ON THE QUADRATIC WIENER FUNCTIONAL ASSOCIATED WITH THE MALLIAVIN DERIVATIVE OF THE SQUARE NORM OF BROWNIAN SAMPLE PATH ON INTERVAL

SETSUO TANIGUCHI
Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan
email: taniguch@math.kyushu-u.ac.jp

Submitted 17 April 2005, accepted in final form 11 January 2006

AMS 2000 Subject classification: 60H07, 60E10, 60E05
Keywords: stochastic oscillatory integral, Brownian sample path, density function

Abstract
Exact expressions of the stochastic oscillatory integrals with phase function $\int_0^T (\int_t^T w(s)ds)^2 dt$, $\{w(t)\}_{t \geq 0}$ being the 1-dimensional Brownian motion, are given. As an application, the density function of the distribution of the half of the Wiener functional is given.

1 Introduction and statement of result

The study of quadratic Wiener functionals, i.e., elements in the space of Wiener chaos of order 2, goes back to Cameron-Martin [1, 2] and Lévy [8]. While a stochastic oscillatory integral with quadratic Wiener functional as phase function has a general representation via Carleman-Fredholm determinant ([3, 6, 10]), in our knowledge, a few examples, where the integrals are represented with more concrete functions like the ones used by Cameron-Martin and Lévy, are available. See [1, 2, 8, 6, 10] and references therein. In this paper, we study a new quadratic Wiener functional which admits a concrete expression of stochastic oscillatory integral, and apply the expression to compute the density function of the Wiener functional.

Let $T > 0$, W be the space of all \mathbb{R}-valued continuous functions w on $[0, T]$ with $w(0) = 0$, and P be the Wiener measure on W. The Wiener functional investigated in this paper is

$$q(w) = \int_0^T \left(\int_t^T w(s)ds \right)^2 dt, \quad w \in W.$$

The functional q interests us because it is a key ingredient in the study of asymptotic theory on W. Namely, recall the Wiener functional

$$q_0(w) = \int_0^T w(t)^2 dt, \quad w \in W.$$

1RESEARCH SUPPORTED IN PART BY GRANT-IN-AID FOR SCIENTIFIC RESEARCH (A) 14204010, JSPS
which was studied first by Cameron-Martin [1, 2, 8]. As is well-known ([15]), the stochastic oscillatory integral
\[\int_\mathcal{W} \exp(\zeta q_0/2)\delta_y(w(T))dP, \]
where \(\delta_y(w(T)) \) is Watanabe’s pull back of the Dirac measure \(\delta_y \) concentrated at \(y \in \mathbb{R} \) via \(w(T) \), relates to the fundamental solution to the heat equation associated with the Schrödinger operator \((1/2)\{(d/dx)^2 + \zeta x^2\} \), which describes the quantum mechanics of harmonic oscillator. If we denote by \(\mathcal{H} \) the Cameron-Martin subspace of \(\mathcal{W} \) (the subspace of all absolutely continuous \(h \in \mathcal{W} \) with square integrable derivative \(\dot{h} \)) and set \(\langle h, g \rangle_{\mathcal{H}} = \int_0^T \dot{h}(t)\dot{g}(t)dt \) and \(\|h\|_{\mathcal{H}}^2 = \langle h, h \rangle_{\mathcal{H}} \) for \(h, g \in \mathcal{H} \), then it is straightforward to see that
\[q = \frac{1}{4}\|\nabla q_0\|_{\mathcal{H}}^2, \]
where \(\nabla \) denotes the Malliavin gradient. Thus \(q \) determines the stationary points of \(q_0 \). It should be noted that, in the context of the Malliavin calculus, the set of stationary points of \(q_0 \), i.e. the set \(\{\nabla q_0 = 0\} = \{q = 0\} \) is determined uniquely up to equivalence of quasi-surely exceptional sets. On account of the stationary phase method on finite dimensional spaces (cf.[4]), \(q \) would play an important role in the study of asymptotic behavior of the stochastic oscillatory integral \(\int_\mathcal{W} \exp(\zeta q_0)\psi dP \) with amplitude function \(\psi \) (cf. [9, 11, 12], in particular [13, 14]).

The aim of this paper is to show

Theorem 1. (i) For sufficiently small \(\lambda > 0 \), the following identities hold.

\[\int_\mathcal{W} \exp(\lambda q/2) dP = \left\{ \frac{1}{\cosh(\lambda^{1/4}T) \cos(\lambda^{1/4}T)} \right\}^{1/2}, \]

\[\int_\mathcal{W} \exp(\lambda q/2)\delta_0(w(T))dP = \frac{\lambda^{1/8}}{\sqrt{\pi}\sinh(\lambda^{1/4}T) \cos(\lambda^{1/4}T) + \sin(\lambda^{1/4}T) \cos(\lambda^{1/4}T)}}^{1/2}. \]

(ii) Define \(\theta(u; x) \) and \(p_T(x) \) for \(u \in [0, \pi/2] \) and \(x \geq 0 \) by

\[\theta(u; x) = \sum_{k=-\infty}^{\infty} (-1)^k \left\{ u + (2k + 1)\pi \right\}^3 e^{-x(u+(2k+1)\pi)^4/T^4}, \]

\[p_T(x) = \frac{4}{\pi T^4} \int_0^{\pi/2} \frac{\theta(u; x)}{\sqrt{\cos u}} du. \]

Then \(p_T \) is the density function of the distribution of \(q/2 \) on \(\mathbb{R} \);

\[P(q/2 \in dx) = p_T(x)\chi_{[0,\infty)}(x)dx, \]

where \(\chi_{[0,\infty)} \) denotes the indicator function of \([0,\infty) \).

The assertion (i) of Theorem 1 will be shown in Section 2 and (ii) will be proved in Section 3.
2 Proof of Theorem 1 (i)

In this section, we shall show the identities (1) and (2). The proof is broken into several steps, each being a lemma. We first show

Lemma 1. Define the Hilbert-Schmidt operator $A : \mathcal{H} \to \mathcal{H}$ by

$$Ah(t) = \int_0^t ds \int_0^T du \int_0^u dv \int_0^v da \ h(a), \quad h \in \mathcal{H}, \ t \in [0, T].$$

Then it holds that

$$q = QA + \frac{T^4}{6}, \quad (4)$$

where $QA = (\nabla^*)^2 A$, ∇^* being the adjoint operator of the Malliavin gradient ∇. Moreover, A is of trace class and $\text{tr} A = T^4/6$. In particular, $q = QA + \text{tr} A$.

Proof. Due to the integration by parts on $[0, T]$, it is easily seen that

$$\langle \nabla^2 q, h \otimes k \rangle_{\mathcal{H}^{\otimes 2}} = 2 \int_0^T \left(\int_0^T h(s) ds \right) \left(\int_0^T k(s) ds \right) dt = 2 \langle Ah, k \rangle_{\mathcal{H}} \quad (5)$$

for $h, k \in \mathcal{H}$, where $\mathcal{H}^{\otimes 2}$ denotes the Hilbert space of all Hilbert-Schmidt operators on \mathcal{H}, and $\langle \cdot, \cdot \rangle_{\mathcal{H}^{\otimes 2}}$ does its inner product. Hence

$$\nabla^2 q = 2A. \quad (6)$$

Let \mathcal{C}_2 be the space of Wiener chaos of order 2. Since

$$w(s)w(u) - s = w(s)^2 - s + w(s)\{w(u) - w(s)\} \in \mathcal{C}_2 \quad \text{for } u \geq s,$$

we have that

$$q - \frac{T^4}{6} = 2 \int_0^T \int_1^T \int_0^s (w(s)w(u) - s) dudsdt \in \mathcal{C}_2.$$

From this and (6), we can conclude the identity (4).

Let $\{h_n\}_{n=1}^\infty$ be an orthonormal basis of \mathcal{H}, and define $k_t \in \mathcal{H}$, $t \in [0, T]$, by

$$k_t(s) = \int_0^s (T - \max\{t, u\}) du, \quad s \in [0, T].$$

Since $\int_0^T h_n(s) ds = \langle k_t, h_n \rangle_{\mathcal{H}}$, due to (5), we obtain that

$$\sum_{n=1}^{\infty} \langle Ah_n, h_n \rangle_{\mathcal{H}} = \int_0^T \sum_{n=1}^{\infty} \langle k_t, h_n \rangle_{\mathcal{H}}^2 dt = \int_0^T \|k_t\|^2_{\mathcal{H}} dt = \frac{T^4}{6}. \quad (7)$$

Thus A is of trace class and $\text{tr} A = T^4/6$. \hfill \square

We next recall the following assertion achieved in [5, 7].
Lemma 2. Let $U : \mathcal{H} \rightarrow \mathcal{H}$ be a Hilbert-Schmidt operator admitting a decomposition $U = U_V + U_F$ with a Volterra operator $U_V : \mathcal{H} \rightarrow \mathcal{H}$ and a bounded operator $U_F : \mathcal{H} \rightarrow \mathcal{H}$ possessing the finite-dimensional range $R(U_F)$.

(i) For sufficiently small $\lambda \in \mathbb{R}$, it holds that

$$
\int_{\mathcal{W}} \exp(\lambda Q_U/2) dP = \{\det(I - \lambda U_F(I - \lambda U_V)^{-1})\}^{-1/2} e^{-(\lambda/2) \text{tr} U_F}.
$$

(ii) Let E be a subspace of $R(U_F)$ and $\{\eta_1, \ldots, \eta_d\}$ be a basis of E. Define the Wiener functional $\eta : \mathcal{W} \rightarrow \mathbb{R}^d$ by $\eta = (\nabla^* \eta_1, \ldots, \nabla^* \eta_d)$. Then, for sufficiently small $\lambda \in \mathbb{R}$, it holds that

$$
\int_{\mathcal{W}} \exp(\lambda Q_U/2) \delta_0(\eta) dP = \frac{1}{\sqrt{(2\pi)^d \det C(\eta)}} \{\det(I - \lambda U_F(I - \lambda U_V)^{-1})\}^{-1/2} e^{-(\lambda/2) \text{tr} U_F},
$$

where $U_F^2 = -\pi_E U_V + (I - \pi_E) U_F$, $\pi_E : \mathcal{H} \rightarrow \mathcal{H}$ being the orthogonal projection onto E, and $C(\eta) = (\langle \eta_i, \eta_j \rangle_H)_{1 \leq i, j \leq d}$.

Proof. The essential part of the proof can be found in [5, 7]. For the completeness, we give the proof.

Due to the splitting property of the Wiener measure, it holds that

$$
\int_{\mathcal{W}} \exp(\lambda Q_U/2) dP = \{\det_2(I - \lambda U)\}^{-1/2},
$$

where \det_2 denotes the Carleman-Fredholm determinant. For example, see [3, 7]. Observe that, for Hilbert-Schmidt operators $C, D : \mathcal{H} \rightarrow \mathcal{H}$ such that C is of trace class, it holds that

$$
\det_2(I + C)(I + D) = \det_2(I + C) \det_2(I + D) e^{-\text{tr} C(I + D)}.
$$

Since $\det_2(I - \lambda U_V) = 1$, substituting $C = -\lambda U_F(I - \lambda U_V)^{-1}$ and $D = -\lambda U_V$ into (9), we obtain that

$$
\det_2(I - \lambda U) = \det_2(I - \lambda U_F(I - \lambda U_V)^{-1}) e^{\lambda \text{tr} U_F}.
$$

Thus (7) has been shown.

Put $U_0 = (I - \pi_E) U(I - \pi_E)$ and $U_1 = \pi_E U \pi_E$. Then it holds ([7, 12]) that

$$
\int_{\mathcal{W}} \exp(\lambda Q_U/2) \delta_0(\eta) dP = \frac{1}{\sqrt{(2\pi)^d \det C(\eta)}} \{\det_2(I - \lambda U_0)\}^{-1/2} e^{-(\lambda/2) \text{tr} U_1}.
$$

Setting $U^2 = (I - \pi_E) U$, and substituting $C = -\lambda U_F^2(I - \lambda U_V)^{-1}$ and $D = -\lambda U_V$ into (9), we see that

$$
\det_2(I - \lambda U_0) = \det_2(I - \lambda U^2) = \det_2(I - \lambda U_F^2(I - \lambda U_V)^{-1}) e^{\lambda \text{tr} U_1^2}.
$$

Since $\text{tr} U_1^2 + \text{tr} U_1 = \text{tr} U_F$, we obtain (8).
It is not known if, by just watching specific shape of quadratic Wiener functional, one can tell that the associated Hilbert-Schmidt operator admits a decomposition as a sum of a Volterra operator and a bounded operator with finite dimensional range. However, in our situation, we know a priori that the operator \(A \) admits such a decomposition. Namely, the Hilbert-Schmidt operator \(B \) associated with \(q_0 \) admits such a decomposition ([7]). Being equal to the square of \(B \) (see Remark 1 below), so does \(A \). The following lemma gives the concrete expression of the decomposition of \(A \).

Lemma 3. Define \(I, A_V, A_F : \mathcal{H} \to \mathcal{H} \) by

\[
Ih(t) = \int_0^t h(s)ds, \quad t \in [0, T],
\]

\[
A_V h = I^\dagger h, \quad A_F h = \left\{ \frac{T^2}{2} I h(T) - T^3 h(T) \right\} \eta_1 - \frac{1}{6} I h(T) \eta_2, \quad h \in \mathcal{H},
\]

where \(\eta_j(t) = t^{2j-1}, t \in [0, T], j = 1, 2 \). Then (i) \(A = A_V + A_F \), (ii) \(A_V \) is a Volterra operator, (iii) \(R(A_F) = \{ an_1 + bn_2 \mid a, b \in \mathbb{R} \} \), (iv) \(\text{tr} A_F = \text{tr} A \), and (v) for \(\lambda > 0 \), it holds that

\[
(I - \lambda A_V)^{-1} h(t) = \frac{1}{2} \int_0^t h(s) \{ \cosh(\lambda^{1/4}(t-s)) + \cos(\lambda^{1/4}(t-s)) \} ds,
\]

\(h \in \mathcal{H}, t \in [0, T] \). (10)

Proof. The assertions (i) and (ii) follow from the very definitions of \(A \) and \(A_V \). The assertion (iv) is an immediate consequence of these and Lemma 1. By the definition of \(A_F \), the inclusion \(R(A_F) \subset \{ an_1 + bn_2 \mid a, b \in \mathbb{R} \} \) is obvious. To see the converse inclusion, it suffices to notice that \(A_F \eta_1 = (5T^4/24) \eta_1 - (T^2/12) \eta_2 \) and \(A_F \eta_2 = (7T^6/60) \eta_1 - (T^4/24) \eta_2 \). Thus (iii) has been verified.

To see (v), let \((I - \lambda A_V)g = h \) and \(f = I^\dagger g \). It then holds that \(f^{(4)} - \lambda f = h \), where \(f^{(n)} = (d/dt)^n f \). This leads us to the ordinary differential equation;

\[
\frac{d}{dt} \begin{pmatrix} f \\ f^{(1)} \\ f^{(2)} \\ f^{(3)} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \lambda & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} f \\ f^{(1)} \\ f^{(2)} \\ f^{(3)} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ h \end{pmatrix}, \quad \begin{pmatrix} f(0) \\ f^{(1)}(0) \\ f^{(2)}(0) \\ f^{(3)}(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.
\]

It is then easily seen that

\[
f^{(3)}(t) = \frac{1}{2} \int_0^t h(s) \{ \cosh(\lambda^{1/4}(t-s)) + \cos(\lambda^{1/4}(t-s)) \} ds.
\]

Since \(g = f^{(4)} \), this implies the identity (10). \(\square \)

Lemma 4. The identity (1) holds.

Proof. Let \(\eta_1, \eta_2 \in \mathcal{H} \) be as described in Lemma 3, and put \(f_j = (I - \lambda A_V)^{-1} \eta_j, j = 1, 2 \). By virtue of Lemma 3, we have that

\[
I f_1(t) = \frac{\lambda^{-1/2}}{2} \{ \cosh(\lambda^{1/4}t) - \cos(\lambda^{1/4}t) \},
\]

\[
I^3 f_1(t) = \frac{\lambda^{-1}}{2} \{ \cosh(\lambda^{1/4}t) + \cos(\lambda^{1/4}t) - 2 \},
\]

\[
I^3 f_2(t) = 3\lambda^{-1} \{ \cosh(\lambda^{1/4}t) + \cos(\lambda^{1/4}t) - 2 \},
\]

\[
I^3 f_2(t) = 3\lambda^{-3/2} \{ \cosh(\lambda^{1/4}t) - \cos(\lambda^{1/4}t) \} - 3\lambda^{-1}t^2.
\]
Hence, if we set \(\alpha_\lambda = \cosh(\lambda^{1/4} T) \) and \(\beta_\lambda = \cos(\lambda^{1/4} T) \), then

\[
(I - \lambda A_F)(I - \lambda A_V)^{-1} \eta_1
= \left\{ -\frac{T^2 \lambda^{1/2}}{4}(\alpha_\lambda - \beta_\lambda) + \frac{1}{2}(\alpha_\lambda + \beta_\lambda) \right\} \eta_1 + \frac{\lambda^{1/2}}{12}(\alpha_\lambda - \beta_\lambda)\eta_2,
\]

\[
(I - \lambda A_F)(I - \lambda A_V)^{-1} \eta_2
= \left\{ -\frac{3T^2}{2}(\alpha_\lambda + \beta_\lambda) + 3\lambda^{-1/2}(\alpha_\lambda - \beta_\lambda) \right\} \eta_1 + \frac{1}{2}(\alpha_\lambda + \beta_\lambda)\eta_2.
\]

Thus, by virtue of (iii), it holds that

\[
\det(I - \lambda A_F)(I - \lambda A_V)^{-1}
= \det \left(\begin{array} {cc}
-\frac{T^2 \lambda^{1/2}}{4}(\alpha_\lambda - \beta_\lambda) + \frac{1}{2}(\alpha_\lambda + \beta_\lambda) & \frac{\lambda^{1/2}}{12}(\alpha_\lambda - \beta_\lambda) \\
-\frac{3T^2}{2}(\alpha_\lambda + \beta_\lambda) + 3\lambda^{-1/2}(\alpha_\lambda - \beta_\lambda) & \frac{1}{2}(\alpha_\lambda + \beta_\lambda)
\end{array} \right) = \alpha_\lambda \beta_\lambda.
\]

This implies the identity (1), because Lemmas 1, 2, and 3 yield that

\[
\int_W \exp(\lambda q/2) dP = \{\det(I - \lambda A_F)(I - \lambda A_V)^{-1}\}^{-1/2}.
\]

Lemma 5. The identity (2) holds.

Proof. Let \(\eta_j, j = 1, 2 \), be as in Lemma 3 (iii), and \(E = \{c\eta_1 | c \in \mathbb{R}\} \). Define \(A_F^k \) as described in Lemma 2 with \(U = A, U_V = A_V \), and \(U_F = A_F \). Since \(\pi_E h = (h(T)/T)\eta_1 \) for any \(h \in H \), we have that

\[
A_F^k h = \left\{ -\frac{1}{T}I^1 h(T) + \frac{T^2}{6}I^2 h(T) \right\} \eta_1 - \frac{1}{6}I h(T) \eta_2.
\]

Let \(f_1, f_2 \) be as in the proof of Lemma 4. Then we see that

\[
I^1 f_1(t) = \frac{\lambda^{-5/4}}{2} (\sinh(\lambda^{1/4} t) + \sin(\lambda^{1/4} t)) - \lambda^{-1} t,
\]

\[
I^1 f_2(t) = 3\lambda^{-7/4} \{\sinh(\lambda^{1/4} t) - \sin(\lambda^{1/4} t)\} - \lambda^{-1} t^3.
\]

Hence, if we put \(\sigma_\lambda = \sinh(\lambda^{1/4} T) \) and \(\tau_\lambda = \sin(\lambda^{1/4} T) \), then

\[
(I - \lambda A_F^k)(I - \lambda A_V)^{-1} \eta_1
= \left\{ \frac{\lambda^{-1/4}}{2T}(\sigma_\lambda + \tau_\lambda) - \frac{T^2 \lambda^{1/2}}{12}(\alpha_\lambda - \beta_\lambda) \right\} \eta_1 + \frac{\lambda^{1/2}}{12}(\alpha_\lambda - \beta_\lambda)\eta_2,
\]

\[
(I - \lambda A_F^k)(I - \lambda A_V)^{-1} \eta_2
= \left\{ \frac{\lambda^{-3/4}}{T}(\sigma_\lambda - \tau_\lambda) - \frac{T^2}{2}(\alpha_\lambda + \beta_\lambda) \right\} \eta_1 + \frac{1}{2}(\alpha_\lambda + \beta_\lambda)\eta_2.
\]

Since \(R(A_F^k) \subset R(A_F) \), by Lemma 3 (ii), this yields that

\[
\det(I - \lambda A_F^k)(I - \lambda A_V)^{-1}
= \det \left(\begin{array} {cc}
\frac{\lambda^{-1/4}}{2T}(\sigma_\lambda + \tau_\lambda) - \frac{T^2 \lambda^{1/2}}{12}(\alpha_\lambda - \beta_\lambda) & \frac{\lambda^{1/2}}{12}(\alpha_\lambda - \beta_\lambda) \\
\frac{\lambda^{-3/4}}{T}(\sigma_\lambda - \tau_\lambda) - \frac{T^2}{2}(\alpha_\lambda + \beta_\lambda) & \frac{1}{2}(\alpha_\lambda + \beta_\lambda)
\end{array} \right)
= \lambda^{-1/4} \left\{ \sigma_\lambda \beta_\lambda + \tau_\lambda \alpha_\lambda \right\}.
\]
The identity (2) follows from this, because Lemmas 1, 2, and 3 imply that
\[
\int^W \exp(\lambda q/2) \delta_0(w(T)) dP = \int^W \exp(\lambda Q_A/2) \delta_0(\nabla^* \eta) dP e^{(\lambda/2) \text{tr} A} \\
= \frac{1}{\sqrt{2\pi T}} \left\{ \det(I - \lambda A^2(I - \lambda A)^{-1}) \right\}^{-1/2}.
\]

Remark 1. It may be interesting to see that (1) is also shown by using the infinite product expression. Namely, define \(B : \mathcal{H} \rightarrow \mathcal{H}\) by
\[
Bh(t) = \int_0^t \int_s^T h(u) du \, ds, \quad h \in \mathcal{H}, \; t \in [0, T].
\]
Then there exists an orthonormal basis \(\{h_n\}_{n=0}^{\infty}\) of \(\mathcal{H}\) so that
\[
B = \sum_{n=0}^{\infty} \left(\frac{T}{(n + \frac{1}{2})\pi} \right)^2 h_n \otimes h_n.
\]
See [10]. Since \(A = B^2\), it holds that
\[
A = \sum_{n=0}^{\infty} \left(\frac{T}{(n + \frac{1}{2})\pi} \right)^4 h_n \otimes h_n. \tag{11}
\]
In conjunction with Lemma 1, this implies that
\[
q = Q_A + \text{tr} A = \sum_{n=0}^{\infty} \left(\frac{T}{(n + \frac{1}{2})\pi} \right)^4 (\nabla^* h_n)^2.
\]
Due to the splitting property of the Wiener measure, we then obtain that
\[
\int^W \exp(\lambda q/2) dP = \left(\prod_{n=0}^{\infty} \left\{ 1 - \lambda \left(\frac{T}{(n + \frac{1}{2})\pi} \right)^4 \right\} \right)^{-1/2} \\
= \left(\prod_{n=0}^{\infty} \left\{ 1 + \lambda^{1/2} \left(\frac{T}{(n + \frac{1}{2})\pi} \right)^2 \right\} \prod_{n=0}^{\infty} \left\{ 1 - \lambda^{1/2} \left(\frac{T}{(n + \frac{1}{2})\pi} \right)^2 \right\} \right)^{-1/2}.
\]

Due to the infinite product expressions of \(\cosh x\) and \(\cos x\), this implies (1).

3 Proof of Theorem 1 (ii)

In this section, we shall show Theorem 1 (ii). We first describe how we realize \(\{\cosh z \cos z\}^{1/2}\) for complex number \(z\). Represent \(z \in \mathbb{C}\) as \(z = re^{i\theta}\) with \(r \geq 0\) and \(-\frac{3}{2}\pi \leq \theta < \frac{3}{2}\pi\) to define \(\sqrt{z} = r^{1/2}e^{i\theta/2}\), where \(i^2 = -1\). The
Riemann surface of the 2-valued function \(z^{1/2} \) is realized by switching \(\sqrt{z} \) and \(-\sqrt{z} \) on the half line consisting of \(i\xi, \xi < 0 \). Set
\[
G(z) = \begin{cases}
\sqrt{\cos z}, & \text{if a) } |\text{Re } z| < \frac{\pi}{2}, \text{ or} \\
\text{b) } \text{Im } z > 0, -\frac{3\pi}{2} + 4k\pi \leq \text{Re } z < \frac{\pi}{2} + 4k\pi (k \in \mathbb{Z}), \text{ or} \\
\text{c) } \text{Im } z < 0, -\frac{3\pi}{2} + 4k\pi \leq \text{Re } z < \frac{\pi}{2} + 4k\pi (k \in \mathbb{Z}), \\
-\sqrt{\cos z}, & \text{if a) } \text{Im } z > 0, \frac{5\pi}{2} + 4k\pi \leq \text{Re } z < \frac{5\pi}{2} + 4k\pi (k \in \mathbb{Z}), \text{ or} \\
\text{b) } \text{Im } z < 0, \frac{3\pi}{2} + 4k\pi \leq \text{Re } z < \frac{7\pi}{2} + 4k\pi (k \in \mathbb{Z}).
\end{cases}
\]

Then \(G \) is holomorphic on \(\mathbb{C} \setminus \{ \xi | \xi \in \mathbb{R}, |\xi| \geq \pi/2 \} \), and realizes \(\{ \cos z \}^{1/2} \). Hence \(G(z)G(iz) \) is holomorphic on \(D_0 \equiv \mathbb{C} \setminus \{ \xi, i\xi | \xi \in \mathbb{R}, |\xi| \geq \pi/2 \} \) and does not vanish in \(D_0 \). Recalling that \(\cosh z = \cos(iz) \), we write \(\{ \cosh(z \cos z) \}^{1/2} \) for \(G(z)G(iz) \).

We next extend the identity (1) holomorphically. Since there exists \(\delta > 0 \) such that \(\exp(\delta q/2) \) is integrable with respect to \(P \) and \(q \geq 0 \), the mapping
\[
\{ z \in \mathbb{C} | \text{Re } z < \delta \} \ni z \mapsto \int_{\mathbb{W}} \exp(zq/2)dP
\]
is holomorphic. \(\{ \cosh(zT \cos(zT)) \}^{-1/2} \) being holomorphic in \(D_0 \), we can find a domain \(D \subset \mathbb{C} \) such that
\[
D \supset \left\{ r e^{i\theta} \bigg| r \geq 0, \theta \in \bigcup_{k=0}^{3} \left[\frac{\pi}{8} + \frac{k\pi}{2}, \frac{3\pi}{8} + \frac{k\pi}{2} \right] \right\}; \quad \text{and} \quad \int_{\mathbb{W}} \exp(z^4q/2)dP = \frac{1}{\{ \cosh(zT) \cos(zT) \}^{1/2}} \quad \text{for every } z \in D. \tag{12}
\]

By (11) and Lemma 1, as an easy application of the Malliavin calculus, we see that the distribution of \(q/2 \) on \(\mathbb{R} \) admits a smooth density function \(p_T(x) \) ([14, Lemma 3.1]). Since \(q \geq 0 \), \(p_T(x) = 0 \) for \(x \leq 0 \). Hence, in what follows, we always assume that \(x > 0 \). By the inverse Fourier transformation, we have that
\[
p_T(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-ixt} I(t)dt, \quad \text{where } I(t) = \int_{\mathbb{W}} \exp(itq/2)dP. \tag{13}
\]

For \(R > 0 \), let \(\Gamma_+(R) \) (resp. \(\Gamma_-(R) \)) be the directed line segment in \(\mathbb{C} \) starting at the origin and ending at \(Re^{ix/8} \) (resp. \(Re^{-ix/8} \)). Then, parameterizing \(\Gamma_\pm(R) \) by \(t^{1/4}e^{\pm ix/8}, t \in [0, R^4] \), we have that
\[
\int_{\Gamma_{\pm}(R)} f(z^4)z^3dz = \pm i \int_0^{R^4} f(\pm it)dt
\]
for any piecewise continuous function \(f \) on \(i\mathbb{R} \), where and in the sequel, the symbol \(\pm \) takes \(+ \) or \(- \) simultaneously. Plugging this into (13), and then substituting (12), we obtain that
\[
2\pi p_T(x) = \lim_{R \to \infty} \left\{ 4i \int_{\Gamma_-(R)} \frac{z^3e^{-xz^4}}{\{ \cosh(zT) \cos(zT) \}^{1/2}}dz \\
- 4i \int_{\Gamma_+(R)} \frac{z^3e^{-xz^4}}{\{ \cosh(zT) \cos(zT) \}^{1/2}}dz \right\}. \tag{14}
\]
Thanks to the estimation that
\[|\cosh(u + iv)\cos(u + iv)|^2 \geq \sinh^2 u \max\{\cos^2 u, \sinh^2 v\}, \]
it is a routine exercise of complex analysis to show that
\[
\lim_{R \to \infty} \int_{\Gamma_{\pm}(R)} \frac{z^3 e^{-zx^4}}{(\cosh(zT) \cos(zT))^{1/2}} \, dz = \int_0^\infty \frac{u^3 e^{-ux^4}}{\lim_{h \to 0} \{\cosh(uT \pm ih) \cos(uT \pm ih)\}^{1/2}} \, du. \tag{15}
\]
Moreover, by the definition of \{\cosh z \cos z\}^{1/2}, we have that
\[
\lim_{h \to 0} \{\cosh(uT \pm ih) \cos(uT \pm ih)\}^{1/2} = \begin{cases} \\
\sqrt{\cosh(uT) \cos(uT)}, & \text{if } -\pi - (\pm \frac{\pi}{2}) + 4k\pi \leq uT < \pi - (\pm \frac{\pi}{2}) + 4k\pi, \\
-\sqrt{\cosh(uT) \cos(uT)}, & \text{if } \pi - (\pm \frac{\pi}{2}) + 4k\pi \leq uT < 3\pi - (\pm \frac{\pi}{2}) + 4k\pi,
\end{cases}
\]
Substitute this and (15) into (14) to see that
\[
2\pi p_T(x) = 8i \sum_{k=0}^{\infty} \int_{((\pi/2)+2k\pi)/T}^{(3\pi/2)+2k\pi)/T} \frac{(-1)^k u^3 e^{-ux^4}}{\sqrt{\cosh(uT) \cos(uT)}} \, du.
\]
This implies Theorem 1 (ii), because
\[
\int_{((\pi/2)+2k\pi)/T}^{(3\pi/2)+2k\pi)/T} \frac{u^3 e^{-ux^4}}{\sqrt{\cosh(uT) \cos(uT)}} \, du = \frac{1}{iT^4} \int_0^{\pi/2} \frac{v + (2k + 1)\pi}{\sqrt{\cosh\{v + (2k + 1)\pi\} \cos v}} \, dv
- \frac{1}{iT^4} \int_0^{\pi/2} \frac{v - (2k + 1)\pi}{\sqrt{\cosh\{v - (2k + 1)\pi\} \cos v}} \, dv.
\]

References

[1] R. H. Cameron and W. T. Martin, The Wiener measure of Hilbert neighborhoods in the space of real continuous functions, Jour. Math. Phys. Massachusetts Inst. Technology, 23 (1944), 195 – 209.

[2] R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under a general class of linear transformations, Trans. Amer. Math. Soc., 58 (1945), 184–219.

[3] T. Hida, Quadratic functionals of Brownian motion, Jour. Multivar. Anal. 1 (1971), 58–69.

[4] L. Hörmander, The Analysis of Linear Partial Differential Operators I, 2nd ed., Springer, Berlin, 1990.

[5] N. Ikeda, S. Kusuoka, and S. Manabe, Lévy’s stochastic area formula for Gaussian processes, Comm. Pure Appl. Math., 47 (1994), 329–360.
[6] N. Ikeda and S. Manabe, Asymptotic formulae for stochastic oscillatory integrals, in “Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics”, 136–155, Ed. by K.D.Elworthy and N.Ikeda, Longman, 1993.

[7] N. Ikeda and S. Manabe, Van Vleck-Pauli formula for Wiener integrals and Jacobi fields, in “Ito’s stochastic calculus and probability theory”, Ed. by N. Ikeda, S. Watanabe, M. Fukushima, and H. Kunita, pp.141–156, Springer-Verlag, 1996.

[8] P. Lévy, Wiener’s random function, and other Laplacian random functions, in “Proc. Second Berkeley Symp. Math. Stat. Prob. II”, pp.171–186, U.C. Press, Berkeley, 1950.

[9] Malliavin, P. and Taniguchi, S., Analytic functions, Cauchy formula and stationary phase on a real abstract Wiener space, J. Funct. Anal. 143 (1997), 470–528.

[10] H. Matsumoto and S. Taniguchi, Wiener functionals of second order and their Lévy measures, Elec. Jour. Prob. 7, No. 7, 1–30.

[11] H. Sugita and S. Taniguchi, Oscillatory integrals with quadratic phase function on a real abstract Wiener space, J. Funct. Anal. 155 (1998), 229–262.

[12] H. Sugita and S. Taniguchi, A remark on stochastic oscillatory integrals with respect to a pinned Wiener measure, Kyushu J. Math. 53 (1999), 151 – 162.

[13] S. Taniguchi, Lévy’s stochastic area and the principle of stationary phase, J. Funct. Anal. 172 (2000), 165–176.

[14] S. Taniguchi, Stochastic oscillatory integrals: Asymptotics and exact expressions for quadratic phase function , in "Stochastic analysis and mathematical physics (SAMP/ANESTOC 2002)”, ed. R. Rebolledo, J. Resende, and J.-C. Zambrini, pp.165-181, World Scientific, 2004.

[15] S. Watanabe, Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Prob. 15 (1987), 1–39.