Kaonic 3He and 4He X-ray measurement in SIDDHARTA

T. Ishiwatari / SMI, Vienna
On behalf of
SIDDHARTA collaboration

13. 6, 2011, Hadron2011, Munich, Germany

PLB681(09)310
PLB697(11)199
SIDDHARTA Collaboration

M. Bazzia, G. Beerb, L. Bombellic, A.M. Bragadireanua,d, M. Cargnellie, G. Corradia, C. Curceanu (Petrascu)a, A. d'Uffizia, C. Fiorinic, T. Frizzic, F. Ghiof, B. Girolamif, C. Guaraldoa, R.S. Hayanog, M. Iliescua,d, T. Ishiwatarie,*, M. Iwasakih, P. Kienlee,i, P. Levi Sandria, A. Longonic, V. Lucherinia, J. Martone, S. Okadaa, D. Pietreanua, T. Pontad, A. Rizzoa, A. Romero Vidala, A. Scordoa, H. Shig, D.L. Sirghia,d, F. Sirghia,d, H. Tatsunog, A. Tudorached, V. Tudorached, O. Vazquez Docea, E. Widmanne, J. Zmeskale

a INFN, Laboratori Nazionali di Frascati, Frascati (Roma), Italy
b Dep. of Phys. and Astro., Univ. of Victoria, Victoria B.C., Canada
c Politecnico di Milano, Sez. di Elettronica, Milano, Italy
d IFIN-HH, Magurele, Bucharest, Romania
e Stefan-Meyer-Institut für subatomare Physik, Vienna, Austria
f INFN Sez. di Roma I and Inst. Superiore di Sanita, Roma, Italy
g Univ. of Tokyo, Tokyo, Japan
h RIKEN, The Inst. of Phys. and Chem. Research, Saitama, Japan
i Tech. Univ. München, Physik Dep., Garching, Germany
Experimental results before SIDDHARTA

Z	A	Target	Last orbit	Level shift	Old experiments	New experiments
1	1	1H	1s	Attractive	Davies (79), Izycki (80), Bird (83)	Repulsive
					KpX(97), DEAR (05)	
1	2	2D	1s	No data	No data	
2	3	3He	2p	No data	No data	
2	4	4He	2p	Large	Wiegand (71), Batty (79), Baird (83)	Small
					KEK E570 (07)	

Recently performed experimental results: different from old data

SIDDHARTA experiment:
- All light targets (from hydrogen to helium-4)
- Confirmation of “New experimental results” and improvement of precession
- First data of kaonic deuterium and kaonic helium-3
Introduction
-- History --
Kaonic atom data (Z ≥ 3) Used for studies of K^barN interaction

Optical model

\[2\mu V_{\text{opt}}^{(2)}(r) = -4\pi \left(1 + \frac{\mu}{m}\right) b_0 \rho(r). \]

Experimental X-ray data of shift & width: Well fitted with optical potentials

Expected shift of K-4He 2p state: \(\Delta E \sim 0 \text{ eV} \)

Shift [eV]	Ref
-0.13±0.02	Batty, NPA508(1990) 89c
-0.14±0.02	Batty, NPA508(1990) 89c
-0.4	Bianco, Nuo. Cim.22 (1999) 1
-1.5	Akaishi, Proc. EXA05
Kaonic helium atom data ($Z=2$)

$$\Delta E_{2p} = E_{\text{exp}} - E_{\text{e.m.}}$$

ΔE_{2p} (eV)	Γ_{2p} (eV)
-41 ± 33	-
-35 ± 12	30 ± 30
-50 ± 12	100 ± 40
Average	**-43 ± 8**

1971

C. Wiegand and R. Pehl,
Phys. Rev. Lett. 27, 1410 (1971)

1979

C. Batty et al.,
Nucl. Phys. A326, 455 (1979)

1983

S. Baird et al.,
Nucl. Phys. A392, 297 (1983)

$$\Delta E_{2p} = -43 \pm 8 \text{ eV}$$

World average
Possible shift of Kaonic helium ($Z=2$)

Y. Akaishi, EXA05 proceedings

Q: K-4He experimental results (~40 eV shift) correct?
Q: non-zero shift (~5 eV) on K-4He?
Q: How about K-3He?
Large, small, tiny???

Need: New experiments both on He-3 and He4

Prediction of "deeply bound kaonic nuclei" → "hot topics"

Large shift (-40 eV) cannot be explained by any models.

K-nucl model
Small (<±10 eV)

Optical model
Tiny (~ 0 eV)

K-He4 exp
Large (~40 eV)
Akaishi Prediction -10~ +10 eV

Optical model ~0 eV

\[\Delta E_{2p} = 2 \pm 2 \text{ (stat)} \pm 2 \text{ (syst) eV} \]

\[\Delta E_{2p} = -43 \pm 8 \text{ eV} \]

Disagree!

E570 results (’07)

K-\(^4\)He 2p level shift

1983

S. Baird et al., Nucl. Phys. A392, 297 (1983)

2007

S. Okada et al., PLB653(07)387

3d-2p

4d-2p

5d-2p
Solving the kaonic helium puzzle

Old Experiments

Large shift
(- 43±8 eV)

E570

Small shift
(+2±2±2 eV)

More than 3 σ difference

Experimental confirmation need!
→ SIDDHARTA experiment
SIDDHARTA Experiment
SIDDHARTA Experimental Setup

DAFNE e⁺e⁻ collider
510 MeV (e⁻, e⁺)
Production of φ at rest

\[e^+ + e^- \rightarrow \phi \rightarrow K^+ + K^- \]

K⁻ beam at DAFNE
1. Monochromatic
2. Low-energy
3. No hadronic background

Efficient stops in Gas target

Triple coincidence:
\[SDD_x \ast \text{Scint}_K \ast \text{Scint}_K \]

Rejected:
Background events uncorrelated to K⁺K⁻ pair productions
Comparison of X-ray detectors

experiment	KpX	DEAR	E570	
Detector	Si(Li)	CCD	SDD	
Area	[mm²]	200	724	100
Thickness	[mm]	5	0.03	0.26
ΔE (FWHM)	[eV]	410	170	185
Δt (FWHM)	[ns]	290	-	430

T. Ishiwatari, Hyp. Int. 194(09)165
Comparison of X-ray detectors

experiment	KpX	DEAR	E570	
Detector	Si(Li)	CCD	SDD	
Area	[mm²]	200	724	100
Thickness	[mm]	5	0.03	0.26
ΔE (FWHM)	[eV]	410	170	185
Δt (FWHM)	[ns]	290	-	430

T. Ishiwatari, Hyp. Int. 194(09)165
Kaonic He-4 X-rays at SIDDHARTA

2009

Target size: r=6cm, h=12 cm
Target density: 27 K, 0.95 bar = 10 bar at NTP

First measurement with gas target

Installed SDD: 144 cm², Used in Analysis: 60 cm²
SDD operation temp. : 170 K,
SDD Energy resolution: ~150 eV (at 6 keV)

For precise determination:
Fe source + Ti foil Installed
(4.5 keV & 5.9 keV X-rays as in-beam calibration lines)
KHe-4 energy spectrum at SIDDHARTA

PLB681(2009)310; NIM A 628(2011)264

No-coincidence

Counts / 10 eV

Energy [keV]

Counts / 30 eV

K-He data taking

Target

Fe55

Degrader

Ti foil

$E_{\text{exp}} = 6463.6 \pm 5.8$ eV,

$\Delta E = E_{\text{exp}} - E_{e.m.}$

$= 0 \pm 6\text{(stat)} \pm 2\text{(syst)}$ eV
Summary of KHe-4 shifts (up to 2007)

- **SIDDHARTA**
 - $+0 \pm 6 \text{(sta)} \pm 2 \text{(sys)}$

- **E570**
 - $+2 \pm 2 \text{(sta)} \pm 2 \text{(sys)}$

- **Akaishi Prediction**
 - $-10 \sim +10 \text{ eV}$

- **Optical model**
 - $\sim 0 \text{ eV}$

- **K-He4 exp**
 - Large (-40 eV)

- **K-nucl model**
 - Small ($< \pm 10 \text{ eV}$)

- **Optical model**
 - Tiny ($\sim 0 \text{ eV}$)
Data taking periods of SIDDHARTA in 2009

K-He4 data with Fe source

55Fe source:
Good for reduce sys. error on K-4He
Bad for “background” events on K-H,K-D

Removed 55Fe source in other data

Use of Mn Ka (5.9 keV) from 55Fe

Systematic error = +/-2 eV

PLB681(2009)310
Data taking periods of SIDDHARTA in 2009

DAFNE shutdown in Summer

New alignment of setup → Improve S/N ratio

K-He3 data (~4 days)

He-4
He-3
D
H

55Fe source:
Good for reduce sys. error on K-4He
Bad for “background” events on K-H, K-D

Removed ^{55}Fe source in other data
Data taking scheme at DAFNE

Instead of Fe source, “X-ray tube” data taken

Estimated systematic error ~ 5 eV

Production data

- Ti/Cu foil
- SDDs
- degrader
- Scintillators

Calibration data

- Ti/Cu foil
- SDDs
- X-ray tube

Production data:

- K^-

Calibration data:

- K^+

e^-

ϕ

e^+

Estimated systematic error ~ 5 eV

Instead of Fe source, “X-ray tube” data taken
SDD X-ray energy spectra

Calibration data with X-ray tube

(a)

Ti Kα

Cu Kα

count / 30 eV

x 10^6

x 10^5

x 10^4

x 10^3

x 10^2

x 10^1

x 10^0

Ti/Cu foil

SDDs

calibration data

X-ray tube

Ti/Cu foil

e^-

e^+

Calibration Ti&Cu
SDD X-ray energy spectra

Calibration data with X-ray tube

Not correlated to Kaon signals

Production data

Energy scale determined by X-ray tube data

Energy spectrum with uncorrected to kaon timing [Fig. (b)]
SDD X-ray energy spectra

Calibration data with X-ray tube

Not correlated to Kaon signals

Production data

Selected with K+K- & SDD timing

Time difference between SDD & Kaon detector
Rate dependency
Peak position shifts due to hit rate of SDDs:
Hit rate in (a) is ~10 times higher than in (b)

~10 eV peak shift compared to (a)

Calibration in (a): not reliable!
SDD X-ray energy spectra

Calibration data with X-ray tube

Not correlated to Kaon signals

Production data (a) (b)

Rate dependency

Peak position shifts due to hit rate of SDDs: Hit rate in (a) is ~10 times higher than in (b)

~10 eV peak shift compared to (a)

Significant for K-He measurement

After beam time, (X-ray tube only)

X-ray tube current [mA]

SDD hit rate

Peak shift [eV]

High rate

Low rate

High rate

Significant for K-He measurement
SDD X-ray energy spectra

Calibration data with X-ray tube

Not correlated to Kaon signals

Production data

1. Good SDD selection
2. Gain adjustment,
3. correction of time-dependent fluctuation

Precise energy calibration

High rate

Low rate
SDD X-ray energy spectra

Not correlated to Kaon signals

Production data

Low rate

Ti Ka

Cu Ka

Au La

Ti/Cu/Au lines: compared to the reference values

Average: shifted to lower
Systematic fluctuation??

Data analysis of other target

(K fit value) - (Ref.)
Evaluation of systematic error

Sum of data of K-D, K-3He, K-4He After shut down (=same geometry)

- Peak shift: -6.5 eV
- Accuracy of energy determination: +/- 3.5 eV
Evaluation of systematic error

Time (or target) dependency

K-D (=Red)
K-3He (=Blue)
K-4He (=Black)
After shut down (=same geometry)

Summer shutdown

- Peak shift: - 6.5 eV
- Accuracy of energy determination: +/- 3.5 eV
SDD X-ray energy spectra

Calibration data with X-ray tube

Not correlated to Kaon signals

Production data

Peak shift due to rate dependency: 6.5 eV
Precision of energy calibration: ±3.5 eV

Evaluated from known X-ray energy peaks (Ti, Mn, Cu, Au lines and kaonic C, O lines)

Correction term:

\[\varepsilon = +6.5 \pm 3.5 \text{ eV} \]
Kaonic Helium-3 energy spectrum

X-ray energy of K-3He 3d-2p

\[E_{\text{exp}} = 6223.0 \pm 2.4(\text{sta}) \pm 3.5(\text{sys}) \text{ eV} \]

QED value: \[E_{\text{e.m.}} = 6224.6 \text{ eV} \]

\[\Delta E_{2p} = E_{\text{exp}} - E_{\text{e.m.}} \]

\[\Delta E_{2p} = -2 \pm 2(\text{sta}) \pm 4(\text{sys}) \text{ eV} \]

World First!
Observation of K-3He X-rays
Determination of strong-interaction shift

arXiv:1010.4631v1 [nucl-ex], PLB697(2011)199
DAFNE shutdown in Summer

\[\Delta E_{2p} = -2 \pm 2(\text{sta}) \pm 4(\text{sys}) \text{ eV} \]
K-4He (3d-2p)

\[\Delta E_{2p} = +5 \pm 3(\text{sta}) \pm 4(\text{sys}) \text{ eV} \]

K-3He (3d-2p)

\[\Delta E_{2p} = -2 \pm 2(\text{sta}) \pm 4(\text{sys}) \text{ eV} \]

DAFNE shutdown in Summer

Referenced: PLB697(2011)199
Comparison of results

Kaonic 4He 2p level shift

Target	Shift [eV]
KEK E570	+2±2±2 eV
SIDDHARTA (w/ 55Fe)	+0±6±2 eV
SIDDHARTA (New)	+5±3±4 eV

Kaonic 3He 2p level shift

Target	Shift [eV]
SIDDHARTA	-2±2±4 eV
J-PARC E17	??±?±? eV

Shift \(\Delta E_{2p} = E_{\text{exp}} - E_{\text{e.m.}} \)

- \(\Delta E_{2p} > 0 \) ("attractive" shift),
- \(\Delta E_{2p} < 0 \) ("repulsive" shift),
Comparison of results

PLB653(2007)387 Kaonic 4He 2p level shift

Target	Shift [eV]
KEK E570	$+2\pm2\pm2$ eV

1. Calibration/ and peak shape from Ti (4.5 keV) and Cu (8.0 keV). Apply for K-4He (6.4 keV).
2. Simulation of Compton tail using measured kaon stopping distribution. Sys err = uncertainty of above

Sato, ECT* Workshop 2009

In-beam calibration

Channel

(a) Calib. E570 data

Ti Kα Ti Kβ

(c) Cycle 2 E570 data

Compton Tail & Shell

K-target

K-beam

15 cm

for K-4He 3d-2p

Due to Compton scattering

Energy eV
Comparison of results

PLB681(2009)310 Kaonic 4He 2p level shift

Target	Shift [eV]
SIDDHARTA (Test)	+0±6±2 eV

1. Calibration and peak shape from Mn (5.9 keV)
Sys err = energy non-linearity, uncertainty of corrections of temporal fluctuation & rate dependency

Ishiwatari, ECT* Workshop 2009

Graph showing no-coincidence and coincidence spectra with Mn Kα, Ti Kα, Ti Kβ, Mn Kβ, and KHe Lα peaks.

NIM A 628(2011)264

Graph showing peak shift vs. time with and without correction.
Comparison of results

Target	Shift [eV]
SIDDHARTA (He-4) Gas	+5±3±4 eV
SIDDHARTA (He-3) Gas	-2±2±4 eV

Compared to several X-ray peaks with known energy
Sys err = uncertainty of energy determination obtained from them

Correction term:
\[\varepsilon = +6.5 \pm 3.5 \text{ eV} \]
Comparison of results

Shift [eV]	Reference
+2 ± 2 ± 2	PLB653(2007)387
+0 ± 6 ± 2	PLB681(2009)310
+5 ± 3 ± 4	arXiv:1010.4631,
-2 ± 2 ± 4	PLB697(2011)199

error bar = ±√((stat)^2 + (syst)^2)
Comparison of results

Shift [eV]	Reference
KEK E570	+2±2±2 PLB653(2007)387
SIDDHARTA (He4 with 55Fe)	+0±6±2 PLB681(2009)310
SIDDHARTA (He4)	+5±3±4 arXiv:1010.4631,
SIDDHARTA (He3)	-2±2±4 PLB697(2011)199

Question: both 0-eV shift?

Within error, consistent with 0 eV,
But
Within error, cannot exclude 0-eV shift

Possible isotope shift!? → Gold of J-PARC E17

error bar $= \pm \sqrt{(stat)^2 + (syst)^2}$
Summary

- To check whether abnormal shift on K-3He and 4He 2p state, kaonic He 3d-2p transition was measured in SIDDHATRA
- First measurement in gas targets
- First observation of kaonic 3He, prior to J-PARC
- Shift both of 3He and 4He was found to be small

	Shift [eV]	Reference
K-He4 (with 55Fe)	+0±6±2	PLB681(2009)310
K-He4	+5±3±4	arXiv:1010.4631, PLB697(2011)199
Outlook

• Isotope shift between He3 & He4??
• Determination of width
• Determination of X-ray yields between gas & liquid
• Further kaonic atom measurements with $Z \geq 3$

	Shift [eV]	Reference
K-He4 (with 55Fe)	$+0 \pm 6 \pm 2$	PLB681(2009)310
K-He4	$+5 \pm 3 \pm 4$	arXiv:1010.4631, PLB697(2011)199
K-He3	$-2 \pm 2 \pm 4$	
Supported by

HadronPhysics I3 FP6 European Community program: Contract No. RII3-CT-2004-506078

European Community Research Infrastructure Integrating Activity “Study of Strongly Interacting Matter” (HadronPhysics2, Grant Agreement No. 227431) under the Seventh Framework Programme of EU

Austrian Federal Ministry of Science and Research BMBWK [650962/0001 VI/2/2009]

Romanian National Authority for Scientific Research [2-CeX 06-11-11/2006]

JSPS Grant-in-Aid for Specially Promoted Research (20002003), MEXT, Japan

Austrian Science Fund (FWF): [P20651-N20]
Evaluation of systematic error

Production data

KHe-3 data with Fe source

Mn Ka

-5.6+/−3.3 eV

Mn Kb+Fe Ka

-6.5+/−3.5 eV

With correction, Mn position

\[\Delta E_{Mn} = +0.9 \pm 3.3 (\text{stat}) \pm 3.5 (\text{syst}) \text{ eV} \]
Evaluation of systematic error

"kaon-coincidence" with K-d data

Fit of kaonic (C/O/Al) atom X-ray lines with known energy

Kapton window (C22H10N2O5)

Low-energy side

Ti Ka
K-C (6-5)
Ti Kb
K-O (7-6)
shift: -8.6+/−4.2 eV (excl. Ti Kb)

High-energy side

shift: -9.0+/−3.2 eV

K-C(5-4)
K-N (6-5)
KO (6-5)
K-C (7-5)
K-Al (8-7)
Evaluation of systematic error

confirmation of the accuracy of energy determination & peak shift

Mn Ka (K3He)

Ave: -7.4 eV

High-E (KD)

Low-E (KD)

Average of three points: consistent with the systematic error band

To obtain absolute energy from a fit value,

\[E_{\text{exp}} = E_{\text{fit}} + \varepsilon \]

\[\varepsilon = +6.5 \pm 3.5 \text{ eV} \]
In helium, cross section of Compton effect is significant even in low-energy photons (~6.5 keV). 1/3 = Compton effect

Liquid He (E570)

for K-^4^He 3d-2p

Due to Compton scattering

10% of X-rays in Liq. He (E570) → 10 eV peak shift (if Compton neglected)

0.1 % of X-rays in 10 bar He (SIDDHARTA) → 0.1 eV peak shift (if Compton neglected) → We can neglect this shift!
Expected X-ray yields in helium gas

~2 times of X-ray yields in gas, compared in liquid

Need to check!
Kaonic atom data with $Z>3$

1. Errors on shift & width are large.
2. Isotope difference on shift & width were not measured in almost all the targets (Except Boron).
3. X-ray yield vs. target density
4. Metal or solid targets were used
 (Except: hydrogen, deuterium, He-3&He-4, nitrogen)

Text book: Fundamentals in hadronic atom theory (A. Deloff)
Table 1
Compilation of K^- atomic data

Nucleus	Transition	ϵ (keV)	Γ (keV)	Y	Γ_u (eV)	Ref.				
He	$3 \rightarrow 2$	-0.04 ± 0.03	-0.035 ± 0.012	0.03 ± 0.03	0.002 ± 0.026	0.055 ± 0.029	0.95 ± 0.30	0.25 ± 0.09	0.04 ± 0.02	[15]
Li	$3 \rightarrow 2$	0.002 ± 0.026	0.079 ± 0.021	0.172 ± 0.58	0.25 ± 0.09	0.04 ± 0.02	[17]			
Be	$3 \rightarrow 2$	-0.208 ± 0.035	0.810 ± 0.100	-0.167 ± 0.035	0.700 ± 0.080	-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	0.30 ± 0.04	[18]
C	$3 \rightarrow 2$	-0.590 ± 0.080	1.730 ± 0.150	0.07 ± 0.013	0.99 ± 0.20	[18]				
O	$4 \rightarrow 3$	-0.025 ± 0.018	0.017 ± 0.014	-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	0.30 ± 0.04	[19]		
Mg	$4 \rightarrow 3$	0.27 ± 0.015	0.14 ± 0.015	0.78 ± 0.06	0.08 ± 0.03	[19]				
Al	$4 \rightarrow 3$	0.130 ± 0.050	0.490 ± 0.160	-0.076 ± 0.014	0.442 ± 0.022	0.55 ± 0.03	0.30 ± 0.04	[19]		
Si	$4 \rightarrow 3$	0.240 ± 0.050	0.810 ± 0.120	-0.130 ± 0.015	0.800 ± 0.033	0.49 ± 0.03	0.53 ± 0.06	[19]		
P	$4 \rightarrow 3$	-0.330 ± 0.08	1.440 ± 0.120	0.26 ± 0.03	1.89 ± 0.30	[18]				
S	$4 \rightarrow 3$	-0.550 ± 0.06	2.330 ± 0.200	0.22 ± 0.02	3.10 ± 0.36	[18]				
Cl	$4 \rightarrow 3$	-0.770 ± 0.40	3.80 ± 1.0	0.16 ± 0.04	5.8 ± 1.7	[18]				

Determined shift and width using natural abundance, assuming the same shift & width & yield
Nitrogen data missing!
Isotope difference between 10B and 11B(??)