Ageing, dynamical scaling and its extensions in many-particle systems without detailed balance

Malte Henkel

Laboratoire de Physique des Matériaux1, Université Henri Poincaré Nancy I, BP 239, F-54506 Vandœuvre lès Nancy Cedex, France2

and

Dipartamento di Fisica/INFN, Università di Firenze, I-50019 Sesto Fiorentino, Italy

Received 19 September 2006, in final form 21 November 2006

Published 22 January 2007

Online at stacks.iop.org/JPhysCM/19/065101

Abstract

Recent studies on the phenomenology of ageing in certain many-particle systems which are at a critical point of their non-equilibrium steady states are reviewed. Examples include the contact process, the parity-conserving branching-annihilating random walk, two exactly solvable particle reaction models and kinetic growth models. While the generic scaling descriptions known from magnetic systems can be taken over, some of the scaling relations between the ageing exponents are no longer valid. In particular, there is no obvious generalization of the universal limit fluctuation–dissipation ratio. The form of the scaling function of the two-time response function is compared with the prediction of the theory of local scale-invariance.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Symmetry principles have been extremely useful for the understanding of complex many-body systems, where the interactions between the degrees of freedom are sufficiently strong as to render perturbative methods inapplicable. Here we are interested in the slow non-equilibrium dynamics shown by many-body systems which are rapidly brought out from some initial state (‘quenched’) to a region in phase space where either the equilibrium state naturally generates a slow dynamics (this is for example realized for systems at a critical point) or else into a coexistence region dominated by several equivalent stationary states. One of the essential features of such systems is that their properties depend on their ‘age’, that is the time elapsed since the quench. Of course, any biological system ages, but there is also ‘physical ageing’ which arises even if the underlying microscopic dynamics is completely reversible. One might formally define ageing by this breaking of time-translation invariance, associated with a slow
dynamics which generically leads to some form of dynamical scaling. Physical ageing was originally seen to occur in glassy systems [120] and has been used since prehistoric times by engineers in the processing of materials. Quite recently, it has been realized that very similar phenomena can also be found in simple magnets, without disorder or frustrations. The study of these supposedly simpler systems may lead to conceptual insights which in turn could become also fruitful in more complex systems. The topic has been under intensive study; see [19, 33, 52, 32, 65, 84, 24, 68, 47, 70] for reviews. The reversibility of the microdynamics in systems undergoing physical ageing means that their stationary states are equilibrium states. In numerical simulations of such systems this is realized by choosing the dynamics such as to satisfy detailed balance. In many systems undergoing physical ageing, detailed balance and consequently the relaxation towards equilibrium steady states is taken for granted, as there are many textbook proofs [123, 129] of detailed balance for closed, isolated systems.

On the other hand, it has become increasingly clear from studies in anomalous chemical kinetics that several of the constitutive properties of ageing are naturally met in many situations. First, it is well known that fluctuation effects may lead to slow, non-exponential relaxation in irreversible chemical reactions—not accounted for by mean-field schemes; see e.g. [117, 64] for reviews and references therein. Second, it was understood more recently through the work of Oshanin and collaborators [97, 98, 6, 31, 124, 125] that even for reversible reactions a slow, non-exponential relaxation may generically occur without the fine-tuning of parameters and furthermore, that the steady states to which relaxation occurs depend on the kinetic coefficients and hence cannot be equilibrium states. Consequently, detailed balance cannot be valid in these systems. While in these studies long-range interactions (as they may naturally arise in reactions of large molecules or in studies of radiation damage [6]) play an essential rôle, detailed balance need not be satisfied even in kinetic systems with contact interactions. For example, in the system defined by the simultaneous reversible reactions $2A \leftrightarrow \emptyset$, $2A \leftrightarrow A$, $A \leftrightarrow \emptyset$ with diffusive motion of single particles, detailed balance only holds if certain conditions on the reaction rates are met [4]. Since detailed balance is already found to be broken in very simple reactions such as $2A \leftrightarrow B$ [124, 125] or $A + B \rightarrow \emptyset$ [6, 31], it is conceivable that the phenomenon might be much more common. Furthermore, since sometime a slow relaxation in kinetic models is brought into relationship with glassy dynamics [90], it is of interest to investigate to what extent the three essential properties of physical ageing—slow dynamics, dynamical scaling and breaking of time-translation invariance—are actually realized in chemical kinetics.

Therefore, we shall review here recent progress about ageing in many-body systems with a more general dynamics where detailed balance is no longer required to hold and therefore non-equilibrium steady states may arise. Since there are as yet only a few studies available on these systems, comparison with ageing in simple magnets should be a useful guide. For a similar reason, we shall investigate the behaviour of models whose physical origin is very different, which should lead to some insight about generic properties. Because of the possibility of non-equilibrium steady states, the systems under consideration here are closer to biological/chemical ageing than those considered up to now in studies of physical ageing. Remarkably, there is evidence that some dynamical symmetries recently discovered in physical ageing may also extend to this more general class of systems.

We shall define the systems we want to study in the next section. Before we come to that, however, we shall briefly recall for reference some of the main results about the ageing of simple magnets. We assume throughout that the order parameter is non-conserved by the dynamics and that the initial state is totally disordered, unless explicitly stated otherwise. Besides the breaking of time-translation invariance, ageing systems are often characterized by dynamical scaling. It has become common to study ageing behaviour through the two-time
autocorrelation and (linear) autoresponse functions

\[C(t, s) = \langle \phi(t, r)\phi(s, r) \rangle \sim s^{-b}f_C(t/s) \]
\[R(t, s) = \left. \delta \langle \phi(t, r) \rangle \over \delta h(s, r) \right|_{h=0} \sim s^{-1-a}f_R(t/s) \]

where \(\phi(t, r) \) is the order parameter at time \(t \) and location \(r \) and \(h(s, r) \) is the conjugate magnetic field at time \(s \) and location \(r \). The scaling behaviour is expected to apply in the so-called ageing regime where \(t, s \gg t_{\text{micro}} \) and \(t - s \gg t_{\text{micro}} \), where \(t_{\text{micro}} \) is a microscopic time-scale. We illustrate this in figure 1, which shows the autocorrelation function \(C(t, s) \) of the three-dimensional (3D) Ising model with (non-conserved) Glauber dynamics\(^3\) quenched from a fully disordered initial state to a temperature \(T < T_c \). When plotting the data against \(t - s \), we see that the data depend on both \(t - s \) and \(s \); hence time-translation invariance is broken and the system ages. Further, with increasing values of the waiting time \(s \), the system becomes ‘stiffer’ and a plateau close to the equilibrium value \(C_{\text{eq}} = M_{\text{eq}}^2 \) develops when \(t - s \) is not too large before the correlations fall off rapidly when \(t - s \to \infty \). When replotting the same data against \(t/s \), a data collapse is found if \(s \) is large enough, which is evidence for dynamical scaling.

The distance of such systems from a global equilibrium state can be measured through the fluctuation–dissipation ratio, defined as \(^4\)

\[X(t, s) := TR(t, s) \left(\frac{\partial C(t, s)}{\partial s} \right)^{-1} \]

At equilibrium, \(X(t, s) = 1 \) from the fluctuation–dissipation theorem. One often considers the limit fluctuation–dissipation ratio \(X_\infty := \lim_{t \to \infty} \lim_{s \to \infty} X(t, s) \).\(^4\) For quenches to below \(T_c \), one usually has \(X_\infty = 0 \) but for critical quenches onto \(T = T_c \), it has been argued by Godrèche and Luck that \(X_\infty \) should be a universal number\(^5\), since it can be written as a ratio of two scaling amplitudes. This universality has been thoroughly confirmed for systems relaxing towards equilibrium steady states; see\(^6\) for recent reviews.

\(^3\) Recall that the zero-temperature Glauber model can be mapped, via a duality transformation\(^{118}\) or a similarity transformation\(^{111}\), to the kinetic model \(2A \to \emptyset \) with single-particle diffusion.

\(^4\) The order of the limits is crucial, since \(\lim_{t \to \infty} \lim_{s \to \infty} X(t, s) = 1 \).

\(^5\) The order of the limits is crucial, since \(\lim_{t \to \infty} \lim_{s \to \infty} X(t, s) = 1 \).
Figure 2. Snapshots from the 2D Glauber–Ising model quenched to \(T = T_c \) from a disordered initial state at (left panel) \(t = 25 \) and (right panel) \(t = 275 \) Monte Carlo time steps after the quench [105].

Furthermore, in writing equations (1), (2) it was tacitly assumed that the scaling derives from the algebraic time-dependence of a single characteristic length-scale \(L(t) \sim t^{1/z} \) which measures the linear size of correlated or ordered clusters and where \(z \) is the dynamic exponent. For a 2D Glauber–Ising model quenched to \(T = T_c \) the growth of correlated clusters is illustrated in figure 2 where the black/white sites represent the two states of the Ising spins. Then the above forms define the non-equilibrium exponents \(a \) and \(b \) and the scaling functions \(f_C(y) \) and \(f_R(y) \). For large arguments \(y \to \infty \), one generically expects

\[
 f_C(y) \sim y^{-\lambda_C/z}, \quad f_R(y) \sim y^{-\lambda_R/z} \quad (4)
\]

where \(\lambda_C \) and \(\lambda_R \), respectively, are known as autocorrelation [46, 79] and autoresponse exponents [103]. While in non-disordered magnets with short-ranged initial conditions one usually has \(\lambda_C = \lambda_R \), this is not necessarily so if either of these conditions is relaxed. From a field-theoretical point of view it is known that for a non-conserved order parameter the calculation of \(\lambda_{C,R} \) requires an independent renormalization and hence one cannot expect to find a scaling relation between these and equilibrium exponents (including \(z \))[81]. On the other hand, the values of the exponents \(a \) and \(b \) are known. For quenches to \(T = T_c \), the relevant length-scale is set by the time-dependent correlation length \(L(t) \sim \xi(t) \sim t^{1/z} \) and this leads to \(a = b = (d - 2 + \eta)/z \), where \(\eta \) is a standard equilibrium exponent. For quenches into the ordered phase \(T < T_c \), one usually observes simple scaling of \(C(t,s) = f_C(t/s) \); hence \(b = 0.5 \). The value of \(a \) depends on whether the equilibrium correlator is short- or long-ranged, respectively. These may be referred to as classes S and L, respectively and one has, see e.g. [30, 59, 63],

\[
 C_{eq}(r) \sim \begin{cases} e^{-|r|/\xi} & \text{class S} \\ |r|^{-(d-2+\eta)} & \text{class L} \end{cases} \implies a = \begin{cases} 1/z & \text{class S} \\ (d - 2 + \eta)/z & \text{class L} \end{cases}. \quad (5)
\]

Examples for short-ranged models (class S) include the Ising or Potts models in \(d > 1 \) dimensions (and \(T < T_c \)), while all systems quenched to criticality, or the spherical model or the 2D XY model below the Kosterlitz–Thouless transition are examples for long-ranged systems (class L).

In equilibrium critical phenomena, it is well known that the standard scale-invariance can, under quite weak conditions, be extended to a \textit{conformal} invariance. Roughly, a conformal

\footnotetext{This needs no longer be the case when the ageing close to a free surface is considered [10].}
transformation is a scale transformation $r \mapsto br$ with a space-dependent rescaling factor $b = b(r)$ (such that angles are kept unchanged). In particular, in two dimensions conformal invariance allows us to derive from the representation theory of the conformal (Virasoro) algebra the possible values of the critical exponents, to set up a list of possible universality classes, calculate explicitly all n-point correlation functions and so on [16, 28]. One might wonder whether a similar extension might be possible at least in some instances of dynamical scaling and further ask whether response functions or correlation functions might be found from their covariance under some generalized dynamical scaling with a space–time-dependent rescaling factor $b = b(t, r)$ [56, 58]. We shall discuss the question here in the specific context of ageing and shall focus on what can be said about the scaling functions $f_{c,k}(y)$ in a model-independent way.

A useful starting point is to consider the symmetries of the free diffusion (or free Schrödinger) equation

$$2M\partial_t\phi = \Delta\phi$$

where $\Delta = \nabla \cdot \nabla$ is the spatial Laplacian and the ‘mass’ M can be seen as a kinetic coefficient. Indeed, it was already shown by Lie more than a century ago that this equation has more symmetries than the trivial translation and rotation invariances. Consider the so-called Schrödinger group defined through the space–time transformations

$$t \mapsto t' = \frac{\alpha t + \beta}{\gamma t + \delta}, \quad r \mapsto r' = \frac{Rr + \gamma t + \alpha}{\gamma t + \delta}, \quad \alpha\delta - \beta\gamma = 1$$

where $\alpha, \beta, \gamma, \delta, v, a$ are real (vector) parameters and R is a rotation matrix in d spatial dimensions. The group acts projectively on a solution ϕ of the diffusion equation through

$$(T_g\phi)(t, r) = f_g(g^{-1}(t, r)) \phi(g^{-1}(t, r))$$

where g is an element of the Schrödinger group and the companion function reads [95, 102]

$$f_g(t, r) = (\gamma t + \delta)^{-d/2} \exp\left[-\frac{M}{2} \frac{\gamma r^2 + 2Rr \cdot (\gamma a - \delta v) + \gamma a^2 - \delta \delta v^2 + 2\gamma \delta a \cdot v}{\gamma t + \delta} \right].$$

It is then natural also to include arbitrary phase shifts of the wavefunction ϕ within the Schrödinger group $\text{Sch}(d)$. In what follows, we denote by \mathfrak{sh}_d the Lie algebra of $\text{Sch}(d)$. The Schrödinger group so defined is the largest group which maps any solution of the free Schrödinger equation (with M fixed) onto another solution. This is easily seen in $d = 1$ by introducing the Schrödinger operator

$$S := 2M_0Y_{-1} - Y_{-1/2}$$

The Schrödinger Lie algebra $\mathfrak{sh}_1 = (X_{-1,0,1}, Y_{-1,1/2}, M_0)$ is spanned by the infinitesimal generators of temporal and spatial translations ($X_{-1,1}, Y_{-1/2,1}$), Galilei transformations ($Y_{1/2,1}$), phase shifts (M_0), space–time dilatations with $z = 2$ (Z_0) and so-called special transformations (X_1). Explicitly, the generators read [56]

$$X_n = -t^{n+1}\partial_t - \frac{n + 1}{4} \partial_{r^2} = -\frac{M}{4} r^{n+1} - \frac{n(n+1)}{2} t^n,$$

$$Y_m = -t^{m+1}\partial_t - \frac{m + 1}{4} \partial_{r^2} = \frac{1}{2} t^m,$$

$$M_n = -M t^n.$$

Here x is the scaling dimension and M is the mass of the scaling operator ϕ on which these generators act. The non-vanishing commutation relations are

$$[X_n, X_{n'}] = (n - n')X_{n+n'}, \quad [X_n, Y_{m}] = \left(\frac{n}{2} - m\right)Y_{n+m},$$

$$[X_n, M_{n'}] = -n'M_{n+n'}, \quad [Y_m, Y_{m'}] = (m - m')M_{m+m'},$$

$$[X_n, M_{n'}] = -m'M_{n+m'}.\quad [Y_m, Y_{m'}] = (m - m')M_{m+m'}.\quad [X_n, M_{n'}] = -n'M_{n+n'}.$$
The invariance of the diffusion equation under the action of \mathfrak{sch}_1 is now seen from the following commutators which follow from the explicit form (11)

$$[S, X_{-1}] = [S, Y_{\pm 1/2}] = [S, M_0] = 0$$
$$[S, X_0] = -S, \quad [S, X_1] = -2tS - (2x - 1)M_0.$$ \hspace{1cm} (13)

Therefore, for any solution ϕ of the Schrödinger equation $S\phi = 0$ with scaling dimension $x = 1/2$, the infinitesimally transformed solution $\mathcal{X}\phi$ with $\mathcal{X} \in \mathfrak{sch}_1$ also satisfies the Schrödinger equation $S\mathcal{X}\phi = 0$ \cite{35, 82}. For applications to ageing, we must consider so-called ageing algebra $\mathfrak{age}_1 = (X_{0,1}, Y_{-1/2}, M_0) \subset \mathfrak{sch}_1$ (without time translations) which is a true subalgebra of \mathfrak{sch}_1 \cite{60}. Extensions to $d > 1$ are straightforward.

What is the usefulness of knowing dynamical symmetries of free, simple diffusion for the understanding of non-equilibrium kinetics? One way of setting up the problem would be to write down a stochastic Langevin equation for the order parameter. The simplest case is one would have \cite{76}

$$2M\frac{\partial \phi}{\partial t} = \Delta \phi - \frac{\delta V(\phi)}{\delta \phi} + \eta$$ \hspace{1cm} (14)

where V is the Ginzburg–Landau potential and η is a Gaussian noise which describes the coupling to an external heat-bath and the initial distribution of ϕ. At first sight, there appear to be no non-trivial symmetries, because (14) cannot be Galilei invariant, because of the noise term η. To understand this physically, consider a magnet which is at rest with respect to a homogeneous heat-bath at temperature T. If the magnet is moved with a constant velocity with respect to the heat-bath, the effective temperature will now appear to be direction dependent, and the heat-bath is no longer homogeneous. However, this difficulty can be avoided as follows \cite{104}: split the Langevin equation into a ‘deterministic’ part with non-trivial symmetries and a ‘noise’ part and then show using these symmetries that all averages can be reduced exactly to averages within the deterministic, noiseless theory. Technically, one first constructs in the standard fashion (Janssen–de Dominicis procedure) \cite{35, 82} the associated stochastic field theory with action $J[\phi, \tilde{\phi}]$ where $\tilde{\phi}$ is the response field associated to the order parameter ϕ. Second, one decomposes the action into two parts

$$J[\phi, \tilde{\phi}] = J_0[\phi, \tilde{\phi}] + J_\eta[\tilde{\phi}]$$ \hspace{1cm} (15)

where

$$J_0[\phi, \tilde{\phi}] = \int_{\mathbb{R}_+ \times \mathbb{R}^d} dt \, dr \, \tilde{\phi} \left(2M \partial_t \phi - \Delta \phi + \frac{\delta V(\phi)}{\delta \phi} \right)$$ \hspace{1cm} (16)

contains the terms coming from the ‘deterministic’ part of the Langevin equation (V is the self-interacting ‘potential’) whereas

$$J_\eta[\tilde{\phi}] = -T \int_{\mathbb{R}_+ \times \mathbb{R}^d} dt \, dr \, \tilde{\phi} (t, r)^2 - \frac{1}{2} \int_{\mathbb{R}^d} dr \, \tilde{\phi} (0, r) a(r - r') \tilde{\phi} (0, r')$$ \hspace{1cm} (17)

contains the ‘noise’ terms coming from (14) \cite{82}. It was assumed here that $\langle \phi(0, r) \rangle = 0$ and

$$a(r) := C(0, 0; r + r', r') = \langle \phi(0, r + r') \phi(0, r') \rangle = a(-r)$$ \hspace{1cm} (18)

while the last relation follows from spatial translation invariance which we shall admit throughout.

It is instructive to consider briefly the case of a free field, where $V = 0$. Variation of (15) with respect to $\tilde{\phi}$ and ϕ, respectively, then leads to the equations of motion

$$2M \partial_t \phi = \Delta \phi + T \tilde{\phi}, \quad -2M \partial_t \tilde{\phi} = \Delta \tilde{\phi}.$$ \hspace{1cm} (19)
The first one of those might be viewed as a Langevin equation if \(\tilde{\phi} \) is interpreted as a noise. Comparison of the two equations of motion (19) shows that if the order parameter \(\phi \) is characterized by the ‘mass’ \(\mathcal{M} \) (which by physical convention is positive), then the associated response field \(\tilde{\phi} \) is characterized by the negative mass \(-\mathcal{M} \). This characterization remains valid beyond free fields.

We now concentrate on actions \(J_0[\phi, \tilde{\phi}] \) which are Galilei invariant. This means that if \(\langle \cdot \rangle_0 \) denotes the averages calculated only with the action \(J_0 \), the Bargman superselection rules [7]

\[
\langle \phi \ldots \phi \tilde{\phi} \ldots \tilde{\phi} \rangle_0 \sim \delta_{n,m}
\]

(20)

hold true. It follows that both response and correlation functions can be exactly expressed in terms of averages with respect to the deterministic part alone. For example (we suppress for notational simplicity the spatial coordinates) [104]

\[
R(t, s) = \frac{\delta\phi(t)}{\delta h(s)} \bigg|_{h=0} = \langle \phi(t)\tilde{\phi}(s) \rangle = \langle \phi(t)\tilde{\phi}(s) e^{-\delta J_0[\tilde{\phi}]} \rangle = \langle \phi(t)\tilde{\phi}(s) \rangle_0
\]

(21)

where the ‘noise’ part of the action was included in the observable and the Bargman superselection rule (20) was used. In other words, the two-time response function does not depend explicitly on the ‘noise’ at all. The correlation function is reduced similarly:

\[
C(t, s; r) = T \int_{\mathbb{R}^3} dR \left\{ \phi(t, r + y)\phi(s, y)\tilde{\phi}(u, R)^2 \right\}_0
\]

\[+ \frac{1}{2} \int_{\mathbb{R}^3} dR dR' a(R - R') \left\{ \phi(t, r + y)\phi(s, y)\tilde{\phi}(0, R)\tilde{\phi}(0, R') \right\}_0.
\]

(22)

Only terms which depend explicitly on the ‘noise’ remain—recall the vanishing of the ‘noiseless’ two-point function \(\langle \phi(t)\tilde{\phi}(s) \rangle_0 = 0 \) because of the Bargman superselection rule.

Therefore, the dynamical symmetries of non-equilibrium kinetics are characterized by the ‘deterministic’ part of the Langevin equation. Such deterministic nonlinear diffusion/Schrödinger equations with \(\alpha \xi_1 \) or \(\sigma \xi_1 \) as a dynamical symmetry can be explicitly constructed [119] but we shall not go into the details here. Since all quantities of interest will reduce to some kind of response function, one may calculate them from the requirement that they transform covariantly under the action ageing subgroup (with Lie algebra \(\mathfrak{age}_d \)) obtained from the Schrödinger group when leaving out time translations. In this survey, we shall concentrate on the two-time autoresponse function \(R(t, s) \) for which the requirement of covariance reduces to the two conditions \(X_0 R(t, s) = X_1 R(t, s) = 0 \). Since time translations are not included in the ageing group, the generators \(X_n \) can be generalized from (11) to the following form:

\[
X_n = -t^{n+1} \partial_t - \frac{n + 1}{2} t^n \partial_r - \frac{(n + 1)n}{4} \mathcal{M} t^{n-1} r^3 - \frac{x}{2}(n + 1)t^n - \xi nt^n; \quad n \geq 0
\]

(23)

where \(\xi \) is a new quantum number associated with the field \(\phi \) on which the generators \(X_n \) act. This last term can only be present for systems out of an equilibrium state (the requirement of time-translation invariance and \([X_1, X_{-1}] = 2X_0 \) lead to \(\xi = 0 \)). Solving the two differential equations for \(R \) gives the explicit form of \(R(t, s) \); see (26) below.

While this discussion was carried out explicitly for the case \(z = 2 \), it is tempting to try and generalize this idea to more general values of \(z \). In this way, the notion of local scale transformation has been introduced, which is based on the following main assumptions [58].

(i) In principle, the following conformal time transformations should be included:

\[
t \mapsto t' = \frac{\alpha t + \beta}{\gamma t + \delta}; \quad \alpha \delta - \beta \gamma = 1.
\]

(24)
Spatial translation invariance is required.

In systems where the dynamical exponent is 2, we point out that the prediction (26) as well as the explicit form (23) of \(\lambda_R(T, \epsilon) \) and one observes roughly 1.3 \(\leq \lambda_R(T, \epsilon) \leq 1.7 \).

Table 1

Model	\(d \)	\(z \)	\(a = a' \)	\(\lambda_R \)	Comments	Ref.
Ising	2	2	1/2	1.26(1)		[61]
	2	2	\(\geq 0.5 \)	1.24(2)		[86, 80]
	3	2	1/2	1.60(2)		[61]
Potts-3	2	2	0.49	1.19(3)		[86, 80]
Potts-8	2	2	0.51	1.25(1)		[86, 80]
XY	3	2	0.5	1.7	Angular response	[104]
XY spin wave	\(\geq 2 \)	2	\(d/2 - 1 \)	\(d \)		[104]
Spherical	\(\geq 2 \)	\(\sigma \)	\(d/\sigma - 1 \)	\(d/2 \)	\(0 < \sigma < 2 \)	
Spherical	\(\leq 2 \)	\(\sigma \)	\(d/\sigma - 1 \)	\(d/2 \)	\(0 < \sigma < d \)	
Diluted Ising	2	\(2 + \epsilon/T \)	\(1/z(T, \epsilon) \)	\(\lambda_R(T, \epsilon) \)	Disordered	[72]

For applications to ageing, however, time translations generated by \(\beta \) must be left out (generalizing the restriction \(\Delta \mathcal{H}_0 \rightarrow a \Delta \mathcal{G}_0 \)).

(ii) The generator \(X_0 \) of scale transformations is

\[
X_0 = -t \partial_t - \frac{1}{z} \partial_z - \frac{x}{z}
\]

where \(x \) is the scaling dimension of the quasi-primary operator on which \(X_0 \) is supposed to act. Physically, this implies that there is a single relevant length-scale \(L(t) \sim t^{1/z} \).

(iii) Spatial translation invariance is required.

Generators for infinitesimal local scale transformations have been explicitly constructed and it can be shown that for any value of \(z \) there is a linear invariant equation, analogous to (6) [58].

Local scale-invariance (LSI) assumes in particular that the two-time response functions transform covariantly under these local scale transformations; hence \(X_0 R = X_1 R = 0 \). This leads to the prediction [58, 104, 69, 71]

\[
R(t, s) = \langle \phi(t) \tilde{\phi}(s) \rangle = s^{-1-a} f_R(t, s), \quad f_R(y) = f_0 y^{1+a-\lambda_R/2} (y-1)^{-1-a}
\]

where the exponents \(a, a', \lambda_R/z \) are related to \(x, \xi, \tilde{x}, \tilde{\xi} \) and \(f_0 \) is a normalization constant. Starting with [57], the prediction (26) has been reproduced in many different spin systems and we list examples quenched to below criticality in table 1 and quenched to the critical point in table 2. For \(T < T_c \), it is found empirically that \(a = a' \) in all examples considered so far. We point out that agreement with local scale-invariance, equation (26), is not only obtained for systems where the dynamical exponent is \(z = 2 \), but that rather there exist quite a few examples where \(z \) can become considerably larger or smaller than 2. It must be remembered, however, that the above derivation of (26) for a stochastic Langevin equation has for the time being only been carried out for \(z = 2 \) and the justification of \(X_0 R = X_1 R = 0 \) remains an open problem.

6 We point out that the prediction (26) as well as the explicit form (23) of \(X_0 \), valid for \(z = 2 \), assume that the mean order parameter \(\langle \phi(0, r) \rangle = m_0 = 0 \) at the initial moment when the quench to \(T < T_c \) or \(T = T_c \) is made.

7 See section 4 for a recent extension of the method to \(z = 4 \).
Table 2. Systems quenched to a critical point of their stationary state which satisfy (26) with the exponents \(a, a' \) and \(\lambda R/z \). \(d \) is the spatial dimension and the numbers in brackets estimate the uncertainty in the last digit(s). \(\text{csm} \) stands for the spherical model with a conserved order parameter, \(\text{fa} \) denotes the Frederiksen-Andersen model, \(\text{nekm} \) is the non-equilibrium kinetic Ising model and \(\text{rpf} \) and \(\text{bcp} \) denote the bosonic contact and pair-contact processes (see equations (45), (48) for the definitions of the control parameter \(\alpha \) and of \(\alpha_c \)), respectively. In the spherical model, long-range initial correlations \(C_{\text{inn}}(r) \sim |r|^{-d-\alpha} \) were considered. If \(d + \alpha > 2 \), these reduce to short-ranged initial correlations (denoted \(s \)), but for \(d + \alpha < 2 \) a new class \(t \) arises. In those models described by a Langevin equation, one has used throughout, with the exception of the \(\text{csm} \), the simple white noise \(\eta(t, r) \eta(s, r') = 2T \delta(r - r') \delta(t - s) \).

Model	\(d \)	\(a \)	\(a' - a \)	\(\lambda R/z \)	Comments	Ref.
Random walk	-1	0	0	0		[34]
\(O(\text{K}) \)-model	\((d - 1)/2\)	-1/2	\(d/4 \)		[17, 91, 69]	
Ising	1	0	-1/2	1/2		[50, 85, 62]
	2	0.115	-0.187(20)	0.732(5)	[108, 71]	
	3	0.506	-0.022(5)	1.36	[108, 71]	
\(XY \)	3	0.52	0	1.34(5)	[2]	
Spherical \(d > 2 \)	\(<4 \)	\(d/2 - 1 \)	0	\(d/2 - a/4 + 1/2 \)	\([103]\)	
	\(>4 \)	\(d/2 - 1 \)	0	\((d - a)/4 + 1/2 \)	\([103]\)	
	\(<4 \)	\(d/2 - 1 \)	0	3d/4 - 1	\([51]\)	
	\(>4 \)	\(d/2 - 1 \)	0	\(d/2 \)	\([51]\)	
\(\text{csm} \)	\(>2 \)	\(d/4 - 1 \)	0	\((d + 2)/4 \)	\([14]\)	
\(\text{disordered Ising} \)	\(4 - \varepsilon \)	\(1 - \frac{1}{2 \sqrt{\varepsilon}} \)	0	\(3 - \frac{1}{2 \sqrt{\varepsilon}} \)	\(\text{O}(\varepsilon), \log(\varepsilon) \)	\([23, 115, 116]\)
\(\text{fa} \)	\(>2 \)	\(1 + d/2 \)	-2	\(2 + d/2 \)	\([90]\)	
	1	1	-3/2	2	\([90, 88]\)	
\(\text{Ising spin glass} \)	3	\(0.060(4) \)	-0.76(3)	0.38(2)	\([66, 69]\)	
\(\text{contact process} \)	1	-0.681	+0.270(10)	1.76(5)	\(t/s \gtrsim 1.1 \)	\([41, 75, 71]\)
	\(>4 \)	\(d/2 - 1 \)	0	\(d/2 + 2 \)	\([109]\)	
\(\text{nekm} \)	1	-0.430(4)	0	1.9(1)	\([96]\)	
\(\text{rpf} \)	\(\geq 1 \)	\(d/2 - 1 \)	0	\(d/2 \)	\([8]\)	
\(\text{bpcp} \)	\(>2 \)	\(d/2 - 1 \)	0	\(d/2 \)	\(\alpha \leq \alpha_c \)	\([8]\)

for \(\varepsilon \neq 2 \) although the result (26) seems to work remarkably well. Still, it is non-trivial that a relatively simple extension of dynamical scaling should be capable of making predictions which can be reproduced in physically quite different systems.

A few comments are still needed: (i) for the \(XY \) model in the spin-wave approximation (table 1), equation (26) holds for the response of the angular variable \(\phi = \phi(t, r) \) which is related to the \(XY \) spin through \(S = (\cos \phi, \sin \phi) \). Magnetic responses have a different scaling form [18, 1]. (ii) In the critical disordered Ising model (table 2) one finds a logarithmic scaling form \(R(t, s) = (r_0 + r_1 \ln(t - s)) f_R(t/s) \) [23, 115, 116] such that the computed \(f_R(y) \) is consistent with (26) to one-loop order, or up to terms of order \(\text{O} (\varepsilon) \). (iii) Finally, a two-loop calculation of the critical non-conserved \(O(\nu) \)-model does produce in \(4 - \varepsilon \) dimensions an expression for \(f_R(y) \) which is incompatible with (26) [22], and a similar result is anticipated in \(2 + \varepsilon \) dimensions [45], although the one-loop results are still compatible [21, 22, 45]. Should one conclude from these studies that for \(T = T_c \) the prediction (26) and by implication local scale-invariance can only hold approximately? This might well be a subtle question. Deviations between (26) and the field-theoretical studies typically arise when \(t/s \approx 1 \). However, in this
region the field-theoretical results for $f_{R}(y)$ do not agree with the ones of non-perturbative numerical studies [108]. Since the perturbative expansion usually carried out in field-theoretical studies does not necessarily take care of the Galilei invariance, it is necessary to carefully check that the truncation of the ε-series does not introduce slight inaccuracies. Only after this has been done (for example by resumming the ε-series) and checked by comparing with non-perturbative data, can meaningful quantitative statements on the scaling functions be made. (iv) Throughout, it was implicitly assumed that the order parameter vanishes initially. Systematic studies on what happens when this condition is relaxed are only now becoming available [5, 25, 45]. These extensions might be particularly important for chemical kinetics. (v) We did not include growth models here but shall discuss them in section 4.

If $z = 2$, it is also possible, using equation (22), to derive explicit predictions for the two-time correlation function [104, 67]. These have been tested in some exactly solvable models [104, 71], the 2D Ising model [67] and the 2D q-states Potts model with $q = 2, 3, 8$ [86, 80]. Extensions to $z = 4$ have been studied very recently [110, 14]; see section 4.

This survey is organized as follows. In section 2 we review results on the ageing behaviour of several critical models with non-equilibrium steady states. The first two models are chosen because their steady-state phase transitions are in the paradigmatic universality classes of directed percolation (DP) and in the parity-conserving (PC) universality classes. The numerical results on these models are supplemented by the exactly solved bosonic variants of the contact and pair-contact processes. In this way it becomes clear that most aspects of the scaling description of ageing in simple magnets does carry over to this more general situation. However, a central issue, namely the definition of an universal limit fluctuation–dissipation ratio X_{∞} [51] and which has received so much recent attention in the non-equilibrium critical dynamics of magnets, see [32, 24] for reviews, does not appear to have an obvious analogue. Remarkably, the same kind of evidence in favour of a non-trivial extension of dynamical scaling towards a larger dynamical symmetry group of local scale transformation previously found in magnets also appears in the models without detailed balance. In section 3, we review in more detail how the stochastic Langevin equations underlying the bosonic contact and pair-contact processes can be shown to actually possess a local scale-invariance. These evidences should form a promising basis to look for more manifestation of local scale-invariance in systems with dynamical scaling which remain always very far from equilibrium. A different class of non-equilibrium models is studied in section 4, where kinetic growth as described by the Edwards–Wilkinson and the Mullins–Herring equations is studied. To account for those models, the formulation of LSI must be generalized [58] to values $z \neq 2$ of the dynamical exponent. We consider explicitly the case $z = 4$ and apply it to the Mullins–Herring model. We conclude in section 5.

2. Ageing with absorbing steady states

We now describe the ageing behaviour of system without an equilibrium stationary state. We shall realize this system as models of interacting classical particles, where the stochastic dynamics is such that the detailed-balance condition no longer holds. For the simple models we shall consider here it turns out that if the stationary state is not at a critical point, only a single stable stationary state remains to which the system relaxes within a finite time, and no ageing is possible. For this reason, we shall study the ageing behaviour at criticality.

We remark that one might also go to non-equilibrium stationary states by considering driven systems [113]. However, the dynamics of those is more complicated than the systems at hand because of a further strong spatial anisotropy and the description in terms of local scale-invariance would require us to generalize the local scale transformations accordingly. That
is beyond the scope of this survey. Another very interesting class of ageing non-equilibrium systems is the zero-range process; see [43, 53] for recent reviews. Because they do not have a spatial structure which would admit a Galilei invariance, their dynamical scaling cannot be extended to some form of local scale-invariance and for this reason they are not considered here, despite their intrinsic interest.

2.1. Contact process

The contact process is a paradigmatic system for the study of non-equilibrium phase transitions; see e.g. [74] for a review. The steady-state phase transition of the contact process is in the same universality class as one of the transitions of the celebrated Ziff–Gulari–Barshad model [128], which is meant to describe the catalytic reaction $2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2$. The model may be defined in terms of a time-dependent discrete variable $n_i(t) \in \{0, 1\}$, defined on each site i of a hypercubic lattice, which describe configurations of particles and empty sites. The dynamics is defined as follows. For each time-step, select randomly a site i of the lattice. If i is occupied (i.e. $n_i = 1$), that particle vanishes with probability p. Otherwise, with probability $1 - p$ a new particle is created on one of the nearest neighbours of i, chosen at random and provided that chosen site is still empty. Formally, this may be expressed through the reactions $A \rightarrow \emptyset$ and $A \rightarrow 2A$, with rates corresponding to p and $1 - p$, respectively. In the steady state, the model has a continuous phase transition at some critical value p_c. Numerically, $p_c = 0.2326746(5)$ in 1D and $p_c = 0.37753(1)$ in 2D.

A first characteristic of the dynamics of the critical contact process can be seen by looking at the temporal evolution of certain initial configurations; see figure 3. In contrast to magnetic systems, see figure 2 for comparison, in the contact process there is no apparent growing length-scale at all and the evolution proceeds via the slow dissolution of the particle clusters. Cluster dilution had first been demonstrated to occur in several variants of the two-dimensional voter model [38] but also occurs in the early stages of surface ageing in simple magnets [106, 107].

In studies of the ageing behaviour, one goes beyond the average particle density $N(t) := \langle n_i(t) \rangle \sim t^{-\delta}$ at criticality $p = p_c$. Define the two-time (connected) autocorrelator and

Figure 3. Microscopic evolution of clusters in the critical 2D contact process, on a lattice of size 1000×1000. The initial condition of the upper series is a full circle with radius 100 placed in the centre of the lattice, while in the lower series it is a full lattice. The times are $t = [2, 20, 200, 2000]$ for the upper series and $t = [20, 200, 2000, 20000]$ below. After [109].
Figure 4. Connected autocorrelation function $C(t, s)$ and autoresponse function $R(t, s)$ of the 1D contact process in the active phase ($p = 0.1$). The straight lines are proportional to $\exp(-0.05(t - s))$. After [41].

autoresponse functions

$$C(t, s) := \langle n_i(t)n_i(s) \rangle - \langle n_i(t) \rangle \langle n_i(s) \rangle, \quad R(t, s) := \left. \frac{\delta \langle n_i(t) \rangle}{\delta h_i(s)} \right|_{h=0}$$

(27)

where $h_i(s)$ is the rate of the spontaneous creation process $\emptyset \to A$ at site i at time s. These may be calculated in a standard fashion either from simulations [109, 75] or else from the transfer-matrix renormalization group [41]. Recent field-theoretical calculations [13] will also be described.

2.1.1. Active phase. In contrast with simple magnets, where there are two distinct stable ground states in the low-temperature phase, in the active phase of the contact process there is only a single stable steady state. Consequently, there is here no breaking of time-translation invariance and we illustrate this in one dimension in figure 4. After a short transient, the data for both $C(t, s)$ and $R(t, s)$ collapse when plotted over against $t - s$ which means that the contact process shows no ageing in its active phase.

2.1.2. Absorbing phase. From the comparison with the high-temperature phase of simple magnets, one would also expect to find time-translation invariance in the absorbing phase of the contact process. However, the correlation function shows a subtlety the origin of which is best understood by considering the case $p = 1$ first. If $p = 1$, particles on different sites are uncorrelated and simply decay with a fixed rate. For any fixed site i and with two times $t > s$, it is clear that $n_i(t)n_i(s) = n_i(t)$, since $n_i \in \{0, 1\}$. Hence $\langle n_i(t)n_i(s) \rangle = \langle n_i(t) \rangle$ and $C(t, s) = N(t)(1 - N(s))$. For sufficiently long times, $C(t, s)$ will then only depend on t. Indeed, this behaviour survives in the entire absorbing phase [41]. On the other hand, the expected time-translation invariance for the autoresponse function is readily checked.

2.1.3. Critical point. For the critical contact process we show in figure 5(a) that ageing does occur, that is, the autocorrelation and the autoresponse depend on both the observation time t and the waiting time s. Furthermore, when the same data are replotted over against t/s, a data collapse after rescaling can be achieved; see figure 5(b). Lattices with a large initial particle density $n \approx 0.8–1$ were used [41, 109, 75]. This is different with respect to the magnetic systems of section 1, where the order parameter had a vanishing initial value. By analogy with
simple magnets, one defines the ageing exponents a, b and the autocorrelation and autoresponse exponents λ_C, λ_R from

$$
C(t,s) = s^{-b} f_C(t/s), \quad f_C(y) \sim y^{-\lambda_C/z}
$$

$$
R(t,s) = s^{1-a} f_R(t/s), \quad f_R(y) \sim y^{-\lambda_R/z}
$$

where the asymptotic forms should hold for $y \rightarrow \infty$. Similarly, scaling can be observed for the autoresponse function as shown in figure 6. On the other hand, the unconnected correlator behaves for large times simply as $\langle n_i(t) n_i(s) \rangle \sim (ts)^{-b/2}$.

The results for the ageing exponents a, b, λ_C, λ_R are collected in table 3. The agreement between the results of the transfer matrix renormalization group (TMRG) and Monte Carlo
Table 3. Non-equilibrium exponents for the contact process (CP), the non-equilibrium kinetic Ising model (NEKIM), the bosonic contact process (BCP) and the bosonic pair-contact process (BPCP). Several kinetic growth models based on the Edwards–Wilkinson (EW) and Mullins–Herring (MH) equations are also listed; see section 4.

Model	d	a	b	λ_C/z	λ_R/z	Method	Ref.
CP	1	$-0.68(5)$	0.32(5)	1.85(10)	1.85(10)	TMRG	[41]
	2	$-0.57(10)$	0.319	1.9(1)	1.9(1)	Monte Carlo	[109]
		-0.681		1.76(5)		Monte Carlo	[75]
NEKIM	1	$-0.430(4)$	0.570(4)	1.9(1)	1.9(1)	Monte Carlo	[96]
BCP	≥ 1	$d/2 - 1$	$d/2 - 1$	$d/2$	$d/2$	Exact	[8]
BPCP	> 2	$d/2 - 1$	$d/2 - 1$	$d/2$	$d/2$	Exact, $a < a_C$	[8]
	> 2 and < 4	$d/2 - 1$	0	$d/2$	$d/2$	Exact, $a = a_C$	[8]
	> 4	$d/2 - 1$	$d/2 - 2$	$d/2$	$d/2$	Exact, $a = a_C$	[8]
EW2	≥ 1	$d/2 - 1$	$d/2 - 1 - \rho$	$d/2 - \rho$	$d/2$	Exact	[110]
MH1	≥ 1	$d/4 - 1$	$d/4 - 1$	$d/4$	$d/4$	Exact	[110]
MH2	≥ 1	$d/4 - 1$	$d/4 - 1 - \rho/2$	$d/4 - \rho/2$	$d/4$	Exact	[110]
MK	≥ 2	$(d - 2)/4$	$(d - 2)/4$	$(d + 2)/4$	$(d + 2)/4$	Exact	[14]

(MC) simulations serves as a useful control on the viability of the results. While the equality $\lambda_C = \lambda_R$ is fully analogous to what was seen in non-equilibrium critical dynamics, the exponents a and b are no longer equal but satisfy

$$1 + a = b = 2\delta.$$ \hspace{1cm} (29)

Some comments are in order.

(i) If the critical contact process were a Markov process, these exponents might be calculated from the global persistence exponent θ_g through the scaling relation [87, 73, 3]

$$\frac{\lambda_C}{z} = \theta_g = \frac{2(1 - d) - \eta}{2z},$$ \hspace{1cm} (30)

which would predict $\lambda_C/z = 1.98(2)$ in one dimension and $\lambda_C/z = 3.5(5)$ in two dimensions. Although this not too far from the values reported in table 3, the differences appear to be significant. If that conclusion is correct, it would point towards the existence of temporal long-range correlations and hence of an effective non-Markovian dynamics of the critical contact process.

(ii) The relation $1 + a = b$ can be understood [13], as follows, to be a consequence of the rapidity-reversal symmetry of Reggeon field theory (which is generally thought to be in the same universality class as the contact process). The field-theoretical action in the Janssen–de Dominicis formulation reads at the critical point

$$\mathcal{J}[\phi, \tilde{\phi}] = \int \mathbf{dt} \mathbf{dr} \left[\tilde{\phi}(\partial_t - D\Delta)\phi - u(\tilde{\phi} - \phi)\tilde{\phi}\phi - h\tilde{\phi} \right]$$ \hspace{1cm} (31)

where ϕ and h are the coarse-grained particle densities and creation rates for particles. For $h = 0$ and if the ‘time’ $t \in \mathbb{R}$ is unbounded, the action is invariant under the rapidity reversal; see [121, 122]:

$$\tilde{\phi}(t, r) \mapsto -\phi(-t, r), \quad \phi(t, r) \mapsto -\tilde{\phi}(-t, r).$$ \hspace{1cm} (32)
In particular, it follows that the scaling dimensions $x_a = x_b = \beta/v$ must be equal. This remains true even if rapidity-reversal is broken by initial conditions at time $t = 0$. For a rapidity-reversal-invariant action J, the connected correlator becomes [13]

$$C(t, s; r - r') = \langle \phi(t, r)\phi(s, r') \rangle - \langle \phi(t, r) \rangle \langle \phi(s, r') \rangle$$

$$= \langle \phi(-t, r)\phi(-s, r') \rangle - \langle \phi(-t, r) \rangle \langle \phi(-s, r') \rangle$$

$$= 0 \quad (33)$$

where the second line comes from rapidity-reversal symmetry and the last line follows from causality. Hence $C(t, s; r) = 0$ in the steady state but for relaxations from an initial state $C(t, s; 0) = \langle \phi(t)\phi(s) \rangle$, and $R(t, s; 0) = \langle \phi(t)\phi(s) \rangle$ are non-vanishing and have the same scaling dimensions, which implies (29) and also $\lambda_C = \lambda_R$.

While this explains the origin of equation (29) for the contact process, it is not yet understood why it also holds true in the NEKIM [96] (see below) where rapidity-reversal symmetry is not known to be satisfied. On the other hand, equation (29) is not universally valid. In the critical bosonic pair-contact process, one has $a = b$. The critical bosonic pair-contact process furnishes further examples with $a \neq b$ but the relation between a and b is distinct from equation (29).

(iii) The non-equality of the exponents a and b is only possible in systems with non-equilibrium steady states. Indeed, for equilibrium systems, one has time-translation invariance, and combining this with the scaling forms would give

$$C(t, s) \sim (t - s)^{-b}, \quad R(t, s) \sim (t - s)^{-1-a}.$$

The fluctuation–dissipation theorem would then give $a = b$. Hence the equality $a = b$ is a necessary condition that a quasi-stationary state, which might be present for $t - s \ll 1$, is an equilibrium one.

(iv) Is it possible to define a non-equilibrium temperature from the steady states of systems without detailed balance? A recent attempt by Sastre et al [112] started from the observation that, in simple magnets, the fluctuation–dissipation ratio $X(t, s) \rightarrow 1$ as $t \rightarrow \infty$ and $t - s \rightarrow 0$. From this observation, they define a dynamical temperature by

$$\frac{1}{T_{dyn}} := \lim_{t \rightarrow \infty} \left(\lim_{t - s \rightarrow 0} \frac{R(t, s)}{\partial C(t, s)/\partial s} \right). \quad (34)$$

By explicit calculation, they confirm that in the 2D critical voter model (where indeed $a = b$) this limit exists, has a non-trivial value and is universal [112]. Still, their appealing idea has met with several criticisms. First, Mayer and Sollich [89] construct in the coarsening 1D Glauber–Ising model a defect-pair observable such that the fluctuation–dissipation ratio $X(t, s) \neq 1$ in the short-time regime (in particular they show $\lim_{t \rightarrow \infty} X(s, s) = 3/4$).

Second, T_{dyn} can only be finite if $a = b$ and the examples listed in table 3 show that the fluctuation–dissipation ratio itself is in general no longer defined. It appears that the proposal (34) relies too heavily on specific properties of the voter model.

(v) Rather than the fluctuation–dissipation ratio $X(t, s)$ as defined in equation (3) for systems with detailed balance, one may instead consider the ratio $\Xi(t, s)$, and its limit Ξ_{∞}, which are defined by [41]

$$\Xi(t, s) := \frac{R(t, s; 0)}{C(t, s; 0)} = \frac{f_R(t/s)}{f_C(t/s)}; \quad \Xi_{\infty} := \lim_{s \rightarrow \infty} \left(\lim_{t \rightarrow \infty} \Xi(t, s) \right) \quad (35)$$

which are well defined because of (29). The limit Ξ_{∞}, being the ratio of two quantities with the same classical and scaling dimensions, is expected to be universal [13]. Baumann
and Gambassi [13] argue that a value $\Xi(t, s)^{-1} \neq 0$ is a measure for the breaking of the rapidity-reversal symmetry (in the same way as $X \neq 1$ measures the distance from an equilibrium state) and show explicitly that only the zero-momentum modes contribute to a non-vanishing value of $\Xi(t, s)^{-1}$. In this respect, for systems with rapidity-reversal symmetry, Ξ appears to be the analogue of the fluctuation–dissipation ratio R. Of course, the applicability of their argument depends on the validity of the scaling relation $1 + a = b$. For the value of Ξ_∞, they find in $4 - \epsilon$ dimensions

$$\Xi_\infty = 2 \left[1 - \epsilon \left(\frac{119}{480} - \frac{\pi^2}{120} \right) \right] + O(\epsilon^2)$$

which in one dimension is in semiquantitative agreement with the estimate $\Xi_\infty = 1.15(5)$ [41].

Before one can discuss the form of the scaling function $f_R(y)$, it is necessary to study the role of the initial conditions. Indeed, all existing simulations on the ageing in that model start from a lattice with a non-vanishing particle density and hence are in contrast to simulations in magnetic systems, where the initial order parameter was set to zero. For the time-dependent order parameter one expects the scaling form [126, 81, 82, 13]

$$\langle \phi(t) \rangle = \phi_0 t^\theta f(\phi_0^\beta + \phi_0^{\nu z})$$

where $\phi_0 = \langle \phi(0) \rangle$ is the initial value of the order parameter (which for the contact process is the particle density) and θ is the slip exponent. Hence there is characteristic time-scale $\tau_s \sim \phi_0^{-1/(\beta + \nu z)}$, where a change of scaling behaviour takes place. For any non-vanishing value of the dimensionful variable ϕ_0 the long-time scaling behaviour is effectively described by the $\tau_s \to 0$ limit. For a vanishing initial order parameter the exponents λ_C, λ_R are independent of the equilibrium exponents [81]. For $\phi_0 \neq 0$, Baumann and Gambassi show from an analysis of the scaling behaviour of both responses and correlators that [13]

$$\lambda_C = \lambda_R = d + \frac{\nu}{y}.$$

The available exponent estimates in one dimension and two dimensions from simulational studies [41, 109, 75, 71] agree quite well with this prediction. We point out that the available results for the limit ratio X_∞ [41, 13], see equation (36), are found for a finite initial particle density.

On the other hand, in the theory of LSI as reviewed in section 1 the implicit assumption $\phi_0 = 0$ was made. Since ϕ_0 couples to a relevant scaling variable, it is not obvious why a theory formulated in the limit $\phi_0^\beta + \phi_0^{\nu z} \to 0$ should be valid in the opposite limit $\phi_0^\beta + \phi_0^{\nu z} \to \infty$ where all existing studies on the ageing in the contact process have been performed. It is therefore remarkable that LSI with $\phi_0 = 0$ still captures well the behaviour of the $\phi_0 \neq 0$ data. This is shown in figure 6, where for almost all values of t/s an almost perfect agreement with the LSI prediction (26), derived for $\phi_0 = 0$, is found. Hinrichsen [75] has argued that a more ambitious test may be performed by plotting $r(y) := f_R(y)\left[y^{2d/(z - 1 - a)}(y - 1)^{1 + a}\right]$ over against $t/s - 1$. If LSI with $\phi_0 = 0$ holds, one expects that $r(y) = \text{const}$. In this way, he found that for although the measured function $f_R(y)$ agrees nicely with equation (26) if t/s is large enough, for values $t/s \lesssim 1.1$, the function $f_R(y)$ remains well defined but changes to a different behaviour which is no longer described by equation (26). The high quality of his data makes it clear that this change of behaviour in the scaling function cannot be explained away by invoking corrections to scaling. Further unpublished calculations [42] for extremely large values of s confirm these conclusions. In addition, the same conclusion has been reached from

9 In the limit $\phi_0 \to 0$, the results for $R(t, s)$ appear to be consistent with LSI [13].
a detailed field-theoretical study of the two-time response in momentum space [13]. A possible explanation of the form of \(f_R(y) \) in terms of LSI will require the extension of the theory to include a non-vanishing value of \(\phi_0 \).

2.2. Non-equilibrium kinetic Ising model

We now review results, obtained by ´Odor [96], on the ageing behaviour in a non-equilibrium kinetic Ising model (NEKIM) where the parity of the total particle number is conserved. The model was introduced by Menyhárd [92] and combines spin-flips as in zero-temperature Glauber dynamics with spin-exchanges as in Kawasaki dynamics. The model is formulated either in terms of Ising spins (\(\uparrow, \downarrow \)) or else in terms of a particle reaction model of the kinks with occupied or empty sites (\(\bullet, \circ \)). First, the Glauber-like part of the dynamics contains a diffusive motion

\[
\uparrow \downarrow \downarrow \leftrightarrow \uparrow \uparrow \downarrow \quad \text{or equivalently} \quad \bullet \circ \leftrightarrow \circ \bullet;
\]

and the pair annihilation of nearest neighbours

\[
\uparrow \downarrow \rightarrow \uparrow \uparrow \quad \text{or equivalently} \quad \bullet \bullet \rightarrow \circ \circ; \quad \text{with rate } 2\alpha.
\]

The Kawasaki-like part of the dynamics is described by

\[
\uparrow \uparrow \downarrow \downarrow \leftrightarrow \uparrow \downarrow \uparrow \downarrow \quad \text{or equivalently} \quad \circ \circ \leftrightarrow \bullet \bullet; \quad \text{with rate } k.
\]

In full, this is a model describing branching and annihilating random walks with an even number of offspring. By increasing \(k \), one finds a second-order phase transition [92] where the kinks go from an absorbing to an active state. This phase transition is in the so-called parity-conserving (PC) universality class [54, 29, 26] which is different from the one of the contact process.

Using the parameterization \(k = 1 - 2\Gamma, \quad D = \Gamma(1 - \delta)/2 \) and \(2\alpha = \Gamma(1 + \delta) \), the critical point is located at \(\Gamma = 0.35, \quad k = 0.3 \) and \(\delta = -0.3928 \) [96]. Measuring the kink density through an efficient cluster algorithm, and starting from a fully kink state with spins being alternately \(\uparrow \) and \(\downarrow \), he finds a nice power-law scaling \(\langle n_i(t) \rangle \sim t^{-0.285(2)} \).

Next, measuring the unconnected kink–kink two-time correlation function, ´Odor’s data are fully compatible with the scaling behaviour \(\langle n_i(t)n_i(t') \rangle \sim t'^{-0.57}(t/t')^{-0.285} \) for \(t/t' \to \infty \) and allows one to determine the ageing exponent \(b \); see table 3. This result is also consistent with earlier results on the spin–spin autocorrelator in the same model; see [96] for details. The connected autocorrelator was also calculated, with the result \(\lambda_C/z = \lambda_R/z = 1.9(1) \). This is in agreement with the scaling relation (38).

Finally, the spin-autoresponse \(R(t, s) \) with respect to a magnetic field coupling to a spin was calculated [96], by adapting methods used previously by Hinrichsen [75] for the contact process. We recall that for the fully ordered kink initial state, the initial spin magnetization vanishes. In figure 7 it is shown that a clear data collapse is found when \(1 + a = b \), as in the contact process.

Comparing the form of the scaling function \(f_R(y) \) with the prediction of LSI, ´Odor finds a perfect agreement as long as his data remain in the scaling limit. In particular, he carefully considered the limit \(y \to 1 \) (see inset in figure 7). Within the numerical accuracy, the data for the rescaled response scaling function \(r(y) \) remain essentially constant for all values of \(t/s, \) as long as the model is in the scaling regime. Clear deviations from a horizontal line only occur once finite-time corrections have broken dynamical scaling and by increasing \(s \), the regime where (i) scaling holds and (ii) \(r(y) \) is constant progressively extends to ever smaller values of \(y = t/s \). This finding is different from the 1D contact process [75, 13] (see above). It is conceivable that the agreement with LSI in the NEKIM comes from the fact that the initial configuration used has a vanishing magnetization.
2.3. Bosonic contact and pair-contact processes

Two exactly solvable models allow us to confirm the conclusions drawn from the above numerical studies.

The bosonic contact process was introduced in order to describe clustering phenomena in biological systems [77] whereas the bosonic pair-contact process was originally conceived [99] as a solvable variant of the usual (fermionic) pair-contact process. These models are defined as follows. Consider a set of particles of a single species A which move on the sites of a d-dimensional hypercubic lattice. On any site one may have an arbitrary (non-negative) number of particles and it is this property which makes up the difference with the usual contact and pair-contact processes considered before where on each site at most one particle is allowed. Single particles may hop to a nearest-neighbour site with unit rate and, in addition, the following single-site creation and annihilation processes are admitted:

$$mA \xrightarrow{\mu} (m+1)A, \quad pA \xrightarrow{\lambda} (p-\ell)A;$$

with rates μ and λ. (39)

where ℓ is a positive integer such that $|\ell| \leq p$. We are interested in the following special cases.

(i) The critical bosonic contact process: $p = m = 1$. Here only $\ell = 1$ is possible. Furthermore the creation and annihilation rates are set equal: $\mu = \lambda$.

(ii) The critical bosonic pair-contact process: $p = m = 2$. We fix $\ell = 2$, set $2\lambda = \mu$ and define the control parameter10

$$\alpha := \frac{3\mu}{2D}. \quad (40)$$

The dynamics of these models is conveniently described in terms of creation operators $a^\dagger(t, r)$ of a particle at time t and location r and the corresponding annihilation operator

10If instead we would treat a coagulation process $2A \rightarrow A$, where $\ell = 1$, the results presented in the text are recovered by setting $\lambda = \mu$ and $\alpha = \mu/D$.

Figure 7. Scaling of the autoresponse function for the critical 1D NEKIM [96], for several waiting times s. The inset shows a rescaled response function, with $s = [256, 512, 1024]$ from right to left.
\(a(t, r) \); see [36, 117]. The equation of motion for the space–time-dependent particle density \(\rho(t, x) := \langle a(t, x) a(t, x) \rangle = \langle a(t, x) \rangle \) reads, after a rescaling \(t \rightarrow t/(2D) \) [77, 99],

\[
\frac{\partial}{\partial t} \langle a(t, x) \rangle = \frac{1}{2} \Delta_x \langle a(t, x) \rangle - \frac{\lambda \ell}{2D} \langle a(t, x)^2 \rangle + \frac{\mu}{2D} \langle a(t, x)^m \rangle + h(t, x) \tag{41}
\]

where we have used the shorthand

\[
\Delta_x f(t, x) := \sum_{r=1}^d (f(t, x - e_r) + f(t, x + e_r) - 2f(t, x)). \tag{42}
\]

Similarly, the equal-time correlation functions satisfy the equations of motion

\[
\frac{\partial}{\partial t} \langle a(x)a(y) \rangle = \frac{1}{2} \sum_{k=1}^d \left[\langle a(x)a(y - k) \rangle + \langle a(x)a(y + k) \rangle \right] - \langle a(x - k)a(y) \rangle + \langle a(x + k)a(y) \rangle - 4 \langle a(x)a(y) \rangle \tag{43}
\]

\[
\frac{\partial}{\partial t} \langle a(x)^2 \rangle = \sum_{k=1}^d \left[\langle a(x)a(x - k) \rangle + \langle a(x)a(x + k) \rangle - 2\langle a(x)^2 \rangle \right] + \frac{\mu(1 + \ell)}{2D} \langle a(x)^m \rangle \tag{44}
\]

where in equation (43) \(x \neq y \) is understood. Since \(\langle n(x)^2 \rangle = \langle a(x)^2 \rangle + \langle a(x) \rangle \), the main equal-time quantity of interest, namely the variance \(\sigma^2 := \langle n(x)^2 \rangle - \langle n(x) \rangle^2 \), can be found.

The equations of motion (43), (44) are already written for the critical line given by [99]

\[
\ell \lambda = \mu. \tag{45}
\]

where they naturally close. For the bosonic contact process \(p = m = 1 \) there is an extension to arbitrary values of \(\lambda, \mu \) which still closes. In both models, the spatial average of the local particle density \(\rho(x, t) := \langle a(x, t) \rangle \) remains constant in time

\[
\int dx \rho(x, t) = \int dx \langle a(x, t) \rangle = \rho_0 \tag{46}
\]

where \(\rho_0 \) is the initial mean particle density. Furthermore, the critical line (45) separates an active phase with a formally infinite particle density in the steady state from an absorbing phase where the steady-state particle density vanishes. The phase diagrams are sketched in figure 8.

The physical nature of this transition becomes apparent when equal-time correlations are studied [77, 99]. For example, for the bosonic contact process at criticality one has [77]

\[
\langle a(t, x)^2 \rangle = \begin{cases}
 c_1 t^{-d/2+1}, & \text{if } d < 2 \\
 c_2 \ln t, & \text{if } d = 2 \\
 c_3 + c_4 t^{-d/2+1}, & \text{if } d > 2
\end{cases} \tag{47}
\]

where \(t \gg 1 \) and \(c_0, \ldots, c_4 \) are known positive constants. For \(d = 2 \), the fluctuations in the mean particle density increase with time, although the mean particle density itself remains constant. Physically, this means that the particle number on relatively few sites will increase while many other sites will become empty. Only for \(d > 2 \) will fluctuations eventually die out.

For the bosonic contact process, this critical behaviour is the same along the entire critical line.

For the bosonic pair-contact process, that is different. Rather, there exists a critical value \(\alpha_C \) of the control parameter, given by

\[
\frac{1}{\alpha_C} = 2 \int_0^\infty du \left(e^{-4u} I_0(4u) \right)^d \tag{48}
\]
and where $I_0(u)$ is a modified Bessel function. Specific values are $\alpha_C(3) \approx 3.99$ and $\alpha_C(4) \approx 6.45$ and $\lim_{d \to 2} \alpha_C(d) = 0$. Then the variance behaves as [99]

$$\langle a(t, x)^2 \rangle = \begin{cases} f_0; & \text{if } \alpha < \alpha_C \\ f_1 t^{d/2-1}; & \text{if } \alpha = \alpha_C \text{ and } 2 < d \leq 4 \\ f_2 t; & \text{if } \alpha = \alpha_C \text{ and } d > 4 \\ f_3 e^{\mu t}; & \text{if } \alpha > \alpha_C \text{ (or } d < 2) \end{cases} \quad (49)$$

where the f_0, \ldots, f_3 and τ are known positive constants. This means that at the multicritical point at $\alpha = \alpha_C$ there occurs a clustering transition such that for $\alpha < \alpha_C$ the systems evolves towards a more or less homogeneous state while for $\alpha \geq \alpha_C$ particles accumulate on very few lattice sites while the other ones remain empty. In contrast with the bosonic contact process, clustering occurs in some region of the parameter space for all values of d.

We are interested in studying the impact of this clustering transition on the two-time correlations and linear responses. In order to obtain the equations of motion of the two-time correlator, the time-ordering of the operators $a(t, x)$ must be taken in account. This leads to the following equations of motion for the two-time correlator, after rescaling the times $t \mapsto t/(2D), s \mapsto s/(2D)$, and for $t > s$ [49, 8]:

$$\frac{\partial}{\partial t} \langle a(t, x) a(s, y) \rangle = \frac{1}{2} \Delta_x \langle a(t, x) a(s, y) \rangle - \frac{\lambda}{2D} \langle a(t, x) a(s, y) \rangle + \frac{\mu}{2D} \langle a(t, x)^m a(s, y) \rangle. \quad (50)$$

We are interested in the two-time connected correlation function11

$$C(t, s; r) := \langle a(t, x) a(s, x + r) \rangle - \rho_0^2 \quad (51)$$

and take an uncorrelated initial state; hence $C(0, 0; r) = 0$. The linear two-time response function is found by adding a particle-creation term $\sum_x b(x, t)(a^\dagger(x, t) - 1)$ to the quantum

11It can be shown that in the scaling regime $C(t, r; s) \simeq \langle n(t, r_0) n(s, r + r_0) \rangle$ describes the two-time density–density correlation function [12].
We now show that the exact results for response and correlation functions of the BCP and the BPCP as listed in table 4 can be understood from local scale-invariance. In section 4, we shall define the EW and MH models and, after having briefly reviewed LSI for z = 4, then perform a similar analysis.

3. The bosonic processes and local scale-invariance

We now show that the exact results for response and correlation functions of the BCP and the BPCP as listed in table 4 can be understood from local scale-invariance [9, 11].

3.1. Bosonic contact process

The master equation which describes the critical bosonic contact process can be turned into a field theory in a standard fashion through an operator formalism which uses a particle Hamiltonian H and taking the functional derivative

$$ R(t, s; r) := \left. \frac{\delta \langle \sigma(t, r + x) \rangle}{\delta h(s, x)} \right|_{h=0} $$

for which the usual scaling behaviour (28) is anticipated.

The solution of the equations (50) for the two-time quantities is now straightforward, if just a little tedious. It can be shown [8] that the anticipated scaling behaviour (28) exists along the critical line, but for the BPCP the further condition $\alpha \leq \alpha_C$ is required. For these cases, the exponents are listed in table 3. In particular, we see that at the multicritical point $\alpha = \alpha_C$, the exponents a and b are different and, furthermore, do not satisfy the relation $1 + a = b$ found for the critical contact process and the NEKIM. This means that there is no straightforward way to define an analogue of a limit fluctuation–dissipation ratio for particle-reaction models without detailed balance. Furthermore, the explicit form of the scaling functions can also be found, and they are listed in table 4. While the form of the autoresponse function $f_R(y) = (y - 1)^{-d/2}$ is remarkably simple, the results for the autocorrelation function can be rendered as an integral,

$$ f_C(y) = C_0 \int_0^1 d\theta \, \theta a^{-b} (y + 1 - 2\theta)^{-d/2}, $$

where the exponents a, b are taken from table 3.

In section 3, we shall show how these results for $f_R(y)$ and $f_C(y)$ in the BCP and the BPCP can be understood using local scale-invariance. In section 4, we shall define the EW and MH models and, after having briefly reviewed LSI for $z = 4$, then perform a similar analysis.

Table 4. Scaling functions (up to normalization) of the autoresponse and autocorrelation of the critical bosonic contact and bosonic pair-contact processes [8]. The scaling functions for some simple growth models [110, 14], as defined in section 4, are also listed.

Process	$f_R(y)$	$f_C(y)$
Contact process BCP	$(y - 1)^{-\frac{d}{2}}$	$(y - 1)^{-\frac{d}{2}} - (y + 1)^{-\frac{d}{2}}$
Pair $a < a_C$	$(y - 1)^{-\frac{d}{2}}$	$(y - 1)^{-\frac{d+1}{2}} - (y + 1)^{-\frac{d+1}{2}}$
contact $2 < d < 4$	$(y - 1)^{-\frac{d}{2}}$	$(y - 1)^{-\frac{d+1+\rho}{2}} - (y + 1)^{-\frac{d+1+\rho}{2}}$
Edwards–Wilkinson ew2	$(y - 1)^{-\frac{d}{2}}$	$(y - 1)^{-\frac{d+1+\rho}{2}} - (y + 1)^{-\frac{d+1+\rho}{2}}$
Mullins–Herring mh1	$(y - 1)^{-\frac{d}{2}}$	$(y - 1)^{-\frac{d+1+\rho}{2}} - (y + 1)^{-\frac{d+1+\rho}{2}}$
Mullins–Herring mh2	$(y - 1)^{-\frac{d}{2}}$	$(y - 1)^{-\frac{d+1+\rho}{2}} - (y + 1)^{-\frac{d+1+\rho}{2}}$
Mullins–Herring mh3	$(y - 1)^{-\frac{d+2}{4}}$	$(y - 1)^{-\frac{d+2}{4}} - (y + 1)^{-\frac{d+2}{4}}$
annihilation operator \(a(t, r) \) and its conjugate \(a^\dagger(t, r) \) [36, 121]. For calculating connected correlators, it is useful to define the shifted fields

\[
\phi(t, r) := a(t, r) - \rho_0
\]

\[
\tilde{\phi}(t, r) := \tilde{a}(t, r) = a^\dagger(t, r) - 1
\]

such that \(\langle \phi(t, r) \rangle = 0 \) (our notation implies a mapping between operators and quantum fields, using the known equivalence between the operator formalism and the path-integral formulation [39, 78, 121]). As we shall see, these fields \(\phi \) and \(\tilde{\phi} \) will become the natural quasi-primary fields from the point of view of local scale-invariance. We remark that the response function is not affected by this shift, since

\[
R(t, s; r, r') = \frac{\delta[a(t, r)]}{\delta h(s, r')} \bigg|_{h=0} = \frac{\delta[\phi(t, r)]}{\delta \tilde{h}(s, r')} \bigg|_{h=0}
\]

As for magnets, the field-theoretical action [78] is again decomposed \(J[\phi, \tilde{\phi}] = J_0[\phi, \tilde{\phi}] + J_\rho[\phi, \tilde{\phi}] \) into a ‘deterministic’ part

\[
J_0[\phi, \tilde{\phi}] := \int d\bar{R} \int du [\tilde{\phi}(2 M \partial_u - \nabla^2) \phi]
\]

which is manifestly Galilei invariant, whereas the ‘noise’ is described by

\[
J_\rho[\phi, \tilde{\phi}] := -\mu \int d\bar{R} \int du [\tilde{\phi}^2(\phi + \rho_0)].
\]

We use uncorrelated initial conditions \(C(0, 0; r) = 0 \) throughout.

In what follows, some composite fields will be needed, which we list, together with their scaling dimensions and their masses, in table 5. We remark that for free fields one has

\[
\begin{align*}
\tilde{x}_2 &= 2 \tilde{x}, & x_T &= 2 \tilde{x} + x, & x_S &= 3 \tilde{x} + x, & x_T &= 3 \tilde{x} + 2x
\end{align*}
\]

but these relations need no longer hold for interacting fields. On the other hand, from the Bargman superselection rules we expect that the masses of the composite fields as given in table 5 should remain valid for interacting fields as well.

As in section 1, we now have a similar reduction to averages of the noiseless theory. First, for the computation of the response function, we add the term \(\int d\bar{R} \int du \tilde{\phi}(u, \bar{R})b(u, \bar{R}) \) to the action. As usual the response function is [9]

\[
R(t, s; r, r') = \langle \phi(t, r)\tilde{\phi}(s, r') \rangle
\]

\[
= \left\langle \phi(t, r)\tilde{\phi}(s, r') \exp \left(-\mu \int d\bar{R} \int du \tilde{\phi}^2(u, \bar{R}) (\phi(u, \bar{R}) + \rho_0) \right) \right\rangle_0
\]

\[
= \langle \phi(t, r)\tilde{\phi}(s, r') \rangle_0 = R_0(t, s; r, r')
\]

where we expanded the exponential and applied the Bargman superselection rule. Indeed, the two-time response is just given by the response of the (Gaussian) noiseless theory. We have

\[
\begin{array}{|c|c|c|}
\hline
\text{Field} & \text{Scaling dimension} & \text{Mass} \\
\hline
\phi & x & \mathcal{M} \\
\tilde{\phi} & x & -\mathcal{M} \\
\phi^2 & x_2 & -2\mathcal{M} \\
\Sigma & x_\Sigma & -2\mathcal{M} \\
\Gamma & x_\Gamma & -\mathcal{M} \\
\hline
\end{array}
\]
follows that \(C(t, s; r, r') = \left(\phi(t, r) \phi(s, r') \right) \exp \left(-\mu \int dR \int du \tilde{\phi}^2(u, R) \phi(u, R) \right) \)
\[\times \exp \left(-\mu \rho_0 \int dR \int du \tilde{\phi}^2(R, u) \right) \right]_0. \] (60)

Expanding both exponentials separately and using the Bargman superselection rule (20), it follows that \(C = C_1 + C_2 \) can be written as the sums of two terms which read
\[C_1(t, s; r, r') = -\mu \rho_0 \int dR \int du \phi(t, r) \phi(s, r') \tilde{\phi}^2(u, R) \right]_0 \] (61)
and
\[C_2(t, s; r, r') = \frac{\mu^2}{2} \int dR dR' \int du \phi(t, r) \phi(s, r') \tilde{\phi}(u, R) \tilde{\phi}(u', R') \right]_0 \] (62)
using the field \(\tilde{\phi} \); see table 5. Hence the connected correlator is determined by three- and four-point functions of the noiseless theory.

The noiseless three-point response needed for \(C_1 \) can be found from its covariance under the ageing algebra [9]
\[\langle \phi(t, r) \phi(s, r') \tilde{\phi}^2(u, R) \rangle_0 = (t - s)^{-\frac{1}{2} + \frac{1}{2} \frac{1}{\xi}} (t - u)^{-\frac{1}{2} + \frac{1}{2} \frac{1}{\xi}} (s - u)^{-\frac{1}{2} + \frac{1}{2} \frac{1}{\xi}} \]
\[\times \exp \left(-\frac{M}{2} \frac{(r - R)^2}{t - u} - \frac{M}{2} \frac{(r' - R)^2}{s - u} \right) \Psi_3(u_1, v_1) \theta(t - u) \theta(s - u) \] (63)
with
\[u_1 = \frac{u}{t} \left[(s - u)(r - R) - (t - u)(r' - R) \right] \]
\[v_1 = \frac{u}{s} \left[(s - u)(r - R) - (t - u)(r' - R) \right] \] (64)
and an undetermined scaling function \(\Psi_3 \). The \(\theta \)-functions express causality. Specifically, for the autocorrelator, i.e. \(r = r' \), this yields, with \(y = t/s \)
\[C_1(t, s) = -\mu \rho_0 s^{-\frac{1}{2} + \frac{1}{2} \frac{1}{\xi}} (y - 1)^{-\frac{1}{2} + \frac{1}{2} \frac{1}{\xi}} \]
\[\times \int_0^1 d\theta (y - \theta)^{-\frac{1}{2} + \frac{1}{2} \frac{1}{\xi}} (1 - \theta)^{-\frac{1}{2} + \frac{1}{2} \frac{1}{\xi}} \int_{R^2} dR \exp \left(-\frac{M}{2} \frac{R^2}{(y - \theta)(1 - \theta)} + \frac{1}{y (y - \theta)(1 - \theta)} - \frac{M}{2} \frac{R^2}{(y - \theta)^2(1 - \theta)} \right) \]
\[\times H \left(\frac{\theta}{y (y - \theta)(1 - \theta)^2}, \frac{R^2}{(y - \theta)^2(1 - \theta)} \right) \] (65)
where \(H \) is an undetermined scaling function. A similar, but quite lengthy, expression can be derived for \(C_2 \) and depends on \(x_2 \) and \(x_Y \) [9]. Since the critical BCP is described by a free field theory, one can expect from table 3 that \(x = \frac{\tilde{x}}{d} = d/2 \) and hence for the composite fields
\[\tilde{x}_2 = d, \quad x_Y = \frac{d}{2}. \] (66)

Consequently, the autocorrelator takes the general form
\[C(t, s) = s^{1-d/2} g_1(t/s) + s^{2-d} g_2(t/s). \] (67)

For \(d \) larger than the lower critical dimension \(d_+ = 2 \), the second term merely furnishes a finite-time correction. On the other hand, for \(d < d_+ = 2 \), it would be the dominant one and
we can only achieve agreement by discarding the scaling function g_2. It remains to be seen that
g_1 is compatible with the exact result given in table 4.

This can be achieved by choosing in equation (63) [104]

$$\Psi_3(u_1, v_1) = \Xi \left(\frac{1}{u_1} - \frac{1}{v_1} \right)$$

(68)

where Ξ remains an arbitrary function. Then

$$C_1(t, s) = -\mu \rho_0 s^{d+1-x} x^x (t/s - 1)\frac{x}{1-x} x^x$$

$$\times \int_0^1 d\theta \left((t/s - \theta)(1-\theta) x^x \right)$$

(69)

where the function ϕ_1 is defined by

$$\phi_1(w) = \int dR \exp \left(-\frac{Mw}{2} R^2 \right) \Xi(R^2).$$

(70)

Now the result for the BCP in table 4 is recovered if one chooses [104, 9] $\phi_1(w) = \phi_0, w^{-1-d}$. This form for $\phi_1(w)$ guarantees that the three-point response function

$$\langle \phi(r, t)\phi(r, s)\phi^2(r', u) \rangle$$

is non-singular for $t = s$.

3.2. Bosonic pair-contact process

The construction of the action follows standard lines [78]. Making the same shift equation (54) as before, the action becomes $J[\phi, \bar{\phi}] = J_0[\phi, \bar{\phi}] + J_b[\phi, \bar{\phi}]$ where the ‘deterministic’ part now reads

$$J_0[\phi, \bar{\phi}] := \int dr \int dt \left[\bar{\phi}(2M\partial_t - \nabla^2)\phi - \alpha \bar{\phi}\phi^2 \right].$$

(71)

The remaining part is the noise term, which reads

$$J_b[\phi, \bar{\phi}] = \int dR \int dx \left[-\alpha \rho_0 \bar{\phi} \phi^2 - 2\alpha \rho_0 \bar{\phi} \phi^2 - \mu \bar{\phi} \phi^2 \right].$$

(72)

The discussion of the Schrödinger or, more precisely, the ageing invariance of J_0 can no longer use the representations we considered so far, since the equation of motion associated to J_0 is nonlinear, namely

$$2M\partial_t \phi(x, t) = \nabla^2 \phi(x, t) - g\phi^2(x, t)$$

(73)

While for a constant g the well-known symmetries of this equation are those encountered before, it was pointed out recently that g rather should be considered as a dimensionful quantity and hence should transform under local scale transformations as well [119]. This requires an extension of the generators of $\alpha g x_d$ which do contain a dimensionful coupling g [9]. Then it can be shown that the Bargman superselection rules (20) still apply and the response function of the noiseless theory now reads [9]

$$R_0(t, s; r, r') = (t-s)^{-\frac{1}{2}(1+z_1+z_2)} \left(\frac{t}{s} \right)^{-\frac{1}{2}(1-z_1-z_2)}$$

$$\times \exp \left(-\frac{M}{2} \frac{(r-r')^2}{t-s} \right) \Psi_2 \left(\frac{t}{s} \frac{t-s}{g^{1/2}}, \frac{g}{(t-s)^{1/2}} \right)$$

(74)

with an undetermined scaling function Ψ_2. In these calculations, we have assumed for technical simplicity that each field ψ_i has a coupling g_i, and only at the end do we let $g_1 = \cdots = g_n = g$.

12 We remark that for $2 < d < 4$, the same form of the autocorrelation function is also found in the critical voter model [37].
This form is clearly consistent with the results for the BCP listed in Table 4, for both \(\alpha < \alpha_c \) and \(\alpha = \alpha_c \), if we identify

\[
x := x_1 = x_2 = a + 1 = \frac{d}{2}, \quad \Psi_2 = \text{const.} \quad \tag{75}
\]

In distinction with the bosonic contact process, the symmetries of the noiseless part \(S_0 \) do not fix the response function completely but leave a certain degree of flexibility in the form of the scaling function \(\Psi_2 \).

As before, averages can be reduced to averages within the ‘deterministic’ theory only. Technically, calculations become a little longer for the BPCP, since because of the structure of \(J_0 \), several composite fields must be defined. We refer to [9] for the details and merely quote here the results. First, the response function does not depend explicitly on the noise, namely

\[
R(t, s; \eta, \eta') = R_0(t, s; \eta, \eta'). \quad \tag{76}
\]

Second, the results of Table 4 for \(f_c(y) \) can be reproduced from the single term

\[
C_1(t, s) = \alpha \rho_0 \int \text{dR} \int \text{du} \langle \phi(t, \tau) \phi(s, \tau) \tilde{\phi}^2(u, R) \rangle_0 . \quad \tag{77}
\]

The required three-point function now reads

\[
\langle \phi(t, \tau) \phi(s, \tau') \tilde{\phi}^3(u, R) \rangle_0 = \langle \frac{M}{2} (r - R)^2 \frac{M}{2} (r' - R)^2 \rangle \tilde{\Psi}_3(u_1, v_1, \beta_1, \beta_2, \beta_3) \quad \tag{78}
\]

with

\[
u_1 = \frac{u}{t} \cdot \frac{(s - u)(r - R) - (t - u)(r' - R)}{(s - u)^2} \quad \tag{79}
\]

\[
v_1 = \frac{u}{s} \cdot \frac{(s - u)(r - R) - (t - u)(r' - R)}{(s - u)^2} \quad \tag{80}
\]

\[
\beta_1 = \frac{1}{s_2} \cdot \frac{(s - u)(r - R) - (t - u)(r' - R)}{(s - u)^2} \quad \beta_2 = \frac{1}{s_2} \cdot \frac{(s - u)^3}{(s - u)^2} \quad \beta_3 = \frac{1}{s_2} \quad \tag{81}
\]

\[
s_2 = \frac{1}{t - u} + \frac{1}{u} .
\]

Next, we choose the following realization for \(\Psi_3 \):

\[
\tilde{\Psi}_3(u_1, v_1, \beta_1, \beta_2, \beta_3) = \Xi \left(\frac{1}{u_1} - \frac{1}{v_1} \right) \left[\frac{(\beta_1 - \sqrt{\beta_2} \sqrt{\beta_3})}{\beta_3 - \sqrt{\beta_2} \beta_3} \right]^{(a-b)} \quad \tag{83}
\]

where the scaling function \(\Xi \) was already encountered in equation (68) for the bosonic contact process. We now have to distinguish the two different cases \(\alpha < \alpha_c \) and \(\alpha = \alpha_c \). For the first case \(\alpha < \alpha_c \), we have \(a - b = 0 \), so the last factor in (83) disappears and we simply return to the expressions already found for the bosonic contact process, in agreement with the known exact results. However, at the multicritical point \(\alpha = \alpha_c \) we have \(a - b \neq 0 \), and the last factor becomes important. We point out that only the presence or absence of this factor distinguishes the cases \(\alpha < \alpha_c \) and \(\alpha = \alpha_c \).

Inserting the values of the \(\beta_{1,2,3} \) we finally obtain for the autocorrelation function

\[
C_1(t, s) = s^{-b}(y-1)^{(b-a)-a-1} \int_0^1 \text{d} \theta \left[\frac{t}{s} - \theta \right]^{a-b}
\]

\[
\times \phi_1 \left(\frac{t/s + 1 - 2\theta}{t/s - 1} \right) \left[\frac{\theta(t/s - 1)}{(t/s - \theta)(1 - \theta)} \right]^{a-b} \quad \tag{84}
\]
where we have identified
\[\tilde{x}_2 = 2(b - a) + d. \] (85)

\[C_1(t, s) \] reduces to the expression (53) if we choose the same \[\phi_1(w) = \phi_{0,e}w^{-1-a} \] as before. Hence all scaling functions for the BCP are reproduced correctly.

4. Growth models

As a further illustration on a different class of system we now describe recent work by Röthlein, Baumann and Pleimling [110] on kinetic growth models. As a simple model for ballistic deposition consider the Family model [44]. A particle is randomly dropped onto the sites of a lattice. However, before it is fixed, the particle explores the sites around the one it arrived at (typically the nearest neighbours) and fixes itself at the lattice site with the lowest height. One obtains in this way a growing surface which may be described in terms of a height variable \(h(t, r) \). Clearly, since there is only irreversible deposition, the system will never arrive at an equilibrium state.

Some of the simplest continuum descriptions of these phenomena can be cast into stochastic linear equations for the height variable. For the sake of simplicity, we shall always work in the frame co-moving with the mean surface height. For example, if the deposition is purely diffusive and without mass conservation, the simplest model is the well-known Edwards–Wilkinson (EW) model [40]
\[\partial_t h(t, r) = D \nabla^2 h(t, r) + \eta(t, r), \] (86)
but on the other hand, if mass conservation must be taken into account, one might rather consider the Mullins–Herring (MH) model; see [127]:
\[\partial_t h(t, r) = -D \nabla^2 h(t, r) + \eta(t, r). \] (87)

Following [110], the following types of Gaussian noise with vanishing first moment \(\langle \eta(t, r) \rangle = 0 \) will be considered:

(a) Non-conserved, short-ranged \(\langle \eta(t, r)\eta(s, r') \rangle = 2D \delta(r - r')\delta(t - s) \).

(b) Non-conserved, long-range \(\langle \eta(t, r)\eta(s, r') \rangle = 2D|r - r'|^{2\rho-d}\delta(t - s) \) and \(0 < \rho < d/2 \).

(c) Conserved, short-ranged \(\langle \eta(t, r)\eta(s, r') \rangle = -2D \nabla^2 \delta(r - r')\delta(t - s) \).

Then the following models were studied in [110]:

(i) EW1: equation (86) with the non-conserved noise (a).

(ii) EW2: equation (86) with the non-conserved, long-ranged noise (b).

(iii) MH1: equation (87) with the non-conserved noise (a).

(iv) MH2: equation (87) with the non-conserved, long-ranged noise (b).

(v) MHc: equation (87) with the conserved noise (c) [14].

In the models EW1 and MHc the noise is in agreement with detailed balance while for the other models it is not. Solving the linear equations (86) and (87) is straightforward. The two-time correlation and response functions are seen to obey the same kind of scaling behaviour as for the non-equilibrium models considered before. In table 3 the values of the exponents are listed and the scaling functions for the autoresponse and the autocorrelation are included in table 4 (the models BCP and EW1 lead to identical results and are not listed separately). The result quoted for the MHc model is only valid for \(d > 2 \) as stated; for \(d = 2 \) the scaling function becomes \(f_C(y) = 2D \ln[(y - 1)/(y + 1)] \) [14]. Detailed simulations show that the correlation and response functions of the Family model [44] and of a variant of it are perfectly described by the EW1 model and hence should be in the same universality class [110].
We shall see shortly that all results about the scaling functions as listed in table 4 can be understood from an extension of dynamical scaling to local scale-invariance, for both the tw models, where the dynamical exponent \(z = 2 \), as well as for the \(\mathrm{mH} \) models, where \(z = 4 \). In this context, it is instructive to consider the space–time responses \(R(t, s; r) \) as well. In general, one finds the structure

\[
R(t, s; r) = R(t, s) \Phi(|r|(t - s)^{-1/z})
\]

where \(R(t, s) = R(t, s; 0) \) is the autoresponse function. If \(z = 2 \), one has a simple exponential form \(\Phi(u) = \exp(-Mu) \) [56] while for \(z = 4 \), the form of \(\Phi(u) \) is more complicated. For example, in the \(\mathrm{mH} \) model with conserved noise [14]

\[
\Phi(u) = \Phi_0 \left[0 F_2 \left(\frac{1}{2}, \frac{d}{4}, \frac{u^4}{256} \right) - 8 \Gamma \left(\frac{d}{2} + 1 \right) \Gamma \left(\frac{d}{2} +
\frac{1}{4} \right) \right]^{1/2} \Phi_1 \left(\frac{3}{2}, \frac{d}{4} + \frac{1}{2}, \frac{u^4}{256} \right)
\]

where \(\Phi_0 \) is a known constant and \(0 F_2 \) is a hypergeometric function. Very similar expressions have been derived in the other \(\mathrm{mH} \) models; see [110] for details.

Understanding the form of the spatio-temporal response allows for an explicit test of one of the important ingredients of the theory of local scale-invariance, namely Galilei invariance for \(z = 2 \) and its generalization if \(z \neq 2 \). Since in the tw models one has \(z = 2 \), the calculation of \(R(t, s; r) \) is a direct extension of the discussion presented in section 1. Since this has been discussed in detail in the literature [56, 58] we shall not repeat it here and rather concentrate on the case \(z = 4 \), following [58, 110, 14].

Consider the dynamical symmetries of the ‘Schrödinger operator’

\[
\mathcal{S}_4 := -\lambda \partial_t + \frac{x}{4} (\nabla_x^2)^2
\]

which will become related to the deterministic part of the Mullins–Herring equation. As before, we ask if dynamical scaling can be extended to a larger set of local scale transformations, given standard dynamical scaling and spatial translation invariance. Specializing the construction of [58] to \(z = 4 \), these generators read as follows, with the shorthands \(r \cdot \partial_r := \sum_{k=1}^d t_k \partial_{t_k}, \nabla_x^2 := \sum_{k=1}^d \partial_{t_k}^2 \) and \(r^2 := \sum_{k=1}^d r_k^2 \):

\[
X_{-1} := -\partial_r, X_0 := -t \partial_t - \frac{x}{4} r \cdot \partial_r - \frac{x}{4}
\]

where \(x \) is the scaling dimension of the fields on which these generators act and \(\lambda, \gamma \) are further field-dependent parameters. Here, the generators \(X_{\pm 1/4} \) correspond to projective changes in the time \(t \mapsto (\alpha t + \gamma \partial_t + \delta) \) with \(\alpha \delta - \beta \gamma = 1 \), the generators \(Y_{-1/4} \) are space translations, generalized Galilei transformations and so on, and \(R^{(i,j)} \) are spatial rotations. Here we use the following properties: \(\partial_r^0 \partial_r^\beta = \delta_\beta^0 \partial_r^\beta \) and \(\partial_{\beta_1} \partial_{x_1} := \alpha \partial_{\beta_1} \partial_{x_1} \), which can be proven for fractional derivatives with extra distributional terms [58, appendix A] which in turn are closely related to fractional derivatives as defined in [48]. Furthermore, \((\nabla_x^2)^{2s} = (\nabla_x^2)^{-}\cdot (\nabla_x^2)^{-2s} \) and the operator \((\nabla_x^2)^{-2s} \) is defined, e.g., for \(d = 2 \), by formal expansion [110, 14]:

\[
(\nabla_x^2)^{-2s} := (\partial_{x_1}^2 + \partial_{x_2}^2)^{-2s} := \sum_{n=0}^{\infty} (-1)^n \partial_{x_1}^{-2-2n} \partial_{x_2}^{-2n}
\]

For detailed quantitative tests in Ising and Potts models, see [61, 86].
This implies that the commutator \([(\nabla^2)^n, r_i] = n \partial_i (\nabla^2)^{n-1}\) for all \(n \in \mathbb{Z}\).

That the generators in equation (91) indeed describe dynamical symmetries of the ‘Schrödinger operator’ (90) now follows from the commutators [58, 14]

\[
[S_4, Y_i^{(j)}] = [S_4, Y_i^{(j)\dagger}] = [S_4, R^{(i,j)}] = 0, \quad [S_4, X_0] = -S_4. \tag{93}
\]

This means that for a solution of the ‘Schrödinger equation’ \(S_4\phi = 0\) the transformed function \(\phi\) is again solution of the ‘Schrödinger equation’. Finally

\[
[S_4, X_1] = -2t S_4 + \frac{\lambda}{2} \left(x - \frac{d}{2} - 1 + \frac{2\gamma}{\lambda} \right);
\]

hence a dynamical symmetry is obtained if the field \(\phi\) has the scaling dimension

\[
x = \frac{d}{2} + 1 - \frac{2\gamma}{\lambda}. \tag{95}
\]

Generalizing from conformal or Schrödinger invariance, quasi-primary fields transform covariantly under the generators (91) and in particular the response function will satisfy the conditions \(X_1 R = X_0 R = Y_i^{(j)\dagger} R = R^{(i,j)} R = 0\) (the other conditions then follow from the Jacobi identities) and is now characterized by its scaling dimension \(x_i\) and the further parameters \(\gamma_i, \lambda_i\). In calculating the response function \(R = \langle \phi\phi \rangle\) this leads to the conditions \(\lambda = -\tilde{\lambda}\) and \(\gamma = -\tilde{\gamma}\), whereas the scaling function \(\Phi(u)\) from equation (88) can be found by solving the differential equation

\[
\left(\partial_u \left(\frac{1}{u^{d-1}} \partial_u \left(u^{d-1} \partial_u \right) \right) \right)^2 + 4\lambda u \left(\frac{1}{u^{d-1}} \partial_u \left(u^{d-1} \partial_u \right) \right) - 16\gamma \partial_u \overline{\Phi(u)} = 0 \tag{96}
\]

where

\[
\Phi(u) = \left(\frac{1}{u^{d-1}} \partial_u \left(u^{d-1} \partial_u \right) \right)^2 \overline{\Phi(u)}. \tag{97}
\]

Solving this via series expansion techniques [58, 110, 14] and checking carefully that all independent solutions are taken into account, one can indeed recover the explicit result (89) for the \(\text{MHC}\) model as a special case [14] and, similarly, also for the \(\text{M1}1\) and \(\text{M1}2\) models [110].

Lastly, since the \(\text{M}\) equation is linear, there is a natural Wick theorem which allows us to move from the stochastic Langevin equation to the deterministic equation in quite an analogous way as previously for \(z = 2\) [110, 14]. The extension of the technique to nonlinear cases and/or to \(z \neq 2, 4\) is work in progress and will be reported elsewhere [15]. In a similar way one may also check that the correlation functions agree with LSI.

The \(\text{M}\) models considered in this section are, together with the critical spherical model with a conserved order parameter [14], the first analytically solved examples with \(z \neq 2\) where local scale-invariance could be fully confirmed. These examples make it in particular clear that the height of the surface in growth processes is a natural candidate for being described by a quasi-primary scaling operator of local scale-invariance.

5. Conclusions

In this survey, we have reviewed to what extent one may expect that a phenomenological description, which has been successfully applied to describe the ageing of magnetic systems relaxing towards equilibrium steady states, may be extended to more general models where the stationary states are no longer part of an equilibrium statistical ensemble. This situation frequently arises in chemical kinetics, see [4, 6, 31, 124, 125], and the consideration of such systems is of interest in studies of ageing in chemical/biological systems where already the
intrinsic microscopic dynamics and/or constraints do not admit relaxation towards thermal equilibrium. It is clear that the study of ageing phenomena without detailed balance still stands at its very beginning and many open questions remain. In particular, the few models reviewed here certainly do not exhaust all possibilities for ageing behaviour without detailed balance but should rather be seen as case studies whose results might suggest further research problems. This review has already served a useful purpose if it encourages people to explore more systematically the properties of two-time observables of non-equilibrium systems, e.g. reaction–diffusion problems or biologically motivated models.

Specifically, the following points should be noted.

(i) The generic scaling form (28) was seen to be satisfied in all models considered. However, the exponent relation $a = b$, known to hold for critical systems with detailed balance, is no longer valid in general; see table 3. For different universality classes, the relation $a = b$ is either maintained or else broken in different ways. This means that there is no obvious and general analogue of an universal limit fluctuation–dissipation ratio X_{∞} (for magnets one sometimes tries to relate this to a non-equilibrium temperature; see e.g. [33]) even if such an analogy may be defined for certain subclasses.

(ii) For the uncorrelated initial states which have been considered so far, one observes that the autocorrelation and autoresponse exponents agree $\lambda_C = \lambda_R$. It would be interesting to see if spatial or temporal disorder in the rates may change that conclusion, as it apparently happens in diluted magnets [114, 72].

(iii) One of our main questions with respect to ageing systems has been if dynamical scaling permits an extension to a larger group of local scale transformation [58]. It has turned out that from the point of view of LSI the responses are the most easy quantities to study. The long list of examples, see tables 1 and 2, where the two-time autoresponse function $R(t, s)$ was concluded to be in agreement with LSI, is clear evidence that LSI is indeed a successful phenomenological scheme, and this for values of the dynamical exponent z which are often far from $z = 2$ characterizing simple diffusive motion. But this ansatz remains to be proven, especially for $z \neq 2$, for example from some underlying stochastic Langevin equation. The exactly solvable examples we have treated suggest that the idea of splitting the Langevin equation in a ‘deterministic’ part with possible non-trivial dynamical symmetries and a ‘noise’ part which breaks those can be taken over from magnets to more general reaction–diffusion-type systems, although the noise terms can be considerably more general.

The examples studied here also suggest that the basic physical variables of these models, such as the particle density or the height of the surface, should be directly relatable to the quasi-primary scaling operators of LSI.

It appears to us that it should be promising to investigate more systematically the foundations and consequences of a hitherto unsuspected non-trivial dynamical symmetry in scale-invariant non-equilibrium dynamics.

Acknowledgments

It is a pleasure to thank F Baumann, T Enss, A Picone, M Pleimling, J J Ramasco, J Richert, U Schollwöck, M A Santos, C A da Silva Santos and S Stoimenov for the fruitful collaborations which led to the results reviewed here. I thank M Pleimling for providing figures 1 and 2 and G Ódor for providing figure 7. I also thank the INFN Firenze, where this work was started, for their warm hospitality.
References

[1] Abriet S and Karevski D 2004 Eur. Phys. J. B 37 47
[2] Abriet S and Karevski D 2004 Eur. Phys. J. B 41 79
[3] Albano E V and Muñoz M A 2001 Phys. Rev. E 63 031104
[4] Alcaraz F C, Droz M, Henkel M and Ritthennberg V 1994 Ann. Phys. 230 250
[5] Annibale A and Sollich P 2006 J. Phys. A: Math. Gen. 39 2853
[6] Argyrakis P, Burlatsky S F, Clément E and Oshanin G 2001 Phys. Rev. E 63 021110
[7] Bargmann V 1954 Ann. Math. 56 1
[8] Baumann F, Henkel M, Pleimling M and Richert J 2005 J. Phys. A: Math. Gen. 38 6623
[9] Baumann F, Stoimenov S and Henkel M 2006 J. Phys. A: Math. Gen. 39 4095
[10] Baumann F and Pleimling M 2006 J. Phys. A: Math. Gen. 39 1981
[11] Baumann F 2006 J. Phys. Conf. Ser. 40 86
[12] Baumann F 2006 private communication
[13] Baumann F and Gambassi A 2006 Preprint cond-mat/0610260
[14] Baumann F and Henkel M 2006 J. Phys. A: Math. Gen. 38 6631
[15] Baumann F and Henkel M 2006 in preparation
[16] Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241 333
[17] Berthier L, Barrat J L and Kurchan J 1999 Eur. Phys. J. B 11 635
[18] Berthier L, Holdsworth P C W and Sellitto M 2001 J. Phys. A: Math. Gen. 34 1805
[19] Bray A J 1994 Adv. Phys. 43 357
[20] Bray A J and Rutenberg A D 1994 Phys. Rev. E 49 R27
[21] Bray A J and Rutenberg A D 1995 Phys. Rev. E 51 5499
[22] Calabrese P and Gambassi A 2002 Phys. Rev. E 65 066120
[23] Calabrese P and Gambassi A 2002 Phys. Rev. E 66 066101
[24] Calabrese P and Gambassi A 2002 Phys. Rev. B 66 212407
[25] Calabrese P and Gambassi A 2005 J. Phys. A: Math. Gen. 38 R181
[26] Calabrese P, Gambassi A and Krzakala F 2006 J. Stat Mech. P06016
[27] Canet L, Chaté H, Delamotte B, Dornic I and Muñoz M A 2005 Phys. Rev. Lett. 95 1006001
[28] Cardy J L 1999 Fields, Strings and Critical Phenomena (Les Houches vol XLIX) ed E Brézin and J Zinn-Justin (Amsterdam: North-Holland)
[29] Cardy J L and Täuber U C 1996 Phys. Rev. Lett. 77 4780
[30] Cates M E and Evans M R (ed) 2000 Soft and Fragile Matter (Bristol: IOP Press)
[31] Coppey M, Bénichou O, Klafter J, Moreau M and Oshanin G 2004 Phys. Rev. E 69 036115
[32] Crisanti A and Ritort F 2003 J. Phys. A: Math. Gen. 36 R181
[33] Cugliandolo L F 2003 Slow Relaxation and Non Equilibrium Dynamics in Condensed Matter (July 2002) (Les Houches Session 77) ed J-L Barrat, J Dalibard, J Kurchan and M V Feigel’man (Berlin: Springer) (Preprint cond-mat/0210312)
[34] Cugliandolo L F, Kurchan J and Parisi G 1994 J. Physique I 4 1641
[35] de Dominicis C and Peliti L 1978 Phys. Rev. B 18 353
[36] Doi M 1976 J. Phys. A: Math. Gen. 9 1465
[37] Doi M 1976 J. Phys. A: Math. Gen. 9 1479
[38] Dornic I 1998 Thèse de Doctorat Nice et Saclay
[39] Dornic I, Chaté H, Chave J and Hinrichsen H 2001 Phys. Rev. Lett. 87 5701
[40] Edwards S F and Wilkinson D R 1982 Proc. R. Soc. A 381 17
[41] Enss T, Henkel M, Picone A and Schollwöck U 2004 J. Phys. A: Math. Gen. 37 10479
[42] Enss T and Henkel M 2006 in preparation
[43] Evans M R and Hanney T 2005 J. Phys. A: Math. Gen. 38 R195
[44] Family F 1986 J. Phys. A: Math. Gen. 19 L441
[45] Fedorenko A A and Trimper S 2006 Europhys. Lett. 74 89
[46] Fisher D S and Huse D A 1988 Phys. Rev. B 38 373
[47] Gambassi A 2006 J. Phys. Conf. Ser. 40 13
[48] Gelfand I M and Shilov G E 1964 Generalized Functions vol I (London: Academic)
[49] Glauber R J 1963 J. Math. Phys. 4 294
[105] Pleimling M 2006 private communication
[106] Pleimling M 2004 Phys. Rev. B 70 104401
[107] Pleimling M and Iglói F 2004 Phys. Rev. Lett. 92 145701
[108] Pleimling M and Gambassi A 2005 Phys. Rev. B 71 180401(R)
[109] Ramosco J J, Henkel M, Santos M A and de Silva Santos C A 2004 J. Phys. A: Math. Gen. 37 10497
[110] Röthlein A, Baumann F and Pleimling M 2006 Phys. Rev. E at press
(Röthlein A, Baumann F and Pleimling M 2006 Preprint cond-mat/0609707)
[111] Santos J E 1997 J. Phys. A: Math. Gen. 30 3249
[112] Sastre F, Dornic I and Chaté H 2003 Phys. Rev. Lett. 91 267205
[113] Schmittmann B and Zia R K P 1995 Phase Transitions and Critical Phenomena vol 17, ed C Domb and
J Lebowitz (London: Academic)
[114] Schehr G and Le Doussal P 2003 Phys. Rev. E 68 046101
[115] Schehr G and Paul R 2005 Phys. Rev. E 72 016105
[116] Schehr G and Paul R 2006 J. Phys. Conf. Ser. 40 27
[117] Schütz G M 2000 Phase Transitions and Critical Phenomena vol 19, ed C Domb and J Lebowitz (London: Academic) p 1
[118] Siggs E 1977 Phys. Rev. B 16 2319
[119] Stoimenov S and Henkel M 2005 Nucl. Phys. B 723 205
[120] Struik L C E 1978 Physical Ageing in Amorphous Polymers and other Materials (Amsterdam: Elsevier)
[121] Tauber U C, Howard M and Vollmayr-Lee B P 2005 J. Phys. A: Math. Gen. 38 R79
[122] Tauber U C 2007 Ageing and the Glass Transition (Springer Lecture Notes in Physics) ed M Henkel,
M Pleimling and R Sanctuary (Heidelberg: Springer) (Preprint cond-mat/0511743)
[123] van Kampen N G 1992 Stochastic Processes in Physics and Chemistry 2nd edn (Amsterdam: North-Holland)
[124] Voituriez R, Moreau M and Oshanin G 2005 Europhys. Lett. 69 177
[125] Voituriez R, Moreau M and Oshanin G 2005 J. Chem. Phys. 122 084103
[126] van Wijland F, Oerding R and Hilhorst H J 1998 Physica A 251 179
[127] Wolf D E and Villain J 1990 Europhys. Lett. 13 389
[128] Ziff R, Gulari E and Barshad Y 1986 Phys. Rev. Lett. 56 2553
[129] Zwanzig R 2001 Nonequilibrium Statistical Mechanics (Oxford: Oxford University Press)