The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/111398

Please be advised that this information was generated on 2019-02-18 and may be subject to change.
Quantum Hall transport as a probe of capacitance profile at graphene edges

I. J. Vera-Marun', P. J. Zomer, A. Veligura, M. H. D. Guimarães, L. Visser, N. Tombros, H. J. van Elferen, U. Zeitler, and B. J. van Wees

Citation: Appl. Phys. Lett. 102, 013106 (2013); doi: 10.1063/1.4773589
View online: http://dx.doi.org/10.1063/1.4773589
View Table of Contents: http://aip.scitation.org/toc/apl/102/1
Published by the American Institute of Physics
Quantum Hall transport as a probe of capacitance profile at graphene edges

I. J. Vera-Marun,1,a) P. J. Zomer,1 A. Veligura,1 M. H. D. Guimarães,1 L. Visser,1 N. Tombros,1 H. J. van Elferen,2 U. Zeitler,2 and B. J. van Wees1
1Physics of Nanodevices, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
2High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands

(Received 5 November 2012; accepted 14 December 2012; published online 4 January 2013)

The quantum Hall effect is a remarkable manifestation of quantized transport in a two-dimensional electron gas (2DEG). Given its technological relevance, it is important to understand its development in realistic nanoscale devices. In this work, we present how the appearance of different edge channels in a field-effect device is influenced by the inhomogeneous capacitance profile existing near the sample edges, a condition of particular relevance for graphene. We apply this practical idea to experiments on high quality graphene, demonstrating the potential of quantum Hall transport as a spatially resolved probe of density profiles near the edge of this two-dimensional electron gas. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773589]

Since its discovery, the quantum Hall effect has expanded its use from the study of two-dimensional electron gas (2DEG) physics to its application in metrology.2 There-
edge probed by an edge channel is related to the size of the skipping orbit, ultimately limited by d_P, as shown in Fig. 1(b). Within this approximation, the localization of the wave function coincides with d_P. We argue that a fully developed edge channel is achieved when $n(x) \geq n_p$, within a region from the edge $x = d_P$. For the inhomogeneous field-effect capacitance $\varepsilon(x)$ considered here, our ansatz then leads to the relation $\varepsilon_P = \varepsilon(x = d_P)$. Therefore, we establish a direct mapping between the capacitance observed for each quantum Hall plateau ε_P and the spatial location where that capacitance is probed.

Now, we address some of the implications of our model for an idealized structure, a semi-ininitely wide 2DEG surrounded by vacuum and suspended at a distance of 1 μm from the gate. This is a relevant configuration because it is similar to that of high quality suspended graphene devices.15 We estimate $\varepsilon(x)$ using only electrostatics without including quantum capacitance,16 an approach valid for our devices with thick dielectric layers.17 For this configuration, one can easily treat the electrostatic problem using conformal mapping.18 The calculated capacitance per area $\varepsilon(x)$, shown in Fig. 2, diverges at the edge and decays towards the value for a simple parallel plate capacitor on a distance similar to the separation between the 2DEG and the gate. Note that this distance is larger than the typical cyclotron diameter in graphene devices. Following our model, we relate the capacitance profile $\varepsilon(x)$ to the capacitance of individual quantum Hall plateaus ε_P represented by the symbols in Fig. 2. For this example, we consider the filling factors corresponding to the half-integer quantum Hall effect in single layer graphene. The main implication of our model is shown in the inset of Fig. 2, where we show the position of V_G of each quantum Hall plateau (for different B) resulting in nonlinear $\nu(V_G)$ curves. The reason why these curves are nonlinear is because the capacitance for each plateau is different, being higher for smaller d_P. This effect has been overlooked in previous works on high quality graphene19–21 where, for a certain B, a constant ε is always assumed.

In the following, we use an inverse approach to that discussed above for Fig. 2. We start from experimental quantum Hall measurements in high quality graphene devices, then extract the field-effect capacitance of individual plateaus, ε_P and finally use these data to reconstruct the capacitance profile $\varepsilon(x)$.

First, we apply this approach to a suspended bilayer graphene sample, which is extensively studied elsewhere.22 The sample is a two-terminal device fabricated using a high yield method, which allows us to obtain large mobility after current annealing.15 The extracted ε_P versus d_P curve, shown in Fig. 3(a), closely follows the trend of $\varepsilon(x)$ expected from the focusing of electric field near the edges, as calculated by a finite-element three-dimensional electrostatic model of the sample. We observe a maximum ε_P of 2×10^{14} $V\cdot m^{-2}$ for small d_P, demonstrating a threefold increase from the value at $d_P \approx 150$ nm (0.7×10^{14} $V\cdot m^{-2}$), and a fourfold increase from the simple parallel plate capacitor model. Such an increase in capacitance confirms that our method is able to probe charge accumulation at the graphene edge. We observe similar results for another suspended sample (not shown). There is a systematic difference of $\approx 20\%$ between the data and the calculation. Such a difference could be ascribed to a lower capacitance in our sample as compared to the calculated one, due to a separation between graphene

FIG. 2. Modeling the effect of electric field focusing near the edge on the capacitance of quantum Hall plateaus, for an infinitely wide and long 2DEG suspended in vacuum 1 μm over the gate. The solid line shows the calculated $\varepsilon(x)$ near the edge, whereas the dashed line shows the value for a simple parallel plate capacitor. Symbols correspond to $\varepsilon(x = d_P) \equiv \varepsilon_P$, for filling factors $\nu = 2, 6, 10$, and 14 (proper for single layer graphene, see Ref. 6) at different values of B. Inset: position of quantum Hall plateaus on $V_G = n_p/\varepsilon_P$.

FIG. 3. Capacitance profile near the edges of high quality graphene samples. (a) Suspended bilayer graphene, 2.6 μm long, 0.4 μm wide, with a gate dielectric of 500 nm SiO$_2$ plus 1.15 μm vacuum. (b) Single layer graphene supported on h-BN, 2.5 μm long, 2 μm wide, with a gate dielectric of 500 nm SiO$_2$ plus \approx 40 nm h-BN. For both (a) and (b), symbols correspond to the experimental capacitance of individual plateaus ε_P versus d_P. Filled symbols are for hole transport and open symbols are for electron transport. Dashed lines show ε for a simple parallel plate capacitor. Solid lines show the calculated $\varepsilon(x)$ from a three-dimensional electrostatic model averaged along the length of the graphene, scaled by a factor of 0.8 (a) or 0.7 (b). The insets show raw data for a fixed B field, with the vertical dotted lines indicating V_G.

and substrate, which is slightly larger than the nominal value used in the calculation. This separation is given by the thickness of spin-coated polymer used to suspend graphene.\(^\text{15}\)

Next, we apply our approach to a different high quality sample, a single layer graphene supported on hexagonal boron nitride (h-BN). The sample is also a two-terminal device, fabricated using a recently developed transfer technique.\(^\text{23}\)

For the case of hole transport, which shows higher quality with a mean free path of 110 nm, we see in Fig. 3(b) that the extracted \(\xi p\) versus \(\xi p\) curve also follows the trend of \(\xi(x)\) expected from electric field focusing near the edges. We observe a maximum \(\xi p\) of \(8 \times 10^{14} \text{ V}^{-1} \text{m}^{-2}\) for small \(\xi p\), demonstrating a twofold increase from the value at the sample (not shown). There is a difference of \(\xi\), calculated not show any appreciable increase in capacitance. Further-quantum Hall plateaus except for the lowest one, which does not play a major role in our samples. From preliminary cal-

bel is considered to be a closer representation of the ideal graphene.\(^\text{24}\)

The extracted capacitance profile for the suspended sample is considered to be a closer representation of the ideal case of using vacuum as dielectric, and possibly of its higher mobility\(^\text{22}\); \((10^4 \text{ m}^2/\text{Vs} \text{ at a carrier density of } 2 \times 10^{11} \text{cm}^{-2}, \) four times higher than for the h-BN supported sample) due to the current annealing process.\(^\text{25}\)

Scattering from defects close to the edges would lead to a larger region probed by the skipping orbits,\(^\text{26}\) decreasing the observed charge accumulation in a similar manner as seen for the lower quality electron regime.

A relevant question is to consider the role of counter-flowing channels present at the frontier between the charge accumulation region and the bulk.\(^\text{27}\) The amount of backscatter-
ing between flowing and counterflowing channels is determined by the overlap of the electron orbits between both sets of channels and by the quality of the sample. Note that full equilibration between both sets of channels would lead to the observation of plateaus corresponding to the filling factor of channels and by the quality of the sample. Note that full equilibration between both sets of channels would lead to the observation of plateaus corresponding to the filling factor of channels and by the quality of the sample. Note that full equilibration between both sets of channels would lead to the observation of plateaus corresponding to the filling factor of channels and by the quality of the sample. Note that full equilibration between both sets of channels would lead to the observation of plateaus corresponding to the filling factor of channels and by the quality of the sample. Note that full equilibration between both sets of channels would lead to the observation of plateaus corresponding to the filling factor of channels and by the quality of the sample. Note that full equilibration between both sets of channels would lead to the observation of plateaus corresponding to the filling factor of channels and by the quality of the sample. Note that full equilibration between both sets of channels would lead to the observation of plateaus corresponding to the filling factor of channels and by the quality of the sample. Note that full equilibration between both sets of channels would lead to the observation of plateaus corresponding to the filling factor of channels and by the quality of the sample. Note that full equilibration between both sets of channels would lead to the observation of plateaus corresponding to the filling factor of channels and by the quality of the sample. Note that full equilibration between both sets of channels would lead to the observation of plateaus corresponding to the filling factor of channels and by the quality of the sample. Note that full equi-

In conclusion, we showed how to use quantum Hall edge channels to probe the physical edges in a 2DEG by extracting the capacitance profile near these edges. This practical approach allows the observation of clear differences on graphene samples with comparably high (bulk) mobilities but potentially different edge quality.

We acknowledge B. Wolfs, J. G. Holstein, and H. M. de Roosz for their technical assistance. This work was financed by the Zernike Institute for Advanced Materials and by the Dutch Foundation for Fundamental Research on Matter (FOM).

\(^{15}\)K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
\(^{16}\)B. Jeckelmann and B. Jeanneret, Rep. Prog. Phys. 64, 1603 (2001).
\(^{17}\)T. J. B. M. Janssen, N. E. Fletcher, R. Goebel, J. M. Williams, A. Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila, and V. I. Falko, New J. Phys. 13, 093026 (2011).
\(^{18}\)K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
\(^{19}\)Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
\(^{20}\)A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
\(^{21}\)E. Ahlswede, P. Weitz, J. Weis, K. von Klitzing, and K. Eberl, Physica B 298, 562 (2001).
\(^{22}\)A. Baumgartner, T. Ihn, K. Ensslin, K. Maranowski, and A. C. Gossard, Phys. Rev. B 76, 085316 (2007).
\(^{23}\)D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Phys. Rev. B 46, 4026 (1992).
\(^{24}\)J. Fernández-Rossier, J. J. Palacios, and L. Bray, Phys. Rev. B 75, 205441 (2007).
\(^{25}\)P. G. Silvestrov and K. B. Efetov, Phys. Rev. B 77, 155436 (2008).
\(^{26}\)F. T. Vasko and I. V. Zozoulenko, Appl. Phys. Lett. 97, 092115 (2010).
\(^{27}\)A. Venugopal, J. Chan, X. Li, C. W. Magnuson, W. P. Kirk, L. Colombo, R. S. Ruoff, and E. M. Vogel, J. Appl. Phys. 109, 104511 (2011).
\(^{28}\)D. A. Abanin and L. S. Levitov, Phys. Rev. B 78, 035416 (2008).
\(^{29}\)N. Tombros, A. Veligura, J. Junesch, J. Jasper van den Berg, P. J. Zomer, M. Wotjaszek, I. J. Vera Marun, H. T. J. Jonkman, and B. J. van Wees, J. Appl. Phys. 109, 093702 (2011).
\(^{30}\)S. Luryi, Appl. Phys. Lett. 52, 501 (1988).
\(^{31}\)T. Fang, A. Konar, H. Xing, and D. Jena, Appl. Phys. Lett. 91, 092109 (2007).
\(^{32}\)W. Rogowski, Arch. Elektrotech. 12, 1 (1923).
\(^{33}\)K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Solid State Commun. 146, 351 (2008).
\(^{34}\)X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nanotechnology, 3, 491 (2008).
21 B. E. Feldman, J. Martin, and A. Yacoby, Nat. Phys. 5, 889 (2009).
22 H. J. van Elferen, A. Veligura, E. V. Kurganova, U. Zeitler, J. C. Maan, N. Tombros, I. J. Vera-Marun, and B. J. van Wees, Phys. Rev. B 85, 115408 (2012).
23 P. J. Zomer, S. P. Dash, N. Tombros, and B. J. van Wees, Appl. Phys. Lett. 99, 232104 (2011).
24 B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-Gordon, Phys. Rev. B 78, 121402 (2008).
25 N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimaraes, I. J. Vera-Marun, H. T. Jonkman, and B. J. van Wees, Nat. Phys. 7, 697 (2011).
26 M. Büttiker, Phys. Rev. B 38, 9375 (1988).
27 B. van Wees, G. Meijer, J. Kuipers, T. Klapwijk, W. v. d. Graaf, and G. Borghs, Phys. Rev. B 51, 7973 (1995).
28 L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
29 S. Ihnatsenka and I. V. Zozoulenko, Phys. Rev. B 86, 155407 (2012).