Evidence of sub-nucleonic degrees of freedom in J/ψ photoproduction in ultraperipheral collisions at the CERN Large Hadron Collider

E. Andrade-II
Instituto de Física da Universidade de São Paulo, SP, Brazil and
Texas A&M University-Commerce, Commerce, TX, USA

I. González and A. Deppman
Instituto de Física da Universidade de São Paulo, SP, Brasil

C. A. Bertulani
Department of Physics&Astronomy, Texas A&M University-Commerce, Commerce, TX, USA and
Department of Physics&Astronomy, Texas A&M University, College Station, TX, USA

(Dated: October 12, 2015)

We present calculations for the incoherent photoproduction of J/ψ vector mesons in ultraperipheral heavy ion collisions (UPC) in terms of hadronic interactions. This study was carried out using the recently developed Monte Carlo model CRISP extended to include UPCs at LHC energies. A careful study of re-scattering and destruction of the J/ψ particles is presented for PbPb collisions at √s_{NN} = 2.76 TeV. We have also compared our method to AuAu collisions at √s_{NN} = 200 GeV measured at RHIC.

PACS numbers: 24.10.-i, 24.10.Lx, 25.20.Lj, 25.75.-q, 25.90.+k

I. INTRODUCTION

Photoproduction of vector mesons is important in many aspects because it provides insights into basic QCD dynamics not only in the perturbative, but also in the non-perturbative region. The associated form factors and intermediate isobar states should test quark models. At the Large Hadron Collider (LHC) at CERN recent experiments in pp and pPb collisions led to ions zipping past each other at relativistic energies. They are excellent supplies of Fermi’s almost real photons due to intense electromagnetic fields [1], leading to numerous possibilities for studying photonuclear and photon-photon collisions not always available with real photons [2–4].

Recent experiments at the LHC have reported J/ψ and Υ production in pp and pPb collisions in ultraperipheral collisions (UPC) [5,6]. Previous theoretical works have predicted the magnitude of the cross sections based on sub-nucleonic degrees of freedom [8–11]. One major conclusion of these efforts is that UPCs are an excellent probe of parton distribution functions (PDF) and the evolution of gluon distributions in nuclei [12, 13]. It is the goal of this work to show how a purely hadronic model could describe the incoherent photoproduction of J/ψ at energies as high as √s_{NN} = 200 GeV and how the need for nuclear gluon dynamics at higher energies can be inferred in a more reliable manner through the aid of an intranuclear cascade model based on hadronic consideration.

Our tool for investigating J/ψ production in UPCs is the CRISP model (acronym for Collaboration Rio - Ilhéus - São Paulo), which is implemented through a cascade of hadronic collisions using Monte Carlo techniques [14, 15]. The CRISP model describes the nuclear reaction as a two step process, namely the intranuclear cascade and the evaporation/fission competition. For the present work the first one is the most important.

The intranuclear cascade encompasses all the processes from the first interaction of an incident particle with the nucleus, which is called primary interaction, up to the final thermalization of the nucleus [16]. The evaporation/fission stage describes all processes that befall after thermalization, including all possible decay channels through strong interactions, which are successive evaporation of nucleons or cluster of nucleons and fission [17, 18]. Intranuclear cascade and evaporation/fission competition are also called fast and slow processes, respectively.

A particular feature of the CRISP model is that the intranuclear cascade is described as a multicoollisional process involving all nucleons in the nuclei. This aspect allows a more realistic description of reaction mechanisms such as Pauli blocking, nuclear density fluctuations, propagation of resonances in the nuclear medium, final state interactions (FSI), and pre-equilibrium emissions. As a result, many different observables are properly calculated with a small number of parameters for several nuclear masses and different collision energies.

In the evaporation/fission stage the Weisskopf mechanism for evaporation is used [19], with the nuclear masses being calculated by the Pearson nuclear mass formula.
Both intransnuclear cascade and evaporation/fission calculations with the CRISP model have been extensively investigated yielding good results for reactions induced by photons, electrons and protons and observables such as neutron or proton multiplicity, fission and spallation cross sections, and fragment mass distributions [14, 16, 17, 22–27].

Recently the CRISP model was extended to higher energies (up to the TeV region) with the inclusion of vector meson photoproduction [28]. Some aspects of vector meson production by real photons have already been analyzed, such as subthreshold production, nuclear transparency and FSI. In this work we apply for the first time this new tool for the study of UPC production of J/ψ.

The cross section of a process X in ultraperipheral collisions can then be calculated as [2]

$$\sigma_X = \int \frac{dE_\gamma}{E_\gamma} N(E_\gamma) \sigma_{\gamma A \to X}(E_\gamma),$$ \hspace{1cm} (3)

where $\sigma_{\gamma A \to X}$ is the cross section due to a real photon and $N(E_\gamma)$ is the integral of $n(E_\gamma, b)$ over impact parameters.

We represent our results in terms of the rapidity y through the relation $dy = E_\gamma dE_\gamma/E_\gamma$, where E_γ and the rapidity of the produced particle are related by

$$y = \ln \left[\frac{W^2_{\gamma p}}{2\gamma m_p M_p} \right] = \ln \left[\frac{E_\gamma}{\gamma M_p} \right],$$ \hspace{1cm} (4)

where $W_{\gamma p} = \sqrt{2E_\gamma m_p}$ is the γp center-of-mass energy, m_p is the proton mass, M_p is the mass of the particle of interest, and $\gamma = 2\gamma_L^2 - 1$ with γ_L being the Lorentz factor of the beam in the laboratory. In terms of the rapidity of the particle X for AA collisions

$$\frac{d\sigma_{AA \to AAX}(y)}{dy} = \frac{d\sigma_{\gamma A \to AX}(y)}{dy} + \frac{d\sigma_{\gamma A \to AX}(-y)}{dy}. \hspace{1cm} (5)$$

III. RESULTS AND DISCUSSION

The CRISP model uses the universal model of soft dipole Pomeron proposed by Martynov, Predazzi and Prokudin [29, 30] to calculate the photoproduction of meson vectors. The consistency of the model can be attested by Figure 1 where the cross section for J/ψ photoproduction production off the proton is compared with measurements of the ALICE collaboration for PbPb ultraperipheral collisions at $\sqrt{s_{NN}} = 5.02$ TeV [31].

Experimental data on J/ψ photoproduction in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV were published by the ALICE Collaboration [32] where an experimental definition of coherent and incoherent production was established, according to the transverse momentum being $p_T < 200$ MeV/c ($p_T > 200$ MeV/c) in the di-muon decay channel and $p_T < 300$ MeV/c ($p_T > 300$ MeV/c) in the di-electron decay channel in coherent (incoherent) events. The CRISP model yields the results displayed in Figure 1.

We have also calculated J/ψ production for several values of rapidity in the interval $-3 < y < 3$, corresponding to the range 219 GeV $< E_\gamma < 89$ TeV for the photon energy and 20 GeV $< W_{\gamma p} < 409$ GeV for the γp center-of-mass frame. This is shown by the red (online) dashed curve in Figure 2 whereas the black (online) dotted curve is obtained by the inversion symmetry $y \to -y$. It is readily noticed that J/ψ photoproduction is domi-
nant at lower energies because the virtual photon flux falls rapidly with energy.

Figure 3 compares our results with the experimental data together with results from other models, all extracted from Reference [32]. STARLIGHT is based on a Glauber model for participating nucleons folded with the J/ψ-nucleon cross section and accounting for the nuclear collision geometry [33]. LM-fPsat adopts an impact parameter saturated dipole model with an eikonalized DGLAP-evolved gluon distribution [34]. RSZ-LTA is a partonic model in which the cross section depends on the square of the nuclear gluon distribution.

From Figure 3 we notice that CRISP overestimates the experimental value by nearly 100%. Because we use a consistent γp cross section, a realistic intranuclear cascade model and proper in-medium final state interactions, such a discrepancy could be an evidence of the limitation of a purely hadronic model, at least for this particular system. It is worthwhile mentioning that other models are not successful either: a possible conclusion that incoherent processes in the TeV range are not very well understood.

Transverse momentum distributions are another tool of relevance. A particular aspect of pT distributions is its sensitivity to different models for the elastic channel of the final state interaction. Although the distributions of incoherent and coherent processes are not experimentally accessible, a comparison between different models is nonetheless useful. Figure 4 shows a comparison between CRISP and STARLIGHT incoherent calculations along with the corresponding rapidity distribution. Two elastic FSI channels are provided with CRISP.

\[
\frac{d\sigma}{dt} \bigg|_{t=0} = 23.15 s^{0.16} + 0.034 s^{0.88} + 1.49 s^{0.52},
\]

where \(s\) is the γp center-of-mass energy. The first term...
accounts for the soft Pomeron contribution, the second one for the hard Pomeron and the third one is the interference between the two. Eq. (3) yields higher values for the transverse momenta and considerably higher cross sections, shown in Figure 5 by the point-dashed line. The soft dipole Pomeron model, on the other hand, is effective in describing photoproduction off protons from threshold to several hundreds of GeV [29]. When applied to elastic FSI, it provides a lower average transverse momentum and the photoproduction cross section is closer to the experimental value.

Figure 5 also shows that the p_T distributions obtained with CRISP (soft dipole Pomeron) and STARLIGHT are compatible except for two aspects. The first one is the little shift to higher momenta given by CRISP model. The second is the narrowing of the CRISP distribution compared to STARLIGHT. This is the immediate reason why CRISP incoherent cross section is higher at $y = 0$ and narrower. The differences being considerable in terms of the physics in the models but little in terms of p_T distribution. Both models agree that the mechanism called incoherent is not sufficient to explain the data and that a different process, namely the coherent interaction, is necessary to explain the low transverse momentum observed experimentally [32].

Our model also allows to assess nuclear medium effects such as Fermi motion and final state interactions of J/ψ in the nuclear matter. The behavior of the cross section by switching off each of these effects can be seen in Figure 5. The cross section increases by orders of magnitude in the absence of FSI, revealing the importance that this feature has over the results. In fact, Figure 5 shows the position distribution of the created J/ψ according to subsequent emission or suppression by the nuclear matter, evidencing that the emitted particles are indeed those produced very close to the surface.

Two important features of the production process can be learned from Figure 6. The large quenching of J/ψ production by FSI and the shadowing effects are noticeable due the small number of produced J/ψ close to the center of the nucleus. According to a previous work [23], the hadronization of the photon accounts for a dump in the photoproduction cross section in the internal region of the nucleus, resulting from the shadowing effect. As a consequence the cross section is not proportional to the number of nucleons, but to A^{α}, α being an exponent smaller than unit. For strongly interacting particles $\alpha \approx 2/3$, meaning that the particles interact already at the nuclear surface. However, for J/ψ $\alpha \approx 0.94$, similar to values found for the photoproduction of other mesons, $\alpha \approx 0.9$ [28]. The fact that J/ψ is produced also for small values of r is in accordance with the shadowing effect predictions.

The second aspect of J/ψ photoproduction is the fact that the strong final state interaction (FSI) inhibit the escape of J/ψ generated in the interior of the nucleus and only those produced near the nuclear surface will escape, the others being reabsorbed by the nucleus. In fact, as shown in Figure 6, only $\sim 1\%$ of the produced J/ψ leave the nucleus. These results evidence the important role played by FSI in the J/ψ production in UPC. The effects of FSI can be investigated in LHC energies using UPCs if collision between nucleus of different sizes $< W < 200$ GeV was also calculated in the $-2 < y < 2$ rapidity interval corresponding to the range $45 \text{ GeV} < E_\gamma < 2.44 \text{ TeV}$ for the photon energy and $9 \text{ GeV} < W_{\gamma p} < 68 \text{ GeV}$. The calculation is shown in Figure 7 compared with experimental data from the PHENIX Collaboration [30]. The data corresponds to the total cross section measured without separation between coherent and incoher-
ent events due to statistical limitations.

In this case the PHENIX collaboration estimated a dominant coherent contribution, the reason why comparisons with coherent calculations were provided in Reference [36]. STARLIGHT calculations and the Gonçalves-Machado model were extracted from Ref. [36]. The calculations provided by Strikman et al for the total cross section is also extracted from Ref. [36].

\[\text{FIG. 7. Total photoproduction cross section of J}/\psi \text{ in AuAu collision at } \sqrt{s_{NN}} = 200 \text{ GeV. Comparison with STARLIGHT, Strikman et al and Gonçalves-Machado models, all extracted from [36] as well as the experimental data. The lines (–) delimit the statistical uncertainties in the calculations.} \]

According to estimates by the PHENIX Collaboration, the incoherent contribution is approximately 40%, or \(\sim 30 \mu b \), in accordance with CRISP model calculations. Figure 7 also shows the summation of CRISP and STARLIGHT results. A fair agreement is found between the summation and both Strikman model and the experimental data. The lack of more experimental data certainly reduces the extent of the analysis.

The slight disagreement between CRISP calculation and experimental results for PbPb at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) cannot be attributed to FSI. We have verified that the effects of FSI saturate since the \(J}/\psi \) effectively produced in UPC are those generated exactly at the nuclear surface, so small modifications on \(J}/\psi \) FSI will not alter our results. We have also tested possible effects of a smooth surface by modifying the parameters of the survival probability inside a reasonable range. The decrease of the cross section for \(y = 0 \) is smaller than 6% and thus our conclusions are not modified.

The disagreement between calculation and experiment therefore can be attributed only to the primary interaction between the virtual photon and the nucleon. Since the model used is a nucleonic one, this can be an indication of the necessity of sub-nucleonic degrees of freedom in the description of \(J}/\psi \) photoproduction. In this case the better agreement obtained with AuAu collision could be indicative of the fact that at lower energies the nucleon-based model is still satisfactory. In fact, considering again \(y = 0 \), the photon energy at target reference frame for Pb and Au are respectively \(E_\gamma = 4.4 \text{ TeV} \), 0.3 TeV. The threshold for sub-nucleonic degrees of freedom would be inside this interval.

The present analysis is limited by the lack of experimental data. It would be interesting to have the knowledge of \(J}/\psi \) production in UPC for both Pb and Au at different energies in the interval \(\sqrt{s_{NN}} = 200 \text{ GeV} \) to 2.76 TeV.

IV. CONCLUSIONS

In summary, the \(J}/\psi \) photoproduction for PbPb collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) and for AuAu collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \) was studied with the CRISP model and compared with the existing experimental data and models. The CRISP hadronic model describes reasonably the photoproduction of \(J}/\psi \) in UPCs at lower energies (\(\leq 200 \text{ GeV} \)) but with limitations at higher energies. An advantage and partial success of the model is the use of the correct photoabsorption cross sections for the different channels of sequential hadronic collisions with the final state interactions of the \(J}/\psi \) proven to be of great relevance. Our findings led to the reliable conclusion that the inclusion of sub-nucleonic degrees of freedom is needed to describe \(J}/\Psi \) photoproduction in UPCs.

ACKNOWLEDGMENTS

We acknowledge the support from the Brazilian agency FAPESP under grant 2012/13337-0, the U.S. NSF Grant No. 1415656, and U.S. DOE grant No. DE-FG02-08ER41533. Also, we thank Dr. J. D. Tapia Takaki for his valuable considerations on this study, greatly improving our analysis.

[1] E. Fermi, Zeitschrift für Physik 29, 315 (Dec. 1924).
[2] C. A. Bertulani and G. Baur, Physics Reports 163, 299 (1988).
[3] C. A. Bertulani, S. R. Klein, and J. Nystrand, Annual Review of Nuclear and Particle Science 55, 271 (2005).
[4] A. Baltz et al., Physics Reports 458, 1 (2008), ISSN 0370-1573.
[5] C. Collaboration (CMS Collaboration CMS-PAS-HIN-12-009)(2014).
[6] B. A. Abelev et al., Physics Letters B 718, 1273 (2013), ISSN 0370-2693.
