Extra-dimensional gravity and dijet production at $\gamma\gamma$ colliders

M. A. Doncheski
Department of Physics
The Pennsylvania State University
Mont Alto, PA 17237 USA

and

R. W. Robinett
Department of Physics
The Pennsylvania State University
University Park, PA 16802 USA

Abstract

In this note, we consider dijet production at $\gamma\gamma$ colliders as a probe of recently proposed, large extra-dimensional gravity models. The exchange of virtual, spin-2 graviton towers (Kaluza-Klein excitations) significantly modifies the cross section, as compared to the Standard Model predictions. We find that, in order to maximize the value of the effective scale that can be probed at a given center-of-mass energy, a very severe p_T cut should be applied; in general, a p_T equal to approximately 46% of the e^+e^- beam energy gives the highest reach. We find that we can probe the effective mass scale from about 2.7 TeV to 11.1 TeV, depending on the center-of-mass energy and assumptions about the model.
I. Introduction

A recently proposed model suggests [1] that gravitational interactions take place in $4 + n$ dimensions, where the extra n-dimensions are large (i.e., as large as millimeter scale) spatial dimensions, commonly referred to as the bulk. Interactions other than gravity (electroweak and strong) are confined to the 3-dimensional brane, commonly referred to as the wall, which corresponds to the usual 3 spatial dimensions. The gravitational interaction is then understood as appearing to be weak, as we only observe its projection onto the wall; once small enough (spatial) dimensions are probed, the gravitational interaction will again appear large. Models of this sort can remove the hierarchy problem, by eliminating the large difference in scales between the electroweak scale and the Planck mass. An application of Gauss’ law yields the result [1]

$$M_{\text{Planck}}^2 \sim r^n M_{\text{eff}}^{2+n}$$

(1)

where r is the spatial size of the extra dimensions in the bulk, and M_{eff} is the effective Planck mass.

Explicit suggestions have been made [2] for how such a low mass effective Planck or string scale and large extra dimensions might arise in both Kaluza Klein models and string theory. We will concentrate on one such scenario in which large extra-dimensional gravity is embedded into string models [3], where the string scale, M_S, is identified with the effective Planck mass, M_{eff}. One interesting consequence of this scenario is that a Kaluza Klein (KK) tower of massive gravitons can interact with the Standard Model (SM) fields on the wall. This can lead to direct production of a graviton tower as well as virtual exchange of a graviton towers. Direct production of
a graviton tower produces a missing p_T type signal, while virtual exchange can lead to new, tree-level interactions and/or modifications to SM processes. The Feynman rules for these new types of interactions have been developed, e.g., in Ref. [4], and many processes have been studied in $e^+e^- [5, 6, 8, 9], e\gamma [10, 11], \gamma\gamma [7, 8, 12, 13, 14, 16], ep [7, 17]$ and hadron [3, 4, 18, 19, 20, 21, 22, 23, 24] colliders. New contributions to standard model interactions can occur in almost any process involving photon production and/or exchange or other neutral current phenomena. Additionally, Higgs production [25, 26], precision electroweak observable analyses [27] and astrophysical constraints [28] have been considered. Based on direct production analyses, the current limits on M_S fall in the range 500 GeV to 1.2 TeV, while virtual graviton tower effects can yield current M_S estimates from 650 GeV to 1.2 TeV. Future colliders, like the NLC and LHC can push these limits into the multi-TeV range.

In this note, we will focus on aspects of dijet production at $\gamma\gamma$ colliders. Other two-photon processes are also valuable in probing low-scale gravity effects [7, 12, 13, 14, 3, 16], but dijet production will be one of the most experimentally accessible processes in $\gamma\gamma$ collisions with guaranteed large event rates. The authors of Ref. [3] have recently considered gauge boson-gauge boson scattering in general, incorporating the effects of low-scale gravity models, and include useful results for $\gamma + \gamma \rightarrow g + g$ which is necessary for our calculation. We also require, however, cross-sections for the corresponding $\gamma + \gamma \rightarrow q + \bar{q}$ processes for the two-jet cross-section at leading order. The authors of Ref. [9] fail, however, to include the “box” diagram: $\gamma + \gamma \rightarrow g + g$ exists as a 1-loop diagram in the SM [29]. Although the box diagram, in the SM, is not as important in $\gamma\gamma$ collisions as it is in hadron collisions, we include it here for completeness [15].

The authors of Ref. [30] consider the inverse process, di-photon production at hadron colliders. These authors present the parton level processes for both $g + g \rightarrow \gamma + \gamma$
(including the box diagram) and $q + \bar{q} \rightarrow \gamma + \gamma$. The subprocesses we consider here, $\gamma + \gamma \rightarrow g + g$ and $\gamma + \gamma \rightarrow q + \bar{q}$, are identical in form, and differ only by color factors, from those presented in Ref. [30]. We will not reproduce those expressions here, but focus instead on optimizing the sensitivity of the $\gamma + \gamma \rightarrow jet + jet$ process to new physics contributions.

II. Calculation and Results

To examine the $\gamma \gamma \rightarrow jj$ process at a future collider, we assume a linear e^+e^- collider, with backscattered laser photons [31] for the initial photon beams. The physical process at leading order is a sum of two “parton level” subprocesses, $\gamma\gamma \rightarrow gg$ and $\gamma\gamma \rightarrow q\bar{q}$; furthermore, the subprocesses include SM contributions as well as extra-dimensional gravity (KK graviton tower exchange) contributions. In the SM, the lowest-order Feynman diagram for $\gamma\gamma \rightarrow gg$ is the one-loop, box diagram. Although nominally higher-order in the perturbative expansion, we include it, as well as its interference with the extra-dimensional gravity contribution as its contributions are known to be very important in the inverse process (two-photon production in hadron collisions.)

The event rate at planned colliders, even considering the SM contribution alone, is significant. With the addition of graviton tower exchange, the angular and energy distribution of events is altered. The graviton tower exchange is essentially the s-channel exchange of a large number of gravitons, all with different masses. This leads to an enhancement of the cross section at all invariant masses kinematically allowed; a consequence of this is that, for low enough p_T, the SM contribution dominates while at higher p_T the contribution of graviton tower exchange dominates. Furthermore, the
exact value of p_T where graviton tower exchange becomes important depends strongly on the scale parameter, M_S. These properties are illustrated in Figure 1.

In Figure 1, we show some typical results of our calculation. First, we choose an e^+e^- collider with $\sqrt{s} = 500 \text{ GeV}$ operating in $\gamma\gamma$ mode, where the γ beams are generated by backscattering laser photons off the original lepton beams. In order to simulate detector acceptances, we employ cuts on our simulated events: $p_T > 10 \text{ GeV}$ and $\theta_{\text{lab}} > 10^\circ$ from the beam pipe are required to observe a jet. Below, we refer to this choice of acceptance cuts as nominal. In order to compare and contrast dijet production, we present the p_T distribution for purely SM production (dashed curve), as well as SM + KK graviton tower exchange for $n = 4$, and $M_S = 1.0 \text{ TeV}$ (solid curve) and $M_S = 2.0 \text{ TeV}$ (dotdashed curve). The deviation from SM occurs at larger p_T for larger M_S. Any particular value of M_S will have a value of the p_T cut which maximizes the deviation from SM in total cross section:

$$\Delta = \frac{\sigma - \sigma_{\text{SM}}}{\delta\sigma}$$

(2)

where $\delta\sigma$ is the statistical uncertainty in the actual cross section. With the nominal acceptance cuts, though, we expect in excess of 10^6 events per year (using typical planned luminosities), at each center-of-mass energy considered below. Large event rates are thus possible even if rather severe cuts are applied. Given the behavior of the extra-dimensional gravity contribution illustrated in Figure 1, sensitivity to deviations from the SM (especially at large M_S) can benefit from a large p_T cut, removing much of the cross section where the SM dominates.

In order to find the optimal value of the p_T cut, we have used an iterative process. We begin with the nominal acceptance cuts listed above, and searched for the highest
value of M_S which gave a significant deviation from the SM. We defined “significant deviation” to be a 2σ (statistical) deviation. Then, we used that value of M_S, and varied the p_T cut in order to maximize the deviation from the SM; we replaced the original p_T cut with this new value. This process is repeated until the values of the p_T cut and M_S are stabilized. This iterative process converges very rapidly and we have repeated this optimization process for each center-of-mass energy considered.

To obtain specific estimates of possible M_S limits, we have considered a 1 year run at center-of-mass energies given by $500 \, GeV$, $1 \, TeV$, $1.5 \, TeV$ and $2 \, TeV$. We take conservative values for the integrated luminosity: $50 \, fb^{-1}$ at the $500 \, GeV$ collider, and $200 \, fb^{-1}$ at the others. Longer running times or more optimistic luminosity values will simply increase the search reach.

As seen in the expression for the “parton level” subprocesses in Ref. [30], the cross section depends on the number of dimensions in the bulk, n. So, in addition to different values of the center-of-mass energy of the linear e^+e^- collider, we also consider 2 values of n: $n = 4$ and $n = 6$. Our results are summarized in Table I where achievable limits on M_S are shown, as well as the optimum value of the p_T cut for each center-of-mass energy. In addition, achievable limits on M_S using a nominal p_T cut are shown for comparison. The optimization of the p_T cut increases the M_S limits by at least $700 \, GeV$; as expected, the optimization is more effective for larger center-of-mass energy.

It is interesting to note that the value of the optimum p_T cut is, in all cases, approximately 46% of the beam energy of the e^+e^- collider. In addition to maximizing the deviation from the SM, this large value for the p_T cut indicates a very nice signature for extra-dimensional gravity effects: an excess at extremely large p_T.

5
III. Conclusions

In conclusion, we have examined dijet production at $\gamma\gamma$ colliders, in order to study the effects of, and search potential for, large extra-dimensional gravity models. We have included a full, tree-level calculation of $\gamma + \gamma \rightarrow q + \bar{q}$ (SM plus KK graviton tower exchange), and the 1-loop “box” diagram (SM) plus tree-level, KK graviton tower exchange for $\gamma + \gamma \rightarrow g + g$. Furthermore, we maximized the string scale, M_S, reach by optimizing the p_T cut.

We found that a rather large p_T cut yielded the highest sensitivity to the string scale. At a 500 GeV linear e^+e^- collider, operating in $\gamma\gamma$ mode, using a cut of $p_T > 115$ GeV, dijet production will be sensitive to M_S from 2.75 TeV ($n = 6$) up to 3.24 TeV ($n = 4$). These sensitivities are $600 - 700$ GeV higher than they would be with a nominal p_T cut of 10 GeV. At a 2 TeV linear e^+e^- collider, operating in $\gamma\gamma$ mode, using a cut of $p_T > 465$ GeV, dijet production will be sensitive to M_S from 9.35 TeV ($n = 6$) up to 11.10 TeV ($n = 4$). At this higher center-of-mass energy, the increase in sensitivity, compared to the nominal 10 GeV p_T cut, is even more significant: $2.1 - 2.6$ TeV. These limits assume a 1 year run at conservative luminosity estimates. Longer runs or more optimistic luminosity estimates will, of course, increase the sensitivity to M_S further.

Dijet production at $\gamma\gamma$ colliders is a sensitive and important test of large extra-dimensional gravity. Although many other processes are also very sensitive to deviations from the SM as produced by large extra-dimensional gravity, it is important to have as many independent tests as possible, in order to verify the source of the deviations and to study the models as completely as possible.
IV. Acknowledgments

The work of MAD was supported, in part, by the Commonwealth College of Penn State University under a Research Development Grant (RDG); the work of one of RR was supported, in part, by NSF grant DUE-9950702.
References

[1] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B249, 263 (1998); Phys. Rev. D59, 086004 (1999).

[2] I. Antoniadis, Phys. Lett. B246, 377 (1990); J.D. Lykken, Phys. Rev. D54, 3693 (1996); E. Witten, Nucl. Phys. B471, 135 (1996); P. Horava and E. Witten, Nucl. Phys. B460, 506 (1996); B475, 94 (1996); E. Caceres, V. S. Kaplunovsky and I. M. Mandelberg, Nucl. Phys. B493, 73 (1997); K. R. Dienes, Phys. Lett. B197, 139 (1997); K. R. Dienes, E. Dudas and T. Gherghetta, Phys. Lett. B436, 55 (1998); Nucl. Phys. B537, 47 (1999).

[3] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436, 257 (1998); G. Shiu and H. Tye, Phys. Rev. D58, 106007 (1998); Z. Kakushadze and H. Tye, Nucl. Phys. B548, 180 (1999).

[4] G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B544, 3 (1999); T. Han, J. D. Lykken and R-J. Zhang, Phys. Rev. D59, 105006 (1999).

[5] E. A. Mirabelli, M. Perelstein and M. E. Peskin, Phys. Rev. Lett. 82, 2236 (1999).

[6] K. Cheung and W. Keung, UC Davis Preprint UCD-HEP-99-6, hep-ph/9903294.

[7] T. G. Rizzo, Phys. Rev. D59, 115010 (1999); SLAC Preprint SLAC-PUB-8114, hep-ph/9904380.

[8] K. Y. Lee, et al., Seoul University Preprint SNUTP-99-021, hep-ph/9904353; Seoul University Preprint SNUTP-99-022, hep-ph/9905227.
[9] D. Atwood, S. Bar-Shalom and A. Soni, University of California Riverside Preprint UCRHEP-T258, hep-ph/9906400.

[10] H. Davoudiasl, SLAC Preprint SLAC-PUB-8197, hep-ph/9907347.

[11] D. K. Ghosh, P. Poulose and K. Sridhar, Tata Institute Preprint TIFR-TH-99-47, hep-ph/9909377.

[12] K. Agashe and N. G. Deshpande, Phys. Lett. B 456, 60 (1999).

[13] H. Davoudiasl, SLAC Preprint SLAC-PUB-8121, hep-ph/9904425.

[14] P. Mathews, P. Poulose and K. Sridhar, Tata Institute Preprint TIFR-TH-99-20, hep-ph/9905395, to appear in Phys. Lett. B.

[15] As we were completing this analysis, we found Ref. [16], which also calculates dijet production in γγ colliders. These authors do include the $\gamma + \gamma \to q + \bar{q}$ subprocess, and so correct one of the flaws in Ref. [9], however they also fail to include the box diagram. In addition, as discussed below, the sensitivity of any γγ collider to the string scale M_S can be increased with the application of a very severe p_T cut. The authors of Ref. [16] discuss the sensitivity for various values of the p_T cut, but they do not systematically study this aspect. In our analysis, we find optimal values for the p_T cut at each center-of-mass energy, yielding sensitivity to significantly higher M_S.

[16] D. K. Ghosh, P. Mathews, P. Poulose and K. Sridhar, TIFR Preprint TIFR/TH/99-51, hep-ph/9909567.

[17] P. Mathews, S. Raychaudhuri and K. Sridhar, Phys. Lett. B 455, 115 (1999).
[18] J. L. Hewett, Phys. Rev. Lett. 82, 4765 (1999).

[19] A. K. Gupta, N. K. Mondal and S. Raychaudhuri, Tata Institute Preprint TIFR-HECR-99-02, hep-ph/9904234.

[20] P. Mathews, S. Raychaudhuri and K. Sridhar, Phys. Lett. B 450, 343 (1999).

[21] P. Mathews, S. Raychaudhuri and K. Sridhar, Tata Institute Preprint, TIFR/TH/99-13, hep-ph/9904232.

[22] C. Balazs, et al., Michigan State Preprint MSU-HEP-90105, hep-ph/9904220.

[23] K. Cheung, UC Davis Preprint UCD-HEP-99-8, hep-ph/9904266, Phys. Lett. B460, 383 (1999).

[24] O. J. P. Eboli, et al., Madison Preprint MADPH-99-1136, hep-ph/9908358.

[25] T. G. Rizzo, Phys. Rev. D60, 075001 (1999).

[26] X. He, hep-ph/9905295.

[27] T. Banks, M. Dine and A.E. Nelson, JHEP, 9906:014 (1999); M. Masip and A. Pomarol, CERN Preprint, CERN-TH/99-47, hep-ph/9902347; T. G. Rizzo and J. D. Wells, SLAC preprint SLAC-PUB-8119, hep-ph/9906234; A. Strumia, Pisa U. preprint IFUP-TH-29-99, hep-ph/9906266; R. Casalbuoni, et. al., U. of Florence preprint DFF-341/7/99, hep-ph/9907353; P. Das and S. Raychaudhuri, IIT-HEP-99-53, hep-ph/9908203.

[28] S. Cullen and M. Perelstein, Phys. Rev. Lett. 83, 268 (1999).
[29] V. Constantini, B. de Tollis and G. Pistoni, Nuovo Cimento 2A, 733 (1971); E. L. Berger, E. Braaten and R. D. Field, Nucl. Phys. B239, 52 (1984); Ll. Ametler, et al., Phys. Rev. D32, 1699 (1985); D. Dicus and S. Willenbrock, Phys. Rev. D37, 1801 (1988).

[30] O. J. P. Éboli, T. Han, M. B. Magro and P. G. Mercadante, University Of Wisconsin — Madison Preprint MADPH-99-1136, hep-ph/9908358.

[31] I.F. Ginzburg et al., Nucl. Instrum. Methods, 205, 47 (1983); 219, 5 (1984); C. Akerlof, Ann Arbor report UM HE 81-59 (1981; unpublished).
Figure Captions

Fig. 1. p_T distribution for dijet production at a 500 GeV e^+e^- collider operating in $\gamma\gamma$ mode. The dashed curve indicates the SM cross section while the solid (dot-dashed) curve indicates the contribution with the addition of extra dimension gravity with parameters $M_S = 1\ (2)\ TeV$ and $n = 4$.
Table I. M_S limits possible with nominal and optimal p_T cut for $n = 4$ and $n = 6$

\sqrt{s} (GeV)	p_T cut (GeV)	M_S (GeV) $n = 4$	M_S (GeV) $n = 6$
500	10	2500	2150
500	115	3240	2750
1000	10	4900	4000
1000	230	6560	5700
1500	10	6700	5700
1500	350	8950	7500
2000	10	8500	7200
2000	465	11100	9350
solid: $M_S = 1 \text{ TeV}$

dotdash: $M_S = 2 \text{ TeV}$

dash: SM

$d\sigma/dp_T \text{ (pb/GeV)}$

$p_T \text{ (GeV)}$