Retrieving the three-dimensional matter power spectrum and galaxy biasing parameters from lensing tomography
(Corrigendum)

Patrick Simon

Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
e-mail: psimon@astro.uni-bonn.de

A&A 543, A2 (2012), https://doi.org/10.1051/0004-6361/201118224

Key words. methods: data analysis – large-scale structure of Universe – dark matter – errata, addenda

We report a missing factor, $a(\chi)$, in the ξ-related integrands of the original paper. This typographical error in Eqs. (11), (16), and (17) has no impact on our results and conclusions; the correct integrands were used in the original analysis.

A detailed list of the three typographical errors follows. First, the integral for the shear-shear correlations in Eq. (11) should have the factor $a(\chi)$ in the denominator of the integrand (instead of just $a(\chi)$),

$$\xi^{(ij)}(\theta; m, n) = \frac{9H_0^4\Omega_m^2}{8\pi c^2 a^2} \int_0^{\chi_h} d\chi \frac{W^{(i)}(\chi)W^{(j)}(\chi)}{a^2(\chi)} J_0(\frac{\ell}{f_{k}(\chi)\theta}) \int_{k_{\min}}^{k_{\max}} dk f_k(\theta) P_{\delta}(\frac{s}{f_k(\chi)\theta}, \chi).$$ \hspace{1cm} (1)

Second, the integral for the basis functions in Eq. (16) should also have the factor $a^2(\chi)$,

$$X^{(ij)}(\theta; m, n) = \frac{9H_0^4\Omega_m^2}{8\pi c^2 a^2} \int_0^{\chi_h} d\chi \frac{W^{(i)}(\chi)W^{(j)}(\chi)}{a^2(\chi)} J_0(\frac{\ell}{f_{k}(\chi)\theta}) \int_{k_{\min}}^{k_{\max}} dk f_k(\theta) P_{\delta}(\frac{s}{f_k(\chi)\theta}, \chi).$$ \hspace{1cm} (2)

Third, the integral in Eq. (17) must have the factor $a^2(\chi)$,

$$\xi^{(ij)}(\theta; m, n) = \frac{9H_0^4\Omega_m^2}{8\pi c^2 a^2} \int_0^{\chi_h} d\chi \frac{W^{(i)}(\chi)W^{(j)}(\chi)}{a^2(\chi)} J_0(\frac{\ell}{f_{k}(\chi)\theta}) \int_{k_{\min}}^{k_{\max}} dk f_k(\theta) P_{\delta}(\frac{s}{f_k(\chi)\theta}, \chi).$$ \hspace{1cm} (3)

All three of the correct equations shown here were used in our original analysis. Therefore, the corrections have no impact on our results and conclusions of the original paper.