Dynamics of shock waves in a superfluid unitary Fermi gas

Wen Wen, Tiankun Shui, Yafei Shan and Changping Zhu

1 Department of Mathematics and Physics, Hohai University, Changzhou 213022, People’s Republic of China
2 College of Mechanical and Electronic Engineering, Hohai University, Changzhou 213022, People’s Republic of China
3 Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Changzhou Key Laboratory of Sensor Networks and Environmental Sensing, Hohai University, Changzhou 213022, People’s Republic of China

E-mail: wenwen0emma@163.com

Abstract
We study the formation and dynamics of shock waves initiated by a repulsive potential in a superfluid unitary Fermi gas by using the order-parameter equation. In the theoretical framework, the regularization process of shock waves mediated by the quantum pressure term is purely dispersive. Our results show good agreement with the experiment of Joseph et al (2011 Phys. Rev. Lett. 106 150401). We reveal that the boxlike-shaped density peak observed in the experiment consists of many vortex rings due to the transverse instability of the dispersive shock wave. In addition, we study the transition from a sound wave to subsonic shock waves as the strength of the repulsive potential increases and show a strong qualitative change in the propagation speed of the wavefronts. For a relatively small strength of the repulsive potential, the propagation speed decreases below the sound speed with the increase of the strength as a scaling behavior. For a large strength where the shock waves are formed by colliding two spatially separated clouds, the speed is still smaller than the sound speed, but remains almost unchanged as the strength increases, which can be interpreted as the same expansion speed of the proliferation of the vortex rings originated from the transverse instability.

Keywords: superfluid unitary Fermi gas, shock wave, propagation speed, transverse instability

1. Introduction
The unitary Fermi gas is a system of fermions with an infinite two-body scattering length, which has remarkable universal properties and has connections with areas as diverse as nuclear physics and high-T_c superconductivity [1]. The unprecedented experimental sophistication reached recently in the unitary Fermi gas has opened a unique opportunity for systematic studies of elementary excitations in a strongly interacting Fermi system [2, 3]. Experiments have observed collective modes [4–6] and sound waves [7, 8], nonlinear topological structures including vortices [9] and dark solitons [10, 11], and another specific nonlinear phenomenon, i.e. shock waves [12]. Shock wave generated in a classical fluid is characterized by a well-defined shock front across which, there is a dissipation from the effect of viscosity to avoid the onset of a gradient catastrophe [13, 14]. In contrast to viscous shock wave, shock wave in a Bose-Einstein condensate is mediated by dispersion. Such dispersive shock wave associated with a fast oscillating wave-train trailing has been predicted theoretically [15–20], and then observed in various experiments [21–23].

In the recent experiment performed by the Thomas’s group [12], the formation and propagation of shock waves in a unitary Fermi gas were studied by colliding between two clouds. They reproduced the experimental data well by hydrodynamic equations with a phenomenological viscosity term. On the other hand, Bulgac et al [24] and Salasnich et al...
We consider an ultracold Fermi gas at zero temperature, in which fermionic atoms have two spin states with equal number and all atoms are paired in the superfluid state. The dynamic behaviors of Fermi superfluids can be described by the following time dependent order-parameter equation [33–37]

\[
\frac{i\hbar}{\partial \tau} \frac{\partial \Psi}{\partial \tau} = \left[-\frac{\hbar^2 v^2}{4m} + 2V_{\text{ext}}(r) + 2\mu(n) \right] \Psi, \tag{1}
\]

where \(\Psi\) is the order parameter of fermionic atomic pairs in the superfluid state and the atomic density is given by \(n = 2 |\Psi|^2\), \(m\) is the mass of atom, and \(V_{\text{ext}}(r)\) is the external potential. In the unitary limit the s-wave scattering length becomes infinity and no characteristic length is set, so the equation of state has the form \([38, 39]\)

\[
\mu(n) = \frac{\xi}{2} \frac{\hbar^2}{m} (3/2)^{3/2} n^{2/3}, \tag{2}
\]

where the Bertsch parameter \(\xi = 0.38\) is tuned to fit the experimental results \([40, 41]\).

This complex order parameter can be specified by \(\Psi = \sqrt{n/\omega} \exp(\Phi)\), where \(\Phi\) is the phase of fermionic pairs. By introducing the superfluid velocity given by the gradient of the phase \(v = (\hbar/2m) \nabla \Phi\), from the order-parameter equation one can deduce the quantum hydrodynamics equations

\[
\frac{\partial n}{\partial \tau} + \nabla \cdot \left(n v \right) = 0, \tag{3a}
\]

\[
\frac{\partial v}{\partial \tau} + \nabla \left[\frac{1}{2}mv^2 + \mu(n) + V_{\text{ext}}(r) - \frac{\hbar^2}{4m} \frac{\nabla^2 n}{\sqrt{n}} \right] = 0, \tag{3b}
\]

which includes a gradient correction of von-Weizsäcker energy form \([42–44]\) (i.e. quantum pressure term)

\[
\lambda \frac{\hbar^2}{2m} \frac{\nabla^2 \sqrt{n}}{\sqrt{n}}, \tag{4}
\]

with \(\lambda = 1/4\). In the absence of the quantum pressure term, equations (3a) and (3b) reduce to the classical hydrodynamic equations \([14, 45]\).

In order to prevent the density gradient catastrophe and model the shock wave formation, \([12]\) introduces a dissipative viscosity term \(\nu \delta \left(\nabla v \right) / n\) into the normalized 1D form of the classical hydrodynamic equations, where \(\nu = 10\hbar / m\) is fitted to the experimental results. However, it is shown that Fermi gases in the unitary regime have a vanishing viscosity at zero temperature \([29–31]\). For the quantum hydrodynamics equations (3b), an alternative regularization mechanism can be naturally proposed, without the phenomenological viscosity term. The gradient term (4) that takes into account corrections to the kinetic energy due to spatial variations in the density of the system, plays a role of a pure dispersive
effect for the formation of shock waves. There has been a lot of discussion about the value of the coefficient λ [35, 44, 46]. The quantum pressure term depending explicitly on the reduced Planck constant \hbar gives quantization condition, and the value of λ has profound consequences on dynamics of superfluid unitary Fermi gases [25, 27, 28].

Our calculations are based on the order-parameter equation, which models only the dynamics of superfluid components. To further include the mechanism for superfluid relaxation, such as pair-breaking, superfluid-normal transition, and various photon processes, one must resort to timedependent density functional theory (DFT) which provides a microscopic description [47, 48]. Recently based on DFT, many different dynamical processes have been investigated, including formations of vortex lattices by stirring [48], crossing and reconnection of two vortex lines [49], dynamics of shock waves [24], oscillations of a vortex ring [49], and conversion between vortex rings and vortex lines due to a breaking of the axial symmetry of traps [50], most of which can not be obtained from the order-parameter equation. While the order-parameter equation fails to model the pair-breaking mechanism and normal components, the order-parameter equation depending on a single collective wave function is significantly easier to solve analytically and numerically than DFT, which requires to solve hundreds of thousands of equation depending on a single collective wave function is.

2.2. Numerical results

By using a split-step Crank-Nicolson method [52, 53], we solve the order-parameter equation (1) to reproduce as closely as possible the experimental conditions. We employ imaginary time propagation for the study of ground states, and real time propagation for the study of dynamics. The FORTRAN programs can be referred in [54]. The experimental procedure including three steps is described as follows [12]:

1. The unitary Fermi gas containing a total of $N = 2 \times 10^5$ atoms is initially confined in a cigar-shaped harmonic trap $V_{ho}(r) = \frac{1}{2}m(\omega_x^2(x^2) + \omega_y^2(y^2) + \omega_z^2(z^2))$ with $\omega_x = 2\pi \times 437$ Hz and $\omega_z = 2\pi \times 27.7$ Hz, and bisected by a repulsive potential $v_{rep}(z) = V_0 \exp[-(z - z_0)^2/\sigma_z^2]$ with strength $V_0 = 12.7 \mu K$, width $\sigma_z = 21.2 \mu m$ and offset $z_0 = -5 \mu m$. (2) The repulsive potential v_{rep} is then suddenly turned off, allowing for the two separated parts of the cloud to collide with each other in the harmonic trap for a given hold time t. (3) The absorption images are finally taken after an additional 1.5 ms expansion, during which the harmonic potential in the r-direction is extinguished and the z-direction frequency is changed to $\omega_z = 2\pi \times 20.4$ Hz.

The creation of initial density perturbations undergoing shock wave dynamics achieved experimentally can be classified into two ways [16, 21, 23, 26]: suddenly turning off a repulsive potential produces a dip in the density, which splits into two negative perturbations propagating in opposite directions; alternatively, raising suddenly a repulsive potential results in a density bump, which splits into two positive perturbations. Due to the density-dependent speed, i.e. regions of high density move with a faster local velocity than regions of low density, the back (center) of the negative (positive) perturbation catches up the center (front) as it travels, creating a shock wave. Therefore, according to the experimental condition, two negative wave packets propagating in opposite directions are actually observed.

In figure 1, we show the numerical results for column atomic densities $\int \text{dy} \int \text{dx} \int \text{dz} \int \text{dt}$ by integrating along the y axis at different hold times t. It is seen that the presence of the repulsive potential leads to two clearly separated parts at $t = 0$.

![Figure 1](image-url)
After the repulsive potential is rapidly turned off ($t > 0$), the two clouds expand and collide at the center of the trap, and a pronounced bulge of higher atom density forms at $t = t_{2m}$ s, which is denoted by white brackets. As the density bulge spreads out from the center of the trap, its edges self-steepen showing a box-like structure, which can be identified as the formation of a shock wave. Notice that the observed two steepening edges actually correspond to the trailing edges of two negative waves propagating in opposite directions, respectively. The results are found to be in qualitative agreement with the experimental observation (see figure 1 of [12]), and show very similar features on the box-like structure. However, clear soliton trains in the wake of the density bulge which are indication of the dispersive mechanism are not been found, as that in the experiment.

To better visualize the complicated density distributions denoted by white brackets, and find the dispersive effect, in figure 2 we present zoomed-in views for the atomic density slices by the plane $y = 0$, that is $n(x, y = 0, z, t)$, and the corresponding phase profiles $\Phi(x, 0, z)$. A closer look to this region reveals that a soliton train forms after evolving in the trap at $t = 0.7$ ms. Such dispersive effect can also be observed in the propagation of anisotropic shock waves in a 3D dipolar Bose condensate [55]. Subsequently the soliton train is curved as it develops. The curving structure is not symmetric about the $z = 0$ axis, due to the offset $z_0 = -5 \mu$m of the initial repulsive potential. When $t = 1.3$ ms, the transverse instability causes the quick decay of the soliton train into the nucleation of vortex rings [49, 56–60], evidenced by the phase profiles. After 2.0 ms, a large number of vortex rings spread over the entire extent of the system. The formation of vortex rings in an initial short time is shown to be difficult to detect unambiguously in the experiment that are integrated along the line of sight [12, 21]. While the phenomena are similar to those found in atomic condensates [21], they are first revealed in a superfluid unitary Fermi gas. Recently based on DFT [24], Bulgac et al studied the shock wave formed in the unitary Fermi gases trapped by a two-dimensional harmonic potential. Because the particle number of the calculated system is too small, no transverse instability is found and the dynamics is characterized by the formation of a soliton train that eventually fills the entire superfluid. Our numerical simulation can be consistent with this (not shown here) if we use small number particle.

3. transition from a sound wave to subsonic shock waves

Now we study the mechanism of the transition from sound wave propagation to shock wave dynamics by increasing the strength of the repulsive potential and calculate the propagation speeds of the wavefronts. Before presenting the results from a full 3D numerical calculation, we reduce equations (3a) and (3b) into an effective 1D model, derive an analytical solution for the propagating speed that is only valid for small perturbations, and make a comparison with the numerical results.

3.1. Analytical derivation

We consider a cylindrically symmetric external potential composed of the harmonic potential in the transverse direction.
and an axial potential: \(V_{\text{ax}}(r, t) = \frac{1}{2}m\omega z^2 + V_f(z, t) \), with \(r = \sqrt{x^2 + y^2} \). The atomic density and superfluid velocity are then expressed as [32]

\[
\begin{align*}
 n(r, t) &= n_{1}(r, n_{1}(z, t)) n_{1}(z, t), \\
 v(r, t) &= v_{1}(z, t).
\end{align*}
\]

The atomic density satisfies the normalization conditions:

\[
2\pi \int dr \, n_{1} = 1 \quad \text{and} \quad \int dz \, n_{1} = N.
\]

We assume sufficiently tight transverse confinement so that its dynamics is neglected. Under the Thomas-Fermi (TF) approximation, the density distribution in the equilibrium is given by

\[
n_{1}(z, t) = n_{1}(0) \left(1 - \frac{r^2}{R_z^2}\right)^{3/2},
\]

\[
R_z^2 = \frac{2\mu_{1}}{\text{mas}^2},
\]

respectively. Substituting the above ansatz into equations (3a) and (3b) and integrating over the transverse coordinate, one can arrive at the effective 1D hydrodynamic equations

\[
\begin{align*}
 \frac{\partial n_{1}}{\partial t} + \frac{\partial}{\partial z} \left[m \frac{v_{1}}{2} + \tilde{\mu} n_{1} + V_{f} \right] &= 0, \quad (8a) \\
 m \frac{\partial v_{1}}{\partial t} + \frac{\partial}{\partial z} \left[\frac{1}{2} m v_{1}^2 + \tilde{\mu} n_{1} + V_{f} \right] &= 0, \quad (8b)
\end{align*}
\]

with \(\tilde{\mu} \) defined in equation (7). Notice that the power of the nonlinear term for the density has changed from 2/3 to 2/5 as we pass from the 3D description equations (3a) and (3b) to the effective 1D model (8a) and (8b). In addition, we assume that the spatial scale of the density perturbation is larger than the healing length and neglect the gradient correction (i.e. quantum pressure) term. A more general form including the quantum pressure term for the effective 1D model was first derived in [61].

In the case of the axial harmonic potential \(V_f = \frac{1}{2}m_0 \omega_z^2 z^2 \), one has the ground-state solution of equation (8b)

\[
n_{1}(z) = n_{1}(0) \left(1 - \frac{z^2}{R_z^2}\right)^{3/2}.
\]

\[
R_z^2 = \frac{2\mu_{G}}{\text{mas}^2},
\]

where \(\mu_{G} \) is the ground-state chemical potential fixed by the normalized condition \(\int_{-R_z}^{R_z} dz n_{1} = N \). It is easy to get the explicit expressions

\[
\begin{align*}
 n_{1}(0) &= \left(\mu_{G}/\tilde{\mu}\right)^{5/2}, \\
 \mu_{G} &= \frac{\sqrt{\pi}}{\xi} E_f,
\end{align*}
\]

with the Fermi energy \(E_f = \hbar (3\pi^2 n_{0}^2)^{1/3} \). After linearization of equations (8a) and (8b), one can obtain the local speed of sound calculated at the center of the trap [62, 63]

\[
c_s^2 = \frac{\tilde{\mu}}{5m} n_{1}(0) = \frac{1}{5} \xi_{3/2} v_{F}^2
\]

with the Fermi velocity \(v_{F} = \sqrt{2E_f/m} \). We find that such local sound speed \(c_s = \sqrt{\xi_{3/2} / 5} v_{F} \) is smaller than the sound speed \(c_{\text{ho}} = \sqrt{\xi_{3/2} / 5} v_{F} \) of a homogeneous system [64] by a factor of \(3/5 \sqrt{1/2} \), which is resulted from the suppression of the transverse confinement.

We perform the ansatz on the density \(n_{1}(z, t) = n_{1}(0)\rho(z, t) \), which implies a homogenous density background characterized by the central density. By substituting it and equation (11) into equations (8a) and (8b), the effective 1D hydrodynamic equations are written as

\[
\begin{align*}
 \frac{\partial \rho}{\partial t} + \rho v_{1} \frac{\partial \rho}{\partial z} + \frac{\partial}{\partial z} \left[\frac{\tilde{\mu}}{2} \rho v_{1}^2 \rho \right] &= 0, \quad (12a) \\
 \frac{\partial v_{1}}{\partial t} + v_{1} \frac{\partial v_{1}}{\partial z} + c_s^2 \frac{\partial \rho}{\partial z} &= 0, \quad (12b)
\end{align*}
\]

with

\[
c_{\text{ho}}(\rho) = c_{s}(\rho)^{\tilde{\mu}}.
\]

In order to find the wave solutions, it is assumed that the velocity \(v_{1} \) depends explicitly the density \(\rho [26] \). In this case one can put \(\partial v_{1}/\partial \mu = \partial v_{1}/\partial \rho = 0 \), and reduce equations (12a) and (12b) to a hyperbolic equation

\[
\frac{\partial \rho}{\partial t} + C(\rho) \frac{\partial \rho}{\partial z} = 0.
\]

It is easy to find the exact traveling wave solution of the hyperbolic equation: \(\rho = f(z, C(\rho(z, t))) \), where \(f \) is an arbitrary function and \(C(\rho) = v_{1} + c_{s}^{2} (\partial v_{1}/\partial \rho)^{1/2} / \rho \) is the local speed of propagation. By a requirement that far from the perturbation the density is equal to one and the velocity field is zero, the local speed is then given as

\[
C(\rho) = \pm c_{s}(6\rho^{1/5} - 5),
\]

where the sign \(\pm \) determines a direction of propagation. The repulsive potential produces an initial density \(\rho(z, 0) = 1 + A \exp(-z^2/\sigma^2)^{5/2} \), where the magnitude of \(A \) is proportional to the strength, i.e. \(|A| \propto \rho_{0} \). After the repulsive potential is suddenly turned off or switched on, the Gaussian shaped perturbation breaks into two separate parts with half-amplitude of the initial perturbation moving in the opposite directions [16, 26, 65]. The extrema of the traveling wave has a constant amplitude \(1 + \eta \), and its speed is given by

\[
c(\eta) = c_{s} \left[6(1 + \eta)^{1/5} - 5 \right].
\]
It is seen that the speed of shock waves explicitly depends on initial conditions. In the limit $A \sim A_0$, the speed reduces to the sound speed c_s. For $A < A_0$ ($A > A_0$) corresponding to negative (positive) perturbations, one has subsonic (supersonic) waves.

In the above analytical discussion, we assumed that the transverse density is approximated by the TF ground-state, which means that the dynamics in the transverse direction is frozen and no instability occurs as studied in [16, 26, 32]. Salasnich obtained the propagation speed of the shock waves proportional to $\eta^{1-\frac{2}{3}}$ in a different configuration [26], i.e. 3D homogenous unitary Fermi gas. Such expression differs from our result only for the constants, because the integration of the transversal harmonic confinement leads the power of the nonlinear term to change from $2/3$ to $2/5$. Therefore, one can predict the speed of the shock waves in a homogeneous BEC in proportion to $3(1 + \eta)^{2/3} - 2$ [16], due to the nonlinear power $2/2$. Based on the effective 1D hydrodynamic equations (8a) and (8b) incorporating the quantum pressure term (4), Lowman and Hoefer obtained implicit relations for the speeds of supersonic shock waves [32]. However, numerical simulation in the following will

Figure 3. Space-time evolutions in the harmonic trap of the atomic density for relatively weak repulsive potential strengths $|A| = V_0/\mu_0$ with the chemical potential $\mu_0 = 0.435 \mu K$. The atomic density integrated along the transverse direction is in units of $10^{-2}/\mu m$ per particle. Panels (a) and (b) correspond to $|A| = 0.0153$ and 0.23, respectively. Left: actual density. Right: density difference (the actual density minus the ground-state density).
show that the analytical result is only valid for relatively weak repulsive potentials. As the strength of the potential increases, the dispersive shock wave is created with larger amplitude of oscillating wave-trains. In a strongly interacting Fermi gas, they are easily subject to the transverse instability that leads to the formation of vortex rings \[49, 56-58\]. Such decay process eventually takes an significant effect on the dynamical properties of shock waves.

3.2. numerical results

In the following we numerically solve the order-parameter equation to study the formation and dynamics of shock waves in the harmonic trap, which are initiated by different strengths of the repulsive potential under the experimental conditions. Because the perturbations are created by suddenly turning off the repulsive potential, they are negative and subsonic. The amplitude of the perturbation is then expressed by \[\eta = [(1 - |A|)^{3/2} - 1]/2\], where the magnitude \[|A| = V_0/\mu_G\] is characterized by the ratio of strength of the repulsive potential to chemical potential, and \[\mu_G = 0.435 \mu K\] is obtained by substituting the experimental parameters into equation (10).

Figure 3 shows the space-time evolutions of the atomic density integrated along the transverse direction at relatively small repulsive potential strengths, and other parameters are the same as the experimental parameters. Figure 3(a) shows

Figure 4. Space-time evolutions in the harmonic trap of the atomic density for repulsive potential strengths \(|A| > 1\). The atomic density integrated along the transverse direction is in units of \[10^{-2} \mu m\] per particle. Panels (a), (b) and (c) correspond to \(|A| = 1.22, 6.11, \text{and } 14.6\), respectively. Panel (d) shows the experimental case \(|A| = 29.2\).
the case of a very small perturbation $|A| = 0.0153$. However, in the left panel the propagation of the wave cannot be directly observed through the density profile. In order to visualize the trajectory of the wave, we present density difference in the right panel, i.e. the actual density subtracts the ground-state density. It is clear that the initially induced negative perturbation splits into two density dips, which propagate outward at an almost constant speed and slow down when approaching the superfluid boundary due to the density dependence of the speed. For such weak perturbation $|A| \sim 0$, one might expect to excite linear wave. One can extract the propagation speed from the density difference at the center [7, 8]. The obtained speed of 0.347v_F is consistent with the analytical prediction $c_s = \sqrt{v_F^2/5} v_F = 0.351 v_F$. With increasing $|A| = 0.23$ in figure 3(b), in the left panel we observe directly the formation of the shock wave from the density profile, in which the shock front is represented as a sharp discontinuity of the two density lines forming a ‘V’ shape. In addition, one can see that after a long time dynamics, the steepening wavefront are associated with oscillatory behaviors, which are more obvious from the difference density profile in the right panel.

In figure 4, we show the space-time evolutions of the atomic density initiated by large potential strengths $|A| > 1$, which means that the repulsive potential results in two spatially separated clouds. Figure 4(a) corresponds to the case of $|A| = 1.22$. Different from the cases of initial small perturbations in figure 3, the density oscillation behaviors begin to occur in the overlap of the two clouds at the center of the system. For larger values of the strengths in figure 4(b) ($|A| = 6.11$) and figure 4(c) ($|A| = 14.6$), stronger oscillations of the densities in more extensive regions are observed. But interestingly, from panels (a) to (d) we notice that the simulations present very similar characteristic of the ‘V’ shape. Figure 4(d) shows the experimental situation $|A| = 29.2$. One can find it has very similar structures and features with experimental observation (see figure 1 of [24]). Noted that compared to the experimental observation in figure 1 of [24], which is on an expanded scale realized by an additional 1.5 ms expansion after evolving in the harmonic trap (i.e. all three steps described in section 2.2 are included), in figures 3 and 4 we present the space-time evolutions in the harmonic trap without the additional expansion (i.e. only the first two steps are included).

From figures 3 and 4 we not only observe the transition from a sound wave to shock waves, but we also extract the propagation speeds of the shock wave fronts by calculating the slopes of the two lines in the ‘V’ shape. The propagation speed of the shock waves as a function of the repulsive potential strength is plotted in figure 5. Two approximate regimes can be distinguished: in a relatively small strength regime, the propagation speed decreases below the sound speed as the strength increases, where the numerical simulation (□) to the analytical prediction equation(15) (dashed line) are compared. One can find that the analytical expression agrees very well with the numerical simulation in the small strength $|A| = v_0 / \mu_c < 0.2$. In this regime, the transversal dynamics has a negligible effect, so that equation(15) is an accurate expression for the speed of the shock waves derived from the effective 1D model. Specifically, one can see that for $|A| \geq 0.3$ the speed presents a significant deviation from the analytical prediction, which indicates that the 1D model is not adequate in the description of the 3D system. The other interesting regime is $|A| > 1$ corresponding to the cases of figure 4, the propagation speed of the wavefront is independent on the value of the strength, and remains about 0.24v_F. The physical reason for such unchanged behavior can be explained as follows. For the regime of $|A| > 1$, the shock wave is formed by colliding two initially separated clouds. As these two clouds are close each other and overlap gradually at the center of the trap, the dispersive effect results in the formation of soliton trains. Due to the transverse instability, these soliton trains quickly decay into vortex rings and a high-density bulge emerges. The density bulge filling with the numerous vortex rings then spreads out from the center. We calculate the propagation speeds of shock waves from the positions of self-strengthen edges of the bulge peak at different times. Therefore, the obtained speeds actually correspond to the same expansion speed of the proliferation of the vortex rings.

In the right inset, we show the numerical results for the experimental situation $|A| = 29.2$ calculated from two different situations. One denoted by open square is obtained from the density profiles after evolving in the harmonic trap (see figure 4(d)), while the other by filled square is calculated from the density profiles after expansion for 1.5 ms after evolving in the harmonic trap as performed in the experiment (see figure 1). The speed of 0.302v_F obtained from the profiles after the additional expansion is much larger than 0.243v_F calculated in the trap. This is because such expansion method enhances the difference of the wavefront positions at two sequence times, and the propagation speed. The result (0.25v_F, triangle) based on the DFT [24] and the experimental data (0.33v_F, diamond) [12] are also shown for comparison.
4. Conclusion

In conclusion, based on the order-parameter equation we have presented a detailed study for the experiment on dynamics of shock waves in the unitary superfluid Fermi gas performed by the Thomas’s group, which shows good agreement with the experiment. The shock wave is studied by colliding two spatially separated clouds. As the two clouds gradually overlap at the center of the trap, a soliton train forms due to the dispersive effect provided by the quantum pressure term. Due to the transverse instability, the soliton train decays very quickly into a large number of vortex rings. The boxlike-shaped density peak observed in the experiment is then interpreted by the proliferation of the vortex rings. In addition, we have studied the mechanism of transition from a sound wave to shock waves by calculating the speeds of the shock wavefronts and given an explanation why the speed of the shock wave observed in the experiment is so close to the sound speed. For a very small strength of the initial repulsive force, we have studied the mechanism of transition from a sound wavefront independent on the strength and found that the propagation speed is independent on the strength and formed by colliding two separated clouds, the propagation speed. For the large strength regime where the shock wave is observed in the experiment is so close to the sound speed. For a very small strength of the initial repulsive potential, sound wave is created with the propagation speed of \(0.347v_F\). As the strength increases in the relatively weak regime, the nonlinear effect leads to the formations of shock waves, and the speed decreases below the sound speed as a scaling behavior. When the strength is moderate, the transversal dynamics takes an effect to suppress the decrease of the speed. For the large strength regime where the shock wave is formed by colliding two separated clouds, the propagation speed of the wavefront is independent on the strength and remains about 0.24\(v_F\). We understand this speed as the expansion speed of the proliferation of the vortex rings. Finally, our numerical simulation demonstrates that the expansion image method results in calculating the propagation speed from 0.243\(v_F\) to 0.302\(v_F\), which is very close to 0.33\(v_F\) of the experimental observation.

Acknowledgments

We would like to thank John Thomas and James Joseph for suggesting to study the propagation speed of the shock wave fronts, and useful comments on the manuscript. We also thank Han Pu for the critical reading of the manuscript. W W thanks the hospitality of KITPC where part of the writing is done, and useful discussions with Hui Zhai. This work is supported by the NSFC under Grant (No. 11105039 and No. 11274092), and Fundamental Research Funds for the Central Universities of China (Program No. 2012B05714 and No. 2014B11414).

References

[1] Zwerger W (ed) 2012 (The BCS-BEC Crossover and the Unitary Fermi Gas Vol 836) (Berlin: Springer) Lecture Notes in Physics 31 247
[2] Ketterle W and Zwierlein M W 2008 Riv. Nuovo Cimento 48 257
