Upcoming Methods and Specifications of Continuous Intraocular Pressure Monitoring Systems for Glaucoma

Molaei A, MS; Karamzadeh V, MS; Safi S, PhD; Esfandiari H, MD; Dargahi J, PhD; Khosravi MA, PhD

1Department of Mechanical Engineering, Concordia University, Montreal, Canada; 2Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 3Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; 4Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

* Corresponding author: amirmolaei@gmail.com

Glaucoma is the leading cause of irreversible blindness and vision loss in the world. Although intraocular pressure (IOP) is no longer considered the only risk factor for glaucoma, it is still the most important one. In most cases, high IOP is secondary to trabecular meshwork dysfunction. High IOP leads to the compaction of the lamina cribrosa and subsequent damage to retinal ganglion cell axons. Damage to the optic nerve head is evident on funduscopy as posterior bowing of the lamina cribrosa and increased cupping. Currently, the only documented method to slow or halt the progression of this disease is to decrease the IOP; hence, accurate IOP measurement is crucial not only for diagnosis, but also for the management. Due to the dynamic nature and fluctuation of the IOP, a single clinical measurement is not a reliable indicator of diurnal IOP; it requires 24-hour monitoring methods. Technological advances in microelectromechanical systems and microfluidics provide a promising solution for the effective measurement of IOP. This paper provides a broad overview of the upcoming technologies to be used for continuous IOP monitoring.

Keywords: Continuous Monitoring, Glaucoma, Implantable Pressure Sensor, Intraocular Pressure, Microelectromechanical Systems

Bina J Ophthalmol 2017; 23 (1): 63-70.

Keywords: Continuous Monitoring, Glaucoma, Implantable Pressure Sensor, Intraocular Pressure, Microelectromechanical Systems

Downloaded from binajournal.org at 7:24 +0430 on Monday August 30th 2021
چشم برای شناسایی تغییرات فشار و در نهایت گلوکوم مورد است. امکان ارزیابی گرافیک سازی حس گرها (Sensor)، جدیدی در برآوری کنترل فشار داخل چشم و تشخیص گلوکوم در مرحله اولیه فراموش نمی‌گردد. یکی از استفاده‌های کوچک‌سازی سیستم‌های میکروالکترونیکی و سیستم‌های ریزسیال، حس گرها قابل کاشت در بدن می‌تواند برای اقدامات گریزپای دخالت انسان را تحت تابع چشم طراحی‌شوند. این حس گرها می‌تواند برای اندازه‌گیری فشار داخل چشم در اتفاق فیزیکی، داخل چشم یا در کمربند و دستگاه‌های آن‌ها کاربرد داشته باشد. گراکافتره شود. یکی از سیستم‌های کنترل پیامدهای چشم داخل چشم مانند EYEMATE و Triggerfish® (Sensimed AG, Switzerland) به‌طور حادی و ابراهیمی مختصاتی برای پرتاب و فشار داخل چشم در حال جراح می‌باشد. این مقاله نسبت به پژوهش‌های حساس‌گرها، ابزاری هستند که یک کمیت فیزیکی را به یک کمیت قابل مشاهده توسط انسان و یا یک ابزار می‌پیوندد. می‌تواند از آنپایه‌ای بایستی به‌طور حادی و ابراهیمی مختصاتی برای پرتاب و فشار داخل چشم در حال جراح می‌باشد. این مقاله نسبت به پژوهش‌های حساس‌گرها، ابزاری هستند که یک کمیت فیزیکی را به یک کمیت قابل مشاهده توسط انسان و یا یک ابزار می‌پیوندد.
امیر مولایی- روش‌های پیش‌رو و ویژگی‌های سیستم‌های کنترل فشار داخل چشم مداوم در گلوقوم

معروف‌توان دارد که تغییرات فشار باعث تغییر‌هایی در صفحه مرطبه می‌شود و این تغییر‌ها به‌دست آمده‌است که در نهایت این کریستال مشخص خواهد بود. در مانور آنها، از اخلاق سطح بیمار سطح به‌دست آمده خواهد. این در اعرض کاری مانور باز در اساس است که سیال همواره از سطح فشار را با سطح خریداری نمی‌کند و این حرکت موجب اخلاق سطح به‌کار می‌رود. با مدرک نویسنده، همگی این نماهنگی از سطح فشار بازاب در طرف یک مسیر مبتنی بر نیاز به فشار موجود مرطع‌سنجی در توصیف ۱، نمونه‌های چندراه‌های هر یک از روش‌های مورد نظر مذکور نشان داده شده است.

تصویر ۱- حس‌گر براساس مانور که در نزدیکی قابل کارگذاری، بهبود شده است (الف)، حس‌گرهای خارجی که فشار داخل چشم را به طور مستقیم

ویژگی‌های حس‌گرهای اندازه‌گیری فشار داخل چشم

پیوندها که از نام این حس‌گر مشخص است، این حس‌گرهای باید به طور مداوم به‌عنوان فشار یک محتوا به‌طور کامل اندازه‌گیری نمایند. بر این اساس حس‌گرها پوشیدنی همگی نیاز به زمان‌بندی و باید حس‌گرهای کشش‌پذیر (ابیلمن) که در یک مدل مشخصی در چشم تعبیر می‌شود، طراحی شدند. حس‌گرهای پوشیدنی در مقایسه با انواع کشش‌پذیر (ابیلمن) از سطح‌های برخورد با ویژگی‌های عالی‌تری به‌صورت یک نمونه در نظر می‌گیرند و حس‌گرهای کشش‌پذیر در این حالت به‌صورت باقی مانده است. علاوه بر این، حس‌گر فشار داخل چشم مناسب باید به‌طور کافی تغییر که بدون نیاز به ویژگی‌های دیده‌نگار و این که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم از نظر مکانیکی و آماری تنها یک ابزار به‌عنوان نمونه‌های دیده‌نگار و این که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، حس‌گر فشار داخل چشم اثرات کافی دارد که به‌طور مستقیم کار می‌کند. علاوه بر این، ج. ح. ب.
مستقل از خواص بیومکانیکی کره چشم به انرژی میلاد و دقت اندازه‌گیری تحت کنار می‌آید از عملکرد چشم جراحی
چشم در بیمار جون کرونالیون و کاراپاترونیون نواحی بود.
جایگاهی که در محفظه جراحی زمان فشار باید عفونت.
عفونت گیر شده
Encapsulating Fibrosis
باید هر چه مراحل دارند
باید که هر چه مراحل

فضای موجود برای جایگزینی چشم در انتقال یک استوانه به طول ۳ تا ۴ میلی‌متر و با قطر حدود ۱۲۵ میلی‌متر در مرکز همچنین قطر مسئول قرنیه، در حدود ۵۲ میکرومتر مرتبط در مرکز

است و با قطر بکنوله در جهت محیط‌شناختی افراد می‌باشد.

FN أواخر موجود

ف اساس طبیعت فشار داخل کننده چشم به فشار میکروالکترومکانیکی

ماند و نیز تغییر فشار داخل کننده چشم به فشار میکروالکترومکانیکی.

ماند و نیز تغییر فشار داخل کننده چشم به فشار میکروالکترومکانیکی.

ف نیز هر کننده چشم به فشار میکروالکترومکانیکی.
امیر مولایی - روش‌های پیش رو و ویژگی‌های سیستم‌های کنترل فشار داخل چشم مداوم در گلوکوم

 تصویر ۳ نمایی از یک حس‌گر فشار داخل چشمی می‌باشد که شامل یک کرنش سنج پیشنهادی که به طور محیطی بر روی لنز تعبیه شده است به همراه مدار شارژی بر روی لنز تعبیه شده است.

اگرچه روش‌های ذکر شده می‌توان به بهبود در داشتن حس‌گر موجود برای اندازه‌گیری فشار داخل چشم می‌باشد، ولی حس‌گرها دیگری جون پیزومتریک، نیز برای این کاربرد نیازمند منبع تغذیه خارجي می‌باشد.

روپیسال

در سیستم‌های ریزوپیاسالی، اندازه‌گیری فشار داخل چشم به‌طور محیطی بر روی لنز تعبیه شده است. این نمایش به‌طور محیطی بر روی لنز تعبیه شده است. این حس‌گر شامل یک محفظه می‌باشد که به کج ریزکاتال حاوی یک سیال رنگی می‌باشد، و یک روش‌های ذکر سنج پیشنهادی که به طور محیطی بر روی لنز تعبیه شده است.

تابل نمایش به‌طور محیطی بر روی لنز تعبیه شده است.

مقایسه حس‌گرها میکروالکترومکانیکال و ریپیسال

عملکرد آن‌ها حس‌گرها فشار داخل چشم موجود بر اساس تکنولوژی میکروالکترومکانیکال می‌باشد. اگرچه حس‌گرها دیگری نیز بر اساس بررسی‌های ساخته شده است. حس‌گرها میکروالکترومکانیکال نیز می‌باشد و منبع تغذیه خارجی می‌باشد.
موجب افزایش پیچیدگی طراحی می‌شود. ولی حس گرهای ریزسیال نیازمند منبع تغذیه نبوده و با استفاده از فشار چشم به صورت غیرفعال عمل می‌نماید.

تصویر ۴- یک حس گر کابل‌گردی که در یک کانال ریزسیال و یک اناق گاز ترکیب شده است و اجزا خواندن فشار داخل چشمی را با استفاده از دوربین گوشی فراهم می‌کند.

جدول ۱- مرور حس‌گرهای اندازه‌گیری فشار داخل چشمی

نوع حس‌گر	تکنولوژی	خازنی	مقاومت	اینتیکی	ضریرسیال	بوردن (Bourdon)
میکروالکترومکانیکال	خازنی ۵۰-۲۴	۵۵	۱۰	اینتیکی ۳۵	ضریرسیال ۲۵	بوردن (Bourdon) ۱۰

دورنما

تجهیز چشمهای خاص در این مطالعه برای اندازه‌گیری و تشخیص میزان فشار داخل چشم مورد استفاده قرار می‌گیرند. در آینده باید به سیستم‌هایی خواهیم درآمد که علاوه بر اندازه‌گیری فشار، جهت درمان نیز کاربردی داشته باند. این سیستم می‌تواند یک مجوزی مصووب برای خروج مائع داخل چشم را به‌دست آورد و حساب یگم در نظر گرفته خواهیم یافت. برای حصول به فرد سیستم‌های ریزسیالی، انتقال مقادیر بسیار کم سیال به همراه تکنولوژی میکروالکترومکانیکال می‌تواند بکر راهکار قابل اطمینان برای دسترسی به این هدف فراهم آورد. در آینده‌ای ترددی، حرفه‌ای سیستم‌هایی با قابلیت اندازه‌گیری فشار داخل چشم و کنترل آن بدون دستکاری ملتحم، خواهیم پیدا کرد.

خواندن فشار به راحتی امکان‌پذیر بوده و هزینه ساخت آن بسیار پایین است. سیستم‌های ریزسیال، می‌توانند حجمی از سیال را جابجا کنند که از این مزیت می‌توان برای خارج نمودن مائع داخل چشم برای کاهش فشار استفاده نمود. در جدول ۱ خلاصه‌ای از حس‌گرهای به کارگرفته شده و فن آوری مرتبط با آن ارائه شده است.

منابع

1. McCann P, Hogg RE, Fallis R, et al. The effect of statins on intraocular pressure and on the incidence and progression of glaucoma: A systematic review and meta-analysis of statins and IOP, glaucoma incidence and progression. Invest Ophthalmol Vis Sci 2016;57:2729-2748.
2. Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ 2004;82:887-888.
3. Tham Y, Li X, Wong TY, Quigley HA, Aung T, Cheng C. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014;121:2081-2090.
4. Jindal V. Glaucoma A multifactorial disease and its multidimensional management. International Journal of Scientific and Research Publications 2013;3:1-3.
5. Whitacre MM, Stein R. Sources of error with use of Goldmann-type tonometers. Surv Ophthalmol 1993;38:1-30.
6. Ehlers N, Bramsen T, Sperling S. Applanation tonometry and central corneal thickness. Acta Ophthalmol 1975;53:34-43.
7. Buddle R. A day in the life of IOP. Review Optometry 2014;151:26-32.
8. Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: Quantitative analysis. J Cataract Refract Surg 2005;31:146-155.
9. Varel Ç, Shih Y, Otis BP, et al. A wireless intraocular pressure monitoring device with a solder-filled microchannel antenna. J Micromech Microengineering 2014;24:045012.
10. Chen PJ, Rodger DC, Saati S, et al. Implantable parylene-based wireless intraocular pressure sensor. In Micro Electro Mechanical Systems, 2008. MEMS 2008. IEEE 21st International Conference on 2008 Jan 13 (pp. 58-61). IEEE.
11. Chen P, Rodger DC, Humayun MS, et al. Unpowered
spiral-tube parylene pressure sensor for intraocular pressure sensing. *Sensors Actuators A Physical* 2006;127:276-282.

12. Haque RM, Wise KD. A 3D implantable microsystem for intraocular pressure monitoring using a glass-in-silicon reflow process. In Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on 2011 Jan 23 (pp. 995-998). IEEE.

13. Demeng L, Niansong M, Zhao Feng Z. An ultralow power wireless intraocular pressure monitoring system. *J Micromech Microengineering* 2014;35:105014.

14. Lin KM, Sant HJ, Ambati BK, et al. Intraocular pressure sensors: New approaches for real-time intraocular pressure measurement using a pure microfluidic chip. In 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2012. Chemical and Biological Microsystems Society.

15. Araci IE, Su B, Quake SR, et al. An implantable microfluidic device for self-monitoring of intraocular pressure. *Nat Med* 2014;20:1074-1078.

16. Rosengren L, Rangsten P, Bäcklund Y, et al. A system for passive implantable pressure sensors. *Sensors Actuators A Physical* 1994;43:55-58.

17. Stangel K, Kolbsberg S, Hammerschmidt D, et al. A programmable intraocular CMOS pressure sensor system implant. *IEEE J Solid State Circuits* 2001;36:1094-1100.

18. Schnakenberg U, Walter P, Vom Bügel G, et al. Initial investigations on systems for measuring intraocular pressure. *Sensors Actuators A Physical* 2000;85:287-291.

19. Leonardi M, Leuenberger P, Bertrand D, et al. First steps toward noninvasive intraocular pressure monitoring with a sensing contact lens. *Invest Ophthalmol Vis Sci* 2004;45:3113-3117.

20. Leonardi M, Pitchon EM, Bertsch A, et al. Wireless contact lens sensor for intraocular pressure monitoring: Assessment on enucleated pig eyes. *Acta Ophthalmol* 2009;87:433-437.

21. Chou J, Huang Y, Yeh G. A capacitor-based sensor and a contact lens sensing system for intraocular pressure monitoring. *J Micromech Microengineering* 2015;26:015001.

22. Mansour K. The road ahead to continuous 24-hour intraocular pressure monitoring in glaucoma. *J Ophthalmic Vis Res* 2014;9:260-268.

23. Kim KH, Kim BH, Seo YH. A noncontact intraocular pressure measurement device using a micro reflected air pressure sensor for the prediagnosis of glaucoma. *J Micromech Microengineering* 2012;22:035022.

24. Yu L, Kim BJ, Meng E. Chronically implanted pressure sensors: Challenges and state of the field. *Sensors* 2014;14:20620-20644.

25. Clausen I, Glott T. Development of clinically relevant implantable pressure sensors: Perspectives and challenges. *Sensors* 2014;14:17686-17702.

26. Kotzar G, Freas M, Abel P, Fleischman A, Roy S, Zorman C, et al. Evaluation of MEMS materials of construction for implantable medical devices. *Biomaterials* 2002;23:2737-2750.

27. Katuri KC, Ramasubramian MK, Asran S. A surface micromachined capacitive pressure sensor for intraocular pressure measurement. In Mechatronics and Embedded Systems and Applications (MESA), 2010 IEEE/ASME International Conference on 2010 Jul 15 (pp. 149-154). IEEE.

28. Bhadwaj V, Rajeshbhai GP. Axial length, anterior chamber depth-a study in different age groups and refractive errors. *J Clin Diagn Res* 2013;7:2211-2212.

29. Goldsmith JA, Li Y, Chalita MR, Westphal V, Patil CA, Rollins AM, et al. Anterior chamber width measurement by high-speed optical coherence tomography. *Ophthalmology* 2005;112:238-244.

30. Ruberti JW, Sinha Roy A, Roberts CJ. Corneal biomechanics and biomaterials. *Ann Rev Biomed Eng* 2011;13:269-295.

31. Chihara E. Assessment of true intraocular pressure: The gap between theory and practical data. *Surv Ophthalmol* 2008;53:203-218.

32. Wilensky JT. Diurnal variations in intraocular pressure. *Trans Am Ophthalmol Soc* 1991;89:757-790.

33. Cooper RL, Beale DG, Constable IJ, Grose GC. Continual monitoring of intraocular pressure: Effect of central venous pressure, respiration, and eye movements on continual recordings of intraocular pressure in the rabbit, dog, and man. *Br J Ophthalmol* 1979;63:799-804.

34. Jiang G. Design challenges of implantable pressure monitoring system. Front Neurosci 2010;4:2.

35. Carrasco FG, Alonso DD, Niño-de-Rivera L. Biocompatibility and implant of a less invasive intraocular pressure sensor. *Microelectronic Engineering* 2016;159:32-37.

36. Mark T. Medical electrical equipment Part 1: General requirements for basic safety and essential performance. 2005.

37. International Organization for Standardization. ISO 14971: medical devices-application of risk management to medical devices. ISO; 2000.

38. Gunn NM, inventor; Novartis Ag, assignee. Osmotically actuated fluidic valve. United States patent US 9,572,712. 2017 Feb 21.

39. Abeyesinghe DC, Dasgupta S, Boyd JT, Jackson HE. A novel MEMS pressure sensor fabricated on an optical fiber. *IEEE Photon Technol Lett* 2001;13:993-995.

40. Whitesides GM. The origins and the future of microfluidics. *Nature* 2006;442:368-373.

41. Chen P, Rodger DC, Agrawal R, Saati S, Meng E, Varma R, et al. Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing. *J Micromech Microengineering* 2007;17:1931.

42. Rendón-Nava A, Nino-de-Rivera-yO L. Intraocular
43. Todani A, Behlau I, Fava MA, Cade F, Cherfan DG, Zakka FR, et al. Intraocular pressure measurement by radio wave telemetry. *Invest Ophthalmol Vis Sci* 2011;52:9573-9580.

44. Kouhani MH, Weber A, Li W. Wireless intraocular pressure sensor using stretchable variable inductor. In *Micro Electro Mechanical Systems (MEMS), 2017 IEEE 30th International Conference on* 2017 Jan 22 (pp. 557-560). IEEE.

45. Zeng P, Cui Q, Wu M, Chen PY, Cheng MM. Wireless and continuous intraocular pressure sensors using transparent graphene. In *SENSORS, 2016 IEEE 2016 Oct 30* (pp. 1-3). IEEE.

46. Yeh GT, Wu TW, Tsai SW, Hsu SH, Chiou JC. Toward a wireless contact lens sensor system with a micro-capacitor for intraocular pressure monitoring on in-vitro porcine eye. In *SENSORS, 2015 IEEE 2015 Nov 1* (pp. 1-4). IEEE.

47. Shin K, Jang C, Kim MJ, Yun K, Park KH, Kang JY, et al. Development of novel implantable intraocular pressure sensors to enhance the performance in in vivo tests. *J Microelectromech Syst* 2015;24:1896-1905.

48. Chen G, Chan I, Leung LK, Lam DC. Soft wearable contact lens sensor for continuous intraocular pressure monitoring. *Med Eng Phys* 2014;36:1134-1139.

49. Chitnis G, Maleki T, Samuels B, Cantor LB, Ziaie B. A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring. *IEEE Trans Biomed Eng* 2013;60:250-256.

50. Huang YC, Yeh GT, Yang TS, Chiou JC. A contact lens sensor system with a micro-capacitor for wireless intraocular pressure monitoring. In *SENSORS, 2013 IEEE 2013 Nov 3* (pp. 1-4). IEEE.

51. Bhamra H, Tsai JW, Huang YW, Yuan Q, Irazoqui P. 21.3 A sub-mm 3 wireless implantable intraocular pressure monitor microsystem. In *Solid-State Circuits Conference (ISSCC), 2017 IEEE International 2017 Feb 5* (pp. 356-357). IEEE.

52. Donida A, Di Dato G, Cunzolo P, Sala M, Piffaretti F, Orcatti P, et al. A circadian and cardiac intraocular pressure sensor for smart implantable lens. *IEEE Trans Biomed Circuits Syst* 2015;9:777-789.

53. Ghannad-Rezaie M, Gulari MN, de Melo Franco R, Mian SI, Chronis N. A powerless optical microsensor for monitoring intraocular pressure with keratoprostheses. In *Solid-State Sensors, Actuators and Microsystems (TRANSUDERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on 2013 Jun 16* (pp. 2708-2711). IEEE.

54. Bello SA, Malavade S, Passaglia CL. Development of a smart pump for monitoring and controlling intraocular pressure. *Ann Biomed Eng* 2017;45:990-1002.

55. Araci IE, Baday M. Contact lens with a microfluidic channel to monitor radius of curvature of cornea 2016.