Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
4-Aminoquinoline compounds from the Spanish flu to COVID-19

Roberto Barbosa Bazotte a,1, Sandro Massao Hirabara b,s,1, Tamires Afonso Duarte Serdan b, Raquel Bragante Gritte b, Talita Souza-Siqueira b, Renata Gorjao b, Laureane Nunes Masi b, Marina Masetto Antunes a, Vinicius Cruzat c, Tania Cristina Pithon-Curi b, Rui Curi b

a Department of Pharmacology and Therapeutics, State University of Maringá, PR, Brazil
b Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
c Faculty of Health, Torrens University Australia, Melbourne, Australia

ARTICLE INFO
Keywords:
Sars-Cov-2
Antiviral drugs
Chloroquine
Hydroxychloroquine
Endosomal escape
Lysosomotropic drugs

ABSTRACT
In 1918, quinine was used as one of the unscientifically based treatments against the H1N1 virus during the Spanish flu pandemic. Originally, quinine was extracted from the bark of Chinchona trees by South American natives of the Amazon forest, and it has been used to treat fever since the seventeenth century. The recent COVID-19 pandemic caused by Sars-Cov-2 infection has forced researchers to search for ways to prevent and treat this disease. Based on the antiviral potential of two 4-aminoquinoline compounds derived from quinine, known as chloroquine (CQ) and hydroxychloroquine (HCQ), clinical investigations for treating COVID-19 are being conducted worldwide. However, there are some discrepancies among the clinical trial outcomes. Thus, even after one hundred years of quinine use during the Spanish flu pandemic, the antiviral properties promoted by 4-aminoquinoline compounds remain unclear. The underlying molecular mechanisms by which CQ and HCQ inhibit viral replication open up the possibility of developing novel analogs of these drugs to combat COVID-19 and other viruses.

1. Spanish pandemic flu

The Spanish flu did not originate in Spain, as one would expect. Actually, one of the first reported cases of the unusual flu to the U.S. Public Health Service was by a physician in Haskell County, Kansas, in January 1918. Then on March 11 of the same year, more than 100 soldiers from the Fort Riley base had fallen sick. The reported symptoms included fever, sore throat and headache. At that time, knowledge about what caused the disease, which was later identified as the influenza virus, H1N1, also known as swine flu.

From the Fort Riley military base, American soldiers carried the disease to other military bases in the USA and eventually to Europe during World War I. The wartime censors of the countries involved in World War I suppressed news of the flu to avoid affecting the morale of the soldiers and the civilian population. However, Spain was one of the European nations that remained neutral during the War and the Spanish media freely reported on the flu in grisly detail. Thus, since the nations at war were undergoing a media blackout, and because Spain was the first to speak openly about the disease, the pandemic became known as the Spanish flu.

From 1918–1919, the Spanish flu claimed the lives of more than 50 million people worldwide. This highly contagious disease did not discriminate, affecting children, healthy adults, the elderly, the rich and poor and even animals (primarily cats and dogs). Similar to the ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, there was no vaccine or pharmacological therapy for Spanish flu patients.

The recommended precautions to prevent the spread of the flu included washing the inside the nose with soap and water every night and morning, forced sneezing in the evenings and mornings followed by...
deep breathing, not wearing a wrap or scarf around the neck and face for warmth, walking regularly, and eating oatmeal or cereal boiled in water or milk. The population and physicians also used various treatments with no scientific or medical basis such as sliced onions, bloodletting, inhaling fumes, drinking whiskey and taking laxatives, camphor, strychnine and quinine. Concerning quinine, it has been extracted from the bark of the Chinchona tree by South American Indians of the Amazon forest and used to treat fever since the seventeenth century.

2. The 4-aminoquinoline compounds

Quinine and its chemical analogs, chloroquine (CQ) and hydroxychloroquine (HCQ), are part of the 4-aminoquinoline family of compounds (Fig. 1). Despite the practical use of CQ during the Spanish flu, the antiviral effects of this drug (also known as quinine sulfate) have remained unaddressed for a long time. Interestingly, this medication is perhaps best known for its powerful antimalarial properties rather than its antiviral effects. However, more than one hundred years after the introduction of CQ, the antiviral effects of this drug (also known as quinine sulfate) have been reported to have antiviral properties. While quinoline derivatives have been reported to have antiviral properties, recent studies failed to confirm that other derivatives, including halofantrine and lumezantrine, inhibit some viruses [8,12]. There is also in silico and in vitro evidence demonstrating the antiviral activity of CQ and HCQ against SARS-CoV-2 [13,14]. Furthermore, HCQ (EC50 = 0.72 μM) was shown to be more potent than CQ (EC50 = 5.47 μM) in SARS-CoV-2 infected Vero cells [15].

In 1934, CQ (N4-(7-Chloro-4-quinolinyl)-N1,N1-diethyl-1,4-penta- nediamine) was first synthesized. This drug has been used to treat malaria and other diseases, such as rheumatoid arthritis, lupus erythematosus, hepatic amebiasis, sarcoidosis, and late cutaneous porphyria [16,17]. Approximately two decades later, CQ was modified to HCQ, which was eventually approved as an antimalarial agent by the Food and Drug Administration (FDA) in 1955. Due to the extensive use of CQ and HCQ by millions of people worldwide, the side effects and toxicities of these medications are well known. Studies have also shown that CQ and HCQ display anti-inflammatory [18] and immunomodulatory properties [19], including attenuated cytokine production by leukocytes that may play a pathogenic role in the progression of viral infections [16].

As shown in Fig. 1, the only difference between CQ and HCQ is the presence of a hydroxyl group at the end of one of the ethyl groups present in the molecule, resulting in HCQ being more water-soluble. Despite both compounds belonging to the 4-aminoquinoline family and having almost identical molecular volumes, there are differences in the intensities of their actions and toxicities.

Pharmacokinetic studies are mostly limited to the treatment of malaria. Both CQ and HCQ are well absorbed when administered orally [20], with a mean absorption half-life of four hours. Moreover, it has been estimated that the bioavailability of CQ is approximately 78 % in an oral solution and 89 % in tablet form [21]. Following absorption, 30–40 % of the drug binds to albumin and α1 glycoprotein. Consequently, CQ and HCQ are extensively distributed to all tissues and high doses of the drugs are required to achieve a given plasma concentration. In rats, the concentration of CQ is higher in the red blood cells (7.3–10.4 times), heart (6.8–184 times) and lung tissue (11.8–450 times) than in the plasma [22].

Previous work has shown that both drugs also bind strongly to melanin [23]. In arthritic patients, CQ remained in the skin for 6–7 months after cessation of the therapy, indicative of a long-term reservoir. Liver metabolism mediated by cytochrome P450 followed by renal excretion (21–47 % is excreted modified) is the principal route by which CQ and HCQ are removed from the body [24]. Combining the wide tissue distribution with a slow elimination rate can result in a long half-life (40–50 days). The chirality of these molecules is an important determinant of several pharmacological characteristics [25,26]. Furthermore, R-enantiomers, S-enantiomers, and racemates of CQ and HCQ show differences in metabolism, excretion, and biological activity [27,28]. Drug pharmacodynamics is affected due to different stereocenstries and chiral mixtures of CQ and HCQ [29]. In 2000, Tucker was the first author to introduce the chiral switch concept [30] and D’Acquarica and Agronat [25], by using this concept, proposed that replacing CQ or HCQ racemates with single enantiomers for the COVID-19 treatment might be a good strategy to improve desired pharmacological effects. In addition, Lentini et al. [31] are the first authors to suggest the use of single CQ enantiomers in COVID-19 patients to avoid cardiac adverse events during the racemate administration, including HERG blocking and prolonged QT syndrome, thus improving the safety and efficacy

Fig. 1. Chemical structures of chloroquine, hydroxychloroquine, quinine, and 4-aminoquinoline.
profiles of these medications. Another potential severe side effect is the retinopathy that seems to be related with the accumulation of an enantiomer of HCQ in the ocular tissue due to the prolonged use of this drug [25]. In the same way, using the chiral switch strategy can help to decrease the risk of this side effect.

Concerning specific interactions, CQ has been shown to block potassium channels by inhibiting ERG [32]. Additionally, CQ may prolong the QT interval, causing the potentially lethal long QT syndrome (LQTS) [33]. Thus, the CQ interaction could occur at three different points, including cation-π and π-stacking interactions with proteic subunits lining the pore, such as Tyr-652 and Phe-656, and also with Ser-649 of the hERG channel, displaying stereoselectivity cardiac activity [34,35]. Recently, one CQ enantiomer was shown to have a reduced effect on cardiac function, possibly due to weaker interactions resulting in less hERG inhibition [31]. In a recent study using a protein-protein interaction map, Gordon et al. [36] found that CQ is a potential SARS-CoV-2 inhibitor by binding to the host Sigma-1 receptor. Further studies are necessary to evaluate the stereoselectivity of different CQ and HCQ enantiomers on this inhibitory signaling pathway.

3. Mechanism of 4-aminoquinolines as antiviral drugs

3.1. Mechanism of endocytosis and endosomal escape of Sars-CoV-2 as a basis for understanding the antiviral activity of 4-aminoquinolines

It is well known that SARS-CoV-2 is an RNA enveloped virus that uses its spike (S) protein to bind to the angiotensin-converting enzyme 2 (ACE-2) receptor on the surface of human macrophages, monocytes, and

Fig. 2. Mechanism of 4-aminoquinolines as antiviral drugs. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA-enveloped virus with the ability to infect host/human cells. This is dependent on the binding of its structural spike glycoproteins to angiotensin-converting enzyme 2 (ACE-2) receptors present on the surface of human cells. Once this process is initiated, the 2 transmembrane serine protease (TMPRSS2) primes the S-protein to facilitate the viral entry into the host cell through endocytosis pathway. Once internalized into the endosomes, SARS-CoV-2 efficiently delivers and spreads the viral nucleocapsid into several intracellular compartments. During the process of viral replication and host infection, a severe inflammatory cascade is activated by intracellular proteins, such as interleukin receptor-associated kinase-1 (IRAK-1), toll-like receptor 7/9 (TLR7/9), cyclic GMP-AMP synthase (cGAS) and phosphorylation of P38 mitogen-activated protein kinases (P38). Viral replication and host infection could be prevented by 4-aminoquinolines in the non-protonated form (4AQ) and protonated form (4AQ+). 4AQ diffuse passively across cell membranes, reach endosomes, lysosomes, and Golgi vesicles where they are converted to 4AQ+ increasing the pH. This alkalinization prevents the proteolytic cleavage of viral glycoprotein and the fusion of proteins that are embedded in the membrane of enveloped viruses with the endosomal membrane. Consequently, there is an inhibition of the genomic release (RNA) into the cytoplasm and viral replication. Other abbreviations: CD4+: Cluster of differentiation 4; ER: Endoplasmic reticulum; H+ : Proton; IFN-γ: Interferon gamma; IL-1β: Interleukin 1β; IL-6: Interleukin 6; K+ : Potassium ion; MHC: Major histocompatibility complex; Na+: Sodium ion; NHE: Activation of sodium/hydrogen exchanger; TNF-α: Tumour Necrosis Factor-α; V-ATPase: Vacuolar Na+, K+-ATPase.
access the target cell and shields its genetic material from detection by mechanisms, specifically related to SARS-CoV-2, are depicted in Fig. 2. The main virus-induced molecular content into the cytoplasm [39]. The main virus-induced molecular mechanisms, specifically related to SARS-CoV-2, are depicted in Fig. 2.

There is evidence that CQ and HCQ block the uptake of the virion by inhibiting the glycosylation of the ACE-2 receptor in the plasma membrane [40,41]. However, the alkalization of endosomes and lysosomes appears to the primary mechanism by which these substances exert their antiviral effects. Endocytosis is a process in which cells take up and internalize macromolecules (damaged proteins, lipoproteins, antigens and others) via specific cell-surface receptors and fuse these components to preexisting endosomes [42]. The primary pH regulator of endocytic compartments is the proton translocating vacuolar vacuolar-type H+ -ATPase (V-ATPase), which pumps protons and generates an acidic endosomal lumen (pH=6.0) [37,42]. Consequently, the acidic internal pH promotes the dissociation of the ligands from the receptors and the cleavage of the viral glycoproteins by endosomal proteases [38,43]. Indeed, without endosomal acidification and cleavage processes, subsequent viral replication and infection are abrogated [44,45]. The remaining endocytic compartment becomes a lysosome and it is further acidified to a pH range (between 4 and 5) optimal for lysosomal proteases. Notably, lysosomal enzymes present low activity at neutral pH (e.g., in the cytoplasm), thus representing a protective mechanism in the event of lysosomal leakage [46].

Interestingly, some studies have been reported that omeprazole has a similar effect when compared to HCQ by blocking the proton pump on parasitic vacuoles and phagolysosomes, which provide in vitro antimalarial activity, as well as in vivo antileishmanial activity. Thus, the increased endo lysosomal pH occurs due to the H+ / K+ ATPase inhibition in gastric parietal cells, and suppression of the same pump in lysosomal membranes [47,48]. Kocar et al. [48] tested the in vivo efficacy of rifampicin (1200 mg/day) and omeprazole (20 mg), per 6 weeks, in 50 patients with anthroponotic cutaneous leishmaniasis. They found high efficacy with low toxicity, suggesting this intervention is a good alternative to treat leishmaniasis. Moreover, all patients showed a good drug tolerance without any side effects.

In general, macromolecules present in endosome/lysosome compartments are subjected to enzymatic degradation; however, viruses have evolved to take advantage of the lysosomal proteases [49], which promotes the release of the replication-competent viral genome in the host cell [5]. In this sense, the dysregulation of endosomal and lysosomal acidification and, consequently, their acidic pH-dependent proteases could be a highly effective pharmacological strategy for combating viruses, including Sars-CoV-2.

3.2. Mechanisms of alkalization of endosomes and lysosomes as a basis for understanding the antiviral effects of 4-aminoquinolines

The term ‘lysosomotropic’ was first used by Duve et al. De Duve, De Barry, Poole and Tulkens [50] to designate all substances that are selectively taken up into lysosomes, irrespective of their chemical nature or uptake mechanism. However, since lysosomes and other cell compartments take up these substances, we will use the term ‘organelle alkalinizing agents’ (OAs).

In general, OAs are weak bases with lipophilic properties. They are freely membrane-permeable in the non-protonated form but become less permeable when protonated (positively charged). Thus, in the non-protonated form, OAs passively diffuse across cell membranes until becoming protonated and trapped, in a manner inversely proportional to the pH, according to the Henderson-Hasselbach equation, inside acidic intracellular compartments [50]. Thus, the concentration of these weak bases is increased in organelles with a low pH, such as endosomes, lysosomes, and Golgi vesicles, consequently leading to a rise in the pH [51].

Both HCQ and CQ are considered to be weak bases. HCQ contains three main functional groups with pKₐ values of <4.0, 8.3, and 9.7, two of which would be protonated at pH 7.4, and CQ has three with pKₐ values of 4.0, 8.4, and 10.2 [23]. The non-protonated form of CQ spontaneously and rapidly diffuses across cell membranes until it reaches endosomes, lysosomes, and Golgi vesicles, where CQ will become protonated, increasing the internal pH. This pH change impairs macro-molecule assembly in endosomes, post-translational modifications in Golgi vesicles and acidic hydrolase-mediated protein degradation in lysosomes [5].

The kinetics and thermodynamics of CQ and HCQ transport across the human erythrocyte membrane have been studied [52]. It was found that the permeability coefficient of the unionized species of CQ (2.0 cm/sec at 25 °C) was much higher (about 50 times) than of HCQ (0.039 cm/sec at 25 °C). Despite this discrepancy, these two drugs exhibit similar apparent activation energies for transport. The authors concluded that interactions with the hydrogen bonding groups within the plasma membrane modulate the membrane transport kinetics of these drugs.

Low levels of OAAs (μM range) in the acidic organelles are sufficient at inhibiting the proteolytic cleavage of viral proteins [16]. However, the ability of OAAs to promote a rise in pH varies from compound to compound. For example, CQ is 10 times more potent than tributylamine > methyleneamine > triethylamine and benzylamine. It is plausible that these variations account for the lack of antiviral activity displayed by weak bases like atropine, eserine, and propranolol [49].

Previous studies have demonstrated that high concentrations of OAAs promote intense osmotic swelling, cytoplasmic vacuolation (fusion of lysosomes) and protonated base leakage. For example, CQ leads to vacuolation and autophagy activation in plastid-infected erythrocytes [53], which may explain why long-term CQ use sometimes results in retinal damage and other neurological side effects. However, since CQ and other 4-aminoquinolines directly inhibit the pH-dependent viral replication steps, short-term administration of OAAs may represent a viable strategy for attenuating the proliferative activity of the flaviviruses, retroviruses and coronaviruses [16].

According to Al-Bari Al-Bari [5], the effectiveness of CQ analogs in the treatment of Chikungunya virus depends on the stage and severity of the disease. Thus, to maximize the antiviral effect of these drugs, the moment the treatment starts, dosage and duration must be considered to achieve steady-state plasma levels that can inhibit the viral infection. It is not unreasonable to speculate that Al-Bari’s observation about the efficacy of CQ and Chikungunya virus [54-56] is also valid for Sars-CoV-2.

In addition to 4-aminoquinoline compounds, other OAAs with antiviral properties, including macrolide antibiotics (clarithromycin, bafilomycin, erythromycin, and azithromycin) and the non-steroidal anti-inflammatory drug indomethacin, have been reported [51].

It is worth mentioning that vacuolar-type H+ -ATPase (V-ATPase) inhibition represents another pathway for promoting endosomal and lysosomal alkalization. Antiviral activity was previously shown with omeprazole, esomeprazole [37], and bafilomycin A1, a specific inhibitor of V-ATPase [58] in vitro for several viruses, but not for Sars-CoV-2.

4. CQ and HCQ use in COVID-19 patients

Zhou et al. Zhou, Dai and Tong [59] proposed that COVID-19 patients respond better to HCQ than CQ. However, a systematic review on the use of CQ and HCQ in COVID-19, involving 65 clinical trials, some
still in progress, and 159,669 patients worldwide, reported that the efficacy and safety of CQ and HCQ are still uncertain and that the routine use of these drugs is not recommended until their risks and benefits are more thoroughly evaluated [60]. Similar results and conclusions were also reached by Touret and Lamballère Touret and de Lamballière [61]. However, some studies support the use of HCQ for the treatment of COVID-19 patients. For example, Gautret et al. Gautret, Lagier, Parola, Meddeb, Mailhe, Doudier, Courjon, Giordanengo, Vieira and Dupont [62] treated COVID-19 patients with 200 mg HCQ, three times per day, for 10 days, and evaluated the viral load daily. They found that HCQ reduces the Sars-CoV-2 viral load, with most HCQ-treated patients presenting negative PCR results on day 6, a significant improvement over the control group. Additionally, when HCQ was combined with azithromycin, 100 % of the patients tested negative for the Sars-CoV-2 on day 6. It is important to point out that this study had a small sample size (16 control patients and 20 with HCQ alone or in combination with azithromycin). Moreover, six patients from the HCQ group were not followed-up for different reasons. Three patients from this group were transferred to an intensive care therapy unit, one due to side effects (nausea); one was a virus-discharged patient, and one passed away. In another study, Gautret et al. Gautret, Lagier, Parola, Meddeb, Sevestre, Mailhe, Doudier, Aubry, Amranne and Seng [63] investigated the efficacy of HCQ (200 mg, three times per day) combined with azithromycin (500 mg on day 1 and 250 mg on days 2–5) for the treatment of COVID-19 patients for 3–6 days. The authors observed that approximately 80 % of patients recovered and were discharged from the hospital after the treatment and 83 % had negative PCR results for COVID-19 on day 7, 93 % on day 8 and 100 % on day 12. Furthermore, in a French clinical study, Million et al. Million, Lagier, Gautret, Colson, Fournier, Amranne, Hoquet, Mailhe, Esteves-Vieira and Doudier [64] prospectively evaluated 1061 COVID-19 positive patients treated for at least three days. In the early stage of the disease, the patients received HCQ (200 mg three times daily for ten days) and azithromycin (500 mg on the first day followed by 250 mg daily for four days). The authors reported that 91.7 % of the patients tested negative for the virus. A poor clinical outcome occurred for 4.3 %, and 0.75 % died (74–95 years old). While this study did not include a control group for comparison, these human studies suggest that HCQ increased the elimination of viral charge, decreased duration of symptoms (fever, cough), and reduced pneumonia aggravation.

Additionally, Chen et al. Chen, Hu, Zhang, Jiang, Han, Yan, Zhuang, Hu and Zhang [65] studied 62 patients with COVID-19, randomly and equally divided into two groups: control and HCQ (400 mg per day, for 5 days). The authors reported that HCQ significantly decreased clinical recovery time (fever and cough) and improved pneumonia (80.6 % in the HCQ group versus 54.8 % in the control group). In contrast, Tang et al. Tang, Cao, Han, Wang, Chen, Sun, Wu, Xiao, Liu and Chen [66] did not observe any clinical improvements in COVID-19 patients treated with HCQ. Additionally, Rosenberg et al. Rosenberg, Dufort, Udo, Wilberschied, Kumar, Tesoriero, Weinberg, Kirkwood, Muse and DeHovitz [67] evaluated 1438 hospitalized COVID-19 patients treated with HCQ, azithromycin, or combined therapy and found that none of these therapeutic approaches significantly reduced in-hospital mortality. Molina et al. Molina, Delaugerre, Le Goff, Mela-Lima, Pomcarme, Goldwirt and de Castro [68] found that 8 out of 11 COVID-19 patients still tested positive after 5–6 days of treatment with HCQ and azithromycin. Combining HCQ with lopinavir and ritonavir, in the absence of previous (INF)-1a, also did not alter the clinical evolution of 92 patients with severe COVID-19 [69]. Huang et al. Huang, Tang, Pang, Li, Ma, Lu, Shu, You, Chen and Liang [70] reported similar results in moderate to severe COVID-19 patients treated with CQ (n = 10) or lopinavir/ritonavir (n = 12). On the other hand, Dastan et al. Dastan, Nadji, Saffaei, Marjani, Moniri, Jamaati, Hashemian, Shiva, Abedini and Varaahram [71] concluded that the HCQ combined with lopinavir/ritonavir/INF-β-1b has to be considered, based on the findings in 20 patients with COVID-19. Furthermore, Boulware et al. Boulware, Pullen, Bangdiwala, Pastick, Lofgren, Okafor, Skipper, Nascence, Nicol and Abassi [72] evaluated 719 participants with a high risk of COVID-19 exposure and found no significant effect of HCQ on the disease prevention.

Detailed protocols, doses, and outcomes of the studies are described in Table 1. Although the literature shows significant progress in understanding the antiviral effects of CQ and HCQ, there is a lack of clinical research to undeniably support the use of these drugs in COVID-19 patients.

A variety of adverse side effects and activities have been reported for CQ and HCQ. Due to lower tissue/ce1ula accumulation, HCQ is considered less toxic than CQ [41,73,74], and it is well known that retinal toxicity is a side effect of 4-aminoquinoline compounds. Mukwikwi et al. Mukwikwi, Pineau, Vinet, Clarke, Nashi, Kalache, Grenier and Bernatsky [75] investigated retinal complications in COVID-19 patients treated with HCQ and CQ and found that 5.5 % developed retinal toxicity. Interestingly, when HCQ was administered as an antimalarial therapy, low risk for retinal disease or maculopathy was observed when patients received 200–400 mg/day during follow-up at five years. However, the risk significantly increased when the patients were treated with doses higher than 400 mg/day, for a prolonged duration (>5 years) [76]. Li et al. Huang, Tang, Pang, Li, Ma, Lu, Shu, You, Chen and Liang [70] reported that CQ and HCQ had an immune-suppressive effect leading to decreased immunity. The authors recommended that these drugs should be administered only to COVID-19 patients in the early stages of the disease and preventing mild symptoms. Others reported that HCQ has anti-inflammatory and antiviral properties, with few side effects [70,77].

Among the well-known adverse events associated with CQ and HCQ are cardiac disorders. The QT-prolonging effect of CQ is modest and, in general, it does not result in a clinically significant QT-prolongation in patients with LQTS. On the other hand, no considerable effects on ECG parameters have been related to HCQ. Combining HCQ or CQ with other drugs (such as ritonavir plus lopinavir, azithromycin, and remdesivir) can result in higher plasma levels of 4-aminoquinoline compounds, along with a significantly prolonged QT-interval [78]. In an observational study involving patients with COVID-19 admitted to the hospital, Geleris et al. Geleris, Sun, Platt, Zucker, Baldwin, Hripcsak, Labela, Manson, Kubin and Barr [79] described that HCQ administration is not associated with increased risk of intubation or death. In turn, Mercuro et al. Mercuro, Yen, Shim, Maher, McCoy, Zimetbaum and Gold [80] reported that patients with COVID-19 who received HCQ to treat pneumonia show a high risk of QTc prolongation, and concurrent treatment with azithromycin is associated with more significant changes in the QT. Recently, Giudicesi et al. [81] described a guidance for the treatment of COVID-19 patients with possible pharmacotherapies based on their potential QT-prolonged effect, especially CQ and HCQ. The authors considered several factors, including QT value, age, risk co-morbid conditions, patient respiratory requirement, and electrolyte levels (Ca2+, Mg2+, and K+) [81].

Interestingly, a prospective study conducted by Borba et al. Borba, Val, Sampaio, Alexandre, Melo, Brito, Mourão, Brito-Sousa, Baia-da-Silva and Guerra [82], in Manaus, Amazonas, Brazil, was the first randomized controlled clinical trial that evaluated CQ at high (600 mg) and low (400 mg) doses for treating critically ill COVID-19 patients. The authors recommended not using higher doses of the drug (recognized as safe in clinical protocols for other diseases) to treat critically ill patients due to high mortality. Accordingly, the FDA and NIH do not recommend using 600 mg of CQ in clinical studies.

In summary, the data concerning the efficacy and toxicity of CQ and HCQ in patients with COVID-19 is inconclusive. Much of this uncertainty revolves around when they should be administered, the limit between the therapeutic dose and the toxic dose of these drugs in hospitalized COVID-19 patients and the treatment duration.
Table 1
Summary of the findings of studies on chloroquine and hydroxychloroquine in COVID-19 patients.

Authors, groups, and duration of the study	Patients information	Drugs and treatment protocol	Treatment interruption or adverse effects	Main effects (intervention vs. control)
R.B. Bazotte et al. [62,76]				
Groups: Control n=16 HCQ n= 20 (6 plus ATM)				
Duration: 10 days				
Davoudi-Monfared et al. [63]				
Group: HCQ + ATM n=80				
Duration: 3-6 days				
Million et al. [64]				
Group: HCQ + ATM n=1061				
Duration: 3 days (retrospective study)				
Tang et al. [66]				
Group: standard care n= 75 HCQ n=75				
Duration: 14-21 days				
Rosenberg et al. [67]				
Group: HCQ + ATM n=735 Only HCQ n=271				
Group: Only ATM n=211 (retrospective study)				
Chen et al. [68]				
Groups: Control n=31, HCQ n=31				
Duration: 5 days				
Geleris et al. [69]				
HCQ monotherapy n=1376				
Median duration: 22.5 days				
Mercure et al. [80]				
HCQ monotherapy n=37				
Duration:				
Borba et al. [82]				
CQ monotherapy n=81				
Duration: 13-28 days				
Boulware et al. [72]				
Groups: Control n=407 HCQ n=414				
Duration: 5 days				
Davoudi-Monfared et al. [86]				
Groups: (HC: lopinavir-ritonavir) n=46				

(continued on next page)
pharmacological mechanism of 4-aminoquinolines in the treatment of several viruses, including COVID-19, we concluded that there are several candidates to treat viruses, the antiviral efficacy of CQ or HCQ associated with other antiviral drugs should be evaluated. In vitro antiviral effects and the acute and chronic toxicity of different related molecules in terms of stereoselective pharmacokinetics and pharmacodynamics properties (racemic vs. R-enantiomers vs. S-enantiomers), salts (sulfate vs. phosphate; monophosphate vs. diphasosphate), dosing regimens, routes of administration, and new pharmaceutical formulations. Considering the long half-life, chronic toxicity, drug resistance, and absence of prophylactic effects against COVID-19, the use of CQ and HCQ should be investigated for short periods (7–10 days) with monitoring of QT-interval, risk comorbid factors, and electrolyte control. Based on the in vitro antiviral effects and the acute and chronic toxicity, HCQ should be investigated for short periods (7–10 days) with monitoring of QT-interval, risk comorbid factors, and electrolyte control. The authors report no declarations of interest.

5. Perspectives and inferences

After a critical analysis of the current scientific data concerning the pharmacological mechanism of 4-aminoquinolines in the treatment of several viruses, including COVID-19, we concluded that there are important points that require attention:

1. Since the clinical antiviral evaluation of 4-aminoquinoline compounds against Sars-CoV-2 is restricted to CQ and HCQ, it is necessary to expand these studies to other available natural and synthetic aminoquinolines (i.e., quinine, quinidine, mefloquine, amodiaquine, primaquine, quinacrine, pamaquine, plasmoquine, cinchonidine, camptothecin, halofantrine, lumefantrine, ferroquine), as well as their metabolites (desethylchloroquine, bidesethylchloroquine, and desethylhydroxy-chloroquine).

2. While CQ and HCQ are potentially useful, inexpensive, and universally available candidates to treat viruses, the antiviral efficacy against SARS-CoV-2 is still inconclusive.

3. The understanding of the CQ and HCQ chirality is crucial to determine antiviral activity and toxicity of different related molecules in terms of stereoselective pharmacokinetics and pharmacodynamics properties (racemic vs. R-enantiomers vs. S-enantiomers), salts (sulfate vs. phosphate; monophosphate vs. diphasosphate), dosing regimens, routes of administration, and new pharmaceutical formulations.

4. Considering the long half-life, chronic toxicity, drug resistance, and absence of prophylactic effects against COVID-19, the use of CQ and HCQ should be investigated for short periods (7–10 days) with monitoring of QT-interval, risk comorbid factors, and electrolyte control.

5. Based on the in vitro antiviral effects and the acute and chronic toxicity, HCQ should be preferentially administered instead of CQ. Neither drug is recommended for self-treatment or critically ill patients.

6. Based on the modest clinical efficacy of CQ and HCQ to prevent or treat COVID-19 and several other viruses, a potential clinical evaluation of CQ or HCQ associated with other antiviral drugs should be considered.
[56] I. Stock, Chikungunya fever–expanded distribution of a re-emerging tropical infectious disease, Medizinische Monatschrift für Pharmazeuten 32 (1) (2009) 17–26.

[57] J. Long, E. Wright, E. Molesti, N. Tentperton, W. Barclay, Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry, F1000Research 4 (2015).

[58] A. Yeganeh, S. Ghavami, A.L. Kroeker, T.H. Mahood, G.L. Stelmack, T. Klönisch, K. M. Coombs, A.J. Halayko, Suppression of influenza A virus replication in human lung epithelial cells by noncytotoxic concentrations bafilomycin A1, Am. J. Physiol. Lung Cell. Mol. Physiol. 308 (3) (2015) L270-L286.

[59] D. Zhou, S.-M. Dai, Q. Tong, COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression, J. Antimicrob. Chemother. (2020).

[60] R.L. Pacheco, D.V. Pachito, A.M. Bagatini, R. Riera, HIDROXICLOROQUINA E CLOROQUINA PARA INFECCIÓN POR COVID-19, Revisión sistemática rápida–atualização 10/04, 2020.

[61] F. Touret, X. de Lamballerie, Of chloroquine and COVID-19, Antiviral Res. (2020), 104762.

[62] P. Gautret, J.-C. Lagier, P. Parola, L. Mailhe, B. Doudier, J. Courjon, W. Tang, Z. Cao, M. Han, Z. Wang, J. Chen, W. Sun, Y. Wu, W. Xiao, S. Liu, E. Chen, I. Stock, Chikungunya fever, Antiviral therapies—Implications of research advances for rheumatology care, Nat. Rev. Rheumatol. 14 (12) (2018) 693-703.

[63] E.S. Rosenberg, E.M. Dufort, T. Udo, L.A. Wilberschied, J. Kumar, J. Tesoriero, R.L. Pacheco, D.V. Pachito, D. Zhou, S.-M. Dai, Q. Tong, COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression, J. Antimicrob. Chemother. (2020).

[64] J. Long, E. Wright, E. Molesti, N. Tentperton, W. Barclay, Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry, F1000Research 4 (2015).

[65] A. Jorge, C. Ung, L.H. Young, R.B. Melles, H.K. Choi, Hydroxychloroquine retinopathy—Implications of research advances for rheumatology care, Nat. Rev. Rheumatol. 14 (12) (2018) 693-703.

[66] E.-R. Mukwikwi, C.A. Pineau, E. Vinet, A.E. Clarke, E. Nashi, F. Kalache, L.-P. Grenier, S. Bernatsky, Retinal complications in patients with systemic lupus erythematosus treated with antimalarial drugs, J. Rheumatol. 47 (4) (2020) 553-556.

[67] A. Geamann, A. Papa-Cherecheanu, B. Marinescu, C. Geamannu, L. Voinea, Retinal toxicity associated with chronic exposure to hydroxychloroquine and its ocular screening, Rev. J. Med. Life 7 (3) (2014) 322.

[68] H.B. Sharma, K.R. Vanapalli, V.S. Cheela, V.P. Ranjan, A.K. Jaglan, B. Dubey, S. Goel, J. Bhattacharya, Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic, Resour. Conserv. Recytl. 162 (2020), 105052.

[69] C.-I. Wu, P.G. Postema, E. Arbelo, E.R. Behr, C.R. Beziza, C. Napolitano, R. Robyn, V. Probst, E. Schulze-Bahr, C.A. Remme, SARS-CoV-2, COVID-19 and inherited arhythmia syndromes, Heart Rhythm 17 (9) (2020) 1456-1462.

[70] J. Geleris, Y. Sun, J. Platt, J. Zucker, M. Baldwin, G. Hripcsak, A. Labella, D. K. Mansson, C. Kubin, R.G. Barr, Observational study of hydroxychloroquine in hospitalized patients with Covid-19, N. Engl. J. Med. 382 (25) (2020) 2411-2418.

[71] N.J. Merzoco, C.F. Yen, D.J. Shim, T.B. Maher, C.M. McCoy, P.J. Zimetbaum, H. S. Gold, Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19), JAMA Cardiol, 5 (9) (2020) 1036-1041.

[72] J.R. Giudicessi, P.A. Noseworthy, P.A. Friedman, M.J. Ackerman, Urgent guidance for navigating and circumventing the QTc-prolonging and torsadogenic potential of possible pharmacotherapies for coronavirus disease 19 (COVID-19), Mayo Clin. Proc. 95 (6) (2020) 1213–1221.

[73] M.G.S. Borba, F.F.A. Val, V.S. Sampaio, M.A.A. Alexandre, G.C. Melo, M. Brito, M. P.G. Mourão, J.D. Brito-Sousa, D. Baía-da-Silva, M.V.F. Guerra, Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial, JAMA Network Open 3 (4) (2020) e208857-e208857.

[74] J. Geleris, Y. Sun, J. Platt, J. Zucker, M. Baldwin, G. Hripcsak, A. Labella, D. K. Mansson, C. Kubin, R.G. Barr, Observational study of hydroxychloroquine in hospitalized patients with Covid-19, N. Engl. J. Med. 382 (25) (2020) 2411-2418.

[75] H. Huang, M. Zhang, C. Chen, H. Zhang, Y. Wei, J. Tian, J. Shang, Y. Deng, A. Du, H. Dai, Clinical characteristics of COVID-19 in patients with preexisting ILD: a retrospective study in a single center in Wuhan, China, J. Med. Virol. 92 (11) (2020) 2742-2750.