Version 2.0.0 - M-SPARC: Matlab-Simulation Package for Ab-initio Real-space Calculations

Boqin Zhanga, Xin Jinga, Shashikant Kumara, Phanish Suryanarayanaa,*

aCollege of Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

M-SPARC is a MATLAB code for performing ab initio Kohn–Sham Density Functional Theory simulations. Version 2.0.0 of the software further extends its capability to include relativistic effects, dispersion interactions, and advanced semilocal/nonlocal exchange-correlation functionals. These features significantly increase the fidelity of first principles calculations that can be performed using M-SPARC.

Keywords: Kohn-Sham Density Functional Theory, Electronic structure, Relativistic effects, Dispersion interactions, meta-GGA functionals, Hybrid functionals

Metadata

\begin{tabular}{|c|c|}
\hline
C1 & Current code version \\
\hline
& v2.0.0 \\
\hline
C2 & Permanent link to code/repository used for this code version \\
\hline
& \url{https://github.com/SPARC-X/M-SPARC} \\
\hline
C3 & Code Ocean compute capsule \\
\hline
& N/A \\
\hline
C4 & Legal Code License \\
\hline
& GNU General Public License v3.0 \\
\hline
C5 & Code versioning system used \\
\hline
& git \\
\hline
C6 & Software code languages, tools, and services used \\
\hline
& MATLAB 2013+ \\
\hline
C7 & Compilation requirements, operating environments & dependencies \\
\hline
& OS: Unix, Linux, MacOS, or Windows \\
\hline
C8 & If available Link to developer documentation/manual \\
\hline
& \url{https://github.com/SPARC-X/M-SPARC/tree/master/doc} \\
\hline
C9 & Support email for questions \\
\hline
& phanish.s@gmail.com \\
\hline
\end{tabular}

Refers to

Xu, Q., Sharma, A., and Suryanarayana, P., 2020. M-SPARC: MATLAB-Simulation Package for Ab-initio Real-space Calculations. SoftwareX, 11, 100423. \url{https://doi.org/10.1016/j.softx.2020.100423}

*corresponding author

Email address: phanish.suryanarayana@ce.gatech.edu (Phanish Suryanarayana)

Preprint submitted to arXiv December 15, 2022
1. Description of the software-update

M-SPARC [1] is an electronic structure code written in MATLAB that is based on real-space finite-difference method. It can perform spin-unpolarized and polarized ab initio calculations based on pseudopotential Kohn–Sham Density Functional Theory (DFT) [2, 3] for extended systems such as nanotubes/nanowires, surfaces, and crystals, as well as isolated systems such as molecules. In particular, the code can perform electronic ground state calculations for fixed atomic positions and cell dimensions (i.e., single-point calculations), geometry optimizations with respect to either atomic positions or cell volume, and microcanonical ensemble (NVE) molecular dynamics simulations, while employing norm-conserving pseudopotentials [4, 5]. In so doing, it can calculate the free energy, Hellmann–Feynman atomic forces, and Hellmann–Feynman stress tensor.

M-SPARC can be regarded as the MATLAB implementation of the large-scale parallel C/C++ code SPARC [6–8], with both codes employing the same algorithms, structure, input, and output. M-SPARC not only provides a suitable avenue for the first principles investigation of systems with small/moderate size, but also provides a prototyping platform that allows for the rapid development and testing of new methods/algorithms in real-space DFT [9–17], given the significant complexity of large-scale parallel codes written in lower level programming languages such as C/C++ and Fortran. Indeed, the development of KSSOLV [18] (MATLAB) and DFTK [19] (JULIA) for planewave DFT [20], and RESECU [21] (MATLAB) and RSDFT [22] (MATLAB) for real-space DFT have been similarly motivated.

Version 2.0.0 of the M-SPARC software further extends its capability to include relativistic effects, dispersion interactions, and advanced exchange-correlation functionals beyond the generalized gradient approximation (GGA) [20], as described below.

- **Spin-orbit coupling (SOC):** SOC is a relativistic effect that refers to the coupling between the electron’s orbital angular momentum and its spin angular momentum [20]. It becomes increasingly prominent for heavier atoms, i.e., those with larger atomic numbers, and is known to play a significant role in determining their electronic structure. M-SPARC incorporates SOC through relativistic norm-conserving pseudopotentials [23], as implemented within the real-space method [24].

- **Dispersion interactions:** Van der Waals (vdW) interaction is a correlation effect that arises due to the coupling in electronic charge fluctuations between different parts of the system [20]. This long-range dispersion interaction becomes increasingly important as the system gets more sparse, i.e., the inter-particle separation becomes larger. M-SPARC incorporates these interactions through the DFT-D3 correction [25] and the nonlocal vdW-density functional (vdW-DF) [26], as implemented using the method proposed in Ref. [27].

- **Meta-GGA functionals:** Meta-GGA exchange-correlation functionals represent the third rung of Jacob’s ladder, i.e., one rung above GGA [20]. Indeed, the sophistication and accuracy of the functionals increases as one goes up the ladder. In particular, in addition to the electron density and its gradient used to define GGA, the kinetic energy density is included in meta-GGA functionals. M-SPARC incorporates meta-GGA
through the SCAN functional \cite{SCAN}, which satisfies all seventeen constraints known on
the exact exchange-correlation functional.

- Hybrid exchange-correlation functionals: Hybrid exchange-correlation functionals rep-
 resent the fourth rung of Jacob’s ladder, i.e., one rung above meta-GGA, and therefore
two rungs above GGA \cite{GGA}. In particular, in addition to the semilocal GGA/meta-
GGA terms, a fraction of the Hartree-Fock exact exchange energy — quantity that
deeps explicitly on the occupied orbitals — is included in the exchange-correlation
functional. M-SPARC incorporates exact exchange through the PBE0 \cite{PBE0} and HSE
\cite{HSE} functionals, as implemented using the methods proposed in Refs. \cite{PBE0,HSE}.

In addition to the above, nonlinear core correction (NLCC) — accounts for the nonlinearity
in the exchange-correlation potential within pseudopotential generation — has been imple-
mented, a comprehensive testing framework with a large variety and number of examples has
been developed, and the table of SPMS \cite{SPMS} pseudopotentials — transferable and soft op-
timized norm-conserving Vanderbilt (ONCV) pseudopotentials \cite{ONCV} with NLCC for the PBE
\cite{PBE} variant of the GGA exchange-correlation functional — has been incorporated into the
M-SPARC distribution.

We now demonstrate the aforementioned major new functionalities of M-SPARC through
representative examples. Specifically, we consider (i) 2-atom primitive cell of body-centered
cubic (bcc) tantalum with PBE exchange-correlation, SOC through the relativistic ONCV
pseudopotential from the PseudoDOJO set \cite{PseudoDOJO}, \(6 \times 6 \times 6\) grid for Brillouin zone integration,
and mesh size of 0.14 Bohr; (ii) diazoxide molecule with PBE exchange-correlation, disper-
sion interactions through DFT-D3, and mesh-size of 0.24 Bohr; (iii) 14-atom cell of bulk
\(\text{Ni(CO}_2\text{)}_2\) with PBE exchange-correlation, dispersion interactions through vdW-DF, spin
polarization, \(2 \times 2 \times 2\) grid for Brillouin zone integration, and mesh size of 0.2 Bohr; (iv) 12-
atom (3,3) carbon nanotube with the SCAN variant of the meta-GGA exchange-correlation,
10 grid points for Brillouin zone integration, and a mesh size of 0.22 Bohr; and (v) 2-atom
primitive cell of germanene with HSE variant of hybrid exchange-correlation, \(4 \times 4\) grid for
Brillouin zone integration, and mesh size of 0.2 Bohr. Unless specified otherwise, we employ
ONCV pseudopotentials from the SPMS set. In all cases, we use 12-th order centered finite
differences for discretizing the equations, and perform single-point calculations. We present
the results so obtained in Fig. 1. To verify the accuracy of the results obtained by M-SPARC,
we compare them against highly converged results obtained using the established planewave
codes ABINIT \cite{ABINIT} and Quantum Espresso (QE) \cite{QE}. It is clear that there is excellent agree-
ment between M-SPARC and ABINIT/QE, verifying the accuracy of the M-SPARC code.
Indeed, the agreement further increases on refining the discretization, i.e., choosing smaller
values for the mesh-size.

The new functionalities in M-SPARC v2.0.0 allow for first principles simulations with
significantly higher fidelity compared to v1.0.0. Given that some of these features, in partic-
ular those involving meta-GGA and hybrid functionals, are noticeably more expensive than
standard GGA, new methods/algorithms to accelerate such calculations are highly desired,
for which M-SPARC provides a convenient avenue for rapid prototyping.
Figure 1: Examples demonstrating the major new functionalities of M-SPARC v2.0.0.
Acknowledgements

This work was supported by grant DE-SC0019410 funded by the U.S. Department of Energy, Office of Science. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Department of Energy, or the U.S. Government.

References

[1] Q. Xu, A. Sharma, P. Suryanarayana, M-SPARC: Matlab-simulation package for ab-initio real-space calculations, SoftwareX 11 (2020) 100423.

[2] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review 140 (4A) (1965) A1133.

[3] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical Review 136 (3B) (1964) B864.

[4] D. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Physical Review B 88 (8) (2013) 085117.

[5] N. Troullier, J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Physical Review B 43 (3) (1991) 1993.

[6] Q. Xu, A. Sharma, B. Comer, H. Huang, E. Chow, A. J. Medford, J. E. Pask, P. Suryanarayana, SPARC: Simulation package for ab-initio real-space calculations, SoftwareX 15 (2021) 100709.

[7] S. Ghosh, P. Suryanarayana, SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Extended systems, Computer Physics Communications 216 (2017) 109–125.

[8] S. Ghosh, P. Suryanarayana, SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Isolated clusters, Computer Physics Communications 212 (2017) 189–204.

[9] P. Suryanarayana, K. Bhattacharya, M. Ortiz, Coarse-graining Kohn–Sham density functional theory, Journal of the Mechanics and Physics of Solids 61 (1) (2013) 38–60.

[10] P. P. Pratapa, P. Suryanarayana, J. E. Pask, Spectral Quadrature method for accurate O (N) electronic structure calculations of metals and insulators, Computer Physics Communications 200 (2016) 96–107.

[11] A. S. Banerjee, P. Suryanarayana, Cyclic density functional theory: A route to the first principles simulation of bending in nanostructure, Journal of the Mechanics and Physics of Solids 96 (2016) 605–631.
[12] Q. Xu, P. Suryanarayana, J. E. Pask, Discrete discontinuous basis projection method for large-scale electronic structure calculations, The Journal of Chemical Physics 149 (9) (2018) 094104.

[13] S. Kumar, Q. Xu, P. Suryanarayana, On preconditioning the self-consistent field iteration in real-space Density Functional Theory, Chemical Physics Letters 739 (2020) 136983.

[14] A. Sharma, P. Suryanarayana, On real-space Density Functional Theory for non-orthogonal crystal systems: Kronecker product formulation of the kinetic energy operator, Chemical Physics Letters 700 (2018) 156–162.

[15] D. Codony, I. Arias, P. Suryanarayana, Transversal flexoelectric coefficient for nanostructures at finite deformations from first principles, Physical Review Materials 5 (3) (2021) L030801.

[16] C. M. Diaz, P. Suryanarayana, Q. Xu, T. Baruah, J. E. Pask, R. R. Zope, Implementation of Perdew–Zunger self-interaction correction in real space using Fermi–Löwdin orbitals, The Journal of Chemical Physics 154 (8) (2021) 084112.

[17] A. Sharma, P. Suryanarayana, Real-space density functional perturbation theory for phonons, arXiv preprint arXiv:2202.13534.

[18] S. Jiao, Z. Zhang, K. Wu, L. Wan, H. Ma, J. Li, S. Chen, X. Qin, J. Liu, Z. Ding, et al., KSSOLV 2.0: An efficient MATLAB toolbox for solving the Kohn-Sham equations with plane-wave basis set, Computer Physics Communications (2022) 108424.

[19] M. F. Herbst, A. Levitt, E. Cancès, DFTK: A Julian approach for simulating electrons in solids, in: Proceedings of the JuliaCon Conferences, Vol. 3, 2021, p. 69.

[20] R. Martin, Electronic Structure: Basic theory and practical methods, Cambridge University Press, 2020.

[21] V. Michaud-Rioux, L. Zhang, H. Guo, RESCU: A real space electronic structure method, Journal of Computational Physics 307 (2016) 593–613.

[22] J. R. Chelikowsky, Introductory Quantum Mechanics with MATLAB: For Atoms, Molecules, Clusters, and Nanocrystals, John Wiley & Sons, 2019.

[23] L. Kleinman, Relativistic norm-conserving pseudopotential, Physical Review B 21 (6) (1980) 2630.

[24] D. Naveh, L. Kronik, M. L. Tiago, J. R. Chelikowsky, Real-space pseudopotential method for spin-orbit coupling within density functional theory, Physical Review B 76 (15) (2007) 153407.
[25] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics 132 (15) (2010) 154104.

[26] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, B. I. Lundqvist, Van der Waals density functional for general geometries, Physical Review Letters 92 (24) (2004) 246401.

[27] G. Román-Pérez, J. M. Soler, Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes, Physical Review Letters 103 (9) (2009) 096102.

[28] J. Sun, A. Ruzsinszky, J. P. Perdew, Strongly constrained and appropriately normed semilocal density functional, Physical Review Letters 115 (3) (2015) 036402.

[29] C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, The Journal of Chemical Physics 110 (13) (1999) 6158–6170.

[30] J. Heyd, G. E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, The Journal of Chemical Physics 118 (18) (2003) 8207–8215.

[31] L. Lin, Adaptively compressed exchange operator, Journal of Chemical Theory and Computation 12 (5) (2016) 2242–2249.

[32] J. Spencer, A. Alavi, Efficient calculation of the exact exchange energy in periodic systems using a truncated Coulomb potential, Physical Review B 77 (19) (2008) 193110.

[33] F. Gygi, A. Baldereschi, Self-consistent Hartree-Fock and screened-exchange calculations in solids: Application to silicon, Physical Review B 34 (6) (1986) 4405.

[34] M. F. Shojaei, J. E. Pask, A. J. Medford, P. Suryanarayana, Soft and transferable pseudopotentials from multi-objective optimization, Computer Physics Communications 283 (2023) 108594.

[35] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77 (18) (1996) 3865.

[36] M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, G.-M. Rignanese, The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table, Computer Physics Communications 226 (2018) 39–54.

[37] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, et al., First-principles computation of material properties: the ABINIT software project, Computational Materials Science 25 (3) (2002) 478–492.
[38] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21 (39) (2009) 395502.