Productive Mechanism to Validate Program Segment by Using Test Case Reduction and Test Suite Prioritization

Pradeep Udupa, A. Rijuvana Begum

Abstract: Software Testing is investigation of software, it is used with goal of discovering defects in a system. It evaluates the system against faults, errors, bugs, failures and it is used to verify and validate application and improve efficiency of software. Hence testing system plays foremost role in developing product, but when test cases increases execution time, expenditure, effort, bugs, complication surpass, therefore proposed method is implemented by performing test case diminution, apfd, test case ordering to attain maximum efficiency.

Keywords: diminution of Test Suit, Test suit ordering, Parallelization, Fault detection, reduction, priority, testing.

I. INTRODUCTION

1.1 SOFTWARE TESTING
Software Testing is the method of verifying, validating and resolving bugs, which ensures bug free software with productivity and lessen overall executions [1], when test suit exceeds immense cycle time required, therefore here we first attempt to curtail test cases then order them and lastly increased efficiency.

1.2 System Testing
Used to process entire system and which is used to test entire software by integrating all the modules and to check developed product meets precise requirement given by client as in [7].

1.3 Alpha testing
in this testing performed to identify all possible errors before delivering the software and deploying the software to the users. here testing is performed to automate testing by actual users by means of black box and white box methods. This involves performing testing that a distinctive customer may execute.

1.4 Beta testing
This is a user testing executed at the end users situate by the end users to evaluate the functionality, usability, reliability of testing. Inputs provided by the end-users to extend the quality of the product further and leads to its success.

1.5 Gamma Testing
used to assess the functioning of the fully ready system with all the particular requirements for its marketplace.

II. LITERATUREREVIEW

Here development company frequently assess and stores the responses and feedbacks of the system, by placing in the full fledged market and The organization usually monitors and records the responses and feedbacks of the software product, by putting it in the open market, and assess system based on the feedback and response given by the market

1.6 Control Flow Testing
it is a white box testing method to test flow of program, in this different paths are opted by the code and the test cases are written for evaluating these paths, and used for verifying different conditions of a code segment.

1.7 Regression Testing
it is a form of testing to ensure that program segment or change in code has not severely exaggerated existing characteristics. In this either complete or part of test cases that are explored earlier are done for confirming that system executes without any severe errors, and problem.

1.8 Why to Attenuate Comprehensive Test Suits?
1. Immense test cases lead more convolution as in [9].
2. Extensive the test cases more will be the probable number of errors.
3. Bug tracing is to be executed.
4. There is a need of immense bug trackers.
5. Overall outlay will be increased as in[2].

1.9 Projected Method
In projected research we attempt to lower numeral of test cases by exploring constant, max, min values in the complete test suit cases though fixing numeral of test paths as follows. Identify conditions from preliminary to concluding in CFG.
1. Locate the variables with crest and nominal values in the pathway, afterward the variable with max value is given soaring value and tiny variable is given low down value.
2. Dwindle test case execution time.
3. Ordering check suits.
4. Overall exertion is lowered.
5. Eschew decisive software breakdown
6. Rectify Immersive Bugs.
7. Expose significant Bugs at the earliest.
2.1 Criteria Based Testing
DeMillo and Offutt introduced procedure for test input breeding that uses pathway checking, emblematic corroborations, and lower numeral of test cases depending on condition [12].

2.2 Dynamic Domain Reduction (Ddr)
Offutt et al., have invented method which reduces domain to test executions and overall time required. It has proved immense diminution in test suits but it is less proficient and huge time consuming, and is moderately more expensive technique[13]. exhaustation, prioritization, lastly test suits will be executed so that it can shrink debugging exertion as in [6], afterward we order test suits based on test case rank, here rectification of fault, apfd calculations, proportion of error discovery, risk discovery examination, are performed, here numerous formulas are integrated and test case priority is allotted for dissimilar test suits then we run based on test case priority, lastly contrast among different prioritized test suits is evaluated based on error revealing rate which exhibit that contrast to existing techniques our procedure has optimal efficiency over existing, finally we execute test suits based on precedence, this method exposes maximum numeral of bugs and runs test cases with brutal test cases primary and helps in protecting product from breakdown. state and number of states of obtained values. This method promises range covering, but it is requires additional time and it will be overpriced method and more exertion desirable [5].

2.3 Ping Pong procedure
Here it executes diminutive numeral of checking by arranging alternatively, Here heuristic procedure is implemented. It won't guarantee best yield, but given better result by using the number of values of target

1.4 Test Case Reduction Using Multi Constraint Reduction Technique & Fault Detection (proposed). several researches are carried out formerly. In proposed methodology we performed test case diminution, fault detection, prioritization, and parallelization here soaring, small, steady variable in all pathway are detected by verifying all individual path, in this exclusive paths are examined by means of cyclomatic convolution and afterward we run test suits in prioritized and parallel manner which condensed running time and numeral of test suits.

Author	Approach	Advantage	Disadvantage
DeMilli, & Offutt	Constraint based testing	Lessens Number of test cases, analysing time	No prioritization,
1991 [12]		and storage to some extent	No fault detection
			Results in huge test cases
Offutt et al.,	D.D.R.	Achieved more depletion in test cases	Less efficient
1999 [13]			No, fault detection,
			Large time
			No test case ordering
Srikanth et al.	Prioritization Techniques	Achieved ordering of test cases, Diminished	Diminished productivity,
2005 [11]		time of execution	huge test cases and expensive

III. EXISTING METHODOLOGY
Ddr Technique
deduce that specified range as i1(0 to 30),j1(0 to 50), k1(0 to 40) we followed below method.
1. Locate every possible condition from start to finish.
2. Inspect range of split point for specified field and for all variable satisfying constraint.
3. After that as per value of split we separate domain into 2 ranges. i1(0..15) ,(16.. 30) i2 into (10..30) ,(31. 50) and final interval by using splitting is i1(0..10),(11.. 30) i2(31..50),i3 10 therefore finaltest checks=651=31*1+31*20.

IV. PROJECTED PROCEDURE
In proposed method algorithm is used diminish test cases then we perform test case ordering by assigning priority for test cases and evaluation of A.P.F.D conducted in which proposed has given prolonged performance than previous technique, then parallelization carried out to reduce cost and execution cycles. in proposed method distinct independent paths are found and every path is exposed for minimum, maximum, and stable values and test case lessening is done by following steps given below then parallelization, prioritization performed. suppose we chosen path 1-2-4-8 let us assume we have inventive domains 1(0..30),j1(0..50),k1(0..40). We follow following steps.
1. discover nodes with conditions from beginning to end. m1 < m2, m2 = m3
2. discover low and high values in the path and assign to min and max variable.
3. discover stable values. ‘m3’ stable value derived on 2nd node is allotted to variable.
4. locate stable values. ‘m3’ stable value obtained on 2nd node is allotted to variable m3, then make use of obtained domain to derive reduced test cases for all distinctive paths as mentioned in Figure 1.

Variable M1	Variable M2	Variable M3	Test suits
(0..30)	(50)	(10)	Test 1
(0.9)	(10..50)	(10)	Test 2
(10..30)	(0..30)	(20)	Test 3
(30)	(0.50)	(20)	Test 4

V. RESULT EVALUATION

Here discrimination of projected technique is performed with the existing process Get Split by comparing produced entire test cases, entire diminution in checklist, executed execution time and error revealing rate in case of proposed technique required test cases 31*1*1=31 is test cases.

![Figure 1: Flow Graph](image)

Table 2: Derived Test Cases

Variables	M1	M2	M3	Test suits
(0..30)	(50)	(10)	(10)	Test 1
(0.9)	(10..50)	(10)	Test 2	
(10..30)	(0..30)	(20)	Test 3	
(30)	(0.50)	(20)	Test 4	

Table 3: Bugs Covered With different Time

Bugs/Errors	Tst 1	Tst 2	Tst 3	Tst 4	Pr_ No	Pr-_rev	Pr-_prop
Bug1	4	4	1	1			
Bug2	#	#	#	1	4	1	
Bug3	#	#	#	1	4	1	
Bug4	#	#	#	1	2	3	
Bug5	#	#	#	1	2	3	
Bug6	#	#	#	1	2	3	
Total bugs	1	2	3	4			
Execution time	1	3	5	9			
Ruthlessness	4	6	8	11	16	14	11

Here adopted domain is m1(0..30), m2(0..50), m3(0..40) here Flt1 is bug value inputted less than minimum range in which values for m1=1 and Flt2 is error value inputted is higher than max domain and in value for m1=31, and Flt3 is error value given is less than min domain, where value for m2=4 and Flt4->error given above than max domain and value for m2=51 where Flt5->error value given is lower than min domain and value for m3=5 where Flt6->bug value given is higher than maximum range and value for m3=41, then for errors with relentlessness given and is specified in Table 3. We then evaluate rate of error, percentage of error and risk detection analysis, by using the formula given below, then values of (r,f,t), a.f.p.d and (r,d,a) are summed.

Rate of Fault = (Nj) / (TIMEj) * 10 as in Table 4.
Percentage of fault=Number of faults / overall bugs*10
Risk detection=((N.J) *(S.J) / (T.J))

Test rank =(R.F.D)+(P.F.D)+(R.D.A) given in Table 5.

Table 4: Evaluation of Rate of Fault, fault percentage, Risk and Test Case ordering.

Test cases	Rate of Fault	Percentage of fault	Risk detection	Test rank
Tst1	10	1.66	4	15.66
Tst2	6.6	3.33	4	13.9
Tst3	6	5	8	19
Tst4	4.44	6.66	10	21.1

Table 5. Test Suit Rank Calculation.

Checklist	T.C.R=R.F.D+P.F.D+R.D.A
Tst1	15.66
Tst2	13.99
Tst3	19
Tst4	21.1

Table 6: Evaluation of projected Priority With Dissimilar Methods.

No-Priority	Reverse-Priority	Proposed-Priority
Tst1	Tst4	Tst4
Tst2	Tst3	Tst3
Tst3	Tst2	Tst1
Tst4	Tst1	Tst2

Table 7: Evaluated Average Bug in Percentage

Priority Methods	Average Fault
No-Priority	46
Reverse-Priority	54
Proposed-Priority	58

Application 1: to evaluate continuous improvement of student, here if students first series mark is greater than 2nd series and 3rd series 25 marks/credits added if 2nd series is greater than first series and 3rd series 50 marks added and if 3rd internal is greater than first internal and 2nd internal 75 marks added as in Table 9.

Application 2: promoting banking/finance business providing added credit points for increase in deposits/loan above 5k or certain limit benchmarked by company and can enchased as cash (Table 10,11,12)

Application 3: promoting business by giving credit Promotions for increments in purchase amount for purchase amount above 500 rupees as in Table 13,14,15,16,18.
Table 8: Application Based Research Comparison of Proposed Method (Multi Constraint Based Reduction) with Existing Method.

Appname	Domain	Reduction technique	Total test cases	Execution time in seconds
Student Continuous Improvement	(0,30) (0,50) (0,40)	Test Case With No Reduction	64821	324105
		Test Case With Criteria Reduction	24149	12074.5
		Multi Constraint Based Reduction	31	15.5
Banking Business	(0,31) (32,55)	Test Case With No Reduction	64512	32256
	(0,35)	Test Case With Criteria Reduction	27648	13824
		Multi Constraint Based Reduction	32	16
Business Promotion	(0,25) (0,60) (0,35)	Test Case With No Reduction	57096	28548
		Test Case With Criteria Reduction	32760	16380
		Multi Constraint Based Reduction	26	13

Table 9: Student Continuous Assessment.

Reg. no	Name	Internal 1	Internal 2	Internal 3	Result	Total
124101	Raj	20	30	25	50 Marks Added	125
124102	Ravi	15	20	40	75 Marks Added	150
124103	Ram	35	25	10	25 Marks Added	95

Table 10: Banking Business Application 1.

Acc no	Custname	Bank Deposit 1	Bank Deposit 2	Bank Deposit 3	Result	Credits
134101501 | Raj | 18 | 45 | 35 | 50 credit points Added | 50 |
134101502 | Ravi | 19 | 35 | 69 | 75 credit points Added | 75 |
134101503 | Latha | 23 | 18 | 15 | 25 credit points Added | 25 |

Table 11: Banking Business Application 2.

Acc no	Custname	Bank Deposit 1	Bank Deposit 2	Bank Deposit 3	Result	Credits
235101501 | deepak | 38 | 75 | 45 | 50 credit points Added | 50 |
634101502 | nibha | 30 | 55 | 85 | 75 credit points Added | 75 |
714101503 | sahana | 85 | 67 | 35 | 25 credit points Added | 25 |

Table 12: Banking Business Application 3.

Acc no	Custname	Bank Deposit 1	Bank Deposit 2	Bank Deposit 3	Result	Credits
235101501 | deepak | 66 | 75 | 105 | 50 credit points Added | 75 |
634101502 | nibha | 90 | 65 | 85 | 75 credit points Added | 25 |
714101503 | sahana | 88 | 125 | 76 | 25 credit points Added | 50 |

Table 13: Business Promotion Application 1.

Custname	Mobno	Purchase1 Amt	Purchase2 Amt	Purchase3 Amt	Result	Credits
rana	9.188E+09	14	20	40	3rd purchase is greatest, so 25 marks added	75
Raju	8.618E+09	19	35	16	2nd purchase is greatest, so 50 marks added	50
ram	9.946E+09	23	18	15	First purchase is greatest, so 25 marks added	25
Table 14: Business Promotion Application 2.

Custname	Mobno	Purchase1 Amt	Purchase2 Amt	Purchase3 Amt	Result	Credits
rajani	7.188E+09	34	40	50	3rd purchase is greatest, so 25 marks added	75
Ramya	8.618E+09	29	65	36	2nd purchase is greatest, so 50 marks added	50
divya	6.946E+09	73	68	45	First purchase is greatest, so 25 marks added	25

Purchase1 (1-10K), Purchase2(1-15K), Purchase3(1-20k)

Test cases	executn time	reduced test cases	gain %	criteria based	executn time	reduced test cases	gain %	Multi constrai nt	executn time	reduced test cases	gain %
3000	1500	3000	No Gain	1000	500	2000	66.6	10	5	2990	99.6

Table 15: Business Promotion

ITEM/Purchases	QUANTITY	PART NUMBER	DESCRIPTION	REQUIRED DATE	UNIT PRICE	PRICE	Result
1	10	F54749	NW Globe Chassis, Model 28/02/01	29.5	295	25 credit points	
2	15	F85352	NW Globe Light Kit 28/02/01	19	285		
3	6	F84352	NW Globe 30" Oak Stand 28/02/01	30	180		
4	20	L86355	NW Atlas Oak Stand–Bound 28/02/01	25	250		
5	12	L86362	NW Atlas Young Readers Series 28/02/01	22.5	270	75 credit points	
6	30	A86357	NW Pen Roller ball 28/02/01	100	3000		
7	40	A86362	NW Pen Fountain 28/02/01	100	4000	50 credit points	
8	50	A86552	NW Globe Beach Balls, 24" 28/02/01	90	4500		
9	50	A86553	NW Globe Beach Balls, 24" 28/02/01	70	3500		

Purchase1 (1-15K), Purchase2(1-18K), Purchase3(1-20k)

Test cases	executn time	reduced test cases	gain %	criteria based	executn time	reduced test cases	gain %	Multi constrai nt	executn time	reduced test cases	gain %
5400	2700	5400	No Gain	900	450	4500	83.3	15	7.5	5385	99.72
Table 16: Business Promotion

ITEM/Purchases	QUANTITY	PART NUMBER	DESCRIPTION	REQUIRED DATE	UNIT PRICE	PRICE	Result
1	1	F54749	Nw Laptop	9/5/2019	1000	1000	75 credit points
2	10	F85352	Nw Nokia 204	1/5/2019	290	2900	25 credit points
3	1	F84352	Nw Fridge Samsung	4/5/2019	15000	15000	
4	2	L86355	Nw Setopbox	11/5/2019	1750	3500	
5	10	L86362	Nw Camera	13/05/19	1200	12000	25 credit points
6	2	A86357	Nw Keyboard	16/05/19	1500	3000	
7	25	A86362	Nw Mouse	17/05/19	160	4000	50 credit points
8	50	A86552	Nw Dframe	18/05/19	900	4500	
9	25	A86362	Nw Samsungnari	19/05/19	120	3000	

Table 17: Business Promotion

ITEM/Purchases	QUANTITY	PART NUMBER	DESCRIPTION	REQUIRED DATE	UNIT PRICE	PRICE	Result
1	10	F54749	Bamboo Blinds	9/5/2019	29.5	295	25 credit points
2	15	F85352	Writing Sets	1/5/2019	19	285	
3	6	F84352	Umbrellas	4/5/2019	30	180	
4	10	L86355	Cane Chair	11/5/2019	15	150	
5	10	L86362	Cane Baskets	13/05/19	25	250	75 credit points
6	30	A86357	Tea Chests	16/05/19	10	300	

Purchase1 (1-20K), Purchase2 (1-25K), Purchase3 (1-30k)

Test cases with no	execut time	reduced test cases	gain %	criteria based	execut time	reduced test cases	gain %	Multi constrain t	execut time	reduce d test cases	gain %
	15000	7500	15000	No Gain	3000	1500	12000	80	20	14980	99.86

Table 18: Business Promotion

ITEM/Purchases	QUANTITY	PART NUMBER	DESCRIPTION	REQUIRED DATE	UNIT PRICE	PRICE	Result
1	100	F54749	Black Dragon	9/5/2019	200	20000	25 credit points
2	15	F85352	Black Dragon	1/5/2019	19	285	
3	6	F84352	Dinner Set (24)	4/5/2019	3000	18000	
4	100	L86355	Wall units	11/5/2019	200	200000	
5	100	L86362	Wall units	13/05/19	210	21000	75 credit points
Implementation Of Control Flow Graph

```c
int m1,m2,m3,t;
clrscr();
printf("Enter m1 in ist,2nd and m2 in 3rd for rej
00
00
00
marks in each interval is top so 50 mks bonus
Total=-?\n\n\n```

```c
if(m1>m2)
 t=m1;
else if(m1<m2)
 w=0;
else if(m1<m3)
 w=0;
```

```c
a.p.f.d=(1-(4+4+1+2+2+3)/6*4+1/2*4)=(1-(.666+.125))=(.466)=(46\%)
in case of reverse priority a.p.f.d=1-(1+(1+4+3+3+2)/6*4+1/2*4)=
(1-.5833+.125)=(54\%)
```
In projected method we initially compute average fault=58. afterward we parallelize derived test suits by referring Table 2, here m1 found in three paths so domain of m1 spitted into 3 parts m1) 0….10 m12)11……20 m13)21….30. Similarly range of m2 divided into 4 parts m21) 10….20 m22)21……30 m23)31….40 m24)41…50. Since m3 is constant we not divide m3. afterward requirements of the user considered along with priority and test cases executed in parallel manner hence we have overall numeral of test cases=[31*51*41]*4=259284 and condensed test case for path1=31, but using existing method test cases=651, condensed Total test cases=31*1*1+10*41*1+21*31*1+1*51*1]=[31*41+651*51]=1143, as in Table 2, then we assigning each test case constant .5 second but without parallelization running time essential for lessened test cases is 1143* .5=571.5. Hence whole amount of test suits without test case diminution = 259284 and running time=129642, but for chronological implementation condensed test cases =1143, and execution time=571.5 and in case of PRIORITIZED parallel running test cases=1143 and running time=142.875, where CPU having equivalent capability and error recognition rate of proposed method is also supplementary, in proposed technique test cases are executed with priority by reducing fault discovery time as specified in Table6.

VI. CONCLUSION

Each and every method has gain as well as pitfalls, d.d.r uses split points and isolated field, ping pong along with other established method consequences in massive numeral of test cases, tracing time, huge effort and expenditure. In case of proposed method has enhanced performance by attenuating overall test cases, prioritizing them and expose enormous number of bugs by assigning test case ranking, apfd computation and then generating prioritized test suits, attenuating test cases as in Figure.2. Here we compared proposed procedure with many other prevailing methods by application oriented research based comparison along with the evaluated result as in Table 8, and prolonged performance is accomplished by test case rank and finally parallelized and prioritized test cases are executed to lessen running time, total expenditure necessary for performing testing.

REFERENCES

1. Wang, R., Qu, B., & Lu, Y. (2015). Empirical study of the effects of different profiles on regression test case reduction. IET Software, 9(2), 29-38.
2. Boehm, B., & Huang, L.G. (2003). Value-based software engineering: A case study. Computer, 36(3), 33-41.
3. Arnicane, V. (2009). Complexity of equivalence class and boundary value testing methods. International Journal of Computer Science and Information Technology, 7(1)(3), 80-101.
4. Sawant, A.A., Bari, P.H., & Chawan, P.M. (2012). Software testing techniques and strategies. International Journal of Engineering Research and Applications (IJERA), 2(3), 980-986.
5. Jeng, B. and Weyuker, E.J. (1994). A simplified domain-testing strategy. ACM Transactions on Software Engineering and Methodology (TOSEM), 3(3), 254-270.
6. Gümöthy, T., Beszédes, Á., & Forgács, I. (1999). An efficient relevant slicing method for debugging. In Software Engineering—ESEC/FSE’99 (pp. 303-321). Springer, Berlin, Heidelberg.
7. Biswas, S., Mall, R., Satpathy, M., & Sukumaran, S. (2011). Regression test selection techniques: A survey. Informatica, 35(3).
8. Saifan, A.A., Aslakini, E., Alawnbi, H., & Sbaih, A.A. (2016). Test case reduction using data mining technique. International Journal of Software Innovation (IJSI), 4(4), 56-70.
9. Assi, R.A., Masri, W., & Zaraket, F. (2016). UCov: a user-defined coverage criterion for test case intent verification. Software Testing, Verification and Reliability, 26(6), 460-491.
10. Kumar, A. (2016). Evaluation of software testing techniques through software testability index. AKGEC, Vol. 3, pp. 342-349.
11. Srikanth, H., Williams, L., & Osborne, J. (2005). System test case prioritization of new and regression test cases. In 2005 International Symposium on Empirical Software Engineering, 2005, 64-73.
12. DeMilli, R.A., & Offutt, A.J. (1991). Constraint-based automatic test data generation. IEEE Transactions on Software Engineering, 17(9), 900-910.
13. Offutt, A.J., Jin, Z., & Pan, J. (1999). The dynamic domain reduction procedure for test data generation. Software: Practice and Experience, 29(2), 167-193.

AUTHORS PROFILE

MR.PRADEEP UDUPA, has completed his MTECH (CSE), MCA MPHIL and PERSUISING PHD (C.S.E). His field of interest includes software engineering, testing, operating system, simulation, dbms, wireless communication, adbms, Oops currently working as assistant professor in engineering college in Kerala.