A NOTE ON THE FEKETE–SZEGÖ PROBLEM FOR CLOSE-TO-CONVEX FUNCTIONS WITH RESPECT TO CONVEX FUNCTIONS

Bogumila Kowalczyk, Adam Lecko, and H. M. Srivastava

Abstract. We discuss the sharpness of the bound of the Fekete–Szegö functional for close-to-convex functions with respect to convex functions. We also briefly consider other related developments involving the Fekete–Szegö functional \(|a_3 - \lambda a_2^2|\) \((0 \leq \lambda \leq 1)\) as well as the corresponding Hankel determinant for the Taylor–Maclaurin coefficients \(\{a_n\}_{n \in \mathbb{N} \setminus \{1\}}\) of normalized univalent functions in the open unit disk \(\mathbb{D}\), \(\mathbb{N}\) being the set of positive integers.

1. Introduction

A classical problem in geometric function theory of complex analysis, which was settled by Fekete and Szegö [4], is to find for each \(\lambda \in [0, 1]\) the maximum value of the coefficient functional \(\Phi_\lambda(f)\) given by

\[
\Phi_\lambda(f) := |a_3 - \lambda a_2^2|
\]

over the class \(\mathcal{S}\) of univalent functions \(f\) in the open unit disk

\[
\mathbb{D} := \{z : z \in \mathbb{C} \text{ and } |z| < 1\}
\]

of the following normalized form (see, for details, [5][22][24]):

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in \mathbb{D}).
\]

By applying the Loewner method, Fekete and Szegö [4] proved that

\[
\max_{f \in \mathcal{S}} \Phi_\lambda(f) = \begin{cases}
1 + 2 \exp \left(-\frac{2\lambda}{1 - \lambda} \right) & (0 \leq \lambda < 1) \\
1 & (\lambda = 1).
\end{cases}
\]
For various compact subclasses \mathcal{F} of the class \mathcal{A} of all analytic functions f in \mathbb{D} of the form (1.2), as well as with λ being an arbitrary real or complex number, many authors computed

\[
\max_{f \in \mathcal{F}} \Phi_\lambda(f)
\]

or calculated the upper bound of (1.3) (see, e.g., [2,8,11,21]).

Let S^* denote the class of starlike functions, that is, $f \in S^*$ if

\[f \in \mathcal{A} \quad \text{and} \quad \Re \left(\frac{zf'(z)}{f(z)} \right) > 0 \quad (z \in \mathbb{D}). \]

Given $\delta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ and $g \in S^*$, let $C_\delta(g)$ denote the class of functions called close-to-convex with argument δ with respect to g, that is, the class of all functions $f \in \mathcal{A}$ such that

\[
\Re \left(e^{i\delta} \frac{zf'(z)}{g(z)} \right) > 0 \quad (z \in \mathbb{D}).
\]

We also suppose that, given $g \in S^*$, $C(g) := \bigcup_{g \in S^*} C_\delta(g)$ and that, given $\delta \in (-\frac{\pi}{2}, \frac{\pi}{2})$, $C := \bigcup_{g \in S^*} C_\delta(g)$. Let

\[
C := \bigcup_{\delta \in (-\frac{\pi}{2}, \frac{\pi}{2})} \bigcup_{g \in S^*} C_\delta(g)
\]

denote the class of close-to-convex functions (see, for details, [20, pp.184–185], [6,10]).

For the whole class C, the sharp bound of the Fekete–Szegö coefficient functional Φ_λ for $\lambda \in [0,1]$, given by (1.1), was calculated by Koepf [13] who extended the earlier result for the class C_0 and for $\lambda \in \mathbb{R}$ due to Keogh and Merkes [11], namely, it holds

\[
\max_{f \in C} \Phi_\lambda(f) = \max_{f \in C_0} \Phi_\lambda(f) = \begin{cases}
|3 - 4\lambda| & (\lambda \in (-\infty, \frac{1}{4}] \cup [1, \infty)) \\
\frac{3}{4} + \frac{\lambda}{1} & (\lambda \in [\frac{1}{4}, \frac{1}{2}]) \\
1 & (\lambda \in [\frac{2}{3}, 1]).
\end{cases}
\]

For various subclasses of the class of close-to-convex functions, the problem to estimate the coefficient functional Φ_λ is continued in several subsequent works (see, for details, [9,12,14,16]). Some interesting and important subclasses of the class C are the classes C_δ and C^c, which are defined below.

Let S^c denote the class of convex functions, that is, $f \in S^c$ if

\[f \in \mathcal{A} \quad \text{and} \quad \Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > 0 \quad (z \in \mathbb{D}). \]

Since $S^c \subsetneq S^*$, the class $C^c_\delta := \bigcup_{g \in S^c} C_\delta(g)$ is a proper subclass of the class C_δ and the class

\[
C^c := \bigcup_{\delta \in (-\frac{\pi}{2}, \frac{\pi}{2})} \bigcup_{g \in S^c} C_\delta(g)
\]

is a proper subclass of the class C.
A NOTE ON THE FEKETE–SZEGÖ PROBLEM

The class \(C^c_0 \) was defined by Abdel-Gawad and Thomas [1]. The class \(C^c \) of close-to-convex functions with respect to convex functions was introduced by Srivastava, Mishra and Das [23]. In both of these cited papers, the authors (Abdel-Gawad and Thomas [1] and Srivastava, Mishra and Das [23]) considered the coefficient functional \(\Phi_\lambda \) with \(\lambda \in [0, 1] \) also. In fact, in Srivastava, Mishra and Das [23] extended, for the class \(C^c \), the earlier result of Abdel-Gawad and Thomas [1] for the class \(C^c_0 \). However, in each of the above-cited papers, the proof for the sharpness of the bound in (1.3) for \(\lambda \in \left(\frac{2}{3}, 1 \right] \) was proposed incorrectly as \(\frac{5}{6} \).

This note is motivated essentially by the earlier papers [1] and [23]. The main purpose of our investigation here is to discuss such sharpness results for the bound in (1.3). We also provide a rather brief consideration of other related developments involving the Fekete–Szegö functional \(|a_3 - \lambda a_2^2| (0 \leq \lambda \leq 1)\) in (1.1) as well as the corresponding Hankel determinant for the Taylor–Maclaurin coefficients \(\{a_n\}_{n \in \mathbb{N} \setminus \{1\}} \) of normalized univalent functions of the form (1.2).

2. Main Observation

As we remarked in Section 1, in both of the afore cited papers [1,23], the upper bounds of the Fekete–Szegö coefficient functional \(\Phi_\lambda \) \((0 \leq \lambda \leq 1) \) for the classes \(C^c_0 \) and \(C^c \), were computed. In fact, Theorems 5 and 6 of Srivastava, Mishra and Das [23] state that the following sharp inequality
\[
\max_{f \in C^c} \Phi_\lambda(f) \leq \frac{5}{6} \quad (\lambda \in \left[\frac{2}{3}, 1 \right])
\]
holds true and that this result is the same as in [1] for the class \(C^c_0 \) (a part of Theorem 3). However, the assertion that the extremal function, for which the equality in (2.1) is satisfied when \(\lambda \in \left(\frac{2}{3}, 1 \right] \), belongs to \(C^c \) is incorrect. Indeed, here in this section, we note that the above-cited papers [1,23] contain a statement to the effect that the equality in (2.1) is attained by a function \(f \in A \) given by
\[
zf'(z) \quad h(z) = 1 + \omega(z) \quad (z \in \mathbb{D}),
\]
where \(h \in S^c \) is of the form
\[
h(z) = z + \sum_{n=2}^{\infty} b_n z^n \quad (z \in \mathbb{D}; \ b_2 = b_3 := 1)
\]
and \(\omega \) is a function of the form
\[
\omega(z) = \sum_{n=1}^{\infty} \beta_n z^n \quad (z \in \mathbb{D})
\]
with
\[
\beta_1 := \frac{2 - 3\lambda}{6\lambda} \pm i \sqrt{\frac{6\lambda - 4}{6\lambda}} \quad \text{and} \quad \beta_2 := 1 - \beta_1^2.
\]
Unfortunately, however, \(\omega \) is not a Schwarz function for \(\lambda \in \left(\frac{2}{3}, 1 \right] \). We recall here that a Schwarz function means an analytic self-mapping of \(\mathbb{D} \) with \(\omega(0) := 0 \). Let us
denote the class of Schwarz functions by B_0. In order to see that $\omega \notin B_0$, we verify (by straightforward computation) that, for $\lambda \in \left(\frac{3}{4}, 1\right]$, the following inequality:

\begin{equation}
|\beta_2| \leq 1 - |\beta_1|^2
\end{equation}

is false, so a necessary condition for ω to be in B_0 (see, for example, [5 Vol. II, p. 78]) does not hold true. Alternatively, in order to get a contradiction, we suppose that ω with its coefficients in (2.5) is a Schwarz function. Thus, clearly, (2.6) holds true. Hence we find from (2.5) that $1 - |\beta_1|^2 \geq |\beta_2| = |1 - \beta_1^2| \geq 1 - |\beta_1|^2$. Thus we have $|1 - \beta_1^2| = 1 - |\beta_1|^2$ and, therefore, $\beta_1 = |\beta_1|$ or $\beta_1 = -|\beta_1|$. This means that β_1 is a real number, which by (2.5) is possible only for $\lambda = \frac{3}{4}$. Consequently, for $\lambda \in \left(\frac{3}{4}, 1\right]$, the function ω with its coefficients in (2.5) does not belong to B_0. So, in light of (2.2), it does not follow that f is in C^0 or in C_0^1.

Equivalently, let

\begin{equation}
p(z) := \frac{1 + \omega(z)}{1 - \omega(z)} \quad (z \in \mathbb{D}),
\end{equation}

where ω is as given above. Then

\begin{equation}
p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n \quad (z \in \mathbb{D}),
\end{equation}

where, in view of (2.7), (2.1) and (2.5), we have $c_1 = 2\beta_1$ and $c_2 = 2(\beta_2 + \beta_1^2) = 2$. We observe further that, for $\lambda \in \left(\frac{3}{4}, 1\right]$, the function p does not belong to the Carathéodory class. We recall here that the Carathéodory class, denoted as \mathcal{P}, contains analytic functions p of the form (2.3) with a positive real part. In order to see that $p \notin \mathcal{P}$, we verify for $\lambda \in \left(\frac{3}{4}, 1\right]$ that the inequality $|c_2 - c_1^2/2| \leq 2 - |c_1|^2/2$, is false, which happens to be a necessary condition for p to be in the class \mathcal{P} (see, for example, [22, p. 166]).

3. Concluding remarks and further developments

By means of Theorem 3 of Abdel-Gawad and Thomas [1], Theorems 1 to 4 of Srivastava, Mishra and Das [23], and in light of our observation in Section 2, we arrive at the following result.

Theorem 1. Each of the following assertions holds true:

\begin{equation}
\max_{f \in C^0} \Phi_\lambda(f) = \max_{f \in C_0^1} \Phi_\lambda(f) = \left\{ \begin{array}{ll}
\frac{\delta}{4} - \frac{\lambda}{4} & (\lambda \in \left[0, \frac{3}{4}\right]) \\
\frac{\delta}{4} + \frac{1}{16} & (\lambda \in \left[\frac{3}{4}, \frac{2}{3}\right])
\end{array} \right.
\end{equation}

\begin{equation}
\max_{f \in C^0} \Phi_\lambda(f) \leq \frac{\delta}{\delta} \quad (\lambda \in \left(\frac{2}{3}, 1\right]).
\end{equation}

Remark 1. The sharpness of the inequality in (3.2) for the classes C^0 and C_0^1 is an open problem.

We now note that, by Loewner Theorem (see, for example, [5 Vol. I, p. 1127]), the function $h \in S^\infty$ of the form (2.3) (with $b_2 = b_3 := 1$) is uniquely determined, that is, $h(z) = \frac{1}{1 - z} = \sum_{n=1}^{\infty} z^n \quad (z \in \mathbb{D})$. Then (1.4) with $g := h$ is of the form

\begin{equation}
\Re(e^{i\delta}(1 - z)f'(z)) > 0 \quad (z \in \mathbb{D})
\end{equation}
and defines the class \(C_{\delta}(h) \), and further the class \(C(h) \). For the first time, the inequality in (3.3), treated as the univalence criterion, was distinguished explicitly in [20] p. 185. For the class \(C(h) \), the upper bound of the Fekete–Szegö coefficient functional \(\Phi_\lambda \) for \(\lambda \in \mathbb{R} \) was recently obtained in [14], where the following result was proven.

Theorem 2. It is asserted that

\[
(3.4) \quad \max_{f \in \mathcal{C}(h)} \Phi_\lambda(f) \leq \begin{cases} \left| \frac{1}{2} - \frac{1}{2} \lambda \right| + \frac{5}{4^2} (2 - 3 \lambda) & (\lambda \in (-\infty, \frac{2}{3}) \cup \left[\frac{4}{9}, \infty\right)) \\
\frac{1}{4} \cdot \frac{(2 - 3 \lambda)^2}{2 - 2 - 3 \lambda} + \left| \frac{1}{2} - \frac{1}{4} \lambda \right| + \frac{3}{4} & (\lambda \in \left[\frac{2}{9}, \frac{10}{19}\right]).
\end{cases}
\]

For each \(\lambda \in (-\infty, \frac{2}{3}] \cup \left[\frac{4}{9}, \infty\right) \), the inequality is sharp and the equality in (2) is attained by a function in \(\mathcal{C}_0(h) \).

Remark 2. For \(\lambda \in (-\infty, \frac{2}{3}] \cup \left[\frac{4}{9}, \infty\right) \), we can rewrite (3.4) as the following corollary.

Corollary 1. The following assertion holds true:

\[
(3.5) \quad \max_{f \in \mathcal{C}(h)} \Phi_\lambda(f) = \begin{cases} \left| \frac{1}{2} - \frac{1}{2} \lambda \right| & (\lambda \in (-\infty, \frac{2}{3}) \cup \left[\frac{4}{9}, \infty\right)) \\
\frac{1}{4} \cdot \frac{(2 - 3 \lambda)^2}{2 - 2 - 3 \lambda} & (\lambda \in \left[\frac{2}{9}, \frac{10}{19}\right]).
\end{cases}
\]

Remark 3. For \(\lambda \in \left[0, \frac{2}{3}\right] \), the result (3.5) asserted by Corollary 3 coincides with (3.1). Thus, naturally, Theorem 1 and Theorem 2 yield Corollary 2 below.

Corollary 2. Each of the following assertions holds true:

\[
\max_{f \in \mathcal{C}(h)} \Phi_\lambda(f) = \max_{f \in \mathcal{C}_0} \Phi_\lambda(f) = \max_{f \in \mathcal{C}'} \Phi_\lambda(f) \quad (\lambda \in \left[0, \frac{2}{3}\right]),
\]

\[
\max_{f \in \mathcal{C}(h)} \Phi_\lambda(f) \leq \frac{9 \lambda^2 - 30 \lambda + 26}{6(4 - 3 \lambda)} \leq \frac{5}{6} \quad (\lambda \in \left(\frac{2}{9}, 1\right]).
\]

Remark 4. The maximum of \(\Phi_\lambda \) for \(\lambda \in \left[0, \frac{2}{3}\right] \), over the class \(\mathcal{C}' \) of close-to-convex functions with respect to convex functions and over its subclass \(\mathcal{C}(h) \) of close-to-convex functions with respect to convex function \(h \), are identical.

Remark 5. The sharpness of the inequality in (3.4) for \(\lambda \in \left(\frac{2}{9}, \frac{4}{9}\right) \) is an open problem.

Remark 6. We reiterate the fact that the Fekete–Szegö coefficient functional \(|a_3 - \lambda a_2^2| \) is well known for its rich history in geometric function theory. Its origin was in the disproof by Fekete and Szegö [4] of the 1933 conjecture of Littlewood and Paley that the coefficients of odd univalent functions are bounded by unity (see, for details, [4]). The \(\lambda \)-generalized Fekete–Szegö coefficient functional \(|a_3 - \lambda a_2^2| \) has since received great attention, particularly in connection with many subclasses of the class \(S \) of normalized analytic and univalent functions. On the other hand, in the year 1976, Noonan and Thomas [17] defined the \(q \)th Hankel determinant of
the function f in (1.2) by
\[
H_q(n) = \begin{vmatrix}
 a_n & a_{n+1} & \cdots & a_{n+q-1} \\
 a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2}
\end{vmatrix}
\quad (n, q \in \mathbb{N}; \ a_1 := 1).
\]
The determinant $H_q(n)$ has also been considered by several other authors. For example, Noor [18] determined the rate of growth of $H_q(n)$ as $n \to \infty$ for functions f given by (1.1) with bounded boundary. In particular, sharp upper bounds on $H_2(2)$ were obtained in the recent works [7][18] for different classes of functions. We note, in particular, that
\[
H_2(1) = \frac{a_1}{a_2} \frac{a_2}{a_3} = a_3 - a_2^2 \quad \text{and} \quad H_2(2) = \begin{vmatrix}
 a_2 & a_3 \\
 a_3 & a_4
\end{vmatrix} = a_2a_4 - a_3^2.
\]
The Hankel determinant $H_2(1) = a_3 - a_2^2$ is the classical Fekete–Szegö coefficient functional. The upper bounds of $H_2(2)$ for some specific analytic function classes were discussed quite recently by Deniz et al. [3] (see also [19]).

References

1. H. R. Abdel-Gawad, D. K. Thomas, A subclass of close-to-convex functions, Publ. Inst. Math., Nouv. Sér. 49(63) (1991), 61–66.
2. B. Bhowmik, S. Ponnusamy, K. J. Wirths, On the Fekete–Szegö problem for close-to-convex functions, J. Math. Anal. Appl. 373 (2011), 432–438.
3. E. Deniz, M. Çağlar, H. Orhan, Second Hankel determinant for starlike and close-to-convex functions of order β, Appl. Math. Comput. 271 (2015), 301–307.
4. M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc. 8 (1933), 85–89.
5. A. W. Goodman, Univalent Functions, Mariner, Tampa, Florida, 1983.
6. A. W. Goodman, E. B. Saff, On the definition of close-to-convex function, Int. J. Math. Math. Sci. 1 (1978), 125–132.
7. T. Hayami, S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal. 52 (2010), 2473–2585.
8. Z. J. Jakubowski, Sur le maximum de la fonctionnelle $|A_3 - \alpha A_2^2|$ ($0 \leq \alpha < 1$) dans la famille de fonctions $f \in F_1$, Bull. Soc. Sci. Lett. Lódź 13(1) (1962), 1–19.
9. S. Kanas, A. Lecko, On the Fekete–Szegö problem and the domain of convexity for a certain class of univalent functions, Zesz. Nauk. Politech. Rzeszowskiej, Folia Sci. Univ. Tech. Resoviensis 73 (1990), 49–57.
10. W. Kaplan, Close to convex schlicht functions, Mich. Math. J. 1 (1952), 169–185.
11. F. R. Keogh, E. P. Merkes, A coefficient inequality for close-to-convex functions, Proc. Am. Math. Soc. 20 (1969), 8–12.
12. Y. C. Kim, J. H. Choi, T. Sugawa, Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad., Ser. A 76(6) (2000), 95–98.
13. W. Koepf, On the Fekete–Szegö problem for close-to-convex functions, Proc. Am. Math. Soc. 101 (1987), 89–95.
14. B. Kowalczyk, A. Lecko, Fekete–Szegö problem for a certain subclass of close-to-convex functions, Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 1303–1410.
15. , Fekete–Szegö problem for close-to-convex functions with respect to a certain convex function dependent on a real parameter, Front. Math. China 11 (2016), 1471–1500.
16. R. R. London, Fekete–Szegö inequalities for close-to-convex functions, Proc. Am. Math. Soc. 117 (1993), 947–950.
17. J. W. Noonan, D. K. Thomas, *On the second Hankel determinant of arccosly mean p-valent functions*, Trans. Am. Math. Soc. **223** (1976), 337–346.

18. K. I. Noor, *Hankel determinant problem for the class of functions with bounded boundary rotation*, Rev. Roum. Math. Pures Appl. **28** (1983), 731–739.

19. H. Orhan, N. Magesh, J. Yamini, *Bounds for the second Hankel determinant of certain bi-univalent functions*, Turk. J. Math. **40** (2016), 679–687.

20. S. Ozaki, *On the theory of multivalent functions*, Sci. Rep. Tokyo Bunrika Daigaku, Sect. A **2** (1935), 167–188.

21. A. Pfluger, *The Fekete–Szegö inequality for complex parameter*, Complex Variables, Theory Appl. **7** (1986), 149–160.

22. Ch. Pommerenke, *Univalent Functions*, Vandenhoeck and Ruprecht, Göttingen, 1975.

23. H. M. Srivastava, A. K. Mishra, M. K. Das, *The Fekete–Szegö problem for a Subclass of Close-to-Convex Functions*, Complex Variables, Theory Appl. **44** (2001), 145–163.

24. H. M. Srivastava, S. Owa, *Current Topics in Analytic Function Theory*, World Scientific, Singapore, New Jersey, London and Hong Kong, 1992.