Combined Analysis of the Chloroplast Genome and Transcriptome of the Antarctic Vascular Plant \textit{Deschampsia antarctica} Desv

Jungeun Lee, Yoonjee Kang, Seung Chul Shin, Hyun Park*, Hyoungseok Lee*
Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea

Abstract

Background: Antarctic hairgrass (\textit{Deschampsia antarctica} Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for \textit{D. antarctica}. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system.

Results: The complete chloroplast genome of \textit{D. antarctica} is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between \textit{D. antarctica}, \textit{Festuca arundinacea} and \textit{Lolium perenne} of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified \textit{ndhC}, \textit{psbJ}, \textit{rps19}, \textit{psaJ}, and \textit{psbA} as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the \textit{D. antarctica} chloroplast genome, with a dominance of C-to-U conversions.

Conclusions: We assembled and characterized the complete chloroplast genome sequence of \textit{D. antarctica} and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of \textit{D. antarctica} within the Poeae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast transcriptome.

Citation: Lee J, Kang Y, Shin SC, Park H, Lee H (2014) Combined Analysis of the Chloroplast Genome and Transcriptome of the Antarctic Vascular Plant \textit{Deschampsia antarctica} Desv. PLoS ONE 9(3): e92501. doi:10.1371/journal.pone.0092501

Editor: Szabolcs Semsey, Niels Bohr Institute, Denmark

Received: December 22, 2013; **Accepted:** February 22, 2014; **Published:** March 19, 2014

Copyright: © 2014 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Functional Genomics on Polar Organisms grant (PE13020) and the Basic Research Program (PE13120) funded by Korea Polar Research Institute (KOPRI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: soulaid@kopri.re.kr (HL); hpark@kopri.re.kr (HP)

Introduction

Chloroplasts are plant-specific organelles that conduct photosynthesis, providing essential energy for the synthesis of starch, fatty acids, pigments, and amino acids [1,2]. Chloroplasts contain DNA and their own genetic information. In higher plants, chloroplast genomes exist as circular DNA, with the size ranging from 120 kb to 150 kb, and generally have a highly conserved quadripartite organization composed of two copies of inverted repeats [IRs], which separate the large single copy (LSC) and small single copy (SSC) regions [3,4]. In vascular plants, chloroplast genomes usually contain 110–130 unique genes encoding 4 rRNAs, 30–31 tRNAs, and 80–90 proteins; these encode ribosomal proteins and RNA polymerase subunits involved in protein synthesis, thylakoid proteins, and the Rubisco large subunit for photosynthesis, as well as protein subunits for an NADH dehydrogenase complex, which mediates redox reactions [2,5]. Advances in high-throughput sequencing technologies have resulted in the full sequences of organelle genomes from a growing number of organisms [6]. Currently, plastid genome resources with >420 records have been established. These provide a vast amount of high-resolution information that can be exploited in phylogenetic and ecological studies, making it possible to track the evolutionary history of a species after obtaining the full sequence of its chloroplast genome.

The grass family (Poeae), which occurs in nearly every terrestrial habitat, is one of the most diverse angiosperm families, including approximately 10,000 species over 700 genera. To date, 38 chloroplast genomes of grass species [32 from the BEP (Bambusoideae, Ehliartioideae, Pooideae) clade and 6 from the PACMAD (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae) clade] have been deposited into the GenBank database, and recent studies have tried to reconstruct the phylogeny of the subfamilies and genera in
the Poaceae family using whole sequences of chloroplast genomes [7,8].

Extremophile plants have evolved tolerance overcoming unfavorable environmental conditions, such as freezing temperatures, drought, high salinity, and high UV radiance. The genetic information on such species provides clues for the evolutionary or geological history of the species, as well as resources for genetic engineering. Antarctic hairgrass (Deschampsia antarctica Desv.) is the only native grass species that thrives in the harsh environment of Antarctica [9]. As an extremophile, it may be useful as a source of genes associated with stress tolerance [10]. It has also been suggested as an ecological marker of global warming because of its

Figure 1. Map of the chloroplast genome of Deschampsia antarctica. Genes lying outside of the outer circle are transcribed clockwise, while those inside the circle are transcribed counterclockwise. Genes belonging to different functional groups are color coded. The innermost darker gray corresponds to GC, while the lighter gray corresponds to AT content. IR, inverted repeat; LSC, large single copy region; SSC, small single copy region. doi:10.1371/journal.pone.0092501.g001
success adaptation to climate change and its rapid spread [10,11]. Despite the importance of this terrestrial isolated plant, its phylogenetic position is still controversial [12-14], and available genetic resources are limited.

Table 1. Genes present in the Deschampsia antarctica chloroplast genome.

Products	Genes
1 Photosystem I	psaA, B, C, I, J, ycf3, ycf5
2 Photosystem II	psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, Z
3 Cytochrome b6/f	petA, B
4 ATP synthase	atpA, B, E, F, H, I
5 Rubisco	rbcL
6 NADH oxidoreductase	ndhA
7 Large subunit ribosomal proteins	14, 16s, 20, 22, 23s, 32, 33, 35
8 Small subunit ribosomal proteins	rps2, 3, 4, 7a, 8, 11, 12s, 14, 15s, 16s, 18, 19s
9 RNAP	rpoA, rpoB, C1, C2
10 Other proteins	accD, ccsA, cemA, clpP, matK, infA
11 Proteins of unknown function	ycf1, ycf2, ycf15, ycf68
12 Ribosomal	rml23s, 16s, 5s, 4.5s
13 Transfer RNAs	trnA(UGC), trnI-GAU, trnK-UUU, trnA-UGC

Gene	Location	Length (bp)				
	Exon I	Intron I	Exon II	Intron II	Exon III	
rps16	LSC	40	830	209		
atpF	LSC	159	802	408		
ycf3	LSC	126	749	228	728	159
petB	LSC	6	760	642		
petD	LSC	9	686	525		
rpl16	LSC	9	893	402		
rps12	LSC	117	-	231		
rpl2	IR	393	660	432		
ndhB	IR	777	712	756		
ndhA	SSC	549	1012	540		
tmK-UUU	LSC	38	2486	33		
tmL-UAA	LSC	37	537	50		
tmV-UAC	LSC	39	605	37		
tmL-GAU	IR	42	801	35		
tmA-UGC	IR	38	811	35		

*Genes containing two introns.
*1Gene containing a single intron.
*2Two gene copies in the IRs.
*3Gene divided into two independent transcription units.
*4Pseudogene.

doi:10.1371/journal.pone.0092501.t002

Here, we obtained the complete chloroplast genome sequence of D. antarctica by high-throughput sequencing and de novo assembly. By comparison with the chloroplast genomes from other representative members of the BEP clade, we explored the deep-phylogenetic relationship of D. antarctica to other grass species at the genomic level. In addition, using combinatorial analysis of the RNA-seq data, we conducted high-resolution mapping of the chloroplast-derived transcripts to a reference chloroplast genome to demonstrate transcriptome profiles of the coding and noncoding genes and the posttranscriptional processing by RNA editing in the chloroplasts of D. antarctica. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family and the characteristics of the chloroplast transcriptome.

Methods

Ethics Statement

This study including sample collection and experimental research conducted on these materials was according to the law on activities and environmental protection to Antarctic approved by the Minister of Foreign Affairs and Trade of the Republic of Korea.

Plant Materials

Deschampsia antarctica Desv. (Poaceae) plants growing under natural conditions were collected in the vicinity of the Korean King Sejong Antarctic Station (62°14′29″S, 58°44′18″W) on the Barton Peninsula of King George Island and then transferred to the lab and grown hydroponically, supplemented with 0.5× Murashige and Skoog (MS) medium containing 2% sucrose under a 16:8 h light/dark cycle with a light intensity of 150 μmol m⁻² s⁻¹ at 15 °C, a temperature that results in high Rubisco activity in D. antarctica [15].
Illumina HiSeq2000 sequencer (PE, 2x101 bp). The small RNA library was constructed using the TruSeq Small RNA Sample Prep Kit; the resulting single end library was sequenced in one lane of an Illumina GAIIx sequencer (SE, 1x35 bp). The files containing the sequences and quality scores of reads were deposited in the NCBI Short Read Archive, and the accession numbers are SRX465632 (genomic DNA-Seq), SRX465633 (mRNA-Seq), and SRX465634 (Small RNA-Seq).

Genome Assembly, Annotation, and Sequence Analysis

After trim of low quality reads and adapters, the raw reads were aligned to 330 publicly available chloroplast genomes downloaded from NCBI organelle genome resources. De novo assembly was done with the collected chloroplast-related reads by Celera Assembler 6.1 (Celera Genomics, Alameda, USA). The assembled contigs were ordered with reference chloroplast genomes of two ryegrass species, *Lolium multiflorum* (NC_019651) and *Festuca altissima* (JX871939), which were identified as the top-hit species when the input reads were blasted against the nr database. The gaps were filled by realignment of input reads using Genious R6 v6.1.5 (Biomatters Ltd., Auckland, New Zealand) and PCR-based Sanger sequencing by primers designed for gap-flanking regions (Table S1). The sequences from the junction and highly variable region were validated by Sanger sequencing. The complete plastome was annotated using the online software DOGMA with default parameters [16]. Repeat sequences were analyzed using REPuter [17].

Phylogenetic Analysis

Complete plastome sequences of nine Poaceae species (accession numbers are listed in Table S2) were aligned using the LAGAN program within the mVISTA online suite of computational tools [18]. Default parameters were applied, and the annotation framework of the perennial ryegrass chloroplast genome was used. The percentage identity between each plastome, all relative to that of *D. antarctica*, was subsequently visualized using an mVISTA plot [19]. The plastome-based phylogeny was reconstructed for the nine Poaceae species using the whole plastome alignment generated by LAGAN. The phylogenetic tree was constructed through the method of maximum parsimony, as implemented by MEGA 5.2 [20]. Sites with gaps or missing data were excluded from the analysis, and statistical support was achieved through bootstrapping using 1000 replicates.

Transcriptome and Small Noncoding RNA Analysis

We analyzed in-house RNA-seq data libraries generated from two sets of RNAs (mRNA and small RNA), obtained as described above. For transcriptome analysis, we analyzed combined data sets of mRNAs and small RNAs. The reads of the combined data sets were mapped to the complete chloroplast genome, and the filtered reads were collected using the Bowtie 2.0 program with mismatch ≤2 bp [21]. The filtered reads were remapped according to the genome annotation using Cufflinks to calculate the fragments per kilobase of exon per million fragments mapped (FPKM) values of the transcripts and TopHat for alignment of transcript variants [22]. For small noncoding RNA analysis, we collected the reads in the size range of 20–24 nt from the small RNA data set. The size-filtered reads were mapped using Bowtie 2.0 with the criterion of zero mismatch. To search for RNA-editing sites in the chloroplast genome, putative target sites were predicted using two independent methods: 1) the PREP-chloroplast [23] search program using the chloroplast-genome sequence and 2) SAMtools/BCFtools, which calls single-nucleotide polymorphisms (SNPs) and indels by DNA and RNA Sequencing

Total genomic DNA was extracted from leaf tissues using the DNaseasy Plant Mini Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s instructions. Total RNA was extracted from whole plants using the RNeasy Plant Mini Kit (Qiagen). The libraries were prepared and constructed for the nine Poaceae species using the whole plastome alignment generated by LAGAN. The phylogenetic tree was constructed through the method of maximum parsimony, as implemented by MEGA 5.2 [20]. Sites with gaps or missing data were excluded from the analysis, and statistical support was achieved through bootstrapping using 1000 replicates.

Table 3. The codon–anticodon recognition pattern and codon usage in the *Deschampsia antarctica* chloroplast genome.

Amino acid	Codon No.*	tRNA	Amino acid	Codon No.	tRNA
Phe	UUA 970	Tyr	UAA 98		
Phe	UUC 448	Tyr	UAC 211		
Leu	UUA 970	Stop	UAA 48		
Leu	UUG 445	Stop	UAG 20		
Leu	CUC 492	His	CAU 371		
Leu	CUC 226	His	CAU 164		
Leu	CUA 363	Gln	CAU 572		
Leu	CUG 150	Gln	CAG 235		
Ile	AUA 874	Asn	AAT 647		
Ile	AUC 379	Asn	AAC 274		
Ile	AUA 562	Lys	AAA 865		
Met	AUG 522	Lys	AAG 367		
Val	GGU 473	Asp	GAC 619		
Val	GUC 182	Asp	GAC 209		
Val	GUA 505	Glu	GAA 807		
Val	GUG 196	Glu	GAG 327		
Ser	UCU 458	Cys	UGU 215		
Ser	UCC 328	Cys	UGC 106		
Ser	UCA 296	Stop	UGA 17		
Ser	UCG 161	Trp	UGU 430		
Pro	CCA 375	Arg	CGU 312		
Pro	CCC 243	Arg	CGC 152		
Pro	CCA 291	Arg	CGA 311		
Pro	CCG 151	Arg	CGG 152		
Thr	ACU 507	Arg	AGA 436		
Thr	ACC 236	Arg	AGG 221		
Thr	ACA 331	Ser	AGU 349		
Thr	AGG 173	Ser	AGC 176		
Ala	GUC 593	Gly	GGU 539		
Ala	GCC 242	Gly	GGC 225		
Ala	GCA 413	Gly	GGA 653		
Ala	GCG 202	Gly	GGG 359		

*Numbers indicate the frequency of usage of each codon in 23430 codons in 81 potential protein-coding genes.

doi:10.1371/journal.pone.0092501.t003
After prediction, the candidate sites were manually examined in the transcriptome data using the Integrative Genomics Viewer (IGV) genome browser.

Results

Chloroplast Genome Assembly and Validation

Illumina paired-end sequencing produced 153,346,825 raw reads with a sequence length of 101 bp and a total base number of 15,488,029,325. After quality trim and alignment of the raw reads against the publicly available chloroplast genomes reported in NCBI, we collected 1,985,544 chloroplast-related paired reads with 191,735,269 bases. The subsequent de novo assembly resulted in 18 large contigs (max: 50,269 bp, min: 3,046 bp). To order the contigs, the chloroplast genomes of *L. multiforum* and *F. altissima* were used as references because these species were identified as the top-hit species when the input reads were blasted against the nr database. The resulting gaps were filled by alignment of the input reads using the Geneious program and PCR-based Sanger sequencing. The sequences from the junction regions (LSC–IRA, LSC–IRB, SSC–IRA, SSC–IRB) and the regions with high interspecific variability were validated by Sanger sequencing. The final *D. antarctica* chloroplast genome sequence has been submitted to GenBank (Accession No. KF887484).

Genome Organization and Gene Content

The size of the *D. antarctica* chloroplast genome was 135,362 bp, similar in range as other Poaceae species, with a typical quadripartite structure (Figure 1). The LSC and SSC regions were 79,881 bp and 12,519 bp in size, separated by a pair of inverted repeats (IRa and IRb), which were both 21,481 bp in length. The GC content of the *D. antarctica* chloroplast genome was 38.3%, consistent with other reported Poaceae chloroplast genomes. The GC contents of the LSC and SSC regions were...
36.3% and 32.4%, respectively, whereas that of the IR region was 43.85%.

The *D. antarctica* chloroplast genome contained 81 unique protein-coding genes, 12 of which were duplicated in the IR, including *rps7*, *rps12*, *rps15*, *rps19*, *rpl2*, *ycf1*, *ycf2*, *ycf15*, *ycf68*, *ndhB*, and partial *ndhH*. Additionally, 29 unique tRNA genes, representing all 20 amino acids, were distributed throughout the genome (1 in the SSC region, 20 in the LSC region, and 8 in the IR region). Four rRNA genes were also identified, with complete duplication in the IR regions. Altogether, the *D. antarctica* chloroplast genome contained 114 unique genes (Table 1). Among them, 14 genes contained a single intron (9 protein-coding genes and 5 tRNA genes), while *ycf3* contained two introns. Of the 15 genes with introns, 10 were located in the LSC (7 protein-coding genes and 3 tRNAs; 9 contained one intron and 1 contained two introns), 1 in the SSC (a protein-coding gene with a single intron), and 4 in the IR region (2 protein-coding genes and 2 tRNAs, all 4 containing a single intron) (Table 2). The *rps12* gene is a trans-spliced gene with a 5′-end exon located in the LSC region and duplicated 3′-end exons located in the IR region. The *trnK-UUU* gene contained the largest intron (2,486 bp), which included the *matK* gene.

On the basis of the sequences of protein-coding genes and tRNA genes within the chloroplast genome, the frequency of codon usage was deduced (Table 3). Among these codons, 2,466 (11.22%) encode for leucine, while 321 (1.46%) encode for...
cysteine, which are the most and least used amino acids, respectively. The codon usage is biased toward a high representation of A and T at the third codon position, which is similar to a previous report [25].

Comparison with Other Poaceae Chloroplast Genomes

The availability of multiple complete Poaceae chloroplast genomes provides an opportunity to compare sequence variation within the family at the genome-level. The sequence identity of seven Poaceae chloroplast genomes was plotted using the mVISTA program, with the annotation of *D. antarctica* as a reference (Figure 2, percent identity plot, as summarized in Table S3). The whole aligned sequences indicate that the Poaceae chloroplast genomes are rather conservative, although some divergent regions were found between these genomes. Similar to other plant species, the coding region is more conservative than the noncoding counterpart. Of all genes, *ycf1* appears to be the most divergent pseudogene. In addition, *rpl32*, *ycf2*, and *rpoC2* also displayed high sequence divergence. The noncoding regions showed a higher sequence divergence than the coding regions among the eight Poaceae chloroplast genomes. In the alignment sequences, several intergenic regions were found to display high divergence, including *trnG(UCC)-trnM(CAU)*, *trnY(GUA)-trnD(GUC)*, *ndhF-rpl32*, and *rpl32-trnL(UAG)*. In addition, the intron sequences from *trnK(UUU)*, *trnL(UAA)*, and *ndhA* showed high sequence divergence.

The length variation was also examined among *D. antarctica* and the eight Poaceae chloroplast genomes. The most interesting region with length variation was the *rbcL-psaI* region, which contains four gene regions and three intergenic regions (Figure 3). The variation of gene region was detected in the presence of an *rpl23* translocation product and an *accD* pseudogene in the region between *rbcL* and *psaI*. The *rpl23* gene was absent from *L. perenne*, *F. arundinacea*, and *Brachypodium distachyon*, and was present in the five other analyzed Poaceae species, including *D. antarctica*. Remnants of the *accD* gene were detected in *D. antarctica*, *L. perenne*, *F. arundinacea*, and *Hordeum vulgare*. This pseudogene was identified in rice but was not predicted in the other species according to DOGMA. The variation in size of the intergenics regions was also detected among species of the Pooidae subfamily. Three intergenic regions occurred between the *rbcL* and *psaI* genes. The intergenic region between *rbcL* and *rpl23* ranged from 288 bp (*D. antarctica*) to 498 bp (*Triticum aestivum*). Between *rpl23* and *accD*, it ranged from 0 bp (*B. distachyon*) to 661 bp (*H. vulgare*), and between *accD* and *psaI*, it ranged from 141 bp (*B. distachyon*) to 392 bp (*Agrostis stolonifera*). In cases when a particular gene was absent, the boundaries of the intergenic regions were determined based on homologies between the species.

Phylogenomic Analysis

Phylogenomic analysis of representatives from the Pooideae subfamily, including *D. antarctica*, produced a single, well-supported tree using maximum parsimony (Figure 4). The tree is well congruent with respect to species, and the two outgroup species belonging to the BEP clade (*Bambusa oldhamii* from Bambusoideae and *Oryza sativa* subsp. *japonica* from Ehrhartoideae) are basal to the remaining species in a separate resolved clade.

Repeat Sequence Analysis

Repeat regions of DNA are an important factor in genome recombination and rearrangement. We identified 69 repeats in *D. antarctica*, including 43 forward, 24 palindromic, and 2 reverse repeats with a length >20 bp and a sequence identity e-value <10^{-3}, using the REPutter program (Table S4). Among the 69 repeats, 58 (84%) were 25–80 bp in length, 51 (63%) were 25–
Table 4. RNA Expression of protein coding genes in the *Deschampsia antarctica* chloroplast genome.

locus ID	gene name	locus	FPKM	locus ID	gene name	locus	FPKM
DeanCp027	ndhC	48846–49209	87311	DeanCp032	accD	56279–56411	326
DeanCp037	psb1	60990–61013	19529	DeanCp073	rpl15	100781–101054	314
DeanCp064	rps19	79951–80233	13440	DeanCp076	rpl32	104531–104714	309
DeanCp043	psaA	64095–64224	10915	DeanCp025	ndhH	47535–48015	288
DeanCp002	psbA	83–1145	10274	DeanCp016	atpI	30197–30941	283
DeanCp042	petG	63234–63348	9557	DeanCp074	ndhF	101191–101431	254
DeanCp051	psbN	70154–70286	7916	DeanCp004	rps16	4488–5567	250
DeanCp011	petN	17020–17110	7370	DeanCp080	ndhE	109031–109337	202
DeanCp018	atpF	32063–33432	6499	DeanCp036	petA	59093–60056	188
DeanCp039	psbF	61282–61402	6371	DeanCp065	rpl2	80495–81980	185
DeanCp038	psbL	61143–62630	4812	DeanCp069	ndhB	85606–87851	165
DeanCp010	petM	16638–16743	3750	DeanCp070	rps7	88150–88621	159
DeanCp006	psbI	7354–7465	3335	DeanCp060	rpl14	76697–77069	152
DeanCp050	psbT	69989–70106	3089	DeanCp023	ycf3	41199–43189	152
DeanCp040	psbE	61412–61664	3020	DeanCp068	ycf15	83879–84167	149
DeanCp052	psbH	70389–70611	2998	DeanCp045	rps15	65145–65658	144
DeanCp020	rps14	35628–35940	2224	DeanCp058	intA	75691–76042	144
DeanCp017	atpH	31349–31595	2138	DeanCp046	rpl20	65815–66175	144
DeanCp005	psbK	6761–6947	1970	DeanCp024	rps4	44159–44765	142
DeanCp009	psbZ	11675–11864	1948	DeanCp048	clpP	67131–67782	141
DeanCp030	rbcL	53588–55292	1782	DeanCp081	ndhG	109540–110080	136
DeanCp007	psbD	8635–9697	1333	DeanCp034	ycf4	57149–57707	134
DeanCp033	psaA	56726–56837	1308	DeanCp003	matK	1685–3221	133
DeanCp041	petL	62963–63059	1282	DeanCp061	rpl16	77186–78490	132
DeanCp049	psbB	68293–69820	1197	DeanCp059	rps8	76143–76554	128
DeanCp071	ycf68	93397–93832	1096	DeanCp063	rpl22	79429–79873	113
DeanCp079	psaC	108276–108522	1052	DeanCp035	cemA	58162–58861	110
DeanCp019	atpA	33523–35047	791	DeanCp075	ndhF	101464–103684	102
DeanCp054	petD	72341–73561	956	DeanCp077	ccsA	100547–106507	87
DeanCp057	rpl36	75472–75586	956	DeanCp082	ndhD	110198–110741	85
DeanCp044	rpl33	64666–64867	922	DeanCp055	rpoA	73770–74796	74
DeanCp001	rps12	66970–89475	840	DeanCp014	rpoC2	24536–28943	66
DeanCp021	psaB	30686–38291	676	DeanCp015	rps2	29236–29947	62
DeanCp022	psaA	38316–40569	558	DeanCp083	ndhA	110838–112939	58
DeanCp008	psbC	9644–11066	513	DeanCp078	ndhD	106654–108157	57
DeanCp084	ndhH	112940–114122	510	DeanCp072	ycf1	99622–100414	52
DeanCp053	petB	70745–72153	495	DeanCp056	rps11	74860–75292	48
DeanCp031	rpl23	55577–55853	419	DeanCp062	rps3	78636–79356	44
DeanCp047	rps12	125837–126800	402	DeanCp067	ycf2	82674–83874	39
DeanCp066	rpl23	81998–82280	400	DeanCp090	ycf2	131435–132638	39
DeanCp029	atpB	51509–53006	385	DeanCp013	rpoC1	22302–24333	31
DeanCp026	ndhK	48118–48856	342	DeanCp012	rpoB	19034–22265	29
DeanCp028	atpE	51099–51513	329				

doi:10.1371/journal.pone.0092501.t004

40 bp in length, and 10 (21%) were 41–80 bp in length. The repeats were mostly located in the intergenic sequences (54%), followed by coding sequences (37%) and intronic sequences (9%). The structure of the repeats in the other seven Poacea species was also analyzed using REPuter. The majority of repeats in Poacea species within the size range of 25–80 bp commonly are forward or palindromic (Figure 5). The total number of repeats varied among species (*D. antarctica*: 69, *L. perenne*: 72, *F. arundinacea*: 59, *A. stolonifera*: 50, *B. distachyon*: 60, *H. vulgare*: 67, *T. aestivum*: 79, *O. sativa*: 78, *B. oldhamii*: 74). The repeat pattern in *D. antarctica* was...
value repeats in the size range of 41–80 bp represent they represent number of repeats in species of the Pooideae subfamily, whereas, with FPKM value more similar with B. oldhamii than with D. antarctica reads were mapped to the abundant genes were and normalized according to gene length (Table S4). The most numbers of reads corresponding to coding genes were calculated and normalized according to gene length (Table 5).

Table 5. RNA editing sites in the Deschampsia antarctica chloroplast genome.

Gene	length	location from start	codon change	amino acid change	Nucleotide change	Number of reads*
ndhJ	480	480	UGA>UGG	stop>Tryptophan	A>G	4 (30.8%), G: 9 (64.3%)
ndhK	738	125	CCA>CUA	Pro>Leucine	C>U	2 (9.5%), U:19 (90.5%)
ndhC	363	13	CAC>UAC	His>Tryptophan	C>U	3 (30%), U:3 (20%)
psbL	117	111	UUC>UUU	Phe>Phe	C>U	2 (15.4%), U:10 (76.9%), G: 1 (7.7%)
petL	96	56	CCA>CUA	Pro>Leucine	C>U	2 (100%)
rpl20	360	308	UCA>UUA	Ser>Leucine	C>U	5 (45.5%), U:6 (54.5%)
psbB	5127	867	AGC>AGU	Ser>Ser	C>U	25 (83.3%), U:5 (16.7%)
petB	648	611	CCA>CUA	Pro>Leucine	C>U	19 (100%)
rpoA	1026	527	UCC>UCU	Ser>Phe	C>U	2 (18.2%), U:9 (81.8%)
rps8	411	182	UCA>UAU	Ser>Leucine	C>U	1 (7.7%), U:12 (92.3%)
rpl16	411	250	GCC>AGC	Gly>Ser	G>A	2 (33.3%), A:4 (66.7%)
rps3	720	30	UUC>UUU	Phe>Phe	C>U	6 (30%), U:14 (70%)
ndhD	1503	878	UCA>UUA	Ser>Leucine	C>U	1 (9.1%), U:10 (90.9%)
ndhG	531	347	CCA>CUA	Pro>Leucine	C>U	29 (100%)
ndhA	1089	722	GCA>GAU	Ala>Val	C>U	9 (81.8%), U:2 (18.2%)
ndhA	1089	474	UCA>UUA	Ser>Leucine	C>U	2 (10.5%), U:17 (89.5%)

*indicates the number of reads with an alternate base and the number of reads with the same base as the reference.

doi:10.1371/journal.pone.0092501.t005

Expression Analysis

We performed an expression analysis of the 81 chloroplast protein-coding genes using in-house RNA-seq data from leaf tissues of D. antarctica (Lee et al., unpublished data). The short reads were mapped to the D. antarctica chloroplast genome, and the numbers of reads corresponding to coding genes were calculated and normalized according to gene length (Table 4). The most abundant genes were ndhG, psbH, rps19, psaA, and psbK, each with FPKM value >10,000. Thirteen genes (ccsA, ndhK, rpoC2, rpo2, ndhC, ndhD, ycf1, rps11, rps3, ycf2, rpoC1, and rpoB) had low expression, with FPKM value <100.

A total of 247,904 reads mapped to the protein coding region. Among these, 89,675 (36.2%) and 73,054 reads (29.5%) were generated from genes encoding components of the cyclic electron transfer system and photosystem II (PSII) complex, respectively. In addition, among the 18 highly expressed genes (FPKM value >2,000), 10 genes were found to encode subunits of the PSII complex (psbA, psbB, psbE, psbF, psbH, psbL, psbM, psbN, and psbT). In contrast, rpoA, rpoB, rpoC1, and rpoC2, which encode plastid RNA polymerase, showed very low expression.

RNA Editing

RNA editing is a sequence-specific posttranscriptional modification resulting in conversion, insertion, and deletion of nucleotides in a precursor RNA. Such modifications are observed across organisms. In plants, RNA editing has been reported to occur with C-to-U or U-to-C (rare) conversions in mitochondria and plastids [26].
In the Deschampsia chloroplast genome, we first predicted 37 RNA-editing sites out of 16 genes using the PREP-chloroplast program (Table S5). Using another method, we aligned read sequences from the RNA-seq data using variant searching tools comparing transcripts against a reference genome and confirmed 30 editing sites. The 30 nucleotide substitutions occur in 23 genes in the D. antarctica chloroplast genome, which results in 25 non-synonymous amino acid changes (Table 5). Of the substitutions, 17 (54.8%) were C-to-U conversions, resulting in 14 non-synonymous amino acid changes. In contrast, only 1 edit was a U-to-C conversion with synonymous base change. Although RNA editing of plant plastids has been shown to be conversions of C to U and U to C, we observed different versions of edits, including 3 A-to-Cs, 3 A-to-Gs, 3 G-to-As, 1 G-to-C, 1 U-to-A, 1 A-to-U, and 1 U-to-G in 13 sites.

We calculated the ratio between the number of reads with an alternate base and the number of reads with the same base as the reference. The percentages of the conversion rates of each edit varied with the locus (16–100%) (Table 5). However, some edits with C-to-U conversion in several genes showed very high editing rates (>90%), especially for atpA, ycf3, ndhK, petB, rpoA, rps7, ndhD, ndhG, and ndhA, suggesting that the edited RNAs for these gene are common forms in the processed RNA pools in D. antarctica.

Discovery of Plastid Small Noncoding RNA in D. antarctica

Numerous small noncoding RNAs have been identified in the nuclear genomes of bacteria and eukaryotes. Small noncoding RNAs are also transcribed from mitochondria and plastid genomes [27–29]. In this study, we screened for small noncoding RNAs from our deep sequencing data in the small RNA library generated from D. antarctica leaf tissues. The reads between 20 and 24 nt in length were mapped to the plastid genome with 100% identity. In total, 12,753,636 reads were distributed unevenly throughout the genome with high density in the coding regions of psbA and rbcL, intergenic regions, and inverted repeat regions in which most of the rRNA genes exist. The 27 loci enriched with 20–24 nt RNAs are indicated in red, along with the number of reads. The y-axis shows the number of reads (from 0 to 1000).

In the Deschampsia chloroplast genome, we predicted 37 RNA-editing sites out of 16 genes using the PREP-chloroplast program (Table S5). Using another method, we aligned read sequences from the RNA-seq data using variant searching tools comparing transcripts against a reference genome and confirmed 30 editing sites. The 30 nucleotide substitutions occur in 23 genes in the D. antarctica chloroplast genome, which results in 25 non-synonymous amino acid changes (Table 5). Of the substitutions, 17 (54.8%) were C-to-U conversions, resulting in 14 non-synonymous amino acid changes. In contrast, only 1 edit was a U-to-C conversion with synonymous base change. Although RNA editing of plant plastids has been shown to be conversions of C to U and U to C, we observed different versions of edits, including 3 A-to-Cs, 3 A-to-Gs, 3 G-to-As, 1 G-to-C, 1 U-to-A, 1 A-to-U, and 1 U-to-G in 13 sites.

We calculated the ratio between the number of reads with an alternate base and the number of reads with the same base as the reference. The percentages of the conversion rates of each edit varied with the locus (16–100%) (Table 5). However, some edits with C-to-U conversion in several genes showed very high editing rates (>90%), especially for atpA, ycf3, ndhK, petB, rpoA, rps7, ndhD, ndhG, and ndhA, suggesting that the edited RNAs for these gene are common forms in the processed RNA pools in D. antarctica.

Discovery of Plastid Small Noncoding RNA in D. antarctica

Numerous small noncoding RNAs have been identified in the nuclear genomes of bacteria and eukaryotes. Small noncoding RNAs are also transcribed from mitochondria and plastid genomes [27–29]. In this study, we screened for small noncoding RNAs from our deep sequencing data in the small RNA library generated from D. antarctica leaf tissues. The reads between 20 and 24 nt in length were mapped to the plastid genome with 100% identity. In total, 12,753,636 reads were distributed unevenly throughout the genome with high density in the coding regions of psbA and rbcL, intergenic regions, and inverted repeat regions in which most of the rRNA genes exist. The 27 loci enriched with 20–24 nt RNAs are indicated in red, along with the number of reads. The y-axis shows the number of reads (from 0 to 1000).

The D. antarctica plastid sRNAs were not evenly distributed throughout the genome. The relative positions of the sRNAs showed that 19 of 27 (71%) were located in the noncoding regions (18 in intergenic regions and 1 in an intronic region). In particular, 30% and 11%, respectively, of the intergenic sRNAs were located at the 5’- and 3’-ends of genes (>100 bp from the start or termination codons) (Figure 7). Fifteen (55.6%) sRNAs were located within ±150 to ±500 bp from the start codon of genes, suggesting that proximity to the 5’-ends of genes is important.

To determine if the identified sRNAs are evolutionarily conserved, we compared the sequences of 27 sRNAs in D. antarctica with the sRNAs reported for other plant species by multiple sequence alignment [28,29]. In total, we found that 13 sRNAs have orthology with the plastid sRNAs found in Arabidopsis, rice, or barley (Figures 8, Figure S1, and Table 6). Among the pairs identified, four sRNAs (psbH-petB, atpH 5’-end, ndhB 5’-end, and petD-rpoA) showed >90% sequence homology, and their
locations within the genome were the same in all of the species examined, suggesting these plastid sRNAs may be evolutionarily conserved across angiosperms (Figure 8).

Discussion

We obtained the completed sequence of the chloroplast genome of *D. antarctica* using whole genome sequencing data from total genomic DNA from leaves. As previous studies have reported, aligning all the reads against the plastid genome database allow the rapid and efficient assembly of the chloroplast genome [8,30,31]. By this method, we identified 1.2% of the total genomic reads as plastid-related sequences.

The chloroplast genome of *D. antarctica* has the typical features found in the genomes of other Poaceae species. The size of its genome and the ratio of GC content is 135,362 bp and 38.3%, respectively, similar to other Poaceae species. The subfamily Pooidae, which includes one-third of all grass species, has been divided into 13 tribes [14], but recent analyses have demonstrated wide variations between them. For example, neither Poeae nor Aveneae are monophyletic, and the components of these two groups are intermixed within a clade [13,32]. Traditional morphological phylogenetic studies placed *Deschampsia* within the

Table 6. Distribution of small RNAs in the chloroplast genome of *Deschampsia antarctica*.

Location	start	end	F/R	core sequence	length	reads number	At	Os	Hv
psbA 5' end	1229	1209	R	AACAAGCCTTCTATTATCTA	20	36	+		
trnK-rps16	4378	4356	R	TGTCCGTGCAATCAGAATAAACG	23	819	+	+	
psbH-psbD	8129	8150	F	TTCCTTACCTGAGCCCGG	21	1200			
trnG-trnM	12314	12333	F	ACCGATCCCCTACTATTCT	20	1056			
trnT 3' end	14786	14806	F	GGTTCAAATCCGATAAAGG	21	148			
1p0B CDS	21311	21332	F	CGCTGATATATCCGGAAGCC	20	166			
1poC2-1ps2	29130	29147	F	ATTTCAGCTATTTCGGA	18	20314	+		
atrM 5' end	31305	31325	F	ATGATCCCTTAACCTATTCTT	21	34100	+	+	
atrnA CDS	34274	34297	F	TTATGACCGGAAACGCAATA	21	1558			
psbB 5' end	38291	38315	R	AGGAGGATTGAAAGG	21	1224			
ycf3 5' end	41108	41088	R	TTCAATTGATCGCTTCTCTTCT	21	7428			
ycf3 5' end	43251	43232	R	TTGTTTTTATGTTATTTTGG	20	450	+	+	
trnF-trnH	47285	47265	R	CTTTGTACATTCTCT	21	102512			
rbcL 3' end_1	55406	55426	F	CTCGGCTCAATCTTTTTLTAGA	21	111		+	
rbcL 3' end_2	55424	55431	F	AAAAAAAAGTATGCAGCCAAAT	21	160		+	
psbF-psbH	70702	70721	F	GGTAGTTCGGACCGG	20	11965	+	+	
petD-petO	73658	73677	F	TTATTATGATCGCTTCTTCT	21	130000		+	
rps19 CDS	80081	80098	F	ATGAAATCGGCAATTGATG	18	2770			
ndhB 5' end_1	87859 (127454)	87839 (127474)	R	ACTATTAGATCGTGCTTGAATG	21	7196	+	+	
ndhB 5' end_2	87863 (127450)	87843 (127470)	R	AGTTACTATACATGATCTGG	21	5203	+	+	
trn16 3' end	92921 (122393)	92941 (122373)	F	GGTGCGGTGCTGACCTCTTCT	21	4056			
trnA intron	95093 (120221)	95113 (120201)	F	CTACGCGGATACTAGATACCC	21	982			
trnR 3' end	98927 (116387)	98946 (116368)	F	GTGTCGGCGGCTGCAATCCC	20	19903			+
ndhF CDS	101690	101709	F	ATAACCGCGATATGACCC	20	1149			

*F/R: Direction of transcripts (F: forward, R: reverse).
doi:10.1371/journal.pone.0092501.t006
tribe Avenae. However, molecular studies inferred alternative phylogenetic positions of *Deschampsia* (i.e., Avenae or Poeae), depending on the target sequences used for examination or the parameters used for grouping [12,13,32–35]. In this study, we revised the phylogenetic position of *D. antarctica* using complete sequences of chloroplast DNA. A comparative analysis based on both whole plastome and open reading frame sequences of coding genes suggest that *D. antarctica* is more closely related with species in the Poeae tribe than the Avenae tribe. This is in agreement with the results of Davis and Soreng [13], Catalan et al. [33], and Nadot et al. [34], in which *Deschampsia* forms a closer relationship with species of the Poeae tribe than the Avenae tribe. This is in agreement with the results of Davis and Soreng [13], Catalan et al. [33], and Nadot et al. [34], in which *Deschampsia* forms a closer relationship with species of the Poeae tribe than with those of Avenae, as suggested by Souto et al. [12] and Hsiao et al. [35]. However, in our genome structure analysis, we found an interesting region (rbcL–psaI) where both the *rpl23* translocation product and *accD* pseudogene were found. This appears to be specific to *Deschampsia*, since other Poeae or Avenae species have kept only one remnant of *accD* or *rpl23* in the region, suggesting that this region could be molecular evidence for an intermixed lineage of *Deschampsia*.

For the transcriptome analysis of the chloroplast genome, we utilized RNA-seq data from libraries generated by two preparation methods (mRNA-seq and small RNA-seq). We found that a significant proportion of the reads from RNA-seq data represent the organelle derived sequences, suggesting that the eukaryotic RNA-seq results are very good resources for a functional study of genes in organelles.

The transcriptome analysis of *D. antarctica* plastid RNAs revealed several interesting aspects of RNA metabolism. First, a search of the variant transcripts revealed numerous RNA-editing sites in the *D. antarctica* chloroplast genome. RNA editing has been observed in the chloroplasts of extant descendants of early land plants other than liverworts and mosses. In angiosperm plastids, RNA editing is mostly restricted to a C-to-U conversion, and the conversion occurs at about 30 different positions, whereas hornworts and fern plastids extensively edit U-to-C as well as C-to-U at 300 different positions [36]. A comparative analysis of eight land plants, including hornworts, ferns, and seed plants, suggested that chloroplast RNA editing is of monophyletic origin and evolved as a system to generate new variations [37]. Our transcriptome analysis revealed *in situ* editing sites beyond those predicted by computational tools (Table 4 vs. Table S5). According to the variant transcript search, the major form of
RNA-editing is C-to-U conversion (54.8%), and the conversion rate of C-to-U edits (90%) is much higher than those of other edits. Some edits with C-to-U conversion in several genes, such as atpA, ycf3, ndhK, petB, rpoA, rps8, ndhD, ndhG, and ndhA, have been reported in other species [37], indicating that these edits are functionally conserved in plants. Comparison between the whole genome DNA and transcriptome data also showed that various versions of edits exist and that their respective conversion rates differ. The difference in conversion rates among edits might be the result of tissue-specific, gene-specific, or developmental stage-specific RNA-editing patterns. Considering that mitochondrial RNA editing occurs with developmental and tissue specificity in plants [38–40], exploring whether tissue-disparity exists in plastid RNA-editing and the regulatory mechanisms that underlie it would be worthwhile.

We identified 27 plastid small noncoding RNAs in the D. antarctica chloroplast genome by high-resolution mapping of the transcriptome data. In Arabidopsis, rice, maize, and barley, small RNAs are expressed in plastids and their sequences correlate with the termini of processed mRNA [28,29]. These studies also suggested that the small RNAs are footprints of the RNA-binding pentatricopeptide repeat (PPR) proteins, which protect RNAs from exonucleolytic degradation. Our results support this hypothesis. We observed a large amount of small RNAs expressed in the D. antarctica plastid, and these RNAs were not randomly distributed but were located in intergenic regions preferentially near the 5' or 3'-ends of coding regions. This suggests that many small RNAs are evolutionarily conserved in their sequences and locations, which might have resulted from the functionally conserved gene regulatory system of higher plants.

Conclusions

Using Illumina high-throughput sequencing technology, we obtained the complete sequence of the D. antarctica chloroplast genome. This is the first chloroplast genome sequenced from a plant species endemic to Antarctica. Sequence divergence analysis with other plastomes of the BEP clade in the grass family suggests a sister relationship between D. antarctica and two species of the Poeae tribe, F. annadinaeae and L. perenne. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts resulting from RNA-seq data. As a result, we could make an expression profile for 81 protein-coding genes and proposed ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes in D. antarctica. Analysis of small RNA-seq revealed that 27 small noncoding RNAs are preferentially located close to the 5'- or 3'-ends of genes. Also, >30 RNA-editing sites were found in the D. antarctica chloroplast genome, with a predominance of C-to-U conversions. These will be very useful for molecular phylogeny studies of the evolution of Antarctic plants and for transcriptome studies specific to plant organelles.

Supporting Information

Figure S1 Comparison of small RNA sequences from different species. (TIF)
Table S1 List of primer pairs used in sequence verification and improvement of the Deschampsia antarctica chloroplast genome. (XLSX)
Table S2 The GenBank accession numbers of all eight chloroplast genomes used for phylogenetic analysis. (XLSX)
Table S3 Comparison of homologs between the Deschampsia antarctica chloroplast genome and Lolium perenne (Lp), Festuca arundinacea (Fa), Agrostis stolonifera (As), Hordeum vulgare (Hv), Triticum aestivum (Ta), Brachypodium distachyon (Bd), and Oryza sativa subsp. japonica (Os) by the percent identity of coding and noncoding regions. (XLSX)
Table S4 Repeat sequences in the Deschampsia antarctica chloroplast genome. (XLSX)
Table S5 The 37 RNA-editing sites predicted by the PREP-cp program.

(XLSX)

Acknowledgments
The authors wish to thank Dr. Sanghee Kim (Korea Polar Research Institute) for providing support of analysis software.

References
1. Neuhäusel HE, Emes MJ (2000) Nonphloemosynthetic metabolism in plastids. Annual Review of Plant Physiology and Plant Molecular Biology 51: 111–140.
2. Wicke S, Schneeweiss G, dePamphilis C, Müller K, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, and function. Planta Molecular Biology 76: 273–297.
3. Chumley TW, Palmer JD, Mower JP, Fournacé HM, Calie PJ, et al. (2006) The complete chloroplast genome sequence of <italic>Peraginum × bartonii</italic>: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Molecular Biology and Evolution 23: 2175–2190.
4. Yang M, Zhang X, Liu G, Yin Y, Chen K, et al. (2010) The complete chloroplast genome sequence of <italic>Deschampsia antarctica</italic> L. PLoS ONE 5: e12752.
5. Bock R (2007) Structure, function, and inheritance of plastid genomes. In: Bock R, editor. Cell and Molecular Biology of Plastids. Springer Berlin Heidelberg, pp. 29–63.
6. Moore M, Dhingra A, Soltis P, Shaw R, Farmerie W, et al. (2006) Rapid and accurate high-throughput sequencing of angiosperm plastid genomes. BMC Plant Biology 6: 17.
7. Wu Z-Q, Ge S (2012) The phylogeny of the <italic>BEF</italic> clade in grasses revisited: Evidence from the whole-genome sequences of chloroplasts. Molecular Phylogenetics and Evolution 62: 575–578.
8. Hand ML, Spanenberg GC, Forster JW, Cogan NOI (2013) Plastome sequence determination and comparative analysis for members of the <italic>Lilium-Feuca</italic> grass species complex. G3 Genes|Genomes|Genetics 3: 607–616.
9. Alberdi M, Bravo LA, Gürtner A, Gudek M, Costaerra LJ (2002) Ecophysiology of Antarctic vascular plants. Physiologia Plantarum 115: 479–496.
10. Lee J, Nob E, Choi H-S, Shin S, Park H, et al. (2013) Transcriptome sequencing of the Antarctic vascular plant <italic>Beinga antarctica</italic> Desv.: under abiotic stress. Annals of Botany 112: 729–739.
11. Xiong FS, Mueller EC, Day TA (2000) Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. American Journal of Botany 87: 700–710.
12. Souito DPF, Catalano SA, Testo D, Bernasconi P, Sala A, et al. (2006) Phylogenetic relationships of <italic>Deschampsia antarctica</italic> (Poaceae): Insights from nuclear ribosomal ITS. Plant Systematics and Evolution 261: 1–9.
13. Davis JI, Soreng RJ (2007) A preliminary phylogenetic analysis of the grass subfamily <italic>Pooideae</italic> (Poaceae), with attention to structural features of the plastid and nuclear genomes, including an intron loss in GBSSI. Aliso: A Journal of Systematic and Evolutionary Botany 51: 731–741.
14. Wyman NK, Jensen RK, Boore JL (2004) Automatic annotation of organelar genomes with DOGMA. Bioinformatics 20: 3252–3255.
15. Kurtz S, Schierup M, Cslansky C (1999) REPuter: fast computation of maximal and maximum parsimony alignments. Molecular Biology and Evolution 20: 2731–2739.

Author Contributions
Conceived and designed the experiments: JL, HL, HP. Performed the experiments: JL, YK. Analyzed the data: JL YK HL SCS. Wrote the paper: JL HL HP.