Interaction of a Kink-Soliton with a Breather in a Fermi-Pasta-Ulam Chain

Ramaz Khomeriki

Department of Physics and Astronomy, The University of Oklahoma, 440 W. Brooks, Norman, OK 73019, USA; and
Department of Physics, Tbilisi State University, Chavchavadze ave.3, Tbilisi 380028, GEORGIA

(Dated: October 26, 2018)

Collision process between breather and moving kink-soliton is investigated both analytically and numerically in Fermi-Pasta-Ulam (FPU) chains. As it is shown by both analytical and numerical consideration low amplitude breathers and soft kinks retain their shapes after interaction. Low amplitude breather only changes the location after collision and remains static. As the numerical simulations show, the shift of its position is proportional to the stiffness of the kink-soliton, what is in accordance with the analytical predictions made in this paper. The numerical experiments are also carried out for large amplitude breathers and some interesting effects are observed: The odd parity large amplitude breather does not change position when colliding with widely separated soft kink-antikink pair, whilst in the case of closely placed kink-antikink pair the breather transforms into the moving one. Therefore it is suggested that the "harmless" objects similar to the kink-solitons in FPU chains could be used in order to displace or move the strongly localized structures in realistic physical systems. In particular, the analogies with quasi-one dimensional easy-plane type spin structures are discussed.

PACS numbers: 63.20.Ry; 05.45.Yv; 63.20.Pw

I. INTRODUCTION

Chains of classical anharmonic oscillators can serve as models for more complex physical systems which under definite conditions could be treated as one dimensional objects, e.g., optical fibers, magnetic film waveguides, quasi-one dimensional spin systems, DNA, ionic crystals, etc. Modeling various physical processes one can directly see consequences using computer simulations and compare them with the established analytical schemes. In the present paper it is proposed to model different nonlinear processes in chains of coupled oscillators making simultaneous interpretations and predictions concerning real physical systems.

Already the simplest model, as the one-dimensional chain of equal-mass oscillators exhibits following non-trivial phenomena such as energy equipartition,[1,2,3] appearance of various patterns[4,5] and localizations (either moving or static)[1,2,3] different regimes of chaotic dynamics[2,5,6] etc. Therefore these classical systems could serve as tools for better understanding of nonlinear phenomena in completely different (on the first sight) many-body systems. For instance, invariance under the simple symmetry transformation $u_n \rightarrow u_n + \text{const}$ (u_n is a displacement of n-th oscillator) relates Fermi-Pasta-Ulam (FPU) chains[1,2] (interparticle forces are functions of only relative displacements) with a wide class of systems with continuous symmetries[2,3,6,8,10,11], e.g., quasi-one dimensional easy plane ferromagnets[12,13,14,15] and antiferromagnets[16,17] ferrimagnetic spiral structures[18], and even quantum Hall double layer (pseudo) ferromagnets.[19] Such systems are characterized by the infinitely degenerated energy ground state. Spontaneous breakdown of the symmetry (by choosing a definite ground state) leads to the appearance of gapless Goldstone mode forming the kink-solitons in low energy limit. These localized solutions are well known for easy plane magnetic structures[12-15] and demonstrate similar properties as in the case of FPU chain[1,2,4-7].

The main difference between Goldstone mode kink-solitons and ordinary kinks of the models related to sine-Gordon equation (particularly, its discrete analogy - Frenkel-Kantorova mode) is that the formers do not carry topological charge. Besides that, the kinks are believed to be the exact solutions[13,14,20] in FPU chain. Because of these circumstances it is expected that they should not decay itself and do not destruct other localizations during the scattering process as long as no energy redistribution is required. In this connection it should be mentioned that FPU chain, the linear spectrum of which is bounded from above, exhibits another nontrivial solution in high energy limit. This solution represents intrinsic localized mode (discrete breather)[21,22] which in a low amplitude limit could be considered as particular case of semi-discrete envelope soliton[23]. Let us note a direct analogy of the above with quasi one-dimensional magnetic systems where similar localizations have recently been discovered[24,25,26] or predicted[27].

As it follows from the analytical and numerical considerations made in the present paper the kink-solitons are indeed "harmless": after interaction the shapes of both kink and breather remain unchanged. The collision only causes the shift of the position of spatially localized breather or its transformation into the slowly moving one. In this connection let us make a comparison with strongly inelastic scattering process between kinks and breathers of sine-Gordon equation.[20,21,24-27] Although, it should be mentioned that in the latter case the nonlinear objects are solutions of continuous equation unlike discrete FPU model considered in the present paper.

For analytical consideration in weakly nonlinear limit the multiple scale analysis will be used in order to present
the quantitative picture for kink-breather collision. But firstly, well known solutions for kink and breather will be briefly rederived in order to introduce the method of calculation.\[34]\n
II. ANALYTICAL SOLUTIONS FOR KINK-SOLITON AND BREATHER IN WEAKLY NONLINEAR LIMIT

The equations of motion of FPU oscillator chain are

\[\ddot{u}_n = (u_{n+1} - u_n) + (u_{n-1} - u_n) + \frac{1}{24} \frac{\partial^4 \varphi_1}{\partial \xi_1^4} + \frac{3}{2} \left(\frac{\partial \varphi_1}{\partial \xi_1} \right)^2 \frac{\partial^2 \varphi_1}{\partial \xi_1^2} = 0,\] (1)

where dots over \(u_n\) express the time derivatives. Dimensionless units are used so that the masses, the linear and nonlinear force constants and the lattice spacing are taken equal to unity. The real displacements are expressed from dimensionless ones \((u_n)\) by dividing the latters on the coefficient \(\sqrt{K_4/m}\) where \(m\) is a mass of particle and \(K_4\) is a coefficient before the anharmonic quartic term. Thus if the nonlinear interaction is strong enough it is admissible to have large values of \(u_n\) (e.g. \(u_n \gg 1\)) and this does not cause the scattering of neighboring particles.

Firstly let us derive the kink-soliton solution by assuming that \(u_n\) smoothly varies in space-time. Then it is appropriate to introduce slow variables

\[\xi_1 = \varepsilon (n - v_1 t); \quad \tau_1 = \varepsilon^3 t\] (2)

and denote

\[u_n = \varphi_1(\xi_1, \tau_1),\] (3)

where \(\varepsilon\) is a formal small parameter indicating smallness or slowness of the variables before which it appears. Substituting (3) into the motion equation (1) and collecting the terms with the same order of \(\varepsilon\) it becomes possible to treat the problem perturbatively. In particular, the velocity \(v_1\) is determined in the second approximation over \(\varepsilon\):

\[v_1 = \pm 1.\] (4)

Without restricting of generality let us further consider the solution with negative velocity \(v_1 = -1\). Other solution will be recovered simply changing the axis direction. Finally, in the forth approximation over \(\varepsilon\) the following nonlinear equation is obtained:

\[\frac{\partial^2 \varphi_1}{\partial \xi_1^2} + \frac{1}{24} \frac{\partial^4 \varphi_1}{\partial \xi_1^4} + \frac{3}{2} \left(\frac{\partial \varphi_1}{\partial \xi_1} \right)^2 \frac{\partial^2 \varphi_1}{\partial \xi_1^2} = 0,\] (5)

which is exactly integrable modified Korteweg-deVries equation\[34]\ for the function \(\partial \varphi_1/\partial \xi_1\). The equation (5) was derived for FPU chain in Refs.\[34,32\] and finally leads to the kink-like solution for \(u_n\):

\[u_n = \varphi_1 = \sqrt{\frac{2}{3}} \left(\text{arctan} \left(e^{\frac{A}{\sqrt{3}} \left(n + t + (A/2)^2 \right)} \right) \right),\] (6)

which has a similar form as the kinks for the sine-Gordon equation but note that although the tails of the kink solution (6) corresponds to the different ground states \((u_n = 0\) and \(u_n = \pi/\sqrt{6}\) for \(n \to -\infty\) and \(n \to \infty\), respectively) these ground states carry the same energy because of the mentioned symmetry \(u_n \to u_n + \text{const}\). These kinks do not carry topological charge and as far as they connect degenerate ground states they could be called Goldstone mode kinks. It should be also mentioned that in terms of relative displacements \(v_n = u_{n+1} - u_n\) this object is discretized version of Korteweg-deVries soliton and therefore the definition of kink-soliton is usually used in literature for its identification. The similar localized objects could be created in magnetic structures with easy plane anisotropy where their appearance also is connected with the broken symmetry Goldstone mode. The transverse component of such magnetic localization (in-plane component) has a kink like form, while out of easy plane component represents ordinary Korteweg-deVries soliton.\[34,32\]

The solution (6) is valid if one can neglect the higher derivatives. This could be achieved if the following condition is satisfied for the kink stiffness:

\[6A^2 \ll 1.\] (7)

Afterwards let us rederive the breather solution using multiple scale analysis presenting \(u_n\) as multiplication of harmonic oscillation and smooth envelope function:

\[u_n = \frac{\varepsilon}{2} \varphi_2(\xi_2, \tau_2)e^{i(kn - \omega t)} + \text{c.c.}\] (8)

where "c.c." denotes complex conjugation and new slow variables are defined as follows:

\[\xi_2 = \varepsilon(n - v_2 t); \quad \tau_2 = \varepsilon^2 t.\] (9)

As far as only small displacements are considered it is natural to neglect the higher harmonics working in a rotating wave approximation. Carrying out the procedure similar to the previous case (collecting terms with the same harmonics and order of \(\varepsilon\)) in the first order over \(\varepsilon\) well known dispersion relation for linear excitations in FPU chain is obtained:

\[\omega = \omega_k \equiv \sqrt{2(1 - \cos k)}.\] (10)

In the second approximation the expression for group velocity is derived:

\[v_2 = \frac{\text{sink}}{\omega_k} = \frac{d\omega_k}{dk},\] (11)

and finally we get the nonlinear Schrödinger equation for the envelope function \(\varphi_2\) in the third approximation over \(\varepsilon\):

\[i \frac{\partial \varphi_2}{\partial \tau_2} - \frac{\omega_k}{8} \frac{\partial^2 \varphi_2}{\partial \xi_2^2} - \frac{3}{8} \omega_k^2 |\varphi_2|^2 \varphi_2 = 0,\] (12)
which permits bright soliton solution. Thus in terms of \(u_n \), the envelope soliton solution (moving with a group velocity \(v_2 \)) is rederived (see e.g. Ref. [4]):

\[
\begin{align*}
 u_n &= \frac{B \cos(nk - \tilde{\omega} k t)}{\text{ch}[\sqrt{3/2B}\omega_k(n - v_2 t)]}, \\
 \tilde{\omega}_k &= \omega_k \left(1 + (3/16)\omega_b^2 B^2 \right), \quad B \ll 1.
\end{align*}
\]

The breather solution is obtained by setting \(v_2 = 0 \), therefore carrier wave number \(k = \pi \) (thus \(\tilde{\omega} = 2 \)) should be considered according to the relations (10) and (11). Thus we get the expression for the low amplitude breather solution:

\[
 u_n = \frac{B \cos(\pi n - 2t - (3/2)B^2t)}{\text{ch}(B\sqrt{6}n)}, \quad B \ll 1
\]

(14)

which coincides with the corresponding breather solution obtained in Ref. [3].

III. INTERACTION BETWEEN KINK-SOLITON AND BREATHER

A. Analytical Results in Weakly Nonlinear Limit

Now let us start the main task of the paper: analytical description of kink-breather interaction. Keeping in mind that in absence of either kink or breather one should come to the solutions (14) or (3) respectively, I am seeking for the solution in the following form (using again the rotating wave approximation):

\[
 u_n = \varphi_1(\xi_1, \tau_1) + \frac{\varepsilon}{2} \left[\varphi_2(\xi_2, \tau_2) e^{i(\pi n - 2t) + i\varepsilon \Omega(\xi_1, \tau_1)} + \text{c.c.} \right],
\]

(15)

where the following choice for slow space-time variables is made:

\[
\begin{align*}
 \xi_1 &= \varepsilon(n + t) - \varepsilon^2 \Psi_1(\xi_2, \tau_2), & \tau_1 &= \varepsilon^2 t, \\
 \xi_2 &= \varepsilon n - \varepsilon^2 \Psi_2(\xi_1, \tau_1), & \tau_2 &= \varepsilon^2 t.
\end{align*}
\]

(16)

Here the phase and argument shifts are introduced in order to decouple nonlinear equations. Substituting (15) into the initial equation of motion for FPU chain (1) we get in the forth order over \(\varepsilon \) for zero harmonic and in the third order over \(\varepsilon \) for the first harmonic the following two nonlinear equations:

\[
\begin{align*}
 \frac{\partial^2 \varphi_1}{\partial \xi_1 \partial \tau_1} + \frac{1}{24} \frac{\partial^4 \varphi_1}{\partial \xi_1^4} + \frac{3}{2} \left(\frac{\partial \varphi_1}{\partial \xi_1} \right)^2 \frac{\partial^2 \varphi_1}{\partial \xi_1^2} & = 0, \\
 + \frac{1}{2} \left[\frac{\partial^2 \varphi_1}{\partial \xi_1^2} + \frac{\partial \varphi_1}{\partial \xi_1} \frac{\partial}{\partial \xi_2} \right] \left[\frac{\partial \Psi_1}{\partial \xi_2} + 6|\varphi_2|^2 \right] & = 0.
\end{align*}
\]

(17)

\[
\frac{\partial \varphi_2}{\partial \tau_2} - \frac{1}{4} \frac{\partial^2 \varphi_2}{\partial \xi_1^2} - 3|\varphi_2|^2 \varphi_2 - \varphi_2 \left[\frac{\partial^2}{\partial \xi_1^2} + 3 \left(\frac{\partial \varphi_1}{\partial \xi_1} \right)^2 \right] = 0.
\]

(18)

The variables \(\xi_1 \) and \(\xi_2 \) in Exp. (19) are chosen such that group velocities for noninteracting kink-soliton and breather (with carrier wave number equal to \(\pi \)) are \(v_1 = -1 \) and \(v_2 = 0 \), what itself guarantees the satisfaction of the motion equation (1) in the lower orders over \(\varepsilon \).

By letting

\[
\frac{\partial \Psi_2}{\partial \xi_1} = -6|\varphi_2|^2, \quad \frac{\partial \Omega}{\partial \xi_1} = -3 \left(\frac{\partial \varphi_1}{\partial \xi_1} \right)^2
\]

(19)

we come again to the equations (11) and (12) for kink-soliton \(\varphi_1 \) and breather \(\varphi_2 \) (with carrier wave number \(k = \pi \)). The choice (19) physically means that the interaction effects reduce only to the phase shifts of solitons while the solitons’ profiles remain unchanged in the leading approximation.

Finally, in the fourth approximation over \(\varepsilon \) for the first harmonic the following equality is derived:

\[
\frac{\partial \Psi_2}{\partial \xi_1} = \frac{3}{2} \left(\frac{\partial \varphi_1}{\partial \xi_1} \right)^2.
\]

(20)

According to the last relation breather acquires group velocity during the interaction process, but as the kink passes it stops. The shift of breather’s position could be calculated from the following simple relations:

\[
l_2 = \int_{-\infty}^{\infty} v_2 dt = \int_{-\infty}^{\infty} \frac{\partial \Psi_2}{\partial t} dt = \int_{-\infty}^{\infty} \frac{\partial \Psi_2}{\partial \xi_1} d\xi_1 = \frac{\sqrt{6}}{2}|A|,
\]

(21)

thus shift is always positive, i.e. breather will be shifted oppositely to the kink’s propagation direction (let us remind that group velocity of the kink has been chosen to be negative) irrespective of the sign of \(A \), therefore the shift is the same for both kink and antikink case.

Denoting by \(t_1 \) and \(t_2 \) the times needed for kink to travel from the one side of the chain to another in presence or absence of the breather on the way, one can calculate the difference \(\Delta t = t_2 - t_1 \) using similar to (21) relations. Thus one gets:

\[
\Delta t = 2\sqrt{6}|B|.
\]

(22)

The physical meaning of the expressions (21) and (22) could be simply understood mentioning that in case of weakly nonlinear solitons’ interaction the group velocities of the solitons change only during the interaction process. Particularly, the breather acquires the nonzero velocity while interacting with kink-soliton. Simultaneously, during the same small time period the velocity of kink-soliton becomes larger than in case of its free propagation. These circumstances cause the shift of low amplitude breather position and on the other hand the earlier arrival of the kink soliton at the left side of the chain (see Fig. 1).
B. Numerical Experiments

As it was mentioned above, direction of the shift of the breather position does not depend on whether the kink or antikink participate in the collision. Therefore in order to increase the interaction effect two kink-antikink pairs are used for collision with breather. In the numerical experiment the soft kink solution (6) and low amplitude breather (14) are put apart from each other in FPU chain with pinned boundary conditions (see Fig. 1). Numerical experiment fully confirms analytical predictions: the nonlinear objects for which analytical results (6) and (14) are valid (i.e. the conditions (7) and (14) are satisfied) behave in full accordance with formulas (21) and (22). Particularly, as series of numerical experiments show, the shift of low amplitude breather position is proportional to the kink-soliton stiffness and does not depend on its own amplitude. In Fig. 1 the collision process between two kink-antikink pairs with the same stiffness $A = 0.2$ and the breather with amplitude $B = 0.1$ is expressed. It is clear that the localized objects behave as expected: they retain their shapes and low amplitude breather changes its position and after interaction becomes again static. According to Fig. 1 the shift is equal to $l_2 \approx 1$ as it expected from formula (21), note only that as four localized objects with the same stiffness are used (two kink-antikink pairs) the value obtained from the expression (21) should be multiplied by the factor 4. The interaction also causes acceleration of the kink-antikink pair (propagation velocity of kink-antikink pair is larger during the interaction process in comparison with free propagation) as it follows from the formula (22).

FIG. 2: (a) collision of widely separated kink-antikink pair (stiffness $A = 0.25$) with strongly localized odd parity mode (amplitude $B = 1$). (b) collision of the same breather with closely placed kink-antikink pair. Arrows show the initial position of the kink-antikink pair.

Obviously, the weakly nonlinear approach fails considering large amplitude breather and/or stiff kink-solitons. Therefore it is expected that the results could be different. Indeed, the following phenomena are monitored when colliding soft kink-antikink pair with strongly localized odd parity mode. Breather with amplitude above $B \approx 0.2$ does not change the position if soft kink-solitons are used for collision. Moreover, breather does
It should be mentioned that according to the analytical results and numerical experiments the low amplitude breather acquires the group velocity only during the interaction process, while the large amplitude breather once starting to move does not stop (for intermediate amplitudes) or it will further trapped by the lattice sites (for larger amplitudes, approximately $B > 1.4$).

In the present paper only the results concerning collision process with odd parity mode are presented because, as numerical simulations show, the even parity mode spontaneously starts to move and decays after finite time period, while odd parity mode remains well localized in the absence of collisions with other nonlinear objects. At the same time only soft kink-solitons are the subject of the study because stiff kinks sufficiently perturb background and it is hard to see what causes displacement or pinning of the breather.

Let us mention also that reflected kink-antikink pairs almost return the low amplitude breather to its initial position, while they are unable to change the picture in case of large amplitude odd parity mode. As it is seen from Fig. 2 moving odd parity mode with amplitude $B=1$ does not react on the collision with reflected kink-antikink pair and remains moving with the same velocity. On the other hand the reflected kink-antikink pair can not displace (see Fig. 3) larger amplitude breather ($B=2$).

IV. CONCLUSIONS

Summarizing, as it is shown above, kink-solitons could be used to displace or move the static localization without the destruction of the latter. The direct analogy with quasi-one dimensional easy plane magnetic structures should be quoted again. The existence of continuous U(1) symmetry in magnetization vector space for this systems allows the presence of the broken symmetry Goldstone mode which because of the existing nonlinearity forms kink-soliton. These large wavelength nonlinear excitations have been studied for easy plane antiferromagnets in presence of applied magnetic field along anisotropic axis and in spiral structures. On the other hand it is known that the band edge excitations in easy plane type antiferromagnets form stable intrinsic localized spin wave modes (ILSM) having odd parity structure in large amplitude limit. Thus, a new theoretical study and corresponding realistic experiments could be planned in order to investigate and observe the effects caused by the interaction between magnetization kink-solitons and ILSM in quasi-one dimensional easy plane structures. As the analogy is almost straightforward it could be predicted that kink-solitons in the easy-plane magnetic structures should cause the same effect as in FPU chains. Particularly, they can displace or move the strongly localized objects without their destruction.

The author is very thankful to Lasha Tkeshelashvili for the suggestions. The discussions with Stefano Lepri and Stefano Ruffo are also greatly acknowledged. The work was made possible in part by the NSF-NATO award No DGE-0075191.
1. T. Cretegny, T. Dauxois, S. Ruffo, A. Torcini, Physica D, 121, 109, (1998).
2. K. Ullmann, A.J. Lichtenberg, G. Corso, Phys. Rev. E, 61, 2471, (2000).
3. R. Khomeriki, S. Lepri, S. Ruffo, Phys. Rev. E, 64, 056606, (2001).
4. S. Flach, C.R. Willis, Phys. Rep., 295, 181, (1998).
5. Yu. A. Kosevich, S. Lepri, Phys. Rev. B, 61, 299 (2000).
6. J. De Luca, A. J. Lichtenberg, S. Ruffo, Phys. Rev. E, 60, 3781, (1999).
7. S. Flach, Y. Zolotaryuk, K. Kladko, Phys. Rev. E., 59, 6105, (1999).
8. V. Latora, A. Rapisarda, S. Ruffo, Phys. Rev. Lett., 80, 692, (1998).
9. A. Pikovsky, A. Politi, Phys. Rev. E, 63, 036207, (2001).
10. E. Fermi, J. Pasta, S. Ulam, M. Tsingou, in The Many-Body Problems, edited by D.C. Mattis (World Scientific, Singapore, 1993 reprinted).
11. M.I. Tribelsky, Uspekhi Fizicheskikh Nauk, 167 (2), 167, (1997); Physics-Uspekhi, 40 (2), 159, (1997).
12. R. Lai, A.J. Sievers, Phys. Reports, 314, 147, (1999).
13. N. Giorgadze, R. Khomeriki, Physica B, 252, 274, (1998).
14. I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, K. W. West, Phys. Rev. Lett., 87, 036803 (2001).
15. E.B. Volzhan, N.P. Giorgadze, A.D. Pataraya, Sov. Phys. Solid State, 18, 1487, (1976).
16. Yu. A. Kosevich, Phys. Rev. B, 47, 3138, (1993).
17. P. Poggi, S. Ruffo, H. Kantz, Phys. Rev. E, 52, 307, (1995).
18. O. M. Braun, Yu.A. Kivshar, Phys. Rep. 306, 1, (1998).
19. A.V. Savin, Zh. Eksp. Teor. Fiz., 108, 1105, (1995).
20. D.B. Duncan, J.C. Elbeek, H. Feddersen, J.A.D. Wattis, Physica D, 68, 1, (1998).
21. A.J. Sievers, S. Takeno, Phys. Rev. Lett., 61, 970, (1998).
22. J.B. Page, Phys. Rev. B, 41, 7835, (1990).
23. K. Hori, S. Takeno, J. Phys. Soc. Japan, 61, 4263, (1992).
24. V.V. Konotop, S. Takeno, Phys. Rev. E, 63, 066606, (2001).
25. U.T. Schwarz, L.Q. English, A.J. Sievers, Phys. Rev. Lett., 83, 223, (1999).
26. L.Q. English, M. Sato, A.J. Sievers, J. Appl. Phys. 89, 6707, (2001).
27. V.V. Konotop, M. Salerno, S. Takeno, Phys. Rev. B, 58, 14892, (1998).
28. B.A. Malomed, Physica D, 15, 374, (1985) ; 15 385 (1985).
29. Yu.S. Kivshar, B.A. Malomed, Physica D, 24, 125, (1987).
30. M. Okawa, N. Yajima, J. Phys. Soc. Japan, 37, 486, (1974).
31. N. Giorgadze, R. Khomeriki, Phys. Rev. B, 60, 1247, (1999).
32. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, (1991).