Experimental Demonstration of 55-m / 2-Gbps Underwater Wireless Optical Communication Using SiPM Diversity Reception and Nonlinear Decision-Feedback Equalizer

XIAOJIAN HONG1,2, JI DU2, YUAN WANG2, RUILIN CHEN2, JIAHAN TIAN2, GUOWU ZHANG2, JUNWEI ZHANG3, CHAO FEI1,2, and SAILING HE1,2,4, Fellow, IEEE
1Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
2Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
3State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
4Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, SE-10044 Stockholm, Sweden
Corresponding author: Chao Fei (feichaozju@zju.edu.cn) and Sailing He (sailing@kth.se).

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 62001415 and Grant 62101486; in part by the National Key Research and Development Program of China under Grant 2018YFC1407503; in part by the Natural Science Foundation of Zhejiang Province under Grant LR21F050013; in part by the Funding of Ningbo Research Institute under Grant 1141257B20200304 and Grant 1141257B20210133; in part by the Ningbo Science and Technology Project under Grant 2018B610093 and Grant 2020G012; and in part by the Fundamental Research Funds for the Central Universities.

ABSTRACT Underwater wireless optical communication (UWOC) is considered as an enabling technology with a mass of potential applications. The silicon photomultiplier (SiPM) exhibits a bright prospect for UWOC thanks to the traits of low-light detection capability, low-voltage operation, and good operability. However, the performance of SiPM-based UWOC system is severely degraded by the dead-time caused nonlinear response. In this paper, to mitigate the dead-time induced nonlinear distortion and explore the achievable capacity of the newly developed SiPM, we propose and experimentally demonstrate a 55-m / 2-Gbps UWOC system by virtue of SiPM diversity reception and nonlinear decision-feedback equalizer (NDFE). The performance of NDFE is superior to that of the conventional decision-feedback equalizer (DFE), and NDFE with a pruning factor of 5 declares similar performance as that without pruning strategy, while the number of the nonlinear equalizer can be reduced by ~31.8%. Significant performance improvement is also obtained by the proposed scheme under different turbidity waters. The measured data rate is pushed from 1 Gbps to 2 Gbps with a receiver sensitivity as low as -41.96 dBm, which to the best of our knowledge is the largest data rate ever achieved using the off-the-shelf SiPM among the reported UWOC works. In accordance with the receiver sensitivity and the model of optical propagation in the water channel, the maximum attainable distance / data rate is predicted to be 147 m / 1 Gbps and 128 m / 2 Gbps with the proposed scheme. The research results are promising for long-reach and high-speed UWOC.

INDEX TERMS Underwater wireless optical communication (UWOC), visible laser diode (LD), silicon photomultiplier (SiPM), diversity reception, nonlinear decision-feedback equalizer (NDFE).

I. INTRODUCTION

As the sustained growth of human activities in the ocean, ranging from oceanographic study to offshore oil field exploration/monitoring, and even marine military defense, the demands for long-reach and high-speed underwater wireless communication are urgently needed [1]–[3]. Compared with the widely used underwater acoustic or radio frequency (RF) communication, which exhibits either inadequate bandwidth or heavy aquatic attenuation, underwater wireless optical communication (UWOC) featuring low latency, large bandwidth, high flexibility, cost-effectiveness, and moderate transmission distance in water,
TABLE 1. Comparison of UWOC systems in recent works.

Year	Wavelength (nm)	Optical power	Receiver	Modulation scheme	Distance (m)	Receiver sensitivity	Data rate	Reference
2017	520-ld LD	19.4 mW	APD/PIN	OOK	34.5	-20 dBm/ >-15 dBm	1 Gbps/ 2.7 Gbps	[6]
2018	450-ld LD	0.17 mW	MPPC	4-PPM	46	-39.2 dBm	5 Mbps	[24]
2018	532-ld LD	1 m single-pulse energy	PMT	256-PPM	120	3.32-bits/photon	1.7 Mbps	[16]
2019	520-ld LD	7.25 mW	APD	OOK&NE	100	-30.4 dBm/-24 dBm	100 Mbps/ 500 Mbps	[9]
2020	450-ld LD	2.4 W	MPPC	OOK	100/50	4 NA	8.39 Mbps/ 16.78 Mbps	[26]
2020	450-ld LD	10 mW	SiPM	OOK&DFE	40	-43 dBm	1 Gbps	[29]
2021	450-ld LD	16.18 mW	APD	DFT-S DMT	50	-11.2 dBm	5 Gbps	[7]
2021	450-ld LD	293.1 mW	PMT	PAM4&TCM	150	-29.8 dBm	500 Mbps	[18]
2022	450-ld LD	9.88 mW	SiPM	Diversity reception &NDFE	55	-49.23 dBm/-41.96 dBm	1 Gbps/ 2 Gbps	This work

*N/A represents unavailable; NE represents nonlinear equalization; TCM represents Trellis coded modulation.

has been as an enabling technology with numerous potential applications from deep sea to coastal ocean. For instance, the exchange of large volumes of gathered data (e.g., scientific data, high-resolution images, or high-quality real-time video streaming) between fixed underwater sensor nodes and remotely operated vehicles (ROVs) or autonomous underwater vehicles (AUVs) [4], [5]. Compared with light-emitting diode (LED), the laser based UWOC system exhibits a very directive beam profile and a larger modulation bandwidth, which is more suitable for long-reach and high-speed underwater communication.

Many research groups have explored the feasibility of UWOC scenarios using the photodetectors of avalanche photodiodes (APDs) and positive-intrinsic-negative (PIN) diodes [6]–[15]. Liu et al. experimentally achieved 34.5-m / 2.7-Gbps underwater optical transmission using non-return-to-zero on-off keying (NRZ-OOK) modulation [6]. Du et al. realized 50-m / 5-Gbps underwater optical communication adopting spectrally efficient discrete Fourier transform spread discrete multi-tone (DFT-S DMT) modulation [7]. A 532-nm high-power emitting UWOC system based on 1064-nm wavelength conversion construction was experimentally demonstrated in a 100-m water tank with a data rate of 100 Mbps [8]. Using nonlinear equalization, a 100-m / 500-Mbps UWOC experiment was successfully conducted in a tap water channel [9]. However, UWOC suffers from heavy attenuation in long-distance clear water or short-distance high turbid water channels, and thus results in very weak received optical power (ROP), which poses serious challenges to the sensitivity of photodetectors.

With the merits of approaching quantum-limit sensitivity and large photosensitive area, single-photon level detectors, such as photomultiplier (PMT) and multi-pixel photon counter (MPPC), are more suitable for UWOC when ROP is extremely low or the link is not well aligned [16]–[28]. A PMT was employed as a photon-counting receiver and a 120-
temperature stability, high photon detection efficiency (PDE) at blue-green light, compactness, and low implementation complexity, this kind of SiPM is very suitable for deep ocean applications. However, once a photon is detected by a microcell in the SiPM, an avalanche-and-quenching process will be stimulated to bring it back to the quiescent mode. This transition occupies a finite time (several nanoseconds) and its corresponding delay is known as dead time [27], [28]. Since the microcell is unable to detect a new incoming photon during the recovery time, the number of photons detected by the SiPM is not linearly related to the intensity of the incident light. Consequently, the performance of the UWOC system will be strongly degraded by the dead-time induced nonlinear response. Nevertheless, an effective solution to alleviate such nonlinear distortion caused by the dead time effect was not involved in [29].

In this paper, to mitigate the dead-time induced nonlinear distortion and further explore the achievable capacity of the newly developed SiPM, we propose and experimentally demonstrate a 55-m / 2-Gbps UWOC system by virtue of SiPM diversity reception and nonlinear decision-feedback equalizer (NDFE). Significant performance improvement is obtained by the proposed scheme under different turbidity waters. The measured data rate is pushed from 1 Gbps to 2 Gbps with a receiver sensitivity as low as -41.96 dBm, which to the best of our knowledge is the largest data rate ever achieved using the off-the-shelf SiPM among the reported UWOC works. In accordance with the receiver sensitivity and the model of optical propagation in the water channel, the maximum attainable distance with the proposed scheme is predicted to be 147 m / 1 Gbps and 128 m / 2 Gbps, which is promising for long-reach and high-speed underwater transmission. Table 1 summarizes some recent works of UWOC in terms of real measured transmission distance (>30 m), data rate, and receiver sensitivity. Note that attenuation length (AL) is a fair and critical indicator to evaluate the performance of UWOC working in different water turbidity.

The lower the receiver sensitivity is, the longer the permissible transmission distance is acquired, which leads to a large AL.

The remainder of this paper is organized as follows. Section II introduces the experimental setup and principles of diversity reception and nonlinear decision-feedback equalization. The experimental results and discussions are presented in Section III. Finally, the conclusion is provided in Section IV.

II. EXPERIMENTAL SETUP AND PRINCIPLES OF DIVERSITY RECEPTION AND NONLINEAR DECISION-FEEDBACK EQUALIZATION

Fig. 1 illustrates the schematic of the UWOC experimental setup and digital signal processing (DSP) block. As a proof-of-concept experiment, a diversity receiver consisting of two commercially available SiPM detectors (SensL J series 30035, active area of $3 \times 3 \text{ mm}^2$) is utilized in the proposed system. At the transmitter side (Tx), an OOK modulated pseudo-random binary sequence (PRBS) is up-sampled by a factor of two, and a root-raised cosine (RRC) filter with a roll-off coefficient of 0.1 as well as a filter length of 100 are used for pulse shaping. Then the baseband shape-filtered signal is fed into an arbitrary waveform generator (AWG, Tektronix 7122C) for digital-to-analog (D/A) conversion and subsequently boosted by an electrical amplifier (EA, 10-1200MHz, 26 dB). The output RF signal with power optimized by a variable electrical attenuator (VEA) is superimposed onto the direct current (DC) via a Bias-T to drive a 450-nm single-mode pigtailed LD (Thorlabs LP450-SF15) linearly. The emitted laser beam is collimated by lens and power adjusted by a variable neutral density (ND) filter before entering a glass water tank (length: 5 m, width: 0.6 m, height: 0.3 m). A pair of parallel mirrors (M1 and M2) installed on both sides of the water tank is utilized to simulate different lengths of underwater transmission. At the receiver side (Rx), two iris diaphragms (ID) are respectively placed in

VOLUME XX, 2017 9

FIGURE 1. The schematic of the UWOC experimental setup and DSP blocks at the transmitter and the receiver side. Insets: (a) The photograph of the transmitter side; (b) an optical link of 55-m transmission in water tank; (c) The photograph of the receiver side; AWG: arbitrary waveform generator; EA: electrical amplifier; VEA: variable electrical attenuator; DC: direct current; LD: laser diode; ND filter: neutral density filter; ID: iris diaphragm; SiPM: silicon photomultiplier; RTO-Scope: real-time oscilloscope; sync.: synchronization; re-samp.: re-sampling; calc.: calculation.
front of the detectors to adjust the ROPs. To minimize the ambient light noise, the receiver is covered by a black curtain and the measured ambient light power is about 0.1 nW. Two different operation methods, i.e., digital mode and analog mode, are provided by the manufacturer [30], in which the output signal of the former is processed by counting pulses, while in the latter, each pixel of the SiPM is directly connected to a trans-impedance amplifier (TIA) with a gain of 40 dB. Finally, the detected electrical signal is digitized and stored by a real-time oscilloscope (RTO-Scope) (Tektronix, DSA72004C) for the subsequent offline signal processing.

The photographs of the transmitter side, an optical link of 55-m transmission, and the receiver side are shown in Fig. 1(a)-(c), respectively. In the offline signal processing, the signal is synchronized, down-sampled, and reshaped by the same RRC filter as in the transmitter side.

Diversity combining is one of the most effective techniques for mitigating the effects brought by multipath fading and intensity fluctuation, which significantly improves the stability and reliability of the communication systems [31]–[34]. At the receiver side, the output signal after diversity combining can be characterized as:

$$Y_r = \eta_1 R_1 + \eta_2 R_2 + \cdots + \eta_N R_N = \sum_{i=1}^{N} \eta_i R_i$$ \hspace{1cm} (1)$$

where R_i is the received signal of the i-th branch, N is the number of diversity branches, and η_i is the weighting coefficient of the i-th branch. Assuming that the noise power spectral density of the i-th branch is κ_i. If $\eta_i = R_i / \kappa_i$, Eq. (1) refers to as maximal ratio combining (MRC) scheme, and it becomes the optimal diversity combining, which provides the maximum signal-to-noise ratio (SNR) output. While if $\eta_1 = \eta_2 = \cdots = \eta_N$, Eq. (1) becomes the simplest combiner, but yields suboptimal performance, which refers to as equal-gain combining (EGC) scheme. In the training stage, a suitable diversity combining scheme is selected according to the measured SNR at the receiver side shown in Fig. 1. After signal diversity combining, the inter-symbol interference (ISI) mainly caused by the limited modulation bandwidth of the system can be mitigated by the decision-feedback equalizer (DFE), which consists of a transversal feed-forward equalizer (FFE) with coefficient $\gamma(k)$ and a feedback equalizer with coefficient $\gamma(i)$. The n-th sample of the output equalized symbols can be expressed as:

$$z(n) = \sum_{k=0}^{L-1} \alpha(k)Y_r(n-k) + \sum_{i=1}^{K} \gamma(i)\hat{d}(n-i)$$ \hspace{1cm} (2)$$

where $\hat{d}(i)$ is the i-th sample of the decision symbols, L and K denote the memory length of FFE and feedback equalizer, respectively. To further mitigate the nonlinear impairment resulting from the dead-time effect of the SiPM receiver, NDFE is employed, which can be expressed as:

$$z(n) = \sum_{k=0}^{L-1} \alpha(k)Y_r(n-k) + \sum_{i=1}^{K} \gamma(i)\hat{d}(n-i)$$ \hspace{1cm} (3)$$

where $\beta(k, k_2)$ and L_z refer to the coefficient and the memory length of the nonlinear equalizer, respectively. Since the nonlinear coefficients in the diagonal far away from the main diagonal present very small values, a straightforward strategy is to eliminate some negligible beating-terms to further reduce the complexity of NDFE. Thus, by rearranging the middle term in Eq. (3), we have:

$$z(n) = \sum_{k=0}^{L-1} \alpha(k)Y_r(n-k) + \sum_{q=0}^{Q-1} \sum_{k=q}^{L-1-q} \beta(k, q+k)Y_r(n-k)Y_r(n-k-q) + \sum_{i=1}^{K} \gamma(i)\hat{d}(n-i), \hspace{1cm} (0 \leq Q \leq L_z)$$ \hspace{1cm} (4)$$

where Q is the pruning factor. For the sake of analysis, it is preferred to describe Eq. (4) using vector notations as follows:

$$z(n) = \mathbf{a}^T \mathbf{Y}^{(1)}_{n,0} + \sum_{q=0}^{Q-1} \mathbf{b}^T_q \left(\mathbf{Y}^{(2)}_{n,q} \right) \otimes \mathbf{Y}^{(2)}_{n,q-1} + \gamma^T \hat{\mathbf{d}}_n$$ \hspace{1cm} (5)$$

where \otimes denotes an element-wise multiplication operation. \mathbf{a} represents the linear tap weights of the NFE, $\mathbf{\beta}_q$ denotes the nonlinear tap weights of the NDFE, γ stands for the tap weights of the feedback equalizer, $\mathbf{Y}_{n,q}$ denotes the input samples for the n-th equalized symbol, and $\hat{\mathbf{d}}_n$ signifies the previous K decision symbols. Specifically, the definitions of vectors \mathbf{a}, $\mathbf{\beta}_q$, γ, $\mathbf{Y}_{n,q}$, and $\hat{\mathbf{d}}_n$ are respectively given by:

$$\mathbf{a} = [\alpha(0), \alpha(1), \cdots, \alpha(L_n-1)]^T$$ \hspace{1cm} (6)$$

$$\mathbf{\beta}_q = [\beta(0, q), \beta(1, q+1), \cdots, \beta(L_n-1-q, L_n-1)]^T$$ \hspace{1cm} (7)$$

$$\gamma = [\gamma(1), \gamma(2), \cdots, \gamma(K)]^T$$ \hspace{1cm} (8)$$

$$\mathbf{Y}^{(1)}_{n,q} = [Y_r(n), Y_r(n-1), \cdots, Y_r(n-L_n+1+q)]^T, k \in \{1,2\}$$ \hspace{1cm} (9)$$

$$\hat{\mathbf{d}}_n = [\hat{d}(n-1), \hat{d}(n-2), \cdots, \hat{d}(n-K)]^T$$ \hspace{1cm} (10)$$

Due to the superior convergent performance, a training sequence aided recursive least-squares (RLS) algorithm [35] is firstly employed to initialize the coefficients of the equalizer, i.e.,

$$\Phi = [\mathbf{a}, \mathbf{\beta}_0, \mathbf{\beta}_1, \cdots, \mathbf{\beta}_{Q-1}, \gamma]^T$$ \hspace{1cm} (11)$$

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
In combination with Eq. (5) to Eq. (11), the procedure of \(\Phi \) estimated by RLS with the training symbols \(s(m) \) is summarized as follows:

Step 1: Initialize the coefficient vector \(\Phi(0) = [0, 0, \cdots, 0]^T \). Define a positive constant \(\delta \) and a forgetting factor \(\lambda = 0.9999 \). Correlation matrix \(\Lambda(0) = \delta^{-1} \mathbf{I} \), where \(\mathbf{I} \) is an identity matrix with the rank of \(L_i + Q(2L_i - Q + 1)/2 + K \). The counter \(m = 1 \), and the number of training symbols is \(M \).

Step 2: Obtain the observed vector: \(Y(m) = [Y_{m,0}^{(1)}, Y_{m,0}^{(2)} \circ Y_{m,0}^{(1)}, \cdots, Y_{m,Q}^{(2)} \circ Y_{m,Q}^{(1)}, \cdots, Y_{m,0}^{(2)} \circ Y_{m,0}^{(1)}, \cdots, \hat{d}_m] \).

Step 3: Update the error vector according to the relation: \(e(m) = s(m) - \Phi^T(m-1)Y(m) \).

Step 4: Compute the Kalman gain vector:
\[
T(m) = \Lambda(m-1)Y(m) \left[\lambda + Y(m)\Lambda(m-1)Y^T(m) \right]^{-1},
\]
and update the correlation matrix:
\[
\Lambda(m) = \lambda^{-1} \left[\Lambda(m-1) - T(m)Y^T(m)\Lambda(m-1) \right].
\]

Step 5: Update the coefficient vector: \(\hat{\Phi}(m) = \hat{\Phi}(m-1) + e(m)T(m) \), increase the value of \(m \), i.e., \(m = m+1 \), and return to Step 2 if \(m < M \).

Step 6: After the coefficient vector \(\hat{\Phi} \) is fully converged, the equalizers are switched to the channel equalization stage and the received signal is equalized using \(\hat{z}(n) = \hat{\Phi}^T Y(n) \).

III. EXPERIMENTAL RESULTS AND DISCUSSIONS
We firstly optimize the operation conditions of the proposed SiPM-based UWOC system in a tap water channel, including the LD driving current, the control voltage of SiPM, the memory lengths of the equalizer, and the pruning factor. Fig. 3(a) shows the output optical power and the forward voltage versus the LD driving current working at 25°C. The normalized frequency response of the back-to-back (B2B) SiPM-based UWOC system is measured by a vector network analyzer (Rohde&Schwarz ZVA40) and the result is presented in Fig. 3(b), in which the 10-dB bandwidth is approximately 500 MHz. The optimal LD driving current is \(-60 \) mA for different equalization schemes as shown in Fig. 3(c), corresponding to the output optical power of 9.88 mW. In Fig. 3(c) and (d), equalizers with sufficient memory lengths are utilized to obtain convergent system performance. It is observable that the performance of NDFE is superior to that of FFE and DFE. Note that the dark-count rate (DCR) is the primary source of noise in the SiPM detector, and the intrinsic characteristic indicates that the lower the DCR is, the better the SNR is obtained [30]. However, both PDE and DCR increase with the control voltage, hence there exists a tradeoff between the above two factors. Fig. 3(d) illustrates the SNR relative to the control voltage of SiPM at a data rate of 1 Gbps. The SNR improves as the control voltage increases, implying that the contribution of PDE surpasses the negative effect of DCR. To obtain the optimal performance, the control voltage is selected as 30V. Fig. 3(e) shows the SNR versus the memory length of linear equalizer \(L_1 \). The SNR improves as \(L_1 \) increases and then reaches saturation when \(L_1 = 50 \). The SNR as a function of the memory length of DFE equalizer \(K \) with \(L_1 = 50 \) is shown in Fig. 3(f). To balance the system’s performance and complexity, \(K \) is chosen as 16. Similarly, it is observed from Fig. 3(g) and (h) that saturated SNRs are achieved when the memory lengths of the nonlinear equalizer and the feedback equalizer of NDFE are selected as \(L_2 = 11 \) and \(K = 13 \), respectively. The measured SNR versus pruning factor \(Q \) is presented in Fig. 3(i). The SNR improves with a large pruning factor and then levels off at \(Q = 5 \), indicating that the number of the nonlinear equalizer is reduced by \(-31.8\% \) when we set \(Q = 5 \) for NDFE.

The performance of the proposed UWOC system under different turbidity waters is also experimentally investigated. Extra two different water types (“clear ocean” and “coastal ocean” [36]) are obtained by adding different doses of 1% diluted MaaloxR [Al(OH)3 and Mg(OH)2] suspension, and the corresponding attenuation coefficients “c” of the tap water, “clear ocean”, and “coastal ocean” channel are calculated as 0.054, 0.15, and 0.41, respectively. Fig. 4 shows the BER versus ROP under different water types. The BER of single detection scheme (i.e. single-input single-output, SISO) with a data rate of 2 Gbps cannot afford 7% hard-decision forward error correction (HD-FEC) limit of BER@ 3.8×10^{-3}, while significant performance enhancement...
is observed after utilizing the diversity combining scheme (i.e., single-input multiple-output, SIMO). Since the measured SNRs of the two branches are nearly identical, the performance of EGC is comparable to that of MRC, while EGC is more preferred due to its simplicity. As shown by the two double-headed arrows in Fig. 4, compared with the single detection, over 3-dB and 8-dB receiver sensitivity (i.e., the required ROP at the FEC limit of BER @ 3.8×10^{-3}) improvement is achieved using the SIMO+DFE scheme at data rates of 1 Gbps and 2 Gbps, respectively. NDFE with a pruning factor of 5 declares similar performance as that without pruning strategy. The receiver sensitivity using the proposed SIMO+NDFE ($Q = 5$) scheme is shown as -49.33 dBm / -42.0 dBm for tap water channel, -48.97 dBm / -42.75 dBm for “clear ocean” channel, and -48.98 dBm / -42.20 dBm for “coastal ocean” channel with a data rate of 1 Gbps / 2 Gbps, respectively. At the same BER, the proposed scheme requires a lower ROP, which implies that it can achieve a higher data rate or a longer transmission distance. It is noteworthy that the BER improvement behaves similar for

FIGURE 3. (a) P-I-V characteristics of the 450-nm LD working at 25 ℃; (b) Normalized frequency response of the 5-m UWOC system; (c) SNR versus the LD driving current for different equalization schemes at a data rate of 1 Gbps; (d) SNR versus the control voltage of SiPM at a data rate of 1 Gbps; (e) SNR versus the memory length of linear equalizer L_1; (f) SNR versus the memory length of DFE equalizer K with $L_1 = 50$; (g) SNR versus the memory length of NDFE equalizer L_2 with $L_1 = 50$; (h) SNR versus the memory length of NDFE equalizer K with $L_1 = 50$ and $L_2 = 11$; (i) SNR versus the pruning factor Q for NDFE.
all the transmission cases under three different water types, which exhibits the robustness of the proposed scheme.

To visualize the characteristics of the received signal, the time-domain waveform directly sampled by the RTO-Scope and the probability distributions of the received signal with different equalization schemes are presented in Fig. 5, from which we can get the following observations: 1) Significant waveform asymmetry (i.e., signal distortion) exits mainly arising from the dead time effect. 2) The probability distribution of the signal without equalization is not much like the Gaussian distribution. 3) The signal amplitude is still non-uniform after using DFE, while the probability distribution becomes uniform after using NDFE, showing the superiority of the NDFE. 4) NDFE ($Q = 5$) with a lower complexity reveals a similar result as that without pruning strategy.

Since scattering and absorption aggravate with the increasing transmission distance, it is essential to analyze the performance of the proposed system at a longer transmission distance. The BER relative to ROP over a 55-m underwater channel is shown in Fig. 6. From the figure, the performance of the diversity reception scheme behaves similar to the results in Fig. 4, which is attributed to the light source and photodiode utilized in the proposed UWOC system. Due to a very directive beam profile, ISI induced by the water scattering is not severe in the LD-based system. Moreover, SiPM detector has a sensitivity of approaching quantum-limit. 55-m / 1-Gbps and 2-Gbps underwater transmission is successfully demonstrated employing the proposed scheme with a receiver sensitivity as low as -49.23 dBm and -41.96 dBm, respectively, which to the best of the authors’ knowledge is the minimum receiver sensitivity ever achieved in the reported UWOC works with a data rate of Gbps-class. Meanwhile, compared with the results published in [29], the measured achievable data rate of the newly developed SiPM has been pushed from 1 Gbps to 2 Gbps with the proposed...
scheme, which is the largest ever achieved using the off-the-shelf SiPM detector among the reported UWOC works. The insets show the eye diagrams of the received signal with different equalization schemes for the UWOC system with a data rate of 1 Gbps and ROP of -46 dBm. The asymmetry of the upper/lower eyelid cannot be completely eliminated by the DFE even with the diversity reception scheme, while clearly symmetrical eye diagram is obtained using the proposed scheme with EGC+NDFE ($Q = 5$).

![Eye Diagrams](image)

FIGURE 6. BER versus received optical power over a 55-m underwater channel. The insets show eye diagrams of the received signal with different equalization schemes for the UWOC system with a data rate of 1 Gbps and ROP of -46 dBm: (i) without equalization, (ii) SISO with DFE, (iii) SIMO with EGC+DFE, and (iv) SIMO with EGC+NDFE ($Q = 5$).

The receiver sensitivity improvement of the proposed scheme with SIMO+NDFE (as compared to the scheme with SISO+NDFE) versus different underwater transmission conditions is also shown in Fig. 8, indicating that NDFE can effectively mitigate the dead-time induced nonlinear distortion and improve the performance of the UWOC system. We can even infer that the ROP gain can be enlarged if a multilevel pulse amplitude modulation signal (e.g., PAM4) is adopted in the proposed system.

![Receiver Sensitivity Improvement](image)

FIGURE 7. Measured receiver sensitivity improvement of the proposed scheme with SIMO+NDFE (as compared to the scheme with SISO+NDFE) for different underwater transmission conditions.

![Receiver Sensitivity Improvement](image)

FIGURE 8. Measured receiver sensitivity improvement of the proposed scheme with SIMO+NDFE (as compared to the scheme with SIMO+DFE) for different underwater transmission conditions.

![Optical Power vs. Distance](image)

FIGURE 9. Received optical power versus different underwater transmission distances. The crossing point predicts the maximum achievable transmission distance at a certain data rate.

The measured longest transmission distance of the proposed UWOC system is limited by the length of the water tank. Nevertheless, according to the aforementioned receiver sensitivity and the model of optical propagation (i.e., Beer-Lambert law [37]) in the water channel, it is able to predict the maximum achievable transmission distance at a certain
data rate for different water types. The ROP versus different underwater transmission distances is depicted in Fig. 9. Meanwhile, the fitting curve using Beer-Lambert law is also presented. The intersection of the fitting curve and the horizontal line shows the maximum distance that can be achieved. Therefore, we can see from the figure, the transmission distances are predicted to be 147 m / 128 m for tap water channel, 83 m / 72 m for “clear ocean” channel, and 36 m / 32 m for “coastal ocean” channel with a data rate of 1 Gbps / 2 Gbps, respectively. Meanwhile, the achievable maximum AL is predicted to be 7.94, 12.45, and 14.76 for the above three water types at a data rate of 1Gbps. It can be even envisioned that a longer UWOC transmission distance can be acquired if the data rate is relaxed or a higher power delivery of LD is available.

IV. CONCLUSION

We have proposed and experimentally demonstrated an SiPM diversity reception based UWOC system using diversity combing and NDFE. NDFE can effectively ease the dead-time induced nonlinear distortion as compared to the conventional DFE scheme, and significant performance improvement is demonstrated with the proposed scheme under three different water types. Furthermore, 55-m / 1-Gbps and 2-Gbps underwater transmission is also successfully demonstrated using the proposed scheme with a receiver sensitivity as low as -49.23 dBm and -41.96 dBm, respectively, which is competitive both in data rate and receiver sensitivity among the reported UWOC works. According to the measured receiver sensitivity and the model of optical propagation in the water channel, the longest transmission distance is predicted to be 147 m / 1 Gbps and 128 m / 2 Gbps. Meanwhile, the achievable maximum AL is predicted to be 7.94, 12.45, and 14.76 for tap water, “clear ocean”, and “coastal ocean” channel respectively at a data rate of 1Gbps. The research results forecast promising application of the SiPM diversity reception based UWOC system and meet the requirements of long-reach and high-speed underwater transmission. In future work, we will verify the performance of the proposed scheme in outdoor field test.

REFERENCES

[1] H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access, vol. 4, pp. 1518–1547, 2016.
[2] B. Shihada, O. Amin, C. Bainbridge, S. Jardak, O. Alkhazragi, T. K. Ng, B. Ooi, M. Berumen, and M. S. Alouini, “Aqu-Fi: Delivering Internet underwater using wireless optical networks,” IEEE Commun. Mag., vol. 58, no. 5, pp. 84–89, May 2020.
[3] Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 204–238, 2017.
[4] N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, “Underwater optical wireless communications, networking, and localization: A survey,” Ad Hoc Netw., vol. 94, 101935, 2019.
[5] J. Xu, “Underwater wireless optical communication: why, what, and how?” Chin. Opt. Lett., vol. 17, no. 10, 100007, 2019.
[6] X. Liu, S. Yi, X. Zhou, Z. Fang, Z. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Exp., vol. 25, no. 22, pp. 27937–27947, Oct. 2017.
[7] J. Du, Y. Wang, C. Fei, R. Chen, G. Zhang, X. Hong, and S. He, “Experimental demonstration of 50-m/5-Gbps underwater optical wireless communication with low-complexity chaotic encryption,” Opt. Exp., vol. 29, no. 2, pp. 785–796, 2021.
[8] Y. Yang, L. Fan, F. He, Y. Song, Z. Duan, Y. Zhu, and B. Li, “Long-distance underwater optical wireless communication with PPLN wavelength conversion,” //24th National Laser Conf. & Fifteenth International Society for Optics and Photonics, 11717, 117123, 2020.
[9] J. Wang, C. Lu, S. Li, and Z. Xu, “100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode,” Opt. Exp., vol. 27, no. 9, pp. 12171–12181, Apr. 2019.
[10] X. Sun, M. Kong, O. Alkhazragi, K. Telegenov, M. Ouhssain, M. Sait, Y. Guo, B. H. Jones, J. S. Shamma, T. K. Ng, and B. S. Ooi, “Field demonstrations of wide-beam optical communications through water-air interface,” IEEE Access, vol. 8, pp. 160480–160489, 2020.
[11] W. S. Tsai, H. H. Lu, H. W. Wu, C. W. Su, and Y. C. Huang, “A 30 Gb/s PAM4 underwater wireless laser transmission system with optical beam reducer/expander,” Sci. Rep., vol. 9, no. 1, pp. 1–8, 2019.
[12] N. Chi and M. Shi, “Advanced modulation formats for underwater visible light communications,” Chin. Opt. Lett., vol. 16, no. 12, 200603, 2018.
[13] Y. F. Huang, C. T. Tsai, Y. C. Chi, D. W. Huang, and G. R. Lin, “Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission,” J. Lightw. Technol., vol. 36, no. 9, pp. 1739–1745, 2018.
[14] C. Fei, X. Hong, G. Zhang, J. Du, Y. Wang, and S. He, “Improving the performance of long reach UWOC with multiband DFT-Spread DMT,” IEEE Photon. Technol. Lett., vol. 31, no. 16, pp. 1315–1318, 2019.
[15] Y. Shao, R. Deng, J. He, K. Wu, and L. K. Chen, “Real-time 2.2-Gb/s air-water OFDM-OWC system with low-complexity transmitter-side DSB,” J. Lightw. Technol., vol. 38, no. 20, pp. 5668–5675, 2020.
[16] S. Hu, L. Mi, T. Zhou, and W. Chen, “35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM,” Opt. Exp., vol. 26, no. 17, pp. 21685–21699, 2018.
[17] https://www.sonardyne.com/product/bluecomm-200-wireless-underwater-video/
[18] X. Chen, X. Yang, Z. Tong, Y. Dai, X. Li, M. Zhao, Z. Zhang, J. Zhao, and J. Xu, “150 m/500 Mbps underwater wireless optical communication enabled by sensitive detection and the combination of receiver-side partial response shaping and TCM technology,” J. Lightw. Technol., vol. 39, no. 14, pp. 4614–4621, 2021.
[19] C. Fei, Y. Wang, J. Du, R. Chen, N. Lv, G. Zhang, J. Tian, X. Hong, and S. He, “100-m/3-Gbps underwater optical wireless transmission using a wideband photomultiplier tube (PMT),” Opt. Exp., vol. 30, no. 2, pp. 2326–2337, 2022.
[20] C. Li, Z. Liu, D. Chen, X. Deng, F. Yan, S. Li, and Z. Hu, “Experimental demonstration of high-sensitivity underwater optical wireless communication based on photocounting receiver,” Photonics, vol. 9, no. 4, pp. 1–13, 2022.
[21] T. Liu, H. Zhang, Y. Zhang, and J. Song, “Experimental demonstration of LED based underwater optical wireless communication,” //2017 4th International Conf. on Information Science and Control Engineering (ICISCE), IEEE, pp. 1501–1504, 2017.
[22] C. Wang, H. Yu, and Y. Zhu, “A long distance underwater visible light communication system with single photon avalanche diode,” IEEE Photon. J., vol. 8, no. 5, pp. 1–11, 2016.
[23] L. Zhang, H. Chun, Z. Ahmed, G. Faulkner, D. O’Brien, and S. Collins, “The future prospects for SiPM-based receivers for visible light communications,” J. Lightw. Technol., vol. 37, no. 17, pp. 4367–4374, 2019.
[24] J. Shen, J. Wang, X. Chen, C. Zhang, M. Kong, Z. Tong, and J. Xu, “Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter,” Opt. Exp., vol. 26, no. 18, pp. 23565–23571, Sep. 2018.

[25] P. Leon, F. Roland, L. Brignone, J. Opderbecke, J. Greer, M. Bigand, M. A. Khalighi, T. Hamza, and S. Bourennane, “A new underwater optical modem based on highly sensitive Silicon Photomultipliers,” OCEANS 2017—Aberdeen. IEEE, pp. 1–6, 2017.

[26] M. Zhao, X. Li, X. Chen, Z. Tong, W. Lyu, Z. Zhang, and J. Xu, “Long-reach underwater wireless optical communication with relaxed link alignment enabled by optical combination and arrayed sensitive receivers,” Opt. Exp., vol. 28, no. 23, pp. 34450–34460, 2020.

[27] J. Li, D. Ye, K. Fu, L. Wang, J. Piao, and Y. Wang, “Single-photon detection for MIMO underwater wireless optical communication enabled by arrayed LEDs and SiPMs,” Opt. Exp., vol. 29, no. 16, pp. 25922–25944, 2021.

[28] M. Zhao, X. Li, X. Chen, Z. Tong, W. Lyu, Z. Zhang, and J. Xu, “Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter,” Opt. Exp., vol. 26, no. 18, pp. 23565–23571, Sep. 2018.

[29] P. Leon, F. Roland, L. Brignone, J. Opderbecke, J. Greer, M. Bigand, M. A. Khalighi, T. Hamza, and S. Bourennane, “A new underwater optical modem based on highly sensitive Silicon Photomultipliers,” OCEANS 2017—Aberdeen. IEEE, pp. 1–6, 2017.

[30] M. Zhao, X. Li, X. Chen, Z. Tong, W. Lyu, Z. Zhang, and J. Xu, “Long-reach underwater wireless optical communication with relaxed link alignment enabled by optical combination and arrayed sensitive receivers,” Opt. Exp., vol. 28, no. 23, pp. 34450–34460, 2020.

[31] J. Li, D. Ye, K. Fu, L. Wang, J. Piao, and Y. Wang, “Single-photon detection for MIMO underwater wireless optical communication enabled by arrayed LEDs and SiPMs,” Opt. Exp., vol. 29, no. 16, pp. 25922–25944, 2021.