Preparation of the Silicone-Modified Antimicrobial Polyethylene Endotracheal Tube (PE ETT)

Xuhong J1,2*, Bin LV1,2, Xinmin W3 and Qianhong S1

1The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
2Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical university, Hangzhou, China
3Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China

Abstract

Polyethylene endotracheal tube (PE ETT) antimicrobial coating has been proved to be a more effective method to prevent endoluminal biofilm formation. A transparent silicone-modified antimicrobial PE ETT was obtained by coating SiOx/KH570/MTES/Ag-SiO2 solution prepared by chemical mixing Ag-SiO2 and SiOx/KH570/MTES solution by means of dip-coating method, followed by drying. All the films were characterized by various techniques including Pencil Hardness Tester, IR, SEM, UV-vis, and ICP-MS. The results indicated that the TEOS/KH570/MTES/Ag-SiO2 (15:6:1:0.6–1.0) films, which exhibit the simple solution-processable film formation on PE ETT, show homogeneous morphology, and have the high transmittance of above 87%, high hardness of 5H, strong adhesion. Furthermore, the silicone-modified antimicrobial PE ETts show excellent antimicrobial property with the sterilization rate up to 93.5%, it demonstrates that the antimicrobial films have excellent biocompatibility and potent antimicrobial activity against protein adhesion. Pyrogen test, hemolysis test and oral mucous irritation test results are fit for biosecurity use requirement for biological materials. So, silicone-modified antimicrobial PE ETT is hoped to be used in the field of medical materials and can be used as an efficient and economical method to extend the service life of the PE ETT.

Keywords: Endotracheal tube; Antimicrobial film; Silicone; Ag-SiO2

Introduction

Ventilator-associated pneumonia (VAP) is a common complication for mechanical ventilation patients in ICU and trachea cannula, repeated cannula and mechanical ventilation way and mechanical ventilation time are one VAP vulnerable factor [1]. Endotracheal tube (ETT) is artificial biomaterial and it does not have antibacterial property. Once inserted into human body, it becomes the potential source of infection because pathogenic bacteria is absorbed on its surface for growing and breeding to form bacterial biofilm which can adhere dissociated bacteria and avoid bacteria from killing and phagocytosing under the effect of antibiotics and body’s immune system [2]. In order to prevent infection after biomaterial placement, the antibacterial coatings are painted on its surface, such as nanoZnO [3], TiO2 photocatalytic materials [4], Ag-loaded coating [5], etc to inhibit bacteria from adhering on the surface of cannula to form bacterial biofilm.

Among that, there is more research for Ag-loaded coatings in antibacterial materials that Ag+ ion can destroy cell division and mutual respiratory function of bacteria and virus, having stronger bactericidal ability and inhibiting pathogen activity [6,7]. However, there is less research for Ag-loaded antibacterial coating in biomedical materials. The majority research is concentrated on modified or composites antibacterial materials and it is rarely verified for moldability and biocompatibility of antibacterial coatings. Furthermore, Ag+ ion is sedimented on the surface of biomaterial or in the meso pore through ion exchange and physical absorption [8]. The poor binding force with base material leads to antibacterial coating shedding, influencing on its antibacterial property and safety. So people prepare antibacterial coatings by recombining polymer and Ag+ion to enhance binding force between antibacterial coating and base material and improve compactibility, such as polyvinylpyrrolidone [9], polyurethane [10], chitosan [11], etc. However, there is less research for silicone materials. Silicone materials contain many kinds of active group and present excellent cohesiveness and film-processing property [12]. The hydrophobic groups of Si-CH3 and -CH3 could reduce coating surface energy and improve chemical inertness. Its polymer is compatible with tissue and blood of human body and has certain anticoagulation in effect so it is widely applied in biomaterials [13].

In this study, silicon compound of SiOx/KH570 and SiOx/KH570/MTES prepared through the sol-gel process with TEOS as inorganic silicon source, KH570 and MTES as the organosilicon source, were used to prepare series silicone-modified antimicrobial films on conventional PE ETT by mixing silver antibacterial agent. Effects of different alkoxysilanes of KH570 and MTES content on the properties of silicon compound solutions and their films were investigated. We also study the influence of different Ag-SiO2 content on the stability of the silicone-modified antimicrobial solution and the sterilizing rate of their films. A transparent silicone-modified antimicrobial PE ETT and their properties were introduced in this paper. Its biosecurity is verified in pyrogen test, hemolysis test and oral mucous irritation test. Such silicone-modified antibacterial coatings are hoped to be used in surface coating field of medical materials or medical apparatus and instruments to improve infection situation in the hospital.

Materials and Methods

Regents and materials

Tetraethyl orthosilicate (TEOS), γ-Methacyrloxy propyl...
trimethoxysilane (KH570), methacryltriethoxysilane (MTES), silver antibacterial agent (Ag-SiO₂), ethanol, distilled water, acetic acid and potassium oxalate were analytically grade. 0.9% sodium chloride injection, Zhejiang Shapuaisi Pharmaceutical Co. Ltd. Normal PE tracheal cannula (blank ETT), Covidien.

Preparation of antimicrobial coating

The silicone-modified antimicrobial solution were synthesized by sol-gel method and mechanical mixing as described in Figure 1. In the preparation of silicon compound solutions of SiO₂/KH570 and SiO₂/KH570/MTES, TEOS were first diluted in ethanol with subsequent hydrolysis in water by catalyst under vigorous stirring at the room temperature, then mixed with different amounts of KH570 or the mixture of KH570 and MTES at different ratio were added under stirring until completely hydrolyzing and crossing linked with silica solution. The films of SiO₂/KH570 and SiO₂/KH570/MTES were obtained by dip-coating on PE ETT. The silicone-modified antimicrobial solution of TEOS/KH570/MTES/Ag-SiO₂ was prepared by shear mixing Ag-SiO₂ with the silicon compound solutions of SiO₂/KH570/MTES.

Figure 2 shows the flow diagram of the preparation of the silicone-modified antimicrobial PE ETT. The PE ETT were treated by corona discharging, then dipped into the solution of TEOS/KH570/MTES/Ag-SiO₂, finally baked at 80°C~100°C for 1 h to obtain the antimicrobial PE ETT with high transmittance and silicone-modified antimicrobial PE ETT.

Characterization of the materials

The hardness and adhesion of all the films were measured by pencil hardness tester and Squaring-off, respectively. Infrared spectrums (IR) of two gels of TEOS/KH570/MTES and TEOS/KH570/MTES/Ag-SiO₂ were performed on IR spectrometer. The micrograph and transmittance of the resulting films were measured by scanning electronic microscope (SEM) and a UV spectrometer. The antimicrobial property was evaluated by the method described as GBT 21866-2008 Test method and effect for antibacterial capability of paints film, and the precipitation of Ag⁺ ion was measured by inductively coupled plasma mass spectrometry (ICP-MS). The biosecurity used in the field of medical materials was evaluated by Pyrogen test, hemolysis test and oral mucous irritation test.

Results

The hardness and adhesion of the films and the stability of the solutions

Organosilicone with various active groups like Si-OH, R1-COO-R, Si-O-Si, etc, is especially preferred to enhance the adhesion of hybrid films on many substrates. KH570 with long chain is an excellent organic modified silicone, which can improve the flexibility of films, and MTES with two stiff groups of CH₃ gives the film an improved hardness and is considered to have influence on reducing the interface energy to prevent protein adhesion. So we investigated the ratio of TEOS, KH570 and MTES in order to make better performance films and solutions. The hardness and adhesion of the obtained films including TEOS/KH570, TEOS/KH570/MTES and TEOS/KH570/MTES/Ag-SiO₂, and the storage stability of their solutions are showed in Table 1. The result silicon solution of TEOS/KH570 was flocculated and their film has worse adhesion when the ratio of TEOS and KH570 is 18:3. With increasing the KH570 content, the TEOS/KH570 films exhibit strong adhesion, and their solutions have good storage stability at room temperature for 72 h, but the hardness reduce from 7H to 1H. The films with TEOS/KH570 ratio of 15:6 and 13:8 exhibited desirable hardness of 3H and 5H and excellent adhesion, were investigated further to prepare a higher-quality basic film for the antimicrobial film on PE ETT. MTES used to prepared TEOS/KH570/MTES films can exactly enhance the hardness of the films but sacrifice the adhesion property. So it is especially desirable to keep TEOS/KH570/MTES at the ratios of 15:6:1 and 13:8:1 to prepared the silicone-modified antimicrobial solution by mixing different content of Ag-SiO₂. The TEOS/KH570/MTES/Ag-SiO₂ films with lower Ag-SiO₂ content performed high hardness and strong adhesion, and their solutions are stable when the ratio of TEOS/KH570:Ag-SiO₂ is 15:6:1:0.3, 15:6:1:0.8, 13:8:1:0.3 and 13:8:1:0.8, the solution become unstable and sediment can be observed with too much more Ag-SiO₂ because of the agglomerating of nanoparticles.

Constituent phase of the films

The IR spectrum of resulting films of TEOS/KH570/MTES (15:6:1) and TEOS/KH570/MTES/Ag-SiO₂ (15:6:1:0.8) are shown in Figure 3(a) and 3(b), respectively. Obviously, the IR spectrums are similar and the analyses are gave in Table 2. The broad peak at 3440 cm⁻¹ was assigned to O-H bonds, the strength of that peak in (b) is stronger, because of much more Si-OH groups on the surface of Ag-SiO₂. The presence of a strong peak between 1000 cm⁻¹ and 1110 cm⁻¹ was attributed to
the stretching vibration of Si-OH or Si-O-Si group, which indicated that TEOS, KH570 and MTES had been reacted sufficiently. The C-H stretching peak at 2850~3000 cm\(^{-1}\) in the spectrum can be an indication of Si-OC\(_2\)H\(_5\) and -CH\(_3\) groups mainly from KH570 and MTES. The IR spectrums reflect that TEOS/KH570/MTES and Ag-SiO\(_2\) have well compatibility, which is consistent with the SEM analysis.

Surface morphology of the films

The surface of coatings is uniform and flat in Figure 4(a) without granule and phase separation. Meanwhile, Ag antibacterial agent content is little in Figure 4(b) coatings imbedded by silicone network polymer, it is not found Ag antibacterial agent particles and the surface is flat. It shows SEM micrographs of the films of TEOS/KH570/MTES and TEOS/KH570/MTES/Ag-SiO\(_2\), which were prepared by dip-coating the solution on ETT and baked at 80\(^\circ\)C for 1 h. The films is smooth and crack-free, the SEM results show that the films are uniform and amorphous, there is no significant inorganic domain size shown in the two series of films. It indicates that there is a crosslinking of silica sol with alkoxysilanes, and Ag-SiO\(_2\) has been homogeneously dispersed in TEOS/KH570/MTES/Ag-SiO\(_2\) film.

Transmittance of the films

Figure 5 shows the optical transmittance spectra of ETT (a), ETT coated with TEOS/KH570/MTES film (b) and ETT with TEOS/KH570/MTES/Ag-SiO\(_2\) film (c). The PE ETTs before or after coating with the solution maintained the high transmittance, which are 87.55%, 87.45% and 87.39%, respectively. There is no absorption can be observed in the figure, which indicates that nanoparticles have been homogeneously dispersed in the films, all the films on ETT’s surfaces are homogeneous, and the condensation reaction between the hydroxyl groups of the hydrolysates of the alkoxysilanes and the hydroxyl groups on the surface of the colloidal silica from SiO\(_2\) sol and Ag-SiO\(_2\) have occurred. It means that antibacterial coating can increase transmittance which keeps the original appearance of ETT and improves its view definition in the application process, convenient for clinical observation.

Antimicrobial property

The antimicrobial property of TEOS/KH570/MTES/Ag-SiO\(_2\) films

Samples	Ratio (ml/ml)	Ag (ml%)	Hardness (H)	Adhesion	Stability
TEOS/KH570	18:3	0	7H	1	Gel
	15:6	0	5H	0	√
	13:8	0	3H	0	√
	11:10	0	2H	0	√
	8:13	0	1H	0	√
TEOS/KH570/MTES	15:6:1	0	5H	0	√
	15:6:3	0	6H	4	√
	15:6:5	0	6H	5	√
	13:8:1	0	3H	0	√
	13:8:3	0	4H	3	√
	13:8:5	0	4H	5	√
TEOS/KH570/MTES/Ag-SiO\(_2\)	15:6:1:0.3	1.3	5H	0	√
	15:6:1:0.8	3.5	5H	0	√
	15:6:1:1.5	6.4	5H	0	Deposit
	13:8:1:0.3	1.3	3H	0	√
	13:8:1:0.8	3.5	3H	0	√
	13:8:1:1.5	6.4	3H	0	Deposit

Note: (1) Films’ thickness is between 200 and 400 nm; (2) Hardness test: ISO15184-2012; (3) Adhesion test: ISO2409-2007; (4) Storage stability test: samples to stand at room temperature for 72 h to observe whether flocculation or sediment.

Table 1: The hardness and adhesion of the films and the storage stability of the solutions.

Samples	Wavenumber, cm\(^{-1}\)	groups	
Fig. (a)	3446	Si-OH	
	2850~3000	Si-OC\(_2\)H\(_5\),-CH\(_3\),C-H	
	1740	-C=O	-O-R
	1400	-CH\(_3\)	
	1110~1000	Si-O-Si	
Fig. (b)	3446	Si-OH	
	2850~3000	Si-OC\(_2\)H\(_5\),-CH\(_3\),C-H	
	1740	-C=O	-O-R
	1400	-CH\(_3\)	
	1110~1000	Si-O-Si	

Table 2: Analyses of the infrared spectrum.
was dipped in hot water for 24 h, then the extraction of Ag+ ion was measured by ICP-MS, and the results are showed in the Table 4. The Ag+ ion concentration of the deionized water and the antimicrobial solution was 0.002 µg/L and 0.005 µg/L, respectively. We can see that silver in the antimicrobial solution is about 10000 times more than deionized water. But, in the sample A and sample B, the Ag+ ion concentration are 0.005 µg/L and 0.009 µg/L, about 10000 times more than deionized water. The solution diluted 1000 times with deionized water is sterilized by measuring the sterilizing rate. The sterilizing rate increased non-linear with the increasing of Ag-SiO2 content. When the ratio of Ag-SiO2 is 2.6%, the sterilizing rate reaches 93.3%, but there is not obvious change for the sterilizing rate by increasing Ag-SiO2 content. The results indicated that the content of silver is an important factor which influences the antimicrobial properties of the obtained films and it is desirable to contain at least 2.6% by volume or more.

Analysis for the stabilities of Ag+ ion

In order to research the stability of silver, the antimicrobial film was dipped in hot water for 24 h, then the extraction of Ag+ ion was measured by ICP-MS, and the results are showed in the Table 4. The Ag+ ion concentration of the deionized water and the antimicrobial solution was 0.002 µg/L and 0.005 µg/L, respectively. We can see that silver in the antimicrobial solution is about 10000 times more than deionized water. But, in the sample A and sample B, the Ag+ ion concentration are 0.005 µg/L and 0.009 µg/L, about 10000 times more than deionized water. The solution diluted 1000 times with deionized water is sterilized by measuring the sterilizing rate. The sterilizing rate increased non-linear with the increasing of Ag-SiO2 content. When the ratio of Ag-SiO2 is 2.6%, the sterilizing rate reaches 93.3%, but there is not obvious change for the sterilizing rate by increasing Ag-SiO2 content. The results indicated that the content of silver is an important factor which influences the antimicrobial properties of the obtained films and it is desirable to contain at least 2.6% by volume or more.

Analysis for the stabilities of Ag+ ion

In order to research the stability of silver, the antimicrobial film was dipped in hot water for 24 h, then the extraction of Ag+ ion was measured by ICP-MS, and the results are showed in the Table 4. The Ag+ ion concentration of the deionized water and the antimicrobial solution was 0.002 µg/L and 0.005 µg/L, respectively. We can see that silver in the antimicrobial solution is about 10000 times more than deionized water. But, in the sample A and sample B, the Ag+ ion concentration are 0.005 µg/L and 0.009 µg/L, about 10000 times more than deionized water. The solution diluted 1000 times with deionized water is sterilized by measuring the sterilizing rate. The sterilizing rate increased non-linear with the increasing of Ag-SiO2 content. When the ratio of Ag-SiO2 is 2.6%, the sterilizing rate reaches 93.3%, but there is not obvious change for the sterilizing rate by increasing Ag-SiO2 content. The results indicated that the content of silver is an important factor which influences the antimicrobial properties of the obtained films and it is desirable to contain at least 2.6% by volume or more.

Table 3: The antimicrobial property of the silicone-modified antimicrobial PE ETT with or without Ag-SiO2

Samples	Ratio (m/mL)	Ag (m/mol)	Sterilizing Rate (%)
PE ETT	—	0	0
TEOS/KH570/MTES	15:6:1	0	0
TEOS/KH570/MTES/Ag-SiO2	15:6:1:0.2	0.9	71.3%
	15:6:1:0.4	1.8	71%
	15:6:1:0.6	2.6	93.5%
	15:6:1:0.8	2.5	93.7%
	15:6:1:1.0	4.3	93.3%

Table 4: The extraction of Ag+ ion of the silicone-modified antimicrobial PE ETT

Sample	Blank ETT	silicone-modified antimicrobial PE ETT with ratio of 2.6% Ag-SiO2
Tafter°C	0 h	0.002
	0.5 h	0.009
	1.0 h	0.0157
	1.5 h	0.0170
	2.0 h	0.0110
	2.5 h	0.8097
	3.0 h	0.7512
	3.5 h	0.0157

Table 5: The results of pyrogen test of blank ETT and silicone-modified antimicrobial PE ETT with ratio of 2.6% Ag-SiO2

Sample	H1	H2	H3	H4
A	0.0157	0.0170	0.0110	0.8097
H0%	0.5885	0.7512		

Table 6: The hemolytic ratio of blank ETT and silicone-modified antimicrobial PE ETT with ratio of 2.6% Ag-SiO2

Sample	H1	H2	H3	H4
A	0.0157	0.0170	0.0110	0.8097
H0%	0.5885	0.7512		

Biosecurity

Pyrogen test, hemolysis test and oral mucous irritation test are conducted for the blank ETT and the silicone-modified antimicrobial PE ETT with ratio of 2.6% Ag-SiO2 in order to investigate security of the silicone-modified antimicrobial PE ETT with ratio of 2.6% Ag-SiO2. The results of pyrogen test are showed as data in Table 5. The total rose temperature is 0.7°C for blank ETT and 0.03°C for the silicone-modified antimicrobial PE ETT with ratio of 2.6% Ag-SiO2, which are fit for pyrogen inspection range regulated in the standard of Chinese Pharmacopoeia (Version 2010). It is indicated no pyrogenic effect caused by materials for the silicone-modified antimicrobial PE ETT with ratio of 2.6% Ag-SiO2 and better cohesion between antibacterial coatings and ETT which is not easy for dipping and precipitation. The
The golden hamsters oral mucous irritation test of the blank ETT and the silicone-modified antimicrobial PE ETT with ratio of 2.6% Ag-SiO$_2$ are shown in Figure 6. The extracts of the blank ETT and the silicone-modified antimicrobial PE ETT with ratio of 2.6% Ag-SiO$_2$ showed no irritation reactions to golden hamsters oral mucous. Both the right and left sides of oral mucosal were epithelial integrity, they had no proliferation of epithelial cells, flattened, degeneration or necrosis, submucosal had no congestion, edema, inflammatory infiltration and necrosis and or other pathological changes. The two groups' oral mucosal tissue reactions of acute exposure were scored 0, showing no irritation.

Above all, the silicone-modified antimicrobial PE ETT with ratio of 2.6% Ag-SiO$_2$ is fit for biosecurity use requirement for biological materials.

Discussion

In this paper, the silicon compound of SiO$_2$/KH570 and SiO$_2$/

...
KH570/MTES prepared through the sol-gel process with TEOS as inorganic silicon source, KH570 and MTES as the organicsilicon source, were used to prepare series silicone-modified antimicrobial films on conventional PE ETT. By researching and analysing the characterization of antimicrobial PE ETT, we determine the proportion of the TEOS/KH570/MTES/Ag-SiO₂ (15:6:1:0.6~1.0) films with ratio at least 2.6% to prepare silicone-modified antimicrobial PE ETT. The silicone-modified antimicrobial PE ETT coated by TEOS/ KH570/MTES/Ag-SiO₂, (15:6:1:0.6~1.0) films with ratio at least 2.6% has the high transmittance of above 87%, high hardness of 5H, and strong adhesion, exhibits excellent antimicrobial property with the sterilization rate up to 93.5%. What’s more, it is proven in the pyrogen test, hemolysis test and oral mucous irritation test that the silicone-modified antimicrobial PE ETT has excellent biocompatibility and biosecurity of requirement for biological materials and equipped with excellent physical and biological properties. It is hoped to be used in the field of coated materials for medical materials or medical equipment to improve infection situation in the hospital.

References

1. Pinciroli R, Mietto C, Berra L (2013) Respiratory therapy device modifications to prevent ventilator-associated pneumonia. Curr Opin Infect Dis 26: 175-183.
2. O'Grady NP, Murray PR, Arnes N (2012) Preventing ventilator-associated pneumonia: does the evidence support the practice? JAMA 307: 2534-2539.
3. Geilich BM, Webster TJ (2013) Reduced adhesion of Staphylococcus aureus to ZnO/PVC nanocomposites. Int J Nanomedicine 8: 1177-1184.
4. Lin H, Xu Z, Wang X, Long J, Su W, et al. (2008) Photocatalytic and antibacterial properties of medical-grade PVC material coated with TiO₂ film. J Biomed Mater Res B Appl Biomater 87: 425-431.
5. Yao Y, Ohiko Y, Sekiguchi Y, Fujishima A, Kubota Y (2008) Self-sterilization using silicone catheters coated with Ag and TiO₂ nanocomposite thin film. J Biomed Mater Res B Appl Biomater 85: 453-460.
6. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295: 1014-1017.
7. Politano AD, Campbell KT, Rosenberger LH, Sawyer RG (2013) Use of silver in the prevention and treatment of infections: silver review. Surg Infect (Larchmt) 14: 8-20.
8. Xu YF (2012) Anti-bacterial and adhesion ability of antibacterial biomaterials. Chinese Journal of Tissue Engineering Research 16: 9671-9678.
9. Hui Yang, Yan Liu, Qianhong Shen. (2012) Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties. Journal of Materials Chemistry 22: 24132-24138.
10. Chan-Hee Park, Leonard D Tijing, Cheol Sang Kim, Michael Tom G Ruelo (2012) One-step fabrication of antibacterial (silver nanoparticles/poly(ethylene oxide))-Polyurethane bicomponent hybrid nanofibrous mat by dual-spinneret electrospinning. Materials Chemistry and Physics 134: 557-561.
11. An J, Ji Z, Wang D, Luo Q, Li X (2014) Preparation and characterization of uniform-sized chitosan/silver microspheres with antibacterial activities. Mater Sci Eng C Mater Biol Appl 36: 33-41.
12. Wang F, Luo ZK, Qing SG, Qiu Q, Li RF. (2009) Sol-gel derived titania hybrid thin films with refractive index. Journal of Alloys and Compounds 486: 521-526.
13. Zhang HB, Wang JY, Li LK, Song Y, Zhao MS et al. (2008) Synthesis of liquid polysilakisiquioxane resins and properties of cured films. Thin Solid Films 517: 857-862.