Some Remarks on the Total CR Q and Q'-Curvatures

Taiji MARUGAME

Institute of Mathematics, Academia Sinica, Astronomy-Mathematics Building,
No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
E-mail: marugame@gate.sinica.edu.tw

Received November 09, 2017, in final form February 12, 2018; Published online February 14, 2018
https://doi.org/10.3842/SIGMA.2018.010

Abstract. We prove that the total CR Q-curvature vanishes for any compact strictly pseudoconvex CR manifold. We also prove the formal self-adjointness of the P'-operator and the CR invariance of the total Q'-curvature for any pseudo-Einstein manifold without the assumption that it bounds a Stein manifold.

Key words: CR manifolds; Q-curvature; P'-operator; Q'-curvature

2010 Mathematics Subject Classification: 32V05; 52T15

1 Introduction

The Q-curvature, which was introduced by T. Branson [3], is a fundamental curvature quantity on even dimensional conformal manifolds. It satisfies a simple conformal transformation formula and its integral is shown to be a global conformal invariant. The ambient metric construction of the Q-curvature [9] also works for a CR manifold M of dimension $2n+1$, and we can define the CR Q-curvature, which we denote by Q. The CR Q-curvature is a CR density of weight $-n-1$ defined for a fixed contact form θ and is expressed in terms of the associated pseudo-hermitian structure. If we take another contact form $\hat{\theta} = e^\Upsilon \theta$, $\Upsilon \in \mathcal{C}^\infty(M)$, it transforms as

$$\hat{Q} = Q + P \Upsilon,$$

where P is a CR invariant linear differential operator, called the (critical) CR GJMS operator. Since P is formally self-adjoint and kills constant functions, the integral

$$\overline{Q} = \int_M Q,$$

called the total CR Q-curvature, is invariant under rescaling of the contact form and gives a global CR invariant of M. However, it follows readily from the definition of the CR Q-curvature that Q vanishes identically for an important class of contact forms, namely the pseudo-Einstein contact forms. Since the boundary of a Stein manifold admits a pseudo-Einstein contact form [5], the CR invariant \overline{Q} vanishes for such a CR manifold. Moreover, it has been shown that on a Sasakian manifold the CR Q-curvature is expressed as a divergence [1], and hence \overline{Q} also vanishes in this case. Thus, it is reasonable to conjecture that the total CR Q-curvature vanishes for any CR manifold, and our first result is the confirmation of this conjecture:

Theorem 1.1. Let M be a compact strictly pseudoconvex CR manifold. Then the total CR Q-curvature of M vanishes: $\overline{Q} = 0$.

For three dimensional CR manifolds, Theorem 1.1 follows from the explicit formula of the CR Q-curvature; see [9]. In higher dimensions, we make use of the fact that a compact strictly pseudoconvex CR manifold M of dimension greater than three can be realized as the boundary
of a complex variety with at most isolated singularities \([2, 10, 11]\). By resolution of singularities, we can realize \(M\) as the boundary of a complex manifold \(X\) which may not be Stein. In this setting, the total CR \(Q\)-curvature is characterized as the logarithmic coefficient of the volume expansion of the asymptotically Kähler–Einstein metric on \(X\) \([15]\). By a simple argument using Stokes’ theorem, we prove that there is no logarithmic term in the expansion.

Although the vanishing of \(\bar{Q}\) is disappointing, there is an alternative \(Q\)-like object on a CR manifold which admits pseudo-Einstein contact forms. Generalizing the operator of Branson–Fontana–Morpurgo \([4]\) on the CR sphere, Case–Yang \([7]\) (in dimension three) and Hirachi \([12]\) (in general dimensions) introduced the \(P'\)-operator and the \(Q'\)-curvature for pseudo-Einstein CR manifolds. Let us denote the set of pseudo-Einstein contact forms by \(\mathcal{PE}\) and the space of CR pluriharmonic functions by \(\mathcal{P}\). Two pseudo-Einstein contact forms \(\theta, \hat{\theta} \in \mathcal{PE}\) are related by \(\hat{\theta} = e^{\Upsilon} \theta\) for some \(\Upsilon \in \mathcal{P}\). For a fixed \(\theta \in \mathcal{PE}\), the \(P'\)-operator is defined to be a linear differential operator on \(\mathcal{P}\) which kills constant functions and satisfies the transformation formula

\[
\hat{P}' f = P' f + P(f \Upsilon)
\]

under the rescaling \(\hat{\theta} = e^{\Upsilon} \theta\). The \(Q'\)-curvature is a CR density of weight \(-n - 1\) defined for \(\theta \in \mathcal{PE}\), and satisfies

\[
\hat{Q}' = Q' + 2P' \Upsilon + P(\Upsilon^2)
\]

for the rescaling. Thus, if \(P'\) is formally self-adjoint on \(\mathcal{P}\), the total \(Q'\)-curvature

\[
\bar{Q}' = \int_M Q'
\]

gives a CR invariant of \(M\). In dimension three and five, the formal self-adjointness of \(P'\) follows from the explicit formulas \([6, 7]\). In higher dimensions, Hirachi \([12, \text{Theorem 4.5}]\) proved the formal self-adjointness under the assumption that \(M\) is the boundary of a Stein manifold \(X\); in the proof he used Green’s formula for the asymptotically Kähler–Einstein metric \(g\) on \(X\), and the global Kählerness of \(g\) was needed to assure that a pluriharmonic function is harmonic with respect to \(g\). In this paper, we slightly modify his proof and prove the self-adjointness of \(P'\) for general pseudo-Einstein manifolds:

Theorem 1.2. Let \(M\) be a compact strictly pseudoconvex CR manifold. Then the \(P'\)-operator for a pseudo-Einstein contact form satisfies

\[
\int_M (f_1 P' f_2 - f_2 P' f_1) = 0
\]

for any \(f_1, f_2 \in \mathcal{P}\).

Consequently, the CR invariance of \(\bar{Q}'\) holds for any CR manifold which admits a pseudo-Einstein contact form:

Theorem 1.3. Let \(M\) be a compact strictly pseudoconvex CR manifold which admits a pseudo-Einstein contact form. Then the total \(Q'\)-curvature is independent of the choice of \(\theta \in \mathcal{PE}\).

We note that \(\bar{Q}'\) is a nontrivial CR invariant since it has a nontrivial variational formula; see \([13]\). We also give an alternative proof of Theorem 1.3 by using the characterization \([12, \text{Theorem 5.6}]\) of \(\bar{Q}'\) as the logarithmic coefficient in the expansion of some integral over a complex manifold with boundary \(M\).
2 Proof of Theorem 1.1

We briefly review the ambient metric construction of the CR Q-curvature; we refer the reader to [9, 12, 13] for detail.

Let \tilde{X} be an $(n+1)$-dimensional complex manifold with strictly pseudoconvex CR boundary M, and let $r \in C^\infty(\tilde{X})$ be a boundary defining function which is positive in the interior X. The restriction of the canonical bundle $K_{\tilde{X}}$ to M is naturally isomorphic to the CR canonical bundle $K_M := \wedge^{n+1}(T^{0,1}M)\bot \subset \wedge^{n+1}(CT^*M)$. We define the ambient space by $\tilde{X} = K_{\tilde{X}} \setminus \{0\}$, and set $\mathcal{N} = K_M \setminus \{0\} \cong \tilde{X}|_M$. The density bundles over \tilde{X} and M are defined by

$$\mathcal{E}(w) = (K_{\tilde{X}} \otimes K_\tilde{X})^{-w/(n+2)}, \quad \mathcal{E}(w) = (K_M \otimes K_M)^{-w/(n+2)} \cong \mathcal{E}(w)|_M$$

for each $w \in \mathbb{R}$. We call $\mathcal{E}(w)$ the CR density bundle of weight w. The space of sections of $\mathcal{E}(w)$ and $\mathcal{E}(w)$ are also denoted by the same symbols. We define a \mathbb{C}^*-action on \tilde{X} by $\delta_\lambda u = \lambda^{n+2}u$ for $\lambda \in \mathbb{C}^*$ and $u \in \tilde{X}$.

Then a section of $\mathcal{E}(w)$ can be identified with a function on \tilde{X} which is homogeneous with respect to this action:

$$\tilde{\mathcal{E}}(w) \cong \{ f \in C^\infty(\tilde{X}) \mid \delta_\lambda f = |\lambda|^{2w}f \text{ for } \lambda \in \mathbb{C}^* \}.$$

Similarly, sections of $\mathcal{E}(w)$ are identified with homogeneous functions on \mathcal{N}.

Let $\rho \in \tilde{\mathcal{E}}(1)$ be a density on \tilde{X} and (z^1, \ldots, z^{n+1}) local holomorphic coordinates. We set $\rho = |dz^1 \wedge \cdots \wedge dz^{n+1}|^{2/(n+2)} \rho \in \tilde{\mathcal{E}}(0)$ and define

$$\mathcal{J}[\rho] := (-1)^{n+1} \det \left(\begin{array}{cc} \rho & \partial_\tau \rho \\ \partial_\tau \rho & \partial_\tau \partial_\tau \rho \end{array} \right).$$

Since $\mathcal{J}[\rho]$ is invariant under changes of holomorphic coordinates, \mathcal{J} defines a global differential operator, called the Monge–Ampère operator. Fefferman [8] showed that there exists $\rho \in \tilde{\mathcal{E}}(1)$ unique modulo $O(r^{n+3})$ which satisfies $\mathcal{J}[\rho] = 1 + O(r^{n+2})$ and is a defining function of \mathcal{N}. We fix such ρ and define the ambient metric \tilde{g} by the Lorentz–Kähler metric on a neighborhood of \mathcal{N} in \tilde{X} which has the Kähler form $-i\partial\bar{\partial}\rho$.

Recall that there exists a canonical weighted contact form $\theta \in \Gamma(T^*M \otimes \mathcal{E}(1))$ on M, and the choice of a contact form θ is equivalent to the choice of a positive section $\tau \in \mathcal{E}(1)$, called a CR scale; they are related by the equation $\theta = \tau \theta$. For a CR scale $\tau \in \mathcal{E}(1)$, we define the CR Q-curvature by

$$Q = \Delta^{n+1} \log \tau |_{\mathcal{N}} \in \mathcal{E}(-n-1),$$

where $\Delta = -\tilde{\nabla}^f \tilde{\nabla}^f$ is the Kähler Laplacian of \tilde{g} and $\tau \in \tilde{\mathcal{E}}(1)$ is an arbitrary extension of τ. It can be shown that Q is independent of the choice of an extension of τ, and the total CR Q-curvature Q is invariant by rescaling of τ.

The total CR Q-curvature has a characterization in terms of a complete metric on X. We note that the $(1,1)$-form $-i\partial\bar{\partial}\log \rho$ descends to a Kähler form on X near the boundary. We extend this Kähler metric to a hermitian metric g on X. The Kähler Laplacian $\Delta = -g^{ij} \nabla_i \nabla_j$ of g is related to $\tilde{\Delta}$ by the equation

$$\rho \tilde{\Delta} f = \Delta f, \quad f \in \tilde{\mathcal{E}}(0) \quad (2.1)$$

near \mathcal{N} in $\tilde{X} \setminus \mathcal{N}$. In the right-hand side, we have regarded f as a function on X.

For any contact form θ on M, there exists a boundary defining function ρ such that

$$\partial|_{TM} = \theta, \quad |\partial \log \rho|_g = 1 \text{ near } M \text{ in } X, \quad (2.2)$$
where \(\vartheta := \text{Re}(i\partial \rho) \) ([15, Lemma 3.1]). Let \(\xi \) be the \((1, 0)\)-vector filed on \(X \) near \(M \) characterized by
\[
\xi \rho = 1, \quad \xi \perp g \mathcal{H},
\]
where \(\mathcal{H} := \ker \partial \rho \subset T^{1,0}X \). Then, \(N := \text{Re} \xi \) is smooth up to the boundary and satisfies \(N \rho = 1, \vartheta(N) = 0 \). Moreover, \(\nu := \rho N \) is \((\sqrt{2})^{-1}\) times the unit outward normal vector filed along the level sets of \(\rho \). By Green’s formula, for any function \(f \) on \(X \) we have
\[
\int_{\rho > \epsilon} \Delta f \, \text{vol}_g = \int_{\rho = \epsilon} \nu f \, \nu_\bot \text{vol}_g. \tag{2.3}
\]
Since the Monge–Ampère equation implies that \(g \) satisfies \(\text{vol}_g = -\left(\frac{n!}{2}\right)^{-1}(1 + O(\rho))\rho^{-n-2} d\rho \wedge \vartheta \wedge (d\vartheta)^n \), the formula (2.3) is rewritten as
\[
\int_{\rho > \epsilon} \Delta f \, \text{vol}_g = -\left(\frac{n!}{2}\right)^{-1} \int_{\rho = \epsilon} N f \cdot (1 + O(\epsilon))\epsilon^{-n} \vartheta \wedge (d\vartheta)^n. \tag{2.4}
\]
With this formula, we prove the following characterization of \(\mathcal{Q} \).

Lemma 2.1 ([15, Proposition A.3]). For an arbitrary defining function \(\rho \), we have
\[
lp \int_{\rho > \epsilon} \text{vol}_g = \frac{(-1)^n}{(n!)^2(n+1)!} \mathcal{Q},
\]
where \(lp \) denotes the coefficient of \(\log \epsilon \) in the asymptotic expansion in \(\epsilon \).

Proof. Since the coefficient of \(\log \epsilon \) in the volume expansion is independent of the choice of \(\rho \) [15, Proposition 4.1], we may assume that \(\rho \) satisfies (2.2) for a fixed contact \(\theta \) on \(M \). We take \(\tilde{\tau} \in \mathcal{E}(1) \) such that \(\rho = \tilde{\tau} \rho \). Then, \(\vartheta \) is the contact form corresponding to the CR scale \(\tilde{\tau}|_N \). By the same argument as in the proof of [12, Lemma 3.1], we can take \(F \in \mathcal{E}(0), \, G \in \mathcal{E}(-n - 1) \) which satisfy
\[
\tilde{\Delta}(\log \tilde{\tau} + F + G \rho^{n+1} \log \rho) = O(\rho^\infty), \quad F = O(\rho), \quad G|_N = \frac{(-1)^n}{n!(n+1)!} \mathcal{Q}.
\]
We set \(G := \tilde{\tau}^{n+1} G \in \mathcal{E}(0) \). By (2.1) and the equation \(\rho \tilde{\Delta} \log \rho = n + 1 \), we have
\[
\Delta(\log \rho - F - G \rho^{n+1} \log \rho) = n + 1 + O(\rho^\infty).
\]
Then, by using (2.4), we compute as
\[
(n + 1) \, lp \int_{\rho > \epsilon} \text{vol}_g = lp \int_{\rho > \epsilon} \Delta(\log \rho - F - G \rho^{n+1} \log \rho) \, \text{vol}_g
\]
\[
= -\left(\frac{n!}{2}\right)^{-1} \int_{\rho = \epsilon} N(\log \rho - F - G \rho^{n+1} \log \rho) \cdot (1 + O(\epsilon))\epsilon^{-n} \vartheta \wedge (d\vartheta)^n
\]
\[
= \frac{n + 1}{n!} \int_M G \theta \wedge (d\theta)^n
\]
\[
= \frac{(-1)^n}{(n!)^2} \mathcal{Q}.
\]
Thus we complete the proof. \(\blacksquare \)
Thus, by Lemma 2.1 we obtain

\[
\tau \in \mathcal{E}(1)\text{ is a pseudo-Einstein CR scale and \(\tau \in \mathcal{E}(1) \) such that } \partial \bar{\partial} \log \tau = 0 \text{ near } N \text{ in } \tilde{X}.
\]

The corresponding contact form \(\theta \) is called a pseudo-Einstein contact form and characterized in terms of associated pseudo-hermitian structure; see [12, 13, 14]. If \(\tau \) is a pseudo-Einstein CR scale, another \(\tau \) is pseudo-Einstein if and only if \(\tau = e^{-\mathcal{Y}} \tau \) for a CR pluriharmonic function \(\mathcal{Y} \in \mathcal{P} \). For any \(f \in \mathcal{P} \), we take an extension \(\tilde{f} \in \mathcal{E}(0) \) such that \(\partial \bar{\partial} \tilde{f} = 0 \) near \(M \) in \(\tilde{X} \) and define

\[
P'(f) = -\Delta^{n+1}(\tilde{f} \log \tau)|_N \in \mathcal{E}(-n - 1).
\]

We note that the germs of \(\tau \) and \(\tilde{f} \) along \(N \) is unique, and \(P'f \) is assured to be a density by \(\Delta \tilde{f} |_N = 0 \). The \(Q' \)-curvature is defined by

\[
Q' = \Delta^{n+1}(\log \tau)^2|_N \in \mathcal{E}(-n - 1).
\]

Here, the homogeneity of \(Q' \) follows from the fact \(\Delta \log \tau |_N = 0 \).

To prove the formal self-adjointness of \(P' \), we use its characterization in terms of the metric \(g \). We define a differential operator \(\Delta' \) by \(\Delta' f = -g^{ij} \partial_i \partial_j f \). Since \(g \) is Kähler near the boundary, \(\Delta' \) agrees with \(\Delta \) near \(M \) in \(X \).

Lemma 3.1 ([12, Lemma 4.4]). Let \(\tau \in \mathcal{E}(1) \) be a pseudo-Einstein CR scale and \(\tau \in \mathcal{E}(1) \) its extension such that \(\partial \bar{\partial} \log \tau = 0 \) near \(N \) in \(\tilde{X} \). Let \(\rho = \frac{\tau}{\rho} \) be the corresponding defining function. Then, for any \(f \in C^\infty(\tilde{X}) \) which is pluriharmonic in a neighborhood of \(M \) in \(\tilde{X} \), there exist \(F, G \in C^\infty(\tilde{X}) \) such that \(F = O(\rho) \) and

\[
\Delta'(f \log \rho - F - G\rho^{n+1} \log \rho) = (n+1)f + O(\rho^\infty).
\]

Moreover, \(\tau^{-n-1}G|_M = \frac{(-1)^{n+1}}{(n+1)!}P'f \) holds.
In the statement of [12, Lemma 4.4], the Laplacian Δ is used, but we may replace it by Δ' since they agree near the boundary in X.

Proof of Theorem 1.2. We extend f_j to a function on \overline{X} such that $\partial \overline{\partial} f_j = 0$ in a neighborhood of M in \overline{X}. Let τ be a pseudo-Einstein CR scale and $\rho = \rho/\tau$ the corresponding defining function. Then we have $\omega = -i\partial \overline{\partial} \log \rho$ near M in X. We take F_j, G_j as in Lemma 3.1 so that $u_j := f_j \log \rho - F_j - G_j \rho^{n+1} \log \rho$ satisfies $\Delta' u_j = (n+1) f_j + O(\rho^\infty)$. We consider the coefficient of $\log \epsilon$ in the expansion of the integral

$$I_\epsilon = \Re \int_{\rho > \epsilon} (i\partial f_1 \wedge \overline{\partial} u_2 \wedge \omega^n + i\partial f_2 \wedge \overline{\partial} u_1 \wedge \omega^n - f_1 f_2 \omega^{n+1}),$$

which is symmetric in the indices 1 and 2. Since $d\omega = 0$, $\partial \overline{\partial} f_2 = 0$ near M in X, we have

$$i\partial f_1 \wedge \overline{\partial} u_2 \wedge \omega^n = d\left(i f_1 \overline{\partial} u_2 \wedge \omega^n \right) - i f_1 \overline{\partial} u_2 \wedge \omega^n + in f_1 \overline{\partial} u_2 \wedge d\omega \wedge \omega^{n-1}$$

$$= d\left(i f_1 \overline{\partial} u_2 \wedge \omega^n \right) + \frac{1}{n+1} f_1 \Delta' u_2 \omega^{n+1} + (\text{cpt supp}),$$

$$i\partial f_2 \wedge \overline{\partial} u_1 \wedge \omega^n = -d\left(\overline{\partial} u_2 \wedge \omega^n \right) + (\text{cpt supp}),$$

where (cpt supp) stands for a compactly supported form on X. Thus,

$$I_\epsilon = \int_{\rho > \epsilon} \frac{1}{n+1} f_1 (\Delta' u_2 - (n+1) f_2) \omega^{n+1}$$

$$+ \Re \int_{\rho = \epsilon} i(f_1 \overline{\partial} u_2 - u_1 \partial f_2) \wedge \omega^n + \int_{\rho > \epsilon} (\text{cpt supp}).$$

The first and the third terms contain no log terms. Since $\omega = d(\partial/\rho)$ near M in X, the second term is computed as

$$\Re \int_{\rho = \epsilon} i(f_1 \overline{\partial} u_2 - u_1 \partial f_2) \wedge \omega^n = \epsilon^{-n} \Re \int_{\rho = \epsilon} \left(i f_1 \overline{\partial} (f_2 \log \rho - F_2 - G_2 \rho^{n+1} log \rho) \wedge (d\theta)^n \right.$$

$$- i \left(f_1 \log \rho - F_1 - G_1 \rho^{n+1} log \rho \right) \wedge \partial f_2 \wedge (d\theta)^n) + O(\epsilon^\infty).$$

The logarithmic term in the right-hand side is

$$\log \epsilon \int_{\rho = \epsilon} (n+1) f_1 G_2 \theta \wedge (d\theta)^n + 2\epsilon^{-n} \log \epsilon \Re \int_{\rho = \epsilon} i f_1 \overline{\partial} f_2 \wedge (d\theta)^n + O(\epsilon \log \epsilon).$$

The coefficient of $\log \epsilon$ in the first term is

$$\frac{(-1)^{n+1}}{(n!)^2} \int_M f_1 P' f_2.$$ \hspace{1cm} (3.1)

The second term is equal to

$$2\epsilon^{-n} \log \epsilon \Re \int_{\rho > \epsilon} i\partial f_1 \wedge \overline{\partial} f_2 \wedge (d\theta)^n + \epsilon^{-n} \log \epsilon \int_{\rho > \epsilon} (\text{cpt supp}).$$

The first term in this formula is symmetric in the indices 1 and 2 while the second term gives no $\log \epsilon$ term. Therefore, (3.1) should also be symmetric in 1 and 2, which implies the formal self-adjointness of P'. \hfill \blacksquare
4 Proof of Theorem 1.3

The formal self-adjointness of the P'-operator implies the CR invariance of the total Q'-curvature. When $n \geq 2$, the CR invariance can also be proved by the following characterization of Q' in terms of the hermitian metric g on X whose fundamental 2-form $\omega = ig_{jk}\theta^j \wedge \theta^k$ agrees with $-i\partial\bar{\partial}\log \rho$ near M in X:

Theorem 4.1 ([12, Theorem 5.6]). Let $\tau \in \mathcal{E}(1)$ be a pseudo-Einstein CR scale and $\tilde{\tau} \in \tilde{\mathcal{E}}(1)$ its extension such that $\partial\bar{\partial}\log \tilde{\tau} = 0$ near N in \tilde{X}. Let $\rho = \rho/\tilde{\tau}$ be the corresponding defining function. Then we have

$$\int_{\rho > \epsilon} i\partial\log \rho \wedge \bar{\partial}\log \rho \wedge \omega^n = \frac{(-1)^n}{2(n!)^2} Q'$$

(4.1)

for any defining function r.

In [12, Theorem 5.6], it is assumed that X is Stein and $\omega = -i\partial\bar{\partial}\log \rho$ globally on X, but as the logarithmic term is determined by the boundary behavior, it is sufficient to assume $\omega = -i\partial\bar{\partial}\log \rho$ near M in X as above.

Proof of Theorem 1.3. Let τ, ρ be as in Theorem 4.1 and let $\tilde{\rho}$ be the defining function corresponding to another pseudo-Einstein CR scale $\tilde{\tau}$. Then we can write as $\tilde{\rho} = e^\Upsilon \rho$ with $\Upsilon \in C^\infty(X)$ such that $\partial\bar{\partial}\Upsilon = 0$ near M in X.

Using the defining function ρ for r in the formula (4.1), we compute as

$$\int_{\rho > \epsilon} i\partial\log \tilde{\rho} \wedge \bar{\partial}\log \tilde{\rho} \wedge \omega^n = \int_{\rho > \epsilon} i(\partial\log \rho + \partial\Upsilon) \wedge (\bar{\partial}\log \rho + \bar{\partial}\Upsilon) \wedge \omega^n$$

$$= \int_{\rho > \epsilon} i\partial\log \rho \wedge \bar{\partial}\log \rho \wedge \omega^n + \int_{\rho > \epsilon} i\partial\Upsilon \wedge \bar{\partial}\Upsilon \wedge \omega^n$$

$$+ 2 \text{Re} \int_{\rho > \epsilon} i\partial\log \rho \wedge \bar{\partial}\Upsilon \wedge \omega^n.$$

The second term in the last line is

$$\int_{\rho > \epsilon} i\partial\Upsilon \wedge \bar{\partial}\Upsilon \wedge \omega^n = \int_{\rho = \epsilon} i\partial\Upsilon \wedge \bar{\partial}\Upsilon \wedge \omega^n + \int_{\rho > \epsilon} (\text{cpt supp}) = 0.$$

Since $\omega = d(\partial/\rho)$ near M in X, we have

$$\int_{\rho > \epsilon} i\partial\log \rho \wedge \bar{\partial}\Upsilon \wedge \omega^n = \log \epsilon \int_{\rho = \epsilon} i\partial\Upsilon \wedge \omega^n + \int_{\rho > \epsilon} (\text{cpt supp})$$

$$= \epsilon^{-n} \log \epsilon \int_{\rho = \epsilon} i\partial\Upsilon \wedge (d\theta)^n + \int_{\rho > \epsilon} (\text{cpt supp})$$

$$= \epsilon^{-n} \log \epsilon \int_{\rho > \epsilon} (\text{cpt supp}) + \int_{\rho > \epsilon} (\text{cpt supp}),$$

which implies that the third term is also 0. Thus, Q' is independent of the choice of a pseudo-Einstein CR scale τ. ■

Acknowledgements

The author would like to thank the referees for their comments which were helpful for the improvement of the manuscript.
References

[1] Alexakis S., Hirachi K., Integral Kähler invariants and the Bergman kernel asymptotics for line bundles, *Adv. Math.* **308** (2017), 348–403, arXiv:1501.02463.

[2] Boutet de Monvel L., Intégration des équations de Cauchy–Riemann induites formelles, in Séminaire Goulaouic–Lions–Schwartz 1974–1975; Équations aux dérivées partielles linéaires et non linéaires, Centre Math., École Polytech., Paris, 1975, Exp. No. 9, 14 pages.

[3] Branson T.P., The functional determinant, *Lecture Notes Series*, Vol. 4, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993.

[4] Branson T.P., Fontana L., Morpurgo C., Moser–Trudinger and Beckner–Onofri’s inequalities on the CR sphere, *Ann. of Math.* **177** (2013), 1–52, arXiv:0712.3905.

[5] Cao J., Chang S.C., Pseudo-Einstein and Q-flat metrics with eigenvalue estimates on CR-hypersurfaces, *Indiana Univ. Math. J.* **56** (2007), 2839–2857, math.DG/0609312.

[6] Case J.S., Gover A.R., The P'-operator, the Q'-curvature, and the CR tractor calculus, arXiv:1709.08057.

[7] Case J.S., Yang P., A Paneitz-type operator for CR pluriharmonic functions, *Bull. Inst. Math. Acad. Sin. (N.S.)* **8** (2013), 285–322, arXiv:1309.2528.

[8] Fefferman C.L., Monge–Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, *Ann. of Math.* **103** (1976), 395–416.

[9] Fefferman C.L., Hirachi K., Ambient metric construction of Q-curvature in conformal and CR geometries, *Math. Res. Lett.* **10** (2003), 819–831, math.DG/0303184.

[10] Harvey F.R., Lawson Jr. H.B., On boundaries of complex analytic varieties. I, *Ann. of Math.* **102** (1975), 223–290.

[11] Harvey F.R., Lawson Jr. H.B., On boundaries of complex analytic varieties. II, *Ann. of Math.* **106** (1977), 213–238.

[12] Hirachi K., Q-prime curvature on CR manifolds, *Differential Geom. Appl.* **33** (2014), suppl., 213–245, arXiv:1302.0489.

[13] Hirachi K., Marugame T., Matsumoto Y., Variation of total Q-prime curvature on CR manifolds, *Adv. Math.* **306** (2017), 1333–1376, arXiv:1510.03221.

[14] Lee J.M., Pseudo-Einstein structures on CR manifolds, *Amer. J. Math.* **110** (1988), 157–178.

[15] Seshadri N., Volume renormalization for complete Einstein–Kähler metrics, *Differential Geom. Appl.* **25** (2007), 356–379, math.DG/0404455.