Physicians’ Perceptions of Visual Clot (Situation Awareness-oriented Visualization Technology for Viscoelastic blood coagulation management): Mixed Methods Study

Roche, Tadzio Raoul; Said, Sadiq; Rössler, Julian; Gozdzik, Malgorzata; Meybohm, Patrick; Zacharowski, Kai; Spahn, Donat R; Nöthiger, Christoph B; Tscholl, David W

DOI: https://doi.org/10.2196/19036

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-192938
Journal Article
Accepted Version

Originally published at:
Roche, Tadzio Raoul; Said, Sadiq; Rössler, Julian; Gozdzik, Malgorzata; Meybohm, Patrick; Zacharowski, Kai; Spahn, Donat R; Nöthiger, Christoph B; Tscholl, David W (2020). Physicians’ Perceptions of Visual Clot (Situation Awareness-oriented Visualization Technology for Viscoelastic blood coagulation management): Mixed Methods Study. JMIR Serious Games, 8(4):e19036.
DOI: https://doi.org/10.2196/19036
Physicians’ Perceptions of Visual Clot (Situation Awareness-oriented Visualization Technology for Viscoelastic Blood Coagulation Management): Mixed Methods Study.

Tadzio Raoul Roche1*, Sadiq Said1*, Julian Rössler1, Malgorzata Godzik1, Patrick Meybohm2, Kai Zacharowski3, Donat R. Spahn1, Christoph B. Nöthiger1, David W. Tscholl1

1Institute of Anesthesiology, University of Zurich and University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland

2Department of Anesthesiology, University Hospital Würzburg, Würzburg, Germany

3Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt/Main, Germany

* Contributed equally and share first authorship

Corresponding author:
David W. Tscholl, M.D.
Institute of Anesthesiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
Phone: +41 (0)44 253 94 51, Fax: +41 (0)44 255 44 09
E-mail: David.Tscholl@usz.ch
Abstract

Background: Viscoelastic tests enable a time-efficient analysis of coagulation properties. An important limitation of viscoelastic tests is the complicated presentation of their results in the form of abstract graphs with a multitude of numbers. We developed Visual Clot to simplify the interpretation of presented clotting information. This visualization technology applies user-centered design principles to create an animated model of the blood clot during the current hemostatic cascade. In a previous simulation study, we found Visual Clot to double diagnostic accuracy, reduce time to decision making, and perceived workload, and improve care providers’ confidence.

Objective: This study aimed to investigate the opinions of physicians on Visual Clot technology. It further aimed to assess its strengths, limitations and its clinical applicability as a support tool for coagulation management.

Methods: This is a researcher-initiated, international, double-center mixed qualitative quantitative study including the anesthesiologists and intensive care physicians who participated in the previous Visual Clot study. After the participants solved six coagulation scenarios using Visual Clot, we questioned them about the perceived pros and cons of this new tool. Employing qualitative research methods, we identified recurring answer patterns, and derived major topics and subthemes through inductive coding. Based on them, we defined six statements. The study participants rated their agreement to these statements later on five-point Likert scales in an online survey, providing the quantitative part of this study.

Results: A total of sixty physicians participated in the primary Visual Clot study. Thirty-six of them gave an interview, and forty-two completed the online survey. In total, eight different major topics were derived from the interview field note responses. The three most common topics were “positive design features” (29 of 36, 81%), “facilitates decision making” (17 of 36, 47%), and “quantification not made” (17 of 36, 47%). In the online survey, ninety-three percent (39 of 42) agreed to the statement that Visual Clot is intuitive and easy to learn. Ninety percent (38 of 42) of the participants agreed that they would like the standard result, and Visual Clot displayed on the screen side by side. Eighty-six percent (36 of 42) indicated that Visual Clot allows them to deal with complex coagulation situations more quickly.

Conclusions: A group of anesthesia and intensive care physicians from two University hospitals in central Europe considered Visual Clot technology to be intuitive, easy to learn, and useful for decision making in situations of active bleeding. From the responses of these possible future users, Visual Clot appeared to constitute an efficient and well-accepted way to streamline the decision making process in viscoelastic test based coagulation management.

Keywords

Blood coagulation; hemostasis; blood coagulation tests; point-of-care; ROTEM; Visual Clot; decision making; survey and questionnaires; situation awareness; user-centered design; qualitative research; visualization; avatar
Introduction

For optimal perioperative bleeding management, a quick and reliable assessment of the patient’s blood coagulation function is of utmost importance [1-3]. As laboratory coagulation testing can take more than an hour [4] to produce results, viscoelastic point-of-care devices such as rotational thromboelastometry (ROTEM, Instrumentation Laboratory/Werfen Bedford, MA, USA) and thromboelastography (TEG, Haemonetics, Boston, MA, USA) play an important role in guiding hemostatic interventions in a time-efficient manner [5]. Previous studies showed that the utilization of viscoelastic testing can improve patient outcome in bleeding trauma patients [3, 6-9]. Hence, the European guidelines on trauma management recommend viscoelastic testing to enable goal-directed bleeding management [10]. Furthermore, viscoelastic point-of-care coagulation testing reduces the transfusion of allogeneic blood products in trauma [2, 10]. Previous studies also showed benefits of its use in cardiac [1, 11, 12], transplant [13], neuro [14], and pediatric surgery [5].

However, the abstract presentation of the viscoelastic test results complicates its handling in clinical routine. This in turn shows the demand for a tool that facilitates the interpretation of viscoelastic readings. To serve this apparent need, Visual Clot technology [15] was developed. Visual Clot is an alternative situation awareness-oriented visualization technology created adhering to the principles of user-centered design [16]. Instead of abstract shapes and a multitude of numbers, as in the conventional presentation of the ROTEM results, Visual Clot technology displays a three-dimensional, animated model of the blood clot that corresponds to the real phenomena one would see when looking at the blood clot through an electron microscope. In an international, dual center study [15], Visual Clot technology enabled the participating physicians to make twice as many correct diagnoses, quicker, with improved diagnostic confidence, and with reduced perceived cognitive workload compared to standard viscoelastic test results.

This study aimed to explore and capture the opinions of the 60 anesthesiologists and intensive care specialists of the previous Visual Clot study [15] on this new visualization technology. Its results will help define the strengths and limitations of this visual decision aid. Further, this study examines the
applicability of Visual Clot as an additional tool for coagulation management from the viewpoint of its potential future users.
Methods

The leading ethics committee, the Cantonal Ethics Committee of the Canton of Zurich in Switzerland, reviewed the study protocol and issued a declaration of no objection (Business Management System for Ethics Committees Number 2018-00933). We obtained written informed consent from each participant for the use of their data.

Study design

We conducted this study at the University Hospital Frankfurt (UKF) in Germany and the University Hospital Zurich (USZ) in Switzerland. We included anesthesiologists and intensive care physicians from these two hospitals. Both study centers routinely use ROTEM-guided hemostatic resuscitation.

This study is a researcher-initiated, international, dual center, mixed qualitative quantitative study about the opinions of anesthesia and intensive care physicians regarding Visual Clot technology. The methods employed included interviewing physicians after their first contact with Visual Clot technology and jointly generating field notes based on their answers. Further, we created statements derived from these field note responses and asked the same group of physicians to rate the statements in an online survey.

Previous Visual Clot study and participant interviews

We held interviews for the qualitative part of this study at the end of the data collection sessions of the previously published Visual Clot study. In mentioned study, the participating physicians evaluated 12 coagulation scenarios in randomized order. They solved each scenario twice, once only observing Visual Clot and once only using the conventional viscoelastic test results. Before the testing took place, the participants received a brief individual training and subsequently solved six scenarios using Visual Clot to become familiar with its features. We based the individual training on a Microsoft PowerPoint presentation (Microsoft Corporation, Redmond, WA, USA). This aimed to explain all visualizations of Visual Clot and enabled the participants to ask questions in case of uncertainties. Multimedia Appendix 1 shows the training video for the current version of Visual Clot. Figure 1 explains and illustrates some visualizations of Visual Clot technology.

In an undisturbed environment, we asked the physicians about the advantages and disadvantages of Visual Clot. There was no further guidance by the investigators, who all had previous experience with
qualitative research. While the physicians were encouraged to freely verbalize their thoughts, the data collector simultaneously took field notes in a Microsoft Word (Microsoft Corporation, Redmond, WA, USA) document. After the interview session, the field notes were presented to the participants. They were asked whether they agreed with them and were encouraged to determine final adjustments and changes.

Figure 1. This graphic illustrates Visual Clot technology. A: The different coagulation components that Visual Clot represents as either present or absent (when dashed). B: A healthy Visual Clot with all coagulation elements present in sufficient quantity. C: A bleeding Visual Clot with heparin effect. D: A bleeding Visual Clot indicating the absence of plasmatic factors.

![Figure 1](image)

Qualitative analysis

We used a template approach in the qualitative analysis [17]. This involves grouping topics using a coding template. The topics are often predefined in advance. During further data analysis, new topics are added or existing ones are revised [17]. First we translated the original answers from German to
English using Deepl.com (DeepL GmbH, Cologne, Germany). All translated field notes are available as Multimedia Appendix 2. After translation, we used Microsoft Word to identify the most common words and created a tag cloud (Figure 2) as its quantitative graphic illustration using Wordle.net. We ignored common English words such as “the, and, to”, and unified word groups with the same word root. The two physicians and study authors TRR and DWT were both involved in the qualitative analysis of the field notes. TRR is a resident anesthesiologist who did not partake in the interviewing process. Study author DWT is a senior anesthesiologist with previous experience in qualitative and patient safety research. Adhering to the criteria for reporting qualitative research [18], TRR and DWT developed a coding template as a rating system, using both the word count and inductive coding based on recurring topics in the field note responses. We modified the initial coding template by successive reading, coding of the data and discussions with other authors. After multiple data coding, we agreed upon a final template. The two study authors mentioned above then independently rated all field notes using illustrated final coding template, which we provide in Figure 3. Inter-rater reliability was calculated to investigate the consistency of the implementation of the rating system. In cases of disagreement between these two examiners, a final code for the respective field note response was jointly determined.

Quantitative analysis

Literature provides several arguments why qualitative data could be combined with a quantitative analysis. One of the reasons for this is that quantitative data can help to generalize and confirm specific observations made in a qualitative analysis [19]. To further examine the qualitative research part of this study and Visual Clot applicability, we performed a quantitative assessment of the derived statements using a Web-based online survey. We defined six, partially generalized statements and asked the participants to rate them on five point Likert scales ranging from “strongly disagree” to “strongly agree”. Out of all six statements, four directly refer to the previously identified major topics. We specifically added two additional statements to the questioning which we considered necessary. These two aimed to get at a deeper understanding of Visual Clot technology applicability. Using SurveyMonkey (SVMK Inc., San Matteo, CA, USA), we created the open online survey and tested its usability before sending the study link via e-mail to all physicians who participated in the previous Visual Clot study and still worked at the respective institutions. We informed the participants that the survey takes about one
minute to fill out. Participation was voluntary, no incentives were offered and no personal identifying information was collected. The participants were able to review and change their answers before completion. A single reminder to complete the survey was sent after two weeks. Multimedia Appendix 3 displays the translated wording of the survey invitation announcement as well as the reminder mail. We completed the data collection one week after the reminder period expired.

Statistical analysis

We provide the quantitative analysis of the online survey as median and interquartile ranges of all statements. Using the Wilcoxon signed-rank test, we evaluated the difference between the median for each of the statements and the neutral answer. We considered $P < .05$ to indicate statistical significance. The qualitative part of this study aimed to identify the pros and cons using the new visualization technology. With the evaluated statements of the online survey, we aimed to further quantify the agreement or disagreement. This procedure additionally increases the relevance of the statements made.

Data Sharing Statement

The translated interview field notes are available as Multimedia Appendix 2. We report all other data in this manuscript.
Results

Study and participant characteristics

This study includes the same participants as the previous Visual Clot study [15]. A total of 60 anesthesia and intensive care physicians participated, half of them working at USZ and the other half at UKF. After collecting data from the first 24 participants of the Visual Clot study, we decided to conduct systematic interviews as we found that the participants gave very informative feedback on the technology. We interviewed all of the participants at the UKF and six participants at the USZ, making it a total of 36 out of 60 (60%). Regarding the Web-based online survey, we sent out the study link as an invitation to all physicians who still worked at the respective institutions. We checked the IP address displayed on the SurveyMonkey website to identify potential duplicate entries from the same user. Since the computers in the hospitals are shared and the workspace usually only changes daily, we considered a difference of at least 24 hours appropriate for entries from the same IP address. Of all invitations sent out for the online survey, the participation rate was 42 out of 49 (86%). Table 1 further outlines the study and participant characteristics in detail.

Table 1. Study and participant characteristics. $M =$ mean; IQR = interquartile range; ROTEM = Rotational thromboelastometry. $N1 = 60$, $N2 = 49$, and $N3 = 42$ respectively.

Study characteristics	Values
Total number of participants, $N1$	60
Total number of interviewed participants (field notes), n of $N1$ (%)	36 of 60 (60)
Online survey participation rate, n of $N2$ (%)	42 of 49 (86)
Online survey completion rate, n of $N3$ (%)	42 of 42 (100)

Participant characteristics	Values
Female sex, n of $N1$ (%)	23 of 60 (38)
Senior physicians, n of $N1$ (%)	35 of 60 (58)
Resident physicians, n of $N1$ (%)	25 of 60 (42)
Anesthesia experience in years, M (IQR)	8, IQR 4-11
Number of annually interpreted ROTEM readings per physician, M (IQR)	40, IQR 10-53
Part I: Qualitative analysis of interview answers

The analysis of the word count showed the following twelve most frequently occurring words or word groups in the participants’ field note responses: visual/visualization/visually (24 of 36 participants, 67%), easy/easier/easily (18 of 36 participants, 50%), ROTEM (18 of 36 participants, 50%), interpretation/interpret/interpreting (13 of 36 participants, 36%), presentation (12 of 36 participants, 33%), good (11 of 36 participants, 31%), clear (11 of 36 participants, 31%), simple/simplification/simplicity (10 of 36 participants, 28%), understand/understood/understandable (10 of 36 participants, 28%), quick/quicker/quickly (6 of 36 participants, 17%), cut-off/cut-off values (6 of 36 participants, 17%), and hyperfibrinolysis (6 of 36 participants, 17%). Figure 2 provides the tag cloud created from the word count of the field note responses.

Through inductive, free coding, we identified eight major topics with associated subthemes. Figure 3 displays the generated coding template, which was used as a coding system. The two study authors TRR and DWT rated all thirty-six field note responses independently. A total of 131 codes were assessed. Inter-rater reliability was 71%, with a Cohen’s Kappa of 0.665 agreement. After the first run, TRR and DWT discussed all differences and agreed on a coding for the case of disagreement. The second run showed an inter-rater agreement of 100% between the coding of TRR and DWT. Table 2 outlines all major topics with associated subthemes and participant counts, percentages and examples.

Figure 2. A tag cloud as a quantitative graphic illustration of the most common words in the interview field notes. This word cloud was created using Wordle.net. Common English words such as “the, and, to” are not displayed. Frequently occurring terms have larger font sizes.
Figure 3. The coding template displaying the major topics and associated subthemes. We generated this through deductive coding via word count and inductive, free coding of recurring topics in the interview field notes. A total of 36 participants were interviewed.
Table 2. The major topics and associated subthemes with participant count, percentages and examples.

\(N = 36 \)

Major topics	Subthemes	Examples
Positive design features	Intuitive design	Participant #15: Intuitive kind of presentation.
(29 participants, 81%)	Clear visualization	Participant #7: Clear presentation, no unnecessary information to distract.
	Innovative idea	Participant #1: Obviously, something like this was missing.
Facilitates decision making	Gives safety in decision	Participant #19: Creates clarity in emergency situations.
(17 participants, 47%)	making	Participant #30: Perceived diagnostic confidence is higher.
Saves cognitive resources	Less brainwork needed	Participant #9: Don’t have to think as much as with conventional ROTEM.
(15 participants, 42%)	Easy understanding of	Participant #16: Couldn’t imagine, that it could be presented in such a simple way!
	complex topic	
Easy to learn	Participant #05: Even without extensive previous education.	
(14 participants, 39%)		Participant #33: Easy. Self-explaining.
		Participant #13: Fast learning.
Accelerates treatment	Quick recognition of	Participant #19: You can see immediately where the problem is.
(13 participants, 36%)	situation	Participant #24: Quickly realize what the problem is.
	Time saving	Participant #26: Faster with the Visual Clot.
		Participant #30: You get the answer much faster.
User groups		Participant #25: Can be used safely by all educational levels.
(9 participants, 25%)		
Quantification not made		Participant #14: No quantitative data or information.
(17 participants, 47%)		
Negative design features	Hyperfibrinolysis	Participant #22: Missing fibrin is not detected and understood easily.
(17 participants, 47%)	confusing	Participant #23: Heparin effect is a little tricky to interpret.
Themes

Positive design features. Of the total of thirty-six participants, twenty-nine (81%) made comments that fit the major topic positive design features. After additional inductive, free coding, this topic is further divided into the three subthemes “intuitive design”, “clear visualization” and “innovative idea”. Some participants perceived the visualization as intuitive, while others pointed out its clear visualization of standard ROTEM results. Participant #7 stated that there are no unnecessary information to distract. Others indicated Visual Clot as innovative as they perceived this idea to be missing.

Facilitates decision making. Seventeen of 36 participants (47%) noticed during the interview process how Visual Clot technology facilitated their decision making fulfilling given task. After free inductive coding, this major topic is broken down into the subtheme “safety in decision making” as some of these participants mentioned this. Participant #2 stated how using Visual Clot made him less afraid of getting involved with the ROTEM analysis. Also, participant #19 pointed out that the simplicity of Visual Clot technology created clarity in emergency situations.

Saves cognitive resources. Fifteen participants of 36 (42%) indicated that using Visual Clot, the user saves cognitive resources compared to standard ROTEM readings. The two subthemes “less brainwork needed” and “easy understanding of complex topic” are derived from this major topic. Some participants mentioned that they did not have to think as much using Visual Clot. Another participant reasoned that using Visual Clot, he did not need to memorize the cut-off values.

Easy to learn. Fourteen of 36 participants (39%) remarked that Visual Clot technology is easy to learn. Participant #25 felt that after a short instruction, one is already able to use Visual Clot correctly.

Accelerating treatment. Thirteen of 36 participants (36%) found Visual Clot to accelerate treatment. This major topic is subdivided into the aspects “quick recognition of situation” and “time saving”. Some participants mentioned that using Visual clot most of the information is visible at a single look. Further, it helps them to interpret the coagulation status faster.

User groups. Nine of 36 participants (25%) made comments that fit the major topic user groups. All of them shared the opinion that Visual Clot would especially help an inexperienced user in the
interpretation of ROTEM readings. Participant #25 noted that the visualization technology can be safely used by all educational levels.

Quantification not made. Of all thirty-six participants, seventeen (47%) had concerns about the missing quantitative data using Visual Clot. Participant #16 suggested to show the visualization technology and the conventional ROTEM results next to each other to overcome this issue. Some mentioned how Visual Clot does not show the extent of the coagulation disorder. Only one participant (Participant #2) was concerned about whether this technology was reliable.

Negative design features. Seventeen of 36 participants (47%) made comments that fit the major topic “negative design features”. Reported problems in differentiating between hyperfibrinolysis and low fibrinogen state was mentioned by several participants. Moreover, the heparin effect was difficult to interpret. Participant #1 found the Heparin visualization confusing.

Part II: Quantitative analysis of statements rated in an online survey

We chose six statements for the online survey and illustrate the ratings from the online survey in Figure 4. The sample medians of statements two to six all differed statistically significantly from neutral. The first statement showed that half of the participants considered the use of ROTEM readings in the management of coagulopathies difficult, whereas the other half did not.

Below we list the six statements with the evaluation of the online survey rating results:

1. “I find the interpretation of the conventional presentation of the ROTEM and the management of coagulopathies difficult.” This statement does not differ statistically significantly from neutral \((P = .54)\).
2. “I find Visual Clot intuitive and I could learn the interpretation easily.” Thirty-nine of the 42 participants (93%) agreed or strongly agreed to this statement \((P < .001)\).
3. “Visual Clot allows me to quickly grasp complex clotting situations.” Thirty-six of the 42 participants (86%) agreed or strongly agreed to this statement \((P < .001)\).
4. “I think Visual Clot is helpful in the decision making process for a targeted therapy.” Thirty-four of the 42 participants (81%) agreed or strongly agreed to this statement \((P < .001)\).
5. “I required more cognitive resources for the interpretation of Visual Clot than for the interpretation of the conventional ROTEM.” One of the 42 participants (2%) agreed to this statement ($P < .001$).

6. “I would find it helpful to have the visualization of Visual Clot and the conventional ROTEM on the screen next to each other.” Thirty-eight of the 42 participants (90%) agreed or strongly agreed to this statement ($P < .001$).

Figure 4. This figure presents the online survey results as donut part of whole charts with the number of participants who chose a particular category. We present the results as medians and interquartile ranges and provide P-values. IQR = interquartile range; ROTEM = rotational thromboelastometry. $N = 42$
Discussion

This mixed methods study analyzed the opinions of physicians regarding Visual Clot, a new situation-awareness oriented visualization technology for viscoelastic coagulation management. The main findings were that the participants perceived Visual Clot as intuitive, easy to learn and helpful in the decision making process for ROTEM-guided coagulation management. Further, they found that Visual Clot gave them a good overview of the clotting situation. The main criticism concerned its missing quantification. The participants would prefer this visualization on a screen next to the conventional ROTEM readings. In an environment, where health care providers are confronted with increasingly polymorbid patients and complicated diagnostic tools [20, 21], more efficient assistive technologies leading to safer transmission of critical information will be of lasting importance for human performance and patient safety.

Our study showed a high level of physician acceptance and satisfaction with the new tool. Eighty-one percent of the participants regarded the animated blood clot as useful in the decision making process for coagulation management. Only one participant (2%) agreed to the statement "I required more cognitive resources for the interpretation of Visual Clot than for the interpretation of conventional ROTEM." These participant responses corresponded to the reactions to the similarly well-accepted Visual Patient technology [22]. There, only 11% of the questioned subjects considered that technology not helpful in patient monitoring after their first contact with it [23]. Visual Patient is a situation awareness-oriented visualization for patient vital signs with comparable effect size in information transfer improvement as Visual Clot [24-28]. Ninety-three percent of the participants considered Visual Clot intuitive to interpret and easy to learn. In the Visual Patient study [23], 82% percent of the respondents attributed the same characteristics to Visual Patient. The higher complexity of Visual Patient with far more visualizations may have caused the 10% difference in this aspect between the two technologies. Intuition enables humans to apply a new tool utilizing mainly unconscious processing and previously learned experiential knowledge [29]. Cognitive ease when learning a new technology is crucial for user acceptance [30]. Indeed, previous medical visualization technologies failed because they were too difficult to understand [31, 32]. We drafted Visual Clot and its visualizations based on principles of logic, human-computer
interaction, and results of prior work in medical interface and user-centered design [33, 34]. According to Wittgenstein’s theory [35], a coherent image or model has a meaningful commonality with the reality it is intended to reflect. To achieve this, we designed Visual Clot as a model of a blood clot. This philosophy is in line with results from Wachter et al., which show that an anatomically correct interface is particularly intuitive [36]. The referenced NASA publication outlines the various hierarchical levels of information representation [37]. It highlights the “order of wholeness” achieved by integrating the required information into a single display as the highest level of such presentation. In order to increase the cognitive receptiveness of information, we intentionally animated Visual Clot in a playful way [29, 38]. This enhances user accessibility to the otherwise dry data-driven conventional result printouts.

Before taking part in this study, none of the participants had ever seen Visual Clot technology. However, the number of correct decisions, time to decision, diagnostic confidence, and workload improved significantly with the new tool(15) compared to conventional ROTEM result presentation. This study reveals high agreement between the user perceptions and the function of the technology described in the previous Visual Clot study. This correspondence between expected and provided function is another essential feature for the success of new technologies. If this agreement does not occur, it can lead to false expectations, frustration and ultimately reduced user acceptance. The largest part of the answers given concerning its design features were positive (29 participants, 81%). Nevertheless, we identified some design features which led to confusion. For example, one visualization aimed to show that a test for heparin was carried out but turned out negative. This visualization intended to show an excluded heparin effect, but it confused some participants. For this reason, we modified the current version of Visual Clot. Now, it only displays heparin binary as present or not present. This is more in line with its situation awareness-oriented intention to show only essential information about coagulation disorders.

Moreover, based on the participants’ feedback we further refined the visualization of hyperfibrinolysis and fibrin deficiency. We follow both quantitative (i.e. participants’ performance with a particular visualization) and qualitative study results in such design modifications. Qualitative feedback is often valuable to understand why a particular visualization is not working. This provides clues on how we can adapt it.
Eighty-six percent of the participants agreed to the statement that Visual Clot allowed them to grasp complex coagulation situations more quickly. Ninety percent of the participants would find it helpful to have Visual Clot and the conventional ROTEM on the screen next to each other. We regard such an integrated display mode as optimal as Visual Clot technology converts the continuous numerical values of standard test outputs into categorical visualizations. For example, there can be too little, a healthy amount of, or too many platelets. This simplification has the advantage that information is understood quickly and easily, bearing in mind that this reduces the resolution of given data. Indeed, forty-seven percent of the interview participants made comments regarding the missing quantification of the disorders using Visual Clot. Hence, an ideal implementation must combine the benefits of Visual Clot, which is fast and easy situation recognition, with the high precision advantage of the conventional method. A hospital may configure the visualizations limits of Visual Clot according to the values of the local coagulation algorithm. This could help enforce the local standard procedure.

The main goal of Visual Clot technology is still to simplify complex viscoelastic test results in real-time to facilitate the care providers’ overview of the clotting situation. This study showed how potential future users perceived this technology after using it for the first time. Opinions such as its good and clear visualizations or how they were able to grasp a good overview over the clotting situation in a time-efficient manner fully supports our main intention. Acutely bleeding patients benefit from faster and more accurate diagnosis and treatment. This study made us aware about the desire of our fellow physicians for such technology, from which we can draw fundamental motivation to further develop its concept.

Limitations

This study has several limitations. The opinions obtained cannot be extrapolated to a larger population because qualitative research does not investigate statistical significance. Its only goal is to collect and present the broadest possible range of opinions and views. Secondly, we asked the participants after their first contact with the new technology in a controlled instruction setting. Its use in the everyday clinical routine could alter the care providers’ opinion. However, we consider it unlikely that Visual Clot would not be perceived as positively in clinical routine as it was in this study setting, as we observed widespread approval by anesthesiologists and intensive care physicians, the potential future users.
Nevertheless, further research is needed to identify the strengths and weaknesses of Visual Clot technology in a clinical setting. Another limitation concerns the selection of participants. We did not include them randomly, but according to their availability in the daily clinical routine. However, the high participation rate in the quantitative analysis reduces potential selection bias. Finally, we conducted this study in university hospitals with high standards of care in central Europe. Users’ opinions may be different in other parts of the world. More research is needed in this respect as well.

Conclusions

A group of anesthesiologists and intensive care physicians regarded Visual Clot to be intuitive, easy to learn, and useful for the decision-making process in acute clotting disorders. The limitations of the technology resulting from the translation of continuous measurement values into categorical ones was the most frequently mentioned potential disadvantage of the visualization technology. A split-screen implementation may be used to combine the advantages of both technologies. In this study, Visual Clot appeared to be a well-accepted decision support tool for ROTEM-based coagulation management. Further research is needed to investigate its potential in clinical practice and medical education.

Acknowledgements

The authors are thankful to the study participants for their time and effort. The Institute of Anesthesiology of the University Hospital Zurich, Zurich, Switzerland, funded this study, and DWT received a career development grant from the University of Zurich.

Authorship Contributions

TRR, SS, JR, DRS, CBN, and DWT helped to design the study; TRR, JR, CBN, PM, CBN, and DWT helped to collect the data; TRR, SS, CBN, and DWT helped to analyze the data; and TRR, SS, JR, MG, PM, KZ, DRS, CBN, and DWT helped to write the manuscript and approved the final version. TRR and SS contributed equally.

Conflicts of Interest

The University of Zurich owns the intellectual property rights to the technology described in this manuscript and registered ‘Visual Clot’ as a trademark. The University of Zurich and Instrumentation
Laboratory Company/Werfen Corporation, Bedford, MA, USA, signed a letter of intent regarding a proposed joint development and licensing agreement to develop a product based on the concept of Visual Clot. As designated inventors DRS, CBN and DWT may receive royalties in the event of commercialization. PM received research grants from Pfizer and Dr. F. Köhler Chemie GmbH for investigator-initiated trial; honoraria for scientific lectures from Abbott GmbH and Co KG; Aesculap Academy; B.Braun Melsungen; Biotest AG; Vifor Pharma; Ferring; CSL Behring; German Red Cross/Institute of Transfusion Medicine; HCCM Consulting GmbH; Heinen and Löwenstein; Pharmacosmos; Siemens Healthcare; prices from Aktionsbündnis Patientensicherheit; European Society of Anaesthesiology; Lohfert-Stiftung AG; Masimo – Patient Safety Foundation; MSD-Gesundheitspreis. KZ received honoraria or travel support for consulting or lecturing from the following companies: Abbott GmbH &Co KG; AesculapAkademie GmbH; AQAI GmbH; AstellasPharma.GmbH; AstraZeneca GmbH; Aventis Pharma GmbH; B. Braun Melsungen AG; Baxter Deutschland GmbH; Biosyn GmbH; Biotest AG; Bristol-Myers Squibb GmbH; CSL Behring GmbH; Dr. F. Köhler Chemie GmbH; Dräger Medical GmbH; Essex Pharma GmbH; Fresenius Kabi GmbH; Fresenius Medical Care; Gambro Hospal GmbH; Gilead; GlaxoSmithKline GmbH; Grüenthal GmbH; Hamilton Medical AG; HCCM Consulting GmbH; Heinen+Löwenstein GmbH; Janssen-Cilag GmbH; med Update GmbH; Medivance EU BV; MSD Sharp and Dohme GmbH; NovartisPharma GmbH; Novo Nordisk Pharma GmbH; P. J. Dahlhausen and Co. GmbH; Pfizer Pharma GmbH; Pulsion Medical Systems SE; Siemens Healthcare; Teflex Medical GmbH; Teva GmbH; TopMedMedizintechnik GmbH; Verathon Medical; ViforPharma GmbH. KZ’s department receives unrestricted educational grants from B. Braun Melsungen AG, Fresenius Kabi GmbH, CSL Behring GmbH, and Vifor Pharma GmbH. No other external funding or competing interests declared. DRS’s academic department receives grant support from the Swiss National Science Foundation, Berne, Switzerland, the Swiss Society of Anesthesiology and Reanimation, Berne, Switzerland, the Swiss Foundation for Anesthesia Research, Zurich, Switzerland; Vifor SA, Villars-sur-Glâne, Switzerland. DS is co-chair of the ABC-Trauma Faculty, sponsored by unrestricted educational grants from Novo Nordisk Health Care AG, Zurich, Switzerland; CSL Behring GmbH, Marburg, Germany; LFB Biomedicaments, Courtaboeuf Cedex, France, and Octapharma AG, Lachen, Switzerland. DRS received honoraria/travel support for
consulting or lecturing from: Danube University of Krems, Austria; US Department of Defense, Washington, USA; European Society of Anesthesiology, Brussels; Korean Society for Patient Blood Management, Seoul, Korea; Korean Society of Anesthesiologists, Seoul, Korea; Baxter/Baxalta AG, Volketswil, Switzerland; Bayer AG, Zurich, Switzerland; Bayer Pharma AG, Berlin, Germany; B. Braun Melsungen AG, Melsungen, Germany; Boehringer Ingelheim GmbH, Basel, Switzerland; Bristol-Myers-Squibb, Rueil Malmaison Cedex, France and Baur, Switzerland; CSL Behring GmbH, Hattersheim am Main, Germany and Berne, Switzerland; Celgene International II Sarl, Couvet, Switzerland; Daiichi Sankyo AG, Thalwil, Switzerland; Haemonetics, Braintree, MA, USA; Instrumentation Laboratory (Werfen), Bedford, MA, USA; LFB Biomedicaments, Courtaboeuf Cedex, France; Merck Sharp and Dohme, Kenilworth, NJ, USA; Octapharma AG, Lachen, Switzerland; Paion UK Ltd, Cambridge, UK, and Deutschland GmbH, Aachen, Germany; Pharmacosmos A/S, Holbaek, Denmark; Photonics Healthcare BV, Utrecht, Netherlands; Pierre Fabre Pharma, Alschwil, Switzerland; Roche Diagnostics International Ltd, Reinach, Switzerland; Sarstedt AG & Co., Sevelen, Switzerland and Nümbrecht, Germany; Tem International GmbH, Munich, Germany; Vifor Pharma, Munich, Germany, Vienna, Austria, Paris, France and Villars-sur-Glâne, Switzerland; Vifor (International) AG, St. Gallen, Switzerland. CBN and DWT received travel support for consulting and lecturing from Instrumentation Laboratory (Werfen), Bedford, MA, USA. CBN and DWT received proof-of-concept funding from the University of Zurich to prototype the Visual Patient. The University of Zurich and Koninklijke Philips N.V., Amsterdam, Netherlands, entered a joint development and licensing agreement to develop a product based on the Visual Patient. As inventors, CBN and DWT may receive royalty payments in the event of commercialization. The other authors do not have any conflicts of interests.

Multimedia Appendix 1: Visual Clot training video.

Multimedia Appendix 2: Translated field notes of the participant interviews.

Multimedia Appendix 3: Translated online survey announcement.
References

1. Serraino GF, Murphy GJ. Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: updated systematic review and meta-analysis. Br J Anaesth. 2017 Jun;118(6):823-33. PMID: 28475665. doi: 10.1093/bja/aex100.

2. Schochl H, Nienaber U, Hofer G, Voelckel W, Jambor C, Scharbert G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14(2):R55. PMID: 20374650. doi: 10.1186/cc8948.

3. Gonzalez E, Moore EE, Moore HB, Chapman MP, Chin TL, Ghasabyan A, et al. Goal-directed Hemostatic Resuscitation of Trauma-induced Coagulopathy: A Pragmatic Randomized Clinical Trial Comparing a Viscoelastic Assay to Conventional Coagulation Assays. Ann Surg. 2016 Jun;263(6):1051-9. PMID: 26720428. doi: 10.1097/SLA.0000000000001608.

4. Davenport R, Manson J, De’Ath H, Platton S, Coates A, Allard S, et al. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011 Dec;39(12):2652-8. PMID: 21765358. doi: 10.1097/CCM.0b013e3182281af5.

5. Wikkelsø A, Wetterslev J, Møller AM, Afshari A. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database of Systematic Reviews. 2016 (8). PMID: CD007871. doi: 10.1002/14651858.CD007871.pub3.

6. Schochl H, Nienaber U, Maegele M, Hochleitner G, Primavesi F, Steitz B, et al. Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care. 2011;15(2):R83. PMID: 21375741. doi: 10.1186/cc10078.

7. Nystrup KB, Windelov NA, Thomsen AB, Johansson PI. Reduced clot strength upon admission, evaluated by thrombelastography (TEG), in trauma patients is independently associated with increased 30-day mortality. Scand J Trauma Resusc Emerg Med. 2011 Sep 28;19:52. PMID: 21955460. doi: 10.1186/1757-7241-19-52.

8. Stein P, Kaserer A, Spahn GH, Spahn DR. Point-of-Care Coagulation Monitoring in Trauma Patients. Semin Thromb Hemost. 2017 Jun;43(4):367-74. PMID: 28297730. doi: 10.1055/s-0037-1598062.

9. Hunt H, Stanworth S, Curry N, Woolley T, Cooper C, Ukoumunne O, et al. Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) for trauma-induced coagulopathy in adult trauma patients with bleeding. Cochrane Database of Systematic Reviews. 2015 (2). PMID: CD010438. doi: 10.1002/14651858.CD010438.pub2.

10. Spahn DR, Bouillon B, Cerny V, Duranteau J, Filipescu D, Hunt BJ, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care. 2019 Mar 27;23(1):98. PMID: 30917843. doi: 10.1186/s13054-019-2347-3.

11. Gorlinger K, Dirkmann D, Hanke AA, Kamler M, Kottenberg E, Thiellmann M, et al. First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: a retrospective, single-center cohort study. Anesthesiology. 2011 Dec;115(6):1179-91. PMID: 21970887. doi: 10.1097/ALN.0b013e31823497dd.

12. Weber CF, Gorlinger K, Meiningder D, Herrmann E, Bingold T, Moritz A, et al. Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology. 2012 Sep;117(3):531-47. PMID: 22914710. doi: 10.1097/ALN.0b013e318264c644.

13. Mallett SV. Clinical Utility of Viscoelastic Tests of Coagulation (TEG/ROTEM) in Patients with Liver Disease and during Liver Transplantation. Semin Thromb Hemost. 2015 Jul;41(5):527-37. PMID: 26049072. doi: 10.1055/s-0035-1550434.

14. Kvint S, Schuster J, Kumar MA. Neurosurgical applications of viscoelastic hemostatic assays. Neurosurg Focus. 2017 Nov;43(5):E9. PMID: 29088950. doi: 10.3171/2017.8.FOCUS17447.

15. Rossler J, Meybohm P, Spahn DR, Zacharowski K, Braun J, Nothiger CB, et al. Improving decision making through presentation of viscoelastic tests as a 3D animated blood clot: the Visual Clot. Anaesthesia. 2020 Feb 6. PMID: 32030729. doi: 10.1111/anae.14985.

16. Endsley MR. Designing for Situation Awareness: An Approach to User-Centered Design, Second Edition: CRC Press, Inc.; 2011. ISBN: 1420063553.
17. Qualitative Organizational Research: Core Methods and Current Challenges. 55 City Road, London 2012. Available from: http://sk.sagepub.com/books/qualitative-organizational-research-core-methods-and-current-challenges.

18. Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care. 2007 Dec;19(6):349-57. PMID: 17872937. doi: 10.1093/intqhc/mzm042.

19. Miles MB, Huberman AM. Qualitative data analysis: an expanded sourcebook 1994. ISBN: 0803946538 9780803946538 0803955405 9780803955400.

20. Gulland A. Shortage of health workers is set to double, says WHO. BMJ. 2013 Nov 12;347:f6804. PMID: 24222676. doi: 10.1136/bmj.f6804.

21. Zimmerman JE, Kramer AA, Knaus WA. Changes in hospital mortality for United States intensive care unit admissions from 1988 to 2012. Crit Care. 2013 Apr 27;17(2):R81. PMID: 23622086. doi: 10.1186/cc12695.

22. Tscholl D, Rössler J, Said S, Kaserer A, Spahn D, Noethiger C. Situation Awareness-Oriented Patient Monitoring with Visual Patient Technology: A Qualitative Review of the Primary Research. Preprints 2020 2020. doi: 10.20944/preprints202003.0020.v1.

23. Tscholl DW, Weiss M, Handschin L, Spahn DR, Noethiger CB. User perceptions of avatar-based patient monitoring: a mixed qualitative and quantitative study. BMC Anesthesiol. 2018 Dec 11;18(1):188. PMID: 30537934. doi: 10.1186/s12871-018-0650-1.

24. Tscholl DW, Handschin L, Neubauer P, Weiss M, Seifert B, Spahn DR, et al. Using an animated patient avatar to improve acquisition of vital sign information by anaesthesia professionals. Br J Anaesth. 2018 Sep;121(3):662-71. PMID: 30115265. doi: 10.1016/j.bja.2018.04.024.

25. Garot O, Rössler J, Pfarr J, Ganter MT, Spahn DR, Nöthiger CB, et al. Avatar-based versus conventional vital sign display in a central monitor for monitoring multiple patients: A multicenter computer-based laboratory study. BMC Medical Informatics and Decision Making. 2019. doi: https://dx.doi.org/10.21203/rs.2.14457/v3.

26. Pfarr J, Ganter MT, Spahn DR, Noethiger CB, Tscholl DW. Avatar-Based Patient Monitoring With Peripheral Vision: A Multicenter Comparative Eye-Tracking Study. J Med Internet Res. 2019;21(7):e13041-e. PMID: 31317870. doi: 10.2196/13041.

27. Kaserer A, Kiavialaitis GE, Braun J, Schedler A, Stein P, Rossler J, et al. Impact of rivaroxaban plasma concentration on perioperative red blood cell loss. Transfusion. 2020 Jan;60(1):197-205. PMID: 31682296. doi: 10.1111/trf.15560.

28. Tscholl DW, Rossler J, Handschin L, Seifert B, Spahn DR, Noethiger CB. The Mechanisms Responsible for Improved Information Transfer in Avatar-Based Patient Monitoring: Multicenter Comparative Eye-Tracking Study. J Med Internet Res. 2020 Mar 16;22(3):e15070. PMID: 32175913. doi: 10.2196/15070.

29. Blackler A, Popovic V, Mahar D. Investigating users' intuitive interaction with complex artefacts. Appl Ergon. 2010 Jan;41(1):72-92. PMID: 19586618. doi: 10.1016/j.apergo.2009.04.010.

30. Agarwal R, Karahanna E. Time flies when you're having fun: cognitive absorption and beliefs about information technology usage. MIS Q 2000;24(4):665–94.

31. Wachter SB, Agutter J, Syroid N, Drews F, Weinger MB, Westenskow D. The employment of an iterative design process to develop a pulmonary graphical display. J Am Med Inform Assoc. 2003 Jul-Aug;10(4):363-72. PMID: 12668693. doi: 10.1197/jamia.M1207.

32. Drews FA, Westenskow DR. The right picture is worth a thousand numbers: data displays in anesthesia. Hum Factors. 2006 Spring;48(1):59-71. PMID: 16696257. doi: 10.1518/001872006776412270.

33. Drews F, Westenskow D. The Right Picture Is Worth a Thousand Numbers: Data Displays in Anesthesia. Human factors. 2006 02/01;48:59-71. doi: 10.1518/001872006776412270.

34. Endsley M, Bolte B, Jones D. Designing for Situation Awareness: An Approach to User-Centered Design2003.

35. Wittgenstein L. Tractatus logico-philosophicus. London: Routledge & Kegan Paul; 1922.

36. Wachter S, Agutter J, Syroid N, Drews F, Weinger M, Westenskow D. The Employment of an Iterative Design Process to Develop a Pulmonary Graphical Display. Journal of the American Medical Informatics Association: JAMIA. 2003 07/01;10:363-72. doi: 10.1197/jamia.M1207.
37. Degani A, Jorgensen C, Iverson D, Shafto M, Olson L. On Organization of Information: Approach and Early Work. 2009.

38. Agarwal R, Karahanna E. Time Flies When You're Having Fun: Cognitive Absorption and Beliefs about Information Technology Usage. MIS Quarterly. 2000 12/01;24:665-94. doi: 10.2307/3250951.