Exosomal cargoes in OSCC: Current findings and potential functions

Chengzhi Zhao, Geru Zhang, Jialing Liu, Chenghao Zhang, Yang Yao, Wen Liao

1 State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
2 State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
3 State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
4 State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China

Corresponding Author: Wen Liao
Email address: liaowenssw@126.com

Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in head and neck cancer, with high recurrence and mortality. Early diagnosis and efficient therapeutic strategies are vital for the treatment of OSCC patients. Exosomes can be isolated from a broad range of different cell types, implicating them as important factors in the regulation of human physiological and pathological processes. Due to their abundant cargo including proteins, lipids, and nucleic acids, exosomes have played a valuable diagnostic and therapeutic role across multiple diseases, including cancer. In this review, we summarize recent findings concerning the content within, and participation of, exosomes relating to OSCC and their roles in tumorigenesis, proliferation, migration, invasion, metastasis, and chemoresistance. We conclude this review by looking ahead to their potential utility in providing new methods for treating OSCC to inspire further research in this field.
Exosomal cargoes in OSCC: current findings and potential functions.

Chengzhi Zhao¹#, Geru Zhang¹#, Jialing Liu², Chenghao Zhang², Yang Yao³, Wen Liao⁴*

These two authors contribute equally to the manuscript.

¹ State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
² State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
³ State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
⁴ State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China

Corresponding Author:
Dr. Wen Liao
No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
Email address: liaowenssw@126.com

Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in head and neck cancer, with high recurrence and mortality. Early diagnosis and efficient therapeutic strategies are vital for the treatment of OSCC patients. Exosomes can be isolated from a broad range of different cell types, implicating them as important factors in the regulation of human physiological and pathological processes. Due to their abundant cargo including proteins, lipids, and nucleic acids, exosomes have played a valuable diagnostic and therapeutic role in multiple diseases, including cancer. In this review, we summarize recent findings concerning the content within, and participation of, exosomes related to OSCC and their roles in tumorigenesis, proliferation, migration, invasion, metastasis, and chemoresistance. We conclude this review by looking ahead to their potential utility in providing new methods for treating OSCC, which hopefully inspires further research in this field.

Introduction
Extracellular vesicles (EVs) are membrane-bound organelles actively secreted by cells, which can be released by nearly all cell types and detected in many body fluids (Shah et al. 2018; Shao...
et al. 2018). The various types of cargo, including proteins, lipids, and nucleic acids within and on EVs surface (Mashouri et al. 2019), vary depending on their parental cells of origin and extracellular environment. This is why they are regarded as a mechanism for intercellular communication (Shah et al. 2018; van Niel et al. 2018). Based on their morphological features and contents, EVs are classified into different groups namely microvesicles (MVs), exosomes, and apoptotic bodies (Gyorgy et al. 2011). Different EV subtypes are thought to be divided based on their physical characteristics (such as size or density) relying on specific secretion mechanism (Mathieu et al. 2019; Théry et al. 2018). Exosomes are one kind of EV with a diameter of <150 nm (Shah et al. 2018). They origin from intraluminal vesicles (ILVs) secreted by multivesicular bodies (MVBs) through fusing with the plasma membrane (van Niel et al. 2018). Exosomes have been shown to play significant roles in regulating physiological and pathological processes, in addition to having great potential in therapeutic development (Ferguson & Nguyen 2016; Kalluri & LeBleu 2016; Liao et al. 2019; Mashouri et al. 2019).

Exosomes play important function in many diseases (Hadavand & Hasni 2019; Kadota et al. 2016; Li et al. 2019b; Malm et al. 2016; Zhan et al. 2019). In cancer, their participation in numerous process phases has been observed, including in situ tumorigenesis (Milman et al. 2019), tumor growth (Matei et al. 2017; Xue et al. 2017), angiogenesis (Zeng et al. 2018), evasion of immune system (Chen et al. 2018; Kulkarni et al. 2019), resistance to chemotherapeutic agents (Mashouri et al. 2019), and metastasis (Hoshino et al. 2015; Kulkarni et al. 2019; Mashouri et al. 2019). In addition, antitumor effects have also been observed in exosomes (Pakravan et al. 2017; Xie et al. 2019).

OSCC, usually preceded by white or red mucosal changes known as leukoplakia or erythroplakia, respectively, or sometimes a combination of red and white features, is the most prevalent malignancy of the head and neck (Chi et al. 2015) characterized by high recurrence and poor prognosis. There are approximately 350,000–400,000 new cases each year with high risk of recurrence (20% to 30%) (Gupta et al. 2016). Recently, a close association between OSCC and exosomes biology has been reported. Exosomes can transport between cells and microenvironment and promote the initiation and progression of OSCC directly (Momen-Heravi & Bala 2018; Razzo et al. 2019); they also modulate OSCC by regulating the immune system, causing metabolic dysfunction and chemoresistance (Cui et al. 2020a). They have been developed for applications in the clinic, including as biomarkers for early diagnosis and drug delivery (de Jong et al. 2019; Surman et al. 2019; Zlotogorski-Hurvitiz et al. 2016). In this manuscript, we reviewed all these exciting advances. By looking ahead to exosomes’ potential utility in providing new methods for treating OSCC, we intend to inspire further research in this field.

Survey methodology

We systematically searched with PubMed Advanced Search Builder with the following keywords: (1) OSCC and exosomes, (2) HNSCC and exosomes, (3) proteins in exosomes and OSCC, (4) lipid and exosomes and OSCC, (5) nucleic acids and exosomes in OSCC, (6) non-
coding RNA and exosomes in OSCC, (7) mitochondrial DNA and exosomes in OSCC, (8)
exosomes and clinic use and OSCC. By reading the titles and abstracts, papers nonrelated with
either exosomal cargoes or OSCC or HNSCC were excluded. Besides, papers not published in
English were excluded. Our search was not refined by publishing date, journal or impact factor
of the journal, authors or authors affiliations.

1. Exosomes biogenesis

The biogenesis and release of exosomes to the extracellular environment is an ordered process.
The first step for exosomes biogenesis is the formation of early endosomes (EEs). By inward
budding or endocytosis, primary endocytic vesicles and their contents fuse with each other to
form EEs (Huotari & Helenius 2011; Liao et al. 2019). After the process of primary endocytic
vesicles delivering their contents and membranes to EEs in the peripheral cytoplasm over 8–15
minutes, EEs will then go to their destination (Huotari & Helenius 2011). One possible
destination for EEs is recycling to the plasma membrane, directly or with the help of recycling
endosomes (Huotari & Helenius 2011; Morelli et al. 2004). The other possibility is their
conversion to late endosomes (LEs) for additional processing. LEs accumulate ILVs formed by
the inward budding of the endosomal membrane (Abels & Breakefield 2016), which results in
the conversion of LEs to MVBs (Abels & Breakefield 2016; Liao et al. 2019). ILV formation is
exquisitely regulated by mechanisms that remain to be fully elucidated, but it is reported to
mainly rely on endosomal-sorting complex required for transport (ESCRT)-dependent
machinery. Multiprotein ESCRT complexes are composed of ESCRT-0, ESCRT-I, ESCRT-II,
and ESCRT-III. These localize on the cytoplasmic side of the endosomal membrane and play
unique roles in sorting proteins into ILVs with assistance of accessory proteins (ALIX, VPS4,
and VTA1) (Trajkovic et al. 2008). Besides ESCRT-dependent pathway, some evidence revealed
that there are alternative, independent pathways regulating ILV biogenesis (Mashouri et al. 2019;
McNally & Brett 2018; Trajkovic et al. 2008). The type of cargo that is sorted into ILVs may
relate to the mechanisms involved. With MVBs, there are two notable fates: to either degrade by
fusing with lysosomes, or having their ILVs released as exosomes by fusion with the plasma
membrane (Grant & Donaldson 2009; Hessvik & Llorente 2018).

Exosomes biogenesis starting from the formation of EEs to the final release into extracellular
environment is a complex process (Figure 1). To our knowledge, it can differ between cell types
and their cellular physiological or pathological status (Kalluri & LeBleu 2016; Liao et al. 2019),
but much remains to be discovered to fully exploit the potential for exosomes as future clinical
therapies (Mashouri et al. 2019).

2. Exosomes capsuled protein in OSCC

It is known that exosomes encapsulate genetic material as well as proteins from their cells of
origin. Traditionally, the proteins that are encapsulated or transported by exosomes include
structural and functional proteins that maintain the basic structure of exosomes and are
responsible for regulating fusion, migration, and adhesion to target cells, such as transmembrane
protein families (CD9, CD63, CD81 and CD82), molecular chaperones (Hsp70, Hsp90), multi-
capsule synthesis proteins (TSG101 and ALIX), membrane carried fusion proteins, and others
(Hemler 2003; Li et al. 2017a; Li et al. 2017b; van Niel et al. 2006). Some exosomes in cancer
tissues can carry specific proteins that allow their identification and differentiation from other
exosomes, which could help to determine their unique function and potentially act as biomarkers
for detecting disease progression (DeRita et al. 2017; Melo et al. 2015; Zhou et al. 2006).
In OSCC, exosomes-loaded protein both promote the tumorigenesis of OSCC and regulate the
stromal cells around cancer tissues and support the processes of cancer cell proliferation (Figure
2).
Numerous studies have already revealed that epidermal growth factor receptor (EGFR) plays an
important role in tumor growth progress including tumorigenesis, tumor invasion and drug
resistance (Shostak & Chariot 2015; Sigismund et al. 2018; Yang & Chang 2018). In OSCC,
there is no exception. Overexpression of EGFR activates many signal pathways, such as
RAS/MEK/ERK, PI3K/AKT, and JAK/STAT pathways (Byeon et al. 2019; Nakamura et al.
2019; Oliveira-Silva et al. 2016; Zhang et al. 2018). Secretion of EGFR-contained exosomes
from OSCC can be increased by EGF’s stimulation. Vesicles internalized by healthy epithelial
cells around cancer cells result in epithelial-mesenchymal transition (EMT), turning normal cell
into spindle-like cells, which promotes invasion and migration of the cells within the milieu of
tumor (Aiello et al. 2018). Fujiwara et al. established a novel mode of tumor therapy with anti-
EGFR antibody cetuximab. This drug inhibits EMT in oral epithelial cell by preventing the
internalization of OSCC secreted exosomes into epithelial cells (Fujiwara et al. 2018). In the
milieu of tumor, fibroblast is another crucial portion for its participation in oral cancer, and
evidences show that exosomes can help it function better. Principe et al. compared fibroblasts
from resected tumor, adjacent normal tissue in the same patient and conducted a detailed analysis
of the cancer associated fibroblasts (CAF) secretome in OSCC. They found that CAF-derived
exosomes loaded with cytokines, growth factors or chemokine were richer in tumor tissue than
normal tissues, and exosomes play important role in promoting OSCC growth and migration.
The major cargo in OSCC exosomes is microfibrillar-associated protein 5 (MFAP5), which is
suggested to be a novel prognostic of OSCC and exosomes loaded with those content can be a
new treat target (Principe et al. 2018). Jiang et al. found that OSCC cells can secrete exosomes
with p-ERK1/2 to adjacent normal fibroblasts, directly active the ERK1/2 signal pathway to
down-regulate the expression of Caveolin-1 (CAV1) protein and up regulate the expression of
MCT4 and PDK1 in normal fibroblasts. This regulation takes place both in vivo and in vitro and
because of it, fibroblasts output much more lactate and cancer cells intake their outputted lactate,
which then activates MCT4/MCT1 axis between cancer cell and activated fibroblasts, and,
finally, provides sufficient energy for tumor cell growth and reproduction (Jiang et al. 2019).
Interaction between tumor cells and immune system can play a dual role: on one hand, immune
cells can recognize and eliminate tumor cells in the early stages of tumor development (Borst et
al. 2018; Gardner & Ruffell 2016; Teng et al. 2015); on the other hand, excessive infiltration of
immune cells is related with poor prognosis (Gonzalez et al. 2018; Mantovani et al. 2017). In the
microenvironment of tumor, exosomes can mediate the reaction of immune cells (Figure 2). Kim et al. compared exosomes from normal and OSCC patients. They found that nearly 78% of OSCC patients’ serum-derived exosomes express Fas ligand (FasL) and only 5% exosomes in normal people express FasL. Moreover, co-culturing FasL(+) OSCC serum-derived exosomes with Jurkat cells lead to the apoptosis of immune cells (Kim et al. 2005). Zhang’s group discovered that exosomes derived from supernatant of human oral cancer cells CAL 27 and SCC-25 (ATCC) were rich in interferon regulatory factor 3 (IRF-3) and its phosphorylation which promotes chemokine (C-X-C motif) ligand (CXCL) genes and the expression of the type I interferon (IFN) gene. This strengthens the biological function of NK cells, including cytotoxicity, proliferation and release of granzyme M and perforin (Wang et al. 2018b). Chen and colleagues found that thrombospondin 1 (THBS1) was transported by OSCC-derived exosomes and could be taken into surrounding macrophages derived from THP-1 and PBMCs resulting in stimulating macrophage transformation into M1-like tumor associated macrophages (TAMs), this process plays a crucial role in controlling OSCC cell migration(Xiao et al. 2018). Besides, recent research indicates that transforming growth factor-beta (TGF-β) is important for tumorigenesis and immunosuppression in the tumor microenvironment(Batlle & Massagué 2019); however, in OSCC, mutation of loss function in TGFβ type II receptor (TβRII) is quite common. South and colleagues discovered that exosomes extract from stromal fibroblasts isolated from OSCC patients contains TβRII, they can increases TGFβ signaling in OSCC cells devoid of TβRII, which active TGF-β signaling between tumor cells and their surrounding microenvironment (Languino et al. 2016). They also showed that OSCC-derived exosomes were loaded with the C-terminal fragment of desmoglein 2, a highly expressed protein in many kinds of malignant tumors. DSG2 expression in OSCC could promote exosomes secretion through the modification of metalloproteases and repartitioning of Cav1; moreover, these DSG2-CTF-positive exosomes could modulate the microenvironment by converting nearby fibroblasts into TAMs(Overmiller et al. 2017).

In the past few years, several treatments have been conducted to the cancer patients, metastasis is still the major cause of death in most cases. Exosomes and their carriers secreted by cancer cells would participate in pathological generation of blood and lymphatic vessels, which is closely related to the development and progression of tumor tissues (Fu et al. 2019; Mashouri et al. 2019). Vascular endothelial growth factor C (VEGF-C) is universally acknowledged as one of the most effective proteins in promoting lymphatic vessels. It is abundant in lymph node positive metastatic OSCC patients (Lien et al. 2018; Shigetomi et al. 2018) (Figure 2). Zhong et al. discovered that increased VEGF-C expression associated with an increased number of salivary exosomes in OSCC tissues (Zhong et al. 2019). In Kozaki and colleagues’ study, they found that the increase of HSP90-rich exosomes is positively correlated to the increased invasive capacity of OSCC; moreover the knockdown of HSP90α and HSP90β decreased the metastatic capacity and survivability of OSCC cells (Ono et al. 2018). Observing that OSCC LN1-1 cells were more aggressive in lymphatic node metastasis than OEC-M1 cells, Wang et al. used stable isotope amino acid labeling to reveal that higher laminin-332 protein levels in tumor cell-derived
exosomes was a major cause for the superior lymphangiogenesis ability of OSCC LN1-1 cells, as laminin-332 promotes lymphatic endothelial cell migration and tube formation (Wang et al. 2019a). Li et al. reported that PF4V1, CXCL7, F13A1, and ApoA1 could affect OSCC lymph node metastasis, and the mechanism remains unknown (Li et al. 2019a).

3. Lipid cargo in OSCC exosomes

Exosomes are an alternative means to carrier proteins and lipoproteins for transporting lipids (Record et al. 2014). There are approximately 2000 lipid species identified through comparative lipidomic analyses (Haraszti et al. 2016), which can localize to the membrane and lumen of exosomes. The roles for several kinds of lipids have been reported, including BMP (Bismonoacylglycerophosphate), cholesterol, ceramides, and phosphatidic acid (Record et al. 2014). These lipids play critical roles in exosomes biogenesis and release (Record et al. 2014; Record et al. 2018). And some of them can be unique and help us distinguish different EVs. For example, BMP is recognized as a lipidic molecule required for MVB formation (Subra et al. 2007) and ILV biogenesis (Falguières et al. 2012), however, it is irrelevant to the formations of MVs, which indicates its potential as a biomarker to distinguish exosomes from MVs (Record et al. 2018). Lipid composition is not only different between various EVs, the lipid contents of exosomes are usually different from their parental cells. Llorente et al. quantified 280 species of lipids from PC-3 prostate cancer cells and their exosomes and found some differences in their lipid composition (Llorente et al. 2013). This interesting finding indicates that the discrimination of lipids between exosomes and parental cells could play significant roles in many pathophysiology, which inspires us that by detecting the lipid composition from exosomes and parental cells, it can be a diagnostic as well as therapeutic direction in the future. Over the past few years, lipid metabolic abnormalities have been identified as a feature of tumor cells. Hu et al. found that some lipid metabolism-related genes in OSCC patients could be used for prognostication (Hu et al. 2019). Lipid uptake can also be enhanced in cancer (Tousignant et al. 2019). Pascual et al. observed a similar phenomenon in OSCC, as they documented a subpopulation of CD44(bright) OSCC cells that express high levels of lipid metabolic genes and can initiate metastasis (Pascual et al. 2017).

Arachidonic acid (AA) is a free fatty acid that can be transported by exosomes (Subra et al. 2010), and its metabolism is a major dysregulated pathway in cancer cells (Gatto et al. 2016). As the precursor of both leukotrienes and prostaglandins, AA can be transferred between tissues by exosomes contributing to tumor growth and progression (Linton et al. 2018). Exosomes secreted from AsPC-1 cells, a highly metastatic pancreatic ductal adenocarcinoma cell line, were reported to deliver AA to macrophages. The fusogenicity of AsPC-1 exosomes decreased when pretreatment with PLA2 caused the removal of AA, indicating that exosomal AA may enhance crosstalk between cancer cells and TAMs, thus contributing to tumor progression (Linton et al. 2018). Besides AA itself, its products have been detected performing similar functions. Leukotrienes (LTs) are involved in various pathophysiology such as inflammatory asthma, atherosclerosis, and cancer (Record et al. 2014). Several types of LTs, such as LTB4, LTC4,
cysteinyl leukotriene LTC4, and LTC4 synthase, are enriched in exosomes (Esser et al. 2010; Lukic et al. 2019). Exosomes appear to play a role in the biogenesis of LTs. For example, LTA4, the precursor of leukotrienes, only has a five-second half-life in in vitro buffer, but with the protection of exosomes, their half-life can be elongated to several minutes (Esser et al. 2010). Besides assisting the biogenesis of LTs, exosomes seem to play other roles helping LTs performing their pathological functions. Lukic et al. found that exogenous LTC4 generated by monocytic cells can be transformed into pro-tumorigenic LTD4 through gamma-glutamyl transpeptidase-1 (GGT-1). GGT-1 is contained within both exosomes and primary cancer cells, which stimulates cancer cell migration and survival (Esser et al. 2010). And since the 5-lipoxygenase (5-Lox) and cyclooxygenase (COX)-2 pathways of arachidonic acid metabolism are involved in oral carcinogenesis (Lai et al. 2018), LTs in exosomes may also play an important role in OSCC. Prostaglandins (PGs) are another product of AA. Exosomes with high concentrations of prostaglandins transport more PGE2 to neighboring cells, enhancing the overall presence of PGE2 in the microenvironment (Subra et al. 2010). Cell motility and metastatic status are impacted by extracellular levels of PGE2 (Nasry et al. 2018). Evidence has shown that exosomes rich in PGE2 participate in tumor immune evasion and promote tumor growth (Record et al. 2014). PGE2-mediated inflammation contributing to OSCC at different stages of carcinogenesis, invasion and metastasis contributes to patient morbidity and mortality (Harada et al. 2017). Abrahao et al. showed that HNSCC cells secrete PGE2. The overexpression of COX-2 in tumor and inflammatory cells, and subsequent increased production of PGE2, may promote HNSCC growth in an autocrine and paracrine way in the microenvironment. Exosomes can therefore be considered a potential medium for autocrine and paracrine regulation (Luga et al. 2012).

4. Nucleic acids in OSCC exosomes

A diverse collection of nucleic acids, including DNA, coding mRNA, non-coding RNA (ncRNA), micro RNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNA) have been identified in exosomes (Abels & Breakfield 2016). The nucleic acid content of exosomes is believed to play a significant role in promoting cancer pathogenesis through the oncogenic transformation and transfer of cancer-specific genetic material (Kalluri & LeBleu 2016). Understanding how nucleic acids transported by exosomes mediate the process of OSCC is critical, and could illuminate strategies for exosomes-based targeted therapy.

4.1 DNA

DNA in exosomes has been observed in cell culture supernatant as well as human and mouse biological fluids such as blood, seminal fluid, and urine (Kalluri & LeBleu 2016). Based on cell origin, it is likely that different types of exosomes contain distinct types of DNA, such as single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), mitochondrial DNA (mtDNA), and of varying states (e.g., fragment length, chromosome-bound) (Kalluri & LeBleu 2016). Among these various types, dsDNA is the most evaluated (Kahlert et al. 2014).
Exosomal DNA has been found to be involved in immunity regulation (Diamond et al. 2018; Kitai et al. 2017). When tumors were treated by different strategies (e.g., antitumor drugs or radiotherapy), the induced secretion of cancer cell-derived exosomes containing DNA triggered dendritic cell (DC) activation and cytokine production, both of which can have antitumor effects by regulating immune responses (Diamond et al. 2018; Kitai et al. 2017). In addition to its potential therapeutic roles by regulating immune system, DNA in exosomes may become an attractive candidate biomarker for tumor diagnosis because of the inherent stability of DNA within exosomes (Kalluri & LeBleu 2016). For example, the same mutations in susceptibility genes were found in exosomal DNA and parental cells of pheochromocytomas and paragangliomas (Wang et al. 2018a), and mutant KRAS, TP53, NOTCH1, and BRCA2 DNA in exosomes from pancreatic cancer were also detected (San Lucas et al. 2016; Yang et al. 2017a). Exosomes in OSCC may play similar roles, as mutant genes were discovered in OSCC cells as well (Biswas et al. 2019; Natsuizaka et al. 2017).

Virus infection is closely related to cancers including OSCC. Moreover, viral DNA has also been detected in exosomes from cancer patients (Yang et al. 2017b). For example, Meckes et al. identified that ERK and PI3K/AKT signaling pathways can be activated if the recipient cells were exposed to exosomes containing major EBV oncogene LMP1 (Meckes et al. 2010). Besides, Human papillomavirus (HPV) is considered a risk factor for OSCC, and its DNA has been found in exosomes from HeLa cells (Mata-Rocha et al. 2020). There are some evidence demonstrating that HPV DNA in exosomes participated in the process of cancer. HPV DNA in plasma-derived exosomes was detected in rectal squamous cell carcinoma patients (Ambrosio et al. 2019).

Ambrosio et al. isolated exosomes from the HPV DNA-positive cell line CaSki, which can transfer DNA to normal cell lines. Moreover, circulating exosomes-encapsulated HPV DNA in the blood of neoplastic patients was verified to be transferred to normal and tumor cells at least in vitro. Exosomes containing HPV are involved in HPV-associated carcinogenesis, indicating a potential role in OSCC although there is no direct evidence noted (Guenat et al. 2017). Mitochondria are major energy generators in cells, and increasing studies have revealed their role in tumor development. Currently, scientists are deepening our understanding of the connections between mitochondria and tumors. For example, cancer cells can obtain mitochondria from healthy cells to achieve chemical resistance (Pasquier et al. 2013), and mitochondrial DAMP provides tumor cells with a possible immune escape mechanism (Zhang et al. 2010a; Zhang et al. 2010b). The transfer of mitochondria or mtDNA is not completed independently, but is carried out by the transporting mediators between cells, such as exosomes and secretory vesicles. In oral cancer, whether exosomal mtDNA participates in tumorigenesis, tumor proliferation, and migration is still vague. However, Uzawa et al. proposed a novel method for detecting mtDNA in OSCC patients and reported significant differences in serum mtDNA levels before and after OSCC patient treatment. They also identified mtDNA as a promising molecular marker for OSCC prognostication (Uzawa et al. 2015). Despite these advances, further exploration into exosomes-derived mtDNA and its application in the diagnosis and treatment of OSCC is necessary.
4.2 mRNA
Coding mRNA has been found in exosomes. Transferring mRNA within exosomes can enable mRNA translation into proteins in recipient cells (Huang et al. 2013; Valadi et al. 2007), giving mRNA a potentially powerful role in cell-to-cell communication. Its function has been studied in both healthy and pathological states (Feng et al. 2018; Valadi et al. 2007). As a means for cell-to-cell transportation, the mRNA profiles of tumor-derived exosomes have been evaluated in various cancers such as melanoma (Del Re et al. 2018), glioblastoma (Skog et al. 2008), prostate cancer (Lázaro-Ibáñez et al. 2017), and colorectal cancer (Hao et al. 2017). Moreover, these studies revealed that mRNAs in tumor-derived exosomes can play vital roles in promoting malignant tumor growth, proliferation, and metastasis through suppressing immune responses and resisting antitumor treatment (Del Re et al. 2018; Geis-Asteggiante et al. 2018; Skog et al. 2008).

Salivary liquid biopsy has emerged as an excellent method for disease detection, which is also applied to OSCC (Yakob et al. 2014). Evaluation of the salivary transcriptome from OSCC patients has helped to identify some mRNA biomarkers (Brinkmann et al. 2011). Qadir et al. characterized and compared the transcriptome profiles between exosomes isolated from primary human normal oral keratinocytes (HNOK) and HNSCC cell lines. The results showed that in HNSCC-derived exosomes, the expression of matrix remodeling (EFEMP1, DDK3, SPARC), cell cycle (EEF2K), membrane remodeling (LAMP2, SRPX), differentiation (SPRR2E), apoptosis (CTSC), and transcription/translation (KLF6, PUS7) factors showed significant differences from healthy cell-derived exosomes (Qadir et al. 2018), indicating that cancer cells may confer transcriptome reprogramming through exosomes to enhance cancer-associated pathologies.

4.3 ncRNA
Most of the human genome is considered biologically active. However, only a minor fraction of DNA encodes proteins. ncRNAs represent the majority of RNA that is not translated into proteins (Romano et al. 2017). NcRNAs are a category of exosomal cargo under investigation for its complex role in regulating gene expression (Zhang et al. 2015). NcRNA interactions are often interconnected which, when deregulated, could eventually drive tumorigenesis and progression (Chan & Tay 2018). Identifying ncRNAs and their interactions will help to provide robust biomarkers and new therapeutic targets for more effective cancer therapies, better outcomes, and greater survival (Chan & Tay 2018; Zhang et al. 2015) (Table 1).

4.3.1 miRNA
MiRNA are small ncRNAs around 22 nucleotides long, and they can be divided into oncogenic miRNA and tumor suppressor miRNA (Svoronos et al. 2016). They perform their post-transcriptional regulatory effects by binding to specific sites known as miRNA response elements (MREs) on their target transcripts, leading to either transcript degradation or
translational inhibition (Chan & Tay 2018). MiRNA regulatory activity in cancer has been widely studied (He et al. 2020; Li et al. 2019c; Sakha et al. 2016).

4.3.1.1 Exosomal miRNAs in OSCC growth
MiRNA function in OSCC has been thoroughly discussed (Langevin et al. 2017). Since they are secreted from various types of healthy and tumor cells (Tkach & Théry 2016), miRNAs in exosomes can play different roles in promoting or inhibiting cancer. Dickman et al. found that miR-142-3p secreted from oral cancer cells promotes cancer cell growth by eliminating the miRNA tumor suppressive effect. Exosomes also promote tumor angiogenesis by releasing miR-142-3p to its microenvironment (Dickman et al. 2017). However, in another study of Higaki et al. (Higaki et al. 2020), overexpression of miR-6887-5p in SCC/OSCC cells inhibited tumor growth. Similar results document targeting miRNA as a treatment strategy to inhibit tumor growth. Lower levels of miR-3188 were detected in CAFs than normal fibroblasts, and loss of miR-3188 promoted malignant phenotypes in head and neck cancer cells, supporting its consideration as a therapeutic target (Wang et al. 2019c).

4.3.1.2 Exosomal miRNAs in OSCC cell migration and invasion
MiRNAs in exosomes not only promote or inhibit tumor growth, but have also been shown to participate in OSCC cell migration and invasion. A research compared miRNA profiles in non-invasive SQUU-A and highly invasive SQUU-B tongue cancer cell clones, it was observed that hsa-miR-200c-3p acts within a key pro-invasion role in OSCC. The transfer of miR-200c-3p in exosomes derived from a highly invasive OSCC line can also accelerate the invasion potential of non-invasive counterparts (Kawakubo-Yasukochi et al. 2018). Another research done by Sun et al. also found that miR3825p was overexpressed in CAFs compared with fibroblasts of adjacent normal tissue, and miR3825p overexpression was an important regulatory factor in OSCC cell migration and invasion (Sun et al. 2019). MiRNAs in exosomes can also play like messengers to modulate tumor environment, and then manipulate OSCC cell migration and invasion. Normoxic and hypoxic OSCC-derived exosomes yielded different miRNA profiles, miR-21 showed its most significant role under hypoxic conditions. The loss of miR-21 in hypoxic OSCC cells downregulated miR-21 levels in exosomes and significantly reduced cell migration and invasion. Restoration of miR-21 expression in HIF-1α- and HIF-2α-depleted exosomes rescued OSCC cell migration and invasion (Li et al. 2016).

4.3.1.3 Exosomal miRNAs in OSCC metastasis
Cancer metastasis is a very complicated process, involving intrinsic and extrinsic mechanisms. Metastasis is also a great challenge in our effort to fight cancer, and it caused poor prognosis of OSCC (Sun et al. 2019). It has been explosively studied and proved miRNAs participated in this process of OSCC. Some studies have noticed that cancer stem cell-derived extracellular vesicles are enriched with miR-21-5p, which is associated with increased potential of OSCC metastasis (Chen et al. 2019). However, some miRNAs have been revealed as performing anti-
cancer roles as well. By examining the miRNA profiles of CAF- and normal fibroblast (NF)-
derived exosomes, miR-34a-5p expression was found to be significantly decreased, making it an
anti-cancer therapeutic target for OSCC (Li et al. 2018c). The complex of metastasis makes it a
fascinating field, especially the relations between miRNAs and tumor microenvironment (TME).
TME plays a vital role in the progression of OSCC. Recent research has revealed that tumor-
derived exosomes (TEX) accumulate in the TME and interact between tumor and healthy
stromal cells (Ludwig et al. 2018). Cai et al. cocultured exosomes extracted from OSCC cell lines
(SCC-9 and CAL-27) with macrophages. Their results showed that the upregulation of miR-29a-3p in OSCC-derived exosomes is related to M2 subtype macrophage polarization. After
interfering with miR-29a-3p from OSCC, M2 subtype macrophage polarization was inhibited by
OSCC-derived exosomes (Cai et al. 2019).

4.3.1.4 Exosomal miRNAs in chemoresistance
Chemotherapy is a hallmark of fighting cancers. However, Chemoresistance is a significant
challenge for OSCC treatment with no clear mechanism. Several studies have shown that
miRNAs in exosomes of both healthy and tumor cells can manipulate this phenomenon (Cui et al.
2020b; Kirave et al. 2020; Qin et al. 2019). Some miRNAs are upregulated during
chemotherapy, which can enhance chemoresistance against antitumor drugs such as cisplatin
(CIS) and docetaxel (DTX). Kirave et al. found that when transferring exosomes from CIS-
resistant to CIS-sensitive cells, miR-155 was significantly upregulated in the recipient CIS-
sensitive cells (Kirave et al. 2020). Exosomes isolated from CIS-resistant cell lines contained a
higher concentration of miR-21 in accordance with the parental cells’ increased cisplatin
resistance, which indicates that miR-21 may be a potential target against chemoresistance (Liu et
al. 2017). The underlying mechanism is considered related to EMT and decreased DNA damage
in cancer cells (Cui et al. 2020b; Kirave et al. 2020). Some miRNAs were downregulated during
chemoresistance. For example, downregulation of miR-200c increased resistance to DTX, when
miR-200c was transported by exosomes, the results showed the increase of the sensitivity to
DTX both in vitro and in vivo, indicating miR-200c could be a therapeutic target of OSCC (Cui et
al. 2020b).

4.3.2 lncRNA and circRNA
Beyond miRNA, there are other regulatory ncRNAs that perform complex roles in cancer (Morris
& Mattick 2014). One kind, IncRNA, ranging from 200 to >1000 nucleotides, is a novel class in
the human genome with seldom to no coding potential (Yang et al. 2015). They participate in
various diseases through interacting with DNA (Lin et al. 2020), RNA, or proteins (Zhang et al.
2014). IncRNA may be involved in cancer cell proliferation (Wang et al. 2019b; Xu et al. 2019),
migration (Xu et al. 2019), invasion (Xiong et al. 2019), metastasis (Jin et al. 2020; Xiong et al.
2019), and antitumor drug resistance (Wang et al. 2019b). lncRNA has multiple roles in
regulating cancers, and the most important one among them is acting as “miRNA sponge” (Tan et
al. 2019; Zhang et al. 2019b). Zhang et al. discovered that knockdown of IncRNA UCA1
significantly suppressed TGFβ1-induced tongue cancer cell invasion and eventually induced EMT (Zhang et al. 2019b). TGFβ1-induced EMT and invasion in OSCC are consistent with increased JAG1, whereas miR-124 inhibits its expression. UCA1 binds to miR-124 directly and can downregulate miR-124 expression. This is the basis for IncRNA UCA1’s protumor effect through sponge-like IncRNA-miRNA-mRNA regulation (Zhang et al. 2019b). IncRNA TIRY was also found to act as a miRNA sponge in OSCC by downregulating miR-14 expression in CAF-derived exosomes (Jin et al. 2020). IncRNA FLJ22447 (Inc-CAF) secreted from CAFs regulates NFs to CAFs, and tumor cells increased Inc-CAF levels in stromal fibroblasts via exosomal Inc-CAF as well (Ding et al. 2018). Unlike IncRNA, circRNA consists of a closed continuous loop structure without 5’-3’ polarity or a poly-A tail, which enables its resistance to RNases and higher stability compared with linear RNA (Bai et al. 2019). Similar to IncRNA, circRNA also functions as a miRNA sponge (He et al. 2019). Although the roles of circRNA in exosomes remains unknown, a hypothesis has been introduced by Bai et al (Bai et al. 2019). Some circRNAs may bind to and transport with miRNAs by exosomes. After entering target cells, miRNAs are released to regulate target genes (Jin et al. 2020). CircRNAs in exosomes may therefore enter the recipient cells, bind to miRNAs, and regulate target genes. The roles of circRNAs in OSCC have been investigated by several researchers (Han et al. 2020), and differences in circRNAs profiles between OSCC patients and healthy people have also been distinguished (Qiu et al. 2019; Wei et al. 2020). By performing the function of miRNA sponge, the significance of LncRNA and circRNA has been noted, their discovery in OSCC also indicates that their roles in the pathogenesis cannot be neglected. Although there is still a lack of direct evidence for exo-LncRNA and exo-circRNA regulating OSCC, the evidence presented in other cancers proved it must be a remarkable field in the future research of OSCC as well (Li et al. 2018a; Li et al. 2018b; Ren et al. 2018; Zhang et al. 2019a).

4.3.3 Other ncRNAs

Besides regulatory ncRNA, tRNA and rRNA make up another group of ncRNA referred to as housekeeping ncRNA (Romano et al. 2017). Baglio et al. defined the exosomes-enclosed RNA species from the full small RNAome of MSC-produced exosomes (Baglio et al. 2015). Adipose and bone marrow MSC subtypes secrete different tRNA species that may be relevant to clinical applications; however, how tRNAs are transported through exosomes and their influence on the microenvironment in a cell type-dependent manner remains unclear (Baglio et al. 2015). Crescitelli et al. analyzed RNA profiles in different EVs including exosomes. According to their findings, rRNA was primarily detectable in apoptotic bodies, but smaller RNAs without prominent ribosomal RNA peaks in exosomes (Crescitelli et al. 2013). This indicates that exosomes are potentially not carriers of rRNA. Collectively, there is little evidence surrounding the exosomal transportation of tRNA and rRNA, let alone their potential function in modulating cancer and their microenvironment.

5. Clinical use of exosomes
5.1 Exosomes as biomarkers for diseases diagnosis

Combining exosomes’ stability and accessibility in various biological fluids like urine, blood (including serum), breast milk, exosomes can be used as biomarkers for various cancers, some can even be used to determine the type and severity of the disease. For example, exosomes carrying Glypican-1 are considered a sensitive indicator of pancreatic cancer in blood samples (Melo et al. 2015). In gastric cancer patients, exosomes expressing CD63 can be isolated from tumor cells cluster but not stromal cells reflects a worse prognosis than the situation that CD63+ exosomes can be find in both cell types (Miki et al. 2018). As for OSCC, exosomes have also been considered as one of the fast-detected methods for they have been discovered in the tumor microenvironment and been discovered play an irreplaceable role in OSCC’s tumorigenesis, tumor proliferation and migration, tumor invasion and metastasis (including angiogenesis and lymphangiogenesis), chemoresistance, and so on (Figure 3). Many studies have shown that the morphology and content of exosomes isolated from OSCC patients’ saliva and blood are very different from that of healthy people, suggested the possibility of using exosomes for OSCC diagnosed (Zlotogorski-Hurvitz et al. 2016). By using high-resolution AFM, Sharma et al. found the salivary exosomes of oral cancer patients were much larger and amorphous compared with those of healthy people, and also found that CD63 was significantly increased on the surface of cancer exosomes (Sharma et al. 2011). In a study by Rabinowits, tongue squamous cell carcinoma tissue and normal tissue were collected in pairs. They isolated exosomes and found different miRNA loading patterns similar to the loading patterns of blood exosomes, suggesting that circulating exosomes can be a more reliable method in evaluating tumors (Rabinowits et al. 2017). Sanada et al. examined the expression levels of secreted lysyl-oxidase-like 2 (LOXL2) in pharyngeal and tongue cancer patient serum and found that elevated serum exosomes LOXL2 levels are associated with low-grade oral cancer (Sanada et al. 2020).

All these discoveries of exosomes provide new ideas for the non-invasive disease diagnosis method.

Also, the contents of exosomes can indicate tumor invasion capacity and occurrence of distant metastasis, because exosomes always participate in the angiogenesis and lymphangiogenesis of tumor tissues as mentioned before. Li and colleagues found that miR-21-rich exosomes are associated with increased OSCC invasiveness, and that these exosomes are delivered to normoxic cells to promote prometastatic behaviors (Li et al. 2016). Nakashima et al. utilized integrated microarray profiling technology to analyze the different expression patterns of miRNA between non-invasive and highly invasive tongue cancer cells, observing that hsa-miR-200c-3p was the crucial point in spreading invasive ability (Kawakubo-Yasukochi et al. 2018).

Moreover, the quantity and content of exosomes can be used in non-invasive examination for deciding tumor stages and predict the prognosis of treated OSCC patients, and scientists suggested that the combination of different kinds of biomarkers are significantly better than single biomarker in OSCC diagnosing. Ludwig et al. suggest that tumor staging can be understood by exploring the interaction between OSCC cell-derived exosomes and lymphocytes. Exosomes in the plasma of patients with tumors in an uncontrolled phase have greater induction
of T cell apoptosis and inhibition of lymphocyte proliferation, which differs from patients without significant disease (Ludwig et al. 2017). The quantity and content of exosomes could predict the prognosis of treated OSCC patients. Liu and Tian compared serum exosomes between laryngeal squamous cell carcinoma patients and vocal cord nodule patients, finding that the expression levels of miR-21 and HOTAIR were higher in exosomes of malignant lesions. Moreover, the serum exosomes of patients with laryngeal cancer in stage III/IV also showed a high level of miR-21 and HOTAIR in exosomes (Wang et al. 2014), suggesting an association between the level of exosomal content and prognosis. Those outcomes are similar to a clinical study performed by Zorrilla et al., they collected ten OSCC patients’ plasma sample before and after the excision surgery to evaluate the level of plasmatic CD63+ and CAV1+ exosomes levels correlate with patient’s overall survival, they came to an conclusion that the lower expression of CD63+ exosomes after surgery and lower CAV1+ exosomes before surgery would indicate a longer life expectancy (Rodríguez Zorrilla et al. 2019).

5.2 Exosomes as therapeutic mediums

In terms of exosomal structure, they consist of biogenic lipid bilayers similar to cell membranes, which could protect cargo from degradation and could deliver the drug to target cells. The surface diameter of exosomes is only 40–150 nm, so they are small enough to access most tissue without consumption and degradation by macrophages (de Jong et al. 2019; Kalluri & LeBleu 2016; Surman et al. 2019; Vader et al. 2016; Yang & Wu 2018). Moreover, they may exhibit inherent targeting properties, which is determined by lipid composition and protein content (Murphy et al. 2019). With these advantages, they are considered as potential drug delivery systems. At present, clinical trials using exosomes as a drug delivery method against cancer have been gradually increasing. In lung cancer, tumor cell-derived exosomes were extracted from the pleural effusion of lung cancer patients. After modification and loading with the chemotherapy drug methotrexate, they were reinjected into the patient's chest cavity. It has been observed that exosomes have a safe inhibitory effect on the growth of tumor cells (Guo et al. 2019). In colon cancer, exosomes with carcinoembryonic antigen were isolated from ascites fluid. After combining them with granulocyte macrophage colony stimulating factor, they served as a vaccine to induce a beneficial tumor-specific antitumor cell toxic T lymphocyte response (Dai et al. 2008). In OSCC, the current drug-loading process is mainly based on different carrier systems, such as nanoparticles, nanolipids, and hydrogels, which can alleviate the disadvantage of poor water solubility for oral cancer anti-cancer drugs to a certain extent (Ketabat et al. 2019; Luo et al. 2014; Poonia et al. 2017). Studies have shown that exosomes have been used as carriers for chemotherapeutic agents such as curcumin, DOX, and PTX, thereby reducing their side effects and improving therapeutic efficiency (Batrakov & Kim 2015; Sun et al. 2010; Tian et al. 2014). Despite this progress, research on exosomes as a drug-loading system is still limited, mainly due to their limited ability to deliver high-dose therapeutic drugs, insufficient basic experiments, and a lack of effective, standardized separation and purification methods (Ludwig et al. 2019; Yang & Wu 2018).
Conclusions

Researchers are continuing to provide new evidences on the importance of exosomes in cancer tumorigenesis, proliferation, migration, invasion, metastasis, and chemoresistance. Exosomal cargo based drug delivery system is also interesting in the treatment of OSCC because of its numerous type and abundance of cargo found in OSCC-related exosomes, which varies among different states of health and disease. What is more, because of their unique secretion patterns, exosomes can be used as ideal biomarkers for OSCC diagnosis, especially in saliva biopsy, which is a non-invasive method comparing to serum biopsy. With all these possibilities, however, there is still a lot not clearly understand in exosomes generation, secretion, cargo transportation, fusion with target membrane, especially the consistent test standard and separation method of exosomes has not been completely established. A more comprehensive understanding of the complexity of exosomes would help us elucidate disease mechanisms and provide opportunities for the diagnosis and treatment of OSCC. The safety of exosomes is still another question not solved yet. Further studies in this field, such as clinical study or studies using large animal models, are still needed to prove exosomes’ safety in treatment, especially for exosomes secreted from cancer cells. Despite the faced great challenges and difficulty, we still find exosomes’ great potential of usage in OSCC treatment and biopsy. We believe that exosomes can play even more important role in this field.

Acknowledgements

We acknowledge Dr. Qiang Peng for his valuable suggestion.

This study was supported by National Natural Science Foundation of China (No. 81700941), the Science and Technology Department of Sichuan Province (20ZDYF2839) and 2018 Sichuan University-Luzhou City co-operation program (CDLZ2018-14). The funding body was not involved in the design of the study; collection, analysis or interpretation of the data; or in writing the manuscript.

References

Abels ER, and Breakefield XO. 2016. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol 36:301-312.

Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, Yamazoe T, Black T, Sahmoud A, Furth EE, Bar-Sagi D, and Stanger BZ. 2018. EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Dev Cell 45:681-695.e684.

Ambrosio MR, Vernillo R, De Carolis S, Carducci A, Mundo L, Ginori A, Rocca BJ, Nardone V, Lucenti Fei A, Carfagno T, Lazzi S, Cricca M, and Tosi P. 2019. Putative Role of Circulating Human Papillomavirus DNA in the Development of Primary Squamous Cell Carcinoma of the Middle Rectum: A Case Report. Front Oncol 9:93.
Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, and Li G. 2008. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. *Mol Ther* 16:782-790. 10.1038/mt.2008.1

de Jong OG, Kooijmans SAA, Murphy DE, Jiang L, Evers MJW, Sluijter JPG, Vader P, and Schipperkemers RM. 2019. Drug Delivery with Extracellular Vesicles: From Imagination to Innovation. *Acc Chem Res* 52:1761-1770. 10.1021/acs.accounts.9b00109

Del Re M, Marconcelli R, Pasquini G, Rofi E, Vivaldi C, Bloise F, Restante G, Arrigoni E, Caparelo C, Bianco MG, Crucitta S, Petrelli I, Vasile E, Falcione A, and Danesi R. 2018. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. *Br J Cancer* 118:820-824. 10.1038/bjc.2018.9

De Riti RM, Zerlanko B, Singh A, Lu H, Iozzo RV, Benovic JL, and Languino LR. 2017. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes. *J Cell Biochem* 118:66-73. 10.1002/jcb.25611

Diamond JM, Vanpouille-Box C, Spada S, Rudqvist NP, Chapman JR, Ueberheide BM, Pilones KA, Sarfraz Y, Formenti SC, and Demaria S. 2018. Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs. *Cancer Immunol Res* 6:910-920. 10.1158/2326-6066.CIR-17-0581

Dickman CT, Lawson J, Jabalee J, MacLellan SA, LePard NE, Bennwith KL, and Garnis C. 2017. Selective extracellular vesicle exclusion of miR-142-3p by oral cancer cells promotes both internal and extracellular malignant phenotypes. *Oncotarget* 8:15252-15266. 10.18632/oncotarget.14862

Ding L, Ren J, Zhang D, Li Y, Huang X, Hu Q, Wang H, Song Y, Ni Y, and Hou Y. 2018. A novel stromal lncRNA signature reprograms fibroblasts to promote the growth of squamous cell carcinoma via LncRNA-CAF/interleukin-33. *Carcinogenesis* 39:397-406. 10.1093/carcin/bgy006

Esser J, Gehrmann U, D'Alessandri FL, Hidalgo-Estévez AM, Wheelock CE, Scheynius A, Gabrielsson S, and Rådmark O. 2010. Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. *J Allergy Clin Immunol* 126. 10.1016/j.jaci.2010.06.039

Falguières T, Castle D, and Gruenberg J. 2012. Regulation of the MVB pathway by SCAMP3. *Traffic* 13:131-142. 10.1111/j.1600-0854.2011.01291.x

Feng Y, Lv LL, Wu WJ, Li ZL, Chen J, Ni HF, Zhou LT, Tang TT, Wang FM, Wang B, Chen PS, Crowley SD, and Liu BC. 2018. Urinary Exosomes and Exosomal CCL2 mRNA as Biomarkers of Active Histologic Injury in IgA Nephropathy. *Am J Pathol* 188:2542-2552. 10.1016/j.amjpath.2018.07.017

Ferguson SW, and Nguyen J. 2016. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity. *J Control Release* 228:179-190. 10.1016/j.jconrel.2016.02.037

Fu M, Gu J, Jiang P, Qian H, Xu W, and Zhang X. 2019. Exosomes in gastric cancer: roles, mechanisms, and applications. *Mol Cancer* 18:41. 10.1186/s12943-019-1001-7

Fujiwara T, Eguchi T, Sogawa C, Ono K, Murakami J, Ibaragi S, Asaumi JL, Calderwood SK, Okamoto K, and Kozaki KI. 2018. Carcinogenic epithelial-mesenchymal transition initiated by oral cancer exosomes is inhibited by anti-EGFR antibody cetuximab. *Oral Oncol* 86:251-257. 10.1016/j.oraloncology.2018.09.030

Gardner A, and Ruffell B. 2016. Dendritic Cells and Cancer Immunity. *Trends Immunol* 37:855-865. 10.1016/j.it.2016.09.006

Gatto F, Schulze A, and Nielsen J. 2016. Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics. *Cell Rep* 16:878-895. 10.1016/j.celrep.2016.06.038
Gonzalez H, Robles I, and Werb Z. 2018. Innate and acquired immune surveillance in the postdissemination phase of metastasis. *FEBS J* 285:654-664. 10.1111/febs.14325

Grant BD, and Donaldson JG. 2009. Pathways and mechanisms of endocytic recycling. *Nat Rev Mol Cell Biol* 10:597-608. 10.1038/nrm2755

Guenat D, Hermetet F, Prétet J-L, and Mougin C. 2017. Exosomes and Other Extracellular Vesicles in HPV Transmission and Carcinogenesis. *Viruses* 9. 10.3390/v9080211

Guo M, Wu F, Hu G, Chen L, Xu J, Xu P, Wang X, Li Y, Liu S, Zhang S, Huang Q, Fan J, Lv Z, Zhou M, Duan L, Liao T, Yang G, Tang K, Liu B, Liao X, Tao X, and Jin Y. 2019. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. *Sci Transl Med* 11. 10.1126/scitranslmed.aat5690

Gupta B, Johnson NW, and Kumar N. 2016. Global Epidemiology of Head and Neck Cancers: A Continuing Challenge. *Oncology* 91:13-23. 10.1159/000446117

Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, and Buzas EI. 2011. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. *Cell Mol Life Sci* 68:2667-2688. 10.1007/s00018-011-0689-3

Hadavand M, and Hasni S. 2019. Exosomal biomarkers in oral diseases. *Oral Dis* 25:10-15. 10.1111/odi.12878

Han L, Cheng J, and Li A. 2020. hsa_circ_0072387 Suppresses Proliferation, Metastasis, and Glycolysis of Oral Squamous Cell Carcinoma Cells by Downregulating miR-503-5p. *Cancer Biother Radiopharm*. 10.1089/cbr.2019.3371

Hao YX, Li YM, Ye M, Guo YY, Li QW, Peng XM, Wang Q, Zhang SF, ZhaoHX, Zhang H, Li GH, Zhu JH, and Xiao WH. 2017. KRAS and BRAF mutations in serum exosomes from patients with colorectal cancer in a Chinese population. *Oncol Lett* 13:3608-3616. 10.3892/ol.2017.5889

Harada T, Yamamoto H, Kishida S, Kishida M, Awada C, Takao T, and Kikuchi A. 2017. Wnt5b-associated exosomes promote cancer cell migration and proliferation. *Cancer Sci* 108:42-52. 10.1111/cas.13109

Haraszti RA, Didiot MC, Sapp E, Leszyk J, Shaffer SA, Rockwell HE, Gao F, Narain NR, DiFiglia M, Kiebish MA, Aronin N, and Khvorova A. 2016. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. *J Extracellular Vesicles* 5:32570. 10.3402/jev.v5.32570

He L, Ping F, Fan Z, Zhang C, Deng M, Cheng B, and Xia J. 2020. Salivary exosomal miR-24-3p serves as a potential detective biomarker for oral squamous cell carcinoma screening. *Biomed Pharmacother* 121:109553. 10.1016/j.biopha.2019.109553

He T, Li X, Xie D, and Tian L. 2019. Overexpressed circPVT1 in oral squamous cell carcinoma promotes proliferation by serving as a miRNA sponge. *Mol Med Rep* 20:3509-3518. 10.3892/mmr.2019.10615

Hemler ME. 2003. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. *Annu Rev Cell Dev Biol* 19:397-422. 10.1146/annurev.cellbio.19.111301.153609

Hessvik NP, and Llorente A. 2018. Current knowledge on exosome biogenesis and release. *Cell Mol Life Sci* 75:193-208. 10.1007/s00018-017-2595-9

Higaki M, Shintani T, Hamada A, Rosli SNZ, and Okamoto T. 2020. Eldecalcitol (ED-71)-induced exosomal miR-6887-5p suppresses squamous cell carcinoma cell growth by targeting heparin-binding protein 17/fibroblast growth factor-binding protein-1
(HBp17/FGFBP-1). In Vitro Cell Dev Biol Anim 56:222-233. 10.1007/s11626-020-00440-x

Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohnsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole LD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mahla K, Batra SK, Jarnagin WR, Bennet R, Dodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, and Lyden D. 2015. Tumour exosome integrins determine organotropic metastasis. Nature 527:329-335. 10.1038/nature15756

Hu Q, Peng J, Chen X, Li H, Song M, Cheng B, and Wu T. 2019. Obesity and genes related to lipid metabolism predict poor survival in oral squamous cell carcinoma. Oral Oncol 89:14-22. 10.1016/j.oraloncology.2018.12.006

Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, Kohli M, Thibodeau SN, Boardman L, and Wang L. 2013. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319.

Huotari J, and Helenius A. 2011. Endosome maturation. Embo j 30:3481-3500. 10.1038/emboj.2011.286

Jiang E, Xu Z, Wang M, Yan T, Huang C, Zhou X, Liu Q, Wang L, Chen Y, Wang H, Liu K, Shao Z, and Shang Z. 2019. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma. Faseb j 33:5690-5703. 10.1002/fj.201802266

Jin N, Jin N, Bu W, Li X, Liu L, Wang Z, Tong J, and Li D. 2020. Long non-coding RNA TIRY promotes tumor metastasis by enhancing epithelial-to-mesenchymal transition in oral cancer. Exp Biol Med (Maywood) 245:585-596. 10.1177/1535370220903673

Kadota T, Fujita Y, Yoshioka Y, Araya J, Kuwano K, and Ochiya T. 2016. Extracellular Vesicles in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 17. 10.3390/ijms17111801

Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, and Kalluri R. 2014. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem 289:3869-3875. 10.1074/jbc.C113.532267

Kalluri R, and LeBleu VS. 2016. Discovery of Double-Stranded Genomic DNA in Circulating Exosomes. Cold Spring Harb Symp Quant Biol 81:275-280. 10.1101/sqbp.2016.81.030932

Kawakubo-Yasukochi T, Morioka M, Hazekawa M, Yasukochi A, Nishinakagawa T, Ono K, Kawano S, Nakamura S, and Nakashima M. 2018. miR-200c-3p spreads invasive capacity in human oral squamous cell carcinoma microenvironment. Mol Carcinog 57:295-302. 10.1002/mc.22744

Ketabat F, Pandir M, Mohabatpour F, Lobanova S, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis P, and Papagerakis S. 2019. Controlled Drug Delivery Systems for Oral Cancer Treatment-Current Status and Future Perspectives. Pharmaceutics 11. 10.3390/pharmaceutics11070302

Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, and Whiteside TL. 2005. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11:1010-1020.

Kirave P, Gondaliya P, Kulkarni B, Rawal R, Garg R, Jain A, and Kalia K. 2020. Exosome mediated miR-155 delivery confers cisplatin chemoresistance in oral cancer cells via epithelial-mesenchymal transition. Oncotarget 11:1157-1171. 10.18632/oncotarget.27531
Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ, Zou J, Akira S, Matsuda T, and Kawai T. 2017. DNA-Containing Exosomes Derived from Cancer Cells Treated with Topotecan Activate a STING-Dependent Pathway and Reinforce Antitumor Immunity. *J Immunol* 198:1649-1659. 10.4049/jimmunol.1601694

Kulkarni B, Kirave P, Gondaliya P, Jash K, Jain A, Tekade RK, and Kalia K. 2019. Exosomal miRNA in chemoresistance, immune evasion, metastasis and progression of cancer. *Drug Discov Today* 24:2058-2067. 10.1016/j.drudis.2019.06.010

Lai YH, Liu H, Chiang WF, Chen TW, Chu LJ, Yu JS, Chen SJ, Chen HC, and Tan BC. 2018. MiR-31-5p-ACOX1 Axis Enhances Tumorigenic Fitness in Oral Squamous Cell Carcinoma Via the Promigratory Prostaglandin E2. *Theranostics* 8:486-504.

Langevin S, Kuhnell D, Parry T, Biesiada J, Huang S, Wise-Draper T, Casper K, Zhang X, Medvedovic M, and Kasper S. 2017. Comprehensive microRNA-sequencing of exosomes derived from head and neck carcinoma cells in vitro reveals common secretion profiles and potential utility as salivary biomarkers. *Oncotarget* 8:82459-82474. 10.18632/oncotarget.19614

Languino LR, Singh A, Prisco M, Inman GJ, Luginbuhl A, Curry JM, and South AP. 2016. Exosome-mediated transfer from the tumor microenvironment increases TGFβ signaling in squamous cell carcinoma. *Am J Transl Res* 8:2432-2437.

Lázaro-Ibáñez E, Lunavat TR, Jang SC, Escobedo-Lucea C, Oliver-De La Cruz J, Siljander P, Lötvall J, and Yliperttula M. 2017. Distinct prostate cancer-related mRNA cargo in extracellular vesicle subsets from prostate cell lines. *BMC cancer* 17:92.

Li C, Zhou Y, Liu J, Su X, Qin H, Huang S, Huang X, and Zhou N. 2019a. Potential Markers from Serum-Purified Exosomes for Detecting Oral Squamous Cell Carcinoma Metastasis. *Cancer Epidemiol Biomarkers Prev* 28:1668-1681. 10.1158/1055-9965.EPI-18-1122

Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, Liu H, Bi H, Liu X, and Li X. 2018a. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. *J Exp Clin Cancer Res* 37:177. 10.1186/s13046-018-0822-3

Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, Li X, Chen J, Liu K, Li C, and Zhu G. 2016. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. *Cancer Res* 76:1770-1780.

Li LM, Liu ZX, and Cheng QY. 2019b. Exosome plays an important role in the development of hepatocellular carcinoma. *Pathol Res Pract* 215:152468. 10.1016/j.prp2.2019.152468

Li P, Kaslan M, Lee SH, Yao J, and Gao Z. 2017a. Progress in Exosome Isolation Techniques. *Theranostics* 7:789-804. 7.1750/thno.18133

Li W, Han Y, Zhao Z, Ji X, Wang X, Jin J, Wang Q, Guo X, Cheng Z, Lu M, Wang G, Wang Y, and Liu H. 2019c. Oral mucosal mesenchymal stem cell-derived exosomes: A potential therapeutic target in oral premalignant lesions. *Int J Oncol* 54:1567-1578.

Li W, Li C, Zhou T, Liu X, Liu X, Li X, and Chen D. 2017b. Role of exosomal proteins in cancer diagnosis. *Mol Cancer* 16:145. 10.1186/s12943-017-0706-8

Li X, Lei Y, Wu M, and Li N. 2018b. Regulation of Macrophage Activation and Polarization by HCC-Derived Exosomal IncRNA TUC339. *Int J Mol Sci* 19. 10.3390/ijms19102958

Li YY, Tao YW, Gao S, Li P, Zheng JM, Zhang SE, Liang J, and Zhang Y. 2018c. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. *EBioMedicine* 36:209-220.

10.1016/j.ebiom.2018.09.006
Liao W, Du Y, Zhang C, Pan F, Yao Y, Zhang T, and Peng Q. 2019. Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy. *Acta Biomater* 86:1-14. 10.1016/j.actbio.2018.12.045

Lien MY, Tsai HC, Chang AC, Tsai MH, Hua CH, Wang SW, and Tang CH. 2018. Chemokine CCL4 Induces Vascular Endothelial Growth Factor C Expression and Lymphangiogenesis by miR-195-3p in Oral Squamous Cell Carcinoma. *Front Immunol* 9:412. 10.3389/fimmu.2018.00412

Lin K, Song LJ, Ma J, Zhang TS, You DY, and He YW. 2020. Identification of cancer hallmark-associated gene and IncRNA cooperative regulation pairs and dictate IncRNA roles in oral squamous cell carcinoma. *J Cell Mol Med* 24:5213-5223. 10.1111/jcmm.15174

Linton SS, Abraham T, Liao J, Clawson GA, Butler PJ, Fox T, Kester M, and Matters GL. 2018. Tumor-promoting effects of pancreatic cancer cell exosomes on THP-1-derived macrophages. *PLoS One* 13:e0206759. 10.1371/journal.pone.0206759

Liu T, Chen G, Sun D, Lei M, Li Y, Zhou C, Li X, Xue W, Wang H, Liu C, and Xu J. 2017. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma. *Acta Biochim Biophys Sin (Shanghai)* 49:808-816. 10.1093/abbs/gmx078

Llorente A, Skotland T, Sylvanne T, Kauhanen D, Rog T, Orlowski A, Vattulainen I, Ekröos K, and Sandvig K. 2013. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. *Biochim Biophys Acta* 1831:1302-1309. 10.1016/j.bbalip.2013.04.011

Ludwig N, Whiteside TL, and Reichert TE. 2019. Challenges in Exosome Isolation and Analysis in Health and Disease. *Int J Mol Sci* 20. 10.3390/ijms20194684

Ludwig N, Yerneni SS, Razzo BM, and Whiteside TL. 2018. Exosomes from HNSCC Promote Angiogenesis through Reprogramming of Endothelial Cells. *Mol Cancer Res* 16:1798-1808. 10.1158/1541-7786.Mcr-18-0358

Ludwig S, Floros T, Theodoraki MN, Hong CS, Jackson NK, Lang S, and Whiteside TL. 2017. Suppression of Lymphocyte Functions by Plasma Exosomes Correlates with Disease Activity in Patients with Head and Neck Cancer. *Clin Cancer Res* 23:4843-4854. 10.1158/1078-0432.ccr-16-2819

Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M, and Wrana JL. 2012. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. *Cell* 151:1542-1556. 10.1016/j.cell.2012.11.024

Lukic A, Wahlund CJE, Gómez C, Brodin D, Samuelsson B, Wheelock CE, Gabrielsson S, and Rädmark O. 2019. Exosomes and cells from lung cancer pleural exudates transform LTC4 to LTD4, promoting cell migration and survival via CysLT1. *Cancer Lett* 444:1-8. 10.1016/j.canlet.2018.11.033

Luo C, Sun J, Du Y, and He Z. 2014. Emerging integrated nanohybrid drug delivery systems to facilitate the intravenous-to-oral switch in cancer chemotherapy. *J Control Release* 176:94-103. 10.1016/j.jconrel.2013.12.030

Malm T, Loppi S, and Kanninen KM. 2016. Exosomes in Alzheimer's disease. *Neurochem Int* 97:193-199. 10.1016/j.neuint.2016.04.011

Mantovani A, Marchesi F, Malesci A, Laghi L, and Allavena P. 2017. Tumour-associated macrophages as treatment targets in oncology. *Nat Rev Clin Oncol* 14:399-416. 10.1038/nrclinonc.2016.217

Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, and Alahari SK. 2019. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. *Mol Cancer* 18:75. 10.1186/s12943-019-0991-5

Mata-Rocha M, Rodriguez-Hernandez RM, Chavez-Olmos P, Garrido E, Robles-Vazquez C, Aguilar-Ruiz S, Torres-Aguilar H, Gonzalez-Torres C, Gaytan-Cervantes J, Mejia-Arangure JM, and Romero-Tialololini MLA. 2020. Presence of HPV DNA in extracellular
vesicles from HeLa cells and cervical samples. *Enferm Infec Microbiol Clin* 38:159-165.

Matei I, Kim HS, and Lyden D. 2017. Unshielding Exosomal RNA Unleashes Tumor Growth And Metastasis. *Cell* 170:223-225. 10.1016/j.cell.2017.06.047

Mathieu M, Martin-Jaulier L, Lavieu G, and Théry C. 2019. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. *Nat Cell Biol* 21:9-17. 10.1038/s41556-018-0250-9

McNally EK, and Brett CL. 2018. The intralumenal fragment pathway mediates ESCRT-independent surface transporter down-regulation. *Nat Commun* 9:5358.

Meckes DG, Jr., Shair KH, Marquitz AR, Edwards RH, and Raab-Traub N. 2010. Human tumor virus utilizes exosomes for intercellular communication. *Proc Natl Acad Sci U S A* 107:20370-20375. 10.1073/pnas.1014194107

Melo SA, Luecke LB, Kahler C, Fernandez AF, Gammon ST, Kaye J, LeBlue VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Fraga MF, Piwnica-Worms D, and Kalluri R. 2015. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. *Nature* 523:177-182. 10.1038/nature14581

Miki Y, Yashiro M, Okuno T, Kuroda K, Togano S, Hirakawa K, and Ohira M. 2018. Clinicopathological significance of exosome marker CD63 expression on cancer cells and stromal cells in gastric cancer. *PLoS One* 13:e0202956. 10.1371/journal.pone.0202956

Milman N, Ginini L, and Gil Z. 2019. Exosomes and their role in tumorigenesis and anticancer drug resistance. *Drug Resist Updat* 45:1-12. 10.1016/j.drup.2019.07.003

Momen-Heravi F, and Bala S. 2018. Extracellular vesicles in oral squamous carcinoma carry oncogenic miRNA profile and reprogram monocytes via NF-kappaB pathway. *Oncotarget* 9:34838-34854. 10.18632/oncotarget.26208

Morristo be reviewed
Ono K, Eguchi T, Sogawa C, Calderwood SK, Futagawa J, Kasai T, Seno M, Okamoto K, Sasaki A, and Kozaki K-I. 2018. HSP-enriched properties of extracellular vesicles involve survival of metastatic oral cancer cells. *J Cell Biochem* 119:7350-7362. 10.1002/jcb.27039

Overmiller AM, Pierluissi JA, Wermuth PJ, Sauma S, Martinez-Outschoorn U, Tuluc M, Luginbuhl A, Curry J, Harshyne LA, Wahl JK, 3rd, South AP, and Mahoney MG. 2017. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. *Faseb J* 31:3412-3424. 10.1096/fj.201601138RR

Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N, and Javan M. 2017. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1alpha/VEGF signaling axis in breast cancer cells. *Cell Oncol (Dordr)* 40:457-470. 10.1007/s13402-017-0335-7

Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, Bescos C, Di Croce L, and Benitah SA. 2017. Targeting metastasis-initiating cells through the fatty acid receptor CD36. *Nature* 541:41-45. 10.1038/nature20791

Pasquier J, Guerrouahen BS, Al Thawadi H, Ghiabi P, Maleki M, Abu-Kaoud N, Jacob A, Mirshahi M, Galas L, Rafii S, Le Foll F, and Rafii A. 2013. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. *J Transl Med* 11:94. 10.1186/1479-5876-11-94

Poonia M, Ramalingam K, Goyal S, and Sidhu SK. 2017. Nanotechnology in oral cancer: A comprehensive review. *J Oral Maxillofac Pathol* 21:407-414. 10.4103/jomfp.JOMFP_29_17

Principe S, Mejia-Guerrero S, Ignatchenko V, Sinha A, Ignatchenko A, Shi W, Pereira K, Su S, Huang SH, O'Sullivan B, Xu W, Goldstein DP, Weinreb I, Ailles L, Liu FF, and Kislinger T. 2018. Proteomic Analysis of Cancer-Associated Fibroblasts Reveals a Paracrine Role for MFAP5 in Human Oral Tongue Squamous Cell Carcinoma. *J Proteome Res* 17:2045-2059. 10.1021/acs.jproteome.7b00925

Qadir F, Aziz MA, Sari CP, Ma H, Dai H, Wang X, Raithatha D, Da Silva LGL, Hussain M, Poorkasreiy SP, Hutchison IL, Waseem A, and Teh MT. 2018. Transcriptome reprogramming by cancer exosomes: identification of novel molecular targets in matrix and immune modulation. *Mol Cancer* 17:97. 10.1186/s12943-018-0846-5

Qin X, Guo H, Wang X, Zhu X, Yan M, Wang X, Xu Q, Shi J, Lu E, Chen W, and Zhang J. 2019. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. *Genome Biol* 20:12. 10.1186/s13059-019-1604-0

Qiu X, Ke X, Ma H, Han L, Chen Q, Zhang S, Da P, and Wu H. 2019. Profiling and bioinformatics analyses reveal differential expression of circular RNA in tongue cancer revealed by high-throughput sequencing. *J Cell Biochem* 120:4102-4112. 10.1002/jcb.27695

Rabinowits G, Bowden M, Flores LM, Verselis S, Vergara V, Jo VY, Chau N, Lorch J, Hammerman PS, Thomas T, Goguen LA, Annino D, Schoenfeld JD, Margalit DN, Tishler RB, and Haddad RI. 2017. Comparative Analysis of MicroRNA Expression among Benign and Malignant Tongue Tissue and Plasma of Patients with Tongue Cancer. *Front Oncol* 7:191. 10.3389/fonc.2017.00191

Razzo BM, Ludwig N, Hong CS, Sharma P, Fabian KP, Fecek RJ, Storkus WJ, and Whiteside TL. 2019. Tumor-derived exosomes promote carcinogenesis of murine oral squamous cell carcinoma. *Carcinogenesis* 10.1093/carcin/bgz124
Record M, Carayon K, Poirot M, and Silvente-Poirot S. 2014. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. *Biochim Biophys Acta* 1841:108-120. 10.1016/j.bbalip.2013.10.004

Record M, Silvente-Poirot S, Poirot M, and Wakelam MJO. 2018. Extracellular vesicles: lipids as key components of their biogenesis and functions. *J Lipid Res* 59:1316-1324.

Ren J, Ding L, Zhang D, Shi G, Xu Q, Shen S, Wang Y, Wang T, and Hou Y. 2018. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal IncRNA H19. *Theranostics* 8:3932-3948. 10.7150/thno.25541

Rodríguez Zorrilla S, Pérez-Sayans M, Fais S, Logozzi M, Gallas Torreira M, and García García A. 2019. A Pilot Clinical Study on the Prognostic Relevance of Plasmatic Exosomes Levels in Oral Squamous Cell Carcinoma Patients. *Cancers (Basel)* 11.

Romano G, Veneziano D, Acunzo M, and Croce CM. 2017. Small non-coding RNA and cancer. *Carcinogenesis* 38:485-491. 10.1093/carcin/bgx026

Sanada T, Islam A, Kaminota T, Kirino Y, Tanimoto R, Yoshimitsu H, Yano H, Mizuno Y, Okada M, Mitani S, Ugumori T, Tanaka J, and Hato N. 2020. Elevated exosomal lysyl oxidase like 2 is a potential biomarker for head and neck squamous cell carcinoma. *Laryngoscope* 130:E327-e334. 10.1002/lary.28142

Shah R, Patel T, and Freedman JE. 2018. Circulating Extracellular Vesicles in Human Cancer. *N Engl J Med* 379:958-966. 10.1056/NEJMra1704286

Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT, Jr., Carter BS, Krichevsky AM, and Breakefield XO. 2008. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. *Nat Cell Biol* 10:1470-1476. 10.1038/ncb1800

Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillas M, De Medina P, Monsarrat B, Perret B, Silvente-Poirot S, Poirot M, and Record M. 2010. Exosomes account for...
vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. *J Lipid Res* 51:2105-2120. 10.1194/jlr.M003657

Subra C, Laulagnier K, Perret B, and Record M. 2007. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. *Biochimie* 89:205-212. 10.1016/j.biochi.2006.10.014

Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, and Zhang HG. 2010. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. *Mol Ther* 18:1606-1614. 10.1038/mt.2010.105

Sun LP, Xu K, Cui J, Yuan DY, Zou B, Li J, Liu JL, Li KY, Meng Z, and Zhang B. 2019. Cancer-associated fibroblast-derived exosomal miR-382-5p promotes the migration and invasion of oral squamous cell carcinoma. *Oncol Rep* 42:1319-1328. 10.3892/or.2019.7255

Surman M, Drożdż A, Stępień E, and Przybyło M. 2019. Extracellular Vesicles as Drug Delivery Systems - Methods of Production and Potential Therapeutic Applications. *Curr Pharm Des* 25:132-154. 10.2174/1381612825666190306153318

Svoronos AA, Engelman DM, and Slack FJ. 2016. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. *Cancer Res* 76:3666-3670. 10.1158/0008-5472.can-16-0359
Linnemannstöns K, Llorente A, Lombard CA, Lorenowicz MJ, Lörincz Á M, Lötjöll J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaulier L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Mauger M, McGinnis LK, McVey MJ, Meckes DG, Jr., Meehan KL, Mertens I, Minciacchi VR, Möller A, Möller Jørgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Muszak V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Niewland R, Nimrichter L, Nolan JP, Nolte-'t Hoen EN, Noren Hooten N, O'Driscoll L, O'Grady T, O'Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Ostekoetxea X, Østergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schifferles RM, Schneider R, Schayen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiabi K, Siljander PR, Silva AM, Skowronek A, Snyder OL, Soares RP, Sódar BW, Soekmadji S, Soltijio L, Stahl PD, Stortz SL, Strasser EF, Swift S, Tahara H, Temis K, Tewari M, Timms K, Tixera R, Tkach M, Toh WS, Tomasini R, Torrecillos AC, Tosca JP, Toxavidis V, Urbanelli L, Vade P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, Vanwijnen AJ, Veijari SJ, Jr., Veit TD, Vella LJ, Velot É, Verweij FJ, Vestad B, Viñas JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáñez-Mó M, Yin H, Yuana Y, Zappulli V, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zou D, and Zuba-Surma EK. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750. 10.1080/20013078.2018.1535750.

Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, and Nie G. 2014. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383-2390. 10.1016/j.biomaterials.2013.11.083.

Tkach M, and Théry C. 2016. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 164:1226-1232. 10.1016/j.cell.2016.01.043.

Tousignant KD, Rockstroh A, Taherian Fard A, Lehman ML, Wang C, McPherson SJ, Philip JK, Bartonicek N, Dinger ME, Nelson CC, and Sadowski MC. 2019. Lipid Uptake Is an Androgen-Enhanced Lipid Supply Pathway Associated with Prostate Cancer Disease Progression and Bone Metastasis. Mol Cancer Res 17:1166-1179. 10.1158/1541-7786.Mcr-18-1147.

Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, and Simons M. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244-1247. 10.1126/science.1153124.

Uzawa K, Kasamatsu A, Baba T, Kimura Y, Nakashima D, Higo M, Sakamato Y, Ogawara K, Shiiba M, and Tanzawa H. 2015. Quantitative detection of circulating tumor-derived mitochondrial NADH subunit variants as a potential prognostic biomarker for oral cancer. Int J Oncol 47:1077-1083. 10.3892/ijo.2015.3083.

Vader P, Mol EA, Pasterkamp G, and Schifferles RM. 2016. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 106:148-156. 10.1016/j.addr.2016.02.006.
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, and Lotvall JO. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. *Nat Cell Biol* 9:654-659. 10.1038/ncb1596

van Niel G, D'Angelo G, and Raposo G. 2018. Shedding light on the cell biology of extracellular vesicles. *Nat Rev Mol Cell Biol* 19:213-228. 10.1038/nrm.2017.125

van Niel G, Porto-Carreiro I, Simoes S, and Raposo G. 2006. Exosomes: a common pathway for a specialized function. *J Biochem* 140:13-21. 10.1093/jb/mvj128

Wang J, Zhou Y, Lu J, Sun Y, Xiao H, Liu M, and Tian L. 2014. Combined detection of serum exosomal miR-21 and HOXAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. *Med Oncol* 31:148. 10.1007/s12032-014-0148-8

Wang L, Li Y, Guan X, Zhao J, Shen L, and Liu J. 2018a. Exosomal double-stranded DNA as a biomarker for the diagnosis and preoperative assessment of pheochromocytoma and paraganglioma. *Mol Cancer* 17:128. 10.1186/s12943-018-0876-z

Wang S-H, Liou G-G, Liu S-H, Chang JS, Hsiao J-R, Yen Y-C, Chen Y-L, Wu W-L, Chang J-Y, and Chen Y-W. 2019a. Laminin γ2-enriched extracellular vesicles of oral squamous cell carcinoma cells enhance in vitro lymphangiogenesis via integrin α3-dependent uptake by lymphatic endothelial cells. *International journal of cancer* 144:2795-2810. 10.1002/ijc.32027

Wang X, Li H, and Shi J. 2019b. LncRNA HOXA11-AS Promotes Proliferation and Cisplatin Expression. *Biomed Res Int* 2019:8645153. 10.1155/2019/8645153

Wang X, Qin X, Yan M, Shi J, Xu Q, Li Z, Yang W, Zhang J, and Chen W. 2019c. Loss of exosomal miR-3188 in cancer-associated fibroblasts contributes to HNC progression. *J Exp Clin Cancer Res* 38:151. 10.1186/s13046-019-1144-9

Wang Y, Qin X, Zhu X, Chen W, Zhang J, and Chen W. 2018b. Oral cancer-derived exosomal NAP1 enhances cytotoxicity of natural killer cells via the IRF-3 pathway. *Oral Oncol* 76:34-41. 10.1016/j.oraloncology.2017.11.024

Wei T, Ye P, Yu GY, and Zhang ZY. 2020. Circular RNA expression profiling identifies specific circular RNAs in tongue squamous cell carcinoma. *Mol Med Rep* 21:1727-1738. 10.3892/mmr.2020.10980

Xiao M, Zhang J, Chen W, and Chen W. 2018. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. *J Exp Clin Cancer Res* 37:143. 10.1186/s13046-018-0815-2

Xie C, Du LY, Guo F, Li X, and Cheng B. 2019. Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration. *Mol Cell Biochem* 458:11-26. 10.1007/s11010-019-03526-7

Xiong HG, Li H, Xiao Y, Yang QC, Yang LL, Chen L, Bu LL, Zhang WF, Zhang JL, and Sun ZJ. 2019. Long noncoding RNA MYOSLID promotes invasion and metastasis by modulating the partial epithelial-mesenchymal transition program in head and neck squamous cell carcinoma. *J Exp Clin Cancer Res* 38:278. 10.1186/s13046-019-1254-4

Xu D, Chen Y, Yuan C, Zhang S, and Peng W. 2019. Long non-coding RNA LINC00662 promotes proliferation and migration in oral squamous cell carcinoma. *Onco Targets Ther* 12:647-656. 10.2147/ott.s188691

Xue M, Chen W, Xiang A, Wang R, Chen H, Pan J, Pang H, An H, Wang X, Hou H, and Li X. 2017. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. *Mol Cancer* 16:143. 10.1186/s12943-017-0714-8

Yakob M, Fuentes L, Wang MB, Abemayor E, and Wong DT. 2014. Salivary biomarkers for detection of oral squamous cell carcinoma - current state and recent advances. *Curr Oral Health Rep* 1:133-141. 10.1007/s40496-014-0014-y
1209 Yang CC, and Chang KW. 2018. Eicosanoids and HB-EGF/EGFR in cancer. *Cancer Metastasis Rev* 37:385-395. 10.1007/s10555-018-9746-9
1210 Yang M, and Wu SY. 2018. The Advances and Challenges in Utilizing Exosomes for Delivering Cancer Therapeutics. *Front Pharmacol* 9:735. 10.3389/fphar.2018.00735
1211 Yang S, Che SP, Kurywchak P, Tavormina JL, Gansmo LB, Correa de Sampaio P, Tachezy M, Bockhorn M, Gebauer F, Haltom AR, Melo SA, Le Bleu VS, and Kalluri R. 2017a. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. *Cancer Biol Ther* 18:158-165.
1212 Yang Y, Han Q, Hou Z, Zhang C, Tian Z, and Zhang J. 2017b. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction. *Cell Mol Immunol* 14:465-475. 10.1038/cmi.2016.24
1213 Yang Y, Wen L, and Zhu H. 2015. Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein. *Cell Biosci* 5:59. 10.1186/s13578-015-0050-x
1214 Zeng Z, Li Y, Pan Y, Xiong X-P, Man Q-W, Zhang W-F, Gao L, Li C, Liu B, Sun Z-J, Jia J, Zhang W-F, Zhao Y-F, and Chen G. 2019. Increased salivary microvesicles are associated with the prognosis of patients with oral squamous cell carcinoma. *Journal of cellular and molecular medicine* 23:4054-4062. 10.1111/jcmm.14291
1215 Zhang H, Zeitz MJ, Wang H, Niu B, Ge S, Li W, Cui J, Wang G, Qian G, Higgins MJ, Fan X, Hoffman AR, and Hu JF. 2014. Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus. *J Cell Biol* 204:61-75.
1216 Zhang J, Li S, Li L, Li M, Guo C, Yao J, and Mi S. 2015. Exosome and exosomal microRNA: trafficking, sorting, and function. *Genomics Proteomics Bioinformatics* 13:17-24. 10.1016/j.gpb.2015.02.001
1217 Zhang TH, Liang LZ, Liu XL, Wu JN, Su K, Chen JY, and Zheng QY. 2019b. LncRNA UCA1/miR-124 axis modulates TGFβ1-induced epithelial-mesenchymal transition and invasion of tongue cancer cells through JAG1/Notch signaling. *J Cell Biochem* 120:10495-10504. 10.1002/jcb.28334
1218 Zhan C, Yang X, Yin X, and Hou J. 2019. Exosomes and other extracellular vesicles in oral and salivary gland cancers. *Oral Dis*. 10.1111/odi.13172
1219 Zeng Z, Li Y, Pan Y, Xiong X-P, Man Q-W, Zhang W-F, Gao L, Li C, Liu B, Sun Z-J, Jia J, Zhang W-F, Zhao Y-F, and Chen G. 2019. Increased salivary microvesicles are associated with the prognosis of patients with oral squamous cell carcinoma. *Journal of cellular and molecular medicine* 23:4054-4062. 10.1111/jcmm.14291
1220 Zhang H, Zeitz MJ, Wang H, Niu B, Ge S, Li W, Cui J, Wang G, Qian G, Higgins MJ, Fan X, Hoffman AR, and Hu JF. 2014. Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus. *J Cell Biol* 204:61-75.
1221 Zhang H, Zhu L, Bai M, Liu Y, Zhan Y, Deng T, Yang H, Sun W, Wang X, Zhu K, Fan Q, Li J, Ying G, and Ba Y. 2019a. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. *International journal of cancer* 144:2501-2515. 10.1002/ijc.31977
1222 Zhang Q, Itagaki K, and Hauser CJ. 2010a. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. *Shock* 34:55-59. 10.1097/SHK.0b013e3181cd8c08
1223 Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, and Hauser CJ. 2010b. Circulating mitochondrial DAMPs cause inflammatory responses to injury. *Nature* 464:104-107. 10.1038/nature08780
1224 Zhang Q, Itagaki K, and Hauser CJ. 2010a. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. *Shock* 34:55-59. 10.1097/SHK.0b013e3181cd8c08
1225 Zhang Q, Itagaki K, and Hauser CJ. 2010a. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. *Shock* 34:55-59. 10.1097/SHK.0b013e3181cd8c08
1226 Zhang Q, Itagaki K, and Hauser CJ. 2010a. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. *Shock* 34:55-59. 10.1097/SHK.0b013e3181cd8c08
1260 urinary biomarker for detecting acute kidney injury. *Kidney Int* 70:1847-1857.
1261 10.1038/sj.ki.5001874
1262 Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Salo T, and Vered M. 2016. Morphological and
1263 molecular features of oral fluid-derived exosomes: oral cancer patients versus healthy
1264 individuals. *J Cancer Res Clin Oncol* 142:101-110. 10.1007/s00432-015-2005-3
1265
| NcRNAs regulating the process of OSCC in exosomes |
NcRNAs	Types of ncRNAs	Pro /Anti-tumor	Target/Signal pathway	Functions	Origin of exosomes	Ref.
miR8485	miRNA	Pro-tumor	—	Promote the carcinogenesis of premalignant lesions, proliferation, migration and invasion of tumor cells	MSCs	[133]
miR-6887-5p	miRNA	Anti-tumor	HBp17/FGFB P-1	Inhibit tumor cell proliferation, colony formation, then tumor growth	A431 cells	[139]
miR-142-3p	miRNA	Pro-tumor	TGFBR1	Cause tumor-promoting changes	Oral dysplasia and OSCC cell lines	[138]
miR-24-3p	miRNA	Pro-tumor	PER1	Maintain the proliferation of OSCC cells	Saliva in OSCC patients	[132]
miR-3188	miRNA	Anti-tumor	BCL2	The loss of miR-3188 in exosomes contributes to the malignant phenotypes of HNC cells through the depression of BCL2	CAFs	[140]
miR-34a-5p	miRNA	Anti-tumor	AXL AKT/GSK-3beta/beta-catenin signaling pathway	MiR-34a-5p binds to direct downstream target AXL to suppress OSCC cell proliferation and metastasis	CAFs	[145]
miR3825p	miRNA	Pro-tumor	—	Responsible for OSCC cell migration and invasion	CAFs	[141]
miR-21-5p	miRNA	Pro-tumor	—	Increase metastasis, stemness, chemoresistance and poor survival in patients with OSCC	CAL27 and SCC-15 OSCC cells	[144]
miR-1246	miRNA	Pro-tumor	DENND2D ERK/AKT	Increase cell motility and invasive ability	HOC313-LM OSCC cells	[134]
miRNA	Type	Effect	Pro-tumor Pathway			
------------	----------	-------------------------------	---			
miR-21	miRNA	Pro-tumor	MiR-21 can be delivered to normoxic cells to promote prometastatic behaviors			
miR-200c-3p	miRNA	Pro-tumor	HIF-1alpha/HIF-2alpha-dependent pathway			
miR-155	miRNA	Pro-tumor	—			
miR-200c	miRNA	Anti-tumor	TUBB3, PPP2R1B			
miR-101-3p	miRNA	Anti-tumor	COL10A1			
miR-29a-3p	miRNA	Pro-tumor	SOCS1			
FLJ22447	IncRNA	Pro-tumor	Lnc-CAF/IL-33			

miR-21: Induce cisplatin resistance of OSCC cells, spread invasive capacity by exosomes in tumor microenvironment, lead to mesenchymal transition and increase migratory potential and acquire cells drug-resistant phenotype.

miR-200c-3p: Increase the sensitivity of Docetaxel (DTX) resistant HSC-3 cells to DTX.

miR-155: Overexpression of miR-101-3p inhibit oral cancer progression and provide a therapeutic target.

miR-200c: Promote M2 subtype macrophage polarization, tumor cell proliferation and invasion.

miR-29a-3p: Reprogram normal fibroblast to CAFs and promote OSCC development.
Figure 1

Exosomes biogenesis and secretion within endosomal system

This figure is reprinted from the manuscript of *Role of exosomal proteins in cancer diagnosis* done by Li W et al. according to open access licence CC BY 4.0
Figure 2

Exosomes’ contents and potential functions in the developing process of OSCC
Figure 3

Functions of exosomes capsuled proteins in OSCC