On the symmetry of current probability distributions in jump processes

A C Barato1,2 and R Chetrite3

1 II Institut für Theoretische Physik, Universität Stuttgart, Stuttgart D-70550, Germany
2 The Abdus Salam International Centre for Theoretical Physics, Trieste I-34014, Italy
3 Laboratoire J A Dieudonné, UMR CNRS 6621, Université de Nice Sophia-Antipolis, Parc Valrose, F-06108 Nice Cedex 02, France

E-mail: barato@theo2.physik.uni-stuttgart.de

Received 16 July 2012, in final form 5 October 2012
Published 20 November 2012
Online at stacks.iop.org/JPhysA/45/485002

Abstract

We study the symmetry of large deviation functions associated with time-integrated currents in Markov pure jump processes. One current known to have a symmetric large deviation function is the fluctuating entropy production and this is the content of the fluctuation theorem. Here we obtain a necessary condition in order to have a current different from entropy with this symmetry. This condition is related to degeneracies in the set of increments associated with fundamental cycles from Schnakenberg network theory. Moreover, we consider four-state systems where we explicitly show that non-entropic time-integrated currents can be symmetric. We also show that these new symmetries, as is the case of the fluctuation theorem, are related to time reversal. However, this becomes apparent only when stochastic trajectories are appropriately grouped together.

PACS numbers: 05.40.—a, 74.40.Gh, 02.50.Ga

(Some figures may appear in colour only in the online journal)

1. Introduction

Large deviation theory [1–4] is the branch of mathematics that deals with exponentially decaying probabilities. Therefore, it is the appropriate mathematical theory for statistical physics. For example, two basic concepts in large deviation theory are that of a rate function (or large deviation function), which gives the rate at which a certain probability distribution decays exponentially, and the scaled cumulant generating function, which is the Legendre–Fenchel transform of the rate function. In equilibrium statistical physics, the microcanonical entropy is a rate function and the canonical free energy is the corresponding scaled cumulant generating function. Moreover, it can be shown that the maximum entropy and minimum free energy principles are consequences of the more general contraction principle, which is central in large deviation theory.
Furthermore, large deviation theory also plays a prominent role for systems out of equilibrium. A series of relations known as fluctuation relations [5–20] are the most general statements known in nonequilibrium statistical physics, for which a general theoretical framework is still lacking. Among these relations are the Jarzynski relation [9], the Crooks relation [13], the Hatano–Sasa relation [14] and the Gallavotti–Cohen–Evans–Morriss (GCEM) fluctuation theorem [5–8]. These statements are about very rare events, where a certain fluctuating entropy takes a negative value. Therefore, they are appropriately described with the use of large deviation theory. In particular, here we focus on the GCEM fluctuation theorem for Markov pure jump processes. This relation is written as a symmetry in the large deviation function (or the corresponding scaled cumulant generating function) associated with the probability distribution of the fluctuating entropy and is also known as the GCEM symmetry.

More broadly, one can consider a class of functionals of a stochastic path known as time-integrated currents. Whereas the entropy, which is a specific time-integrated current, has a symmetric large deviation function, in general other currents do not display this symmetry. The GCEM symmetry has its roots in the fact that the entropy is a very special functional given by the logarithm of the weight of the path divided by the weight of the time-reversed path. Hence, one question that arises is that whether it is possible to find other currents with a symmetric large deviation function and what would be the physical origin of the symmetry.

This problem has been recently addressed in [22] where it was shown that for a restricted class of Markov pure jump processes, a current different from entropy presents a symmetric large deviation function. As examples, it was shown in [22] that besides the entropy, the height in a surface growth model (see also [23]) and the mechanical work in a toy model for a molecular motor display such symmetry. More clearly, Markov jump processes are used to describe a large number of physical processes out of equilibrium and time-integrated currents are important physical observables. Therefore, a more complete theory about symmetries of large deviation functions associated with time-integrated currents might be relevant for the theoretical understanding of nonequilibrium statistical physics.

We pursue this direction in this paper where we obtain a necessary condition in order to have symmetry in a non-entropic current. This condition is phrased in terms of Schnakenberg network theory [21], where the states of the Markov process form a network, with the transition rates representing the edges and the states the vertices. We show that in order to have a symmetric current different from entropy, the current increments related to cycles in this network have to be degenerate. This result comes from an analysis of the characteristic polynomial of a modified Markov generator [17, 18, 11].

In addition, we consider explicitly a four-state system with three cycles. We show that in this case two other symmetries, different from the GCEM symmetry, can be found (see figure 5). We also demonstrate that in a fully connected four-state system many other symmetries arise. As for the physical origin of the symmetries, following previous work [22], we show that they are also related to time reversal. However, they come from the time reversal of a group of trajectories, where the grouping depends on the specific current under consideration and is related to the degeneracies in the increments of the cycles.

We note that links between Schnakenberg network theory and fluctuation relations have been addressed previously in the literature [15, 17, 24, 25]. The main differences between these works and the present paper are the following: the authors in [17, 24] study multidimensional joint distribution of currents, while here we consider the probability distribution of a single non-entropic current; we focus our study on elementary currents (see section 3), while the work explained in [15] concerns fluctuating currents associated with topological cycles (Kalpazidou [26] provided a survey of the interconnection between topological cycles and edges). Finally,
the effect of the coarse graining procedure on the entropy production and its relation to Schnakenberg network theory is analyzed in [25].

The paper is organized in the following way. In the following section, we define time-integrated currents and show how their scaled cumulant generating function can be obtained from a modified generator. In section 3 we introduce Schnakenberg network theory, which is used in section 4 where we obtain the necessary condition. Section 5 contains an analysis of the four-state system with three cycles. The new symmetry as a result of the time reversal of a group of paths is discussed in section 6. We conclude in section 7. Moreover, in appendix A an extension of the Kirchhoff law in the large deviation regime, which is important for Schnakenberg network theory, is presented and the four-state fully connected system is analyzed in appendix B.

2. Current probability distribution and modified generator

Pure jump continuous time Markov processes [27] are defined by the transition rates between a pair of states. If we consider a pair of states \((x, x')\), the probability per unit time of going from state \(x\) to \(x'\) (the transition rate) is denoted by \(w_{x \to x'}\). In this paper, we restrict to a finite set of states represented by \(\Gamma\). The probability of being in a state \(x \in \Gamma\) at time \(t\) follows the master equation, which reads

\[
\frac{d}{dt} P(x, t) = -\lambda(x) P(x, t) + \sum_{x'} P(x', t) w_{x' \to x},
\]

where \(\lambda(x) = \sum_{x'} w_{x \to x'}\) is the escape rate from state \(x\). This equation is also normally written in the matrix form \(\frac{d}{dt} P_t = P_t \mathcal{L}\), where \(\mathcal{L}\) is the Markov generator. It is defined as

\[
\mathcal{L}_{xx'} = \begin{cases}
 w_{x \to x'} & \text{if } x' \neq x \\
 -\lambda(x) & \text{if } x' = x
\end{cases}.
\]

The object we study here is the so-called time-integrated current (or just current). This is a functional of the stochastic trajectory, which is a sequence of jumps \(x(0), x(t_1), \ldots, x(t_{M-1}), x(t_M)\), taking place at random times \(t_i\), within a fixed time interval \([0, T]\), where \(M\) is the fluctuating total number of jumps in the trajectory. More precisely, the stochastic trajectory starts at state \(x(0)\) at time \(t = 0\) and then jumps iteratively from state \(x(t_{i-1})\) to state \(x(t_i)\) at time \(t = t_i\) until it reaches a state \(x(t_M)\), where it stays until at least \(t = T\). Representing a stochastic trajectory by \(X_{[0,T]}\), a time-integrated current is a functional written as

\[
J_T[X_{[0,T]}] = \sum_{i=0}^{M-1} f(x(t_i), x(t_{i+1})),
\]

where \(f(x, x')\) is the increment of the current when the trajectory makes a jump \(x \to x'\). Furthermore, a current is a functional such that this increment has the property of being antisymmetric, i.e. \(f(x, x') = -f(x', x)\).

Since the current is a functional of the stochastic trajectory, we can consider a probability distribution of currents in the following way. Given a time interval \(T\), the probability that the current (3) takes the value \(aT\) is written as

\[
P(J_T = a) = \sum_{X_{[0,T]}} \mathbb{P}(X_{[0,T]}) \delta(J_T[X_{[0,T]}] - aT),
\]

where \(J_T = J_T/T\) is the time-averaged current, \(\mathbb{P}(X_{[0,T]})\) is the weight of the path \(X_{[0,T]}\) and the sum represents an integral over all possible trajectories. In most of this paper, we do
not carry the explicit dependence of the current on the stochastic trajectory $X_{[0,T]}$, writing only I_T. The fluctuation theorem is a symmetry in the probability distribution of the entropy current S_T, which is defined by the increment $f(x, x') = \ln \frac{w_{x \rightarrow x'}}{w_{x' \rightarrow x}}$, i.e.

$$S_T[X_{[0,T]}] = \sum_{i=0}^{M-1} \ln \frac{w_{x(i) \rightarrow x(i+1)}}{w_{x(i+1) \rightarrow x(i)}}.$$

(5)

We point out that we are considering processes such that if $w_{x \rightarrow x'} \neq 0$, then $w_{x' \rightarrow x} \neq 0$, otherwise entropy cannot be defined. This symmetry, known as the GCEM symmetry, is valid in the limit of $T \rightarrow \infty$ and is related to events in which the entropy current considerably deviates from its average. Therefore, it is conveniently written in terms of the large deviation function $I_x(a)$, which is defined by

$$I_x(a) = \lim_{T \rightarrow \infty} -\frac{1}{T} \ln P(s_T = a),$$

(6)

where $s_T = S_T/T$. Explicitly, the GCEM symmetry reads

$$I_x(a) - I_x(-a) = -a.$$

(7)

Note that we are using the subscript s to denote the large deviation function associated with entropy. For a general current of the form (3), we denote the large deviation function by $I(a)$.

Instead of the probability distribution of a current, we can work with the associated generating function. Particularly, the scaled-cumulant generating function related to J_T is defined by

$$\hat{I}(z) = \lim_{T \rightarrow \infty} \frac{1}{T} \ln \sum_{X_{[0,T]}} \mathbb{P}(X_{[0,T]}) \exp(z J_T[X_{[0,T]}]).$$

(8)

It follows from the Varadhan theorem [1–4] that $\hat{I}(z)$ is the Legendre–Fenchel transform of $I(a)$, that is,

$$\hat{I}(z) = \sup_{a \in \mathbb{R}} [za - I(a)].$$

(9)

Therefore, the GCEM symmetry can also be written as

$$\hat{I}_x(z) = \hat{I}_x(-1 - z).$$

(10)

More generally, for any current proportional to $\frac{x}{E}$ in the large deviation regime, we obtain the symmetry $\hat{I}(z) = \hat{I}(-E - z)$. Moreover, it can be shown that $\hat{I}(z)$ is given by the maximum eigenvalue of a modified generator associated with the current J_T [11]. This modified generator is defined as

$$\mathcal{L}(z)_{xx} = \begin{cases} w_{x \rightarrow x'} \exp(z f(x, x')) & \text{if } x \neq x' \\ -\lambda(x) & \text{if } x = x'. \end{cases}$$

(11)

Note that this is not a stochastic matrix, but it is still a Perron–Frobenius matrix: it has a unique real maximum eigenvalue which gives $\hat{I}(z)$.

In this paper, we are interested in finding currents following the symmetry $\hat{I}(z) = \hat{I}(-E - z)$ that are different from entropy in the limit of $T \rightarrow \infty$ (i.e. not proportional to s_T). A sufficient condition for that is a fully symmetric spectrum of eigenvalues [17, 18]. In this case, the characteristic polynomial associated with $\mathcal{L}(z)$,

$$P(z, y) = \det (\mathcal{L}(z) - y \text{Id}),$$

(12)

where Id is the identity matrix, follows the symmetry $P(z, y) = P(-E - z, y)$. Therefore, our objective is to find currents different from entropy in the large deviation regime such
that the characteristic polynomial of their associated modified generators is symmetric. As a general result in this direction, in section 4 we obtain a necessary condition for a symmetric characteristic polynomial related to a non-entropic current. Before going into that, in the following section we define elementary currents and introduce Schnakenberg network theory, which are important in analyzing the determinant (12).

3. Elementary currents and network theory

We now consider the space of states Γ as a graph where the vertices are the states and the edges represent the transition rates. Therefore, if the transition rate between two states is zero, there is no edge connecting these states. We denote this graph by $G(\Gamma)$.

Given a pair of states (x, x'), the elementary fluctuating current from x to x' is written as $J_T(x, x')$. Moreover, an elementary current is such that $f(x, x') = 1$ (which implies $f(x', x) = -1$) and the increment is zero for all other pairs of states in $G(\Gamma)$. Therefore, the general current (3) can be written as

$$J_T = \frac{1}{2} \sum_{x, x'} f(x, x') J_T(x, x').$$

An important restriction on the number of independent elementary currents is the finite time Kirchhoff law [28], which reads

$$\sum_{x'} J_T(x, x') = \pm 1, \quad \text{for all } x \in \Gamma.$$ \hspace{1cm} (14)

This relation comes from the fact that, during a stochastic trajectory, when the system reaches the state x, if there is a subsequent jump, the system will leave x. Defining $j_T(x, x') = J_T(x, x')/T$, the above relation can be written as

$$\sum_{x'} j_T(x, x') = O\left(\frac{1}{T}\right) \quad \text{for all } x \in \Gamma.$$ \hspace{1cm} (15)

This formula is valid for any trajectory (remember that $j_T(x, x')$ is a functional of the trajectory $X_{(0,T)}$) and, in the typical regime ($T \to \infty$), it gives the usual Kirchhoff law. As we explain in appendix A, it is also valid in the (non-typical) large deviation regime, which is normally not appreciated in the literature (see [29] for a counter example).

Let us now introduce Schnakenberg network theory [21] (see also [17, 25]). First, we introduce the concepts of cycle, fundamental cycle, spanning tree and chord. A cycle in the network $G(\Gamma)$ is a closed path (or loop): this is a sequence of jumps $C = [x_1, x_2, \ldots, x_1]$, which finishes in the same state it started and does not go through the same state more than once. Note that, except for cyclic reordering, the order of the states is relevant.

Given a current of the form (3), the increment related to a cycle is

$$K(C) \equiv \sum_{i=1}^{n(C)} f(x_i, x_{i+1}),$$ \hspace{1cm} (16)

where $n(C)$ is the number of states in the cycle. Furthermore, the product of rates of the cycle C, which we refer to as the rate of the cycle, is given by

$$W(C) \equiv \prod_{i=1}^{n(C)} w_{x_i \rightarrow x_{i+1}}.$$ \hspace{1cm} (17)

The set of all cycles in $G(\Gamma)$ with at least three jumps is denoted by $\Theta = \{C/n(C) \geq 3\}$ (note that $K(C) = 0$ if C is a transposition, a cycle with two states). Given a cycle
Figure 1. Left: the network of transitions for the four-state system with three cycles, where a link indicates that the transition rates between the pair of states is non-zero. Right: the spanning tree (blue) and the two chords (red). The fundamental cycle associated with the chord \((a, b)\) is \(C_1 = (a, b, d, a)\), while the one related to the chord \((a, c)\) is \(C_2 = (a, c, d, a)\).

\[C = [x_1, x_2, \ldots, x_{n(C)}, x_1], \] its reverse \([x_1, x_{n(C)}, \ldots, x_2, x_1]\) is represented by \(\overline{C}\) and, therefore, \(K(C) = -K(\overline{C})\).

A spanning tree is a undirected connected set of edges that goes through all the vertices in \(G(\Gamma)\) and has no cycles (see figure 1). After choosing a maximal spanning tree, all edges that are not part of it are called chords. A chord is represented by \(l\) and connects the states \(x_l\) and \(x'_l\) (from \(x_l\) to \(x'_l\)). The number of chords does not depend on the choice of the maximal tree and is called the chord number (or cyclomatic number). Whenever we add a chord to a maximal spanning tree, we get a cycle, which is called a fundamental cycle \(C_l\). These chords are important because for \(T \to \infty\) a general current of the form (3) can be written as a linear composition of the elementary currents through the chords (see formula (23) below).

\[K(C) = -K(\overline{C}). \]

Figure 2. Graphical representation of relations (20) and (21). On the left, we have the cycle \(C_3 = (a, b, d, c, a)\); the first cycle on the right is \(C_1 = (a, b, d, a)\), and the second is \(C_2 = (a, c, d, a)\).

\[C = [x_1, x_2, \ldots, x_{n(C)}, x_1], \] its reverse \([x_1, x_{n(C)}, \ldots, x_2, x_1]\) is represented by \(\overline{C}\) and, therefore, \(K(C) = -K(\overline{C})\).

Moreover, any cycle in \(\Theta\) can be written as a linear combination of the fundamental cycles, i.e. the fundamental cycles form an orthogonal basis (this was originally found by Kirchhoff [28]). In order to see that we define the scalar product between a cycle and a pair of states as
\[
\langle C, (x, x') \rangle = \begin{cases}
0 & \text{if } (x, x') \text{ is not part of } C \\
1 & \text{if } (x, x') \text{ is part of } C \text{ and in the same direction} \\
-1 & \text{if } (x, x') \text{ is part of } C \text{ and in the opposite direction.}
\end{cases}
\]

This quantity gives an answer to the following question: Is \((x, x')\) part of the cycle \(C\), and if yes, are they oriented in the same direction? It is possible to show (see [21]) that any cycle \(C\) can be written as
\[
C = \sum_{l} \langle C, (x_l, x'_l) \rangle C_l. \]
The basic reasons for this formula are that a chord is not shared by two fundamental cycles and it must belong to a cycle \(C \in \Theta \). This means that the increment of a cycle is given by

\[
K(C) = \sum_i [C, (x_i, x'_i)] K(C_i). \tag{20}
\]

Furthermore, due to the fact that \(\ln \left(\frac{W(C)}{W(C')} \right) \) is a particular case of a current \(K(C) \), as a corollary we obtain

\[
\frac{W(C)}{W(C')} = \prod_i \left(\frac{W(C_i)}{W(C'_i)} \right)^{[C, (x_i, x'_i)]}. \tag{21}
\]

The elementary current through an edge \((x, x')\) can be written as a linear combination of elementary currents through the chords \(l \). Explicitly, from the finite time Kirchhoff law (15), we obtain the asymptotic relation

\[
j_T(x, x') = \sum_l j_T(x_l, x'_l) \langle C_l, (x, x') \rangle + O \left(\frac{1}{T} \right). \tag{22}
\]

Therefore, from (16) we see that the general current (13) takes the asymptotic form

\[
j_T = \frac{1}{2} \sum_{x, x'} \sum_l f(x, x') j_T(x_l, x'_l) \langle C_l, (x, x') \rangle + O \left(\frac{1}{T} \right)
\]

\[
= \frac{1}{2} \sum_l j_T(x_l, x'_l) \sum_{x, x'} f(x, x') \langle C_l, (x, x') \rangle + O \left(\frac{1}{T} \right)
\]

\[
= \sum_l j_T(x_l, x'_l) K(C_l) + O \left(\frac{1}{T} \right). \tag{23}
\]

In particular, for the case of the entropy we have

\[
s_T = \sum_l j_T(x_l, x'_l) \ln \left(\frac{W(C_l)}{W(C'_l)} \right) + O \left(\frac{1}{T} \right). \tag{24}
\]

Relation (22) is normally written only for the (average) stationary current (see [17, 30]); however, we stress that it is valid for any stochastic trajectory. An elegant and heuristic proof of (22) for the stationary current can be found in [31], while a rigorous proof is given in [32].

A graphical representation of the decomposition of a cycle \(C \) into fundamental cycles using the scalar product (18) for a four-state system is showed in figure 2. The concepts developed here are central in studying the characteristic polynomial (12). We proceed by deriving a general necessary condition for the symmetry to set in for a non-entropic current. As we show below, this condition is related to degeneracy in the set of values of the increments of cycles \(K(C) \).

4. Necessary condition for the symmetry

Using the Leibniz formula for determinants, the characteristic polynomial (12) can be written as

\[
P(z, y) = \sum_{\pi \in S(\Gamma)} \text{sgn}(\pi) \prod_x \left(L(z)_{x, \pi_x} - y \delta_{x, \pi_x} \right), \tag{25}
\]

where \(\pi \) is a permutation of the states \(x \in \Gamma \) and \(S(\Gamma) \) is the permutation group associated with \(\Gamma \).

Moreover, each term of the determinant (25) can be represented by a graph associated with the permutation \(\pi \) on the network of states. Due to the bijectivity of \(\pi \), the graph is
such that there is one transition rate entering and one transition rate leaving each state of the network. Therefore, as is well known in discrete mathematics [33], each permutation π can be decomposed as a product of disjoint cycles (with no common state). For example, in the case of seven states $\{1, 2, 3, 4, 5, 6, 7\}$, the permutation $\pi (i) = 2i \mod 7$, which is represented by $\{2, 4, 6, 1, 3, 5, 7\}$, can be written as $(1, 2, 4, 1) \circ (3, 6, 5, 3) \circ (7)$. We denote by \mathbb{C}_π the subset of the set of all cycles Θ obtained from the cycle decomposition associated with π. For example, in the case of $\pi (i) = 2i \mod 7$ we have $\mathbb{C}_\pi = \{(1, 2, 4, 1), (3, 6, 5, 3)\}$. Note that, as a consequence of the disjoint character of the cycles, the order of the cycles in \mathbb{C}_π is irrelevant.

The increment related to \mathbb{C}_π is written as

$$K(\mathbb{C}_\pi) = \sum_{C \in \mathbb{C}_\pi} K(C)$$

and the transition rate is given by

$$W(\mathbb{C}_\pi) = \prod_{C \in \mathbb{C}_\pi} W(C).$$

With these quantities, the characteristic polynomial (25) takes the expression

$$P(z, y) = \sum_{\pi \in S(\Gamma)} sgn(\pi) \exp (zK(\mathbb{C}_\pi)) W(\mathbb{C}_\pi) g_{\pi}(y),$$

where $g_{\pi}(y)$ is the term which comes from the fixed states of the permutation ($\pi (x) = x$) and from the transpositions ($\pi (x) = x', \pi (x') = x$). Fixed states under the permutation contribute to the term $-(y + \lambda (x))$, while transpositions contribute to the term $w_{x \rightarrow x'} w_{x' \rightarrow x}$. It then follows that

$$g_{\pi}(y) = \prod_{x \in \Gamma, \pi (x) = x} (y - \lambda (x)) \prod_{\{x, x'\} \in (\Gamma, \Gamma) / \pi (x) = x', \pi (x') = x} (w_{x \rightarrow x'} w_{x' \rightarrow x}).$$

We define the set $\Lambda = \{\mathbb{C}_\pi, \pi \in S(\Gamma)\}$ of the different disjoint cycle decomposition related to $S(\Gamma)$. Equation (28) can be rewritten as

$$P(z, y) = \sum_{\mathbb{C} \in \Lambda} \exp (zK(\mathbb{C})) W(\mathbb{C}) \sum_{\pi \in S(\Gamma) / \mathbb{C} = \mathbb{C}} sgn(\pi) g_{\pi}(y),$$

where the last sum is restricted to permutations π such that $\mathbb{C}_\pi = \mathbb{C}$. Since $\mathbb{C}_{\pi^{-1}} = \overline{\mathbb{C}}_{\pi}$, where $\overline{\mathbb{C}}_{\pi}$ is the set of cycles composed of \mathbb{C}_{π} cycles in the reversed direction, we obtain

$$P(z, y) = \sum_{\mathbb{C} \in \Lambda} \exp (-zK(\overline{\mathbb{C}})) W(\overline{\mathbb{C}}) \sum_{\pi \in S(\Gamma) / \overline{\mathbb{C}} = \overline{\mathbb{C}}} sgn(\pi) g_{\pi}(y)$$

$$= \sum_{\mathbb{C} \in \Lambda} \exp (zK(\overline{\mathbb{C}})) W(\overline{\mathbb{C}}) \sum_{\pi \in S(\Gamma) / \mathbb{C}_{\pi^{-1}} = \mathbb{C}} sgn(\pi) g_{\pi}(y),$$

where we used the properties $K(\overline{\mathbb{C}}) = -K(\mathbb{C})$, $g_{\pi^{-1}}(x) = g_{\pi}(x)$ and $sgn(\pi^{-1}) = sgn(\pi)$.

Imposing the symmetry

$$P(-E - z, y) = P(z, y)$$

for all y,

and using formulas (30) and (31), we obtain

$$\sum_{\mathbb{C} \in \Lambda} \exp (zK(\mathbb{C})) W(\overline{\mathbb{C}}) \sum_{\pi \in S(\Gamma) / \mathbb{C} = \mathbb{C}} sgn(\pi) g_{\pi}(y) = \sum_{\mathbb{C} \in \Lambda} \exp (zK(\mathbb{C})) W(\mathbb{C}) \sum_{\pi \in S(\Gamma) / \mathbb{C}_{\pi} = \mathbb{C}} sgn(\pi) g_{\pi}(y).$$

8
We immediately see that, due to the independence of the family of exponential functions, the different and non-vanishing values of the set of increments $K(\Lambda) \equiv \{K(C), C \in \Lambda\}$ play an important role in the analysis of this equation. In particular, we consider two complementary subsets $\Omega_1 = \{C_\pi, \pi \in S(\Gamma)/C_\pi = \{C_1\}\}$ for all chords l and $\Omega_2 = \Lambda - \Omega_1$. This means that Ω_1 is the subset of group of cycles formed by groups that contain only one of the fundamental cycles. If the sets of increments $K(\Omega_1)$ and $K(\Omega_2)$ fulfill the following conditions:

- $K(C_1) \neq 0$ for all fundamental cycles;
- $K(C_1) \neq K(C_1')$ for all pair of chords $l \neq l'$;
- the set of increments $K(\Omega_1)$ is disjoint with $K(\Omega_2)$.

Then relation (33) implies that

$$\exp(EK(C_1)) = \frac{W(C_1)}{W(C_1')} \quad \text{for all chords } l.$$ \hspace{1cm} (34)

In this case, we see from (23) and (24) that $j_T = \frac{1}{T}s_T + O(\frac{1}{T})$: we have the familiar GCEM symmetry because at large times j_T is just the entropy current (up to a constant). Therefore, we arrive at the following conclusion: in order to have a symmetric current asymptotically different from entropy either at least one of the increments in the set $\{K(C_1)\}$ has to be zero or we need degeneracy in the increments of the fundamental cycles, in the sense that at least one of the last two conditions has to be broken. This is a main result of this paper and we think it should play an important role in developing a more general theory for the symmetries of large deviation function associated with time-integrated currents.

Two remarks are timely. First we stress that this is a necessary condition on the full spectrum of the modified generator: it could be that there is a situation where a non-entropic current for which this condition is not fulfilled (implying in an asymmetric characteristic polynomial) still has a symmetric maximum eigenvalue (which gives the scaled cumulant generating function). The other remark is a comparison of our work with [18], where condition (34) was obtained as a necessary and sufficient condition for the GCEM symmetry through a similar analysis of the characteristic polynomial (25). The ‘single macroscopic current’ considered in [18] is proportional to the entropy current and here we are interested in non-entropic currents, which might have a symmetric characteristic polynomial precisely when condition (34) is not satisfied. Another difference is that in [18] a sort of coarse-grained current is considered, where the number of cycles, and not of the elementary jumps, is counted. In this case, one takes a derived Markov process which is obtained from the original process by cutting off cycles [15].

Even though we found a general necessary condition, this is still far from a sufficient condition. As we show next, in order for a symmetry to set in the transition rates have to fulfil some constraints, which depend on the kind of degeneracy we have among the increments in the set $K(\Lambda)$. In the following section, we perform a full analysis of all possible symmetric time-integrated currents different from entropy that arise in a four-state system. Specifically, we consider the network of states of figure 1, where all but one pair of states are connected.

We show that in this case, two classes of symmetric currents different from entropy exist, one of them corresponding to the symmetry previously found in [22]. Moreover, in appendix B we perform a similar analysis for the fully connected network, where there are several different classes of symmetric time-integrated currents.

5. Three cycles and four-state system

The network of figure 1 has two three-jump cycles and one four-jump cycle. They are $C_1 = (a, b, d, a), C_2 = (a, c, d, a)$ and $C_3 = (a, b, d, c, a)$, where C_3 is the four-jump cycle.
Besides the forward cycles there are also the three backward cycles, which are denoted by C_1, C_3 and C_3^*. The increment of the cycles is denoted by K_i and the forward (backward) rate by W_i (\tilde{W}_i), with $i = 1, 2, 3$. Moreover, for later convenience we write the escape rates from states b and c as $\lambda(c) = \lambda_1$ and $\lambda(b) = \lambda_2$.

If we choose the spanning tree showed in figure 1 the two chords are (a, b) and (a, c), whereas the fundamental cycles are C_1 and C_2. The rate and increment of the cycle C_1 fulfills the following relations. From (20) we obtain (see figure 2)

$$K_3 = K_1 - K_2,$$

and from (21) we have

$$W_3 = \frac{W_1 W_2}{\tilde{W}_1 \tilde{W}_2}.$$

Furthermore, from (23), asymptotically, a general current is written as

$$j_T = K_1 j_T(a, b) + K_2 j_T(a, c) + O\left(\frac{1}{T}\right).$$

For the case of the entropy the above formula becomes

$$s_T = K_1 \left(\ln \frac{W_1}{\tilde{W}_1} j_T(a, b) + \ln \frac{W_2}{\tilde{W}_2} j_T(a, c) \right) + O\left(\frac{1}{T}\right),$$

where K_1 is a constant. Hitherto we have defined entropy as the current for which

$$e^{K_1 z + E} W_1 + e^{-K_1 z + E} W_1 (-\lambda_1 - y) + (e^{K_2 z + E} W_2 + e^{-K_2 z + E} W_2) (-\lambda_2 - y)
- (e^{K_3 z + E} W_3 + e^{-K_3 z + E} W_3)
= (e^{K_1 z} W_1 + e^{-K_1 z} W_1) (-\lambda_1 - y) + (e^{K_2 z} W_2 + e^{-K_2 z} W_2) (-\lambda_2 - y)
- (e^{K_3 z} W_3 + e^{-K_3 z} W_3),$$

where we used the fact that the permutations related to C_1 and C_2 have positive sign and the permutation related to C_3 has negative sign. We also showed in the previous section that in order to have a symmetric current different from entropy either one of the increments of the fundamental cycles has to be zero, or one of the fundamental cycles must have the same increment as another cycle (fundamental or non-fundamental). In the present case, this leaves us with six possibilities:

- $K_1 = K_2$;
- $K_1 = -K_2$;
- $K_2 = 0$ or $K_1 = 0$;
- $K_1 = 2K_2$, which gives $K_3 = K_2$, or $K_2 = 2K_1$, which gives $K_3 = -K_1$.

We first consider the family of currents $j_T^{(a)}$, which have the cycle increments $K_1 = K_2 \equiv K_2$, implying $K_3 = 0$. This means that all currents of this family have the following common asymptotic behavior:

$$j_T^{(a)} = K_a (j_T(a, b) + j_T(a, c)) + O\left(\frac{1}{T}\right).$$
Note that the sufficient relation for the symmetry (39) depends only on the values of \(K_1\), \(K_2\) and \(K_3\). Therefore, it is identical for all currents in this family.

We want to find out under which conditions a current with the asymptotic form (40) is symmetric and different from \(s_T\). From equation (39), we obtain

\[
\exp(K_\alpha E_\alpha) = \frac{W_1 + W_2}{W_1 + W_2},
\]

where we are using \(E_\alpha\) for the symmetric factor related to current (40). This relation defines the value of \(E_\alpha\) as a function of the transition rates. Moreover, also from (39) we obtain

\[
\frac{W_1 + W_2}{W_1 + W_2} = \frac{W_1 \lambda_1 + W_2 \lambda_2}{W_1 \lambda_1 + W_2 \lambda_2}.
\]

The transition rates fulfil this equation if \(\lambda_1 = \lambda_2\) or \(\frac{W_1}{W_1} = \frac{W_2}{W_2}\). Clearly, from equations (38) and (40), in the second case we have \(j_T^{(a)} = s_T/E_\alpha + O\left(\frac{1}{T}\right)\) (with \(K_\alpha = 1\)). Therefore, we obtain that the spectrum related to \(j_T^{(a)}\) is symmetric and this current is different from entropy if

\[
\frac{\lambda_1}{\lambda_2} \quad \text{and} \quad \frac{W_1}{W_1} \neq \frac{W_2}{W_2}.
\]

Therefore, we have the symmetry \(\hat{I}_\alpha(z) = \hat{I}_\alpha(-E_\alpha - z)\) with \(E_\alpha\) given by (41).

The second family of currents \(j_T^{(b)}\) corresponds to the case \(K_1 = -K_2 \equiv K_\beta\), where \(K_3 = 2K_\beta\). The asymptotic behavior of the currents in this family is

\[
j_T^{(b)} = K_\beta (j_T(a, b) - j_T(a, c)) + O\left(\frac{1}{T}\right).
\]

Following the same procedure as in the previous case, from equation (39) we obtain that the symmetric factor is defined as

\[
\exp(K_\beta E_\beta) = \frac{W_1 + W_2}{W_1 + W_2},
\]

and the transition rates have to fulfill the constraint

\[
\frac{W_1 + W_2}{W_1 + W_2} = \frac{W_1 \lambda_1 + W_2 \lambda_2}{W_1 \lambda_1 + W_2 \lambda_2}.
\]

In this case the transition rates are such that \(\lambda_1 = \lambda_2\) or \(\frac{W_1}{W_1} = \frac{W_2}{W_2}\), where the second equality implies \(j_T^{(b)}\) proportional to entropy. In addition, since \(K_3\) is different from zero, relation (39) gives us an extra constraint, which is

\[
\left(\frac{W_1 + W_2}{W_1 + W_2}\right)^2 = \frac{W_1 W_2}{W_1 W_2},
\]

where we used \(\exp(2K_\beta E_\beta) = W_1\frac{W_1}{W_1}\) and relation (36). This equation leads to \(W_1 W_1 = W_2 W_2\).

Therefore, we conclude that \(\hat{I}_\beta(z)\) is symmetric, with the symmetric factor \(E_\beta\) given by (45), and different from entropy if

\[
\begin{align*}
\lambda_1 &= \lambda_2 \\
W_1 W_1 &= W_2 W_2
\end{align*}
\]

\[\text{and} \quad \frac{W_1}{W_1} \neq \frac{W_2}{W_2}.\]

For the case \(K_2 = 0\), we take \(K_3 = K_1 = K\). Hence, the associated family of currents has the asymptotic form \(K j_T(a, b)\). Equation (39) gives the constraint

\[
\frac{W_1}{W_1} = \frac{W_1 \lambda_1 + W_3}{W_1 \lambda_1 + W_3}.
\]
This is satisfied only if \(\frac{W_1}{W_2} = \frac{W_3}{W_2} \), which gives \(\frac{W_1}{W_2} = 1 \). This leads to the entropy current being proportional to the elementary current through \((a, b)\) and, therefore, there is no new symmetry in this case. The case \(K_1 = 0 \) is analogous.

Finally, for the case \(K_1 = 2K_2 = K_3 = K \), equation (39) gives the constraint

\[
\frac{W_2}{W_2} = \frac{W_2K_2 + W_3}{W_2K_2 + W_3}.
\]

(50)

This is satisfied only if \(\frac{W_3}{W_2} = \frac{W_3}{W_2} \), which leads to \(\frac{W_1}{W_2} = \left(\frac{W_3}{W_2} \right)^2 \). This last relation implies the associated current is proportional to entropy: there is no new symmetry. The case \(K_2 = 2K_1 \) is analogous.

5.1. Example: two-site symmetric exclusion process (SEP)

In order to illustrate these symmetries we consider the symmetric exclusion process (SEP) [34–37]. This is a one-dimensional transport model which is driven out of equilibrium by the boundary dynamics. Particles enter and leave the system on the left and right boundaries, while they diffuse in the bulk. They also interact in the bulk by imposing that the maximum number of particles per site is 1. More generally, we will consider a SEP where the transition rates for particles to enter or leave the system depends on the bulk density. We will restrict our analysis to a two-site system which has the four-state network as shown in figure 1. The transition rates for this two-site SEP are shown in figure 3. Note that, the subscript 1 (2) is related to transitions at the boundary with the other site being occupied (empty).

Considering figure 1, we identify the state where the left (right) site is empty and the right (left) site is occupied with \(a (d) \) and the state where both sites are occupied (empty) with \(b (c) \).

In the basis \(\{a, b, c, d\} \), the generator (2) for the two-site SEP becomes

\[
L = \begin{pmatrix}
-1 - \alpha_1 - \delta_2 & \alpha_4 & \delta_2 & 1 \\
\beta_1 & -\beta_1 - \delta_1 & 0 & \delta_1 \\
\gamma_2 & 0 & -\gamma_2 - \alpha_2 & \alpha_2 \\
1 & \gamma_1 & \beta_2 & -1 - \beta_2 - \gamma_1
\end{pmatrix}.
\]

(51)

One physical current that we are interested in is the current between the system and the left reservoir \(j_L \), which is asymptotically equal to minus the current between the system and the right reservoir. This is a functional of the stochastic trajectory such that whenever a particle enters (leaves) the system in the left boundary, the current increases (decreases) by 1. Therefore, for the two-site SEP, the left boundary current is such that the only non-
zero increments are $f(a, b) = 1$ and $f(c, d) = 1$. Hence, in the long time limit—where $j_T(c, d) = j_T(a, c) + O\left(\frac{1}{T}\right)$ and $j_T(b, d) = j_T(a, b) + O\left(\frac{1}{T}\right)$—we have

$$j_T^l = j_T(a, b) + j_T(c, d) = j_T(a, b) + j_T(a, c) + O\left(\frac{1}{T}\right).$$

(52)

This current belongs to the family $j_T^{(a)}$ with $K_a = 1$. With the generator (51) we have $W_1 = \alpha_1 \delta_1$, $W_1 = \gamma_1 \beta_1$, $W_2 = \alpha_2 \delta_2$ and $W_2 = \gamma_2 \beta_2$. Therefore, the entropy (38), with $K_s = 1$, reads

$$s_T = \ln \frac{\alpha_1 \delta_1}{\gamma_1 \beta_1} j_T(a, b) + \ln \frac{\alpha_2 \delta_2}{\gamma_2 \beta_2} j_T(a, c) + O\left(\frac{1}{T}\right).$$

(53)

An important point is that in general s_T and $j_T^{(l)}$ are not proportional; however for the standard SEP, that is, without dependence of the boundary transitions on the bulk density, the transition rates are such that j_T^l and s_T are proportional [38].

Furthermore, for the two-site SEP the current from the left reservoir can be divided into two parts: the current when the right site is occupied, which is $j_T(a, b)$, and the current when the right side is empty, which is $j_T(c, d)$. We now consider a second current which is the difference between these two contributions: the current from the left reservoir when the right site is occupied minus the current from the left reservoir when the right site is empty. More clearly, in the large deviation regime this current reads

$$j_T^{ld} = j_T(a, b) - j_T(c, d) = j_T(a, b) - j_T(a, c) + O\left(\frac{1}{T}\right),$$

(54)

which is of the form $j_T^{(s)}$ with $K_s = 1$.

The modified generators for these currents are obtained from (11). As an example, we write down the modified generator for the current (54), which is

$$L_\beta(z) = \begin{pmatrix}
-1 - \alpha_2 - \delta_1 & \alpha_2 \exp(z) & \delta_1 \\
\beta_2 \exp(-z) & -\beta_2 - \delta_2 & 0 \\
\gamma_1 & 0 & -\gamma_1 - \alpha_1 - \alpha_1 \exp(-z) \\
1 & \gamma_2 & \beta_1 \exp(z)
\end{pmatrix}.$$

(55)

Our theory predicts that the maximum eigenvalue of the modified generators associated with currents (52) and (54) is symmetric, with symmetric factor given by (41) and (45), respectively, if some constraints on the transition rates are satisfied. More clearly, if we consider α_2 and δ_2 as depending on the other transition rates, from (43) we see that j_T^l has a symmetric and non-entropic scaled cumulant generating function if

$$\alpha_2 = \delta_1 + \beta_1 - \gamma_2 \quad \text{and} \quad \frac{\alpha_1 \delta_1}{\gamma_1 \beta_1} \neq \frac{\alpha_2 \delta_2}{\gamma_2 \beta_2}.$$

(56)

Moreover, from (48), for j_T^{ld} the conditions for the symmetry are

$$\begin{cases}
\alpha_2 = \delta_1 + \beta_1 - \gamma_2 \\
\delta_2 = \delta_1 \frac{\alpha_2 \beta_2}{\alpha_1 \gamma_2} \quad \text{and} \quad \frac{\alpha_1 \delta_1}{\gamma_1 \beta_1} \neq \frac{\gamma_2 \beta_2}{\alpha_2 \delta_2}.
\end{cases}$$

(57)

In figure 4 we show the scaled cumulant generating function, obtained by numerically calculating the maximum eigenvalue of the modified generator for the case where the constraints (56) and (57) are satisfied. The scaled cumulant generating functions for the non-entropic currents are appropriately rescaled by their symmetric factors so that they touch the horizontal axis at -1.

Lastly, a very relevant observation is the following. For the present four-state model the space of all possible asymptotic currents in the large deviation regime is two dimensional:
there are two independent elementary currents because the chord number is 2. This space of currents can be represented in the $K_2 \times K_1$ plane. In this plane, the entropic currents, i.e. the currents that satisfy the GCEM symmetry, are in a line given by

$$K_2 = \frac{\ln W_1}{\ln W_2} K_1. \quad (58)$$

Our results show that there are two more lines in this plane with symmetric currents: for the family of currents j^α_T we have $K_2 = K_1$ and for j^β_T we have $K_2 = -K_1$. Whereas the slope of the line for the GCEM symmetry depends on the transition rates, for the other two new symmetries this is not the case. Moreover, different from the GCEM symmetry, the α and β symmetries set in only when the transition rates fulfill some constraints. This situation is depicted in figure 5.
6. Time reversal as the origin of the symmetries

As is well known, the GCEM symmetry is a direct consequence of the fact that entropy is the logarithm of the weight of the stochastic path divided by the weight of the reversed path. We argue that also the new symmetries we found in this paper have their origins in time reversal. However, for non-entropic currents, this becomes apparent only when we group the trajectories in a certain way. This group of trajectories depends on the current that we are considering and it is determined by the degeneracies of the increments of the cycles. Specifically, we consider the four-state system of the previous section and provide a handwaving demonstration of the symmetry for the current \(j^{(a)}_T \) and \(j^{(b)}_T \). The presentation here is closely related to [22], where the symmetry for the current \(j^{(a)}_T \) was considered. The new results here are the symmetry for the current \(j^{(b)}_T \), which comes from a different grouping, and the conjecture that the group of trajectories is determined by the degeneracies in the increment of the cycles. We remark that a (completely different) grouping of trajectories was also considered in [39], for the study of the effects of coarse-graining on the fluctuation relations.

Before going into the grouping of paths, let us first present a simple demonstration of the fluctuation theorem. The weight of a stochastic trajectory \(X_{[0,T]} \) with \(M \) jumps is given by

\[
P(X_{[0,T]}) = \exp[-\lambda(x(t_M))(T-t_M)] \prod_{i=0}^{M-1} w_{x(t_i)\rightarrow x(t_{i+1})} \exp[-\lambda(x(t_i))(t_{i+1} - t_i)].
\]

(59)

The exponential of the waiting times multiplied by the escape rates comes from the fact that we are dealing with a continuous time process and we should also multiply this expression by \(P(x(t_0), t_0) \) which we are assuming to be uniform for simplicity. The reversed trajectory, where the system starts at state \(x(t_M) \) (also with a uniform probability distribution of states) at time 0 and jumps from state \(x(t_{i+1}) \) to state \(x(t_i) \) at time \(T - t_{i+1} \), is denoted by \(X_{[0,T]} \). Hence,

\[
P(X_{[0,T]}) = \exp[-\lambda(x(t_M))(T-t_M)] \prod_{i=0}^{M-1} w_{x(t_{i+1})\rightarrow x(t_i)} \exp[-\lambda(x(t_i))(t_{i+1} - t_i)].
\]

(60)

The entropy current (5) is related to the weight of a trajectory divided by the weight of the time-reversed trajectory by

\[
\exp(S_T[X_{[0,T]}]) = \frac{P(X_{[0,T]})}{P(X_{[0,T]})}.
\]

(61)

This is a fundamental relation and it is at the origin of the infinite time fluctuation theorem we consider here as well as all other fluctuation relations. From (61) it follows that

\[
P(X_{[0,T]}) \exp(-A) \delta(S_T[X_{[0,T]}] - A) = P(X_{[0,T]}) \delta(S_T[X_{[0,T]}] - A) = \frac{P(X_{[0,T]})}{P(S_T[X_{[0,T]}] + A)}
\]

where we used the relation \(S_T[X_{[0,T]}] = -S_T[X_{[0,T]}] \). Summing the above relation over all trajectories and taking relation (4) into account, we obtain

\[
P(S_T = -A) \frac{P(S_T = A)}{P(S_T = A)} = \exp(-A).
\]

(63)

In the limit \(T \to \infty \) the above formula implies the GCEM symmetry (7). A similar kind of demonstration also holds for currents of the form \(j^{(a)}_T \) and \(j^{(b)}_T \). This happens because a relation analogous to (61) is valid for these two families. However, in order to see it we have to consider a functional of an appropriate group of trajectories. The demonstrations that follow are rather heuristic and we plan to provide a precise proof of these symmetries through time reversal of a group of trajectories in future work.
6.1. The current $f_T^{(a)}$

We now consider the current $\tilde{J}_T[X_{\{0,T\}}]$, which is defined by the increments

$$f(a, b) = f(a, c) = f(b, d) = f(c, d) = \frac{1}{2} \ln \frac{(W_1 + W_2)_{\mu_{a} \rightarrow \mu_d}}{(W_1 + W_2)_{\mu_{a} \rightarrow \mu_d}}$$

$$f(d, a) = \ln \frac{W_{a \rightarrow d}}{W_{a \rightarrow d}}.$$ \hspace{1cm} (64)

It is easy to check that this current is in the family $f_T^{(a)}$ with $K_a = \ln \frac{(W_1 + W_2)_{\mu_{a} \rightarrow \mu_d}}{(W_1 + W_2)_{\mu_{a} \rightarrow \mu_d}}$ (which gives from (41) $E_a = 1$).

Let us now define the group of trajectories. Two trajectories $X_{\{0,T\}}$ and $X'_{\{0,T\}}$ belong to the same group if they have the same number of jumps taking place at the same times t_i. Moreover, if $x(t_i) = a$ then $x'(t_i) = a$, and if $x(t_i) = c$ then $x'(t_i) = d$. On the other hand, if $x(t_i) = b$ or $x(t_i) = c$ then $x'(t_i) = b$ or $x'(t_i) = c$. In this way, a trajectory that stays in states b or c during m of the $M + 1$ time intervals is part of a group with 2^m trajectories. The group of trajectories is denoted by $\{X_{\{0,T\}}\}_a$, where the subscript indicates that we are dealing with a current of the type $f_T^{(a)}$. Its weight is just the sum of the weights of all the trajectories in the group, that is,

$$\mathbb{P}(\{X_{\{0,T\}}\}_a) = \sum_{X_{\{0,T\}} \in \{X_{\{0,T\}}\}_a} \mathbb{P}(X_{\{0,T\}}).$$ \hspace{1cm} (65)

Moreover, from the increments (64), we see that the current $\tilde{J}_T[X_{\{0,T\}}]$ is invariant within the group, meaning that it takes the same value for any $X_{\{0,T\}} \in \{X_{\{0,T\}}\}_a$. Hence, if we want to write this current as a functional of the group of paths $\{X_{\{0,T\}}\}_a$ we can define

$$\tilde{J}_T[\{X_{\{0,T\}}\}_a] = \tilde{J}_T[X_{\{0,T\}}] \quad \text{with} \quad X_{\{0,T\}} \in \{X_{\{0,T\}}\}_a.$$ \hspace{1cm} (66)

This relation, added to (4) and (65), leads to

$$P(\tilde{J}_T = A) = \sum_{\{X_{\{0,T\}}\}_a} \mathbb{P}(\{X_{\{0,T\}}\}_a) \delta(\tilde{J}_T[\{X_{\{0,T\}}\}_a] - A).$$ \hspace{1cm} (67)

Furthermore, the expression for the weight of a group of trajectories $\mathbb{P}(\{X_{\{0,T\}}\}_a)$ can be written as

$$\mathbb{P}(\{X_{\{0,T\}}\}_a) = \prod_{i=1}^{M-1} \sum_{x(t_i) \in \{x(t_i)\}_{a}} \mathbb{P}(x(t_i) \rightarrow x(t_{i+1})) \exp[-\lambda(x(t_i))(t_{i+1} - t_i)],$$ \hspace{1cm} (68)

where the sum $\sum_{x(t_i) \in \{x(t_i)\}_{a}}$ has only one term for $x(t_i) = a, d$ and is over the states b and c if the paths in the group have $x(t_i) = b, c$. Similarly we denote by $\mathbb{P}(\{X_{\{0,T\}}\}_b)$ the weight of the group formed by the reversed trajectories. Then, the increments of $\ln \frac{\mathbb{P}(\{X_{\{0,T\}}\}_b)}{\mathbb{P}(\{X_{\{0,T\}}\}_a)}$, for the case $x(t_i) = b, c$, can be written as

$$\ln \frac{\mathbb{P}(\{X_{\{0,T\}}\}_b)}{\mathbb{P}(\{X_{\{0,T\}}\}_a)} = \ln \frac{\mathbb{P}(x(t_i) \rightarrow x(t_{i+1})) \exp[-\lambda(b)(t_{i+1} - t_i)] + \mathbb{P}(x(t_i) \rightarrow x(t_{i+1})) \exp[-\lambda(c)(t_{i+1} - t_i)]}{\mathbb{P}(x(t_i) \rightarrow x(t_{i+1})) \exp[-\lambda(b)(t_{i+1} - t_i)] + \mathbb{P}(x(t_i) \rightarrow x(t_{i+1})) \exp[-\lambda(c)(t_{i+1} - t_i)]}.$$ \hspace{1cm} (69)

In opposition to the ratio of single paths, the time dependence in the exponential waiting time distribution does not cancel out in general. However, for the case $\lambda(b) = \lambda(c)$, which is condition (43), the increment (69) becomes a time-independent term which reads

$$\ln \frac{\mathbb{P}(x(t_i) \rightarrow x(t_{i+1})) + \mathbb{P}(x(t_i) \rightarrow x(t_{i+1}))}{\mathbb{P}(x(t_i) \rightarrow x(t_{i+1})) + \mathbb{P}(x(t_i) \rightarrow x(t_{i+1}))}.$$ \hspace{1cm} (70)

Therefore, when condition (43) is fulfilled, with the choice of increments (64), we expect that asymptotically

$$\exp(\tilde{J}_T[\{X_{\{0,T\}}\}_a]) = \frac{\mathbb{P}(\{X_{\{0,T\}}\}_a)}{\mathbb{P}(\{X_{\{0,T\}}\}_a)} + O\left(\frac{1}{T}\right).$$ \hspace{1cm} (71)
This means that despite the fact of the current \hat{J} being different from entropy, when paths are grouped appropriately, a relation analogous to (61) in this new coarse-grained space (of trajectories) is valid. Finally, summing over all possible groups of trajectories, we obtain

$$\frac{P(\hat{J}_T = -A)}{P(\hat{J}_T = A)} = \exp(-A),$$

(72)

which proves the symmetry of the current \hat{J} (and then of all the currents of the family $j^{(\alpha)}_T$).

This demonstration has two important features. First, the grouping of paths is such that paths in the same group differ by cycles that have the same increment and that is the reason why the current under consideration remains invariant within the group, as in relation (66). The second feature is that the constraint on the transition rates (43) has the effect of making the ratio (69) time independent. As we see next these two properties are also shared by the class $j^{(f)}_T$.

6.2. The current $j^{(f)}_T$

The grouping of trajectories is more complicated in this case and we have to use a different strategy to build an heuristic demonstration. We take the current $\hat{J}_T[X_{[0,T]}]$, which is defined by the increments

$$f(a, b) = f(a, c) = f(b, d) = f(c, d) = \frac{1}{2} \ln \frac{W_1 + W_2}{W_1 W_2}$$

$$f(d, a) = 1.$$

(73)

This is a current of the form (44) with $K_\beta = \ln \frac{W_1 + W_2}{W_1 W_2}$ (implying $E_\beta = 1$).

In order to roughly define the group $[X_{[0,T]}]_\beta$ let us consider a three jump sequence between times $[t_{i-1}, t_{i+2}]$. For two trajectories in the same group we assume that the first and last states in this three-jump term are the same in both trajectories. However, the two middle states can be different. In order to group cycle C_1 with C_2 and C_2 with C_1, we choose the following four jump sequences to be grouped together:

$$(a, b, d, a) \quad \text{with} \quad (a, d, c, a)$$

$$(a, d, b, a) \quad \text{with} \quad (a, c, d, a)$$

$$(d, b, a, d) \quad \text{with} \quad (d, a, c, d)$$

$$(d, a, b, d) \quad \text{with} \quad (d, c, a, d).$$

(74)

For example, this means that if we look at this three-jump piece of two trajectories in the same group, for one trajectory we could have (a, b, d, a) and for the other (a, d, c, a). The reason for the more complicated grouping in relation to the previous case is that two paths in the same group differ not only by a state c instead of a state b, but also the order of the middle states in the three-jump sequence is inverted.

Similarly to the previous case, we expect that the current $\hat{J}_T[X_{[0,T]}]$ is invariant within the group, i.e.

$$\hat{J}_T[X_{[0,T]}]_{\beta} \equiv \hat{J}_T[X_{[0,T]}] \quad \text{with} \quad X_{[0,T]} \in [X_{[0,T]}]_\beta.$$

(75)

We define $\mathbb{P}([X_{[0,T]}]_\beta)$ as the sum of the weights in the group. Let us take a three-jump term in the sum $\mathbb{P}(\hat{X}_{[0,T]}|\beta)$, such that, for example, we have either the cycle (a, b, d, a) or the cycle (a, d, c, a) in the trajectories in the group. This piece of trajectory should contribute with

$$\frac{W_1 \exp(-\lambda(b) \Delta t_1 + \lambda(d) \Delta t_2) + W_2 \exp(-\lambda(c) \Delta t_1 + \lambda(c) \Delta t_2)}{W_2 \exp(-\lambda(c) \Delta t_1 + \lambda(d) \Delta t_2) + W_1 \exp(-\lambda(d) \Delta t_1 + \lambda(b) \Delta t_2)},$$

(76)
where $\Delta t_1 = t_{i+1} - t_i$ and $\Delta t_2 = t_{i+2} - t_{i+1}$. If the first condition in (48), which is $\lambda(b) = \lambda(c)$, is satisfied, then the above term becomes

$$\frac{W_1 \exp(-\lambda(b) \Delta t_1 - \lambda(d) \Delta t_2) + W_2 \exp(-\lambda(d) \Delta t_1 - \lambda(b) \Delta t_2)}{W_2 \exp(-\lambda(b) \Delta t_1 - \lambda(d) \Delta t_2) + W_1 \exp(-\lambda(d) \Delta t_1 - \lambda(b) \Delta t_2)}$$

(77)

In order to get a time-independent term we need the second condition in (48) to be fulfilled. Explicitly, for $W_1 W_1 = W_2 W_2$ the term (77) becomes $\frac{W_1}{W_2}$. Noting that when $W_1 W_1 = W_2 W_2$, apart from $f(a, d)$, the increments (73) are equal to $\frac{1}{T} \ln \frac{W_1}{W_2}$, we claim that

$$\exp(J_F([X_{[0,T]}]_\beta)) = \frac{P([X_{[0,T]}]_\alpha)}{P([X_{[0,T]}]_\beta)} + O \left(\frac{1}{T} \right).$$

(78)

After multiplying by the delta functional and summing over all groups of trajectories we obtain the final result

$$\frac{P(J_F = -A)}{P(J_F = A)} = \exp(-A).$$

(79)

Once again, the degeneracy of the increments of the cycles determines the group of trajectories and the constraints on the transition rates have the effect of making the increments in the sum $\ln \frac{P([X_{[0,T]}]_\alpha)}{P([X_{[0,T]}]_\beta)}$ time independent. We conjecture that whenever the full characteristic polynomial (25) associated with a non-entropic current is symmetric, the symmetry comes from the time reversal of a group of trajectories and the group has these two properties.

7. Conclusions

In this paper, we have studied the symmetries of large deviation functions associated with non-entropic currents in pure jump processes. The most general result we obtained is the necessary condition for the appearance of a symmetric current different from entropy. This condition is related to degeneracies in the increments of the fundamental cycles of Schnakenberg network theory and we believe that it is a good starting point for the development of a general theory for the symmetries of large deviation functions associated with currents.

As an example, we studied four-state systems, where symmetric non-entropic currents were found. In this case we saw that these symmetries set in when the increments of cycles are degenerate and when the transition rates fulfil a set of constraints, which depends on the currents under consideration. Moreover, with this example we learned an important lesson: the symmetries in non-entropic currents come from the time reversal of a group of trajectories. The degeneracies in the cycle increments determine the group of trajectories, which is such that trajectories in the same group differ only by cycles with the same increment. Furthermore, the constraints on the transition rates have the effect of making the logarithm of the sum of weights of the paths in a group divided by the sum of weights of the reversed paths time independent.

The demonstration of the new symmetries as the time reversal of a group of trajectories we presented here is still handwaving and restricted to the four-state system with three cycles. We plan to develop a precise proof in future work by considering a coarse grained space of trajectories where the (exponential of the) non-entropic symmetric current becomes the ratio of the weight of the path and the weight of the time-reversed path. Another interesting direction for future work would be to find situations where the characteristic polynomial of the modified generator is not symmetric but the minimum eigenvalue is still symmetric. It could be that in such a case, if it exists, the symmetry in the large deviation function is associated with the time reversal of some most probable trajectory (or set of trajectories), which would dominate in a sum over all trajectories with a given constraint.
Acknowledgments

We thank Haye Hinrichsen and David Mukamel for helpful discussions. We also thank Boris Lander and David Abreu for carefully reading the manuscript. ACB thanks the Laboratoire J A Dieudonné for hospitality.

Appendix A. Generalization of the Kirchhoff law

Keeping the dependence on the stochastic trajectory \(X_{[0,T]} \) explicit, equation (15) reads

\[
\sum_{x'} j_T(x, x') [X_{[0,T]}] = O\left(\frac{1}{T} \right).
\]

(A.1)

We would like to remark two points about this relation.

- First, and less generally, for the typical behavior, we get the usual Kirchhoff law for the steady state current. By ergodicity, the typical behavior of \(j_T(x, x') [X_{[0,T]}] \) is given by

\[
j_T(x, x') [X_{[0,T]}] \to j_{\text{inv}}(x, x') \equiv \rho_{\text{inv}}(x) w_{x \to x'} - \rho_{\text{inv}}(x') w_{x' \to x},
\]

(A.2)

where \(\rho_{\text{inv}} \) and \(j_{\text{inv}} \) are the mean density and current in the invariant steady state. In this case (A.1) implies

\[
\sum_{x'} j_{\text{inv}}(x, x') = 0,
\]

(A.3)

which is the usual Kirchhoff law.

- More generally, in the (non-typical) large deviation regime, the finite time Kirchhoff law (A.1) implies that the large deviation function of the joint elementary current is infinite if the usual Kirchhoff law is not fulfilled \([29]\). That means, if we define the probability distribution of the family \(\{j_T(x, x'), (x, x') \in \Gamma \times \Gamma\} \) as

\[
P(\{j\} = \{a\}) = \sum_X P(X_{[0,T]}) \prod_{x,x'} \delta \left(j_T(x, x') - a_{xx'} \right),
\]

(A.4)

we have that the large deviation function associated with it respects the relation

\[
I(\{a\}) = \infty \text{ if } \exists x \text{ such that } \sum_{x'} a_{xx'} \neq 0.
\]

(A.5)

In other words, the distribution of elementary currents around the atypical limit which does not fulfil the Kirchhoff law decreases faster than exponentially (and is not considered in this paper).

Appendix B. Fully connected four-state network

We now turn to the fully connected four-state network, which is shown in figure B1. The states are now denoted \(A, B, C \) and \(D \). The set \(\Theta \) contains 14 cycles, which are

- four cycles with three states: \(C_1 = (A, B, D, A), C_2 = (A, D, C, A), C_3 = (B, C, D, B) \) and \(C_4 = (A, C, B, A) \);
- three cycles with four states: \(C_5 = (A, B, C, D, A), C_6 = (A, B, D, C, A), C_7 = (A, D, B, C, A) \);
- and the respective reversed cycles.
Figure B1. Fully connected network of states. On the right, the spanning tree is in blue and the chords in red.

Taking the spanning tree of figure B1, the three chords are \((A, B), (C, A)\) and \((B, C)\), whereas the three fundamental cycles are \(C_1, C_2\) and \(C_3\), respectively. The increments of the four three-state cycles are denoted by \(K_i\), with \(i = 1, 2, 3, 4\). On the other hand, the increments of the three four-state cycles are denoted by \(L_i\), with \(i = 5, 6, 7\). The forward (backward) rates are represented by \(W_i(W_i^-)\), for \(i = 1, 2, 3, 4, 5, 6, 7\). Moreover, we define the escape rates as

\[
\lambda_1 \equiv \lambda(C), \quad \lambda_2 \equiv \lambda(B), \quad \lambda_3 \equiv \lambda(A), \quad \lambda_4 \equiv \lambda(D).
\]

We now have three independent elementary currents and, from equation (23), a general current has the asymptotic form

\[
j_T = K_1 j_T(A, B) + K_2 j_T(C, A) + K_3 j_T(B, C) + O\left(\frac{1}{T}\right),
\]

which implies

\[
s_T = K_i \left(\ln \frac{W_1}{W_1^-} j_T(A, B) + \ln \frac{W_2}{W_2^-} j_T(C, A) + \ln \frac{W_2}{W_2^-} j_T(B, C)\right) + O\left(\frac{1}{T}\right).
\]

Furthermore, from relation (20) we have

\[
K_4 = -K_1 - K_2 - K_3
\]
\[
L_5 = K_1 + K_3
\]
\[
L_6 = K_1 + K_2
\]
\[
L_7 = K_2 + K_3,
\]

and relation (21) gives

\[
\begin{align*}
\frac{W_4}{W_4^-} &= \frac{W_1 W_2 W_3}{W_1^- W_2^- W_3^-} \\
\frac{W_5}{W_5^-} &= \frac{W_1 W_2 W_3}{W_1^- W_2^- W_3^-} \\
\frac{W_6}{W_6^-} &= \frac{W_1 W_2}{W_1^- W_2^-} \\
\frac{W_7}{W_7^-} &= \frac{W_5 W_6}{W_5^- W_6^-}.
\end{align*}
\]

Because in this case we have more cycles, there is a larger number of possibilities of grouping cycles with the same increment, and different groupings generate different restrictions in the transition rates: each specific grouping has to be treated separately. In the following, we show two different cases where a symmetry different from the GCEM symmetry sets in.
First we consider \(K_1 = K_2 = K_\gamma \) and \(K_3 = M_\gamma \). This gives a family of currents \(j_I^{(\gamma)} \), which have the asymptotic behavior

\[
j_I^{(\gamma)} = K_\gamma j_T (A,B) + K_\gamma j_T (C,A) + M_\gamma j_T (B,C) + O\left(\frac{1}{T}\right). \tag{B.6}
\]

Therefore, the set of increments becomes

\[
\{K_1, K_2, K_3, K_4, L_5, L_6, L_7\} = \{K_\gamma, K_\gamma, M_\gamma, -2K_\gamma - M_\gamma, K_\gamma + M_\gamma, 2K_\gamma, K_\gamma + L_\gamma\}, \tag{B.7}
\]

meaning that also cycles \(C_5 \) and \(C_7 \) have the same increment. Depending on the values of \(K_\gamma \) and \(M_\gamma \), the grouping of cycles might change. We would like to consider the case where only \(K_1 = K_2, L_5 = L_7 \) and all other increments are different. In order for this to be true we need the following restrictions on \(K_\gamma \) and \(L_\gamma \) to be fulfilled:

\[
K_\gamma \neq 0 \quad M_\gamma \neq 0
\]

\[
|M_\gamma| \neq |M_\gamma| \quad 2|K_\gamma| \neq |M_\gamma|
\]

\[
3K_\gamma + M_\gamma \neq 0 \quad 4K_\gamma + M_\gamma \neq 0 \quad 3K_\gamma + 2M_\gamma \neq 0 \quad 2M_\gamma + K_\gamma \neq 0. \tag{B.8}
\]

If all these constraints on the increments are satisfied, equality (33) leads to the following relations. Similar to the way we obtained equations (41) and (42), if we consider cycles \(C_1 \) and \(C_2 \), we obtain

\[
\exp(K_\gamma E_\gamma) = \frac{W_1 + W_2}{W_1 + W_2} = \frac{W_1 \lambda_1 + W_2 \lambda_2}{W_1 \lambda_1 + W_2 \lambda_2}, \tag{B.9}
\]

The first equality defines the value of \(E_\gamma \), while, as in equation (42), the second equality is fulfilled for a current different from entropy only if \(\lambda_1 = \lambda_2 \). Considering the cycle \(C_6 \) we obtain

\[
\exp(2K_\gamma E_\gamma) = \frac{W_1 W_2}{W_1 W_2} = \left(\frac{W_1 + W_2}{W_1 + W_2}\right)^2, \tag{B.10}
\]

where the second equality comes from the first equality in (B.9). This is satisfied if \(W_1 W_2 = W_1 W_2 \) or \(W_1 W_1 = W_1 W_2 \), where for the first case \(j_I^{(\gamma)} \) becomes entropy. Moreover, the cycle \(C_3 \) gives

\[
\exp(M_\gamma E) = \frac{W_5}{W_3}, \tag{B.11}
\]

which, with relations (B.5), (B.9) and the constraint \(W_1 W_1 = W_2 W_2 \), gives

\[
j_I^{(\gamma)} = K_\gamma \left(j_T (A,B) + j_T (C,A) + \left(\ln \frac{W_1}{W_2}\right)^{-1} \ln \frac{W_2}{W_3} j_T (B,C) \right) + O\left(\frac{1}{T}\right). \tag{B.12}
\]

Finally, the equations obtained from the increments of the cycle \(C_4 \) do not bring any new constraints while the cycles \(C_5 \) and \(C_7 \) give

\[
\exp(K_\gamma E_\gamma + M_\gamma E_\gamma) = \frac{W_5 + W_7}{W_5 + W_7}. \tag{B.13}
\]

This equation leads to the additional constraint \(\frac{W_1 W_2}{W_1 W_2} = \frac{W_5 + W_6}{W_5 + W_6} \). Hence, we conclude that the (non-entropic) family of currents \(\{j_I^{(\gamma)}\} \) has a symmetric large deviation function, with symmetric factor \(E_\gamma \) given by (B.9), if the following constraints on the transition rates are respected:

\[
\begin{cases}
\lambda_1 = \lambda_2 \\
W_1 W_1 = W_2 W_2 \\
W_1 W_3 = W_5 + W_6 \\
\frac{W_2 W_3}{W_5 + W_6}
\end{cases} \quad \text{and} \quad \frac{W_1}{W_1} \neq \frac{W_2}{W_2}. \tag{B.14}
\]
Let us make two remarks. The first is that in the above example we grouped cycles C_1 and C_2. However, we could have chosen any pair from the four three-state cycles, where each pair will give a different family of currents. Therefore, we have six different families: the one we treated and five more. In order to obtain the constraints for the other five, one just has to follow the same procedure as above. The second remark is that if we break one of the conditions in (B.8), the degeneracies (and also the restrictions in the transition rates) change. For example, if we consider the case $K_y = 2L_y$ we have a set of increments given by $\{K_y, K_y, 2K_y, -4K_y, 3K_y, 2K_y, 3K_y\}$ and (B.6) becomes

$$j^{(y)}_T = K_y \left(j_T(A, B) + j_T(C, A) + j_T(B, C)\right) + O \left(\frac{1}{T}\right).$$

(B.15)

Since now cycles C_3 and C_5 are grouped together, the restrictions on the transition rates are different from (B.14). More precisely, it can be shown that for $M_y = 2K_y$, besides the restrictions (B.14), we also need

$$W_3 W_3 = W_1 W_2,$$

(B.16)
in order to have the symmetry.

As a second case we consider $K_1 = -K_2 = K_3$ and $K_5 = M_5$. This leads to the set of increments $\{K_1, -K_1, M_5, K_5, K_5 + M_5, 0, -K_5 + M_5\}$ and the currents of this family have the asymptotic behavior

$$j^{(s)}_T = K_5 \left(j_T(A, B) - j_T(C, A) + M_5 j_T(B, C)\right).$$

(B.17)

Similar to conditions (B.14), in order not to get any extra degeneracies the following restrictions on the increments have to be satisfied:

$$K_5 \neq 0, \quad M_5 \neq 0, \quad |K_5| \neq |M_5|, \quad 2|K_5| \neq |M_5|, \quad |K_5| \neq 2|M_5|.$$

(B.18)

We shall not present all the calculations for this case: they are similar to other calculations in section 5 and in this appendix. In the case that all the above conditions are fulfilled we obtain the following. Currents of the form

$$j^{(s)}_T = K_5 \left(j_T(A, B) - j_T(C, A) + \left(\frac{\ln W_1}{W_2}\right)^{-1} \ln \frac{W_1 W_2}{W_3 W_1} j_T(B, C)\right) + O \left(\frac{1}{T}\right),$$

(B.19)

have a symmetric large deviation function, with symmetric factor given by

$$\exp(K_5 E_b) = \frac{W_1 + W_2}{W_1 + W_2},$$

(B.20)

if the following restrictions on the transition rates are fulfilled:

$$\begin{align*}
\lambda_1 &= \lambda_2 \\
\lambda_3 &= \lambda_4 \\
W_1 W_1 &= W_2 W_2 \\
W_1 W_3 &= W_3 + \sqrt{W_3 W_6 W_7} \\
W_2 W_3 &= W_3 + \sqrt{W_3 W_6 W_7} \\
W_1 W_1 &\neq W_2 W_2.
\end{align*}$$

(B.21)

This fully connected case gives us the following intuition. As soon as the network of states has a more sophisticated topology, with a larger number of chords, many other symmetric currents can be found. Therefore, we think that the finding of all possible symmetric currents, by using the methods of section 5, becomes extremely difficult for larger and more complicated networks.
References

[1] Varadhan S R S 1984 Large Deviations and Applications (Philadelphia, PA: SIAM)
[2] Ellis R S 1985 Entropy, Large Deviations, and Statistical Mechanics (New York: Springer)
[3] den Hollander F 2000 Large Deviations (Providence, RI: Field Institute Monographs)
[4] Touchette H 2009 Phys. Rep. 478 1–69
[5] Evans D J, Cohen E G D and Morriss G P 1993 Phys. Rev. Lett. 71 2401
[6] Evans D J and Searles D J 1994 Phys. Rev. E 50 1645
[7] Gallavotti G and Cohen E G D 1995 Phys. Rev. Lett. 74 2694
[8] Gallavotti G and Cohen E G D 1995 J. Stat. Phys. 80 931
[9] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[10] Kurchan J 1998 J. Phys. A: Math. Gen. 31 3719
[11] Lebowitz J L and Spohn H 1999 J. Stat. Phys. 95 333
[12] Maes C 1999 J. Stat. Phys. 95 367
[13] Crooks G E 1999 Phys. Rev. E 60 2721
[14] Hatano N and Sasa S 2001 Phys. Rev. Lett. 86 3463
[15] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[16] Seifert U 2005 Phys. Rev. Lett. 95 040602
[17] Andrieux D and Gaspard P 2007 J. Stat. Phys. 127 107
[18] Andrieux D and Gaspard P 2007 C. R. Phys. 8 579
[19] Harris R J and Schütz G M 2007 J. Stat. Mech. P07020
[20] Kurchan J 2007 J. Stat. Mech. P07005
[21] Schnakenberg J 1976 Rev. Mod. Phys. 48 571
[22] Barato A C, Chetrite R, Hinrichsen H and Mukamel D 2012 J. Stat. Phys. 146 294–313
[23] Barato A C, Chetrite R, Hinrichsen H and Mukamel D 2010 J. Stat. Mech. P10008
[24] Faggionato A and Di Pietro D 2011 J. Stat. Phys. 143 11
[25] Puglisi A, Pigolotti S, Rondoni R and Vulpiani A 2010 J. Stat. Mech. P05015
[26] Kalpazidou S L 1995 Cycle Representations of Markov Processes (New York: Springer)
[27] Feller W 1940 Trans. Am. Math. Soc. 48 488
[28] Kirchhoff G 1847 Ann. Phys., Berlin 148 497
[29] Maes C and Netočný K 2008 Europhys. Lett. 82 30003
[30] Altaner B, Grosskinsky S, Herminghaus S, Katthan L, Timme M and Vollmer J 2012 Phys. Rev. E 85 041133
[31] Polettini M 2011 Phys. Rev. E 84 051117
[32] Biggs N 1974 Algebraic Graph Theory (Cambridge: Cambridge University Press)
[33] Bona M 2006 A Walk Through Combinatorics: an Introduction to Enumeration and Graph Theory (Singapore: World Scientific)
[34] Derrida B, Evans M R, Hakim V and Pasquier V 1993 J. Phys. A: Math. Gen. 26 1493
[35] Blythe R A and Evans M R 2007 J. Phys. A: Math. Theor. 40 R333
[36] Derrida B 2007 J. Stat. Mech. P07023
[37] Chou T, Mallick K, Zia and P. R K 2011 Rep. Prog. Phys. 74 116601
[38] Bodineau T and Derrida B 2007 C. R. Phys. 8 540–55
[39] Rahav S and Jarzynski C 2007 J. Stat. Mech. P09012