Investigation of the Role of Dinutuximab Beta-Based Immunotherapy in the SIOPEN High-Risk Neuroblastoma 1 Trial (HR-NBL1)

Ruth Ladenstein 1,*,†, Ulrike Pötschger 2,‡, Dominique Valteau-Couanet 3, Roberto Luksch 4, Victoria Castel 5, Shifra Ash 6, Geneviève Laureys 7, Penelope Brock 8, Jean Marie Michon 9, Cormac Owens 10, Toby Trahair 11, Godfrey Chi Fung Chan 12, Ellen Ruud 13, Henrik Schroeder 14, Maja Beck-Popovic 15, Guenter Schreier 16, Hans Loibner 17, Peter Ambros 2, Keith Holmes 18, Maria Rita Castellani 4, Mark N. Gaze 19, Alberto Garaventa 20, Andrew D.J. Pearson 21 and Holger N. Lode 22

1 St. Anna Children’s Hospital and Children’s Cancer Research Institute (CCRI), Department of Paediatrics, Medical University, 1090 Vienna, Austria
2 Children’s Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Department of Paediatrics, Medical University, 1090 Vienna, Austria; ulrike.poetschger@ccri.at (U.P.); peter.ambros@ccri.at (P.A.)
3 Children and Adolescent Oncology Department, Gustave Roussy, Paris-Sud, University, 94805 Villejuif, France; Dominique.VALTEAU@gustaveroussy.fr
4 Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; roberto.luksch@istitutotumorim.i.mi.it (R.L.); rita.castellani@istitutotumorim.i.mi.it (M.R.C.)
5 Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; castel_vic@gva.es
6 Schneider Children’s Medical Center of Israel, Sackler Faculty of Medicine Tel Aviv University, Petach, Tikvah 49202, Israel; shifraa@clalit.org.il
7 University Hospital Gent, 9000 Gent, Belgium; genevieve.laureys@ugent.be
8 Great Ormond Street Hospitalfor Children, London WC1N 3JH, UK; peppybrock@gmail.com
9 Institut Curie, 75248 Paris, France; jean.michon@curie.fr
10 Paediatric Haematology/Oncology, Our Lady’s Children’s Hospital, Crumlin, D12 N512 Dublin, Ireland; cormac.owens@olchc.ie
11 Sydney Children’s Hospital, Randwick NSW 2031, Australia; Toby.Trahair@SESIAHS.HEALTH.NSW.GOV.AU
12 Department of Paediatrics & Adolescent Medicine, Queen Mary Hospital, Hong Kong, China; gcfcchan@hku.hk
13 Rikshospitalet, 0027 Oslo, Norway; ellen.ruud@rikshospitalet.no
14 Department of Paediatrics, University Hospital of Aarhus, 8200 Aarhus, Denmark; henrik.schroeder@skjeby.rm.dk
15 Department of Paediatrics, University Hospital Lausanne, 1011 Lausanne, Switzerland; Maja.Beck-Popovic@chu.v.ch
16 AIT Austrian Institute of Technology GmbH, 8020 Graz, Austria; guenter.schreier@ait.ac.at
17 Apeiron Biologics AG, 1030 Vienna, Austria; hans.loibner@hl-bioscience.com
18 St George’s Hospital, Department Paediatric Surgery, London SW17 0QT, UK; kholmes@doctors.org.uk
19 National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, Department of Oncology, London W1 2PG, UK; mark.gaze@uclh.nhs.uk
20 IRCCS Istituto Giannina Gaslini, 16148 Genova, Italy; albertogaraventa@ospedale-gaslini.ge.it
21 Institute of Cancer Research, Royal Marsden Hospital, Sutton SM2 5NG, UK; andy.pearson@btinternet.com
22 Department of Pediatric Hematology and Oncology, University Medicine Greifswald, 17489 Greifswald, Germany; holger.lode@uni-greifswald.de

* Correspondence: ruth.ladenstein@ccri.at; Tel.: +43(1)-40470-4750; Fax: +43(1)-40470-7430
† The authors contributed equally to this work and share first authorship.

Received: 23 December 2019; Accepted: 25 January 2020; Published: 28 January 2020
Abstract: To explore the effects of immunotherapy in the International Society of Paediatric Oncology Europe Neuroblastoma Group SIOPEN high-risk neuroblastoma 1 trial (HR-NBL1 trial), two cohorts were studied: one prior to and one after the introduction of dinutuximab beta. All patients received standard induction and high-dose therapy (HDT) with autologous stem cell rescue (ASCR); the local control comprised surgery and radiotherapy to the primary tumour site, followed by isotretinoin. A landmark timepoint of 109 days, resulting from the median time between ASCR and initiation of immunotherapy, was used to define patients’ eligibility in the pre-immunotherapy analysis cohort. Median follow-up was 5.8 years (inter-quartile range (IQR): 4.2–8.2 years) for 844 eligible patients balanced for risk factors, such as age, sex, stage 4, MYCN amplification and response prior to HDT. The five-year event-free and overall survival (95% confidence interval (CI) of 466 patients not receiving immunotherapy was 42% (38–47%) and 50% (46–55%) but was 57% (51–62%) and 64% (59–69%) for 378 patients receiving immunotherapy \(p < 0.001 \). A multivariate analysis identified absence of immunotherapy \(p = 0.0002 \), hazard ratio (HR) 1.573; type of HDT \(p = 0.0029 \), HR 1.431); less than complete response prior to maintenance therapy \(p = 0.0043 \), HR 1.494) and >1 metastatic compartment at diagnosis \(p < 0.001 \), HR 2.665) as risk factors for relapse or progression. Results suggest an important role for dinutuximab beta-based immunotherapy within the treatment concepts applied in HR-NBL1/SIOPEN.

Keywords: high-risk neuroblastoma; immunotherapy; dinutuximab beta

1. Introduction

High-risk neuroblastoma defined by metastatic diseases over the age of 12 or 18 months [1] and MYCN amplification at any age remain associated with long-term survival rates of only 40% [2,3]. Treatment approaches comprise intensive induction [4,5], consolidation with high-dose chemotherapy (HDT) and autologous stem cell rescue (ASCR) [3,6], and isotretinoin as maintenance therapy.

As the disialoganglioside GD\(_2\) is expressed on the majority of neuroblastoma cells, with minimal expression on normal cells, it is a suitable target for immunotherapy [7]. Therefore, human/mouse chimeric anti-GD\(_2\) antibody ch14.18, dinutuximab, produced in SP2/0 cells was developed and investigated in clinical trials [8]. In Europe, ch14.18 was re-cloned in Chinese hamster ovarian (CHO) cells (dinutuximab beta) [9] for clinical trials of International Society of Paediatric Oncology Europe Neuroblastoma Group SIOPEN. The tolerability and activity of dinutuximab beta was first evaluated in a dose schedule of 20 mg/m\(^2\) given on five consecutive days by an 8 h infusion [10]. In 2006, SIOPEN opened a randomised trial to compare dinutuximab beta and isotretinoin with isotretinoin alone in patients with high-risk neuroblastoma. However, in 2007, the results of the Children’s Oncology Group (COG) ANBL0032 trial were communicated, followed by publication in 2010 [7], demonstrating that two-year event-free survival (EFS) and overall survival (OS) of patients with high-risk neuroblastoma receiving dinutuximab and cytokines (granulocyte-macrophage colony stimulating factor and interleukin-2), in addition to isotretinoin, were significantly higher by 20% and 11%, respectively [7], compared to those patients receiving isotretinoin alone. Therefore, continuation of the SIOPEN randomised trial was believed to be no longer feasible nor considered ethical, and the study design was modified to allow all patients to receive dinutuximab beta with or without interleukin-2. The altered randomisation opened on 22 October 2009 to investigate the role of subcutaneous interleukin-2 (sc-IL-2) with dinutuximab beta and assigned patients to dinutuximab beta alone or with sc-IL-2 [11]. All patients received oral isotretinoin [12]. The trial showed that the addition of sc-IL-2 to immunotherapy with dinutuximab beta, given as an 8 h infusion, did not improve outcome but increased toxicity.

In this report, we aim to assess the contribution of dinutuximab beta-based immunotherapy to the outcome of patients with high-risk neuroblastoma in the International Society of Paediatric Oncology
Europe Neuroblastoma Group High-Risk Neuroblastoma 1 (HR-NBL1/SIOPEN) trial by investigating the survival of patients in sequential eras with the same eligibility criteria treated with (immunotherapy population (IP), 2009–2013) [12] or without immunotherapy (control population (CP), 2002–2009).

2. Results

2.1. Patient Characteristics

According to the inclusion criteria for the analysis, 844 patients enrolled in 146 SIOPEN member hospitals/institutions in 19 countries were eligible (378 in the IP and 466 in the CP) (Figure 1). Median follow-up was 5.8 years (inter-quartile range (IQR): 4.2 to 8.2 years). The median age of patients at diagnosis was 2.9 years (IQR: 1.8 to 3.8).

![Flow chart for the analysis cohort](image)

Figure 1. Flow chart for the analysis cohort. HDT (high-dose chemotherapy); BuMel (high-dose chemotherapy with busulfan and melphalan; CEM (high-dose chemotherapy with carboplatin, etoposide and melphalan); R1 (high-dose chemotherapy randomisation); R2 (immunotherapy randomisation) and IL-2 (interleukin-2).

Both populations were balanced for sex, stage 4, MYCN amplification and response prior to HDT (Table 1).

2.2. Survival

The five-year EFS was 57% (95% CI: 51–62%) for IP, compared to 42% (95% CI: 38–47%) for CP patients ($p < 0.001$) (Figure 2A). The five-year overall survival (OS) for the IP was 64% (95% CI: 59–69%), compared to 50% (95% CI: 46–55%) for CP patients (Figure 2B).
Table 1. Characteristics of the control and immunotherapy populations. N = number; % = percentage; MNA = MYCN amplification; no = not present and yes = present; MC = metastatic compartments; TVD = topotecan, vincristine and doxorubicin; HDT = high-dose chemotherapy; BuMel = high-dose chemotherapy with busulfan and melphalan; CEM = high-dose chemotherapy with carboplatin, etoposide and melphalan; NR = not reported; CR = complete remission; VGPR = very good partial remission; PR = partial remission; CME = complete macroscopic excision and IME = incomplete macroscopic excision.

Characteristics	Control Population	Immunotherapy Population		
	n	%	n	%
Total	466	378		
Sex				
Female	180	39%	140	32%
Male	286	61%	238	63%
Age				
<1.5 years	64	13%	55	14%
1.5–<5 years	333	71%	254	62%
≥5 years	69	15%	69	18%
Median	2.70	2.87		
Stage				
Localised	60	13%	32	8%
Stage 4	406	87%	339	90%
Stage 4s	0	0%	7	2%
MYCN Stage 4				
MNA NR	27	6%	16	4%
MNA no	217	57%	197	61%
MNA yes	162	43%	126	39%
MC				
NR	23	5%	23	6%
0	60	14%	32	9%
1	70	16%	35	10%
2	136	31%	112	32%
3	120	27%	112	32%
>3	57	13%	64	18%
TVD given				
NR	23	5%	10	3%
No	391	88%	250	68%
Yes	52	12%	118	32%
Surgery				
CME	318	76%	261	75%
IME	101	24%	87	25%
Status prior HDT				
NR	25	5%	33	9%
CR	174	39%	116	34%
VGPR	159	36%	149	43%
PR	108	24%	80	23%
HDT				
BuMel	257	55%	348	92%
CEM	209	45%	30	8%
Status prior Maintenance				
NR	58	12%	17	4%
CR	258	63%	210	58%
VGPR	93	23%	99	27%
PR	57	14%	52	14%

The cumulative incidence of relapse/progression (CIR) at five years was 41% (95% CI: 37–47%) for the IP and 57% (95% CI: 53–61%) for the CP patients (p < 0.001). At the last follow-up, 153 patients of the IP had an event versus 272 of CP patients. The cumulative incidence of non-relapse mortality was 2% (95% CI: 1–4%) in the IP and 1% (95% CI < 1–2%) in the CP (Figure 2C).
2.3. Influence of Risk Factors

Disease status prior to maintenance therapy was available in 769/844 (91%) patients (Table 2). Older age; stage 4; involvement of more than one metastatic compartment (MC); disease status prior to maintenance therapy; addition of topotecan, vincristine and doxorubicin (TVD) and use of carboplatin, etoposide and melphalan (CEM) as HDT were associated with lower EFS (Figure 3) in the population analysed. Patients with lymph nodes as their only MC (five-year EFS 60% (95% CI: 36–78%)) had a similar EFS as patients with other isolated metastatic sites (five-year EFS 60% (95% CI: 49–70%)).

![Figure 2.](image)

Figure 2. Analysis population comparing control population versus immunotherapy population. (A) Event-free survival, (B) overall survival and (C) cumulative incidence of progression/relapse. CP (control population), IP (immunotherapy population), CIR (cumulative incidence of relapse) and NRM (non-relapse mortality).
Table 2. Outcomes according to risk factors and subgroups. (2A) Event-free survival and (2B) overall survival. Pts (patients); 95% CI (95% confidence interval); p-value (probability value for A: comparison according to risk factor and B: for interaction); MNA (MYCN amplification); - (not present) and + (present); MC (metastatic compartments); TVD (topotecan, vincristine and doxorubicin); HDT (high-dose chemotherapy); BuMel (high-dose chemotherapy with busulfan and melphalan); CEM (high-dose chemotherapy with carboplatin, etoposide and melphalan); CR (complete remission); VGPR (very good partial remission); PR (partial remission); CME (complete macroscopic excision) and IME (incomplete macroscopic excision).

Characteristics	Total Population	Control Group	Immunotherapy Group	p-Value \(^{b} \)	
(A) Event Free Survival	Events/Pts 5-years EFS (95% CI)	p-value \(^{a} \)	Events/Pts 5-years EFS (95% CI)	Events/Pts 5-years EFS (95% CI)	
Total	844 Pts	466 Pts	378 Pts		
Sex					
female	164/320 49 (44–55)	0.803	105/180 43 (36–50)	59/140 57 (49–65)	0.938
male	273/524 48 (44–52)	171/286 41 (36–47)	102/238 56 (49–62)		
Age					
<1.5 years	48/119 60 (51–68)	0.007	27/64 59 (46–70)	21/55 61 (47–73)	0.161
1.5–<5 years	302/587 49 (44–53)	194/333 42 (37–47)	108/254 57 (50–63)		
≥5 years	87/138 38 (30–47)	55/99 25 (16–36)	32/69 53 (40–64)		
Stage					
Localised	25/92 72 (62–80)	<0.001	14/60 76 (63–85)	11/32 66 (47–79)	0.007
Stage 4	410/745 45 (42–49)	262/406 37 (32–42)	148/339 56 (50–61)		
Stage 4s	2/7 71 (26–92)	–	–	2/7 71 (26–92)	
Stage 4 MNA no-	236/414 43 (38–48)	0.819	147/217 33 (27–39)	89/197 54 (47–61)	0.25
Stage 4 MNA yes	154/288 47 (41–53)	98/162 42 (34–49)	56/126 55 (45–63)		
MC					
0	25/92 72 (62–80)	<0.001	14/60 67 (63–85)	11/32 66 (47–79)	0.025
1	43/105 60 (50–69)	34/70 54 (42–65)	9/35 71 (50–85)		
2	136/248 46 (39–52)	85/136 39 (31–47)	51/112 55 (45–63)		
3	134/232 43 (36–49)	89/120 27 (20–36)	45/112 60 (50–69)		
>3	76/121 37 (28–46)	42/57 28 (17–40)	34/64 45 (32–57)		
TVD					
no	322/641 50 (46–54)	0.024	225/391 44 (39–49)	97/250 61 (54–67)	0.732
yes	100/170 39 (32–47)	38/52 27 (16–39)	62/118 45 (34–55)		
Surgery					
CME	288/578 50 (46–54)	0.123	183/318 43 (38–49)	105/260 59 (52–65)	0.946
IME	106/188 45 (38–52)	66/101 38 (29–48)	40/87 53 (42–63)		
Status Prior HDT					
CR	134/290 54 (48–59)	0.022	86/174 51 (43–58)	48/116 57 (47–66)	0.294
Table 2. Cont.

Characteristics	Total Population	Control Group	Immunotherapy Group	p-value b					
(A) Event Free Survival	Events/Pts	5–years EFS (95% CI)	Events/Pts	5–years EFS (95% CI)	Events/Pts	5–years EFS (95% CI)			
HDT	BuMel	288/605	52 (48–56)	<0.001	137/257	48 (41–54)	151/348	56 (50–61)	0.055
CEM	149/239	39 (33–45)			139/209	35 (29–42)	10/30	67 (47–80)	
Status Prior Maintenance									
CR	225/468	52 (48–47)	0.002	144/258	46 (39–52)	81/210	61 (53–67)	0.84	
VGPR	98/192	50 (42–56)		55/93	43 (33–53)	43/99	56 (46–66)		
PR	70/109	35 (26–44)		42/57	26 (15–33)	28/52	45 (32–58)		
(B) Overall Survival	Events/Pts	5-year OS (95% CI)	p-value a	Events/Pts	5-year OS (95% CI)	Events/Pts	5-year OS (95% CI)		
Sex									
female	138/320	59 (53–64)	0.536	95/180	53 (45–60)	43/140	59 (53–64)	0.488	
male	234/524	55 (50–59)		150/286	49 (43–55)	84/238	55 (50–59)		
Age									
<1.5 years	68/138	52 (46–58)	0.445	26/64	41 (34–50)	19/55	52 (46–57)	0.409	
1.5–<5 years	259/587	57 (53–61)		177/333	50 (45–55)	82/254	57 (53–61)		
≥5 years	259/587	57 (53–61)	0.001	42/69	42 (30–54)	26/69	49 (40–58)	0.003	
Stage	localised	24/92	76 (66–83)		13/60	82 (69–89)	11/32	76 (66–83)	
Stage 4	347/745	54 (50–57)		232/406	46 (41–51)	115/339	54 (50–57)		
Stage 4s	0	0		0	1.7				
Status Prior HDT									
MC	0	24/92	76 (66–83)	<0.001	13/60	82 (69–89)	11/32	76 (66–83)	0.013
1	36/105	68 (58–76)		29/70	62 (50–73)	7/35	68 (58–76)		
2	109/248	56 (50–62)		71/136	51 (42–59)	38/112	56 (50–62)		
3	117/232	49 (42–56)		81/120	36 (27–44)	36/112	49 (42–56)		
TVD	>3	70/121	43 (34–52)	0.224	41/57	32 (20–44)	29/64	43 (34–52)	0.441
TVD no	281/641	57 (53–61)		200/391	52 (47–57)	81/250	57 (53–61)		
Surgery	yes	78/170	52 (44–60)		34/52	36 (23–49)	44/118	52 (44–60)	
CME	248/578	57 (53–61)	0.218	165/318	51 (45–56)	83/260	57 (53–61)	0.765	
IME	91/188	52 (45–59)		58/101	46 (36–55)	33/87	52 (45–59)		
Table 2. Cont.

Characteristics	Total Population	Control Group	Immunotherapy Group	p-value			
	Events/Pts	5-year OS (95% CI)	Events/Pts	5-year OS (95% CI)	Events/Pts	5-year OS (95% CI)	
Status Prior Maintenance							
CR	190/468	60 (55–65)	129/258	54 (47–59)	61/210	60 (55–65)	0.640
VGPR	83/192	57 (49–64)	47/93	52 (42–62)	36/99	57 (49–64)	
PR	61/109	43 (33–53)	38/57	36 (23–48)	23/52	50 (33–65)	
Figure 3. Influence of risk factors within the analysis population on event-free survival (EFS). (A) EFS and age; (B) EFS and stage; (C) EFS and metastatic compartments (MC) localised and 4s stage vs. stage 4 (one MC vs. multiple MC); (D) response status prior to maintenance phase: CR (complete remission), VGPR (very good partial remission) and PR (partial remission) and (E) EFS and TVD (topotecan, vincristine and doxorubicin). TVD added = yes and TVD not added = no. (F) Type of high-dose chemotherapy = BuMel (busulfan and melphalan) and CEM (carboplatin, etoposide and melphalan).
In the IP, the two-year and five-year EFS rates for 210 patients (81 events) in complete remission (CR) were 68% (95% CI: 61–74%) and 61% (95% CI: 53–57%). In the CP, the two-year and five-year EFS rates for 258 patients in CR (144 events) were 54% (95% CI: 48–60%) and 46% (95% CI: 39–52%).

The impact of immunotherapy on EFS was significantly influenced by stage and MC, and the impact of immunotherapy was stronger in patients with metastatic disease (Table 2). Furthermore, a borderline significant interaction between maintenance treatment and HDT ($p = 0.055$) was observed.

2.4. Multivariate Analysis on Analysis Cohort

Patients who had no immunotherapy ($p = < .0001$, cumulative hazard ratio (cHR) 1.75) HDT with CEM ($p = 0.0345$, cHR 1.3); partial remission (PR) prior maintenance therapy ($p = 0.0103$, cHR 1.49); more than one MC at diagnosis ($p < 0.001$, cHR 2.69) and age > 5 years ($p = 0.0138$, cHR 1.59) had a higher risk of relapse (Table 3).

Table 3. Multivariate analysis of the analysis cohort. cHR (cumulative hazard ratios); 95% CI (95% confidence interval); p-value (probability value); MNA (MYCN amplification); MC (metastatic compartments, referring either to bone marrow, skeletal or lymph node involvement); TVD (topotecan, vincristine and doxorubicin); CR (complete remission); VGPR (very good partial remission); PR (partial remission); HDT (high-dose chemotherapy); BuMel (high-dose chemotherapy with busulfan and melphalan); CEM (high-dose chemotherapy with carboplatin, etoposide and melphalan); IP (immunotherapy population) and CP (control population). * test for the global main effect for risk-factors with more than two categories.

Risk Factor	Characteristics	Pseudo Values for 5-Years EFS	*P*-Value	
(A) Multivariate Analysis	Immunotherapy vs. Control Cohort	1.75 (1.36–2.25)	<0.0001	
Age (vs. <1.5 yrs)	1.5–5 years	1.31 (0.92–1.87)	0.1384	
	>5 years	1.59 (1.05–2.42)	0.0138	
Stage 4, 4s and Number of MC (vs. MNA stages 2, 3)	1 MC	1.38 (0.80–2.47)	0.2493	
	>1MC	2.69 (1.74–4.15)	<0.0001	
TVD		1.28 (0.97–1.69)	0.2478	
Status Prior Maintenance (vs. CR)	VGPR	1.06 (0.81–1.39)	0.6416	
	PR	1.49 (1.10–2.02)	0.0103	
HDT	CEM vs. BuMel	1.32 (1.02–1.70)	0.0345	
(B) Subgroup Analysis According to HDT (after adjustment for age, stage, MC, TVD and status prior maintenance treatment)	BUMEL	IP vs. CP	1.6 (1.2–2.1)	0.001
CEM	IP vs. CP	3.0 (1.5–5.8)	0.002	
After adjustment for age, stage, MC, TVD and response prior to maintenance therapy (Table 3), a benefit from immunotherapy was confirmed for either HDT (busulfan and melphalan (BuMel) or CEM). Patients receiving BuMel had an adjusted cumulative hazard ratio of 1.6 (1.2–2.1) with an unadjusted five-year EFS for the IP of 56% (95% CI: 50–61%) and 48% (95% CI: 41–54%) for the CP ($p = 0.001$). Patients receiving CEM had an adjusted cumulative hazard ratio of 3.0 (1.5–5.8) and showed an unadjusted five-year EFS of the IP of 67% (95% CI: 47–80%) versus 35% (95% CI: 29–42%) for the CP ($p = 0.002$).

2.5. Response to Maintenance Treatments

Thirty-nine of one hundred and eight (36%) CP patients with evaluable diseases prior to maintenance (67 very good partial remission (VGPR) and 41 partial remission (PR)) responded; of whom, 35/108 (32%) achieved CR after isotretinoin. In contrast, 64/130 (49%) of IP patients with evaluable diseases (85 VGPR and 45 PR) prior to immunotherapy responded; of whom, 52/130 (40%) achieved CR after immunotherapy (Table 4, $p = 0.226$).

Table 4. Response for immunotherapy and control populations. Legend: CR (complete remission), VGPR (very good partial remission), PR (partial remission), SD (stable disease) and PD (progressing disease).

Response Status before Maintenance	Total	Evaluable	CR	VGPR	PR	SD	PD
Immunotherapy and Isotretinoin							
CR	210	188	151	0	0	0	37
<CR Total	151	130	52	43	8	0	0
VGPR	99	85	36	31	0	0	18
PR	52	45	16	12	8	0	9
Isotretinoin							
CR	258	204	163	0	0	0	40
<CR Total	150	108	35	27	18	1	27
VGPR	93	67	28	23	2	0	14
PR	57	41	7	4	16	1	13

2.6. Adverse Events and Toxicity

Adverse events (CTC Grades 1 to 4) are summarized in Table 5. Toxicity tended to be higher in the IP population, particularly in those patients who received sc-IL-2. Four patients had non-relapse-related mortality in the IP and four in the CP.
Table 5. Toxicities IL-2 (interleukin 2), non-hem. tox. (non-hematological toxicities), WBC (white blood cells), ECHO LV (left ventricular)/SV (stroke volume), GFR (glomerular filtration rate), central neuro (central neurotoxicity), periph neuro (peripheral neurotoxicity) and liver enzymes: SGOT (serum-glutamat-oxalacetat-transaminase)/SGPT (serum-glutamat-pyruvat-transaminase). Columns in bold show the values for the combined grade 3 and 4 toxicities.

Toxicities	Control	Without IL2	All	With IL2
	Eval	All	0 1 2 3 4 3 + 4	0 1 2 3 4 3 + 4
Non-Hem. Tox.	317	317	113 42 116 41 5 46 15%	186 5 6 53 105 17 122 66%
General Condition	314	314	225 69 13 4 3 7 2%	185 42 70 43 24 6 30 16%
Haemoglobin	313	313	208 39 54 8 4 12 4%	186 21 2 84 69 10 79 42%
WRC	313	313	235 32 26 15 3 18 6%	186 35 30 73 42 6 48 26%
Granulocytes	313	313	244 23 25 16 5 21 7%	186 44 26 54 43 19 62 33%
Platelets	313	313	260 13 12 16 12 28 9%	186 66 25 31 40 24 64 34%
Infection	315	315	220 52 23 19 1 20 6%	185 79 26 32 47 1 48 26%
Fever	314	314	241 14 54 4 1 5 2%	185 41 3 116 24 1 25 14%
Stomatitis	312	312	293 10 7 2 0 2 1%	185 156 18 8 0 3 3 2%
Nausea/Vomiting	313	313	284 6 19 4 0 4 1%	185 88 11 76 9 1 10 5%
Diarrhoea	313	313	286 11 13 3 0 3 1%	185 93 32 47 10 3 13 7%
Constipation	312	312	302 7 3 0 0 0 0%	185 110 43 32 0 0 0 0%
Skin	315	315	181 50 73 10 1 11 3%	185 65 46 65 9 0 9 5%
Allergy	314	314	307 4 3 0 0 0 0%	185 88 50 28 14 5 19 10%
Cardiac Function	298	298	298 0 0 0 0 0%	183 178 0 0 3 1 4 2%
Echo LV/SV	298	298	298 0 0 0 0 0%	182 181 0 0 0 0 1 1%
Hypotension	298	298	296 2 0 0 0 0 0%	182 139 22 8 12 1 13 7%
Hypertension	298	298	298 0 0 0 0 0%	182 162 10 3 7 0 7 4%
Creatinine	312	312	301 9 2 0 0 0 0%	185 167 14 1 3 7 0 3 2%
Proteinuria	311	311	307 4 0 0 0 0%	184 169 13 2 0 0 0 0%
Haematuria	311	311	305 6 0 0 0 0%	183 167 11 5 0 0 0 0%
GFR	310	310	302 5 3 0 0 0%	183 172 6 2 3 0 3 2%
Central Neuro	311	311	304 4 0 0 3 3 1%	185 165 14 3 3 0 3 2%
Periph Neuro	311	311	308 1 0 1 1 2 1%	185 173 8 3 1 0 1 1%
Bilirubin	309	309	301 4 2 2 0 2 1%	185 169 1 10 4 1 5 3%
SGOT/SGPT	311	311	218 68 19 6 0 6 2%	185 68 43 43 30 1 31 17%
Dilated Pupils	22	22	0 0 0 0 0 0 0%	123 108 15 0 0 0 0 0%
Accommodation Defects	22	22	0 0 0 0 0 0 0%	121 115 6 0 0 0 0 0%
Capillary Leak Syndrome	19	19	18 0 1 0 0 0 0%	119 91 0 23 5 0 5 4%
Cytokine Release Syndrome	19	19	18 1 0 0 0 0 0%	118 95 8 10 5 0 5 4%
Pain related to ch14.18/CHO	22	22	0 0 0 0 0 0 0%	120 113 7 0 0 0 0 0%
Papilloedema	22	22	0 0 0 0 0 0 0%	120 113 7 0 0 0 0 0%
3. Discussion

This analysis showed superior EFS and OS in the era when dinutuximab beta-based immunotherapy was included in therapy for high-risk neuroblastoma, compared to the previous era in the same trial when isotretinoin alone was the only element of maintenance therapy. Although there are limitations with a historical comparison, this is the first and possibly only demonstration that the addition of dinutuximab beta as immunotherapy improves survival in the high-risk neuroblastoma front-line population treated homogenously in the HR-NBL1/SIOPEN trial. Both the control and immunotherapy populations received the same treatment approach. Furthermore, this analysis is an important contribution, as data on the efficacy of anti-GD2 antibody-based immunotherapy are limited to one prospective randomised trial and a few retrospective analyses. Ethical concerns precluded a randomised comparison of immunotherapy after the results of the COG ANBL0032 trial emerged. A randomised trial of dinutuximab beta and isotretinoin compared to isotretinoin alone would have produced more robust data, but this was believed not to be ethically feasible within the SIOPEN community.

As the two cohorts were from the same trial and using the same criteria; in particular, HDT within nine months from diagnosis and no progression at 109 days after ASCR as a starting point for survival, with an unchanged supportive care protocol guidance, this analysis provides important data supporting the benefit of dinutuximab beta-based immunotherapy. The landmark time identified was the median time observed between ASCR and initiation of dinutuximab beta; thus, only patients without progressive diseases at this timepoint were included in the pre-immunotherapy CP. The introduction of this landmark was important in order to exclude early relapse before immunotherapy could be commenced. Both populations, IP and CP, were balanced for age, sex, stage 4, MYCN amplification and response prior to HDT.

The benefit of immunotherapy was further underpinned by multivariate analysis. After adjustment for risk factors (for example, age, stage, MC at diagnosis, need for TVD and response prior to maintenance therapy) a positive impact on outcome was observed with either BuMel or CEM. This is particularly important in view of a higher percentage of patients receiving CEM in the control group, as we previously have shown superior outcomes for patients treated with BuMel [6]. Hence, the superior outcomes in the immunotherapy group are unlikely to be solely related to BuMel. These conclusions are supported by the recent publication from COG [13] demonstrating that immunotherapy improves survival even after optimised HDT regimens.

Response prior to immunotherapy is an important prognostic factor. Patients treated in CR in the IP had a two-year EFS of 68%, compared to 54% in the CP. Acknowledging that comparisons across trials are challenging, these results are similar to the previous report of dinutuximab in combination with IL-2 and GM-CSF in patients in CR, resulting in a two-year EFS of 66% for patients treated by immunotherapy, compared to only 46% in patients with an isotretinoin maintenance treatment [7]. Further support in favour of dinutuximab beta-based immunotherapy within the HR-NBL1/SIOPEN trial comes from improved response rates in patients with residual diseases at the site of the primary tumour or metaiodobenzylguanidine (mIBG)-positive skeletal disease following immunotherapy; a 49% response rate and a 40% CR rate was observed in patients treated with immunotherapy, as compared to a 36% overall response and 32% CR rate in the control population.

The increasing role for immunotherapy, with anti-GD2 antibodies, in the therapy of patients with high-risk neuroblastoma is further highlighted by the recent demonstration of the efficacy of combining anti-GD2 antibodies with chemotherapy, either at relapse or at initial presentation [14,15].

In summary, this report describes the effects of including dinutuximab beta in high-risk neuroblastoma maintenance therapy and shows a clear survival benefit. This provides an important baseline to further build immunotherapy strategies in this challenging patient population.
4. Materials and Methods

4.1. Trial Eligibility

HR-NBL1/SIOOPEN, an international, randomised, multiarm, open-label, phase 3 trial for high-risk neuroblastoma, opened on 24 June 2002 and is registered with ClinTrials.gov, number NCT01704716, and EudraCT, number 2006-001489-17. All randomisations of the HR-NBL1/SIOOPEN trial are closed, and three have been published [5,6,12]. SIOOPEN institutions recruited patients after approval of the trial by national regulatory authorities and ethical committees. Parents/guardians and patients provided written informed consent or assent, when applicable.

The International Neuroblastoma Staging System criteria (INSS) and International Neuroblastoma Response Criteria (INRC) [16] were used to classify the disease and to evaluate responses to therapy. Untreated patients with INSS stage 4 metastatic neuroblastoma aged 1-20 years or INSS stage 2–4 neuroblastoma with MYCN amplification, as determined in SIOOPEN reference laboratories [17], any age up to 20 years, were eligible. The SIOOPEN-R-NET web-based system (https://www.siopen-r-net.org) randomly assigned eligible patients in real-time.

4.2. Eligibility for the Analysis Cohort and Treatments Given

This analysis included all patients registered in the HR-NBL1/SIOOPEN trial between 2002 and 2013 who met the criteria: (i) HDT within 9 months from diagnosis and (ii) no progression at 109 days after ASCR. The median time between ASCR and initiation of dinutuximab beta was 109 days; therefore, only patients without progressive diseases at this landmark timepoint were included in the pre-immunotherapy control population (CP). The 18 patients randomised to receive dinutuximab beta and isotretinoin between 2006 and 2009 were excluded from this analysis. Two cohorts were compared, a CP between 2002–2009 who did not receive dinutuximab beta and an IP between 2009 and 2013 who was randomised to receive dinutuximab beta with or without sc-IL2 [12]. As the addition of IL-2 to immunotherapy with dinutuximab beta did not improve outcome, both randomised arms were considered as one group for the purposes of this analysis [12]. The CP comprised patients who received HDT randomised to BuMel or CEM [6] but did not receive immunotherapy.

All patients received rapid COJEC induction [4,5] (Figure 4). Between 2002 to 2010, patients who had a bone marrow complete response (CR) and a metastatic CR or a metastatic partial response (PR) defined by INSS criteria but at least 50% reduction in skeletal metaiodobenzylguanidine (mIBG) positivity from baseline and three or fewer areas of abnormal uptake on 123I-mIBG scintigraphy were eligible for HDT randomisation comparing BuMel with CEM [6]. Thereafter, BuMel became the standard of care. Patients who did not achieve a metastatic response to fulfil the HDT eligibility criteria received two courses of topotecan, vincristine and doxorubicin (TVD) [18] prior to HDT. Local treatment of the primary tumour comprised attempted total surgical resection and radiotherapy (21 Gy) to the primary tumour site between 60 and 90 days after ASCR. There was no dose modification in the event of incomplete tumour excision; neither were metastatic sites systematically irradiated.
All patients received 6 cycles of oral isotretinoin over two weeks [3] after local irradiation. From 2009, patients were randomised between day 60 to 90 after ASCR to receive five courses of dinutuximab beta at a dose of 20 mg/m²/day as an 8 h infusion for 5 consecutive days (total dose of 100 mg/m² per cycle, days 8 to 12) with or without 6 × 10⁶ IU/m²/day of sc-IL-2 on days 1 to 5 and days 8 to 12 of each immunotherapy cycle [12].
Patients had full disease evaluations prior to and after 2 and 5 courses of maintenance treatment. This included whole body 123I-mIBG scintigraphy, CT or MRI scans of the primary tumour and any other evaluable site of the disease; bone marrow examination with both aspirates and trephines obtained from two sites and measurement of urinary catecholamine metabolites. Response was assessed by the 1993 INRC based on local institution reporting. The only evaluable diseases prior to immunotherapy were mIBG-positive skeletal disease or diseases detectable on CT/MRI scans prior to randomisation, as patients with bone marrow involvement were not eligible.

4.3. Statistical Analysis

4.3.1. Establishment of the Analysis Cohort

The number of MC at diagnosis was calculated according to the number of MC at diagnosis either in the bone marrow, skeleton or other sites, with a possible range from one to six. Characteristics of the CP were compared to the IP by the chi-square test to assess the balance of risk factors between the two populations.

4.3.2. Outcome Parameters

Follow-up commenced at 109 days for the CP cohort and from the first dose of dinutuximab beta for the IP cohort. EFS and OS were estimated using the Kaplan and Meier method and compared with the log-rank test [19]. CIR was estimated [20], taking into account the competing risk of death without relapse/progression. For cumulative incidence of non-relapse mortality, relapse or progression was considered as a competing event. The statistical comparison of cumulative incidences used Gray’s methodology [21]. EFS, OS, cumulative incidence of relapse/progression and cumulative incidence of non-relapse mortality are presented as 5-year point estimates with confidence intervals (CI), as previously described [20,22]. Two-year EFS was determined to facilitate comparisons with published data [7]. p-values of less than 0.05 were considered to indicate statistical significance. In spite of the limitations of subgroup analysis (including multiple testing and lack of power), the cohorts were assessed according to baseline, pre and post-HDT risk factors (Table 2). A formal test for interaction was performed within a Cox model.

4.3.3. Multivariate Analysis

Multivariate analysis of treatment and risk factors was undertaken on the analysis cohort. In the presence of nonproportional hazards, as detected for age and MYCN amplification, the pseudo-value regression [22] for a 5-year EFS approach was chosen. The aim of this analysis was to adjust the comparison between the two populations (IP and CP) for potential confounders and risk factors, such as age, stage, addition of TVD, disease status prior to maintenance and HDT/ASCR. Using the same approach, a subgroup analysis was performed in order to separately evaluate the value of immunotherapy in patients with BuMel and CEM.

The data cut-off time of this analysis was July 31, 2017. Median follow-up was calculated using the inverse Kaplan Meier estimate. The statistical evaluation and power calculation were done with SAS 9.4 and Module LRI of Pass 2002, respectively.
5. Conclusions

This report shows that the introduction of dinutuximab beta is associated with a survival benefit for children with high-risk neuroblastoma. Similar results were reported for dinutuximab in one randomized trial and one nonrandomized investigation [23–25]. However, dinutuximab beta is a different molecule with a separate development pathway, and the demonstration of its beneficial effects on treatment outcome is an important finding.

Given the absence of a beneficial effect by adding sc-IL-2 to an 8 h infusion of dinutuximab beta [12], the standard treatment recommended by SIOPEN is dinutuximab beta with isotretinoin for maintenance therapy of high-risk neuroblastoma. The benefits might be less in some subgroups (<1.5 years, MYCN-amplified localised disease) and needs close monitoring in future studies. Modifications of the length of the dinutuximab beta schedule and immunotherapy combination strategies may optimise the benefits of immunotherapy in high-risk neuroblastoma to improve survival.

Author Contributions: Conceptualization: R.L. (Ruth Ladenstein), U.P., H.N.L. Study design: R.L. (Ruth Ladenstein), U.P., H.N.L. Resources: R.L. (Ruth Ladenstein), R.L. (Roberto Luksch), V.C., S.A., G.L., P.B., J.M.M., C.O., T.T., G.C.F.C., G.S., E.R., H.S., M.B.-P., G.S., H.L., P.A., K.H., M.R.C., M.N.G., A.G. Quality control of data and algorithms: R.L. (Ruth Ladenstein), U.P. Data analysis and interpretation: R.L. (Ruth Ladenstein), U.P., H.N.L. Formal analysis: U.P. Writing-original draft preparation: R.L. (Ruth Ladenstein), U.P., A.D.J.P., H.N.L. Writing-review and editing: R.L. (Ruth Ladenstein), U.P., H.N.L., A.D.J.P., D.V.-C.M.N.G. Project administration: R.L. (Ruth Ladenstein). All authors have read and agreed to the published version of the manuscript.

Funding: The funding of the European Commission 5th Framework Grant (SIOPEN-R-NET EC grant No. QLRI-CT-2002-01768, www.siopen-r-net.org) is disclosed as a source of funding in the author form. Pierre Fabre Médicament provided Busilvex® (Paris, France) and APEIRON (Vienna, Austria) provided dinutuximab beta (ch14.18/CHO), along with the St. Anna Kinderkrebshilfswerk (Vienna, Austria). The European Commission, Pierre Fabre Médicament and APEIRON had no involvement in the conduct of the research and preparation of the article. The St. Anna Kinderkrebshilfswerk was the academic sponsor of the trial. In addition, this work was supported by these charities, as follows (in alphabetic order): France: Fondation ARC (Association pour la Recherche sur le Cancer), Villejuif; SFC (Société Française de Lutte contre les Cancers et Leucémies de l’Enfant et de l’Adolescent), Paris; Enfant Cancers et Santé, Montfaucon and Enfant et Cancer Association Hubert Gouin, Divonne-les-Bains. Israel: Hayim Association-For Children with Cancer in Israel, Ramat Gan. Italy: Fondazione Italiana per la Lotta al Neuroblastoma O.N.L.U.S. c/o Istituto G. Gaslini. Genova: Associazione Bianca Garavaglia O.N.L.U.S., Busto Arsizio. Switzerland: Oncosuisse, Bern; Swiss Cancer League, Bern; Fond’action contre le Cancer, Lausanne and FORCE (Fondation Recherche sur le Cancer de l’Enfant), Ecublens. UK: Cancer Research UK, London and The Neuroblastoma Society, London.

Acknowledgments: Re-cloning and production of the ch14.18 monoclonal antibody was done at Polymun, Vienna, Austria and was enabled by a SIOPEN fundraising effort in 2001. APEIRON provided additional products at a later stage. Neither Polymun nor APEIRON had a role in the study design or analysis. The authors express their gratitude and appreciation to SIOPEN investigators, treating physicians, clinical research and care teams and most importantly to patients and families participating in the trial. The authors are indebted to Ingrid Pribill for her important technical assistance in trial management and to Mag. Claudia Zeiner-Koglin for editorial assistance.

Conflicts of Interest: The academic data supported APEIRON to obtain the dinutuximab beta product licensure in May 2017 in the European Union (EMA). SIOPEN and CCR established a contract with APEIRON regarding the provision of academic data. Ruth Ladenstein and Holger Lode acted as consultants for APEIRON on behalf of SIOPEN for the ch14.18/CHO development. The other authors declare no conflict of interest.
References

1. London, W.B.; Castleberry, R.P.; Matthay, K.K.; Look, A.T.; Seeger, R.C.; Shimada, H.; Thorner, P.; Brodeur, G.; Maris, J.M.; Reynolds, C.P.; et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol. 2005, 23, 6459–6465. [CrossRef] [PubMed]

2. Valteau-Couanet, D.; Le Deley, M.-C.; Bergeron, C.; Ducassou, S.; Michon, J.; Rubie, H.; Le Teuff, G.; Coze, C.; Plantaz, D.; Sirvent, N.; et al. Long-term results of the combination of the N7 induction chemotherapy and the busulfan-melphalan high dose chemotherapy. Pediatr. Blood Cancer 2014, 61, 977–981. [CrossRef] [PubMed]

3. Matthay, K.K.; Reynolds, C.P.; Seeger, R.C.; Shimada, H.; Adkins, E.S.; Haas-Kogan, D.; Gerbing, R.B.; London, W.B.; Villablanca, J.G. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: A children’s oncology group study. J. Clin. Oncol. 2009, 27, 1007–1013. [CrossRef] [PubMed]

4. Pearson, A.D.J.; Pinkerton, C.R.; Lewis, I.J.; Imeson, J.; Ellershaw, C.; Machin, D. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: A randomised trial. Lancet. Oncol. 2008, 9, 247–256. [CrossRef]

5. Ladenstein, R.; Valteau-Couanet, D.; Brock, P.; Yaniv, I.; Castel, V.; Laureys, G.; Malis, J.; Papadakis, V.; Lacerda, A.; Ruud, E.; et al. Randomized Trial of prophylactic granulocyte colony-stimulating factor during rapid COJEC induction in pediatric patients with high-risk neuroblastoma: The European HR-NBL1/SIOPEN study. J. Clin. Oncol. 2010, 28, 3516–3524. [CrossRef] [PubMed]

6. Ladenstein, R.; Pötschger, U.; Pearson, A.D.J.; Brock, P.; Luksch, R.; Castel, V.; Yaniv, I.; Papadakis, V.; Laureys, G.; Malis, J.; et al. Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): An international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 500–514. [CrossRef]

7. Yu, A.L.; Gilman, A.L.; Ozkaynak, M.F.; London, W.B.; Kreissman, S.G.; Chen, H.X.; Smith, M.; Anderson, B.; Villablanca, J.G.; Matthay, K.K.; et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 2010, 363, 1324–1334. [CrossRef]

8. Cheung, N.-K.V.; Dyer, M.A. Neuroblastoma: Developmental biology, cancer genomics and immunotherapy. Nat. Rev. Cancer 2013, 13, 397–411. [CrossRef]

9. Zeng, Y.; Fest, S.; Kunert, R.; Katinger, H.; Pistoia, V.; Michon, J.; Lewis, G.; Ladenstein, R.; Lode, H.N. Anti-neuroblastoma effect of ch14.18 antibody produced in CHO cells is mediated by NK-cells in mice. Mol. Immunol. 2005, 42, 1311–1319. [CrossRef]

10. Ladenstein, R.; Weixler, S.; Baykan, B.; Bleeke, M.; Kunert, R.; Katinger, D.; Pribill, I.; Glander, P.; Bauer, S.; Pistoia, V.; et al. Ch14.18 antibody produced in CHO cells in relapsed or refractory Stage 4 neuroblastoma patients: A SIOPEN Phase 1 study. Mabs 2013, 5, 801–809. [CrossRef]

11. Ladenstein, R.; Pötschger, U.; Siabalis, D.; Garaventa, A.; Bergeron, C.; Lewis, I.; Stein, J.; Kohler, J.; Shaw, P.J.; Holter, W.; et al. Dose Finding Study for the Use of Subcutaneous Recombinant Interleukin-2 to Augment Natural Killer Cell Numbers in an Outpatient Setting for Stage 4 Neuroblastoma After Megatherapy and Autologous Stem-Cell Reinfusion. J. Clin. Oncol. 2011, 29, 441–448. [CrossRef] [PubMed]

12. Ladenstein, R.; Pötschger, U.; Valteau-Couanet, D.; Luksch, R.; Castel, V.; Yaniv, I.; Laureys, G.; Brock, P.; Michon, J.M.; Owens, C.; et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): A multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1617–1629. [CrossRef]

13. Park, J.R.; Kreissman, S.G.; London, W.B.; Naranjo, A.; Cohn, S.L.; Hogarty, M.D.; Tenney, S.C.; Haas-Kogan, D.; Shaw, P.J.; Kraveka, J.M.; et al. Effect of Tandem Autologous Stem Cell Transplant vs Single Transplant on Event-Free Survival in Patients With High-Risk Neuroblastoma: A Randomized Clinical Trial. JAMA 2019, 322, 746–755. [CrossRef] [PubMed]

14. Mody, R.; Naranjo, A.; Van Ryn, C.; Yu, A.L.; London, W.B.; Shulkin, B.L.; Parisi, M.T.; Servaes, S.-E.-N.; Diccianni, M.B.; Sondel, P.M.; et al. Irinotecan-temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an open-label, randomised, phase 2 trial. Lancet Oncol. 2017, 18, 946–957. [CrossRef]
15. Furman, W.L.; Federico, S.M.; McCarville, M.B.; Shulkin, B.L.; Davidoff, A.M.; Krasin, M.J.; Sahr, N.; Sykes, A.; Wu, J.; Brennan, R.C.; et al. A Phase II Trial of Hu14.18K322A in Combination with Induction Chemotherapy in Children with Newly Diagnosed High-Risk Neuroblastoma. Clin. Cancer Res. 2019, 25, 6320–6328. [CrossRef] [PubMed]

16. Brodeur, G.M.; Pritchard, J.; Berthold, F.; Carlsen, N.L.; Castel, V.; Castelberry, R.P.; De Bernardi, B.; Evans, A.E.; Favrot, M.; Hedborg, F. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J. Clin. Oncol. 1993, 11, 1466–1477. [CrossRef]

17. Ambros, I.M.; Benard, J.; Boavida, M.; Bown, N.; Caron, H.; Combaret, V.; Couturier, J.; Darnfors, C.; Delattre, O.; Freeman-Edward, J.; et al. Quality Assessment of Genetic Markers Used for Therapy Stratification. J. Clin. Oncol. 2003, 21, 2077–2084. [CrossRef]

18. Amoroso, L.; Erminio, G.; Makin, G.; Pearson, A.D.; Brock, P.; Valteau-Couanet, D.; Castel, V.; Pasquet, M.; Laureys, G.; Thomas, C.; et al. Topotecan-Vincristine-Doxorubicin in Stage 4 High Risk Neuroblastoma Patients Failing to Achieve a Complete Metastatic Response to Rapid COJEC-a SIOPEN Study. Cancer Res. Treat. 2018, 50, e148. [CrossRef]

19. Peto, R.; Pike, M.C.; Armitage, P.; Breslow, N.E.; Cox, D.R.; Howard, S.V.; Mantel, N.; McPherson, K.; Peto, J.; Smith, P.G. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. analysis and examples. Br. J. Cancer 1977, 35, 1–39. [CrossRef]

20. Kalbfleisch, J.D.; Prentice, R.L. The Statistical Analysis of Failure Time Data, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002; Chapter 8.3.3; pp. 251–254. ISBN 0-471-36357-X.

21. Gray, R.J. A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk. Ann. Stat. 1988, 16, 1141–1154. [CrossRef]

22. Andersen, P.K.; Perme, M.P. Pseudo-observations in survival analysis. Stat. Methods Med. Res. 2010, 19, 71–99. [CrossRef]

23. Simon, T.; Hero, B.; Faldum, A.; Handgretinger, R.; Schrappe, M.; Niethammer, D.; Berthold, F. Consolidation treatment with chimeric anti-GD2-antibody ch14.18 in children older than 1 year with metastatic neuroblastoma. J. Clin. Oncol. 2004, 22, 3549–3557. [CrossRef] [PubMed]

24. Simon, T.; Hero, B.; Faldum, A.; Handgretinger, R.; Schrappe, M.; Niethammer, D.; Berthold, F. Infants with Stage 4 Neuroblastoma: The Impact of the Chimeric Anti-GD2-Antibody ch14.18 Consolidation Therapy. Klin. Pädiatr. 2005, 217, 147–152. [CrossRef] [PubMed]

25. Simon, T.; Hero, B.; Faldum, A.; Handgretinger, R.; Schrappe, M.; Klingebiel, T.; Berthold, F. Long term outcome of high-risk neuroblastoma patients after immunotherapy with antibody ch14.18 or oral metronomic chemotherapy. BMC Cancer 2011, 11, e21. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).