The mutational repertoire of uterine sarcomas and carcinosarcomas in a Brazilian cohort: A preliminary study

Leonardo Tomiatti da Costa, Laura Gonzalez dos Anjos, Luciane Tsukamoto Kagohara, Giovana Tardin Torrezan, Claudia A. Andrade De Paula, Edmund Chada Baracat, Dirce Maria Carraro, Katia Candido Carvalho

OBJECTIVES: The present study aimed to contribute to the catalog of genetic mutations involved in the carcinogenic processes of uterine sarcomas (USs) and carcinosarcomas (UCSs), which may assist in the accurate diagnosis of, and selection of treatment regimens for, these conditions.

METHODS: We performed gene-targeted next-generation sequencing (NGS) of 409 cancer-related genes in 15 US (7 uterine leiomyosarcoma [ULMS], 7 endometrial stromal sarcoma [ESS], 1 adenosarcoma [ADS]), 5 UCS, and 3 uterine leiomyoma (ULM) samples. Quality, frequency, and functional filters were applied to select putative somatic variants.

RESULTS: Among the 23 samples evaluated in this study, 42 loss-of-function (LOF) mutations and 111 missense mutations were detected, with a total of 153 mutations. Among them, 66 mutations were observed in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. TP53 (48%), ATM (22%), and PIK3CA (17%) were the most frequently mutated genes. With respect to specific tumor subtypes, ESS showed mutations in the PDE4DIP, IGT10, and DST genes, UCS exhibited mutations in ERBB4, and ULMS showed exclusive alterations in NOTCH2 and HER2. Mutations in the KMT2A gene were observed exclusively in ULM and ULMS. In silico pathway analyses demonstrated that many genes mutated in ULMS and ESS have functions associated with the cellular response to hypoxia and cellular response to peptide hormone stimulus. In UCS and ADS, genes with most alterations have functions associated with phosphatidylinositol kinase activity and glycerophospholipid metabolic process.

CONCLUSION: This preliminary study observed pathogenic mutations in US and UCS samples. Further studies with a larger cohort and functional analyses will foster the development of a precision medicine-based approach for the treatment of US and UCS.

KEYWORDS: Sarcoma; Carcinosarcoma; Mutation; DNA Sequence Analysis.

INTRODUCTION

Sarcomas are rare heterogeneous tumors that affect the female genital tract and originate from tissues such as muscle, fat, bones, and fibrous tissue. Uterine sarcomas (USs) are the most commonly occurring gynecological sarcomas, representing 90% of the total cases (1). Based on their histological composition, uterine tumors with mesenchymal elements can be divided into 1) pure sarcomas (uterine leiomyosarcomas - ULMSs, endometrial stromal sarcomas - ESSs); 2) mixed epithelial and mesenchymal tumors (adenosarcomas - ADSs), and 3) carcinosarcomas - UCSs, a biphasic tumor composed of high-grade carcinomatous and sarcomatous components derived from transdifferentiation of carcinoma (2). Many studies have characterized UCS tumors as mixed USs; however, since 2014, they have been reclassified as endometrial carcinomas (ECs) that demonstrate metaplastic features (3,4). Despite their low prevalence, USs are associated with high rates of local recurrence, distant metastases, and poor prognosis, with two-year survival rates below 50% (1).

Several genetic alterations have been associated with USs and UCSs, with few alterations being associated with specific histological subtypes. For instance, ESSs can be divided into two types: low-grade ESS (LG-ESS) and high-grade ESS (HG-ESS), both characterized by recurrent chromosomal translocations. In LG-ESS, the most common translocation,
The definition of the mutational repertoire of the different subset of such tumors (18). Associations are associated with the tumorigenic process in a small da Costa LT et al. Genetic alterations in BRA sarcomas women

MATERIALS AND METHODS

Sample selection

In order to analyze differences in genetic mutations between different histological types of US, we initially selected 43 formalin-fixed and paraffin-embedded (FFPE) human samples including 14 ULMS, 12 ESS, 2 ADS, 12 UCS, and 3 ULM-non-cancerous tumor (as reference samples). All samples were obtained via surgical procedures performed between 2000 and 2012 at the Institute of Cancer of Sao Paulo (ICESP) and Clinics Hospital of the Faculty of Medicine, University of Sao Paulo (HCFMUSP). Tissues were stored at the molecular and structural gynecology laboratory (LIM-58) of the University of Sao Paulo Medical School (FMUSP). This study was performed in accordance with the Declaration of Helsinki and was approved by the Research Ethics Committee of the FMUSP with protocol number 477/15. Patients’ medical records were revised and the following data were recorded: age at diagnosis, postmenopausal bleeding, adjuvant treatment, presence of metastasis or recurrence, and status.

DNA Isolation

Genomic DNA was extracted using the QIAamp DNA FFPE Tissue Kit obtained from QIAGEN® according to the manufacturer’s instructions. DNA concentration, purity, and integrity were assessed by spectrophotometry (Nanodrop 2000, Thermo Fisher Scientific) and fluorometry (Qubit - Thermo Fisher Scientific), respectively.

Preparation of sequencing libraries and Next-Generation Sequencing (NGS)

Sequencing libraries were prepared using the Ion Torrent Ampliseq Comprehensive Cancer Panel - Catalog number: 4477685 (Thermo Fisher Scientific), which contains ~16,000 primer pairs multiplexed into 4 pools. This commercial panel was designed to assess the mutational profile of 409 cancer driver genes and drug targets along with signaling cascades, apoptosis genes, DNA repair genes, transcription regulators, inflammatory response genes, and growth factor genes (Table S1). Prior to amplification, DNA was treated with the uracil-DNA glycosylase enzyme (Thermo Fisher Scientific) by adding 1 unit of enzyme per 50 ng of DNA and incubating for 15 min at 37 °C. This procedure was performed to remove DNA molecules containing uracil and decrease the number of artifactual variants in the sequencing (19). Libraries were then prepared using Ion AmpliSeq™ Library kit 2.0 protocols, with 10 ng of input DNA per pool, totaling 40 ng of DNA from each sample. The FujiP reagent was used to partially digest primer sequences and phosphorylate the amplicons. Next, sequencing adaptors and barcodes were ligated to the amplicon by the enzyme Ligase using the Ion
Results

The results were analyzed using the Torrent Suite v.5.0.5 software (Thermo Fisher Scientific). Sequence variants (SNVs and indels) were identified using the Torrent Variant Caller (Ion Torrent – Thermo Fisher Scientific) and compared to the GRCh37 / hg19 genome version. VCF files were analyzed using VarSeq v.1.8 software (GoldenHelix) for variant annotation and prioritization. The variants were filtered based on the quality and frequency criteria: coverage (>100), genotype quality score cutoff (GQS > 50), variant base in at least 5% of reads, variant base present in at least 2 reads in each direction, homopolymer-length error < 5, absence of genetic variants in population databases (ExAC; NHLBI-ESP; 1000 Genomes Project) or minor allele frequency (MAF) < 0.01%.

Subsequently, variants were selected based on their effect on protein expression, with the following being considered: 1) variants described in the COSMIC database; 2) loss-of-function variants – Frameshift variants – nucleotide insertions/deletions, gain/loss of stop codons, splice site alterations; or 3) missense variants (in-frame insertions/deletions, amino acid exchange) predicted as possibly pathogenic in at least three of six prediction programs used (SIFT, PolyPhen, MutationTaster, MutationAssessor, FATHMM, FATHMM-MKL) and occurring in oncogenes or tumor suppressor genes in OncoMD database. Variants not previously described in the COSMIC database were visually inspected using the integrative genomics viewer (IGV) program to exclude sequencing artifacts.

Construction of genetic interaction networks was performed using Cytoscape platform version 3.7.0, which uses data from protein and genetic interactions, pathways, co-expression, co-localization, and protein domain similarity.

Results

Initially, 40 US and UCS (14 ULMS, 12 ESS, 2 ADS, and 12 UCS) and 3 ULM samples were selected from the pathology department files; however, only 23 (7 ULMS, 7 ESS, 1 ADS, 5 UCS, and 3 ULM) remained until the end of NGS analyses. Some losses occurred while performing multiplex PCR reactions (AmpliSeq®), during which we observed a high degree of fragmented DNA and many genetic artifacts in several samples. These issues are expected since tissue processing for paraffin inclusion and long storage time causes damage to the DNA structure (integrity). The clinical and pathological features of 40 patients with US and UCS who were enrolled in this study are summarized in Table 1.

Among the 23 samples deemed suitable for the evaluation of sequencing data, homogeneity average was 73.2%, median base coverage was 1257X, and horizontal coverage was 84.3% corresponding to 100X. Based on the NGS data, we selected point mutations with possible impacts on the function of the protein encoded by the altered gene (missense, nonsense, splice-site mutations, loss of stop codons) and small insertions and deletions (indels). Total variants detected in each sample and filtered variants for the selection of somatic alterations of interest are presented in Table 2.

Among the 409 genes included in the panel, mutations were detected in 94 distinct genes, with 30 genes demonstrating mutations in more than one sample and 64 genes showing mutations in a single sample. Table 3 presents the list of genes that were mutated in more than one sample of the cohort, along with the number of mutated samples and the histological types. TP53 (11/23 – 48%), ATM (5/23 – 22%), and PIK3CA (4/23 – 17%) were the most frequently mutated genes.

The Venn diagram (Figure 1) shows the shared and individual (specific) mutations of each malignant histological subtype evaluated (ULMS, ESS, UCS, and ADS). Three shared genes were observed (ATM, TP53, and KMT2D) among the ULMS, ESS, and UCS samples. Nineteen genes were shared between 2 types of tumors, and 68 genes were mutated in a single type. Among them, 6 genes were mutated in more than one sample of the same histological subtype, namely, PDE4DIP (3 ESS samples), ITGA10, and DNT (2 ESS samples), NOTCH2, and HER2 (2 ULMS samples), and ERBB4 (2 UCS samples). Quantitatively, this analysis shows similarities in the mutational profiles of ULMS and ESS, with 6 mutated genes in common (6.7%) between both subtypes. In the genes JAK3, APC, ATRX, CREBBP, MYB, and SYNE1, most of the mutations were characterized as missense mutations; however, in the SYNE1 gene, the two mutations

Variables	Categories	US/UCS n (%)
Age		
> 50 years	33 (82)	
≤ 50 years	7 (18)	
N.A.	0 (0)	
Postmenopausal Bleeding		
Yes	22 (55)	
No	13 (33)	
N.A.	5 (12)	
Adjuvant Treatment		
RT	19 (47)	
CT	8 (20)	
N.A.	0 (0)	
Metastasis or Recurrence		
Yes	22 (55)	
No	14 (35)	
N.A.	4 (10)	
Status		
Alive	11 (27)	
Death	23 (58)	
Loss of follow-up		
Yes	6 (15)	
N.A.	0 (0)	
observed in ULMS and ESS samples were determined as LOF mutations (c.352C>T and c.8565G>A, respectively). In addition, mutations in the TRRAP, DNMT3A, EPHA7, KAT6B, and PRKDC genes indicate that UCS and ADS may exhibit molecular similarities.

Table 2 - Total variants obtained after filtering performed to increase the specificity of NGS results (higher stringency).

Samples	Total	SNV	Insertions	Deletions	LOFs	Missense	Cosmic
ESS 2	2347	2257	80	50	1	6	5
ESS 3	1551	1473	18	47	2	6	4
ESS 4	1249	1162	18	51	0	1	1
ESS 5	1416	1324	18	56	0	4	3
ESS 7	1494	1397	18	57	2	2	1
ESS 9	1421	1343	35	43	1	6	5
ESS 10	1440	1329	35	76	4	6	6
UCS 2	1332	1223	18	62	3	4	4
UCS 5	1362	1271	18	49	7	13	7
UCS 9	1972	1884	18	46	1	6	4
UCS 13	1254	1150	18	48	1	6	4
UCS 19	1604	1516	18	55	1	3	3
ULMS 38	746	678	43	25	0	7	4
ULMS 39	1768	1688	34	46	1	2	2
ULMS 40	1296	1193	34	61	2	3	1
ULMS 45	2004	1921	34	47	2	3	1
ULMS 52	2806	2746	34	37	0	11	6
ULMS 50	2842	2651	34	114	0	1	0
ULMS 59	2132	1968	34	88	4	6	2
ADS 2	3521	3406	34	74	6	10	0
ULM 119	1298	1201	34	60	1	1	0
ULM 143	981	919	34	33	1	2	2
ULM 152	1297	1237	34	35	1	2	1

*Endometrial stromal sarcoma (ESS); Uterine carcinosarcoma (UCS); Uterine leiomyosarcoma (ULMS); Adenocarcinoma (ADS); Uterine leiomyoma (ULM).

Table 3 - Gene mutations observed in more than one sample and histological subtypes.

Gene	Mutated samples n (%)	Histological Types (ULMS/ESS/UCS/ADS/ULM)
TP53	11 (48%)	4 ULMS, 3 ESS, 4 UCS
ATM	5 (22%)	2 ULMS, 2 ESS, 1 UCS
PIK3CA	4 (17%)	1 ESS, 3 UCS
KMT2D	3 (13%)	1 ULMS, 1 ESS, 1 UCS
MTOI	3 (13%)	1 ESS, 1 UC, 1 ULM
JAK3	3 (13%)	1 ULMS, 1 ESS, 1 ULM
APC	3 (13%)	1 ULMS, 1 ESS
DCR1	3 (13%)	1 ESS, 2 UC
TRRAP	3 (13%)	2 UC, 1 AD
TSC2	3 (13%)	2 ULMS, 1 AD
PDE4DIP	3 (13%)	3 ESS
AR	2 (9%)	1 ESS, 1 UC
ATRX	2 (9%)	1 ULMS, 1 ESS
CREBBP	2 (9%)	1 ULMS, 1 ESS
DNMT3A	2 (9%)	1 UC, 1 AD
EPHA7	2 (9%)	1 UC, 1 AD
KAT6B	2 (9%)	1 UC, 1 AD
KMT2A	2 (9%)	1 ULMS, 1 ULM
MET	2 (9%)	1 UC, 1 ULM
MYB	2 (9%)	1 ULMS, 1 UC
NOTCH1	2 (9%)	1 ULMS, 1 UC
PRKDC	2 (9%)	1 UC, 1 AD
SYNE1	2 (9%)	1 ULMS, 1 ESS
NFI	2 (9%)	1 UC, 1 UC
NOTCH2	2 (9%)	2 ULMS
HER2	2 (9%)	2 ULMS
ERBB4	2 (9%)	2 UC
DAXX	2 (9%)	1 ESS, 1 AD
ITGA10	2 (9%)	2 ESS
DST	2 (9%)	2 ESS

Table 4 summarizes the genes with the most frequent alterations (mutations in 2 or more samples, or with 2 mutations in the same sample), the types of mutations, and their position. Alterations in the respective proteins are also indicated, along with the combined effect of these alterations (Missense or LOF) and DNA (c.), and protein (p.) nomenclatures. Their nomenclature can be used for database searches. The descriptions of the 153 potentially somatic variants are listed in Table S2. UC5, ULMS52, ESS58107, and ADS2 samples demonstrated the highest number of mutations (UC5 with 20 mutations in 19 genes; ULMS52 with 11 mutations in 10 genes; ESS58107 with 10 mutations in 10 genes, and ADS2 with 16 mutations in 16 genes). Samples with the lowest number of mutations were ULMS50b with 1 mutation in ALK, ESS4 with 2 mutations (ATM and CREBBP), and ULM119 (benign tissue) with 2 mutations (MET and PDGFBR).

Based on the data described in Table 4, we selected genes with more than three mutations in our cohort to submit to the OncoPrinter visualization tool (cBioPortal - http://www.cbioportal.org/). Figure 2 shows the percentage of patients demonstrating mutations in each gene, distribution, and the types of mutations observed in each sample. The highest frequency of gene mutations was observed in TP53 (48%) with the highest frequency of missense-type mutations (3 ULMS, 1 ESS, and 4 UC5 samples). ATM mutations were observed in 22% of the samples, with 3 missense-type mutations (2 ULMS and 1 ESS) and 2 LOF-type mutations (1 ESS and 1 UCS). PIK3CA appeared to be the third most mutated gene (17%) present in 3 UCS samples, with most of the mutations determined as the missense-type. APC, MTO1, DCR1, TRRAP, KMT2D, TSC2, PDE4DIP, and JAK3 showed a 13% mutational frequency. LOF mutations in PDE4DIP was found exclusively/specifically in the ESS.
samples. NF1, CREBBP, and MYB demonstrated a 9% mutational frequency. Missense mutations in CREBBP and MYB were associated with ULMS and ESS (4 mutations in ULMS and 2 in ESS).

Since uterine sarcomas are histologically classified into two primary subtypes, we used the same classification to study the association of the mutated genes with pure sarcomas (ULMS – ESS) and mixed tumors (UCS – ADS). Figure 3 shows the association of the mutated genes in the group of tumors classified as pure (ULMS and ESS). According to the Cytoscape platform (20), many genes demonstrating mutations in these histological subtypes exhibit functions associated with the cellular response to hypoxia (MTOR, PDK1, MDM2, TP53, CREBBP, NOTCH1, and HIF1A) and peptide hormone stimulus (EIF4EBP1, RPTOR, TSC2, TSC1, MTOR, JAK3, ADCY6, PIK3CA, GNAS, and ATP6V1D).

Although UCS is no longer classified as uterine sarcoma but as metaplastic carcinoma, we included this tumor group in the analysis shown in Figure 4. Here, we associated UCS – ADS owing to their mixed histologies (epithelial and mesenchymal components) and also because many retrospective studies on the US still include UCS in their available samples. According to the Cytoscape platform (20), many mutated genes in these tumors have functions associated with phosphatidylinositol kinase activity (PI4K2A, PIK3CA, PIK3CB, ATM, PI4KB, PIK3CG, PIK3C2B, PI4KA, PIK3C2A, PIK3C3, PIK3C2G, and PIK3CD) and glycerophospholipid metabolic process (PI4K2A, PIK3CA, PIK3CB, ATM, PI4KB, PIK3CG, PIK3C2B, PI4KA, PIK3C2A, PIK3C3, PIK3C2G, PIK3CD, PI4K2B, and SMG1).

Collectively, our results indicate that despite the molecular heterogeneity demonstrated by USs and UCSs, they share similarities in their mutational profiles. In addition, genetic interaction networks indicate that alterations in functions associated with hypoxia, response to peptide hormone stimulus in ULMSs and ESSs, and phosphatidylinositol kinase activity and glycerophospholipid metabolic process in UCS and ADS can influence the carcinogenic process of these tumors. Considering that NGS technology can provide a reliable molecular portrait of neoplasms quickly and cost-effectively (21), these results open new avenues for research and consequently, may positively impact the clinical management of patients with such tumors.

DISCUSSION

In this study, we performed a mutational screening of the samples collected from patients with USs and UCSs. We employed a panel of 409 genes for the screening. Initially, we focused on the mutated genes shared among more than...
Table 4 - Most common mutations observed in the study, their chromosomal positions, effects, and nomenclature.

Sample	Chr:Pos	Gene	HGVS c.	HGVS p.	Effect
UCS2	3:178921549	Pik3CA	c.1031T>C	p.Val344Ala	Missense
	6:94120318	Epha7	c.732G>A	p.Ala245Thr	
	7:116339356	Met	c.218T>A	p.Leu71Ter	LOF: stop - gained
	8:4877612	Prkdc	c.5586delT	p.Phe1862Leufs	LOF: frameshift
	17:7575547	Tp53	c.734G>T	p.Gly245Val	Missense
UCS5	1:11222757	Mtor	c.4254-1G>A	r.spl?	LOF: splice - acceptor
	3:17892085	Pik3ca	c.3140A>G	p.His1047Arg	Missense
	10:76735809	Kat6b	c.1714C>T	p.Arg572Cys	Missense
	11:108114777	Atm	c.594A>C	p.Cys198Ter	LOF: stop - gained
	14:95572101	Dicer1	c.3007C>T	p.Arg1003Ter	LOF: stop - gained
	17:29588751	Nf1	c.4600C>T	p.Arg1534Ter	LOF: stop - gained
	17:29665110	Nf1	c.6772C>T	p.Arg2258Ter	LOF: stop - gained
	2:25469168	Dnmtn3a	c.1290T>G	p.Asn430Lys	Missense
	2:212587219	Erbb4	c.782A>C	p.Gln261Pro	Missense
	7:98513427	Trrap	c.2281C>T	p.Arg761Trp	Missense
	X:66766207	Ar	c.1219T>C	p.Arg407Cys	Missense
Ucs9	9:139391355	Notch1	c.6836C>T	p.Ala2279Val	Missense
	12:49444719	Kmt2d	c.2747C>T	p.Pro916Leu	Missense
Ucs13	3:178916854	Pik3ca	c.241G>A	p.Glu81Lys	Missense
	14:95574253	Dicer1	c.2614A>G	p.Ala872Thr	Missense
	17:7575534	Tp53	c.747G>T	p.Arg249Ser	Missense
	7:98609947	Trrap	c.11549G>A	p.Arg3850His	Missense
Ucs19	2:212295800	Erbb4	c.2513G>A	p.Arg838Gln	Missense
Ulms38	1:120458122	Notch2	c.7223T>A	p.Leu2408His	Missense
Ulms39	17:37864584	Her2	c.236A>C	p.Glu79Ala	Missense
Ulms40	11:108139268	Atm	c.2770C>T	p.Arg924Trp	Missense
Ulms41	17:7577120	Tp53	c.818G>A	p.Arg273His	Missense
Ulms54	17:37881117	Her2	c.2446G>T	p.Arg816Cys	Missense
Ulms545	11:108160506	Atrx	c.4660A>T	p.Arg1534Ter	LOF: stop - gained
Ulms59	17:7578290	Tp53	c.5601G>C	r.spl?	LOF: splice - acceptor
Ulms552	1:120495251	Notch2	c.6094C>A	p.Ala1338Val	Missense
Ulms559	11:118377142	Kmt2a	c.10535C>T	p.Pro3512Leu	Missense
Ulms559	12:49416396	Kmt2d	c.16315C>T	p.Arg5439Trp	Missense
Ulms59	6:153511289	Syn1	c.331G>A	p.Glu111Ser	Missense
Ulms59	6:153559101	Myb	c.2269C>T	p.Arg757Trp	Missense
Ulms59	6:152832196	Syn1	c.352C>T	p.Arg118Ter	LOF: stop - gained
Ulms59	20:57429026	Gnas	c.706G>A	p.Asp236Asn	Missense
Ess2 (Lg-ess)	2:652706896	Syn1	c.8565G>A	p.Trp2855Ter	LOF: frameshift
Ess2	11:108175463	Atm	c.5558A>T	p.Asp1853Val	Missense
Ess3	17:7577121	Tp53	c.817G>T	p.Arg273Cys	Missense
Ess3	17:7577139	Tp53	c.799C>T	p.Arg267Trp	Missense
Ess3	1:145015874	Pde4dip	c.214A>T	p.Arg72Ter	LOF: stop - gained
Ess4	5:112154777	Apc	c.1048T>C	p.Ser350Pro	Missense
Ess4	5:112162855	Apc	c.1459G>A	p.Gly487Arg	Missense
Ess4	6:56328464	Dst	c.16429G>T	p.Arg5477Trp	Missense
Ess4	12:49418436	Kmt2d	c.15977C>T	p.Leu326Pro	Missense
Ess5	17:7578176	Tp53	c.672+1G>A	r.spl?	LOF: splice - donor
Ess5	17:29556250	Nf1	c.2617C>T	p.Arg873Cys	Missense
Ess5	17:29672324	Nf1	c.7355G>T	p.Arg2452Leu	Missense
Ess5	11:108141990	Atm	c.22934delT	p.Leu979Cysfs	LOF: frameshift
Ess5	16:3820773	Crebbp	c.2678C>T	p.Ser893Leu	Missense
Ess7	1:11217330	Mtor	c.4348T>G	p.Tyr1450Asp	Missense
Ess7	19:17937659	Jak3	c.3268G>A	p.Ala1090Thr	Missense
Ess7	6:33287248	Daxx	c.1885G>A	p.Val629Ile	Missense
Ess7	14:95590677	Dicer1	c.1232C>A	p.Ser411Ter	LOF: stop - gained
Ess7	7:67993115	Atrx	c.1633C>G	p.Gln545Glu	Missense
Table 4 - Continued.

Sample	Chr:Pos	Gene	HGVS c.	HGVS p.	Effect
ESS7	1:14406139	PDE4DIP	c.2494delC	p.Gln832Argfs	LOF - frameshift
ESS8	1:14536012	ITGA10	c.214C>T	p.Arg71X	LOF: stop - gained
ESS9	1:14536012	ITGA10	c.2104G>A	p.Ala702Thr	Missense
ESS10	3:178936091	PIK3CA	c.1633G>A	p.Glu545Lys	Missense
ES51	5:112175711	APC	c.4420G>A	p.Ala1474Thr	Missense
ESS58107	1:14551874	PDE4DIP	c.2104G>A	p.Ala702Thr	Missense
ESS58107	6:135516944	MYB	c.1007C>T	p.Trp336Le	Missense
ESS58107	17:7578176	TPS3	c.672+1G>A	r.Spl?	LOF: splice - donor
ADS2	X:66863156	AR	c.1675A>T	p.Thr559Ser	Missense
ADS3	6:3328629	DAXX	c.1599C>A	p.Tyr533Ter	LOF - stop - gained
ADS4	6:33979315	EPHA7	c.1513C>A	p.Leu504Met	Missense
ADS5	7:98501128	TRRAP	c.1024G>T	p.Glu342Ter	LOF - stop - gained
ADS6	8:48711786	PRKDC	c.1024G>T	p.Glu342Ter	LOF - stop - gained
ADS7	10:76781925	KAT6B	c.3308_3310delAAG	p.Leu1104del	LOF: inframe/del
ADS8	16:2138078	TSC2	c.5098G>T	p.Ala1700Ser	Missense
ULM119	7:116403114	MET	c.2429A>C	p.His810Pro	Missense
ULM143	11:11307996	MTOR	c.995_996dupGG	p.Leu332Glyfs	LOF: frameshift
ULM152	11:118344893	KMT2A	c.3019G>T	p.Gly1007Cys	Missense

Figure 2 - Distribution of mutations in samples and their biological effects. The figure was constructed using the OncoPrinter from cBioPortal for Cancer Genomics database (http://www.cbioportal.org/). Each gray rectangle represents a sample according to the sequence indicated at the top. Genes with the highest frequency of alterations are shown. Captions for each type of alteration (Loss of function - Black Square; Missense - Green Square; Two alterations in the same gene - vertical line [modified by authors]; No alteration - gray rectangle) are indicated.
One histological subtype of US. We initiated our analyses with 40 samples, but owing to the quality of the FFPE material, certain losses reduced the number of samples to 23. Considering the published reports on sarcomas, the number of samples was sufficient for this type of population mutational screening. In UCS and ESS samples, we identified mutations in genes that demonstrated alterations in previous studies conducted for examining other tumors, such as \textit{PIK3CA}, \textit{DICER1}, \textit{AR}, and \textit{NF1} (22). Although the role of these genes is known in different cancers, their role in the tumorigenesis of USs and USCs is not fully understood.

\textit{The PIK3CA} gene encodes the p110\alpha protein, the catalytic subunit of PI3K, which controls the growth, division, survival, movement, and structure of cells. Many studies have demonstrated the importance of \textit{PIK3CA} mutation in mediating tumorigenesis via increased PI3K/AKT/mTOR signaling (23,24). While investigating druggable molecular targets in uterine sarcomas, Cuppens et. al (25) identified PI3K/MTOR as a potential target in 26\% of cases, which were primarily ULMS, HG-ESS, and undifferentiated uterine sarcomas. Here, we included eight samples of ESS. Seven of these were characterized as HG-ESS, consistent with the molecular findings described in previous reports published for these tumors. \textit{DICER1} is critical for the regulation of expression of several miRNAs. The \textit{DICER1} gene is highly conserved among various species, indicating that mutations may compromise its function and might be involved in the onset of tumors (26). Previous reports published by our group (2,27) demonstrated the regulation of microRNAs associated with several oncogenic pathways, including \textit{DICER1}. Mutations in \textit{NF1} have already been demonstrated in soft-tissue sarcomas (myxofibrosarcomas and pleomorphic liposarcomas) (28). The expression of the androgen receptor (AR) seems to be associated with a better prognosis in patients with ESS. AR expression is higher in pre-malignant lesions and low-grade tumors (LG-ESS) (29). These findings may explain why AR expression is low in ULMS, which is an extremely aggressive tumor (30). However, the effects of the mutations observed in this gene need to be further investigated for US.

It is important to note that \textit{NOTCH1} was the unique gene that shared mutations in the UCS and ULMS. Similarly,
mutations in the DAXX gene have also been observed in the cases of ESS/ADS and ULMS/ADS, which share mutations in TSC2. Thus, our results suggest that besides exhibiting a similar tumor microenvironment, USs and UCSs also share genetic alterations. This observation is relevant to the understanding of the onset and evolution of these tumors. Furthermore, ULMS cases originating from ULMs have been reported; however, this hypothesis has not been proven yet (31,32). Our study showed that mutations in KMT2A were exclusively observed in ULMS and ULM. The c.3019G>T variant appears to be related to the Wiedemann-Steiner syndrome and Kabuki syndrome (33,34).

We attempted to identify specific genes for each type of tumor, establishing individual signatures. Despite the heterogeneity, we were able to identify six specific genes for three of the histological types evaluated in this study. In ESS samples, we observed variants in the PDE4DIP (c.214C>T and c.2494delC), ITGA10 (c.2104G>A), and DST (c.16429 C>T) genes. The variant PDE4DIP c.214C>T is described in the COSMIC database (35) as pathogenic (score 0.99) and has already been observed in hormone receptor-positive breast cancer, large bowel adenocarcinoma, malignant melanoma, and gastroesophageal junction adenocarcinoma. The role of ERBB4 as a tumor progression factor is not fully elucidated. However, this gene is known to be overexpressed and/or mutated in several solid tumors (37). The monoclonal antibody ERBB4 therapy is effective in breast, lung, and prostate cancer cells in vitro and in vivo (38). Specific and detailed studies may demonstrate new opportunities for the development of therapies targeting these tumors.

Mutations in NOTCH2 and HER2 have also been observed exclusively in ULMS. All variants are described in the
CONCLUSIONS

Notch2 of the urinary system. Persistent large bowel adenocarcinoma and transitional cell carcinoma of these rare tumors. Insightful contribution for defining the mutational repertoire study is the first DNA-sequencing study to investigate all gnostic tests as well as adequate treatment alternatives. Our tumors and provide powerful tools for diagnostic and prognostic tests as well as adequate treatment alternatives. Our study is the first DNA-sequencing study to investigate all histological types of USs and UCs together and is an insightful contribution for defining the mutational repertoire of these rare tumors. Anti-HER2 therapies are effective against breast, lung, and cervical cancers (41).

In this study, we were able to identify several mutations that contribute to a better understanding of the biology of USs and UCs. Even with the limitations associated with rare tumors, we identified genetic alterations that might act as potential target markers for precision medicine-based approaches upon validation in larger cohorts. To date, there is no precise preoperative diagnostic test for these tumors. Although rare, such tumors are very aggressive and associated with a poor prognosis. Thus, even with small cohorts, the molecular profiling of USs and UCs is extremely important to identify the changes driving the development of these tumors and provide powerful tools for diagnostic and prognostic tests as well as adequate treatment alternatives. Our study is the first DNA-sequencing study to investigate all histological types of USs and UCs together and is an insightful contribution for defining the mutational repertoire of these rare tumors.

REFERENCES

1. Chen KC, Horng HC, Wang PH, Chen YJ, Yen MS, Ng HT, et al. Uterine sarcoma Part I:Uterine leiomyosarcoma: the Topic Advisory Group systematic review. Taiwan J Obstet Gynecol. 2016;55(4):463-71. doi.org/10.1016/j.tjog.2016.04.033
2. WHO Classification of Tumours Editorial Board. Female Genital Tumours. Lyon (France): International Agency for Research on Cancer; 2020. WHO classification of tumours series, 5th ed.; vol. 4.
3. Gonzalez Dos Anjos L, De Almeida BC, Gomes de Almeida T, Mourão Lavorato Rocha A, De Nardo Matfazzoli G, Soares FA, et al. Could mutation signatures be useful for predicting uterine sarcoma and carcinosarcoma prognosis and treatment? Cancers (Basel). 2018;10(9):315. doi.org/10.3390/cancers10090315
4. Mostani N, Clavelaye AB, Pratt J. Uterine sarcomas: an update. J Natl Cancer Inst. 2018;110(24 Suppl 3):S1-9. doi.org/10.1093/jnci/djy437
5. Tuyaerts S, Amant F. Endometrial Stromal Sarcomas: A Revision of Their Potential as Targets for Immunotherapy. Vaccines (Basel). 2016;5(6):226-41. doi.org/10.3390/vaccines4030656
6. Ma X, Wang J, Wang J, Ma CX, Gao X, Patriub V, et al. The JAZF1-SUL2 fusion protein disrupts PRC2 complexes and impairs chromatin repression during human endometrial stromal tumorogenesis. Oncotarget. 2017;8(3):4062-79. doi.org/10.18632/oncotarget.13270
7. Hrzenjak A, JAZF1-SUL2 gene fusion in endometrial stromal sarcomas. Orphanet J Rare Dis. 2016;11:13. doi.org/10.1186/s13023-016-0400-8
8. Han J, Liu YJ, Ricciotti RW, Mantilla JG. A novel MBTD1-PHF1 gene fusion in endometrial stromal sarcoma: A case report and literature review. Genes Chromosomes Cancer. 2020;59(7):428-32. doi.org/10.1002/gcc.22845
9. Micci F, Brunetti M, Dal Cin P, Nucci MR, Gornoneva L, Heim S, et al. Fusion of the genes BRD8 and PHF1 in endometrial stromal sarcoma. Genes Chromosomes Cancer. 2017;56(12):841-5. doi.org/10.1002/gcc.22485
10. Debuquele B, Przybyl J, Quattrone A, Finatelo Ferreiro J, Vanspaunv P, Greendes E, et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer. 2014;134(5):1112-22. doi.org/10.1002/ijc.28410
11. Choi VJ, Jung SH, Kim MS, Baek IP, Rhee JK, Lee SH, et al. Genomic landscape of endometrial stromal sarcoma of uterus. Oncotarget. 2015;6(32):33319-28. doi.org/10.18632/oncotarget.5384
12. Amant F, Coosemans A, Debecq-Rychter M, Timmerman D, Vergote I. Clinical management of uterine sarcomas. Lancet Oncol. 2009;10(12):1188-98. doi.org/10.1016/S1470-224X(09)70226-8
13. Seddon BM, Davda R. Uterine sarcomas—recent progress and future challenges. Eur J Radiol. 2011;78(1):130-40. doi.org/10.1016/j.ejrad.2010.12.057
14. Kobayashi H, Uekuri C, Akasaka J, Ito F, Shigemitsu A, Koike N, et al. The biology of uterine sarcomas: A review and update. Mol Clin Oncol. 2013;1(4):599-60. doi.org/10.3892/mco.2013.124
15. Cancer Genome Atlas Research Network; Cancer Genome Atlas Research Network. Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell. 2017;171(4):e590-65.e28. doi.org/10.1016/j.cell.2017.10.013
16. Tsuoyoshi H, Yoshida Y. Molecular biomarkers for uterine leiomyosarcoma and endometrial stromal sarcoma. Cancer Sci. 2018;109(6):1743-52. doi.org/10.1111/cas.13613
17. Chernack AD, Shen H, Walter V, Stewart C, Murray BA, Bowbyl R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31(3):411-23. doi.org/10.1016/j.ccell.2017.02.010
18. Bean GR, Anderson J, Sangoi AR, Kringa G, Garg K. Dicer1 mutations are frequent in mullerian adenocarcinoma and are independent of rhombomysopomatous differentiation. Mod Pathol. 2019;32(2):280-9. doi.org/10.1038/s41379-018-0132-5

Acknowledgments

The research received financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (process numbers: 2016/ 03163-6 and 2019/01109-2).

Author Contributions

Da Costa LT and Dos Anjos LG were responsible for study conceptualization, literature organization and paper elaboration. Kagohara LT collaborated in analyses of data, manuscripts and reviews. Torrezan GT and De Paula CAA contributed to the study execution. Baracat EC and Carraro DM provided intellectual support. Carvalho KC analyzed the literature, critically reviewed the manuscript, supervised the research and developed the original idea.

Author contributions

Da Costa LT and Dos Anjos LG were responsible for study conceptualization, literature organization and paper elaboration. Kagohara LT collaborated in analyses of data, manuscripts and reviews. Torrezan GT and De Paula CAA contributed to the study execution. Baracat EC and Carraro DM provided intellectual support. Carvalho KC analyzed the literature, critically reviewed the manuscript, supervised the research and developed the original idea.

Author contributions

Da Costa LT and Dos Anjos LG were responsible for study conceptualization, literature organization and paper elaboration. Kagohara LT collaborated in analyses of data, manuscripts and reviews. Torrezan GT and De Paula CAA contributed to the study execution. Baracat EC and Carraro DM provided intellectual support. Carvalho KC analyzed the literature, critically reviewed the manuscript, supervised the research and developed the original idea.

Author contributions

Da Costa LT and Dos Anjos LG were responsible for study conceptualization, literature organization and paper elaboration. Kagohara LT collaborated in analyses of data, manuscripts and reviews. Torrezan GT and De Paula CAA contributed to the study execution. Baracat EC and Carraro DM provided intellectual support. Carvalho KC analyzed the literature, critically reviewed the manuscript, supervised the research and developed the original idea.
19. Berra, CM, Torrezan GT, de Paula CA, Hsieh R, Lourenço SV, Carraro DM. Use of uracil-DNA glycosylase enzyme to reduce DNA-related artifacts from formalin-fixed and paraffin-embedded tissues in diagnostic routine. Appl Cancer Res. 2019;39:1-6. https://doi.org/10.1186/s41241-019-0075-2
20. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. https://doi.org/10.1101/gr.1239303
21. Shabani Azim F, Houri H, Ghavamzadeh Z, Nikmanesh B. Next Generation Sequencing in Clinical Oncology: Applications, Challenges and Promises: A Review Article. Iran J Public Health. 2018;47(10):1453-7.
22. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell. 2018;174(4):1034-5. Erratum for: Cell. 2018;173(2):371-85.e18. https://doi.org/10.1016/j.cell.2018.02.060
23. Alqahtani A, Ayesh HSK, Halawani H. PIK3CA Gene Mutations in Solid Malignancies: Association with Clinicopathological Parameters and Prognosis. Cancers (Basel). 2019;12(1):93. https://doi.org/10.3390/cancers12010093
24. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554. https://doi.org/10.1126/science.1096502
25. Cuppens T, Annibali D, Coosemans A, Trovik J, Ter Haar N, Colas E, et al. Potential Targets’ Analysis Reveals Dual PI3K/mTOR Pathway Inhibition as a Promising Therapeutic Strategy for Uterine Leiomyosarcomas-an ENITEC Group Initiative. Clin Cancer Res. 2017;23(5):1274-85. https://doi.org/10.1158/1078-0432.CCR-16-2149
26. Ueda R, Kohanbash G, Sasaki K, Fujita M, Zhu X, Kastenhuber ER, et al. Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proc Natl Acad Sci U S A. 2009;106(26):10746-51. https://doi.org/10.1073/pnas.0811817106
27. de Almeida BC, Garcia N, Maffazioli G, dos Anjos LG, Baracat EC, Carvalho KC. Oncomirs Expression Profiling in Uterine Leiomyosarcoma Cells. Int J Mol Sci. 2017;19(1):52. https://doi.org/10.3390/ijms19010052
28. Doi T, Tsuchiya M, Kato K, Inoue M, Kato Y, Kamijo T, et al. Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer. J Mol Med. 2016;94(7):835-47. https://doi.org/10.1007/s00109-016-1395-2
29. Soung YH, Lee JW, Kim SY, Wang YP, Jo KH, Moon SW, et al. Somatic mutations of the ERBB4 kinase domain in human cancers. Int J Cancer. 2006;118(6):1426-9. https://doi.org/10.1002/ijc.21507
30. Hollirn M, Elenius K. Potential of ErbB4 antibodies for cancer therapy. Future Oncol. 2010;6(1):37-53. https://doi.org/10.2217/fon.09.144
31. Buerki RA, Horbinski CM, Kruzer T, Horowitz PM, James CD, Lukas RV. An overview of meningiomas. Future Oncol. 2018;14(21):2161-77. https://doi.org/10.2217/fon-2018-0006
32. Xu MX, Liu YM. The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target. Am J Cancer Res. 2019;9(5):837-54.
33. Cocco E, Lopez S, Santin AD, Scalliett M. Prevalence and role of HER2 mutations in cancer. Pharmacol Ther. 2019;199:188-96. https://doi.org/10.1016/j.pharmthera.2019.03.010
Table S1 - Ion AmpliSeq Comprehensive Cancer Panel target gene list.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Genetic alterations in BRA sarcomas women
da Costa LT et al.
CLINICS 2021;76:e2324
Sample	Chr:Pos	Gene	HGVS c.	HGVS p.	Effect
UCS2	3:178921549	PIK3CA	c.1031T>C	p.Val344Ala	Missense
	6:694120318	EPHA7	c.733G>A	p.Ala245Thr	Missense
	7:116339356	MET	c.218T>A	p.Leu73Ter	LOF: stop - gained
	8:48767121	PRKDC	c.5586delT	p.Phe182Leufs	LOF: frameshift
	15:99500303	IGFR1	c.3736>T	p.Arg1246Cys	Missense
	17:7577547	TP53	c.734G>T	p.Gly245Val	Missense
	22:32325291	TIP39	c.660delC	p.Glu88Argfs	LOF: frameshift
UCS5	1:112297855	MTOR	c.429A>T	r.spl?	LOF: splice - acceptor
	1:27105553	ARI1DA	c.5164>C	p.Arg1722Ter	LOF: stop - gained
	1:65310574	JAK1	c.2116-2A>G	r.spl?	LOF: splice - acceptor
	3:178952085	PIK3CA	c.3140A>G	p.His1047Arg	Missense
	10:76753809	KAT6B	c.1714T>C	p.Arg572Cys	Missense
	10:97966909	BLNK	c.731C>T	p.Pro246Leu	Missense
	11:108114777	ATM	c.594C>A	p.Gly198Ter	LOF: stop - gained
	14:95572101	Dicer1	c.3007C>T	p.Arg1003Ter	LOF: stop - gained
	17:29588751	NF1	c.4600C>T	p.Arg1534Ter	LOF: stop - gained
	17:29665110	NF1	c.6772C>T	p.Arg2258Ter	LOF: stop - gained
	19:45260400	BCL3	c.646C>T	p.Arg216Cys	Missense
	1:47685756	TAL1	c.632G>A	p.Arg211His	Missense
	2:25469168	DNMT3A	c.1290T>G	p.Asn430Lys	Missense
	2:122587219	ERBB4	c.782A>C	p.Gln261Pro	Missense
	7:98513427	TRRAP	c.2281C>T	p.Arg761Pro	Missense
	9:37015073	PAX5	c.331G>A	p.Ala111Thr	Missense
	19:11098401	SMARCA4	c.919C>T	p.Pro307Ser	Missense
	20:36039049	SRC	c.1219A>G	p.Asp407Asn	Missense
	X:44842716	KDM6A	c.3452G>A	p.Gln1151Arg	Missense
	X:66766207	AR	c.1219C>T	p.Arg404Gly	Missense
UCS9	9:139391355	NOTCH1	c.6836>C	p.Ala2279Val	Missense
	10:123928826	FGFR2	c.628C>T	p.Arg210Ter	LOF: stop - gained
	12:49444719	KMT2D	c.2747T>C	p.Pro916Leu	Missense
	15:40916649	KNL1	c.4265G>A	p.Arg1422Gln	Missense
	17:7578442	TP53	c.488A>G	p.Tyr163Cys	Missense
	3:5868867	BAPI1	c.637C>T	p.Glu213Cys	Missense
	21:39757529	ERG	c.1057G>A	p.Glu353Lys	Missense
UCS13	3:178916854	PIK3CA	c.241G>A	p.Glu81Lys	Missense
	11:71726283	NUMA1	c.2266G>T	p.Glu756Ter	LOF: stop - gained
	13:29001422	FLT1	c.1310T>C	p.Ser437Leu	Missense
	14:9537423	Dicer1	c.2614G>A	p.Ala872Thr	Missense
	17:7577534	TP53	c.747G>T	p.Arg249Ser	Missense
	5:176638902	NSD1	c.1502A>G	p.Lys501Arg	Missense
	7:98609947	TRRAP	c.1154G>A	p.Asp385His	Missense
UCS19	2:212295800	ERBB4	c.2513G>A	p.Arg838Gln	Missense
	9:5126715	JAK2	c.3323A>G	p.Asn1108Ser	Missense
	17:7577580	TP53	c.701A>G	p.Tyr234Cys	Missense
	17:37828120	PGPAP3	c.900-1G>A	r.spl?	LOF: splice - acceptor
ULMS38	1:120485122	NOTCH2	c.7223T>A	p.Leu2408His	Missense
	6:51914991	PKHD1	c.2243T>C	p.Ala748Val	Missense
	16:2364942	PALB2	c.925A>G	p.Ile309Val	Missense
	17:5626805	NRF1	c.1211G>A	p.Asp404Gln	Missense
	17:37863584	ERBB2	c.236A>C	p.Glu79Ala	Missense
	3:65255588	MAG1	c.1234_1236delCAG	p.Gln41del	Inframe - deletion
	19:17973659	JAK3	c.3268G>A	p.Ala1090Thr	Missense
ULMS39	3:188327501	LPP	c.982C>T	p.Arg328Trp	Missense
	7:142562071	EPHB6	c.513_515delCTC	p.Ser176del	LOF: disruptive - frame - del
	17:7577545	TP53	c.736G>A	p.Met246Val	Missense
ULMS40	2:100218031	AFG3	c.1310_1312delGCA	p.Ser44del	LOF: disruptive - frame - del
ULMS40	11:108139268	ATM	c.2770C>T	p.Arg924Trp	Missense
	17:7577120	TP53	c.818G>A	p.Arg273His	Missense
	17:37881117	ERBB2	c.2446T>C	p.Arg816Cys	Missense
	X:67891445	ATRX	c.4660A>T	p.Arg1554Ter	LOF: stop - gained
	3:128204775	GATA2	c.686G>C	p.Lys222Asn	Missense
	12:11806506	ATM	c.4414T>G	p.Leu1472Val	Missense
	17:7578290	TP53	c.560G>C	r.spl?	LOF: splice - acceptor
	16:2135281	TSC2	c.4620C>A	p.Tyr1540Ter	LOF: stop - gained
ULMS50b	2:29432740	ALK	c.3748A>G	p.Ile1250Val	Missense
ULMS52	1:6528318	PLEKHG5	c.2815C>T	p.Arg939Cys	Missense
	1:120459251	NOTCH2	c.6094C>A	p.His2032Asn	Missense
	9:139409996	NOTCH1	c.4013C>T	p.Ala1338Val	Missense
	11:118377142	KMT2A	c.10535C>T	p.Pro3512Leu	Missense
Table S2 - Continued.

Sample	Chr:Pos	Gene	HGVS c.	HGVS p.	Effect
12:49416396	KMT2D	c.16315C>T	p.Arg5439Trp	Missense	
13:26978093	CDK8	c.1270C>T	p.Arg424Cys	Missense	
16:2130319	TSC2	c.3551C>T	p.Ala1184Val	Missense	
16:3779521	CREBBP	c.552T>C	p.Cys1843Arg	Missense	
16:3790470	CREBBP	c.4063G>A	p.Gly1355Arg	Missense	
17:7574017	TP53	c.1010G>A	p.Arg337His	Missense	
22:36678790	MYB	c.5807G>A	p.Arg1936Gln	Missense	
5:112173857	APC	c.2686C>T	p.Arg896Cys	Missense	
6:135511289	MYB	c.331G>A	p.Gly111Ser	Missense	
6:135539101	MYB	c.2269C>T	p.Arg757Trp	Missense	
6:152832196	SYNE1	c.352C>T	p.Arg118Ter	Missense	
7:2946463	CARD11	c.3274C>T	p.Arg1092Ter	Missense	
18:22806393	ZNF521	c.1489C>T	p.Arg497Ter	Missense	
18:47803035	MBID1	c.472C>T	p.Arg158Ter	Missense	
20:57429026	GNAT5	c.706G>A	p.Asp236Asn	Missense	
20:57840547	GNAT5	c.2381A>C	p.Lys794Thr	Missense	
23:30069262	NF2	c.1127G>A	p.Arg376Gln	Missense	
6:152706896	SYNE1	c.856G>A	p.Trp2855Ter	Missense	
11:108175463	ATM	c.5585A>T	p.Asp1853Val	Missense	
14:8110269	TSHR	c.1867G>T	p.Ala623Ser	Missense	
17:7577121	TP53	c.817C>T	p.Arg273Cys	Missense	
17:7577139	TP53	c.799C>T	p.Arg267Trp	Missense	
19:3119273	GNA11	c.805G>A	p.Val269Ile	Missense	
22:41553308	EP300	c.3397C>T	p.Arg1133Trp	Missense	
1:450153874	PDE4DIP	c.214C>T	p.Arg72Ter	Missense	
5:112154777	APC	c.1048G>T	p.Ser350Pro	Missense	
5:112162855	APC	c.1459G>A	p.Gly487Arg	Missense	
6:56328464	DST	c.16429C>T	p.Arg5477Trp	Missense	
12:49418436	KMT2D	c.15977T>C	p.Leu523Pro	Missense	
17:7578176	TP53	c.672+1G>A	r.spl?	Missense	
17:29556250	NF1	c.2617C>T	p.Arg873Cys	Missense	
17:29677234	NF1	c.7355G>T	p.Arg2452Leu	Missense	
11:108141990	ATM	c.2934delT	p.Leu979Cysfs	Missense	
16:3820773	CREBBP	c.2678C>T	p.Ser939Leu	Missense	
1:11217330	MTO1	c.4348T>G	p.Tyr1450Asp	Missense	
14:51227050	NIN	c.1924G>A	p.Glu642Lys	Missense	
19:17937659	JAK3	c.3268G>A	p.Ala1090Thr	Missense	
20:4110170	PTPRT	c.1186G>A	p.Val396Ile	Missense	
6:33287248	DAXX	c.1886G>A	p.Val629Ile	Missense	
6:117710646	ROS1	c.1626delT	p.Phe542Leufs	Missense	
14:95950677	Dicer1	c.1232C>A	p.Ser411Ter	Missense	
37:6939115	ATRX	c.1633C>G	p.Gln544Glu	Missense	
1:144906139	PDE4DIP	c.2494delC	p.Gln832Argfs	Missense	
1:145536012	ITGA10	c.2104G>A	p.Ala702Thr	Missense	
3:178936091	PIK3CA	c.1633G>A	p.Glu544Lys	Missense	
4:5556641	KIT	c.529C>T	p.Arg177Cys	Missense	
4:55976709	KDR	c.1116C>G	p.Glu372Asp	Missense	
5:112175711	APC	c.4420G>A	p.Ala1474Thr	Missense	
5:180048651	FLT4	c.1911C>G	p.Ser637Arg	Missense	
1:145015874	PDE4DIP	c.214C>T	p.Arg72Ter	Missense	
1:45536012	ITGA10	c.2104G>A	p.Ala702Thr	Missense	
2:142567932	LRPIB	c.121G>A	p.Asp41Asn	Missense	
4:153323477	FBXW7	c.479C>T	p.Pro160Leu	Missense	
6:56328464	DST	c.16429C>T	p.Arg5477Trp	Missense	
6:135516944	MYB	c.1007C>T	p.Thr336Ile	Missense	
7:91570414	AKAP9	c.1A>G	p.Met1?	Missense	
17:7578176	TP53	c.672+1G>A	r.spl?	Missense	
7:40565743	USP9X	c.4360delG	p.Gly1454Glufs	Missense	
2:63681356	AR	c.1675A>T	pThr559Ser	Missense	
1:326748436	DDR2	c.2350T>C	p.Cys784Arg	Missense	
2:25467477	DNM1L3A	c.1599C>A	p.Tyr533Ter	Missense	
2:20911023	IDH1	c.440C>A	p.Pro147His	Missense	
3:38182306	MYD88	c.767C>T	p.Phe252Leu	Missense	
5:131927073	RAD50	c.1610delA	p.Met537Trpfs	Missense	
6:33288629	DAXX	c.959A>G	p.Gln320Arg	Missense	
6:93973935	EPHA7	c.1513C>A	p.Leu505Met	Missense	
7:98501128	TRRAP	c.1024G>A	p.Glu342Ter	Missense	
8:48711766	PRKDC	c.1027G>T	p.Glu347Trp	Missense	
9:95209391	PTCH1	c.4147C>A	p.Pro1383Thr	Missense	
Sample	Chr:Pos	Gene	HGVS c.	HGVS p.	Effect
------------	---------	--------	--------------	---------------	-------------------------
ULM119	7:1164321L	GUCY1A2	c.2131G>T	p.Glu711Ter	LOF: stop - gained
ULM143	9:32634260	MET	c.2429A>C	p.His810Pro	Missense
ULM152	8:41791030	KAT6A	c.4708G>A	p.Asp1570Asn	Missense
	11:11834489	KMTZA	c.3019G>T	p.Gly1007Cys	Missense
	19:1207176	STK11	c.263_264insC	p.Asn90Glnfs	LOF: frameshift