Fractional spin through quantum strange superalgebra $\tilde{P}_Q(n)$.

Mostafa Mansour *
Département de Physique,
Faculté Polydisciplinaire de Beni Mellal.
Université Sultan Moulay Slimane.
Beni Mellal. Morocco.

Abstract

The purposes of this paper is to investigate the properties of the quantum extended strange superalgebra $\tilde{P}_Q(n)$ when his deformation parameter Q goes to a root of unity.

*email: mostafa.mansour.fpb@gmail.com
1 Introduction

In recent years, much interest has been made in the study of the Lie superalgebras [1, 2, 3, 4, 5, 6]. These structures can be obtained through consistent realization involving deformed Bose and Fermi operators [7, 8].

In another vein, the geometric interpretation of fractional supersymmetry have gaining increased attention, particularly in the works [9, 10, 11, 12, 13, 14, 15], where the authors show that the one-dimensional superspace is equivalent to the braided line when the deformation parameter goes to a root of unity $Q \rightarrow q$, and the braided line is generated by a generalized odd variable and a (classical)ordinary even variable. In the work [16], R. S. Dunne, using Q-oscillator realization, proved that the $U_Q(sl(2))$ is similar to a direct product of the finite classical algebra $U(sl(2))$ and the q-deformed one $U_q(sl(2))$ (where q is a root of unity).

Since there exist Q-oscillator realization of all deformed algebras and deformed super algebras $U_Q(g)$, it is convenable to explore the splitting of these (super) algebras when $Q \rightarrow q$. In this context, the property of splitting of some particular quantum (Super)-algebras was examined in [18]. The decomposition of the quantum (super) Virasoro algebras is described in [19]. The case of quantum affine algebras with vanishing central charge is developed in [20] and the case quantum algebras A_n, B_n, C_n and D_n and quantum superalgebra $A(m,n), B(m,n), C(n+1)$ and $D(n,m)$ in the $Q \rightarrow q$ limit is investigated in [21].

The Lie superalgebras of classical type are one of the two following classes[22]: basic Lie superalgebras or strange ones. The basic Lie superalgebras have proprieties like as simple Lie algebras. They have an invariant non-degenerate bilinear form, but strange Lie superalgebras $P(n)$ and $Q(n)$ have not.

The strange Lie superalgebra $P(n)$ have attracted a particularly attention. In [23], Dynkin-like diagrams of the strange superalgebra $P(n)$ was examined by Frappat, Sciarrino and Sorba. In [24], polynomial representations of strange Lie superalgebras are investigated. The oscillator realization of the strange superalgebras $P(n)$ has been constructed by Frappat, Sciarrino and Sorba in [25]. A deformation $U_Q(\tilde{P}(n)) = \tilde{P}_Q(n)$ of the extended non-contragredient (strange) superalgebra $\tilde{P}(n)$ is given in [26].

The purpose of this paper is to expore the property of decomposition of the quantum extended non-contragredient (strange) superalgebra $U_Q(\tilde{P}(n)) = \tilde{P}_Q(n)$ in the $Q \rightarrow q$ limit. In next section (section 2) we review some results concerning k-fermions, decomposition property of Q-boson in the $Q \rightarrow q$ limit and the equivalence between Q-deformed fermions and classical ones. Using these results detailed in [19, 20], we analyse the $Q \rightarrow q$ limit of the quantum $U_Q(sl(n))$ algebra of the $sl(n)$ algebra (The bosonic part of $P(n)$) (section 3) and the quantum extended non-contragredient (strange) superalgebra of $U_Q(\tilde{P}(n))$ (section 4). In the last section (section 5) we shall give some concluding remarks.
2 Preliminaries

In this section we recall some basic facts about k-fermions\cite{17}, decomposition property of Q-boson in the $Q \to q$ limit and the equivalence between Q-deformed fermions and ordinary ones (see \cite{19, 20} for more details).

Let us began by giving the definition of the Q-bosonic algebra noted (Ξ_Q^i), generated by a number operator N_{A_i}, a creation operator A_i^+ and an annihilation operator A_i^-, satisfying the relations:

\begin{align}
A_i^- A_i^+ - Q^\pm A_i^+ A_i^- &= Q^\mp N_{A_i} \\
Q^{N_{A_i}} A_i^+ Q^{-N_{A_i}} &= Q^\pm A_i^+ \\
Q^{N_{A_i}} A_i^- Q^{-N_{A_i}} &= Q^{-N_{A_i}} Q^{N_{A_i}} = 1
\end{align}

(1)

then if we put the following operators as given in \cite{16}:

\begin{align}
a_i^- &= \lim_{Q \to q} \frac{Q^{\frac{k N_{A_i}}{2}}}{([k]!/2)} (A_i^-)^k, \\
a_i^+ &= \lim_{Q \to q} \frac{Q^{\frac{k N_{A_i}}{2}}}{([k]!/2)} (A_i^+)^k Q^{-\frac{k N_{A_i}}{2}},
\end{align}

(2)

we can easily show that the above operators (2) gratifies the relations of an ordinary boson algebra noted Ξ_0, defined by:

\begin{align}
[a_i^-, a_i^+] &= 1, \\
[N_{a_i}, a_i^\pm] &= \pm a_i^\pm
\end{align}

(3)

The number operator of this new algebra is defined by $N_{a_i} = a_i^+ a_i^-$.

In order to discuss the splitting of Q-deformed boson in the limit $Q \to q$, we introduce the new operators:

\begin{align}
\chi_i^- &= A_i^- q^{-\frac{k N_{A_i}}{2}}, \\
\chi_i^+ &= A_i^+ q^{-\frac{k N_{A_i}}{2}}, \\
N_{\chi_i} &= N_{A_i} - k N_{a_i},
\end{align}

(4)

which satisfies the relations of a k-fermionic algebra noted (Σ_Q^i) defined by

\begin{align}
[\chi_i^+, \chi_i^-]_q &= q^{N_{\chi_i}}, \\
[\chi^-, \chi^+]_q &= q^{-N_{\chi_i}} \\
[N_{\chi_i}, \chi_i^\pm] &= \pm \chi_i^\pm.
\end{align}

(5)

where the deformation parameter $q = e^{\frac{2i\pi}{r}}$, $r \in N - \{0, 1\}$, is a root of unity.

It straightforward to check that the two algebras generated respectively by the set of operators $\{a_i^\pm, \chi_i^-, N_{a_i}\}$ and $\{\chi_i^+, \chi_i^-, N_{\chi_i}\}$ are mutually commutative. We conclude that in the limit $Q \to q$, the Q-deformed bosonic algebra oscillator Ξ_Q^i decomposes into two independent algebras, an ordinary boson algebra Ξ_0^i and k-fermionic algebra Σ_Q^i, formally one can write:

$$
\lim_{Q \to q} \Xi_Q^i = \Xi_0^i \otimes \Sigma_Q^i
$$
We define also the Q–deformed fermionic algebra noted Ω_Q generated by the generators Φ_i^-, Φ_i^+ and $Q^M_{\Phi_i}, Q^{-M}_{\Phi_i}$ satisfying the following relations

\[
Q^M_{\Phi_i}Q^{-M}_{\Phi_i} = Q^{-M}_{\Phi_i}Q^M_{\Phi_i} = 1 \\
Q^M_{\Phi_i}Q^M_{\Phi_j} = Q^M_{\Phi_j}Q^M_{\Phi_i} \\
Q^M_{\Phi_i}\Phi_i^+ Q^{-M}_{\Phi_i} = Q^{\pm}\Phi_i^+ \\
\Phi_i^+ \Phi_i^- + Q^{\pm}\Phi_i^+ \Phi_i^- = Q^{\pm} e_i^\pm \\
\{\Phi_i^+, \Phi_i^-\} = 0; \\
(\Phi_i^+)^2 = 0, (\Phi_i^-)^2 = 0 \\
\{\Phi_i^+, \Phi_j^-\} = 0 \text{ for } i \neq j
\]

then if put the new generators

\[
\phi_i^- = Q^{-M}_{\Phi_i} \Phi_i^- \\
\phi_i^+ = \Phi_i^+ Q^{-M}_{\Phi_i}
\]

we see that the Q–deformed fermion reproduces an ordinary fermion algebra defined by the new operators (7) and the following relations

\[
(\phi_i^-)^2 = 0 \\
(\phi_i^+)^2 = 0 \\
\{\phi_i^-, \phi_j^+\} = \delta_{ij}
\]

3 The quantum algebra $U_Q(sl(n))$

Let $C = [a_{ij}](1 \leq i, j \leq n)$ be a symmetrisable generalized Cartan matrix and let $d_i(1 \leq i \leq n)$ be the non integers such that $d_i a_{ij} = a_{ij} d_i$. Let $Q \neq 0$ be a complex number. For Q generic the quantum enveloping algebra corresponding to $[a_{ij}]$ is a Hopf algebra with 1 and generators $\{E_i, F_i, K_i^+, K_i^-= Q^{d_i a_{ij}}, 1 \leq i \leq n\}$ satisfying the following relations :

\[
[E_i, F_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{Q^{d_i a_{ij}} - Q^{-d_i a_{ij}}} \\
K_i E_j K_i^{-1} = Q^{d_i a_{ij}} E_j \\
K_i F_j K_i^{-1} = Q^{-d_i a_{ij}} F_j \\
K_i^+ K_i^- = K_i^- K_i^+; K_i K_j = K_j K_i
\]

with Serre relations,

\[
\sum_{0 \leq t \leq n} (-1)^t [n]_Q (E_i)^t E_j (E_i)^n-t = 0, \quad i \neq j \\
\sum_{0 \leq t \leq n} (-1)^t [n]_Q (F_i)^t F_j (F_i)^n-t = 0, \quad i \neq j
\]

where a_{ij} is Cartan matrix, $n = 1 - a_{ij}$ and

\[
[n]_Q = \frac{[n]Q!}{[t]Q!(n-t)Q}, \quad [t]_Q! = [t]Q[t-1]Q...[1]Q, \quad [t]_Q = \frac{Q^t - Q^{-t}}{Q - Q^{-1}}
\]

The Cartan matrices of classical type A_n, B_n, C_n and D_n and the corresponding non zero integers are given in [27]. A discussion of the Q-boson and Q-fermion representation was given by Hayashi [28].

We focus here on the algebra $U_Q(sl(n))$ (where $sl(n)$ is the bosonic part of $P(n+1)$) and we
assume that the deformation parameter Q is generic. The explicit expressions for corresponding
generators as linear and bilinear in Q-deformed bosonic operators are given by:

$$
E_i = A_i^- A_{i+1}^+ \\
F_i = A_i^+ A_{i+1}^- \\
H_i = -N_{A_i} + N_{A_{i+1}}
$$ \hspace{1cm} (12)

Now we can explore the limit $Q \to q$ of the quantum algebra $U_Q(sl(n))$. The key tool to discuss
this limit is the Q-bosonic decomposition presented in detail in [19, 20] when the deformation
parameter Q goes to a root of unity q. So, the n Q-bosons reproduce n ordinary bosons and n
k-fermions $\{\chi_i^+; \chi_i^-; N_{\chi_i}\}$ with $1 \leq i \leq n - 1$. The n classical bosons are defined by

$$
a_n^- = \lim_{Q \to q} \frac{Q^\pm \frac{kN_{A_i}}{2}}{(\pm |k|)!^\frac{1}{2}} (A_i^-)^k, \quad a_n^+ = \lim_{Q \to q} \frac{(A_i^+)^k Q^\pm \frac{kN_{A_i}}{2}}{(\pm |k|)!^\frac{1}{2}},
$$ \hspace{1cm} (13)

where their number operators are given by $N_{a_i} = a_i^+ a_i^-$, for $i = 1, 2, ..., n$.

Then, using operators (13), we can construct the classical $U(sl(n))$ algebra (with $1 \leq i \leq n - 1$):

$$
e_i = a_i^- a_{i+1}^+ \\
f_i = a_i^+ a_{i+1}^- \\
h_i = -N_{A_i} + N_{A_{i+1}}
$$ \hspace{1cm} (14)

From the remaining operators $\{\chi_i^+; \chi_i^-; N_{\chi_i}\}$ with $1 \leq i \leq n - 1$ we construct the new generators

$$
E_i = \chi_i^+ \chi_{i+1}^- \\
F_i = \chi_i^- \chi_{i+1}^+ \\
H_i = -N_{\chi_i} + N_{\chi_{i+1}}
$$ \hspace{1cm} (15)

which realize the $U_q(sl(n))$ algebra; where $U_q(sl(n))$ is the same version of $U_Q(sl(n))$ obtained
by simply setting $Q = q$ rather than by taking the limit as above. The elements of $U_q(sl(n))$
and $U(sl(n))$ algebras are mutually commutative.

Then, in the $Q \to q$ limit, the quantum algebra $U_Q(sl(n))$ is a direct product of the form

$$
\lim_{Q \to q} U_Q(sl(n)) = U_q(sl(n)) \otimes U(sl(n))
$$ \hspace{1cm} (16)

Note that, the above direct product $\lim_{Q \to q} U_Q(g) = U_q(g) \otimes U(g)$ valid for quantum algebras
does not appear of a quantum superalgebra $U_Q(g)$. In fact the explicit expressions of the
generators of the quantum superalgebra $U_Q(g)$ are presented as linear and bilinears in Q-
deformed bosonic and fermionic oscillator operators, and using the fact that the Q-deformed
bosonic operators $\{A_i^+, A_i^-, N_{A_i}\}$ with $1 \leq i \leq n$ decomposes into two independent oscillators
algebras: classical bosons $\{a_i^+, a_i^-, N_{a_i}\}$ and k-fermion operators $\{\chi_i^+, \chi_i^-; N_{\chi_i}\}$, and Q-fermions
become q-fermions which are object equivalent to conventional fermions $\{\phi^+_i, \phi^-_i, M_{\phi_i}\}$. Then
from the classical bosons $\{a_i^-, a_i^+, N_{a_i}\}$ and classical fermions $\{\phi^-_i, \phi^+_i, M_{\phi_i}\}$, one can realize the
nondeformed superalgebra $U(g)$ but from the remaining operators $\{\chi_i^+, \chi_i^-; N_{\chi_i}\}$ we construct
the generators of a different quantum q-algebra (see [21] for more details).

4 The quantum extended strange superalgebra $\tilde{P}_Q(n)$

Let $G = G_0 \oplus G_1$ be a \mathbb{Z}_2-graded vector space with dim $G_0 = j$ and dim $G_1 = i$. Then there exists a natural superalgebra structure on the algebra $End G$ defined by:

$$
End G = End_0 G \oplus End_1 G \quad \text{where} \quad End_k G = \{ \phi \in End G \mid \phi(G_i) \subset G_{k+1} \}$$
The superalgebra $\text{End} \ G$ supplied with the Lie superbracket is the Lie superalgebra noted $\ell(i, j)$. The elements M of $\ell(i, j)$ have the form

$$M = \begin{pmatrix} N & Q \\ R & S \end{pmatrix}$$

where N and S are $gl(j)$ and $gl(i)$ matrices, Q and R are $j \times i$ and $i \times j$ rectangular matrices.

The superalgebra of matrices $M \in \ell(n, n)$ satisfying the following equalities

$$N^t = -S, \quad Q^t = Q, \quad R^t = -R, \quad \text{tr}(N) = 0$$

is nothing other than the (non contragredient) strange superalgebra $P(n)$.

An oscillator realization of the generators of $P(n)$ given in [2, 25]. In the Chevalley basis, the (non contragredient) strange superalgebra $P(n)$ is spanned by the generators $\{X_i, Y_i, T_i, X_n\}$ with $(1 \leq i \leq n - 1)$ satisfying the following commutation relations:

$$[X_i, Y_j] = \delta_{ij} T_i$$
$$[X_i, T_j] = -a_{ij} X_i$$
$$[Y_i, T_j] = a_{ij} Y_i$$
$$[T_i, X_n] = a_{in} X_n$$
$$[T_i, T_j] = 0;$$

where $(a_{ij})_{1 \leq i, j \leq n}$ is the Cartan matrix of $su(n)$ and $a_{in} = 0$ for $1 \leq i \leq n - 2$ and $a_{n-1,n} = -2$.

Let us to precise that the notions of Dynkin diagram and Cartan matrix are not determined for the non-contragredient Lie superalgebra $P(n)$. However, if we extend the superalgebra of $P(n)$ by an appropriate diagonal matrices, one can obtain a non-null bilinear form on the Cartan subalgebra of this extension and therefore get in this case a generalized form of the notions of Cartan matrix and Dynkin diagram [2].

The extended strange superalgebra $\tilde{P}(n)$ is defined in this basis by $3(n-1)$ bosonic generators X_i, Y_i, T_i, with $i = 1, ..., n-1$, and a fermionic generator X_n and a diagonal generator D such that

$$[X_i, Y_j] = \delta_{ij} T_i$$
$$[X_i, T_j] = -a_{ij} X_i$$
$$[Y_i, T_j] = a_{ij} Y_i;$$
$$[T_i, X_n] = a_{in} X_n;$$
$$[T_i, T_j] = 0;$$
$$[D, X_i] = [D, Y_i] = [D, T_i] = 0$$
$$[D, X_n] = X_n$$

The Cartan matrix of the extended strange superalgebra $(a_{ik})_{\tilde{P}(n)}$ of $\tilde{P}(n)$ with $1 \leq i \leq n - 1$.

and $1 \leq k \leq n$ is given by:

$$(a_{ik})_{\tilde{P}(n)} = \begin{pmatrix}
2 & -1 & 0 & \cdots & \cdots & 0 & 0 \\
-1 & 2 & -1 & \cdots & \cdots & 0 & 0 \\
0 & -1 & \ddots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 2 & -1 & 0 \\
0 & 0 & \cdots & 0 & -1 & 2 & -2
\end{pmatrix}$$

The Cartan matrix is well defined to get the Serre relations for the extended non-contragredient Lie superalgebra $\tilde{P}(n)$ in the quantum case and permits to define a quantum superalgebra on the Q-deformed version of the extended non-contragredient (strange) superalgebra $\tilde{P}(n)$.

For Q generic, a quantum deformation $U_Q(\tilde{P}(n)) = \tilde{P}_Q(n)$ of the extended non-contragredient (strange) superalgebra $\tilde{P}(n)$ is proposed in [26] as follows:

$$
\begin{align*}
[\hat{X}_i, \hat{Y}_j] &= \delta_{ij} [\hat{T}_i]_Q \\
[\hat{T}_i, \hat{X}_n] &= a_{in} \hat{X}_i \\
[\hat{Y}_i, \hat{T}_j] &= a_{ij} \hat{Y}_i \\
[\hat{T}_i, \hat{T}_j] &= 0 \\
[\hat{D}, \hat{X}_i] &= [\hat{D}, \hat{Y}_i] = [\hat{D}, \hat{\check{T}}_i] = 0 \\
[\hat{D}, \hat{X}_n] &= X_n \\
[\hat{X}_i, \hat{T}_j] &= -a_{ij} \hat{X}_i
\end{align*}
$$

(19)

and the quantum Serre relations described by the expressions:

$$
\begin{align*}
\sum_{0 \leq t \leq 1 - a_{ik}} (-1)^t t
&\begin{pmatrix}
1 - a_{ik} \\
t
\end{pmatrix}
\hat{X}_i^{1-a_{ik}-t} \hat{X}_k \hat{X}_i^t = 0 \\
\sum_{0 \leq t \leq 1 - a_{ij}} (-1)^t t
&\begin{pmatrix}
1 - a_{ij} \\
t
\end{pmatrix}
\hat{Y}_i^{1-a_{ij}-t} \hat{Y}_j \hat{Y}_i^t = 0
\end{align*}
$$

(20)

A possible realization of the generators of $\tilde{P}_Q(n)$ in terms of the Q-deformed oscillators $\{\Phi_i^-, \Phi_i^+, M_{\Phi_i}\}$ and $\{A_i^+, A_i^-, N_{A_i}\}$ with $(1 \leq i \leq n)$ is given by:

$$
\begin{align*}
\hat{X}_i &= A_i^+ A_{i+1}^+ Q^{\frac{(M_{\Phi_i} - M_{\Phi_{i+1}})}{2}} + \Phi_i^+ \Phi_{i+1}^- Q^{-\frac{(N_{A_i} - N_{A_{i+1}})}{2}} \\
\hat{X}_n &= A_n^+ \Phi_n^+ Q^{-\frac{1}{2} \sum_{i=1}^{n-1} N_{A_i} - \frac{1}{2} \sum_{i=1}^{n-1} M_{\Phi_i}} \\
\hat{Y}_i &= A_i^+ A_i^- Q^{\frac{(M_{\Phi_i} - M_{\Phi_{i+1}})}{2}} + \Phi_i^+ \Phi_i^- Q^{-\frac{(N_{A_i} - N_{A_{i+1}})}{2}} \\
\hat{T}_i &= N_{A_i} - N_{A_{i+1}} + M_{\Phi_i} - M_{\Phi_{i+1}} \\
\hat{D} &= \frac{1}{2} \sum_{i=1}^{n} N_{A_i} + \frac{1}{2} \sum_{i=1}^{n} M_{\Phi_i}
\end{align*}
$$

(21)
where A_i^+ and A_i^- are the Q-deformed bosonic algebra operators and Φ_i^+ and Φ_i^- are the Q-deformed fermionic ones.

Using the fact that in $Q \to q$ limit, the Q-deformed bosons algebras $\{A_i^+, A_i^-, N_a\}$ reproduces classical bosons algebras $\{a_i^+, a_i^-, N_a\}$ and a q-deformed k-fermions generators $\{\chi_i^+, \chi_i^-, N_{\chi}\}$, and in this limit the Q-fermions become q-fermions which are object equivalent to classical ones $\{\phi_i^+, \phi_i^-, M_{\phi}\}$, then from the classical bosons $\{a_i^-, a_i^+, N_a\}$ and classical fermions $\{\phi_i^-, \phi_i^+, M_{\phi}\}$, one can construct the classical extended strange superalgebra $\tilde{P}(n)$:

\[
\begin{align*}
X_i &= a_i^+ a_{i+1}^+ + \phi_i^+ \phi_{i+1}^-
X_n &= a_n^+ \phi_n^+
Y_i &= a_i^+ a_i^- + \phi_i^+ \phi_i^-
T_i &= N_{a_i} - N_{a_{i+1}} + M_{\phi_i} - M_{\phi_{i+1}}
D &= \frac{1}{2} \sum_{i=1}^{n} N_{a_i} + \frac{1}{2} \sum_{i=1}^{n} M_{\phi_i}
\end{align*}
\] (22)

From the remaining operators $\{\chi_i^-, \chi_i^+, N_{\chi}\}$ we realize the following:

\[
\begin{align*}
E_i &= \chi_i^- \chi_{i+1}^+, \quad 1 \leq i \leq n - 1
F_i &= \chi_i^+ \chi_{i+1}^-, \quad 1 \leq i \leq n - 1
K_i &= q^{-N_{\chi_i} + N_{\chi_{i+1}}}, \quad 1 \leq i \leq n - 1
\end{align*}
\] (23)

which generates the q-deformed algebra $U_q(sl(n))$. It is easy to show that $U_q(sl(n))$ and $\tilde{P}(n)$ are mutually commutative. As results, we obtain the following decomposition of the quantum strange superalgebra $\tilde{P}(n)$ in the $Q \to q$ limit:

\[
\lim_{Q \to q} \tilde{P}(n) = U_q(sl(n)) \otimes \tilde{P}(n).
\] (24)

5 Conclusion

It is important to note that we have established this decomposition of the quantum strange superalgebra $\tilde{P}(n)$ only for a particular realization, i.e, the Q-oscillator realization and although the quantum extended strange superalgebra $\tilde{P}(n)$ does not have direct product form, we establish, for this realization and the corresponding highest weight representations the decomposition of $\tilde{P}(n)$ into the direct product of undeformed $\tilde{P}(n)$ and $U_q(sl(n))$ (the naive version of $U_Q(sl(n))$ at $Q = q$ obtained by simply setting $Q = q$). The labels of the highest weight representations of the quantum strange superalgebra $\tilde{P}(n)$ and the choice of the basis in which the decomposition (24) is clearly manifested will be investigated elsewhere.
References

[1] V. G. Kac, Lie superalgebras, Advances in Mathematics 26 (1977), 896.
[2] L. Frappat, A. Sciarrino, P. Sorba Dictionary on Lie Superalgebras, arXiv:hep-th/9607161
[3] Ching-I Hsin, NEW ZEALAND JOURNAL OF MATHEMATICS, Volume 41 (2011), 55-64
[4] C. Carmeli, L. Caston, R. Fiore, Mathematical Foundation of Supersymmetry, Lectures in Mathematics (2011), European Mathematical Society. Volume 41 (2011), 55-64
[5] V. A. Stukopin, The Yangian of the strange Lie superalgebra and its quantum double, Theoretical and Mathematical Physics January 2013, Volume 174, Issue 1, pp 122-133
[6] Hironari MIYAZAWA, Proc. Jpn. Acad., Ser. B 86 (2010)
[7] L. C. Biedenharn, J. Phys. A 22 (1998) L 873.
[8] A. J. Macfarlane, J. Phys. A 22 (1988) 4581.
[9] Dunne R. S., Macfarlane A. J., de Azcarraga J. A., and J.C. Perez Bueno, Phys.(1966) Lett. B 387 294
[10] Dunne R. S., Macfarlane A. J., de Azcarraga, J. A. and Perez Bueno J.C. hep-th/9610087
[11] Dunne R. S., Macfarlane A. J., de Azcarraga J. A., and Perez Bueno J.C., Czech. J. Phys.(1996) 46, 1145
[12] de Azcarraga J. A. , Dunne R. S., Macfarlane A. J., and Perez Bueno J.C. , Czech. J. Phys.(1996) 46, 1235
[13] Dunne R. S., ,hep-th/9703111
[14] Majid S., hep-th/9410241. Introduction to braided geometry and q-Minkowski space,
[15] Majid S., hep-th/9410241 Introduction to braided geometry and q-Minkowski space,
[16] Dunne R. S., hep-th/9703137. Intrinsic anyonic spin through deformed geometry,
[17] M. Daoud, Y. Hassouni and M. Kibler, Symmetries in Science X, eds B Gruber and M. Ramek (1998, New York: plenum press).
[18] M. Mansour, M. Daoud and Y. Hassouni, Rep. Math. Phys N 3 vol.44 (1999) and AS-ICTP pre-print IC/98/164.
[19] M. Mansour and E.H. Zakkari, Advances in Applied Clifford Algebras 14 No.1, 69-80 (2004).
[20] M. Mansour and E.H. Zakkari, International Journal of Theoretical Charges, vol.43, No.5, May (2004).
[21] M. Mansour, M. Daoud and Y. Hassouni. Phys. Lett. B 454 (1999).

[22] A Sketch of Lie Superalgebra Theory Commun. math. Phys. 53, 3164 (1977)

[23] L. Frappat, A. Sciarrino and P. Sorba, Dynkin-like diagrams and representation of the strange superalgebra \(P(n) \), J. Math. Phys. 32 (1991), 3268-3277.

[24] Cuiling Luo, On Polynomial Representations of Classical Strange Lie Superalgebras, arxiv.org/1001.3471v1

[25] Frappat L and Sciarrino A 1992 I. Math. Phys. 33 3911

[26] L. Frappt, A. Sciarrino, P. Sorba, J.Phys. A26 (1993) L661-L666

[27] V.Chari, A. Pressley, Guide to quantum groups, Cambridge University press, Cambridge, 1994.

[28] T. Hayashi; Commun Math Phys 127 (1990), 129.