Rhenium-186-mercaptoacetyltriglycine-labeled Monoclonal Antibody for Radioimmunotherapy: In vitro Assessment, in vivo Kinetics and Dosimetry in Tumor-bearing Nude Mice

Seigo Kinuya,1,5 Kunihiko Yokoyama,1 Harunobu Tega,1 Takashi Hiramatsu,1 Shota Konishi,1 Wakako Yamamoto,2 Noriyuki Shuke,2 Tamio Aburano,2 Naoto Watanabe,3 Teruhiko Takayama,4 Takatoshi Michigishi1 and Norihisa Tonami1

1Department of Nuclear Medicine, Kanazawa University School of Medicine, 13-1 Takaramachi, Kanazawa 920-8640, 2Department of Radiology, Asahikawa Medical College, Nishikagura 4-5-3-11, Asahikawa 078-8510, 3Department of Radiology, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194 and 4Department of Radiological Technology, Kanazawa University School of Health Science, 5-11-80 Kodatsuno, Kanazawa 920-0942

Stability and immunoreactivity of 186Re-labeled monoclonal antibody were examined, and its in vivo kinetics was investigated in tumor-bearing Balb/c nu/nu female mice to assess the feasibility of using it in radioimmunotherapy (RIT). A murine IgG1, A7, against a 45 kD glycoprotein in human colon cancer was radiolabeled with 186Re by using a chelating method with a mercaptoacetyltriglycine (MAG3). 186Re-MAG3 complex was conjugated to A7 after esterification of 186Re-MAG3 with tetrafluorophenol (TFP). The efficiency of 186Re-MAG3-TFP production and the labeling efficiency of A7 were 51–59% and 57–60%, respectively. Immunoreactivity of purified 186Re-MAG3-A7 was 68.2% at infinite antigen excess. In 0.9% NaCl at 4°C, the radioactivity (12.7 MBq/mg, 3.55 MBq/ml) dissociated with time from 186Re-MAG3-A7 as a small molecular weight moiety because of autoradiolysis. The addition of ascorbic acid, 5 mg/ml, as a radioprotectant or storage at −80°C could effectively prevent the radiolysis of 186Re-MAG3-A7 for 7 days. Immunoreactivity of 186Re-MAG3-A7, 6.70 MBq/mg (6.66 MBq/ml), stored in the presence of ascorbic acid was well retained up to 8 days after the preparation. In colon cancer xenografted mice, 31.0% of the injected dose/g of 186Re-MAG3-A7 had accumulated in the tumors at 24 h postinjection. Estimated radiation dose to tumors was 14.9 cGy/37 kBq up to 8 days postinjection which was 12-fold greater than the whole-body radiation dose. These in vivo characteristics were superior to those of A7 labeled with radioiodine, 31.0% of the injected dose/g of 186Re-MAG3-A7 had accumulated in the tumors at 24 h postinjection. Estimated radiation dose to tumors was 14.9 cGy/37 kBq up to 8 days postinjection which was 12-fold greater than the whole-body radiation dose. These in vivo characteristics were superior to those of A7 labeled with radioiodine, affording greater therapeutic ratios than 131I-A7. Because of the better image quality of 186Re-MAG3-A7 as well as more favorable dosimetry, 186Re-MAG3-A7 would be a better choice for RIT of colon cancer than 131I-A7. These results indicated the feasibility of RIT with 186Re-MAG3-A7, though the prevention of radiolysis of the labeled antibody should be considered.

Key words: Monoclonal antibody — Rhenium-186 — Autoradiolysis — Biodistribution — Dosimetry

Radioimmunotherapy (RIT) using monoclonal antibodies (mAbs) labeled with β emitters has been proven to be a good option for the management of cancer patients.1,2 111I is the radionuclide that has been most widely used for this purpose.1,2 One of the major shortcomings of 111I is that 111I radioactivity is rapidly cleared from target tissues after internalization and intracellular metabolism.3,4 Another disadvantage of 111I is high-energy γ emission, 364 keV, that is not ideal for γ detection and exposes patients to unnecessary radiation. With the development of chelating methods, radioimmunoconjugates labeled with radiometals such as 90Y have been investigated.5,6 The chemistry of 90Y is similar to that of 111In, and it is well known that 111In-mAbs are more stable than 111I-mAbs in vivo, and the radioactivity remains inside the cells after intracellular metabolism.1,4 However, bifunctional chelates used for 111In labeling are usually not rigid enough to retain 90Y, and 90Y radioactivity released in vivo would accumulate in bone, resulting in an increase of the radiation dose to the bone marrow, a critical organ for RIT.5,6 Although the stability of 90Y-mAbs could be improved by using macrocyclic chelates such as 1,4,7,10-tetraazacyclododecane-1,4-tetraacetic acid, DOTA,7 such chelates would stimulate an immune reaction and anti-chelate antibody could be produced in vivo in addition to human anti-mouse antibody.7 Furthermore, because 90Y does not have γ emission, imaging is difficult with 90Y-mAbs and...
186Re appears to be a suitable radionuclide for RIT with an appropriate physical half-life of 3.7 days; this is long enough for a mAb to be localized in tumors and short enough to minimize toxicity to the whole body. Its abundant intermediate-energy β emission (71% of 1.07 MeV and 21% of 0.94 MeV) is comparable to that of 131I, and its γ emission of 137 keV (9%) is suitable for external detection with γ cameras and produces a lower nonspecific radiation dose than 131I. 186Re has similar chemical properties to 99mTc. Although 99mTc-mAb is now widely used for radioimmunoscintigraphy (RIS), 186Re radioiodination is performed by a direct labeling method that is not ideal for 186Re because of the instability of directly labeled 186Re-mAb. Thus, indirect methods using ligands such as N_2S_2, N_2S_4, and $\text{N}_2\text{S}_4\text{Se}$ compounds have been investigated. Among them, a prechelating labeling method using S-benzoyl-mercaptoacetyltrimlglycine (MAG3), a N,S ligand, seems to be a good choice because it can afford high in vivo stability and high specific activity of the labeled mAb.

In the present study, we tried to label a mAb A7, a murine IgG, against 45 kD tumor associated glycoprotein expressed on colon cancer cells with 186Re by using an S-benzoyl-MAG3 prechelating method. Although the reported response rates to RIT were not high for solid tumors such as colon cancer, 186Re-perrhenate (186ReO$_4^-$) was produced by the 186Re(n, γ) reaction at the Japan Atomic Energy Research Institute at a specific activity of 18.0–19.0 TBq/g (0.45–0.55 TBq/ml) on the day of assay, and supplied to us 2 days later. S-Benzoyl-MAG3 was a gift from Dr. Y. Arano (Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto). The prechelated 186Re-MAG3 was conjugated to the A7. Briefly, 186ReO$_4^-$ was reduced with 100 μl of SnCl$_2$ (1 mg/ml) in the presence of 150 μl of 1 M Na$_2$CO$_3$, 150 μl of Na$_3$SO$_4$ (100 mg/ml) and 25 μl of S-benzoyl-MAG3 (1 mg in 1 ml of acetonitrile/H$_2$O, 9:1). After evaporation under an N$_2$ stream, the mixture was further heated for another 15 min. The mixture was reconstituted with 500 μl of water, and incubated with 200 μl of 2, 3, 5, 6-tetrafluorophenol (TFP) (Nacalai Tesque, Kyoto) (100 mg in 1 ml of acetonitrile/H$_2$O, 9:1) and 50 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (Wako Pure Chemical Industries, Ltd., Osaka) for 30 min after adjustment of the pH to 6 with 1 N H$_2$SO$_4$. The active ester, 186Re-MAG3-TPF, was purified on a preconditioned C18 cartridge (Waters, Milford, MA) with 2.5 ml of acetonitrile. The solution was evaporated under an N$_2$ stream, the residue was dissolved in 500 μl of 0.9% NaCl, and the solution was reacted with 4 mg of A7 in a reaction volume of 2.5 ml for 30 min at room temperature after adjustment of the pH to 9.5 with 0.05 M Na$_2$CO$_3$. The active ester, 186Re-MAG3-TPF, was purified on a PD-10 column (Pharmacia LKB Biotechnolog, Uppsala, Sweden) with 0.9% NaCl as an eluant. The analysis of 186Re-MAG3 and 186Re-MAG3-TPF was performed by thin layer chromatography (TLC) (Merck Art 5553, Darmstadt, Germany) with acetonitrile as a solvent; the Rf values of 186Re-MAG3, 186Re-MAG3-TPF and 186ReO$_4^-$ were 0.55, 0.70 and 1.0, respectively. The number of MAG3 groups per mAb molecule was calculated from the specific activity of 186Re and the observed specific activity of the immunon conjugates. 186Re radioactivity was measured by the use of a dose calibrator set for 99mTc. In this

MATERIALS AND METHODS

mAb and radiolabeling A7, an IgG, murine mAb that recognizes the 45 kD glycoprotein in human colon cancer, was used. This mAb reacts with most colorectal cancers. A drug immunon conjugate, A7-neo carzinostatin, has been examined for the treatment of colorectal cancer and encouraging results were reported. Radioimmuno conjugates of this mAb labeled with radioiodine or 111In were shown to localize well in tumors. Radioiodinated 186Re-MAG3-A7 was investigated in tumor-bearing nude mice, and the feasibility of RIT was tested from a dosimetric viewpoint. These results were compared with those for radioiodine-labeled A7 to see if there would be an advantage in the use of 186Re-MAG3-A7 over 131I-A7 in terms of tumor dose and nonspecific normal tis-
system, \(^{186}\text{Re}\) activity was obtained by multiplying the result by a factor of 2.8.

In vitro stability and effect of radioprotectant or cryopreservation \(^{186}\text{Re}-\text{MAG3-A7}, 2.48–12.7 \text{ MBq/mg (2.78–3.55 MBq/ml, Re-MAG3:mAb 0.57–0.76:1), was stored in 0.9\% NaCl at 4°C for 7 days, and its stability was assessed by a size-exclusion high-performance liquid chromatography (HPLC) using a TSK3000SW-XL column (Tosoh, Tokyo) with 0.1 M phosphate buffer, pH 7.4, at 1 ml/min. In this system, the retention times of IgG, \(^{186}\text{Re}-\text{MAG3} \) and \(^{186}\text{Re}-\text{perrhenate} \) were 8 min, 13.5 min and 13.5 min, respectively. The effect of the presence of 5 mg/ml ascorbic acid on the immunoreactivity of \(^{186}\text{Re}-\text{MAG3-A7}, 6.70 \text{ MBq/mg (6.66 MBq/ml, Re-MAG3:mAb 0.43:1), at an infinite antigen excess, was determined after the purification, and was observed during storage with ascorbic acid at 4°C for 8 days, using LS180 human colon carcinoma cells as described by Lindmo et al.** Briefly, 100 ng of labeled A7 was incubated with increasing concentrations of cells from \(3.75 \times 10^5\) to \(1.2 \times 10^7\) in 200 \(\mu\)l for 1 h at room temperature. Non-specific binding was determined by adding 50 \(\mu\)g of cold A7. Triplicate assay was performed for the determination. HPLC assessment was simultaneously performed as described above.

Immunoreactivity of \(^{186}\text{Re}-\text{MAG3-A7} \) was expressed as a percentage of the injected dose per gram of organ (%ID/g). For the dosimetry, we assumed a homogeneous distribution of radioactivity throughout the tissues, ignoring \(\gamma\)-ray absorption. The cumulative radioactivity, \(\mu\)Ci/g, in various organs after injection of 1 \(\mu\)Ci (37 kBq) was calculated by the trapezoidal method using the biodistribution data, from which the radiation dose was estimated by multiplying by a factor of cGy/g/\(\mu\)Ci/h for \(^{186}\text{Re} \) of 0.73.\(^{20}\) In this calculation, the contribution of radiation after 8 days postinjection was omitted. The estimation of whole-body dose was performed as described by Gerritsen et al.\(^ {27} \)

To see if there would be an advantage in the use of \(^{186}\text{Re}-\text{MAG3-A7} \) over a radioiodine-labeled A7 in terms of \textit{in vivo} kinetics, the biodistribution of \(^{125}\text{I}-\text{A7} \) (54.2 MBq/mg, labeled by chloramine-T method) in the same animal model (\(n=4\)) was compared with that of \(^{186}\text{Re}-\text{MAG3-A7} \). The dosimetry of \(^{125}\text{I}-\text{A7} \) was done by using the biodistribution data of \(^{125}\text{I}-\text{A7} \) with a factor of cGy/g/\(\mu\)Ci/h for \(^{111}\text{In} \) of 0.40.\(^{28}\)

Experimental Statistical analysis was performed by use of the unpaired \(t\) test to compare the results. In the analysis, the level of significance was set at 5%.

RESULTS

Labeling efficiency of A7 and in vitro assessment of \(^{186}\text{Re}-\text{MAG3-A7} \) The incorporation of \(^{186}\text{Re} \) into S-benzoyl-MAG3 was 87.2\%, as assessed by TLC. The efficiency of \(^{186}\text{Re}-\text{MAG3-TFP} \) production was 51.4–59.0\%, and 56.5–59.5\% of \(^{186}\text{Re}-\text{MAG3-TFP} \) could be conjugated to A7 mAb. The recovery of radioactivity was 18.9–25.0\%.

In 0.9\% NaCl at 4°C, the radioactivity dissociated progressively from \(^{186}\text{Re}-\text{MAG3-A7} \), 12.7 MBq/mg (3.55 MBq/ml, Re-MAG3:mAb 0.76:1), as a small molecular weight moiety appearing at 13.5 min on HPLC analysis. During 7-day storage, 42.1\% of \(^{186}\text{Re} \) radioactivity was dissociated from the mAb (Fig. 1). The presence of 5 mg/ml ascorbic acid could prevent the radiolysis, and 90.3% of the radioactivity remained in the mAb on day 7. The effect of storage at \(-80^\circ\text{C} \) with or without ascorbic acid was similar. Radiolysis of \(^{186}\text{Re}-\text{MAG3-TFP} \) labeled at lower specific activity, 2.48 MBq/mg (2.78 MBq/ml, Re-MAG3:mAb 0.57:1), was negligible even at 4°C without ascorbic acid, as shown in Fig. 2. In human plasma at a concentration of 13.2 \(\mu\)g/0.17 MBq/ml at 37°C, 13.3\% of the \(^{186}\text{Re} \) radioactivity dissociated as a small moiety during 7 days (Fig. 1).

Immunoreactivity of \(^{186}\text{Re}-\text{MAG3-A7} \) was well preserved, being 68.2\% at infinite antigen excess immediately after the PD-10 purification. This was comparable to that of \(^{125}\text{I}-\text{A7} \), 57.8\%, and that of \(^{111}\text{In}-\text{A7} \), 62.9\%, labeled by the cyclic diethylenetriaminepentaacetic acid, DTPA, method using the same batch of A7 at a 2:1 molar ratio of DTPA:mAb, conditions which would not affect the immunoreactivity of the mAb. The protective effect of ascorbic acid was monitored for 8 days at the specific activity of 6.70 MBq/mg (6.66 MBq/ml, Re-MAG3:mAb 0.43:1). As shown in Fig. 3, the rate of radiolysis of this preparation was comparable to that of the preparation of 12.7 MBq/mg (3.55 MBq/ml, Re-MAG3:mAb 0.86:1) (Fig. 1). The reduction of immunoreactivity almost paralleled the dissociation of \(^{186}\text{Re} \) radioactivity from the mAb.

Biodistribution of \(^{186}\text{Re}-\text{MAG3-A7} \) and calculation of radiation dose The results of the biodistribution study in
tumor-bearing mice are summarized in Table I and Fig. 4. Tumor uptake of 186Re-MAG3-A7 was considerable, amounting to 15.65%ID/g at 6 h after the injection, and peaked on day 1 at 31.00%ID/g. The distribution in normal tissues was most prominent at 6 h and rapidly cleared with time. Although radioactivity was gradually washed
out from the tumor to 5.05%ID/g on day 8, the clearance rate was slower than those of normal tissues, so the tumor-to-nontumor uptake ratios increased with time (Fig. 4).

Dosimetry calculation was performed by the trapezoid integration method using the biodistribution data (Table II). The calculation was performed up to 8 days, and the later radiation contribution was neglected. After day 8, the doses to normal tissues were negligible and the dose to the tumor would have little effect (Fig. 5). The ratios of tumor dose to blood and liver doses were 2.23 and 7.32, respectively. For other tissues except for lung, the ratios were greater than 10. Tumor dose was greater than the whole-body dose by a factor of 12.31.

These results were compared with the biodistribution of 125I-A7 and estimated dosimetry for 131I-A7 (Tables III and IV). Blood clearance of 186Re-MAG3-A7 was significantly faster than that of 125I-A7 and the distribution to other normal tissues tended to be less with 186Re-MAG3-A7, except for the initial hepatic uptake. Tumor uptake of 186Re-MAG3-A7 was greater until 2 days after the injec-

Table I. Biodistribution of 186Re-MAG3-A7 in Tumor-bearing Nude Mice

Tissue	6 h^a	1 day	2 days	5 days	8 days
Blood	17.38 (1.71)^b	11.70 (1.36)^c	7.87 (1.04)^c	2.22 (1.31)	0.59 (0.37)
Liver	9.43 (1.41)^c	4.22 (0.60)	2.30 (0.12)	0.80 (0.25)	0.24 (0.07)
Spleen	5.34 (0.52)	3.17 (0.56)	1.57 (0.34)^c	0.60 (0.26)	0.17 (0.06)
Kidney	4.71 (0.41)	2.48 (0.44)^b	1.59 (0.25)	0.53 (0.26)	0.16 (0.06)
Bone	2.26 (0.26)	1.92 (0.32)	1.01 (0.13)	0.34 (0.14)	0.10 (0.05)
Muscle	1.16 (0.40)	0.93 (0.06)	0.62 (0.13)	0.17 (0.09)	0.05 (0.02)
Intestine	2.24 (0.50)	1.13 (0.28)	0.63 (0.10)	0.16 (0.07)	0.04 (0.02)
Lung	7.05 (0.89)^c	5.13 (0.84)^c	3.55 (0.30)^c	1.21 (0.58)	0.57 (0.56)
Brain	0.40 (0.06)	0.25 (0.03)^c	0.18 (0.02)^c	0.05 (0.03)	0.01 (0.01)
Heart	4.12 (0.60)^c	3.13 (0.56)	1.89 (0.32)^c	0.53 (0.25)	0.14 (0.08)
Tumor	15.65 (2.25)	31.00 (2.09)^c	27.21 (3.22)^c	12.73 (5.13)	5.05 (1.48)

^a Time after IV injection.
^b Expressed as % injected dose/gram tissue. Mean (SD) of 4–5 mice.
^c Significant by unpaired t test vs. 125I-A7 shown in Table III ($P<0.05$). Comparison was performed only for the time-matched data, at 6 h, 1 day and 2 days.

Table II. Dosimetry of 186Re-MAG3-A7 in Tumor-bearing Mice

Tissue	µCi/h/g^a	cGy/µCi^b	Ratio^c
Blood	9.13	6.67	2.23
Liver	2.78	2.03	7.32
Spleen	1.84	1.35	11.04
Kidney	1.65	1.20	12.37
Bone	1.02	0.75	19.88
Muscle	0.55	0.40	37.04
Intestine	0.70	0.51	29.07
Lung	3.25	2.37	6.27
Brain	0.16	0.12	125.08
Heart	1.79	1.31	11.37
Whole body	1.65	1.21	12.31
Tumor	20.36	14.86	—

^a Calculated for 1 µCi injection by the trapezoid integration method using the biodistribution data up to 8 days.
^b Obtained by multiplying by a factor, g·cGy/(µCi·h), of 0.73.
^c Ratios of tumor dose to normal tissue dose.
Re-186 Labeled mAb for Radioimmunotherapy

tion and showed faster washout thereafter as compared with 125I-A7. The tumor dose, cGy/µCi, was 1.73-fold greater with 186Re-MAG3-A7, and therapeutic ratios of 186Re-MAG3-A7 were better than 125I-A7 for all tissues except liver. In particular, the whole-body therapeutic ratio of 186Re-MAG3-A7 was improved by a factor of 1.67 as compared with 131I-A7.

DISCUSSION

A major drawback to the usage of 186Re as a radiolabel of mAb is its low specific activity, because of carrier contamination when 186Re is produced via the 185Re(n, γ) reaction.29) To obtain suitable radioimmunoconjugates of high specific activity for RIT, several 186Re-MAG3 groups should be coupled to a single mAb molecule.15, 29, 30) We could label A7 mAb with 186Re-MAG3 without destroying its immunoreactivity. However, the specific activity of 186Re-MAG3-A7 was only 12.7 MBq/mg (344 µCi/mg) at best, with a coupling ratio of Re-MAG3:mAb of 0.76:1. In the published results by other investigators, 186Re-mAb of higher specific activity could be obtained by the conjugation of up to 20 Re-MAG3 groups per mAb, though the immunoreactivity deteriorated with Re-MAG3:mAb higher than 12.30) In the present study, 186Re incorporation into MAG3 was performed at Re:MAG3 and Re:Sn2+ molar ratios of approximately 1 and 6, respectively. Although the incorporation rate, 87.2%, was close to the results of Visser et al.,90%15, it appeared that, to obtain a mAb of high specific activity, the Re:MAG3 and Re:Sn2+ molar ratios should have been increased, as their reaction conditions were Re:MAG3 1:2.3 and Re:Sn2+ 1:8, and that the reaction volume for the conjugation of mAb should have been reduced or the 186Re-MAG3:mAb ratio should have been increased. Under such labeling conditions, 186Re-MAG3-A7 of high specific activity should be obtained.

Although high specific activity would be essential for clinical RIT, difficulties would arise if the labeling of mAb were performed at an extreme molar ratio of Re-MAG3:mAb.30, 31) It has been reported that coupling of too many Re-MAG3 groups results in an alteration of in vivo distribution and a reduction of immunoreactivity because of the change in the net charge of the mAb and steric hindrance at the mAb binding site. A further drawback to mAbs of high specific activity would be an increase in the susceptibility to autoradiolysis.19, 20) We observed time-dependent dissociation of 186Re radioactivity during storage even at 12.7 MBq (344 µCi/mg, 3.55 MBq/ml). Although labeling at lower specific activity would reduce the risk of radiolysis, as shown in Fig. 2, such low spe-

Table III. Biodistribution of 125I-A7 in Tumor-bearing Nude Mice

Tissue	6 h 1	1 day	2 days	4 days	7 days
Blood	24.53 (2.29) b	15.61 (1.97)	11.28 (0.76)	5.20 (0.63)	2.21 (1.68)
Liver	5.44 (0.98)	3.55 (0.51)	2.23 (0.25)	1.23 (0.09)	0.54 (0.46)
Spleen	5.58 (1.06)	3.81 (0.45)	2.39 (0.37)	1.27 (0.26)	0.61 (0.43)
Kidney	4.86 (0.29)	3.51 (0.41)	2.20 (0.73)	1.21 (0.16)	0.41 (0.27)
Bone	1.94 (0.23)	1.62 (0.09)	1.02 (0.13)	0.55 (0.10)	0.24 (0.16)
Muscle	0.89 (0.29)	1.07 (0.12)	0.89 (0.09)	0.45 (0.03)	0.16 (0.12)
Intestine	1.79 (0.10)	1.21 (0.14)	0.76 (0.07)	0.38 (0.01)	0.13 (0.08)
Lung	10.31 (1.46)	7.32 (0.56)	4.82 (0.38)	2.46 (0.20)	1.11 (0.90)
Brain	0.48 (0.03)	0.32 (0.02)	0.24 (0.01)	0.12 (0.02)	0.05 (0.04)
Heart	5.97 (0.56)	3.88 (0.39)	2.98 (0.46)	1.34 (0.14)	0.63 (0.52)
Tumor	11.96 (3.66)	17.70 (4.25)	19.64 (2.23)	14.22 (2.48)	10.61 (1.96)

a) Time after IV injection.
b) Expressed as % injected dose/gram tissue. Mean (SD) of 4 mice.

dation and showed faster washout thereafter as compared with 131I-A7. The tumor dose, cGy/µCi, was 1.73-fold greater with 180Re-MAG3-A7, and therapeutic ratios of 180Re-MAG3-A7 were better than 131I-A7 for all tissues except liver. In particular, the whole-body therapeutic ratio of 180Re-MAG3-A7 was improved by a factor of 1.67 as compared with 131I-A7.

Table IV. Dosimetry of 131I-A7

Tissue	µCi/µg 1	cGy/µCi 2	Ratio 3
Blood	13.63	5.52	1.56
Liver	2.60	0.10	8.17
Spleen	2.79	1.13	7.64
Kidney	2.51	1.01	8.48
Bone	1.15	0.46	18.53
Muscle	0.79	0.32	26.81
Intestine	0.85	0.34	24.94
Lung	5.32	2.15	4.00
Brain	0.25	0.10	86.75
Heart	2.99	1.21	6.39
Whole body	2.90	1.17	7.34
Tumor	21.25	8.60	—

a) Calculated for 1 µCi injection by the trapezoid integration method using the biodistribution data of 131I-A7 up to 10 days.
b) Obtained by multiplying by a factor, µGy/(µCi h), of 0.40.
c) Ratios of tumor dose to normal tissue dose.

We could label A7 mAb with 186Re-MAG3 without destroying its immunoreactivity. However, the specific activity of 186Re-MAG3-A7 was only 12.7 MBq/mg (344 µCi/mg) at best, with a coupling ratio of Re-MAG3:mAb of 0.76:1. In the published results by other investigators, 186Re-mAb of higher specific activity could be obtained by the conjugation of up to 20 Re-MAG3 groups per mAb, though the immunoreactivity deteriorated with Re-MAG3:mAb higher than 12.20) In the present study, 186Re incorporation into MAG3 was performed at Re:Mag3 and Re:Sn2+ molar ratios of approximately 1 and 6, respectively. Although the incorporation rate, 87.2%, was close to the results of Visser et al., >90%,15 it appeared that, to obtain a mAb of high specific activity, the Re:Mag3 and Re:Sn2+ molar ratios should have been increased, as their reaction conditions were Re:Mag3 1:2.3 and Re:Sn2+ 1:8, and that the reaction volume for the conjugation of mAb should have been reduced or the 186Re-MAG3:mAb ratio should have been increased. Under such labeling conditions, 186Re-MAG3-A7 of high specific activity should be obtained.

Although high specific activity would be essential for clinical RIT, difficulties would arise if the labeling of mAb were performed at an extreme molar ratio of Re-MAG3:mAb.30, 31) It has been reported that coupling of too many Re-MAG3 groups results in an alteration of in vivo distribution and a reduction of immunoreactivity because of the change in the net charge of the mAb and steric hindrance at the mAb binding site. A further drawback to mAbs of high specific activity would be an increase in the susceptibility to autoradiolysis.19, 20) We observed time-dependent dissociation of 186Re radioactivity during storage even at 12.7 MBq (344 µCi/mg, 3.55 MBq/ml). Although labeling at lower specific activity would reduce the risk of radiolysis, as shown in Fig. 2, such low spe-
cific activity would not be ideal for clinical RIT because of the need to inject a large amount of mAb to provide sufficient radioactivity. In clinical RIT, 120 mCi/m² of \(^{186}\)Re-mAb could be injected as a maximum tolerated dose in heavily pretreated patients.\(^{3,25}\) In this case, 180–259 mCi of \(^{186}\)Re-NR-LU-10 was injected with 30 ml of 0.9% NaCl at the concentration of 222–318 MBq (6.0–8.6 mCi/ml, 45–260 mCi/33–47 mg).\(^{3,22}\) A dose level, at this dose level, measures to prevent autoradiolysis of labeled mAbs are essential.\(^{15}\)

Addition of 5 mg/ml ascorbic acid as a radioprotectant to the mAb solution could effectively prevent radiolys of the mAb. Storage at −80°C, cryopreservation, was equally effective. Since the reduction of immunoreactivity is not completely accounted for by the breakdown products,\(^{20}\) immunoreactivity should be monitored as well in the assessment of radiolys. As shown in Fig. 3, 5 mg/ml ascorbic acid could protect A7 from loss of immunoreactivity, as well as breakdown. Because the susceptibility to radiation may vary among mAbs, assessment of individual mAbs may be necessary. Although long-term storage of \(^{186}\)Re-mAb would not be needed in the clinical setting, radiolys can occur in a very short period. It was reported that 6% of radioactivity was lost from \(^{186}\)Re-MAG3 labeled anti-squamous cell carcinoma mAb within 20 min.\(^{15}\) Therefore, we have to recognize that, without protection of the mAb from possible radiolys and loss of immunoreactivity, the results of RIT could be affected even by brief storage.

In human plasma, 86.7% of \(^{186}\)Re radioactivity remained on A7 mAb after a 7-day incubation. Similar stability in human plasma was observed with \(^{186}\)Re-MAG3-ZCE025, an anti-CEA mAb: 92.8% and 87.5% of \(^{186}\)Re remained bound on day 7 and day 12, respectively (data not shown). In contrast, only 58–64% of \(^{186}\)Re was found on a directly labeled \(^{186}\)Re-Mu-9 in human serum on day 7, or 85% of \(^{186}\)Re-Mu-9 on day 2.\(^{12}\) These findings indicated that mAb labeled with a MAG3 ligand would be more stable than directly labeled mAbs in terms of dissociation of radioactivity, although comparison is difficult since Griffiths et al. did not give the concentration of mAb in their test solution. Furthermore, although they mentioned the in vivo stability, showing that all of the radioactivity was bound to Mu-9 at 24 h postinjection in serum from mice injected with \(^{186}\)Re-Mu-9,\(^{12}\) this finding does not confirm the stability of their Re-mAbs because the mechanism of instability of directly labeled Re-mAbs would be reoxidation of conjugated Re to produce perrhenate that is rapidly cleared from the circulation. The precise form of the breakdown products found in the present study was not clear. They were eluted at 13.5 min on the size exclusion HPLC column used in this study, but both \(^{186}\)Re-MAG3 and \(^{186}\)Re-perrhenate would emerge at the same retention time. Further analyses by TLC or reverse-phase HPLC would cast light on this issue.

Tumor uptake of \(^{186}\)Re-MAG3-A7 was very high, peaking on day 1 with slower washout than from normal tissues, so that the tumor-to-nontumor ratios increased with time. Tumor accumulation was greater than that of \(^{131}\)I-A7. \(^{186}\)Re radioactivity was cleared from tumors faster than \(^{131}\)I after the peak uptake. However, this would not be a serious problem for RIT because of the shorter physical half life, 3.7 days, than that of \(^{131}\)I, 8.0 days. Beaumier et al. reported that LD\(_{50/50}\) was 600 µCi, corresponding to 880 cGy of whole-body dose, in an experimental RIT study with \(^{186}\)Re-NR-LU-10 in a mouse model bearing small cell lung cancer.\(^{33}\) In our model, a value of 726 cGy of whole-body dose was estimated, suggesting that the toxicity of \(^{186}\)Re-MAG3-A7 is comparable to that of \(^{186}\)Re-NR-LU-10. The tumor-to-whole body radiation dose in the present study was 12.34, which is 5-fold larger than their result. In their study, 19% remission was obtained with a total of 500–600 µCi injection (2012–2671 cGy to the tumor). Gerretsen et al. reported another experimental RIT in a head and neck squamous cell cancer model using \(^{186}\)Re-MAG3-E48, obtaining 33% remission by 400–600 µCi injection, with 3432 cGy to the tumor at 600 µCi.\(^{25}\) In our model, we estimated a tumor dose of 8916 cGy with 600 µCi of \(^{186}\)Re-MAG3-A7. Although radiation sensitivity might vary among these cell types and we could not conduct an experimental RIT with \(^{186}\)Re-MAG3-A7 because of the limited amount of \(^{186}\)Re permitted to be used under the regulations of our institution, the dosimetry results in the present study indicate the feasibility of RIT with \(^{186}\)Re-MAG3-A7. Our previous experimental RIT study with 9.25 MBq (250 µCi) of \(^{131}\)I-A7 in the same animal model as used in this study showed a significant suppression of tumor growth.\(^{24}\) This dosage could produce a tumor burden of 2150 cGy, which is far less than the expected dose with \(^{186}\)Re-MAG3-A7 mentioned above. Because of the higher therapeutic ratios of \(^{186}\)Re-MAG3-A7, \(^{186}\)Re-MAG3-A7 would be more favorable than \(^{131}\)I-A7 in terms of toxicity as well. Therefore, it is clear that a greater tumor radiation dose could be delivered by \(^{186}\)Re-MAG3-A7 with the same toxicity to normal tissues as in the case of \(^{131}\)I-A7, and better results of RIT should be achieved with \(^{186}\)Re-MAG3-A7.

In conclusion, it is crucial to protect \(^{186}\)Re-mAb against autoradiolysis. The in vivo characteristics of \(^{186}\)Re-MAG3-A7 were better than those of conventional \(^{131}\)I-A7 in terms of both tumor dosimetry and normal tissue irradiation doses, indicating that \(^{186}\)Re-MAG3-A7 should be superior to \(^{131}\)I-A7 as a candidate for RIT of colorectal cancer. Although some improvement in the labeling process would be needed to get \(^{186}\)Re-MAG3-A7 of higher specific activity, RIT with \(^{186}\)Re-MAG3-A7 seems to be a promising modality.
ACKNOWLEDGMENTS

We thank Dr. Yasushi Arano, Faculty of Pharmaceutical Sciences, Kyoto University, for providing S-benzoyl-MAG3, and Prof. Toshio Takahashi and Dr. Toshiharu Yamaguchi, First Department of Surgery, Kyoto Prefectural University of Medicine, for A7 mAb.

(Received March 11, 1998/Revised May 27, 1998/Accepted June 5, 1998)

REFERENCES

1) Kaminski, M. S., Zasadny, K. R., Francis, I. R., Milik, A. W., Ross, C. W., Moon, S. D., Crawford, S. M., Burgess, J. M., Petry, N. A., Butchko, G. M., Glenn, S. D. and Wahl, R. L. Radioimmunotherapy of B-cell lymphoma with [111In]anti-B1 (anti-CD20) antibody. *N. Engl. J. Med.*, **329**, 459–465 (1993).

2) Press, O. W., Eary, J. F., Appelbaum, F. R., Martin, P. J., Badger, C. C., Nelp, W. B., Glenn, S., Butchko, G., Fisher, D., Porter, B., Matthews, D. C., Fisher, L. D. and Berstein, I. D. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. *N. Engl. J. Med.*, **329**, 1219–1224 (1993).

3) Naruki, Y., Carrasquillo, J. A., Reynolds, J. C., Maloney, P. J., Finnic, J. M., Neumann, R. D. and Larson, S. M. Differential cellular catabolism of [111In]Y and [111In]I radiolabeled T101 anti-CD5 monoclonal antibody. *Nucl. Med. Biol.*, **17**, 201–207 (1990).

4) Yokoyama, K., Carrasquillo, J. A., Chang, A. E., Colcher, D., Roselli, M., Sugarbaker, P., Sindelar, W., Reynolds, J. C., Perentesis, P., Gansow, O. A., Francis, B., Adams, R., Finn, R., Schlom, J. and Larson, S. M. Differences in biodistribution of indium-111- and iodine-131-labeled B72.3 monoclonal antibodies in patients with colorectal cancer. *J. Nucl. Med.*, **30**, 320–327 (1989).

5) Camera, L., Kinuya, S., Garmestani, K., Brechbiel, M. W., Wu, C., Pai, L. H., McMurry, T. J., Gansow, O. A., Pastan, I., Paik, C. H. and Carrasquillo, J. A. Comparative biodistribution of indium- and yttrium-labeled B3 monoclonal antibody conjugated to either 2-(p-SCN-Bz)-6-methyl-DTPA (1B4M-DTPA) or 2-(p-SCN-Bz)-1,4,7,10-tetraaza-cyclododecane tetraacetic acid (2B-DOTA). *Eur. J. Nucl. Med.*, **21**, 640–646 (1994).

6) Camera, L., Kinuya, S., Garmestani, K., Wu, C., Brechbiel, M. W., Pai, L. H., McMurry, T. J., Gansow, O. A., Pastan, I., Paik, C. H. and Carrasquillo, J. A. Evaluation of the serum stability and in vivo biodistribution of CHX-DTPA and other ligands for yttrium labeling of monoclonal antibodies. *J. Nucl. Med.*, **35**, 882–889 (1994).

7) Deshpande, S. V., DeNardo, S. J., Kukis, D. L., Moi, M. K., McCall, M. J., DeNardo, G. L. and Mearas, C. F. Yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. *J. Nucl. Med.*, **31**, 473–479 (1990).

8) Sharkey, R. M., Motta-Hennessy, C., Pawlyk, D., Siegel, J. A. and Goldenberg, D. M. Biodistribution and radiation dose estimates for yttrium- and iodine-labeled monoclonal antibody IgG and fragments in nude mice bearing human colonic tumor xenografts. *Cancer Res.*, **50**, 2330–2336 (1990).

9) Kosmas, C., Maraveyas, A., Gooden, C. S., Snook, D. and Epenetos, A. A. Anti-chelate antibodies after intraperitoneal yttrium-90-labeled monoclonal antibody immunocongjugates for ovarian cancer therapy. *J. Nucl. Med.*, **36**, 746–753 (1995).

10) Behr, T. M., Becker, W. S., Bair, H. J., Klein, M. W., Stühler, C. M., Cidlinsky, K. P., Wittekind, C. W., Scheele, J. R. and Wolf, F. G. Comparison of complete versus fragmented technetium-99m-labeled anti-CEA monoclonal antibodies for immunoscintigraphy in colorectal cancer. *J. Nucl. Med.*, **36**, 430–441 (1995).

11) Oriuchi, N., Endo, K., Watanabe, N., Sugiyama, S., Asao, T., Takenoshita, S., Nagamachi, Y. and Baum, R. P. Semi-quantitative SPECT tumor uptake of technetium-99m-labeled anti-CEA monoclonal antibody in colorectal tumor. *J. Nucl. Med.*, **36**, 679–683 (1995).

12) Griffiths, G. L., Goldenberg, D. M., Knapp, F. F., Jr., Callahan, A. P. and Chang, C.-H. Direct radiolabeling of monoclonal antibodies with generator-produced rhenium-188 for radioimmunotherapy: labeling and animal biodistribution studies. *Cancer Res.*, **51**, 4594–4602 (1991).

13) Fritzberg, A. R. Advances in 188Re-labeling of antibodies. *Nucl. Med.*, **26**, 7–12 (1987).

14) Nafaji, A., Alauddin, M. M., Sosa, A., Ma, G. Q., Chen, D. C. P., Epstein, A. L. and Siegel, M. E. The evaluation of 186Re-labeled antibodies using NS6 chelate in vitro and in vivo using tumor-bearing nude mice. *Nucl. Med. Biol.*, **19**, 205–212 (1992).

15) Visser, G. M. W., Gerretsen, M., Herscheid, J. D. M., Snow, G. B. and van Dongen, G. Labeling of monoclonal antibodies with rhenium-186 using MAG3 chelate for radioimmunotherapy of cancer: a technical protocol. *J. Nucl. Med.*, **34**, 1953–1963 (1993).

16) Goldrosen, M. H., Biddle, W. C., Pancook, J., Bakshi, S., Vanderheyden, J.-L., Fritzberg, A. R., Morgan, A. C., Jr. and Foon, K. A. Biodistribution, pharmacokinetic, and imaging studies with 186Re-labeled NR-LU-10 whole antibody in LS174T colonic tumor-bearing mice. *Cancer Res.*, **50**, 7973–7978 (1990).

17) Divgi, C. R., Scott, A. M., Dantis, L., Capitelli, P., Siler, K., Hilton, S., Finn, R. D., Kemeny, N., Kelsen, D., Kostakoglou, L., Schlom, J. and Larson, S. M. Phase I radioimmunotherapy trial with iodine-131-CC49 in metastatic colon cancer. *J. Nucl. Med.*, **36**, 586–592 (1995).

18) Behr, T. M., Sharkey, R. M., Juweid, M. E., Dunn, R. M., Ying, Z., Zhang, C.-H., Siegel, J. A. and Goldenberg, D. M. Variables influencing tumor dosimetry in radioimmu-
notherapy of CEA-expressing cancers with anti-CEA and antimucin monoclonal antibodies. *J. Nucl. Med.*, 38, 409–418 (1997).

19) Wahl, R. L., Wissing, J., del Rosario, R. and Zasadny, K. R. Inhibition of autoradiolysis of radiolabeled monoclonal antibodies by cryopreservation. *J. Nucl. Med.*, 31, 84–89 (1990).

20) Chakrabarti, M. C., Le, N., Paik, C. H., De Graff, W. G. and Carrasquillo, J. A. Prevention of radiolysis of monoclonal antibody during labeling. *J. Nucl. Med.*, 37, 1384–1388 (1996).

21) Kotanagi, H., Takahashi, T., Masuko, T., Hashimoto, Y. and Koyama, K. A monoclonal antibody against human colon cancers. *Tohoku J. Exp. Med.*, 148, 353–360 (1986).

22) Takahashi, T., Yamaguchi, T., Kitamura, K., Suzuyama, H., Honda, M., Yokota, T., Kotanagi, H., Takahashi, M. and Hashimoto, Y. Clinical application of monoclonal antibody-drug conjugates for immunotargeting chemotherapy for colorectal carcinoma. *Cancer*, 61, 881–888 (1988).

23) Yamaoka, N., Yamaguchi, T., Osuji, E., Kato, M., Kotani, T., Kitamura, K. and Takahashi, T. In vitro reactivity and in vivo biodistribution of the monoclonal antibody A7 using human gastric carcinoma cell lines. *Br. J. Cancer*, 70, 405–408 (1994).

24) Kinuya, S., Yokoyama, K., Konishi, S., Tonami, N. and Hisada, K. Effect of induced hypertension with angiotensin II infusion on biodistribution of 111In-labeled monoclonal antibody. *Nucl. Med. Biol.*, 23, 137–140 (1996).

25) Lindmo, T., Boven, E., Cuttitta, C., Fedorko, J. and Bunn, P. A., Jr. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. *J. Immunol. Methods*, 72, 77–89 (1984).

26) Dillman, L. T. Radionuclide decay schemes and nuclear parameters for use in radiation-dose estimation. MIRD Pamphlet-4, The Society of Nuclear Medicine, New York (1969).

27) Gerresten, M., Visser, G. W. M., van Walsum, M., Meijer, C. J. L. M., Snow, G. B. and van Dongen, G. A. M. S. 186Re-labeled monoclonal antibody E48 immunoglobulin G-mediated therapy of human head and neck squamous cell carcinoma xenografts. *Cancer Res.*, 53, 3524–3529 (1993).

28) Buchegger, F., Pelegrin, A., Delaloye, B., Bischof-Delaloye, A. and Mach, J.-P. Iodine-131-labeled MAbs F(ab′)2 fragments are more efficient and less toxic than intact anti-CEA antibodies in radioimmunotherapy of large human colon carcinoma grafted in nude mice. *J. Nucl. Med.*, 31, 1035–1044 (1990).

29) Goldenberg, D. M. and Griffiths, G. L. Radioimmunotherapy of cancer: arming and missiles. *J. Nucl. Med.*, 33, 1110–1112 (1992).

30) van Gog, F. B., Visser, G. W. M., Klok, R., van der Schos, R., Snow, G. B. and van Dongen, G. A. M. S. Monoclonal antibodies labeled with rhenium-186 using MAG3 chelate: relationship between the number of chelated groups and biodistribution characteristics. *J. Nucl. Med.*, 37, 352–362 (1996).

31) Kievit, E., van Gog, F. B., Schlüper, H. M. M., van Dongen, G. A. M. S., Pinedo, H. M. and Boven, E. 186Re-labeled mouse and chimeric monoclonal antibody 323/Ab: a comparison of the efficacy in experimental human ovarian cancer. *Nucl. Med. Biol.*, 25, 37–45 (1998).

32) Breitz, H. B., Weiden, P. L., Vanderheyden, J.-L., Appelbaum, J. W., Bjorn, M. J., Fer, M. F., Wolf, S. B., Ratliff, B. A., Seiler, C. A., Foisie, D. C., Fisher, D. R., Schroff, R. W., Fritzberg, A. R. and Abrams, P. G. Clinical experience with rhenium-186-labeled monoclonal antibodies for radioimmunotherapy: results of phase I trials. *J. Nucl. Med.*, 33, 1099–1112 (1992).

33) Beaumier, P. L., Venkatesan, P., Vanderheyden, J.-L., Burgua, W. D., Kunz, L. L., Fritzberg, A. R., Abrams, P. G. and Morgan, A. C., Jr. 186Re radioimmunotherapy of small cell lung carcinoma xenografts in nude mice. *Cancer Res.*, 51, 676–681 (1991).

34) Kinuya, S., Yokoyama, K., Konishi, S., Hiramatsu, T., Tega, H., Michigishi, T. and Tonami, N. Induced hypertension and kinin degradation inhibition could benefit radioimmunotherapy in tumor-xenografted mice. *J. Nucl. Med.*, 39, 106P (1998).