SUPPLEMENTARY INFORMATION FILE ACCOMPANYING:

Interlinker hydrogen bonds govern CO₂ adsorption in a series of flexible 2D diaclyhydrazone/isophthalate-based MOFs: influence of metal center, linker substituent and activation temperature

Kornel Roztocki,[a] Monika Szufla,[a] Volodymyr Bon,[b] Irena Senkovska,[b] Stefan Kaskel,[b] Dariusz Matoga*[a]

[a]Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
[b]Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany

Table of Contents

Table of Contents .. 1
Experimental Procedures ... 31
References .. 33

Figure S1 Experimental and calculated PXRD patterns of the as-synthesized materials 1-4. 3
Figure S2 Thermal stability of the as-synthesized [{[M₂(Xiso)₂(tdih)₂]· guests}₄ (1-4). TGA and dTG curves (left); temperature-dependent PXRD patterns (right) ... 4
Figure S3 Comparison of X-ray crystal structures of [{[Cd₂(iso)₂(tdih)₂]· guests}₄ (3 and 3b) 5
Figure S4 X-ray crystal structures of MOFs 1-4: coordination spheres of [{M₂(Xiso)₂(tdih)₂} clusters (above) and conformation of tdih linker (below). Cd-yellow, Zn-green, N-blue, O-red, C-gray. H atoms were omitted for clarity .. 6
Figure S5 X-ray crystal structures of MOFs 1-4: intra and interlayer π···π interactions 6
Figure S6 Layers arrangement for zinc-based MOFs 1, 2, 2MeOH (left) and cadmium-based MOFs 3, 3b, 4 (right) ... 7
Figure S7 Variable temperature PXRD patterns for the as-synthesized compound 1 7
Figure S8 Variable temperature PXRD patterns for the as-synthesized compound 2 8
Figure S9 Variable temperature PXRD patterns for the as-synthesized compound 3 8
Figure S10 Variable temperature PXRD patterns for the as-synthesized compound 4 9
Figure S11 Water stability test (soaking for 72 h in water): ex-situ IR spectra (left) and PXRD (right) of the as-synthesized, water soaked, and activated (200 °C, 10 mbar) MOFs 1-2. 10
Figure S12 Water stability test (soaking for 72 h in water): ex-situ IR spectra (left) and PXRD (right) of the as-synthesized, water soaked, and activated (200 °C, 10 mbar) MOFs 3-4. 11
Figure S13 General illustration of hydrogen bonding system between M₂(COO)₂ SBU and acylhydrazone groups from two adjacent layers as well as indication of potential hydrogen bond acceptors and donors (based on example structure of 2MeOH) ... 12
Figure S14 TG of materials 1-4 conditioned in water for 72 hours ... 13
Figure S15 Water stability test (soaking for 6 days in water): IR spectra (left) and PXRD (right) of the as-synthesized and water soaked CID-1 .. 14
Figure S16 TGA curves for materials 1-4 conditioned in MeOH at room temperature for 1-2 days 14
Figure S17 (Top) IR spectra of MOFs 1-4 before and after soaking in MeOH. (Below) IR spectra for 1 after various treatments

Figure S18 Comparison of PXRD patterns between 1as and 1as soaked in MeOH for several days

Figure S19 CO$_2$ (195 K) and N$_2$ (77 K) isotherms for material 1 soaked in MeOH and activated at 100 °C

Figure S20 The CO$_2$ (195 K) isotherm for material 1 soaked in MeOH and activated at 200 °C

Figure S21 CO$_2$ (195 K) and N$_2$ (77 K) isotherms for material 3 soaked in MeOH and activated at different temperatures

Figure S22 PXRD patterns for 2 after various manipulations indicated on graphs. Activation was made in low pressure (~ 10$^{-3}$ Pa)

Figure S23 PXRD patterns for 4 after various manipulations indicated on graphs. Activation was carried out at low pressure (~ 10$^{-3}$ Pa)

Figure S24 Comparison of PXRD patterns for 2MeOH and 2MeOH activated in different temperatures (the patterns for activated materials were collected in inert atmosphere at RT). Small discrepancies between calculated and found PXRD pattern for 2MeOH calcd. and 2MeOH (100 °C) arise from different measurement temperature: 100 K and 298 K, respectively

Figure S25 IR spectra for 2MeOH corresponding to PXRD patterns from Figure S24: as-synthesized (black); activated at 100 °C (red), 150 °C (blue), 200 °C (green)

Figure S26 Comparison of PXRD patterns for 4MeOH and 4MeOH activated in different temperatures (the patterns for activated materials were collected in inert atmosphere at RT). * indicates an artefact from the holder of a heating stage attachment

Figure S27 IR spectra for 4MeOH corresponding to PXRD patterns from Figure S26: as-synthesized (black); activated at 100 °C (red), 150 °C (blue), 200 °C (green)

Figure S28 Crystal structure of 2MeOH and 4; hydrogen bond network (magenta)

Figure S29 Crystal structure of 2MeOH and 4; hydrogen bond network (magenta)

Figure S30 The NH$_2$iso2 linker in 2MeOH engaged in hydrogen bonds with adjacent layers

Figure S31 Crystals of compounds 1-4 and 2MeOH

Figure S32 Differential scanning calorimetry (DSC) curves for 2MeOH (left) and 4MeOH (right)

Figure S33 1H NMR spectrum of terephthalaldehyde di-isonicotinoylhydrazone (tdih)

Figure S34 IR spectrum of terephthalaldehyde di-isonicotinoylhydrazone (tdih)

Table S1 Crystallographic data: comparison of bond lengths in coordination spheres for 1-4

Table S2 Intra and interlayer π···π interactions for 1-4

Table S3 Selected hydrogen π···π interactions for 1-4

Table S4 Comparison of selected IR absorption bands recorded for the as-synthesized, water soaked, and activated (200 °C, 50 mbar) materials 1-4

Table S5 Synthesis of MOFs 1-4: initial amounts and yields

Table S6 Crystallographic data for compounds 1-4, 2MeOH and 3b
Figure S1 Experimental and calculated PXRD patterns of the as-synthesized materials 1-4.
Figure S2 Thermal stability of the as-synthesized \{[M_2(Xiso)_(2)(tdih)_(2)]_n \cdot guests\}_n (1-4). TGA and dTG curves (left); temperature-dependent PXRD patterns (right).
Figure S3 Comparison of X-ray crystal structures of \{[Cd\textsubscript{2}(iso)\textsubscript{2}(tdih)\textsubscript{2}]\cdot guests\}_n (3 and 3b).
Figure S4 X-ray crystal structures of MOFs 1-4: coordination spheres of [M₂(Xiso)(tdih)₂] clusters (above) and conformation of tdih linker (below). Cd-yellow, Zn-green, N-blue, O-red, C-gray, H atoms were omitted for clarity.

Figure S5 X-ray crystal structures of MOFs 1-4: intra and interlayer π···π interactions.
Figure S6 Layers arrangement for zinc-based MOFs 1, 2, 2MeOH (left) and cadmium-based MOFs 3,3b, 4 (right).

Figure S7 Variable temperature PXRD patterns for the as-synthesized compound 1.
Figure S8 Variable temperature PXRD patterns for the as-synthesized compound 2.

Figure S9 Variable temperature PXRD patterns for the as-synthesized compound 3.
Figure S10 Variable temperature PXRD patterns for the as-synthesized compound 4.
Figure S11 Water stability test (soaking for 72 h in water): *ex-situ* IR spectra (left) and PXRD (right) of the as-synthesized, water soaked, and activated (200 °C, 10 mbar) MOFs 1-2.
Figure S12 Water stability test (soaking for 72 h in water): *ex-situ* IR spectra (left) and PXRD (right) of the as-synthesized, water soaked, and activated (200 °C, 10 mbar) MOFs 3-4.
Figure S13 General illustration of hydrogen bonding system between $\text{M}_2(\text{COO})_2$ SBUs and acylhydrazone groups from two adjacent layers as well as indication of potential hydrogen bond acceptors and donors (based on example structure of 2MeOH).
Figure S14 TG of materials 1-4 conditioned in water for 72 hours.
Figure S15 Water stability test (soaking for 6 days in water): IR spectra (left) and PXRD (right) of the as-synthesized and water soaked CID-1.

Figure S16 TGA curves for materials 1-4 conditioned in MeOH at room temperature for 1-2 days.
Figure S17 (Top) IR spectra of MOFs 1-4 before and after soaking in MeOH. (Below) IR spectra for 1 after various treatments.

Figure S18 Comparison of PXRD patterns between 1as and 1as soaked in MeOH for several days.
Figure S19 CO$_2$ (195 K) and N$_2$ (77 K) isotherms for material 1 soaked in MeOH and activated at 100 °C.

Figure S20 The CO$_2$ (195 K) isotherm for material 1 soaked in MeOH and activated at 200 °C.
Figure S21 CO$_2$ (195 K) and N$_2$ (77 K) isotherms for material 3 soaked in MeOH and activated at different temperatures.
Figure S22 PXRD patterns for 2 after various manipulations indicated on graphs. Activation was made in low pressure (~ 10^{-3} Pa).
Figure S23 PXRD patterns for 4 after various manipulations indicated on graphs. Activation was carried out at low pressure (~ 10⁻³ Pa).
Figure S24 Comparison of PXRD patterns for 2MeOH and 2MeOH activated in different temperatures (the patterns for activated materials were collected in inert atmosphere at RT). Small discrepancies between calculated and found PXRD pattern for 2MeOH calcd. and 2MeOH (100 °C) arise from different measurement temperature: 100 K and 298 K, respectively.

Figure S25 IR spectra for 2MeOH corresponding to PXRD patterns from Figure S24: as-synthesized (black); activated at 100 °C (red), 150 °C (blue), 200 °C (green).
Figure S26 Comparison of PXRD patterns for 4MeOH and 4MeOH activated in different temperatures (the patterns for activated materials were collected in inert atmosphere at RT). * indicates an artefact from the holder of a heating stage attachment.

Figure S27 IR spectra for 4MeOH corresponding to PXRD patterns from Figure S26: as-synthesized (black); activated at 100 °C (red), 150 °C (blue), 200 °C (green).
Figure S28 Crystal structure of 2MeOH and 4; hydrogen bond network (magenta).
Figure S29 Crystal structure of 2MeOH and 4; hydrogen bond network (magenta).
Figure S30 The NH$_3$iso3 linker in 2MeOH engaged in hydrogen bonds with adjacent layers.
Figure S31 Crystals of compounds 1-4 and 2MeOH.
Figure S32 Differential scanning calorimetry (DSC) curves for 2MeOH (left) and 4MeOH (right).

Figure S33 1H NMR spectrum of terephthalaldehyde di-isonicotinoylhydrazone (tdih).
Figure S34 IR spectrum of terephthaldehyde di-isonicotinoylhydrazone (tdih).
Table S1 Crystallographic data: comparison of bond lengths in coordination spheres for 1-4.

Bond	Bond lengths [Å]	1	2	3b	4
M01 – N01		2.1580(16)	2.1607(19)	2.313(3)	2.338(6)
M01 – N26		2.1858(16)	2.191(2)	2.315(3)	2.344(6)
M01 – O37		2.0129(15)	2.0252(16)	2.283(3)	2.266(5)
M01 – O39		-	-	2.393(2)	2.443(4)
M01 – O40		2.0030(13)	1.9973(15)	2.259(2)	2.236(4)
M01 – O41		2.0391(14)	2.0404(16)	2.387(2)	2.338(4)

M = Zn$^{2+}$ for 1-2 and M = Cd$^{2+}$ for 3b-4.

Table S2 Intra and interlayer π···π interactions for 1-4.

Ring	Displacement [Å]	1	2	3b	4
		1	2	3b	4
R1	R2	1.027	0.768	0.806	0.779
R2	R1	2.119	1.689	1.214	1.028
R1	R3	-	-	3.294	2.461
R3	R1	-	-	3.778	1.687
R2	R3	1.670	2.211	-	-
R3	R2	1.345	1.892	-	-
R3	R3	-	1.740	2.002	2.136
Table S3 Selected hydrogen bond geometry (Å, °).

D—H···A	D—H	H···A	D···A	D—H···A
1 (CCDC 1877585)				
N(9)-H(9N)...O(39)	0.81(2)	2.09(2)	2.877(2)	164(2)
N(20)-H(20N)...O(47)	0.87(3)	1.95(3)	2.801(3)	169(2)
-x-1/2, y-1/2, -z+1/2				
2 (CCDC 1878988)				
N(9)-H(9N)...O(39)#1	0.82(3)	2.02(3)	2.808(3)	161(3)
N(20)-H(20N)...O(47)#2	0.87(3)	1.98(3)	2.841(3)	173(3)
(CCDC 1878988)				
N(42)-H(42A)...O(8)#3	0.86(3)	2.19(3)	2.999(3)	159(3)
N(42)-H(42B)...O(22)#4	0.82(4)	2.16(4)	2.984(3)	175(4)
#1 -x+1,-y+2,-z+1 #2 -x+1,-y+1,-z+1 #3 -x+2,-y+2,-z+1 #4 x,y+1,z				
2MeOH (CCDC 1975137)				
N(9)-H(9N)...O(39)#1	0.86	2.02	2.790(6)	148.3
N(20)-H(20N)...O(50)#2	0.86	2.05	2.878(7)	161.8
N(42)-H(42B)...O(22)#3	0.86	2.14	2.981(7)	166.1
N(42)-H(42A)...O(8)#4	0.86	2.20	3.040(6)	163.6
#1 -x+2,-y+1,-z #2 -x+1,-y+1,-z+1 #3 x+1,y,z #4 -x+2,-y+2,-z				
3 (CCDC 1993922)				
N(2)-H(2)...O(18)	0.86	2.10	2.94(2)	165
N(5)-H(5)...O(6)#1	0.86	2.05	2.854(9)	154
N(8)-H(8)...O(17)	0.86	2.09	2.930(19)	165
N(11)-H(11)...O(10)#2	0.86	2.10	2.864(9)	148
#1 2-x,-y,1-z #2 -x,1-y,1-z				
3b (CCDC 1898831)				
N(20)-H(20N)...O(39)#1	0.82(4)	2.04(4)	2.843(4)	163(3)
N(9)-H(9N)...O(47)#2	0.89(4)	2.06(4)	2.933(5)	170(4)
#1 -x+1,-y,z #2 -x,-y,z+1				
4 (CCDC 1975135)				
N(9)-H(9N)...O(47)#1	0.897(6)	2.096(6)	2.932(8)	154.5(4)
N(20)-H(20N)...O(39)#2	1.005(5)	1.866(4)	2.841(7)	162.7(3)
N(42)-H(42B)...O(8)#3	1.011(6)	1.972(5)	2.964(8)	166.7(4)
N(42)-H(42A)...O(22)#4	1.014(6)	2.271(5)	3.060(8)	133.6(4)
#1 -x+1,-y,-z #2 -x+2,-y,-z #3 x+1,y,z #4 -x+2,-y+1,-z				
Table S4 Comparison of selected IR absorption bands recorded for the as-synthesized, water soaked, and activated (200 °C, 50 mbar) materials 1-4.

compound	(OH)$_{\text{H}_2\text{O}}$	(NH)$_{\text{dih}}$	(CO)$_{\text{DMF}}$	(CO)$_{\text{dih}}$	(COO)$_{\text{Xiso}}$ (asym, sym)
1 as H$_2$O	3350-3550	3249	1674	1665	1558, 1390
act	-	3260	1682	1655	1557, 1390
2 as H$_2$O	3300-3550	3244	-	1652	1558, 1371
act	-	3208	-	1674	1558, 1386
3 as H$_2$O	3300-3550	3241	-	1669	1558, 1387
act	-	3255	1674	1661	1557, 1387
4 as H$_2$O	3300-3550	3220	1688$_{\text{sh}}$	1667	1557, 1385
act	-	3219	-	1669	1557, 1379

Table S5 Synthesis of MOFs 1-4: initial amounts and yields.

MOF	Mass of substrate [mg]	Mass of product [mg]	Yield [%]						
M(NO$_3$)$_2$	H$_2$Xiso	tdih	M(NO$_3$)$_2$	H$_2$Xiso	tdih	1	2	3	4
1as	39.2	55.9	71.9	64.0					
2as	27.2	80.5	74.9						
3as	24.9	89.3	70.8						
4as	27.2	91.4	74.4						
Experimental Procedures

Diffraction intensity data for single crystals of compounds 1-4 (except 2MeOH and 3) were collected on a KappaCCD (Nonius) diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). A suitably sized single crystal of 2MeOH prepared in a borosilicate glass capillary (d = 0.3 mm) with small amount of the mother liquor was measured on the Rigaku XtaLAB Synergy-S diffractometer with mirror-monochromated Mo Kα. Cell refinement and data reduction were performed using firmware. Positions of all of non-hydrogen atoms were determined by direct methods using SIR-97. All non-hydrogen atoms were refined anisotropically using weighted full-matrix least-squares on F^2. Refinement and further calculations were carried out using SHELXL 2014/7. All hydrogen atoms joined to carbon atoms were positioned with an idealized geometries and refined using a riding model with U_{iso}(H) fixed at 1.5 U_{eq} of C for methyl groups and 1.2 U_{eq} of C for other groups. The hydrogen atoms of the water (O66) molecule in 2 are indeterminate, H atoms attached to the N atoms were found in the difference-Fourier map and refined with an isotropic thermal parameter. Additionally, the crystal structure data shows that one DMF solvent molecule is heavily disordered and was removed using the SQUEEZE procedure implemented in the PLATON package. In case of other two DMF solvent molecules atoms were refined using DFIX and DANG instructions. The SQUEEZE procedure was also applied for 1 due to the presence of disordered guest molecules. The figures were made using CCDC1877585 (1), CCDC1878988 (2), CCDC1975137 (2MeOH) CCDC1898831 (3b) and CCDC1975135 (4) cif files that contain the supplementary crystallographic data.

A suitably sized single crystal of 3 was prepared in a borosilicate glass capillary (d = 0.3 mm) with small amount of the mother liquor. The dataset was collected at BESSY MX BL14.3 beamline of Helmholtz-Zentrum Berlin für Materialien und Energie. Monochromatic X-ray radiation with a wavelength of λ = 0.89500 Å (E = 13.85 keV) was used in experiments. The dataset was collected at room temperature. The crystal symmetry and scan range were determined in each particular case using iMosflm program. The φ-scans with oscillation range of 1° were used for data collection. For each dataset, 180 images were collected to reach the maximal possible completeness. The dataset was processed in automatic regime using XDSAPP 2.0 software. The Crystal structures were solved by direct methods and refined by full matrix least-squares on F^2 using SHELX-2018/3 program package. All non-hydrogen atoms were refined in anisotropic approximation. Hydrogen atoms were refined in geometrically calculated positions using “riding model” with U_{iso}(H)=1.2U_{iso}(C). Lattice water molecules O13-O21 were determined from the difference Fourier map and refined freely with restrains anisotropic parameters. The occupancy factor for O13, O18, O19 and O20 were refined and fixed in the last refinement cycle. The positions corresponding hydrogen atoms were determined from the electron density peaks and further refined with constrained isotropic parameter of U_{iso}(H)=1.2U_{iso}(O) and restrained geometry. The SQUEEZE procedure was applied to remove the contribution on refinement of the further lattice solvent molecules, which could not be located unambiguously. CCDC1993922 contains the supplementary crystallographic data for 3 Experimental data on single crystal X-ray experiments are summarized in Table S5.

CIFs files can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
Compounds	1	2	2MeOH	3	3b	4
Empirical formula	C₆H₅N₂O₂Zn	C₆H₅N₂O₂Zn	C₆H₅N₂O₂Zn	C₆H₅N₂O₂Cd₂	C₆H₆Cd₃N₂O₆	C₆H₆Cd₃N₂O₆
Formula mass	674.96	689.98	664.93	1392.64	795.09	737.01
Temperature (K)	130(2)	128(2)	100.00(10)	296(2)	130(2)	128(2) K
Wave length (Å)	0.7107	0.71073	1.54184	0.89500	0.7107	0.71073 Å
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	P̅̅̅̅̅̅̅̅_̅̅̅	P̅̅̅̅̅̅̅̅_̅̅̅	P̅̅̅̅̅̅̅̅_̅̅̅	P̅̅̅̅̅̅̅̅_̅̅̅	P̅̅̅̅̅̅̅̅_̅̅̅	P̅̅̅̅̅̅̅̅_̅̅̅
a (Å)	10.0351(3)	9.9638(4)	9.7787(5)	10.4038(2)	10.0911(2)	10.1383(6)
b (Å)	10.3247(2)	10.9634(4)	9.9374(3)	14.9986(3)	10.4145(2)	10.3748(6)
c (Å)	15.7932(4)	16.7723(6)	17.8681(6)	24.4595(8)	17.7975(3)	17.7897(13)
α (°)	99.740(2)	76.666(3)	86.483(3)	82.5660(10)	81.709(2)	82.663(5)
β (°)	93.331(2)	86.693(3)	79.981(3)	86.7560(10)	79.727(2)	79.554(5)
γ (°)	98.236(2)	70.336(4)	68.774(4)	74.1180(10)	75.010(2)	75.940(5)
Volume (Å³)	1590.41(7)	1674.00(12)	1593.85(12)	3639.32(13)	1768.31(6)	1778.2(2)
Z	2	2	2	2	2	2
Density (calculated) (g/cm³)	1.409	1.369	1.385	1.271	1.493	1.377
Absorption coefficient (mm⁻¹)	0.830	0.791	1.576	1.189	0.680	0.668
F(000)	696	712	684	1408	812	748
Crystal size (mm)	0.200 x 0.150 x 0.150	0.300 x 0.200 x 0.150	0.020 x 0.100 x 0.100	0.150 x 0.130 x 0.100	0.200 x 0.200 x 0.100	0.300 x 0.230 x 0.140
Theta range for data collection (°)	3.015 to 28.551	3.272 to 28.649	2.511 to 76.672	3.003 to 33.081	3.023 to 28.670	2.555 to 28.591
Index ranges	-12 ≤ h ≤ 13, -12 ≤ k ≤ 13, -20 ≤ l ≤ 21	-12 ≤ h ≤ 13, -13 ≤ k ≤ 14, -21 ≤ l ≤ 22	-12 ≤ h ≤ 12, -17 ≤ k ≤ 17, -26 ≤ l ≤ 25	-13 ≤ h ≤ 13, -13 ≤ k ≤ 13, -22 ≤ l ≤ 22	-13 ≤ h ≤ 13, -13 ≤ k ≤ 13, -22 ≤ l ≤ 22	-13 ≤ h ≤ 13, -13 ≤ k ≤ 13, -22 ≤ l ≤ 22
Reflection measured	22107	11699	42325	20689	24094	12653
Reflections unique	7338 [R(int) = 0.0283]	7483 [R(int) = 0.0241]	6437 [R(int) = 0.0619]	9892 [R(int) = 0.0823]	8216 [R(int) = 0.0328]	7927 [R(int) = 0.0422]
Completeness theta = 25.241°	99.80%	99.40%	99.6%	71.50%	99.60%	99.80%
Data / restraints / parameters	7338 / 0 / 425	7483 / 0 / 442	6437 / 0 / 409	9892 / 18 / 834	8216 / 12 / 472	7927 / 5 / 394
Goodness-of-fit on F2	1.030	1.036	1.710	1.098	1.022	0.848
Final R indices	R1 = 0.0362, wR2 = 0.0813	R1 = 0.0395, wR2 = 0.0982	R1 = 0.1348, wR2 = 0.3574	R1 = 0.0826, wR2 = 0.2452	R1 = 0.0446, wR2 = 0.1146	R1 = 0.0802, wR2 = 0.2108
R indices (all data)	R1 = 0.0457, wR2 = 0.0868	R1 = 0.0512, wR2 = 0.1061	R1 = 0.1409, wR2 = 0.3643	R1 = 0.0575, wR2 = 0.2574	R1 = 0.0575, wR2 = 0.1231	R1 = 0.1126, wR2 = 0.2422
References

(1) Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Nonius.

(2) Z. Otwinowski; W. Minor, (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Method in Enzymology.

(3) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. It SIR97: A New Tool for Crystal Structure Determination and Refinement. Journal of Applied Crystallography 1999, 32 (1), 115–119. https://doi.org/10.1107/S0021889898007717.

(4) Spek, A. L. It PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. Acta Crystallographica Section C 2015, 71 (1), 9–18. https://doi.org/10.1107/S2053229614024929.

(5) G. M. Sheldrick, SHELXS-97: Program for the Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 2008. SHELXS-97.

(6) G. M. Sheldrick, : Program for the Solution of Crystal Structures, University of Göttingen, Göttingen, Germany, 2014. SHELXL-2014/7.

(7) Mueller, U.; Förster, R.; Hellmig, M.; Huschmann, F. U.; Kastner, A.; Malecki, P.; Pühringer, S.; Röwer, M.; Sparta, K.; Steffien, M.; Ühlein, M.; Wilk, P.; Weiss, M. S. The Macromolecular Crystallography Beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current Status and Perspectives. The European Physical Journal Plus 2015, 130 (7), 141. https://doi.org/10.1140/epjp/i2015-15141-2.

(8) Battye, T. G. G.; Kontogiannis, L.; Johnson, O.; Powell, H. R.; Leslie, A. G. W. It IMOSFLM: A New Graphical Interface for Diffraction-Image Processing with It MOSFLM. Acta Crystallographica Section D 2011, 67 (4), 271–281. https://doi.org/10.1107/S0907444910048675.

(9) Sparta, K. M.; Krug, M.; Heinemann, U.; Mueller, U.; Weiss, M. S. It XDSAPP2.0. Journal of Applied Crystallography 2016, 49 (3), 1085–1092. https://doi.org/10.1107/S1600576716004416.

(10) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallographica. Section C, Structural Chemistry 2015, 71 (Pt 1), 3–8. https://doi.org/10.1107/S2053229614024218.