Physical Characterization of the “Immunosignaturing Effect”*

Phillip Stafford‡†, Rebecca Halperin‡, Joseph Bart Legutki‡, Dewey Mitchell Magee‡, John Galgiani§, and Stephen Albert Johnston‡

Identifying new, effective biomarkers for diseases is proving to be a challenging problem. We have proposed that antibodies may offer a solution to this problem. The physical features and abundance of antibodies make them ideal biomarkers. Additionally, antibodies are often elicited early in the ontogeny of different chronic and infectious diseases. We previously reported that antibodies from patients with infectious disease and separately those with Alzheimer’s disease display a characteristic and reproducible “immunosignature” on a microarray of 10,000 random sequence peptides. Here we investigate the physical and chemical parameters underlying how immunosignaturing works. We first show that a variety of monoclonal and polyclonal antibodies raised against different classes of antigens produce distinct profiles on this microarray and the relative affinities are determined. A proposal for how antibodies bind the random sequences is tested. Sera from vaccinated mice and people suffering from a fungal infection are individually assayed to determine the complexity of signals that can be distinguished. Based on these results, we propose that this simple, general and inexpensive system could be optimized to generate a new class of antibody biomarkers for a wide variety of diseases. Molecular & Cellular Proteomics 11: 10.1074/mcp.M111.011593, 1–14, 2012.

The effort to make medicine preventative should include the development of systems to detect disease before the appearance of major symptoms. The value of early detection is widely accepted and has been the spur to develop new biomarkers of disease that enable earlier diagnosis and treatment. Over 100,000 biomarkers have been reported in the literature to date 1 yet there are only 43 approved by the FDA 2 including 19 genomic markers 3. This low return on investment for biomarker discovery suggests that new approaches are needed. Here we characterize a method that has been proposed as an alternative strategy for biomarker discovery.

Discovery of biomarkers for early diagnosis of disease poses exceptional demands. For example, in the case of cancer, in order to detect the small number of cells in an early tumor one has to overcome the blood dilution problem. For example, if 10^5 initiating cancer cells release 1000 molecules each of a biomarker into five liters of blood at steady state, the concentration of this biomarker would only be 3×10^{-14} m. Clearly, it would be an advantage if the response to the biomarker could be amplified. Antibodies are ideal in this sense. An activated B cell produces 5000–20,000 antibodies per minute 4, 5 and the cell itself replicates every ~ 70 h 6 with a lifespan of up to 4 1/2 months 7, 8 leading to 10^{11} amplification of a specific signal in 1 week. Unpurified antibodies are stable in blood, unlike other biomarkers, opening up the possibility of testing historical samples 9.

There are three key issues relative to using antibodies as biomarkers of early disease. Do they respond to diseases other than infections? Do they respond early in the course of disease? Can these antibodies be identified with a simple and inexpensive detection system? There are reports in diabetes 10, arthritis 11, and cancer 12 that the humoral response is activated specifically and early in these chronic diseases. A number of autoantibodies have been identified that appear months or years before the disease is first diagnosed 13–15. In the case of Type I diabetes, antibodies against GAD, IA2 and insulin are found in various combinations well before the onset of clinical disease 16. In patients with paraneoplastic syndrome, specific neurological symptoms appear years before a cancer is detected 17–19. The immune response to the nascent tumor reacts with neurons to elicit neurological symptoms 20 that correlate with future tumor appearance. These examples for cancer, diabetes and arthritis also address the second issue: is there an immune response among different individuals that appears early in patients with the same disease? The fact that the same autoantigens, or symptoms in the case of paraneoplastic syndrome, commonly occur indicates that antibodies might also be consistent across patients.

The third issue, and the one we address here, is how to detect the informative antibodies in an efficient and simple way. Most antibody biomarkers were the product of arduous research. Protein microarrays have facilitated this process 21 by immobilizing most of the proteins from a pathogen or...
human onto a glass slide, but these arrays are expensive, exclude non-transcribed antigens, and are pathogen or autoantibody specific. The ProtoArray™ v5 of Invitrogen currently has ~9000 unique human proteins; these can detect autoantigens associated with a specific disease. However, only autoantigens can be discovered and the cost impedes epidemiology-sized studies. A more complicated approach has been to biochemically fractionated cellular proteins, spot and then react these fractions with patient sera 22. Although this method does use authentic material, it is limited by having no control over the relative amounts of proteins spotted, and it requires cells from the case subjects’ own tissue.

Screening for antibody reactivity to random peptides has been generally successful when using phage or mRNA display of random 8–12 amino acid sequences. Pasqualini and Ruoslahti 23 panned a phage library against sera from cancer and healthy subjects to find phage that were preferentially bound by the cancer associated antibodies. This method is unbiased as to the nature of the antigen, and the antibody can eventually be captured (if arduously). Given that random sequence peptides can yield mimotopes of almost any type of antigen 24, any disease-associated antigen could theoretically be detected. However promising this method appeared, to date this approach has not produced disease biomarkers for a number of reasons. A serious limitation is that the recurrent panning of the phage is subject to many influences besides just binding of the antibody, it does not lend itself to large numbers of samples, and there is no simple way to measure intermediate or low binding.

In order to discover and display relevant antibodies contained in the 10^{10} antibody complexity in humans, we explored a technology (PCT/US2010/039269, “Compound Arrays for Sample Profiling”) for antibody biomarker discovery that combines simple, rapid and inexpensive assays from microarrays with the enhanced breadth of the ligand repertoire found in phage-based systems. We created microarrays with only 10,000 random sequence peptides but chose a relatively long length (17 amino acids + 3 residue linker) to allow each peptide to encompass much more complexity than typical epitope peptides. The random sequences allow an unbiased display of antibody binding; the length provides many possible epitope positions per peptide and (potentially) allows for some structural complexity. The array format allows the assay to be run without the biological complications of phage display and high-speed piezo printing onto commercially produced substrate allows thousands of microarrays to be consistently produced each month. We recently demonstrated the potential utility of these arrays by immunosignaturing vaccines, infections, and Alzheimer’s disease 25,26. In order to utilize this technology as a clinical diagnostic, we must first characterize the physical and chemical properties of antibody binding to these peptide microarrays.

Physical Characterization of the “Immunosignaturing Effect”

MATERIALS AND METHODS

Peptide Synthesis and Microarray Construction—The peptide microarray consists of 10,000 20-residue peptides of 17 random sequence amino acids, with a fixed C-terminal linker of Gly-Ser-Cys-COOH, synthesized by Alta Biosciences, Birmingham, UK. The synthesis scale was 2.5 μM (~1 mg total at 75% purity) with 2% of the peptides tested at random by mass spectrometry. Dry peptide was brought up in 100% dimethyl formamide until dissolved, then diluted 1:1 with purified water pH 5.5 + 0.5 × phosphate-buffered saline (PBS) pH 7.2 to a final concentration of −1 mg/mL for printing. Gold Seal glass microscope slides were obtained from Fisher (Fair Lawn, NJ, cat# 3010) and treated with aminoalkane, activated with sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) (Pierce Biotechnology, Rockford, IL) to create a maleimide-activated surface designed to react with the peptide’s terminal cysteine. Spotting was initially done with an ArrayIt Nanoprint 60 using 48 Telechem SMP2 style 946 titanium pins that deposit ~500 pL of peptide per spot. The spotting environment is 25 °C, 55% humidity. Fluorescent fiducials are applied asymmetrically using Alexa-647 and Alexa-555-labeled bulk peptides. Slides are stored under argon at 4 °C until used. Currently arrays are piezo-printed at Applied Microarrays (Tempe, AZ). Quality control consists of imaging the arrays by laser scanner (Perkin-Elmer ProScanArray HT, Perkin Elmer, Wellesley, MA) at 647 nm to image the spot morphology. Print batches have <30% CV (coefficient of variance) average across all peptides. Data extraction uses GenePix Pro 6.0 (Molecular Devices Inc., Sunnyvale, CA), data analysis uses R and GeneSpring 7.2 (Agilent, Santa Clara, CA).

Binding Sample to Microarrays—Slides were blocked with 1 × PBS, 3% bovine serum albumin, 0.05% Tween 20, 0.014% β-mercaptoethanol for 1 h at 25 °C in a darkened humidified chamber, then sera or antibodies were diluted in 3% bovine serum albumin, 1 × PBS, 0.05% Tween 20 pH 7.2 to a 10 nm concentration for monoclonal antibodies or a 1:500 dilution for mouse and human sera, and allowed to bind for 1 h at 37 °C at 20 RPM rotation to the microarray surface. Later slides (Figs. 8 and 9) were processed using the Tecxan HS4800 Pro Hybridization Station (Tecan AG, Männedorf, Switzerland) using custom programs that mirrored these manual steps. Slides were washed 3 × 5′ with 1 × tris-buffered saline, 0.05 Tween20 pH 7.2 followed by 3 washes with distilled water. The slides were dried by centrifugation and images were recorded using the Agilent ‘C’ Scanner at 100% laser power (SHG-YAG laser@532 nm or HeNe laser@633 nm), 70% PMT. For PepPerPrint microarrays (Fig. 5), incubations, scans and alignments were performed exactly as for the immunosignaturing microarrays with the exception that human serum was added at 1:50 concentration rather than 1:500, per manufacturer’s recommendation.

Antibody Detection—Each antibody or IgG fraction was detected by biotinylated secondary antibody followed by streptavidin-conjugated Alexafluor 555 or 647 (see Table I for antibodies used). Secondary antibodies were incubated at a concentration of 5 nm, streptavidin at a concentration of 1 nm. Single-color experiments were performed exclusively, but dye choice depended on availability. Detection wavelength did not affect resolution, dynamic range, or reproducibility. Direct-labeled antibodies were created for the Fc competition experiment (Fig. 6) using Lightning-Link antibody labeling kit (Pierce, Rockford, IL). Calorimetry was conducted using an N-ITC III (Calorimetry Sciences Corporation, Linden, UT). Injections of 10 μl of 1 ng/ml peptide were added to 50 μM solution...
TABLE I

List of antibodies used in Fig. 2, their epitope (if known), the isotype and source

Protein	Antibody	Epitope	Isotype	Company	Secondary
αTubulin	DM1A	AALEKD (387–392)	IgG1 kappa	Labvision	Invitrogen HL
p53 (Ab1)	PAb240	RHSV (212–217)	G1	LabVision	Invitrogen HL
p53 (Ab8)	DO-7, BP53–12	DLWKKL (21–26)	IgG2b, IgG2a	LabVision	Invitrogen HL
Interleukin2	LNKB-2	KPLEEVLNL (64–72)	IgG1	Santa Cruz Bio	Invitrogen HL
MHC class I	MHC	3D	IgG1	MBL Int’l	Bethyl
H1N1 coat protein	H1N1 1, 2 and 3	Unknown	IgG1	US Bio	Invitrogen HL
Transferrin	HTF-14	N-term of transferrin	IgG1	Abcam	Invitrogen HL
Transferrin	11D3	Unknown	IgG1	Abcam	Invitrogen HL
Transferrin	1C10	Unknown	IgG1	Abcam	Invitrogen HL
2E4	polyreactive		IgM	A. Notkins	Novus
B78	autoantibody	GAD65 protein	IgG1	A. Notkins	Novus
B96	autoantibody	GAD65 protein	IgG1	A. Notkins	Novus
Herceptin	HER2-NEU	Unknown	IgG1	Genentech	Novus
8 pooled		1C10, endorphin, IL2, TP, DM1A, p53AB1, p53Ab8, LNKB2			

Our basic premise is that the antibody profile from an individual reflects their health status. If this profile can be displayed on a sufficiently complex array, the particular responses to chronic diseases will be apparent. We manufactured microarrays onto which 10,000 random-sequence 20-mer peptides were printed. Each peptide is (from NH₃ to COOH termini) 17 residues of any amino acid except cysteine, followed by GSC as the linker. The GS amino acids offer rotational freedom and the C-terminal cysteine was used to attach the peptide to the surface through a maleimide linkage (Fig. 1, right) onto activated aminosilane slides, purchased from Schott, Inc. (Mainz, Germany). Because the peptides have no relationship to any natural sequence, the same array can be used to profile any disease, any species without synthesizing a new library of peptides. The sample is diluted, applied to the array and allowed to bind. The array is washed and detected with a fluorescently labeled secondary antibody to the appropriate primary antibody isotype. The array is washed, dried, and scanned using a conventional microarray scanner. Fig. 1 left shows the image of a typical slide: on the left, a naïve individual and right, a day-21 post-seasonal flu vaccine recipient. The insets show peptides that bind differentially.

RESULTS

We first asked whether well-characterized antibodies produce discernible profiles on the array and whether those profiles were unique. It has been reported in the literature that monoclonal antibodies do bind to random peptide sequences, however we wished to systematically validate the underlying principals behind this observation. In Fig. 2 the relative binding of antibodies to a subset of the peptides on the array is portrayed in a heatmap, where blue is low binding and red represents high binding. 272 peptides were selected by ANOVA with a 5% Family Wise Error Rate at $p < 1 \times 10^{-12}$, representing peptides that were consistently different across the antibodies listed in the figure.
The signals from these microarrays span >3 logs of dynamic range; technical replicates had correlation coefficients from 0.92 to 0.99 with an average CV (coefficient of variation) of 14% and a minimum detectable fold-change of 1.3-fold/3 technical replicates at the 95th percentile. We believe the binding to these arrays is largely driven by the interaction of the variable region of the antibody and the peptides for two reasons. First, the binding pattern for each antibody was different, even those from the same species. Second, when a directly labeled monoclonal antibody (p53Ab1, IL2 and 11D3 were tested) was competed with 10-fold excess Fc protein, there was no effect on the immunosignature.

How do the Antibodies Bind the Array?—It may seem surprising that monoclonal antibodies would bind strongly to noncognate peptides. One would expect that random peptides would have low affinity to a monoclonal. We have measured the solution phase affinity of peptides to antibodies using SPR and calorimetry and generally find that the peptide-antibody affinities are in the range of 10–100 μM, in line with previous reports 24 and sharply contrasted with affinities of 1–10 fm for some natural antibody-antigen pairs. Thus, another factor must be responsible for these apparently strong interactions at the surface of the microarray.

From Fig. 2 we determined that the p53Ab1 antibody appears to have high apparent affinity to many of the peptides on the array, even in the presence of a competing monoclonal. When the p53Ab1 was reacted with the array at various dilutions, one peptide in particular, ETRMIIKLAWET—dendrimeric surface (NSB Postech, Seoul, Korea) where the reactive sites are spaced 9 nm apart (NSB9) 34. As seen in Fig. 4, the relative binding on the 3 nm surface is on average 30–1000-fold less than on our standard aminosilane surface whereas the 9 nm surface could not

Fig. 1. Image of the peptide arrays. The microarray is created in a 2-up format, with 10,000 peptides on top and bottom of each slide. In this false-color image, human naive serum was applied to top the microarray (left), day 21 post-influenza vaccine serum was applied to the bottom (right). The yellow boxes in the small images indicate peptides that show differential binding. Spots are ~120 μm in diameter with intensity values ranging from ~100 to 65,000 relative fluorescence units. Correlation coefficients across technical replicates are typically 0.95 to 0.99. The attachment chemistry is shown on the right with an example peptide attached to the slide through the cysteine to maleimide linker.
support a generally detectable signal. We calculate that in theory the peptides may be as close as 1 nm apart on the aminosilane-coated surface based on the density of binding sites of activated aminosilane-coated glass. We conclude that the peptide density in the spot is contributing to the high relative affinity. When we examined three naïve versus three PR8 influenza-infected C3H/HEJ mice at day 28, we were unable to statistically distinguish these diseases from each other implying that immunosignaturing needs the high signal strength obtained by close packed peptides in order to obtain sufficient discrimination between disease states. To test this further, we obtained microarray slides from PepPerPrint GmbH (Heidelberg, Germany) with 4128 random-sequence 11mer peptides printed in duplicate (8256 total spots/slide) plus HA and FLAG epitopes that ring the array. These microarrays have been thoroughly described in the literature and are extremely high-quality microarrays that have been optimized for epitope analysis. We tested their ability to distinguish human serum (Fig. 5, left) and a monoclonal antibody (right) and found that even at 10× higher serum concentration than used on the immunosignature microarrays, there was little detectable signal and no way to distinguish disease status. The HA monoclonal bound the cognate epitope only with no detectable cross-reactivity to any other peptide. The spacing of the PEGMA/MMA polymer surface is estimated to be 9 nm (Volker Stadler, pers. comm.).

The high density of peptides could lead to high effective affinity by two nonexclusive mechanisms—cooperative binding or avidity. Cooperative binding could arise from two peptides binding one antibody through the interactions with each arm simultaneously. We tested whether bivalent binding was a significant binding mechanism by comparing the binding of an intact monoclonal to its Fab fragment. Overall binding was very similar between the Fab fragment of mouse monoclonal...
anti-HLA-G clone 87G and the intact IgG (Fig. 6). Based on this result we conclude that classic cooperativity plays a negligible role and avidity or antibody rebinding because of the high density of peptides may be sufficient to account for high relative local affinity. Our data suggests that this dominant effect is partly dependent on the exact peptide sequence and to a lesser degree on the peptide charge.

Distinguishing Signatures—A fundamental question underlying this approach is how the mixture of antibodies in serum may interact, or actively compete, for binding to the random peptides on the array. The observation that each monoclonal antibody we tested binds many different random-sequence peptides implies by simple projection that a collection of antibodies would bind at a generally high level to most peptides on the array. This further suggests that it would be difficult to distinguish a signature of one antibody in a very large collection of different specificities, as in immune serum. If all antibodies recognized the sequence space represented by the random peptides on the array approximately equally, given \(10^{10}\) specificities in the antibody repertoire, it would seem unlikely that specific antibodies would be recognized at all. An immunosignature of a disease or infection would only be evident if the antibodies produced in response to the disease/infection had higher affinity to the random peptides than the normal immunoglobulins in the sera of healthy people. To test this possibility, we diluted a high affinity commercial monoclonal antibody raised in mice against human TP53 (p53Ab1) into 10x and 100x excess immunoglobulin from healthy volunteers (Fig. 7). The left panel shows the baseline reproducibility \((r = 0.97)\) of two technical replicates. The center panel shows that the p53Ab1 signature is apparent even when diluted by highly complex antibody mixtures, suggest-
ing that antibodies in healthy serum are not directly compet-
ing for peptide binding sites of the p53 antibody at the rele-
vant concentrations. The panel on the far right shows the con-
tribution of IgG versus p53 antibody alone. When we mixed eight monoclonal antibodies together (Fig. 2) we saw a large number of high binding peptides; naïve human IgG seems to have reached a state where antibodies with strong affinity to specific random-sequence peptides are at a low concentration. This implies that high affinity antibodies, as would be produced against an infection or chronic disease, would stand out against the background binding of the bulk immunoglobulins in healthy people. This observation is im-
portant relative to the immunosignaturing concept and en-
ables the analysis that follows.

Analysis of Immunosignatures in a Model System—In order to examine critical aspects of immunosignaturing, we employed a controlled mouse model. Five mice were bled before and after genetic immunization with a plasmid encoding a protein from Chlamydia abortus, dnaX. We had demonstrated earlier that this protein elicits a robust immune response administered as a gene vaccine.30 In addition, five other mice were immunized with the dnaX plasmid plus a plasmid encoding lethal toxin (LT), a powerful genetic adjuvant.37 The control mice were mock immunized with plasmid alone, not

![Image of graphs and charts illustrating peptide binding and concentration](image-url)
encoding an antigen. The dnaX-immunized mice on day 14 post immunization showed on average 210 peptides that had significantly more binding than control mouse serum. A representation of the differences in the arrays is presented in Fig. 8 (top left) and the Venn diagram (lower left). This difference was accentuated when the LT adjuvant was used. We note that total binding to the array increased upon immunization and even further with immunization with adjuvant, even though the total amount of immunoglobulin was held constant by measure of total IgG. The use of the adjuvant increased binding to peptides that were high binders from the dnaX vaccine alone, as well as a set of new peptides that met the significance cutoff over the controls. Our presumption was that most of this additional binding was driven by antibodies against dnaX, with some against LT alone. In order to test this, the serum from the dnaX immunized mice was adsorbed with beads bearing the dnaX protein and then applied to the array. The control was the same serum adsorbed with an irrelevant protein (human Transferrin). As can be seen in Fig. 8 (top right), 35 of the 210 dnaX-specific peptides were reduced in intensity by the dnaX adsorption. This indicates that a specific immune response can be discerned on the random array.

Immunosignatures in Human Serum—An inbred mouse may have a much simpler repertoire of antibodies than a human. It is possible that this immune complexity in humans would hide the signature of a health-affecting event. To test this possibility we compared the immunosignatures of people with confirmed Valley Fever (elicited by Coccidioides immitis) to the immunosignatures of uninfected control individuals. As seen in Fig. 9, individuals with Valley Fever have peptides that are significantly more or less reactive against serum IgG in uninfected controls (“normal donors”) or persons who received a seasonal flu vaccine (“day 21 flu vaccine”). These data indicate that despite the complexity of the immunoglobulins in humans, it is possible to detect a specific immune response to a health disturbance.

Distinguishing a Simulated Multiple Infection—Lastly, we tested the concept raised in the monoclonal experiments, but with a more complex polyclonal response to a vaccine. Could we distinguish two different disease immunosignatures from the same physical sample? This is an important practical consideration since people may have several simultaneous conditions, such as two infections or chronic or autoimmune disease at the same time. Fig. 10 demonstrates the ability to distinguish a mixture of two complex “disease states,” simulated here by two different but separate vaccinations in BALB/c mice, and then a physical pooling of equal volumes from each cohort. A double vaccination was not done due to complex interplay within the host, and the desire to rigorously
test only the sensitivity parameters of the microarray without imposing additional variances. Either KLH or a random-sequence peptide (PARYANANGRLTGLIGSC) were used to vaccinate two different groups of three mice each. The 6-week immune serum for each was incubated on the 10K microarray, and an additional array was tested with a 50:50 mix. The scatterplots in Fig. 10 show 30 peptides from KLH (p < 1.04 × 10^{-8} versus naïve serum) and 30 peptides from PARY-immunized peptide (p < 8.68 × 10^{-11} versus naïve). Each scatterplot represents the average of the three mice, one microarray per mouse. The heatmap on the bottom is a visualization of the trend using only the top 30 of the 60 total peptides that by ANOVA discriminate the disease classes (p < 5.24 × 10^{-11}).

DISCUSSION

We have examined several basic aspects of the immunosignaturing concept using an array of 10,000 relatively long peptides of random sequence. We first showed that all types of monoclonal antibodies tested produced a distinct pattern of binding to these random peptides. This effect has a number of clinical implications, but rather than base a diagnostic on a phenomenon, we investigated the mechanism of binding, providing evidence that the antibody signal we observe is enhanced due to the high peptide density. A notable finding if this technology were to be used as a diagnostic was that the signature of a high affinity antibody was unchanged in the presence of excess immunoglobulin from healthy people. This implies that it may be possible to discern newly devel-
opposing, high affinity immune responses - responses that evolve presymptomatically in many cases. To test this we compared the serum of mice immunized with a gene vaccine for dnaX to controls and found that there was a clear immunization signal. This general effect has been demonstrated by Merbl et al. 38 in mice with implanted cancer cells, but not on the scale we have demonstrated; their effect was observed but not characterized. A portion of the dnaX immunization signature we identified was due to antibodies against the dnaX protein, a critical consideration when considering possible sources of noise. We demonstrated that signatures could be detected in human sera, showing that people with Valley Fever infections have immunosignatures distinct from non-infected individuals. Finally, we demonstrated that two different disease signatures could theoretically be distinguished in the same person.

It has previously been demonstrated that antibodies bind to peptides of random amino acid sequence on arrays 31, 32, 38. In general, the feature complexity of arrays reported to date has been less than half the complexity of the peptide microarray used in these studies, in many cases far less. The 17aa variable region of 10,000 peptides could encode all possible 3mers and 4mers and 20% of all 5mers if designed with non-overlapping sequences. We are unable to ascertain whether significant secondary or tertiary structures would exist in these peptides, but in silico prediction suggest that the majority of these peptides are not folded or are only transiently non-linear. Even more importantly, these peptides have no significant regions of similarity to any peptides in on-line sequence databases. A number of 5-mer motifs from our peptides appear in Swissprot and NCBI, but most antibodies bind regions of 6–11aa. It would be improbable that epitope-like recognition would be detectable. It is unsurprising then, that each antibody would have only weak affinity to a particular peptide, as we have found. Yet, we demonstrated that most of the 18 monoclonal antibody tested bind hundreds of peptides on the array with a dynamic range near 3 logs with high reproducibility. When an actual monoclonal epitope is printed on the array, the cognate antibody binds that peptide extremely well (Fig. 5) but it does not bind that peptide alone. Despite the weak solution-phase affinity of antibodies to random sequence peptides, the random peptides on our microarray bind in unique and reproducible patterns to most any immunoglobulin molecule.

A number of different classes of monoclonals and affinity purified polyclonal antibodies were tested on the peptide microarray. This included antibodies raised to sugars, proteins modified with phosphates, conformational epitopes and haptens. All tested antibodies produced a distinct and reproducible pattern of binding. Polyreactive antibodies were unusual in that they tended to bind thousands of peptides at a moderate level, while most other monoclonals bound less than 200 different peptides but with relatively high intensity. We investigated whether protein microarrays would work the same way; we tested 11 different monoclonals on a commercial human protein microarray (Protoarray® from Invitrogen, Carlsbad, CA) and in each case the cognate protein or a near-identical family member had the strongest signal (27). The peptide microarray described here produces unique and discernible signals for antibodies to every antigen tested so far.

It has been reported that aligning random sequence peptides bound by a monoclonal antibody against the protein immunogen could deduce the epitope that elicited the antibody 39. We have also found that this is possible, in some circumstances, even with only 10,000 random sequence peptides. By aligning the peptides bound from the dnaX serum using CLUSTAL, it was possible to map discontinuous (3–4 residues) portions of the immunogenic peptides onto the dnaX protein. This method works best when a fairly small protein is used as the immunizing antigen, or if the search space of possible target proteins can be restricted by size, species, or protein family. A monoclonal antibody may bind mimotopes on the array as well as or better than its cognate sequence (Fig. 3 in 31), which complicates this process. This
article shows that, even with substantial noncognate targets, exact epitopes can occasionally be found. However, the absence of direct information about the antigen that raised the immune response is a limitation of the immunosignaturing approach. Although arduous, it is feasible to use the high-binding peptides from the microarray to affinity purify antibodies from patient serum which can then be used to isolate the antigen from tissue lysate. We accomplished this using a simple murine influenza virus model (25). We also demonstrated that the dnaX protein adsorbed the antibodies that made up the dnaX immunosignature (Fig. 8). This same approach could be used to test candidate antigens for any immunosignature. Additional information is contained in isotypes. We have found that certain peptides bind to immunoglobulin isotypes specifically. Typically we use pan-isotype secondary antibodies, but we also examined peptides that bound serum from day 21 immunized dnaX mice and found that the IgG1 and IgG2a ratios differed across a fixed range. The IgG1/IgG2a ratio can be a marker for Th1 and Th2 lymphocytes, and other isotypes can be tested simultaneously (25) with multiple fluorophores. IgM, IgA or IgE have the capacity to be more discerning than IgG in some disease states.

Relative to using these arrays for assaying human serum, we present a preliminary example, but we have found that the approach works well for many types of diseases. We show that people infected with Coccidioides immitis (Valley Fever) have signatures distinct from healthy controls and from people that received the seasonal flu vaccine (Fig. 9). A biomarker study typically requires thousands of cases and controls for validation, but these results suggest that immunosignatures
of infected persons are highly consistent even across varied genetic backgrounds and HLA types, reducing the required cohort considerably. This technology may lend itself to very large scale studies since the arrays are relatively inexpensive to print and can be processed in standard automated systems at \sim1.50 per sample for reagents.

A second favorable feature is that the technology is amenable to utilizing archived samples because of the stability of antibodies and the small amount (1 ul) of serum required. The human samples used in this study were all from frozen samples. We tested fresh serum, fresh plasma, frozen serum and frozen plasma from the same volunteer with almost no discernible differences (correlation coefficient 0.96, Chase et al., in revision). The most high-throughput application might be screening a population with a known disease, selecting the most discriminating peptides, and printing those in a 24-up format (http://arrayit.com/Products/Microarray_Tools/Multi-Well_Microarrays/multi-well_microarrays.html) enabling extremely low per-assay cost.

We have noted an unexpected aspect of the immunosignatures: sera from infected individuals demonstrate generally higher reactivity for some peptides, but some peptides indicate less reactivity relative to normal controls (Fig. 8). Such a difference would not be detectable in standard ELISA assays, but may be illustrating an immunologically relevant effect. In mouse models of infection this phenomenon is due to decreased humoral reactivity over time. In the human samples where only one time point is available we cannot readily determine if the lack of some portion of total humoral immune reactivity is a product of the disease or a precondition for the disease. Either case is testable, and would be of considerable interest to disease specialists.

A primary focus of this manuscript is to describe why immunosignaturing works the way it does. We examined slides which allowed spacing peptides at a fixed distance from one another on a microarray surface (POSTech, Seoul, Korea). We found that increasing the peptide distance caused a pronounced fall-off in detectable signal. At the widest spacing of 9 nm, we completely lost the ability to distinguish flu-infected and naïve mice, implying that a certain percentage of peptides need to respond above background levels. When we tested a commercial microarray known for high-quality epitope peptides (PepPerPrint, Heidelberg, Germany), we found that the random-sequence peptides constructed by PepPerPrint had virtually no cross-reactivity, even to the same monoclonal that bound hundreds of random sequence peptides on the immunosignature microarray. We surmise that the density of peptide on the surface of the microarray creates a combination of local avidity, rebinding and trapping that enhances the “immunosignature effect.” Peptide arrays which are optimized for minimal cross-reactivity may be unsuitable for immunosignaturing, but are best for epitope mapping.

We envision several potential applications of these arrays. First, identification of peptides that detect disease-specific biomarker antibodies for clinical applications: the diagnostic peptides for a given disease could be used in a printed array format, on SPR surfaces, or for ELISA. Alternatively, disease-specific peptides could be used to purify the antibodies that
bind to them. Those antibodies could then pull down the original antigen from a tissue lysate. That antibody could then be the biomarker. It may even be possible to use the microarray described here to continuously monitor healthy individuals for a change in health status in an unbiased manner. We have shown that a person’s healthy signature, while often quite different from other healthy signatures, is remarkably self-consistent over time until that person becomes ill or receives a vaccine (data not shown, publication in preparation). Once a person is immunized, or becomes ill, the immunosignatures become quite homogenous, reflecting that canonical disease signature.

In summary, we present fundamental aspects of immunosignaturing: a simple, inexpensive technology for profiling antibody complexity in blood. We anticipate that this format will have broad applicability in research and diagnostics.

Acknowledgments—Serum samples were obtained as a generous gift from the University of Arizona Valley Fever Center for Excellence. We thank Muskan Kukreja for the mixing experiments and PepPerPrint (www.pepperprint.com) and Volker Stadler for the in situ synthesized microarrays. The immunosignature microarrays are available for purchase from www.peptidearraycore, and have NCBI accession number GPL14921.

* This work was supported by TRIF funds from the state of Arizona.
¶ To whom correspondence should be addressed: Biodesign Institute, Center for Innovations in Medicine, Arizona State University, Tempe, AZ 85287. E-mail: Phillip.Stafford@asu.edu.
in order to cite this article properly, please include all of the following information: Stafford, P., Halperin, R., Legutki, J. B., Magee, D. M., Galgiani, J., and Johnston, S. A. (2012) Physical Characterization of the “Immunosignaturing Effect”. Mol. Cell. Proteomics 11(4):M111.01593. DOI: 10.1074/mcp.M111.01593.