Antivenomics and in vivo preclinical efficacy of six Latin American antivenoms towards south-western Colombian Bothrops asper lineage venoms

Diana Mora-Obando, Davinia Pla, Bruno Lomonte, Jimmy Alexander Guerrero-Vargas, Santiago Ayerbe, Juan J. Calvete

1 Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain, 2 Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica, 3 Facultad de Ciencias Naturales, Exactas y de la Educación, Departamento de Biología, Centro de Investigaciones Biomédicas-Bioterio, Grupo de Investigaciones Herpetológicas y Toxínológicas, Universidad del Cauca, Popayán-Colombia

* jcalvete@ibv.csic.es

Abstract

Background

Bothrops asper represents the clinically most important snake species in Central America and Northern South America, where it is responsible for an estimated 50–80% of snake-bites. Compositional variability among the venom proteomes of B. asper lineages across its wide range mirrors clinical differences in their envenomings. Bothropic antivenoms generated in a number of Latin American countries commonly exhibit a certain degree of paraspecific effectiveness in the neutralization of congeneric venoms. Defining the phylogeographic boundaries of an antivenom’s effectivity has implications for optimizing its clinical use. However, the molecular bases and impact of venom compositions on the immune recognition and neutralization of the toxic activities of across geographically disparate populations of B. asper lineages has not been comprehensively studied.

Methodology/Principal findings

Third-generation antivenomics was applied to quantify the cross-immunorecognizing capacity against the individual components of venoms of three B. asper lineages (B. asper (sensu stricto), B. ayerbei and B. rhombeatus) distributed in south-western (SW) Colombia, of six Latin American antivenoms, produced against homologous (Colombia, INS-COL and PROBIOL) and heterologous (Argentina (BIOL), Perú (INS-PERU) and Venezuela (UCV)) bothropic venoms. In vivo neutralization assays of the lethal, hemorrhagic, coagulant, defibrinogenating, myotoxic, edematogenic, indirect hemolytic, and proteolytic activities of the three SW Colombian B. asper lineage venoms were carried to compare the preclinical efficacy of three (Colombian INS-COL and PROBIOL, and Costa Rican ICP) antivenoms frequently used in Colombia. Antivenomics showed that all the six antivenom affinity matrices efficiently immunoretained most of the B. asper lineages venom...
proteins and exhibited impaired binding towards the venoms’ peptidomes. The neutralization profile of the INS-COL, PROBIOL and ICP antivenoms towards the biological activities of the venoms of SW Colombian *B. asper* (*sensu stricto*), *B. ayerbei* and *B. rhombeatus* lineages was coherent with the antivenomics outcome. In addition, the combination of *in vitro* (antivenomics) and *in vivo* neutralization results allowed us to determine their toxin-specific and venom neutralizing antibody content. Noteworthy, heterologous INS-PERU, BIOL, and UCV bothropic antivenoms had equal or higher binding capacity towards the venoms components of SW Colombian *B. asper* lineages that the homologous Colombian and Costa Rican antivenoms.

Conclusions/Significance

The combined *in vitro* and *in vivo* preclinical outcome showed that antivenoms manufactured in Colombia and Costa Rica effectively neutralize the major toxic activities of SW Colombian *B. asper* lineage venoms. The antivenomics profiles of the heterologous antivenoms manufactured in Argentina, Venezuela, and Perú strongly suggests their (pre)clinical adequacy for the treatment of *B. asper* lineage envenomings in SW Colombia. However, their recommendation in the clinical setting is pending on *in vivo* neutralization testing and clinical testing in humans. *Bothrops asper* is a highly adaptable snake species complex, which is considered the most dangerous snake throughout much of its distribution range from the Atlantic lowland of eastern México to northwestern Perú. Antivenoms are the only scientifically validated treatment of snakebite envenomings. Venom variation is particularly common in wide ranging species, such as *B. asper*, and may result in variable clinical presentations of envenomings, as is the case for the *B. asper* species complex, potentially undermining the efficacy of snakebite treatments depending on the immunization mixture used in the generation of the antivenom. Conversely, phylogenetic conservation of antigenic determinants confers an unpredictable degree of paraspecificity to homologous antivenoms produced for a geographic area, but also to heterologous congeneric antivenoms, towards the venom components of allopatric conspecific populations. This work aimed at comparing the preclinical profile of a panel of Latin American homologous and heterologous antivenoms against the venoms of *B. asper* lineages distributed in SW Colombia. The outcome of this study strongly suggests the suitability of considering the heterologous antivenoms BIOL (Argentina), UCV (Venezuela) and INS-PERU (Perú) as alternatives to homologous Colombian INS-COL and PROBIOL and Costa Rican ICP antivenoms for the treatment of envenomings by *B. asper* (*sensu stricto*) in W Colombia and Ecuador, *B. ayerbei* in Cauca and Nariño (Colombia), and *B. rhombeatus* in Cauca river valley, SW Colombia.

Author summary

Snakebite envenoming is an important occupational health problem, particularly in rural areas of developing countries. The timely administration of an effective antivenom remains the mainstay of snakebite management. However, the use of antivenoms is often limited by non-availability due to high cost or by lack of effectiveness. Antivenom shortage can be addressed through the generation of novel polyspecific antivenoms of wide clinical efficacy against the venoms of the medically-relevant snake species within the
geographical range where these antivenoms are intended to be deployed, but also by optimizing the paraspecific use of current antivenoms. In Colombia, antivenoms are supplied by two manufacturers, one public, the Instituto Nacional de Salud (INS), and one private, Laboratorios Probiol (PROBIOL). However, the antivenom supply in Colombia has traditionally been insufficient, a circumstance that has led the Colombian Ministerio de Salud y Protección Social to issue several resolutions and decrees to announce this health emergency in the country, and to import antivenoms produced in México and Costa Rica. Contrary to these countries, where *B. asper* represents the only species of the genus, in SW Colombia three close phylogenetically related *B. asper* lineages, *B. asper* (sensu stricto), *B. rhombbeatus*, and *B. ayerbei*, are responsible for most severe cases of snakebite accidents and exhibit remarkable differences in the physiopathological profile of their envenomings. This work aimed to assess the immunorecognition characteristics of a panel of antivenoms manufactured in Colombia, Costa Rica, Argentina, Peru and Venezuela towards the venoms of the three SW Colombian *B. asper* lineages. Additionally, combined quantitative *in vitro* and *in vivo* data show that the homologous antivenoms produced in Colombia (INS-COL, PROBIOL) and Costa Rica (ICP) effectively neutralize the lethality and the major toxic activities tested of the three SW Colombian *B. asper* lineage venoms. Heterologous Argentinian (BIOL), Venezuelan (UCV) and Peruvian (INS-PERU) antivenoms also showed comparable, even higher, effective immunocapturing ability towards the venom proteomes of SW Colombian *B. asper* (sensu stricto), *B. rhombbeatus*, and *B. ayerbei*, than the Colombian and Costa Rican antivenoms. These results are in line with previous studies highlighting the notable conservation of paraspecific antigenic determinants across the phylogeny of genus *Bothrops*, and advocate for considering the heterologous Argentinian, Venezuelan and Peruvian antivenoms as further therapeutic alternatives for the treatment of *B. asper* spp. snakebites in Colombia.

Introduction

Snakebite envenoming is an occupational hazard and a WHO category A neglected tropical disease (NTD) [1] that annually kills 81,000–138,000 people living in economically depressed rural communities of Africa, Asia and Latin America, where the provision of health services is limited or inexistent [2,3]. Snakebite leaves victims with permanent physical sequelae and chronic mental morbidity that affects not only the surviving victims, often young agricultural workers but also their entire families, which enter a cycle of generational poverty that is difficult to break [4–6].

In Latin America and the Caribbean 137,000–150,000 snakebite envenomings occur each year, resulting in 3,400–5,000 deaths [2]. With 40,820–44,230 snakebite accidents a year and a mortality rate of 0.05–0.5% [7], the South American subcontinent stands as the most affected region of the New World. Bothropic envenoming is caused by snake species of genera *Bothrops*, *Bothriechis*, *Bothrocophias* and *Porthidium*. Among them, *Bothrops* species have the highest epidemiological importance. Particularly *B. asper*, a species complex widely distributed from México to Perú, where it is commonly known as nauyaca, barba amarilla, terciopelo, equis/talla equis, equis patiana, cacica, pelo de gato, boquidorá, mapaná, damá, tapa, etc. (http://snakedatabase.org/species/Bothrops/asper) [8–10], is responsible for 50–80% of the snakebites and 60–90% of fatalities over much of its range [10,11]. It inhabits the tropical rainforest and tropical evergreen forest more frequently, but due to its ease of adapting to different environments it is also found close to crops or human dwellings [12]. *B. asper* has crepuscular...
and nocturnal habits and is recognized as an extremely dangerous snake by its reputation as an irritable snake of large size, rapid reactions and unpredictable behavior, and the high quantity of highly lethal venom (LD₅₀ between 2.06 (1.89–2.04) μg newborns’ venom/g mouse body weight and 3.82 (3.65–4.00) μg adults’ venom/g mouse; doses reported for snakes from Pacific Costa Rican population) that can deliver in a bite [12,13]. Envenomings by B. asper are characterized by local effects such as edema detectable in the first minutes after the bite; local hemorrhage evident as bleeding or ecchymosis; blisters, regional lymphadenitis, paresthesia, hypothermia, compartment syndrome, dermonecrosis, myonecrosis, abscesses, and gangrene [10,11]. Frequent systemic effects include defibrinogenation, thrombocytopenia, hypotension, massive pulmonary and/or mesenteric capillary micro thrombosis, and these clinical manifestations may become life-threatening as the result of shock and multi-organ failure [10,11].

In Colombia, along the period 2008–2019, the annual cases of snakebites reported by the National Public Health Surveillance System (SIVIGILA) of the National Health Institute (INS) were 3,129 to 5,603 (7–11.1 cases/100,000 population per year) [14–17]. The majority of snakebite envenomings (90–95%) are inflicted by pitvipers of the Viperidae family and involve species from the genera Bothrops (Bothrops asper, B. atrox, B. bilineatus, B. pulcher, B. punctatus, B. taeniatus), Bothriechis (B. schlegelii), Bothrocophias (B. campbelli, B. colombianus, B. hyropra, B. microphthalmus, B. myersi) and Porthidium (P. lansbergii, P. nasutum), most notably (50–80%) by B. asper in lowlands and inter-Andean valleys. Two percent of snakebites is due to the bushmaster Lachesis spp. (L. acrochorda and L. muta) in tropical rain forest; and 1% of envenomings are due to bites by the rattlesnake Crotalus durissus cumanensis, a species inhabiting desertic dry or semidry lowlands in the Caribbean region, in the high valley of the Magdalena River, in the Orinochian region, and savannahs (Yarı River) of the Caquetá Department. Ophidian accidents caused by coral snakes (e.g., M. ancoralis, M. clarki, M. dissoleucus, M. dumerilli, M. mizarkittis, M. nigrocinctus, M. lemniscatus, Micrurus surinamensis) account for about 1% of the total snakebite envenomings in Colombia. The remaining 1–5% are inflicted by other aglyphous and opisthoglyphous snake species, mainly from the Colubridae family [10,18]. The estimated fatality rate is 1–3% [11,18], although with a pattern of notorious regional variation, and 6–10% of patients suffer some type of life-long sequelae, mainly as a result of dermonecrosis and myonecrosis. Due to their low population density and abundant ophidian fauna, the highest snakebite incidence occurs in the Orinochian and Amazonian regions (Fig 1) [15–17,19], where B. atrox inflicts 90% of the snakebites [20].

The SW Colombian Departments of Nariño and Cauca are characterized by their impressive mountainous relief belonging to the northern portion of the great Andean mountain system, which extends along the Pacific coast of South America. Its orogeny makes the Colombian Andean natural region one of the most biodiverse in the country, including venomous snakes of the Viperidae and Elapidae families (Fig 1) [21,22]. Saldarriaga-Córdoba et al. [23] and Salazar-Valenzuela et al. [24] have recently described the existence of phyllogeographic structure across B. asper distribution. Three B. asper lineages found in Nariño and Cauca Departments (Colombia), B. asper (sensu stricto) on the Pacific versant of the western mountain range, B. ayerbei in the upper Patia river valley and B. rhombeatus in the Cauca river valley [25], account for the largest proportion of snakebites in SW Colombia [22]. Two hundred and thirty-nine snakebite cases occurred in Nariño and Cauca in 2019, 56 cases more than 2018. Fig 1 lists the species that potentially cause these accidents in the Departments of Nariño and Cauca. Although this figure is lower than those documented in other Departments (e.g. Antioquia and Norte de Santander) [14–17], the marginal areas where accidents occur along with the limited distribution of antivenoms, among others factors, prevent victims from accessing proper treatment and, as a consequence, there is high underreporting of cases, deaths increase, and physical, psychological, social and economic sequelae are serious [3,21].
The Instituto Nacional de Salud (INS) and Laboratorios Probiol (PROBIOL) manufacture and commercialize in Colombia antivenoms generated from plasma of hyperimmunized horses with mixtures of venoms from *B. asper* (sensu lato), *B. atrox* and *Crotalus durissus cumanensis*, and Laboratorios Probiol additionally includes venom of *Lachesis muta* in the immunization mixture [26]. However, antivenom supply in the country has traditionally been insufficient and the Colombian Ministerio de Salud y Protección Social has issued several resolutions and decrees declaring health emergencies owing to the scarcity of antivenoms, having been necessary to import them from other countries, particularly México and Costa Rica [11,27]. An analysis of the availability of antivenom in the period 1992 to 2016 revealed that compared to the need for +30,000 vials per year, the average national production in that period was 22,000 vials; production exceeded the demand only in some years [27]. Despite antivenom shortage is clearly related to an increase in the mortality rate, and the impact of snakebites could be reduced by the Government demonstrating more interest in this public health issue, initiatives such as the creation of additional antivenom-producing companies have not been materialized [26,27]. In addition, to complicate the picture, clinical observations over two decades have evidenced distinctive local and systemic signs and symptoms of envenoming caused by different *B. asper* lineages [28–31], with *B. asper* (sensu stricto) venom causing

Fig 1. Snakebite incidence in Colombia. The figure is adapted from the event report, epidemiological period XIII, Colombia, 2019 [17]. White dashed lines delimit the Colombian Insular (1), Caribbean (2), Andean (3), Pacific (4), Orinochian (5) and Amazonian (6) natural regions. Snakebite incidence data from the Insular region (San Andrés, Providencia, and Santa Catalina) were “missing or excluded” in the 2019 SIVIGILA-INS event report. The left panel highlights species within the clinically important snake families Viperidae and Elapidae with distribution in the Departments of Nariño and/or Cauca, which can potentially cause snakebite accidents in this region. The list was compiled from Ayerbe and Latorre [22] and Sevilla-Sánchez et al. [21]. *B. asper* includes the lineages *B. asper* (sensu stricto), *B. rhombeatus* and *B. ayerbei*. The map was prepared in the QGIS software, version 3.14.15-Pi, using public domain maps available in QGIS OpenLayers Plugin, and the Geoportals of the Instituto Geográfico Agustín Codazzi-IGAC (https://geportal.igac.gov.co/index.php?option=com_content&view=article&id=1352:mapas-y-cartografia-y-geografia) and the Departamento Administrativo Nacional de Estadísticas-DANE (https://geportal.dane.gov.co/servicios/descarga-y-metadatos/descarga-mgn-marco-geostadistico-nacional) from Colombia. All maps were used under a CC-BY 4.0 license.

https://doi.org/10.1371/journal.pntd.0009073.g001
stronger myotoxic activity than those of *B. ayerbei* and *B. rhombeatus*, with the latter venom being the most coagulant, whereas *B. ayerbei* venom is poorly myotoxic but the most hemorrhagic among the three lineage venoms [28,29]. In line with these functional data, comparative venomics of *B. asper* lineages distributed from México to Ecuador, including venoms from México, Costa Rica, and populations from the Pacific side of Ecuador and SW Colombia, revealed similar overall toxin family compositions albeit exhibiting quantitative differences chiefly in the relative abundance of their four major protein families, snake venom metalloproteinase (SVMP), serine proteinase (SVSP), phospholipase A2 (PLA2) and C-type lectin-like (CTL) [32].

The cross-reactivity of mono- and polyvalent antivenoms manufactured in México (Birmex, Bioclon), Costa Rica (ICP), Venezuela (UCV), and Colombia (INS-COL, PROBIOL) towards *B. asper* venoms from México [33], Guatemala [34], Costa Rica [35,36], Panamá [37], northern Colombia [38], and Ecuador [39] have been reported. The aim of this work was to perform a detailed comparative preclinical analysis of a panel of six antivenoms manufactured in Colombia, Venezuela, Costa Rica, Perú and Argentina to quantify their capability to immunorecognize the toxins of *B. asper* lineage venoms (*B. asper* (*sensu stricto*), *B. rhombeatus* and *B. ayerbei*) from Department of Cauca (Colombia). The neutralization of the lethal and major toxic activities of these *B. asper* lineage venoms by the polyvalent Colombian (INS-COL, PROBIOL) and Costa Rican (ICP) antivenoms was also assessed through combined *in vivo* and *in vitro* assays.

Materials and methods

Ethics statement

Assays performed in mice were approved by the Institutional Committee for the Care and Use of Laboratory Animals (CICUA) of the University of Costa Rica (approval number 082–08).

Snake venoms

Venoms of adult snakes from Department of Cauca (Colombia), two of *B. asper* from the municipalities of Playa Rica and Huisitó (El Tambo in the Pacific coast), four of *B. ayerbei* from the Alto Patía river valley (El Tambo, San Joaquín, Pomorroso, Cauca) and four of *B. rhombeatus* from Cauca river valley (Popayán and Cajibío municipalities), were obtained from wild-caught specimens maintained in the serpentarium of the Centro de Investigaciones Biomédicas de la Universidad del Cauca-Bioterio (CIBUC-Bioterio). Venoms were collected by allowing the snake to bite on a glass conical funnel covered with Parafilm. Crude venom was lyophilized and stored at -20˚C until used. Equal quantities of each lineage venom were pooled to perform the *in vitro* and *in vivo* assays.

Antivenoms

Six commercial polyvalent antivenoms (Table 1) were tested: INS-COL from the Instituto Nacional de Salud de Colombia, batch numbers 15SAP01 and 16SAP01 with expiry dates 12/2018 and 04/2019, respectively; PROBIOL produced by Laboratorios Probiol S.A. (Colombia), batch number AP066XI16-ES with expiry date 11/2018; ICP-polyvalent from Instituto Clodomiro Picado (Costa Rica), batch 6060618 POLF with expiry date 12/2023; INS-PERU from Instituto Nacional de Salud of Perú, batch 10200045 with expiry date 02/2018; UCV, produced by Centro de Biotecnología de la Unidad de Farmacia of the Universidad Central de Venezuela, batch 179 with expiry date 07/2017; and BIOL produced by Instituto Biológico Argentino S.A.I.C., batch 3664 with expiry date 10/2018.

All antivenoms were generated from plasma of horses hyperimmunized against different mixtures of venoms: *B. atrox* (Meta and Casanare, Orinoquía; Amazonas and Caquetá,
Table 1. Characteristics of the equine polyvalent antivenoms used in this study.

Manufacturer (Abbreviation)	Active substance*	State	Color (odor)	pH	Protein (mg/mL)	Neutralizing potency per vial (mg venom/10 mL antivenom)*	
Instituto Nacional de Salud, Colombia (INS-COL)	IgG	Liquid	None	Weak	6	56.8 ± 3.2b	Bothrops sp (70 mg), Crotalus sp (10 mg).
Laboratorios Probiol S.A, Colombia (PROBIOL)	IgG	Lyophilized	Greenish yellow	Strong	7	200.7b	Bothrops asper (25 mg), B. atrox (25 mg), Crotalus venezuelensis (5 mg).
Instituto Clodomiro Picado, Costa Rica (ICP)	IgG	Lyophilized	Light Blue	Strong	6	59.7 ± 0.1b	Bothrops asper (30 mg), Crotalus simus, Crotalus vemonoides (20 mg), Lachesis stenophrys (30 mg).
Instituto Nacional de Salud, Perú (INS-PERU)	IgG	Liquid	None	Weak	6	59.1 ± 0.1b	Bothrops atrox, B. brazili, B. pictus, B. barnetti, Bothrocophias hyopora (25 mg).
Centro de Biotecnología de la Universidad de Farmacia de la Universidad Central de Venezuela (UCV)	F(ab')2	Liquid	None	N.D	N.D	41.9c	Bothrops colombiensis (20 mg), Crotalus durissus cumanensis (15 mg).
Instituto Biológico Argentino S.A.I.C (BIOL)	F(ab')2	Lyophilized	White	N.D	N.D	59.3b	Bothrops alternatus (12.5 mg), B. diporus (12.5 mg), Crotalus durissus (4 mg).

* Information obtained from the inserts of the products.
* Protein concentration was estimated by Lambert-Beer Law.
* Data provided by the manufacturer (Marina del Valle Cepeda Briceño, personal communication). N.D: not determined.

https://doi.org/10.1371/journal.pntd.0009073.t001

Amazonia), B. asper (sensu stricto, Departments of Atlántico, Bolívar, Cauca (Isla Gorgona), Cauca river valley (Pacific region), and Tolima); B. rhombeatus, Antioquia, and Crotalus. d. cumanensis (INS-COL); B. atrox (Meta and Casanare, Orinoquia; Amazonas and Caquetá, Amazonia), B. asper (sensu stricto, Costa Atlántica; B. rhombeatus, Magdalena Medio river valley and Cauca river valley), Crotalus. d. cumanensis, and Lachesis muta (PROBIOL); B. asper, C. simus, Crotalus vemonoides and L. stenophrys (ICP); B. atrox, B. barnetti, B. brazili, B. pictus, and Bothrocophias hyopora (INS-PERU); B. atrox, B. colombiensis, B. venezuelensis, Porthidium lansbergii hutmanni; C.d. cumanensis, and C.d. ruruima (UCV); and B. asper, C. simus, and L. muta (BIOL). INS-COL, PROBIOL, ICP, INS-PERU antivenoms are composed of whole immunoglobulins (IgGs), whereas the UCV and BIOL antivenoms are made up of the antigen-binding fragments F(ab')2 purified from pepsin-digested whole hyperimmune serum.

Characterization of the antivenoms

Physicochemical characteristics of the antivenoms, such as color, odor, and pH were examined and recorded. The antivenom total protein concentration (mg/mL) was determined spectrophotometrically using an extinction coefficient for a 1 mg/mL concentration (ε0.1% 280 nm of 1.36 (mg/mL)−1 cm−1 [40,41]. The homogeneity and purity of the antivenoms were assessed by non-reducing SDS-PAGE analysis in 8.5% polyacrylamide gels and proteomics characterization of the Coomassie Brilliant Blue G-250-stained protein bands [42]. To this end, protein bands of interest were excised, subjected to in-gel reduction (10 mM dithiothreitol, 30 min at 65°C) and alkylation (50 mM iodoacetamide, 2 h in the dark at room temperature), followed by overnight digestion with sequencing-grade trypsin (66 ng/μL in 25 mM ammonium bicarbonate, 10% ACN; 0.25 μg/sample) using an automated Genomics Solution ProGest Protein Digestion Workstation. Tryptic digests were dried in a vacuum centrifuge (SPD SpeedVac, ThermoSavant), redissolved in 15 μL of 5% ACN containing 0.1% formic acid, and submitted to LC-MS/MS. Tryptic peptides were separated by nano-Acquity UltraPerformance LC (UPLC) using BEH130 C18 (100μm × 100 mm, 1.7μm particle size) column in-line with a Waters SYNAPT G2 High Definition Mass Spectrometry System. The flow rate was set to
0.6 μL/min with a linear gradient of 0.1% formic acid in MilliQ water (solution A) and 0.1% formic acid in ACN (solution B) with the following conditions: isocratically 1% B for 1 min, followed by 1–12% B for 1 min, 12–40% B for 15 min, 40–85% B for 2 min. For CID-MS/MS, the electrospray ionization source was operated in positive ion mode and both singly- and multiply-charged ions were selected for CID-MS/MS at sample cone voltage of 28 V and source temperature of 100˚C. The LC–MS eluate was continuously scanned from 300 to 1990 m/z in 1 sec and peptide ion MS/MS analysis was performed over the range m/z 50–2000 with scan time of 0.6 sec. Fragmentation spectra were i) match against the last update of the NCBI non-redundant database (release 239.0 of 8/18/2020) using the on-line form of the MASCOT Server (version 2.6) at http://www.matrixscience.com, and ii) processed in Waters Corporation’s ProteinLynx Global SERVER 2013 version 2.5.2. (with Expression version 2.0). The following search parameters were used: Taxonomy: all entries; enzyme: trypsin (2 missed cleavage allowed); MS/MS mass tolerance was set to ± 0.6 Da; carbamidomethyl cysteine and oxidation of methionine were selected as fixed and variable modifications, respectively. The relative abundances (% of total protein bands area) of antivenom components were estimated by densitometry of Coomassie-stained SDS-polyacrylamide gels using Image Studio Lite, version 5.2 (LI-COR Biosciences) software, and the relative abundances of different proteins contained in the same SDS-PAGE bands were estimated based on the relative ion intensities of the most abundant MS/MS-derived tryptic peptide ions associated with each protein.

Third-generation antivenomics

Third-generation antivenomics was applied to assess the immunorecognition ability of the antivenom [43,44]. Antivenoms (INS-COL, PROBIOL, ICP, INS-PERU, UCV, BIOL) were dialyzed against distilled water, lyophilized, and reconstituted in coupling buffer (0.2 M NaHCO$_3$, 0.5 M NaCl, pH 8.3). Affinity columns were prepared in batch as follow: 3 mL of CNBr-activated Sepharose 4B matrix (Ge Healthcare, Buckinghamshire, UK) packed in an ABT column (Agarose Bead Technologies, Torrejón de Ardoz, Madrid), later washed with 10x matrix volumes of cold 1 mM HCl (to preserve the activity of reactive groups) followed by two matrix volumes of coupling buffer to adjust the pH of the column to 7.0–8.0. ~100 mg of each lyophilized antivenom was dissolved in 2x matrix volumes of coupling buffer and incubated with 3 mL CNBr-activated matrix overnight at 4˚C. The amount of coupled protein (IgG or F(ab’)$_2$) was determined as the difference between the quantity of protein incubated and the quantity uncoupled measured spectrophotometrically at 280 nm before and after incubation with the matrix. After the coupling, any remaining active-matrix groups were blocked with 6 mL of 0.1 M Tris-HCl, pH 8.5 overnight at 4˚C and the excess of uncoupled antibody was eliminated by alternatively washing 6 times with 3x matrix volumes of 0.1 M acetate buffer (0.5 M NaCl, pH 4.0–5.0), and 3x matrix volumes of 0.1 M Tris-HCl buffer (0.5 M NaCl, pH 8.5). Five affinity columns each containing 8 mg of immobilized antivenom were equilibrated with three volumes of PBS (20 mM phosphate buffer, 135 mM NaCl, pH 7.4) and incubated with increasing amounts (100–1200 μg of total venom proteins) of venom (*B. asper* (sensu stricto), *B. rhombeatus*, or *B. ayerbei*) dissolved in 350 μL of PBS, and the mixtures were incubated for 1 h at room temperature in an orbital shaker. In parallel, as specificity controls, the highest amount of venom was incubated with 350 μL of mock matrix and 350 μL of matrix coupled with 8 mg of naïve equine IgG. The non-retained fractions of columns incubated with 100–300 μg, 600 μg, 900 μg, and 1200 μg were recovered with 2x, 4x, 6x and 8x matrix volumes of PBS, and the immunocaptured proteins were eluted with 3x (100–300 μg) and 6x (600–1200 μg) matrix volumes of 0.1M glycine-HCl, pH 2.7 buffer and brought to neutral pH with 1M Tris-HCl, pH 9.0. The column fractions (non-retained and retained) with highest
volume (600–1200 μg) were divided equally to avoid concentrating or diluting the total proteins too much as follows: fractions recovered in 600 μg, \(\frac{1}{2} \); non-retained and retained fractions in 900 μg, \(\frac{1}{3} \) and \(\frac{1}{2} \); non-retained and retained fractions in 1200 μg, \(\frac{1}{4} \) and \(\frac{1}{2} \). These aliquots were concentrated in a Savant SpeedVac vacuum centrifuge (ThermoFisher Scientific, Waltham, MA USA) to 40 μL and fractionated by reverse-phase HPLC using an Agilent LC 1260 High-Pressure Gradient System (Santa Clara, CA, USA) equipped with a Discovery BIO Wide Pore C18 (15 cm×2.1 mm, 3 μm particle size, 300 Å pore size) column and a DAD detector. Elution was monitored at 215 nm with a reference wavelength of 400 nm [43,44].

The percentage of immunorecognition was obtained by the integration of RP-HPLC profiles of retained and non-retained fractions. The fraction of non-immunocaptured molecules was estimated as the relative ratio of the chromatographic areas of the proteins recovered in the non-retained (NR) and retained (R) affinity chromatography fractions applying the equation \(\% \text{NR}_i = 100 - \left(\frac{R_i}{R_i+NR_i} \right) \times 100 \), where \(R_i \) corresponds to the area of the same protein “i” in the chromatogram of the fraction retained and eluted from the affinity column. This result was corrected for toxins such as SVMP which elute with difficulty from the column due to their high binding affinity to the immobilized antivenom. In this case, the percentage of non-immunocaptured toxin “i” (% NRtoxin”i”) was calculated as the ratio between the chromatographic areas of the same peak recovered in the non-retained fraction (NRtoxin”i”) and in a reference venom (Vtoxin”i”) containing the same amount of total protein that the parent venom sample and run under identical chromatographic and experimental conditions, using the equation \(\% \text{NR}_{\text{toxin}} "i" = \frac{\text{NR}_{\text{toxin}} "i"}{\text{V}_{\text{toxin}} "i"} \times 100 \) [45].

Neutralization of biological effects of venoms

The neutralizing capacity of antivenoms manufactured in Colombia (INS-COL, PROBIOL) and Costa Rica (ICP) towards major bothropic biological effects (i.e., lethality, hemorrhagic, coagulant, myotoxic, defibrinogenating, edematogenic, indirect hemolytic, and proteolytic), determined in this study or previously reported by Mora-Obando et al. [28] and Rengifo-Ríos et al. [29] for the same venoms, was tested using standardized protocols recommended by the WHO [46–48] with slight modifications. In particular, although WHO recommends "using groups of 5–6 mice (of the same strain and weight range used for the LD\text{50} assay) for ED\text{50} determinations, although 10 mice may be needed for some venoms". In our experience with bothropoid venoms 4 mice groups and 4–6 levels of antivenom:venom ratios provide strong statistics for calculating ED\text{50}s with narrow 95% confidence intervals. Thus, to comply with the principles of the 3Rs (Replacement, Reduction and Refinement) and the ARRIVE guidelines (Animal Research: Reporting of in vivo Experiments) (NC3Rs, https://www.nc3rs.org.uk/arriveguidelines), without compromising the robustness of the ED\text{50} data, here the number of animals was 4 per antivenom:venom level. The median lethal dose (LD\text{50}) of Bothrops rhombatus venom was determined using Probits [28,49]. All neutralization assays were performed by incubating for 30 min at 37°C constant amounts of venom (challenge dose) (Table 2) with increasing dilutions of antivenoms, previously dialyzed and lyophilized and dissolved to a final concentration of 70 mg/mL in PBS [50]. In each experiment, positive and negative control mice groups were injected, respectively, with venom in PBS and antivenom alone. After each assay, mice were euthanized by CO\text{2} inhalation [48].

Neutralization of venom lethality. Groups of four CD-1 mice (16–18 g) received intraperitoneal injections of four LD\text{50} (challenge dose) (Table 2) mixed with antivenom in different proportions (250–1000 μL antivenom/mg venom) dissolved in PBS. Forty-eight hours later, the number of surviving mice in each group was recorded. The antivenoms’ capacity to neutralize the venoms’ lethal activity was expressed as median effective dose (ED\text{50}), which
corresponds to the amount of antivenom that protects 50% of the injected mice [35]. ED\textsubscript{50} value and its 95% confidence limits for each venom was calculated using Probit analyses with software BioStat v. 2008.

Calculation of the venom toxin-specific and venom neutralizing antibody content of antivenoms. The data from the antivenomics and ED\textsubscript{50} experiments were combined to calculate the fraction of anti-toxin and venom neutralizing IgG or F(ab’)\textsubscript{2} molecules [41]. Briefly, the percentage of anti-toxin IgG or F(ab’)\textsubscript{2} molecules in the antivenoms was calculated by dividing [(1/2 maximal amount (in \(\mu\)moles) of total venom proteins bound per antivenom vial) x molecular mass (in kDa) of antibody (IgG, 160 kDa or F(ab’)\textsubscript{2}, 110 kDa) molecule] by the [total amount of antibody (IgG or F(ab’)\textsubscript{2}) (in mg) per antivenom vial] [44,51,52]. To calculate the percentage of lethality neutralizing antibodies, the potency (P) of the antivenoms was first obtained, i.e. the amount of venom (mg) neutralized per 1 mL of each antivenom, was calculated as P = [(n-1)/ ED\textsubscript{50}] × LD\textsubscript{50}, where “n” is the number of LD\textsubscript{50}s used as challenge dose to determine the ED\textsubscript{50} and, “n-1” is used because at the endpoint of the neutralization assay, the remaining activity of one LD\textsubscript{50} remains unneutralized causing the death of 50% of mice [53,54]. For the calculation of P, LD\textsubscript{50} and ED\textsubscript{50} values were expressed, respectively, in mg venom/mouse and mL of antivenom that protect 50% of the mice population inoculated with \(n\times LD\textsubscript{50}\). Finally, the antivenom’s potency (P) was divided by the maximal amount of total venom proteins bound by mL of antivenom [41].

Neutralization of hemorrhagic activity. Groups of four mice (18–20 g) received intradermal injections of 0.1 mL each containing 10 Minimum Hemorrhagic Doses (MHDs) of venom (Table 2) incubated with increasing dilutions of antivenom (62.5–1000 \(\mu\)L antivenom/mg venom). Two hours post-injection mice were sacrificed by CO\textsubscript{2} inhalation, their skin removed, and the area of the hemorrhagic lesion photographed. The images were processed with software Inkscape v. 0.92 as described by Jenkins et al. [55]. The antivenom neutralization capacity (MHDED\textsubscript{50}) was defined as the venom/antivenom ratio that reduced the diameter of the hemorrhagic lesion to 50% compared to the diameter of the lesion in the positive control [50].

Neutralization of coagulant activity. 0.1 mL aliquots each containing a fixed-dose of venom (Table 2) incubated with antivenom at different ratios (7.8–1000 \(\mu\)L antivenom/mg venom) were added to 0.2 mL of citrated human plasma preincubated for 30 min at 37˚C. Clotting times were recorded and the Effective Dose (ED) of the antivenom was calculated as the venom/antivenom ratio which prolonged the clotting time three times compared to that of plasma incubated with venom alone [56].

Neutralization of defibrinogenating activity. Groups of four CD-1 mice (18–20 g) received intravenous injections of 200 \(\mu\)L of PBS containing two Minimum Defibrinogenating doses (MDDs) (Table 2) incubated with antivenom at different ratios (62.5–2000 \(\mu\)L.

Table 2. Reference doses of *B. asper* venoms considered for the experimental design of this study.

Lineage	LD\textsubscript{50} [\(\mu\)g/mouse]	MHD [\(\mu\)g]	MCD [\(\mu\)g]	MDD [\(\mu\)g]
B. asper (sensu stricto)	100.9 (83.2–122.8)\(^a\)	1.44 ± 0.20\(^a\)	0.37 ± 0.05\(^a\)	2.0\(^c\)
B. rhombatus	54.9 (36.0–83.8)\(^b\)	3.55 ± 0.30\(^c\)	0.21 ±0.03\(^c\)	3.0\(^b\)
B. ayerbei	50.1 (37.4–58.3)\(^a\)	0.24 ± 0.04\(^a\)	0.96 ± 0.10\(^a\)	3.0\(^a\)

LD\textsubscript{50}: Median Lethal Dose; MHD: Minimum Hemorrhagic Dose; MCD: Minimum Coagulant Dose; MDD: Minimum Defibrinogenating Dose. The challenge doses were: (a) lethal activity: four LD\textsubscript{50}; (b) hemorrhagic activity: ten MHD; (c) coagulant activity: two MCD and (d) defibrininating activity: two MDD.

\(^a\) Mora-Obando et al. [28]
\(^b\) this work
\(^c\) Rengifo-Ríos et al. [29].

https://doi.org/10.1371/journal.pntd.0009073.t002
antivenom/mg venom). One hour post-injection the animals were anesthetized and bled to obtain around 0.2 mL of blood, which was left undisturbed for two hours at room temperature. Neutralization ability of the antivenom was expressed as effective dose (ED), defined as the lowest venom/antivenom ratio in which blood coagulation occurred in all the mice [56].

Neutralization of myotoxic activity. A fixed-dose of venom (50 μg) incubated with antivenom at ratios of 250, 500, and 1000 μL antivenom/mg venom were injected in groups of four mice (18–20 g) into the right gastrocnemius muscle. 3 h later, a blood sample was obtained from the caudal vein and the plasma creatine kinase (CK) activity, expressed as units/L, was measured using a UV kinetic assay (CK-Nac, Biocon Diagnostik). The neutralization capacity of the antivenom was expressed as ED_{50}, defined as the venom/antivenom ratio where CK levels were reduced by 50% compared to the positive control [48,57].

Neutralization of edematogenic activity. Each animal of groups of four mice (18–20 g) received a subcutaneous injection in the right footpad, containing a mixture of 5 μg of venom incubated with antivenoms at final ratios of 250–1000 μL antivenom/mg venom, in a total volume of 50 μL of PBS. The left footpad injected with PBS alone served as negative control. Footpads’ thickness, measured using a low-pressure spring caliper (Oditest) 0.5, 1, 3, and 6 h post-injection, was considered a quantitative indicator of edema, and the data were expressed as percentage. The antivenoms’ neutralizing capacities were determined at 60 min and the ED_{50} expressed as the venom/antivenom ratio in which edema was reduced by 50% compared to the positive control [58].

Neutralization of indirect hemolytic activity. The indirect hemolytic activity of each venom was determined following the method described by Arce-Bejarano et al. [59], with slight modifications, using rabbit erythrocytes in a tube fluid phase system. Briefly, rabbit blood was collected by venipuncture in Falcon tubes containing Alsever’s solution (2.05% dextrose, 0.8% sodium citrate, 0.055% citric acid, and 0.42% sodium chloride) as anticoagulant, and centrifuged at 400 xg for 5 min. Red blood cells were washed five times in 0.14 M NaCl, 0.01 M Tris, pH 7.7 (TBS). 50 μL of a reaction mixture containing a 5% suspension of erythrocytes in TBS gently mixed with 0.25% w/v sn-3-phosphatidylcholine was incubated with 250 μL containing various amounts of venom diluted in TBS-Ca^{2+} (TBS supplemented with 10mM CaCl_{2}, pH 7.7) in 96-well plates. Identical mixtures without venom or replacing venom by 0.1% Triton X-100 in water were included as negative (0% hemolysis) and positive (100% hemolysis) controls, respectively. The plates were incubated for 60 min at 37°C with mild stirring every 20 min, centrifuged at 400 xg for 5 min, and the absorbance of the supernatants measured at 540 nm using a microwell plate reader was considered a quantitative index of hemolysis. Experiments were performed in triplicates and the results were expressed as percentages of the hemolysis recorded for the positive control. For assessing an antivenom’s neutralization activity, a fixed challenge dose defined as three times the amount of venom that hemolyzed 50% of the erythrocytes was incubated at increasing ratios of antivenom (250–1000 μL antivenom/mg venom) for 30 min at 37°C, after which 50 μL of the 5% suspension of erythrocytes/0.25% w/v sn-3-phosphatidylcholine was added, and the indirect hemolytic activity measured as above. The neutralizing capacity of antivenom (ED_{50}) was defined as the venom/antivenom ratio in which the venom-induced hemolytic activity was reduced by 50% compared to the positive control [59].

Neutralization of proteolytic activity. The proteolytic activity of each venom was determined according to the method described by Gutiérrez et al. [50]. Briefly, 20 μL aliquots containing 2.5–40 μg of venom were added to 100 μL of substrate (10 mg/mL azocasein in 25 mM Tris, 150 mM NaCl, 5 mM CaCl_{2}, pH 7.4) and incubated at 37°C for 90 min in 96-well plates. Reactions were stopped by adding 200 μL of 5% trichloroacetic acid and centrifuged (350 xg x 5 min). Hundred fifty μL of supernatant were mixed with the same volume of 0.5 M NaOH.
and the absorbance at 450 nm recorded. For antivenom neutralization testing, the challenge dose corresponded to the amount of venom capable of inducing a change in absorbance of 0.5 at 450 nm. Challenge doses of each venom, either alone or incubated with antivenom at several ratios of (250, 500, and 1000 μL antivenom/mg venom) in a total volume of 25 μL, were tested as above. The ED_{50} antivenom’s neutralizing capacity was expressed as the venom/antivenom ratio in which proteolysis was reduced by 50% compared to the positive control [50].

Enzyme-linked immunosorbent assay (ELISA). Antibody titers of the antivenoms were determined by ELISA. For this end, 1 μg samples of venom dissolved in 100 μL of PBS (20 mM phosphate, 135 mM NaCl, pH 7.4), were coated overnight at 4˚C per well of 96-well plates (Dynatech Immulon, Alexandria, VA). Thereafter, the plates were decanted and free sites in each venom-coated well was blocked with 100 μL/well of 1% bovine serum albumin (BSA) in PBS for 30 min at room temperature. Antivenoms dissolved in PBS to a concentration of 70 mg/mL were serially diluted (1:1000–1:128000) in PBS containing 1% BSA, added to the wells and incubated for 1 h at room temperature. The plates were then washed five times with PBS and bound antibodies detected following incubation for 1 h at room temperature with 100 μL of a 1:2000 dilution of anti-horse IgG-phosphatase-conjugate (Sigma, St. Louis, MO, USA) in FALC buffer (0.05 M Tris, 0.15 M NaCl, 20 μM ZnCl₂, 1mM MgCl₂, pH 7.4) containing 1% BSA. Finally, the plates were washed five times with FALC buffer, the substrate p-nitrophenyl phosphate (1mg/ml) in diethanolamine buffer (1mM MgCl₂, 90mM diethanolamine, pH 9.8) was added, and the absorbance at 405 nm was recorded for 5–60 min using a microplate reader (Multiskan Labsystems Ltd., Helsinki, Finland).

Statistical analyses

Results were represented as dose-response graphs and reported as the mean ± SD of duplicate, triplicate, or quadruplicate determinations depending on the biological activity assessed. Antivenom ED_{50}s against venom lethality was calculated using the software BioStat v. 2008, and the values were considered significantly different among groups when the 95% confidence limits did not overlap. ED_{50}s towards venom hemorrhagic, coagulant, edematogenic, proteolytic and myotoxic activities were calculated from the equations of the regression analyses in Excel (Microsoft Office 2019). The significance of the differences between the experimental groups was determined by parametric or non-parametric analysis of variance (ANOVA or Kruskal–Wallis, respectively), followed by post hoc tests to identify significant differences between group pairs. Differences with p ≤ 0.05 were considered statistically significant. All the statistical analyses were performed using Software IBM SPSS Statistics version 23.

Results and discussion

The ability of different mono- and polyvalent experimental and commercial bothropic antivenoms to neutralize the most relevant toxic effects produced by *B. asper* bites was demonstrated in the late 1990s [60–62], and the outcome clearly showed that the antivenoms were more effective in preventing the systemic than the local (myotoxic, dermonecrotic and hemorrhagic) tissue damaging effects [63–65]. Current antivenoms manufactured in Colombia are generated from plasma of horses hyperimmunized with mixtures of *B. atrox*, *B. asper* and *C. cumanensis* venoms supplemented (Laboratorios Probiol) or not (Instituto Nacional de Salud, INS-COL) with venom of the bushmaster *L. muta*. Given the wide range of *B. asper* and the occurrence of intraspecific phylogeographic structure [23,24,32], it is not surprising [62] that different antivenom effectiveness has been observed regarding the number of vials needed in the treatment of envenomings inflicted by snakes from Pacific region than from the Andean region (S. Ayerbe, personal communication). Therefore, the aim of this study was to determine
the immunological characteristics of a panel of bothropic antivenoms that includes the national products as well as those imported or potentially importable antivenoms, which may complement national production in the treatment of envenomings caused by the three lineages of the \textit{B. asper} complex distributed in SW Colombia, \textit{B. asper} (sensu stricto), \textit{B. rhombeatus}, and \textit{B. ayerbei}, whose structural and functional venomics profiles have recently been reported [28,32].

Physicochemical characterization of the antivenoms

Table 1 summarizes the physicochemical characteristics of the 6 antivenoms (INS-COL, PROBIOI, INS-PERU, ICP, UCV, BIOL) examined. Total protein concentration was similar among INS-COL, INS-PERU, ICP and BIOL antivenoms, ranging from 56.8 to 59.7 mg/mL, whereas UCV had lowest (41.9 mg/mL) and PROBIOI presented a much higher (200.7 mg/mL) protein content. SDS-PAGE analysis (Fig 2) confirmed the type of antibody molecule specified in the products’ inserts (IgG or F(ab’)2) (Table 1), but also revealed a number of other protein bands. Protein spots excised from the SDS-PAGE gels were identified through tandem-mass spectrometry (MS/MS) analysis as aggregation and degradation products of IgG (Fig 2, yellow-filled circles) and non-IgG proteins (Fig 2, red-filled circles) (S1 Table)

The INS-COL antivenom showed a predominance (82.3%) of intact IgG glycoforms (Fig 2, bands 2 and 3) and their aggregation (band 1, 2.9%) and degradation (4, 11.6%; 5, 1.3%; 6, 0.7%) products, and a 1.1% of α1B-glycoprotein (Fig 2, band 7). In comparison, PROBIOI antivenom contained significantly lower intact IgG bands (41.8%), comparable IgG degradation 137 kDa product (7.1%), and much higher non-IgG contaminants, notably albumin found in band 16 (Fig 2), accounting for 30.8% of the total antivenom proteins, and other plasma proteins in bands 8 (α2-macroglobulin, 7.9%), 12 and 13 (haptoglobin, 3.7%), 14 (serotransferrin, 4.1%), and 15 (α1B-glycoprotein, 3.7%) (Fig 2 and S1 Table).

Costa Rican ICP and Peruvian INS-PERU antivenoms displayed a very similar SDS-PAGE banding patterns and MS/MS-derived protein profiles, characterized by 80% intact IgGs, 3–4% IgG aggregates, 12–15% IgG degradation products, and minor non-IgG contaminants (0.9% vs 1.5% α1B-glycoprotein in bands 22 and 29, respectively; and 2.5% haptoglobin in band 27 of ICP antivenom) (Fig 2).

![Fig 2](https://doi.org/10.1371/journal.pntd.0009073.g002)
The F(ab’)2 antivenoms manufactured in Venezuela (UCV) and Argentina (BIOL) exhibit similar qualitative SDS-PAGE profiles (Fig 2), though the latter represents a better purified product (88% F(ab’)2, 7.3% IgG degradation product, and 4.4% non-IgG (fibrinogen γ-chain) contaminant) than the fabotherapic produced by the Universidad Central de Venezuela (70% F(ab’)2, 9.9% non-processed IgG, 0.5% IgG aggregates, 13.3% IgG degradation products, and 6% α2-macroglobulin) (S1 Table).

The presence of IgG aggregates and non-IgG protein impurities contribute to the reduced safety profile of the products by increasing the possibility of early (anaphylactoid) reactions and anaphylactic shock due to IgE antibodies against these heterologous animal proteins [62,66–69]. The outcome of our present study indicates a need for improving the fractionation of the hyperimmune plasma, particularly the PROBIOL and UCV products.

Immunoreactivity profile of antivenoms: third-generation antivenomics

The immunoreactivity of the six antivenoms against the venom components of *B. asper* (sensu stricto), *B. ayerbei*, and *B. rhombeatus*, previously identified by Mora-Obando et al. [28,32] was investigated by third-generation antivenomics [43–45] (Figs 3–5 and S1–S3). Table 3 summarizes the antivenoms’ immunorecognition capabilities. All the antivenoms recognized around 12–14% of the low-molecular mass components eluted during the first 10 min in chromatographic fractions 1–3. These fractions comprise endogenous tripeptide inhibitors of snake venom metalloproteinases (SVMPi) [70–73], 10–12 amino acid residue bradykinin-potentiating-like peptides (BPPs) [72,74,75], and disintegrin (DIS) molecules. Among these early-eluting venom components only disintegrin are immunogenic [76–79], and therefore, the immunoretained fraction may comprise this class of toxins, which in *B. ayerbei* [28], *B. asper*, and *B. rhombeatus* [32] represent 2.3–5.6% of their total venom proteins. On the other hand, chromatographic fractions 4–7, eluted between 10–30 min, comprised disintegrin-like/cysteine-rich (DC) fragments of PIII-SVMPs, phospholipase A2 (PLA2) molecules, cysteine-rich secretory proteins (CRISP) and serine proteinases (SVSP), and were immunocaptured at maximal immunoaffinity column binding capacity with average efficacy of 62% (*B. asper*),

![Image](https://doi.org/10.1371/journal.pntd.0009073.g003)
70% (\textit{B. rhombeatus}), and 80% (\textit{B. ayerbei}) (Table 3). Chromatographic fractions 8–14 eluted between 30–45 min contained SVMP, C-type lectin-like proteins (CTL), SVSP, L-amino acid oxidase (LAO), and phosphodiesterase (PDE), and were immunoretained in the affinity matrices with average efficacy of 80% (\textit{B. asper}), 87% (\textit{B. rhombeatus}), and 69% (\textit{B. ayerbei}) (Table 3). Table 4 shows a summary of the maximum total toxin binding capacity of each of the \textit{B. asper} lineage venoms by the different antivenoms. Extrapolated to mg venom immunocaptured per gram of antivenom the ranking of antivenoms according to their respective highest to lowest binding capacity towards total components was [BIOL > INS-PERU > UCV > INS-COL > ICP > PROBIOL] for \textit{B. asper (sensu stricto)}, [BIOL > INS-COL > (UCV ~ INS-PERU) > ICP > PROBIOL] for \textit{B. rhombeatus}, and [INS-COL > (BIOL ~ INS-PERU) > UCV > ICP > PROBIOL] for \textit{B. ayerbei}. In terms of percentage of toxin-binding antibodies, the order from highest to lowest relative abundance was [INS-PERU > (BIOL ~ INS-COL) >...
Table 3. Percentages of NOT immunoretained fractions of *B. asper* venoms by six Latin American antivenoms.

Venom	Fractions	Major venom components	% not immunoretained						
			INS-COL	PROBIOL	ICP	BIOL	UCV	INS-PERU	AVERAGE
B. asper (sensu stricto)	1–3	SVMPI, BPP, DIS	86	92	88	86	85	88	88
	4–7	DC-frag, PLα₂, CRISP	40	51	50	23	30	31	38
	8–14	SVSP, SVM, CTL, LAO, PDE	15	45	28	9	10	13	20
B. rhombeatus	1–3	SVMPI, BPP, DIS	84	88	88	85	84	87	86
	4–7	DC-frag, PLα₂, CRISP	23	44	40	18	21	33	30
	8–14	SVSP, SVM, CTL, LAO, PDE	8	28	17	5	11	13	13
B. ayerbei	1–3	SVMPI, BPP, DIS	87	93	91	86	83	91	88
	4–7	DC-frag, CRISP, SVSP	12	43	31	11	18	6	20
	8–14	SVSP, SVM, CTL, LAO, PDE	21	54	38	25	27	24	31

The immunocapture efficiency of each antivenom is color-coded based on the percentage of the NOT immunoretained toxin fractions. Dark green: <25%, light green: 25–55%, light brown: 55–80% and red: > 80%. Polyvalent antivenoms manufactured by Instituto Nacional de Salud, Colombia (INS-COL); Laboratorios Probiol S.A., Colombia (PROBIOL); Instituto Clodomiro Picado, Costa Rica (ICP); Instituto Biológico Argentino S.A.I.C (BIOL); Centro de Biotecnología de la Universidad Central de Venezuela (UCV) and Instituto Nacional de Salud, Peru (INS-PERU). * Fraction numbers and abbreviations of the main venom components are described in Fig 3.

https://doi.org/10.1371/journal.pntd.0009073.t003

Table 4. Summary of third generation antivenomics analyses of polyvalent antivenoms against venoms of the three *B. asper* lineages from south-western Colombia.

Antivenom (antibody type)	mg/vial	Venom	Maximal binding capacity	% not immunoretained					
			(mg V/g AV)	(mg V/ vial)	Anti-toxin antibodies (%)	Lethality neutralizing antibodies			
					2 Ag-binding sites	1 Ag-binding site	Abs**	% (toxin-binding & neutralizing) Ab	
INS-COL (IgG) 568		BAS	47.9	27.2	32.0	12.0	24.0	13.2	54.9
		BRH	66.2	37.6	28.0	18.9	37.8	16.9	44.6
		BAY	59.2	33.6	40.1	11.8	23.6	12.0	50.7
PROBIOL (IgG) 2007.4		BAS	20.0	40.1	33.8	4.7	9.5	2.5	26.7
		BRH	33.1	66.5	25.1	10.6	21.1	3.8	17.8
		BAY	25.3	50.8	36.0	5.6	11.2	4.1	36.0
ICP (IgG) 596.7		BAS	32.4	19.4	28.4	9.1	18.2	10.2	56.2
		BRH	41.2	24.6	27.9	11.8	23.6	12.0	50.7
		BAY	33.8	20.2	43.4	6.2	12.5	9.3	74.3
INS-PERU (IgG) 591.2		BAS	65.2	38.5	31.8	16.4	32.8	N.D	N.D
		BRH	53.5	31.6	30.8	13.9	27.8	N.D	N.D
		BAY	54.2	32.0	38.9	11.2	22.3	N.D	N.D
BIOL F(ab')₂ 592.6		BAS	71.3	42.3	31.4	12.5	25.1	N.D	N.D
		BRH	75.4	44.7	29.4	14.1	28.2	N.D	N.D
		BAY	54.4	32.3	42.0	7.1	14.3	N.D	N.D
UCV F(ab')₂ 419**		BAS	60.8	25.5	29.8	11.2	22.3	N.D	N.D
		BRH	57.8	24.2	28.1	11.3	22.6	N.D	N.D
		BAY	42.8	18.0	41.9	5.6	11.3	N.D	N.D

BAS: *B. asper* (sensu stricto); BRH, *B. rhombeatus*; BAY, *B. ayerbei*; V, venom; AV, antivenom; Ag, antigen; Abs, antibodies

* Dr. Mariana Cepeda (personal communication, 2020).

** % Lethality neutralizing Abs per vial/ % of total toxin-binding Abs per vial

https://doi.org/10.1371/journal.pntd.0009073.t004
Although none of the antivenom affinity matrices outshined all the others in its ability to immunocapture each and every one of the components of the three *B. asper* lineage venoms, the results displayed in S2–S19 Tables and summarized in Tables 3 and 4 clearly classify the antivenoms into two groups according to their antivenomics immunocapturing features, with [BIOL, INS-PERU, INS-COL and UCV] (61.3 ± 9.9 (BAS), 63.2 ± 9.7 (BRH), and 52.7 ± 6.9 (BAY) mgV/gAV) in the top group and [ICP > PROBIOL] (26.2 ± 8.8 (BAS), 37.2 ± 5.7 (BRH), and 29.5 ± 6.0 (BAY) mgV/gAV) in the least effective group. The same trend was observed when the immunoreactivity of INS-COL, ICP, and PROBIOL against the three *B. asper* lineage venoms was comparatively assessed by ELISA: INS-COL showed the highest titer against all the venoms and the lower levels of cross-reactivity of ICP and PROBIOL against the three venoms were similar and indistinguishable between themselves (Fig 6). In addition, comparison of the relative amounts (%) of anti-toxin antibodies in the different antivenoms (Table 4), calculated assuming one antigen binding site occupied per immobilized antibody molecule, revealed that, on average, 28.5 ± 8.1%, 27.6 ± 5.2%, and 22.5 ± 7.3% of INS-COL, INS-PERU, and BIOL antivenom antibodies, respectively, recognized antigenic determinants on toxins from each of the three *B. asper* lineage venoms, whereas these figures were 18.7 ± 6.5%, 18.1 ± 5.6% and 13.9 ± 6.3% in the case of UCV, ICP and PROBIOL antivenoms, respectively. INS-COL, PROBIOL and ICP showed higher percentages of anti-BRH than anti-BAS and anti-BAY antibodies, whereas BIOL and UCV contained equivalent relative amounts of anti-BAS and anti-BRH, but significantly lower % of anti-BAY antibodies, and the relative amounts of anti-toxin antibodies in INS-PERU were BAS > BRH > BAY (Table 4). These figures fall within the range of percentages (6–28%) of anti-toxin antibodies determined for other commercial antivenoms [48,51,52,79–81]. The distinct cross-reactive profiles of the different bothropic antivenoms may be ascribed to the immunization process, in particular to the use of venoms.

Fig 6. Titration curves of polyvalent antivenoms against the venoms of three lineages of *B. asper* venoms.
*Antivenoms INS-COL (●), PROBIOL (●), ICP (○) were serially diluted by a factor of two (starting from a dilution of 1/1000) and tested by ELISA against the following crude venoms: *B. asper* (sensu stricto) (A), *B. rhombeatus* (B) and *B. ayerbei* (C). Equine normal serum was included as negative control (◆). Each point represents the mean ± SD of three independent determinations. Statistically significant differences were observed among the titers of the antivenoms INS-COL vs. PROBIOL and/or ICP against the venoms of *B. asper* (dilutions 1: 1000, 8000, 16000, 64000), *B. rhombeatus* (dilutions 1:2000–128 000) and *B. ayerbei* (dilutions 1:1000–16000).*
Table 5. Neutralization of biological activities of *B. asper* venoms by polyvalent antivenoms INS-COL, PROBIOL and ICP.

Venom	Activity	Challenge dose[^b^] [μgV]	ED_{50}/ED[^3^] of activities neutralized by polyvalent antivenoms					
			INS-COL	PROBIOL	ICP			
			[mg V/mL AV]	[mg V/g AV]	[mg V/mL AV]	[mg V/g AV]	[mg V/mL AV]	[mg V/g AV]
B. asper sensu stricto	Lethality	403.6	5.0 (3.4–7.5)	71.4 (48.6–107.1)	1.0 (0.6–1.6)	14.3 (8.6–22.9)	3.4 (2.6–4.3)	48.6 (37.1–61.4)
	Potency	3.75	53.6	0.75	10.7	2.55	36.4	
	Hemorrhage	14.4	13.4 ± 1.2[^b^]	191.4 ± 17.1	3.2 ± 0.30[^c^]	45.7 ± 4.3	6.7 ± 0.64	95.7 ± 9.1
	Coagulation	0.74	10.4 ± 0.06[^a^]	148.6 ± 0.9	1.6 ± 0.001[^e^]	22.9 ± 0.01	7.8 ± 0.05	111.4 ± 0.7
	Defibrinogenation	4	4.0	57.1	1.0	14.3	2.0	28.6
	Myotoxicity	50	5.5 ± 1.5[^a^]	78.6 ± 21.4	2.1 ± 0.2[^e^]	30 ± 2.9	3.3 ± 0.6	47.1 ± 8.6
	Edematogenic	5	2.15 ± 0.28	30.7 ± 4.0	N.N	N.N	1.30 ± 0.25	18.6 ± 3.6
	Proteolytic	12.5	3.48 ± 0.07[^a^]	49.7 ± 1	1.26 ± 0.1	18 ± 1.4	2.05 ± 0.4	29.3 ± 5.7
	Hemolytic	5.1	1.68 ± 0.09	24 ± 1.3	N.N	N.N	1.72 ± 0.03	24.6 ± 4.0
B. rhomboeas	Lethality	219.6	5.6 (5.0–6.3)	80 (71.4–90)	1.1 (0.6–2.0)	15.7 (8.6–28.6)	3.9 (2.6–5.8)	55.7 (37.1–82.9)
	Potency	4.20	60 ± 0.00	0.83	11.8	2.93	41.8	
	Hemorrhage	35.5	8.2 ± 0.85[^a^]	117.1 ± 12.1	3.1 ± 0.62[^e^]	44.3 ± 8.9	9.5 ± 0.64	135.7 ± 9.1
	Coagulation	0.42	9.7 ± 0.18[^a^]	138.6 ± 2.6	1.4 ± 0.001[^e^]	20 ± 0.01	9.3 ± 0.06	132.9 ± 0.9
	Defibrinogenation	6	2.0	28.6	1.0	14.3	2.0	28.6
	Myotoxicity	50	8.9 ± 1.6[^a^]	127.1 ± 22.9	2.1 ± 0.7[^e^]	30 ± 10	7.7 ± 3.7	110 ± 52.9
	Edematogenic	5	1.48 ± 0.14	21 ± 2.0	N.N	N.N	1.00 ± 0.18	14.3 ± 2.6
	Proteolytic	12.5	3.00 ± 0.04[^a^]	42.9 ± 0.6	0.88 ± 0.03	12.6 ± 0.4	1.55 ± 0.03	22.1 ± 0.4
	Hemolytic	5.1	1.65 ± 0.03	23.6 ± 0.4	N.N	N.N	1.66 ± 0.03	23.7 ± 0.4
B. ayerbei	Lethality	200.4	5.7 (4.9–6.6)	81.4 (70–94.3)	1.7 (0.7–2.4)	24.3 (10–34.3)	4.7 (4.4–5.0)	67.1 (62.9–71.4)
	Potency	4.28	61.1	1.28	18.2	3.53	50.4	
	Hemorrhage	2.4	7.2 ± 0.68[^a^]	102.9 ± 9.7	2.7 ± 0.39	38.6 ± 5.6	4.6 ± 1.12	65.7 ± 16
	Coagulation	1.92	8.4 ± 0.06[^a^]	120.0 ± 0.9	1.5 ± 0.001[^e^]	21.4 ± 0.01	6.4 ± 0.01	91.4 ± 0.1
	Defibrinogenation	6	1.0	14.3	0.5	7.1	1.0	14.3
	Myotoxicity	50	4.4 ± 1.3[^a^]	62.9 ± 18.6	1.6 ± 0.9[^e^]	22.9 ± 12.9	4.8 ± 0.9	68.6 ± 12.9
	Edematogenic	5	1.49 ± 0.67	21.3 ± 9.6	N.N	N.N	1.98 ± 0.54	28.7 ± 7.7
	Proteolytic	12.5	2.4 ± 0.4[^a^]	34.3 ± 6.3	0.99 ± 0.06	14.1 ± 0.9	1.33 ± 0.02	19 ± 0.3
	Hemolytic	5.1	N.D	N.D	N.D	N.D	N.D	N.D

For comparative purposes, neutralization activities were carried out with previously dialyzed and lyophilized antivenoms for antivenomics experiments prepared at a stock concentration of 70 mg/mL. Polyvalent antivenoms manufactured by Instituto Nacional de Salud, Colombia (INS-COL); Laboratorios Probiol, Colombia (PROBIOL); Instituto Clodomiro Picado, Costa Rica (ICP). Table 2 describes the reference doses and the number of doses used to calculate the challenge dose.

[^b^]Neutralization of lethal, hemorrhagic, myotoxic, edematogenic, proteolytic and hemolytic activities is expressed as median effective dose (ED_{50}) and neutralization of coagulant and defibrinogenating activities is expressed as Effective Dose (ED). Potency was calculated as [(t_{0.5})/ED_{50}]x_{LD_{50}} (see Materials and Methods section for details). Doses in μL antivenom/mg venom were converted to mg venom (V)/mL antivenom (AV) and mg V/g AV. The significant differences among groups, INS-COL vs. PROBIOL, INS-COL vs. ICP, PROBIOL vs. ICP are represented by letters a, b, and c (superscripts) respectively. N.D: non-determined. N.N: the effect was not neutralized to 50% even with the highest antivenin/venom ratio.

https://doi.org/10.1371/journal.pntd.0009073.t005

from different *Bothrops* species or from different geographic variations of the same nominal species used by the different manufacturers, i.e. INS-COL and PROBIOL (*B. atrox*, *B. asper*), INS-PERU (*B. atrox, B. pictus, B. barnetti, B. brazili* [82]), ICP (Costa Rican *B. asper* from Caribbean and Pacific populations), UCV (*B. atrox, B. colombiensis, B. venezuelensis*), BIOL (*B. asper* of undisclosed geographic origin) [63].
Neutralization of the biological effects of *B. asper* venoms by INS-COL, PROBIOL, and ICP antivenoms

Lethality. As a rule of thumb, immunocapturing capacity ≥ 20–25% of total venom proteins has been proposed to correlate with a promising outcome in an *in vivo* lethality neutralization assay [83], and increasing percentages of immunocapturing indicate greater neutralizing potencies of the corresponding bait antivenoms. Table 5 summarizes the results of the neutralizing capacities of the Colombian antivenoms INS-COL and PROBIOL and the Costa Rican ICP towards the lethal, hemorrhagic (Fig 7), coagulant (Fig 8), defibrinogenating, myotoxic (Fig 9), edematogenic (Fig 10), proteolytic (Fig 11), and indirect hemolytic (Fig 12) effects of the venoms of SW Colombian *B. asper* (*sensu stricto*), *B. rhombeatus*, and *B. ayerbei*. All three antivenoms followed the “antivenomics rule” regarding their potency to neutralize the lethal effect of the three *B. asper* lineage venoms, as well as the coagulant effect of *B. rhombeatus* venom, and the defibrinogenating and myotoxic effects of *B. rhombeatus* and *B. ayerbei* venoms (Table 5). The fraction of toxin-binding antibody molecules present in the antivenoms INS-COL, PROBIOL, and ICP, which contributed to protect the test animals from the lethal effect of the three *B. asper* lineage venoms, was derived by dividing the percentage of neutralizing antibodies (calculated from the antivenom’s potency, S20 Table) by the percentage of toxin-binding antibodies (calculated from the maximal total venom protein binding capacity of the
antivenom) (B. asper, S2–S4 Tables; B. rhombeatus, S8–S10 Tables; B. ayerbei, S14–S16 Tables).

For these calculations, it was assumed that antibodies immobilized in the affinity columns bound on average one antigen molecule per IgG/F(ab')\(_2\) molecule, while in solution the same antibodies would have their two antigen-binding sites occupied. These conditions are based on the most coherent fitting of the data from a number of combined antivenomics and in vivo neutralization studies carried out in our laboratory during the last years. The results listed in Table 4 unveiled that 60.4 ± 12.3%, 50.1 ± 5.2% and 26.8 ± 9.1% of the toxin-binding antibodies of ICP, INS-COL, and PROBIOL contribute to the lethality neutralization activity of these antivenoms, respectively. Expressed as relative abundance of toxin-neutralizing antibodies per vial, INS-COL contained the highest value (14.0 ± 2.6%), followed by ICP (10.5 ± 1.4%) and PROBIOL (3.5 ± 0.9%) (Table 4). The potency (in mg of venom neutralized per gram of antivenom antibodies) of INS-COL, ICP and PROBIOL were roughly similar for the three B. asper lineage venoms (Table 5), with average values of 58.2 ± 4.1, 42.9 ± 7.1, and 13.6 ± 4.1 mg V/g AV, respectively.

Venoms’ toxic activities. Hemorrhage induced by the three venoms was almost completely neutralized by INS-COL and ICP antivenoms at a ratio of 1000 μL antivenom/mg venom (Fig 7A–7C and 7G–7I). At the same ratio, a hemorrhagic lesion between 50 and 100 mm\(^2\) was observed with PROBIOL antivenom (Fig 7D–7F). Except for the B. rhombeatus venom’s lethal effect, which was neutralized with statistically indistinguishable ED\(_{50}\) by INS-COL and ICP, the neutralizing efficacy of the antivenoms followed the order INS-COL > ICP > PROBIOL (Table 5). The antivenoms followed the same trend regarding their coagulant, defibrinogenating neutralization activities (Table 5). In this sense, INS-COL and ICP antivenoms extended the coagulation time above 30 min at a ratio of 250 μL.

Fig 8. Comparison of the neutralizing capacity of the antivenoms manufactured by INS-COL (A–C), PROBIOL (D–F), ICP (G–I) towards the coagulant effect caused by the venoms of B. asper (sensu stricto) (●), B. rhombeatus (★), B. ayerbei (○). Clotting time was recorded after mixing and incubating 2 MCD (challenge dose) with different ratios of antivenom, as indicated in the figure, and adding them to human citrated plasma. Each point represents the mean ± SD of replicates of two independent experiments.

https://doi.org/10.1371/journal.pntd.0009073.g008
Fig 9. Comparison of the neutralizing capacity of the antivenoms manufactured by INS-COL (A-D), PROBIOL (E-H), ICP (I-L) towards the myotoxic effect caused by the venoms of *B. asper* (*sensu stricto*) (A, E, I), *B. rhombeatus* (B, F, J), *B. ayerbei* (C, D, G, H, K, L). Muscle damage was measured as plasma creatine kinase activity 3 h after intramuscular injection of 50 μg of venom mixed with antivenom in the ratios indicated in the figure (●). Antivenom control (○). PBS control (---). Each point represents the mean ± SD of four replicates. Statistically significant differences (p<0.05) compared to the venom control are represented by asterisks.

https://doi.org/10.1371/journal.pntd.0009073.g009
antivenom/mg venom (Fig 8A–8C and 8G–8I), while even at a ratio of 500 μL antivenom/mg venom PROBIOL did not triple the coagulation time compared to the positive control (Fig 8D–8F). The ED$_{50}$ of PROBIOL to neutralize the coagulant and the defibrinogenating activity of the three venoms was 2–4 times less effective than those of INS-COL and ICP (p < 0.05) (Table 5).

The myotoxic effect of the venoms was nearly abrogated by INS-COL and ICP antivenoms at a ratio of 1000 μL antivenom/mg venom (Fig 9A–9D and 9I–9L). Conversely, PROBIOL antivenom only showed an average neutralization capacity of about 60% at the highest antivenom/venom ratio tested (Fig 9E–9H). Consequently, the ED$_{50}$s of INS-COL and ICP are statistically indistinguishable from each other and significantly (p < 0.05) higher (more effective) than that of PROBIOL towards each Colombian $B. asper$ lineage venom tested (Table 5).

Both INS-COL and ICP antivenoms effectively neutralized, albeit the Colombian product exhibiting slightly higher ED$_{50}$ compared to the Costa Rican antivenom, the edematogenic effect of $B. asper$ (sensu stricto), $B. rhombeatus$, and $B. ayerbei$ venoms (Table 5). However, even at the highest antivenom/venom ratio tested, PROBIOL was unable to reduce the effect to 50% (Table 5). Edematogenic activity curves, in which the injected animals were monitored during 360 min (Fig 10A–10I), showed that both INS-COL and ICP antivenoms reduced, at the highest ratio of antivenom tested and within the first 30 min, > 50% of the edema produced by all the venoms (Fig 10A–10C and 10G–10I). On the contrary, PROBIOL was only capable of partly neutralizing (by 30%) the edema triggered by $B. rhombeatus$ venom (Fig 10D–10F). In general, the neutralizing effect of antivenoms was maintained six hours after
venom injection (Fig 10); besides, INS-COL and ICP antivenoms neutralized the vasculotoxic effect produced by the venom, contributing in parallel to the neutralization of bleeding.

Interestingly, in some experiments involving PROBIOL antivenom/venom mixtures the edema increased above the size of the positive control (mice injected with venom alone) (Fig 10D–10F). Previous studies performed with B. asper venom from Costa Rica have also described this circumstance [84]. Proteolytic release of vasoactive peptides from serum protein contaminants (i.e., α2-globulins) during the incubation time of the antivenom/venom mixture, affecting vascular permeability and edema formation, has been invoked to explain this phenomenon. The fact that this event was mainly observed in experiments involving the antivenom with the most impurities of plasma proteins, PROBIOL (Fig 1 and S1 Table), would support this explanation.

Proteolytic activity of the three venoms was similar (Fig 11A). This effect is attributed mainly to the action of serine proteinases and Zn\(^{2+}\)-dependent SVMPs present in B. asper venom [50]. INS-COL antivenom effectively neutralized the proteolytic activity of the three Colombian B. asper lineage venoms (ED\(_{50}\) = 42.3 ± 7.7 mg venom/g antivenom), followed in order of potency by ICP and PROBIOL (23.5 ± 5.3, and 14.9 ± 2.8 mg venom/g antivenom), respectively (Fig 11B and 11C and Table 5).

Indirect hemolytic activity was recorded in B. asper (sensu stricto) and B. rhomboeatus venoms, but not in B. ayerbei venom (Fig 12A), as has been previously noted [28]. This effect is associated to high abundance of myotoxic PLAs\(_2\) [85] and was quantified measuring the venom’s phospholipase activity on phosphatidylcholine using erythrocyte lysis as an indicator [86]. The equivalent indirect hemolytic activity of B. asper (sensu stricto) and B. rhomboeatus (Fig 12B) venoms was neutralized by INS-COL and ICP antivenoms with similar ED\(_{50}\) of 24.0 ± 0.5 mg venom/g antivenom (Table 5), while PROBIOL did not show neutralization efficacy of the indirect hemolytic activity of B. asper (sensu stricto) and B. rhomboeatus venoms even at a ratio of 2000 μL antivenom/mg venom.

Fig 11. Proteolytic activity of the venoms of B. asper (sensu stricto), B. rhomboeatus, and B. ayerbei (A) and neutralizing capacity of the antivenoms manufactured by INS-COL (●), PROBIOL (○) and ICP (●+) towards B. asper (B), B. rhomboeatus (C) and B. ayerbei (D). Neutralization of the proteolytic activity was measured on azocasein, as described in the Material and methods section, 90 min after mixing and incubating 12.5 μg of venom (challenge dose) with antivenom in the ratios indicated in the figure. Each point represents the mean ± SD of three replicates. Statistically significant differences (p<0.05) compared to the venom controls are represented by asterisks.

https://doi.org/10.1371/journal.pntd.0009073.g011
Concluding remarks

Our data confirm and expand previous studies. Otero et al. (2002) reported a comparative study of the neutralizing capacity of four polyvalent antivenoms manufactured in Colombia (INS-COL, PROBIOL), Venezuela (UCV), and México (Antivipmyn, Instituto Biclon) against the pharmacological and enzymatic effects of the venoms of *B. asper* and *Porthidium nasutum* from Antioquia (northwest Colombia) and Chocó (west Colombia) [38]. In their study, INS-COL and Antivipmyn antivenoms showed the highest neutralizing efficacy against the lethal and other pharmacological (hemorrhagic, edema-forming, myonecrotic, defibrinogenating and indirect hemolytic) effects of *B. asper* venom pooled from 40–45 specimens from different regions of Antioquia and Chocó. Conversely, antivenom PROBIOL presented the lowest neutralizing capacity towards the same activities, and the Venezuelan UCV antivenom had intermediate neutralization abilities. Understanding the basis of the effectiveness of antivenoms against homologous and heterologous venoms demands the quantitative assessment of its toxin-resolved immunorecognition profile. Here we have applied third-generation antivenomics to compare the specific and paraspecific immunoreactivity of six bothropic antivenoms against three Colombian *B. asper* lineage venoms. The antivenomics outcome showed that all the major toxin families, i.e., SVMP, PLA₂, CRISP, SVSP, CTL [32], were immunocaptured at maximal immunoaffinity column binding capacity with average efficacy of 62–87% (Table 3). These results clearly indicate that the paraspecificity exhibited by the six bothropic antivenoms against the three Colombian *B. asper* lineage venoms is not biased towards any particular family of toxins but is well balanced among the different venom protein families. Therefore, our study provides a solid experimental ground to rationalize the reported immunological profiles of INS-COL, UCV, and PROBIOL [38], and other bothropic antivenoms.
(INS-PERU, ICP, and BIOL), against B. asper venoms from different geographic Colombian ecoregions. These results strongly suggest the feasibility of adding these antivenoms to the list of candidates for the treatment of snakebite accidents caused by the species of the B. asper complex from SW Colombia, B. asper (sensu stricto), B. rhombeatus and B. ayerbei in the Departments of Nariño and Cauca.

Queiroz and co-workers [87] have reported in vitro qualitative (Western blot) and semi-quantitative (ELISA) evidence that Brazilian polyspecific pentabothropic (SAB) or antibothropic-lachesic F(ab’)2 antivenoms exhibited variable paraspecific immunoreactivity towards nineteen venoms of bothropic snakes, including B. brazili, B. alternatus, B. atrox, B. bilineatus, B. castelnaudi, B. cotiara, B. crythromelas, B. fonsecaii, B. insularis, B. itapetiningae, B. jararaca, B. jararacussu, B. leucurus, B. marajoensis, B. moojeni, B. neuwiedi, B. pirajai, B. pradoi, and Bothrocophias hyoprurus. The remarkable paraspecificity exhibited by antivenoms generated against immunization mixtures that included venoms from phylogenetic distant Bothrops species may be ascribed to large conservation of immunoreactive epitope on venom toxins across much of the natural history of Bothrops, a genus that had its roots in South America during the middle Miocene, 14.07 (CI95: 16.37–11.75) Mya [88,89] (Fig 13). Biogeographic studies support B. asper as the first species complex to split from the B. atrox group in the Pliocene, around 3.02–2.32 Mya [90], and cladogenesis into lineages began soon thereafter, towards the end of the Pliocene [23]. The realization of the existence of large immunological conservation across Bothrops phylogeny emerged also from studies of the paraspecific effectiveness of the pentabothropic polyvalent antivenom SAB (soro antitóxico pentavalente) produced by Instituto Butantan (São Paulo, Brazil) [52,76,79,91–94] using a pool of venoms from B. jararaca (50%), B. jararacussu (12.5%), B. moojeni (12.5%), B. alternatus (12.5%) and B. neuwiedi (12.5%) [95,96]. Further, an assessment of the ability of seven polyspecific antivenoms, produced in Argentina, Brazil, Perú, Bolivia, Colombia and Costa Rica using different immunization mixtures, to neutralize lethal, hemorrhagic, coagulant, defibrinogenating and myotoxic activities of the venoms of B. diporus (Argentina), B. jararaca (Brazil), B. matogrossensis (Bolivia), B. atrox (Perú and Colombia) and B. asper (Costa Rica) also showed a pattern of extensive cross-neutralization of all the venoms tested, with quantitative differences in the values of the effective doses of the antivenoms [93,97]. Similar results were obtained in a comparative preclinical assessment of the efficacy of two whole IgG antivenoms, prepared in Perú and Costa Rica, to neutralize the most relevant toxic effects induced by the venoms of Peruvian Bothrops atrox, B. brazili, B. barnetti and B. pictus [98]. Both antivenoms were effective in the neutralization of these four venoms in a rodent model of envenoming, indicating an extensive immunological cross-reactivity exists between Bothrops spp. venoms from Perú and Costa Rica.

All the species complex groups within genus Bothrops include taxa that represent the main medically important venomous snakes in their range [9,99]. Our present results converge with previous studies in revealing the capacity of a number of bothropic antivenoms to neutralize, in preclinical tests, homologous and heterologous Bothrops venoms in Central and South America, and also highlight quantitative differences in their ED90s. The combination of antivenomics and in vivo neutralization assays provides relevant information to delineate the species spectrum and geographic range of clinical applicability of an antivenom. Now, the challenge is to conduct an extensive study to define the matrix of preclinical effectiveness of all the bothropic antivenoms against all the venoms of (medically relevant) species within the genus Bothrops.
Fig 13. Phylogenetic tree of *Bothrops* highlighting some species reported by [88], whose venoms have been shown to exhibit remarkable immunoreactivity towards homologous and heterologous antivenoms produced in different Latin American countries using immunization mixtures that include different bothropic venoms.

https://doi.org/10.1371/journal.pntd.0009073.g013
Supporting information

S1 Fig. Antivenomics analysis of polyvalent antivenoms towards the venom of B. asper (sensu stricto). Panel A displays the fractionation by reverse-phase HPLC of the venom components. Proteins eluting in each peak (1–14) were assigned using the venomics information reported by Mora-Obando et al. [32]. Abbreviations for the venom components as in the legend of Fig 2A. Panels B-G represent RP-HPLC fractionations of the immunoretained fractions recovered in the affinity columns of immobilized antivenoms INS-COL (B), PROBIOL (C), ICP (D), INS-PERU (E), UCV (F), BIOL (G) incubated with increasing amounts of venom (100–1200 μg). Panels H and I display to chromatographic separations of the venom fraction retained in the mock matrix control and the naïve equine immunoglobulins control, respectively.

(TIF)

S2 Fig. Antivenomics analysis of polyvalent antivenoms towards the venom of B. rhombeatus. Panel A displays the fractionation by reverse-phase HPLC of the venom components. Proteins eluting in each peak (1–14) were assigned using the venomics information reported by Mora-Obando et al. [32]. Abbreviations for the venom components as in the legend of Fig 3A. Panels B-G represent RP-HPLC fractionations of the immunoretained fractions recovered in the affinity columns of immobilized antivenoms INS-COL (B), PROBIOL (C), ICP (D), INS-PERU (E), UCV (F), BIOL (G) incubated with increasing amounts of venom (100–1200 μg). Panels H and I display to chromatographic separations of the venom fraction retained in the mock matrix control and the naïve equine immunoglobulins control, respectively.

(TIF)

S3 Fig. Immunocapture capacity of polyvalent antivenoms towards the venom of B. ayerbei. Panel A displays the fractionation by reverse-phase HPLC of the venom components. Proteins eluting in each peak (1–14) were assigned using the venomics information reported by Mora-Obando et al. [28]. Abbreviations for the venom components as in the legend of Fig 4A. Panels B-G represent RP-HPLC fractionations of the immunoretained fractions recovered in the affinity columns of immobilized antivenoms INS-COL (B), PROBIOL (C), ICP (D), INS-PERU (E), UCV (F), BIOL (G) incubated with increasing amounts of venom (100–1200 μg). Panels H and I display to chromatographic separations of the venom fraction retained in the mock matrix control and the naïve equine immunoglobulins control, respectively.

(TIF)

S1 Table. MS/MS assignment of protein bands excised from SDS-PAGE analysis of the six polyvalent antivenoms studied.

(XLSX)

S2 Table. Concentration-dependent immunoretained (RET) B. asper (Cauca) venom proteins by INS-COL antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.

(XLSX)

S3 Table. Concentration-dependent immunoretained (RET) B. asper (Cauca) venom proteins by PROBIOL antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.
proteins immunoretained in the affinity columns.

Table	Description
S4 Table	Concentration-dependent immunoretained (RET) *B. asper* (Cauca) venom proteins by ICP antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.
S5 Table	Concentration-dependent immunoretained (RET) *B. asper* (Cauca) venom proteins by INS-PERU antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.
S6 Table	Concentration-dependent immunoretained (RET) *B. asper* (Cauca) venom proteins by UCV antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.
S7 Table	Concentration-dependent immunoretained (RET) *B. asper* (Cauca) venom proteins by BIOL antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.
S8 Table	Concentration-dependent immunoretained (RET) *B. rhombatus* (Cauca) venom proteins by INS-COL antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.
S9 Table	Concentration-dependent immunoretained (RET) *B. rhombatus* (Cauca) venom proteins by PROBIOL antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.
S10 Table	Concentration-dependent immunoretained (RET) *B. rhombatus* (Cauca) venom proteins by ICP antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.
S11 Table	Concentration-dependent immunoretained (RET) *B. rhombatus* (Cauca) venom proteins by INS-PERU antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.
S12 Table	Concentration-dependent immunoretained (RET) *B. rhombatus* (Cauca) venom proteins by UCV antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.
fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.

(S13 Table. Concentration-dependent immunoretained (RET) *B. rhombeatus* (Cauca) venom proteins by BIOL antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.

(S14 Table. Concentration-dependent immunoretained (RET) *B. ayerbei* (Cauca) venom proteins by INS-COL antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.

(S15 Table. Concentration-dependent immunoretained (RET) *B. ayerbei* (Cauca) venom proteins by PROBIOL antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.

(S16 Table. Concentration-dependent immunoretained (RET) *B. ayerbei* (Cauca) venom proteins by ICP antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.

(S17 Table. Concentration-dependent immunoretained (RET) *B. ayerbei* (Cauca) venom proteins by INS-PERU antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.

(S18 Table. Concentration-dependent immunoretained (RET) *B. ayerbei* (Cauca) venom proteins by UCV antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.

(S19 Table. Concentration-dependent immunoretained (RET) *B. ayerbei* (Cauca) venom proteins by BIOL antivenom affinity column. Maximal binding for each RP-HPLC fraction is highlighted in yellow background. Green background, amount (in μg) of toxin family proteins immunoretained in the affinity columns.

(S20 Table. Neutralization of biological activities of south-western Colombian *B. asper* lineage venoms by polyvalent antivenoms (values adjusted according to protein concentration per vial).

(XLSX)
Acknowledgments

The authors gratefully acknowledge the excellent benchwork assistance of Yania Rodríguez, Sarai Quesada-Bernat, Libia Sanz and Alicia Pérez (Evolutionary and Translational Venomics Laboratory) and Erika Camacho, Daniela Solano, Adriana Alfaro, Adriana Sánchez and Andrés Sánchez (Instituto Clodomiro Picado). The authors also thank the Centro de Investigaciones Biomédicas-Bioterio de la Universidad del Cauca (Colombia) for donation of SW Colombian snake venom samples, and the CeiBA Foundation (Pasto-Nariño, Colombia) for a Doctoral Training Scholarship (to DMO). Samples used in this study were obtained under permission from the Autoridad Nacional de Licencias Ambientales ANLA of the Ministerio de Ambiente y Desarrollo Sostenible, Colombia, Resolution 0152 of February 12, 2015. This study was performed as a partial requirement for the Ph.D. degree of Diana Mora-Obando at the University of Valencia, Spain.

Author Contributions

Conceptualization: Diana Mora-Obando, Davinia Pla, Bruno Lomonte, Jimmy Alexander Guerrero-Vargas, Santiago Ayerbe, Juan J. Calvete.

Data curation: Diana Mora-Obando, Davinia Pla, Juan J. Calvete.

Formal analysis: Diana Mora-Obando, Davinia Pla, Bruno Lomonte, Jimmy Alexander Guerrero-Vargas, Santiago Ayerbe, Juan J. Calvete.

Funding acquisition: Juan J. Calvete.

Investigation: Diana Mora-Obando, Davinia Pla, Bruno Lomonte, Juan J. Calvete.

Methodology: Diana Mora-Obando, Davinia Pla, Bruno Lomonte, Juan J. Calvete.

Project administration: Juan J. Calvete.

Resources: Bruno Lomonte, Jimmy Alexander Guerrero-Vargas, Santiago Ayerbe, Juan J. Calvete.

Supervision: Davinia Pla, Bruno Lomonte, Jimmy Alexander Guerrero-Vargas, Santiago Ayerbe, Juan J. Calvete.

Validation: Diana Mora-Obando, Davinia Pla, Bruno Lomonte, Juan J. Calvete.

Visualization: Diana Mora-Obando, Juan J. Calvete.

Writing – original draft: Diana Mora-Obando, Juan J. Calvete.

Writing – review & editing: Diana Mora-Obando, Davinia Pla, Bruno Lomonte, Jimmy Alexander Guerrero-Vargas, Santiago Ayerbe.

References

1. World Health Organization. Report of the tenth meeting of the WHO strategic and technical advisory group for neglected tropical diseases. Geneva, Switzerland: WHO Technical Report Series. WHO Press; 2017. pp. 1–19. Available from: https://www.who.int/neglected_diseases/NTD_STAG_report_2017.pdf?ua=1.

2. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008; 5: e218. https://doi.org/10.1371/journal.pmed.0050218 PMID: 18996210

3. Gutiérrez JM. Snakebite Envenoming in Latin America and the Caribbean. In: Gopalakrishnakone P, Vogel CW, Seifert SA, Tambourgi D V., editors. Clinical ToxinoLOGY in Australia, Europe, and Americas.
Rojas-Ba´rcenas AM. Informe de evento accidente ofidico, Colombia, 2017. Instituto Nacional de Salud-

Sasa M, Wasko DK, Lamar WW. Natural history of the terciopelo Bothrops asper (Serpentes: Viperidae) in Costa Rica. Toxicon. 2009; 54: 904–922. https://doi.org/10.1016/j.toxicon.2009.06.024 PMID: 19563822

Otero R, Tobón GS, Gómez LF, Osorio RG, Valderrama R, Hoyos D, et al. Accidente ofídico en Antioquia y Chocó. Aspectos clínicos y epidemiológicos (marzo de 1989-febrero de 1990). Acta Médica Colomb. 1992; 17: 229–249. Available from: http://www.actamedicacolombiana.com/anexo/articulos/04-1992-04-.pdf.

Warrell DA. Snakebite in Central and South America: epidemiology, clinical features, and clinical management. In: Campbell JA, Lamar WW, editors. The Venomous Reptiles of the Western Hemisphere. Ithaca, NY: Comstock Publishing Associates, Cornell University Press; 2004. pp. 709–761.

Ayerbe S. Ofidismo en Colombia. Enfoque, diagnóstico y tratamiento. In: Ordóñez CA, Ferrada R, Buitrago R, editors. Cuidado Intensivo y Trauma. 2nd edition. Distribuna, Bogotá, DC.; 2009. pp. 1143–1167.

Epidemiological Otero-Patío R., clinical and therapeutic aspects of Bothrops asper bites. Toxicon. 2009; 54: 998–1011. https://doi.org/10.1016/j.toxicon.2009.07.001 PMID: 19591857

Freire A, Kuch U. A note on the geographical distribution of Bothrops asper (Garman, 1883) in Ecuador. Snake. 1994; 26: 135–139.

Sasa M, Wasko DK, Lamar WW. Natural history of the terciopelo Bothrops asper (Serpentes: Viperidae) in Costa Rica. Toxicon. 2009; 54: 904–922. https://doi.org/10.1016/j.toxicon.2009.06.024 PMID: 19563822

León LJ. Informe de evento accidente ofídico, Colombia, 2016. Instituto Nacional de Salud-Dirección de Vigilancia y Análisis del Riesgo en Salud Pública. Bogotá, DC.; 2017. pp. 1–33. Available from: https://www.ins.gov.co/buscar-eventos/Informesdeevento/Accidenteofidico_2016.pdf.

Rojas-Bárcenas AM. Informe de evento accidente ofídico, Colombia, 2017. Instituto Nacional de Salud-Dirección de Vigilancia y Análisis del Riesgo en Salud Pública. Bogotá, DC.; Instituto Nacional de Salud-Dirección de Vigilancia y Análisis del Riesgo en Salud Pública; 2018. pp. 1–16. Available from: https://www.ins.gov.co/buscar-eventos/Informesdeevento/ACCIDENTEOFIDICO_2017.pdf.

Rojas-Bárcenas AM. Informe de evento accidente ofídico, Colombia, 2018. Instituto Nacional de Salud-Dirección de Vigilancia y Análisis del Riesgo en Salud Pública. Bogotá, DC.; 2019. pp. 1–33. Available from: https://www.ins.gov.co/buscar-eventos/Informesdeevento/ACCIDENTEOFIDICO_2018.pdf.

Rojas-Bárcenas AM. Informe de evento accidente ofídico. Periodo epidemiológico XIII, Colombia, 2019. Instituto Nacional de Salud-Dirección de Vigilancia y Análisis del Riesgo en Salud Pública. Bogotá, DC.; 2020. pp. 1–2.

Otero-Patío R, Snake Bites in Colombia. In: Gopalakrishnakone P, Vogel C-W, Seifert S, Tambourgi D V, editors. Clinical Toxicology in Australia, Europe, and Americas. Dordrecht: Springer; 2018. pp. 3–50. https://doi.org/10.1007/978-94-007-6288-6_41–2

Otero-Patío R. Epidemiología, clínicas y terapéuticas del envenenamiento ofídico en Colombia. 1st ed. In: D’Suze G, Corzo G, Paniaju G, editors. Emergencias por animales poneños en las Américas. 1st ed. Mexico: Dicres S.A. de C.V.; 2011. pp. 489–537. https://doi.org/10.1016/j.toxicon.2011.11.017 PMID: 22146491

Silva-Haad JJ. Las serpientes del género Bothrops en la amazonia colombiana. Aspectos biomédicos (epidemiología, clínica y biología del ofídismo). Acta Médica Colomb. 1989; 14: 148–165. Available from: http://www.actamedicacolombiana.com/anexo/articulos/03-1989-04-.pdf.

Sevilla-Sánchez MJ, Mora-Obando D, Calderón JJ, Guerrero-Vargas JA, Ayerbe-González S. Accidente ofídico en el departamento de Nariño, Colombia: análisis retrospectivo (2008–2017). Biomédica. 2019; 39: 715–736. https://doi.org/10.7705/biomedica.4830 PMID: 31860183

Ayerbe S, Latorre JP. Manual para la prevención y mejoramiento en la atención del paciente con accidente ofídico. Popayán, Colombia.: Secretaría Departamental de Salud del Cauca; 2009. pp. 1–66.
23. Saldañariaga-Córdoba M, Parkinson CL, Daza JM, Wüster W, Sasa M. Phylogeography of the Central American lancehead Bothrops asper (SERPENTES: VIPERIDAE). PLOS ONE. 2017; 12: e0187969. https://doi.org/10.1371/journal.pone.0187969 PMID: 29176806

24. Salazar-Valenzuela CD. Diversification in the Neotropics: Insights from demographic and phylogeographic patterns of Lancehead Pitvipers (Bothrops spp.). Doctoral Thesis. The Ohio State University. 2016. Available from: https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?clear=10&p10_accession_num=osu1462545845.

25. Folleco-Fernández J. Taxonomía del complejo Bothrops asper (Serpentes: Viperidae) en el sudeste de Colombia. Revalidación de la especie Bothrops rhombeatus (Garcia 1896) y descripción de una nueva especie. Rev Noved Colomb. 2010; 10: 33–70. Available from: https://revistas.unicauca.edu.co/index.php/novedades/article/view/1177.

26. Gutiérrez JM. Current challenges for confronting the public health problem of snakebite envenoming in Central America. J Venom Anim Toxins Incl Trop Dis. 2014; 20: 7. https://doi.org/10.1186/1678-9199-20-7 PMID: 24602234

27. Gómez-Cardona JP, Gómez-Cabal C, Gómez-Cabal ML. Sueros antiofídicos en Colombia: análisis de la producción, abastecimiento y recomendaciones para el mejoramiento de la red de producción. Biosalud. 2017; 16: 96–116. https://doi.org/10.17151/biosa.2017.16.2.9

28. Mora-Obando D, Guerrero-Vargas JA, Prieto-Sánchez R, Beltrán J, Rucavado A, Sasa M, et al. Proteomic and functional profiling of the venom of Bothrops ayerbei from Cauca, Colombia, reveals striking interspecific variation with Bothrops asper venom. J Proteomics. 2014; 96: 159–172. https://doi.org/10.1016/j.jprot.2013.11.005 PMID: 24231109

29. Rengifo-Rios AM, Muñoz-Gómez LM, Cabezas-Fajardo FA, Guerrero-Vargas JA. Edemáticos y coagulantes efectos caused by the venom of Bothrops rhombeatus neutralized by the ethanolic extract of Piper auritum. J Ethnopharmacol. 2019; 242: 112046. https://doi.org/10.1016/j.jep.2019.112046 PMID: 31270707

30. Ayerbe S. Ofidismo en el departamento del Cauca, Colombia. Epidemiología, etiología, clínica y complicaciones. Rev la Fac Ciencias la Salud la Univ del Cauca. 2000; 2: 21–27. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=6544560.

31. Cañas CA, Castro-Herrera F, Castaña-Valencia S. Clinical syndromes associated with Viperidae family snake envenomation in southwestern Colombia. Trans R Soc Trop Med Hyg. 2020. [online ahead of print]. https://doi.org/10.1093/trstmh/traa081 PMID: 32879965

32. Mora-Obando D, Salazar-Valenzuela D, Pla D, Lomonte B, Guerrero-Vargas JA, Ayerbe S, et al. Venom variation in Bothrops asper lineages from north-western South America. J Proteomics. 2020; 229: 103945. https://doi.org/10.1016/j.jprot.2020.103945 PMID: 32829066

33. Segura A, Herrera M, Villalta M, Vargas M, Uscanga-Reynell A, de León-Rosales SP, et al. Venom of Bothrops asper from Mexico and Costa Rica: intraspecific variation and cross-neutralization by antivenoms. Toxicon. 2012; 59: 158–62. https://doi.org/10.1016/j.toxicon.2011.11.005 PMID: 22119752

34. Rojas G, Gutiérrez JM, Gené JA, Gómez Paniagua M, Cerdas Fallas L. Neutralización de las actividades tóxicas y enzimáticas de cuatro venenos de serpientes de Guatemala y Honduras por el antiveneno polivalente producido en Costa Rica. Rev Biol Trop. 1987; 35: 59–67. Available from: http://www.kewra.ucr.ac.cr/handle/10669/29147. PMID: 3444924

35. Bogarín G, Segura E, Durán G, Lomonte B, Rojas G, Gutiérrez J. Evaluación de la capacidad de cuatro antivenenos comerciales para neutralizar el veneno de la serpiente Bothrops asper (terciopelo) de Costa Rica. Toxicon. 1995; 33: 1242–1247. https://doi.org/10.1016/0041-0101(95)00063-r PMID: 8585095

36. Gutiérrez J, Sanz L, Flores-Díaz M, Villalta M, León G, Estrada R, et al. Impact of regional variation in Bothrops asper snake venom on the design of antivenoms: integrating antivenomics and neutralization approaches. J Proteome Res. 2010; 9: 564–577. https://doi.org/10.1021/pr9009518 PMID: 19911849

37. Vélez SM, Salazar M, de Patiño HA, Gómez L, Rodríguez A, Correa D, et al. Geographical variability of the venoms of four populations of Bothrops asper from Panama: Toxicological analysis and neutralization by a polyvalent antivenom. Toxicon. 2017; 132: 55–61. https://doi.org/10.1016/j.toxicon.2017.04.002 PMID: 28392273

38. Otero R, Núñez V, Barona J, Díaz A, Saldañariaga M. Características bioquímicas y capacidad neutralizante de cuatro antivenenos polivalentes frente a los efectos farmacológicos y enzimáticos del veneno de Bothrops asper y Porthidium nasutum de Antioquia y Chocó. Iatreia. 2002; 15: 5–15. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-07332002000100001

39. Laines J, Segura A, Villalta M, Herrera M, Vargas M, Alvarez G, et al. Toxicity of Bothrops sp snake venoms from Ecuador and preclinical assessment of the neutralizing efficacy of a polyspecific antivenom from Costa Rica. Toxicon. 2014; 88: 34–37. https://doi.org/10.1016/j.toxicon.2014.06.008 PMID: 24950051
40. Howard G, Kaser M. Making and using antibodies: a practical handbook. 2nd edition. Florida, U.S.A.: CRC press, Taylor & Francis Group; 2014.

41. Pla D, Sanz L, Quesada-Bernat S, Villalta M, Baal J, Chowdhury MAW, et al. Phylovenomics of *Daboia russelii* across the indian subcontinent. Bioactivities and comparative *in vivo* neutralization and in vitro third-generation antivenomics of antivenoms against venoms from India, Bangladesh and Sri Lanka. J Proteomics. 2019; 207: 103443. https://doi.org/10.1016/j.jprot.2019.103443 PMID: 31325606

42. Eichberg S, Sanz L, Calvete JJ, Pla D. Constructing comprehensive venom proteome reference maps for integrative venomics. Expert Rev Proteomics. 2015; 12: 557–573. https://doi.org/10.1586/14789450.2015.1073590 PMID: 26400467

43. Pla D, Rodríguez Y, Calvete J. Third generation antivenomics: Pushing the limits of the *in vitro* preclinical assessment of antivenoms. Toxins (Basel). 2017; 9: 158. https://doi.org/10.3390/toxins9050158 PMID: 28489039

44. Calvete JJ, Rodríguez Y, Quesada-Bernat S, Pla D. Toxin-resolved antivenomics-guided assessment of the immunorecognition landscape of antivenoms. Toxicon. 2018; 148: 107–122. https://doi.org/10.1016/j.toxicon.2018.04.015 PMID: 29704534

45. Calvete JJ, Gutiérrez JM, Sanz L, Pla D, Lomonte B. Antivenomics: A Proteomics Tool for Studying the Immunoactivity of Antivenoms. In: Kool J, Niessen WM, editors. Analyzing Biomolecular Interactions by Mass Spectrometry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co; 2015. pp. 227–239. https://doi.org/10.1002/9783527673391.ch7

46. World Health Organization. Guidelines for the production, control and regulation of snake antivenoms. Geneva, Switzerland: WHO Technical Report Series. WHO Press; 2010. pp. 1–134.

47. Gutiérrez JM, Rojas G, Lomonte B, Gené JA, Chaves F, Alvarado J, et al. Standardization of assays for testing the neutralizing ability of antivenoms. Toxicon. 1990; 28: 1127–9; author reply 1129–1132. https://doi.org/10.1016/0041-0101(90)90110-s PMID: 2264065

48. Gutiérrez JM, Rojas G, Bogarín G, Lomonte B. Evaluation of the neutralizing ability of antivenoms for the treatment of snake bite envenoming in Central America. In: Bon C, Goyffon M, editors. Envenomings and Their Treatments. Fondation Marcel Merieux, Lyon; 1996. pp. 223–231.

49. Finney DJ. Statistical method in biological assay. London: Charles Griffin and Company Limited; 1971.

50. Gutiérrez JM, Gené JA, Rojas G, Cerdas L. Neutralization of proteolytic and hemorrhagic activities of Costa Rican snake venoms by a polyvalent antivenom. Toxicon. 1985; 23: 887–893. https://doi.org/10.1016/0041-0101(85)90380-0 PMID: 3913055

51. Al-Shekhdat RI, Lopushanskyaya KS, Segura A, Gutiérrez JM, Calvete JJ, Pla D. *Vipera berus berus* Venom from Russia: Venomics, Bioactivities and Preclinical Assessment of Microgen Antivenom. Toxins (Basel). 2019; 11: 90. https://doi.org/10.3390/toxins11020090 PMID: 30717298

52. Sanz L, Pérez A, Quesada-Bernat S, Diniz-Sousa R, Calderón LA, Soares AM, et al. Venomics and antivenomics of the poorly studied Brazil’s lancehead, *Bothrops brazili* (Hoge, 1954), from the Brazilian State of Pará. J Venom Anim Toxins Incl Trop Dis. 2020; 26: e20190103. https://doi.org/10.1590/1678-9199-JVATITD-2019-0103 PMID: 32362928

53. Araujo HP, Bourguignon SC, Bollier MAA, Dias AASO, Lucas EPR, Santos IC, et al. Potency evaluation of antivenoms in Brazil: The national control laboratory experience between 2000 and 2006. Toxicon. 2008; 51: 502–514. https://doi.org/10.1016/j.toxicon.2007.11.002 PMID: 18155119

54. Morais V, Ifran S, Berasain P, Massaldi H. Antivenoms: Potency or median effective dose, which to use? J Venom Anim Toxins Incl Trop Dis. 2010; 16: 191–193. https://doi.org/10.1590/S1678-91992010000200002

55. Jenkins TP, Sánchez A, Segura A, Vargas M, Herrera M, Stewart TK, et al. An improved technique for the assessment of venom-induced haemorrhage in a murine model. Toxicon. 2017; 139: 87–93. https://doi.org/10.1016/j.toxicon.2017.10.005 PMID: 29024773

56. Gené J, Roy A, Rojas G, Gutiérrez J, Cerdas L. Comparative study on coagulant, defibrinating, fibrinolytic and fibrinogenolytic activities of Costa Rican croatline snake venoms and their neutralization by a polyvalent antivenom. Toxicon. 1989; 27: 841–848. https://doi.org/10.1016/0041-0101(89)90096-2 PMID: 2781583

57. Gutiérrez JM, Chaves F, Bolaños R, Cerdas L, Rojas E, Arroyo O, et al. Neutralización de los efectos locales del veneno de *Bothrops asper* por un antiveneno polivalente. Toxicon. 1981; 19: 493–500. https://doi.org/10.1016/0041-0101(81)90007-6 PMID: 7330888

58. Lomonte B, Tarkowski A, Hanson LÅ. Host response to *Bothrops asper* snake venom. Analysis of edema formation, inflammatory cells, and cytokine release in a mouse model. Inflammation. 1993; 17: 93–105. https://doi.org/10.1007/BF00916097 PMID: 8491517
59. Arce-Bejarano R, Lomonte B, Gutiérrez JM. Intravascular hemolysis induced by the venom of the Eastern coral snake, *Micruroides euryxenhus*, in a mouse model: Identification of directly hemolytic phospholipases A2. Toxicon. 2015; 90: 26–35. https://doi.org/10.1016/j.toxicon.2014.07.010 PMID: 25088177

60. Otero R, Gutiérrez JM, Núñez V, Robles A, Estrada R, Segura E, et al. A randomized double-blind clinical trial of two antivenoms in patients bitten by *Bothrops atrox* in Colombia. Trans R Soc Trop Med Hyg. 1996; 90: 696–700. https://doi.org/10.1016/s0035-9203(96)90442-3 PMID: 9015522

61. Otero-Patín R, Cardoso JLC, Higashi HG, Núñez V, Díaz A, Toro MF, et al. A randomized, blinded, comparative trial of one pepsin-digested and two whole IgG antivenoms for *Bothrops* snake bites in Uraba, Colombia. Am J Trop Med Hyg. 1998; 58: 183–189. https://doi.org/10.4269/ajtmh.1998.58.183 PMID: 9580075

62. Otero R, Gutiérrez JM, Rojas G, Núñez V, Díaz A, Miranda E, et al. A randomized blinded clinical trial of two antivenoms, prepared by caprylic acid or ammonium sulphate fractionation of IgG, in *Bothrops* and *Porthidium* snake bites in Colombia: Correlation between safety and biochemical characteristics of antivenoms. Toxicon. 1999; 37: 895–908. https://doi.org/10.1016/s0041-0101(99)00220-7 PMID: 10340829

63. Kalil J, Fan HW. Production and Utilization of Snake Antivenoms in South America. In: Gopalakrishna P, Cruz L., Luo S, editors. Toxins and Drug Discovery. Dordrecht, The Netherlands: Springer; 2017. pp. 81–101. https://doi.org/10.1007/978-94-007-6452-1_26

64. Espino-Solis GP, Riaño-Umbarila L, Becerril B, Possani LD. Antidotes against venomous animals: State of the art and perspectives. J Proteomics. 2009; 72: 183–199. https://doi.org/10.1016/j.jprot.2009.01.020 PMID: 19457345

65. Gutiérrez JM, León G, Rojas G, Lomonte B, Rucavado A, Chaves F. Neutralization of local tissue damage induced by *Bothrops asper* (terciopelo) snake venom. Toxicon. 1998; 36: 1529–1538. https://doi.org/10.1016/s0041-0101(98)00145-7 PMID: 9792169

66. Sarmiento K, Rodríguez A, Quevedo-Buitrago W, Torres I, Ríos C, Ruiz L, et al. Comparación de la eficacia, la seguridad y la farmacocinetica de los antivenenos antiofídicos: revisión de literatura. Univ Medica. 2020; 60: 30–51. https://doi.org/10.11144/javeriana.umed61-1.anti

67. León G, Vargas M, Segura Á, Herrera M, Villalta M, Sánchez A, et al. Current technology for the industrial manufacture of snake antivenoms. Toxicon. 2018; 151: 63–73. https://doi.org/10.1016/j.toxicon.2018.06.084 PMID: 29395968

68. Morais V, Massaldi H, Snake antivenoms: adverse reactions and production technology. J Venom Anim Toxins incl Trop Dis. 2009; 15: 2–18. Available from: https://www.scielo.br/scielo.php?pid=S1678-9199200900100002&script=sci_arttext.

69. Otero R, Gutiérrez J, Beatriz Mesa M, Duque E, Rodríguez O, Luis Arango J, et al. Complications of *Bothrops*, *Porthidium*, and *Bothriechis* snakebites in Colombia. A clinical and epidemiological study of 39 cases attended in a university hospital. Toxicon. 2002; 40: 1107–114. https://doi.org/10.1016/s0041-0101(02)00104-6 PMID: 12165312

70. Huang K-F, Hung C-C, Wu S-H, Chiou S-H. Characterization of Three Endogenous Peptide Inhibitors for Multiple Metalloproteinases with Fibrinogenolytic Activity from the Venom of Taiwan Habu (*Trimeresurus muroensis*) Biochem Biophys Res Commun. 1998; 248: 562–568. https://doi.org/10.1006/bbrc.1998.9017 PMID: 9703966

71. Huang KF, Chiou SH, Ko TP, Wang AHJ. Determinants of the inhibition of a Taiwan habu venom metalloproteinase by its endogenous inhibitors revealed by X-ray crystallography and synthetic inhibitor analogues. Eur J Biochem. 2002; 269: 3047–3056. https://doi.org/10.1046/j.1432-1033.2002.02982.x PMID: 12071970

72. Munawar A, Zahid A, Negm A, Akrem A, Spencer P, Betzel C. Isolation and characterization of Bradykinin potentiating peptides from *Agkistrodon bilineatus* venom. Proteome Sci. 2016; 14: 1–9. https://doi.org/10.1186/s12953-016-0090-z PMID: 26770072

73. Wagstaff SC, Favreau P, Cheneval O, Laing GD, Wilkinson MC, Miller RL, et al. Molecular characterisation of endogenous snake venom metalloprotease inhibitors. Biochem Biophys Res Commun. 2008; 365: 650–656. https://doi.org/10.1016/j.bbrc.2007.11.027 PMID: 18029259

74. Greene LJ, Camargo AC, Krieger EM, Stewart JM, Ferreira SH. Inhibition of the conversion of angiotensin I to II and potentiation of bradykinin by small peptides present in *Bothrops jararaca* venom. Circ Res. 1972; 31: Suppl 2:62–71. Available from: https://eurpmc.org/article/med/4341481 PMID: 4341481

75. Luft FC. The Bothrops legacy: Vasoactive peptides from Brazil. Renin Rep. 2008; 10: 57–64. https://doi.org/10.3317/jraas.2008.009 PMID: 18404610

76. Jorge RJ, Monteiro HSA, Gonçalves-Machado L, Guarnieri MC, Ximenes RM, Borges-Nojosa DM, et al. Venomics and antivenomics of *Bothrops erythromelas* from five geographic populations within the Caatinga ecoregion of northeastern Brazil. J Proteomics. 2015; 114: 93–114. https://doi.org/10.1016/j.jprot.2014.11.011 PMID: 25462430
77. Goêncalves-Machado L, Pla D, Sanz L, Jorge RJB, Leitão-De-Araújo M, Alves MLM, et al. Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest. J Proteomics. 2016; 135: 73–89. https://doi.org/10.1016/j.jprot.2015.04.029 PMID: 25966388

78. Madrigal M, Pla D, Sanz L, Barboza E, Arroyo-Portilla C, Corrêa-Netto C, et al. Cross-reactivity, antivenomics, and neutralization of toxic activities of Lachesis venoms by polyspecific and monospecific antivenoms. Casewell NR, editor. PLoS Negl Trop Dis. 2017; 11: e0005793. https://doi.org/10.1371/journal.pntd.0005793 PMID: 28774445

79. Sanz L, Quesada-Bernat S, Pérez A, De Morais-Zani K, Sant’Anna SS, Hatakeyama DM, et al. Danger in the Canopy. Comparative Proteomics and Bioactivities of the Venoms of the South American Palm Pit Viper Bothrops bilineatus Subspecies bilineatus and smaragdinus and Antivenomics of B. b. bilineatus (Rondônia) Venom against the Bra. J Proteome Res. 2020; 19: 3518–3532. https://doi.org/10.1021/acs.jproteome.0c00337 PMID: 32686412

80. Pla D, Sanz L, Molina-Sánchez P, Zoita V, Madrigal M, Flores-Díaz M, et al. Snake venomics of Lachesis muta rhombeata and genus-wide antivenomics assessment of the paraspecific immunoreactivity of two antivenoms evidence the high compositional and immunological conservation across Lachesis. J Proteomics. 2013; 89: 112–123. https://doi.org/10.1016/j.jprot.2013.05.028 PMID: 23747394

81. Sanz L, Quesada-Bernat S, Chen PY, Lee CD, Chiang JR, Calvete JJ. Translational venomics: Third-Generation Antivenomics of Anti-Siamese Russell’s Viper, Daboia siamensis, Antivenom Manufactured in Taiwan CDC’s Vaccine Center. Trop Med Infect Dis. 2018; 3. https://doi.org/10.3390/tropicalmed3020066 PMID: 30274462

82. Ministerio de Salud de Perú. Norma Técnica sobre Prevención y Tratamiento de Accidentes por Animales Ponzoñosos. 2004. p. 58.

83. Calvete J, Sanz L, Pla D, Lomonte B, Gutiérrez J. Omics meets biology: application to the design and preclinical assessment of antivenoms. Toxins (Basel). 2014; 6: 3388–3405. https://doi.org/10.3390/toxins6123388 PMID: 25517863

84. Gutiérrez JM, Rojas G, Lomonte B, Gené JA, Cerdas L. Comparative study of the edema-forming activity of Costa Rican snake venoms and its neutralization by a polyvalent antivenom. Comp Biochem Physiol Part C Comp Pharmacol. 1986; 85: 171–175. https://doi.org/10.1016/0742-8413(86)90069-1 PMID: 2877785

85. Alape-Girón A, Sanz L, Escolano J, Flores-Díaz M, Madrigal M, Sasa M, et al. Snake venomics of the lancehead pitviper Bothrops asper geographic, individual, and ontogenetic variations. J Proteome Res. 2008; 7: 3556–3571. https://doi.org/10.1021/pr080332p PMID: 18557640

86. de Hurtado I, Layrisse M. A quantitative method for the assay of snake venom hemolytic activity. Toxicon. 1964; 2: 43–49. https://doi.org/10.1016/0041-0101(64)90029-7

87. Queiroz GP, Pessoa LA, Portaro FC V, Furtado MDFD, Tambourgi D V. Interspecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus. Toxicon. 2008; 52: 842–51. https://doi.org/10.1016/j.toxicon.2008.10.002 PMID: 18983867

88. Alencar LRV, Quintal TB, Grazzioin FG, Alfaro ML, Martins M, Venzon M, et al. Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Mol Phylogenet Evol. 2016; 105: 50–62. https://doi.org/10.1016/j.ympev.2016.07.029 PMID: 27480810

89. Zaher H, Murphy RW, Arredondo JC, Graboski R, Machado-Filho PR, Mahlow K, et al. Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced cœnophidian snakes (Squamata: Serpentes). PLOS ONE. 2019; 14: e0216148. https://doi.org/10.1371/journal.pone.0216148 PMID: 31075128

90. Hamdan B, Guedes TB, Carrasco PA, Melville J. A complex biogeographic history of diversification in Neotropical lancehead pitvipers (Serpentes, Viperidae). Zool Scr. 2020; 49: 145–158. https://doi.org/10.1111/zsc.12398

91. Ferreira ML, Moura-da-Silva AM, Mota I. Neutralization of different activities of venoms from nine species of Bothrops snakes by Bothrops jararaca antivenom. Toxicon. 1992; 30: 1591–1602. https://doi.org/10.1016/0041-0101(92)90031-7 PMID: 1488768

92. Bogarín G, Morais JF, Yamaguchi IK, Stephano MA, Marcelino JR, Nishikawa AK, et al. Neutralization of crotaline snake venoms from Central and South America by antivenoms produced in Brazil and Costa Rica. Toxicon. 2000; 38: 1429–1441. https://doi.org/10.1016/s0041-0101(99)00236-6 PMID: 10758277

93. Segura A, Castillo MC, Núñez V, Yarlequé A, Gonçalves LRC, Villalta M, et al. Preclinical assessment of the neutralizing capacity of antivenoms produced in six Latin American countries against medically-relevant Bothrops snake venoms. Toxicon. 2010; 56: 980–989. https://doi.org/10.1016/j.toxicon.2010.07.001 PMID: 20621114
94. Sousa LF, Nicolau CA, Peixoto PS, Bernardoni JL, Oliveira SS, Portes-Junior JA, et al. Comparison of Phylogeny, Venom Composition and Neutralization by Antivenom in Diverse Species of Bothrops Complex. Gutiérrez J, editor. PLoS Negl Trop Dis. 2013; 7: e2442. https://doi.org/10.1371/journal.pntd.0002442 PMID: 24069493

95. Raw I, Guidolin R, Higashi H, Kelen E. Antivenins in Brazil: Preparation. Handbook of Natural Toxins. In: Tu AT, editor. Handbook of Natural Toxins. New York: Marcel Dekker; 1991. pp. 557–811.

96. Brasil, Ministério da Saúde. Normas de Produção e Controle de Qualidade de Soros Antiofídicos. Diário Oficial da União. 1996. pp. 23491–23512.

97. Dias da Silva W, Tambourgi D V. Comment on “Preclinical assessment of the neutralizing capacity of antivenoms produced in six Latin American countries against medically-relevant Bothrops venoms.” Toxicon. 2011; 57: 1109–1110. https://doi.org/10.1016/j.toxicon.2011.03.022 PMID: 21524658

98. Rojas E, Quesada L, Arce V, Lomonte B, Rojas G, Gutierrez JM. Neutralization of four Peruvian Bothrops sp. snake venoms by polyvalent antivenoms produced in Perú and Costa Rica: preclinical assessment. Acta Trop. 2005; 93: 85–95. https://doi.org/10.1016/j.actatropica.2004.09.008 PMID: 15589801

99. Gutiérrez M, José. Snakebite Envenomation in Central America. In: Mackessy S., editor. Handbook of Venoms and Toxins of Reptiles. Boca Raton: CRC Press; 2009. pp. 491–507. https://doi.org/10.1201/978142008661.ch24