On Computation of Matrix Mittag-Leffler Function

Ivan Matychyn

Abstract

A method for computation of the matrix Mittag-Leffler function is presented. The method is based on Jordan canonical form and implemented as a Matlab routine [1].

1 Fractional Differential Equations and Matrix Mittag-Leffler Functions

The matrix Mittag-Leffler function was probably first introduced in the paper [2], where it was used in an explicit solution of a linear system of fractional order equation (FDEs)

\[D^\alpha z = Az + f, \quad 0 < \alpha \leq 1. \] (1)

Here \(D^\alpha \) stands for the Riemann–Liouville fractional derivative of order \(\alpha \). In general, if \(g \) is a function having absolutely continuous derivatives up to the order \(m - 1 \), the Riemann–Liouville derivative of fractional order \(\alpha \), \(m - 1 < \alpha \leq m \), can be defined as follows:

\[
D^\alpha g(t) = \frac{1}{\Gamma(m-\alpha)} \frac{d^m}{dt^m} \int_0^t \frac{g(\tau)}{(t-\tau)^{\alpha-m+1}} d\tau.
\] (2)

Hereafter \(A \) is a fixed real \(n \times n \) matrix, and \(z, f : [0, \infty) \to \mathbb{R}^n \) are measurable vector-functions taking values in \(\mathbb{R}^n \).

If (1) is supplied with initial condition of the form

\[
\left. \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{z(\tau)}{(t-\tau)^\alpha} d\tau \right|_{t=0} = z_0,
\] (3)

then solution to the initial value problem (1), (3) can be written down in the form

\[z(t) = t^{\alpha-1} E_{\alpha,\alpha}(At^\alpha)z_0 + \int_0^t (t-\tau)^{\alpha-1} E_{\alpha,\alpha}(A(t-\tau)^\alpha)f(\tau) d\tau, \] (4)
where
\[
E_{\alpha,\beta}(A) = \sum_{k=0}^{\infty} \frac{A^k}{\Gamma(\alpha k + \beta)}, \quad \alpha > 0, \ \beta \in \mathbb{C},
\] (5)
denotes the matrix Mittag-Leffler function of \(A\).

The expression (4) can be rewritten in more compact form
\[
z(t) = e^{At}z^0 + \int_0^t e^{A(t-\tau)}f(\tau)d\tau,
\] (6)
where \(e^{At} = t^{\alpha-1}E_{\alpha,\alpha}(At^\alpha)\) is the matrix \(\alpha\)-exponential function introduced in the monograph [3].

Since FDEs involving the Riemann–Liouville fractional derivative require initial conditions of the form (3) lacking clear physical interpretation, the regularized fractional derivative was introduced. The latter is often referred to as the Caputo derivative and defined as follows:
\[
D^{(\alpha)}g(t) = \frac{1}{\Gamma(m-\alpha)} \int_0^t \frac{g^{(m)}(\tau)}{(t-\tau)^{\alpha-m+1}}d\tau, \quad m-1 < \alpha \leq m.
\] (7)

Initial value problem for FDEs involving the Caputo derivative
\[
D^{(\alpha)}z = Az + f, \quad 0 < \alpha \leq 1,
\] (8)
requires standard initial conditions
\[
z(0) = z^0,
\] (9)
and its solution can be explicitly written down in terms of matrix Mittag-Leffler functions as follows [4]:
\[
z(t) = E_{\alpha,1}(At^\alpha)z^0 + \int_0^t (t-\tau)^{\alpha-1}E_{\alpha,\alpha}(A(t-\tau)^\alpha)f(\tau)d\tau.
\] (10)

As an example let us consider well-known Bagley–Torvik equation [5] describing vibrations of a rigid plate immersed in Newtonian liquid:
\[
ay''(t) + bD^{(3/2)}y(t) + cy(t) = f(t)
\] (11)
\[
y(0) = y_0, \quad y'(0) = y'_0.
\] (12)
Its analytical solution obtained with the help of fractional Green’s function in terms of scalar generalized Mittag-Leffler functions is cumbersome and involves evaluation of a convolution integral, containing a Green’s function expressed as an infinite sum of derivatives of Mittag-Leffler functions, and for general functions \(f\) this cannot be evaluated conveniently.

The equation of Bagley–Torvik is equivalent to the following system [6]
\[
D^{(1/2)}z = Bz + Cf,
\] (13)
where \(B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -c/a & 0 & 0 & -b/a \end{bmatrix} \), \(C = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1/a \end{bmatrix} \), \(z = \text{col}(y, D^{1/2}y, y', D^{3/2}y) \)

under the initial conditions

\[z(0) = z_0 = \text{col}(y_0, 0, y'_0, 0). \]

Its solution in terms of matrix Mittag-Leffler functions is given by the following expression:

\[z(t) = E_{\frac{1}{2}, \frac{1}{2}}(B\sqrt{t})z_0 + \int_0^t E_{\frac{1}{2}, \frac{1}{2}}(B\sqrt{t-\tau}) C\frac{f(\tau)d\tau}{\sqrt{t-\tau}}, \quad (14) \]

which can be easily evaluated.

The explicit expressions (4), (6), and (10) play a key role in numerous applications related to systems with fractional dynamics [7, 8, 9]. That is why the methods for computing the matrix Mittag-Leffler function are so important.

Both the matrix Mittag-Leffler function and the matrix \(\alpha \)-exponential functions are generalizations of matrix exponential function, since

\[E_{1,1}(At) = e_1^{At} = e^{At}. \]

This implies that some of numerous existing methods for computing the matrix exponential can be adapted for the matrix Mittag-Leffler functions as well. An overview and analysis of these methods can be found in the paper [10] and in the monograph [11]. Unfortunately, the technique of scaling and squaring, widely used in computing of the matrix exponential, cannot be applied for the matrix Mittag-Leffler and \(\alpha \)-exponential functions, as the latter do not possess the semigroup property.

Here we describe a method of computing the matrix Mittag-Leffler function based on the Jordan canonical form representation. This method is implemented with MATLAB code [1].

2 Matrix Functions

There exists a number of equivalent definitions of a matrix function. The following classic definition in terms of interpolation polynomials is according to [12]. Let

\[\psi(\lambda) = (\lambda - \lambda_1)^{m_1}(\lambda - \lambda_2)^{m_2} \ldots (\lambda - \lambda_s)^{m_s} \]

be the minimal polynomial of \(A \), where \(\lambda_1, \lambda_2, \ldots, \lambda_s \) are all the distinct eigenvalues of \(A \). The degree of this polynomial is \(m = \sum_{k=1}^s m_k \).

Let us consider a sufficiently smooth function \(f(\lambda) \) of scalar argument and call the \(m \) numbers

\[f(\lambda_k), f'(\lambda_k), \ldots, f^{m_k-1}(\lambda_k) \quad (k = 1, \ldots, s) \quad (15) \]
the values of the function f on the spectrum of the matrix A and the set of all these values will be denoted symbolically by $f(\Lambda_A)$. If for some function f the values (15) exist, then we will say that the function f is defined on the spectrum of the matrix A.

Definition 1 (matrix function via interpolation polynomial [12]) Let $f(\lambda)$ be a function defined on the spectrum of a matrix A and $r(\lambda)$ the corresponding interpolation polynomial such that $f(\Lambda_A) = r(\Lambda_A)$. Then

$$f(A) = r(A).$$

Let us recall the following well-known

Theorem 1 Any constant $n \times n$ matrix A is similar to a matrix J in Jordan canonical form. That is, there exists an invertible matrix P such that the $n \times n$ matrix

$$J = \text{diag}\{J_1, J_2, \ldots, J_s\}$$

(16)

where each Jordan block matrix J_k, $k = 1, \ldots, s$, is a square matrix of the form

$$J_k = \begin{pmatrix}
\lambda_k & 1 & 0 & \cdots & 0 \\
0 & \lambda_k & 1 & \cdots & 0 \\
0 & 0 & \lambda_k & \cdots & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & \lambda_k
\end{pmatrix}.$$

It is shown (see e.g. [12]) that Definition 1 is equivalent to the following definition based on the Jordan canonical form. The latter we will use for computing the matrix Mittag-Leffler function.

Definition 2 (matrix function via Jordan canonical form) Let the function f be defined on the spectrum of A and let $A = ZJZ^{-1}$, where J is the Jordan canonical form (16). Then

$$f(A) = Zf(J)Z^{-1} = Z \text{diag}\{f(J_1), f(J_2), \ldots, f(J_s)\}Z^{-1},$$

(17)

where

$$f(J_k) = \begin{pmatrix}
f(\lambda_k) & f'(\lambda_k) & \frac{f''(\lambda_k)}{2} & \cdots & \frac{f^{(m_k-2)}(\lambda_k)}{(m_k-2)!} \\
0 & f(\lambda_k) & f'(\lambda_k) & \cdots & \frac{f^{(m_k-3)}(\lambda_k)}{(m_k-3)!} \\
0 & 0 & f(\lambda_k) & \cdots & \frac{f^{(m_k-4)}(\lambda_k)}{(m_k-4)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & f'('(\lambda_k) \\
0 & 0 & 0 & \cdots & f(\lambda_k)
\end{pmatrix}.\tag{18}$$

2.1 Generalized Mittag-Leffler Functions

The generalized (scalar) Mittag-Leffler function also known as Prabhakar function is defined for complex \(z, \alpha, \beta, \rho \in \mathbb{C} \), and \(\Re(\alpha) > 0 \) by

\[
E_\rho^{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{(\rho)_k}{\Gamma(\alpha k + \beta)} \frac{z^k}{k!},
\]

where \((\rho)_k = \rho(\rho + 1) \ldots (\rho + k - 1)\) is the Pochhammer symbol.

In particular, when \(\rho = 1 \), it coincides with the Mittag-Leffler function (5):

\[
E_1^{\alpha,\beta}(z) = E_{\alpha,\beta}(z).
\]

Since the expression (18) involves derivatives, the following equation [3] is important for the purpose of computing the matrix Mittag-Leffler function:

\[
\left(\frac{d}{dt} \right)^m E_\alpha,\beta(t) = m! E_\alpha,\beta^{m+1}(t), \quad m \in \mathbb{N}.
\]

In view of (20), the formulas (17), (18) take on the form

\[
E_\alpha,\beta(A) = Z \text{ diag} \{ E_\alpha,\beta(J_1), E_\alpha,\beta(J_2), \ldots, E_\alpha,\beta(J_s) \} Z^{-1},
\]

(21)

\[
E_\alpha,\beta(J_k) = \begin{pmatrix}
E_\alpha,\beta(\lambda_k) & E_\alpha,\beta^{2+\alpha}(\lambda_k) & E_\alpha,\beta^{3+2\alpha}(\lambda_k) & \cdots & E_\alpha,\beta^{m+(m-1)\alpha}(\lambda_k) \\
0 & E_\alpha,\beta(\lambda_k) & E_\alpha,\beta^{2+\alpha}(\lambda_k) & \cdots & E_\alpha,\beta^{m+(m-2)\alpha}(\lambda_k) \\
0 & 0 & E_\alpha,\beta(\lambda_k) & \cdots & E_\alpha,\beta^{m+(m-3)\alpha}(\lambda_k) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & E_\alpha,\beta^{2+\alpha}(\lambda_k) \\
0 & 0 & 0 & \cdots & E_\alpha,\beta(\lambda_k)
\end{pmatrix}
\]

(22)

3 Software Implementation

The formulas (21), (22) can be used for computing the matrix Mittag-Leffler function and were implemented in the form of MATLAB routine \texttt{mlfm.m} [1]. For computing of generalized Mittag-Leffler functions of the form \(E_\alpha,\beta^{m+(m-1)\alpha}(\lambda_k) \), the MATLAB routine by R. Garrappa is used, which implements the optimal parabolic contour (OPC) algorithm described in [13] and based on the inversion of the Laplace transform on a parabolic contour suitably chosen in one of the regions of analyticity of the Laplace transform.

To verify the accuracy of the \texttt{mlfm.m} routine, one can consider the Bagley–Torvik equation (11), (12).

If \(c = 0 \), the matrix Mittag-Leffler functions appearing in (14) can be found analytically.
Indeed, if $c = 0$ the matrix B in (13) takes on the form

$$B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & p \end{bmatrix},$$ \hspace{1cm} (23)$$

where $p = -b/a$.

Hence,

$$B^2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & p \end{bmatrix}, \quad B^k = \begin{bmatrix} 0 & 0 & 0 & p^{k-3} \\ 0 & 0 & 0 & p^{k-2} \\ 0 & 0 & 0 & p^{k-1} \\ 0 & 0 & 0 & p^k \end{bmatrix}, \quad k = 3, 4, \ldots$$

Therefore,

$$E_{\frac{1}{2}, 1}(B) = \sum_{k=0}^{\infty} \frac{B^k}{\Gamma(k/2 + 1)} = \begin{bmatrix} 1 & 0 & \frac{1}{\Gamma(3/2)} \sqrt{\frac{1}{\pi} e^{p^2} \text{erfc}(p)} & - \frac{1}{p^2} \sqrt{\frac{1}{\pi} e^{p^2} \text{erfc}(p)} \\ 0 & 1 & \frac{1}{\Gamma(3/2)} \sqrt{\frac{1}{\pi} e^{p^2} \text{erfc}(p)} & - \frac{1}{p^2} \sqrt{\frac{1}{\pi} e^{p^2} \text{erfc}(p)} \\ 0 & 0 & 1 & \frac{1}{\Gamma(1/2)} \sqrt{\frac{1}{\pi} e^{p^2} \text{erfc}(p)} \\ 0 & 0 & 0 & e^{p^2} \text{erfc}(p) \end{bmatrix}$$

And taking into account the following properties of gamma-function and scalar Mittag-Leffler function

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right) = \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2}, \quad E_{\frac{1}{2}, 1}(z) = e^{z^2} \text{erfc}(-z),$$

$$E_{\frac{1}{2}, \frac{1}{2}}(z) = z E_{\frac{1}{2}, 1}(z) + \frac{1}{\Gamma(1/2)} = z e^{z^2} \text{erfc}(-z) + \frac{1}{\sqrt{\pi}},$$

we arrive at the following explicit expressions

$$E_{\frac{1}{2}, 1}(B) = \begin{bmatrix} 1 & 2 \sqrt{\frac{1}{\pi} e^{p^2} \text{erfc}(-p)} - \frac{1}{p^2} - \frac{2}{p} \sqrt{\frac{1}{\pi}} - \frac{1}{p} \\ 0 & 1 & 2 \sqrt{\frac{1}{\pi} e^{p^2} \text{erfc}(-p)} - \frac{1}{p^2} - \frac{2}{p} \sqrt{\frac{1}{\pi}} - \frac{1}{p} \\ 0 & 0 & 1 & \frac{e^{p^2} \text{erfc}(-p)}{p} - \frac{1}{p} \\ 0 & 0 & 0 & e^{p^2} \text{erfc}(-p) \end{bmatrix}, \hspace{1cm} (24)$$

6
$E_{\frac{1}{2}, \frac{1}{2}}(B) = \begin{pmatrix} \frac{1}{\sqrt{\pi}} & 1 & \frac{\sqrt{\pi} e^{p^2} \text{erfc}(p)}{p} & -\frac{1}{p} & \frac{\sqrt{\pi}}{p^2} \text{erfc}(p) \\ 0 & \frac{1}{\sqrt{\pi}} & 1 & \frac{e^{p^2} \text{erfc}(p)}{p} & \frac{1}{p} \\ 0 & 0 & \frac{1}{\sqrt{\pi}} & e^{p^2} \text{erfc}(p) \\ 0 & 0 & 0 & pe^{p^2} \text{erfc}(p) + \frac{1}{\sqrt{\pi}} & 0 \end{pmatrix}. \quad (25)$

Here erfc stands for the complementary error function, an entire function defined by

$$\text{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^2} dt.$$

The following MATLAB code evaluates the matrix Mittag-Leffler function of B for the case $a = b$, $c = 0$, with the help of mlfm.m routine and compares it with the reference matrices (24), (25)

```matlab
B = [0 1 0 0; 0 0 1 0; 0 0 0 1; 0 0 0 -1];

% matrix Mittag-Leffler function of B for alpha=0.5, beta=1
E1 = mlfm(B, 0.5, 1);

% reference matrix
H1 = [1 2/sqrt(pi) 1 -exp(1)*erfc(1)-2/sqrt(pi)+2; 0 1 2/sqrt(pi) exp(1)*erfc(1)+2/sqrt(pi)-1; 0 0 1 -exp(1)*erfc(1)+1; 0 0 0 exp(1)*erfc(1)];

% matrix Mittag-Leffler function of B for alpha=0.5, beta=0.5
E2 = mlfm(B, 0.5, 0.5);

% reference matrix
H2 = [1/sqrt(pi) 1 2/sqrt(pi) exp(1)*erfc(1)-1+2/sqrt(pi); 0 1/sqrt(pi) 1 -exp(1)*erfc(1)+1; 0 0 1/sqrt(pi) exp(1)*erfc(1); 0 0 0 -exp(1)*erfc(1)+1/sqrt(pi)];

tol = 1e-15; % tolerance
abs(E1-H1) < tol
abs(E2-H2) < tol

The above code produces the result

ans =

1 1 1 1
This implies that the `mlfm.m` routine evaluates the matrix Mittag-Leffler function with sufficiently high accuracy (absolute error is less than $10^{-15}$).

References

[1] I. Matychyn. (2017) Matrix Mittag-Leffler function. [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/62790

[2] A. Chikrii and S. Eidelman, “Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order,” Cybern. Syst. Analysis, vol. 36, no. 3, pp. 315–338, 2000.

[3] A. Kilbas, H. Srivastava, and J. Trujillo. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006.

[4] A. Chikrii and I. Matichin, “Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann–Liouville, Caputo, and Miller–Ross,” J. Autom. Inf. Sci., vol. 40, no. 6, pp. 1–11, 2008.

[5] R. L. Bagley and P. J. Torvik, “On the appearance of the fractional derivative in the behavior of real materials,” J. Appl. Mech., vol. 51, pp. 294–298, 1984.

[6] K. Diethelm and J. Ford, “Numerical solution of the Bagley-Torvik equation,” BIT Numerical Mathematics, vol. 42, no. 3, pp. 490–507, 2002.

[7] A. B. Malinowska and D. F. Torres, Introduction to the fractional calculus of variations. World Scientific Publishing Co Inc, 2012.

[8] K. Balachandran, J. Park, and J. Trujillo, “Controllability of nonlinear fractional dynamical systems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 75, no. 4, pp. 1919–1926, 2012.

[9] I. Matychyn and V. Onyshchenko, “Time-optimal control of fractional-order linear systems,” Fractional Calculus and Applied Analysis, vol. 18, no. 3, pp. 687–696, 2015.
[10] C. Moler and C. Van Loan, “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later,” *SIAM review*, vol. 45, no. 1, pp. 3–49, 2003.

[11] N. J. Higham, *Functions of matrices: theory and computation*. SIAM, 2008.

[12] F. R. Gantmacher, *The Theory of Matrices*. AMS Chelsea Publishing, 1959, vol. 1.

[13] R. Garrappa, “Numerical evaluation of two and three parameter Mittag-Leffler functions,” *SIAM Journal on Numerical Analysis*, vol. 53, no. 3, pp. 1350–1369, 2015.