Identification and Analysis of microRNAs Responsive to Abscisic Acid and Methyl Jasmonate Treatments in *Persicaria minor*

Pengenalpastian dan Analisis Gerak Balas mikroRNA kepada Rawatan Asid Absisik dan Metil Jasmonat dalam *Persicaria minor*

ABDUL FATAH A. SAMAD, NAZARUDDIN NAZARUDDIN, JAERYES JANI & ISMANIZAN ISMAIL*

ABSTRACT

Persicaria minor has been recognised as a plant with high content of volatile organic compounds (VOC) especially terpenoid and green leaf volatile (GLV). Previous finding had showed signaling molecules such as abscisic acid (ABA) and methyl jasmonate (MeJA) can increase the VOC content in plant. In this study, we performed next generation sequencing (NGS) of small RNA to uncover miRNAs roles and their response to both phytohormones (ABA and MeJA) in *P. minor*. For both ABA and MeJA treated *P. minor*, small RNA libraries containing 17,253,566 and 40,437,576 reads were generated, respectively. In addition, 18,634,904 reads were generated in plant treated with sterile distilled water which served as control. In these libraries, a total of 88 miRNAs were identified, comprising 41 known and 47 novel miRNAs. It was observed that 21 and 38 miRNAs were significantly regulated in ABA and MeJA libraries, respectively. Four selected miRNAs related to VOC pathways were subjected to RT-qPCR analysis and found to display diverse expression patterns with their targets. This study provides the initial framework for further exploration of miRNA roles in ABA and MeJA responses.

Keywords: Abscisic acid; methyl jasmonate; microRNA; Persicaria minor; volatile organic compound

INTRODUCTION

Persicaria minor or known as ‘kesum’ is a medicinal plant with high content of secondary metabolites (Ee et al. 2014). These secondary metabolites are responsible for its pharmaceutical properties, such as its antioxidant, antiviral, antifungal, antialulcer and antimicrobial activities (Christopher et al. 2015). Additionally, due to its unique aroma, this plant is commonly used as food additives in local dishes in Southeast Asia countries (Christopher et al. 2015). Among these secondary metabolites, flavonoid and terpenoid were dominant (Baharum et al. 2010; Roslan et al. 2012). For example, *β*-caryophyllene is the highest terpenoid compound in *P. minor* essential oil (Baharum et al. 2010). In addition, other volatile compounds were also detected in *P. minor* for example decanal and dodecanal which belong to aliphatic aldehyde group (Christapher et al. 2015).

Phytohormones are signaling molecules which are essential in regulating plant growth and stress responses. In addition, their ability to act as a messenger in plant cell make them suitable candidates for mediating biosynthesis of particular product (Liang et al. 2013). ABA is a recognised elicitor that induces plant secondary
metabolite. Previously, ABA treatments on *Salvia miltiorrhiza* have led to the highlevel production of the active compound, tashinone (Yang et al. 2012). Similarly, jasmonic acid or its derivatives, methyl jasmonate (MeJA) participates in a variety of growth processes, stress response and secondary metabolite induction (Yan & Xie 2015). For instance, exogenous application of MeJA enhanced taxol formation in *Taxus cuspidata* suspension culture (Lenka et al. 2015). Based on previous study, both phytohormones, ABA and MeJA were able to alter gene expression which leads to the production of a particular compound at the downstream level.

Gene expressions are coordinated through multilayers level, beginning at epigenetic, transcriptional and post-transcriptional levels to ensure precise control. At post-transcriptional level, a group of small RNA, miRNA, is known to be involved in various biological processes in plant (Samad et al. 2017). miRNA acts as gene silencer by binding to the target gene to induce cleavage or translational inhibition (Samad et al. 2017). Latest miRBase version (version 22) showed a total of 38,589 miRNA that had been discovered in animals, plants and viruses, and the number is expected to be increasing in the future (Kozomara et al. 2019). This is an indicator that miRNA has already gained researchers attention due to its regulatory role and subsequently recognised as potential tool for manipulating gene expression to produce plant with desirable traits. Furthermore, the public database will facilitate the discovery of miRNA in other plant species especially for plant with no genome information available.

To date, several approaches had been carried out at transcriptional level to explore the elicitation effect of MeJA towards *P. minor*. Those approaches include construction of subtracted cDNA library and transcriptomic library. Among the induced genes were peroxidase and defense related genes (Gor et al. 2011; Rahnamae-Tajadod et al. 2017). However, at present, not much information is known about the post-transcriptional regulation in *P. minor* represented by miRNA. Hence, this study focused on characterisation of miRNA and their response in *P. minor* under ABA and MeJA treatments.

MATERIALS AND METHODS

PLANT MATERIALS AND TREATMENTS

P. minor plants were grown and propagated in controlled condition at Rumah Tumbuhan, Universiti Kebangsaan Malaysia. Approximately, 6 weeks old plants were selected for MeJA and ABA treatments. The treatments were carried out as mentioned in previous report (Nazaruddin et al. 2017). Two sets of *P. minor* plants were sprayed with 100 μM of MeJA and 100 μM of ABA, while the control plants were sprayed with distilled water. Two biological replicates were prepared for each treatment. For MeJA-treated plants, leaf samples were harvested after 2 days while ABA-treated plants were harvested after 3 days of treatment. These periods of treatments were selected based on the changes in leaf morphology of the *P. minor*. Prior to RNA extraction, *P. minor* leaves were harvested and immediately stored in -80 °C freezer for further use.

TOTAL RNA EXTRACTION AND SMALL RNA LIBRARY CONSTRUCTION

Approximately 0.1 g of leaves were ground to extract total RNA from mock-inoculated (K) leaves, and ABA and MeJA treated leaves using PureLink® Plant RNA reagent (Invitrogen, USA) according to the manufacturer’s protocol. The RNA integrity number (RIN) from each sample was measured using NanoDrop 1000 (ThermoFisher Scientific Inc., USA), gel electrophoresis and Agilent 2100 Bioanalyzer (Agilent Technology, USA). Total RNA with RIN of at least 7 was selected for small RNA library construction. Then, the small RNA libraries were sequenced using Ilumina platform (HiSeq 2500) in Rapid Run mode.

DIFFERENTIAL GENE EXPRESSION

Prior to identification of differentially expressed miRNA, the data from each library was normalised to transcript per million (TPM). The analysis was carried out using Baggerley’s test from cLc Genomics software (Baggerly et al. 2003). A threshold of a P-value < 0.05 and a fold-change ≥ 2 were used to determine significant changes of miRNA expression (Audic & Claverie 1997). Additionally, the false discovery rate (FDR < 0.05) correction method was deployed to correct the P-value which then referred to determine the significantly expressed miRNA (Benjamini & Hochberg 1995). Transcriptomic sequence was retrieved from GeneBank under accession number SRX669305 (Loke et al. 2016).

PREDICTION OF PUTATIVE NOVEL miRNA

Novel miRNA identification was carried out using homology search of unannotated small RNA sequences against *P. minor* transcriptomes. The potential transcript was investigated based on the ability of the sequence to form secondary structure and value of Minimum Free Energy Index (MFEI) (Zhang et al. 2006). Sequence folding was carried out using mFold software (http://unafold.rna.albany.edu/) (Markham & Zuker 2008). The parameters for determination of MFEI were described in previous report (Samad et al. 2018).

miRNA TARGET PREDICTION AND GENE ONTOLOGY ENRICHMENT

PsRobot(https://omicslab.genetics.ac.cn/psRobot/) was employed to predict the target for miRNA (Wu et al. 2012). Since *P. minor* genome is still not available, previous transcriptomic library was used in this analysis. This analysis used overall score 4.0 to allow more detection of miRNA targets. In addition, gene ontology analysis was
carried out using WEGo software (http://wego.genomics.org.cn/) (Ye et al. 2018).

EXPRESSION ANALYSIS USING RT-qPCR

cDNA for each sample was synthesised using RevertAid Reverse Transcriptase (Thermofisher, USA) according to the manufacturer’s protocols. RT-qPCR analysis for ABA and MeJA treated samples were carried out in series of timeline for three consecutive days. A set of mock treated plants with sterile distilled water were prepared as control (Day 0). The RT-qPCR was carried out using Thermo Scientific Maxima SYBR Green qPCR Master Mix (Thermofisher, USA). miRNA mature sequence was used as miRNA forward primer (Table 1) and universal primer from miScript SYBR® Green PCR Kit (Qiagen, Germany) was used as reverse primer. PrimerQuest Tool Integrated DNA Technologies (https://sg.idtdna.com/) was used to design forward and reverse primers for target genes (Table 2). For reference genes, 5.8s rRNA was used for miRNA and tubulin was used for target genes. Relative gene expression was analysed and calculated according to Livak and Schmittgen (2001).

miRNA	Primer sequence
pmi-miR396a	5’-GTT CAA TAA AGC TGT GGG A-3’
pmi-miR396b	5’-GGG GTT CAA TAA AGC TGT TGA AA-3’
pmi-miR6173	5’-GGG GGA GCC GTA AAc GAT GGA TA-3’
pmi-miR6300	5’-GGG GGT CGT TGT ATG ATA GTG GA-3’
pmi-miRNew-27	5’-CGT GTT ATC GTG TCG GAT A-3’

Target genes	Primer sequence
Peroxidase	5’-GGA ACC CAA ACC ACA ACT TTC-3’ (Forward) 5’-CTG TCG CCA ATC TTT CAT CAA TC-3’ (Reverse)
ADH1	5’-TAC TTGTT ACG AAA TCT TCT CA-3’ (Forward) 5’-CTC TTC AGG TGG TGT CCT T-3’ (Reverse)
Sesquiterpenesynthase	5’-AGA CGT AGT GAG CAA CCA AC-3’ (Forward) 5’-CTT GGC ATA CCC TGG TGG TAA-3’ (Reverse)
HMGR	5’-GCC AAC ATT GTG TCT GTC ATC-3’ (Forward) 5’-ATG GTC ACG GAG ATG TGA AG-3’ (Reverse)

RESULTS AND DISCUSSION

DEEP SEQUENCING ANALYSIS OF SMALL RNA

To investigate the miRNAs that had responded to ABA and MeJA treatments, three types of small RNA libraries (K, ABA, and MeJA) were constructed. The high-throughput sequencing generated around 18,634,904, 17,253,566, and 40,437,576 reads in three libraries, respectively. After removing adaptor sequences, low quality reads and filtering sequences into 18-30 nt, K, ABA and MeJA libraries produced 10,973,180, 11,571,770 and 21,458,916 sequences, respectively. The annotation and statistics of *P. minor* small RNAs was documented in Table 3.
TABLE 3. Statistics of small RNA in K, ABA and MeJA libraries

	Total reads	Percent (%)	Unique reads	Percent (%)
K library				
Raw reads	18,634,905±		10,481,749	
Clean reads (18-30nt)	10,973,181±	100.0	1,852,647±	100.0
miRNA	28,193±9,808	0.26	1,124±600	0.06
Rfam	694,910±	6.33	84,125±	4.54
Unannotated	10,250,078±	93.41	1,767,398±	95.40
ABA library				
Raw reads	17,253,566±		18,826,895	
Clean reads (18-30nt)	11,571,771±	100.0	1,580,735±	100.0
miRNA	22,049±	0.19	538±	0.03
Rfam	579,375±	5.00	68,857±	4.36
Unannotated	10,970,347±	94.8	1,511,349±	95.61
MeJA library				
Raw reads	40,437,576±		±9,816,458	
Clean reads (18-30nt)	21,458,917±	100.0	2,163,212±	100.0
miRNA	143,282±	0.67	2,773±179	0.13
Rfam	1,089,945±	5.08	119,792±	5.54
Unannotated	20,225,690±	94.25	2,040,647	94.33
The results showed that 28,193 (0.26%), 22,049 (0.19%), and 143,282 (0.67%) of miRNA were discovered in K, ABA and MeJA libraries, respectively. In addition, for K and ABA libraries, small RNAs with 22 nt in length were most abundant while small RNA with 20 nt in length was most abundant in MeJA library (Figure 1). Previous study showed that small RNAs with 21 nt in length was the most abundant miRNA in *A. thaliana* (Pontes et al. 2009). Around 694,910 (6.33%), 579,375 (5.00%) and 1,089,945 (5.08%) sequences were mapped against Rfam database in K, ABA and MeJA libraries, respectively. The rest of the unmapped sequences were used to find the potential novel miRNA in *P. minor*.

FIGURE 1. Length distribution of small RNA in each library. Distribution of small RNA sequence derived from K, ABA and MeJA treated libraries. Majority of the generated reads were 22 (> 20%), 20 (> 15%), and 21 (> 15%) nucleotides.

Analysis of miRNA base compositions revealed that uracil was the dominant first base while cytosine was the most dominant at the 19th base (Figure 2). This finding was similar with previous study in soybean which indicated that these two bases may have crucial role in miRNA biogenesis and/or miRNA-mediated gene regulation (Zhang et al. 2008). In total, 173 conserved miRNAs which belong to 62 families were identified (Table 4). In order to unravel novel miRNA in *P. minor*, the unannotated sequences of K, ABA and MeJA libraries were searched against transcriptome for the potential miRNA precursors. After the folding prediction and MFEI calculation, 47 unique sequences of putative novel miRNA were discovered in *P. minor* (Table 5). Based on parameters established by Zhang et al. (2006), a secondary structure must have MFEI at least 0.85 to be recognised as precursor miRNA. Table 5 shows all the miRNA precursors that had been discovered in this study that possessed MFEI of at least 0.85. In addition, all the structures of miRNA precursors were documented in Table 6.
FIGURE 2. First nucleotide bias in small RNA libraries

TABLE 4. List of conserved miRNAs identified in *P. minor*

miRNA family	miRNA	miRNA mature sequence (5'-3')	Sequence length	Conserved miRNA	Plant species
156	pmi-miR156	TTGACAGAAGAGAGTGAGCACA	22	tae-miR156	*Triticum aestivum*
	pmi-miR156a	TGACAGAAGAGAGTGAGCACA	22	bna-miR156a	*Brassica napus*
	pmi-miR156b	TGACAGAAGAGAGTGAGCATA	21	cca-miR156b	*Cynara cardunculus*
	pmi-miR156c	TTGACAGAAGAGAGTGAGCATA	21	gna-miR156c	
	pmi-miR156d-3p	GCTCTCTGTGCTTCGTCATCA	22	stu-miR156d-3p	*Solanum tuberosum*
	pmi-miR156f	TTGACAGAAGAGAGAGTGGCA	22	gma-miR156f	
	pmi-miR156i-3p	TGACAGAAGAGAGTGGCA	21	mtr-miR156i-3p	*Medicago truncatula*
	pmi-miR156j	TTGACAGAAGAGAGTGGCA	20	mtr-miR156j	
	pmi-miR156k	TTGACAGAAGAGAGTGGCA	20	gma-miR156k	
	pmi-miR156l-3p	GCTACCTCTCTCTCTGTCAGCA	23	osa-miR156l-3p	*Oryza sativa*
	pmi-miR156p	TTGACAGAAGAGAGAGTGGCA	20	mdm-miR156p	*Malus domestica*
	pmi-miR156q	TTGACAGAAGAGAGAGTGGCA	22	gma-miR156q	
	pmi-miR156r	TTGACAGAAGAGAGAGTGGCA	22	gma-miR156r	
157	pmi-miR157b	CTGACAGAAGAGAGAGAGAGCACACTA	23	smo-miR157b	*Selaginella moellendorffii*
	pmi-miR157c-5p	TTGACAGAAGAGAGAGAGAGACATCA	23	aly-miR157bc-5p	*Arabidopsis lyrata*
	pmi-miR157d-3p	GCTCTCTGTGCTTCGTCATCA	21	aly-miR157bd-3p	
159 pmi-miR159 TTTGAGTCGAGGAGCTCTCA 21 atr-miR159 Amborella trichopoda
 pmi-miR159a TTTGAGTCGAGGAGCTCTTTA 24 ath-miR159a Arabidopsis thaliana
 pmi-miR159b-3p TTTGAGTCGAGGAGCTCTTCA 23 aly-miR159b-3p Arabidopsis lyrata
 pmi-miR159c CTGGAGTCGAGGAGCTCTCA 21 sof-miR159c Saccharum officinarum
 pmi-miR159f CTGGAGTCGAGGAGCTCTCTCA 22 osa-miR159f Oriza sativa

160 pmi-miR160 CCATGAGGACCAAGACATA 22 csi-miR160 Citrus sinensis
 pmi-miR156a-3p TGCCCTGGCCTCTGATGCGGA 21 gma-miR156a-3p Glycine max
 pmi-miR156c CCTGAGCCTCTGATGCGGACTTA 22 mes-miR156c Manihot esculenta

162 pmi-miR162 TCGAATACCTCCTCAGCTCA 21 aau-miR162 Acacia auriculiformis
 pmi-miR162-5p TGGAGGACAGAGCTGTCATTA 23 csi-miR162-5p Citrus sinensis
 pmi-miR162a TCGAATACCTCCTCAGCTCAGA 20 gma-miR162a Glycine max
 pmi-miR162b TCGAATACCTCCTCAGCTCAGA 22 osa-miR162b Oriza sativa
 pmi-miR162b-5p TGGAGGACAGAGCTGTCATCCAA 22 aly-miR162b-5p Arabidopsis lyrata

164 pmi-miR164a TGAGAAGCAGGAGCACGTGA 20 hci-miR164a Helianthus ciliaris
 pmi-miR164b-5p TGAGAAGCAGGAGCACGTGCA 21 ata-miR164b-5p Aegilops tauschii
 pmi-miR164e-5p TGGAGGACAGAGCTGTCATCCCA 22 bra-miR164e-5p Brassica rapa
 pmi-miR164g-3p CACGTCGCTCCCTTCATCCACCA 22 zma-miR164g-3p Zea mays

165 pmi-miR165a-3p TGGAGGACAGAGCTGTCATCCCCA 21 ath-miR165a-3p Arabidopsis thaliana
 pmi-miR165b TGGAGGACAGAGCTGTCATCCCCA 21 ath-miR165b Arabidopsis thaliana
 pmi-miR165c-5p GGAATGTTGTCTGTCGAGGA 22 mtr-miR165c-5p Medicago truncatula
 pmi-miR166 TCGAAGAGGCTCTCATCCACCA 22 ata-miR166b-3p Aegilops tauschii
 pmi-miR166a-5p TGGAGGACAGGAGCACGTGGA 22 aly-miR166a-5p Arabidopsis lyrata
 pmi-miR166b TGGAGGACAGGAGCACGTGGA 21 mtr-miR166b Medicago truncatula
 pmi-miR166b-3p TGGAGGACAGGAGCACGTGGA 22 aly-miR166b-3p Arabidopsis lyrata
 pmi-miR166c TGGAGGACAGGAGCACGTGGA 22 aly-miR166c Arabidopsis lyrata

166 pmi-miR166d TCGAAGAGGCTCTCATCCACCA 23 ctr-miR166 Citrus trifoliata
 pmi-miR166e TCGAAGAGGCTCTCATCCACCA 22 aly-miR166e Arabidopsis lyrata
 pmi-miR166f-5p TCGAAGAGGCTCTCATCCACCA 22 aly-miR166f-5p Arabidopsis lyrata
 pmi-miR166h-5p TGGAGGACAGGAGCACGTGGA 22 osa-miR166h-5p Oriza sativa
 pmi-miR166i TCGAAGAGGCTCTCATCCACCA 20 cme-miR166i Cucumis melo
 pmi-miR166j-3p TCGAAGAGGCTCTCATCCACCA 23 gma-miR166j-3p Glycine max
 pmi-miR166l-3p TCGAAGAGGCTCTCATCCACCA 21 ppt-miR166l-3p Physcomitrella patens
 pmi-miR166m TCGAAGAGGCTCTCATCCACCA 22 zma-miR166m Zea mays
 pmi-miR166n TCGAAGAGGCTCTCATCCACCA 22 zma-miR166n-5p Zea mays
 pmi-miR166p TCGAAGAGGCTCTCATCCACCA 20 ptc-miR166p Populus trichocarpa
 pmi-miR166q TCGAAGAGGCTCTCATCCACCA 23 ptc-miR166q Populus trichocarpa

167 pmi-miR167-5p TGAAGTGCTGCCAGCAGATCTTTTA 23 ahy-miR167-5p Arachis hypogaea
 pmi-miR167a TGAAGTGCTGCCAGCAGATCTTCA 22 lus-miR167a Linum usitatissimum
 pmi-miR167b TGAAGTGCTGCCAGCAGATCTTCA 23 cme-miR167b Cucumis melo
 pmi-miR167c TGAAGTGCTGCCAGCAGATCTTCA 21 aly-miR167c Arabidopsis lyrata
pmi-miR167c-5p TAAGCTGCCAGCAGTACCTTA 21 aly-miR167c-5p Arabidopsis lyrata
pmi-miR167d TAAGCTGCCAGCAGTACCTGA 22 ath-miR167d Arabidopsis thaliana
pmi-miR167f-5p TAAGCTGCCAGCAGTACCTCTA 23 ata-miR167f-5p Aegilops tauschi
pmi-miR167h TAAGCTGCCAGCAGTACCTTAA 22 mdm-miR167h Malus domestica

168 pmi-miR168 TCGCTTTGAGCTTAGTCGGAA 21 atr-miR168 Amborella trichopoda
pmi-miR168a TCGCTTTGAGCTTAGTCGGAAA 23 cca-miR168a Cynara cardunculus
pmi-miR168a-3p CCGCCTTGTCACTACATGACA 22 aly-miR168a-3p Arabidopsis thaliana
pmi-miR168b-3p CCGCCTTGTCACTACATGACAA 22 sly-miR168b-3p Solanum lycopersicum
pmi-miR168c-5p TCGCTTTGAGCTTAGTCGGATA 22 bra-miR168c-5p brassica rapa

169 pmi-miR169f TAGCCAGGAGTACTTGCCGGA 22 mes-miR169f Monhot esculenta
pmi-miR169h AGGCAGACTCTTAGACTGACTA 21 aly-miR169h-3p Arabidopsis lyrata
pmi-miR169i TAGCCAGGAGTACTTGACATTAA 22 aly-miR169i Arabidopsis lyrata

171 pmi-miR171 TGATTGAGCTAGCCACATATCA 22 ccl-miR171 Citrus clementina
pmi-miR171a TGATTGAGCTAGCCACATATCA 18 csi-miR171a Citrus sinensis
pmi-miR171c-3p TGGAGCTAGCCACATATCA 19 aly-miR171c-3p Aegilops tauschi
pmi-miR171c-5p TGGAGCTAGCCACATATCA 22 gma-miR171c-5p Oryza sativa
pmi-miR171d TGGAGCTAGCCACATATCA 22 bna-miR171d Brassica napus

172 pmi-miR172a AGAATCTTGTAGATGCTCAGTA 23 lja-miR172a Lotus japonicas
pmi-miR172a-3p AGAATCTTGTAGATGCTCAGTA 21 csi-miR172a-3p Citrus sinensis
pmi-miR172b AGAATCTTGTAGATGCTCAGTA 22 vvi-miR172b Vitis vinifera
pmi-miR172c GGAGCATTCAAGATCCTCACA 21 aly-miR172c Arabidopsis lyrata
pmi-miR172d AGAATCTTGTAGATGCTCAGTA 23 gma-miR172d Glycine max
pmi-miR172d-5p GGAGCATTCAAGATCCTCACA 23 stu-miR172d-5p Solanum tuberosum
pmi-miR172f AGAATCTTGTAGATGCTCAGTA 23 nta-miR172f Nicotiana tabacum
pmi-miR172h GCAGACCATCAAGATCCTCACA 21 gma-miR172h-3p Glycine max
pmi-miR172i AGAATCTTGTAGATGCTCAGTA 23 nta-miR172i Nicotiana tabacum
pmi-miR172m AGAATCTTGTAGATGCTCAGTA 23 mdm-miR172m Malus domestica

319 pmi-miR319 TTGGACTGAAGGAGCTCCCTA 22 aqc-miR319 Aquilegia caerulea
pmi-miR319a TTGGACTGAAGGAGCTCCCTA 21 ppt-miR319a Physcomitrella patens
pmi-miR319b TTGGACTGAAGGAGCTCCCTA 23 mdm-miR319b Malus domestica
pmi-miR319c TTGGACTGAAGGAGCTCCCTA 22 ppt-miR319c Physcomitrella patens
pmi-miR319c-3p TTGGACTGAAGGAGCTCCCTA 21 mtr-miR319c-3p Medicago truncatula
pmi-miR319e TTGGACTGAAGGAGCTCCCTA 23 ppt-miR319e Physcomitrella patens
pmi-miR319i TTGGACTGAAGGAGCTCCCTA 21 ptc-miR319i Populus trichocarpa

390 pmi-miR390a-5p AAACCTAGGAGGATAGCCCA 22 aly-miR390a-5p Arabidopsis lyrata
pmi-miR390b AAGCTACGAGGATAGCCCA 23 ppt-miR390b Physcomitrella patens
pmi-miR390d AAAGCTACGAGGATAGCCCA 22 gma-miR390d Glycine max

391 pmi-miR391-5p TTTCGAGGAGCGATGCCC 22 ath-miR391-5p Arabidopsis thaliana

393 pmi-miR393 TCCAAAGGATCGATGATCTA 23 ghr-miR393 Gossypium hirsutum
pmi-miR393a-5p TCCAAAGGATCGATGATCTA 22 ath-miR393a-5p Arabidopsis thaliana
pmi-miR393c-3p ATCATGCTATCTGTGGAGT 22 gma-miR393c-3p Glycine max
PMI-miR394	TTGGCATCTGGTCCATCTCCA	21	cca-miR394	Cynara cardunculus
PMI-miR394a	TTGGCATTCTGCTACCCTCTTA	23	vvi-miR319a	Vitis vinifera
PMI-miR394b-5p	TTGGCATCTGGTCCACCTCCTTA	22	ptc-miR394b-5p	Populus trichocarpa
PMI-miR395	CGTAAGCCTTTGCGGAACACG	21	ppt-395	Physcomitrella patens
PMI-miR395a	TGAAGCTTTTGGGGGAACTCCA	22	sly-miR395a	Solanum lycopersicum
PMI-miR395b	TGAAGCTTCTGGGAAGACTGGA	22	tea-miR395b	Triticum aestivum
PMI-miR395d	TGAAGCTTTTGGGGAAACTCTA	22	reo-miR395d	Ricinus communis
PMI-miR396	TCCACAGCTTTCCAGTGA	23	aau-miR396	Acacia auriculiformis
PMI-miR396a	TGTGTTATTTTTGGGAACTTGT	19	vvi-miR396a	Vitis vinifera
PMI-miR396b-3p	TCCACAGCTTTCCAGTGA	20	zma-miR396b-3p	Zea mays
PMI-miR396b-5p	TCCACAGCTTTCCAGTGA	20	cca-miR396b-5p	Arabidopsis thaliana
PMI-miR396c	TTAATAATTTTTGGGAACTTGT	21	ath-miR396c	Arabidopsis thaliana
PMI-miR396e-3p	TTAATAATTTTTGGGAACTTGT	19	cme-miR396e-3p	Cucumis melo
PMI-miR397	TTGGTCCACAGTCCCTTTGGA	22	pab-miR397	Picea abies
PMI-miR397a	TGTGTTCTCTCTGCTTTTGGGAACTTGT	21	bna-miR397a	Brassica napus
PMI-miR397b	TGTGTTCTCTCTGCTTTTGGGAACTTGT	21	cme-miR397b	Oryza sativa
PMI-miR397c	TGTGTTCTCTCTGCTTTTGGGAACTTGT	22	mes-miR397c	Oryza sativa
PMI-miR398	TGTGTTGCTCCGAGAAAAGGAAGAGCAACG	22	aly-miR398	Arabidopsis lyrata
PMI-miR398a	TGTGTTGCTCCGAGAAAAGGAAGAGCAACG	22	cme-miR398a	Arabidopsis thaliana
PMI-miR398b-3p	TGTGTTGCTCCGACCACTT	21	mes-miR398b-3p	Arabidopsis thaliana
PMI-miR398f	TGTGTTGCTCCGAGAAAAGGAAGAGCAACG	22	cme-miR398f	Arabidopsis thaliana
PMI-miR399	TGTGTTGCTCCGAGAAAAGGAAGAGCAACG	22	mes-miR399	Arabidopsis thaliana
PMI-miR408	TGCAATGAGAGACAGACGGGAA	22	cca-miR408	Cynara cardunculus
PMI-miR408-3p	TGCAATGAGAGACAGACGGGAA	22	ath-miR408-3p	Arabidopsis thaliana
PMI-miR530b	TGTGTTGCTCCGAGAAAAGGAAGAGCAACG	21	cme-miR530b	Arabidopsis thaliana
PMI-miR535	TGCAATGAGAGACAGACGGGAA	22	ath-miR535	Arabidopsis thaliana
PMI-miR535a	TGCAATGAGAGACAGACGGGAA	22	mes-miR535a	Arabidopsis thaliana
PMI-miR535b	TGCAATGAGAGACAGACGGGAA	22	mes-miR535b	Arabidopsis thaliana
PMI-miR535d	TGCAATGAGAGACAGACGGGAA	21	cme-miR535d	Arabidopsis thaliana
PMI-miR828a	TGGTCTTCGACCACTT	21	vvi-miR828a	Vitis vinifera
PMI-miR833a-5p	TGTTTGTGCTCTCGTCA	19	ath-miR833a-5p	Arabidopsis thaliana
PMI-miR845a	CGCGTCTGATACAAATTGTTA	21	ath-miR845a	Arabidopsis thaliana
PMI-miR845c	CGCGTCTGATACAAATTGTTA	23	ath-miR845c	Arabidopsis thaliana
PMI-miR845d/e	CGCGTCTGATACAAATTGTTA	23	ath-miR845d/e	Arabidopsis thaliana
PMI-miR858	TGGTATGCTCTGCTTCGATTTACC	22	vvi-miR858	Vitis vinifera
PMI-miR858a	TGGTATGCTCTGCTTCGATTTACC	22	vvi-miR858a	Vitis vinifera
PMI-miR1127b-3p	ACACTATGTGTTGACGAGAGCAAGGAGG	23	tae-miR1127b-3p	Triticum aestivum
PMI-miR1128	CACTACCTCCGTCCTCAAAAA	21	ssp-miR1128	Saccharum sp.
PMI-miR1436	ATATGGAACCGAGGAGGGA	20	hvu-miR1436	Hordeum vulgare
PMI-miR1439	TTTTGGGAAACCGAGGAGGGA	19	osa-miR1439	Oryza sativa
TABLE 5. List of putative novel miRNAs that had been discovered in *P. minor*

Novel miRNA	Mature sequences	LM	LP	Side Arm	ΔG	A+U (%)	G+C (%)	AMFE	MFEI
pmi-miRN1974-3p	ACTCCCTCTGGTTCACCA	18		5'	-28.6	60.27	39.73	39.18	1.01
pmi-miRN1983-3p	TAAACCTTTTTGGAACAGGGGA	23		3'	-29.5	62.37	37.63	31.72	1.19
pmi-miRN1992-3p	TGTcAGAAcTAAGTGTGGGGGA	22		3'	-43.4	60.47	39.53	25.23	1.57
pmi-miRN2003-3p	TTGTATcTAGGGcTcATAAGATA	23		3'	-46.5	57.89	42.11	34.96	1.20
pmi-miRN2013-3p	GTGcTcTcTcTcATTGTcATA	20		3'	-57.2	56.31	43.69	55.53	0.99
pmi-miRN2023-3p	TGGTAGATGTGcTTGTcAAGcA	22		3'	-35.7	48.39	51.61	40.78	1.34
pmi-miRN2033-3p	CCCCAGGATGAGTGCTCTCCCA	22		3'	-59.0	47.55	52.45	41.26	1.27
pmi-miRN2043-3p	cATTTcTGGTGGTAGcTcATA	21		5'	-19.9	63.01	36.99	27.26	1.36
Name	Sequence	LM	LP	ΔG	AMFE	MFEI			
--------------------	-------------------------	-----	-----	-----	------	------			
pmi-miRNew-11	CCGGAAGAGGCTGAGCAAGGA	22	103	-57.5	50.49	49.51	55.83	0.89	
pmi-miRNew-12	TGAATTTGTGTTGGAATAGA	18	83	-18.6	73.49	26.51	12.77	2.08	
pmi-miRNew-13	TGATTTTGGAAGGAGAGTATA	23	82	-18.8	67.07	32.93	16.83	1.96	
pmi-miRNew-14	GTGCCTCTCTCTATTGTCAA	20	123	-48.7	56.91	43.09	39.59	1.09	
pmi-miRNew-15	GTTGGTTAATTGTTGGACAGCA	21	123	-35.3	50.41	49.59	28.70	1.73	
pmi-miRNew-16	GGAATTATGCTGTAATCGCA	21	123	-22.2	67.48	32.52	18.05	1.80	
pmi-miRNew-17	TTCTGATTGTTGTAATATCCA	22	93	-59.7	59.14	40.86	64.19	0.85	
pmi-miRNew-18	GCTGAGATTTGAAAGGCTTTTA	23	103	-29.4	67.96	32.04	28.54	1.12	
pmi-miRNew-19	CTGGTTGCTTTGCTCTTTA	18	82	-27.0	50.00	50.00	32.93	1.52	
pmi-miRNew-20	TCCACTCTCAACACCAA	18	83	-28.6	44.58	55.42	24.58	1.61	
pmi-miRNew-21	AAGGGTAAACGGAATATCGA	23	114	-34.7	72.81	27.19	30.44	0.89	
pmi-miRNew-22	AAGAAAGATCAGGGATGAGATTA	23	83	-20.4	61.45	38.55	24.58	1.57	
pmi-miRNew-23	TTGATTGAAATGGcTGTATA	22	63	-23.2	58.73	41.27	36.83	1.12	
pmi-miRNew-24	ATGGACAGCCTCTATTGGCA	21	83	-21.9	54.22	45.78	26.39	1.74	
pmi-miRNew-25	TTGCAGAGATGTCGGGATCAA	21	63	-18.3	55.56	44.44	24.29	1.83	
pmi-miRNew-26	CGAGCGAAGACCTTGGGACA	21	103	-43.1	53.40	46.60	41.84	1.11	
pmi-miRNew-27	CGTGTATCGTGGGATATA	19	63	-33.6	50.79	49.21	53.33	0.92	
pmi-miRNew-28	GACAGGACCTTGGAAATGAGCA	21	93	-24.1	49.46	50.54	25.91	1.95	
pmi-miRNew-29	TCAAACAGGGAGTACACTA	21	123	-49.5	66.67	33.33	40.24	0.85	
pmi-miRNew-30	TGGAATTTGAGCCACACGATA	21	113	-31.6	51.33	48.67	27.96	1.74	
pmi-miRNew-31	CCGGAAGACCTAGAGCTA	18	83	-24.7	57.83	42.17	29.76	1.42	
pmi-miRNew-32	GATTTACGGGAACTGAGCTA	20	83	-29.2	50.60	49.40	35.18	1.40	
pmi-miRNew-33	CAGAGGTAAATCGTACTTGGCA	23	83	-20.0	60.24	39.76	24.10	1.65	
pmi-miRNew-34	TGCTCAATGCTAGCAACTCA	21	103	-50.0	54.37	45.63	48.54	0.94	
pmi-miRNew-35	CTGTGAATCAGAGGGGCA	19	143	-70.9	60.84	39.16	49.58	0.99	
pmi-miRNew-36	AGTTCACCAATGGCAGCTGGA	21	113	-60.2	49.56	50.44	53.27	0.95	
pmi-miRNew-37	GTCTGTTATACATTGGTAAA	21	93	-21.1	68.82	31.18	22.69	1.37	
pmi-miRNew-38	CCAAATCTGATTATCCTGCA	21	173	-53.6	51.45	48.55	30.98	1.57	
pmi-miRNew-39	TTCTGATTGAAATATGACTA	22	133	-55.1	59.40	40.60	41.43	0.98	
pmi-miRNew-40	AGAGATGTTGGCTAAGCGAAGA	21	133	-56.1	60.90	39.10	42.18	0.93	
pmi-miRNew-41	CGATCTGTATGAAGAATCTGTA	22	123	-59.8	59.35	40.65	48.62	0.85	
pmi-miRNew-42	AATGTCGAATTTTGGCAGCA	18	63	-24.6	55.56	44.44	39.05	1.14	
pmi-miRNew-43	CTCGAGAGGAGCAACAGATA	21	153	-28.0	61.44	38.56	18.30	2.11	
pmi-miRNew-44	AGAGATGTAATGAGACCA	19	123	-29.6	57.72	42.28	24.07	1.76	
pmi-miRNew-45	TTTTACTGTTGTCAACTA	19	72	-18.2	62.50	37.50	22.50	1.67	
pmi-miRNew-46	ACAGAGACGCTGGGCGGTA	19	83	-36.7	55.42	44.58	44.22	1.01	
pmi-miRNew-47	AGCTATGGTTGTCTCAACA	21	103	-37.0	58.25	41.75	35.92	1.16	

LM = Length of mature sequence, LP = Length of precursor sequence, ΔG = Free energy, AMFE = Adjusted minimum folding energy, MFEI = Minimum folding energy index
TABLE 6. List of precursors of putative novel miRNAs

Novel miRNA	miRNA precursor
pmi-miRN-01	![Diagram](image1)
pmi-miRN-02	![Diagram](image2)
pmi-miRN-03	![Diagram](image3)
pmi-miRN-04	![Diagram](image4)
pmi-miRN-05	![Diagram](image5)
pmi-miRN-06	![Diagram](image6)
Differential expression was carried out by comparing the normalized expression of miRNAs in the treatments (ABA and MeJA) against control libraries (K). In ABA treated plants, it was observed that 21 miRNAs were differentially regulated where two miRNAs were up-regulated and 19 miRNAs were down-regulated. In MeJA treated plants, 38 miRNAs were differentially regulated which involved 24 up-regulated and 14 down-regulated miRNAs. This result demonstrated that majority of the miRNAs were more responsive towards MeJA (42%) than ABA treatments (7%) (Figure 3). Meanwhile, 51% of miRNA were significantly regulated in both libraries. All the significantly regulated miRNA were shown in Table 7.

![Venn diagram showing the common and specific sequence of significantly regulated miRNA in ABA and MeJA libraries](image)

TABLE 7. List of significantly regulated miRNA under ABA and MeJA treatments. Negative and positive values indicated down- and up-regulated expressions, respectively. Minus sign (-) indicated no miRNA expression detected in the particular library.

miRNA	Mature sequence	Normalized Fold Change	ABA	MeJA
pmi-miR156d	GCTCTCTGTGCTTCTGTGCTCA	-∞	7.79	
pmi-miR156j	TTGACAGAGAGAGACAGTA	-	∞	
pmi-miR157d	TGCTCTCTGTGCTTCTGTAC	-	∞	
pmi-miR159	TGGATGGAAGGGAGCTCTA	-9.70	7.79	
pmi-miR159a	TGGATGGAAGGGAGCTCTACA	-	∞	
pmi-miR160a	TGCTCTGCTCCCTGTATGCTTA	-	∞	
pmi-miR162	TCGATAACCTCTGCATCTCA	-∞	∞	
pmi-miR165a/b	TCGGACAGGCTGCATCCCA	-∞	-	
pmi-miR166	TCGGACAGGCTGCATCCCA	-∞	-	
pmi-miR166a	GAATGGTGTCTTGCTGAGGA	-6.40	∞	
pmi-miR166b	CCGGACAGGCGCTTCATCCCA	-∞	-	
pmi-miR166c	TCGGACAGGCTGCATCCCA	-∞	-	
pmi-miR166d	TCGTACAGGCTTCATCCCA	-∞	-	
pmi-miR167a	TAAGCTGCACGATGATCAGCA	-13.58	∞	
pmi-miR167b/d	TAAAGCTGCTAGCATGATCCTGA	-	-	
pmi-miR168	TCGTTTGCTGCAGGCTGGGAA	-∞	-	
ANALYSIS OF miRNA TARGET GENES

miRNA function is closely related to its target gene. In this study, we employed psRNA Robot software to search for the miRNA targets. Table 8 showed a total of 37 potential target genes predicted in *P. minor*. Some miRNAs were identified to target the same genes (Table 8). Based on miRNA target prediction result, four miRNAs and targets were selected to be further explored due to their involvement in plant defense system and volatile compound biosynthesis pathway. The targets involved were peroxidase targeted by pmi-miR396a, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) targeted by pmi-miR6300, sesquiterpene synthase targeted by pmi-miR6173 and alcohol dehydrogenase 1 (ADH1) targeted by pmi-miR396b. Additionally, analysis of target genes via gene ontology showed most of the targets belong to cellular component (35%), followed by molecular function (34%) and biological process (31%) (Figure 4).

miRNA	Score	ID transcript	Target annotation
pmi-miR168b	2.8	comp53688_c0_seq1	Photosystem II
pmi-miR169i/j/l	2.8	comp59110_c2_seq1	Agrogenate dehydratase
pmi-miR172a	2.2	comp53137_c1_seq1	SPL
pmi-miR319	3.0	comp53825_c0_seq1	F-box protein CPR30
pmi-miR319b/d/e	3.2	comp59318_c1_seq1	Probable ion channel POLLUX
pmi-miR390	3.8	comp48954_c1_seq1	60S ribosomal protein L14-2
miRNA	expression (fold change)	target ID	gene or protein function
---------------	--------------------------	-----------------------	---
pmi-miR159	1.0	comp57600_c3_seq1	Transcription factor GAMYB
pmi-miR159a	1.0	comp57600_c3_seq1	Transcription factor GAMYB
pmi-miR160a	0.8	comp55762_c0_seq1	Auxin response factor
pmi-miR67380_c0_seq2	2.0		Putative disease resistance protein RGA3
pmi-miR166a	0.0	comp62276_c1_seq14	Vacuolar protein sorting-associated protein 35A
pmi-miR166b	2.5	comp62276_c1_seq14	Homeobox-leucine zipper protein HOX32
pmi-miR166c	1.2	comp62276_c1_seq14	Vacuolar protein sorting-associated protein 35A
pmi-miR166d	1.8	comp62276_c1_seq14	Vacuolar protein sorting-associated protein 35A
pmi-miR167a	2.5	comp64807_c0_seq2	Putative ABC transporter B family member 8
pmi-miR167b/d	N/A	N/A	N/A
pmi-miR168	N/A	N/A	N/A
pmi-miR168b	N/A	N/A	N/A
pmi-miR169i/j/l	2.5	comp67132_c1_seq1	Protein MEI2-like2
pmi-miR172a	1.5	comp63292_c0_seq4	Floral homeotic protein APETALA 2
pmi-miR319	2.5	comp64847_c0_seq10	Transcription factor GAMYB
pmi-miR319b/d/c	2.0	comp57600_c3_seq1	Transcription factor GAMYB
pmi-miR319b/d/c	2.0	comp50465_c0_seq1	Transcription factor TC4
pmi-miR390	2.5	comp53986_c0_seq1	Cellulose synthase A catalytic subunit 6
pmi-miR393c	N/A	N/A	N/A
pmi-miR396a	2.5	comp60490_c0_seq1	Peroxidase
pmi-miR396b	2.5	comp63431_c1_seq16	ADH1
pmi-miR399a/b	2.0	comp67947_c0_seq1	Laccase-4
pmi-miR398	2.0	comp61311_c1_seq2	Cytochrome c oxidase subunit 5b-2, mitochondrial
pmi-miR398b	N/A	N/A	N/A
pmi-miR399	2.0	comp50399_c1_seq1	Probable inorganic phosphate transporter
pmi-miR408	2.2	comp43803_c0_seq1	Putative disease resistance protein At4g19050
pmi-miR535	2.5	comp58725_c1_seq1	GDP-mannose 3,5-epimerase 2
pmi-miR535a	2.5	comp58725_c1_seq1	GDP-mannose 3,5-epimerase 2
pmi-miR858	2.0	comp55943_c0_seq1	50S ribosomal protein L34
pmi-miR894	N/A	N/A	N/A
pmi-miR2916	1.8	comp58044_c0_seq1	Probable DNA primase large subunit
pmi-miR4995	2.2	comp62773_c1_seq3	E3 ubiquitin ligase
pmi-miR5077	2.5	comp60152_c0_seq2	Cell division protein FtsZ homolog 2-1
pmi-miR5368	1.0	comp40772_c0_seq1	Uncharacterized protein ORF91
pmi-miR6173	3.0	comp46206_c0_seq1	Probable sesquiterpene synthase
pmi-miR6300	3.2	comp55945_c0_seq1	HMGR
pmi-miR6478	N/A	N/A	Proteasome subunit beta type-2-A
EXPRESSION PROFILE OF SELECTED miRNAS AND THEIR TARGETS USING RT-qPCR

Four conserved miRNAs (pmi-miR396a, pmi-miR396b, pmi-miR6173, and pmi-miR6300) were selected for RT-qPCR analysis. Based on high throughput sequencing, the selected miRNAs were detected in ABA and MeJA libraries except pmi-miR396b which was observed in MeJA library only. The RT-qPCR analysis was carried out to identify the expression of selected miRNAs throughout the treatments. The analysis results were shown in Figure 5 (A) and (B) for ABA and MeJA, respectively. Pmi-miR396a, pmi-miR6300 and pmi-New27 showed decreasing pattern in both ABA and MeJA treatments. Pmi-miR396b also showed similar pattern under MeJA treatments. In contrast, all the target genes showed increasing pattern. Pmi-miR6173 exhibited increasing pattern in ABA treatment while decreasing pattern under MeJA treatment. For its target genes, sesquiterpene synthase showed decreasing pattern under ABA treatment, while in MeJA treatment the expression was increased to two-fold and more than three-fold on Day 1 and Day 2, respectively. However, the expression of the target decreased on Day 3. In general, most of the miRNAs were down regulated under both treatments. In MeJA treatments, pmi-miR6173 and pmi-miR6300 had shown similar pattern (decreasing) with our previous study which involved P. minor treated with pathogenic fungi. In the study, both pmi-miR6173 and pmi-miR6300 were down regulated in Fusarium-treated compared to the control libraries (Samad et al. 2019). Our current study together with our recent study showed that the targets of pmi-miR6173 and pmi-miR6300 might play essential role in biotic and abiotic stresses in P. minor.
FIGURE 5. Relative expression of selected miRNAs and their targets in response to ABA (A) and MeJA (B) treatments.

In this study, we observed that most miRNAs were being significantly regulated in MeJA than ABA libraries. This indicated that MeJA signaling pathway is way more diverse since previous studies revealed it could interact with other hormones, such as salicylic acid (SA), gibberellin (GA), ethylene (ET), auxin,
brassinosteroid (BR) and even abscisic acid (ABA), to regulate gene expression in regulatory networks (Liu et al. 2015). These interactions led to major adjustments in plant biological processes including seed germination, root growth, flowering, senescence and stimulation of various secondary metabolite to counter insects and pathogen invasion (Huang et al. 2017). In contrast, ABA role is more focused in seed germination, stomatal closure and various abiotic stresses (Rai et al. 2011; Sah et al. 2016). In this study, we discovered a total of 41 conserved miRNAs that were responsive to ABA and MeJA treatments in P. minor. The targets involved were peroxidase targeted by pmi-miR396a, HMGR targeted by pmi-miR6300, sesquiterpene synthase targeted by pmi-miR6173 and ADH1 targeted by pmi-miR396b. In ABA and MeJA treatments, the expression of miRNA and their targets were similar. These might happen because the crosstalk between the ABA and MeJA signaling pathways lead to similar changes in gene expression (Riemann et al. 2015). Previous findings showed both hormones contributed towards plant stress response by modulating the gene expression to synthesise secondary metabolites such as terpenoid indole alkaloid in Catharanthus roseus and anthocyanins in Arabidopsis thaliana (El-Sayed & Verpoorte 2004; Loreti et al. 2008). The target of miR396a, peroxidase, is an enzyme involved in cell elongation, lignification, seed germination, and defense response (Shigeto & Tsutsumi 2016). The up-regulation of peroxidase is consistent with the ABA and MeJA roles as signal transduction pathway during plant stress (Almagro et al. 2009). High expression of peroxidase may induce the plant VOC as a response to the environmental stresses especially herbivore attack (War et al. 2011). The targets of pmi-miR6173 and pmi-miR6300, HMGR, and sesquiterpene synthase, respectively, are both involved in terpenoid biosynthesis pathway (Tholl 2015). HMGR is a rate limiting enzyme in MVA pathway which is required for accumulation of sesquiterpene (Chappell et al. 1991; Tholl 2015). In A. thaliana, loss of function for hmg1 showed a 65% reduction in triterpene compound accumulation compared to the wild type (Ohyama et al. 2007). Moreover, mutant hmg1 also led to dwarfing, early senescence and male sterility, and reduced sterol levels (Suzuki et al. 2004). HMGR enzyme catalyses the conversion of HMG-CoA to mevalonate, which is later converted into mevalonate-5-phosphate through the enzyme MVK. High expression of HMGR gene induced by elicitor and wounding could enhance the sesquiterpene production (Chappell et al. 1991; Kondo et al. 2003). Similarly, sesquiterpene synthase is a type of terpene synthase required for sesquiterpene biosynthesis at downstream level (Tholl 2015). Functional analysis of P. minor sesquiterpene synthase led to the production of β-sesquiphellandrene in transgenic A. thaliana (Ee et al. 2014). Another study showed two novel sesquiterpene genes (PmSTPS1 and PmSTPS2) isolated from P. minor were responsible for the production of β-farnesene, α-farnesene and farnesol. Additionally, PmSTPS2 was found to produce nerolidol as an additional product compared to PmSTPS1 (Rusdi et al. 2018).

For pmi-miR396b target, ADH1 is involved in GLV biosynthesis pathway by catalysing the conversion of aldehydes to alcohols (Ul Hassan et al. 2015). GLVs have emerged as major players in plant defense, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and proliferation of plant pathogens, including bacteria, fungi, and viruses. Furthermore, GLVs emitted from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores (Ul Hassan et al. 2015). In general, ADH are classified into two main superfamilies, medium-chain dehydrogenase/reductase (MDR) and short-chain dehydrogenase/reductase (SDR) which consist of 370 and 250 amino acid residues, respectively (Jörnvall 2008). In P. minor, this enzyme was reported to have two family members, PmADH1a and PmADH1b. Both of them were up-regulated under drought stress and involved in ABA signaling pathway (Abd Hamid et al. 2018).

CONCLUSION
High throughput sequencing and advance computational approaches have resulted in the accumulation of huge data on miRNAs. Therefore, exploration of miRNAs role in biological system becomes relatively easy than before. Investigation on miRNAs and their targets at each step of a particular pathway and identifying their significance are current approaches to decipher the functions of miRNAs in plant system. In this study, we managed to characterise miRNA in P. minor and their response under ABA and MeJA treatments. Four miRNAs related to volatile compound biosynthesis were selected to be further studied. However, lack of genome information resulted in the limitation of miRNA discovery in P. minor. We believe more miRNA related to various biological processes could be discovered with the availability of P. minor genome sequence. However, this study was essentially an attempt to provide the fundamental relationship between miRNAs and their response towards ABA and MeJA.

ACKNOWLEDGEMENTS
We would like to thank Institute of Bioscience, Universiti Putra Malaysia (UPM) and Malaysian Genome Institute (MGI) for providing the Bioanalyzer services. We also would like to extend our gratitude to anonymous reviewers for their comments on this manuscript. This work was funded by University Research Grant (DIP-2015-018).

REFERENCES
Abd Hamid, N.A., Zainal, Z. & Ismail, I. 2018. Two members of unassigned type of short-chain dehydrogenase/reductase superfamily (SDR) isolated from Persicaria minor show response towards ABA and drought stress. Journal of Plant
Samad, A.F.A., Rahnamaie-Tajadod, R., Sajad, M., Jani, J., Murad, A.M.A., Noor, N.M. & Ismail, I. 2019. Regulation of terpenoid biosynthesis by miRNA in Persicaria minor induced by Fusarium oxysporum. BMC Genomics 20(1): 586.

Samad, A.F.A., Nazaruddin, N., Murad, A.M.A., Jani, J., Zainal, Z. & Ismail, I. 2018. Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome. 3 Biotech 8(3): 136.

Samad, A.F.A., Sajad, M., Nazaruddin, N., Fauzi, I.A., Murad, A.M.A., Zainal, Z. & Ismail, I. 2017. MicroRNA and transcription factor: Key players in plant regulatory network. Frontiers in Plant Science 8: 565.

Shigeto, J. & Tsutsumi, Y. 2016. Diverse functions and reactions of class III peroxidases. New Phytologist 209(4): 1395-1402.

Suzuki, M., Kamide, Y., Nagata, N., Seki, H., Ohyama, K., Kato, H., Masuda, K., Sato, S., Kato, T., Tabata, S., Yoshida, S. & Muranaka, T. 2004. Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels. The Plant Journal 37(5): 750-761.

Tholl, D. 2015. Biosynthesis and biological functions of terpenoids in plants. Advances in Biochemical Engineering/ Biotechnology 148: 63-106.

Ul Hassan, M.N., Zainal, Z. & Ismail, I. 2015. Green leaf volatiles: Biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnology Journal 13(6): 727-739.

War, A.R., Sharma, H.C., Paulraj, M.G., War, M.Y. & Ignacimuthu, S. 2011. Herbivore induced plant volatiles: Their role in plant defense for pest management. Plant Signaling & Behavior 6(12): 1973-1978.

Wu, H.J., Ma, Y.K., Chen, T., Wang, M. & Wang, X.J. 2012. PsRobot: A web-based plant small RNA meta-analysis toolbox. Nucleic Acids Research 40: 22-28.

Yan, C. & Xie, D. 2015. Jasmonate in plant defence: Sentinel or double agent? Plant Biotechnology Journal 13(9): 1233-1240.

Yang, D., Ma, P., Liang, X., Wei, Z., Liang, Z., Liu, Y. & Liu, F. 2012. PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots. Physiologia Plantarum 146(2): 173-183.

Ye, J., Zhang, Y., Cui, H., Liu, J., Wu, Y., Cheng, Y., Xu, H., Huang, X., Li, S., Zhou, A., Zhang, X., Bolund, L., Chen, Q., Wang, J., Yang, H., Fang, L. & Shi, C. 2018. WEGO 2.0: A web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Research 46(W1): W71-W75.

Zhang, B.H., Pan, X.P., Cox, S.B., Cobb, G.P. & Anderson, T.A. 2006. Evidence that miRNAs are different from other RNAs. Cellular and Molecular Life Sciences CMLS 63(2): 246-254.

Zhang, B., Pan, X. & Stellwag, E.J. 2008. Identification of soybean microRNAs and their targets. Planta 229(1): 161-182.

Ye, J., Zhang, Y., Cui, H., Liu, J., Wu, Y., Cheng, Y., Xu, H., Huang, X., Li, S., Zhou, A., Zhang, X., Bolund, L., Chen, Q., Wang, J., Yang, H., Fang, L. & Shi, C. 2018. WEGO 2.0: A web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Research 46(W1): W71-W75.

Zhang, B.H., Pan, X.P., Cox, S.B., Cobb, G.P. & Anderson, T.A. 2006. Evidence that miRNAs are different from other RNAs. Cellular and Molecular Life Sciences CMLS 63(2): 246-254.

Zhang, B., Pan, X. & Stellwag, E.J. 2008. Identification of soybean microRNAs and their targets. Planta 229(1): 161-182.