In Vivo Measurement of Carbon-13 Labeling of Glutamate and Glutamine in Human Brain Using Proton Magnetic Resonance Spectroscopy

Li An (li.an@nih.gov)
National Institutes of Health

Shizhe Li
National Institutes of Health

Maria Ferraris Araneta
National Institutes of Health

Milalynn Victorino
National Institutes of Health

Christopher Johnson
National Institutes of Health

Jun Shen
National Institutes of Health

Research Article

Keywords: 13C, fractional enrichment, glutamate, glutamine

DOI: https://doi.org/10.21203/rs.3.rs-127754/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

A single-step spectral editing 1H magnetic resonance spectroscopy (MRS) technique was used to measure fractional enrichments of glutamate and glutamine in the dorsal anterior cingulate cortex of five healthy volunteers after oral administration of [U-13C]glucose. Strong pseudo singlets of glutamate and glutamine were induced at an echo time of 56 ms using an always-on editing pulse at 2.12 ppm. At 113 ± 9 minutes after oral administration of [U-13C]glucose, fractional enrichment of glutamate was found to be $64 \pm 5\%$ with 1.7% within-subject coefficient of variation (CV) and fractional enrichment of glutamine was found to be $40 \pm 10\%$ with 11% within-subject CV. This study demonstrated that 13C labeling of both glutamate and glutamine can be measured with the high sensitivity and spatial resolution of proton MRS using a proton-only MRS technique with standard commercial hardware. Furthermore, it is now feasible to measure 13C labeling of glutamate and glutamine in limbic structures, which play major roles in behavioral and emotional responses and whose abnormalities are involved in many neuropsychiatric disorders.

Introduction

Noninvasive in vivo detection of 13C labeling of glutamate (Glu) and glutamine (Gln) is a powerful tool for investigating Glu and Gln metabolism and neurotransmission in the brain. Two types of 13C magnetic resonance spectroscopy (MRS) techniques have been widely used: direct 13C MRS and indirect 1H-13C MRS. Due to the much lower sensitivity of 13C nuclei, direct 13C MRS generally requires surface coils and very large tissue volume to achieve adequate signal-to-noise ratio (SNR). Hence, only the neocortex is accessible to direct 13C MRS experiments. The indirect 1H-13C MRS techniques make use of the 1H-13C coupling and difference spectroscopy to detect signals from protons bound to 13C. Because of the larger gyromagnetic ratio of 1H compared to 13C, these indirect 13C detection techniques have higher sensitivity compared to the direct 13C detection techniques. To perform either direct 13C or indirect 1H-13C MRS, broadband magnetic resonance imaging (MRI) machines equipped with heteronuclear capabilities are required. The RF coil assembly needs to be high-efficiency non-volume 13C and 1H coils, which is a non-standard device and not commercially available, to enhance sensitivity and make heteronuclear nuclear Overhauser enhancement/decoupling feasible. Because of these technical barriers, 13C MRS of human brain has been largely confined to only a few research groups with very limited clinical applications.

Attempts have been made to circumvent the hardware limitation of 13C MRS by measuring the changes in short echo time (TE) 1H MRS spectra caused by incorporation of 13C labels into brain amino acids. However, it has been difficult to reliably separate Glu and Gln in the crowded 1H MRS spectra. With the incorporation of 13C labels, the short TE 1H MRS spectra become even more complex. Due to these difficulties, quantification of 13C labeling of both Glu and Gln using 1H MRS in the human brain has not been reported.
Recently, our laboratory developed a 7 T single-step spectral editing method which can reliably measure Glu and Gln at TE = 56 ms\(^\text{11}\). By placing an editing pulse at 2.12 ppm, which targets the H3 protons of Glu and Gln, the H4 protons of Glu and Gln form intense pseudo singlets at TE = 56 ms. The editing pulse here is used to alter the J-evolution of the strongly coupled spins such that Glu H4 and Gln H4 form intense pseudo singlet peaks at a relatively short TE of 56 ms. Without using an editing pulse, Glu H4 and Gln H4 form pseudo singlet peaks at a much longer TE of 100–110 ms\(^\text{12}\). We found that the Gln H4 pseudo singlet induced by the editing pulse at TE = 56 ms is at least 61% more intense than the Gln H4 pseudo singlet formed naturally at TE = 106 ms\(^\text{11}\).

In this work, we demonstrate the feasibility of measuring \(^{13}\)C fractional enrichments of Glu and Gln using the single-step spectral editing \(^1\)H MRS technique (TE = 56 ms) with a commercial proton-only head coil at 7 T. Since this is a proton-only technique, no broadband scanner or any custom-made hardware is necessary. In addition, because of the much higher sensitivity of proton MRS, we will also demonstrate, for the first time, detection of \(^{13}\)C labeling of Glu and Gln from an area in the limbic system. Specifically, we will show that \(^{13}\)C labeling of Glu and Gln can be measured with high precision from the dorsal anterior cingulate cortex (dACC), a limbic structure involved in cognition and motor control but is beyond the reach of conventional \(^{13}\)C MRS that relies on surface coils. It is hoped that the demonstration of measuring \(^{13}\)C-labeling of Glu and Gln with the high sensitivity and spatial resolution of proton MRS using commercial scanners and RF coils will greatly facilitate the adoption of \(^{13}\)C MRS strategies for probing energy metabolism and glutamatergic neurotransmission in clinical research.

Results

Figure 1 shows the basis spectra of Glu, [\(^4\)-\(^{13}\)C]Glu, [\(^4,5\)-\(^{13}\)C]Glu, Gln, [\(^4\)-\(^{13}\)C]Gln, [\(^4,5\)-\(^{13}\)C]Gln, Asp, [\(^3\)-\(^{13}\)C]Asp, [\(^3,4\)-\(^{13}\)C]Asp, GABA, and [\(^2\)-\(^{13}\)C]GABA. As shown in Fig. 1, the spectra of Glu and Gln at TE = 56 ms with the editing pulse placed at 2.12 ppm are dominated by their respective H4 and H2 pseudo singlets. The spectrum of [\(^4,5\)-\(^{13}\)C]Glu is highly similar to that of [\(^4\)-\(^{13}\)C]Glu. This high similarity is expected because the \(^{13}\)C satellites of Glu H4 in the proton channel are resulted from the large one-bond scalar coupling between the H4 pseudo singlet and the \(^{13}\)C label at C4 while the \(^{13}\)C label at C5 only contributes to additional line-broadening of the \(^{13}\)C satellite signals via weak long-range scalar interactions. The effects of additional downstream \(^{13}\)C isotopomers on the \(^{13}\)C satellite signals of Glu H4 are similar. As both carbons of the acetyl CoA are \(^{13}\)C-labeled after administration of uniformly labeled glucose\(^\text{13}\), [\(^4,5\)-\(^{13}\)C]Glu was chosen to represent the \(^{13}\)C satellite signals of Glu H4. Similarly, [\(^4,5\)-\(^{13}\)C]Gln and [\(^3,4\)-\(^{13}\)C]Asp were chosen to represent the \(^{13}\)C satellite signals of Gln H4 and Asp H3, respectively. The basis spectrum of [\(^2\)-\(^{13}\)C]GABA was not included in the basis set because the differences between the basis spectra of [\(^2\)-\(^{13}\)C]GABA and GABA are vanishingly small compared to the resonance signals of Glu H4, Gln H4, and their \(^{13}\)C satellites, as shown in Fig. 1. Due to magnetization transfer within the strongly coupled spin system, the \(^{13}\)C satellite spectra of Glu H4 and Gln H4 at TE = 56 ms are highly asymmetrical and dominated by a single downfield peak. It can be shown using density matrix
simulation that the two 13C satellites of Glu H4 and Gln H4 at TE = 56 ms become symmetrical at much higher field strength (data not shown).

Time-course 1H spectra from the dACC of the five subjects are displayed in Fig. 2. The spectra are highly consistent with the spectral patterns predicted by the numerical simulations. The Glu H4 peak at 2.34 ppm dropped dramatically after oral administration of [U-13C]glucose and, correspondingly, the peak at 2.56 ppm significantly increased due to the rise of the downfield 13C satellite signals of Glu H4. Figure 3 displays the time-course spectra of subject 1 and corresponding fitted spectra of Glu, Gln and their 13C satellites. In the fitted Gln time-course spectra, the drop in peak amplitude of Gln H4 after oral administration of [U-13C]glucose can be clearly seen. The spectra and corresponding fits for the pre-13C MRS scan and the last post-13C scan of subject 1 are displayed in Fig. 4. The spectral model fits the in vivo spectra very well. The spline baseline obtained by fitting the pre-13C spectrum is labelled as baseline$_1$. The total baseline for the post-13C spectrum is the sum of baseline$_1$ and a much weaker baseline$_2$ which was determined when fitting the post-13C spectrum.

Metabolite ratios ($/[tCr]$) in the dACC of the five subjects quantified from the pre-13C spectrum of each subject are given in Table 1. The results are highly consistent with our earlier 1H-only MRS study of the same brain region using the same pulse sequence11. Using the 12.6 mL (3.5 × 1.8 × 2 cm3) voxel size and 10 min scan time, the CRLB values for Glu and Gln were found to be 1.6 ± 0.2% for Glu and 3.2 ± 0.4% for Gln, indicating excellent precision. Table 2 gives the fractional enrichments of Glu H4 and Gln H4 for the five subjects computed from the last two post-13C spectra of each subject. The last two post-13C spectra were acquired at 113 ± 9 min after oral administration of [U-13C]glucose and each scan lasted 5 min. The fractional enrichments were found to be 64 ± 5% with 1.7% within-subject coefficient of variation (CV) for Glu and 40 ± 10% with 11% within-subject CV for Gln.
Table 1
Metabolite ratios (/[tCr]) in the dACC of five healthy volunteers quantified from the pre-\(^{13}\)C spectrum of each subject. Voxel size = 3.5 × 1.8 × 2 cm\(^3\); TR = 2.2 s; TE = 56 ms; editing pulse frequency = 2.12 ppm; editing pulse flip angle = 180°; spectral width = 4000 Hz; number of data points = 1024; number of averages = 264; and total scan time = 10 min.

Metabolite ratio (/[tCr])	CRLB (%)	
NAA	1.33 ± 0.09	1.2 ± 0.3
Glu	1.16 ± 0.08	1.6 ± 0.2
Gln	0.33 ± 0.07	3.2 ± 0.4
GSH	0.30 ± 0.02	3.0 ± 0.4
Asp	0.37 ± 0.07	8.0 ± 3.6
tCr	1	0.7 ± 0.2
tCho	0.25 ± 0.02	0.8 ± 0.2

Table 2
Fractional enrichments of Glu H4 and Gln H4 in the dACC of the five healthy volunteers computed from the last two post-\(^{13}\)C spectra of each subject, which were acquired at 113 ± 9 min after oral administration of \([U-^{13}\text{C}]\text{glucose}\). For each post-\(^{13}\)C MRS scan, the number of averages was 132 and the total scan time was 5 min.

Fractional enrichment (%)	Within-subject CV (%)	
Glu H4	64 ± 5	1.7
Gln H4	40 ± 10	11

Figure 5 displays the plots of fractional enrichments of Glu H4 and Gln H4 vs. time after oral administration of \([U-^{13}\text{C}]\text{glucose}\) for all five healthy volunteers. The behavior of the time course of \(^{13}\text{C}\)-labeled Glu and Gln shown in Fig. 5 is consistent with them attaining or approaching maximum \(^{13}\text{C}\) labeling as expected from the time scale of cerebral Glu and Gln turnover. Similar behavior was also observed in our previous direct \(^{13}\text{C}\) MRS experiments in the carboxylic/amide spectral region following oral administration of \([U-^{13}\text{C}]\text{glucose}\). In that experiment, there was little variation in the signal intensities of Glu C5 and Gln C4 + Asp C3 between spectra acquired at the 101–109 min and 113–
121 min intervals after oral [U-^{13}C]glucose administration, indicating an approximate isotopic steady state being reached.

Discussion

Here, we demonstrated the feasibility of using a single-step spectral editing sequence with TE = 56 ms to measure fractional enrichments of Glu and Gln in the dACC of healthy volunteers after oral administration of [U-^{13}C]glucose. Compared to the existing indirect ^{1}H-^{13}C MRS techniques that use ^{1}H and ^{13}C surface coils, this ^{1}H MRS method can acquire MRS data from a voxel away from the neocortex using a standard ^{1}H head coil. This method relies on using both the pre-^{13}C and post-^{13}C MRS data to compute fractional enrichments of Glu and Gln. Because the subjects exited from the scanner after the pre-^{13}C scan for oral administration of glucose and reentered the scanner for acquisition of the post-^{13}C spectra, the pre-^{13}C and post-^{13}C spectra generally had small differences in metabolite linewidths and lineshape, as well as in the spectral baseline. In our previous work (TE = 106 ms), the frequency shift, zeroth-order phase, and line-broadening of the pre-^{13}C spectrum were adjusted to fit a post-^{13}C spectrum before generating the difference spectrum 15. The ^{13}C-labelled Glu and Gln concentrations were obtained by fitting the difference spectrum. Due to the subtraction of the pre-^{13}C and post-^{13}C spectra, the noise level in the difference spectrum was amplified. In the difference spectrum, the unlabeled Gln H4 peak at 2.44 ppm was very weak with its ^{13}C satellite signals barely discernible. Therefore, the ^{13}C labelling of Gln could not be very reliably measured using the previous ^{1}H MRS technique with TE = 106 ms. In this work, a new post-processing method was developed. The metabolite concentration ratios (/ $[tCr] + 3[tCho]$) of Ace, NAA, NAAG, GABA, GSH, Asp, tCr, tCho, Tau, ml, and sl obtained by fitting the pre-^{13}C spectrum were used as constraints when fitting the post-^{13}C spectra. Meanwhile, the spline baseline obtained from the pre-^{13}C spectrum was also used in fitting the post-^{13}C spectrum, along with an additional much weaker baseline. This approach of using the prior information from the pre-^{13}C spectrum in the fitting of each post-^{13}C spectrum avoids spectrum subtraction and hence the corresponding noise amplification. Additionally, the Gln signals acquired using the current sequence (TE = 56 ms) were at least 61% higher than the Gln signals obtained by the previous sequence (TE = 106 ms) 11. Therefore, a much higher precision for measuring the fractional enrichment of Gln was achieved in this study, which is evidenced by its 11% within-subject CV.

The turnover of NAA and GSH in brain is known to be orders of magnitude slower than that of Glu and Gln. ^{13}C labeling of NAA and GSH in our experiment therefore was ignored. Furthermore, this study used [4,5-^{13}C]Glu to represent all ^{13}C isotopomers of Glu with a ^{13}C label at C4. This approximation is justified because the much greater one-bond ^{1}H-^{13}C scalar coupling ($^{1}J_{HC} = 127$ Hz) splits Glu H4 into an uneven doublet (see Fig. 1) whereas ^{13}C labels at other positions lead to line-broadening of the satellite signals due to the much smaller long-range ^{1}H-^{13}C scalar couplings.
Our in vivo data in Fig. 5 clearly show the sizable effect of Gln isotopic dilution which leads to a smaller Gln fractional enrichment than that of Glu 16. Gln dilution is primarily resulted from exchange between astroglial Gln and unlabeled Gln in blood across the blood–brain barrier 17 as well as oxidation of short- and medium-chain free fatty acids and branched chain amino acids preferentially in astroglia 18,19. The existence of Gln dilution sensitizes the Gln turnover to the effect of intercompartmental Glu-Gln cycling flux 16,20. Using the standard small pool approximation in kinetic analysis, the Glu-Gln cycling flux V_{cyc} at isotopic steady state following administration of [U-13C]glucose is given by Eq. (8) in Ref. 20:

$$V_{cyc} = \frac{V_{Gln(dil.)} f_{Gln}^{ss}}{(f_{Glu}^{ss} - f_{Gln}^{ss})}$$

where $V_{Gln(dil.)}$ is the Gln dilution flux, and f_{Glu}^{ss} and f_{Gln}^{ss} represent fractional enrichments of Glu H4 and Gln H4 at isotopic steady state, respectively. Using the mean literature value of $V_{Gln(dil.)}$ (0.18 μmol/g/min, averaged from the reported range of 0.14–0.22 μmol/g/min, Shen et al. 16 and references therein) and our end point fractional enrichments of Glu H4 and Gln H4, V_{cyc} in the dACC of the healthy subjects was estimated to be 0.32 ± 0.13 μmol/g/min (mean ± SD, n = 5). Interestingly, the estimated V_{cyc} in the dACC of the five subjects closely matches most of the literature V_{cyc} values which were measured from brain regions dominated by the neocortex 16. The high activities of Glu neurotransmission in the dACC is consistent with its purported glutamatergic role in many brain functions and neuropsychiatric disorders.

Although the current study used a 7 T scanner to resolve Glu and Gln H4 protons in the 1H MRS spectra, spectral resolution of Glu and Gln H4 signals at 3 T is also achievable 21. In principle, it is possible to use a similar strategy to measure 13C labeling of Glu H4 and possibly Gln H4 using 1H MRS on the prevalent 3 T scanners. Research along this direction is currently in progress in our laboratory.

Previous studies have demonstrated quantification of the Glu-Gln neurotransmitter cycling flux between neurons and astroglia using direct 13C MRS by measuring fractional enrichments of Glu C4 and Gln C4 at isotopic steady state following administration of 13C-labeled acetate or by measuring dynamic turnover of Glu and Gln following administration of 13C-labeled glucose, lactate, or b-hydroxybutyrate 1. Therefore, it is possible to use the 1H-only MRS technique demonstrated in this study to quantify the Glu-Gln neurotransmitter cycling flux with much higher spatial resolution and from brain regions inaccessible to surface coils (e.g., from limbic structures which play a major role in many neuropsychiatric disorders).

In summary, a recently developed single-step spectral editing technique that induces intense Glu and Gln H4 singlets at TE = 56 ms was used to measure fractional enrichments of Glu and Gln in the dACC of five healthy volunteers after oral administration of [U-13C]glucose. A new post-processing method was developed, in which the metabolite ratios and spline baseline obtained from fitting the pre-13C spectrum were used in the fitting of the post-13C spectra to compute the fractional enrichments of Glu H4 and Gln H4. At 113 ± 9 min after oral administration of [U-13C]glucose, the fractional enrichment of Glu H4 was found to be 64 ± 5% with 1.7% within-subject CV and the fractional enrichment of Gln H4 was found to be
40 ± 10% with 11% within-subject CV. This technique offers the ability to measure Glu neurotransmission in the human brain with the high sensitivity and spatial resolution of 1H MRS using standard commercial equipment. Brain regions inaccessible to surface coils can now be investigated using the method described in this study.

Methods

Five healthy volunteers (two females, three males; age = 34 ± 12 years) were recruited for the study. The study was approved by the Institutional Review Board (IRB) of the National Institute of Mental Health (NIMH). The administration of 13C enriched glucose solution was approved by IRB-NIMH and the National Institutes of Health (NIH) Clinical Center Pharmacy Department. Written informed consent was obtained from every participant before enrollment, and the study was performed according to the Declaration of Helsinki. All experimental protocols and methods were performed in accordance with the guidelines and regulations of NIH MRI Research Facility. Experiments were carried out on a Siemens Magnetom 7 T scanner equipped with a 32-channel receiver head coil. The volunteers underwent overnight fasting before the MRS study.

In each scan session, the subject was first scanned to acquire the pre-13C MRS data. T_1-weighted magnetization prepared rapid gradient echo (MPRAGE) images were acquired with repetition time (TR) = 3 s, TE = 3.9 ms, matrix = 256 x 256 x 256, and resolution = 1 x 1 x 1 mm3. Based on the MPRAGE images, the MRS voxel with a size of 3.5 x 1.8 x 2 cm3 was placed in the dACC of the subject. The first- and second-order B_0 shimming coefficients were adjusted, achieving water linewidths of 11.1 ± 0.4 Hz. The pre-13C MRS scan was subsequently performed using the single-step spectral editing pulse sequence11. The main component of the pulse sequence was a point resolved spectroscopy sequence (PRESS) with an always-on spectral editing pulse between the two 180° refocusing pulses. The editing pulse was a truncated Gaussian pulse with a duration of 10 ms, and it was applied at 2.12 ppm. The pulse sequence parameters were: TR = 2.2 s, TE = 56 ms, editing pulse frequency = 2.12 ppm, editing pulse flip angle = 180°, spectral width = 4000 Hz, number of data points = 1024, number of averages = 264, number of unsuppressed water signal averages = 2, and total scan time = 10 min.

After the pre-13C MRS scan was finished, the subject exited from the scanner and was orally administered 20% w/w 99% enriched [U-13C]glucose solution at a dosage of 0.75 g [U-13C]glucose per kg of body weight following procedures described in our previous study of carbonic anhydrase-catalyzed 13C magnetization transfer14 and references therein. After a rest period, the subject reentered the scanner. The MPRAGE images were repeated, based on which the MRS voxel was placed at the same location and with the same size as the pre-13C MRS scan. Post-13C MRS scans were repeatedly performed, each lasted 5 min (number of averages = 132). B_0 shimming coefficients were adjusted before each MRS scan.

The pre-13C MRS data were processed first and the process was similar to that of the previous work11. Briefly, the raw free induction decay (FID) data were reconstructed into the pre-13C spectrum after going
through the necessary steps that include multi-channel data combination \(^{22}\), eddy current correction \(^{23}\), Bloch-Siegert phase shift correction \(^{24}\), frequency drift correction \(^{25}\), and Fourier transform. The reconstructed pre-\(^{13}\)C spectrum was fitted in the range of 1.8–3.4 ppm by linear combination of numerically computed basis spectra of acetate (Ace), N-acetyl-aspartate (NAA), N-acetylaspartylglutamate (NAAG), \(\gamma\)-aminobutyric acid (GABA), Glu, Gln, glutathione (GSH), aspartate (Asp), total creatine (tCr), total choline (tCho), taurine (Tau), myo-inositol (mi), and scyllo-inositol (si), as well as a spline baseline with 13 knots. The fitting program was developed in-house and was based on the Levenberg-Marquardt least square minimization algorithm. After the metabolite concentrations in arbitrary unit were obtained from the fitting, we computed the metabolite ratios, which were defined as the concentration of a metabolite divided by the sum of concentration of tCr and three times the concentration of tCho. The combined concentration, \([tCr] + 3[tCho]\), weighs approximately equally the intensities of the tCr and tCho singlet peaks and is less prone to errors than using either [tCr] or [tCho] alone.

The post-\(^{13}\)C spectra acquired after oral administration of [U-\(^{13}\)C]glucose were reconstructed in the same way as the pre-\(^{13}\)C spectrum. For the subsequent fitting process, additional basis spectra of \(^{13}\)C satellites of Glu H4, Gln H4 and Asp H3 were simulated. As shown in our previous work \(^{24}\), contributions from GABA is minimal at TE = 56 ms with the editing pulse placed at 2.12 ppm. Hence, \(^{13}\)C-labeled GABA was not included in the basis set. When fitting each post-\(^{13}\)C spectrum, the metabolites ratios (/ [tCr] + 3[tCho]) of Ace, NAA, NAAG, GABA, GSH, Asp, tCr, tCho, Tau, mi, and si were fixed to the pre-\(^{13}\)C values. However, the linewidths and lineshape of the metabolites in a post-\(^{13}\)C spectrum were allowed to be different from those of the pre-\(^{13}\)C spectrum because subject repositioning and \(B_0\) shimming caused changes in the linewidths and lineshape. The sum of metabolite ratios of Glu and its \(^{13}\)C satellites was constrained to be the same as the metabolite ratio of Glu obtained from the pre-\(^{13}\)C spectrum. The same constraints were also applied to Gln and Asp. Because the spectral baseline in the post-\(^{13}\)C spectrum was expected to be slightly different from the spectral baseline in the pre-\(^{13}\)C spectrum due to subject repositioning and \(B_0\) shimming, the spectral baseline in each of the post-\(^{13}\)C spectrum was approximated by the sum of the spline baseline in the pre-\(^{13}\)C spectrum and another much weaker spline baseline with 8 knots.

After the metabolite concentrations were obtained by fitting each post-\(^{13}\)C spectrum, the \(^{13}\)C fractional enrichment of Glu H4 for the post-\(^{13}\)C spectrum was computed as the ratio of the concentration of its \(^{13}\)C satellites to the total concentration of Glu. Meanwhile, the fractional enrichment of Gln H4 for each post-\(^{13}\)C spectrum was similarly computed. The within-subject CV \(^{26}\) of the fractional enrichment values were estimated from the last two post-\(^{13}\)C spectra for each subject, which were acquired at 113 ± 9 min after oral administration of [U-\(^{13}\)C]glucose. The \(^{13}\)C enrichment of Glu H4 is expected to have approximately reached its maximum value at this stage \(^1,14\).

Declarations
Competing Interests:

The authors declare no competing interests.

Author Contributions

J.S. and L.A. conceived and designed the experiments and prepared the manuscript. L.A. developed the pulse sequence and data processing software. L.A. and S.L. performed the experiments. S.L., M.F.A., M.V., and C.S.J. provided medical support. All the authors read and approved the final manuscript.

Acknowledgements

This work was supported by the intramural program of the NIH and NIMH.

Data Availability

Data is available upon request.

Acknowledgements

This work was supported by the intramural program of the NIH and NIMH.

Author Contributions

J.S. and L.A. conceived and designed the experiments and prepared the manuscript. L.A. developed the pulse sequence and data processing software. L.A. and S.L. performed the experiments. S.L., M.F.A., M.V., and C.S.J. provided medical support. All the authors read and approved the final manuscript.

Additional Information

Competing Interests: The authors declare no competing interests.

References

1 Rothman, D. L. et al. In vivo (13) C and (1) H-[13] C MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer. *NMR Biomed* **32**, e4172, doi:10.1002/nbm.4172 (2019).

2 Rothman, D. L. et al. H-1-Observe C-13-Decouple Spectroscopic Measurements of Lactate and Glutamate in the Rat-Brain Invivo. *Proceedings of the National Academy of Sciences of the United States of America* **82**, 1633-1637, doi:DOI 10.1073/pnas.82.6.1633 (1985).

3 Petroff, O. A. C. et al. Cerebral Lactate Turnover after Electroshock - Invivo Measurements by H-1/C-13 Magnetic-Resonance Spectroscopy. *Journal of Cerebral Blood Flow and Metabolism* **12**, 1022-1029, doi:DOI 10.1038/jcbfm.1992.139 (1992).
4 Rothman, D. L. et al. H-1[C-13] Nmr Measurements of [4-C-13]Glutamate Turnover in Human Brain. *Proceedings of the National Academy of Sciences of the United States of America* 89, 9603-9606, doi:DOI 10.1073/pnas.89.20.9603 (1992).

5 Mason, G. F. et al. Measurement of the tricarboxylic acid cycle rate in human grey and white matter in vivo by H-1-[C-13] magnetic resonance spectroscopy at 4.1T. *Journal of Cerebral Blood Flow and Metabolism* 19, 1179-1188, doi:Doi 10.1097/00004647-199911000-00002 (1999).

6 Pan, J. W. et al. Spectroscopic imaging of glutamate C4 turnover in human brain. *Magnetic Resonance in Medicine* 44, 673-679, doi:10.1002/1522-2594(200011)44:5<673::Aid-Mrm3>3.0.Co;2-L (2000).

7 Chen, W. et al. Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using H-1-{C-13} MRS and fMRI. *Magnetic Resonance in Medicine* 45, 349-355, doi:Doi 10.1002/1522-2594(200103)45:3<349::Aid-Mrm1045>3.0.Co;2-8 (2001).

8 Henry, P. G. et al. Proton-observed carbon-edited NMR spectroscopy in strongly coupled second-order spin systems. *Magnetic Resonance in Medicine* 55, 250-257, doi:10.1002/mrm.20764 (2006).

9 De Feyter, H. M. et al. Selective proton-observed, carbon-edited (selPOCE) MRS method for measurement of glutamate and glutamine C-13-labeling in the human frontal cortex. *Magnetic Resonance in Medicine* 80, 11-20, doi:10.1002/mrm.27003 (2018).

10 Boumezbeur, F. et al. NMR measurement of brain oxidative metabolism in monkeys using C-13-labeled glucose without a C-13 radiofrequency channel. *Magnetic Resonance in Medicine* 52, 33-40, doi:10.1002/mrm.20129 (2004).

11 An, L., Araneta, M. F., Victorino, M. & Shen, J. Signal enhancement of glutamine and glutathione by single-step spectral editing. *Journal of Magnetic Resonance* 316, doi:ARTN 106756 10.1016/j.jmr.2020.106756 (2020).

12 Choi, C. H. et al. Improvement of resolution for brain coupled metabolites by optimized H-1 MRS at 7 T. *Nmr in Biomedicine* 23, 1044-1052, doi:10.1002/Nbm.1529 (2010).

13 Li, S. Z. et al. In vivo detection of C-13 isotopomer turnover in the human brain by sequential infusion of C-13 labeled substrates. *Journal of Magnetic Resonance* 218, 16-21, doi:10.1016/j.jmr.2012.03.012 (2012).

14 Li, S. Z. et al. Determining the Rate of Carbonic Anhydrase Reaction in the Human Brain. *Sci Rep-Uk* 8, doi:ARTN 2328 10.1038/s41598-018-20746-x (2018).

15 An, L. et al. In Vivo Detection of 13C Labeling of Glutamate and Glutamine Using Proton MRS at 7T. *ISMRM 23rd Annual Meeting, Toronto, Ontario, Canada*, 0207 (2015).
Shen, J., Rothman, D. L., Behar, K. L. & Xu, S. Determination of the glutamate-glutamine cycling flux using two-compartment dynamic metabolic modeling is sensitive to astroglial dilution. *Journal of Cerebral Blood Flow and Metabolism* **29**, 108-118, doi:10.1038/jcbfm.2008.102 (2009).

Broer, S. & Brookes, N. Transfer of glutamine between astrocytes and neurons. *Journal of Neurochemistry* **77**, 705-719, doi:DOI 10.1046/j.1471-4159.2001.00322.x (2001).

Kanamori, K., Kondrat, R. W. & Ross, B. D. 13C enrichment of extracellular neurotransmitter glutamate in rat brain--combined mass spectrometry and NMR studies of neurotransmitter turnover and uptake into glia in vivo. *Cell Mol Biol (Noisy-le-grand)* **49**, 819-836 (2003).

Cruz, N. F., Lasater, A., Zielke, H. R. & Dienel, G. A. Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. *Journal of Neurochemistry* **92**, 934-947, doi:10.1111/j.1471-4159.2004.02935.x (2005).

Shen, J. Modeling the glutamate-glutamine neurotransmitter cycle. *Front Neuroenergetics* **5**, 1, doi:10.3389/fnene.2013.00001 (2013).

Zhang, Y. & Shen, J. Simultaneous Quantification of Glutamate and Glutamine by J-modulated Spectroscopy at 3 Tesla. *Magnetic Resonance in Medicine* **76**, 725-732, doi:10.1002/mrm.25922 (2016).

An, L., van der Veen, J. W., Li, S. Z., Thomasson, D. M. & Shen, J. Combination of multichannel single-voxel MRS signals using generalized least squares. *Journal of Magnetic Resonance Imaging* **37**, 1445-1450, doi:Doi 10.1002/jmri.23941 (2013).

Klose, U. Invivo Proton Spectroscopy in Presence of Eddy Currents. *Magnetic Resonance in Medicine* **14**, 26-30, doi:DOI 10.1002/mrm.1910140104 (1990).

An, L., Araneta, M. F., Johnson, C. & Shen, J. Simultaneous measurement of glutamate, glutamine, GABA, and glutathione by spectral editing without subtraction. *Magn Reson Med* **80**, 1776-1786, doi:10.1002/mrm.27172 (2018).

An, L., Araneta, M. F., Johnson, C. & Shen, J. Effects of carrier frequency mismatch on frequency-selective spectral editing. *Magnetic Resonance Materials in Physics Biology and Medicine* **32**, 237-246, doi:10.1007/s10334-018-0717-5 (2019).

Bland, J. M. & Altman, D. G. Measurement error. *Brit Med J* **312**, 1654-1654, doi:DOI 10.1136/bmj.312.7047.1654 (1996).