Description of the vector G-bundles over G-spaces with quasi-free proper action of discrete group G

Mishchenko, A.S.* Morales Meléndez, Quitzeh

January 21, 2009

Abstract
We give a description of the vector G-bundles over G-spaces with quasi-free proper action of discrete group G in terms of the classifying space.

1 The setting of the problem
This problem naturally arises from the Conner-Floyd’s description (2) of the bordisms with the action of a group G using the so-called fix-point construction. This construction reduces the problem of describing the bordisms to two simpler problems: a) description of the fixed-point set (or, more generally, the stationary point set), which happens to be a submanifold attached with the structure of its normal bundle and the action of the same group G, however, this action could have stationary points of lower rank; b) description of the bordisms of lower rank with an action of the group G. We assume that the group G is discrete.

Let ξ be an G-equivariant vector bundle with base M.

\[
\begin{array}{ccc}
\xi & \downarrow \\
M & \\
\end{array}
\]

(1)

Let $H < G$ be a normal finite subgroup. Assume that the action of the group G over the base M reduces to the factor group $G_0 = G/H$:

\[
\begin{array}{ccc}
G \times M & \rightarrow & M \\
\downarrow & & \| \\
G_0 \times M & \rightarrow & M \\
\end{array}
\]

(2)

suppose, additionally, that the action $G_0 \times M \rightarrow M$ is free and there is no more fixed points of the action of the group H in the total space of the bundle ξ.

*Partly supported by the grant of RFFI No.08-01-00034-a, NSh-1562.2008.1, Program 2.1.1/5031
So, we have the following commutative diagram
\[
\begin{array}{ccc}
G \times \xi & \longrightarrow & \xi \\
\downarrow & & \downarrow \\
G_0 \times M & \longrightarrow & M
\end{array}
\] (3)

Definition 1 As in [6, p. 210], we shall say that the described action of the group \(G\) is quasi-free over the base with normal stationary subgroup \(H\).

Reducing the action to the subgroup \(H\), we obtain the simpler diagram:
\[
\begin{array}{ccc}
H \times \xi & \longrightarrow & \xi \\
\downarrow & & \downarrow \\
M & = & M
\end{array}
\] (4)

Following [4], let \(\rho_k : H \longrightarrow \mathbf{U}(V_k)\) be the series of all the irreducible (unitary) representation of the finite group \(H\). Then the \(H\)-bundle \(\xi\) can be presented as the finite direct sum:
\[
\xi \approx \bigoplus_k \left(\xi_k \otimes V_k \right),
\] (5)
where the action of the group \(H\) over the bundles \(\xi_k\) is trivial, \(V_k\) denotes the trivial bundle with fiber \(V_k\) and with fiberwise action of the group \(H\), defined using the linear representation \(\rho_k\).

Lemma 1 The group \(G\) acts on every term of the sum (5) separately.

Proof. Consider now the action of the group \(G\) over the total space of the bundle \(\xi\). Fix a point \(x \in M\). The action of the element \(g \in G\) is fiberwise, and maps the fiber \(\xi_x\) to the fiber \(\xi_{gx}\):
\[
\Phi(x, g) : \xi_x \longrightarrow \xi_{gx}.
\]

Also, for a pair of elements \(g_1, g_2 \in G\) we have:
\[
\Phi(x, g_1 g_2) = \Phi(g_2 x, g_1) \circ \Phi(x, g_2),
\] (6)
\[
\Phi(x, g_1 g_2) : \xi_x \longrightarrow \xi_{g_2 x} \longrightarrow \xi_{g_1 g_2 x}
\]

In particular, if \(g_2 = h \in H < G\), then \(g_2 x = hx = x\). So,
\[
\Phi(x, gh) : \xi_x \longrightarrow \xi_x \longrightarrow \xi_{gx}
\]
Analogously, if \(g_1 = h \in H < G \), then \(g_1gx = hgx = gx \). So
\[
\Phi(x, hg) : \xi_x \xrightarrow{\Phi(x, g)} \xi_{gx} \xrightarrow{\Phi(gx, h)} \xi_{gx}
\]
According to [4] the operator \(\Phi(x, h) \) does not depends on the point \(x \in M \),
\[
\Phi(x, h) = \Psi(h) : \bigoplus_k \left(\xi_{k,x} \otimes V_k \right) \rightarrow \bigoplus_k \left(\xi_{k,x} \otimes V_k \right),
\]
here, since the action of the group \(H \) is given over every space \(V_k \) using pairwise different irreducible representations \(\rho_k \), we have
\[
\Psi(h) = \bigoplus_k \left(\text{Id} \otimes \rho_k(h) \right).
\]
In this way, we obtain the following relation:
\[
\Phi(x, gh) = \Phi(x, g) \circ \Psi(h) = \Phi(x, ghg^{-1}g) = \Psi(ghg^{-1}) \circ \Phi(x, g).
\] (7)

Lets write the operator \(\Phi(x, g) \) using matrices to decompose the space \(\xi_x \) as the direct sum
\[
\xi_x = \bigoplus_k \left(\xi_{k,x} \otimes V_k \right):
\]
\[
\Phi(x, g) = \begin{pmatrix}
\Phi(x, g)_{1,1} & \cdots & \Phi(x, g)_{1,k} & \cdots \\
\vdots & \ddots & \vdots & \ddots \\
\Phi(x, g)_{k,1} & \cdots & \Phi(x, g)_{k,k} & \cdots \\
\vdots & \ddots & \vdots & \ddots
\end{pmatrix}
\] (8)
If \(k \neq l \) then \(\Phi(x, g)_{k,l} = 0 \), i.e. the matrix \(\Phi(x, g) \) its diagonal,
\[
\Phi(x, g) = \bigoplus_k \Phi(x, g)_{k,k} : \bigoplus_k \left(\xi_{k,x} \otimes V_k \right) \rightarrow \bigoplus_k \left(\xi_{k,x} \otimes V_k \right),
\]
\[
\Phi(x, g)_{k,k} : \left(\xi_{k,x} \otimes V_k \right) \rightarrow \left(\xi_{k,x} \otimes V_k \right),
\]
as it was required to prove.

2 Description of the particular case \(\xi = \xi_0 \otimes V \)

Here we will consider the particular case of a \(G \)-vector bundle \(\xi = \xi_0 \otimes V \) with base \(M \).
\[
\xi \downarrow \quad M
\]
where the action of the group G is quasi-free over the base with finite normal stationary subgroup $H < G$.

We will assume that the group H acts trivially over the bundle ξ_0. By V we denote the trivial bundle with fiber V and with fiberwise action of the group H given by an irreducible linear representation ρ.

Definition 2 A canonical model for the fiber in a G-bundle $\xi = \xi_0 \otimes V$ with fiber $F \otimes V$ is the product $G_0 \times (F \otimes V)$ with an action of the group G

\[
G \times (G_0 \times (F \otimes V)) \xrightarrow{\phi} G_0 \times (F \otimes V)
\]

where μ denotes the natural left action of G on its quotient G_0, and

\[
\phi([g], g_1) : [g] \times (F \otimes V) \rightarrow [g_1 g] \times (F \otimes V)
\]

is given by the formula

\[
\phi([g], g_1) = \text{Id} \otimes \rho(u(g_1 g)u^{-1}(g)). \tag{9}
\]

where

\[
u : G \rightarrow H
\]

is a homomorphism of right H-modules by multiplication, i.e.

\[
u(gh) = u(g)h, \quad \nu(1) = 1, \quad g \in G, \quad h \in H.
\]

Lemma 2 The definition (9) of the action of G is well-defined.

Proof. It is enough to prove that that a) the formula (9) defines an action, i.e.

\[
\phi([g], g_2 g_1) = \phi([g_1 g], g_2) \circ \phi([g], g_1),
\]

and b) that the formula (9) does not depends on the chosen representative $gh \in [g]$:

\[
\text{Id} \otimes \rho(u(g_1 g)u^{-1}(g)) = \text{Id} \otimes \rho(u(g_1 gh)u^{-1}(gh))
\]

for every $g \in G$ and $h \in H$.

In fact,

\[
\phi([g], g_2 g_1) = \text{Id} \otimes \rho(u(g_2 g_1 g)u^{-1}(g)) =
\]

\[
\text{Id} \otimes \rho(u(g_2 g_1 g)u(g_1 g)u^{-1}(g_1 g)u^{-1}(g)) =
\]

\[
= \text{Id} \otimes \rho(u(g_2 g_1 g)u(g_1 g)) \circ \text{Id} \otimes \rho(u^{-1}(g_1 g)u^{-1}(g)) =
\]

\[
= \phi([g_1 g], g_2) \circ \phi([g], g_1),
\]

what proves a), and, recalling the equation $u(gh) = u(g)h$ for every $g \in G$ and $h \in H$, it is clear that

\[
u(g_1 gh)u^{-1}(gh) = u(g_1 g)hh^{-1}u^{-1}(g) = u(g_1 g)u^{-1}(g),
\]

which is a sufficient condition for b) to be true.
As it is well known, for the actions we are studying, we can always consider over the base M an atlas of equivariant charts $\{O_\alpha\}$,

$$M = \bigcup \alpha O_\alpha,$$

$$[g]O_\alpha = O_\alpha, \quad \forall [g] \in G_0.$$

If the atlas is fine enough, then every chart can be presented as a disjoint union of its subcharts:

$$O_\alpha = \bigsqcup_{[g] \in G_0} [g]U_\alpha \approx U_\alpha \times G_0,$$

i.e. $[g]U_\alpha \cap [g']U_\alpha = \emptyset$ if $[g] \neq [g']$, and when $\alpha \neq \beta$, if $U_\alpha \cap [g_\alpha\beta]U_\beta \neq \emptyset$, then the element $g_\alpha\beta$ is the only one for which that intersection is non-empty, i.e. if $[g] \neq [g_\alpha\beta]$, then $U_\alpha \cap [g]U_\beta = \emptyset$, i.e.

$$O_\alpha \cap O_\beta \approx (U_\alpha \cap [g_\alpha\beta]U_\beta) \times G_0,$$

for every α, β. We use these facts and notations to formulate the next theorem.

Theorem 1 The bundle $\xi = \xi_0 \otimes V$ is locally homeomorphic to the cartesian product of some chart U_α by the canonical model. More precisely, for a fine enough atlas, there exist G-equivariant trivializations

$$\psi_\alpha : O_\alpha \times (F \otimes V) \to \xi|_{O_\alpha}$$

where

$$O_\alpha \times (F \otimes V) \approx U_\alpha \times (G_0 \times (F \otimes V))$$

and the diagram

$$
\begin{array}{ccc}
\xi|_{O_\alpha} & \xrightarrow{g} & \xi|_{O_\alpha} \\
\uparrow \psi_\alpha & & \uparrow \psi_\alpha \\
U_\alpha \times (G_0 \times (F \otimes V)) & \xrightarrow{\text{Id} \times \phi(g)} & U_\alpha \times (G_0 \times (F \otimes V))
\end{array}
$$

is commutative where $g \in G$, $\text{Id} : U_\alpha \to U_\alpha$, and $\phi(g)$ denotes the canonical action.

Proof. Using an atlas as in the remarks at the beginning of the theorem, we shall construct the trivialization (10) starting from an arbitrary trivialization

$$\psi_\alpha : U_\alpha \times (F \otimes V) \to \xi|_{U_\alpha}$$

in such a way, that the diagram

$$
\begin{array}{ccc}
\xi|_{U_\alpha} & \xrightarrow{g} & \xi|[g]U_\alpha \\
\uparrow \psi_\alpha & & \uparrow \psi_\alpha \\
U_\alpha \times (F \otimes V) & \xrightarrow{[g]} & [g]U_\alpha \times (F \otimes V)
\end{array}
$$

is commutative.
commutes for every $g \in [g]$, where the left and upper arrows are given and we have to construct the down and right arrows.

From such a construction, the equivariance will follow automatically and the proof of the theorem reduces to show that the constructed down arrow coincides with that on (11).

Evidently, for a given trivialization $\psi_\alpha : U_\alpha \times (F \otimes V) \to \xi_{|U_\alpha}$, there are several ways to define a trivialization $\psi_\alpha : [g]U_\alpha \times (F \otimes V) \to \xi_{|[g]U_\alpha}$, since there are several elements $g \in G$ sending $\xi_{|U_\alpha}$ to $\xi_{|[g]U_\alpha}$.

Thus, consider a set-theoretic cross-section $p' : G_0 \longrightarrow G$ to the projection p in the exact sequence of groups

$$1 \longrightarrow H \longrightarrow G \overset{p}{\longrightarrow} G_0,$$

$$p \circ p' = \text{Id} : G_0 \overset{p'}{\longrightarrow} G \overset{p}{\longrightarrow} G_0.$$

Put

$$g' = p' \circ p : G \longrightarrow G.$$

Without loss of generality, we can take $g'(1) = 1$.

In this case

$$g'(g) = gu^{-1}(g),$$

where

$$u : G \longrightarrow H$$

is a homomorphism of right H-modules by multiplication, i.e.

$$u(gh) = u(g)h, \quad g \in G, h \in H.$$

In particular, this means that

$$g'(gh) = g'(g), \quad h \in H.$$

Lets

$$\tilde{\psi}_\alpha : U_\alpha \times F \longrightarrow \xi_0|U_\alpha$$

be some trivialization. We define the trivialization ψ_α in (10) by the rule: if $[g]x_\alpha \in [g]U_\alpha$, i.e. $x_\alpha \in U_\alpha$, then, the map

$$\psi_\alpha([g]x_\alpha) : [g]x_\alpha \times (F \otimes V) \longrightarrow \xi_{|[g]x_\alpha} \otimes V$$

is given by the formula

$$\psi_\alpha([g]x_\alpha) = \Phi(x_\alpha, g'(g)) \circ \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id} \right) = \Phi(x_\alpha, gu^{-1}(g)) \circ \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id} \right).$$

(12)
where, from the first equality, it is clear that the definition does not depend on
the representative \(g \in [g] \).

In particular, for \([g] = 1\), we recover the initial trivialization
\[
\psi_\alpha(x_\alpha) = \tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id}
\]
since \(\Phi(x, g'(1)) = \Phi(x, 1) = 1 \).

Using this trivialization the action of the group \(G \) can be carried to the
cartesian product \(O_\alpha \times (F \otimes V) \):
\[
\Phi_\alpha(g) : O_\alpha \times (F \otimes V) \longrightarrow O_\alpha \times (F \otimes V) .
\]

Let \(x_\alpha \in U_\alpha, \ g \in G \), then
\[
\Phi_\alpha([g]x_\alpha, g_1) : [g]x_\alpha \times (F \otimes V) \longrightarrow [g_1]x_\alpha \times (F \otimes V)
\]
is given by the formula
\[
\Phi_\alpha([g]x_\alpha, g_1) = (\psi_\alpha([g_1]x_\alpha))^{-1} \Phi([g]x_\alpha, g_1) \psi_\alpha([g]x_\alpha) .
\]

Applying (12), we obtain
\[
\Phi_\alpha([g]x_\alpha, g_1) = \left(\Phi(x_\alpha, g_1 u^{-1}(g_1 g)) \circ \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id} \right) \right)^{-1} \circ \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id} \right) = \]
\[
= \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id} \right)^{-1} \circ \Phi([g]x_\alpha, g_1) \circ \Phi(x_\alpha, g_1 u^{-1}(g)) \circ \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id} \right) = \]
\[
= \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id} \right)^{-1} \circ \Phi(x_\alpha, u^{-1}(g_1 g)) \circ \Phi([g]x_\alpha, g_1) \circ \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id} \right) = \]
\[
= \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id} \right)^{-1} \circ \Phi(x_\alpha, u^{-1}(g)) \circ \phi \circ \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id} \right) ;
\]
\[
\Phi_\alpha([g|x_\alpha, g_1]) = \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id}\right)^{-1} \circ \\
(\text{Id} \otimes \rho(u(g_1g))) \circ (\text{Id} \otimes \rho(u^{-1}(g))) \circ \\
(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id}) = \\
= \left(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id}\right)^{-1} \circ \\
(\text{Id} \otimes (\rho(u(g_1g)u^{-1}(g)))) \circ \\
(\tilde{\psi}_\alpha(x_\alpha) \otimes \text{Id}) = \\
= \text{Id} \otimes \rho(u(g_1g)u^{-1}(g)).
\]

The operator
\[
\Phi_\alpha([g|x_\alpha, g_1]) = \text{Id} \otimes \rho(u(g_1g)u^{-1}(g)) = \phi(g_1, [g]).
\]
does not depend on the point \(x_\alpha \in U_\alpha\). So, the theorem is proved.

By \(\text{Aut}_G(G_0 \times (F \otimes V))\) we denote the group of equivariant automorphisms of the space \(G_0 \times (F \otimes V)\) as a vector \(G\)-bundle with base \(G_0\), fiber \(F \otimes V\) and canonical action of the group \(G\).

Corollary 1 The transition functions on the intersection
\[
O_\alpha \cap O_\beta \approx (U_\alpha \cap [g_{\alpha\beta}]U_\beta) \times G_0,
\]
i.e. the homomorphisms \(\Psi_{\alpha\beta}\) on the diagram
\[
(U_\alpha \cap [g_{\alpha\beta}]U_\beta) \times (G_0 \times (F \otimes V)) \xrightarrow{\Psi_{\alpha\beta}} (U_\alpha \cap [g_{\alpha\beta}]U_\beta) \times (G_0 \times (F \otimes V)) \\
(U_\alpha \cap [g_{\alpha\beta}]U_\beta) \times G_0 \xrightarrow{\text{Id}} (U_\alpha \cap [g_{\alpha\beta}]U_\beta) \times G_0
\]
are equivariant with respect to the canonical action of the group \(G\) over the product of the base by the canonical model, i.e.
\[
\Psi_{\alpha\beta}(x) \circ \phi(g_1, [g]) = \phi(g_1, [g]) \circ \Psi_{\alpha\beta}(x)
\]
for every \(x \in U_\alpha \cap [g_{\alpha\beta}]U_\beta, g_1 \in G, [g] \in G_0\). In other words,
\[
\Psi_{\alpha\beta}(x) \in \text{Aut}_G(G_0 \times (F \otimes V)).
\]

Now we give a more accurate description of the group \(\text{Aut}_G(G_0 \times (F \otimes V))\). By definition, an element of the group \(\text{Aut}_G(G_0 \times (F \otimes V))\) is an equivariant mapping \(A^a\), such that the pair \((A^a, a)\) defines a commutative diagram
\[
(G_0 \times (F \otimes V)) \xrightarrow{A_0^a} G_0 \times (F \otimes V) \\
\xrightarrow{G_0} G_0 \xrightarrow{\alpha} G_0,
\]
which commutes with the canonical action, i.e. the map \(a \in \text{Aut}_G(G_0) \) satisfies the condition
\[
a \in \text{Aut}_G(G_0) \approx G_0, \quad a[g] = [ga], \quad [g] \in G_0,
\]
and the mapping \(A^a = (A^a[g])_{|g| \in G_0} \),
\[
A^a[g] : [g] \times (F \otimes V) \rightarrow [ga] \times (F \otimes V)
\]
satisfies a commutation condition with respect to the action of the group \(G \):
\[
\begin{bmatrix}
[g] \times (F \otimes V) & A^a[g] & [ga] \times (F \otimes V) \\
\phi(g_1, [g]) & [g_1ga] \\
[g_1g] \times (F \otimes V) & A^a[g_1g] & [g_1ga] \times (F \otimes V)
\end{bmatrix}
\]
\[
\phi(g_1, [ga]) \circ A^a[g] = A^a[g_1g] \circ \phi(g_1, [g]) \tag{14}
\]
i.e.
\[
(\text{Id} \otimes \rho(u(g_1ga)u^{-1}(ga)))A^a[g] = A^a[g_1g](\text{Id} \otimes \rho(u(g_1g)u^{-1}(g))) \tag{15}
\]
where \([g] \in G_0, \quad g_1 \in G\).

Lemma 3 One has an exact sequence of groups
\[
1 \rightarrow GL(F) \rightarrow \text{Aut}_G(G_0 \times (F \otimes V)) \rightarrow G_0 \rightarrow 1. \tag{16}
\]

Proof. To define a projection
\[
pr : \text{Aut}_G(G_0 \times (F \otimes V)) \rightarrow G_0
\]
we send the fiberwise map
\[
A^a : G_0 \times (F \otimes V) \rightarrow G_0 \times (F \otimes V)
\]
to its restriction over the base \(a : G_0 \rightarrow G_0 \), i.e. \(a \in \text{Aut}_G(G_0) \approx G_0 \). So, this is a well-defined homomorphism.

We need to show that \(pr \) is an epimorphism and that its kernel is isomorphic to \(GL(F) \). Lets calculate the kernel.

For \([a] = [1]\) we have
\[
(\text{Id} \otimes \rho(u(g_1g)u^{-1}(g)))A^1[g] = A^1[g_1g](\text{Id} \otimes \rho(u(g_1g)u^{-1}(g))) \tag{17}
\]
In the case \(g_1 = h \in H \), we obtain
\[
(\text{Id} \otimes \rho(u(hg)u^{-1}(g)))A^1[g] = A^1[g](\text{Id} \otimes \rho(u(hg)u^{-1}(g)))
\]
Since the representation ρ is irreducible, by Schur’s lemma, we have

$$A^1[g] = B^1[g] \otimes \text{Id}.$$

On the other side, assuming in (17) that $g = 1$, we have

$$(\text{Id} \otimes \rho(u(g)))A^1[1] = A^1[g](\text{Id} \otimes \rho(u(g))),$$

i.e.

$$(\text{Id} \otimes \rho(u(g)))(B^1[1] \otimes \text{Id}) = (B^1[g] \otimes \text{Id})(\text{Id} \otimes \rho(u(g))),$$

or

$$(B^1[g] \otimes \text{Id}) = (B^1[1] \otimes \text{Id}).$$

So, the kernel $\ker p r$ is isomorphic to the group $GL(F)$.

In the generic case, i.e. $[a] \neq 1$, we can compute the operator $A^a[g]$ in terms of its value at the identity $A^a[1]$ from the formula (15): assuming $g = 1$, we obtain (changing g_1 by g):

$$(\text{Id} \otimes \rho(u(ga)u^{-1}(a)))A^a[1] = A^a[g](\text{Id} \otimes \rho(u(g))),$$

i.e.

$$A^a[g] = (\text{Id} \otimes \rho(u(ga)u^{-1}(a)))A^a[1](\text{Id} \otimes \rho(u^{-1}(g))),$$

Therefore, the operator is completely defined by its value

$$A^a[1] : [1] \times (F \otimes V) \rightarrow [a] \times (F \otimes V)$$

at the identity $g = 1$.

Now we describe the operator $A^a[1]$ in terms of the representation ρ and its properties.

We have a commutation rule with respect to the action of the subgroup H:

$$[1] \times (F \otimes V) \xrightarrow{A^a[1]} [a] \times (F \otimes V)$$

Equivalently

$$A^a[1] \circ \phi(h, [1]) = \phi(h, [a]) \circ A^a[1],$$

i.e.
\[A^a[1] \circ (\text{Id} \otimes \rho(h)) = (\text{Id} \otimes \rho(g^{-1}(a)hg'(a))) \circ A^a[1] , \]
i.e.
\[A^a[1] \circ (\text{Id} \otimes \rho(h)) = (\text{Id} \otimes \rho_{g'(a)}(h)) \circ A^a[1] . \]

The last equation means that the operator should \(A^a[1] \) permute these representations, or equivalently, such an operator exists only when the representations \(\rho \) and \(\rho_{g'(a)} \) are equivalent. Recalling the commutation rule (7), we see that this is the case we are being considering.

Thus, if the representations \(\rho \) and \(\rho_g \) are equivalent, we have an (inverse) splitting operator \(C(g) \), satisfying the equation
\[\rho_g(h) = \rho(\bar{g}^{-1}h) = C(g)\rho(h)C^{-1}(g) . \]
for every \(g \in G \). The operator \(C(g) \) is defined up to multiplication by a scalar \(\mu_g \in SS^1 \subset C^1 \).

So
\[A^a[1] \circ (\text{Id} \otimes \rho(h)) = (\text{Id} \otimes C(g'(a))) \circ \rho(h) \circ C^{-1}(g'(a)) \circ A^a[1] , \]
or
\[(\text{Id} \otimes C^{-1}(g'(a))) \circ A^a[1] \circ (\text{Id} \otimes \rho(h)) = (\text{Id} \otimes \rho(h)) \circ (\text{Id} \otimes C^{-1}(g'(a))) \circ A^a[1] , \]

Then, by the Schur’s lemma,
\[(\text{Id} \otimes C^{-1}(g'(a))) \circ A^a[1] = B^a[1] \otimes \text{Id} , \]
i.e.
\[A^a[1] = B^a[1] \otimes C(g'(a)) , \]

Using the formula (19), we obtain
\[A^a[g] = (\text{Id} \otimes \rho(u(ga)u^{-1}(a)))(B^a[1] \otimes C(g'(a)))(\text{Id} \otimes \rho(u^{-1}(g))), \]
i.e.
\[A^a[g] = B^a[1] \otimes (\rho(u(ga)u^{-1}(a)) \circ C(g'(a)) \circ \rho(u^{-1}(g))) . \]

(21)
This means, that by defining the matrix $B^a[1]$, it is possible to obtain all the operators $A^a[g]$ satisfying the equation (19).

It remains to verify the commutation rule (15), i.e. in the formula

$$(\text{Id} \otimes \rho(u(g_1ga)u^{-1}(ga)))A^a[g] = A^a[g_1g](\text{Id} \otimes \rho(u(g_1g)u^{-1}(g)))$$

we substitute the expression (21):

$$(\text{Id} \otimes \rho(u(g_1ga)u^{-1}(ga)))\circ (B^a[1] \otimes (\rho(u(ga)u^{-1}(a)) \circ C(g'(a)) \circ \rho(u^{-1}(g)))) =$$

$$= (B^a[1] \otimes (\rho(u(g_1ga)u^{-1}(a)) \circ C(g'(a)) \circ \rho(u^{-1}(g_1g)))) \circ (\text{Id} \otimes \rho(u(g_1g)u^{-1}(g)))$$

that is

$$B^a[1] \otimes \rho(u(g_1ga)u^{-1}(ga))) \circ (\rho(u(ga)u^{-1}(a)) \circ C(g'(a)) \circ \rho(u^{-1}(g))) =$$

$$= B^a[1] \otimes (\rho(u(g_1ga)u^{-1}(a)) \circ C(g'(a)) \circ \rho(u^{-1}(g_1g)))) \circ (\rho(u(g_1g)u^{-1}(g)))$$

Note that this identity does not depend on the particular matrix $B^a[1]$, thus, this means that we only need to verify the identity for arbitrary a, g and g_1:

$$\rho(u(g_1ga)u^{-1}(ga))) \circ (\rho(u(ga)u^{-1}(a)) \circ C(g'(a)) \circ \rho(u^{-1}(g))) =$$

$$= (\rho(u(g_1ga)u^{-1}(a)) \circ C(g'(a)) \circ \rho(u^{-1}(g_1g)))) \circ (\rho(u(g_1g)u^{-1}(g))),$$

which is obvious, after the natural simplifications

$$\rho(u(g_1ga)u^{-1}(a)) \circ C(g'(a)) \circ \rho(u^{-1}(g))) =$$

$$= (\rho(u(g_1ga)u^{-1}(a)) \circ C(g'(a)) \circ \rho(u^{-1}(g))),$$

So, it follows, that for every element $[a] \in G_0$ there exist an element $(A^a, a) \in \text{Aut}_G (G_0 \times (F \otimes V))$. This means that the homomorphism

$$\text{Aut}_G (G_0 \times (F \otimes V)) \overset{pr}{\longrightarrow} G_0$$

is in fact an epimorphism, and the lemma is proved.

It is clear that there is an equivalence between G-vector bundles with fiber $G_0 \times (F \otimes V)$ over a (compact) base X, where G acts trivially over the base and canonically over the fiber, and homotopy classes of mappings from X to the space $B\text{Aut}_G (G_0 \times (F \otimes V))$.

Let denote by $\text{Vect}_G(M, \rho)$ the category of G-equivariant vector bundles $\xi = \xi_0 \otimes V$ with base M, where the action of the group G is quasi-free over the base with finite normal stationary subgroup $H < G$, the group H acts trivially over the bundle ξ_0 and V denotes the trivial bundle with fiber V and with
fiberwise action of the group H given by an irreducible linear representation \(\rho \). Here we need to require for the representations \(\rho_g(h) = \rho(g^{-1}hg) \) to be equivalent for every \(g \in G \), in the other case, in view of the commutation rule, this category may be void.

This is a category because, in fact, we are just taking vector bundles over the space \(M \), then applying tensor product by the fixed bundle \(V \) and defining some action of the group \(G \) over the resulting spaces. The inclusion \(GL(F) \hookrightarrow Aut_G(G_0 \times (F \otimes V)) \) from lemma 2 ensures that the identities are included.

Denote by \(\text{Bundle}(X,L) \) the category of principal \(L \)-bundles over the base \(X \).

Theorem 2 There is a monomorphism

\[
\text{Vect}_G(M,\rho) \longrightarrow \text{Bundle}(M/G_0, \text{Aut}_G(G_0 \times (F \otimes V))). \quad (22)
\]

Proof. By corollary 3, every element \(\xi \in \text{Vect}_G(M,\rho) \) is defined by transition functions

\[
\Psi_{\alpha\beta} : (U_{\alpha} \cap [g_{\alpha\beta}]U_{\beta}) \rightarrow \text{Aut}_G(G_0 \times (F \otimes V))
\]

where by construction, when \([g] \neq [g_{\alpha\beta}] \), we have \(U_{\alpha} \cap [g]U_{\beta} = \emptyset \) and if \([g] \neq 1 \), then \(U_{\alpha} \cap [g]U_{\alpha} = \emptyset \) and \(U_{\beta} \cap [g]U_{\beta} = \emptyset \). This means that the sets \(U_{\alpha} \) and \(U_{\beta} \) project homeomorphically to open sets under the natural projection \(M \rightarrow M/G_0 \). So, these transition functions are well-defined over an atlas of the quotient space \(M/G_0 \) and they form a \(G \)-bundle with fiber \(G_0 \times (F \otimes V) \) over this quotient space.

By the same arguments, it is obvious that every \(G \)-equivariant map

\[
h_{\alpha} : O_{\alpha} \times (F \otimes V) \rightarrow O_{\alpha} \times (F \otimes V) \quad (23)
\]

can be interpreted as a map

\[
h_{\alpha} : U_{\alpha} \times (G_0 \times (F \otimes V)) \rightarrow U_{\alpha} \times (G_0 \times (F \otimes V)) \quad (24)
\]

by means of the homeomorphism \(O_{\alpha} \approx U_{\alpha} \times G_0 \), where the set \(U_{\alpha} \) can be thought as an open set of the space \(M/G_0 \). Equivalently,

\[
h_{\alpha} : U_{\alpha} \rightarrow \text{Aut}_G(G_0 \times (F \otimes V)) \quad (25)
\]

where \(U_{\alpha} \) is homeomorphic to an open set of the space \(M/G_0 \). Therefore, the map \text{(22)} is well defined.

Conversely, if we start from mappings of the form \text{(24)} where the sets \(U_{\alpha} \) are open in \(M/G_0 \), by refining the atlas, if it is necessary, we can always think that the inverse image of the open sets \(U_{\alpha} \) under the quotient map \(M \rightarrow M/G_0 \) are homeomorphic to the product \(U_{\alpha} \times G_0 \) and then obtain mappings of the form \text{(23)}. Therefore, the map \text{(22)} is a monomorphism.

Of course, the map \text{(22)} its not in general an epimorphism, since, when we define the category \(\text{Vect}_G(M,\rho) \), we are automatically fixing a bundle \(M \rightarrow M/G_0 \), or equivalently, a homotopy class in \([M/G_0, BG_0]\).
Theorem 3 If the space X is compact, then
\[
\text{Bundle}(X, \text{Aut}_G (G_0 \times (F \otimes V))) \approx \bigsqcup_{M \in \text{Bundle}(X,G_0)} \text{Vect}_G(M, \rho). \quad (26)
\]

Proof. By theorem 5, there is an inclusion
\[
\bigsqcup_{M \in \text{Bundle}(X,G_0)} \text{Vect}_G(M, \rho) \hookrightarrow \text{Bundle}(X, \text{Aut}_G (G_0 \times (F \otimes V))). \quad (27)
\]

Now we will construct an inverse to the map (27), so the fact that the last union is disjoint will follow. Let $\Psi_{\alpha\beta} : (U_\alpha \cap U_\beta) \rightarrow \text{Aut}_G (G_0 \times (F \otimes V))$ be the transition functions of a bundle $\xi \in \text{Bundle}(X, \text{Aut}_G (G_0 \times (F \otimes V)))$. By lemma 2, there is a continuous projection of groups $pr : \text{Aut}_G (G_0 \times (F \otimes V)) \rightarrow G_0$. So, by composition with pr we obtain a bundle with the discrete fiber G_0, and it is well known that G_0 acts fiberwise and freely over the total space M of this bundle and that $M/G_0 = X$.

Also, we can assume that we have chosen an atlas such that there is a homeomorphism
\[
M \approx \bigcup_{\alpha} (U_\alpha \times G_0) \approx \bigcup_{\alpha} \left(\bigcup_{[g] \in G_0} [g]U_\alpha \right)
\]
where the intersections are defined by the rule
\[
[1]U_\alpha \cap [g_{\alpha\beta}]U_\beta \approx U_\alpha \cap U_\beta
\]
where $[g_{\alpha\beta}] = pr \circ \Psi_{\alpha\beta}$.

On the other hand, we have
\[
\xi \approx \bigcup_{\alpha} (U_\alpha \times (G_0 \times (F \otimes V)))
\]
where $U_\alpha \times (G_0 \times (F \otimes V))$ intersects $U_\beta \times (G_0 \times (F \otimes V))$ on the points $(x, g, f \otimes v) = (x, \Psi_{\alpha\beta}([g], f \otimes v)) = (x, [g_{\alpha\beta}g], A_{\alpha\beta}[g](f \otimes v))$ where $x \in U_\alpha \cap U_\beta$ and, once again, we are using lemma 2 for the description of the operators $\Psi_{\alpha\beta}$.

Taking into account the homeomorphism
\[
U_\alpha \times G_0 \approx \bigsqcup_{[g] \in G_0} [g]U_\alpha
\]
we can rewrite
\[
([g]x, f \otimes v) = ([gg_{\alpha\beta}]x, A_{\alpha\beta}[g](f \otimes v))
\]
Therefore, the projection
\[(U_\alpha \times G_0) \times (F \otimes V) \to U_\alpha \times G_0\]
extends to a well-defined and continuous projection
\[\xi \to M.\]

It is clear by the preceding formulas, that this projection will be G-equivariant, if G acts canonically over the fibers and in by left translations on G_0 under the quotient map $G \to G/H = G_0$. So, we have $\xi \in \text{Vect}_G(M, \rho)$.

To end the proof, we make the remark that, by the theory of principal G_0-bundles, the construction of the space M is up to equivariant homeomorphism. This means that the inverse to (27) is well defined.

References

[1] Luke G., Mishchenko A. S., Vector Bundles And Their Applications. Kluwer Academic Publishers Group (Netherlands), 1998. ISBN: 9780792351542

[2] P. Conner, E. Floyd. Differentiable periodic maps. Berlin, Springer-Verlag 1964.

[3] Palais R.S. On the Existence of Slices for Actions of Non-Compact Lie Groups Ann. Math., 2nd Ser., Vol. 73, No. 2. (1961), pp. 295-323.

[4] Atiyah M.F., K-theory. Benjamin, New York, (1967).

[5] Serre J.P., Representations linéaires des groupes finis. Hermann, Paris. 1967.

[6] Levine M., Serpé C., On a spectral sequence for equivariant K-theory K-Theory (2008) 38 pp. 177–222