Any nonsingular action of the full symmetric group is isomorphic to an action with invariant measure

Nessonov N. I.

Abstract

Let \mathfrak{S}_∞ denote the set of all bijections of natural numbers. Consider the action of \mathfrak{S}_∞ on a measure space (X, \mathcal{M}, μ), where μ is \mathfrak{S}_∞-quasi-invariant measure. We prove that there exists \mathfrak{S}_∞-invariant measure equivalent to μ.

1 Introduction

Let \mathbb{N} be the set of all natural numbers and let \mathfrak{S}_∞ be the group of all bijections of \mathbb{N}. This group is called infinite full symmetric group. To the given element $s \in \mathfrak{S}_\infty$ we put $\text{supp } s = \{ n \in \mathbb{N} : s(n) \neq n \}$. Element $s \in \mathfrak{S}_\infty$ is called finite if $\#\text{supp } s < \infty$. The set of all finite elements form infinite symmetric group \mathfrak{S}_∞.

Let $\text{Aut } (X, \mathcal{M}, \mu)$ be the set of all nonsingular automorphisms of the measure space (X, \mathcal{M}, μ). Throughout this paper we suppose that \mathcal{M} is separable σ-algebra of measurable subsets of X. A homomorphism α from a group G into $\text{Aut } (X, \mathcal{M}, \mu)$ is called an action of G on (X, \mathcal{M}, μ). For convenience we consider α as the right action of the group G on X: $X \ni x \mapsto xg \in X$, $g \in G$. We suppose that

$$\mu (\{ x \in X : x(gh) \neq (xg)h \}) = 0 \text{ for each fixed pair } g, h \in G \text{ and }$$

$Ag^{-1} \in \mathcal{M}$ for all $A \in \mathcal{M}$, $g \in G$. Introduce measure $\mu \circ g$ by

$$\mu \circ g(A) = \mu(Ag), A \in \mathcal{M}.$$
Suppose that measures μ and $\mu \circ g$ are equivalent (i.e. mutually absolutely continuous) for every $g \in G$. In this case measure μ is called G-quasi-invariant. Considering the whole equivalence class of measures ν, equivalent to μ (the measure class μ), it is also the same to say that the action preserves the class as a whole, mapping any such measure to another such. Let $\frac{d\mu \circ g}{d\mu}$ denote the Radon-Nikodym density of $\mu \circ g$ with respect to μ. For convenience we put $\rho(g, x) = \sqrt{\frac{d\mu \circ g}{d\mu}(x)}$.

Theorem 1. Let the action of \mathcal{G}_∞ on (X, \mathcal{M}, μ) is measurable. If measure μ is \mathcal{G}_∞-quasi-invariant and σ-algebra \mathcal{M} is separable then there exists \mathcal{G}_∞-invariant measure ν (finite or infinite) equivalent to μ.

1.1 Outline of the proof of Theorem 1

Since the action $X \ni x \mapsto xg \in X$, $g \in \mathcal{G}_\infty$ preserves the measure class μ, we can to define the Koopman representation of \mathcal{G}_∞ associated to this action. It is given in the space $L^2(X, \mu)$ by the unitary operators

$$(\mathcal{K}(g)\eta)(x) = \rho(g, x)\eta(xg), \text{ where } \eta \in L^2(X, \mu).$$

From the separability of σ-algebra \mathcal{M} follows the separability of the unitary group of the space $L^2(X, \mu)$ in the strong operator topology. Therefore, homomorphism \mathcal{K} induces the separable topology on \mathcal{G}_∞. But, by Theorem 6.26 [1], \mathcal{G}_∞ has exactly two separable group topologies. Namely, trivial and the usual Polish topology, which is defined by fundamental system of neighborhoods $\mathcal{G}(n, \infty) = \{s \in \mathcal{G}_\infty : s(k) = k \text{ for } k = 1, 2, \ldots, n\}$ of unit. Therefore, the representation \mathcal{K} is continuous. It follows that there exist $n \in \mathbb{N} \cup 0$ and non-zero $\xi \in L^2(X, \mu)$ with the property

$$\mathcal{K}(g)\xi = \xi \text{ for all } g \in \mathcal{G}(n, \infty). \quad (1.1)$$

Set $E = \{x \in X : \xi(x) \neq 0\}$. Using (1.1), we obtain

$$\mu(E\Delta(EG)) = 0 \text{ for all } g \in \mathcal{G}(n, \infty). \quad (1.2)$$

For $A \subset E$ we define measure ν by

$$\nu(A) = \int_X \chi_A(x) \cdot |\xi(x)|^2 \, d\mu.$$

It follows from (1.1) and (1.1) that ν is $\mathcal{G}(n, \infty)$-invariant measure on E. This measure can be extend to the \mathcal{G}_∞-invariant measure on X.

2
2 The properties of the continuous representations of the group \mathfrak{S}_∞.

To the proof of Theorems 1 we will use the general facts about the continuous representations of the group \mathfrak{S}_∞, which have been well studied by A. Lieberman [2] and G. Olshanski [3, 4]. In this section we will give the simple constructions of the important operators and the short direct proofs of their properties.

Let K be the continuous representation of \mathfrak{S}_∞ in Hilbert space H. It follows that for each $\eta \in H$

$$\lim_{k \to \infty} \sup_{s \in \mathfrak{S}(k, \infty)} \|K(s)\eta - \eta\| = 0.$$ \hfill (2.3)

Set $^n\sigma_m = (n + 1 \ n + m + 1)(n + 2 \ n + m + 2) \cdots (n + m \ n + 2m)$, where $(k \ j)$ is a permutation that interchanges two numbers k, j and leaves all the others fixed. We will need few auxiliary lemmas.

Lemma 2. The sequence of the operators $\{K(^n\sigma_m)\}_{m \in \mathbb{N}}$ converges in the weak operator topology to a self-adjoint operator P_n.

Proof. Let us prove that the sequence $\{K(^n\sigma_m)\}_{m \in \mathbb{N}}$ is fundamental in the weak operator topology. Assuming for the convenience that $M > m$, we write $^n\sigma_M$ in the form $^n\sigma_M = s \cdot ^n\sigma_m \cdot t$, where $s, t \in \mathfrak{S}(n + m, \infty)$. Hence, using (2.3), we have

$$\lim_{m, M \to \infty} \langle (K(^n\sigma_M) - K(^n\sigma_m))\eta, \zeta \rangle = 0$$

for all $\eta, \zeta \in H$. \hfill \Box

Lemma 3. Operator P_n is a projection.

Proof. Using lemma [2] for any fixed $\eta, \zeta \in H$ we find the sequences $\{m_k\}_{k \in \mathbb{N}}$ and $\{M_k\}_{k \in \mathbb{N}}$ such that $m_{k+1} > m_k$, $M_k > 2m_k$ and

$$\lim_{k \to \infty} \left| \langle P_n^2\eta, \zeta \rangle - \langle K(^n\sigma_{M_k}) \cdot K(^n\sigma_{m_k}) \eta, \zeta \rangle \right| = 0.$$ \hfill (2.4)

Now we notice, that $^n\sigma_{M_k} \cdot ^n\sigma_{m_k} = ^n\sigma_{m_k} \cdot s_k$, where $s_k \in \mathfrak{S}(n + m_k, \infty)$. Hence, using (2.3) and (2.4), we have

$$0 = \lim_{k \to \infty} \left| \langle P_n^2\eta, \zeta \rangle - \langle K(^n\sigma_{M_k}) \cdot K(s_k) \eta, \zeta \rangle \right| = \lim_{k \to \infty} \left| \langle P_n^2\eta, \zeta \rangle - \langle K(^n\sigma_{m_k}) \eta, \zeta \rangle \right|$$

for all $s \in \mathfrak{S}(n, \infty)$. \hfill \Box

Lemma 4. The equality $K(s) \cdot P_n = P_n$ holds for any $s \in \mathfrak{S}(n, \infty)$. 3
Proof. Suppose that $m > n$ and $M \geq 2m$. Then $(m \, m + 1) \cdot {^n}\sigma_M = {^n}\sigma_M \cdot (m + M \, m + M + 1)$. Hence, applying lemma 2 and (2.3), we have
\[
\langle \mathcal{K}((m \, m + 1))P_n\eta, \zeta \rangle = \lim_{M \to \infty} \langle \mathcal{K}((m \, m + 1)) \cdot \mathcal{K}(^{n}\sigma_M)\eta, \zeta \rangle
\]
\[
= \lim_{M \to \infty} \langle \mathcal{K}(^{n}\sigma_M) \cdot \mathcal{K}((m + M \, m + M + 1))\eta, \zeta \rangle \overset{(2.3)}{=} \lim_{M \to \infty} \langle \mathcal{K}(^{n}\sigma_M)\eta, \zeta \rangle
\]
for any η, ζ in \mathcal{H}. By Lemma 2, $\mathcal{K}((m \, m + 1)) \cdot P_n = P_n$. Since the transpositions $(m \, m + 1) \ (m > n)$ generate the subgroup $\mathcal{S}(n, \infty)$, lemma is proved.

It follows from Lemmas 2 and 4 that
\[
P_n\mathcal{H} = \{ \eta \in \mathcal{H} : \mathcal{K}(s)\eta = \eta \text{ for all } s \in \mathcal{S}(n, \infty) \}.
\]

Lemma 5. The sequence $\{ \mathcal{K}((k \, N)) \}_{N \in \mathbb{N}}$ converges in the weak operator topology to the self-adjoint projection O_k.

Proof. Using (2.3) and the equality $(k \, N_2) = (N_1 \, N_2)(k \, N_1)(k \, N_2)$, we obtain that the sequence $\{ \mathcal{K}((k \, N)) \}_{N \in \mathbb{N}}$ is fundamental. Since $(k \, N_1)(k \, N_2) = (k \, N_2)(N_1 \, N_2)$, operator P_k is a self-adjoint projection.

Lemma 6. The projections P_n and O_k commute: $P_nO_k = O_kP_n$.

Proof. Since, by Lemma 4, $O_kP_n = P_n$ for $k > n$, we suppose that $k \leq n$. By Lemmas 2 and 5, for any η, ζ in \mathcal{H} there exists the sequence $\{M_l\}_{l \in \mathbb{N}} \subset \mathbb{N}$ such that $M_{k+1} > M_k$ and
\[
\lim_{l \to \infty} |\langle P_nO_k\eta, \zeta \rangle - \langle \mathcal{K}(^{n}\sigma_{M_l})O_k\eta, \zeta \rangle| = 0,
\]
\[
\lim_{l \to \infty} |\langle O_kP_n\eta, \zeta \rangle - \langle O_k\mathcal{K}(^{n}\sigma_{M_l})\eta, \zeta \rangle| = 0.
\]

For the same reason we can to find the sequence $\{N_l\}_{l \in \mathbb{N}} \subset \mathbb{N}$ such that $N_{k+1} > N_k + 2M_k$ and
\[
\lim_{l \to \infty} |\langle \mathcal{K}(^{n}\sigma_{M_l})\mathcal{K}(k \, N_l)\eta, \zeta \rangle - \langle \mathcal{K}(^{n}\sigma_{M_l})O_k\eta, \zeta \rangle| = 0,
\]
\[
\lim_{l \to \infty} |\langle \mathcal{K}(k \, N_l)\mathcal{K}(^{n}\sigma_{M_l})\eta, \zeta \rangle - \langle O_k\mathcal{K}(^{n}\sigma_{M_l})\eta, \zeta \rangle| = 0.
\]

Now, using (2.6), (2.7) and the equality $(k \, N_l) \cdot {^n}\sigma_{M_l} = {^n}\sigma_{M_l} \cdot (k \, N_l)$, we obtain that $P_nO_k = O_kP_n$.

Lemma 7. Let $\mathcal{S}(k, n, \infty)$ denotes the group generated by the transposition $(k \, n + 1)$ and the subgroup $\mathcal{S}(n, \infty)$. Then O_kP_n is the self-adjoint projection on the subspace $\{ \eta \in \mathcal{H} : \mathcal{K}(s)\eta = \eta \text{ for all } s \in \mathcal{S}(k, n, \infty) \}$. In particular, $O_nP_n = P_{n-1}$ (see (2.3)).
Proof. The proof follows from the next chain of the equalities
\[\langle K((k \ n + 1)) \cdot O_k \cdot P_n \eta, \xi \rangle = \lim_{N \to \infty} \langle K((k \ n + 1) \cdot (k \ N)) \cdot P_n \eta, \xi \rangle = \lim_{N \to \infty} \langle K((k \ N)) \cdot K((n + 1 \ N)) \cdot P_n \eta, \xi \rangle = \lim_{N \to \infty} \langle K((k \ N)) \cdot K((k \ n + 1 \ N)) \cdot P_n \eta, \xi \rangle = \langle O_k \cdot P_n \eta, \xi \rangle. \]

Since the representation \(K \) is continuous, then there exists \(n \in \mathbb{N} \) such that \(P_n \neq 0 \). Set \(\text{depth}(K) = \min \{ n : P_n \neq 0 \} \).

Lemma 8. If \(n = \text{depth}(K) \) and \(g \notin \mathcal{S}(n, \infty) \) then \(P_n K(g) P_n = 0 \).

Proof. Let \(k \leq n \) and \(g(k) = m > n \). Then \(g = (k \ m) \cdot s \), where \(s(m) = m \).

Let \(\mathcal{S} = \{ M \in \mathbb{N} : \min \{ M, s^{-1}(M) \} > n \} \). It is clear that \#\(\mathcal{S} \) = \(\infty \).

Under this condition we have for \(M \in \mathcal{S} \)
\[P_n K(g) P_n = P_n \cdot K((m \ M)) \cdot K((k \ m)) \cdot K(s) \cdot K((m \ s^{-1}(M))) \cdot P_n = P_n \cdot K((m \ M)) \cdot K((k \ m)) \cdot K((m \ M)) \cdot K(s) \cdot P_n = P_n \cdot K((m \ M)) \cdot K(s) \cdot P_n. \]

But, by (2.5) and Lemma 7
\[K((k \ n)) \cdot P_n \cdot O_k \cdot K((k \ n)) = P_n \cdot O_n = P_{n-1} \stackrel{\text{depth}(K) = n}{=} 0. \]

Therefore, \(P_n K(g) P_n = 0 \). \(\square \)

3 The Proof of Theorem 1

We follow the notations of the subsection 1.1. Without loss of generality we will to assume that \(\mu \) is a probability measure. Let \(n = \text{depth}(K) \) (see page 5). Fix non-zero \(\xi_1 \in \mathcal{H} \) such that \(\mu \)-almost everywhere
\[(K(s) \xi_1)(x) = \rho(s, x) \xi_1(xs) = \xi_1(x) \] for each \(s \in \mathcal{S}(n, \infty) \). (3.8)

It follows that for the characteristic function \(\chi_{E_1} \) of the set \(E_1 = \{ x \in X : \xi_1(x) \neq 0 \} \) and \(s \in \mathcal{S}(n, \infty) \) \(\mu \)-almost every holds
\[\chi_{E_1}(xs) = \chi_{E_1}(x). \] (3.9)

For each measurable \(A \subset X \) we define its measure \(\mu_1(A) \) as follows
\[\mu_1(A) = \mu(A \setminus E_1) + \int_{E_1} \chi_A(x) \cdot |\xi_1(x)|^2 \, d\mu. \] (3.10)
By definition, the measures \(\mu \) and \(\mu_1 \) are equivalent.

Let \(\mathcal{K}_1 \) denotes Koopman representation, corresponding to \(\mu_1 \), and let \(\rho_1 \) be its cocycle:
\[
\rho_1(g, x) = \sqrt{\frac{d\mu_1}{dp_1}}, \quad g \in \mathfrak{S}_\infty.
\]
Since \(\mathcal{K} \) and \(\mathcal{K}_1 \) are unitary equivalent, \(\text{depth}(\mathcal{K}_1) = n \).

If \(A \subset E_1 \) then, applying (3.8) and (3.9), we obtain
\[
\mu_1(A) = \mu_1(As) \text{ for all } s \in \mathcal{S}(n, \infty). \tag{3.11}
\]
It follows that for each \(s \in \mathcal{S}(n, \infty) \)
\[
\rho_1(s, x) = 1 \text{ for } \mu\text{-almost every } x \in E_1. \tag{3.12}
\]
Now we will to prove the equality
\[
\mu_1(E_1 \Delta (E_1g)) = 0 \text{ for all } g \notin \mathcal{S}(n, \infty). \tag{3.13}
\]
Using (3.9) and (3.12), we have \(\mathcal{K}_1(s)\chi_{E_1} = \chi_{E_1} \) for all \(s \in \mathcal{S}(n, \infty) \).
Hence, applying Lemma 7, we obtain
\[
0 = \langle \mathcal{K}_1(g)\chi_{E_1}, \chi_{E_1} \rangle = \int_X \rho_1(g^{-1}, x)\chi_{E_1}(x) \cdot \chi_{E_1}(x) \, d\mu_1.
\]
But \(\mu(\{x \in X : \rho_1(g^{-1}, x) = 0\}) = 0 \). Therefore, \(0 = \int_X \chi_{E_1}(x) \cdot \chi_{E_1}(x) \, d\mu_1 \)
\[
= \mu_1(E_1 \Delta (E_1g)), \quad \text{and (3.13) is proved.}
\]

For the construction of the \(\mathfrak{S}_\infty \)-invariant measure we consider the right coset \(H \setminus G \), where \(H = \mathcal{S}(n, \infty) \) and \(G = \mathfrak{S}_\infty \). Since every bijection \(s \in G \) can be write as \(s = hf \), where \(h \in H \) and \(f \in \mathfrak{S}_\infty \) is the finite permutation, then there exists a countable full set \(g_1, g_2, \ldots \) of the representatives in \(G \) of the cosets \(H \setminus G \). Define the map \(\tau : H \setminus G \mapsto G \) as follows: \(\tau(x) = g_i \), if \(x = Hg_i \). We will to assume that \(\tau(H) \) is the identity \(e \) of \(G \). Set \(\tilde{E}_1 = \bigcup_{i=1}^\infty E_1 g_i \).

For each measurable \(A \subset X \) we define its measure \(\nu_1(A) \) as follows
\[
\nu_1(A) = \mu \left(A \setminus \tilde{E}_1 \right) + \sum_{y \in H \setminus G} \mu_1 \left((A \cap (E_1 \tau(y))) (\tau(y))^{-1} \right) \tag{3.14}
\]
Let us prove that
\[
\nu_1(A) = \nu_1(Ag) \text{ for all } g \in G \text{ and } A \subset \tilde{E}_1. \tag{3.15}
\]
For this we notice that
\[
\nu_1(Gg) = \sum_{y \in H \setminus G} \mu_1 \left((A \cap (E_1r(y))) (r(y))^{-1} \right)
\]
\[= \sum_{y \in H \setminus G} \mu_1 \left((A \cap (E_1r(yg^{-1}))) g(r(y))^{-1} \right)
\]
\[= \sum_{y \in H \setminus G} \mu_1 \left((A \cap (E_1r(y))) (r(y))^{-1} \cdot r(yg^{-1})g(r(y))^{-1} \right)
\]
where \(r(y)g(r(yg))^{-1} \in H = \mathfrak{G}(n, \infty)\). Hence, using (3.12), and (3.14), we obtain
\[
\nu_1(Gg) = \sum_{y \in H \setminus G} \mu_1 \left((A \cap (E_1r(y))) (r(y))^{-1} \right) = \nu_1(A).
\]
The equality (3.15) is proved.

Applying the above reasonings to the restriction of the action \(X \ni x \rightarrow xs, s \in \mathfrak{S}_\infty\) to the \(\mathfrak{S}_\infty\)-invariant set \(X \setminus \tilde{E}_1\), we find \(\mathfrak{S}_\infty\)-invariant set \(\tilde{E}_2 \subset X \setminus \tilde{E}_1\) and the measure \(\nu_2\), equivalent to \(\mu\), such that
\[
\nu_2(A) = \nu_2(Gg) \quad \text{for all } g \in \mathfrak{S}_\infty, \quad A \subset \tilde{E}_1 \cup \tilde{E}_2,
\]
\[
\nu_1(A) = \nu_2(A) \quad \text{for all } A \in \tilde{E}_1 \text{ and } \nu_2(A) = \mu(A) \quad \text{for all } A \subset X \setminus \left(\tilde{E}_1 \cup \tilde{E}_2 \right).
\]
The continuation of these reasonings gives the family of the sets \(\{\tilde{E}_1, \tilde{E}_2, \ldots\}\) (finite or countable) and the measures \(\nu_1, \nu_2, \ldots\), equivalent to \(\mu\), such that
\[\widetilde{E}_k \subset X \setminus \left(\bigcup_{i=1}^{k-1} \widetilde{E}_i \right), \quad \mu \left(X \setminus \left(\bigcup_i \widetilde{E}_i \right) \right) = 0, \]

\[\nu_k(A) = \nu_k(Ag) \text{ for all } g \in \mathfrak{T}_\infty, \ A \subset \bigcup_{i=1}^{k} \widetilde{E}_i, \] \hspace{1cm} (3.16)

\[\nu_l(A) = \nu_k(A) \text{ for all } k > l \text{ and } A \subset \bigcup_{i=1}^{k} \widetilde{E}_i, \]

\[\nu_k(A) = \mu(A) \text{ for all } A \subset X \setminus \left(\bigcup_{i=1}^{k} \widetilde{E}_i \right). \]

Therefore, for each measurable \(A \subset X \) the sequence \(\nu_k(A) - \mu \left(X \setminus \left(\bigcup_{i=1}^{k} \widetilde{E}_i \right) \right) \) is monotone increasing. Since \(\lim_{n \to \infty} \mu \left(X \setminus \left(\bigcup_{i=1}^{k} \widetilde{E}_i \right) \right) = 0 \), we obtain that there exists the limiting measure

\[\nu(A) = \lim_{k \to \infty} \nu_k(A). \] \hspace{1cm} (3.17)

Using the equivalence of the measures \(\mu \) and \(\nu_k \) for all \(k \), we conclude that if \(\mu(A) = 0 \) then \(\nu(A) = 0 \). Conversely, assuming that \(\nu(A) = 0 \), we have from (3.16)

\[\nu \left(A \cap \left(\bigcup_{i=1}^{k} \widetilde{E}_i \right) \right) = \nu_k \left(A \cap \left(\bigcup_{i=1}^{k} \widetilde{E}_i \right) \right) = 0. \]

Therefore, by (3.17), \(\mu(A) = 0 \). Thus the measures \(\nu \) and \(\mu \) are equivalent. By (3.16) and (3.17), the measure \(\nu \) is \(\mathfrak{T}_\infty \)-invariant. Theorem II is proved.

References

[1] Kechris A.S. and Rosendal C., Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proc. London Math. Soc., 94 (2007) no.2, 302350.
[2] Lieberman A., The structure of certain unitary representations of infinite symmetric groups, Trans. Amer. Math. Soc, 164 (1972), 189-198

[3] Olshanski G., Unitary representations of (G,K)-pairs connected with the infinite symmetric group S(infty). Leningrad [currently St.Petersburg] Mathematical Journal 1, no. 4 (1990), 983–1014. [Translation from Algebra i Analiz, 1:4, 1989]

[4] Olshanski G., On semigroups related to infinite-dimensional groups. In: Topics in representation theory. Advances in Soviet Mathematics., vol. 2. American Mathematical Society Providence, R.I., 1991, 67-101.

B.Verkin Institute for Low Temperature Physics and Engineering n.nessonov@gmail.com