and fixed dose (fixed EPO dose irrespective to bodyweight); ‘EPO timing’ including short preoperative period (treatment starts 10–11 days preoperatively with daily injections) and long preoperative period (treatment starts 3–4 weeks preoperatively with a weekly injection regime); ‘type of iron’ including oral and intravenous; ‘transfusion threshold’ including restrictive (allogeneic transfusion if Hb \(\leq \) 8.0 g/dl) and liberal (all others); and ‘blinding’ including blinded (placebo used in control group) and non-blinded (no placebo used). Differences were considered significant if the \(P \)-value was below 0.05.

Strength of the evidence

Included studies were assessed for methodological quality using the Cochrane Collaboration’s tool for assessing the risk of bias by two independent reviewers. Overall quality of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach using the GRADEpro guideline development tool. By assessing the quality of the evidence, the confidence in the effect estimates can be determined.

Results

The literature search strategy resulted in a total of 799 potentially relevant articles (Fig. 1). Seventy articles were selected for full-text screening. Finally, seven articles describing a total of 2497 patients met the inclusion criteria and were used in the meta-analysis [19–25]. Of the seven identified studies, two only included THA patients, two studies included both THA and TKA, two studies included several types of orthopaedic surgery (e.g. THA, TKA, spine, upper extremity, ankle) and one study included orthopaedic as well as non-orthopaedic patients (THA, TKA, cardiac surgery and ‘other’). Five of seven studies included both primary and revision surgery of the hip and/or knee [19–21, 23, 24], one study excluded patients undergoing revision surgery [22], and one study did not specify if revision surgery was included [25]. (Appendix S2: Study characteristics). Only one study reported costs of EPO use [24].

Effects of EPO

Overall EPO reduced the exposure rate by 54% compared with controls (RR 0.46; 95%CI 0.44–0.80) (Fig. 2) in all included patients. However, various types of surgery were included in this analysis and the heterogeneity was substantial (\(I^2 = 71\% \)). Subsequently, THA and TKA were
analysed separately. In THA patients, EPO reduced the exposure rate by 55% (RR 0.45; 95%CI 0.33–0.61) (Fig. 3). The heterogeneity between these studies was still substantial (I² = 67%). In TKA patients, EPO reduced the exposure rate by 62% (RR 0.38; 95%CI 0.27–0.53) (Fig. 3), with no heterogeneity between studies (I² = 0%). There was no significant difference in the effect of EPO between THA and TKA (P = 0.44).

EPO significantly reduced the mean number of RBC units transfused (mean difference –0.57; 95%CI –0.86 to –0.29) (Fig. 4), with substantial heterogeneity between the studies (I² = 84%). It was not possible to assess the effect of EPO on the mean number of RBC units transfused for THA and TKA separately.

Safety and costs of EPO

Thromboembolic events were reported in different ways. Three studies actively searched for the presence of deep venous thrombosis (DVT) by ultrasonography or venography [19, 21, 22] whereas two others only reported symptomatic DVTs [24, 25], and two did not report how they assessed DVT [20, 23]. Four studies reported thromboembolic events [19, 21–23], whereas the three other studies reported a combination of thromboembolic and vascular events [20, 24, 25]. Reporting of other adverse events also varied severely between studies. One study reported adverse events in patients that underwent surgery (excluding patients with adverse events after receiving study medication) [22]. Four other studies reported adverse events of all patients that received at least one dose of study medication [20, 21, 24, 25] or only stated ‘there were no differences’ [19, 23]. Analysis of the thromboembolic and vascular adverse events showed that the use of EPO did not lead to an increase of events (RR 1.14; 95% CI 0.71–1.84). Heterogeneity between studies was negligible (I² = 3%) (Appendix S3: Thromboembolic events and adverse events, Fig. 1). Analysis of the other adverse events showed no significant differences between EPO and control (RR 1.01; 95%CI 0.94–1.01), again without any heterogeneity between studies (I² = 0%) (Appendix S3: Thromboembolic events and adverse events, Fig. 2).

Only one study evaluated the costs of EPO use [24]. In that study, costs were estimated from a hospital perspective, with a 3-month horizon. The EPO strategy increased costs with €785 per patient in comparison with no intervention. With an absolute reduction in exposure to transfusion from 26.4% to 15.6% in this study, EPO avoided transfusion in every nine patients, translating the cost estimate to €7300 per avoided transfusion [24].

Subgroup analyses

No subgroups could be identified in which the effect of EPO to reduce allogeneic transfusions differs from the overall effect (Appendix S4: Subgroup analyses).

Strength of the evidence

The overall strength of the evidence using the GRADE approach is ‘high’. A detailed description of the strength of the evidence is shown in Appendix S5: Strength of the evidence.

Discussion

This meta-analysis showed that the use of preoperative EPO reduces the exposure of patients to allogeneic transfusions in both THA and TKA, with no difference in its effect between THA and TKA. These results suggest that the differences between THA and TKA in the effect of EPO are either absent or too small to be detected given the number of studies and/or the number of patients. Furthermore, this meta-analysis shows that the use of EPO did not increase the number of thromboembolic events nor the number of other adverse events. Therefore, the use of EPO to prevent allogeneic transfusions in THA and TKA can be considered as safe. The costs of EPO treatment were derived from a single study and were estimated at an additional €785 per patient or €7300 per 2016 The Authors. Vox Sanguinis published by John Wiley & Sons Ltd on behalf of International Society of Blood Transfusion Vox Sanguinis (2016) 111, 219–225

Study or Subgroup	Erythropoietin	Control/Placebo	Risk Ratio	Risk Ratio			
	Events	Total	Weight	M-H, Random, 95% CI	Year		
Canadian Study group 1993	35	130	36	78	14.6%	0.58 [0.40, 0.85]	1993
de Andrade 1996	20	193	22	96	10.6%	0.45 [0.26, 0.79]	1996
Fars 1996	27	121	36	67	13.9%	0.42 [0.28, 0.62]	1996
Feagan 2000	23	123	35	78	13.0%	0.42 [0.27, 0.65]	2000
Wurnig 2001	41	124	28	51	15.0%	0.60 [0.42, 0.88]	2001
Weber 2005	56	460	107	235	16.6%	0.27 [0.20, 0.35]	2005
So-Danen 2014	53	338	91	344	16.1%	0.59 [0.44, 0.80]	2014
Total (95% CI)	**1490**	**949**	**100.0%**	**0.46 [0.35, 0.60]**	**2016**		

Total events: 255
Heterogeneity: Tau² = 0.09; Chi² = 20.97, df = 6 (P = 0.002); I² = 71%
Test for overall effect: Z = 5.81 (P < 0.0001)
avoided allogeneic transfusion, but estimates may differ in other healthcare systems.

In addition to previous studies [1–4], and the recently published meta-analysis on the effectiveness of EPO [4], our study assessed the effects for hip and knee separately, and included safety and costs of erythropoietin. Furthermore, this meta-analysis included three more studies [21, 24, 25] and used more strict inclusion criteria as we believed that these more strict criteria increase the quality of the conclusion to whether or not to use EPO in hip and knee arthroplasty. The use of more strict inclusion criteria led to the exclusion of studies in which the effect of EPO to augment PAD was tested or in which the effect of EPO was compared with the effect of PAD [4], a study that started EPO postoperatively [26] and a study in which the transfusion rate or mean number of RBC units was not reported [27] in comparison with the meta-analysis of Alsaleh et al. [4].

Some limitations of this meta-analysis should be mentioned. First, the studies included in this meta-analysis selectively reported their used methods for perioperative care (such as the use of venous thrombosis prophylaxis) and their outcomes. This made it impossible to analyse the mean number of transfused RBC units and safety outcomes for THA and TKA separately, to analyse postoperative Hb levels, and to compare the effect of EPO for primary or revision surgery separately. Despite several attempts, additional data could not be retrieved, except for the most recent study [24].

A second limitation is that patient safety outcomes were not assessed nor reported in a uniform way in the included studies. Furthermore, studies may not be powered to find differences in safety as the adverse outcomes are more rare than allogeneic transfusions in the included studies. This heterogeneity in reporting and lack of power complicates the comparison between studies and limits the interpretability of the patient safety analyses for EPO. However, the non-uniform reporting of safety outcomes would be expected to result in heterogeneous estimates, which were not found so that we are confident that the
results regarding the safety outcomes showing no effect are valid findings.

Third, the costs analysis of the use of EPO in both THA as well as TKA was only available in one study [24]. That study concluded that the EPO strategy costs were as high as €785 per patient or €7300 per avoided transfusion. Due to variation in dosage and frequency of administration of EPO and differences in costs of both EPO and allogeneic RBC units in countries [28], the costs cannot be extrapolated to other studies or healthcare systems. However, the high costs of EPO treatment identified in this study [24] are confirmed by several non-randomized studies. Bedair et al. (2014) concluded that EPO was too expensive for routine use, especially because there were less expensive alternatives [29]. Coyle et al. (1999) concluded that the incremental costs of EPO compared with no intervention per life year gained were as high as $66 million [30]. This was substantiated further in a systematic review and economic model [31]. Only a single study concluded that EPO treatment was cost saving in orthopaedics, by assuming that in a population with a high-transfusion-rate EPO could prevent nearly all transfusions [32]. However, that assumption is not supported by our current findings.

In conclusion, this study shows that EPO reduces allogeneic transfusions in both hip and knee arthroplasty without any additional adverse outcomes. However, given that allogeneic transfusions are also relatively safe (Dutch data show that only 0.014% of the patients experience serious transfusion reactions [33]), in combination with the decreasing RBC use in THA and TKA (Fig. 4) and the substantial costs for EPO treatment to avoid these allogeneic transfusions, it remains debatable whether routine use of EPO is justified in orthopaedic practice. Furthermore, less expensive alternatives can be considered as well. To decide on these issues, more well-designed studies, evaluating the costs relative to the effectiveness of individual elements in patient blood management, are needed. In addition, future research should be aimed at the identification of patients at risk for an allogeneic transfusion that benefit most from EPO treatment.

Acknowledgements
This study was funded by a grant from the Netherlands Organisation for Health Research and Development (ZonMW 171203001) and by a grant from Sanquin Blood Supply (PPOC13-010).

Author contributions
The study was designed by VV, CS, TV, RN, PM and LB. Selection of studies and data extraction were executed by VV, AH, LV. Interpretation and analysis of data were performed by VV, AH, CS, RN, MA, AD, PM and LB. VV drafted the manuscript. All authors critically revised the manuscript and approved the final version.

Conflict of interests
The authors declare no conflict of interests.

References
1 Goodnough LT, Maniatis A, Earnshaw P, et al.: Detection, evaluation, and management of preoperative anaemia in the elective orthopaedic surgical patient: NATA guidelines. Br J Anaesth 2011; 106:13–22
2 Tran DHD, Wong GTC, Chee YE, et al.: Effectiveness and safety of erythropoiesis-stimulating agent use in the perioperative period. Expert Opin Biol Ther 2014; 14:51–61
3 Lin DM, Lin ES, Tran MH: Efficacy and safety of erythropoietin and intravenous iron in perioperative blood management: a systematic review. Transfus Med Rev 2013; 27(4):221–234
4 Alsakeh K, Alotaibi GS, Almodaimegh HS, et al.: The use of preoperative erythropoiesis-stimulating agents (ESAs) in patients who underwent knee or hip arthroplasty: a meta-analysis of randomized clinical trials. J Arthroplasty 2013; 28:1463–1472
5 Zhou Q, Zhou Y, Wu H, et al.: Changes of hemoglobin and hematocrit in elderly patients receiving lower joint arthroplasty without allogeneic blood transfusion. Chin Med J (Engl) 2015; 128:75–78
6 Theusinger OM, Kind SL, Seifert B, et al.: Patient blood management in orthopaedic surgery: a four-year follow-up of transfusion requirements and blood loss from 2008 to 2011 at the Balgrist University Hospital in Zurich, Switzerland. Blood Transfus 2014; 12:195–203
7 Yoshihara H, Yoneoka D: National trends in the utilization of blood transfusions in total hip and knee arthroplasty. J Arthroplasty 2014; 29:1932–1937
8 Frisch NB, Wessell NM, Charters MA, et al.: Predictors and complications of blood transfusion in total hip and knee arthroplasty. J Arthroplasty 2014; 29(9 Suppl):189–192
9 Marson BA, Shah J, Deglurkar M: Blood transfusion in hip and knee arthroplasties: the end of the preoperative group and save? Eur J Orthop Surg Traumatol 2015; 25 (5):871–875

© 2016 The Authors.
Vox Sanguinis published by John Wiley & Sons Ltd on behalf of International Society of Blood Transfusion
Vox Sanguinis (2016) 111, 219–225
10 Choi JK, Geller JA, Yoon RS, et al.: Comparison of total hip and knee arthroplasty cohorts and short-term outcomes from a single-center joint registry. J Arthroplasty 2012;27:837–841
11 Sawalha S, Ralfe P, Chan C, et al.: The effect of obesity on theatre utilisation time during primary hip and knee replacements. Open Orth J 2015;9:68–72
12 Pow RE, Vale PR: Thromboprophylaxis in patients undergoing total hip and knee arthroplasty: a review of current practices in an Australian teaching hospital. Intern Med J 2015;45:293–299
13 Shah A, Stanworth SJ, McKechnie S: Evidence and triggers for the transfusion of blood and blood products. Anaesthesia 2015;70(Suppl 1):10–15
14 Newman ET, Watters TS, Lewis JS, et al.: Impact of perioperative allo- geneic and autologous blood transfusion on acute wound infection following total knee and total hip arthroplasty. J Bone Joint Surg Am 2014;96:279–284
15 Friedman R, Homering M, Holberg G, et al.: Allogeneic blood transfusions and postoperative infections after total hip or knee arthroplasty. J Bone Joint Surg Am 2014;96:272–278
16 Yates AJ Jr: The relative risk of infection from transfusions after arthroplasty: commentary on articles by Richard Friedman, MD, FRCS, et al.: “Allo- geneic blood transfusions and postoperative infections after total hip or knee arthroplasty” and Erik T. Newman, MD, et al.: “Impact of perioperative allo- geneic and autologous blood transfusion on acute wound infection following total knee and total hip arthroplasty”. J Bone Joint Surg Am 2014;96:e13
17 Rohde JM, Dimcheff DE, Blumberg N, et al.: Health care-associated infection after red blood cell transfusion: a systematic review and meta-analysis. JAMA 2014;311:1317–1326
18 Higgins JPT, Green S (editors): Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0. The Cochrane Collaboration, 2009
19 Canadian Orthopedic Perioperative Erythropoietin Study Group Effectiveness of perioperative recombinant human erythropoietin in elective hip replace- ment. Lancet 1993;341:1227–1232
20 Farls P: Use of recombinant human erythropoietin in the perioperative period of orthopedic surgery. Am J Med 1996;101:285–325
21 de Andrade JR, Jove M, Landon G, et al.: Baseline hemoglobin as a predictor of risk of transfusion and response to Epoetin alfa in orthopedic surgery patients. Am J Orthop (Belle Mead NJ) 1996;25:533–542
22 Feagan BG, Wong CJ, Kirkley A, et al.: Erythropoietin with iron supplementation to prevent allogeneic blood transfusion in total joint arthroplasty: A randomized, controlled trial. Ann Intern Med 2000;133:845–854
23 Weber E, Slappendel R, Hemon Y, et al.: Effects of epoetin alfa on blood transfusions and postoperative recovery in orthopaedic surgery: the European Epoetin Alfa Surgery Trial (EEST). Eur J Anaesthesiol 2005;22:249–257
24 So-Osman C, Nelissen RG, Koopman- van Gemert AW, et al.: patient blood management in elective total hip and knee-replacement surgery (part 1): a randomized controlled trial on ery-thropoietin and blood salvage as transfusion alternatives using a restrictive transfusion policy in erythropoi- etin-eligible patients. Anesthesiology 2014;120(4):839–51
25 Wurnig C, Schatz K, Noske H, et al.: Subcutaneous low-dose epoetin beta for the avoidance of transfusion in patients scheduled for elective surgery not eligible for autologous blood dona- tion. Eur Surg Res 2001;33:303–310
26 Na HS, Shin SY, Hwang JY, et al.: Effects of intravenous iron combined with low-dose recombinant human erythropoietin on transfusion require- ments in iron-deficient patients under- going bilateral total knee replacement arthroplasty. Transfusion 2011;51:118–124
27 Olijhoek G, Megens JG, Musto P, et al.: Role of oral versus IV iron sup- plementation in the erythropoietic response to rhEPO: a randomized, placebo-controlled trial. Transfusion 2001;41:957–963
28 Baarsma B, Mutsaerts M: Costs of Blood (in Dutch). ESB 2012; 97:664–666
29 Bedair H, Yang J, Dwyer MK, et al.: Preoperative erythropoietin alpha reduces postoperative transfusions in THA and TKA but may not be cost- effective. Clin Orthop Relat Res 2014; 473(2):590–596
30 Coyle D, Lee KM, Fergusson DA, et al.: Economic analysis of erythropoietin use in orthopaedic surgery. Transfus Med 1999;9:21–30
31 Davies L, Brown TJ, Haynes S, et al.: Cost-effectiveness of cell salvage and alternative methods of minimising perioperative allogeneic blood transfu- sion: a systematic review and eco- nomic model. Health Technol Assess 2006;10(44):iii–iv, ix–x, 1–210.
32 Green WS, Toy P, Bozic KJ: Cost mini- mization analysis of preoperative ery-thropoietin vs autologous and allogeneic blood donation in total joint arthroplasty. J Arthroplasty 2010;25:93–96
33 Schipperus M.R: TRIP annual report 2012 Hemovigilance. Hemovigilance and biovigilance office the Netherlands 2012

Supporting Information

Additional Supporting Information may be found in the online version of this article:
Appendix S1 Search strategy performed on 2–4–2014
Appendix S2 Study characteristics
Appendix S3 Thromboembolic events and adverse events
Appendix S4 Subgroup analyses
Appendix S5 Strength of the evidence