The Compressive and Rarefactive Dust Acoustic Solitary Waves with Two Different Temperatures for Both Electrons and Ions

R. B. Kian and M. H. Mahdieh

Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran

Received April 1, 2022; revised May 5, 2022; accepted May 11, 2022

Abstract—The nonlinear propagation of dust acoustic solitary waves (DASWs) in an unmagnetized dusty plasma consisting of negatively charged dust fluid, Boltzmann distributed electrons with two different temperatures, Boltzmann distributed ions with two distinct temperatures are investigated. By employing the reductive perturbation technique that is valid for a small but finite amplitude limit, the Korteweg–de Vries (KdV) equation, have been derived. Our results reveal that the main quantities of DASWs (such as amplitude and width) are affected by electrons with two different temperatures (as well as ions), temperature ratios, and the number densities of two species of ions. It is shown that both positive and negative potential DASWs occur in this case.

Keywords: dust acoustic solitary waves, Korteweg–de Vries (KdV) equation, reductive perturbation technique, electrons with two different temperatures, Boltzmann distribution, unmagnetized dusty plasma

DOI: 10.3103/S1541308X22050041

1. INTRODUCTION

A dusty plasma which consisting of electrons, ions, charged dust particles is found in space environments, such as earth’s ionosphere, planetary rings, interstellar medium, Solar nebula, comet tails [1–7], in the laboratory devices such as dc and RF discharges machines, plasma processing reactors, fusion plasma devices, and in the industrial plasma [8–14]. In these devices, the particles are either formed as a result of agglomeration of reactive species or deliberately injected into the plasma [15, 16]. The presence of a dust component in the plasma can significantly modify the existing ordinary modes such as ion acoustic waves [17] and introduce new nonlinear waves at different dynamical scales. One of these modes is low-frequency dust acoustic (DA) wave (with a phase speed lying between the ion and dust thermal velocities), which was first predicted theoretically by Rao et al. [18]. In laboratory, the spectra of DA waves was experimentally observed by Barkan et al. [19]. The nonlinear DA waves have received a great deal of research interest in understanding the fundamental properties of localized electrostatic structures in space and laboratory dusty plasmas [20–28]. It is well known that electrons with two different temperatures are found to occur both in space and laboratory environment [29–31]. On the other hand, in laboratory and space plasmas, it is most evident that the ions are usually at different tempera-

1 The text was submitted by the authors in English.
KdV equation. They found that rarefactive and compressive potential DASWs can be formed in such dusty plasma.

Malik et al. [57] studied DASWs in a magnetized dusty plasma considering two different temperature ions and Boltzmann distributed electrons. In their investigations, they found that the effect of hot ions is significant when their number is very high as compared to the number of cold ions. Also they reported that the presence of more electrons in the dusty plasma increases the amplitude of the DASWs. Emanuddin et al. [58] theoretically investigated the propagation of DA waves in a magnetized dusty plasma consisting of two distinct temperature electrons, nonthermal ions and negatively charged mobile dust grains. Their analysis shows that the characteristics and the properties of the DASWs are significantly modified in the presence of external magnetic field. It was also shown that temperature ratio of ions, relative number densities of ions, and relative number densities of electrons are important parameters in the properties of the DASWs. Shamy et al. [59] studied DASWs for dusty plasmas consisting of hot dust fluid, nonisothermal ions and two different temperature electrons. They derived KdV equation and modified KdV equation at critical ion density. They have shown that the presence of a second component of electrons modifies the nature of DA solitary wave structures. The above-mentioned studies of DA solitary waves in a magnetized or an unmagnetized dusty plasma with two different temperature electrons or two different temperature ions show a good characteristic dependency of the properties of the DASWs. Shamy et al. [59] studied DASWs in a magnetized dusty plasma with two different temperature electrons and nonthermal ions and negatively charged mobile dust grains. Their analysis shows that the characteristics and the properties of the DASWs are significantly modified in the presence of external magnetic field. It was also shown that temperature ratio of ions, relative number densities of ions, and relative number densities of electrons are important parameters in the properties of the DASWs. Shamy et al. [59] studied DASWs for dusty plasmas consisting of hot dust fluid, nonisothermal ions and two different temperature electrons. They derived KdV equation and modified KdV equation at critical ion density. They have shown that the presence of a second component of electrons modifies the nature of DA solitary wave structures. The above-mentioned studies of DA solitary waves in a magnetized or an unmagnetized dusty plasma with two different temperature electrons or two different temperature ions show a good characteristic dependency of these nonlinear structures on the second temperature of electrons as well as ions in dusty plasma which motivate us to study DASWs in a dusty plasma with two different temperatures for both electrons and ions.

2. BASIC EQUATION

We consider a five-component plasma, which consists of negatively charged dust grains, two types of isothermal electrons with temperatures \(T_{el} \) and \(T_{eh} \), two types of isothermal ions with temperatures \(T_{il} \) and \(T_{ih} \). The charge neutrality at equilibrium requires that

\[
n_{il0} + n_{il0} = n_{el0} + n_{eh0} + n_{il0} Z_d, \tag{1}
\]

where \(n_{il0} \) is the unperturbed dust number density, \(n_{el0} \) and \(n_{eh0} \) are equilibrium electron number densities at low \((T_{el}) \) and high \((T_{eh}) \) temperature electrons, respectively; \(n_{il0}, n_{ih0} \) are the unperturbed ion number densities at low \((T_{il}) \) and high \((T_{ih}) \) temperature ions, respectively, \(Z_d \) is the number of charge on the dust grains. From Eq. (1), we have

\[
\alpha = \frac{n_{il0} Z_d}{n_{il0}} = 1 - \delta_1 - \delta_2 + \delta_3, \tag{2}
\]

where \(\delta_1 = n_{il0}/n_{il0} \), \(\delta_2 = n_{eh0}/n_{ih0} \), and \(\delta_3 = n_{eh0}/n_{il0} \).

According to one-dimensional propagation, the dynamics of dust particles are governed by normalized equations of fluid equations:

\[
\frac{\partial n_d}{\partial t} + \frac{\partial(n_d u_d)}{\partial x} = 0, \tag{3}
\]

\[
\frac{\partial u_d}{\partial t} + u_d \frac{\partial u_d}{\partial x} = -\frac{\partial \phi}{\partial x}, \tag{4}
\]

\[
\frac{\partial^2 \phi}{\partial x^2} = n_d + \delta_1 e^{-\theta_0} + \delta_2 e^{-\theta_1} - \frac{1}{\alpha} e^{-\theta_0} - \delta_3 e^{-\theta_1}, \tag{5}
\]

where \(\theta_i = T_{il}/T_{el}, \theta_2 = T_{il}/T_{eh}, \theta_3 = T_{il}/T_{el}, \) \(n_d \) is the dust particle number density normalized to \(n_{il0} \), \(u_d \) is the dust fluid velocity in \(x \) direction normalized by \(C_d = \sqrt{Z_d T_{il}/m_d} \), \(m_d \) is dust mass, \(\phi \) is the electrostatic potential normalized by \(T_{il}/e \) with \(e \) being the magnitude of the electron charge. The time \(t \) and space \(x \) variables are normalized by the dust plasma period \(\omega_d^{-1} = \frac{m_d}{4\pi n_{il0} Z_d^2 e^2} \) and the Debye length \(\lambda_d = \frac{T_{il}/4\pi n_{il0} Z_d e^2} {\sqrt{\rho_d}} \), respectively. In order to derive the KdV equation, we employ the reductive perturbation technique [60] and introduce stretched coordinates as follows:

\[
\xi = \epsilon^{1/2}(x - v_0 t), \quad \tau = \epsilon^{1/2} t, \tag{6}
\]

where \(\epsilon \) is a small parameter characterizing the strength of nonlinearity \((0 < \epsilon < 1) \) and \(v_0 \) is the nonlinear wave phase velocity which normalized by \(C_d \).

The variables \(n_d, u_d, \phi \) can be expanded in a power series of \(\epsilon \):

\[
n_d = 1 + \epsilon n_{d1} + \epsilon^2 n_{d2} + \ldots, \tag{7}
\]

\[
u_d = \epsilon u_{d1} + \epsilon^2 u_{d2} + \ldots, \tag{8}
\]

\[
\phi = \epsilon \phi_1 + \epsilon^2 \phi_2 + \ldots. \tag{9}
\]

Substituting Eqs. (7)–(9) along with the stretching coordinates (7) into Eqs. (3)–(5) and writing them with the lowest order of \(\epsilon \), we obtain the following relations:

\[
n_{d1} = \frac{1}{v_0} u_{d1}, \quad u_{d1} = -\frac{1}{v_0} \phi_1, \tag{10}
\]

\[
n_{d2} = \frac{1 + \delta_1 \theta_1 + \delta_2 \theta_2 + \delta_3 \theta_3}{\alpha} \phi_1, \tag{11}
\]

\[
v_0 = \sqrt{\frac{\alpha}{1 + \delta_1 \theta_1 + \delta_2 \theta_2 + \delta_3 \theta_3}}. \tag{12}
\]

For the next higher order, we obtain

\[
v_0^2 \frac{\partial n_{d2}}{\partial \xi} = \frac{\partial n_{d1}}{\partial t} + v_0 \frac{\partial (n_d u_{d1})}{\partial \xi} + v_0 \frac{\partial u_{d2}}{\partial \xi} \tag{13},
\]

\[
\frac{\partial u_{d1}}{\partial t} = \frac{\partial u_{d1}}{\partial \xi} + u_{d1} \frac{\partial \phi_2}{\partial \xi} - \frac{\partial \phi_1}{\partial \xi}. \tag{14}
\]
3. RESULTS AND DISCUSSIONS

Equation (19) clearly indicates that both positive and negative solitons exist. The solution (20) also stands for \(n_{d1} \) if we replace \(\phi_{ml} \) with \(-(1/v_0^2)\phi_{ml} \). The coefficient of the nonlinear term \(A \), which determines the polarity of solitary waves, depends on equilibrium density ratio parameters \(\delta_1, \delta_2, \delta_3 \) and temperature ratio parameters \(\theta_1, \theta_2, \theta_3 \). To preserve the physical meanings, the possible values of these parameters are chosen as \(T_{el} < T_{eh} < T_{ih} \) and \(n_{el0}, n_{eh0} < n_{ih0} \). As \(u_0 > 0 \), for \(A > 0 \), positive potential or rarefactive solitary waves (DASWs with density hump) are formed, and for \(A < 0 \), negative potential or compressive solitary waves (DASWs with density dip) are formed. It is clear that an increase in \(u_0 \) increases the amplitude of the soliton wave and decreases its width. For \(\delta_1, \delta_2 = 0 \), i.e., electron depleted plasma, and considering ions at one temperature (\(\theta_3 = 1 \)), the values of nonlinear coefficient \(A \) and dispersion coefficient \(B \) are in good agreement with the findings of [61]. Furthermore, by considering electrons at one temperature (\(\theta_1 = \theta_2 \)), the nonlinear coefficient \(A \) and dispersion coefficient \(B \) are similar to that obtained in [41, 49].

Figures 1 and 2 show the variation in the amplitude of the DASWs versus coordinate \(\xi \) and time \(\tau \). Figure 1 shows that small-amplitude solitary waves with negative potential (compressive solitary wave) are generated, while Fig. 2 shows that small amplitude solitons with positive potential (rarefactive solitary wave) are formed. The results in these figures show that the amplitude of the soliton is constant with increasing time \(\tau \).

Figure 3 indicates that compressive (Fig. 3a) and rarefactive (Fig. 3b) solitary waves are formed at different values of \(u_0 \). Obviously, in this figure, one can see that the amplitude (width) of both compressive
and rarefactive soliton increases (decreases) as u_0 increases.

Figure 4 which plotted ϕ_1 versus χ depicts that there is a range of values of δ_3 (the ratio of density of high-temperature ions to density of low-temperature ions), in which either compressive or rarefactive solitary waves coexist. It is clear that if $\delta_3 = 6$, compressive solitary waves will be generated in the dusty plasma, and for $\delta_3 = 7$, we will have rarefactive solitary wave in the dusty plasma.

Figure 5 depicts the soliton profile for two values of θ_3 (the ratio of low-temperature ions to high-temperature ions). It is evident that the polarity of DA solitons (compressive or rarefactive) depends strongly on θ_3. We see that compressive DA soliton can exist for $\theta_3 = 0.2$ ($T_{ch} = 2T_{cl} = 20T_{ih} = 100T_q$), while $\theta_3 = 0.05$ ($T_{ch} = 2T_{cl} = 5T_{ih} = 100T_q$) leads to appearance of rarefactive DA soliton.

Figures 6 and 7 show the variation in the amplitudes of the DASWs with the temperature ratios θ_1, θ_2, and θ_3 for some specified values of ratio densities δ_1, δ_2, δ_3 and constant speed of DASWs. These figures show that compressive and rarefactive DASWs may exist in our two-temperature electrons and two-temperature ions dusty plasma model.

The effect of the temperature of two-electron species on the amplitude of DASWs is presented in Fig. 6. In Fig. 6a, the amplitude of compressive DASWs decreases with increasing both θ_1 and θ_2. While in Fig. 6b, polarity changes (amplitude is positive), and rarefactive solitons are formed. It can be seen that the amplitude of a soliton increases with the increase in θ_1 and θ_2. It should be noted that the amplitude change

![Figure 3](image3.png)

Fig. 3. (Color online) Variation in ϕ_1 versus spatial coordinate χ for $u_0 = 0.1$ (dotted curve), 0.15 (dashed curve), 0.2 (solid curve): (a) negative potential for $\theta_1 = 0.2$, $\theta_2 = 0.1$ and (b) positive potential for $\theta_1 = 0.03$, $\theta_2 = 0.01$, and $\theta_3 = 0.05$. Other parameters are $\delta_1 = 0.2$, $\delta_2 = 0.3$, $\delta_3 = 12$.

![Figure 4](image4.png)

Fig. 4. Variation in ϕ_1 versus spatial coordinate χ for density ratios $\delta_3 = 6$ (dashed curve) and 7 (solid curve). Other parameters are $\delta_1 = 0.2$, $\delta_2 = 0.6$, $\theta_1 = 0.02$, $\theta_2 = 0.01$, $\theta_3 = 0.08$, and $u_0 = 0.01$ ($T_{ch} = 2T_{cl} = 8T_{ih} = 100T_q$).

![Figure 5](image5.png)

Fig. 5. (Color online) Variation in ϕ_1 versus spatial coordinate χ for $\theta_3 = 0.2$ (dashed curve) and 0.05 (solid curve). The other parameters are $\delta_1 = 0.4$, $\delta_2 = 0.7$, $\delta_3 = 12$, $\theta_1 = 0.02$, $\theta_2 = 0.01$, and $u_0 = 0.1$.

by \(\theta_1 \) (due to the lower-temperature electron) is greater than the amplitude change by \(\theta_2 \) (due to the higher-temperature electron), which completely agrees with the result of Mamun et al. [35]. To see the effects of ratio ion temperature on amplitude of DASWs, electrostatic potential \(\phi_1 \) is plotted against \(\chi \) for different values of \(\theta_3 \) (the ratio of low-temperature ion to high-temperature ion). In Fig. 7a, the amplitude of the compressive DA solitary waves decreases with the increase in \(\theta_1 \). While in Fig. 7b, rarefactive solitons are appeared as \(\theta_1 \) increases, the amplitude of the DA solitary waves also increases. Therefore, the large difference between the values of low and high ion temperature (leads to positive potential) appears in an increase in the DA solitary amplitude and the slight difference between the values of low and high ion temperature (leads to negative) causes the decrease in the amplitude of solitons.

4. CONCLUSIONS

We have investigated the propagation of DASWs in an unmagnetized dusty plasma, consisting of Boltzmann distributed electrons with two distinct temperatures, negatively charged dust grains, and Boltzmann distributed ions with two different temperatures. Using the reductive perturbation technique, the KdV equation is obtained. The results show that the present model supports both rarefactive and compressive DASWs structure. The presence of two different types of isothermal electrons and two different types of isothermal ions, which appear in space plasma and labo-
ratory environment, modify notably the basic features (polarity, amplitude, etc.) of solitary waves. It was concluded that in compressive DASWs polarity, the amplitude of the solitons increases with the increase in both θ_1 (ratio of low-temperature ion to low-temperature electron) and θ_2 (ratio of low-temperature ion to high-temperature electron), and in rarefactive DASWs polarity, as θ_1 and θ_2 increase, the amplitude of solitary waves increases. We also found that the difference between the values of low and high ion temperature may be caused by the change in the DA soliton polarity. The positive potential solitary waves exist for lower values of the temperature ratio θ_1 (ratio of low-temperature to high-temperature ions), while negative potentials appear for larger values of θ_2. Furthermore, our results reveal that density ratio δ (ratio of the high-temperature to low-temperature ion densities) has effect on solitary wave structure and can change the polarity of DASWs.

CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.

REFERENCES

1. C. K. Goertz, “Dusty plasmas in the solar system,” Rev. Geophys. 27 (2), 271–292 (1989), https://doi.org/10.1029/RG027i002p00271
2. D. A. Mendis and M. Rosenberg, “Cosmic dusty plasma,” Annu. Rev. Astron. Astrophys. 32, 419–463 (1994), https://doi.org/10.1146/annurev.aa.32.090914.002223
3. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (Inst. Phys., Bristol, 2002), https://doi.org/10.1201/9781420034103
4. O. Havens, F. Melandso, C. L. Hoz, T. K. Aslaksen, and T. Hartquist, “Collisionless braking of dust particles in the electrostatic field of planetary dust rings,” Phys. Scr. 45 (5), 491–496 (1992), https://doi.org/10.1088/0031-8949/45/5/012
5. E. C. Whipple, T. G. Northrop, and D. A. Mendis, “The electrostatics of a dusty plasma,” J. Geophys. Res. 90 (A8), 7405–7413 (1985), https://doi.org/10.1029/JA090iA08p07405
6. M. Horányi, “Charged dust dynamics in the solar system,” Annu. Rev. Astron. Astrophys. 34, 383–418 (1996), https://doi.org/10.1146/annurev.astro.34.1.383
7. P. K. Shukla and D. Resendes, “Dust acoustic waves with dust charge fluctuations—revisited,” Phys. Plasmas 7 (5), 1614–1622 (2000), https://doi.org/10.1063/1.873983
8. V. E. Fortov, O. F. Petrov, V. I. Molotkov, M. Y. Poustynik, V. M. Torchinsky, A. G. Khrapak, and A. V. Chernyshov, “Large-amplitude dust waves excited by the gas–dynamic impact in a dc glow discharge plasma,” Phys. Rev. E 69, 016402 (2004), https://doi.org/10.1103/PhysRevE.69.016402
9. A. V. Timofeev and V. S. Nikolaev, “Effect of glow discharge parameters on the mean interparticle distance in dusty plasma structures in the cryogenic–room temperature range,” J. Exp. Theor. Phys. 128 (2), 312–322 (2019), https://doi.org/10.1134/S1063776119010175
10. A. V. Timofeev, V. S. Nikolaev, and V. P. Semenov, “Inhomogeneity of structural and dynamical characteristics of dusty plasma in a gas discharge,” J. Exp. Theor. Phys. 130 (1), 153–160 (2020), https://doi.org/10.1134/S1063776119120203
11. D. I. Zhukhovitskii, V. N. Naumkin, A. I. Khusnulgatov, V. I. Molotkov, and A. M. Lipaev, “Propagation of the 3D crystallization front in a strongly nonideal dusty plasma,” J. Exp. Theor. Phys. 130 (4), 616–625 (2020), https://doi.org/10.1134/S1063776120020090
12. J. Cao and Th. Matsoukas, “Deposition kinetics on particles in a dusty plasma reactor,” J. Appl. Phys. 92 (5), 2916–2922 (2002), https://doi.org/10.1063/1.1499529
13. R. L. Merlino, “Dust-acoustic waves driven by an ion-dust streaming instability in laboratory discharge dusty plasma experiments,” Phys. Plasmas 16 (12), 124501 (2009), https://doi.org/10.1063/1.3271155
14. F. Verheest, “Waves and instabilities in dusty space plasmas,” Space Sci. Rev. 77, 267–302 (1996), https://doi.org/10.1007/BF00226225
15. H. Kersten, G. Thieme, M. Fröhlich, D. Bojic, D. H. Tung, M. Quaas, H. Wulff, and R. Hippler, “Complex (dusty) plasmas: Examples for applications and observation of magnetron-induced phenomena,” Pure Appl. Chem. 77 (2), 415–428 (2005), https://doi.org/10.1351/pac200577020415
16. T. M. Flanagan and J. Goree, “Observation of the spatial growth of self-excited dust-density waves,” Phys. Plasmas 17 (12), 123702 (2010), https://doi.org/10.1063/1.3524691
17. A. E. Dubinov and M. A. Sazonkin, “Supernonlinear ion-acoustic waves in a dusty plasma,” Phys. Wave Phenom. 21 (2), 118–128 (2013), https://doi.org/10.3103/S1541308X13020039
18. N. N. Rao, P. K. Shukla, and M. Y. Yu, “Dust-acoustic waves in dusty plasmas,” Planet. Space Sci. 38 (4), 543–546 (1990), https://doi.org/10.1016/0032-0633(90)90147-1
19. A. Barkan, R. L. Merlino, and N. D’Angelo, “Laboratory observation of the dust-acoustic wave mode,” Phys. Plasmas 2 (10), 3563–3565 (1995), https://doi.org/10.1063/1.871121
20. S. Paul, R. Denra, and S. Sarkar, “The effect of negative ion population on dust acoustic wave propagation in a self gravitating Lorentzian dusty plasma,” Eur. Phys. J. D 74, 131 (2020), https://doi.org/10.1140/epjd/e2020-10058-3
21. R. E. Tolba, “Propagation of dust-acoustic nonlinear waves in a superthermal collisional magnetized dusty plasma,” Eur. Phys. J. Plus 136, 138 (2021), https://doi.org/10.1140/epjp/s13360-020-01028-w
22. A. Abdikian, and S. Sultana, “Dust-acoustic solitary and cnoidal waves in a dense magnetized dusty plasma with temperature degenerate trapped electrons and nonthermal ions,” Phys. Scr. 96, 095602 (2021), https://doi.org/10.1088/1402-4896/ac04db

PHYSICS OF WAVE PHENOMENA Vol. 30 No. 5 2022 THE COMPRESSIVE AND RAREFACTIVE
23. J. Tamang, B. Pradhan, and A. Sahu, “Stable oscillation and chaotic motion of the dust-acoustic waves for the KdV–Burgers equation in a four-component dusty plasma,” IEEE Trans. Plasma Sci. 48 (11), 3982–3990 (2020). https://doi.org/10.1109/TPS.2020.3027241

24. S. K. El-Labany, W. F. El-Taibany, A. A. El-Tantawy, and N. A. Zedan, “Effects of double spectral electron distribution and polarization force on dust acoustic waves in a negative dusty plasma,” Contrib. Plasma Phys. 60 (10), e202000049 (2020). https://doi.org/10.1002/ctpp.202000049

25. P.-F. Li and C.-R. Du, “Propagation of terahertz waves in a dusty acousto-thermal plasma,” Phys. Lett. A 384 (27), 126660 (2020). https://doi.org/10.1016/j.physleta.2020.126660

26. J. Gao, Z. Guo, Y. Cai, S. Zhang, N. Zhang, S. Wang, W. Fan, F. Liu, and Y. He, “Effect of asymmetry induced by staggered angle on the rectification of dust particles in a dusty plasma ratchet,” IEEE Trans. Plasma Sci. 49 (8), 2397–2400 (2021). https://doi.org/10.1109/TPS.2021.3097736

27. Y. Saitou, “Fluid dispersion relation of dust acoustic wave with ion flow,” Phys. Plasmas 28 (7), 073703 (2021). https://doi.org/10.1063/5.0054548

28. A. Paul, G. Mandal, A. A. Mamun, and M. R. Amin, “Effects of vortex-like ion distribution on dust-acoustic solitary waves in a self-gravitating opposite polarity dusty plasma,” Phys. Wave Phenom. 27 (4), 261–267 (2019). https://doi.org/10.3103/S1541308X19040034

29. Y. Nakamura and H. Sugai, “Experiments on ion-acoustic solitary waves in a plasma,” Chaos, Solitons Fractals 7 (7), 1023–1031 (1996). https://doi.org/10.1016/0960-0779(95)00095-X

30. G. Gloeckler, J. Geiss, H. Balsiger, P. Bedini, J. C. Cain, J. Fische, L. A. Fisk, A. B. Galvin, F. Gliem, D. C. Hamilton, J. V. Hollweg, F. M. Ipavich, R. Joos, S. Liv, R. A. Lundgren, U. Mall, J. F. McKenzie, K. W. Ogilvie, F. Ottens, W. Rieck, E. O. Tums, R. van Steiger, W. Weiss, and B. Wilken, “The solar wind ion composition spectrometer,” Astron. Astrophys. Suppl. Ser. 92 (2), 267–289 (1992). https://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1992A%26AS…92..267G&defaultprint=YES&page_ind=0&filetype=.pdf

31. Y. Nishida and T. Nagasawa, “Excitation of ion-acoustic rarefactive solitons in a two-electron-temperature plasma,” Phys. Fluids 29 (2), 345–348 (1986). https://doi.org/10.1063/1.865717

32. A. Shome and S. Pramanik, “Non-linear coherent structures in multi-species dusty plasma,” Contrib. Plasma Phys. 61 (7), e202100025 (2021). https://doi.org/10.1002/ctpp.202100025

33. K. Anou, “Effects of spherical geometry and two-temperature electrons on dust acoustic waves,” Astrophys. Space Sci. 350, 211–215 (2014). https://doi.org/10.1007/s10509-013-1739-0

34. M. Emanuddin, S. Yasin, M. Asaduzzaman, and A. A. Mamun, “Dust-acoustic solitary structures in a magnetized dusty plasma with two-temperature nonextensive electrons,” Phys. Plasmas 20 (8), 083708 (2013). https://doi.org/10.1063/1.4819831

35. M. G. M. Anowar and A. A. Mamun, “Effects of two-temperature electrons and trapped ions on multidimensional instability of dust-acoustic solitary waves,” IEEE Trans. Plasma Sci. 37 (8), 1638–1645 (2009). https://doi.org/10.1109/TPS.2009.2024668

36. X. Zhong, H. Chen, N. Liu, and S. Liu, “The dust-acoustic mode in two-temperature electron plasma with charging effects,” Pramana 86, 885–892 (2016). https://doi.org/10.1007/s12043-015-1101-x

37. A. Varghese, A. C. Saritha, N. T. Willington, M. Michael, S. Sebastian, G. Sreekala, and C. Venugopal, “Dust acoustic solitary waves in a five-component cometary plasma with charge variation,” J. Astrophys. Astron. 41, 11 (2020). https://doi.org/10.1007/s12036-020-09630-1

38. S. K. Maharaj, R. Bharuthram, S. V. Singh, and G. S. Lakhina, “Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. II. High-frequency electron-acoustic solitons,” Phys. Plasmas 19 (12), 122301 (2012). https://doi.org/10.1063/1.4769174

39. M. Shahmansouri and H. Alinejad, “Electrostatic wave structures in a magnetized superthermal plasma with two-temperature electrons,” Phys. Plasmas 20 (8), 082130 (2013). https://doi.org/10.1063/1.4819716

40. F. Araghi and D. Dorranian, “Effect of dust charge fluctuation on dust acoustic structures in magnetized dusty plasma containing nonextensive electrons and two temperatures isothermal ions,” Plasma Phys. Rep. 42 (2), 155–162 (2016). https://doi.org/10.1080/09675888.2015.1128079

41. M. Asaduzzaman and A. A. Mamun, “Compressive and rarefactive dust-acoustic Gardner solitons beyond the KdV limit with two-temperature ions dusty plasma,” Astrophys. Space Sci. 341 (2), 535 (2012). https://doi.org/10.1007/s10509-012-1102-x

42. M. N. Alam, A. R. Seadawy, and D. Baleanu, “Closed-form solutions to the solitary wave equation in an unmagnetized dusty plasma,” Alexandria Eng. J. 59 (3), 1505–1514 (2020). https://doi.org/10.1016/j.aeje.2020.03.030

43. D.-N. Gao, J.-B. Yue, J.-P. Wu, W.-Sh. Duan, and Zh.-Zh. Li, “Instability of dust–acoustic waves in plasma with two-temperature nonthermal ions,” Plasma Phys. Rep. 47 (1), 48–53 (2021). https://doi.org/10.1134/S1063780X21010062

44. R. Srivastava, H. K. Malik, and D. Singh, “Comparative study of dust acoustic solitons in two-temperature ion homogeneous and inhomogeneous plasmas,” J. Theor. Appl. Phys. 14, 11–20 (2020). https://doi.org/10.1007/s40094-019-00365-1

45. M. S. Alam, M. G. Hafez, M. R. Talukder, and M. Hossain Ali, “Effects of two-temperature ions on head-on collision and phase shifts of dust acoustic single- and multi-solitons in dusty plasma,” Plasma Phys. Rep. 24 (10), 103705 (2017). https://doi.org/10.1007/s10509-017-1812-8

46. S. G. Tagare, “Dust–acoustic solitary waves and double layers in dusty plasma consisting of cold dust particles and two-temperature isothermal ions,” Phys. Plasmas 4 (9), 3167–3172 (1997). https://doi.org/10.1063/1.872456
47. S. K. El-Labany, E. F. El-Shamy, and M. Shokry, “On the characteristics of the interaction between two dust-acoustic solitary waves in a magnetized dusty plasma and two-temperature ions,” *Phys. Plasmas* **17** (11), 113706 (2010). https://doi.org/10.1063/1.3494569

48. J. Borhanian and M. Shahmansouri, “Three dimensional dust-acoustic solitary waves in an electron depleted dusty plasma with two-superthermal ion-temperature,” *Phys. Plasmas* **20** (1), 013707 (2013). https://doi.org/10.1063/1.4789620

49. I. Tasnim, M. M. Masud, M. Asaduzzaman, and A. A. Mamun, “Dust-acoustic Gardner solitons and double layers in dusty plasmas with nonthermally distributed ions of two distinct temperatures,” *Chaos* **23** (1), 013147 (2013). https://doi.org/10.1063/1.4794796

50. D. Dorranian and A. Sabetkar, “Dust acoustic solitary waves in a dusty plasma with two kinds of nonthermal ions at different temperatures,” *Phys. Plasmas* **19** (1), 013702 (2012). https://doi.org/10.1063/1.3675883

51. H. R. Pakzad and K. Javidan, “Solitary waves in dusty plasmas with variable dust charge and two temperature ions,” *Chaos, Solitons Fractals* **42** (5), 2904–2913 (2009). https://doi.org/10.1016/j.chaos.2009.04.031

52. T. S. Gill, N. S Saini, and H. Kaur, “The Kadomstev–Petviashvili equation in dusty plasma with variable dust charge and two temperature ions,” *Chaos, Solitons Fractals* **28** (4), 1106–1111 (2006). https://doi.org/10.1016/j.chaos.2005.08.118

53. K. He, H. Chen, and S. Liu, “Effect of polarization and charge gradient forces on the dust acoustic solitary waves,” *Jpn. J. Appl. Phys* **59** (1), 016001 (2020). https://doi.org/10.7567/1347-4065/ab5993

54. A. Mannan, S. D. Nicola, R. Fedele, and A. A. Mamun, “Dust-acoustic wave electrostatic and self-gravitational potentials in an opposite polarity dusty plasma system,” *AIP Adv.* **11** (2), 025002 (2021). https://doi.org/10.1063/5.0033210

55. L. Kavitha, K. Raghavi, C. Lavanya, M. Kailas, and D. Gopi, “Propagation of electrostatic solitary waves in the four-component dusty plasma,” *IEEE Trans. Plasma Sci.* **49** (2), 546–550 (2020). https://doi.org/10.1109/TPS.2020.3017201

56. Z. Rezaeiinia, T. Mohsenpour, and S. Mirzanejad, “Effects of axial magnetic field and nonextensivity on small amplitude dust acoustic solitary waves in dusty plasma,” *Contrib. Plasma Phys.* **59** (2), 252–264 (2019). https://doi.org/10.1002/ctpp.201800089

57. H. K. Malik, R. Srivastava, S. Kumar, and D. Singh, “Small amplitude dust acoustic solitary wave in magnetized two ion temperature plasma,” *J. Taibah Univ. Sci.* **14** (1), 417–422 (2020). https://doi.org/10.1080/16583655.2020.1741944

58. M. Emanuddin, M. M. Masud, and A. A. Mamun, “Dust-acoustic solitary waves in a magnetized dusty plasmas with nonthermal ions and two-temperature nonextensive electrons,” *Astrophys. Space Sci.* **349** (2), 821–828 (2014). https://doi.org/10.1007/s10509-013-1692-y

59. S. K. El-Labany, E. F. El-Shamy, W. F. El-Taibany, and W. M. Moslem, “Dust-acoustic solitary waves in a two-temperature electrons with charge fluctuations and nonisothermal ions,” *Chaos, Solitons Fractals* **34** (5), 1393–1400 (2007). https://doi.org/10.1016/j.chaos.2006.05.041

60. H. Washimi and T. Taniuti, “Propagation of ion-acoustic solitary waves of small amplitude,” *Phys. Rev. Lett.* **17** (19), 996–997 (1966). https://doi.org/10.1103/PhysRevLett.17.996

61. A. A. Mamun, R. A. Cairns, and P. K. Shukla, “Solitary potentials in dusty plasmas,” *Phys. Plasmas* **3** (2), 702–704 (1996). https://doi.org/10.1063/1.871905