Circadian clock as a possible control point in colorectal cancer progression (Review)

XIWU RAO and LIZHU LIN

Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China

Received May 20, 2022; Accepted September 27, 2022

DOI: 10.3892/ijo.2022.5439

Abstract. The circadian rhythm is generated at the cellular level by a molecular clock system that involves specific genes. Studies have revealed that circadian clock disruption is a control point in cancer progression. Colorectal cancer (CRC) is one of the cancers closely associated with circadian disruption. In the present review, the involvement of the circadian clock in CRC development was summarized. Abnormal expression of certain clock genes has been found in patients with CRC and their correlation with clinicopathological features has also been explored. The period and cryptochrome 2 (Cry2), Sirtuin1 (SIRT1) and neuronal PAS domain protein 2 (NPAS2) genes were reported to have tumour suppressor properties. Conversely, Cry1, brain and muscle ARNT-like-1, circadian locomotor output cycles kaput (CLOCK) and timeless may aggravate CRC progression, but these findings are not consistent and require to be confirmed by further research. Circadian scheduling also indicated advantages in chemotherapy treatments for patients with CRC by increasing the maximum tolerated doses and decreasing toxicities. Dysfunction of the molecular CLOCK system disrupted cellular processes to accelerate colon tumorigenesis, such as metabolism, cell cycle, DNA damage repair, proliferation and apoptosis, epithelial-mesenchymal transition and stemness. The clock gene network and how the dynamics of the system influence CRC were discussed.

Contents

1. Background
2. The intestine harbours a circadian clock
3. Associations between colorectal cancer (CRC) and circadian clock genes
4. Influence of the circadian clock in CRC treatment
5. Conclusion

1. Background

Biological rhythms exist in our internal bodies and their functions vary according to oscillations with a 24-h light/dark cycle (1). The circadian time-keeping system is controlled by both central and peripheral oscillators. The suprachiasmatic nuclei of the hypothalamus are the central pacemaker (2,3) and certain interconnected specific clock genes control the peripheral circadian rhythm. The discovery of the circadian locomotor output cycles kaput (CLOCK) and its heterodimeric partner brain and muscle ARNT-like-1 (BMAL1) led to the first site of circadian oscillations (4,5). The transactivation of E-box-containing genes by the CLOCK:BMAL1 complex was able to activate Period (Per) genes, i.e. Per-1 and Cry-1, and certain interconnected specific clock genes control the peripheral circadian rhythm. The discovery of the circadian locomotor output cycles kaput (CLOCK) and its heterodimeric partner brain and muscle ARNT-like-1 (BMAL1) led to the first site of circadian oscillations (4,5). The transactivation of E-box-containing genes by the CLOCK:BMAL1 complex was able to activate Period (Per) genes, i.e. Per-1 and Cry-1, and certain interconnected specific clock genes control the peripheral circadian rhythm. The discovery of the circadian locomotor output cycles kaput (CLOCK) and its heterodimeric partner brain and muscle ARNT-like-1 (BMAL1) led to the first site of circadian oscillations (4,5). The transactivation of E-box-containing genes by the CLOCK:BMAL1 complex was able to activate Period (Per) genes, i.e. Per-1 and Cry-1, and certain interconnected specific clock genes control the peripheral circadian rhythm. The discovery of the circadian locomotor output cycles kaput (CLOCK) and its heterodimeric partner brain and muscle ARNT-like-1 (BMAL1) led to the first site of circadian oscillations (4,5). The transactivation of E-box-containing genes by the CLOCK:BMAL1 complex was able to activate Period (Per) genes, i.e. Per-1 and Cry-1, and certain interconnected specific clock genes control the peripheral circadian rhythm. The discovery of the circadian locomotor output cycles kaput (CLOCK) and its heterodimeric partner brain and muscle ARNT-like-1 (BMAL1) led to the first site of circadian oscillations (4,5). The transactivation of E-box-containing genes by the CLOCK:BMAL1 complex was able to activate Period (Per) genes, i.e. Per-1 and Cry-1, and certain interconnected specific clock genes control the peripheral circadian rhythm. The discovery of the circadian locomotor output cycles kaput (CLOCK) and its heterodimeric partner brain and muscle ARNT-like-1 (BMAL1) led to the first site of circadian oscillations (4,5). The transactivation of E-box-containing genes by the CLOCK:BMAL1 complex was able to activate Period (Per) genes, i.e. Per-1 and Cry-1, and certain interconnected specific clock genes control the peripheral circadian rhythm. The discovery of the circadian locomotor output cycles kaput (CLOCK) and its heterodimeric partner brain and muscle ARNT-like-1 (BMAL1) led to the first site of circadian oscillations (4,5). The transactivation of E-box-containing genes by the CLOCK:BMAL1 complex was able to activate Period (Per) genes, i.e. Per-1 and Cry-1, and certain interconnected specific clock genes control the peripheral circadian rhythm. The discovery of the circadian locomotor output cycles kaput (CLOCK) and its heterodimeric partner brain and muscle ARNT-like-1 (BMAL1) led to the first site of circadian oscillations (4,5). The transactivation of E-box-containing genes by the CLOCK:BMAL1 complex was able to activate Period (Per) genes, i.e. Per-1 and Cry-1, and certain interconnected specific clock genes control the peripheral circadian rhythm. The discovery of the circadian locomotor output cycles kaput (CLOCK) and its heterodimeric partner brain and muscle ARNT-like-1 (BMAL1) led to the first site of circadian oscillations (4,5). The transactivation of E-box-containing genes by the CLOCK:BMAL1 complex was able to activate Period (Per) genes, i.e. Per-1 and Cry-1, and certain interconnected specific clock genes control the peripheral circadian rhythm.
participate in these transitions are histone acetyltransferases (HATs) and histone deacetylases (HDACs) (9). CLOCK is an enzyme with HAT activity (10) and CLOCK specifically acetylates nonhistone targets, such as BMAL1 (11). SirT1 (SIRT1) is an NAD+-dependent HDAC, and SIRT1 and CLOCK converge in a coordinated manner. SIRT1 activity depends on nicotinamide phosphoribosyl transferase, which is the rate-limiting enzyme involved in NAD+ synthesis, which is regulated by CLOCK:BMAL1 (12,13). The functions of other clock genes, such as timeless (TIM) and timeless-interacting protein, in the circadian system remain to be fully elucidated.

Shifts in wake and sleep schedules or sleep deprivation desynchronize the circadian rhythm. Emerging evidence suggests that impaired circadian rhythms may be linked to causal webs of cancer initiation (14,15). Colorectal cancer (CRC) is one of the cancers that is closely associated with circadian disruption (16-18). CRC is the world's fourth most deadly cancer and approximately one in four CRC cases will be diagnosed with metastatic CRC (mCRC) (19). Multiple genetic factors contribute to the development of carcinogenesis of the large bowel, such as amplification of human epidermal growth factor receptor 2 (HER2), as well as KRAS, NRAS and BRAF mutations (20,21), chromosomal instability such as microsatellite instability (MSI) or mismatch repair (MMR) (22), which all provide a basis for optimal therapeutic intervention for individuals. Surgical excision is the first choice of treatment for CRC and chemotherapy that is given in combination with different molecular therapies (such as bevacizumab, panitumumab, cetuximab, regorafenib and aflibercept) significantly extends overall survival (OS) (23). Experimental data further indicated how the clock gene network exerts an influence on CRC progression, offers potential biomarkers for prognosis, serves as a guide for treatment decisions and provides molecular targets for treating CRC.

2. The intestine harbours a circadian clock

Rhythmic processes were already characterized within the intestine prior to the identification of the molecular clock. Bowel movements usually occur during the day and certain studies have suggested that a potential biological clock exists in the bowel. Research has indicated that colonic motor activity is minimal during sleep but increases significantly at morning awakening (24). Rao et al (25) determined a significant increase in colonic pressure activity after awakening. Other physiologically relevant factors, such as absorption rhythms (26) and mucosal enzymes (27), also exhibited their lowest activities at night (Fig. 2). Furthermore, the rhythmicity of circular muscle contractility and intracolonic pressure were absent in Per1/2 double-knockout mice (28). In addition, the gut microbiota exhibits circadian oscillations in both mice and humans; Per1/2 double-knockout mice lose rhythmic fluctuations in microbiota compositions and time shift-induced jet lag also disrupts diurnal oscillations in commensal bacterial abundances (29).

Studies have determined that clock genes have an important role in intestinal physiological activities. Perl-2, Cry1, CLOCK, BMAL1 and REV-ERβ are expressed in the epithelial cells of the colon and exhibit circadian rhythmicity (30). Per2 and BMAL1 in the myenteric plexus and epithelial cells have an important role in coordinating gastrointestinal functions, such as cell proliferation and migration (31), and rectal cell proliferation fluctuates during the day in colon cancer (32). BMAL1 was also reported to regulate intestinal drug disposition function (33).

These results clearly support that the circadian system is strongly connected with the gastrointestinal tract.

3. Associations between CRC and circadian clock genes

Clinical research indicated that disruption of the circadian rhythm accelerated CRC progression (34,35). Loss of circadian rhythms was also observed to potentiate CRC initiation in an Apcmin model (36). Abnormal expression levels of circadian clock genes were observed in CRC tissues and current studies suggested that clock genes, mainly including Per, Cry, ARNT1 (BMAL1) and CLOCK, may influence colon cancer progression.

Period genes. Period genes are identified most frequently in CRC. Perl-3 were reported to have tumour suppressor properties, but certain studies reached different conclusions (Table I). A total of seven studies determined that the expression of Perl was significantly decreased in tumour tissue compared to healthy mucosa (37-44). Furthermore, one study indicated a decrease in Perl in undifferentiated tumours, while no differences were obtained in differentiated colon carcinomas (45), but two studies found no significant differences in Perl between colon tumours and healthy mucosa (46,47). Mostafaie et al (40) demonstrated a correlated decrease in Perl and estrogen receptor-β in colorectal tumours. Furthermore, six studies reported that Per2 expression was significantly decreased in tumour tissues (39,48-52). Hasakova et al (50,53) determined that Per2 was significantly downregulated in tumour tissues of male patients with CRC, but Krugluger et al (45) determined that Per2 expression exhibited no differences in colon tumour tissues; the following six studies also confirmed this (38,40-42,47). Another six studies examined the gene expression of Perl and all found significant decreases (37-39,41,42,54).

In addition, Alexander et al (55) found a Per3 gene length polymorphism, and the 5-repeat Per3 VNTR sequence may increase the chance of colorectal adenoma formation.

Studies have also explored the relationships among period genes and clinical-pathological features of patients with CRC. Compared to tumours that did not express period genes, Momma et al (56) indicated that positive Perl and Per2 staining was associated with larger tumour sizes. Tumours with positivity for Per2 expression tended to have a greater depth of invasion and were generally more advanced, and patients tended to exhibit poorer OS. He et al (37) reported that Per2 was correlated with immune cell infiltration and was associated with unfavorable prognosis in colon adenocarcinoma. Hasakova et al (50,53) determined that Per2 was significantly downregulated in tumour tissues of male patients with CRC, and a negative correlation between Per2 and microRNA (miR)-34a was found. Low expression of Per2 and high expression of miR-34a were associated with significantly better outcomes in male patients. However, certain studies obtained the opposite result, claiming that high Per2 expression was associated with better survival and that low expression of the Perl gene was related to liver metastasis (42). Low expression of Per2 was significantly associated with CRC metastasis (49).
Mazzoccoli et al (39) indicated that lower expression of Per1 and Per3 in tumour tissues may be suggestive of a poorer survival prognosis. Wu et al (43) next determined that low expression levels of Per1 and miR-192 were correlated with unfavourable survival in patients with stage III/IV CRC but with better OS rates in patients with stage II CRC. In addition,
Table I. Studies exploring the expression and clinical significance of period genes in patients with CRC.

| Author, year       | Gene | Expression in CRC | Observations                                                                                     | (Refs.) |
|--------------------|------|-------------------|--------------------------------------------------------------------------------------------------|---------|
| Mazzoccoli, 2011   | Per1 | Decreased         | Low expression of Per1 may indicate a poor survival prognosis                                   | (39)    |
| Oshima, 2011       | Per1 | Decreased         | Low expression of Per1 was associated with liver metastasis                                       | (42)    |
| Wu, 2016           | Per1 | Decreased         | Low expression of Per1 was associated with unfavorable survival of patients with stage III/IV CRC, but with favorable OS of patients with stage II CRC | (43)    |
| He, 2022           | Per1 | Decreased         | Not specified                                                                                   | (37)    |
| Karantanos, 2013   | Per1 | Decreased         | Not specified                                                                                   | (38)    |
| Orhan, 2019        | Per1 | Decreased         | Not specified                                                                                   | (41)    |
| Lu, 2015           | Per1 | No differences    | Not specified                                                                                   | (46)    |
| Nemeth, 2011       | Per1 | No differences    | Not specified                                                                                   | (47)    |
| Momma, 2017        | Per1 | Not mentioned     | Positive Per1 staining was associated with larger tumor size.                                     | (56)    |
| Mostafaie, 2009    | Per1 | Not mentioned     | Correlated decrease of Per1 and estrogen receptor-β in CRC                                       | (40)    |
| Krugluger, 2007    | Per1 | Not mentioned     | Per1 decreased in undifferentiated tumors, while no difference was found in differentiated CRC   | (45)    |
| He, 2022           | Per2 | Not mentioned     | High expression of Per2 was associated with immune cell infiltration and associated with unfavorable prognosis in colon adenocarcinoma | (37)    |
| Karantanos, 2013   | Per2 | No differences    | Not specified                                                                                   | (38)    |
| Mostafaie, 2009    | Per2 | No differences    | Not specified                                                                                   | (40)    |
| Nemeth, 2011       | Per2 | No differences    | Not specified                                                                                   | (47)    |
| Mazzoccoli, 2011   | Per2 | Decreased         | Not specified                                                                                   | (39)    |
| Orhan, 2019        | Per2 | No differences    | Not specified                                                                                   | (41)    |
| Oshima, 2011       | Per2 | Not mentioned     | High expression of Per2 associated with better outcomes                                          | (42)    |
| Krugluger, 2007    | Per2 | No differences    | Not specified                                                                                   | (45)    |
| Lu, 2015           | Per2 | Not mentioned     | Per2 expression was higher in the pCR group than in the non-pCR group                           | (46)    |
| Aroca-Siendones, 2021 | Per2 | Decreased         | Low expression of Per2 was significantly associated with CRC metastasis                          | (49)    |
| Hasakova, 2018/2019 | Per2 | Decreased         | Low expression of Per2 was associated with better outcomes in male patients with CRC             | (50,53) |
| Wang, 2011         | Per2 | Decreased         | Not specified                                                                                   | (48)    |
| Wang, 2016         | Per2 | Decreased         | Not specified                                                                                   | (51)    |
| Xiong, 2022        | Per2 | Decreased         | Not specified                                                                                   | (52)    |
| Momma, 2017        | Per2 | Not mentioned     | Tumors with positive Per2 expression tended to exhibit a greater depth of invasion and were generally more advanced, and patients may have poorer OS | (56)    |
| He, 2022           | Per3 | Decreased         | Not specified                                                                                   | (37)    |
| Karantanos, 2013   | Per3 | Decreased         | Not specified                                                                                   | (38)    |
| Mazzoccoli, 2011   | Per3 | Decreased         | Lower expression of Per3 tended to be associated with poorer survival rates                      | (39)    |
| Orhan, 2019        | Per3 | Decreased         | Not specified                                                                                   | (41)    |
| Oshima, 2011       | Per3 | Decreased         | Not specified                                                                                   | (42)    |
| Wang, 2012         | Per3 | Decreased         | Incidence of death was higher in patients with Per3-negative CRC                                | (54)    |
| Alexander, 2015    | Per3 | Not mentioned     | Regarding Per3 gene length polymorphism, the 5-repeat Per3 VNTR sequence may increase the chance of colorectal adenoma formation | (55)    |

CRC, colorectal cancer; Per1, period 1; OS, overall survival; pCR, pathological complete regression.
Štorcelová et al (57) identified certain cell cycle regulatory genes related to the Per2 expression in human CRC tissues.

Substantial evidence indicates that the cell cycle occurs with a daily rhythm. Healthy mice exhibited rhythmicity of Per1, Per2, Weel and p21 in the intestine, but the circadian rhythmicity was significantly reduced in tumours (58). Knocking down Per2 subsequently inhibited p53 and caused CRC cells to acquire malignant biological features (52). Studies have explained how periodic genes regulate CRC progression by interfering with the cell cycle. DNA double-strand breaks activate the DNA damage response (DDR). The DDR is initiated by kinases such as ataxia telangiectasia mutated (ATM) (59) and the G1-S checkpoint is regulated by serine/threonine-protein kinase checkpoint kinase 2 (CHK2), whereas the G2/M checkpoint is regulated by CHK1 (60). Gery et al (61) reported that Per1 promoted DNA damage-induced apoptosis by interacting with ATM and CHK2. In addition, overexpression of c-Myc is associated with CRC (62); in Per2-knockout mice and Per2 mutant mice, c-Myc expression levels are elevated without restriction, inducing excess cyclin D1 expression that increases proliferation (63). Of note, Per2 has been indicated to be suppressed in colon cancer cell lines, which increased cyclin D and cell proliferation (64). Another study also supported that Per2 functions in tumour suppression by regulating the cell cycle (65).

Crosstalk between the circadian clock and Wnt/β-catenin signalling has been reported to be involved in CRC. β-catenin is a main signal transducer of the Wnt pathway (66) and activation of the Wnt/β-catenin pathway promotes cell proliferation and invasion (67). Wood et al (64) demonstrated that downregulation of Per2 in colon cells increased β-catenin expression. In in vivo experiments, when compared to Apc(Min/+) mice, Per2-mutant Apc(Min/+) mice developed smaller colonic polyps. A study from the same group, by Yang et al (68), discovered that increased levels of β-catenin in Apc(Min/+) mice could destabilize the Per2 protein. In addition, period genes were reported to inhibit drug resistance in CRC cells. Per2 was significantly upregulated when glucose metabolism was restricted and thus weakened the ability of cancer cells to survive chemotherapy (69). Per3 was reported to be downregulated in drug-resistant CRC cells and cancer stem-like cells (CSCs). Overexpression of Per3 strengthened the 5-fluorouracil-induced inhibitory effects on colorectal CSCs, while knockdown of Per3 decreased its inhibitory effects. In addition, Per3 overexpression decreased stemness markers, such as CD44, CD133 and SOX2. It was confirmed that Per3 reduces the chemoresistance and self-renewal capability of CRC by inhibiting both Notch and Wnt/β-catenin signalling (70). Calcium significantly prevents tumorigenesis of CRC and Per3 significantly upregulates calcium to prevent CRC tumorigenesis (71).

Cry genes. Various studies have examined the expression of Cry1 and Cry2 in CRC samples (Table II). Further evidence has indicated that Cry2 suppresses colon tumour growth, but the role of Cry1 in cancer progression remains controversial. Compared to matched normal mucosa, gene expression of Cry1 was reported to be upregulated in colon carcinoma tissues by three studies (37,72,73), but two other studies claimed that the expression of Cry1 did not differ significantly between groups (39,46). Cry2 was identified to be downregulated in CRC tissues in three studies (37,39,50,72). Another study retrospectively analysed CRC tissue samples from patients with pathological complete regression (pCR) and non-pCR and suggested that the expression of Cry2 was higher in the pCR group (46).

The Cry1 and Cry2 genes were also associated with adverse clinical-pathological features in patients with CRC. It was determined that high Cry1 expression was correlated with poor OS rates in patients with CRC (73). Another study also indicated that high expression of Cry1 was associated with lower OS and disease-free survival at five years in patients with CRC (49). Hasakova et al (50,72) indicated that the expression of Cry1 and Cry2 was correlated differently with sex or tumour location in colon carcinoma tissues. Cry1 expression increased significantly in females with distant metastases, while females without distant metastases frequently exhibited downregulation of Cry2 expression. Better survival rates were associated with low expression of Cry2, high expression of Cry1 in tumour tissue was associated with an unfavorable survival prognosis, but this was not observed in males. In addition, higher Cry1 expression in right-sided colon tumour tissues was associated with worse survival rates in females, and the expression of Cry1 in the left-sided colon tumour tissues was higher than in the adjacent tissue in males. Furthermore, Cry2 expression was associated with tumour location in males with grade 2 cancer. However, Mazzoccoli et al (74) indicated that patients with CRC with elevated Cry1 or Cry2 expression levels had poorer survival rates. The Cry1 gene was particularly decreased in elderly female patients with CRC and tumours located in the transverse colon tended to exhibit lower Cry expression levels.

WEE1 was reported to affect the timing of the M phase (75) and downregulation of WEE1 was identified in CRC (76). Studies have indicated that both Cry1 and Cry2 deletions lead to elevated WEE1 levels (63,77) and thus affected the cell cycle and proliferation of CRC. However, this requires to be confirmed by further research.

BMAL1 and CLOCK genes. CLOCK and its heterodimeric partner, ARNTL1 (BMAL1), are the core components of the circadian clock system, and modified expression of these two genes in CRC tumour tissues is related to clinicopathological features (Table III). BMAL1 may be a biomarker for CRC treatment prognoses. Studies indicated that the expression levels of BMAL1 decreased by half in mCRC tumour tissues, high expression levels of BMAL1 were associated with reduced efficacy of the anti-angiogenic drug bevacizumab (Beva) and patients who had low expression levels of BMAL1 tended to have good responses to Beva therapy (78); furthermore, upregulation of the BMAL1 gene was correlated with liver metastasis in patients with CRC (42). Patients with CRC with high BMAL1 expression exhibited a significant enrichment of epithelial-mesenchymal transition (EMT) and invasion-associated gene signatures (79). Another study suggested that BMAL1 expression decreased in CRC (37), and low BMAL1 expression was significantly associated with metastasis (49). However, Karantanos et al (38) determined that the BMAL1 gene expression levels were higher in cancerous tissues, but no correlation was found with the clinical significance.
Momma et al. (56) indicated that colon tumours with positive CLOCK expression were generally more advanced and invasive. In addition, Mostafaie et al. (40) reported that CLOCK expression was significantly higher in G(2) tumours of male patients than that in female patients. Another study suggested that the CLOCK gene was expressed in all CRC tissue samples and colon tumours with higher expression levels of CLOCK were associated with lymph node metastasis and tended to be more advanced (37). Accordingly, higher CLOCK expression was found in CRC cell lines with greater metastatic potential (80,81). However, the CLOCK expression levels were significantly elevated in CRC tissue samples from patients who achieved a pCR compared to those from non-pCR patients (46). Karantanos et al. (38) determined that CLOCK gene expression levels were higher in colorectal cancerous tissues. They also performed a case-control study (82) and found that a polymorphism in the CLOCK1 gene significantly increased CRC susceptibility. Mutations in DNA MMR system genes, such as MutL homolog1, MutS homolog 2 (MSH2) and MSH6 result in dysfunctional DNA repair, leading to MSI. MSI accounts for ~15% of CRCs and is thus the main hallmark of CRC (83). Alhopuro et al. (84) demonstrated that CLOCK mutations occurred in nearly half of MSI CRCs (total of 101 MSI CRCs), and restoring CLOCK expression in cells enhanced the protective activity against UV-induced apoptosis.

Clockwork genes drive the metabolism and the cell cycle. Fuhr et al. (85) identified a reciprocal connection between the circadian clock and glycolysis. Disruption of BMAL1 impacts hexokinase domain containing 1, a glycolysis gene, and leads to increased glycolytic activity. A Japanese study implanted colon tumours in mice and found that the growth of CLOCK-mutant colon tumours was slower than that of wild-type colon tumours. They further indicated that the BMAL1 and CLOCK genes control the time-dependent variations in cellular iron levels by promoting the mRNA expression of iron regulatory protein 2 and transferrin receptor 1. High levels of iron uptake may be associated with an increased risk of CRC (86,87) and thus promote tumour proliferation (88). However, certain studies indicated that both the BMAL1 and CLOCK genes may act as tumour suppressors. CLOCK-binding elements were identified near p21 and BRCA1, which were indicated to interfere with the DNA repair response and cell cycle (84). Sakamoto and Takenoshita (89) observed that overexpression of CLOCK and BMAL1 prevented CRC cells from entering the G1 to S phase by suppressing CyclinD1 to inhibit cell growth. In CLOCK knockout mice, the mRNA levels of WEE1 decreased significantly. Another study demonstrated that inhibiting BMAL1 expressions in murine colon cancer cells decreased DNA damage (90). Zhang et al. (91) found that under different P53 backgrounds, BMAL1 knockdown in CRC cells induced a relatively equal activation of

| Author, year | Gene | Expression in CRC | Observations | (Refs.) |
|--------------|------|-------------------|--------------|--------|
| Hasakova, 2018 | Cry1 | Upregulated      | High expression of Cry1 was associated with unfavorable survival in females. Higher expression of Cry1 in the right-sided colon tumor tissue tended to be associated with unfavorable survival in females | (50) |
| He, 2022     | Cry1 | Upregulated      | Not mentioned | (37) |
| Yu, 2013     | Cry1 | Upregulated      | High Cry1 expression was associated with lymph node metastasis and TNM stage III-IV and tended to be associated with poor OS in patients with CRC | (73) |
| Aroca-Siendones, 2021 | Cry1 | Not mentioned    | High expression of Cry1 was associated with lower OS and DFS at five years in patients with CRC | (49) |
| Lu, 2015     | Cry1 | No differences   | Not specified | (46) |
| Mazzoccoli, 2011 | Cry1 | No differences   | In patients with CRC, elevated Cry1 expression was associated with poorer survival. Cry1 was particularly decreased in elderly female patients with CRC and in tumors located in the transverse colon tend to exhibit lower Cry expression level. | (39) |
| Lu, 2015     | Cry2 | Not mentioned    | Cry2 expression was higher in tissue with pathological complete regression | (46) |
| Hasakova, 2018 | Cry2 | Decreased        | Not specified | (50) |
| He, 2022     | Cry2 | Decreased        | Patients with CRC with high Cry2 expression had a tendency of unfavorable survival prognosis | (37) |
| Mazzoccoli, 2011 | Cry2 | Decreased        | Patients with CRC with high Cry2 expression had an unfavorable survival prognosis | (39) |

CRC, colorectal cancer; Cry1, cryptochrome 1; OS, overall survival; DFS, disease-free survival.
AKT/mTOR but ultimately resulted in different cell fates. Under a wild-type P53 background, BMAL1 knockdown cells rapidly underwent apoptosis, while the surviving cells contained less P53.

Stokes et al. (36) indicated that CRC tumours only have a weak CLOCK function in vivo. Loss of BMAL1 increases tumour initiation. Intestinal organoid assays indicated that loss of BMAL1 increases self-renewal in a Yes-associated protein 1-dependent manner. BMAL1 was also reported to affect the invasion and metastasis of CRC by promoting EMT. BMAL1 is involved in maintaining the epithelial-mesenchymal equilibrium of CRC cells and influences migration, invasion, adhesion and chemoresistance. BMAL1 knockdown increased the expression of epithelial markers, such as E-cadherin, epithelial cell adhesion molecule and cytokeratin 20, but decreased the expression of Twist and mesenchymal markers (e.g., vimentin and N-cadherin) in CRC cells. In addition, the invasion and drug resistance capacities also decreased in BMAL1-knockdown CRC cells (79). In addition, BMAL1 was reported to promote CRC metastasis by stimulating exosome secretion (92).

Although the BMAL1 and CLOCK expression levels were observed to be related to advanced pathological clinical features, certain experiments have indicated that these two genes may inhibit CRC cell growth. This inconsistency requires to be clarified by further research.

### Table III. Studies exploring the expression and clinical significance of BMAL1/CLOCK in patients with CRC.

| Author, year | Gene | Expression in CRC | Observations | References |
|--------------|------|-------------------|--------------|------------|
| Karantanos, 2013 | BMAL1 | Upregulated | No correlation was found between BMAL1 gene expression and clinical significance | (38) |
| Burgermeister, 2019 | BMAL1 | Decreased | Patients with CRC with low expression of BMAL1 tended to have a good response to bevacizumab | (78) |
| Oshima, 2011 | BMAL1 | Not mentioned | High expression of BMAL1 was associated with liver metastasis in patients with CRC | (42) |
| Zhang, 2021 | BMAL1 | Not mentioned | Patients with CRC with high expression of BMAL1 had enrichment of EMT and invasive gene signatures | (79) |
| He, 2022 | BMAL1 | Decreased | Not specified | (37) |
| Aroca-Siendones, 2021 | BMAL1 | Not mentioned | Low expression of BMAL1 was associated with metastasis | (49) |
| Karantanos, 2013 | CLOCK | Upregulated | No correlation was found between CLOCK gene expression and clinical significance | (38) |
| Momma, 2017 | CLOCK | Not mentioned | Colon tumors with positive CLOCK expression were generally more advanced and invasive | (56) |
| Mostafaei, 2009 | CLOCK | Not mentioned | CLOCK was significantly higher in G(2) tumors of male patients | (40) |
| He, 2022 | CLOCK | Upregulated | Patients with CRC with higher expression of CLOCK tended to have lymph node metastasis and tended to be more advanced | (37) |
| Lu, 2015 | CLOCK | Not mentioned | CLOCK expression levels were elevated in CRC tissue samples from patients with pCR vs. non-pCR | (46) |
| Karantanos, 2013 | CLOCK | Upregulated | Polymorphism in the CLOCK1 gene significantly increased the risk of CRC susceptibility | (38) |
| Alhoppuro, 2010 | CLOCK | Not mentioned | CLOCK mutations occurred in nearly half of MSI CRCs | (84) |

CRC, colorectal cancer; CLOCK, circadian locomotor output cycles kaput; BMAL1, brain and muscle ARNT-like-1; EMT, epithelial to mesenchymal transition; MSI, microsatellite instability; pCR, pathological complete regression.

### Other clock genes. Altered expression levels of other circadian clock genes were also detected in CRC tissue samples (Table IV). Compared to adjacent normal colon tissues, the SIRT1 and RORA expression levels decreased in CRC tumour tissues, while TIM was reported to be increased (37,39,93,94). High TIM levels were an unfavourable prognostic factor significantly associated with microsatellite instability and proximal lymph nodes and were prevalent in TNM stages III-IV (39). However, the most recent study indicated that loss of TIM expression is associated with advanced tumour stage, metastasis and microsatellite stability status, and TIM expression levels are inversely correlated with a set of gene signatures of EMT markers (95). In addition, NPAS2 expression was significantly downregulated in CRC tumour tissues. Low NPAS2 expression was associated with tumour size, TNM stage and metastases (96).

TIM has no apparent circadian clock function in mammals, but research has identified it as being important for CRC progression (97). Recent data revealed that TIM depletion increases γH2AX, a marker of DNA damage, and increases CHK1 and CDK1 phosphorylation (98). A report also demonstrated that overexpression of TIM in colon cancer cells suppressed G2/M arrest, while TIM depletion increased CHK1 and CDK1 phosphorylation and triggered G2/M arrest (98). Another study suggested that TIM inhibited...
EMT, and its ectopic silencing promoted invasion, migration and stemness in CRC cells (95). Overexpression of SIRT1 in Apc(Min/+ ) mice resulted in reduced neoplasia, while SIRT1-knockout mice had an increased tumour incidence (99). NPAS2 increased the G0/G1 phase population in CRC cells and inhibited proliferation, invasion and migration in vitro (96).

4. Influence of the circadian clock in CRC treatment

Circadian scheduling produced advantages in chemotherapy treatments of patients with CRC. A 24-h programmable time ambulatory pump was used to administer oxaliplatin by venous infusion against mCRC. This type of treatment increased the maximum tolerated doses and decreased the toxicities of oxaliplatin (100). Another previous phase II trial also proved that if chemo-drug delivery was chronomodulated rather than constant over time, chemotherapy was more effective and less toxic (101). The addition of cetuximab to chronotherapy in patients with mCRC increased the chance of complete resection compared to conventional chemotherapy (102). However, an international randomized trial reported that chronomodulated FLO4 provided no survival benefit compared with ordinary FOLFOX2 in patients with mCRC (103). Of note, Innominato et al (104) established a mathematical model to predict the impact of various parameters (e.g., BMAL1 degradation rates, cytosolic BMAL1 degradation rates and CLOCK activation rates) on irinotecan toxicity, but clinical evidence is required to prove this hypothesis.

These findings indicated that the circadian clock system may guide oncological treatments of CRC.

5. Conclusion

The present review outlines the connections between the circadian clock and CRC progression (Fig. 3). Bowel physiology indicates a circadian rhythm and molecular clockwork dysregulation may host the colorectal carcinogenesis process. According to previously published reports, circadian clock genes are related to CRC progression, patient survival and response to chemotherapy. Although the findings are not all consistent, it may be hypothesized that this largely resulted from individual differences, such as different ethnicities, gender and age. Furthermore, multiple detection methods may also lead to different findings. Based on the circadian rhythm system, chronotherapy may be an optimal method for effective treatment, particularly to increase the maximum tolerated doses and alleviate the toxicity of chemotherapy agents. In addition, the oscillating circadian clock regulates multiple cellular activities related to colorectal carcinogenesis, such as metabolism, the cell cycle, DNA damage response, EMT processes and stemness. Finally, it may be concluded that the circadian clock is tightly correlated with CRC prognosis and allows further advances in modern therapeutic approaches.

Table IV. Studies exploring the expression and clinical significance of SIRT1, RORA and TIM in patients with CRC.

| Author, year | Gene | Expression in CRC | Observations | (Refs.) |
|-------------|------|-------------------|--------------|--------|
| Pazienza, 2012 | SIRT1 | Decreased | Not specified | (94) |
| He, 2022 | RORA | Decreased | Not specified | (37) |
| Gu, 2018 | RORA | Decreased | Not specified | (93) |
| Mazzoccoli, 2011 | TIM | Upregulated | High TIM levels were associated with MSI and proximal lymph nodes, and were prevalent in TNM stages III-IV | (39) |
| Colangelo T, 2022 | TIM | Not mentioned | Loss of TIM expression is associated with advanced tumor stage, metastasis and microsatellite stability status; TIM expression was inversely correlated with a set of EMT marker genes | (95) |
| Xue, 2014 | NPAS2 | Decreased | Low expression of NPAS2 was associated with tumor size, TNM stage and metastasis | (96) |

CRC, colorectal cancer; MSI, microsatellite instability; EMT, epithelial to mesenchymal transition; NPAS2, neuronal PAS domain protein 2; TIM, timeless; SIRT1, sirtuin1; ROR, retinoic acid receptor-related orphan receptor.
The relationship between the circadian clock and CRC warrants further investigation.

Acknowledgements

Not applicable.

Funding

This work was supported by grants from the National Natural Science Foundation of China (grant no. 82104647), the Chinese Postdoctoral Science Foundation (grant no. 2021M700964) and Guangzhou Science and Technology Bureau (grant no. 201904010396).

Availability of data and materials

Not applicable.

Authors' contributions

LL was involved in the conception and design of the structure of the manuscript. XR then performed the literature search, generated the figures and wrote the manuscript.

Ethics approval and consent to participate

Not applicable.
Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Shafer OT, Levine JD, Truman JW and Hall JC: Flies by night: Effects of changing day length on Drosophila's circadian clock. Curr Biol 14: 424-432, 2004.

2. Rusak B and Zucker I: Neural regulation of circadian rhythms. Physiol Rev 59: 449-526, 1979.

3. Dibner C, Schibler U and Albrecht U: The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu Rev Physiol 72: 517-549, 2010.

4. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS and Weitz CJ: Role of the CLOCK protein in the mammalian circadian mechanism. Science 280: 1564-1569, 1998.

5. Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH and Takahashi JS: Functional identification of the mouse circadian clock gene period homolog (Per2) by genetic BAC rescue. Cell 89: 655-667, 1997.

6. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U and Schibler U: The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251-260, 2002.

7. Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chen D, Guarente LP and Sassone-Corsi P: The NAD+‑dependent sirtuin SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328, 2008.

8. Strahl BD and Allis CD: The language of covalent histone modifications. Nature 403: 41-45, 2000.

9. Grunstein M: Histone acetylation in chromatin structure and function. Nature 396: 346-352, 1998.

10. Doi M, Hirayama J and Sassone-Corsi P: Circadian regulator CLOCK is a histone acetyltransferase. Cell 125: 497-508, 2006.

11. Hirayama J, Sahar S, Grimaldi B, Tamatru T, Takamatsu K, Takahata J, Páduararu M, Adavidoaiei AM, Miron L and Rusu C: KRAS, NRAS, BRAF, HER2 and microsatellite instability in metastatic colorectal cancer-practical implications for the clinician. Radiol Oncol 53: 265-274, 2019.

12. Slük K, Turkk R, Carpen O, Kurki S, Korkkilä E, Sundström J and Pellinen T: CDX2 loss with microsatellite stable phenotype predicts poor clinical outcome in stage II colorectal carcinoma. Am J Surg Pathol 43: 1473-1482, 2019.

13. Wolpin BM and Mayer RJ: Systemic treatment of colorectal cancer. Gastroenterology 134: 1296-1310, 2008.

14. Narducci F, Bassotti G, Gaburri M and Morelli A: Twenty four hour manometric recording of colonic motor activity in healthy man. Gut 28: 17-25, 1987.

15. Rao SS, Sadeghi P, Beaty T, Kavlock R and Ackerson K: Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol 280: G629-G639, 2001.

16. Gruenich J, Reinberg A, Dziewanowska Z, Ghata J and Smolensky M: Circadian changes in the bioavailability and effects of indomethacin in healthy subjects. Eur J Clin Pharmacol 20: 359-369, 1981.

17. Markiewicz A, Kamiński M, Chocilowski W, Kulał H and Skrzypek B: Circadian rhythms of four marker enzymes activity of the jejunal villi in man. Acta Histochem 73: 91-99, 1983.

18. Hoogwerf WA, Shahinian VB, Cornéllissen G, Halberg F, Bostwick J, Timm J, Bartell PA and Cassone VM: Rhythmic changes in colonic motility are regulated by period genes. Am J Physiol Gastrointest Liver Physiol 298: G143-G150, 2010.

19. Asher G, Katzenstein A, Strahm T, Reinke H, Dibner C, Kreppel F, Moslovslyav R, Alt FW and Schibler U: SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328, 2008.

20. Sulli D, Lam MMY and Panda S: Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer 5: 475-494, 2019.

21. H. E., H. A., S. and J. C.: The circadian clock controls circadian behavior and metabolism by REV-ERÎ± and REV-ERÎ². Nature 485: 123-127, 2012.

22. Strahl BD and Allis CD: The language of covalent histone modifications. Nature 403: 41-45, 2000.

23. Grunstein M: Histone acetylation in chromatin structure and function. Nature 396: 346-352, 1998.

24. Doi M, Hirayama J and Sassone-Corsi P: Circadian regulator CLOCK is a histone acetyltransferase. Cell 125: 497-508, 2006.

25. Rao SS, Sadeghi P, Beaty T, Kavlock R and Ackerson K: Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol 280: G629-G639, 2001.

26. Gruenich J, Reinberg A, Dziewanowska Z, Ghata J and Smolensky M: Circadian changes in the bioavailability and effects of indomethacin in healthy subjects. Eur J Clin Pharmacol 20: 359-369, 1981.

27. Markiewicz A, Kamiński M, Chocilowski W, Kulał H and Skrzypek B: Circadian rhythms of four marker enzymes activity of the jejunal villi in man. Acta Histochem 73: 91-99, 1983.

28. Hoogwerf WA, Hellmich HL, Cornéllissen G, Halberg F, Shahinian VB, Bostwick J, Timm J, Bartell PA and Cassone VM: Rhythmic changes in colonic motility are regulated by period genes. Am J Physiol Gastrointest Liver Physiol 298: G143-G150, 2010.

29. Asher G, Katzenstein A, Strahm T, Reinke H, Dibner C, Kreppel F, Moslovslyav R, Alt FW and Schibler U: SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328, 2008.

30. Sulli D, Lam MMY and Panda S: Interplay between circadian clock and cancer: New frontiers for cancer treatment. Trends Cancer 5: 475-494, 2019.

31. H. E., H. A., S. and J. C.: The circadian clock controls circadian behavior and metabolism by REV-ERÎ± and REV-ERÎ². Nature 485: 123-127, 2012.

32. Strahl BD and Allis CD: The language of covalent histone modifications. Nature 403: 41-45, 2000.

33. Doi M, Hirayama J and Sassone-Corsi P: Circadian regulator CLOCK is a histone acetyltransferase. Cell 125: 497-508, 2006.

34. Asher G, Katzenstein A, Strahm T, Reinke H, Dibner C, Kreppel F, Moslovslyav R, Alt FW and Schibler U: SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328, 2008.

35. H. E., H. A., S. and J. C.: The circadian clock controls circadian behavior and metabolism by REV-ERÎ± and REV-ERÎ². Nature 485: 123-127, 2012.

36. Strahl BD and Allis CD: The language of covalent histone modifications. Nature 403: 41-45, 2000.

37. H. E., H. A., S. and J. C.: The circadian clock controls circadian behavior and metabolism by REV-ERÎ± and REV-ERÎ². Nature 485: 123-127, 2012.

38. Strahl BD and Allis CD: The language of covalent histone modifications. Nature 403: 41-45, 2000.

39. Doi M, Hirayama J and Sassone-Corsi P: Circadian regulator CLOCK is a histone acetyltransferase. Cell 125: 497-508, 2006.
38. Karantanos T, Theodoropoulou G, Gazouli M, Vaiopoulos A, Karantanos C, Lymbiri M and Pektasides D: Expression of clock genes in patients with colorectal cancer. Int J Biol Markers 28: 280‑285, 2013.
39. Mazzoccoli G, Panza A, Valvano MR, Palumbo O, Carella M, Piazzina V, Biscaglia G, Tavano F, Di Sebastiano P, Andriulli A and Piepoli A: Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int 28: 841‑851, 2011.
40. Motchezene N, Kallay E, Sauerzapf E, Bonner E, Kriwanek S, Cross HS, Huber KR and Krugler W: Correlated downregulation of estrogen receptor beta and the circadian clock gene Per1 in human colorectal cancer. Mol Carcinog 48: 642‑647, 2009.
41. Orban T, Nielsen PB, Hvid TVF, Rosen AW and Gögënür I: Expression of circadian clock genes in human colorectal cancer tissues using droplet digital PCR. Cancer Invest 37: 90‑98, 2019.
42. Oshima T, Takenoshita S, Akaike M, Kunisaki C, Fujii S, Nozaki A, Numata K, Shiozawa M, Rino Y, Tanaka K, et al.: Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer. Oncol Rep 25: 1459‑1466, 2011.
43. Wu S, Fesler A and Ju J: Implications of circadian rhythm regulation by microRNAs in colorectal cancer. Cancer Transl Med 2: 47‑56, 2016.
44. No authors listed: Expression of PER, CRY, and TIM genes for the pathological features of colorectal cancer patients [Retraction]. Onco Targets Ther 9: 5699, 2016.
45. Krugler W, Brandstaetter A, Kallay E, Schueller J, Krexner E, Kriwanek S, Bonner E and Cross HS: Regulation of genes of the circadian clock in human colorectal cancer: Reduced period-1 and dihydroxypropylene dehydrogenase transcription correlates in high-grade tumors. Cancer Res 67: 7917‑7922, 2007.
46. Lu H, Chu Q, Xie G, Han H, Chen Z, Xu B and Yue Z: Circadian gene expression predicts patient response to neoadjuvant chemoradiation therapy for rectal cancer. Int J Clin Exp Pathol 8: 10985‑10994, 2015.
47. Nemeth C, Humpeler S, Kallay E, Mestieri I, Svoboda M, Röglesperger O, Klamma N, Thalhammer T and Ekmekcioglu C: Decreased expression of the melatonin receptor 1 in human colorectal adenocarcinomas. J Biol Regul Homeost Agents 25: 531‑542, 2011.
48. Wang Y, Hua L, Lu C and Chen Z: Expression of circadian clock gene human Period2 (hPer2) in human colorectal carcinoma. World J Surg Oncol 9: 166, 2011.
49. Aroca‑Siendones MI, Moreno‑Sanjuan S, Puentes‑Pardo JD, Verbeni M, Arnedo‑mesenchymal transformation process. Cancer Control 16: 453‑465, 2011.
50. Hasakova K, Vician M, Reis R, Zeman M and Herichova I: Sex‑dependent correlation between survival and expression of genes related to the circadian oscillator in patients with colorectal cancer. Chronobiol Int 35: 1423‑1434, 2018.
51. Wang Y, Cheng Y, Yu G, Jia B, Hu Z and Zhang L: Expression of PER, CRY, and TIM genes for the pathological features of colorectal cancer patients. Onco Targets Ther 9: 1997‑2005, 2016.
52. Xiong Y, Zhuang Y, Zhong M, Qin W, Huang B, Zhao J, Gao Z, Wang Y, Cheng Y, Yu G, Jia B, Hu Z and Zhang L: Expression of circadian clock genes in human colorectal adenoma and carcinoma. Oncol Lett 14: 5319‑5325, 2017.
53. Storcelová M, Vicién M, Reis R, Zeman M and Herichová I: Expression of cell cycle regulatory factors hulk, gadd45a, rbl1, cdk2a and mre11a correlates with expression of clock gene per2 in human colorectal carcinoma tissue. Mol Biol Rep 40: 6647‑6651, 2013.
54. Soták M, Polidarová L, Ergang P, Sumová A and Pácha J: An association between clock genes and clock‑controlled cell cycle genes in murine colorectal tumors. Int J Cancer 132: 1032‑1041, 2013.
55. Arango D, Mariadason JM, Wilson AJ, Yang W, Corner GA, Nicholas C, Aranes MJ and Augenlicht LH: c‑Myc overexpression sensitizes colon cancer cells to camptothecin‑induced apoptosis. Br J Cancer 89: 1757‑1765, 2003.
56. Borgs L, Beukelaers P, Vandenbosch R, Belachew S, Nguyen L and Malgrange B: Cell ‘circadian’ cycle: New role for mammalian core clock genes. Cell Cycle 8: 832‑837, 2009.
57. Wood PA, Yang X, Tuber A, Oh EY, Ansell C, Ayers SE, Al‑Saadaad Z, Carneveaz K, Berger FG, Peña MM and Hrushevsy WJ: Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol Cancer Res 6: 1786‑1793, 2008.
58. Lu H, Peliciano H, Liu J, Huang P and Lee C: The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 11: 41‑50, 2002.
59. Shen P, Pichler M, Chen M, Calin GA and Ling H: To Wnt or to lose: The missing non‑coding linc in colorectal cancer. Int J Mol Sci 18: 2003, 2017.
60. Filipovich A, Gehrke I, Poll‑Wolbeck SJ and Kreuzer KA: Physiological inhibitors of Wnt signaling. Eur J Haematol 86: 665‑671, 2011.
61. Yang X, Wood PA, Ansell CM, Ohmori M, Oh EY, Xiong Y, Berger FG, Peña MM and Hrushevsy WJ: Beta‑catenin induces beta‑TrCP‑mediated PER2 degradation altering circadian clock gene expression in intestinal mucosa of ApcMin/+ mice. J Biochem 149: 289‑297, 2007.
62. Schroll MM, LaBonita GJ, Ludwig KR and Hummon AB: Glucose restriction combined with autophagy inhibition and chemotherapy in HCT 116 spheroids decreases cell clonogenicity and viability regulated by tumor suppressor genes. J Proteome Res 16: 3009‑3018, 2017.
63. Capes F, Sun H, Zhang S, Yang X, Zhang G and Su T: Overexpression of PER3 inhibits self‑renewal capability and chemoresistance of colorectal cancer stem‑like cells via inhibition of notch and β‑catenin signaling. Oncol Res 25: 709‑719, 2017.
64. Wang JL, Lin YW, Chen HM, Kong X, Xiong H, Shen N, Hong J and Fang YJ: Calcium prevents tumorigenesis in a mouse model of colorectal cancer. PLoS One 6: e22566, 2011.
65. Hasakova K, Vician M, Reis R, Zeman M and Herichova I: The expression of cell genes cry1 and cry2 in human colorectal cancer and tumor adjacent tissues correlates differently dependent to tumor location. Neoplasma 56: 995‑992, 2018.
66. Yu H, Meng X, Wu J, Pan C, Ying X, Zhou Y, Liu R and Huang W: Cryptochrome 1 overexpression correlates with tumor progression and poor prognosis in patients with colorectal cancer. PLoS One 8: e61679, 2013.
67. Mazzoccoli G, Colangelo T, Panza A, Rubino R, De Catt A, Tiberio C, Valvano MR, Panizzo V, Merla G, Augello B, et al.: Deregulated expression of cryptochrome genes in human colorectal cancer. Mol Cancer 15: 6, 2016.
68. Heald R, McLoughlin M and McKeon F: Human weel maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74: 463‑474, 1993.
69. Badker S, Gelos M, Kobalz U, Hanski ML, Böhm C, Mann B, Lövin N, Gratchev A, Mannsman U, Moyer MP, et al.: Differential gene expression in colon carcinoma cells and tissues detected with a cDNA array. Int J Cancer 82: 868‑874, 1999.
70. van der Horst GT, Muितjens M, Kobayashi K, Takaro R, Kanno S, Kimura M, Eker J, Verkerk A, Leenen D, et al.: Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398: 627‑630, 1999.
80. Wang Y, Chen B, Wang Y, Sun N, Lu C, Qian R and Hua L: Upregulation of circadian gene ‘hClock’ contribution to metastasis of colorectal cancer. Int J Oncol 50: 2191-2199, 2017.

81. Karantanos T, Theodoropoulos G, Gazouli M, Vaiopoulou A, Wang Y, Sun N, Lu C, Qian R and Hua L: circadian gene expression in human colorectal carcinoma. Mol Med Rep 8: 1017-1022, 2013.

82. Wang Y, Sun N, Lu C, Bei Y, Qian R and Hua L: Upregulation of circadian gene ‘hClock’ expression in human colorectal carcinoma. Mol Cancer 50: 2191-2199, 2017.

83. Karantanos T, Theodoropoulos G, Gazouli M, Vaiopoulou A, Wang Y, Sun N, Lu C, Qian R and Hua L: Circadian clock gene expression in human colorectal carcinoma. Mol Biol Rep 49: 373-384, 2022.

84. Alhopuro P, Björklund M, Sammalkorpi H, Turunen M, Launonen V, et al: Mutations in the circadian gene CIRCADIAN CLOCK IN CRC (CLOCK) in colorectal cancer: Results from the international EORTC 05011 trial. Int J Cancer 148: 2512-2521, 2020 (Epub ahead of print).

85. Innominato PF, Ballesta A, Huang Q, Focan C, Chollet P, Depres-Brunner P, Zidani R, Brienza S, Izhaki M, Iacobelli S, et al: Oxaliplatin activity against metastatic colorectal cancer. A phase II study of 5-day continuous venous infusion at circadian rhythm modulated rate. Eur J Cancer 29A: 1280-1284, 1993.

86. Nelson RL: Iron and colorectal cancer risk: Human studies. Nutr Rev 59: 140-148, 2001.

87. Osborne NJ, Gurrin LC, Allen KJ, Constantine CC, Delaycki MB, McLaren CE, Gertig DM, Anderson GJ, Southey MC, Olynk JK, et al: HFE C282Y homozygotes are at increased risk of breast and colorectal cancer. Hepatology 51: 1311-1318, 2010.

88. Okazaki F, Matsunaga N, Okazaki H, Azuma H, Hamamura K, Zhang Y, Devocelle A, Desterke C, de Souza LEB, Hadadi É, Schulte N, Frodyma DE, McCall JL, Fisher KW and Lewis RE: Effects of the biological clock gene Bmal1 on tumour growth and anti-cancer drug activity. J Biochem 148: 319-326, 2010.

89. Sakamoto W and Takenoshita S: BMAL1 induces colorectal cancer metastasis by stimulating ERK-mediated TIMELESS expression and modulates tumor progression and drug response in colorectal cancer. EBioMedicine 33: 105-121, 2018.

90. Nelson RL: Iron and colorectal cancer risk: Human studies. Nutr Rev 59: 140-148, 2001.

91. Zidani R, Brienza S, Izhaki M, Iacobelli S, et al: Circadian clock gene machinery in colorectal cancer. Cancer Invest 30: 98-105, 2012.

92. Ballesta A, Dulong S, Albarran I, Cohen B, Okya A, Clairambault J and Levi F: A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery. PLoS Comput Biol 7: e1002143, 2011.

93. Ballesta A, Dulong S, Albarran I, Cohen B, Okya A, Clairambault J and Levi F: Oxaliplatin柠檬酸盐 formulation and delivery scheduling for irinotecan chronomodulated delivery. Mol Cancer Ther 14: 1476-1487, 2015.

94. Pazienza V, Piepoli A, Panza A, Valvano MR, Benegiamo G, Vinciguerra M, Andriulli A and Mazzoccoli G: SIRT1 and the anti-cancer drug gefitinib induce ERK hypermethylation. PLoS Genet 2: e40, 2006.

95. Innominato PF, Ballesta A, Huang Q, Focan C, Chollet P, Depres-Brunner P, Zidani R, Brienza S, Izhaki M, Iacobelli S, et al: Oxaliplatin activity against metastatic colorectal cancer. A phase II study of 5-day continuous venous infusion at circadian rhythm modulated rate. Eur J Cancer 29A: 1280-1284, 1993.

96. Ballesta A, Dulong S, Albarran I, Cohen B, Okya A, Clairambault J and Levi F: A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery. PLoS Comput Biol 7: e1002143, 2011.

97. Chen J: Circadian clock pathway genes associated with colorectal cancer. Int J Oncol 50: 2191-2199, 2017.

98. Neilsen BK, Frodyma DE, McCall JL, Fisher KW and Lewis RE: Effects of the biological clock gene Bmal1 on tumour growth and anti-cancer drug activity. J Biochem 148: 319-326, 2010.

99. Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN, Herman JG and Baylin SB: Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2: e40, 2006.

100. Gu D, Li S, Ben S, Du M, Chu H, Zhang Z, Wang M, Zang ZF and Chen J: Circadian clock pathway genes associated with colorectal cancer risk and prognosis. Arch Toxicol 92: 2673-2689, 2018.

101. Lévi F, Karaboué A, Gorden L, Innominato PF, Saffroy R, Giacchetti S, Hauterville D, Guettier C, Adam R and Bouchahda M: Cetuximab and cirrhosis chronomodulated chemotherapy as salvage treatment for metastatic colorectal cancer (mCRC): Safety, efficacy and improved secondary surgical resectability. Cancer Chemother Pharmacol 67: 339-348, 2011.

102. Lévi F, Karaboué A, Gorden L, Innominato PF, Saffroy R, Giacchetti S, Hauterville D, Guettier C, Adam R and Bouchahda M: Cetuximab and cirrhosis chronomodulated chemotherapy as salvage treatment for metastatic colorectal cancer (mCRC): Safety, efficacy and improved secondary surgical resectability. Cancer Chemother Pharmacol 67: 339-348, 2011.

103. Lévi F, Karaboué A, Gorden L, Innominato PF, Saffroy R, Giacchetti S, Hauterville D, Guettier C, Adam R and Bouchahda M: Cetuximab and cirrhosis chronomodulated chemotherapy as salvage treatment for metastatic colorectal cancer (mCRC): Safety, efficacy and improved secondary surgical resectability. Cancer Chemother Pharmacol 67: 339-348, 2011.

104. Lévi F, Karaboué A, Gorden L, Innominato PF, Saffroy R, Giacchetti S, Hauterville D, Guettier C, Adam R and Bouchahda M: Cetuximab and cirrhosis chronomodulated chemotherapy as salvage treatment for metastatic colorectal cancer (mCRC): Safety, efficacy and improved secondary surgical resectability. Cancer Chemother Pharmacol 67: 339-348, 2011.

105. Lévi F, Karaboué A, Gorden L, Innominato PF, Saffroy R, Giacchetti S, Hauterville D, Guettier C, Adam R and Bouchahda M: Cetuximab and cirrhosis chronomodulated chemotherapy as salvage treatment for metastatic colorectal cancer (mCRC): Safety, efficacy and improved secondary surgical resectability. Cancer Chemother Pharmacol 67: 339-348, 2011.

106. Lévi F, Karaboué A, Gorden L, Innominato PF, Saffroy R, Giacchetti S, Hauterville D, Guettier C, Adam R and Bouchahda M: Cetuximab and cirrhosis chronomodulated chemotherapy as salvage treatment for metastatic colorectal cancer (mCRC): Safety, efficacy and improved secondary surgical resectability. Cancer Chemother Pharmacol 67: 339-348, 2011.

107. Lévi F, Karaboué A, Gorden L, Innominato PF, Saffroy R, Giacchetti S, Hauterville D, Guettier C, Adam R and Bouchahda M: Cetuximab and cirrhosis chronomodulated chemotherapy as salvage treatment for metastatic colorectal cancer (mCRC): Safety, efficacy and improved secondary surgical resectability. Cancer Chemother Pharmacol 67: 339-348, 2011.

108. Ballesta A, Dulong S, Albarran I, Cohen B, Okya A, Clairambault J and Levi F: A mathematical model of the circadian clock and drug pharmacology to optimize irinotecan administration timing in colorectal cancer. Comput Struct Biotechnol J 19: 5170-5183, 2021.