Changes in the expression of the type 2 diabetes-associated gene VPS13C in the β cell are associated with glucose intolerance in humans and mice

Zenobia B. Mehta1, Nicholas Fine1, Timothy J. Pullen1, Matthew C. Cane1, Ming Hu1, Pauline Chabosseau1, Gargi Meur1, Antonio Velayos-Baeza2, Anthony P. Monaco2, Lorella Marselli3, Piero Marchetti3 and Guy A. Rutter1*

1Section of Cell Biology and Functional Genomics, Imperial College London, Du Cane Road W12 0NN, London, UK
2Wellcome Trust Centre for Human Genetics Roosevelt Drive, OX3 7BN, Oxford, UK
3Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.

Running head

Glucose homeostasis in β cell-selective Vps13c null mice

*Correspondence to Professor Guy A. Rutter, g.rutter@imperial.ac.uk
Abstract

Single nucleotide polymorphisms (SNPs) close to the VPS13C, C2CD4A and C2CD4B genes on chromosome 15q are associated with impaired fasting glucose and increased risk of type 2 diabetes. eQTL analysis revealed an association between possession of risk (C) alleles at a previously-implicated causal SNP, rs7163757, and lowered VPS13C and C2CD4A levels in islets from female (n=40; p<0.041) but not male subjects. Explored using promoter-reporter assays in β and other cell lines, the risk variant at rs7163757, lowered enhancer activity. Mice deleted for Vps13c selectively in the β cell were generated by crossing animals bearing a floxed allele at exon 1 to mice expressing Cre recombinase under Ins1 promoter control (Ins1Cre). Whilst Vps13cfl/fl::Ins1Cre (βVps13cKO) mice displayed normal weight gain compared to control littermates, deletion of Vps13c had little effect on glucose tolerance. Pancreatic histology revealed no significant change in β cell mass in KO mice versus controls and glucose-stimulated insulin secretion from isolated islets was not altered in vitro between control and βVps13cKO mice. However, a tendency was observed in female null mice for lower insulin levels and β cell function (HOMA-B) in vivo. Furthermore, glucose-stimulated increases in intracellular free Ca²⁺ were significantly increased in islets from female KO mice, suggesting impaired Ca²⁺ sensitivity of the secretory machinery. The present data thus provide evidence for a limited role for changes in VPS13C expression in conferring altered disease risk at this locus, particularly in females, and suggest that C2CD4A may also be involved.

Key words

VPS13C, C2CD4A, GWAS, type 2 diabetes, β cell.
Introduction

The incidence of Type 2 diabetes (T2D) is now reaching epidemic proportions across the globe, with deaths from the disease reaching 5.1 million and disease complications costing USD 548 billion in 2013 (30). These values are expected to continue to increase, with predictions of a further 205 million sufferers by 2035 (30). T2D is a complex metabolic disease involving hyperglycaemia and dyslipidemia, which together conspire to cause serious secondary macro- and microvascular complications including cardiovascular disease, retinopathy and neuropathy (11, 19). Although it is accepted that a loss of an appropriate balance between functioning pancreatic β cell mass, and insulin action in peripheral tissues, lead to abnormal glucose homeostasis, the molecular basis of T2D onset and progression are still poorly understood (31, 57).

Whilst environmental factors such as increasingly sedentary lifestyles and obesogenic diets have a substantial impact, genetic susceptibility also plays a significant role in T2D risk (57). Correspondingly, Genome-Wide Association Studies (GWAS) have identified ~90 loci harbouring single nucleotide polymorphisms (SNPs) that confer increased disease risk (13, 21, 23, 40, 57, 65, 86). Such studies have thus led to the discovery of novel genes involved in T2D, such as T-cell factor 7-like 2 (TCF7L2) (21) and SLC30A8 (58, 65). Of note, the majority of the GWAS-identified loci affect insulin secretion rather than action, further emphasising the likely role in disease aetiology of impaired insulin production.

The VPS13C/C2CD4A/C2CD4B locus was first associated with T2D and glycaemic traits in GWAS published in 2010 (6, 15, 22, 29, 60). Subsequent studies identified further SNPs at this genomic location associated with poorer glycaemic control and T2D (12, 67, 78). The above studies encompassed a range of distinct populations and age groups thus providing confidence that SNPs in this locus, acting either via nearby or more remotely located genes, alter genetic susceptibility to T2D. SNPs within the VPS13C/C2CD4A/B locus have been linked to a range of glycaemic parameters including higher fasting proinsulin (29, 67), higher 2 h glucose and lower 2 h insulin (60, 67), as well as increased fasting glucose (15, 22, 67) and increased waist circumference (22). Two studies also
associated risk alleles with lower glucose stimulated insulin secretion (GSIS; (6, 22, 67)) and others
with T2D (12, 67, 83). The ‘lead’ (GWAS index) SNP in this locus, rs7172432, is in LD with a
‘functional’ SNP, rs7163757, previously implicated by fine mapping as the most strongly associated
\((p=3\times10^{-19})\) SNP at this locus (61, 66). rs7163757 is located in an islet stretch enhancer (50, 61, 66),
again suggesting that the disease-associated SNP acts on the expression of an effector gene(s) to alter
diabetes risk.

The first identified member of the highly conserved VPS13 family of proteins was Soi1 (or Vps13) in
\textit{S. cerevisiae} where it plays an important role in membrane protein trafficking between the trans-Golgi
network (TGN) and the prevacuolar compartment (7). Specifically, Vps13 is involved in trafficking
the protease Kex2p, a protein involved in intracellular insulin processing after over-expression of the
latter in yeast (85). Subsequently, a role for this protein was demonstrated in prospore formation in \textit{S.
cerevisiae} through the regulation of phosphatidylinositol-4-phosphate (PI(4)P) generation and
membrane-bending activity (48, 49).

In both humans and mice, the VPS13 family comprises four members (A-D) with VPS13A and C
showing the most similarity to the yeast homologue (73). All four proteins are large proteins which
have potential functions in membrane protein trafficking, Golgi structure and/or phosphatidylinositol
metabolism (37, 47, 53, 62, 63, 73). Mutations in \textit{VPS13A} and \textit{VPS13B} cause the genetic diseases
Chorea-Acanthocytosis and Cohen syndrome, respectively (32, 53, 71) and a loss of VPS13C function
has recently been linked to early-onset Parkinson’s disease (35).

VPS13C is ubiquitously expressed in mammals, with particularly high levels in pancreatic islets and β
cells (60, 67). The above observations have thus led us to hypothesise that VPS13C may play a role in
the intracellular trafficking of insulin or other aspects of pancreatic β cell function. To explore this
possibility, we have first determined the relationship between the possession of T2D risk alleles in
man, and the expression of \textit{VPS13C}, \textit{C2CD4A} and \textit{C2CD4B} in human islets. Subsequently, we have
developed mice inactivated for \textit{Vps13c} highly selectively in the β cell using the recently-developed
\textit{Ins1Cre} deleter strain (33, 69). The latter is a knock-in model which avoids the complications
associated with earlier insulin 2 promoter-dependent CreS including recombination in the brain (77) and co-expression of human growth hormone (8). This approach reveals roles for Vps13c in the control of whole body glucose homeostasis, insulin secretion in vivo and glucose-induced Ca\(^{2+}\) signal generation in the β cell, but suggests that C2CD4A may also contribute to disease risk.
Materials and Methods

Materials

All general chemicals and materials were purchased from Sigma (Dorset, UK) or Fisher Scientific (Loughborough, UK) unless indicated.

Generation of VPS13C antibodies

A custom polyclonal antibody against human VPS13C, based on amino acids 1582-1882 of human VPS13C isoform 2A (UniProtKB Q709C8-1; 84% identities, 92% positives with mouse VPS13C protein Q8BX70-1, positions 1580-1879) was raised in rabbits as recently described (84).

Ethics

All in vivo procedures were conducted in accordance with U.K. Home Office regulations (Animals (Scientific Procedures) Act of 1986, Home Office Project License number PPL 70/7349, Dr Isabelle Leclerc). Procedures were performed at the Central Biomedical Service at Imperial College, London. Isolation of islets from multi-organ donors was approved by the local ethical committee at the University of Pisa. Human pancreata were collected from brain-dead organ donors after informed consent was obtained in writing from family members. Use of human islets at Imperial College was approved by the local NRES Committee, Fulham; REC reference 07/H0711/114.

eQTL analysis

Human islet DNA samples obtained from 53 donors (see Supplementary Table 1 for clinical characteristics), using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) as previously described (51), were genotyped for SNPs rs4502156, rs7172432 and rs7163757. The rs7172432 locus was amplified by semi-nested PCR using primers TAG GTA TCT TGG AGC TGA GG and CCA CAC TTC ACA GAA TCA GG for the first round amplification then CAG GTC AAG TGA GCA CTT GC and CCA CAC TTC ACA GAA TCA GG for the second round. The amplicons were then digested with SspI and genotyped based on the resulting restriction fragment length polymorphism.
Islet RNA was isolated from hand-picked islets as described (39), using the Arcturus PicoPure RNA Isolation Kit (Applied Biosystems, Foster City, CA), according to the procedure recommended by the manufacturer for RNA extraction from cell pellets, and, accordingly, was treated with DNase to remove the contamination with genomic DNA. Reverse transcription to cDNA was performed using a High Capacity cDNA Reverse Transcription Kit (ThermoFisher). The rs4502156 and rs7163757 SNPs were genotyped by qPCR using a commercial TaqMan assay (Applied Biosystems). VPS13C, C2CD4A and C2CD4B mRNA abundances were measured relative to ACTB in corresponding RNA samples by qRT-PCR using commercial TaqMan assays (Applied Biosystems) and the ΔCt method. As a quality control step, samples with ΔCt standard deviation > 0.2 were excluded from the analysis. The association between VPS13C expression and genotype was tested using an ANCOVA model, controlling for age, gender and BMI and implemented in R (52). The association of genotype with C2CD4A and C2CD4B was analysed in the same manner. Linkage disequilibrium (LD) values for SNPs in the Tuscan population used here were obtained at: http://www.1000genomes.org/faq/which-populations-are-part-your-study.

Luciferase construct cloning and assay

To assess whether variants at rs7163757 might cause changes in the expression of nearby genes, two reporter constructs were generated. A 1.3kb fragment of the genomic region flanking the SNP was amplified by PCR from a heterozygous donor using Phusion High Fidelity DNA Polymerase (Thermo Scientific, Paisley, UK). The PCR product was subsequently cloned into CR™8/GW/TOPO (ThermoFisher, Paisley, UK) according to manufacturer’s instructions. Plasmid DNA from clones was purified using GenElute™ Plasmid Miniprep Kit (Sigma, Dorset, UK) and sent for sequencing to identify clones containing one of each allele. DNA fragments were then shuttled into the minimal promoter (DNA Sequence: TAG AGG GTA TAT AAT GGA AGC TCG ACT TCC AG, containing a TATA-box promoter element)-driven luciferase vector GL4.23-GW vector (76) using Gateway LR Clonase II Enzyme Mix (Invitrogen, Paisley, UK). pGL4.23-GW is modified from pGL4.32 (Promega) with Gateway® technology (ThermoFisher) and has previously been used successfully for the analysis of enhancer activity (20).
The sequence and orientation of the insert was checked by restriction enzyme digest and subsequently a QIAGEN Plasmid Maxi Kit (QIAGEN Ltd, Manchester, UK) was used to purify transfection grade DNA. HEK293, MIN6 (44), 1.1B4 (41) and EndoC-βH1 (54) were transfected using Lipofectamine 2000 (Invitrogen, Paisley, UK) in 48 well plates using 250 ng of each reporter construct and 1 ng of Renilla control vector. Each condition was repeated in six separate wells. Dual-Luciferase Reporter Assay (Promega, Southampton, UK) was used to measure Luciferase normalised against Renilla. All experiments were done in triplicate. The following cloning primers were used: CCA ACA AAT AGT AAG CAT TAT TAC C (rs7163757, forward) and CAA ATA GTT GTA GAT ATG TGG CAT T (rs7163757, reverse).

Mouse generation, housing and genotyping.

Generation of heterozygous embryos on a C57/BL6 background, carrying floxed alleles of Vps13c was conducted by GenOway (France). Vps13c^{fl/fl} mice were crossed to mice expressing Cre recombinase under the control of the Ins1 promoter (33, 69) to generate mice in which exon 1 of the Vps13c gene was selectively excised in pancreatic β cells. Mice were born at the expected Mendelian ratios without any obvious physical or behavioural defects. Mice were housed 2-5 per cage in a pathogen-free facility under a 12-hour light and dark cycle and had ad libitum access to water and standard mouse chow diet (Research Diet, New Brunswick, NJ, USA). High fat diet (HFD, 60% [wt/wt] fat content; Research Diet, New Brunswick, NJ, USA) was introduced at four weeks of age. Genotyping was performed from ear biopsies using PCR. Knockout of Vps13c from pancreatic islets was assessed using both qPCR and immunoblotting as described below. Mice were weighed weekly from five weeks of age and random, fed glycaemia was tested fortnightly in the afternoon.

Intraperitoneal (IP-) and oral (O-) glucose tolerance tests (GTTs)

Mice were fasted for 15-16 hours overnight prior to IP- or OGTT with free access to water. Blood samples were taken for glycaemia measurement via venesection of the tail vein. Glycaemia was
measured using an Accu-Chek® glucometer (Roche Diabetes Care Ltd, UK) and appropriate measurement strips. Fasting glycaemia was first measured (time 0) and then glucose was administered via IP injection (1 g/kg body weight) or oral gavage (1.5 g/kg body weight). Glycaemia measurements were then taken at 15, 30, 45, 60, 90 and 120 min. post injection.

Measurement of plasma insulin and proinsulin

Mice were fasted overnight with free access to water. A fasting (time 0) blood sample (~50 μl) was collected from the tail vein into a lithium-heparin lined-Microvette® (Starstedt, Leicester, UK) before administering glucose (3 g/kg body weight) via IP injection. Blood samples were then collected at 15 and 30 min. after injection. Glycaemia was also measured at these time points. Plasma was collected by centrifuging samples at 2000 g for 10 min. at 4˚C. Plasma insulin was measured using an ultrasensitive mouse insulin ELISA (Crystal Chem, IL, USA). For random-fed insulin/proinsulin ratio measurements, a blood sample was collected into a lithium-heparin lined Microvette® from the tail vein and the aorta immediately after culling via cervical dislocation. Samples were kept on ice at all times to prevent degradation of proinsulin and plasma was collected as described above. Insulin was measured as described above and proinsulin was measured using a Rat/Mouse Proinsulin ELISA (Mercodia, Uppsala, Sweden).

Homeostatic model (HOMA) analysis

HOMA2-%S and-%B (36) were calculated using fasting glycaemia and plasma insulin measurements, with the HOMA Calculator™, as described: https://www.dtu.ox.ac.uk/homacalculator/download.php

Isolation of islets and assay of insulin secretion

Mice were culled by cervical dislocation. Islets were isolated after pancreatic distension with collagenase essentially as previously described (55). Islets were allowed to recover from digestion for 24 (RC-fed mice) or 48 (HFD-fed mice) h in RPMI medium (Gibco) supplemented with 10% (v/v) foetal bovine serum, 1% (w/v) Penicillin, 1% (w/v) Streptomycin, 11.1 mM glucose and 2 mM L-glutamine. Insulin secretion was measured from duplicate batches of 10 islets incubated in 0.5 ml of
Kreb’s-Ringer medium (130 mM NaCl, 3.6 mM KCl, 1.5 mM CaCl₂, 0.5 mM MgSO₄, 0.5 mM NaH₂PO₄, 2 mM NaHCO₃, 10 mM HEPES, and 0.1 % [w/v] bovine serum albumin (BSA), pH 7.4) containing 3 mM or 16.7 mM glucose, or 20 mM KCl and 3 mM glucose as indicated, shaking at 37°C for 30 min. Total insulin was extracted into 0.5 ml acidified ethanol (75% [v/v] ethanol, 1.5% [v/v] 1M HCl and 0.1% [v/v] Triton X-100). For continuous measurements of secretion, insulin samples from 50 perifused islets were collected using a custom-built device, using a perifusion rate of 500 μl/min at 37°C as described previously (10). Secreted and total insulin concentrations were measured using a homogeneous time-resolved fluorescence-based (HTRF) insulin assay (CisBio, Codolet, France) in a PHERAstar reader (BMG Labtech), according to manufacturer’s instructions.

Determination of β and α cell mass

Isolated pancreata were fixed in 10% (v/v) formalin overnight at 4°C and embedded in paraffin wax. Sections (5 μm) were cut and fixed onto Superfrost slides. For staining, five sections per mouse, 25 μm apart, were incubated in Histochoice™ Clearing Agent and then submerged consecutively in 100%, 95% and 70% ethanol to remove the wax. Following washes with water, sections were permeabilised by boiling in a citrate-based antigen unmasking solution (Vector Labs, Peterborough, UK), washed with PBS and then incubated in PBS-Triton X-100 (PBST, 0.1% [v/v]) containing 2% (w/v) BSA and 2% (v/v) goat and donkey serum for 2 h at room temperature. Sections were then incubated in a humidified chamber at 4°C overnight with guinea-pig anti-insulin (1:200; Dako, Ely, UK) and mouse anti-glucagon (1:1000; Sigma, Dorset, UK). After washing three times in PBST (0.25% [v/v]) containing 0.25% (w/v) BSA, sections were incubated with Alexa fluor-488 and -568 conjugated secondary antibodies (1:1000; Invitrogen, Paisley, UK) for 2 h at room temperature in the dark. Sections were then mounted using Vectashield antifade mounting medium containing DAPI (Vector Labs, Peterborough, UK). Slices were imaged in the Imperial College facility for imaging by light microscopy (FILM) (http://www3.imperial.ac.uk/imagingfacility), using a Zeiss Axio Observer inverted widefield microscope with LED illumination. Images were captured with a Hamamatsu Flash 4.0 fast camera controlled by Zen software (Zeiss, Cambridge, UK). Image analysis was conducted using ImageJ software (1) and an in-house macro as described under Supplementary Methods.
Quantitative real-time PCR (qPCR) analysis

Total RNA was extracted from (50-200) islets isolated from three control and three βVps13cKO mice (for both males and females) using TRIzol (ThermoFisher Scientific), according to the manufacturer’s instructions. RNA (100 ng) was reverse transcribed to produce cDNA using the High Capacity Reverse Transcription Kit (Life Technologies, Paisley, UK) with random primers. qPCR was conducted using SYBER Green (Life Technologies, Paisley, UK) on a ABI-Fast Prism 7500 machine and primers specific to murine Vps13c, C2cd4a, C2cd4b or CyclophilinA. Primers were designed using Primer Express 3.0 (Applied Biosystems, CA, USA) and sequences used were: Vps13c (forward) CAC AAG CAT TGA AGA TAG AAG CAA AA; Vps13c (reverse) AGT GAT GGC ACA ATG TCT TGT TG; C2cd4a (forward) CGG GTT GGA AAA CCA TCT GA; C2cd4a (reverse) GTC TGA ACC CTG TGA TCC TGT TC; C2cd4b (forward) ACG TCA CCT GCT TCG TTC CT; C2cd4b (reverse) CAC GAG CGT CTT TTC TTC TTC A; CyclophilinA (forward) TAT CTG CAC TGC CAA GAC TG A; CyclophilinA (reverse) CCA CAA TGC TCA TGC CTT CTT TCA. Whereas the VPS13C and C2CD4B primers spanned exon/exon junctions, the C2CD4A primers spanned intron 1.

Western (immuno-) blotting

Total protein was extracted from 50-500 islets isolated from 2-3 control or βVps13cKO mice (males and females) in ice-cold RIPA buffer (1% [v/v] Triton X-100, 1% [w/v] sodium deoxycholate, 0.1% [w/v] SDS, 0.15 M NaCl, 50 mM Tris, pH 8.0) containing a 2x concentration of cOmplete, EDTA-free protease inhibitor cocktail (Roche, Burgess Hill, UK). The samples were incubated in RIPA on ice for 10 min. and then freeze-thawed twice to ensure release of proteins. Samples were clarified by centrifuging at 16,000 g for 10 min. at 4°C and then total protein content was quantified using a BCA protein assay kit (Pierce, ThermoScientific). 5 μg total protein was added to SDS sample buffer (0.5 M Tris-HCl, pH 6.8, 2% [w/v] SDS, 5% [w/v] glycerol, 0.6 M DTT and 0.2 mg bromophenol blue) and incubated at room temperature for 30 min. Samples were then electrophoresed on a 4-10% discontinuous gradient gel alongside a HiMark Protein Standard (Novex®, ThermoScientific) and
transferred onto a nitrocellulose membrane overnight. Membranes were blocked with 5% milk and
incubated with primary antibodies (rabbit anti-VPS13C, 1:2000, described above) or goat anti-EEA1,
Santa Cruz, Texas, USA, 1:2000) overnight with agitation at 4°C. Membranes were then washed three
times in PBS-Tween20 (0.2%[v/v]) and incubated with horseradish peroxidase-conjugated antibodies
for 1 h at room temperature. Following three washes in PBS-Tween20, proteins were visualised with
ECL reagent and x-ray film (Amersham, GE Healthcare Life Sciences).

Confocal immunocytochemistry

Human islets were dissociated by 10 min. incubation in Hanks’ based enzyme-free cell dissociation
buffer (GIBCO, Invitrogen) and gentle pipetting to generate small clusters of cells. Dissociated cells
were plated onto 13/24 mm sterile coverslips and allowed to recover for 1-2 days. Cells were fixed in
4% paraformaldehyde and permeabilized in 0.1% Triton X 100. Primary cells were blocked in 10%
foetal calf serum and subsequently incubated overnight with VPS13C 15-E antibody (Santa Cruz sc-
104751, 1:50) with or without anti-insulin antibody (1:200; Dako, Ely, UK) followed by incubations
with Alexa-488 and Alexa-568-conjugated secondary antibodies in sequential order. Coverslips were
mounted using VectaShield with DAPI and imaged as described elsewhere (42). Samples were
illuminated using steady state 488 and 560 nm laser lines and emission was collected through
ET535/30 and ET620/60 emission filters (Chroma). Images were captured using a Hamamatsu EM
CCD Digital camera controlled by an Improvision/Nokigawa spinning disc system running
Volocity™ (PerkinElmer, MA, USA) software.

Confocal Ca²⁺ imaging

Islets were isolated as described above. Simultaneous imaging of Ca²⁺ of individual cells was
performed by spinning disc confocal microscopy after loading intact islets with Fluo-2 AM
(Cambridge Bioscience, Cambridge, UK). Images were captured with a Zeiss Axiovert 200M
microscope fitted with a 10x 0.3-0.5 NA, EC Plan Neofluar, Zeiss objective and a 1.5x Optivar
attached to a Nokigawa spinning disc confocal head, as described (27). The microscope was
controlled using Volocity™ software. Islets were continuously perifused in KREB’s-Ringer buffer
containing 3 mM glucose, equilibrated with 95% O₂/5% CO₂ at 34-36°C. Islets were stimulated at 210 s and 1300 s by perifusion with KREB’s-Ringer supplemented with up to 16.7 mM glucose or 20 mM KCl as indicated. Offline processing and analysis were conducted using ImageJ software (1) and an in-house macro as described under Supplementary Methods.

Statistics

Data were analysed using Microsoft Excel, GraphPad PRISM 6.0 and R. Significance was tested using unpaired Student’s two-tailed t-test with appropriate post-tests for multiple comparisons, or two-way ANOVA, as indicated. P<0.05 was considered significant and errors signify means ± SEM unless stated. Figures were constructed using Adobe Illustrator.

Results

eQTL analysis

GWAS studies have implicated SNPs close to VPS13C, C2CD4A and C2CD4B in altered T2D susceptibility. We tested the association between genotype at one of the previously-identified SNPs rs4502156 and the likely causal SNP rs7163757 (61, 66) (r²=0.939, D’=0.979 with rs4502156) and VPS13C expression in human islet samples from 53 donors. Initial analysis for rs4502156 and rs7163757 including all samples showed no significant association. Interaction plots indicated a possible interaction between gender and genotype which was tested by including the interaction term in the ANCOVA model (See Methods). This was found to be significant (p=0.015, n=53) so data were stratified by gender and subsequently males and females were analysed separately (Fig. 1A-C). Analysis of females revealed a significant association between possession of the risk allele (C) at rs7163757 and lowered VPS13C expression (p=0.041, n=40, Fig 1C). A similar gender interaction (p=0.016, n=53) was also observed for rs4502156, and likewise a significant association was detected between genotype at this locus and expression of VPS13C in females (p=0.043, n=40). An association was also detected between rs4502156 (not shown), as well as rs7163757 (p=0.011, n=40, Fig. 1 D-F),
with *C2CD4A* mRNA levels in female donors, but not with *C2CD4B* (Fig 1G-I). Subsequent functional studies in the present report focussed upon *VPS13C*.

Impact of risk alleles on enhancer activity assessed by reporter luciferase assay

To determine whether and how the possession of risk alleles at the *VPS13C* locus might affect the expression of nearby or remotely-located genes, we used reporter-luciferase assays in non-β-cells (HEK293) and in β cell lines from mouse (MIN6) and human (1.1B4 and EndoCβH1). As shown in Fig. 2, inclusion of the risk (C) allele at the previously-implicated causal SNP rs7163757 significantly lowered the enhancer/promoter activity of reporter constructs bearing this variant versus the presence of the protective (T) allele in HEK293, MIN6 and 1.1B4 cells. A similar tendency (p<0.1) was observed in EndoCβH1 cells (Fig. 2). These data are thus consistent with an enhancer function for this region, whose activity is lowered in carriers of risk alleles.

Impact of β-cell-selective deletion of Vps13c on body mass and fasting glycemia

The above observations suggested that risk variants at the *VPS13C* locus may decrease the expression of nearby genes. To explore the potential impact of lowered *VPS13C* levels on insulin secretion, deletion of exon 1 (Fig. 3A) of the *Vps13c* gene was achieved throughout the pancreatic β-cell compartment in C57BL/6 mice from ~E11.5 using the highly selective *Ins1Cre* deleter strain (69). As shown in Fig.s 3B and 3C, *VPS13C* was barely detected in islets isolated from β*Vps13cKO* mice (Fig. 3B i) and levels of *Vps13c* mRNA were significantly reduced (Fig. 3B(ii) and C(ii)) by >80%. These findings are fully consistent with efficient (>94%) and exclusive (69) recombination in β cells, which comprise 60-80% of the rodent islet (16) given that *Vps13c* mRNA is ~2-fold more abundant in β than in α cells (5), which comprise the majority of the islet non-β cells. Expression of *C2cd4a* and *C2cd4b* in islets was variable between mice but was unaffected by *Vps13c* deletion. Changes in body weight gain (Fig. 3D, E) and random fed glycaemia (Fig. 3F, G) over time were not different between control (Ctrl) and β*Vps13cKO* mice, irrespective of gender or diet (regular chow [RC] versus high fat diet [HFD]; see Materials and Methods for details).

β*Vps13cKO* mice display age-dependent abnormalities in glucose tolerance
Examined in male mice, intraperitoneal glucose tolerance (IPGTT) was not different between control and $\beta Vps13c$KO animals up to the age of 16 weeks, whereas $\beta Vps13c$KO mice became glucose intolerant at 20 weeks of age (Fig. 4 A, C, E, G). Although glucose tolerance was lower at all ages examined compared to animals maintained on RC, no differences were observed between control and $\beta Vps13c$KO males maintained for up to 16 weeks (i.e., 20 weeks old) on a HFD (Fig. 4 B, D, F, H).

By contrast, when maintained on RC, female mice (Fig. 5) displayed abnormal IPGTT at 12 weeks of age (Fig. 5C). This resolved at 16 weeks but was again apparent at 20 weeks (Fig. 5G). Consistent with observations in males (Fig. 4), female $\beta Vps13c$KO mice fed HFD similarly failed to show abnormalities in IPGTT up to 20 weeks of age (Fig. 5, B, D, F, H).

To test a possible role for $Vps13c$ in responses to incretin hormones, we next performed oral glucose tolerance tests (OGTT) in RC-fed mice. No genotype-dependent differences were apparent in males (Fig. 6A) or females (Fig. 6B) examined at 22 - 24 weeks.

Examined in mice aged 19-21 weeks, glucose-induced excursions in plasma insulin were not different between $\beta Vps13c$KO and control male and female mice (Fig. 7A-D). Likewise, by analysing fasting glucose and insulin levels, we observed no indication of a change in steady state β cell function (36) as assessed using homeostatic model assessment (HOMA2-%B; Fig. 7E), nor insulin in insulin sensitivity (HOMA2-%S; Fig. 7F) in males maintained on either RC or HFD. By contrast a tendency towards a lower HOMA2-%B value (Fig. 7G), accompanied by a significant increase in HOMA2-%S, was apparent in female $\beta Vps13c$KO mice versus controls fed on RC, whilst these differences were not observed on HFD (Fig. 7 G, H).

Impact of $Vps13c$ deletion on glucose-and KCl-stimulated insulin secretion in vitro

Impairments in glucose tolerance and a tendency towards impaired β cell function apparent *in vivo* in female $\beta Vps13c$KO mice might reflect abnormal glucose- or depolarisation-dependent insulin secretion from β cells. To investigate this, we studied insulin release from batches of islets from mice 20-23 weeks old as shown in Fig. 8. Interestingly, both glucose- (16.7 mM) and KCl- (20 mM) stimulated secretion tended to increase in $\beta Vps13c$KO *versus* control islets from males fed either RC
(Fig. 8A) or HFD (Fig. 8B). Whereas a similar tendency was also apparent for islets from females maintained on a HFD (Fig. 8D), those from female βVps13cKO mice fed RC showed no change in insulin secretion versus controls (Fig. 8C) when stimulated with 20 mM KCl. No differences between HFD-fed control and βVps13cKO mice were seen when the same experiment was conducted under perifusion (Fig. 8E).

β cell mass is not changed after Vps13c deletion.

One explanation for the differences in glucose tolerance and insulin secretion seen in βVps13cKO mice may be an alteration in β cell mass. To establish whether this was the case, we conducted immunohistochemical analyses on pancreatic sections from βVps13cKO and control mice fed RC and aged over 20 weeks. Using antibodies against either insulin or glucagon we observed no differences in %β or α cell surface normalised pancreatic surface (Fig. 9A and B, females; C and D, males).

Gender-specific effects of Vps13c deletion on intracellular Ca\(^{2+}\) dynamics.

Alterations in glucose tolerance and tendency towards impaired insulin secretion, which were apparent in vivo, may reflect altered signal generation by glucose. We next used the fluorescent intracellular probe Fluo-2 (27) to monitor intracellular free Ca\(^{2+}\) dynamics in β cells in situ within the intact islet (Figs 10, 11). Under the conditions used, glucose-induced changes in free Ca\(^{2+}\) are largely restricted to the β cell population (10, 27). No genotype-dependent differences in the peak of the Ca\(^{2+}\) response to either high glucose or KCl were apparent in islets from male mice (Fig. 10) although islets from male βVps13cKO mice fed RC did display a significantly delayed response to high glucose stimulation (Fig. 10A(ii) and (v)). Increases in free Ca\(^{2+}\) in islets from female mice were respectively augmented (Fig. 11A (i) and (vi)) and reduced (Fig. 11B (i) and (vi)) in high glucose-stimulated islets from βVps13cKO animals fed RC or HFD. A similar trend was seen after depolarisation with KCl (Figs. 11A (i) and (viii) and B (i), (iv) and (viii)). As was the case for male mice, the response to glucose in islets from HFD-fed female mice was slightly delayed, with those from RC mice showing no significant difference in the time of the glucose peak (Fig. 11A (i) and (v) and B (i) and (v)).

Subcellular localisation of VPS13C in human β cells
To determine whether VPS13C might conceivably affect the properties (i.e. “fusogenicity”), or the
distribution of secretory granules, we explored the localisation of the protein with single human β
cells by confocal immunocytochemistry (Fig. 12). Close co-localisation was observed between insulin
and VPS13C-labelled structures, indicative of the presence of the latter on the limiting membrane of
insulin-containing dense core granules.
Discussion

Previous studies (17) have revealed that VPS13C expression in human islets is associated with HbA1c levels by massive parallel sequencing (RNA-seq) and microarray analysis at both nominal and permutation p-values (p<0.05), with lower mRNA levels observed in T2D subjects. We extend these findings here by showing that VPS13C mRNA levels are lower in carriers of risk alleles at rs4502156 and rs7163757 in female, but not male subjects. We note that in the present study a lower number of male versus female samples may have limited our power to detect changes in the former. However, and arguing against this possibility, no tendency towards lowered VPS13C or C2CD4A expression with the interrogated SNPs was observed in males: rather, the trend was towards increased expression with risk alleles.

Using mouse genetics we provide evidence that VPS13C plays a role in the control of pancreatic β cell function. It should be emphasised that the impact of deleting this gene selectively in the β cell was relatively mild, and indeed was not apparent in males until 20 week of age. Evidence for deficiencies in β cell function were, however, more apparent in females from an earlier age, in line with the human eQTL data. These included the transient appearance of glucose intolerance at 12 weeks and its re-emergence at 20 weeks. Interestingly, the same phenomenon is also observed in a monogenic form of diabetes resulting from mis-expression of the ZAC gene, termed transient neonatal diabetes mellitus (TNDM), and is apparent in mouse models this disease (albeit in younger animals than observed here) (38). Whilst the reasons for this transience are not known either in TNDM nor in the case of Vps13c deletion, dynamic changes in the balance between islet function and insulin sensitivity may provide one explanation. Similarly, the (monophasic) emergence of glucose intolerance with age in βVps13cKO mice, which is reminiscent of changes seen after the inactivation of the T2D GWAS gene Tcf7L2 in mice (43, 82), seems to reflect, at least in part, increasing insulin resistance, as well as impaired insulin output from the pancreas. Of note, recent studies report relatively preserved glucose sensing of isolated islets with age in both mice and humans (3, 26), but suggest a role for altered vascularisation and fibrosis in impaired insulin secretion in vivo (3).
Strikingly, impairments in glucose tolerance apparent in both male and female β\textit{Vps13c}KO mice \textit{versus} littermate controls at this age were abolished after maintenance on HFD. These findings demonstrate an interesting interaction between the inheritance of a genetic factor influencing risk, and age (as observed in human T2D, (87)) as well as sex and diet. The reasons for the difference in penetrance between the effects of \textit{Vps13c} deletion observed here between male and female mice remain unknown but may reflect interactions with sex hormones at the level of the individual β cell (46), or alternatively, subtle differences in insulin sensitivity between the sexes which go on to influence the effect of perturbations in the β cell on overall glucose homeostasis.

Examined in either males or females, β cell mass was not different between control and knockout mice, indicating a possible defect in β cell function as underlying the glucose dyshomeostasis reported above. Correspondingly, clear tendencies were apparent towards impaired β cell function and lowered insulin levels when combining fasting glycaemia with corresponding insulin plasma concentration using HOMA2 analysis (particularly in females (Fig. 7E, G). According to this analysis, insulin sensitivity was slightly but significantly increased in knockout females \textit{versus} littermate controls (Fig. 7H), again indicating that a defect in β cell function is likely to underlie the mild glucose intolerance in knockout mice (and subject to caveats in extrapolating HOMA2 models from humans to rodents) (74).

On the other hand, we were unable to detect any impairment in glucose or depolarisation-induced insulin secretion as assessed \textit{ex vivo} in isolated islets (Fig. 8). Indeed, in islets isolated from animals maintained on either RC or HFD we observed a tendency in male β\textit{Vps13c}KO mice towards enhanced insulin secretion in response to either high glucose or KCl and in female β\textit{Vps13c}KO in response to high glucose. By contrast, stimulated insulin secretion in response to KCl tended not to change in β\textit{Vps13c}KO \textit{versus} control islets from females fed RC, or HFD. We are therefore unable at the present time to assign the changes in β cell function and glucose homeostasis observed \textit{in vivo} unambiguously to alterations in islet responses measureable \textit{in vitro}. We would stress, however, that the mechanisms responsible for the stimulation of insulin secretion by elevated glucose \textit{in vivo}, which
are likely to be modulated by a multitude of humoral (e.g. circulating fatty acids, incretins, adipokines etc), neuronal (56) and other inputs into the islet, are unlikely to match perfectly those tested *in vitro*.

Nonetheless, detailed analysis of glucose- and KCl-induced Ca\(^{2+}\) dynamics did provide evidence for alterations at the level of secretory granule behaviour, which may play a role to impair insulin secretion *in vivo*. Importantly, islets from male β\(\text{Vps13c}^{\text{KO}}\) mice maintained on regular chow or on HFD responded normally with insulin secretion in response to either glucose or high KCl (Fig. 8), consistent with mild, and late onset, glucose intolerance in these animals. Glucose-induced Ca\(^{2+}\) increases were nonetheless significantly delayed in the KO animals (Fig. 10). By contrast, when fed on regular chow, islets from female β\(\text{Vps13c}^{\text{KO}}\) mice displayed a significant enhancement in glucose-stimulated Ca\(^{2+}\) increases *versus* islets from control littermates (Fig. 11A), whilst GSIS was unaltered (and tended to be decreased in response to KCl), as mentioned above. These observations suggest that the Ca\(^{2+}\)-responsiveness of the secretory machinery to intracellular Ca\(^{2+}\) increases may be diminished in female β\(\text{Vps13c}^{\text{KO}}\) mice, perhaps reflecting changes in the number of fusion-competent secretory granules, as reported after manipulation of the GWAS gene TCF7L2 (81) or the microRNA miR124 (4) and might suggest a common mode of action of genes affecting T2D risk. Finally, it is possible, given that proinsulin levels were elevated in carriers of risk alleles, that prohormone processing is altered after \(\text{Vps13c}\) inactivation (67). To investigate this hypothesis, we measured random-fed insulin and proinsulin concentrations in RC-fed mice. No differences were seen in either insulin or proinsulin plasma concentrations, nor was the insulin/proinsulin ratio different between controls and KO mice (results not shown).

Changes in glucose tolerance were not apparent after the maintenance of mice (either male of female) on a high fat diet, suggesting that the phenotype might be rescued by changes in response to high fat feeding and insulin resistance. One possible explanation might be an increase in the expression of other VPS13 family members, which could be triggered by a HFD, thus compensating for the absence of VPS13C. According to a recent study of mouse islet cell transcriptomes (5), \(\text{Vps13c}\) mRNA levels are 2-3 times those of \(\text{Vps13a, -b and -d}\) in the β cell under conditions of normal feeding. Whether changes in the expression of any of these genes occur under the stress of a high fat diet has yet to be
investigated. We note also that a recent eQTL study (9) did not report a significant association with

VPS13C (or other genes at this locus) and T2D risk, though whether the latter study was adequately
powered to detect small changes is uncertain.

How might VPS13C influence insulin secretion *in vivo*? Clues might be gleaned by comparisons with
other members of the VPS13 family. BLAST analysis of the protein sequences of the four family
members indicates that VPS13C is most similar to VPS13A, sharing 41% identity (73) and the two
proteins possess several common domains and have similar N- and C-termini, indicating that they
may have similar functions (73). Both can attach to membranes, although VPS13C has intramolecular
duplications *versus* VPS13A, which may imply neofunctionalisation (i.e. the acquirement of new
roles) compared to VPS13A (73). A loss of VPS13A (also called chorein) expression leads to the rare
neurodegenerative disease Chorea-Acanthocytosis (ChAc) (53, 71). Symptoms include cognitive
dysfunction, hyperkinetic movement disorder and erythrocyte acanthocytosis (72), leading to
significant disability and a reduced life expectancy. Since the discovery of the cause of ChAc, much
work has been done to investigate the molecular function of VPS13A. The protein has been localised
to endosomal structures in yeast and erythrocytes (14, 28, 64, 70), as well as to the Golgi, and co-
fractionates with dense core vesicles in synaptosomes (25, 34). VPS13A is also implicated in a
plethora of cellular processes in different setting, including regulation of the actin cytoskeleton (2, 18,
64), protein trafficking (7), membrane morphogenesis (48), autophagy (45) and phagocytosis (59).
Cells depleted of VPS13A have decreased levels of PI(4)P and of phosphorylated PI3K (18, 47, 48).
Importantly, further evidence for a role for VPS13A in the control of regulated exocytosis was
provided recently by Hayashi and colleagues (25), who demonstrated that VPS13A is localized to
neurites in dopaminergic PC12 cells. These findings are thus strongly reminiscent of our findings here
of colocalisation between VPS13C and insulin in human β cells (Fig. 12). The role for VPS13A in
phosphoinositide (PI) metabolism is a function that is conserved between yeast and human
orthologues and a possible mechanism by which VPS13A can function in so many different cellular
processes (18, 47–49). If VPS13C were to have similar functions in β cells as VPS13A, we would
hypothesise that the former may be involved in protein trafficking, potentially through the regulation of PI metabolism.

Correct regulation of PI metabolism is essential for efficient insulin secretion from β cells (79). Indeed, PI(4)P is the main precursor to form PI(4,5)P₂, which is rapidly turned over to form second messengers required for insulin secretion (68) in a Ca²⁺-dependent manner akin to the release of neurotransmitters from neurons. Interestingly, a distinct role for PI(4)P in signaling from the plasma membrane in the β cell has been suggested (80), since PI(4)P displayed anti-synchronous oscillations compared to PI(4,5)P₂ when MIN6 β cells were stimulated with glucose. A direct role in secretion has already been shown in yeast (24) and it is well known that PI(4)P is involved in membrane trafficking between the Golgi and the plasma membrane and other endosomal compartments (75). Hence VPS13C could function in insulin secretion through regulation of PI metabolism; affecting intracellular insulin trafficking.

Interestingly, new work shows that VPS13C is involved in lipid droplet formation and regulation of galectin-12, and seems to function in adipogenesis (Yang et al, unpublished data). The latter findings indicate that VPS13C may play additional roles in T2D in extra-pancreatic tissues.

Conclusions.

Human islet expression data suggest that variations in the level of expression of VPS13C and C2CD4A in the β cell may contribute to altered T2D susceptibility in risk allele carriers, at least in females. The relatively mild effects of Vps13c ablation on glucose homeostasis are consistent with the hypothesis that changes in the expression of both genes may contribute to overall risk. Future functional studies will be required to determine the role of C2CD4A in the control of insulin secretion, and the possible contribution of indirect mechanisms resulting from changes in the expression of either gene in extrapancreatic tissues.

Acknowledgements
We would also like to thank Dr. Stephen Rothery and the Imperial College FILM facility for training and use of the wide-field microscope. We thank Professor Jorge Ferrer (Imperial College London) for providing plasmid pGL4.23-GW and the Ins1Cre mouse line.

Grants

G.A.R. thanks the MRC (UK) for Programme grant MR/J0003042/1, the BBSRC (UK) for a Project grant (BB/J015873/1), the Royal Society for a Wolfson Research Merit Award and the Wellcome Trust for a Senior Investigator Award (WT098424AIA). TJP was a DRWF post-doctoral Fellow (SCA/01/F/12). The work leading to this publication has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° 155005 (IMIDIA), resources of which are composed of a financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution (G.A.R., P.M.). Additional support was obtained from a Wellcome Trust core grant (075491/Z/04) and from the Advocacy for Neuroacanthocytosis Patients (to A.P.M. and A.V.-B.).

Author contributions

ZBM coordinated and performed all animal experiments, analysed the data and co-wrote the manuscript with GAR. NF conducted and analysed the luciferase assays and analysed data to calculate β cell mass. MCC designed, performed and analysed the islet perifusion experiments. TJP, MH and NF performed the eQTL analysis. PC generated and used macros to analyse Ca²⁺ dynamics data. GM conducted the staining for VPS13C in human beta cells. AV-B, APM generated rabbit anti-VPS13C antibody and edited the manuscript. LM and PM provided human islets and isolated RNA for eQTL analysis. GAR conceived and coordinated the study and wrote the manuscript with ZBM and TJP.

Disclosures

The authors declare no conflict of interest.

Abbreviations
T2D, Type 2 diabetes; VPS13, vacuolar protein sorting 13; C2CD4A/B, C2 calcium-dependent domain 4A/B; GWAS, genome wide association studies; TCF7L2, transcription factor 7-like 2; LD, linkage disequilibrium; SNP, single nucleotide polymorphism; eQTL, expression quantitative trait loci; GSIS, glucose-stimulated insulin secretion; PI(4)P, phosphatidylinositol 4-phosphate; ChAc, Chorea-Acanthocytosis; βVps13cKO, β cell specific VPS13C knockout; RC, regular chow; HFD, high fat diet; Ctrl, control; IPGTT, intraperitoneal glucose tolerance test; OGTT, oral glucose tolerance test; HOMA2, homeostasis model assessment-2; PI, phosphoinositide; PI(4,5)P₂, phosphatidylinositol (4,5)-bisphosphate; AUC, area under the curve; HTRF, homogeneous time-resolved fluorescence.
Figure Legends.

Figure 1: eQTL analysis

The expression of VPS13C (A-C), C2CD4A (D-F) and C2CD4B (G-I) was quantified relative to ACTB in 53 human donor islet samples and compared to the genotype at rs7163757. ΔCt is plotted against genotype for all samples (A, D and G; n = 53) or just samples from male (B, E and H; n=13) or female (C, F and I; n=40) donors, along with the mean and standard error. Since higher ΔCt corresponds to lower expression, possession of the risk allele (C) is significantly associated with lower VPS13C expression in samples from female donors (p=0.041).

Figure 2: Comparison of promoter/enhancer activities of variants at rs7163757 in the VPS13C locus.

Luciferase reporter assay performed in four cell lines (HEK293, MIN6, 1.1B4 and EndoC-βH1). The risk SNP caused a significant reduction in enhancer activity in HEK293, MIN6 and 1.1B4 (*p<0.05, **p<0.01 calculated using ratio paired Student’s t-tests). Error bars represent standard error of the mean from either three (HEK293 and MIN6) or four (1.1B4 and EndoC-βH1) independent experiments. P=0.1 for the effect of the risk allele in EndoC-βH1 cells.

Figure 3: Generation of VPS13C^{fl/fl::Ins1.Cre^{+/−}} (βVps13cKO) mice.

(A) LoxP sites were inserted on either side of exon 1 to enable Cre-mediated inactivation of the Vps13c gene in pancreatic β cells after breeding to Ins1.Cre mice. The resultant colony consisted of VPS13C null mice (KO, βVps13cKO) and control mice (ctrl) at the expected 50:50 ratio.

(B and C) Islets were isolated from 2-3 male (B) and 3 female (C) control and βVps13cKO mice for (i) immunoblotting or (ii) qPCR analysis. Both ΔCt (relative to CyclophilinA) and log2-transformed fold-changes, normalised to control mice, are shown. Error bars represent standard deviation in (ii)
top and 95% confidence intervals in (ii) bottom. *P<0.05; **P<0.01 analysed with 2-way ANOVA with Sidak’s multiple corrections.

(D-G) Changes in weight (D and E) and random-fed glycaemia (F and G) over time for Ctrl (black) and βVps13cKO (green dashed, male, or purple dotted, female) mice fed regular chow (RC, circle or square symbols) or HFD (triangle symbols). Inset: area under the curve analysis for female mice on HFD, assessed for significance using an unpaired Student’s t-test. n = 11-15 mice, as indicated.

Figure 4: Glucose tolerance in male βVps13cKO mice.

(A-H) Intraperitoneal glucose tolerance (1 g/kg body weight) was measured in control (Ctrl; solid black line) and βVps13cKO (KO; dashed green line) male littermates fed either RC (RC, A, C, E, G) or HFD (B, D, F, H). IPGTTs were conducted at 8- (A, B), 12- (C, D) 16- (E, F) and 20- (G, H) weeks. Inset: area under the curve (AUC). The numbers of animals (n) for each experiment are given in the AUC bars. *P < 0.05; **P<0.01, as assessed with 2-way ANOVA with Fisher’s LSD post-hoc test (main graphs) or unpaired Student’s t-test (AUC, insets).

Figure 5: Glucose tolerance in female βVps13cKO mice.

(A-H) Intraperitoneal glucose tolerance (1 g/kg body weight) was measured in control (Ctrl; solid black line) and βVps13cKO (KO; dotted purple line) female littermates fed either RC (RC, A, C, E, G) or HFD (B, D, F, H). IPGTTs were conducted at 8- (A, B), 12- (C, D) 16- (E, F) and 20- (G, H) weeks. Inset: area under the curve (AUC). The numbers of animals (n) for each experiment are given in the AUC bars. *P < 0.05, as assessed with 2-way ANOVA with Fisher’s LSD post-hoc test (main graphs) or unpaired Student’s t-test (AUC, insets).

Figure 6: Oral glucose tolerance in βVps13cKO and control mice.
(A and B) Oral glucose tolerance (1.5 g/kg body weight) was measured in control (Ctrl; solid black line) and \(\beta Vps13c \)KO (KO; dashed green or dotted purple lines) littermates fed RC. OGTTs were conducted at the ages indicated. Inset: area under the curve (AUC). \(n \) numbers for each experiment are given in the AUC bars. *\(P < 0.05; \) 2-way ANOVA with Fisher’s LSD post-hoc test.

Figure 7: Effect of \(Vps13C \) deletion on GSIS in vivo.

(A-D) Plasma insulin concentration was measured following intraperitoneal administration of glucose (3 g/kg body weight) in control (Ctrl; solid black line) and \(\beta Vps13c \)KO (KO; dashed green, males, or dotted purple lines, females) littermates. Blood was sampled for insulin measurements when mice were 21- or 19-weeks old (RC or HFD, respectively). Inset (top): respective glycaemia measurements. Inset (bottom): area under the curve calculated from the main graph, measuring total released plasma insulin. \(n = 6-9 \) mice per genotype, as detailed in the key.

(E-H) HOMA2-%B (E and G) and %S (F and H) analysis using fasting glycaemia values and corresponding plasma insulin concentrations. **\(P < 0.01; \) unpaired Student’s t-test with Welch’s correction (E-H).

Figure 8: Effect of \(Vps13c \) deletion on GSIS in vitro.

(A-D) Insulin secretion from isolated islets from \(\beta Vps13c \)KO and control mice over 20 weeks old maintained on either RC (A and C) or HFD (B and D) was assessed by incubating 10 size-matched islets in Kreb’s-Ringer solution containing 3 mM glucose (3 Glu), 16.7 mM glucose (16.7 Glu) or 20 mM KCl for 30 min. and measuring the amount of insulin secreted (see Materials and Methods). Islets were lysed to measure total insulin; results are presented as % of total insulin. (E) Insulin secretion from islets continuously perifused with Kreb’s-Ringer solution containing 3 mM glucose and then stimulated with 16.7 mM glucose. \(n = 3-5 \) mice per genotype, as indicated. *\(P < 0.05; \) **\(P < 0.01; \) ***\(P < 0.001; \) ****\(P < 0.0001; \) 2-way ANOVA with Sidak or Tukey’s post-hoc test where appropriate.
Figure 9: β-cell mass in β*Vps13c*KO mice.

(A and C) Representative images from pancreatic slices from female (A) and male (B) control and β*Vps13c*KO mice (20-23 weeks of age) fed a RC diet. Slices were stained with antibodies against insulin (green) and glucagon (red). Nuclei were stained with DAPI; scale bar represents 50 μm.

(B and D) Percentage of β (i) and α (ii) cell surface area, normalised to whole pancreas surface area. (iii) β/α cell ratio.

Data are from *n* = 3 control and 3 KO (females); 3 control and 5 KO (males). No significant differences between genotypes were detected.

Figure 10: Effect of *Vps13c* deletion on calcium signalling *in vitro* in male mouse islets.

Isolated islets from male mice (20-23 weeks of age), maintained on either RC (A) or HFD (B) were loaded with Fluo-2 and incubated in Kreb’s-Ringer solution containing 3 mM glucose (3mM Glu) for 45 min. Dye-loaded islets (3-7 per field of view) were imaged on a spinning disk confocal microscope for 2 min in 3 mM glucose, as described under Materials and Methods. A perifusion system was used to allow subsequent imaging of the islets in 16.7 mM Glu for 18 min, followed by 20 mM KCl for 5 min. Individual traces from each islet were then averaged to give one trace per islet, which was then pooled with the other islets. (i) Mean free Ca²⁺ (normalised to initial fluorescence; F/F₀); (ii) inset from (i), mean free Ca²⁺ measured between 300 and 500 s, showing the effect of stimulation with 16.7 mM glucose. (iii) Area under the curve (AUC) analysis for high glucose stimulation; (iv) AUC analysis for KCl stimulation. (v) Time to maximum peak value from stimulation with glucose; (vi) maximum peak value (F/F₀) from stimulation with glucose; (vii) time to maximum peak value from stimulation with KCl; (viii) maximum peak value (F/F₀) from stimulation with KCl. *n* = 3-5 mice per genotype; number of islets (*n*) used: *n* = male RC 31-38 islets from 3 mice; male HFD mice *n* = 41-46 islets from 4 mice. *P<0.5; **P<0.01; ***P<0.001; unpaired Student’s t-test.
Figure 11: Effect of Vps13c deletion on calcium signaling in vitro in female mouse islets.

Isolated islets from female mice (20-23 weeks of age) maintained on either RC (A) or HFD (B) were loaded with Fluo-2 and analysed as for male islets (Fig. 10). (i) Mean free calcium (F/F0); (ii) inset from (i), mean free calcium measured between 300 and 500 s, showing stimulation with 16.7 mM glucose. (iii) Area under the curve analysis for high glucose stimulation; (iv) area under the curve analysis for KCl stimulation. (v) Time to maximum peak value from stimulation with glucose; (vi) maximum peak value (F/F0) from stimulation with glucose; (vii) time to maximum peak value from stimulation with KCl; (viii) maximum peak value (F/F0) from stimulation with KCl. n = 3-5 mice per genotype; number of islets (n) used: female RC n = 47-48 islets from 4 mice; female HFD n = 46-59 islets from 4 or 5 mice (βVps13cKO vs. ctrl, respectively). *P<0.5; **P<0.01; ***P<0.001; unpaired Student’s t-test.

Figure 12: Subcellular localisation of VPS13C in human β cells. Immunocytochemical analysis for insulin (green) and VPS13C (red) was performed using confocal microscopy in single β cells as described under Materials and Methods. Scale bar represents 10 μm.
References

1. Abramoff MD, Magelhaes PJ, Ram SJ. Image Processing with ImageJ. Biophotonics Int 11: 36–42, 2004.

2. Alesutan I, Seifert J, Pakladok T, Rheinlaender J, Lebedeva A, Towhid ST, Stournaras C, Voelkl J, Schäffer TE, Lang F. Chorein Sensitivity of Actin Polymerization, Cell Shape and Mechanical Stiffness of Vascular Endothelial Cells. Cell Physiol Biochem 32: 728–742, 2013.

3. Almaça J, Molina J, Drigo RA e, Abdulreda MH, Jeon WB, Berggren P-O, Caicedo A, Nam HG. Young capillary vessels rejuvenate aged pancreatic islets. Proc Natl Acad Sci 111: 17612–17617, 2014.

4. Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A, Scharffmann R, Rutter GA, Obberghen EV. MicroRNA-124a Regulates Foxa2 Expression and Intracellular Signaling in Pancreatic β-Cell Lines. J Biol Chem 282: 19575–19588, 2007.

5. Benner C, van der Meulen T, Cacéres E, Tigyi K, Donaldson CJ, Huising MO. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15: 620, 2014.

6. Boesgaard TW, Grarup N, Jørgensen T, Borch-Johnsen K, Hansen T, Pedersen O, (magic M-A of G and I-RTC. Variants at DGKB/TMEM195, ADRA2A, GLIS3 and C2CD4B loci are associated with reduced glucose-stimulated beta cell function in middle-aged Danish people. Diabetologia 53: 1647–1655, 2010.

7. Brickner JH, Fuller RS. SOI1 Encodes a Novel, Conserved Protein That Promotes TGN–Endosomal Cycling of Kex2p and Other Membrane Proteins by Modulating the Function of Two TGN Localization Signals. J Cell Biol 139: 23–36, 1997.

8. Brouwers B, de Faudeur G, Osipovich AB, Goyvaerts L, Lemaire K, Boesmans L, Cauwelier EJG, Granvik M, Pruniau VPEG, Van Lommel L, Van Schoors J, Stancill JS, Smolders I, Goffin V, Binart N, in’t Veld P, Declercq J, Magnuson MA, Creemers JWM, Schuit F, Schraenen A. Impaired Islet Function in Commonly Used Transgenic Mouse Lines due to Human Growth Hormone Minigene Expression. Cell Metab 20: 979–990, 2014.

9. van de Bunt M, Manning Fox JE, Dai X, Barrett A, Grey C, Li L, Bennett AJ, Johnson PR, Rajotte RV, Gaulton KJ, Dermitzakis ET, MacDonald PE, McCarthy MI, Gloyn AL. Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors. PLoS Genet 11: e1005694, 2015.

10. Cane MC, Parrington J, Rorsman P, Galione A, Rutter GA. The two pore channel TPC2 is dispensable in pancreatic β-cells for normal Ca2+ dynamics and insulin secretion. Cell Calcium (2015). doi: 10.1016/j.cca.2015.12.004.

11. Creager MA, Lüscher TF, Of P with the A, Cosentino F, Beckman JA. Diabetes and Vascular Disease Pathophysiology, Clinical Consequences, and Medical Therapy: Part I. Circulation 108: 1527–1532, 2003.

12. Cui B, Zhu X, Xu M, Guo T, Zhu D, Chen G, Li X, Xu L, Bi Y, Chen Y, Xu Y, Li X, Wang W, Wang H, Huang W, Ning G. A Genome-Wide Association Study Confirms Previously Reported Loci for Type 2 Diabetes in Han Chinese. PLoS ONE 6: e22353, 2011.
13. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University and Novartis Institutes of Biomedical Research, Saxena R, Voight BF, Lyssenko V, Burtt NP, Bakker PIW de, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, Hughes TE, Groop L, Altshuler D, Almgren P, Florez JC, Meyer J, Ardlie K, Boström KB, Isomaa B, Lettre G, Lindblad U, Lyon HN, Melander O, Newton-Cheh C, Nilsson P, Orho-Melander M, Råstam L, Spielmies EK, Taskinen M-R, Tuomi T, Guiducci C, Berglund A, Carlson J, Gianniny L, Hackett R, Hall L, Holmkvist J, Laurila E, Sjögren M, Stern M, Surti A, Svensson M, Svensson M, Tewhey R, Blumenstiel B, Parkin M, DeFelice M, Barry R, Brodeur W, Camarata J, Chia N, Fava M, Gibbons J, Handsaker B, Healy C, Nguyen K, Gates C, Sougnez C, Gage D, Nizzari M, Gabriel SB, Chirn G-W, Ma Q, Parikh H, Richardson D, Ricke D, Purcell S. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science 316: 1331–1336, 2007.

14. Dobson-Stone C, Velayos-Baeza A, Filippione LA, Westbury S, Storch A, Erdmann T, Wroe SJ, Leenders KL, Lang AE, Federico A, Mohiddin SA, Fananapazir L, Daniels G, Danek A, Monaco AP. Chorein detection for the diagnosis of chorea-acanthocytosis. Ann Neurol 56: 299–302, 2004.

15. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, Lindgren CM, Mägi R, Morris AP, Randall J, Johnson T, Elliott P, Rybin D, Thorleifsson G, Steinhorsdottir V, Henneman P, Grallert H, Dehghan A, Hottenga JJ, Franklin CS, Navarro P, Song K, Goel A, Perry JRB, Egan JM, Laajunen T, Grarup N, Sparso T, Doney A, Voyt BF, Stringham HM, Li M, Kanoni S, Shrader P, Cavalcanti-Proença C, Kumari M, Qi L, Timpson NJ, Gieger C, Zabena C, Rocheleau G, Ingelsson E, An P, O’Connell J, Luan J’an, Elliott A, McCarroll SA, Payne F, Roccaserra RM, Pattou F, Seshupathy P, Ardlie K, Arisyurek Y, Balk B, Barter P, Beilby JP, Ben-Shlomo Y, Benediktsson R, Bennett AJ, Bergmann S, Bochud M, Boerwinkle E, Bonnefond A, Bonnycastle LL, Borch-Johnsen K, Böttcher Y, Brunner E, Bumpstead SJ, Charpentier G, Chen Y-DI, Chines P, Clarke R, Coin LJM, Cooper MN, Cornelis M, Crawford G, Crisponi L, Day INM, Geus EJC de, Delplanque J, Dina C, Erdos MR, Fedson AC, Fischer-Rosinsky A, Forouhi NG, Fox CS, Frants R, Franzosi MG, Galan P, Goodarzi MO, Graessler J, Groves CJ, Grundy S, Gwilliam R, Gyllensten U, Hadjadj S, Hallmans G, Hammond N, Han X, Hartikainen A-L, Hassanali N, Hayward C, Heath SC, Hercberg S, Herder C, Hicks AA, Hillman DR, Hingorani AD, Hofman A, Hui J, Hung J, Isomaa B, Johnson PRV, Jorgensen T, Jula A, Kaakinen M, Kaprio J, Kesaniamari YA, Kivimaki M, Knight B, Koskinen S, Kovacs P, Kyvik KO, Lathrop GM, Lawlor DA, Le Bacquer O, Lecocq C, Li Y, Lyssenko V, Mahley R, Mangino M, Manning AK, Martinez-Larrad MT, McAteer JB, McCulloch LJ, McPherson R, Meisinger C, Melzer D, Meyre D, Mitchell BD, Morken MA, Mukherjee S, Naitza S, Narisu N, Neville MJ, Oostra BA, Orrù M, Pakyz R, Palmer CNA, Paoliss O, Pattaro C, Pearson D, Peden JF, Pedersen NL, Perola M, Pfeiffer AFH, Pichler I, Polasek O, Posthuma D, Potter SC, Pouta A, Province MA, Psaty BM, Rathmann W, Rayner NW, Rice K, Ripatti S, Rivadeneira F, Roden M, Rolandsson O, Sandbaek A, Sandhu M, Sanna S, Sayer AA, Scheet P, Scott LJ, Seedorff U, Sharp SJ, Shields B, Sigurðsson G, Sjörblad EJG, Silveira A, Simpson L, Singleton A, Smith NL, Sovio U, Swift A, Syddall H, Syvänen A-C, Tanaka T, Thorand B, Tichet J, Tönjes A, Tuomilehto J, Uitterlinden AG, van Dijk KW, van Hoek M, Varma D, Visvikis-Siest S, Vitart V, Vogelzangs N, Waerber G, Wagner PJ, Walley A, Walters GB, Ward KL, Watkins H, Weedon MN, Wild SH, Willemsen G, Wittman JCM, Yarnell JWG, Zeggini E, Zelenika D, Zethelius B, Zhai G, Zhao JH, Zillikens MC, Consortium D, Consortium G, Consortium GBp, Borecki IB, Loos RJF, Meneton P, Magnusson PKE, Nathan DM, Williams GH, Hattersley AT, Silander K, Salomaa V, Smith GD, Bornstein SR, Schwarz P, Spranger J, Karpe F, Shuldiner AR, Cooper C, Dedousis GV, Serrano-Rios M, Morris AD, Lind L, Palmer LJ, Hu FB, Franks PW, Ebrahim S, Marmot M, Kao WHL, Pankow JS, Sampson MJ, Kuusisto J, Laakso M, Hansen T, Pedersen O, Pramstaller PP, Wichmann HE, Illig T, Rudan I, Wright AF.
Stumvoll M, Campbell H, Wilson JF, Consortium AH on behalf of P, Investigators the M.
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42: 105–116, 2010.

16. Elayat AA, el-Naggar MM, Tahir M. An immunocytochemical and morphometric study of the rat pancreatic islets. J Anat 186: 629–637, 1995.

17. Fadista J, Vikman P, Laakso EO, Mollet IG, Esguerra JL, Taneera J, Storm P, Osmark P, Ladenvall C, Prasad RB, Hansson KB, Finotello F, Uvebrant K, Ofori JK, Camillo BD, Krus U, Cilio CM, Hansson O, Eliasson L, Rosengren AH, Renström E, Wollheim CB, Groop L. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci 111: 13924–13929, 2014.

18. Föller M, Hermann A, Gu S, Alesutan I, Qadri SM, Borst O, Schmidt E-M, Schiele F, Hagen JM vom, Saft C, Schölß L, Lerche H, Stournaras C, Storch A, Lang F. Chorein-sensitive polymerization of cortical actin and suicidal cell death in chorea-acanthocytosis. FASEB J 26: 1526–1534, 2012.

19. Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clin Diabetes 26: 77–82, 2008.

20. Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Mági R, Reschen ME, Mahajan A, Locke A, William Rayner N, Robertson N, Scott RA, Prokopenko I, Scott LJ, Green T, Sparso T, Thuillier D, Yengo L, Grallert H, Wahl S, Frånberg M, Strawbridge RJ, Kestler H, Chhedha E, Eisele L, Gustafsson S, Steinhorsdottir V, Thorleifsson G, Qi L, Karssen LC, van Leeuwen EM, Willems SM, Li M, Chen H, Fuchsberger C, Kwan P, Ma C, Linderman M, Lu Y, Thomsen SK, Rundle JK, Beer NL, van de Bunt M, Chalisey A, Kang HM, Voight BF, Abecasis GR, Almgren P, Baldassarre D, Balkau B, Benediktsson R, Blüher M, Boeijing H, Bonnycastle LL, Bottinger EP, Burtt NP, Carey J, Charpentier G, Chines PS, Cornelis MC, Couper DJ, Crenshaw AT, van Dam RM, Doney ASF, Dorkhan M, Edkins S, Eriksson JG, Esko T, Eury T, Fadista J, Flannick J, Fontanillas P, Fox C, Franks PW, Gertow K, Gieger C, Gigante B, Gottesman O, Grant GB, Grarup N, Groves CJ, Hassinen M, Have CT, Herder C, Holmen OL, Hreidarsson AB, Humphries SE, Hunter DJ, Jackson AU, Jonsson E, Jorgensen ME, Jorgensen T, Kao W-HL, Kestler H, Kinnunen L, Klopp N, Kong A, Kovacs P, Kraft P, Kravic J, Langford C, Leander K, Liang L, Lichtner P, Lindgren CM, Lindholm E, Linneberg A, Liu C-T, Lobbens S, Luhan J’an, Lyssenko V, Männistö S, McLeod O, Meyer J, Mihailescu G, Mühleisen TW, Müller-Nurasyid M, Navarro C, Nöthen MM, Oskolkov NN, Owen KR, Palli D, Ercalivos S, Peltomäki L, Perry JRB, Platou CGP, Roden M, Ruderfer D, Rybin D, van der Schouw YT, Sennblad B, Sigurðsson G, Stančáková A, Steinbach G, Storm P, Strauch K, Stringham HM, Sun Q, Thorand B, Tikkanen E, Tonjes A, Trakalo J, Tremoli E, Tuomi T, Wennauer R, Wilthshire S, Wood AR, Zeggini E, Dunham I, Birney E, Pasquali L, Ferrer J, Loos RJF, Dupuis J, Florez JC, Boerwinkel E, Pankow JS, van Duijn C, Sijbrandis E, Meigs JB, Hu FB, Thorsteinsdottir U, Stefansson K, Lakka TA, Rauramaa R, Stumvoll M, Pedersen NL, Lind L, Keinanen-Kiukaanniemi SM, Korpi-Hyövätö E, Saaristo TE, Saltevo J, Kuusiisto J, Laakso M, Metspalu A, Erbel R, Jöcke K-H, Moebus S, Ripatti S, Salomaa V, Ingelsson E, Boehm BO, Bergman RN, Collins FS, Mohlke KL, Koistinen H, Tuomilehto J, Hveem K, Njølstad I, Deloukas P, Donnelly PJ, Frayling TM, Hattersley AT, de Faire U, Hamsten A, Illig T, Peters A, Cauchi S, Sladek R, Froguel P, Hansen T, Pedersen O, Morris AD, Palmer CNA, Kathiresan S, Melander O, Nilsson PM, Groop LC, Barroso I, Langenberg C, Wareham NJ, O’Callaghan CA, Gloyn AL, Alshuiber D, Boehmke M, Teslovič TM, McCarthy MI, Morris AP, the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet 47: 1415–1425, 2015.
21. Grant SFA, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. *Nat Genet* 38: 320–323, 2006.

22. Grarup N, Overvad M, Sparsø T, Witte DR, Pisinger C, Jorgensen T, Yamauchi T, Haraldsen S, Kadowaki T, Hansen T, Pedersen O. The diabetogenic VPS13C/C2CD4A/C2CD4B rs7172432 variant impairs glucose-stimulated insulin response in 5,722 non-diabetic Danish individuals. *Diabetologia* 54: 789–794, 2011.

23. Groves CJ, Zeggini E, Minton J, Frayling TM, Weedon MN, Rayner NW, Hitman GA, Walker M, Wiltshire S, Hattersley AT, McCarthy MI. Association Analysis of 6,736 U.K. Subjects Provides Replication and Confirms TCF7L2 as a Type 2 Diabetes Susceptibility Gene With a Substantial Effect on Individual Risk. *Diabetes* 55: 2640–2644, 2006.

24. Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB. Direct Involvement of Phosphatidylinositol 4-Phosphate in Secretion in the Yeast Saccharomyces cerevisiae. *J Biol Chem* 274: 34294–34300, 1999.

25. Hayashi T, Kishida M, Nishizawa Y, Iijima M, Koriyama C, Nakamura M, Sano A, Kishida S. Subcellular localization and putative role of VPS13A/choerin in dopaminergic neuronal cells. *Biochem Biophys Res Commun* 419: 511–516, 2012.

26. Helman A, Klocendiller A, Azazmeh N, Gabai Y, Horwitz E, Anzi S, Swisa A, Condiotti R, Granit RZ, Nevo Y, Fikler Y, Shreibman D, Zamir A, Tornovsky-Babeay S, Dai C, Glaser B, Powers AC, Shapiro AMJ, Magnuson MA, Dor Y, Ben-Porath I. p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. *Nat Med* 22: 412–420, 2016.

27. Hodson DJ, Mitchell RK, Bellomo EA, Sun G, Vinet L, Meda P, Li D, Li W-H, Bugliani M, Marchetti P, Bosco D, Piemonti L, Johnson P, Hughes SJ, Rutter GA. Lipotoxicity disrupts incretin-regulated human β cell connectivity. *J Clin Invest* 123: 4182–4194, 2013.

28. Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK. Global analysis of protein localization in budding yeast. *Nature* 425: 686–691, 2003.

29. Ingelsson E, Langenberg C, Hivert M-F, Prokopenko I, Lyssenko V, Dupuis J, Mägi R, Sharp S, Jackson AU, Assimes TL, Shrader P, Knowles JW, Zethelius B, Abbasi FA, Bergman RN, Bergmann A, Berne C, Boehnke M, Bonnycastle L, Bornstein SR, Buchanan TA, Bumpstead SJ, Böttcher Y, Chines P, Collins FS, Cooper CC, Dennison EM, Erdos MR, Ferrannini E, Fox CS, Graessler J, Hao K, Isomaa B, Jameson KA, Kovač P, Kuusisto J, Laakso M, Ladenvall C, Mohlke KL, Morken MA, Narisu N, Nathanson DM, Pascoe L, Payne F, Petrie JR, Sayer AA, Schwarz PEH, Scott LJ, Stringham HM, Stumvoll M, Swift AJ, Syvänen A-C, Tuomilehto J, Tönjes A, Valle TT, Williams GH, Lind L, Barroso I, Quertermous T, Walker M, Wareham NJ, Meigs JB, McCarthy MI, Groop L, Watanabe RM, Florez JC, Investigators on behalf of the M. Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans. *Diabetes* 59: 1266–1275, 2010.

30. International Diabetes Federation. IDF Diabetes Atlas [Online]. 6th ed. http://www.idf.org/diabetesatlas.

31. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. *Nature* 444: 840–846, 2006.
32. Kolehmainen J, Black GCM, Saarinen A, Chandler K, Clayton-Smith J, Träskelin A-L, Peveree R, Kivitie-Kallio S, Norio R, Warburg M, Fryns J-P, Chapelle A de la, Lehesjoki A-E. Cohen Syndrome Is Caused by Mutations in a Novel Gene, COH1, Encoding a Transmembrane Protein with a Presumed Role in Vesicle-Mediated Sorting and Intracellular Protein Transport. *Am J Hum Genet* 72: 1359–1369, 2003.

33. Kone M, Pullen TJ, Sun G, Iberson M, Martinez-Sanchez A, Sayers S, Nguyen-Tu M-S, Kantor C, Swisa A, Dor Y, Gorman T, Ferrer J, Thorens B, Reimann F, Gribble F, McGinty JA, Chen L, French PM, Birzele F, Hildebrandt T, Uphues I, Rutter GA. LKB1 and AMPK differentially regulate pancreatic β-cell identity. *FASEB J* 28: 4972–4985, 2014.

34. Kurano Y, Nakamura M, Ichiba M, Matsuda M, Mizuno E, Kato M, Agemura A, Izumo S, Sano A. In vivo distribution and localization of chorein. *Biochem Biophys Res Commun* 353: 431–435, 2007.

35. Lesage S, Drouet V, Majounie E, Deramecourt V, Jacoupy M, Nicolas A, Cormier-Dequaire F, Hassoun SM, Pujol C, Ciura S, Erpapazoglou Z, Usenko T, Maurage C-A, Sahbatou M, Liebau S, Ding J, Biligic B, Emre M, Erginel-Unaltna N, Guven G, Tison F, Tranchant C, Vidalhillet M, Corvol J-C, Krack P, Leutenegger A-L, Nalls MA, Hernandez DG, Heutink P, Gibbs JR, Hardy J, Wood NW, Gasser T, Durr A, Deleuze J-F, Tazir M, Destée A, Lohmann E, Kabashi E, Singleton A, Corti O, Brice A, Lesage S, Tison F, Vidalhillet M, Corvol J-C, Agid Y, Anheim M, Bonnet A-M, Borg M, Broussolle E, Damier P, Destée A, Durr A, Durif F, Krack P, Klebe S, Lohmann E, Martinez M, Pollak P, Rascol O, Tranchant C, Vérin M, Viallet F, Brice A, Lesage S, Majounie E, Tison F, Vidalhillet M, Corvol JC, Nalls MA, Hernandez DG, Gibbs JR, Durr A, Arepalli S, Barker RA, Ben-Shlomo Y, Berg D, Bettella F, Bhatia K, de Bie RMA, Biffi A, Bloem BR, Bochdanovits Z, Bonin M, Lesage S, Tison F, Vidalhillet M, Corvol J-C, Agid Y, Anheim M, Bonnet A-M, Borg M, Broussolle E, Damier P, Destée A, Durr A, Durif F, Krack P, Klebe S, Lohmann E, Martinez M, Pollak P, Rascol O, Tranchant C, Vérin M, Viallet F, Brice A, Lesage S, Majounie E, Tison F, Vidalhillet M, Corvol JC, Nalls MA, Hernandez DG, Gibbs JR, Durr A, Arepalli S, Barker RA, Ben-Shlomo Y, Berg D, Bettella F, Bhatia K, de Bie RMA, Biffi A, Bloem BR, Bochdanovits Z, Bonin M, Lesage S, Tison F, Vidalhillet M, Corvol J-C, Agid Y, Anheim M, Bonnet A-M, Borg M, Broussolle E, Damier P, Destée A, Durr A, Durif F, Krack P, Klebe S, Lohmann E, Martinez M, Pollak P, Rascol O, Tranchant C, Vérin M, Bras JM, Brockmann K, Brooks J, Burn DJ, Charlesworth G, Chen H, Chinnery PF, Chong S, Clarke CE, Cookson MR, Counsell C, Damier P, Dartignes J-F, Deloukas P, Deuschl G, Dexter DT, van Dijk KD, Dillman A, Dong J, Durif F, Edkins S, Escott-Price V, Evans JR, Foltynie T, Gao J, Gardner M, Goate A, Gray E, Guerreiro R, Harris C, van Hilten JJ, Hofman A, Hollenbeck A, Holmans P, Holton J, Hu M, Huang X, Huber H, Hudson G, Hunt SE, Huttonlocher J, Illig T, Jönsson PV, Kilarski LL, Jansen IE, Lambert J-C, Langford C, Lees A, Lichtner P, Limousin P, Lopez G, Lorenz D, Lubse S, Lungu C, Martinez M, Mätzler W, McNeill A, Moorb C, Moore M, Morrison KE, Mudanohwo E, O’Sullivan SS, Owen MJ, Pearson J, Perlmutter JS, Pétursson H, Plagnol V, Pollak P, Post B, Potter S, Ravina B, Revesz T, Riess O, Rivadeneira F, Rizzu P, Ryten M, Saad M, Simón-Sánchez J, Sawyer S, Schapira A, Scheffer H, Schultz C, Sharma M, Shaw K, Sheerin U-M, Shoulson I, Shulman J, Sidransky E, Spencer CCA, Stefánsson H, Stefánsson K, Stockton JD, Strange A, Talbot K, Tanner CM, Tashakkori-Ghanbaria A, Trabzuni D, Traynor BJ, Uitterlinden AG, Velsboer D, Walker R, van de Warrenburg B, Wickremaratcli M, Williams-Gray CH, Winder-Rhodes S, Wurster I, Williams N, Morris HR, Heutink P, Hardy J, Wood NW, Gasser T, Singleton AB, Brice A. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy. *Am J Hum Genet* 98: 500–513, 2016.

36. Levy JC, Matthews DR, Hermans MP. Correct Homeostasis Model Assessment (HOMA) Evaluation Uses the Computer Program. *Diabetes Care* 21: 2191, 1998.

37. Limoge F, Faivre L, Gautier T, Petit J-M, Gautier E, Masson D, Jego G, Chehade-Djebar SE, Marle N, Carmignac V, Deckert V, Brindisi M-C, Edery P, Ghoulid J, Blair E, Lagrost L, Thauvin-Robinet C, Duplomb L. Insulin response dysregulation explains
abnormal fat storage and increased risk of diabetes mellitus type 2 in Cohen Syndrome. Hum Mol Genet 24: 6603–6613, 2015.

38. Ma D, Shield JPH, Dean W, Leclerc I, Knauf C, Burcelin R, Rutter GA, Kelsey G. Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J Clin Invest 114: 339–348, 2004.

39. Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, Marchetti P, Weir GC. Gene Expression Profiles of Beta-Cell Enriched Tissue Obtained by Laser Capture Microdissection from Subjects with Type 2 Diabetes. PLOS ONE 5: e11499, 2010.

40. Marullo L, Moustafa JSE-S, Prokopenko I. Insights into the Genetic Susceptibility to Type 2 Diabetes from Genome-Wide Association Studies of Glycaemic Traits. Curr Diab Rep 14: 1–17, 2014.

41. McCluskey JT, Hamid M, Guo-Parke H, McClenaghan NH, Gomis R, Flatt PR. Development and Functional Characterization of Insulin-releasing Human Pancreatic Beta Cell Lines Produced by Electrofusion. J Biol Chem 286: 21982–21992, 2011.

42. Meur G, Simon A, Harun N, Virally M, Dechaume A, Bonnefond A, Fetita S, Tarasov AI, Guillausseau P-J, Boesgaard TW, Pedersen O, Hansen T, Polak M, Gautier J-F, Froguel P, Rutter GA, Vaxillaire M. Insulin Gene Mutations Resulting in Early-Onset Diabetes: Marked Differences in Clinical Presentation, Metabolic Status, and Pathogenic Effect Through Endoplasmic Reticulum Retention. Diabetes 59: 653–661, 2010.

43. Miyazaki J-I, Araki K, Yamato E, Ikegami H, Asano T, Shibasaki Y, Oka Y, Yamamura K-I. Establishment of a Pancreatic β Cell Line That Retains Glucose-Inducible Insulin Secretion: Special Reference to Expression of Glucose Transporter Isoforms. Endocrinology 127: 126–132, 1990.

44. Muñoz-Braceras S, Calvo R, Escalante R. TipC and the chorea-acanthocytosis protein VPS13A regulate autophagy in Dictyostelium and human HeLa cells. Autophagy 11: 918–927, 2015.

45. Nadal A, Alonso-Magdalena P, Soriano S, Ripoll C, Fuentes E, Quesada I, Ropero AB. Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells. Front Biosci Landmark Ed 16: 251–260, 2011.

46. Park J-S, Haleigha S, Kishida S, Neiman AM. A Conserved Function in Phosphatidylinositol Metabolism for Mammalian Vps13 Family Proteins. PLoS ONE 10: e0124836, 2015.

47. Park J-S, Neiman AM. VPS13 regulates membrane morphogenesis during sporulation in Saccharomyces cerevisiae. J Cell Sci 125: 3004–3011, 2012.

48. Park J-S, Okumura Y, Tachikawa H, Neiman AM. SPO71 Encodes a Developmental Stage-Specific Partner for Vps13 in Saccharomyces cerevisiae. Eukaryot Cell 12: 1530–1537, 2013.

49. Park J-S, Okumura Y, Tachikawa H, Neiman AM. SPO71 Encodes a Developmental Stage-Specific Partner for Vps13 in Saccharomyces cerevisiae. Eukaryot Cell 12: 1530–1537, 2013.
Authors. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A 110: 17921–17926, 2013.

51. Prudente S, Morini E, Marselli L, Baratta R, Copetti M, Mendonca C, Andreozzi F, Chandalia M, Pellegrini F, Bälletti D, Alberico F, Shah H, Abate N, Sesti G, Frittitta L, Marchetti P, Doria A, Trischitta V. Joint Effect of Insulin Signaling Genes on Insulin Secretion and Glucose Homeostasis. J Clin Endocrinol Metab 98: E1143–E1147, 2013.

52. R Development Core Team. A language and environment for statistical computing [Online]. R Foundation for Statistical Computing. www.R-project.org.

53. Rampoldi L, Dobson-Stone C, Rubio JP, Danek A, Chalmers RM, Wood NW, Verellen C, Ferrer X, Malandrini A, Fabrizi GM, Brown R, Vance J, Pericak-Vance M, Rudolf G, Carrè S, Alonso E, Manfredi M, Németh AH, Monaco AP. A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat Genet 28: 119–120, 2001.

54. Ravassard P, Hazhouz Y, Pechbert S, Bricout-Neveu E, Armanet M, Czernichow P, Scharffmann R. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 121: 3589–3597, 2011.

55. Ravier MA, Rutter GA. Isolation and culture of mouse pancreatic islets for ex vivo imaging studies with trappable or recombinant fluorescent probes. Methods Mol Biol Clifton NJ 633: 171–184, 2010.

56. Rodriguez-Diaz R, Caicedo A. Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab 28: 745–756, 2014.

57. Rutter GA. Dorothy Hodgkin Lecture 2014 Understanding genes identified by genome-wide association studies for Type 2 diabetes. Diabet Med 31: 1480–1487, 2014.

58. Rutter GA, Chimienti F. SLC30A8 mutations in type 2 diabetes. Diabetologia 58: 31–36, 2014.

59. Samaranayake HS, Cowan AE, Klobutcher LA. Vacuolar Protein Sorting Protein 13A, TtVPS13A, Localizes to the Tetrahymena thermophila Phagosome Membrane and Is Required for Efficient Phagocytosis. Eukaryot Cell 10: 1207–1218, 2011.

60. Saxena R, Hivert M-F, Langenberg C, Tanaka T, Pankow JS, Vollenweider P, Lyssenko V, Bouatia-Naji N, Dupuis J, Jackson AU, Kao WHL, Li M, Glazer NL, Manning AK, Luan J’an, Stringham HM, Prokopenko I, Johnson T, Grarup N, Boegaard TW, Lecercoeur C, Shadrer P, O’Connell J, Ingelsson E, Couper DJ, Rice K, Song K, Andreasen CH, Dina C, Köttgen A, Le Bacquer O, Pattou F, Taneera J, Steinhorsdottir V, Rybin D, Ardlie K, Sampson M, Qi L, van Hoek M, Weedon MN, Aulchenko YS, Voight BF, Grallert H, Balkau B, Bergman RN, Bielinski SJ, Bonnefond A, Bonnycastle LL, Borch-Johnsen K, Böttcher Y, Brunner E, Buchanan TA, Bumpstead SJ, Cavalcanti-Proença C, Charpentier G, Chen Y-DI, Chines PS, Collins FS, Cornelis M, Crawford CJ, Delplanque J, Doney A, Egan JM, Erdos MR, Firmann M, Forouhi NG, Fox CS, Goodarzi MO, Graessler J, Hingorani A, Isomaa B, Jorgensen T, Kivimaki M, Kovač P, Krohn K, Kumari M, Lauritzen T, Lévy-Marchal C, Mayor V, McAteer J, Meyre D, Mitchell BD, Mohlke KL, Morken MA, Narisu N, Palmer CNA, Pakyz R, Pascoe L, Payne F, Pearson D, Rathmann W, Sandbaek A, Sayer AA, Scott LJ, Sharp SJ, Sijbrands E, Singleton A, Siscovich DS, Smith NL, Sparso T, Swift AJ, Syddall H, Thorleifsson G, Tönjes A, Tuomilehto J, Valle TT, Waeber G, Wailey A, Waterworth DM, Zeggini E, Zhao JH, Consortium G,Investigators the M. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 42: 142–148, 2010.
61. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. *Genome Res* 22: 1748–1759, 2012.

62. Seifert W, Kühnisch J, Maritzen T, Horn D, Haucke V, Hennies HC. Cohen Syndrome-associated Protein, COH1, Is a Novel, Giant Golgi Matrix Protein Required for Golgi Integrity. *J Biol Chem* 286: 37665–37675, 2011.

63. Seifert W, Kühnisch J, Maritzen T, Lommatzsch S, Hennies HC, Bachmann S, Horn D, Haucke V. Cohen Syndrome-associated Protein COH1 Physically and Functionally Interacts with the Small GTPase RAB6 at the Golgi Complex and Directs Neurite Outgrowth. *J Biol Chem* 290: 3349–3358, 2015.

64. Shiokawa N, Nakamura M, Sameshima M, Deguchi A, Hayashi T, Sasaki N, Sano A. Chorein, the protein responsible for chorea-acanthocytosis, interacts with β-adducin and β-actin. *Biochem Biophys Res Commun* 441: 96–101, 2013.

65. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner BI, Balding DJ, Meyre D, Polychronakos C, Froguel P. A genome-wide association study identifies novel risk loci for type 2 diabetes. *Nature* 445: 881–885, 2007.

66. Stitzel ML, Huyghe JR, Morken MA, Parker SCJ, Fuchsberger C, Welch R, Jackson AU, Erdos MR, Kuusisto J, Laakso M, Boehnke M, Collins FS. Fine-Mapping and Functional Genomic Analysis Link an Intergenic Islet Stretch Enhancer in the C2CD4A/B Locus to Islet Dysfunction. In: *Honing in on GWAS loci*. ADA 74th Scientific Sessions. San Francisco, California: 2014, p. A73.

67. Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlvist E, Rybin D, Petrie JR, Travers ME, Bouatia-Naji N, Dimas AS, Nica A, Wheeler E, Chen H, Voight BF, Tanega J, Kanoni S, Pedersen JF, Turrini F, Gustafsson S, Zabena C, Almgren P, Barker DJP, Barnes D, Dennison EM, Eriksson JG, Eriksson P, Eury E, Folkersen L, Fox CS, Frayling TM, Goel A, Gu HF, Horikoshi M, Isomaa B, Jackson AU, Jameson KA, Kajantie E, Kerr-Conte J, Kuulasmaa T, Kuusisto J, Loos RJF, Luan J’an, Makrilakis K, Manning AK, Martinez-Larrad MT, Narisu N, Mannila MN, Øhrvik J, Osmond C, Pascoe L, Payne F, Sayer AA, Sennblad B, Silveira A, Stančáková A, Stirrups K, Swift AJ, Syvänen A-C, Tuomi T, Hooft van ’t, Walker M, Weedon MN, Xie W, Zethelius B, Consortium the D, Consortium the G, Consortium the M, Consortium the Cardi, Consortium the C, Ongen H, Målarstig A, Hopewell JC, Saleheen D, Chambers J, Parish S, Danesh J, Koonder J, Östenson C-G, Lind L, Cooper CC, Serrano-Rios M, Ferrannini E, Forsen TJ, Clarke R, Franzosi MG, Seedorf U, Watkins H, Froguel P, Johnson P, Deloukas P, Collins FS, Laakso M, Dermitzakis ET, Boehnke M, McCarthy MI, Wareham NJ, Groop L, Pattou F, Glyn AL, Dedoussis GV, Lyssenko V, Meigs JB, Barroso I, Watanabe RM, Ingelsson E, Langenberg C, Hamsten A, Florez JC. Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes. *Diabetes* 60: 2624–2634, 2011.

68. Thore S, Wuttke A, Tengholm A. Rapid Turnover of Phosphatidylinositol-4,5-Bisphosphate in Insulin-Secreting Cells Mediated by Ca2+ and the ATP-to-ADP Ratio. *Diabetes* 56: 818–826, 2007.

69. Thorens B, Tarussio D, Maestro MA, Rovira M, Heikkilä E, Ferrer J. Ins1 Cre knock-in mice for beta cell-specific gene recombination. *Diabetologia* 58: 558–565, 2014.

70. Tomiyasu A, Nakamura M, Ichiba M, Ueno S, Saiki S, Morimoto M, Kobal J, Kageyama Y, Inui T, Wakabayashi K, Yamada T, Kanemori Y, Jung HH, Tanaka H, Orimo S, Afawi
Z, Blatt I, Aasly J, Ujike H, Babovic-Vuksanovic D, Josephs KA, Tohge R, Rodrigues GR, Dupré N, Yamada H, Yokochi F, Kotschet K, Takei T, Rudzińska M, Szczudlik A, Penco S, Fujiwara M, Tojo K, Sano A. Novel pathogenic mutations and copy number variations in the VPS13A Gene in patients with chorea-acanthocytosis. Am J Med Genet B Neuropsychiatr Genet 156: 620–631, 2011.

71. Ueno S, Maruki Y, Nakamura M, Tomemori Y, Kamae K, Tanabe H, Yamashita Y, Matsuda S, Kaneko S, Sano A. The gene encoding a newly discovered protein, chorein, is mutated in chorea-acanthocytosis. Nat Genet 28: 121–122, 2001.

72. Velayos Baeza A, Dobson-Stone C, Rampoldi L, Bader B, Walker RH, Danek A, Monaco AP. Chorea-Acanthocytosis [Online]. In: GeneReviews®), edited by Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJ, Bird TD, Fong C-T, Mefford HC, Smith RJ, Stephens K. University of Washington, Seattle http://www.ncbi.nlm.nih.gov/books/NBK1387/ [12 Jan. 2016].

73. Velayos-Baeza A, Vettori A, Copley RR, Dobson-Stone C, Monaco AP. Analysis of the human VPS13 gene family. Genomics 84: 536–549, 2004.

74. Wallace TM, Levy JC, Matthews DR. Use and Abuse of HOMA Modeling. Diabetes Care 27: 1487–1495, 2004.

75. Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, Kirchhausen T, Albanesi JP, Roth MG, Yin HL. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114: 299–310, 2003.

76. Weedon MN, Cebola I, Patch A-M, Flanagan SE, De Franco E, Caswell R, Rodríguez-Seguí SA, Shaw-Smith C, Cho CH-H, Allen HL, Houghton JAL, Roth CL, Chen R, Hussain K, Marsh P, Vallier L, Murray A, International Pancreatic Agenesis Consortium, Ellard S, Ferrer J, Hattersley AT. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet 46: 61–64, 2014.

77. Wicksteed B, Brissova M, Yan W, Opland DM, Plank JL, Reinert RB, Dickson LM, Tamarina NA, Philipson LH, Shostak A, Bernal-Mizrachi E, Elghazi L, Roe MW, Labsky PA, Myers MG, Gannon M, Powers AC, Dempsey PJ. Conditional Gene Targeting in Mouse Pancreatic β-Cells Analysis of Ectopic Cre Transgene Expression in the Brain. Diabetes 59: 3090–3098, 2010.

78. Windholz J, Kovacs P, Tönjes A, Dittrich K, Blüher S, Kiess W, Stumvoll M, Körner A. Effects of Genetic Variants in ADCY5, GIPR, GCKR and VPS13C on Early Impairment of Glucose and Insulin Metabolism in Children. PLoS ONE 6: e22101, 2011.

79. Wuttke A. Lipid Signalling Dynamics at the β-cell Plasma Membrane. Basic Clin Pharmacol Toxicol 116: 281–290, 2015.

80. Wuttke A, Ságetorp J, Tengholm A. Distinct plasma-membrane PtdIns(4)P and PtdIns(4,5)P2 dynamics in secretagogue-stimulated β-cells. J Cell Sci 123: 1492–1502, 2010.

81. Xavier G da S, Loder MK, McDonald A, Tarasov AI, Carzaniga R, Kronenberger K, Barg S, Rutter GA. TCF7L2 Regulates Late Events in Insulin Secretion From Pancreatic Islet β-Cells. Diabetes 58: 894–905, 2009.

82. Xavier G da S, Mondragon A, Sun G, Chen L, McGinty JA, French PM, Rutter GA. Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2-null mice. Diabetologia 55: 2667–2676, 2012.
A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. *Nat Genet* 42: 864–868, 2010.

Identification of VPS13C as a Galectin-12-Binding Protein That Regulates Galectin-12 Protein Stability and Adipogenesis. *PLOS ONE* 11: e0153534, 2016.

Intracellular Retention of Newly Synthesized Insulin in Yeast Is Caused by Endoproteolytic Processing in the Golgi Complex. *J Cell Biol* 153: 1187–1198, 2001.

Variant of Transcription Factor 7-Like 2 (TCF7L2) Gene and the Risk of Type 2 Diabetes in Large Cohorts of U.S. Women and Men. *Diabetes* 55: 2645–2648, 2006.

Diabetes risk factors - Diabetes UK [Online]. [date unknown].
https://www.diabetes.org.uk/Guide-to-diabetes/What-is-diabetes/Know-your-risk-of-Type-2-diabetes/Diabetes-risk-factors/ [21 Jan. 2016].
Figure 1
Figure 3
Figure 4
Figure 6

A 22 weeks

B 24 weeks

Glycaemia (mmol/L)

Time (min)

KO
Ctrl

RC

KO
Ctrl

22 weeks

24 weeks

AUC

KO
Ctrl
Figure 7
Figure 9
Figure 10
Figure 12

INSULIN

VPS13C

Merge
Supplementary Figure 1 legend: Random-fed insulin and proinsulin plasma concentrations in RC-fed mice. Plasma insulin and proinsulin were measured following collection from the tail vein (before culling) and aorta (immediately post-mortem) of RC-fed control (black) or βVps13cKO (green, males (A and B); purple, females (C and D)) mice aged over 21 weeks old. The ratio of [plasma insulin]/[plasma proinsulin] is shown in E. \(n = 7 \) ctrl and 8 KO (males); 10 ctrl and 9 KO (females).
Supplementary Methods

Image analysis

(1) β and α cell mass

In order to quantify alpha and beta cell mass a signal threshold was first applied on images stained for glucagon to determine surface occupied by glucagon-positive cells. The surface area is calculated as follows: the “thresholded” image is converted to mask, then “analyse particles” is performed. The surface of each particle is determined and all particle surfaces are then added together.

The same treatment is applied to the corresponding image stained for insulin. The ratio of surface is then calculated. Note that the ratio is a surface ratio: fluorescence intensity level is not taken into account in the calculation.

Macro script:

```plaintext
// step 0 : set up parameters - clear up roi manager

run("Set Measurements...", "area mean min integrated redirect=None decimal=0");
run("Options...", "iterations=3 count=1 black edm=Overwrite do=Nothing");
roiManager("reset");
run("Close All");
run("Clear Results");

//step 1 : indicate the folder containing the images to analyse

dir=getDirectory("Where are the images?");
file=getFileList(dir);
File.makeDirectory(dir+"results");

Resultats = File.open(dir+File.separator+"results"+File.separator+"Results.xls");
entete = "Image name\tSurface alpha cells\tSurface beta cells\tRatio alpha/beta \n";
print(Resultats, entete);
```
for(i = 0 ; i< file.length ; i++) {

 if(lastIndexOf(file[i], ".ome")!=-1){

 open(file[i]);
 image = getTitle();

 // step 2 determination surface alpha

 Stack.setChannel(3);
 alpha = surfaceDetermine(image, dir);
 run("Clear Results");
 run("Select None");
 if(alpha != 0) {
 roiManager("Save", dir+File.separator+ "results"+File.separator+ image+"Roiset-areaAlpha.zip");
 }
 roiManager("reset");

 // step 3 determination surface beta

 selectWindow(image);
 Stack.setChannel(2);
 beta = surfaceDetermine(image, dir);
 run("Clear Results");
 run("Select None");
roiManager("Save", dir+File.separator+ "results"+File.separator+ image+"Roiset-areaBeta.zip");
roiManager("reset");

// step 4 : put data in the results file - close image and duplicates

ratio = alpha/beta;

if (ratio == 0) {
 ligne = image + "\t" + "no alpha cells" + "\t" + beta + "\t" + ratio + "\n";
} else {
 ligne = image + "\t" + alpha + "\t" + beta + "\t" + ratio + "\n";
}
print(Resultats, ligne);
run("Close All");

File.close(Resultats);

//function surfaceDetermin(image, dir) {

run("Duplicate...", "title= duplicat1");
run("Threshold...");
setAutoThreshold("Default dark");
waitForUser("Adjust threshold");
run("Convert to Mask");
run("Close-");

run("Analyze Particles...", "size=10-Infinity circularity=0.00-1.00 show=Nothing display clear include add ");

surface = 0 ;

nbRoi = roiManager("Count");

for (i = 0; i < nbRoi; i++)
{

surface = surface + getResult("Area", i);

}

return surface;

}

Ca²⁺ Imaging with fluo2

The trappable intracellular probe fluo-2 (10uM) was loaded for 45 minutes. Acquisitions were then performed at a rate of 30 images per minutes on a spinning disc microscope as described under Methods. Acquired films were analysed using the macro (script following).

Briefly, a “max intensity” projection is performed with the 500 first images of the stack to have a clear image for threshold. The threshold is applied on the projected image to distinguish fluorescence signal from islets versus background.

The user is asked to draw an area around each islet in the field of view. For each islet, mean fluorescence intensity is determined for each time point on the original stack. Results are recorded in an Excel spreadsheet.

Each trace thus represents the average fluorescence intensity measured for one islet along time.

Macro script

// step 0 : set up parameters - clear up roi manager

run("Set Measurements...", "mean redirect=None decimal=2");
run("Options...", "iterations=1 count=1 black edm=Overwrite do=Nothing");
roiManager("reset");
//run("Close All");
run("Clear Results");

waitForUser("Open your image");
image = getTitle();
dir=getDirectory("Where do you want to save the results?");

selectWindow(image);

run("Z Project...", "stop=500 projection=[Max Intensity]");

setAutoThreshold("Default dark");
waitForUser("Check threshold");
setOption("BlackBackground", true);
run("Convert to Mask");
run("Close-");
saveAs("Tiff", dir+File.separator+ image + "_mask");

otsu = getTitle();
Dialog.create(" How many islets analysable?");
Dialog.addNumber("nb d'ilot", 1);
Dialog.show();
nbilot = Dialog.getNumber();
for (i=1; i<= nbilot; i++) {

 selectWindow(otsu);

 waitForUser(" draw ROI around the ilet "+ i);

 run("Analyze Particles...", "size=100-Infinity pixel clear include add");

 selectWindow(image);
 roiManager("Deselect");
 roiManager("Multi Measure");
 saveAs("Results", dir+File.separator + "Results-ilot"+ i + ".xls");
 roiManager("Save", dir+ File.separator + "RoiSet-ilot"+i+".zip");

 roiManager("Reset");
 run("Clear Results");

}

run("Close All");