Supplementary Material

Suitability of gridded climate datasets for use in environmental epidemiology

Keith R. Spanglera,b,c, Kate R. Weinbergerb,c, and Gregory A. Welleniusb,c

a Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence RI, USA

b Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA

c Institute at Brown for Environment and Society, Brown University, Providence RI, USA

Table of Contents

- S1: Calculating Relative Humidity ... 1
- S2: Calculating Absolute Humidity ... 4
- Table S1: List of First-Order Stations in Study Sample 6
- Table S2: List of USCRN Stations in Study Sample ... 10
- Table S3: Equations for User-Derived Variables ... 13
S1: Calculating Relative Humidity

A detailed overview of current best-practices in calculating relative humidity can be found in Lawrence [1] and is briefly summarized here (see also: Davis et al. [2] for an overview of humidity metrics in epidemiologic studies). Relative humidity is calculated as the ratio between the actual vapor pressure, \(e(T) \), and saturation vapor pressure, \(e_s(T) \), at temperature \(T \) (Equation 1).

\[
RH = 100\% \cdot \frac{e(T)}{e_s(T)}
\]

(1)

Since \(0 \leq e \leq e_s \), RH has a minimum of 0\% (when \(e = 0 \) Pascals) and increases as \(T \) approaches the dew-point temperature (\(T_D \)) up to 100\% (when \(T = T_D \) and thus \(e = e_s \)). Vapor pressure can be expressed in terms of ambient temperature (˚C) and empirical constants (\(a_1 = 610.94 \) Pa, \(a_2 = 17.625 \), and \(a_3 = 243.04^\circ \text{C} \); [1]) by Equation (2), and saturation vapor pressure (\(e_s \)) is calculated with Equation (3).

\[
e(T) = a_1 \cdot e^{ \frac{a_2 \cdot T_D}{a_3 + T_D} } \]

(2)

\[
e_s(T) = a_1 \cdot e^{ \frac{a_2 \cdot T}{a_3 + T} } \]

(3)

Notice that the only difference between (2) and (3) is that the former uses dew-point temperature (\(T_D \)) and the latter uses the ambient temperature (\(T \)); the equations are equivalent for \(T = T_D \). Therefore, substituting Equations (2) and (3) into Equation (1) yields the general form for \(RH \) given in Equation (4). Note that the constants \(a_1 \) could cancel out in this format, but have been left in the equation for when \(e(T) \) is known but \(e_s(T) \) is unknown (or vice versa). This is relevant in the context of Daymet, which reports the vapor pressure directly, but not \(e_s(T) \).

\[
RH = 100\% \cdot \frac{e(T)}{e_s(T)} = 100\% \cdot \frac{a_1 \cdot \frac{a_2 \cdot T_D}{a_3 + T_D}}{a_1 \cdot \frac{a_2 \cdot T}{a_3 + T}}
\]

(4)
We used equation (4) to calculate hourly RH for the first-order stations in ISD-Lite using hourly ambient temperature (°C) for \(T \), dew-point temperature (°C) for \(T_{D} \), and empirical constants \((a_{f} = 610.94 \text{ Pa}, a_{2} = 17.625, \text{ and } a_{3} = 243.04^\circ \text{C}; [1])\). The only humidity variable provided by Daymet, however, is daily mean vapor pressure, which is interpreted as the vapor pressure at the mean temperature for the day, \(e(T_{\text{mean}}) \). The daily mean relative humidity (\(RH_{\text{mean}} \)) for Daymet is estimated using Equation (5), which starts with Equation (4) and substitutes the Daymet-provided vapor pressure value, \(e(T_{\text{mean}}) \) in units of Pascals (Pa), for the numerator and the mean temperature for \(T \) in the denominator, using slightly different empirical constants for consistency with the methodology of Daymet \((b_{1} = 610.78 \text{ Pa}, b_{2} = 17.269, \text{ and } b_{3} = 237.3^\circ \text{C})\) supplanting \(a_{1}, a_{2}, \text{ and } a_{3} \), respectively; [3]).

\[
RH_{\text{mean (Daymet)}} = 100\% \cdot \frac{e(T_{\text{mean}})}{b_{1} \cdot e^{(b_{2} \cdot T_{\text{mean}} + b_{3} \cdot T_{\text{mean}})}}
\]

(5)

In Daymet’s calculation of \(e(T_{\text{mean}}) \), \(T_{\text{mean}} \) is specified not as the average between minimum and maximum temperatures, but by Equation (6) [3]. For consistency, the mean temperature calculated with (6) is used in the estimation of \(RH_{\text{mean}} \) in (5).

\[
T_{\text{mean}} = 0.606 \cdot T_{\text{max}} + 0.394 \cdot T_{\text{min}}
\]

(6)

In contrast to Daymet, PRISM provides mean dew-point (\(TD_{\text{mean}} \)) and ambient (\(T_{\text{mean}} \)) temperatures instead of \(e(T_{\text{mean}}) \); the \(RH_{\text{mean}} \) is therefore calculated slightly differently, instead following Equation (7), which uses \(T_{\text{mean}} \) (°C) values and empirical constants \((a_{2} = 17.625 \text{ and } a_{3} = 243.04^\circ \text{C})\) substituted into (4), as described elsewhere [4]. Notice that \(a_{1} \) cancels out and has thus been omitted from the equation.

\[
RH_{\text{mean (PRISM)}} = 100\% \cdot \frac{e^{(a_{2} \cdot TD_{\text{mean}})} \cdot e^{(a_{3} \cdot T_{\text{mean}})}}{e^{(a_{3} \cdot T_{\text{mean}})}}
\]

(7)
It should be reiterated that the constants differ slightly between (5) and (7); this was done to ensure consistency with the methodologies of the respective GCD, but the difference is negligible.

Neither Daymet nor PRISM provides minimum or maximum values for vapor pressure or dew-point temperature, so derivations and assumptions are needed to get estimated values of RH_{max} and RH_{min}. Daymet’s algorithm assumes that T_D is equal to the daily T_{min} for the entire day [3], an assumption that has been demonstrated to be invalid in semiarid and arid climates of the southwest United States [5]. Nonetheless, consistent with this assumption, RH_{min} was calculated for Daymet using Equation (8), which is derived from (4), substituting T_{min} (°C) for T_D in the numerator and T_{max} (°C) for T in the denominator, and using the constants in (5) for b_2 and b_3 ($b_2 = 17.269$ and $b_3 = 237.3$°C; [3]).

$$RH_{min \ (Daymet)} = 100 \cdot \frac{e^{b_2 \cdot T_{min}}}{e^{b_2 \cdot T_{max}}}$$

PRISM, by contrast, gives minimum and maximum vapor-pressure deficits (VPD), which facilitate calculating minimum and maximum relative humidity [4]. Vapor-pressure deficit is the absolute difference between the saturation vapor pressure at temperature T, $e_s(T)$, and the actual vapor pressure at the same temperature, $e(T)$ (Equation 9). VPD is greater than or equal to zero for all temperatures because the actual vapor pressure cannot exceed the saturation vapor pressure.

$$VPD = e_s(T) - e(T)$$

The Clausius-Clapeyron equation indicates that the relationship between temperature and e_s is exponential, meaning that warmer air requires greater amounts of water vapor to reach saturation. If the absolute humidity (i.e., the mass of water vapor per unit volume of air) does not change appreciably throughout the day, then it is expected that VPD would increase throughout
the morning and reach a maximum at T_{max}. With this assumption that VPD_{max} occurs at T_{max}, and following the approach of Daly et al. [4], Equation (9) can be solved for $e(T)$ and substituted into the numerator of Equation (4). This then allows for the calculation of relative humidity at T_{max} (as an estimate of RH_{min}) using Equation (10) with only T_{max} ($^\circ$C) and VPD_{max} (Pa), as provided by PRISM, as well as the empirical constants as in (7). Similarly, relative humidity at T_{min} (as an estimate of RH_{max}) is calculated with Equation (11). Table S3 summarizes all of the equations used for each dataset.

$$RH_{min (PRISM)} = 100 \cdot \frac{a_1 \cdot \left(\frac{a_2 \cdot T_{max}}{a_3 + T_{max}} \right) - VPD_{max}}{a_1 \cdot e^{\left(\frac{a_2 \cdot T_{max}}{a_3 + T_{max}} \right)}}$$ \hfill (10)

$$RH_{max (PRISM)} = 100 \cdot \frac{a_1 \cdot \left(\frac{a_2 \cdot T_{min}}{a_3 + T_{min}} \right) - VPD_{min}}{a_1 \cdot e^{\left(\frac{a_2 \cdot T_{min}}{a_3 + T_{min}} \right)}}$$ \hfill (11)

S2: Calculating Absolute Humidity

In contrast to relative humidity, which reflects the amount of water vapor in the air relative to the maximum amount that could be present, absolute humidity is a direct measure of atmospheric water vapor. The general equation provided by Showalter [6] is given by Equation (12): AH is a function of the vapor pressure, $e(T)$ (hPa), ambient temperature, T ($^\circ$C), and the inverse of the gas constant for water vapor ($c_1 = 216.68$ g K hPa$^{-1}$ m$^{-3}$), in units of g/m3.

$$AH = \frac{c_1 \cdot e(T)}{T + 273.16}$$ \hfill (12)

Neither observation network provides $e(T)$ directly, so this value must first be calculated and substituted into (12). First-order stations in ISD-Lite report dew-point temperature, which means that (2) can be substituted for $e(T)$, after multiplying the leading constant by a factor of 0.01 to convert to hPa (Equation 13); empirical constants are the same as in (12) and (2), with the
exception of a_1, which was converted to hPa: $c_1 = 216.68 \text{ g K hPa}^{-1} \text{ m}^{-3}$ [6], $a_1 = 6.1094 \text{ hPa}$, $a_2 = 17.625$, and $a_3 = 243.04^\circ \text{C}$ [4].

$$AH = \frac{c_1 \cdot a_1 \cdot e^{(\frac{a_2 \cdot T}{T + 273.16})}}{T + 273.16^\circ \text{C}}$$

(13)

The USCRN stations do not provide dew-point temperature but, rather, the relative humidity. Rearranging (4) and substituting for $e(T)$, again scaling to convert to hPa, yields Equation (14), in terms of RH (%), T ($^\circ \text{C}$), and the same empirical constants as above ($c_1 = 216.68 \text{ g K hPa}^{-1} \text{ m}^{-3}$ [6], $a_1 = 6.1094 \text{ hPa}$, $a_2 = 17.625$, and $a_3 = 243.04^\circ \text{C}$ [4]).

$$AH = \frac{c_1 \cdot RH \cdot a_1 \cdot e^{(\frac{a_2 \cdot T}{T + 273.16})}}{T + 273.16^\circ \text{C}}$$

(14)

Daymet provides $e(T_{\text{mean}})$ directly, so mean absolute humidity (AH_{mean}) can be determined directly with (12), with T_{mean} ($^\circ \text{C}$) calculated with (6) substituted for T and with $e(T_{\text{mean}})$ substituted for $e(T)$ after converting from Pa to hPa. PRISM, by contrast, gives TD_{mean} instead of mean vapor pressure, allowing for the calculation of AH_{mean} using (13), with TD_{mean} ($^\circ \text{C}$) for TD, T_{mean} ($^\circ \text{C}$) for T, and the same empirical constants ($c_1 = 216.68 \text{ g K hPa}^{-1} \text{ m}^{-3}$ [6], $a_1 = 6.1094 \text{ hPa}$, $a_2 = 17.625$, and $a_3 = 243.04^\circ \text{C}$ [4]). Table S3 summarizes all of the equations used for each dataset in the analysis.
Table S1: List of First-Order Weather Stations in Climatically Representative Sample

Station Name	State	WBAN	Lat (°N)	Lon (°E)	Climatea
Birmingham International Airport	AL	13876	33.5656	-86.7450	Cfa
Mobile Regional Airport	AL	13894	30.6883	-88.2456	Cfa
Montgomery Regional Airport	AL	13895	32.2997	-86.4075	Cfa
Phoenix Sky Harbor International Airport	AZ	23183	33.4277	-112.0038	BWh
Tucson International Airport	AZ	23160	32.1313	-110.9552	BSh
Winslow-Lindbergh Regional Airport	AZ	23194	35.0281	-110.7208	BWk
Fresno Yosemite International Airport	CA	93193	36.7800	-119.7194	BSk
Los Angeles International Airport	CA	23174	33.9380	-118.3888	Csb
Meadows Field Airport	CA	23155	35.4344	-119.0542	BWh
Sacramento Executive Airport	CA	23232	38.5069	-121.4950	Csa
San Diego International Airport	CA	23188	32.7336	-117.1831	BSk
Stockton Metropolitan Airport	CA	23237	37.8891	-121.2258	BSk
City of Colorado Springs Municipal Airport	CO	93037	38.8100	-104.6884	BSk
Grand Junction Regional Airport	CO	23066	39.1342	-108.5400	BSk
Pueblo Memorial Airport	CO	93058	38.2901	-104.4983	BSk
Bradley International Airport	CT	14740	41.9375	-72.6819	Dfa
Jacksonville International Airport	FL	13889	30.4950	-81.6936	Cfa
Key West International Airport	FL	12836	24.5550	-81.7522	Cfa
Miami International Airport	FL	12839	25.7881	-80.3169	Am
Orlando International Airport	FL	12815	28.4339	-81.3250	Af
Palm Beach International Airport	FL	12844	26.6847	-80.0994	Af
Tampa International Airport	FL	12842	27.9619	-82.5403	Cfa
Athens/Ben Epps Airport	GA	13873	33.9480	-83.3275	Cfa
Hartsfield-Jackson Atlanta International Airport	GA	13874	33.6301	-84.4418	Cfa
Boise Air Terminal/Gowen Field Airport	ID	24131	43.5666	-116.2405	BSk
Lewiston-Nez Perce County Airport	ID	24149	46.3747	-117.0156	BSk
Pocatello Regional Airport	ID	24156	42.9202	-112.5711	BSk
Abraham Lincoln Capital Airport	IL	93822	39.8447	-89.6839	Dfa
Greater Peoria Regional Airport	IL	14842	40.6675	-89.6839	Dfa
Greater Rockford Airport	IL	94822	42.1927	-89.0930	Dfa
Quad City International Airport	IL	14923	41.4653	-90.5233	Dfa
South Bend Regional Airport	IN	14848	41.7072	-86.3163	Dfa
Des Moines International Airport	IA	14933	41.5338	-93.6530	Dfa
Sioux Gateway/Colonel Bud Day Field Airport	IA	14943	42.3913	-96.3791	Dfa
Blosser Municipal Airport	KS	13984	39.5514	-97.6508	Dfa
Station Name	State	WBAN	Lat ('N)	Lon ('E)	Climatea
--	-------	------	------------	------------	----------
Dodge City Regional Airport	KS	13985	37.7686	-99.9678	BSk
Philip Billard Municipal Airport	KS	13996	39.0725	-95.6261	Dfa
Renner Field/Goodland Municipal Airport	KS	23065	39.3672	-101.6933	BSk
Cincinnati/Northern Kentucky International Airport	KY	93814	39.0444	-84.6724	Dfa
Louis Armstrong New Orleans International Airport	LA	12916	29.9969	-90.2775	Cfa
Shreveport Regional Airport	LA	13957	32.4472	-93.8244	Cfa
Portland International Airport	ME	14764	43.6422	-70.3044	Dfb
Boston Logan International Airport	MA	14739	42.3606	-71.0097	Dfa
Alpena County Regional Airport	MI	94849	45.0716	-83.5644	Dfb
Bishop International Airport	MI	14826	42.9666	-83.7494	Dfb
Capital City Airport	MI	14836	42.7803	-84.5789	Dfb
Detroit Metro Wayne County Airport	MI	94847	42.2313	-83.3308	Dfa
Muskegon County Airport	MI	14840	43.1711	-86.2367	Dfb
Sault Ste Marie Municipal/Sanderson Field Airport	MI	14847	46.4794	-84.3572	Dfb
Duluth International Airport	MN	14913	46.8369	-92.1833	Dfb
Falls International Airport	MN	14918	48.5614	-93.3981	Dfb
Minneapolis-St Paul International Airport	MN	14922	44.8831	-93.2289	Dfa
Rochester International Airport	MN	14925	43.9041	-92.4916	Dfb
Key Field Airport	MS	13865	32.3347	-88.7442	Cfa
Billings Logan International Airport	MT	24033	45.8069	-108.5422	Dfa
Glacier Park International Airport	MT	24146	48.3042	-114.2636	Dfb
Great Falls International Airport	MT	24143	47.4733	-111.3822	BSk
Havre City-County Airport	MT	94012	48.5428	-109.7633	BSk
Helena Regional Airport	MT	24144	46.6056	-111.9636	Dfb
Missoula International Airport	MT	24153	46.9208	-114.0925	Dfb
Wokal Field/Glasgow International Airport	MT	94008	48.2138	-106.6214	BSk
Lincoln Municipal Airport	NE	14939	40.8508	-96.7475	Dfa
North Platte Regional/Lee Bird Field Airport	NE	24023	41.1213	-100.6694	Dfa
Western Nebraska Regional/Heilig Field Airport	NE	24028	41.8705	-103.5930	BSk
Ely Airport/Yelland Field Airport	NV	23154	39.2952	-114.8466	BSk
McCarran International Airport	NV	23169	36.0719	-115.1634	BWh
Reno/Tahoe International Airport	NV	23185	39.4838	-119.7711	BWk
Concord Municipal Airport	NH	14745	43.1200	-71.3000	Dfa
Albuquerque International Sunport Airport	NM	23050	35.0419	-106.6155	BSk
Clayton Municipal Airpark	NM	23051	36.4486	-103.1539	BSk
Roswell International Air Center Airport	NM	23009	33.3075	-104.5083	BSk
Albany International Airport	NY	14735	42.7472	-73.7991	Dfa
Station Name	State	WBAN	Lat ('N)	Lon ('E)	Climate*
---	-------	------	----------	----------	----------
Buffalo Niagara International Airport	NY	14733	42.9408	-78.7358	Dfb
Greater Rochester International Airport	NY	14768	43.1167	-77.6767	Dfb
Syracuse Hancock International Airport	NY	14771	43.1111	-76.1038	Dfb
Raleigh-Durham International Airport	NC	13722	35.8923	-78.7819	Cfa
Bismarck Municipal Airport	ND	24011	46.7825	-100.7572	Dfb
Hector International Airport	ND	14914	46.9253	-96.8111	Dfb
Sloulin Field International Airport	ND	94014	48.1738	-103.6366	BSk
Toledo Express Airport	OH	94830	41.5871	-83.8055	Dfa
Youngstown-Warren Regional Airport	OH	14852	41.2548	-80.6737	Dfb
Tulsa International Airport	OK	13968	36.1994	-95.8872	Cfa
Astoria Regional Airport	OR	94224	46.1569	-123.8825	Csb
Eastern Oregon Regional Airport at Pendleton	OR	24155	45.6983	-118.8547	BSk
Mahlon Sweet Field Airport	OR	24221	44.1278	-123.2206	Csb
Rogue Valley International-Medford Airport	OR	24225	42.3811	-122.8722	Csa
Philadelphia International Airport	PA	13739	39.8733	-75.2268	Cfa
Erie International/Tom Ridge Field Airport	PA	14860	42.0803	-80.1824	Dfa
Columbia Metropolitan Airport	SC	13883	33.9419	-81.1181	Cfa
Abilene Regional Airport	TX	13962	32.4105	-99.6822	Cfa
Amarillo Rick Husband International Airport	TX	23047	35.2295	-101.7042	BSk
Corpus Christi International Airport	TX	12924	27.7742	-97.5122	Cfa
El Paso International Airport	TX	23044	31.8111	-106.3758	BWhk
Lovell Field Airport	TN	13882	35.0336	-85.2004	Cfa
Lubbock International Airport	TX	23042	33.6656	-101.8231	BSk
Midland International Airport	TX	23023	31.9475	-102.2086	BSk
San Angelo Regional/Maths Field Airport	TX	23034	31.3517	-100.4950	BSh
San Antonio International Airport	TX	12921	29.5443	-98.4839	Cfa
Sheppard AFB/Wichita Falls Municipal Airport	TX	13966	33.9786	-98.4928	Cfa
Southeast Texas Regional Airport	TX	12917	29.9506	-94.0206	Cfa
Victoria Regional Airport	TX	12912	28.8614	-96.9303	Cfa
Burlington International Airport	VT	14742	44.4683	-73.1499	Dfb
Norfolk International Airport	VA	13737	36.9033	-76.1922	Cfa
Roanoke Regional/Woodrum Field Airport	VA	13741	37.3169	-79.9741	Cfa
Ronald Reagan Washington National Airport	VA	13743	38.8472	-77.0345	Cfa
Seattle-Tacoma International Airport	WA	24233	47.4444	-122.3138	Csb
Spokane International Airport	WA	24157	47.6216	-117.5280	Dsb
Quillayute Airport	WA	94240	47.9375	-124.5550	Cfb
Yakima Air Terminal/McAllister Field Airport	WA	24243	46.5683	-120.5428	BSk
Station Name	State	WBAN	Lat (˚N)	Lon (˚E)	Climatea
------------------------------------	-------	------	----------	----------	-------------
Yeager Airport	WV	13866	38.3794	-81.5900	Cfa
Austin Straubel International Airport	WI	14898	44.4794	-88.1366	Dfb
General Mitchell International Airport	WI	14839	42.9550	-87.9044	Dfb
Cheyenne Airport	WY	24018	41.1578	-104.8069	BSk
Hunt Field Airport	WY	24021	42.8154	-108.7261	Dfb
Natrona County International Airport	WY	24089	42.8977	-106.4739	Dfb
Sheridan County Airport	WY	24029	44.7694	-106.9688	Dfb

a Climate classification is based on the Köppen-Geiger climate classification system (Kottek et al. 2006).

Table S1: List of first-order weather stations (i.e., those maintained directly by the National Weather Service) from the ISD-Lite database that were included in the climatically representative sample of stations in CONUS. The nomenclature for the climate zones begins with the first letter for the broad climate type ("equatorial," "arid," "warm temperate," "snow," and "polar" for A, B, C, D, and E, respectively), then denotes the intra-annual precipitation and temperature characteristics (if applicable) within those zones in the second and third letters, respectively [7].
Table S2: List of USCRN Stations in Climatically Representative Sample

Station Name	City	State	WBAN	Lat (˚N)	Lon (˚E)	Climate
AL_FAIRHOPE_3_NE	Fairhope	AL	63869	30.5485	-87.8757	Cfa
AR_BATESVILLE_8_WNW	Batesville	AR	23904	35.8201	-91.7812	Cfa
AZ_ELGIN_5_S	Elgin	AZ	53132	31.5907	-110.5087	BSh
AZ_WILLIAMS_35_NNW	Williams	AZ	53155	35.7552	-112.3374	Dsb
AZ_YUMA_27_ENE	Yuma	AZ	53154	32.8350	-114.1884	BWh
CA_BODEGA_6_WSW	Bodega	CA	93245	38.3208	-123.0747	Csa
CA_FALLBROOK_5_NE	Fallbrook	CA	53151	33.4392	-117.1904	BSk
CA_MERCED_23_WSW	Merced	CA	93243	37.2381	-120.8825	BSk
CA_REDDING_12_WNW	Redding	CA	04222	40.6507	-122.6068	Csa
CA_YOSEMITE_VILLAGE_12_W	Yosemite Village	CA	53150	37.7592	-119.8208	Csa
CO_BOULDER_14_W	Boulder	CO	94075	40.0354	-105.5409	Dfc
CO_CORTEZ_8_SE	Cortez	CO	03061	37.2553	-108.5035	Dfa
CO_DINOSAUR_2_E	Dinosaur	CO	94082	40.2446	-108.9677	Dfb
CO_LA_JUNTA_17_WSW	La Junta	CO	03063	37.8639	-103.8224	BSk
CO_MONTROSE_11_ENE	Montrose	CO	03060	38.5440	-107.6928	BSk
CO_NUNN_7_NNE	Nunn	CO	94074	40.8066	-104.7552	BSk
GA_BRUNSWICK_23_S	Brunswick	GA	63856	30.8078	-81.4596	Cfa
GA_NEWTON_11_SW	Newton	GA	63829	31.1923	-84.4465	Cfa
GA_WATKINSVILLE_5_SSE	Watkinsville	GA	63850	33.7837	-83.3896	Cfa
IA_DES_MOINES_17_E	Des Moines	IA	54902	41.5562	-93.2855	Dfa
ID_ARCO_17_SW	Arco	ID	04126	43.4621	-113.5560	Dfb
ID_MURPHY_10_W	Murphy	ID	04127	43.2044	-116.7505	BSk
IL_CHAMPAIGN_9_SW	Champaign	IL	54808	40.0528	-88.3729	Dfa
IL_SHABBONA_5_NNE	Shabbona	IL	54811	41.8430	-88.8513	Dfa
IN_BEDFORD_5_WNW	Bedford	IN	63898	38.8882	-86.5707	Dfa
KS_MANHATTAN_6_SSW	Manhattan	KS	53974	39.1027	-96.6098	Dfa
KS_OAKLEY_19_SSW	Oakley	KS	03067	38.8701	-100.9627	BSk
KY_BOWLING_GREEN_21_NNE	Bowling Green	KY	63849	37.2504	-86.2325	Cfa
KY_VERSAILLES_3_NNW	Versailles	KY	63838	38.0945	-84.7465	Cfa
LA_LAFAYETTE_13_SE	Lafayette	LA	53960	30.0918	-91.8731	Cfa
LA_MONROE_26_N	Monroe	LA	53961	32.8833	-92.1165	Cfa
ME_LIMESTONE_4_NNW	Limestone	ME	94645	46.9601	-67.8833	Dfb
ME_OLD_TOWN_2_W	Old Town	ME	94644	44.9281	-68.7006	Dfb
MI_CHATHAM_1_SE	Chatham	MI	54810	46.3345	-86.9200	Dfb
MI_GAYLORD_9_SSW	Gaylord	MI	54854	44.9080	-84.7203	Dfb
Station Name	City	State	WBAN	Lat ('N)	Lon ('E)	Climate¹
------------------------------	----------	-------	-------	-----------	-----------	----------
MN_GOODRIDGE_12_NNW	Goodridge	MN	04994	48.3055	-95.8744	Dwbb
MN_SANDSTONE_6_W	Sandstone	MN	54932	46.1135	-92.9936	Dfb
MO_CHILlicothe_22_ENE	Chillicothe	MO	13301	39.8668	-93.1470	Dfba
MO_Joplin_24_N	Joplin	MO	23908	37.4277	-94.5829	Cfa
MO_Salem_10_W	Salem	MO	23909	37.6344	-91.7226	Dfa
MS_Holly_Springs_4_N	Holly Springs	MS	23803	34.8223	-89.4348	Cfa
MS_Newton_5_ENE	Newton	MS	63831	32.3378	-89.0703	Cfa
MT_Lewistown_42_WSW	Lewistown	MT	04140	46.8847	-110.2895	BSbk
MT_St._Mary_1_SSW	St. Mary	MT	04130	48.7412	-113.4330	Dfb
MT_Wolf_Point_29_ENE	Wolf Point	MT	94060	48.3082	-105.1018	BSbk
NC_Asheville_13_S	Asheville	NC	53878	35.4185	-82.5567	Cfa
ND_Jamestown_38_WSW	Jamestown	ND	54937	46.7702	-99.4778	Dfb
ND_Medora_7_E	Medora	ND	94080	46.8946	-103.3769	Dfb
ND_Northgate_5_ESE	Northgate	ND	94084	48.9676	-102.1702	Dfb
NE_Harrison_20_SSE	Harrison	NE	94077	42.4247	-103.7363	BSbk
NE_Lincoln_8_ENE	Lincoln	NE	94995	40.8484	-96.5651	Dfa
NE_Whitman_5_ENE	Whitman	NE	94079	42.0680	-101.4450	Dfa
NH_Durham_2_N	Durham	NH	54794	43.1716	-70.9277	Dfb
NM_Las_Cruces_20_N	Las Cruces	NM	03074	32.6137	-106.7414	BSbk
NM_Los_Alamos_13_W	Los Alamos	NM	03062	35.8584	-106.5214	Dfb
NM_Socorro_20_N	Socorro	NM	03048	34.3557	-106.8859	BSbk
NV_Baker_5_W	Baker	NV	53138	39.0118	-114.2090	BSbk
NV_Mercury_3_SSW	Mercury	NV	53136	36.6240	-116.0225	BWh
NY_Ithaca_13_E	Ithaca	NY	64758	42.4401	-76.2462	Dfb
NY_Millbrook_3_W	Millbrook	NY	64756	41.7857	-73.7422	Dfb
OK_Goodwell_2_SE	Goodwell	OK	53182	36.5682	-101.6097	BSbk
OR_Coos_Bay_8_SW	Coos Bay	OR	04141	43.2718	-124.3186	Csb
OR_Corvallis_10_SSW	Corvallis	OR	04236	44.4185	-123.3257	Csb
OR_John_Day_35_WNW	John Day	OR	04125	44.5560	-119.6459	BSbk
OR_Riley_10_WSW	Riley	OR	04128	43.4711	-119.6917	BWk
PA_Avondale_2_N	Avondale	PA	03761	39.8953	-75.7861	Dfa
RI_Kingston_1_NW	Kingston	RI	54976	41.4911	-71.5413	Dfb
SC_Blackville_3_W	Blackville	SC	63826	33.3550	-81.3279	Cfa
SC_Mcclellanville_7_NW	McClellanville	SC	03728	33.1532	-79.3637	Cfa
SD_Aberdeen_35_WNW	Aberdeen	SD	54933	45.7115	-99.1296	Dfb
SD_Buffalo_13_ESE	Buffalo	SD	94081	45.5160	-103.3017	BSbk
SD_Pierre_24_S	Pierre	SD	94085	44.0194	-100.3530	Dfa
Station Name	City	State	WBAN	Lat (˚N)	Lon (˚E)	Climate¹
---------------------------------	------------	-------	------	-----------	-----------	----------
SD_SIOUX_FALLS_14_NNE	Sioux Falls	SD	04990	43.7346	-96.6222	Dfa
TX_BRONTE_11_NNE	Bronte	TX	03072	32.0408	-100.2495	Cfa
TX_MONAHANS_6_ENE	Monahans	TX	03047	31.6219	-102.8071	BSh
TX_MULESHOE_19_S	Muleshoe	TX	03054	33.9557	-102.7740	BSk
TX_PALESTINE_6_WNW	Palestine	TX	53968	31.7796	-95.7232	Cfa
TX_PANTHER_JUNCTION_2_N	Panther Junction	TX	22016	29.3483	-103.2093	BSk
TX_PORT_ARANSAS_32_NNE	Port Aransas	TX	23906	28.3045	-96.8230	Cfa
UT_BRIGHAM_CITY_28_WNW	Brigham City	UT	04138	41.6163	-112.5437	BSk
VA_CAPE_CHARLES_5_ENE	Cape Charles	VA	03739	37.2907	-75.9270	Cfa
VA_CHARLOTTESVILLE_2_SSE	Charlottesville	VA	03759	37.9975	-78.4656	Cfa
WA_QUINAULT_4_NE	Quinault	WA	04237	47.5139	-123.8120	Cfb
WA_SPOKANE_17_SSW	Spokane	WA	04136	47.4174	-117.5264	Dsb
WI_NECEDAH_5_WNW	Necedah	WI	54903	44.0604	-90.1737	Dfb
WV_ELKINS_21_ENE	Elkins	WV	03733	39.0130	-79.4743	Dfb
WY_LANDER_11_SSE	Lander	WY	94078	42.6754	-108.6686	Dfb
WY_MOOSE_1_NNE	Moose	WY	04131	43.6615	-110.7120	Dfc
WY_SUNDANCE_8_NNW	Sundance	WY	94088	44.5169	-104.4363	BSk

¹ Climate classification is based on the Köppen-Geiger climate classification system (Kottek et al. 2006).

Table S2: List of weather stations from the US Climate Reference Network database that were included in the climatically representative sample of stations in CONUS. The nomenclature for the climate zones begins with the first letter for the broad climate type (“equatorial,” “arid,” “warm temperate,” “snow,” and “polar” for A, B, C, D, and E, respectively), then denotes the intra-annual precipitation and temperature characteristics (if applicable) within those zones in the second and third letters, respectively [7].
Table S3: List of Equations for User-Derived Meteorological Variables

Variable	Dataset	Expression	Units	Notes
RH_{min} (%)	ISD-Lite	$100 \cdot \frac{e\left(\frac{17.625 \cdot T_D}{243.04 \degree C + T_D}\right)}{e\left(\frac{17.625 \cdot T}{243.04 \degree C + T}\right)}$	T, T_D in °C	Minimum based on hourly values
RH_{max} (%)	PRISM	$100 \cdot \left[610.94 \text{ Pa} \cdot \frac{e\left(\frac{17.625 \cdot T_{\text{max}}}{243.04 \degree C + T_{\text{max}}}\right)}{e\left(\frac{17.625 \cdot T}{243.04 \degree C + T}\right)} - VPD_{\text{max}}\right]$	T_{max} in °C	Assumes RH_{min} occurs at T_{max}
	Daymet	$100 \cdot \frac{e\left(\frac{17.625 \cdot T_{\text{min}}}{237.3 \degree C + T_{\text{min}}}\right)}{e\left(\frac{17.625 \cdot T}{237.3 \degree C + T}\right)}$	$T_{\text{min}}, T_{\text{max}}$ in °C	Assumes $T_D = T_{\text{min}}$ all day
RH_{mean} (%)	ISD-Lite	$100 \cdot \frac{e\left(\frac{17.625 \cdot T_D}{243.04 \degree C + T_D}\right)}{e\left(\frac{17.625 \cdot T}{243.04 \degree C + T}\right)}$	T, T_D in °C	Mean based on hourly values
	PRISM	$100 \cdot \frac{e\left(\frac{17.625 \cdot T_{\text{mean}}}{243.04 \degree C + T_{\text{mean}}}\right)}{e\left(\frac{17.625 \cdot T}{243.04 \degree C + T}\right)}$	$T_{\text{mean}}, T_{\text{mean}}$ in °C	Assumes daily RH_{mean} occurs at T_{mean}
	Daymet	$100 \cdot \frac{e(T_{\text{mean}})}{610.78 \text{ Pa} \cdot e\left(\frac{17.625 \cdot (0.606 \cdot T_{\text{max}} + 0.394 \cdot T_{\text{min}})}{237.3 \degree C + (0.606 \cdot T_{\text{max}} + 0.394 \cdot T_{\text{min}})}\right)}$	$T_{\text{max}}, T_{\text{min}}$ in °C	Assumes daily RH_{mean} occurs at T_{mean}
AH_{mean} (g/m³)	ISD-Lite	$\frac{216.68 \cdot \frac{g \cdot K}{\text{hPa} \cdot \text{m}^3} \cdot 6.1094 \text{ hPa} \cdot e\left(\frac{17.625 \cdot T_D}{243.04 + T_D}\right)}{T + 273.16}$	T, T_D in °C	Mean based on hourly values
	USCNR	$\frac{216.68 \cdot \frac{g \cdot K}{\text{hPa} \cdot \text{m}^3} \cdot 0.061094 \cdot RH \cdot e\left(\frac{17.625 \cdot T_D}{243.04 + T_D}\right)}{T + 273.16}$	RH in % T in °C	Mean based on hourly values
	PRISM	$\frac{216.68 \cdot \frac{g \cdot K}{\text{hPa} \cdot \text{m}^3} \cdot 6.1094 \cdot e\left(\frac{17.625 \cdot T_{\text{mean}}}{243.04 + T_{\text{mean}}}\right)}{T_{\text{mean}} + 273.16}$	$T_{\text{mean}}, T_{\text{mean}}$ in °C	Assumes daily AH_{mean} occurs at T_{mean}
	Daymet	$\frac{2.1668 \cdot \frac{g \cdot K}{\text{Pa} \cdot \text{m}^2} \cdot e(T_{\text{mean}})}{T + 273.16}$	e(T_{mean}) in Pa T in °C	Assumes daily AH_{mean} occurs at T_{mean}
Table S3: Equations used to derive relative humidity (RH) and absolute humidity (AH) using variables provided by the four datasets. USCRN stations report RH directly. An equation for RH_{max} is not included for Daymet because the Daymet algorithm assumes that the dew-point temperature is equal to the minimum temperature throughout the day [3]; RH_{max} for every day is assumed to be 100%. All of these equations are given in their simplified forms; constants that cancel out have been removed, when applicable. Constants in the RH equations differ slightly for Daymet: the values are 610.94 Pa, 17.625 (unitless), and 243.04°C for PRISM and first-order stations in ISD-Lite [1, 4], but 610.78 Pa, 17.269 (unitless), and 237.3°C for Daymet [3]. The leading constant in the AH equations is the inverse of the gas constant for water vapor [6].
References

1. Lawrence MG. The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. B Am Meteorol Soc 2005; 86: 225-233.

2. Davis RE, McGregor GR, Enfield KB. Humidity: a review and primer on atmospheric moisture and human health. Environ Res 2016; 144: 106-116.

3. Thornton PE, Running SW, White MA. Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 1997; 190: 214-251.

4. Daly C, Smith JI, Olson KV. Mapping atmospheric moisture climatologies across the conterminous United States. Plos One 2015; 10.

5. McEvoy DJ, Mejia JF, Huntington JL. Use of an observation network in the Great Basin to evaluate gridded climate data. J Hydrometeorol 2014; 15: 1913-1931.

6. Showalter AK. Evaporative capacity of unsaturated air. Water Resour Res 1971; 7: 688-691.

7. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorol Z 2006; 15: 259-263.