Solving Time-Space-Fractional Cauchy Problem with Constant Coefficients by Finite-Difference Method

Reem Edwan, Rania Saadeh, Samir Hadid, Mohammed Al-Smadi, and Shaher Momani

Abstract In this chapter, we present the time-space-fractional Cauchy equation with constant coefficients, the space and time-fractional derivative are described in the Riemann-Liouville sense and Caputo sense, respectively. The implicit scheme is introduced to solve time-space-fractional Cauchy problem in a matrix form by utilising fractionally Grünwald formulas for discretization of Riemann-Liouville fractional integral, and L1-algorithm for the discretization of time-Caputo fractional derivative, additionally, we provided a proof of the von Neuman type stability analysis for the fractional Cauchy equation of fractional order. Several numerical examples are introduced to illustrate the behaviour of approximate solution for various values of fractional order.

1 Introduction

Many phenomena in non-Brownian motion, fluid flows, chemical science, management theory, signal process, fibre optics, systems identification, elastic materials, polymers and others, are well described by a fractional differential equation. In specific, the partial differential equations (PDE) of fractional order are progressively
used to model issues in finance, viscoelasticity, mathematical biology and chemistry [1–8]. Different partial differential equations of fractional order are studied and resolved by several powerful methods [9–17]. Consequently, considerable attention has been given to the answer of partial differential equations of fractional order. Several powerful strategies are established and developed to induce numerical and analytical solutions of fractional differential equations, like finite-difference technique [7], finite volume technique [9], finite element technique [11], homotopy perturbation technique [13] and the fractional sub-equation technique [2].

Recently, many scholars introduced methods for solving fractional differential equations. Momani developed a domain decomposition technique to approximate solution for the fractional convection-diffusion equation with a nonlinear source term [12]. Dehghan et al introduced a numerical solution for a class of fractional convection-diffusion equations using the flatlet oblique multi-wavelets [8]. Saadatmandi et al studied the sinc-Legendre collocation technique for a category of fractional convection-diffusion equations with variable coefficients [14]. Liu et al introduced the finite volume technique for solving the fractional diffusion equations [18], and Yang et al proposed the finite volume technique to the fractional diffusion equations [19], all of that are without theoretical analysis.

Meerschaert and Tadjeran proposed the finite-difference technique for the resolution of the fractional advection-dispersion flow equations [16]. Baeumer and Meerschaert obtained the solution for fractional Cauchy equations by subordinating the solution of the original Cauchy equation [20]. Pskhu introduced a fundamental solution of a higher order Cauchy equation with time-fractional derivative [21]. Recently, Hejazi et al utilised the finite volume technique and finite-difference technique for solving the space-fractional advection-dispersion equation [17]. They used fractionally shifted Grünwald formula for the fractional derivative and verified the stability and convergence of the scheme, whose order is $O(\tau + h)$.

During this Chapter, we propose a finite-difference technique to get a new approximate solution for the time-space-fractional Cauchy equation with constant coefficients, space-fractional derivative and time-fractional derivative are described within the Riemann-Liouville sense and Caputo sense, respectively.

Consider the time-space-fractional Cauchy equation of the shape

$$\frac{\partial^\gamma u(x, t)}{\partial t^\gamma} + \epsilon \frac{\partial^\beta u(x, t)}{\partial x^\beta} = g(x, t),$$

subject to the initial condition

$$u(x, 0) = f(x),$$

where $t > 0, x \in [a, b], 0 < \beta \leq 1, 0 < \gamma \leq 1, g(x, t)$ is a given function provided that $u(x, t), g(x, t)$, and $f(x)$ are smooth enough, ϵ is a positive parameter,
Solving Time-Space-Fractional Cauchy Problem … 27

\(\beta \) is a parameter describing the order of the space fractional, and \(\gamma \) is a parameter describing the order of the time-fractional, the space-fractional derivative and time-fractional derivative are described in the Riemann-Liouville sense and Caputo sense, respectively.

The starting point for a finite-difference discretization is a partition of the computational domain \([a, b] \) into a finite number of sub-domains \(V_i, i = 0, 1, 2, \ldots, N \), known as control volumes CVs, the union of all CVs should cover the whole domain. We introduce the implicit scheme by discretization of the Riemann-Liouville fractional integral, and time-Caputo fractional derivative. For another numerical scheme, see [22–31].

This chapter introduces a finite-difference technique for solving the time-space-fractional Cauchy equation with constant coefficients and contains the following sections: Sect. 2 is devoted to mathematical preliminaries. The description of a modified finite-difference technique is presented in Sect. 3. The von Neuman type stability analysis and consistency are proved in Sect. 4. Whilst the numerical experiments are given in Sect. 5. Finally, a brief conclusion is outlined in the last section.

2 Preliminaries

Throughout the past decade, fractional calculus has been applied to virtually every field of engineering, economics, science and another field. People like Liouville, Riemann and Weyl created major contributions to the idea of fractional calculus [32–39]. The story of the fractional calculus continued with contributions from Fourier, Abel, Leibniz, Grünwald and Letnikov. Over the years, several definitions found that are acceptable for the concept of fractional derivatives and integrals [40–48].

Definition 1 The Riemann-Liouville integral of fractional order \(\alpha > 0 \), \(J_a^\alpha u(x) \) is defined by

\[
J_a^\alpha u(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x - t)^{\alpha-1} u(t) \, dt, \quad t > a,
\]

provided that \(u \in L_1[a, b] \). For \(\alpha = 0 \), we have \(J_a^0 u(x) = u(x) \) is the identity operator.

Definition 2 Let \(n \in \mathbb{N} \) be the smallest integer that exceeds \(\alpha \), then the Riemann-Liouville fractional derivative of order \(\alpha > 0 \) is defined by

\[
D_a^\alpha u(x) = \frac{1}{\Gamma(n - \alpha)} \left(\frac{d^n}{dx^n} \right) \left[\int_a^x \frac{u(t)}{(x - t)^{\alpha+1-n}} \, dt \right].
\]

(2)

provided that \(D_a^\alpha u(x) = D_a^n J_a^{(n-\alpha)} u(x) \). For \(\alpha = 0 \), we have \(D_a^0 u(x) = u(x) \) is the identity operator. For \(\alpha \in \mathbb{N} \), \(D_a^\alpha u(x) = \frac{d^\alpha u(x)}{dx^\alpha} \).
Definition 3 Let $\alpha > 0$, $u \in C^\alpha[a, b]$. Then,

$$\tilde{D}_a^\alpha u(x) = \lim_{h \to 0} \frac{1}{h^\alpha} \sum_{k=0}^{\lfloor \frac{x-a}{h} \rfloor} (-1)^k \binom{\alpha}{k} u(x - kh), \quad (3)$$

where $a < x \leq b$, with $h = \frac{x-a}{N}$ is called the Grünwald-Letnikov fractional derivative of order α of the function u.

Definition 4 Let n be the smallest integer that exceeds α, then the Caputo fractional derivative of order $\alpha > 0$ is defined by

$$D_a^\alpha u(x) = \begin{cases}
\frac{1}{\Gamma(n-\alpha)} \int_0^x (u^{(n)}(t) \frac{1}{(x-t)^{\alpha+1-n}} dt, & n-1 < \alpha < n, \\
\frac{d^n}{dx^n} u(x), & \alpha = n,
\end{cases} \quad (4)$$

provided that $D_a^\alpha u(x) = D_a^{-(n-\alpha)} D^n u(x)$ whenever $D^n u \in L_1[a, b]$.

The following theorem shows the relation between this definition and the Riemann-Liouville fractional derivatives:

Theorem 1 Let $\alpha > 0$, $n = \alpha$ and $u \in C^n[a, b]$. Then,

$$\tilde{D}_a^\alpha u(x) = D_a^\alpha u(x), \quad a < x \leq b.$$

Theorem 2 Let $\alpha > 0$, and $u \in C[a, b]$. Then,

$$J_a^\alpha u(x) = \lim_{h \to 0} h^\alpha \sum_{k=0}^{\lfloor \frac{x-a}{h} \rfloor} (-1)^k \binom{-\alpha}{k} u(x - kh), \quad (5)$$

where $a < x \leq b$, $(-1)^k \binom{-\alpha}{k} = \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-k+1)}{k!} = \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)\Gamma(k+1)}$, and the function $\Gamma(x)$ is defined by $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$.

If we define weights $w_0^\alpha = 1$, $w_1^\alpha = \alpha$ and $w_k^\alpha = \left(1 - \frac{(1-\alpha)}{k}\right)w_{k-1}^\alpha$, $k = 2, 3, \ldots$, then we may rewrite (5) as

$$J_a^\alpha u(x) = \lim_{h \to 0} h^\alpha \sum_{k=0}^{\lfloor \frac{x-a}{h} \rfloor} w_k^\alpha u(x - kh), \quad (6)$$

This formula is used to approximations the fractional integrals $J_a^\alpha u(x)$.

Lemma 1 Let $0 < \alpha < 1$. Then, we have

(1) $w_0^\alpha = 1$, and $w_j^\alpha > 0$ for $j = 1, 2, \ldots$;
(2) $w_j^\alpha - w_{j+1}^\alpha > 0$ for $j = 0, 1, \ldots$;
(3) $\lim_{j \to \infty} w_j^\alpha = 0$.

Proof} For the first part, let $w_0^\alpha = 1$ and $w_1^\alpha = \alpha > 0$, thus from the recursive definition

$$w_j^\alpha = \left(1 - \frac{(1 - \alpha)}{j}\right)w_{j-1}^\alpha, \quad k = 2, 3, \ldots, \quad (7)$$

and since $0 < \alpha < 1$, we have $0 < \frac{1 - \alpha}{j} < \frac{1}{j} < 1$ for $j \geq 2$. So the coefficient \(\left(1 - \frac{(1-\alpha)}{k}\right) \) in (7) is strictly between zero and one.

Now, the second part can be done for $j \geq 2$ such that

$$w_j^\alpha - w_{j+1}^\alpha = \left(1 - \frac{(1 - \alpha)}{j}\right)w_{j-1}^\alpha - \left(1 - \frac{(1 - \alpha)}{j+1}\right)w_j^\alpha$$

$$= \left(1 - \frac{(1 - \alpha)}{j}\right)w_{j-1}^\alpha - \left(1 - \frac{(1 - \alpha)}{j+1}\right)\left(1 - \frac{(1 - \alpha)}{j}\right)w_{j-1}^\alpha$$

$$= \left[1 - \left(1 - \frac{(1 - \alpha)}{j+1}\right)\right]\left(1 - \frac{(1 - \alpha)}{j}\right)w_{j-1}^\alpha$$

$$= \frac{(1 - \alpha)}{j+1}\left(1 - \frac{(1 - \alpha)}{j}\right)w_{j-1}^\alpha > 0.$$ \(\text{Finally, from 1 and 2 we have for } j \geq 2\)

$$0 < w_{j+1}^\alpha < w_j^\alpha < w_1^\alpha = \alpha < 1 = w_0^\alpha.$$ \(\text{So, } \lim_{j \to \infty} w_j^\alpha = 0.\)

Whenever we use a numerical technique to solve a differential equation, we would like to make sure that the numerical solution obtained is a sufficiently good approximation to the actuality solution, some necessary definition and remarks are introduced to discuss the stability analysis [27, 49–54].

To analyse the stability of difference scheme for IVP, suppose that we are given a vector in ℓ_2, $v = (...) , v_{-1}, v_0, v_1,...)^T$, and define the discrete fourier transform of v as follows:

Definition 5 The discrete Fourier transform of $v \in \ell_2$ is the operation $\hat{v} \in L_2[-\pi, \pi]$ defined by

$$\hat{v}(\xi) = \frac{1}{\sqrt{2\pi}} \sum_{m=-\infty}^{\infty} e^{-i\xi m} v_m, \quad \xi \in [-\pi, \pi].$$

Definition 6 The symbol of difference scheme $v^{n+1} = Qv^n$ is the coefficient of \hat{v}^n in the equation $\hat{v}^{n+1} = \rho(\xi)\hat{v}^n$, where $\hat{v}^{n+1} = \rho(\xi)\hat{v}^n$ is the discrete Fourier transform of the discrete scheme.
Remark 1 For simplification, we can get the discrete Fourier transform of the difference scheme by replacing \(v^n_j \) in the difference scheme by

\[
\hat{v}^n_j = \hat{v}^n \exp(ij\xi), i = \sqrt{-1}.
\]

Remark 2 The difference scheme \(v^{n+1} = Qv^n \) is stable with respect to \(\ell_2, h \) norm if and only if there exist positive constants \(\tau_0, h_0 \) and \(C \) so that \(|\rho(\xi)| \leq 1 + C\tau, \) for \(0 < \tau \leq \tau_0, 0 < h \leq h_0 \) and all \(\xi \in [-\pi, \pi]. \)

Remark 3 If \(\rho \) satisfies the inequality in Remark 2, then \(\rho \) is said to be satisfied the von Neumann condition.

Remark 4 The difference scheme that is stable under a set of conditions is called conditionally stable, otherwise is called unconditionally stable scheme.

3 Modified Finite-Difference Method

In this section, we propose a new finite-difference method for solving the time-space-fractional Cauchy equation of the shape:

\[
\frac{\partial^\gamma u(x, t)}{\partial t^\gamma} + \epsilon \frac{\partial^\beta u(x, t)}{\partial x^\beta} = g(x, t),
\]

subject to the initial condition \(u(x, 0) = f(x) \) for \(t > 0, x \in [a, b], 0 < \beta \leq 1, 0 < \gamma \leq 1, g(x, t) \) is a given function provided that \(u(x, t), g(x, t), \) and \(f(x) \) are smooth enough, \(\epsilon \) is a positive parameter, \(\beta \) is a parameter describing the order of the space fractional and \(\gamma \) is a parameter describing the order of the time-fractional, the space-fractional derivative and time-fractional derivative are described in the Riemann-Liouville sense and Caputo sense, respectively.

Using the definition of Riemann-Liouville fractional derivative where \(0 < \beta \leq 1, \)

we have

\[
\frac{\partial^\gamma u(x, t)}{\partial t^\gamma} + \epsilon \frac{\partial}{\partial x} J_a^{1-\beta} u(x, t) = g(x, t),
\]

where \(J_a^{1-\beta} \) is the Riemann-Liouville integral with respect to \(x, \) take \(\alpha = 1 - \beta, \) we have \(0 \leq \alpha < 1. \) Let \(\Omega = [a, b] \) be a finite domain that is discretised with \(N + 1 \) uniformly spaced nodes \(x_i = a + ih, i = 0, 1, \ldots, N, \) where the spatial step \(h = \frac{b-a}{N}, \) we approximate the \(\alpha \) order fractional Riemann-Liouville integral with standard Grünwald formula and approximate the first derivative with central difference formula:
\[J_d^\alpha u(x, t) = h^\alpha \sum_{j=0}^{N} w_j^\alpha u(x - jh, t) + o(h), \]
(10)

\[\frac{\partial u(x, t)}{\partial x} \bigg|_{x=x_i} = u(x_{i+1}, t) - u(x_{i-1}, t) \frac{2h}{2} + O(h^2). \]
(11)

A finite-difference discretization is applied by evaluating Eq. (9) at \(x = x_i \), and using the above equations.

\[\frac{\partial^\gamma u(x_i, t)}{\partial t^\gamma} = -\frac{\epsilon}{2h} \left[h^\alpha \sum_{j=0}^{i+1} w_j^\alpha u(x_i-j+1, t) - h^\alpha \sum_{j=0}^{i-1} w_j^\alpha u(x_i-j-1, t) \right] + g(x_i, t). \]
(12)

Letting \(t_n = n\tau, n = 0, 1, 2, \ldots \), where \(\tau \) is the time step, and discretise the Caputo time-fractional derivative using L1-algorithm,

\[\frac{\partial^\gamma u(x_i, t_{n+1})}{\partial t^\gamma} = \frac{\tau^{-\gamma}}{\Gamma(2-\gamma)} \sum_{s=0}^{n} b_s^\gamma \left[u(x_i, t_{n+1-s}) - u(x_i, t_{n-s}) \right] + O(\tau^{2-\gamma}). \]
(13)

where \(b_s^\gamma = (s + 1)^{1-\gamma} - s^{1-\gamma}, s = 0, 1, \ldots, n. \)

Letting \(u^n_i \approx u(x_i, t_n) \) denote the numerical solution, we have

\[\frac{\tau^{-\gamma}}{\Gamma(2-\gamma)} \sum_{s=0}^{n} b_s^\gamma \left[u_{n+1-s}^i - u_{n-s}^i \right] \]

\[= -\frac{\epsilon}{2h} \left[h^\alpha \sum_{j=0}^{i+1} w_j^\alpha u^1_{n+1-j+1} - h^\alpha \sum_{j=0}^{i-1} w_j^\alpha u^1_{n+1-j-1} \right] + g(x_i, t_{n+1}). \]
(13)

Collecting like terms, we can rewrite Eq. (13) as:

\[\frac{\tau^{-\gamma}}{\Gamma(2-\gamma)} \sum_{s=0}^{n} b_s^\gamma \left[u_{n+1-s}^i - u_{n-s}^i \right] = \frac{1}{h} \sum_{j=0}^{N} b_{ij} u_{n+1}^j + g_{n+1}^i, \]
(14)

where \(i = 0, 1, \ldots, N, \) and \(b_{ij} = \begin{cases} \frac{\epsilon h^\alpha}{2} [w_{j+1}^u - w_{j-1}^u], & j < i - 1, \\ \frac{\epsilon h^\alpha}{2} [w_j^u - w_{j}^u], & j = i - 1, \\ \frac{\epsilon h^\alpha}{2} w_j^u, & j = i, \\ \frac{\epsilon h^\alpha}{2} w_j^u, & j = i + 1, \\ 0, & j > i + 1. \end{cases} \)

Denoting the numerical solution vector \(U^n = [u_0^n, u_1^n, \ldots, u_N^n] \) and source vector \(g^{n+1} = [g(x_0, t_{n+1}), g(x_1, t_{n+1}), \ldots, g(x_N, t_{n+1})] \), we have the following vector equation:
\[
\left(I + \frac{\Gamma(2 - \gamma)\tau^\gamma}{h} A \right) U^{n+1} = b^n U^0 + \sum_{s=0}^{n-1} \left(b^s_s - b^{s+1}_s \right) U^{n-s} + \tau^\gamma \Gamma(2 - \gamma) g^{n+1},
\]
where the matrix \(A \) has elements \(a_{ij} = b_{ij} \).

In particular, for \(\gamma = 1 \) we can use the standard backward difference to approximate the time derivative in Eq. (12)

\[
\frac{du(x_i, t)}{dt} \bigg|_{t=t_{n+1}} = \frac{u(x_i, t_{n+1}) - u(x_i, t_n)}{\tau} + O(\tau), \tag{15}
\]
yields the numerical solution

\[
\frac{u_i^{n+1} - u_i^n}{\tau} = -\frac{\epsilon}{2h} \left[h^\alpha \sum_{j=0}^{i+1} w^\alpha_{ij} u_j^{n+1} + h^\alpha \sum_{j=0}^{i-1} w^\alpha_{ij} u_j^{n+1} \right] + g_i^{n+1}, \tag{16}
\]

Anyhow, we can rewrite Eq. (16) as a vector equation in the form

\[
\left(I + \frac{\tau}{h} A \right) U^{n+1} = U^n + \tau g^{n+1}, \tag{17}
\]
where the matrix \(A \) has elements \(a_{ij} = b_{ij} \).

In the next section, we prove that this scheme is conditionally stable, and it is first-order accurate in time and second-order accurate in space.

4 Stability Analysis

In this section, the stability analysis for the proposed numerical scheme is presented as in the following theorems:

Theorem 3 The numerical scheme (16) is conditionally stable.

Proof To debate stability, consider the homogeneous scheme

\[
\frac{u_m^{n+1} - u_m^n}{\tau} = \frac{1}{h} \sum_{j=0}^{N} b_{mj} u_j^{n+1}, \quad m = 0, 1, 2, \ldots, N.
\]

Substitution of \(u_m^n = \hat{u}^n \exp(i m \xi), i = \sqrt{-1} \) into numerical scheme

\[
\hat{u}^{n+1} \exp(i m \xi) - \hat{u}^n \exp(i m \xi) = r \sum_{j=0}^{N} b_{mj} \hat{u}^{n+1} \exp(i j \xi), \quad r = \frac{\tau}{h}.
\]
\[
\dot{u}_{i}^{n+1} = \frac{1}{1 - r \sum_{j=0}^{N} b_{mj} \exp(i(j - m)\xi)} \dot{u}_{i}^{n}.
\]

The symbol of numerical scheme is
\[
\rho(\xi) = \frac{1}{1 - r \sum_{j=0}^{N} b_{mj} \exp(i(j - m)\xi)},
\]
and satisfies the von Neumann condition if
\[
\left| 1 - r \sum_{j=0}^{N} b_{mj} \exp(i(j - m)\xi) \right| \geq 1.
\]

By using Reverse Triangle Inequality, we have got
\[
\left| 1 - r \sum_{j=0}^{N} b_{mj} \exp(i(j - m)\xi) \right| \geq \left| 1 - \left| r \sum_{j=0}^{N} b_{mj} \exp(i(j - m)\xi) \right| \right|.
\]

So, the von Neumann condition satisfies if \(\left| 1 - \left| r \sum_{j=0}^{N} b_{mj} \exp(i(j - m)\xi) \right| \right| \geq 1 \). That is equivalent to \(1 - \left| r \sum_{j=0}^{N} b_{mj} \exp(i(j - m)\xi) \right| \geq 1 \), impossible hold, or \(1 - \left| r \sum_{j=0}^{N} b_{mj} \exp(i(j - m)\xi) \right| \leq -1 \). Which is equivalent to \(\left| \sum_{j=0}^{N} b_{mj} \exp(i(j - m)\xi) \right| \geq \frac{2}{r} \). Hence, the symbol of numerical scheme satisfies the von Neumann condition if \(\left| \sum_{j=0}^{N} b_{mj} \exp(i(j - m)\xi) \right| \geq \frac{2}{r} \), \(\forall m = 0, 1, 2, \ldots, N \). So, the numerical scheme is conditionally stable.

Theorem 4 The numerical scheme (16) is consistent with second-order accuracy in direction of space and first order in direction of time.

Proof By using Eqs. (10), (11) and (15), we can write Eq. (8) at \((x_i, t_{n+1})\) as follows:

\[
\frac{u_{i}^{n+1} - u_{i}^{n}}{\tau} + \mathcal{O}(\tau) = -\frac{\epsilon}{2h} \left[h^{\alpha} \sum_{j=0}^{i+1} w_{j}^{\alpha} u_{i-j+1}^{n+1} + o(1) - h^{\alpha} \sum_{j=0}^{i-1} w_{j}^{\alpha} u_{i-j-1}^{n} + o(1) \right] + \mathcal{O}(h^2) + g_{i}^{n+1}.
\]

Thus, we get that
\[
\frac{\partial u(x_i, t)}{\partial t} \bigg|_{t=t_{n+1}} = -\epsilon \frac{\partial}{\partial x} \left[J_a^{1-\beta} u(x, t_{n+1}) \right]_{x=x_i} + g_i^{n+1},
\]

which is Eq. (8) at \((x_i, t_{n+1})\), \(\gamma = 1\).

Theorem 5 The numerical scheme (14) is consistent with second-order accuracy in space and \(2-\gamma\) order in time.

Proof we can write Eq. (8) at \((x_i, t_{n+1})\) as follows:

\[
\frac{\tau^{-\gamma}}{\Gamma(2-\gamma)} \sum_{s=0}^{n} b_s^\gamma \left[u(x_i, t_{n+1-s}) - u(x_i, t_{n-s}) \right] + O(\tau^{2-\gamma})
\]

\[
= -\frac{\epsilon}{2h} \left[h^\alpha \sum_{j=0}^{i+1} w_j^{n+1} u_{i-j+1} + o(1) - h^\alpha \sum_{j=0}^{i-1} w_j^{n+1} u_{i-j-1} + o(1) \right] + O(h^2) + g_i^{n+1}
\]

Thus, we have

\[
\frac{\partial^\gamma u(x_i, t)}{\partial t^\gamma} \bigg|_{t=t_{n+1}} = -\epsilon \frac{\partial}{\partial x} \left[J_a^{1-\beta} u(x, t_{n+1}) \right]_{x=x_i} + g_i^{n+1}.
\]

which is Eq. (8) at \((x_i, t_{n+1})\), \(0 < \gamma < 1\).

5 Numerical Experiments

In this section, in order to solve the fractional Cauchy equation using the finite-difference discretization scheme (FDDS), the equation is presented in a discrete specific form. Anyhow, we consider four illustrated examples to demonstrate the performance and efficiency of the proposed algorithm. The computations are performed by Wolfram-Mathematica software 11.

Example 1 Consider the following homogeneous fractional Cauchy equation:

\[
\frac{\partial^\gamma u(x, t)}{\partial t^\gamma} + \epsilon \frac{\partial^\beta u(x, t)}{\partial x^\beta} = 0,
\]

subject to the initial condition

\[
u(x, 0) = \sin(\pi x),
\]

where \(\epsilon = 1 \times 10^{-3}, t \geq 0, x \in [1, 4], \gamma = 1,\) and \(0 < \beta \leq 1\).

In particular, the exact solution of IVPs (18) and (19) at \(\beta = 1, \gamma = 1\) is given by \(u(x, t) = \sin(\pi (x - \epsilon t))\). Following the FDD algorithm, using \(h = 0.05\) and
\(\tau = 0.01 \), the numerical results of FDDS with varying fractional order \(\beta \) such that \(\beta \in \{0.75, 0.85, 0.95, 1 \} \), \(\gamma = 1 \), compared with exact solution are given in Table 1 at the time \(t = 0.5 \) and \(x \in [1, 1.5] \). In the light of showing the agreement between the FDDS and exact solutions, the absolute error of IVPs (18) and (19) are listed in Table 2 for \(\beta = 1, \gamma = 1 \) when \(t = 0.5 \) and \(x \in [1, 1.5] \) with \(h = 0.1 \). Table 3 is

Table 1: Numerical results for Example 1 at \(t = 0.5 \), \(\gamma = 1 \) with varying \(\beta \)

\(x \)	Exact	\(\beta = 1 \)	\(\beta = 0.95 \)	\(\beta = 0.85 \)	\(\beta = 0.75 \)
1.05	-0.154883	-0.156431	-0.156431	-0.156432	-0.156432
1.10	-0.307523	-0.309013	-0.309014	-0.309014	-0.309015
1.15	-0.452590	-0.453987	-0.454008	-0.454031	-0.454036
1.20	-0.586514	-0.587782	-0.587832	-0.587886	-0.587900
1.25	-0.705995	-0.707104	-0.707186	-0.707276	-0.707301
1.30	-0.808093	-0.809015	-0.809130	-0.809257	-0.809294
1.35	-0.890292	-0.891005	-0.891152	-0.891317	-0.891366
1.40	-0.950570	-0.951055	-0.951232	-0.951433	-0.951495
1.45	-0.987441	-0.987688	-0.987892	-0.988124	-0.988199
1.50	-0.999999	-1.000000	-1.000230	-1.000490	-1.000570

Table 2: Absolute errors for Example 1 at \(\beta = 1, \gamma = 1 \)

\(x \)	Exact	FDDS	Absolute error
\(1.1 \)	-0.307523	-0.309013	1.49065 \times 10^{-3}
\(1.2 \)	-0.586514	-0.587782	1.26842 \times 10^{-3}
\(1.3 \)	-0.808093	-0.809015	0.92203 \times 10^{-3}
\(1.4 \)	-0.950570	-0.951055	0.48539 \times 10^{-3}
\(1.5 \)	-0.999999	-1.000000	1.23369 \times 10^{-6}

Table 3: FDDS of Example 1 at \(\beta = 0.95, \gamma = 1 \) with varying time \(T \)

\(x \)	\(T = 0.5 \)	\(T = 1.0 \)
1.05	-0.156431	-0.156428
1.10	-0.309014	-0.309010
1.15	-0.454008	-0.454027
1.20	-0.587832	-0.587880
1.25	-0.707186	-0.707267
1.30	-0.809130	-0.809245
1.35	-0.891152	-0.891300
1.40	-0.951232	-0.951412
1.45	-0.987892	-0.988099
1.50	-1.000230	-1.000460
devoted to the FDDS approximate solutions at $\beta = 0.95$, $\gamma = 1$ with varying times t such that $t = 0.5$ and $t = 1.0$ over the interval $[1, 1.5]$ with $h = 0.05$.

From these tables, it can be noted that the FDDS approximate solutions are in good agreement with the exact solutions over the domain of interest. Anyhow, more iteration leads to more accurate solutions. For further analysis, the 2D-plot of the FDDS and exact solution for Example 1 are drawn in Fig. 1 at $t = 0.5$ and $x \in [1, 3.5]$. Whilst, the surface plot of the approximate solution at $\beta = 0.95$, $\gamma = 1$ is shown in Fig. 2.

Example 2 Consider the following non-homogeneous fractional Cauchy equation:

\[
\frac{\partial^\gamma u(x, t)}{\partial t^\gamma} + \epsilon \frac{\partial^\beta u(x, t)}{\partial x^\beta} = g(x, t),
\]

subject to the initial condition

\[
u(x, 0) = x^2 \sin(x),
\]

where $g(x, t) = \sin(2x)$, $\epsilon = 2$, $t \geq 0$, $x \in [0, 0.9]$, $\beta = 0.85$, and $0 < \gamma \leq 1$.
Following the FDD algorithm, using \(h = 0.05 \) and \(\tau = 0.025 \), the numerical results of FDDS with varying fractional order \(\gamma \) such that \(\gamma \in \{0.75, 0.85, 0.95, 1\} \), \(\beta = 0.85 \) are given in Table 4 at the time \(t = 0.5 \) and \(x \in [0, 0.5] \). Table 5 is devoted to the FDDS approximate solutions at \(\beta = 0.85 \) and \(\gamma = 0.95 \) with varying times \(t \) such that \(t = 0.25 \) and \(t = 0.5 \) over the interval \([0, 0.4]\) with \(h = 0.05 \), the 2D-plot of the FDDS for Example 5.2 is drawn in Fig. 3 at \(t = 0.5 \) and \(x \in [0, 0.9] \). Figure 4 shown the FDDS approximate solutions at \(\beta = 0.85 \) and \(\gamma = 0.95 \) with varying times \(t \) such that \(t = 0.25 \) and \(t = 0.5 \) over the interval \([0, 0.4]\) . Whilst, the surface plot of the approximate solution at \(\beta = 0.85, \gamma = 1 \) is shown in Fig. 5 at \(t = 1.0 \).

Example 3 Consider the following homogeneous fractional Cauchy equation:

\[
\frac{\partial^\gamma u(x, t)}{\partial t^\gamma} + \epsilon \frac{\partial^\beta u(x, t)}{\partial x^\beta} = 0, \tag{22}
\]

Table 4	Numerical results for Example 2 at \(t = 0.5 \), \(\beta = 0.85 \), with varying \(\gamma \)			
\(x \)	\(\gamma = 0.75 \)	\(\gamma = 0.85 \)	\(\gamma = 0.95 \)	\(\gamma = 1.0 \)
0.00	0.059580	0.054150	0.049026	0.046615
0.05	0.119865	0.108810	0.098405	0.093520
0.10	0.206253	0.183249	0.162686	0.153359
0.15	0.304010	0.266338	0.233562	0.218978
0.20	0.417262	0.360035	0.311871	0.290902
0.25	0.542894	0.462352	0.396428	0.368253
0.30	0.681071	0.573192	0.487204	0.451077
0.35	0.831202	0.692349	0.584309	0.539609
0.40	0.993351	0.820042	0.688155	0.634342
0.45	1.167720	0.956699	0.799340	0.735934
0.50	1.354800	1.102950	0.918616	0.845175

Table 5	FDDS of Example 2 at \(\beta = 0.85, \gamma = 0.95 \) with varying time \(T \)	
\(x \)	\(T = 0.25 \)	\(T = 0.5 \)
0.0	0.024218	0.049026
0.05	0.048509	0.098405
0.1	0.076892	0.162686
0.15	0.107694	0.233562
0.2	0.141272	0.311871
0.25	0.177948	0.396428
0.3	0.218268	0.487204
0.35	0.262869	0.584309
0.4	0.312441	0.688155
subject to the initial condition

\[u(x, 0) = \sin(x^2), \quad (23) \]

where \(\epsilon = \pi, t \geq 0, x \in [0, 0.95], \beta = 0.75, \) and \(0 < \gamma \leq 1. \)

Following the FDD algorithm, using \(h = 0.05 \) and \(\tau = 0.025, \) numerical results of FDDS with varying fractional order \(\gamma \) such that \(\gamma \in \{0.75, 0.85, 0.95, 1\}, \beta = 0.75 \) are given in Table 6 at the time \(t = 0.5 \) and \(x \in [0, 0.5]. \)
Table 6 Numerical results for Example 3 at $t = 0.5$, $\beta = 0.75$, with varying γ

x	$\gamma = 0.75$	$\gamma = 0.85$	$\gamma = 0.95$	$\gamma = 1.0$
0.05	0.002266	0.002287	0.002307	0.002316
0.10	0.009407	0.009473	0.009533	0.009560
0.15	0.024289	0.024174	0.024053	0.023992
0.20	0.051221	0.050313	0.049423	0.048994
0.25	0.094644	0.091597	0.088738	0.087400
0.30	0.160305	0.152586	0.145614	0.142435
0.35	0.254323	0.237849	0.223484	0.217086
0.40	0.383737	0.352317	0.325831	0.314297
0.45	0.556090	0.500969	0.455986	0.436812
0.50	0.779532	0.688842	0.617112	0.587159

Table 7 FDDS of Example 3 at $\beta = 0.75$, $\gamma = 0.95$ with varying time T

x	$T = 0.25$	$T = 0.5$
0.05	0.0024045	0.0023072
0.10	0.0097809	0.0095331
0.15	0.0233115	0.0240534
0.20	0.0447471	0.0494235
0.25	0.0752926	0.0887387
0.30	0.1161080	0.1456140
0.35	0.1681450	0.2234840
0.40	0.2321930	0.3258310

Table 7 is devoted to the FDDS approximate solutions at $\beta = 0.75$ and $\gamma = 0.95$ with varying times t such that $t = 0.25$ and $t = 0.5$ over the interval $[0, 0.4]$ with $h = 0.05$, the 2D-plot of the FDDS for Example 5.3 is drawn in Fig. 6 at $t = 0.5$ and $x \in [0, 0.95]$. Figure 7 shown the FDDS approximate solutions at $\beta = 0.75$ and $\gamma = 0.95$ with varying times t such that $t = 0.25$ and $t = 0.5$ over the interval

Fig. 6 FDDS for Example 3 at $\beta = 0.75$, $t = 0.5$ with varying γ
Fig. 7 FDDS for Example 3 at $\beta = 0.75$ and $\gamma = 0.95$ with varying times.

Fig. 8 Surface plot of FDDS solution for Example 3, $\beta = 0.75$, $\gamma = 1$ at $t = 1$.

[0, 0.4]. Whilst, the surface plot of the approximate solution at $\beta = 0.75$, $\gamma = 1$ is shown in Fig. 8 at $t = 1.0$.

Example 4 Consider the following homogeneous fractional Cauchy equation:

$$\frac{\partial^\gamma u(x, t)}{\partial t^\gamma} + \epsilon \frac{\partial^\beta u(x, t)}{\partial x^\beta} = 0, \tag{24}$$

subject to the initial condition

$$u(x, 0) = e^{\xi x}. \tag{25}$$

where $\epsilon = 0.1$, $\xi = 1.1771243444677$, $t \geq 0$, $x \in [-2, 1]$, $\gamma = 1$ and $0 < \beta \leq 1$.

In particular, the exact solution of IVPs (24) and (25) at $\beta = 1$ is given by $u(x, t) = e^{\xi(x-\epsilon t)}$. Following the FDDS algorithm, using $h = 0.0625$ and $\tau = 0.01$, the numerical results of the exact and FDDS for different values of fractional order β such that $\beta \in [0.75, 0.85, 0.95, 1]$, $\gamma = 1$ are given in Table 8 at the time $t = 0.5$ and $x \in [-2, -1.25]$. Table 9 is devoted to the FDDS approximate solutions at $\beta = 0.95$ with varying times t such that $t = 0.5$ and $t = 1$ over the interval $[-2, -1.5]$ with $h = 0.0625$.
Table 8 Numerical results for Example 4 at $t = 0.5, \gamma = 1$ with varying β

x	Exact	$\beta = 1$	$\beta = 0.95$	$\beta = 0.85$	$\beta = 0.75$
-2.0000	0.089537	0.094808	0.094822	0.094847	0.094868
-1.9375	0.096373	0.102192	0.102184	0.102175	0.102171
-1.8750	0.103730	0.109994	0.111023	0.112139	0.112442
-1.8125	0.111649	0.118391	0.119907	0.121624	0.122163
-1.7500	0.120173	0.127429	0.129290	0.131461	0.132197
-1.6875	0.129347	0.137158	0.139306	0.141862	0.142774
-1.6250	0.139222	0.147629	0.150043	0.152954	0.154028
-1.5625	0.149851	0.158900	0.161572	0.164827	0.166060
-1.5000	0.161291	0.171031	0.173965	0.177565	0.178954
-1.4375	0.173605	0.184088	0.187291	0.191244	0.192792
-1.3750	0.186859	0.198142	0.201627	0.205946	0.207658
-1.3125	0.201124	0.213269	0.217050	0.221754	0.223637
-1.2500	0.216479	0.229551	0.233647	0.238756	0.240817

Table 9 FDDS of Example 4 at $\beta = 0.95$ with varying time t

x	$t = 0.5$	$t = 1$
-2.0000	0.094822	0.094677
-1.9375	0.102184	0.102151
-1.8750	0.111023	0.112044
-1.8125	0.119907	0.121425
-1.7500	0.129290	0.131169
-1.6875	0.139306	0.141487
-1.6250	0.150043	0.152500
-1.5625	0.161572	0.164299
-1.5000	0.173965	0.176962

Fig. 9 Solution behaviour Example 4 for different values of β
Figure 9 displays the approximate solutions of IVPs (24) and (25) for different values of fractional order β such that $\beta \in \{0.75, 0.85, 0.95, 1\}$, $\gamma = 1$ at time $t = 0.5$ and $x \in [-2, 1]$. The 2D-plot of the FDDS and exact solution for Example 5.4 are drawn in Fig. 10 at $t = 0.5$ and $x \in [-2, 1]$. Figure 11 shown the FDDS approximate solutions at $\beta = 0.95$ and $\gamma = 1.0$ with varying times t such that $t = 0.5$ and $t = 1$ over the interval $[-2, 1]$. Whilst, the surface plot of the FDDS approximate solution at $\beta = 0.95$, $\gamma = 1$ is shown in Fig. 12. From these graphs, it can be concluded that
the behaviour of the FDDS approximate solutions are in good agreement with each other at different values of β.

6 Conclusion

In this chapter, a new finite-difference technique has been developed for solving linear Cauchy equation of fractional order. We introduce the implicit scheme by discretization of the space-Riemann-Liouville fractional integral, and time-Caputo fractional derivative, the solution obtained using this technique shows that this approach can solve the problem effectively. The basic idea of this approach can be further utilised to resolve the linear Cauchy equation of fractional order with a variable coefficient or apply the finite volume method by using the same discretization.

Funding This research was funded by Ajman University, UAE (Grant ID 2020-COVID 19-08: GL: 5211529).

Acknowledgements The first author gratefully acknowledges support from Taibah University, Saudi Arabia, whilst the second author gratefully acknowledges support from Zarqa University, Jordan.

References

1. Agarawal, O.P.: Solution for a fractional diffusion-wave equation defined in a boundary domain. Nonlinear Dyn. 29, 145–155 (2002)
2. Alzaidy, J.F.: Fractional sub-equation method and its applications to the space-time fractional differential equations in mathematical physics. Brit. J. Math. Comput. Sci. 3, 153–163 (2013)
3. Abu Arqub, O., Edwan, R., Al-Smadi, M., Momani, S.: Solving space-fractional Cauchy problem by modified finite-difference discretization scheme. Alexandria Eng. J. (2020). https://doi.org/10.1016/j.aej.2020.03.003
4. Cafagna, D., Grassi, G.: Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rössler systems. Nonlinear Dyn. 68, 117–128 (2012)
5. Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numerical Methods Partial Differ. Equ. 34(5), 1577–1597 (2017)
6. Al-Smadi, M., Abu Arqub, O.: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)
7. Ciesielski, M.: The finite difference method for fractional Cattaneo-Vernotte equation. Sci. Res. Inst. Math. Comput. Sci. 8, 13–18 (2009)
8. Dehghan, M., Irandoost-pakchin, S., Abdi-mazraeh, S., Lakestani, M.: Numerical solution for a class of fractional convection–diffusion equations using the flatlet oblique multiwavelets. J. Vib. Control 20(6), 913–924 (2014)
9. Al-nana, A., Abu Arqub, O., Al-Smadi, M., Shawagfeh, N.: Fitted spectral Tau Jacobi technique for solving certain classes of fractional differential equations. Appl. Math. Inform. Sci. 13(6), 979–987 (2019)
10. Al-Smadi, M.: Solving fractional system of partial differential equations with parameters derivative by combining the GDTM and RDTM. Nonlinear Stud. 26(3), 587–601 (2019)
11. Fix, G.J., Roop, J.P.: Least squares finite element solution of a fractional order two-point boundary value problem. Comput. Math Appl. 48, 1017–1033 (2004)
12. Momani, S.: An algorithm for solving the fractional convection-diffusion equation with nonlinear source term. Commun. Nonlinear Sci. Numer. Simul. 12, 1283–1290 (2007)
13. Momani, S., Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)
14. Saadatmandi, A., Dehghan, M., Azizi, M.R.: The Sinc-Legendre collocation method for a class of fractional convection–diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17, 4125–4136 (2012)
15. Shou, D.H., He, J.H.: Beyond Adomian method: the variational iteration method for solving heat-like and wave-like equations with variable coefficients. Phys. Lett. A 73, 233–237 (2008)
16. Abu Arqub, O., Al-Smadi, M.: An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator. Physica A 540, 123257 (2020)
17. Hejazi, H., Liu, F., Moroney, T.: A comparison of fine difference and finite volume methods for solving the space-fractional advection-dispersion equation with variable coefficients. ANZIAM J. 54, 557–573 (2013)
18. Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)
19. Yang, Q., Turner, I., Moroney, T., Liu, F.: A finite volume scheme with preconditioned Lanczos method for two–dimensional space–fractional reaction–diffusion equations. Appl. Math. Model. 38(15–16), 3755–3762 (2014)
20. Baeumer, B., Meerschaert, M.: Stochastic solutions for fractional Cauchy problems. Fractional Calc. Appl. Anal. 4, 481–500 (2001)
21. Pskhu, A.: Fundamental solutions and Cauchy problems for an odd-order partial differential equation with fractional derivative. Electron. J. Differ. Equ. 2019(21), 1–13 (2019)
22. Zeidan, D., Goncalves, E.: Numerical study of turbulent cavitating flows in thermal regime. Int. J. Numer. Meth. Heat Fluid Flow 27(7), 1487–1503 (2017)
23. Zeidan, D., Slaouti, A., Romenski, E., Toro, E.F.: Numerical solution for hyperbolic conservative two-phase flow equations. Int. J. Comput. Methods 4(2), 299–333 (2007)
24. Gumah, N., Naser, M., Al-Smadi, M., Al-Omari, S.K., Baleanu, D.: Numerical solutions of hybrid fuzzy differential equations in a hilbert space. Appl. Numer. Math. 151, 402–412 (2020)
25. Al-Smadi, M., Abu Arqub, O., Momani, S.: A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equations. Math. Prob. Eng. 2013(832074), 1–10 (2013)
26. Zeidan, D., Touma, R.: On the computations of gas-solid mixture two-phase flow. Adv. Appl. Math. Mech. 6, 49–74 (2014)
27. Zeidan, D., Touma, R., Slaouti, A.: Implementation of velocity and pressure non-equilibrium in gas-liquid two-phase flow computations. Int. J. Fluid Mech. Res. 41(6), 547–555 (2014)
28. Alshammari, M., Al-Smadi, M., Alshammari, S., Abu Arqub, O., Hashim, I., Alias, M.A.: An attractive analytic-numeric approach for the solutions of uncertain Riccati differential equations using residual power series. Appl. Math. Inform. Sci. 14(2), 177–190 (2020)
29. Momani, S., Abu Arqub, O., Freihat, A., Al-Smadi, M.: Analytical approximations for Fokker-Planck equations of fractional order in multistep schemes. Appl. Comput. Math. 15(3), 319–330 (2016)
30. Al-Smadi, M., Freihat, A., Khalil, H., Momani, S., Khan, R.A.: Numerical multistep approach for solving fractional partial differential equations. Int. J. Comput. Methods 14(3), 1750029 (2017)
31. Moaddy, K., Freihat, A., Al-Smadi, M., Abuteen, E., Hashim, I.: Numerical investigation for handling fractional-order Rabinovich-Fabrikant model using the multistep approach. Soft. Comput. 22(3), 773–782 (2018)
32. Shqair, M., Al-Smadi, M., Momani, S., El-Zahar, E.: Adaptation of conformable residual power series scheme in solving nonlinear fractional quantum mechanics problems. Appl. Sci. 10(3), 890 (2020)
33. Abu Arqub, O., Al-Smadi, M.: Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in hilbert space. Chaos, Solitons Fractals 117, 161–167 (2018)
34. Al-Smadi, M., Freihat, A., Abu Hammad, M., Momani, S., Abu Arqub, O.: Analytical approximations of partial differential equations of fractional order with multistep approach. J. Comput. Theor. Nanosci. 13(11), 7793–7801 (2016)
35. Abu Arqub, O., Al-Smadi, M.: Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. Soft Comput. 1–22 (2020). https://doi.org/10.1007/s00500-020-04687-0
36. Al-Smadi, M.: Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Eng. J. 9(4), 2517–2525 (2018)
37. Altawallbeh, Z., Al-Smadi, M., Komashynska, I., Ateiwi, A.: Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithm. Ukrainian Math. J. 70(5), 687–701 (2018)
38. Hasan, S., Al-Smadi, M., Freihat, A., Momani, S.: Two computational approaches for solving a fractional obstacle system in hilbert space. Adv. Differ. Equ. 2019, 55 (2019)
39. Bira, B., Sekhar, T.R., Zeidan, D.: Exact solutions for some time-fractional evolution equations using Lie group theory. Math. Methods Appl. Sci. 41(16), 6717–6725 (2018)
40. Zeidan, D., Bähr, P., Farber, P., Gräbel, J., Ueberholz, P.: Numerical investigation of a mixture two-phase flow model in two-dimensional space. Comput. Fluids 181, 90–106 (2019)
41. Goncalves, E., Zeidan, D.: Simulation of compressible two-phase flows using a void ratio transport equation. Commun. Comput. Phys. 24, 167–203 (2018)
42. Al-Smadi, M., Abu Arqub, O., Shawagfeh, N., Momani, S.: Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Appl. Math. Comput. 291, 137–148 (2016)
43. Hasan, S., El-Ajou, A., Hadid, S., Al-Smadi, M., Momani, S.: Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system. Chaos, Solitons Fractals 133, 109624 (2020)
44. Alshammari, M., Al-Smadi, M., Abu Arqub, O., Hashim, I., Alias, M.A.: Residual Series representation algorithm for solving fuzzy duffing oscillator equations. Symmetry 12(4), 572 (2020)
45. Al-Smadi, M.: Reliable numerical algorithm for handling fuzzy integral equations of second kind in hilbert spaces. Filomat 33(2), 583–597 (2019)
46. Alshammari, S., Al-Smadi, M., Hashim, I., Alias, M.A.: Residual power series technique for simulating fractional Bagley-Torvik problems emerging in applied physics. Appl. Sci. 9(23), 5029 (2019)
47. Kuila, S., Sekhar, T.R., Zeidan, D.: A Robust and accurate Riemann solver for a compressible two-phase flow model. Appl. Math. Comput. 265, 681–695 (2015)
48. Goncalves, E., Zeidan, D.: Numerical simulation of unsteady cavitation in liquid hydrogen flows. Int. J. Eng. Syst. Model. Simul. 9, 41–51 (2017)
49. Goncalves, E., Hoarau, Y., Zeidan, D.: Simulation of shock-induced bubble collapse using a four-equation model. Shock Waves 29, 221–234 (2019)
50. Saadeh, R., Alaroud, M., Al-Smadi, M., Ahmad, R.R., Salma Din, U.K.: Application of fractional residual power series algorithm to solve Newell–Whitehead–Segel equation of fractional order. Symmetry 11(12), 1431 (2019)
51. Freihat, A.A., Shatha, S., Alaroud, M., Al-Smadi, M., Ahmad, R.R., Salma Din, U.K.: Toward computational algorithm for time-fractional Fokker–Planck models. Adv. Mech. Eng. 11(10), 1–10 (2019)
52. Al Shamamri, M., Al-Smadi, M., Abu Arqub, O., Hashim, I., Alias, M.A.: Adaptation of residual power series method to solve Fredholm fuzzy integro-differential equations. AIP Conf. Proc. 2111(1), 020002 (2019)
53. Freihet, A., Hasan, S., Al-Smadi, M., Gaith, M., Momani, S.: Construction of fractional power series solutions to fractional stiff system using residual functions algorithm. Adv. Differ. Equ. 2019, 95 (2019)

54. Abu Arqub, O., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel hilbert space method. Soft. Comput. 20(8), 3283–3302 (2016)