Histological and sex-determining genes expression effects of 17α-methyltestosterone on mandarin fish Siniperca chuatsi gonad development

CURRENT STATUS: POSTED

Shuang Liu
Sun Yat-Sen University

Peng Xu
Sun Yat-Sen University

Xuange Liu
Sun Yat-Sen University

Dingli Guo
Sun Yat-Sen University

Xiaoli Chen
Sun Yat-Sen University

Sheng Bi
Sun Yat-Sen University

Han Lai
Sun Yat-Sen University

Xiaopin Zhao
Sun Yat-Sen University

Yuqing Su
Sun Yat-Sen University

Huadong Yi
Sun Yat-Sen University

Guifeng Li
Sun Yat-Sen University

Email: liuqif@mail.sysu.edu.cn
Corresponding Author
ORCID: https://orcid.org/0000-0002-6724-5462
Abstract

Background

17α-methyltestosterone (MT) as a synthetic androgen has been widely used in sex reversal of fish research, but there was no published report on sex reversal of mandarin fish by MT. Moreover, comparative transcriptome analysis of testis and ovarian tissue is still lacking in mandarin fish. We used histological analyses together with RNA sequencing to characterize mandarin fish gonadal transcriptomes and investigate the effects of MT on the sex ratio, survival rate, growth, gonadal differentiation.

Results

Mandarin fish treated with dietary MT at 50 mg/kg and 100 mg/kg dosages were successfully induced to all-male stock (male rate 100%), compared with the control group (51.11%). The survival rate of fish in the MT treated and control groups were not significant different. MT were significantly inhibited the growth of the MT treatment group (P < 0.05) at the 20 dph-120 dph, however, the weight and length in the MT treated and control groups were not significant different at the 180 dph and 240 dph. MT treatment promoted the development of testis, but inhibited the gonadosomatic index (GSI) and the levels of serum steroid hormone (T and E2). This work screened out the genes related to the sex determination and differentiation of the fish by sequencing and analysis of the transcriptome of the ovary and testis. The masculinization of mandarin fish was also demonstrated by the expression patterns of sex-specific genes, dmrt1, sox9, foxl2 and cyp19a1a: the gonads of MT-treated fish exclusively expressed male-specific dmrt1 and sox9 with no expression of female-specific foxl2 and cyp19a1a.

Conclusion

This study suggests that 17α-methyltestosterone successfully induced all-male stock and we select the part of the genes (dmrt1, sox9, foxl2 and cyp19a1a) related to sex determination and differentiation.

Background

The mandarin fish (Siniperca chuatsi) is an economically important fish in China. The growth of
mandarin fish shows gender dimorphism that the growth rate of female was over 15% higher than that of males [1]. Therefore, the production of all-female stock of mandarin fish can provide important technical support for the cultivation of excellent growth character and economic character. The first step to produce all-female of mandarin fish is artificially induced sex reversal. The synthetic steroid 17α-methyltestosterone (MT) is a male-specific hormone commonly used to induce sex reversal in teleost fish [2]. The effect of MT is dependent on various factors such as timing, dose and duration of treatment [3]. MT was successfully used to masculinize genetic females into phenotypic males, such sex reversed females can produce X-type spermatozoa whose offspring would be 100% females, and the offspring can be used for actual production [4, 5]. To our knowledge, the application of MT has been reported to be effective in some species such as zebrafish (Danio rerio) [6], Nile tilapia (Oreochromis niloticus) [7], orange-spotted grouper (Epinephelus coioides) [8] and yellow catfish (Pelteobagrus fulvidraco) [9], but MT has been reported to have negative effects on survival, growth and/or gonadal development if a particular threshold dose is surpassed [10, 11]. Therefore, the dose, timing and duration of MT used for induction of sex reversal is species-specific, and the effects of androgens need to be clarified in mandarin fish. In order to prove whether MT can successfully induce sex reversal mandarin fish to produce all-female populations, we investigated the effects of MT on the sex ratio, survival rate and growth performance. Moreover, the gonadal development of mandarin fish was determined by histological observation and levels of sex steroids testosterone (T) and 17β-estradiol (E2) in serum.

Recent studies have shown that RNA-seq is a powerful strategy to quantify gene expression levels [12]. RNA-Seq has been proven more suitable to quantify transcripts expressed at low levels than microarrays or EST analysis [12–14]. This is because RNA-seq verifies direct transcript profiling without compromise or bias. The advantages of RNA-seq make it widely used in transcriptome profiling studies in relation to gonadal development of various fish species, including spotted knifejaw (Oplegnathus punctatus) [15], Nile tilapia [16, 17] and fugu (Takifugu rubripes) [18]. However, comparative transcriptome analysis of testis and ovarian tissue is still lacking in mandarin fish. Sex determination in fish encompasses both genetic and environmental sex determination, genetic
sex determination refers to the gender of the offspring determined by the sex-determining genes on the chromosome and its interaction with the secondary genetic factors [19]. Nevertheless, few genes involved in gonadal differentiation have been identified in fish. Matsuda, et al. [20] reported that the gene named DMY (DM domain gene on Y-chromosome) was cloned from the recombination and deletion analysis of the sex-determining segment on the Y chromosome of medaka fish (Oryzias latipes). Functional analysis indicated that this gene plays an important role in sex determination of medaka fish. However, in other fish such as celebes medaka (Oryzias celebensis), rainbow trout (Oncorhynchus mykiss), Nile tilapia, zebrafish, etc., the homologous sequence could not be found [21, 22]. Furthermore, sex-determining genes have yet to be discovered and identified in mandarin fish. There are no studies with detail on sex reversal of mandarin fish by 17α-methyltestosterone. This article focused on the effect of MT on the sex ratio, survival rate, growth performance and gonadal development of mandarin fish. Differential gene expression in female and male gonads were identified by using transcriptome sequencing technology. Characterization and expression profiles of sex-determining genes were examined during gonadal sex differentiation by MT induction in mandarin fish.

Results

Growth status and sex ratios

The body weight and body length of mandarin fish during MT treatment were shown in Table 1. The results showed that the body weight and body length of the MT-treated group were significantly lower than those of control group (P < 0.05) from 20 dpf to 70 dpf. Among the MT treatments, the body weight and body length of M1 group were higher than M2 group with no significant difference (p > 0.05). The body weight and body length of post-treatment were summarized in Fig.1 and Fig.2. At 120 dpf, the body weight and body length of the MT treatments were significantly lower than those of control group (P<0.05). Nevertheless, no significant differences were found for the body weight and body length among the control group and MT treatments at 180 dpf and 240 dpf. There were also no significant differences in body weight and body length between the MT treatment groups at 120 dpf, 180 dpf and 240 dpf.
The survival rates of the MT treatments and control group were not significantly different (Fig.3). The MT-treated sex ratios were 100% males, while the control sex ratios were 51.11% males at 70dpf, and the ratio of females and males in the control group was about 1:1 (Table 2.).

Gonadal morphology and serum steroid hormone

At 70 dpf, the control males had testes which were populated with large volumes of spermatocytes and a few spermatogonia and spermatid and the MT-treated testes were consisted of large volumes of spermatid and a few spermatocytes and spermatogonia (Fig. 4 a, b, c). At 120 dpf, a few spermatozoa were shown in the control testes (Fig. 4 d), the SZ were strongly basophilic whose nuclei were stained dark blue by hematoxylin. In the seminiferous lobules away from the vas deferens, most of them were filled with spermatid. The maturity of MT-treated testes was significantly higher than that of the control testes, which testes were filled with spermatozoa (Fig. 4 e, f). At 180 dpf, in the seminiferous lobules closed to the vas deferens of the control testes were populated with a few spermatozoa. Moreover, the lobular lumen was reduced and the lobular wall was thickened, and spermatozoa in the lobular lumen were significantly reduced or disappeared. The lobular lumen of MT-treated testes also showed signs of degeneration, but large volumes of spermatozoa were still found in the seminiferous lobules closed to the vas deferens (Fig. 4 h, i). At 240 dpf, the lobular lumen of the MT-treated testes and the control testes were reduced to almost disappear, the lobular wall was thickened, and the lobular interstitial was developed. (Fig. 4 j, k, l). In addition, no ovarian tissue or interstitial gonads were found in MT-treated mandarin fish detected by all tissue sections.

The change in GSI of mandarin fish in control and MT treated groups were shown in Fig. 5. The results showed that GSI of the control and MT treated groups increased gradually from the 70 dpf to 240 dpf, and the highest value were at 240 dpf. GSI of MT treatments were significantly lower than that of the control group (P<0.05) at 70dpf (termination of treatment), however, the value of the control group was significantly lower than that of the MT treatments at 120 dpf (P<0.05). At 180 dpf and 240 dpf, there was no significant difference in GSI between the control and MT treated groups. During the experiment, the difference in GSI of mandarin fish in different concentrations of MT treatment group were not significant.
The changes of serum steroid hormone (T and E\textsubscript{2}) in mandarin fish from 70 dpf to 240 dpf were shown in Fig. 6 and Fig. 7. At termination of treatment (70dpf), the contents of T and E\textsubscript{2} of the control group were significantly higher than those in the MT treatment group (P<0.05), and the difference in T and E\textsubscript{2} of mandarin fish in different concentrations of MT treatment group were not significant. When the 17\alpha-methyltestosterone treatment was completed, the levels of plasma T and E\textsubscript{2} of the MT-treated groups returned to normal, and there was no significant difference with the control group.

Illumina sequencing and unigenes annotation

Gonad cDNA libraries of nine testes and nine ovaries were sequenced. A total of 120,955,742 (97.72\%) clean reads were obtained and used for de novo assembly. 60,971,396 and 59,984,346 clean reads were obtained from ovaries and testes, respectively, with a mean sequence length of 150bp (Table 3). After assembling and clustering, a total of 63,632 unigenes ranging from 201 to 21,004 bp with a mean sequence length of 1,182 bp were acquired (Fig. 8).

A total of 33,535 (52.7\%) unigenes were annotated from the four databases, among which 33,471 unigenes were annotated from Nr database, 27,685 unigenes were annotated from Swissprot database, 22,501 unigenes were annotated from COG/KOG database and 20,323 unigenes were annotated from KEGG database (Fig. 9).

Analysis of differentially expressed genes

After RPKM standardized calculation, 46,391 DEGs were detected in the gonads of 120 dpf, among which 3,435 genes were highly expressed in ovaries and 42,956 in testes. When RPKM≥2, 811 and 1,530 genes were differentially expressed in ovaries and testes, respectively.

57,171 DEGs were assigned to three GO term categories including biological processes (28,349), cellular components (16,155), and molecular functions (12,667) (Fig. 10). In biological processes, the DEGs of the ovaries and testes were mainly concentrated in cellular process (647 and 5,290 DEGs in ovaries and testes, respectively), metabolic process (547 and 3,850 DEGs in ovaries and testes, respectively) and single-organism process (532 and 4,719 DEGs in ovaries and testes, respectively). In cell components, the DEGs of the ovaries and testes were mainly concentrated in the cell (431 and
2,806 DEGs in ovaries and testes, respectively), cell part (431 and 2806 DEGs in ovaries and testes, respectively), membrane (256 and 2,610 DEGs in ovaries and testes, respectively), membrane part (218 and 2356 DEGs in ovaries and testes, respectively) and organelle (307 and 1,905 DEGs in ovaries and testes, respectively). In molecular functions, the DEGs of the ovaries and testes were mainly concentrated in binding (606 and 4,865 DEGs in ovaries and testes, respectively) and catalytic activity (423 and 3,352 DEGs in ovaries and testes, respectively).

According to KEGG classification of DEGs, 5,378 DEGs were mapped to 260 different pathways. Among these pathways, 36 pathways were the prominent pathways (Pvalue<0.05) which mainly consisted of Neuroactive ligand-receptor interaction (443 Unigene8.24%), Calcium signaling pathway (409 Unigene7.61%), and Cell adhesion molecules (CAMs) (250 Unigene4.65%). Moreover, MAPK signaling pathway (418 Unigene, 7.77%) and Steroid hormone biosynthesis (42 Unigene,0.78%) were the pathways related to reproductive development (Table 4).

Identification of DEGs associated with sex development

By analyzing the transcriptome data of ovaries and testes, the expression levels of 7 genes related to sex determination and differentiation were listed in Table 5. We noticed that dmrt1, amh, sox9, gsdf and dax1 expression in the testes were higher than ovaries (P < 0.05), while foxl2 and cyp19a1a expression in the ovaries were higher than testes (P<0.05).

Real-time PCR verifications

At termination of treatment (70dpf), the relative expression of dmrt1, sox9, foxl2 and cyp19a1a in the gonad were shown in fig.11 and fig.12. The relative expression of dmrt1, sox9 in M0 (♂), M1 and M2 were significantly higher than that in M0 (♀), but the relative expression of foxl2 and cyp19a1a were significantly lower than that in M0 (♀) (p<0.05). In different concentrations of MT treatment groups and M0 (♂), the relative expression of dmrt1, sox9, foxl2 and cyp19a1a were not significantly different (p>0.05).

Discussion

The anabolic effects of MT on growth have been reported in some teleost fish, but the effect of MT on
growth was not the same. Some studies suggest that low concentration of MT can promote the growth of fish, such as Eurasian perch (Perca fluviatilis) [25], common carp (Cyprinus carpio L.) [26], brook trout (Salvelinus fontinalis) [27] and zebrafish [28]. This may be due to the role of androgens in stimulating appetite and accelerating protein synthesis in fish [29]. Moreover, some research holded that high concentration of MT inhibited fish growth, such as black molly (Poecilia sphenops) [30], sablefish (Anoplopoma fimbria) [31], brook trout [11] and Atlantic cod (Gadus morhua) [32]. The results of this study showed that different concentrations of MT induced marked inhibition on the growth of treatment groups, indicating that the MT concentration we selected may have exceeded the upper limit of promoting fish growth, and the treatment concentration was too high to promote the growth of mandarin fish. After hormonal treatment, growth effects as compensatory growth effects may occur in some fish [33, 34]. The same phenomenon was found in our study which indicated that this may be a sign of compensatory growth. The treatment intensity of MT was related to the treatment time and concentration. When the treatment intensity of MT was low, it had no significant effect on the survival rate of the treatment group. Nevertheless, when the intensity of MT treatment was too high, the survival rate of the treatment group was significantly lower than that of the control group [35]. Research found that zebra cichlid (Cichlasoma nigrofasciatum) was feed with high-dose estradiol a few days, the mortality of treatment group was significantly higher than that of the control group [36]. Furthermore, yellow catfish was induced with low-dose 17β-estradiol and 17α-methyltestosterone for a long time, and the results showed that the survival rate of the treatment group was significantly lower than that of the control group [30]. However, there was no significant difference in mortality between the treatment group and the control group when the European sea bass (Dicentrarchus labrax L.) [37] was fed with low-dose MT for a short time. In this study, we found that mandarin fish treated with dietary MT at 50 mg/kg and 100 mg/kg dosages for 2 months, the survival rate was slightly lower than that of the control group, which indicated that the concentration of MT can be used to induce the sex reversal mandarin fish, and the treatment intensity was more appropriate.

Appropriate concentration of MT treatment can promote the gonadal development and make the
gonads present large volumes of spermatid in advance [28, 35], which were consistent with the result of our research. It was found that MT treatment may lead to gonadal atrophy, hermaphrodites and female ratio increased [38–40]. For example, the GSI of the treatment group was lower than that of the control group when Nile tilapia was treated with MT at a concentration of 40 mg/kg [41]. Likewise, Phelps, et al. also found that GSI of the treatment group was lower than that of the control group in Nile tilapia [7]. In Atlantic cod, MT was successful in producing hermaphrodites (46.7%) in the groups that were treated for the longest time period at the high dose [34], and hermaphrodites also were found in largemouth bass (Micropterus salmoides) [42]. Davis, et al. [43] reported that 60 mg / kg MT added to feed the channel catfish (Ictalurus punctatus), resulting in 99% of females in the treatment group. In this study, no androgynous phenomenon was found and sex ratios were 100% males at the end of MT treatment. However, gonadal atrophy occurred in both MT-treated groups and MT-treated testes were significantly inhibited at the end of hormone induction. With the end of MT treatment, the GSI of the MT treatment group gradually did not differ from the control group. This may be due to positive correlation between the GSI and sex steroids testosterone (T) [44, 45]. MT destroyed the balance of hormone levels in mandarin fish and then the content of T in the serum decreased significantly, which affected the GSI of the MT-treated groups. While once the MT treatment finished, the T content in the serum returned to normal, and the GSI of MT-treated groups also returned to normal.

Sex steroids testosterone (T) and 17β-estradiol (E2) play important roles in gonadal differentiation and gonadal development in fish [46–49]. MT is a synthetic testosterone analogue that is absorbed by fish and affects the balance of hormone levels by affecting the expression levels of steroidogenic synthase genes and their regulatory factors [50, 51]. Studies have shown that amh can mediate the down regulation of testosterone biosynthesis, and androgen treatment can lead to the increase relative expression of amh [52–54]. The results of our research showed that MT treatment inhibited the levels of serum steroid hormone (T and E2), which indicated that MT may break the original balance of hormone levels in the fish by affecting the expression of genes related to the synthesis of
hormone.

In this study, we investigated the effects of MT treatment on mandarin fish gonadal transcriptomes during gonadal differentiation and screened out the genes related to the sex determination and differentiation. MT activated gonadal expression of pro-male genes dmrt1 and sox9 and repressed gonadal expression of pro-female genes cyp19a1a and foxl2. We found strong upregulation of dmrt1 expression in control group in males and MT-treated testes in this study, consistent with the research of honeycomb grouper (Epinephelus merra) [55]. In zebrafish, upregulation of dmrt1 expression is associated with androgen-induced gonadal masculinization [6]. Similarly, the expression of dmrt1 was found upregulation in sex reversal of rainbow trout [56] and medaka [57]. It is indicated that the dmrt1 may be a key gene in the gonadal masculinisation in fish. MT treatment increased sox9 expression in mandarin fish gonads. Sox9 is an important gene associated with male sex differentiation and gonad development [58], and there are two sox9 (sox9a and sox9b) genes in most teleost [59]. The expression of sox9 in the testis, ovary, brain, liver and heart of rainbow trout were detected and the results showed that the gene was only significantly expressed in the testis and brain [60]. Similar to rainbow trout, sox9b were found to be expressed at higher levels in the testes than ovaries in Nile tilapia [61, 62]. In orange-spotted grouper, the expression level of sox9 upregulated significantly and the results of tissue section showed that the gonad of it changed from ovary to testis during MT induction, indicating that sox9 may be an important factor in triggering and maintaining masculinity of orange-spotted grouper [63]. Our results suggest that sox9 may play an important role in the differentiation and development of testis. Foxl2 belongs to the forkhead transcription factors family and plays an important role in the development and maintenance of ovarian function in vertebrate animals [64]. In fish such as rainbow trout [65], Japanese flounder (Paralichthys olivaceus) [66] and Nile tilapia [67], the expression level of foxl2 in ovary was significantly higher than that in testis. In addition, in female Nile tilapia who knocked out foxl2, the E2 levels and cyp19a1a expression levels in gonad decreased, resulting in their gonadal masculinization [68]. In our study, the expression level of foxl2 in the ovary of mandarin fish was significantly higher than that in the testis, indicating that foxl2 is a key factor in the development of ovary. Our study showed that the expression of
cyp19a1a in the ovary of mandarin fish was significantly higher than that in the testis. Aromatase cytochrome P450 encoded by cyp19a1a is a key enzyme in estrogen synthesis [69, 70]. In Nile tilapia [71], European sea bass [72] and Japanese eel (Anguilla japonica) [73], the expression of cyp19a1a was markedly higher in the ovary than that in testis. During the sexual differentiation of rainbow trout, cyp19a1a was highly expressed in ovaries [74]. We suggest that cyp19a1a may be one of the important gene in the development of the ovary. In a sense, the male-restricted expression of dmrt1, sox9 and no female-specific expression of cyp19a1a, foxl2 further confirmed the masculinization of mandarin fish by MT at the molecular level.

Conclusions
MT works well to produce all-male stock of mandarin fish. The growth of MT treatment and control groups had no significant difference from 180 dph to 240 dph, but the development of testis was promoted by MT. This work screened out the genes related to the sex determination and differentiation of the fish by sequencing and analysis of the transcriptome of the ovary and testis. Characterization and expression profiles of sex-determining genes were examined during gonadal differentiation by MT induction which further confirmed our results that MT can successfully induce sex reversal mandarin fish. Future studies will use sex reversal fish to crossed with selectively bred females to set up different families for progeny tests. Further selection of these brooders will be conducted based on whether they can produce all-female progeny.

Methods
Ethics statement
Mandarin fish experiments were approved by the Institutional Animal Care and Use Committee of Sun Yat-sen University and performed in accordance with the guidelines for experimental animals established by this committee.

Hormone treatment
Mature males (n=10) and females (n=10) of mandarin fish were collected from aquatic breeding farm in Foshan, Guangdong Province in April. After the injection of oxytocin, the fish were maintained in ambient water temperature of 25°C-27°C. After the broodstock estrus, the larvae were obtained by
artificial insemination, then incubated at water temperature of 25°C -28°C.

The androgen used in this experiment was 17α-methyltestosterone, and the concentration of it were 50 mg/kg and 100 mg/kg. At 10 dpf, undifferentiated juvenile mandarin fish (n=4500) were randomly selected to conduct induction experiment of sex reversal for 2 months. The experiment was divided into three groups: M0 (control group), M1 (50 mg/kg treatment group), M2 (100 mg/kg treatment group), and set up three parallels in each group. Each parallel consists of 500 individuals which were respectively maintained in 4 × 4 m tanks at water temperature of 25-28°C and natural photoperiod.

Evaluation of growth status and sex ratios

During hormone induction, the 10 dpf juvenile mandarin fish were taken every 10 days and 30 samples of each replicate were taken to measure the body weight (accurate to 0.001g) and body length (accurate to 0.01cm). At the termination of treatment, the survival rate was counted and each parallel including 30 individuals were dissected to obtain external morphology of the gonads which used to determine the gonadal sex of each fish and sex ratios for each exposure group.

At the termination of hormone induction, 300 individuals were randomly selected from the control group and MT treatment groups respectively, and then transferred into 20×20 m cement pool at water temperature of 25-30°C with natural photoperiod. Each group consisted of 3 biological replicates comprising 900 juvenile fish each. At 120 dpf, 180 dpf, and 240 dpf, 30 individuals of the control group, M1 treatment group, and M2 treatment group were randomly selected from the cement pool, which were anesthetized by MS-222 to measure body weight and body length.

Determination of gonadal morphology and serum steroid hormone

At 70dpf (termination of treatment), 120 dpf, 180 dpf, and 240 dpf, 30 individuals were randomly selected from the control group (male gonads), M1 treatment group, and M2 treatment group respectively, which were anesthetized by MS-222 and dissected to obtain the individual gonads. After weighed body weight and gonad weight, gonads were transferred to Bouin’s solution, and then gonadosomatic index (GSI) were calculated using the formula: GSI = (gonad weight/body weight) ÷100. The gonad tissues were fixed overnight in Bouin's solution, dehydrated and embedded in
paraffin. The samples were serially sliced by HM340 paraffin slicer to a thickness of 6-8 μm. Haematoxylin and eosin-stained sections were examined under light microscopy to determine gonadal morphology.

At 70dpf, 120 dpf, 180 dpf, and 240 dpf, 9 individuals were randomly selected from the control group, M1 treatment group and M2 treatment group respectively, and blood samples were taken from the caudal vessel with a heparinized needle and syringe. The samples were allowed to kept on crushed ice until centrifuged at 8000 rpm for 15 min, and the supernatant was stored at -80°C. The sex steroids testosterone (T) was measured by the testosterone radioimmunoassay kit (Cat. No. B10PZA, Beijing North Biotechnology Institute, Beijing, China) [23] and 17β-estradiol (E₂) was analyzed by enzyme-linked immunosorbent assay (ELISA) [24].

RNA extraction, complementary DNA library construction, and Illumina sequencing

The 4-month-old female (n=9) and male (n=9) mandarin fish used for transcriptome sequencing were collected from aquatic breeding farm in Foshan, Guangdong Province. The gonadal tissues were separated in 1.5 mL RNase-free centrifuge tubes, frozed in liquid nitrogen, and then transferred to -80 °C for storage.

Total RNA was extracted from each gonad using Trizol reagent (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. RNA concentration and quality were determined using a NanoDrop spectrophotometer (Nano-Drop Technologies, Wilmington, DE, U.S.) and Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, U.S.). RNA integrity was assessed by ethidium bromide staining of the 28S and 18S ribosomal bands on a 1% agarose gel. Mixed the RNA of nine ovaries and testes with equal amounts, and built 2 RNA pools. Then sent them to Guangzhou Kiddio Biotech Co., Ltd. to build cDNA library. Libraries were sequenced using an Illumina HiSeq™ 4000 platform.

De novo assembly and functional annotation

Raw Data were cleaned by removal of adaptors, leading and trailing low quality or N bases (over the ratio of 10%), removal of bases when the average quality per base dropped below 20. Clean data
were then de novo assembled using Trinity software (version 2.0.6).

To annotate all unigenes, BLASTx (version 2.2.26) with an E-value threshold of 1×10^{-5} was used to query the unigenes against different databases: NCBI nonredundant protein (Nr) database, Swiss-Prot protein database, Kyoto Encyclopedia of Genes and Genomes (KEGG) database and Clusters of Orthologous Groups (COG). Gene Ontology (GO) annotation and functional classification of unigenes were performed by using Blast2GO software.

Differential gene expression analysis

The reads per kilobase of exon region per million mappable reads (RPKM) method was used to quantify gene expression levels. The calculation formula is:

$$\text{RPKM} = \frac{10^5 C}{NL/10^5}$$

RPKM is the expression level of the gene, C is the only number of reads aligned to the gene, N is the total number of reads that are uniquely aligned to the reference gene, and L is the number of bases of the gene. The RPKM method can eliminate the effect of gene length and sequencing difference on gene expression. Therefore, the RPKM value can be directly used to compare gene expression differences between different samples.

FDR (False Discovery Rate) and log2 (Ovary_RPKM/Testis_RPKM) were used to identify DEGs between ovaries and testes. FDR < 0.05 and $|\log2 (\text{Ovary}_\text{RPKM}/\text{Testis}_\text{RPKM})| > 1$ between the testes and ovaries were considered as DEGs, which subjected to enrichment analysis by GO functional group and KEGG pathways.

Validation of differentially expressed genes using quantitative RT-PCR

Quantitative real-time PCR (qRT-PCR) was conducted on 4 differentially expressed transcripts identified from the RNA-seq data. Total RNA extraction was performed as mentioned above. The cDNA synthesis was performed using the PrimeScript™ RT reagent kit with gDNA Eraser (Takara, China).
Specific primers designed for qPCR based on DEGs and internal reference gene 18S rRNA sequences.

Real-time PCR was performed using the SYBR® Premix Ex TaqTM II (Tli RNaseH Plus) kit (Takara, China), and the PCR reaction was performed using the LightCycler® 480 System II Real-Time PCR System. Each qPCR reaction was performed in triplicate.

Statistical analysis

The results were expressed as mean ± SD. The percentage data were transformed by arcsin square root transformation. Data were subjected to one-way ANOVA followed by Duncan’s multiple range test for post hoc comparisons of means. SPSS version 21.0 was used for the analyses in the study. The level of significance for all statistical tests was set at 5% (p< 0.05).

Abbreviations

T: testosterone; E2: 17β-estradiol; LL: lobular lumen; MT: 17α-methyltestosterone; PCR: polymerase chain reaction; DNA: deoxyribonucleic acid; RNA: ribonucleic acid; rpm: round per minute; RT-PCR: reverse transcriptase-polymerase chain reaction; RNA-seq: RNA sequencing; RPKM: Reads per kilobase per million mapped reads; SPC: spermatogenic cyst; SC: spermatocyte; SG: spermatogonia; SZ: spermatozoon; SM: spermatids; dph: days post-hatching

Declarations

Acknowledgments

We would like to thank the aquatic breeding farm in Foshan for providing mandarin fish and local fishermen for assistance in collection of samples, professor Guifeng Li for his invaluable feedback on drafts of this manuscript, Dingli Guo and Han Lai for their assistance with mandarin fish husbandry.

Funding

This research was supported by the National Key R&D Program of China (2018YFD0901203), the Research in Spreading and Breeding Feedstuff of a New Species of *Siniperca chuatsi × Siniperca scherzeri* (Yuenong 2019A2), and the Results Transformation and Achievement Extension of *Siniperca chuatsi × Siniperca scherzeri*. None of the funding bodies participated in the design of the study, collection, analysis, and interpretation of data, or writing the manuscript.
Availability of data and materials
All data generated or analysed during this study are included in this published article.

Authors’ contributions
SL, PX and GFL designed the experiments. SL and PX performed the treatments, sample collection and laboratory work with the assistance of YQS and HDY. SL and PX analysed and interpreted the RNASeq data with the assistance of XGL. XLC and DLG performed the mandarin fish histology. SL wrote the manuscript with contributions from SB and XPZ. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Mandarin fish experiments were approved by the Institutional Animal Care and Use Committee of Sun Yat-sen University and performed in accordance with the guidelines for experimental animals established by this committee.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing financial interests.

Author details
1 Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
2 Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, 510006, China
3 Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China

References
1. He F, He J. Biological Characters and Growth Differentiation between Male and Female Siniperca chuatsi (Basilewsky). Journal of Hydroecology. 2005;4:30-32.
2. Abo-Al-Ela HG. Hormones and fish monosex farming: A spotlight on immunity. Fish & Shellfish Immunology. 2017;72:23-30.

3. Mirza JA, Shelton WL. Induction of gynogenesis and sex reversal in silver carp. Aquaculture. 1988;68:1-14.

4. Luo K, Xiao J, Liu S, Wang J, He W, Hu J, Qin Q, Zhang C, Tao M, Liu Y. Massive production of all-female diploids and triploids in the crucian carp. International Journal of Biological Sciences. 2011;7(4):487-495.

5. Liu H, Guan B, Xu J, Hou C, Tian H, Chen H. Genetic manipulation of sex ratio for the large-scale breeding of YY super-male and XY all-male yellow catfish (Pelteobagrus fulvidraco (Richardson)). Marine Biotechnology. 2013;15(3):321-328.

6. Jie LSL, Horsfield JA, Black MA. Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development. BMC Genomics. 2017;18(1):557.

7. Phelps RP, Okoko M. A non-paradoxical dose response to 17α-methyltestosterone by Nile tilapia Oreochromis niloticus (L.): effects on the sex ratio, growth and gonadal development. Aquaculture research. 2010;42(4):549-558.

8. Lyu Q, Hu J, Yang X, Liu X, Chen Y, Xiao L, Liu Y, Wang Q, Chen J, Huang M, et al. Expression profiles of dmrt5 and foxl3 during gonadal development and sex reversal induced by 17α-methyltestosterone in the orange-spotted grouper. General and Comparative Endocrinology. 2019; 274:26-36

9. Shen ZG, Fan QX, Yang W, Zhang YL, Wang HP. Effects of 17α-methyltestosterone and Aromatase Inhibitor Letrozole on Sex Reversal, Gonadal Structure, and Growth in Yellow Catfish Pelteobagrus fulvidraco. The Biological bulletin. 2015;228(2):108-117

10. Shen ZG, Fan QX, Yang W, Zhang YL, Wang HP. Effects of 17α-methyltestosterone and aromatase inhibitor letrozole on sex reversal, gonadal structure, and growth in
yellow catfish *Pelteobagrus fulvidraco*. The Biological bulletin. 2015;228(2):108-117.

11. Fatima S, Adams M, Wilkinson R. Sex reversal of brook trout (*Salvelinus fontinalis*) by 17α-methyltestosterone exposure: a serial experimental approach to determine optimal timing and delivery regimes. Animal Reproduction Science. 2016;175:39-47.

12. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods. 2008;5(7):621-628.

13. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature. 2008;453(7199):1239-1243.

14. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57-63.

15. Du X, Wang B, Liu X, Liu X, He Y, Zhang Q, Wang X. Comparative transcriptome analysis of ovary and testis reveals potential sex-related genes and pathways in spotted knifejaw *Oplegnathus punctatus*. Gene. 2017;637:203-210.

16. Tao W, Yuan J, Zhou L, Sun L, Sun Y, Yang S, Li M, Zeng S, Huang B, Wang D. Characterization of gonadal transcriptomes from Nile tilapia (*Oreochromis niloticus*) reveals differentially expressed genes. PLoS ONE. 2013;8(5):e63604.

17. Tao W, Chen J, Tan D, Yang J, Sun L, Wei J, Conte M, Kocher T, Wang D. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-seq analysis. BMC Genomics. 2018;19(1):363.

18. Yan H, Shen X, Cui X, Wu Y, Wang L, Zhang L, Liu Q, Jiang Y. Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in *Takifugu rubripes* gonad at the early stage of sex differentiation. Fish Physiol Biochem. 2018;44(5):1275-1290.

19. Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an
overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191-364.

20. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature. 2002;417 (6888):559-563.

21. Kondo M, Nanda I, Hornung U, Asakawa S, Shimizu N, Mitani H, Schmid M, Shima A, Schartl M. Absence of the Candidate Male Sex-Determining Gene dmrt1b(Y) of Medaka from Other Fish Species. Current Biology. 2003;13(5):416-420.

22. Luckenbach JA, Borski RJ, Daniels HV, Godwin J. Sex determination in flatfishes: Mechanisms and environmental influences. Seminars in Cell Development Biology. 2009;20(3):256-263.

23. Wang W, Zhu H, Dong Y, Tian Z, Dong T, Hu H, Niu C. Dimorphic expression of sex-related genes in different gonadal development stages of sterlet, Acipenser ruthenus, a primitive fish species. Fish Physiology and Biochemistry. 2017;43(6): 1557-1569.

24. Weltzien FA, Taranger GL, Karlsen O, Norberg B. Spermatogenesis and related plasma androgen levels in Atlantic halibut (Hippoglossus hippoglossus). Comparative Biochemistry and Physiology Part A. 2002;132(3):567–575.

25. Rougeot C, Jacobs B, Kestemont P, Melard C. Sex control and sex determinism study in Eurasian perch, Perca fluviatilis, by use of hormonally sex-reversed male breeders. Aquaculture. 2002;211(1-4):81-89.

26. Lone KP, Matty AJ. The effect of feeding methyltestosterone on the growth and body composition of common crap (Cyprinus carpio L.). General and Comparative Endocrinology. 1980;40(4):407-424.
27. Haffray P, Petit V, Guiguen Y, Quillet E, Rault P, Fostier A. Successful production of monosex female brook trout Salvelinus fontinalis using gynogenetic sex reversed males by a combination of methyltestosterone immersion and oral treatments. Aquaculture. 2009;290(1-2):47-52.

28. Zhang L. Effects of 17α-methyltestosterone on early gonadal development and sexual differentiation of zebrafish [D]. Hebei University. 2010.

29. Woo NY, Chung AS, Ng TB. Influence of oral administration of estradiol-17β and testosterone on growth, digestion, food conversion and metabolism in the underyearling red sea bream, Chrysophrys major. Fish Physiology and Biochemistry. 1993;10(5):377-387.

30. George T, Pandian TJ. Production of ZZ females in the female-heterogametic black molly, Poecilia sphenops, by endocrine sex reversal and progeny testing. Aquaculture. 1995;136(1-2):81-90.

31. Luckenbach JA, Fairgrieve WT, Hayman ES. Establishment of monosex female production of sablefish (Anoplopoma fimbria) through direct and indirect sex control. Aquaculture. 2017;479:285-296.

32. Haugen T, Andersson E, Norberg B, Taranger GL. The production of hermaphrodites of Atlantic cod (Gadus morhua) by masculinization with orally administered 17α-methyltestosterone, and subsequent production of all-female cod populations. Aquaculture. 2011;311(1-4):248-254.

33. Gao ZX. The mechanism of sex control and sex determination and the molecular markers related to sex in bluegill Lepomis macrochirus [D]. Huazhong Agricultural University. 2010.

34. Shen ZG. Study on the mechanism of sex control and sex determination in Pelteobagrus fulvidraco and Lepomis macrochirus [D]. Huazhong Agricultural
University. 2014.

35. Yao DX. Study on sexual differentiation and hormone induced transformation of Yellow Catfish *Pelteobagrus fulvidraco* [D]. Northeast Forestry University. 2007.

36. George T, Pandian TJ. Hormonal induction of sex reversal and progeny testing in the zebra cichlid *Cichlasoma nigrofasciatum*. Journal of Experimental Zoology. 1996;275(5):374-382.

37. Blazquez M, Piferrer F, Zanuy S. Development of sex control techniques for European sea bass (*Dicentrarchus labrax*) aquaculture: effects of dietary 17α-methyltestosterone prior to sex differentiation. Aquaculture. 1995;135(4):329-342.

38. Clemens HP, Inslee T. The production of unisexual broods by Tilapia mossambica sex-reversed with methyltestosterone. Transactions of the American Fisheries Society. 1968;97:18-21.

39. Haugen T, Andersson E, Norberg B, Taranger GL. The production of hermaphrodites of Atlantic cod (*Gadus morhua*) by masculinization with orally administered 17-α-methyltestosterone, and subsequent production of all-female cod populations. Aquaculture. 2011;311(1-4):248-254.

40. Felip A, Piferrer F, Carrillo M. Comparative growth performance between diploid and triploid sea bass (*Dicentrarchus labrax*) over the first four spawning seasons. Journal of Fish Biology. 2001;58(1):76-88.

41. Vera Cruz EM, Mair GC. Conditions for effective androgen sex reversal in *Oreochromis niloticus* (L.). Aquaculture. 1994;122(2-3):237-248.

42. Arslan T, Phelps RP, Osborne JA. Effects of oestradiol-17β or 17α-methyltestosterone administration on gonadal differentiation of largemouth bass *Micropterus salmoides* (Lacepède). Aquaculture Research. 2009;40(16):1813-1822.

43. Davis KB, Simco BA, Goudie CA, Parker NC, Cauldwell W, Snellgrove R. Hormonal sex
manipulation and evidence for female homogamety in channel catfish. General and Comparative Endocrinology. 1990;78(2):218-223.

44. Li CG, LIU XZ, Xu YJ. Annual maturation of testis correlated with sex steroids level in male barfin flounder broodstocks. Progress in Fishery Sciences. 2012;33(3):35-41.

45. Xu YJ, Liu XZ, Shi Y. Physiological Role of GH/IGF-I Axis in Ovarian Development of *Cynoglossus semilaevis*. Progress in Fishery Sciences. 2017;38(1):73-80.

46. Amiri BM, Maebayashi M, Adachi S, Yamauchi K. Testicular development and serum sex steroid profiles during the annual sexual cycle of the male sturgeon hybrid, the bester. Journal of Fish Biology. 1996;48(6):1039-1050.

47. Amiri BM, Maebayashi M, Hara A, Adachi S, Yamauchi K. Ovraian development and serum sex steroid and vitellogcnin profiles in the female cultured sturgeon hybrid, the bester. Journal of Fish Biology. 1996;48(6):1164-1178.

48. Baroiller JF, Guiguen Y, Fostier A. Endocrine and environmental aspects of sex differentiation in fish. Cellular and Moleculer Life Sciences. 1999;55(7):910-931.

49. Rashid H, Kitano H, Hoon Lee K, Nii S, Shigematsu T, Kadomura K, Matsuyama M. Fugu (*Takifugu rubripes*) Sexual Differentiation: CYP19 Regulation and Aromatase Inhibitor Induced Testicular Development. Sexual Development. 2007;1(5):311-322.

50. Ijiri S, Kaneko H, Kobayashi T, Wang DS, Sakai F, Paul-Prasanth B, Nagahama Y. Sexual Dimorphic Expression of Genes in Gonads During Early Differentiation of a Teleost Fish, the Nile Tilapia *Oreochromis niloticus*. Biology of Reproduction. 2008;78(2):333-341.

51. Zheng Y, Chen J, Liu Y, Gao J, Yang Y, Zhang Y. Molecular mechanism of endocrine system impairment by 17α-methyltestosterone in gynogenic Pengze crucian carp offspring. Ecotoxicology and Environmental Safety. 2016;128:143-152.

52. Rouiller Fabre V, Carmona S, Merhi RA, Cate R, Habert R, Vigier B. Effect of Anti-
Mullerian Hormone on Sertoli and Leydig Cell Functions in Fetal and Immature Rats. Endocrinology. 1998;139(3):1213-1220.

53. Teixeira J, Fynn-Thompson E, Payne AH, Donahoe PK. Miillerian-inhibiting substance regulates androgen synthesis at the transcriptional level. Endocrinology. 1999;140(10): 4732-4738.

54. Crisosto N, Sir-Petermann T, Greiner M, Maliqueo M, Moreno M, Aedo P, Lara HE. Testosterone-induced downregulation of anti-Miillerian hormone expression in granulosa cells from small bovine follicles. Endocrine. 2009;36(2):339-345.

55. Alam MA, Kobayashi Y, Horiguchi R, Hirai T, Nakamura M. Molecular cloning and quantitative expression of sexually dimorphic markers Dmrt1 and Foxl2 during female-to-male sex change in Epinephelus merra. General and comparative endocrinology. 2008;157(1):75-85.

56. Marchand O, Govoroun M, D'Cotta H, Mcmeel OM. DMRTI expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorchynchus mykiss. Biochimica et Biophysica Acta. 2000;1493(1-2):180-187.

57. Horie Y, Myosho T, Sato T, Sakaizumi M, Hamaguchi S, Kobayashi T. Androgen induces gonadal soma-derived factor, Gsdf, in XX gonads correlated to sex-reversal but not Dmrt1 directly, in the teleost fish, northern medaka (Oryzias sakaizumii). Mol Cell Endocrinol. 2016;436:141-149.

58. Cameron FJ, Sinclair AH. Mutations in SRY and Sox9: testis-determining genes. Human Mutation. 1997;9(5):388-395.

59. Klüver N, Kondo M, Herpin A, Mitani H, Schartl M. Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization. Dev Genes Evol. 2005;215(6):297-305.

60. Takamatsu N, Kanda H, Ito M, Yamashita A, Yamashita S, Shiba T. Rainbow trout
SOX9: cDNA cloning, gene structure and expression. Gene. 1997;202(1-2):167-170.

61. Wei L, Yang C, Tao W, Wang D. Genome-wide identification and transcriptome-based expression profiling of the sox gene family in the Nile tilapia (Oreochromis niloticus). Int J Mol Sci. 2016;17(3):270.

62. Jiang D, Chen J, Fan Z, Tan D, Zhao J, Shi H, Liu Z, Tao W, Li M, Wang D. CRISPR/Cas9-induced disruption of wt1a and wt1b reveals their different roles in kidney and gonad development in Nile tilapia. Dev Biol. 2017;428(1):63-73.

63. Luo YS, Hu W, Liu XC, Lin HR, Zhu ZY. Molecular cloning and mRNA expression pattern of Sox9 during sex reversal in orange-spotted grouper (Epinephelus coioides). Aquaculture. 2010;306(1):322-328.

64. Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Developmental Biology. 2002;250(1):1-23.

65. Baron D, Cocquet J, Xia X, Fellous M, Guiguen Y, Veitia RA. An evolutionary and functional analysis of Foxl2 in rainbow trout gonad differentiation. Journal of Molecular Endocrinology. 2004;33(3):705-715.

66. Yamaguchi T, Yamaguchi S, Hirai T, Kitano T. Follicle-stimulating hormone signaling and Fox12 are involved in transcriptional regulation of aromatase gene during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochemical and Biophysical Research Communications. 2007;359(4):935-940.

67. Wang D, Kobayashi T, Zhou L, Nagahama Y. Molecular cloning and gene expression of Fox12 in the Nile tilapia, Oreochromis niloticus. Biochemical and Biophysical Research Communications. 2004;320(1):83-89.

68. Li MH, Yang HH, Li MR, Sun YL, Jiang XL, Xie QP, Wang TR, Shi HJ, Sun LN, Zhou LY, Wang DS. Antagonistic roles of Dmrtl and Fox12 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology. 2013;
69. Trant JM, Gavasso S, Ackers J, Chung BC, Place AR. Developmental expression of cytochrome P450 aromatase genes (CYP19a and CYP19b) in zebrafish fry (Danio rerio). Journal of Experimental Zoology. 2001;290(5):475-483.

70. Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MW. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrine Reviews. 1994;15(3):342-355.

71. Sudhakumari CC, Senthilkumaran B, Kobayashi T, Kajiura-Kobayashi H, Wang DS, Yoshikuni M, Nagahama Y. Ontogeneic expression patterns of several nuclear receptors and cytochrome P450 aromatases in brain and gonads of the Nile tilapia Oreochromis niloticus suggests their involvement in sex differentiation. Fish Physiology and Biochemistry. 2008;31(2-3):129-135.

72. Blázquez M, González A, Papadaki M, Mylonas C, Piferrer F. Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrachus labrax). General and Comparative Endocrinology. 2008;158(1):95-101.

73. Jeng SR, Wu GC, Yueh WS, Kuo SF, Dufour S, Chang CF. Gonadal development and expression of sex-specific genes during sex differentiation in the Japanese eel. Gen Comp Endocrinol. 2018;257:74-85.

74. Vizziano D, Randuineau G, Baron D, Cauty C, Guiguen Y. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Developmental Dynamics. 2007;236(8):2198-2206.

Tables

Table 1 The body weight and body length of S. chautsi during MT treatment
Note: *significant difference between control group and MT treatments \((P<0.05)\). Each experiment was repeated three times.

Table 2 Effects of MT on sex ratios in *S. chautsi*

Table 3 Summary of *S. chuatsi* transcriptome
	raw reads	clean reads (%)	GC%	Adapter (%)	low quality (%)
1	60,863,104	59,984,346	49.17%	31,418	798,934
		(98.56%)		(0.05%)	(1.31%)
2	62,915,274	60,971,396	51.27%	19,3200	1,700,204
		(96.91%)		(0.31%)	(2.7%)

Table 4 The pathway analysis of different expression genes
Pathway	Candidate genes with pathway annotation	All genes with pathway annotation	Pvalue	Pathway ID
Neuroactive ligand-receptor interaction	443 (8.24%)	550 (6.06%)	0.000000	ko04080
Calcium signaling pathway	409 (7.61%)	536 (5.91%)	0.000000	ko04020
Cell adhesion molecules (CAMs)	250 (4.65%)	316 (3.48%)	0.000000	ko04514
Cytokine-cytokine receptor interaction	238 (4.43%)	308 (3.4%)	0.000000	ko04060
Adrenergic signaling in cardiomyocytes	270 (5.02%)	374 (4.12%)	0.000000	ko04261
ECM-receptor interaction	158 (2.94%)	211 (2.33%)	0.000001	ko04512
Focal adhesion	350 (6.51%)	508 (5.6%)	0.000003	ko04510
MAPK signaling pathway	418 (7.77%)	616 (6.79%)	0.000003	ko04010
Vascular smooth muscle contraction	214 (3.98%)	299 (3.3%)	0.000005	ko04270
Hedgehog signaling pathway	87 (1.62%)	110 (1.21%)	0.000008	ko04340
Phosphatidylinositol signaling system	161 (2.99%)	223 (2.46%)	0.000033	ko04070
Gap junction	161 (2.99%)	225 (2.48%)	0.000072	ko04540
Linoleic acid metabolism	32 (0.6%)	37 (0.41%)	0.000326	ko00591
alpha-Linolenic acid metabolism	29 (0.54%)	33 (0.36%)	0.000351	ko00592
ABC transporters	83 (1.54%)	111 (1.22%)	0.000432	ko02010
AGE-RAGE signaling pathway in diabetic complications	175 (3.25%)	253 (2.79%)	0.000624	ko04933
Phototransduction	39 (0.73%)	48 (0.53%)	0.001015	ko04744
Cardiac muscle contraction	133 (2.47%)	191 (2.11%)	0.001799	ko04260
Steroid biosynthesis	29 (0.54%)	35 (0.39%)	0.002600	ko00100
Glycerophospholipid metabolism	120 (2.23%)	173 (1.91%)	0.003633	ko00564
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate	32 (0.6%)	40 (0.44%)	0.004618	ko00532
Steroid hormone biosynthesis	42 (0.78%)	55 (0.61%)	0.005944	ko00140
Adipocytokine signaling pathway	95 (1.77%)	137 (1.51%)	0.009174	ko04920
Purine metabolism	234 (4.35%)	359 (3.96%)	0.011240	ko00230
Insulin signaling pathway	190 (3.53%)	289 (3.19%)	0.012929	ko04910
Insulin resistance	159 (2.96%)	241 (2.66%)	0.018178	ko04931
VEGF signaling pathway	105 (1.95%)	156 (1.72%)	0.023080	ko04370
Jak-STAT signaling pathway	140 (2.6%)	212 (2.34%)	0.024438	ko04630
beta-Alanine metabolism	36 (0.67%)	49 (0.54%)	0.027791	ko00410
Retinol metabolism	51 (0.95%)	72 (0.79%)	0.028179	ko00830
Inositol phosphate metabolism	112 (2.08%)	168 (1.85%)	0.028564	ko00562
Regulation of actin cytoskeleton	295 (5.49%)	464 (5.11%)	0.029177	ko04810
Melanogenesis	138 (2.57%)	210 (2.31%)	0.031378	ko04916
Nitrogen metabolism	21 (0.39%)	27 (0.3%)	0.035623	ko00910
Protein digestion and absorption	9 (0.17%)	10 (0.11%)	0.042096	ko04974
Ether lipid metabolism	54 (1%)	78 (0.86%)	0.044810	ko00565
Table 5: List of representative genes related to sex determination and differentiation in gonadal transcriptomes of *S. chuatsi*

GeneID	Gene Name	Annotation	Testis RPKM	Ovary RPKM	log2 Ratio (Ovary/Testis)	Pvalue	FDR
Unigene0000094	dmrt1	double sex and mab-3 related gene-1	65.272	0.27	-7.913108168	0	0
Unigene0041160	amh	Anti-Müllerian hormone	163.86	2.75	-5.894474883	0	0
Unigene0016462	cyp19a	cytochrome P450, family 19, subfamily A, polypeptide 1a	0.1008	2.09	4.376211541	1.29676E-29	4.55E-29
Unigene0004710	sox9	Sry-related HMG box-9	26.334	0.32	-6.355520938	0	0
Unigene0017031	gsdf	gonadal soma derived factor 1	2603.8	51.4	-5.661925453	0	0
Unigene0057507	foxl2	winged helix/forkhead transcription factor L2	1.7116	7.95	2.216480075	3.43E-91	2.00E-90
Unigene0007455	dax1	Dosage-sensitive sex reversalAdrenal hypoplasia congenitalcritical region on X chromosome gene 1	4.639	0.47	-3.276017506	4.05E-54	1.84E-53

Figures
The body weight of S. chautsi post-treatment. Data presented are expressed as mean±SD (n=90). * indicate significant difference between control group and MT treatments (P<0.05).

M0, control group; M1, 50 mg/kg MT treatments; M2, 100 mg/kg MT treatments
Figure 2

The body length of S. chausti post-treatment. Data presented are expressed as mean±SD (n=90). * indicate significant difference between control group and MT treatments (P<0.05).

M0, control group; M1, 50 mg/kg MT treatments; M2, 100 mg/kg MT treatments
Figure 3

Effects of MT on survival in S. chausti. Data presented are expressed as mean±SD (n=3).

M0, control group; M1, 50 mg/kg MT treatments; M2, 100 mg/kg MT treatments
Figure 4

Histological analysis of gonads of S. chautsi male in control and MT treated groups. a, Gonads of S. chautsi in control group at 70dph, showing spematogenic cyst (SPC), spermatogonia (SG), spermatocyte(SC); b, Gonads of S. chautsi in 50 mg/kg MT treatment at 70dph, showing spermatogonia (SG), spermatocyte(SC); c, Gonads of S. chautsi in 100 mg/kg MT treatment at 70dph, showing spematids (SM); d, Gonads of S. chautsi in control group at 120dph, showing spermatozoon (SZ); e, Gonads of S. chautsi in 50 mg/kg MT
treatment at 120dph, showing spermatozoon (SZ) in lobular lumen (LL); f, Gonads of S. chautsi in 100 mg/kg MT treatment at 120dph, showing spermatozoon (SZ); g, Gonads of S. chautsi in control group at 180dph, showing spermatozoon (SZ) in lobular lumen (LL); h, Gonads of S. chautsi in 50mg/kg MT treatment at 180dph, showing spermatozoon (SZ); i, Gonads of S. chautsi in 100 mg/kg MT treatment at 180dph, showing spermatozoon (SZ); j, Gonads of S. chautsi in control group at 240dph; k, Gonads of S. chautsi in 50 mg/kg MT treatment at 240dph; l, Gonads of S. chautsi in 100 mg/kg MT treatment at 240dph;

Figure 5

The gonadosomatic index (GSI) of S. chautsi male in control and MT treated groups. Data presented are expressed as mean±SD (n=30). * indicate significant difference between control group and MT treatments (P<0.05). M0, control group; M1, 50 mg/kg MT treatments; M2, 100 mg/kg MT treatments
Effects of 17α-methyltestosterone on serum T levels in *S. chaustsi* male in control and MT treated groups. Data presented are expressed as mean±SD (n=9). * indicate significant difference between control group and MT treatments (P<0.05). M0(♂), control group in males; M1, 50 mg/kg MT treatments; M2, 100 mg/kg MT treatments.
Effects of 17α-methyltestosterone on serum E2 levels in S. chausti male in control and MT treated groups. Data presented are expressed as mean±SD (n=9). * indicate significant difference between control group and MT treatments (P<0.05). M0(♂), control group in males; M1, 50 mg/kg MT treatments; M2, 100 mg/kg MT treatments.
Length distribution of Siniperca_chuatsi-Unigene

Figure 8

Length distribution of S.chuatsi-Unigene
Homologous genes in public databases of S.chuatsi-Unigene
Gene Ontology (GO) classification of different expression genes in gonadal transcriptomes of...
S. chuatsi (The red means the enhanced genes at the ovary and the green means the enhanced genes at the testis)
Effects of 17α-methyltestosterone on expression level of dmrt1, sox9 in the gonads of S. chautsi in control and MT treated groups. mRNA levels in the time-course were qualified by real-time RT-PCR and normalized by 18S rRNA. Data presented are expressed as mean±SD (n=6). Different letters indicate significant difference between different groups (P<0.05).

M0(♀), control group in females; M0(♂), control group in males; M1, 50 mg/kg MT treatments; M2, 100 mg/kg MT treatments
Effects of 17α-methyltestosterone on expression level of foxl2, cyp19a1a in the gonads of S. chautsi in control and MT treated groups. mRNA levels in the time-course were qualified by real-time RT-PCR and normalized by 18S rRNA. Data presented are expressed as mean±SD (n=6). Different letters indicate significant difference between different groups (P<0.05).

M0(♀), control group in females; M0(♂), control group in males; M1, 50 mg/kg MT treatments; M2, 100 mg/kg MT treatments

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

checklist.docx