Fiscal Resilience Building: Insights from a New Tax Revenue Diversification Index

Ali Compaoré, Rasmané Ouédraogo, Moussé Sow, and René Tapsoba
IMF Working Paper

Fiscal Resilience Building: Insights from a New Tax Revenue Diversification Index

Ali Compaoré, Rasmané Ouédraogo, Moussé Sow, and René Tapsoba
Fiscal Resilience Building: Insights from a New Tax Revenue Diversification Index

Prepared by Ali Compaoré, Rasmané Ouédraogo, Moussé Sow, and René Tapsoba

June 2020

Abstract

Does the reliance on diversified tax structure enhance resilience to fiscal risks? This paper gives an answer to this question by proposing a new cross-country tax revenue diversification index (RDI). The RDI builds on the Theil index, and unlike the few existing tax diversification indices, which are constructed only at the state level for the US, is computed at the national level, covering a broad panel of 127 countries over the period 2000-15. We find suggestive evidence that tax revenue diversification reduces tax revenue volatility, thus bringing to the data long-held views about the prominence of tax revenue diversification for fiscal resilience strengthening. While exploring the drivers of the RDI, we find that tax revenue diversification is not just a reflection of economic diversification, but also an outcome of macroeconomic, political and institutional factors. Interestingly, a non-monotone relationship is also at play between the RDI and economic development, with countries’ portfolio of tax sources getting more diversified as their economy develops, until a tipping point, where richer countries start finding it harder to diversify further their tax revenue sources.

JEL Classification Numbers: C43, H20, H21, O11, O17
Keywords: Revenue volatility, Taxation, Tax revenue diversification, Theil Index.

Authors’ E-Mail Address: ali.compaore@etu.uca.fr, rouedraogo@imf.org, msow@imf.org, rtapsoba@imf.org (corresponding author).

1 We are very grateful to N. Gueorguiev, P. Medas, J. Honda, L. Jaramillo, E. Martin, P. Dallari, M. Newiak, A. Lagerborg and the African Department’s Research Advisory Group, for their valuable comments and suggestions. We thank participants at seminars in the Fiscal Affairs and African Departments. All remaining errors are our own.

2 Université Clermont Auvergne, Clermont-Ferrand (France).
Contents

Abstract .. 1
I. Introduction .. 3
II. Data ... 5
III. Construction of the RDI .. 8
IV. Drivers of Tax Revenue Diversification: An Econometric Analysis ... 13
V. Impacts of revenue diversification ... 18
VI. Concluding Remarks .. 21

Tables
1. Classification of Tax Revenues .. 6
2. Descriptive Statistics of Tax Revenues ... 7
3. Table 3. An excerpt of RDI-based Country Ranking ... 9
4. Macroeconomic and Structural Drivers of RDI, 2000-15 ... 15
5. Macroeconomic and Structural Drivers of RDI ... 16
6. Political and Institutional Drivers of RDI, 2000-15 ... 17
7. Effects of RDI on tax revenue mobilization .. 19
8. Effects of RDI on tax revenue volatility .. 20

Figures
1. Composition of Tax Revenues, 2000-15 ... 7
2. Figure 2. RDI by Region, Income Group, Fragility Status and Size (Average Values) 10
3. Correlation Between Per Capita GDP and RDI ... 10
4. RDI Over Time ... 11
5. Correlation Between the RDI and Key Macroeconomic Variables, 2000-15 12

Annexes
1. Sample and Country Groups .. 25
2. Data Sources and Descriptions .. 26
3. Countries with Filled up Missing Observations ... 27
4. Full RDI-based country ranking ... 28
5. Alternative estimates ... 30
6. Full HHI RDI-based country ranking ... 31
7. Adjusted RDI-based country ranking ... 33

©International Monetary Fund. Not for Redistribution
I. INTRODUCTION

Securing stable domestic resources is part of the multiple objectives of tax policy. Strengthening resilience to fiscal risks arising from government revenue volatility is critical for ensuring a sustainable delivery of public services throughout different phases of the business cycle. A large body of the literature shows that government revenue volatility weighs on economic growth and welfare, including through its adverse effects on the stability of public spending (Bleaney and others, 1995; Furceri, 2007; and Loayza and others, 2007). Delinking public spending from revenue volatility, through the implementation of rules-based fiscal frameworks, is referred to as a credible option for indirectly strengthening resilience to government revenue volatility (IMF, 2009; and Budina and others, 2012). Although not analytically grounded, a long-held intuitive view suggests that tax revenue diversification, that is the reliance on more diversified sources for levying revenue, can serve as an alternative for tackling more directly the root causes of government revenue volatility. The basic tenet is that given the responsiveness to the business cycle fluctuations varies across taxes, relying on a more diversified portfolio of tax streams makes the government’s overall tax revenue less subject to as large volatility as compared to relying on a concentrated portfolio of tax sources.

The current coronavirus pandemic comes as a vivid reminder about the criticality of relying on a diversified portfolio of tax revenue streams. Besides the thousands of lives lost, the pandemic caused severe economic turmoil worldwide, limiting policymakers’ ability to levy much-needed revenues to contain the spread of the virus and properly address its economic and social consequences, especially in countries where tax collection rests largely on a few instruments and/or economic sectors. The pandemic thus illustrates the fragility of public policies built around a concentrated portfolio of tax revenue streams, given the high vulnerability of such tax systems to large swings in the business cycle. It follows that the long-held intuitive view about the pivotal role of a more diversified tax structure for securing stable resources needed to bridge large infrastructure gaps, expand social safety nets and improve countries’ preparedness to future crises, appears more than ever reinvigorated.

But is this long-held intuitive view borne out by the data? A few existing studies find evidence supportive of the view that greater tax diversification is conducive to lower revenue shortfalls during recessions (Suyderhoud, 1994; and Carroll, 2005) and lower tax revenue volatility (Schunk and Porka, 2005). But other studies found limited evidence supportive of this view in the US during the recent Great Recession (Kilby, 2014). That said, all these few existing studies relied on Herfindahl-Hirschman (HHI)-based revenue diversification indices computed at the state level for the US. Other studies captured tax diversification indirectly, including through the share of tax revenue coming from the extractive sector (see e.g., IMF, 2016).

3 The desired mix of taxes is country and context specific. It is a delicate balancing act between several factors, including ensuring the efficiency and fairness of the tax system, securing stable government resources, accounting for tax administration’s capacity to collect, and the political cost of levying taxes (Groves and Kahn, 1952; White, 1983; Hettich and Winer, 1984; Auerbach, 1985; Gentry and Ladd, 1994; and Gaspar and Selassie; 2017).

4 Some studies show that personal income taxes are more responsive to the business cycle fluctuations compared to indirect taxes (value added tax or sales tax), property taxes, and excises, respectively (Groves and Kahn, 1952; Wilford, 1965; and Williams and others, 1973).
This paper refreshes the literature by proposing a new cross-country tax revenue diversification index (RDI). To the best of our knowledge, this is the first study to construct a homogenous cross-country dataset capturing directly the diversification of tax sources structure. Our proposed RDI is computed at the national level, covering a broad panel of 127 countries over 2000-15, based on data availability. We focus on tax revenue, leaving non-tax revenues aside, as non-tax revenues are not primarily designed for revenue-enhancing purposes, but rather to get consumers’ incentives right. The construction of the RDI rests on six major categories of taxes, as reported in the GFSM 2014, namely corporate income tax (CIT), personal income tax (PIT), property tax, tax on goods and services, tax on international trade, and other taxes. Another novelty of the paper is that our RDI builds on the Theil index (as opposed to the HHI), which offers more interesting properties, notably in terms of stability and robustness to outliers. Finally, this paper sheds light not only on the stability-enhancing role of tax revenue diversification, but also on the RDI drivers.

Key stylized facts stand out on the RDI dynamics. On average, AEs relied on more diversified structure of tax sources than EMEs and LIDCs, by as high as the double in terms of RDI over the period 2000-15. Resources-rich countries and fragile states exhibit the most concentrated structure of tax sources, reflecting their over-dependence on commodity revenues and weak tax administration capacity, respectively. Regional disparities in the RDI are also noticeable, with North American and EU countries exhibiting the most diversified taxation sources, while GCC, South Asian, Latin American, and Sub-Saharan African countries present the least diversified revenue streams.

We also uncover the following results from our econometric analyses. First, the RDI exhibits high persistency over time, with up to 60-74 percent of the current level of RDI predicted by its lagged value. Second, our empirical investigations suggest that tax revenue diversification is not just a reflection of economic diversification, but also the outcome of macroeconomic, political and institutional factors. A non-monotone relationship is also at play between the RDI and economic development, with countries’ portfolio of tax sources getting more diversified as their institutions and tax administration capacity keep improving, until a tipping point, where richer countries start finding it more difficult to diversify further their sources of tax revenue. Third, and not the least, our findings lend support to the long-held view that tax revenue diversification matters a great deal for mitigating government revenue volatility. And it does not stop there: tax revenue diversification also improves tax revenue collection.

The remainder of the paper is structured as follows. Section II introduces the data, while section III lays out the detailed steps of the construction of the RDI, and highlights key patterns standing out from the RDI, along with a few pair-wise correlations. Section IV explores the drivers of the RDI, while section V assesses its effects on both volatility and level of government revenue. Section VI presents some concluding remarks.

5 Over-relying on non-tax revenue can prove quite distortive. As a general principle, a user fee should be set such that it covers the cost of services provision, but not to finance other expenditure. That said, we also computed an adjusted RDI (see Annex 7) that accounts for non-tax revenue, given the latter can be substantial in resources-rich countries (dividends, royalties, interest). The adjusted RDI is highly correlated with the main RDI (correlation coefficient of 0.80). For robustness check, we also control for a resources-rich dummy in the econometric analysis (Table 5, column 5).

6 Our approach follows the recently created export diversification indices (Cadot and others, 2011; Papageorgiou and Spatafora, 2012). But for robustness purposes, we also construct an HHI-based RDI (see Annex 6).
II. DATA

2.1. The GFS database

Our sample covers 127 countries from all regions and across all income groups, based on data availability over the period 2000-15. It is made up of 47 advanced economies (AEs), 31 Emerging Market Economies (EMEs), and 49 low-income developing countries (LIDCs). 25 are from Sub-Saharan Africa (SSA), two from North America (NA), 7 from South Asia (SA), 19 from Latin America & the Caribbean (LAC), 14 from the Middle East & North Africa (MENA) (of which 5 from the GCC), 21 from East Asia & Pacific (EAP), and 39 from Europe & Central Asia (ECA) (See Annex 1).

We rely on the IMF’s Government Financial Statistics (GFS) dataset to extract tax revenue data. The GFS dataset provides detailed public finance data in line with international standards (GFSM 2014), thus allowing for comparability across countries and over time (Aldasoro and Seiferling, 2014). The GFSM 2014 represents the latest internationally accepted methodology for compiling government finance statistics in a systematic manner, with well-established definitions and classifications.

The GFS presents additional appealing features. First, data from the GFS are actual, not estimates or projections as in the IMF’s WEO. Second, unlike alternative databases (WEO, ICTD), the GFS provides the most detailed classification of government’s tax revenues for a large coverage across countries and over time. Third, the GFS is compiled by the IMF’s Statistics Department, which ensures consistency across countries, the quality and the accuracy of data under a common methodology for all countries. 7

2.2. Tax revenue components

The GFS provides the most comprehensive and detailed cross-country data in a uniform format. Table 1 below provides an overview of tax revenue classification along the GFSM 2014 format. 8

Given data limitations, notably for LIDCs, we restrict data disaggregation to a level that ensures a reasonably large but homogenous sample. We focus on tier-3 of tax revenue disaggregation, which encompasses taxes on income, profits and capital gains, payroll and workforce, on property, goods and services, international trade and transactions, and other taxes. We exclude social contributions and grants, as they do not meet the definition of a tax. 9 Taxes are expressed in percent of GDP, and are regrouped in two blocks: (i) direct taxes, which include taxes on income, profits, property, and on capital gains for both individuals and corporations, and (ii) indirect taxes, consisting of taxes on goods and services, taxes on international trade and transactions, and other taxes. 10

7 Despite these differences across databanks, their associated data are highly correlated: the correlation coefficient of total tax revenue between the GFS and the WEO is 0.92, and 0.93 between the GFS and the ICTD.
8 GFSM 2014, pp. 88.
9 Social contributions are actual or imputed revenue receivable by social insurance schemes to make provision for social insurance benefits payable, while grants are transfers receivable by government units, from other resident or nonresident government units or international organizations (GFSM, 2014).
10 Full definition of each category of tax can be found in the Government Finance Statistics Manual (2014).
2.3. Dealing with missing data

We fill missing observations in the GFS using available data from the IMF’s Worldwide Revenue Database. We take great care at ensuring consistency between these data and our baseline dataset (GFS). To this end, we first check whether the historical data available in both databases match. Then, we make sure that filling the missing data does not lead to inconsistencies in the resulting database. Particularly, we refrain from filling a gap when this is likely to result in a substantial discrepancy between the total tax figure and the sum of the sub-components. Annex 3 provides an overview of the missing observations that were filled with data from the IMF’s Worldwide Revenue Database.

2.4. Composition of tax revenues

Figure 1 below provides a snapshot of the different tax categories, along with their relative share during 2000-15 (full sample average values). Indirect taxes (notably taxes on goods and services) stand as the largest tax component, accounting for about 60 percent of total taxes, against 40 percent for direct taxes. This pattern reflects the growing reliance on tax on goods and services over the past two decades (160 countries are currently using some forms of VAT), most likely owing to its relative ease of administration and its economic neutrality.

11 The VAT was first introduced in France in 1954.
Figure 1. Composition of Tax Revenues, 2000-15

Table 2 provides more detailed trends on tax revenue and its associated components. Not surprisingly, on average, tax revenue is higher in AEs (25 percent of GDP), more than twice the level in developing countries. Non-resource-rich countries and non-fragile states mobilize larger tax revenue (20.2 and 19.7 percent of GDP, respectively) compared to their resource-rich and fragile peers (11.6 and 14.8 percent of GDP, respectively). Surprisingly, small states mobilize greater tax revenue than their non-small peers (20.4 and 18.8 percent, respectively). This could be explained by a “size effect”, in that smaller states tend to be easier to administer, from a tax collection and administration standpoint.

Table 2. Descriptive Statistics of Tax Revenues

Percent of GDP	Total taxes	Corporate tax	Personal tax	Property tax	Tax on goods & services	Tax on international trade	Other taxes
Full sample	19.0	2.9	4.3	0.5	8.5	2.5	0.3
By income level							
High income: OECD	25.8	3.1	9.3	1.3	11.6	0.1	0.3
High income: non-OECD	15.6	2.5	2.5	0.4	7.3	2.3	0.4
Upper middle income	19.4	3.7	2.5	0.3	8.7	3.7	0.3
Lower middle income	16.8	2.9	2.3	0.2	7.2	3.4	0.4
Low income	11.2	1.6	1.4	0.0	5.5	2.5	0.2
By region							
EU	25.3	2.7	9.0	1.0	12.3	0.1	0.3
Non-EU and CA	21.0	2.7	4.8	0.5	10.2	2.3	0.2
NA	19.1	2.7	3.2	10.8	2.1	0.2	0.0
EAP	19.2	2.8	4.4	0.8	8.6	1.5	0.4
LAC	16.9	2.4	1.9	0.4	7.5	4.1	0.3
MENA: Non-GCC	18.9	4.7	2.8	0.3	8.5	1.6	0.8
MENA: GCC	5.8	2.9	0.2	0.0	1.8	0.9	0.0
SA	10.6	2.2	0.8	0.0	4.7	2.7	0.2
SSA	18.2	3.6	2.4	0.1	6.1	5.8	0.3
By size							
Small states	20.4	3.0	3.5	0.3	7.3	6.1	0.3
Non-small states	18.8	2.9	4.5	0.6	8.9	1.3	0.3
Fragility status							
Fragile states	11.6	1.8	1.9	0.3	4.4	3.2	0.6
Non-fragile states	19.7	3.0	4.4	0.5	8.8	2.4	0.3
Natural resource endowment							
Resource rich countries	14.9	5.2	1.8	0.2	5.4	1.6	0.5
Non-resource rich countries	20.2	2.6	4.8	0.6	9.2	2.5	0.3

Source: GFS, and authors’ calculations

12 The low level of tax revenue in non-OECD high income countries owes much to the fact these are mostly oil-exporting countries.
III. CONSTRUCTION OF THE RDI

3.1. Methodological Approach

Our RDI is based on the Theil index approach. The Theil’s entropy index (Theil, 1972) is preferred to the HHI (Hirschman, 1964), as it features more appealing properties, notably in terms of stability and robustness to outliers. The Theil index has been proven to be more stable regardless of the level of disaggregation, given it incorporates the within and between components, and is more adapted to grouped data (World Bank, 2014). For instance, in exports diversification analysis, the Theil index can be computed along export lines and split up additively into between-groups and within-groups components (Cadot et al.,2011). In addition, for income distribution analysis, the Theil index allows decomposing inequality into the part that is due to inequality within areas (e.g. urban, rural) and the part that is due to differences between areas (e.g. the rural-urban income gap). The main drawback of the HHI relates to its instability and sensitivity to the level of disaggregation, as it assigns greater weight to the larger categories. In addition, the HHI underestimates the values of small categories, as it uses the square terms, which can be quite problematic for analyzing tax revenue patterns, as any percentage point of additional revenue can make a significant difference in thousands of people’s lives. The These appealing properties of the Theil index go a long way to explaining its growing popularity in recent studies, including on exports diversification (e.g. Cadot and others, 2011; Papageorgiou and Spatafora, 2012).

We use the Theil index formula to calculate the RDI, as follows:

\[T = \frac{1}{n} \sum_{i=1}^{n} \frac{t_{axi}}{\mu} \times \log \left(\frac{t_{axi}}{\mu} \right) \]

\(T \) refers to the Theil index; \(t_{axi} \) to a specific direct or indirect tax subcomponent (corporate income tax, personal income tax, or taxes on goods and services), and \(\mu = \frac{1}{n} \sum_{i=1}^{n} t_{axi} \) is the average of the tax subcomponent into consideration. \(T \) is a measure of concentration, with a higher value of \(T \) referring to a more concentrated structure of tax sources, or a lower diversification of tax revenue. Given the construction of the RDI rests on six categories of taxes, the resulting Theil index will vary between 0 (perfect diversification) and 1.8 (reliance on one type of tax only).14

3.2. Results

3.2.1. Stylized Facts

We highlight key patterns standing out of the RDI. As discussed above, the higher the RDI, the stronger the concentration structure of tax sources. The full sample average RDI stands at 0.51 (Figure 3). Japan records the lowest RDI (0.05), while the Kingdom of Bahrain records the highest RDI (1.39), thus standing as the country with the most and least diversified structure of tax sources, respectively.

13 For robustness purposes, we compute an HHI-based RDI (see Annex 6), which turns out highly correlated with the Theil-based (correlation coefficient of 0.98). For a comprehensive review of possible approaches for computing concentration indexes, see Roberts (2014).

14 The maximum value of the Theil index is \(\ln (n) \), with \(n \) referring to the number of considered tax categories.
Table 3 provides an RDI-based country ranking over the period 2000-15. The top 5 countries with the most diversified structure of tax sources belong to the AEs and EMEs, while the bottom 5 countries are either commodity-dependent or fragile/small countries. Over the most recent period (2010-15), Japan emerges as the top performer in terms of tax revenue diversification (RDI of 0.06), followed by France and the United Kingdom (RDI of 0.15 and 0.17, respectively). Bolivia, Kuwait, and Anguilla display the least diversified structure of tax sources (RDI of 1.34, 1.34 and 1.32, respectively). These least diversified economies tend to rely mostly on taxes on goods and services, and international trade.

Rank	Country	RDI	Rank	Country	RDI	Rank	Country	RDI
1	Japan	0.053	1	Japan	0.056	1	Japan	0.057
2	France	0.160	2	United Kingdom	0.149	2	France	0.153
3	United Kingdom	0.164	3	France	0.149	3	United Kingdom	0.172
4	United States	0.188	4	United States	0.156	4	United States	0.176
5	South Africa	0.192	5	Switzerland	0.182	5	South Africa	0.178
95	Bolivia	1.040	113	Maldives	1.141	120	Bahrain, Kingdom of	1.169
96	Bahamas, The	1.403	114	Bahamas, The	1.162	121	United Arab Emirates	1.218
97	Maldives	1.213	115	Qatar	1.173	122	Anguilla	1.317
98	Qatar	1.210	116	Anguilla	1.350	213	Kuwait	1.336
99	Anguilla	1.340	117	Burkina Faso	1.350	124	Bolivia	1.336

Source: Authors' calculations.

3.2.2. Geographical distribution of RDI

Significant differences emerge across regions (Figure 3.b). NA and EU exhibit the lowest RDI (below the full sample average), while the GCC, LAC and SSA record the highest RDI. This points to lower tax revenue diversification in these latter compared to the former groups.

The RDI also varies by income levels. Figure 3.a shows that OECD countries have the most diversified structure of tax sources, followed by middle income countries. High-income non-OECD and low-income countries record the highest RDI, meaning that they have the most concentrated structure of tax sources. Overall, tax revenue diversification appears positively correlated with countries' level of development, as confirmed by Figure 4, which shows that the concentration of tax revenue decreases as per capita GDP increases.

Fragile countries, small states, and resource-rich countries feature more concentrated structure of tax sources. This may stem from the fact that fragile countries face structural impediments, including conflicts, which makes it harder to effectively administer diverse tax revenue streams (Figure 3.c). Small States tend to specialize on a few economic activities, thus limiting their ability to diversify their sources of tax revenue (Figure 3.c). Small and fragile countries mostly rely on taxes on international trade as major source of government revenue (see Table 2). Finally, resource-rich countries have RDI standing above the full sample average, and higher than their non-natural resource rich peers (Figure 3.d). This implies that resources-dependent countries have more concentrated portfolios of tax revenue streams, owing, among other factors, to weak incentives to diversify away from the resource bonanza. Tax revenue in these countries mostly comes from corporate income taxes from the resource exploitation.

15 The full RDI-based country ranking can be found in Annex 4.
Figure 2. RDI by Region, Income Group, Fragility Status and Size (Average Values)

2.a. RDI by region

2.b. RDI by income group

2.c. RDI by fragility criteria & country size

2.d. RDI by resource-rich criteria

Source: Authors’ calculations
Note: SA stands for South Asia, LAC for Latin America and Caribbean, SSA for sub-Saharan Africa, MENA for Middle East and North Africa, EU for European Union, NA for North America, CA for Central Asia; GCC for Gulf Cooperation Council. HIC stands for high income country, LIC for low income country, LMIC for lower middle-income country, UMIC for upper middle-income country, and OECD for Organization for Economic Cooperation and Development.

Figure 3. Correlation Between Per Capita GDP and RDI

Sources: WEO and authors’ calculations
3.2.3. RDI Over Time

Figure 5 plots the evolution of the RDI between the initial (2000-2004) and final period (2010-2015). While some countries diversified their structure of tax sources over time, particularly AEs and some EMEs (Austria, Denmark, France, Germany, Japan, Morocco and South Africa), others displayed a more concentrated structure of tax sources in recent years (Kuwait, Bahrain and Sri Lanka). Another set of countries experienced mixed diversification patterns. While their RDI remains below the sample average, it shrank over time (Bhutan, Dominica, Estonia, Finland, Netherlands). Finally, some countries diversified their taxation sources (Algeria, Côte d’Ivoire, Ghana, Kenya, Mauritius and Uganda).

![Figure 4. RDI Over Time](image)

3.3. Putting the RDI in Perspective with Macroeconomic Developments

We provide preliminary correlations between the RDI and key macroeconomic variables, such as total tax revenue and its volatility, spending volatility, growth volatility, income inequality and exports concentration (Figure 6). The following patterns stand out:

- Concentrated structure of tax sources is associated with both lower tax revenue (Figure 6.a) and greater volatility – tax revenue, growth, and spending (Figure 6.b, 6.c, and 6.d, respectively). This seems in line with the intuitive view that a more diversified portfolio of tax revenue streams helps strengthen fiscal resilience to government revenue volatility.

- The RDI is correlated with export diversification (Figure 6.f), which also proxies for the level of economic diversification. This may stem from the fact that various taxes from export-related

16 Volatility is captured through the standard deviation of each variable.
activities, including from the mining sector, accounts for a big chunk of government revenue in many countries, particularly in LIDCs (Table 2).

- Concentrated tax revenue is correlated with income inequality (Figure 6.e). A possible explanation is that the more concentrated the tax sources structure, the more likely its incidence gets unequally distributed within the population. This may also suggest that in countries with weak institutions, corrupt leaders may impose highly unequal redistribution of wealth, which in turn translates into more concentrated tax sources structure.

- Tax revenue concentration is negatively associated with tax collection efficiency (Figure 6.h) and taxpayer’s compliance (Figure 6.g), suggesting that the diversification of tax sources and the capacity to administer tax compliance might be mutually-reinforcing.

Figure 5. Correlation Between the RDI and Key Macroeconomic Variables, 2000-15

5a. RDI and Tax Revenue

5b. RDI and Tax Revenue Volatility

5c. RDI and GDP Growth Volatility

5d. RDI and Spending Volatility

©International Monetary Fund. Not for Redistribution
IV. DRIVERS OF TAX REVENUE DIVERSIFICATION: AN ECONOMETRIC ANALYSIS

We turn now onto assessing the key drivers of cross-country variations in the RDI. We carry out panel regressions linking the RDI to potential explanatory variables, using the full sample over the period 2000-15. The following econometric specification is considered.

\[RDI_{it} = \alpha + \beta RDI_{i,t-1} + \gamma X_{i,t-1} + \lambda K_{i,t-1} + \sum_{k=1}^{K} \phi_k Z_{k,i,t-1} + \eta_i + \epsilon_{it} \]

Revenue diversification index (RDI) is the dependent variable, and three sets of potential covariates are considered: (i) factors capturing the country economic structure \((X_d)\); (ii) variables reflecting the macroeconomic (domestic and external) environment \((K_d)\); and (iii) factors featuring countries’ political and institutional context along with their development status \((Z_{kd})\). We run dynamic panel regressions using system-GMM estimators, to better address likely endogeneity problems while accounting for the persistency in the RDI over time. All covariates are introduced with

17 Detailed definitions and sources of all variables can be found in Annex 2.
one-year lag, to account for likely delays in the influence of these variables on the RDI, and to mitigate likely reverse causality bias.

Table 4 reports the estimates of the RDI drivers, focusing first on the role of the structure of the economy and the macroeconomic environment. Before going any further, it is worth signaling that the RDI exhibits high persistency over time, as captured by the strongly significant coefficient associated with the lagged RDI variable. Up to 60-74 percent of the current level of tax diversification is predicted by its lagged value, suggesting a strong inertia in the RDI dynamics.

Countries’ level of development (proxied by per capita real GDP) has a significant non-linear impact on their ability to diversify their tax revenue sources. There is a significant inverted U-shaped relationship between per capita real GDP and the RDI. The coefficient associated with per capita real GDP is negative, while the coefficient associated with its squared term is positive. This suggests that countries’ level of tax revenue diversification tends to increase as their economy develops, insofar as they strengthen their institutional framework and improve tax administration capacity, until they reach a tipping point beyond which further diversification of tax revenue becomes harder. This somehow reflects the specialization on a few high skills-based economic activities that characterize some AE’s growth model (e.g., shifting to an innovation-based growth model).

The structure of the economy matters for shaping a country’s tax revenue diversification. First, a less diversified economy, proxied by the export concentration index, is conducive to a more concentrated structure of tax revenue. Columns 2-9 show that higher export concentration goes hand-in-hand with higher tax revenue concentration, as reflected by the positive and significant coefficient associated with the export concentration index. Second, there is also suggestive evidence of some form of “natural resources curse” being at play, as captured by the positive and statistically significant coefficient associated with natural resource rents (column 3). This suggests that countries with larger natural resource endowments face less incentives to diversify their structure of taxation sources. Indeed, most resources-rich countries tend to over-rely on the resource bonanza – the GCC countries for example introduced the VAT for the first time in 2018, amid the recent oil price shocks. Third, the coefficient associated with per capita official development assistance is positive and statistically significant (column 4). This suggests stronger dependency to donor support weakens policymakers’ incentives to diversify taxation sources, bringing to the data long-held views about moral hazard in domestic revenue mobilization in contexts of dependency to public aid, notably unconditional grants (Thornton, 2014). Fourth, a larger informal sector makes it harder to identify taxpayers and assess their compliance, thus rendering more arduous any steps to bring taxpayers into the tax net (column 5).

18 The regressions passed the standard diagnostic tests for the validity of instruments – the AR(2) test for the absence of second-order autocorrelation of the error term and Hansen’s overidentification test.

19 The average per capita GDP threshold level is $ 4222, corresponding broadly to the current levels recorded by countries such as Georgia.
Table 4. Macroeconomic and Structural Drivers of RDI, 2000-15

Dependent variable: Revenue diversification index (RDI)	Baseline estimates and additional controls
RDI_{(t-1)}	(1) (2) (3) (4) (5) (6) (7) (8) (9)
0.679***	0.604***
0.599***	0.737***
0.683***	0.598***
0.608***	0.619***
0.610***	
Log real GDP, pC(t-1)	(0.061)
-0.460*	(0.019)
-0.395***	(0.018)
-0.450***	(0.030)
-0.274*	(0.0020)
-0.539**	(0.015)
-0.533**	(0.019)
-0.336**	(0.018)
-0.308**	(0.011)
Financial development, pC(t-1)	(0.255)
0.025*	(0.144)
0.028***	(0.143)
0.017	(0.165)
0.037***	(0.249)
0.034***	(0.133)
0.022**	(0.137)
0.021**	(0.148)
Financial development, pC^{2}(t-1)	(0.014)
-0.381***	(0.009)
-0.349***	(0.009)
0.079	(0.011)
-0.653***	(0.016)
-0.523***	(0.008)
-0.371***	(0.009)
-0.492***	(0.009)
Financial development, pC^{3}(t-1)	(0.009)
0.018**	(0.009)
0.013*	(0.008)
0.008	(0.005)
0.007	(0.023)
0.012	(0.009)
0.015*	(0.009)
0.023*	(0.013)
Natural resource rents, pC(t-1)	
0.272**	(0.125)
Natural resource rents, pC^{2}(t-1)	
0.011**	(0.005)
Natural resource rents, pC^{3}(t-1)	
Log net ODA received, pC(t-1)	
Log of informal share, pC(t-1)	
Log of inflation rate, pC(t-1)	
De jure globalization index, pC(t-1)	
-0.018	(0.061)
-0.037	(0.036)
IMF program dummy	
2.163*	(1.111)
1.734***	(0.594)
1.965***	(0.594)
1.106*	(1.641)
1.742*	(0.911)
2.335***	(0.553)
1.572**	(0.614)
1.441**	(0.613)
3.387**	(0.351)
Constant	
1218	(1141)
1141	(1141)
639	(943)
943	(1061)
1141	(960)
1125	
Countries	
104	(97)
97	(97)
65	(65)
83	(83)
97	(97)
79	(79)
94	(94)
AR(1)	
0.06	
0.09	
0.09	
0.00	
0.00	
0.08	
0.10	
0.09	
0.09	
Hansen OID (p-value)	
0.58	
0.15	
0.15	
0.71	
0.88	
0.37	
0.17	
0.34	
0.16	
Nb. of instruments	
29	
58	
59	
53	
48	
61	
59	
59	
72	
Year FE	
Yes	
Region FE	
Yes	

* *, **, and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets.

Note: Our measures of revenue diversification (RDI) is considered endogenous, along with the GDP per capita, its squared term, and the financial development variables. These endogenous variables are instrumented using their own respective lags. We follow Roodman (2009) and collapse the number of instruments to avoid the overidentification problem. In all specifications, we reject the null of the AR (1) test of no autocorrelation in the error terms. Thus, lagged variables can be safely used as instruments. Hansen’s p-value robust to heteroskedasticity and autocorrelation validates the over-identification restrictions. The remaining variables are considered exogenous.

Macroeconomic conditions play a role in countries’ tax revenue diversification patterns.

First, larger trade openness is positively correlated with greater with tax revenue diversification. The coefficients associated with trade openness (columns 2-9) are negative, though statistically insignificant in most cases. Second, greater macroeconomic instability (proxied by inflation) is also found to be associated with lower tax diversification (column 6). This may point to the macroeconomic uncertainties brought about by greater instability, which ultimately results in the instability of the tax revenue, and likely its shrinkage. Third, the coefficient associated with financial development is significantly negative (columns 2 to 9). This suggests that deeper financial systems may allow for...
greater formalization of the economy, which in turn makes it easier to broaden the portfolio of tax revenue streams (Medina and others, 2017). Fourth, having an IMF-supported program may also help diversify the structure of tax sources. This may reflect countries’ efforts to improve revenue collection performance under IMF-supported programs (column 9).

There are significant heterogeneities across income levels and regions (Table 5). Compared with AEs, LIDCs and EMEs have more room to diversify further their portfolio of tax revenue streams (column 2), insofar as they strengthen their institutional framework and improve their tax administration capacity (Gaspar and others, 2016; and Akanbi and Akitoby, 2018). Column 1 confirms the regional disparities in RDI, with South Asia, Latin America, and the Middle East and North Africa displaying the least diversified structure of tax sources. Resource-rich countries also exhibit less diversified structure of tax revenue sources compared to other countries (column 3).

Table 5. Macroeconomic and Structural Drivers of RDI, by region and income level

Dependent variable: Revenue diversification index (RDI)	Baseline (1)	Advanced vs EME/LIDC (2)	Resource rich (3)
RDI((-1))	0.611***	0.784***	0.597***
	(0.011)	(0.077)	(0.019)
RDI × AEs Dummy((-1))		-0.172*	
		(0.096)	
AEs Dummy((-1))			
		0.014	
		(0.091)	
Real GDP(pc)((-1))	-0.617***	-0.534	-0.407***
	(0.080)	(0.342)	(0.146)
Real GDP_pc_squared((-1))	0.038***	0.032	0.026***
	(0.005)	(0.021)	(0.009)
Financial development((-1))	-0.396***	0.003	-0.357**
	(0.108)	(0.238)	(0.149)
Trade openness((-1))	-0.032*	-0.034	-0.012
	(0.019)	(0.042)	(0.027)
Export concentration index((-1))	0.025***	0.043***	-0.004
	(0.007)	(0.015)	(0.021)
Dummy_EAP	0.027		
	(0.041)		
Dummy_LAC	0.081***		
	(0.031)		
Dummy_MENA	0.240***		
	(0.047)		
Dummy_SA	0.140***		
	(0.039)		
Dummy_SSA	-0.002		
	(0.033)		
Resource rich (RR) dummy			0.095**
			(0.043)
Constant	2.631***	2.195	1.822***
	(0.346)	(1.360)	(0.601)
Nb. Obs.	1141	1141	1141
Countries	97	97	97
AR(1)	0.08	0.07	0.09
AR(2)	0.30	0.31	0.29
Hansen	0.07	0.71	0.17
Nb. Instr.	70	35	58
Year FE	Yes	Yes	Yes
Region FE	Yes	No	Yes

*, **, and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets. Note: Same as in table 4.
Table 6. Political and Institutional Drivers of RDI, 2000-2015

Political and institutional factors	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Dependent variable: Revenue diversification index (RDI)**	0.610***	0.627***	0.605***	0.624***	0.598***	0.593***	0.597***	0.599***	0.580***	0.643***
RDI**(t-1)**	0.610***	0.627***	0.605***	0.624***	0.598***	0.593***	0.597***	0.599***	0.580***	0.643***
Log real GDP, **p**(t-1)**	-0.606***	-0.701***	-0.779***	-0.968***	-0.721***	-1.062***	-0.324**	-0.550***	-0.432**	-0.490**
Log real GDP, **p** squared**(t-1)**	0.040***	0.044***	0.050***	0.062***	0.046***	0.071***	0.022**	0.016***	0.029**	0.034***
Financial development**(t-1)**	-0.725***	-0.521***	-0.668***	-0.600***	-0.614***	-0.718***	-0.195	-0.363***	-0.183	-0.504***
Trade openness**(t-1)**	-0.071**	0.01	-0.051**	-0.048**	-0.061**	-0.034	0.009	-0.01	-0.007	-0.049
Export concentration index**(t-1)**	0.003	0.01	0.015*	0.01	0.009	-0.005	0.016*	0.017**	0.019**	0.008
Democracy**(t-1)**	-0.005*	(0.003)	-0.026*	(0.012)	-0.149***	(0.025)	-0.003**	(0.001)	-0.011***	(0.004)
Government fractionalization**(t-1)**	-0.062***	(0.020)	-0.150***	(0.019)	-0.047**	(0.027)	-0.062***	(0.003)	-0.104***	(0.022)
Voice and accountability**(t-1)**	-0.027***	(0.010)	-0.022***	(0.019)	-0.027***	(0.020)	-0.027***	(0.020)	-0.027***	(0.020)
Control of corruption**(t-1)**	2.674***	2.978***	3.350***	4.359***	3.082***	4.542***	1.302***	2.235***	1.742***	2.089***
Constant	0.670***	0.506***	0.363***	0.379***	0.356***	0.455***	0.457***	0.463***	0.747***	0.859***

Note: Same as in table 4.

Political and institutional factors are also at play (Table 6). First, deeper democracy seems to foster tax revenue diversification. The coefficient associated with the degree of democracy (the Polity 2 index), is negative and significant (column 1). This finding may reflect that stronger democracy, including through greater checks and balances, strengthens the “sincerity” of the social contract between the government and taxpayers, thereby increasing the latter’s willingness to pay taxes in exchange for improved quality of public services. Second, polarized political systems (captured either through the government fractionalization or political polarization index, columns 2-3) and stronger political stability (column 4) are conducive to greater diversification of tax revenue. Indeed, a polarized political system may lead to a more diversified portfolio of revenue streams, in that politicians in these contexts have less room to manipulate the tax system disproportionately in favor of given constituencies, thus ending up sharing the tax burden more equally across all segments of the population and of economic activities, consistently with the common pool problem (Alesina and Perotti, 1995). Stronger political stability makes it easier for the government to focus on implementing its declared policies, including strengthening...
resilience to revenue volatility through diversifying the taxation sources, instead of embarking on rent-seeking activities. Third, more socialist-oriented governments are more prone to diversifying the taxation sources across all segments of the population and economic activities, as reflected by the negative coefficient associated with the largest government party's orientation (column 5). Fourth, institutional quality, as captured by the quality of bureaucracy (column 6), the rule of law (column 7), government effectiveness (column 8), and government accountability (column 9), strengthens policymakers' ability to diversify tax revenue streams. The coefficients associated with these variables are negative and significant, suggesting that countries with strong institutions have greater capacity to administer compliance on diverse tax instruments. Similarly, stronger control of corruption helps diversify taxation sources (columns 10), as less corruption allows for better tax administration and reduced leakages in tax revenue, hence for greater tax compliance.

V. IMPACTS OF TAX REVENUE DIVERSIFICATION

This section investigates the potential benefits associated with the diversification of tax revenue sources. We rely on the econometric specification below to assess the influence of the RDI on both tax revenue collection and its volatility.

\[Y_{it} = \alpha + \beta Y_{it-1} + \gamma RDI_{it-1} + \sum_{k=1}^{K} \varphi_k Z_{k, it-1} + \eta_t + \pi_t + \epsilon_{it} \]

(3)

RDI\textsubscript{it}, which stands for tax revenue diversification, is the explanatory variable of interest. We focus on two outcome variables (\(Y_t\)). On the one hand, we investigate the impact of tax revenue diversification on revenue collection performance, as captured by the tax-to-GDP ratio. On the other hand, we assess the effect of revenue diversification on the volatility of tax revenue.\(^{22}\) Subscripts \(i\) and \(t\) denote the country and time dimensions, respectively. We follow the existing literature and include a set of variables \(Z\textsubscript{k, it}\) in both specifications to isolate the effects of factors that influence revenue collection performances (per capita GDP, trade openness, informality, share of agricultural Value added, natural resource rents, social conflicts and political unrests, the exchange rate, public debt, FDI, institutional quality and the degree of democracy) and the volatility of tax revenue (GDP per capita, growth volatility, trade openness, natural resource rents, financial development, economic diversification, political stability and polarization, institutional quality, and the presence of fiscal rules), other than the RDI. \(\eta_t\) captures the country-specific and time-invariant effects, and \(\epsilon\textsubscript{it}\) is the error term. Time dummies are also included in our specifications to control for common shocks affecting our left-hand-side variables. Equations (3) and (5) are estimated using the GMM estimators.

We uncover suggestive evidence that greater tax revenue diversification improves non-oil revenue collection (Table 7).\(^{23}\) A higher RDI score, which reflects a high level of tax revenue concentration, is associated with lower tax revenue. In other terms, diversifying the portfolio of tax

\(^{21}\) Largest Government Party orientation with respect to economic policy is coded as follows: (i) Right, if the party is defined as conservative, Christian democratic, or right-wing, and assigned a value of 1; (ii) Center, if the party is defined as centrist or when the party position can best be described as centrist, and assigned a value of 2; (iii) Left if the party is defined as communist, socialist, social democratic, or left-wing, and assigned a value of 3; (iv) the variable equals zero if no information is available (Database on Political Institutions, 2015).

\(^{22}\) Volatility of tax revenue is measured as the standard deviation over a 3-year rolling window.

\(^{23}\) The regressions passed the standard diagnostic tests for the validity of instruments – the AR(2) test for the absence of second-order autocorrelation of the error term and Hansen’s overidentification test.
revenue streams improves revenue collection. In terms of magnitude, the results suggest that a 10 percent increase in the RDI score can yield additional tax revenue of up to 0.2-0.4 percentage points of GDP.

Table 7. Effects of RDI on tax revenue mobilization

Dependent variable: Tax revenue (in % GDP)	Baseline and additional controls	Additional controls	Political and institutional controls
Constant (-1)	0.866*** (0.933***)	0.925***	0.932*** (0.922***)
RDI (0.013)	-0.016*** (-0.025***)	-0.016***	-0.017** (-0.021*** -0.028*** -0.018** -0.028*** -0.015* -0.012**
Real GDP_pc (-0.010)	0.177*** (0.073)	0.151***	0.172*** (0.185*** 0.234*** 0.359** 0.184** 0.094** 0.043**
Real GDP_pc squared (-0.010)	0.010*** (-0.005** -0.009*** -0.010*** -0.006** -0.006** -0.006** -0.011*** -0.014*** -0.003** -0.001**-0.008***		
Trade openness (-0.003)	0.002 (0.000)	0.001 (0.000)	0.002 (0.000) 0.019* 0.001 0.003 0.001 0.001 0.001 0.001
Internal conflicts (-0.003)	-0.102*** (0.024)		
Agricultural VA (-0.018** -0.008**)			
Natural res. rents (-0.009)			
Official ER (-0.004)**	0.001*** (0.000)		
Public Debt/GDP (-0.004)	0.028*** (0.006)		
FDI net inflows (-0.001)	0.040*** (0.007)		
Quality of bureaucracy (-0.002** -0.016**)	0.002** (0.001)		

* , ** , and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets.

Tax revenue diversification is also found to be associated with lower tax revenue volatility (Table 8). 24 This is reflected in the positive and statistically significant coefficient associated with the RDI (tax revenue concentration), which lends support to the long-held informal view that greater reliance on a diversified portfolio of tax revenue streams mitigates significantly the volatility of government tax revenue. Put simply, there is suggestive evidence that countries with more diversified structure of tax sources are more likely to exhibit stronger resilience to revenue volatility arising from the business cycle fluctuations. In terms of magnitude, the results suggest that a one-point improvement in tax revenue diversification is associated with a reduction in tax revenue volatility of up to 0.5-2.8 points.

24 Standard diagnostic tests for the validity of instruments are passed in most cases (except in columns 7 and 9, where the P-value associated with Hasen’s overidentification test did not pass the conventional 5 percent threshold).
Table 8. Effects of RDI on tax revenue volatility

Dependent variable: Volatility of tax revenue
(1)
Revenue volatility_{t-1}
(0.019)
RDI_{t-1}
(0.636)
Real GDP_{pc}_{t-1}
(1.240)
Real GDP_{pc} squared_{t-1}
(0.071)
Trade openness_{t-1}
(0.514)
Growth volatility_{t-1}
(0.026)
Natural res. rent_{t-1}
(0.011)
Export concen_{t-1}
(0.134)
Financial development_{t-1}
(1.527)
Polity_{2}_{t-1}
Corrup._{t-1}
Government stability_{t-1}
Polarization_{t-1}
Voice and accountability_{t-1}
Regulatory qual._{t-1}
Rule of law_{t-1}
Gov. effectiveness_{t-1}
Fiscal rules_{t-1}

* , **, and *** denote statistical significance at 10 percent, 5 percent and 1 percent level, respectively. Standard errors are reported in brackets.

Note: Same as in Table 7.
VI. CONCLUDING REMARKS

This paper proposed a new tax revenue diversification index (RDI) for a broad panel of 128 countries over the period 2000-15. To the best of our knowledge, this is the first paper to create such an index at the national level. Existing tax revenue diversification indexes were only computed at the states level for the US. In addition, our RDI builds on the Theil index, which features more appealing properties, notably in terms of stability and robustness to outliers.

Key patterns stand out of the RDI. On average, AEs relied on a more diversified structure of tax sources than EMEs and LIDCs, by as high as at least the double in terms of RDI score. Resources-rich countries and fragile states exhibit the largest tax revenue concentration, reflecting their over-dependence on commodity revenues and official development assistance, and their weak tax administration capacity, respectively. From a regional perspective, North American and EU countries record the most diversified structure of tax sources, while GCC, South Asian, Latin American, and Sub-Saharan African have the least diversified portfolio of tax revenue streams.

Empirical investigations suggest that beyond economic diversification, tax revenue diversification is shaped by macroeconomic, political and institutional conditions. On the macroeconomic front, countries’ taxation sources get more diversified as their economy develops, insofar as they strengthen their institutions and improve their tax administration capacity, until a tipping point, with richer countries then finding it harder to further diversify their structure of tax sources. In addition, countries with more concentrated and informal economic structures, stronger dependency to aid, and plagued with macroeconomic instability, are more prone to relying on a concentrated portfolio of tax revenue streams. Political and institutional factors are also at play: deeper democracy makes it easier to diversify the portfolio of tax revenue streams, while greater stability and polarization of the political system are more conducive to greater tax revenue diversification.

Last but not the least, we find evidence supportive of the long-held view that tax revenue diversification matters a great deal for mitigating government revenue volatility. And it does not stop there: tax revenue diversification also improves tax revenue collection. Tax revenue diversification thus stands as a key factor for strengthening resilience to fiscal risks arising from government revenue volatility, critical for ensuring a sustainable delivery of public services throughout different phases of the business cycle. The current coronavirus pandemic adds further credence to this criticality of relying on a diversified portfolio of tax revenue streams for strengthening fiscal policy resilience to large swings to business cycle fluctuations. Future research could take the analysis further by delving into the causal links behind the empirical regularity observed in the data between per capita GDP and tax revenue diversification, along with its transmission channels. The influence of tax revenue diversification on income inequality as well as on policymakers’ leeway for implementing countercyclical fiscal policies are additional interesting avenues for future research.
References

Akanbi, O. and Akitoby, B. (2018). “Institutions and Tax Capacity: Is There Any Causality?”, IMF WP, forthcoming.

Akitoby, B., Baum, A., Hackney, C., Harrison, O., Primus, K., and Salins, V. (2018). “Tax Revenue Mobilization Episodes in Emerging Markets and Low-Income Countries: Lessons from a New Dataset”, IMF WP 18/234.

Aldasoro, I. and Seiferling, M. (2014). “Vertical Fiscal Imbalances and the Accumulation of Government Debt”, IMF WP 14/209.

Alesina, A. and Perotti, R. (1995). “Fiscal Expansions and Fiscal Adjustments in OECD Countries”, NBER WP No. 5214 (Cambridge, Massachusetts: NBER).

Araujo, J. D., David, A. C., van Hombeeck, C., & Papageorgiou, C. (2017). “Non-FDI Capital Inflows in Low-Income Countries: Catching the Wave?" IMF Economic Review, 65(2), 426–465.

Auerbach, A.J. (1985). “The Theory of Excess Burden and Optimal Taxation.” In Handbook of Public Economics, vol. 1, edited by Auerbach, A. and Feldstein, M. 69–127. Amsterdam: North-Holland, 1985.

Bleaney, Y. M., Gemmel, N., and Greenaway, D. (1995). “Tax Revenue Instability, with Particular Reference to Sub-Saharan Africa”, The Journal of Development Studies, 31, 883–902.

Budina, N.T., Kinda, T., Schaechter, A. and Weber, A. (2012). “Fiscal Rules in Response to the Crisis-Toward the 'Next-Generation' Rules: A New Dataset.” IMF WP No. 12/187.

Cadot, O., Carrère, C., and Strauss-Kahn, V. (2011). ”Export diversification: What's behind the hump?”, Review of Economics and Statistics, 93(2), 590–605.

Carroll, D. (2005). "Are State Governments Prepared for Fiscal Crises? A Look at Revenue Diversification during the 1990s", Public Finance Review, 33(5), 603–633.

Furceri, D. (2007). "Is Government Expenditure Volatility Harmful for Growth? A Cross-Country Analysis", Fiscal Studies, 28(1), 103–120.

Gaspar, V., Jaramillo, L. and Wingender, P. (2016). “Political Institutions, State Building and Tax Capacity: Crossing the Tipping Point”, IMF WP 16/233.

Gaspar, V., and Selassie, A. (2017). "Taxes, Debt and Development: A One-Percent Rule to Raise Revenues in Africa", IMF Blog 2017/12/05.

Gentry, W.M., and Ladd, H.F. (1994). "State Tax Structure and Multiple Policy Objectives". National Tax Journal, 47 (4), 747–772.

Groves, H. M., and Kahn, C.H. (1952). “The Stability of State and Local Tax Yields”. The American Economic Review”, 42 (1), 87–102.
Gygli, S., Haelg, F., Potrafke, N. and Sturm, J. (2019): The KOF Globalisation Index – Revisited, Review of International Organizations, 14(3), 543-574

Hettich, W., and Winer, S.L. (1984). "A Positive Model of Tax Structure." Journal of Public Economics, 23, 67–87.

Hirschman, A. O. (1964). "The paternity of an index". The American Economic Review, 54(5), 761–762.

International Monetary Fund (2016). “Diversifying Government Revenue in the GCC: Next Steps”, GCC, Annual Meeting of Ministers of Finance and Central Bank Governors, Riyadh, October.

International Monetary Fund (2009), “Fiscal Rules—Anchoring Expectations for Sustainable Public Finances”. Washington: International Monetary Fund.

Loayza, N., Rancière, R., Servén L, and Ventura, J. (2007). "Macroeconomic volatility and welfare in developing countries: an introduction", World Bank Economic Review, 21, 343–357.

Kilby, N. (2014). “Does Tax Revenue Diversification Help States Weather Economic Downturns? Evidence from the Great Recession”, MPA/MPP Capstone Projects. 12.

Medina, L., Jonelis, A. and Cangul, M. (2017). "The Informal Economy in Sub-Saharan Africa: Size and Determinants", IMF WP 17/156.

Marshall, Monty G. and Gurr, Ted Robert 2018. Political Regime Characteristics and Transitions, 1800-2017, Center for Systemic Peace.

Papageorgiou, C., and Spatafora, N. (2012). Economic Diversification in LICs: Stylized Facts and Macroeconomic Implications, IMF Staff Discussion Note No. SDN/12/13 (Washington, DC).

Roberts, T. (2014). When bigger is better: A critique of the Herfindahl-Hirschman Index's use to evaluate mergers in network industries. Pace L. Rev., 34, 894–946.

Schunk, D. and Porka, S. (2005). "State-Local Revenue Diversification, Stability, and Growth: Time Series Evidence", The Review of Regional Studies, 35 (3), 246–65.

Suyderhound, J. (1994). “State-Local Revenue Diversification, Balance, and Fiscal Performance.” Public Finance Review, 22(2):168–194.

Svirydzenka, K. 2016. Introducing a New Broad-based Index of Financial Development. IMF Working Paper 16/5, Washington DC

Theil, H. (1972). Statistical decomposition analysis; with applications in the social and administrative sciences, 4, HA33, T4.

Thornton, J. (2014). "Does foreign aid reduce tax revenue? Further evidence", Applied Economics 46(4), 359–373.

White, C.F. (1983). "Trade-off in Growth and Stability in State Taxes", National Tax Journal 36, 103–114.
Wilford, Walton T. (1965). “State Tax Stability Criteria and the Revenue-Income Elasticity Coefficient Reconsidered.” *National Tax Journal*, 18, 304–312.

Williams, W. V., Anderson, R.M., Froehle, D.O., and Lamb, K.L. (1973). “The Stability, Growth and Stabilizing Influence of State Taxes.” *National Tax Journal* 36, 267–273.

World Bank (2014). Introduction to poverty analysis. World Bank WP No 90288 (Washington, DC: World Bank Group).
Annex 1. Sample and Country Groups

Country	Income group	Region	Small country	Fragile country	Resource rich country	Country	Income group	Region	Small country	Fragile country	Resource rich country
Algeria	UMIC	MENA	No	No	Yes	Kuwait	HIC	MENA	No	No	Yes
Angola	UMIC	SSA	No	No	Yes	Kyrgyz Republic	HIC	ECA	No	No	No
Anguilla	HIC	ECA	No	No	No	Latvia	HIC	ECA	No	No	No
Antigua and Barbuda	HIC	ECA	Yes	No	No	Lebanon	UMIC	MENA	Yes	No	No
Armenia, Republic of	LMIC	ECA	No	No	No	Lesotho	LMIC	SSA	Yes	No	Yes
Australia	HIC	EAP	No	No	Yes	Lithuania	HIC	ECA	No	No	No
Austria	HIC	ECA	No	No	No	Luxembourg	HIC	ECA	No	No	No
Azerbaijan, Republic of	UMIC	ECA	No	No	Yes	Malawi	LIC	SSA	No	No	No
Bahamas, The	HIC	LAC	Yes	No	No	Malaysia	UMIC	EAP	No	No	No
Bahrain, Kingdom of	HIC	MENA	Yes	No	Yes	Maldives	UMIC	SA	Yes	No	Yes
Bangladesh	LIC	SA	No	No	No	Malta	HIC	MENA	Yes	No	Yes
Barbados	HIC	LAC	Yes	No	No	Marshall Islands, Republic of	UMIC	EAP	Yes	Yes	No
Belgium	HIC	ECA	No	No	No	Mauritis	UMIC	SSA	Yes	No	No
Benin	LIC	SSA	No	No	No	Micronesia, Federated States of	LMIC	EAP	Yes	Yes	No
Bhutan	LMIC	SA	Yes	No	No	Moldova	LMIC	ECA	No	No	No
Bolivia	LMIC	LAC	No	Yes	Yes	Montserrat	HIC	ECA	No	No	No
Botswana	UMIC	SSA	Yes	No	Yes	Morocco	LMIC	MENA	No	No	No
Brazil	UMIC	LAC	No	Yes	No	Mozambique	LIC	SSA	Yes	No	Yes
Bulgaria	UMIC	ECA	No	No	No	Namibia	UMIC	SSA	Yes	No	No
Burkina Faso	LIC	SSA	No	No	No	Nepal	LIC	SA	No	No	No
Burundi	LIC	SSA	No	Yes	No	Netherlands	HIC	ECA	No	No	No
Cabo Verde	LMIC	SSA	Yes	No	No	Norway	HIC	ECA	No	No	No
Cambodia	LIC	EAP	No	No	Yes	Oman	HIC	MENA	Yes	No	No
Canada	HIC	NA	No	No	Yes	Pakistan	LMIC	SA	No	No	No
China, P.R.: Mainland	UMIC	EAP	No	No	No	Paraguay	LMIC	LAC	No	No	No
Colombia	UMIC	LAC	No	Yes	No	Peru	UMIC	LAC	No	No	Yes
Congo, Democratic Republic of	LIC	SSA	No	Yes	Yes	Philippines	LMIC	EAP	No	No	No
Congo, Republic of	LMIC	SSA	No	No	Yes	Poland	HIC	ECA	No	No	No
Costa Rica	UMIC	LAC	No	No	No	Portugal	HIC	ECA	No	No	No
Côte d'Ivoire	LMIC	SSA	Yes	Yes	Yes	Qatar	HIC	MENA	Yes	Yes	No
Croatia	HIC	ECA	No	No	No	Romania	UMIC	ECA	No	No	No
Cyprus	HIC	ECA	Yes	No	No	Samoa	LMIC	EAP	Yes	No	No
Czech Republic	HIC	ECA	No	No	No	San Marino	HIC	ECA	Yes	No	No
Denmark	HIC	ECA	No	No	No	Sào Tòme and Príncipe	LMIC	SSA	Yes	No	No
Dominican Republic	UMIC	LAC	Yes	No	No	Serbia, Republic of	UMIC	ECA	No	No	No
Egypt	LIC	SSA	Yes	Yes	No	Seychelles	UMIC	SSA	Yes	No	No
El Salvador	LMIC	LAC	No	No	No	Singapore	HIC	EAP	No	No	No
Equatorial Guinea	UMIC	SSA	Yes	No	Yes	Slovak Republic	HIC	ECA	No	No	No
Estonia	HIC	ECA	Yes	No	No	Slovenia	HIC	ECA	No	No	No
Ethiopia	LIC	SSA	No	No	No	Solomon Islands	LMIC	EAP	Yes	No	No
Finland	HIC	ECA	No	No	No	South Africa	UMIC	SSA	Yes	No	No
France	HIC	ECA	No	No	No	Spain	HIC	ECA	No	No	No
Georgia	LMIC	ECA	No	No	No	Sri Lanka	LMIC	SA	No	No	No
Germany	HIC	ECA	No	No	No	St. Kitts and Nevis	HIC	LAC	Yes	No	No
Ghana	LMIC	SSA	No	No	Yes	St. Lucia	UMIC	LAC	No	No	No
Greece	HIC	ECA	No	No	No	St. Vincent and the Grenadines	UMIC	LAC	Yes	No	No
Grenada	UMIC	LAC	Yes	No	Yes	Swaziland	LMIC	SSA	Yes	No	No
Guatemala	LMIC	LAC	No	No	No	Sweden	HIC	ECA	No	No	No
Honduras	LMIC	LAC	No	No	No	Switzerland	HIC	ECA	No	No	No
Hungary	UMIC	EAP	No	No	No	Syrian Arab Republic	LMIC	MENA	No	Yes	Yes
Iceland	HIC	EAP	Yes	No	No	Thailand	UMIC	EAP	No	No	No
India	LMIC	SA	No	No	No	Togo	LIC	SSA	No	Yes	No
Indonesia	LMIC	EAP	No	Yes	No	Tunisia	UMIC	MENA	No	No	No
Ireland	HIC	EAP	Yes	No	No	Turkey	UMIC	ECA	No	No	No
Israel	HIC	EAP	No	No	No	Uganda	LIC	SSA	No	No	No
Italy	HIC	ECA	No	No	No	Ukraine	LMIC	ECA	No	No	No
Jamaica	UMIC	LAC	Yes	No	No	United Arab Emirates	HIC	MENA	No	Yes	No
Japan	HIC	EAP	No	No	No	United Kingdom	HIC	ECA	No	No	No
Jordan	HIC	EAP	No	No	No	United States	HIC	NA	No	No	No
Kenya	LIC	No	No	No	No	Vietnam	LIC	EAP	No	No	No
Kiribati	LMIC	EAP	Yes	Yes	No	West Bank and Gaza	LMIC	MENA	No	No	Yes
Korea, Republic of	HIC	EAP	No	No	No	Yemen, Republic of	LMIC	MENA	No	Yes	Yes
Kosovo, Republic of	LMIC	ECA	No	Yes	No	No	LMIC	MENA	No	No	No

Income groups: HIC: High Income Country; UMIC: Upper Middle Income Country; LMIC: Lower Middle Income Country; LIC: Low Income Country. Regions: ECA: Europe and Central Asia; EAP: East Asia and Pacific; SA: South Asia; LAC: Latin America; SSA: Sub-Saharan Africa; NA: North America; MENA: Middle East and North Africa.
Annex 2. Data Sources and Descriptions

Variables	Description	Data sources
Real GDP per capita (Real GDP_pc)	Real GDP per capita	IMF’s World Economic Outlook (WEO) database
Square of real GDP per capita (Real GDP_pc squared)	Square of real GDP per capita	Authors’ calculations
Index of financial development (Financial development)	Index of financial development	Svyridzenka (2016)
Sum of imports and exports over GDP (Trade openness)	Sum of imports and exports over GDP	World Bank’s World Development Indicators
Theil index of exports concentration (Exports concentration index)	Theil index of exports concentration	IMF datasets
Natural resource rents in percentage of GDP (Natural resource rents)	Natural resource rents in percentage of GDP	World Bank’s World Development Indicators
Net Official Development Assistance received per capita (Net ODA received per capita)	Net Official Development Assistance received per capita	World Bank’s World Development Indicators
Share of the informal sector in the economy (percentage) (Informal share)	Share of the informal sector in the economy (percentage)	Medina, Jonelis and Cangul (2017)
Consumer price index growth rate (in percentage) (Inflation rate / Informaty)	Consumer price index growth rate (in percentage)	IMF’s World Economic Outlook (WEO) database
It measures the extent of investment restrictions, capital account openness and international investment agreements. (De jure globalization index)	It measures the extent of investment restrictions, capital account openness and international investment agreements.	Gygli et al. (2019)
Rate of real GDP growth (GDP growth)	Rate of real GDP growth	IMF’s World Economic Outlook (WEO) database
Human capital index (Human capital index)	Human capital index, based on years of schooling and returns to education	Penn World Tables 9.1
Binary variable taking the value of 1 if the country has an IMF program and 0 otherwise (IMF program dummy)	Binary variable taking the value of 1 if the country has an IMF program and 0 otherwise	IMF datasets
Degree of democracy. The polity 2 score ranges from -10 to +10, with higher value representing more democracy. (Democracy)	Degree of democracy. The polity 2 score ranges from -10 to +10, with higher value representing more democracy.	Marshall and Gurr (2018)
It measures the maximum polarization between the executive party and the four principle parties of the legislature. (Political polarization)	It measures the maximum polarization between the executive party and the four principle parties of the legislature.	Database of Political Institutions
It measures the probability that two deputies picked at random from among the government parties will be of different parties. (Government fractionalization)	It measures the probability that two deputies picked at random from among the government parties will be of different parties.	Database of Political Institutions
It measures the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means. (Political/Government stability)	It measures the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means.	World Bank’s Worldwide Governance Indicators
It measures the largest party orientation with respect to economic policy. (Largest gov. party orient.)	It measures the largest party orientation with respect to economic policy.	Database of Political Institutions
It measures the institutional strength and quality of the bureaucracy (Quality of bureaucracy)	It measures the institutional strength and quality of the bureaucracy	International Country Risk Guide (ICRG)
It measures the extent to which agents have confidence in and abide by the rules of society (Rule of law)	It measures the extent to which agents have confidence in and abide by the rules of society	World Bank’s Worldwide Governance Indicators
It measures the quality of public services, the quality of the civil service and the degree of its independence from political pressures and the quality of policy formulation (Government effectiveness)	It measures the quality of public services, the quality of the civil service and the degree of its independence from political pressures and the quality of policy formulation	World Bank’s Worldwide Governance Indicators
It measures the extent to which a country’s citizens are able to participate in selecting their government, and freedom of expression, association and a free media (Voice and accountability)	It measures the extent to which a country’s citizens are able to participate in selecting their government, and freedom of expression, association and a free media	World Bank’s Worldwide Governance Indicators
It represents the extent to which public power is exercised for private gain, including petty and grand forms of corruption. (Control of corruption)	It represents the extent to which public power is exercised for private gain, including petty and grand forms of corruption.	World Bank’s Worldwide Governance Indicators
Agriculture valued added (in percentage of GDP) (Agriculture VA)	Agriculture valued added (in percentage of GDP)	World Bank’s World Development Indicators
Standard deviation of GDP growth (using rolling window method) (Growth volatility)	Standard deviation of GDP growth (using rolling window method)	Authors’ calculations
It measures the ability of the government to formulate and implement sound policies and regulations that permit and promote private sector development. (Regulatory quality)	It measures the ability of the government to formulate and implement sound policies and regulations that permit and promote private sector development.	World Bank’s Worldwide Governance Indicators
Measure of the degree of democracy/autocracy ranging from +10 (strongly democratic) to 110 (strongly autocratic) (Polity 2)	Measure of the degree of democracy/autocracy ranging from +10 (strongly democratic) to 110 (strongly autocratic)	Marshall and Gurr (2018)
Assessment of countries’s political stability (Political risk)	Assessment of countries’s political stability	International Country Risk Guide (ICRG)
Assessment of political violence in the country and its actual or potential impact on governance (Internal conflicts)	Assessment of political violence in the country and its actual or potential impact on governance	International Country Risk Guide (ICRG)
Dummy: 1 if numerical fiscal rule in place, 0 otherwise (Fiscal rules)	Dummy: 1 if numerical fiscal rule in place, 0 otherwise	IMF Fiscal Rules Dataset
Direct investment equity flows in the reporting economy. It is the sum of equity capital, reinvestment of earnings, and other capital. (Foreign direct investment (FDI), net inflows)	Direct investment equity flows in the reporting economy. It is the sum of equity capital, reinvestment of earnings, and other capital.	World Bank’s Worldwide Governance Indicators
General government total debt, percent of fiscal year GDP (Public debt (% GDP))	General government total debt, percent of fiscal year GDP	World Bank’s Worldwide Governance Indicators
Overall fiscal balance percentage of GDP (Overall fiscal balance)	Overall fiscal balance percentage of GDP	IMF’s World Economic Outlook (WEO) database
Official exchange rate (LCU per US$, period average) (Exchange rate)	Official exchange rate (LCU per US$, period average)	World Bank’s Worldwide Governance Indicators
Annex 3. Countries with Filled up Missing Observations

Country	Year(s)
Armenia, Republic of	2003
Brazil	2000-2005
Burundi	2010 & 2015
Cabo Verde	2010-2015
Canada	2010 & 2015
China, P.R: Mainland	2000-2004
Congo, Republic of	2000-2003
Costa Rica	2000-2001
Croatia	2000-2001
Egypt	2000-2001
Georgia	2000-2002
Honduras	2000-2002
Indonesia	2000 & 2007
Jamaica	2000-2002
Korea, Republic of	2000 & 2006
Lesotho	2000-2002
Mauritius	2000-2001
Moldova	2000-2001
Seychelles	2000-2004
Turkey	2000 & 2007
Annex 4. Full RDI-based country ranking

Rank	2000-2004	2005-2009	2010-2015
1	Japan	Japan	Japan
2	France	United Kingdom	France
3	United Kingdom	United States	United Kingdom
4	United States	Switzerland	United States
5	South Africa	South Africa	South Africa
6	Switzerland	Switzerland	Switzerland
7	Norway	Israel	Singapore
8	Australia	Australia	Australia
9	Israel	Norway	Norway
10	Spain	Spain	Korea, Republic of
11	Luxembourg	Belgium	Israël
12	Belgium	Cyprus	Belgium
13	Netherlands	Luxembourg	Spain
14	Ukraine	Korea, Republic of	Luxembourg
15	Ireland	Ireland	Ireland
16	Cyprus	Ireland	Cyprus
17	Oman	Barbados	Iceland
18	Finland	Germany	Netherlands
19	Italy	Poland	Italy
20	Greece	Italy	Malta
21	Yemen, Republic of	Finland	Germany
22	Latvia	Ukrainie	Georgia
23	Poland	Oman	Greece
24	Barbados	Greece	Portugal
25	Czech Republic	Iceland	Oman
26	Bhutan	Indonesia	India
27	Germany	Latvia	Poland
28	Denmark	Malta	Kenya
29	Iceland	Czech Republic	Finland
30	Malaysia	India	Azerbaijan, Republic of
31	Portugal	Denmark	Barbados
32	Malta	Azerbaijan, Republic of	Indonesia
33	Montenegro	Yemin, Republic of	Slovakia, Republic
34	Romania	Portugal	Malaysia
35	Austria	Lithuania	Latvia
36	Philippines	Jamaica	Latvia
37	Morocco	Montserrat	Denmark
38	Egypt	Slovenia	Egypt
39	Slovak Republic	Thailand	Montserrat
40	Canada	Egypt	Malaysia
41	Namibia	Romania	Tunisia
42	Georgia	Austria	Ukraine
43	India	Slovak Republic	Peru
44	Slovenia	Philippines	Honduras
45	Jamaica	Canada	Czech Republic
46	Sweden	Malaysia	Jamaica
47	Hungary	Malawi	Israel
48	São Tomé and Príncipe	Georgia	Thailand
49	Thailand	Tunisia	Austria
50	Lithuania	Kenya	Namibia
51	Bulgaria	Morocco	Romania
52	Honduras	Hungary	Yemin, Republic of
53	Estonia	Peru	Costa Rica
54	Bahrain, Kingdom of	Honduras	Canada
55	San Marino	Sweden	Congo, Republic of
56	St. Kitts and Nevis	El Salvador	Morocco
57	Tunisia	Brazil	Sweden
58	St. Vincent and the Grenadines	Namibia	Solomon Islands
59	Peru	Estonia	Sierra Leone
60	El Salvador	Congo, Republic of	Micronesia, Federated States of
61	Swaziland	Turkey	Mozambique
62	Dominica	Costa Rica	China, P.R. Mainland
63	Vietnam	Bhutan	Bhutan
64	Ghana	Bulgaria	Ghana

©International Monetary Fund. Not for Redistribution
Annex 4. Full RDI-based country ranking (Cont’d)

	Country	RDI 1990								
65	Sierra Leone	0.595	66	Benin	0.607		67	Moldova	0.614	
68	St. Lucia	0.618	69	Grenada	0.649		70	Côte d'Ivoire	0.649	
71	Afghanistan	0.656	72	Armenia, Republic of	0.593		73	Colombia	0.665	
74	Cyprus	0.684	75	Congo, Democratic Republic of	0.688		76	Angola	0.693	
77	Syria	0.700	78	Ethiopia	0.700		79	Dominican Republic	0.702	
81	Croatia	0.720	82	Congo, Republic of	0.732		83	Togo	0.751	
85	Mauritius	0.783	86	Kenya	0.799		87	Uganda	0.814	
88	Jordan	0.816	89	Algeria	0.818		90	Sri Lanka	0.822	
91	Bangladesh	0.824	92	Guatemala	0.875		93	Antigua and Barbuda	0.884	
95	Bolivia	1.040	96	Bahamas, The	1.203		97	Maldives	1.213	
98	Qatar	1.215	100	Azerbaijan, Republic of	...		101	Botswana	1.010	
104	Burundi	1.04	105	Cabo Verde	1.05		106	China, P.R.: Mainland	1.06	
110	Kiribati	1.10	111	Korea, Republic of	...		112	Kosovo, Republic of	1.11	
117	Marshall Islands, Republic of	...	118	Mozambique	1.18		119	Paraguay	...	
122	Samoa	1.20	123	Seychelles	1.22		124	Solomon Islands	1.24	
127	United Arab Emirates	...	128	Turkey	1.25		129	United Arab Emirates	...	

©International Monetary Fund. Not for Redistribution
Annex 5. Alternative estimates

Accounting for shift in value added across sectors

Dependent variable: Revenue diversification index (RDI)	Baseline (1)	Controlling for VA share of services (2)	(3)	(4)
RDI_(t-1)	0.611***	0.478***	0.459***	0.453***
(0.011)	(0.024)	(0.022)	(0.023)	
Log real GDP_(t-1)_pc	-0.6170***	-0.8073***	-0.7172***	-0.7804***
(0.080)	(0.123)	(0.128)	(0.135)	
Log real GDP_(t-1)_pc_sqr	0.038***	0.051***	0.0442***	0.0487***
(0.005)	(0.008)	(0.008)	(0.009)	
Financial development_(t-1)	-0.3958***	-0.6439***	-0.5385***	-0.6052***
(0.108)	(0.133)	(0.138)	(0.139)	
Trade openness_(t-1)	-0.0318*	-0.0212	-0.0257	-0.0116
(0.019)	(0.026)	(0.026)	(0.028)	
Export concentration index_(t-1)	0.0252***	0.0294***	0.0339***	0.0302***
(0.007)	(0.009)	(0.009)	(0.009)	
VA Services / VA Agri.	-0.0001***	-0.0001***	0.000	0.000
(0.000)	(0.000)	(0.000)	(0.000)	
VA Services / VA Manuf.			0.0023**	0.0020**
			(0.001)	(0.001)
Constant	2.631***	3.486***	3.137***	3.361***
(0.346)	(0.518)	(0.540)	(0.564)	
Nb. of observations	1141	1089	1074	1074
Countries	97	96	95	95
AR(1)	0.08	0.04	0.05	0.06
AR(2) p-value	0.3	0.14	0.25	0.25
Hansen OID (p-value)	0.07	0.11	0.2	0.22
Nb. of instruments	70	71	71	72
Year FE	Yes	Yes	Yes	Yes
Region FE	Yes	Yes	Yes	Yes

©International Monetary Fund. Not for Redistribution
Rank	Country	2000-2004	Country	2005-2009	Country	2010-2015
1	Japan	0.279	Japan	0.276	Japan	0.277
2	France	0.326	United Kingdom	0.316	France	0.322
3	Norway	0.328	France	0.323	South Africa	0.325
4	United Kingdom	0.329	Norway	0.322	Norway	0.326
5	South Africa	0.329	South Africa	0.323	United Kingdom	0.332
6	Switzerland	0.341	Australia	0.331	Switzerland	0.335
7	Oman	0.342	United States	0.334	Australia	0.335
8	Australia	0.355	Switzerland	0.335	Singapore	0.342
9	Luxembourg	0.351	Israel	0.343	United States	0.346
10	United States	0.351	Spain	0.347	Belgium	0.355
11	Israel	0.356	Belgium	0.356	Luxembourg	0.356
12	Yemen, Republic of	0.364	Luxembourg	0.357	Spain	0.362
13	Belgium	0.364	Oman	0.368	Israel	0.363
14	Spain	0.366	Ireland	0.379	Korea, Republic of	0.364
15	Ukraine	0.369	Cyprus	0.381	Ireland	0.368
16	Ireland	0.373	Netherlands	0.384	Oman	0.371
17	Finland	0.377	India	0.385	India	0.372
18	Bhutan	0.379	Germany	0.389	Iceland	0.382
19	Netherlands	0.379	Korea, Republic of	0.390	Malta	0.383
20	Italy	0.392	Finland	0.391	Cyprus	0.385
21	Malaysia	0.395	Yumen, Republic of	0.394	Kenya	0.389
22	Cyprus	0.401	Italy	0.396	Netherlands	0.390
23	Germany	0.404	Iceland	0.403	Germany	0.393
24	Czech Republic	0.405	Indonesia	0.403	Italy	0.396
25	Iceland	0.414	Malta	0.406	Malawi	0.407
26	Austria	0.416	Czech Republic	0.406	Finland	0.408
27	Latvia	0.419	Ukraine	0.408	Malaysia	0.409
28	Denmark	0.425	Jamaica	0.414	Philippines	0.410
29	Greece	0.429	Austria	0.417	Portugal	0.416
30	Malta	0.430	Barbados	0.418	Georgia	0.417
31	Montserrat	0.431	Latvia	0.419	Tunisia	0.419
32	Philippines	0.438	Malaysia	0.420	Indonesia	0.419
33	Poland	0.438	Egypt	0.420	Egypt	0.419
34	Barbados	0.438	Azerbaijan, Republic of	0.421	Austria	0.422
35	Namibia	0.441	Denmark	0.423	Azerbaijan, Republic of	0.423
36	Portugal	0.442	Lithuania	0.425	Jamaica	0.428
37	Jamaica	0.448	Montserrat	0.425	Yemen, Republic of	0.430
38	Egypt	0.449	Poland	0.427	Montserrat	0.431
39	India	0.450	Philippines	0.429	Greece	0.431
40	San Marino	0.450	Thailand	0.432	Peru	0.435
41	São Tomé and Principe	0.460	Slovenia	0.433	Poland	0.439
42	Lithuania	0.460	Malawi	0.434	Denmark	0.439
43	Slovenia	0.462	Greece	0.434	Bhutan	0.439
44	Bahrain, Kingdom of	0.466	Kenya	0.439	Latvia	0.442
45	Hungary	0.467	Tunisia	0.441	Thailand	0.444
46	Romania	0.469	Portugal	0.443	Sierra Leone	0.445
47	Canada	0.469	Morocco	0.457	Namibia	0.447
48	Estonia	0.478	Hungary	0.459	Czech Republic	0.449
49	Sweden	0.475	Peru	0.459	Ukraine	0.452
50	Morocco	0.476	Bhutan	0.459	Slovak Republic	0.452
51	Slovak Republic	0.482	Canada	0.462	Micronesia, Federated States of	0.457
52	Thailand	0.485	Sweden	0.465	Sweden	0.459
53	Bulgaria	0.498	Slovak Republic	0.468	Barbados	0.460
54	Vietnam	0.504	Romania	0.472	Mozambique	0.462
55	Georgia	0.506	Namibia	0.478	Congo, Republic of	0.462
56	Syrian Arab Republic	0.507	Estonia	0.482	Algeria	0.464
57	Tunisia	0.515	Georgia	0.484	Canada	0.471
58	Colombia	0.512	El Salvador	0.485	Honduras	0.471
59	St. Kitts and Nevis	0.533	San Marino	0.490	Morocco	0.476
60	El Salvador	0.536	Marshall Islands, Republic of	0.491	Solomon Islands	0.477
61	Honduras	0.534	Vietnam	0.494	Ghana	0.477
62	St. Vincent and the Grenadines	0.537	Honduras	0.495	Vietnam	0.478
63	Swaziland	0.539	Congo, Republic of	0.498	Kiribati	0.479
64	Peru	0.543	Colombia	0.507	Romania	0.488
Rank	Country	HHI RDI				
------	--------------------------	---------				
65	Ghana	0.553				
66	Sierra Leone	0.554				
67	Dominica	0.561				
68	Pakistan	0.573				
69	Benin	0.587				
70	Angola	0.5870				
71	St. Lucia	0.597				
72	Moldova	0.599				
73	Lesotho	0.606				
74	Côte d'Ivoire	0.611				
75	Ethiopia	0.613				
76	Congo, Democratic Republic of	0.618				
77	Kuwait	0.619				
78	Grenada	0.623				
79	Kenya	0.633				
80	Armenia, Republic of	0.633				
81	Congo, Republic of	0.634				
82	Dominican Republic	0.637				
83	Croatia	0.645				
84	Togo	0.656				
85	Uganda	0.662				
86	Nepal	0.669				
87	Algeria	0.701				
88	Mauritius	0.706				
89	Jordan	0.706				
90	Bangladesh	0.714				
91	Guatemala	0.717				
92	Antigua and Barbuda	0.727				
93	Sri Lanka	0.728				
94	Bolivia	0.806				
95	Cambodia	0.819				
96	Bahamas, The	0.914				
97	Maldives	0.928				
98	Qatar	0.921				
99	Anguilla	0.984				
100	Azerbaijan, Republic of	0.723				
101	Botswana	0.724				
102	Brazil	0.727				
103	Burkina Faso	0.838				
104	Burundi	0.894				
105	Cabo Verde	0.915				
106	China, P.R.: Mainland	0.924				
107	Costa Rica	0.925				
108	Equatorial Guinea	0.926				
109	Indonesia	0.927				
110	Kiribati	0.928				
111	Korea, Republic of	0.929				
112	Kosovo, Republic of	0.930				
113	Kyrgyz Republic	0.931				
114	People's Democratic Republic	0.932				
115	Lebanon	0.933				
116	Malawi	0.934				
117	Marshall Islands, Republic of	0.935				
118	Micronesia, Federated States of	0.936				
119	Mozambique	0.937				
120	Nicaragua	0.938				
121	Nigeria	0.939				
122	Palau	0.940				
123	Paraguay	0.941				
124	Samoa	0.942				
125	Serbia, Republic of	0.943				
126	Seychelles	0.944				
127	Singapore	0.945				

Annex 6. Full HHI RDI-based country ranking (Cont’d)
Annex 7. Adjusted (accounting for non-tax revenue) RDI-based country ranking

Rank	2000-2004	2005-2009	2010-2015		
Rank	Country RDI	Rank	Country RDI	Rank	Country RDI
1	Japan 0.044	1	Japan 0.049	1	Japan 0.054
2	Switzerland 0.151	2	Switzerland 0.143	2	Switzerland 0.142
3	Israel 0.195	3	United Kingdom 0.153	3	Singapore 0.147
4	United Kingdom 0.197	4	Israel 0.169	4	United Kingdom 0.176
5	Netherlands 0.210	5	Korea, Republic of 0.209	5	Korea, Republic of 0.187
6	Luxembourg 0.238	6	Netherlands 0.225	6	Israel 0.196
7	Ukraine 0.247	7	Spain 0.230	7	Belgium 0.225
8	Finland 0.244	8	Belgium 0.243	8	Luxembourg 0.231
9	Spain 0.258	9	Luxembourg 0.250	9	Netherlands 0.237
10	Belgium 0.264	10	Finland 0.260	10	Spain 0.243
11	Iceland 0.323	11	Ukraine 0.264	11	Iceland 0.254
12	Malta 0.333	12	Indonesia 0.273	12	Malta 0.282
13	Morocco 0.339	13	Iceland 0.289	13	Finland 0.283
14	India 0.346	14	Malta 0.306	14	Indonesia 0.293
15	Czech Republic 0.347	15	India 0.313	15	India 0.309
16	Austria 0.352	16	Jamaica 0.335	16	Ukraine 0.315
17	Jamaica 0.364	17	Austria 0.336	17	Honduras 0.330
18	Philippines 0.379	18	Czech Republic 0.338	18	Peru 0.335
19	Honduras 0.382	19	Thailand 0.356	19	Egypt 0.339
20	San Marino 0.387	20	Honduras 0.359	20	Austria 0.346
21	Hungary 0.398	21	Peru 0.366	21	Georgia 0.365
22	Egypt 0.399	22	Egypt 0.368	22	Czech Republic 0.371
23	Thailand 0.405	23	Barbados 0.372	23	Montserrat 0.372
24	Estonia 0.407	24	Hungary 0.374	24	Thailand 0.374
25	Sweden 0.426	25	El Salvador 0.375	25	Morocco 0.376
26	Barbados 0.426	26	Morocco 0.386	26	Jamaica 0.376
27	Montserrat 0.435	27	Philippines 0.387	27	Tunisia 0.390
28	Bhutan 0.435	28	Montserrat 0.388	28	Costa Rica 0.391
29	São Tomé and Príncipe 0.448	29	Georgia 0.403	29	Philippines 0.395
30	St. Kitts and Nevis 0.451	30	Tunisia 0.404	30	China, P.R.: Mainland 0.395
31	Georgia 0.454	31	Estonia 0.404	31	Sweden 0.409
32	Peru 0.464	32	Sweden 0.411	32	Barbados 0.416
33	Moldova 0.471	33	China, P.R.: Mainland 0.444	33	El Salvador 0.418
34	St. Vincent and the Grenadines 0.495	34	Costa Rica 0.472	34	Estonia 0.426
35	Tunisia 0.506	35	Kenya 0.507	35	Solomon Islands 0.429
36	El Salvador 0.517	36	Armenia, Republic of 0.524	36	Lithuania 0.438
37	Angola 0.520	37	Croatia 0.551	37	Kenya 0.455
38	Dominica 0.527	38	Colombia 0.556	38	Hungary 0.460
39	Namibia 0.560	39	Angola 0.560	39	Bhutan 0.464
40	St. Lucia 0.598	40	Serbia, Republic of 0.568	40	Namibia 0.470
41	Armenia, Republic of 0.617	41	San Marino 0.572	41	Armenia, Republic of 0.477
42	Swaziland 0.629	42	Congo, Democratic Republic of 0.573	42	Eritrea 0.482
43	Grenada 0.629	43	Namibia 0.582	43	Sierra Leone 0.523
44	Croatia 0.637	44	Azerbaijan, Republic of 0.589	44	São Tomé and Principe 0.526
45	Jordan 0.642	45	Bangladesh 0.600	45	Angola 0.530
46	Bangladesh 0.650	46	Moldova 0.605	46	Algeria 0.541
47	Colombia 0.651	47	St. Kitts and Nevis 0.614	47	Serbia, Republic of 0.544
48	Mauritius 0.658	48	St. Vincent and the Grenadines 0.616	48	Malawi 0.544
49	Nepal 0.679	49	São Tomé and Principe 0.617	49	Seychelles 0.551
50	Sierra Leone 0.747	50	Mauritius 0.625	50	Congo, Democratic Republic of 0.561
51	Lesotho 0.749	51	Jordan 0.635	51	Lesotho 0.563
52	Dominican Republic 0.750	52	Dominica 0.635	52	Croatia 0.569
53	Congo, Democratic Republic of 0.757	53	Marshall Islands, Republic of 0.635	53	St. Kitts and Nevis 0.578
54	Algeria 0.786	54	Malawi 0.648	54	St. Vincent and the Grenadines 0.578
55	Sri Lanka 0.787	55	Grenada 0.649	55	Samoa 0.594
56	Ghana 0.808	56	St. Lucia 0.658	56	Dominica 0.597
57	Togo 0.837	57	Ghana 0.697	57	Mauritius 0.602
58	Antigua and Barbuda 0.902	58	Bhutan 0.708	58	Bangladesh 0.603
59	Syrian Arab Republic 0.911	59	Cabo Verde 0.731	59	Paraguay 0.603
60	Guatemala 0.950	60	Paraguay 0.734	60	Azerbaijan, Republic of 0.607
61	Congo, Republic of 0.960	61	Seychelles 0.739	61	Swaziland 0.610
62	Cambodia 1.021	62	Algeria 0.740	62	Mozambique 0.610
63	Kenya 1.142	63	Swaziland 0.757	63	Colombia 0.612
64	Uganda 1.196	64	Dominican Republic 0.784	64	San Marino 0.614
Rank	Country	RDI	GDP (PPS)	Per Capita GDP (PPS)	
------	----------------------------------	-----	-----------	----------------------	
65	Maldives	1.335	0.784	65 Marshall Islands, Republic of 0.633	
66	Bahrain, Kingdom of	1.340	0.786	66 St. Lucia 0.661	
67	Qatar	1.379	0.792	67 Jordan 0.679	
68	Oman	1.666	0.812	68 Grenada 0.693	
69	Anguilla	1.779	0.814	69 Nepal 0.694	
70	Kuwait	1.846	0.823	70 Moldova 0.694	
71	Bahamas, The	1.888	0.888	71 Cabo Verde 0.694	
72	Australia	1.982	0.976	72 Dominican Republic 0.709	
73	Azerbaijan, Republic of	2.001	0.901	73 Burundi 0.732	
74	Benin	2.077	0.930	74 Antigua and Barbuda 0.732	
75	Bolivia	2.946	0.946	75 Kyrgyz Republic 0.738	
76	Botswana	3.023	0.993	76 Guatemala 0.779	
77	Brazil	3.098	1.003	77 Latvia 0.819	
78	Bulgaria	3.185	1.003	78 Maldives 0.910	
79	Burkina Faso	3.207	1.013	79 Micronesia, Federated States of 0.839	
80	Burundi	3.234	1.022	80 Cambodia 0.894	
81	Cabo Verde	3.234	1.022	81 Sri Lanka 0.898	
82	Canada	3.234	1.022	82 Qatar 0.910	
83	China, P.R.: Mainland	3.234	1.022	83 Maldives 0.910	
84	Costa Rica	3.234	1.022	84 Botswana 0.976	
85	Cyprus	3.234	1.022	85 Cambodia 0.894	
86	Côte d'Ivoire	3.234	1.022	86 Cambodia 0.894	
87	Denmark	3.234	1.022	87 Cambodia 0.894	
88	Equatorial Guinea	3.234	1.022	88 Cambodia 0.894	
89	Ethiopia	3.234	1.022	89 Cambodia 0.894	
90	France	3.234	1.022	90 Cambodia 0.894	
91	Germany	3.234	1.022	91 Cambodia 0.894	
92	Greece	3.234	1.022	92 Cambodia 0.894	
93	Indonesia	3.234	1.022	93 Cambodia 0.894	
94	Ireland	3.234	1.022	94 Kazakhstan 0.894	
95	Italy	3.234	1.022	95 Kazakhstan 0.894	
96	Kiribati	3.234	1.022	96 Kazakhstan 0.894	
97	Korea, Republic of	3.234	1.022	97 Kazakhstan 0.894	
98	Kosovo, Republic of	3.234	1.022	98 Kazakhstan 0.894	
99	Kyrgyz Republic	3.234	1.022	99 Kazakhstan 0.894	
100	Latvia	3.234	1.022	100 Kazakhstan 0.894	
101	Lebanon	3.234	1.022	101 Kazakhstan 0.894	
102	Lithuania	3.234	1.022	102 Kazakhstan 0.894	
103	Malawi	3.234	1.022	103 Kazakhstan 0.894	
104	Malaysia	3.234	1.022	104 Kazakhstan 0.894	
105	Marshall Islands, Republic of	3.234	1.022	105 Kazakhstan 0.894	
106	Micronesia, Federated States of	3.234	1.022	106 Marshall Islands, Republic of 0.894	
107	Mozambique	3.234	1.022	107 Marshall Islands, Republic of 0.894	
108	Norway	3.234	1.022	108 Marshall Islands, Republic of 0.894	
109	Pakistan	3.234	1.022	109 Marshall Islands, Republic of 0.894	
110	Paraguay	3.234	1.022	110 Marshall Islands, Republic of 0.894	
111	Poland	3.234	1.022	111 Marshall Islands, Republic of 0.894	
112	Portugal	3.234	1.022	112 Marshall Islands, Republic of 0.894	
113	Romania	3.234	1.022	113 Marshall Islands, Republic of 0.894	
114	Samoa	3.234	1.022	114 Marshall Islands, Republic of 0.894	
115	Serbia, Republic of	3.234	1.022	115 Marshall Islands, Republic of 0.894	
116	Seychelles	3.234	1.022	116 Marshall Islands, Republic of 0.894	
117	Singapore	3.234	1.022	117 Marshall Islands, Republic of 0.894	
118	Slovak Republic	3.234	1.022	118 Marshall Islands, Republic of 0.894	
119	Slovenia	3.234	1.022	119 Marshall Islands, Republic of 0.894	
120	Solomon Islands	3.234	1.022	120 Marshall Islands, Republic of 0.894	
121	South Africa	3.234	1.022	121 Marshall Islands, Republic of 0.894	
122	Turkey	3.234	1.022	122 Marshall Islands, Republic of 0.894	
123	United Arab Emirates	3.234	1.022	123 Marshall Islands, Republic of 0.894	
124	United States	3.234	1.022	124 Marshall Islands, Republic of 0.894	
125	Vietnam	3.234	1.022	125 Marshall Islands, Republic of 0.894	
126	West Bank and Gaza	3.234	1.022	126 Marshall Islands, Republic of 0.894	
127	Yemen, Republic of	3.234	1.022	127 Marshall Islands, Republic of 0.894	