Vertices in all minimum paired-dominating sets of block graphs

Lei Chen\(^1\) Changhong Lu\(^2\†\) Zhenbing Zeng\(^1\)

\(^1\) Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, 200062, China
\(^2\) Department of Mathematics, East China Normal University, Shanghai, 200241, China

Abstract Let \(G = (V, E)\) be a simple graph without isolated vertices. A set \(S \subseteq V\) is a paired-dominating set if every vertex in \(V - S\) has at least one neighbor in \(S\) and the subgraph induced by \(S\) contains a perfect matching. In this paper, we present a linear-time algorithm to determine whether a given vertex in a block graph is contained in all its minimum paired-dominating sets.

Keywords: Algorithm; Block graph; Domination; Paired-domination; Tree.

2000 Mathematics Subject Classification: 05C69; 05C85; 68R10

1 Introduction

Let \(G = (V, E)\) be a simple graph without isolated vertices. The distance between \(u\) and \(v\) in \(G\), denoted by \(d_G(u, v)\), is the minimum length of a path between \(u\) and \(v\) in \(G\). For a vertex \(v \in V\), the neighborhood of \(v\) in \(G\) is defined as \(N_G(v) = \{u \in V \mid uv \in E\}\) and the closed neighborhood is defined as \(N_G[v] = N_G(v) \cup \{v\}\). The degree of \(v\), denoted by \(d_G(v)\), is defined as \(|N_G(v)|\). We use \(d(u, v)\) for \(d_G(u, v)\), \(N(v)\) for \(N_G(v)\), \(N[v]\) for \(N_G[v]\) and \(d(v)\) for \(d_G(v)\) if there is no ambiguity. For a subset \(S\) of \(V\), the subgraph of \(G\) induced by the vertices in \(S\) is denoted by \(G[S]\) and \(G - S\) denote the subgraph induced by \(V - S\). A matching in a graph \(G\) is a set of pairwise nonadjacent edges in \(G\). A perfect matching \(M\) in \(G\) is a matching such that every vertex of \(G\) is incident to an edge of \(M\). Some other notations and terminology not introduced in here can be found in [1].

*Supported in part by National Natural Science Foundation of China (Nos. 60673048 and 10471044) and Shanghai Leading Academic Discipline Project (No. B407).

†Corresponding author. E-mail: chlu@math.ecnu.edu.cn
Domination and its variations in graphs have been extensively studied \[2, 3\]. A set \(S \subseteq V\) is a paired-dominating set of \(G\), denoted PDS, if every vertex in \(V - S\) has at least one neighbor in \(S\) and the induced subgraph \(G[S]\) has a perfect matching \(M\). Two vertices joined by an edge of \(M\) are said to be paired in \(S\). The paired-domination number, denoted by \(\gamma_{pr}(G)\), is the minimum cardinality of a PDS. A paired-dominating set of cardinality \(\gamma_{pr}(G)\) is called a \(\gamma_{pr}(G)\)-set. The paired-domination was introduced by Haynes and Slater \[4, 5\]. There are many results on this problem \[6, 7, 8, 9, 10, 11\].

The study of characterizing vertices contained in all various kinds of minimum dominating set, such as dominating set, total dominating set and paired-dominating set, has received considerable attention (see \[12\], \[13\], \[14\]). Those results are all restricted in trees. In this paper, we will extend the result in \[14\] to block graphs, which contain trees as its subclass. In fact, we give a linear-time algorithm to determine whether a given vertex in a block graph is contained in all its minimum paired-dominating sets. If changing the pruning rules and judgement rules in our algorithm, our method is also available to determine whether a given vertex is contained in all minimum (total) dominating sets of a block graph.

2 Pruning block graphs

Let \(G = (V, E)\) be a simple graph. A vertex \(v\) is a cut-vertex if deleting \(v\) and all edges incident to it increases the number of connected components. A block of \(G\) is a maximal connected subgraph of \(G\) without cut-vertices. A block graph is a connected graph whose blocks are complete graphs. If every block is \(K_2\), then it is a tree.

Let \(G = (V, E)\) be a block graph. As we know, every block graph not isomorphic to complete graph has at least two end blocks, which are blocks with only one cut-vertex. A vertex in \(G\) is a leaf if its degree is one. If a vertex is adjacent to a leaf, then we call it a support vertex.

Lemma 1 \[14\] Let \(T\) be a tree of order at least three. If \(u\) is a leaf in \(T\), then there exists a \(\gamma_{pr}(T)\)-set not containing \(u\).

For block graphs, we have the following generalized result. The proof is almost same as that of Lemma 1 so it is omitted.

Lemma 2 Let \(G\) be a block graph of order at least three. If \(u\) is not a cut-vertex of \(G\), then there exists a \(\gamma_{pr}(G)\)-set not containing \(u\).

If \(G\) is a block graph with order two, then every vertex is contained in the only minimum paired-dominating set. If \(G\) is a complete graph with order at least three, no vertex of \(G\) is contained in all minimum paired-dominating sets. Thus, in here, we assume that the block graph \(G\) with at least one cut-vertex. Let \(r\) be the given vertex in \(G\) and we want to determine
whether \(r \) is contained in every \(\gamma_{pr}(G) \)-set. By Lemma 2 it is enough to assume that \(r \) is a cut-vertex of \(G \).

Our idea is to prune the original graph \(G \) into a small block graph \(\tilde{G} \) such that the given vertex \(r \) is contained in all minimum paired-dominating sets of \(G \) if and only if it is contained in all minimum paired-dominating sets of \(\tilde{G} \). To do this, we first need a vertex ordering and follow this ordering we can prune the original graph. For a vertex \(v \in V(G) \) and a block \(B \), the distance of \(v \) and \(B \), denoted by \(d(v,B) \), is defined as the maximum of \(d(u,v) \) for \(u \in V(B) \). We say a block \(B \) is farthest from \(v \) if \(d(v,B) \) is maximum over all blocks. Note that \(B \) is an end block if \(B \) is farthest from \(r \). To find the vertex ordering, in here, we need to define a vertex ordering connected operation. Let \(S = x_1, x_2, \cdots, x_s \) be a vertex ordering and \(T = u_1, u_2, \cdots, u_t \) be another vertex ordering. We use \(S + T \) to denote a new vertex ordering \(x_1, x_2, \cdots, x_s, u_1, u_2, \cdots, u_t \). Beginning with a block farthest from \(r \) and working recursively inward, we can find a vertex order \(v_1, v_2, \cdots, v_n \) as follows.

Procedure VO

\(S = \emptyset \); (\(S \) is a vertex ordering.)

Let \(r \) be a cut-vertex of \(G \);

While \((G \neq \emptyset) \) do

If \((G \) is a complete graph) then

\[S = S + u_1, u_2, \cdots, u_a; \]
\[G = G - \{u_1, u_2, \cdots, u_a\}; \]

else

\[S = S + u_1, u_2, \cdots, u_b; \]
\[G = G - \{u_1, u_2, \cdots, u_b\}; \]

endif

dendo

Output \(S \).

Let \(v_1, v_2, \cdots, v_n = r \) be the vertex ordering of a block graph \(G \) which is obtained by procedure VO. We define the following notations:

(a) \(F_G(v_i) = v_j, j = \max \{k \mid v_i v_k \in E, k > i\} \). \(v_j \) is called the father of \(v_i \) and \(v_i \) is a child of \(v_j \). Obviously, \(v_j \) must be a cut-vertex in \(G \). We use \(F(v_i) \) for \(F_G(v_i) \) if there is no ambiguity.

(b) \(C_G(v_i) = \{v_j \mid F_G(v_j) = v_i\} \).

(c) For a block graph \(G \), we define a rooted tree \(T(G) \), whose vertex set is \(V(G) \), and \(uv \) is an edge of \(T(G) \) if and only if \(F_G(u) = v \). The root of \(T(G) \) is \(r \). Moreover let \(T_v \) be a subtree of \(T(G) \) rooted at \(v \). Every vertex in \(T_v \) except \(v \) is a descendant of \(v \). For a vertex \(v \in V(G) \), \(D_G(v) \) denotes the vertex set consisting of the descendants of \(v \) in \(T(G) \) and \(D_G[v] = D_G(v) \cup \{v\} \).
That is, $D_G[v] = V(T_v)$.

Except the vertex ordering, we also need a labeling function $l(v) : V \rightarrow \{\emptyset, r_1, r_2\}$ of each vertex v to help us to determine which vertices can be pruned. At first, $l(v) = \emptyset$ for every vertex $v \in V$.

The following procedure can prune a big block graph G into a small block graph \tilde{G} such that r is contained in all minimum paired-dominating sets of G if and only if r is contained in all minimum paired-dominating sets of \tilde{G}.

Procedure PRUNE. Prune a given block graph into a small block graph.

Input A block graph with at least one cut-vertex and a vertex ordering v_1, v_2, \ldots, v_n obtained by procedure VO. For every vertex v, $l(v) = \emptyset$.

Output A smaller block graph.

Method

\[S = \emptyset; \]
For $i = 1$ to $n - 1$ do
\begin{align*}
& \text{If } (v_i \not\in S) \text{ then } \\
& \quad \text{If } (l(v_i) = \emptyset \text{ and there is no child } v \text{ such that } l(v) = r_1 \text{ or } l(v) = r_2) \text{ then } \\
& \qquad l(F(v_i)) = r_1; \\
& \quad \text{else if } (v_i \text{ satisfies the conditions of Lemma 3 or Lemma 4 or Lemma 5}) \text{ then } \\
& \qquad G = G - D_G[v_i]; \\
& \quad \quad \text{If } (d(v_i) = 2 \text{ and } |V(B_1)| = |V(B_2)| = 2 \text{ and } C_G(F(v_i)) = \{v_i\}) \text{ then } \\
& \qquad \quad S = S \cup \{F(v_i)\}; \\
& \quad \quad \text{endif}
\end{align*}
else if $(v_i \text{ satisfies the conditions of Lemma 6})$ then
\begin{align*}
& \quad G = G - (D_G(v_i) - V(B')) \quad \text{where } B' \text{ is same as } B' \text{ in Lemma 6} \\
& \quad \text{else if } (v_i \text{ satisfies the conditions of Lemma 7 or Lemma 8}) \text{ then } \\
& \quad \quad G = G - (D_G(v_i) - D_G[u]), \text{ where } u \text{ is same as } u \text{ in Lemma 7 and Lemma 8} \\
& \quad \quad \quad l(v_i) = l(u) = r_2; \quad (*) \\
& \quad \quad \text{If } (d(v_i, r) = 2 \text{ and } |V(B_1)| = |V(B_2)| = 2 \text{ and } C_G(F(v_i)) = \{v_i\}) \text{ then } \\
& \quad \quad \quad \text{Where } B_1 \text{ and } B_2 \text{ are same as those in Lemma 8} \\
& \quad \quad \quad S = S \cup \{F(v_i)\}; \\
& \quad \quad \text{endif}
\end{align*}
\end{align*}
\text{endif}
\end{align*}
\text{endfor}

Output G.

4
Next, we will prove the correctness of procedure PRUNE. Let G_i be a subgraph of the original graph G after v_i is considered and $G_0 = G$. It is clear that G_i is a block graph for every $1 \leq i \leq n - 1$. We define that $C_i(v) = C_G(v) \cap V(G_i)$, $D_i(v) = D_G(v) \cap V(G_i)$ and $D_i[v] = D_G[v] \cap V(G_i)$ for $0 \leq i \leq n - 1$. Note that at the i-th loop, the pruning vertices, for example say $D_G[v_i]$, are $D_{i-1}[v_i]$ as G is updated at each step, i.e., $G = G_{i-1}$ at this time. It is enough to prove that r is contained in all $\gamma_{pr}(G_{i-1})$-set if and only if r is contained in all $\gamma_{pr}(G_i)$-set for $1 \leq i \leq n - 1$. If $G_i = G_{i-1}$ for some i, then it is obviously true. When v_i is considered, let $R_j = \{v \mid v \in V(G_{i-1}) \text{ and } l(v) = r_j\}$ for $j = 1, 2$.

Lemma 3 When v_i is a considering vertex such that $d(r, v_i) \geq 3$. If $l(v_i) = \emptyset$, $(R_1 \cup R_2) \cap C_{i-1}(v_i) \neq \emptyset$ and $G_{i-1}[R_1 \cap C_{i-1}(v_i)]$ has a perfect matching, then r is contained in all $\gamma_{pr}(G_{i-1})$-set if and only if r is contained in all $\gamma_{pr}(G_i)$-set, where $G_i = G_{i-1} - D_{i-1}[v_i]$.

Proof Let $D_1 = R_1 \cap C_{i-1}(v_i)$, $D_2 = R_2 \cap D_{i-1}(v_i)$ and $D = D_1 \cup D_2$. In details, $D_1 = \{u_1, u_2, \ldots, u_a\}$ and $D_2 = \{x_1, y_1, \ldots, x_b, y_b\}$, where $x_jy_j \in E$ and $F(y_j) = x_j$ for $1 \leq j \leq b$ for $1 \leq j \leq b$ (see the line indicated (*) in the procedure PRUNE.) Then we obtain the following claim.

Claim 1 $\gamma_{pr}(G_{i-1}) = \gamma_{pr}(G_i) + |D|$.

Proof Any $\gamma_{pr}(G_i)$-set can be extended to a PDS of G_{i-1} by adding D. Thus $\gamma_{pr}(G_{i-1}) \leq \gamma_{pr}(G_i) + |D|$. For converse, let S be a $\gamma_{pr}(G_{i-1})$-set. If $y_j \notin S$, then $|D_{i-1}(y_j) \cap S| \geq 2$ and $S - D_{i-1}(y_j) \cup \{y_j, z_j\}$, where z_j is a child of y_j, is also a $\gamma_{pr}(G_{i-1})$-set. Thus we may assume $y_j \in S$ and w_j be its paired vertex. If $x_j \notin S$, then $S - \{w_j\} \cup \{x_j\}$ is also a $\gamma_{pr}(G_{i-1})$-set. If $x_j \in S$ and $w_j \neq x_j$, let x'_j is the paired vertex of x_j. Then $x'_j = v_i$, otherwise $S - \{w_j, x'_j\}$ is a smaller PDS of G_{i-1}. It is a contradiction. If $N(v_i) \subseteq S$, then $S - \{v_i, w_j\}$ is a smaller PDS of G_{i-1}. Thus there is a neighbor v'_i of v_i such that $v'_i \notin S$. In this case, $S - CC \cup \{v_i, v'_i\}$ is also a $\gamma_{pr}(G_{i-1})$-set. Therefore, we may assume that $D_2 \subseteq S$ and every vertex in D_2 is paired with another vertex in D_2.

With the similar argument, we may assume that $D_1 \subseteq S$. Let u'_j is the paired vertex of u_j and $CC = \{u'_j \mid u'_j \notin D_1\}$. If $CC = \emptyset$, then we do nothing. If $CC \neq \emptyset$ and $v_i \notin CC$, then $S - CC$ is a smaller PDS of G_{i-1}, a contradiction. Thus we assume $v_i \in CC$ and it is paired with u_1. Since $G_{i-1}[D_1]$ has a perfect matching, there must be a vertex in D_1, say u_2, such that $u_2 \in CC$. If $N(v_i) \subseteq S$, then $S - \{u_2, v_i\}$ is a smaller PDS of G_{i-1}. Thus there exists a neighbor v'_i of v_i such that $v'_i \notin S$. In this case, $S - CC \cup \{v_i, v'_i\}$ is a $\gamma_{pr}(G_{i-1})$-set. Up to now, we may assume that $D \subseteq S$ and every vertex in D is paired with another vertex in D.

If $v_i \notin S$, then $S - D$ is a PDS of G_i. Thus $\gamma_{pr}(G_i) \leq |S| - |D| = \gamma_{pr}(G_{i-1}) - |D|$. Therefore $\gamma_{pr}(G_{i-1}) = \gamma_{pr}(G_i) + |D|$. If $v_i \in S$, let v'_i be its paired vertex. If $v'_i \in C_{i-1}(v_i)$, then there exists a neighbor v''_i of v_i such that $v''_i \notin S \cup C_{i-1}(v_i)$. Otherwise $S - \{v_i, v'_i\}$ is a smaller PDS of
Thus $S - \{v'_i\} \cup \{v''_i\}$ is a $\gamma_{pr}(G_{i-1})$-set. So we assume that $v'_i \not\in C_{i-1}(v_i)$. If $N(v'_i) \subseteq S$, then $S - \{v_i, v'_i\}$ is a smaller PDS of G_{i-1}. Thus there is a neighbor v''_i of v'_i such that $v''_i \not\in S$, in this case, $S - \{v_i\} \cup \{v''_i\}$ is a $\gamma_{pr}(G_{i-1})$-set not containing v_i. We may assume S is such a $\gamma_{pr}(G_{i-1})$-set. Then $S - D$ is a PDS of G_i. Thus $\gamma_{pr}(G_i) \leq \vert S \vert - \vert D \vert = \gamma_{pr}(G_{i-1}) - \vert D \vert$. Therefore $\gamma_{pr}(G_{i-1}) = \gamma_{pr}(G_i) + \vert D \vert$. □

If there is a $\gamma_{pr}(G_i)$-set S' such that $r \not\in S'$, then let $S = S' \cup D$. By Claim 1 S is a $\gamma_{pr}(G_{i-1})$-set and $r \not\in S$. Therefore, if r is contained in all $\gamma_{pr}(G_{i-1})$-set, then r is contained in all $\gamma_{pr}(G_i)$-set.

For converse, let S be an arbitrary $\gamma_{pr}(G_{i-1})$-set and $PD = S \cap D_{i-1}[v_i]$.

Claim 2 $\vert D \vert \leq \vert PD \vert \leq \vert D \vert + 2$.

Proof It is obvious that $\vert PD \vert \geq \vert D \vert$. Next, we prove $\vert PD \vert \leq \vert D \vert + 2$. Let v'_i be the father of v_i, i.e., $F(v_i) = v'_i$, and B is a block of G_{i-1} containing v_i and v'_i. We discuss it according to the order of B.

Case 1: $V(B) = \{v_i, v'_i\}$

If $\vert PD \vert \geq \vert D \vert + 4$ and $\vert PD \vert$ is even, then $v'_i, v''_i \not\in S$, where v''_i is the father of v'_i. Otherwise, $S - PD \cup D$ is a smaller PDS of G_{i-1}. However, $S - PD \cup D \cup \{v'_i, v''_i\}$ is also a smaller PDS of G_{i-1}, a contradiction. If $\vert PD \vert \geq \vert D \vert + 3$ and $\vert PD \vert$ is odd, then v_i and v'_i are paired in S. If $N(v'_i) \subseteq S$, then $S - PD - \{v'_i\} \cup D$ is a smaller PDS of G_{i-1}. Thus there is a neighbor w of v'_i such that $w \not\in S$, then $S - PD \cup D \cup \{w\}$ is also a smaller PDS of G_{i-1}. It is a contradiction.

Case 2: $V(B) \neq \{v_i, v'_i\}$

Let w be another vertex in $V(B)$. If $\vert PD \vert \geq \vert D \vert + 4$ and $\vert PD \vert$ is even, then $w, v'_i \not\in S$, then $S - PD \cup D \cup \{v'_i, w\}$ is a smaller PDS of G_{i-1}. If $\vert PD \vert \geq \vert D \vert + 3$ and $\vert PD \vert$ is odd, then $v_i \in S$. If w is the paired vertex of v_i, then there exists a neighbor w' of w such that $w' \not\in S$. However, $S - PD \cup D \cup \{w'\}$ is a smaller PDS of G_{i-1}. It is a contradiction. If v'_i is the paired vertex of v_i, with the same argument to Case 1, we can also get a contradiction. □

By Claim 2 we have $\vert D \vert \leq \vert PD \vert \leq \vert D \vert + 2$. We discuss the following cases according to the size of PD.

Case 1: $\vert PD \vert = \vert D \vert + 2$

In this case, $(N(v_i) \cap V(G_i)) \cap S = \emptyset$. If $\vert N(v_i) \cap V(G_i) \vert \geq 2$, then let $S' = S - PD \cup \{w', w''\}$, where $w', w'' \in N(v_i) \cap V(G_i)$. By claim 1 S' is a $\gamma_{pr}(G_i)$-set. Then $r \in S'$. Since $d(v_i, r) \geq 3$, then $r \in S$. If $\vert N(v_i) \cap V(G_i) \vert = 1$, then $F(v_i), F(F(v_i)) \not\subseteq S$, then let $S' = S - PD \cup \{F(v_i), F(F(v_i))\}$. By Claim 1 S' is a $\gamma_{pr}(G_i)$-set. Then $r \in S'$. Since $d(v_i, r) \geq 3$, then $r \in S$.

Case 2: $\vert PD \vert = \vert D \vert + 1$
In this case, \(v_i \in S \), let \(\tilde{v} \) be its paired vertex. If \(N(\tilde{v}) \subseteq S \), then \(S - PD - \{\tilde{v}\} \cup D \) is a smaller PDS of \(G_{i-1} \). Thus there is a neighbor \(w \) of \(\tilde{v} \) such that \(w \not\in S \). Let \(S' = S - PD \cup \{w\} \). by Claim \(1\) \(S' \) is a \(\gamma_{pr} (G_i) \)-set. Then \(r \in S' \). Since \(d(v_i, r) \geq 3 \), then \(r \in S \).

Case 3: \(|PD| = |D| \)

In this case, let \(S' = S - PD \). Then by Claim \(1\) \(S' \) is a \(\gamma_{pr} (G_i) \)-set. Then \(r \in S' \). Thus \(r \in S \). □

Lemma 4 When \(v_i \) is a considering vertex such that \(d(r, v_i) = 2 \). Let \(B_1 \) be the block containing \(v_i \) and \(F(v_i) \), and let \(B_2 \) be the block containing \(F(v_i) \) and \(r \). Suppose \(l(v_i) = \emptyset \), \((R_1 \cup R_2) \cap C_{i-1}(v_i) \neq \emptyset \) and \(G_{i-1}[R_1 \cap C_{i-1}(v_i)] \) has a perfect matching. If \(G_{i-1} \) satisfies one of the following conditions:

1. \(|V(B_1)| \geq 3 \);
2. \(|V(B_1)| = 2 \) and \(C_{i-1}(F(v_i)) \neq \{v_i\} \);
3. \(|V(B_1)| = 2 \), \(C_{i-1}(F(v_i)) = \{v_i\} \) and \(|V(B_2)| \geq 3 \).

Then \(r \) is contained in all \(\gamma_{pr} (G_{i-1}) \)-set if and only if \(r \) is contained in all \(\gamma_{pr} (G_i) \)-set, where \(G_i = G_{i-1} - D_{i-1}[v_i] \).

Proof We still use the notations in Lemma \(3\). With the same argument to Claim \(1\), \(\gamma_{pr} (G_{i-1}) = \gamma_{pr} (G_i) + |D| \).

If there is a \(\gamma_{pr} (G_i) \)-set \(S' \) such that \(r \notin S' \), then let \(S = S' \cup D \). Thus \(S \) is a \(\gamma_{pr} (G_{i-1}) \)-set and \(r \notin S \). Therefore, if \(r \) is contained in all \(\gamma_{pr} (G_{i-1}) \)-set, then \(r \) is contained in all \(\gamma_{pr} (G_i) \)-set.

For converse, let \(S \) be an arbitrary \(\gamma_{pr} (G_{i-1}) \)-set and \(PD = S \cap D_{i-1}[v_i] \). With the similar argument to Claim \(2\), \(|D| \leq |PD| \leq |D| + 2 \). We discuss the following case according to the size of \(PD \).

Case 1: \(|PD| = |D| + 2 \)

If \(|V(B_1)| \geq 3 \), then let \(w \) be a vertex in \(V(B_1) \) other than \(v_i \) and \(F(v_i) \). Then \(w, F(v_i) \notin S \). Let \(S' = S - PD \cup \{w, F(v_i)\} \). Then \(S' \) is a \(\gamma_{pr} (G_i) \)-set. Since any new added vertex is not \(r \), then \(r \in S \). If \(|V(B_1)| = 2 \) and \(C_{i-1}(F(v_i)) \neq \{v_i\} \), let \(w \) be a child of \(F(v_i) \) other than \(v_i \). It is obvious that \(r, F(v_i) \notin S \). If \(w \notin S \), then \(S' = S - PD \cup \{F(v_i), w\} \) is a \(\gamma_{pr} (G_i) \)-set. If \(w \in S \) and \(w' \) is its paired vertex, then there is a neighbor \(w'' \) of \(w' \) such that \(w'' \notin S \). Then \(S' = S - PD \cup \{F(v_i), w''\} \) is a \(\gamma_{pr} (G_i) \)-set. Thus \(r \notin S' \). It contradicts that \(r \) is contained in all \(\gamma_{pr} (G_i) \)-set. If \(|V(B_1)| = 2 \), \(C_{i-1}(F(v_i)) = \{v_i\} \) and \(|V(B_2)| \geq 3 \), let \(w \) be a vertex in \(V(B_2) \) other than \(F(v_i) \) and \(r \). Then \(r, F(v_i), w \) and \(S = \emptyset \). Let \(S' = S - PD \cup \{w, F(v_i)\} \). Then \(S' \) is a \(\gamma_{pr} (G_i) \)-set. However, \(r \notin S' \). It contradicts that \(r \) is contained in all \(\gamma_{pr} (G_i) \)-set.

Case 2: \(|PD| = |D| + 1 \)

In this case, \(v_i \in S \). Let \(v_i' \) be the paired vertex of \(v_i \), then \(v_i' \in V(B_1) \). Suppose \(|V(B_1)| \geq 3 \). If \(v_i' \notin F(v_i) \) and \(F(v_i) \notin S \), then \(S' = S - PD \cup \{F(v_i)\} \) is a \(\gamma_{pr} (G_i) \)-set. If \(v_i' \neq F(v_i) \) and \(F(v_i) \in S \), then \(v_i' \) is a cut-vertex of \(G_{i-1} \). Otherwise, \(S - PD - \{v_i'\} \cup D \) is a smaller PDS
of G_{i-1}. It is impossible that $C_{i-1}(v_i') \subseteq S$. Thus there is a child w of v_i' such that $w \not\in S$. $S' = S - PD \cup \{w\}$ is a $\gamma_{pr}(G_i)$-set. If $v_i' = F(v_i)$, let w be a vertex in $V(B_1)$ other than v_i and $F(v_i)$. If $w \not\in S$, then $S' = S - PD \cup \{w\}$ is a $\gamma_{pr}(G_i)$-set. If $w \in S$, then w is a cut-vertex. If its paired vertex $w' \in C_{i-1}(w)$, then there is a neighbor w'' of w' such that $w'' \not\in S$. $S' = S - PD \cup \{w''\}$ is a $\gamma_{pr}(G_i)$-set. If $w \in S$ and its paired vertex $w' \in V(B_1)$, then w' is also a cut-vertex. It is impossible that $C_{i-1}(w) \subseteq S$, i.e., there is a child w'' of w such that $w'' \not\in S$. $S' = S - PD \cup \{w''\}$ is a $\gamma_{pr}(G_i)$-set. Then we can not prune V.

Proof We still use the notations in Lemma 3. With the same argument to Claim 1 $\gamma_{pr}(G_{i-1}) = \gamma_{pr}(G_i) + |D|$.

If $d(v_i, r) = 2$, $|V(B_1)| = 2$, $C_{i-1}(F(v_i)) = \{v_i\}$, $|V(B_2)| = 2$ and v_i satisfies other conditions in Lemma 4 then we can not prune G_{i-1}. We call B_2 the first kind of TYPE-1 block containing r.

Lemma 5 When v_i is a considering vertex such that $d(r, v_i) = 1$. Let B be the block containing v_i and r. Suppose $l(v_i) = \emptyset$, $(R_1 \cup R_2) \cap C_{i-1}(v_i) \neq \emptyset$ and $G_{i-1}[R_1 \cap C_{i-1}(v_i)]$ has a perfect matching. If $|V(B)| \geq 4$ or $|V(B)| = 3$ and every vertex in $V(B)$ is cut-vertex, then r is contained in all $\gamma_{pr}(G_{i-1})$-set if and only if r is contained in all $\gamma_{pr}(G_i)$-set, where $G_i = G_{i-1} - D_{i-1}[v_i]$.

Proof We still use the notations in Lemma 3. With the same argument to Claim 1 $\gamma_{pr}(G_{i-1}) = \gamma_{pr}(G_i) + |D|$.

If there is a $\gamma_{pr}(G_i)$-set S' such that $r \not\in S'$, then let $S = S' \cup D$. Thus S is a $\gamma_{pr}(G_{i-1})$-set and $r \not\in S$. Therefore, if r is contained in all $\gamma_{pr}(G_{i-1})$-set, then r is contained in all $\gamma_{pr}(G_i)$-set.

For converse, let S be an arbitrary $\gamma_{pr}(G_{i-1})$-set and $PD = S \cap D_{i-1}[v_i]$. With the similar argument to Claim 2 $|D| \leq |PD| \leq |D| + 2$.

Suppose $|PD| = |D| + 2$, then $N(v_i) \cap V(B) \cap S = \emptyset$. Otherwise, $S - PD \cup D$ is a smaller PDS of G_{i-1}. Thus $r \not\in S$. If $|V(B)| \geq 4$, let w_1 and w_2 be two vertices other than v_i and
In this case, \(S' = S - PD \cup \{w_1, w_2\} \) is a \(\gamma_{pr}(G_i) \)-set. However, \(r \notin S' \). It contradicts that \(r \) is contained in all \(\gamma_{pr}(G_{i-1}) \)-set. If \(|V(B)| = 3 \) and every vertex in \(V(B) \) is cut-vertex, let \(w \) be another vertex in \(V(B) \) other than \(v_i \) and \(r \). If there is a child \(w_1 \) of \(w \) such that \(w_1 \notin S \), then \(S - PD \cup \{w, w_1\} \) is a \(\gamma_{pr}(G_i) \)-set not containing \(r \). It is also a contradiction.

Otherwise, take any child of \(w \), say \(w_1 \). Suppose \(w_2 \) is the paired vertex of \(w_1 \). If \(N(w_2) \subseteq S \), then \(S - PD - \{w_2\} \cup D \) is a smaller PDS of \(G_i \). Thus there is a neighbor \(w_3 \) of \(w_2 \) such that \(w_3 \notin S \). Then \(S' = S - PD \cup \{w, w_3\} \) is a \(\gamma_{pr}(G_i) \)-set not containing \(r \). It is still a contradiction.

Suppose \(|PD| = |D| + 1 \), then \(v_i \in S \). If \(r \) is paired with \(v_i \), then we have done. If \(|V(B)| \geq 4 \), let \(w_1 \) and \(w_2 \) are two vertices other than \(v_i \) and \(r \). We assume \(w_1 \) is the paired vertex of \(v_i \). If \(w_2 \notin S \), then \(S' = S - PD \cup \{w_2\} \) is a \(\gamma_{pr}(G_i) \)-set. If \(w_2 \in S \), let \(w_3 \) be its paired vertex. If \(w_2 \) is not a cut-vertex, then \(S - PD - \{w_2\} \cup D \) is a smaller PDS of \(\gamma_{pr}(G_i) \)-set. Thus \(w_2 \) is a cut-vertex. If \(w_3 \in C_{i-1}(w_2) \), then there is a neighbor \(w_4 \) of \(w_3 \) such that \(w_4 \notin S \). \(S' = S - PD \cup \{w_4\} \) is a \(\gamma_{pr}(G_i) \)-set. If \(w_3 \in V(B) \), then \(w_3 \) is also a cut-vertex and there is a child \(w_4 \) of \(w_3 \) such that \(w_4 \notin S \). \(S' = S - PD \cup \{w_4\} \) is a \(\gamma_{pr}(G_i) \)-set. If \(|V(B)| = 3 \) and every vertex in \(V(B) \) is cut-vertex, let \(w \) be another vertex in \(V(B) \) other than \(v_i \) and \(r \).

In this case, \(w \) is the paired vertex of \(v_i \). If there is a child \(w_1 \) of \(w \) such that \(w_1 \notin S \), then \(S' = S - PD \cup \{w_1\} \) is a \(\gamma_{pr}(G_i) \)-set. Otherwise, take any child of \(w \), say \(w_1 \), and \(w_2 \) is its paired vertex. If \(N(w_2) \subseteq S \), then \(S - PD - \{w_2\} \cup D \) is a smaller PDS of \(G_{i-1} \). Thus there is a neighbor \(w_3 \) of \(w_2 \) such that \(w_3 \notin S \). Then \(S' = S - PD \cup \{w_3\} \) is a \(\gamma_{pr}(G_i) \)-set. In any case, \(r \in S' \). However, any new added vertex is not \(r \). Thus \(r \in S \).

If \(|PD| = |D| \), then \(S' = S - PD \) is a \(\gamma_{pr}(G_i) \)-set. Thus \(r \in S \) due to \(r \in S' \). □

If \(d(v_i, r) = 1 \), \(|V(B)| = 3 \), there is a vertex in \(V(B) \) which is not cut-vertex and \(v_i \) satisfies other conditions in Lemma 5 then we can not prune \(G_{i-1} \). We call \(B \) the second kind of TYPE-1 block containing \(r \). If \(d(v_i, r) = 1 \), \(|V(B)| = 2 \) and \(v_i \) satisfies other conditions in Lemma 5 we call \(B \) the first kind of TYPE-2 block containing \(r \).

Lemma 6 When \(v_i \) is a considering vertex such that \(l(v_i) = r_1 \). Let \(B' \) is an end block containing \(v_i \) in \(G_{i-1} \). If \(G_{i-1}[R_1 \cap C_{i-1}(v_i)] \) has a perfect matching, then \(r \) is contained in all \(\gamma_{pr}(G_{i-1}) \)-set if and only if \(r \) is contained in all \(\gamma_{pr}(G_i) \)-set, where \(G_i = G_{i-1} - (D_{i-1}(v_i) - V(B')) \).

Proof Let \(D_1 = R_1 \cap C_{i-1}(v_i) \), \(D_2 = R_2 \cap D_{i-1}(v_i) \) and \(D = D_1 \cup D_2 \). Similar to Claim 1 we obtain the following claim.

Claim 3 \(\gamma_{pr}(G_{i-1}) = \gamma_{pr}(G_i) + |D| \).

If there is a \(\gamma_{pr}(G_i) \)-set \(S' \) such that \(r \notin S' \), then let \(S = S' \cup D \). By Claim 3 \(S \) is a \(\gamma_{pr}(G_{i-1}) \)-set and \(r \notin S \). Therefore, if \(r \) is contained in all \(\gamma_{pr}(G_{i-1}) \)-set, then \(r \) is contained in all \(\gamma_{pr}(G_i) \)-set.
For converse, let \(S \) be an arbitrary \(\gamma_{pr}(G_{i-1}) \)-set and \(PD = S \cap (D_{i-1}(v_i) - V(B')) \).

Claim 4 \(|D| \leq |PD| \leq |D| + 1.\)

Proof If \(|PD| \geq |D| + 2 \) and \(|PD|\) is even. Since \(|V(B') \cap S| \geq 1\), then either \(v_i \in S \) or \(y \in S \), where \(y \in V(B') - \{v_i\} \). \(S - PD \cup D \) is a smaller PDS of \(G_{i-1} \). It is a contradiction.

If \(|PD| \geq |D| + 3 \) and \(|PD|\) is odd. In this case, \(v_i \in S \) and its paired vertex \(v \in C_{i-1}(v_i) - V(B') \). Let \(x \in V(B') - \{v_i\} \), then \(x \notin S \). \(S - PD \cup D \cup \{x\} \) is a smaller PDS of \(G_{i-1} \). It is a contradiction. \(\square \)

If \(|PD| = |D| + 1 \), then \(v_i \in S \) and its paired vertex \(v \in C_{i-1}(v_i) - V(B') \). Let \(S' = S - PD \cup \{x\} \), where \(x \in V(B') - \{v_i\} \). By Claim 3 \(S' \) is a \(\gamma_{pr}(G_i) \)-set. Then \(r \in S' \). Since \(x \neq r \), \(r \in S \).

If \(|PD| = |D| \). Since \(V(B') \cap S \neq \emptyset \), Thus \(S' = S - PD \) is a PDS of \(G_i \). By Claim 3 \(S' \) is also a \(\gamma_{pr}(G_i) \)-set. Thus \(r \in S \) due to \(r \in S' \). \(\square \)

Lemma 7 When \(v_i \) is a considering vertex such that \(d(r, v_i) \geq 3 \) and \(G_{i-1}[R_1 \cap C_{i-1}(v_i)] \) has not a perfect matching, let \(M \) be the maximum matching in \(G_{i-1}[R_1 \cap C_{i-1}(v_i)] \) and \(u \in (R_1 \cap C_{i-1}(v_i)) - V(M) \). Then \(r \) is contained in all \(\gamma_{pr}(G_{i-1}) \)-set if and only if \(r \) is contained in all \(\gamma_{pr}(G_i) \)-set, where \(G_i = G_{i-1} - (D_{i-1}(v_i) - D_{i-1}[u]) \).

Proof Let \(D_1 = R_1 \cap C_{i-1}(v_i) \) and \(D_2 = R_2 \cap D_{i-1}(v_i) \). Take one child of each vertex in \(D_1 - V(M) - \{u\} \) to construct vertex set \(D'_1 \). \(D = D_1 \cup D_2 \cup D'_1 - \{u\} \). Then we obtain the following claim.

Claim 5 \(\gamma_{pr}(G_{i-1}) = \gamma_{pr}(G_i) + |D|. \)

Proof Any \(\gamma_{pr}(G_i) \)-set can be extended to a PDS of \(G_{i-1} \) by adding \(D \). Thus \(\gamma_{pr}(G_{i-1}) \leq \gamma_{pr}(G_i) + |D| \).

For converse, let \(S \) be a \(\gamma_{pr}(G_{i-1}) \)-set. With the same argument to Claim 4 \(D_2 \subset S \) and every vertex in \(D_2 \) is paired with another vertex in \(D_2 \). Moreover, we may assume \(D_1 \subset S \). Let \(CC = \{x \mid x \notin D_1, x \text{ is paired with one vertex in } D_1\} \). Since \(M \) is a maximum matching of \(G_{i-1}[D_1] \), thus \(|CC| \leq |D_1| - |V(M)| = |D'_1| + 1 \). If \(v_i \notin S \), then \(S - CC \cup D'_1 \cup \{v_i\} \) is also a \(\gamma_{pr}(G_{i-1}) \)-set. If \(v_i \in S \) and \(v_i \) is paired with one vertex in \(D_1 \), then \(S - CC \cup D'_1 \cup \{v_i\} \) is also a \(\gamma_{pr}(G_{i-1}) \)-set. If \(v_i \in S \) and \(v_i \) is not paired with any vertex in \(D_1 \), let \(v \) be its paired vertex. Then \(v \notin C_{i-1}(v_i) \), otherwise, \(S - CC - \{v\} \cup D'_1 \) is also a \(\gamma_{pr}(G_{i-1}) \)-set. Thus \(v \in V(B) \), where \(B \) is a block containing \(v_i \) and \(F(v_i) \). If \(N(v) \subseteq S \), then \(S - CC - \{v\} \cup D'_1 \) is also a \(\gamma_{pr}(G_{i-1}) \)-set. Therefore, we may assume \(D_1 \cup D'_1 \cup \{v_i\} \subseteq S \) and they are paired each other. Since \(u \) is the paired vertex of \(v_i \), \(S - D \) is a PDS of \(G_i \). Therefore, \(\gamma_{pr}(G_i) \leq |S - D| = |S| - |D| = \gamma_{pr}(G_{i-1}) - |D| \).
So $\gamma_{pr}(G_{i-1}) = \gamma_{pr}(G_i) + |D|$. □

If there is a $\gamma_{pr}(G_i)$-set S' such that $r \notin S'$, then let $S = S' \cup D$ if $u \in S'$ or $v_i \in S'$ and otherwise, let $S = S' - D_{i-1}[u] \cup \{u, v_i\} \cup D$. By claim 5 S is a $\gamma_{pr}(G_{i-1})$-set and $r \notin S$. Therefore, if r is contained in all $\gamma_{pr}(G_{i-1})$-set, then r is contained in all $\gamma_{pr}(G_i)$-set.

For converse, let S be an arbitrary $\gamma_{pr}(G_{i-1})$-set and $PD = (D_{i-1}(v_i) - D_{i-1}[u]) \cap S$. We obtain the following claim.

Claim 6 $|D| \leq |PD| \leq |D| + 1$

Proof It is obvious that $|PD| \geq |D|$. Suppose $|PD| \geq |D| + 2$ and $|PD|$ is even. If $v_i \in S$, then $S - PD \cup D$ is a smaller PDS of G_{i-1}. If $v_i \notin S$, then $S - D_{i-1}[v_i] \cup D \cup \{v_i, u\}$ is a smaller PDS of G_{i-1}. It is a contradiction. Suppose $|PD| \geq |D| + 3$ and $|PD|$ is odd. In this case, one of vertices v_i, u is in S such that its paired vertex is in $D_{i-1}(v_i) - D_{i-1}[u]$. If v_i is such a vertex, then $|D_{i-1}[v_i] \cap S| \geq |D| + 4$. $S - D_{i-1}[v_i] \cup D \cup \{u, v_i\}$ is a smaller PDS of G_{i-1}. It is a contradiction. If u is such a vertex and $v_i \notin S$, then $S - PD \cup D \cup \{v_i\}$ is a smaller PDS of G_{i-1}. It is also a contradiction. If u is such a vertex and $v_i \in S$, then the paired vertex of v_i is not a child of v_i. Let v be its paired vertex. If $N(v) \subset S$, then $S - PD \cup \{v\} \cup D$ is a smaller PDS of G_{i-1}. Thus there is a neighbor v' of v such that $v' \notin S$. However, $S - PD \cup D \cup \{v'\}$ is also a smaller PDS of G_{i-1}. It is also a contradiction. □

Suppose $|PD| = |D| + 1$. If $v_i \in S$ and its paired vertex is in $D_{i-1}(v_i) - D_{i-1}[u]$, then $|D_{i-1}[v_i] \cap S| \geq |D| + 2$. Let $S' = S - D_{i-1}[v_i] \cup \{u, v_i\}$. By Claim 5 S' is a $\gamma_{pr}(G_i)$-set. If $u \in S$ and its paired vertex is in $D_{i-1}(v_i) - D_{i-1}[u]$. If $v_i \notin S$, then $S' = S - PD \cup \{v_i\}$ is a $\gamma_{pr}(G_i)$-set by Claim 5. If $v_i \in S$, let v be its paired vertex. Then $v \in V(G_i)$ and there is a neighbor v' of v such that $v' \notin S$. $S' = S - PD \cup D \cup \{v'\}$ is a $\gamma_{pr}(G_i)$-set. In any case, $r \in S'$. Since $d(r, v_i) \geq 3$, any new added vertex is not r. thus $r \in S$.

Suppose $|PD| = |D|$. If $v_i \notin S$, then $S' = S - D_{i-1}[v_i] \cup \{v_i, u\}$ is a $\gamma_{pr}(G_i)$-set. If $v_i \in S$, then $S' = S - PD$ is a $\gamma_{pr}(G_i)$-set. In any case, $r \in S'$. Since $d(v_i, r) \geq 3$, then $r \in S$. □

Similar to Lemma 3 and Lemma 5 we can obtain the following lemma. The detail of the proof is omitted in here.

Lemma 8 When v_i is a considering vertex such that $d(r, v_i) = 2$ and $G_{i-1}[R_1 \cap C_{i-1}(v_i)]$ has not a perfect matching, let M be the maximum matching in $G_{i-1}[R_1 \cap C_{i-1}(v_i)]$ and $u \in R_1 \cap C_{i-1}(v_i) - V(M)$. Let B_1 be a block containing v_i and $F(v_i)$ and B_2 be a block containing $F(v_i)$ and $F(F(v_i))$ if exists. If G_{i-1} satisfies one of the following conditions:

1. $d(v_i, r) = 2$ and $|V(B_1)| \geq 3$;
2. $d(v_i, r) = 2$, $|V(B_1)| = 2$ and $C_{i-1}(F(v_i)) \neq \{v_i\}$;
(3) $d(v_i, r) = 2$, $|V(B_1)| = 2$, $C_{i-1}(F(v_i)) = \{v_i\}$ and $|V(B_2)| \geq 3$;
(4) $d(v_i, r) = 1$ and $|V(B_2)| \geq 4$;
(5) $d(v_i, r) = 1$, $|V(B_2)| = 3$ and every vertex in $V(B_2)$ is cut-vertex.

Then r is contained in all $\gamma_{pr}(G_{i-1})$-set if and only if r is contained in all $\gamma_{pr}(G_i)$-set, where $G_i = G_{i-1} - (D_{i-1}(v_i) - D_{i-1}(u))$.

If $d(v_i, r) = 2$, $|V(B_1)| = 2$, $C_{i-1}(F(v_i)) = \{v_i\}$, $|V(B_2)| = 2$ and v_i satisfies other conditions in Lemma 8, then we can not prune G_{i-1}. We call B_2 the first kind of TYPE-3 block containing r. If $d(v_i, r) = 1$, $|V(B_2)| = 3$ and there is a vertex in $V(B_2)$ which is not cut-vertex and v_i satisfies other conditions in Lemma 8, then we still can not prune G_{i-1}. We call B_2 the second kind of TYPE-3 block containing r. If $d(v_i, r) = 1$, $|V(B_2)| = 2$ and v_i satisfies other conditions in Lemma 8 we call B_2 the second kind of TYPE-2 block containing r.

Summarizing the above lemmas, we have

Theorem 1 Let G be a block graph with at least one cut-vertex and let \hat{G} be the output of procedure PRUNE. Then r is contained in all minimum paired-dominating sets of G if and only if r is contained in all minimum paired-dominating sets of \hat{G}.

3 Algorithm

In this section, we will give some judgement rules to determine whether r is contained in all minimum paired-dominating sets of \hat{G}, where \hat{G} is the output of procedure PRUNE. Let $\hat{R}_j = \{v \mid v \in V(\hat{G}) \text{ and } l(v) = r_j\}$ for $j = 1, 2$. For $v \in V(\hat{G})$, define $C_{\hat{G}}(v) = C_G(v) \cap V(\hat{G})$, $D_{\hat{G}}(v) = D_G(v) \cap V(\hat{G})$ and $D_{\hat{G}}[v] = D_G[v] \cap V(\hat{G})$.

According to lemmas in section 2, we can divide blocks containing r in \hat{G} into the following categories (suppose B is a block containing r in \hat{G}). Some examples of each category are shown in Fig. 1.):

- $L_1 = \{B \mid B$ is an end block with $|V(B)| = 2\}$;
- $L_2 = \{B \mid B$ is an end block with $|V(B)| \geq 3\}$;
- $L_3 = \{B \mid B$ is a TYPE-1 block\};
- $L_4 = \{B \mid B$ is a TYPE-2 block\};
- $L_5 = \{B \mid B$ is a TYPE-3 block\};
- $L_6 = \{B \mid |\hat{R}_1 \cap (V(B) - \{r\})| \text{ is odd and } \hat{R}_2 \cap V(B) = \emptyset\}$;
- $L_7 = \{B \mid |\hat{R}_1 \cap (V(B) - \{r\})| \neq 0 \text{ is even and } \hat{R}_2 \cap V(B) = \emptyset\}$;
- $L_8 = \{B \mid |\hat{R}_1 \cap (V(B) - \{r\})| \text{ is odd and } \hat{R}_2 \cap V(B) \neq \emptyset\}$;
- $L_9 = \{B \mid |\hat{R}_1 \cap (V(B) - \{r\})| \text{ is even and } \hat{R}_2 \cap V(B) \neq \emptyset\}$.
In order to simply the proof of judgement rules, we define $D(B)$ for any block $B \in \bigcup_{i=3}^{9} L_i$ as follows:

1. If $B \in L_3$, then $|V(B)| = 2$ or $|V(B)| = 3$ and there is a vertex in $V(B)$ that is not cut-vertex. If $|V(B)| = 2$, then B is the first kind. Let u be the child of r in $V(B)$ and v be the child of u. If $|V(B)| = 3$, then B is the second kind. Let v be the child of r in $V(B)$ and v is a cut-vertex. In any case, $\tilde{G}[\tilde{R}_1 \cap C_{\tilde{G}}(v)]$ has a perfect matching. $D(B) = (\tilde{R}_1 \cap C_{\tilde{G}}(v)) \cup (\tilde{R}_2 \cap D_{\tilde{G}}(v))$.

2. If $B \in L_4$, then $|V(B)| = 2$. Let v be the child of r in $V(B)$. If B is the first kind, then $\tilde{G}[\tilde{R}_1 \cap C_{\tilde{G}}(v)]$ has a perfect matching. Let $D(B) = (\tilde{R}_1 \cap C_{\tilde{G}}(v)) \cup (\tilde{R}_2 \cap D_{\tilde{G}}(v))$. Otherwise, let M be the maximum matching in $\tilde{G}[\tilde{R}_1 \cap C_{\tilde{G}}(v)]$. Take one child of each vertex in $(\tilde{R}_1 \cap C_{\tilde{G}}(v)) - V(M) - \{w\}$ to construct D', where $w \in \tilde{R}_1 \cap C_{\tilde{G}}(v) - V(M)$. $D(B) = (\tilde{R}_1 \cap C_{\tilde{G}}(v)) \cup D' \cup (\tilde{R}_2 \cap D_{\tilde{G}}(v)) \cup \{v, w\}$.

3. If $B \in L_5$, then $|V(B)| = 2$ or $|V(B)| = 3$ and there is a vertex in $V(B)$ that is not cut-vertex. If B is the first kind, let u be the child of r in $V(B)$ and v be the child of u. If B is the second kind, let v be the child of r in $V(B)$ and v is a cut-vertex. In any case, $\tilde{G}[\tilde{R}_1 \cap C_{\tilde{G}}(v)]$ has not a perfect matching. $D(B)$ is defined same as the second kind of (2).

4. If $B \in L_6 \cup L_8$, let $CC = \bigcup_{v \in V(B)} D_{\tilde{G}}[v]$. $D(B) = ((\tilde{R}_1 \cup \tilde{R}_2) \cap CC) \cup \{w\}$, where w is a child of some vertex in $\tilde{R}_1 \cap CC$.

5. If $B \in L_7 \cup L_9$, let $CC = \bigcup_{v \in V(B)} D_{\tilde{G}}[v]$. $D(B) = (\tilde{R}_1 \cup \tilde{R}_2) \cap CC$.

Fig. 1. Some examples of nine categories of blocks containing r in \tilde{G}.
Lemma 9 Let \tilde{G} be a output of procedure PRUNE, then r is contained in all minimum paired-dominating sets of \tilde{G} if and only if \tilde{G} satisfies one of the following conditions:

1. $|L_1| \geq 1$;
2. $|L_1| = 0$ and $|L_2| \geq 2$;
3. $|L_1| = 0$, $|L_2| = 1$ and $|L_3 \cup L_6 \cup L_8| \geq 1$;
4. $|L_1| = 0$, $|L_2| = 0$ and $|L_3| \geq 2$;
5. $|L_1| = 0$, $|L_2| = 0$, $|L_3| = 1$ and $|L_6 \cup L_8| \geq 1$.

Proof If $|L_1| \geq 1$, then r is a support vertex in \tilde{G}, and hence r is contained in all minimum paired-dominating sets of \tilde{G}. Thus in the following discussion, we assume $|L_1| = 0$.

Case 1: $|L_2| \geq 2$

In this case, r is contained in at least two end block with order at least three, say B_1 and B_2 are two such blocks. Let S be an arbitrary $\gamma_{pr}(\tilde{G})$-set. If $r \notin S$, then $|V(B_i) \cap S| \geq 2$ for $i = 1, 2$. Then $S - V(B_1) - V(B_2) \cup \{r, x\}$, where x is a vertex in $V(B_1) - \{r\}$, is a smaller PDS of \tilde{G}, a contradiction. Thus $r \in S$.

Case 2: $|L_2| = 1$ and $|L_3 \cup L_6 \cup L_8| \geq 1$

Let $B' \in L_2$ and S be an arbitrary $\gamma_{pr}(\tilde{G})$-set not containing r. It is obvious $|V(B') \cap S| \geq 2$. If $|L_3| \geq 1$, let $B \in L_3$. If B is the first kind, let u be a child of r in $V(B)$. Since $r \notin S$, $|D_{\tilde{G}}[u] \cap S| \geq 2 + |D(B)|$. However, $S - D_{\tilde{G}}[u] - V(B') \cup D(B) \cup \{r, u\}$ is a smaller PDS of \tilde{G}. If B is the second kind, let w be a vertex in $V(B)$ which is not cut-vertex and u be another vertex. Since $r \notin S$, $|(D_{\tilde{G}}[u] \cup \{w\}) \cap S| \geq |D(B)| + 2$. Then $S - D_{\tilde{G}}[u] - V(B') - \{w\} \cup D(B) \cup \{r, u\}$ is a smaller PDS of \tilde{G}, a contradiction. Thus $r \in S$.

If $|L_6 \cup L_8| \geq 1$, let $B \in L_6 \cup L_8$. $CC = \bigcup_{v \in V(B)} D_{\tilde{G}}[v]$. Since $r \notin S$, $|CC \cap S| \geq |D(B)|$. However, $S - CC - V(B') \cup D(B) \cup \{r\} - \{w\}$, where $w \in D(B)$ and $l(w) = \emptyset$, is a smaller PDS of \tilde{G}, a contradiction. Thus $r \in S$.

Case 3: $|L_2| = 1$ and $|L_3 \cup L_6 \cup L_8| = 0$

Let $B' \in L_2$ and $y, z \in V(B') - \{r\}$. Since r is a cut-vertex, So $L_4 \cup L_5 \cup L_7 \cup L_9 \neq \emptyset$. Let S' be a vertex set by collecting $D(B)$ for any $B \in L_4 \cup L_5 \cup L_7 \cup L_9$. It is obvious that $S' \cup \{y, z\}$ is a $\gamma_{pr}(\tilde{G})$-set. However, $r \notin S$.

Case 4: $|L_2| = 0$ and $|L_3| \geq 2$

Let $B_1, B_2 \in L_3$ and S be an arbitrary $\gamma_{pr}(\tilde{G})$-set. Suppose $r \notin S$. For B_j $(j = 1, 2)$, let $CC_j = \bigcup_{v \in V(B_j)} D_{\tilde{G}}[v]$. Since $r \notin S$, $|CC_j \cap S| \geq |D(B_j)|$ for $j = 1, 2$. However, $S - CC_1 - CC_2 - D(B_1) \cup D(B_2) \cup \{r, u\}$, where u is a child of r in $V(B_1)$, is a smaller PDS of \tilde{G}, a contradiction. Thus $r \in S$.

Case 5: $|L_2| = 0$, $|L_3| = 1$ and $|L_6 \cup L_8| \geq 1$

Let $B_1 \in L_3$ and $B_2 \in L_6 \cup L_8$. Suppose S be an arbitrary $\gamma_{pr}(\tilde{G})$-set and $r \notin S$. For B_j $(j = 1, 2)$,
let $CC_j = \bigcup_{v \in V(B_j)} D_G[v]$. Since $r \notin S$, $|CC_1 \cap S| \geq |D(B_1)| + 2$ and $|CC_2 \cap S| \geq |D(B_2)|$. However, $S - CC_1 - CC_2 \cup D(B_1) \cup D(B_2) \cup \{r\} - \{w\}$, where $w \in D(B_2)$ and $l(w) = \emptyset$, is a smaller PDS of \tilde{G}, a contradiction. Thus $r \in S$.

Case 6: $|L_2| = 0$, $|L_3| = 1$ and $|L_6 \cup L_8| = 0$

Let $B \in L_3$. If B is the first kind, let u be the child of r in $V(B)$ and v be the child of u. If B is the second kind, let $\{u, v\} = V(B) - \{r\}$. Let S' be a vertex set by collecting $D(B^*)$ for any $B^* \in L_4 \cup L_5 \cup L_7 \cup L_9$. Let $S = S' \cup D(B) \cup \{u, v\}$. Then it is obvious S is a $\gamma_{pr}(\tilde{G})$-set. However, $r \notin S$.

Case 7: $|L_2| = |L_3| = 0$

Let B be any block containing r, then $B \in L_4 \cup L_5 \cup L_6 \cup L_7 \cup L_8 \cup L_9$. Let S' be a vertex set by collecting $D(B)$ for any $B \in L_4 \cup L_5 \cup L_6 \cup L_7 \cup L_8 \cup L_9$. If $L_6 \cup L_7 \cup L_8 \cup L_9 \neq \emptyset$, then S' is a γ_{pr}-set of \tilde{G}. However, $r \notin S'$. Thus we may assume $L_6 \cup L_7 \cup L_8 \cup L_9 = \emptyset$. Then $B \in L_4 \cup L_5$. If there is a block $B \in L_4 \cup L_5$ which is the second kind of TYPE-2 or TYPE-3 block, then S' is still a γ_{pr}-set of \tilde{G}. Thus we may assume that $B \in L_4 \cup L_5$ and B is the first kind of TYPE-2 or TYPE-3 block. If there is a block $B \in L_5$, let u be the child of r in $V(B)$ and v is the child of u. Let w be the paired vertex in $D(B)$ and w' be the child of w. Then $S = S' \cup \{u, w'\}$ is a $\gamma_{pr}(\tilde{G})$-set of \tilde{G}. However, $r \notin S$. Then $B \in L_4$ for any block B and B is the first kind of TYPE-2 block. Let v be the child of r in $V(B)$. If there is a child w of v such that $l(w) = r_1$. Let w' be the child of w. Then $S = S' \cup \{v, w'\}$ is a $\gamma_{pr}(\tilde{G})$-set not containing r. Thus we may assume every child w of v satisfies $l(w) = r_2$. Let w' be the child of w such that $l(w') = r_2$ and let w'' be the child of w'. Take $S = S' \cup \{v, w''\}$. It is obvious that S is a $\gamma_{pr}(\tilde{G})$-set not containing r.

Now we are ready to present the algorithm to determine whether r is contained in all minimum paired-dominating sets of G.

Algorithm VIAMPDS. Determine whether the cut-vertex r of a block graph G is contained in all minimum paired-dominating sets of G

Input. A block graph G with at least one cut-vertex and a cut-vertex r. The vertex ordering obtained by procedure VO.

Output. True or False

Method

Let \tilde{G} be the output of procedure PRUNE with input G.

Let $L_1 = \{B \mid B$ is an end block with $|V(B)| = 2\}$;

$L_2 = \{B \mid B$ is an end block with $|V(B)| \geq 3\}$;

$L_3 = \{B \mid B$ is a TYPE-1 block\};

$L_6 = \{B \mid B$ is a block such that $|\tilde{R}_1 \cap (V(B) - \{r\})|$ is odd and $\tilde{R}_2 \cap V(B) = \emptyset\}$;
\[L_8 = \{ B \mid B \text{ is a block such that } |\tilde{R}_1 \cap (V(B) - \{r\})| \text{ is odd and } \tilde{R}_2 \cap V(B) \neq \emptyset \}. \]

\((B \text{ is a block containing } r)\)

If \(|L_1| \geq 1\) then
- Return True;
else if \(|L_2| \geq 2\) then
- Return True;
else if \(|L_2| = 1 \text{ and } |L_3 \cup L_6 \cup L_8| \geq 1\) then
- Return True;
else if \(|L_2| = 0 \text{ and } |L_3| \geq 2\) then
- Return True;
else if \(|L_2| = 0 \text{ and } |L_3| = 1 \text{ and } |L_6 \cup L_8| \geq 1\) then
- Return True;
else
- Return False;
endif
end

Theorem 2 Algorithm VIAMPDS can determine whether the give cut-vertex of a block graph \(G\) with at least one cut-vertex is contained in all minimum paired-dominating sets in linear-time \(O(n + m)\), where \(n = |V(G)|\) and \(m = |E(G)|\).

Proof By Theorem 1, \(r\) is contained in all minimum paired-dominating sets of \(G\) if and only if \(r\) is contained in all minimum paired-dominating sets of \(\tilde{G}\), where \(\tilde{G}\) is the output of procedure PRUNE with input \(G\). Moreover, by Lemma 9 the judgement rules in algorithm VIAMPDS can determine whether \(r\) is contained in all minimum paired-dominating sets of \(\tilde{G}\). On the other hand, every vertex and edge is used in a constant times in algorithm VIAMPDS. Thus the theorem follows. \(\square\)

4 Conclusion

In this paper, we give a linear-time algorithm VIAMPDS to determine whether the given vertex is contained in all minimum paired-dominating sets of a block graph. Furthermore, the algorithm VIAMPDS can be used to determine the set of vertices contained in all minimum paired-dominating sets of a blocks graph in polynomial time. Finally, we would like to point out that if changing the pruning rules and judgement rules, our method is also available to determine whether a given vertex is contained in all minimum (total) dominating sets of a block graph.
References

[1] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Inc., NJ, 2001.

[2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Fundamentals of Domination in Graphs, New York, Marcel Dekker 1998.

[3] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics, New York, Marcel Dekker 1998.

[4] T.W. Haynes, P.J. Slater, Paired-domination and the paired-domatic number, Congr. Numer. 109(1995), 65-72.

[5] T.W. Haynes and P.J. Slater, Paired-domination in graphs, Networks 32(1998), 199-206.

[6] M.A. Henning, Graphs with large paired-domination number, J. Comb. Optim. 13(2007), 61-78.

[7] H. Qiao, L.Y. Kang, M. Caedei, D.Z. Du, Paired-domination of trees, J.Global Optim. 25(2003), 43-54.

[8] L. Kang, M.Y. Sohn, T.C.E. Cheng, Paired-domination in inflated graphs, Theoretical Comp. Sci. 320(2004), 485-494.

[9] O. Favaron, M.A. Henning, Paired-Domination in claw-free Cubic Graphs, Graphs and Comb. 20(2004), 447-456.

[10] P. Dorbec, S. Gravier, M.A. Henning, Paired-domination in generalized claw-free graphs, J. Comb. Optim. 14(2007), 1-7.

[11] L. Chen, C. Lu, Z. Zeng, Labelling algorithms for paired-domination problems in block and interval graphs, to appear in J. Comb. Optim.

[12] C.M. Mynhardt, Vertices contained in every minimum dominating set of a tree, J. Graph Theory, 31(1999), 163-177.

[13] E.J. Cockayne, M.A. Henning, C.M. Mynhardt, Vertices contained in all or in no minimum total dominating set of a tree, Disc. Math. 260(2003), 37-44.

[14] M.A. Henning, M.D. Plummer, Vertices contained in all or in no minimum paired-dominating set of a tree, J. Comb. Optim. 10(2005), 283-294.