METRIC DIOPHANTINE APPROXIMATION OVER A LOCAL FIELD OF POSITIVE CHARACTERISTIC

ANISH GHOSH

ABSTRACT. We establish the conjectures of Sprindžuk over a local field of positive characteristic. The method of Kleinbock-Margulis for the characteristic zero case is adapted.

1. Introduction

In this paper, we present a proof of the strong extremality of non-degenerate manifolds over a local field of positive characteristic.

1.1. Preliminary Notation. Let \mathbb{F} denote the finite field of $k = p^\nu$ elements. Let $\mathbb{K} = \mathbb{F}(X)$ be the ring of rational functions, $\mathcal{Z} = \mathbb{F}[X]$ the ring of polynomials, $\mathcal{O} = \mathbb{F}[[X^{-1}]]$ be the ring of formal series in X^{-1} and $\mathcal{K} = \mathbb{F}((X^{-1}))$ denote the field of Laurent series. A typical element of \mathcal{K} is of the form

$$a = \sum_{i=-n}^{\infty} a_i X^{-i}, a_i \in \mathbb{F}, a_{-n} \neq 0.$$

It is well known that one can define a non-Archimedean valuation on \mathcal{K} (the “valuation at ∞”):

$$v(a) = \sup\{j \in \mathbb{Z}, a_i = 0 \ \forall \ i < j\}$$

The corresponding discrete valuation ring is \mathcal{O} and \mathcal{K} is its quotient field. The valuation above leads to an absolute value $|a| = k^{-v(a)}$ which in turn induces a metric $d(a, b) = |a - b|$ and (\mathcal{K}, d) is a separable, complete, ultrametric, totally disconnected space. Moreover, any local field of positive characteristic is isomorphic to some \mathcal{K} (cf. [34]). We will extend the norm to vectors by defining $|\mathbf{x}| = \max_i |x_i|$. Vectors will be denoted in boldface, and we will use the notation $|\mathbf{x}|$ for both vectors as well as elements of \mathcal{K}, relying on the context and typeface to make the distinction between the norms. The notation $|x|_+$ will stand for $\max(|x|, 1)$ and we will set $\Pi_+(\mathbf{x}) = \prod_{i=1}^{n} |x_i|_+$. The notation $[\]$ will be used to denote both the polynomial part of an element of \mathcal{K} as well as the integer part of a real number. $B(\mathbf{x}, r)$ will denote the ball centered around \mathbf{x} in \mathcal{K}^n of radius r, and B_r will denote $B(0, r)$. Haar

\footnote{Mathematics Subject Classification: Primary 11J83, Secondary 11K60.}
measure on K^n will be referred to as λ, normalised so that the measure of B_1 is 1. For a map $f : U \subset K^r \to K^n$ and a ball $B \subset \mathcal{X}$, we will set $|f|_B = \sup_{x \in B} |f(x)|$.

1.2. Diophantine Approximation. Metric Diophantine approximation is primarily concerned with classifying points in a finite dimensional vector space over a field with regard to their approximation properties. The classification is done with respect to a measure, so a “typical” property is a property which holds or does not for almost every (hereafter abbreviated as a.e.) point with respect to the specified measure. For instance, one studies the set of v-approximable vectors,

Definition 1.1. $\mathcal{W}_v \overset{\text{def}}{=} \{ x \in K^n | |qx + p| < |q|^{-v}, \text{for infinitely many } q \in \mathbb{Z}^n \text{ and some } p \in \mathbb{Z} \}$.

And the set of badly approximable vectors,

Definition 1.2. $\mathcal{B} \overset{\text{def}}{=} \{ x \in K^n | \exists C > 0 \text{ such that } |p + q \cdot x| > \frac{C}{|q|^{n}} \text{ for every } q \in \mathbb{Z}^n \setminus \{0\}, p \in \mathbb{Z} \}$.

It has been shown by Kristensen ([22], [23]) that whenever $v > n$, \mathcal{W}_v is a null set of Hausdorff dimension $n - 1 + \frac{n+1}{v+1}$, and that \mathcal{B} is a null set of full Hausdorff dimension. A vector which is v-approximable for some $v > n$ is said to be very-well approximable (abbreviated as VWA). More generally one can define very well multiplicatively approximable (VWMA) vectors as follows:

Definition 1.3. A vector x is VWMA if for some $\epsilon > 0$, there are infinitely many $q \in \mathbb{Z}^n$ such that

$$|p + q \cdot x| \leq \Pi_+ (q)^{-1 - \epsilon}$$

for some $p \in \mathbb{Z}$.

We now describe the set-up of Diophantine approximation with dependent quantities. A map $f = (f_1, \ldots, f_n) : K^r \to K^n$ will be called extremal (resp. strongly extremal) if for λ a.e. x, $f(x)$ is not VWA (resp. VWMA). The theme of establishing extremality of maps began when Mahler ([24]) conjectured the extremality of $f : \mathbb{R} \to \mathbb{R}^n$ given by $f(x) = (x, x^2, \ldots, x^n)$.\footnote{The definitions of VWA and VWMA vectors over the field of real or p-adic numbers are analogous. The interested reader should consult one of the many references, for instance [7], [18], [20].} Mahler’s conjecture was proved by Sprindžuk (cf. [31]). Let \mathcal{X} denote a metric space, \mathcal{F} a valued field and μ a Borel measure on \mathcal{X}. We will call a map $f : \mathcal{X} \to \mathcal{F}^n$, non-planar at
$x_0 \in \mathcal{X}$ if for any neighborhood B of x_0, the restrictions of $1, f_1, \ldots, f_n$ are linearly independent over \mathcal{F}. Let us now take $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{F} = \mathbb{R}$. The strong extremality of analytic non-planar f in this case was conjectured by Sprindžuk (conjecture H_2, [32]). This conjecture was settled by D.Kleinbock and G.Margulis in [18], using newly developed tools from homogeneous dynamics. In fact, they relaxed the analyticity condition and replaced the non-planarity condition with an appropriate generalization called nondegeneracy (which we define precisely in section 3). See [15] for a nice survey of the problem. Sprindžhuk’s (and indeed Mahler’s) conjectures can be formulated over other local fields. In [31], Sprindžuk proved Mahler’s conjecture over the fields \mathbb{Q}_p and \mathbb{K}. Following some partial results (see [20] for a brief historical survey), the methods of Kleinbock-Margulis were extended in [20] to settle the conjecture H_2 over \mathbb{Q}_p. In fact, the following more general theorem is obtained by the authors.

Theorem 1.4. [20] Let S be a finite set of valuations of \mathbb{Q}, for any $v \in S$ take $k_v, d_v \in \mathbb{N}$ and an open subset $U_v \subseteq \mathbb{Q}_v^{d_v}$, and let λ be the product of haar measures on $\mathbb{Q}_v^{d_v}$. Suppose that f is of the form $(f^v)_{v \in S}$, where each f^v is a C^{k_v} map from U_v into $\mathbb{Q}_v^{n_v}$ which is nondegenerate at λ_v-a.e. point of U_v. Then f, λ is strongly extremal.

1.3. **Main Result and Structure of this paper.** In this paper, we establish the validity of Sprindžuk’s conjecture H_2 over a local field of characteristic $p > 0$. The structure of this paper is as follows. In section 2, we establish the the link between Diophantine approximation and flows on homogeneous spaces, record a proof of Mahler’s compactness criterion in characteristic p and provide an application (after Dani) to bounded trajectories on the space of lattices. Section 3 is devoted to a discussion of non-degenerate and good maps, culminating in a theorem from [20] which relates these notions. Finally, in section 4 we use the results from prior sections, as well as a modified version of a measure estimate from [20] to prove the main theorem of this paper, a special case of which is as follows.

Theorem 1.5. Let $U \subset \mathcal{K}^d$ be an open set and $f = (f_1, \ldots, f_n) : U \to \mathcal{K}^n$ be a C^l non-planar map. Then f is strongly extremal.

Acknowledgements. The author would like to thank his advisor Prof.Dmitry Kleinbock for guidance and for providing the preprint [20] which served as inspiration. Thanks are also due to Prof.Barak Weiss for helpful discussions.
2. Reduction to a dynamical statement

2.1. Mahler’s compactness criterion. It is well known that $\text{SL}(n, \mathbb{Z})$ is a non-uniform lattice in $\text{SL}(n, \mathbb{K})$ (c.f. [30]), which means that the space $\Omega_n = G_n/\Gamma_n$ is a non-compact space of finite volume. $\text{SL}(n, \mathbb{K})$ acts transitively on the space of unimodular (i.e. covolume 1) lattices in \mathbb{K}^n, and the stabilizer of \mathbb{Z}^n is $\text{SL}(n, \mathbb{Z})$. Hence Ω_n can be identified with the space of unimodular lattices in \mathbb{K}^n. Let Λ be any (not-necessarily unimodular) lattice. Then $\det(\Lambda)$ will refer to $\det(g)$ where $g \in \text{GL}(n, \mathbb{K})$ and Λ is of the form $g\mathbb{Z}^n$.

Following Mahler, we will call a real valued function F on \mathbb{K}^n a distance function if it satisfies the following three conditions.

1. $F(x) \geq 0 \forall x$.
2. $F(tx) = |t|F(x)$ for every $t \in \mathbb{K}, x \in \mathbb{K}^n$.
3. $F(x - y) \leq \max(F(x), F(y))$ for every $x, y \in \mathbb{K}$.

The function $F(x) = |x|$ is the prototype of a distance function. The structure of compact subsets of Ω_n is described by the Mahler Compactness Criterion which we will now state and prove. This is well known over the field of real numbers and a proof can be found for instance in [6]. We will need the following result from the geometry of numbers due to Mahler.

Theorem 2.1. [25] Let F be a distance function on \mathbb{K}^n. There are n independent lattice points $x_1, \ldots, x_n \in \mathbb{Z}^n$ with the following properties:

1. $F(x_1)$ is the minimum of $F(x)$ among all non-zero lattice points.
2. For $k \geq 2$, $F(x_k)$ is the minimum of $F(x)$ among all lattice points which are independent of x_1, \ldots, x_{k-1}.
3. The determinant of the points x_1, \ldots, x_n is 1.
4. $0 < F(x_1) \leq \cdots \leq F(x_n)$ and

$$\prod_{i=1}^{n} F(x_i) = 1$$

For our purposes, a trivial modification of the above theorem will be required which extends it to all lattices. Notice that the above theorem is actually a statement about the successive minima of B_1 with respect to the standard lattice. To restate the theorem for an arbitrary lattice $\Lambda = g\mathbb{Z}^n$, $g \in \text{GL}(n, \mathbb{K})$ one needs to instead consider the successive
minima of the set $g^{-1}B_1$ with respect to the standard lattice. Thus we get the following corollary of theorem 2.1.

Corollary 2.2. Any $n-$dimensional lattice Λ has a basis x_1, \ldots, x_n such that

$$\prod_{i=1}^{n} |x_i| \leq |\text{det}(\Lambda)|$$

A subset Q of Ω_n is said to be separated from 0, if there exists a non-empty neighborhood B of 0 in K^n such that $\Lambda \cap B = \{0\}$ for any lattice Λ in Q. The following is the positive characteristic version of Mahler’s compactness criterion.

Theorem 2.3. A subset Q of Ω_n is bounded if and only if it is separated from 0.

Proof. We omit the implication (\Rightarrow), as it is elementary and identical to the classical case. For the converse, notice that by corollary 2.2, we know that any lattice Λ in Q has a basis a_1, \ldots, a_n such that

\begin{equation}
\prod_{i=1}^{n} |a_i| \leq 1
\end{equation}

Then, since the vectors a_i are also bounded away from the origin by assumption, it follows that the norms of the vectors a_i are uniformly bounded from above. We now apply the Bolzano-Weierstrass theorem to finish the proof. \qed

We get the following immediate:

Corollary 2.4. The set

$$Q_\epsilon \overset{def}{=} \{ \Lambda \in \Omega_n \mid |x| \geq \epsilon \ \forall \ x \in \Lambda \backslash \{0\} \}$$

is compact for every $\epsilon > 0$.

2.2. Dynamics and Diophantine Approximation.

In order to state Diophantine properties of vectors in dynamical language, we need some notation. Let f be a map from an open subset of K^d to K^n, and let $u_{f(x)}$ denote the matrix

\begin{equation}
u_{f(x)} \overset{def}{=} \begin{pmatrix}1 & f(x)^t \\ 0 & I_n \end{pmatrix}
\end{equation}

and let $\Lambda_{f(x)}$ denote the lattice $u_{f(x)} \mathbb{Z}^{n+1}$. In particular, if $f(x) = x$, we will denote the lattice by Λ_x. Let $t = (t_1, \ldots, t_n) \in \mathbb{Z}_+^n$ and set
\(t = \sum_{i=1}^{n} t_i \), we consider the action on \(\Lambda_{\varepsilon(x)} \) by semisimple elements of the form
\[
g_t = \text{diag}(X^t, X^{-t_1}, \ldots, X^{-t_n}).
\]
(2.3)

Define a function on the space \(\Omega_n \) in the following manner:
\[
\delta(\Lambda) \overset{\text{def}}{=} \inf_{v \in \Lambda \setminus \{0\}} |v|.
\]
(2.4)

The following theorem establishes a link between orbits on the space of lattices and Diophantine properties of vectors.

Theorem 2.5. Let \(\varepsilon > 0 \), \(x \in K^n \) and \((p, q) \in \mathbb{Z}^{n+1} \) be such that (1.1) holds. Denote \(\Pi_+(q) \) by \(k^m \) and define
\[
r = k^{-\left\lceil \frac{m\varepsilon}{n+1} \right\rceil}.
\]
(2.5)

Choose \(t_i \in \mathbb{Z}_+ \) to satisfy \(|q_i|_+ = rk^{t_i} \). Then, \(\delta(g_t \Lambda x) \leq r \).

Proof. We need to prove the inequalities:
\[
k^t|p + q \cdot y| \leq r
\]
and
\[
k^{-t_i}|q_i| \leq r \ \forall \ i.
\]
(2.7)

The second follows immediately from the fact that \(|q_i| \leq |q| \) and the definition of \(t_i \). As for the first, assume that (1.3) holds. Then, we have
\[
|q \cdot y + p| \leq \Pi_+(q)^{-1-\varepsilon}.
\]

Since \(\Pi_+(q) = r^n k^t \), it follows that
\[
k^t|q + y \cdot p| \leq r^{-n} \Pi_+(q)^{-\varepsilon}
\]

Since \(k^{\frac{m\varepsilon}{n+1}} \geq k^{\frac{m\varepsilon}{n+1}} \), we see that \(k^{-m\varepsilon} \leq k^{-\left\lceil \frac{m\varepsilon}{n+1} \right\rceil(n+1)} \) which implies that \(\Pi_+(q)^{-\varepsilon} \leq r^{n+1} \). Thus,
\[
k^t|q + y \cdot p| \leq r^{-n} r^{n+1}.
\]

This completes the proof. \(\square \)

Writing \(r = k^{-\gamma} \) for a suitably chosen \(\gamma \) allows us to derive the following:

Corollary 2.6. Assume that \(x \in K^n \) is VWMA. Then there exists \(\gamma > 0 \) and infinitely many \(t \in \mathbb{Z}_+^n \) such that
\[
\delta(g_t \Lambda x) \leq k^{-\gamma t}.
\]

Proof. By theorem 2.5 and for \(\gamma \) as above, we can find an unbounded sequence \(t_k \in \mathbb{Z}_+^n \) such that \(\delta(g_{t_k} \Lambda x) \leq k^{-\gamma t_k} \). \(\square \)
Consequently, to show that a map $f : U \subset K^d \to K^n$ is strongly extremal, it is enough to show that any non-degenerate point has a neighborhood $B \subseteq U$ such that for a.e. point in the neighborhood and any $\gamma > 0$, there are at most finitely many $t \in \mathbb{Z}_+^n$ such that
\begin{equation}
\delta(g_t \Lambda f(x)) \leq k^{-\gamma t}
\end{equation}
For then, if we fix t and define the set
\begin{equation}
E_t = \{x \in B \mid \delta(g_t \Lambda f(x)) \leq k^{-\gamma t}\}
\end{equation}
then theorem 1.3 will follow from an application of the Borel-Cantelli lemma if we are able to show that
\begin{equation}
\sum_{t \in \mathbb{Z}_+^n} \lambda(E_t) < \infty.
\end{equation}
Lemma 2.7 will be an easy consequence of the following theorem which will then complete the proof of theorem 1.5.

Theorem 2.8. Let f be a C^1 map from an open subset $U \subset K^d$ to K^n, and assume that f is nondegenerate at $x_0 \in U$. Then there exists a ball $B(x_0, r) \subset U$ and positive constants C, ρ such that for any $t \in \mathbb{Z}_+^n$, any $s > 0$ and $0 < \epsilon \leq \rho$ one has
\begin{equation}
\lambda(\{x \in B \mid \delta(g_t \Lambda f(x)) < \epsilon\}) \leq (n + 1)C \left(\frac{\epsilon}{\rho}\right)^\alpha \lambda(B)
\end{equation}

2.3. Bounded trajectories. Let us digress a bit to provide an application of theorem 2.3. This result is originally due to Dani [8] who established it over the field of real numbers. For $t \in \mathbb{Z}$, let
\begin{equation}
g_t = \text{diag}(X^{nt}, X^{-t}, \ldots, X^{-t}).
\end{equation}

Theorem 2.9. The trajectory $\{g_t \Lambda x \mid t \in \mathbb{Z}_+\}$ is bounded if and only if x is badly approximable.

Proof. Assume that x is badly approximable and choose δ so that
\begin{equation}
C \frac{1}{\pi n t} > \delta > 0
\end{equation}
where C is the constant in definition 1.2. Let $y = (y_1, \ldots, y_n) \in \mathbb{Z}^n$ and $\tilde{y} = (y_0, y) \in \mathbb{Z}^{n+1}$ be such that $g_{t'} u_x \tilde{y} \in B_\delta$ for some $t' \in \mathbb{Z}_+$. Keeping in mind that $|X| = k$, we have
\begin{equation}
k^{nt'} |\tilde{y} \cdot (1, x)| \leq \delta
\end{equation}
and
\begin{equation}
k^{-t'} |y| \leq \delta.
\end{equation}
From definition 1.2 and equations 2.12 and 2.13 it follows that
\[\frac{C}{\delta^n k^{nt'}} \leq \frac{C}{|y|^n} < |\tilde{y} \cdot (1, x)| \leq \frac{\delta}{k^{nt'}} \]
which cannot happen in view of equation 2.11. Hence, \(g_t \Lambda \in \overline{B}_\delta = \{0\} \)
and by corollary 2.4 the trajectory is bounded.
For the converse, by theorem 2.3 there exists \(\delta > 0 \) such that \(|g_t u \tilde{y}| > \delta \) for every \(\tilde{y} \in \mathbb{Z}^{n+1} \). This implies that for every \(t \in \mathbb{Z} \),
\begin{align*}
(2.14) & \quad k^{nt'}|\tilde{y} \cdot (1, x)| > \delta \\
and \quad (2.15) & \quad k^{-t}|y| > \delta
\end{align*}
A choice of \(C = \delta^{n+1} \) can now be seen to ensure that \(x \) is badly approximable.

One can now decompose \(g \in \text{SL}(n+1, \mathcal{K}) \) into factors one of which is of the form 2.2 and then conclude (cf. proposition 2.12 in [8]) that

Lemma 2.10. The trajectory \(\{g_t g \mathbb{Z}^{n+1} \mid t \in \mathbb{Z}_+\} \) is bounded if and only if \(\{g_t \Lambda \mid t \in \mathbb{Z}_+\} \) is bounded.

As a corollary of theorem 2.9, lemma 2.10 and the main result in [23], it follows that

Corollary 2.11. The set
\[Bdd_{n+1} \defeq \{ \Lambda \in \Omega_{n+1} \mid \{g_t \Lambda\} \text{ is a bounded trajectory} \} \]
has full Hausdorff dimension.

To put corollary 2.11 in context, we remark that in case \(G = \text{SL}(n+1, \mathbb{R}) \) and \(\Gamma = \text{SL}(n+1, \mathbb{Z}) \), the action of a one-parameter subgroup \(g_t \) not contained in a compact subgroup of \(G \), on \(G/\Gamma \) is ergodic (a special case of Moore’s ergodicity theorem cf. [35]). This implies that the set of bounded \(g_t \) orbits is a null set (with respect to the \(\text{SL}(n, \mathbb{R}) \)-invariant measure on \(G/\Gamma \)). The Kleinbock-Margulis bounded orbit theorem (cf. [19]) is a vast generalization of the “ampleness” of bounded trajectories as above, to semisimple flows on general homogeneous spaces of real Lie groups. Over \(\mathbb{Q}_p \), we know after Tamagawa that all lattices in \(\text{SL}(n, \mathbb{Q}_p) \) are cocompact (cf. [30]) and so all orbits are necessarily bounded. Over \(\mathcal{K} \), the ergodicity of semisimple flows has been established by G.Prasad (cf. [27]) and implies that for every \(n \in \mathbb{Z}_+ \), \(Bdd_n \) has measure 0 (with respect to the \(\text{SL}(n, \mathcal{K}) \)-invariant measure on \(\text{SL}(n, \mathcal{K})/\text{SL}(n, \mathbb{Z}) \)).
3. Ultrametric non-degenerate and good maps

We will first define single variable C^n functions in the ultrametric case. Our definitions and treatment are from [29]. Let U be a non-empty subset of \mathcal{K} without isolated points. For $n \in \mathbb{N}$, define

Definition 3.1.

$$\nabla^n(U) = \{(x_1, \ldots, x_n) \in U, x_i \neq x_j \text{ for } i \neq j\}$$

The n-th order difference quotient of a function $f: U \rightarrow \mathcal{K}$ is the function $\Phi_n(f)$ defined inductively by $\Phi_0(f) = f$ and, for $n \in \mathbb{N}$, $(x_1, \ldots, x_{n+1}) \in \nabla^n(U)$ by

$$\Phi_n f(x_1, \ldots, x_{n+1}) = \frac{\Phi_{n-1} f(x_1, x_3, \ldots, x_{n+1}) - \Phi_{n-1} f(x_2, \ldots, x_{n+1})}{x_1 - x_2}$$

Note that the definition does not depend on the choice of variables, as all difference quotients are symmetric functions. A function f on \mathcal{K} is called a C^n function if $\Phi_n f$ can be extended to a continuous function $\bar{\Phi}_n f : U^{n+1} \rightarrow \mathcal{K}$. We also define

$$D_n f(a) = \Phi_n f(a, \ldots, a), \ a \in U$$

We then have the following theorem (c.f. [29], Theorem 29.5)

Theorem 3.2. Let $f \in C^n(U \rightarrow \mathcal{K})$. Then, f is n times differentiable and

$$j! D_j f = f^j$$

for all $1 \leq j \leq n$.

An immediate corollary shows us why we must exercise a little caution in positive characteristic:

Corollary 3.3. Let $\text{char}(\mathcal{K}) = p$ and $f \in C^p(U \rightarrow \mathcal{K})$. Then $f^p = 0$.

To define C^k functions in several variables, a generalization of the above notion is required. We will follow the notation set forth in [20]. Namely, we now consider a multiindex $\beta = (i_1, \ldots, i_d)$ and let

$$\Phi_\beta f = \Phi_{i_1} \circ \cdots \circ \Phi_{i_d} f$$

This difference order quotient is defined on the set $\nabla^{i_1} U_1 \times \cdots \times \nabla^{i_d} U_d$ and the U_i are all non-empty subsets of \mathcal{K} without isolated points. A function f will then be said to belong to $C^k(U_1 \times \cdots \times U_d)$ if for any multiindex β with $|\beta| = \sum_{j=1}^d i_j \leq k$, $\Phi_\beta f$ extends to a continuous function $\bar{\Phi}_\beta f : U_1^{i_1+1} \times \cdots \times U_d^{i_d+1}$. As in the one variable case, we have

$$(3.1) \quad \partial_\beta f(x_1, \ldots, x_d) = \beta! \bar{\Phi}_\beta(x_1, \ldots, x_1, \ldots, x_d, \ldots, x_d)$$
where $\beta! = \prod_{j=1}^{d} i_j!$.

We now wish to define non-degenerate functions in our situation. Over the field of real numbers, a function is said to be non-degenerate if the target space is spanned by the partial derivatives of the function. We will have to modify this slightly in view of corollary 3.3. Let $f = (f_1, \ldots, f_n)$ be a C^m map from $U \subset \mathcal{K}^d$ to \mathcal{K}^n. For $l \leq m$, we will say that a point $y = f(x)$ is l non-degenerate if the space \mathcal{K}^n is spanned by the difference quotients Φ_β of f at x with $|\beta| \leq l$. For analytic functions, it follows that the linear independence of $1, f_1, \ldots, f_n$ is equivalent to all points of $f(x)$ being non-degenerate. We would also like to remark that for one variable, the definition of non-degeneracy does not correspond to the non-vanishing of the Wronskian. This is in contrast to the real variable case.

It follows easily that f is k non-degenerate at x_0 if and only if for any function f of the form $f = c_0 + c \cdot f$, where $c_0 \in \mathcal{K}\{0\}$ and $c \in \mathcal{K}$ there exists a multiindex β such that $|\beta| \leq k$ and $\Phi_\beta \neq 0$.

Before proceeding, we define an important class of functions. Let \mathcal{X} denote a metric space, μ a locally finite Borel measure on \mathcal{X} and \mathcal{F} a locally compact field. For a ball $B \subset \mathcal{X}$, and a map $f : \mathcal{X} \rightarrow \mathcal{F}$ we set $|f|_{B, \mu} \overset{df}{=} |f|_{B \cap \text{supp } \mu}$.

Definition 3.4. Let C and α be positive numbers and $V \subseteq \mathcal{X}$. A function $f : V \rightarrow \mathcal{F}$ is said to be (C, α)-good on V with respect to μ if for any open ball $B \subseteq V$, and for any $\epsilon > 0$, one has:

$$\mu\left(\left\{v \in B \mid |f(v)| < \epsilon \cdot |f(v)|_{B, \mu}\right\}\right) \leq C \epsilon^\alpha \mu(B).$$

We will be mostly concerned with the case when $\mathcal{X} = \mathcal{K}^d$ for some d. In this case, we will assume that μ is the normalized Haar measure λ and simply refer to the map as (C, α)-good. Some easy properties of (C, α)-good functions are:

1. f is (C, α)-good on V \Rightarrow so is $cf \forall c \in \mathcal{K}$. (Here $\mathcal{F} = \mathcal{K}$).

2. f_i $i \in I$ are (C, α)-good \Rightarrow so is $\sup_{i \in I} |f_i|$. (Here $\mathcal{F} = \mathbb{R}$).

Polynomials provide good examples of (C, α)-good functions. In fact, we have the following lemma from [33].

Lemma 3.5. Let \mathcal{F} be an ultrametric valued field. Then for any $k \in \mathbb{N}$, any polynomial $f \in \mathcal{F}[x]$ of degree not greater than k is $(C, 1/k)$-good on \mathcal{F}, where C is a constant depending on k alone.
More generally, we will call a map \(f : U \subset K^d \to K^n \) good at \(x_0 \in U \) if there exists a neighborhood \(V \subset U \) of \(x_0 \) and positive \(C, \alpha \) such that any linear combination of \(1, f_1, \ldots, f_n \) is \((C, \alpha)\) good on \(V \). We now state Proposition 4.2 from [20] which shows that non-degenerate functions are good.

Theorem 3.6. Let \(F \) be an ultrametric valued field and let \(f = (f_1, \ldots, f_n) \) be a \(C^1 \) map from an open subset \(U \subset F^d \) to \(F^n \) which is \(l \)-non-degenerate at \(x_0 \in U \). Then there is a neighborhood \(V \subset U \) of \(x_0 \) such that any linear combination of \(1, f_1, \ldots, f_n \) is \((dl^{3-\frac{4}{d}}, \frac{1}{dl})\)-good on \(V \). In particular, the nondegeneracy of \(f \) at \(x_0 \) implies that \(f \) is good at \(x_0 \).

4. Quantitative non-divergence and applications

In this section, our aim is to establish theorem [16]. We first will need some notation. Let \(D \) be an integral domain, \(K \) its quotient field, and \(R \) denote a field containing \(K \) as a subfield. If \(\Delta \) is a \(D \)-submodule of \(R^m \), we will denote by \(R\Delta \) its \(R \)-linear span inside \(R^m \), and define the rank of \(\Delta \) to be

\[
\text{rk}(\Delta) = \dim_R(R\Delta)
\]

If \(\Delta \subset \Lambda \) and \(\Lambda \) is also a \(D \)-submodule, we will say that \(\Delta \) is primitive in \(\Lambda \) if any submodule of \(\Lambda \) of rank equal to \(\text{rk}(\Delta) \) which contains \(\Delta \) is equal to \(\Delta \), and we will call \(\Delta \) primitive if it is primitive in \(D^m \). It follows from Lemma 6.2 in [20] that \(\Delta \) is primitive if and only if

\[
\Delta = R\Delta \cap D^m.
\]

We also define

\[
\mathcal{B}(D, m) = \text{the set of nonzero primitive submodules of } D^m.
\]

and

\[
\mathcal{M}(R, D, m) = \{ g\Delta \mid g \in GL(m, R), \Delta \text{ is a submodule of } D^m. \}.
\]

Note that \(\mathcal{B}(D, m) \) is a poset ordered by inclusion of length \(m \). Moreover we have,

Lemma 4.1. Let \(\Gamma \) be a discrete \(\mathbb{Z} \)-submodule of \(K^m \). Then

\[
\Gamma = \mathbb{Z}x_1 + \cdots + \mathbb{Z}x_k
\]

where \(x_1, \ldots, x_k \) are linearly independent over \(K \). In particular, \(\Gamma \) is free and finitely generated.
Proof. Since $\Gamma \subset K^m$, we can take a maximal linearly independent (over K) set $\{v_1, \ldots, v_k\}$ of vectors. Let Γ' denote the free \mathbb{Z}-module $\mathbb{Z}v_1 + \cdots + \mathbb{Z}v_k$. Clearly, Γ' is a \mathbb{Z}-submodule of Γ. Moreover, Γ/Γ' is a discrete subset of the compact space $(Kv_1 + \cdots + Kv_k)/\Gamma'$, and is consequently finite. Thus Γ' has finite index in Γ and so Γ is a free \mathbb{Z}-module of rank k. The existence and linear independence of the basis follows. □

Consequently, $\mathcal{M}(\mathcal{R}, \mathcal{D}, m)$ can be identified with the set of discrete \mathbb{Z}-submodules of K^m. We now wish to measure the size of such submodules. Let $\nu : \mathcal{M}(\mathcal{R}, \mathcal{D}, m) \to \mathbb{R}_+$ be a function. Following [20], we will call ν norm-like if the following three conditions are satisfied:

1. For any $\Delta, \Delta' \in \mathcal{M}(\mathcal{R}, \mathcal{D}, m)$, with $\Delta' \subset \Delta$ and $rk(\Delta) = rk(\Delta')$, one has $\nu(\Delta') \geq \nu(\Delta)$.
2. There exists $C_\nu > 0$ such that for any $\Delta \in \mathcal{M}(\mathcal{R}, \mathcal{D}, m)$ and any $\gamma \not\in \mathcal{R}\Delta$ one has $\nu(\Delta + \mathcal{D}\gamma) \leq C_\nu \nu(\Delta) \nu(\mathcal{D}\gamma)$.
3. For every submodule Δ of \mathcal{D}^m, the function $GL(m, \mathcal{R}) \to \mathbb{R}_+, g \to \nu(g\Delta)$ is continuous.

The following theorem is an ultrametric version of theorem 6.3 in [20]. The proof of the theorem is to a large extent identical to that in [20], or [18]. Rather than reproduce it, we point out the differences in the statement and provide the reader with justifications.

Theorem 4.2. Let \mathcal{X} be a separable ultrametric space, μ denote a locally finite Borel measure on \mathcal{X}, and let $\mathcal{D} \subset K \subset \mathcal{R}$ be as above. For $m \in \mathbb{N}$, let a ball $B = B(x_0, r_0) \subset \mathcal{X}$ and a continuous map $h : B \to GL(m, \mathcal{R})$ be given. Let ν be a norm-like function on $\mathcal{M}(\mathcal{R}, \mathcal{D}, m)$. For any $\Delta \in \mathcal{B}(\mathcal{D}, m)$, denote by ψ_Δ the function $x \to \nu(h(x)\Delta)$ on B. Now suppose that for some $C, \alpha > 0$ and $0 < \rho < \frac{1}{C_\nu}$, the following three conditions are satisfied.

1. For every $\Delta \in \mathcal{B}(\mathcal{D}, m)$, the function ψ_Δ is (C, α)-good on B.
2. For every $\Delta \in \mathcal{B}(\mathcal{D}, m)$, $|\psi_\Delta|_B, \mu \geq \rho$.
3. For every $x \in B \cap \text{supp } \mu$, $\# \{\Delta \in \mathcal{B}(\mathcal{D}, m) \mid \psi_\Delta(x) < \rho\} < \infty$.

Then for any positive $\epsilon \leq \rho$ one has

$$\mu \left(\left\{ x \in B \mid \nu(h(x)\gamma) < \epsilon \text{ for some } \gamma \in \mathcal{D}^m \setminus \{0\} \right\} \right) \leq mC \left(\frac{\epsilon}{\rho} \right)^\alpha \mu(B).$$
Theorem 6 in [20] differs from the above statement in two ways. Firstly, the domain of the map h above is a dilate of B, namely it is $B(x_0, 3^m r_0)$. Secondly, it is proven for the class of Federer measures (see below), a restriction we no longer need. This rids the estimate of a constant. We elaborate on these below.

Dilation of balls: The proof of theorem 4.2 is based on a delicate induction argument. Essentially, a notion of “marked” points is introduced and it is established that the set of unmarked points has small measure. In the induction step, a collection of balls with centers inside B is taken. However, these balls need not be contained in B, and therefore, one needs to dilate the ball B and introduce a constraint on the measure μ so as to ensure that it behaves well with respect to dilations. This is the so-called Federer condition and it introduces an additional constant in the above estimate. However, in the case that X is ultrametric, each of the above balls must be contained in B. Therefore we do not need to dilate the ball and restrict ourselves to Federer measures.

Besicovitch constant: The subsequent strategy is to cover the dilated ball B and choose a countable sub-covering with some multiplicity (depending on X). The fact that this can be done is the content of the Besicovitch covering theorem (cf. [18] and the references therein). This introduces a constant (a power of the multiplicity) in the above estimate. For separable ultrametric spaces, as can be easily verified a subcovering with multiplicity one suffices.

To apply the above theorem, we take $\mathcal{D} = \mathcal{Z}$, and $\mathcal{R} = \mathcal{K}$. Let e_0, e_1, \ldots, e_m denote the standard basis of \mathcal{K}^m. Let $e_I = e_{i_1} \wedge \cdots \wedge e_{i_m}$ where $I = (i_1, \ldots, i_m)$. We extend this norm to the exterior algebra of \mathcal{K}^m. Namely, for $w = \sum_I w_I e_I$, we set $|w| = \max_I |w_I|$. Since Γ is a finitely generated free \mathcal{Z}-module, we can choose a basis v_1, v_2, \ldots, v_r (where r is the rank of Γ as a \mathcal{Z}-module) of Γ and define

\begin{equation}
|\Gamma| = |v_1 \wedge v_2 \wedge \cdots \wedge v_r|
\end{equation}

Note that Γ is a lattice in $\mathcal{K} \Gamma$ and that the vectors v_i generate this space. Moreover, it turns out that

Lemma 4.3. The function $| |$ is norm like on $\mathfrak{M}(\mathcal{K}, \mathcal{Z}, m)$.

Proof. Property N3 is a consequence of the definition. To prove N2, we take w representing Δ, and $C_\nu = 1$. Then w, γ is a basis for $\Delta + \mathcal{Z} \gamma$
and so it suffices to prove that $|w \wedge \gamma| \leq |w||\gamma|$. Let $w = \sum_{I} w_{I}e_{I}$ and $\gamma = \sum_{i=1}^{k} \gamma_{i}e_{i}$. Then

$$|w \wedge \gamma| \leq \max_{1 \leq i \leq k} \max_{I} |w_{I}\gamma_{i}| \leq \max_{I} |w_{I}| \max_{1 \leq i \leq k} |\gamma_{i}| = |w||\gamma|.$$

It is also straightforward to verify the veracity of N1. \hfill \Box

We thus have:

Theorem 4.4. Let $m, d \in \mathbb{N}$, $C, \alpha > 0$ and $0 < \rho < 1$ be given. Let a ball $B = B(x_{0}, r_{0}) \subset K^{d}$ and a continuous map $h : B \to GL(m, K)$ be given. For any $\Delta \in \mathcal{B}(Z, m)$, let $\psi_{\Delta}(x) = |h(x)\Delta|$, $x \in B$. Assume that

1. For every $\Delta \in \mathcal{B}(Z, m)$, the function ψ_{Δ} is (C, α)-good on B.
2. For every $\Delta \in \mathcal{B}(Z, m)$, $|\psi_{\Delta}|_{B} \geq \rho$.
3. For every $x \in B$, $\sharp\{\Delta \in \mathcal{B}(Z, m) \mid \psi_{\Delta}(x) < \rho\} < \infty$.

Then for any positive $\epsilon \leq \rho$ one has

$$\lambda\left(\{x \in B \mid \delta(h(x)Z^{m}) < \epsilon\}\right) \leq mC\left(\frac{\epsilon}{\rho}\right)^{\alpha}\lambda(B).$$

Proof. We apply theorem 4.2. Lemma 4.3 guarantees the norm-like behavior of $| |$ whereas condition (3) follows from the discreteness of $\wedge^{r}(Z^{m})$ in $\wedge^{r}(K^{m})$. Further, if $\delta(h(x)Z^{m}) < \epsilon$ then there exists a non-zero vector $w \in Z^{m}$ such that $|h(x)w| < \epsilon$. \hfill \Box

We now complete the proof of theorem 2.8 using:

Theorem 4.5. Let $f = (f_{1}, \ldots, f_{n})$ be a C^{d} map from a ball $B \subset K^{d}$ to K^{n} which satisfies the following two conditions:

1. For any $c = (c_{0}, \ldots, c_{n}) \in K^{n+1}$, $c_{0} + \sum_{i=1}^{n} c_{i}f_{i}$ is (C, α)-good on B.
2. For any $c \in K^{n}$ with $|c| \geq 1$,

$$|c_{0} + \sum_{i=1}^{n} c_{i}f_{i}|_{B} \geq \rho$$

Take any $\epsilon \leq \rho$ and set $h(x) = g_{t}u_{f(x)}$. Then,

$$\lambda(\{x \in B \mid \delta(h(x)Z^{n+1}) < \epsilon\}) \leq (n + 1)C\left(\frac{\epsilon}{\rho}\right)^{\alpha}\lambda(B).$$
Proof. Let us begin by describing the action of \(h(x) \) on \(\mathcal{B}(\mathcal{D}, m) \). To do this, we fix a basis (the standard one) \(e_0, e_1, \ldots, e_n \) of \(\mathcal{K}^{n+1} \). We now take a submodule \(\Gamma \in \mathcal{B}(\mathcal{D}, m) \), and an element \(w \in \Lambda^r(\mathcal{K}^{n+1}) \) of the form \(w = \sum_I w_I e_I \) representing \(\Gamma \). Then,

\[
u_{\Gamma(x)} w = \begin{cases} e_I \\ e_I + \sum_{i \in I} \pm f_i(x) e_{I \cup \{0\} \setminus \{i\}} & 0 \in I \\ \text{else.} & \end{cases}
\]

and so we have

\[
u_{\Gamma(x)} w = \sum_{0 \notin I} w_I e_I + \sum_{0 \in I} \left(w_I + \sum_{i \not\in I} \pm w_{I \cup \{i\} \setminus \{0\}} f_i(x) \right) e_I
\]

If we now apply \(g_{\Gamma} \) to both sides of the above equation, we get

\[
u_{\Gamma(x)} w = \sum_I h_I(x) e_I
\]

where

\[
 h_I(x) = \begin{cases} (\prod_{i \in I} k^{-i}) w_I & 0 \notin I \\ (\prod_{i \not\in I} k^i)(w_I + \sum_{i \not\in I} \pm w_{I \cup \{i\} \setminus \{0\}} f_i(x)) & \text{else.}
\end{cases}
\]

Hence, all the coordinates of \(h_I(x) \) are of the form \(c_0 + \sum_{i=1}^n c_i f_i(x) \) for some \(c \in \mathcal{K}^{n+1} \). By assumption 1, any such combination is \((C, \alpha) \)-good on \(\tilde{B} \). Then, by property 2 following definition 3.4, we have that \(\sup h_I \) is \((C, \alpha) \)-good as well. Moreover, since \(w_I \in \mathcal{Z} \) for each \(I \), and at least one of them is non-zero, we can conclude that there exists \(I \) containing 0 such that \(h_I(x) = c_0 + \sum_{i=1}^n c_i f_i(x) \) and \(|c| \geq 1 \) which implies that \(|h_I|_B \geq \rho \). If we now define \(\psi_I(x) = |h(x)\Gamma| \), this means that \(|\psi|_B \geq \rho \). Now an application of theorem 4.3 completes the proof.

We now proceed to a proof of theorem 2.3 using theorem 4.3. Take \(U \subset \mathcal{K}^d \), \(f : U \to \mathcal{K}^n \), and \(x_0 \in U \). Using proposition 3.6, we can find a neighborhood \(V \subset U \) of \(x_0 \) such that any linear combination of 1, \(f_1, \ldots, f_n \) is \((d^{\frac{1}{2}} + \frac{1}{m}) \)-good on \(V \). Choose a ball \(B = B(x_0, r) \subset V \). Then \(f \) and \(B \) will satisfy condition 1 of theorem 4.3. As for condition 2, it is an immediate consequence of the linear independence of 1, \(f_1, \ldots, f_n \) over \(\mathcal{K} \). Thus, an application of theorem 4.3 completes the proof.

Thus, it follows that for any \(t \in \mathbb{Z}_+^n \), \(\lambda(E_t) \leq d^{\frac{1}{2}} \left(\frac{k^{-d}}{\rho} \right)^\frac{1}{m} \) and so,

\[
\sum_{t \in \mathbb{Z}_+^n} \lambda(E_t) = \sum_{q=1}^\infty \sum_{t=t} q^{-d/q/d} \approx \sum_{q=1}^\infty q^n q^{-d/q/d} \text{ which converges.}
\]

This immediately implies lemma 2.7 thus completing the proof of Theorem 1.5.
5. **Dynamical Applications and concluding remarks**

5.1. **Dynamical Applications.** We now proceed to applications of a dynamical nature. Following work of G. Margulis [26], it has been known that orbits of unipotent flows on $\text{SL}(n, \mathbb{R})/\text{SL}(n, \mathbb{Z})$ are non-divergent. This was extended by S.G. Dani (cf. [9] and the references therein) in several important ways. Specifically, given a lattice Λ in \mathbb{R}^n and any unipotent flow $\{u_t\}_{t \in \mathbb{R}}$, it was shown that one can find a compact $K \subset \text{SL}(n, \mathbb{R})/\text{SL}(n, \mathbb{Z})$ such that $u_t\Lambda$ spends most of its time in this compact set and a quantitative estimate on this time was obtained. Secondly, it was shown that under suitable conditions (i.e. unless the orbit of a lattice is contained in a proper closed subset), one could pick a compact set which works for any lattice, and these results were extended to general semi-simple Lie groups and their lattices. In [18], the authors obtain a quantitative improvement of Dani’s result (for the case $\text{SL}(n, \mathbb{R})/\text{SL}(n, \mathbb{Z})$) and in [20], these results were extended to the S-arithmetic case. The question of establishing unipotent non-divergence in characteristic p was raised by S.G. Dani in [10]. Using theorem 4.4 and 2.3 it is possible to answer this question for $\text{SL}(n, \mathbb{K})/\text{SL}(n, \mathbb{Z})$. Specifically it can be shown that,

Theorem 5.1. Let $\Lambda \in \Omega_n$ be any lattice. Then there exist positive constants $C = C(n)$ and $\rho = \rho(\Lambda)$ such that for any one-parameter subgroup $\{u_t\}$ of $\text{SL}(n, \mathbb{K})$, for any ball $B \subset \mathbb{K}$ containing 0, and any $\epsilon \leq \rho$, we have

$$
(5.1) \quad \mu \left(\left\{ t \in B \mid \delta(u_t\Lambda) < \epsilon \right\} \right) \leq C \left(\frac{\epsilon}{\rho} \right)^{\frac{1}{n^2}} \mu(B).
$$

The proof will follow in a sequel [12] where we will also establish more general non-divergence results for G/Γ where G is the group of \mathbb{K}-points of a semi-simple algebraic group defined over \mathbb{K} and Γ is a lattice in G.

5.2. **More on Diophantine Approximation.** One can ask questions in a more general framework as introduced in [17] (see also [28]). Namely, one can study Diophantine properties of points with respect to measures, and show that a large class of measures (including measures supported on fractal subsets of \mathbb{K}^ν) are strongly extremal. Definitions and details will appear in the author’s PhD. thesis. One can also seek to extend the results in this paper as well as [20] and obtain Khintchine-type theorems over ultrametric fields (cf. [5], [3], [1] for the real variable case, [2], [4], [21] for results over \mathbb{Q}_p and [14], [11] for results over \mathbb{K}).
Finally, following [10] (see also [13]), it would be interesting to study Diophantine properties of affine subspaces over \mathbb{Q}_p and K.

REFERENCES

[1] V.Beresnevich, A Groshev type theorem for convergence on manifolds, Acta Math Hungar. 94 (2002), No.1 – 2, 99 – 130.

[2] V.Beresnevich, V.Bernik and E.Kovalevskaya, On approximation of p-adic numbers by p-adic algebraic numbers, J.Number Theory, 111, (2005), No.1, 33 – 56.

[3] V.Beresnevich, V.Bernik, D.Kleinbock and G.A.Margulis, Metric Diophantine Approximation: the Khintchine-Groshev theorem for nondegenerate manifolds. Dedicated to Yuri.I.Manin on the occasion of his 65th birthday, Moscow Math. Journal2 (2002), No.2, 203 – 225.

[4] V.Beresnevich and E.Kovalevskaya, On Diophantine approximations of dependent quantities in the p-adic case, (Russian) Mat.Zametki, 73 (2003). No.1 – 2, 21 – 35.

[5] V.Bernik, D.Kleinbock and G.A.Margulis, Khintchine type theorems on manifolds : the convergence case for the standard and multiplicative versions, Internat.Math.Res.Notices (2001), No.9, 453 – 486.

[6] M. Bachir Bekka and Matthias Mayer, Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, Cambridge University Press (2000).

[7] J.W.S. Cassels, An introduction to Diophantine Approximation, Cambridge tracts in Mathematics.vol 45.Cambridge Univ.Press, Cambridge, (1957).

[8] S.G.Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine Approximation, J.Reine Angew.Math 360 (1985), 214.

[9] S.G.Dani, On orbits of unipotent flows on homogeneous spaces,2. Ergodic Theory Dynamical systems 6 (1986), 167 – 182.

[10] S.G.Dani, Continuous equivariant images of lattice-actions on boundaries, Ann. Math., 119 (1984), 111 – 119.

[11] M. M. Dodson, S. Kristensen and J. Levesley, A quantitative Khintchine-Groshev type theorem over a field of formal series, to appear in Indag. Math. (N.S.).

[12] Anish Ghosh, Orbits of unipotent flows in finite characteristic, In preparation.
[13] Anish Ghosh, *A Khintchine-type theorem for hyperplanes*, J.London Math.Soc. To appear.

[14] Kae Inoue and Hitoshi Nakada, *On metric Diophantine approximation in positive characteristic*, Acta Arith. 110 (2003), no.3, 205 – 218.

[15] D.Kleinbock, *Some applications of homogeneous dynamics to number theory*, Smooth ergodic theory and its applications, Proc.Sympos.Pure.Math.69, AMS, Providence RI, (2001), 639 – 660.

[16] D.Kleinbock, *Extremal subspaces and their submanifolds*, Geom.Funct.Anal. 13, (2003), no 2 437 – 466.

[17] D.Kleinbock, E.Lindenstrauss and B.Weiss, *On Fractal Measures and Diophantine Approximation*, Selecta Math. To appear.

[18] D.Kleinbock and G.A.Margulis, *Flows on homogeneous spaces and Diophantine Approximation on Manifolds*, Ann. Math., 148 (1998), 339 – 360.

[19] D.Kleinbock and G.A.Margulis, *Bounded orbits of nonquasiunipotent flows on homogeneous spaces*, Amer.Math.Soc.Transl. 171 (1996), 141 – 172.

[20] D.Kleinbock and G.Tomanov, *Flows on S-arithmetic homogeneous spaces and applications to metric Diophantine Approximation*, Preprint, http://front.math.ucdavis.edu/math.NT/0506510.

[21] E.Kovalevskaya, *p-adic variant of the convergence Khintchine theorem for curves over \mathbb{Z}_p*, Acta Math. Inform. Univ. Ostraviensis 10 (2002), No. 1, 71 – 78.

[22] Simon Kristensen, *On well approximable matrices over a field of formal series*, Math.Proc.Camb.Phil.Soc. (2003), 135(2), 255 – 268.

[23] Simon Kristensen, *Badly Approximable systems of linear forms over a field of formal series*, Preprint.

[24] K.Mahler, *Über das Mass der Menge aller S-Zahlen*, Math Ann. 106, 1932, 131 – 139.

[25] Kurt Mahler, *An analogue to Minkowski’s Geometry of numbers in a field of series*, Ann.Math., 2nd Ser.1941, Vol.42, No.2. 488 – 522.

[26] G.A.Margulis, *On the action of unipotent group in the space of lattices*, Proceedings of the Summer School on group representations, (Budapest 1971), Académiai Kiado, Budapest, (1975), 365 – 370.

[27] G.Prasad, *Strong approximation theorem for semi-simple groups over function fields*, Ann. Math., 105 (1977), 553 – 572.
[28] A. Pollington and S. Velani, *Metric Diophantine Approximation and ‘absolutely friendly’ measures*, Preprint.

[29] W. H. Schikhof, *Ultrametric Calculus, an introduction to p-adic analysis*, Cambridge studies in advanced mathematics, 4. Cambridge University Press, (1984).

[30] Jean-Pierre Serre, *Arbres, Amalgames, SL₂*. Asterisque no.46, Soc.Math.France, (1977).

[31] V. G. Sprindžuk, *Mahler’s Problem in Metric Number theory* (Translated from the Russian by B. Volkmann), Translations of Mathematical Monographs, AMS, Vol25, (1969).

[32] V. G. Sprindžuk, *Achievements and problems in Diophantine Approximation theory*, Russian Math. Surveys 35 (1980), 1 – 80.

[33] G. Tomanov, *Orbits on homogeneous spaces of arithmetic origin and approximations*, Advanced Studies in Pure Mathematics, 26 (2000), 265 – 297.

[34] A. Weil, *Basic Number Theory*, Springer-Verlag, New York, (1995).

[35] R. Zimmer, *Ergodic Theory and Semisimple Groups*, Birkhäuser, Boston, (1984).

Anish Ghosh
MS 050, Brandeis University
415 South Street
Waltham, MA-02454
U.S.A.
ghosh@brandeis.edu