Lipoid proteinosis (LP) is a rare entity with an insidious onset and a gradually progressive clinical course. It variably affects the entire body and predominately manifests through lesions of skin, mucous membrane and brain.

The name Lipoid Proteinosis is a misnomer as no abnormality has been demonstrated in lipid metabolism till date. The name is based on the fact that on histology the material deposited in the tissues resembles lipids and proteins. Although most cases have been seen in the Caucasian races in South Africa and Central Europe, few cases have also been described from Asia.12,6 Till date not more than 500 cases have been reported worldwide. Hence the actual data about incidence and prevalence is not built up.

No definitive age, sex or race predilections exist. There is documented autosomal recessive inheritance as there is usually history of consanguinity among unaffected parents.21 Autosomal dominant inheritance due to mutant genes has also been documented and only this subtype of parent disorder is associated with mental sub normality.12

In the gene encoding extracellular matrix protein 1 (ECM1) on band 1q21 there occur loss of function mutations. Patients with exon 7 mutations display slightly milder clinical features, while mutations in exon 6 result in a more severe phenotype.7,8

Normally the ECM1 gene produces a glycoprotein which is expressed in skin, mucosa and the entire human viscera. Mutation in this gene leads to deposition of hyaline like material in the skin and viscera in abnormal amounts which is the cause of clinical manifestations. These deposits stain positive with Periodic Acid-Schiff stain, are diastase resistant and negative for Congo red.20

Historical Background

In 1908, Seibman presented the initial report on LP.12 In 1929, it was described in detail and named as “Lipoidosis cutis et mucosae” by Urbach and Weithe.24 Moynahan suggested disturbed mucopolysaccharide metabolism as the probable cause in 1966.16 Later in 1967 Rosenthal and Duke proposed quasidominant pedigree pattern resulting from consanguinity.19 Gordon et al. documented the recessive mode of inheritance in 1969.5 Newton et al. (1971) reported neuropsychiatric symptoms and considered intracranial calcifications as pathognomonic.17 Meenan et
al. in 1978 found that bilateral intracranial calcifications are present in at least 70% of cases. Bauer et al. (1981) presented evidence that this is in fact a lysosomal storage disease with variable manifestations. Leonard et al. first reported brain CT findings of LP. In 1985, Emsley and Paster reported that these patients have memory impairment, paranoia, and bilateral temporal lobe calcification. Stine and Smith (1990), suggested that this may be a pleiotropic gene that is dominant in selection and recessive in clinical manifestation. Adolphs et al. demonstrated complete bilateral destruction of amygdala and sparing of hippocampus and all neocortical structures in 1994. Hamada et al. mapped LP to chromosome 1q21 at D1S498 in 2002 and in 2003, concluded that mutations outside exon 7 exhibit more severe mucocutaneous lipid proteinosis phenotype.

Thornton et al. (2008) extensively assessed thirty-four adults living with LP (>10% of the world population) with standardized neuropsychiatric and neuropsychological measures and concluded that medial temporal areas are involved in cognitive and emotive processing.

Pathology

Histologically, LP is characterized by deposition of hyaline like material at the level of the basement membrane (resulting in its thickening at the dermoepidermal junction), papillary dermis, surrounding blood vessels, and around adnexal epithelia especially sweat coils. Ultra structural examination reveals concentric rings of excess basement membrane surrounding blood vessels, and irregular reduplication of lamina densa at dermoepidermal junction resulting in onion-skin appearance.

Biochemically, this material is characterized by decrease in type-1 collagen with overproduction of type-4 or basement-membrane collagen. The hyaline deposits in the biopsies examined consist of a carbohydrate-protein complex containing hyaluronic acid and probably chondroitan-sulphate, plus large amounts of lipids.

Clinical Features

Patients present with persistent rough and feeble hoarse cry which can begin right from infancy is the hallmark. Skin initially shows self limiting vesicular eruptions which heal with scarring. Diffuse thickening and wax like appearance predominates the next phase. Moniliform blepharosis or beaded eyelid margin is also seen in this phase. Tough skin plaques gradually appear on extensor surfaces. Wax like appearance of hands and depigmented lips are also seen. On histopathology there is deposition of hyaline like material at dermo-epidermal junction.
Scalp shows areas of variable hair loss. Lips and tongue become thick, heavy and exhibit gradual reduction in mobility. Laryngeal and airway involvement manifests as hoarse voice, dyspnoea and even dysphagia. Deposits of hyaline like material can be seen as filling defects in upper aero-digestive tract.

Radiological hallmark is the presence of bean to comma shaped intracranial calcifications in the temporal lobes in amygdala which is more evident in patients with longer disease duration. Epilepsy, when present, may be related to these calcifications. Patients with LP should be followed with MRI/CT in order to identify these abnormalities.

Proper plain radiographs (Figure 5) and CT (Figure 6) are adequate for a definitive diagnosis, while MRI (Figure 7 & 8) is useful to assess the brain in totality.

Henkelman et al.24 studied high signal intensity in MRI images of calcified brain tissue and proposed that particulate calcium can reduce T1 relaxation times by surface relaxation mechanisms. As calcium concentration progressively increases, there is first an increase in signal intensity (due mostly to T1 shortening) followed by a decrease in signal intensity. Thus for concentration of calcium particulate for upto 30% by weight, the signal intensity on standard T1-weighted images increases but subsequently decreases. No other reference could be found to prove or disapprove this proposition.

There is a possibility of social stigma due to external appearances and inability to talk or eat properly due to restricted tongue movements. Subjects with LP have a high incidence of neuropsychiatric disorders and perform poorly on facial recognition of positive and negative emotions and on many neuropsychological measures. These findings are consistent with involvement of the parahippocampal medial temporal areas in cognitive and emotive processing.15

The amygdala play a primary role in the processing and memory of emotional reactions and support a variety of functions including behavior, long term memory and olfaction.

Figure 5. Lateral radiograph of skull shows open C shaped suprasellar calcification

Figure 6. Plain CT brain shows bilateral comma shaped calcifications in amygdala

Figure 7. Axial TIW MRI brain shows bilateral comma shaped calcifications in amygdala

Figure 8. Coronal T2W MRI shows hypo intense calcifications in amygdala

Destruction of the amygdala (para hippocampus), while sparing the hippocampus and all neocortical structures and intracranial calcification leads not only to seizures but also impaired social and emotional behavior. Memory defects due to inability in recognizing facial emotions coupled with bouts of rage which occur as the patient cannot read the expression of fear on other persons face.12 Erythropoietic protoporphyria (EPP) needs to be differentiated from LP, in which unlike LP the deposition of PAS-positive material is less dense around blood vessels and never around sweat glands. Increased protoporphyrin levels in erythrocytes...
are also seen in EPP. Deposits in amyloidosis and xanthomas chemically differ from those in LP. No permanent cure is available for LP till date. Only symptomatic medical treatment is being used. For skin lesions treatment trials worldwide include dimethyl sulfoxide, etretinate, intralosomal heparin and D-penicillamine. However none of these medicines have shown consistent good results in one and all. When skin lesions fail to respond to medical therapy, dermabrasion for skin lesions is done. Carbon Dioxide laser for lesions of eyelids and aero digestive tract is also under consideration. When the patient has seizures, anticonvulsants are used for medical management. Essentially the treatment of LP involves a multidisciplinary approach of a team consisting of a dermatologist, pediatrician, physician, neurologist, ENT surgeon, psychiatrist and even medical geneticist.

References

1. Adolphs R, Tranel D, Damasio H, et al.: Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372: 669-672, 1994
2. Appenzeller S, Chaloult E, Velho P et al.: Amygdalae calcifications associated with disease duration in lipid proteinosis. J Neuroimaging 16(2):154-6, 2006
3. Bauer EA, Santa - Cruz DJ, Eisen AZ : Lipid proteinosis: in vivo and in vitro evidence for a lysosomal storage disease. J Invest Derm 76:119-125,1981
4. Emsley RA, Paster L : Lipoid proteinosis presenting with neuropsychiatric manifestations. J Neurol Neurosurg Psychiat 48:1290-1292, 1985
5. Gordon H, Gordon W, Botha V : Lipid proteinosis in an inbred Namaqualand community. Lancet 1:1032-1035, 1969
6. Grosfild JCM, Spaas J, vande Staak WJBM, et al: Hyalinosis cutis et mucosae. Dermatologia 130: 239-66, 1965
7. Hamada T et al : Lipoid proteinosis maps to 1q21 and is caused by mutations in the extracellular matrix protein 1 gene (ECM1). Hum Molec Genet 11: 833-840, 2002
8. Hamada T: Extracellular matrix protein 1 gene (ECM1) mutations in lipid proteinosis and genotype-phenotype correlation. J Invest Derm 120: 345-350, 2003
9. Harper JI, Filipe MI, Staughton RCD: Lipoid proteinosis: Variations in histochemical characteristics. Clin Exp Dermatol 8: 135-141, 1983
10. Helena B, Thornton, Daan Nel, et al: The Neuropsychiatry and Neuropsychology of Lipoid Proteinosis. Journal of Neuropsychiatry Clinical Neurosciences 20: 86-92, 2008
11. Henkelman RM, Watts JF, Kucharczyk: High Signal Intensity in MR Images of Calcified Brain Tissue. Radiology 179: 199-206, 1991
12. Kaur V, Singh G: Lipid proteinosis. Indian J Dermat Venereol Leprol 58: 399-400, 1992
13. Leonard JN et al: C.T scan appearances in a patient with Lipoid Proteinosis. Br J Radiolo 54:1098-1100,1981
14. Meenan FOC et al: Lipoid proteinosis: a clinical, pathological and genetic study. Quart J Med 47: 549-561, 1978
15. Moy LS, Moy RL, Matsuoka LY, et al: Lipoid proteinosis: Ultrastructural and biochemical studies. J Am Acad Dermatol 16: 1193-1201,1987
16. Moynahan EJ : Hyalinosis cutis et mucosae (lipoid proteinosis). Demonstration of a new disorder of mucopolysaccharide metabolism. Proc Ro Soc Med 59: 1125-1126, 1966
17. Newton FH, Rosenberg RN, Lampert PW, et al: O'Brien JS: Neurological involvement in Urbach - Wiethe's disease (lipoid proteinosis): a clinical, ultrastructural, and chemical study. Neurology 21: 1205-1213,1971
18. Ozbek SS, Akyar S, Turgay M : Computed tomography findings in lipid proteinosis: report of two cases. Br J Radiol 67(794): 207-9, 1994
19. Rosenthal AR, Duke JR:Lipoid proteinosis: case report of direct lineal transmission. Am J Ophthal 64: 1120-1124, 1967
20. Shivswamy KN, Thappa DM, Laxmisha C, et al: Lipoid proteinosis in two siblings: A report from south India. Dermatology Online Journal 9 (5): 12, 2003
21. Singh G, Mishra D. Lipoid proteinosis: Int J Dermatal 27: 344-45, 1988
22. Stine OC, Smith KD : The estimation of selection coefficients in Afrikaners: Huntington disease, porphyria variegata, and lipid proteinosis. Am J Hum Genet 46: 452-458, 1990
23. Touart DM, Sau P. Cutaneous deposition diseases: Part 1. J Am Acad Dermatol 39:149-171, 1998
24. Urbach E., Wiehle C: Lipoidosis cutis mucosae. Virchows Arch Patholog Anat 273:285-319,1929