Molecular picture for $X_0(2900)$ and $X_1(2900)$

Jun He 1* and Dian-Yong Chen 2,2

1Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210097, People’s Republic of China

2School of Physics, Southeast University, Nanjing 210094, People’s Republic of China

(Dated: December 8, 2020)

Inspired by the newly observed $X_0(2900)$ and $X_1(2900)$ at LHCb, the K^*D^* and K^*D interactions are studied in the quasipotential Bethe-Salpeter equation approach combined with the one-boson-exchange model. The bound and virtual states from the interactions are searched for as the poles in the complex energy plane of scattering amplitude. A bound state with $I(J^P) = 0(0^+)$ and a virtual state with $I(J^P) = 0(1^+)$ are also predicted from the K^*D^* interaction with a small α value, which can be searched in future experiments.

I. INTRODUCTION

In the past decades, a growing number of new hadron states have been observed experimentally, then the investigations on the nature of these new hadron states have become one of intriguing topic in hadron physics. Among these new hadron states, some are hardly assigned as conventional mesons or baryons, thus they were considered as good candidates of QCD exotic states, such as hadronic molecular states, compact multiquark states and hybrid states (for recent reviews, we refer to Refs. [1–11]).

Very recently, the LHCb collaboration observed two new states, $X_0(2900)$ and $X_1(2900)$, in the K^*D^* invariant mass distribution of $B^+ \to D^{*+}D^{-}K^+$, the resonance parameters of these two states were reported to be [12],

$$m_{X_0(2900)} = (2866 \pm 7) \text{ MeV},$$
$$\Gamma_{X_0(2900)} = (57.2 \pm 12.9) \text{ MeV},$$
$$m_{X_1(2900)} = (2904 \pm 5) \text{ MeV},$$
$$\Gamma_{X_1(2900)} = (110.3 \pm 11.5) \text{ MeV},$$

respectively. The J^P quantum numbers of $X_0(2900)$ and $X_1(2900)$ are 0^+ and 1^+, respectively [12].

Since $X_0(2900)$ and $X_1(2900)$ are observed in the K^*D^* channel, the only possible quark components of these states are $ud\bar{c}\bar{s}$, which indicates that they are composed of quarks with four different flavors. Such kind of states are particularly interesting since they obviously can not be assigned as a conventional hadron. Actually, in 2016 another similar structure $X(5568)$ was reported by the D0 collaboration in the $B\pi$ invariant mass distribution, which is also a fully open flavor state [13]. However, after the observation of D0 collaboration, the LHCb, CMS, CDF, and ATLAS Collaborations negated the existence of $X(5568)$ [14–17]. Thus, the present observation of $X_0(2900)$ and $X_1(2900)$ brings physicists’ attentions back to the existence of fully open flavor states again.

Considering four different flavor quark components of $X_0(2900)$ and $X_1(2900)$, one can naturally consider these states as tetraquark candidates. In Ref. [18], the mass spectrum of exotic tetraquark states with four different flavors is investigated by using a color-magnetic interaction model, where the masses of states with $I(J^P) = 0(0^+)$ were 2607 and 3129 MeV, while those with $I(J^P) = 0(1^+)$ were 2320 and 2850 MeV. After the observation of $X_0(2900)$ and $X_1(2900)$, the authors in Refs. [19, 20] indicated that the $X_0(2900)$ can be an isosinglet compact tetraquark state, while the estimations in Ref. [21] indicated that the $X_0(2900)$ should be a radial excited tetraquark with $J^P = 0^+$. As for $X_1(2900)$, the investigations in Refs. [21, 22] support that the $X_1(2900)$ can be assigned as a P-wave compact diquark-antidiquark tetraquark state. However, the calculaions in an extended relativized quark model indicate that the predicted mass of $0^+ u\bar{d}s\bar{c}$ are different from that of the $X_0(2900)$, which disfavors the assignment of the $X_0(2900)$ as a compact tetraquark [23].

It should be noticed that in the vicinity of 2900 MeV, there are abundant thresholds of a charmed and a strange mesons, such as K^*D^*, KD_1, KD_0. In Refs. [24, 25], the possible molecular states composed of (anti-)charmed and strange mesons have been investigated. Considering the J^P quantum numbers of $X_0(2900)$ and $X_1(2900)$, the former one can be resulted from the K^*D^* interaction, while the latter one can be resulted from the KD_1 interaction. In Ref. [26], the structure corresponding to $X_0(2900)$ and $X_1(2900)$ can be interpreted as the triangle singularity. While in Ref. [27], the estimation in one-boson exchange model indicated that the interaction of K^*D^* are strong enough to form a molecular state, thus, $X_0(2900)$ can be interpreted as a K^*D^* molecular state and such an interpretation is also supported by the estimations in Refs. [22, 28].

Along the way of molecular interpretations, we construct the one-boson-exchange potential of K^*D^* and KD_1 interactions. The scattering amplitude can be obtained with the help of the quasipotential Bethe-Salpeter equation (qBSE) from the interaction potentials, and the poles of the scattering amplitudes are searched in complex energy plane. In the current work, both bound and virtual states will be considered in the calculation to discuss the relation between experimentally observed states $X_0(2900)/X_1(2900)$ and the K^*D^*/KD_1 interactions.
This work is organized as follows. We present the formalism used in the present estimation in the following section. The numerical results and related discussions are given in section III and the last section is devoted to a short summary.

II. FORMALISM

In the current work, we will consider two interactions, K^+D^* and K^0D_1 interactions. The possible isospins of the states composed by K^+D^* and K^0D_1 could be 0 and 1, and the corresponding flavor functions are

\[
|K^+D^*, I = 0\rangle = \frac{1}{\sqrt{2}} \left[K^{++}D^- - K^{0}D^{0}\right],
\]

\[
|K^+D^*, I = 1\rangle = \frac{1}{\sqrt{2}} \left[K^{++}D^- + K^{0}D^{0}\right],
\]

\[
|KD_1, I = 0\rangle = \frac{1}{\sqrt{2}} \left[K^+D^- - K^0D^0\right],
\]

\[
|KD_1, I = 1\rangle = \frac{1}{\sqrt{2}} \left[K^+D^- + K^0D^0\right],
\]

respectively.

In the one-boson-exchange model, the K^+ meson and D^* meson interact by exchanging π, η, ρ, and ω mesons. For the KD_1 interaction, the π and η exchanges are forbidden, only vector exchanges are allowed. To describe the interaction, we need the effective Lagrangians at two vertices. For the charmed meson part, the effective Lagrangians can be written with the help of heavy quark and chiral symmetries [29–33],

\[
\mathcal{L}_{P - P' - \pi} = \frac{2g_{\pi\rho\pi}}{f_\pi} (\bar{P}_b^{\mu} P^\mu_a + \bar{P}_b^{\mu} P^\mu_a') \dot{v} \cdot \partial \rho \partial_{\pi \mu} b_a,
\]

\[
\mathcal{L}_{P - P' - \pi} = \sqrt{2}g_{\eta \rho \eta} (\bar{P}_b^{\mu} P^\mu_a - \bar{P}_b^{\mu} P^\mu_a') \dot{v} \cdot \partial \rho \partial_{\pi \mu} b_a
\]

\[-i2 \sqrt{2} \lambda_0 g_{\rho \pi \eta} (\bar{P}_b^{\mu} P^\mu_a - \bar{P}_b^{\mu} P^\mu_a') (\partial_{\mu} \partial_{\nu} \partial_{\rho} \partial_{\eta} b_a),
\]

where the velocity v should be replaced by $i \nabla / \sqrt{m_P m_F}$ with the m_P, m_F being the mass of the initial or final heavy meson. The P and \bar{P} are the pseudoscalar and vector matrices as

\[
\mathcal{F} = \left(\begin{array}{cc}
\frac{\sqrt{\rho^0 + \rho^+}}{\sqrt{6}} & \frac{\sqrt{\rho^0 + \rho^+}}{\sqrt{6}} \\
\frac{-\sqrt{\rho^0 + \rho^+}}{\sqrt{6}} & \frac{-\sqrt{\rho^0 + \rho^+}}{\sqrt{6}} \\
\frac{\rho^+}{\sqrt{6}} & \frac{\rho^+}{\sqrt{6}} \\
\frac{\rho^0}{\sqrt{6}} & \frac{\rho^0}{\sqrt{6}} \\
\end{array} \right),
\]

\[
\V = \left(\begin{array}{c}
\frac{\sqrt{\rho^0 + \rho^+}}{\sqrt{6}} \\
\sqrt{\rho^0} \\
\frac{-\sqrt{\rho^0 + \rho^+}}{\sqrt{6}} \\
\frac{\rho^+}{\sqrt{6}} \\
\frac{\rho^0}{\sqrt{6}} \\
\end{array} \right),
\]

which correspond to (D^0, D^-, D^0). The coupling constants have been determined in the literature with the heavy quark symmetry and available experimental data, i.e., $g = 0.59$, $\beta = 0.9$, $\lambda = 0.56$, $\beta_2 = 1.1$, $\lambda_2 = -0.6$, with $g_V = 5.9$ and $f_\pi = 0.132$ GeV [34–39].

To describe the couplings of the $K^{(*)}$ meson with exchanged pseudoscalar and/or vector mesons, the effective Lagrangians are adopted as

\[
\mathcal{L}_{K^{*}V} = -i g_{K^{*}V} K^{*\mu} \partial_{\mu} K^{*} + H.c.,
\]

\[
\mathcal{L}_{K^{*}V} = i \frac{g_{K^{*}V}}{2} \left(K^{*\mu} \partial_{\mu} V + K^{*\mu} V_{\mu}\right),
\]

\[
\mathcal{L}_{K^{*}V} = g_{K^{*}V} e^{im_{\pi} v_{\pi} \rho v_{\rho} + \phi} K^{*\mu} \partial_{\mu} V + H.c.,
\]

\[
L_{K^{*}V} = \frac{2g_{K^{*}V}}{2} \left(K^{*\mu} \partial_{\mu} V + K^{*\mu} V_{\mu}\right),
\]

where $K^{*\mu} = \partial_{\mu} K^{+} - \partial_{\mu} K^{0}$. The flavor structures are $V^{* \mu} A \cdot \partial K^{*}$ for an isovector $A (\pi \text{ or } \rho)$ meson, and $V^{* \mu} B$ for an isoscalar $B (\eta, \omega)$ meson. With the help of the SU(3) symmetry, the coupling constants can be obtained from the $\rho \rho \rho$ and $\rho \omega \pi$ couplings. The $g_{\rho \rho \rho}$ was suggested equivalent to $g_{\rho \rho \rho} = 6.2$, and $g_{\omega \rho \pi} = 11.2$ GeV$^{-1}$ [40–42]. The SU(3) symmetry suggests $g_{K^{*}K^{*}\pi} = g_{K^{*}K^{*}\pi} = g_{K^{*}K^{*}\pi} / (2\alpha)$, and $g_{K^{*}K^{*}\pi} = g_{K^{*}K^{*}\eta} / [\sqrt{1/3(1 - 4\alpha)}] = g_{\omega \pi} / (2\alpha)$ with $\alpha = 1$ [43–46].

In fact, the above vertices have been applied to study many XYZ particles and hidden-strange molecular states [39, 44–49]. Hence, in the current work, we only need to reconstruct the vertices to the potential considered here as

\[
V_{\pi} = i \lambda_0 \Gamma_0 \Gamma_2 P^{\ast}_0(q^2), \quad V_{\eta} = i \lambda_0 \Gamma_1 \Gamma_2 P^{\ast}_1(q^2),
\]

where the propagators are defined as usual as

\[
P_{\pi} = \frac{i}{q^2 - m^2_{\pi}}, \quad P_{\eta} = \frac{i}{q^2 - m^2_{\eta}},
\]

and we adopt a form factor $f_\pi(q^2)$ to compensate the off-shell effect of exchanged meson as $f_\pi(q^2) = e^{-\mu^2 - q^2/m^2_{\pi}}$ with m_π being the $m_{\pi, \eta}$ and q being the momentum of the exchanged meson. Such treatment also reflects the non-pointlike nature of the constituent mesons. The cutoff is rewritten as a form of $\Lambda_c = m + \alpha$, 0.22 GeV. The flavor factors I, for certain meson exchange and total isospin are presented in Table I.

| Table I: The flavor factors I, for certain meson exchange and total isospin. The π and η exchanges are forbidden for KD_1 interaction. |
|---|---|---|---|
| I_π | I_η | I_ρ | I_ω |
| $l = 0$ | $-3 \sqrt{2}/1$ | $1 / \sqrt{6}$ | $-3 \sqrt{2}/1$ | $1 \sqrt{2}$ |
| $l = 1$ | $\sqrt{2}/1$ | $1 / \sqrt{6}$ | $\sqrt{2}/1$ | $1 / \sqrt{2}$ |

With the potential, the scattering amplitude can be obtained with the qBSE [50–52]. The qBSE with fixed spin-parity J^P is written as [45, 53, 54],

\[
iM_{J^P}(p', p) = iV_{J^P}(p, p') + \sum_{J^P} \int d^2 p'' \frac{d^2 p''}{(2\pi)^2} \int_0^{p''} \frac{d^2 p'''}{(2\pi)^2} \cdot V_{J'^P}(p', p'') G_0(p'') iM_{J'^P}(p'', p'),
\]

where the sum extends only over nonnegative helicity λ''. The $G_0(p'')$ is reduced from 4-dimensional propagator by the spectator approximation, and in the center-of-mass frame with
\[P = (W, 0) \] it reads,
\[
G_0(p') = \frac{1}{2E_h(p')(W - E_h(p'))^2 - E_h^2(p')}. \tag{9}
\]

Here, as required by the spectator approximation, the heavier meson \((h = D^*, \bar{D}^*_1)\) is on shell, which satisfies \(p_h^{*0} = E_h(p') = \sqrt{m_h^2 + p'^2}\). The \(p_l^{*0}\) for the lighter meson \((l = \bar{K}^*, K)\) is then \(W - E_h(p')\). A definition \(p = |p|\) will be adopted here. The partial-wave potential is defined with the potential of the interaction obtained in the above as
\[
\mathcal{V}_{X,\pm}(p', p) = 2\pi \int d\cos\theta [d_{J\pm}^l(\theta)\mathcal{V}_{X,\pm}(p', p) + \eta d_{-J\pm}^l(\theta)\mathcal{V}_{X,-\pm}(p', p)], \tag{10}
\]

where \(\eta = PP, P_2(-1)^{I-2L-1}\) with \(P\) and \(J\) being parity and spin for system, \(K'/K\) meson or \(D^*/\bar{D}^*_1\) meson. The initial and final relative momenta are chosen as \(p = (0, 0, 2)\) and \(p' = (p' \sin \theta, 0, p' \cos \theta)\). The \(d_{J\pm}^l(\theta)\) is the Wigner d-matrix. In the qBSE approach, a form factor will be introduced into the propagator to reflect the off-shell effect as an exponential regularization, \(G_0(p) \rightarrow G_0[p]e^{-k_1^2[p - i\Lambda_c^2]}\), where the \(k_1\) and \(m_1\) are the momentum and the mass of the strange meson. The cutoff \(\Lambda_c\) is also parameterized as in the \(\Lambda_c\) case. The \(\alpha_e\) and \(\alpha_j\) play analogous roles in the calculation of the binding energy. Hence, we take these two parameters as a parameter \(\alpha\) for simplification [39]. Such parameter is also used to absorb the uncertainties of our model, such as the inaccuracy of heavy quark and SU(3) symmetries in the Lagrangians.

III. NUMERICAL RESULTS AND DISCUSSION

With the scattering amplitude obtained above, the pole can be searched for in the complex energy plane. The bound state corresponds to a pole at the real axis under threshold in the first Riemann surface. If the attraction becomes weaker, the pole will move to the real axis under threshold in the second Riemann surface, which corresponds to a virtual state [55]. In the current work, we will consider both bound and virtual states from the \(K^*\bar{D}^*\) and \(K\bar{D}_1\) interactions.

A. States from \(K^*\bar{D}^*\) interaction

In the current work, we will consider six states from the \(K^*\bar{D}^*\) interaction with isospin \(I = (0, 1)\), spin \(J = (0, 1, 2)\), and parity \(P = +\) which can be obtained in S wave. In our model, the only free parameter is the \(\alpha\) in cutoff. Usually, small value of \(\alpha\) should be chosen. For a cutoff \(\Lambda\) smaller than 3 GeV, the \(\alpha\) should be smaller than 10. In the following, we present the results with \(\alpha\) value in a larger range from 1 to 20 for discussion. We would like to remind in advance that the results with very large \(\alpha\) are unreliable because it corresponds to a very small radius of the constituent hadrons. The results for the states from the \(K^*\bar{D}^*\) interaction are presented and compared with experimentally observed \(X_0(2900)\) in Fig. 1 (here we call the deviation between the pole of a virtual state and threshold as binding energy also).

![FIG. 1: The binding energy \(E_B\) of the bound or virtual states from the \(K^*\bar{D}^*\) interaction with the variation of \(\alpha\). Here the \(E_B = M_{h-W}\) with the \(M_h\) and \(W\) being the threshold and mass of the state. The circle, square, diamond, and triangle are for the states with \(I(J^P) = 0(0^+),\) \(0(1^+),\) \(1(2^+),\) and \(0(2^+)\), respectively. The lines with cyan bar are for experimental mass and uncertainties of \(X_0(2900)\) state, respectively.](image)

Among the six states considered in the current work, four bound states can be produced from the \(K^*\bar{D}^*\) interaction in the large range of \(\alpha\) considered here. The bound states with \(I(J^P) = 0(0^+)\) and \(0(1^+)\) appear at small \(\alpha\), about 4, and two bound states with \(2^+\) are found at \(\alpha\) larger than 10. Usually, larger cutoff corresponds to stronger interaction, which leads to larger binding energy for a bound state. One can find that the binding ener gies of the four bound states increase with the increase of the \(\alpha\) value.

Here, we also consider the possible virtual state from the interaction. Different from bound state, virtual state leaves the threshold further with the decreasing of \(\alpha\) and weakening of attraction. The bound state with \(I(J^P) = 0(2^+)\) appears at \(\alpha\) about 10, and the energy increases rapidly with the increase of the \(\alpha\) value. However, if we reduce the \(\alpha\) value, a pole can be found at second Riemann surface, and leaves the threshold with the decrease of \(\alpha\) value. The pole moves to a position about 40 MeV below the threshold at an \(\alpha\) about 2, and disappears there. No virtual state can be found for the case with \(0(0^+)\) and \(1(2^+)\) if we reduce the \(\alpha\) value. For \(0(1^+)\) case, virtual state is also found, but disappears very rapidly with the decrease of \(\alpha\) value.

Among the four bound states produced from the \(K^*\bar{D}^*\) interaction, two bound states with \(0(0^+)\) and \(0(1^+)\) require small \(\alpha\) value. For the \(0(2^+)\) state, only virtual state can be produced with small \(\alpha\) value. Since the \(X_0(2900)\) and \(X_4(2900)\) were observed in the \(K^+\bar{D}^-\) channel, allowed quantum numbers of are \(0^+\) and \(1^+\). Hence, the current results support the assignment of the \(X_0(2900)\) observed at LHCb as a \(0(0^+)\) state from the \(K^*\bar{D}^*\) interaction. Under such assignment, a bound state with \(0(1^+)\) and a virtual state with \(0(2^+)\) are also predicted in our model.
The results are presented in Fig. 2. The binding energy E_B of the bound or virtual state from the $K\bar{D}_1$ interaction with the variation of α. The circle is for the states with $J^P = 0(1^-)$. The lines with light green bar are for experimental mass and uncertainties of $X_1(2900)$ state, respectively. Other conventions are the same as in Fig. 1.

B. States from $K\bar{D}_1$ interaction

The $X_1(2900)$ state can not be reproduced from the $K^*\bar{D}^*$ interaction in S wave. Here we consider another system with a threshold close to the mass of $X_1(2900)$, the $K\bar{D}_1$ interaction. We will consider two states from the $K\bar{D}_1$ interaction with $I = (0, 1)$ and $J^P = 1^-$, which can be obtained in S wave. The results are presented in Fig. 2.

Among these two states, only the isoscalar interaction is attractive. However, the bound state with $0(1^-)$ appears at a very larger α value, about 16, which corresponds to a large cutoff Λ about 4 GeV. It is unreliable to assign the $X_1(2900)$ as a bound state. As the $0(2^+)$ state of the $K^*\bar{D}^*$ interaction, if we decrease the α value, a virtual state with $0(1^-)$ from the $K\bar{D}_1$ interaction can be found in a large range of the α form about 4 to 16. Such state can be related to the experimentally observed $X_0(2900)$.

IV. SUMMARY

In the current work, inspired by the newly observed $X_0(2900)$ at LHCb, the $K^*\bar{D}^*$ and $K\bar{D}_1$ interactions, which have thresholds about 2900 MeV, are studied in the qBSE approach. The bound and virtual states from the interaction are searched for as poles in the complex energy plane of the scattering amplitude, which is obtained from the one-boson-exchange potential. A bound state with $0(0^+)$ is produced from the $K^*\bar{D}^*$ interaction. The radius R of the bound state can be estimated as $K \sim 1/\sqrt{2E_B}$ with μ and E_B being the reduced mass and binding energy [7]. The experimental binding energy, about 35 MeV, leads to a radius about 1 fm of the $K^*\bar{D}^*$ bound state. Considering the constituent mesons have radii about 0.5 fm, it supports the assignment of $X_0(2900)$ as a $K^*\bar{D}^*$ molecular state. A virtual state with $0(1^+)$ is also produced from $K\bar{D}_1$ interaction with reasonable parameter. These two states can decay into the $K^*\bar{D}$ channel in S and P waves, so can be related the $X_0(2900)$ and $X_1(2900)$ observed at LHCb, respectively. Besides these two states, a bound state with $0(1^-)$ and a virtual state with $0(2^+)$ are produced from the $K^*\bar{D}^*$ interaction with a small α value.

Acknowledgments

This project is supported by the National Natural Science Foundation of China (Grants No. 11675228, and No. 11775050), and the Fundamental Research Funds for the Central Universities.

[1] H. X. Chen, W. Chen, X. Liu and S. L. Zhu, “The hidden-charm pentaquark and tetraquark states”, Phys. Rept. 639, 1 (2016).
[2] A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai and S. Yasui, “Exotic hadrons with heavy flavors: X, Y, Z, and related states”, PTEP 2016, 062C01 (2016).
[3] J. M. Richard, “Exotic hadrons: review and perspectives”, Few Body Syst. 57, 1185 (2016).
[4] R. F. Lebed, R. E. Mitchell and E. S. Swanson, “Heavy-Quark QCD Exotica”, Prog. Part. Nucl. Phys. 93, 143-194 (2017).
[5] A. Ali, J. S. Lange and S. Stone, “Exotics: Heavy Pentaquarks and Tetraquarks”, Prog. Part. Nucl. Phys. 97, 123-198 (2017).
[6] A. Esposito, A. Pilloni and A. Polosa, “Multiquark Resonances”, Phys. Rept. 668, 1-97 (2017).
[7] F. K. Guo, C. Hanhart, U. G. Meiñner, Q. Wang, Q. Zhao and B. S. Zou, “Hadronic molecules”, Rev. Mod. Phys. 90, 015004 (2018).
[8] S. L. Olsen, T. Skwarnicki and D. Zieminska, “Nonstandard heavy mesons and baryons: Experimental evidence”, Rev. Mod. Phys. 90, 015003 (2018).
[9] M. Karliner, J. L. Rosner and T. Skwarnicki, “Multiquark States”, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018).
[10] Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, “Pentaquark and Tetraquark states”, Prog. Part. Nucl. Phys. 107, 237 (2019).
[11] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, “The XYZ states: experimental and theoretical status and perspectives”, arXiv:1907.07583.
[12] LHC Seminar, “$B \rightarrow D\bar{D}h$ decays: A new (virtual) laboratory for exotic particle searches at LHCb”, by Daniel Johnson, CERN, August 11, 2020, https://indico.cern.ch/event/900975/.
[13] V. M. Abazov et al. [D0], “Evidence for a $B^0\pi^\pm$ state”, Phys. Rev. Lett. 117, no.2, 022003 (2016).
[14] T. Aaltonen et al. [CDF], “A search for the exotic meson X_{S568} with the Collider Detector at Fermilab”, Phys. Rev. Lett. 120, no.20, 202006 (2018).
[15] M. Aaboud et al. [ATLAS], “Search for a Structure in the $B^0\pi^\pm$ Invariant Mass Spectrum with the ATLAS Experiment,” Phys. Rev. Lett. 120, no.20, 202007 (2018).
[16] A. M. Sirunyan et al. [CMS], “Search for the $X(5568)$ state...
decaying into $B^0\pi^+$ in proton-proton collisions at $\sqrt{s} = 8$ TeV,” Phys. Rev. Lett. 120, no.20, 202005 (2018)

[17] R. Aaij et al. [LHCb], “Search for Structure in the $B^0_f\pi^+$ Invariant Mass Spectrum,” Phys. Rev. Lett. 117, no.15, 152003 (2016)

[18] J. B. Cheng, S. Y. Li, Y. R. Liu, Y. N. Liu, Z. G. Si and T. Yao, “Spectrum and rearrangement decays of tetraquark states with four different flavors,” Phys. Rev. D 101 (2020) no.11, 114017

[19] M. Karliner and J. L. Rosner, “First exotic hadron with open heavy flavor: csiud tetraquark,” [arXiv:2008.05993 [hep-ph]].

[20] J. R. Zhang, “An open charm tetraquark candidate: note on $X_0(2900)$,” [arXiv:2008.07295 [hep-ph]].

[21] X. G. He, W. Wang and R. Zhu, “Open-charm tetraquark X_0 and open-bottom tetraquark X_{1-},” [arXiv:2008.07145 [hep-ph]].

[22] H. X. Chen, W. Chen, R. R. Dong and N. Su, “$X_0(2900)$ and $X_1(2900)$: hadronic molecules or compact tetraquarks,” [arXiv:2008.07516 [hep-ph]].

[23] Q. F. Lü, D. Y. Chen and Y. B. Dong, “Open charm and bottom tetraquarks in an extended relativized quark model,” [arXiv:2008.07340 [hep-ph]].

[24] F. K. Guo and U. G. Meissner, “More kaonic bound states and a comprehensive interpretation of the D_s^* states,” Phys. Rev. D 84 (2011), 014013

[25] R. Molina, T. Branz and E. Oset, “A new interpretation for the D_s^* (2573) and the prediction of novel exotic charmed mesons,” Phys. Rev. D 82 (2010), 014010

[26] X. H. Liu, M. J. Yan, H. W. Ke, G. Li and J. J. Xie, “Triangle singularity as the origin of $X_0(2900)$ and $X_1(2900)$ observed in $B^+ \rightarrow D^* D^* K^+$,” [arXiv:2008.07190 [hep-ph]].

[27] M. Z. Liu, J. J. Xie and L. S. Geng, “$\Lambda_b(2866)$ as a $D^* K^*$ molecular state,” [arXiv:2008.07389 [hep-ph]].

[28] M. W. Hu, X. Y. Lao, P. Ling and Q. Wang, “The molecular nature of the $X_0(2900)$,” [arXiv:2008.06894 [hep-ph]].

[29] H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin, T. M. Yan and H. L. Yu, “Chiral Lagrangians for radiative decays of heavy hadrons,” Phys. Rev. D 47, 1030-1042 (1993)

[30] T. M. Yan, H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin and H. L. Yu, “Heavy quark symmetry and chiral dynamics,” Phys. Rev. D 46, 1148-1164 (1992)

[31] M. B. Wise, “Chiral perturbation theory for hadrons containing a heavy quark,” Phys. Rev. D 45, no.7, 2188 (1992)

[32] R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Fujigawa and G. Nardulli, “Phenomenology of heavy meson chiral Lagrangians,” Phys. Rept. 281, 145-238 (1997)

[33] G. J. Ding, “Are $Y(4260)$ and $Z(2)$ D(1) D or D(0) D^* Hadronic Molecules?,” Phys. Rev. D 79, 014001 (2009)

[34] R. Chen, Z. F. Sun, X. Liu and S. L. Zhu, “Strong LHCb evidence supporting the existence of the hidden-charm molecular pentaquarks,” Phys. Rev. D 100, no.1, 011502 (2019)

[35] Y. R. Liu and M. Oka, “A, N bound states revisited,” Phys. Rev. D 85, 014015 (2012)

[36] C. Isola, M. Ladisa, G. Nardulli and P. Santorelli, “Charming penguins in $B \rightarrow K^*\pi, K(\rho, \omega, \phi)$ decays,” Phys. Rev. D 68, 114001 (2003)

[37] A. F. Falk and M. E. Luke, “Strong decays of excited heavy mesons in chiral perturbation theory,” Phys. Lett. B 292, 119-127 (1992)

[38] X. K. Dong, Y. H. Lin and B. S. Zou, “Prediction of an exotic state around 4240 MeV with $J^{PC} = 1^{+}$ as C-parity partner of $Y(4260)$ in molecular picture,” Phys. Rev. D 101, no.7, 076003 (2020)

[39] J. He, Y. Liu, J. T. Zhu and D. Y. Chen, “$Y(4626)$ as a molecular state from interaction $D_s^* D_s(2317) - D_s D_s(2326)$,” Eur. Phys. J. C 80, no.3, 246 (2020)

[40] A. Matsuyama, T. Sato and T. S. H. Lee, “Dynamical coupled-channel model of meson production reactions in the nucleon resonance region,” Phys. Rept. 439, 193-253 (2007)

[41] M. Bando, T. Kugo and K. Yamawaki, “Nonlinear Realization and Hidden Local Symmetries,” Phys. Rept. 164, 217-314 (1988)

[42] G. Janssen, K. Holinde and J. Speth, “A Meson exchange model for pi rho scattering,” Phys. Rev. C 49, 2763-2776 (1994)

[43] D. Ronchen, M. Doring, F. Huang, H. Haberzettl, J. Haidenbauer, C. Hanhart, S. Krewald, U. G. Meissner and K. Nakayama, “Coupled-channel dynamics in the reactions $\pi N \rightarrow n\pi, \eta N, \bar{K} N, \bar{K}\Sigma$” Eur. Phys. J. A 49, 44 (2013)

[44] J. He, H. Huang, D. Y. Chen and X. Zhu, “Hidden-strange molecular states and the $N\bar{b}$ bound states via a QCD van der Waals force,” Phys. Rev. D 98, no.9, 094019 (2018)

[45] J. He, “Nucleon resonances $N(1875)$ and $N(2100)$ as strange partners of LHCb pentaquarks,” Phys. Rev. D 95, no.7, 074031 (2017)

[46] J. He, “Internal structures of the nucleon resonances $N(1875)$ and $N(2100)$,” Phys. Rev. C 91, no.1, 018201 (2015)

[47] J. He, “$D\Sigma$ and $D^*\Sigma$ interactions and the LHCb hidden-charmed pentaquarks,” Phys. Lett. B 753, 547-551 (2016)

[48] J. He, “Study of $P_c(4457), P_c(4440),$ and $P_c(4312)$ in a quasipotential Bethe-Salpeter equation approach,” Eur. Phys. J. C 79, no.5, 393 (2019)

[49] J. He and D. Y. Chen, “Molecular states from $L^1 \bar{D}^{*} \rightarrow \Lambda, \bar{L}^{*}$ interaction,” Eur. Phys. J. C 79, no.11, 887 (2019)

[50] F. Gross and A. Stadler, “Covariant spectator theory of $n\bar{p}$ scattering: Effective range expansions and relativistic deuterion wave functions,” Phys. Rev. C 82, 034004 (2010)

[51] J. He, D. Y. Chen and X. Liu, “New Structure Around 3250 MeV in the Baryonic B Decay and the $D_s^*(2400)/N$ Molecular Hadron,” Eur. Phys. J. C 72, 2121 (2012)

[52] J. He and X. Liu, “The open-charm radiative and pionic decays of molecular charmonium $Y(4274)$,” Eur. Phys. J. C 72, 1986 (2012)

[53] J. He and P. L. Lu, “The octet meson and octet baryon interaction with strangeness and the $\Lambda(1405)$,” Int. J. Mod. Phys. E 24, no.11, 1550088 (2015)

[54] J. He, “The $Z_c(3900)$ as a resonance from the $D\bar{D}^{*}$ interaction,” Phys. Rev. D 92, no.3, 034004 (2015)

[55] J. R. Taylor, Scattering Theory: The Quantum Theory on Non-relativistic Collisions (John Wiley & Sons,Inc., New York, 1972).