Flap gate farm: From Venice lagoon defense to resonating wave energy production. Part 1: Natural modes

Sammarco, P

http://hdl.handle.net/10026.1/17507

10.1016/j.apor.2013.10.001

Applied Ocean Research
Elsevier BV

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Flap gate farm: From Venice lagoon defense to resonating wave energy production. Part 1: Natural modes

P. Sammarco*, S. Michele, M. d’Errico

Department of Civil Engineering and Computer Science, Università degli studi di Roma Tor Vergata, Via del Politecnico 1, 00133 Roma, Italy

1. Introduction

The attention to ocean waves as an energy resource has been high since after the II World War. Many types of wave energy converter (WEC) have been ingeniously designed and sometimes prototyped [1,2]. They are all based on the mechanical principle of maximizing the fractional quota of power that can be extracted from the incoming waves. One family of these devices includes flap gates hinged on a bottom axis and they oscillate in unison with the waves [3]. The mechanical principle of these devices is the mass-spring-damped forced oscillator, exactly the same of the floating gates already designed in the eighties by the Consorzio Venezia Nuova [4] to protect Venice Lagoon from flooding. In the case of a flap-gate WEC the difference from the Venice gates is in the purpose, which is to maximize the oscillation amplitude of the gates to be transformed into electricity by mechanical coupling.

The research developed so far has focused on the behavior of an isolated gate in a channel [56] or in the open ocean [7], and a sparse gate system [8,9]. However, when the gates are non-sparse, it is exactly the theory and experimental evidence developed for the Venice gates case that suggest a new type of WEC based on resonating wave–structure interaction. Indeed, for one array of neighboring gates aligned on a common axis, flume experiments have revealed that at certain frequencies ω_0 of the incoming waves the gates can be excited to oscillate in opposite phase at frequencies $\omega_0/2$ [4] with a very large oscillation amplitude. Mei et al. [10] have identified this resonance mechanism showing the existence of trapped modes. As in the case of edge waves on a beach, if the gates are in a channel, resonance is possible through a nonlinear subharmonic mechanism as shown by Sammarco et al. [11,12]. If the gate barrier is not confined in a channel, but open to sea, radiation is possible and trapping is imperfect: a linear synchronous resonance mechanism is then possible. The linear theory of Adamo and Mei [13] clearly resolves the case of a semi-infinite channel on one side of the barrier and a semi-infinite domain on the other.

For one array made by Q identical gates spanning the full width of an infinitely long channel, Li and Mei [14] have determined all the Q – 1 natural modes. Panizzo et al. [15] analyzed several experimental data set for spectral waves by means of the empirical orthogonal function (EOF) method. They showed that modal excitation of the gate array is always present in real seas, when the natural frequencies fall within the wave spectrum frequency range. Therefore an extremely efficient WEC can be designed to have a large number of eigenfrequencies all falling within the given wave spectrum of interest. To this end we define a “gate farm”: a series of P arrays each made of Q articulated neighboring gates hinged on a common axis. The Venice barrier case of Li and Mei [14] is the special case $P = 1$. We show that there are $P \times (Q – 1)$ natural frequencies and associated modal forms. We also show that when the distance L between arrays increases, the eigenfrequencies converge to the $Q – 1$ values of Li and Mei [14]. We also investigate the case of in-phase motion of each single array, i.e. when the gates of each array are locked. In Section 2 the geometrical parameters of the system are defined and the governing equations and associated boundary conditions are given. In Sections 3 and 4, solutions are found respectively for the out-of-phase motion and for the in-phase motion. In Section 5 a numerical analysis shows how the gate farm can be designed to maximize wave trapping and therefore maximize gate motion and wave energy extraction.
Let Φ^\pm indicate the solution in the two semi-infinite parts of the channel, respectively in $x \in (- \infty, -b]$ and $x \in [(P - 1)L + b, + \infty)$, $y \in [0, l]$, $z \in [- h, 0]$. Also, let Φ indicate the potential in the part of fluid domain between the array p and the array $p + 1$. With this notation we can specify the kinematic boundary condition on the P arrays. On the $p = 1$ array the kinematic boundary condition is:

$$
\frac{\partial \Phi^+}{\partial x} = \frac{\partial \Theta}{\partial t} (z + h), \quad x = -b, \\
\frac{\partial \Phi^+}{\partial x} = \frac{\partial \Theta}{\partial t} (z + h), \quad x = b.
$$

while on the $p = 2, \ldots, P - 1$, arrays we have:

$$
\frac{\partial \Phi^{p-1}}{\partial x} = \frac{\partial \Theta}{\partial t} (z + h), \quad x = (P - 1)L - b, \\
\frac{\partial \Phi^{p-1}}{\partial x} = \frac{\partial \Theta}{\partial t} (z + h), \quad x = (P - 1)L + b.
$$

and finally on the $p = P$ array:

$$
\frac{\partial \Phi^{P-1}}{\partial x} = \frac{\partial \Theta}{\partial t} (z + h), \quad x = (P - 1)L - b, \\
\frac{\partial \Phi^{P-1}}{\partial x} = \frac{\partial \Theta}{\partial t} (z + h), \quad x = (P - 1)L + b.
$$

Consider harmonic motion of frequency ω:

$$
\Phi (x, y, z, t) = \text{Re} \left[\phi (x, y, z) e^{-i\omega t} \right]. \\
\Theta_p (y, t) = \text{Re} \left[\Theta_p (y) e^{-i\omega t} \right].
$$

The potentials in each subdomain can be found by the method of separation of variables.

3. Out-of-phase motion: trapped modes

Solution for wave potential is found in each of the $P + 1$ subdomains; then the gate dynamics equations are solved.

3.1. $\phi^-, x \in (- \infty, -b], y \in [0, l], z \in [- h, 0]$

The governing equation and boundary conditions are:

$$
\nabla^2 \phi^- = 0, \quad x \in (- \infty, -b].
$$

(10a)

$$
\frac{\partial \phi^-}{\partial y} = 0, \quad y = 0, \quad y = l.
$$

(10b)

$$
\frac{\partial \phi^-}{\partial z} = 0, \quad z = -h.
$$

(10c)

$$
\frac{\partial \phi^-}{\partial x} = 0, \quad z = 0.
$$

(10d)

$$
\frac{\partial \phi^-}{\partial x} = -i\omega (z + h) \Theta_1 (y), \quad x = -b.
$$

(10e)

$$
\phi^- \text{ bounded as } x \rightarrow -\infty.
$$

(10f)

Let s, c, and t indicate shorthand notation respectively for sinh, cosh, and tanh. Solution of Laplace equation (10a) with boundary conditions (10b), (10c), (10d), (10e), and (10f) is given by:

$$
\phi^- = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} B_{mn} e^{-i\omega \text{cosec} \alpha} \cos \frac{\pi y}{l} \sinh \frac{\pi x}{l} \text{ch} k_n (h + z).
$$

(11)

where k_n denotes the roots of the dispersion relation:

$$
\omega^2 = g k_n \sin \theta_1 h, \\
\omega^2 = -g k_n \tan \theta_1 h, \\
k_n = i k_n, \quad n = 1, \ldots, \infty.
$$

(12)
and i denotes the imaginary unit. The coefficients α_{mn} are given by:

$$
\alpha_{mn} = \sqrt{k_n^2 - \left(\frac{m\pi}{L}\right)^2}, \quad n, m = 0, \ldots, \infty.
$$

(13)

According to ω, m and n, different types of waves are present:

- $n = 0$, $m = 0$, $\alpha_{00} = k_0$, long crested propagating waves,
- $n = 0$, $m > 0$, $\alpha_{0m} = i\alpha_{m0}$, long crested evanescent waves,
- $n > 0$, $m = 0$, $\alpha_{n0} = \sqrt{k_n^2 - \left(\frac{m\pi}{L}\right)^2}$, short crested propagating waves,
- $n > 0$, $m > 0$, $\alpha_{nm} = i\alpha_{mn}$, short crested evanescent waves.

M is the largest integer that renders α_{mn} real, i.e. such that $k_0 > M\pi/L$. Application of the boundary condition (10e) on the left side ($x = -b$) of the array $p = 1$ yields the coefficient b_{mn} of expression (11).

Recalling that:

$$
\phi^+ = \left\{\phi_{1q}, \ldots, \phi_{Qq}\right\},
$$

(14)

the condition:

$$
\int_0^l \phi^+ (y) \, dy = 0,
$$

(15)

assures that there are no long-crested propagating and long-crested evanescent waves, i.e. $B_{mn} = 0$, $n = 0, 1, \ldots, \infty$.

ϕ^- must include only terms that decay exponentially as $x \to -\infty$ so that waves are trapped. As in Li and Mei [14], damping is not considered in eigenfrequency analysis and the sum that contains short-crested propagating waves ($n = 0, m = 1, \ldots, M$) to $-\infty$, if present, is excluded. Hence expression (11) becomes:

$$
\phi^- = -i\omega \sum_{q=1}^{Q} \phi_{1q} \left\{ \sum_{m=M+1}^{\infty} \frac{D_0 b_{mn} \mu_{mn} \pi}{C_0 C_{mn}} \cos \frac{m\pi y}{L} \cosh k_0 (h + z) \right. \\
\left. + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{D_n b_{mn} \mu_{mn} \pi}{C_n C_{mn}} \cos \frac{m\pi y}{L} \cosh k_0 (h + z) \right\}.
$$

(16)

where the coefficients C_n, D_n and b_{mn} are given by:

$$
C_n = \int_0^h \sqrt{2} k_0 (h + z) \, dz = \frac{1}{2} \left(h + \frac{g}{\omega^2} \cosh k_0 h \right),
$$

(17)

$$
D_n = \int_0^h (2 + h) \cosh k_0 (h + z) \, dz = \frac{1}{k_0^2} \left(\frac{b}{g} - 1 \right) \cosh k_0 h + 1.
$$

$$
b_{mn} = \frac{2}{Q} \int_0^{Q-1} \cos \frac{m\pi y}{L} \, dy = \frac{2}{m\pi} \left[\sin \frac{Q\pi}{Q} - \sin \frac{(q-1)\pi}{Q} \right],
$$

$q = 1, \ldots, Q$, $n = 0, \ldots, \infty$, $m = 1, \ldots, \infty$.

Expression (16) represents a sum of short crested evanescent waves.

Fig. 2. Modal profiles.

Fig. 3. Modal profiles.
3.2. \(\phi^p, x \in [(p - 1)L + b, pL - b], y \in [0, l], z \in [-h, 0], p = 1, \ldots, P - 1 \)

The wave potential \(\phi^p \) in the domain between arrays \(p \) and \(p + 1 \) is governed by the following equation and boundary conditions:

\[
\nabla^2 \phi^p = 0, \quad x \in [(p - 1)L + b, pL - b].
\]

(18a)

\[
\frac{\partial \phi^p}{\partial y} = 0, \quad y = 0, \ y = l.
\]

(18b)

\[
\frac{\partial \phi^p}{\partial z} = 0, \quad z = -h.
\]

(18c)

\[
\frac{\partial \phi^p}{\partial z} = \frac{\partial^2 \phi^p}{G^2} = 0, \quad z = 0.
\]

(18d)

\[
\frac{\partial \phi^p}{\partial x} = -i \omega (z + h) \frac{\partial \phi^p}{\partial y}, \quad x = (p - 1)L + b.
\]

(18e)

\[
\frac{\partial \phi^p}{\partial x} = -i \omega (z + h) \frac{\partial \phi^p+1}{\partial y}, \quad x = pL - b.
\]

(18f)

Also in this case we require the average in-phase motion of the gates to be null \(\int_0^l f_0 \phi^p(y) dy = \int_0^l f_0 \phi^p+1(y) dy = 0 \), i.e., we exclude long crested waves. For shorthand notation, define \(\phi_p \) as follows:

\[
\phi_p = x - b - (p - 1)L \quad \text{for} \quad p = 1, \ldots, P.
\]

(19)

Imposing the boundary condition (18e) on the right side of array \(p \) and (18f) on the left side of array \(p + 1 \) and invoking orthogonality yields the expression for \(\phi^p \):

\[
\phi^p = -i \omega \sum_{q=1}^Q \left[\sum_{m=1}^M D_{0m} \cos \theta_{mn} (x_p + 2b - l) \cos \frac{m\pi y}{l} \cos \theta_{mn}(h + z) + \sum_{m=1}^M D_{0m} \sin \theta_{mn} (x_p + 2b - l) \cos \frac{m\pi y}{l} \cos \theta_{mn}(h + z) \right]
\]

\[
+ \sum_{m=1}^M D_{0m} \chi_{mn} \cos \theta_{mn} (x_p + 2b - l) \cos \frac{m\pi y}{l} \cos \theta_{mn}(h + z) + \sum_{m=1}^M D_{0m} \sin \theta_{mn} (x_p + 2b - l) \cos \frac{m\pi y}{l} \cos \theta_{mn}(h + z) \right]
\]

\[
\left. \left(18(\text{c}) \right) \right) \nu \phi^p = 0, \quad z = 0.
\]

(20)

\[
\phi^p \text{ bounded as } x \to +\infty.
\]

(21f)

With similar consideration to the previous case of \(\phi^- \) we find the solution of problem (21a)–(21f) to be:

\[
\phi^+ = i \omega \sum_{q=1}^Q \left[\sum_{m=1}^M D_{0m} \cos \theta_{mn} (x_p + 2b - l) \cos \frac{m\pi y}{l} \cos \theta_{mn}(h + z) + \sum_{m=1}^M D_{0m} \sin \theta_{mn} (x_p + 2b - l) \cos \frac{m\pi y}{l} \cos \theta_{mn}(h + z) \right]
\]

\[
\left. \left(22 \right) \right) \nu \phi^+ = 0, \quad z = 0.
\]

(22)

3.4. Gate dynamics

Recalling definition (19) for \(\phi_p \), conservation of angular momentum for each gate \(j = 1, \ldots, Q \) of each array \(p = 1, \ldots, P \) requires that:

\[
\nabla^2 \phi^p + C \phi^p = i \omega \sum_{q=1}^Q \left[\sum_{m=1}^M D_{0m} \cos \theta_{mn} (x_p + 2b - l) \cos \frac{m\pi y}{l} \cos \theta_{mn}(h + z) + \sum_{m=1}^M D_{0m} \sin \theta_{mn} (x_p + 2b - l) \cos \frac{m\pi y}{l} \cos \theta_{mn}(h + z) \right]
\]

\[
\left. \left(23 \right) \right) \nu \phi^p = 0, \quad z = 0.
\]

(23)

\[
\phi^p = 0, \quad z = 0.
\]

(24)

\[
\phi^p = 0, \quad z = 0.
\]

(25)

\[
\phi^p = 0, \quad z = 0.
\]

(26)

\[
\phi^p = 0, \quad z = 0.
\]

(27)

\[
\phi^p = 0, \quad z = 0.
\]

(28)

\[
\phi^p = 0, \quad z = 0.
\]

(29)

\[
\phi^p = 0, \quad z = 0.
\]

(30)

\[
\phi^p = 0, \quad z = 0.
\]

(31)

\[
\phi^p = 0, \quad z = 0.
\]

(32)

\[
\phi^p = 0, \quad z = 0.
\]

(33)
In Eqs. (27a) and (27c), I_{ijkl}^P represents the added inertia of gate G_{ij} due to the unit rotation of the gate $G_{i'k}$:

$$I_{ijkl}^P = I_{ijkl}^P = \frac{\rho l}{2} \sum_{m=1}^{M} C_{\alpha m0} D_{ij} D_{bmn0} b_{nj} \left[1 + \frac{1}{\sin \alpha_{m0}} (2b - L_x) \right] + \sum_{m=M+1}^{\infty} C_{\alpha m0} D_{bmn0} b_{nj} \left[1 + \frac{1}{\sin \alpha_{m0}} (L_x - 2b) \right]$$

(28)

\[j \neq k \]

with:

$$b_{nj} = \frac{2}{\pi r} \left[\sin \frac{m \pi r}{Q} - \sin \frac{(j - 1) m \pi r}{Q} \right].$$

(29)

The fact that $I_{ijkl}^P = I_{ijkl}^P$ is due to the position of the 1 and P arrays, which have one semi-infinite part of the channel on one side (respectively $-$ and $+$) and another array on the other side (respectively $p = 2$ and $p = P - 1$).

I_{ijkl}^P represents the added inertia of gate G_{ij} due to the unit rotation of the gate $G_{p-1,k}$:

$$I_{ijkl}^P = \frac{\rho l}{2} \sum_{m=1}^{M} C_{\alpha m0} D_{ij} D_{bmn0} b_{nj} \left[1 + \frac{1}{\sin \alpha_{m0}} (2b - L_x) \right] + \sum_{m=M+1}^{\infty} C_{\alpha m0} D_{bmn0} b_{nj} \left[1 + \frac{1}{\sin \alpha_{m0}} (L_x - 2b) \right]$$

(30)

\[j \neq k \]

I_{ijkl}^P represents the added inertia of gate G_{ij} due to the unit rotation of the gate $G_{p+1,k}$. Because of the symmetry of the system, its expression is identical to (31), but for the index $p = 1, ..., P - 1$.

Eqs. (27a)–(27c) can be written in matrix form:

$$\left(-\omega^2 I + C \right) \Phi(\omega) = I^P(\omega) \Phi(\omega),$$

(32)

where $\Phi(\omega)$ is a column vector of length $s = P \times Q$ that contains all the angular displacements of the gates, as in (1) and (9):

$$\Phi(\omega) = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_p \\ \vdots \\ \theta_P \end{bmatrix},$$

(33)

I is the identity matrix of size $s \times s$. $I^P(\omega)$ is a real banded symmetrical matrix of the added inertia also of size $s \times s$:

$$I^P(\omega) = \begin{bmatrix} I_{11} & I_{12} & I_{13} & \cdots & 0 \\ I_{21} & I_{22} & I_{23} & \cdots & 0 \\ I_{31} & I_{32} & I_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & I_{PP} \end{bmatrix},$$

(34)

where each I_{ij} is a symmetrical square matrix of size $Q \times Q$:

$$I_{ij} = \begin{bmatrix} I_{11} & I_{12} & \cdots & 0 \\ I_{21} & I_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I_{QQ} \end{bmatrix}.$$

(35)

The bandwidth of $I^P(\omega)$ is $3Q$, which is consistent with the fact that each angular displacement of the p-th array is hydrodynamically coupled with its neighboring arrays, $p - 1$ and $p + 1$.

3.5. Eigenfrequencies and eigenvectors

The system (32) is equivalent to a $s = P \times Q$ degree-of-freedom system with given masses and stiffness. Hence the eigenfrequencies ω can be determined by solving the following implicit non linear eigen-value condition:

$$\left(-\omega^2 I + C \right) \Phi(\omega) = 0.$$

(36)

Once the eigenfrequencies are found, the corresponding modal forms can be obtained setting the displacement of the gate G_{11} and then solving the linear system (32).

4. In-phase motion

We now let:

$$\phi_p(t) = \phi_{p1}(t) = \ldots = \phi_{pq}(t) \quad \text{for} \quad p = 1, \ldots, P.$$

(37)

Note that each ϕ_p is now constant in y, like if each gate within the pth array have been locked to each other. This type of motion allows to study the problem in the two dimensional vertical plane (x, z).

4.1. ϕ^-

Without the y dependence, the governing equation and boundary conditions are:

$$\nabla^2 \phi^- = 0, \quad x \in (-\infty, -b], \quad z \in [-h, 0].$$

(38a)

$$\frac{\partial \phi^-}{\partial z} = 0, \quad z = -h.$$

(38b)

$$\frac{\partial \phi^-}{\partial x} - \frac{\omega^2}{g} \phi^- = 0, \quad z = -h.$$

(38c)

$$\frac{\partial \phi^-}{\partial x} = -i\omega(z + h) \phi_1, \quad x = -b.$$

(38d)

Because waves propagate to $-\infty$, the solution for ϕ^- is made only of propagating and evanescent long crested waves:

$$\phi^- = \sum_{n=0}^{\infty} \theta_n \frac{\alpha Dn}{k_n} e^{-ik_n(b + x)} \sin k_n(h + z).$$

(39)
4.2. $\phi^p, x \in [(p-1)L + b, pL - b], z \in [-h, 0], p = 1, ..., P - 1$

The wave potential ϕ^p is governed by the following equation and boundary conditions:

$$\nabla^2 \phi^p = 0, \quad x \in [(p-1)L + b, pL - b]. \quad (40a)$$

$$\frac{\partial \phi^p}{\partial z} = 0, \quad z = -h. \quad (40b)$$

$$\frac{\partial \phi^p}{\partial z} - \frac{\omega^2}{g} \phi^p = 0, \quad z = 0. \quad (40c)$$

$$\frac{\partial \phi^p}{\partial x} = -i \omega (z + h) \theta_p, \quad x = (p-1)L + b. \quad (40d)$$

$$\frac{\partial \phi^p}{\partial x} = -i \omega (z + h) \theta_{p+1}, \quad x = pL - b. \quad (40e)$$

Solution of (40a)–(40e) is:

$$\phi^p = \sum_{n=0}^{\infty} \frac{i \omega D_n}{k_n C_n} \left[\phi_p \cos k_n (x_p + 2b - L) - \tan k_n (2b - L) \right] \frac{1}{k_n} \sin k_n (2b - L), \quad (41)$$

which is a summation of standing long crested waves in x.

4.3. $\phi^+, x \in [(P-1)L + b, + \infty), z \in [-h, 0]$}

The governing equation and boundary conditions are:

$$\nabla^2 \phi^+ = 0, \quad x \in [(P-1)L + b, \quad (42a)$$

$$\frac{\partial \phi^+}{\partial z} = 0, \quad z = -h. \quad (42b)$$

$$\frac{\partial \phi^+}{\partial z} - \frac{\omega^2}{g} \phi^+ = 0, \quad z = 0. \quad (42c)$$

$$\frac{\partial \phi^+}{\partial x} = -i \omega (z + h) \theta_p, \quad x = (P-1)L + b. \quad (42d)$$

This case includes only positive x-propagating and evanescent long crested waves:

$$\phi^+ = \sum_{n=0}^{\infty} \frac{\omega D_n}{k_n C_n} \phi^p \cos k_n (h + z). \quad (43)$$

4.4. Gate dynamics

Because of the in-phase motion, it suffices to consider the dynamics of one gate of the pth array rather than the entire array. For harmonic motion, conservation of angular momentum requires:

$$-\omega^2 I \theta_1 + \omega \theta_1 = \int_0^\alpha \int_0^\beta \frac{i \omega}{k} \left[\phi^+_{|x=-b} - \phi^1_{|x=0} \right] (z + h) dz, \quad (44a)$$

$$-\omega^2 I \theta_p + \omega \theta_p = \int_0^\alpha \int_0^\beta \frac{i \omega}{k} \left[\phi^{p-1}_{|x=-L-2b} - \phi^p_{|x=0} \right] (z + h) dz, \quad (44b)$$

$$p = 2, ..., P - 1,$$

$$-\omega^2 I \theta_p + \omega \theta_p = \int_0^\alpha \int_0^\beta \frac{i \omega}{k} \left[\phi^{p-1}_{|x=-L-2b} - \phi^p_{|x=0} \right] (z + h) dz. \quad (44c)$$

Substituting the expressions of the potentials (39), (41) and (43) into the equations above, we obtain:

$$\left\{ \begin{array}{l}
-\omega^2 I + C \theta_1 = i \omega D_1 + \omega_1 \left[\theta_1 + \theta_1^1 \right], \\
-\omega^2 I + C \theta_p = \omega^2 \left[\theta_{p+1} - \theta_p + \theta_p I_p^1 + \theta_{p+1} I_{p+1}^1 \right], \\
-\omega^2 I + C \theta_p = i \omega D_1 + \omega_1 \left[\theta_1 - \theta_{p+1} - \theta_p I_p^1 \right].
\end{array} \right. \quad (45)$$

where the term D is the radiation damping coefficient $D = \omega \rho \left(\rho I / k_C C_0 \right)$, while the added inertia are defined by:

$$I_{p+1}^1 - I_0^1 = \rho \sum_{n} \frac{D_n^2}{k_n C_n} \left[1 + \frac{1}{(h_0 (L + 2b))} \right] \quad (46)$$

In matrix form, system (45) can be written as:

$$\left(-\omega^2 I + C \right) [\theta] = I^0 (\omega) [\theta], \quad (47)$$

where $[\theta]$ is now a column vector of length P:

$$[\theta] = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_p \end{bmatrix}. \quad (48)$$

$I^0(\omega)$ is not yet a real added inertia matrix, as it still contains a damping term in the first and last row (see expression (49)).

4.5. Eigenfrequencies and eigenvectors

Eq. (45) are equivalent to a damped P degree-of-freedom system with given masses and stiffness. We can find the eigenfrequencies by omitting damping, i.e. posing $D = 0$. Hence the added inertia matrix (49) becomes real:

$$I^0(\omega) = \begin{bmatrix} I_{11}^0 & I_{12}^0 & I_{13}^0 & 0 \\ I_{12}^0 & I_{22}^0 & I_{23}^0 & I_{12}^p \\ I_{13}^0 & I_{23}^0 & I_{33}^0 & I_{13}^p \\ 0 & I_{12}^p & I_{13}^p & I_{22}^p \\ I_{12}^p & I_{22}^p & I_{23}^p & I_{12}^2 \end{bmatrix}. \quad (49)$$

The eigenfrequencies ω can be determined from the eigen-value condition:

$$\left(-\omega^2 I + C \right) [\theta] = 0. \quad (50)$$

The corresponding eigenvectors can be found by setting the displacement of the gate $G_{11} = 1$.

5. Numerical results

With reference to Fig. 1, we consider a $P = 3, Q = 5$ gate farm. The following gate and channel characteristics are chosen for numerical investigation:

5.1. Out-of-phase motion

Numerical solution of eigenvalue condition (36) gives $P \times Q = 12$ roots. The numerical values of the eigenfrequencies are listed in Table 1. The respective modal forms are shown in Figs. 2 and 3 where the number near each gate represents the angular displacement relative to $\theta_{11} = 1$. Let K indicates the number of gates of the
first array (p = 1) per modal wave length. Table 1 shows that, as K increases, the natural frequency decreases. Figs. 2a–d and 3a–d show that for modes N₁₁, N₂₁, N₃₁, and N₄₁, each array has the same modal shape, but for the central array (p = 3) where gates have larger oscillation amplitudes. Figs. 2b–e and 3b–e show modes N₁₂, N₂₂, N₃₂, and N₄₂; they are characterized by having the middle array (p = 2) with null angular displacement, while the last array (p = 3) is in opposite phase with respect to the first (p = 1). Figs. 2c–f and 3c–f represent the remaining modes N₁₃, N₂₃, N₃₃, and N₄₃: modal deformation is the same, but for the middle array (p = 2) which is in opposition of phase with the other two. Consider now the parametric dependence on L. Fig. 4 shows the dependence of the eigenfrequencies from the distance L between arrays. We find that the eigenfrequencies tend to the same values of Li and Mei [14] as L → ∞. Indeed, the 12 natural modes of Table 1, degenerate to (Q − 1) = 4 modes N₁, N₂, N₃, and N₄. The values of the eigenfrequencies are listed in Table 2, while Fig. 5 indicates the angular displacements of the gates.

5.2. In-phase motion

Let det(ω) be the left-hand side of the eigen-value condition (51). Recalling that I₁₁ = I₂₁, and, I₁₂ = I₂₂ = I₃₂ = I₄₂, the expression of det(ω) for P = 3 has an explicit form:

\[
det(\omega) = \left[\omega^2 (I + I_1^2) + C\right] \left[\omega^2 (I + I_2^2) + C\right] \left[\omega^2 (I + I_3^2) + C\right].
\]

(52)

Fig. 6 depicts the graph of det(ω) vs. ω. The plot shows that there are infinite discrete zeros of det(ω); hence, infinite discrete eigenfrequencies are possible. Indeed, from expression (52) it is easily seen that equation \(\det(\omega) = 0\) can be satisfied by three sub-conditions for \(\omega\):

\[
\omega^2 I_1^2 - \left[\omega^2 (I + I_1^2) + C\right] \left[\omega^2 (I + I_2^2) + C\right] = 0. \tag{53a}
\]

\[
-\omega^2 (I + I_1^2) + C = 0. \tag{53b}
\]

\[
\omega^2 I_2^2 - \left[\omega^2 (I + I_1^2) + C\right] \left[\omega^2 (I + I_2^2) + C\right] = 0. \tag{53c}
\]

Let \(\omega_1 = (\omega_{11}, \omega_{12}, \omega_{13})\) represent all the infinite roots of (53a). Similarly, let \(\omega_2 = (\omega_{21}, \omega_{22}, \omega_{23})\) represent all the infinite roots of (53b), and \(\omega_3 = (\omega_{31}, \omega_{32}, \omega_{33})\) for (53c). Fig. 6 shows the first 11 roots of \(\det(\omega) = 0\). For \(j = 1, 2, \) Table 3 shows the numerical values of \(\omega_{1j}, \omega_{2j}\) and \(\omega_{3j}\), while the modal forms \(N(\omega_{1j}), N(\omega_{2j})\) and \(N(\omega_{3j})\), associated to \(\omega_{1j}, \omega_{2j}\) and \(\omega_{3j}\) are shown in Fig. 7. From inspection of Fig. 7, we evince that: the modal forms \(N(\omega_{1j}) - N(\omega_{1j})\) are characterized by three arrays in phase; the modal forms \(N(\omega_{2j}) - N(\omega_{2j})\) are identical, and are characterized by the middle array (p = 2) with zero angular displacement while the arrays p = 1 and p = 3 in opposition of phase. Finally the modal forms \(N(\omega_{3j}) - N(\omega_{3j})\) are characterized by the middle array (p = 2) in opposite phase with respect to the first (p = 1) and the last array (p = 3).

Table 1

Parameter	Symbol	Value
Gate width	a	6 m
Gate thickness	2b	1.5 m
Distance between L arrays	I	10 m
Moment of inertia	I	72000 kg m²
Buoyancy restoring torque	C	950000 kg m² s⁻²
Gate mass	Mₐ	5200 kg
Water depth	h	5 m
Density of water	ρ	1000 kg m⁻¹

Table 2

ω (1/s)	Period (s)	K	Mode
0.9869	6.3666	2.5	N₁
0.8476	7.4129	3.3	N₂
0.6699	9.3793	5	N₃
0.4470	14.0563	10	N₄

Fig. 4. Eigenfrequencies vs. the distance L for the different modal shapes N. For large N the eigenfrequencies become the same of Li and Mei [14].

Fig. 5. Modal profiles for L → ∞, equal to Li and Mei [14].
6. Conclusions

A solution of the natural modes for a $P \times Q$ gate farm WEC in a infinitely long channel has been obtained. We have considered both cases of out-of-phase motion and in-phase motion. In the first case, $P \times (Q-1)$ eigenfrequencies have been found, while considering in-phase motion, we obtain an infinite set of ω that satisfy the eigenvalue condition. For the out-of-phase motion, when the distance between arrays is very large, the eigenfrequencies of the gate farm converge to the eigenfrequencies of the single array analyzed by Li and Mei [14]. Comparing the modal forms of the gate farm with those of a single array, we have shown that the overall angular displacement is larger due to the effect of the added inertia trapped between the arrays. In the present theory we kept into account the effect of thickness by relaxing the “thin-gate” hypothesis of Renzi and Dias [6–9]. The theory developed here suggests that the optimal WEC should be designed such that there are no propagating short crested wave ($M = 0$) for each modal oscillation. A linear theory for a gate farm in open sea that includes damping term due to wave radiation, is being developed. This will allow quantification of the resonating response and evaluation of the increased potential in terms of power extraction from incident waves.

Acknowledgements

The authors wish to thank Giorgio Bellotti and Ali Abdolali of Università degli Studi Roma Tre for fruitful discussions.

References

[1] McCormick ME. Ocean wave energy conversion. Dover; 2007.
[2] Cruz J. Ocean wave energy. Springer; 2008.
[3] Whittaker T, Collier D, Foley M, Osterried M, Henry A, Crowley M. The development of Oyster: a shallow water surging wave energy converter. In: 7th European Wave and Tidal Energy Conference, Porto, Portugal. 2007.
[4] Consorzio Venezia Nuova. Study on the influence of the inclination angle and the gate shape on gate response. Technical report Studio 2.2.10 by Delft Hydraulics; November 1988.
[5] Renzi E, Abdolali A, Bellotti G, Dias F. Mathematical modelling of the oscillating wave surge converter. In: Proceedings of the 33rd conference of hydraulics and hydraulic engineering, Brescia, Italy. 2012.
[6] Renzi E, Dias F. Resonant behaviour of an oscillating wave energy converter in a channel. Journal of Fluid Mechanics 2012;701:482–510.
[7] Renzi E, Dias F. Hydrodynamics of the oscillating wave surge converter in the open sea. European Journal of Mechanics B/Fluids 2013;41:1–10.
[8] Renzi E, Dias F. Relations for a periodic array of flap-type wave energy converters. Applied Ocean Research 2012;39:31–9.
[9] Renzi E, Dias F. Resonant scattering by a periodic array of plates with application to wave energy extraction. Proceedings of the IWWWFR27 2012:157–60.
[10] Mei CC, Sammarco P, Cian E, Pecoracchi C. Subharmonic resonance of proposed storm gates for Venice lagoon. Proceedings of the Royal Society of London A 1994;444:257–65.
[11] Sammarco P, Tran H, Mei CC. Subharmonic resonance of Venice storm gates in waves, I. Evolution equation and uniform incident waves. Journal of Fluid Mechanics 1997;349:295–325.
[12] Sammarco P, Tran H, Gottlieb O, Mei CC. Subharmonic resonance of Venice storm gates in waves. II. Sinusoidally modulated incident waves. Journal of Fluid Mechanics 1997;349:327–59.
[13] Adamo A, Mei CC. Linear response of Venice storm gates to incident waves. Proceedings of the Royal Society of London A 2005;461:1711–34.
[14] Li G, Mei CC. Natural modes of mobile flood gates. Applied Ocean Research 2005;27:115–26.
[15] Panizzo A, Sammarco P, Bellotti G, De Girolamo P. EOF analysis of complex response of Venice mobile gates. Journal of Waterway, Port, Coastal, and Ocean Engineering 2006;132:172–9.