A hydrogenic molecular atmosphere of a neutron star

A. V. Turbiner and J. C. López Vieyra

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, D.F., México.

Abstract

A model of a hydrogenic content of atmosphere of the isolated neutron star 1E1207.4-5209 is proposed. It is based on the assumption that the main component in the atmosphere is the exotic molecular ion \(H_3^{2+} \) and that there exists a magnetic field in the range of \((4 \pm 2) \times 10^{14}\) G. Photoionization \(H_3^{2+} \rightarrow e + 3p \) and photodissociation \(H_3^{2+} \rightarrow H + 2p \) correspond to two absorption features at 0.7 KeV and 1.4 KeV, respectively, discovered by Chandra observatory (Sanwal et al, 2002).

The model predicts one more absorption feature at 80-150 eV corresponding to photodissociation \(H_3^{2+} \rightarrow H_2^{+} + p \).

PACS numbers: 31.15.Pf,31.10.+z,32.60.+i,97.10.Ld
A neutron star atmosphere is characterized by strong magnetic fields $\sim 10^{12} - 10^{13}$ G. So far very little is known about its nature. It seems natural to anticipate a wealth of new physical phenomena in such an atmosphere. However, for many years the experimental data did not indicate anything unusual, showing only blackbody radiation. In 2002 the Chandra X-ray observatory collected data on the isolated neutron star 1E1207.4-5209 which led to the discovery of two clearly-seen absorption features at ~ 0.7 KeV and ~ 1.4 KeV each of them of the width around 100 eV [1] (See Fig.1). Many different proposals about content of the atmosphere were presented, related mostly to atomic ions (for a review, see [1, 2]). In this Note we propose a hydrogenic molecular model.

About 30 years ago it was predicted [3, 4] that in a strong magnetic field unusual chemical systems could appear which do not exist without a strong magnetic field. In [3] (see also [6] and references therein) the hydrogen atom in a strong magnetic field was studied quantitatively with high accuracy. Then in the papers [7] a detailed accurate study of the systems made up of one electron and several protons ($epp\ldots$) under a strong magnetic field in the Born-Oppenheimer approximation was carried out. Let us enlist some conclusions:

- For magnetic fields $B \gtrsim 10^{11}$ G the traditional system H_2^+ (ppe) exists for moderate inclinations only [12] while a new, exotic system $H_3^{(2+)}$ ($pppe$) appears in linear configuration at zero inclination. Furthermore, for $B \gtrsim 10^{13}$ G another exotic system $H_4^{(3+)}$ ($ppppe$) can appear in linear configuration at zero inclination.

- The neutral system – the Hydrogen atom – has the highest total energy among the one-electron systems, so is the least bound one-electron system for the whole region of magnetic fields studied, $0 < B \lesssim 4.4 \times 10^{13} G$.

- Binding energy of H, H_2^+, $H_3^{(2+)}$, $H_4^{(3+)}$ increases (when the system exists) with magnetic field growth, while the natural size of the systems H_2^+, $H_3^{(2+)}$, $H_4^{(3+)}$ decreases [13]. In particular, for H_2^+ and linear $H_3^{(2+)}$ the binding energies at $B \sim 3 \times 10^{13}$ G reach ~ 700 eV.

- H_2^+ has the lowest total energy for $0 < B \lesssim 10^{13}$ G. However, for $B \gtrsim 10^{13}$ G the exotic system $H_3^{(2+)}$ has the lowest total energy becoming the most bound one-electron system.
In addition it seems natural to assume that for very strong magnetic fields the simplest two-electron molecular system H_2 at most has very small binding energy or does not exist due to the repulsive nature of the state formed by two spins 1/2 in triplet configuration. A general review for matter in a strong magnetic field as well as particular consideration about H_2 molecule can be found in [8, 9]. Furthermore, in typical neutron star atmospheres the abundance of H_2 is smaller than the abundance of H atoms [10].

Let us make the simplest assumption that the atmosphere consists of protons and electrons mostly in a form of the $H, H^+_2, H^{(2+)}_3, H^{(3+)}_4$ systems [11]. It is evident that the charged systems $H^+_2, H^{(2+)}_3, H^{(3+)}_4$ can move mostly in the longitudinal (along the magnetic line) direction, and transverse motion is limited to a domain defined by the Larmor radius. Now, let us consider possible processes which can occur for the systems $H, H^+_2, H^{(2+)}_3, H^{(3+)}_4$. They are divided into three types: ionization (bound-free transitions), dissociation and excitation (bound-bound transitions). Although non-relativistic considerations are justified for $B \lesssim 4.4 \times 10^{13}$ G only, we will do the calculations for higher magnetic fields assuming that we obtain sufficiently correct estimates of energies with error in the binding energies $\lesssim 10\%$ (for a discussion see [9]). These calculations are done using the variational technique with physically relevant trial functions given in [7]. In Table I the binding energies for magnetic fields varying from 2.35×10^{14} G to 6×10^{14} G are given. It can be seen that the binding energy of the most bound one-electron system H^{2+}_3 corresponds to the second absorption feature 1.4 KeV as well as H^+_2 (see Fig.1). While the binding energy of the hydrogen atom corresponds to the first absorption feature at 0.7 KeV.

TABLE I: Binding energies in Rydbergs (Ry) and in electron-volts (eV) for different one-electron systems for magnetic fields $(2.35 - 6) \times 10^{14}$ G. Energies in eV are rounded to the nearest integer number ending in 0 or 5.

H-atom	H^+_2	H^{2+}_3	H^{3+}_4
47.8 - 57.9	83.6 - 104.2	89.5 - 114.7	74.3 - 98.1 Ry
650 - 790	1140 - 1420	1220 - 1560	1010 - 1335 eV

In Table II we present the dissociation energies. Surprisingly, two dissociation processes $H^{2+}_3 \rightarrow H + 2p$ and $H^+_2 \rightarrow H + p$ again contribute to the domain corresponding to the first absorption feature at 0.7 KeV. While, the range of sensitivity of the Chandra/ACIS detector
does not allow to see the domain where the process $H_3^{2+} \rightarrow H_2^+ + p$ can contribute.

TABLE II: Dissociation energies in Rydbergs (Ry) and electron-volts (eV) for different one-electron systems for magnetic fields $(2.35 - 6.) \times 10^{14} \ G$. Energies in eV are rounded to the nearest integer number ending in 0 or 5.

Reaction	Energies
$H_2^+ \rightarrow H + p$	35.8 - 46.3 Ry
$H_3^{2+} \rightarrow H + 2p$	41.7 - 56.8 Ry
$H_3^{2+} \rightarrow H_2^+ + p$	5.9 - 10.5 Ry
$H_4^{3+} \rightarrow H + 3p$	26.5 - 40.2 Ry
	490 - 630 eV
	570 - 770 eV
	80 - 145 eV
	360 - 550 eV

TABLE III: Excitation energies in Rydbergs (Ry) and electron-volts (eV) for different one-electron systems for magnetic fields of $(2.35 - 6.) \times 10^{14} \ G$. Energies in eV are rounded to the nearest integer number ending in 0 or 5.

Reaction	Energies
$H_2^+(1\sigma_g \rightarrow 1\pi_u)$	18.6 - 21.9 Ry
$H_3^{2+}(1\sigma_g \rightarrow 1\pi_u)$	22.4 - 27.9 Ry
	250 - 300 eV
	305 - 380 eV

In Table III we present the energies of the first excitation of H_2^+ and H_3^{2+}, correspondingly. These processes contribute to the domain which is close to the end of the range of sensitivity of the Chandra/ACIS detector. Also their cross-sections are smaller than photoionization ones [10].

We can formulate our model of the content of the neutron star atmosphere. The description, which we are going to present, appears at magnetic fields of $(4 \pm 2) \times 10^{14} \ G$, of the magnetar strength. We assume that the atmosphere consists mostly of H_3^{2+}-ions, which is the most stable one-electron configuration for ultra-high magnetic fields characterized by the smallest total energies comparing with other one-electron systems, with a small abundance of the H_4^{3+}-ions [15]. Photoionization of H_3^{2+} may explain the second absorption feature in Fig.1 at around 1.4 KeV [16]. Photodissociation $H_3^{2+} \rightarrow H + 2p$ may give a significant contribution to the first absorption feature at around 730 eV. Secondary photoionization processes of the H-atoms produced in $H_3^{2+} \rightarrow H + 2p$ also may contribute to the first absorption feature. Meanwhile, another process of photodissociation of $H_3^{2+} \rightarrow H_2^+ + p$ is not resolved by the Chandra/ACIS detector. However, the secondary processes of (i) pho-
FIG. 1: *Chandra*/ACIS spectrum as presented in [2] (Fig. #1 from [2] by the author’s permission). The solid line is a blackbody model which includes the detector sensitivity to illustrate two absorption features. Domains where the processes $H_3^{2+} \rightarrow e + 3p$ and $H_3^{2+} \rightarrow H + 2p$ contribute are shown by bars.

Toionization of the H_2^+-ions produced contributes to the second absorption feature and (ii) photodissociation $H_2^+ \rightarrow H + p$ contributes to the first absorption feature, while the ternary process of photoionization of H-atoms contributes again to the first absorption feature. We neglect contributions coming from electronic excitations of H_3^{2+}-ions, in particular those shown in Table III. One of the ways to identify the present model is to study the domain of 80 - 150 eV, which is beyond the *Chandra*/ACIS detector acceptance, where the process $H_3^{2+} \rightarrow H_2^+ + p$ can lead to an absorption feature. Red-shift effects are not taken into account, but they can be included straightforward (see e.g. [1]) and we guess it can increase the magnetic field values for $\sim 20 - 50\%$.

Our magnetic field strengths which correspond to above picture seem to be in contra-
diction with a value independently derived from the neutron star spin parameters (for a discussion see [1]). However, if it is assumed that the magnetic field is produced by an off-centered magnetic dipole as was suggested in [1], the magnetic field strength can reach values of the order of 10^{14} G or higher. It is necessary to mention that, recently, XMM-Newton observations [11] confirmed the results of Chandra/ACIS related to absorption features at 0.7 and 1.4 KeV and even indicated the possible existence of the third absorption feature at 2.1 KeV. If the new feature is confirmed it would mean that this feature is outside the range of prediction of the present model and should be explained differently.

We are thankful to G. Pavlov and A. Potekhin for valuable discussions and a careful reading of the manuscript. The work is supported in part by CONACyT grants 25427-E and 36650-E (Mexico).

[1] D. Sanwal et al., ‘Discovery of absorption features in the X-ray spectrum of an isolated neutron star’,
ApJL, **574**, L61 (2002)
[astro-ph/0206195]

[2] C.J. Hailey and K. Mori, 'Evidence for a mid-atomic-number atmosphere in the neutron star 1E1207.4-5209',
ApJL, **578**, L133 (2002)
[astro-ph/0206195]

K. Mori and C.J. Hailey, 'X-ray spectroscopy of the isolated neutron star 1E1207.4-5209: atmospheric composition and equation of state'
[astro-ph/0301161]

[3] B.B. Kadomtsev and V.S. Kudryavtsev, *Pis’ma ZhETF* **13**, 15, 61 (1971);
*Sov. Phys. – JETP Lett.** **13**, 9, 42 (1971) (English Translation);
ZhETF **62**, 144 (1972);
Sov. Phys. – JETP **35**, 76 (1972) (English Translation)

[4] M. Ruderman, *Phys. Rev. Lett.* **27**, 1306 (1971); in IAU Symp. **53**, *Physics of Dense Matter*,
(ed. by C.J. Hansen, Dordrecht: Reidel, p. 117, 1974)

[5] Yu. P. Kravchenko, M. A. Liberman, and B. Johansson, *Phys.Rev.* **A54**, 287 (1996)
[6] A.Y. Potekhin, and A.V. Turbiner, *Phys. Rev.* **A63**, 065402 (2001) (physics/0101050)

[7] A. Turbiner, J.C. Lopez V. and U. Solis H., *Pis’ma v ZhETF* **69**, 800-805 (1999); *JETP Letters* **69**, 844-850 (1999) (English Translation); (astro-ph/980929)

J.C. Lopez V. and A. Turbiner, *Phys. Rev.* **A62**, 022510 (2000) (astro-ph/9911535)

J.C. Lopez V. and A. Turbiner, *Phys. Rev.* **A66**, 023409 (2002) (astro-ph/0202596)

A.V. Turbiner and J.C. Lopez Vieyra, *Phys. Rev.* **A68**, 012504 (2003) (astro-ph/0212463)

A.V. Turbiner and J.C. Lopez Vieyra,

‘H_2^+ in a strong magnetic field: Lowest excited states’,

Phys. Rev. A **69**(5) (May 2004) (in print) (astro-ph/0310849)

A.V. Turbiner, J.C. Lopez Vieyra and N. Guevara,

‘H_3^{2+} in a strong magnetic field. Linear configuration’,

(in progress)

[8] M.A. Liberman, B. Johansson, *Physics-Uspekhi* **38**, 117-136 (1995)

[9] D. Lai, ‘Matter in Strong Magnetic Fields’, *Rev. Mod. Phys.* **73**, 629 (2001) (astro-ph/0009333)

[10] A.Y. Potekhin and G. Chabrier, *ApJ* **600**, 317 (2004) (astro-ph/0309310)

[11] G.F. Bignami, P.A. Caraveo, A. De Luca and S. Mereghetti, *Nature* **423**, 725-727 (2003)

[12] Inclination is defined by the angle between the molecular axis and the magnetic line

[13] Natural size is defined by the distance between end-situated protons

[14] In principle, nuclei can be deuterons or tritons instead of protons.

[15] We neglect temperature and density effects

[16] Ionization means a transition from a discrete spectrum to a continuous one (bound-free transitions). The cross-section of photo-ionization depends on the energy of ionization. Not aware of any reliable calculations of bound-bound and bound-free transitions, even for the simplest molecular system H_2^+, we assume, following a detailed study of the hydrogen atom [10],

that (i) photo-ionization cross-section has a maximum near the ionization threshold, and (ii) bound-bound transition amplitudes are small compared to the bound-free ones. We also neglect any difference between ionization threshold (binding energy) and the maximum of the energy distribution, assuming that this difference is small.