Voltage-gated sodium channels in diabetic sensory neuropathy: Function, modulation, and therapeutic potential

Stephanie Bigsby†, Joseph Neapetung† and Verónica A. Campanucci*

Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada

Voltage-gated sodium channels (Na\textsubscript{V}) are the main contributors to action potential generation and essential players in establishing neuronal excitability. Na\textsubscript{V} channels have been widely studied in pain pathologies, including those that develop during diabetes. Diabetic sensory neuropathy (DSN) is one of the most common complications of the disease. DSN is the result of sensory nerve damage by the hyperglycemic state, resulting in a number of debilitating symptoms that have a significant negative impact in the quality of life of diabetic patients. Among those symptoms are tingling and numbness of hands and feet, as well as exacerbated pain responses to noxious and non-noxious stimuli. DSN is also a major contributor to the development of diabetic foot, which may lead to lower limb amputations in long-term diabetic patients. Unfortunately, current treatments fail to reverse or successfully manage DSN. In the current review we provide an updated report on Na\textsubscript{V} channels including structure/function and contribution to DSN. Furthermore, we summarize current research on the therapeutic potential of targeting Na\textsubscript{V} channels in pain pathologies, including DSN.

KEYWORDS
diabetic neuropathy (painful), Na\textsubscript{V} channels, modulation, therapeutics, sensory neurons

Introduction

Diabetic neuropathies are amongst the most common chronic complications of diabetes, affecting approximately 50–60% of diabetic patients (Boulton et al., 2005; Zakin et al., 2019). Neuropathy results from diabetes-induced damage to peripheral nerves, and up to 30% of those patients develop a sensory form of neuropathy (diabetic sensory neuropathy or DSN) (Boulton et al., 2005; Tesfaye et al., 2013). DSN can present with a wide spectrum of clinical symptoms from tingling, numbness, weakness, and sensory loss, to exacerbated pain perception (Callaghan et al., 2012; Kobayashi and Zochodne, 2018). Patients suffering from DSN can display one or more types of stimulus-evoked...
pain, such as exacerbated responses to noxious (hyperalgesia) or innocuous (allodynia) stimuli (Hong et al., 2004; Tesfaye et al., 2010). DSN involves sensory abnormalities that most commonly manifest in a symmetrical “stocking-and-glove” distribution, being experienced in the distal extremities (e.g., hands and feet) and progresses proximally towards the torso over the course of diabetes (Callaghan et al., 2012). Consequently, DSN patients are at a higher risk of developing “diabetic foot,” a condition characterized by the development of unhealing foot ulcers, which can eventually contribute to lower limb amputations (Callaghan et al., 2012; Kobayashi and Zochodne, 2018). Ultimately, pathological damage to the peripheral nerves in DSN is debilitating, resulting in a considerable reduction in patient quality of life. Despite a strong relationship between blood glucose levels and neuropathy, the underlying mechanisms contributing to the pathology of DSN remain unclear. Unfortunately, no therapeutic strategy has succeeded in halting, reversing or preventing the development of DSN (Dyck et al., 1999; Callaghan et al., 2012; Kobayashi and Zochodne, 2018).

Some symptoms characteristic of DSN, such as numbness and hyposensitivity, are usually associated with long-standing diabetes and the progressive degeneration of peripheral nerves and loss peripheral innervation (Chantelau, 2015). Although painful symptoms are also consequence of nerve damage and inflammation, they have been linked to biochemical changes affecting membrane proteins and signaling pathways in sensory neurons. Amongst the many proteins that may contribute to the development and/or progression of DSN, voltage-gated sodium channels (Na\textsubscript{V}) have been particularly considered. Na\textsubscript{V} channels are essential for the initiation and propagation of action potentials, and thus, are responsible for electrical signaling (Bagal et al., 2015). Activation of Na\textsubscript{V} channels carry the increase in sodium conductance during action potentials, allowing the movement of sodium ions down their electrochemical gradient and into the cell following local depolarization (Catterall, 1992; De Lera Ruiz and Kraus, 2015). This large influx of sodium ions causes further depolarization, which activates more Na\textsubscript{V} channels triggering a positive feedback leading ultimately to the rising phase of the action potential (Chong and Ruben, 2008). Various Na\textsubscript{V} channels participate in pain perception, which has made them subjects of extensive investigation into the pathophysiology of pain, including their contribution to pain symptoms in DSN (Dib-Hajj et al., 2010).

Na\textsubscript{V} function is intimately linked to channel structure and tissue distribution

Na\textsubscript{V} channels are heteromeric complexes composed of a pore-forming \(\alpha \) subunit and at least one associated \(\beta \) subunit (Bagal et al., 2015; O’Malley and Isom, 2015). The \(\alpha \) subunit family members (Na\textsubscript{V} 1.1 - 1.9) are highly homologous in amino acid sequence and display tissue specificity throughout the body (De Lera Ruiz and Kraus, 2015). They are encoded by the genes SCN1A-SCN5A and SCN8A-SCN11A (Hoeijmakers et al., 2015). These subunits are large single polypeptide chains of approximately 260 kDa, composed of 4 homologous domains each containing a voltage sensor, a pore region, and a selectivity filter (De Lera Ruiz and Kraus, 2015).

Na\textsubscript{V} channels are commonly characterized by their differential sensitivity to tetrodotoxin (TTX), Na\textsubscript{V} 1.1–1.4, 1.6, and 1.7 are inhibited by this toxin with an IC\textsubscript{50} in the low nanomolar concentration range, and thus are considered TTX-sensitive (TTX-S) (Baer et al., 1976; De Lera Ruiz and Kraus, 2015). TTX-S channels carry faster activating and inactivating currents (Wang et al., 2011; Yin et al., 2016). Meanwhile, Na\textsubscript{V} 1.5, 1.8, and 1.9 are inhibited by TTX with an IC\textsubscript{50} in the micromolar range, and hence are considered as TTX-resistant (TTX-R) (Baer et al., 1976; De Lera Ruiz and Kraus, 2015). TTX-R currents show slower activation and inactivation kinetics (Wang et al., 2011; Yin et al., 2016). Na\textsubscript{V} 1.1 and 1.3 are expressed in both the central (CNS) and the peripheral (PNS) nervous systems (Cummins and Rush, 2007; Bagal et al., 2015). Na\textsubscript{V} 1.1 expression in peripheral dorsal root ganglion (DRG) neurons is high in large-diameter neurons, moderate in medium-diameter neurons, and low in small diameter neurons. A small portion of Na\textsubscript{V} 1.1-positive neurons co-express isolectin B4 (IB4), a marker for nociceptive neurons, suggesting this isoform may play some role in pain transmission (Wang et al., 2011). Na\textsubscript{V} 1.3 expression in DRGs is highest in the embryonic period of development, and downregulates postnatally (Cummins and Rush, 2007; Bennett et al., 2019). Na\textsubscript{V} 1.2, on the other hand, is highly expressed in the CNS. It is predominantly found in dendrites, unmyelinated axons, and pre-myelinated axons (Wang et al., 2011) predominantly in the embryonic period (Wang et al., 2011; Bennett et al., 2019). Other Na\textsubscript{V} subunits are almost exclusively expressed in embryonic muscle (Bennett et al., 2019), Na\textsubscript{V} 1.4 in skeletal (Cummins and Rush, 2007) and Na\textsubscript{V} 1.5 in the cardiac muscle (Rogers et al., 2006; Cummins and Rush, 2007).

The rest of the Na\textsubscript{V} isoforms (Nav 1.6–1.9) are expressed within the DRGs and play important roles in nociception (Rush et al., 2007; Chen et al., 2018). Na\textsubscript{V} 1.6 expression in DRG, as well as in motor neurons, is preferentially targeted to the nodes of Ranvier in myelinated fibers and along unmyelinated C-fiber (Wittmack et al., 2005; Bennett et al., 2019). Nav 1.7 is the most expressed TTX-S isoform, mostly found in small diameter A\textsubscript{\textdelta} and C-fibers (Black et al., 1996; Toledo-Aral et al., 1997; Berta et al., 2008; Dib-Hajj et al., 2010, 2013; Ho and O’Leary, 2011), including 85% of functionally identified nociceptors (Djouhri et al., 2003). Nav 1.8 and Nav 1.9, are also highly expressed in nociceptive neurons (Akopian et al., 1997; Dib-Hajj et al., 1998; Bennett et al., 2019). Nav 1.8...
is the major contributor to the rising phase of the action potential; carrying 80–90% of the inward sodium current during the upstroke of the action potential (Renganathan et al., 2001), and its ability to rapidly recover from inactivation allows for repetitive, high frequency firing (Waxman, 2012). Na\textsubscript{\textit{v}}1.9 is almost exclusively expressed in the PNS (Cummins and Rush, 2007), particularly in C-fiber nociceptors and with moderated expression in medium diameter (A\textdelta-fibers) and low in large diameter (A\textbeta-fibers) (Rogers et al., 2006; Priest and Kaczorowski, 2007). Na\textsubscript{\textit{v}} 1.9 contribute to the amplification of subthreshold inputs, but do not contribute to the upstroke or amplitude of the action potential (Bennett et al., 2019). These are considered threshold channels due to their activation at hyperpolarized potentials (near the resting membrane potential), where other Na\textsubscript{\textit{v}} channels remain inactive (De Lera Ruiz and Kraus, 2015; Bennett et al., 2019).

Most Na\textsubscript{\textit{v}} channels contain associated \beta subunits; although they were traditionally considered as "auxiliary," growing evidence suggests they are critical for channel function. The \beta subunits promote channel trafficking (Schmidt and Catterall, 1986; Chen et al., 2002), and modulate channel biophysical properties (Calhoun and Isom, 2014). The 4 known \beta subunits (\beta1- \beta4) (Qin et al., 2003; Brackenbury and Isom, 2011) are encoded by genes SCN1B-SCN4B. Mutations in these genes, as well as changes in expression levels, have been linked to the development of many isoform-specific pathologies such as epilepsy, Huntington’s disease, cardiac arrhythmias, and various neuropathies (Meadows et al., 2002; Lucas et al., 2005; Oyama et al., 2006; Medeiros-Domingo et al., 2007; Brackenbury and Isom, 2011; Alsaloum et al., 2019). These subunits have a much smaller molecular weights than their \alpha counterparts (30–40 kDa, Priest and Kaczorowski, 2007), and are members of the immunoglobulin superfamily of cell adhesion molecules (De Lera Ruiz and Kraus, 2015). \beta1 and \beta3 noncovalently bind to the \alpha-subunit, while \beta2 and \beta4 covalently attach to the \alpha-subunit via disulfide bonds (Namadurai et al., 2015). The immunoglobulin domain modulates expression and gating properties of \alpha subunits, while the transmembrane domain influences their voltage dependence (Rogers et al., 2006; De Lera Ruiz and Kraus, 2015). \beta subunits are found in the CNS, PNS, heart, and skeletal muscle (excepting \beta2) (Isom et al., 1992; Brackenbury and Isom, 2011), \beta1 and \beta4 can modulate channel kinetics by enhancing the rate of inactivation and recovery from inactivation (Namadurai et al., 2015). \beta4 is the promoter of the resurgent current, which flows through channels that reopen in response to negative voltage changes due to the decay of the macroscopic sodium current, but when the inactivation gates have yet to close (Raman and Bean, 1997). In contrast, \beta3 is mostly expressed in heart muscle (Brackenbury and Isom, 2011) and has been linked to cardiac arrhythmias and cardiac conduction problems (O’Malley and Isom, 2015).

Contribution of Na\textsubscript{\textit{v}} channels to diabetic sensory neuropathy

The induction of experimental diabetes in rodents using streptozotocin (STZ), a pancreatic \beta-cell-specific cytotoxin, results in hyperglycemia due to lack of insulin production (Islam and Loots, 2009). STZ-induced diabetic animals develop painful neuropathy accompanied by a typical increase in Na\textsubscript{\textit{v}}1.3, 1.6, and 1.7 expression (Cummins et al., 1998, 2001; Herzog et al., 2003; Hong et al., 2004) and DRG neuron hyperexcitability (Hirade et al., 1999). The pivotal role of Na\textsubscript{\textit{v}}1.7 in nociception (Black et al., 1996; Toledo-Aral et al., 1997; Berta et al., 2008; Ho and O’Leary, 2011; Dib-Hajj et al., 2013) has been well documented, particularly by the effects of mutations. While gain-of-function mutations in the Na\textsubscript{\textit{v}}1.7 subunit lead to hereditary pain disorders, such as primary erythromelalgia, paroxysmal extreme pain disorder and small fiber neuralgia (De Lera Ruiz and Kraus, 2015; Tibbs et al., 2016), loss-of-function mutations lead to congenital insensitivity to pain (De Lera Ruiz and Kraus, 2015). In the DRG of diabetic rodents, Na\textsubscript{\textit{v}}1.7 channel expression increased robustly and triggered evoked pain symptoms of thermal hyperalgesia and mechanical allodynia (Hong et al., 2004). Consistently, symptoms of thermal hyperalgesia and mechanical allodynia in these animals were attenuated by the miRNA-mediated knockdown of the Na\textsubscript{\textit{v}}1.7 \alpha subunit (Chattopadhayay et al., 2012). Furthermore, electrophysiological studies in DRG neurons from diabetic rats revealed that the TTX-S current showed an increased current density, a negatively shifted voltage-dependent activation, and delayed inactivation kinetics (Hong and Wiley, 2006). The latter are consistent with expression and function changes reported in Na\textsubscript{\textit{v}}1.7, which is the predominant TTX-S isoform expressed in DRG neurons (Black et al., 1996; Toledo-Aral et al., 1997; Berta et al., 2008; Ho and O’Leary, 2011; Dib-Hajj et al., 2013).

Isoforms Na\textsubscript{\textit{v}}1.2, 1.3, and 1.9 are upregulated in the DRG of STZ-induced diabetic rats (Hong and Wiley, 2006). The detection of Na\textsubscript{\textit{v}}1.2 and 1.3 in adult diabetic rodents contrasts with physiological expression levels of these subunits, since they are normally higher in embryonic neurons (Cummins and Rush, 2007; Wang et al., 2011; Bennett et al., 2019). The latter suggest that the diabetic environment triggers a pathological resurgence in the expression of these embryonic channels. It has been reported that Na\textsubscript{\textit{v}}1.3 is upregulated in the adult spinal cord of rats after peripheral nerve injury (Black et al., 2004; Cummins and Rush, 2007) and in the DRG after axotomy (Hains et al., 2003). And more importantly, the knockdown of Na\textsubscript{\textit{v}}1.3 expression successfully reduced evoked tactile allodynia and hyperexcitability in the dorsal horn neurons of STZ-induced diabetic rats (Tan et al., 2015). These findings suggest that Na\textsubscript{\textit{v}}1.3 could be a suitable therapeutic target in the treatment of DSN.
Contrasting with other NaV isoforms, the expression levels of NaV1.6 and 1.8 decreased in DRG homogenates from diabetic rats (Hong et al., 2004). Although the mechanisms for this downregulation is still unclear, it has been reported that reactive oxygen species (ROS) reduced NaV1.8 peak current in DRG neurons (Schink et al., 2016). This finding is consistent with the well documented generation of ROS in diabetes from mitochondria as well as by enzymatic and non-enzymatic glucose oxidation, and constitute the most explored hypothesis for the effects of diabetes on the nervous system (Russell et al., 2002; Vincent et al., 2005; Tomlinson and Gardiner, 2008; Campanucci et al., 2010; Chanda et al., 2015; Lam et al., 2018; Momeni et al., 2021).

Much less, however, is known about the possible contribution of β subunits to DSN. Genetic analysis of the β2 subunit gene from a diabetic patient, who presented symptoms of painful neuropathy, revealed a gain-of-function mutation of an aspartic acid substituted by asparagine mutation, D109N. This point mutation lead to DRG neuron hyperexcitability (Alsaloum et al., 2019). These findings were in line with the increase in β2 subunit expression in neuropathic pain models of injured and uninjured DRG neurons (Pertin et al., 2005), highlighting this subunit as a potential player in the development of varied pain pathologies.

The Therapeutic Potential of NaV Channels

Table 1 summarizes the current knowledge on approved therapeutic strategies for DSN targeting NaV channels, as well as mechanisms with the potential to modulate NaV function in DSN. Tricyclic antidepressants (TCAs), such as amitriptyline, imipramine, nortriptyline, and duloxetine, are Food and Drug Administration (FDA) approved drugs that are effective for the treatment of painful forms of DSN (Berger et al., 2005). A recent report (Horishita et al., 2017) demonstrate that the analgesic effects of some of these drugs in neuropathic pain pathology is mediated by the inhibition of NaV channels. Particularly, they strongly inhibited NaV1.7, and NaV1.8 in DRG, as well as upregulated NaV1.3 in the DRG of models of peripheral nerve injury (Lindia et al., 2005; Fukuoka et al., 2008). These drugs also inhibited, but in a weaker fashion, NaV channels highly expressed in the CNS, such as NaV1.6 and NaV1.2 (Horishita et al., 2017). Another therapeutic approach, not first considered as targeting NaV channels, is the pungent ingredient in "hot" chili peppers, capsaicin. Capsaicin is an agonist of the transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel (Caterina et al., 1997). TRPV1 plays a central role in pain transduction, and its inhibition alleviates thermal hyperalgesia and mechanical allodynia in animal models of peripheral nerve injury (Walker et al., 2003; Kasama et al., 2007; Sugimoto et al., 2013). Interestingly, capsaicin can also induce analgesia. In fact, the topical application of capsaicin has been used for the treatment of localized pain (Deal et al., 1991; Hersch et al., 1994; Gratton and Cusson, 1995; Winocur et al., 2000; Melis et al., 2019), and the use of capsaicin as a therapeutic approach for diabetic patients with symptoms of painful neuropathy has been recently reviewed by Dludla et al. (2022). It is well accepted that repeated exposure to capsaicin induces a calcium-mediated desensitization of TRPV1 channels (Jancsó et al., 1967; Hains et al., 2003). However, the analgesic effects of capsaicin are mediated in part by the inhibition of NaV channels through second messengers, such as cAMP (Liu et al., 2001). Although, the identity of the specific NaV isoforms modulated by capsaicin remain to be explored. Another approach targeting NaV channels in DSN is the use of the antithrombotic agent cilostazol (Cheng et al., 2022). The interest on cilostazol for DSN symptoms stems from its known protection of human endothelial cells via activation of ERK1/2 and p38 MAPKs (MAPK) (Lim et al., 2009), and neuroprotection in animal models of cerebral ischemia (Iwama et al., 2007). When tested on diabetic rats, oral administration of cilostazol successfully decreased withdrawal threshold to mechanical stimuli and attenuated neuropathic pain symptoms. More importantly, it reduced expression levels of multiple NaV isoforms (NaV1.1, 1.2, 1.6, and 1.7); and restored expression levels of NaV1.8, which was markedly reduced in STZ rats. The anticonvulsant gabapentin, has also been testes to treat DSN. Gabapentin induced analgesia in STZ-induced diabetic rats, it successfully reverted mechanical allodynia and thermal hyperalgesia in these animals, which correlated with reduced expression of the NaV1.7 isoform and phosphorylated ERK1/2 in DRG neurons (Zhang et al., 2013). Similar findings come from pioglitazone, a proliferator-activated receptors (PPARs) agonist usually prescribed to type 2 diabetic patients, and ranolazine, an adjuvant in chronic angina medication (Elkholy et al., 2020). Both drugs successfully reverted symptoms of mechanical allodynia and thermal hyperalgesia in type 2 diabetic rats. Furthermore, these drugs individually reduced the expression levels of NaV1.7 in DRG neurons to control levels (Elkholy et al., 2020).

Targeting signaling kinases such as those from the mitogen-activated protein kinase (MAP) and protein kinase (PK) families in the context of DSN, is supported by reports highlighting their role regulating NaV expression and function in other pain pathologies. For instance, in human painful neuromas, multiple NaV isoforms (NaV1.1 - 1.3, NaV1.6 - 1.9) co-localized with the activated MAPKs p38 and extracellular signal-regulated kinases 1 and 2 (ERK1/2), suggesting these signaling proteins could potentially modulate NaV channel...
TABLE 1 Modulation of Na_V expression and channel function as treatment for DSN.

FDA drugs	Effect	DSN	Findings	Citation	DOI or PMID
			Stronger inhibition of DRG Nav1.3, Nav1.7, and Nav1.8 in DRG, and weaker	Horishita et al., 2017	10.1007/s00210-017-1424-x.
			inhibition of Nav1.2 and Nav1.2 in Xenopus oocytes.		
TCAs	Analgesia	Y	cAMP-mediated inhibition of Nav channel isoforms	Liu et al., 2001	10.1152/jn.2001.85.2.745
Capsaicin	Analgesia	Y	In diabetic rats it decreased evoked pain symptoms.	Cheng et al., 2022	10.389/FPHAR.2021.771271
Cilostazol	Analgesia	Y	Downregulation of Nav1.1, 1.2, 1.6, and Nav1.7; and restored expression	Zhang et al., 2013	10.1016/J.BRAINRES.2012.11.032
Gabapentin	Analgesia	Y	Reversion of evoked pain symptoms in T2D rats.	Elkholy et al., 2020	10.1016/J.LFS.2020.117557
Ranolazine and	Analgesia	Y	In STZ rats, it reverted evoked pain symptoms and downregulated Nav1.7		
Pioglitazone			; and restored expression levels of Nav1.8, which was downregulated in STZ		
Kinases					
p38 MAPK	Increase	N^a	Enhancement of TTX-R currents in DRG, and increased Nav1.7 conductance.	Jin and Gereau, 2006; Black et al., 2008; Nemoto et al., 2010	10.1523/JNEUROSCI.3858-05.2006; 10.1002/ANA.21527; 10.1016/J.IPJPHAR.2010.04.048
p38, ERK1/2, JNK MAPks	Increase	N^a	TNF-α mediated increase of TTX-R currents, mostly Nav1.8 in DRG neurons	Li et al., 2020	10.1152/JPREGU.00338.2019
TNF-α and p-NFκB	Increase	Y	Nav1.7 in the DRG on STZ-induced diabetes	Huang et al., 2014	10.1016/J.NEUINT.2014.05.012
p38 MAPK and PKC	Reduction	Y	h- opioid receptor activation led to reduced phosphorylation of p38 MAPK	Chattopadhyay et al., 2008	10.1523/JNEUROSCI.5530-07.2008
Antibody					
SVmab1	Reduction	N	Nav1.7 current inhibition in mouse and human DRG.	Lee et al., 2014; Bang et al., 2018	10.1016/J.CELL.2014.03.064; 10.1007/S12264-018-0203-0
ECS	Reduction	N	Inhibited Nav 1.2 - 1.5, Nav 1.7 - 1.8, and β4 subunit-mediated resurgent currents in Nav1.5 channels.	Foadi et al., 2014	10.1213/ANE.0000000000000188
AEA	Reduction	N^a	Inhibition of Nav 1.2, 1.6 - 1.8; Inhibition of β4 subunit-mediated resurgent currents in Nav1.7	Theile and Cummins, 2011; Okura et al., 2014	10.1124/mol.111.072751; 10.1213/ANE.0000000000000070
AEA, AM 404 and WIN 55,212-2	Reduction	N	Direct inhibition of TTX-S currents.	Nicholson et al., 2003	10.1016/S0006-8993(03)02808-7
THC	Reduction	N	Reduction of Nav currents and conductance in the nodes of Ranvier in frogs.	Strichartz et al., 1978	310454
CBD	Reduction	N	Inhibition of Nav1.1-1.7 in HEK-293 cells and iPSC neurons.	Sula et al., 2017; Ghovanloo et al., 2019; Ghovanloo et al., 2021; Zhang and Bean, 2021; Ghovanloo et al., 2022	10.1038/NCOMMS14205; 10.1074/jbc.RA118.004929; 10.1085/jgp.202012701; 10.1523/JNEUROSCI.3216-20.2021; 10.1111/bph.15833
CBD	Cell protection	N	Restoration of Nav1.5 gating defect, which causes cytotoxicity in epithelial cells.	Fouda et al., 2020	10.1111/bph.15020

The table includes information about FDA approved drugs currently use in the treatment of DSN, signaling kinases, antibody therapy, and cannabinoids. DSN, diabetic sensory neuropathy; T2D, type two diabetes; Y, yes, tested in diabetic patients or animal models of DSN; N, not tested in DSN; N^a, not tested in DSN but in models of neuropathic pain.
function in painful neuropathies (Black et al., 2008). In fact, in chromaffin cells, p38 and ERK1/2 primed Na\(\text{V}_{1.7}\) function and increased ion conductance (Nemoto et al., 2010). Activation of the p38 MAPK pathway by tumor necrosis factor-\(\alpha\) (TNF-\(\alpha\)) enhanced TTX-R currents in isolated DRG neurons and induced mechanical hypersensitivity in mice, which was prevented by the pharmacological inhibition of p38 (Jin and Gereau, 2006). Similarly, in DRG neurons from a model of femoral artery occlusion, TNF-\(\alpha\) mediated the increase of TTX-R currents, mostly through Na\(\text{V}_{1.8}\); and this effect was prevented by the pharmacological inhibition of p38, ERK1/2, and c-Jun N-terminal kinases (JNKs) (Li et al., 2020).

Consistently, in STZ-induced diabetic rats with symptoms of DSN, the upregulation of Na\(\text{V}_{1.7}\) in the DRGs was prevented by inhibiting the synthesis or by blocking the action of TNF-\(\alpha\) and p-nucleus factor-kappa B (p-NFkB) (Huang et al., 2014). In DRG neurons exposed to hyperglycemic conditions in vitro, the enkephalin-mediated activation of \(\delta\)-opioid receptors prevented Na\(\text{V}_{1.7}\) upregulation. The latter was accompanied by reduction of phosphorylation of p38 MAPK and PKC (Chattopadhyay et al., 2008).

A provocative new approach proposes the use of monoclonal antibodies to inhibit Na\(\text{V}_{1.7}\) channels. This novel strategy revealed that the antibody SVmab1, selectively inhibited Na\(\text{V}_{1.7}\) currents in mouse and human DRG neurons (Lee et al., 2014; Bang et al., 2018). Moreover, the antibody effectively suppressed inflammatory and neuropathic pain in mouse models, and unveiled a significant role of Na\(\text{V}_{1.7}\) in itch sensation (Lee et al., 2014), suggesting this strategy may be effective in the management of chronic itch in humans (Bang et al., 2018). Although, this antibody therapy has yet to be tested in the context of DSN, the ability of SVmab1 to reduce excitatory transmission in pain-sensitive neurons may relieve diabetes-related pain symptoms.

More recently, targeting Na\(\text{V}\) channels through the endocannabinoid system (ECS) has been proposed as a therapeutic tool in pain pathologies. The ECS is composed of endocannabinoids, their receptors, and the enzymatic pathways required for endocannabinoids’ synthesis. The endocannabinoids, N arachidonylethanolamine (AEA), and 2-arachidonoylglycerol (2-AG) bind to two well-characterized G-protein coupled receptors cannabinoid receptors 1 and 2 (CB1) and 2 (CB2) (Howlett et al., 2004). Numerous animal and clinical studies have shown the potential of synthetic and naturally occurring cannabinoids to effectively attenuate inflammatory and neuropathic pain, including DSN pain (Howlett et al., 2004; Rahn and Hohmann, 2009). Some of the beneficial effect of cannabinoids on DSN could be explained by their action on Na\(\text{V}\) channel function. The synthetic cannabinoid tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, has previously been reported to decrease peak Na\(\text{V}_{1.7}\) current and conductance in the nodes of Ranvier in frogs (Strichartz et al., 1978). Furthermore, cannabidiol (CBD), a phytocannabinoid lacking psychoactive effect, has been reported to block Na\(\text{V}\) channels. CBD inhibited human Na\(\text{V}_{1.1-1.7}\) currents expressed in human embryonic kidney 293 (HEK-293) cells and in induced pluripotent stem cell (iPSC)-derived neurons. The mechanisms of action of CBD seemed to be indirect, mediated by its interaction with membrane lipids resulting in loss of Na\(\text{V}\) channel activity (Ghovanloo et al., 2019). Consistently, in DRG neurons, CBD inhibited Na\(\text{V}_{1.7}\) leading to reduced neuronal excitability (Ghovanloo et al., 2022), a mechanisms with relevant potential in pain pathologies. CBD also inhibited Na\(\text{V}_{1.4}\) and 1.8 by similar mechanisms. In muscle, CBD stabilized the inactivated state of Na\(\text{V}_{1.4}\) (Ghovanloo et al., 2021). In the DRGs, CBD showed preferential binding to the slow inactivated state of Na\(\text{V}_{1.8}\), which directly inhibited repetitive firing of nociceptors (Zhang and Bean, 2021). Moreover, CBD was shown to block Na\(\text{V}\) currents by physically interacting with the channels. The high-resolution crystal structure of the Na\(\text{V}-\text{CBD}\) complex was studied in Na\(\text{V}\) channels from M. marinus (Sula et al., 2017), which exhibits similar function, sequence and structural homologies to mammalian Na\(\text{V}\) channels (Sula and Wallace, 2017; Sula et al., 2017), demonstrated that CBD interacts with the channel at a novel site at the location of the central hydrophobic cavity of the channel (Sait et al., 2020). Furthermore, CBD has been shown to restore gating defects in Na\(\text{V}_{1.5}\) caused by reactive oxygen species in high glucose conditions, which protected against high glucose-induced oxidative stress and cytotoxicity in the Chinese hamster ovary (CHO) epithelial cell line (Fouda et al., 2020). More importantly, the beneficial effect of engaging the ECS has been documented in patients with painful DSN. A randomized, double-blinded,
placebo-controlled crossover study revealed improved spontaneous and evoked pain scores between placebo and patients receiving treatment (Wallace et al., 2015), which may be mediated at least in part by the modulation of NaV channels.

Conclusion

In the current review, we focused on Nav channels and their role in DSN, not only due to their unequivocal relevance in cell excitability, but also because several recent studies point at Navs as potential therapeutic targets in pain pathologies. Here we discussed the important role that some Navs play in DSN and their potential for pain management in diabetes. Novel strategies using Navs as a therapeutic tool may involve (1) FDA approved drugs with effects on Nav channel function; (2) signaling kinases that regulate Nav expression/function; (3) monoclonal antibody therapy; and (4) modulation by the ECS. Figure 1 summarizes the therapeutic potential of Nav channels.
for the treatment of DSN symptoms, including strategies that have yet to be tested in the context of diabetes.

Author contributions

SB and VC conceptualized the manuscript. SB, JN, and VC wrote the manuscript. JN and VC edited the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This study was supported by the NSERC (grant RGPIN-2021-04252) and CoMRAD (University of Saskatchewan, College of Medicine) to VC, and a NSERC-USRA scholarship (2021-04252) and CoMRAD (University of Saskatchewan, College of Medicine) to SB.

References

Akopian, A. N., Soulova, V., Sivitelli, L., and Wood, J. I. (1997). Structure and distribution of a broadly expressed atypical sodium channel. *FEBS Lett.* 400, 183–187. doi: 10.1016/S0014-5793(97)01389-0

Alsafoum, M., Estacion, M., Altmomanii, R., Gerrits, M. M., Bonhof, G. J., Zieglar, D., et al. (2019). A gain-of-function sodium channel β2-subunit mutation in painful diabetic neuropathy. *Mol. Pain* 15:174480691984980. doi: 10.1177/1744806919849802

Baer, M., Best, P. M., and Reuter, H. (1976). Voltage-dependent action of tetrodotoxin in mammalian cardiac muscle. *Nature* 263, 344–345. doi: 10.1038/263344a0

Bagal, S. K., Marron, B. E., Owen, R. M., Storer, R. L., and Swain, N. A. (2015). Voltage gated sodium channels as drug discovery targets. *Channels* 9, 360–366. doi: 10.1080/19336950.2015.1079674

Barg, S., Yeo, J., Gong, X., Liu, D., Han, Q., Luo, X., et al. (2018). Differential Inhibition of Nav1.7 and neuropathic pain by hydridoma-produced and recombinant mononcional antibodies that target Nav1.7. Differential activities of Nav1.7-targeting monoclonal antibodies. *Neurosci. Bull.* 34:22. doi: 10.1007/s12264-018-0203-0

Bennett, D. L., Clark, X. A. J., Huang, J., Waxman, S. G., and Dib-Hajj, S. D. (2019). The role of voltage-gated sodium channels in pain signaling. *Physiol. Rev.* 99, 1079–1151. doi: 10.1152/physrev.00052.2017

Berger, A., Dukes, E., Hagiwara, M., Edelsberg, J., Stacey, B., and Oster, G. (2005). Use of tricyclic antidepressants in patients with diabetic peripheral neuropathy. *J. Pain* 6:S35. doi: 10.1016/j.jpain.2005.01.135

Berta, T., Pourot, O., Pertin, M., Ji, R. R., Kellenberger, S., and Decostder, I. (2008). Transcriptional and functional profiles of voltage-gated Na(+) channels in injured and non-injured DRG neurons in the SN1 model of neuropathic pain. *Mol. Cell. Neurosci.* 37, 196–208. doi: 10.1016/j.mcn.2007.09.007

Black, J. A., Dib-Hajj, S., McNabola, K., Jeste, S., Rizzo, M. A., Kocsis, J. D., et al. (1996). Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs. *Brain Res. Mol. Brain Res.* 43, 117–131. doi: 10.1016/0169-328X(96)00163-5

Black, J. A., Liu, S., Tanaka, M., Cummins, T. R., and Waxman, S. G. (2004). Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. *Pain* 108, 237–247. doi: 10.1016/j.pain.2003.12.035

Boulton, A. J. M., Vinik, A. I., Arezzo, J. C., Bril, V., Feldman, E. L., Freeman, R., et al. (2005). Diabetic neuropathies: A statement by the American Diabetes Association. *Diabetes Care* 28, 956–962. doi: 10.2337/diabetescare.28.8.956

Brackenbury, W. J., and Isom, L. L. (2011). Na+ channel β subunits: Overachievers of the ion channel family. *Front. Pharmacol.* 2:53. doi: 10.3389/fphar.2011.00053

Burstein, S. H., Karst, M., Schneider, U., and Zurier, R. B. (2004). Ajuenic acid: A novel cannabinoid produces analgesia without a “high.” *J. Life Sci.* 75, 1513–1522. doi: 10.1016/LIFS.2004.04.010

Calhoun, J. D., and Isom, L. L. (2014). The role of non-pore-forming β subunits in physiology and pathophysiology of voltage-gated sodium channels. *Handb. Exp. Pharmacol.* 221, 51–89. doi: 10.1007/978-3-642-41588-3_4

Callaghan, B. C., Cheng, H. T., Stables, C. L., Smith, A. L., and Feldman, E. L. (2012). Diabetic neuropathy: Clinical manifestations and current treatments. *Lancet Neurol.* 11, S21–S34. doi: 10.1016/S1474-4422(12)70065-0

Campanucci, V., Krishnaswamy, A., and Cooper, E. (2010). Diabetes depresses synaptic transmission in sympathetic ganglia by inactivating nAChRs through a conserved intracellular cysteine residue. *Neuron* 66, 827–834. doi: 10.1016/j.neuron.2010.06.010

Caterina, M. J., Schumacher, M. A., Tomimaga, M., Rosen, T. A., Levine, J. D., Julius, D., et al. (1997). The capsaicin receptor: A heat-activated ion channel in the pain pathway. *Nature* 389, 816–824. doi: 10.1038/39807

Catterall, W. A. (1992). Cellular and molecular biology of voltage-gated sodium channels. *Physiol. Rev.* 72, S15–S58. doi: 10.1152/physrev.1992.72.suppl_4.s15

Chandna, A. R., Nair, M., Chang, C., Pennington, P. R., Yamamoto, Y., Moussaou, D. D., et al. (2015). RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions. *Eur. J. Neurosci.* 41, 341–351. doi: 10.1111/ejn.12795

Chantelau, E. A. (2015). Nociception at the diabetic foot, an uncharted territory. *World J. Diabetes* 6:391. doi: 10.4239/WJD.V6.I3.391

Chattopadhyay, M., Mata, M., and Fink, D. J. (2008). Continuous delta-opioid receptor activation reduces neuronal voltage-gated sodium channel (Nav1.7) levels through activation of protein kinase C in painful diabetic neuropathy. *J. Neurosci.* 28, 6652–6658. doi: 10.1523/JNEUROSCI.5530-07.2008

Chattopadhyay, M., Zhou, Z., Hao, S., Mata, M., and Fink, D. J. (2012). Reduction of voltage gated sodium channel protein in DRG by vector mediated miRNA reduces pain in rats with painful diabetic neuropathy. *Mol. Pain* 8:17. doi: 10.1186/1744-8069-8-17

Chen, C., Bharucha, V., Chen, Y., Wentsenbroek, R. E., Brown, A., Malhotra, J. D., et al. (2002). Reduced sodium channel density, altered voltage dependence

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits. Proc. Natl. Acad. Sci. U.S.A. 99, 17072–17077. doi: 10.1073/ pnas.992130999

Chen, L., Huang, J., Zhao, P., Persson, A. K., Dib-Hajj, F. B., Cheng, X., et al. (2018). Conditional knockout of Nav1.6 in adult mice ameliorates neuropathic pain. Sci. Rep. 8, 1–7. doi: 10.1038/s41598-018-2216-w

Cheng, K. I., Wang, H. C., Tseng, K. Y., Wang, Y. H., Chang, C. Y., Chen, Y. J., et al. (2022). Cilastatol ameliorates peripheral neuropathic pain in streptozotocin-induced Type 1 diabetic rats. Front. Pharmacol. 13:771271. doi: 10.3389/FPPHAR.2021.771271

Chong, H. L., and Ruben, P. C. (2008). Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels 2, 407–412. doi: 10.14616/j.2.6.7429

Cummins, T. R., Aglieco, F., Renganathan, M., Herzog, R. I., Dib-Hajj, S. D., and Waxman, S. G. (2001). Nav1.3 sodium channels: Rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J. Neurosci. 21, 5952–5961. doi: 10.1523/JNEUROSCI.21-16-05952.2001

Cummins, T. R., and Rush, A. M. (2007). Voltage-gated sodium channel blockers for the treatment of neuropathic pain. Expert Rev. Neurother. 7, 1597–1612. doi: 10.1586/14737175.7.11.1597

Dludla, P. V., Nkambule, B. B., Cirilli, I., Marcheggiani, F., Mabhida, S. E., et al. (2017). Antidepressants inhibit Nav1.3, Nav1.7, and Nav1.8 neuronal voltage-gated sodium currents in large DRG neurons and myelinated A-fibers in early diabetic rats. J. Physiol. 23, 1881–1889. doi: 10.1523/JNEUROSCI.23-26-08881.2003

Hersh, E. V., Pertes, R. A., and Ochs, H. A. (1994). Topical capsaicin - Pharmacology and potential role in the treatment of temporomandibular joint disorder. J. Clin. Dent. 5, 54–59.

Hersov, R. I., Cummins, T. R., Ghassemi, F., Dib-Hajj, S. D., and Waxman, S. G. (2003). Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J. Physiology. 551, 741–750. doi: 10.1113/JP2003074357

Hirade, M., Yasuda, H., Omatu-Kanbe, M., Kikkawa, R., and Kitasato, H. (1999). Tetrodotoxin-resistant sodium channels of dorsal root ganglion neurons are readily activated in diabetic rats. Neurosci. 90, 933–939. doi: 10.1016/S0028-3908(00)00466-2

Hong, H., and O’Leary, M. E. (2011). Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Mol. Cell. Neurosci. 46, 159–166. doi: 10.1016/j.mcn.2010.08.017

Hong, S., and Wiley, J. W. (2005). Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J. Biol. Chem. 280, 618–627. doi: 10.1074/jbc.M408500200

Hong, S., and Wiley, J. W. (2006). Altered expression and function of sodium channels in large DRG neurons and myelinated A-fibers in early diabetic neuropathy in the rat. Biochem. Biophys. Res. Commun. 339, 652–660. doi: 10.1016/j.bbrc.2005.11.057

Hong, S., Morrow, T. J., Paolino, P. E., Jom, L. L., and Wiley, J. W. (2004). Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J. Biol. Chem. 279, 29341–29350.

Horiihata, T., Yanagihara, N., Ueno, S., Okura, D., Hiroshita, R., Minami, T., et al. (2017). Antidepressants inhibit Nav1.3, Nav1.7, and Nav1.8 neuronal voltage-gated sodium channels more potently than Nav1.2 and Nav1.6 channels expressed in Xenopus oocytes. Naunyn Schmiedebergs. Arch. Phys. Pharmacol. 390, 1255–1270. doi: 10.1007/s00210-017-1424-X

Howlett, A. C., Breivogel, C. S., Childers, S. R., Deadbyer, S. A., Hampson, R. E., and Porrino, L. J. (2004). Cannabinoid physiology and pharmacology: 30 Years of progress. Neuropharmacology 47, 345–358. doi: 10.1016/j.neuropharm.2004.07.030

Huang, Y., Zang, Y., Zhou, L., Gai, W., Liu, X., and Zhong, Y. (2014). The role of TNF-alpha/NF-kappa B pathway on the up-regulation of voltage-gated sodium channel Nav1.7 in DRG neurons of rats with diabetic neuropathy. Neurochem. Int. 75, 112–119. doi: 10.1016/j.neuint.2014.03.012

Ismail, M. S., and Loots, D. T. (2009). Experimental rodent models of type 2 diabetes: A review. Methods Find. Exp. Clin. Pharmacol. 31, 249–261. doi: 10.1097/MEP.0b013e3181d62513

Jancsó, N., Jancsó-Gábor, A., and Szolcsányi, J. (1967). Direct evidence for neurogenic inflammation and its prevention by derervation and by pretreatment with capsaicin. Br. J. Pharmacol. Chemother. 31, 138–151. doi: 10.1111/j.1476-5381.1967.TB01984.X
of extracellular signal-regulated kinase (ERK) and p38 attenuate tau phosphorylation induced by lipopolysaccharide in murine dorsal root ganglion neurons.

Kobayashi, M., and Zochodne, D. W. (2018). Diabetic neuropathy and the sensory neuron. New aspects of pathogenesis and their treatment implications. J. Diabetes Investig. 9, 1239–1254. doi: 10.1111/JDI.12838

Kim, J. H., Woo, J. S., and Shin, Y. W. (2009). Cilostazol Protects Endothelial Cells Against Lipopolysaccharide-Induced Apoptosis Through ERK1/2- and P38 MAPK-Dependent Pathways. Korean J. Intern. Med. Vol 24, No.2:113-119

Li, Q., Qin, L., and Li, J. (2020). Enhancement by TUNα of a TTX-resistant Na+ current in mouse primary sensory neurons after femoral artery occlusion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R772-R780. doi: 10.1152/AJPREGU.00133.2019

Lucas, P. T., Meadows, L. S., Nicholls, J., and Ragdale, D. S. (2005). An epilepsy mutation in the beta1 subunit of the voltage-gated sodium channel results in tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-α. J. Neurosci. 26, 246–255. doi: 10.1523/JNEUROSCI.3888-05.2006

Nicholson, R. A., Liao, C., Zheng, J., David, L. S., Coyne, L., Errington, A. C., et al. (2003). Sodium channel inhibition by anandamide and synthetic cannabinoids in brain. Brain Res. 978, 194–204. doi: 10.1016/S0006-8993(03)02808-7

O’Malley, H. A., and Isom, L. L. (2015). Sodium channel β subunits: Emerging targets in channelopathies. Annu. Rev. Physiol. 77, 481–504. doi: 10.1146/annurev-physiol-021014-101746

Okura, D., Horishita, T., Ueno, S., Yanagihara, N., Sudo, Y., Uezono, Y., et al. (2014). The endocannabinoid anandamide inhibits voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 in xenopus oocytes. Anesth. Analg. 118, 554–562. doi: 10.1213/ANE.0000000000000770

Oyama, F., Miyazaki, H., Sakamoto, N., Becquet, C., Machida, Y., Kaneko, K., et al. (2006). Sodium channel β4 subunit: Down regulation and possible involvement in neuronal degeneration in Huntington’s disease transgenic mice. J. Neurochem. 98, 518–529. doi: 10.1111/j.1471-4159.2006.0 3893.X

Pertin, M., Ji, R. R., Berta, T., Powell, A. J., Karchewski, L., Tate, S. N., et al. (2005). Upregulation of the voltage-gated sodium channel β2 subunit in neuropathic pain models: Characterization of expression in injured and non-injured primary sensory neurons. J. Neurosci. 25, 10970–10980. doi: 10.1523/JNEUROSCI.3066-05.2005

Priest, B. T., and Kaczorowski, G. J. (2007). Blocking sodium channels to treat neuropathic pain. Exp. Opin. Ther. Target. 11, 291–306. doi: 10.1517/17460432.11.3.291

Qin, N., D’Andrea, M. R., Lubin, M. L., Shafare, N., Codd, E. E., and Correa, A. M. (2003). Molecular cloning and functional expression of the human sodium channel β1B subunit, a novel splice variant of the β1 subunit. Eur. J. Biochem. 270, 4762–4770. doi: 10.1042/20030387X

Rahn, E. J., and Hohmann, A. G. (2009). Cannabinoids as pharmacotherapies for neuropathic pain: From the bench to the bedside. Neurotherapeutics 6, 713– 737. doi: 10.1007/J.1740-2472-26-113

Raman, J. M., and Bean, B. P. (1997). Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J. Neurosci. 17, 4517–4526. doi: 10.1523/JNEUROSCI.17-12-04517.1997

Renganathan, M., Cummins, T. R., and Waxman, S. G. (2001). Contribution of Nav 1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. 85, 629–640. doi: 10.1152/JNEUROSCI.00452.2001

Rogers, M., Tang, L., Madge, D. J., and Stevens, E. B. (2006). The role of sodium channels in neuropathic pain. Semin. Cell Dev. Biol. 17, 571–581. doi: 10.1016/j.semcdev.2006.10.009

Rush, A. M., Cummins, T. R., and Waxman, S. G. (2007). Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J. Physiol. 579, 1–14. doi: 10.1113/jphysiol.2006.121483

Russell, J. W., Golovoy, D., Vincent, A. M., Mahendr, P., Olzmann, J. A., Mentzer, A., et al. (2002). High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. 16, 1378–1478. doi: 10.1096/fj.01-706

Sait, L. G., Sula, A., Ghovanloo, M. R., Hollingsworth, D., Ruben, P. C., and Wallace, B. A. (2020). Cannabidiol interactions with voltage-gated sodium channels. Elife 9, 1–17. doi: 10.7554/eLife.58593

Schink, M., Leipold, E., Schirmeyer, J., Schöner, R., Hoshi, T., and Heinemann, S. H. (2016). Reactive species modify NaV1.8 channels and affect action potentials in murine dorsal root ganglion neurons. Pflügers Arch. Eur. J. Physiol. 468, 99–110. doi: 10.1007/s00424-015-1735-2

Strichartz, G. R., Chiu, S. Y., and Ritchie, J. M. (1978). The effect of δ9- tetrahydrocannabinol on the activation of sodium conductance in node of Ranvier. J. Pharmacol. Exp. Ther. 170, 801–809.

Sugimoto, Y., Kojima, Y., Inayoshi, A., Inoue, K., Miura-Kusaka, H., Mori, K., et al. (2013). K-685, a TRPV1 antagonist, blocks PKC-sensitized TRPV1 activation and improves the inflammatory pain in a rat complete Freund's adjuvant model. J. Pharmacol. Sci. 118, 256–266. doi: 10.1254/jphs.11111132

Sula, A., and Wallace, B. A. (2017). Interpreting the functional role of a novel subunit of the voltage-sensitive sodium channel in rat brain neurons. Cell 46, 437–445. doi: 10.1002/9781118690664-9

Stritchartz, G. R., Chiu, S. Y., and Ritchie, J. M. (1978). The effect of δ9- tetrahydrocannabinol on the activation of sodium conductance in node of Ranvier. J. Pharmacol. Exp. Ther. 170, 801–809.

Sula, A., and Wallace, B. A. (2017). Interpreting the functional role of a novel interaction motif in proaryktotic sodium channels. J. Gen. Physiol. 149, 613–622. doi: 10.1085/jgp.201611740

Sula, A., Booker, J., Ng, L. C. T., Naylor, C. E., Decaen, P. G., and Wallace, B. A. (2017). The complete structure of an activated open sodium channel. Nat. Commun. 8, 14025. doi: 10.1038/ncomms14025

Tan, A. M., Samad, O. A., Dib-Hajj, S. D., and Waxman, S. G. (2015). Virus-mediated knockdown of Nav1.3 in dorsal root ganglia of STZ-induced diabetic
rats alleviates tactile allodynia. *Mol. Med.* 21, 544–552. doi: 10.1124/molmed.2011.011733

Tesfaye, S., Boulton, A. J. M., and Dickenson, A. H. (2013). Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. *Diabetes Care* 36, 2456–2465. doi: 10.2337/DC12-1964

Tesfaye, S., Boulton, A. J. M., Dyck, P. J., Freeman, R., Horowitz, M., Kempler, P., et al. (2010). Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. *Diabetes Care* 33, 2285–2293. doi: 10.2337/DC10-1303

Theile, J. W., and Cummins, T. R. (2011). Inhibition of Navβ4 peptide-mediated resurgent sodium currents in Nav1.7 channels by carbamazepine, riluzole, and anandamide. *Mol. Pharmacol.* 80, 724–734. doi: 10.1124/mol.111.072753

Tibbs, G. R., Posson, D. J., and Goldstein, P. A. (2016). Voltage-gated ion channels in the PNS: Novel therapies for neuropathic pain? *Trends Pharmacol. Sci.* 37, 522–542. doi: 10.1016/j.tips.2016.05.002

Toledo-Aral, J. J., Moss, B. L., He, Z. J., Koszowki, A. G., Whisenand, T., Levinson, S. R., et al. (1997). Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. *Proc. Natl. Acad. Sci. U.S.A.* 94, 1527–1532. doi: 10.1073/PNAS.94.4.1527

Tomlinson, D. R., and Gardiner, N. J. (2008). Glucose neurotoxicity. *Nat. Rev. Neurosci.* 9, 36–45. doi: 10.1038/nrn2294

Vincent, A. M., Stevens, M. J., Backus, C., McLean, L. L., and Feldman, E. L. (2005). Cell culture modeling to test therapies against hyperglycemia-mediated oxidative stress and injury. *Antioxid. Redox Signal.* 7, 1494–1506. doi: 10.1089/ars.2005.7.1494

Walker, K. M., Urban, L., Medhurst, S. J., Patel, S., Panesar, M., Fox, A. J., et al. (2003). The VR1 antagonist capsaicin reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. *J. Pharmacol. Exp. Ther.* 304, 56–62. doi: 10.1124/jpet.102.042010

Wallace, M. S., Marcotte, T. D., Umlauf, A., Gouaux, B., and Atkinson, J. H. (2015). Efficacy of Inhaled Cannabis on Painful Diabetic Neuropathy. *J. Pain* 16, 616–627. doi: 10.1016/j.jpain.2015.03.008

Wang, W., Gu, J., Li, Y. Q., and Tao, Y. X. (2011). Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? *Mol. Pain* 7:16. doi: 10.1186/1744-8069-7-16

Waxman, S. G. (2012). Sodium channels, the electrogenosome and the electrogenistat: Lessons and questions from the clinic. *J. Physiol.* 598, 2601–2612. doi: 10.1113/jphysiol.2012.228460

Winocour, E., Gavish, A., Halachmi, M., Eli, I., and Gazit, Z. (2000). Topical application of capsaicin for the treatment of localized pain in the temporomandibular joint area. *J. Orofac. Pain* 14, 31–36.

Wittmack, E. K., Rush, A. M., Hudmon, A., Waxman, S. G., and Dib-Hajj, S. D. (2005). Voltage-gated sodium channel Nav1.6 is modulated by p38 mitogen-activated protein kinase. *J. Neurosci.* 25, 6621–6630. doi: 10.1523/JNEUROSCI.0541-05.2005

Yin, R., Liu, D., Chhoa, M., Li, C. M., Luo, Y., Zhang, M., et al. (2016). Voltage-gated sodium channel function and expression in injured and uninjured rat dorsal root ganglia neurons. *Int. J. Neurosci.* 126, 182–192. doi: 10.1080/00207454.2015.1004172

Zakin, E., Abrams, R., and Simpson, D. M. (2019). Diabetic Neuropathy. *Semin. Neurol.* 39, 560–569. doi: 10.1055/s-0039-1688978

Zhang, H. X. B., and Bean, B. P. (2021). Cannabidiol inhibition of murine primary nociceptors: Tight binding to slow inactivated states of nav1.8 channels. *J. Neurosci.* 41, 6371–6387. doi: 10.1523/JNEUROSCI.3216-20.2021

Zhang, J. L., Yang, J. P., Zhang, J. R., Li, R. Q., Wang, J., Jan, I. J., et al. (2013). Gabapentin reduces allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing expression level of Nav1.7 and p-ERK1/2 in DRG neurons. *Brain Res.* 1493, 13–18. doi: 10.1016/j.brainres.2012.11.032