Observation of persistent centrosymmetry in the hexagonal manganite family

Yu Kumagai,1,∗ Alexei A. Belik,2 Martin Lilienblum,1 Naëmi Leo,1 Manfred Fiebig,1 and Nicola A. Spaldin1

1Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
2International Center for Materials Nanoarchitectonics (WPI-MANA), NIMS, Numaki 1-1, Ibaraki 305-0044, Japan

(Dated: July 20, 2012)

The controversy regarding the ferroelectric behavior of hexagonal InMnO3 is resolved by using a combination of x-ray diffraction (XRD), piezoresponse force microscopy (PFM), second harmonic generation (SHG), and density functional theory (DFT). While XRD data show a symmetry-lowering unit-cell tripling, which is also found in the multiferroic hexagonal manganites of P63cm symmetry, PFM and SHG do not detect ferroelectricity at ambient or low temperature, in striking contrast to the behavior in the multiferroic counterparts. We propose instead a centrosymmetric P3̅3c phase as the ground state structure. Our DFT calculations reveal that the relative energy of the ferroelectric and nonferroelectric structures is determined by a competition between electrostatics and oxygen-R-site covalency, with an absence of covalency favoring the ferroelectric phase.

I. INTRODUCTION: STRUCTURE OF THE HEXAGONAL MANGANITES

Hexagonal h-RMnO3 (R = Sc, Y, Dy–Lu) represents an established class of multiferroics in which ferroelectricity and antiferromagnetism exist simultaneously. Although their fundamental properties have been investigated for half a century, recent reports of intriguing characteristics such as interlocked antiphase (AP) and ferroelectric (FE) (AP+FE) domain walls[11] are fueling continued interest. At the root of these behaviors is their unusual improper geometric ferroelectricity,[2] which is in turn related to their layered structure, in which xy planes of R3+ ions are interspaced by layers of corner-shared MnO5 trigonal polyhedra (Fig. 1).

InMnO3 crystallizes in the same hexagonal manganite structure as the h-RMnO3 compounds, and might be expected to show analogous ferroelectric behavior. In fact, most previous x-ray and neutron powder diffraction refinements assigned InMnO3 to the polar P63cm structure adopted by the multiferroic hexagonal manganites.[3] In the P63cm structure, the MnO5 trigonal bipyramids tilt and trimerize with a trimerization phase of n × 60°, where n is an integer. The R ions on the 2a sites displace up or down along the z direction, depending on the tilting direction, and those on the 4b sites in the opposite direction (Fig. 1). This tilt symmetry then enables an additional displacement of the R sublattice relative to the Mn-O layers causing a net ferroelectric polarization. Rusakov and Belik et al. pointed out that the nonpolar P3̅3c structure – in which the MnO5 polyhedra trimerize at intermediate angles and the inversion symmetry is retained (Fig. 1) – and polar P63cm structure have similar powder x-ray-diffraction R values.[4] They disregarded the P3̅3c model in their subsequent analysis, however, believing that all h-RMnO3 compounds should be polar. Indeed, ferroelectricity has been reported in InMnO3 below 500 K based on the observation of polarization-electric field (P-E) hysteresis loops obtained by a ferroelectric test system. Such pyroelectric current measurements, especially if they are applied to amorphous samples or thin films, are notoriously sensitive to sample defects, however, and the P-E loops shown in Ref. [10] could indicate leaky dielectric behavior rather than ferroelectricity.[11] In agreement with this, Belik et al. did not observe spontaneous polarization when they repeated the experiment.[12] Therefore there is no clear evidence to date that InMnO3 has the P63cm structure or shows ferroelectric polarization.

In this study, we revisit the structure and polarization behavior of InMnO3 by using a combination of x-ray diffraction (XRD), piezoresponse force microscopy (PFM), optical second harmonic generation (SHG), and density functional theory (DFT) and show that InMnO3 is indeed centrosymmetric, with P3̅3c as the most likely space group (Fig. 1). We explain the difference between InMnO3 and the multiferroic h-RMnO3 compounds using DFT analysis of the chemical bonding, and propose another candidate material TMnO3 that should also show the nonferroelectric InMnO3 structure. Finally, we discuss the implications of this newly-identified structure for the multiferroicity in the h-RMnO3 family in general.

II. EXPERIMENTS

A. XRD

First we use powder XRD to directly and quantitatively compare the refinements for the candidate polar and nonpolar structures. For sample preparation, a stoichiometric mixture of In2O3 (99.9%) and Mn2O3 was placed in Au capsules and treated at 6 GPa in a belt-type high pressure apparatus at 1373 K for 30 min (heating rate 110 K/min). After heat treatment, the samples were quenched to room temperature, and the pressure was slowly released. The resultant samples were black dense pellets. Single-phase Mn2O3 was prepared from commercial MnO2 (99.99%) by heating in air at 923 K for 24 h. The synchrotron XRD data were obtained on powdered samples at the BL02B2 beamline of SPring-8. They were collected in a 2θ range from 2° to 75° with a step interval of 0.01 degrees and analyzed by the Rietveld method with RIETAN-2000.[13]

An evaluation of the XRD data shown in Fig. 2 clearly reveals that the unit cell of InMnO3 holds six formula units. This indicates a deviation of the P63/mmc high-temperature phase due to unit-cell tripling with tilt-shear motions of the MnO5 bipyramids as in the ferroelectric R3̅MnO3 compounds.
The centrosymmetric and the noncentrosymmetric subgroups with the highest possible symmetry that are compatible with a trimerization of the \(P6_3/mmc \) high-temperature phase are \(P6_3/mcm \) and \(P6_3/cm \), respectively. Here refinements clearly favor the latter structure which may contribute to former claims of the \(P6_3/cm \) symmetry for InMnO\(_3\). However, in contrast to the case of the ferroelectric manganites, the structure refinements of the XRD data reveals equally good fits for the centrosymmetric space group \(P\bar{3}c \) and the noncentrosymmetric space group \(P6_3/cm \), consistent with a previous observation\(^{[1]}\). In Table I we report our refined atomic co-

![FIG. 1: (a) Side and (b) top views of the two candidate InMnO\(_3\) structures. \(P6_3/cm \) is the ferroelectric phase of the h-RMnO\(_3\) compounds; \(P\bar{3}c \) is the structure proposed for InMnO\(_3\) in this study. Arrows indicate the displacements from the high symmetry \(P6_3/mmc \) phase. The primitive unit cell is shaded grey. In contrast with the \(P6_3/cm \) phase, one In in the \(P\bar{3}c \) unit cell remains at the high-symmetry \(2\bar{3}c \) site, retaining the inversion symmetry. Note also the different tilt patterns of the MnO\(_5\) polyhedra toward or around corner \(R \) ions. (c) Top views of \(\alpha^+ \) and \(\beta^- \) domains in the \(P6_3/cm \) phase using the notation from Ref.\(^{[1]}\) and one of six domains in the \(P\bar{3}c \) phase. The phases \(\Phi \), defined by the (counter)clockwise angle of tilting direction of upper (lower) oxygen layers relative to \(\alpha^+ \) domain, are also shown (Ref.\(^{[1]}\)). Note that the \(P\bar{3}c \) phase has a tilt phase of \(30^\circ +n \cdot 60^\circ \), and is obtained by averaging the tilt patterns and \(R \)-ion displacements of two \(P6_3/cm \) trimerization domains with different origins and orientations such as the \(\alpha^+ \) and \(\beta^- \) domains.

![FIG. 2: Synchrotron x-ray powder diffraction patterns of InMnO\(_3\) at 293 K. Crosses represent data points and solid lines calculated intensities for \(P\bar{3}c \). Differences for three structure models are also shown. Bragg reflections are indicated by tick marks (these are the same for \(P6_3/cm \), \(P\bar{3}c \), and \(P6_3/mcm \) models). The lower tick marks indicate reflections from InO\(_3\) impurity. Arrows show reflections corresponding to unit-cell tripling.

\(\alpha^+ \)	\(\beta^- \)	\(P\bar{3}c \)
\(\Phi=0^\circ \)	\(\Phi=60^\circ \)	\(\Phi=30^\circ \)

\begin{table}[h]
\centering
\begin{tabular}{lcccc}
Atom & Wyckoff position & \(x \) & \(y \) & \(z \) & \(B_{iso} \) (Å\(^2\)) \\
\hline
In1 & 4d & 1/3 & 2/3 & 0.51674(8) & 0.46(3) \\
In2 & 2b & 0 & 0 & 0 & 1.28(8) \\
Mn & 6f & 0.6587(10) & 0 & 1/4 & 0.36(2) \\
O1 & 2a & 0 & 0 & 1/4 & 0.9(4) \\
O2 & 4d & 1/3 & 2/3 & 0.7312(7) & 0.26(15) \\
O3 & 12g & 0.6829(25) & 0.0241(10) & 0.0858(2) & 0.77(8) \\
\end{tabular}
\caption{Atomic fractional coordinates for InMnO\(_3\) at 293 K in space group \(P\bar{3}c \) (top) and \(P6_3/cm \) (bottom), obtained in this work using powder XRD. Our measured lattice constants \(a \) and \(c \) are 5.88462(10) and 11.48540(15) Å for \(P\bar{3}c \) and 5.88463(7) and 11.48541(12) Å for \(P6_3/cm \), respectively.}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{lcccc}
Atom & Wyckoff position & \(x \) & \(y \) & \(z \) & \(B_{iso} \) (Å\(^2\)) \\
\hline
In1 & 2a & 0 & 0 & 0.2674(6) & 0.33(6) \\
In2 & 4b & 1/3 & 2/3 & 0.2383(5) & 0.92(4) \\
Mn & 6c & 0.3250(10) & 0 & 0 & 0.37(3) \\
O1 & 6c & 0.3117(22) & 0 & 1/4 & 1.5(3) \\
O2 & 6c & 0.6466(18) & 0 & 1/4 & 0.4(2) \\
O3 & 2a & 0 & 0 & 0.4746(20) & 0.7(3) \\
O4 & 4b & 1/3 & 2/3 & 0.0077(20) & 0.7(3) \\
\end{tabular}
\caption{Atomic fractional coordinates for InMnO\(_3\) at 293 K in space group \(P6_3/cm \).}
\end{table}
ordinates and lattice parameters within the $P\overline{3}c$ and $P6_3cm$ space groups. In general, structures refined with the correct space group are lower in energy than those refined with incorrect space groups. Our DFT calculations for InMnO$_3$ at the atomic positions and cell parameters obtained in the two competing best-fit experimental refinements (calculation details given later) indicate that the nonpolar $P\overline{3}c$ structure is ~200 meV per formula unit (f.u.) lower in energy than the $P6_3cm$ structure. We therefore suggest the nonferroelectric $P\overline{3}c$ phase as the ground state for InMnO$_3$.

B. PFM

To confirm this suggestion, we next used PFM to probe directly for the presence of FE domains; this technique avoids ambiguities caused by sample leakiness which might have occurred in previous macroscopic polarization measurements. In order to calibrate the response from InMnO$_3$, PFM and simultaneous scanning force microscopy (SFM) measurements with a commercial SFM (Solaris, NT-MDT) were carried out on YMnO$_3$ and InMnO$_3$. All compounds for PFM and SHG measurements were grown by the flux method as z-oriented platelets. For PFM an ac-voltage of 14 V$_{pp}$ at a frequency of 40 kHz was applied to a conductive Pt-Ir coated probe (NSC 35, Mikromasch). The out-of-plane component of the piezoelectric response was recorded by the in-phase output channel of an external lock-in amplifier (SR830, Stanford Research) with a typical sensitivity of 200 μV and time constant of 10 ms. The PFM signal of each sample was normalized to a response of the $P\overline{3}c$ structure is 4.8 μC/cm2 which would certainly be detectable. The absence of ferroelectricity (or of sub-resolution domains) in InMnO$_3$ is further supported by poling experiments with the SFM tip which did not induce any lasting change of the PFM response.

C. SHG

Since PFM measurements could only be done under ambient conditions, we next used SHG to search for ferroelectric order at low temperature. As discussed in detail in Ref. [19] the breaking of inversion symmetry by ferroelectric order leads to a characteristic SHG signal. The samples were mounted in a liquid-helium-operated cryostat and probed with 120 fs laser pulses in a standard transmission setup for SHG. For comparison, ErMnO$_3$ was chosen for the SHG data because, unlike YMnO$_3$, it has the same magnetic SHG spectrum as InMnO$_3$. Figure 4 shows the anisotropy of the SHG signal taken under identical conditions at 5 K on ferroelectric ErMnO$_3$ and on InMnO$_3$. The laser light was incident under 45° to the hexagonal crystal axes so that SHG components coupling to a spontaneous polarization along c could be excited. ErMnO$_3$ shows the double lobe characteristic of the ferroelectric order. In InMnO$_3$ the double lobe is absent. Instead a SHG signal with the sixfold anisotropy characteristic of the antiferromagnetic order and 150 times weaker intensity is found, indicating that the only order parameter is the antiferromagnetism of the Mn$^{3+}$ ions. We therefore conclude that
InMnO$_3$ is not ferroelectric down to 5 K.

III. THEORY

To resolve the origin of the difference between InMnO$_3$ and the other hexagonal manganite h-RMnO$_3$ compounds, we used DFT calculations to evaluate the energy difference, $\Delta E_{\text{str}} = E_{P3c} - E_{P6_3cm}$, between the candidate $P6_3cm$ and $P3c$ phases. Our spin-polarized first principles calculations were performed using the projector augmented-wave (PAW) method as implemented in vasp. In this study, Sc 3s, 3p, 3d, and 4s, Y 4s, 4p, 4d, and 5s, In 5s and 5p, Lu 5p, 5d, and 6s, Tl 6s and 6p, Mn 3d and 4s, and O 2s and 2p were described as valence electrons. The PAW data set with radial cutoffs of 1.3, 1.4, 1.6, 1.7, 1.2, and 0.8 Å, respectively, for Sc, Y, In, Lu, Tl, Mn, and O was employed. The local density of states was also evaluated within the same spheres. Wave functions were expanded with plane waves up to an energy cutoff of 500 eV. All calculations were performed with 30-atom cells, which can describe unit cells of $P6_3cm$ and $P3c$ phases. k-points were sampled with a Γ-centered 4×4×2 grid. In addition to InMnO$_3$, we also calculated ΔE_{str} for ScMnO$_3$, LuMnO$_3$, and YMnO$_3$, as well as for as-yet-unsynthesized TlMnO$_3$. To validate the results, we adopted four different exchange-correlation (XC) functionals: local density approximation (LDA), generalized gradient approximation (GGA), LDA+U, and GGA+U with the value for $U_{\text{eff}} = U - J$ on the Mn-3d orbitals set to 4 eV. In addition we tested two different spin configurations, so-called frustrated antiferromagnetic (FAFM) and the noncollinear antiferromagnetic (NCAFM) adopted in Ref. 27. The lattice constants and internal positions were fully optimized in each case until the residual stresses and forces converged to less than 0.1 GPa and 0.01 eV/Å respectively.

Figure 5 shows our calculated ΔE_{str} values for the various functionals and magnetic configurations. A positive ΔE_{str} indicates that the ferroelectric structure is stable. When the R site is occupied with a IIIb (Sc, Y, or Lu) ion, the $P6_3cm$ phase is more stable than the $P3c$ phase consistent with the experimentally observed ferroelectricity. However, in the case of a IIIa (In or Tl) ion, ΔE_{str} is close to zero. Note that in these calculations the lattice parameters and ionic positions for both structures were fully relaxed, within the constraint of the appropriate symmetry. [When we previously constrained our atomic positions and cell parameters to those obtained from the XRD analysis, the energy of the $P3c$ phase is much lower (~200 meV/f.u.) than that of the $P6_3cm$ phase as we reported in Sec. II A. We note that ΔE_{str} is quite insensitive to the magnetic configuration, but does show a dependence on the choice of XC functional, and for InMnO$_3$, the sign of ΔE_{str} depends on the functional, suggesting the possibility of competing low energy structures [28]. Pre-calculations of the energy difference between $P6_3cm$ and $P3c$ structures for InMnO$_3$ derived from XRD data (Sec. II A) and the polarization for InMnO$_3$ with the $P6_3cm$ symmetry (Sec. II B), and subsequent calculations use the GGA+U and FAFM configuration.]

It is clear from Fig. 5 that R_R is not the key factor in determining the phase stability. Instead we focus on the different chemistry of the group IIIa ions, compared to the group...
IIb ions. It was previously suggested that the behavior of InMnO$_3$ is dominated by high-lying occupied semicore 4d (In) electrons22 in contrast the valence d states are formally unoccupied in the IIb ions. In fact it is well known that the presence or absence of semicore d electrons can affect the structural stability as illustrated by the different structures of MgO (rock salt) and ZnO (wurtzite, with semicore ds) in which the cations have very similar ionic radii ($r_{\text{MgO}} = 0.57$ Å and $r_{\text{ZnO}} = 0.60$ Å in four-coordination and $r_{\text{MgO}} = 0.72$ Å and $r_{\text{ZnO}} = 0.74$ Å in six-coordination).

In Fig. 6(a) we show our calculated densities of states (DOS) for InMnO$_3$ and YMnO$_3$ (TlMnO$_3$, and ScMnO$_3$/LuMnO$_3$ behave analogously to InMnO$_3$ and YMnO$_3$, respectively), both calculated within the $P\bar{3}c$ phase to allow a direct comparison. In both cases, the valence bands consist mainly of Mn-d (up-spin e_{1g} and e_{2g}) and O-$2p$ states. The main differences occur in the DOSs on the R ions. The In “semicore” 4d states, however, form a narrow band that is around -13 eV below the top of the valence band when the d electrons are treated as valence (not shown). They do not directly contribute to covalent bonding with the oxygen anions, in contrast to the suggestion in Ref. 27. The relevant difference is the substantially lower energy of the formally unoccupied R 5s and 5p states in In compared with Y, caused by the well-known increase in nuclear charge without corresponding increase in screening across the 4d series. As a result, in InMnO$_3$, the 5s (and to a lesser extent 5p) states, which would be completely empty in the ionic limit, develop significant occupation through In-O2p covalency, with occupied In 5s states in fact forming the bottom of the valence band. (Similar behavior has been previously reported in other In oxides.23,24) In YMnO$_3$, the Y 5s and 5p states are substantially higher in energy relative to the top of the valence band and so their hybridization with O 2p and subsequent occupation is negligible. Instead there is a small hybridization with the formally empty Y 4d states.

The difference in covalency between InMnO$_3$ and YMnO$_3$ manifests particularly strikingly in the calculated valence charge densities at the R sites. In Fig. 7 we show the valence charge density differences between LuMnO$_3$ and YMnO$_3$ and between InMnO$_3$ and YMnO$_3$ in the $P\bar{3}c$ structure. The charge density at the Mn sites is similar in all cases. Compared with YMnO$_3$ and LuMnO$_3$, however, InMnO$_3$, has a decrease in charge density at the O sites adjacent to the In ions and an increase at the outer region of the In site indicating charge transfer from oxygen to In and stronger In-O than Y-O or Lu-O covalent bond formation.

Next we investigate how the additional covalency of the In-O and Tl-O bonds compared with those of Y-O and related compounds manifest in the spring constants. Our calculated z-direction spring constants of the R ions at the high-symmetry 2b sites in the $P\bar{3}c$ structure are 2.7, 3.2, and 3.1 eV/Å2 for ScMnO$_3$, LuMnO$_3$, and YMnO$_3$, and are 4.4 and 4.2 eV/Å2 for InMnO$_3$ and TlMnO$_3$. As expected, the strong In-O and Tl-O hybridization results in larger spring constants in the In and Tl compounds. The larger spring constants make the In and Tl ions reluctant to shift from their high-symmetry sites, favoring instead equal R-O$_{2p}$ bond distances. This in turn favors the $P\bar{3}c$ structure, in which $\frac{1}{2}$ of the R ions retain their fully 6-coordinated high-symmetry positions, over the ferroelectric $P6_3cm$ phase, in which all R ions are displaced from the high-symmetry positions.

We emphasize that the behavior here in which stronger covalency favors the nonferroelectric phase is completely different from that in conventional ferroelectrics such as BaTiO$_3$, in which stronger covalency favors the ferroelectric distortion through the second-order Jahn-Teller effect. In such conventional ferroelectrics, the Born effective charges $Z' = \frac{q^2}{\partial}$ which participate actively in the re-hybridization are anomalously larger than the formal ionic charges, reflecting the charge transfer that takes place during the ionic displacements to the ferroelectric phase; such anomalous Born effective charges are signatures of instability toward a ferroelectric phase transition.28 In both InMnO$_3$ and YMnO$_3$, the mechanism for the primary symmetry-lowering tilt distortion is geometric rather than due to a rehybridization, and the Born effective charges on all atoms are nonanomalous.29 In InMnO$_3$, the additional strong In-O covalency in the paraelectric phase resists the distortion of the In ions away from their high-symmetry positions favoring the $P\bar{3}c$ space group, whereas the lower Y-O covalency provides less resistance, allowing the additional Y-O displacements required to reach the $P6_3cm$ symmetry. In Ref.33 the hybridization between the Y-3d and O-2p orbitals was measured using polarization-dependent x-ray absorption spectroscopy (XAS) at the O K-edge. Then the static charge occupancy in the Y 3d orbitals was equated with an anomalous dynamical Born effective charge, which led to the claim that this hybridization is responsible for the ferroelectricity in YMnO$_3$. It is important to understand that the Born effective charge is the derivative of the polarization with
respect to ionic displacements, and is unrelated to the static orbital occupancy in a single structure: Partial hybridization of Y 3d with O 2p, while clearly present both in the experiments and in earlier and subsequent first-principles calculations, is not indicative of an anomalous Born effective charge and therefore does not indicate tendency toward ferroelectricity.

Experimentally, it is known that InMnO₃ has an anomalously large c lattice constant compared to the multiferroic hexagonal manganites⁸ In Fig. 8 we plot our calculated lattice constants (with experimental values where available for comparison) of the manganites series as a function of ionic radii Rₐ. We point out first that this is not a consequence of the different space group that we have established here; our density functional calculations yield similar lattice constants for InMnO₃ in the P₆₃cm and P₃c phases. The calculated lattice constants are systematically overestimated compared with experiments as is typical of the GGA. We see that the in-plane lattice constants, a, increase monotonically with Rₐ, with InMnO₃ showing only a small calculated anomaly. In contrast, the c lattice constant of InMnO₃ deviates strongly from the trend shown by the IIIb manganites, both in our calculations and in experiment. Since this deviation is also identified in TiMnO₃, the anomalously large c likely originates from covalency in IIIa manganites as shown in Fig. 7.

IV. DISCUSSION

Although the centrosymmetric P₆₃cm phase that we propose in this work for InMnO₃ may be seemingly less attractive compared with the ferroelectric P₆₃cm structure, our results have implications for the multiferroic hexagonal manganites as a whole. Since the tilt pattern of the YMnO₃ structure subsequently allows for the development of ferroelectricity, whereas that of the InMnO₃ structure does not, the subtle chemical bonding differences identified here that favor one tilt pattern over another in turn determine whether the resulting structure can be multiferroic. Specifically, we have discussed here that an absence of R-O hybridization is required to favor the YMnO₃ tilt pattern over the InMnO₃ tilt pattern; an absence of R-O hybridization is therefore a requirement for ferroelectricity in the hexagonal manganites. Earlier theoretical papers correctly noted the electrostatic origin of the “geometric ferroelectricity” mechanism in the hexagonal manganites⁹ we now understand that the relative stability of ferroelectric and nonferroelectric structures is determined by a competition between electrostatics (favoring the ferroelectric phase) and covalency (favoring the nonferroelectric phase).

In addition, since the polar P₆₃cm and nonpolar P₃c phases are close in energy in InMnO₃ as shown in Fig. 5 it might be expected that their relative stability could be changed using external perturbations such as epitaxial strain. Figure 9 shows the calculated energies of the P₆₃cm and P₃c phases and their energy differences as a function of in-plane lattice constant a, with the out-of-plane lattice constant c and internal positions fully relaxed for each a value. Because the critical strain of the phase boundary depends on the U value, we performed the calculations using both the GGA and GGA+U methods. We see that the ΔEₘₐₓ increases with the increasing in-plane lattice constant, indicating a larger in-plane lattice constant could develop the polar P₆₃cm. Interestingly, the ferroelectric polarization develops in the out-of-plane direction, in striking contrast to the behavior in perovskites⁶ Therefore we anticipate that InMnO₃ could be tuned into the polar P₆₃cm structure using tensile strain.

Finally we mention that a recent transmission electron microscopy study of the domain walls in ferroelectric hexagonal TmMnO₃ and LuMnO₃ revealed that a domain wall structure at the edges of the sample is similar to the nonpolar P₃c InMnO₃ structure: The R ion at the wall is at the centrosymmetric position, with one neighbor displaced in the up-direction and one in the down-direction. Detailed calculations...
of the domain-wall structure in $RMnO_3$ are ongoing.

V. CONCLUSION

In summary, we have proposed a different nonferroelectric ground state structure in the hexagonal manganite InMnO$_3$, and we predict its occurrence in as-yet-unsynthesized hexagonal TlMnO$_3$. The proposed phase has $P\overline{3}c$ symmetry, and is closely related to the usual $P6_3cm$ ferroelectric ground state but with a different pattern of polyhedral tilts that retains the center of inversion. The energy balance between the two related phases is determined by a competition between electrostatics and R-O covalency, with lower R-O covalency favoring the ferroelectric structure. Thus, the absence of ferroelectricity in InMnO$_3$ reveals to us the reason for the presence of ferroelectricity (and therefore multiferroicity) in the other h-$RMnO_3$ compounds.

Acknowledgments

We thank M. Bieringer, Department of Chemistry, University of Manitoba for providing the InMnO$_3$ single crystals. Y.K. acknowledges support by JSPS Postdoctoral Fellowships for Research Abroad. Y.K., M.L., N.L., M.F., and N.A.S. acknowledge support from ETH Zurich, and A.A.B. acknowledges support from MANA WPI Initiative (MEXT, Japan), FIRST Program (JSPS), and JSPS Grant No. 22246083. The SXRD was performed under Proposals No. 2009A1136 and No. 2010A1215. The visualization of crystal structures and charge density differences were performed with VESTA. [13]

[1] T. Choi, Y. Hong, H. Yi, Y. Choi, W. Wu, and S.-W. Cheong, Nature Mater. 9, 253 (2010).
[2] T. Jungk, A. Hoffmann, M. Fiebig, and E. Soergel, Appl. Phys. Lett. 97, 012904 (2010).
[3] A. A. Belik, S. Kamba, M. Savinov, D. Nuzhnyy, M. Tachibana, J. E. Greedan, M. Bieringer, J. F. Britten, D. M. Giaquinta, and C. J. Fennie and K. M. Rabe, Phys. Rev. B 79, 054411 (2009).
[4] B. Van Aken, T. Palstra, I. Filippetti, and N. Spaldin, Nature Mater. 3, 164 (2004).
[5] C. J. Fennie and K. M. Rabe, Phys. Rev. B 72, 100103 (2005).
[6] J. E. Greenan, M. Bieringer, J. F. Britten, D. M. Giaquinta, and H. C. zur Loye, J. Solid State Chem. 116, 118 (1995).
[7] A. A. Belik, S. Kamba, M. Savinov, D. Nuzhnyy, M. Tachibana, E. Takayama-Muromachi, and V. Goian, Phys. Rev. B 79, 054411 (2009).
[8] X. Fabrèges, I. Mirebeau, S. Petit, P. Bonville, and A. A. Belik, Phys. Rev. B 84, 054455 (2011).
[9] D. A. Rusakov, A. A. Belik, S. Kamba, M. Savinov, D. Nuzhnyy, T. Kolodjzhanvi, K. Yamaura, E. Takayama-Muromachi, F. Borodavka, and J. Kroupa, Inorg. Chem. 50, 3559 (2011).
[10] C. R. Serrao, S. B. Krupanidhi, J. Bhattacharjee, U. V. Waghmare, A. K. Kundu, and C. N. R. Rao, J. Appl. Phys. 100, 076104 (2006).
[11] J. F. Scott, J. Phys.: Condens. Matter 20, 021001 (2008).
[12] E. Nishibori, M. Takata, K. Kato, M. Sakata, Y. Kubota, S. Aoyagi, Y. Kuroiwa, M. Yamakata, and N. M. Ikeda, Nucl. Instrum. Methods Phys. Res. Sect. A 467, 1045 (2001).
[13] F. Izuimi and T. Ikeda, Mater. Sci. Forum 198, 321 (2000).
[14] The R values for nonpolar $P\overline{3}c$ are $R_{wp}=6.61\%$, $R_e=4.90\%$, $R_l=2.48\%$, and $R_p=1.39\%$. Those for polar $P6_3cm$ phase are $R_{wp}=6.64\%$, $R_e=4.94\%$, $R_l=2.36\%$, and $R_p=1.33\%$. Those for nonpolar $P6_3/mcm$ are $R_{wp}=12.94\%$, $R_e=8.90\%$, $R_l=6.08\%$, and $R_p=3.34\%$.
[15] H. L. Yakel, W. C. Koehler, E. F. Bertaut, and E. F. Forrat, Acta Cryst. 16, 957 (1963).
[16] Although the $P\overline{3}c$ space group belongs to the trigonal group, in this study we use the term “hexagonal manganite” for simplicity to describe the structure class with $P\overline{3}c$ and $P6_3cm$ space groups for simplicity.
[17] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
[18] R. Birss, Symmetry and Magnetism (North-Holland, Amsterdam, 1966).
[19] M. Fiebig, V. Pavlov, and R. Pisarev, J. Opt. Soc. Am. B 22, 96 (2005).
[20] R. D. Shannon, Acta Cryst. A32, 751 (1976).
[21] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[22] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[23] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 13968 (1981).
[24] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
[25] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
[26] J. Medvedeva, O. Mryasov, M. Korotin, V. Anisimov, and A. Free

[27] M.-A. Oak, J.-H. Lee, H. M. Jang, J. S. Goh, H. J. Choi, and J. F. Scott, Phys. Rev. Lett. 106, 047601 (2011).
[28] We also performed calculations with the HSE06 hybrid functional (Ref. [59] that is known to describe the electronic structure for 3d transition metal compounds more precisely (Ref. [40] and [41]). The calculated energy differences with FAFM configuration and $3\times 3\times 2$ k-points are 0.6 meV/f.u. for InMnO$_3$ and 19.9 meV/f.u. for YMnO$_3$, both of which are similar to the results in Fig. [5].
[29] Y. Zhang and Y. Wang, J. Electr. Mat. 40, 1501 (2011).
[30] O. N. Mryasov and A. J. Freeman, Phys. Rev. B 64, 233111 (2001).
[31] P. Ghosez, J.-P. Michenaud, and X. Gonze, Phys. Rev. B 58, 6228 (1998).
[32] We calculated Z_p^R by displacing R cations in $P6_3/mmc$ in the z-direction. The obtained Z_p^R for InMnO$_3$ and YMnO$_3$ are 3.8[e] and 4.1[e]. They are slightly higher than the formal charges, 3[e], but smaller than the Z’s on d^8 cations in perovskites such as BaTiO$_3$ ($Z_p^R = 7.3$ [e]) (Ref. [31]).
[33] D.-Y. Cho, J.-Y. Kim, B.-G. Park, K.-J. Rho, J.-H. Park, H.-J. Noh, B. Kim, S.-J. Oh, H.-M. Park, J.-S. Ahn, et al., Phys. Rev. Lett. 98, 217601 (2007).
[34] M. Bieringer and J. Greedan, J. Solid State Chem. 143, 132 (1999).
[35] A. S. Gibbs, K. S. Knight, and P. Lightfoot, Phys. Rev. B 83, 094111 (2011).
[36] O. Diéguez, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 72, 144101 (2005).
[37] Q. H. Zhang, L. J. Wang, X. K. Wei, R. C. Yu, L. Gu, A. Hirata,
M. W. Chen, C. Q. Jin, Y. Yao, Y. G. Wang, et al., Phys. Rev. B 85, 020102 (2012).
38 K. Momma and F. Izumi, J. Appl. Cryst. 41, 653 (2008).
39 J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
40 Y. Kumagai, Y. Soda, F. Oba, A. Seko, and I. Tanaka, Phys. Rev. B 85, 033203 (2012).
41 H. Akamatsu, Y. Kumagai, F. Oba, K. Fujita, H. Murakami, K. Tanaka, and I. Tanaka, Phys. Rev. B 83, 214421 (2011).
42 H. Akamatsu, K. Fujita, H. Hayashi, T. Kawamoto, Y. Kumagai, Y. Zong, K. Iwata, F. Oba, I. Tanaka, and K. Tanaka, Inorg. Chem. 51, 4560 (2012).
43 A. Stroppa, M. Marsman, G. Kresse, and S. Picozzi, New J. Phys. 12, 093026 (2010).
44 J. Hong, A. Stroppa, J. Íñiguez, S. Picozzi, and D. Vanderbilt, Phys. Rev. B 85, 054417 (2012).