The epidermis contains epithelial cells, immune cells, and microbes which provides a physical and functional barrier to the protection of human skin. It plays critical roles in preventing environmental allergen penetration into the human body and responding to microbial pathogens. Atopic dermatitis (AD) is the most common, complex chronic inflammatory skin disease. Skin barrier dysfunction is the initial step in the development of AD. Multiple factors, including immune dysregulation, filaggrin mutations, deficiency of antimicrobial peptides, and skin dysbiosis contribute to skin barrier defects. In the initial phase of AD, treatment with moisturizers improves skin barrier function and prevents the development of AD. With the progression of AD, effective topical and systemic therapies are needed to reduce immune pathway activation and general inflammation. Targeted microbiome therapy is also being developed to correct skin dysbiosis associated with AD. Improved identification and characterization of AD phenotypes and endotypes are required to optimize the precision medicine approach to AD.

Key Words: Atopic dermatitis; epidermal barrier; antimicrobial peptide; microbiome; moisturizer

INTRODUCTION

Atopic dermatitis (AD) is the most common chronic skin disease worldwide. It affects about 20% of children and 5% of adults. Patients with persistent or severe AD suffer from profound impairment of their quality of life. Additionally, AD places a heavy economic burden on patients and their family. AD is strongly associated with the development of food allergy, bronchial asthma, and allergic rhinitis, commonly referred to as the Atopic March. The epidermis provides a physical and functional barrier to the human body, and skin barrier defects are the most important pathologic findings in AD skin. Skin barrier defects have been considered an initial step in developing AD. Recently, investigators have demonstrated that multiple factors, including immune dysregulation, defects in terminal epithelial differentiation such as lack of filaggrin (FLG), deficiency of antimicrobial peptides (AMPs), altered composition of stratum corneum intercellular lipids, and altered skin microbiome may affect skin barrier function (Fig. 1). These factors interact with each other and may modify skin barrier function. In this review, we discuss normal skin barrier and pathogenesis of skin barrier defects associated with the development of AD skin disease. Additionally, we review the role of emollients, anti-inflammatory agents, sodium hypochlorite, probiotics, and microbiome in the treatment and prevention of AD development. Moreover, various types of immune-directed targets for biologic therapy are reviewed.
ly, and each process is characterized by the expression specific proteins, including occludin, claudins, keratins, transglutaminases (TGs), loricrin, and FLG. Keratinocytes express specific differentiation markers according to their stage of epidermal differentiation. For instance, keratin 5 and TG2, which are expressed in the basal layer, represent early differentiation markers. In contrast, FLG, which is expressed in the upper granular and cornified layers, is a late differentiation marker.

Tight junctions (TJs), desmosomes, and adherens junctions are paracellular proteins that form a permeability barrier between adjacent cells and involve cell adhesion.

Keratinocytes also produce AMPs including cathelicidin (LL-37) and beta-defensins (HBDs), which kill microbes and play important roles in maintaining skin homeostasis. In addition to their antibacterial activity, AMPs kill viruses and fungi through multiple modes of action. The levels of AMPs, such as HBDs and LL-37 in epidermis, are low in normal health conditions, but are highly expressed upon infection and inflammation. AMPs form an innate epithelial chemical barrier and have pleiotropic functions. They not only kill microbes, but also control inflammation and regulate the skin barrier function in AD. HBD-3 improves the function of the epithelial TJ barrier by inducing expression of several claudins.

The cornified layer is surrounded by a continuous lipid matrix which provides a barrier against water and prevent water loss. The lipid matrix mainly consists of 3 lipid classes: cholesterol, free fatty acids, and ceramides. Therefore, the lipid matrix in the cornified layer may play crucial roles as a part of skin barrier and shows altered composition in AD skin.

It has also recently been reported that the epidermal microbiome may also play crucial roles in maintaining skin barrier function. Previously, the biogeography of the skin microbiome has been reported in children and adults. Several studies have shown that human skin microbiome is site-specific. Recently, it has been reported that the gut and cutaneous commensal bacteria, including Staphylococcus (S.) epidermidis, and

Fig. 1. Impaired skin barrier enhances allergen penetration and activates the innate immune system. Multiple factors, including immune dysregulation, defects in terminal epithelial differentiation such as lack of filaggrin (FLG), deficiency of antimicrobial peptides (AMPs), altered composition of stratum corneum intercellular lipids, and altered skin microbiome cause skin barrier defects. Source: Czarnowicki et al. J Allergy Clin Immunol 2017;139:1723-34.
S. hominis, play important roles in skin homeostasis and host defense against microbial penetration.

Dysregulation of the skin barrier in AD

Epidermal barrier proteins, including FLG, TGs, keratins, loricrin and intercellular proteins, are cross-linked to form an impermeable skin barrier. Skin barrier defects facilitate allergen sensitization and lead to systemic allergic responses, such as increased IgE levels and airway hyperreactivity. Transepidermal water loss (TEWL) is a noninvasive measurement used to evaluate skin barrier function. Patients with AD have increased TEWL, which reflects skin barrier dysfunction in AD, and can precede clinical AD.

AD skin is characterized by overexpression of Th2 and Th22 cytokines that contribute to skin barrier dysfunction by altering protein and lipid content in the skin (Table 1). FLG is a key epidermal barrier protein. It is degraded into free amino acids and these amino acids are essential for maintaining skin pH and the retention of water contributing to osmolarity in the cornified layer. FLG deficiency alters the shape of corneocytes in the skin and enhances skin inflammation by facilitating epidermal barrier proteins in murine models of eczema.

FLG deficiency also causes paracellular skin barrier abnormality that reduces inflammatory thresholds to irritants and happens. FLG proteolysis occurs upon exposure to a low humidity environment and can be prevented by high humidity. FLG is decreased in AD skin by overexpression of IL-4, IL-13, IL-25, IL-17A, and IL-22 (Fig. 2). Additionally, loricrin, and involucrin, which are major epidermal barrier proteins, are also down-regulated by Th2 cytokines through STAT6 signaling in AD skin. It is well known that FLG mutation is a major predisposing factor for AD development, particularly in patients who have early-onset AD and those with persistent AD. However, a significant number of AD patients do not have any type of FLG gene mutation, and about 40% of individuals with FLG-null alleles do not have AD. Moreover, most of the patients with AD and FLG mutations eventually recover from AD.

Therefore, FLG mutations contribute to AD, but in isolation it is not sufficient to generate AD. There are other factors that result in AD development. Intercellular proteins, including TJs, desmosomes, and adherens junctions, form a permeability barrier between adjacent cells and aids with cell adhesion. Th2 cytokines down-regulate TJs, and impaired TJs contribute to abnormal skin barrier function in AD. Corneodesmosin (CDSN) is an intercellular protein that plays a critical role in maintaining skin barrier function. CDSN expression is down-regulated by cytokines, including IL-4, IL-13, IL-22, IL-25, and IL-31. Additionally, CDSN deficiency resulted in lethal-skin barrier disruption in a mouse model, and enhanced viral penetration in an organotypic skin model. Therefore, a variety of cytokines modulate epidermal barrier proteins, and cause skin barrier defects.

AMPS, such as LL-37 and HBD-3, are highly expressed by keratinocytes during infection, inflammation, and wounding. AMPS form an innate multidimensional epithelial chemical barrier. They not only have antimicrobial activities, but also

Table 1. Epidermal Barrier Dysfunction in atopic dermatitis

Epidermal Barrier	Abnormalities	Functional effects	References
Terminal epithelial differentiation products	Reduced filaggrin, loricin, involucrin, corneodesmosin, keratin 1 and 10.	Decreased skin water content, enhanced allergen, microbial penetration, and increase skin pH.	32, 60, 68, 77, 82
Tight junctions	Decreased claudin-1, 8, and 23.	Increased transepidermal water loss (TEWL), enhanced allergen and microbial penetration, and decreased cohesion.	36, 75
Microbial barrier	Cutaneous dybiosis	Skin inflammation, microbial skin infections, keratinocytes death, and exacerbation of AD.	3, 49, 81, 94
Lipids	Altered composition of epidermal lipids and decreased ceramide.	Staphylococcal infection, dry skin, and increased TEWL.	4, 86, 88
Immune barrier	Decreased cathelicidin, HBD-2, and HBD-3.	Recurrent microbial infections, skin dysbiosis, and exacerbation of AD.	4, 30, 31, 33

Fig. 2. Keratinocytes differentiated in the presence of IL-4 and IL-13 exhibit significantly reduced filaggrin. Primary human keratinocytes were cultured for 5 days in 0.06 or 1.3 mmol/L CaCl2 in the presence of IL-4 plus IL-13 or interferon (IFN)-gamma. *P<0.05; ***P<0.001 between the exposure groups. Source: Howell et al. J Allergy Clin Immunol 2007;120:150-5.
regulate the skin barrier. AMP expressions are inhibited in AD skin by Th2 cytokines, which are overexpressed in AD skin. The deficiency of AMPs and over-expressed Th2 cytokines in AD skin is associated with a higher propensity to S. aureus infection, which is known to play critical roles in the exacerbation of AD. Son et al. have reported that S. aureus inhibited expression of terminal differentiation markers, including FLG, loricrin, and keratina 1 and 10. Recently, Brauweiler et al. have also demonstrated that S. aureus lipoteichoic acid inhibits keratinocyte differentiation markers, including keratins 1 and 10, and desmocollin1, through a p63-mediated pathway. Therefore, deficiency of AMPs and over-expressed Th2 cytokines in AD skin may lead to frequent microbial skin infections and skin barrier defects.

AD skin also has a defective lipid matrix. This causes impaired skin barrier function. Stratum corneum intercellular lipid composition in AD skin is characterized by altered expression of enzymes involved in the biosynthesis of free fatty acids and ceramides. Researchers have demonstrated that altered composition of stratum corneum intercellular lipids correlates with S. aureus colonization status in AD. Additionally, it has been reported that a synthetic omega-hydroxyceramides enhanced the integrity of the stratum corneum, and accelerated the recovery of damaged skin barrier function by stimulating differentiation processes. Lowe et al. also reported that routine lipid replacement reduced the incidence of AD during the active treatment period by approximately fifty percent. Therefore, the lipid matrix in the cornified layer may play a crucial role as part of the skin barrier.

Microbiome

AD is associated with abnormal skin colonization of pathogens, such as S. aureus. Commensal bacteria induce AMPs and inhibit S. aureus on the human skin. In contrast, cutaneous dysbiosis affects skin immune responses and causes skin inflammation. Moreover, skin dysbiosis may cause skin barrier defects. Species-level investigation of AD flares demonstrated greater S. aureus predominance in patients with more severe disease, and S. epidermidis predominates in patients with less severe disease. Additionally, S. aureus isolates from AD patients with more severe flares induced epidermal thickening and expansion of cutaneous Th2 and Th17 cells. However, Kennedy et al. reported that commensal staphylococci were significantly less abundant in infants with AD. This finding suggests that commensal bacteria might protect against the development of AD.

AMPs, such as HBD-3 and LL-37, are highly expressed after various exposures in the normal healthy skin. Down-regulated AMPs by Th2 cytokines in AD skin causes recurrent microbial infections and may affect skin pH. Several factors, including FLG, cytokines, proteases, enzymes, and microbes, alter skin pH. Skin pH is an important factor controlling skin homeostasis. Increased skin pH also facilitates microbial skin infections and skin barrier defects. Additionally, Brauweiler et al. have demonstrated that staphylococcal alpha toxin, a primary toxin of S. aureus, causes cell death and consequently skin barrier defects. Thus, decreased levels of AMPs may cause skin dysbiosis and skin barrier defects. In summary, the skin dysbiosis and deficiency of AMPs may affect skin homeostasis and cause skin barrier defects in AD skin. However, additional studies are needed to elucidate how dysbiosis affects epidermal barrier function.

Clinical implications in the treatment of AD

Moisturizers, including petrolatum, physiological lipid mixtures, and ceramide-dominant triple-physiologic lipid (ceramide: cholesterol:free fatty acids at a 3:1:1 molar ratio), play critical roles in AD management. They improve clinical symptoms and skin barrier function, and reduces bacterial colonization. Petrolatum improves skin barrier functions by up-regulation of AMPs, including LL-37, HBD-2, elafin, and S100 proteins. Additionally, epidermal differentiation markers, such as FLG and loricrin, are induced by moisturizers. Moreover, petrolatum significantly reduces T-cell and dendritic cell infiltration in AD skin. Glatz et al. have reported that early emollient therapy alters the skin barrier and microbes in high-risk newborns. Of note, Nakatsuji et al. have demonstrated that application of coagulase-negative Staphylococcus strains to the skin of patients with AD decreases colonization by S. aureus.

It has been reported that use of dilute bleach (sodium hypochlorite) baths and intranasal mupirocin treatment improves AD symptoms. Other investigators have reported that topical use of bleach inhibits S. aureus and show beneficial effects on AD skin possibly through intrinsic anti-inflammatory effects.

Hyung et al. reported Lactobacillus strain, CJLP55, isolated from kimchi, reduced infiltration of mast cells, eosinophils, and production of Th2 cytokines in AD-induced mouse skin. Additionally, Notay et al. analyzed 315 articles and reported that probiotics and prebiotics improved AD symptoms including quality of life and clinical severity.

Recently, various types of immune therapy have been developed (Table 2). Clinical studies with broad and targeted therapies have been applied for patients with moderate-to-severe AD. Cyclosporine and oral glucocorticoids have been used, but there are limitations due to multiple adverse reactions. Dupilumab, anti-IL-4 Rα monoclonal antibody, improved clinical findings in adults with moderate-to-severe atopic dermatitis, without significant safety concerns. Additionally, dupilumab up-regulated genes involved in skin barrier function. It will be interesting to learn if early treatment of AD with dupilumab could prevent progression of the atopic march.
Prevention of AD development

Recent studies have demonstrated that moisturizers reduce rates of AD development, and that probiotic supplementation may prevent AD. Additionally, investigators have reported that skin commensal bacteria, including *S. epidermidis* and *S. hominis*, play crucial roles in skin homeostasis and defense against microbial penetration. It has also been suggested that colonization by commensal staphylococci can modulate skin immunity and might prevent development of AD. Therefore, correcting dysbiosis in AD skin may improve skin barrier function and prevent AD development. Recently, Kelleher et al. have demonstrated that increased TEWL at 2 days and 2 months predates and predicts AD at 1 year. Kim et al. have also reported that thymic stromal lymphopoietin (TSLP) predicts the development of AD during infancy. These data suggest that detection of increased TEWL, TSLP, and skin dysbiosis in early life might predict AD and facilitate introduction of strategies to prevent AD development. These would include early use of moisturizers, topical anti-inflammatory agents, probiotics as well as correction of microbial dysbiosis.

CONCLUSIONS AND FUTURE DIRECTIONS

Factors, including immune dysregulation, epidermal gene mutations, deficiency of AMPs, and skin dysbiosis, may interact with each other and cause skin barrier defects. Several strategies have been utilized to improve skin barrier function and to control AD. Recently, moisturizers, probiotics, and targeted microbiome therapy have been suggested to prevent AD development in early life. Additionally, broad-spectrum and targeted therapies have been considered to control AD and prevent the atopic march in patients with moderate-to-severe AD. Further studies are warranted to determine the efficacy of these diverse strategies, including emollients, probiotics, and commensal bacteria, to prevent development of AD. It is noteworthy that recent data suggests AD is not just a local skin disease, but a systemic immune disease because nonlesional skin and blood profile show inflammatory findings. Therefore, we may need to expand our scope of management, in the future, to systemic treatment in patients with moderate-to-severe AD.

ACKNOWLEDGMENTS

The authors wish to acknowledge The Edelstein Family Foundation of Pediatric Allergy-Immunology for their generous support of this work. This work was also supported by USPHS grant R01 AR41256.
REFERENCES

1. Brunner PM, Guttmann-Yassky E, Leung DY. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol 2017;139:S56-76.

2. Bieber T, D’Erme AM, Aklis CA, Traidl-Hoffmann C, Lauener R, Schäppi G, et al. Clinical phenotypes and endophenotypes of atopic dermatitis: where are we, and where should we go? J Allergy Clin Immunol 2017;139:S58-64.

3. Leung DY, Guttmann-Yassky E. Assessing the current treatment of atopic dermatitis: unmet needs. J Allergy Clin Immunol 2017;139: S47-8.

4. Czarnocki T, Krueger JG, Guttmann-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol 2017;139:1723-34.

5. Åhn K. The prevalence of atopic dermatitis in Korean children. Allergy Asthma Immunol Res 2016;8:1-2.

6. Beattie PE, Lewis-Jones MS. A comparative study of impairment of quality of life in children with skin disease and children with other chronic childhood diseases. Br J Dermatol 2006;155:145-51.

7. Rao DR, Sordillo JE, Kopel WS, Sheehan WJ, Hoffman E, et al. Association between allergic sensitization and exhaled nitric oxide in children in the School Inner-city Asthma Study. Ann Allergy Asthma Immunol 2015;114:256-257.e1.

8. Boguniewicz M, Abramovits W, Paller A, Whitaker-Worth DL, Prendergast M, Cheng JW, et al. A multiple-domain framework of clinical, economic, and patient-reported outcomes for evaluating benefits of intervention in atopic dermatitis. J Drugs Dermatol 2007;6:416-23.

9. Mancini AJ, Kaulback K, Chamlin SL. The socioeconomic impact of atopic dermatitis in the United States: a systematic review. Pediatr Dermatol 2008;25:1-6.

10. Leung DY, Guttmann-Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. J Allergy Clin Immunol 2014;134:769-79.

11. Mahdavinia M, Rasmussen HE, Engen P, Van den Berg JP, Davis E, Engen K, et al. Atopic dermatitis and food sensitization in South African toddlers: role of fiber and gut microbiota. Ann Allergy Asthma Immunol 2017;118:742-743.e3.

12. Visitsunthorn N, Chatponvorarux S, Pacharn P, Jirapongsananuruk O. Atopy patch test in children with atopic dermatitis. Ann Allergy Asthma Immunol 2016;117:668-73.

13. Roerdink EM, Flokstra-de Blok BM, Blok JL, Schuttelaar ML, Niggemann B, Werfel T, et al. Association of food allergy and atopic dermatitis exacerbations. Ann Allergy Asthma Immunol 2016;116:334-8.

14. Pyun BY. Natural history and risk factors of atopic dermatitis in children. Allergy Asthma Immunol Res 2015;7:101-5.

15. Zheng T, Yu J, Oh MH, Zhu Z. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol Res 2011;3:87-93.

16. Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 2017;9:eaah4680.

17. Smith AR, Knaysi G, Wilson JM, Wisniewski JA. The skin as a route of allergen exposure: part I. Immune components and mechanisms. Curr Allergy Asthma Rep 2017;17:6.

18. van Smeden J, Bouwstra JA. Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr Probl Dermatol 2016;49:8-26.

19. Busse D, Kudella P, Grüning NM, Gisselmann G, Ständer S, Lugter T, et al. A synthetic sandalwood odorant induces wound-healing processes in human keratinocytes via the olfactory receptor OR2A74. J Invest Dermatol 2014;134:2823-32.

20. Erkoçaklı M, Kocabat CN. Role of IgA and IgM in severity of atopic dermatitis. Ann Allergy Asthma Immunol 2015;114:433.

21. Kim BE, Leung DY. Epidermal barrier in atopic dermatitis. Allergy Asthma Immunol Res 2012;4:12-6.

22. Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005;6:328-40.

23. Kalinín A, Marekov LN, Steinert PM. Assembly of the epidermal cornified cell envelope. J Cell Sci 2001;114:3069-70.

24. Proksch E, Brandner JM, Jensen JM. The skin: an indispensable barrier. Exp Dermatol 2008;17:1063-72.

25. Potten CS. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int Rev Cytol 1981;69:271-318.

26. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 2002;156:1099-111.

27. Wan H, Winton HL, Soeller C, Taylor GW, Grunert DC, Thompson PJ, et al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin Exp Allergy 2001;31:279-94.

28. Schneegberger EE, Lynch RD. Structure, function, and regulation of cellular tight junctions. Am J Physiol 1992;262:L647-61.

29. Jonca N, Guerrin M, Hadjiolova K, Caubet C, Gallinaro H, Simon M, et al. Corneodesmosin, a component of epidermal corneocyte desmosomes, displays homophilic adhesive properties. J Biol Chem 2002;277:5024-9.

30. Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009;30:131-41.

31. Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol 2012;132:887-95.

32. Howell MD, Gallo RL, Boguniewicz M, Jones JE, Wong C, Streib JE, et al. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 2006;24:341-8.

33. Ninoyosaba F, Nagaoka I, Ogawa H, Okumura K. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems. Curr Pharm Des 2009;15:2393-413.

34. Katsurayonon C, Ninoyosaba F, Smithirthee A, Akiyama T, Ushio H, Hara M, et al. Host defense (Antimicrobial) peptide, human β-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol 2014;134:2163-73.

35. Hirsch T, Spielmann M, Zuhaili B, Fossum M, Metzig M, Koehler T, et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 2002;156:1099-111.

36. Ninoyosaba F, Nagaoka I, Ogawa H, Okumura K. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems. Curr Pharm Des 2009;15:2393-413.

37. Ninoyosaba F, Smithirthee A, Akiyama T, Ushio H, Hara M, et al. Host defense (Antimicrobial) peptide, human β-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol 2014;134:2163-73.

38. Ninoyosaba F, Ushio H, Nagaoka I, Ogawa H. The human beta-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary
The Significance of Skin Barrier Dysfunction

human keratinocytes. J Immunol 2005;175:1776-84.
38. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 2007;127:594-604.
39. Golec M. Cathelicidin LL-37: LPS-neutralizing, pleiotropic peptide. Ann Agric Environ Med 2007;14:1-4.
40. Elias PM, Schmutz M. Abnormal skin barrier in the atiopathogenesis of atopic dermatitis. Curr Allergy Asthma Rep 2009;9:265-72.
41. Elias PM, Hatano Y, Williams ML. Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol 2008;121:1337-43.
42. Kezic S, Jakasa I. Filaggrin and skin barrier function. Curr Probl Dermatol 2016;49:1-7.
43. Chng KR, Tay AS, Li C, Ng AH, Wang J, Suri BK, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol 2016;1:16106.
44. Oh J, Conlan S, Polly EC, Segre JA, Kong HH. Shifts in human skin microbiome differentiate early-onset eczema from adult and continue to develop through the first year of life. J Invest Dermatol 2008;127:722-4.
45. Capone KA, Dowd SE, Stamatas GN, Nikolovski J. Diversity of the human skin microbiome early in life. J Invest Dermatol 2011;131:2026-32.
46. Knaysi G, Smith AR, Wilson JM, Wisniewski JA. The skin as a route of allergen exposure: part II. Allergens and role of the microbiome and environmental exposures. Curr Allergy Asthma Rep 2017;17:7.
47. Nakamizo S, Egawa G, Honda T, Nakajima S, Belkaid Y, Kabashima K. Commensal bacteria and cutaneous immunity. Semin Immunopathol 2015;37:73-80.
48. Byrd AL, Deming C, Conlan S; NISC Comparative Sequencing Program, Kong HH, et al. Biogeography and individuality shape function in the human skin metagenome. Nature 2014;514:59-64.
49. Lee E, Lee SY, Kang MJ, Kim K, Won S, Kim BJ, et al. Clostridia in the gut and onset of atopic dermatitis via eosinophilic inflammation. Ann Allergy Asthma Immunol 2016;117:91-92.e1.
50. Tang KT, Ku KC, Chen DY, Lin CH, Tsuang BJ, Chen YH. Adult atopic dermatitis and exposure to air pollutants-a nationwide population-based study. Ann Allergy Asthma Immunol 2017;118:351-5.
51. Knox SM, Erwin EA, Mosser-Goldfarb JL, Scherzer R. Sensitization patterns among patients with atopic dermatitis evaluated in a large tertiary care pediatric center. Ann Allergy Asthma Immunol 2017;118:645-7.
52. Spergel JM, Mizoguchi E, Brewer JP, Martin TR, Bhan AK, Geha RS. Elicitaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J Clin Invest 1998;101:1614-22.
53. Nikolovski J, Stamatas GN, Kollias N, Wiegand BC. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol 2008;128:1728-36.
54. Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 2011;365:1315-27.
55. Flohr C, England K, Radulovic S, McLean WH, Campbel LE, Barker J, et al. Filaggrin loss-of-function mutations are associated with early-onset eczema, eczema severity and transepidermal water loss at 3 months of age. Br J Dermatol 2010;163:1333-6.
56. Kim BE, Bin L, Ye YM, Ramamooorthy P, Leung DY. IL-25 enhances HSV-1 replication by inhibiting filaggrin expression, and acts synergistically with Th2 cytokines to enhance HSV-1 replication. J Invest Dermatol 2013;133:2678-85.
57. Hamid Q, Boguniewicz M, Leung DY. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest 1994;94:870-6.
58. Howell MD, Kim BE, Gao P, Grant AW, Boguniewicz M, Debenedetto A, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 2007;120:150-5.
59. Jang H, Matsuda A, Jung K, Karasawa K, Matsuda K, Oida K, et al. Skin pH is the master switch of kallikrein 5-mediated skin barrier destruction in a murine atopic dermatitis model. J Invest Dermatol 2016;136:127-35.
60. Nicotera P, Melino G. Caspase-14 and epidermis maturation. Nat Cell Biol 2007;9:621-2.
61. Denecker G, Hoste E, Gilbert B, Hochepied T, Ovaere P, Lippens S, et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 2007;9:666-74.
62. Oyoshi MK, Murphy GF, Geha RS. Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J Allergy Clin Immunol 2009;124:485-93, 493.e1.
63. Man MQ, Hatano Y, Lee SH, Man M, Chang S, Feingold KR, et al. Characterization of a hapten-induced, murine model with multiple features of atopic dermatitis: structural, immunologic, and biochemical changes following single versus multiple oxazolone challenges. J Invest Dermatol 2008;128:79-86.
64. Scott IR, Harding CR. Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment. Dev Biol 1986;115:84-92.
65. Gutowska-Owsiak D, Schaupp AL, Salimi M, Taylor S, Ogg GS. Interleukin-22 downregulates filaggrin expression and affects expression of profilaggrin processing enzymes. Br J Dermatol 2011;165:492-8.
66. Gutowska-Owsiak D, Schaupp AL, Salimi M, Selvakumar TA, McPherson T, Taylor S, et al. IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol 2012;21:104-10.
67. Kim BE, Leung DY, Boguniewicz M, Howell MD. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol 2008;126:332-7.
68. Rodríguez E, Baurecht H, Herberich E, Wagenpfeil S, Brown SJ, Cordell HJ, et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J Allergy Clin Immunol 2009;123:1361-1370.e7.
69. Stemberl S, Parwez Q, Petrasch-Parwez E, Epplen JT, Hoffjan S. Two common loss-of-function mutations within the filaggrin gene predispose for early onset of atopic dermatitis. J Invest Dermatol 2007;127:722-4.
70. Wan J, Mitra N, Hoffstad OJ, Margolis DJ. Influence of FLG mutations and TSLP polymorphisms on atopic dermatitis onset age. Ann Allergy Asthma Immunol 2017;118:737-738.e1.
72. Yu HS, Kang MJ, Jung YH, Kim HY, Seo JH, Kim YJ, et al. Mutations in the filaggrin are predisposing factor in Korean children with atopic dermatitis. Allergy Asthma Immunol Res 2013;5:211-5.

73. O’Regan GM, Sandilands A, McLean WH, Irvine AD. Filaggrin in atopic dermatitis. J Allergy Clin Immunol 2008;122:689-93.

74. Henderson J, Northstone K, Lee SP, Liao H, Zhao Y, Pembrey M, et al. The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J Allergy Clin Immunol 2008;121:872-877.e9.

75. Gruber R, Börnchen C, Rose K, Daubmann A, Volksdorf T, Wladyskowski E, et al. Diverse regulation of claudin-1 and claudin-4 in atopic dermatitis. Am J Pathol 2015;185:2777-89.

76. Leclerc EA, Huchenuq NR, Metzger D, Chambon P, Glyselinck NB, et al. Corneodesmosin gene ablation induces lethal skin-barrier disruption and hair-follicle degeneration related to desmosome dysfunction. J Cell Sci 2009;122:2699-709.

77. Lee UH, Kim BE, Kim DJ, Cho YG, Ye YM, Leung DY. Atopic dermatitis is associated with reduced corneodesmosin expression: role of cytokine modulation and effects on viral penetration. Br J Dermatol 2017;176:537-40.

78. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CE, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 2003;171:3262-9.

79. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002;347:1151-60.

80. Hata TR, Kotel P, Boguniewicz M, Taylor P, Paik A, Jackson M, et al. History of eczema herpeticum is associated with the inability to induce human β-defensin (HBD)-2, HBD-3 and cathelicidin in the skin of patients with atopic dermatitis. Br J Dermatol 2010;163:659-61.

81. Brauweiler AM, Goleva E, Leung DY. Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J Invest Dermatol 2014;134:2114-21.

82. Son ED, Kim HJ, Park T, Shin K, Bae IH, Lim KM, et al. Staphylococcus aureus inhibits terminal differentiation of normal human keratinocytes by stimulating interleukin-6 secretion. J Allergy Clin Immunol 2010;126:659-61.

83. Brauweiler AM, Hall CE; Goleva E, Leung DY. Staphylococcus aureus lipoteichoic acid inhibits keratinocyte differentiation through a p63-mediated pathway. J Invest Dermatol 2017;137:2030-3.

84. Howell MD, Wollina U. Microbiome in atopic dermatitis. Clin Cosmet Investig Dermatol 2017;10:51-6.

85. Kennedy EA, Connolly J, Hourihane JO, Fallon PG, McLean WH, Murray D, et al. Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol 2017;139:166-72.

86. Ali SM, Yosipovitch G. Skin pH: from basic science to basic skin care. Acta Derm Venereol 2013;93:261-7.

87. Rippke F, Schreiner V, Schwantitz HJ. The acidic milieu of the horny layer: new findings on the physiology and pathophysiology of skin pH. Am J Clin Dermatol 2002;3:261-72.

88. Brauweiler AM, Goleva E, Leung DY. Interferon-γ protects from staphylococcal alpha toxin-induced keratinocyte death through apolipoprotein L1. J Invest Dermatol 2016;136:638-64.

89. Czarnowicki T, Malajian D, Khattri S, Correa da Rosa J, Dutt R, Finney R, et al. Petrolatum: barrier repair and antimicrobial responses underlying this “inert” moisturizer. J Allergy Clin Immunol 2016;137:1091-1102.e7.

90. Lee HJ, Lee SH. Epidermal permeability barrier defects and barrier repair therapy in atopic dermatitis. Allergy Asthma Immunol Res 2014;6:276-87.

91. Eichenfield LF, Abluvialia J, Waldman A, Borok J, Udkoff J, Boguniewicz M. Current guidelines for the evaluation and management of atopic dermatitis: a comparison of the Joint Task Force Practice Parameter and American Academy of Dermatology guidelines. J Allergy Clin Immunol 2017;139:549-57.

92. Simpson EL, Berry TM, Brown PA, Hanifin JM. A pilot study of emollient therapy for the primary prevention of atopic dermatitis. J Am Acad Dermatol 2010;63:587-93.

93. Simpson EL, Chalmers JR, Hanifin JM, Thomas KS, Cork MJ, McLean WH, et al. Emollient enhancement of the skin barrier.
from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol 2014;134:818-23.
106. Cardona ID, Stillman L, Jain N. Does bathing frequency matter in pediatric atopic dermatitis? Ann Allergy Asthma Immunol 2016; 117:9-13.
107. Pabst RC, Starr KP, Qaiyum S, Schwalbe BS, Gewolb IH. The effect of application of aquaphor on skin condition, fluid requirements, and bacterial colonization in very low birth weight infants. J Perinatol 1999;19:278-83.
108. Glatz M, Polley E, Simpson E, Kong H. Emollient therapy alters skin barrier and microbes in infants at risk for developing atopic dermatitis. J Invest Dermatol 2015;135:S31.
109. Huang JT, Abrams M, Tlougan B, Rademaker A, Paller AS. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics 2009;123:e808-14.
110. Eriksson S, van der Plas MJ, Mörgelin M, Sonesson A. Antibacterial and antifungal effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis. Br J Dermatol 2017;177:513-21.
111. Myles IA, Williams KW, Reckhow JD, Jammeh ML, Pincus NB, Sastalla I, et al. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight 2016;1:e86955.
112. Hyung KE, Kim SJ, Jang YW, Lee DK, Hyun KH, Moon BS, et al. Therapeutic effects of orally administered CILP55 for atopic dermatitis via the regulation of immune response. Korean J Physiol Pharmacol 2017;21:335-43.
113. Notay M, Foolad N, Vaughn AR, Sivamani RK. Probiotics, prebiotics, and symbiotics for the treatment and prevention of adult dermatological diseases. Am J Clin Dermatol 2017;18:721-32.
114. Simpson EL, Bieber T, Guttmann-Yassky E, Beck LA, Blauvelt A, Cork MJ, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med 2016;375:2335-48.
115. Thaçi D, Simpson EL, Beck LA, Bieber T, Blauvelt A, Papp K, et al. Efficacy and safety of dupilumab in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical treatments: a randomised, placebo-controlled, dose-ranging phase 2b trial. Lancet 2016;387:40-52.
116. Beck LA, Thaçi D, Hamilton JD, Graham NM, Bieber T, Rocklin R, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med 2014;371:130-9.
117. Hamilton JD, Suárez-Fariñas M, Dhingra N, Cardinale I, Li X, Kostic A, et al. Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol 2014;134:1293-300.
118. Re AD, Simpson MR, Ro TB, Storero O, Johnsen R, Videm V, et al. Reduced Th22 cell proportion and prevention of atopic dermatitis in infants following maternal probiotic supplementation. Clin Exp Allergy 2017;47:1014-21.
119. di Mauro G, Bernardini R, Barberi S, Capuano A, Correra A, De’Angelis GL, et al. Prevention of food and airway allergy: consensus of the Italian Society of Preventive and Social Paediatrics, the Italian Society of Paediatric Allergy and Immunology, and Italian Society of Pediatrics. World Allergy Organ J 2016;9:28.
120. Kelleher M, Dunn-Galvin A, Hourihane JO, Murray D, Campbell LE, McLean WH, et al. Skin barrier dysfunction measured by transepidermal water loss at 2 days and 2 months predicts and predicts atopic dermatitis at 1 year. J Allergy Clin Immunol 2015;135:930-935.e1.
121. Kim J, Kim BE, Lee J, Han Y, Jun HY, Kim H, et al. Epidermal thymic stromal lymphopoietin predicts the development of atopic dermatitis during infancy. J Allergy Clin Immunol 2016;137:1282-1285.e4.