Supplementary information

TWEAK-Fn14 axis induces calcium-associated autophagy and cell death to control mycobacterial survival in macrophages

Yi-Ming Chen1-4, Po-Yu Liu2,3,5, Kuo-Tung Tang4, Hung-Jen Liu2,3,6,7, Tsai-Ling Liao1-3*

1Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
2Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
3Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
4Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
5Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
6Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
7The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan

Corresponding author and address reprint requests:

Dr. Tsai-Ling Liao, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan

Address: No.1650, Sec.4, Taiwan Boulevard, Xitun Dist., Taichung City 40705, Taiwan
Tel.: 886-4-23592525, extension 4020; Fax: 886-4-23592705
Email: tlliao@vghte.gov.tw
Supplementary Materials

Reagent or Resource	Source	Identifier (Cat No.)	
Antibodies			
Mouse anti-β-actin antibodies	Santa Cruz	sc-47778	
Mouse anti-IP3RII antibody	Santa Cruz	sc-398434	
Mouse anti-CHOP antibody	Cell Signaling Technology	#2895	
Mouse anti-ORA11 antibody	Santa Cruz	sc-377281	
Mouse anti-STIM1 antibody	Santa Cruz	sc-166840	
Mouse anti-TRPM7 antibody	Santa Cruz	sc-271099	
Rabbit anti-AMPK antibody	Cell Signaling Technology	#5832	
Rabbit anti-pAMPK(T172) antibody	Cell Signaling Technology	#2535	
Rabbit anti-Atg5 antibody	Cell Signaling Technology	#12994	
Rabbit anti-Beclin-1 antibody	Cell Signaling Technology	#3738	
Rabbit anti-BiP antibody	Cell Signaling Technology	#3177	
Rabbit anti-cleaved caspase-3 antibody	Cell Signaling Technology	#9661	
Rabbit anti-cleaved caspase-8 antibody	Cell Signaling Technology	#9496	
Rabbit anti-Fn14 antibody	Cell Signaling Technology	#4403	
Rabbit anti-LC3B antibody	Cell Signaling Technology	#2775	
Rabbit anti-pCaMKK2 (S511) antibody	Cell Signaling Technology	#12818	
Rabbit anti-pMLKL (S358) antibody	Cell Signaling Technology	#91689	
Rabbit anti-pRIPK1 (S166) antibody	Cell Signaling Technology	#65746	
Rabbit anti-pRIPK3 (S227) antibody	Cell Signaling Technology	#13526	
Rabbit anti-pULK1(S555) antibody	Cell Signaling Technology	#5869	
Antibody/Molecule	Technology	Catalog Number	
-------------------	------------	---------------	
Rabbit anti-ULK1 antibody	Cell Signaling Technology	#6439	
Rabbit anti-p62 antibody	Cell Signaling Technology	#8025	
Rabbit anti-TWEAK antibody	Abcam	ab37170	
Alexa Fluor 488 Goat anti-Rabbit IgG	Thermo Fisher Scientific	A11008	
Anti-mouse IgG, HRP-linked antibody	Cell Signaling Technology	#7076	
Anti-rabbit IgG, HRP-linked antibody	Cell Signaling Technology	#7074	
Chemicals, Peptides, and Recombinant Proteins			
3-methyladenine (3-MA)	Sigma-Aldrich	M9281	
A23187 calcium ionophore	Sigma-Aldrich	C7522	
BAPTA-AM	Sigma-Aldrich	A1076	
bepridil hydrochloride	Sigma-Aldrich	B5016	
BTP2	Sigma-Aldrich	Y4895	
dihydrorhodamine 123	Thermo Fisher Scientific	D23806	
dimethyl sulfoxide	Sigma-Aldrich	D8418	
diphenyleneiodonium	Sigma-Aldrich	D2926	
LysoTracker Green	Thermo Fisher Scientific	L7526	
Fluo 4-AM	Thermo Fisher Scientific	F14217	
JC-1	Abcam	ab113850	
Mito-ID	Enzo Life Sciences	ENZ-51018	
MitoSOX Red	Thermo Fisher Scientific	M36008	
MitoTEMPO	Sigma-Aldrich	SML0737	
phorbol myristate acetate	Sigma-Aldrich	P1585	
Recombinant human TWEAK	PeproTech	310-06	
Texas Red-X	Thermo Fisher Scientific	T20175	
Trizol reagent	Thermo Fisher	15596018	
	Scientific	Sigma-Aldrich	V116
-----------------------------	---------------------	---------------------	--------
Z-VAD-FMK			
Cell lines			
THP-1 Difluo™ hLC3 cells	InvivoGen		THPDF-HLC3
Others			
Lipofectamine RNAiMAX	Thermo Fisher		
Transfection Reagent	Scientific		
Fn14 TaqMan Gene Expression Assays	Thermo Fisher		Hs00171993_m1
Human TWEAK Instant ELISA kit	Thermo Fisher		BMS2006INST
On TARGETplus SMARTpool siFn14	Dharmacoa		L-010661-00-0005
Apoptosis/ Necrosis Assay kit	Abcam		ab176749
CellTiter-Glo Luminescent Cell Viability Assay	Promega		G7570
Supplementary Figure S1 (A to D) Fn14 expression is increased after (A,B) BCG infection or (C,D) heat-killed *M. tuberculosis* (HKMT) treatment in a dose- and time- dependent manner. (E) The cell viability of THP-1 cell-derived macrophages with H37Rv or BCG infection at a MOI of 10. (F) The time kinetic of H37Rv proliferation in Fn14 knockdown cells. (G) The cell viability of vector-transfected or Fn14 over-expressing cells with or without H37Rv infection. Immunoblots were quantitated by densitometric analysis using ImageJ software and normalized to β-actin. Numbers below each lane are relative fold of the control level of a specific protein in mock-treated cells. All experiments were performed in triplicate and data are presented as the mean±SD. * P<0.05, ** P<0.01, *** P<0.005. NS, no significant.
Supplementary Figure S2 THP-1 cell-derived macrophages were transfected with pCMV-Fn14 to overexpress Fn14. After 24 h, (A) the levels of Fn14, LC3, Beclin-1, and β-actin were detected by immunoblotting. The bafilomycin A1 (BafA1) treatment was used as positive control. Immunoblots were quantitated by densitometric analysis using ImageJ software and normalized to β-actin. Numbers below each lane are relative fold of the control level of a specific protein in mock-treated cells. The relative levels of (B) Fn14, (C) LC3-II, and (D) Beclin-1 were calculated, respectively. All experiments were performed in triplicate and data are presented as the mean±SD. ** P<0.01, *** P<0.005. NS, no significant.
Supplementary Figure S3 THP-1 cells stably expressing RFP-GFP-LC3 fusion protein were transfected with Fn14 siRNA to knockdown Fn14. After 24 h, cells were infected with *M. bovis* BCG at a MOI of 10 for 24 h. The RFP-GFP-LC3 puncta were detected by confocal microscopy (upper panel) and quantified (lower panel). RPMI medium were used as solvent control (SC). Bafilomycin A1 (BafA1, 100nM) treatment were used as positive control. All experiments were performed in triplicate and data are presented as the mean±SD.**P<0.01, ***P<0.005.
Supplementary Figure S4 THP-1 cell-derived macrophages were transfected with siFn14 or treated with anti-TWEAK monoclonal antibody for 6h. The cells were stained with Fluo-4 AM (5 µM, 1h at 37°C), then infected with *M. tuberculosis* H37Rv at MOI of 1 (20 min). The calcium mobilization in Fluo-4 AM loading cells was detected and quantified using flow cytometry. (A) H37Rv infection induced increased levels of cytosolic calcium in THP-1-derived macrophages. This effect was diminished when (B) intracellular Fn14 was knocked down or (C) in the presence of TWEAK blocker.
Supplementary File 1. Densitometric analysis of immunoblot results presented in this study. Immunoblots were quantitated by densitometric analysis using ImageJ software and normalized to β-actin. Numbers below each lane are relative fold of the control level of a specific protein in mock-treated cells. All results were obtained in three independent experiments, and the data is presented as the mean±SD. *$P<0.05$, ** $P<0.01$, *** $P<0.005$.
Fig. 2A

- **Fn14**
 - siFn14
 - TWEAK
 - siCtrl
 - siCtrl

- **pAMPK**
 - (T172)
 - AMPK

- **pULK1**
 - (S555)
 - ULK1

- **LC3-I**
 - LC3-II

- **Beclin-1**

- **Atg5**

- **β-actin**

The images show bar graphs comparing the fold changes of various protein levels under different conditions. The graphs indicate significant changes in protein expression levels, with specific statistical significances denoted by asterisks.

- **Fn14/β-actin (fold)**
 - siFn14
 - TWEAK
 - siCtrl
 - siCtrl

- **pAMPK/AMPK (fold)**
 - LC3-II/β-actin (fold)

- **Beclin-1**

- **Atg5**

The bar graphs visually represent the fold changes in expression levels, with significant differences highlighted by asterisks.
Fig. 2F

![Diagram showing protein expression levels for Fn14, pAMPK, pULK1, LC3-I, LC3-II, Beclin-1, and β-actin after treatment with MOCK, SC, siCtrl, and siFn14 in H37Rv.](image-url)
Fig. 3C

	Mock	SC	NAC	DPI	MT
pAMPK (T172)	1.00	2.80	1.04	1.09	1.07
AMPK	1.00	2.80	1.04	1.09	1.07
pULK1 (S555)	1.00	2.50	1.32	1.42	1.23
ULK1	1.00	2.61	1.03	0.99	0.90
LC3-I	1.00	2.73	1.01	1.05	1.04
LC3-II	1.00	2.73	1.01	1.05	1.04
Becnin-1	1.00	2.61	1.03	0.99	0.90
Atg5	1.00	2.56	0.98	0.95	0.90
β-actin	1.00	0.98	0.97	1.02	1.03

Histograms

- **pAMPK/AMPK (fold)**
- **pULK1/ULK1 (fold)**
- **LC3-II/β-actin (fold)**
- **Becnin-1/β-actin (fold)**
- **Atg5/β-actin (fold)**
Fig. 4D

Protein	Condition	Mock	SC	siCtrl	siFn14
Fn14	TWEAK				
STIM1	TWEAK				
ORAI1	TWEAK				
IP3R	TWEAK				
TRPM7	TWEAK				
pCaMKK2	TWEAK				
LC3-I	TWEAK				
LC3-II	TWEAK				
β-actin					

* Significant difference
** Highly significant difference
ns No significant difference
Fig. 4E

	TWEAK					
	Mock	SC	DPI	MT	BTP2	
	1.00	2.77	1.05	1.01	1.29	
STIM1						
ORAI1	1.00	2.84	1.08	1.02	1.03	
		1.00	2.62	1.07	1.02	1.18
pCaMKK2	1.00	2.75	1.13	1.05	1.32	
		1.00	2.47	0.98	0.99	1.04
LC3-I	1.00	2.69	0.99	0.91	1.11	
LC3-II	1.00	2.59	1.17	1.09	1.25	
Beclin-1	1.00	2.59	1.17	1.09	1.25	
	1.00	0.98	0.97	1.02	1.03	
Atg5	1.00	2.59	1.17	1.09	1.25	
β-actin	1.00	0.98	0.97	1.02	1.03	

	75 kDa

Notes:
- **STIM1**
 - ** Mock: 1.00, SC: 2.77, DPI: 1.05, MT: 1.01, BTP2: 1.29
- **ORA11**
 - ** Mock: 1.00, SC: 2.84, DPI: 1.08, MT: 1.02, BTP2: 1.03
- **pCaMKK2**
 - ** Mock: 1.00, SC: 2.62, DPI: 1.07, MT: 1.02, BTP2: 1.18
- **pAMPK (T172)**
 - ** Mock: 1.00, SC: 2.75, DPI: 1.13, MT: 1.05, BTP2: 1.32
- **LC3-I**
 - ** Mock: 1.00, SC: 2.47, DPI: 0.98, MT: 0.99, BTP2: 1.04
- **LC3-II**
 - ** Mock: 1.00, SC: 2.69, DPI: 0.99, MT: 0.91, BTP2: 1.11
- **Beclin-1**
 - ** Mock: 1.00, SC: 2.59, DPI: 1.17, MT: 1.09, BTP2: 1.25
- **Atg5**
 - ** Mock: 1.00, SC: 2.59, DPI: 1.17, MT: 1.09, BTP2: 1.25

Bar Graphs:
- **STIM1**
- **ORA11**
- **pCaMKK2**
- **pAMPK**
- **LC3-II**
- **Beclin-1**
- **Atg5**
| | Mock | SC | siCtrl | siFn14 | anti-TWEAK | IgG | kDa |
|--------|------|------|--------|--------|------------|------|-----|
| Fn14 | 1.00 | 3.23 | 3.38 | 1.11 | 1.10 | 2.85 | 17 |
| CHOP | 1.00 | 3.08 | 3.11 | 1.28 | 1.16 | 3.09 | 25 |
| BiP | 1.00 | 3.49 | 3.42 | 1.18 | 1.24 | 2.81 | 75 |
| STIM1 | 1.00 | 3.17 | 3.23 | 1.06 | 1.14 | 2.89 | 100 |
| ORAI1 | 1.00 | 3.42 | 3.39 | 1.42 | 1.40 | 2.61 | 35 |
| pCaMKK2| 1.00 | 3.09 | 3.04 | 1.02 | 1.04 | 2.70 | 75 |
| pAMPK1 | 1.00 | 3.13 | 3.01 | 1.03 | 0.95 | 2.94 | 63 |
| LC3-I | 1.00 | 3.33 | 3.42 | 1.09 | 1.12 | 3.04 | 17 |
| LC3-II | 1.00 | 1.01 | 0.96 | 1.04 | 0.97 | 1.01 | 11 |
| β-actin| 1.00 | 0.97 | 0.98 | 0.96 | 1.01 | 0.97 | 48 |

Fig. 5B
Fig. 6A

Table 1.

	Mock	24	48	72(h)
Fn14	1.00	2.24	2.89	3.06
pRIPK1	1.00	2.11	2.89	2.76
Casp-8	1.00	1.22	1.92	1.90
cleaved Casp-3	1.00	2.44	2.50	2.48
β-actin	1.00	0.97	1.03	1.05

Figure Legends.

- **Fn14**
- **pRIPK1**
- **Casp-8**
- **cleaved Casp-3**
Fig. 6B

![Graph showing changes in Fn14, pRIPK1, Casp-8, and cleaved Casp-3 expression levels with BCG treatment.](image)
Fig. 6G