COUNTING THE EXPONENTS OF SINGLE TRANSFER MATRICES

LUCA GUIDO MOLINARI AND GIUSEPPE LACAGNINA

Abstract. The eigenvalue equation of a band or a block tridiagonal matrix, the tight binding model for a crystal, a molecule, or a particle in a lattice with random potential or hopping amplitudes; these and other problems lead to three-term recursive relations for (multicomponent) amplitudes. Amplitudes n steps apart are linearly related by a transfer matrix, which is the product of n matrices. Its exponents describe the decay lengths of the amplitudes. A formula is obtained for the counting function of the exponents, based on a duality relation and the Argument Principle for the zeros of analytic functions. It involves the corner blocks of the inverse of the associated Hamiltonian matrix. As an illustration, numerical evaluations of the counting function of quasi 1D Anderson model are shown.

1. Introduction

Consider the equation

$$C_n u_{n-1} + A_n u_n + B_n u_{n+1} = E u_n, \quad n \in \mathbb{Z}$$

where A_n, B_n, and C_n are given complex non-singular square matrices of size m, E is a parameter, and the vectors $u_n \in \mathbb{C}^m$ are unknown.

The case $A_n = A_n^\dagger$, $C_n = B_n^\dagger B_{n-1}$ will be referred to as the *Hermitian case*, and is a common occurrence in physics: it describes a chain of m-level atoms with Hamiltonians A_n, and couplings B_n between neighbor atoms. In a lattice model for transport or in a model for a crystal, the atoms may be thought of as sections of the lattice or crystal, each containing m sites. In linear algebra, if off diagonal blocks are triangular, the equation represents the eigenvalue equation for a band matrix of bandwidth $2m + 1$.

At each n the equation provides u_{n+1} in terms of u_n and u_{n-1}, and an iterative evaluation of them can be started from initial conditions u_0, u_1. The process can be formulated via a $2m \times 2m$ transfer matrix:

$$\begin{bmatrix} u_{n+1} \\ u_n \end{bmatrix} = T(E) \begin{bmatrix} u_1 \\ u_0 \end{bmatrix}$$

The n-step transfer matrix $T(E)$ is the product $t_n(E) t_{n-1}(E) \cdots t_1(E)$ of 1-step transfer matrices with the block structure (I_m is the unit matrix of size m)

$$t_k(E) = \begin{bmatrix} B_k^{-1}(E - A_k) & -B_k^{-1}C_k^\dagger \\ I_m & 0 \end{bmatrix}.$$
We are concerned with the $2m$ exponents of the transfer matrix $T(E)$,
\begin{equation}
\xi_a = \frac{1}{n} \log |z_a|,
\end{equation}
and their (normalized) counting function:
\begin{equation}
N(\xi) = \frac{1}{2m} \{ \# \xi_a : \xi_a < \xi \} = \frac{1}{2m} \sum_{a=1}^{2m} \theta(\xi - \xi_a)
\end{equation}

An operative approach to the numerical evaluation of the exponents is found in ref.\cite{17}. In several cases of interest, the exponents have definite large n limits (Lyapunov exponents) and describe the exponential rates of growth or decay in n of the eigenvalues z_a, and of the solutions u_n of the recursive eq.\eqref{1}. They are important, especially the largest or the (positive) smallest, in the study of dynamical systems, stability, localization problems, wave transmission in layered structures \cite{3}. Analytic expressions for the distribution of Lyapunov exponents are known only for few cases, and such cases do not originate from a Hamiltonian, i.e. a recursion equation like \cite{11,13,7,2}. Most of the results where an Hamiltonian is given first, were obtained numerically \cite{6,12,18} or via some expansion \cite{4,1}.

The main result of the paper is the following exact formula, valid for a single transfer matrix of type \eqref{2}:

\begin{proposition}[Counting function]
\end{proposition}
\begin{equation}
N(\xi) = \frac{1}{2} + \left(\frac{2\pi}{n} \right)^{-1} \int_0^{2\pi} d\varphi \frac{1}{2m} \text{tr} \left[z G^B(E,z)_{1n} B_n - \frac{1}{z} G^B(E,z)_{n1} C_1 \right],
\end{equation}
\begin{equation}
G^B(E,z)_{ab} \text{ are the blocks of size } m \text{ of the resolvent } G^B(E,z) = [H^B(E) - E]^{-1}, \text{ and } H^B(z) \text{ is the block tridiagonal matrix of size } mn \text{ with corners}
\end{equation}
\begin{equation}
H^B(z) = \begin{bmatrix}
A_1 & zB_1 & C_1/z \\
C_2/z & \ddots & \ddots \\
& \ddots & \ddots & zB_{n-1} \\
zB_n & C_n/z & A_n
\end{bmatrix}
\end{equation}

The suffix B stands for “balanced”, as this matrix is more tractable in numerical calculations than the Hamiltonian matrix $H(z)$, to be introduced next.

Notes: 1) the integral will be shown to be a contour integral, and cancels all z dependent terms of the Laurent expansion. Therefore one cannot remove the integral in the large n limit. 2) The imaginary part of the integral is zero.

An expression of the counting function where the dependence on z is made “explicit” will be given in the Appendix, prop. \eqref{5.1}.

\section{A spectral duality}

According to the Argument principle of complex analysis, the zeros of an analytic function $f(z)$ contained in the disk $|z| < R$ (inside the domain of analyticity) are enumerated by the following complex integral on a circle of radius R:
\begin{equation}
n(R) = \oint_{|z|=R} \frac{dz}{2\pi i} \frac{f'(z)}{f(z)}
\end{equation}
We are interested in the zeros of \(f(z) = \det[T(E) - z] \), and their distribution \(N(\xi) = (1/2m)n(e^{n\xi}) \). The result for the counting function rests on a remarkable duality that relates \(f(z) \) to the characteristic polynomial of a Hamiltonian matrix \(H(z) \), which naturally arises from the problem (1) restricted to \(n \) steps in a ring topology, but with generalized boundary conditions specified by a complex parameter \(z \):

\[
H(z) = \begin{bmatrix}
A_1 & B_1 & C_1/z \\
C_2 & \ddots & \ddots \\
 & \ddots & B_{n-1} \\
zB_n & C_n & A_n
\end{bmatrix}
\]

The polynomial \(f(z) = \det[T(E) - z] \) has degree \(2m \) in the variable \(z \), and degree \(nm \) in the parameter \(E \). Duality states that the polynomial is proportional to the characteristic polynomial of the matrix \(H(z) \):

Proposition 2.1 (Duality, [13, 14]).

\[
\det[T(E) - z] = (-z)^m \frac{\det[E - H(z)]}{\det[B_1 \cdots B_n]}
\]

It is a duality relation as it exchanges the roles of the parameters \(z \) and \(E \) among matrices: whenever \(z \) is an eigenvalue of the transfer matrix evaluated at \(E \), the value \(E \) is an eigenvalue of the block tridiagonal matrix \(H(z) \).

Proposition 2.2. The matrix \(H^B(z) \) is similar to \(H(z^n) \): \(H(z^n) = S(z)H^B(z)S(z)^{-1} \), where \(S(z) \) is the block diagonal matrix with blocks \(S(z)_{ab} = \delta_{ab}z^aI_m \).
As a consequence the two matrices have the same eigenvalues. Another consequence is the property
\[H^B(z e^{-i2\pi/n}) = S(e^{i2\pi/n}) H^B(z) S(e^{-i2\pi/n}). \]

Before deriving the expression for the counting function, we quote interesting and related analytic consequences of duality. Duality and Jensen’s formula of complex analysis provide an equation for the exponents \(\xi_a \) of the transfer matrix:

Proposition 2.3 (13).

\[\frac{1}{2m} \sum_{a=1}^{2m} (|\xi_a - \xi| + \xi_a + \xi) - \xi \]

\[= \frac{1}{mn} \int_0^{2\pi} \frac{d\varphi}{2\pi} \log |\det[H(e^{i\varphi}) - E]| - \frac{1}{mn} \sum_{k=1}^{n} \log |\det B_k| \]

Corollary 2.4. For \(\xi = 0 \), the formula gives the sum of the positive exponents:

\[\frac{1}{m} \sum_{a=1}^{2m} \xi_a \theta(\xi_a) \]

\[= \frac{1}{mn} \int_0^{2\pi} \frac{d\varphi}{2\pi} \log |\det[H(e^{i\varphi}) - E]| - \frac{1}{mn} \sum_{k=1}^{n} \log |\det B_k| \]

Remark 2.5. The sum of all the exponents is \(\frac{1}{n} \log |\det T(E)|. \) Then:

\[\sum_{a=1}^{2m} \xi_a = \frac{1}{n} \sum_{k=1}^{n} (\log |\det C_k| - \log |\det B_k|) \]

Remark 2.6. If the transfer matrix is symplectic, i.e., there is a matrix \(\Sigma \) such that \(T(E)^\dagger \Sigma T(E) = \Sigma \), then the exponents come in opposite pairs.

Proof. If \(z \) is an eigenvalue of \(T(E) \) with eigenvector \(\theta \), then \(\Sigma \theta \) is an eigenvector of \(T(E)^\dagger \) with eigenvalue \(1/z \). This means that \(1/z \) is eigenvalue of \(T(E) \). The corresponding exponents are either both zero or opposite real numbers. \(\square \)

Eq. (12) is exact and applies to any single transfer matrix. However it is reminiscent of the formula for the sum of the Lyapunov exponents of an ensemble of random transfer matrices, obtained by Herbert, Jones and Thouless for \(2 \times 2 \) matrices, and by Kunz, Souillard, Lacroix [11] for larger ones:

\[\frac{1}{m} \sum_{a} \lambda_a(E) = \int dE' \rho(E') \log |E - E'| + \text{const}. \]

This formula was obtained for the Hermitian case, but holds also in non Hermitian tridiagonal problems [5, 9]. In eq. (12) the angular average on \(\varphi \) replaces the ensemble average, that produces the ensemble density of eigenvalues. It seems that an ergodic property is at play for such systems.

3. The Counting Function

The expression (14) for the counting function can be obtained straightforwardly from eq. (11). Here we give a direct proof based on the famous formula eq. (8), the
duality relation, and the simple formula
\[\frac{d}{dz} \det M(z) = \det M(z) \operatorname{tr} \left[M(z)^{-1} \frac{d}{dz} M(z) \right]. \]

Proof. Let \(G(E, z) = [H(z) - E]^{-1}, f(z) = \det[T(E) - z], \) and use duality:
\[f'(z) = \frac{1}{f(z)} \frac{d}{dz} \left[z^m \det[H(z) - E] \right] = \frac{m}{z} + \operatorname{tr} \left[G(E, z) \frac{d}{dz} H(z) \right] \]
\[= \frac{m}{z} + \operatorname{tr} \left[G(E, z)_{1n} B_n - \frac{1}{z^2} G(E, z)_{n1} C_1 \right] \]

The complex integral of the first term is \(m. \) Inclusion of the normalization factor gives
\[\mathcal{N}(\xi) = \frac{1}{2} + \frac{1}{2m} \int_{|z|=e^{\xi+i\theta}} \frac{dz}{2\pi i z} \operatorname{tr} \left[z G(E, z)_{1n} B_n - \frac{1}{z} G(E, z)_{n1} C_1 \right] \]
\[= \frac{1}{2} + \frac{1}{2m} \int_0^{2\pi} \frac{d\theta}{2\pi} \operatorname{tr} \left[z G(E, z)_{1n} B_n - \frac{1}{z} G(E, z)_{n1} C_1 \right] \]
where \(z = e^{\xi+i\theta}. \) Next we set \(\theta = n\varphi, \) then \(z = e^{n(\xi+i\varphi)}. \) We introduce the resolvent of \(H^B(z) \) and note that \(G(E, w^n)_{ab} = w^{a-b} G^B(E, w)_{ab} \) by virtue of the similarity; in particular it is:
\[w^n G(E, w^n)_{1n} = w G^B(E, w)_{1n}, \quad \frac{1}{w^n} G(E, w^n)_{n1} = \frac{1}{w} G^B(E, w)_{n1} \]

The final formula is obtained (after renaming \(w \) as \(z \)). Since the counting function is real, only the real part of the integral is nonzero, and:
\[0 = \int_0^{2\pi} \frac{d\varphi}{2\pi} \Im \operatorname{tr} \left[z G^B(E, z)_{1n} B_n - \frac{1}{z} G^B(E, z)_{n1} C_1 \right]. \]

\[\square \]

Remark 3.1. While the Argument Principle requires the circle radius to be \(e^n\xi, \) the use of the balanced martix scales the radius to \(e^\xi \) and makes the formula for the counting function useful for numerical studies.

In numerical calculations the angular integral is replaced by a sampling on different angles. As the radius \(e^{\xi} \) crosses an eigenvalue \(e^{\xi_\alpha+i\varphi_\alpha} \) the counting function jumps to a new plateau after a strong oscillations due to close sampling points:
\[\frac{1}{e^{\xi+i\varphi} - e^{\xi_\alpha+i\varphi_\alpha}} \approx \frac{e^{\xi_\alpha+i\varphi_\alpha}}{(\xi - \xi_\alpha)^2 + (\varphi - \varphi_\alpha)^2} [(\xi - \xi_\alpha) - i(\varphi - \varphi_\alpha)] \]

The formula requires the inversion of the matrix \(H^B, \) and the explicit dependence on the interesting parameter \(z \) is lost. In the Appendix we show that this dependence can be made more explicit by means of the resolvent equation for the matrix with corners removed.
4. Anderson Model

As an illustration of the formula, consider the Anderson model for the motion of a particle in a cubic lattice with the shape of a bar, with a random potential. The particle may hop with equal amplitudes from a site \(\vec{k} \) to neighboring ones \(\vec{k} + \vec{e} \), and is subject to a site-potential \(\epsilon(\vec{k}) \) (a random number uniformly distributed in the interval \([-w/2, w/2])\):

\[
\sum_{\vec{e}} \psi(\vec{k} + \vec{e}) + \epsilon(\vec{k}) \psi(\vec{k}) = E \psi(\vec{k})
\]

If the bar is sliced perpendicularly to the long direction (\(k = k_z \)), each slice is a square 2D lattice, with \(m \) sites. Accordingly the Hamiltonian gains a block structure, with diagonal blocks \(A_k \) describing slices, and blocks \(B_k = C_k = I_m \) describing hopping among neighboring slices. The Schrödinger equation is now written as in (1): \(u_{k+1} + u_{k-1} + A_k u_k = E u_k \), where the \(m \) components of \(u_k \) are the amplitudes \(\psi(\vec{k}) \) in the slice \(k \).

Because of disorder, in the large \(n \) limit, eigenstates are exponentially localized (Anderson localization) on a distance given by the inverse of the smallest positive exponent. In the large \(n \) limit all the exponents \(\pm \xi_a(E) \) exist, and are independent of the realization of the disorder.

The two figures show the counting function for a single realization of disorder, and a sample of length 80 (cross section 2 \(\times \) 2, or 3 \(\times \) 3). Note the decrease of distances among exponents.

The subject on Anderson localization is vast. A discussion of the spectral properties of Anderson matrices with non Hermitian boundary conditions (the \(z \) and \(1/z \) dependence) is presented in [15]. The one dimensional case was studied by...
Goldsheid and Khoruzhenko (Hermitian case) \[8\] and several others, and by us in the non Hermitian case \[16\].

5. Appendix

Let h be the matrix $H(z^n)$ with corners removed (then it is z-independent):

$$h = \begin{bmatrix}
A_1 & B_1 \\
& \\
C_2 & \ddots & \ddots \\
& \ddots & \ddots & B_{n-1} \\
C_n & A_n
\end{bmatrix}$$

and let $g(E) = (h - E)^{-1}$ be the resovent matrix, with blocks g_{ab}. Then:

Proposition 5.1.

$$\text{tr} \left[z G^B(E, z)_{11} B_n - \frac{1}{z} G^B(E, z)_{n1} C_1 \right]$$

$$= \text{tr} \left[-z^n B_n g_{1n} - I_m \frac{1}{z} C_1 g_{nn} \frac{1}{z} C_1 g_{n1} + I_m \right]^{-1}$$

Proof. $\Delta(z^n) = H(z^n) - h$ is a matrix whose non zero blocks are $\Delta(z^n)_{1n} = z^{-n} C_1$ and $\Delta(z^n)_{n1} = z^n B_n$. The matrix equation for the resolvent is

$$G(E, z^n) = g(E) - g(E) \Delta(z^n) G(E, z^n)$$

The four equations for the blocks $a, b = 1, n$ can be put in matrix form

$$\begin{bmatrix}
G_{1n} & G_{11} \\
G_{nn} & G_{n1}
\end{bmatrix} = \begin{bmatrix}
g_{1n} & g_{11} \\
g_{nn} & g_{n1}
\end{bmatrix} - \begin{bmatrix}
g_{1n} & g_{11} \\
g_{nn} & g_{n1}
\end{bmatrix} \begin{bmatrix}
z^n B_n & 0 \\
0 & C_1/z^n
\end{bmatrix} \begin{bmatrix}
G_{1n} & G_{11} \\
G_{nn} & G_{n1}
\end{bmatrix}$$

The blocks of $G(E, z^n)$ are expressed in terms of the blocks of $G^B(E, z)$,

$$\begin{bmatrix}
G_{1n} & G_{11} \\
G_{nn} & G_{n1}
\end{bmatrix} = \begin{bmatrix}
1/z^n & 0 \\
0 & z^n
\end{bmatrix} \begin{bmatrix}
z G^B_{1n}/z^n & z^n G^B_{11}/z^n \\
G^B_{nn}/z^n & G^B_{n1}/z^n
\end{bmatrix}$$

Then

$$\begin{bmatrix}
z G^B_{1n}/z^n & z^n G^B_{11}/z^n \\
G^B_{nn}/z^n & G^B_{n1}/z^n
\end{bmatrix} = \begin{bmatrix}
z^n g_{1n} & z^n g_{11} \\
g_{nn}/z^n & g_{n1}/z^n
\end{bmatrix} - \begin{bmatrix}
z^n g_{1n} & z^n g_{11} \\
g_{nn}/z^n & g_{n1}/z^n
\end{bmatrix} \begin{bmatrix}
B_n & 0 \\
0 & C_1
\end{bmatrix} \begin{bmatrix}
z G^B_{1n}/z^n & z^n G^B_{11}/z^n \\
G^B_{nn}/z^n & G^B_{n1}/z^n
\end{bmatrix}$$

with solution

$$\begin{bmatrix}
z G^B_{1n}/z^n & z^n G^B_{11}/z^n \\
G^B_{nn}/z^n & G^B_{n1}/z^n
\end{bmatrix} = \left(\begin{bmatrix}
g_{1n} & g_{11} \\
g_{nn} & g_{n1}
\end{bmatrix} \begin{bmatrix}
1/z^n & 0 \\
0 & z^n
\end{bmatrix} + \begin{bmatrix}
B_n & 0 \\
0 & C_1
\end{bmatrix} \right)^{-1}$$

Finally, left multiplication by the diagonal matrix with blocks B_n and $-C_1$ gives

$$\begin{bmatrix}
z B_n G^B_{1n}/z^n & z^n B_n G^B_{11}/z^n \\
-C_1 G^B_{nn}/z^n & -C_1 G^B_{n1}/z^n
\end{bmatrix} = \left(\begin{bmatrix}
g_{1n} & g_{11} \\
g_{nn} & g_{n1}
\end{bmatrix}^{-1} \begin{bmatrix}
B_n^{-1}/z^n & 0 \\
0 & -z^n C_1^{-1}
\end{bmatrix} + \begin{bmatrix}
I_m & 0 \\
0 & -I_m
\end{bmatrix} \right)^{-1}$$
The r.h.s. is simplified by means of the following identity for invertible matrices A and B: $(A^{-1} + B^{-1})^{-1} = A - A(A + B)^{-1}A$,

$$
= \begin{bmatrix}
I_m & 0 \\
0 & -I_m
\end{bmatrix} - \begin{bmatrix}
I_m & 0 \\
0 & -I_m
\end{bmatrix} \\
\times \left(\begin{bmatrix}
z^n B_n & 0 \\
0 & -\frac{1}{z} C_1
\end{bmatrix} \begin{bmatrix}
g_{1n} & g_{11} \\
g_{nn} & g_{n1}
\end{bmatrix} + \begin{bmatrix}
I_m & 0 \\
0 & -I_m
\end{bmatrix} \right)^{-1} \begin{bmatrix}
I_m & 0 \\
0 & -I_m
\end{bmatrix} \\
$$

The trace is then taken:

$$
(18) \quad \text{tr} \left[z B_n G_{1n}^B - \frac{1}{z} C_1 G_{11}^B \right] = \text{tr} \left[-z^n B_n g_{1n} - I_m - \frac{1}{z} C_1 g_{1n} + \frac{1}{z^n} C_1 g_{n1} + I_m \right]^{-1}
$$

As a further step one could perform the the block inversion of the matrix by Schur’s formula. Since the trace is then taken, only the diagonal blocks are needed:

$$
= -\text{tr} \left[z^n B_n g_{1n} + I_m + B_n g_{11} \left(\frac{1}{z^n} C_1 g_{1n} + I_m \right)^{-1} C_1 g_{n1} \right]^{-1} \\
+ \text{tr} \left[\frac{1}{z^n} C_1 g_{1n} + I_m + C_1 g_{nn} \left(z^n B_n g_{1n} + I_m \right)^{-1} B_n g_{11} \right]^{-1}
$$

As a further step one could perform the the block inversion of the matrix by Schur’s formula. Since the trace is then taken, only the diagonal blocks are needed:

$$
\square
$$

This final expression allows in principle the evaluation of the counting function with a single big matrix inversion for obtaining the four corner matrix blocks g_{ab} ($a, b = 1, n$). Then, for each ξ value, the inversion of a square $m \times m$ matrix is required.

References

[1] H. Schulz-Baldes, *Perturbation theory for Lyapunov exponents of an Anderson model on a strip*, Geom. and Funct. Anal. 14 (2004) 1089-1117.

[2] C. W. J. Beenakker, *Random matrix theory of quantum transport*, Rev. Mod. Phys. 69 (1997) 731-808.

[3] A. Crisanti, G. Paladin and A. Vulpiani, *Products of Random Matrices in Statistical Physics*, Springer, Berlin (1993).

[4] B. Derrida, K. Mecheri and J. L. Pichard, *Lyapunov exponents of products of random matrices: weak disorder expansion. Application to localization*, J. Physique 48 (1987) 733-740.

[5] B. Derrida, J. L. Jacobsen and R. Zeitak, *Lyapunov exponent and density of states on a one-dimensional non-Hermitian Schrödinger equation*, J. Stat. Phys. 98 (2000) 31-55.

[6] T. Kottos, A. Politi, F.M. Izrailev, and S. Ruffo, *Scaling properties of Lyapunov spectra for the band random matrix model*, Phys. Rev. E 53 (1996) R5553.

[7] A. Gamba and I. V. Kolokolov, *The Lyapunov spectrum of a continuous product of random matrices*, J. Stat. Phys. 85 (1996) 489.

[8] I. Ya. Goldsheid and B. Khoruzhenko, *Eigenvalue curves of asymmetric tridiagonal random matrices*, Electronic Journal of Probability 5 (2000) 1–28.

[9] I. Ya. Goldsheid and B. Khoruzhenko, *Thouless formula for random non-Hermitian Jacobi matrices*, Isr. J. of Math. 148 (2005) 331–46.

[10] M. Isopi and C. M. Newman, *The triangle law for Lyapunov exponents of large random matrices*, Comm. Math. Phys. 143 (1992) 591-598.

[11] J. Lacroix, *Computations of the sum of positive Lyapunov exponents for the Lloyd model in a strip*, in Lyapunov Exponents, Lect. Notes in Mathematics 1186, Springer-Verlag (1984).

[12] P. Markos and B. Kramer, *Statistical properties of Lyapunov exponents and of quantum conductance of random systems in the regime of hopping transport*, Ann. Physik 2 (1993) 339-360.
[13] L. Molinari, *Spectral duality and distribution of exponents for transfer matrices of block tridiagonal Hamiltonians*, J. Phys. A: Math. Gen. **36** (2003) 4081.

[14] L. G. Molinari, *Determinants of block-tridiagonal matrices*, Linear Algebra and its Applications **429** (2008) 2221-2226.

[15] L. G. Molinari, *Non Hermitian spectra and Anderson Localization*, J. Phys. A: Math. Theor. **42** (2009) 265204 (15 pp).

[16] L. G. Molinari and G. Lacagnina, *Disk-annulus transition and localization in random non-Hermitian tridiagonal matrices*, J. Phys. A: Math. Theor. **42** (2009) 395204 (9 pp).

[17] K. Slevin, Y. Asada and L. I. Deych, *Fluctuations of the Lyapunov exponent in two-dimensional disordered systems*, Phys. Rev. B **70** (2004) 054201 (7 pp).

[18] Y. Y. Zhang and S. J. Xiong, *Statistics of Lyapunov exponents of quasi one dimensional disordered systems*, Phys. Rev. B **72** (2005) 132202 (4 pp)