Reexamination of the Constraint on Topcolor-Assisted Technicolor Models from R_b

Chongxing Yuea,b, Yu-Ping Kuanga,c, Xue-Lei Wanga,c,b, Weibin Lib

aCCAST (World Laboratory) P.O. Box 8730, B.J.100080 P.R. of China

bDepartment of Physics, Henan Normal University, Xinxiang 453002. P.R. of China

cDepartment of Physics, Tsinghua University, Beijing 100084, P.R. of China

TUHEP-TH-99109

Recent study on the charged top-pion correction to R_b shows that it is negative and large, so that the precision experimental value of R_b gives rise to a severe constraint on the topcolor-assisted technicolor models such that the top-pion mass should be of the order of 1 TeV. In this paper, we restudy this constraint by further taking account of the extended technicolor gauge boson correction which is positive. With this positive contribution to R_b, the constraint on the topcolor-assisted technicolor models from R_b changes significantly. The top-pion mass is allowed to be in the region of a few hundred GeV depending on the models.

PACS number: 12.60.CN, 12.60.NZ, 13.38.DG

The mechanism of electroweak symmetry breaking remains an open question in current particle physics despite the success of the standard model (SM) tested by the CERN e^+e^- collider LEP and SLAC Large Detector (SLD) precision measurement data. In the SM, an elementary Higgs field is assumed to be responsible to break the electroweak symmetry. So far the Higgs bosons has not been found. Recent investigation shows that the LEP-SLD precision measurement data do not really require the existence of a light Higgs boson [1]. Furthermore, theories with elementary scalar fields suffer from the problems of triviality and unnaturalness. To completely avoid these problems arising from the elementary Higgs field, various kinds of dynamical electroweak symmetry breaking mechanisms have been proposed, and among which the topcolor-assisted technicolor theory [2] is an attractive idea. In the topcolor-assisted technicolor theory, there are two kinds of new heavy gauge bosons: (a) the extended technicolor (ETC) gauge bosons including the sideways and diagonal gauge bosons, (b) the topcolor gauge bosons including the color-octet colorons $C^a_μ$ and an extra $U(1)$ gauge boson Z'. The technicolor interactions play the major role in breaking the electroweak gauge symmetry and, in addition, give rise to the masses of the ordinary leptons and quarks including a very small portion of the top-quark mass, namely εm_t [5] with a model-dependent parameter $\varepsilon \ll 1$. The topcolor interactions also make small contributions to the breaking of the electroweak symmetry, and give rise to the main part of the top-quark mass $(1-\varepsilon)m_t$ similar to the constituent masses of the light quarks in QCD. So that the heaviness of the top quark emerges naturally in the topcolor-assisted technicolor theory. Furthermore, this kind of theory predicts a number of pseudo Goldstone bosons (PGBs) including the technipions in the technicolor sector and the top-pion in the topcolor sector. All the new particles in this theory can give corrections to the Z-pole observables at LEP and SLC, and thus the LEP-SLD precision data may give constraints on the parameters in the topcolor-assisted technicolor theory. These constraints have recently been studied in Refs. [3,4]. Due to the strong coupling between the top-pion and the top and bottom quarks, the top-pion gives rise to a large negative correction to the $Z \rightarrow b\bar{b}$ branching ratio R_b. Together with the positive contributions from the colorons and Z', the total topcolor correction to R_b is shown to be quite negative which is of the wrong sign when comparing the SM value of R_b to the LEP-SLD data. Since the negative top-pion corrections become smaller when the top-pion is heavier, the LEP-SLD data of R_b give rise to certain lower bound on the top-pion mass. It is shown in Ref. [3] that the top-pion mass m_{π_t} should not be lighter than the order of 1 TeV to make the theory consistent with the LEP-SLD data. This implies that the scale of topcolor should be much higher than what the original model expected [2]. However, in those analyses, the ETC contributions to R_b are not taken into account. The main ETC corrections to R_b are from the ETC gauge boson contributions. It has been shown in Ref. [3] that the positive diagonal ETC gauge boson contribution is larger than the negative sideways gauge boson contribution, and thus the total ETC correction to R_b is positive. It is the purpose of this short
paper to investigate how much the constraint on the topcolor-assisted technicolor theory from R_b changes when this positive ETC correction is included.

Since the corrections to R_b in the topcolor-assisted technicolor models depends on the values of the parameters in the models, we shall consider the original topcolor-assisted technicolor model (it will be referred to as Model-I in this paper) and the topcolor-assisted multiscale technicolor model (it will be referred to as Model-II in this paper) as two typical examples in the investigation. These two models are different only in their ETC parts. For the model-dependent parameter ε, it has been shown that the $b \to s \gamma$ rate is sensitive to the value of ε, and the CLEO data on the $b \to s \gamma$ rate gives constraint on the value of ε, namely $\varepsilon \lesssim 0.1$. We shall take three values $\varepsilon = 0.05, 0.08, \text{and} 0.1$ in our calculation to see its effect.

The left-handed and right-handed $Z - b - \bar{b}$ and $Z - t - \bar{t}$ coupling constants g_L^b, g_R^b, g_L^b, and g_R^b in the SM are, respectively, $g_L^b = -\frac{1}{2} + \frac{1}{3} \sin^2 \theta_W$, $g_R^b = \frac{1}{3} \sin^2 \theta_W$, $g_L^b = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W$, and $g_R^b = -\frac{2}{3} \sin^2 \theta_W$. Let δg_L^b and δg_R^b denote, respectively, the corrections to g_L^b and g_R^b from the topcolor-assisted technicolor theory. Then the correction to R_b can be expressed as

$$\frac{\delta R_b}{R_b^{SM}} = \frac{R_b - R_b^{SM}}{R_b^{SM}} = (1 - R_b^{SM}) \frac{2[g_L^b \delta g_L^b + g_R^b \delta g_R^b]}{(g_L^b)^2 + (g_R^b)^2},$$

where $R_b^{SM} = 0.2158 \pm 0.0002$ is the SM prediction for R_b. We shall calculate δg_L^b and δg_R^b from various sectors in Model-I and Model-II.

We first consider the topcolor sector which is the same in Model-I and Model-II. The Feynman diagrams for the one-loop charged top-pion corrections to the $Z - b - \bar{b}$ vertex and the dependence of $-\delta R_b/R_b^{SM}$ on m_π, have been shown in Figs. 1-2 in Ref. [3]. Compared with the charged top-pion contributions, the neutral top-pion contributions are suppressed by a factor of m_t^2/m_π^2 and thus can be ignored. In Ref. [3], the effect of the technicolor contribution to the top-quark mass m_t is not taken into account (the result in Ref. [3] corresponds to taking $\varepsilon = 0$). Taking account of the ε effect, the total one-loop top-pion correction to R_b in the on-shell renormalization scheme reads

$$\delta g_L^{b(\pi)} = \left(\frac{v_e}{v_w}\right)^2 \frac{[(1 - \varepsilon)m_t^2 V_{tb}^2}{16\pi^2 F_W^2} \{ -g_L^b B_1(-p_b, m_t, m_\pi) + g_R^{b(1)} [2 C_{24} + \tilde{B}_0(-k, m_t, m_\pi)] - m_t^2 C_{24}(p_b, -k, m_\pi, m_t, m_\pi) \},$$

$$\delta g_R^{b(\pi)} = 0,$$

where $v_e/v_w = (167 \text{ GeV})/(174 \text{ GeV})$ reflects the effect of the mixing between the top-quark and the would-be Goldstone boson. $F_{\pi} = 50 \text{ GeV}$ is the top-pion decay constant, p_b and k are, respectively, the momenta of the external b quark and Z boson, B_1 and C_{ij} are the two-point and three-point scalar integral functions. The factor $[(1 - \varepsilon)m_t^2 V_{tb}^2}{16\pi^2 F_W^2}$ comes from the $\pi_t - t - \bar{b}$ coupling when the technicolor contribution to the top-quark mass is considered. This factor causes the ε-dependence of $\delta g_L^{b(\pi)}$. The negative correction to R_b from the top-pion decreases with ε. In Fig. 1, we plot the top-pion contributed $-\delta R_b/R_b^{SM}$ versus m_π, with $\varepsilon = 0, 0.05, 0.08, 0.1$. The $\varepsilon = 0$ curve is just the result given in Ref. [3].

The contributions to δg_L^b and δg_R^b from the topcolor gauge bosons C_μ and Z'_μ have been calculated in Ref. [11,12], which are

$$\delta g_L^{(C^a)} = g_L^{b(C^a)} C_{24}(R) \left[\frac{m_Z^2}{M_C^2} \ln \frac{M_C^2}{m_Z^2} \right], \quad \delta g_R^{(C^a)} = g_R^{b(C^a)} C_{24}(R) \left[\frac{m_Z^2}{M_C^2} \ln \frac{M_C^2}{m_Z^2} \right],$$

$$\delta g_L^{(Z')} = g_L^{b(Z')} [Y_L^{b(Z')} - \frac{1}{2}] \left[\frac{m_Z^2}{M_Z^2} \ln \frac{M_Z^2}{m_Z^2} \right], \quad \delta g_R^{(Z')} = g_R^{b(Z')} [Y_R^{b(Z')} - \frac{1}{2}] \left[\frac{m_Z^2}{M_Z^2} \ln \frac{M_Z^2}{m_Z^2} \right],$$

where κ_3 and κ_1 are, respectively, the coloron and the Z' couplings, M_C and M_Z are, respectively, the masses of C_μ and Z', $C_{24}(R) = \frac{1}{2}$, $Y_L^{b(Z')} = \frac{1}{2}$, and $Y_R^{b(Z')} = -\frac{1}{2}$. We shall take $M_B = M_{Z'} = 1 \text{ TeV}$ in the calculation. To obtain proper vacuum tilting (the topcolor interactions only condense the top quark but not the bottom quark), the couplings κ_3 and κ_1 should satisfy certain constraint. There is a region of κ_3 and κ_1, namely $\kappa_3 = 2$, $\kappa_1 \leq 1$, satisfying the requirement of vacuum tilting and the constraints from Z-pole physics and $U(1)$ triviality shown in Refs. [11,12]. We shall take $\kappa_3 = 2$ and $\kappa_1 = 1$ in the following calculation.

\[\text{Here we have ignored the coupling constant } \frac{\varepsilon}{\sin \theta_W \cos \theta_W}, \text{ which is irrelevant to } R_b.\]
Next, we consider the ETC sector corrections to R_b. In the topcolor-assisted technicolor theory, the technipion-top-bottom coupling is proportional to $\frac{\varepsilon m_t}{F_\pi}$, and the technipion corrections to δg_L^b and δg_R^b are proportional to $\left(\frac{\varepsilon m_t}{F_\pi}\right)^2$ which is very small, so that the technipion correction to R_b is negligible. Therefore, the main contribution is from the ETC gauge bosons. This has been calculated in Refs. [13,14] which reads

$$\delta g_L^{b(ETC)} = -\frac{1}{A} \frac{\varepsilon m_t}{10\pi F_\pi} \sqrt{\frac{N_T C}{N_C}} \frac{\varepsilon^2 N_C}{N_T C + 1} \xi_b \left(\xi_L^{-1} + \xi_b - \xi_b^2\right),$$

where $N_T C$ and N_C are, respectively, the number of technicolors and the numbers of ordinary colors, ξ_t and ξ_b are coupling coefficients with $\xi_b = (m_u/m_c) \xi_t^{-1}$ [14], and ξ_t is ETC gauge-group dependent. Following Refs. [13,14], we take $\xi_t = 1/\sqrt{2}$. The factor $1/\sqrt{2}$ reflects the walking effect in the ETC sector which is taken to be $A = 1.7$ in Refs. [13,14]. The decay constant F_π is different in Model-I and Model-II. In Model-I, the ETC sector is the one-family ETC model. Considering the mixing between the top-pion and the would-be Goldstone boson, we have $N_\phi (F_\pi / \sqrt{2})^2 + F_{W_\pi}^2 = v_w^2$ ($N_\phi = 4$ is the number of $SU(2)$ doublets in the one-family technifermion sector), and thus $F_\pi = 118$ GeV in Model-II, the ETC sector is the multiscale technicolor model in which $F_\pi = 40$ GeV [16]. This difference makes the ETC corrections to R_b very different in Model-I and Model-II. This positive ETC correction to R_b is larger in Model-II than in Model-I.

Finally, we add all the corrections together and obtain the total corrections

$$\delta g_L^b = \delta g_L^{b(\pi_1)} + \delta g_L^{b(C)} + \delta g_L^{b(Z')} + \delta g_L^{b(ETC)}$$

$$\delta g_R^b = \delta g_R^{b(C)} + \delta g_R^{b(Z')},$$

in which $\delta g_L^{b(\pi_1)}$, $\delta g_L^{b(C)}$, $\delta g_L^{b(Z')}$, $\delta g_R^{b(C)}$, $\delta g_L^{b(Z')}$, and $\delta g_R^{b(ETC)}$ are given in eqs. (3), (4), (5), and (6), respectively. Plugging (3) and (5) into (6), we obtain the total correction $\delta R_b/R_b^{SM}$ and the predicted $R_b = R_b^{SM} + \delta R_b$ in Model-I and Model-II.

Before presenting the numerical results, let us make an examination of the parameter range $\varepsilon = 0.05 - 0.1$ which we take in the calculation. It has been noticed that the ETC sector not only gives rise to a positive contribution to R_b but also contributes positive correction to the oblique correction parameter T (or equivalently Δm, $\Delta m = \alpha T$) [17] due to the violation of the custodial symmetry $SU(2)$ in the ETC sector [14]. In the original ETC model, the top quark mass is completely generated by the ETC dynamics, so that the violation of $SU(2)$ in the ETC sector is very serious and the positive contribution to T (or Δm) is so large that it can barely be consistent with the experiment [14]. Now we examine this problem in the topcolor-assisted technicolor models. In the topcolor-assisted technicolor models, the ETC sector only gives rise to a very small portion of the top quark mass, εm_t, therefore the violation of $SU(2)$ in the ETC sector is significantly smaller depending on the values of ε. It has been shown that the most dangerous positive contribution to T in the ETC sector is from the exchange of the diagonal ETC gauge boson whose couplings to the up-type and down-type techniquarks are different, and this has been studied in Ref. [14]. Since the four-fermion operators contributing the positive correction to T is also related to the ETC generation of the top and bottom quark masses, the formula in Ref. [14] can be further expressed in terms of the parameters εm_t, ξ_t and ξ_b as follows

$$T^{ETC} = \frac{1}{A} \frac{1}{16 \sin^2 \theta_W \cos^2 \theta_W} \frac{N_C^2}{N_T C(N_T C + 1)} \frac{\varepsilon m_t F_\pi}{m_Z^2} \sqrt{\frac{N_T C}{N_C}} [\xi_t^{-1} - \xi_b]^2.$$

For $\varepsilon = 0.05$, 0.08 and 0.1, the values of T^{ETC} are 0.006, 0.009 and 0.01, respectively. These are to be compared with the experimental value $T = 0.00 \pm 0.15$ [18]. We see that, for the parameter range $\varepsilon = 0.05 - 0.1$ which we take in this paper, the ETC contributed positive correction to T is small enough to make the theory consistent with the experiment [18].

Now we compare our predicted R_b with the experimental value $R_b^{exp} = 0.21642 \pm 0.00073$ [20] to get the new constraints on the two typical topcolor-assisted technicolor models. The results of the predicted R_b in Model-I with $\varepsilon = 0.05$, 0.08, and 0.1 are plotted in Fig. 2 together with the experimental value R_b^{exp}. The horizontal solid line denotes the central value R_b^{exp}, and the horizontal dotted lines indicate the 1σ and 2σ deviations. We see from Fig. 1 that the 2σ constraints on Model-I are

2The corrections to T from the exchange of topcolor gauge boson has been studied in Ref. [19].
\[\varepsilon = 0.05 : \quad 400 \text{ GeV} \lesssim m_{\pi t}, \]
\[\varepsilon = 0.08 : \quad 340 \text{ GeV} \lesssim m_{\pi t} \lesssim 900 \text{ GeV}, \]
\[\varepsilon = 0.1 : \quad 280 \text{ GeV} \lesssim m_{\pi t} \lesssim 770 \text{ GeV}. \]

(10)

The results of the predicted \(R_b \) in Model-II with \(\varepsilon = 0.05, 0.08 \) and 0.1 are plotted in Fig. 3 together with the experimental value \(R_b^{\text{expt}} \) and the 1\(\sigma \) and 2\(\sigma \) deviations. Fig. 3 shows that the 2\(\sigma \) constraints on Model-II are

\[\varepsilon = 0.05 : \quad 350 \text{ GeV} \lesssim m_{\pi t} \lesssim 900 \text{ GeV}, \]
\[\varepsilon = 0.08 : \quad 250 \text{ GeV} \lesssim m_{\pi t} \lesssim 560 \text{ GeV}, \]
\[\varepsilon = 0.1 : \quad 220 \text{ GeV} \lesssim m_{\pi t} \lesssim 430 \text{ GeV}. \]

(11)

We see that the constraints on Model-I and Model-II are different due to the different values of \(F_\pi \) in the two models. Since \(F_\pi \) takes a smaller value (causing a larger positive ETC correction to \(R_b \)) in Model-II, the allowed top-pion mass is lower in Model-II than in Model-I.

From Fig. 2 and Fig. 3, we see that, when the positive ETC gauge boson correction to \(R_b \) is taken into account, the constraints on the two typical topcolor-assisted technicolor models are significantly different from that shown in Refs. [3][4]. As is mentioned in Ref. [3], this kind of constraint should only be regarded as a rough estimate since the \(\pi_t - t - \bar{b} \) coupling is so strong that higher order corrections from the top-pion are expected to be important. Anyway, the conclusion of the present investigation is that, to be consistent with the experimental value \(R_b^{\text{expt}} \), the top-pion mass is roughly in a region of a few hundred GeV, and thus the scale of topcolor is likely to be around a couple of TeV which is not much higher than what is expected in the original topcolor-assisted technicolor theory [3].

Acknowledgment

This work is supported by the National Natural Science Foundation of China, the Fundamental Research Foundation of Tsinghua University, a special grant from the Ministry of Education of China, and the Natural Science Foundation of the Henan Scientific Committee.

[1] J.A. Bagger, A.F. Falk, and M. Swartz, Phys. Rev. Lett. 84, 1385 (2000).
[2] C.T. Hill, Phys. Lett. B 345, 483 (1995); K. Lane and E. Eichten, *ibid.* B 352, 382 (1995); K. Lane, *ibid.* B 433, 96 (1998).
[3] G. Burdman and D. Kominis, Phys. Lett. B 403, 101 (1997).
[4] W. Loinaz and T. Takuchi, Phys. Rev. D 60, 015005 (1999).
[5] V. Lubicz and P. Santorell, Nucl. Phys. B460, 3 (1996); K. Lane, Phys. Lett. B 357, 624 (1995).
[6] C.-X Yue, Y.-P. Kuang, G.-R. Lu, and L.-D. Wan, Phys. Rev. D 52, 5314 (1995); K. Hagiwara and N. Kitazawa, Phys. Rev. D 52, 5374 (1995).
[7] K. Lane, Phys. Lett. B 357, 624 (1995).
[8] B. Balaji, Phys. Rev. D 53, 1699 (1996).
[9] Z.J. Xiao, L.D. Wan, G.R. Lu *et al.* J. Phys. G 20, 901 (1994).
[10] C.T. Hill and X. Zhang, Phys. Rev. D 51, 3563 (1995).
[11] G. Buchalla, G. Burdman, C.T. Hill and D. Kominis, Phys. Rev. D 53, 5185 (1996).
[12] M.B. Popovic and E.H. Simmons, Phys. Rev. D 58, 095007 (1998).
[13] R.S. Chivukula, S.B. Selipsky and E.M. Simmons, Phys. Rev. Lett. 69, 575 (1992).
[14] G.H. Wu, Phys. Rev. Lett. 74, 4173 (1995).
[15] C.X. Yue, Y.P. Kuang and G.R. Lu, J. Phys. G 23, 163 (1997).
[16] K. Eichten and K. Lane, Phys. Lett. B 222, 129 (1989); K. Lane and M.V. Ramana, Phys. Rev. D D44, 2678 (1991).
[17] M.E. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990); Phys. Rev. D 40, 381 (1992).
[18] J. Erler, talk presented at DPF 99, Los Angeles, CA, January 5-9, 1999, [hep-ph/9903443](http://arxiv.org/abs/hep-ph/9903443).
[19] R.S. Chivukula, B.A. Dobrescu, and J. Terning, Phys. Lett. B 353, 289 (1995); Prog. Theor. Phys. (Suppl.), 123, 105 (1996).
[20] J.H. Field, Phys. Rev. D 58, 093010 (1998); D. Chang, W.F. Chang and E. Ma, *ibid.* 61, 037301 (2000).
FIG. 1. The top-pion contributed $\delta R_b/R_{b}^{SM}$ versus the top-pion mass m_{π_t} (in GeV) for $\varepsilon = 0, 0.05, 0.08, 0.1$.

FIG. 2. The predicted R_b in Model-I versus the top-pion mass m_{π_t} (in GeV) for $\varepsilon = 0.05, 0.08, 0.1$ together with the experimental value R_{b}^{exp}. The horizontal solid line denotes the central value of R_{b}^{exp} and the dotted lines show the 1σ and 2σ bounds.
FIG. 3. The predicted R_b in Model-II versus the top-pion mass m_{π^*} (in GeV) for $\varepsilon = 0.05, 0.08, 0.1$ together with the experimental value R_b^{exp}. The horizontal solid line denotes the central value of R_b^{exp} and the dotted lines show the 1σ and 2σ bounds.