Contribution to the knowledge on supralittoral macroinvertebrates of the northwestern Black Sea

BORIS LINETSII1,2, MIKHAIL O. SON3 & ALEXANDER V. KOSHELEV3

1 Biological department Odessa I. I. Mechnikov National University, Odessa, 65082, Ukraine. E-mail: linetskii.bg@gmail.com

2 The Ukrainian Scientific Center of Ecology of the Sea (UkrSCES), Odessa, 65009, Ukraine. E-mail: linetskii.bg@gmail.com

3 Institute of Marine Biology of the National Academy of Science of Ukraine (IMB NAS of Ukraine), Odessa, 65148, Ukraine. E-mail: michail.son@gmail.com, koshelev2006@ukr.net

Received 2 July 2020 │ Accepted by V. Pešić: 4 August 2020 │ Published online 6 August 2020.

Abstract
A checklist of the northwestern Black Sea supralittoral fauna is presented. It includes 18 species: Ophelia bicornis, Namanereis pontica, Cryptorchestia cf. garbinii, Deshayesorchestia deshayesii, Orchestia montagui, Orchestia gammarellus, Orchestia montagui, Armadilloniscus ellipticus, Halophiloscia cf. couchii, Ligia italica, Tylos ponticus, Chthamalus stellatus, Microeuraphia depressa, Thalassomyia frauenfeldi, Donacilla cornea, Myosotella myositis, Truncatella subcylindrica, and Melarhaphe nertoides. This paper provides distribution maps for this species in the northwestern Black Sea, based on field studies. The changes that occurred in species composition are discussed. The regional IUCN categories are proposed.

Key words: biodiversity, distribution, species, IUCN assessment, conservation.

Introduction

The Black Sea differs from most seas or oceans in its nontidal conditions. Its littoral zone (known as the “pseudolittoral” or “midlittoral”) is reduced (Arnoldi, 1948) and formed not by regular tides, but by wave oscillations (Mokievsky, 1949). As a result, the ranges of specialized littoral and supralittoral species are limited by narrow belts of the corresponding biotopes, often no more than tens of centimeters wide.

This makes it vulnerable, especially given the maximum littoral concentration of many human activities: industry, agriculture, hydropower engineering; municipal, fishery and shipping infrastructure, recreational activities, and coast protection works. Such spatial coincidence with strong human impact causes different types of ecological and economic conflicts (Zaitsev 2006).

At the same time, the supralittoral fauna is not covered by official monitoring in any of the Black Sea countries and is usually also relatively little studied in scientific works. Only a few studies in the Black Sea (Mokievsky, 1949; Caspers 1951; Surugiu, Giurgiu, 2006) covered supralittoral species of different taxonomic groups in the complex.
The northwestern Black Sea (from the Cape Kaliakra to the Cape Tarkhankut) has additional specificity, because, firstly, it is desalinated by the largest European rivers (especially, the Danube and the Dnieper) and, secondly, it includes large shallow semi-closed bays, which are absent in other areas of the sea (Zaitsev et al, 2006).

In this paper, we summarize data on the current distribution of marine supralittoral species in the northwestern Black Sea and its changes. Both many taxa of terrestrial origin (beetles, flies, spiders, etc.) and sea crabs distributed in the sublittoral, which spend part of the day on land, were excluded from this analysis. Large Enchytraeidae also are excluded. Recent studies show high cryptic diversity in this group, but materials from the Black Sea basin were not included (Erséus, et al, 2019). The revision of the Black Sea species will also fundamentally change its taxonomy and species composition.

Material and Methods

The paper uses both results of our field research in the region between the Danube Delta and the Cape Tarkhankut (2005-2020) and literature sources (retrospective data and data on the region south on the Danube to the Cape Kaliakra).

It was used both qualitative (manual sampling) and random stratified quantitative (with 10 cm² frame) approach. The specimens were stored in 96% ethanol solution in the Institute of Marine Biology of the National Academy of Science of Ukraine (IMB NASU) collection.

Additionally, several museum collections were studied; among them, usable materials were found at the National Museum of Natural History at the National Academy of Sciences of Ukraine (NMNH). The studied localities are listed in Table 1.

Table 1. The studied localities.

Station Number	Locality Name	Latitude	Longitude	Date of record
1	Zhebriany Gulf	45,49983	29,62325	25.06.2018
2	Zhebriany Gulf	45,51417	29,63492	14.04.2012
3	The spit of Lake Sasyk	45,53608	29,65944	27.06.2017
4	The Danube Delta Edge	45,40908	29,75981	26.06.2009
5	The spit of Lake Dhashtejske	45,61394	29,77553	16.09.2012
6	The Danube Delta edge	45,45853	29,77994	29.06.2018
7	The Tuzly Lagoons	45,67514	29,87169	24-25.04.2016
8	The Tuzly Lagoons	45,67186	29,88422	24.04.2016
9	The spit of Lake Dhashtejske	45,67806	29,88694	24-27.04.2016
10	The Dniester Liman	46,41439	30,26206	08.06.2018
11	The Dniester Liman	46,47228	30,26892	30.09.2012
12	The Budaki Lagoon	45,95272	30,31597	23-24.07.2010
				11.09.2011
13	Snake Island	45,42361	30,34258	10.09.2016
14	The Dniester Estuary	46,19814	30,34306	29.04.2018
15	The Budaki Spit	45,97861	30,34722	31.03.2013
16	The Budaki Lagoon	46,00664	30,38078	22.04.2011
17	The Budaki Spit	46,00586	30,38094	23.04.2011
18	V. Kurortne, Odessa region	46,00606	30,38122	24.07.2010
19	The Budaki Spit	46,02812	30,40858	04.08.2014
20	The Dniester Estuary	46,24325	30,43542	29.09.2013
21	The Khadzhibej Estuary	46,83747	30,46281	23.04.2014

...continued on the next page
	Location	Latitude	Longitude	Collection Date(s)
22	The spit of the Dniester Estuary	46,08047	30,48006	31.03.2013
23	The spit of the Dniester Estuary	46,11056	30,50356	31.03.2013
24	The Dniester Estuary	46,13011	30,50864	19-20.10.2009
				02.06.2018
25	The Dnieper-Bug Estuary	46,61292	30,55814	17.06.2011
26	V. Sanjiyka, Odessa region	46,21829	30,60318	06.09.2019
27	V. Sanjiyka, Odessa region	46,23540	30,61944	13.07.2011
28	V. Sanjiyka, Odessa region	46,24333	30,62664	03.08.2013
29	V. Sanjiyka, Odessa region	46,24456	30,62692	03.08.2013
				19.05.2015
30	V. Sanjiyka, Odessa region	46,25161	30,63197	19.06.2019
31	The Sukhyi Estuary	46,35058	30,64319	17.05.2009
32	The Sukhyi Estuary	46,33294	30,66156	05.04.2015
				09.05.2015
33	City of Chornomorsk, Odessa region	46,30166	30,66675	08.09.2019
34	The Sukhyi Estuary	46,32111	30,67888	29.06.2019
35	The Khadzhibej Estuary	46,55644	30,69886	23.04.2014
36	Odessa Bay	46,37055	30,73277	25.06.2019
37	Odessa Bay	46,38222	30,75028	15.03.2011
				23.04.2012
38	Odessa Bay	46,40097	30,75550	20.08.2019
39	Odessa Bay	46,47917	30,76361	16.03.2011
40	Odessa Bay	46,47589	30,76608	08.04.2009
				18.06.2010
				16.03.2011
41	Odessa Bay	46,45744	30,76720	07.06.2019
42	Odessa Bay	46,45672	30,76803	10.06.2010
43	Odessa Bay	46,45372	30,76866	07.06.2019
44	Odessa Bay	46,43402	30,77050	08.08.2019
				17.05.2020
45	Odessa Bay	46,44375	30,77206	23.04.2012
46	V. Kryjanivka, Odessa region	46,55778	30,79125	18.06.2013
47	V. Kryjanivka, Odessa region	46,55814	30,79656	18.06.2013
48	V. Dofinivka, Odessa region	46,57044	30,89322	27.05.2009
				24.06.2012
49	V. Chabanka, Odessa region	46,58478	30,96503	03.08.2011
50	V. Chabanka, Odessa region	46,58964	30,98794	03.08.2011
51	V. Hryhorovka, Odessa region	46,59000	30,98972	27.05.2009
				17.07.2010
				04.08.2011
				07.10.2011
				22.05.2012
				07.06.2014
				25.06.2015
				26.08.2019
52	The Small Adzalyk Estuary	46,60211	31,01081	17.07.2010
53	The Cape Adzhyyask	46,61089	31,30628	10.05.2018
54	V. Rybakivka, Mykolaiv region	46,62242	31,39664	06.05.2018
55	The Kinburn Spit (inland marches)	46,47100	31,65908	18.06.2011

..continued on the next page
No.	Location	Latitude	Longitude	Date
56	The Kinburn Spit	46.46914	31.66208	11.05.2005
57	The Kinburn Spit	46.46567	31.66394	17.06.2011
58	The Kinburn Spit	46.44767	31.68936	10.07.2005
59	Yahorlyk Bay	46.44867	31.69539	12.05.2005
60	Yahorlyk Bay	46.47019	31.70156	22.06.2012
61	The Dnieper-Bug Estuary	46.74614	31.87231	14.08.2013
62	The Dnieper-Bug Estuary	46.99267	31.99047	12.05.2019
63	The Dnieper-Bug Estuary	46.57722	32.20761	19.08.2017
64	The Dnieper-Bug Estuary	46.60072	32.20761	19.08.2017
65	The Gulf of Tendra	46.16639	32.23083	10.08.2017
66	The town of Zaliznyi Port, Kherson region	46.12392	32.26117	22.07.2011
67	The Tarkhankut Peninsula, Karadjinska Bay	45.38025	32.51336	30.04.2013
68	The Tarkhankut Peninsula, Karadjinska Bay	45.36236	32.51389	01.05.2013
69	The Tarkhankut Peninsula	45.37317	32.51411	01.05.2013
70	The Tarkhankut Peninsula, Karadjinska Bay	45.51589	32.71094	30.04.2013
71	The Tarkhankut Peninsula	45.53125	32.72342	27-28.04.2013
72	The Tarkhankut Peninsula	45.53714	32.73225	28.04.2013
73	The Tarkhankut Peninsula	45.54419	32.74336	28.04.2013
74	The Tarkhankut Peninsula	45.54125	32.74517	28.04.2013
75	The Tarkhankut Peninsula, Yarylgachska Bay	45.57258	32.84564	30.04.2013
76	The Tarkhankut Peninsula, Yarylgachska Bay	45.57525	32.84564	30.04.2013
77	Dzharylgach Island, Karkinit Bay	46.01147	32.92619	20.07.2015
78	Dzharylgach Island, Dzharylgach Bay	46.03603	32.92644	17.08.2015
79	Dzharylgach Island (inland marshes)	46.04081	32.93636	17.08.2015
80	Dzharylgach Island, Dzharylgach Bay	46.04594	32.94291	17.08.2015
81	Dzharylgach Island, Karkinit Bay	46.01208	32.94297	20-21.08.2012
82	Karkinit Bay, the Bakalska spit	45.75883	33.20519	18.05.2013
83	Yahorlyk Bay	46.15736	33.59292	02-04.05.2011

The main geographic names used in this work are pointed in fig. 1.

We do not use the EUNIS names of habitats, because a significant part of the specific habitats in this region remains uncodified (prepared by us as a separate publication). Therefore, we use informal names of habitats, the main of which are shown in fig. 2.

The IUCN categories of conservation status were assessed for the studied species on a regional level for the region of our field study: Least Concern (LC), Near Threatened (NT), Vulnerable (VU), Endangered (EN), Critically Endangered (CR). This regional assessment of conservation status was carried out in a two-step process. The global IUCN approaches were used in the first step for the regional populations and, in the second step, this initial assessment was supported by specific elements of regional level assessments (Gärdenfors et al, 2001). In these cases, it includes analyses of the «rescue effect» (the process by which immigrating propagules result in lower extinction risk for the target population) (Gärdenfors et al, 2001). It was taken into account for species with pelagic larvae that could be carried by currents from other regions of the Black Sea as a downgrading of the conservation category.
Results

Seventeen species were analyzed in our study. For each, the numbers of the stations where it was found during our research are given, as well as literature data on other locations. The regional conservation status covers the coast between the Danube Delta and the Cape Tarkhankut.

Annelida

Ophelia bicornis Savigny, 1822
Habitat: this species is mostly known as littoral, but in our studies, it penetrated from the surf zone to the supralittoral, where it was buried deep in the sand.
Distribution: Karadjinska Bay at the Tarkhankut Peninsula (stations 67, 70) (Fig. 3); the Northern and Southern Dobruja (Konsulov, 1998; Surugiu, 2005); was previously widespread along Tarkhankut Peninsula (Mokievsky, 1949).
Regional conservation status: CR B1ab(i,ii,iii)+2ab(i,ii,iii).

Namanereis pontica (Bobretzky, 1872)
Habitat: under shelters (stones, algal deposits, and Zostera mats)
Distribution: widespread in the studied region (stations 31, 37, 40, 41, 45, 48, 49, 51, 73, 81, 84) (Fig. 3); the Northern and Southern Dobruja, the Gulf of Tendra (Vinogradov, Losovskaya, 1968; Surugiu, 2000).
Regional conservation status: LC

Arthropoda

Cryptorchestia cf. garbinii Ruffo, Taroerro et Latella, 2014 (formerly identified as **Cryptorchestia cavimana** (Heller, 1865) or **Orchestia bottae** Milne-Edwards, 1840)
Habitat: under shelters (stones, algal deposits, and Zostera mats), in small watercourses, salt marshes
Figure 2. Northwestern Black Sea habitats: A – burrowed sand; B – Zostera mats; C – exposed rocks; D – shelters (stones and algal deposits).

Distribution: widespread from the Danube Delta to the Kinburn Spit (stations 4, 6, 8, 9, 10, 14, 16, 20, 21, 24, 25, 26, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 51, 61, 62, 63) (Fig 4.); the Northern Dobruja (Petrescu, 1998)
Regional conservation status: LC

Deshayesorchestia deshayesii (Audouin, 1826)
Habitat: burrowing in the sand; occasionally under algal deposits and big stones.
Distribution: widespread in the studied region (stations 1, 2, 3, 5, 9, 17, 18, 22, 27, 29, 30, 51, 52, 53, 54, 57, 60, 66, 67, 68, 69, 70, 76, 77, 78, 82) (Fig. 4); the Northern Dobruja (Petrescu, 1998)
Regional conservation status: EN B2ab(ii,iii)

Orchestia gammarellus (Pallas, 1766)
Habitat: Sandy shores and under shelters (algal deposits, and Zostera mats)
SUPRALITTORAL MACROINVERTEBRATES OF THE NORTHWESTERN BLACK SEA

Distribution: Karkinit Bay, the Budaki Lagoon, the Dnieper-Bug Estuary, Zhebrian Gulf (stations 12, 16, 61, 72, 73, 75, 77, 83, 84) (Fig. 4); the Northern Dobruja (Petrescu, 1998; Surugiu, Giurgiu, 2006)
Regional conservation status: VU B1ab(ii,iii,iv)+2ab(ii,iii,iv)

Figure 3. Distribution of supralitoral Annelida, Mollusca, Cirripedia and Insecta species in the studied sector of the northwestern Black Sea.

Orchestia montagui Audoun, 1826
Habitat: under shelters (stones, algal deposits, and *Zostera* mats), salt marshes.
Distribution: Snake Island, the Great Adzhalyk Estuary, Yahorlyk and Karkinit bays (stations 13, 55, 65, 72, 79, 80, 81) (Fig. 4); the Northern Dobruja (Petrescu, 1998; Surugiu, Giurgiu, 2006)
Regional conservation status: NT

Armadilloniscus ellipticus (Harger, 1878)
Habitat: under shelters (stones, algal deposits, and *Zostera* mats)
Distribution: from Odessa Bay to the Dnieper-Bug Estuary, Karkinit Bay (stations 11, 12, 16, 31, 48, 51, 55, 72, 73, 75, 84) (Fig. 5); the Northern Dobruja (Giurginca et Ćurčić, 2003).
Regional conservation status: NT

Halophiloscia couchii (Kinahan, 1858)
Habitat: under shelters (stones, algal deposits, and *Zostera* mats)
Distribution: from Odessa Bay to the Dnieper-Bug Estuary, Karkinit Bay (stations 44, 51, 69, 72, 73, 75, 84) (Fig. 5); the Northern Dobruja (Kusakin, 1969)
Regional conservation status: NT

Ligia italica Fabricius, 1798
Habitat: exposed rocks and boulders
Distribution: the Tarkhankut Peninsula (stations 72, 73, 74, 75) (Fig. 5); Odessa Bay (Pauli, 1954) (now extirpated), the Northern Dobruja, Cape Kaliakra (Caspers, 1951),
Regional conservation status: VU D2

Tylos ponticus Grebnitzky, 1874
Habitat: burrowing in the sand, occasionally under algal deposits and big stones.
Distribution: between the Danube Delta and the Dniester Estuary, the Kinburn and Tendra spits, Dzharylgach Island, the Tarkhankut Peninsula (stations 8, 18, 57, 66, 80, 81) (Fig. 5); Odessa bay (Pauli, 1954) (now extirpated).
Regional conservation status: CR B2ab(ii,iii,iv)

Figure 4. Distribution of supralittoral Talitridae species in the studied sector of the northwestern Black Sea.

Chthamalus stellatus (Poli, 1791)
Habitat: exposed rocks
Distribution: Karkinit Bay (Arnoldi, 1948); in the Northern Dobruja probably extirpated after extremely reduced temperatures occurred in winter 1995/1996 (Surugiu, Giurgiu 2006).
Regional conservation status: EN (rescue effect correction; CR (“Possibly Extinct” tag) in the initial assessment).

Microeuraphia depressa (Poli, 1791)
Habitat: exposed rocks
Distribution: the Tarkhankut peninsula (stations 75) (Fig. 3).
IUCN: regional: NT (rescue effect correction; VU D2 IUCN in the initial assessment)

Thalassomyiafrauenfeldi Schiner, 1856
Habitat (imago): exposed rocks and boulders; occasionally on wet algal deposits
Distribution: From the Dniester Estuary to the Tarkhankut Peninsula (stations 15, 19, 28, 29, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 50, 51, 72, 75) (Fig. 3).
Regional conservation status: LC

Mollusca

Donacilla cornea (Poli, 1791)
Habitat: this species is mostly known as littoral, but it can penetrate from the surf zone to the supralittoral, where it was buried deep in the sand (Mokievsky, 1949) and gravel (Son, Koshelev, 2014)
Distribution: Dzharylgach Island, the Budaki spit, coast near the Small Adzhalyk Estuary (stations 17, 51, 78) (Fig. 3); widespread between the Danube Delta and the Cape Tarkhankut before the 1960s (Mokievsky, 1949; Zakutsky, 1967), but now, in addition to our findings, it is found here only at the Tarhankut Peninsula (Kopii, 2012); Eforie Bay (Micu and Micu, 2006).
Regional conservation status: CR B2ab(ii,iii,iv)
Melarhaphe neritoides (Linnaeus, 1758)
Habitat: exposed rocks
Distribution: the Tarkhankut Peninsula (stations 75) (Fig. 3).
Regional conservation status: NT (rescue effect correction; VU D2 in the initial assessment).

Myosotella myosotis (Draparnaud, 1801)
Habitat: under shelters (stones, algal deposits, and Zostera mats)
Distribution: between the Danube Delta and the Dniester Estuary, the Kinburn and Tendra spits, Dzharylgach Island, Karkinit Bay (stations 7, 8, 16, 55, 56, 58, 59, 72, 75, 79, 80, 84) (Fig. 3); Odessa Bay (collections of NMNH) (now extirpated); the Northern Dobruja (Grossu, 1993);
Regional conservation status: NT

Truncatella subcylindrica (Linnaeus, 1767)
Habitat: under shelters (stones, algal deposits, and Zostera mats)
Distribution: Karkinit, Dzharylgach, and Yahorlyk bays, the Kinburn Spit (stations 58, 59, 72, 79) (Fig. 3); the Gulf of Tendra (Kornushin, 1980, Anistratenko, Stadnichenko, 1994), the Northern Dobruja (Grossu, 1993).
Regional conservation status: NT

![Figure 5](image-url) Distribution of supralitoral Isopoda species in the studied sector of the northwestern Black Sea.

Discussion

Regarding habitat distribution, most species are highly specialized and colonize mobile substrates (Fig. 6, A-F) (burrowing species), exposed rocks, or shelters (Fig. 6, G-L) (lower surfaces of stones, algal deposits, or Zostera mats). In separate locations with mosaic habitats, species populate a wider range of habitats, for example, *D. deshayesii* and *T. ponticus* not only burrow in the sand but can also be present under shelters.

The species that burrows in the sand or lives under shelters were colonized the most of estuaries in the studied region. This fact was almost not observed before our studies (Zakutsky, 1967).

The exception is *C. cf. garbinii*, which alternatively, associated with fresh and brackish waters, set apart from the typically marine, supralittoral Talitridae such as *Orchestia* spp. (Rewicz et al., 2020). In the first half of the XX century, it was not recorded from open coasts of the northwestern Black Sea, where *Orchestia* spp. were reported, but now is widespread not only in the estuaries but also in the marine supralittoral zone.
Figure 6. Key species of the different supralittoral habitats. Mobile substrates (burrowing): A – Tylos ponticus; B – Deshayesorchestia deshayesii; C – Ophelia bicornis; D – Donacilla cornea. Exposed rocks: E – Ligia italica; F – Microeuraphia depressa; G – Melarhaphe neritoides; H – Thalassomyia frauenfeldi. Shelters: I – Namanereis pontica; J – Myosotella myosotis; K – Orchestia spp.; L – Armadillomiscus ellipticus.
For the two districts within the study region we can compare distributional data with retrospective information: Karkinit Bay (Arnoldi, 1948; Mokievsky, 1949) and Odessa Bay (Zagorovsky, Rubinstein, 1916; Pauli, 1954; Kaminskaya et al, 1977). The first is relatively kept in the natural conditions, except for sandy stretches, which are places of concentrations of recreation activities. As a result, in our studies, we do not see significant changes in species composition and distribution along the Tarchankut Peninsula. Only on several small stretches of public beaches, the supralittoral ecosystem was destroyed. The only species that has sharply declined in this district, is D. cornea.

Alternatively, the ecosystem of Odessa Bay is completely transformed. Natural rocky coast in 1950-1960s was turned to the mosaic of hard-substrate infrastructure and artificial sandy beaches. As a result, most of the locations are barren habitat without shelters for invertebrates, where among supralittoral species only Th. frauenfeldi are abundant. Interesting, that this species has appeared in Odessa Bay after the construction of numerous seawalls, inhabiting the smooth surfaces, which became the optimal biotope for this species. Probably, at the same time, the turnover of Talitridae species (key components of supralittoral ecosystems) took place. O. gammarellus, which, in the Odessa Bay, occupied the habitat of algal deposits (Zagorovsky, Rubinstein, 1916), disappeared from this area, and the more eurytopic C. cf. garbinii began to be recorded in its vicinity (Kaminskaya et al, 1977).

Also, several other species were extirpated: isopods, T. ponticus, and L. italicus, which have been present there in the XIX – early XX centuries (Pauli, 1954) and gastropod M. myosotis, which was sampled in Odessa Bay last time in 1986 (collections of NMNH).

In general, the assessment results show a sharp difference in conservation status between species confined to different types of coasts and habitats.

Species that are buried in the sand (O. bicornis, D. cornea, T. ponticus, D. deshayesii) belong to the “problem” categories CR, EN, and VU.

This is since the expansion of recreational activity on the sandy beaches leads to the trampling of the supralittoral species. As a result, they tend to completely disappear on city beaches and resort areas. Alternatively, species confined to rocky shores or living under shelters are predominantly in low risk NT and LC.

However, for such species in this region, there is a specific threat that is not related to human impact. Strong desalination in the area makes it possible for severe icing and freezing of rocky shores. This is critical for species inhabiting exposed rocks. This is directly proved for the disappearance of Ch. stellatus in Romania (Surugiu, Giurgiu 2006) and it is quite possible regarding the disappearance of some species in the Odessa Bay.

The regional IUCN status of CR A1abc; B1a(i, ii, iii, iv)+2ab(i, ii, iii, iv) was proposed for D. cornea in the Romanian Black Sea (Micu and Micu, 2006), which is consistent with our data and the status of CR can be attributed to the entire Black Sea.

Apparently, for the species of O. bicornis, M. neritoides, Th. frauenfeldi, M. depressa, Ch. stellatus, C. cf. garbinii, D. deshayesii, O. gammarellus, and Orchestia spp. our estimates will coincide with the general situation for the entire northwestern Black Sea. For other species, more research is needed.

References
Arnoldi, L. V. (1948) About the littoral in the Black Sea. Proceedings of Sevastopol biological station, 6, 353–359. (in Russian)
Anistratenko, V. V. & Stadnichenko, A. P. (1994) Littorinoidea, Rissooidea. In: Fauna of Ukraine. Mollusca. Kyiv, Naukova dumka, 29(2), 175 pp. (In Russian)
Caspers, H. (1951) Biozönotische untersuchungen über die strandarthropoden im bulgarischen küstenbereich des schwarzen meeres. Journal of aquatic ecosystem health, 3(2), 131–193.
Erséus, C., Klinth, M. J., Rota, E., De Wit, P., Gustafsson, D. R. & Martinsson, S. (2019) The popular model annelid Enchytraeus albidus is only one species in a complex of seashore white worms (Clitellata, Enchytraeidae). Organisms Diversity & Evolution. 19, 105–133
Gärdenfors, U., Hilton-Taylor, C., Mace, G.M., Rodriguez, R.P. (2001) The Application of IUCN Red List Criteria at Regional Levels. Conservation Biology. 15(5), 1206–1212.
Giurginca, A. & Ćurčić, S. B. (2003) A check-list of Oniscidea (Isopoda, Crustacea) from Dobruja (Romania). Archives of Biological Sciences, 55(1–2), 39–44.
Grossu, A. V. (1993) The Catalogue of Molluscs from Romania. *Travaux du Muséum d’Histoire Naturelle „Grigore Antipa”*, 33, 291–366.

Kaminskaya, L. D., Alekseev, R. P., Ivanova, E. V. & Sinegub, I. A. (1977) Bottom fauna of coastal zone of Odessa Bay and surrounding areas in a hydrobuilding conditions. *Biology of Seas*, 43, 54–64. (In Russian)

Konsulov, A. (1998) Black Sea biological diversity. Bulgaria. Black Sea environmental series. New York: United Nations Publications, 5, 131 pp.

Kopii, V.G. (2012) The modern state of *Donacilla cornea* habitats in coastal areas of the North-western Black sea. *Scientific Issue Ternopil Volodymyr Hnatiuk National Pedagogical University Series: Biology*, 51(2), 140–144 (In Russian)

Kornushin, (1980) To the fauna of terrestrial mollusks of the Black Sea Reserve. *Vestnik Zoologii*, 2, 75–78. (In Russian)

Kusakin, O. G. (1969) Order Isopoda. In: Vodianitsky, V. A. (Ed.), Key to the fauna of Black and Azov Seas. Kyiv, Naukova dumka, 2, 408–440. (In Russian)

Micu, D. & Micu, S. (2006) Recent records, growth, and proposed IUCN status of Donacilla cornea (Poli, 1795) from the Romanian Black sea. *Ceretari marine*, 36, 117–132.

Mokievsky, O. B. (1949) Light soils littoral fauna of western coast of Crimea. *Proceedings of IOAS USSR*, 4, 124–159. (In Russian)

Pauli, V. L. (1954) Free-living isopod crustaceans of Black Sea. *Proceedings of Sevastopol biological station*, 8, 100–133.

Petrescu, I. (1998) Contributions to the knowledge of amphipods (Crustacea: Amphipoda) from Romania. 7. Amphipods from Agigea (Black Sea). *Travaux du Museum National d’Histoire Naturelle “Grigore Antipa”*, 40, 51–73.

Rewicz T, Brodecki J, Băcela-Spychalska K, Konopacka A and Grabowski M (2020) Further steps of *Cryptorchestia garbinii* invasion in Polish inland waters with insights into its molecular diversity in Central and Western Europe. *Knowledge & Management of Aquatic Ecosystems*, 42(17), 1–7.

Son, M. O. & Koshelev, A. V. (2014) About new records of rare species *Donacilla* (Mollusca, Bivalvia) and *Ophelia bicornis* in the Black Sea intertidal zone. *Vestnik Zoologii*, 48(2), 189. (In Russian)

Surugiu, V. (2000) The presence of *Namanereis littoralis* (Polychaeta, Nereididae, Namanereidinae) on the Romanian littoral of the Black Sea. *Revue Roumaine de Biologie, Série de Biologie Animale*, 45(1), 43–49.

Surugiu, V. & Giurgiu, A.I. (2006) Small-scale distribution of the macrobenthic fauna on the Romanian rocky coast of the Black Sea. *Ceretări marine – Recherches marines*, 36, 101–116.

Surugiu, V. (2005) Inventory of inshore polychaetes from the Romanian coast (Black Sea). *Mediterranean Marine Science*, 6(1), 51–73.

Vinogradov, K. A. & Losovskaya, G. V. (1968) Class polychaetes – Polychaeta. In: Vodianitsky V. A. (Ed.), Key to the fauna of Black and Azov Seas. Kyiv: Naukova dumka, 1, p. 290–301. (In Russian)

Zagorovsky, N. & Rubinstein, D. (1916) Materials to the biocenosis system of Odessa Bay. *Proceedings of Imperial Society of Agriculture of Southern Russia*, 86(1), 203–241. (In Russian)

Zaitsev, Yu. P. (2006) Littoral concentration of life in the Black Sea area and coastal management requirements. *Journal of the Black Sea/Mediterranean Environment*, 12, 113–128.

Zaitsev, Yu. P., Alexandrov, B. G. & Minicheva, G. G. (2006). The north-western part of the Black Sea: biology and ecology. Kyiv: Naukova dumka, 433 pp. (In Russian)

Zakutsky, V.P. (1967) Makrozoobenthos. In: Zakutsky, V.P. & Vinogradov, K.A. (Eds.) Biology of the north-western part of the Black Sea. Kyiv: Naukova dumka, pp. 146–158. (In Russian)