Supercurrent transferring through c-axis cuprate Josephson junctions with thick normal-metal bridge

Xin-Zhong Yan1 and C S Ting2

1 Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190, People’s Republic of China
2 Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA

Received 14 September 2008, in final form 17 November 2008
Published 11 December 2008
Online at stacks.iop.org/JPhysCM/21/035701

Abstract

With a simple but exactly solvable model, we investigate the supercurrent transferring through the c-axis cuprate superconductor–normal metal–superconductor (SNS) junctions with the clean normal metal much thicker than its coherence length. It is shown that the supercurrent as a function of thickness of the normal metal decreases much slower than the exponential decaying expected by the proximity effect. The present result may account for the giant proximity effect observed in the c-axis cuprate SNS junctions.

(Some figures in this article are in colour only in the electronic version)

In a superconductor–normal metal junction, it is considered that the Cooper pair can penetrate into the normal metal within a distance of the coherence length ξ_n due to the proximity effect [1]. Therefore, according to the proximity theory, the supercurrent cannot transfer through a superconductor–normal metal–superconductor (SNS) junction when the normal metal is much thicker than ξ_n. However, the supercurrent in high-temperature-superconductor (HTSC) junctions with very thick barrier (consisting of weakly doped nonsuperconducting cuprates) has been observed by a number of experiments [2–9]. There have been some theoretical explanations based on the assumption of the existence of superconducting puddles in the pseudogap states of the cuprates [10, 11]. But the physics of pseudogap states of the cuprates is not clearly understood so far. The explanation based on the tunneling of the preformed pairs in cuprates has also been proposed recently [12]. Nevertheless, the problem whether the supercurrent can transfer through a long bridge of normal metal between two superconductors is still an outstanding puzzle.

The supercurrent stems from the motion of paired carriers in the superconductor. It is known that the supercurrent can be conducted by Andreev reflections in the SNS junctions [13–24]. The supercurrent in one superconductor, for example in the left one, can transfer through the SN interface by generating the propagations of electrons and holes in the normal metal due to the Andreev reflection. At another NS interface, the electrons and holes are converted into paired electrons in the right superconductor [25]. As a result, the paired particles are conducted from the left to right superconductors even though Cooper pairs cannot survive in the normal metal. In the case of a clean normal metal without large damping in particle propagations, the supercurrent may transfer through the long SNS junction. A study of the supercurrent in the c-axis cuprate SNS junctions of a thick normal-metal bridge with this approach is still necessary.

In this work, on the basis of the Andreev-reflection approach, we study the supercurrent in the c-axis cuprate SNS junctions using a simple but exactly solvable model. We will show that the supercurrent can transfer through the junctions with the normal metal much thicker than its coherence length. We intend to provide a possible explanation for the relevant experiments.

We consider a c-axis cuprate SNS junction with the normal metal occupying the layers from $l-1$ to $l-1$. A sketch of the junction is shown in figure 1. Within the ab plane, the quasiparticles are described by the $t-t'$ tight-binding model with $t'/t = -0.3$. The phase difference ϕ between the pair potentials of the two superconductors drives the supercurrent. With an unitary transformation $\hat{U} = \exp(i\sigma_3\phi/4)$, one can show that the physical quantities of the system depend only on the total phase difference of the pair potentials. For convenience, we here set the phases of the pair potentials as $\pm\phi/2$, respectively, for the left and right superconductors. The electron motion along the c axis is described by the interlayer
hopping \(t_{c} \), with \(t_{c}/t \ll 1 \). The magnitude of \(t_{c} \) may be of the same order as \(\Delta \). The parameter of electron hopping through the SN interface is \(t_{0} \). Throughout this paper, we use the units of \(e = \hbar = 1 \) with \(-e\) as the charge of an electron.

The states of the quasiparticles are described by the Bogoliubov–de Gennes (BdG) equation [26]. Since the momentum parallel to the interfaces is conserved during the motion of the quasiparticles through the junction, the transverse (orthogonal to the \(c \) axis) part of the wavefunction can be taken as plane waves. The problem is then reduced to solving the one-dimensional BdG equation along the \(z \) direction. For an eigenstate of transverse momentum \(k_{\perp} \), the chemical potential in the BdG equation is then substituted by \(\mu(k_{\perp}) = \mu - \epsilon(k_{\perp}) \), where \(\epsilon(k_{\perp}) = -2t(\cos k_{1} + \cos k_{2}) - 4t'' \cos k_{1} \cos k_{2} \) is the in-plane single-particle energy, with \(k_{1} \) and \(k_{2} \) the two components of \(k_{\perp} \). The order parameters of the superconductors are given by \(\Delta(k_{\perp}) \exp(\pm i\phi/2) \) (+ and \(-\) for left and right superconductors, respectively) with \(\Delta(k_{\perp}) = \Delta(\cos k_{1} - \cos k_{2}) \). The BdG equation is

\[
\sum_{j} H_{ij} \psi(j) = E \psi(i),
\]

with

\[
H_{ij} = \begin{cases}
 v_{i} - \mu(k_{\perp}) & \sigma_{3} + \Delta \sigma^{+} + \Delta^{\ast} \sigma^{-}, \\
-\xi_{i} & \text{for nearest-layer hoppings} \\
-\xi_{0} & \text{for interface hoppings}
\end{cases}
\]

where \(v_{i} = V_{0} \) for \(1 < i < j - 1 \) or 0 otherwise, \(\Delta = \Delta(k_{\perp}) \exp(i\phi/2) \) for \(i \leq j \), \(\Delta = \Delta(k_{\perp}) \exp(-i\phi/2) \) for \(i > j \), and \(\sigma^{\pm} \) are the Pauli matrices. The potential shift \(V_{0} \) controls the density difference between the normal metal and the superconductors. All the states in a complete basis can be divided into three types: incoming waves of free states from the left and right superconductors, and the bound states mainly confined in the normal metal with damping tails in the two superconductors.

The free state with an incoming wavenumber \(k^{+} \) from the left superconductor is obtained as [19]

\[
\psi_{11}(j) = \left(\begin{array}{c} u_{\phi} e^{a} \\
 v e^{a}
\end{array} \right), \quad j = j + l \leq 0
\]

\[
\psi_{12}(j) = \left(\begin{array}{c} A_{1} e^{a} + A_{2} e^{-a} \\
 B_{1} e^{-a} + B_{2} e^{a}
\end{array} \right), \quad 0 < j \leq l - 1
\]

Figure 1. Sketch of a \(c \)-axis cuprate SNS junction. The interlayer hopping is described by \(t_{c} \). \(t_{0} \) is the hopping through the NS interface.

\[\Delta \exp(i\phi/2) \]

\[\Delta \exp(-i\phi/2) \]

\[\psi \]

\[\psi \]

Figure 2. Sketch for the definition of wavenumbers \(k^{+} \) and \(k^{-} \) on energy curve \(E(k) \). The reflected waves of an incoming wave of \(k^{+} \) include two components of \(a \), the Andreev, and \(b \), the normal, reflections.

\[
\psi_{13}(j) = c \left(\begin{array}{c} u_{\phi} e^{a} \\
v e^{a}
\end{array} \right) e^{-ik^{+}z'} + d \left(\begin{array}{c} v e^{a} \\
u e^{a}
\end{array} \right) e^{ik^{+}z'},
\]

\[z' = j - l \geq 0 \]

with the boundary conditions

\[
\begin{align*}
\psi_{11}(-1) - \psi_{12}(-1) &= 0 \\
\psi_{11}(1) - \psi_{12}(1) &= 0 \\
\psi_{12}(l) - \psi_{13}(l) &= 0
\end{align*}
\]

with \(\phi = \exp(i\phi/4) \), the wavenumbers \(q_{1}, q_{2} \), \(k^{+} \) and \(k^{-} \) satisfy the equations \(\xi(q_{1}) + V_{0} = -\xi(q_{2}) = V_{0} = \sqrt{\xi^{2}(k^{+}) + \Delta^{2}(k_{\perp})} = E_{k} \). The group velocity \(v_{\perp} \) is defined in the ranges \(k_{0} < k^{+} < 0 \) and \(k_{0} < k^{-} < 0 \), where the group velocity \(\tilde{v} \xi E_{k}/\Delta k \) is positive, with \(k_{0} = \arccos[-\mu(k_{\perp})/2t_{c}] \) as the ‘Fermi wavenumber’ along the \(z \) direction. A sketch for the definition of \(k^{+} \) and \(k^{-} \) is shown in figure 2. The eight coefficients \(a, b, \ldots \) are determined by the boundary conditions (2). Denoting

\[
X' = (a, b, a_{1}, b_{1}, c, d, a_{2}, b_{2}),
\]

with superscript \(t \) implying the transpose of vector \(X \), we have from equations (2)

\[
MX = Z,
\]

where \(M \) is an \(8 \times 8 \) matrix and \(Z \) is a column vector of 8 components. Expressing \(M \) in terms of 16-block \(2 \times 2 \) matrices, we get

\[
M = \begin{pmatrix} D_{1}(\phi) & O(-l) & 0 & O(l) \\
D_{2}(\phi) & rO(l-1) & 0 & rO(l+1) \\
0 & rO(l-1) & D_{2}(-\phi) & rO(1-l) \\
0 & O(l) & D_{1}(-\phi) & O(-l)
\end{pmatrix},
\]

where

\[
D_{1}(\phi) = \begin{pmatrix} r u e_{\phi} & r u e_{\phi} \\
ru e_{\phi} & r u e_{\phi}
\end{pmatrix}.
\]
It is not correct. Actually, in a bound state, the electrons but neglecting the normal reflections at the right NS interface. There are various approximations based on the Andreev and

\[\psi_l(j; \phi) = \lambda \psi_l(-j; -\phi), \]

(5)

with \(\lambda = \pm 1 \).

For the wavefunction \(\psi_n \) of a bound state with energy \(0 < E_n < |\Delta(k)| \), the expression is given by [23]

\[\psi_{n1}(j) = d_n \left(\frac{u_n^e \psi_j}{u_n^e} \right) e^{ikz} + b_n \left(\frac{u_n^o \psi_j}{u_n^o} \right) e^{-ikz}, \]

\[\zeta = j + l < 0 \]

\[\psi_{n2}(j) = \left(A_n^a e^{i\theta_n} + A_n^b e^{-i\theta_n} \right) \left(B_n^a e^{-i\theta_n} + B_n^b e^{i\theta_n} \right), \]

\[-l < j < l \]

\[\psi_{n3}(j) = c_n \left(\frac{u_n^e \psi_j}{u_n^e} \right) e^{ikz} + d_n \left(\frac{u_n^o \psi_j}{u_n^o} \right) e^{-ikz}, \]

\[\zeta = j - l > 0 \]

where \(k \) is a complex wavenumber determined by \(\xi(k) = i\gamma \) with \(\gamma = \sqrt{\Delta^2(k) + E_n} \) (im \(k > 0 \), \(u_n = \exp(i\theta/2)/\sqrt{2} \) with \(\theta = \text{arctan}(\gamma/E_n) \), \(q_n^a \) and \(q_n^b \) are determined by \(\xi(q_n^a) + V_0 = -\xi(q_n^b) - V_0 = E_n \). The vector of the coefficients \(\vec{X}_n = (a_n, b_n, A_n^a, A_n^b, c_n, d_n, A_n^a, B_n^a) \), now satisfies the following equation:

\[M_n \vec{X}_n = 0, \]

(6)

where \(M_n \) is a counterpart of \(M \) with \(u, v, k^+, k^-, q_1 \) and \(q_2 \) replaced with \(u_n, u_n^a, k, k^+, q_n^a \) and \(q_n^b \), respectively. The energy \(E_n \) is then determined by

\[\det(M_n) = 0. \]

(7)

The solution to the \(j \)th component of \(X_n \) is given by the algebraic complement minor of 1th element of \(M_n \) (multiplied by a factor that is determined by the normalization condition \(\langle \psi_l | \psi_n \rangle = 1 \)). We note at this moment that \((a_n, b_n, A_n^a, B_n^a) = (c_n, d_n, A_n^o, B_n^o) \) at \(\phi = 0 \) because of \(\psi_l(x; \phi) = \pm \psi_l(-x; -\phi) \). Therefore, for a finite phase difference, the coefficients \(a_n, b_n, A_n^a, B_n^a \) should have respectively the same orders of magnitudes of \(c_n, d_n, A_n^o, B_n^o \). There are various approximations based on the Andreev and WKB approximations in the existing theories [14–17]. The approximation in [16] corresponds to \(b_n = c_n = A_n^o = B_n^o = 0 \), taking into account only the Andreev reflections but neglecting the normal reflections at the right NS interface. It is not correct. Actually, in a bound state, the electrons and holes are bounced back and forth again and again in the normal metal. The normal and Andreev reflections at the two interfaces are equally important.

To derive the expression of the current, we start from the operator of current density in the continuum model of the normal metal:

\[J(x) = -\text{Im}[\psi_l^*(x) \nabla \psi_l(x)]. \]

(8)

For the lattice case, \(\nabla \psi_l(x) \) in equation (8) is replaced with \([\psi_l(j + 1) - \psi_l(j - 1)]/2 \). Taking the statistical average by summing up all the contributions from the states of positive and negative energies, we obtain

\[J = \int_{BZ} \frac{dk}{(2\pi)^2} \left[\int \frac{dk^+}{2\pi} \text{tanh} \left(\frac{E_k}{2T} \right) J_f(k) \right] \]

\[+ \sum_{n} \text{tanh} \left(\frac{E_n}{2T} \right) \text{Re}(A_n^a A_n^\ast \sin q_n^a - B_n^a B_n^\ast \sin q_n^a) \]

(9)

with

\[J_f(k) = \text{Re}([A_n^a \phi] A_n^\ast \phi - A_n^b (-\phi) A_n^b (-\phi) + \text{c.c.}) \]

\[= |B_n^a \phi B_n^b (-\phi) - B_n^b \phi B_n^a (-\phi)| \sin q_n \]

where the integral \(\int_{BZ} dk \) runs over the first Brillouin zone, \(A_\pm = A_1 \pm A_2 \), and \(T \) is the temperature. The first term \(J_f \) on the right-hand side of equation (9) comes from the contributions of the free states. The second term is due to the bound states. Here, the phase dependence of the coefficients of the free waves is explicitly indicated by \(\phi \) as their argument. Of course, those coefficients of the bound states \(A_n^a \)’s and \(B_n^a \)’s, the energy \(E_n \) and the wavenumbers \(q_n^a \)’s depend on the phase \(\phi \) as well. At \(\phi = 0 \), corresponding to the equilibrium state, there is no current flowing through the junction. The current is driven by a finite phase difference. Instead, to investigate the phase dependence, we here confine ourselves to the problem of length \(L = 2l \) dependence of the supercurrent with fixed phase difference \(\phi = \pi/2 \).

For numerical calculation, we need to first determine the parameters \(t_c, t_0, t_\mu, V_0 \) and \(\Delta \). The electron hopping through the SN interface was chosen as \(t_0 = 0.8t_c \). The chemical potential \(\mu \) and the potential shift \(V_0 \) in the normal metal were set respectively to \(\mu/t = -0.97 \) and \(V_0/t = -0.042 \), corresponding to the hole densities \(\delta_h \approx 0.13 \) in the superconductor and \(\delta_n \approx 0.11 \) in the normal metal (at finite temperature). Shown in figure 3 are the calculated results for the supercurrent as a function of the distance \(L = 2l \) (in units of the \(c \)-direction lattice constant) between two superconductors. The circles and squares correspond to the parameters of \((t_c, \Delta, T)/t = (5, 4.75, 0.25) \times 10^{-2} \) and \((6, 3.8, 0.2) \times 10^{-2} \), respectively. For comparison, we also depict the curves of \(J(L) \propto \exp(-L/\xi) \) with \(\xi = 4 \) and 6. Each curve does not match the corresponding numerical results so well. In particular, at large \(L \), the behavior of \(J(L) \) obtained by the present calculation shows that the current decays much slower than the exponential one. On the other hand, by the proximity theory, \(J(L) \) should decay exponentially with a much shorter coherence length \(\xi \sim 1\ associated units of the \(c \)-axis constant \(c \), this typical coherence length \(\xi \) is
respectively. c in units of the staggered stacking and there are multiple layers in each unit cell. The averaged c is shorter and ξn is estimated as 0.2–0.5. Our result implies that the supercurrent can flow through the junction with L > ξ ≫ ξn.

For investigating the temperature dependence, we put the order parameter Δ(T) as an overall function of T as shown in the inset of figure 4 with Δ0/Tc = 4 and 0.04. The parameter tc is fixed as tc/t = 0.06. Figure 4 shows the results for the supercurrent as a function of the distance L between two superconductors at various temperatures. They are compared with the formula exp[−(L − 2)/ξ]. At T/Tc > 0.3, the numerical results are well fitted by the exponential forms. The inverse of ξ as a function of T is also shown in the inset of figure 4. The circles and the dashed line in figure 4 are the results at T/Tc = 0.2 and correspond to the squares and the dashed line of the same ξ = 6 in figure 3, respectively. These results show that the supercurrent can flow through a junction much thicker than ξn. In particular, at low temperature, the current decays much slower than the exponential type at large L.

To compare the present calculation with the proximity theory for the layered system, we here estimate the theoretical coherence length ξc along the c axis [7]. According to the uncertainty principle, ξc is proportional to the inverse of the uncertainty of the momentum δpc of electrons. The latter can be estimated as vcep / δE, where ve is the averaged magnitude of the electron velocity along the c direction. Note that there is no Fermi surface across the c-axis in the layered system with weak interlayer hopping. From the energy dispersion in the c direction, ε(q) = −2tc cos(q) / c-axis momentum in units of c (c-axis lattice constant) = 1, we obtain the electron velocity 2tc sin(q). The overall magnitude of ve can be estimated as tc. On the other hand, the uncertainty of the energy ΔE is the order of the bandwidth 4tc. We then have ξc ≈ 1/4. This ξc is approximately the same as the observed data for cuprates. Therefore, according to the proximity theory, the supercurrent cannot transfer along the c axis even for very short SNS junctions. However, since the supercurrent can be conducted by the Andreev reflections, it is not limited by the coherence length. Our calculation may account for the giganto proximity effect observed in the cuprate SNS junctions.

In summary, we have investigated the supercurrent transferring through the c-axis cuprate SNS junctions. Due to the Andreev reflections, the supercurrent is conducted by the in-gap bound states and the free states above but close to the gap. It is shown that the supercurrent as a function of thickness of the normal metal decreases much slower than the exponential decaying expected by the proximity effect. This result implies that the supercurrent can transfer through the clean c-axis cuprate SNS junctions with the normal metal much thicker than its coherence length. The present result may account for the giant proximity effect observed in the cuprate SNS junctions.

Acknowledgments

This work was supported by the National Basic Research 973 Program of China under grant no. 2005CB623602, the NSFC under grant no. 10774171, a grant from the Robert A Welch Foundation under no. E-1146 and the TCSUH.

References

[1] De Gennes P G 1964 Rev. Mod. Phys. 36 225
[2] Kasai M, Ohno T, Kaney Y, Kozono Y, Hanazono M and Sugita Y 1990 Japan. J. Appl. Phys. 29 L2219
[3] Kabasawa U, Tarutani Y, Fukazawa T, Tsukamoto A, Hiratani M and Takagi K 1991 *Japan. J. Appl. Phys.* **30** 1670
[4] Tarutani Y, Fukazawa T, Kabasawa U, Tsukamoto A, Hiratani M and Takagi K 1991 *Appl. Phys. Lett.* **58** 2707
[5] Kasai M, Kanke Y, Ohno T and Kozono Y 1992 *J. Appl. Phys.* **72** 5344
[6] Barner J B, Rogers C T, Inam A, Ramesh R and Bersey S 1991 *Appl. Phys. Lett.* **59** 742
[7] Delin K A and Kleinsas A W 1996 *Supercond. Sci. Technol.* **9** 227
[8] Decca R S, Drew H D, Osquiguil E, Maiorov B and Guimpel J 2000 *Phys. Rev. Lett.* **85** 3708
[9] Bozovic I, Logvenov G, Verhoeven M A J, Caputo P, Goldobin E and Beasley J R 2004 *Phys. Rev. Lett.* **93** 157002
[10] Kresin V Z, Ovchinnikov Yu and Wolf S 2003 *Appl. Phys. Lett.* **B 83** 722
[11] Alvarez G, Mayr M, Moreo A and Dagotto E 2005 *Phys. Rev. B* **71** 014514
[12] Alexandrov A S 2007 *Phys. Rev. B* **75** 132501
[13] Andreev A F 1964 *Zh. Eksp. Teor. Fiz.* **46** 1823
[14] Andreev A F 1964 *Sov. Phys.—JETP* **10** 1228 (Engl. Transl.)
[15] Kulik I O 1969 *Zh. Eksp. Teor. Fiz.* **57** 1745
[16] Ishii C 1970 *Prog. Theor. Phys.* **44** 1525
[17] Bardeen J and Johnson J L 1972 *Phys. Rev. B* **5** 72
[18] Svidzinsky A V, Antsygina T N and Bratus’ E N 1973 *J. Low. Temp. Phys.* **10** 131
[19] Bellatic M and Klapwijk T M 1986 *Phys. Rev. B* **33** 5114
[20] Furusaki A and Tsukada M 1991 *Solid State Commun.* **78** 299
[21] Beenakker C W J and van Houton M 1991 *Phys. Rev. Lett.* **66** 3056
[22] Furusaki A, Takayanagi H and Tsukada M 1992 *Phys. Rev. B* **45** 10563
[23] Schässel U and Kümmerl R 1993 *Phys. Rev. B* **47** 2754
[24] Hurd M and Wendin G 1994 *Phys. Rev. B* **49** 15258
[25] Golubov A A, Kupriyanov M Yu and Illichev E 2004 *Rev. Mod. Phys.* **76** 411
[26] De Gennes P G 1966 *Superconductivity of Metals and Alloys* (New York: Benjamin) chapter 5