Cutaneous alternariosis in a renal transplant patient successfully treated with posaconazole: Case report and literature review

Rajinder Bajwa, Amy L. Wojciechowski, Chiu-Bin Hsiao

ABSTRACT

Cutaneous alternariosis is an uncommon fungal infection that most commonly presents in organ transplant patients on immunosuppressive therapy. There are no clinical trials or guidelines to guide treatment of this condition, however itraconazole is the most commonly used antifungal in published cases. Here we report on a case of cutaneous alternariosis in a renal transplant recipient treated with a newer antifungal, posaconazole. A review of published reports of cutaneous alternariosis since 2008 is also discussed.

1. Introduction

Skin lesions are common in organ transplant recipients who are on immunosuppressive therapy. Almost all cases require a biopsy to confirm the etiology, as there are a variety of infectious and non-infectious causes of the skin lesions in this patient population. We recently saw a pancreatic-renal transplant patient who presented with cutaneous alternariosis. Infection with *Alternaria* spp. is relatively uncommon and has been primarily described in case reports and small case series, with the last major review reported in 2008 [1]. Therefore, in this report we summarize the clinical findings from reports since 2008. Further, there are no randomized trials that address treatment of cutaneous alternariosis. Although itraconazole has been used most commonly, there have been case reports of failure or relapse with that agent [2]. Newer antifungal agents have started to gain popularity in treating cutaneous alternariosis [3–6], including our case which was successfully treated with posaconazole.

2. Case

A 56 year old male with end stage renal disease secondary to type 1 diabetes mellitus (DM) and history of renal and pancreatic transplant presented to the clinic (day 0) with complaints of multiple non-pruritic lesions on his lower extremities. The patient stated that he first noticed the lesion three weeks prior to presentation as a single lesion on his left ankle with then progressed and spread to both lower extremities. The patient had undergone a cadaveric renal and pancreatic transplant five months prior to presentation. The transplanted kidney underwent acute rejection and was removed four months prior to presentation, necessitating reinstitution of hemodialysis. He was continued on his immunosuppressive therapy because of well-functioning pancreatic transplant. His immunosuppressive regimen included tacrolimus 2 mg in morning and 3 mg in evening, mycophenolate mofetil 540 mg twice daily and prednisone 5 mg daily. He was also on trimethoprim-sulfamethoxazole double-strength tablet three times a week as prophylaxis against opportunistic infections. Other medications included metoprolol for hypertension and erythropoietin injections for anemia.

On the day of presentation to the clinic, the patient’s physical examination was only remarkable for onychomycosis involving the toenails and multiple nodular, violaceous mildly tender skin lesions on his lower extremities up to the level of his knees. Some of these lesions had scabs associated with them (Fig. 1). Laboratory findings on day 0 revealed a white blood cell count of 3600/mm³ with a normal differential, a hemoglobin of 11.2 g/dL, a platelet count of 145,000/mm³, a creatinine of 5.4 mg/dL, a blood urea nitrogen of 21.1 mg/dL, normal liver function tests, and an erythrocyte sedimentation rate of 26 mm/h. His HIV serology was negative. A chest X-ray revealed clear lung fields.

One of the lesions was biopsied and the histopathology revealed a few fungal hyphae. Routine, fungal and mycobacterial cultures were requested. Fungal culture grew *Alternaria* that was not speciated (Figs. 2 and 3). As there was no evidence of systemic infection, a diagnosis of cutaneous alternariosis was made on day 14, and antifungal treatment was initiated with posaconazole 200 mg three times a day. By week 6, follow up visit revealed significant improve-
ment, with complete resolution by week 14. The patient was continued on posaconazole due to continued immunosuppression for the functioning pancreatic graft. The patient died 18 months after the diagnosis of cutaneous alternariosis because of unrelated causes without relapse of cutaneous fungal infection.

3. Discussion

Alternaria spp. are dematiaceous fungi, which are ubiquitous in nature. They infrequently cause human infection in immunocompetent patients [7]. However, as the number of immunocompromised patients has increased, so has the reported cases of alternariosis [8,9]. Since the first case report in 1933 [10], over 200 cases have been reported in the literature. Cutaneous infections represent the overwhelming majority of cases [1,11].

We have reviewed the literature published in English from 2008 to 2016 for case reports or case series on cutaneous alternariosis. Our search yielded 55 cases that are summarized in Table 1. This will supplement the comprehensive reviews of cases published by Lyke et al. in 2001 and Pastor and Guarro in 2008 [1,2]. In our review there are 15 females and 40 males with ages ranging from 13 to 85 years. Consistent with previous reports [1,2], cutaneous alternariosis of the extremities was the most common site of involvement.

3.1. Agent

The genus *Alternaria* is comprised of over 80 species. *A. alternata*, *A. infectoria*, *A. tenuissima* and *A. chartarum* cause the majority of infections. *Alternaria alternata* (59/156, 38%) followed by *A. tenuissima* (23/156, 15%) were the most frequent isolates described in a previous review (Pastor, 2008), however, in 55/156 (35%) cases a speciation was not performed. In our review of 55 cases since 2008, species determination was done in 36/55 (65%) cases with *Alternaria infectoria* implicated in 22/55 (40%) followed by *Alternaria alternata* in 11/55 (20%) and *Alternaria tenuissima* in 1/55 (1.8%) of cases, suggesting a possible shift in prevalence of each species over the past decade.

3.2. Risk factors

Most patients with cutaneous alternariosis have an immunocompromising condition, such as transplantation [12], collagen vascular disease (e.g. systemic lupus erythematosus (SLE)) [13], hematological malignancy [2], endogenous hypercortisolism and diabetes [2,12]. Rare cases have been described in hosts with no known immunocompromising conditions [14].

In our review of cases from 2008 to present, 39/55 (71%) patients had an organ transplant and were on multiple immunosuppressive agents when lesion/lesions occurred, six (11%) patients had hematological malignancies, and several had other conditions affecting the immune system. In seven (13%) patients no obvious immunosuppression was noted. This is in contrast to cases earlier than 2008, where only 51 out of 156 (33%) cases had an organ transplant, potentially due to the increasing number of organ transplant patients living today leading to a greater percentage of infected patients falling into this category.

3.3. Mode of acquisition and clinical features

Alternaria spp. are ubiquitous in distribution and are common soil saprophytes. The mode of acquisition is not always established, although minor skin trauma and subsequent inoculation appears to be a plausible route of entry [15]. The most common presentation is skin lesions [1,11]. Cutaneous alternariosis exists in two forms: epidermal type or dermal type depending on the depth of fungal invasion. In both types, the lesion usually appears on the exposed sites such as the dorsum of hands, forearms, knees and legs. Scaly infiltrated erythematous or ulcerative are seen with the epidermal type. The dermal type has been described as plaques with papules, pustules, crusts, and with the surface being more or less granular and atrophic. In some cases, pain is associated with the lesions [16]. Less common clinical syndromes reported with alternariosis include allergic sinusitis, hypersensitivity pneumonitis, osteomyelitis, keratitis, endophthalmitis, rhinosinusitis, onychomycosis, and peritonitis [1,2,7,17].

3.4. Diagnosis

The establishment of *Alternaria* spp. infection requires demonstration of fungal tissue invasion or recovery of the fungi from a sterile site.
This is important, as *Alternaria* spp. is ubiquitously present in the environment and thereby could contaminate the culture or could be colonizing, but not infecting, superficial tissue. *Alternaria* spp. usually, but not always, appear dark-walled on standard histopathologic stains. Cell wall melanin may be visible as a brownish-yellow color on hematoxylin-eosin (H & E) stain. If melanin is not evident on H & E stain, it can be identified using the Fontana-Masson method. However, culture is essential for the identification of *Alternaria* spp., since histologic findings are not pathognomonic. Morphology of the conidia is used for speciation of *Alternaria* spp. However clinically important species often lose their ability to sporulate and, thus, cannot be identified by microscopic examination. For this reason, molecular techniques are increasingly used to identify *Alternaria* spp. [1,18,19].

3.5 Treatment

There are no randomized controlled trials that have assessed the treatment of *Alternaria* spp. infections. In absence of any guidance
from controlled data, multiple therapeutic options have been used. Review of literature has identified itraconazole as the most commonly used antimicrobial. Outcomes appear to be satisfactory. Some series report its efficacy above 90% [2,17]. Doses ranging from 100 mg/day to 600 mg/day have been used, with the duration of therapy usually being in excess of two months. However, there have been reports of failure with itraconazole, even when in vitro data demonstrates susceptibility in vitro [2]. Voriconazole [19–21], fluconazole [22], Amphoterucin B [16,19], and terbinfine [22] have been used in few cases. Surgery alone has been reported to be successful in the case of localized, superficial lesions [23,24].

In our review, itraconazole was used alone as primary therapy in 20 of 55 patients, with the remaining 35 patients failing therapy and requiring use of additional agents. This 40% failure rate is much higher than previously reported, suggesting a possible increase in resistance to itraconazole [2,17]. The increase in reported failures may, however, be due to a reporting bias because unexpected failures are more likely to be reported than expected cures. In our series, initial combination therapy with itraconazole plus either surgery, cryotherapy, or another antifungal agent resulted in cure in seven of nine patients (78%). Initial use of other azole antifungals, either alone or in combination with other treatment modalities, had generally positive results. Voriconazole monotherapy or in combination with surgery or topical antifungals resulted in cure or improvement in 11 of 14 patients (79%). Fluconazole monotherapy or in combination with topical ciclopirox-olamine led to improvement or cure in all three reported cases. Posaconazole was used in two patients, in combination with either surgery or cryotherapy, and led to cure or improvement in both cases. Additionally, in two of the cases that saw initial improvement, but not cure, with voriconazole-based therapy, a change in antifungal to posaconazole yielded improvement in the skin lesions [5,5].

Cutaneous infection with Alternaria spp. is a well-described, though still relatively rare, complication in patients on immunosuppressive therapy due to solid organ transplant. Historically, itraconazole has been used most frequently to treat this infection; however it is not universally effective and it has certain disadvantages such as significant drug-drug interactions mediated by inhibition of cytochrome P450 enzymes. Voriconazole is another potential antifungal option that overcomes some of the disadvantages of itraconazole, particularly with regard to drug-drug interactions. Our case series demonstrates that itraconazole can be used successfully as a first line treatment of cutaneous alternariosis, however additional clinical data are needed to determine the place in therapy for this agent.

Conflict of interest

There are none.

Acknowledgements

We thank Dr. Thomas A. Russo for discussion and critical review of this manuscript.

References

[1] F.J. Pastor, J. Guarro, Alternaria infections: laboratory diagnosis and relevant clinical features, Clin. Microbiol. Infect. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 14 (8) (2008) 734–746.
[2] K.E. Lyke, N.S. Miller, L. Towne, W.G. Merz, A case of cutaneous ulcerative alternariosis: rare association with diabetes mellitus and unusual failure of itraconazole treatment, Clin. Infect. Dis. Publ. Infect. Dis. Soc. Am. 32 (8) (2001) 1179–1187.
[3] Z. Šečňiaková, K. Jůzkalová, N. Vojáčková, D.V. Kazakov, L. Hoiková, J. Fláňal, et al., The rare case of Alternaria alternata cutaneous and pulmonary infection in a heart transplant recipient treated by azole antifungals, Dermatol. Ther. 27 (3) (2014) 140–143.
[4] L. Lopes, J. Borges-Costa, L. Soares-Almeida, P. Filipe, F. Neves, A. Santana, et al., Cutaneous alternariosis caused by Alternaria infectiosa: three cases in kidney transplant patients, Healthcare 1 (1) (2013) 100–106.
[5] V.S.M. Saegeman, I.J. Dupont, G.M. Verleden, K. Lagrou, Paecilomyces lilacinus and Alternaria infectiosa cutaneous infections in a sarcomidosis patient after double lung transplantation, Acta Clin. Belg. 67 (3) (2012) 219–221.
[6] D.S. Kpodjo, M.S. Calderwood, D.E. Ruchelman, J.S. Abramson, A. Piris, J.M. Winograd, et al., Primary cutaneous Alternaria alternata infection of the hand in an immunocompromised host, Med. Mycol. 49 (5) (2011) 543–547.
[7] L.J. Anaissie, G.P. Bodley, M.G. Rinaldi, Emerging fungal pathogens, Eur. J. Clin. Microbiol. Infect. Dis. 8 (4) (1989) 525–530.
[8] K. Welby, J. Perfect, Cutaneous mycosis in solid organ transplants, Clin. Adv. Treat. Fungal Inf. 2 (1991) 1–23.
[9] C.J. Clancy, J.R. Wingard, M. Hong Nguyen, Subcutaneous phaeohyphomycosis in transplant recipients: a review of the literature and demonstration of in vitro synergy between antifungal agents, Med. Mycol. 38 (2) (2000) 169–175.
[10] M.E. Borsook, Skin infection due to Alternaria tenuis: with the report of a case, Cutis. Med. Assoc. J. 29 (3) (1933) 479–482.
[11] A. Del Palacio, C. Gómez-Hernando, F. Revenga, E. Carabias, A. González, M.S. Cuéllar, et al., Cutaneous Alternaria alternata infection successfully treated with itraconazole, Clin. Exp. Dermatol. 21 (3) (1996) 241–243.
[12] C. Farina, E. Gotti, A. Parma, L. Naldi, A. Goglio, Pheohyphomycotic soft tissue disease caused by Alternaria alternata in a kidney transplant patient: a case report and literature review, Transpl. Proc. 39 (5) (2007) 1655–1659.
[13] A. Akman, D. Sakalli Calkaçik, B. Ozhak Bayasan, Y. Yazıcı, E. Terzioğlu, M.A. Gürçoğlu, et al., Cutaneous alternariosis in a patient with systemic lupus erythematosus, Lupus 16 (12) (2007) 993–996.
[14] N. Sood, H.C. Gugnani, J. Guarro, A. Palival-Joshi, V.K. Vijayan, Subcutaneous phaeohyphomycosis caused by Alternaria alternata in an immunocompetent patient, Int. J. Dermatol. 46 (4) (2007) 412–413.
[15] A. Kanory, D. Douloux, G. Beloux, D. Blanc, B. Fairev, J.-M. Chaplin, et al., Cutaneous Alternaria infection in renal transplant recipients: a report of two cases with an unusual mode of transmission, Transpl. J. Transpl. Surg. Soc. 6 (1) (2004) 46–49.
[16] S.L. Henn, G.N. Forrest, Febitrole neutrophilia associated with painful lesions of the palms and digits, Clin. Infect. Dis. Publ. Infect. Dis. Soc. Am. 43 (6) (2006) 791–792.
[17] P.K. Shaferkey, J.R. Graybill, M.G. Rinaldi, D.A. Stevens, J.D. PETERIE, et al., Treatment of phaeohyphomycosis, J. Am. Acad. Dermatol. 23 (3 Pt 2) (1990) 577–586.
[18] C. Romano, L. Vanzi, D. Massi, E.M. Difonzo, Subcutaneous alternariosis, Mycoses 48 (6) (2005) 408–413.
[19] T.R. Leahy, A.S. Punnett, S.E. Richardson, F. Gharabaghi, A. Wadhwa, Molecular identification of phaeohyphomycosis due to Alternaria infectiosa in a patient with acute myeloid leukemia–a case report, Diagn. Microbiol. Infect. Dis. 66 (3) (2010) 314–321.
[20] P. Luque, F.A. García-Gil, J. Larraga, B. Jiménez, E. Tomé-Zelaya, M.T. Serrano, et al., Treatment of cutaneous infection by Alternaria alternata with voriconazole in a liver transplant patient, Transpl. Proc. 38 (6) (2006) 2514–2515.
[21] S.E.M. Vermeire, H. de Jonge, K. Lagrou, D.R.J. Kuypers, Cutaneous phaeohyphomycosis in renal allograft recipients: report of 2 cases and review of the literature, Diagn. Microbiol. Infect. Dis. 68 (2) (2010) 177–180.
[22] M. Gilaberte, R. Bartrollet, J.M. Torres, F.S. Reus, V. Rodriguez, A. Alomar, et al., Cutaneous alternariosis in transplant recipients: clinicopathologic review of 9 cases, J. Am. Acad. Dermatol. 52 (4) (2005) 653–659.
[23] E. Nulens, E. De Laere, H. Vandevelden, L.B. Hilbrands, A.J.M.M. Rïjs, W.J.G. Melchers, et al., Itraconazole treatment of phaeohyphomycosis, J. Am. Acad. Dermatol. 23 (3 Pt 2) (1990) 577–586.
[24] L. Podda, C. Fozza, R. Nieddu, S. Sanna, B. Paglietti, A. Vacca, et al., Breakthrough cutaneous alternariosis in a patient with acute lymphoblastic leukemia: clinical features and diagnostic issues, Leuk. Lymphoma 49 (3) (2008) 154–155.
[25] G. Calabró, M. Nino, L. Gallo, M. Scavnencz, Alternaria alternata in a kidney transplant recipient: report of a case, J. Dermatol. Treat. 19 (4) (2008) 440–442.
[26] J. Brasch, J.-O. Bush, G.S. de Hoog, Cutaneous phaeohyphomycosis caused by Alternaria infectiosa, Acta Derm. Venereol. 88 (2) (2008) 160–161.
[27] L. Podda, C. Fozza, R. Nieddu, S. Sanna, B. Paglietti, A. Vacca, et al., Breakthrough cutaneous alternariosis in a patient with acute lymphoblastic leukemia: clinical features and diagnostic issues, Leuk. Lymphoma 49 (3) (2008) 154–155.
mimicking blastomycosis, J. Cutan. Pathol. 38 (11) (2011) 923–925.

[36] T. Robert, J.-P. Talarmin, M. Leterrier, E. Cassagnau, P. Le Pape, I. Danner-Boucher, et al., Phaeohyphomycosis due to Alternaria infectoria: a single-center experience with utility of PCR for diagnosis and species identification, Med. Mycol. 50 (6) (2012) 594–600.

[37] D. Cunha, C. Amaro, M.R. Vieira, M. Martins, L. da, A.P. Maduro, J. Inácio, et al., Phaeohyphomycosis caused by Alternaria infectoria presenting as multiple vegetating lesions in a renal transplant patient, Rev. Ibero. Microl. 29 (1) (2012) 44–46.

[38] B. Rammaert, C. Aguilar, M.-E. Bougnoux, N. Noël, C. Charlier, B. Denis, et al., Success of posaconazole therapy in a heart transplanted patient with Alternaria infectoria cutaneous infection, Med. Mycol. 50 (5) (2012) 518–521.

[39] D. Tambascio, M. D’Elitterre, R. Bracaglia, G. Massi, B. Postoraro, R. Torelli, et al., A suspected squamous cell carcinoma in a renal transplant recipient revealing a rare cutaneous phaeohyphomycosis by Alternaria infectoria, J. Cutan. Med. Surg. 16 (2) (2012) 131–134.

[40] R.A. Lavergne, S. Cassaing, T. Nocera, C. Panwels, O. Cointault, G. Basse, et al., Successful treatment of localized cutaneous alternariosis, J. Am. Acad. Dermatol. 68 (2) (2013) e55–e60.

[41] L. Rudnicka, M. Lukomska, Alternaria scalp infection in a patient with alopecia areata. Coexistence or causative relationship?, J. Dermatol. Case Rep. 6 (4) (2012) E156–E157.

[42] F. Seyfarth, S. Goetzte, Y. Gräser, C. Antoniou, et al., Cutaneous alternariosis in a renal transplant patient successfully treated with oral fluconazole, Eur. J. Dermatol. 7 (8) (2016) 102–104.

[43] C. Ochoa, B. Bajwa et al., Cutaneous Alternariasis in a patient with myelodysplastic syndrome: successful treatment with Mohs surgery and full-thickness skin grafting, Dermatol. Surg. Publ. Am. Soc. Dermatol Surg. 42 (3) (2016) 426–429.

[44] C. Rüster, M. Demirci, N. Essabbah, I. Gorsane, M. Youssef, R. Hadhri, S. Aloui, M. Gorcii, et al., Cutaneous alternariosis in a renal transplant recipient, Cutis 93 (5) (2014) 76–81.