Thalidomide: a treatment option for bleeding GI angiodysplasias in dialysed patients

Asher Korzets, Uzi Gafter, Avri Chagnac, Boris Zingerman, Valeriya Morduchovitz and Yaacov Ori

Department of Nephrology and Hypertension, Hasharon Hospital, Rabin Medical Center, Petach Tikva, Israel, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

Keywords: angiodysplasias; angiogenesis; dialysis; thalidomide

Introduction

Gastrointestinal (GIT) bleeding is a serious problem in dialysed patients, and can lead to repeated hospitalizations, invasive diagnostic and therapeutic procedures and the need for multiple blood transfusions. Angiodysplasias are the cause of GIT bleeding in 3–6% of all patients [1,2], and in the elderly population they constitute the most common cause for obscure GIT bleeding [3]. As early as 1984, angiodysplasias, often multiple and located throughout the GIT, have constituted a potential source of bleeding in dialysis patients [4].

Today, the ever-increasing use of the wireless capsule endoscope has dramatically improved our ability to accurately diagnose angiodysplasias ([1], Figure 1). Fortunately, many bleeding angiodysplasias stop bleeding spontaneously [2]. But, for those vascular malformations that continue to bleed or bleed recurrently, therapy remains unsatisfactory. Multiple lesions are the rule, rather than the exception. Therefore, surgical resection of any involved segment of the bowel is fraught with the uncertainty of other lesions bleeding at a future point in time. Argon laser coagulation is an accepted mode of therapy, but many angiodysplastic lesions, to be found in the distal small bowel, are ‘out of technical reach’ of this modality. Medical options have also disappointed, with uncertainty still existing over the use of estrogenic hormones in treating bleeding angiodysplasias [5].

Discussion

Angiodysplasias are arteriovenous vascular malformations located on the mucosal and submucosal surfaces of the GIT. Their pathogenesis is still not clear, and probably multifactorial. These malformations are thin-walled, fragile vessels. They bleed, often recurrently, and in such a severity, as to require blood transfusions. Vascular endothelial growth factor (VEGF) is an angiogenic peptide that is secreted in response to hypoxia, stimulates proliferation of vascular endothelial cells and increases vessel permeability [7]. GIT angiodysplasias are characterized by elevated serum levels of VEGF [8]. In addition, colonic angiodysplasias stain for both VEGF and basic fibroblast growth factor, another known angiogenic factor, and they also express the VEGF-receptor 1 along their endothelial lining [6]. If suppressing VEGF may lead to a disruption in the pathogenesis behind these pathological vessels, then the use of VEGF suppressive (antiangiogenic) agents may be useful in treating bleeding GIT angiodysplasia. Thalidomide is such a drug [9].

Correspondence and offprint requests to: Asher Korzets, Hemodialysis Division, Department of Nephrology and Hypertension, Hasharon Hospital, Rabin Medical Center, 7 Keren Kayemet Street, Petach Tikva 49372, Israel. Tel: +972-3-9372223; Fax: +972-3-9372311; E-mail: asherko@clalit.org.il

© The Author (2008). Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org
mide led to a decreased size and number of angiodysplasias
sule endoscope showed that successful therapy with thalido-
levels [8]. Furthermore, the serial usage of the wireless cap-
also significantly reduced high pre-treatment serum VEGF
thalidomide treatment not only stopped GIT bleeding but
bleeding (Table 1; [1,8,13–15]). In three patients, low-dose
demonstrated thalidomide’ s ability to stop angiodysplastic
stop GIT bleeding [12]. Since then, a number of reports have
hypothesized that the anti-angiogenic effects of thalidomide
Crohn’ s disease is often unrelated to disease activity, it was
follow-up period [11]. As GIT bleeding in patients with
3 weeks, and bleeding did not recur during a 4-month
After starting thalidomide, all bleeding stopped within
∼ in 6 months and had required 40 blood transfusions.

Table 1. Patients’ summaries after thalidomide therapy for bleeding angiodysplasias

References	Patient age/sex	Location of angiodysplasia	Blood transfusions	Thalidomide dose and duration of therapy	Immediate result of thalidomide therapy	Long-term results of thalidomide therapy
[1]	Three patients, 2 M, 1 F, mean age: 78 years	NA	≥ 2 units/month (≥ 3 months)	50–400 mg, 3–12 months	Two patients stopped bleeding after 2–12 weeks; one patient did not respond	Two patients did not rebleed for 6 months after thalidomide was stopped
[8]	54, M	Small bowel	> 200 units (42 months)	100 mg, stopped after 4 months	Bleeding stopped within 2 weeks	No bleeding for 33 months
[8]	69, F	Small bowel	12 units (12 months)	100 mg, stopped after 4 months	Bleeding stopped within 2 weeks	No bleeding for 24 months
[8]	72, M	Jejunum, ileum	> 1 unit/month (14 months)	100 mg, stopped after 4 months	Bleeding stopped within 2 weeks	No bleeding for 22 months
[13]	60, F^a	Stomach, jejunum	8 units/week (8 months)	100–200 mg, 3 months	Decreased blood transfusions (2 units/week)	Died after 3 months (as a result of leukaemia)
[14]	80, M	Duodenum, jejunum	35 units (4 months)	100 mg stopped after 11 months	Bleeding stopped within 1 week, no bleeding for 11 months	Thalidomide cessation led to further episodes of bleeding
[15]	54, M^b	Stomach, small and large bowel	> 130 units (15 months)	50–150 mg, 6 months	Bleeding stopped immediately	No bleeding for 6 months

NA: not available.
^aThis patient had underlying acute myelogenous leukaemia.
^bThis patient had Von Willebrand’s disease.

The tragic, early history of thalidomide needs no reintro-
duction. But, today, thalidomide is an important drug in
the management of multiple myeloma and erythema no-
dosum leprosy. It possesses anti-inflammatory and anti-
angiogenic capabilities [10]. Indeed, D’Amato showed, in
an experimental model, that thalidomide is capable of in-
hibiting VEGF and basic fibroblast growth factor-mediated
angiogenesis directly [9]. In gastroenterology, thalidomide
was initially used as an anti-inflammatory drug in patients
with active Crohn’s disease [8,11]. It was quickly recog-
nized that thalidomide stopped GIT bleeding in these same
patients. Wettstein et al. treated a 55-year-old woman with
Crohn’s disease and recurrent rectal bleeding with thalido-
mide, after all other medical therapies had failed. Before
commencement of thalidomide this patient had bled in-
cessantly, had been hospitalized on 12 different occasions
in 6 months and had required ~ 40 blood transfusions.
After starting thalidomide, all bleeding stopped within
3 weeks, and bleeding did not recur during a 4-month
follow-up period [11]. As GIT bleeding in patients with
Crohn’s disease is often unrelated to disease activity, it was
hypothesized that the anti-angiogenic effects of thalidomide
may be the predominant mechanisms behind its ability to
stop GIT bleeding [12]. Since then, a number of reports have
demonstrated thalidomide’s ability to stop angiodysplastic
bleeding (Table 1; [1,8,13–15]). In three patients, low-dose
thalidomide treatment not only stopped GIT bleeding but
also significantly reduced high pre-treatment serum VEGF
levels [8]. Furthermore, the serial usage of the wireless cap-
sule endoscope showed that successful therapy with thalido-
mide led to a decreased size and number of angiodysplasias
[3].

In all the reports on thalidomide therapy for GIT bleed-
ing, not even one patient with chronic kidney disease has
been included. Also, in a prospective study to be conducted
by the Northport Veterans Affairs Medical Center, as to
the efficacy of thalidomide in bleeding angiodysplasias, an
exclusion criterion is renal failure [16]. But why? Undoubt-
edly, bleeding GIT angiodysplasias can lead to an increased
morbidity and mortality in dialysed patients. Secondly, the
only patients who should not use thalidomide are women
of child-bearing age, or sexually active men who are not
using condom contraception. Thirdly, Eriksson et al. have
shown that dose adjustment/reduction is not necessary in
patients with chronic renal disease or in haemodialysed pa-

^aThis patient had underlying acute myelogenous leukaemia.
^bThis patient had Von Willebrand’s disease.
of therapy, and serial electromyelograms appear warranted. Fortunately, peripheral neuropathy becomes overtly problematic only after high cumulative doses of thalidomide have been given [12].

Bevacizumab, a recombinant humanized monoclonal antibody to VEGF, improved GIT bleeding in a patient with haemorrhagic hereditary telangiectasia [18]. However, reports of bowel perforation, following its use in patients with advanced ovarian cancer, means that, as of the moment, this drug cannot be recommended as therapy in angiodysplastic bleeding [19].

Conflict of interest statement. None declared.

References

1. Dabak V, Kuriakose P, Kamboj G et al. A pilot study of thalidomide in recurrent GI bleeding due to angiodysplasias. Dig Dis Sci 2007
2. Ell C, Remke S, May A et al. The first prospective controlled trial comparing wireless capsule endoscopy with push enteroscopy in chronic gastrointestinal bleeding. Endoscopy 2002; 34: 685–689
3. Bauditz J, Lochs H, Voderholzer W. Macroscopic appearance of intestinal angiodysplasias under antiangiogenic treatment with thalidomide. Endoscopy 2006; 38: 1036–1039
4. Dave PB, Romeu J, Antonelli et al. Gastrointestinal telangiectasias. A source of bleeding in patients receiving hemodialysis. Arch Intern Med 1984; 144: 1781–1783
5. Junquera F, Fen F, Papo M et al. A multicenter, randomized, clinical trial of hormonal therapy in the prevention of rebleeding from gastrointestinal angiodyplasia. Gastroenterol 2001; 121: 1073–1079
6. Junquera F, Saperas E, de Torres I et al. Increased expression of angiogenic factors in human colonic angiodyplasia. Am J Gastroenterol 1999; 94: 1070–1074
7. Ferrera N, Gerber HP, Le Couter J. The biology of VEGF and its receptors. Nat Med 2003; 9: 669–676
8. Bauditz J, Schachtschal G, Wedel S et al. Thalidomide for treatment of severe intestinal bleeding. GUT 2004; 53: 609–612
9. D’Amato RJ, Loughnan MS, Flynn E et al. Thalidomide as an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994; 91: 4082–4085
10. Tramontana JM, Utajap U, Molloy A et al. Thalidomide treatment reduces tumor necrosis factor α production and enhances weight gain in patients with pulmonary tuberculosis. Mol Med 1995; 1: 384–397
11. Wettstein AR, Meagher AP. Thalidomide in Crohn’s disease. Lancet 1997; 350: 1445–1446
12. Bauditz J, Lochs H. Angiogenesis and vascular malformations: antiangiogenic drugs for the treatment of gastrointestinal bleeding. World J Gastroenterol 2007; 13: 5979–5984
13. Shurafa M, Kamboj G. Thalidomide for the treatment of bleeding angiodysplasias. Am J Gastroenterol 2003; 98: 221–222
14. Heidt J, Langers AMJ, Van Der Meer FJM et al. Thalidomide as treatment for digestive tract angiodyplasias. Nether J Med 2006; 64: 425–428
15. Hirri HM, Green PJ, Lindsay J. Von Willebrand’s disease and angiodyplasia treated with thalidomide. Hemophilia 2006; 12: 285–286
16. Northport Veterans Affairs Medical Center. Thalidomide reduces arteriovenous malformation related gastrointestinal bleeding. Clinical trial NCT00389935. http://www.clinicaltrials.gov/ct/gui/show/NCT00389935?order, 2007
17. Eriksson T, Hoglund P, Turesson I et al. Pharmacokinetics of thalidomide in patients with impaired renal function, and while on and off dialysis. J Pharm Pharmacol 2003; 75: 1701–1706
18. Flieger D, Hainke S, Fischbach W. Dramatic improvement in hereditary hemorrhagic telangiectasia after treatment with the vascular endothelial growth factor (VEGF) antagonist bevacizumab. Ann Hematol 2006; 85: 631–632
19. Cannistra SA, Matulonis UA, Penson UA et al. Phase II study of bevacizumab in patients with platinum resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol 2007; 25: 5180–5186

Received for publication: 1.5.08
Accepted in revised form: 19.5.08