TGF-β/SMAD3 Pathway Stimulates Sphingosine-1 Phosphate Receptor 3 Expression

IMPLICATION OF SPHINGOSINE-1 PHOSPHATE RECEPTOR 3 IN LUNG ADENOCARCINOMA PROGRESSION

Received for publication, May 26, 2016, and in revised form, November 4, 2016. Published, JBC Papers in Press, November 17, 2016, DOI 10.1074/jbc.M116.740084

Jiawei Zhao†, Jingjing Liu‡, Jen-Fu Lee‡, Wenliang Zhang†, Mustapha Kandouz†, Garrett C. VanHecke§, Shiyou Chen*, Young-Hoon Ahn*, Fulvio Lonardo††, and Menq-Jer Lee***

From the Departments of †Pathology and §Chemistry, ‡Karmanos Cancer Institute, and **Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan 48201 and the ¶Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602

Edited by Dennis R. Voelker

Previously, we showed that levels of sphingosine-1 phosphate receptor 3 (S1PR3) are increased in a panel of cultured human lung adenocarcinoma cell lines, and that S1PR3-mediated signaling pathways regulate proliferation, soft agar growth, and invasion of human lung adenocarcinoma cells in vitro. In the present study, we examine S1PR3 levels in human lung adenocarcinoma specimens. cDNA array and tumor microarray analysis shows that mRNA and protein levels of S1PR3 are significantly increased in human lung adenocarcinomas when compared with normal lung epithelial cells. Promoter analysis shows 16 candidate SMAD3 binding sites in the promoter region of S1PR3. ChIP indicates that TGF-β treatment stimulates the binding of SMAD3 to the promoter region of S1PR3. Luciferase reporter assay demonstrates that SMAD3 transactivates S1PR3 promoter. TGF-β stimulation or ectopic expression of TGF-β up-regulates S1PR3 levels in vitro and ex vivo. Pharmacologic inhibition of TGF-β receptor or SMAD3 abrogates the TGF-β-stimulated S1PR3 up-regulation. Moreover, S1PR3 knockdown dramatically inhibits tumor growth and lung metastasis, whereas ectopic expression of S1PR3 promotes the growth of human lung adenocarcinoma cells in animals. Pharmacological inhibition of S1PR3 profoundly inhibits the growth of lung carcinoma in mice. Our studies suggest that levels of S1PR3 are up-regulated in human lung adenocarcinomas, at least in part due to the TGF-β/SMAD3 signaling axis. Furthermore, S1PR3 activity promotes the progression of human lung adenocarcinomas. Therefore, S1PR3 may represent a novel therapeutic target for the treatment of deadly lung adenocarcinomas.

Sphingosine-1-phosphate (S1P)³ is a serum-borne bioactive lipid mediator, which is generated by two sphingosine kinase isozymes, SphK1 and SphK2, using sphingosine as the substrate (1). S1P functions as an extracellular ligand or intracellular lipid mediator (2–5), and regulates various physiological and pathological functions (5–8). When S1P is functioning as an extracellular ligand, its activities are mediated by the S1P family of G protein-coupled receptors (S1PR1–S1PR5) (2, 9–11). Several lines of evidence suggest that S1P-mediated signaling pathways are closely linked to the tumorigenesis of various human cancers (12–16). However, the pathological link between the S1P-mediated signaling pathways and human lung adenocarcinoma is poorly understood. Previously, we showed that levels of sphingosine-1 phosphate receptor 3 (S1PR3) are significantly increased in cultured human lung adenocarcinoma cell lines (16). Moreover, we demonstrated that the S1PR3-activated signaling pathways play an important role in promoting the progression and invasiveness of human lung adenocarcinoma cells (11, 16).

TGF-β activates multiple signaling pathways to regulate various tumorigenic processes. For example, TGF-β regulates epithelial-mesenchymal transition, which is a critical process in cancer initiation and progression (17–20). Also, TGF-β stimulates the production of inflammatory cytokines in tumor microenvironments (21), and promotes tumor progression through extracellular matrix remodeling, cell adhesion, migration, and immune tolerance (17, 22, 23). Upon TGF-β ligation, TGF-β receptors phosphorylate SMAD (homolog of mothers against decapentaplegic) signaling molecules, leading to the nuclear translocation of SMADs. The nucleus-localized SMADs interact with specific transcriptional activators and repressors and regulate the expression of tumorigenic genes (24). In addition, TGF-β activates SMAD-independent pathways such as MAPK, JNK, NFκB, Ras/Raf/ERK, and Rho kinase pathways in a cell type-dependent manner (24, 25). Although both SMAD and non-SMAD pathways were reported to

* This work was supported by Department of Defense Grant W81XWH-14-1-0346, a funding support of Wayne State University, a Strategic Research Initiative Grant (SRIG) award of the Karmanos Cancer Institute (to M. L.), and National Institutes of Health Grants HL123302 and HL119053 (to S. C.).

† Both authors contributed equally to this work.

‡ To whom correspondence should be addressed: Dept. of Pathology, Wayne State University School of Medicine, 540 East Canfield Ave., Scott Hall, Rm. 9215, Detroit, MI 48201. Tel.: 313-577-9473; Fax: 313-577-0798, E-mail: mengjer.lee@wayne.edu.

§ The abbreviations used are: S1P, sphingosine-1-phosphate; TGF-β, transforming growth factor beta; SBE, SMAD3 binding element; LLC, Lewis lung carcinoma; Ad, adenovirus; Ctrl, control; qPCR, quantitative PCR; TMA, tumor microarray; ESI, electrospray ionization; ANOVA, analysis of variance.
be involved in tumorigenic process, the mechanistic details remain to be elucidated.

Previous studies have suggested the cross-talk between TGF-β and S1P signaling pathways. TGF-β was shown to activate SphK1 and stimulate the production of S1P (26), which may be involved in extracellular matrix deposition and fibrosis. On the other hand, S1P transactivates the TGF-β pathway and regulates several TGF-β-mediated physiological and pathological functions (27, 28). Thus, a better understanding of the cross-talk between the S1P- and TGF-β mediated signaling pathways is expected to open new perspectives for the treatment of TGF-β-triggered pathologies such as inflammation, fibrosis, and cancer.

In the present study, we show that levels of S1PR3 are significantly increased in human lung adenocarcinoma specimens. Mechanistically, our data suggest that the TGF-β/SMAD 3 signaling pathway contributes to S1PR3 up-regulation in lung adenocarcinomas. Moreover, our study suggests that S1PR3 represents a novel therapeutic target for the treatment of human lung cancers.

Results

Up-regulation of S1PR3 in Human Lung Adenocarcinomas—Previously, we showed that levels of S1PR3 are significantly increased in a panel of cultured human lung adenocarcinoma cell lines when compared with normal lung epithelial cells (16). The pathological relevance of this in vitro observation was investigated by measuring mRNA levels of S1PR3 in cDNA microarrays of human lung adenocarcinoma specimens (OriGene, HLRT). Quantitative PCR analysis showed that mRNA levels of S1PR3 are significantly increased in human lung adenocarcinoma specimens when compared with normal lung tissues (Fig. 1A). We previously showed that S1PR2 levels are increased in endothelial senescence and inflammation (10, 29). However, we observed that levels of S1PR2 are decreased in human lung cancers (Fig. 1B).

Next, we utilized immunohistochemical staining to examine protein levels of S1PR3 in a paraffin-embedded tumor microarray of human lung adenocarcinoma specimens (Accumax). Anti-S1PR3 (Cayman) immunoreacted with plasma membrane-localized S1PR3 in HEK293 cells transiently transfected with S1PR3 vector. No immunoreactivity was observed in HEK293 transfected with pcDNA control vector (Fig. 1C). Immunohistochemical staining analysis showed that the intensity of anti-S1PR3 immunostaining is significantly increased in human lung adenocarcinomas when compared with their respective adjacent normal lung epithelial cells (Fig. 1, D–F). Moreover, levels of S1PR3 are increased in human lung squamous carcinoma specimens (Fig. 1, G and H). Oncogenic K-Ras mutation is found in more than 25% of non-small cell lung carcinomas and represents one of the most prevalent oncogenic drivers in non-small cell lung carcinomas (30, 31). We utilized a conditionally inducible knock-in K-RasG12D (Lox-Stop-Lox-K-RasG12D, LSL-K-RasG12D) mouse model (32, 33) to measure S1PR3 levels in lung adenocarcinomas and normal lung tissues. As shown in Fig. 2A, lung tumors were readily observed in heterozygous LSL-K-RasG12D mice following intratracheal injection of adenoviral particles carrying Cre recombinase (Ad-Cre). S1PR3 levels were increased ~20-fold in lungs of K-RasG12D-expressing mice when compared with that in mice treated with empty adenoviral particles (Ad-
Ctrl (Fig. 2B). A minimal increase of S1PR4 was observed in lungs of K-Ras^{G12D}-expressing mice. There were no significant changes of S1PR1 and S1PR2, and S1PR5 was not detected in lungs of Ad-Cre-injected mice (Fig. 2B). In addition, immunohistochemical staining showed that protein levels of S1PR3 were markedly increased in lung carcinoma specimens of K-Ras^{G12D} transgenic mice (Fig. 2C) when compared with normal lung tissues of wild-type mice. In control, no staining was detected in lung adenocarcinoma specimens of K-Ras^{G12D} transgenic mice when immunohistochemical staining was performed without S1PR3 antibody (data not shown). These data suggest that S1PR3 levels are increased in lung adenocarcinomas.

TGF-β/SMAD3 Signaling Pathway Stimulates S1PR3 Expression—Promoter analysis suggested that the promoter region of S1PR3 contains 16 potential binding elements for the SMAD3 molecule (Fig. 3A, Table 1), a critical signal transducer downstream of TGF-β/SMAD3 receptor signaling. Also, it was shown that K-Ras mutant up-regulated TGF-β, which is required for tumor angiogenesis (34). Therefore, we examined whether the TGF-β/SMAD3 signaling contributes to oncogenic K-Ras mutant-stimulated S1PR3 up-regulation. Ectopic expression of oncogenic K-Ras^{G12V} mutant significantly increased S1PR3 (Fig. 3B and C). Expression of K-Ras^{G12V} did not alter levels of other S1P receptor subtypes. In agreement with a previous study (34), levels of TGF-β were increased in K-Ras^{G12V}-expressing cells (Fig. 3D). Treatments with TGF-β antibody (Fig. 3E) and inhibition of TGF-β receptor I and SMAD3 using compound SB-431542 and SIS3 (Fig. 3F), respectively, abrogated the S1PR3 up-regulation in K-Ras^{G12V}-expressing cells.

Next, we investigated whether TGF-β treatment stimulates S1PR3 expression in lung epithelial cells. HBEC2-KT cells, an immortalized normal human lung epithelial cell line (16), were treated with TGF-β for various times. Quantitative analysis of the expression of S1P receptor subtypes by qPCR analysis showed that TGF-β treatment increased mRNA levels of S1PR3 in a time-dependent manner (Fig. 4A). TGF-β treatment did not affect levels of other subtypes of S1PRs such as S1PR1, S1PR2, and S1PR5. S1PR5 was not detected in HBEC2-KT cells. Also, TGF-β treatment increased protein levels of S1PR3 in HBEC2-KT cells (Fig. 4B). Validation of the specificity of anti-S1PR3 for Western blotting analysis showed that anti-S1PR3 specifically immunoreacted with S1PR3 (Fig. 4C).

Moreover, transduction with adenoviral particles carrying an active form of the TGF-β vector (35–37) effectively increased S1PR3 expression in HBEC2-KT cells when compared with transduction with control adenoviral particles, in ex vivo mouse lung minces (Fig. 4D). Furthermore, TGF-β treatment time-dependently increased levels of Spk1 (Fig. 4E) and S1P production (Fig. 4F) in HBEC2-KT normal lung epithelial cells. TGF-β treatment did not alter levels of Spk2 in HBEC2-KT cells.

Next, we used selective pharmacological inhibitor to investigate the role of SMAD3 in TGF-β-stimulated S1PR3 up-regulation. Inhibition of TGF-β receptor I and SMAD3 using compound SB-431542 and SIS3, respectively, abrogated the TGF-β-stimulated S1PR3 up-regulation (Fig. 4G). In contrast, inhibition of other signaling molecules downstream of TGF-β...
VOLUME 291 • NUMBER 53 •

TGF-β ChIP assay showed that TGF-β SMAD3 binding elements in the promoter region of S1PR3. We designed 16 pairs of primers (Table 1) that amplify these candidate sites in HBEC2-KT lung epithelial cells. Subsequently, we designed allel control experiment, treatment with inhibitor effectively diminished the TGF-β signaling (e.g. NFκB, JNK, and p38 kinase) did not significantly diminish the TGF-β-stimulated S1PR3 up-regulation. In a parallel control experiment, treatment with inhibitor effectively diminished the activation of their respective target following TGF-β stimulation (Fig. 4H). These data suggest that the TGF-β receptor I/Samd3 signaling pathway contributes to the TGF-β-stimulated S1PR3 expression in lung epithelial cells.

Treatment of HBEC2-KT cells with TGF-β markedly stimulated the nuclear accumulation of phosphorylated SMAD3 (Fig. 5A, arrows), indicating that TGF-β treatment activates SMAD3 in HBEC2-KT lung epithelial cells. Subsequently, we designed 16 pairs of primers (Table 1) that amplify these candidate SMAD3 binding elements in the promoter region of S1PR3. ChIP assay showed that TGF-β treatment significantly increased the binding of phospho-SMAD3 to P13, P14, and P15 sites in the promoter region of S1PR3 (Fig. 5B). No specific binding was observed when ChIP assays were performed using irrelevant normal IgG as a control, suggesting that bindings of phospho-SMAD3 are specific.

Next, we used a luciferase reporter assay to examine whether SMAD3 transactivates those candidate SMAD3 binding sites present in the S1PR3 promoter region. As shown in Fig. 5C, SMAD3 activates PGL3-promoter luciferase vector carrying P14, whereas SMAD3 did not activate PGL3-promoter luciferase vector carrying P13 and P15. The luciferase reporter assay is specific, because SMAD3 was unable to activate scrambled P14 (Fig. 5D).

S1PR3 in Lung Adenocarcinoma

TABLE 1

SBE	Sequence	Position	Primer name	Primer sequence
1	GCCAGA	(−2344) to (−2399)	SBE1 F	CCAAGTGGACGAGATTAG
2	TACAGA	(−2200) to (−2195)	SBE2 F	GACACCCACTATGGCAAC
3	TGCAGA	(−2113) to (−2108)	SBE3/4 F	GTTTTAGGTGTCGATTC
4	AACAGA	(−2092) to (−2087)	SBE3/4 R	CACCTCTTCTCCACACCTCC
5	GTCAGA	(−2011) to (−2006)	SBE5/6 F	GAGGTTGAGGAGAGATAG
6	AGCAGA	(−1969) to (−1964)	SBE5/6 R	TCCCAACACAGGGCTTCT
7	TCAGA	(−1849) to (−1845)	SBE7 F	GCCATGAGGAGAGATAG
8	CAGACT	(−1765) to (−1760)	SBE7 R	GCCATAAACCTAGAGGCC
9	ACAGA	(−1610) to (−1606)	SBE9 F	CAACCTTCCAAGTATCCC
10	ACAGA	(−1433) to (−1429)	SBE10/11 F	GTAGGTTCCAACAAAGGG
11	CAGA	(−1418) to (−1415)	SBE10/11 R	CACTTCGCTGGCTACTGTC
12	CCAGA	(−1299) to (−1295)	SBE12/13 F	CACAGTGGCACAGGGAGG
13	CAGA	(−1267) to (−1264)	SBE12/13 R	GCCCTCAGAGGTGGCTG
14	AGACAGA	(−1084) to (−1078)	SBE14 F	GCCCTTCTCTCAGAGAGAG
15	CAGA	(−644) to (−641)	SBE14 R	GGCGGAGGAGTGGCAGC
16	CCAGAC	(−350) to (−345)	SBE16 F	GAATCCGCCCAAACAAAAAC
			SBE16 R	GAATAGGTCGACAGCAACAG

S1PR3 Promotes Lung Adenocarcinoma Progression—We previously showed that S1PR3 activation promotes proliferation, soft agar growth, and invasion of human lung adenocarcinoma cells in vitro (11, 16). Therefore, we utilized animal models to examine the role of S1PR3 in human lung adenocarcinoma progression. Human H1793 lung adenocarcinoma cells, abundantly expressing S1PR3 (16), were stably transfected with sh-S1PR3 or sh-control vectors. Expression of sh-S1PR3 effectively knocked down ~67% of S1PR3 in H1793 cells (Fig. 6A). Moreover, S1PR3 knockdown significantly inhibited tumor growth in a subcutaneous xenograft mouse model (Fig. 6, B and C). Similarly, S1PR3 knockdown diminished lung colonization of H1793 cells, which were injected via the tail vein route (Fig. 6, D and E). In contrast, H1299 human lung adenocarcinoma cells express very low levels of S1PR3 among human lung adenocarcinoma cell lines (16) and are poorly tumorigenic in athymic mice. Ectopic expression of S1PR3 profoundly promoted tumor growth in athymic mice (Fig. 6F). These results suggest that S1PR3 activity promotes tumorigenesis of human lung adenocarcinomas.

Pharmacological Inhibition of S1PR3 Diminishes Lung Adenocarcinoma Growth—Next, we investigated whether treatment with S1PR3 antagonist diminishes the growth of human lung adenocarcinoma cells. C57BL/6 mice were subcutaneously implanted with murine Lewis lung carcinoma (LLC) cells. 1 week after tumor implantation, mice were intraperitoneally injected every 3 days with VPC23019, an antagonist of S1PR1.
and S1PR3 receptors (38). Administration of VPC23019 significantly inhibited tumor growth (Fig. 7A). Lewis lung carcinoma cells predominantly express S1PR3, and S1PR1 is barely detected (Fig. 7B). Thus, the effect of VPC23019 on inhibition of tumor growth is most likely due to its antagonistic activity on S1PR3 present in LLC cells. Indeed, treatment with TY-52156, a highly selective antagonist of S1PR3 (39–41) (Fig. 7C), significantly suppressed the growth of Lewis lung carcinoma cells (Fig. 7, D and E). These results suggest that S1PR3 represents a novel therapeutic target for the treatment of lung carcinomas.

Discussion

We previously showed that levels of S1PR3 are increased in a panel of cultured human lung adenocarcinoma cell lines when compared with normal lung epithelial cells (16). In this report, we observed that mRNA and protein levels of S1PR3 are significantly up-regulated in human lung adenocarcinoma specimens. Our observation is supported by the analysis of Oncomine data sets (42–45) showing that S1PR3 expression correlates with clinical stages (42, 44), EML4-ALK gene fusion (42), lymphatic and perineural invasion (44), metastasis to bone (44), vascular invasion (44), BCL amplification (45), and APC deletion and family history (43) of human lung adenocarcinomas. These data suggest that S1PR3 is up-regulated in human lung adenocarcinomas, and S1PR3 expression correlates with the aggressiveness of lung adenocarcinomas.

Oncogenic K-Ras mutation is found in more than 25% of non-small cell lung cancers (30, 31). In the LS-L-K-RasG12D transgenic mouse model, we found that the expression of K-RasG12D mutant triggered the development of lung cancers and concurrently stimulated the expression of S1PR3. In agreement with our study, Oncomine data sets analysis showed that S1PR3 up-regulation correlates with K-Ras mutation status in human lung cancers (42, 43, 48, 50, 51) (see Genomic Data Commons (https://gdc.cancer.gov)). Mechanistically, our data suggest that the oncogenic K-Ras mutant-stimulated S1PR3 expression is mediated by an autocrine TGF-β/SMAD3 axis in lung epithelial cells. In supporting our observations, it was shown that oncogenic K-Ras mutant stimulated the expression of TGF-β, which plays a critical role in tumor angiogenesis in K-Ras mutant-driven cancers (34). It should be noted that lung cancers driven by K-Ras mutant are generally refractory to chemotherapy as well as targeted agents (31, 52). To date, the identification of drugs to therapeutically inhibit K-Ras mutant has been unsuccessful, suggesting that other approaches are required. We showed that oncogenic K-Ras mutant stimulates S1PR3 expression, suggesting that S1PR3 represents a novel
therapeutic target for the treatment of K-Ras mutant-driven lung cancers.

Previously, we showed that S1PR3 regulates the proliferation, colony formation, and invasiveness of human lung adenocarcinoma cells in vitro (11, 16). In the present study, we utilized animal models to examine the role of S1PR3 in the progression of human lung adenocarcinomas. H1793 human lung adenocarcinoma cells abundantly express S1PR3, and S1PR3 knockdown profoundly abrogated proliferation, colony formation in soft agar, and invasion of tumor cells in vitro (11, 16). Similarly, S1PR3 knockdown significantly inhibited tumor growth in a xenograft model, as well as lung colonization of adenocarcinoma cells in a tail vein implantation model. In contrast, H1299 human lung adenocarcinoma cells express very low levels of S1PR3 among lung adenocarcinoma cell lines (16). Expression of S1PR3 significantly promoted growth of tumor xenograft. These results suggest that the S1PR3-mediated signaling pathways play an important role in promoting the progression of lung adenocarcinoma cells. We previously characterized two S1PR3-mediated signaling pathways that may have functional implications in promoting lung adenocarcinoma progression. We found that S1PR3 activation transcriptionally up-regulates EGFR levels and greatly potentiates the effect of EGF on the proliferation of lung adenocarcinoma cells (16). Moreover, we characterized a novel signaling pathway, namely S1PR3/JNK/AP-1/ETS-1/CD44 axis, which critically regulates the invasiveness of human lung adenocarcinoma cell in vitro (11). Collectively, our studies suggest that S1PR3 represents a potential therapeutic target for the treatment of human lung adenocarcinomas. Indeed, our study using pharmacological inhibitors supports this notion. We found that administration of VPC23019 (an antagonist of S1PR1 and S1PR3 receptors (38)) and TY-52156 (a selective inhibitor of S1PR3 (39–41)) of VPC23019 (an antagonist of S1PR1 and S1PR3 receptors (38)) and TY-52156 (a selective inhibitor of S1PR3 (39–41)) significantly diminished lung tumor growth in xenograft mouse model.

Mechanistically, we showed that TGF-β/SMAD3 signaling pathway transactivates S1PR3/S1PR3 axis in lung epithelial cells. A previous study showed that TGF-β activates sphingosine kinase via a non-SMAD signaling pathway and that the TGF-β/sphingosine kinase axis is important for the migration and invasion of esophageal cancer cells in vitro (53). However, the role of the TGF-β signaling axis on the regulation of S1PRs was not investigated in that study. Moreover, in agreement with our observation, Cencetti et al. (54) showed that TGF-β stimulated S1PR3 expression in C2C12 myoblasts. In contrast to their study, we precisely defined the SMAD3 binding sites on the promoter region of S1PR3 and demonstrated that the TGF-β-stimulated S1PR3 up-regulation is dependent on the SMAD3 signaling molecule. Furthermore, we found that TGF-β con-
comitantly stimulated SphK1 expression and increased S1P production in lung epithelial cells. Collectively, our results suggest that TGF-β activates an autocrine S1P/S1PR3 signaling axis in lung epithelial cells, which may contribute to lung adenocarcinoma progression.

Several tumors, including lung cancers, express high levels of TGF-β (55–57), which correlates with tumor progression and clinical prognosis (58–63). Thus, our observation of the TGF-β-mediated S1PR3 up-regulation in lung cancers is pathologically relevant. In addition, TGF-β plays an important role in regulating the tumorigenic processes including epithelial-mesenchymal transition (17, 20, 64–66) and tumor inflammation (67–72). For example, TGF-β stimulates the expression of pro-inflammatory and pro-tumorigenic cytokine IL-6 (71, 72). Elevated systemic and pulmonary productions of IL-6 are commonly observed in lung adenocarcinoma patients and correlate with poor patient survival (73, 74). Moreover, the TGF-β/IL-6 axis was recently shown to mediate the chemo-resistance in lung cancer (71). Our results show that TGF-β activates the

Experimental Procedures

Reagents—Sphingosine-1 phosphate (Biomol) and VPC23019 (Cayman Chemical) were prepared as micelles by sonication in aqueous solution of fatty acid-free bovine serum albumin (0.4 mg/ml, Sigma). TY-52156 was chemically synthesized as described (39). TGF-β was from R&D Systems. Anti-S1PR3 and anti-phospho-SMAD3 were from Cayman and Abcam, respectively. SB-431542 and SIS3 were purchased from Sigma. Unless specified, other reagents are from Sigma.

Cell Cultures—Immortalized normal human lung epithelial cells (HBEC2-KT and HBEC3-KT) were cultured using keratinocyte-serum free medium (Invitrogen) (75). H1793 human lung adenocarcinoma cells were cultured using HITES medium (RPMI 1640 medium supplemented with hydrocortisone (10 nm), insulin (5 μg/ml), transferrin (100 μg/ml), 17 β-estradiol (10 nm), sodium selenite (30 nm), and 5% fetal bovine serum) (75). H1299 and mouse Lewis lung carcinoma cells were cultured essentially as we described previously (16). Cells were cultured in a humidified atmosphere of 5% CO₂ at 37 °C.

Real-time PCR Analysis—Total RNA was isolated using TRIzol reagent (Invitrogen) and was reverse-transcribed with an oligo(dT) primer (Promega) by Moloney Murine Leukemia Virus (M-MLV) Reverse Transcriptase (Promega) for first-strand cDNA synthesis. For real-time PCR quantitation, 50 ng of reversely transcribed cDNAs were amplified with the ABI 7500 system (Applied Biosystems) in the presence of TaqMan DNA polymerase. The qPCR reaction was performed by using a universal PCR Master Mix (Applied Biosystems) according to the manufacturer’s instructions. The sense and antisense primers used for qPCR analysis are: human and mouse S1PR1, sense, 5′-ATC ATG GCC TGG AAC TGC ATC A-3′, antisense, 5′-CGA GTC CTG ACC AAG GAG TAG AT-3′; human and mouse S1PR2, sense, 5′-CAG ACG GTA CCA CCT CTC AAG A-3′, antisense, 5′-TAG TGG GCT TTG TAG AGG A-3′; human and mouse S1PR3, sense, 5′-CAA ACC GCA TGT ACT TTT TCA T-3′, antisense, 5′-TAC TGC CCT CCC TGA GGA ACC A-3′; human S1PR4, sense, 5′-GGG CCA TCT TCC GCC TGG TG-3′, antisense, 5′-TGC CCC GCA GAT CCT ACT GG-3′; human S1PR5, sense, 5′-GGC GCC CAC CTG TCC TGT AC-3′, antisense, 5′-TCG GGT CTC TGC TG-3′; human and mouse S1PR3, sense, 5′-AAC CCC CTG TGT AGC CTC CC-3′, antisense, 5′-AGC AGG TTG ATG GGT GAC AG-3′; human and mouse SphK1, sense, 5′-AAA CCC CTG TGT AGC CTC CC-3′, antisense, 5′-AGC AGG TTG ATG GGT GAC AG-3′; human and mouse SphK2, sense, 5′-GCA CAGCAA CAG TGA GCA-3′, antisense, 5′-GAG CCT GAG TAG GGA G-3′; porcine TGF-β, sense, 5′-GCA CGT GGA GCT ATA CCA GAA-3′, antisense, 5′-CAT CAA AGG ACA GCA CCT CC-3′; human GADPH, sense, 5′-GAA GGT GAA GGT CGG AGT-3′, antisense, 5′-GAA GAT GAT GAT GGG TTT C-3′; and mouse GADPH, sense, 5′-CAC CTT CGA TGC CGG GGC TG-3′, antisense, 5′-GGC CAT GAG TGC CGG GGC TG-3′, antisense, 5′-GGC CAT GAG TGC CGG GGC TG-3′, antisense, 5′-GGC CAT GAG TGC CGG GGC TG-3′.

cDNA array analysis of mRNA levels of S1PR3 was performed using TissueScan qPCR arrays (HLRT101 and HLRT105, OriGene) following the manufacturer’s instructions. The

FIGURE 7. Inhibition of S1PR3 diminishes lung carcinoma growth. A, C57BL/6 mice were subcutaneously inoculated with LLC cells (1 × 10⁶ cells). 1 week later, mice were intraperitoneally administered with VPC23019 (1.5 mg/kg of body weight) or control vehicle every 3 days. B, S1PR1 and S1PR3 levels in Lewis lung carcinoma cells. –ve, PCR reactions were performed without cDNA. **, p < 0.01, n = 6, ANOVA. C, CHO cells were transduced with adenoviral particles carrying S1PR1, S1PR2, S1PR3, or pcDNA control vector. Cells were serum-starved for 24 h. Subsequently, cells were treated with TY-52156 (10 μM) for 10 min, followed by stimulating with S1P (200 nM, 10 μM). ERK1/2 activation (p-ERK) was measured by Western blotting analysis. D, C57BL/6 mice were subcutaneously inoculated with LLC cells (1 × 10⁶ cells). 1 week later, mice were intraperitoneally administered with TY-52156 (10 mg/kg of body weight) or control vehicle every 2 days. **, p < 0.01, n = 6, ANOVA. E, tumor weights were measured 24 days after implantation. **, p < 0.01, n = 6, ANOVA.
results of adenocarcinomas were extracted, and then analyzed by Student’s t test.

Immunofluorescence Microscopy—Cells were fixed with 4% paraformaldehyde for 30 min, followed by permeabilization with PBS containing 0.05% Triton X-100. After washing three times with PBS, cells were incubated with primary antibody at room temperature overnight. Cells were then washed three times with PBS, and incubated with FITC-conjugated secondary antibody for 1 h. Fluorescence images were captured by the Leica TCS SP5 confocal system (Leica, Wetzlar, Germany).

Immunohistochemical Staining—Human lung carcinoma tumor microarray (TMA) was purchased from Accumax (Accumax 306). Immunohistochemical staining was performed using VECTASTAIN ABC kit (Vector Laboratories, catalog number PK-6200) following the manufacturer’s instructions. Briefly, TMA sections were deparaffinized and dehydrated. Antigen retrieval was performed by microwave irradiation (two cycles of 5 min each) in 10 mM citrate buffer (pH 6.0). TMA was incubated with rabbit polyclonal S1PR3 antibody (1:200, Cayman) for 60 min, and then with biotinylated secondary antibody solution for 30 min and VECTASTAIN ABC Reagent for 30 min at room temperature. Subsequently, sections were incubated with peroxidase substrate (ImmPACT DAB (3,3’-diaminobenzidine), Vector Laboratories, catalog number SK-4105) until the desired stain intensity develops. Levels of S1PR3 were visualized by light microscopy (Leica DMI3000B).

Western Blotting Analysis—Protein extraction and Western blotting were performed as described (11). Briefly, cells were collected in ice-cold PBS using cell scrapers followed by centrifugation (500 × g, 5 min). Cell extracts were prepared with radioimmunoprecipitation assay buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS) containing protease inhibitors (Calbiochem) with constant agitation at 4 °C for 30 min. After centrifugation at 15,000 × g for 20 min, supernatant was collected and protein concentration was measured using a bicinchoninic acid protein assay kit with BSA as standard. 50 μg of protein extracts were dissolved in 2 × Laemmli sample buffer, heated at 95 °C for 5 min, and resolved on a 10% SDS-PAGE gel. After electrophoresis, gels were transferred to nitrocellulose membranes. Subsequently, membranes were blocked in 5% nonfat dry milk (Lab Scientific) in TBST buffer (20 mM Tris-HCl, pH 7.4, 500 mM NaCl, and 0.05% Tween 20). Membranes were washed and incubated with indicated primary antibodies (1:1000 dilution) on a rotary shaker at 4 °C overnight. The blots were then incubated with peroxidase-conjugated secondary antibody for 1 h at room temperature and developed with enhanced chemiluminescent reagent (Thermo Scientific).

ChIP Analysis—The ChIP assay was performed using Pierce Agarose ChIP Kit, following the manufacturer’s instructions. Briefly, 1 × 10⁷ cells were cross-linked with 1% formaldehyde for 10 min. Following the addition of glycine quenching solution, cells were scraped and resuspended in 1× PBS with protease inhibitor cocktails (Calbiochem). Cells were then lysed in lysis buffer, and nuclear lysates were treated with micrococcal nuclease. Lysates were immunoprecipitated with anti-phospho-SMAD3 (Thermo Scientific) at 4 °C overnight. Immunoprecipitation with irrelevant normal IgG was used as a control. Immune complexes were isolated with protein A/G-Sepharose beads at 4 °C for 1 h. After washings, DNA fragments contained in immune complexes were purified, and then amplified by qPCR reactions. Sequences of primer pairs used for ChIP assay of SMAD3 binding to S1PR3 promoter are shown in Table 1.

Luciferase Reporter Assay—Oligonucleotides of candidate SMAD3 binding sites in the S1PR3 promoter region were synthesized, with an overhanging Nhel and SacI restriction site sequence at the 5’-end and 3’-end, respectively, of the antisense strand. Synthesized oligonucleotides are: P13 sense, 5’-GTC AGC AGG CAG AGT CAT TCG C-3’; P13 antisense, 5’-CTA GGC AAG TGA CTC TGC CTG ACA GCT-3’; P14 sense, 5’-GGG CAA AAG ACA GAA GTT AAC C-3’; P14 antisense, 5’-CTA GGG TTA CTT TCT GTC TTT TCG CCA GCT-3’; P15 sense, 5’-GTG CAC CAG CAG AGG CTG GGG C-3’; P15 antisense, 5’-CTA GGC CCC AGC CTC TGC TGG TGC ACA GCT-3’; Scramble P14 sense, 5’-GGG CAA ATG GCG AAA AGT AAC C-3’; Scramble P14 antisense, 5’-CTA GGG TTA CTT TCT GCC ATT TGC CCA GCT-3’. Equimolar amounts of sense and antisense oligonucleotides were mixed at 95 °C for 5 min, followed by cooling to room temperature. Annealed double-strand oligonucleotides were ligated with Nhel- and SacI-digested pGL3-promoter luciferase reporter vector (Promega). Recombinant luciferase vectors were verified by DNA sequencing.

HEK293 cells were co-transfected with recombinant pGL3 luciferase vector, pcDNA-SMAD3 (47) or empty pcDNA plasmids, and pRL-null vector (Promega) carrying the Renilla luciferase gene (5:5:1) by using Lipoctamine 2000 reagent (Life Technologies). 24 h after transfection, both firefly and Renilla luciferase activities were measured with the Dual-Luciferase Reporter Assay System (Promega) using a SpectraMax M3 Multi-mode Microplate Reader (Molecular Devices). Firefly luciferase activities (M1) were normalized to Renilla luciferase activities (M2).

Sphingolipid Measurement by LC-MS/MS—Sphingolipids were extracted from culture medium as we described previously (29, 46). Samples were filtered through 0.45-μm nylon filters directly into auto sampler vials for LC-MS/MS analysis. Reverse phase HPLC was performed using BDS HYPERSIL C8 columns (100 × 2.1 mm, 2.4 μm, Thermo Scientific) and gradient elution on Waters Alliance 2695 system (Waters Corp.). The mobile phase consisted of methanol, water, and ammonium formate. Solvent A was 2 mM ammonium formate in methanol with 0.2% formic acid. The column was equilibrated with solvent A for 5 min. Samples were injected using the autosampler (an integral part of the Waters Alliance 2695 system) maintained at 10 ± 2 °C. The injection volumes were 80 μl for each sample. A complete injection of each sample took 7 min including column equilibration. The flow rate was 0.3 ml/min. The HPLC eluent was directly introduced to Quattro LC mass spectrometer (Micromass, Waters), equipped with an electrospray ion source that was used for ESI-MS/MS. The ESI-MS/MS experiments for the quantitation of sphingolipids were carried out in the positive ion mode with ESI needle voltage, 2.8 kV; source block temperature, 120 °C; desolation temperature, 350 °C; desolation gas flow, 540 liters/h; nebulizer gas flow, 80 liters/h; and collision gas pressure, 3.2 × 10⁻⁴ bars. Cone volt-
age and collision energy for each multiple reaction monitoring transition were optimized. Chromatographic data were analyzed by the QuanLynx module of the MassLynx software (Waters) to integrate the chromatograms for each multiple reaction monitoring transition.

Tumor Growth and Lung Colonization in Mice—All animal procedures were performed according to the National Institutes of Health and institutional guidelines, and were approved by the Wayne State University Animal Use and Care Committee. For subcutaneous implantation, lung carcinoma cells were adjusted to 1×10^7 cells/ml. Mice were injected with 0.1 ml of cell suspension into the subcutaneous dorsa in the proximal midline. Alternatively, 1×10^6 cells (in 50 µl) were injected via the tail vein route. NOD-Scid mice (8 weeks old, female, Harlan) were used for H1299 cells, and C57BL/6 mice (8 weeks old, female, The Jackson Laboratory) were used for Lewis lung carcinoma cells. Tumor volume was measured in two dimensions using calipers, and volume was determined using the formula $\text{width}^2 \times \text{length} \times 0.52$ (49). For VPC23019 treatment, mice were randomized into two groups (six animals per group) 1 week after inoculation of tumor cells. One group of mice was intraperitoneally injected with VPC23019 (1.5 mg/kg of body weight), and the other was injected with 100 µl of 0.4% BSA (vehicle control) every 3 days. For TY-52156 treatment, mice were randomized into two groups (six animals per group) every 2 days.

Statistical Analysis—Results are shown as mean ± S.D. Differences between paired samples were analyzed by Student’s t test. ANOVA analysis was performed to analyze tumor progression in mouse experiments. p value < 0.01 is considered highly significant, and $p < 0.05$ is considered statistically significant.

Author Contributions—J. Z., J. L., J. F. L., W. Z., and M. K. designed the study and conducted experiments. G. C. V. and Y. H. A. chemically synthesized TY-52156. S. C. prepared research reagents, F. L. conducted experiments. G. C. V. and Y. H. A. chemically synthesized TY-52156. S. C. prepared research reagents, F. L. conducted experiments. G. C. V. and Y. H. A. chemically synthesized TY-52156. S. C. prepared research reagents, F. L. conducted experiments.

Acknowledgments—We are grateful for the generous gift of adenoviral particles carrying active TGF-β from Dr. Jack Gauldie (Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada).

References

1. Siow, D. L., Anderson, C. D., Berdyshev, E. V., Skobeleva, A., Natrajan, V., Pitson, S. M., and Wattenberg, B. W. (2011) Sphingosine kinase localization in the control of sphingolipid metabolism. *Adv. Enzyme Regul.* 51, 229–244

2. Lee, M. J., Van Brocklyn, J. R., Thangada, S., Liu, C. H., Hand, A. R., Menzleeve, R., Spiegel, S., and Hla, T. (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. *Science* 279, 1552–1555

3. Hait, N. C., Allegood, J., Maceyka, M., Strub, G. M., Harikumar, K. B., Singh, S. K., Luo, C., Marmostein, R., Kordula, T., Milstien, S., and Spiegel, S. (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. *Science* 325, 1254–1257

4. Alvarez, S. E., Harikumar, K. B., Hait, N. C., Allegood, J., Strub, G. M., Kim, E. Y., Maceyka, M., Jiang, H., Luo, C., Kordula, T., Milstien, S., and Spiegel, S. (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. *Nature* 465, 1084–1088

5. Lee, M. J., Thangada, S., Claffey, K. P., Ancellin, N., Liu, C. H., Kluk, M., Volpi, M., Sha’afi, R. L., and Hla, T. (1999) Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. *Cell* 99, 301–312

6. Green, J. A., Suzuki, K., Cho, B., Willison, L. D., Palmer, D., Allen, C. D., Schmidt, T. H., Xu, Y., Proia, R. L., Coughlin, S. R., and Cyster, J. G. (2011) The sphingosine 1-phosphate receptor SIP1, maintains the homeostasis of germinal center B cells and promotes niche confinement. *Nat. Immunol.* 12, 672–680

7. Jenne, C. N., Enders, A., Rivera, R., Watson, S. R., Bankovich, A. J., Pereira, J. P., Xu, Y., Roots, C. M., Beilke, J. N., Barnerjee, A., Reiner, S. L., Miller, S. A., Weinmann, A. S., Goodnow, C. C., Lanier, L. L., Cyster, J. G., and Chun, J. (2009) T-bet-dependent SIP1 expression in NK cells promotes egress from lymph nodes and bone marrow. *J. Exp. Med.* 206, 2469–2481

8. Lee, M. J., Thangada, S., Paik, J. H., Sapkota, G. P., Ancellin, N., Chae, S. S., Wu, M., Morales-Ruiz, M., Sessa, W. C., Alessi, D. R., and Hla, T. (2001) Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. *Mol. Cell* 8, 693–704

9. An, S., Goetzl, E. J., and Lee, H. (1998) Signaling mechanisms and molecular characteristics of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate. *J. Cell. Biochem. Suppl.* 30–31, 147–157

10. Estrada, R., Zeng, Q., Lu, H., Sarojini, H., Lee, J. F., Mathis, S. P., Sanchez, T., Wang, E., Kontos, C. D., Lin, C. Y., Hla, T., Haribabu, B., and Lee, M. J. (2008) Up-regulating sphingosine 1-phosphate receptor-2 signaling impairs chemotactic, wound-healing, and morphogenetic responses in neocentse endothelial cells. *J. Biol. Chem.* 283, 30363–30375

11. Zhang, W., Zhao, J., Lee, J. F., Gartung, A., Jawadi, H., Lambiv, W. B., Hoon, K. V., and Lee, M. J. (2013) ETS-I-mediated transcriptional up-regulation of CD44 is required for sphingosine-1-phosphate receptor subtype 3-stimulated chemotaxis. *J. Biol. Chem.* 288, 32126–32137

12. Yester, J. W., Tizazu, E., Harikumar, K. B., and Kordula, T. (2011) Extrafolicular and intracellular sphingosine-1-phosphate in cancer. *Cancer Metastasis Rev.* 30, 577–597

13. Pyne, N. J., Tonelli, F., Lim, K. G., Long, J. S., Edwards, J., and Pyne, S. (2012) Sphingosine 1-phosphate signalling in cancer. *Biochem. Soc. Trans.* 40, 94–100

14. Furuya, H., Shimizu, Y., and Kawamori, T. (2011) Sphingolipids in cancer. *Cancer Metastasis Rev.* 30, 567–576

15. Aoyagi, T., Nagahashi, M., Yamada, A., and Takabe, K. (2012) The role of sphingosine-1-phosphate in breast cancer tumor-induced lymphangiogenesis. *Lymphat. Res. Biol.* 10, 97–106

16. Hsu, A., Zhang, W., Lee, J. F., An, J., Ekambaram, P., Liu, J., Hoon, K. V., Klinge, C. M., and Lee, M. J. (2012) Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. *Int. J. Oncol.* 40, 1619–1626

17. Papageorgis, P. (2015) TGFβ signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. *J. Oncol.* 2015, 587193

18. Norwink, K., Sotai, S. S., Peterson, G., Patel, R., and Walters, E. H. (2014) Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer. *Expert Rev. Respir. Med.* 8, 547–559

19. Giannelli, G., Villa, E., and Lahn, M. (2014) Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. *Cancer Res.* 74, 1890–1894

20. Derynck, R., Muthusamy, B. P., and Saeuarne, K. Y. (2014) Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. *Curr. Opin Cell Biol.* 31, 56–66

21. Fuse, J., and Karlsson, M. C. (2012) TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation. *Semin. Cancer Biol.* 22, 455–461
S1PR3 in Lung Adenocarcinoma

22. Nalluri, S. M., O’Connor, J. W., and Gomez, E. W. (2015) Cytoskeletal signaling in TGFβ-induced epithelial-mesenchymal transition. *Cytoskeleton* (Hoboken) **72**, 557–569

23. Mantel, P. Y., and Schmidt-Weber, C. B. (2011) Transforming growth factor-β: recent advances on its role in immune tolerance. *Methods Mol. Biol.* **677**, 303–338

24. Nagaraj, N. S., and Datta, P. K. (2010) Targeting the transforming growth factor-β signaling pathway in human cancer. *Expert Opin. Investig. Drugs* **19**, 77–91

25. Derynck, R., Akhurst, R. J., and Balmain, A. (2001) TGF-β signaling in tumor suppression and cancer progression. *Nat. Genet.* **29**, 117–129

26. Yamanaka, M., Sheogue, D., Pei, H., Bu, S., Bielaswa, A., Bielawi, J., Pettus, B., Hannun, Y. A., Obeid, L., and Trojanowska, M. (2004) Sphingosine kinase 1 (SPHK1) is induced by transforming growth factor-β and mediates TIMP-1 up-regulation. *J. Biol. Chem.* **279**, 53994–54001

27. Xin, C., Ren, S., Kleuser, B., Shabahang, S., Eberhardt, W., Radeke, H., Schäfer-Korting, M., Pfleischfeder, J., and Huwiler, A. (2004) Sphingosine-1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-β-induced cell responses. *J. Biol. Chem.* **279**, 35255–35262

28. Su, B., Kapanadze, B., Hsu, T., and Trojanowska, M. (2008) Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-β/smad signaling are mediated through the PTEN/PI(3)K/AKT-dependent pathway. *J. Biol. Chem.* **283**, 19593–19602

29. Zhang, W., An, J., Jawadi, H., Siow, D. L., Lee, J. F., Zhao, J., Gartung, A., Maddipati, K. R., Honn, K. V., Wattenberg, B. W., and Lee, M. I. (2013) Sphingosine-1-phosphate receptor-2 mediated NFκB activation contributes to tumor necrosis factor-α induced VCA-1 and ICAM-1 expression in endothelial cells. *Prostaglandins Other Lipid Mediat.* **106**, 62–71

30. Sholl, L. M., Aisner, D. L., Varella-Garcia, M., Berry, L. D., Dias-Santagata, D., Wistuba, I. I., Chen, H., Fujimoto, J., Kugler, K., Franklin, W. A., Iafrate, A. R., Jacks, T., and Tuveson, D. A. (2001) Analysis of lung tumor initiation and progression of small-cell lung cancer: The Lung Cancer Mutation Consortium Experience. *Clin. Cancer Res.* **7**, 704–713

31. Xin, C., Ren, S., Kleuser, B., Shabahang, S., Eberhardt, W., Radeke, H., Schäfer-Korting, M., Pfleischfeder, J., and Huwiler, A. (2004) Sphingosine-1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-β-induced cell responses. *J. Biol. Chem.* **279**, 35255–35262

32. Jackson, E. L., Willis, N., Mercer, K., Bronson, R. T., Crowley, D., Montoya, J., R., Dressman, H. K., West, M., and Nevins, J. R. (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. *Nature* **439**, 353–357

33. Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, D. M., Cibulskis, K., Sougnez, C., Greulich, H., Muzny, D. M., Morgan, B. M., Fulton, L., Fulton, R. S., Zhang, Q., Wendl, M. C., Lawrence, M. S., et al. (2008) Somatic mutations affect key pathways in lung adenocarcinoma. *Nature* **455**, 1069–1075

34. Larsen, J. E., Pavey, S. I., Passmore, L. H., Bowman, R., Clarke, B. E., Hayward, N. K., and Fong, K. M. (2007) Expression profiling defines a recurrent signature in lung squamous cell carcinoma. *Carcinogenesis* **28**, 760–766

35. Olejniczak, E. T., Van Sant, C. A., Anderson, M. G., Wang, G., Tahir, S. K., Sauter, G., Lesniewski, R., and Semizarov, D. (2007) Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to Bcl-2 antagonists and uncovers novel chromosomal gains. *Mol. Cancer Res.* **5**, 331–339

36. Zhang, W., Mottillo, E. P., Zhao, J., Gartung, A., VanHecke, G. C., Lee, J. F., Maddipati, K. R., Xu, H., Ahn, Y. H., Proia, R. L., Granneman, J. G., and Lee, M. I. (2014) Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity. *J. Biol. Chem.* **289**, 32178–32185

37. Xie, W. B., Li, Z., Miano, J. M., Long, X., and Chen, S. Y. (2011) Smad3-mediated myocardin silencing: a novel mechanism governing the initiation of smooth muscle differentiation. *J. Biol. Chem.* **286**, 15050–15057

38. Okayama, H., Kohno, T., Ishii, Y., Shimada, Y., Shiraishi, K., Iwakawa, R., Furuta, K., Tsuta, K., Shibata, T., Yamamoto, S., Watanabe, S., Sakamoto, H., Kumamoto, K., Takenoshita, S., Gotoh, N., et al. (2012) Identification of genes upregulated in ALK-positive and EGF-R/ALK-negative lung adenocarcinomas. *Cancer Res.* **72**, 100–111

39. Yamamoto, H., Toyooka, S., and Mitsudomi, T. (2009) Impact of EGFR mutation analysis in non-small cell lung cancer. *Lung Cancer* **63**, 315–321

40. Selamat, S. A., Chung, B. S., Girard, L., Zhang, W., Zhang, Y., Campan, M., Siegmund, K. D., Koss, M. N., Hagen, J. A., Lam, W. L., Lam, S., Gazdar, A. F., and Ladai-Offringa, I. A. (2012) Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. *Genome Res.* **22**, 1197–1211

41. Yauch, R. L., Januario, T., Eberhard, D. A., Cavet, G., Zhu, W., Fu, L., Pham, T. Q., Soriano, R., Stinson, J., Seshagiri, S., Modrusan, Z., Lin, C. Y., O’Neill, V., and Amler, L. C. (2005) Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. *Clin. Cancer Res.* **11**, 8686–8698

42. Riely, G. J., Marks, J., and Pao, W. (2009) KRAS mutations in non-small cell lung cancer. *Proc. Am. Thorac. Soc.* **6**, 201–205

43. Miller, A. V., Alvarez, S. E., Spiegel, S., and Lebman, D. A. (2008) Sphingosine kinases and sphingosine-1-phosphate are critical for transforming growth factor-β-induced extracellular signal-regulated kinase 1 and 2 activation and promotion of migration and invasion of esophageal cancer cells. *Mol. Cell. Biol.* **28**, 4142–4151

44. Cencetti, F., Bernacchioni, C., Nincheri, P., Donati, C., and Bruni, P. (2010) Transforming growth factor-β1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/SIP3 axis. *Mol. Biol. Cell* **21**, 1111–1124
55. Barthelemy-Brichant, N., David, J. L., Bosquée, L., Bury, T., Seidel, L., Albert, A., Bartsch, P., Baugnit-Mahieu, L., and Deneufbourg, J. M. (2002) Increased TGF-β1 plasma level in patients with lung cancer: potential mechanisms. Eur. J. Clin. Invest. 32, 193–198

56. Domagała-Kulawik, J., Hozer, G., Safianowska, A., Grubek-Jaworska, H., and Chazan, R. (2006) Elevated TGF-β1 concentration in bronchoalveolar lavage fluid from patients with primary lung cancer. Arch. Immunol. Ther. Exp. (Warsz.) 54, 143–147

57. Lee, J. C., Lee, K. M., Kim, D. W., and Heo, D. S. (2004) Elevated TGF-β and integrin αvβ3 are associated with disease progression. J. Clin. Invest. 114, 2079–2089

58. Hasegawa, Y., Takanashi, S., Kanehira, Y., Tsushima, T., Imai, T., and Kaibara, N. (1999) The expression of transforming growth factor-β1 in patients with colorectal cancer. Mol. Cancer Res. 1, 733–740

59. Bruna, A., Darken, R. S., Rojo, F., Ocata, A., Peñuelas, S., Arias, A., Paris, R., Tortosa, A., Mora, J., Baselga, J., and Seoane, J. (2009) High TGFB-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 15, 147–160

60. Saitoh, M. (2015) Epithelial-mesenchymal transition is regulated at post-transcriptional levels by transforming growth factor-β signaling during tumor progression. Cancer Sci. 106, 481–488

61. Levy, L., and Hill, C. S. (2006) Altered expression of components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 17, 41–58

62. Wikström, P., Stattin, P., Franck-Lissbrant, I., Damber, J. E., and Bergh, A. (1998) Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 37, 19–29

63. Levy, L., and Hill, C. S. (2006) Altered expression of components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 17, 41–58

64. Yu, H., Shen, Y., Hong, J., Xia, Q., Zhou, F., and Liu, X. (2015) The contribution of TGF-β in epithelial-mesenchymal transition (EMT): down-regulation of E-cadherin via snail. Neoplasma 62, 1–15

65. Wang, Y., Shi, J., Chai, K., Ying, X., and Zhou, B. P. (2013) The role of Snail in EMT and tumorigenesis. Curr. Cancer Drug Targets 13, 963–972

66. Saitoh, M. (2015) Epithelial-mesenchymal transition is regulated at post-transcriptional levels by transforming growth factor-β signaling during tumor progression. Cancer Sci. 106, 481–488

67. Yang, L. (2010) TGFβ and cancer metastasis: an inflammation link. Cancer Metastasis Rev. 29, 263–271

68. Tian, M., Neil, J. R., and Schiemann, W. P. (2011) Transforming growth factor-β and the hallmarks of cancer. Cell. Signal. 23, 951–962

69. Naber, H. P., ten Diijke, P., and Pardali, E. (2008) Role of TGF-β in the tumor stroma. Curr. Cancer Drug Targets 8, 466–472

70. Hong, S., Lee, H. J., Kim, S. J., and Hahm, K. B. (2010) Connection between inflammation and carcinogenesis in gastrointestinal tract: focus on TGF-β signaling. World J. Gastroenterol. 16, 2080–2093

71. Yao, Z., Fenoglio, S., Gao, D. C., Camiolo, M., Stiles, B., Lindsted, T., Schlederer, M., Johns, C., Altorki, N., Mittal, V., Kenner, L., and Sordella, R. (2010) TGF-β/IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc. Natl. Acad. Sci. U.S.A. 107, 15535–15540

72. Chen, M. F., Wang, W. H., Lin, P. Y., Lee, K. D., and Chen, W. C. (2012) Significance of the TGF-β1/IL-6 axis in oral cancer. Clin. Sci. (Lond.) 122, 459–472

73. Yanagawa, H., Sone, S., Takahashi, Y., Haku, T., Yano, S., Shinozawa, T., and Ogura, T. (1995) Serum levels of interleukin 6 in patients with lung cancer. Br. J. Cancer 71, 1095–1098

74. Haura, E. B., Livingston, S., and Coppola, D. (2006) Autocrine interleukin-6/interleukin-6 receptor stimulation in non-small-cell lung cancer. Clin. Lung Cancer 7, 273–275

75. Ivanova, M. M., Mazhawidza, W., Dougherty, S. M., Minna, J. D., and Klinge, C. M. (2009) Activity and intracellular location of estrogen receptors α and β in human bronchial epithelial cells. Mol. Cell. Endocrinol. 305, 12–21