ON A CLASS OF TWO-INDEX REAL HERMITE POLYNOMIALS†

Naïma Aït Jedda and Allal Ghanmi

Communicated by Som Prakash Goyal

MSC 2010 Classifications: 33E20, 33C47.

Keywords and phrases: Two-index Hermite polynomials, Runge’s addition formula, Generating function, Nielsen’s identity.

Abstract We discuss some basic properties of a class of doubly indexed real Hermite polynomials including recurrence formulae, Runge’s addition formula, generating function and Nielsen’s identity.

1 Introduction

The Burchnall’s operational formula ([2])

$$\left(-\frac{d}{dx} + 2x\right)^m (f) = m! \sum_{k=0}^{m} \frac{(-1)^k H_{m-k}(x)}{k! (m-k)!} \frac{d^k}{dx^k} (f),$$

(1.1)

where $H_m(x)$ denotes the usual Hermite polynomial ([5, 10])

$$H_m(x) = (-1)^m e^{x^2} \frac{d^m}{dx^m} \left(e^{-x^2}\right),$$

(1.2)

enjoy a number of remarkable properties. It is used by Burchnall [2] to give a direct proof of Nielsen’s identity ([8])

$$H_{m+n}(x) = m! n! \sum_{k=0}^{\text{min}(m,n)} \frac{(-2)^k H_{m-k}(x) H_{n-k}(x)}{k! (m-n)! (n-k)!}.$$

(1.3)

The special case of (1.1) where $f = 1$, i.e.,

$$H_m(x) = \left(-\frac{d}{dx} + 2x\right)^m \cdot (1),$$

(1.4)

can be employed to recover in a easier way the generating function

$$\sum_{m=0}^{+\infty} H_m(x) \frac{t^m}{m!} = \exp(2xt - t^2)$$

(1.5)

as well as the Runge addition formula ([9, 7])

$$H_m(x+y) = \left(\frac{1}{2}\right)^{m/2} m! \sum_{k=0}^{n} \frac{H_k(\sqrt{2x})}{k!} \frac{H_{m-k}(\sqrt{2y})}{(m-k)!}.$$

(1.6)

Many generalizations of such Hermite polynomials can be found in the literature including multi-index ones [11, 6, 1, 3]. In this paper, we consider the following class of two-index Hermite polynomials of single real variable:

$$H_{m,n}(x) = \left(-\frac{d}{dx} + 2x\right)^m \cdot (x^n),$$

(1.7)

and we derive some of their useful properties. More essentially, we discuss the associated recurrence formulae, Runge’s addition formula, generating function and Nielsen’s identity.

†The research is partially supported by Hassan II Academy of Science and Technology, Morocco
2 Doubly indexed real Hermite polynomials \(H_{m,n}(x) \)

By taking \(f(x) = x^n \) in (1.1), we obtain

\[
H_{m,n}(x) := \left(-\frac{d}{dx} + 2x\right)^m (x^n) = m! n! \sum_{k=0}^{\min(m,n)} (-1)^k \frac{x^{n-k}}{k!} \frac{H_{m-k}(x)}{(n-k)! (m-k)!} .
\]

(2.1)

It follows that \(H_{m,n}(x) \) is a polynomial of degree \(m + n \), since

\[
Q(x) := H_{m,n}(x) - x^n H_m(x)
\]

is a polynomial of degree \(\text{deg}(Q) \leq n + m - 2 \). For the unity of the formulations, we shall define trivially

\[
H_{m,n}(x) = 0
\]

whenever \(m < 0 \) or \(n < 0 \). We call them doubly indexed real Hermite polynomials. Note that \(H_{m,0}(x) = H_m(x) \), \(H_{0,n}(x) = x^n \) and

\[
H_{m,n}(0) = \begin{cases} 0 & m < n \\ (-1)^n \frac{m!}{(m-n)!} H_{m-n}(0) & m \geq n \end{cases} .
\]

(2.3)

A direct computation using (2.1) gives rise to

\[
H_{1,n}(x) = -nx^{n-1} + 2x^{n+1}
\]

for every integer \(n \geq 1 \). Note also that, since \(H_1(x) = 2x \), it follows

\[
H_{m+1}(x) = \left(-\frac{d}{dx} + 2x\right)^m (H_1(x)) = \left(-\frac{d}{dx} + 2x\right)^m (2x) = 2H_{m,1}(x).
\]

(2.4)

The first few values of \(H_{m,n} \) are given by

\(m \)	\(n = 1 \)	\(n = 2 \)	\(n = 3 \)
1	1 + 2x^2 = H_2(x)	-2x + 2x^3	-3x^2 + 2x^4
2	-6x + 4x^3 = H_3(x)	2 - 10x^2 + 4x^4	6x - 14x^3 + 4x^5
3	6 - 24x^2 + 8x^3 = H_4(x)	24x - 36x^2 + 8x^3	-6 + 54x^2 - 48x^3 + 8x^5

From (2.2), one can deduce easily the symmetry formula

\[
H_{m,n}(-x) = (-1)^{n+m} H_{n,m}(x),
\]

(2.5)

so that the \(H_{m,n}(x) \) is odd (resp. even) if and only if \(n + m \) is odd (resp. even). Furthermore, the Rodrigues formula for \(H_{m,n}(x) \) is

\[
H_{m,n}(x) = (1)^{m} e^{z^2} \frac{d^m}{dz^m} \left(z^n e^{-z^2}\right) .
\]

(2.6)

Indeed, this can be proved easily making use of

\[
\left(\frac{d}{dx} + 2x\right)^m f(x) = (-1)^m e^{z^2} \frac{d^m}{dz^m} \left(e^{-z^2} f(x)\right) .
\]

(2.7)

Therefore, these polynomials constitute a subclass of the generalized Hermite polynomials

\[
H_{m,n}(x, \alpha, \beta) := (-1)^m x^{-\alpha} e^{\beta x^2} \frac{d^m}{dx^m} \left(x^n e^{-\beta x^2}\right) .
\]

(2.8)

considered by Gould and Hopper in [4]. In fact, we have \(H_{m,n}(x) = x^n H_{m,n}(x, n, 1) \).

Proposition 2.1. The polynomials \(H_{m,n} \), \(m, n \geq 1 \), satisfy the following recurrence formulae

\[
H_{m,n}(x) + H_{m+1,n}(x) - 2x H_{m,n}(x) = 0,
\]

(2.9)

\[
H_{m,n}(x) + n H_{m-1,n-1}(x) - 2 H_{m-1,n+1}(x) = 0,
\]

(2.10)

\[
H_{m,n}(x) + m H_{m-1,n-1}(x) - x H_{m,n-1}(x) = 0,
\]

(2.11)

\[
(m-n) H_{m-1,n-1}(x) + 2 H_{m-1,n+1}(x) + x H_{m,n-1}(x) = 0.
\]

(2.12)
Proof. The first one follows by writing the derivation operator as

\[\frac{d}{dx} = - \left(- \frac{d}{dx} + 2x \right) + 2x. \]

Indeed, we get

\[\frac{d}{dx} (H_{m,n}(x)) = - \left(- \frac{d}{dx} + 2x \right) H_{m,n}(x) + 2x H_{m,n}(x) \]
\[= -H_{m+1, n}(x) + 2x H_{m,n}(x). \]

For the second one, write \(H_{m,n}(x) \) as

\[H_{m,n}(x) = \left(- \frac{d}{dx} + 2x \right)^{m-1} (H_{1,n}(x)) \]
\[= \left(- \frac{d}{dx} + 2x \right)^{m-1} (-nx^{n-1} + 2x^{n+1}) \]
\[= -nH_{m-1, n-1}(x) + 2H_{m-1, n+1}(x). \]

To prove (2.11), we use (2.6) combined with Leibnitz formula. Indeed,

\[H_{m,n}(x) = (-1)^m e^{x^2} \frac{d^m}{dx^m} \left(x \cdot x^{n-1} e^{-x^2}\right) \]
\[= (-1)^m e^{x^2} \left[x \frac{d^m}{dx^m} \left(x^{n-1} e^{-x^2}\right) + m \frac{d^{m-1}}{dx^{m-1}} \left(x^{n-1} e^{-x^2}\right) \right] \]
\[= xe^{x^2}H_{m,n-1}(x) - mH_{m-1,n-1}(x). \]

Finally, (2.12) follows from (2.10) and (2.11) by subtractions.

Remark 2.2. According to (2.4), the (2.11) (corresponding to \(n = 1 \)) leads to the well known recurrence formula \(H_{m+1}(x) = 2xH_m(x) - 2mH_{m-1}(x) \) for \(H_m(x) \). Note also that (2.9) reduces further to \(H_m'(x) + H_{m+1}(x) - 2x H_m(x) = 0 \) by taking \(n = 0 \), so that we recover the known result that \(H_m'(x) = 2mH_{m-1}(x) \).

Proposition 2.3. We have the following addition formula

\[H_{m,n}(x+y) = m!n! \left(\frac{1}{\sqrt{2}} \right)^{m+n} \sum_{k=0}^{m} \sum_{j=0}^{n} \frac{H_{k,j}(\sqrt{2}x) H_{m-k,n-j}(\sqrt{2}y)}{k!j!(m-k)!(n-j)!}. \quad (2.13) \]

Proof. We begin by writing have \(H_{m,n}(x+y) \) as

\[H_{m,n}(x+y) = \left(- \frac{d}{d(x+y)} + 2(x+y) \right)^m \cdot (x+y)^n \]
\[= \left(- \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + 2(x+y) \right)^m \cdot (x+y)^n \]
\[= \left(\frac{1}{\sqrt{2}} \right)^m (A_x + A_y)^m \cdot (x+y)^n \]
\[= \left(\frac{1}{\sqrt{2}} \right)^m \sum_{j=0}^{n} \binom{n}{j} (A_x + A_y)^m \cdot (x^j y^{n-j}), \]

where \(A_t \) stands for \(A_t = -\partial / (\partial \sqrt{2}t) + 2\sqrt{2}t \). Thus, since \(A_x \) and \(A_y \) commute, we can make use of the binomial formula to get

\[H_{m,n}(x+y) = \left(\frac{1}{\sqrt{2}} \right)^m \sum_{k=0}^{m} \binom{m}{k} \frac{1}{k!} \binom{n}{j} A_x^k A_y^{n-k} \cdot (x^j y^{n-j}), \]

whence, we obtain the asserted result according to the fact that

\[A_t^m (t^*) = 2^{-s/2} H_{s,s}(\sqrt{2}t). \]

\[\square \]
Therefore, the desired result follows since we get

\[\text{making use of the Weyl identity which reads for the operators } A \]

\[\text{holds by taking } x = 0 \text{ and setting } t = y \text{ in (2.13), keeping in mind (2.3). We get also} \]

\[H_{m,n}(t) = m!n! \left(\frac{1}{\sqrt{2}} \right)^{m+n} \sum_{k=0}^{m} \sum_{j=0}^{n} (-1)^{j} H_{k-j}(0) \frac{H_{m-k,n-j}(\sqrt{2}t)}{(m-k)!(n-j)!} \]

by setting \(x = y = t/2 \) in (2.13). While for \(t = -\sqrt{2}x = \sqrt{2}y \), we obtain

\[\sum_{k=0}^{m} \sum_{j=0}^{n} (-1)^{k} H_{k,j}(t) \frac{H_{m-k,n-j}(t)}{k!j!} \frac{2}{(m-k)!(n-j)!} = 0 \]

whenever \(m + n \) is odd or \(m > n \).

Next, we state the following

Proposition 2.6. The generating function of \(H_{m,n} \) is given by

\[\sum_{m,n=0}^{\infty} H_{m,n}(x) \frac{u^{m} v^{n}}{m! n!} = \exp \left(-u^{2} + (2u + v)x - uv \right). \]

(2.14)

Proof. According to the definition of \(H_{m,n} \), we can write

\[\sum_{m,n=0}^{\infty} H_{m,n}(x) \frac{u^{m} v^{n}}{m! n!} = \left[\sum_{m=0}^{\infty} \frac{1}{m!} \left(-u \frac{d}{dx} + 2ux \right)^{m} \right] \cdot \left(\sum_{n=0}^{\infty} \frac{v^{n}}{n!} x^{n} \right) \]

\[= \exp \left(-u \frac{d}{dx} + 2ux \right) (e^{vx}). \]

Making use of the Weyl identity which reads for the operators \(A = 2x1d \) et \(B = -d/dx \) as

\[\exp(uA + uB) = \exp(uA) \exp(uB) \exp \left(-u^{2}Id \right); \quad u \in \mathbb{R}, \]

we get

\[\sum_{m,n=0}^{\infty} H_{m,n}(x) \frac{u^{m} v^{n}}{m! n!} = e^{2ux-u^{2}} \exp \left(-u \frac{d}{dx} \right) (e^{vx}). \]

Therefore, the desired result follows since

\[\exp \left(-u \frac{d}{dx} \right) (e^{vx}) = \sum_{k=0}^{\infty} \frac{(-u)^{k}}{k!} \left(\frac{d}{dx} \right)^{k} (e^{vx}) = e^{-uv} e^{vx}. \]

\[\blacksquare \]

Remark 2.7. The special case of \(v = 0 \) in (2.14) infers the generating function (1.5) of the standard real Hermite polynomials \(H_{m,v} \). Furthermore, for \(y = u = -v \), we get

\[e^{xy} = \sum_{m,n=0}^{\infty} (-1)^{n} H_{m,n}(x) \frac{y^{m+n}}{m!n!}. \]

(2.15)

Proposition 2.8. We have the recurrence formula

\[H'_{m,n}(x) = 2mH_{m-1,n}(x) + nH_{m,n-1}(x). \]

(2.16)
Proof. Differentiating the both sides of (2.14) and making appropriate changes of indices yield (2.16). □

Corollary 2.9. We have

\[
\frac{d^n}{dx^n}(H_{r,n}(x)) = r!n! \sum_{j=0}^{\nu} \alpha_{j,\nu} \frac{H_{r-\nu+j,n-j}(x)}{(r-\nu+j)!(n-j)!},
\]

(2.17)

where

\[
\alpha_{j,\nu} = \begin{cases}
2^\nu & \text{for } j = 0 \\
2\alpha_{j-1,\nu-1} + \alpha_{j-1,\nu-1} & \text{for } 1 \leq j < \nu \\
1 & \text{for } j = \nu
\end{cases}
\]

Proof. This can be handled by mathematical induction using (2.16). □

Remark 2.10. The \(\alpha_{j,\nu}\) are even positive numbers and their first values are

\[
\begin{array}{c|cccccc}
\nu & j = 0 & j = 1 & j = 2 & j = 3 & j = 4 & j = 5 \\
\hline
\nu = 0 & 1 \\
\nu = 1 & \frac{2^2}{1} & 1 \\
\nu = 2 & \frac{2^4}{2} & \frac{4}{1} & 1 \\
\nu = 3 & \frac{2^6}{3} & \frac{12}{6} & \frac{6}{1} \\
\nu = 4 & \frac{2^8}{4} & \frac{32}{8} & \frac{24}{1} \\
\nu = 5 & \frac{2^{10}}{5} & \frac{80}{10} & \frac{80}{1} & 1
\end{array}
\]

We conclude this paper by giving a formula for the two-index Hermite polynomial \(H_{m,n}(x)\) expressing it as a weighted sum of a product of the same polynomials. Namely, we state the following

Proposition 2.11. Keep notation as above. Then the Nielsen identity for \(H_{m,n}; \ n \geq 1\), reads

\[
H_{m+r,n}(x) = m!r!mn! \sum_{k,\nu,j=0}^{m,k,\nu} \alpha_{j,\nu} \frac{\Gamma(n+k-\nu)}{(k-\nu)!}\frac{(-x)\nu}{x} \frac{H_{m-k,n}(x)}{(m-k)!} \frac{H_{r-\nu+j,n-j}(x)}{(r-\nu+j)!(n-j)!}.
\]

Proof. Recall first that \(H_m^{\gamma}(x, \alpha, p)\), the polynomials given through (2.8), can be rewritten in the following equivalent form ([4])

\[
H_m^{\gamma}(x, \alpha, p) := \left(-\frac{d}{dx} + p \gamma x^{\gamma-1} - \frac{\alpha}{x}\right)^m (1).
\]

Now, since for the special values \(p = 1, \gamma = 2\) and \(\alpha = n\), we have

\[
H_{m+r,n}(x) = x^n H_{m+r,n}^2(x, n, 1)
\]

\[
= x^n \left(-\frac{d}{dx} + 2x - \frac{n}{x}\right)^m (H_r^2(x, n, 1))
\]

\[
= x^n \left(-\frac{d}{dx} + 2x - \frac{n}{x}\right)^m (x^{-n}H_r(x))
\]

we can make use of the Burchnall’s formula extension proved by Gould and Hopper [4], to wit

\[
\left(-\frac{d}{dx} + p \gamma x^{\gamma-1} - \frac{\alpha}{x}\right)^m (f) = m! \sum_{k=0}^{m} \frac{(-1)^k}{k!} \frac{H_{m-k}(x, \alpha, p)}{(m-k)!} \frac{d^k}{dx^k} (f).
\]

Thus, for \(f = x^{-n}H_r(x)\), we obtain

\[
H_{m+r,n}(x) = m! \sum_{k=0}^{m} \frac{(-1)^k}{k!} \frac{H_{m-k,n}(x)}{(m-k)!} \frac{d^k}{dx^k} (x^{-n}H_r(x)).
\]
Therefore, by applying the Leibnitz formula and appealing the result of Corollary 2.9, we get

\[
H_{m+r,n}(x) = m! \sum_{k=0}^{m} \frac{(-1)^k}{k!} H_{m-k,n}(x) \sum_{\nu=0}^{k} \frac{k!}{(m-k)!} \frac{d^{k-\nu}}{dx^{k-\nu}} \left(x^{-n} \right) \frac{d^{\nu}}{dx^{\nu}} (H_r(x))
\]

\[
= m! \Gamma(m+n) \sum_{k,\nu,\mu=0}^{m,\nu\mu} \frac{\alpha_k \Gamma(n+k-\nu)}{(k-\nu)!} \frac{(-x)^{\nu}}{\nu!} \frac{H_{m-k,n}(x)}{x^{n+k}} \frac{H_{r-\nu,j,n-j}(x)}{(m-k)!} \frac{1}{(r-\nu+j)!(n-j)!}
\]

for every integer \(n \geq 1 \). Note that for \(n = 0 \), (2.18) reads simply

\[
H_{m+r}(x) = m! \sum_{k=0}^{m} \frac{(-1)^k}{k!} H_{m-k}(x) \frac{d^k}{dx^k} (H_r(x)).
\]

In this case, we recover the usual Nielsen formula (1.3) for the real Hermite polynomials \(H_m \).

References

[1] C. Belingeri, G. Dattoli, S. Khan, P.E. Ricci, Monomiality and multi-index multi-variable special polynomials. Integral Transforms Spec. Funct. 18 (2007), no. 7-8, 449–458.

[2] J.L. Burchnall, A note on the polynomials of Hermite. Quart. J. Math., Oxford Ser. 12 (1941). 9–11.

[3] G. Dattoli, S. Khan, P.E. Ricci, On Crofton-Glaisher type relations and derivation of generating functions for Hermite polynomials including the multi-index case. Integral Transforms Spec. Funct. 19 no. 1-2 (2008) 1–9.

[4] H.W. Gould, A.T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 29 1962 51-63.

[5] C. Hermite, Sur un nouveau développement en série des fonctions. Compt. Rend. Acad. Sci. Paris 58, p. 94-100 et 266-273, t. LVIII (1864) ou Oeuvres complètes, tome 2. Paris, p. 293-308, 1908.

[6] M.E.H. Ismail, Classical and quantum orthogonal polynomials in one variable. Encyclopedia of Mathematics and its Applications 98, Cambridge University Press, 2005.

[7] J. Kampé de Fériet, Sur une formule d’addition des polynômes d’Hermite. Volume 2 de Mathematisk-fysiske Meddelelser. 10 pages, Det Kgl. Danske Videnskabernes Selskab, Lunos, 1923

[8] N. Nielsen, Recherches sur les polynômes d’Hermite. Volume 1 de Mathematisk-fysiske meddeleelser. 79 pages, Det Kgl. Danske Videnskabernes Selskab, 1918.

[9] C. Runge, Über eine besondere Art von Integralgleichungen. Math. Ann. 75 (1914) 130-132.

[10] E.D. Rainville, Special functions. Chelsea Publishing Co., Bronx, N.Y., 1971.

[11] H.S.P. Shrivastava, Some generating function relations of multi-index Hermite polynomials. Math. Comput. Appl. 6 no. 3 (2001) 189–194.

Author information

Naïma Aït Jedda and Allal Ghanmi, Laboratory of Analysis and Applications-URAC/03, Department of Mathematics, P.O. Box 1014, Faculty of Sciences, Mohammed V-Agdal University, Rabat, Morocco.

E-mail: ag@fsr.ac.ma

Received: May 22, 2013

Accepted: June 12, 2013