Jordan C^*-Algebras and Supergravity

Michael Rios*

California State University, Los Angeles
Physics Graduate Program
5151 State University Drive
Los Angeles, CA 90032, USA

May 20, 2010

Abstract

It is known that black hole charge vectors of $\mathcal{N} = 8$ and magic $\mathcal{N} = 2$ supergravity in four and five dimensions can be represented as elements of Jordan algebras of degree three over the octonions and split-octonions and their Freudenthal triple systems. We show both such Jordan algebras are contained in the exceptional Jordan C^*-algebra and construct its corresponding Freudenthal triple system and single variable extension. The transformation groups for these structures give rise to the complex forms of the U-duality groups for $\mathcal{N} = 8$ and magic $\mathcal{N} = 2$ supergravities in three, four and five dimensions.

Keywords: Jordan C^*-algebras, Supergravity, U-duality.
1 Introduction

It was shown that extremal black holes in $\mathcal{N} \geq 2$, $D = 3, 4, 5, 6$ supergravities on symmetric spaces can be described by Jordan algebras and their corresponding Freudenthal triple systems, with the Bekenstein-Hawking entropy of the black holes given by algebraic invariants over these structures [4]-[23],[28],[31],[32],[54],[57],[58]. Such supergravities are called homogeneous supergravities [10], and include $\mathcal{N} = 8$, $D = 4$ supergravity (M-theory on T^7), described by the Jordan algebra of degree three over the split-octonions. Of the four $\mathcal{N} = 2$ supergravity theories defined by simple Jordan algebras of degree three (magic supergravities), all but one, the exceptional magic $\mathcal{N} = 2$ supergravity, can be obtained by a consistent truncation of the maximal $\mathcal{N} = 8$ supergravity [12]. The exceptional magic $\mathcal{N} = 2$ supergravity corresponds to the exceptional Jordan algebra of degree three over the octonion composition algebra [24]-[30],[40],[45],[51],[53], and it has been recently noted [57] there are physical and mathematical obstacles which make its study appear less well motivated than the $\mathcal{N} = 8$ case.

In this note, we show the maximal $\mathcal{N} = 8$ and exceptional magic $\mathcal{N} = 2$ supergravities can be unified using the exceptional Jordan C^*-algebra, a Jordan algebra of degree three over the bioctonions, which contains both Jordan algebras of degree three over the octonions and split-octonions. We construct its corresponding Freudenthal triple system and single variable extension and give support for such constructions in light of non-real solutions arising in $\mathcal{N} = 8$ and magic $\mathcal{N} = 2$, $D = 4$ supergravities reduced to $D = 3$.

\section{N = 8 and Magic N = 2 Supergravity}

2.1 Black Strings in $D = 6$

2.2 Black Holes in $D = 5$

2.3 Black Holes in $D = 4$

2.4 Black Holes in $D = 3$

\section{Bioctonions and Jordan C*-Algebras}

3.1 Composition Algebras

3.2 Bioctonions

3.3 The Exceptional Jordan C*-Algebra

3.4 Freudenthal Triple System

3.5 Extended Freudenthal Triple System

\section{Conclusion}
2 \(\mathcal{N} = 8 \) and Magic \(\mathcal{N} = 2 \) Supergravity

We review the \(\mathcal{N} \geq 2 \) homogeneous supergravities in \(D = 3, 4, 5, 6 \) over Jordan algebras of degree two and three and give their corresponding U-duality groups and entropy expressions for black hole and string solutions.

2.1 Black Strings in \(D = 6 \)

The \(\mathcal{N} = 8 \) and magic \(\mathcal{N} = 2 \), \(D = 6 \) supergravities arise as uplifts of \(\mathcal{N} = 8 \) and magic \(\mathcal{N} = 2 \), \(D = 5 \) supergravities with \(n_V = 27, n_V = 15, n_V = 9 \) and \(n_V = 6 \) vector fields [21]. They enjoy \(SO(5, 5), SO(9, 1), SO(5, 1), SO(3, 1) \) and \(SO(2, 1) \) U-duality symmetry since the \(D = 6 \) vector multiplets in the Coulomb phase (after Higgsing) transform as spinors of dimension 16, 8, 4 and 2, respectively [21]. One can associate a black string solution with charges \(q_I \) (\(I = 1, \ldots, n_V \) for \(n_V = 10, 6, 4, 3 \)) an element

\[
J = \sum_{I=1}^{n} q^I e_I = \begin{pmatrix} r_1 & A \\ A^t & r_2 \end{pmatrix} \quad r_i \in \mathbb{R}, A \in \mathbb{A}
\]

(1)

of a Jordan algebra \(J^A_2 \) of degree two, where the \(e_I \) form the \(n_V \)-dimensional basis of the Jordan algebra over a composition algebra \(\mathbb{A} = \mathbb{O}_s, \mathbb{O}, \mathbb{H}, \mathbb{C}, \mathbb{R} \). Elements of \(J^A_2 \) transform as the \((\dim \mathbb{A} + 2)\) representation of \(SL(2, \mathbb{A}) \), the \(10, 10, 6, 4, 3 \) of \(SO(5, 5), SO(9, 1), SO(5, 1), SO(3, 1) \) and \(SO(2, 1) \) U-duality symmetry since the \(D = 6 \) vector multiplets in the Coulomb phase (after Higgsing) transform as spinors of dimension 16, 8, 4 and 2, respectively [21]. One can associate a black string solution with charges \(q_I \) an element

\[
I_2(J) = \det(J) = r_1 r_2 - A \bar{A}.
\]

(3)

The black string entropy is given by [4]:

\[
S_{D=5,BH}(J) = \pi \sqrt{|I_2(J)|}
\]

(2)

2.2 Black Holes in \(D = 5 \)

In \(D = 5 \), the \(\mathcal{N} = 8 \) and magic \(\mathcal{N} = 2 \) supergravities are coupled to 27, 15, 9, 6 vector fields with U-duality symmetry groups \(E_6(6), E_6(-26), SU^*(6), SL(3, \mathbb{C}), SL(3, \mathbb{R}) \), for Jordan algebras of degree three over composition algebras \(\mathbb{A} = \mathbb{O}_s, \mathbb{O}, \mathbb{H}, \mathbb{C}, \mathbb{R} \), respectively [4, 13, 14]. The BPS black hole solutions were classified by Ferrara et al. [13, 22, 57] by studying the underlying Jordan algebras of degree three under the actions of their reduced structure groups, \(Str_0(J^A_3) \), which correspond to the U-duality groups of the \(\mathcal{N} = 8 \) and magic \(\mathcal{N} = 2 \), \(D = 5 \) supergravities. This is accomplished by
associating a given black hole solution with charges \(q_I \) \((I = 1, \ldots, n_V)\) an element
\[
J = \sum_{I=1}^{n} q^I e_I = \begin{pmatrix} r_1 & A_1 & \overrightarrow{A}_2 \\ \overrightarrow{A}_1 & r_2 & A_3 \\ A_2 & \overrightarrow{A}_3 & r_3 \end{pmatrix} \quad r_i \in \mathbb{R}, A_i \in \mathbb{H}
\]
(5)
of a Jordan algebra of degree three \(J_3^J\) over a composition algebra \(\mathbb{A} = \mathbb{O}, \mathbb{O}, \mathbb{H}, \mathbb{C}, \mathbb{R} \), where \(e_I \) form a basis for the \(n_V\)-dimensional Jordan algebra. This establishes a correspondence between Jordan algebras of degree three and the charge spaces of the extremal black hole solutions [1 3]. In all cases, the entropy of a black hole solution can be written [4, 13, 23] in the form
\[
S_{D=5, BH}(J) = \pi \sqrt{|I_3(J)|}
\]
(6)
where \(I_3 \) is the cubic invariant given by
\[
I_3(J) = \det(J)
\]
(7)
and
\[
det(J) = r_1r_2r_3 - r_1||A_1||^2 - r_2||A_2||^2 - r_3||A_3||^3 + 2\text{Re}(A_1A_2A_3).
\]
(8)
The U-duality orbits are distinguished by rank via
\[
\text{Rank } J = 3 \quad \text{iff} \quad I_3(J) \neq 0 \quad S \neq 0, \quad 1/8\text{-BPS}
\]
\[
\text{Rank } J = 2 \quad \text{iff} \quad I_3(J) = 0, J^2 \neq 0 \quad S = 0, \quad 1/4\text{-BPS}
\]
\[
\text{Rank } J = 1 \quad \text{iff} \quad J^2 = 0, \quad J \neq 0 \quad S = 0, \quad 1/2\text{-BPS}
\]
(9)
where the quadratic adjoint map is given by
\[
J^2 = J \times J = J^2 - \text{tr}(J)J + \frac{1}{2}(\text{tr}(J)^2 - \text{tr}(J^2))I.
\]
(10)

2.3 Black Holes in \(D = 4 \)

For \(\mathcal{N} = 8 \) and magic \(\mathcal{N} = 2, D = 4 \) supergravities there is a correspondence between the field strengths of the vector fields and their magnetic duals and elements of a Freudenthal triple system (FTS) \(\mathfrak{M}(J_3^J) \) over a Jordan algebra of degree three, \(J_3^J \) [13]. The correspondence is explicitly:

\[
\begin{pmatrix} F_{\mu\nu}^0 & F_{\mu\nu}^i \\ \tilde{F}_{\mu\nu}^i & \tilde{F}_{\mu\nu}^0 \end{pmatrix} \leftrightarrow \begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} = \mathcal{X} \in \mathfrak{M}(J_3^J),
\]

(11)
where \(\alpha, \beta \in \mathbb{R} \) and \(X, Y \in J_3^J \). \(F_{\mu\nu}^i \) \((i = 1, \ldots, n_V)\) denote the field strengths of the vector fields from \(D = 5 \) and \(F_{0\mu
u}^0 \) is the \(D = 4 \) graviphoton field strength coming from the \(D = 5 \) graviton [13]. Using the correspondence, one can associate the entries of an FTS element with electric and magnetic
charges \(q_0, q_i, p^0, p^i \in \mathbb{R}^{2n_V+2}\) of an \(\mathcal{N} = 8\) or magic \(\mathcal{N} = 2, D = 4\) extremal black hole via the relations \[12\] \[14\]:

\[
\alpha = p^0 \quad \beta = q_0 \quad X = p^i e_i \quad Y = q_i e^i.
\] (12)

Setting \(p^I = (\alpha, X)\) and \(q_I = (\beta, Y)\) \((I = 0, \ldots, n_V)\), the Bekenstein-Hawking entropy of extremal black hole solutions is given by \[12\]:

\[
S_{D=4,BH}(X) = \pi \sqrt{|I_4(p^I, q_I)|},
\] (13)

where \(I_4\) is the quartic invariant of the FTS, preserved by the automorphism groups \(\text{Aut}(\mathfrak{M}(J_3^A))\), the U-duality groups for the corresponding \(D = 4\) supergravities. Explicitly, the U-duality groups are \(E_7(7), E_7(-25), SO^*(12), SU(3, 3)\) and \(Sp(6, \mathbb{R})\) for composition algebras \(A = \mathbb{O}, \mathbb{O}, \mathbb{H}, \mathbb{C}, \mathbb{R}\), respectively. The U-duality orbits are given by the FTS rank via \[1\].

\[
\text{Rank} X = 4 \quad \text{iff} \quad I_4(X) \neq 0, \quad (I_4(X) < 0) \quad \text{non-BPS}
\]

\[
\text{Rank} X = 4 \quad \text{iff} \quad I_4(X) \neq 0, \quad (I_4(X) > 0) \quad 1/8\text{-BPS}
\]

\[
\text{Rank} X = 3 \quad \text{iff} \quad T(X, X, X, X) \neq 0, \quad I_4(X) = 0 \quad 1/8\text{-BPS}
\]

\[
\text{Rank} X = 2 \quad \text{iff} \quad \exists Y \Lambda(X, Y) \neq 0, \quad T(X, X, X, X) = 0 \quad 1/4\text{-BPS}
\]

\[
\text{Rank} X = 1 \quad \text{iff} \quad \forall Y \Lambda(X, Y) = 0, \quad X \neq 0 \quad 1/2\text{-BPS}
\] (14)

where

\[
\Lambda(X, Y) = 3T(X, X, Y) + X\{X, Y\}.
\] (15)

2.4 Black Holes in \(D = 3\)

By extending the space of electric and magnetic charges \((p^I, q_I) \in \mathfrak{M}(J_3^A)\) by a real variable, we recover a space \(\mathcal{I}(J_3^A)\) acted on by the three-dimensional U-duality group \(G_3 = \text{Inv}(\mathcal{I}(J_3^A))\) \[28\]. \(G_3\) is \(E_{8(8)}\) or \(E_{8(-24)}\), for dimensionally reduced \(\mathcal{N} = 8\) or exceptional magic \(\mathcal{N} = 2, D = 4\) supergravity \[10\] \[12\]. The quartic symplectic distance \(d(X, Y)\) between any two solutions \(X = (X, x)\) and \(Y = (Y, y)\) in \(\mathcal{I}(J_3^A)\) is given by:

\[
d(X, Y) = I_4(X - Y) - (x - y + \{X, Y\})^2.
\] (16)

The norm of an arbitrary solution \(X = (X, x) \in \mathcal{I}(J_3^A)\) is computed as:

\[
\mathcal{N}(X) = d(X, 0) = I_4(X) - x^2.
\] (17)

The U-duality group \(G_3\) leaves light-like separations \(d(X, Y) = 0\) invariant. Given an arbitrary \(X = (X, x) \in \mathcal{I}(J_3^A)\), Günaydin et al. noticed \[28\] non-real values arise for \(x\) when zero-norm solutions contain a negative-valued quartic invariant \(I_4\). To remedy this, the representation space \(\mathcal{I}(J_3^A) \sim \mathbb{R}^{57}\) is complexified, leading to a realization of \(E_8(\mathbb{C})\) on \(\mathbb{C}^{57}\).

\[1\] Explicit forms for \(T(X, X, X)\) and \(\Lambda(X, Y)\) are given in section 3.4.
3 Bioctonions and Jordan C^*-Algebras

3.1 Composition Algebras

Let V be a finite dimensional vector space over a field $F = \mathbb{R}, \mathbb{C}$. An algebra structure on V is a bilinear map

$$V \times V \to V$$

$$(x, y) \mapsto x \bullet y.$$

A composition algebra is an algebra $A = (V, \bullet)$, admitting an identity element, with a non-degenerate quadratic form η satisfying

$$\forall x, y \in A \quad \eta(x \bullet y) = \eta(x)\eta(y).$$

If $\exists x \in A$ such that $x \neq 0$ and $\eta(x) = 0$, η is said to be isotropic and gives rise to a split composition algebra. When $\forall x \in A, x \neq 0, \eta(x) \neq 0$, η is anisotropic and yields a composition division algebra $[52]$.

Proposition 3.1. A finite dimensional vector space V over $F = \mathbb{R}, \mathbb{C}$ can be endowed with a composition algebra structure if and only if $\dim F(V) = 1, 2, 4, 8$. If $F = \mathbb{C}$, then for a given dimension all composition algebras are isomorphic. For $F = \mathbb{R}$ and $\dim F(V) = 8$ there are only two non-isomorphic composition algebras: the octonions \mathbb{O} for which η is anisotropic and the split-octonions \mathbb{O}_s for which η is isotropic and of signature $(4, 4)$. Moreover for all composition algebras, the quadratic form η is uniquely defined by the algebra structure.

Proof. See prop. 1.8.1., section 1.10 and corollary 1.2.4 in the book by Springer and Veldkamp $[52]$. \square

3.2 Bioctonions

The bioctonion algebra $\mathbb{O}_\mathbb{C}$ is a composition algebra of dimension 8 over \mathbb{C}, defined as the complexification of the octonion algebra \mathbb{O} $[24]$

$$\mathbb{O}_\mathbb{C} = \mathbb{O} \otimes \mathbb{C} = \{ \psi = \varphi_1 + i\varphi_2 \mid \varphi_i \in \mathbb{O}, i^2 = -1 \}$$

where the imaginary unit ‘i’ is assumed to commute with all imaginary basis units e_j ($j = 1, 2, ..., 7$) of \mathbb{O}. The octonionic conjugate of an element of $\mathbb{O}_\mathbb{C}$ is taken to be

$$\overline{\psi} = \overline{\varphi_1} + i\overline{\varphi_2}$$

with which we define a quadratic form $\eta: \mathbb{O}_\mathbb{C} \to \mathbb{C}$

$$\eta(\psi) = \overline{\psi}\psi.$$

By application of the Moufang identities for the octonions $[25]$, it can be shown that $\forall \psi \in \mathbb{O}_\mathbb{C} \quad \eta(\psi_1\psi_2) = \eta(\overline{\psi_1})\eta(\overline{\psi_2})$, making $\mathbb{O}_\mathbb{C}$ a composition algebra over \mathbb{C}.

6
The quadratic form over O bras are real subalgebras of the bioctonion algebra

Proof. As $O_C = O \otimes \mathbb{C}$, the octonion algebra is taken to be

$$O = \{ \psi_r \in O_C \mid \psi_r = \varphi + i0 \quad \varphi \in O \}$$

where the quadratic form over O_C reduces to $\eta(\psi_r) = \psi_r \bar{\psi}_r = \varphi \bar{\varphi} \in \mathbb{R}$, which is the usual anisotropic quadratic form for which O is a composition algebra.

For the split-octonion case, we denote a basis for O_C via the set $\{e_i, i e_i\}$ where e_i ($i = 0, 1, \ldots, 7$) form a basis for O as a real vector space satisfying

$$e_0 = 1$$

$$e_i^2 = -1 \quad (i = 1, 2, \ldots, 7)$$

$$e_{i+1}e_{i+2} = e_{i+4} = -e_{i+2}e_{i+1} \quad (\text{mod } 7)$$

$$e_{i+2}e_{i+4} = e_{i+1} = -e_{i+4}e_{i+2} \quad (\text{mod } 7).$$

We now choose eight basis units from $\{e_i, i e_i\}$ consisting of a quaternion basis in O, for example, $1, e_1, e_2, e_4$ and taking $i e_4$ such that ($i \neq 0, 1, 2, 4$).

Consider the real vector subspace $W \subset O_C$ spanned by these basis units

$$W = \{ \psi_s \in O_C \mid \psi_s = a_0 + a_1e_1 + a_2e_2 + a_4e_4 + i(a_3e_3 + a_5e_5 + a_6e_6 + a_7e_7) \}$$

Using the multiplicative properties of the octonions, one can construct a multiplication table for the basis units of W where W is seen to be closed (see Table I). Conjugation in W is induced by octonionic conjugation in O_C

$$\bar{\psi}_s = a_0 - a_1e_1 - a_2e_2 - a_4e_4 + i(-a_3e_3 - a_5e_5 - a_6e_6 - a_7e_7). \quad (23)$$

The quadratic form for O_C then reduces to

$$\eta(\psi_s) = \psi_s \bar{\psi}_s = a_0^2 + a_1^2 + a_2^2 + a_4^2 - a_3^2 - a_5^2 - a_6^2 - a_7^2 \in \mathbb{R} \quad (24)$$

which is isotropic and of signature $(4, 4)$. Hence, W forms a dim$\mathbb{R}(W) = 8$ split composition algebra and by Prop. 3.1 must be isomorphic to the algebra of split-octonions O_s. \square

e_1	e_2	e_4	ie_7	ie_3	ie_6	ie_5
e_1	-1	e_4	$-e_2$	$-ie_3$	ie_7	$-ie_6$
e_2	$-e_4$	-1	e_1	$-ie_6$	ie_5	ie_7
e_4	e_2	$-e_1$	-1	$-ie_5$	$-ie_6$	ie_3
ie_7	ie_3	ie_6	ie_5	1	e_1	e_2
ie_3	$-ie_7$	$-ie_5$	ie_6	$-e_1$	1	e_4
ie_6	ie_7	$-ie_3$	$-ie_2$	$-e_4$	1	e_1
ie_5	$-ie_6$	ie_3	$-ie_7$	$-e_4$	e_2	$-e_1$

Table 1: A split-octonion subalgebra of O_C
It was shown by Shukuzawa \[56\] that $G_2(\mathbb{C})$ acts transitively on the space of all elements having the same norm in \mathbb{O}_C. We shall recall some useful theorems from Shukuzawa \[56\] here, which classify orbits for elements of \mathbb{O}_C and its real subalgebras \mathbb{O} and \mathbb{O}_s. For notational convenience we set $ie_i = e_i'$, for the case of the split-octonions.

Theorem 3.3. Any non-zero element $\psi \in \mathbb{O}_C$ can be transformed to the following canonical form by some element of $G_2(\mathbb{C})$:

If $\eta(\psi) \neq 0$:

$$\psi = (a_0 + ia_1)e_i \quad (i = 1, 2, \ldots, 7) \quad (a_0 > 0 \text{ or } a_0 = 0, \ a_1 > 0),$$

(25)

If $\eta(\psi) = 0$:

$$\psi = e_i + ie_j \quad (i \neq j, \ i, j = 1, 2, \ldots, 7).$$

(26)

Moreover, their orbits in \mathbb{O}_C under $G_2(\mathbb{C})$ are distinct, and the union of all their orbits and $\{0\}$ is the whole space \mathbb{O}_C.

Remark 3.4. The canonical zero-norm orbit elements of \mathbb{O}_C generate a non-associative Grassmann algebra \[40\], satisfying $\psi_i^2 = 0$, $\psi_i\psi_j = -\psi_j\psi_i$ and $\psi_i\psi_j = -\psi_j\psi_i$.

Theorem 3.5. Any element $\varphi \in \mathbb{O}$ can be transformed to the following canonical form by some element of G_2:

$$\varphi = a_0e_i \quad (i = 1, 2, \ldots, 7) \quad (a_0 = \sqrt{\eta(\varphi)} \geq 0).$$

(27)

Moreover, their orbits in \mathbb{O} under G_2 are distinct, and the union of all their orbits and $\{0\}$ yields the whole space \mathbb{O}.

Theorem 3.6. Any non-zero element $\psi_s \in \mathbb{O}_s$ can be transformed to the following canonical form by some element of $G_2(2)$:

If $\eta(\psi_s) > 0$:

$$\psi_s = a_0e_i \quad (i = 1, 2, \ldots, 7) \quad (a_0 = \sqrt{\eta(\varphi)} > 0)$$

(28)

If $\eta(\psi_s) < 0$:

$$\psi_s = a_0e_i' \quad (i = 1, 2, \ldots, 7) \quad (a_0 = \sqrt{-\eta(\varphi)} > 0)$$

(29)

If $\eta(\psi_s) = 0$:

$$\psi = e_i + e_j' \quad (i \neq j, \ i, j = 1, 2, \ldots, 7).$$

(30)

Moreover, their orbits in \mathbb{O}_s under $G_2(2)$ are distinct, and the union of all their orbits and $\{0\}$ is the whole space \mathbb{O}_s. 8
3.3 The Exceptional Jordan \(C^* \)-Algebra

Definition 3.7. (Kaplansky) Let \(A \) be a complex Banach space and a complex Jordan algebra equipped with an involution \(* \). Then \(A \) is a *Jordan \(C^* \)-algebra* if the following conditions are satisfied

\[
\|x \circ y\| \leq \|x\| \|y\| \quad \forall x, y \in A
\]
\[
\|z\| = \|z^*\| \quad \forall z \in A
\]
\[
\|\{zz^*z\}\| = \|z\|^3 \quad \forall z \in A
\]

where the Jordan triple product is given by

\[
\{xyz\} = (x \circ y) \circ z + (y \circ z) \circ x - (z \circ x) \circ y.
\]

Theorem 3.8. Each JB-algebra is the self-adjoint part of a unique Jordan \(C^* \)-algebra.

Proof. The proof is given by Wright [55], using the existence of an exceptional Jordan \(C^* \)-algebra whose self-adjoint part is the exceptional Jordan algebra \(J_3 \).

The *exceptional Jordan \(C^* \)-algebra* is the complexification of the exceptional Jordan algebra, given by

\[
J_3^{OC} = \{ X = A + iB \mid A, B \in J_3^D, i^2 = -1 \},
\]

where the imaginary unit \('i' \) is assumed to commute with all imaginary basis units \(e_j (j = 1, \ldots, 7) \) of \(\mathbb{O} \). A general element of the algebra takes the form

\[
X = \begin{pmatrix}
 z_1 & \psi_1 & \overline{\psi}_2 \\
 \overline{\psi}_1 & z_2 & \psi_3 \\
 \psi_2 & \overline{\psi}_3 & z_3
\end{pmatrix}
\]

where it is seen \(J_3^{OC} \) is a Jordan algebra of degree three over the bioctonions. As the bioctonions contain both the octonion and split-octonion algebras, \(J_3^{OC} \) contains \(J_3^O \) and \(J_3^{Os} \). One can define two types of involution for \(J_3^{OC} \):

\[
X^* = (X^*)^T = (A - iB)^T,
\]
\[
X^\dagger = (X)^T = (A + iB)^T
\]

differing by the use of either complex or octonionic conjugation of the entries. Using the complex involution, along with the spectral norm, \(J_3^{OC} \) becomes a Jordan \(C^* \)-algebra. Under this involution, only elements of the exceptional Jordan algebra \(J_3^D \) are self-adjoint. Under the involution using octonionic conjugation, all elements of \(J_3^{OC} \) are self-adjoint. Moreover, under this involution, the trace bilinear form \(J_3^{OC} \times J_3^{OC} \rightarrow \mathbb{C} \)

\[
\langle X, Y \rangle = \text{tr}(X \circ Y^\dagger) = \text{tr}(X \circ Y)
\]
is complex valued, as is required in later constructions. The Freudenthal Product \(J_3^{Dc} \times J_3^{Dc} \rightarrow J_3^{Dc} \) is defined using the trace bilinear form as

\[
X \times Y = X \circ Y - \frac{1}{2} (Y \text{tr}(X) + X \text{tr}(Y)) + \frac{1}{2} (\text{tr}(X) \text{tr}(Y) - \text{tr}(X \circ Y)) I
\]

(38)

An important special case yields the quadratic adjoint map

\[
X^2 = X \times X = X^2 - \text{tr}(X)X + \frac{1}{2} (\text{tr}(X)^2 - \text{tr}(X^2)) I,
\]

(39)

We can use the Freudenthal and Jordan product to define the cubic form

\[
(X, Y, Z) = \text{tr}(X \circ (Y \times Z)).
\]

(40)

A special case of this cubic form is

\[
(X, X, X) = \text{tr}(X \circ (X \times X))
\]

(41)

Using the cubic form, one can express the determinant as

\[
\det(X) = \frac{1}{3} \text{tr}(X \circ (X \times X)) = N(X).
\]

(42)

where \(N(X) \) denotes the cubic norm of \(X \). The structure group \(\text{Str}(J_3^{Dc}) \), is comprised of all linear bijections on \(J_3^{Dc} \) that leave the cubic norm (hence determinant) invariant up to a constant scalar multiple

\[
N(s(X)) = c N(X) \quad \forall s \in \text{Str}(J_3^{Dc}).
\]

(43)

The reduced structure group, \(\text{Str}_0(J_3^{Dc}) = E_6(C) \) [51], consists of the transformations for which \(c = 1 \) and contains the U-duality groups \(E_6(6), E_6(-26) \), of the \(N = 8 \) and exceptional magic \(N = 2, D = 5 \) supergravities, respectively.

3.4 Freudenthal Triple System

We follow the Freudenthal construction of Krutelevich et al. [41, 5, 27]. Given the exceptional Jordan \(C^* \)-algebra \(J_3^{Dc} \), one can construct its corresponding Freudenthal triple system (FTS) by defining the vector space \(\mathfrak{M}(J_3^{Dc}) \):

\[
\mathfrak{M}(J_3^{Dc}) = C \oplus C \oplus J_3^{Dc} \oplus J_3^{Dc}.
\]

(44)

A general element \(\mathcal{X} \in \mathfrak{M}(J_3^{Dc}) \) can be expressed as

\[
\mathcal{X} = \begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} \quad \alpha, \beta \in C \quad X, Y \in J_3^{Dc}
\]

(45)
The FTS comes equipped with a non-degenerate bilinear antisymmetric quadratic form \(\{X, Z\} : \mathfrak{M}(J^\mathfrak{O}_3) \times \mathfrak{M}(J^\mathfrak{O}_3) \to \mathbb{C} \),

\[
\{X, Z\} = \alpha \delta - \beta \gamma + \text{tr}(X \circ W) - \text{tr}(Y \circ Z)
\]

where \(X = \begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} \), \(Z = \begin{pmatrix} \gamma & Z \\ W & \delta \end{pmatrix} \),

(46)
a quartic form \(q : \mathfrak{M}(J^\mathfrak{O}_3) \to \mathbb{C} \),

\[
q(X) = -2[\alpha \beta - \text{tr}(X \circ Y)]^2 - 8[\alpha N(X) + \beta N(Y) - \text{tr}(X^2 \circ Y^2)]
\]

(47)
and a trilinear triple product \(T : \mathfrak{M}(J^\mathfrak{O}_3) \times \mathfrak{M}(J^\mathfrak{O}_3) \times \mathfrak{M}(J^\mathfrak{O}_3) \to \mathfrak{M}(J^\mathfrak{O}_3) \),

\[
\{T(X, Y, W), Z\} = q(X, Y, W, Z)
\]

(48)
where \(q(X, Y, W, Z) \) is the linearization of \(q(X) \) such that \(q(X, X, X, X) = q(X) \). Useful identities include [27]

\[
T(X, X, X) = (-\alpha^2 \beta + \alpha \text{tr}(X \circ Y) - 2N(Y), \alpha \beta^2 - \beta \text{tr}(X \circ Y) + 2N(X), 2Y \times X^2 - 2\beta Y^2 - (\text{tr}(X \circ Y) - \alpha \beta)X, -2X \times Y^2 + 2\alpha X^2 + (\text{tr}(X \circ Y) - \alpha \beta)Y).
\]

(49)
\[
\Lambda(X, Y) = 3T(X, X, Y) + \{X, Y\}X = (-3\alpha \beta - \text{tr}(X \circ Y))Y + 2\text{tr}((\alpha X - Y^2) \circ W), (3\alpha \beta - \text{tr}(X \circ Y))\delta - 2\text{tr}(\beta Y - X^2) \circ Z),
\]

(50)
\[
(3\alpha \beta - \text{tr}(X \circ Y))Z - 2(\beta Y - X^2) \times W + 2(\alpha X - Y^2)\delta - 2Q(X)Z,
\]

\[-(3\alpha \beta - \text{tr}(X \circ Y))W - 2(\alpha X - Y^2) \times Z + 2(\beta Y - X^2)\gamma - 2Q(X)W).
\]

The automorphism group \(\text{Aut}(\mathfrak{M}(J^\mathfrak{O}_3)) = E_7(\mathbb{C}) \) is the set of all transformations leaving the quadratic form and quartic form \(q(X) = I_3(X) \) invariant. Following Krutelevich [27], four types of transformations in \(\text{Aut}(\mathfrak{M}(J^\mathfrak{O}_3)) \) are:

For any \(C \in J^\mathfrak{O}_3 \), \(\Phi(C) \):

\[
\begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} \mapsto \begin{pmatrix} \alpha + \text{tr}(Y \circ C) + \text{tr}(X \circ C^2) + \beta N(C) & X + \beta C \\ Y + X \times C + \beta C^2 & \beta \end{pmatrix}
\]

(53)

For any \(D \in J^\mathfrak{O}_3 \), \(\Psi(D) \):

\[
\begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} \mapsto \begin{pmatrix} \alpha & X + Y \times D + \alpha D^3 \\ Y + \alpha D & \beta + \text{tr}(X \circ D) + \text{tr}(Y \circ D^2) + \alpha N(D) \end{pmatrix}
\]

(54)
For any $s \in \text{Str}(J^\text{OC}_3)$ and $c \in \mathbb{C}$ s.t. $N(s(Z)) = cN(Z)$:

$$\Omega : \begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} \mapsto \begin{pmatrix} c^{-1}\alpha & s(X) \\ s^{-1}(Y) & c\beta \end{pmatrix}$$ \hfill (55)

where s^* is the adjoint to s with respect to the trace bilinear form.

Lastly, we have:

$$\Upsilon : \begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} \mapsto \begin{pmatrix} -\beta & -Y \\ X & \alpha \end{pmatrix}.$$ \hfill (56)

When matrices C and D above are rank one (i.e., $C^2 = 0$, $D^2 = 0$), the transformations ϕ and ψ simplify to:

$$\Phi(C) : \begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} \mapsto \begin{pmatrix} \alpha + \text{tr}(Y \circ C) & X + \beta C \\ \beta \end{pmatrix}$$ \hfill (57)

$$\Psi(D) : \begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} \mapsto \begin{pmatrix} \alpha & X + Y \times D \\ \beta + \text{tr}(X \circ D) \end{pmatrix}.$$ \hfill (58)

Remark 3.9. Consider the space $\mathcal{M}(\text{diag}(J^\text{OC}_3)) \subset \mathcal{M}(J^\text{OC}_3)$ with elements

$$\begin{pmatrix} \alpha & X \\ Y & \beta \end{pmatrix} = \begin{pmatrix} \alpha \\ (z_1, z_2, z_3) \\ \beta \end{pmatrix} \quad \alpha, \beta \in \mathbb{C} \quad X, Y \in J^\text{OC}_3.$$ \hfill (59)

This space is equivalent to the Freudenthal triple system $\mathcal{M}(J_3^\text{OC})$ employed by Borsten et al. \cite{5} as the representation space of three qubits. It would be interesting to find a quantum information interpretation for the full Freudenthal triple system $\mathcal{M}(J^\text{OC}_3)$.

3.5 Extended Freudenthal Triple System

Following Günaydin et al. \cite{28, 31}, we construct a vector space $\Sigma(J^\text{OC}_3)$ by extending the FTS $\mathcal{M}(J^\text{OC}_3)$ by an extra complex coordinate:

$$\Sigma(J^\text{OC}_3) = \mathcal{M}(J^\text{OC}_3) \oplus \mathbb{C}.$$ \hfill (60)

For brevity, we refer to the vector space $\Sigma(J^\text{OC}_3)$ as the extended Freudenthal triple system (EFTS) over J^OC_3. Vectors in $\Sigma(J^\text{OC}_3)$ are written in the form $X = (\mathcal{X}, \tau)$, where $\mathcal{X} \in \mathcal{M}(J^\text{OC}_3)$ belongs to the underlying FTS and $\tau \in \mathbb{C}$ is the extra complex coordinate. The quartic symplectic distance $d(X, Y)$ between any two points $X = (\mathcal{X}, \tau)$ and $Y = (\mathcal{Y}, \kappa)$ in $\Sigma(J^\text{OC}_3)$ is given by

$$d(X, Y) = q(\mathcal{X} - \mathcal{Y}) - (\tau - \kappa + \{\mathcal{X}, \mathcal{Y}\})^2.$$ \hfill (61)

The norm of an arbitrary element $X = (\mathcal{X}, \tau) \in \Sigma(J^\text{OC}_3)$ takes the form

$$N(X) = d(X, 0) = q(\mathcal{X}) - \tau^2.$$ \hfill (62)
The group leaving light-like separations $d(\mathbf{X}, \mathbf{Y}) = 0$ invariant, the quasi-conformal group of the EFTS \cite{10, 13, 28, 31}, is now $\text{Inv}(\mathcal{T}(J_3^{\mathbb{O}_C})) = E_8(\mathbb{C})$. The action of the Lie algebra of $\text{Inv}(\mathcal{T}(J_3^{\mathbb{O}_C}))$ on an arbitrary element of the EFTS $\mathbf{X} = (\mathbf{X}, \tau)$ is given by \cite{28, 31}:

\begin{align}
K(\mathbf{X}) &= 0 \
U(\mathbf{X}) &= \mathcal{W} \quad S(\mathbf{X}) = T(\mathcal{W}, \mathcal{Z}, \mathbf{X}) \quad \mathcal{W}, \mathcal{Z} \in \mathfrak{H}(J_3^{\mathbb{O}_C}) \
K(\tau) &= 2z \
U(\tau) &= \{\mathcal{W}, \mathbf{X}\} \quad S(\tau) = 2\{\mathcal{W}, \mathcal{Z}\} \tau \
\tilde{U}(\mathbf{X}) &= \frac{1}{2} T(\mathbf{X}, \mathcal{W}, \mathcal{X}) - \mathcal{W}\tau \
\tilde{U}(\tau) &= -\frac{1}{8} \{ T(\mathbf{X}, \mathbf{X}, \mathbf{X}), \mathcal{W} \} + \{X, \mathcal{W}\} \tau \
\tilde{K}(\mathbf{X}) &= -\frac{1}{8} z T(\mathbf{X}, \mathbf{X}, \mathbf{X}) + z \mathcal{X} \tau \
\tilde{K}(\tau) &= \frac{1}{8} z \{ T(\mathbf{X}, \mathbf{X}, \mathbf{X}), \mathbf{X}\} + 2z \tau^2.
\end{align}

As noted by G"unaydin, Koepsell and Nicolai \cite{28}, this gives a realization of $E_8(\mathbb{C})$ on \mathbb{C}^{57}, which remedies the problem encountered when $N(\mathbf{X}) = 0$ and the quartic invariant q takes negative values, forcing τ to have non-real solutions.

4 Conclusion

We have shown that $\mathcal{N} = 8$ and $\mathcal{N} = 2$ supergravity theories based on the octonions and split-octonions can be mathematically unified using the bioctonion composition algebra and its corresponding exceptional Jordan C^*-algebra, $J_3^{\mathbb{O}_C}$. Moreover, by constructing a Freudenthal triple system and its single variable extension over $J_3^{\mathbb{O}_C}$, problematic solutions in $D = 3$ were resolved. The exceptional Jordan C^*-algebra $J_3^{\mathbb{O}_C}$ and its Freudenthal triple system also proved useful in supporting the three qubit entanglement classification of Borsten et al.\cite{5}.

Surely, there are further applications for Jordan algebraic structures based on the bioctonions, and it is interesting to consider the direct physical interpretations of such structures in M-theory \cite{35, 43, 47-51}. Along these lines, it is essential to consider structures over the integral bioctonions, enabling the study of the discrete U-duality orbits of $E_6(\mathbb{C})_Z$, $E_7(\mathbb{C})_Z$ and $E_8(\mathbb{C})_Z$, with applications to topological strings \cite{10, 12}, quantum information theory \cite{1-9, 32-41} and automorphic black hole partition functions.

References

[1] M. J. Duff, S. Ferrara, E_7 and the tripartite entanglement of seven qubits, Phys. Rev. D76:025018 (2007), arXiv:quant-ph/0609227

[2] M. J. Duff, S. Ferrara, Black hole entropy and quantum information, Lect. Notes. Phys.755:93-114 (2008), arXiv:hep-th/0612036
[3] M. J. Duff, S. Ferrara, E_6 and the bipartite entanglement of three qutrits, Phys. Rev. D76:124023 (2007), arXiv:0704.0507 [hep-th].

[4] L. Borsten, D. Dahanayake, M. J. Duff, H. Ebrahim, W. Rubens, Black Holes, Qubits and Octonions, Phys. Rep. 471:113-219 (2009), arXiv:0809.4685 [hep-th].

[5] L. Borsten, D. Dahanayake, M. J. Duff, W. Rubens, H. Ebrahim, Freudenthal triple classification of three-qubit entanglement, arXiv:0812.3322 [quant-ph].

[6] L. Borsten, D. Dahanayake, M. J. Duff, W. Rubens, Black holes admitting a Freudenthal dual, Phys. Rev. D80:026003 (2009), arXiv:0903.5517 [hep-th].

[7] L. Borsten, D. Dahanayake, M. J. Duff, W. Rubens, Superqubits, arXiv:0908.0706 [quant-ph].

[8] M. J. Duff, String triality, black hole entropy and Cayley’s hyperdeterminant, Phys. Rev. D76:025017 (2007), arXiv:hep-th/0601134.

[9] P. Lévay, Stringy Black Holes and the Geometry of Entanglement, Phys. Rev. D74:024030 (2006), arXiv:hep-th/0603136.

[10] M. Günyaydin, A. Neitzke, B. Pioline, A. Waldron, BPS black holes, quantum attractor flows and automorphic forms, arXiv:hep-th/0512296.

[11] M. Günyaydin, A. Neitzke, B. Pioline, Topological Wave Functions and Heat Equations, arXiv:hep-th/0607200.

[12] B. Pioline, Lectures on Black Holes, Topological Strings and Quantum Attractors, arXiv:hep-th/0607227.

[13] M. Günyaydin, Unitary Realizations of U-duality Groups as Conformal and Quasiconformal Groups and Extremal Black Holes of Supergravity Theories, arXiv:hep-th/0502235.

[14] S. Bellucci, S. Ferrara, M. Günyaydin, A. Marrani Charge Orbits of Symmetric Special Geometries and Attractors, arXiv:hep-th/0606209.

[15] M. Günyaydin, G. Sierra, and P. K. Townsend, The geometry of $N = 2$ Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B242:244 (1984).

[16] M. Günyaydin, G. Sierra, and P. K. Townsend, Exceptional supergravity theories and the MAGIC square, Phys. Lett. B133:72 (1983).
[17] M. Günaydin, G. Sierra, and P. K. Townsend, *Gauging the $d = 5$ Maxwell-Einstein supergravity theories: More on Jordan algebras*, Nucl. Phys. B253:573 (1985).

[18] S. Ferrara and A. Marrani, *$N = 8$ non-BPS attractors, fixed scalars and magic supergravities*, Nucl. Phys. B788:63 (2008), arXiv:0705.3866 [hep-th].

[19] M. Rios, *Jordan Algebras and Extremal Black Holes*, Talk given at 26th International Colloquium on Group Theoretical Methods in Physics (ICGTMP26), New York City, New York, 26-30 June 2006, arXiv:hep-th/0703238.

[20] S. Ferrara, M. Günaydin, *Orbits and Attractors for $N = 2$ Maxwell-Einstein Supergravity Theories in Five Dimensions*, Nucl. Phys. B759:1-19 (2006), arXiv:hep-th/0606108.

[21] M. Bianchi, S. Ferrara, *Enriques and Octonionic Magic Supergravity Models*, JHEP 0802:054 (2008), arXiv:0712.2976 [hep-th].

[22] S. Ferrara and M. Günaydin, *Orbits of exceptional groups, duality and BPS states in string theory*, Int. J. Mod. Phys.A13:2075 (1998), arXiv:hep-th/9708025.

[23] S. Ferrara and R. Kallosh, *Universality of Supersymmetric Attractors*, Phys. Rev. D54:5344 (1996), arXiv:hep-th/9603090.

[24] J. Baez, *The Octonions*, Bull. Amer. Math. Soc. 39:145-205 (2002), arXiv:math/0105155 [math.RA].

[25] H. Ruegg, *Octonionic Quark Confinement*, Acta. Phys. Pol. B9:1037 (1978), online print.

[26] N. Jacobson, *Structure and Representations of Jordan Algebras*, American Mathematical Society Colloquium Publications v. 39, American Mathematical Society (1968).

[27] S. Krutelevich, *Jordan algebras, exceptional groups, and higher composition laws*, arXiv:math/0411104 [math.NT].

[28] M. Günaydin, K. Koepsell, H. Nicolai, *Conformal and Quasiconformal Realizations of Exceptional Lie Groups*, Commun. Math. Phys. 221:57-76 (2001), arXiv:hep-th/0008063.

[29] T. Dray, C. Manogue, *The Exceptional Jordan Eigenvalue Problem*, IJTP 38:2901-2916 (1999), arXiv:math-ph/9910004.

[30] F. Gürsey, C. Tze, *On the role of division, Jordan and related algebras in particle physics*, World Scientific, Singapore (1996).
[31] M. Günaydin, O. Pavlyk, *Quasiconformal Realizations of E_6(6), E_7(7), E_8(8) and SO(n + 3, m + 3), N = 4 and N > 4 Supergravity and Spherical Vectors*, arXiv:0904.0784 [hep-th].

[32] C. H. Bennett, S. Popescu, D. Rohrlich, J. Smolin, A. Thapliyal, *Exact and Asymptotic Measures of Multipartite Pure State Entanglement*, arXiv:quant-ph/9908073.

[33] W. Dür, G. Vidal, J. Cirac, *Three qubits can be entangled in two inequivalent ways*, Phys. Rev. A 62, 062314 (2000), arXiv:quant-ph/0005115.

[34] E. Briand, J. Luque, J. Thibon, F. Verstraete, *The moduli space of three qutrit states*, arXiv:quant-ph/0306122.

[35] A. Iqbal, A. Neitzke, C. Vafa, *A Mysterious Duality*, arXiv:hep-th/0111068.

[36] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, H. Weinfurter, *Elementary gates for quantum computation*, Phys. Rev. A52: 3457 (1995), arXiv:quant-ph/9503016.

[37] M. A. Nielsen, I. L. Chuang, *Quantum Computation and Quantum Information*, Cambridge University Press (2000).

[38] H. Terashima, M. Ueda, *Nonunitary quantum circuit*, Int. J. Quantum Inform. 3: 633-647 (2005), arXiv:quant-ph/0304061.

[39] A. T. Bolukbasi, T. Dereli, *On the SU(3) parametrization of qutrits*, arXiv:quant-ph/0511111.

[40] S. Catto, *Exceptional Projective Geometries and Internal Symmetries*, arXiv:hep-th/0302079.

[41] F. S. Khan, M. Perkowski, *Title: Synthesis of Ternary Quantum Logic Circuits by Decomposition*, Proceedings of the 7th International Symposium on Representations and Methodology of Future Computing Technologies (2005), arXiv:quant-ph/0511041.

[42] S. Ferrara, *BPS black holes, supersymmetry and orbits of exceptional groups*, Fortsch. Phys. 47: 159-165 (1999), arXiv:hep-th/9801095.

[43] J. P. Gauntlett, *Intersecting Branes*, arXiv:hep-th/9705011.

[44] G. Papadopoulos, P. K. Townsend, *Intersecting M-branes*, Phys. Lett. B380: 273-279 (1996), arXiv:hep-th/9603087.
[45] C. Manogue, T. Dray, *Octonions, E6, and Particle Physics*, arXiv:0911.2253 [math.RA].

[46] A. A. Tseytlin, *Harmonic superpositions of M-branes*, Nucl. Phys. B475:149-163 (1996), arXiv:hep-th/9604035.

[47] N. Khviengia, Z. Khviengia, H. Lu, C. N. Pope, *Intersecting M-branes and bound states*, Phys.Lett.B388:21-28 (1996), arXiv:hep-th/9605077.

[48] H. Lu, C. N. Pope, T. R. Tran, K. W. Xu, *Classification of p-branes, NUTs, Waves and Intersections*, Nucl. Phys. B511:98-154 (1998), arXiv:hep-th/9708055.

[49] M. J. Duff, S. Ferrara, R. R. Khuri, J. Rahmfeld, *Supersymmetry and Dual String Solitons*, Phys. Lett. B356: 479-486 (1995), arXiv:hep-th/9508057.

[50] R. R. Khuri, *Supersymmetry, Duality and Bound States*, Talk given at Strings 96, arXiv:hep-th/9609094.

[51] Y. Ohwashi, *E6 Matrix Model*, Prog.Theor.Phys. 108: 755-782 (2002), arXiv:hep-th/0110106.

[52] T. A. Springer, F. D. Veldkamp, *Octonions, Jordan Algebras and Exceptional Groups*, Springer Monographs in Mathematics, Springer, Berlin (2000).

[53] O. V. Ogievetsky, *The Characteristic Equation for 3 × 3 Matrices over Octaves*, Russian Math. Surveys 36: 189190 (1981).

[54] P. Gao, *4d-5d connection and the holomorphic anomaly*, arXiv:hep-th/0701027.

[55] J. D. M. Wright, *Jordan C∗-algebras*, Michigan Math. J. 24 (1977).

[56] O. Shukuzawa, *Explicit Classification of Orbits in Cayley Algebras over the Groups of Type G2*, Yokohama Math. J. 53 (2007).

[57] L. Borsten, D. Dahanayake, M. J. Duff, S. Ferrara, A. Marrani, W. Rubens, *Observations on Integral and Continuous U-duality Orbits in N=8 Supergravity*, arXiv:1002.4223 [hep-th].

[58] M. Bianchi, S. Ferrara, R. Kallosh, *Observations on Arithmetic Invariants and U-Duality Orbits in N=8 Supergravity*, arXiv:0912.0057 [hep-th].