Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium

Sebastian Erne1,2,3, Robert Bücker1,4, Thomas Gasenzer2,5, Jürgen Berges2 & Jörg Schmiedmayer1

Understanding the behaviour of isolated quantum systems far from equilibrium and their equilibration is one of the most pressing problems in quantum many-body physics1,2. There is strong theoretical evidence that sufficiently far from equilibrium a wide variety of systems—including the early Universe after inflation3–5, quark–gluon matter generated in heavy-ion collisions6–8, and cold quantum gases9–14—exhibit universal scaling in time and space near phase transitions15. Aspects of universality in non-equilibrium systems have been discussed in many contexts, such as turbulence16,17, defect formation when crossing a phase transition18,19, and the phenomenon of coarsening20,21.

Universal dynamics in an isolated one-dimensional system. The system exhibits universal behaviour far from equilibrium. We start our experiment with a thermal gas of ultracold 87Rb atoms in an extremely elongated, quasi-one-dimensional (in the z direction) harmonic trap (transverse confinement \(\omega_{\perp} = 2 \times 10^4 \) s\(^{-1} \), longitudinal confinement \(\omega_{\parallel} = 30 \) s\(^{-1} \)) just above the critical temperature. In the final cooling step, the trap depth is lowered rapidly compared to the longitudinal thermalization timescale (Fig. 1a). This leads to fast removal of high-energy atoms, predominantly in the radially excited states, and hence constitutes an almost instantaneous cooling quench of the system. At the end of the cooling ramp, the trap depth lies below the first radially excited energy level and only longitudinal excitations remain. After a short holding period of 1 ms, which allows the atoms with large transverse energies to leave, we rapidly increase the trap depth. In this way, we prepare an isolated, far-from-equilibrium, one-dimensional system. The gas is then left to evolve in the deep potential for variable times up to about 1 s, during which time the universal scaling dynamics takes place.

We probe the evolution of the system through two sets of measurements (see Methods for details). First, the in situ density \(\rho(z, t) \) is measured using standard absorption imaging22 after a short time of flight of \(t_{\text{of}} = 1.5 \) ms, during which the expansion is predominantly along the tightly confined radial direction. Second, the momentum distribution \(n(k, t) \) of the trapped gas is measured after a long time of flight of \(t_{\text{of}} = 46 \) ms using single-atom-resolved fluorescent imaging in a thin light sheet23. For each hold time \(t \), the distributions are averaged over many independent measurements (Methods). A typical time evolution of each of these profiles is shown in Fig. 1b. The far-from-equilibrium state at early times exhibits strongly broadened density and momentum distributions. At early times, the momentum distribution \(n(k, t) \) follows a characteristic exponential decay, \(n(k) \propto \exp(-k^2\xi^2) \), for large \(k \). At late times, the system relaxes to thermal equilibrium and is well described by a thermal quasi-condensate (Fig. 1c, Extended Data Fig. 1; see Methods for details).

A typical time evolution of each of these profiles is shown in Fig. 1b. The far-from-equilibrium state at early times exhibits strongly broadened density and momentum distributions. At early times, the momentum distribution \(n(k, t) \) follows a characteristic exponential decay, \(n(k) \propto \exp(-k^2\xi^2) \), for large \(k \). At late times, the system relaxes to thermal equilibrium and is well described by a thermal quasi-condensate (Fig. 1c, Extended Data Fig. 1; see Methods for details). The momentum distribution is then described by only a Lorentzian function, with width given by the thermal coherence length \(\lambda_{T} = 2\hbar^2\rho(z)/(mk_B T) \), where \(\hbar \) is the reduced Planck constant, \(m \) is the mass of the atoms, \(k_B \) is the Boltzmann constant and \(T \) is the temperature. During the evolution, a clear peak emerges at low momenta, signalling the quasi-condensation of the system in momentum space. In the following, we analyse the thermalization process, providing a link between the far-from-equilibrium state at early times and the final equilibrium state that is observed.

For the initial state of the far-from-equilibrium evolution, we find \(n(k) \) in good agreement with a theoretical model of randomly distributed soliton defects (RDM; Fig. 1c). At low momenta, the RDM has a Lorentzian shape, \(n(k) \propto [1 + (k/\xi^2)]^{-1} \), with width defined by the defect density \(n_s \). At high momenta, \(n(k) \) exhibits characteristic...
exponential decay, \(n(k) \propto \exp(-k\xi) \), determined by the width \(\xi \) of the localized density suppression associated with a solitonic defect.

Because we probe the system immediately after the almost instantaneous quench, these defects are not equilibrated (Extended Data Fig. 1); they have a reduced defect width of \(\xi = 0.07 \mu m = 0.013 \mu m \) and a very high density of \(n_i = 1.4 \mu m^{-1} \). The peak healing length \(\xi_0 = h/2 \mu m \) determines the equilibrium width of a soliton, where \(g_{1D} = 2\mu m/\omega_z \) is the one-dimensional interaction constant, \(a_s \) is the \(s \)-wave scattering length of \(^{87}\)Rb and \(n_0 \) is the peak density. Although the nucleation of solitons is predicted by the Kibble–Zurek mechanism\(^ {19} \), the almost instantaneous quench creates an initial state with a strong overpopulation of high-energy modes. This very far-from-equilibrium state sets the initial conditions for the subsequent thermalization process and facilitates the observation of the emerging universal dynamics during the relaxation of the system.

The time evolution of the normalized momentum distribution \(n(k,t)/N(t) \), where \(N(t) \) is the total atom number at time \(t \), is shown in Fig. 2a for the first 75 ms following the quench. The distribution scaling of the distribution in time according to equation (1).
Fig. 3 | Scaling exponents. a, The combined two-dimensional likelihood function (colour scale), averaged over all times t and reference times t_0 within the scaling period and over three different initial conditions, reveals a clear peak that yields the non-vanishing scaling exponents $\alpha \approx \beta = 0.1 \pm 0.03$, with a deviation between the two exponents of $\Delta_{\alpha\beta} = \alpha - \beta = -0.01 \pm 0.02$. The error is estimated using a Gaussian fit (black dashed lines) to the marginal-likelihood function (top and right). b, Dependence of the scaling exponents on the reference time t_0. The exponents are, to a good approximation, independent of t_0 and agree well with the mean predictions (black solid and dashed lines). The error bars denote the standard deviation obtained from a Gaussian fit to the marginal-likelihood functions at each reference time separately.

However, it has been suggested that overpopulated fields far from equilibrium can give rise to universal behaviour, signalled by the infrared scaling property of the distribution function

$$n(k, t) = (t/t_0)^{\alpha} f_k ((t/t_0)^{\beta} k)$$

(1)

where t_0 denotes an arbitrary reference time within the period when $n(k, t)$ exhibits the scaling behaviour.

Figure 2b demonstrates that scaling exponents α and β can indeed be found such that, in the infrared, the rescaled distributions $(t/t_0)^{\alpha} n(k, t)$ as functions of the rescaled momenta $k = (t/t_0)^{\beta} k$ collapse to a single curve $f_k (\tilde{k}) = n(k, t_0)$. This indicates that below a characteristic momentum scale k_0, the distribution function $n(k, t)$ depends on space and time only through the scaling of a single universal function $f_k (\tilde{k})$. The scaling exponents are found to be $\alpha = 0.09 \pm 0.05$ and $\beta = 0.1 \pm 0.04$, which indicates that $\alpha \approx \beta$ (see Methods for details on the error estimation).

We demonstrate the predicted insensitivity of the universal properties to the initial state by comparing the evolution for different initial conditions before and after the cooling quench. We find excellent agreement for the scaling exponents, obtained independently by using a scaling analysis for each of the three measurements (Extended Data Figs. 2–5). This shows the generality and robustness of these non-equilibrium attractor solutions: in contrast to equilibrium critical phenomena, for which the temperature has to be adjusted to observe scaling, no fine-tuning of parameters is required.

The universal character allows us to relate the predictions for each measurement directly, resulting in the combined likelihood function presented in Fig. 3a. We consider, for the analysis, the approximately uncorrelated exponents α and β, and $\Delta_{\alpha \beta} = \alpha - \beta$. In agreement with each individual measurement, we find a clearly non-vanishing exponent $\beta = 0.1 \pm 0.03$ and a vanishing (within errors) exponent $\Delta_{\alpha\beta} = -0.01 \pm 0.02$, and thus $\alpha = 0.09 \pm 0.03$. The expected independence of the scaling exponents α and β on the reference time t_0 is shown in Fig. 3b.

We further demonstrate that the shape of the scaling function $f_k (\tilde{k})$ in Fig. 4 is universal: the data for three different initial conditions follow a single universal function $f_k (\tilde{k})$ for all times during which the system shows scaling dynamics. This reflects an enormous reduction of the possible dependence of the dynamics on variations in time and momentum, because the scaling function depends on only the relevant parameters of the system. For instance, if an initial field amplitude represented a relevant parameter, then the scaling function would additionally depend on the product of time or momentum and this field amplitude, with a new scaling exponent. In this case, extracting the scaling function as in Fig. 2 or Fig. 4 as a function of only the product of time and momentum would fail to describe the data.
We consider the form $f_{\alpha \beta} \propto [1 + (k/k_0)^d \Delta \alpha \beta]^{-1}$ for the scaling function, where the exponent $\zeta = 2.39 \pm 0.18$ is obtained from a single maximum-likelihood fit to all experimental realizations simultaneously. For a fixed exponent, the non-universal scales—the global scaling factor of the momentum distribution and the momentum scale k_0 that rescales the dimensionless momentum k/k_0—are determined from a least-squares fit for each experimental realization (Methods). The shape of the momentum distribution within the scaling period is markedly different from the thermal distribution (compare Fig. 1c and Extended Data Fig. 1), which clearly indicates a non-thermal scaling phenomenon.

The extent of the scaling region in time is visible from the scaling behaviour of the spatially averaged observables \bar{N} and \bar{M}_t (Methods), which describe the fraction of particles and the mean energy per particle in the time-dependent scaling region of momentum space $|k| \leq (t/t_0)^{2/3}$, respectively. From the scaling ansatz in equation (1), we find $\bar{N} \propto (t/t_0)^{d-\beta}$ and hence (because $\Delta \alpha \beta \approx 0$) the emergence of a conserved quantity. This is confirmed in Fig. 4b, in which \bar{N} is approximately constant in the scaling period, whereas it shows a clear time dependence before and after.

The values for the scaling exponents α and β determine the direction and speed with which the particles are being transported. Because these values are positive, a given momentum k in this regime scales as $k/k_0 \propto t^{-\beta}$, so the transport is directed towards lower momenta (the infrared). This transport of particle number leads ultimately to the observed build-up of the quasi-condensate and the approach to thermal equilibrium at late times. The mean energy also exhibits power-law behaviour, $\bar{M}_t \propto (t/t_0)^{-\alpha}$, and is in accordance with the determined scaling exponent β. Therefore, whereas the particle number in the scaling region is conserved, energy is transported outside this region to higher momenta. On the basis of the scaling properties of these global observables, we identify the scaling period to include the times $t \approx 0.7–75$ ms.

The far-from-equilibrium universal scaling dynamics in isolated Bose gases following a strong cooling quench or for equivalent initial conditions has been studied theoretically using non-perturbative kinetic equations. In these studies, the universal scaling function is expected to depend on the dimensionality d. The predicted power-law fall-off $n(k) \propto k^{-\gamma}$, with $\gamma = d - 1$, is consistent with the approximate form of the scaling function given by the RDM and by the quasi-condensate at low momentum, but differs (slightly) from the experimental results. A scaling analysis of the kinetic particle transport yields the exponent $\beta = 1/2$ in equation (1) to be independent of d. However, this theory is not expected to apply fully. In particular, for $d = 1$, owing to the kinematic restrictions from energy and momentum conservation, the associated transport is expected to vanish.

The contributions of higher dimensions to the one-dimensional physics provide a plausible way of explaining the non-standard scaling function and scaling exponents observed. Initially, there is a small population of atoms with momenta large enough to excite thermalizing collisions, and a very small initial seed can lead to thermalization, as observed previously. This is confirmed by a quasi-condensate fit to the final momentum distribution, which, assuming thermal equilibrium, yields an excited-state population of 11% ($T = 95\mathrm{~nK} = 0.6\bar{\hbar} \omega_c$). Our experimental results provide a quantum simulation near the dimensional crossover between one- and three-dimensional physics, establishing universal scaling dynamics far from equilibrium in a regime in which no theoretical predictions are currently available.

The direct experimental evidence that we have presented of scaling dynamics in an isolated far-from-equilibrium system is a crucial step towards a description of non-equilibrium evolution by non-thermal fixed points. Similar phenomena have recently been observed in a spin-1 system, but with a scaling exponent of $\beta = 1/2$. The concept of non-thermal fixed points has the potential to provide a unified description of non-equilibrium evolution, reminiscent of the characterization of equilibrium critical phenomena in terms of renormalization-group fixed points. Such a description may lead to a comprehensive classification of systems on the basis of their universal properties far from equilibrium, which would be relevant for a large variety of systems at different scales.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41586-018-0667-0.

Received: 30 May; Accepted: 28 September 2018; Published online 7 November 2018.

1. Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).
2. Gogolin, C. & Eisert, J. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 056501 (2016).
3. Berges, J., Rothkopf, A. & Schmidt, J. Nonthermal fixed points: effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett. 101, 041603 (2008).
4. Piñero Oriol, A., Boguslavski, K. & Berges, J. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D 92, 025041 (2015).
5. Micha, R. & Tkachev, I. I. Relativistic turbulence: a long way from preheating to equilibrium. Phys. Rev. Lett. 90, 121301 (2003).
6. Moore, G. D. Condensates in relativistic scalar theories. Phys. Rev. D 93, 065043 (2016).
7. Berges, J., Boguslavski, K., Schlichting, S. & Venugopalan, R. Universality far from equilibrium: from superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett. 114, 061601 (2015).
8. Elsner, R., Mueller, A. H., Schiff, D. & Son, D. T. “Bottom-up” thermalization in heavy-ion collisions. Phys. Lett. B 502, 51–58 (2001).
9. Berges, J., Boguslavski, K., Schlichting, S. & Venugopalan, R. Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies. Phys. Rev. D 89, 074011 (2014).
10. Scholz, J., Nowak, B. & Gasenzer, T. Critical dynamics of a two-dimensional superfluid near a nonthermal fixed point. Phys. Rev. A 86, 031624 (2012).
11. Svitovyn, B. V. Highly nonequilibrium Bose condensation in a weakly interacting gas. J. Moscow Phys. Soc. 1, 373–390 (1991).
12. Schmidt, M., Erne, S., Nowak, B., Sexly, D. & Gasenzer, T. Non-thermal fixed points and solitons in a one-dimensional Bose gas. New J. Phys. 14, 075005 (2012).
13. Chantasana, I., Piñero Oriol, A. & Gasenzer, T. Kinetic theory of non-thermal fixed points in a Bose gas. Preprint at https://arxiv.org/abs/1801.09490 (2018).
14. Deng, J., Schlichting, S., Venugopalan, R. & Wang, Q. Off-equilibrium infrared structure of self-interacting scalar fields: universal scaling, vortex-antivortex superfluid dynamics, and Bose-Einstein condensation. Phys. Rev. A 97, 053606 (2018).
15. Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).
16. Kólmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299–303 (1941).
17. Sieberer, L. M., Huber, S. D., Aittik, E. & Diehl, S. Dynamical critical phenomena in drive dissipative systems. Phys. Rev. Lett. 110, 195301 (2013).
18. Navon, N. et al. Synthetic dissipation and cascade fluxes in a turbulent quantum gas. Preprint at https://arxiv.org/abs/1807.07564 (2018).
19. del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: Topological defects from symmetry breaking, Int. J. Mod. Phys. A 29, 1430018 (2014).
20. Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science 347, 167–170 (2015).
21. Clark, L. W., Feng, L. & Chin, C. Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition. Science 354, 606–610 (2016).
22. Bray, A. J. Theory of phase-ordering kinetics. Adv. Phys. 43, 357–459 (1994).
23. Calabrese, P. & Gambassi, A. Ageing properties of critical systems. J. Phys. A 48, R33–R139 (2005).
24. Berges, J., Borsányi, S. & Wetterich, C. Prethermalization. Phys. Rev. Lett. 93, 140204 (2004).
25. Gring, M. et al. Relaxation and prethermalization in an isolated quantum gas. Preprint at https://arxiv.org/abs/1807.07564 (2018).
26. Mazes, I., Schumm, T. & Schmiedmayer, J. Breakdown of integrability in a quasi-1D ultracold Bosonic gas. Phys. Rev. Lett. 100, 210403 (2008).
31. Li, C. et al. Dephasing and relaxation of bosons in 1D: Newton’s cradle revisited. Preprint at https://arxiv.org/abs/1804.01969 (2018).
32. Prüfer, M. et al. Observation of universal quantum dynamics far from equilibrium. Nature https://doi.org/10.1038/s41586-018-0659-0 (2018).
33. Wilson, K. G. The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975).

Acknowledgements We thank J. Brand, L. Carr, M. Karl, P. Kevrekidis, P. Kunkel, D. Linnemann, A. N. Mikheev, B. Nowak, M. K. Oberthaler, J. M. Pawlowski, A. Piñeiro Orioli, M. Prüfer, W. Rohringer, C. M. Schmied, M. Schmidt, J. Scholle and H. Strobel for discussions. We thank T. Berrada, S. van Frank, J.-F. Schaff and T. Schumm for help with the experiment during data collection. This work was supported by the SFB 1225 “ISOQUANT” and grant number GA677/7-8 financed by the German Research Foundation (DFG) and Austrian Science Fund (FWF), the ERC advanced grant QuantumRelax, the Helmholtz Association (HA216/EMMI), the EU (FET-Proactive grant AQvS, project number 640809) and Heidelberg University (CQD). S.E. acknowledges partial support through the EPSRC project grant (EP/P00637X/1). J.S., J.B. and T.G. acknowledge the hospitality of the Erwin Schrödinger Institut in the framework of their thematic programme ‘Quantum Paths’.

Reviewer information Nature thanks M. Kolodrubetz and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author contributions S.E. performed the analysis, adapted the theory and wrote the paper. J.S. designed the experiment; R.B. conducted the experiment and initial data analysis. All authors contributed to interpreting the data and writing the manuscript.

Competing interests The authors declare no competing interests.

Additional information Extended data is available for this paper at https://doi.org/10.1038/s41586-018-0667-0.

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence and requests for materials should be addressed to J.S.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
METHODS

Preparation of the gas and cooling quenches. The initial thermal Bose gas is prepared using a standard procedure to produce ultracold gases of 87Rb on an atom chip.14 The description of the system at the microscale is given by the Bose Hamiltonian with contact interactions, determined by the s-wave scattering length $a_s = 5.2$ nm. We prepare a thermal cloud of typically $N = (2.7−3.2) \times 10^3$ atoms initially in an elongated, $\omega_x = 2 \times 23$ kHz and $\omega_z = 2 \times 3.3$ kHz, deep trapping potential $V_{tr} \approx (130−160)$ kHz at a temperature $T = 300−600$ nK. The atoms are held in this configuration for 100 ms to ensure a well defined initial state. The thermal cloud is above both the dimensional crossover to an effective one-dimensional system and the critical temperature T_c for the phase transition to a three-dimensional Bose–Einstein condensate, and therefore has a large excess of particles in transversely excited, high-energy states. The trap depth is reduced to its final value V_f at a constant rate $\tau_r = (V_f−V_{tr})/h = 25$ kHz $^{-1}$ by applying radio-frequency radiation at a time-dependent frequency (RF-knife), leading to an energy-dependent transition of atoms from a trapped to an un-trapped spin state. This allows the high-energy particles to rapidly leave the trap, leading to the competing time-scales τ_c of the cooling quench (see Fig. 1) and the typical collision times needed for re-equilibration of the system. The final trap depth is $V_f = h \times 2$ kHz, which is below the first radially excited state of the trapping potential, $V_f < \omega_\perp$. At the end of the cooling ramp, the RF-knife is held at its final position for 0.5 ms before it is faded out within 1 ms, thereby raising the trap depth to $V \approx h \times 20$ kHz. In addition, because the RF-knife reduces the radial trapping frequency slightly, there is a small interaction quench (about 10%) of the one-dimensional system. The system is therefore rapidly quenched to the quasi-one-dimensional regime, finally occupying only the transverse ground state. Experimental realizations 1 to 3 reported in the main text have final atom numbers of $N \approx 1,700, 2,800$ and 1,150, respectively, and agree well with the RDM with a defect density of $n = 1.4 \times 10^{-3}$, $0.9 \mu_{\text{m}}^{-1}$ or $2.3 \mu_{\text{m}}^{-1}$ and defect width of $\Delta t \approx 0.07 \mu_{\text{m}}, 0.06 \mu_{\text{m}}$ or $0.05 \mu_{\text{m}}$ (corresponding to $\langle \xi^2 \rangle = 0.3, 0.3$ or 0.17). The resultant far-from-equilibrium state is held for variables times of up to $t \approx 1$ s, during which the universal dynamics develops and takes place.

Measuring the density and momentum distributions. The density and momentum distribution of the gas are measured after finite time of flight for $t_{\text{exp}} = 1.5$ ms and $t_{\text{exp}} = 46$ ms of free expansion. This gives access to the in situ size of the cloud by measuring the density and momentum distribution of the gas. Measuring the density and momentum distributions.

The description of the system at the microscale is given by the Bose–Einstein Hamiltonian, and therefore has a large excess of particles in transversely excited, high-energy states. The trap depth is reduced to its final value V_f at a constant rate τ_r by applying radio-frequency radiation at a time-dependent frequency (RF-knife), leading to an energy-dependent transition of atoms from a trapped to an un-trapped spin state. This allows the high-energy particles to rapidly leave the trap, leading to the competing time-scales τ_c of the cooling quench (see Fig. 1) and the typical collision times needed for re-equilibration of the system. The final trap depth is $V_f = h \times 2$ kHz, which is below the first radially excited state of the trapping potential, $V_f < \omega_\perp$. At the end of the cooling ramp, the RF-knife is held at its final position for 0.5 ms before it is faded out within 1 ms, thereby raising the trap depth to $V \approx h \times 20$ kHz. In addition, because the RF-knife reduces the radial trapping frequency slightly, there is a small interaction quench (about 10%) of the one-dimensional system. The system is therefore rapidly quenched to the quasi-one-dimensional regime, finally occupying only the transverse ground state. Experimental realizations 1 to 3 reported in the main text have final atom numbers of $N \approx 1,700, 2,800$ and 1,150, respectively, and agree well with the RDM with a defect density of $n = 1.4 \times 10^{-3}$, $0.9 \mu_{\text{m}}^{-1}$ or $2.3 \mu_{\text{m}}^{-1}$ and defect width of $\Delta t \approx 0.07 \mu_{\text{m}}, 0.06 \mu_{\text{m}}$ or $0.05 \mu_{\text{m}}$ (corresponding to $\langle \xi^2 \rangle = 0.3, 0.3$ or 0.17). The resultant far-from-equilibrium state is held for variables times of up to $t \approx 1$ s, during which the universal dynamics develops and takes place.

Measuring the density and momentum distributions. The density and momentum distribution of the gas are measured after finite time of flight for $t_{\text{exp}} = 1.5$ ms and $t_{\text{exp}} = 46$ ms of free expansion. This gives access to the in situ size of the cloud by measuring the density and momentum distribution of the gas. Measuring the density and momentum distributions.

The description of the system at the microscale is given by the Bose–Einstein Hamiltonian, and therefore has a large excess of particles in transversely excited, high-energy states. The trap depth is reduced to its final value V_f at a constant rate τ_r by applying radio-frequency radiation at a time-dependent frequency (RF-knife), leading to an energy-dependent transition of atoms from a trapped to an un-trapped spin state. This allows the high-energy particles to rapidly leave the trap, leading to the competing time-scales τ_c of the cooling quench (see Fig. 1) and the typical collision times needed for re-equilibration of the system. The final trap depth is $V_f = h \times 2$ kHz, which is below the first radially excited state of the trapping potential, $V_f < \omega_\perp$. At the end of the cooling ramp, the RF-knife is held at its final position for 0.5 ms before it is faded out within 1 ms, thereby raising the trap depth to $V \approx h \times 20$ kHz. In addition, because the RF-knife reduces the radial trapping frequency slightly, there is a small interaction quench (about 10%) of the one-dimensional system. The system is therefore rapidly quenched to the quasi-one-dimensional regime, finally occupying only the transverse ground state. Experimental realizations 1 to 3 reported in the main text have final atom numbers of $N \approx 1,700, 2,800$ and 1,150, respectively, and agree well with the RDM with a defect density of $n = 1.4 \times 10^{-3}$, $0.9 \mu_{\text{m}}^{-1}$ or $2.3 \mu_{\text{m}}^{-1}$ and defect width of $\Delta t \approx 0.07 \mu_{\text{m}}, 0.06 \mu_{\text{m}}$ or $0.05 \mu_{\text{m}}$ (corresponding to $\langle \xi^2 \rangle = 0.3, 0.3$ or 0.17). The resultant far-from-equilibrium state is held for variables times of up to $t \approx 1$ s, during which the universal dynamics develops and takes place.

The description of the system at the microscale is given by the Bose–Einstein Hamiltonian, and therefore has a large excess of particles in transversely excited, high-energy states. The trap depth is reduced to its final value V_f at a constant rate τ_r by applying radio-frequency radiation at a time-dependent frequency (RF-knife), leading to an energy-dependent transition of atoms from a trapped to an un-trapped spin state. This allows the high-energy particles to rapidly leave the trap, leading to the competing time-scales τ_c of the cooling quench (see Fig. 1) and the typical collision times needed for re-equilibration of the system. The final trap depth is $V_f = h \times 2$ kHz, which is below the first radially excited state of the trapping potential, $V_f < \omega_\perp$. At the end of the cooling ramp, the RF-knife is held at its final position for 0.5 ms before it is faded out within 1 ms, thereby raising the trap depth to $V \approx h \times 20$ kHz. In addition, because the RF-knife reduces the radial trapping frequency slightly, there is a small interaction quench (about 10%) of the one-dimensional system. The system is therefore rapidly quenched to the quasi-one-dimensional regime, finally occupying only the transverse ground state. Experimental realizations 1 to 3 reported in the main text have final atom numbers of $N \approx 1,700, 2,800$ and 1,150, respectively, and agree well with the RDM with a defect density of $n = 1.4 \times 10^{-3}$, $0.9 \mu_{\text{m}}^{-1}$ or $2.3 \mu_{\text{m}}^{-1}$ and defect width of $\Delta t \approx 0.07 \mu_{\text{m}}, 0.06 \mu_{\text{m}}$ or $0.05 \mu_{\text{m}}$ (corresponding to $\langle \xi^2 \rangle = 0.3, 0.3$ or 0.17). The resultant far-from-equilibrium state is held for variables times of up to $t \approx 1$ s, during which the universal dynamics develops and takes place.
from radially excited states in the RDM, assuming the gas to be dominated by solitonic defects. For early times, the high-momentum modes do not have substantial thermal occupation, and we find good accordance with the RDM.

In case of the quasi-condensate, we determine the thermal density profile for a given temperature T and chemical potential μ using simulations of the stochastic Gross–Pitaevskii equation (see, for example, ref. 36). The broadening of the density distribution is herein due to the finite temperature of the gas. The density profile is subsequently fitted via \(\rho(z, t) = \rho_{\text{QC}}(z, T(t), \mu(t)) + \rho_{\perp}(z, T(t), \mu(t)) \). Here we take into account the thermal occupation of radially excited states \(\rho_{\perp} \) within the semiclassical approximation, which are non-negligible for late times. The chemical potential μ is fixed by the total atom number, \(\int \rho(z, t) \, dz = N(t) \).

The fitted density profiles are used to determine the single-particle momentum distribution \(n(k, t) \) of the inhomogeneous system from a least-squares fit of the experimental data to the theoretical predictions within the local density approximation. For both models we restrict the fitting region to $|k| > k_{\text{IS}}$, owing to the simplified hydrodynamic model for the finite expansion of the gas. The RDM is fitted over the full momentum range that is accessible in the experiment. For high defect densities, the RDM fit shows correlations between defect density and width because these two scales become of the same order for the far-from-equilibrium state. Because it is theoretically expected that the defect width is approximately conserved during evolution, we fix the defect width to its mean value within the first 25 ms of evolution, leaving the defect density as the only free parameter. We find reasonable agreement between the RDM results and the independent scaling analysis. In particular, the RDM is clearly preferred compared to a thermal distribution within the scaling period.

For the fits in thermal equilibrium we consider a quasi-condensate model 37, including thermal occupation of radially excited states 38. Considering the validity regime of the quasi-condensate model, we restrict the fitting procedure to momentum modes with energy less than \(\hbar \omega_{\perp} \). We determine the chemical potential \(\mu \) by fixing the atom number within this region of momentum space. This leads to a slight shift in the chemical potential compared to the in situ fits. For late times we find excellent agreement with the experimental data, demonstrating the relaxation of the system to thermal equilibrium.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

34. Reichel, J. & Vuletic, V. Atom chips (John Wiley & Sons, Weinheim, 2011).
35. Gerbier, F. Quasi-1D Bose–Einstein condensates in the dimensional crossover regime. *Europhys. Lett.* **66**, 771–777 (2004).
36. Blakie, P. B., Bradley, A. S., Davis, M. J., Ballagh, R. J. & Gardiner, C. W. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. *Adv. Phys.* **57**, 363–455 (2008).
37. Richard, S. et al. Momentum spectroscopy of 1D phase fluctuations in Bose–Einstein condensates. *Phys. Rev. Lett.* **91**, 010405 (2003).
38. Davis, M. J., Blakie, P. B., van Amerongen, A. H., van Druten, N. J. & Kheruntsyan, K. V. Yang-Yang thermometry and momentum distribution of a trapped one-dimensional Bose gas. *Phys. Rev. A* **85**, 031604 (2012).
Extended Data Fig. 1 | Results of random-defect and quasi-condensate models. The time evolution of the characteristic scales for the experimental data presented in Fig. 4a (initial condition 1) are shown. The resulting temperature T (blue) and defect density n_s (red) are shown in the upper panel for the full time evolution. The defect width for the random-defect model is fixed to $\xi_s = 0.087 \mu m$, determined by the mean over the first 25 ms of the evolution. The defect density within the scaling region shows a power-law dependence consistent with the exponent β of the scaling evolution reported in the main text. For later times deviations occur, signalling the end of the scaling region. The quality of the model fit is depicted in the lower panel (black squares), where positive and negative values favour the random-defect and quasi-condensate models, respectively. The random-defect model is strongly preferred for the first roughly 100 ms, after which the system converges to a thermal quasi-condensate within about 400 ms. The absolute values of the reduced χ^2 for the random-defect (RD) model are about 1 and 5 for early and late times, respectively; those for the quasi-condensate (QC) model are about 25 and 1.
Extended Data Fig. 2 | Rescaling analysis for different initial conditions. a–c, Original (left) and rescaled (right) single-particle momentum distribution \(n(k, t) \) for different initial conditions (a–c correspond to initial conditions 1–3 in Fig. 4a). Each distribution is normalized by the time-dependent atom number \(N(t) \) and the time is encoded in the colour scale. The grey dashed vertical lines indicate the scaling regime in \(k \). The scaling exponents \(\alpha \approx \beta \) and the deviation between them \(\Delta_{\alpha\beta} = \alpha - \beta \) are in excellent agreement with the mean values reported in the main text. We note that here we compare the data for the full experimental resolution in \(k \). The distribution at the reference time \(t_0 = 4.7 \) ms is given by the grey line; its width indicates the 95% confidence interval.
Extended Data Fig. 3 | Likelihood function for different initial conditions. (a–c) Two-dimensional likelihood functions (colour scales) and marginal-likelihood functions (top and right) for different initial conditions (a–c correspond to initial conditions 1–3 in Fig. 4a). A clear peak at non-zero $\alpha \approx \beta$ is visible for each realization, whereas the deviation between the two exponents is $\Delta_{\alpha,\beta} = \alpha - \beta \approx 0$. For scan 2 (b), a small condensate may have been present before the quench, which led to the larger extent of the likelihood function. Gaussian fits are in excellent agreement with the marginal-likelihood functions and determine the error of the scaling exponents reported in Extended Data Fig. 2.
Extended Data Fig. 4 | Time evolution of scaling exponents for different initial conditions. a–c, Scaling exponents $\alpha \approx \beta$ (blue) and deviation between the two exponents $\Delta_{\alpha,\beta} = \alpha - \beta$ (red) for different initial conditions (a–c correspond to initial conditions 1–3 in Fig. 4a), determined from the likelihood function for each reference time t_0. are in good agreement with the predicted mean (black solid and dashed lines). The error bars denote the standard deviation obtained from a Gaussian fit to the marginal-likelihood function at each reference time separately.
Extended Data Fig. 5 | Spatially averaged observables for different initial conditions. a–c, Time evolution of the fraction of particles in the scaling region $N \propto (t/t_0)^{3/4}$ (red) and the mean kinetic energy per particle in the scaling region $\bar{M}_2 \propto (t/t_0)^{-2.9}$ (blue) for different initial conditions (a–c correspond to initial conditions 1–3 in Fig. 4a). Within the scaling region (grey-shaded areas), \bar{N} is approximately conserved. The solid black lines are the approximately conserved value and scaling solutions (5). The error bars indicate the 95% confidence interval.