Supplementary Material

A facile fluorescent sensor based on nitrogen-doped carbon dots derived from *Listeria monocytogenes* for highly selective and visual detection of iodide and pH

Mingsha Jie, Ruipeng Guo, Yanan Zhang, Jianing Huang, Gaigai Xu, Min Li, Xiaoyue Yue, Baocheng Ji and Yanhong Bai*

a College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China

b Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan Province, 450001, P. R. China

c School of Mechanical and Electrical Engineering, Henan Vocational College of Applied Technology, Zhengzhou, Henan Province, 450042, P. R. China

Corresponding author:

Tel: +86-28-82890810. Fax: 86-28-82890825. E-mail: baiyanhong212@163.com (Y.H. Bai)
pH reversibility test

The pH reversibility test referred to the previous literatures \(^1-^3\), and the method in detail is as follows:

The pH of NCDs-LM solution between pH 5 and pH 9 was adjusted back and forth by 2 M HCl or NaOH, and then measured by pH meter. The fluorescence spectra were recorded with \(\lambda_{\text{ex}} = 490\, \text{nm}\).

The captions of figures and tables

Fig. S1 (a) The fluorescence emission spectra of the NCDs-LM, NCDs-LM-Hg\(^{2+}\) and NCDs-LM-Hg\(^{2+}\)-I\(^-\) mixture in aqueous solution. (b) The fluorescence stability of the NCDs-LM, NCDs-LM-Hg\(^{2+}\) and NCDs-LM-Hg\(^{2+}\)-I\(^-\) solutions.

Fig. S2 (a) UV-vis absorption spectra of NCDs-LM (100 \(\mu\text{g/mL}\)), NCDs-LM-Hg\(^{2+}\) and NCDs-LM-Hg\(^{2+}\)-I\(^-\) mixture in aqueous solution. (b) Fluorescence decay curves of NCDs-LM (100 \(\mu\text{g/mL}\)), NCDs-LM-Hg\(^{2+}\) and NCDs-LM-Hg\(^{2+}\)-I\(^-\) mixture (\(\lambda_{\text{ex}}=490\, \text{nm}, \lambda_{\text{em}}=550\, \text{nm}\)).

Table S1 Comparison of the LOD with the reported methods of I\(^-\) determination.

Table S2 The fluorescence lifetimes of NCDs-LM (\(\lambda_{\text{ex}} =490\, \text{nm}, \lambda_{\text{em}} =550\, \text{nm}\)) at different pH.

Table S3 Comparison of the pH range with the reported methods of pH determination.
Fig.S1.
Detection methods	Strategy/Materials	Linear range	LOD	Reference
HPLC-DAD	Phosphatidylcholine column	0.5-10.0 mg/L	22.84 ng/mL	4
HPLC-MS/MS	Ultrasonic extraction followed by HPLC-ESI-MS/MS	0.5-200 ng/mL	0.15 ng/mL	5
Cathodic stripping	Chitosan coating screen-printed carbon electrode	0.15-500 μmol/L	10 nmol/L	6
Capillary electrophoresis	UV detection	0.20-4.0 μmol/L	60 nmol/L	7
Chemiluminescence	KMnO₄/carbon dots	3.0-100 μmol/L	350 nmol/L	8
Fluorescence	Carbon dots	0.5-20 μmol/L	430 nmol/L	9
Fluorescence	Nitrogen-doped carbon dots	0.3-15 μmol/L	69.4 nmol/L	10
Fluorescence	Nitrogen-doped carbon dots	0-2.0 mmol/L	10 μmol/L	11
Colorimetry	Histidine-mediated synthesis of gold nanoclusters	0.8-60 μmol/L, 1.2-50 μmol/L	60 nmol/L, 215 nmol/L	12
Colorimetry	Catalase-like reaction of iodide ions and nitrogen-doped carbon dots	0.09-50 μmol/L	60 nmol/L	13
Fluorescence	*Listeria monocytogenes*-derived nitrogen-doped carbon dots (NCDs-LM)	0.5-10 μmol/L, 10-1000 μmol/L	20 nmol/L	This work
Table S2 The fluorescence lifetimes of NCDs-LM (λ_ex = 490 nm, λ_em = 550 nm) at different pH.

pH	τ_1 (ns) (%)	τ_2 (ns) (%)	τ_{avg} (ns)
1.81	2.97(49%)	7.16(51%)	5.10
2.21	3.44(47%)	7.10(53%)	5.37
3.29	3.35(18%)	7.33(82%)	6.59
4.10	3.41(16%)	7.63(84%)	6.93
5.32	3.52(13%)	7.74(87%)	7.18
6.37	3.93(18%)	7.95(82%)	7.24
7.24	4.29 (27%)	8.58(73%)	7.43
8.36	3.48(13%)	8.08(87%)	7.48
9.15	4.81(31%)	8.70(69%)	7.51
10.38	4.27(19%)	8.47(81%)	7.66
11.20	4.73(25%)	8.69(75%)	7.68
Detection methods	Materials	pH range	Reference
-------------------	-----------	----------	-----------
Fluorescence and colorimetry	Microsystem-assisted synthesis of carbon dots	3.5-10.2	14
Fluorescence lifetime	CdTeSe/ZnS quantum dots (QDs)-NIR carbocyanine dye conjugates	2.0-8.0	15
Fluorescence	p-aminothiophenol-coated CdSe/ZnS QDs	3.2-6	16
Luminescent dimetallic Eu(III)-based Probe	Dimetallic Eu(III)-containing complex	4-8	17
Fluorescence lifetime imaging microscopy	Mercaptopropionic acid-capped QDs	5.3-9.0	18
pH-sensitive release system	Basic cobalt carbonate nanovalves	2-7.4	19
pH electrode	Tungsten needle modified with polyaniline film	2-12	20
Fluorescent chemosensors	Catechol Derivatives	8-24	21
Fluorescence	Polyamines bearing anthracene and benzophenone units at the respective ends	1-13	22
Micromechanical technique	Modified silicon and silicon nitride microcantilevers	2-8	23
Fluorescence	NCDs-LM	1.81-11.82	This work
References

1 W. Shi, X. Li and H. Ma, *Angew. Chem. Int. Ed.*, 2012, **51**(26), 6432-6435.

2 S. Pedro, A. Salinas-Castillo, M. Ariza-Avidad, A. Lapresta-Fernández, C. Sánchez-González, C. Martínez-Cisneros, M. Puyol, L. Capitan-Vallvey and J. Alonso-Chamarro, *Nanoscale*, 2014, **6**(11), 6018-6024.

3 H. Liu, Y. Sun, Z. Li, R. Yang, Jie. Yang, A. Aryee, X. Zhang, J. Ge, L. Qu and Y. Lin, *Chin. Chem. Lett.*, 2019, **30**(9), 113-117.

4 M. Tatarczak-Michalewska, J. Flieger, J. Kawka, W. Flieger and E. Blicharska, *Molecules*, 2019, **24**(7), 1243-1256.

5 U. Kim and K. Kannan, *Anal. Chem.*, 2018, **90**(5) 3291-3298.

6 H. Cunha-Silva and M. Arcos-Martinez, *Talanta*, 2019, **199**, 262-269.

7 A. Macedo, K. Teo, A. Mente, M. Mcqueen, J. Zeidler, P. Poirier, S. Lear, A. Wielgosz and P. Britz-Mckibbin, *Anal. Chem.*, 2014, **86**(20) 10010-10015.

8 S. Han, B. Liu, Z. Fan, L. Zhang and F. Jiang, *Luminescence*, 2017, **32**(7), 1192-1196.

9 F. Du, F. Zeng, Y. Ming and S. Wu, *Microchim. Acta*, 2013, **180** (5), 453-460.

10 X. Tang, H. Yu, B. Bui, L. Wang, C. Xing, S. Wang, M. Chen, Z. Hu and W. Chen, *Bioact. Mater.*, 2021, **6**(6), 1541-1554.

11 H. Zhang, Y. Li, X. Liu, P. Liu, Y. Wang, T. An, H. Yang, D. Jing and H. Zhao, *Environ. Sci. Technol. Lett.*, 2014, **1**(1), 87-91.

12 Y. Wang, H. Zhu, X. Yang, Y. Dou and Z. Liu, *Analyst*, 2013, **138**(7) 2085-2089.

13 H. Wang, Q. Lu, Y. Liu, H. Li, Y. Zhang and S. Yao, *Sensor Actuat. B-Chem.*, 2017, **250**, 429-435.

14 S. Pedro, A. Salinas-Castillo, M. Ariza-Avidad, A. Lapresta-Fernández, C. Sánchez-González, C. Martínez-Cisneros, M. Puyol, L. Capitan-Vallvey and J. Alonso-Chamarro, *Nanoscale*, 2014, **6**(11), 6018-6024.

15 R. Tang, H. Lee and S. Achilefu, *J. Am. Chem. Soc.*, 2012, **134**(10), 4545-4548.

16 L. Dong, H. Xu, D. Li and Y. Wang, *Talanta*, 2017, **166**, 54-62.

17 J. Moore, R. Lord, G. Cisneros and M. Allen, *J. Am. Chem. Soc.*, 2012, **134** (42), 17372-17375.

18 A. Orte, J. Alvarez-Pez and M. Ruedas-Rama, 2013, *ACS Nano*, **7**(7), 6387-6395.
19 Z. Zheng, X. Huang and D. Shchukin, *Chem. Commun.*, 2014, **50**(90), 13936-13939.

20 C. Wang, G. Cai, J. Zhang and S. Du, *Appl. Mech. Mater.*, 2012, **105-107**, 1831-1834.

21 E. Evangelio, J. Hernando, I. Imaz, A. Ramón, B. Félix and R. Daniel, *Chem. Eur. J.*, 2008, **14**(31), 9754-9763.

22 G. Nishimura, Y. Shiraishi and T. Hirai, *Chem. Commun.*, 2005, **42**, 5313-5315.

23 H. Ji, K. Hansen, Z. Hu and T. Thundat, *Sensor Actuat. B-Chem.*, 2001, **72**, 3233-238.