DAME: Domain Adaptation for Matching Entities

Mohamed Trabelsi
mot218@lehigh.edu
Lehigh University
Bethlehem, PA, USA

Jeff Heflin
heflin@cse.lehigh.edu
Lehigh University
Bethlehem, PA, USA

Jin Cao
jin.cao@nokia-bell-labs.com
Nokia Bell Labs
Murray Hill, NJ, USA

ABSTRACT

Entity matching (EM) identifies data records that refer to the same real-world entity. Despite the effort in the past years to improve the performance in EM, the existing methods still require a huge amount of labeled data in each domain during the training phase. These methods treat each domain individually, and capture the specific signals for each dataset in EM, and this leads to overfitting on just one dataset. The knowledge that is learned from one dataset is not utilized to better understand the EM task in order to make predictions on the unseen datasets with fewer labeled samples. In this paper, we propose a new domain adaptation-based method that transfers the task knowledge from multiple source domains to a target domain. Our method presents a new setting for EM where the objective is to capture the task-specific knowledge from pretraining our model using multiple source domains, then testing our model on a target domain. We study the zero-shot learning case on the target domain, and demonstrate that our method learns the EM task and transfers knowledge to the target domain. We extensively study fine-tuning our model on the target dataset from multiple domains, and demonstrate that our model generalizes better than state-of-the-art methods in EM.

CCS CONCEPTS

• Computing methodologies → Machine learning: Transfer learning.

KEYWORDS

entity matching, transfer learning, domain adaptation

ACM Reference Format:
Mohamed Trabelsi, Jeff Heflin, and Jin Cao. 2022. DAME: Domain Adaptation for Matching Entities. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (WSDM ’22), February 21–25, 2022, Tempe, AZ, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3488560.3498486

1 INTRODUCTION

Entity matching (EM) identifies data records that refer to the same real-world entity. EM is an important step in data cleaning and integration [6], knowledge base enrichment [25], and entity linking [33]. Researchers have studied EM for many years in the context of data mining and integration.

In the past few years, deep learning (DL) has led to a significant improvement in multiple tasks, where DL-based methods achieved state-of-the-art (SOTA) results for text, image, and speech data. In many cases, DL models are trained end-to-end to automatically extract features and build predictive models. This significantly reduces the human effort that is needed in traditional methods for feature engineering, and gives the model the ability to capture specific features that are better than the hand-crafted ones for multiple tasks. Following the success of DL models, researchers have focused on exploring DL in data cleaning and integration. In particular, multiple DL methods have been proposed to solve the EM task [9, 11, 16, 24, 43]. Deep contextualized language models (DCLM), like BERT [8], RoBERTa [21], and DistilBERT [30] have been recently proposed to solve multiple tasks [5, 29, 35–37, 39]. Building on DCLM, Ditto [20] achieved SOTA results in EM.

Although DL methods have led to a significant improvement in the EM task, these models need a huge amount of labeled data for each domain. DL-based models are trained in a supervised setting for each dataset in EM, where a different model is obtained and is fully fine-tuned on a specific dataset. This means that existing models capture the specific signals for each dataset in EM which leads to overfitting on just one dataset. In addition, the knowledge that is learned from one dataset is not explored to better understand the EM task so that the predictions in other datasets can be made with fewer labeled samples.

In order to overcome the limitations of prior methods, we propose a new method, called Domain Adaptation for Matching Entities (DAME), that transfers the task knowledge from multiple source domains to a target domain. Our method presents a new setting for EM where the objective is to capture task-specific knowledge from pretraining our model using multiple source domains, then testing our model on a target domain. In our study, we are interested in two aspects of our model. First, we study the zero-shot learning (ZSL) case of DAME on the target domain. Second, we study the effect of fine-tuning our proposed model on the target domain using different percentages of training data, and we compare our fine-tuned model to SOTA methods. We formulate EM as a mixture of experts with a global shared model [13, 17, 41] where each expert is trained on an individual source domain, and the global model is trained on all domains. Then, we aggregate the features from the experts using a global model-guided attention mechanism. We train DAME with unsupervised domain adaptation (DA) loss functions [13, 41] to reduce the domain shift between the source and target domains.

In summary, we make the following contributions: (1) We propose a new DA-based method for EM. Our new formulation of EM is based on the mixture of experts where we transfer learning from multiple source domains to a target domain. (2) We study the ZSL
case on the target domain and demonstrate that our method learns
the EM task and transfers the task knowledge to the target domain.
(3) We extensively study fine-tuning our model on the target dataset
from multiple domains, and demonstrate that our model generalizes
better than SOTA methods for most of the datasets.

2 RELATED WORK

2.1 Entity matching

EM [1, 9, 16, 20, 24] is the field of research that solves the problem
of finding records that refer to the same real-world entity. EM,
also known as data matching, record linkage, entity resolution,
etc, has been intensively studied in recent years because EM is
an important step in data cleaning and integration. Given two
collections of records D_1 and D_2, EM classifies a pair of entities
$(e_1, e_2), \forall e_1 \in D_1, e_2 \in D_2$ into match or non-match. The records
from D_1 and D_2 can have the same or different set of attributes.
The value of each attribute is composed of a sequence of tokens.

Comparing all record pairs from D_1 and D_2 grows quadrati-
cally. Therefore, a set of candidate pairs $C \subset D_1 \times D_2$, where
$|C| \ll |D_1 \times D_2|$ is selected in a separate step, called blocking,
before running a computationally expensive algorithm for EM. Af-
fter the blocking step, each record pair $(e_1, e_2) \in C$ is compared
to predict a binary label indicating a match or non-match. Prior
works have proposed string similarity-based methods to compare
records [7, 10, 22]. Traditional supervised classifiers have been pro-
posed to map the string similarities-based feature vector to a binary
class label [4, 6]. Recently, DL-based methods have been proposed
to solve EM [9, 11, 16, 20, 24, 43]. The DL methods of EM can be
categorized into attribute- and record-level comparison methods.
Attribute comparators predict the label of a pair of records based
on the signals collected from matching values of the same attribute.
DeepMatcher [24], which is the SOTA attribute-level comparator,
explores multiple techniques to compute the attribute representa-
tion from word embedding, where combining both bidirectional
GRU and decomposable attention [27] leads to the best results.
The SOTA method in EM is a record-based comparator known as
Ditto [20] which is based on DCLM. Ditto models each record by
alternating between attributes and data values with two additional
special tokens [COL] and [VAL]. Then, Ditto adapts the sentence
pair classification setting to EM in order to compare record pairs
using the special tokens [SEP] and [CLS] that are added into the
input. In addition, Ditto explores domain-specific optimizations by
injecting domain knowledge into the input.

2.2 Domain adaptation

DA studies the transfer of task knowledge from a single or multiple
labeled source domains to an unlabeled target domain. In this paper,
we are interested in the case of multiple source domains known
as Multi-Source DA (MSDA). Using only unlabeled data from the
target domain is known as Unsupervised DA (UDA).

Existing approaches in UDA focus on reducing the domain shift
between the source and target domains by aligning feature vectors
[2, 26]. Representation learning methods have been proposed for
UDA such as domain adversarial networks [32, 42]. Other represen-
tation learning methods include comparing the marginal distribu-
tion between the source and target domains in an adversarial way
[13] and minimizing the covariance between the source and target
representations [34]. An effective strategy in the case of MSDA is
known as a mixture of experts [13, 17, 41]. Kim et al. [17] proposed
to incorporate an attention mechanism to combine the predictions
from multiple models trained on the source domains. Guo et al. [13]
proposed a method that is based on a mixture of experts where
the posteriors of the models are combined using a point-to-set
Mahalanobis distance metric between an input sample and source
domains. Wright and Augenstein [41] improved the performance
of mixture of experts using DCLM as experts in source domains.
This work follows a line of research that investigates the use of
Transformers [38] in DA [14, 15, 23, 28]. Ma et al. [23] improved
the performance of BERT in the target domain for natural language
inference by incorporating a similarity of a given target domain to
source domains with curriculum learning [3]. AdaptaBERT [15] is
a BERT-based model that is proposed in the case of UDA for the
sequence labeling by adding a masked language modeling in the
target domain. Fine-tuning of BERT on the target domain was also
shown to be effective in the sentiment analysis task [28]. Gururan-
gan et al. [14] combines both domain and task adaptive pretraining
to improve the performance of RoBERTa on NLP tasks.

3 PROBLEM STATEMENT

Our formulation of DA in EM task is based on the unsupervised
multi-source DA setting which consists of K labeled source domains
$\{S_1, S_2, \ldots, S_K\}$, where $S_i = (x_i^S, y_i^S)$, x_i^S is the j-th instance of S_i
with a label y_i^S, and unlabeled target domain $T = (x_j^T, y_j^T)$ (x_j^T
is the j-th instance of T). The objective is to learn a classifier M
using labeled data from source domains and unlabeled data from the
target domain so that (1) M produces accurate predictions on the
target domain without fine-tuning (ZSL case), and (2) M generalizes
better than SOTA methods on the target domain after partially or
fully fine-tuning.

4 DOMAIN ADAPTATION FOR MATCHING
ENTITIES

In this section, we introduce our proposed method DAME which
is a DA-based method for matching entities. We first describe the
architecture of DAME, and then present the DA-based training
strategy to update the parameters of our proposed model. Finally,
we present our fine-tuning strategy in the case of using labeled
samples from the target domain to update DAME.

4.1 DAME architecture

There are multiple datasets that are available for the EM task. There-
fore, our model is based on formulating the EM as a mixture of
domain experts in the case of DA. Each expert model is trained
on one source domain. We denote by f_{S_i}, the expert model that
is trained on S_i. Training a mixture of experts and shared models
improves the performance when multiple source domains are avail-
able as shown in prior works [13, 17, 41]. Therefore, we also add a
global model g that is trained using all the source domains $\{S_1, S_2, \ldots, S_K\}$. DCLM have been proposed in the DA setting to solve multiple
tasks [14, 15, 23, 28, 41]. We propose to incorporate DCLM
in our DA-based model to solve the EM task. Each \(f_b \) and \(g \) are initialized using DistillBERT [30] which is a distilled version of BERT with fewer parameters. We choose to use DistillBERT as the main component for the expert and global models for two reasons. First, by incorporating DCLM, we compare records in their entirety which has been shown to be more effective than attribute-based comparisons. Second, DistillBERT has a reduced size and comparable performance to BERT, and our objective is to include many source domains while keeping the time and memory complexity reasonable. In general, our proposed model \(M \) has four modules:

\[
M = N \circ \text{Att} \circ F \circ \text{Rep}
\] (1)

\(\text{Rep} \) is a representation module that produces the sequence input from a pair of records \(x, f \) is a feature extractor that produces multiple embeddings for the sequence input of the record pair \(x \) using expert models \(\{ f_b \}_{i=1}^{K} \) and the global model \(g \). \(\text{Att} \) is an attention module that aggregates the embeddings of the expert models to produce the final multi-source embedding, and \(N \) is a classification layer that maps the final embedding to a confidence score to make a matching/non-matching decision on a record pair.

4.1.1 Representation module \(\text{Rep} \). Each record pair \(x = (e_1, e_2) \) is composed of two data entries \(e_1 \in D_1 \) and \(e_2 \in D_2 \) that correspond to candidate rows from two collections of data entries \(D_1 \) and \(D_2 \). Both \(D_1 \) and \(D_2 \) are from the same source domain. Each data entry \(e_i = \{ \text{attr}_j, \text{val}_i \} \}_{j \in C} \) is a set of attribute-value pairs denoted by \(\langle \text{attr}_j, \text{val}_i \rangle \), where \(C \) is the number of attributes in each record. We follow the encoding of Ditto [20] for serializing data entries to produce a sequence for each record from the attribute-value pairs:

\[
\text{rep}_i = [\text{COL}]\text{attr}_1[\text{VAL}]\text{val}_1 \ldots [\text{COL}]\text{attr}_C[\text{VAL}]\text{val}_C
\] (2)

where \([\text{COL}]\) and \([\text{VAL}]\) are special tokens that denote the start of attributes and values, respectively. The input of EM is a pair of records \(x = (e_1, e_2) \). So, \(\text{Rep} \) takes as input a pair of records, and produces a sequence pair of serialized entries that is given by:

\[
\text{Rep}(x) = \text{Rep}(e_1, e_2) = [\text{CLS}]\text{rep}_1[\text{SEP}]\text{rep}_2[\text{SEP}]
\] (3)

where \([\text{SEP}]\) and \([\text{CLS}]\) are BERT special tokens that are added into the sequence similar to the sentence pair classification setting.

4.1.2 Feature extractor \(F \). We have \(K + 1 \) DistillBERT models: \(K \) expert models \(\{ f_b \}_{i=1}^{K} \) and a global shared model \(g \). We use \(\text{Rep}(x) \) as input to the \(K + 1 \) models to extract \(K \) source-domain-based embeddings denoted by \(f_b \), \(i = 1, \ldots, K \), and a global model-based embedding denoted by \(g \). The embeddings from the source domain models and the global model are extracted using the hidden state of the [CLS] token from the last Transformer block in each DistillBERT model. In conclusion, the output of \(F \) is given by:

\[
\text{F(Rep(x))} = \{ f_b \text{Rep}(x) \}_{i=1}^{K} \cup g(\text{Rep}(x))
\] (4)

4.1.3 Attention module \(\text{Att} \). When aggregating the embeddings that are extracted using \(F \), the embeddings from the source domains and the global model should not be treated equally as there are domains that are more relevant to a given record pair \(x \) than others. We use a parameterized attention model that attends to all domains using a dot product-based attention where three parametric matrices are introduced: a query matrix \(Q \in \mathbb{R}^{d \times d} \), and a value matrix \(V \in \mathbb{R}^{d \times d} \), where \(d \) is the dimension of the embedding. We first concatenate all the expert embeddings from \(F(\text{Rep}(x)) \) to form an embedding matrix denoted by \(E \in \mathbb{R}^{K \times d} \). The attention operations are defined by:

\[
\begin{align*}
\alpha &= g(\text{Rep}(x))^T Q \in \mathbb{R}^{1 \times d} \\
\mathcal{K} &= EK_e \in \mathbb{R}^{K \times d} \\
\mathcal{V} &= EV \in \mathbb{R}^{K \times d} \\
\text{Att}(\text{Rep}(x), Q, K, V) &= \text{softmax}\left(\frac{\alpha K_e^T}{\sqrt{d}} \right) V \in \mathbb{R}^{1 \times d}
\end{align*}
\] (5)

An important design choice in our attention module \(\text{Att} \) is the use of the global representation \(g(\text{Rep}(x)) \) to map the query matrix \(Q \) to a query vector \(\alpha \). Given that the global model is trained on all the source domains, we expect the global model’s embedding to transfer to the target domain, and by consequence we obtain more accurate attention weights in the target domain to aggregate the source domains, mainly in the zero-shot learning case. The output of the attention module is used as input to the classification layer \(N \) to predict the matching score of the input record pair \(x \).

4.2 Training strategy

In the multi-source DA setting, we have \(K \) labeled source domains \(\{ S_i \}_{i=1}^{K} \), where \(S_i = \{ \langle x_{ij}, y_{ij} \rangle \}_{j=1}^{N_i} \), and an unlabeled target domain \(T = \{ x_{j} \}_{j=1}^{|T|} \). Our training phase is based on the multi-task learning setting. In each batch for the training phase, we sample \(B \) pairs of records \(x_j = (x_{j_1}, y_{j_1}), (x_{j_2}, y_{j_2}), \ldots, (x_{j_B}, y_{j_B}) \) from a given source \(S_i \). Our loss function \(\mathcal{L} \) is composed of four parts and is given by:

\[
\mathcal{L}(x_j) = \lambda_1 \mathcal{L}_1(x_j) + \lambda_2 \mathcal{L}_2(x_j) + \lambda_3 \mathcal{L}_3(x_j) + \lambda_4 \mathcal{L}_4(x_j)
\] (6)

where \(\lambda_1, \lambda_2, \lambda_3, \) and \(\lambda_4 \) are hyperparameters that control the contribution of each loss to the final loss function \(\mathcal{L} \); each of \(\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \) and \(\mathcal{L}_4 \) represents a task-specific loss.

4.2.1 Expert domain loss \(\mathcal{L}_1 \). \(f_b \) represents the expert model of \(S_i \), for all \(i \in 1, 2, \ldots, K \). To optimize each expert model \(f_b \), we add a classification layer \(\mathcal{N}_b \) that predicts the probabilities of matches and non-matches for each domain \(S_i \). So, in total we add \(K \) classification layers. Given that \(x_j \) is sampled from the \(j \)-th domain, the domain expert loss \(\mathcal{L}_1 \) is given by:

\[
\mathcal{L}_1(x_j) = \frac{1}{B} \sum_{i=1}^{K} \text{CrossEnt}(\mathcal{N}_i(f_b(\text{Rep}(x_{ij})))}, y_{ij})
\] (7)

where \(\text{CrossEnt} \) denotes the cross entropy loss function.

4.2.2 Global model loss \(\mathcal{L}_2 \). The global model is trained on all the source domains in order to learn a universal embedding for the EM task that supports transfer to the target domain while maintaining important matching signals for each source domain. In addition, the embedding of the global model is multiplied with the query matrix \(Q \) in the attention module \(\text{Att} \) to compute the contribution of each source domain to the final representation. After learning how to aggregate features in the training phase on source domains, the global model guides the attention module \(\text{Att} \) to pick the most important source domains for the target domain during the testing phase. To optimize the global model, we add a classification layer
4.2.4 Adversarial loss L_4

The global model g plays an important role in the attention module Att. Learning a domain invariant embedding from the global model makes the transfer to the target domain smoother as the attention weights should be more accurate. To obtain a domain invariant representation from g, we adapt the domain adversarial training for EM. Similar to the generative adversarial network (GAN), a min-max objective function is introduced to optimize the parameters of the generator which is the global model g and the discriminator denoted by D. The parameters of D are optimized to predict the domain of a sample x using $g(\text{Rep}(x))$, and the parameters of g are optimized to produce a confusing representation $g(\text{Rep}(x))$ for D. We alternate between updating D and g.

Given that X_j is sampled from the j-th domain, in order to update D, we minimize L_D which is given by:

$$L_D(X_j) = \frac{1}{B} \sum_{i=1}^{B} \text{CrossEnt}(D(f_j(\text{Rep}(x_j^i))), y_j^i)$$

L_D is minimized with respect to only the parameters of D. Then, we set $L_4(X_j) = -L_D(X_j)$ to update the parameters of g when minimizing L (the global model is fixed). Unlabeled samples $T = \{x_j^i\}_{j=1}^{|T|}$ from the target domain can also be considered as an additional domain when updating the parameters of D and g by alternating between minimizing L_D and $-L_D$, respectively. In this case, the total number of labels that are used in L_D is equal to $K + 1$.

4.3 Fine-tuning DAME on the target domain

During fine-tuning DAME on the target domain, we only update the weights of the global model g, attention weights Att, and the classification layer \mathcal{L}_2, and we keep the weights of the expert models f_1, \ldots, f_k frozen. The objective of the fine-tuning step is to slightly update the parameters of DAME to incorporate dataset-specific signals related to the target domain without changing the parameters of expert models. There are multiple fine-tuning scenarios on the target domain. First, we can use all the samples from the target domain or only a limited budget of samples for fine-tuning. Second, in the case of having access to only a limited budget of samples, we can randomly choose samples, or adapt active learning (AL) selection strategies to select the most promising samples. We experiment with all the scenarios and produce AL results using methods from [12, 31, 40].

5 EVALUATION

5.1 Data collections

Table 1 represents all the 12 datasets that we use in our experiments. Datasets are collected from the entity resolution benchmark datasets [19] and the Magellan data repository [18]. These datasets cover multiple domains including clothing, electronics, citation, restaurant, products, music, and software. Each dataset is composed of candidate pairs of records from two structured tables that have the same set of attributes. The datasets vary in the size and this simulates real-world scenarios where there are some domains that are more frequent than others. The total number of attributes in all datasets ranges from 1 to 8. The rate of matches in all datasets ranges from 9.39% to 24.48%. Clearly, there is a class imbalance in all datasets where the non-matching class is significantly larger than the matching class. Each dataset is split into training, validation, and testing, and we use the same pre-splited datasets in Ditto [20].

5.2 Baselines

We compare the performance of our proposed model against the best performing method in the category of attribute-level comparators which is DeepMatcher [24] (the previous SOTA), and the SOTA in EM which is Ditto [20]. We are interested in two aspects of our proposed model DAME. First, we evaluate the ZSL case for DAME by comparing the performance to baselines that are trained on different percentages of training data. Second, we compare the results.
of fine-tuning DAME on the target domain against training the baselines on the target domain.

5.3 Experimental Setup

We evaluate the performance of DAME and baselines on the EM task using precision, recall, F1-score, and accuracy of predictions on the testing set. We use \uparrow and \downarrow to denote that the difference in a given evaluation metric between Ditto trained on 50% of data and DAME (ZSL) is less than 0.15, and less than 0.1, respectively. We use \downarrow to denote that either the difference between Ditto trained on 50% of data and DAME (ZSL) is less than 0.05 or DAME (ZSL) is better than Ditto trained on 50% of data. DAME is trained for 3 epochs on the source domains. We compare fine-tuning results for DAME and baselines after training for 10 epochs on the same percentage of training data from the target domain. The hyperparameters λ_1, λ_2, λ_3, and λ_4 are fine-tuned for one dataset and then kept the same for all the experiments. We distinguish 3 sets of experiments based on the structure of datasets. The first set of experiments studies DA for Shoes, Cameras, Computers, and Watches. These datasets have a unique attribute which is title. The second set of experiments also studies DA for datasets that have similar structures which are DBLP-GoogeScholar and DBLP-ACM. The set of attributes for these two datasets are title, authors, venue, and year. The third set of experiments is related to DA in the wild where we study DA using all 12 datasets regardless of the structures and domains.

5.4 Experimental results

5.4.1 DA for Shoes, Computers, Watches, Cameras. Figure 1 shows the comparison of DAME results against Ditto for Shoes, Computers, Watches, and Cameras. The plots report two evaluation metrics: F1 score and accuracy. In all figures, the light blue plot represents the F1 score of DAME, and is compared against the green plot that represents the F1 score of Ditto; the red plot represents the accuracy of DAME, and is compared against the blue plot that represents the accuracy of Ditto; the magenta color represents the F1 score of the ZSL for the target domain, which is equivalent to 0% of supervised training data from the target domain.

![Figure 1: Comparison of DAME results against Ditto for datasets with similar structures (Shoes, Computers, Watches, and Cameras). The plots report two evaluation metrics: F1 score and accuracy. In all figures, the light blue plot represents the F1 score of DAME, and is compared against the green plot that represents the F1 score of Ditto; the red plot represents the accuracy of DAME, and is compared against the blue plot that represents the accuracy of Ditto; the magenta color represents the F1 score of the ZSL for the target domain, which is equivalent to 0% of supervised training data from the target domain.](image)

Method Name	Precision	Recall	F1	Accuracy
DeepMatcher [24]	0.9489	0.9373	0.9431	0.9789
Ditto [20]	0.9358	0.9542	0.9449	0.9793
DAME (ZSL)	0.9098	0.8579	0.8831	0.9576
DAME (full training data)	0.9354	0.9719	0.9533	0.9850

Table 2: DA results for EM using datasets with similar structures. (a) the target dataset is DBLP-GoogeScholar and the source dataset is DBLP-ACM; (b) the target dataset is DBLP-ACM and the source dataset is DBLP-GoogeScholar.
Figure 2: Comparison of F1 score results with different numbers of expert domains against using global model representation during testing phase on the target domain.

Table 3: F1 results for AL after DA.

Method	Shoes	Computers	Watches	Cameras
DAME (ZSL)	0.7527	0.7946	0.7936	0.8507
DAME (full training data)	0.8483	0.8947	0.9371	0.8941
Random Sampling (5%)	0.7527	0.8181	0.8004	0.8664
Least Confidence [40] (5%)	0.7818	0.8402	0.8209	0.8745
Entropy Sampling [40] (5%)	0.7859	0.8464	0.8166	0.8748
USDE [12] (5%)	0.7877	0.8437	0.8151	0.8775
BALD [12] (5%)	0.7852	0.8472	0.8133	0.8705
K-Centers Greedy [31] (5%)	0.7674	0.8271	0.8206	0.8687
K-Means [31] (5%)	0.7527	0.8042	0.8097	0.8596
Core-Set [31] (5%)	0.7621	0.8304	0.8168	0.8734
Random Sampling (25%)	0.8120	0.8418	0.8528	0.8741
Least Confidence [40] (25%)	0.8228	0.8804	0.8677	0.8858
Entropy Sampling [40] (25%)	0.8207	0.8770	0.8740	0.8941
USDE [12] (25%)	0.8286	0.8741	0.8688	0.8842
BALD (25%)	0.8247	0.8835	0.8872	0.8941
K-Centers Greedy [31] (25%)	0.8155	0.8771	0.8689	0.8780
K-Means [31] (25%)	0.8057	0.8658	0.8694	0.8737
Core-Set [31] (25%)	0.8164	0.8696	0.8812	0.8776

most fractions of the training data) performance than Ditto for all datasets which means that DAME generalizes better than existing methods in EM for datasets with similar structures. This can be explained by the important role of DA in learning the task so that the weights are better warmed up for EM.

5.4.2 DA for DBLP-GoogleScholar, DBLP-ACM. Table 2 summarizes the performance of different approaches on the second set of datasets with the same structure which is composed of DBLP-GoogleScholar and DBLP-ACM. In this case, we have one target dataset and one source dataset. We achieve high results for DAME (ZSL) for both datasets. In addition, fine-tuning DAME slightly increases the F1 and accuracy for both datasets. So, consistent with the first set of experiments, we conclude that DAME transfers the task knowledge from the source domains to a target domain in the case of datasets with similar structures.

5.4.3 DA in the wild. We study the case of transferring knowledge between datasets with different domains and structures. We call this setting DA in the wild which simulates real-world scenarios. Table 4 (end of the paper) shows extensive experiments on 12 datasets reporting evaluation metrics for multiple methods. DAME (ZSL) achieves a better F1 score than DeepMatcher trained with 50% of training data from the target domain for 7 out of 12 datasets. The difference between the F1 score of Ditto trained on 50% of data and DAME (ZSL) is less than 0.1, and 0.05 for 83% and 41% of datasets, respectively. By comparing the F1 score of fine-tuning all methods using 50% of training data from the target domain, we achieve SOTA results for 10 out of 12 datasets. By comparing the F1 score of fine-tuning all methods using all training data from the target domain, we achieve SOTA results for 10 out of 12 datasets. This means that DAME generalizes better than existing methods for datasets in the wild.

5.4.4 Expert models vs Global model. Figure 2 shows the comparison of F1 score results with different numbers of expert domains against using the global model representation during the testing phase on the target domain in the case of ZSL. The x-axis represents the number of experts that we use for predictions. For example, if the number of experts is equal to 6, it means that we randomly choose 6 experts and we drop the remaining 5 experts. Each data point in Figure 2 represents an average of 5 trials. The dashed line represents the F1 score for the global model. For 10 out of 12 datasets, combining multiple experts using the attention network \(A_{\text{tr}} \) leads to better results than the global model. Figure 2 shows that the fewest number of experts needed to outperform the global model was 5 (DBLP-ACM); the most required was 11 (Cameras). Overall, we obtain better F1 scores for the mixture of experts when we increase the number of experts. This means that the experts help to better understand the EM task, and therefore transfer the learned task knowledge to the unseen target domain.

5.4.5 DAME with Active learning. So far, we have discussed the performance of fine-tuning DAME using randomly selected samples from the target domain. To improve the results of fine-tuning our model, we investigate multiple AL selection techniques given a limited budget of labeled instances. Table 3 shows the results of multiple AL selection methods applied to the DAME (ZSL) model. The starting point is our DA-based model which is not fine-tuned on the target domain, and the best performance corresponds to DAME fine-tuned on all training data from the target domain. We
The green and red colors represent randomly selected data points from the testing set of the target domain with label 0 and label 1, respectively.

Therefore, by fine-tuning on these samples from the training data, the predictions from the classification layer \(N \) of our model \(M \) accurately reflect the data points where DA was unsuccessful.

Table 3 shows that the confidence-based methods lead to better results than the embedding-based methods. In particular, when we select 25% of samples using the BALD method for the Cameras dataset, we achieve the same F1 score of a fully fine-tuned DAME model. For example, for a budget of \(b \) samples, Least Confidence corresponds to the top \(b \) samples with the lowest confidence level. Multiple predictions for a given sample are needed for USDE and BALD to compute the uncertainty functions, and we obtain these different predictions by activating the dropout layers during the inference phase on the target domain. The second group is based on the embeddings of samples from the target domain that are obtained using the DAME (ZSL) model. For example, for Computers and DBLP-ACM, we obtain embeddings that respect the matching and non-matching classes as shown in Figure 3 (a) and (b), respectively. On the other hand, for Amazon-Google and Walmart-Amazon, there are green dots that are closer to the blue dots than the gray dots as shown in Figure 3 (c) and (d), respectively, and this leads to incorrect predictions for DAME (ZSL).

6 CONCLUSIONS

We have shown that our proposed model transfers learning from multiple source domains to an unseen target domain in the EM task. We formulate the EM task as a mixture of experts that capture task-specific knowledge from pretraining on multiple source domains and testing on a target domain. We evaluate DAME in two aspects. First, we study the ZSL case on the target domain and demonstrate that DAME learns the EM task and transfers knowledge to the target domain. Second, we study fine-tuning DAME on the target domain and demonstrate that DAME generalizes better than SOTA methods for most of the datasets. We showed that our results hold in two scenarios which are EM for datasets with similar structures and EM in the wild. Our experimental section contains extensive experiments over 12 datasets with different domains, sizes and structures. In addition, we showed the importance of selecting a specific set of samples in the fine-tuning of the target domain by studying AL methods with limited budget. Future work includes extending our model to pairs of records with different sets of attributes, and enriching our DA-based model with external knowledge, such as knowledge graphs, to better understand the EM task and therefore transfer more knowledge to the target domain.
Target dataset	Method	Precision	Recall	F1	Accuracy
Fodors-Zagats	DAME (full training data)	0.942	0.978	0.960	
	Ditto (50% training data)	0.934	0.978	0.956	
	DeepMatcher[24] (50% training data)	0.939	0.966	0.957	
	DeepMatcher[24] (full training data)	0.927	0.924	0.924	
Beer	DAME (full training data)	0.781	0.852	0.815	0.954
	Ditto (50% training data)	0.783	0.854	0.824	0.952
	DeepMatcher[24] (50% training data)	0.786	0.837	0.811	0.949
	DeepMatcher[24] (full training data)	0.730	0.754	0.742	0.934
iTunes-Amazon	DAME (full training data)	0.809	0.973	0.897	0.988
	Ditto (50% training data)	0.811	0.970	0.942	0.988
	DeepMatcher[24] (50% training data)	0.813	0.970	0.942	0.988
	DeepMatcher[24] (full training data)	0.755	0.787	0.769	0.932
DLP-ACM	DAME (full training data)	0.887	0.965	0.945	0.981
	Ditto (50% training data)	0.888	0.963	0.944	0.981
	DeepMatcher[24] (50% training data)	0.890	0.961	0.944	0.981
	DeepMatcher[24] (full training data)	0.865	0.940	0.933	0.975
DBLP-Googelescholar	DAME (full training data)	0.584	0.868	0.709	0.859
	Ditto (50% training data)	0.589	0.868	0.708	0.858
	DeepMatcher[24] (50% training data)	0.592	0.868	0.708	0.857
	DeepMatcher[24] (full training data)	0.569	0.848	0.703	0.840
Walmart-Amazon	DAME (full training data)	0.590	0.842	0.710	0.840
	Ditto (50% training data)	0.591	0.842	0.710	0.840
	DeepMatcher[24] (50% training data)	0.592	0.842	0.710	0.840
	DeepMatcher[24] (full training data)	0.569	0.840	0.703	0.840
Walmart-Amazon	DAME (full training data)	0.682	0.873	0.790	0.928
	Ditto (50% training data)	0.682	0.873	0.790	0.928
	DeepMatcher[24] (50% training data)	0.682	0.873	0.790	0.928
	DeepMatcher[24] (full training data)	0.661	0.860	0.779	0.919

Table 4: DA results for EM in the wild.
