Supplementary Materials for

Site-specific glycan analysis of the SARS-CoV-2 spike

Yasunori Watanabe*, Joel D. Allen*, Daniel Wrapp, Jason S. McLellan, Max Crispin†

*These authors contributed equally to this work.
†Corresponding author. Email: max.crispin@soton.ac.uk

Published 4 May 2020 on Science First Release
DOI: 10.1126/science.abb9983

This PDF file includes:

Materials and Methods
Figs. S1 to S4
Tables S1 and S2
References

Other Supporting Online Material for this manuscript includes the following:
(available at science.sciencemag.org/cgi/content/full/science.abb9983/DC1)

MDAR Reproducibility Checklist (.pdf)
Data S1 (.xlsx)
Materials and Methods

Protein expression and purification

To express the prefusion S ectodomain, a gene encoding residues 1–1208 of SARS-CoV-2 S (GenBank: MN908947) with proline substitutions at residues 986 and 987, a “GSAS” substitution at the furin cleavage site (residues 682–685), a C-terminal T4 fibritin trimerization motif, an HRV3C protease cleavage site, a TwinStrepTag and an 8XHisTag was synthesized and cloned into the mammalian expression vector pαH. This expression vector was used to transiently transfect FreeStyle293F cells (Thermo Fisher) using polyethylenimine. Protein was purified from filtered cell supernatants using StrepTactin resin (IBA) or nickel-affinity chromatography before being subjected to additional purification by size-exclusion chromatography using a Superose 6 10/300 column (GE Healthcare) in 2 mM Tris pH 8.0, 200 mM NaCl and 0.02% NaN₃.

Negative-stain electron microscopy and 2D class averaging

Purified SARS-CoV-2 spike was diluted to a concentration of 0.04 mg/mL using 2 mM Tris pH 8.0, 200 mM NaCl and 0.02% NaN₃ before being applied to a plasma cleaned CF400-Cu grid (Electron Microscopy Sciences). Protein was then stained using methylamine tungstate (Nanoprobes) before being allowed to dry at room temperature for 15 minutes. This grid was imaged in a Talos TEM (Thermo Fisher Scientific) equipped with a Ceta 16M detector. Micrographs were collected using TIA v4.14 software at a nominal magnification of 92,000×, corresponding to a calibrated pixel size of 1.63 Å/pix. CTF estimation, particle picking and 2D class averaging were performed using cisTEM (38).

Glycopeptide analysis by mass spectrometry

Three 30 μg aliquots of SARS-CoV-2 S protein, from three biological replicates, were denatured for 1h in 50 mM Tris/HCl, pH 8.0 containing 6 M of urea and 5 mM dithiothreitol (DTT). Next, the S protein were reduced and alkylated by adding 20 mM iodoacetamide (IAA) and incubated for 1h in the dark, followed by a 1h incubation with 20 mM DTT to eliminate residual IAA. The alkylated Env proteins were buffer-exchanged into 50 mM Tris/HCl, pH 8.0 using Vivaspin columns (3 kDa) and digested separately overnight using trypsin chymotrypsin or alpha lytic protease (Mass Spectrometry Grade, Promega) at a ratio of 1:30 (w/w). The next day, the peptides were dried and extracted using C18 Zip-tip (MerckMilipore). The peptides were dried again, re-suspended in 0.1% formic acid and analyzed by nanoLC-ESI MS with an
Easy-nLC 1200 (Thermo Fisher Scientific) system coupled to a Fusion mass spectrometer (Thermo Fisher Scientific) using higher energy collision-induced dissociation (HCD) fragmentation. Peptides were separated using an EasySpray PepMap RSLC C18 column (75 µm × 75 cm). A trapping column (PepMap 100 C18 3µM 75µM x 2cm) was used in line with the LC prior to separation with the analytical column. The LC conditions were as follows: 275 minute linear gradient consisting of 0-32% acetonitrile in 0.1% formic acid over 240 minutes followed by 35 minutes of 80% acetonitrile in 0.1% formic acid. The flow rate was set to 200 nL/min. The spray voltage was set to 2.7 kV and the temperature of the heated capillary was set to 40 °C. The ion transfer tube temperature was set to 275 °C. The scan range was 400−1600 m/z. The HCD collision energy was set to 50%, appropriate for fragmentation of glycopeptide ions. Precursor and fragment detection were performed using an Orbitrap at a resolution MS1=100,000. MS2= 30,000. The AGC target for MS1=4e5 and MS2=5e4 and injection time: MS1=50ms MS2=54ms. Glycopeptide fragmentation data were extracted from the raw file using Byonic™ (Version 3.5) and Byologic™ software (Version 3.5; Protein Metrics Inc.). The glycopeptide fragmentation data were evaluated manually for each glycopeptide; the peptide was scored as true-positive when the correct b and y fragment ions were observed along with oxonium ions corresponding to the glycan identified. The MS data was searched using the Protein Metrics N-glycan library. The relative amounts of each glycan at each site as well as the unoccupied proportion were determined by comparing the extracted chromatographic areas for different glycotypes with an identical peptide sequence. All charge states for a single glycopeptide were summed. The precursor mass tolerance was set at 4 ppm and 10 ppm for fragments. A 1% false discovery rate (FDR) was applied. The relative amounts of each glycan at each site as well as the unoccupied proportion were determined by comparing the extracted ion chromatographic areas for different glycopeptides with an identical peptide sequence. Glycans were categorized according to the composition detected. HexNAc(2)Hex(9–5) was classified as M9 to M5. HexNAc(3)Hex(5–6)X was classified as Hybrid with HexNAc(3)Fuc(1)X classified as Fhybrid. Complex-type glycans were classified according to the number of processed antenna and fucosylation. If all of the following compositions have a fucose they are assigned into the FA categories. HexNAc(3)Hex(3-4)X is assigned as A1, HexNAc(4)X is A2/A1B, HexNAc(5)X is A3/A2B, and HexNAc(6)X is A4/A3B. As this fragmentation method does not provide linkage information compositional isomers are group, so for example a triantennary glycan contains HexNAc 5 but so does a biantennary glycans with a bisect. Any glycan
containing at least one sialic acid was counted as sialylated. The quantifications of glycan compositions were represented as the mean of three biological replicates +/- standard error of the mean.

For O-linked glycan analysis, trypsin and alpha lytic protease-generated glycopeptides were treated with PNGase F prior to analysis to remove N-linked glycans. This was performed on a single biological replicate using an HCD energy of 27%. The MS data was searched using the Protein Metrics 70 common O-linked glycan library.

Model construction

Structural models of N-linked glycan presentation on SARS-CoV-2 were created using electron microscopy structures (PDB ID: 6VSB) along with complex-, hybrid-, and oligomannose-type N-linked glycans (PDB ID 4BYH, 4B7I, and 2WAH). A representative glycan presented at each site was modelled on to the N-linked carbohydrate attachment sites in Coot (39).
Supplementary Figure S1. Size-exclusion chromatogram of the affinity purified SARS-CoV-2 S protein. The elution volume of 670 kDa corresponding to the trimeric mass of the protein is shown.
Supplementary Table S1. Glycoform abundances observed across SARS CoV-2 S protein.

The relative abundances of all N-linked glycans detected at each site is displayed. The displayed value is the mean percentage abundance of each glycan detected across three biological replicates. See also Figure 2.

Site	N-linked Glycans	A	B	C	D	E	F	G	H	I	J	K	L
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

See also Figure 2.
Supplementary Figure S2. Extended site-specific N-linked glycosylation of SARS-CoV-2 S glycoprotein. All glycan compositions detected across every N-linked glycan site are listed and numbered along the x-axis. The corresponding glycan compositions can be found in supplementary table S1. The bar graphs represent the mean abundance of each glycan of three biological repeats (+/- SEM) with oligomannose-type glycan series (green), hybrid glycans (dashed pink), and complex glycans (pink). Glycan sites are colored according to oligomannose-type glycan content with the glycan sites labelled in green (80–100%), orange (30–79%) and pink (0–29%). See also Figure 2.
Supplementary Table S2. Glycoform abundances observed across SARS CoV-2 S protein. The upper table shows the categorized glycan compositions at each N-linked glycan site with the reported value the mean of three biological replicates. The global averages are shown in the right-hand table. The lower table further categorizes the glycan compositions into oligomannose-, hybrid-, and complex-type as well as the percentage of glycan compositions containing at least one fucose or one sialic acid residue. See also Figure 2.

N-Linked Site	M9	M8	M7	M6	M5	Hybrid	FlyHybrid	At1	FA1	A2A1B	FA2FA1B	FA3/A2B	FA3/FA2B	A4/A3B	FA4/F4AB	Unoccupied
Value (%)																
Mesnose	43	46	46	33	38	22	22	22	22	22	22	22	22	22	22	22
Hybrid	2	0	19	1	5	1	0	0	0	0	1	0	0	0	0	0
Complex	84	22	96	25	91	95	92	92	92	92	96	96	82	92	92	92
Unoccupied	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Fucosylation	95	6	77	18	91	63	54	54	54	54	54	54	54	54	54	54
Sialylation	20	4	18	5	33	18	12	12	12	12	12	12	12	12	12	12

Total																
Value (%)																
Mesnose	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98
Hybrid	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Complex	84	22	96	25	91	95	92	92	92	92	96	96	82	92	92	92
Unoccupied	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Fucosylation	95	6	77	18	91	63	54	54	54	54	54	54	54	54	54	54
Sialylation	20	4	18	5	33	18	12	12	12	12	12	12	12	12	12	12
Supplementary Figure S3. Glycosylated model of SARS-CoV-2 S glycoprotein highlighting different glycan modifications. The experimentally determined quantities of mannosylation, fucosylation and sialylation presented in Supplementary Table S2 were used to color the glycosylated model of SARS-CoV2 S protein presented in Figure 3. Glycans are highlighted according to mannosylation (A), fucosylation (B) and sialylation (C) levels as denoted in the keys. S1 and S2 subunits are colored light grey and dark grey, respectively.
Supplementary Figure S4. Detection of low levels of mucin-type O-linked glycosylation at T323/S325 of SARS-CoV-2 S. O-linked glycan compositions were observed at T323/S325. This analysis was performed on a single biological replicate. For each peptide/glycopeptide detected the extracted ion chromatogram (XIC) (A), isotope distribution (B), and fragmentation spectrum (C) is shown. The monoisotopic peak m/z is labelled in (B). Fragment ions are colored blue and red for b- and y-ions, respectively. Oxonium ions are colored in green.

Data S1 (separate Excel file): Assigned peptide/glycopeptide list.
1. C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* **395**, 497–506 (2020). doi:10.1016/S0140-6736(20)30183-5 Medline

2. X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia, H. Liu, Y. Wu, L. Zhang, Z. Yu, M. Fang, T. Yu, Y. Wang, S. Pan, X. Zou, S. Yuan, Y. Shang, Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir. Med.* **10.1016/S2213-2600(20)30079-5** (2020).

3. M. Letko, A. Marzi, V. Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nat. Microbiol.* **5**, 562–569 (2020). doi:10.1038/s41564-020-0688-y Medline

4. D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C. L. Hsieh, O. Abiona, B. S. Graham, J. S. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. *Science* **367**, 1260–1263 (2020). 10.1126/science.abb2507 Medline

5. A. C. Walls, Y. J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, D. Veesler, Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. *Cell* **181**, 281–292.e6 (2020). 10.1016/j.cell.2020.02.058 Medline

6. F. Amanat, F. Krammer, SARS-CoV-2 vaccines: Status report. *Immunity* **52**, 583–589 (2020). doi:10.1016/j.immuni.2020.03.007 Medline

7. L. Cao, J. K. Diedrich, D. W. Kulp, M. Pauthner, L. He, S. R. Park, D. Sok, C. Y. Su, C. M. Delahunty, S. Menis, R. Andrabi, J. Guenaga, E. Georgeson, M. Kubitz, Y. Adachi, D. R. Burton, W. R. Schieff, J. R. Yates III, J. C. Paulson, Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. *Nat. Commun.* **8**, 14954 (2017). doi:10.1038/ncomms14954 Medline

8. A.-J. Behrens, D. J. Harvey, E. Milne, A. Cupo, A. Kumar, N. Zitzmann, W. B. Struwe, J. P. Moore, M. Crispin, Molecular architecture of the cleavage-dependent mannose patch on a soluble HIV-1 envelope glycoprotein trimer. *J. Virol.* **91**, e01894–e16 (2017). Medline

9. Y. Watanabe, T. A. Bowden, I. A. Wilson, M. Crispin, Exploitation of glycosylation in enveloped virus pathobiology. *Biochim. Biophys. Acta* **1863**, 1480–1497 (2019). doi:10.1016/j.bbadis.2019.05.012 Medline

10. Y. Watanabe, Z. T. Berndsen, J. Raghwani, G. E. Seabright, J. D. Allen, O. G. Pybus, J. S. McLellan, I. A. Wilson, T. A. Bowden, A. B. Ward, M. Crispin, Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. *Nat. Commun.* **11**, 2688 (2020). doi:10.1038/s41467-020-16567-0 Medline

11. M. Dalziel, M. Crispin, C. N. Scanlan, N. Zitzmann, R. A. Dwek, Emerging principles for the therapeutic exploitation of glycosylation. *Science* **343**, 1235681 (2014). doi:10.1126/science.1235681 Medline

12. C. N. Scanlan, J. Offer, N. Zitzmann, R. A. Dwek, Exploiting the defensive sugars of HIV-1 for drug and vaccine design. *Nature* **446**, 1038–1045 (2007). doi:10.1038/nature05818 Medline
13. A. C. Walls, X. Xiong, Y.-J. Park, M. A. Tortorici, J. Snijder, J. Quispe, E. Cameroni, R. Gopal, M. Dai, A. Lanzavecchia, M. Zambon, F. A. Rey, D. Corti, D. Veesler, Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. *Cell* **176**, 1026–1039.e15 (2019). doi:10.1016/j.cell.2018.12.028 Medline

14. T. J. Yang, Y.-C. Chang, T.-P. Ko, P. Draczkowski, Y.-C. Chien, Y.-C. Chang, K.-P. Wu, K.-H. Khoo, H.-W. Chang, S. D. Hsu, Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflage glycan. *Proc. Natl. Acad. Sci. U.S.A.* **117**, 1438–1446 (2020). doi:10.1073/pnas.1908898117 Medline

15. S. Stertz, M. Reichelt, M. Spiegel, T. Kuri, L. Martínez-Sobrido, A. García-Sastre, F. Weber, G. Kochs, The intracellular sites of early replication and budding of SARS-coronavirus. *Virology* **361**, 304–315 (2007). doi:10.1016/j.virol.2006.11.027 Medline

16. P. Venkatagopalan, S. M. Daskalova, L. A. Lopez, K. A. Dolezal, B. G. Hogue, Coronavirus envelope (E) protein remains at the site of assembly. *Virology* **478**, 75–85 (2015). doi:10.1016/j.virol.2015.02.005 Medline

17. G. Ritchie, D. J. Harvey, F. Feldmann, U. Stroeher, H. Feldmann, L. Royle, R. A. Dwek, P. M. Rudd, Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein. *Virology* **399**, 257–269 (2010). doi:10.1016/j.virol.2009.12.020 Medline

18. A. A. Hargett, M. B. Renfrow, Glycosylation of viral surface proteins probed by mass spectrometry. *Curr. Opin. Virol.* **36**, 56–66 (2019). doi:10.1016/j.coviro.2019.05.003 Medline

19. T. Tokatlian, B. J. Read, C. A. Jones, D. W. Kulp, S. Menis, J. Y. H. Chang, J. M. Steichen, S. Kumari, J. D. Allen, E. L. Dane, A. Liguori, M. Sangesland, D. Lingwood, M. Crispin, W. R. Schief, D. J. Irvine, Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. *Science* **363**, 649–654 (2019). doi:10.1126/science.aat9120 Medline

20. J. Pallesen, N. Wang, K. S. Corbett, D. Wrapp, R. N. Kirchdoerfer, H. L. Turner, C. A. Cottrell, M. M. Becker, L. Wang, W. Shi, W.-P. Kong, E. L. Andres, A. N. Kettenbach, M. R. Denison, J. D. Chappell, B. S. Graham, A. B. Ward, J. S. McLellan, Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. *Proc. Natl. Acad. Sci. U.S.A.* **114**, E7348–E7357 (2017). doi:10.1073/pnas.1707304114 Medline

21. W. B. Struwe, E. Chertova, J. D. Allen, G. E. Seabright, Y. Watanabe, D. J. Harvey, M. Medina-Ramirez, J. D. Roser, R. Smith, D. Westcott, B. F. Keele, J. W. Bess Jr., R. W. Sanders, J. D. Lifsón, J. P. Moore, M. Crispin, Site-specific glycosylation of virion-derived HIV-1 Env is mimicked by a soluble trimeric immunogen. *Cell Rep.* **24**, 1958–1966.e5 (2018). doi:10.1016/j.celrep.2018.07.080 Medline

22. A.-J. Behrens, S. Vasiljevic, L. K. Pritchard, D. J. Harvey, R. S. Andev, S. A. Krumm, W. B. Struwe, A. Cupo, A. Kumar, N. Zitzmann, G. E. Seabright, H. B. Kramer, D. I. R. Spencer, L. Royle, J. H. Lee, P. J. Klasse, D. R. Burton, I. A. Wilson, A. B. Ward, R. W. Sanders, J. P. Moore, K. J. Doores, M. Crispin, Composition and antigenic effects of individual glycan sites of a trimeric HIV-1 envelope glycoprotein. *Cell Rep.* **14**, 2695–2706 (2016). doi:10.1016/j.celrep.2016.02.058 Medline

23. M. Panico, L. Bouché, D. Binet, M.-J. O’Connor, D. Rahman, P.-C. Pang, K. Canis, S. J. North, R. C. Desrosiers, E. Chertova, B. F. Keele, J. W. Bess Jr., J. D. Lifsón, S. M. Haslam, A. Dell, H. R. Morris, Mapping the complete glycoproteome of virion-
derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding. *Sci. Rep.* **6**, 32956 (2016). doi:10.1038/srep32956 Medline

24. Y. Watanabe, J. Raghwani, J. D. Allen, G. E. Seabright, S. Li, F. Moser, J. T. Huiskonen, T. Strecker, T. A. Bowden, M. Crispin, Structure of the Lassa virus glycan shield provides a model for immunological resistance. *Proc. Natl. Acad. Sci. U.S.A.* **115**, 7320–7325 (2018). doi:10.1073/pnas.1803990115 Medline

25. I. Loke, D. Kolarich, N. H. Packer, M. Thaysen-Andersen, Emerging roles of protein mannosylation in inflammation and infection. *Mol. Aspects Med.* **51**, 31–55 (2016). doi:10.1016/j.mam.2016.04.004 Medline

26. M. Bianchi, H. L. Turner, B. Nogal, C. A. Cottrell, D. Oyen, M. Pauthner, R. Bastidas, R. Nedellec, L. E. McCoy, I. A. Wilson, D. R. Burton, A. B. Ward, L. Hangartner, Electron-microscopy-based epitope mapping defines specificities of polyclonal antibodies elicited during HIV-1 BG505 envelope trimer immunization. *Immunity* **49**, 288–300.e8 (2018). doi:10.1016/j.immuni.2018.07.009 Medline

27. J. Jardine, J.-P. Julien, S. Menis, T. Ota, O. Kalyuzhnii, A. McGuire, D. Sok, P.-S. Huang, S. MacPherson, M. Jones, T. Nieusma, J. Mathison, D. Baker, A. B. Ward, D. R. Burton, L. Stamatakis, D. Nemazee, I. A. Wilson, W. R. Schief, Rational HIV immunogen design to target specific germline B cell receptors. *Science* **340**, 711–716 (2013). doi:10.1126/science.1234150 Medline

28. C.-J. Wei, J. C. Boyington, K. Dai, K. V. Houser, M. B. Pearce, W. P. Kong, Z. Y. Yang, T. M. Tumpey, G. J. Nabel, Cross-neutralization of 1918 and 2009 influenza viruses: Role of glycans in viral evolution and vaccine design. *Sci. Transl. Med.* **2**, 24ra21 (2010). Medline

29. R. Xu, D. C. Ekiert, J. C. Krause, R. Hai, J. E. Crowe Jr., I. A. Wilson, Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. *Science* **328**, 357–360 (2010). doi:10.1126/science.1186430 Medline

30. X. Wei, J. M. Decker, S. Wang, H. Hui, J. C. Kappes, X. Wu, J. F. Salazar-Gonzalez, M. G. Salazar, J. M. Kilby, M. S. Saag, N. L. Komarova, M. A. Nowak, B. H. Hahn, P. D. Kwong, G. M. Shaw, Antibody neutralization and escape by HIV-1. *Nature* **422**, 307–312 (2003). doi:10.1038/nature01470 Medline

31. M. Zhang, B. Gaschen, W. Blay, B. Foley, N. Haigwood, C. Kuiken, B. Korber, Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. *Glycobiology* **14**, 1229–1246 (2004). doi:10.1093/glycob/cwh106 Medline

32. G. B. E. Stewart-Jones, C. Soto, T. Lemmin, G.-Y. Chuang, A. Druz, R. Kong, P. V. Thomas, K. Wagh, T. Zhou, A.-J. Behrens, T. Bylund, C. W. Choi, J. R. Davison, I. S. Georgiev, M. G. Joyce, Y. D. Kwon, M. Pancera, J. Taft, Y. Yang, B. Zhang, S. S. Shivatare, V. S. Shivatare, C.-C. D. Lee, C.-Y. Wu, C. A. Bewley, D. R. Burton, W. C. Koff, M. Connors, M. Crispin, U. Baxa, B. T. Korber, C.-H. Wong, J. R. Mascola, P. D. Kwong, Trimeric HIV-1-Env structures define glycan shields from clades A, B, and G. *Cell* **165**, 813–826 (2016). doi:10.1016/j.cell.2016.04.010 Medline

33. D. Sok, K. J. Doores, B. Briney, K. M. Le, K. L. Saye-Francisco, A. Ramos, D. W. Kulp, J.-P. Julien, S. Menis, L. Wickramasinghe, M. S. Seaman, W. R. Schief, I. A. Wilson, P. Poignard, D. R. Burton, Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. *Sci. Transl. Med.* **6**, 236ra63 (2014). doi:10.1126/scitranslmed.3008104 Medline
34. L. Cao, M. Pauthner, R. Andrabi, K. Rantalainen, Z. Berndsen, J. K. Diedrich, S. Menis, D. Sok, R. Bastidas, S. R. Park, C. M. Delahunty, L. He, J. Guenaga, R. T. Wyatt, W. R. Schief, A. B. Ward, J. R. Yates III, D. R. Burton, J. C. Paulson, Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nat. Commun. 9, 3693 (2018). doi:10.1038/s41467-018-06121-4 Medline

35. D. Pinto, Y.-J. Park, M. Beltramello, A. C. Walls, M. A. Tortorici, S. Bianchi, S. Jaconi, K. Culap, F. Zatta, A. De Marco, A. Peter, B. Guarino, R. Sprefico, E. Camerini, J. B. Case, R. E. Chen, C. Havenar-Daughton, G. Snell, A. Telenti, H. W. Virgin, A. Lanzavecchia, M. S. Diamond, K. Fink, D. Veesler, D. Corti, Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 10.1038/s41586-020-2349-y (2020). doi:10.1038/s41586-020-2349-y Medline

36. L. K. Pritchard, D. J. Harvey, C. Bonomelli, M. Crispin, K. J. Doores, Cell- and protein-directed glycosylation of native cleaved HIV-1 envelope. J. Virol. 89, 8932–8944 (2015). doi:10.1128/JVI.01190-15 Medline

37. M. Crispin, SARS-CoV-2 spike site-specific N-linked glycan analysis. MassIVE Database (2020); doi:10.25345/C54X4K.

38. T. Grant, A. Rohou, N. Grigorieff, cisTEM, user-friendly software for single-particle image processing. eLife 7, e35383 (2018). doi:10.7554/eLife.35383 Medline

39. P. Emsley, M. Crispin, Structural analysis of glycoproteins: Building N-linked glycans with Coot. Acta Crystallogr. D Struct. Biol. 74, 256–263 (2018). doi:10.1107/S2059798318005119 Medline