Association between operation volume and postoperative mortality in elective endovascular repair of infrarenal abdominal aortic aneurysms: systematic review—continuation

Background and aim

For numerous operations there is evidence showing an inverse association between hospital and surgeon volumes on one side and perioperative mortality on the other side [1, 2]. Surgeon-related factors, such as individual experience as well as team-related factors, such as team composition, experience and availability of single team members, and institution-related factors such as the technical equipment and infrastructural framework play an important role in both associations [3, 4].

The first part of this systematic review assessed the association between volume per surgeon and per treating institution, and postoperative mortality for elective open repair of infrarenal abdominal aortic aneurysms (AAA) [5]. It showed that operations performed in high volume centers or by high volume surgeons are associated with a lower mortality. The present second part of the review, relying on all evidence available in the literature, assesses if a corresponding association is also present for elective endovascular repair (EVAR).

Study design and methods

A detailed description of the study design and methods can be found in the first part of this work [5]. In brief, a review of several literature databases (PubMed, Cochrane Library, Web of Science Core Collection, Cinahl, Current Content Medizin CCMed and ClinicalTrials.gov) was done using a predefined search strategy for the period from database inception to 1 January 2018. For the present analysis, all studies comparing elective EVAR of infrarenal AAA done in a high volume center with EVAR done in a low volume center, or done by a high volume surgeon with EVAR done by a low volume surgeon were included. Inclusion criteria were that at least one of the outcomes overall postoperative mortality, hospital mortality or 100-day mortality or a combined endpoint, needed to be reported by the study. Regarding the definition of “high volume” and “low volume” centers and study design, there were no exclusion criteria. The relevant data from single studies were extracted by both independent reviewers and were stored in a database. The specific definitions of high volume and low volume were taken from the respective studies. For studies comparing several groups with different case volume, e.g. quartiles, the group with the highest volume was compared with the group with the lowest volume. The association between volume and mortality was described with the effect measure reported in the respective publication, which usually was the odds ratio. Effect measures and corresponding 95% confidence intervals (CI) were transformed in a way that values below one reflected a lower mortality in the high volume group. Results were displayed descriptively. Given the heterogeneity of data and the diverging definition of high volume and low volume centers, a meta-analysis for quantifying a possible association between volume and mortality was not done.

Results

After literature review and de-duplication there were 1021 hits, of which eleven studies exclusively assessed the association of hospital volume with perioperative mortality, four studies assessed both
The association of hospital volume and surgeon volume with perioperative mortality and one study exclusively assessed the association of surgeon volume with perioperative mortality. In total 16 studies were included.

The characteristics and results of the included studies on hospital volume are displayed in Table 1. They recruited patients between 1988 and 2014 and were published between 2008 and 2017. Of the 15 studies, eleven were conducted in the USA, three in Germany, and one in England. All studies had a retrospective design. The total number of patients included in the compared groups of the 15 studies was 643,343. In the eleven studies reporting case numbers for the single groups there were 76,126 patients in the high volume group and 211,344 patients in the low volume group. Four studies did not report group-specific case numbers. Study participants were predominantly male with a mean or median age between 73.4 and 77 years. The threshold used for defining low volume (either the value defining the group with the lowest volume if several groups were compared or the value above which the group was considered high volume if only two groups were compared) was between three and 50 EVAR cases per institution per year. Institutions with a volume between 18 and 115 annual EVAR cases were defined as high volume. Unadjusted mortality was between 0.36% and 6.88% in the low volume groups and between 0.08% and 2.88% in the high volume groups. Ten studies reported mortality as hospital mortality and four studies as 30-day mortality. One study did not specify the mortality indicator used and twelve studies found a significantly lower mortality in the high volume group. Three studies could not find a mortality difference between groups. Out of the 15 studies, ten did a multivariable analysis. The effect measures (odds ratio) were between 0.43 and 0.91.

Table 2 shows the characteristics and results of the five included studies on the association between volume per surgeon and postoperative mortality after EVAR for AAA. These studies recruited patients between 2001 and 2011 and were published between 2016 and 2018. All studies were conducted in the USA and had a retrospective design. In total, in the four studies reporting group-specific patient numbers, there were 56,749 patients in the compared groups. Of these, 29,849 were in the low volume and 26,900 in the high volume groups. One study reported no group-specific patient numbers. Only two studies reported the sex and age distribution of the participants. The mean age was 74 and 77 years, respectively. The threshold used for defining low volume (either the value defining the group with the lowest volume if several groups were compared or the value above which the group was considered high volume in case only two groups were compared) was between four and eleven operated cases per surgeon per year. In studies comparing several groups, surgeons performing between five and 30 EVAR per year were classified as high volume. Unadjusted mortality was between 1.7% and 2.7% in low volume and between 1.6% and 2.4% in high volume groups. Three studies reported mortality as hospital mortality and two studies as 30-day mortality. No study found a significant mortality difference between the high volume and low volume groups. Three of the five studies conducted a multivariable analysis. The effect measures (odds ratio) were between 0.63 and 0.91.

Discussion

The present analysis results from a systematic review on a possible association between case volume per hospital and surgeon and perioperative mortality in elective repair of infrarenal AAA. While the first part of the work assessed OR, this second part looked at the evidence regarding EVAR.

The results show that there are differences in the association between volume and perioperative mortality between OR and EVAR. While there was an inverse association between hospital volume and mortality for EVAR, similar to that observed for OR, the five identified studies on the association between surgeon volume and mortality showed no association.

The reasons for these results, which differ from those for OR of AAA, are not obvious. Undoubtedly, the number of studies assessing an association between volume per surgeon and perioperative mortality is much lower for EVAR than for OR. The single studies do, however, include large populations, which should lend a sufficient statistical power to the studies. Given that none of the studies showed an association, these results must be assumed valid in the sense that there is no relevant association between volume per surgeon and perioperative mortality. This finding is surprising because planning and performing EVAR is technically demanding. Consequently, one would expect that the operative outcome depends in a relevant way on the experience and continuous training of the surgeon [23, 24]. This is mirrored in the individual learning curve for EVAR [25]. When interpreting these results, it must be taken into account that there is no information from the single studies regarding the lifetime experience of the respective surgeon but only regarding the annual caseload at the time of data accrual. It is therefore possible that surgeons with a long experience are classified as low volume because they treat only a small number of patients annually in their current position. Moreover, the fact that not only vascular surgeons but also radiologists or angiologists perform EVAR could influence the association between individual caseload and perioperative mortality. Another explanation, which can also not be proven with the available data, is that a low caseload for EVAR leads to technical complications such as endoleaks; however, these would not influence perioperative mortality but long-term mortality, which was not assessed by the included studies. It must also be taken into consideration that all studies on the association between volume per surgeon and perioperative mortality were conducted in the USA. There are structural differences between the healthcare systems. In particular, surgeons in the USA are usually completely independent consultants and do not have direct supervision by or exchange on specific cases with a defined colleague (such as the two-man rule when planning EVAR). Thus, comparability to differently structured healthcare systems,
Abstract · Zusammenfassung

U. Ronellenfitsch · K. Meisenbacher · M. Ante · M. Grilli · D. Böckler

Association between operation volume and postoperative mortality in elective endovascular repair of infrarenal abdominal aortic aneurysms: systematic review—continuation

Abstract

Background. Many surgical interventions show an inverse association between case volume per hospital/surgeon and perioperative mortality. In the first part of this systematic review it was shown that such an association also exists for the open treatment of infrarenal aortic aneurysms. The second part now examines a possible association with endovascular treatment of infrarenal aortic aneurysms.

Objective. In a systematic review, the data available on the association between the case volume per hospital/surgeon and perioperative mortality in elective endovascular treatment of infrarenal aortic aneurysms are presented.

Materials and Methods. Systematic research using defined keywords was carried out. All original works comparing elective endovascular treatment of an infrarenal aortic aneurysm in a “high volume” center with a “low volume” center or by a “high volume” surgeon with a “low volume” surgeon, as defined in each study, were included.

Results. After deduplication, the literature search produced 1,021 hits. Of these, 16 publications fulfilled the inclusion criteria. With regard to the thresholds for the definition of high volume and low volume, there was marked heterogeneity between individual studies. Twelve of the 15 studies showed a significantly lower mortality in high volume than in low volume centers. The effect measures, usually odds ratios, were between 0.43 and 0.91. In the comparison between high volume and low volume surgeons, there was no difference in mortality in any of the five studies included.

Discussion. The available data on the association between case volume per hospital and surgeon and the perioperative mortality in elective endovascular treatment of infrarenal aortic aneurysms consistently show that patients operated on in high volume centers have a lower mortality. The volume per surgeon seems to have no influence on perioperative mortality. To achieve the lowest perioperative mortality possible in endovascular treatment of infrarenal aortic aneurysms, centralization with high volume per hospital should be aimed for, taking into consideration the context of the health care system.

Keywords

Infrarenal aortic aneurysm · Endovascular aortic repair (EVAR) · Case volume · Postoperative mortality · Systematic review

Zusammenfassung

Hintergrund. Eine Vielzahl chirurgischer Eingriffe weist eine inverse Assoziation zwischen Fallzahl pro Krankenhaus und Operateur und perioperativer Mortalität auf. Im ersten Teil dieser systematischen Übersichtsarbeit konnte gezeigt werden, dass eine solche Assoziation auch für die offene Versorgung infrarenaler Aortenaneurysmen besteht. Der zweite Teil untersucht nun eine mögliche Assoziation für die endovaskuläre Versorgung.

Ziel der Arbeit. In einer systematischen Übersichtsarbeit soll die verfügbare Datenlage zur Assoziation zwischen Fallzahl pro Krankenhaus und Operateur und perioperativer Mortalität bei der elektiven endovaskulären Versorgung infrarenaler Aortenaneurysmen dargestellt werden.

Material und Methoden. Eine systematische Literaturrecherche wurde mittels definierter Schlüsselwörter durchgeführt. Es wurden alle Originalarbeiten eingeschlossen, die die elektive endovaskuläre Versorgung eines infrarenalen Aortenaneurysmas in einem „high volume“-Zentrum mit einem „low volume“-Zentrum oder durch einen „high volume“-Chirurgen mit einem „low volume“-Chirurgen, wie in der jeweiligen Studie definiert, verglichen.

Ergebnisse. Nach Deduplizierung erbrachte die Literatursuche 1021 Treffer. Von diesen erfüllten 16 Publikationen die Einschlusskriterien. Hinsichtlich der Schwellenwerte zur Definition von „high volume“ und „low volume“ zeigte sich eine deutliche Heterogenität zwischen den einzelnen Studien. So zeigten 12/15 Studien eine signifikant niedrigere Mortalität in „high volume“- verglichen mit „low volume“-Zentren. Die Effektmäße, in aller Regel Odds Ratios, lagen zwischen 0,43 und 0,91. Für den Vergleich von „high volume“ mit „low volume“-Chirurgen zeigte sich in keiner der fünf eingeschlossenen Studien ein Mortalitätsunterschied.

Diskussion. Die verfügbare Datenlage zur Assoziation zwischen Fallzahl pro Krankenhaus und Operateur und perioperativer Mortalität bei der elektiven endovaskulären Versorgung infrarenaler Aortenaneurysmen zeigt übereinstimmend, dass in „high volume“- Zentren operierte Patienten eine niedrigere Mortalität aufweisen. Die Fallzahl pro Chirurg scheint keinen Einfluss auf die perioperative Mortalität zu haben. Um eine möglichst niedrige perioperative Mortalität bei der endovaskulären Versorgung infrarenaler Aortenaneurysmen zu erreichen, sollte unter Berücksichtigung des Kontextes des Gesundheitssystems eine Zentralisierung mit hohen Fallzahlen pro Krankenhaus angestrebt werden.

Schlüsselwörter

Infrarenales Aortenaneurysma · Endovaskuläre Behandlung von Aortenaneurysmen (EVAR) · Operationsvolumen · Postoperative Mortalität · Systematische Übersichtsarbeit
Table 1 Studies meeting the inclusion criteria and comparing postoperative mortality in elective endovascular repair of infrarenal abdominal aortic aneurysm in low and high volume groups, relating to the case volume per hospital. If fields are empty, the corresponding data were not reported in the publication. For studies dividing hospitals in one low and one high volume group, the volume threshold is presented. For studies dividing hospitals into several groups according to their case volume, the group with the lowest volume was compared with the group with the highest volume and the respective thresholds for both groups are presented. Odd ratios were transformed so that a value < 1 reflects a lower mortality in the high volume group.

Author (year of publication)	Place	Time	Significant mortality difference	Threshold high vs. low volume or lower threshold high volume	Lower threshold high volume	Patients low volume	Patients high volume or total population	Age (mean years) low volume	Age (mean years) high volume	Age (mean years) high volume or total population	Mortality to total population (%)	Mortality low volume (%)	Mortality high volume (%)	Mortality indicator	Odd rati o (95%-CI)	Multi-variable	
Brooke, B.S., et al (2008)[6]	USA	2000–2005	No	50	–	1783	1337	75.69	75.30	1524	1123	2.02	(2000–2002), 1.91 (2003–2005)	1.64 (2000–2005)	0.62	(0.22–1.70)	Yes
Dimick, J.B. and G.R. Upchurch, Jr. (2008)[7]	USA	2001–2003	Yes	–	–	26,750	7924	75.40	75.40	108,417	–	2.30	(2000–2002). 1.91 (2003–2005)	2.10	0.69	(0.56–0.85)	Yes
Dua, A., et al. (2014)[8]	USA	1998–2011	Yes	–	–	113,485	–	–	–	–	–	HM	–	–	–		
Egorova, N., et al. (2009)[9]	USA	2000–2006	Yes	6	–	115	320	73.40	73.60	301	262	6.88	2.88	HM	0.99	(0.98–0.99)	Yes
Hicks, C.W., et al. (2010)[10]	USA	2010–2012	Yes	50	–	123,052	8856	73.70	73.70	108,417	–	–	–	–	–		
Holt, P.I., et al. (2009)[11]	England	2005–2007	Yes	8	115	416	739	73.40	73.60	55,485	–	2.50	1.40	30-day	0.69	(0.56–0.85)	Yes
Ronco, N., et al. (2014)[12]	USA	1995–2012	Yes	3	18	195,928	–	–	–	–	0.36	0.08	0.36	30-day	–	No	
Landon, B.E., et al. (2010)[13]	USA	2001–2004	Yes	10	50	22,830	–	–	–	–	2.50	1.45	1.45	30-day	–	Yes	
McNee, J.T., et al. (2011)[14]	USA	2003–2007	No	15	70	1828	–	–	–	–	1.50	0.93	0.41	(0.19–1.04)	Yes		
Metzner, A.J., et al. (2007)[15]	USA	2000–2011	Yes	33	82	4110	4210	–	–	–	1.60	1.30	1.30	30-day	0.56	(0.34–0.94)	Yes
Nimptsch, U. and T. Mansley (2017)[16]	GER	2009–2014	Yes	9	57	8462	8281	–	–	–	1.70	1.60	HM	0.91	(0.68–1.21)	Yes	
Trenner, M., et al. (2014)[17]	GER	1999–2010	No	10	63	3173	2533	–	–	–	1.40	1.40	HM	–	–		
Trenner, M., et al. (2017)[18]	GER	2003–2013	Yes	5	41	30,149	608	–	–	–	–	3.00	1.60	HM	0.62	(0.51–0.77)	Yes
Vogel, T.R., et al. (2011)[19]	USA	2005–2007	Yes	–	–	16,218	25,937	–	–	–	13,300	21,146	–	–	–		
Zettervall, S. L., et al. (2017)[20]	USA	2001–2008	Yes	9	49	15,479	14,479	–	–	–	77.00	77.00	–	–	–		

CI: confidence interval, GER: Germany, HM: hospital mortality, USA: United States of America, 30-day: 30-day mortality
Table 2: Studies meeting the inclusion criteria and comparing postoperative mortality in elective endovascular repair of infrarenal abdominal aortic aneurysm in low and high volume groups, relating to the case volume per surgeon. If fields are empty, the corresponding data were not reported in the publication. For studies dividing surgeons in one low and one high volume group, the volume threshold is presented. For studies dividing surgeons into several groups according to their case volume, the group with the lowest volume was compared with the group with the highest volume and the respective thresholds for both groups are presented. Odds ratios were transformed so that a value < 1 reflects a lower mortality in the high volume group.

Author (year of publication)	Place	Time	Significant mortality difference	Threshold high vs. low volume or lower threshold high volume	Lower threshold high volume	Patients low volume or total population	Patients high volume or total population	Age (mean years)/low volume	Age (mean years)/high volume	Men low volume	Men high volume or total population	Mortality total population (%)	Mortality low volume (%)	Mortality high volume (%)	Mortality indicator	Odds ratio (95% CI)	Multi-variable			
Du et al. (2016)[21]	USA	2007–2009	No	5	–	–	–	–	–	–	–	–	2.50	2.70	2.40	HM	–	–		
Eise, A., et al. (2018)[22]	USA	2000–2010	No	Median	–	8817	5642	74	74	–	–	7080	4531	–	1.90	1.60	30-day	–	–	
McPhee, J. T., et al. (2011)[24]	USA	2007–2008	No	4	25	1584	1495	–	–	–	–	–	–	–	–	–	HM	0.63 (0.29–1.23) Yes		
Meltzer, A. J., et al. (2017)[25]	USA	2007–2011	No	11	30	4126	4375	–	–	–	–	–	–	–	–	–	1.70	1.60	30-day	0.71 (0.46–1.15) Yes
Zettervall, S. L., et al. (2017)[30]	USA	2007–2008	No	6	28	15,322	15,388	–	77	77	12,564	12,772	–	1.80	1.60	HM	0.91 (0.77–1.11) Yes			

CI: confidence interval, HM: hospital mortality, USA: United States of America, 30-day: 30-day mortality

such as the German one is substantially limited. However, it cannot be explained by available data and it remains unclear why, in contrast to EVAR, for OR there is a markedly higher Perioperative mortality for patients operated by low volume surgeons.

Just like for OR of AAA, so-called failure to rescue could be one of the main reasons for the inverse association between hospital volume and perioperative mortality. It is defined as postoperative death due to a potentially treatable complication, such as hemorrhage or respiratory failure [27]. For a number of operations, there is evidence that such a scenario manifests less frequently in high volume hospitals than in hospitals with a lower caseload [28]. Whereas such an association is also described for OR of AAA, so-called failure to rescue could also be shown for OR of AAA [29]. An association is, however, likely to be slightly underestimated due to the influence of hospital volume on the caseload and the mortality figures in the respective high volume and low volume groups. The inverse association between hospital volume and perioperative mortality is, however, observed independently of the absolute threshold. Thus, a real class effect can be assumed. The observed mortality difference could be explained by the fact that the experience of the care team in its specific composition, such as high case volume, leads to better preparedness for critical situations and a proactive avoidance of mistakes as well as a timely and effective management of incident complications. With respect to quality models used in healthcare, a higher hospital volume is associated with a higher quality of care, such as better outcomes and less occurrences of adverse events and complications, which in turn are necessary conditions for a higher hospital mortality indicator value [26].
an important role. One example is the around the clock availability of specific emergency diagnostics and of specialized and experienced staff. The prediction of the individual postoperative mortality risk after elective repair of infrarenal AAA is of importance. Risk scores, such as the DIGGriskscore [30], can be of considerable help and, if used wisely, can improve outcome of EVAR. This score comprises patient-specific risk factors. Characteristics of the hospital and the operating surgeon, such as case volume, are not taken into account.

The designs employed in the included studies were limited to non-randomized, retrospective analyses. Albert desirable, a randomization of patients to being treated in facilities or by surgeons with a high or low volume would be neither feasible nor ethically justifiable. Doubtlessly, retrospective studies have limitations with respect to data quality and an increased risk of selection bias. Yet, the case volume and overall mortality can be reliably ascertained. A selection bias in elective AAA repair would probably imply that patients with a particularly high perioperative risk tend to be treated in centers with a higher volume. Multivariable analyses can achieve at least a partial adjustment for differences in risk profiles. The assumed selection would lead to higher unadjusted mortality in high volume centers. A possible association between volume and outcome would thus be attenuated. Since most studies have nonetheless found a significant inverse association between hospital volume and perioperative mortality, a stable association can be assumed and a significant result due to selection bias appears unlikely.

In summary, this second part of the systematic review on the association between hospital and surgeon volume and perioperative mortality in EVAR for AAA yielded different results from the first part looking at OR. While the inverse association between hospital volume and perioperative mortality could be shown similarly to OR, no association between surgeon volume and perioperative mortality was found. The reasons underlying this different pattern cannot be identified with the available data. These results imply that a centralization of elective endovascular aortic surgery in high volume hospitals makes sense. A clearly defined threshold for what constitutes a high volume hospital cannot be inferred from the available studies because almost every study uses its own threshold. Moreover, thresholds are not readily transferable between different institutions and healthcare systems. Accordingly, national and international guidelines are heterogeneous in their recommendation of a minimum threshold per hospital for elective EVAR of infrarenal AAA. Whereas the guidelines of the US Society of Vascular Surgery (SVS) recommends a minimum of ten cases per year [31], the European Society for Vascular Surgery (ESVS) recommends in its guidelines that AAA should be treated only in centers with an annual volume of at least 30 cases [32]. This number is not specified regarding OR or EVAR. The German S3 guidelines [33] discuss minimum case numbers deduced from a number of meta-analyses and single studies. These range from eight to 60 annual cases and are mostly not presented specifically for OR or EVAR. The guidelines therefore recommend that infrarenal AAA be treated in specialized centers, without stipulating a defined minimum threshold for volume and without making a difference between OR and EVAR. In conclusion, a possible centralization should be done taking into account the characteristics of an established healthcare system.

Compliance with ethical guidelines

Conflict of interest. U. Ronellenfitsch, K. Meisenbacher, M. Ante, M. Grilli and D. Böckler declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

The supplement containing this article is not sponsored by industry.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Birkmeyer JD, Dimick JB, Staiger DO (2006) Operative mortality and procedure volume as predictors of subsequent hospital performance. Ann Surg 243(3):411–417
2. Birkmeyer JD, Siewers AE, Finlayson EV, Stukel TA, Lucas FL, Batista I et al (2002) Hospital volume and surgical mortality in the United States. N Engl J Med 346(15):1128–1137
3. Kennedy GT, McMillan MT, Maggino L, Ssprs MH, Vollmer CM Jr. (2017) Surgical experience and the practice of pancreaticoduodenectomy. Surgery 162(4):812–822
4. Sonesson L, Boffard K, Lundberg L, Rydmark M, Karlgren K (2018) Decision-making in management of the complex trauma patient: changing the Mindset of the non-trauma surgeon. World J Surg 42(8):2392–2397
5. Ronellenfitsch U, Meisenbacher K, Ante M et al (2020) Association zwischen Operationsvolumen und postoperativer Mortalität bei der elektiven endovaskulären Versorgung infrarenaler abdomineller Aortenaneurysmen: systematische Übersichtsarbeit. Gefäßchirurgie. https://doi.org/10.1007/s00772-020-00692-7
6. Brooke BS, Perier BA, Dominici F, Makary MA, Pronovost PJ (2008) Reduction of in-hospital mortality among California hospitals meeting Leapfrog evidence-based standards for abdominal aortic aneurysm repair. J Vasc Surg 47(6):1155–1156 (discussion 63–4)
7. Dimick JB, Upchurch GR Jr. (2008) Endovascular technology, hospital volume, and mortality with abdominal aortic aneurysm surgery. J Vasc Surg 47(6):1150–1154
8. Dua A, Furlough CL, Ray H, Sharma S, Upchurch GR, Desai SS (2014) The effect of hospital factors on
mortality rates after abdominal aortic aneurysm repair. J Vasc Surg 60(6):1446–1451
9. Egoroiva N, Giacovelli JK, Gelijns A, Creco G, Moskowitz A, McKinsey J et al. (2009) Defining high-risk patients for endovascular aneurysm repair. J Vasc Surg 50(6):1271–1279.e1
10. Hicks CW, Canner JK, Arhuidese I, Obed T, Black JH 3rd, Malas MB (2016) Comprehensive assessment of factors associated with in-hospital mortality after elective abdominal aortic aneurysm repair. JAMA Surg 151(9):838–843
11. Holt PJ, Poloniéck JD, Khalid U, Hinchcliffe RJ, Loftus IM, Thompson MM (2009) Effect of endovascular aneurysm repair on the volume-outcome relationship in aneurysm repair. Circ Cardiovasc Qual Outcomes 2(6):624–632
12. Ionzo N, Egoroiva NN, McKinsey JF, Nowygrod R (2014) Failure to rescue trends in elective abdominal aortic aneurysm repair between 1995 and 2011. J Vasc Surg 60(6):1473–1480
13. Landon BE, O’Malley AJ, Giles K, Cotterill P, Schermerhorn ML (2010) Volume-outcome relationships and abdominal aortic aneurysm repair. Circulation 122(13):1290–1297
14. McPhee JT, Robinson WP 3rd, Eslami MH, Arous EJ, Messina LM, Schanzer A (2011) Surgeon case volume, not institution case volume, is the primary determinant of in-hospital mortality after elective open abdominal aortic aneurysm repair. J Vasc Surg 53(3):591–599.e2
15. Meltzer AJ, Connolly PH, Schneider DB, Sedarayyan A (2017) Impact of surgeon and hospital experience on outcomes of abdominal aortic aneurysm repair in New York State. J Vasc Surg 66(3):728–734.e2
16. Nimptsch U, Mansky T (2017) Hospital volume and mortality for 25 types of inpatient treatment in German hospitals: observational study using complete national data from 2009 to 2014. BMJ Open 7(9):e16184
17. Trenner M, Haller B, Söllner H, Storck M, Um- scheid T, Niedermeier H et al. (2014) 12 Jahre Qualitätssicherung zum rupturierten und nicht rupturierten abdominalen Aortenaneurysma der Deutschen Gesellschaft für Gefäßchirurgie und Gefäßmedizin (DGG). Teil 3: Prädiktoren für das perioperative Ergebnis unter besonderer Berücksichti- gung der Fallzahl/Jahr. Gefäßmedizin (DGG) 10(6):573–585 (Twelve years of the quality assurance registry abdominal aortic aneurysm of the German Vascular Society (DGG). Part 3: Predictors of the perioperative outcome with focus on annual caseload)
18. Trenner M, Kuehni A, Salvemosemann, Reutersborg B, Gebuesch S, Schmid V et al. (2018) High annual hospital volume is associated with decreased in hospital mortality and complication rates following treatment of abdominal aortic aneurysms: secondary data analysis of the nationwide German DRG statistics from 2005 to 2013. Eur J Vasc Endovasc Surg 55:185–194
19. Vogel TR, Dombrowsky VY, Graham AM, Lowry SF (2011) The impact of hospital volume on the development of infectious complications after elective abdominal aortic surgery in the Medicare population. Vasc Endovasc Surg 45(4):317–324
20. Zettervall SL, Schermerhorn ML, Soden PA, McCallum JC, Shean KE, Deery SE et al (2017) The effect of surgeon and hospital volume on mortality after open and endovascular repair of abdominal aortic aneurysms. J Vasc Surg 65(3):626–634
21. Dua A, Andre J, Nolte N, Pan J, Hood D, Hodgson KJ et al (2016) The impact of physician specialization on clinical and hospital outcomes in patients undergoing EVAR and TEVAR. Ann Vasc Surg 35:138–146
22. Ese A, Medhkar A, Fleming F, Noyes K, Glöcker R, Ellis J et al. (2018) Superior 3-year value of open and endovascular repair of abdominal aortic aneurysm with high-volume providers. Ann Vasc Surg 46:17–29
23. Budtz-Lilly J, Wanhainen A, Mani K (2018) Outcomes of endovascular aortic repair in the modern era. J Cardiovasc Surg 59(2):180–189
24. Desender L, Van Herzeele L, Lachat M, Duchateau J, Bicknell C, Teijink J et al. (2017) A multicentre trial of patient specific rehearsal prior to EVAR: impact on procedural planning and team performance. Eur J Vasc Endovasc Surg 53(3):354–361
25. Forbes TL, Defrise G, Kribs SW, Harris KA (2004) Cumulative sum failure analysis of the learning curve with endovascular abdominal aortic aneurysm repair. J Vasc Surg 39(1):102–108
26. Donabedian A (1988) The quality of care. How can it be assessed? JAMA 260(12):1743–1748
27. Gafar AA, Birkmeyer JD, Dimick JB (2009) Complications, failure to rescue, and mortality with major inpatient surgery in medicare patients. Ann Surg 250(6):1029–1034
28. Johnston MJ, Arora S, King D, Bouras G, Al- moudarisi AM, Davis R et al. (2015) A systematic review to identify the factors that affect failure to rescue and escalation of care in surgery. Surgery 157(4):752–763
29. Scall ST, Giles KA, Kubulis P, Beck AW, Crippen CJ, Hughes SJ et al. (2020) Impact of hospital volume on patient safety indicators and failure to rescue following open aortic aneurysm repair. J Vasc Surg 71(4):1135–1146
30. Steffen M, Schmitz-Rixen T, Jung G, Böckler D, Grundmann RT, Deutsche Institut für Gefäßmedi- zinische Gesundheitsforschung gGmbH (2019) Der DlGG-Risikoscore. Chirurg 90(11):913–920
31. Chaiolf EL, Dalman RL, Eskandari MK, Jackson BM, Lee WA, Mansour MA et al. (2018) The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg 67(1):2–77.e2
32. Wanhainen A, Verzini F, Van Herzeele L, Al- laire E, Bown M, Cohnert T et al. (2019) Editor’s choice—European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vasc Endovasc Surg 57(1):8–93
33. Debos ESHF, Gross-Fengels W, Mahlmann A, Muhl E, Pfister K, Roth S, Stroszczyński C, Walther A, Weiss N, Wilhelm M, Grundmann RT (2018) S3 Leitlinie zu Screening, Diagnostik, Therapie und Nachsorge des Bauchaortenaneurysmas. AWMF-Registernummer 004–14. https://www.awmf.org/uploads/tx_szleitlinien/004-014__ S3_Bauchaortenaneurysma_2018-08.pdf. Zuge- griffen: 15.6.2020