Quantaloidal approach to constraint satisfaction

Soichiro Fujii, Yuni Iwamasa and Kei Kimura

ACT 2021
Quantaloids

= \{\text{complete join-semilattices}\}-enriched categories

Quantaloidal approach to constraint satisfaction

Constraint satisfaction problem (CSP):
general framework for computational problems
including k-SAT, graph k-colouring, ...

Soichiro Fujii, Yuni Iwamasa and Kei Kimura

ACT 2021
Overview

(Ccomputational) problems

CSP

Special case

Quantaloidal CSP

Special case

TVCSP (Optimisation problem)

Quantaloids

\(\mathcal{P}\text{FinSet} \)

\(\mathcal{Q}\text{FinSet} \)

\(\mathcal{Q}: \text{quantale} \)

\(\mathcal{R}\text{FinSet} \)

quantale

Special case

Quantaloids

Optimisation problem
Overview

(Computational) problems

CSP

Quantaloidal CSP

TVCSP (Optimisation problem)

Quantaloids

\(\mathcal{P}\text{FinSet}\)

\(\mathcal{Q}\text{FinSet}\)

\(\mathcal{Q}: \text{quantale}\)

\(\overline{\mathcal{R}\text{FinSet}}\)

Special case
Graph k-colouring ($k \in \mathbb{N}$)

$\exists s: \{v_1, \ldots, v_5\} \rightarrow \{1, \ldots, k\}$ s.t. \forall edge (v_i, v_j), $s(v_i) \neq s(v_j)$?

Ex. $k = 3$ \{ \, \, \, \, \, \, \, \}
A CSP instance $I = (V, D, \mathcal{C})$ consists of:
- V: finite set of variables
- D: finite set called the domain
- \mathcal{C}: finite set of “constraints”

A constraint is (k, x, ρ) where
- $k \in \mathbb{N}$, $x \in V^k$, $\rho \subseteq D^k$.

A function $s : V \rightarrow D$ satisfies the constraint $(k, x = (x_1, \ldots, x_k), \rho)$ if $(s(x_1), \ldots, s(x_k)) \in \rho$.

A solution of $I = (V, D, \mathcal{C})$ is a function $s : V \rightarrow D$ satisfying every constraint in \mathcal{C}.

$\mathcal{S}(I) = \{\text{solutions of } I\} \subseteq [V, D]$
Ex. Graph k-colouring

$V = \{v_1, \ldots, v_5\}$
$D = \{1, \ldots, k\}$
$C = \{(2, (v_i, v_j), \neq \subseteq D^2) \mid (v_i, v_j): \text{edge}\}$

$\exists s: \{v_1, \ldots, v_5\} \rightarrow \{1, \ldots, k\}$ s.t. $\forall \text{edge} (v_i, v_j), s(v_i) \neq s(v_j)$?

A function $s: V \rightarrow D$ satisfies the constraint $(k', x = (x_1, \ldots, x_{k'}), \rho)$ if $(s(x_1), \ldots, s(x_{k'})) \in \rho$.
Overview

CSP

Quantaloidal CSP

Quantaloids

(Computational) problems

Finite Set

Special case

Finite Set

Special case

TVCSP (Optimisation problem)
The 2-category $\mathcal{P}\text{FinSet}$:

Obj.	Finite sets
Mor.	$A \xrightarrow{\varphi} B$

$\varphi \subseteq [A, B]$

Comp.	$A \xrightarrow{\varphi} B \xrightarrow{\psi} C$
$\psi \circ \varphi = \{ g \circ f \mid g \in \psi, f \in \varphi \}$	

| Id. | $A \xrightarrow{\text{id}_A} A$ |

2-cell	$A \xrightarrow{\varphi} B$
$\varphi' \subseteq \varphi$	

$\mathcal{P}\text{FinSet}$ is a quantaloid (the free quantaloid over FinSet):

- $\forall A, B \in \mathcal{P}\text{FinSet}$, $\mathcal{P}\text{FinSet}(A, B) = (\mathcal{P}[A, B], \subseteq)$ is a complete lattice.

- $\forall A, B, C \in \mathcal{P}\text{FinSet}$,

 $\mathcal{P}\text{FinSet}(B, C) \times \mathcal{P}\text{FinSet}(A, B) \xrightarrow{\circ} \mathcal{P}\text{FinSet}(A, C)$

 preserves arbitrary joins in each variable:

 $\psi \circ \left(\bigvee_{i \in I} \varphi_i \right) = \bigvee_{i \in I} (\psi \circ \varphi_i)$

 $(\bigvee_{i \in I} \psi_i) \circ \varphi = \bigvee_{i \in I} (\psi_i \circ \varphi)$
In particular,

- \(\forall A \xrightarrow{\varphi} B, C \in \mathcal{P}\text{FinSet}, \)

\[
\mathcal{P}\text{FinSet}(\varphi, C) : \mathcal{P}\text{FinSet}(B, C) \longrightarrow \mathcal{P}\text{FinSet}(A, C)
\]

preserves arbitrary joins.

\(\iff \) \(\mathcal{P}\text{FinSet}(\varphi, C) \) has a right adjoint

\[
\psi \downarrow \varphi : \mathcal{P}\text{FinSet}(A, C) \longrightarrow \mathcal{P}\text{FinSet}(B, C)
\]
Overview

(Computational) problems

CSP

Quantaloidal CSP

TV CSP (Optimisation problem)

Quantaloids

\(\mathcal{P} \text{FinSet} \)

\(\mathcal{Q} \text{FinSet} \)

\(\mathcal{Q} : \text{quantale} \)

\(\mathcal{R} \text{FinSet} \)

Special case

Special case

Quantaloids

Special case
A **CSP instance** $I = (V, D, \mathcal{C})$ consists of:
- V: finite set of **variables**
- D: finite set called the **domain**
- \mathcal{C}: finite set of “constraints”

A constraint is (k, x, ρ) where
- $k \in \mathbb{N}$, $x \in V^k$, $\rho \subseteq D^k$.

A function $s : V \rightarrow D$ **satisfies** the constraint $(k, x = (x_1, \ldots, x_k), \rho)$ if $(s(x_1), \ldots, s(x_k)) \in \rho$.

A **solution** of $I = (V, D, \mathcal{C})$ is a function $s : V \rightarrow D$ satisfying every constraint in \mathcal{C}.

$s(I) = \{ \text{solutions of } I \} \subseteq [V, D]$
Overview

CSP

Quantaloidal CSP

Quantaloids

(Computational) problems

Special case

Quantaloidal CSP

Optimisation problem

TVCSP

Special case

\(\mathcal{P}\)FinSet

\(\mathcal{Q}\)FinSet

\(\mathcal{Q}\)FinSet
Overview

CSP

Quantaloidal CSP

Polymorphisms

Quantaloids

\(\mathcal{P} \text{FinSet} \)

Special case

Special case

(Computational) problems

Polymorphisms

Q-valued polymorphisms

Q: quantale

\(\mathcal{Q} \text{FinSet} \)

R-valued polymorphisms

\(\mathcal{R} \text{FinSet} \)

TV CSP (Optimisation problem)
Overview

CSP —— Quantaloidal CSP —— Polymorphisms —— TVCSP (Optimisation problem) —— TVCSP

(Computational) problems

Quantaloids

\(\mathcal{P} \text{FinSet} \)

\(\mathcal{Q} \text{FinSet} \)

\(\mathcal{Q} \): quantale

\(\mathcal{R} \text{FinSet} \)

\(\mathcal{R} \)-valued polymorphisms

Quantaloidal CSP

Special case

Polymorphisms

Special case

\(\mathcal{Q} \)-valued polymorphisms

\(\mathcal{Q} \)-valued polymorphisms

\(\mathcal{R} \)-valued polymorphisms
Dichotomy theorem. [Bulatov 2017, Zhuk 2020]
For each “constraint language” \mathcal{D},
CSP(\mathcal{D}) is either in P or is NP-complete.

A constraint language \mathcal{D} consists of
- D: finite set
- $(\rho_i \subseteq D^k)_{i \in I}$: finite family of relations on D.

$\mathcal{D} = (D, (\rho_i)_{i \in I})$: constraint language
CSP(\mathcal{D}): set of CSP instances defined by

$I = (V, D', \mathcal{C}) \in \text{CSP}(\mathcal{D}) \iff D' = D \text{ and } \forall (k, x, \rho) \in \mathcal{C}, \rho \in \mathcal{D}$
When is $\text{CSP}(\mathcal{D})$ easy to solve?
- $\text{CSP}(\mathcal{D})$ is in P if \mathcal{D} admits enough “symmetry”
- $\text{CSP}(\mathcal{D})$ is NP-complete otherwise

The relevant “symmetry” of \mathcal{D} is captured by polymorphisms of \mathcal{D}

$\quad= \text{homomorphisms (of relational structures)} \quad \mathcal{D}^n \to \mathcal{D}.$

Dichotomy theorem. [Bulatov 2017, Zhuk 2020]

\mathcal{D}: constraint language

$\forall x, y, z \in D. \ f(y, x, y, z) = f(x, y, z, x)$

- $\text{CSP}(\mathcal{D})$ is in P if \mathcal{D} admits a Siggers operation $f: D^4 \to D$ as a polymorphism
- $\text{CSP}(\mathcal{D})$ is NP-complete otherwise.
$\mathcal{D} = (D, (\rho_i)_{i \in I})$: constraint language

$\forall n \in \mathbb{N}$, let $\text{Pol}(\mathcal{D})_n = \{n\text{-ary polymorphisms of } \mathcal{D}\}$

$= \{\text{homomorphisms } \mathcal{D}^n \rightarrow \mathcal{D}\}$

Assume I: singleton, so that $\mathcal{D} = (D, \rho \subseteq D^k)$.

Then $\text{Pol}(\mathcal{D})_n : D^n \rightarrow D$ is given by:
Overview

CSP

Polymorphisms

Quantaloidal CSP

(Optimisation problem)

Quantaloids

PFinSet

Special case

(Computational) problems

Special case

\(\mathbb{Q} \)-valued polymorphisms

\(\mathbb{Q} \)-valued polymorphisms

\(\mathbb{R} \)-valued polymorphisms

\(\mathbb{Q} : \text{quantale} \)
Overview

(Computational) problems

CSP

Quantaloidal CSP

Polymorphisms

Quantaloids

\(\mathcal{P}\text{FinSet}\)

Special case

Special case

Quantaloidal CSP

\(\mathcal{Q}\text{FinSet}\)

\(\mathcal{Q}:\text{quantale}\)

\(\text{FinSet}\)

\(\mathbb{R}\)-valued polymorphisms

\(\mathcal{Q}\)-valued polymorphisms

TVCSP

(Optimisation problem)

\(\mathbb{R}\)-valued polymorphisms
A quantale is a one-object quantaloid.

Explicitly,
\(\mathcal{Q} = (Q, \leq, e, \otimes) \) is a quantale if
• \((Q, \leq)\): complete lattice
• \((Q, e, \otimes)\): monoid
satisfying:
\[
\alpha \otimes (\bigvee_{i \in I} \beta_i) = \bigvee_{i \in I} (\alpha \otimes \beta_i)
\]
\[
(\bigvee_{i \in I} \alpha_i) \otimes \beta = \bigvee_{i \in I} (\alpha_i \otimes \beta)
\]
\(Q = (Q, \leq, e, \otimes) \): quantale

The quantaloid \(\mathcal{Q} \text{FinSet} \):

Obj. Finite sets

Mor.

\[
\frac{A \overset{\varphi}{\longrightarrow} B}{\varphi : [A, B] \to Q}
\]

(\(\psi \circ \varphi\))(h) = \(\bigvee\{\psi(g) \otimes \varphi(f) \mid f: A \to B, g: B \to C, g \circ f = h\}\)

"Singleton" morphism

\[
\frac{A \overset{f}{\longrightarrow} B}{\{f\} : [A, B] \to Q}
\]

\[
g \longmapsto \begin{cases} e & \text{if } g = f \\ \bot_Q & \text{otherwise} \end{cases}
\]

Comp.

\[
A \overset{\varphi}{\longrightarrow} B \overset{\psi}{\longrightarrow} C
\]

Id.

\[
\{\text{id}_A\}
\]

2-cell

\[
\frac{A \downarrow \varphi \quad \varphi' \downarrow B}{\varphi \leq \varphi'}
\]
Overview

CSP

Quantaloidal CSP

TVCSP (Optimisation problem)

Polymorphisms

Special case

(Computational) problems

Quantaloids

\(\mathcal{P}\text{FinSet} \uparrow \mathcal{Q} = 2\)

\(\mathcal{Q}\text{FinSet} \downarrow \mathcal{Q}: \text{quantale}\)

\(\mathcal{R}\text{-valued polymorphisms}\)

\(\mathcal{R}\text{FinSet} \Downarrow \mathcal{R}\text{-valued polymorphisms}\)
Overview

CSP

Quantaloidal CSP

Polymorphisms

Quantaloids

\(\mathcal{P}\text{FinSet}\)

\(\mathcal{Q}\text{FinSet}\)

\(\mathcal{Q}:\text{quantale}\)

\(\uparrow\mathcal{Q} = 2\)

Special case

\(\mathcal{Q}\text{-valued polymorphisms}\)

\(\mathcal{R}\text{-valued polymorphisms}\)

(Computational) problems

(Optimisation problem)
A \(Q \)-valued CSP instance \(I = (V, D, \mathcal{C}) \) consists of:

- \(V \): finite set of variables
- \(D \): finite set called the domain
- \(\mathcal{C} \): finite set of \(\langle Q \text{-valued} \rangle \) constraints

\(A \) \(Q \)-valued constraint is \((k, x, \rho) \) where

- \(k \in \mathbb{N}, \quad x \in V^k, \quad \rho \subseteq D^k \).

Each \(Q \)-valued constraint \((k, x, \rho) \) yields

\[
\mathcal{S}(I) = \bigwedge_{(k,x,\rho) \in \mathcal{C}} \rho \not \subseteq \{x\} : V \to D
\]

\[
\mathcal{S}(I) : [V, D] \to Q
\]
A \(\mathcal{Q} \)-valued constraint language \(\mathcal{D} \) consists of

- \(D \): finite set
- \((\rho_i \subseteq D^{k_i})_{i \in I} \): finite family of relations on \(D \)
- \((\rho_i : [k_i] \rightarrow D)_{i \in I} \): finite family of morphisms in \(\mathcal{Q} \text{FinSet} \)

Assume \(I \): singleton, so that \(\mathcal{D} = (D, \rho : [k] \rightarrow D) \).

Then \(\text{Pol}(\mathcal{D})_n : D^n \rightarrow D \) is given by:

\[
\begin{align*}
\text{Pol}(\mathcal{D})_n & : [D^n, D] \rightarrow Q \\
\text{Pol}(\mathcal{D})_n(f) \in Q & : \text{the “degree” to which } f : D^n \rightarrow D \text{ is a polymorphism of } \mathcal{D}
\end{align*}
\]
Overview

CSP

Quantaloidal CSP

Quantaloids

$\mathcal{P} \text{FinSet}$

$\mathcal{Q} \text{FinSet}$

$\mathcal{Q} = 2$

$\mathcal{Q}: \text{quantale}$

(Computational) problems

Special case

Polymorphisms

Special case

\mathcal{Q}-valued polymorphisms

$\overline{\mathcal{R}}$-valued polymorphisms

TVCSP (Optimisation problem)

$\overline{\mathcal{R}} \text{FinSet}$
Overview

Quantaloidal CSP

(Computational) problems

Special case

Polymorphisms

Special case

Quantaloidal CSP

\mathcal{Q}-valued polymorphisms

TVCSP (Optimisation problem)

\mathcal{R}-valued polymorphisms

Quentaloids

$\mathcal{P}\FinSet$

$\mathcal{Q} = 2$

$\mathcal{Q}\FinSet$

$\mathcal{Q} : \text{quantale}$

$\mathcal{R}\FinSet$

$\mathcal{Q} = \mathbb{R}$
Letting \(Q = \overline{\mathbb{R}} = (\mathbb{R} \cup \{ \pm \infty \}, \geq, 0, +) \) (cf. [Lawvere 1973]), we obtain a class of optimisation problems:

\[
\inf_{s: V \rightarrow D} \sup_{(k, x, \rho) \in \mathcal{C}} \rho(s(x_1), \ldots, s(x_k))
\]

which we call “tropical valued CSPs”.

Dichotomy theorem for TVCSPs.

\(\mathcal{D} : \overline{\mathbb{R}} \)-valued constraint language

- TVCSP(\(\mathcal{D} \)) is in P if there exists a Siggers operation \(f: D^4 \rightarrow D \) with \(0 \geq \text{Pol}(f)_4 \).
- TVCSP(\(\mathcal{D} \)) is NP-hard otherwise.

* For a slightly more expressive version of TVCSPs.
Summary

CSP

Quantaloidal CSP

TVCSP (Optimisation problem)

Quantaloids

\(\mathcal{P}\text{FinSet} \)

Special case

Polymorphisms

Dichotomy theorem

Special case

\(\mathcal{Q}\text{-valued polymorphisms} \)

\(Q = 2 \)

\(\mathcal{Q}\text{-valued polymorphisms} \)

\(Q: \text{quantale} \)

\(Q = \overline{\mathbb{R}} \)

(Computational) problems

Dichotomy theorem