The convergence rate of multivariate operators on simplex in Orlicz space

Wan Maa, Lihong Changa, Yongxia Qianga,*

aSchool of Mathematics and Computer Science, Ningxia Normal University, Guyuan City, Ningxia 756000, People’s Republic of China

Abstract
The approximation of functions in Orlicz space by multivariate operators on simplex is considered. The convergence rate is given by using modulus of smoothness.

Keywords: Stancu-Kantorović operator, Meyer-König-Zeller operator, Convergence rate, Orlicz space

1. Introduction

Let \(\Phi(u) \) be a N-function, \(\Psi \) be the complementary function of \(\Phi \). We will say that \(\Phi \) satisfies the \(\Delta_2 \)-condition if \(\Phi(2u) \leq c\Phi(u) \) for any \(u \geq u_0 \geq 0 \) with some constant \(c \) independent of \(u \).

For \(\Delta = \{ x = (x_1, x_2) \in \mathbb{R}^2 : x_1 + x_2 \leq 1, x_1, x_2 \geq 0 \} \), the Orlicz space \(L^\Phi_\triangle(\triangle) \) corresponding to the function \(\Phi \) consists of all Lebesgue-measurable functions \(f(x) \) on \(\triangle \) such that integral \(\int_\Delta f(x)g(x)dx \) is finite for any measurable functions \(g(x) \) with \(\int_\Delta \Psi(g(x))dx < \infty \).

It is well-known that the space \(L^\Phi_\triangle(\Delta) \) becomes a complete normed space with Orlicz norm

\[
\|f\|_\Phi = \|f\|_{\Phi, \triangle} = \sup \left\{ \left| \int_\Delta f(x)g(x)dx \right| : \int_\Delta \Psi(g(x))dx \leq 1 \right\}.
\]

*This work was supported by the Ningxia Science and Technology Department [grant numbers 2019BEB04003]; and Ningxia Education Department [grant numbers NXYLXK2019A8]
*Corresponding author
Email address: 415884392@qq.com (Yongxia Qiang)
It can be proved that

\[\| f \|_\Phi = \inf_{\alpha > 0} \frac{1}{\alpha} \left\{ 1 + \int_\Delta \Phi(\alpha f(x)) \, dx \right\}. \]

See [1] for the above. For \(f \in L^*_\Phi(\Delta) \), we first extend \(f(x) \) from \(\Delta \) to \(D = [0, 1] \times [0, 1] \) according to \(f(x) = f(1-x) \), and then extend \(f(x) \) to \(\mathbb{R}^2 \) with period 1. The nonnegative function

\[\Omega^2_{R^2}(f, r)_\Phi = \sup \{ \omega^2_h(f, r)_\Phi : h = (h_1, h_2) \in \mathbb{R}^2, |h| = 1 \} \]

of the variable \(r \geq 0 \) will be called the 2-th order modulus of continuity of the function \(f \in L^*_\Phi(\Delta) \) in the Orlicz norm \(\Phi \). Here, \(|h| = \sqrt{h_1^2 + h_2^2} \), and

\[\omega^2_h(f, r)_\Phi = \sup_{|t| \leq r} \| f(x + th) + f(x - th) - 2f(x) \|_\Phi \]

is the 2-th order modulus of continuity in the direction \(h \) of the function \(f \).

For any Lebesgue-measurable function \(f(x) \) on \(\Delta \), the functional

\[K_n(f; x) = \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \tilde{p}_{n,k_1,k_2}(x)c_{n,k_1,k_2}\int_{\triangle_{k_1,k_2}} f(u) \, du \quad (1.1) \]

is called Meyer-König-Zeller-Kantorović operator on \(\Delta \); the functional

\[K_{n,s}(f; x) = \sum_{k+l \leq n} b_{n,k,l,s}(x)(n+2)^2 \int_{I_{n,k,l}} f(u) \, du \quad (1.2) \]

is called Stancu-Kantorović operator on \(\Delta \), where \(x \in \Delta, n \in \mathbb{Z}^+, k, s, l \) are nonnegative integers, \(0 \leq s < \frac{n}{2} \), and

\[\tilde{p}_{n,k_1,k_2}(x) = \frac{(n + k_1 + k_2)!}{n!k_1!k_2!} x_1^{k_1} x_2^{k_2} (1 - x_1 - x_2)^{n+1}, \]

\[c_{n,k_1,k_2} = \frac{(n + k_1 + k_2)^2(n + k_1 + k_2 + 1)^2}{(n + k_1)(n + k_2)}, \]

\[\triangle_{k_1,k_2} = \left[\begin{array}{cc} k_1/n + k_2/n & k_1 + 1/n + k_2 + 1/n \end{array} \right] \times \left[\begin{array}{cc} k_2/n + k_1/n & k_2 + 1/n + k_1 + 1/n \end{array} \right]. \]
For Theorem 1.1. Let \(L_p \) be the space of functions with different positions. The convergence rate of the operators (1.1) and (1.2) in convergence in space \(L_p \) has been studied (see [2, 3]). This paper intends to investigate their convergence in space \(L_p^\Phi(\Delta) \), and the main results are as follows.

Theorem 1.1. For \(f \in L_p^\Phi(\Delta) \), if a \(N \)-function \(\Phi(u) \) satisfies the \(\Delta_2 \)-condition, then

\[
\|K_n(f) - f\|_\Phi \leq C \left(\frac{1}{n} \|f\|_\Phi + \Omega_\Phi^2 \left(f, \sqrt{\frac{1}{n}} \right) \right).
\]

Theorem 1.2. For \(f \in L_p^\Phi(\Delta) \), if a \(N \)-function \(\Phi(u) \) satisfies the \(\Delta_2 \)-condition, then

\[
b_{n,k,l}(x) = \begin{cases}
(1 - x_1 - x_2)p_{n-s,k,l}(x), & k + l \leq n - s, 0 \leq k, l < s; \\
(1 - x_1 - x_2)p_{n-s,k,l}(x) + x_1p_{n-s,k-l}(x), & k + l \leq n - s, s \leq k, 0 \leq l < s; \\
(1 - x_1 - x_2)p_{n-s,k,l}(x) + x_2p_{n-s,k,l-s}(x), & k + l \leq n - s, s \leq l, 0 \leq k < s; \\
(1 - x_1 - x_2)p_{n-s,k,l}(x) + x_1p_{n-s,k-l}(x) + x_2p_{n-s,k,l-s}(x,y), & k + l \leq n - s, s \leq k, s \leq l; \\
x_1p_{n-s,k-l}(x), & n - s < k + l \leq n, s \leq k, 0 \leq l < s; \\
x_2p_{n-s,k,l-s}(x), & n - s < k + l \leq n, 0 \leq k < s, s \leq l; \\
x_1p_{n-s,k-l}(x) + x_2p_{n-s,k,l-s}(x), & n - s < k + l \leq n, s \leq k, s \leq l.
\end{cases}
\]
\[\| K_{n,s}(f) - f \|_\Phi \leq C \left(\frac{1}{n} \| f \|_\Phi + \Omega_{R^2}^2 \left(f, \sqrt{\frac{1}{n}} \right)_\Phi \right). \]

2. Lemmas

Lemma 2.1. \(K_n \) is a bounded linear operator, and \(\| K_n \|_\Phi \leq 2. \)

Proof. The linearity of \(K_n \) is obvious. The following proves \(\| K_n \|_\Phi \leq 2. \) After calculation, we can get

\[\text{mes} \triangle_{k_1,k_2} = \frac{(n+k_1)(n+k_2)}{(n+k_1+k_2)^2(n+k_1+k_2+1)^2}, \]

\[\int_{\triangle} \tilde{p}_{n,k_1,k_2}(x)dx = \frac{n+1}{(n+k_1+k_2+3)(n+k_1+k_2+2)(n+k_1+k_2+1)}. \]

By using the Lemma 1 in [2], Jensen inequality of convex function and the Theorem 1.4 in [1], we obtain

\[\| K_n(f) \|_\Phi = \inf_{\alpha > 0} \frac{1}{\alpha} \left\{ 1 + \int_{\triangle} \Phi \left(\alpha K_n(f; x) \right) dx \right\} \]

\[= \inf_{\alpha > 0} \frac{1}{\alpha} \left\{ 1 + \int_{\triangle} \Phi \left(\alpha \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \tilde{p}_{n,k_1,k_2}(x)c_{n,k_1,k_2} \int_{\triangle_{k_1,k_2}} f(u)du \right) dx \right\} \]

\[\leq \inf_{\alpha > 0} \frac{1}{\alpha} \left\{ 1 + \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \int_{\triangle} \tilde{p}_{n,k_1,k_2}(x)dx c_{n,k_1,k_2} \int_{\triangle_{k_1,k_2}} \Phi \left(\alpha f(u) \right) du \right\} \]

\[\leq \inf_{\alpha > 0} \left\{ 1 + 2 \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \int_{\triangle_{k_1,k_2}} \Phi \left(\alpha f(u) \right) du \right\} \]

\[\leq \inf_{\alpha > 0} \left\{ 1 + \int_{\triangle} \Phi \left(2\alpha f(u) \right) du_1 du_2 \right\} \]

\[= 2 \| f \|_\Phi \]

Namely

\[\| K_n \|_\Phi \leq 2. \quad \Box \]

Lemma 2.2. \(K_{n,s} \) is a bounded linear operator, and \(\| K_{n,s} \|_\Phi \leq 12. \)
Proof. The linearity of $K_{n,s}$ is obvious. The following proves $\|K_{n,s}\|_{\Phi} \leq 12$.

After calculation, we can get

$$\text{mes}I_{n,k,l} = \text{mes}I_{n,k+s,l} = \text{mes}I_{n,k,l+s} = \frac{1}{(n+2)^2},$$

$$\int_{\Delta} p_{n-s,k,l}(x)dx = \frac{1}{(n-s+2)(n-s+1)}.$$

By using the Lemma 2.1 in [3], Jensen inequality of convex function and the Theorem 1.4 in [1], we obtain

$$\|K_{n,s}(f)\|_{\Phi} \leq \inf_{\alpha > 0} \frac{1}{\alpha} \left\{ 1 + \sum_{k+l \leq n-s} \int_{\Delta} p_{n-s,k,l}(x)dx \left(\int_{I_{n,k,l}} + \int_{I_{n,k+s,l}} \int_{I_{n,k,l+s}} \right) \Phi(\alpha f(u))du \right\},$$

$$\leq \inf_{\alpha > 0} \frac{1}{\alpha} \left\{ 1 + \frac{3(n+2)^2}{(n-s+2)(n-s+1)} \int_{\Delta} \Phi(\alpha f(u))du \right\},$$

$$\leq \inf_{\alpha > 0} \frac{1}{\alpha} \left\{ 1 + \int_{\Delta} \Phi(\alpha 12 f(u))du \right\},$$

$$= \|12f\|_{\Phi},$$

$$= 12\|f\|_{\Phi}.$$

Namely

$$\|K_{n,s}\|_{\Phi} \leq 12. \quad \square$$

Lemma 2.3. The following holds for (1.1).

$$K_n(1;x) = 1, \quad K_n \left((u_i - x_i)^i; x \right) \leq \frac{C}{n}, \quad i = 1, 2.$$

Lemma 2.4. The following holds for (1.2).

$$K_{n,s}(1;x) = 1, \quad K_{n,s} \left((u_i - x_i)^i; x \right) \leq \frac{C}{n}, \quad i = 1, 2.$$

The proof of the Lemma 2.3 and Lemma 2.4 can be obtained from the Lemma 3 in [2] and the Lemma 2.1 in [3].
Lemma 2.5. If we denote \(f_r \) the Steklov mean function for \(f \in L^*_\Phi(\Delta) \), i.e.

\[
f_r(x) = \frac{1}{r^d} \int_{[-r/2,r/2]^d} f(x + u + v) \, ds \, dt,
\]

then

\[
\|f_r\|_\Phi \leq C \|f\|_\Phi, \tag{2.1}
\]

\[
\|f - f_r\|_\Phi \leq C \Omega^2_{\mathcal{R}^2}(f, r)_\Phi, \tag{2.2}
\]

\[
\left\| \frac{\partial f_r}{\partial x_1} \right\|_\Phi \leq C \left(\|f_r\|_\Phi + \left\| \frac{\partial^2 f_r}{\partial x_1^2} \right\|_\Phi \right), \tag{2.3}
\]

\[
\left\| \frac{\partial f_r}{\partial x_2} \right\|_\Phi \leq C \left(\|f_r\|_\Phi + \left\| \frac{\partial^2 f_r}{\partial x_2^2} \right\|_\Phi \right), \tag{2.4}
\]

\[
\left\| \frac{\partial^2 f_r}{\partial x_1^2} \right\|_\Phi + \left\| \frac{\partial^2 f_r}{\partial x_2^2} \right\|_\Phi + \left\| \frac{\partial^2 f_r}{\partial x_1 \partial x_2} \right\|_\Phi \leq \frac{C}{r^2} \Omega^2_{\mathcal{R}^2}(f, r)_\Phi. \tag{2.5}
\]

(2.1), (2.2), (2.5) can be directly verified, and the proof of (2.3), (2.4) is similar to that of the Lemma 1a in [4]. If N-function \(\Phi \) satisfies the \(\Delta_2 \)-condition, then \(L^*_\Phi \) is separable. This leads to the following conclusion [5].

Lemma 2.6. If N-function \(\Phi \) satisfies the \(\Delta_2 \)-condition, then

\[
\left\| \sup_{u_1 \neq x_1} \frac{1}{u_1 - x_1} \int_{x_1}^{u_1} \left\| \frac{\partial^2 f_r(\xi, x_2)}{\partial \xi^2} \right\|_\Phi \, d\xi \right\|_\Phi \leq C \left\| \frac{\partial^2 f_r}{\partial x_1^2} \right\|_\Phi, \tag{2.6}
\]

\[
\left\| \sup_{u_2 \neq x_2} \frac{1}{u_2 - x_2} \int_{x_2}^{u_2} \left\| \frac{\partial^2 f_r(x_1, \eta)}{\partial \eta^2} \right\|_\Phi \, d\eta \right\|_\Phi \leq C \left\| \frac{\partial^2 f_r}{\partial x_2^2} \right\|_\Phi, \tag{2.7}
\]

\[
\left\| \sup_{u_2 \neq x_2} \frac{1}{u_2 - x_2} \int_{x_2}^{u_2} \left(\sup_{u_1 \neq x_1} \frac{1}{u_1 - x_1} \int_{x_1}^{u_1} \left\| \frac{\partial^2 f_r(\xi, \eta)}{\partial \xi \partial \eta} \right\|_\Phi \, d\xi \right) \, d\eta \right\|_\Phi \leq C \left\| \frac{\partial^2 f_r}{\partial x_1 \partial x_2} \right\|_\Phi. \tag{2.8}
\]
3. Proof of the main results

The proof of the Theorem 1.1 and Theorem 1.2 is similar, so only the Theorem 1.1 is proved below.

Proof. Because

\[
f_r(u) - f_r(x) = (u_1 - x_1) \frac{\partial f_r(x)}{\partial x_1} + (u_2 - x_2) \frac{\partial f_r(x)}{\partial x_2} + \int_{x_1}^{u_1} (u_1 - \xi) \frac{\partial^2 f_r(\xi, x_2)}{\partial \xi^2} \, d\xi
\]

\[+ \int_{x_2}^{u_2} (u_2 - \eta) \frac{\partial^2 f_r(x_1, \eta)}{\partial \eta^2} \, d\eta + \int_{x_1}^{u_1} \int_{x_2}^{u_2} \frac{\partial^2 f_r(\xi, \eta)}{\partial \xi \partial \eta} \, d\xi \, d\eta,
\]
so

\[
|K_n(f_r; x) - f_r(x)| \leq |K_n((u_1 - x_1); x)| \left| \frac{\partial f_r(x)}{\partial x_1} \right| + |K_n((u_2 - x_2); x)| \left| \frac{\partial f_r(x)}{\partial x_2} \right| + |K_n((u_1 - x_1)^2; x)| \left(\sup_{u_1 \neq x_1} \frac{1}{u_1 - x_1} \int_{x_1}^{u_1} \left| \frac{\partial^2 f_r(\xi, x_2)}{\partial \xi^2} \right| \, d\xi \right) +
\]

\[
|K_n((u_2 - x_2)^2; x)| \left(\sup_{u_2 \neq x_2} \frac{1}{u_2 - x_2} \int_{x_2}^{u_2} \left| \frac{\partial^2 f_r(x_1, \eta)}{\partial \eta^2} \right| \, d\eta \right) +
\]

\[
|K_n((u_1 - x_1)|u_2 - x_2|; x)| \left(\sup_{u_2 \neq x_2} \frac{1}{u_2 - x_2} \int_{x_2}^{u_2} \left(\sup_{u_1 \neq x_1} \int_{x_1}^{u_1} \left| \frac{\partial^2 f_r(\xi, \eta)}{\partial \xi \partial \eta} \right| \, d\xi \right) \, d\eta \right).
\]

Noticing

\[
|K_n((u_1 - x_1)|u_2 - x_2|; x)| \leq \frac{1}{2} |K_n((u_1 - x_1)^2; x)| + |K_n((u_2 - x_2)^2; x)|,
\]

we continue the above estimation using the Lemma 2.3, Lemma 2.5 and Lemma 2.6.

\[
\|K_n(f_r) - f_r\|_\Phi \leq \frac{C}{n} \left(\left\| \frac{\partial f_r}{\partial x_1} \right\|_\Phi + \left\| \frac{\partial f_r}{\partial x_2} \right\|_\Phi + \left\| \frac{\partial^2 f_r}{\partial x_1^2} \right\|_\Phi + \left\| \frac{\partial^2 f_r}{\partial x_2^2} \right\|_\Phi + \left\| \frac{\partial^2 f_r}{\partial x_1 \partial x_2} \right\|_\Phi \right) + \frac{1}{r^2} \Omega^2_{R^2}(f, r)_\Phi.
\]
If \(r = \sqrt{\frac{1}{n}} \), then
\[
\|K_n(f_r) - f_r\|_\Phi \leq \frac{C}{n} \left(\|f\|_\Phi + n\Omega_{R^2}^2 \left(f, \sqrt{\frac{1}{n}} \right)_\Phi \right).
\]
For \(f \in L^*_\Phi(\triangle) \), using the Lemma 2.1 and Lemma 2.5 we get
\[
\|K_n(f) - f\|_\Phi \leq \|K_n(f) - K_n(f_r)\|_\Phi + \|K_n(f_r) - f_r\|_\Phi + \|f_r - f\|_\Phi
\leq 3\|f_r - f\|_\Phi + \|K_n(f_r) - f_r\|_\Phi
\leq C\Omega_{R^2}^2(f, r)_\Phi + C \left(\frac{1}{n} \|f\|_\Phi + \Omega_{R^2}^2 \left(f, \sqrt{\frac{1}{n}} \right)_\Phi \right).
\]

4. Remark

If \(\Phi(u) = u^p \ (1 < p < \infty) \), then \(L^*_\Phi(\triangle) = L_p \). Thus the corresponding conclusions in [2] and [3] can be obtained from the Theorem 1.1 and Theorem 1.2.

References

[1] C. X. Wu, T. F. Wang, Orlicz space and its applications, Hei Long Jiang Science and Technology Press, Beijing, 1983.

[2] J. Y. Xiong, Approximation by the multivariate meyer-konig-zeller-kantorovic operator, Journal of Beijing Normal University (Natural Science) 30 (4) (1994) 439–447.

[3] R. Y. Y. Jing Yi Xiong, F. L. Cao, Approximation theorems of the stancu-kantorovic polynomials on a simplex, Journal of Qufu Normal University 19 (4) (1993) 29–34.
[4] A. R. K. Ramazanov, On approximation by polynomials and rational functions in orlicz spaces, Analysis Mathematica 19 (1984) 117–132.

[5] D. L. Xie, The order of approximation by positive continuous operator in orlicz space, Journal of Hangzhou University 8 (2) (1981) 142–146.