Prevalence of diabetes in pregnancy among Indigenous women in Australia, Canada, New Zealand, and the USA: a systematic review and meta-analysis

Britt Voaklander, Stewart Rowe, Omolara Sanni, Sandra Campbell, Dean Eurich, Maria B Ospina

Summary

Background Indigenous peoples in countries with similar colonial histories have disproportionate burdens of disease compared with non-Indigenous peoples. We aimed to systematically identify and collate studies describing the prevalence of pre-existing diabetes and gestational diabetes, and compare the prevalence of these conditions between Indigenous and non-Indigenous pregnant women in Australia, Canada, New Zealand, and the USA.

Methods For this systematic review and meta-analysis, an information specialist did a comprehensive search of eight databases (Ovid MEDLINE, Ovid Embase, Ovid Global Health, CINAHL [EBSCO], Scopus, ProQuest Dissertations and Theses Global, PROSPERO, and the Wiley Cochrane Library) in June, 2019, for studies published between inception and June 25, 2019, without restrictions on language, publication type, or year of publication. Database searches were supplemented by grey literature searches of the Bielefeld Academic Search Engine and Google Scholar, and the reference lists of relevant articles were also manually searched. We included observational epidemiological studies comparing the prevalence of pre-existing diabetes or gestational diabetes in Indigenous and non-Indigenous pregnant women in Australia, Canada, New Zealand, and the USA. Two independent reviewers assessed study eligibility and risk of bias. We used a standardised data extraction form to collect information from the published reports of eligible studies, and, if needed, we contacted authors for further information. We did a Mantel-Haenszel random-effects meta-analysis to obtain the pooled unadjusted prevalence odds ratios (PORs) of pre-existing diabetes and gestational diabetes in Indigenous women compared with non-Indigenous women. We stratified meta-analyses by country and type of diabetes. The study is registered with PROSPERO, number CRD42018095971.

Findings Our search identified 1348 studies, of which 43 studies with 32952441 participants from Australia, Canada, New Zealand, and the USA were included in the systematic review, and 39 of these studies were included in the meta-analysis. 40 of the included studies used a cohort design. Pre-existing diabetes was more prevalent in Indigenous women than in non-Indigenous women, with pooled PORs ranging from 1·81 (95% CI 1·53–2·13) for women in the USA to 3·63 (2·35–5·62) for women in Australia. Similarly, gestational diabetes was more prevalent in Indigenous women than in non-Indigenous women, with PORs ranging from 1·42 (1·24–1·63) for women in Australia to 2·04 (1·46–2·84) for women in Canada. Risk of bias was low in 37·2% of studies, unclear in 34·8% of studies, and high in 27·9% of studies. Heterogeneity between studies was predominantly high ($I^2=97–100$%), with one exception of moderate heterogeneity ($I^2=48$%); however, the magnitude and direction of the PORs from individual studies indicated an association between pre-existing diabetes or gestational diabetes and indigeneity among pregnant women.

Interpretation The prevalence of pre-existing diabetes and gestational diabetes was higher in Indigenous pregnant women than in non-Indigenous pregnant women in four countries (Australia, Canada, New Zealand and the USA) with similar histories of colonialism. These findings have implications for prenatal care services and the monitoring of Indigenous women in industrialised countries.

Funding Canadian Institute of Health Research and the Women’s and Children’s Health Research Institute.

Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction

Diabetes during pregnancy, including both pre-existing diabetes (type 1 or type 2 diabetes) and gestational diabetes, are associated with adverse pregnancy outcomes, poorer maternal outcomes (caesarean section, pre-eclampsia, postpartum haemorrhage, and gestational hypertension), and poor perinatal outcomes (macrosomia, preterm birth, a large-for-gestational age birth, congenital anomalies, stillbirth, injury during birth, neonatal death, and neonatal admission to an intensive care unit). Gestational diabetes is associated with an increased risk of type 2 diabetes in the mother and an increased risk of early-onset type 2 diabetes in the child. The risk of having diabetes during pregnancy varies across different populations, with a prevalence of 2–5% in low-risk ethnic groups. One population of individuals...
Evidence before this study

Before this study, we searched MEDLINE and Google Scholar on Feb 20, 2018 to identify systematic reviews on the prevalence of pre-existing diabetes and gestational diabetes that had been done previously. Three previous systematic reviews have provided important data on this topic. The first study assessed the prevalence of diabetes in pregnancy and the maternal and infant outcomes of diabetes in pregnancy in Indigenous women from multiple countries. In the same review, the authors combined the prevalence of diabetes in pregnancy into one estimate, with a subcategory for gestational diabetes, and comparison groups consisted of either non-Indigenous women or national estimates for non-Indigenous women. To our knowledge, no meta-analysis comparing the prevalence of diabetes in pregnancy in Indigenous women with that in non-Indigenous women has been done. The second study examined the prevalence of gestational diabetes among Indigenous women in Australia. Although a meta-analysis was done, the prevalence of pre-existing diabetes was not analysed, and an analysis of the prevalence of diabetes during pregnancy in Indigenous women from countries other than Australia was not done. The third study examined the evidence for early screening for diabetes in Indigenous pregnant women in Australia, Canada, New Zealand, and the USA. This study summarised a large amount of data but it did not systematically compare the prevalence of pre-existing diabetes and gestational diabetes between Indigenous and non-Indigenous women. Our systematic review and meta-analysis focused on the comparing the prevalence of pre-existing diabetes and gestational diabetes in Indigenous women with that in non-Indigenous women in Australia, Canada, New Zealand, and the USA. These four countries are all industrialised and share a similar history of colonialism.

Added value of this study

We collated data on the prevalence of pre-existing diabetes and gestational diabetes and did a meta-analysis to compare the prevalence of these conditions in Indigenous women and non-Indigenous women from four countries with similar histories of colonialism. The pooled prevalence odds ratio (POR) of pre-existing diabetes mellitus indicated that the prevalence of this condition was higher in Indigenous women than in non-Indigenous women in Australia, Canada, and in the USA. Heterogeneity between studies done in Australia and Canada was high, but when examining the magnitude and direction of the PORs from individual studies, there was an association between indigeneity and pre-existing diabetes during pregnancy. We were not able to derive a POR of pre-existing diabetes in Maori women in New Zealand because none of the studies included this information. The pooled POR of gestational diabetes suggested that the prevalence of this condition was higher in Indigenous women than in non-Indigenous women, indicating an association between indigeneity and gestational diabetes. In the meta-analysis of the prevalence of gestational diabetes across all included studies, high heterogeneity was observed between studies in Australia, Canada, and USA. However, the magnitude and direction of the PORs from individual studies indicated that there was an association between indigeneity and gestational diabetes during pregnancy. We estimated the PORs of pre-existing and gestational diabetes in studies grouped by screening criteria, diagnostic criteria, risk of bias assessment, and by the race or ethnicity of the comparison group; however, none of these subgroup analyses were able to meaningfully reduce the degree of heterogeneity between studies. The results of our study indicate that the prevalence of pre-existing diabetes and gestational diabetes is higher in Indigenous women than in non-Indigenous women in four different countries with similar histories of colonialism.

Implications of all the available evidence

Future research should focus on targeting important risk factors to prevent pre-existing diabetes and gestational diabetes in Indigenous women, and this research should be done in partnership with Indigenous peoples and communities. Given the higher prevalence of diabetes in Indigenous women than in non-Indigenous women during pregnancy in Australia, Canada, New Zealand and the USA, policy makers in these countries should consider implementing policies that aim to reduce this disparity between Indigenous and non-Indigenous pregnant women in terms of the prevalence and outcomes of maternal diabetes. Health practitioners need to be aware of the increased likelihood of having pre-existing diabetes and gestational diabetes in Indigenous pregnant women, so that they can better support these women before pregnancy, prenatally and postnatally.

who are at a high risk for developing diabetes during pregnancy are Indigenous women. A previous systematic review of the prevalence and effect of diabetes in pregnancy among Indigenous women from multiple countries found that the prevalence of diabetes during pregnancy was not the same for all Indigenous peoples. 65% of studies included in the review estimated that the prevalence of diabetes was higher in Indigenous women than in non-Indigenous women. However, this review did not consider pre-existing diabetes and gestational diabetes separately, nor did it focus on Indigenous women from countries with a similar history of colonialism.

Colonialism has been identified as a crucial determinant of the health of the Indigenous peoples. The effects of colonialism include systematic discrimination, poverty, racism, and a rapid transition to a so-called western lifestyle. Indigenous women in Australia, Canada, New Zealand, and the USA have similar experiences of colonialism, and health outcomes have been compared in
The purpose of this systematic review is to compare the prevalence of pre-existing diabetes and gestational diabetes between Indigenous women and non-Indigenous women in countries with similar colonial histories: Australia (Aboriginal and Torres Strait Islander), Canada (First Nations, Inuit, and Métis), New Zealand (Maori), and the USA (Native American and Alaska Natives). To our knowledge, this systematic review is the first to systematically identify and collate studies that have compared the prevalence of pre-existing diabetes and gestational diabetes in Indigenous women with that in non-Indigenous women in these four countries.

Methods

Search strategy and selection criteria

We did this systematic review and meta-analysis in accordance with PRISMA guidelines.16

An information specialist (SC) did a comprehensive literature search in June 25, 2019, for relevant articles published from inception to June 25, 2019, in the following databases: Ovid MEDLINE, Ovid Embase, Ovid Global Health, CINAHL (EBSCO), Scopus, ProQuest Dissertations and Theses Global, PROSPERO, and the Wiley Cochrane Library. Controlled vocabulary terms (ie, Medical Subject Heading terms) and key words for Indigenous peoples, diabetes in pregnancy, and the included countries (Australia, Canada, New Zealand, and the USA) were used in the searches (see appendix 1 pp 1–8 for a list of the search terms used).17 BV and SC also searched the grey literature for relevant studies using the Bielefeld Academic Search Engine and Google Scholar. Lastly, BV manually searched the reference lists of relevant articles. No limits on publication type, language of publication, and year of publication were applied. The detailed search strategies are available in appendix 1 (pp 1–8).

Studies were included if they were epidemiological observational studies comparing the prevalence estimates of either pre-existing diabetes (type 1 or type 2 diabetes, or both) or gestational diabetes among Indigenous women in Australia, Canada, New Zealand, or the USA with the prevalence of the same condition in a group of non-Indigenous women in the same country. We excluded non-primary research articles, letters to the editor, case reports or case series, studies that only provided combined estimates of diabetes in pregnancy by grouping pre-existing diabetes and gestational diabetes together, studies in which participants were not Indigenous women, studies in which the comparison group did not include non-Indigenous women, and studies in which Indigenous women from countries other than Australia, Canada, New Zealand, and the USA were included.

Two independent reviewers (BV and SR or BV and OS) screened all titles and abstracts identified from the database search. The full-texts of studies identified as potentially relevant were reviewed in duplicate by two independent investigators (BV and SR or BV and OS). Disagreements about study selection were resolved by discussion, and if consensus could not be reached, a third reviewer (MBO or DE) made the final decision.

Data extraction and quality assessment

Two independent reviewers (BV and SR or BV and OS) assessed the risk of bias of all included studies, and any disagreements were resolved by discussion until a consensus was reached. Cohort studies were assessed by use of the Newcastle-Ottawa Quality Assessment Scale for cohort studies.18 This scale assesses three main sources of bias, including the selection of study cohorts, comparability of cohorts, and outcome assessment. Studies were classified as having a low risk of bias if they had a score of 3–4 for study selection, 1–2 for comparability, and 2–3 for outcome assessment; studies were classified as having an unclear risk of bias if they had a score of 2–3 for study selection, 1–2 for comparability, and 1–2 for outcome assessment; and studies were classified as having a high risk of bias if they had a score of 0–1 for study selection, a score of 0 for comparability, and a score of 0–1 for outcome assessment.19 We assessed the risk of bias of cross-sectional studies using a nine-item scale, developed by Hoy and colleagues,20 that included the domains of sample selection, non-response bias, data collection, and measurement reliability and validity. A low risk of bias was defined as a high risk classification in 0–3 categories, an unclear risk of bias was defined as a high risk classification in 4–6 categories, and a high risk of bias was defined as a high risk classification in 7–9 categories.

One independent reviewer (BV) extracted data using a standardised data collection form, and data from the published reports were verified by a second reviewer (OS) for accuracy (appendix 2 pp 1–2). From all included studies, we extracted information about study design, setting, Indigenous and comparison groups, data sources for exposure and the definition of outcomes, study sample size, screening guidelines and the diagnostic criteria for pre-existing diabetes and gestational diabetes, and data on the number of Indigenous and non-Indigenous women with pre-existing diabetes and gestational diabetes, and on the total number of Indigenous and non-Indigenous women, to estimate the prevalence of pre-existing diabetes and gestational diabetes.

Data analysis

We used a Mantel-Haenszel random-effects meta-analysis to combine data from individual studies comparing the prevalence of pre-existing diabetes and gestational diabetes between groups of Indigenous and non-Indigenous women and to calculate crude prevalence odds ratios (PORs).21 Because of the unique identities and singularities of Indigenous peoples around the world, only studies done in the same country were pooled so that a pan-Indigenous analysis approach was avoided during data synthesis. The summary measures
were the pooled unadjusted PORs with 95% CIs. Statistical heterogeneity across the studies was assessed by use of the I^2 statistic, with an I^2 of less than 25% indicating low heterogeneity, an I^2 of 26–74% indicating moderate heterogeneity, and an I^2 of greater than 75% indicating high heterogeneity. The summary measures and results for statistical heterogeneity are reported separately for each group of Indigenous peoples. Subgroup analyses were done by study design, screening guidelines, diagnostic criteria, and risk of bias. A narrative synthesis of results was done to describe study populations and to explore both clinical and methodological heterogeneity across the included studies. Funnel plots were used to assess publication bias. We used Review Manager (version 5.3) to do the meta-analysis, assess heterogeneity across the studies, and generate the funnel plots.

This study is registered with PROSPERO, number CRD42018095971.

Role of the funding source
The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

Electronic database searches identified 1294 titles and abstracts. The grey literature search and the review of relevant reference lists identified a further 54 titles and abstracts. After removal of duplicates, 809 articles were screened by title and abstract, resulting in 175 potential articles to be included. After reviewing the full texts of these articles, 43 unique studies were included in the systematic review and 39 studies were included in the meta-analysis (figure 1).

Of all 43 unique studies identified, 19 studies were done in Australia, eight studies in Canada, one study in New Zealand, and 15 studies in the USA (table 1). Among the included studies, 39 were retrospective cohort studies, and three were cross-sectional studies. All 43 of the included studies reported the prevalence of gestational diabetes, and 14 studies reported the prevalence of pre-existing diabetes, which included both type 1 and type 2 diabetes. Table 1 summarises the characteristics of individual studies.

Studies involving populations of Indigenous women in Australia identified women as either Indigenous Australian or as Aboriginal and Torres Strait Islanders. Studies in Canada identified Indigenous women as First Nation women or as a group comprising First Nation, Métis, and Inuit women. The study in New Zealand identified women as Maori, and studies done in the USA identified Indigenous women as either Native American or as non-Indigenous women. Most studies involving Indigenous women in Australia included a comparison group of non-Indigenous women, but some studies also included non-Indigenous women separated into subgroups of Australasian, European, Caucasian, African women, Asian (usually grouped by region), Pacific Islanders, and women from the Americas. Studies involving Indigenous women in Canada included comparison groups of non-Indigenous women identified as either non-First Nation women or as a group of Caucasian, south east Asian and Chinese women. The study in New Zealand included a comparison group of non-Indigenous Pacific Islander and European women. Finally, studies involving Indigenous women in the USA included comparison groups of non-Indigenous women.
identified as non-Native Americans,29-51 Canadian,29,31-34 56-64 African American,29,51-54,56-58,60-64 Hispanic,29,52-54,56-58,60,62-64 or as Asian or Pacific Islander.29,52-54,56-58,60,62,63

Indigenous ancestry (exposure) was determined by self-reporting in studies done in Australia, New Zealand, and in the USA. In studies involving Indigenous women in Canada, Indigenous ancestry was determined by self-reporting,8,44,47 place of residence,46,48,66 language spoken,66 or by the health-care insurance Indian status identifier,95,49,66 although Métis and non-status Indigenous peoples (ie, those who are not eligible to be registered with the federal government) could not be identified from health insurance records. For the assessment of outcomes, studies done in Australia used national perinatal data sources,8,51-53 state or region data,45,27,28,31,13-15,46,41,61 or clinic or hospital data.26,36-39,42 Studies done in the USA used national data sources.95,50,62,64

Australia	Region	Total number of women included in the study	Screening or diagnostic criteria	Mean age (SD) of the mother when giving birth	Number of women with pre-existing diabetes	Number of women with GDM	Adjusted odds ratio (95% CI)
Bower et al (1992)39	Western Australia	111 019 (5481 Aboriginal women and 105 538 non-Aboriginal women)	Pre-existing diabetes—NR; GDM—NR	NR	25 (0.5%) of 5481 Aboriginal women and 116 (0.1%) of 105 538 non-Aboriginal women	73 (1.3%) of 5481 Aboriginal women and 213 (0.2%) of 105 538 non-Aboriginal women	NR
Chamberlain et al (2014)40	Australia	3555 575 (1217 36 Indigenous women and 3 433 839 non-Indigenous women)	Pre-existing diabetes—NR; GDM—NR	NR	NR	6121 (5.0%) of 121736 Indigenous women and 142 689 (4.2%) of 3 433 839 non-Indigenous women	NR
Porter et al (2011)41	Western Australia	81 617 (4966 Aboriginal women and 76 651 Caucasian women)	Pre-existing diabetes—NR; GDM—NR	Aborigi			

(95% CI)
Region	Total number of women included in the study	Screening or diagnostic criteria	Mean age (SD) of the mother when giving birth	Number of women with pre-existing diabetes	Number of women with GDM	Adjusted odds ratio (95% CI)			
Abouzeid et al (2015)11	Victoria 269682 (1555 Aboriginal women and 268127 non-Aboriginal women [grouped by race or ethnicity])	Pre-existing diabetes=NR; GDM-screening was recommended at 26–28 weeks’ gestation with a 50 g GCT, and if glucose was ≥7·8 mmol/L at 1 h or if glucose was 8·0 mmol/L at 1 h with a 75 g GCT, then a 75 g OGTT was done, and GDM was diagnosed if fasting glucose was ≥5·5 mmol/L or if glucose was ≥8·0 mmol/L at 2 h					41 (2·6%) of 1555 Aboriginal women, 11078 (4·4%) of all 268127 non-Indigenous women, 6570 (2·4%) of 202374 non-Indigenous Australian women, 267 (4·3%) of 61597 Oceanian women, 371 (4·0%) of 9352 north-west European women, 371 (5·8%) of 6443 southern and eastern European women, 266 (5·1%) of 5204 north African and Middle Eastern women, 1428 (9·2%) of 15355 south-east Asian women, 733 (11·2%) of 6573 north-east Asian women, 903 (10·7%) of 8435 southern and central Asian women, 1580 (4·5%) of 3322 Americas women, and 206 (5·9%) of 3489 sub-Saharan African women	Aboriginal vs non-Aboriginal women; GDM 1·11 (0·81–1·52)	
Ishak and Petocz (2003)18	South Australia 230011 (4843 Aboriginal women and 225168 non-Aboriginal women)	Pre-existing diabetes=NR; GDM-diagnosed if a 75 g OGTT showed FBG concentrations of ≥5·5 mmol/L, or if glucose was ≥8·0 mmol/L at 2 h, or if a 75 g OGTT results of 2 h glucose was ≥11·0 mmol/L, but if glucose was 7·8–11·0 mmol/L, then the patient was considered to be glucose intolerant.					NR		
Stone et al (2002)10	Victoria 60400 (438 Aboriginal women and 59962 non-Aboriginal women)	Pre-existing diabetes=NR; GDM=NR							
Simmons et al (2005)18	Victoria 140 (28 Aboriginal women and 114 non-Aboriginal women from four rural hospitals)	Pre-existing diabetes=NR; GDM-screening recommended at 26–28 weeks’ gestation with a 50 g GCT, and if glucose was ≥7·8 mmol/L at 1 h, or glucose was 8·0 mmol/L at 1 h with a 75 g GCT, then a 75 g OGTT was done, and GDM diagnosed if fasting glucose was ≥5·5 mmol/L or if glucose was ≥8·0 mmol/L at 2 h					NR		
Yue et al (1996)19	New South Wales 3814 (89 Aboriginal women and 3718 non-Aboriginal women [grouped by race or ethnicity] from one antenatal clinic)	Pre-existing diabetes=NR; GDM-patients underwent universal screening at 24–28 weeks’ gestation with a 50 g GCT, and if the results were positive, a 75 g OGTT was done, and GDM was diagnosed if fasting glucose was ≥5·5 mmol/L or if glucose was ≥8·0 mmol/L at 2 h					NR		
DeCosta and Child (1996)19	New South Wales 9179 (180 Aboriginal and 8999 Non-Aboriginal)	Pre-existing diabetes=NR; GDM=NR							

(Table 1 continues on next page)
state-level data, or hospital data. Studies done in Canada used databases at the provincial, regional, or hospital levels."

The risk of bias assessment indicated that 75% of studies had an unclear or low risk of bias (figure 2). 16 studies had a low risk of bias,
Region	Total number of women included in the study	Screening or diagnostic criteria	Mean age (SD) of the mother when giving birth	Number of women with pre-existing diabetes	Number of women with GDM	Adjusted odds ratio (95% CI)
Canada						
Aljohani et al (2008)	324 605 (39 820 First Nation women and 284 785 non-First Nation women)	Pre-existing diabetes=NR; GDM=there were no guidelines before 1992, but after 1992, screening was recommended at 24 weeks’ gestation with a 50 g GTT, and if glucose was ≥7·8 mmol/L at 1 h, then a 100 g GTT was done and GDM was diagnosed if two or more results were abnormal (FBG concentration of ≥5·8 mmol/L, glucose concentration of ≥10·6 mmol/L at 1 h, glucose concentration of ≥9·2 mmol/L at 2 h, or glucose concentration of ≥8·1 mmol/L at 3 h); after 1998, patients were screened at 24–28 weeks’ gestation with a 50 g GTT, and if glucose was ≥10·2 mmol/L at 1 h, then GDM was diagnosed, but if glucose was ≥7·8 mmol/L and ≤10·2 mmol/L, then a 75 g OGTT was done, and GDM was diagnosed with two or more abnormal results (fasting blood glucose concentration of ≥5·8 mmol/L, glucose concentration of ≥10·6 mmol/L, glucose concentration of ≥9·2 mmol/L at 2 h, or glucose concentration of ≥8·1 mmol/L at 3 h)	NR	NR	2764 (6.9%) of 39 820 First Nation women and 6708 (2.4%) of 284 785 non-First Nation women	GDM 2.20 (2.00–2.42)
Dyck et al (2002)	1612 (252 First Nation and Métis women, and 1360 non-Indigenous women)	Pre-existing diabetes=NR; GDM=women were diagnosed if they met one of the following three criteria: (1) they had two or more abnormal values from a 100 g OGTT, (2) a 50 g oral GCT showed glucose concentrations of ≥7·8 mmol/L at 1 h and a physician had confirmed the diagnosis; or (3) they required treatment with insulin or were given a specific diet for high blood glucose concentrations during pregnancy	NR	NR	29 (11.5%) of 252 First Nation and Métis women and 48 (3.5%) of 1360 non-Indigenous women	GDM 1.98 (1.06–3.96)
Liu et al (2012)	487 368 (2465 First Nations women living on reserves and 484 903 non-First Nation women)	Pre-existing diabetes=NR; GDM=NR First Nation women: pre-existing DM 30·6 years (7·4), GDM 28·8 years (7·0); non-First Nation women: pre-existing DM 32·7 years (5·5), GDM 32·8 years (5·4)	96 (3.9%) of 2465 First Nations women living on reserves and 8728 (1.8%) of 484 903 non-First Nation women	160 (6.5%) of 2465 First Nation women and 20 366 (4.2%) of 484 903 non-First Nation women	GDM 1.73 (1.52–1.96); GDM 1.47 (1.38–1.57)	
Oster et al (2014)	427 058 (28 306 First Nation women and 398 752 non-First Nation women)	Pre-existing diabetes=diagnoses were made on the basis of the patient’s history, a review of patient’s chart, their medication record, and if an OGTT was done in the first trimester and there was a positive result, GDM=patients were screened at 24–28 weeks’ gestation with a 50 g oral GCT, and GDM was diagnosed if glucose was ≥10·3 mmol/L, but if they were ≥7·8 mmol/L and ≤10·2 mmol/L then a 75 g OGTT was done, and GDM was diagnosed if two results were abnormal (FBG concentration of ≥5·3 mmol/L, glucose concentration of ≥10·3 mmol/L, at 1 h, or a glucose concentration of ≥8·9 mmol/L at 2 h)	First Nation women with pre-existing DM, GDM 28·9 years (6·2); non-First Nation women with pre-existing DM and GDM 31·6 years (5·3)	283 (1.0%) of 28 306 First Nation women and 2393 (0.6%) of 398 752 non-First Nation women	1217 (4.3%) of 28 306 First Nation women and 15 153 (3.8%) of 398 752 non-First Nation women	Pre-existing DM 1·73 (1·52–1·96); GDM 1·47 (1·38–1·57)

(Table 1 continues on next page)
Region	Total number of women included in the study	Screening or diagnostic criteria	Mean age (SD) of the mother when giving birth	Number of women with pre-existing diabetes	Number of women with GDM	Adjusted odds ratio (95% CI)
Rodrigues et al	Quebec and Montreal: 8210 (402 Cree First Nation women living on reserve in Quebec and 7718 non-First Nation women living in Montreal)	Pre-existing diabetes—NR; GDM—patients were screened at 24–30 weeks’ gestation with a 50 g GCT, and if glucose was ≥7 mmol/L at 1 h, then a 100 g OGTT was done, and GDM was diagnosed if two results were abnormal (FBG concentration of ≥5.8 mmol/L, a glucose concentration of 10.6 mmol/L at 1 h, a glucose concentration of ≥9.2 mmol/L at 2 h, or a glucose concentration of ≥8.1 mmol/L at 3 h)	NR	NR	46 (21.4%) of 402 Cree First Nation women living on reserve in Quebec and 7718 non-First Nation women living in Montreal	NR
Shen et al	Manitoba: 410 877 (71 033 First Nation women and 339 844 non-First Nation women)	Pre-existing diabetes—NR; GDM—NR	First Nation women: GDM 26–6 years (6.1); non-First Nation women: GDM 30 years (5.6)	2561 (6.3%) of 71 033 First Nation women and 339 844 non-First Nation women	4564 (6.6%) of 71 033 First Nation women and 7342 (2.2%) of 339 844 non-First Nation women	NR
Yeung et al	Alberta: 248 525 (14 967 First Nation women and 233 558 Chinese, South Asian, and Caucasian women)	Pre-existing diabetes—NR; GDM—NR	NR	NR	748 (5.0%) of 14 967 First Nation women, 11 169 (5.2%) of 233 558 non-First Nation women, 8309 (4.1%) of 202 661 Caucasian women, 916 (11.8%) of 7759 Chinese women, and 1944 (8.4%) of 23 138 south east Asian women	NR
Chen et al	Quebec: 234 850 (17 090 First Nation women and 217 760 non-Indigenous women)	Pre-existing diabetes—NR; GDM—patients underwent universal screening at 24–28 weeks’ gestation with a 50 g GCT, and if blood glucose was ≥7.8 mmol/L, then a 75 g OGTT was done and GDM was diagnosed if two results were abnormal (FBG concentration of ≥5.3 mmol/L, a glucose concentration of ≥10.0 mmol/L at 1 h, or a glucose concentration of ≥8.6 mmol/L at 2 h)	NR	667 (3.9%) of 17 090 First Nation women and 217 760 non-First Nation women	1829 (10.7%) of 17 090 First Nation women and 10 453 (4.8%) of 217 760 non-First Nation women	NR
New Zealand	South Auckland: 2523 (613 Maori women and 1910 European, Pacific Islander, and other women)	Pre-existing diabetes—NR; GDM—patients were screened at 24–28 weeks’ gestation with a 50 g GCT, and if glucose was ≥7.8 mmol/L at 1 h, then a 75 g OGTT was done and GDM was diagnosed if fasting glucose was ≥5.5 mmol/L or if glucose was ≥9.0 mmol/L at 2 h	NR	NR	35 (5.7%) of 613 Maori women, NR (4.8%) of 1910 non-Indigenous women, 15 (2.5%) of 597 European women, and 68 (6.6%) of 1036 Pacific Islander women	NR

(Continued from previous page)

15 studies and 12 studies had an unclear risk of bias, and 2 studies had a high risk of bias. Cohort studies received the lowest risk of bias scores in the following categories: representativeness of the exposed cohorts, selection of the non-exposed cohorts, assessment of the outcome, length of follow-up, and adequacy of follow-up. Cohort studies received high risk of bias scores in the following categories: ascertainment of exposure, demonstration that the outcome of interest was not present before the study, and comparability of cohorts. All cross-sectional studies had an unclear risk of bias. Cross-sectional studies received high risk of bias scores in the following categories: whether the study instrument showed validity or reliability, whether the same mode of data collection was used for all study participants, and whether the study population was a close representation of the national population. The pooled POR of pre-existing diabetes in Indigenous women compared with non-Indigenous women in Australia was 3.63 (95% CI 2.35–5.62), and heterogeneity across studies was high (I²=98%, p=0.00001; figure 3). The PORs of pre-existing diabetes in individual studies done in Australia ranged from 1.40 (1.28–1.52) to 8.24 (5.35–12.69). In Canada, the pooled POR
Region	Total number of women included in the study	Screening or diagnostic criteria	Mean age (SD) of the mother when giving birth	Number of women with pre-existing diabetes	Number of women with GDM	Adjusted odds ratio (95% CI)	
USA	5 193 586 (445 70 American Indian and Alaska Native women, and 5 148 816 non-Indigenous women)	Pre-existing diabetes=NR; GDM=NR	NR	499 (1%) of 445 70 American Indian and Alaska Native women, 2 191 (0%) of all 5 148 816 non-Indigenous women, 19 349 (0%) of 1 182 815 white women, 6 060 (0%) of 7 423 872 African American women, and 6 782 (0%) of 1 223 594 Hispanic women	1932 (4%) of 44 570 American Indian and Alaska Native women, 195 504 (3%) of all 5 148 816 non-Indigenous women, 127 485 (4%) of 1 182 815 white women, 25 149 (3%) of 7 423 872 African American women, and 42 870 (3%) of 1 223 594 Hispanic women	NR	
Ralls et al (2007)	22 680 (2567 Native American women and 22 613 non-Native American women)	Pre-existing diabetes=NR; GDM=NR	NR	NR	149 (5%) of 26 577 Native American women and 5 204 (2%) of 22 613 non-Native American women	GDM 2.10 (NR)	
Cabacungan et al (2012)	197 253 (2 216 Native American women and 1 950 37 non-Native American women)	Pre-existing diabetes=NR; GDM=NR	NR	NR	151 (6%) of 2 216 Native American women, 8 576 (4%) of all 1 950 37 non-Native American women, 5 810 (3%) of 1 489 967 white women, 6 86 (3%) of 11 926 Hispanic American women, 10 91 (6%) of 1 103 507 African women, and 359 (6%) of 5 884 Asian or Pacific Islander women	Native American women vs white women: pre-existing DM 1.01 (1.00–1.03); GDM 1.02 (1.02–1.03)	
Dennis (2019)	2 730 146 (23 926 American Indian and Alaska Native women, and 2 706 220 non-Indigenous women [excluding those who were not born in the USA])	Pre-existing diabetes=NR; GDM=NR	NR	NR	1563 (6%) of 23 926 American Indian and Alaska Native women, 209 57 (4%) of all 2 706 220 non-Indigenous women, 79 393 (4%) of 1 847 838 white women, 1 798 (3%) of 394 545 African American women, and 17 384 (3%) of 463 837 Hispanic women	NR	
Fridman et al (2014)	1 551 017 (6 87 Native American women and 1 544 230 non-Indigenous women [grouped by race or ethnicity])	Pre-existing diabetes=NR; GDM=NR	NR	NR	82 (1%) of 6 87 Native American women, 11 807 (0%) of all 1 544 230 non-Indigenous women, 3 057 (0%) of 5 181 113 white women, 855 (1%) of 85 10 African American women, 6 318 (0%) of 7 180 03 Hispanic women, and 1125 (0%) of 52 099 Asian or Pacific Islander women	357 (5%) of 6 87 Native American women, 7 516 (4%) of all 1 544 230 non-Indigenous women, 19 543 (3%) of 5 181 113 white women, 172 (3%) of 85 10 African American women, 7 982 (5%) of 7 180 03 Hispanic women, and 11 681 (7%) of 52 099 Asian or Pacific Islander women	Native American women vs Caucasian women: pre-existing DM 1.01 (1.00–1.03); GDM 1.02 (1.02–1.03)

(Table 1 continues on next page)
Region	Total number of women included in the study	Screening or diagnostic criteria	Mean age (SD) of the mother when giving birth	Number of women with pre-existing diabetes	Number of women with GDM	Adjusted odds ratio (95% CI)
Hunsberger et al (2010)	Oklahoma 3767 (493 American Indian and Alaska Native women, and 3274 non-Native American and Alaska Native women)	Pre-existing diabetes=NR; GDM=NR	NR	NR	39 (7.9%) of 493 American Indian and Alaska Native women, 318 (9.7%) of all 3724 non-Native American and Alaska Native women, 94 (6.9%) of 1354 white women, 93 (11.3%) of 824 Hispanic women, 92 (14.8%) of 667 Asian or Pacific Islander women, and 38 (8.1%) of 471 black women	American Indian and Alaska Native women vs white women: GDM 1.17 (0.71-1.95)
Kim et al (2012)	Florida 641697 (1211 American Indian women and 640486 non-Indigenous women)	Pre-existing diabetes=NR; GDM=NR	NR	NR	79 (6.5%) of 1211 American Indian women, 30376 (4.6%) of all 640486 non-Indigenous women, 3546 (4.7%) of 351126 of white women, 5522 (4%) of 118844 black women, 1608 (9%) of 1628 Asian or Pacific Islander women, and 7502 (4.9%) of 148375 Hispanic women	NR
Kim et al (2013)	California 1228265 (4134 American Indian women and 1224131 non-Indigenous women)	Pre-existing diabetes=NR; GDM=NR	NR	NR	316 (7.6%) of 4134 of American Indian women, 96045 (7.8%) of all 1224131 non-Indigenous women, 18806 (5.4%) of 350679 white women, 3371 (5.6%) of 66685 black women, 20129 (11.3%) of 168933 Asian or Pacific Islander women, and 52265 (8.4%) of 621187 Hispanic women	NR
Pearson et al (2016)	California 544742 (35792 American Indian and Alaska Native women, and 508951 white women)	Pre-existing diabetes=NR; GDM=NR	NR	NR	2004 (5.6%) of 35792 American Indian and Alaska Native women and 22597 (4.4%) of 508951 white women	GDM 1.34 (1.28-1.41)
Singh et al (2018)	USA 7480879 (14497 American Indian and Alaska Native women, and 7466382 non-American Indian or Alaska Native women)	Pre-existing diabetes=NR; GDM=NR	NR	NR	1420 (9.8%) of 14497 of American Indian and Alaska Native women, 470049 (6.3%) of all 7466382 non-American Indian and Alaska Native women, 246326 (5.7%) of 4121389 white women, 66529 (5.6%) of 1188014 African American women, 37502 (11.3%) of 121594 Asian Indian women, 7516 (11.9%) of 61160 Filipino women, 4896 (11.6%) of 41211 Vietnamese women, 436 (10.1%) of 4316 Samoan women, 31062 (9.5%) of 116439 Chinese women, 879 (6.2%) of 14177 Japanese women, 2401 (7.9%) of 30390 Korean women, 143 (8.3%) of 1725 Hawaiian women, 83003 (7.6%) of 1092146 Mexican women, 9438 (6.7%) of 140866 Puerto Rican women, 2146 (5.2%) of 41270 Cuban women, and 17849 (6.4%) of 278905 Central or South American women	NR
estimate of pre-existing diabetes in First Nation women compared with non-First Nation women was 2.66 (1.92–3.67); however, heterogeneity between studies was also high ($I^2=98\%$, $p<0.00001$; figure 4). The PORs of pre-existing diabetes in individual studies done in Canada ranged from 1.71 (1.51–1.93) to 3.65 (3.35–3.99). In the USA, the pooled POR of pre-existing diabetes in Native American or Alaska Native women compared with non-Indigenous women was 1.81 (1.53–2.13), with moderate heterogeneity between studies ($I^2=48\%$, $p=0.05$; figure 5). The PORs of pre-existing diabetes in individual studies done in the USA ranged from 1.59 (1.28–1.97) to 2.58 (1.66–4.00). We did not identify studies that estimated the prevalence of pre-existing diabetes among Maori women in New Zealand.

14 studies on pre-existing diabetes reported crude PORs indicating that the odds of having pre-existing diabetes was higher in Indigenous women than in non-Indigenous women (table 2), with POR

Region	Total number of women included in the study	Screening or diagnostic criteria	Mean age (SD) of the mother when giving birth	Number of women with pre-existing diabetes	Number of women with GDM	Adjusted odds ratio (95% CI)
Hegwood (2015)	21 143 (2451 Native American women and 18 692 white and black women)	Pre-existing diabetes=NR; GDM=postpartum women self-report by use of the Pregnancy Risk Assessment Monitoring System survey	NR	NR	215 (8.8%) of 2449 Native American women, 1304 (7.0%) of all 18 692 white and black women, 1304 (7.2%) of 15 922 white women, and 165 (5.9%) of 27 65 African American women	NR
Williams et al (1999)	41 839 (7456 Native American women and 34 383 non-Indigenous women)	Pre-existing diabetes=NR; GDM=NR	NR	NR	201 (2.7%) of 7456 of Native American women, 962 (2.8%) of all 34 383 non-Indigenous women, 602 (2.8%) of 21 528 white women, 165 (2.6%) of 6359 African American women, and 395 (3.0%) of 6495 Hispanic women	NR
Caughey et al (2010)	129 853 (800 Native American women and 139 053 non-Indigenous women)	Pre-existing diabetes=NR; GD=NR	NR	NR	45 (5.6%) of 800 Native American women, 6133 (6.8%) of all 139 053 non-Indigenous women, 2136 (3.4%) of 62 823 white women, 450 (3.2%) of 14 069 African American women, 1754 (4.9%) of 35 786 Latino women, and 1793 (6.8%) of 26 310 Asian women	NR
Chu et al (2009)	3 108 877 (14 617 American Indian and Alaska Native women, and 3 094 260 non-American Indian or Alaska Native women)	Pre-existing diabetes=NR; GD=NR	NR	NR	750 (5.1%) of 14 617 American Indian and Alaska Native women, 1 194 723 (3.9%) of all 3 094 260 non-American Indian or Alaska Native women, 13 951 (3.8%) of 18 739 25 white women, 13 951 (3.5%) of 394 081 African American women, 24 589 (3.6%) of 677 392 Hispanic women, and 9 349 (6.3%) of 148 862 Asian or Pacific Islander women	NR
Moum et al (2004)	22 746 (2664 American Indian women and 20 082 white women)	Pre-existing diabetes=NR; GD=NR	NR	NR	27 (1.0%) of 2664 American Indian women and 80 (0.4%) of 20 082 white women	NR

All studies apart from those by Moses and colleagues (prospective cohort), Dyck and colleagues (cross-sectional), Hunsberger and colleagues (cross-sectional), and Hegwood and colleagues (cross-sectional) were retrospective cohort studies. The GCT was a non-fasted test and the OGTT was a fasted test. GD=gestational diabetes. GCT=glucose challenge test. NR=not reported. OGTT=oral glucose challenge test. FBG=fasting blood glucose. *Includes mothers and babies reports from 1995–2010 and 2012–2017.

Table 1: Summary of included studies
values ranging from 1.40 (95% CI 1.28–1.52) to 8.24 (5.35–12.69). The pooled POR estimates from the meta-analysis of studies done in Australia and Canada should be interpreted with caution because of the high heterogeneity between studies. However, the direction and magnitude of individual study PORs indicated that there was an association between indigeneity and pre-existing diabetes. No obvious publication bias was evident from the funnel plots (appendix 3 pp 6–7).

The pooled POR of gestational diabetes in Indigenous women compared with non-Indigenous women in Australia was 1.42 (95% CI 1.24–1.63), with high heterogeneity observed between studies (I^2=97%, p<0.0001; figure 3). The PORs of gestational diabetes in individual studies done in Australia ranged from 0.44 (0.14–1.39) to 6.67 (5.11–8.72). The pooled POR of

Figure 2: Risk of bias of included studies

Articles	Value
High	100
Low	80
Unclear	20

Figure 3: Mantel-Haenszel random-effects meta-analysis results showing the pooled prevalence of (A) pre-existing diabetes and (B) gestational diabetes in observational studies comparing Aboriginal or Torres Strait Islander women to non-Indigenous women in Australia.

Events are defined as the number of participants in the study with pre-existing diabetes or gestational diabetes, and n is the total number of participants in the study.

AIHW=Australian Institute of Health and Welfare. df=degrees of freedom.
gestational diabetes in First Nation women compared with non-First Nation women in studies done in Canada was 2.04 (1.46–2.84), with high heterogeneity observed between studies (I² = 100%, p < 0.0001; figure 4). The PORs of gestational diabetes in individual studies done in Canada ranged from 1.05 (0.97–1.13) to 5.47 (3.89–7.70). In the USA, the pooled POR of gestational diabetes in Native American or Alaska Native women compared with non-Indigenous women was 1.49 (1.32–1.67), with high heterogeneity observed between studies (I² = 100%, p < 0.0001; figure 5). The PORs of gestational diabetes in individual studies done in the USA ranged from 0.82–1.12 to 2.98 (2.61–3.41).

Of all 39 studies, 25 (64%) on gestational diabetes included in the meta-analysis, 25 (64%) studies reported crude PORs indicating that the odds of having gestational diabetes in pregnancy were higher among Indigenous women than non-Indigenous women (table 2), with PORs ranging from 1.10 (95% CI 1.04–1.16) to 6.67 (5.11–8.72). 12 (31%) of these studies indicated that the odds of having gestational diabetes in pregnancy were not different between Indigenous and non-Indigenous women, with PORs ranging from 0.44 (0.14–1.39) to 2.54 (0.53–12.24). Two (5%) studies showed that the odds of having gestational diabetes in pregnancy were lower among Indigenous women, with PORs of 0.59 (0.48–0.72) and 0.91 (0.88–0.94). The pooled PORs of studies done in Australia, Canada, and the USA should be interpreted with caution because of the high heterogeneity between studies. However, the magnitude and direction of the PORs from individual studies suggest that there is an association between indigeneity and gestational diabetes that is not as consistent as the association between pre-existing diabetes and indigeneity. Heterogeneity between studies was explored by subgroup analyses. Studies done in different time periods were assessed separately because of changing screening and diagnostic criteria (appendix 3 pp 1–3). In addition, studies that used different sources of data were grouped and analysed separately (appendix 3 pp 3–5). Low, unclear, and high risk of bias categories were also pooled separately. In addition, we analysed pre-existing diabetes and gestational diabetes in Indigenous women compared with white women (low risk) in the USA and Australia, for studies in which these data were reported (appendix 3 p 5). Although heterogeneity between studies was not meaningfully reduced, the magnitude of the pooled POR for both pre-existing diabetes and gestational diabetes in the USA and Australia was found to increase. Subgroup analysis of cohort studies in Australia that used hospital data showed low heterogeneity between studies (I² = 22%, p = 0.27; appendix 3 p 4).

Figure 4: Mantel-Haenszel random-effects meta-analysis results showing the pooled prevalence of (A) pre-existing diabetes and (B) gestational diabetes in observational studies comparing First Nation women to non-Indigenous women in Canada

Events are defined as the number of participants in the study with pre-existing diabetes or gestational diabetes, and n is the total number of participants in the study.

Studies	Indigenous	Non-Indigenous	Weight	Odds ratio Random 95% CI			
Liu et al (2012)	96	2465	872	484	903	23 6%	2.21 (1.80–2.71)
Oster et al (2014)	289	28 306	2393	398	752	25 1%	1.71 (1.53–1.93)
Shen et al (2015)	2561	71 013	3580	339	844	25 8%	3.51 (3.34–3.70)
Chen et al (2019)	667	17 090	2395	217	760	25 5%	3.65 (3.35–3.99)
Total (95% CI)	118 894	1 441 259	100 0%	2.66 (1.92–3.67)			

Studies	Indigenous	Non-Indigenous	Weight	Odds ratio Random 95% CI				
Rodrigues et al (1999)	46	402	178	721	8	12 7%	5.47 (3.89–7.70)	
Alijohani et al (2008)	2764	398 202	9472	284	785	14 6%	2.17 (2.08–2.26)	
Liu et al (2012)	160	2465	20	366	484	903	14 2%	1.58 (1.35–1.86)
Oster et al (2014)	1217	28 306	15153	398	752	14 6%	1.14 (1.07–1.21)	
Shen et al (2015)	4564	71 013	7542	339	844	14 7%	3.11 (2.99–3.33)	
Yeung et al (2015)	748	14 967	11169	232	538	14 6%	1.95 (1.97–1.13)	
Chen et al (2019)	1829	17 090	10453	217	760	14 6%	2.38 (2.26–2.50)	
Total (95% CI)	174 083	1 967 320	100 0%	2.04 (1.46–2.84)				

Heterogeneity: I² = 22%, p < 0.0001; figure 4. The pooled PORs of gestational diabetes in individual studies done in Canada ranged from 1.05 (0.97–1.13) to 5.47 (3.89–7.70). In the USA, the pooled POR of gestational diabetes in Native American or Alaska Native women compared with non-Indigenous women was 1.49 (1.32–1.67), with high heterogeneity observed between studies (I² = 100%, p < 0.0001; figure 5). The PORs of gestational diabetes in individual studies done in the USA ranged from 0.82–1.12 to 2.98 (2.61–3.41). Of all 39 studies on gestational diabetes included in the meta-analysis, 25 (64%) studies reported crude PORs indicating that the odds of having gestational diabetes in pregnancy were higher among Indigenous women than non-Indigenous women (table 2), with PORs ranging from 1.10 (95% CI 1.04–1.16) to 6.67 (5.11–8.72). 12 (31%) of these studies indicated that the odds of having gestational diabetes in pregnancy were not different between Indigenous and non-Indigenous women, with PORs ranging from 0.44 (0.14–1.39) to 2.54 (0.53–12.24). Two (5%) studies showed that the odds of having gestational diabetes in pregnancy were lower among Indigenous women, with PORs of 0.59 (0.48–0.72) and 0.91 (0.88–0.94). The pooled PORs of studies done in Australia, Canada, and the USA should be interpreted with caution because of the high heterogeneity between studies. However, the magnitude and direction of the PORs from individual studies suggest that there is an association between indigeneity and gestational diabetes that is not as consistent as the association between pre-existing diabetes and indigeneity. Heterogeneity between studies was explored by subgroup analyses. Studies done in different time periods were assessed separately because of changing screening and diagnostic criteria (appendix 3 pp 1–3). In addition, studies that used different sources of data were grouped and analysed separately (appendix 3 pp 3–5). Low, unclear, and high risk of bias categories were also pooled separately. In addition, we analysed pre-existing diabetes and gestational diabetes in Indigenous women compared with white women (low risk) in the USA and Australia, for studies in which these data were reported (appendix 3 p 5). Although heterogeneity between studies was not meaningfully reduced, the magnitude of the pooled POR for both pre-existing diabetes and gestational diabetes in the USA and Australia was found to increase. Subgroup analysis of cohort studies in Australia that used hospital data showed low heterogeneity between studies (I² = 22%, p = 0.27; appendix 3 p 4).
Discussion

This systematic review and meta-analysis provided a comprehensive assessment of the prevalence of diabetes in pregnancy among Indigenous women in Australia, Canada, New Zealand, and the USA. We found a large variation in the prevalence estimates of pre-existing diabetes and gestational diabetes among Indigenous women in these four countries. Predominantly, the odds of having pre-existing diabetes or gestational diabetes are greater in Indigenous pregnant women than in non-Indigenous pregnant women.

The crude POR estimates of pre-existing diabetes and gestational diabetes in individual studies showed that both types of diabetes appear to be strongly associated with Indigenous ancestry in pregnant women, but the magnitude of this association varies across studies and by type of diabetes. The association between indigeneity and the prevalence of pre-existing diabetes was consistently stronger than the association between indigeneity and the prevalence of gestational diabetes. Pre-existing diabetes primarily consists of type 1 and type 2 diabetes, diagnosed before pregnancy, and overt diabetes, identified at the beginning of pregnancy. The higher prevalence of pre-existing diabetes among Indigenous women compared with non-Indigenous women is likely to be because there are a higher number of Indigenous women with type 2 diabetes than non-Indigenous women. Although this analysis was not done in our study, it is likely to be the case because the prevalence of type 2 diabetes has been reported to be higher among Indigenous peoples than in non-Indigenous peoples. The results of our
systematic review and meta-analysis are similar to those of other reviews done in this field. One previous systematic review that assessed the prevalence of gestational diabetes among Indigenous women in Australia found substantial heterogeneity in the prevalence estimates across the included studies.

Compared with previous studies, our review adds a systematic comparison between the prevalence of pre-existing diabetes and gestational diabetes in Indigenous women and non-Indigenous women from four countries (Australia, Canada, New Zealand and the USA) with similar histories of colonialism. The Indigenous people’s experience of colonialism is an important factor contributing to loss of identity, language, culture, the rapid transition to industrialisation, as well as ongoing oppression and discrimination. Increased exposure to unfavourable social determinants of health (ie, income, education, and employment) among Indigenous peoples is also a consequence of colonialism. Social inequalities and colonialism have been recognised as important contributors for the development of diabetes in Indigenous peoples. These factors also create barriers to the effective management of diabetes in Indigenous peoples (eg, increasing physical activity, consuming balanced meals, monitoring blood sugar concentrations, and injecting insulin). Alternatively, the high prevalence of diabetes among Indigenous peoples has been proposed to be because of genetic susceptibility, but research has yet to find a strong causative gene.

Clinical care and public health interventions designed for Indigenous women to prevent diabetes in pregnancy and to reduce the negative effects of this condition should be led by Indigenous women at the community level. Incorporating the culture, traditional practices, and the world views of Indigenous peoples in the design of prevention strategies at the community level will ensure local needs are met. Care for Indigenous women also needs to be equitable to ensure that social inequalities are not preventing them from achieving the same health status as non-Indigenous women. Two previous reviews suggest that the results are promising when Indigenous self-determination is incorporated into primary care and maternal child health programmes. The prevalence of pre-existing diabetes is greater in Indigenous women than in non-Indigenous women, therefore, early screening of Indigenous women during pregnancy should be prioritised to identify previously undiagnosed type 1 or type 2 diabetes. Clinicians should be aware that Indigenous women are more likely to have pre-existing diabetes and gestational diabetes in pregnancy, and they should adjust their practice accordingly when treating Indigenous women.

Future research should focus on both prevention of diabetes in pregnancy and adapting clinical care so that it is more meaningful and effective for Indigenous women. Research on innovative solutions to improve social inequalities should be done in partnership with Indigenous communities. Evaluations of adapted care for Indigenous women should focus on improving outcomes and decreasing the effect of pre-existing diabetes and gestational diabetes on their health and the health of their child. Continued surveillance of the prevalence of gestational diabetes and pre-existing diabetes among Indigenous women, by either healthcare systems, governments, or Indigenous communities, is necessary; but future studies should clearly report the screening and diagnostic criteria that are used to diagnose both types of diabetes so that the interpretation of study results can be improved.

The strengths of our systematic review and meta-analysis include the use of a rigorous methodological approach that followed a pre-defined protocol, which was registered before the beginning of the study. We used validated search terms to do a comprehensive database search, and we searched the grey literature and relevant reference lists to reduce selection bias by decreasing the chance of missing potentially relevant studies. The risk of bias assessment and data extraction were done in duplicate to minimise assessor bias.

However, there are several limitations of our study. Included studies were from a wide range of time periods, over which the screening guidelines and diagnostic criteria for pre-existing diabetes and gestational diabetes had changed. The screening and diagnostic criteria for pre-existing diabetes and gestational diabetes, and the characteristics of comparison groups, were not always reported in the included studies, which prevented meaningful subgroup analyses. Other reasons for the high heterogeneity between studies could be because of underlying differences in study participants. One could argue that the high heterogeneity across the included studies might make the pooled POR estimates less useful; however, high heterogeneity could also indicate that there is a wide variation in the prevalence of pre-existing diabetes and gestational diabetes across a range of different Indigenous groups. Finally, no formal evaluation of the effect of colonialism and the social determinants of health among Indigenous and non-Indigenous women in this study was done, therefore, a causal association cannot be inferred.

To the best of our knowledge, there are no cohort studies done in New Zealand that have compared the prevalence of pre-existing diabetes in Indigenous women with that in non-Indigenous women. In Canada, available data from cross-sectional studies have shown that 4-0% of all cases of diabetes among Inuit people are gestational diabetes, and among Métis people, 2-2% of all cases of diabetes are gestational diabetes. The generalisability of our results to other Indigenous peoples should be interpreted with caution, until such a time when those studies have been produced, so that pan-Indigenous interpretations are avoided.

In conclusion, Indigenous women in Australia, Canada, New Zealand, and the USA have an increased susceptibility to having pre-existing diabetes and
gestational diabetes during pregnancy. Diabetes during pregnancy results in poor birth and delivery outcomes, with serious long-term effects on the health of the mother and the child. System-wide and structural interventions to address the increased prevalence of pre-existing diabetes and gestational diabetes in Indigenous women in Australia, Canada, New Zealand and the USA should be considered.

Contributors
BV, DE, and MBO contributed to the design and conceptualisation of the study. BV, SR, OS, DE, and MBO contributed to the screening of studies for inclusion and data extraction. SC searched the databases. BV, MBO, DT, and SC contributed to the analysis and interpretation of the data. All authors contributed to the writing or editing and reviewing of the manuscript.

Declaration of interests
We declare no competing interests.

Acknowledgments
This study was supported by grants from the Lois Hole Hospital for Women through the Women’s and Children’s Health Research Institute (to MBO and BV) and the Canadian Institutes of Health Research (to MBO).

References
1. HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 2008; 358: 1991–02.
2. Hartling L, Dryden D, Guthrie A, Muise M, Vandermeer B, Donovan L. Diagnostic thresholds for gestational diabetes and their impact on pregnancy outcomes: a systematic review. Diabet Med 2014; 31: 319–31.
3. Wendland EM, Torloni MR, Falavigna M, et al. Gestational diabetes and pregnancy outcomes – a systematic review of the World Health Organization (WHO) and the International Association of Diabetes in Pregnancy Study Groups (IADPSG) diagnostic criteria. BMC Pregnancy Childbirth 2012; 12: 1–13.
4. Negredo CA, Mattar R, Gomes MB. Adverse pregnancy outcomes in women with diabetes. Diabetol Metab Syndr 2012; 4: 41–46.
5. Lai FY, Johnson JA, Dower D, Kaul P. Outcomes of singleton and twin pregnancies complicated by pre-existing diabetes and gestational diabetes: a population-based study in Alberta, Canada, 2005–11. J Diabetes 2016; 8: 45–55.
6. Bellamy I, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 2009; 373: 1773–79.
7. Sellers EA, Dean JH, Shafer LA, et al. Exposure to gestational diabetes mellitus: impact on the development of early-onset type 2 diabetes in Canadian First Nations and non-First Nations offspring. Diabetes Care 2016; 39: 2240–46.
8. Shen GX, Shafer LA, Martens PJ, et al. Does First Nations ancestry modify the association between gestational diabetes and subsequent diabetes: a historical prospective cohort study among women in Manitoba 2016; 33: 1245–52.
9. Xiang AH, Li BH, Black MH, et al. Racial and ethnic disparities in diabetes risk after gestational diabetes mellitus. Diabetologia 2011; 54: 3016–21.
10. Hunt JK, Schullier KL. The increasing prevalence of diabetes in pregnancy. Obstet Gynecol Clin North Am 2007; 34: 173–77.
11. Chamberlain C, Joshy G, Li H, Oats J, Eades S, Banks E. The prevalence of gestational diabetes mellitus among Aboriginal and Torres Strait Islander women in Australia: a systematic review and meta-analysis. Diabetes Metab Res Rev 2015; 31: 234–47.
12. Chamberlain C, McNamara B, Williams ED, et al. Diabetes in pregnancy among indigenous women in Australia, Canada, New Zealand and the United States: a systematic review of the evidence for screening in early pregnancy. Diabetes Metab Res Rev 2013; 29: 241–56.
13. Porter C, Skinner T, Ellis I. The current state of Indigenous and Aboriginal women with diabetes in pregnancy: a systematic review. Diabetes Res Clin Pract 2012; 98: 209–23.
14. Cunningham M. Health. In United Nations Permanent Forum on Indigenous Issues. Status of the world's indigenous peoples. New York: United Nations Department of Economic and Social Affairs, Secretariat of the Permanent Forum on Indigenous Issues, 2008: 155–87.
15. McNamara J, Sanson-Fisher R, D’Este C, Eades S. Type 2 diabetes in Indigenous populations: quality of intervention research over 20 years. Prev Med 2011; 52: 3–9.
16. Moher D, Liberati A, Tetzlaff J, Altman DG, the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6 e1000097.
17. Campbell S, Dorgan M, Tjosvold L. Creating provincial and territorial search filters to retrieve studies related to Canadian Indigenous peoples from Ovid MEDLINE. J Can Health Libr Assoc 2014; 35: 5–10.
18. Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analysis: 2009. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed Jan 9, 2020).
19. Hoy D, Brooks P, Woolf A, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol 2012; 65: 934–39.
20. Higgins JT, Green S. Cochrane Handbook for Systematic Reviews. 9.4.3. random-effects method 2011. 2011. http://handbook-5.1.cochrane.org/chapter_9/9_4_3_random_effects_method.htm (accessed Jun 6, 2020).
21. Higgins JT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539–58.
22. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions, version 5.1.0. Chichester, UK: John Wiley & Sons, 2011.
23. Higgins JT, Green S. 10.4.3.1 recommendations on testing for funnel plot asymmetry. 2011. https://handbook-5.1.cochrane.org/chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asymmetry.htm (accessed Jan 6, 2020).
24. The Cochrane Collaboration. RevMan 5. 2014. https://community.cochrane.org/help/tools-and-software/revman-5 (accessed July 10, 2019).
25. Porter C, Skinner T, Ellis I. What is the impact of diabetes for Australian Aboriginal women when pregnant? Diabetes Res Clin Pract 2011; 93: 29–32.
26. Moses RG, Griffiths RD, McPherson S. The incidence of gestational diabetes mellitus in the Illawarra area of New South Wales. Aust N Z J Obstet Gynaecol 1994; 34: 425–27.
27. Sharpe PB, Chan A, Haan EA, Hiller JE. Maternal diabetes and congenital anomalies in South Australia 1986–2000: a population-based cohort study. Birth Defects Res A Clin Mol Teratol 2005; 73: 605–11.
28. Ishak M, Petocz P. Gestational diabetes among Aboriginal Australians: prevalence, time trend, and comparisons with non-Aboriginal Australians. Ernh Di 2003; 13: 55–60.
29. Fridman M, Korst LM, Chow J, Lawton E, Mitchell C, Gregory KD. Trends in maternal morbidity before and during pregnancy in California. Am J Public Health 2014; 104: 49–57.
30. Australian Institute of Health and Welfare. Diabetes in pregnancy: its impact on Australian women and their babies. 2010. http://www.adips.org/downloads/dip2010-auh.pdf (accessed Dec 15, 2019).
31. New South Wales Government. Mothers and babies reports 2019. 2019. https://www.health.nsw.gov.au/hswwp/Pages/mothers-and-babies-reports.aspx (accessed Dec 17, 2019).
32. Chamberlain C, Banks E, Joshy G, et al. Prevalence of gestational diabetes mellitus among Indigenous women and comparison with non-Indigenous Australian women: 1990–2009. Aust N Z J Obstet Gynaecol 2014; 54: 433–40.
33. Thrift A, Callaway LX. The effect of obesity on pregnancy outcomes among Australian Indigenous and non-Indigenous women. Med J Aust 2014; 201: 952–95.
34. Abozaid M, Versace VL, Janus ED, et al. Socio-cultural disparities in GDM burden differ by maternal age at first delivery. PLoS One 2015; 10: 1–11.
35. Stone CA, Mclachlan KA, Halliday JL, Wein P, Tippett C. Gestational diabetes in Victoria in 1996: incidence, risk factors and outcomes. Med J Aust 2002; 177: 486–91.

www.thelancet.com/lancetcth Vol 8 May 2020 e697
Articles

36 Simmons D, Khan MA, Teale G. Obstetric outcomes among rural Aboriginal Victorians. *Aust NZ J Obstet Gynaecol* 2005; 66–70.

37 Yue DK, Molyneux LM, Ross GP, Constantinou MJ, Child AG, Turle JR. Why does ethnicity affect prevalence of gestational diabetes? The underwater volcano theory. *Diabetic Med* 1996; 13: 748–52.

38 DeCosta C, Child A. Pregnancy outcomes in urban Aboriginal women. *Med J Aust* 1996; 164: 523–6.

39 Powell J, Duggdale AE. Obstetric outcomes in an Aboriginal community: a comparison with the surrounding rural area. *Aust J Rural Health* 1999; 7: 13–17.

40 Zhang X, Dempsey K, Johnstone K, Guthridge S. Trends in the health of mothers and babies, Northern Territory: 1986–2005. Darwin, NT: Northern Territory Government Department of Health, 2010.

41 Markey P, Weeramanthri T, Guthridge S. Diabetes in the Northern Territory. Casuarina, NT: Epidemiology Branch Territory Health Services, 1996.

42 Teh WT, Teede HJ, Paul E, Harrison CL, Wallace EM, Allan C. Risk factors for gestational diabetes mellitus: implications for the application of screening guidelines. *Aust NZ J Obstet Gynaecol* 2011; 51: 26–30.

43 Kirkham R, Whitbread C, Connors C, et al. Implementation of a diabetes in pregnancy clinical register: findings from a process evaluation. *PloS One* 2017; 12: e0179487.

44 Dyck R, Klop H, Tan LK, Turnbull R, Doctor MA. A comparison of rates, risk factors, and outcomes of gestational diabetes between Aboriginal and non-Aboriginal women in the Saskatchewan health district. *Diabetes Care* 2002; 25: 485–93.

45 Oster KT, King M, Morris DH, Mayan MJ, Toth EL. Diabetes in pregnancy among First Nations women in Alberta, Canada: a retrospective analysis. *Diabetes Pregnancy Child* 2004; 14: 1–10.

46 Liu SL, Shah BR, Naqshbandi M, Tran V, Harris SB. Increased rates of adverse outcomes for gestational diabetes and pre-gestational diabetes in on-reserve First Nations women in Ontario, Canada. *Diabetic Med* 2012; 29: 80–83.

47 Aljohani N, Rempel BM, Ludwig S, et al. Gestational diabetes in Manitoba during a twenty-year period. *Clin Invest Med* 2008; 31: 131–37.

48 Rodrigues S, Robinson EJ, Ghezzo H, Gray-Donald K. Interaction of body weight and ethnicity on risk of gestational diabetes mellitus. *Am J Clin Nutr* 1999; 70: 1083–89.

49 Yeung RO, Savu A, Johnson JA, Donovan LE, Kaul P. Ethnic differences in gestational diabetes mellitus: a population-level analysis. *Diabetes 2015; 64: A19.

50 Yapa M, Simmons D. Screening for gestational diabetes mellitus in a multiethnic population in New Zealand. *Diabetes Res Clin Pract* 2000; 48: 217–23.

51 Hegwood S. Maternal and child health disparities among Native American women in Oklahoma: a secondary analysis of health behaviors, prior well-being, and adverse pregnancy outcomes, 2004–2011. PhD thesis, University of Arizona, 2015: 81–116.

52 Hunsberger M, Rosenberg KD, Donatelle RJ. Racial/ethnic disparities in gestational diabetes mellitus: findings from a population-based survey. *Womens Health Issues* 2010; 20: 323–28.

53 Anderson K, Spencer P, Peercy M. Obesity, diabetes, and birth outcomes among American Indians and Alaska Natives. *Matern Child Health J* 2016; 20: 2548–56.

54 Moum KR, Holzmann GS, Harwell TS, et al. Increasing rate of diabetes in pregnancy among American Indian and white mothers in Montana and North Dakota, 1989–2000. *Matern Child Health J* 2004; 8: 71–76.

55 Ralls B, Stinner WF, Bullough R, Friedrichs MF, Duncan J, Billy J. Excess risk of gestational diabetes among Native American mothers in Utah. In: Shah GH, Freeman, PA, Clarkson C, et al, eds. Utah’s health: an annual review. Salt Lake City, UT: The University of Utah, 2007: 36–44.

56 Calabucan SG, Ngui EM, McGinley EL. Racial/ethnic disparities in maternal morbidities: a statewide study of labor and delivery hospitalizations in Wisconsin. *Matern Child Health J* 2012; 16: 1455–67.

57 Kim SY, England L, Sappenfield W, et al. Racial/ethnic differences in the percentage of gestational diabetes mellitus cases attributable to overweight and obesity, Florida, 2004–2007. *Prev Chronic Dis* 2012; 9: e88.

58 Kim SY, Saraiya M, Stevens V, et al. Fraction of gestational diabetes mellitus attributable to overweight and obesity by race/ethnicity, California, 2007–2009. *Am J Public Health* 2013; 103: 63–72.

59 Pearson LI, Lai J, Caughey AB. Perinatal outcomes of American Indian and Alaska Native women in California state, 2005–2008. *Obstet Gynecol* 2016; 124: 517.

60 Singh GK, Shahpush M, Liu L, Allender M. Racial/ethnic, nativity, and sociodemographic disparities in maternal hypertensive in the united states, 2014–2015. *Int J Hypertens* 2018: 2018: 7897189.

61 Williams MA, Emanuel I, Kimp C, Leisenring WM, Hale CB. A population-based cohort study of the relation between maternal birthweight and risk of gestational diabetes mellitus in four racial/ethnic groups. *Paediatric Perinatal Epidemiology* 1999; 13: 452–65.

62 Chu SY, Abe K, Hall LR, Kim SY, Njorgo T, Qin G. Gestational diabetes mellitus: all Asians are not alike. *Prev Med* 2009; 49: 265–68.

63 Caughey AB, Cheng YW, Stotland NE, Washington EA, Escobar GJ. Maternal and paternal race/ethnicity are both associated with gestational diabetes. *Am J Obstet Gynecol* 2010; 202: e5.

64 Dennis JA. Birth weight and maternal age among American Indian/Alaska Native mothers: a test of the weathering hypothesis. *SSM Popul Health* 2019; 7: 100304.

65 Bower C, Stanley F, Connell AF, Gent CR, Massey MS. Birth defects in the infants of Aboriginal and non-Aboriginal mothers with diabetes in Western Australia. *Med J Aust* 1992; 156: 520–24.

66 Chen L, Wang WJ, Auger N, et al. Diabetes in pregnancy in associations with perinatal and post neonatal mortality in First Nations and non-Indigenous populations in Quebec, Canada: a population-based linked birth cohort study. *BMJ Open* 2019; 9: 1–8.

67 Feig DS, Berger H, Donovan L, et al. 2018 Clinical practice guidelines: diabetes and pregnancy. *Can J Diabetes* 2018; 42: S255–82.

68 International Association of Diabetes and Pregnancy Study Groups Consensus Panel. International association of diabetes and pregnancy study groups in recommendations on the diagnosis and classification of hyperglycemia in pregnancy. *Diabetes Care* 2010; 33: 676–82.

69 Harris SB, Tompkins JW, TeHivi B. Call to action: a new path for improving diabetes care for Indigenous peoples, a global review. *Diabetes Res Clin Pract* 2017; 123: 120–33.

70 King M, Smith A, Gracey M, Indigenous health part 2: the underlying causes of the health gap. *Lancet* 2009; 374: 76–85.

71 Mitchell FM. Reframing diabetes in American Indian communities: a social determinants of health perspective. *Health Soc Work* 2012; 37: 71–79.

72 Axelson P, Kukutai T, Kippen R. The field of Indigenous health and the role of colonization and history. *J Popul Res* 2016; 33: 1–7.

73 Crowshoe L, Dantenbuam D, Green M, Henderson R, Hayward MN, Toth E. Type 2 diabetes and Indigenous peoples. *Can J Diabetes* 2018; 42: S306.

74 Ragnarsdottir LH, Conroy S. Development of macrosomia resulting from gestational diabetes mellitus: physiology and social determinants of health. *Adv Neonatal Care* 2010; 10: 7–12.

75 Jongen D, McCalman J, Bainbridge R, Tsey K, Aboriginal and Torres Strait Islander maternal and child health and wellbeing: a systematic search of programs and services in Australian primary health care settings. *BMC Pregnancy Child* 2014; 14: 251.

76 Harfield SG, Davy C, McArthur A, Munn Z, Brown A, Brown N. Characteristics of Indigenous primary health care service delivery models: a systematic scoping review. *Global Health* 2018; 14: 12.

77 Statistics Canada. Table 2: characteristics of individuals diagnosed with diabetes, by Aboriginal identity group, off-reserve population aged 20 and older, Canada, 2006–2007. 2015. https://www150.statcan.gc.ca/n1/pub/82-622-x/2010004/tn/bib02-eng.htm (accessed Dec 18, 2019).

www.thelancet.com/lancetgh Vol 8 May 2020