Diversity, geographical distribution, and prevalence of *Entamoeba* spp. in Brazil: a systematic review and meta-analysis

Andernice dos Santos Zanetti¹, Antonio Francisco Malheiros¹, Tatiane Amorim de Matos¹, Carolina dos Santos¹, Paula Franciene Battaglini², Luciana Melhorança Moreira³, Larissa Maria Scalon Lemos⁴, Solange Kimie Ikeda Castrillon¹, Denise da Costa Boamorte Cortela⁵, Eliane Ignotti¹, and Omar Ariel Espinosa⁶,*

¹ Post-Graduation Program in Environmental Science, Faculty of Agricultural and Biological Sciences, State University of Mato Grosso (UNEMAT), Tancredo Neves Ave., 1095 – Cavalhada II, Caceres, 78217-042 Mato Grosso, Brazil
² Residency in Infectious Diseases, Júlio Miller University Hospital, Federal University of Mato Grosso, Luis Philippe Pereira Leite St., Alvorada, Cuiabá, 78048-902 Mato Grosso, Brazil
³ Faculty of Agricultural and Biological Sciences, State University of Mato Grosso (UNEMAT), Tancredo Neves Ave., 1095 – Cavalhada II, 78217-042 Caceres, Mato Grosso, Brazil
⁴ Department of Nursing, Faculty of Health Sciences, State University of Mato Grosso (UNEMAT), Tancredo Neves Ave., 1095 – Cavalhada II, Caceres, 78217-042 Mato Grosso, Brazil
⁵ Department of Medicine, Faculty of Health Sciences, State University of Mato Grosso (UNEMAT), Tancredo Neves Ave., 1095 – Cavalhada II, 78217-042 Caceres, Mato Grosso, Brazil
⁶ Faculty Estacio of Pantanal (Estacio FAPAN), São Luís, 2522 St – Cidade Nova, Caceres, 78201-000 Mato Grosso, Brazil

Received 29 December 2020, Accepted 11 March 2021, Published online 30 March 2021

**Abstract** – The genus *Entamoeba* includes a variety of widely distributed species adapted to live in the digestive tracts of humans and a large variety of animals of different classes. The objective of this study was to investigate the prevalence, distribution, and molecular epidemiology of *Entamoeba* spp. in different classes of hosts in Brazil. Studies that analyzed hosts from several classes, including humans and domestic, wild, or captive animals, were considered. The pooled prevalence of *Entamoeba* spp. was calculated using the random-effects model. A total of 166 studies on humans and 16 on animals were included. The prevalence of *Entamoeba* spp. in the Brazilian population was 22% (95% CI: 21–24). The state with the highest prevalence was Paraíba with 72%, followed by Federal District with 53%, and Rondonia with 50%. In immunocompromized patients, the prevalence was 18%, and cancer (36%) was the most prevalent cause of immunosuppression. The prevalence of *Entamoeba* spp. in animal hosts was 12% (95% CI: 7–17). Captive wild animals and domestic farm animals showed the highest prevalence, with 16% and 15%, respectively. The species found more often were *E. coli* (86.5%), *E. dispar* (7.9%), and *E. histolytica* (3.1%). In conclusion, a high prevalence (22%) of *Entamoeba* spp. was found in the Brazilian population, with a prevalence of up to 50% mainly in the northern, northeastern, and central-western regions. The pathogenic species *E. histolytica* is distributed in most Brazilian regions, with significant prevalence percentages. Among animals, unidentified *Entamoeba* species were most prevalent in mammals.

**Key words:** Parasitic disease, Amebiasis, Diarrhea, Zoonoses, Protozoan.

**Résumé** – Diversité, répartition géographique et prévalence d’*Entamoeba* spp. au Brésil : revue systématique et méta-analyse. Le genre *Entamoeba* comprend une variété d’espèces largement distribuées, adaptées à vivre dans le tube digestif des humains et une grande variété d’animaux de différentes classes. L’objectif de cette étude était d’étudier la prévalence, la distribution et l’épidémiologie moléculaire d’*Entamoeba* spp. dans différentes classes d’hôtes au Brésil. Les études qui ont analysé les hôtes de plusieurs classes, y compris les humains et les animaux domestiques, sauvages ou captifs, ont été prises en compte. La prévalence combinée d’*Entamoeba* spp. a été calculée à l’aide du modèle à effets aléatoires. Au total, 166 études sur l’homme et 16 sur les animaux ont été incluses. La prévalence d’*Entamoeba* spp. dans la population brésilienne était de 22 % (IC à 95 % : 21–24). L’état avec la prévalence la plus élevée était Paraíba avec 72 %, suivi du District fédéral avec 53 % et Rondonia avec 50 %. Chez les patients immunodéprimés, la prévalence était de 18 % et le cancer (36 %) était la cause la plus fréquente d’immunosuppression. La prévalence d’*Entamoeba* spp. chez les hôtes animaux était de 12 % (IC à 95 % : 7–17). Les animaux sauvages en captivité et les animaux domestiques d’élevage ont affiché la prévalence la
Introduction

The genus *Entamoeba* includes a variety of anaerobic, unicellular, and monoxenic protozoan species adapted to live as parasites or commensals in the digestive tracts of humans and a large variety of animals of different classes [5, 7, 64, 110, 112, 205, 206]. The main species of this genus that parasitize humans are *E. histolytica*, *E. dispar*, *E. moshkovskii*, *E. coli*, *E. polecki*, *E. bangladeshi*, and *E. hartmanni* [84, 124, 151, 174]. Morphologically, the species *E. histolytica*, *E. dispar*, and *E. moshkovskii* are considered identical, but only *E. histolytica* is the causative agent of amebiasis, a gastrointestinal disease that commonly occurs worldwide; amebiasis is considered endemic in tropical regions and is associated with inadequate socioeconomic and sanitary conditions [8, 166, 216]. *Entamoeba histolytica* shows several degrees of virulence and is capable of invading a wide variety of tissues in the host, including those of the colon and liver, and more rarely the lung, skin, urogenital tract, brain, and spleen. This invasive feature separates it from the other species [70]. It is estimated that amebiasis accounts for 55,500 all-age deaths and causes disability-adjusted life years at 2.237 million [211]. In contrast, *E. dispar* can cause focal intestinal lesions in laboratory animals [133]. However, in humans, it is considered a stable commensal with no virulent characteristics, producing an asymptomatic carrier state and being generally much more prevalent worldwide than *E. histolytica* [64, 124]. On the other hand, the idea that *E. dispers* is a simple commensal parasite is under discussion, and some authors discuss the importance of this species in damage of the intestine and liver [73]. Globally, the overall prevalence of *Entamoeba* spp. in humans is 3.5%. *Entamoeba histolytica* and *E. dispar* account for 81.7% of this global prevalence in documented infections. The comparison of prevalence by regions showed differences in prevalence between Australia (1.7%) and North America (21.6%) [64].

Regarding zoonotic potential, research on *E. histolytica*, *E. dispar*, *E. hartmanni*, *E. coli*, *E. moshkovskii*, and *E. polecki* is remarkably important because of previous reports on these species in both humans and different species of animals worldwide [76, 110, 152, 162, 206]. Furthermore, regarding pathogenic potential, some of these species can cause diarrhea and other symptomatic presentations in non-human primates [165].

The *Entamoeba* spp. have a variety of vertebrate hosts: *E. moshkovskii* is found in cattle, elephants, and reptiles [94, 110]; *E. coli* and *E. hartmanni* are found in non-human primates [26, 57, 113, 220]; and finally, some studies suggest that different subtypes of *E. polecki*, infect human, non-human primates, pigs and ostriches [41, 59, 76, 84, 112]. In Brazil, several studies based on microscopic examination have investigated the prevalence of amebiasis in different population groups, but discriminatory studies between species (using molecular methods) are relatively scarce and mainly address different animal hosts. Although there are data on the prevalence of *Entamoeba* spp. in some regions, there is no aggregate analysis of the prevalence and distribution of species of this protozoan by geographic area, sex, age group, and host type in Brazil. Therefore, the objective of this systematic review and meta-analysis was to determine the prevalence and distribution of different species of *Entamoeba* in several host classes in Brazil.

Materials and methods

The protocol of this systematic review was registered in the International Prospective Register of Systematic Reviews (PROSPERO 2019: CRD42020167222) before its implementation. The protocol and final report were developed according to the Cochrane Handbook for Systematic Reviews of Interventions [105].

The review question

What is the prevalence and geographical distribution of *Entamoeba* spp. in different host species in Brazil?

Inclusion and exclusion criteria

This review included studies on various hosts (humans and domestic, wild, or captive animals) of different classes to determine the prevalence and genetic identification of *Entamoeba* spp. in Brazil through coprological analyses and molecular techniques.

Studies analyzing fecal samples of humans and domestic, wild, or captive animals that did not report percentages of samples positive for *Entamoeba* spp. were excluded.

Types of studies

This review included cross-sectional epidemiological studies assessing the prevalence of *Entamoeba* spp. in humans and wild, captive, and domestic animals.

Search strategy

An initial search limited to MEDLINE was conducted using MeSH index terms and related keywords. Subsequently, the words contained in the title, abstract, and index terms used to describe the articles were analyzed. A second search using all identified keywords and index terms was performed using all included databases. As a source of gray literature, a search
was conducted in the reference lists of dissertations and theses that evaluated the prevalence of protozoan intestinal parasites. Because this search was limited to Brazil, it was limited to studies in the English, Spanish, and Portuguese languages. This search had no start date limitation but was completed in November 2020.

The studies were searched in the following databases: Spanish Bibliographic Index of Health Sciences (IBECS), Latin American and Caribbean Literature in Health Sciences (LILACS), Virtual Health Library (VHS), US National Library of Medicine bibliographic database (Medline), Elsevier database EMBASE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web of Science, Cochrane Library, and National Institute of Health and Clinical Excellence (NICE). The MeSH index terms searched were *Entamoeba* and Brazil. The keywords *Brasil* and *Endamoeba* were also included in the search. The MeSH terms and keywords were combined via the boolean operators “AND” and/or “OR” to compose the search strings.

**Assessment of methodological quality**

The articles selected for data retrieval were analyzed by two independent reviewers to evaluate the methodological validity of each text before inclusion in this review. The quality of the publications included was evaluated based on the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. Studies received one point for not presenting a study design or execution limitations (risk of bias), inconsistency of results, indirectness of evidence, imprecision, and publication bias. A score of 4–5 points was considered high quality, 3 as moderate quality, and 0–2 as low quality.

**Data extraction**

The selected texts were evaluated by two independent reviewers for validity before inclusion; discrepancies were resolved by an independent reviewer. The data were entered into the Review Manager (RevMan 5.3) [168] software for analysis. A data extraction table was used to evaluate the quality of demographic data, study location, sample size, number of cases, number of positive cases, and diagnostic test.

**Data summary**

The random-effects meta-analysis model was used to analyze the overall combined prevalence of *Entamoeba* spp. in humans and animals. The heterogeneity among studies was evaluated using I2-statistic, which shows the percentage of variation among studies. These analyses were performed using the Stata software, version 12.

**Results**

Our systematic literature search yielded 1694 manuscripts using the established search strategies. As per the eligibility criteria (after exclusion of duplicate texts and articles related to other topics and exclusion of text based on review criteria or owing to method quality), 182 studies were selected for analysis (Table 1) [2–4, 6, 7, 9–25, 27–37, 39, 40, 42–45, 47–56, 58, 60–63, 65–69, 71, 72, 74, 75, 77–83, 85–93, 95–104, 106–109, 111, 114–123, 125–130, 132, 135, 136, 138–140, 142–146, 148–150, 153–164, 167, 169–173, 175–192, 194–204, 207–210, 212–215, 217–219]. Of these studies, 166 evaluated the prevalence of *Entamoeba* spp. in human fecal samples from different Brazilian states during different periods; the remaining 16 studies analyzed the prevalence of *Entamoeba* spp. parasites in different wild, captive, and domestic animals. Of the 182 studies included, 9 identified the species of the genus *Entamoeba* by molecular characterization, 17 by serology, and 2 by isoenzyme analysis. The results of this search strategy are presented in a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart (Fig. 1). Data were extracted according to the PRISMA Statement [141].

Regarding the methodological quality, according to the GRADE criteria used, all 166 studies evaluating the prevalence of *Entamoeba* spp. in different Brazilian populations as well as the 16 studies evaluating its prevalence in different animal host species presented a high methodological quality, all with a score of 5.

**Entamoeba** spp. in the Brazilian population

Overall, the 166 studies on human samples included 268,465 coprological tests and 114 from the oral cavity, including samples from 24 Brazilian states and the Federal District. The only states not analyzed were Roraima and Tocantins, both in the northern region. Test distribution by state showed that 10 studies were performed in Bahia (representing 40.2% of the analyzed samples), 4 in Piauí (15.1%), 11 in Rio Grande do Sul (11.0%), 25 in Minas Gerais (6.1%), 10 in Parana (4.0%), 22 in Sao Paulo (3.3%), 11 in Rio de Janeiro (2.7%), 15 in Amazonas (2.2%), 6 in Pernambuco (1.9%), 6 in Santa Catarina (1.3%), 5 in Ceara (0.8%), 5 in Paraíba (0.8%), 5 in Para (0.6%), 7 in Mato Grosso do Sul (0.6%), 5 in Sergipe (0.5%), 8 in Mato Grosso (0.4%), and 4 in Espírito Santo (0.2%). Two studies were conducted in the states of Maranhão (1.6% of the included samples) and Alagoas (1.0%). Only one study was conducted in Amapa (3.7%), Rio Grande do Norte (1.3%), Goias (0.4%), Acre (0.2%), Rondonia (0.1%), and the Federal District (0.03%).

Of the 166 studies analyzed, only 19 distributed patient samples by sex, totaling 56,442 samples, of which 65% were female and 35% male, with 1992 (3.5%) positive samples. Of the positive samples, 1082 (54.3%) were from females and 910 (45.7%) from males.

Fifty-six studies distributed the samples by age group, totaling 35,411 samples. Of these studies, 26,143 (73.8%) were from children aged 0–9 years; 3971 (16.8%) from aged 10–19 years, and 3297 (9.4%) from adults aged over 19 years. Of these samples, 5684 (16.1%) were positive for *Entamoeba* spp., with 4133 (72.7%) from children aged 0–9 years, 609 (10.8%) from 10–19 years, and 942 (16.5%) from adults over 19 years.

Regarding the status of the immune system, 266,794 (99.3%) of the samples were from patients with no previously
Table 1. A summary of the included studies.

| No. | Region | City – State | Total N | Prevalence (%) | Diagnostic method | Author/year |
|-----|--------|--------------|---------|----------------|------------------|-------------|
| 1   | Midwest | Caceres – MT | 53      | 9.4            | C                | Alencar et al. [7] |
| 2   | Midwest | Campo Novo do Parecis – MT | 43 | 37.2 | C | Zenazokenae et al. [219] |
| 3   | Midwest | Caceres – MT | 183     | 36.6           | C                | Silva et al. [196] |
| 4   | Midwest | Rondonopolis – MT | 215 | 11.5 | C | Luz et al. [125] |
| 5   | Midwest | Parque do Xingu – MT | 304 | 52.9 | C | Escobar-Pardo et al. [77] |
| 6   | Midwest | MT            | 173     | 16.8           | C                | Coinbra Jr and Santos [60] |
| 7   | Midwest | Parque Xingu – MT | 62  | 75.8 | C | Ferreira et al. [87] |
| 8   | Midwest | Mirassol D’Oeste – MT | 149 | 38.2 | C | Latorraca et al. [118] |
| 9   | Midwest | Rondonopolis – MT | 215 | 11.5 | C | Luz et al. [125] |
| 10  | Midwest | Parque do Xingu – MT | 304 | 52.9 | C | Escobar-Pardo et al. [77] |
| 11  | Midwest | MT            | 173     | 16.8           | C                | Coinbra Jr and Santos [60] |
| 12  | Midwest | Parque Xingu – MT | 62  | 75.8 | C | Ferreira et al. [87] |
| 13  | Midwest | Mirassol D’Oeste – MT | 149 | 38.2 | C | Latorraca et al. [118] |
| 14  | Midwest | Rondonopolis – MT | 215 | 11.5 | C | Luz et al. [125] |
| 15  | Midwest | Parque do Xingu – MT | 304 | 52.9 | C | Escobar-Pardo et al. [77] |
| 16  | Midwest | MT            | 173     | 16.8           | C                | Coinbra Jr and Santos [60] |
| 17  | Midwest | Parque Xingu – MT | 62  | 75.8 | C | Ferreira et al. [87] |
| 18  | Midwest | Mirassol D’Oeste – MT | 149 | 38.2 | C | Latorraca et al. [118] |
| 19  | Midwest | Rondonopolis – MT | 215 | 11.5 | C | Luz et al. [125] |
| 20  | Midwest | Parque do Xingu – MT | 304 | 52.9 | C | Escobar-Pardo et al. [77] |
| 21  | Midwest | MT            | 173     | 16.8           | C                | Coinbra Jr and Santos [60] |
| 22  | Midwest | Parque Xingu – MT | 62  | 75.8 | C | Ferreira et al. [87] |
| 23  | Midwest | Mirassol D’Oeste – MT | 149 | 38.2 | C | Latorraca et al. [118] |
| 24  | Midwest | Rondonopolis – MT | 215 | 11.5 | C | Luz et al. [125] |
| 25  | Midwest | Parque do Xingu – MT | 304 | 52.9 | C | Escobar-Pardo et al. [77] |
| 26  | Midwest | MT            | 173     | 16.8           | C                | Coinbra Jr and Santos [60] |
| 27  | Midwest | Parque Xingu – MT | 62  | 75.8 | C | Ferreira et al. [87] |
| 28  | Midwest | Mirassol D’Oeste – MT | 149 | 38.2 | C | Latorraca et al. [118] |
| 29  | Midwest | Rondonopolis – MT | 215 | 11.5 | C | Luz et al. [125] |
| 30  | Midwest | Parque do Xingu – MT | 304 | 52.9 | C | Escobar-Pardo et al. [77] |
| 31  | Midwest | MT            | 173     | 16.8           | C                | Coinbra Jr and Santos [60] |
| 32  | Midwest | Parque Xingu – MT | 62  | 75.8 | C | Ferreira et al. [87] |
| 33  | Midwest | Mirassol D’Oeste – MT | 149 | 38.2 | C | Latorraca et al. [118] |
| 34  | Midwest | Rondonopolis – MT | 215 | 11.5 | C | Luz et al. [125] |
| 35  | Midwest | Parque do Xingu – MT | 304 | 52.9 | C | Escobar-Pardo et al. [77] |
| 36  | Midwest | MT            | 173     | 16.8           | C                | Coinbra Jr and Santos [60] |
| 37  | Midwest | Parque Xingu – MT | 62  | 75.8 | C | Ferreira et al. [87] |
| 38  | Midwest | Mirassol D’Oeste – MT | 149 | 38.2 | C | Latorraca et al. [118] |
| 39  | Midwest | Rondonopolis – MT | 215 | 11.5 | C | Luz et al. [125] |
| 40  | Midwest | Parque do Xingu – MT | 304 | 52.9 | C | Escobar-Pardo et al. [77] |
| 41  | Midwest | MT            | 173     | 16.8           | C                | Coinbra Jr and Santos [60] |
| 42  | Midwest | Parque Xingu – MT | 62  | 75.8 | C | Ferreira et al. [87] |
| 43  | Midwest | Mirassol D’Oeste – MT | 149 | 38.2 | C | Latorraca et al. [118] |
| 44  | Midwest | Rondonopolis – MT | 215 | 11.5 | C | Luz et al. [125] |
| 45  | Northeast | Teresina – PI | 39,539  | 8.4            | C                | Ibiapina et al. [108] |
| 46  | Northeast | Buriti dos Lopes – PI | 511 | 8.4 | C | Sousa et al. [201] |
| 47  | Northeast | Parnaiba – PI | 251     | 29.9           | C                | Fernandes et al. [85] |
| 48  | Northeast | Sao Raimundo Nonato – PI | 265 | 42.6 | C | Alvares et al. [10] |
| 49  | Northeast | Santa Cruz – RN | 3480   | 2.3            | C                | Lima et al. [121] |
| 50  | Northeast | Aracaju – SE  | 476     | 31.3           | C                | Oliveira et al. [155] |
| 51  | Northeast | Aracaju – SE  | 500     | 32.6           | C                | Rollemberg et al. [172] |
| 52  | Northeast | Aracaju – SE  | 298     | 14.1           | C and E          | Lawson et al. [119] |
| 53  | Northeast | Santo Antonio de Jesus – BA | 144 | 45.8 | C | Reis et al. [167] |
| 54  | Northeast | Salvador – BA  | 48,028  | 0.5            | C and M          | Soares et al. [200] |
| 55  | Northeast | Santo Antonio de Jesus – BA | 144 | 45.8 | C | Andrade et al. [12] |
| 56  | Northeast | Aquirau – BA  | 236     | 15.7           | C                | Santos et al. [183] |
| 57  | Northeast | Feira de Santana – BA | 349 | 50.1 | C | Almeida et al. [9] |
| 58  | Northeast | Ilheus – BA   | 97      | 49.5           | C and E          | Santos et al. [181] |

(Continued on next page)
Table 1. (Continued)

| No. | Region                        | City – State            | Total N | Prevalence (%) | Diagnostic method | Author/year |
|-----|-------------------------------|-------------------------|---------|----------------|-------------------|-------------|
| 59  | Northeast                     | Salvador – BA           | 200     | 65.0           | C                 | Seixas et al. [186] |
| 60  | Northeast                     | Salvador – BA           | 52,704  | 3.4            | C and M           | Santos et al. [178] |
| 61  | Northeast                     | Salvador – BA           | 5624    | 15.6           | C                 | Santos et al. [176] |
| 62  | Northeast                     | Ipira – BA              | 410     | 12.2           | C                 | Santos-Junior et al. [184] |
| 63  | Northeast                     | Cuite – PB              | 45      | 40.0           | C                 | Bezerra et al. [27] |
| 64  | Northeast                     | Joao Pessoa – PB        | 150     | 18.6           | C                 | Monteiro et al. [143] |
| 65  | Northeast                     | Campina Grande – PB     | 1195    | 69.0           | C and E           | Silva et al. [195] |
| 66  | Northeast                     | Joao Pessoa – PB        | 67      | 28.3           | C                 | Magalhães et al. [129] |
| 67  | Northeast                     | Campina Grande – PB     | 745     | 93.1           | C                 | Silva et al. [188] |
| 68  | Northeast                     | Russas – CE             | 213     | 21.6           | C and M           | Calegar et al. [43] |
| 69  | Northeast                     | Fortaleza – CE          | 582     | 29.4           | C                 | Bachur et al. [15] |
| 70  | Northeast                     | Fortaleza – CE          | 735     | 38.3           | C and E           | Braga et al. [36] |
| 71  | Northeast                     | Fortaleza – CE          | 161     | 20.5           | E                 | Braga et al. [35] |
| 72  | Northeast                     | Fortaleza – CE          | 564     | 36.2           | C and E           | Braga et al. [34] |
| 73  | Northeast                     | Maceio – AL             | 1003    | 6.4            | C and M           | Santos et al. [182] |
| 74  | Northeast                     | Maceio – AL             | 1798    | 3.8            | C and E           | Duarte et al. [74] |
| 75  | Northeast                     | Recife – PE             | 213     | 4.7            | C and E           | Dourado et al. [72] |
| 76  | Northeast                     | Recife e Macaparana – PE| 1783    | 5.8            | C and M           | Pinheiro et al. [159] |
| 77  | Northeast                     | Macaparana – PE         | 1437    | 2.6            | C and M           | Pinheiro et al. [158] |
| 78  | Northeast                     | Recife, Palmares e Bodoco – PE| 633 | 28.3 | C, Z and E | Aca et al. [3] |
| 79  | Northeast                     | Sao Lourenço da Mata – PE| 485    | 41.2           | C and E           | Gonçalves et al. [98] |
| 80  | Northeast                     | Recife – PE             | 459     | 50.9           | E                 | Okazaki et al. [153] |
| 81  | Northeast                     | Chapadinha – MA         | 3933    | 26.9           | C                 | Silva et al. [190] |
| 82  | Northeast, North              | Timo – MA, Macapa – AP  | 10,260  | 3.8            | C                 | Ferraz et al. [86] |
| 83  | North                         | Belem – PA              | 320     | 3.7            | C                 | Carvalho et al. [50] |
| 84  | North                         | Santarem – PA           | 367     | 34.3           | C                 | Banhos et al. [16] |
| 85  | North                         | Belem – PA              | 334     | 28.4           | C and E           | Silva et al. [187] |
| 86  | North                         | Belem – PA              | 438     | 28.9           | E                 | Póvoa et al. [163] |
| 87  | North                         | PA                      | 300     | 57.6           | C                 | Miranda et al. [140] |
| 88  | North                         | Presidente Figueiredo – AM| 143    | 4.2            | C                 | Gonçalves et al. [99] |
| 89  | North                         | Coari – AM              | 65      | 9.2            | C                 | Silva et al. [194] |
| 90  | North                         | Santa Izabel do Rio Negro – AM| 463 | 25.3 | C       | Valverde et al. [215] |
| 91  | North                         | Manaus – AM             | 400     | 40.5           | C                 | Oliveira et al. [154] |
| 92  | North                         | Itauaretã – AM          | 333     | 31.2           | C                 | Boia et al. [32] |
| 93  | North                         | Manaus – AM             | 451     | 23.9           | C                 | Mata et al. [130] |
| 94  | North                         | Coari – AM              | 211     | 29.4           | C                 | Monteiro et al. [142] |
| 95  | North                         | Coari – AM              | 123     | 21.1           | C                 | Silva et al. [189] |
| 96  | North                         | Sao Gabriel da Cachoeira – AM| 895 | 29.9 | C       | Rios et al. [170] |
| 97  | North                         | Santa Izabel do Rio Negro – AM| 308 | 71.7 | C       | Boia et al. [31] |
| 98  | North                         | Eirunepe – AM           | 413     | 38.2           | C                 | Araújo and Fernandez [13] |
| 99  | North                         | Manaus – AM             | 1585    | 37.3           | C and E           | Beneton et al. [25] |
| 100 | North                         | Nova Olinda do Norte – AM| 81     | 23.4           | C                 | Hurtado-Guerrero et al. [106] |
| 101 | North                         | Novo Airao – AM         | 316     | 29.1           | C                 | Boia et al. [30] |
| 102 | North                         | Manaus – AM             | 110     | 9.1            | C                 | Giugliano et al. [96] |
| 103 | North                         | Ariquemes e Monte Negro – AM| 216 | 50.4 | C and E | Santos et al. [179] |
| 104 | North                         | Acrelandia – AC         | 429     | 25.6           | C                 | Souza et al. [202] |
| 105 | Northeast                     | Diamantina – MG         | 66      | 18.2           | C                 | Eustachio et al. [78] |
| 106 | Southeast                     | Bele Horizonte – MG     | 6289    | 6.5            | C and M           | Costa et al. [62] |
| 107 | Southeast                     | Vigos – MG              | 419     | 32.9           | C                 | Iasbik et al. [107] |
| 108 | Southeast                     | Alfenas – MG            | 277     | 2.5            | C                 | Felizardo et al. [83] |
| 109 | Southeast                     | Ituiutaba – MG          | 140     | 22.1           | C                 | Moura et al. [146] |
| 110 | Southeast                     | Sete Lagoas – MG        | 26      | 30.8           | C                 | Pires et al. [160] |
| 111 | Southeast                     | Uberaba – MG            | 1323    | 6.4            | C                 | Cabrine-Santos et al. [42] |
| 112 | Southeast                     | Caldas – MG             | 60      | 66.6           | . . .             | Simões et al. [199] |
| 113 | Southeast                     | Divinopolis – MG        | 1403    | 5.7            | C and E           | Pereira et al. [156] |
| 114 | Southeast                     | MG                      | 409     | 89.7           | C                 | Assis et al. [14] |
| 115 | Southeast                     | Uberaba – MG            | 82      | 63.4           | C                 | Cembranelli et al. [54] |
| 116 | Southeast                     | Ouro verde de minas – MG| 315     | 28.2           | C                 | Carvalho et al. [49] |
| 117 | Southeast                     | Uberlandia – MG         | 110     | 17.3           | C                 | Ferreira-Filho et al. [89] |
| 118 | Southeast                     | Vigos – MG              | 246     | 4.1            | C                 | Einloth et al. [75] |
| No. | Region | City – State | Total N | Prevalence (%) | Diagnostic method | Author/year |
|-----|--------|--------------|---------|----------------|-------------------|-------------|
| 119 | Southeast | Pato de Minas – MG | 161 | 16.1 | C | Silva and Silva [191] |
| 120 | Southeast | Berilo – MG | 149 | 24.8 | C | Martins et al. [135] |
| 121 | Southeast | Vespasiano – MG | 176 | 16.5 | C | Barçante et al. [21] |
| 122 | Southeast | Uberlandia – MG | 160 | 23.1 | C | Machado et al. [127] |
| 123 | Southeast | Abadia dos Dourados – MG | 376 | 20.5 | C | Machado et al. [128] |
| 124 | Southeast | Belo Horizonte – MG | 472 | 14.6 | C | Menezes et al. [138] |
| 125 | Southeast | Vespasiano – MG | 537 | 6.3 | C | Santos et al. [175] |
| 126 | Southeast | Bambui – MG | 2811 | 7.4 | C | Rocha et al. [171] |
| 127 | Southeast | Uberlandia – MG | 264 | 1.5 | C | Rezende et al. [169] |
| 128 | Southeast | Uberlandia – MG | 104 | 24.0 | C | Costa-Cruz et al. [63] |
| 129 | Southeast | Uberlandia – MG | 100 | 62.0 | C | Favoreto Jr and Machado [82] |
| 130 | Southeast | Sao Mateus – ES | 50 | 36.0 | C | Albuquerque and Souza [6] |
| 131 | Southeast | Sao Mateus – ES | 42 | 19.0 | C | Brauer et al. [39] |
| 132 | Southeast | Sao Mateus – ES | 221 | 31.2 | C | Damâzio et al. [67] |
| 133 | Southeast | Sao Mateus – ES | 52 | 31.7 | C | Damâzio et al. [66] |
| 134 | Southeast | Sumidouro – RJ | 294 | 12.9 | C | Barbosa et al. [19] |
| 135 | Southeast | Rio de Janeiro – RJ | 3245 | 6.8 | C | Faria et al. [81] |
| 136 | Southeast | Rio de Janeiro – RJ | 595 | 12.2 | C | Ignácio et al. [109] |
| 137 | Southeast | Rio de Janeiro – RJ | 180 | 10.5 | ... | Valença-Barbosa et al. [214] |
| 138 | Southeast | Niterói – RJ | 68 | 17.6 | C | Leite et al. [120] |
| 139 | Southeast | Niterói – RJ | 1749 | 5.4 | C | Macedo et al. [126] |
| 140 | Southeast | Niterói – RJ | 429 | 11.6 | C | Uchôa et al. [213] |
| 141 | Southeast | Rio de Janeiro – RJ | 218 | 1.4 | C | Carvalho-Costa et al. [51] |
| 142 | Southeast | Niterói – RJ | 140 | 15.7 | C | Port-Lourengo et al. [161] |
| 143 | Southeast | Niterói – RJ | 261 | 21.8 | C | Uchôa et al. [212] |
| 144 | Southeast | RJ | 99 | 31.3 | C | Moura et al. [145] |
| 145 | Southeast | Ribeirão Preto – SP | 233 | 13.3 | C | Fonseca et al. [91] |
| 146 | Southeast | Sao Jose do Rio Preto – SP | 100 | 7.0 | C | Castro et al. [52] |
| 147 | Southeast | Campos do Jordao – SP | 185 | 22.2 | C | Branco et al. [37] |
| 148 | Southeast | Mirassol – SP | 310 | 15.1 | C | Belloto et al. [23] |
| 149 | Southeast | Sao Jose do Rio Preto – SP | 500 | 0.8 | C | Cardoso et al. [48] |
| 150 | Southeast | Sao Paulo – SP | 66 | 40.9 | C | Lopes et al. [123] |
| 151 | Southeast | Catanduva – SP | 133 | 9.7 | C | Biscegli et al. [29] |
| 152 | Southeast | Presidente Bernardes – SP | 101 | 8.9 | C | Tashima et al. [209] |
| 153 | Southeast | Ribeirão Preto – SP | 429 | 9.3 | C | Capuano et al. [47] |
| 154 | Southeast | Araraquara – SP | 503 | 14.5 | C | Miné and Rosa [139] |
| 155 | Southeast | Sao Paulo – SP | 120 | 16.6 | C | Korkes et al. [115] |
| 156 | Southeast | Catanduva – SP | 250 | 34.4 | C | Fuleiros et al. [80] |
| 157 | Southeast | Presidente Prudente – SP | 1000 | 7.1 | C | Tashima and Simões [208] |
| 158 | Southeast | Sao Paulo – SP | 200 | 13.0 | C | Cimerman et al. [58] |
| 159 | Southeast | Sao Jose da Bela Vista – SP | 1032 | 0.2 | C | Tavares-Dias and Grandini [210] |
| 160 | Southeast | Butucatu – SP | 147 | 22.4 | C | Guimarães and Sogayar [102] |
| 161 | Southeast | Holambra – SP | 222 | 15.7 | C | Kobayashi et al. [114] |
| 162 | Southeast | Sao Paulo – SP | 407 | 1.5 | C | Ferreira et al. [88] |
| 163 | Southeast | Osasco – SP | 155 | 21.3 | Z | Aca et al. [2] |
| 164 | Southeast | Sao Paulo – SP | 395 | 25.8 | C | Guerra et al. [100] |
| 165 | Southeast | Guarulhos – SP | 913 | 21.9 | C | Chieffi et al. [56] |
| 166 | Southeast | Ribeirão Preto – SP | 1351 | 23.1 | C | Ferroli-Filho [90] |

| No. | Region | City – State | Total N | Prevalence (%) | Diagnostic method | Author/year |
|-----|--------|--------------|---------|----------------|-------------------|-------------|
| 167 | Southeast | Rio de Janeiro – RJ | 13 (bird – emu) | 23.1 | C and M | Gallo et al. [93] |
| 168 | Southeast | Rio de Janeiro – RJ | 1190 (non-human primate) | 33.4 | C | Barbosa et al. [18] |
| 169 | Southeast | Petropolis – RJ | 790 (pig) | 21.5 | C | Barbosa et al. [17] |
| 170 | Southeast | Sao Paulo – SP | 21 (rodent – mouse) | 9.5 | C | Chagas et al. [55] |
| 171 | Southeast | Bauru – SP | 47 (non-human primate) | 23.4 | C | David et al. [68] |
| 172 | Southeast | Butucatu – SP | 207 (bird) | 1.9 | C | Marietto-Gonçalves et al. [132] |
| 173 | Southeast | Sao Paulo – SP | 31 (canid – guara wolf) | 22.6 | C | Gilioi and Silva [95] |
| 174 | Southeast | Sao Paulo – SP | 103 (edentate – anteater) | 4.8 | C | Diniz et al. [71] |
| 175 | Northeast | MA – PI – PE – BA | 340 (dog) | 3.8 | C | Zanetti et al. [217] |
| 176 | Northeast | Aracaju – SE | 44 (rodent – mouse) | 2.3 | C | Guimarães et al. [103] |
reported compromised immune system, whereas 1785 (0.7%) samples were from immunocompromized patients. Regarding the causes of immunosuppression, it was found that 1463 (82%) samples were from human immunodeficiency virus (HIV) carriers, 249 (14%) from patients undergoing hemodialysis, and 73 (4%) from patients with cancer. Of the samples from immunosuppressed patients, 338 (19%) were positive for *Entamoeba* spp.; 284 (84%) of these patients had HIV, 28 (8.3%) were undergoing hemodialysis, and 26 (7.7%) had cancer.

**Table 1.** (Continued)

| No. | Region | City – State | Total N | Prevalence (%) | Diagnostic method | Author/year |
|-----|--------|--------------|---------|----------------|-------------------|-------------|
| 177 | Northeast | Lajes – RN | 64 (sheep) | 17.2 | C | Souza et al. [203] |
| 178 | Northeast | Itabuna – BA | 119 (dog) | 0.8 | C | Campos-Filho et al. [45] |
| 179 | Northeast | Recife – PE | 685 (bird) | 5.7 | C | Freitas et al. [92] |
| 180 | North | Sena Madureira – AC | 18 (bird) | 22.2 | C | Souza et al. [204] |
| 181 | Midwest | Caceres – MT | 120 (dog) | 15.8 | C | Rosales and Malheiros [173] |
| 182 | South | SC | 217 (goat) | 1.8 | C | Radavelli et al. [164] |

**Abbreviations:** MT – Mato Grosso; PR – Parana; PI – Piaui; RN – Rio Grande do Norte; PA – Para; MG – Minas Gerais; SE – Sergipe; BA – Bahia; MS – Mato Grosso do Sul; ES – Espirito Santo; RJ – Rio de Janeiro; PB – Paraiba; RS – Rio Grande do Sul; SP – Sao Paulo; CE – Ceara; AL – Alagoas; SC – Santa Catarina; DF – Federal District (capital of Brazil); MA – Maranhao; AP – Amapa; AM – Amazonas; RO – Rondonia; GO – Goias; AC – Acre; PE – Pernambuco. C – conventional method, based on detection by optical microscopy; M – molecular method, based on DNA detection; E – Elisa method, serology-based; Z – zymodema method, based on isoenzyme analysis.

**Figure 1.** A flowchart of the steps performed in the systematic review.

**Pooled prevalence of *Entamoeba* spp.**

The prevalence of *Entamoeba* spp. reported in the analyzed studies was between 0.2% and 93.1%. Random-effects meta-analysis showed a pooled prevalence of 22% (95% CI: 21–24; weight 100%) of *Entamoeba* spp. in the Brazilian population (Fig. 2).

The analysis of pooled prevalence by state showed that it was 72% in Paraiba, 53% in the Federal District, 50% in Rondonia, 35% in Mato Grosso do Sul, 34% in Mato Grosso
Figure 2. Forest plot for a random-effect meta-analysis of the pooled prevalence of *Entamoeba* spp. in the Brazilian population by state. In parentheses the studies used for each state.
and Amazonas and Ceará, 31% in Espírito Santo, 30% in Para, 28% in Sergipe, 26% in Acre, 19% in Maranhão, 16% in Pernambuco, 15% in Rio Grande do Sul, 12% in Minas Gerais, 11% in São Paulo, 9% in Pará, Piauí and Rio de Janeiro, 6% in Santa Catarina, 4% in Alagoas and Amapá, 3% in Bahia and Goiás, and 2% in Rio Grande do Norte (Fig. 2). The pooled prevalence with complete 95% CI values for each state is shown in Table 2.

Pooled prevalence by age group showed that the age group between 10 and 19 years had the highest prevalence (40%; 95% CI: 29–50; weight 100%). The state with the highest prevalence in this age group was Mato Grosso do Sul (75%), followed by Bahia (50%), Minas Gerais (45%), São Paulo (34%), Amazonas (30%), and Pernambuco (6%). In the group over 10 years of age, the pooled prevalence was 34% (95% CI: 20–47; weight 100%). The state with the highest prevalence in this age group was the Federal District (53%), followed by Mato Grosso do Sul (51%), Minas Gerais (47%), Rio Grande do Sul (36%), Pernambuco (35%), Piauí (30%), Rio de Janeiro and Amazonas (26%), São Paulo (21%), Bahia (20%), Espírito Santo (19%), and Mato Grosso (9%). Children below 9 years of age had a pooled prevalence of 25% (95% CI: 18–31; weight 100%). The state with the highest prevalence for this age group was Paraíba (85%), followed by Mato Grosso do Sul (55%), Santa Catarina (36%), Mato Grosso and Pará (34%), Sergipe (31%), Pernambuco (25%), Minas Gerais (23%), Rio de Janeiro (21%), São Paulo (17%), Amazonas (16%), Rio Grande do Sul (15%), Para and Bahia (13%), and Maranhão and Amapá (4%) (Table 2).

Table 2. Distribution of the pooled prevalence of Entamoeba spp. according to state and age.

| State      | Overall prevalence | 95% CI (%) | Weight (%) | <9 | 95% CI (%) | Weight (%) | 10–19 | 95% CI (%) | Weight (%) | >20 | 95% CI (%) | Weight (%) |
|------------|--------------------|------------|------------|----|------------|------------|-------|------------|------------|-----|------------|------------|
| PR         | 13                 | 1–25       | 4.30       | 13 | 1–25       | 7.16       | –     | –          | –          | –   | –          | –          |
| SE         | 31                 | 27–36      | 1.44       | 31 | 27–36      | 2.39       | –     | –          | –          | –   | –          | –          |
| RS         | 20                 | 7–33       | 5.63       | 15 | 2–29       | 7.13       | –     | –          | –          | –   | –          | –          |
| PA         | 34                 | 30–39      | 1.43       | 34 | 30–39      | 2.38       | –     | –          | –          | –   | –          | –          |
| MG         | 33                 | 22–45      | 24.58      | 23 | 9–36       | 22.36      | 45    | 24–67      | 41.1       | 47  | 7–100      | 21.17      |
| SP         | 19                 | 13–26      | 12.89      | 17 | 10–24      | 14.31      | 34    | 28–41      | 10.49      | 21  | 19–23      | 10.72      |
| MT         | 28                 | 6–50       | 5.66       | 34 | 6–62       | 7.10       | –     | –          | –          | –   | –          | –          |
| MA         | 4                  | 3–6        | 1.45       | 4  | 3–6        | 2.41       | –     | –          | –          | –   | –          | –          |
| AP         | 4                  | 3–4        | 1.45       | 4  | 3–4        | 2.42       | –     | –          | –          | –   | –          | –          |
| SC         | 36                 | 13–58      | 4.06       | 36 | 13–58      | 6.79       | –     | –          | –          | –   | –          | –          |
| PB         | 85                 | 84–87      | 2.9        | 85 | 84–87      | 4.82       | –     | –          | –          | –   | –          | –          |
| BA         | 30                 | 17–42      | 6.3        | 13 | 9–16       | 4.18       | 50    | 28–72      | 6.99       | 20  | 16–25      | 10.50      |
| AM         | 20                 | 14–26      | 9.88       | 16 | 8–24       | 9.49       | 30    | 22–39      | 10.18      | 26  | 21–32      | 10.56      |
| MS         | 56                 | 36–76      | 5.50       | 55 | 45–64      | 2.29       | 75    | 65–83      | 10.11      | 51  | 44–57      | 10.48      |
| RJ         | 22                 | 17–27      | 2.74       | 21 | 16–27      | 2.38       | –     | –          | –          | 26  | 15–40      | 5.12       |
| PE         | 23                 | 8–39       | 5.7        | 25 | 20–30      | 2.39       | 6     | 5–7        | 21.13      | 35  | 28–41      | 5.31       |
| ES         | 19                 | 10–33      | 1.33       | –  | –          | –          | –     | –          | –          | 19  | 10–33      | 5.16       |
| FD         | 53                 | 42–64      | 1.34       | –  | –          | –          | –     | –          | –          | 53  | 42–64      | 5.18       |
| PI         | 30                 | 25–36      | 1.42       | –  | –          | –          | –     | –          | –          | 30  | 25–36      | 5.33       |
| Overall    | 29                 | 24–34      | 100        | 25 | 18–31      | 100        | 40    | 29–50      | 100        | 34  | 20–47      | 100        |

Abbreviations: 95% CI, 95% confidence interval. PR – Parana, SE – Sergipe, RS – Rio Grande do Sul, PA – Para, MG – Minas Gerais, SP – São Paulo, MT – Mato Grosso, MA – Maranhão, AP – Amapá, SC – Santa Catarina, PB – Paraíba, BA – Bahia, AM – Amazonas, MS, Mato Grosso do Sul, RJ – Rio de Janeiro, PE – Pernambuco, ES – Espírito Santo, DF – Federal District, PI – Piauí.

The pooled prevalence in immunosuppressed patients was 26% (95% CI: 20–31; weight 100%). The state with the highest prevalence was Paraíba (57%), followed by Pernambuco (33%), Amazonas (28%), Pará (20%), Espírito Santo (19%), São Paulo (18%), Mato Grosso and Rio de Janeiro (15%), Minas Gerais (8%), Mato Grosso do Sul (7%), and Bahia (1%). In contrast, the pooled prevalence in the 36,721 female samples was 29% (95% CI: 14–43; weight 100%). The state with the highest prevalence of Entamoeba spp. in female samples was Mato Grosso do Sul (62%), followed by Para (59%), Amazonas (33%), Espírito Santo (31%), Pernambuco (25%), Pará (21%), São Paulo (19%), Rio de Janeiro (11%), Minas Gerais (7%), and Mato Grosso (4%).

The pooled prevalence in immunosuppressed patients was 18% (95% CI: 7–30; weight 100%). The most prevalent cause of immunosuppression with Entamoeba spp. was cancer (36%), followed by HIV infection (27%), and hemodialysis (10%) (Table 3).

Table 3. Distribution of the pooled prevalence of Entamoeba spp. according to the type of immunosuppression.

| Immunosuppression | Overall subtotal | 95% CI (%) | Weight (%) |
|-------------------|-----------------|------------|------------|
| Cancer            | 36              | 26–47      | 10.45      |
| HIV infection     | 27              | 9–45       | 55.96      |
| Hemodialysis      | 10              | 2–18       | 33.59      |
| Overall prevalence| 18              | 7–30       | 100        |

Abbreviations: 95% CI, 95% confidence interval.
Entamoeba spp. in animals in Brazil

The 16 studies that analyzed the prevalence of Entamoeba spp. in animals included 3805 coprological tests in different species (79.1% mammals and 20.9% birds). The classification by direct interaction with humans showed that 54% were wild animals in captivity, 2.3% were free-living wild animals, 15.2% were pets, and 28.5% were farm animals.

The analysis of prevalence of Entamoeba spp. in Brazilian animals from different orders and with different types of human interaction showed a pooled prevalence of 12% (95% CI: 7–17). Wild animals in captivity had a prevalence of 16% (95% CI: 3–29), free-living wild animals 3% (95% CI: 1–7), farm animals 15% (CI95%: 1–29.00), and pets 6% (95% CI: 1–10) (Fig. 3).

The prevalence of Entamoeba spp. by taxonomic class showed a prevalence of 12% (95% CI: 6–19) in mammals and 6% (95% CI: 1–12) in birds (Table 4).

Of the captive wild mammals, non-human primates were the most studied, with prevalence percentages of 34% and 23%. In contrast, of the farm mammals, pigs had a prevalence of 22%. Notably, the only animal considered a pet in the studies analyzed was the dog, representing 16% (Table 4). Of the domestic farm birds, emus had a prevalence of 23% and free-living wild birds had a prevalence of 22% (Table 4).

Entamoeba spp. diversity in different host species in Brazil

Conventional microscopy analysis, molecular characterization, serology, and isoenzyme analysis were used to identify Entamoeba spp. in 150 studies, totaling 17,651 human samples. In contrast, only six studies on host animals characterized 51 positive samples at the species level.

To calculate the prevalence of the reported species, only the samples that performed this procedure were used. For this purpose, 17,651 samples (fecal and oral cavity) with identification of Entamoeba species, were used. In these samples, the most prevalent species identified in human hosts were E. coli (86.5%), followed by E. dispar (7.9%), E. histolytica (3.1%), E. hartmanni (1.9%), and E. gingivalis 0.6% (Fig. 4). The species identified as non-pathogenic E. histolytica, through zymodeme [2, 3], were considered as E. dispar. On the other
Table 4. Distribution of the pooled prevalence of Entamoeba spp. according to taxonomic class and interaction with humans.

| Study                                      | Taxonomic class          | Overall prevalence (%) | 95% CI | Weight (%) |
|--------------------------------------------|---------------------------|------------------------|--------|------------|
| Guimarães et al. [103]                     | Mammals                   | 12                     | 6–19   | 78.60      |
| Chagas et al. [55]                         | Rodents                   | 2                      | 0–12   | 7.05       |
| Barbosa et al. [18]                        | Non-human primates        | 34                     | 31–36  | 7.27       |
| David et al. [68]                          | Non-human primates        | 23                     | 14–37  | 5.29       |
| Freitas et al. [92]                        | Birds                     | 6                      | 11–40  | 4.65       |
| Marietto-Gonçalves et al. [132]            | Anteaters                 | 3                      | 1–8    | 7.21       |
| Zanetti et al. [217]                       | Dogs                      | 4                      | 2–6    | 7.34       |
| Guimarães et al. [103]                     | Dogs                      | 16                     | 10–23  | 6.64       |
| Campos-Filho et al. [45]                   | Figs                      | 22                     | 19–25  | 7.26       |
| Barreira et al. [17]                       | Goat                      | 2                      | 1–5    | 7.36       |
| Souza et al. [203]                         | Sheep                     | 17                     | 10–28  | 6.01       |
| Souza et al. [204]                         | Birds                     | 6                      | 1–12   | 21.40      |
| Marietto-Gonçalves et al. [132]            | Birds                     | 22                     | 9–45   | 3.68       |
| Freitas et al. [92]                        | Birds                     | 2                      | 1–5    | 7.35       |
| Gallo et al. [93]                          | Emus                      | 23                     | 8–50   | 3.03       |
| Interaction with humans                   |                           |                        |        |            |
| Free-living wild animals                   |                           | 3                      | 1–7    | 18.08      |
| Captive wild animals                      |                           | 16                     | 3–29   | 36.92      |
| Domestic pets                              |                           | 6                      | 1–10   | 21.35      |
| Domestic farm animals                      |                           | 15                     | 1–29   | 23.66      |

Abbreviations: 95% CI, 95% confidence interval

hand, E. coli was the only species with a taxonomic classification, identified in animal hosts. In addition, unidentified Entamoeba species were reported in animal hosts.

The prevalence of species by geographical regions showed that E. coli was the most prevalent species in the five regions, with high percentages. Entamoeba histolytica was identified in the north (28.9%), northeast (3.4%), south (1.1%), and southeast (0.3%) regions. The southeast region presented the greatest species diversity, with the identification of the five Entamoeba spp. registered in Brazil, followed by the northeast region with four species, north and south with three, and center-west with two different species (Fig. 4).

The detailed distribution of protozoan species by the Brazilian state is shown in Figure 4.

Discussion

Data on the prevalence of Entamoeba spp. were documented in 24 of 26 Brazilian states and in the Federal District. In this meta-analysis, a pooled prevalence of 22% of Entamoeba spp. was found in the Brazilian population. The pooled prevalence was calculated with samples of studies published between 1962 to 2020, so this percentage represents an overall prevalence of Entamoeba spp. in different hosts during this period of time, in Brazil. These results reflect a sampling of the five Brazilian regions, but the northeastern, southern, and southeastern regions are better characterized since these regions present higher scientific production. The northeastern region contributed 38 articles, representing 63.3% of the samples analyzed in this meta-analysis, the southern region 27 studies (16.3%), the southeastern region 62 (12.3%), the northern region 23 (6.7%), and the central-western region 17 studies (1.4%).

The analysis of the prevalence of Entamoeba spp. by region showed contrasting realities within the states of each region. The northeastern region showed high pooled prevalence percentages in the states of Paraiba (72%), Ceara (34%), Sergipe (28%), Pernambuco (16%), Piaui (9%) and Bahia (3%). Alagoas and the Rio Grande do Norte showed another reality, with a prevalence of 4% and 2%, respectively. The central-western region showed high pooled prevalence in the Federal District (53%) and the states of Mato Grosso do Sul (35%) and Mato Grosso (34%), but the state of Goias presented a pooled prevalence of 3%. In the northern region, the states of Rondonia (50%), Para (30%), Acre (26%), Amazonas (30%) and Maranhao (19%) showed high percentages of prevalence, while and Amapa showed a prevalence of 4%. In the southeastern region, the states of Espirito Santo, Minas Gerais and Sao Paulo showed a pooled prevalences of 31%, 12% and 11% respectively, while Rio Janeiro presented a moderate prevalence of 9%. The same data were found for the southern region, where the state of Rio Grande do Sul had a high pooled prevalence of 15% and the states Parana and Santa Catarina had a moderate prevalence of 9% and 6%, respectively.

The differences in the prevalence of intestinal parasites among the Brazilian regions were recently documented in a previous study [81]. However, in addition to the differences among the regions, this present study showed great prevalence differences within the same region. This epidemiological data can be used as a tool to identify areas of social vulnerability as intestinal parasitosis is strongly associated with the
Figure 4. Geographical distribution of Entamoeba spp. detected in Brazil. (a) Species detected in 17,651 human samples. (b) Species distribution in human and animal hosts according to Brazilian regions. (c) Species distribution in human and animal hosts in Brazilian states. Abbreviations: AC – Acre; AM – Amazonas; RO – Rondonia; PA – Para; MA – Maranhao; PI – Piaui; CE – Ceara; RN – Rio Grande do Norte; PB – Paraiba; PE – Pernambuco; AL – Alagoas; SE – Sergipe; BA – Bahia; MG – Minas Gerais; ES – Espirito Santo; RJ – Rio de Janeiro; SP – Sao Paulo; PR – Parana; SC – Santa Catarina, RS – Rio Grande do Sul; MS – Mato Grosso do Sul; GO – Goias; MT – Mato Grosso; DF – Federal District (Capital of Brazil).
socioeconomic level of the population. In contrast, Brazil is an extensive country and presents many regional and intraregional socioeconomic and health development differences. Only 39% of the cities collect and treat 100% of the sewage [38], with the lack of adequate basic sanitation system increasing the continuous dissemination of neglected diseases linked to sanitary problems, such as intestinal parasitosis, including those caused by Entamoeba spp.

Regarding sex, both showed a similar pooled prevalence of Entamoeba spp., with 29% for women and 26% for men, suggesting that sex may not be a determinant for protozoan contamination. Regarding age, there was a high prevalence in the three groups, 40% in the 10–19 years group, 34% in adults aged over 19 years, and 25% in children aged below 9 years.

Age is an important risk factor for intestinal parasitic infections. Children are often more susceptible to intestinal infectious diseases than adults owing to inadequate hygiene habits. Children aged below 9 years were the group that presented the highest number of samples analyzed in this meta-analysis, and even though it is the least prevalent for Entamoeba spp., 25% is a percentage of great importance within this population. In contrast, this study showed that the most prevalent group for Entamoeba spp. were the people aged 10–19 years. Therefore, school age represents a higher risk for amebiasis than the age of the general population. A previous study in Indonesia showed a high rate of Entamoeba spp. (52.8%) in the school-age (7–15 years) group [137]. The age group between 10 and 19 years was the most heterogeneous, including pre-adolescents, adolescents, and young adults. However, this group provides a possible panorama for the prevalence of intestinal parasitosis in high school students in Brazil.

The pooled prevalence of Entamoeba spp. infection in immunocompromized patients was 18%. This parasitic infection was most prevalent in cancer patients, with 36%, although they presented fewer samples for analysis, followed by HIV and hemodialysis patients, with a prevalence of 27% and 10%, respectively. Some studies indicate that this parasite frequently causes opportunistic infections in immunosuppressed patients [46, 111]; it was one of the most common causes of morbidity in this group. This study recorded high prevalence percentages in immunosuppressed patients, especially with cancer. Cancer, HIV, and hemodialysis patients become immunocompromized as a result of the disease itself or due to therapeutic procedures that cause immunosuppression [134, 193]. Although intestinal parasitic infections are a great risk with persistent diarrhea and severe clinical symptoms in immunocompromized patients, the routine diagnosis of these infections is often ignored during chemotherapy or disease [1, 131]. For this reason, it is extremely important to diagnose and treat parasitic infections to decrease morbidity in this group.

The overall pooled prevalence of Entamoeba spp. in animal hosts was 12%. Of these animals, Entamoeba spp. was most prevalent in mammals (12%), followed by birds (6%). Regarding human interaction, Entamoeba spp. was most prevalent in captive wild animals, which are not easily accessible to the general population, followed by domestic farm animals. Farm animal breeding is a possible risk factor for Entamoeba spp. transmission. Therefore, it is necessary to establish control measures to minimize the transmission of these parasites among different animal hosts and humans.

For Entamoeba spp. diversity, this study showed little variability in human hosts, with differentiation into five different species. Studies on animal hosts characterized only E. coli. Of the species identified in humans, E. coli was the most prevalent (86.5%), followed by E. dispar (7.9%), E. histolytica (3.1%), E. hartmanni (1.9%), and E. gingivalis (0.6%). The prevalence of these species in Brazil determined in this meta-analysis differed from the world scenario, which presented E. dispar with the highest prevalence (49.4%), followed by E. histolytica (32.3%), E. coli (19%), and E. hartmanni (9%) [64]. The Brazilian situation could be different if the 89 studies that used conventional identification methods also used molecular analysis in the 5234 samples to separate the species E. dispar from E. histolytica, which are morphologically indistinguishable and were not included in the general percentage.

Although this study presents the commensal parasite E. coli as the most prevalent in Brazil, it is important to highlight that this species has the same transmission route as that of other pathogenic species, such as E. histolytica, E. dispar, and even Giardia lamblia as well as helminths. The prevalence of this parasite can be used as an indicator of fecal/oral transmission, suggesting intestinal parasite transmission through water supply for human consumption or through contaminated food.

Entamoeba histolytica causes severe intestinal and extraintestinal amebiasis, representing a health risk in countries with inadequate sanitary barriers. This study identified significant prevalence and distribution percentages of E. histolytica in Brazil, with 28.9% prevalence in the north, 3.4% in the northeast, 1.1% in the south, and 0.3% in the southeast. In the central-western region, no study distinguished E. histolytica from E. dispar. It is important to note that more studies need to be developed in this region to resolve this sampling bias.

This study has some limitations. First, in human studies, some authors did not distribute the positive sample results by sex and/or age, decreasing the number of classified samples to better evaluate the prevalence by these variables. Second, many samples were not identified at the protozoan species level, which could improve data on the species distribution and prevalence in Brazil, especially those of the pathogenic E. histolytica. Finally, it is recommended that publication biases be evaluated using statistical methods in meta-analyses. However, the currently available methods, such as funnel graphs and the Egger regression test, are not considered useful in proportion studies [147].

In conclusion, this study showed a high prevalence of Entamoeba spp. in the Brazilian population (22%), with a prevalence of up to 50% in the northern, northeastern, and central-western regions. Although there were contrasting prevalence percentages among the regions, there is a wide distribution of Entamoeba spp. in Brazil. There was no difference between males and females, and the age group of 10–19 years had the highest prevalence, broadly indicating the prevalence of intestinal parasitosis in high-school students in Brazil. The most diagnosed species was E. coli, which may suggest the transmission of intestinal parasites through water supply for human consumption or through contaminated food. This may lead to
the possibility of infection due to other protozoan pathogenic species. The pathogenic species *E. histolytica* is distributed in most Brazilian regions, with significant prevalence percentages. The prevalence in mammals was the highest among animals, with interactions among humans and captive, wild, or domestic farm animals presenting the highest protozoan prevalence.

The implementation of molecular methods to detect *Entamoeba* spp. in scientific productions is extremely important to reduce possible false-negatives using coprological methods and to differentiate protozoan species. Patients with any type of immunosuppression should undergo routine intestinal protozoa screening and early treatment to avoid future complications because a significant prevalence was identified in this population.

Acknowledgements. The authors thank the National Council for Scientific and Technological Development (CNPq – Brazil), Universal Project 423391/2018-6 for funding. A.S.Z. received a fellowship from Mato Grosso State University.

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

1. Abdel-Hafeez EH, Ahmad AK, Ali BA, Moslam FA. 2012. Opportunistic parasites among immunosuppressed children in Minia District, Egypt. Korean Journal of Parasitology, 50, 57–62.
2. Aca IS, França E Jr, Nozaki T, Freitas GB, Tateno S. 1993. *Entamoeba histolytica* zymodemes in children of Osasco, São Paulo. Revista do Instituto de Medicina Tropical de São Paulo, 35, 581–582.
3. Aca IS, Kobayashi S, Carvalho LZ Jr, Tateno S, Takeuchi T. 1994. Prevalence and pathogenicity of *Entamoeba histolytica* in three different regions of Pernambuco, northeast Brazil. Revista do Instituto Medicina Tropical de São Paulo, 36, 519–524.
4. Aguiar J, Gonçalves A, Sodre F, Pereira SR, Boia M, Lemos E, Daher R. 2007. Intestinal protozoa and helminths among Terena Indians in the State of Mato Grosso do Sul: high prevalence of *Blastocystis hominis*. Revista da Sociedade Brasileira de Medicina Tropical, 40, 631–634.
5. Al-Habshi K, Yang R, Ryan U, Jacobson C, Miller DW. 2017. Morphological and molecular characterization of an unicyste-producing *Entamoeba* spp. in captured Rangeland goats in Western Australia. Veterinary Parasitology, 235, 41–46.
6. Albuquerque NO, Souza MAA. 2018. Análise parasitológica em estudantes com deficiência intelectual e/ou múltipla (o múltiplo). Sociedade Iberoamericana de Informação Científica, 2018, 1–7.
7. Alencar RT, Espinosa AO, Malheiros AF. 2020. Fatores socioambientais e prevalência de enteroparasitas em crianças na cidade de Eirunepé, Amazonas. Revista da Sociedade Brasileira de Medicina Tropical, 38, 69.
8. Alencar RT, Espinosa AO, Malheiros AF. 2020. Fatores socioambientais e prevalência de enteroparasitas em pacientes da comunidade indígena Maxakali, Minas Gerais, Brasil, 2009. Cadernos de Saúde Pública, 29, 681–690.
9. Almeida PHA, Santana PCS, Silva AV. 2012. Prevalência de protozoários e helminhos entéricos em residentes de São Cristóvão, Feira de Santana, Bahia, Brasil. Arquivos de Ciências da Saúde UNIPAR, 16, 61–66.
10. Alves JR, Macedo HW, Ramos AN Jr, Ferreira LF, Gonçalves MLC, Araújo A. 2003. Parasitoses intestinais em região semi-árida do Nordeste do Brasil: resultados preliminares distintos das prevalências esperadas. Caderno de Saúde Pública, 19, 667–670.
11. Andrade F, Rode G, Silva Filho HH, Greiner-Goulart JA. 2008. Parasitoses intestinais em um centro de educação infantil público do município de Blumenau (SC), Brasil, com ênfase em *Cryptosporidium* spp. e outros protozoários. Revista de Patologia Tropical, 37, 332–340.
12. Andrade RS, Albuquerque WA, Miranda FS, Marques BC, Mota LHS, Santos RS, Silva IM, Amor AM. 2018. Presence of enteroparasites in the environment and the resident population in a rural community in Santo Antonio de Jesus in the reconquave da Bahia, Brasil. Revista de Patologia Tropical, 47, 31–45.
13. Araújo CF, Fernández CL. 2005. Prevalência de parasitoses intestinais na cidade de Eirunepé, Amazonas. Revista da Sociedade Brasileira de Medicina Tropical, 38, 69.
14. Assis EM, Oliveira RC, Moreira LE, Pena JL, Rodrigues LC, Machado-Coelho GLL. 2013. Prevalência de parasitos intestinais na comunidade indígena Maxakali, Minas Gerais, Brasil, 2009. Cadernos de Saúde Pública, 29, 681–690.
15. Bachur TPR, Vale JM, Coelho ICB, Queiroz TRBS, Chaves CS. 2008. Enteric parasitic infections in HIV/AIDS patients before and after the highly active antiretroviral therapy. Brazilian Journal of Infectious Diseases, 12, 115–122.
16. Bahnos EF, Rocha JAM, Pimentel ML, Batista EMT, Silva LM. 2017. Prevalence and risk factors for intestinal parasite infections in schoolchildren, in the city of Santarém, Pará state, Brazil. Arquivos Brasileiros de Ciências da Saúde, 42, 137–142.
17. Barbosa AS, Bastos OMP, Dib LV, Siqueira MP, Cardozo ML, Ferreira LC, Chaves WT, Fonseca ABM, Uchôa CMA, Amendoeira MRR. 1995. Gastrointestinal parasites of swine raised in different management systems in the state of Rio de Janeiro, Brazil. Prequisa Veterinária Brasileira, 35, 941–946.
18. Barbosa AS, Pissinatti A, Dib LV, Siqueira MP, Cardozo ML, Fonseca ABM, Oliveira AB, Silva FA, Uchôa CMA, Bastos OMP, Amendoeira MRR. 2015. *Balantidium coli* and other gastrointestinal parasites in captives non-human primates of the Rio de Janeiro, Brazil. Journal of Medical Primatology, 44, 18–26.
19. Barbosa CV, Barreto MM, Andrade RJ, Sodré F, d’Avila-Levy CM, Peralta JM, Igreja RP, Macedo HW, Santos HLC. 2018. Intestinal parasite infections in a rural community of Rio de Janeiro (Brazil): prevalence and genetic diversity of *Blastocystis* subtypes. PLoS One, 13, e0193860.
20. Barbosa IA, Pavanelli MF. 2019. Alta prevalencia de *Balantidium coli* em crianças de uma escola municipal de Moreira Salas – PR. Arquivos de Ciências da Saúde UNIPAR, 23, 41–45.
21. Barçante TA, Cavalcanti DV, Silva GAV, Lopes RB, Barros RF, Ribeiro GP, Neubert LF, Barçante JMP. 2008. Enteroparasitos em crianças matriculadas em creches públicas do município de Vespasiano, Minas Gerais. Revista de Patologia Tropical, 37, 33–42.
22. Basso RMC, Silva-Ribeiro RT, Solis DG, Ribacki SL, Callegari-Jacques SM, Zoppas BCA. 2008. Evolução da prevalência de parasitoses intestinais em escolares em Caxias do Sul, RS. Revista da Sociedade Brasileira de Medicina Tropical, 41, 263–268.
23. Belloto MVT, Junior JES, Macedo EA, Ponce A, Galisteu KJ, Castro E, Taury LV, Rossit ARB, Machado RLD. 2011. Enteroparasitos numa população de escolares da rede pública de ensino do município de Mirassol, São Paulo, Brasil. Revista Pan-Americanica de Saúde, 2, 37–44.
24. Bencke A, Artuso GL, Reis RS, Barbieri NL, Rott MB. 2006. Enteroparasitos em escolares residentes na periferia do Porto Alegre, RS, Brasil. Revista de Patologia Tropical, 35, 31–36.
25. Benetton MLFN, Gonçalves AV, Meneghini MEF, Silva EF, Carneiro M. 2005. Risk factors for infection by the *Entamoeba histolytica/D. dispar* complex: na epidemiological study conducted in outpatient clinics in the city of Manaus, Amazon Region, Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene, 99, 532–540.

26. Berrilli F, Prisco C, Friedrich KG, Cerbo PD, Cave DD, Liberato CD. 2011. *Giardia duodenalis* assemblages and *Entamoeba* species infecting non-human primates in an Italian zoological garden: zoonotic potential and management traits. Parasites & Vectors, 4, 199–206.

27. Bezerra AS, Cardoso VBP, Barbosa VSA. 2018. Estado nutricional, anemia e parasitoses intestinais em gestantes de um município do Ceará, Brasil. *Boletim Epidemiológico, Sambaíba, Brasil*, 21, 399–407.

28. Biochli LC, Collet ML, Dollanora RB, Dallanora FB, Dallanora FJ, Dallanora FG, Dallanora FL. 2018. Estudo de entroparasitoses em crianças matriculadas em creche. Revista de Educação Física da UFSCar, 27, 289–295.

29. Biscegli TS, Romera J, Candido AB, Santos JM, Candido ECA, Gomes ML, Silva MW, Façanha FE Jr, Fiuza L, Coura JR. 2006. Mass treatment for intestinal helminthiasis control in aamazonian endemic area in Brazil. *Revista do Instituto de Medicina Tropical de São Paulo*, 48, 189–195.

30. Boia MN, Motta LP, Salazar MSP, Mutis MPS, Coutinho RBA, Coura JR. 1999. Estudo das parasitoses intestinais e da infecção chagásica no município de Novo Airão, estado do Amazonas, Brasil. Caderno de Saúde Pública, 15, 497–504.

31. Boia MN, Carvalho-Costa FA, Sodré FC, Eyer-Silva WA, Lamas CC, Lyra MR, Pinto-Junior VL, Cantalice-Filho JP, Oliveira ALL, Carvalho LMA, Gross JB, Souza ALS, Moraes TI, Bermudez-Aza EH, Martins EB, Coura JR. 2006. Mass treatment for intestinal helminthiasis control in a amazonian endemic area in Brazil. *Revista do Instituto de Medicina Tropical de São Paulo, 48*, 189–195.

32. Boia MN, Carvalho-Costa FA, Sodré FC, Porras-Pedroza BE, Erra FC, Magalhães GAP, Silva RM. 2009. Tuberculose e parasitismo intestinal em população indígena na Amazônia brasileira. Revista de Saúde Pública, 43, 176–179.

33. Borges WF, Marciano FM, Oliveira HB. 2011. Parasitos intestinais: elevada prevalência de *Giardia lamblia* em pacientes atendidos pelo serviço público de saúde da região sudeste de Goiás, Brasil. Revista de Patologia Tropical, 40, 149–157.

34. Braga LL, Mendonça Y, Paiva CA, Sales A, Cavalcante ALM, Mann BJ. 1998. Seropositivity for *Entamoeba histolytica* and *Entamoeba dispar* in Individuals in Northeastern Brazil. *Journal of Clinical Microbiology*, 36, 3044–3045.

35. Braga LLBC, Gomes ML, Silva MW, Façanha FE Jr, Fiuza L, Mann BJ. 2001. Household epidemiology of *Entamoeba histolytica* infection in an urban community in northeastern Brazil. American Journal of Tropical Medicine and Hygiene, 65, 268–271.

36. Braga LLBC, Gomes ML, Silva MW, Paiva C, Sales A, Mann BJ. 2001. *Entamoeba histolytica* and *Entamoeba dispar* infections as detected by monoclonal antibody in an urban slum in Fortaleza, Northeastern Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 34, 467–471.

37. Branco N, Leaf DAG, Franco RMB. 2012. A parasitological survey of natural water springs and inhabitants of a tourist city in southeastern Brazil. Vector-borne and Zoonotic Diseases, 12, 410–417.

38. Brasil. 2016. *Ministério da Saúde*; *Secretaria Nacional de Saneamento Ambiental – SNSA, Sistema Nacional de Informações sobre Saneamento: diagnóstico dos serviços de água e esgotos* – 2014. Brasília : SNSA/MCIDAES.

39. Brauer AMNW, Silva JC, Souza AA, Souza MAA. 2017. Intestinal parasites among employees of restaurants and cafeterias in a city of Brazil. Revista de Saúde Pública, 51, 691–696.

40. Bueno GCL, Reis M, Dantas-Correa EB, Schiavon LL, Narciso-Schiavon J. 2015. The prevalence of intestinal parasitosis according to gender in a university hospital in southern Brazil. Revista de Patologia Tropical, 44, 441–452.

41. Burrows RB. 1959. Morphological differentiation of *Entamoeba hartmanni* and *E. polecki* from *E. histolytica*. American Journal of Tropical Medicine and Hygiene, 8, 583–589.

42. Cabrini-Santos M, Cintra EN, Carmo RA, Nascentes GAN, Pedrosa AL, Correia D, Oliveira-Silva MB. 2015. Occurrence of *Blastocystis* spp. in Uberaba, Minas Gerais, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 57, 211–215.

43. Calegar DA, Nunes BC, Monteiro KIL, Santos JP, Toma HK, Gomes TF, Lima MM, Boia MN, Carvalho-Costa FA. 2016. Frequency and molecular characterization of *Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii*, and *Entamoeba hartmanni* in the context of water scarcity in northeastern Brazil. Memórias do Instituto Oswaldo Cruz, 111, 114–119.

44. Camello JT, Cavagnolli N, Spada PKWDS, Poeta J, Rodrigues AD. 2016. Prevalence of parasitoses intestinais and conditions of sanaemento básico das moradias em escolares da zona urbana de Caxias do Sul, Rio Grande do Sul. *Scienza Medica, 26*, ID 21716.

45. Campos-Filho PC, Barros LM, Campos JO, Braga VB, Cazorla IM, Albuquerque GR, Carvalho SMS. 2008. Parasitas zoonooticos em fezes de cães em praças públicas do município de Iubuna, Bahia, Brasil. Revista Brasileira de Parasitologia Veterinária, 17, 206–209.

46. Carver J, Zorbozan O, Tunali V, Kamarit A, Aydogdu S, Aksoylar S, Guruz Y, Turag N. 2019. Intestinal protozoan parasites infections in immunocompromised third patients with diarrhea. Japanese Journal of Infectious Diseases, 73, 187–192.

47. Capuano DM, Lazzrini MTP, Junior EG, Takayanagi AM. 2008. Enteroparasitoses in manipuladores de alimentos do município de Ribeirão Preto – SP, Brasil, 2000. Revista Brasileira de Epidemiologia, 11, 687–695.

48. Cardoso LV, Galisteu KJ, Junior AS, Aydogdu S, Aksoylar S, Guruz Y, Turag N. 2019. Intestinal protozoan parasites infections in immunocompromised third patients with diarrhea. Japanese Journal of Infectious Diseases, 73, 187–192.

49. Carvalho GLX, Moreira LE, Pena JL, Marinho CC, Bahia MT, Machado-Coelho GLL. 2012. A comparative study of the TF-PCR genotyping of Blastocystis spp. and other intestinal parasites in children with acute diarrhea. *Memórias do Instituto Oswaldo Cruz, 107*, 80–84.

50. Carvalho APGC, Santos MCNP, Morais ROA, Pinto LC. 2019. Occurrence of *Entamoeba histolytica* and severe dehydration in Rio de Janeiro. Revista da Sociedade Brasileira de Medicina Tropical, 44, 665–669.

51. Carvalho GLX, Moreira LE, Pena JL, Marinho CC, Bahia MT, Machado-Coelho GLL. 2012. A comparative study of the TF-PCR genotyping of Blastocystis spp. and other intestinal parasites in children with acute diarrhea. *Memórias do Instituto Oswaldo Cruz, 107*, 80–84.

52. Castro EDR, Germini MCBY, Mascarenhas JDP, Gabbay YB, Lima ICG, Lobos PS, Fraga VD, Concelção LM, Machado RLD, Rossit ARB. 2015. Enteropathogens detected in a daycare center, southeastern Brazil: bacteria, virus, and parasite research. Revista do Instituto de Medicina Tropical de São Paulo, 57, 28–32.
53. Cavagnolli NI, Camello JT, Tesser S, Poeta J, Rodrigues AD. 2015. Prevalence of enteroparasitoses and analise socioeconomica de escolares em Flores da Cunha – RS. Revista de Patologia Tropical, 44, 312–322.

54. Cembranelli SBS, Souto FO, Ferreira-Paim K, Richinho TT, Nunes PL, Nascentes GAN, Ferreira TB, Correia D, Lages-Silva E. 2013. First evidence of genetic intraspecific variability and occurrence of Entamoeba gingivalis in HIV+/- AIDS. PLoS One, 8, e82864.

55. Chagas CRF, Gonzalez IHL, Favoretto SM, Ramos PL. 2017. Parasitological surveillance in a rat (Rattus norvegicus) colony in São Paulo Zoo animal house. Annals of Parasitology, 63, 291–297.

56. Chiffi PP, Waldman EA, Dias RMDS, Torres DMEGV, Chimara R, Mizumoto LC, Silva AMA, Uehara M. 1988. Enteroparasitoses no município de Guarulhos, SP, Brasil: prevalência de infecção entre escolares residentes no bairro de Taboão, em junho de 1984. Revista do Instituto Adolfo Lutz, 48, 75–80.

57. Chihi A, Stensvold CR, Ben-Abda I, Ben-Romdhane R, Aoun K. 2017. Prevalence of intestinal parasites in a quilombola community of the northern state of Espírito Santo, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 58, 297–300.

58. Coimbra CEA Jr, Santos RV. 1991. Parasitismo intestinal entre professores de escolas públicas de ensino fundamental e média de Taboão, São Paulo. Revista do Instituto de Medicina Tropical de São Paulo, 34, 344.

59. Clark CG, Kaffashian F, Tawari B, Windsor JJ, Twigg-Flesner M, Jackson CJ, Macfarlane L, Tannich E. 2006. New insights in nonhuman primates. Trends in Parasitology, 1, 496–500.

60. Damázio SM, Lima MS, Soares AR, Souza MAA. 2013. Intestinal parasites in school food handlers, southern Brazil. International Journal of Environmental Health Research, 24, 450–458.

61. Costa JO, Resende JA, Gil FF, Santos JGF, Gomes MA. 2018. Prevalence of Entamoeba histolytica and other enteric parasitic disease in the metropolitan region of Belo Horizonte, Brazil. A cross-sectional study. São Paulo Medical Journal, 136, 319–323.

62. Costa-Cruz JM, Cardoso MLM, Marques DE. 1995. Intestinal parasites in school food handlers in the city of Uberlândia, Minas Gerais, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 37, 191–196.

63. Cui Z, Li J, Chen Y, Zhang L. 2019. Molecular epidemiology, evolution, and phylogeny of Entamoeba spp. Infection, Genetics and Evolution, 75, e104018.

64. Curval LG, França AdO, Fernandes HJ, Mendes RP, de Carvalho LR, Higa MG, Ferreira EC, Dorval MEC. 2017. Prevalence of intestinal parasites among inmates in Midwest Brazil. PLoS One, 12, e0182248.

65. Damázio SM, Lima MS, Soares AR, Souza MAA. 2013. Intestinal parasites in a quilombola community of the northern state of Espirito Santo, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 55, 179–183.

66. Damázio SM, Soares AR, Souza MAA. 2016.Perfil parasitológico de escolares da localidade de Santa Maria, zona rural do município de São Mateus/ES, Brasil. Revista de Atenção Primária à Saúde, 19, 261–267.

67. David EB, Patt M, Coradi ST, Oliveira-Sequeira TCG, Ribolla PEM, Guimaraes S. 2014. Molecular typing of Giardia duodenalis isolates from nonhuman primates housed in a Brazilian zoo. Revista do Instituto de Medicina Tropical de São Paulo, 56, 49–54.

68. De Carli GA, Mentz M, Rott MB, Silva ACA, Wendorff A, Tasca T, Castilhos DS, Hypolito L, Mylius L, Montenegro R, De Carli G. 1997. Prevalência das enteroparasitoses nas vilas periféricas da grande Porto Alegre, nos assentamentos de trabalhadores rurais e na cidade de arroio dos ratos no estado do Rio Grande do Sul. Revista Brasileira de Análises Clínicas, 29, 185–189.

69. Diamond LS, Clark CG. 1993. A redescription of Entamoeba histolytica Schaudinn, 1903 (Emended Walker, 1911) separating it from Entamoeba dispar Brumpt, 1925. Journal of Eukaryotic Microbiology, 40, 340–344.

70. Diniz LSM, Costa EO, Oliveira PMA. 1995. Clinical disorders observed in anteteaters (Myrmecophagidae, Edentata) in captivity. Veterinary Research Communications, 19, 409–415.

71. Dourado A, Maciel A, Aca IS. 2006. Ocorrência de Entamoeba histolytica/Entamoeba dispar em pacientes ambulatoriais de Recife, PE. Revista da Sociedade Brasileira de Medicina Tropical, 39, 388–389.

72. Dolabella SS, Serranno-Luna J, Navarro-Garcia F, Cerritos R, Ximénez C, Glaván-Moroyquoi JM, Silva FF, Tsutsumi V, Shibayama M. 2012. Amoebic liver abscess production by Entamoeba dispar. Annals of Hepatology, 11, 107–117.

73. Duarte IAC, Santos RV, Fontes G, Galindo LF, Ximenes RAA, Maciel MAV, Aca IS, Rocha EMM. 2013. Revalência e infeção por Entamoeba histolytica em escolas públicas da cidade de Maceió, Alagoas, Brasil. Revista Cubana de Medicina Tropical, 65, 1–12.

74. Einloft ABN, Vitor CFH, Sant’Ana LFR, Priore SE, Franceschini SCC. 2010. Efeito das infecções parasitàrias e da anemia materna sobre o peso ao nascer de crianças no município de Viçosa, MG. Revista Médica de Minas Gerais, 20, 317–322.

75. Elsheikha HM, Regan CS, Clark CG. 2018. Novel Entamoeba findings in nonhuman primates. Trends in Parasitology, 1, 12–25.

76. Escobar-Pando ML, Godoy APO, Machado RS, Rodrigues D. Neto UF. Kawakami E. 2010. Prevalência de parasitos intestinais em crianças do Parque Indígena do Xingu. Jornal de Pediatria, 86, 493–496.

77. Eustachio PPF, Avelar LA, Dias JVL, Queiroz DRM, Murta NMG, Oliveira GHB, Cambara RP, Pires HHR, Martins HR. 2019. Parasitismo intestinal e contaminação ambiental com helmíntos e protozoários em uma comunidade quilombola do sul de Piauí, Brasil. Revista Cubana de Medicina Tropical, 71, 1–3.

78. Falavigna DLM, Almeida AA, Iwazaki RS, Araújo SM. 2008. Intestinal parasites in ecotourism region of the state of Paraná, Brazil. Brazilian Archives of Biology and Technology, 51, 693–699.

79. Faleiros JMM, Gallo G, Silva MMK, Raful R, Nasorri AR, Pipino LFR, Junqueira RB, Pinto MLS. 2004. Ocorrência de enteroparasitoses em alunos da escola pública de ensino fundamental do município de Catanduva (São Paulo, Brasil). Revista do Instituto Adolfo Lutz, 63, 243–247.

80. Faria CP, Zanini GM, Dias GS, Silva S, Freitas MB, Almendra R, Santana P, Sousa MC. 2017. Geospatial distribution of intestinal parasitic infections in Rio de Janeiro (Brazil) and its association with social determinants. PLoS Neglected Tropical Diseases, 11, e0005445.

81. Favoreto-Junior S, Machado MI. 1995. Estudos de frequência, morfologia e diagnóstico de Entamoeba gingivalis, Closs, 1849. Revista da Sociedade Brasileira de Medicina Tropical, 28, 379–387.

82. Felizardo AA, Souza LM, Siqueira RV, Kanamura HY. 2017. Prevalence and risk factors for intestinal parasitic infections in children attending daycare centers in Alfenas, Southern Minas Gerais, Brazil. Revista de Patologia Tropical, 46, 263–275.
96. Giugliano LG, Bernardi MGP, Vasconcelos JC, Costa CA, Gilioli R, Silva FA. 2000. Frequência de parasitas e infecção de Garcia G, Ramos F, Pérez RG, Yañez J, Estrada MS, Mendoza Freitas MFL, Oliveira JB, Cavalcanti MB, Leite AS, Magalhaes Fonseca REP, Barbosa MCR, Ferreira BR. 2017. High Ferriolli-Filho F. 1962. Prevalência da Giugliani R. 1986. Longitudinal study of diarrhoeal disease in a Brachyurus Chrysocyon, Expanding the Entamoeba species in woodland chimpanzees (Pan troglodytes schweinfurthii). Parassitologia, 44, 371–378. 107. Iasbik AF, Pinto PSA, Guimarães-Peixoto RPM, Santos TO, Ibiapina AB, Leal JS, Santana PRA, Mesquita MR, Lopes 100. Guerra EM, Vaz AJ, Toledo LAS, Iasoni AS, Quadros CMS, Dias RMDS, Barretto OCO. 1991. Infecções por helmintos e protozoários intestinais em gestantes de primeira consulta antendidas em centros de saúde da rede estadual no subdistrito do Butantã, município de São Paulo. Revista do Instituto de Medicina Tropical de São Paulo, 33, 303–308. 101. Guilherme ALF, Araújo SM, Pupulin ART, Lima Júnior JE, Falavigna DLM. 2004. Parasitas intestinais e comensais em indivíduos de três vilas rurais do estado do Paraná, Brasil. Acta Scientiarum Health Sciences, 26, 331–336. 102. Guimarães S, Sogayar MIL. 1995. Occurrence of Giardia lamblia in children of municipal day-care centers from Botucatu, São Paulo state, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 37, 501–506. 103. Guimarães AO, Valença FM, Sousa JBS, Souza SA, Madi RR, Melo CM. 2014. Parasitic and fungal infections in synanthropic rodents in na área of urban expansion, Araçaju, Sergipe state, Brazil. Acta Scientiarum, 36, 113–120. 104. Higa-Júnior MG, Cardoso WM, Weis SMS, Franco AO, Pontes ERJC, Silva PV, Oliveira MP, Dorval MEMC. 2017. Intestinal parasitism among waste pickers in Mato Grosso do Sul, Midwest Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 59, 1–6. 105. Higgins JPT, Green S. 2011. Cochrane handbook for systematic reviews of interventions [Internet]. London: The Cochrane Collaboration. Version 5.1.0. [cited 2020 Dec 20]. Available from: http://handbook-5-1.cochrane.org/. 106. Hurtado-Guerrero AF, Alencar FH, Hurtado-Guerrero JC. 2005. Ocorrência de enteroparasitas na população gerontó de Nova Olinda do Norte – Amazonas, Brasil. Acta Amazonica, 35, 487–490. 107. Iasbik AF, Pinto PSA, Guimarães-Peixoto RPM, Santos TO, Fernandes FM, Silva LF, Silva AR, Vieira SE, Arativ Jov. 2018. Prevalence and transmission of intestinal parasitosis in human beings from zona da mata, Minas Gerais, Brazil. Bioscience Journal, 34, 802–809. 108. Ibiapina AB, Leal JS, Santana PRA, Mesquita MR, Lopes MEA, Villela MM. 2018. Intestinal parasites in cancer patients antendidas em centros de saúde da rede estadual no subdistrito do Butantã, município de São Paulo, 33, 303–308. 109. Gilio R, Silva FA. 2000. Frequência de parasitas e infecção de Salmonella em lobo-guará, Chrysocyon brachyurus, mantido em zoológicos do estado de São Paulo, Brasil. Arquivos Brasileiros de Medicina Veterinária e Zootecnia, 52, 15–19. 110. Gilgoulia LG, Bernardi MGP, Vascconcelos JC, Costa CA, Giugliano R. 1986. Longitudinal study of diarrhoeal disease in a periurban community in Manaus, Amazon-Brasil. Annals of Tropical Medicine and Parasitology, 80, 443–450. 111. Gomes PMDF, Nunes VLB, Knechtel DS, Brilhante AF. 2010. Enteroparasitos em escolares do distrito Águas do Miranda, município de Bonito, Mato Grosso do Sul. Revista de Patologia Tropical, 39, 299–307. 112. Gonçalves AQ, Abellana R, Pereira-da-Silva HD, Santos I, Serra PT, Julião GR, Orlandi PP, Ascaso C. 2014. Comparison of the performance of two spontaneous sedimentation techniques for the diagnosis of human intestinal parasites in the absence of a gold standard. Acta Tropica, 131, 63–70. 113. Jirků-Pomajbíková K, Čepická I, Kalousová B, Jirků M, Stewart F, Levecke B, Modrý D, Piel AK, Petrželková KJ. 2016. Molecular identification of Entamoeba species in savanna woodland chimpanzees (Pan troglodytes schweinfurthii). Parasitology, 143, 741–748.
114. Kobayashi J, Hasegawa H, Forli AA, Nishimura NF, Yamanaka A, Shimaburuto T, Sato Y. 1995. Prevalence of intestinal parasitic infection in five farms in Vila Holambra São Paulo, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 37, 13–18.

115. Korkes F, Kumagai FU, Belfort RN, Szinfeld D, Abud TG, Kleinman A, Florez GM, Sznfeld T, Chieffi PP. 2007. Relationship between intestinal parasitic infection in children and soil contamination in a na urban slum. Journal of Tropical Pediatrics, 55, 42–45.

116. Korzeniowski OM, Dantas W, Trabulsi LR, Guerrant RL. 1984. A controlled study of endemic sporadic diarrhoea among adult residents of southern Brazil. Transaction of the Royal Society of Tropical Medicine and Hygiene, 8, 363–373.

117. Kulik RA, Falavigna DL, Meirelles SMP, Marchini JS. 1988. Indicadores...

118. Latorraca MQ, Meirelles SMP, Marchini JS. 1988. Indicadores...

119. Lawson LLO, Bailey JW, Beeching NJ, Gurgel RG, Cuevas...

120. Lopes LM, Santos ES, Savegnago TL, Salvador FA, Ribeiro...

121. Lima ECS, Leon CMP, Oliveira HMBF, Barbosa VSA. 2020. Prevalence of parasitoses intestinais em usuários de hemodiálise.

122. Lopes PFM, Gonçalves DD, Reis CR, Breganó RM, Anaruma Filho F, Murad VA, Menezes MCND, Freire RL, Freitas JC, Santana MAZ, Navarro IT. 2006. Occurrence of enteroparasitosis in schoolchildren of the municipal district of Jataizinho, State of Paraná Brazil. Acta Scientiarum Health Sciences, 28, 29–30.

123. Leite RO, Toma HK, Adani YL. 2014. Diagnóstico para...tologo e molecular de enteroparasitos entre crianças residentes e funcionários de uma instituição beneficiante para menores no município de Niterói-RJ, Brasil. Revista de Patologia Tropical, 43, 446–458.

124. Lima ECS, Leon CMP, Oliveira HMBF, Barbosa VSA. 2020. Prevalence of parasitoses intestinais em usuários de um hospital universitário, Santa Cruz-RN, Brasil. Revista de Atenção a Saúde, 18, 21–30.

125. Lopes LM, Santos ES, Savegnago TL, Salvador FA, Ribeiro-Barbosa ER. 2010. Ocorrência de parasitas e parasitoses intestinais em crianças da comunidade de Vila Inglesa em São Paulo, SP, Brasil. Revista do Instituto Adolfo Lutz, 69, 252–254.

126. López MC, León CM, Fonseca J, Reyes P, Moncada L, Olivera MJ, Ramírez JD. 2015. Molecular epidemiology of Entamoeba: first description of Entamoeba moshkovskii in a rural area from Central Colombia. PLoS One, 10, e0140302.

127. Luz JGG, Carvalho AG, Marques AP, Marcondes AA, Roma JHF, Castro LS, Castro LS, Dias JVL, Pavanon JHC. 2017. Intestinal parasitic infections and associated risk factors in preschoolers from different urban settings in Central-Western Brazil. Asian Pacific Journal of Tropical Disease, 7, 405–410.

128. Machado ER, Santos DS, Costa-Cruz JM. 2008. Enteroparasites and commensals among children in four peripheral districts of Uberlândia, satate of Minas Gerais. Revista da Sociedade Brasileira de Medicina Tropical, 41, 581–585.

129. Magalhães VM, Carvalho AG, Freitas FIS. 2010. Inquérito parasitológico em manipuladores de alimentos em João Pessoa, PB, Brasil. Revista de Patologia Tropical, 39, 335–342.

130. Maia MMM, Fausto MA, Vieira ELM, Benetton MLFN, Carneiro M. 2009. Intestinal parasitic infection and associated risk factors, among children presenting at outpatient clinics in Manaus, Amazonas state, Brazil. Annals of Tropical Medicine & Parasitology, 103, 583–591.

131. Marcos LA, Gotuzzo E. 2013. Intestinal protozoan infections in the immunocompromised host. Current Opinion in Infectious Diseases, 26, 295–301.

132. Mariietto-Gonçalves GA, Fernandes TM, Silva RJ, Lopes RS, Andreatti Filho RL. 2008. Intestinal protozoal parasites with zoontic potential in birds. Parasitology Research, 103, 1237–1240.

133. Markell EK, John DT, Krotoski WA. 2003. Protozoários que habitam a luz, in Parasitologia médica, Markell EK, Editor. Guanabara-Koogan: Rio de Janeiro. p. 265–283.

134. Marques AB, Pereira DC, Ribeiro RC. 2005. Motivos e frequência de internação dos pacientes com IRC em tratamento hemodiálitico. Arquivos de Ciências da Saúde, 12, 67–72.

135. Martins LPA, Serapião AATB, Valentino RF, Oliveira GT, Santos KJA, Castanho REP. 2009. Avaliação inicial da prevalência de algumas enteroparasitoses na comunidade de Palmital, município de Berilo-MG. Revista Médica de Minas Gerais, 19, 26–31.

136. Mata-Santos T, Gatti FA, Mascalhe C, Martins LH, Mata-Santos HA, Fenalti JM, Netto ICO, Mendoza-Sassi RA, Scaini CJ. 2013. Prevalence of enteroparasites in children atedted at basic health unities in a Brazilian southern city. Revista do Instituto Adolfo Lutz, 72, 175–178.

137. Matsumura T, Hendarto J, Mizuno T, Suyayuddin D, Yoshikawa H, Matsumabashi M, Nishimura T, Tokoro M. 2019. Possible Pathogenicity of commensal Entamoeba hartmanni revealed by molecular screening of healthy school children in Indonesia. Tropical Medicine and Health, 47, 7–15.

138. Menezes AL, Lima VMP, Freitas MTS, Rocha MO, Silva EF, Dolabella SS. 2008. Prevalence of intestinal parasites in children from public daycare center in the city of Belo Horizonte, Minas Gerais, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 50, 57–59.

139. Miné JC, Rosa JA. 2008. Frequency of Blastocystis hominis y outras intestinal parasites in stool samples examined at the parasitology laboratory of the School of Pharmaceutical Sciences at the São Paulo State University, Araraquara. Revista da Sociedade Brasileira de Medicina Tropical, 41, 565–569.

140. Miranda RA, Xavier FB, Menezes RC. 1998. Parasitismo intestinal em uma aldeia indígena Parakanã, sudeste do estado do Pará, Brasil. Caderno de Saúde Pública, 14, 507–511.

141. Moher D, Liberati A, Tetzlaff J, Altman DG. 2009. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6, e1000097.

142. Monteiro AMC, Silva EV, Almeida KS, Sousa JJN, Mathias LE. 2004. Protozoários que habitam a luz, in Parasitologia médica, Markell EK, Editor. Guanabara-Koogan: Rio de Janeiro. p. 265–283.

143. Monteiro ACS, Soares DA, Diniz SCPOR, Cavalcante UMB, Lima CMBL. 2018. Intestinal parasitism and related risk factors for primary school students in the municipality of João Pessoa, Northeast Brazil. Bioscience Journal, 34, 1062–1072.
Silva MTN, Pontes A, Aragão P, Andrade J, Tavares-Neto J. 2005. Prevalência de parasitas intestinais em crianças, com baixos indicadores socio-econômicos, de Campina Grande (Paraíba). Revista Baiana de Saúde Pública, 29, 121–125.

Silva EF, Silva BE, Almeida KS, Sousa JJJ, Freitas FL. 2009. Enteroparasitos em crianças de áreas rurais do município de Coari, Amazonas, Brasil. Revista de Patologia Tropical, 38, 35–43.

Silva FS, Paulo ADC, Braga CMM, Almeida RJ, Galvão VP. 2010. Frequência de parasitos intestinais no município de Chapadinha, Maranhão, Brasil. Revista de Patologia Tropical, 39, 63–68.

Silva LP, Silva RMG. 2010. Ocorrência de enteroparasitos em centros de educação infantil no município de Patos de Minas, MG, Brasil. Biocience Journal, 26, 147–151.

Silva SRP, Arroso N, Jesus RS, Reis RS, Rott MB. 2010. Enteroparasitos em portadores de necessidades especiais – prevalência em indivíduos atendidos em instituições do município de Porto Alegre-RS. Revista de Patologia Tropical, 39, 123–129.

Silva LP, Silva RMG, Fernandes NA, Oliveira JAA. 2011. Parasitos e/ou comensais em pacientes neoplásicos submetidos à quimioterapia. Bioscience Journal, 27, 170–177.

Silva EF, Silva VBC, Freitas PLC. 2012. Parasitos intestinais em crianças residentes na comunidade ribeirinha São Francisco do Laranjal, município de Coari, estado do Amazonas, Brasil. Revista de Patologia Tropical, 41, 97–101.

Silva MTN, Santana JV, Bragagnoli G, Marinho AMN, Malagüeño E. 2014. Prevalence of Entamoeba histolytica/ Entamoeba dispar in the city of Campina Grande, in northeastern Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 56, 451–454.

Silva JSH, Silva DJ, Shaw JJ, Malheiros AF. 2018. Prevalência de enteroparasitos em moradores da cidade de Cárices/MT. Revista Ibero Americana de Ciências Ambientais, 9, 154–164.

Silva PV, Maciel LS, Castro LS, Murat PG, Higa-Jr MG, Zerlotti PH, Motta-Castro ARC, Pontes ERJC, Dorval MEC. 2018. Enteroparasites in riverside settlements in the Pantanal wetlands ecosystem. Journal of Parasitology Research, 2018, e6839745.

Silva RSB, Malheiros AF, Santos DP, Shaw JJ, Araújo MSM, Moraes MFA, Campos WNL. 2019. Estudo de parasitos intestinais em moradores de Corumbá, Mato Grosso do Sul, Brasil. Revista Ibero Americana de Ciências Ambientais, 10, 109–128.

Simões BS, Machado-Coelho GLP, Pena JL, Freitas SN. 2015. Condições ambientais e prevalência de infecção parasitária em indígenas Xukuru-Kariri, Caldas, Brasil. Revista Panamericana de Saúde Pública, 38, 42–48.

Soares NM, Azevedo HC, Pacheco FFT, Souza JN, Del-Rei RP, Teixeira MCA, Santos FLN. 2019. A cross-sectional study of Entamoeba histolytica/dispar/moshkovskii complex in Salvador, Bahia, Brazil. Hindawi BioMed Research International, 2019, ID 5725670.

Souza ACP, Costa LNG, Vieira JMS. 2018. Prevalência de enteroparasitas em indivíduos atendidos no Laboratório Municipal de Buriti dos Lopes, Pianã, Brasil. Revista Brasileira de Análises Clínicas, 50, 184–188.

Souza EA, Silva-Nunes M, Malafronte RS, Muniz PT, Cardoso MA, Ferreira MU. 2007. Prevalence and spatial distribution of intestinal parasitic infections in a rural Amazonian settlement, Acre state, Brazil. Caderno de Saúde Pública, 23, 427–434.

Souza MF, Pimentel-Neto M, Silva RM, Farias ACB, Guimarães MP. 2012. Gastrointestinal parasites of sheep,
municipality of Lajes Rio Grande do Norte, Brazil. Revista Brasileira de Parassitologia Veterinária, 21, 71–73.

204. Souza LS, Guilherme E, Andrade AMF, Santos FG A. 2019. Occurrence o fendo and hemoparasites in *Sporobolia caerulescens* captured in the eastern region of the state of Acre. Brazil. Ciência Rural, 49, e20180811.

205. Stensvold CR, Lebbad M, Clark CG. 2010. Genetic characterisation of uninucleated cyst-producing *Entamoeba* spp. from ruminants. International Journal for Parasitology, 40, 775–778.

206. Stensvold CR, Lebbad M, Victory EL, Verweij JJ, Tannich E, Clark CG. 2011. Increased sampling reveals novel lineages of *Entamoeba*: consequences of genetic diversity and host specificity for taxonomy and molecular detection. Protist, 162, 525–541.

207. Takizawa MGMH, Falavigna DLM, Gomes ML. 2009. Genetic characterisation of uninucleated cyst-producing *Entamoeba* spp. from ruminants. International Journal for Parasitology, 40, 775–778.

208. Stensvold CR, Lebbad M, Victory EL, Verweij JJ, Tannich E, Clark CG. 2011. Increased sampling reveals novel lineages of *Entamoeba*: consequences of genetic diversity and host specificity for taxonomy and molecular detection. Protist, 162, 525–541.

209. Tashima NT, Simões MJS, Leite CQF, Fluminhan A, Nogueira TR, Brasil. Revista de Patologia Tropical, 38, 267–278.

210. Tavares-Dias M, Grandini AA. 1999. Prevalencia e aspectos epidemiológicos de enteroparasitoses na população de São Paulo, Brasil. Revista Instituto de Medicina Tropical de São Paulo, 51, 31–35.

211. Turkeltaub JA, McCarty TR, Hotez PJ. 2015. The intestinal protozoa: emerging impacto n global health and development. Current Opinion in Gastroenterology, 31, 38–44.

212. Uchoa CMA, Lobo AGB, Bastos OMP, Matos AD. 2001. Parasitos intestinais: prevalência em creches comunitárias da cidade de Niterói, Rio de Janeiro-Brasil. Revista do Instituto Adolfo Lutz, 60, 97–101.

213. Uchoa CMA, Albuquerque MC, Carvalho FM, Falcão AO, Silva P, Bastos OMP. 2000. Parasitismo intestinal em crianças e funcionários de creches comunitárias na cidade de Niterói-RJ, Brasil. Revista de Patologia Tropical, 38, 267–278.

214. Valença-Barbosa C, Batista RJ, Igreja RP, d’Avila-Levy CM, Macedo HW, Santos HLC. 2017. Distribution of *Blastocystis* subtypes isolated from humans from an urban community in Rio de Janeiro, Brazil. Parasites & Vectors, 10, 1–9.

215. Valverde JG, Gomes-Silva A, Moreira CIC, Souza DL, Jaeger LH, Martins PP, Meneses VF, Boia MN, Carvalho-Costa FA. 2011. Prevalence and epidemiology of intestinal parasitism, as revealed by three distinct techniques in an endemic area in the Brazilian Amazon. Annals of Tropical Medicine and Parasitology, 105, 413–424.

216. Ximénez C, Morán P, Rojas L, Valadez A, Gómez A. 2009. Reassessment of the epidemiology of amebiasis: state of the art. Infection, Genetics and Evolution, 9, 1023–1032.

217. Zanetti AS, Silva Junior IC, Barros LF, Domínguez OAE, Lima GS, Silva AS, Danelichen OS, Silva SL, Moreira LM, Shaw JJ, Malheiros AF. 2019. Parasitas intestinais em cães provenientes dos biomas do nordeste brasileiro: aspecto zoonótico e ambiental. Revista Ibero-Americana de Ciências Ambientais, 10, 42–51.

218. Zanotto M, Cavagnoli NL, Breda JC, Spada PKWDS. Bortolini GV, Rodrigues AD. 2018. Prevalence of intestinal parasites and socioeconomic evaluation of a country town in the Serra Gaucha region, Rio Grande do Sul, Brazil. Revista de Patologia Tropical, 47, 19–30.

219. Zenazzoena LE, Tercas-Trettel ACP, Nascimento VF, Hattori TY, Atanaka M, Lemos ERS, Boia MN. 2019. Prevalence of enteroparasitosis in the indigenous community y of Mato Grosso, Brazil: a look into the sanitation and ethno-development. Saúde e Pesquisa, 12, 253–264.

220. Zhang Q, Liu K, Wang C, Luo J, Lu J, He H. 2019. Molecular characterization of *Entamoeba* spp. in wild Taihangshan macaques (*Macaca mulatta tcheliensis*) in China. Acta Parasitologica, 64, 228–231.

Cite this article as: Zanetti AS, Malheiros AF, de Matos TA, dos Santos C, Battaglini PF, Moreira LM, Lemos LMS, Castrillon SKI, Cortela DCB, Ignotti E & Espinosa OA. 2021. Diversity, geographical distribution, and prevalence of *Entamoeba* spp. in Brazil: a systematic review and meta-analysis. Parasite 28, 17.