Geothermal Fluid Identification at Geothermal Area Sorik Marapi using 2d Resistivity Imaging

Muhamad Kadri1,2 and M.M. Nordiana2

1State university of Medan and 2Universiti Sains Malaysia.

kdrnhmnd8@gmail.com

Abstract. This research is done to determine the geothermal fluid flows by using 2D resistivity imaging and to identify the stones that compile the mineral by using XRD at geothermal Area Sorik Marapi, North Sumatera Province. The area is located at 99º32'.050'' E - 0º41'193' N to 99º32.861'' E - 0º41'214'N. The results from XRD by using difractometer Jeol-350 Shimadzu 6100 Show that the intensity from x ray diffraction has the geothermal fluid spreads laterally to the geothermal manifestation. Four lines were surveyed by using 2d resistivity imaging for geothermal delineation purpose. The 2d resistivity imaging survey site shows the existence of geothermal fluid flows. The maximum depth of investigations for the surveys is 31,3 meters and 155 m of length of each line. The array used in this study are Wenner-Schlumberger. In general the results show that all the subsurface is made up of limestone (resistivity value of less than 100 ohm-m) and clay with resistivity also less than 100 ohm-m in all the sections. XRD survey shows the mean mineral that compile the get otheral stones at Sorik Marapi are Quartz (O2Si) and magnesium (Mg). This mineral is the mean mineral that compile the clay.

Keywords: resistivity method, XRD, Quartz (O2Si) and magnesium (Mg).

1. Introduction

Indonesia's geothermal energy potential which reaches 40 percent is the largest in the world. However, in terms of geothermal energy development, Indonesia is still ranked third after the United States and the Philippines (Christina, 2013). Considering that geothermal energy in Indonesia has quite a large potential, exploration is needed to maximize development and utilization.

Sumatra Island is one of the major islands in Indonesia which has considerable geothermal potential. On this island there are 84 geothermal locations with a total estimated geothermal energy of around 13,419 MWe (Status of Geothermal Potential in 2006).

Globally the availability of geothermal energy in Indonesia is associated with magmatic and volcanic regions as a source of heat. The Indonesian archipelago that located on a volcanic path is very potential area for geothermal energy formation. Along the west coast of Sumatra Island continues to south of Java, then to Bali and Nusa Tenggara, then turns north towards Sulawesi Island, Maluku Islands and the Philippines. The formation of volcanic arcs is the basis for the large geothermal potential contained in Indonesia. One of the potential area for geothermal resources in Sumatra is Sorik Marapi (99º32'.050'' E - 0º41'193' N to 99º32.861'' E - 0º41'214'N).

Based on geological map, Penen has potential geothermal energy. In order to determine the potential geothermal area in Simalungun and to identify the stones that compile the mineral of geothermal 2d resistivity imaging and geomanet are utilized.
2. Research Metodology
The research is done at Sorik Marapi. Electrical Imaging system is now mainly carried out with a multi-electrode resistivity meter system. Each survey use a line of 41 electrodes laid out in a straight line with a constant spacing. A computer controlled system is then used to automatically select the active electrodes for each measure. Throughout the survey conducted in the proposed site, the Schlumberger array have been used with the ABEM SAS 4000 system.

In this survey the 2D resistivity array is Schlumberger array, we need to move the two potential electrodes to obtain readings. This can significantly reduce the time required to acquire a sound. Because the electrode potential remains at a fixed location, the effects of near-surface lateral variations in custody deducted (Loke, 2004).

By applying the Schlumberger array (Figure 1) showed better resolution in the near surface layer. However, because of the potential electrode spacing smaller than the current electrode spacing, to a large current electrode spacing is very sensitive voltmeter is required. A location where the top layer is very non-homogeneous is not suitable for the central array. As a result, interpretations based on DC Soundings will be limited to simple, horizontally layered structure (Loke, 2004).

For XRD analysis, the samples were tested at static state (Rajagukguk et al. 2016). Data results of X-ray radiation in the form of a diffraction spectrum. X-rays detected by the detector is then recorded by a computer in the form of a graph of peak intensity, which further analyzed the distance between crystal lattice planes and compared with Bragg law on a computer using certain software in order to generate the data. The process of data interpretation is done by identifying the peaks of the XRD chart by matching the existing peak on the graph with the ICDD database. So that, refinement on the XRD data using the Match program. Through the refinement, content, and their phase structure and lattice parameters that exist in the sample is known.

3. Result And Discussion

3.1. Resistivity results
The Resistivity configuration used is the Wenner Schlumberger configuration. The Resistivity research carried out in the Sorik Marapi area used 4 passes (Figure 2) with coordinate as shown in table 1.
Table 1. coordinate line of resistivity

Line	electrode	E	N
Line 1	first	99°32'35.67"	0°44'38.84"
	last	99°32'40.67"	0°44'38.58"
Line 2	First	99°32'36.17"	0°44'38.24"
	last	99°32'36.31"	0°44'43.30"
Line 3	first	99°32'39.92"	0°44'37.89"
	last	99°32'40.02"	0°44'42.92"
Line 4	first	99°32'35.44"	0°44'42.77"
	last	99°32'40.45"	0°44'42.72"

The length of the cable for line 1, 2, 3 and 4 is 155 meters, with the electrode spacing of 5 meters. The total electrodes are 32 electrodes. Data collection was carried out by spreading the cable along 155 meters where the cable starts from the point where the Resistivity device is placed. The tool used is a set of Multichannel and multielectrode resistivity Ip meters.

Figure 3. Line 1 of Sorik Marapi area

Figure 4. Line 1 of Sorik Marapi area

Line 3
The lines 1, 2, 3 and 4 shown in Figures 3, 4, 5 and 6 in this area show the inversion result of the Wenner Schlumberger configuration very low resistivity. In fact, all the results on this one line show that in general this area has a resistance of less than 100 Ωm. It should be assumed that this area is the distribution of hot water.

In general, all resistivity lines in the geothermal potential area in Sorik Merapi show low resistance values, namely between 0 ohm.m to 70 ohm.m. This indicates that this area is very likely an alluvium area that stores hot water. This water comes from a reservoir located below the surface which then appears on the surface. This is what then becomes the manifestation of hot springs in this area.

3.2. XRD Result
The sedimentary rock samples were tested using XRD Shimadzu 6100. Rock samples were taken from the research area in Aek Balerang, Roburan Dolok Village, Sorik Marapi. Rock samples were ground before the XRD test was carried out as shown in the figure 7.

From the test results using X-ray diffraction and data processing using Match software obtained images in graphical form and the output data in the table below.
Table 2. X-ray diffraction test data

Chemical Formula	Mineral Name	Entry number	Quant (weight %)
O₂Si	Quartz	96-901-0146	53.0
Mg	Magnesium	94-154-5543	37.7

Based on table 2 it is known that the rock mineral composition of the geothermal area of SorikMarapi, data collection point, is dominated by Quartz (O₂Si) and magnesium (Mg).

Table 3. XRD Test Results

Peak No.	Angle 2θ	d (Å)	Intensity (I/I₀)
1	10,426	8.4783	91
2	19,538	4.5399	34
3	20,560	4.3164	46
4	20,786	4.2699	152
5	21,891	4.0569	83
6	23,562	3.7727	95
7	24,160	3.6808	36
8	24,340	3.6539	68
9	25,584	3.4790	36
10	26,260	3.3909	69
11	26,556	3.3538	1022
12	26,840	3.3190	45
13	27,061	3.2923	41
14	27,320	3.2618	55
15	27,684	3.2197	439
16	27,940	3.1908	145
17	28,260	3.1554	77
18	28,460	3.1337	116
19	29,634	3.0121	57
20	30,268	2.9504	68
21	31,348	2.8513	50
22	32,913	2.7192	75
23	35,408	2.5331	135
24	36,432	2.4642	36
25	38,489	2.3370	50
26	39,317	2.2897	47
27	42,120	2.1436	41
28	42,300	2.1349	42
29	45,580	1.9886	33
30	45,470	1.9820	31
31	50,032	1.8216	77
32	54,783	1.6743	73
33	59,836	1.5444	65
34	64,633	1.4409	35
35	67,730	1.3823	56
36	68,063	1.3764	84

From the table data above, research results are obtained such as the graph in Figure 5.30 below.
Table 3 and graph Figure 8 can be concluded that there are 6 of the 36 peaks containing the highest peak at the 11th peak with an intensity of 1022 in the corner of 26.5560.

Analysis of the mineral phase content obtained from rock samples shows that the rock is a crystalline material with mainly quartz (O2Si) and magnesium content. The quartz crystal system is trigonal (hexagonal axes) with a crystal size of 9,65267 Å. Mineral quartz has the highest peaks at an angle of $2\theta = 26.620$; 20,840; 50,080 intensity (i) 891.6; 177.4; 101.5. Magnesium mineral has the highest peak at an angle of $2\theta = 27,980$; 45,580; 30,300 intensity (i) 275,1; 116.0; 91.9.

From the results obtained, it is stated that the rock studied using xrd has a content consisting of quartz (O2Si) and magnesium.

4. Suggestion
From the research that has been obtained, the suggestions for further research are expanding research area to see the pattern of spread of the geothermal fluid in more detail using geophysical methods such as geomagnetic methods to corroborate the information about the pattern of spread of geothermal fluid in the area.

Acknowledgment
We appreciate the support from State University of Medan for the facilities and the geophysics instruments. We would also like to appreciate our laboratory members and the students of physics department, State University of Medan for the generous help.

References
[1] Badan Pusat Statistika, (2013), Statistika Daerah Kabupaten Simalungun 2013. Badan Pusat Statistika Kabupaten Simalungun, Pematang Siantar, available at: http://simalungunkab.bps.go.id/.
[2] Bertani, R., (2010), Geothermal Power Generation in the World - 2005–2010 Update Report, World Geothermal Congress 2010, Bali, Indonesia, April 25-30, 2010.
[3] Darma, S., Harsoprayitno, S., Setiawan, B., Hadyanto, Sukhyar, R., Soedibjo, A.W., Ganefianto, N., and Stimac, J., (2010), Geothermal Energy Update: Geothermal Energy Development and Utilization in Indonesia, Proceedings World Geothermal Congress, Bali, Indonesia, April 25-30, 2010.
[4] Dreborg, K., (1996), Essence of backcasting, Futures, Volume 28, Issue 9, Pages 813-828 E.Terras AG, (2007), Geothermal in Indonesia.
[5] Farid, M., Hadi, A.I ,Fetusianti, (2008), Analisis Resistivitas Batuan Berdasarkan Data Geolistrik Untuk Memprediksi Sumber Panas Bumi, Jurnal Sains MIPA 14 :79-84.
[6] Griffith D.H. and Barker R.D., 1993. Two dimensional resistivity imaging and modeling in
areas of complex geology. Journal of Applied Geophysics, 29, 211-226.

[7] Hochstein, M.P., Sudarman S., (2008), History of geothermal exploration in Indonesia from 1970 to 2000, Geothermics, Volume 37, Issue 3, Pages 220-266

[8] Ioannou, C.A., Panagiotopoulos, P., Stergioulas, L., (2009), Roadmapping as a Collaborative Strategic Decision Making Process: Shaping Social Dialogue Options for the European Banking Sector, World Academy of Science, Engineering Technology, vol. 54. Jakarta Updates.com, (2010), Indonesian Electricity Price for Renewable Energy.

[9] Jupesta, J., Wicaksono, A., Suwa, A., (2011), Modelling Geothermal as Low Carbon Sources in Indonesia, 30th USAEE/IAEE North American Conference, 9-12 October, Washington DC, USA.

[10] Kadri, M., et.al 2016. Geothermal fluid determination and geothermal stones mineral identification at geothermal area tinggi raja simalungun, north sumatera, indonesia using 2d resistivity imaging. Journal of sciences and environment. ISSN (Paper)2224-3216 ISSN (Online)2225-0948.

[11] Keller G.V. and Frischknecht F.C., 1996, Electrical methods in geophysical prospecting. Pergamon Press Inc., Oxford.

[12] Rajagukguk, J., Kaewkhao, J., Djamal, M., Hidayat, R. and Ruangtaweep, Y., 2016. Structural and optical characteristics of Eu³⁺ ions in sodium-lead-zinc-lithium-borate glass system. Journal of Molecular Structure, 1121, pp.180-187.

[13] Lenat, J.F, dkk, (2000), Geoelectrical structure of the central zone of Piton de la Fournaise volcano (Réunion), Bull Volcanol, 62 : 75-89.

[14] Loke, M.H., (2004), Tutorial : 2-D and 3-D Electrical Imaging Suveys, email : drmhloke@yahoo.com. Milsom, J., (2003), Field Geophysics : Third Edition, West Sussex PO19 SQ, England.