Identification of Cryptosporidium in Environmental Sample using Nested PCR-RFLP and DNA Sequencing

Sangjung Park†, Hyanghee Jeong*

National Institute of Environmental Research
Nakdong River Basin Environmental Office

(Received 18 September 2008, Revised 29 October 2008, Accepted 30 October 2008)

Abstract
In order to identify various Cryptosporidium species in environment, nested PCR-RFLP and DNA sequencing method were used. The sensitivity of nested PCR-RFLP based on 18s rRNA gene was shown to 1 oocyst. Therefore, we applied nested PCR-RFLP method to environmental samples. As a result, only 4 samples out of 8 samples confirmed as Cryptosporidium parvum by standard method of Cryptosporidium were identified as Cryptosporidium parvum by nested PCR-RFLP and DNA sequencing method. The rest of 4 samples among 8 samples were identified as Cryptosporidium muris, Cryptosporidium bailey. Therefore, in addition to standard method of Cryptosporidium, supplementary verification through nested PCR-RFLP and DNA sequencing should be needed to give more accurate information about risk of Cryptosporidium.

Keywords: Cryptosporidium bailey, Cryptosporidium muris, Cryptosporidium parvum, DNA Sequencing, Nested PCR-RFLP

1. 서 론

크립토스포리디움은 사람이나 동물에게 장염을 일으키는 수인성 병원성 기생충으로(Carey et al., 2004), 현재까지 알려진 종류로는 18종류가 있다(Xiao and Fayer, 2008).

그 중 사람에게 감염성을 나타내는 종은 C. parvum, C. hominis 등이며, 최근에는 침번조(turkey)를 감염시키는 것으로 알려져 있던 C. meleagridis 또한 사람의 분변에서 발견됨(Gatei et al., 2003; Guyot et al., 2001; Pedraza-Diaz et al., 2000; Xiao et al., 2001)에 따라 사실상 사람에게 감염성이 있는지 아니면 단순히 섭취에 따른 배설로 인한 검출인지 여부가 의문으로 남아 있는 상태이다(Xiao and Fayer, 2008).

크립토스포리디움은 염소내성이 매우 강하여 일반적인 정수처리과정 중의 염소소독으로는 제어되지 않아 미국, 일본 등 선진국에서 크립토스포리디움이 아닌 대형 오염사고가 자주 발생하고 있다(金子光美, 1998; Mackenzie et al., 1994).

국내에서도 병원성 미생물에 대한 관심이 높아 2004년부터 여러육량이 5만톤/일 이상의 대형 정수장 수산물수를 대상으로 크립토스포리디움에 대한 분포실태조사를 실시하고 있는데, 이 때의 분석방법은 면역형광염색법으로 크립토스포리디움을 형광염색한 후, Differential interference contrast (DIC)를 이용, 세포의 내부구조를 확인한다. 그러나, 현미경에 의한 형태적 유안관찰로는 크립토스포리디움의 정확한 종의 종류를 확인하기는 매우 어려워, 사람에게 감염성을 나타내지 않는 크립토스포리디움의 종을 C. parvum으로 판정하여 잘못된 위생을 불 수 있는 질병이 있다. 또한, 국내 하천에 존재하는 크립토스포리디움의 종류에 대해선 알려진 정보가 거의 없는 상태이다.

따라서, 본 연구에서는 nested PCR-RFLP 및 DNA sequencing을 이용하여 국내 하천에 존재하는 크립토스포리디움의 종류를 확인하고자 하였으며, 이들 방법을 이용한 동정의 가능성에 대해 알아보고자 하였다.

2. 연구방법

2.1. 시료채취

환경시료에 존재하는 크립토스포리디움의 종을 동정하기 위하여 크립토스포리디움이 많이 오염된 지점을 찾아야 했다. 따라서, 하수처리장 반유수 1~4 및 축산폐수처리장 방유수 5, 웅집천 후 지천 6 등 6개 지천, 비교적 오염된 하천수 및 지천 7~11 등 11개 지천에서 시료를 채취하였으며, 시료채취는 각각 10 L씩 2개를 채취하였다.
그리고 ㈜ 시료는 크립토스포리디움으로 감염된 환자의 가검출에서 채취하였다(Fig. 1).

2.2. 시료분석
각각의 시료 10 L를 원생동물 표준시험방법(환경부, 2004)에 따라, 장양관프를 사용하여 2 L/min의 유속으로 조절하면서 염중필터에 골고, 농축한 후 anti-Cryptosporidium 자기체를 이용, 면역자장분리하였다. 분리된 액을 웰슬라이드에서 고정시킨 후, 크립토스프라디움 단일형성을 이용한 세포벽 형광염색(Fluorescein isothiocyanate; FITC), 4',6-diamidino-2-phenylindole(DAPI)에 의한핵염색, 그리고 DIC을 이용하여 세포의 내부구조를 관찰하여 크립토스프라디움을 정량하였다.

① 시료는 부유물질의 농도가 너무 높아서 염중필터로 여과하지 않고 150 mL을 원심분리관에 넣어 원심분리 후 면역자장분리하고 형광염색하였으며, ② 시료는 바로 웰슬라이드에 고정 후 형광염색에 정량하였으나, 개체수가 너무 많아서 액체상태에서 형광염색 후 Haemocytometer를 이용하여 정량하였다.
시료는 각각 2개씩 준비하여 1개는 형광현미경으로 관찰, 정량하는데 사용하였고, 다른 1개는 nested PCR에 사용하였다.

2.3. nested PCR-RFLP
환경시료로부터 얻어진 시료를 튜브에 넣고 원심분리 후 상층액을 버리고 25% chelex 100을 50 μL 넣은 후 액체절 소(-80°C)에서 1분, 100°C에서 1분간 5회 반복하여 세포를 파괴시켰다. 56°C에서 30분간 반응시킨 후 15,000 rpm에서 5분간 원심분리하였다. 상층액을 가지고 크립토스포리디움 18s rRNA 유전자를 대상으로 nested PCR을 수행하였다. 1차 PCR에서는 primer (0.4 μM), 1×PCR buffer, MgCl2 (5.5 mM), dNTP (200 μM), Taq polymerase (7.5 U)를 반응시켰으며, 2차 PCR에서는 primer (0.8 μM), 1×PCR buffer, MgCl2 (5.5 mM), dNTP (200 μM), Taq polymerase (2.5 U)를 반응시켰다. 이 때 사용된 primer의 염기서열 및 PCR 조건은 Table 1과 같다.

![Fig. 1. Sampling sites of this study.](image-url)

| Table 1. Nested PCR primer and condition used in this study |
|-----------------|-----------------|-----------------|
| Primer | Base sequence | PCR condition |
| 1st Forward | 5'-TTCTAGAGCTAATACATGCG-3' | Initial denaturation : 95°C, 5 min |
| Backward | 5'-CCCATTTTCTCGAAACAGGA-3' | Denaturation : 94°C, 1 min |
| Annealing | 94°C, 1 min |
| Extension | 72°C, 1 min (30 cycles) |
| Final extension | 72°C, 7 min |
| 2nd Forward | 5'-GGAAGGTTGTATTTATTAGATAAG-3' | Initial denaturation : 95°C, 5 min |
| Backward | 5'-AAGGAGTAAGGAACAACCTCCA-3' | Denaturation : 94°C, 1 min |
| Annealing | 60°C, 30 sec |
| Extension | 72°C, 50 sec (17 cycles) |
| Final extension | 72°C, 7 min |
Nested PCR-RFLP 및 DNA Sequencing을 이용한 환경시료에서의 크립토스포리디움 동정

Table 2. Number of Cryptosporidium detected in environment samples

Sample	Number of Cryptosporidium /10 L
① Effluent of sewage treatment plant in Yongin	2
② Effluent of sewage treatment plant in Yongin	0
③ Effluent of sewage treatment plant in Goksung	0
④ Effluent of sewage treatment plant in Incheon	0
⑤ Effluent of animal wastewater treatment plant	0
⑥ Intermediate stage of animal wastewater treatment plant	506/150 mL
⑦ Jungrang stream	1
⑧ Wangsuk stream	0
⑨ Small stream in Yangpyung	19
⑩ Small stream in Yangpyung	0
⑪ Downstream of Kyungan	2
⑫ Upstream of Kyungan	0
⑬ Downstream of Myochun	6
⑭ Upstream of Myochun	0
⑮ Mukhyun stream	3
⑯ Tan stream	0
⑰ Anyang stream	0
⑱ Sample from patient infected Cryptosporidium	2.56×10^7/10 mL

RFLP 반응을 위한 조성은 2차 PCR 산물 20 μL, 10x buffer 5 μL, BSA(10 mg/mL) 0.5 μL, 초온수 22.5 μL를 넣고, 마지막에 제한효소로 10 U/μL의 Ssp I (Promega) 또는 Vsp I (Promega) 2 μL를 넣고 37°C, 4시간 반응시켰다. 본드의 확인을 위하여 0.5 μg/mL가 포함된 2% agarose gel 전기영동하였다.

2.4. DNA sequencing

위에서 얻어진 2차 PCR산물 20 μL를 취하여 DNA sequencing을 의뢰하여 분석하였다.

3. 결과 및 고찰

자연환경에서 크립토스포리디움을 검출하기 위하여 비교적 크립토스포리디움이 많이 검출되어질 것으로 예상되는 지점을 선택하여 조사하였다(Table 2).

그 결과 환경시료 중 하수처리장 방류수 1개 지점에서 10 L 중 2개체가 검출되었으나, 대부분의 하수처리장 및 축산폐수처리장의 방류수에서는 크립토스포리디움 난포낭이 검출되지 않아서, 축산폐수처리장의 처리중간단계인 응집침전 후 지점에서 시료를 채취하여 분석하였다. 응집침전 후 지점은 부유물질이 너무 많아서 10 L를 캡슐필터에 여과하지 않고 150 mL를 원심분리농축하여 형광염색 후 형광현미경으로 관찰한 결과, 506개의 크립토스포리디움 난포낭이 발견되었으나, 대다수로 껍질상태의 세포였으며, 또한 세포벽이 심하게 파괴된 형태로 존재하여 정확하게 크립토스포리디움으로 판단하기 어려웠으나, 난포낭의 크기와 세포벽 주위가 형광염색되어 있었던 점 등 여러 가지를 고려하여 크립토스포리디움으로 판정하였다.

하천수에서는 중랑천에서 1개체/10 L, 양평에 있는 소축 사 옆의 실개천에서 1개체/10 L, 경안천 하류에서 2개체/10 L, 조천천 하류에서 6개체/10 L, 묘천천 하류에서 2개체/10 L의 난포낭이 검출되었다.

크립토스포리디움에 감염된 환자로부터 추출된 시료에는 2.56×10^7 개체/10 mL을 나타내었다.

환경시료에서 검출된 크립토스포리디움의 종을 확인하기 위하여 nested PCR-RFLP 분석을 실시하였다.

Cryptosporidium parvum (waterborne 제품)을 Haemocytometer를 이용하여 세포수를 정량한 다음, 세포수가 1×10^4, 1×10^3, 1×10^2, 1×10, 1개가 되도록 단계별 희석하였다. 희석된 시료를 크립토스포리디움의 18s rRNA 유전자에 대해 nested PCR을 수행한 결과, 1개의 세포에서도 nested PCR의 2nd PCR 결과가 양성으로 나왔으며(lane 8~12), 생성된 2nd PCR산물을 가지고 제한효소인 Vsp I를 처리한 결과, 2개의 특정한 밴드가 확인되었으며(lane 14), Ssp I를 처리한 결과 3개의 특정한 밴드가 확인되어(lane 15), 크립토스포리디움이 1개체로 존재하는 환경시료에 대해서도 nested PCR-RFLP로 종 동정이 가능함을 확인할 수 있었다.

Cryptosporidium에 대해 PCR-RFLP로 종 동정한 초기의 연구결과를 보면, Webster 등(1993) 및 Awad-El-Kariem 등(1994)이 시도하였으나, 이들의 연구결과는 Cryptosporidium parvum을 C. muris와 C. baileyi로부터 종구분은 가능하였으나, C. muris와 C. baileyi간에는 서로 동정을 할 수 없었으며, Xigang 등(1996)이 본 연구와 동일한 유전자인 18s rRNA 유전자를 대상으로 제한효소 Dra I와 Vsp I를 사용하여 PCR-RFLP 분석으로 Cryptosporidium parvum, C. muris 및 C. baileyi를 종 동정하는데 성공하였다. 그러나, 이 결과는 환경시료를 대상으로 한 것이 아니고, 다양
표준균주를 대상으로 한 연구결과로 몇 개의 난포낭까지 분석가능한지에 대해서는 밝히지 못하였다.

이후, Paul and Christopher(2001)이 정수장 여과수에 크립토스포리디움 난포낭을 접종한 후 nested PCR을 이용하여 민감도를 측정한 결과 8개의 난포낭까지 검출이 가능하였으며, 1개의 난포낭에서도 5회 반복 실험에서 2회가 검출되었다고 보고하였다. 또한, Kato 등(2003)은 분원성 시료에 크립토스포리디움 난포낭을 접종한 후 세포벽 단백질 유전자(Cryptosporidium oocyst wall protein gene)를 대상으로 한 nested PCR을 실험한 결과 1개의 난포낭에서 4회 반복 실험 중 3회가 검출이 가능하였다.

본 연구결과에서도 한 개의 난포낭에서 양성으로 나타난 민감도가 매우 높은 것으로 나타났는데, 연구방법에서 Paul and Christopher(2001)과 Kato 등(2003)과의 차이점은 이들 이 난포낭을 환경시료(정수장 여과수 및 분원성 시료)에 크립토스포리디움을 접종한 반면에, 본 연구에서는 haemocytometer를 이용하여 크립토스포리디움 원생을 10회 계수한 후 평균을 낼 다음 환경시료로 정량하였고, 또한 실험시 에제는 환경시료가 아니라 초순수(reagent grade water)로 희석하였으며, 실제 환경시료에서의 민감도는 이보다 다소 낮거나, Paul and Christopher(2001)과 Kato 등(2003)의 결과와 유사한 민감도를 나타낼 것으로 추정된다.

따라서, 한 개의 난포낭까지 검출하여야 하는 정수장의 정수 및 여과수 등의 모니터링에 적용하기에는 다소 무리가 있지만, 비교적 오염도가 높은 원수 및 오염원의 모니터링에 적용하기에 nested PCR 분석이 가능할 것으로 판단된다.

그러므로, 환경시료를 대상으로 nested PCR-RFLP을 수행한 후 밸트 레터로 확인하였다(Fig. 3). 그 결과 크립토스포리디움 표준분석방법으로 양성시료로 판정된 1, 6, 7, 9, 11, 13, 15, 18 등 8개 시료 중 1, 4, 6, 8, 11 등 4개 시료는 사람에게 감염성을 나타내는 Cryptosporidium parvum인 것으로로 확인되었으며, 이 중 1, 4, 6 시료는 전형적인 Cryptosporidium parvum 밸트 이외 다른 밸트가 나타나 Cryptosporidium parvum 이외 다른 종도 혼재되어있는 것으로 추측된다.

그러나, Cryptosporidium parvum 이외 비교할 만한 다른 크립토스포리디움 종의 표준균주가 없으므로 정확한 동정을 위해서 2차 PCR 산물을 가지고 DNA Sequencing을 의뢰하여 동정하였다. 종 동정 결과는 Table 3과 같이 나타났다.

PCR-RFLP에서 Cryptosporidium parvum인 것으로 확인된 1, 4, 6, 8 시료는 DNA sequencing 결과에서도 동일하게 나타났다. 그러나, 나머지 7, 9, 11, 13 3개 시료는 원생동물 표준시험방법에 의해 각각 1개체/10L, 19개체/10L, 6개체/10L로 나타났으나 DNA sequencing 결과 각각 Cryptosporidium muris, Cryptosporidium baileyi, Cryptosporidium muris 등이 동일하게 확인되었으며, 원생동물 표준시험방법으로 많은 개체수를 나타내었던 6 시료는 DNA sequencing 결과에서도 완전히 동정되지 않았으나, 다른 밸트에서 검출된 Cryptosporidium parvum, Cryptosporidium baileyi, Cryptosporidium muris와는 다른 밸트 패턴을 나타내는 것으로 보아 이와는 다른 종일 가능성이 큰 것으로 판단되었다.

한편, 수수 등 물 환경시료에 존재하는 크립토스포리디움의 종에 대한 선행 연구결과를 보면, Atsushi 등(2006)이 하수(sewage)에서 semi-nested PCR 및 direct sequencing을
Table 3. Identification of Cryptosporidium in environmental samples using DNA Sequencing

Sample	Species
1	Cryptosporidium parvum (human genotype)
2	-
3	-
4	Cryptosporidium muris (calf genotype)
5	-
6	Cryptosporidium sp.
7	Cryptosporidium muris (calf genotype)
8	-
9	Cryptosporidium baileyi (chicken genotype)
10	-
11	Cryptosporidium parvum, meleagris
12	-
13	Cryptosporidium muris (calf genotype)
14	-
15	Cryptosporidium parvum
16	Cryptosporidium baileyi (chicken genotype)
17	Cryptosporidium parvum
18	Cryptosporidium parvum

비정상적 성능을 보인 결과, C. parvum genotype 1, C. parvum genotype 2, C. meleagris 등이 주요 종으로 동정됨을 보고하였으며, 국내에서는 조은주 등(2006)이 PCR-RFLP를 이용하여 하천수에서 C. parvum과 C. hominis를 종 동정하였음을 보고한 것이 대표적으로 물(2006)이 이용하여 크립토스포리디움을 종 동정한 결과이다. 또한 이들은 표준분석방법에서는 양성으로 판정된 시료에 대해서는 표준분석방법에서 양성으로 판정된 시료에 대해서는 표준분석방법에서 양성으로 판정된 시료에서 사람에게 감염성을 나타내는 크립토스포리디움에 대한 보다 정확한 판정을 위하여 nested PCR-RFLP 및 DNA sequencing 방법을 수행하는 것이 필요하다.

4. 결 론

nested PCR-RFLP 및 DNA sequencing을 이용하여 국내 하천에 존재하는 크립토스포리디움 종을 동정할 수 있는 가능성을 모색하고자 하였으며, 이 방법을 이용하여 실제 하천에 존재하는 크립토스포리디움의 종을 동정하였다.

18s rRNA 유전자에 대한 표준기준을 대상으로 nested PCR-RFLP를 분석한 결과, 1개체의 반포하였거나 검출가능하되, 따라서 이 방법을 환경시료에 적용하였다.

수치 및 축산기수 방수 5개 지점, 축산기수 용접점전 후 1개 지점, 하천수 및 오염지천 등 11개 지점, 환자와의 가 검물 1개 시료 등을 대상으로 원생동물을 표준시험방법에 의해 정량한 결과, 8개 지점에서 양성이 나왔으며, 환경 시료에서 검출된 크립토스포리디움의 종을 확인하기 위하여 nested PCR-RFLP 및 DNA sequencing 방법을 이용하여 종을 동정하였다. 종 동정 결과, 현재의 크립토스포리디움 표준분석방법으로 양성시료로 판정된 8개의 시료 중 4개 시료에서 사람에게 감염성을 나타내는 Cryptosporidium parvum 종으로 확인되었으며, 나머지 4개 시료는 Cryptosporidium muris, Cryptosporidium baileyi 등인 것으로 확인되었다.

따라서, 크립토스포리디움의 18s rRNA 유전자에 대한 nested PCR 방법은 민감도가 우수하여 원수 및 오염물 등 환경시료에 소량 존재하는 크립토스포리디움의 검출에 적용가능하며, 현재의 원생동물 표준시험방법인 형광염색후 윤해강류로는 잘못된 위해성에 대한 정보를 줄 수 있으며 확인되었으며, 크립토스포리디움에 대한 더 정확한 위해성 정보를 추적하기 위해서는 표준분석방법에서 양성으로 판정된 시료에 대해서는 nested PCR-RFLP 및 DNA sequencing 방법을 수행하는 것이 필요하다.

참고문헌

조은주, 변승헌, 이목영, 한선희(2006). PCR-RFLP을 이용한 원수 및 오염물 중의 Cryptosporidium parvum 및 Cryptosporidium hominis 검출. 공동연구자학술회의 연구논문집, 한국물환경학회 - 대한상하수도협회 D-8.

한선희(2004). 정수처리에 관한 기준. 金了光美(1998). 原蟲類やその他の病原性微生物の検出とそ の除去技術. 用水と廃水, pp. 32-46.

Atsushi, H., Hitomi, S., Shigemitsu, M., and Tsuyoshi, H. (2004). Genotyping of single Cryptosporidium oocysts in sewage by semi-nested PCR and direct sequencing. Water research, 40, pp. 2527-2532.

Awad-El-Kariem, F. M., Warhurst, D. C., and McDonald, V. (1994). Detection and species identification of Cryptosporidium oocysts using a system based on PCR and endonuclease restriction. Parasitology, 109, pp. 19-22.

Carey, C. M., Lee, H., and Trevors, J. T. (2004). Biology, persistence and detection of Cryptosporidium parvum and Cryptosporidium hominis oocyst. Water Research, 38, pp. 818-862.

Gatei, W., Greensill, J., Ashford, R. W., Cuevas, L. E., Parry, C. M., Cunliffe, N. A., Beeching, N. J., and Hart, C. A. (2003). Molecular analysis of the 18S rRNA gene of Cryptosporidium parasites from patients with or without human immunodeficiency virus infections living in Kenya, Malawi, Brazil, the UK, and Vietnam. J. Clin. Microbiol.,

Journal of Korean Society of Water Quality, Vol. 24, No. 6, 2008
41, pp. 1458-1462.

Guyot, K., Follet-Dumoulin, A., Leclercq, E., Sarfati, C., Rabodoriniza, M., Nevez, G., Cailliez, J. C., Canus, D., and Dei-Cas, E. (2001). Molecular characterization of Cryptosporidium isolates obtained from humans in France. *J. Clin. Microbiol.*, **39**, pp. 3472-3480.

Kato, S., Lindberg, G., and Mohammed, H. O. (2003). Utility of the Cryptosporidium oocyst wall protein (COWP) gene in a nested PCR approach for detection infection in cattle. *Veterinary Parasitology*, **111**, pp. 153-159.

Mackenzie, W., Neil, M., Hoxie, N., Proctor, M., Gradus, M., Blair, K., Peterson, D., Kazmierczak, J., Adiss, D., Fox, K., Rose, J., and Davis, J. (1994). A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. *N. Engl. J. Med.*, **331**, pp. 161.

Paul, T. M. and Christopher, P. S. (2001). Development of a nested-PCR assay for the detection of *Cryptosporidium parvum* in finished water. *Water Research*, **35**, pp. 1641-1648.

Pedraza-Diaz, S., Amar, C., and McLauchlin, J. (2000). The identification and characterisation of an unusual genotype of *Cryptosporidium* from human faeces as *Cryptosporidium meleagridis*. *FEMS Microbiol. Lett.*, **189**, pp. 189-194.

Webster, K. A., Pow, J. D. E., Giles, M., Catchpole, J., and Woodward, M. J. (1993). Detection of *Cryptosporidium parvum* using a specific polymerase chain reaction. *Veterinary Parasitology*, **50**, pp. 35-44.

Xiao, L. and Fayer, R. (2008). Molecular characterisation of species and genotype of *Cryptosporidium* and *Giardia* and assessment of zoonotic transmission. *International Journal for Parasitology*, **38**, pp. 1239-1255.

Xiao, L., Bern, C., Limor, J., Sulaiman, I., Roberts, J., Checkley, W., Cabrera, L., Gilman, R. H., and Lal, A. A. (2001). Identification of 5 types of Cryptosporidium parasites in children in Lima, Peru. *J. Infect. Dis.*, **183**, pp. 492-497.

Xigang, L., Derek, M., and Richard, O. (1996). Differentiation of *Cryptosporidium parvum*, *C. muris* and *C. baileyi* by PCR-RFLP analysis of the 18s rRNA gene. *Veterinary Parasitology*, **62**, pp. 1-7.