B → η’Xs in the Standard Model

Xiao-Gang He1,2 and Guey-Lin Lin3

1 Department of Physics, National Taiwan University, Taipei, 10764, Taiwan

2 School of Physics, University of Melbourne, Parkville, Vic. 3052, Australia

3 Institute of Physics, National Chiao-Tung University, Hsinchu, 300, Taiwan

We study B → η’Xs within the framework of the Standard Model. Several mechanisms such as b → η’q from the QCD anomaly, and b → η’s and B → η’sq from four-quark operators are treated simultaneously. We find that the first mechanism give a significant contribution to the branching ratio for B → η’Xs, while the other two mechanisms account for about 15% of the experimental value. The Standard Model prediction for B → η’Xs is consistent with the CLEO data.

The recent observation of B → η’K and B → η’Xs decays with high momentum η’ has stimulated many theoretical activities. One of the mechanisms proposed to account for this decay is b → sq* → sqgη’ where the η’ meson is produced via the anomalous η’ − g − g coupling. According to a previous analysis, this mechanism within the Standard Model (SM) can only account for 1/3 of the measured branching ratio. B(B → η’Xs) = (62 ± 16 ± 13) × 10^{-5}. There are also other calculations of B → η’Xs based on four-quark operators of the effective weak-Hamiltonian. These contributions to the branching ratio, typically 10^{-4}, are too small to account for B → η’Xs, although the four-quark-operator contribution is capable of explaining the branching ratio for the exclusive B → η’K decays. These results have inspired proposals for an enhanced b → sq and other mechanisms arising from physics beyond the Standard Model. In the following we report our recent analysis using next-to-leading effective Hamiltonian and consider several mechanisms simultaneously. We conclude that the standard model is consistent with experimental data from CLEO.

The quark level effective Hamiltonian for the B → η’Xs decay is given by:

\[H_{\text{eff}}(\Delta B = 1) = \frac{G_F}{\sqrt{2}} \sum_{f=u,c} V_{fb} V_{fs}^* (C_1(\mu)O_1^f(\mu) + C_2(\mu)O_2^f(\mu)) \]

aTalk presented by Xiao-Gang He at the Workshop on CP Violation, Adelaide, Australia, 3-6 July, 1998
\[V_{tb}^* V_{tb} \sum_{i=3}^{6} (C_i(\mu)O_i(\mu) + C_8(\mu)O_8(\mu))], \]

(1)

The operators are defined in Ref.[13,14]. For numerical analyses, we use the scheme-independent Wilson coefficients obtained in Ref.[14]. For \(m_t = 175 \) GeV, \(\alpha_s(m_Z^2) = 0.118 \) and \(\mu = m_b = 5 \) GeV, we have

\[
C_1 = -0.313, \quad C_2 = 1.150, \quad C_3 = 0.017, \\
C_4 = -0.037, \quad C_5 = 0.010, \quad C_6 = -0.045,
\]

(2)

When the one-loop corrections to the matrix elements are taken into account, the coefficients are modified to \(C_i(\mu) + \tilde{C}_i(q^2, \mu) \) with

\[
\tilde{C}_4(q^2, \mu) = \tilde{C}_6(q^2, \mu) = -3\tilde{C}_3(q^2, \mu) = -3\tilde{C}_5(q^2, \mu) = -P_s(q^2, \mu), \tag{3}
\]

where

\[
P_s(q^2, \mu) = \frac{\alpha_s}{8\pi} C_2(\mu) \left(\frac{10}{9} + G(m_c^2, q^2, \mu) \right), \tag{4}
\]

with

\[
G(m_c^2, q^2, \mu) = 4 \int x(1-x) \log \left(\frac{m_c^2-x(1-x)q^2}{\mu^2} \right) dx. \tag{5}
\]

The coefficient \(C_8 \) is equal to \(-0.144\) at \(\mu = 5 \) GeV and \(m_c \) is taken to be 1.4 GeV.

Let us first work out the four-quark-operator contribution to \(B \rightarrow \eta' X_s \). We follow the approach of Ref.[5,15] which uses factorization approximation to estimate various hadronic matrix elements. The four-quark operators can induce three types of processes represented by 1) \(< \eta' | q \Gamma_i | B > < X_s | s \Gamma_i | q > \), 2) \(\eta' | q \Gamma_2 q | B > < X_s | s \Gamma_2 q | B > \), and 3) \(\eta' | X_s | s \Gamma_3 q | 0 > < 0 | q \Gamma_3 | B > \). Here \(\Gamma_i \) denotes appropriate gamma matrices. The contribution from 1) gives a “three-body” type of decay, \(B \rightarrow \eta' s \bar{q} q \). The contribution from 2) gives a “two-body” type of decay \(b \rightarrow s \bar{q} q \). And the contribution from 3) is the annihilation type which is relatively suppressed and will be neglected. Several decay constants and form factors needed in the calculations are listed below:

\[
\begin{align*}
< 0 | \bar{s} \gamma_\mu \gamma_5 u | \eta' > & = < 0 | \bar{d} \gamma_\mu \gamma_5 d | \eta' > = i f_{\eta'}^u p_{\mu}^u, \\
< 0 | \bar{s} \gamma_\mu \gamma_5 s | \eta' > & = i f_{\eta'}^s p_{\mu}^s, \quad < 0 | \bar{s} \gamma_\mu s | \eta' > = i (f_{\eta'}^u - f_{\eta'}^s) m_{\eta'}^2, \\
f_{\eta'}^u = \frac{1}{\sqrt{3}} (f_1 \cos \theta_1 + \frac{1}{\sqrt{2}} f_8 \sin \theta_8), \quad f_{\eta'}^s = \frac{1}{\sqrt{3}} (f_1 \cos \theta_1 - \sqrt{2} f_8 \sin \theta_8),
\end{align*}
\]

2
\[<\eta'|\bar{q}\gamma_\mu b|B> = F_1^{B\eta}(p_\mu^B + p_\eta'^\mu) + (F_0^{B\eta} - F_1^{B\eta}) \frac{m_B^2 - m_\eta'^2}{q^2} q_\mu, \]

\[F_{1,0}^{\eta} = \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{2}} \sin \theta F_{1,0}^{\eta s} + \cos \theta F_{1,0}^{\eta s} \right). \] (6)

For the \(\eta' - \eta \) mixing associated with decay constants above, we have used the two-angle parametrization. The numerical values of various parameters are obtained from Ref. [16] with \(f_1 = 157 \) MeV, \(f_8 = 168 \) MeV, and the mixing angles \(\theta_1 = -9.1^\circ \), \(\theta_8 = -22.1^\circ \). For the mixing angle associated with form factors, we used the one-angle parametrization with \(\theta = -15.4^\circ \) since these form factors were calculated in that formulation. In the latter discussion of \(b \to s\eta' \), we shall use the same parametrization in order to compare our results with those of earlier works. For form factors, we assume that \(F_1^{B\eta} = F_1^{B\eta s} = F_1^{B\pi} \) with dipole and monopole \(q^2 \) dependence for \(F_1^{B\eta} \) and \(F_0^{B\eta} \), respectively. We used the running mass \(m_s \approx 120 \) MeV at \(\mu = 2.5 \) GeV and \(F_1^{B\pi} = 0.33 \) following Ref. [9].

Using \(V_{ts} = 0.038 \), \(\gamma = 64^\circ \) and \(\mu = 5 \) GeV, we find that the branching ratios in the signal region \(p_\eta' > 2.2 \) GeV (\(m_X < 2.35 \) GeV) are given by

\[B(b \to \eta's) = 0.9 \times 10^{-4}, \quad B(B \to \eta's\bar{q}) = 0.1 \times 10^{-4} \] (7)

The branching ratio can reach \(2 \times 10^{-4} \) if all parameters take values in favour of \(B \to \eta'X_s \). Clearly the mechanism by four-quark operator is not sufficient to explain the observed \(B \to \eta'X_s \) branching ratio.

We now turn to \(b \to \eta'\bar{s}q \) through the QCD anomaly. To see how the effective Hamiltonian in Eq. (1) can be applied to calculate this process, we rearrange the effective Hamiltonian such that

\[\sum_{i=3}^{10} C_i O_i = (C_3 + C_4/N_c)O_3 + (C_5 + C_6/N_c)O_5 - 2(C_4 - C_6)O_A + 2(C_4 + C_6)O_V + C_8 O_8, \] (8)

where

\[O_A = \bar{s}\gamma_\mu(1 - \gamma_5)T^a b \sum_q \bar{q}\gamma^\mu T^a q, \quad O_V = \bar{s}\gamma_\mu(1 - \gamma_5)T^a b \sum_q \bar{q}\gamma^\mu T^a q. \] (9)

Since the light-quark bilinear in \(O_V \) carries the quantum number of a gluon, one expects \(O_V \) give contribution to the \(b \to s\bar{q}^* \) form factors. In fact, by applying the QCD equation of motion : \(D_\mu G_\mu^{\alpha\nu} = g_5 \sum_q \bar{q}\gamma^\mu T^\alpha q \), we have
In the above, we have defined the form factors ΔF at μ and shall result in a destructive interference of the real part also becomes maximal at this threshold. From Eqs. (3), (4) and (5), we find $\text{Re}(\Delta s)(q^2,\gamma_\mu - \gamma_\mu q_\mu)LT^{a\mu}b - iF_2m_b\bar{s}\sigma_{\mu\nu}q^\nu RT^{a\nu}b$. (10)

In the above, we have defined the form factors ΔF_1 and F_2 according to the convention in Ref. [4]. We have

$$\Delta F_1 = \frac{4\pi}{\alpha_s}(C_4(\mu) + C_6(\mu)), \quad F_2 = -2C_6(\mu)$$ (11)

We note that our relative signs of ΔF_1 and F_2 agree with those in Refs. [4,6] and [17], and shall result in a destructive interference. At the NLL level, ΔF_1 is corrected by $\Delta F_1 = \frac{4\pi}{\alpha_s}(\tilde{C}_4(q^2,\mu) + C_6(q^2,\mu))$.

To obtain the branching ratio for $b \rightarrow s\gamma\eta'$ from $b \rightarrow s\gamma^* v$ vertex, we use the anomalous $\eta' - g - g$ coupling given by: $a_g(\mu)\cos\theta c_{\mu\nu\alpha\beta}q^\alpha k^\beta$ with $a_g(\mu) = \sqrt{NF\alpha_s(\mu)/\pi f_{\eta'}}$, q and k the momenta of the two gluons.

In previous one-loop calculations without QCD corrections, it was found that $\Delta F_1 \approx -5$ and $F_2 \approx 0.2$. In our approach, we obtain $\Delta F_1 = -4.86$ and $F_2 = 0.288$ from Eqs. (2) and (11). However, ΔF_1 is enhanced significantly by the matrix-element correction $\Delta F_1(q^2,\mu)$. The latter quantity develops an imaginary part as q^2 passes the charm-pair threshold, and the magnitude of its real part also becomes maximal at this threshold. From Eqs. (3), (4) and (5), one finds $\text{Re}(\Delta F_1(4m_c^2,\mu)) = -2.58$ at $\mu = 5$ GeV. Including the contribution by $\Delta F_1(q^2,\mu)$ with $\mu = 5$ GeV, we find $B(b \rightarrow s\gamma\eta') = 5.6 \times 10^{-4}$ with a cut on $m_X = \sqrt{(k+p)^2} \leq 2.35$ GeV. We also obtain the spectrum $dB(b \rightarrow s\gamma\eta')/dm_X$ as depicted in Fig. 1. The peak of the spectrum corresponds to $m_X \approx 2.4$ GeV. The destructive interference of between F_1 and F_2 lowers down the branching ratio by about 14\% which is quite different from the results obtained in Refs.[3,4] because our ΔF_1 is larger than theirs.

In our calculation, $a_g(\mu)$ of the $\eta' - g - g$ vertex is treated as a constant independent of invariant-masses of the gluons, and μ is set to be 5 GeV. In practice, $a_g(\mu)$ should behave like a form-factor which becomes suppressed as the gluons attached to it go farther off-shell. It is possible that the branching ratio we just obtained gets reduced significantly by the form-factor effect in the $\eta' - g - g$ vertex. Should a large form-factor suppression occur, the additional contribution from $b \rightarrow \eta' s$ and $B \rightarrow \eta' s q$ discussed earlier will become crucial. We however like to stress that our estimate of $b \rightarrow s\gamma\eta'$ with α_s evaluated at $\mu = 5$ GeV is conservative. To illustrate this, let us compare branching

\[\text{We thank A. Kagan for discussions which clarified this point.}\]
ratios for $b \to sg\eta'$ obtained at $\mu = 5$ GeV and $\mu = 2.5$ GeV respectively. The branching ratios at the above two scales with the kinematical cut on m_X are 4.9×10^{-4} and 8.5×10^{-4} respectively. One can clearly see the significant scale-dependence! With the enhancement resulting from lowering the renormalization scale, there seems to be some room for the form-factor suppression in the attempt of explaining $B \to \eta'X_s$ by $b \to sg\eta'$. We do notice that $B(b \to sg\eta')$ is suppressed by more than one order of magnitude if $a_g(\mu)$ is replaced by $a_g(m_{\eta'}) \cdot m_{\eta'}^2/(m_{\eta'}^2 - q^2)$ according to Ref.[6]. However, as pointed out in Ref.[4], the validity of such a prescription remains controversial.

Before closing we would like to comment on the branching ratio for $B \to \eta X_s$. It is interesting to note that the width of $b \to \eta sg$ is suppressed by $\tan^2 \theta$ compared to that of $b \to \eta' sg$. Taking $\theta = -15.4^\circ$, we obtain $B(B \to \eta X_s) \approx 4 \times 10^{-5}$. The contribution from four-quark operator can be larger. Depending on the choice of parameters, we find that $B(B \to \eta X_s)$ is in the range of $(6 \sim 10) \times 10^{-5}$.

In conclusion, we have calculated the branching ratio of $b \to sg\eta'$ by including the NLL correction to the $b \to sg^*$ vertex. By assuming a low-energy $\eta' - g - g$ vertex, we obtain $B(b \to sg\eta') = (5 - 9) \times 10^{-4}$ depending on the choice of the QCD renormalization-scale. Although the form-factor suppression in the $\eta' - g - g$ vertex is anticipated, it remains possible that the anomaly-induced process $b \to sg\eta'$ could account for the CLEO measurement on the $B \to \eta'X_s$ decay. For the four-quark operator contribution, we obtain $B \to \eta'X_s \approx 1 \times 10^{-4}$. This accounts for roughly 15% of the experimental central-value and can reach 30% if favourable parameters are used.

![Figure 1](image.png)

Figure 1. The distribution of $B(b \to s + g + \eta')$ as a function of the recoil mass m_X.

5
Acknowledgments

We thank W.-S. Hou, A. Kagan and A. Soni for discussions. The work of XGH is supported by Australian Research Council and National Science Council of R.O.C. under the grant number NSC 87-2811-M-002-046. The work of GLL is supported by National Science Council of R.O.C. under the grant numbers NSC 87-2112-M-009-038, NSC 88-2112-M-009-002, and National Center for Theoretical Sciences of R.O.C. under the topical program: PQCD, B and CP.

References

1. CLEO collaboration, B.H. Behrens et al., Phys. Rev. Lett. 80, 3710 (1998).
2. CLEO Collaboration T. E. Browder et al., hep-ex/9804018.
3. D. Atwood and A. Soni, Phys. Lett. B 405, 150 (1997).
4. W.S. Hou and B. Tseng, Phys. Rev. Lett. 80, 434 (1998).
5. A. Datta, X.-G. He, and S. Pakvasa, Phys. Lett. B 419, 369 (1998).
6. A. L. Kagan and A. Petrov, hep-ph/9707354.
7. H. Fritzsch, Phys. Lett. B 415, 83 (1997); X.-G. He, W.-S. Hou and C.S. Huang, Phys. Lett. B429, 99 (1998).
8. H.-Y. Cheng, and B. Tseng, [hep-ph/9803457], A. Ali, J. Chay, C. Greub and P. Ko, Phys. Lett. B424, 161 (1998); N. Deshpande, B. Dutta and S. Oh, Phys. Rev. D57, 5723(1998).
9. A. Ali, G. Kramer and C.-D. Lu, [hep-ph/9804363].
10. I. Halperin and A. Zhitnitsky, Phys. Rev. Lett. 80, 438 (1998); F. Araki, M. Musakonov and H. Toki, [hep-ph/9803350]; D.S. Du, Y.-D. Yang and G.-H. Zhu, [hep-ph/9805451]; M. Ahmady, E. Kou and A. Sugamoto, Phys. Rev. D58, 014015 (1998); D.S. Du, C.S. Kim and Y.-D. Yang, Phys. Lett. B426, 133 (1998); F. Yuan and K.-T. Chao, Phys. Rev. D 56, 2495 (1997); A. Dighe, M. Gronau and J. Rosner, Phys. Rev. Lett. 79, 4333 (1997).
11. X.-G. He and G.-L. Lin, hep-ph/9809204.
12. For a review see G. Buchalla, A. J. Buras and M. E. Lautenbacher, Review of Modern Physics, 68, 1125 (1996).
13. A. Buras et al., Nucl. Phys. B 370, 69 (1992).
14. N. G. Deshpande and X.-G. He, Phys. Lett. B 336, 471 (1994).
15. T.E. Browder et al., Phys. Rev. D 57, 6829 (1998).
16. T. Feldmann, P. Kroll and B. Stech, hep-ph/9802409.
17. H. Simma and D. Wyler, Nucl. Phys. B344, 283(1990); A. Lenz, N. Nierste and G. Ostermier, Phys. Rev. D56, 7228(1997).