MAXIMALITY OF DUAL COACTIONS ON SECTIONAL C^\ast-ALGEBRAS OF FELL BUNDLES AND APPLICATIONS

ALCIDES BUSS AND SIEGFRIED ECHTERHOFF

Abstract. In this paper we give a simple proof of the maximality of dual coactions on full cross-sectional C^\ast-algebras of Fell bundles over locally compact groups. This result was only known for discrete groups or for saturated (separable) Fell bundles over locally compact groups. Our proof, which is derived as an application of the theory of universal generalised fixed-point algebras for weakly proper actions, is different from these previously known cases and works for general Fell bundles over locally compact groups. As applications we extend certain exotic crossed-product functors in the sense of Baum, Guentner and Willett to the category of Fell bundles and the category of partial actions and we obtain results about the K-theory of (exotic) cross-sectional algebras of Fell-bundles over K-amenable groups. As a bonus, we give a characterisation of maximal coactions of discrete groups in terms of maximal tensor products.

1. Introduction

The theory of Fell bundles B over a locally compact group G (also called C^\ast-algebraic bundles in [15]) and their cross-sectional algebras give far reaching generalisations of the theory of crossed products by strongly continuous actions $\alpha : G \to \text{Aut}(A)$ of G on C^\ast-algebras A. Important examples of Fell bundles come from (twisted) partial actions (see [21]) of G on C^\ast-algebras A and in this case the crossed products for such actions are by definition given as the cross-sectional C^\ast-algebras of the associated Fell bundles.

Recall from [13,15] that a Fell bundle B over G consists of a topological space B together with a continuous open surjection $p : B \to G$ such that the fibres $B_s := p^{-1}(\{s\})$ are Banach spaces for all $s \in G$ and such that all operations like multiplication with scalars, fibre-wise addition, and norm are continuous on B. Moreover, B comes equipped with an associative continuous multiplication function

$$\cdot : B \times B \to B; (a, b) \mapsto a \cdot b$$

which is bilinear when restricted to $B_s \times B_t$ for all $s,t \in G$ and such that $B_s \cdot B_t \subseteq B_{st}$. In addition, B is equipped with a continuous involution $* : B \to B, b \mapsto b^\ast$ which sends B_t to $B_{t^{-1}}$ for all $t \in G$ and which is compatible with multiplication and addition on B in a sense extending the usual properties for involutions on C^\ast-algebras. In particular, the C^\ast-condition $\|b^\ast b\| = \|b\|^2$ and the positivity condition $b^\ast b \geq 0$ in B_e are required to hold for all $b \in B$. Note that the unit fibre B_e in a Fell bundle B is always a C^\ast-algebra. A Fell bundle is called saturated if span($B_e B_t$) = B_e for all $t \in G$.

2010 Mathematics Subject Classification. 46L55, 46L08.

Supported by Deutsche Forschungsgemeinschaft (SFB 878, Groups, Geometry & Actions) and by CNPq/CAPES (Brazil).
Given a Fell bundle \mathcal{B}, let $C_c(\mathcal{B})$ denote the space of continuous sections with compact support. It carries multiplication and involution given by the formulas

\begin{equation}
(1.1) \quad f \ast g(s) = \int_G f(t)g(t^{-1}s)\, dt \quad \text{and} \quad f^*(s) = \Delta_G(s^{-1})f(s^{-1})^*.
\end{equation}

In general there might exist many possible C^*-completions of $C_c(\mathcal{B})$. The largest (L^1-bounded) C^*-norm on $C_c(\mathcal{B})$ is the universal (or maximal) cross-sectional algebra $C^*(\mathcal{B})$ whose representations are in one-to-one correspondence to the continuous *-representations of the bundle \mathcal{B}. On the other extreme there is the reduced cross-sectional algebra $C^*_r(\mathcal{B})$ which is defined as the image of $C^*(\mathcal{B})$ under the regular representation $\Lambda : \mathcal{B} \to \mathcal{L}(L^2(\mathcal{B}))$.

If \mathcal{B} is a Fell-bundle and if $u_G : G \to UM(C^*(G))$ denotes the universal representation of G, then the integrated form of the representation

\[\delta_G = \mathbf{1}_G \otimes u_G : \mathcal{B} \to \mathcal{M}(C^*(\mathcal{B}) \otimes C^*(G)); b_t \mapsto b_t \otimes u_G(t) \]

defines a dual coaction of G (or rather of the Hopf-C^*-algebra $C^*(\mathcal{B})$) on $C^*(\mathcal{B})$ (see [23]). It is the main purpose of this paper to show that this coaction always satisfies Katayama duality for the maximal bidual crossed product in the sense that a certain canonical surjective homomorphism

\[\Phi_B : C^*(\mathcal{B}) \times_{\delta_B} \hat{G} \times_{\delta_G} G \to C^*(\mathcal{B}) \otimes K(L^2(G)) \]

will actually be an isomorphism. Coactions with this property have been called maximal in [18], where it has first been shown that every coaction (\mathcal{B}, δ) admits a maximalisation $(\mathcal{B}_m, \delta_m)$. If G is discrete and (\mathcal{B}, δ) is any coaction of G on some C^*-algebra \mathcal{B}, then it follows from results of Ng and Quigg in [34] (see also [17]) that \mathcal{B} is isomorphic to a C^*-completion $C^*_m(\mathcal{B})$ of $C_c(\mathcal{B})$ for some Fell bundle \mathcal{B} with respect to some norm $\| \cdot \|_\mu$ lying between the universal norm $\| \cdot \|_u$ and the reduced norm $\| \cdot \|_r$ such that the coaction δ is the natural dual coaction of this algebra. It has then been shown in [17] (see also [18, §4]) that δ is maximal if and only if $\mathcal{B} = C^*(\mathcal{B})$, the universal cross-sectional algebra. This gives the desired result in the discrete case.

For second countable locally compact groups the result that $(C^*(\mathcal{B}), \delta_B)$ is a maximal coaction has been obtained in the special case of separable saturated Fell bundles by Kaliszewski, Muhly, Quigg and Williams in [30]. Separability is not a strong assumption, but note that Fell bundles arising from (twisted) partial actions are saturated if and only if the action is actually a global (twisted) action, so that there are many important examples of Fell bundles which are not saturated. Moreover, the proof given in [30] relies on some heavy machinery about Fell bundles on groupoids while our proof depends on the notion of generalised fixed-point algebras for weakly proper actions as introduced recently in [19]. Both proofs depend on non-trivial results, but we believe that our proof is much shorter and technically easier than the proof given for the special case of saturated bundles in [30]. We should point out, however, that for the special case of Fell bundles associated to partial actions, the maximality result can also be deduced from the paper [2] by Fernando Abadie and Laura Martí Pérez. Indeed, as we will see in Section 4.3, the maximality of the dual coaction on the C^*-algebra $C^*(\mathcal{B})$ of a Fell bundle associated to a partial action (A, α) is essentially equivalent to the fact (proven in [2]) that the full crossed product of the Morita enveloping action of (A, α) is Morita equivalent to...
the original full crossed product by the partial action. Hence our main result will provide an alternative proof of one of the main results in [2].

The paper is organised as follows. After a short preliminary section (§2) on cross-sectional algebras, coactions, and generalised fixed-point algebras for weakly proper actions we shall give the proof of our main result (Theorem 3.1) in §3. We will then have a number of interesting applications, starting from extensions of crossed-product functors from ordinary actions to Fell bundle categories, K-amenability for cross-sectional C^*-algebras and some applications to partial actions. Our results imply, in particular, that one can extend exotic crossed-product functors from ordinary actions to partial actions. In other words, given a crossed-product functor $(A, \alpha) \mapsto A \times_{\alpha, \mu} G$ defined only for (global) G-actions (A, α), we can extend this functor and define $A \times_{\alpha, \mu} G$ for every given partial G-action (A, α). More generally, we can extend the functor to the category of Fell bundles over G, and define exotic versions $C^*_\mu(B)$ of cross-sectional C^*-algebras of Fell bundles B over G. These include partial actions or, more generally, twisted partial actions. We give an alternative proof and recover some of the main results on enveloping actions and amenability for partial actions from [2]. More generally, we prove that all exotic cross-sectional C^*-algebras $C^*_\mu(B)$ have same K-theory if the underlying group is K-amenable.

In the final section, we give a simple characterisation of maximal coactions of discrete groups (which is not available for general locally compact groups), proving that a coaction $\delta : B \to B \otimes C^*(G)$ of a discrete group G is maximal exactly when it admits a lift $\delta_{\text{max}} : B \to B \otimes_{\text{max}} C^*(G)$, where \otimes_{max} denotes the maximal tensor product. (And, as usual, all the unlabeled tensor products \otimes between C^*-algebras mean the minimal tensor product.)

This work started during a visit of the second author to Florianópolis to participate in the FADYS (Functional Analysis and Dynamical Systems) Workshop. It was during the talk of the second author in this Workshop that Ruy Exel asked the question whether the theory of exotic crossed products could be extended to cover partial actions as well. One of the main points of this paper is to give a positive answer to this question. We would like to thank Ruy Exel for asking this interesting question and make this paper emerge. The second author takes this opportunity to thank the members of the Department of Mathematics of UFSC for organising the workshop and for their warm hospitality during his stay in Florianópolis.

2. Preliminaries

2.1. Fell bundles and their cross-sectional algebras. Suppose that $p : B \to G$ is a Fell bundle over the locally compact group G as defined in the introduction. Main references on Fell bundles and their cross-sectional algebras are the books by Doran and Fell [14,15] and we refer to these books for more details of the definition (see also the book by Exel [24]). Let $C_c(B)$ be the set of all continuous sections of B with compact supports. Then, equipped with convolution and involution as in [14], $C_c(B)$ becomes a $*$-algebra. Let $L^1(B)$ denote the completion of $C_c(B)$ with respect to $\|f\|_1 = \int_G \|f(t)\| dt$. Then the universal cross-sectional algebra $C^*(B)$ is defined as the enveloping C^*-algebra of the Banach-$*$ algebra $L^1(B)$, i.e., it is the completion of $L^1(B)$ with respect to $\|f\|_\pi := \sup \|\pi(f)\|$.
where \(\pi \) runs through all \(^*\)-representations of \(L^1(\mathcal{B}) \) on Hilbert space. It has been shown by Fell [25 §15–16] that \(C^*(\mathcal{B}) \) is universal for (continuous) \(^*\)-representations of \(\mathcal{B} \), and since we shall need it later, let us explain (a modern version) of this result in some detail: By a \(^*\)-representation \(\pi : \mathcal{B} \to \mathcal{M}(D) \) of \(\mathcal{B} \) into the multiplier algebra of some \(C^*\)-algebra \(D \) we understand a strictly continuous map \(b \mapsto \pi(b) \) which is linear on each fibre \(B_t \) and preserves multiplication and involution on \(\mathcal{B} \). Such representation is called nondegenerate if its restriction \(\pi_c : B_c \to \mathcal{M}(D) \) on the unit fibre \(B_c \) of \(\mathcal{B} \) is nondegenerate in the usual sense that \(\text{span}(\pi_c(B_c)D) \) is dense in \(D \) (then Cohen’s factorisation theorem implies that \(\pi_c(B_c)D = D \)). There is a canonical nondegenerate representation \(\iota_\mathcal{B} : \mathcal{B} \to \mathcal{M}(C^*(\mathcal{B})) \) which is determined by the formulas

\[
(\iota_\mathcal{B}(b_t)f)(s) = b_t f(t^{-1}s) \quad \text{and} \quad (\iota_\mathcal{B}(b_t)) f(s) = \Delta_G(t^{-1}) f(st^{-1}) b_t
\]

for \(b_t \in B_t, \ f \in C_c(\mathcal{B}) \) and \(t, s \in G \) (e.g., see [25, p. 138]). We have the following well-known result:

Proposition 2.1. There are one-to-one correspondences between

1. nondegenerate representations \(\pi : \mathcal{B} \to \mathcal{M}(D) \),
2. nondegenerate \(^*\)-representations \(\tilde{\pi} : C_c(\mathcal{B}) \to \mathcal{M}(D) \) which are continuous with respect to the inductive limit topology on \(C_c(\mathcal{B}) \) and the norm-topology on \(\mathcal{M}(D) \),
3. nondegenerate \(^*\)-representations \(\tilde{\pi} : L^1(\mathcal{B}) \to \mathcal{M}(D) \), and
4. nondegenerate \(^*\)-representations \(\tilde{\pi} : C^*(\mathcal{B}) \to \mathcal{M}(D) \).

The correspondences in the proposition are given as follows: If \(\pi : \mathcal{B} \to \mathcal{M}(D) \) is as in (1), then the corresponding representation \(\tilde{\pi} : C_c(\mathcal{B}) \to \mathcal{M}(D) \) is given by integration: \(\tilde{\pi}(f)c := \int_G \pi(f(t)) c \, dt \) for all \(f \in C_c(\mathcal{B}) \) and \(c \in D \). We call it the integrated form of \(\pi \). It is straightforward to check that it is continuous in the inductive limit topology (given by uniform convergence with controlled compact supports) and with respect to \(\| \cdot \|_1 \). This gives (1) \(\to \) (2),(3). By construction of the enveloping \(C^*\)-algebra, every \(^*\)-representation of \(L^1(\mathcal{B}) \) uniquely extends to \(C^*(\mathcal{B}) \) which gives (3) \(\to \) (4). Conversely, if \(\tilde{\pi} : C^*(\mathcal{B}) \to \mathcal{M}(D) \) as in (4), then \(\pi = \tilde{\pi} \circ \iota_\mathcal{B} \) is the corresponding representation as in (1). The only missing link is the connection (2) \(\to \) (1). But this follows from [25 Theorem 16.1] by representing \(D \) faithfully on a Hilbert space.

In what follows, we shall make no notational difference between a representation \(\pi \) of \(\mathcal{B} \) and the corresponding representations of \(C_c(\mathcal{B}) \), \(L^1(\mathcal{B}) \), and \(C^*(\mathcal{B}) \).

Let \(L^2(\mathcal{B}) \) denote the Hilbert module over \(B_c \) given as the completion of \(C_c(\mathcal{B}) \) with respect to the \(B_c \)-valued inner product

\[
\langle \xi, \eta \rangle_{B_c} := (\xi^* \ast \eta)(e) = \int_G \xi(t)^* \eta(t) \, dt.
\]

Then the action of \(C_c(\mathcal{B}) \) on itself given by convolution extends to the regular representation \(\Lambda_c : C^*(\mathcal{B}) \to \mathcal{L}(L^2(\mathcal{B})) \) by adjointable operators on the \(B_c \)-Hilbert module \(L^2(\mathcal{B}) \) and the image \(C^*_c(\mathcal{B}) := \Lambda_c(C^*(\mathcal{B})) \subseteq \mathcal{L}(L^2(\mathcal{B})) \) is called the reduced cross-sectional \(C^*\)-algebra of \(\mathcal{B} \).

2.2. Coactions and their crossed products.

A coaction of a locally compact group on a \(C^*\)-algebra \(\mathcal{B} \) is a nondegenerate \(^*\)-homomorphism \(\delta : \mathcal{B} \to \mathcal{M}(\mathcal{B} \otimes \mathcal{B}^e) \).
$C^*(G)$) which satisfies the identity
\begin{equation}
(id_B \otimes \delta_G) \circ \delta = (\delta \otimes id_G) \circ \delta,
\end{equation}
where $\delta_G : C^*(G) \to \mathcal{M}(C^*(G) \otimes C^*(G))$ is the comultiplication on $C^*(G)$ which is given by the integrated form of the representation $s \mapsto u(s) \otimes u(s) \in UM(C^*(G) \otimes C^*(G))$, where $u : G \to UM(C^*(G))$ denotes the universal representation of G. Note that in (2.2) (and in many other places) we make no notational difference between a nondegenerate *-homomorphism and its unique extension to the multiplier algebra. We shall assume that our coactions δ always satisfy the following (strong) nondegeneracy condition
\[
\delta(B)(1 \otimes C^*(G)) = B \otimes C^*(G).
\]
If $\delta : B \to \mathcal{M}(B \otimes C^*(G))$ is a coaction of G we let $\delta' := (1 \otimes \lambda) \circ \delta : B \to \mathcal{M}(B \otimes C^*_G(G))$ denote the reduction of δ, where $\lambda : G \to U(L^2(G))$ is the regular representation of G, and we let $M : C_0(G) \to B(L^2(G))$ be the representation by multiplication operators. We then may represent the crossed product $B \rtimes_\delta \hat{G}$ faithfully in $\mathcal{M}(B \otimes K(L^2(G)))$ via the integrated representation $A^G_B := \delta' \rtimes (1 \otimes M)$. Hence, via this representation, we may define
\[
B \rtimes_\delta \hat{G} := \text{span} \{ \delta'(B)(1 \otimes M(C_0(G))) \} \subseteq \mathcal{M}(B \otimes K(L^2(G))).
\]
Since locally compact groups are always “co-amenable” this “reduced crossed product” coincides with the “universal crossed product” which is universal for covariant representations of the co-system (B, δ). Note that in the notation of crossed products by coactions we use the symbol \hat{G} to indicate that this construction is dual to the construction of crossed products by actions of G. We refer to [19] Appendix A for an extensive survey on crossed products by actions and coactions of groups on C^*-algebras.

The dual action $\hat{\delta} : G \to \text{Aut}(B \rtimes_\delta \hat{G})$ is determined by the equation
\[
\hat{\delta}_s(\delta'(b)(1 \otimes M(\varphi))) = \delta'(b)(1 \otimes M(\sigma_s(\varphi))), \quad \forall b \in B, \varphi \in C_0(G),
\]
where $\sigma : G \to \text{Aut}(C_0(G))$ denotes the right translation action. One checks that $(A^G_B, 1 \otimes \rho)$ is a covariant representation of the dual system $(B \rtimes_\delta \hat{G}, G, \hat{\delta})$ on $\mathcal{M}(B \otimes K(L^2(G)))$ and it follows from [33] Corollary 2.6 that the integrated form of this representation gives a surjective *-homomorphism
\[
\Phi_B := ((id \otimes \lambda) \circ \delta_A \rtimes (1 \otimes M)) \rtimes (1 \otimes \rho) : B \rtimes_\delta \hat{G} \rtimes_\hat{\delta} G \to B \otimes K(L^2(G)).
\]
The map Φ_B might be called the Katayama-duality map. Now, following [18] a coaction (B, δ) is called maximal if the homomorphism Φ_B is an isomorphism.

On the other extreme, a coaction (B, δ) of G is called normal if the surjection Φ_B factors through an isomorphism
\[
B \rtimes_\delta \hat{G} \rtimes_\hat{\delta} G \cong B \otimes K(L^2(G)).
\]
It has been shown by Quigg in [37] that every coaction (B, δ) has a normalisation (B_n, δ_n), which can be constructed by passing from B to the quotient $B_n := B/\ker \delta'$. In particular, it follows that (B, δ) is normal if and only if its reduction δ' is injective. On the other hand it has been shown in [18] that every coaction also has a maximalisation (B_m, δ_m) such that there exist G-equivariant surjections $B_m \twoheadrightarrow B \twoheadrightarrow B_n$ which induce isomorphisms between the respective coaction-crossed products.
For later use we need the construction of the maximalisation and normalisation of \((B, \delta)\) as given in \([9]\), using the notion of generalised fixed-point algebras for weakly proper actions. In what follows let us write \(j_{B, \delta}(G)\) for the covariant representation \((\delta^*, 1 \otimes M)\) when viewed as a representation into \(\mathcal{M}(B \rtimes_{\delta} \hat{G})\). It is then clear that \(j_{\mathcal{C}_0(G)} : \mathcal{C}_0(G) \to \mathcal{M}(B \rtimes_{\delta} \hat{G})\) is a nondegenerate \(\sigma - \delta\)-equivariant *-homomorphism which gives \((B \rtimes_{\delta} \hat{G}, G, \hat{\delta})\) the structure of a weakly proper \(G \rtimes G\)-algebra in the sense of \([9]\). For simpler notation let us write \(A := B \rtimes_{\delta} \hat{G}\) and we put \(\varphi \cdot m := j_B(\varphi)m\) and \(m \cdot \varphi := j_B(\varphi)\) for all \(m \in \mathcal{M}(A), \varphi \in \mathcal{C}_0(G)\). Moreover, let \(A_c := \mathcal{C}_c(G) \cdot A \cdot \mathcal{C}_c(G)\), which is a dense *-subalgebra of \(A\), and let

\[
A^G_c := \{ m \in \mathcal{M}(A)^G : m \cdot \varphi, \varphi \cdot m \in A_c, \forall \varphi \in \mathcal{C}_c(G) \},
\]

where \(\mathcal{M}(A)^G\) denotes the set of fixed-points in \(\mathcal{M}(A)\) for the extended action \(\hat{\delta}\). We call \(A^G_c\) the generalised fixed-point algebra with compact supports. Following ideas of Rieffel (\([39, 40]\)), it has then been shown in \([9]\) Proposition 2.2 that \(\mathcal{F}_\mu(A) := \mathcal{C}_c(G) \cdot A\) can be made into a pre-Hilbert \(\mathcal{C}_c(G, A)\) module by defining a \(\mathcal{C}_c(G, A)\)-valued inner product on \(\mathcal{F}_\mu(A)\) and a right action of \(\mathcal{C}_c(G, A)\) on \(\mathcal{F}_\mu(A)\) by

\[
(\xi, \eta)_{\mathcal{C}_c(G, A)} = \left[s \mapsto \Delta_G(s)^{-\frac{1}{2}} \xi(s) \hat{\delta}_G(\eta) \right] \quad \text{and} \quad \xi \cdot \varphi = \int_G \Delta(t)^{-\frac{1}{2}} \alpha(t) \xi(t^{-1}) \varphi dt
\]

for \(\xi, \eta \in \mathcal{F}_\mu(A)\) and \(\varphi \in \mathcal{C}_c(G, A)\). Let \(A \rtimes_{\delta, \mu} G\) be any \(C^*\)-completion of \(\mathcal{C}_c(G, A)\) with respect to a \(C^*\)-norm \(\| \cdot \|_u\) on \(\mathcal{C}_c(G, A)\) such that \(\| \cdot \|_u \geq \| \cdot \|_\mu \geq \| \cdot \|_r\), where \(\| \cdot \|_u\) and \(\| \cdot \|_r\) denote the universal (i.e., maximal) and the reduced norm on \(\mathcal{C}_c(G, A)\), respectively. Then the above defined inner product takes values in \(A \rtimes_{\delta, \mu} G\) and the completion \(\mathcal{F}_\mu(A)\) of \(\mathcal{F}_\mu(A)\) with respect to this inner product becomes a full \(A \rtimes_{\delta, \mu} G\)-Hilbert module (the module is full since the translation action of \(G\) on itself is free and proper). Now, if we define a left action of \(A^G_c\) on \(\mathcal{F}_\mu(A)\) by taking products inside \(\mathcal{F}_\mu(A)\), this action extends to a faithful *-homomorphism \(\Psi_\mu : A^G_c \to \mathcal{K}(\mathcal{F}_\mu(A))\) with dense image. Hence \(A^G_\mu := \mathcal{K}(\mathcal{F}_\mu(A))\) can be viewed as the completion of \(A^G_c\) with respect to the operator norm for the left action of \(A^G_c\) on \(\mathcal{F}_\mu(A)\). In particular, \(\mathcal{F}_\mu(A)\) becomes a \(A^G_\mu - A \rtimes_{\delta, \mu} G\)-equivalence bimodule.

Moreover, if the dual coaction on \(A \rtimes_{\delta} G\) factors through a dual coaction on \(A \rtimes_{\delta, \mu} G\) (a property which depends on the norm \(\| \cdot \|_\mu\), it is shown in \([9]\) Theorem 4.6] that there are canonical coactions \(\delta_{A^G_c}\) and \(\delta_{\mathcal{F}_\mu(A)}\) of \(G\) on \(A^G_\mu\) and \(\mathcal{F}_\mu(A)\), respectively, such that \((\mathcal{F}_\mu(A), \delta_{\mathcal{F}_\mu(A)})\) becomes a \(\hat{G}\)-equivariant Morita equivalence between \((A^G_c, \delta_{A^G_c})\) and \((A \rtimes_{\delta, \mu} G, \hat{\delta})\). It is shown in \([9]\) Lemma 4.8] that there exists a unique crossed-product norm \(\| \cdot \|_\mu\) on \(\mathcal{C}_c(G, A)\) such that \((A^G_\mu, \delta_{A^G_\mu})\) is isomorphic to the original coaction \((B, \delta)\). Moreover, if \(\| \cdot \|_\mu = \| \cdot \|_u\) is the universal norm on \(\mathcal{C}_c(G, A)\), then the corresponding system \((B_m, \delta_m) := (A^G_\mu, \delta_{A^G_\mu})\) is a maximalisation for \((B, \delta)\) and if \(\| \cdot \|_\mu = \| \cdot \|_r\) is the reduced norm, then \((B_n, \delta_n) := (A^G_\mu, \delta_{A^G_\mu})\) is a normalisation of \((B, \beta)\). Identifying \((B, \beta)\) with \((A^G_\mu, \delta_{A^G_\mu})\) as above, the identity map on \(A^G_c\) induces the \(\hat{G}\)-equivariant surjections \(B_m \to B \to B_n\) which induce isomorphisms of crossed products

\[
B_m \rtimes_{\delta_m} \hat{G} \cong B \rtimes_{\delta} \hat{G} \cong B_n \rtimes_{\delta_n} \hat{G}.
\]
3. The main result

Assume that \(p : \mathcal{B} \to G \) is a Fell bundle over the locally compact group \(G \). Then there is a canonical coaction
\[
\delta_B : C^*(\mathcal{B}) \to \mathcal{M}(C^*(\mathcal{B}) \otimes C^*(G)) ,
\]
called the dual coaction of \(G \) on \(C^*(\mathcal{B}) \), given as the integrated form of the \(*\)-representation \(\delta_B : \mathcal{B} \to \mathcal{M}(C^*(\mathcal{B}) \otimes C^*(G)) \) which sends \(B \ni b \mapsto \iota_B(b) \otimes \iota_G \), where \(\iota_B : \mathcal{B} \to \mathcal{M}(C^*(\mathcal{B})) \) is the universal representation of \(\mathcal{B} \) and \(\iota_G : G \to \mathcal{U}\mathcal{M}(C^*(G)) \) is the universal representation of \(G \).

Theorem 3.1. Let \(\mathcal{B} \) be a Fell bundle over the locally compact group \(G \). Then the dual coaction \(\delta_B : C^*(\mathcal{B}) \to \mathcal{M}(C^*(\mathcal{B}) \otimes C^*(G)) \) is maximal.

Let \((m, \delta) := (C^*(\mathcal{B}), \delta_B) \) and let \((B_m, \delta_m)\) be the maximisation of \((B, \delta)\) as constructed from \((B, \delta)\) in the previous section. We will show that there exists a \(\delta - \delta_m \)-equivariant surjection \(\Psi : B \twoheadrightarrow B_m \) which induces an isomorphism of crossed products \(B \rtimes_{\delta} \hat{G} \cong B_m \rtimes_{\delta_m} \hat{G} \). The result will then follow from the following easy lemma, which should be well known to the experts:

Lemma 3.2. Let \((B, \delta)\) and \((B_m, \delta_m)\) be coactions of \(G \) with \((B_m, \delta_m)\) maximal. Suppose that \(\Psi : B \twoheadrightarrow B_m \) is a \(\delta - \delta_m \)-equivariant surjection which induces an isomorphism of crossed products. Then \(\Psi \) is an isomorphism and \((B, \delta)\) is maximal as well.

Proof. Since \(\Phi : B \twoheadrightarrow B_m \) is \(\delta - \delta_m \)-equivariant, we obtain a commutative diagram
\[
\begin{array}{ccc}
B \rtimes_{\delta} \hat{G} \rtimes_{\delta} G & \xrightarrow{\Phi_m} & B \otimes \mathcal{K}(L^2(G)) \\
\Psi \rtimes \hat{G} \rtimes G \downarrow & & \downarrow \Phi \otimes \text{id}_{\mathcal{K}(L^2(G))} \\
B_m \rtimes_{\delta_m} \hat{G} \rtimes_{\delta_m} G & \xrightarrow{\Phi_{m\text{e}}} & B_m \otimes \mathcal{K}(L^2(G)).
\end{array}
\]
By our assumptions, the left vertical and the lower horizontal arrows are isomorphisms. It then follows that the upper horizontal arrow has to be injective. Since it is always surjective, it must be an isomorphism. Hence \((B, \delta)\) is maximal. Moreover, it follows that the right vertical arrow is an isomorphism which then implies that \(\Psi : B \twoheadrightarrow B_m \) must be an isomorphism as well. \(\square \)

Proof of Theorem 3.1. Let \((B, \delta) := (C^*(\mathcal{B}), \delta_B)\) and let
\[
A := B \rtimes_{\delta} \hat{G} = \operatorname{span} \{ \delta'(B)(1 \otimes M(C_0(G))) \}
\]
As explained in the previous section, we view \(A \) as a weakly proper \(G \rtimes G \)-algebra. Then, as explained above, the maximisation of \((B, \delta)\) is given by the coaction \((B_m, \delta_m) = (A^G_u, \delta_A^G)\) where \(A^G_u \) denotes the universal generalised fixed-point algebra of \(A \). We will show that the restriction of \(\delta^* \) to \(C_c(B) \) defines a \(*\)-homomorphism \(\Psi : C_c(B) \to A^G_u \subseteq \mathcal{M}(A) \) which extends to the desired \(\delta - \delta_m \)-equivariant surjective \(*\)-homomorphism \(\Psi : C^*(B) \to A^G_u \). First of all, it follows directly from the definition of the dual action \(\delta \) that \(\delta^*(B) \) lies in the fixed-point algebra \(\mathcal{M}(A) \). To see that it sends \(C_c(B) \) into the generalised fixed-point algebra \(A^G_u \) with compact supports it suffices to show that all elements of the form \(\delta^*(b)(1 \otimes M(f)), (1 \otimes M(f))\delta^*(b) \) lie in \(A_c = C_c(G) \cdot C_c(G) \) for all \(b \in C_c(B) \) and \(f \in C_c(G) \). For this we first note that \(\delta^* = (1 \otimes \lambda) \circ \delta_B \) is the integrated form of the representation \(\delta^* : \mathcal{B} \to \mathcal{M}(C^*(\mathcal{B}) \otimes \mathcal{K}(L^2(G))); b_t \mapsto \iota_B(b_t) \otimes \lambda(t) \). Suppose
now that \(b \in C_c(B) \) is a continuous section with compact support \(K = \text{supp}(b) \). Then, if \(f \in C_c(G) \) is fixed, we may choose a function \(g \in C_c(G) \) such that \(g \equiv 1 \) on \(K \cdot \text{supp}(f) \cup \text{supp}(f) \). Then for \(a = \delta'(b)(1 \otimes M(f)) \) we clearly have \(a \cdot g = \delta'(b)(1 \otimes M(fg)) = \delta'(b)(1 \otimes M(f)) = a \). On the other side, using \(\lambda_i M(g) \lambda_{i-1} = M(\tau_i(g)) \), where \(\tau : G \to \text{Aut}(C_0(G)) \) denotes the left translation action of \(G \) on itself, we compute

\[
g \cdot a = (1 \otimes M(g))\delta'(b)(1 \otimes M(f)) \\
= \int_K (1 \otimes M(g))(\iota_B(b_t) \otimes \lambda_t)(1 \otimes M(f)) \, dt \\
= \int_K (\iota_B(b_t) \otimes \lambda_t)(1 \otimes M(\tau_{-1}(g)f)) \, dt \\
= \int_K (\iota_B(b_t) \otimes \lambda_t)(1 \otimes M(f)) \, dt = a
\]

since for \(t \in K \) and \(s \in \text{supp}(f) \) we have \(\tau_{-1}(g)(s) = g(ts) \equiv 1 \) since \(ts \in K \cdot \text{supp}(f) \). This proves that \(\delta'(C_c(B))(1 \otimes M(f)) \) lies in \(A_c \), and a similar argument also gives that \((1 \otimes M(f))\delta'(b) \in A_c \).

Now we need to show that \(\delta' : C_c(B) \to A^G_u \) extends to an equivariant surjective \(*\)-homomorphism \(\Psi : C^*(B) \to A^G_u = \mathcal{K}(\mathcal{F}_u(A)) \). For this we need to recall from [9, Definition 2.6] the notion of convergence in the inductive limit topology on the spaces \(A_c = C_c(G) \cdot A \cdot C_c(G), \mathcal{F}_c(A) = C_c(G) \cdot A \cdot \mathcal{F}_c(A) \) and \(A^G_u \), respectively. First of all, a sequence \((\xi_n)_{n \in \mathbb{N}} \) in \(\mathcal{F}_c(A) \) (resp. \(A_c \)) converges to \(\xi \in \mathcal{F}_c(A) \) (resp. \(\xi \in A_c \)) in the inductive limit topology, if \(\xi_n \to \xi \) in the norm topology of \(A \) and there exists a function \(g \in C_c(G) \) such that \(\xi = g \cdot \xi, \xi_n = g \cdot \xi_n \) (resp. \(\xi = g \cdot \xi, \xi_n = g \cdot \xi_n \)) for all \(n \in \mathbb{N} \). For \(A^G_u \), a sequence \((m_n)_{n \in \mathbb{N}} \) in \(A^G_u \) converges to \(m \in A^G_u \) in the inductive limit topology if for all \(f \in C_c(G) \) we have \(f \cdot m_n \to f \cdot m \) and \(m_n \cdot f \to m \cdot f \) in the inductive limit topology of \(A_c \) (the fact that \(G/G \) is a one-point set implies that this definition coincides with the one given in [9, Definition 2.6]). Now it is shown in [9, Lemma 2.7] that all pairings in the \(A^G_u - C_c(G, A) \) pre-imprimitivity bimodule \(\mathcal{F}_c(A) \) are jointly continuous with respect to the inductive limit topologies, where on \(C_c(G, A) \) we use the usual notion of inductive limit convergence. Since inductive limit convergence in \(C_c(G, A) \) is stronger than norm convergence with respect to any given \(C^* \)-norm \(\| \cdot \|_\mu \) on \(C_c(G, A) \), it follows from this that the inductive limit topology on \(A^G_u \) is stronger than any norm topology induced on \(A^G_u \) via the left action on the \(A \)-module \(G \)-Hilbert module \(\mathcal{F}_u(A) \). In particular, inductive limit convergence in \(A^G_u \) implies norm convergence in \(A^G_u \).

Assume now that \((b_n)_{n \in \mathbb{N}} \) is a sequence in \(C_c(B) \) which converges to some \(b \in C_c(B) \) in the inductive limit topology of \(C_c(B) \) (which means that \(b_n \to b \) uniformly on \(G \) and that all \(b_n \) have supports in a fixed compact subset \(K \) of \(G \)). Then the computation in (3.3) can easily be modified to show that \(\delta'(b_n) \to \delta'(b) \) in the inductive limit topology of \(A^G_u \). Thus \(\delta'(b_n) \to \delta'(b) \) in the universal completion \(A^G_u \). Thus we obtain a \(*\)-representation \(\Psi : C_c(B) \to A^G_u \) which is continuous for the inductive limit topology on \(C_c(B) \). But then Proposition 2.1 implies that \(\Psi \) extends to a \(*\)-homomorphism \(\Psi : C^*(B) \to A^G_u \).

To see that the image is dense, we first show that

\[
\mathcal{E}_c := \text{span}(\delta'(C_c(B))(1 \otimes M(C_c(G)))) \subseteq A_c
\]
is inductive limit dense in A_c. Since \mathcal{E}_c is norm dense in A, it is clear that
\[
\text{span } \left((1 \otimes M(C_c(G)))\delta(C_c(B))(1 \otimes M(C_c(G))) \right)
\]
is inductive limit dense in A_c. Hence it suffices to show that every element of the form $(1 \otimes M(g))\delta(b)(1 \otimes M(f))$ with $f, g \in C_c(G)$ and $b \in C_c(B)$ can be inductive limit approximated by elements in \mathcal{E}_c. By [3.3] we know that
\[
(1 \otimes M(g))\delta(b)(1 \otimes M(f)) = \int_K (\iota_G(b_t) \otimes \lambda_t)(1 \otimes M(\tau_{t^{-1}}(g)f)) \, dt,
\]
where $K = \text{supp}(b)$. Now, for each $\varepsilon > 0$ and $t \in K$ we find a neighbourhood V_t of t in G such that $\|\tau_{t^{-1}}(g)f - \tau_{t^{-1}}(g)f\|_\infty < \varepsilon$ for all $s \in V_t$. Let t_1, \ldots, t_n be given such that $K \subseteq \bigcup_{i=1}^n V_{t_i}$, let $\varphi_1, \ldots, \varphi_n$ be a partition of unity for K with $\text{supp} \varphi_i \subseteq V_{t_i}$ for $1 \leq i \leq n$, and let $b_i := \varphi_i \cdot b$ (pointwise product). Then $a := \sum_{i=1}^n \delta'(b_i)(1 \otimes M(\tau_{t_i^{-1}}(g)f)) \in \mathcal{E}_c$ such that
\[
\left\| (1 \otimes M(g))\delta(b)(1 \otimes M(f)) - \sum_{i=1}^n \delta'(b_i)(1 \otimes M(\tau_{t_i^{-1}}(g)f)) \right\|
\leq \int_K \sum_{i=1}^n \varphi_i(s)\|\iota_G(b_i)\|\|\tau_{t_i^{-1}}(g)f - \tau_{t_i^{-1}}(g)f\|_\infty dt \leq \varepsilon \mu(K)\|b\|_\infty,
\]
where $\mu(K)$ denotes the Haar measure of K. One checks as before that for any function $\varphi \in C_c(G)$ with $\varphi \equiv 1$ on $\text{supp}(f) \cup K \cdot \text{supp}(f)$ we have $\varphi \cdot a = a \cdot \varphi = a$, which now shows that \mathcal{E}_c is inductive limit dense in A_c.

Recall now from [9, Lemma 2.3] that there is a surjective linear map $\mathbb{E} : A_c \to A^G_c$ given by the equation $\mathbb{E}(\iota(a)c) = \int_G \delta(a)c \, dt$ for all $a \in A_c$, such that for all $m \in A^G_c$ and $f \in C_c(G)$ we have $\mathbb{E}(m \cdot f) = \mathbb{E}(m)\mathbb{E}_c(f)$, with $\mathbb{E}_c(f) := \int_G f(t) \, dt$. For $m = \delta'(b)\otimes \lambda_c$ and $f = \delta'(b)(1 \otimes M(f))$ it follows that $\mathbb{E}(\mathcal{E}_c) = \delta'(C_c(B))$. A slight adaptation of the last part of the proof of [9, Lemma 2.7] shows that $\mathbb{E} : A_c \to A^G_c$ is continuous for the inductive limit topologies. Hence, since \mathcal{E}_c is inductive limit dense in A_c, it now follows that $\delta'(C_c(B)) = \mathbb{E}(\mathcal{E}_c)$ is inductive limit dense in A^G_c, hence norm dense in A^G_u.

Hence $\delta' : C_c(B) \to A^G_c$ extends to a surjective *-homomorphism $\Psi : C^*(B) \to A^G_u$. We now check that Ψ is equivariant with respect to the dual coaction on $C^*(B)$ and the coaction $\delta_{A^G_u}$ on A^G_u as defined in [9] on the dense subspace A^G_u by the formula:
\[
\delta_{A^G_u}(m) = (\phi \otimes \text{id})(w_G)(m \otimes 1)(\phi \otimes \text{id})(w_G)^*\]
where $w_G \in \mathcal{M}(C_0(G) \otimes C^*(G))$ is the unitary given by the function $t \mapsto u_t$ and $\phi = 1 \otimes M : C_0(G) \to \mathcal{M}(A)$. Recall that the equivariance of Ψ means the following equality:
\[
\delta_{A^G_u}(\Psi(b)) = (\Psi \otimes \text{id})(\delta_{A^G_u}(b)) \quad \forall b \in C_c(B).
\]
Using $\Psi = \delta'$ on $C_c(B)$, the right-hand side is given by
\[
(\Psi \otimes \text{id})(\delta_{A^G_u}(b)) = (\Psi \otimes \text{id}) \left(\int_G \iota_G(b_t) \otimes u_t \, dt \right) = \int_G \iota_G(b_t) \otimes \lambda_t \otimes u_t \, dt.
\]
To compare this with the left hand side, observe that since $\phi = 1 \otimes M$, we have $(\phi \otimes \text{id})(w_G) = 1 \otimes \tilde{w}_G$, where $\tilde{w}_G := (M \otimes \text{id})(w_G) \in \mathcal{M}(\mathcal{K}(L^2(G)) \otimes C^*(G)) = \mathcal{M}(C_c(G) \otimes C^*(G))$. The relationship between \tilde{w}_G and w_G is given by $\tilde{w}_G = (\phi \otimes \text{id})(w_G)$.
\(\mathcal{L}(L^2(G, C^*(G))) \) is the unitary given by the formula \(\tilde{u}G_\zeta(t) = u_\zeta(t) \) for all \(\zeta \in C_0(G, C^*(G)) \subseteq L^2(G, C^*(G)) \) (here we view \(L^2(G, C^*(G)) = L^2(G) \otimes C^*(G) \) as a Hilbert module over \(C^*(G) \) and write \(\mathcal{L}(L^2(G, C^*(G))) \) for the \(C^* \)-algebra of adjointable operators on it). It follows that

\[
\delta_{AG}((\psi) = (\phi \otimes \text{id})(u_G)(\psi(b) \otimes 1)(\phi \otimes \text{id})(u_G)^* = (1 \otimes \tilde{u}_G) \left(\int_G \iota_b(b_t) \otimes \lambda_t \otimes 1 dt \right) (1 \otimes \tilde{u}_G)^* = \int_G \iota_b(b_t) \otimes \tilde{u}_G(\lambda_t \otimes 1) \tilde{u}_G^* dt.
\]

Now a simple computation shows that \(\tilde{u}_G(\lambda_t \otimes 1) \tilde{u}_G^* = \lambda_t \otimes u_t \), which then implies Equation (3.4).

To finish the proof we only need to check that \(\Psi \) induces an isomorphism \(\Psi \times \hat{G}: C_\tau(B) \rtimes_\delta \hat{G} \xrightarrow{\sim} A_u^G \rtimes_{\delta_{AG}} \hat{G} \). But for every coaction \(\delta: B \to M(B \rtimes C^*(G)) \) it is known that the image of \(\delta^*: B \to M(B \rtimes_\delta \hat{G}) \) is the reduced generalised fixed point algebra \(A_c^G \) for the weak \(G \rtimes G \)-algebra \(A = B \rtimes_\delta \hat{G} \) endowed with the dual action and the canonical embedding \(C_0(G) \to M(A) \). A first reference for this fact is Quigg’s original version of Landstad duality for coactions (see [33]). We have shown in [9] that \(A_u^G \) carries a coaction \(\delta_{AG} \) given on \(A_u^G \) by the same formula as \(\delta_{AG} \) and that \((A_u^G, \delta_{AG}) \) is the normalisation of \((B, \delta)\) where \(\delta^*: B \to A_u^G \) serves as the normalisation map. This in particular means that \(\delta^* \) induces an isomorphism \(\delta^* \rtimes \hat{G}: B \rtimes_\delta \hat{G} \xrightarrow{\sim} A_u^G \rtimes_{\delta_{AG}} \hat{G} \). Now it is clear that the map \(\Psi: C_\tau(B) \to A_u^G \) constructed above composed with the normalisation map \(\nu: A_u^G \to A_u^G \) (given by the identity map on \(A_u^G \)) is the canonical map \(\delta^*: C_\tau(B) \to A_u^G \). Hence it follows that the composition of the following sequence of maps

\[
C_\tau(B) \rtimes_\delta \hat{G} \xrightarrow{\Psi \times \tilde{\delta}} A_u^G \rtimes_{\delta_{AG}} \hat{G} \xrightarrow{\nu \times \tilde{\delta}} A_u^G \rtimes_{\delta_{AG}} \hat{G}
\]

is an isomorphism. Since \((A_u^G, \delta_{AG})\) is also a normalisation for \((A_u^G, \delta_{AG})\) and hence \(\nu \times \tilde{\delta}: A_u^G \rtimes_{\delta_{AG}} \hat{G} \to A_u^G \rtimes_{\delta_{AG}} \hat{G} \) is also an isomorphism, this implies the desired isomorphism \(\Psi \times \tilde{\delta}: C_\tau(B) \rtimes_\delta \hat{G} \xrightarrow{\sim} A_u^G \rtimes_{\delta_{AG}} \hat{G} \).

\[\square \]

Remark 3.5. The normalisation of \((C_\tau(B), \delta_B)\) can be realised concretely as the dual coaction \(\delta_{B,r}: C_\tau^r(B) \to M(C_\tau^r(B) \otimes C^*(G)) \) of \(G \) on \(C_\tau^r(B) \), which is constructed as follows. Consider the regular representation \(\Lambda_B: C_\tau^r(B) \to M(C_\tau^r(B)) \) and view it as a representation \(\Lambda_{B^r}: B \to M(C_\tau^r(B)) \) of \(B \). Now consider the tensor product representation \(\Lambda_B \otimes \lambda: B \to M(C_\tau^r(B) \otimes C^*(G)) \). By Fell’s absorption theorem [24, Corollary 2.15], the integrated form of this representation factors faithfully through \(C_\tau^r(B) \) and hence yields a faithful \(*\)-homomorphism \(\Lambda_{B^r}: C_\tau^r(B) \to M(C_\tau^r(B) \otimes C^*(G)) \). It is not difficult to check directly (see [24, Proposition 2.10] for details) that this is a reduced coaction (that is, an injective coaction of the Hopf-C*-algebra \(C^*_\tau(B) \)) and therefore it lifts to a normal coaction \(\delta_{B,r}: C^*_\tau(B) \to M(C^*_\tau(B) \otimes C^*(G)) \). This is the desired normalisation of the dual coaction \(\delta_B: C^*_\tau(B) \to M(C^*_\tau(B) \otimes C^*(G)) \), with the regular representation \(\Lambda_B: C^*_\tau(B) \to C^*_\tau(B) \) serving as the normalisation map (see [8, Proposition 6.9.8]).

4. Some applications

In this section we want to give some simple applications of our main Theorem 3.1.
4.1. Extension of exotic crossed-product functors. Recall from [5,10] that an exotic crossed-product functor is a functor \((A,\alpha) \mapsto A \rtimes_{\alpha} G\) from the category of \(G\)-C*-algebras with \(G\)-equivariant *-homomorphisms to the category of C*-algebras lying between the full and reduced crossed-product functors \(A \rtimes_{\alpha} G, A \rtimes_{\alpha} G\). More concretely, this means that \(A \rtimes_{\alpha} G\) is a C*-completion of the convolution *-algebra \(C_c(G, A)\) in such a way that the identity map \(C_c(G, A) \to C_c(G, A)\) extends to surjective *-homomorphisms

\[
A \rtimes_{\alpha} G \to A \rtimes_{\alpha} G
\]

Theorem 3.1 allows us to extend every Morita compatible \(G\)-crossed-product functor \(\rtimes_{\mu}\) to the category of Fell bundles over \(G\), that is, we can extend the definition of \(\rtimes_{\mu}\) to the realm of Fell bundles over \(G\) in a natural and functorial way. Recall from [10] that a crossed product functor is called Morita compatible \(^1\) if Morita equivalent actions are sent to (canonically) Morita equivalent crossed products. We refer to [10] for a detailed discussion of this property and for the stronger notion of a correspondence functor. As shown there, many crossed-product functors do have this property, and it follows from work of Okayasu ([35]) together with the papers [10,28] that there are uncountably many different correspondence functors for any discrete group which contains the free group in two generators.

We shall show that starting with a crossed-product functor \((A, G, \alpha) \mapsto A \rtimes_{\alpha} G\), then for every Fell bundle \(B\) over \(G\) we can complete \(C_c(B)\) to a C*-algebra \(C^*_\mu(B)\) lying between \(C^*(B)\) and \(C^r(B)\) in the sense that the identity map on \(C_c(B)\) extends to surjections

\[
C^*(B) \to C^*_\mu(B) \to C^r(B)
\]

and such that the assignment \(B \to C^*_\mu(B)\) is a functor from the category of Fell bundles over \(G\) (with appropriate morphisms) to the category of C*-algebras with *-homomorphisms as morphisms. We make this precise in what follows.

Definition 4.1. Given a crossed-product functor \(\rtimes_{\mu}\) for a locally compact group \(G\) and a Fell bundle \(B\) over \(G\), we define \(C^*_\mu(B)\) as the unique quotient of \(C^*(B)\) such that Katayama’s duality map

\[
\Psi_g : C^*(B) \rtimes_{\delta_\mu} \hat{G} \times_{\delta_\mu} G \xrightarrow{\sim} C^*(B) \otimes \mathcal{K}(L^2(G))
\]

factors through an isomorphism

\[
C^*(B) \rtimes_{\delta_\mu} \hat{G} \times_{\delta_\mu} G \cong C^*_\mu(B) \otimes \mathcal{K}(L^2(G)).
\]

Although the above construction makes sense for every crossed-product functor, as we will see, it will only give a completion \(C^*_\mu(B)\) with good properties if we assume that the given functor \(\rtimes_{\mu}\) has extra properties (for instance, Morita compatibility). We are specially interested in correspondence functors, where essentially all good properties are present (see [10]).

To make the construction \(B \to C^*_\mu(B)\) into a functor, we need to introduce morphisms and turn Fell bundles over \(G\) into a category. As for C*-algebras, there are several types of morphisms we can consider between Fell bundles, but the most basic one is defined as follows.

\(^1\) Also called “strongly Morita compatible” in [10] to differentiate it from the formally weaker (but essentially equivalent) notion of Morita compatibility introduced in [5].
Definition 4.2. Let \(\mathcal{A} \) and \(\mathcal{B} \) be Fell bundles over \(G \). By a morphism \(\mathcal{A} \to \mathcal{B} \) we mean a continuous map \(\pi: \mathcal{A} \to \mathcal{B} \) that maps each fibre \(A_t \) linearly into the fibre \(B_t \) and which is compatible with multiplication and involution in the sense that
\[
\pi(a \cdot b) = \pi(a) \cdot \pi(b) \quad \text{and} \quad \pi(a)^* = \pi(a)^*
\]
for all \(a, b \in \mathcal{A} \).

A morphism \(\pi: \mathcal{A} \to \mathcal{B} \) induces a map \(\tilde{\pi}: C_\ell(\mathcal{A}) \to C_\ell(\mathcal{B}) \), \(\xi \mapsto \tilde{\pi}(\xi)(t) := \pi(\xi(t)) \), which is clearly continuous with respect to the inductive limit topologies and hence extends to a *-homomorphism \(\tilde{\pi}_\alpha: C^*(\mathcal{A}) \to C^*(\mathcal{B}) \). This shows that the construction \(\mathcal{B} \mapsto C^*(\mathcal{B}) \) is a functor. The following result shows that this remains true for the assignment \(\mathcal{B} \mapsto C^*_\mu(\mathcal{B}) \) as in Definition 4.1.

Proposition 4.3. Let \(\times_\mu \) be any crossed product functor. Then \(\mathcal{B} \mapsto C^*_\mu(\mathcal{B}) \) is a functor from the category of Fell bundles with morphisms as defined in Definition 4.2 in the sense that the canonical map \(\tilde{\pi}: C_\ell(\mathcal{A}) \to C_\ell(\mathcal{B}) \) induced from any morphism \(\pi: \mathcal{A} \to \mathcal{B} \) extends to a *-homomorphism \(\tilde{\pi}: C^*_\mu(\mathcal{A}) \to C^*_\mu(\mathcal{B}) \).

Proof. Consider the diagram
\[
\begin{array}{ccc}
C^*(\mathcal{A}) & \times_{\delta_\mathcal{A}} \tilde{G} & \times_{\delta_\mathcal{G}} G \\
\tilde{\pi}_\times \times_{\delta_\mathcal{A}} \tilde{G} \times_{\delta_\mathcal{G}} G & \xrightarrow{\Phi_{\mathcal{A}}} & C^*(\mathcal{A}) \otimes K(L^2(G)) \\
\downarrow \tilde{\pi}_\times \otimes \iota_{\mathcal{G}} & & \downarrow \tilde{\pi}_\times \otimes \iota_{\mathcal{G}} \\
C^*(\mathcal{B}) & \times_{\delta_\mathcal{B}} \tilde{G} & \times_{\delta_\mathcal{G}} G \\
\xrightarrow{\Phi_{\mathcal{B}}} & C^*(\mathcal{B}) \otimes K(L^2(G))
\end{array}
\]

It follows easily from the definition of the dual coactions on \(C^*(\mathcal{A}) \) and \(C^*(\mathcal{B}) \), respectively, that the morphism \(\tilde{\pi}_\times: C^*(\mathcal{A}) \to C^*(\mathcal{B}) \) is \(\delta_{\mathcal{A}} - \delta_{\mathcal{B}} \)-equivariant, which implies that the left vertical arrow exists. Moreover, using the fact that \(\Phi_{\mathcal{A}} \) is given by the covariant homomorphism \(((id \otimes \lambda) \circ \delta_{\mathcal{A}} \times (1 \otimes M)) \times (1 \otimes \rho) \) (and similarly for \(\Phi_{\mathcal{B}} \)), the \(\delta_{\mathcal{A}} - \delta_{\mathcal{B}} \)-equivariance of \(\tilde{\pi}_\times \) also implies that the diagram commutes. Now, since \(\times_\mu \) is a crossed-product functor, the vertical arrow on the left factors through a *-homomorphism
\[
\tilde{\pi}_\times \times_\mu \tilde{G}: C^*(\mathcal{A}) \times_{\delta_\mathcal{A}} \tilde{G} \times_{\delta_\mathcal{G}} G \to C^*(\mathcal{B}) \times_{\delta_\mathcal{B}} \tilde{G} \times_{\delta_\mathcal{G}} G
\]
and hence the vertical arrow \(\tilde{\pi}_\times \otimes \iota_{\mathcal{G}} \) on the right-hand side of the diagram must also factor through a well-defined homomorphism \((\tilde{\pi}_\times \otimes \iota_{\mathcal{G}})_\mu: C^*_\mu(\mathcal{A}) \otimes K(L^2(G)) \to C^*_\mu(\mathcal{B}) \otimes K(L^2(G)) \). But this is only possible if \(\tilde{\pi}_\mu: C^*_\mu(\mathcal{A}) \to C^*_\mu(\mathcal{B}) \) factors through a homomorphism \(\tilde{\pi}_\mu: C^*_\mu(\mathcal{A}) \to C^*_\mu(\mathcal{B}) \), whence the result.

The above proposition shows that given any crossed-product functor, the procedure given in Definition 4.1 determines a functor on the category of Fell bundles. But does it always extend the given functor if we apply the new functor to the semi-direct product Fell bundle \(A \rtimes \alpha G \) associated to a given action \(\alpha: G \to \text{Aut}(A) \)? Recall that the underlying topological space of \(A \rtimes \alpha G \) is the trivial bundle \(A \times G \) with multiplication and involution defined by
\[
(a, t)(b, s) = (a \alpha_t(b), ts) \quad \text{and} \quad (a, t)^* = (a_{t^{-1}}(a)^*, t^{-1})
\]
for \((a, t), (b, s) \in A \times G \). The notation \(A \rtimes \alpha G \) for this Fell bundle should not be mistaken with the notation for the universal crossed product \(A \rtimes_{\text{uni}} G \). The following example shows that the answer to the above question is negative in general:
Example 4.4. Let G be any non-amenable group. We define a crossed product functor $(A, G, \alpha) \mapsto A \rtimes_{\alpha, \mu} G$ by letting $A \rtimes_{\alpha, \mu} G$ be the completion of the convolution algebra $C_c(G, A)$ with respect to the C^*-norm
\[
\|f\|_{\mu} = \sup \{ \| \pi \rtimes U(f)\| : U \prec \lambda \},
\]
where (π, U) runs through all covariant representations such that U is weakly contained in λ, which just means that the kernel of U in $C^*(G)$ contains the kernel of λ in $C^*(G)$. The functor we get in this way is just the Brown-Guentner functor associated to the reduced group algebra $C^*_r(G)$ as discussed in [9, 10].

We now consider the case of the trivial action of (A, G, α, β) on G, the following sense: If (A, G, α, β) is a crossed-product functor associated to the reduced group algebra $C^*_r(G)$ of G.

We will need the following fact: If (A, G, α, β) is a crossed-product functor associated to the reduced group algebra $C^*_r(G)$ of G.

Let K be any non-amenable group. We define a crossed product functor $(A, G, \alpha) \mapsto A \rtimes_{\alpha, \mu} G$ by letting $A \rtimes_{\alpha, \mu} G$ be the completion of the convolution algebra $C_c(G, A)$ with respect to the C^*-norm
\[
\|f\|_{\mu} = \sup \{ \| \pi \rtimes U(f)\| : U \prec \lambda \},
\]
where (π, U) runs through all covariant representations such that U is weakly contained in λ, which just means that the kernel of U in $C^*(G)$ contains the kernel of λ in $C^*(G)$. The functor we get in this way is just the Brown-Guentner functor associated to the reduced group algebra $C^*_r(G)$ as discussed in [9, 10].

We now consider the case of the trivial action of (A, G, α) on G, the following sense: If (A, G, α, β) is a crossed-product functor associated to the reduced group algebra $C^*_r(G)$ of G.

We will need the following fact: If (A, G, α, β) is a crossed-product functor associated to the reduced group algebra $C^*_r(G)$ of G. Therefore, the corresponding Fell bundle will just be the trivial bundle $\[1\]$.

Despite this, the results of [9, 10] show that Morita compatibility – or the even stronger assumption that \rtimes_μ is a correspondence functor – are quite reasonable to assume for a "good
behaved” crossed-product functor. Recall also from the discussions in [10] that for many non-amenable groups there exist countably many different correspondence (and hence Morita compatible) functors for G.

Theorem 4.5. Assume that $(A, G, \alpha) \mapsto A \rtimes_{\alpha, \mu} G$ is a Morita compatible crossed-product functor for G. Then there is a canonical isomorphism $C^\ast(A \rtimes^\alpha G) \cong A \rtimes_{\alpha, \mu} G$ for any system (A, G, α) given on the dense subalgebra $C_c(A \rtimes^\alpha G)$ by the canonical identification $C_c(A \rtimes^\alpha G) = C_c(G, A) \subseteq A \rtimes_{\alpha, \mu} G$. Thus, for Morita compatible crossed-product functors, the procedure of Definition 4.1 defines an extension of the functor $\rtimes\mu$ to the category of Fell bundles.

Proof. The result is a consequence of the Imai-Takai duality theorem for actions: Assume that $\alpha : G \to \text{Aut}(A)$ is an action. Then the full crossed product $A \rtimes_{\alpha} G$ coincides with the full cross-sectional algebra $C^\ast(A \rtimes^\alpha G)$ since both are universal for covariant representations. Moreover, the dual coactions of G on $A \rtimes_{\alpha} G$ and $C^\ast(A \rtimes^\alpha G)$ coincide. Hence the Imai-Takai duality theorem shows that

$$C^\ast(A \rtimes^\alpha G) \rtimes_{\alpha} \hat{G} = A \rtimes_{\alpha} G \rtimes_{\alpha} \hat{G} \cong A \otimes K(L^2(G)).$$

which is equivariant for the bi-dual action $\hat{\alpha}$ on the left and the action $\alpha \otimes \text{Ad} \rho$ on the right (e.g., see [25] or [10] Theorem A.67). As already observed in the previous example, the action $\alpha \otimes \text{Ad} \rho$ is Morita equivalent to $\alpha \otimes \text{id}$ with respect to the equivariant bimodule $(A \otimes K(L^2(G)), \alpha \otimes \rho)$. By Corollary 5.4 in [10], it follows that the integrated form Ψ_ρ of the covariant homomorphism $(i_A \otimes \text{id}_C, i_G \otimes \rho)$ factors through an isomorphism

$$\Psi_\mu : (A \otimes K(L^2(G))) \rtimes_{\alpha \otimes \text{Ad} \rho, \mu} G \xrightarrow{\cong} (A \rtimes_{\alpha, \mu} G) \otimes K(L^2(G)),$$

where (i^α_A, i^μ_C) denotes the canonical representation of (A, G, α) into $\mathcal{M}(A \rtimes_{\alpha, \mu} G)$. Combined, we obtain an isomorphism

$$C^\ast(A \rtimes^\alpha G) \rtimes_{\alpha} \hat{G} \times_{\alpha, \mu} G \cong (A \rtimes_{\alpha, \mu} G) \otimes K(L^2(G))$$

which fits into a commutative diagram

$$\begin{array}{c}
C^\ast(A \rtimes^\alpha G) \rtimes_{\alpha} \hat{G} \times_{\alpha, \mu} G \xrightarrow{\Psi_\mu} (A \rtimes_{\alpha, \mu} G) \otimes K(L^2(G)) \\
\downarrow \\
C^\ast(A \rtimes^\alpha G) \rtimes_{\alpha} \hat{G} \times_{\alpha, \mu} G \xrightarrow{\Psi_\mu} (A \rtimes_{\alpha, \mu} G) \otimes K(L^2(G))
\end{array}$$

where both vertical arrows are induced by the natural inclusion $C_c(A \rtimes^\alpha G) = C_c(G, A) \subseteq A \rtimes_{\alpha, \mu} G$. This finishes the proof. \square

In particular the above result applies to correspondence crossed-product functors as introduced in [10]. This is a class of crossed-product functors which extend (in a suitable way) to the category of G-algebras with equivariant correspondences as their morphisms. The equivariant Morita equivalences are the isomorphisms in this category, so it is no surprise that these functors are Morita compatible. In [10] Theorem 4.9] a list of equivalent conditions is given in order to check whether a crossed-product functor is a correspondence functor. It is shown in [10] that correspondence functors have very nice properties. For instance, they behave very well with respect to K-theory, and we will explore this point in the next section. Here we want to use the fact, proven in [10] Theorem 5.6], that the correspondence
functors always admit dual coactions for ordinary crossed products and deduce the following consequence:

Corollary 4.6. Let \rtimes_μ be a correspondence crossed-product functor for G and let \mathcal{B} be a Fell bundle over G. Then the dual coaction $\hat{\delta}_B$ on $C^*(\mathcal{B})$ factors through a coaction $\hat{\delta}_{B,\mu}: C^*_\mu(\mathcal{B}) \to \mathcal{M}(C^*_\mu(\mathcal{B}) \otimes C^*(G))$, which we call the dual μ-coaction. The quotient maps $C^*(\mathcal{B}) \to C^*_\mu(\mathcal{B}) \to C^*_\mu(\mathcal{B})$ induce isomorphisms
\begin{equation}
C^*(\mathcal{B}) \rtimes_{\hat{\delta}_{B,\mu}} \hat{G} \xrightarrow{\sim} C^*_\mu(\mathcal{B}) \rtimes_{\delta_{B,\mu}} \hat{G} \xrightarrow{\sim} C^*_\mu(\mathcal{B}) \rtimes_{\delta_{B,\mu}} \hat{G}.
\end{equation}
Hence the dual μ-coaction satisfies μ-duality in the sense that Katayama’s map is an isomorphism
\begin{equation}
C^*_\mu(\mathcal{B}) \rtimes_{\delta_{B,\mu}} \hat{G} \rtimes_{\delta_{B,\mu}} G \xrightarrow{\sim} C^*_\mu(\mathcal{B}) \otimes \mathcal{K}(L^2(G)).
\end{equation}
This isomorphism sends the bidual coaction $\hat{\delta}_{B,\mu}$ to the coaction $\text{Ad}_W \circ (\hat{\delta}_{B,\mu} \otimes_\mu \text{id})$, where $W = 1 \otimes w_G$, $w_G \in \mathcal{M}(C_\mu(\mathcal{G}) \otimes C^*(G))$ is the fundamental unitary (which can be seen as the universal representation $t \mapsto u_t$ of G), and $\delta_{B,\mu} \otimes_\mu \text{id}$ denotes the obvious coaction $C^*_\mu(\mathcal{B}) \otimes \mathcal{K}(L^2(G)) \to \mathcal{M}(C^*_\mu(\mathcal{B}) \otimes \mathcal{K}(L^2(G)) \otimes C^*(G))$.

Proof. By Theorem 3.1, Katayama’s homomorphism is an isomorphism
\begin{equation}
C^*(\mathcal{B}) \rtimes_{\delta_{B,\mu}} \hat{G} \rtimes_{\delta_{B,\mu}} G \xrightarrow{\sim} C^*_\mu(\mathcal{B}) \otimes \mathcal{K}(L^2(G)).
\end{equation}
It is well known (see e.g. [18]) that the bidual coaction $\hat{\delta}_B$ on the left-hand side corresponds to the coaction $\text{Ad}_W \circ (\delta_B \otimes_\mu \text{id})$ as in the statement. By definition, $C^*_\mu(\mathcal{B})$ is the quotient of $C^*(\mathcal{B})$ that turns (4.9) into an isomorphism
\begin{equation}
C^*(\mathcal{B}) \rtimes_{\delta_{B,\mu}} \hat{G} \rtimes_{\delta_{B,\mu}} G \xrightarrow{\sim} C^*_\mu(\mathcal{B}) \otimes \mathcal{K}(L^2(G)).
\end{equation}
Since \rtimes_μ is a correspondence functor, the left-hand side carries a (bi)dual coaction $\hat{\delta}_{B,\mu}$ (by theorem 5.6]). More precisely, the bidual coaction on the full crossed product $C^*(\mathcal{B}) \rtimes_{\delta_{B,\mu}} \hat{G} \rtimes_{\delta_{B,\mu}} G$ factors through the coaction $\hat{\delta}_{B,\mu}$. It follows that the coaction $\text{Ad}_W \circ (\hat{\delta}_{B,\mu} \otimes_\mu \text{id})$ also factors through a coaction on $C^*_\mu(\mathcal{B}) \otimes \mathcal{K}(L^2(G))$ of the form $\text{Ad}_W \circ (\delta_{B,\mu} \otimes_\mu \text{id})$, where $\delta_{B,\mu}$ is a coaction of $C^*_\mu(\mathcal{B})$ which factors the dual coaction δ_B on $C^*(\mathcal{B})$. This holds in particular for the reduced cross-sectional algebra $C^*_\mu(\mathcal{B})$ and, as already observed in Remark 3.5 in this case the coaction $\delta_{B,\mu}$ is a normalisation of δ_B. In particular the quotient homomorphism $C^*(\mathcal{B}) \to C^*_\mu(\mathcal{B})$ (which is the regular representation of \mathcal{B}) induces an isomorphism $C^*(\mathcal{B}) \rtimes_{\delta_{B,\mu}} \hat{G} \xrightarrow{\sim} C^*_\mu(\mathcal{B}) \rtimes_{\delta_{B,\mu},\mu} \hat{G}$. It follows that the same is also true for every other exotic quotient $C^*_\mu(\mathcal{B})$ because the quotient map $C^*(\mathcal{B}) \to C^*_\mu(\mathcal{B})$ (and hence also the induced map on crossed products) factors as a composition $C^*(\mathcal{B}) \to C^*_\mu(\mathcal{B}) \to C^*_\mu(\mathcal{B})$. This implies the isomorphism (4.7) and the isomorphism (4.8) is then just a re-interpretation of the defining isomorphism (4.10).

4.2. K-amenability. The concept of K-amenable groups has first been introduced for discrete groups by Cuntz in [13] and has then been extended to locally compact groups by Julg and Valette in [27]. It follows from the results of Cuntz that a discrete group G is K-amenable if and only if the regular representation $\lambda : C^*(G) \to C^*_\mu(G)$ is a KK-equivalence, which then implies that for all actions $\alpha : G \to \text{Aut}(A)$ the regular representation $\Lambda_\alpha^G : A \rtimes_\alpha G \to A \rtimes_{\alpha,r} G$ is a KK-equivalence as well. The definition of K-amenability for general locally compact groups is slightly more technical, but as a consequence we also get that regular
representations of crossed-products induce KK-equivalences between the full and reduced crossed products. More generally, it is shown in [10] Theorem 5.6] that, if G is K-amenable, then for any correspondence functor \times_μ, the canonical quotient maps

$$A \times_\alpha G \twoheadrightarrow A \times_{\alpha,\mu} G \twoheadrightarrow A \times_{\alpha,r} G$$

are KK-equivalences. Cuntz has shown in [13] that all free groups are K-amenable and that K-amenability enjoys some nice permanence properties. Moreover, a more recent result of Tu [12] shows that all a-T-menable groups are K-amenable as well.

The results of the previous section now allow us to extend [10, Theorem 5.6] to cross-sectional algebras of Fell bundles. For general Fell bundles, the result seems to be new even for the quotient map $\Lambda_B : C^*(B) \to C^*_r(B)$, but this special case is known for Fell bundles associated to partial actions of discrete groups (see [32] and Section 4.3 below for further discussion).

Corollary 4.11. Let G be a K-amenable locally compact group and let \times_μ be a correspondence crossed-product functor for G. Then both $*$-homomorphisms in the sequence

$$C^*(B) \twoheadrightarrow C^*_\mu(B) \twoheadrightarrow C^*_r(B)$$

given by the identity maps on $C_c(B)$ are KK-equivalences. In particular, they induce isomorphisms $K_*(C^*(B)) \cong K_*(C^*_\mu(B)) \cong K_*(C^*_r(B))$.

Proof. Consider the following commutative diagram

$$
\begin{array}{ccc}
C^*(B) \times_{\delta_B} \hat{G} \times_{\hat{\delta}_G} G & \xrightarrow{\Psi_r} & C^*(B) \otimes K(L^2(G)) \\
\downarrow & & \downarrow \\
C^*(B) \times_{\delta_B} \hat{G} \times_{\hat{\delta}_G,\mu} G & \xrightarrow{\Psi_r} & C^*_\mu(B) \otimes K(L^2(G)) \\
\downarrow & & \downarrow \\
C^*(B) \times_{\delta_B} \hat{G} \times_{\hat{\delta}_G,r} G & \xrightarrow{\Psi_r} & C^*_r(B) \otimes K(L^2(G)).
\end{array}
$$

Since G is K-amenable, the vertical arrows on the left hand side are KK-equivalences. Hence the right vertical arrows are KK-equivalences as well. Since being KK-equivalence is stable under stabilisation by compact operators, the result follows. □

Remark 4.12. The above result can be generalised as follows. Let \times_μ be any crossed-product functor. Following [9] we say that a given coaction $\delta : B \to \mathcal{M}(B \otimes C^*(G))$ is a μ-coaction if Katayama’s duality surjection $B \times_\delta \hat{G} \times_{\hat{\delta}} G \to B \otimes K(L^2(G))$ factors through an isomorphism $B \times_\delta \hat{G} \times_{\hat{\delta},\mu} G \cong B \otimes K(L^2(G))$. In particular, if \times_μ is a correspondence functor and B is a Fell bundle over G, then the dual coaction δ_B,μ on $C^*_\mu(B)$ is a μ-coaction.

Suppose now that G is K-amenable, \times_μ is a correspondence functor for G and (B, δ) is a μ-coaction. Then, if (B_m, δ_m) and (B_n, δ_n) are the maximalisation and normalisation of (B, δ), respectively, the corresponding quotient maps

$$B_m \overset{q_m}{\twoheadrightarrow} B \overset{q_n}{\twoheadrightarrow} B_n$$
are KK-equivalences. This follows directly from the commutative diagram
\[
\begin{align*}
B_m \rtimes_{\delta_m} \hat{G} \rtimes_{\delta,\mu} G & \xrightarrow{\cong} B_m \otimes K(L^2(G)) \\
q_m \rtimes_{\hat{G} \rtimes G} & \downarrow \quad \downarrow \quad q_m \otimes \text{id}_K \\
B \rtimes_{\delta} \hat{G} \rtimes_{\delta,\mu} G & \xrightarrow{\cong} B \otimes K(L^2(G)) \\
q_n \rtimes_{\hat{G} \rtimes G} & \downarrow \quad \downarrow \quad q_n \otimes \text{id}_K \\
B_n \rtimes_{\delta_n} \hat{G} \rtimes_{\delta,\mu} G & \xrightarrow{\cong} B_n \otimes K(L^2(G))
\end{align*}
\]
and the fact that both morphisms in the sequence
\[
B_m \rtimes_{\delta_m} \hat{G} \rtimes_{\delta,\mu} G \xrightarrow{\cong} B \rtimes_{\delta} \hat{G} \rtimes_{\delta,\mu} G \xrightarrow{\cong} B_n \rtimes_{\delta_n} \hat{G}
\]
are \(G\)-equivariant isomorphisms. In particular, if \(G\) is \(K\)-amenable, all \(C^*\)-algebras \(B_m, B\) and \(B_n\) have same \(K\)-theory and \(K\)-homology groups.

4.3. Partial actions. The notion of partial actions of the group of integers has been introduced by Exel in [20] and subsequently generalized to arbitrary discrete groups by McClanahan in [32]. In [21] Exel generalizes both notions and defines twisted partial actions of locally compact groups. Every twisted partial action gives rise to a Fell bundle via a construction similar to the semidirect Fell bundle associated to an ordinary (global, untwisted) action. Moreover, the main result in [21] shows that, after stabilisation, every Fell bundle is isomorphic to one of this form, that is, a Fell bundle associated to a twisted partial action (and for discrete groups or saturated Fell bundles, the twist can be removed; see [16][24][36][41]).

In this section, we will focus only on partial actions, but essentially all results go through with essentially no change (except that the notation becomes slightly more complicated) for general twisted partial actions.

Let \(\alpha\) be a partial action of a locally compact group \(G\) on a \(C^*\)-algebra \(A\). This consists of partial automorphisms \(\alpha_t : D_{t-1} \to D_t\) between certain (closed, two-sided) ideals \(D_t \subseteq A\) with \(D_e = A, \alpha_e = \text{id}_A\) and such that \(\alpha_s \circ \alpha_t \mid_{D_t}\) extends \(\alpha_s \circ \alpha_t\) for all \(s, t \in G\). An appropriate continuity condition for the family of maps \(\alpha_t\) is also required to hold. We refer the reader to [21] for details. Given such a partial action, the associated Fell bundle is the bundle \(A \rtimes_\alpha G := \{(a, t) \in A \times G : a \in D_t\}\) with algebraic operations defined by
\[
(a, t) \cdot (b, s) = (\alpha_t(\alpha_{t^{-1}}(a)b), ts) \quad \text{and} \quad (a, t)^* = (\alpha_{t^{-1}}(a)^*, t^{-1}).
\]
The full (resp. reduced) crossed product of \((A, \alpha)\) can defined as the full (resp. reduced) cross-sectional \(C^*\)-algebras of \(A \rtimes_\alpha G\). More generally, we can introduce:

Definition 4.13. Given a partial action \((A, \alpha)\) of \(G\) and a Morita compatible \(G\)-crossed-product functor \(\times_\mu\), we define the \(\mu\)-crossed product \(A \rtimes_{\alpha,\mu} G\) as the \(\mu\)-cross-sectional \(C^*\)-algebras \(C^*_\mu(A \rtimes_\alpha G)\) (as in Definition 4.11).

Notice that by Theorem 4.3 (and our assumption of Morita compatibility), the above definition recovers the original \(\mu\)-crossed product for global actions. Also, Proposition 4.3 allows us to extend the original crossed-product functor to a functor \((A, \alpha) \mapsto A \rtimes_{\alpha,\mu} G\) from the category of partial \(G\)-actions to the category of \(C^*\)-algebras, where a morphism between two partial \(G\)-actions \((A, \alpha)\) and \((B, \beta)\) is defined as \(G\)-equivariant \(^*\)-homomorphism \(\pi : A \to B\), meaning that \(\pi(D^\alpha_t) \subseteq D^\beta_t\)
and \(\beta_t(\pi(a)) = \pi(\alpha_t(a)) \) for all \(t \in G \) and \(a \in D^*_{\ell^1} \). These are exactly the morphisms between the associated semidirect Fell bundles \(A \rtimes_{a} G \) and \(B \rtimes_{b} G \).

Given a partial action \((A, \alpha)\), we view the dual coaction on \(C^*(A \rtimes_{a} G) \) as the dual coaction of \(A \rtimes_{a} G \) and denote it by \(\tilde{\alpha} \). Our main result (Theorem 3.1) says that we have a natural isomorphism

\[
(A \rtimes_{a} G) \rtimes_{\tilde{\alpha}, \hat{G}} \hat{G} \cong (A \rtimes_{a} G) \otimes K(L^2(G)).
\]

In particular this implies that, after stabilisation, every partial crossed product is isomorphic to a global crossed product. More precisely, the (stabilisation of the) original partial crossed product \((A \rtimes_{a} G) \otimes K(L^2(G))\) is naturally isomorphic to \(\hat{A} \rtimes_{\tilde{\alpha}} G \), where \(\hat{A} := (A \rtimes_{a} G) \rtimes_{\tilde{\alpha}} \hat{G} \) and \(\tilde{\alpha} := \tilde{\alpha} \). The \(G \)-algebra \((\hat{A}, \tilde{\alpha})\) has a natural interpretation in terms of the original partial action: it follows from [1, Proposition 8.1] that (\(\tilde{\alpha} \)) is Morita equivalent to the full crossed product of any of the Morita enveloping actions of \((A, \alpha)\). It is shown in [1, Proposition 6.3] that all Morita enveloping actions are Morita equivalent, so it is unique up to Morita equivalence. We refer to [1] for the relevant notion of Morita equivalence for partial actions.

Let us recall that the assertion that \((\hat{A}, \tilde{\alpha})\) is a Morita enveloping action of \((A, \alpha)\) means that \(\hat{A} \) contains a (closed, two-sided) ideal \(I \subseteq \hat{A} \) such that the orbit \(\{\tilde{\alpha}(I) : t \in G\} \) of \(I \) generates a dense subspace of \(\hat{A} \) and such that the partial action on \(I \) given by restriction of \(\tilde{\alpha} \) (as described in [1]) is Morita equivalent to the original partial action \((A, \alpha)\). For the canonical Morita enveloping action, the ideal \(I \) and also \(\hat{A} \) (together with their actions) can be described directly in terms of the Fell bundle \(A \rtimes_{a} G \) associated to \((A, \alpha)\) as certain algebras of “kernels”, but this description does not concern us here. We refer to [1] for further details.

Thus the natural isomorphism (4.14) (that is, our main Theorem 3.1 applied for partial actions) can be seen as the statement that every partial crossed product \(A \rtimes_{a} G \) is naturally Morita equivalent to its canonical Morita enveloping crossed product. As already mentioned above, it is proven in [1] that all Morita enveloping actions of a given partial action \((A, \alpha)\) are Morita equivalent. It follows that the full crossed product \(A \rtimes_{a} G \) is Morita equivalent to the full crossed product of any of the Morita enveloping actions of \((A, \alpha)\). Note that the paper [1] by Abadie only contained a version of this result for the reduced crossed products (see [1, Proposition 4.6]). The version for full crossed products was obtained in a second paper [2, Corollary 1.3] by Fernando Abadie in collaboration with Laura Pérez. We now use our approach to generalise these results to all exotic crossed products related to Morita compatible crossed-product functors:

Corollary 4.15. For every partial action \((A, \alpha)\) of \(G \), and for every Morita compatible crossed-product functor \(\times_{\mu} \), the partial crossed product \(A \rtimes_{a, \mu} G \) is stably isomorphic to its canonical Morita enveloping crossed product \(\hat{A} \rtimes_{\tilde{\alpha}, \mu} G \). More precisely, the canonical isomorphism (4.14) factors through an isomorphism

\[
(4.16) \quad \hat{A} \rtimes_{\tilde{\alpha}, \mu} G \cong (A \rtimes_{a, \mu} G) \otimes K(L^2(G)).
\]

More generally, every other Morita enveloping action \((B, \beta)\) of \((A, \alpha)\) has crossed product \(B \rtimes_{\beta, \mu} G \sim_{M} A \rtimes_{a, \mu} G \).

Proof. The first statement is an immediate consequence of our definitions. Indeed, by definition, the exotic partial crossed product \(A \rtimes_{a, \mu} G \) is exactly the quotient of
that \(A \rtimes_\alpha G \) that turns \((4.11)\) into the isomorphism \((4.16)\). And the final assertion follows from the already mentioned fact that all Morita enveloping actions are Morita equivalent and the assumption that our functor \(\rtimes_\mu \) preserves Morita equivalence. Indeed, if \((B, \beta)\) is a Morita enveloping action for \((A, \alpha)\), then \((B, \beta)\) is Morita equivalent to \((\hat{A}, \hat{\alpha})\) by \([11, \text{Proposition 6.3}]\). Since our crossed-product functor \(\rtimes_\mu \) preserves Morita equivalences, we conclude that \(B \rtimes_{\beta, \mu} G \sim_M \hat{A} \rtimes_{\tilde{\alpha}, \mu} G \sim_M A \rtimes_{\alpha, \mu} G \).

We also obtain one of the main results on amenability of partial actions shown in \([2]\). Following the terminology from \([2]\), we say that a partial action \((A, \alpha)\) is amenable if its associated Fell bundle is amenable (in the sense of Exel \([22]\)). Hence, by definition, a partial action \((A, \alpha)\) is amenable if and only if its full and reduced crossed products coincide.

Corollary 4.17. A partial action \((A, \alpha)\) is amenable if and only if its canonical Morita enveloping action \((\hat{A}, \hat{\alpha})\) is amenable, if and only if all Morita enveloping actions of \((A, \alpha)\) are amenable. In this case all exotic (partial) crossed products involving these algebras coincide. More generally, given Morita compatible \(G\)-crossed product functors \(\rtimes_\mu \) and \(\rtimes_\nu \), we have \(A \rtimes_{\alpha, \mu} G = A \rtimes_{\alpha, \nu} G \) if and only if \(\tilde{A} \rtimes_{\tilde{\alpha}, \mu} G = \tilde{A} \rtimes_{\tilde{\alpha}, \nu} G \) if and only if \(B \rtimes_{\beta, \mu} G = B \rtimes_{\beta, \nu} G \) for every Morita enveloping action \((B, \beta)\) of \((A, \alpha)\).

Proof. The first assertion will follow from the last assertion by taking the full and reduced crossed products for \(\rtimes_\mu \) and \(\rtimes_\nu \). To prove the last assertion notice that (by definition) the equality \(A \rtimes_{\alpha, \mu} G = A \rtimes_{\alpha, \nu} G \) means that the ideal in the full crossed product \(A \rtimes_{\alpha} G \) corresponding to the quotient maps \(A \rtimes_\alpha G \to A \rtimes_{\alpha, \mu} G, A \rtimes_{\alpha, \nu} G \) coincide, and of course the same meaning is to be given for the equality \(B \rtimes_{\beta, \mu} G = B \rtimes_{\beta, \nu} G \). But then the last assertion in the statement follows from the Rieffel correspondence between ideals induced by the Morita equivalences \(A \rtimes_{\alpha, \mu} G \sim_M B \rtimes_{\beta, \mu} G \) and \(A \rtimes_{\alpha, \nu} G \sim_M B \rtimes_{\beta, \nu} G \) and the fact that both are quotients of the Morita equivalence for full crossed products: \(A \rtimes_{\alpha} G \sim_M B \rtimes_{\beta} G \).

As a direct consequence of our Corollary 4.11 we also obtain the following result:

Corollary 4.18. Let \((A, \alpha)\) be a partial action of a locally compact \(K\)-amenable group. If \(\rtimes_\mu \) is a correspondence \(G\)-crossed-product functor, then the quotient homomorphism \(A \rtimes_\alpha G \to A \rtimes_{\alpha, \mu} G \) is a \(KK\)-equivalence. In particular, \(A \rtimes_{\alpha, \mu} G \) has the same \(K\)-theory and \(K\)-homology as \(A \rtimes_\alpha G \).

For partial actions of discrete groups, the above result was proven by McClanahan in \([32]\) for the special case of the quotient map \(A \rtimes_\alpha G \to A \rtimes_{\alpha, r} G \) linking the full and reduced crossed products by partial actions. Notice that the result of McClanahan does not imply the result for general exotic crossed products for discrete groups. Indeed, as shown in \([10]\), there are examples of crossed-product functors that are not correspondence functors for which the above result fails even for crossed products by ordinary actions. In the recent paper by Ara and Exel \([4]\) (see in particular Corollary 6.9) the authors have applied the result by McClanahan to some interesting partial actions of free groups associated to separated graphs in order to deduce that certain full and reduced crossed products have the same \(K\)-theory (and the \(K\)-theory is effectively computed in \([4]\)). By the above result these computations extend to the respective exotic crossed product related to any given correspondence crossed-product functor.
5. Maximal coactions of discrete groups

As a bonus, we derive in this section a characterisation of maximal coactions of discrete groups. Recall from [13,37] that every coaction \(\delta : B \to B \otimes C^*(G) \) of a discrete group \(G \) determines a Fell bundle \(B \) over \(G \) with fibres
\[
B_t = \{ b \in B : \delta(b) = b \otimes u_t \}
\]
where \(u : G \to U(C^*(G)) \) denotes the inclusion map. There is a canonical embedding
\[
C_c(B) = \text{span}(\cup_{t \in G} B_t) \subset B
\]
which then extends to a surjective \(\delta B - \delta \)-equivariant \(* \)-homomorphism \(\kappa : C^*(B) \to B \). On the other hand, it has also been observed by Quigg that the dual coaction \(\Lambda_B \) of \(G \) on \(C^*_\delta(B) \) is the normalisation of \((B, \delta) \), so that there is also a \(\delta - \delta_n \)-equivariant \(* \)-homomorphism \(\Lambda_B : B \to B_r := C^*_\delta(B) \). This shows that, in a sense, we may view \(B \) as an exotic completion of \(C_c(B) \).

We know from [13] (and now also from our main Theorem 5.1) that \((C^*(B), \delta_B) \) is the maximalisation of \((B, \delta) \), so that the quotient maps \(C^*(B) \twoheadrightarrow B \) of \(\delta_B \) induce isomorphisms
\[
C^*(B) \times_{\delta_B} \widehat{G} \cong B \times_{\delta} \widehat{G} \cong C^*_\delta(B) \times_{\delta_n} \widehat{G}.
\]

Theorem 5.1. Let \(G \) be a discrete group and let \(\delta : B \to B \otimes C^*(G) \) be a coaction. Let \(B \) be the Fell bundle over \(G \) corresponding to \(\delta \) as explained above. Then the following assertions are equivalent.

1. \((B, \delta)\) is maximal;
2. the canonical \(* \)-homomorphism \(C^*(B) \to B \) is an isomorphism;
3. \(\delta \) can be lifted to a \(* \)-homomorphism \(\delta_\text{max} : B \to B \otimes_{\text{max}} C^*(G) \);
4. the reduction \(\delta' := (\text{id} \otimes \lambda) \circ \delta : B \to B \otimes C^*_\delta(G) \) can be lifted to a \(* \)-homomorphism \(\delta'_{\text{max}} : B \to B \otimes_{\text{max}} C^*_\delta(G) \);
5. the \(* \)-homomorphism \((\Lambda_B \otimes \text{id}) \circ \delta' = (\Lambda_B \otimes \lambda) \circ \delta : B \to B_r \otimes C^*_\delta(G) \) can be lifted to a homomorphism \((\Lambda_B \otimes_{\text{max}} \text{id}) \circ \delta'_{\text{max}} : B \to B_r \otimes_{\text{max}} C^*_\delta(G) \).

Moreover, if they exist, the lifted homomorphisms in (3), (4), and (5) are all faithful.

Proof. The equivalence (1) \(\Leftrightarrow \) (2) follows from the fact that \((C^*(B), \delta_B) \) is the maximalisation of \((B, \delta) \) by [13, Proposition 4.2]. Notice that (3) holds for \((B, \delta) = (C^*(B), \delta_B)\) because of the universal property of \(C^*(B) \), so we also get (2) \(\Rightarrow \) (3), and it is obvious that (3) \(\Rightarrow \) (4). We will finish with the proof of the implications (4) \(\Rightarrow \) (5). For this assume that (4) holds. It is shown in [3, Theorem 6.2] that for every Fell bundle \(B \) over a discrete group \(G \), the representation of \(B \) into \(C^*_\delta(B) \otimes_{\text{max}} C^*_\delta(G) \) given by \(b_t \to b_t \otimes \lambda_1 \) extends to a faithful \(* \)-homomorphism \((\Lambda_B \otimes_{\text{max}} \lambda) \circ \delta_B : C^*_\delta(B) \to C^*_\delta(B) \otimes_{\text{max}} C^*_\delta(G) \) (and this is exactly the lift homomorphism in (5) for the coaction \(\delta_B : C^*_\delta(B) \to C^*_\delta(B) \otimes C^*_\delta(G) \)). Now notice that the homomorphism \(\kappa : C^*(B) \to B \) fits into the commutative diagram:

\[
\begin{array}{ccc}
B & \xrightarrow{\delta'_{\text{max}}} & B \otimes_{\text{max}} C^*_\delta(G) \\
\kappa \uparrow & & \downarrow \Lambda_B \otimes_{\text{max}} \text{id} \\
C^*(B) & \xrightarrow{(\Lambda_B \otimes_{\text{max}} \lambda) \circ \delta_B} & C^*_\delta(B) \otimes_{\text{max}} C^*_\delta(G).
\end{array}
\]

Since \((\Lambda_B \otimes_{\text{max}} \lambda) \circ \delta_B \) is injective, it follows that \(\kappa \) is also injective and therefore an isomorphism (so we just proved (4) \(\Rightarrow \) (2)). But then \((\Lambda_B \otimes_{\text{max}} \text{id}) \circ \delta'_{\text{max}} = (\Lambda_B \otimes_{\text{max}} \lambda) \circ \delta_B \), hence \((\Lambda_B \otimes_{\text{max}} \text{id}) \circ \delta'_{\text{max}} \) is injective. Hence (4) \(\Rightarrow \) (5). Conversely, if (5)
holds, then diagram \(5.2\) implies that \(\kappa\) is injective and therefore an isomorphism \(C^*\(\mathcal{B}\) \sim \to \mathcal{B}\). Hence \((5) \Rightarrow (2)\). We saw above that \((\Lambda_B \otimes \text{id}) \circ \delta_{\text{max}}\), if exists, is faithful. But then \(\delta^*_{\text{max}}\) and \(\delta^*\) are faithful as well.

\[\square\]

Remark 5.3. If \(\delta: \mathcal{B} \to \mathcal{M}(\mathcal{B} \otimes C^*\(G\))\) is a maximal coaction of a locally compact group \(G\), then it is Morita equivalent to a dual coaction on a maximal crossed product. Using this it is not difficult to see that such a coaction lifts to \(\delta_{\text{max}}: \mathcal{B}_r \to \mathcal{M}(\mathcal{B} \otimes_{\text{max}} C^*\(G\))\). But the converse is not true in general and the above theorem does not extend to general locally compact groups \(G\). The problem is that by fundamental results of Choi-Effros and Connes, the full and reduced group algebras of (almost) connected second countable groups are always nuclear – even if the groups are not amenable (like \(G = \text{SL}_2(\mathbb{R})\)). But then it is clear that the dual coaction \(\delta_{\text{G},r}: C^r_\ast\(G\) \to \mathcal{M}(C^r_\ast\(G\) \otimes C^*\(G\))\), which is not maximal if \(G\) is not amenable, extends to a faithful map \(\delta^*_{\text{G},r}: C^r_\ast\(G\) \to \mathcal{M}(C^r_\ast\(G\) \otimes_{\text{max}} C^*\(G\))\).

Notice that the main ingredient in the proof of Theorem 5.1 is \([3, \text{Theorem } 6.2]\), which, as indicated by the authors, is based on an idea of Kirchberg. Part (2) of the following corollary has been already observed in \([3]\). Recall from \([22]\) that a Fell bundle \(\mathcal{B}\) is said to be amenable if the regular representation \(\Lambda_B: C^*\(\mathcal{B}\) \to C^r_\ast\(\mathcal{B}\)\) is faithful.

Corollary 5.4. Let \(G\) be a discrete group.

1. A Fell bundle \(\mathcal{B}\) over \(G\) is amenable if and only if the dual coaction \(\delta_B\) on \(C^*\(\mathcal{B}\)\) is normal, if and only if the dual coaction \(\delta_{B,r}\) on \(C^r_\ast\(\mathcal{B}\)\) is maximal.

2. If the full or reduced cross-sectional \(C^*\)-algebra of a Fell bundle \(\mathcal{B}\) over \(G\) is nuclear, then \(\mathcal{B}\) is amenable.

3. If \(G\) is amenable (that is, if \(C^r_\ast\(G\) or \(C^*\(G\) is nuclear), then every Fell bundle over \(G\) is amenable.

We should point out that the third item has already been shown by Exel in \([22, \text{Theorem } 4.7]\).

Proof. The first statement follows directly from the fact that the regular representation \(\Lambda_B: C^*\(\mathcal{B}\) \to C^r_\ast\(\mathcal{B}\)\) can be thought of as either the normalisation map for \((C^*\(\mathcal{B}\),\(\delta_B\))\), or the maximalisation map for \((C^r_\ast\(\mathcal{B}\),\(\delta_{B,r}\))\). The second item follows directly from the combination of (1) and Theorem 5.1. And the third item also follows from (1) and the fact that every \(G\)-coaction is maximal and normal for amenable \(G\).

Observe that the converse of (2) above does not hold, that is, there are amenable Fell bundles (over discrete groups) for which \(C^*\(\mathcal{B}\) \cong C^r_\ast\(\mathcal{B}\)\) is not nuclear. To see an example let \(A\) be any non-nuclear \(C^*\)-algebra and let an amenable group \(G\) act trivially on \(A\). Then \(A \rtimes_{\text{id}} G = A \rtimes_{\text{id},r} G\), hence the corresponding Fell bundle \(A \rtimes_{\text{id}} G\) is amenable. But \(A \rtimes_{\text{id}} G \cong A \otimes C^*\(G\)\) is not nuclear, since the tensor product of a non-nuclear \(C^*\)-algebra with a nuclear \(C^*\)-algebra is never nuclear.

If \(\mathcal{B}\) is not amenable, we know from the above corollary that \(C^*\(\mathcal{B}\) and \(C^r_\ast\(\mathcal{B}\)\) are non-nuclear \(C^*\)-algebras, so there exist \(C^*\)-algebras \(D, E\) such that the algebraic tensor products \(C^*\(\mathcal{B}\) \otimes D\) and \(C^r_\ast\(\mathcal{B}\) \otimes E\) do not admit unique \(C^*\)-norms. Indeed, the methods above allow us to take explicit choices for \(D\) and \(E\):
Corollary 5.5. If a Fell bundle \mathcal{B} over a discrete group G is not amenable, then all the algebraic tensor products $C^* (\mathcal{B}) \odot C^*_r (G)$, $C^*_r (\mathcal{B}) \odot C^* (G)$ and $C^*_r (\mathcal{B}) \odot C^*_r (G)$ do not admit unique C^*-norms, that is,
\[
C^* (\mathcal{B}) \otimes_{\text{max}} C^*_r (G) \neq C^* (\mathcal{B}) \otimes_{\text{min}} C^*_r (G), \\
C^*_r (\mathcal{B}) \otimes_{\text{max}} C^*_r (G) \neq C^*_r (\mathcal{B}) \otimes_{\text{min}} C^*_r (G), \\
C^*_r (\mathcal{B}) \otimes_{\text{max}} C^* (G) \neq C^*_r (\mathcal{B}) \otimes_{\text{min}} C^* (G).
\]

Proof. The dual coaction $\delta_B: C^* (\mathcal{B}) \to C^* (\mathcal{B}) \otimes C^* (G)$ is maximal and hence its reduction $\delta_B^{\text{max}}: C^* (\mathcal{B}) \to C^* (\mathcal{B}) \otimes_{\text{max}} C^*_r (G)$. But the reduction δ_B^{max} is weakly equivalent to $\Lambda_B: C^* (\mathcal{B}) \to C^*_r (\mathcal{B})$, hence if $C^* (\mathcal{B}) \otimes_{\text{max}} C^*_r (G) = C^*_r (\mathcal{B}) \otimes_{\text{min}} C^*_r (G)$, then \mathcal{B} is amenable. This gives the statement for $C^* (\mathcal{B}) \odot C^*_r (G)$ and the other cases are treated similarly. \square

Taking \mathcal{B} to be the trivial Fell bundle $\mathcal{B} = \mathbb{C} \times G$, the above result gives non-uniqueness of C^*-norms on mixed tensor products of the form $C^* (G) \odot C^*_r (G)$ and $C^*_r (G) \odot C^*_r (G)$. This special case is well-known and follows, for instance, from Proposition 6.4.1 in [7], [16]. Observe that we do not say anything about the tensor product $C^* (\mathcal{B}) \odot C^* (G)$. Indeed, as shown in [31, Proposition 8.1], uniqueness of the C^*-norm on $C^* (\mathcal{B}) \odot C^* (G)$ in the case of $\mathcal{B} = \mathbb{C} \times G, G = \mathbb{F}_\infty$ is equivalent to Connes’ embedding conjecture!

REFERENCES

[1] Fernando Abadie, Enveloping actions and Takai duality for partial actions, J. Funct. Anal. 197 (2003), no. 1, 14–67, DOI 10.1016/S0022-1236(02)00032-0. MR 1957674

[2] Fernando and Martí Pérez Abadie Laura, On the amenability of partial and enveloping actions, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3689–3693, DOI 10.1090/S0002-9939-09-09998-5. MR 2520875

[3] Pere Ara, Ruy Exel, and Takeshi Katsura, Dynamical systems of type (m, n) and their C^*-algebras, Ergodic Theory Dynam. Systems 33 (2013), no. 5, 1291–1325, DOI 10.1017/ETDS.2011.120. MR 3103084

[4] Pere Ara and Ruy Exel, K-theory for the tame C^*-algebra of a separated graph (2015), preprint, to appear in J. Funct. Analysis. [arXiv: 1503.06067]

[5] Paul Baum, Erik Guentner, and Rufus Willett, Expanders, exact crossed products, and the Baum-Connes conjecture, Annals of K-Theory (to appear), eprint. [arXiv: 1311.2543]

[6] Nathaniel P. Brown and Erik P. Guentner, New C^*-completions of discrete groups and related spaces, Bull. Lond. Math. Soc. 45 (2013), no. 6, 1181–1193, DOI 10.1112/blms/bdt044.

[7] Nathaniel P. Brown and Narutaka Ozawa, C^*-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387

[8] Alcides Buss, Generalized fixed point algebras for coactions of locally compact quantum groups, Doctoral Thesis, Univ. Münster, 2007.

[9] Alcides Buss and Siegfried Echterhoff, Universal and exotic generalized fixed-point algebras for weakly proper actions and duality, Indiana Univ. Math. J. 63 (2014), no. 6, 1659–1701. [arXiv: 1301.5697]

[10] Alcides Buss, Siegfried Echterhoff, and Rufus Willett, Exotic crossed products and the Baum-Connes conjecture, Journal reine und angew. Math. (to appear), eprint. [arXiv: 1409.4332]

[11] Man Duen Choi and Edward G. Effros, Separable nuclear C^*-algebras and injectivity, Duke Math. J. 43 (1976), no. 2, 309–322.

[12] Alain Connes, Classification of injective factors. Cases III_1, II_∞, III_λ, $\lambda \neq 1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115.

\footnote{We thank Rufus Willett for pointing out this reference to us.}
[38] Landstad duality for C^*-coactions, Math. Scand. 71 (1992), no. 2, 277–294, available at http://www.mscand.dk/article.php?id=956 MR 1212711

[39] Marc A. Rieffel, Proper actions of groups on C^*-algebras, Mappings of operator algebras (Philadelphia, PA, 1988), Progr. Math., vol. 84, Birkhäuser Boston, Boston, MA, 1990, pp. 141–182. MR 1103376

[40] Integrable and proper actions on C^*-algebras, and square-integrable representations of groups, Expo. Math. 22 (2004), no. 1, 1–53, DOI 10.1016/S0723-0869(04)80001-0 MR 2166968

[41] Camila F. Sehnem, Uma classificação de fibrados de Fell estáveis, Master’s Thesis, Universidade Federal de Santa Catarina, 2014, http://mtm.ufsc.br/pos/Camila_Fabre_Sehnem.pdf

[42] Jean-Louis Tu, The Baum-Connes conjecture and discrete group actions on trees, K-Theory 17 (1999), no. 4, 303–318, DOI 10.1023/A:1007751625568.

E-mail address: alcides@mtm.ufsc.br

Departamento de Matemática, Universidade Federal de Santa Catarina, 88.040-900 Florianópolis-SC, Brazil.

E-mail address: echters@uni-muenster.de

Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, 48149 Münster, Germany.