Public health concerns and increased risk of severe COVID-19 disease through androgen use

Philippe Crisp and Jamie Sims

Purpose of review
Given governmental policy responses to the COVID-19 pandemic include various foci on establishing preventive measures to increase the health and constitution of populations (i.e. through renewed efforts to tackle obesity), the use of androgens in a recreational manner requires attention because of existing medical evidence related to their role in immunosuppression.

Recent findings
Whilst a broad body of work exists that outlines the mechanisms that underpin COVID-19 and public health responses, as well as the use of androgens in both recreational and medicinal contexts, the recent nature of the disease has left an area requiring greater investigation and clarification. There is emerging literature that highlights the potential complications that existing androgens use may bring to those infected with COVID-19, as well as the start of empirical evidence detailing this.

Summary
In this article, we outline the latest viewpoints and literature related to how the use of androgens may contribute to less robust immunoresponses.

Keywords
anabolic-androgenic steroids, androgens, hyperinflammatory responses, immunosuppression, increased mortality risk, testosterone

INTRODUCTION
Coronavirus disease 2019 (COVID-19) was announced as a novel coronavirus on 1 December 2020 by the WHO [1]. It presents a wide variety of symptoms (as well as asymptomatic infection), which vary from mild to hyperinflammatory responses and triggering critical disease responses [2,3]. Declared a worldwide public health emergency, initial attempts by the majority of world governments to reduce transmission (i.e. through lockdowns), mitigate the severity of infection through medicinal purposes and availability (such as ensuring ICU did/do not exceed capacity), and establish effective vaccination programmes, are now being supported by a range of policies and strategies that seek to lower comorbidities and concurrent risk factors through proposed health programmes (i.e. increased activity, cardiovascular efficiency, and lower obesity levels).

As part of this approach to ensuring healthier populations are less susceptible to some of the critical disease that COVID-19 can trigger, the use of androgens (also referred to as anabolic-androgenic steroids or AAS), for potential medicinal recovery as well as the literature related to increasing comorbidities, needs consideration. In this article, we present a more detailed outline of the above, and a review of literature related to existing understanding of androgen supplementation and the physiological, and psychiatric, costs it can manifest. We also outline a review of recently published articles that position androgen supplementation as possibly increasing the risk of increased risk of COVID-19 disease severity.

CORONAVIRUS DISEASE 2019, HYPERINFLAMMATORY RESPONSES, AND EMERGENCY PUBLIC HEALTH RESPONSES
The emergence of COVID-19 as a worldwide pandemic has instigated a succession of public health
Public health response to the COVID-19 pandemic has included movement and travel restrictions, social distancing, increased sanitary guidance and legislation, and dedicated monitoring and notification systems, as well as longer term strategies to increase population physical activity levels.

Emerging evidence is now implicating an increased uptake of androgen use within the pandemic, including increased first-episode drug usage incidence, across several nations including the UK.

Recent and converging evidence is suggestive of a link between increased androgens and an increased severity in response and symptoms to COVID-19 infection, whereas antiandrogen therapy is provisionally demonstrating a comparative reduction in disease severity and duration.

As the broader public health agenda adapts to the transition of COVID-19 from pandemic to endemic status, a fuller consideration can now be implemented to include a specific strategy for this superficially healthy but deceptively vulnerable group.

Public health responses to the COVID-19 pandemic have significantly impacted on various health inequalities. Smoking cessation policies that seek to ensure higher levels of population fitness through promoting development and strengthening systems (i.e. through enhancing partnerships, capacity building, and innovative projects), in order to address inequalities in exercise provision that have been highlighted by the pandemic.

Androgens

KEY POINTS

- Public health response to the COVID-19 pandemic has included movement and travel restrictions, social distancing, increased sanitary guidance and legislation, and dedicated monitoring and notification systems, as well as longer term strategies to increase population physical activity levels.

- Existing medical evidence recognizes the role of androgen use in immunosuppression, hyperinflammation, and acute respiratory distress, and constituting potentially dangerous and exacerbating comorbidities to COVID-19 infection.

- Emerging evidence is now implicating an increased uptake of androgen use within the pandemic, including increased first-episode drug usage incidence, across several nations including the UK.

- Recent and converging evidence is suggestive of a link between increased androgens and an increased severity in response and symptoms to COVID-19 infection, whereas antiandrogen therapy is provisionally demonstrating a comparative reduction in disease severity and duration.

- As the broader public health agenda adapts to the transition of COVID-19 from pandemic to endemic status, a fuller consideration can now be implemented to include a specific strategy for this superficially healthy but deceptively vulnerable group.

Public health responses to the COVID-19 pandemic have significantly impacted on various health inequalities. Smoking cessation policies that seek to ensure higher levels of population fitness through promoting development and strengthening systems (i.e. through enhancing partnerships, capacity building, and innovative projects), in order to address inequalities in exercise provision that have been highlighted by the pandemic.

Androgen use, medicinal problems, and directing and coordinating authority for related health matters

Placing physical activity support at the heart of post-COVID-19 recovery is paralleled by existing health policies that seek to ensure higher levels of population fitness through planning with a special emphasis on various health inequalities. Smoking cessation and control, for instance, has long been targeted as a way of improving the resilience of health systems.
This is primarily achieved through a combination of prevention through higher taxation, smoke-free areas, and antismoking campaigns [12]. Similarly, antidrug campaigns, to reduce illicit drug use and support recovery from drug dependency, are commonplace through western countries, that is, the UK’s Drug strategy 2017 [13].

In part, through similar types of programmes and strategies, the use of Image and Performance Enhancing Drugs (IPEDs) is also oftentimes acknowledged to be problematic, particularly the negative health implications resulting from androgen use. Examples of these implications include multiorgan damage [14] and related negative cardiac effects [15]. Indeed, there are a variety of specific health risks associated with androgens and other IPEDs [16], and a relatively well understood increase in mortality risk for users [17]. Despite this knowledge and a variety of public health campaigns that have sought to reduce androgen and associated IPED use, their usage has perhaps been reinforced by the disruption of the pandemic. In a study using an international online questionnaire for 3161 (65% women) adults in various European countries, Dores et al. [18] found that lockdowns increased first time usage of IPEDs by 6%, a potentially worrying finding that warrants serious consideration.

ANDROGEN USE AND POTENTIAL MEDICINAL BENEFITS

In the context of COVID-19 recovery, De Lorenzo et al. [19] highlight the specific deleterious effects of bedrest for patients who have required hospitalization. This includes, but is not exhaustive to, those who necessitated support through ventilators/intubation and who have been placed in induced medical comas. Because of this, De Lorenzo et al. [19] outlined some of the nutritional demands and supplementation, as well as physical therapy and motor rehabilitation, that is necessary for recovering patients. In light of this article’s specific purpose, and in the context of androgen use and COVID-19, there is also emerging evidence (although conceptual/suppositional) that testosterone, and potentially estrogen, repurposing may be particularly useful for those recovering from severe COVID-19 symptoms as an anabolic agent [20,21]. This argument is, perhaps, especially relevant when the work of Rastrelli et al. [22] is taken into account. Here, they analysed data related to 31 male patients affected by COVID-19 pneumonia who had subsequently recovered. Whilst a limited sample, Rastrelli et al. [22] indicated that patients who had lower testosterone concentrations were subject to worse outcomes from COVID-19 infection, especially within older adults for whom hormone replacement therapy may be indicated [21,23–25].

ANDROGEN USE AND POTENTIAL PROBLEMS WITH CORONAVIRUS DISEASE 2019

In a recent commentary article [26**], we outlined the fact that (alongside existing knowledge related to various known health detriments) androgens act as immunosuppressors through reducing immune cell number and function [27]. Given that the specific nature of COVID-19 characteristically elicits immune responses that can lead to hyperinflammation, we took the position – from a suppositional basis – that the use of androgen could conceivably accelerate, exacerbate, or even initiate significantly more dangerous responses to COVID-19. Of note, whilst at the time of press, there was some emerging anecdotal and journalistic evidence, there were no widely available case studies or peer reviewed resources that had clearly demonstrated a link between androgen use and increased risk of mortality or disease severity from COVID-19, as well as associated mental health challenges [25].

As outlined previously, Cadegiani [20] had already posited that testosterone may well be useful for those recovering from severe COVID-19 symptoms within the first calendar year of the disease. Interestingly, however, he forms part of a team that has presented more recent evidence and medical practice outlining the potential risks that androgen use may present to otherwise healthy (including young) patients who have COVID-19. In a 2021 case study, Cadegiani et al. [28**] outline how an otherwise healthy 28-year-old male recreational bodybuilder who was using 40 mg/day of oxandrolone (an androgen), presented severe COVID-19 symptoms. The patient was given a single 600 mg dose of a novel antiandrogen, proxalutamide, and within 24 h demonstrated a significant improvement in symptoms. Given this experience, and noting that previous studies [29] have highlighted how androgen use in younger users has solicited acute respiratory distress (and pneumonia), Cadegiani et al. [28**] strongly suggested that the severe response and symptoms to COVID-19 that the androgen user in their case study (an otherwise healthy man), was highly likely owed to androgen use.

Furthermore, a randomized controlled trial [24] investigated the effects of supplementing standard treatment with a 30-day course of dutasteride on adult patients presenting with early COVID-19 symptoms. Compared with placebo controls, treatment-arm patients (n = 43) evidenced reduced disease duration, as well as lower reported fatigue and

1752-296X Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved. www.co-endocrinology.com 627

Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.
inflammatory markers, by day 7. Mitigating disease severity through antiandrogen therapy then, seems to highlight the potential risks that excess amounts of androgens may pose in the context of COVID-19. Indeed, whilst the work of Rambhatla et al. [30] declared that men who contracted COVID-19 who were also undertaking testosterone replacement therapy (TRT) were not subject to worse clinical outcomes, MacDonald and Wambier [31], in a riposte to this, stated that the TRT group in the study exhibited significantly higher hospitalization and fatality rates than comparable age groups in the USA.

Certainly, the fact that there is a gender-related distinction in COVID-19 infection, with male individuals experiencing higher morbidity and mortality rates, may in part be attributable to hormonal (androgenic) differences [32,33]. According to emerging but triangulating viewpoints [34*,35], this is in part perhaps because of the manner in which COVID-19 viral spread is articulated through the mechanism of androgen receptor activation and the transcription of the transmembrane protease, serine 2 (TMPRSS2) gene. Using androgen receptor inhibitors then, is considered a possible therapeutic strategy to address the vulnerability of male individuals to severe COVID-19 responses [34*].

CONCLUSION

Given the very recent advent of COVID-19, it is of no surprise that there is presently a relative dearth of literature available within the context of androgen use. However, the fact that androgen use can adversely affect immune responsiveness, something that is critical in relation to mitigating COVID-19 morbidity and mortality, justifiably suggests medicine and healthcare systems may need to develop new policies and procedures specific to this population. Furthermore, as it is not immediately obvious as to whether an individual is actively using, or has a history of IPED use, and some individuals will conceal this information, some adaptations to risk-factor assessment protocols may need to occur.

Whilst, as mentioned, there is already a growing journalistic and anecdotal reportage of some body-builders and strength athletes (who may or may not have been androgen users) who have passed from COVID-19, despite sitting well outside of at-risk age categories, we anticipate that the recorded case report by Cadegiani et al. [28*] of a severe case of COVID-19 in an otherwise healthy 28-year-old androgen user, will likely be joined by others. We further posit that medical literature and practice, alongside any explicit goals and strategies to mitigate and/or reduce severe COVID-19 disease symptoms, will likely be influenced by a general consensus and understanding of how androgen use will/can contribute to severe COVID-19 responses.

Acknowledgements

None.

Financial support and sponsorship

None.

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

* of special interest

** of outstanding interest

1. WHO. Emergencies preparedness, response: novel coronavirus – China. 2020. Available at: https://www.who.int/csr/don/18-january-2020-novel-coronavirus-china/en/. [Accessed 25 April 2021].

2. Maccio A, Oppi S, Madeddu C. COVID-19 and cytokine storm syndrome: can what we know about interleukin-6 in ovarian cancer be applied? J Ovarian Res 2021; 14:28.

3. Public Health England. Guidance: COVID-19: epidemiology, virology, and clinical features. 2021. Available at: https://www.gov.uk/government/publications/wuhan-novel-coronavirus-background-information/wuhan-novel-coronavirus-epidemiology-virology-and-clinical-feature-s#:~:text=Coronaviruses%20are%20a%20large%20family,such%20as%20a,-test=Coronaviruses%20are%20a%20large%20family,such%20as%20the%20common%20cold. [Accessed 25 April 2021].

4. The RECOVERY Collaborative Group. Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with Covid-19. New Engl J Med 2021; 384:693–704.

5. Al-Lami RA, Urban RJ, Volpi E, et al. Sex hormones and novel coronavirus disease (COVID-19), Mayo Clin Proc 2020; 95:1710–1714.

6. WHO. Estimating mortality from COVID-19. 2020. Available at: https://www.who.int/news-room/commentaries/detail/estimating-mortality-from-covid-19. [Accessed 03 May 2021].

7. Imperial College COVID-19 response team. Report 34: COVID-19 infection fatality ratio: estimates from seroprevalence. 2020. Available at: https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-10-29-COVID19-Report-34.pdf. [Accessed 30 March 2021].

8. ONS. Coronavirus and shielding of clinically extremely vulnerable people in England: 28 May to 3 June 2020. 2020. Available at: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronavirusandshieldingincfidentiallyextremelyvulnerablepeopleinengland/28mayto3june2020. [Accessed 03 May 2021].

9. ONS. Coronavirus and clinically extremely vulnerable people in England: 22 March to 31 March 2021. 2021. Available at: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronavirusandclinicallyextremelyvulnerablepeopleinengland/22marchto31march2021. [Accessed 03 May 2021].

10. GOV.UK. £2 billion package to create new era for cycling and walking. 2020. Available at: https://www.gov.uk/government/news/2-billion-package-to-create-new-era-for-cycling-and-walking. [Accessed 04 May 2021].

11. Sport England. Uniting the Movement: Our 10-year vision to transform lives and communities through sport and physical activity. 2021. Available at: https://www.sportengland.org/why-were-here/uniting-the-movement. [Accessed 05 May 2021].

12. GOV.UK. Guidance: Health matters: stopping smoking – what works? 2019. Available at: https://www.gov.uk/government/publications/health-matters-stopping-smoking-what-works. [Accessed 04 May 2021].

13. Home Office. Drug strategy 2017-2017. 2017. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/628148/Drug_strategy_2017.PDF. [Accessed 20 April 2021].

14. Samaha AA, Nasser-Eddine W, Shatila E, et al. Multigain damage induced by anabolic steroid supplements: a case report and literature review. J Med Case Rep 2008; 2:340.

15. Ismail TF, Angel PJ, Jabbour A, et al. Cardiac effects of anabolic steroid use amongst recreational body builders - a CMR study. J Cardiovasc Magn Reson 2012; 14:186.
16. Mazzeo F. Anabolic steroid use in sports and in physical activity: overview and analysis. Sport Mont 2018; 16:13–118.
17. Flänsi M, Kujala U, Vartiainen E, et al. Increased premature mortality of competitive powerlifters suspected to have used anabolic agents. Int J Sports Med 2000; 21:225–227.
18. Dorex RP, Carvalho IP, Burkauskas J, et al. Exercise and use of enhancement drugs at the time of the COVID-19 pandemic: a multicultural study on coping strategies during self-isolation and related risks. Front Psychiatry 2021; 12:648501.

Using an international online questionnaire and with 3161 adult participants, Dorex et al. reported that increased anxiety related to appearance within COVID-19 lockdowns significantly increased the probability of using IPEDs.

19. De Lorenzo A, Tarsitano MG, Falcone C, et al. Fat mass affects nutritional status of ICU COVID-19 patients. J Transl Med 2020; 18:299.
20. Cadegiani FA. Repurposing existing drugs for COVID-19: an endocrinology perspective. BMC Endocr Disord 2020; 20:149.
21. Oguz SH, Koca M, Yildiz BO. Aging versus youth: endocrine aspects of vulnerability for COVID-19. Rev Endocr Metab Discord 2021. [Epub ahead of print]
22. Rastrelli G, Di Stasi V, Inglese F, et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology 2021; 9:88–98.
23. Papadopoulos V, Li L, Samplaski M. Why does COVID-19 kill more elderly men than women? Is there a role for testosterone? Andrology 2021; 9:65–72.
24. Cadegiani FA, McCoy J, Wambier CG, et al. Early antiandrogen therapy with dutasteride reduces viral shedding, inflammatory responses, and time-to-remission in males with COVID-19: a randomized, double-blind, placebo-controlled interventional trial (EAT-DUTA AndroCov Trial-Biochemical). Curr Evid 2021; 13:e13047.
25. Zool Carter BN, Boardley ID, van de Ven K. The impact of the COVID-19 pandemic on male strength athletes who use nonprescribed anabolic-androgenic steroids. Front Psychiatry 2021; 12:636708.

26. Crisp P, Sims J. COVID-19 and anabolic-androgenic steroids (AAS) as immunosuppressors: is it time to revisit government policy and governance arrangements on AAS? Arch Sports Med 2020; 4:245–246.

This article outlines how androgen use impacts on immune systems, and thus posits that economic impact, resource constraints, and health policy regarding their use within the context of COVID-19 (and hyperinflammation responses), needs to be considered.

27. Kanda N, Tsuchida T, Tamaki K. Testosterone inhibits immunoglobulin production by human peripheral blood mononuclear cells. Clin Exp Immunol 1996; 106:410–415.
28. Cadegiani FA, Lin EM, Goren A, Wambier CG. Potential risk for developing severe COVID-19 disease among anabolic steroid users. BMJ Case Rep 2021; 14:e241572.

Cadegiani et al. reported how an otherwise healthy 28-year-old suffered from severe COVID-19 symptoms, and that this was highly likely because of androgen use.

29. Mayer KN, Wyder D, Spasic D, Herren T. Severe rhinovirus pneumonia in a young woman taking performance-enhancing drugs. BMJ Case Rep 2016.
30. Rambhatla A, Bronkema CJ, Consi N, et al. COVID-19 infection in men on testosterone replacement therapy. J Sex Med 2021; 18:215–218.
31. MacDonald S, Wambier CG. Letter to the editor on ‘COVID-19 infection in men on testosterone replacement therapy’. J Sex Med 2021; 18:1141–1142.
32. Tramah AM, Morgenstaller A. What’s testosterone got to do with it? A critical assessment of the contribution of testosterone to gender disparities in COVID-19 infections and deaths. Androg Clin Res Ther 2021; 2:
33. Moravej H, Pouranri MR, Baghari M, et al. Androgenetic alopecia and COVID-19: a review of the hypothetical role of androgens. Dermatol Ther 2021; 34:e15004.
34. Pozzilli P, Lenzi A. Commentary: testosterone, a key hormone in the context of COVID-19 pandemic. Metabolism 2020; 108:154252.

This commentary outlines how, in the context of higher lethality for males high testosterone may possibly promote COVID-19 infection.
35. Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J Am Acad Dermatol 2020; 83:308–309.