Plan

Avant-midi : « sur les aspects du fonctionnement et des nouveautés »

1er bloc : La base : une perspective évolutive par niveaux d’organisation

2e bloc : Des dogmes qui tombent du neuronal au cérébral

Après-midi : « sur les liens que l’on peut faire avec l’apprentissage et la pédagogie »

3e bloc : Plasticité cérébrale, apprentissage et facteurs qui influencent nos mémoires

4e bloc : De nouveaux paradigmes pour mieux comprendre le fonctionnement du « cerveau-corps-environnement »
Comportements

Approche (recherche de plaisirs)

Évitement de la douleur
Apprentissage et mémorisation des « bons et mauvais coups »
« La mémoire du passé n'est pas faite pour se souvenir du passé, elle est faite pour prévenir le futur.

La mémoire est un instrument de prédiction. »

- Alain Berthoz

→ Pouvoir se souvenir de ses bons et mauvais coups amène un **avantage adaptatif** certain.
Percevoir le chaos du monde et en faire ressortir du sens, prévoir ce qui va s’y passer, et y agir souvent très rapidement, voilà le rôle du système nerveux.

(contrairement par exemple au système endocrinien ou immunitaire, plus lent)
Aplysie
(mollusque marin)
On voit apparaître des « interneurones » qui ne sont ni sensoriels ni moteurs.

Boucle sensorimotrice
Et déjà, dans les systèmes nerveux les plus primitifs, on voit apparaître des formes simples d’apprentissage et de mémoire comme...
Et déjà, dans les systèmes nerveux les plus primitifs, on voit apparaître des formes simples d’apprentissage et de mémoire comme…
Des formes **d’apprentissage** et de **mémoire** qui demeurent présentes chez l’humain…
Tout comme d’autres formes d’apprentissage qui vont aussi apparaître assez tôt dans l’évolution :

Le conditionnement classique, où l’on apprend que 2 stimuli sont associés.
Tout comme d’autres formes d’apprentissage qui vont aussi apparaître assez tôt dans l’évolution :

Le conditionnement classique, où l’on apprend que 2 stimuli sont associés.
Tout comme d’autres formes d’apprentissage qui vont aussi apparaître assez tôt dans l’évolution :

Le conditionnement classique, où l’on apprend que 2 stimuli sont associés.

Le conditionnement opérant, où l’on apprend qu’avoir tel comportement amène une récompense.
Tout comme d’autres formes d’apprentissage qui vont aussi apparaître assez tôt dans l’évolution :

Le conditionnement classique, où l’on apprend que 2 stimuli sont associés.

Le conditionnement opérant, où l’on apprend qu’avoir tel comportement amène une récompense.
We’re not addicted to smartphones, we’re addicted to social interaction

https://www.mcgill.ca/newsroom/channels/news/were-not-addicted-smartphones-were-addicted-social-interaction-284522

Front. Psychol., 20 February 2018 | Hypernatural Monitoring: A Social Rehearsal Account of Smartphone Addiction

Samuel P. L. Veissière¹,²,³,⁴* and Moriah Stendel¹,³,⁴
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.00141/full
En guise de conclusion, si un millénaire vaut à une seconde :

- les premiers vertébrés (des poissons primitifs) seraient apparus il y a un peu plus de 5 jours.
En guise de conclusion, si un millénaire vaut à une seconde :

- les premiers primates il y a près de 21h (sur 5 jours)
En guise de conclusion, si **un millénaire** vaut à **une seconde** :

- notre genre **Homo** il y a environ **41 minutes** (sur 5 jours)
En guise de conclusion, si un millénaire vaut à une seconde :

- notre espèce Homo sapiens il y a environ 3 minutes (sur 5 jours)
ce qu’on appelle l’Histoire qui débute avec les traces écrites de nos cultures humaines ne durerait que 5-6 secondes (sur 5 jours)
- les 3 derniers siècles de la révolution industrielle ne représentent que 0,3 secondes
 (sur 5 jours)
Et après ça on se demande pourquoi on devient surexcitée quand on reçoit un « Like » ou un texto à toutes les dix secondes…

On n’a pas évolué pour ça !

- l’avènement des réseaux sociaux sur Internet ?

Un centième de seconde !

(sur 5 jours)
On a évolué pour être capable de trouver nos ressources et fuir les dangers sans se casser la gueule…
La mémoire procédurale
(celle des habiletés motrices)
La mémoire procédurale
(celle des habiletés motrices)
La mémoire procédurale
(celle des habiletés motrices)
Mémoire à long terme

Explicite (Déclarative)

Implicite (Non-déclarative)

nouveau caudé

thalamus

noyau ventral antérieur

noyau ventrolatéral

putamen

globus pallidus

division externe

division interne

télencéphale

noyau sous-thalamique

écriture

liaisons neurales

pédale de frein et de acceleration
Mémoire à long terme

Explicit (Déclarative)

Épisodique (événements biographiques)
Sémantique (mots, idées, concepts)

Hippocampe

Ventricule Latéral
Thalamus

Parahippocampal cortex
Dentate gyrus
CA3
CA1
Hippocampus
Subiculum
Entorhinal cortex
Cortex entorhinal
Cortex parahippocampique
Scissure rhinale
De l’hippocampe de rat à l’hippocampe humain : la notion de **recyclage neuronal**
Navigation spatiale
+ Mémoire déclarative
→ hypothèse d’une **continuité phylogénétique** de la navigation spatiale et de la mémoire déclarative humaine.

Navigation spatiale

Mémoire déclarative

Memory, navigation and theta rhythm in the hippocampal-entorhinal system

György Buzsáki & Edvard I Moser

January 2013

http://www.nature.com/neuro/journal/v16/n2/full/nn.3304.html?WT.ec_id=NEURO-201302
Navigation spatiale
+ Mémoire déclarative

« Recyclage neuronal »
« L’évolution travaille sur ce qui existe déjà. [...]

La sélection naturelle opère à la manière non d’un ingénieur, mais d’un bricoleur; un bricoleur qui ne sait pas encore ce qu’il va produire, mais récupère tout ce qui lui tombe sous la main. »

- François Jacob
(Le Jeu des possibles, 1981)
Autres exemples :

les plumes de l’oiseau, d’abord apparue pour la thermorégulation et recyclées ensuite pour le vol.
L'évolution de la marche...

des premiers tétrapodes aux ancêtres des reptiles.

- poissons
- tétrapodes
- membres et doigts
- marche
- reptiles
- amphibiens
- vie aquatique
- vie terrestre

Eusthenopteron Panderichthys Tiktaalik Acanthostega Tulerpeton Pederpes Proterogyrinus Limnoscelis

385 380 375 365 363 360 320 280 millions d'années

Gill slits Cranium Mouth Skeletal rods

Sources: Nexus/Geopedia D.C. Murphy/DevonianTimes.com Science magazine

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.
Comme la mémoire procédurale est impliquée dans l’apprentissage implicite par exemple de séquences ou de règles :

impliquée aussi dans l’apprentissage des règles de grammaire.

The Declarative/Procedural Model: A Neurobiological Model of Language Learning, Knowledge, and Use

Michael T. Ullman (2016)
L’oubli, mécanisme clé de la mémoire
http://www.lemonde.fr/sciences/article/2017/08/21/l-oubli-mecanisme-cle-de-la-memoire_5174858_1650684.html
21/08/2017

Une « bonne mémoire »
doit parvenir à effacer l’accessoire, le superflu, les détails.

Cet oubli « positif » nous permet
de forger des concepts, des catégories et des analogies

et d’adapter nos comportements aux situations nouvelles.

22 janvier 2019

Pourquoi l’oubli peut vous sauver la vie
http://www.blog-lecerveau.org/blog/2019/01/22/7844/

“La mémoire est un instrument de prédiction.” - Alain Berthoz
L’ablation de l’hippocampe chez le patient H.M.
La personne ayant probablement contribué plus que quiconque à notre compréhension de la mémoire humaine (décédé en décembre 2008 à l’âge de 82 ans).

Henry Molaison (le fameux « patient H.M. ») était un jeune épileptique auquel on avait enlevé en 1953, à l’âge de 27 ans, les deux **hippocampes** cérébraux pour diminuer ses graves crises d’épilepsie.
L’opération fut un succès pour contrôler l’épilepsie mais eut un effet secondaire imprévu : **H.M. avait perdu la capacité de retenir de nouvelles informations sur sa vie ou sur le monde** (mémoire déclarative).
L’opération fut un succès pour contrôler l’épilepsie mais eut un effet secondaire imprévu : H.M. avait perdu la capacité de retenir de nouvelles informations sur sa vie ou sur le monde (mémoire déclarative).

Mais…

La mémoire procédurale, faite d'automatismes sensorimoteurs inconscients, était préservée, ce qui suggérait des voies nerveuses différentes.
Mémoire à long terme

Explicite (Déclarative)

Épisodique (événements biographiques)
Sémantique (mots, idées, concepts)

Normal brain

Hippocampus

Hippocampus removed

H.M.’s brain
Procédurale
(habiletés)
- En plus de cette amnésie « antérograde », H.M. avait une amnésie « rétrograde » graduelle (avait oublié ce qui s’était passé avant l’opération, mais avait gardé ses souvenirs anciens, d’enfance, etc.)
Les très vieux souvenirs semblent pouvoir se passer de l’hippocampe, comme si la trace pouvait être transférée au cortex...
On a découvert des connexions excitatrices très fortes entre les neurones pyramidaux excitateur et des interneurones inhibiteurs qui sont extrêmement plastiques et qui seraient spécifique au cortex humain.

Plasticity in Single Axon Glutamatergic Connection to GABAergic Interneurons Regulates Complex Events in the Human Neocortex
November 9, 2016
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2000237

Are human-specific plastic cortical synaptic connections what makes us human?
February 01, 2017
http://mindblog.dericbownds.net/2017/02/are-human-specific-plastic-cortical.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Mindblog+%28MindBlog%29

Les très vieux souvenirs semblent pouvoir se passer de l’hippocampe, comme si la trace pouvait être transférée au cortex…
Mais lesquels ?
Épisodiques ?
Sémantiques ?

Les très vieux souvenirs semblent pouvoir se passer de l’hippocampe, comme si la trace pouvait être transférée au cortex…

→ On a découvert des connexions excitatrices très fortes entre les neurones pyramidaux excitateur et des interneurones inhibiteurs qui sont extrêmement plastiques et qui seraient spécifique au cortex humain.

Plasticity in Single Axon Glutamatergic Connection to GABAergic Interneurons Regulates Complex Events in the Human Neocortex
November 9, 2016
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2000237

Are human-specific plastic cortical synaptic connections what makes us human?
February 01, 2017
http://mindblog.dericbownds.net/2017/02/are-human-specific-plastic-cortical.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Mindblog+%28MindBlog%29
Le « modèle de la consolidation standard »

- Les souvenirs sont formés en premier dans l’hippocampe
- Avec le temps, ils se transfèrent dans le cortex
- Donc rôle transitoire de l’hippocampe

La « théorie des traces multiples » (« multiple memory trace theory »)

→ Depuis 20 ans, suite à des études de lésions causant des amnésies…

- Les souvenirs sont encore formés en premier dans l’hippocampe
- Mais seulement les souvenirs **sémantiques** seront encodés dans le cortex (et + de réactivations = + d’index créés dans l’hippocampe)
- Les souvenirs **épisodiques** demeureront dans l’hippocampe

https://www.alpfmedical.info/remote-memory/the-standard-model-of-memory-consolidation-versus-the-multiple-trace-theory-two-divergent-views-of-the-same-process.html
Unimodal and polymodal association areas (frontal, temporal, and parietal lobes)

Parahippocampal cortex

Perirhinal cortex

Entorhinal cortex

Perforant pathway

Dentate gyrus

Hippocampus CA3

Hippocampus CA1

Subiculum

Mossy fiber pathway

Schaffer collateral pathway

Old memory trace

Neocortex

Medial temporal hippocampal (MTH) system
L'hippocampe reçoit des inputs correspondant aux représentations corticales à un instant donné.

Crédit : Pierre Poirier et Othalia Larue
Coloration « Brainbow »

http://www.gregadunn.com/microetchings/brainbow-hippocampus/
Quelques mécanismes mnésiques : LTP, DLT, STDP, etc.
En 1973, on a découvert dans les neurones de l’hippocampe un phénomène qu’on appelle la potentialisation à long terme (PLT) en stimulant à haute-fréquence les collatérales de Schaffer.
A. Experimental setup

100 Hz

Test stimulus (1 train or 4 trains)

B. LTP in the hippocampus CA1 area

Ca2+-Calmoduline

Adénylate cyclase

CaM kinase II

MAP kinase

PKA

CREB

Activation de gènes
PLT : un des phénomènes de plasticité à la base de l’apprentissage

http://lecerveau.mcgill.ca/flash/i_07/i_07_m/i_07_m_tra/i_07_m_tra.html
Ordre de grandeur temporelle :

Minutes ou heures
Jour ou plus
Nos diverses interactions quotidiennes avec le monde font augmenter d’environ 20% la surface du bout de l’axone et de l’épine dendritique qui se font face.

Et l’inverse se produit durant la nuit : une diminution d’environ 20% de la surface synaptique (sauf peut-être pour celles des souvenirs marquants de la journée).

http://www.blog-lecerveau.org/blog/2018/02/27/les-traces-neuronales-de-nos-souvenirs-conceptuels/
Les neurones pyramidaux du groupe venant de l'environnement enrichi ont davantage d'épines dendritiques que ceux des rats du groupe standard à la fois dans les couches II/III et V/VI.

Épines dendritique de neurones du cortex somatosensoriel de rats adultes ayant grandi dans des cages standard ou dans un environnement enrichi durant 3 semaines.
Changes in grey matter induced by training
Nature, 2004
Bogdan Draganski*, Christian Gaser†, Volker Busch*, Gerhard Schuierer‡, Ulrich Bogdahn*, Arne May*
https://www.researchgate.net/publication/305381022_Neuroplasticity_changes_in_grey_matter_induced_by_training

Figure 1 Transient changes in brain structure induced while learning to juggle. a–c, Statistical parametric maps showing the areas with transient structural changes in grey matter for the jugglers group compared with non-juggler controls. a, Sagittal view; b, coronal view; c, axial view. The increase in grey matter is shown superimposed on a normalized T1 image. The left side (L) of the brain is indicated. A significant expansion in grey matter was found between the first and second scans in the mid-temporal area (hMT/V5) bilaterally (left: x, -43; y, -75; z, -2, with Z = 4.70; right: x, 33; y, -82; z, -4, with Z = 4.09) and in the left posterior intraparietal sulcus (x, -40; y, -66; z, 43 with Z = 4.57), which had decreased by the time of the third scan. Colour scale indicates Z-scores, which correlate with the significance of the change. d, Relative grey-matter change in the peak voxel in the left hMT for all jugglers over the three time points. The box plot shows the standard deviation, range and the mean for each time point.

Augmentation de l’épaisseur de 2 régions du cortex 3 mois après être devenu « expert », puis diminution après 3 mois d’inactivité.
La potentialisation à long terme (PLT) est l’un des mécanismes les plus documentés derrière les phénomènes d’apprentissage et de mémoire.

Mais il y en a beaucoup d’autres !

- La dépression à long terme (DLT)
La potentialisation à long terme (PLT) est l’un des mécanismes les plus documentés derrière les phénomènes d’apprentissage et de mémoire.

Mais il y en a beaucoup d’autres !

- La dépression à long terme (DLT)

- La plasticité dépendante du temps d’occurrence des impulsions (« Spike-timing-dependent plasticity » ou STDP)
La potentialisation à long terme (PLT) est l’un des mécanismes les plus documentés derrière les phénomènes d’apprentissage et de mémoire.

Mais il y en a beaucoup d’autres !

- La dépression à long terme (DLT)

- La plasticité dépendante du temps d’occurrence des impulsions (« Spike-timing-dependent plasticity » ou STDP)

- La neurogénèse, etc…
27 mars 2018

La neurogenèse dans le cerveau humain adulte remise en question
http://www.blog-lecerveau.org/blog/2018/03/27/la-neurogenese-dans-le-cerveau-humain-adulte-remise-en-question/

17 avril 2018

Neurogenèse dans le cerveau humain adulte ?
Après le récent « non », un « oui » tout aussi affirmatif !
http://www.blog-lecerveau.org/blog/2018/04/17/neurogenese-dans-le-cerveau-humain-adulte-apres-le-recent-non-un-oui-tout-aussi-affirmatif/
La trace physique ou « l’engramme » d’un souvenir
Assemblées de neurones
Étudier, s’entraîner, apprendre…

…c’est renforcer des connexions neuronales.

pour former des groupes de neurones qui vont devenir **habitués** de travailler ensemble.
Comment ?

Grâce aux synapses qui varient leur efficacité !
Au début du 20e siècle, le biologiste allemand Richard Semon avait proposé sa théorie de l’*engramme* mnésique (“engram theory of memory” (*Semon 1923*)).

Plusieurs expériences ont récemment confirmé que ces réseaux de neurones sélectionnés constituent « l’*engramme* » d’un souvenir.

Identification and Manipulation of Memory Engram Cells (2014)
Xu Liu, Steve Ramirez, Roger L. Redondo and Susumu Tonegawa

http://symposium.cshlp.org/content/79/59.full
What is memory? The present state of the engram

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874022/

Il y a consensus que la modification de l’efficacité synaptique par des mécanismes comme la PLT ou la DLT représente un mécanisme fondamental pour la formation d’engrammes mnésiques distribués dans de multiples régions cérébrales.

Le “poids synaptique” (l’efficacité d’une synapse) contrôlerait l’accessibilité de l’information encodée.

Et la connectivité particulière d’une assemblée de neurone contrôlerait la spécificité de l’information encodée.
La théorie de Semon contenait implicitement l'idée d'un mécanisme de rappel appelé "pattern completion"

"si une partie" des stimuli originaux sont rencontrés à nouveau,

ces neurones constituant l'engramme sont réactivés pour évoquer le rappel de ce souvenir spécifique."
C’est aussi de cette façon qu’un concept ou un souvenir peut en évoquer d’autres…
L'Analogie
Cœur de la pensée

Douglas Hofstadter
Emmanuel Sander

(2013)
La « théorie des traces multiples »

Exemple :
La « théorie des traces multiples »

Exemple :

- Les souvenirs épisodiques demeurent dans l’hippocampe

« J’avais rencontré Alain par hasard sous la tour Eiffel… »
La « théorie des traces multiples »

Exemple :
Finding the engram
Sheena A. Josselyn, Stefan Köhler, Paul W. Frankland
2015 in Nature Reviews Neuroscience
https://www.semanticscholar.org/paper/Finding-the-gram-Josselyn-K%C3%B6hler/269657152b4666ebd489ee54c2ab17534bb72496

Récapitulons : elle est où la trace d’un souvenir dans notre cerveau ?

Le BLOGUE du CERVEAU À TOUS LES NIVEAUX
30 avril 2019
Les multiples niveaux d’organisation du vivant, plus que jamais au cœur des sciences cognitives
Finding the engram
• Sheena A. Josselyn, Stefan Köhler, Paul W. Frankland 2015 in Nature Reviews Neuroscience
https://www.semanticscholar.org/paper/Finding-the-engram-Josselyn-K%C3%B6hler/269657152b4666ebd489ee54c2ab17534bb72496
Question quiz :

Sachant cela, quelle serait la meilleure métaphore pour la mémoire humaine ?
Question quiz :

Sachant cela, quelle serait la meilleure métaphore pour la mémoire humaine ?
La mémoire humaine est forcément une **reconstruction**.

Notre cerveau, et donc notre **identité**, n’est donc jamais exactement la même au fil des jours…
Consolidation

STM
Short-term memory
Active state

Reconsolidation

LTM
Long-term memory
Inactive state

Reactivation

(labile)

(stable)
Memory retrieval and the passage of time: from reconsolidation and strengthening to extinction.
Inda MC, Muravieva EV, Alberini CM. Journal of Neuroscience 2011 Feb 2; 31(5):1635-43.
http://www.hfsp.org/frontier-science/awardees-articles/function-memory-reconsolidation-function-time
http://knowingneurons.com/2017/02/01/mandela-effect/?ct=t(RSS_EMAIL_CAMPAIGN)
Figure 1: The lifetime of an engram. The formation of an engram (encoding) involves strengthening of connections.
https://www.semanticscholar.org/paper/Finding-the-gram-Josselyn-K%C3%B6hler/269657152b4666ebd489ee54c2ab17534bb72496
Peut-on effacer les souvenirs?

1. Les méandres de la mémoire
 Isabelle Paré
 15 décembre 2018
 https://www.ledevoir.com/societe/543662/peut-on-effacer-les-souvenirs

L’approche du Dr. Alain Brunet, de l’hôpital Douglas à Verdun :

« Cette approche se fonde sur le fait que lorsque les symptômes émanent d’un événement traumatique, si on diminue les souvenirs émotifs liés à cet événement, on diminuera les symptômes », explique le chercheur, aussi clinicien. L’objectif n’est donc pas d’effacer le souvenir, insiste-t-il, mais plutôt de le dépouiller des émotions extrêmes qui l’accompagnent.

Dans le cabinet du thérapeute, cela se traduit par la prise d’un médicament, le Propanolol, un bêtabloquant capable d’inhiber la production des hormones de stress relâchées quand un souvenir traumatisant refait surface. Absorbé par le patient 90 minutes avant qu’il passe en revue ses souvenirs difficiles, le Propanolol permet à celui-ci de « restocker » ce souvenir en le délitant des sensations physiques adverses qu’il générait au départ.

Après six séances, le souvenir factuel reste, mais les symptômes, domptés par le Propanolol, ont disparu de la mémoire.
Concrètement, qu’est-ce qui peut favoriser l’apprentissage et la mémoire ?

- Comprendre qu’on peut s’améliorer durant toute notre vie
L’apprentissage et la mémoire étant des processus de reconstruction constants, cela veut dire que l’intelligence (« whatever that means … ») ce n’est pas quelque chose qui est fixé d’avance.

On peut tous **apprendre et s’améliorer** durant toute notre vie parce que **notre cerveau se modifie constantment**.

(il y a bien sûr des courbes de déclin des facultés cognitives, en particulier mnésiques, mais certaines sont plutôt faible et tardives…)
En 2006, Carol Dweck a démontré qu’expliquer aux jeunes (ici de 5ᵉ année) que leur cerveau est plastique (et peut donc développer de nouvelles habiletés avec la pratique et l’effort) a des effets positifs sur leur apprentissage futur :

- meilleure attitude après des erreurs ou des échecs;
- motivation plus forte pour atteindre la maîtrise d’une compétence.

Social Cognitive and Affective Neuroscience

Why do beliefs about intelligence influence learning success? A social cognitive neuroscience model

Jennifer A. Mangels, 1 Fredy Rutterfield, 2 Justin Lamb, 1 Catherine Good, 2 and Carol S. Dweck 1

Abstract

Students’ beliefs and goals can powerfully influence their learning success. Those who believe intelligence is a fixed entity (entity theorists) tend to emphasize ‘performance goals,’ leaving them vulnerable to negative feedback and likely to disengage from challenging learning opportunities. In contrast, students who believe intelligence is malleable (incremental theorists) tend to emphasize ‘learning goals’ and rebound better from occasional failures. Guided by cognitive neuroscience models of top-down, goal-directed behavior, we use event-related potentials (ERPs) to understand how these beliefs influence attention to information associated with successful error correction. Focusing on waveforms associated with conflict detection and error correction in a test of general knowledge, we found evidence indicating that entity theorists oriented differently toward negative performance feedback, as indicated by an enhanced anterior frontal P3 that was also positively correlated with concerns about proving ability relative to others. Yet, following negative feedback, entity theorists demonstrated less sustained memory-related activity (left temporal negativity) to corrective information, suggesting reduced effortful conceptual encoding of this material—a strategic approach that may have contributed to their reduced error correction on a subsequent surprise retest. These results suggest that beliefs can influence learning success through top-down biasing of attention and conceptual processing toward goal-congruent information.

Keywords: Dm, episodic memory, P3a, TOI, achievement motivation
En 2007, Dweck et son équipe ont étudié l’évolution des performances scolaires de 373 élèves qui avaient une conception fixiste (un élève est doué ou non) ou évolutive (un élève qui travaille évolue, se transforme et s’améliore) des enfants.

Au début du suivi, les performances en mathématiques des élèves fixistes et évolutifs étaient comparables.

Mais lorsque les difficultés d’acquisition des notions sont devenues plus ardues, les évolutifs ont surpassé leurs camarades fixistes.

Le fait de s’être focalisés sur l’apprentissage, l’effort et la persévérance, dans une logique de transformation graduelle, avait porté ses fruits.
Concrètement, qu’est-ce qui peut favoriser l’apprentissage et la mémoire ?

- Comprendre qu’on peut s’améliorer durant toute notre vie
- Porter attention
À une époque plus « calme et frugale », la recherche de **nouvelles ressources prometteuses** a été un mécanisme adaptatif fondamental de notre cerveau qui demeure donc très sensible au « bottom up ».
Des « fonctions exécutives » comme l’attention peuvent être sollicitées pour contrer des stimuli « bottom up » trop intrusifs...
« Nous sommes à la fois maîtres et esclaves de notre attention.

Nous pouvons l'orienter et la focaliser, mais elle peut aussi nous échapper, être captée par des événements ou objets extérieurs. »

Par des « voleurs d'attention » !

Jean-Philippe Lachaux

http://www.blog-lecerveau.org/blog/2013/03/11/2463/
Le contrôle du « haut vers le bas » (ou « top down ») peut aussi constituer un formidable filtre qui nous empêche d’être distraint par d’autres stimuli que ceux qui concernent la tâche à effectuer.

Au point de nous rendre « aveugles » à des choses qui peuvent être assez surprenantes...
La « cécité attentionnelle »

La version « 2.0 »
http://www.youtube.com/watch?v=IGQmdoK_ZfY&feature=relmfu

Hahaha…
http://www.youtube.com/watch?v=z9aUseqqCiY

Clues
http://www.youtube.com/watch?v=ubNF9QNEQLA

Person swap (Building on the work of Daniel Simons’ original “Door Study,”)
http://www.whatispsychology.biz/perception-change-blindness-video
L’attention nous permet donc la **sélection** d’une information particulière parmi plusieurs autres qui sont « filtrées ».

Cette sélection peut être influencée par des stimuli saillants **bottom up**,
L’attention nous permet donc la **sélection** d’une information particulière parmi plusieurs autres qui sont « filtrées ».

Cette sélection peut être influencée par des stimuli saillants **bottom up**, une concentration **top down**…
...ou encore elle peut être influencée ou manipulée par une autre personne.
I don’t think the world’s greatest pickpocket would be known, do you? ... I’m more a student of human nature.

- Apollo Robbins
Neuroscience Meets Magic
- by Scientific American
http://www.youtube.com/watch?v=i80nVAwO5xU
4:00 à 9:13 (5 minutes)

(notions abordées : Top down control, Bottom up control, mirror neurons)
Limite de l’attention :

On ne peut pas réaliser deux tâches véritablement en même temps (à part bien sûr les comportements devenus automatiques…)

« multitasking » → on peut apprendre à alterner rapidement entre deux tâches (mais si on introduit une 3e tâche, les performances chutent…)}
On peut aussi apprendre à **inhiber de façon top down** certains **automatismes** comportementaux ou de pensée qui sont **inappropriés** dans un contexte donné.
Le contrôle inhibiteur

Le test du Chamallow
https://www.youtube.com/watch?v=QEQLSJ0zcpQ
Le contrôle inhibiteur

Bref, il faut...
La réponse à inhiber peut être aussi acquise....
On peut aussi résister aux interférences non-pertinentes.

Exemple : Le test de Stroop : nommer la couleur de l’encre

![Exemple de test de Stroop](image)
À ce moment, on observe une activation au niveau du cortex **cortex préfrontal inférieur**.

Or on sait que les neurones de cette région projettent leur axone vers d’autres zones du cerveau impliquées dans ces **automatismes de pensée** (le **sillon intrapariétal latéral**, par exemple).

Ce que l’équipe de Houdé a mis en évidence, c’est que vers l’âge de 6-7 ans, ou avec l’aide d’un parent avant, l’enfant parvient à mettre entre parenthèses sa croyance spontanée pour examiner la situation au moyen de ses outils logiques.

http://www.pourlascience.fr/ewb_pages/a/article-les-neurones-de-la-pensee-libre-36081.php
Dans ces zones, d’autres neurones dits «inhibiteurs» vont prendre le relais localement pour faire taire des populations entières de ces neurones déjà en train de s’activer automatiquement par le stimulus perçu.

Ce cortex préfrontal inférieur constitue donc une sorte de commutateur qui permet de basculer de la pensée heuristique à la pensée algorithmique...

...en permettant à une zone du cortex pariétal associé au comptage de s’activer.

Bref, le cortex préfrontal inférieur permet de bloquer les automatismes mentaux pour activer une pensée discursive et logique.
Le système heuristique et celui algorithmique coexistent très tôt, sans doute dès le début du développement, c'est-à-dire dans les premiers mois de la vie.

La maturation du cortex préfrontal commence seulement à partir de 12 mois et elle dure jusqu'à l'âge adulte.

Anatomiquement, le système inhibiteur est la région du cerveau qui se développe le plus tardivement et le plus lentement.
Grégoire Borst et son équipe ont ainsi utilisé la métacognition pour apprendre aux enfants à reconnaître les contextes difficiles où leurs automatismes peuvent leur jouer des tours.

Concrètement, récupérer une connaissance ou éviter un piège ne demanderait pas les mêmes ressources cognitives. Quand il faut éviter un piège, il faut inhiber les réflexes de la pensée. Or, la connaissance peut être acquise sans parvenir toutefois à éviter le piège. Le but de l’enseignant via les exercices ou évaluations n’est pas le même selon qu’il désire évaluer l’acquisition de la connaissance en elle-même, ou la capacité à éviter les pièges qui sont liés à cette connaissance.
Concrètement, qu’est-ce qui peut favoriser l’apprentissage et la mémoire ?

- Comprendre qu’on peut s’améliorer durant toute notre vie
- Porter attention
- Répéter
Devant la capacité limitée de notre mémoire de travail, on a découvert certains « trucs mnémotechniques ».

Combiner plusieurs éléments en un seul

En regroupant plusieurs items dans un tout qui fait du sens, on réduit le nombre d'items à mémoriser, ce qui facilite la rétention.

Ex. : "Mon Vieux Tu Me Jette Sur Un Nuage."
Autre exemple :

"Mais où est donc Carnior ?"

Pour retenir les conjonctions de coordination (Mais, Où, Et, Donc, Car, Ni, Or).

« chunking » : mémoire court terme limitée
Concrètement, qu’est-ce qui peut favoriser l’apprentissage et la mémoire ?

- Comprendre qu’on peut s’améliorer durant toute notre vie
- Porter attention
- Répéter
- Faire des tests de rappel
Étude versus tests de rappel

Groupe 1 : 4 blocs d’étude, 4 tests (ÉT ÉT ÉT ÉT)

Groupe 2 : 6 blocs d’étude, 2 tests (ÉT ÉÉ ÉT ÉÉ)

Groupe 3 : 8 blocs d’étude, 0 test (ÉÉ ÉÉ ÉÉ ÉÉ)

Les meilleurs résultats de rappel **deux jours plus tard** sont :

- **groupe 1**, puis **groupe 2** et finalement **groupe 3**.

→ Faire des **tests de révision fréquents** nous force à récupérer en mémoire une information récemment apprise

→ Ce rappel est suivi d’une **reconsolidation** qui permet le **stockage plus profond** de cette information en mémoire à long terme.
Concrètement, qu’est-ce qui peut favoriser l’apprentissage et la mémoire ?

- Comprendre qu’on peut s’améliorer durant toute notre vie
- Porter attention
- Répéter
- Faire des tests de rappel
- Bien dormir
Les apprentissage du jour…

Tout apprentissage se traduit par l’activation simultanée de plusieurs aires cérébrales. Ces dernières émettent des signaux vers l’hippocampe, qui conserve une sorte de carte spatio-temporelle d’activité neuronale de ce qui vient d’être appris.
Les apprentissage du jour… sont réactivés et consolidés la nuit.

L’hippocampe réactive un réseau de neurones impliqués, ce qui consolide l’apprentissage.

Loin d’être inactif, le cerveau affiche pendant certains moments du sommeil une activité identique à celle observée pendant la veille. En effet, pour mémoriser les apprentissages récents, l’hippocampe réactive les réseaux de neurones impliqués, ce qui consolide l’apprentissage.
Il semble assez bien établi que les oscillations lentes d’environ 0,75 Hz qui se répandent largement dans tout le cerveau durant le sommeil profond favorisent cette consolidation.

Ce qui est différent des oscillations thêta de 4 à 8 Hz qui elles favoriseraient l’encodage dans l’hippocampe.

http://www.blog-lecerveau.org/blog/2015/06/15/4595/
Un simple **espacement des périodes d’apprentissage** semble avoir un **effet bénéfique** (en plus du sommeil) :

- 4 x 30 min marche mieux que de 1 x 2h
- donc espacer les périodes d’étude (pas 3h avant l’examen)
Concrètement, qu’est-ce qui peut favoriser l’apprentissage et la mémoire ?

- Comprendre qu’on peut s’améliorer durant toute notre vie
- Porter attention
- Répéter
- Faire des tests de rappel
- Bien dormir et espacer les périodes d’apprentissage
- Être motivé
Concrètement, qu’est-ce qui peut favoriser l’apprentissage et la mémoire ?

- Comprendre qu’on peut s’améliorer durant toute notre vie
- Porter attention
- Répéter
- Faire des tests de rappel
- Bien dormir et espacer les périodes d’apprentissage
- Être motivé
- Créer des liens, des associations, du sens

« Apprendre c’est accueillir le nouveau dans le déjà là. »
- Hélène Trocmé Fabre
How experts recall chess positions
By Daniel Simons, on February 15th, 2012

A meaningful configuration (top) and a random configuration (bottom)
Ce qui est efficace, c'est l'organisation et la transformation des données (résumé, synthèse, carte conceptuelle…)

C'est de nous approprier la matière,

bref à faire des liens avec ce qu'on sait déjà.
It's all about having fun. And letting the brain makes strong connections.

The next time you want to remember something, make a fun story of it.

Championnat de mémorisation: un sport extrême
Publié le 29 mars 2009
http://www.lapresse.ca/vivre/sante/200903/29/01-841335-championnat-de-memorisation-un-sport-extreme.php

Parviennent par exemple à mémoriser l'ordre exact d'un jeu de 52 cartes mélangées en 1 minutes 37 secondes.

« It’s all about having fun. And letting the brain makes strong connections. »

« The next time you want to remember something, make a fun story of it »

How to become a Memory Master :
Idriz Zogaj at TEDxGoteborg
https://www.youtube.com/watch?v=9ebJlcZMx3c
Pour les nombres, l’un des systèmes couramment employés par les champion du monde de mémoire consiste à représenter chaque nombre de 0 à 99 par une personne dans une action.

Le 07 peut être incarné par James Bond qui tire au pistolet.

Pour le 66, on peut voir le diable embrochant des enfants avec sa fourche.

Pour le 98, on peut faire le lien avec la Coupe du monde de football de 1998 et voir Zidane shootant dans un ballon.
Si la séquence 986607 est à retenir

ils imaginent Zidane (98) qui embroche (66) James Bond (07).

Et ensuite on passe à six autres chiffres comme 548231, etc.

Et au fur et à mesure, on place ces scènes dans un palais de mémoire pour en retenir l’ordre.
Une métaphore qui résume ce qu'on a vu jusqu'ici et qui va nous amener vers la suite…
Les principes de l’enseignement efficace
http://rire.ctreq.qc.ca/2016/02/enseignement-efficace/

1. La révision quotidienne est une composante importante de l’enseignement efficace. Elle permet de renforcer les connexions entre les différents contenus abordés. Ainsi, le rappel automatique de ces informations chez l’élève libère sa mémoire à court terme lors des activités faisant appel à la résolution de problème et à la créativité par exemple.

2. Présenter la nouvelle matière par petites étapes
Notre mémoire de travail est limitée : elle ne retient que quelques informations à la fois. Il faut donc éviter de la surcharger, et ce, en présentant la nouvelle matière de façon fractionnée et en s’assurant de la maitrise de cette matière avant d’ajouter d’autres informations.

3. Poser des questions
Les enseignants les plus efficaces passent plus de la moitié du temps en classe à expliquer, à faire des démonstrations et à poser des questions aux élèves. Ces questions fréquentes permettent à l’enseignant de suivre l’évolution du niveau de compréhension de la matière par les élèves.

4. Offrir des modèles
Les élèves ont besoin de soutien cognitif pour les aider à apprendre un nouveau contenu. Pour offrir un tel soutien, l’enseignant peut faire du modelage en donnant un exemple tout en réfléchissant à haute voix, afin que les élèves comprennent le raisonnement derrière les actions posées.
5. La pratique guidée
Les élèves ont besoin de temps pour récapituler, élaborer et synthétiser la nouvelle matière afin qu’elle puisse être transférée dans leur mémoire à long terme. Les enseignants efficaces consacrent plus de temps à la pratique guidée.

6. Vérifier la compréhension des élèves
À la suite d’un enseignement, les enseignants moins efficaces demandent au groupe d’élèves s’ils ont des questions, et tiennent pour acquis qu’ils comprennent s’ils n’en ont pas. Les enseignants les plus efficaces vérifient quant à eux la compréhension individuelle de chaque élève après chacune des étapes d’enseignement, et ils poursuivent la pratique guidée au besoin.

7. Viser un taux de réussite élevé
Pour qu’un apprentissage soit optimal, le taux de réussite des élèves dans la réalisation de tâches liées à cet apprentissage devrait être autour de 80%. Ainsi, les élèves apprennent tout en étant exposés à des défis stimulants mais réalistes.

8. Fournir un étayage pour les contenus plus complexes
L’étayage est un soutien temporaire à l’apprentissage. Il peut consister pour l’enseignant à faire du modelage, à faire une démonstration en réfléchissant à haute voix, ou encore à fournir des rappels visuels ou une liste à cocher aux élèves.
9. La pratique autonome
Les moments de pratique autonome permettent de consolider les apprentissages et de les automatiser pour libérer la mémoire de travail.

10. Des révisions chaque semaine et chaque mois
Faire l’effort de récupérer en mémoire une information récemment apprise permet le stockage de cette information en mémoire à long terme. Plus on s’entraine souvent à réactiver cette information, plus les connexions entre celle-ci et les prochaines notions se feront facilement.
Les sciences cognitives (et la « neuro-éducation ») ne veulent pas remplacer la pédagogie.

Mais elles ont accumulé tellement de résultats sur le fonctionnement du cerveau que ne pas en tenir compte serait se priver de savoirs pertinents.

Par exemple : une étude récemment publiée a montré que lorsque nous calculons mentalement combien font $12 + 3$, le cerveau réagit de la même façon que s'il visualisait le passage de 12 à 15 sur une règle graduée.

Pour le cerveau, le calcul mental s’apparenterait, dans une certaine mesure, à un déplacement spatial.

Ce qui plaide pour l’utilisation dans les classes des supports pédagogiques mettant en évidence ce lien: bouliers, règles, dessins, jeux et logiciels éducatifs parce que c'est comme cela que le cerveau traite les quantités!