Effect of composition and heat treatment on porosity and microstructures of technical ceramics made from kaolin and IG-017 additive

Emese Kurovics¹, László A. Gömze¹,², Jamal Eldin F. M. Ibrahim¹ and Ludmila N. Gömze³

¹Institute of Ceramics and Polymer Engineering, University of Miskolc, Hungary
²IGREX Engineering Service Ltd, Igrici, Hungary
³Tomsk State University, Russia

E-mail: fegomz@uni-miskolc.hu, mse205@gmail.com and igrex2009@yandex.ru

Abstract. Based on conventional kaolinite and IG-017 bio-original additives of IGREX Ltd. the authors have developed new ceramic composite materials for different industrial purposes. In this work, different powder mixtures of kaolinite and IG-017 bio-original additive were milled and uniaxially pressed at different compaction pressures into cylindrical discs, after compaction, the discs were sintered in electric kiln under oxidation atmosphere and in oxygen-free atmosphere. Using the oxygen-free sintering process, new high porosity ceramic materials were created. Through the examination of the microstructure of the produced specimens the authors have found that the ceramic structure is reinforced with carbon nanofibers.

1. Introduction
Recently, large amount of ceramic materials and ceramic matrices composites (CMC) are developed [1-11] and used in the industries because of their low density [12-15], hardness [17-20], wear resistance [21-29], toughness [30-34], mechanical strength [35-44], chemical [45-49], biological [50-52] and physical [53-60] properties. Many researches have been conducted to find low-cost solutions for the manufacture of porous ceramic composites, such as the combination of kaolin and alumina raw materials, to increase the toughness [61-63]. For these purposes the authors generally use highly expensive materials and costly technical equipment and processes [64-71]. Nowadays, it is necessary to produce high performance ceramic composites with reasonably priced complex materials for extreme consumptions and applications [72-85].

In this research work, our aims are to develop high porosity ceramic matrix materials on the basis of not expensive conventional kaolinite and IG-017 additive powders and to find optimal material and morphological structures.

2. Materials and experiments
To develop new technical ceramic materials with high mechanical performance commercial kaolinite powders KKA-HB and IG-017 refined bio-original additives of IGREX Ltd were used. Figure 1 shows the grain size structures and distributions of used materials made by Malvern Mastersizer X Type Laser Granulometer.
To optimize the heat treatment, sintering temperature curves and cycles, preliminary thermo-analytical tests were done for both components before their mixing and mechanical activating (Fig. 2). The thermo-analytical properties were measured by MOM Derivatograph-C. The achieved DTA curve of our high purity kaolinite powder was fully confirm the research works of Gabriel Varga and Igor Štubna [86, 87], where the dehydration process starts at about 452 °C and finish at 973 °C. In the present case the dehydration process is mostly intensive at 529.7 °C, meanwhile the IG-017 additive is highly loss the surface-absorbed moisture at 87.4 °C. At the same time the DTG curve shows that, the starting temperature of outgassing process of organic components is 242.8 °C, while the most intensive outgassing temperature is 281.6 °C. The organic component is mostly burned and generated organic gasses at 320.5 °C. Later, the temperature zones which achieved on the derivatograph were taken into the consideration during sintering of the uniaxially compacted cylindrical specimens.
7 different mixtures were prepared from the kaolin and IG-017 additives using the compositions in Table 1. The different prepared mixtures were mechanically activated in a planetary ball mill for 20 minutes at 200 rpm. After mechanical activation of the mixtures 24 cylindrical disc specimens with diameters of 20 mm for each mixture were compacted uniaxially using 100 kN mechanical pull-press.

Table 1. The mixtures compositions in m%

Number of mixtures	KKA-HB Kaolinite	IG 017 bio original material
K I	85	15
K II	75	25
K III	65	35
K IV	55	45
K V	45	55
K VI	35	65
K VII	25	75

Three different compaction forces (50 kN, 60 kN and 70 kN) were used to develop compression pressures of 156.21 MPa, 187.45 MPa and 218.69 MPa to produce cylindrical discs of 8 grams in each case. After compacting half of the specimens were fired (sintered) in normal (oxidation) atmosphere while the other half of the specimens were sintered in oxygen-free (quasi-reduction) atmosphere. In both cases the maximum sintering temperatures were 1250 °C on heating rate of 100 °C/hours. This sintering temperature was high enough for formation of mullite crystal phases from kaolinite, but not enough for creation of cristobalite crystals from the formed free SiO₂ component which is created from the degraded kaolinite at about 1080 °C [88]. In their previous work, the authors have already presented the color change, volume shrinkage, loss of mass and density of ceramic specimens depending on firing temperatures and atmospheres [89]. During the sintering processes the sintered specimens have changed the color (Figure 3), the specimens which sintered in normal (air) atmosphere give white color, while the specimens which sintered in oxygen-free (quasi-reduction) atmosphere give black color.

3. Results and discussions

The porosities of sintered specimens were determined based on water absorption capacity (Table 2) and the following formula was used for the calculations:
\[P = \frac{m_w - m_s}{V_s} \times 100\% \]

(1)

Where \(P \) the porosity, \(m_s \) the mass of sintered specimens, \(m_w \) the mass of the tested specimens after boiling in distilled water for 2.5 hours and \(V_s \) the geometry volume of the sintered specimens.

Table 2. The porosities of the sintered specimens in %

Compacting pressures	156.21MPa	187.45MPa	218.69MPa				
Sintering in	oxidation atm.	oxygen-free atm.	oxidation atm.	oxygen-free atm.	oxidation atm.	oxygen-free atm.	
Bio-origin additive, m%	15	10.02	5.86	3.34	11.72	3.34	17.57
	25	6.45	16.64	6.47	13.87	9.71	16.64
	35	16.28	15.74	16.28	18.37	19.54	20.99
	45	26.75	20.42	23.41	20.42	30.10	22.97
	55	26.13	18.17	33.60	23.36	37.34	38.94
	65	31.83	21.99	40.93	27.48	45.48	41.23
	75	16.38	20.90	38.22	32.84	60.06	47.76

The porosities of sintered samples at the low mixing ratio of IG-017 did not depended greatly on the compacting pressures (Table 2 and Figure 4). In the case when the specimens have contained 55-75 m% bio materials, the degrees of porosity were significantly influenced by the applied compaction pressures.

![Figure 4. The porosity of the sintered test pieces in the oxidation and oxygen-free atmosphere](image)

The surfaces of the sintered samples were examined by scanning electron microscopy to determine how the microstructures and the elemental compositions were changing depending on sintering conditions (atmosphere) and applied mixture compositions. In Figure 5 and in Table 3 big differences can be seen in the fracture surfaces due to the difference in the material compositions of specimens which were presintered in normal atmosphere and in oxygen-free atmosphere. With increasing the volume of IG-017 additives in the mixtures, the porosity of the sintered samples has increased significantly.

The used amount of IG-017 additives have strongly influenced the carbon content of the sintered specimens in the oxygen-free atmosphere (23 % carbon in the case of samples with 75 % IG-017 content). Moreover, the different heat treatment conditions have a significant effect on the microstructure and elemental composition of the prepared and sintered ceramic specimens.

The chemical and the phase compositions of the sintered specimens were determined by XRD tests. In each cases the main phase was found to be mullite, together with a large amount of amorphous glass.
and small amount of quartz or cristobalite. During oxygen-free sintering, carbon fibers were formed (Table 4).

Table 3. The chemical compositions of the specimens from KI and KIV mixtures determined by EDAX

Mixture	Sintering atmosphere	C	O	Al	Si	K	Ti	Fe	
KI	normal (oxidation)	Wt %	4.62	34.96	24.22	32.19	1.89	0.91	1.21
	At %		8.17	46.47	19.09	24.37	1.03	0.40	0.46
	oxygen-free	Wt %	6.93	31.06	23.72	32.96	2.52	1.13	1.67
	At %		12.31	41.40	18.75	25.03	1.37	0.50	0.64
KIV	normal (oxidation)	Wt %	1.51	34.62	25.67	33.79	2.13	1.18	1.11
	At %		2.77	47.63	20.94	26.48	1.20	0.54	0.44
	oxygen-free	Wt %	23.29	29.24	18.94	25.21	1.47	0.63	1.23
	At %		35.65	33.6	12.91	16.5	0.69	0.24	0.41

Table 4. The oxide- and phase composition of the sintered specimens from KIV mixture

Sintered atm.	Phase %	SUM	Mullite	Quartz	Cristobalite	Amorph glass	Carbon fiber
Oxidation							
SiO₂	61.95	53	2	5	40	0	
Al₂O₃	38.05	38.05					
Oxygen-free							
SiO₂	50.54	48	4	1	32	15	
Al₂O₃	34.46	34.46					
CO₂	54.96						54.96
4. Conclusions
In this research work, the authors have successfully developed and produced a high porosity ceramic matrix material using conventional KKA-HB kaolin and IG-017 bio-original additives. The volume of porosity is found to be very strongly depending not only on compacting pressures (156.21 MPa, 187.45 MPa and 218.69 MPa) and mixture ratio but also on sintering conditions as well. The samples which sintered in oxygen-free atmosphere using 156.21 MPa compression pressure give a porosity of 20V% while the same samples which compressed at 218.69 MPa give a porosity of 50 V% depending on quantity of the used additives. The reason of this larger porosity phenomena is that the generated gases from firing of IG-017 additive could not evaporate through the high dense surface of specimens during their sintering in oxygen-free atmosphere.

The carbon contents of specimens became insignificant when normal (oxidation) atmosphere was used for sintering, meanwhile using oxygen-free atmosphere and IG-017 additives lead to increase the quantity and volume of carbon contents of specimens up to 23.29 m%.

Acknowledgement
“The described study was carried out as part of the EFOP-3.6.1-16-2016-00011 “Younger and Renewing University – Innovative Knowledge City – institutional development of the University of Miskolc aiming at intelligent specialization” project implemented in the framework of the Széchenyi 2020 program. The realization of this project is supported by the European Union, co-financed by the European Social Fund.”

References
[1] Dong Q, Yin S, Guo C, Wu X, Kimura Ti, Le T, Sakanakura T and Sato T 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012065 http://dx.doi.org/10.1088/1757-899X/47/1/012065
[2] Rocha-Rangel E, Hernández-Silva D, Terés-Rojas E, Martínez-Franco E and Díaz-De La Torre S 2010 Építőanyag-JSBCM 62 (3) 75 http://dx.doi.org/10.14382/epitoanyag-jscbm.2010.15
[3] Hakeem A S, Khan R M A, MAI-Malki M, Patel F, Bakare A I, Ali S, Hampshire S and Laouzi T 2014 Advancesin Science and Technology 89 63
[4] Bachar A, Mercier C, Tricoteaux A, Leriche A, Follet C and Hampshire S 2016 J. Eur. Ceram. Soc. 36 (12) 2869
[5] Kalatur E S, Kozlova A V, Buyakova S P and Kulkov S N 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012004 http://dx.doi.org/10.1088/1757-899X/47/1/012004
[6] Zharikov E V, Zaramenskikh K S, Popova N A, Faikov P P, Ishakova L D, Gerke M N, Kutorovskaya S V and Nogtev D S 2011 Glass and Ceramics 68 80
[7] O Kotova, A Shmakova and A Ponaryadov 2017 IOP Conf. Ser.: Mater. Sci. Eng. 175 012002 https://doi.org/10.1088/1757-899X/175/1/012002
[8] A G Knyazeva, G A Pribytkov, Yu A Chumakov 2018 Építőanyag-JSBCM 70 (3) 74 http://dx.doi.org/10.14382/epitoanyag-jscbm.2018.13
[9] M G Abd-Almutalib Al-Mosawy, E A Al-Mulla 2018 Építőanyag-JSBCM 70 (4) 116 http://dx.doi.org/10.14382/epitoanyag-jscbm.2018.21
[10] Jr. D P PenaIloza, T AP Seery 2018 Építőanyag-JSBCM 70 (5) 140 http://dx.doi.org/10.14382/epitoanyag-jscbm.2018.26
[11] Jr. D P PenaIloza 2019 Építőanyag-JSBCM 71 (1) 5 http://dx.doi.org/10.14382/epitoanyag-jscbm.2019.2
[12] Katahira K, Watanabe Y, Ohmori H and Kato T 2002 Int. Journal of Machine Tools and Manufacture 42 1307
[13] Carter C B and Norton M G 2007 Ceramic Materials: Science and Engineering Springer 1-716
[14] Gömze A L and Gömze N L 2009 Építőanyag-JSBCM, 61 (2) 38 http://dx.doi.org/10.14382/epitoanyag-jscbm.2009.7
[15] Chuklina S G, Pylinina A I, Podzorova L I, Mikhailina N A, and Mikhailenko I I 2016 Russian Journal of Physical Chemistry 90 (12) 2370
[16] Sadowski T and Golewski P 2012 Comp. Mater. Sci. 64 285
[17] Skrovanek S D and Bradt R C 1979 J. Am. Ceram. Soc. 62 (3-4) 215
[18] Gubernat A, Stobierski L and Labaj P 2007 J. Europ. Ceram. Soc. 27 781
[19] Z Koncsik, MB Maros, L Kuzsella 2010 Materials Science Forum 659 313 https://doi.org/10.4028/www.scientific.net/MSF.659.313
[20] Liu J, Fu Z, Wang W, Zhang J, Wang H, Wang Y, Lee S and Niihara K 2014 J. Eur. Ceram. Soc. 34 3095 http://dx.doi.org/10.1016/j.jeurceramsoc.2014.04.004
[21] Shinoda S, Aoba T, Suzuki T, Nakayama T, Suematsu H and Niihara K 2017 Jpn. J. Appl. Phys. 56 019201 https://doi.org/10.7567/JJAP.56.019201
[22] Kulkov S and Savchenko N 2008 Építőanyag-JSBCM 60 (3) 62 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2008.10
[23] Ershova N I and Kelina I Y 2009 Építőanyag-JSBCM 61(2) 34 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2009.6
[24] Urakov A, Urakova N, Reshetnikov A, Kasatkin A, Kopylov M, Baimurzin D 2016 Építőanyag-JSBCM 68 (3) 110 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.19
[25] Vereschaka A, Kutin A, Sittnikov N, Oganyan G, Sharipov O 2016 Építőanyag-JSBCM 68 (3) 114 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.20
[26] Isaev A, Grechishnikov V, Pivkin P, Ilyukhin Y, Kozochkin M, Peretyagin P 2016 Építőanyag-JSBCM 68 (2) 146 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.8
[27] M Maros, AK Németh, Z Károly, E Bódis, Z Maros, O Tapasztó, K Balázsi 2016 Tribology International 93 (A) 269 https://doi.org/10.1016/j.triboint.2015.08.041
[28] Z Koncsik, MB Maros, L Kuzsella, A Kovács 2016 IOP Conf. Ser.: Mater. Sci. Eng. 123 012033 https://doi.org/10.1088/1757-899X/123/1/012033
[29] MB Maros, AK Németh 2017 Journal of the European Ceramic Society 37 (14) 4357 https://doi.org/10.1016/j.jeurceramsoc.2017.05.005
[30] Izhervskyi V A, Genova L A, Bressiani J C and Bressiani A H 2000 Cerâmica 46 297
[31] MB Maros, NK Helmeczi, BG Lenkey, P Arató 2005 Key Engineering Materials 290 304 https://doi.org/10.4028/www.scientific.net/KEM.290.304
[32] Zerr A, Riedel R, Sekine T, Lowther J E, Ching W Y and Tanaka I 2006 Adv. Mater. 18 2933
[33] MB Maros, N Kaulics, P Arató 2007 Ceramic Transactions 199 421 https://doi.org/10.1002/9781118144152.ch34
[34] Sadowski T and Golewski P 2015 Archives of Metallurgy and Materials 60 (4) 2737
[35] MB Maros, N Kaulics, J Dusza 2007 Fractography of Glasses and Ceramics V: Ceramic Transactions 199 435 https://doi.org/10.1002/9781118144152.ch35
[36] MB Maros, NK Helmeczi, J Dusza 2008 Materials Science Forum 589 73 https://doi.org/10.4028/www.scientific.net/MSF.589.73
[37] MB Maros, NK Helmeczi, P Arató, C Balázsi 2009 Key Engineering Materials 409 338 https://doi.org/10.4028/www.scientific.net/KEM.409.338
[38] Gömze A L and Gömze N L 2011 IOP Conf. Ser.: Mater. Sci. Eng. 18 082001 http://dx.doi.org/10.1088/1757-899X/18/8/082001
[39] Yakushev V V, Zhukov A N, Utkin A V, Rogacheva A I and Kudakina V A 2015 Combustion, Explosion and Shock Waves 51 (5) 603
[40] Khasanov O, Reichel U, Dvilis E and Khasanov A 2011 IOP Conf. Ser.: Mater. Sci. Eng. 18 082004 http://dx.doi.org/10.1088/1757-899X/18/8/082004
[41] Miranda-Hernández J G, Rocha-Rangel E and de la Torre SD 2010 Építőanyag-JSBCM 62 (1) 2 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2010.1
[42] L A Gömze and L N Gömze 2017 IOP Conf. Ser.: Mater. Sci. Eng. 175 012001 https://doi.org/10.1088/1757-899X/175/1/012001
[43] L A Gömze, S N Kulkov, E Kurovics, A S Buyakov, A Y Buzimov, M V Grigoriev, B I Kanev, T V Kolmakova, R V Levkov, S A Sitkevich 2018 Építőanyag-JSBCM 70 (1) 13 https://doi.org/10.14382/epitoanyag-jsbcm.2018.3

[44] M V Grigoriev, N L Savchenko, T Yu Sablina, E Kurovics, I N Sevostyanova, S P Buyakova, L A Gömze, S N Kulkov 2018 Építőanyag-JSBCM 70 (1) 18 https://doi.org/10.14382/epitoanyag-jsbcm.2018.4

[45] Tariq F, Rafique U, Yaqoob K 2017 Építőanyag-JSBCM 69 (3) 94 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2017.16

[46] Ayub N, Rafique U 2017 Építőanyag-JSBCM 69 (3) 98 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2017.17

[47] Tkachev G and Tkacheva O N 2009 Steklo i keramika 66 (2) 15

[48] A A Uspensky, S Yavshits, V Lipin, P Zhigalov and A Slobodov 2017 IOP Conf. Ser.: Mater. Sci. Eng. 175 012018 https://doi.org/10.1088/1757-899X/175/1/012018

[49] R Gorshkova, D Khalikov, D Slobodova, A A Uspensky and A Slobodov 2018 J. Phys.: Conf. Ser. 1045 012014 https://doi.org/10.1088/1742-6596/1045/1/012014

[50] Torres-Cadenas S, Bravo-Patiño A, Zarate-Medina J, Contreras-García M E 2017 Építőanyag-JSBCM 69 (1) 2 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2017.1

[51] Torres-Romero A, Cájero-Juárez M, Contreras-García M E 2017 Építőanyag-JSBCM 69 (1) 8 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2017.2

[52] E Kurovics, A Shmakova, B Kanev and L A Gömze 2017 IOP Conf. Ser.: Mater. Sci. Eng. 175 012013 https://doi.org/10.1088/1757-899X/175/1/012013

[53] Zhukov I, Buyakova S P, Kulkov N S 2016 Építőanyag-JSBCM 68 (3) 74 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.13

[54] Chigvinadze J G, Acirivos J V, Ashimov S M, Gulamova D, Machaidze T V and Uskenbaev D 2009 Építőanyag-JSBCM 61 (4) 104 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2009.19

[55] Buyakova S P, Kalatur E S, Buyakov A S, Kulkov N S 2016 Építőanyag-JSBCM 68 (3) 70 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.12

[56] Dedova E, Klevtsova E and Kulkov S 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012021 http://dx.doi.org/10.1088/1757-899X/47/1/012021

[57] A Shmakova, B Kanev, A L Gömze and O Kotova 2017 IOP Conf. Ser.: Mater. Sci. Eng. 175 012015 https://doi.org/10.1088/1757-899X/175/1/012015

[58] E Kurovics, S N Kulkov, L A Gömze 2018 Építőanyag-JSBCM 70 (1) 3 https://doi.org/10.14382/epitoanyag-jsbcm.2018.1

[59] A Y Buzimov, W Eckl, L A Gömze, I Kocevšera, E Kurovics, A S Kulkov, S N Kulkov 2018 Építőanyag-JSBCM 70 (1) 23 https://doi.org/10.14382/epitoanyag-jsbcm.2018.5

[60] A S Buyakov, R V Levkov, S P Buyakova, E Kurovics, L A Gömze, S N Kulkov 2018 Építőanyag-JSBCM 70 (1) 27https://doi.org/10.14382/epitoanyag-jsbcm.2018.6

[61] Li J, Yuan W J, Deng C J and Zhu H X 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012060 http://dx.doi.org/10.1088/1757-899X/47/1/012060

[62] Djangang C N, Kamseu E, Ndikontar M K, Nana G L L, Soro J, Melo U C, Elimbi A, Blanchart P és Njopwouo D 2011 Materials Science and Engineering A 528 (2011) 8311–8318 http://dx.doi.org/10.1016/j.msea.2011.07.006

[63] Ieva Zake-Tilhhttp://dx.doi.org/an, Ruta Svinka, Visvaldis Svinka 2014 Ceramics International 40 3071–3077 http://dx.doi.org/10.1016/j.ceramint.2013.09.139

[64] MB Maros, JK Babcsan 2002 Proceedings of the 11th Int. Conf. Ach. Mech. Mat. Eng. AMME 303 ISBN:8391445879

[65] Tariq F, Rafique U, Yaqoob K 2017 Építőanyag-JSBCM 69 (3) 94 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2017.16

[66] Bendoukha M, Mosbah M 2017 Építőanyag-JSBCM 69 (4) 122 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2017.22
[67] Vunain E, Mishra S B, Mishra A K, Mamba B B 2017 Nanoceramic: Fundamentals and Advanced Perspectives, In Book: A K Mishra Sol-gel Nanoceramic Materials: Preparation, Properties and Applications. Springer pp.1-20 http://dx.doi.org/10.1007/978-3-319-49512-5_1

[68] Buyakov A S, Kulkov S N 2017 IOP Conf. Ser.: Mater. Sci. Eng 175 012025 http://dx.doi.org/10.1088/1757-899X/175/1/012025

[69] Sadowski T, Golewski P 2017 Arch. Metall. Mater. 62 (3) 1577 http://dx.doi.org/10.1515/amm-2017-0241

[70] Torrisi A, Wachulak P W, Bartnik A, Fok T, Wegrzynski L, Fiedorowicz H, Mazzillo M, Sciuto A, Torrisi L 2017 IEEE Transactions on Electron Devices 64 (3) 1120 http://dx.doi.org/10.1109/TED.2017.2647780

[71] Eligiusz Postek, Tomasz Sadowski 2019 Composite Structures 213 231 https://doi.org/10.1016/j.compstruct.2019.01.084

[72] Devaux X, Yu Tsareva S, Kovalenko A N, Zaramenskih K S, McRae E and Zharirov E V 2012 Physica E44 1028

[73] Zharirov E V, Duong T T T, Faikov P P, Popova N A and Sovyk D M 2016 Inorganic Materials: Applied Research 7 163

[74] Gömze A L, Gömze N L 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012033 http://dx.doi.org/10.1088/1757-899X/47/1/012033

[75] Kulkov N S 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012042 http://dx.doi.org/10.1088/1757-899X/47/1/012042

[76] Hakuta Y, Nagai N, Suzuki Y-H, Kodaira T, Bando K K, Takashima H, Mizukami F 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012045 http://dx.doi.org/10.1088/1757-899X/47/1/012045

[77] Kovács E, Trencešényi R, Gulácsi Zs 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012048 http://dx.doi.org/10.1088/1757-899X/47/1/012048

[78] Yuan W, Yu C, Deng C, Zhu H 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012058 http://dx.doi.org/10.1088/1757-899X/47/1/012058

[79] Yu C, Deng C, Yuan W, Zhu H 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012059 http://dx.doi.org/10.1088/1757-899X/47/1/012059

[80] Teng X, Liu H, Huang C 2007 Materials Science and Engineering A 452–453 545–551 http://dx.doi.org/10.1016/j.msea.2006.10.073

[81] Radhi M M, Al-Dulimy W A G, Khalaf M S 2016 Építőanyag-JSBCM 68 (3) 90 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.16

[82] Rodríguez Torres G M, Zarate Medina J, Contreras García M E 2016 Építőanyag-JSBCM 68 (4) 120 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.21

[83] Smolin I Yi, Makorov P V, Eremin M O, Matyko K S 2016 Procedia Structural Integrity 2 3353

[84] Gömze A L, Gömze N L 2010 Építőanyag-JSBCM 62 (4) 98 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2010.18

[85] S Baba, T Goto, S Cho, T Sekino 2018 Építőanyag-JSBCM 70 (6) 195 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2019.2

[86] Štubna I, Varga G, Trník A 2006 Építőanyag-JSBCM 58 (1) 6 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2006.2

[87] Varga G 2007 Építőanyag-JSBCM 59 (1) 6 http://dx.doi.org/10.14382/epitoanyag-jsbcm.2007.2

[88] Kurovics E, Gömze A L 2017 MultiScience - XXXI. microCAD International Multidisciplinary Scientific Conference University of Miskolc https://www.researchgate.net/publication/316275265

[89] Kurovics E, Gömze A L 2017 MultiScience - XXXI. microCAD International Multidisciplinary Scientific Conference University of Miskolc https://www.researchgate.net/publication/318787305