Extended superconducting dome of electron-doped cuprates after protect annealing revealed by ARPES

C. Lin,1,* T. Adachi,2 M. Horio,1,3 T. Ohgi,4 M.A. Baqiya,4,5 T. Kawamata,4 H. Sato,4 T. Sumura,2 K. Koshiishi,1 S. Nakata,1 G. Shibata,1 K. Hagiwara,1 M. Suzuki,1 K. Ono,6 K. Horiba,6 H. Kumigashira,6 S. Ideta,7 K. Tanaka,7 Y. Koike,4 and A. Fujimori1,8

1Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
2Department of Engineering and Applied Sciences, Sophia University, Tokyo 102-8554, Japan.
3Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
4Department of Applied Physics, Tohoku University, Sendai 980-8579, Japan.
5Department of Physics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia.
6KEK, Photon Factory, Tsukuba 305-0801, Japan.
7UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585, Japan.
8Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555, Japan.

The discovery of the electron-doped cuprates guides a new way in unveiling the controversial physics of high-temperature superconductivity and motivates extensive experimental and theoretical studies for decades [1, 2]. Other than the structure differences, the most dramatic distinction between the hole- and electron-doped cuprates embodies in their temperature-doping phase diagram as shown in Fig. 1. On the hole doping side, a tiny amount ∼3% of hole doping suppresses the antiferromagnetic (AFM) insulating phase and the systems become superconducting (SC) at ∼5% hole doping in most cuprate families [3–6]. On the other hand, on the electron doping side, previous numerous studies revealed that electron doping side, previous numerous studies revealed that superconductivity emerges at a Ce doping level varying from ∼10% to 14% in bulk crystals [7–11, 15, 16], and ∼6% to 14% in thin films [17–19]. The doping range of the SC dome, which varies from ∼5% to ∼15% for electron-doped cuprates [7–11, 15, 17–19], is also considerably more restricted than that of ∼22% in the hole-doped case [3–6]. These differences of the phase diagram between the hole- and electron-doped cuprates imply that hole doping and electron doping may affect the electronic structure in different manners.

The electron-doped cuprates are usually characterized by a more robust antiferromagnetic phase and a much narrower superconducting (SC) dome than those of the hole-doped counterparts. Recently, bulk single crystals of Pr1.3−xLa0.7Ce0.2CuO4 (PLCCO) prepared by the protect annealing method have been studied extensively and revealed many intriguing properties that were different from those obtained from samples annealed by the conventional methods. Here, we report on a systematic angle-resolved photoemission spectroscopy study of PLCCO single crystals after protect annealing. The results indicate that the actual electron concentration (nFS) estimated from the Fermi-surface area is significantly larger than the Ce concentration x and the new nFS-based SC dome of PLCCO is more extended towards the overdoped side than the x-based SC dome derived for samples prepared using the conventional annealing method. The similarity between the new nFS-based SC dome and that of the hole-doped cuprate La2−xSrxCuO4 further provides a clue for understanding the reported electron-hole symmetry/asymmetry of the cuprate phase diagram.

The electron-doped cuprates are characterized by the T'-type structure, in which the Cu atom is surrounded by four oxygen atoms in the square-planer manner, instead of octahedral manner by six oxygen atoms in the T'-type structure of the hole-doped counterparts La2−xSrxCuO4 (LSCO). Another hallmark of the electron-doped cuprates is the indispensable role of annealing, i.e., as-grown samples are AFM regardless of dopant concentration and superconductivity emerges only after annealing [1]. Nevertheless, the precise effects of the reduction annealing remain unclear [2, 20]. Historically the most widely acknowledged impact of annealing is the removal of excess and superconductivity-harmful [21] apical oxygen atoms in the T'-type structure [2], even though the fraction of reduced oxygen is small [22–24]. Meanwhile another scenario has also been proposed that annealing may create a secondary phase and repair Cu vacancies which may exist in as-grown samples [25–27].

Since the reduction annealing is crucial for realizing the superconductivity in the electron-doped cuprates, different annealing methods may result in distinct physical properties. For bulk single crystals, conventional annealing procedures [2] can lead to over-reduction of the surfaces and even decompose the crystals under strong reduction conditions. Differently from the conventional processes, Adachi et al. [28–30] recently synthesized bulk SC single crystals of Pr1.3−xLa0.7Ce0.2CuO4 (PLCCO, x = 0.05, 0.10, and 0.15) with Tc as high as ∼27 K, by

* clin@issp.u-tokyo.ac.jp
TABLE I. Sample compositions and annealing conditions.

x	T_c (K)	Reduction status	Annealing step	Annealing temperature (°C)	Annealing time
0.10	26	UR	PA \rightarrow LTA \rightarrow DA	800 \rightarrow 400 \rightarrow 500	24 h \rightarrow 24 h \rightarrow 4 h \times 6
0.10	28	OP	PA \rightarrow LTA \rightarrow DA	800 \rightarrow 400 \rightarrow 500	24 h \rightarrow 24 h \rightarrow 4 h \times 12
0.15	16-19	OR	PA \rightarrow LTA \rightarrow DA	800 \rightarrow 400 \rightarrow 500	24 h \rightarrow 24 h \rightarrow 4 h \times 6
0.17	6		PA \rightarrow LTA	900 \rightarrow 500	12 h \rightarrow 12 h

α: UR: under-reduced, OP: optimally-reduced, OR: over-reduced.

β: PA: protect annealing, LTA: low-temperature annealing, DA: dynamic annealing.

e: A number after “×” is the number of cycles in the dynamic annealing.

utilizing an improved “protect annealing” method [31]. In the protect annealing procedures, single crystals are protected from the over-reduction by covering them by polycrystalline powders of the same composition, and one can anneal the samples under stronger reduction conditions without being decomposed and the oxygen content becomes more homogeneous, giving rise to a higher T_c. Inspired by the T_c enhancement of PLCCO single crystals after the improved protect annealing, extensive studies using various techniques have been conducted recently [20, 28, 29, 32–35]. For example, angle-resolved photoemission spectroscopy (ARPES) measurements on protect-annealed PLCCO samples have shown that the signature of the AFM correlations, namely, the "AFM pseudogap" is strongly suppressed for $x = 0.10$ [20], the Ce content at which previous studies obtained from conventionally annealed electron-doped cuprates all favored the existence of the AFM pseudogap on the Fermi surface created by the band folding [16, 36–39]. The striking differences between the conventionally annealed and protect-annealed samples demonstrate again the crucial role of reduction annealing in the electron-doped cuprates. As a natural consequence of annealing, one would anticipate the addition of electrons resulting from oxygen reduction. Actually, by improved elaborate annealing methods, superconductivity emerges even at zero Ce doping level in thin films [40–43] and bulk polycrystals [44, 45]. These new annealing methods not only give rise to the realization of superconductivity in the parent compounds without cation substitution [46–49], but may also lead to a total electron concentration that is larger than the Ce doping level [14, 16, 20, 48, 50]. In the ARPES study focusing on the protect-annealed PLCCO with $x = 0.10$ and $T_c \sim 27$ K [20], the actual electron concentration estimated from the Fermi-surface area (n_{FS}) was found to be as high as 0.18. A subsequent ARPES study on conventionally annealed Pr$_{1-x}$LaCe$_x$CuO$_4$ [PLCCO (La1.0)] with $x = 0.10, 0.15,$ and 0.18 [16] also indicated that the reduction (oxidization) injects electrons (holes) into the system. While AFM correlation still exists in the entire doping range, a new n_{FS}-based phase diagram was proposed and shows a dome-like SC region implying the possible absence of asymmetry between the phase diagrams of hole- and electron-doped cuprates. Comparing these two studies, one can see that, in the protect-annealed PLCCO [20, 28, 29], T_c is higher than that of the conventionally annealed samples [16], and no AFM pseudogap was found. It is also possible that more electrons are doped by utilizing the novel protect annealing method, with less oxygen inhomogeneity not only on surfaces but also in bulk [20]. A systematic ARPES study is then needed to elucidate the possible new phase diagram of protect-annealed electron-doped cuprates.

In this Letter, we report a systematic ARPES study of PLCCO single crystals after protect annealing [$x = 0.10, 0.15,$ and 0.17 (La1.0)]. The results indicate that the actual doped electron concentration n_{FS} is larger than the Ce doping level x by ~ 0.08 e/Cu. The improved annealing method dopess the system with more electrons and the new n_{FS}-based SC dome of PLCCO is more extended towards the overdoped side than that of the conventionally annealed samples [16]. The similarity between the new n_{FS}-based SC dome and that of hole-doped LSCO.
has thus become clearer and provides a clue for understanding the symmetry/asymmetry of the cuprate phase diagram.

High-quality single crystals of Pr$_{1.3-x}$La$_{0.7}$Ce$_x$CuO$_4$ ($x = 0.10, 0.15$) with T_c varying from 16 K to 28 K and Pr$_{1.0-x}$La$_{1.0}$Ce$_x$CuO$_4$ ($x = 0.17$) with T_c of 6 K were synthesized by the traveling-solvent floating-zone method [28, 29]. As-grown samples were then annealed in vacuum under a pressure of 10^{-6} Torr. T_c is defined as the crossing point of the zero-susceptibility line and the extrapolated line of the steepest part of the susceptibility curve. Table I summarizes key parameters of the annealing conditions and sample properties. The sample reduction status, i.e., under-reduced (UR), optimally reduced (OP), and over-reduced (OR), is judged from the annealing conditions and the T_c. Note that the reduction status depends on x for the same annealing conditions. The annealing consists of three steps, namely, protect annealing (PA) [20, 28], low-temperature annealing (LTA) [43], and dynamic annealing (DA) [32, 51, 52]. In the dynamic annealing, the annealing processes are separated into a few cycles providing sufficient time for oxygen atoms to diffuse from bulk to surfaces and thus further improves the oxygen homogeneity of the samples and increases the T_c. ARPES measurements were performed at beamline BL-28A of Photon Factory (PF) and BL5U of UVSOR facility with the total energy resolution of 30 meV. The samples were cleaved and measured in situ at temperatures below 10 K and pressure better than 1.5×10^{-10} Torr. The photon energy was set at 55 eV with circular polarization at PF and at 60 eV with linear (perpendicular to the cut) polarization at UVSOR.

Figures 2(a) - 2(c) show the ARPES Fermi-surface intensity plots of the protect-annealed PLCCO samples for $x = 0.10$ with $T_c = 28$ K, $x = 0.15$ with $T_c = 19$ K, and $x = 0.17$ with $T_c = 6$ K (La1.0), respectively. One can identify that there is no signature of the AFM pseudogap on the entire Fermi surfaces for the doping range studied in the present work. This is consistent with our previous results [20] that AFM correlation is strongly suppressed in the protect-annealed PLCCO single crystals, unlike those studies on conventionally annealed PLCCO (La1.0) [16, 36] or other electron-doped cuprates [37–39]. According to the Luttinger theorem [53], the number of conduction electrons is proportional to the Fermi surface volume. We then fit the Fermi surfaces to the tight-binding model as shown in Fig. 2(d), and calculate the Fermi-surface area $1 + n_{FS}$ to estimate the actual doped electron concentration n_{FS} [16, 20, 46].

In Fig. 3, by plotting the T_c values against n_{FS} for multiple samples (filled red markers), we show the new n_{FS}-based phase diagram (the SC dome shown by a magenta shaded area) of the protect-annealed PLCCO with $x = 0.10, 0.15, \text{and } 0.17 \text{(La1.0)}$. Our previous results on PLCCO samples with $x = 0.02$ (non-superconducting), 0.05 ($T_c = 24$ K), and 0.10 ($T_c = 27$ K) are included as filled dark red circles [20, 33]. Meanwhile, the T_c values of OP protect-annealed PLCCO are also plotted against Ce concentration (empty magenta circles) [30]. One can immediately see the difference between the traditional Ce-based phase diagram (magenta dashed curve) and the n_{FS}-based (magenta shaded area), i.e., n_{FS} estimated from the Fermi-surface area is significantly larger than the Ce doping level x. The remarkable increase of actual electron concentration by protect annealing yields an extension of the SC dome on the overdoped side. For comparison, the T_c values of conventionally annealed PLCCO and Pr$_{1.0-x}$La$_{1.0}$Ce$_x$CuO$_4$ [denoted as PLCCO (La1.0)] samples are also plotted by blue markers, with empty markers plotted against the Ce concentration [8, 16, 55] and filled markers plotted against n_{FS} [16]. The thick dashed blue curve tracks the data from Fujita et al. [8] showing examples of the traditional phase diagram for electron-doped cuprates (Fig. 1). Owing to the improved annealing method, superconductivity in the protect-annealed PLCCO samples can be realized not only with higher T_c but also at a Ce doping level as low as 0.05, which has never been reported for the conventional annealing method. We also replotted the results from Song et al., who obtained a n_{FS}-based SC dome (blue shaded area enclosed by filled blue squares) by conventionally annealing and oxidizing PLCCO (La1.0) samples with three Ce concentrations (empty blue squares tracked by a thin dashed blue line) [16]. Apparently, the SC dome obtained in protect-annealed PLCCO is more extended on the overdoped side than that based on the conventional annealing method. Quantitatively, for protect annealed PLCCO and conventionally annealed PLCCO (La1.0), the addition of actual electron concentration ($n_{FS} - x$) is ~ 0.08 and 0.04 e/Cu, respectively, in average. This indicates the improved protect (and dynamic) annealing method dopes the system with more...
FIG. 3. New electron-concentration (n_{FS})-based phase diagram of protect-annealed PLCCO. The T_c values of PLCCO with $x = 0.10$ (optimally-reduced (OP) and under-reduced (UR)), $x = 0.15$ (over-reduced (OR)), and PLCCO (La1.0) with $x = 0.17$ are plotted against n_{FS} (estimated from the Fermi-surface area in Fig. 2(d)) as filled red markers. Our previous results on protect-annealed PLCCO with $x = 0.02$, 0.05, and 0.10 are also included (filled dark red circles, Horio et al. [20, 33]), which, together with current results, reveal a n_{FS}-based superconducting (SC) dome (magenta shaded area). For the $x = 0.17$ data point, a vertical line is drawn from the T_c defined as described in the text to the T_c onset (see Supplemental Material [54]). For all the other samples, the T_c and T_c onset are close to each other and fall within the size of the markers. The T_c values of OP samples are also plotted traditionally against Ce concentration (empty magenta circles, Adachi et al. [30]). Data based on conventionally annealed PLCCO and PLCCO (La1.0) are included for comparison and indicated by blue markers (the empty are plotted against Ce concentration [8, 16, 55] and the filled are plotted against n_{FS} showing a blue shaded SC dome [16]). The estimated n_{FS} and T_c for annealed T'-type Pr$_2$CuO$_4$ (PCO) thin films [48] is replotted as an orange filled square. The green curve indicates the SC dome of hole-doped T'-type LSCO [56] after scaling the maximum T_c value to that of the protect-annealed PLCCO. The dashed curves and lines are the guide to the eyes.

In summary, we have performed ARPES measurements on protect-annealed PLCCO single crystals with Ce concentrations $x = 0.10, 0.15,$ and 0.17 (La1.0). The actual electron concentration n_{FS} estimated from the Fermi-surface area is significantly larger than the nominal Ce doping level by ~ 0.08 e/Cu. Owing to the improved protect (and dynamic) annealing method, which dopes the system with electrons, the new n_{FS}-based SC dome of PLCCO is more extended on the overdoped side than that based on the conventional annealing method. The reduction of the excess apical oxygen together with those oxygen atoms at the regular sites and the improvement of oxygen homogeneity may be able to account for the significant amount of additional electrons. The present results suggest that employing n_{FS} as the doping axis is a useful way when investigating the temperature-doping phase diagram of electron-doped cuprates. Furthermore, the similarity between the new n_{FS}-based SC dome and that of hole-doped LSCO may provide a clue for understanding the electron-hole symmetry/asymmetry of the cuprate phase diagram.

ARPES experiments were performed at KEK Photon Factory (proposal nos. 2015S2-003, 2016G099, 2018G049, and 2018S2-001) and UVSOR (proposal nos. 28-813 and 29-821). A part work of sample preparations was conducted at the Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by ”Nanotechnology Platform” of MEXT, Japan. This work was supported by KAKENHI Grants (Nos. 14J09200, 15H02109, 17H02915, 19K33741, and 19H01841) from JSPS.
[1] Y. Tokura, H. Takagi, and S. Uchida, A superconducting copper oxide compound with electrons as the charge carriers, *Nature* **337**, 345 (1989).

[2] N. P. Armitage, P. Fournier, and R. L. Greene, Progress and perspectives on electron-doped cuprates, *Rev. Mod. Phys.* **82**, 2421 (2010).

[3] D. Song, G. Han, W. Kyung, J. Geo, S. Cho, B. S. Kim, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Y. Yoshida, H. Eisaki, S. R. Park, and C. Kim, Electron Number-Based Phase Diagram of Pr$_1-x$LaCe$_x$CuO$_{4+δ}$ and Possible Absence of Disparity between Electron- and Hole-Doped Cuprate Phases Diagrams, *Phys. Rev. Lett.* **118**, 137001 (2017).

[4] A. Damascelli, Z. Hussain, and Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, *Rev. Mod. Phys.* **75**, 473 (2003).

[5] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to high-temperature superconductivity in copper oxides, *Nature* **518**, 179 (2015).

[6] G. M. Luke, L. P. Le, B. J. Sternlieb, Y. J. Uemura, J. H. Brewer, R. Kadono, R. F. Kiefl, S. R. Kreitzman, T. M. Riseman, C. E. Stronach, M. R. Davis, S. Uchida, H. Takagi, Y. Tokura, Y. Hidaka, T. Murakami, J. Gopalakrishnan, A. W. Sleight, M. A. Subramanian, E. A. Early, J. T. Markert, M. B. Maple, and C. L. Seaman, Magnetic order and electronic phase diagrams of electron-doped copper oxide materials, *Phys. Rev. B* **42**, 7981 (1990).

[7] M. Fujita, T. Kubo, S. Kuroshima, T. Uefuji, K. Kawashima, K. Yamada, I. Watanabe, and K. Nagamine, Magnetic and superconducting phase diagram of electron-doped Pr$_{1-x}$LaCe$_x$CuO$_4$, *Phys. Rev. B* **67**, 014514 (2003).

[8] M. Fujita, M. Matsuda, S.-H. Lee, M. Nakagawa, and K. Yamada, Low-Energy Spin Fluctuations in the Ground States of Electron-Doped Pr$_{1-x}$LaCe$_x$CuO$_{4+δ}$ Cuprate Superconductors, *Phys. Rev. Lett.* **101**, 107003 (2008).

[9] E. M. Motoyama, G. Yu, I. M. Vishik, O. P. Vajk, P. K. Mang, and M. Greven, Spin correlations in the electron-doped high-transition-temperature superconductor Nd$_{2-x}$Ce$_x$CuO$_{4+δ}$, *Nature* **445**, 186 (2007).

[10] T. Uefuji, T. Kubo, K. Yamada, M. Fujita, K. Kurashashi, I. Watanabe, and K. Nagamine, Coexistence of antiferromagnetic ordering and high-Tc superconductivity in electron-doped superconductor Nd$_2$-xCe$_x$CuO$_4$, *Physica C: Superconductivity* **357-360**, 208 (2001).

[11] M. Matsuda, Y. Endoh, K. Yamada, H. Kojima, I. Tanaka, R. J. Birgeneau, M. A. Kastner, and G. Shirane, Magnetic order, spin correlations, and superconductivity in single-crystal Nd$_{1.85}$Ce$_{0.15}$CuO$_{4+δ}$, *Phys. Rev. B* **45**, 12548 (1992).

[12] T. Uefuji, K. Kurashashi, M. Fujita, M. Matsuda, and K. Yamada, Electron-doping effect on magnetic order and superconductivity in Nd$_2$-xCexCuO$_4$ single crystals, *Physica C: Superconductivity* **378-381**, 273 (2002).

[13] P. K. Mang, O. P. Vajk, A. Arvanitaki, J. W. Lynn, and M. Greven, Spin Correlations and Magnetic Order in Nonsuperconducting Nd$_{2-x}$Ce$_x$CuO$_{4+δ}$, *Phys. Rev. Lett.* **93**, 027002 (2004).

[14] H. Takagi, S. Uchida, and Y. Tokura, Superconductivity produced by electron doping in CuO$_2$-layered compounds, *Phys. Rev. Lett.* **62**, 1197 (1989).

[15] Y. Krockenberger, J. Kurian, A. Winkler, A. Tsukada, M. Naito, and L. Alff, Superconductivity phase diagrams for the electron-doped cuprates $R_{2−x}$Ce$_x$CuO$_4$ (R = La, Pr$_x$Nd, Sm, and Eu), *Phys. Rev. B (Rapid Comm.)* **77**, 060505(R) (2008).

[16] E. Moran, A. I. Nazzal, T. C. Huang, and J. B. Torrance, Extra oxygen in electron superconductors: Ce and Th doped Nd$_2$CuO$_4$+δ and Gd$_2$CuO$_4$+δ, *Physica C: Superconductivity* **159**, 634 (1989).

[17] E. Moran, A. I. Nazzal, T. C. Huang, and J. B. Torrance, Extra oxygen in electron superconductors: Ce and Gd doped Nd$_2$CuO$_4$+δ and Gd$_2$CuO$_4$+δ, *Physica C: Superconductivity* **160**, 30 (1989).

[18] J.-M. Tarascon, E. Wang, L. H. Greene, B. G. Bagley, G. W. Hull, S. M. D’Egidio, P. F. Miceli, Z. Z. Wang, T. W. Jing, J. Clayhold, D. Brawner, and N. P. Ong, Growth, structural, and physical properties of superconducting Nd$_{2−x}$Ce$_x$CuO$_4$ crystals, *Phys. Rev. B* **40**, 4494 (1989).

[19] K. Kurashashi, H. Matsushita, M. Fujita, and K. Yamada, Heat Treatment Effects on the Superconductivity and Crystal Structure of Nd$_{1.85}$Ce$_{0.15}$CuO$_4$ Studied Using a Single Crystal, *J. Phys. Soc. Jpn.* **71**, 910 (2002).

[20] P. K. Mang, S. Larochelle, A. Mehta, O. P. Vajk, A. S. Erickson, L. Lu, W. J. L. Buyers, A. F. Marshall, K. Prokes, and M. Greven, Phase decomposition and chemical inhomogeneity in Nd$_{2−x}$Ce$_x$CuO$_{4+δ}$, *Phys. Rev. B* **70**, 094507 (2004).

[21] H. J. Kang, P. Dai, B. J. Campbell, P. J. Chupas, S. Rosenkranz, P. L. Lee, Q. Huang, S. Li, S. Komiya, and Y. Ando, Microscopic annealing process and its impact on superconductivity in T'-structure electron-doped copper oxides, *Nat. Mater.* **6**, 224 (2007).
M. Horio, K. Koshiishi, S. Nakata, K. Hagiwara, T. Sasaki, N. Kobayashi, and Y. Koike, Evolution of the Electronic State through the Reduction Annealing in Electron-Doped \(\mathrm{Pr}_{1-x}\mathrm{La}_x\mathrm{CuO}_4 \) (\(x = 0.10 \)) Single Crystals: Antiferromagnetism, Kondo Effect, and Superconductivity, J. Phys. Soc. Jpn. 82, 063713 (2013).

T. Adachi, A. Takahashi, K. M. Suzuki, M. A. Baqia, T. Konno, T. Takamatsu, M. Kato, I. Watanabe, A. Koda, M. Miyazaki, R. Kadono, and Y. Koike, Strong Electron Correlation behind the Superconductivity in Ce-Free and Ce-Underdoped High-Tc T'-Cuprates, J. Phys. Soc. Jpn. 85, 114716 (2016).

T. Adachi, T. Kawamata, and Y. Koike, Novel Electronic State and Superconductivity in the Electron-Doped High-Tc ‘‘Superconductors, Condens. Matter 2, 23 (2017).

M. Brinkmann, T. Rex, H. Bach, and K. Westerholt, Extended Superconducting Concentration Range Observed in \(\mathrm{Pr}_{x-x}\mathrm{Ce}_x\mathrm{CuO}_4 \), Phys. Rev. Lett. 74, 4927 (1995).

R. Ohnishi, M. Nakajima, S. Miyasaka, S. Tajima, T. Adachi, T. Ohgi, A. Takahashi, and Y. Koike, Optical Study of Electron-Doped Cuprate \(\mathrm{Pr}_3\mathrm{xLa}_{0.7}\mathrm{Ce}_{0.3}\mathrm{CuO}_4 + \delta \) in Under-Doped Regime: Revisit the Phase Diagram, J. Phys. Soc. Jpn. 87, 043705 (2018).

M. Horio, S. Sakai, K. Koshiishi, Y. Nonaka, M. Hashimoto, D. Lu, Z.-X. Shen, T. Ohgi, T. Konno, T. Adachi, Y. Koike, M. Imada, and A. Fujimori, Common origin of the pseudogap in electron-doped and hole-doped cuprates governed by Mott physics, ArXiv180104247 Cond-Mat (2018), arXiv:1801.04247 [cond-mat].

M. Horio and A. Fujimori, ARPES studies on new types of electron-doped cuprate superconductors, J. Phys.: Condens. Matter 30, 503001 (2018).

M. Horio, K. Koshiishi, S. Nakata, K. Hagiwara, Y. Ota, K. Okazaki, S. Shin, S. Iedeta, K. Tanaka, A. Takahashi, T. Ohgi, T. Adachi, Y. Koike, and A. Fujimori, d-wave superconducting gap observed in protect-annealed electron-doped cuprate superconductors \(\mathrm{Pr}_{1-x}\mathrm{La}_{x}\mathrm{Ce}_{0.7}\mathrm{CuO}_4 \), Phys. Rev. B 100, 054517 (2019).

H. Matsui, K. Terashima, T. Sato, T. Takahashi, M. Fujita, and K. Yamada, Direct Observation of a Nonmonotonic \(d_{x^2-y^2} \)-Wave Superconducting Gap in the Electron-Doped High-Tc Superconductor \(\mathrm{Pr}_{0.98}\mathrm{La}_{0.02}\mathrm{Ce}_{0.11}\mathrm{CuO}_4 \), Phys. Rev. Lett. 95, 017003 (2005).

N. P. Armitage, D. H. Lu, C. Kim, A. Damascelli, K. M. Shen, F. Ronning, D. L. Feng, P. Bogdanov, Z.-X. Shen, Y. Onose, Y. Taguchi, Y. Tokura, P. K. Mang, N. Kaneko, and M. Greven, Anomalous Electronic Structure and Pseudogap Effects in \(\mathrm{Nd}_{1.85}\mathrm{Ce}_{0.15}\mathrm{CuO}_4 \), Phys. Rev. Lett. 87, 147003 (2001).

H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, and K. Yamada, Evolution of the pseudogap across the magnet-superconductor phase boundary of \(\mathrm{Nd}_{2-x}\mathrm{Ce}_x\mathrm{CuO}_4 \), Phys. Rev. B 75, 224514 (2007).

M. Ikeda, T. Yoshida, A. Fujimori, M. Kubota, K. Ono, H. Das, T. Saha-Dasgupta, K. Unozawa, Y. Kaga, T. Sasaegawa, and H. Takagi, Effects of chemical pressure on the Fermi surface and band dispersion of the electron-doped high-Tc superconductors, Phys. Rev. B 80, 014510 (2009).

A. Tsukada, Y. Krockenberger, M. Noda, H. Yamamoto, D. Manske, L. Aff, and M. Naito, New class of T'-structure cuprate superconductors, Solid State Communications 133, 427 (2005).

A. Tsukada, M. Noda, H. Yamamoto, and M. Naito, Role of impurity oxygen in superconductivity of “non-doped” T’-(La,RE)2CuO4, Physica C: Superconductivity Proceedings of the 17th International Symposium on Superconductivity (ISS 2004), 426-431, 459 (2005).

O. Matsumoto, A. Utsuki, A. Tsukada, H. Yamamoto, T. Manabe, and M. Naito, Generic phase diagram of “electron-doped” T’ cuprates, Physica C: Superconductivity Proceedings of the 21st International Symposium on Superconductivity (ISS 2008), 469, 924 (2009).

Y. Krockenberger, H. Irie, O. Matsumoto, K. Yamagami, M. Mitsuhashi, A. Tsukada, M. Naito, and H. Yamamoto, Emerging superconductivity hidden beneath charge-transfer insulators, Sci. Rep. 3, 2235 (2013).

T. Takamatsu, M. Kato, T. Noji, and Y. Koike, Undoped and Hole-Doped Superconductors T'-La1.8-xEu0.2SrxCuO4 (x=0 and 0.05) Prepared by Solid-State Reaction, Appl. Phys. Express 5, 073101 (2012).

T. Adachi, T. Konno, T. Noji, and Y. Koike, Superconductivity in Hole-Doped La1.8-xEu0.2CaCuO4 with the Nd2CuO4-Type Structure, Physics Procedia Proceedings of the 26th International Symposium on Superconductivity (ISS 2013), 58, 46 (2014).

H. I. Wei, C. Adamo, E. A. Nowadnick, E. B. Lochocki, S. Chatterjee, J. P. Ruf, M. R. Beasley, D. G. Schlom, and K. M. Shen, Electron Doping of the Parent Cuprate La2CuO4 without Cation Substitution, Phys. Rev. Lett. 117, 147002 (2016).

M. Horio, Y. Krockenberger, K. Yamamoto, Y. Yokoyama, K. Takubo, Y. Hirata, S. Sakamoto, K. Koshiishi, A. Yasui, E. Ikenaga, S. Shin, H. Yamamoto, H. Wadati, and A. Fujimori, Electronic Structure of Ce-Doped and Undoped Nd4CuO4 Superconducting Thin Films Studied by Hard X-Ray Photoemission and Soft X-Ray Absorption Spectroscopy, Phys. Rev. Lett. 120, 257001 (2018).

M. Horio, Y. Krockenberger, K. Koshiishi, S. Nakata, K. Hagiwara, M. Kobayashi, K. Horiba, H. Kumigashira, H. Irie, H. Yamamoto, and A. Fujimori, Angle-resolved photoemission spectroscopy of the low-energy electronic structure of superconducting Pr2CuO4 driven by oxygen nonstoichiometry, Phys. Rev. B (Rapid Comm.) 98, 020505(R) (2018).

C. Lin, M. Horio, T. Kawamata, S. Saito, K. Koshiishi, S. Sakamoto, Y. Zhang, K. Yamamoto, K. Ikeda, Y. Hirata, K. Takubo, H. Wadati, A. Yasui, Y. Takagi, E. Ikenaga, T. Adachi, Y. Koike, and A. Fujimori, Nature of Carrier Doping in T’-La1.8-xEu0.2SrxCuO4 Studied by X-Ray Photoemission and Absorption Spectroscopy, J. Phys. Soc. Jpn. 88, 115004 (2019).

S. Kuroshima, M. Fujita, T. Uefuji, M. Matsuda, and K. Yamada, Phase diagram of the electron-doped superconductor Pr1-xLaCeCuO4+δ, Physica C: Superconductivity Proceedings of the 15th International Symposium on Superconductivity (ISS 2002): Advances in Superconductivity XV. Part I, 392-396 (2003).

Y.-L. Wang, Y. Huang, L. Shan, S. L. Li, P. Dai, C. Ren, and H.-H. Wen, Annealing effect on the electron-doped superconductor Pr1-xLaCexCuO4 (x = 0 and 0.05) Sin- doped high-Tc superconductors, Phys. Rev. B 80, 054517 (2009).

T. Sasaki, T. Kawamata, and Y. Koike, Novel Electronic State and Superconductivity in the Electron-Doped High-Tc T'-Superconductors, Condens. Matter 2, 23 (2017).
R. Kadono, and T. Adachi, Reduction Effects on the Cu-Spin Correlation in the Electron-Doped T'-Cuprate Pr1.3-xLa0.7CexCuO4+δ (x = 0.10), Proc. 14th Int. Conf. Muon Spin Rotat. Relax. Reson. SR2017 JPS Conference Proceedings, 21, 10.7566/JPSCP.21.011027 (2018).

[53] J. M. Luttinger, Fermi Surface and Some Simple Equilibrium Properties of a System of Interacting Fermions, Phys. Rev. 119, 1153 (1960).

[54] See Supplemental Material at [URL] for more detailed information about the samples.

[55] X. F. Sun, Y. Kurita, T. Suzuki, S. Komiya, and Y. Ando, Thermal Conductivity of Pr1.3-xLa0.7CexCuO4 Single Crystals and Signatures of Stripes in an Electron-Doped Cuprate, Phys. Rev. Lett. 92, 047001 (2004).

[56] H. Takagi, T. Ido, S. Ishibashi, M. Uota, S. Uchida, and Y. Tokura, Superconductor-to-nonsuperconductor transition in (La1-xSrx)2CuO4 as investigated by transport and magnetic measurements, Phys. Rev. B 40, 2254 (1989).