CLUSTER-TILTED AND QUASI-TILTED ALGEBRAS

IBRAHIM ASSEM, RALF SCHIFFLER, AND KHRYSTYNA SERHIYENKO

Abstract. In this paper, we prove that relation-extensions of quasi-tilted algebras are 2-Calabi-Yau tilted. With the objective of describing the module category of a cluster-tilted algebra of euclidean type, we define the notion of reflection so that any two local slices can be reached one from the other by a sequence of reflections and coreflections. We then give an algorithmic procedure for constructing the tubes of a cluster-tilted algebra of euclidean type. Our main result characterizes quasi-tilted algebras whose relation-extensions are cluster-tilted of euclidean type.

1. Introduction

Cluster-tilted algebras were introduced by Buan, Marsh and Reiten [BMR] and, independently in [CCS] for type A as a byproduct of the now extensive theory of cluster algebras of Fomin and Zelevinsky [FZ]. Since then, cluster-tilted algebras have been the subject of several investigations, see, for instance, [ABCP, ABS, BFPP, BT, BOW, BMR2, KR, OS, ScSe, ScSe2].

In particular, in [ABS] is given a construction procedure for cluster-tilted algebras: let C be a triangular algebra of global dimension two over an algebraically closed field k, and consider the C-C-bimodule $\text{Ext}^2_C(DC, C)$, where $D = \text{Hom}_k(-, k)$ is the standard duality, with its natural left and right C-actions. The trivial extension of C by this bimodule is called the relation-extension \tilde{C} of C. It is shown there that, if C is tilted, then its relation-extension is cluster-tilted, and every cluster-tilted algebra occurs in this way.

Our purpose in this paper is to study the relation-extensions of a wider class of triangular algebras of global dimension two, namely the class of quasi-tilted algebras, introduced by Happel, Reiten and Smalø in [HRS]. In general, the relation-extension of a quasi-tilted algebra is not cluster-tilted, however it is 2-Calabi-Yau tilted, see Theorem 3.1 below. We then look more closely at those cluster-tilted algebras which are tame and representation-infinite. According to [BMR], these coincide exactly with the cluster-tilted algebras of euclidean type. We ask then the following question: Given a cluster-tilted algebra B of euclidean type, find all quasi-tilted algebras C...
such that $B = \tilde{C}$. A similar question has been asked (and answered) in [ABS2], where, however, C was assumed to be tilted.

For this purpose, we generalize the notion of reflections of [ABS4]. We prove that this operation allows to produce all tilted algebras C such that $B = \tilde{C}$, see Theorem 4.11 in [ABS4] this result was shown only for cluster-tilted algebras of tree type. We also prove that, unlike those of [ABS4], reflections in the sense of the present paper are always defined, that the reflection of a tilted algebra is also tilted of the same type, and that they have the same relation-extension, see Theorem 4.4 and Proposition 4.8 below. Because all tilted algebras having a given cluster-tilted algebra as relation-extension are given by iterated reflections, this gives an algorithmic answer to our question above.

After that, we look at the tubes of a cluster-tilted algebra of euclidean type and give a procedure for constructing those tubes which contain a projective, see Proposition 5.6.

We then return to quasi-tilted algebras in our last section, namely we define a particular two-sided ideal of a cluster-tilted algebra, which we call the partition ideal. Our first result (Theorem 6.1) shows that the quasi-tilted algebras which are not tilted but have a given cluster-tilted algebra B of euclidean type as relation-extension are the quotients of B by a partition ideal. We end the paper with the proof of our main result (Theorem 6.3) which says that if C is quasi-tilted and such that $B = \tilde{C}$, then either C is the quotient of B by the annihilator of a local slice (and then C is tilted) or it is the quotient of B by a partition ideal (and then C is not tilted except in two cases easy to characterize).

2. Preliminaries

2.1. Notation. Throughout this paper, algebras are basic and connected finite dimensional algebras over a fixed algebraically closed field k. For an algebra C, we denote by $\text{mod } C$ the category of finitely generated right C-modules. All subcategories are full, and identified with their object classes. Given a category \mathcal{C}, we sometimes write $M \in \mathcal{C}$ to express that M is an object in \mathcal{C}. If \mathcal{C} is a full subcategory of $\text{mod } C$, we denote by $\text{add } \mathcal{C}$ the full subcategory of $\text{mod } C$ having as objects the finite direct sums of summands of modules in \mathcal{C}.

For a point x in the ordinary quiver of a given algebra C, we denote by $P(x)$, $I(x)$, $S(x)$ respectively, the indecomposable projective, injective and simple C-modules corresponding to x. We denote by $\Gamma(\text{mod } C)$ the Auslander-Reiten quiver of C and by $\tau = D\text{Tr}, \tau^{-1} = \text{Tr}D$ the Auslander-Reiten translations. For further definitions and facts, we refer the reader to [ARS, ASS, S].

2.2. Tilting. Let Q be a finite connected and acyclic quiver. A module T over the path algebra kQ of Q is called tilting if $\text{Ext}^1_{kQ}(T, T) = 0$ and the number of isoclasses (isomorphism classes) of indecomposable summands of
T equals $|Q_0|$, see [ASS]. An algebra C is called \textit{tilted of type} Q if there exists a tilting kQ-module T such that $C = \text{End}_{kQ} T$. It is shown in [RI] that an algebra C is tilted if and only if it contains a \textit{complete slice} Σ, that is, a finite set of indecomposable modules such that

1) $\bigoplus_{U \in \Sigma} U$ is a sincere C-module.
2) If $U_0 \to U_1 \to \cdots \to U_t$ is a sequence of nonzero morphisms between indecomposable modules with $U_0, U_t \in \Sigma$ then $U_i \in \Sigma$ for all i (\textit{convexity}).
3) If $0 \to L \to M \to N \to 0$ is an almost split sequence in $\text{mod} C$ and at least one indecomposable summand of M lies in Σ, then exactly one of L, N belongs to Σ.

For more on tilting and tilted algebras, we refer the reader to [ASS].

Tilting can also be done within the framework of a hereditary category. Let \mathcal{H} be an abelian k-category which is Hom-finite, that is, such that, for all $X, Y \in \mathcal{H}$, the vector space $\text{Hom}_{\mathcal{H}}(X, Y)$ is finite dimensional. We say that \mathcal{H} is \textit{hereditary} if $\text{Ext}^2_{\mathcal{H}}(-, ?) = 0$. An object $T \in \mathcal{H}$ is called a \textit{tilting object} if $\text{Ext}^1_{\mathcal{H}}(T, T) = 0$ and the number of isoclasses of indecomposable objects of T is the rank of the Grothendieck group $K_0(\mathcal{H})$.

The endomorphism algebras of tilting objects in hereditary categories are called \textit{quasi-tilted algebras}. For instance, tilted algebras but also canonical algebras (see [RI]) are quasi-tilted. Quasi-tilted algebras have attracted a lot of attention and played an important role in representation theory, see for instance [HRS, Sk].

2.3. \textbf{Cluster-tilted algebras.} Let Q be a finite, connected and acyclic quiver. The \textit{cluster category} \mathcal{C}_Q of Q is defined as follows, see [BMRRT]. Let F denote the composition $\tau^{-1}_D[1]$, where τ^{-1}_D denotes the inverse Auslander-Reiten translation in the bounded derived category $D = D^b(\text{mod} kQ)$, and $[1]$ denotes the shift of D. Then \mathcal{C}_Q is the orbit category D/F: its objects are the F-orbits $\widetilde{X} = (F^i X)_{i \in \mathbb{Z}}$ of the objects $X \in D$, and the space of morphisms from $\widetilde{X} = (F^i X)_{i \in \mathbb{Z}}$ to $\widetilde{Y} = (F^i Y)_{i \in \mathbb{Z}}$ is

$$\text{Hom}_{\mathcal{C}_Q}(\widetilde{X}, \widetilde{Y}) = \bigoplus_{i \in \mathbb{Z}} \text{Hom}_D(X, F^i Y).$$

Then \mathcal{C}_Q is a triangulated category with almost split triangles and, moreover, for $\widetilde{X}, \widetilde{Y} \in \mathcal{C}_Q$ we have a bifunctorial isomorphism $\text{Ext}^1_{\mathcal{C}_Q}(\widetilde{X}, \widetilde{Y}) \cong D\text{Ext}^1_{\mathcal{C}_Q}(\widetilde{Y}, \widetilde{X})$. This is expressed by saying that the category \mathcal{C}_Q is 2-\textit{Calabi-Yau}.
An object $\tilde{T} \in C_Q$ is called tilting if $\text{Ext}^1_{C_Q}(\tilde{T}, \tilde{T}) = 0$ and the number of isoclasses of indecomposable summands of \tilde{T} equals $|Q_0|$. The endomorphism algebra $B = \text{End}_{C_Q} \tilde{T}$ is then called cluster-tilted of type Q. More generally, the endomorphism algebra $\text{End}_{C} \tilde{T}$ of a tilting object \tilde{T} in a 2-Calabi-Yau category with finite dimensional Hom-spaces is called a 2-Calabi-Yau tilted algebra, see [Re].

Let now T be a tilting kQ-module, and $C = \text{End}_{kQ}T$ the corresponding tilted algebra. Then it is shown in [ABS] that the trivial extension \widetilde{C} of C by the C-C-bimodule $\text{Ext}^2_C(DC, C)$ with the two natural actions of C, the so-called relation-extension of C, is cluster-tilted. Conversely, if B is cluster-tilted, then there exists a tilted algebra C such that $B = \widetilde{C}$.

Let now B be a cluster-tilted algebra, then a full subquiver Σ of $\Gamma(\text{mod} B)$ is a local slice, see [ABS2], if:

1) Σ is a presection, that is, if $X \to Y$ is an arrow then:
 (a) $X \in \Sigma$ implies that either $Y \in \Sigma$ or $\tau Y \in \Sigma$
 (b) $Y \in \Sigma$ implies that either $X \in \Sigma$ or $\tau^{-1}X \in \Sigma$.

2) Σ is sectionally convex, that is, if $X = X_0 \to X \to \cdots \to X_t = Y$ is a sectional path in $\Gamma(\text{mod} B)$ then $X, Y \in \Sigma$ implies that $X_i \in \Sigma$ for all i.

3) $|\Sigma_0| = \text{rk } K_0(B)$.

Let C be tilted, then, under the standard embedding $\text{mod} C \to \text{mod} \widetilde{C}$, any complete slice in the tilted algebra C embeds as a local slice in $\text{mod} \widetilde{C}$, and any local slice in $\text{mod} \widetilde{C}$ occurs in this way. If B is a cluster-tilted algebra, then a tilted algebra C is such that $B = \widetilde{C}$ if and only if there exists a local slice Σ in $\Gamma(\text{mod} B)$ such that $C = B/\text{Ann}_B \Sigma$, where $\text{Ann}_B \Sigma = \cap_{X \in \Sigma} \text{Ann}_B X$, see [ABS2].

Let Σ be a local slice in the transjective component of $\Gamma(\text{mod} B)$ having the property that all the sources in Σ are injective B-modules. Then Σ is called a rightmost slice of B. Let x be a point in the quiver of B such that $I(x)$ is an injective source of the rightmost slice Σ. Then x is called a strong sink. Leftmost slices and strong sources are defined dually.

3. From quasi-tilted to cluster-tilted algebras

We start with a motivating example. Let C be the tilted algebra of type \tilde{A} given by the quiver

```
1 ← β/2 ← α
\downarrow δ \downarrow γ
3 ← γ ← 4
```

An object $\tilde{T} \in C_Q$ is called tilting if $\text{Ext}^1_{C_Q}(\tilde{T}, \tilde{T}) = 0$ and the number of isoclasses of indecomposable summands of \tilde{T} equals $|Q_0|$. The endomorphism algebra $B = \text{End}_{C_Q} \tilde{T}$ is then called cluster-tilted of type Q. More generally, the endomorphism algebra $\text{End}_{C} \tilde{T}$ of a tilting object \tilde{T} in a 2-Calabi-Yau category with finite dimensional Hom-spaces is called a 2-Calabi-Yau tilted algebra, see [Re].

Let now T be a tilting kQ-module, and $C = \text{End}_{kQ}T$ the corresponding tilted algebra. Then it is shown in [ABS] that the trivial extension \widetilde{C} of C by the C-C-bimodule $\text{Ext}^2_C(DC, C)$ with the two natural actions of C, the so-called relation-extension of C, is cluster-tilted. Conversely, if B is cluster-tilted, then there exists a tilted algebra C such that $B = \widetilde{C}$.

Let now B be a cluster-tilted algebra, then a full subquiver Σ of $\Gamma(\text{mod} B)$ is a local slice, see [ABS2], if:

1) Σ is a presection, that is, if $X \to Y$ is an arrow then:
 (a) $X \in \Sigma$ implies that either $Y \in \Sigma$ or $\tau Y \in \Sigma$
 (b) $Y \in \Sigma$ implies that either $X \in \Sigma$ or $\tau^{-1}X \in \Sigma$.

2) Σ is sectionally convex, that is, if $X = X_0 \to X \to \cdots \to X_t = Y$ is a sectional path in $\Gamma(\text{mod} B)$ then $X, Y \in \Sigma$ implies that $X_i \in \Sigma$ for all i.

3) $|\Sigma_0| = \text{rk } K_0(B)$.

Let C be tilted, then, under the standard embedding $\text{mod} C \to \text{mod} \widetilde{C}$, any complete slice in the tilted algebra C embeds as a local slice in $\text{mod} \widetilde{C}$, and any local slice in $\text{mod} \widetilde{C}$ occurs in this way. If B is a cluster-tilted algebra, then a tilted algebra C is such that $B = \widetilde{C}$ if and only if there exists a local slice Σ in $\Gamma(\text{mod} B)$ such that $C = B/\text{Ann}_B \Sigma$, where $\text{Ann}_B \Sigma = \cap_{X \in \Sigma} \text{Ann}_B X$, see [ABS2].

Let Σ be a local slice in the transjective component of $\Gamma(\text{mod} B)$ having the property that all the sources in Σ are injective B-modules. Then Σ is called a rightmost slice of B. Let x be a point in the quiver of B such that $I(x)$ is an injective source of the rightmost slice Σ. Then x is called a strong sink. Leftmost slices and strong sources are defined dually.
bound by $\alpha \beta = 0$, $\gamma \delta = 0$. Its relation-extension is the cluster-tilted algebra B given by the quiver

![Quiver](quiver.png)

bound by $\alpha \beta = 0$, $\beta \lambda = 0$, $\lambda \alpha = 0$, $\gamma \delta = 0$, $\delta \mu = 0$, $\mu \gamma = 0$. However, B is also the relation-extension of the algebra C' given by the quiver

![Quiver](quiver.png)

bound by $\lambda \alpha = 0$, $\delta \mu = 0$. This latter algebra C' is not tilted, but it is quasi-tilted. In particular, it is triangular of global dimension two. Therefore, the question arises naturally whether the relation-extension of a quasi-tilted algebra is always cluster-tilted. This is certainly not true in general, for the relation-extension of a tubular algebra is not cluster-tilted. However, it is 2-Calabi-Yau tilted. In this section, we prove that the relation-extension of a quasi-tilted algebra is always 2-Calabi-Yau tilted.

Let \mathcal{H} be a hereditary category with tilting object T. Because of C, there exist an algebra A, which is hereditary or canonical, and a triangle equivalence $\Phi : \mathcal{D}^b(\mathcal{H}) \to \mathcal{D}^b(\text{mod } A)$. Let T' denote the image of T under this equivalence. Because Φ preserves the shift and the Auslander-Reiten translation, it induces an equivalence between the cluster categories $\mathcal{C}_\mathcal{H}$ and \mathcal{C}_A, see [Am, Section 4.1]. Indeed, because A is canonical or hereditary, it follows that $\mathcal{C}_A \cong \mathcal{D}^b(\text{mod } A)/F$, where $F = \tau^{-1}[1]$. Therefore, we have $\text{End}_{\mathcal{C}_A}T \cong \text{End}_{\mathcal{C}_A}T'$.

We say that a 2-Calabi-Yau tilted algebra $\text{End}_C T$ is of canonical type if the 2-Calabi-Yau category \mathcal{C} is the cluster category of a canonical algebra. The proof of the next theorem follows closely [ABS].

Theorem 3.1. Let C be a quasi-tilted algebra. Then its relation-extension \tilde{C} is cluster-tilted or it is 2-Calabi-Yau tilted of canonical type.

Proof. Because C is quasi-tilted, there exist a hereditary category \mathcal{H} and a tilting object T in \mathcal{H} such that $C = \text{End}_\mathcal{H} T$. As observed above, there exist an algebra A, which is hereditary or canonical, and a triangle equivalence $\Phi : \mathcal{D}^b(\mathcal{H}) \to \mathcal{D}^b(\text{mod } A)$. Let $T' = \Phi(T).$ We have $\mathcal{D}^b(\text{mod } \tilde{C}) \cong \mathcal{D}^b(\text{mod } A) \cong \mathcal{D}^b(\mathcal{H})$, and therefore

\[
\text{Ext}_{\tilde{C}}^2(DC, C) \cong \text{Hom}_{\mathcal{D}^b(\text{mod } C)}(\tau C[1], C[2]) \\
\cong \text{Hom}_{\mathcal{D}^b(\mathcal{H})}(\tau T[1], T[2]) \\
\cong \text{Hom}_{\mathcal{D}^b(\mathcal{H})}(T, \tau^{-1} T[1]) \\
\cong \text{Hom}_{\mathcal{D}^b(\mathcal{H})}(T, FT).
\]
Thus the additive structure of $C \times \text{Ext}^2_C(DC, C)$ is that of
\[
C \oplus \text{Ext}^2_C(DC, C) \cong \text{End}_{\mathcal{H}}(T) \oplus \text{Hom}_{D^b(\mathcal{H})}(T, FT)
\cong \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{D^b(\mathcal{H})}(T, FT)
\cong \text{Hom}_{C^h}(T, T)
\cong \text{End}_{C^h}(T).
\]
Then, we check exactly as in \cite{ABS} Section 3.3 that the multiplicative structure is preserved. This completes the proof. □

Let C be a representation-infinite quasi-tilted algebra. Then C is derived equivalent to a hereditary or a canonical algebra A. Let n_A denote the tubular type of A. We then say that C has canonical type $n_C = n_A$.

\textbf{Lemma 3.2.} Let C be a representation-infinite quasi-tilted. Then its relation-extension \tilde{C} is cluster-tilted of euclidean type if and only if n_C is one of
\((p, q), (2, 2, r), (2, 3, 3), (2, 3, 4), (2, 3, 5),\) with $p \leq q$, $2 \leq r$.

\textit{Proof.} Indeed, \tilde{C} is cluster-tilted of euclidean type if and only if C is derived equivalent to a tilted algebra of euclidean type, and this is the case if and only if n_C belongs to the above list. □

\textit{Remark 3.3.} It is possible that C is domestic, but yet \tilde{C} is wild. Indeed, we modify the example after Corollary D in \cite{Sk}. Recall from \cite{Sk} that there exists a tame concealed full convex subcategory K such that C is a semiregular branch enlargement of K
\[
C = [E_i]K[F_j],
\]
where E_i, F_j are (truncated) branches. Then the representation theory of C is determined by those of $C^- = [E_i]K$ and $C^+ = K[F_j]$. Let C be given by the quiver
\[
\begin{array}{c}
1 \\
\downarrow \beta \\
2 \\
\end{array}
\begin{array}{c}
3 \\
\downarrow \gamma \\
4 \\
\downarrow \nu \\
8 \\
\downarrow \varphi \\
9 \\
\end{array}
\begin{array}{c}
6 \\
\downarrow \delta \\
5 \\
\downarrow \rho \\
7 \\
\end{array}
\begin{array}{c}
10 \\
\end{array}
\end{array}
\]
bound by the relations $\sigma \nu = 0$, $\omega \varphi = 0$, $\zeta \delta \sigma \gamma \beta = 0$. Here C^- is the full subcategory generated by $C_0 \setminus \{11\}$ and C^+ the one generated by $C_0 \setminus \{8, 9, 10\}$. Then C^- has domestic tubular type $(2, 2, 7)$ and C^+ has domestic tubular type $(2, 3, 4)$. Therefore C is domestic. On the other hand, the canonical type of C is $(2, 3, 7)$, which is wild. In this example, the 2-Calabi-Yau tilted algebra \tilde{C} is not cluster-tilted, because it is not of euclidean type, but the derived category of mod C contains tubes, see \cite{R}.
Remark 3.4. There clearly exist algebras which are not quasi-tilted but whose relation-extension is cluster-tilted of euclidean type. Indeed, let C be given by the quiver

$$
\begin{array}{ccccccc}
6 & \xrightarrow{\alpha} & 5 & \xrightarrow{\beta} & 4 & \xrightarrow{\gamma} & 3 & \xrightarrow{\delta} & 2 \\
\end{array}
$$

bound by $\alpha \beta = 0, \delta \lambda = 0$. Then C is iterated tilted of type \tilde{A} of global dimension 2, see [FPT]. Its relation-extension is given by

$$
\begin{array}{ccccccc}
6 & \xrightarrow{\alpha} & 5 & \xrightarrow{\beta} & 4 & \xrightarrow{\gamma} & 3 & \xrightarrow{\delta} & 2 \\
\end{array}
\begin{array}{ccccccc}
\xleftarrow{\sigma} & \xleftarrow{\eta} & \xleftarrow{\lambda} & \xleftarrow{\mu} & 1 \\
\end{array}
$$

bound by $\alpha \beta = 0, \beta \sigma = 0, \sigma \alpha = 0, \delta \lambda = 0, \lambda \eta = 0, \eta \delta = 0$. This algebra is isomorphic to the relation-extension of the tilted algebra of type \tilde{A} given by the quiver

$$
\begin{array}{ccccccc}
6 & \xleftarrow{\sigma} & 4 & \xleftarrow{\beta} & 5 \\
\end{array}
\begin{array}{ccccccc}
\xleftarrow{\gamma} & \xleftarrow{\delta} & \xleftarrow{\lambda} & \xleftarrow{\mu} & 1 \\
\end{array}
$$

bound by $\beta \sigma = 0, \delta \lambda = 0$. Therefore \tilde{C} is cluster-tilted of euclidean type. On the other hand, C is not quasi-tilted, because the uniserial module $\frac{4}{3}$ has both projective and injective dimension 2.

4. Reflections

Let C be a tilted algebra. Let Σ be a rightmost slice, and let $I(x)$ be an injective source of Σ. Thus x is a strong sink in C.

Definition 4.1. We define the completion H_x of x by the following three conditions.

(a) $I(x) \in H_x$.

(b) H_x is closed under predecessors in Σ.

(c) If $L \rightarrow M$ is an arrow in Σ with $L \in H_x$ having an injective successor in H_x then $M \in H_x$.

Observe that H_x may be constructed inductively in the following way. We let $H_1 = I(x)$, and H_2' be the closure of H_1 with respect to (c) (that is, we simply add the direct successors of $I(x)$ in Σ, and if a direct successor of $I(x)$ is injective, we also take its direct successor, etc.) We then let H_2 be the closure of H_2' with respect to predecessors in Σ. Then we repeat the procedure: given H_i, we let H_{i+1}' be the closure of H_i with respect to (c) and H_{i+1} be the closure of H_{i+1}' with respect to predecessors. This procedure
must stabilize, because the slice Σ is finite. If $H_j = H_k$ with $k > j$, we let $H_x = H_j$.

We can decompose H_x as the disjoint union of three sets as follows. Let \mathcal{J} denote the set of injectives in H_x, let \mathcal{J}^- be the set of non-injectives in H_x which have an injective successor in H_x, and let $\mathcal{E} = H_x \setminus (\mathcal{J} \cup \mathcal{J}^-)$ denote the complement of $(\mathcal{J} \cup \mathcal{J}^-)$ in H_x. Thus

$$H_x = \mathcal{J} \cup \mathcal{J}^- \cup \mathcal{E}$$

is a disjoint union.

Remark 4.2. If $\mathcal{J}^- = \emptyset$ then H_x reduces to the completion G_x as defined in [ABS4]. Recall that G_x does not always exist, but, as seen above, H_x does. Conversely, if G_x exists, then it follows from its construction in [ABS4] that $\mathcal{J}^- = \emptyset$.

Thus $\mathcal{J}^- = \emptyset$ if and only if G_x exists, and, in this case $G_x = H_x$.

For every module M over a cluster-tilted algebra B, we can consider a lift \tilde{M} in the cluster category \mathcal{C}. Abusing notation, we sometimes write τM to denote the image of $\tau M \tilde{M}$ in mod B, and say that the Auslander-Reiten translation is computed in the cluster category.

Definition 4.3. Let x be a strong sink in C and let Σ be a rightmost local slice with injective source $I(x)$. Recall that Σ is also a local slice in mod B. Then the reflection of the slice Σ in x is

$$\sigma_x^+ \Sigma = \tau^{-2}(\mathcal{J} \cup \mathcal{J}^-) \cup \tau^{-1} \mathcal{E} \cup (\Sigma \setminus H_x),$$

where τ is computed in the cluster category. In a similar way, one defines the coreflection σ_y^- of leftmost slices with projective sink $P_C(y)$.

Theorem 4.4. Let x be a strong sink in C and let Σ be a rightmost local slice in mod B with injective source $I(x)$. Then the reflection $\sigma_x^+ \Sigma$ is a local slice as well.

Proof. Set $\Sigma' = \sigma_x^+ \Sigma$ and

$$\Sigma'' = \tau^{-1}(\mathcal{J} \cup \mathcal{J}^-) \cup \tau^{-1} \mathcal{E} \cup (\Sigma \setminus H_x) = \tau^{-1}H_x \cup (\Sigma \setminus H_x),$$

where again, Σ'' and τ are computed in the cluster category \mathcal{C}. We claim that Σ'' is a local slice in \mathcal{C}. Notice that since H_x is closed under predecessors in Σ, then, if $X \in \Sigma \setminus H_x$ is a neighbor of $Y \in H_x$, we must have an arrow $Y \to X$ in Σ. This observation being made, Σ'' is clearly obtained from Σ by applying a sequence of APR-tilts. Thus Σ'' is a local slice in \mathcal{C}.

We now claim that $\tau^{-1}(\mathcal{J} \cup \mathcal{J}^-)$ is closed under predecessors in Σ''. Indeed, let $X \in \tau^{-1}(\mathcal{J} \cup \mathcal{J}^-)$ and $Y \in \Sigma''$ be such that we have an arrow $Y \to X$. Then, there exists an arrow $\tau X \to Y$ in the cluster category. Because $X \in \tau^{-1}(\mathcal{J} \cup \mathcal{J}^-)$, we have $\tau X \in \mathcal{J} \cup \mathcal{J}^-$. Now if $Y \in \Sigma$, then the arrow $\tau X \to Y$ would imply that $Y \in H_x$, which is impossible, because $Y \in \Sigma''$ and $\Sigma'' \cap H_x = \emptyset$. Thus $Y \not\in \Sigma$, and therefore $Y \in (\Sigma'' \setminus \Sigma) = \tau^{-1}H_x$. Hence $\tau Y \in H_x$. Moreover, there is an arrow $\tau Y \to \tau X$. Using that
\(\tau X \in \mathcal{J} \cup \mathcal{J}^- \), this implies that \(\tau Y \) has an injective successor in \(H_x \) and thus \(Y \in \tau^{-1}(\mathcal{J} \cup \mathcal{J}^-) \). This establishes our claim that \(\tau^{-1}(\mathcal{J} \cup \mathcal{J}^-) \) is closed under predecessors in \(\Sigma'' \).

Thus applying the same reasoning as before, we get that

\[
\Sigma' = (\Sigma'' \setminus \tau^{-1}(\mathcal{J} \cup \mathcal{J}^-)) \cup \tau^{-2}(\mathcal{J} \cup \mathcal{J}^-)
\]

is a local slice in \(\mathcal{C} \). Now we claim that \(\Sigma' \cap \text{add}(\tau T) = \emptyset \).

First, because \(\Sigma \cap \text{add}(\tau T) = \emptyset \), we have \((\Sigma \setminus H_x) \cap \text{add}(\tau T) = \emptyset \). Next, \(\mathcal{E} \) contains no injectives, by definition. Thus \(\tau^{-1}\mathcal{E} \cap \text{add}(\tau T) = \emptyset \). Assume now that \(X \in \text{add}(\tau T) \) belongs to \(\tau^{-2}\mathcal{J}^- \). Then \(\tau^{-2}X \in H_x \) and there exists an injective predecessor \(I(j) \) of \(\tau^{-2}X \) in \(H_x \), and since \(H_x \) is part of the local slice \(\Sigma \), there exists a sectional path from \(I(j) \) to \(\tau^{-2}X \). Applying \(\tau^{-2} \), we get a sectional path from \(T_j \) to \(X \) in the cluster category. But this means \(\text{Hom}_C(T_j, X) \neq 0 \), which is a contradiction to the hypothesis that \(X \in \text{add}(\tau T) \). Finally, if \(X \in \tau^{-2}\mathcal{J} \) then \(X \) is a summand of \(T \), which, again, is contradicting the hypothesis that \(X \in \text{add}(\tau T) \). \(\square \)

Following \[ABS4\], let \(S_x \) be the full subcategory of \(C \) consisting of those \(y \) such that \(I(y) \in H_x \).

Lemma 4.5.

(a) \(S_x \) is hereditary.

(b) \(S_x \) is closed under successors in \(C \).

(c) \(C \) can be written in the form

\[
C = \begin{bmatrix} H & 0 \\ M & C' \end{bmatrix},
\]

where \(H \) is hereditary, \(C' \) is tilted and \(M \) is a \(C' \)-\(H \)-bimodule.

Proof.

(a) Let \(H = \text{End}(\oplus_{y \in S_x} I(y)) \). Then \(H \) is a full subcategory of the hereditary endomorphism algebra of \(\Sigma \). Therefore \(H \) is also hereditary, and so \(S_x \) is hereditary.

(b) Let \(y \in S_x \) and \(y \to z \) in \(C \). Then there exists a morphism \(I(z) \to I(y) \). Because \(I(z) \) is an injective \(C \)-module and \(\Sigma \) is sincere, there exist a module \(N \in \Sigma \) and a non-zero morphism \(N \to I(z) \). Then we have a path \(N \to I(z) \to I(y) \), and since \(N, I(y) \in \Sigma \), we get that \(I(z) \in \Sigma \) by convexity of the slice \(\Sigma \) in \(\text{mod} \ C \). Moreover, since \(I(y) \in H_x \) and \(H_x \) is closed under predecessors in \(\Sigma \), it follows that \(I(z) \in H_x \). Thus \(z \in S_x \) and this shows (b).

(c) This follows from (a) and (b). \(\square \)

We recall that the cluster duplicated algebra was introduced in \[ABS3\].
Corollary 4.6. The cluster duplicated algebra \(\overline{C} \) of \(C \) is of the form

\[
\overline{C} = \begin{bmatrix}
H & 0 & 0 & 0 \\
M & C' & 0 & 0 \\
0 & E_0 & H & 0 \\
0 & E_1 & M & C'
\end{bmatrix}
\]

where \(E_0 = \text{Ext}^2_C(\text{DC}', H) \) and \(E_1 = \text{Ext}^2_C(\text{DC}', C') \).

Proof. We start by writing \(C \) in the matrix form of the lemma. By definition, \(H \) consists of those \(y \in C_0 \) such that the corresponding injective \(I(y) \) lies in \(H_x \) inside the slice \(\Sigma \). In particular, the projective dimension of these injectives is at most 1, hence \(\text{Ext}_C^2(DC, C) = \text{Ext}_C^2(DC', C) \). The result now follows upon multiplying by idempotents. \(\square \)

Definition 4.7. Let \(x \) be a strong sink in \(C \). The reflection at \(x \) of the algebra \(C \) is

\[
\sigma_x^+ C = \begin{bmatrix}
C' & 0 \\
E_0 & H
\end{bmatrix}
\]

where \(E_0 = \text{Ext}^2_C(\text{DC}', H) \).

Proposition 4.8. The reflection \(\sigma_x^+ C \) of \(C \) is a tilted algebra having \(\sigma_x^+ \Sigma \) as a complete slice. Moreover the relation-extensions of \(C \) and \(\sigma_x^+ \Sigma \) are isomorphic.

Proof. We first claim that the support \(\text{supp}(\sigma_x^+ \Sigma) \) of \(\sigma_x^+ \Sigma \) is contained in \(\sigma_x^+ C \). Let \(X \in \sigma_x^+ \Sigma \). Recall that \(\sigma_x^+ \Sigma = \tau^{-2}(J \cup J^-) \cup \tau^{-1} \mathcal{E} \cup (\Sigma \setminus H_x) \). If \(X \in \tau^{-2} \mathcal{J} \), then \(X = P(y') \) is projective corresponding to a point \(y' \in H \). Thus \(I(y') \in H_x \) and the radical of \(P(y) \) has no non-zero morphism into \(I(y) \). Therefore \(\text{supp}(X) \subseteq \sigma_x^+ C \).

Assume next that \(X \in \tau^{-2} \mathcal{J} \), that is, \(X = \tau^{-2} Y \), where \(Y \in J^- \) has an injective successor \(I(z) \) in \(H_x \). Because all sources in \(\Sigma \) are injective, there is an injective \(I(y') \in \Sigma \) and a sectional path \(I(y') \to \ldots \to Y \to \ldots \to I(z) \). Applying \(\tau^{-2} \), we obtain a sectional path \(P(y') \to \ldots \to X \to \ldots \to P(z) \). In particular the point \(y' \) belongs to the support of \(X \). Assume that there is a point \(h \) in \(H \) that is in the support of \(X \). Then there exists a nonzero morphism \(X \to I(h) \). But \(I(h) \in \Sigma \) and there is no morphism from \(X \in \tau^{-2} \Sigma \) to \(\Sigma \). Therefore \(\text{supp}(X) \subseteq \sigma_x^+ C \).

By the same argument, we show that if \(X \in \tau^{-1} \mathcal{E} \), then \(\text{supp}(X) \subseteq \sigma_x^+ C \).

Finally, all modules of \(\Sigma \setminus H_x \) are supported in \(C' \). This establishes our claim.

Now, by Theorem 4.4, \(\sigma_x^+ \Sigma \) is a local slice in mod \(\overline{C} \). Therefore \(\overline{C} / \text{Ann} \sigma_x^+ \Sigma \) is a tilted algebra in which \(\sigma_x^+ \Sigma \) is a complete slice. Since the support of \(\sigma_x^+ \Sigma \) is the same as the support of \(\sigma_x^+ C \), we are done. \(\square \)

We now come to the main result of this section, which states that any two tilted algebras that have the same relation-extension are linked to each other by a sequence of reflections and coreflections.
Definition 4.9. Let \mathcal{B} be a cluster-tilted algebra and let Σ and Σ' be two local slices in $\text{mod} \, \mathcal{B}$. We write $\Sigma \sim \Sigma'$ whenever $\mathcal{B}/\text{Ann} \, \Sigma = \mathcal{B}/\text{Ann} \, \Sigma'$.

Lemma 4.10. Let \mathcal{B} be a cluster-tilted algebra, and $\Sigma_1, \Sigma_2 \in \text{mod} \, \mathcal{B}$. Then there exists a sequence of reflections and coreflections σ such that

$$\sigma \Sigma_1 \sim \Sigma_2.$$

Proof. Given a local slice Σ in $\text{mod} \, \mathcal{B}$ such that Σ has injective successors in the transjective component \mathcal{T} of $\Gamma(\text{mod} \, \mathcal{B})$, let Σ^+ be the rightmost local slice such that $\Sigma \sim \Sigma^+$. Then Σ^+ contains a strong sink x, thus reflecting in x we obtain a local slice $\sigma^+_x \Sigma^+$ that has fewer injective successors in \mathcal{T} than Σ. To simplify the notation we define $\sigma^+_y \Sigma = \sigma^+_y \Sigma^+$, where Σ^- is the leftmost local slice containing a strong source y and $\Sigma \sim \Sigma^-$.

Since we can always reflect in a strong sink, there exist sequences of reflections such that

$$\begin{align*}
\sigma^+_x \cdots \sigma^+_x \sigma^+_y \Sigma_1 &= \Sigma_1^1 \\
\sigma^+_y \cdots \sigma^+_y \sigma^+_x \Sigma_2 &= \Sigma_2^1
\end{align*}$$

and Σ_1^1, Σ_2^1 have no injective successors in \mathcal{T}. This implies that $\Sigma_1^1 \sim \Sigma_2^1$. Let

$$\sigma = \sigma^-_{y_1} \sigma^-_{y_2} \cdots \sigma^-_{y_s} \sigma^+_{x_r} \cdots \sigma^+_{x_2} \sigma^+_{x_1}$$

thus $\sigma \Sigma_1 \sim \Sigma_2$. □

Theorem 4.11. Let C_1 and C_2 be two tilted algebras that have the same relation-extension. Then there exists a sequence of reflections and coreflections σ such that $\sigma C_1 \cong C_2$.

Proof. Let \mathcal{B} be the common relation-extension of the tilted algebras C_1 and C_2. By [ABS2], there exist local slices Σ_i in $\text{mod} \, \mathcal{B}$ such that $C_i = \mathcal{B}/\text{Ann} \, \Sigma_i$, for $i = 1, 2$. Now the result follows from Lemma 4.10 and Theorem [4.4]. □

Example 4.12. Let A be the path algebra of the quiver

$$\begin{align*}
&1 \\
3 &\longrightarrow 2 \\
&4 \\
&5 \\
&6 \\
&\downarrow \\
&\begin{array}{c}
\begin{array}{c}
\text{Mutating at the vertices 4, 5, and 2 yields the cluster-tilted algebra } \mathcal{B} \text{ with quiver}
\end{array}
\end{array}
\end{align*}$$

$$\begin{align*}
\end{align*}$$
In the Auslander-Reiten quiver of \(\text{mod} B \) we have the following local configuration.

\[
\begin{array}{c}
I(1) \rightarrow I(3) \rightarrow I(6) \leftarrow \cdots \leftarrow \sigma_6^+ \Sigma \\
1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6
\end{array}
\]

where

\[
I(1) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad I(3) = \begin{pmatrix} 2 \\ 11 \\ 44 \\ 44 \\ 44 \end{pmatrix}, \quad I(6) = \begin{pmatrix} 555 \\ 44 \\ 555 \end{pmatrix}
\]

The 6 modules on the left form a rightmost local slice \(\Sigma \) in which both \(I(3) \) and \(I(6) \) are sources, so 3 and 6 are strong sinks. For both strong sinks the subset \(J^- \) of the completion consists of the simple module 1. The simple module 2 = \(\tau^{-1} \) does not lie on a local slice.

The completion \(H_6 \) is the whole local slice \(\Sigma \) and therefore the reflection \(\sigma_6^+ \Sigma \) is the local slice consisting of the 6 modules on the right containing both \(P(1) \) and \(P(6) \).

On the other hand, the completion \(H_3 \) consists of the four modules \(I(3), S(1), I(1) \) and \(5555_{4444} \), and therefore the reflection \(\Sigma' = \sigma_3^+ \Sigma \) is the local slice consisting of the 6 modules on the straight line from \(I(6) \) to \(P(1) \). This local slice admits the strong sink 6 and the completion \(H_6' \) in \(\Sigma' \) consists of the two modules \(I(6) \) and \(555_{44} \). Therefore the reflection \(\sigma_6^+ \Sigma' \) is equal to \(\sigma_6^+ \Sigma \). Thus

\[
\sigma_6^+ \Sigma = \sigma_6^+ (\sigma_3^+ \Sigma).
\]

This example raises the question which indecomposable modules over a cluster-tilted algebra do not lie on a local slice. We answer this question in a forthcoming publication [AsScSe].
5. Tubes

The objective of this section is to show how to construct those tubes of a tame cluster-tilted algebra which contain projectives. Let B be a cluster-tilted algebra of euclidean type, and let T be a tube in $\Gamma(\text{mod } B)$ containing at least one projective. First, consider the transjective component of $\Gamma(\text{mod } B)$. Denote by Σ_L a local slice in the transjective component that precedes all indecomposable injective B-modules lying in the transjective component. Then $B/\text{Ann}_B\Sigma_L = C_1$ is a tilted algebra having a complete slice in the preinjective component. Define Σ_R to be a local slice which is a successor of all indecomposable projectives lying in the transjective component. Then $B/\text{Ann}_B\Sigma_R = C_2$ is a tilted algebra having a complete slice in the postprojective component. Also, C_1 (respectively, C_2) has a tube T_1 (respectively, T_2) containing the indecomposable projective B-modules (respectively, injective C_2-modules) corresponding to the projective B-modules in T (respectively, injective B-modules in T).

An indecomposable projective $P(x)$ (respectively, injective $I(x)$) B-module that lies in a tube, is said to be a root projective (respectively, a root injective) if there exists an arrow in B between x and y, where the corresponding indecomposable projective $P(y)$ lies in the transjective component of $\Gamma(\text{mod } B)$.

Let S_1 be the coray in T_1 passing through the projective C_1-module that corresponds to the root projective $P_B(i)$ in T. Similarly, let S_2 be the ray in T_2 passing through the injective that corresponds to the root injective $I_B(i)$ in T.

Recall that if A is hereditary and $T \in \text{mod } A$ is a tilting module, then there exists an associated torsion pair $(\mathcal{T}(T), \mathcal{F}(T))$ in $\text{mod } A$, where

\[
\mathcal{T}(T) = \{ M \in \text{mod } A \mid \text{Ext}_A^1(T, M) = 0 \}
\]

\[
\mathcal{F}(T) = \{ M \in \text{mod } A \mid \text{Hom}_A(T, M) = 0 \}.
\]

Lemma 5.1. With the above notation
(a) $S_1 \otimes_{C_1} B$ is a coray in T passing through $P_B(i)$.
(b) $\text{Hom}_{C_2}(B, S_2)$ is a ray in T passing through $I_B(i)$.

Proof. Since C_1 is tilted, we have $C_1 = \text{End}_A T$ where T is a tilting module over a hereditary algebra A. As seen in the proof of Theorem 5.1 in [SeSe], we have a commutative diagram

\[
\begin{array}{ccc}
\mathcal{F}(T) & \xrightarrow{\text{Hom}_A(T, -)} & \mathcal{Y}(T) \\
\downarrow & & \downarrow \otimes_{C_1} B \\
\mathcal{C}_A & \xrightarrow{\text{Hom}_{C_2}(T, -)} & \text{mod } B
\end{array}
\]

where $\mathcal{Y}(T) = \{ N \in \text{mod } C \mid \text{Tor}_1^C(N, T) = 0 \}$.
Let \mathcal{T}_A be the tube in $\text{mod } A$ corresponding to the tube \mathcal{T} in $\text{mod } B$. By what has been seen above, we have a commutative diagram

$$
\begin{array}{ccc}
\mathcal{T}_A \cap \mathcal{F}(T) & \xrightarrow{\text{Hom}_{A}(T,-)} & \mathcal{T}_1 \\
\downarrow \text{Hom}_{C_A}(T,-) & & \downarrow - \otimes_{C_1} B \\
\mathcal{T}_1 \otimes_{C_1} B & \subset & \mathcal{T}
\end{array}
$$

Let S be any coray in \mathcal{T}_1, so it can be lifted to a coray S_A in $\mathcal{T}_A \cap \mathcal{F}(T)$ via the functor $\text{Hom}_{A}(T,-)$. If we apply $\text{Hom}_{C_A}(T,-)$ to this lift, we obtain a coray in $\mathcal{T}_1 \otimes_{C_1} B$. Thus, any coray in \mathcal{T}_1 induces a coray in \mathcal{T}. Let S_1 be the coray passing through the root projective $P_{C_1}(i)$. Then $S_1 \otimes_{C_1} B$ is the coray passing through $P_{C_1}(i) \otimes_{C_1} B = P_B(i)$. This proves (a) and part (b) is proved dually.

However, we must still justify that the ray $S_1 \otimes_{C_1} B$ and the coray $\text{Hom}_{C_2}(B,S_2)$ actually intersect (and thus lie in the same tube of $\Gamma(\text{mod } B)$). Because $P_{C_1}(i) \in S_1$, we have $P_{C_1}(i) \otimes B \cong P_B(i) \in S_1 \otimes_{C_1} B$, and $P_B(i)$ lies in a tube \mathcal{T}. It is well-known that the injective $I_B(i)$ also lies in \mathcal{T}. In particular, we have the following local configuration in \mathcal{T}, where R is an indecomposable summand of the radical of $P_B(i)$ and J an indecomposable summand of the quotient of $I_B(i)$ by its socle.

$$
\begin{array}{ccc}
I_B(i) & \xrightarrow{\circ} & P_B(i) \\
\downarrow J & & \downarrow R \\
N & & N \\
\end{array}
$$

Now $I_B(i) = \text{Hom}_{C_2}(B,I_C(i))$ is coinduced, and we have shown above that the ray containing it is also coinduced. Because $I_C(i) \in S_2$, this is the ray $\text{Hom}_{C_2}(B,S_2)$. Therefore, this ray and this coray lie in the same tube, so must intersect in a module N, where there exists an almost split sequence

$$0 \longrightarrow J \longrightarrow N \longrightarrow R \longrightarrow 0.
$$

\begin{remark}
Knowing the ray $\text{Hom}_{C_2}(B,S_2)$ and the coray $S_1 \otimes_{C_1} B$ for every root projective $P_B(i)$ in \mathcal{T}, one may apply the knitting procedure to construct the whole of \mathcal{T}. In this way, \mathcal{T} can be determined completely.
\end{remark}

Next we show that all modules over a tilted algebra lying on the same coray change in the same way under the induction functor.

\begin{lemma}
Let A be a hereditary algebra of euclidean type, T a tilting A-module without preinjective summands and let $C = \text{End}_{A} T$ be the corresponding tilted algebra. Let \mathcal{T}_A be a tube in $\text{mod } A$ and $T_i \in \mathcal{T}_A$ an indecomposable summand of T, such that $\text{pd } I_C(i) = 2$.
\end{lemma}
Then there exists an A-module M on the mouth of \mathcal{T}_A such that we have
\[\tau_C \Omega_C I_C(i) = \text{Hom}_A(T, M) \]
in mod C. In particular, the module $\tau_C \Omega_C I_C(i)$ lies on the mouth of the tube $\text{Hom}_A(T, T \cap \mathcal{T}(T))$ in mod C.

Proof. The injective C-module $I_C(i)$ is given by
\[I_C(i) \cong \text{Ext}_A^1(T, \tau T_i) \cong D\text{Hom}_A(T, T), \]
where the first identity holds by [ASS Proposition VI 5.8] and the second identity is the Auslander-Reiten formula. Moreover, since T_i lies in the tube \mathcal{T}_A and T has no preinjective summands, we have $\text{Hom}(T_i, T_j) \neq 0$ only if T_j lies in the hammock starting at T_i. Furthermore, if T_j is a summand of T then it must lie on a sectional path starting from T_i because $\text{Ext}_A^1(T_j, T_i) = 0$. This shows that a point j is in the support of $I_C(i)$ if and only if there is a sectional path $T_i \rightarrow \cdots \rightarrow T_j$ in \mathcal{T}_A. We shall distinguish two cases.

Case 1. If T_i lies on the mouth of \mathcal{T}_A then let ω be the ray starting at T_i and denote by T_1 the last summand of T on this ray. Let L_1 be the direct predecessor of T_1 not on the ray ω. Thus we have the following local configuration in \mathcal{T}_A.

\[\tau T_i \rightarrow T_i \rightarrow \tau T_1 \rightarrow T_1 \rightarrow \tau L_1 \rightarrow L_1 \rightarrow L_1 \rightarrow \tau^{-1} L_1 \rightarrow E_1 \]

Then $I_C(i)$ is uniserial with simple top $S(1)$. Moreover there is a short exact sequence
\[0 \rightarrow \tau T_i \rightarrow L_1 \rightarrow T_1 \rightarrow 0 \]
and applying $\text{Hom}_A(T, -)$ yields
\[0 \rightarrow \text{Hom}_A(T, L_1) \rightarrow P_C(1) \xrightarrow{f} I_C(i) \rightarrow \text{Ext}_A^1(T, L_1) \rightarrow 0 \]

By the Auslander-Reiten formula, we have $\text{Ext}_A^1(T, L_1) \cong D\text{Hom}(\tau^{-1} L_1, T)$ and this is zero because T_1 is the last summand of T on the ray ω. Thus the
sequence (5.1) is short exact, the morphism \(f \) is a projective cover, because \(IC(i) \) is uniserial, and hence

\[
\Omega C IC(i) \cong \text{Hom}_A(T, L_1).
\]

Applying \(\tau_C \) yields

\[
\tau_C \Omega C IC(i) \cong \tau_C \text{Hom}_A(T, L_1).
\]

Let \(E_1 \) be the indecomposable direct predecessor of \(L_1 \) such that the almost split sequence ending at \(L_1 \) is of the form

\[
\begin{array}{ccccccccc}
0 & \rightarrow & \tau L_1 & \rightarrow & E_1 \oplus \tau T_1 & \rightarrow & L_1 & \rightarrow & 0 \\
& & \downarrow \tau T_1 & & \downarrow & & \downarrow \tau L_1 & & \\
& & \tau L_1 & & E_1 & & \tau^{-1} L_1 & & \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & \tau^{-1} E_1 & & \tau^{-1} E_1 & & \tau^{-1} E_1 & & \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & N & & T^1 & & \tau \omega & & \\
& & \downarrow & & \rightarrow & & \rightarrow & & \\
& & T^1 & & \rightarrow & & \rightarrow & &
\end{array}
\]

Then we have a short exact sequence

\[
0 \rightarrow L_1 \xrightarrow{h} T_1 \oplus T^1 \rightarrow N \rightarrow 0
\]

with \(h \) an add-\(T \)-approximation. Applying \(\text{Hom}_A(\cdot, T) \) yields

\[
0 \rightarrow \text{Hom}_A(N, T) \rightarrow \text{Hom}_A(T_1 \oplus T^1, T) \xrightarrow{h^*} \text{Hom}_A(L_1, T) \rightarrow \text{Ext}^1_A(N, T) \rightarrow 0
\]
and since \(h \) is an add \(T \)-approximation, the morphism \(h^* \) is surjective. Thus \(\Ext^1_A(N, T) = 0 \).

On the other hand, \(T_1 \oplus T^1 \) generates \(N \), so \(N \in \Gen T = \mathcal{F}(T) \), and thus \(\Ext^1_A(T, N) = 0 \). But then both \(\Ext^1_A(T, N) = \Ext^1_A(N, T) = 0 \) and we see that \(N \) is a summand of \(T \). This is a contradiction to the assumption that \(T_1 \) is the last summand of \(T \) on the ray \(\omega \). Thus \(E_1 \in \mathcal{F}(T) \).

Therefore, in the almost split sequence \((5.2)\), we have \(L_1, E_1 \in \mathcal{F}(T) \) and \(\tau T_1 \in \mathcal{F}(T) \). Moreover, all predecessors of \(\tau T_1 \) on the ray \(\tau \omega \) are also in \(\mathcal{F}(T) \) because the morphisms on the ray are injective. Since \(\Hom_A(T, -) : \mathcal{F}(T) \to \mathcal{Y}(T) \) is an equivalence of categories, it follows that \(\Hom_A(T, L_1) \) has only one direct predecessor

\[
\Hom_A(T, E_1) \to \Hom_A(T, L_1)
\]

in \(\mod C \) and this irreducible morphism is surjective. The kernel of this morphism is \(\Hom_A(T, t(\tau A L_1)) \) where \(t \) is the torsion radical. Thus we get

\[
\tau_C \Omega_C I_C(i) = \tau_C \Hom_A(T, L_1) = \Hom_A(T, t(\tau A L_1)).
\]

We will show that \(t(\tau A L_1) \) lies on the mouth of \(\mathcal{T}_A \) and this will complete the proof in case 1.

Let \(M \) be the indecomposable \(A \)-module on the mouth of \(\mathcal{T}_A \) such that the ray starting at \(M \) passes through \(\tau A L_1 \). Thus \(M \) is the starting point of the ray \(\tau^2 \omega \). Then there is a short exact sequence of the form

\[
(5.3) \quad 0 \longrightarrow M \longrightarrow \tau A L_1 \longrightarrow \tau A T_1 \longrightarrow 0
\]

with \(\tau A T_1 \in \mathcal{F}(T) \). We claim that \(M \in \mathcal{F}(T) \).

Suppose to the contrary that \(0 \neq \Ext^1_A(T, M) = D \Hom_A(\tau^{-1} M, T) \). Since \(\tau^{-1} M \) lies on the mouth of \(\mathcal{T}_A \), this implies that there is a direct summand \(T^1 \) of \(T \) which lies on the ray \(\tau \omega \) starting at \(\tau^{-1} M \). Since \(T \) is tilting, \(T^1 \) cannot be a predecessor of \(\tau T_1 \) on this ray and since \(L_1 \) is not a summand of \(T^1 \), we also have \(L_1 \neq T^1 \). Thus \(T^1 \) is a successor of \(L_1 \) on the ray \(\tau \omega \). This is impossible since such a \(T^1 \) would satisfy \(\Ext^1_A(T^1, E_1) \neq 0 \) contradicting the fact that \(E_1 \in \mathcal{F}(T) \).

Therefore, \(M \in \mathcal{F}(T) \) and the sequence \((5.3)\) is the canonical sequence for \(\tau A L_1 \) in the torsion pair \((\mathcal{F}(T), \mathcal{F}(T))\). This shows that \(t(\tau A L_1) = M \) and hence \(\tau_C \Omega_C I_C(i) = \Hom_A(T, M) \) as desired.

Case 2. Now suppose that \(T_1 \) does not lie on the mouth of \(\mathcal{T}_A \). Let \(\omega_1 \) denote the ray passing through \(T_1 \) and \(\omega_2 \) the coray passing through \(T_1 \). Denote by \(T_1 \) the last summand of \(T \) on \(\omega_1 \), by \(T_2 \) the last summand of \(T \) on \(\omega_2 \), and by \(L_j \) the direct predecessor of \(T_j \) which does not lie on \(\omega_j \). Note that \(L_2 \) does not exist if \(T_2 \) lies on the mouth of \(\mathcal{T}_A \), and in this case we let \(L_2 = 0 \). Thus we have the following local configuration in \(\mathcal{T}_A \).
The injective C-module $I_C(i) = \Ext^1_A(T, \tau T_i)$ is biserial with top $S(1) \oplus S(2)$. Moreover, there is a short exact sequence
\[0 \to \tau T_i \to L_1 \oplus L_2 \oplus T_i \to T_1 \oplus T_2 \to 0. \]
Applying $\Hom_A(T, -)$ yields the following exact sequence.

\[\begin{array}{ccccccccc}
0 & \to & \Hom_A(T, L_1 \oplus L_2) \oplus P_C(i) & \to & P_C(1) \oplus P_C(2) & \overset{f}{\to} & I_C(i) & \to & 0.
\end{array} \]

(5.4)

By the same argument as in case 1, using that T_1 and T_2 are the last summands of T on ω_1 and ω_2 respectively, we see that $\Ext^1_A(T, L_1 \oplus L_2) = 0$. Therefore, the sequence (5.4) is short exact. Moreover, the morphism f is a projective cover and thus
\[\Omega_C I_C(i) = \Hom_A(T, L_1 \oplus L_2) \oplus P_C(i). \]
Applying τ_C yields
\[\tau_C \Omega_C I_C(i) = \tau_C \Hom_A(T, L_1) \oplus \tau_C \Hom_A(T, L_2). \]

By the same argument as in case 1 we see that
\[\tau_C \Hom_A(T, L_1) = \Hom_A(T, t(\tau A L_1)) = \Hom_A(T, M) \]
where M is the indecomposable A-module on the mouth of T_A such that the ray starting at M passes through τL_1. In other words, M is the starting point of the ray $\tau^2 \omega$.
Therefore, it only remains to show that $\tau_C \text{Hom}_A(T, L_2) = 0$. To do so, it suffices to show that L_2 is a summand of T.

We have already seen that $\text{Ext}_A^1(T, L_2) = 0$. We show now that we also have $\text{Ext}_A^1(L_2, T) = 0$. Suppose the contrary. Then there exists a non-zero morphism $u : T \to \tau_A L_2$. Composing it with the irreducible injective morphism $\tau_A L_2 \to \tau_A T_2$ yields a non-zero morphism in $\text{Hom}_A(T, \tau_A T_2)$. But this is impossible since T is tilting.

Thus we have $\text{Ext}_A^1(T, L_2) = \text{Ext}_A^1(L_2, T) = 0$ and thus L_2 is a summand of T, the module $\text{Hom}_A(T, L_2)$ is projective and $\tau_C \text{Hom}_A(T, L_2) = 0$. This completes the proof. □

Remark 5.4. The module M in the statement of the lemma is the starting point of the ray passing through $\tau^2 T_i$.

Corollary 5.5. Let A, T, C, T_A be as in Lemma 5.3, and let $B = C \ltimes E$, with $E = \text{Ext}_C^2(DC, C)$. Let X, Y be two modules lying on the same coray in the tube $\text{Hom}_A(T, T_A \cap \mathcal{T}(T))$ in mod C. Then $X \otimes C E \cong Y \otimes C E$ and thus the two projections $X \otimes C B \to X \to 0$ and $Y \otimes C B \to Y \to 0$ have isomorphic kernels.

Proof. For all C-modules X we have

$$X \otimes_B E \cong D\text{Hom}(X, DE) \cong D\text{Hom}(X, \tau_C \Omega_C DC)$$

where the first isomorphism is [SeSe, Proposition 3.3] and the second is [SeSe, Proposition 4.1]. Since T has no preinjective summands, and X is regular, the only summand of $\tau \Omega DC$ for which $\text{Hom}(X, \tau \Omega DC)$ can be nonzero, must lie in the same tube as X. By the lemma, the only summands of $\tau \Omega DC$ in the tube lie on the mouth of the tube. Let M denote an indecomposable C-module on the mouth of a tube. Then

$$\text{Hom}_C(X, M) \cong \text{Hom}_C(Y, M) \cong \begin{cases} k & \text{if } M \text{ lies on the coray passing through } X \text{ and } Y, \\ 0 & \text{otherwise}. \end{cases}$$

We summarize the results of this section in the following proposition.

Proposition 5.6. (a) Let S_1 be the coray in $\Gamma(\text{mod } C_1)$ passing through the projective C_1-module corresponding to the root projective $P_B(i)$. Then $S_1 \otimes_{C_1} B$ is a coray in $\Gamma(\text{mod } B)$ passing through $P_B(i)$. Furthermore all modules in $S_1 \otimes_{C_1} B$ are extensions of modules of S_1 by the same module $P_{C_1}(i) \otimes E$.

(b) Let S_2 be the ray in $\Gamma(\text{mod } C_2)$ passing through the injective C_2-module corresponding to the root injective $I_B(i)$. Then $\text{Hom}_{C_2}(B, S_2)$ is a ray in $\Gamma(\text{mod } B)$ passing through $I_B(i)$. Furthermore all modules in $\text{Hom}_{C_2}(B, S_2)$ are extensions of modules of S_2 by the same module $\text{Hom}_{C_2}(E, I_{C_2}(i))$.
Proof. (a) The first statement is Lemma 5.1 and the second statement is a restatement of Corollary 5.5. □

Example 5.7. Let B be the cluster-tilted algebra given by the quiver

```
1 → λ → 5
    ↘  α  ↘
    ↗  β  ↗
3 → 3
    ↘  δ  ↘
    ↗  γ  ↗
2 → 2
    ↘  σ  ↘
    ↗  σ  ↗
4
```

bound by $\alpha\beta = 0$, $\beta\epsilon = 0$, $\epsilon\alpha = 0$, $\gamma\delta = 0$, $\sigma\gamma = 0$, $\delta\sigma = 0$. The algebras C_1 and C_2 are respectively given by the quivers

```
1 → λ → 5
    ↘  α  ↘
    ↗  β  ↗
3 → 3
    ↘  δ  ↘
    ↗  γ  ↗
2 → 2
    ↘  σ  ↘
    ↗  σ  ↗
4
```

and

```
1 → λ → 5
    ↘  β  ↘
    ↗  ε  ↗
3 → 3
    ↘  δ  ↘
    ↗  γ  ↗
2 → 2
    ↘  σ  ↘
    ↗  σ  ↗
4
```

with the inherited relations. We can see the tube in $\Gamma(\text{mod } C_1)$ below and the coray passing through the root projective $P_{C_1}(3) = 4 \frac{1}{5}$ is given by

$$S_1: \ldots \rightarrow 1 \rightarrow 5 \rightarrow 4 \frac{1}{5} \rightarrow 3 \frac{1}{5} \rightarrow 5 \rightarrow 3 \frac{1}{5} \rightarrow 2 \frac{1}{5}.$$
Dually, the ray in $\Gamma(\text{mod } C_2)$ passing through the root injective $I_{C_2}(3) = \begin{pmatrix} 1&5 \\ 3 \end{pmatrix}$ is given by

$$S_2 : \begin{array}{c}
\begin{pmatrix} 1 \\ 3 \\ 5 \\ 4 \end{pmatrix} \\
\begin{pmatrix} 1 \\ 3 \\ 5 \\ 4 \end{pmatrix} \\
\begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} \\
\cdots
\end{array}$$

The root projective $P_B(3)$ lies on the coray

$$S_1 \otimes C_1 B : \begin{array}{c}
\begin{pmatrix} 2 \\ 3 \\ 4 \\ 1 \end{pmatrix} \\
\begin{pmatrix} 2 \\ 3 \\ 4 \\ 1 \end{pmatrix} \\
\begin{pmatrix} 2 \\ 3 \end{pmatrix} \\
\cdots
\end{array}$$

and the root injective $I_B(3)$ lies on the ray

$$\text{Hom}_{C_2}(B, S_2) : \begin{array}{c}
\begin{pmatrix} 2 \\ 3 \\ 4 \\ 1 \end{pmatrix} \\
\begin{pmatrix} 2 \\ 3 \\ 4 \\ 1 \end{pmatrix} \\
\begin{pmatrix} 2 \\ 3 \end{pmatrix} \\
\cdots
\end{array}$$

Note that by Proposition 5.6, every module in $S_1 \otimes C_1 B$ is an extension of a module in S_1 by $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$. Similarly, every module in $\text{Hom}_{C_2}(B, S_2)$ is an extension of a module in S_2 by $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

Applying the knitting algorithm we obtain the tube in $\Gamma(\text{mod } B)$ containing both $S_1 \otimes C_1 B$ and $\text{Hom}_{C_2}(B, S_2)$.

6. From Cluster-Tilted Algebras to Quasi-Tilted Algebras

Let B be cluster-tilted of euclidean type Q and let $A = kQ$. Then there exists $T \in \mathcal{C}_A$ tilting such that $B = \text{End}_{C_A} T$.

Because Q is euclidean, \mathcal{C}_A contains at most 3 exceptional tubes. Denote by T_0, T_1, T_2, T_3 the direct sums of those summands of T that respectively lie in the transjective component and in the three exceptional tubes.

In the derived category $\mathcal{D}^b(\mod A)$, we can choose a lift of T such that we have the following local configuration.

\[
\begin{array}{cccccccc}
\vdots & \vdots \\
T_1 & T_2 & T_3 & \vdots & T_0 & FT_1 & FT_2 & FT_3 \\
\vdots & \vdots
\end{array}
\]

Let \mathcal{H} be a hereditary category that is derived equivalent to $\mod A$ and such that \mathcal{H} is not the module category of a hereditary algebra. Then \mathcal{H} is of the form $\mathcal{H} = \mathcal{T}^- \vee \mathcal{C} \vee \mathcal{T}^+$, where \mathcal{T}^-, \mathcal{T}^+ consist of tubes, and \mathcal{C} is a transjective component, see [LS]. Let T_-, T_+ be the direct sum of all indecomposable summands of T lying in \mathcal{T}^-, \mathcal{T}^+ respectively. We define two subspaces L and R of B as follows.

\[
L = \text{Hom}_{\mathcal{D}^b(\mod A)}(F^{-1}T_+, T_0) \quad \text{and} \quad R = \text{Hom}_{\mathcal{D}^b(\mod A)}(T_0, FT_-).
\]

The transjective component of $\mod B$ contains a left section Σ_L and a right section Σ_R, see [A]. Thus Σ_L, Σ_R are local slices, Σ_L has no projective predecessors, and Σ_R has no projective successors in the transjective component. Define K to be the two-sided ideal of B generated by $\text{Ann } \Sigma_L \cap \text{Ann } \Sigma_R$ and the two subspaces L and R. Thus

\[
K = \langle \text{Ann } \Sigma_L \cap \text{Ann } \Sigma_R, L, R \rangle.
\]

We call K the partition ideal induced by the partition $\mathcal{T}^- \vee \mathcal{C} \vee \mathcal{T}^+$.

Theorem 6.1. The algebra $C = B/K$ is quasi-tilted and such that $B = \bar{C}$. Moreover C is tilted if and only if $L = 0$ or $R = 0$.

Proof. We have $B = \text{End}_A T = \oplus_{i \in \mathbb{Z}} \text{Hom}_{\mathcal{D}^b(\mod A)}(T, F^iT)$, where the last equality is as k-vector spaces. Using the decomposition $T = T_- \oplus T_0 \oplus T_+$, we see that B is equal to

\[
\begin{align*}
\text{Hom}_\mathcal{D}(T_-, T_-) & \oplus \text{Hom}_\mathcal{D}(T_-, T_0) \oplus \text{Hom}_\mathcal{D}(T_-, FT_-) \\
\oplus \text{Hom}_\mathcal{D}(T_0, T_-) & \oplus \text{Hom}_\mathcal{D}(T_0, T_0) \oplus \text{Hom}_\mathcal{D}(T_0, FT_-) \\
\oplus \text{Hom}_\mathcal{D}(T_0, FT_0) & \oplus \text{Hom}_\mathcal{D}(F^{-1}T_+, FT_0) \oplus \text{Hom}_\mathcal{D}(F^{-1}T_+, T_+) \\
\oplus \text{Hom}_\mathcal{D}(T_+, T_+) &
\end{align*}
\]

where all Hom spaces are taken in $\mathcal{D}^b(\mod A)$. On the other hand,

\[
\text{End}_\mathcal{H} T = \text{Hom}_\mathcal{H}(T_-, T_-) \oplus \text{Hom}_\mathcal{H}(T_-, T_0) \oplus \text{Hom}_\mathcal{H}(T_0, T_0) \\
\oplus \text{Hom}_\mathcal{H}(T_0, T_+) \oplus \text{Hom}_\mathcal{H}(T_+, T_+)
\]

is a quasi-tilted algebra. Thus in order to prove that C is quasi-tilted it suffices to show that K is the ideal generated by

\[
\text{Hom}_\mathcal{D}(T_-, FT_-) \oplus \text{Hom}_\mathcal{D}(T_0, FT_- \oplus FT_0) \oplus \text{Hom}_\mathcal{D}(F^{-1}T_+, T_0 \oplus T_+).
\]
But this follows from the definition of L and R and the fact that the annihilators of the local slices Σ_L and Σ_R are given by the morphisms in $\text{End}_{C^*}T$ that factor through the lifts of the corresponding local slice in the cluster category. More precisely,

$$\text{Ann } \Sigma_L \cong \text{Hom}_D(F^{-1}T_0 \oplus F^{-1}T_+ \oplus T_- \oplus T_0 \oplus T_+ \oplus FT_-),$$

$$\text{Ann } \Sigma_R \cong \text{Hom}_D(F^{-1}T_+ \oplus T_- \oplus T_0 \oplus T_+ \oplus FT_- \oplus FT_0),$$

and thus

$$\text{Ann } \Sigma_L \cap \text{Ann } \Sigma_R \cong \text{Hom}_D(T_0, FT_0) \oplus \text{Hom}_D(T_-, FT_-) \oplus \text{Hom}_D(F^{-1}T_+, T_+),$$

where we used the fact that $\text{Hom}_D(T_-, T_+) = \text{Hom}_D(T_+, T_-) = 0$. This completes the proof that C is quasi-tilted.

Since $C = \text{End}_H T$, we have $\tilde{C} = \text{End}_{C^*}T \cong \text{End}_{C^*}T = B$.

Now assume that $R = 0$. Then $T_- = 0$ and thus K is generated by $(\text{Ann } \Sigma_L \cap \text{Ann } \Sigma_R) \oplus L$, and this is equal to

$$(6.1) \quad \text{Hom}_D(T_0, FT_0) \oplus \text{Hom}_D(F^{-1}T_+, T_+) \oplus \text{Hom}_D(F^{-1}T_+, FT_0).$$

On the other hand, $T_- = 0$ implies that

$$\text{Ann } \Sigma_L = \text{Hom}_D(F^{-1}T_0 \oplus F^{-1}T_+, T_0 \oplus T_+),$$

and since $\text{Hom}_D(F^{-1}T_0, T_+) = 0$, this implies that $K = \text{Ann } \Sigma_L$ is the annihilator of a local slice. Therefore $C = B/K$ is tilted by \cite{ABS2}. The case where $L = 0$ is proved in a similar way.

Conversely, assume C is tilted. Then $K = \text{Ann } \Sigma'$ for some local slice Σ' in $\text{mod } B$. We show that $K = \text{Ann } \Sigma_L$ or $K = \text{Ann } \Sigma_R$. Suppose to the contrary that Σ' has both a predecessor and a successor in $\text{add } T_0$. Then there exists an arrow α in the quiver of B such that $\alpha \in \text{Hom}_D(T_0, T_0)$ and $\alpha \in \text{Ann } \Sigma' = K$. But by definition of Σ_L, Σ_R, L and R, we see that this is impossible.

Thus $K = \text{Ann } \Sigma_L$ or $K = \text{Ann } \Sigma_R$. In the former case, we have $R = 0$, by the computation (6.1), and in the latter case, we have $L = 0$.

Theorem 6.2. If C is quasi-tilted of euclidean type and $B = \tilde{C}$ then

$$C = B/\text{Ann}(\Sigma^- \oplus \Sigma^+),$$

where Σ^- is a right section in the postprojective component of C and Σ^+ is a left section in the preinjective component.

Proof. C being quasi-tilted implies that there is a hereditary category H with a tilting object T such that $C = \text{End}_H T$. Moreover, $B = \text{End}_{C^*}T$ is the corresponding cluster-tilted algebra. As before we use the decomposition $T = T_- \oplus T_0 \oplus T_+$. Then the algebras

$$C^- = \text{End}_H(T_- \oplus T_0) \quad \text{and} \quad C^+ = \text{End}_H(T_0 \oplus T_+)$$

are tilted. Let Σ^- and Σ^+ be complete slices in $\text{mod } C^-$ and $\text{mod } C^+$ respectively. Note that Σ^- lies in the postprojective component and Σ^+ lies in the preinjective component of their respective module categories.
Then C is a branch extension of C^- by the module

$$M^+ = \text{Hom}_H(T_+, T_+) \oplus \text{Hom}_H(T_0, T_+).$$

Similarly C is a branch coextension of C^+ by the module

$$M^- = \text{Hom}_H(T_-, T_-) \oplus \text{Hom}_H(T_-, T_0).$$

Observe that the postprojective component of C^- does not change under the branch extension, and the preinjective component of C^+ does not change under the branch coextension. Therefore Σ^- is a right section in the postprojective component of C and Σ^+ is a left section in the preinjective component. Moreover, by construction, we have

$$\text{Ann}_B\Sigma^- = M^+ \oplus \text{Ext}_C^2(DC, C) \quad \text{and} \quad \text{Ann}_B\Sigma^+ = M^- \oplus \text{Ext}_C^2(DC, C),$$

and therefore

$$\text{Ann}_B(\Sigma^- \oplus \Sigma^+) = \text{Ann}_B\Sigma^- \cap \text{Ann}_B\Sigma^+ = \text{Ext}_C^2(DC, C).$$

This completes the proof.

The main theorem of this section is the following.

Theorem 6.3. Let C be a quasi-tilted algebra whose relation-extension B is cluster-tilted of euclidean type. Then C is one of the following.

(a) $C = B/\text{Ann} \Sigma$ for some local slice Σ in $\Gamma(\text{mod} \ B)$.

(b) $C = B/K$ for some partition ideal K.

Proof. Assume first that C is tilted. Then, because of [ABS2], there exists a local slice Σ in the transjective component of $\Gamma(\text{mod} \ B)$ such that $B/\text{Ann} \Sigma = C$. Otherwise, assume that C is quasi-tilted but not tilted. Then, because of [LS], there exists a hereditary category \mathcal{H} of the form

$$\mathcal{H} = \mathcal{T}^- \vee \mathcal{C} \vee \mathcal{T}^+$$

and a tilting object T in \mathcal{H} such that $C = \text{End}_\mathcal{H}T$. Because of Theorem 6.1 we get $C = B/K$ where K is the partition ideal induced by the given partition of \mathcal{H}. \qed
Example 6.4. Let B be the cluster-tilted algebra of type \tilde{E}_7 given by the quiver

```
1 --\alpha_1\rightarrow 3
\downarrow\beta_1\downarrow\beta_2\downarrow\beta_3
\downarrow\alpha_2\downarrow\alpha_3
\downarrow\epsilon\downarrow\epsilon\downarrow\epsilon
2 --\alpha_1\rightarrow 8
\downarrow\beta_1\downarrow\beta_2\downarrow\beta_3
\downarrow\alpha_2\downarrow\alpha_3
\downarrow\epsilon\downarrow\epsilon\downarrow\epsilon
5
\downarrow\beta_1\downarrow\beta_2\downarrow\beta_3
\downarrow\alpha_2\downarrow\alpha_3
\downarrow\epsilon\downarrow\epsilon\downarrow\epsilon
6
\downarrow\beta_1\downarrow\beta_2\downarrow\beta_3
\downarrow\alpha_2\downarrow\alpha_3
\downarrow\epsilon\downarrow\epsilon\downarrow\epsilon
7
```

As usual let T_i denote the indecomposable summand of T corresponding to the vertex i of the quiver. In this example T has two transjective summands T_1, T_2, and the other summands lie in three different tubes. T_3, T_4 lie in a tube T_1, T_5 lies in a tube T_2 and T_6, T_7, T_8 lie in a tube T_3.

Choosing a partition ideal corresponds to choosing a subset of tubes to be predecessors of the transjective component. Thus there are 8 different partition ideals corresponding to the 8 subsets of $\{T_1, T_2, T_3\}$. If the tube T_i is chosen to be a predecessor of the transjective component, then the arrow β_i is in the partition ideal. And if T_i is not chosen to be a predecessor of the transjective component, then it is a successor and consequently the arrow α_i is in the partition ideal. The arrow ϵ is always in the partition ideal since it corresponds to a morphism from T_8 to FT_7 in the derived category.

Summarizing, the 8 partition ideals K are the ideals generated by the following sets of arrows.

$$\{\alpha_i, \beta_j, \epsilon \mid i \notin I, j \in I, I \subset \{1, 2, 3\}\}.$$

The quiver of the corresponding quasi-tilted algebra B/K is obtained by removing the generating arrows from the quiver of B. Exactly 2 of these 8 algebras are tilted, and these correspond to cutting $\alpha_1, \alpha_2, \alpha_3, \epsilon$, respectively $\beta_1, \beta_2, \beta_3, \epsilon$.

References

[Am] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, *Ann. Inst. Fourier* 59 no 6, (2009), 2525–2590.

[A] I. Assem, Left sections and the left part of an Artin algebra, *Colloq. Math.* 116 (2009), no. 2, 273–300.
[ABCP] I. Assem, T. Brüstle, G. Charbonneau-Jodoin and P. G. Plamondon, Gentle algebras arising from surface triangulations. *Algebra Number Theory* 4 (2010), no. 2, 201–229.

[ABS] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras as trivial extensions, *Bull. Lond. Math. Soc.* 40 (2008), 151–162.

[ABS2] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras and slices, *J. of Algebra* 319 (2008), 3464–3479.

[ABS3] I. Assem, T. Brüstle and R. Schiffler, On the Galois covering of a cluster-tilted algebra, *J. Pure Appl. Alg.* 213 (7) (2009) 1450–1463.

[ABS4] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras without clusters, *J. Algebra* 324, (2010), 2475–2502.

[AsScSe] I. Assem, R. Schiffler and K. Serhiyenko, Modules that do not lie on local slices, in preparation.

[ASS] I. Assem, D. Simson and A. Skowroński, *Elements of the Representation Theory of Associative Algebras, 1: Techniques of Representation Theory*, London Mathematical Society Student Texts 65, Cambridge University Press, 2006.

[ARS] M. Auslander, I. Reiten and S.O. Smalø, *Representation Theory of Artin Algebras* Cambridge Studies in Advanced Math. 36, (Cambridge University Press, Cambridge, 1995).

[BT] M. Barot and S. Trepode, Cluster tilted algebras with a cyclically oriented quiver. *Comm. Algebra* 41 (2013), no. 10, 3613–3628.

[BFPT] M. Barot, E. Fernandez, I. Pratti, M. I. Platzeck and S. Trepode, From iterated tilted to cluster-tilted algebras, *Adv. Math.* 223 (2010), no. 4, 1468–1494.

[BOW] M. A. Bertani-Økland, S. Oppermann and A Wralsen, Constructing tilted algebras from cluster-tilted algebras, *J. Algebra* 323 (2010), no. 9, 2408–2428.

[BMRRT] A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, *Tilting theory and cluster combinatorics*, Adv. Math. 204 (2006), no. 2, 572-618.

[BMR] A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, *Trans. Amer. Math. Soc.* 359 (2007), no. 1, 323–332 (electronic).

[BMR2] A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras of finite representation type, *J. Algebra* 306 (2006), no. 2, 412–431.

[CCS] P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations arising from clusters (A_n case), *Trans. Amer. Math. Soc.* 358 (2006), no. 3, 1347–1364.

[FPT] E. Fernández, N. I. Pratti and S. Trepode, On m-cluster tilted algebras and trivial extensions, *J. Algebra* 393 (2013), 132–141.

[FZ] S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, *J. Amer. Math. Soc.* 15 (2002), 497–529.

[H] D. Happel, A characterization of hereditary categories with tilting object. *Invent. Math.* 144 (2001), no. 2, 381–398.

[HRS] D. Happel, I. Reiten and S. Smalø, Tilting in abelian categories and quasitilted algebras. *Mem. Amer. Math. Soc.* 120 (1996), no. 575.

[LS] H. Lenzing and A. Skowroński, Tilting in abelian categories and quasitilted algebras. *Mem. Amer. Math. Soc.* 120 (1996), no. 575.

[LR] B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, *Adv. Math.* 211 (2007), no. 1, 123–151.

[OS] M. Oryu and R. Schiffler, On one-point extensions of cluster-tilted algebras, *J. Algebra* 357 (2012), 168–182.

[Re] I. Reiten, Cluster categories. *Proceedings of the International Congress of Mathematicians. Volume I, 558–594*, Hindustan Book Agency, New Delhi, 2010. 16-02

[Ri] C.M. Ringel, The regular components of the Auslander-Reiten quiver of a tilted algebra. *Chinese Ann. Math. Ser. B* 9 (1988), no. 1, 1–18.
[R] C. M. Ringel, Representation theory of finite-dimensional algebras. Representations of algebras (Durham, 1985), 7–79, London Math. Soc. Lecture Note Ser., 116, Cambridge Univ. Press, Cambridge, 1986.

[S] R. Schiffler, *Quiver Representations*, CMS Books in Mathematics, Springer International Publishing, 2014.

[ScSe] R. Schiffler and K. Serhiyenko, Induced and coinduced modules over cluster-tilted algebras, preprint, arXiv:1410.1732.

[ScSe2] R. Schiffler and K. Serhiyenko,Injective presentations of induced modules over cluster-tilted algebras, preprint, arXiv:1604.06907.

[Sk] A. Skowroński, Tame quasi-tilted algebras, *J. Algebra* 203 (1998), no. 2, 470–490.

DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ DE SHERBROOKE, SHERBROOKE, QUÉBEC, CANADA J1K 2R1

E-mail address: ibrahim.assem@usherbrooke.ca

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CT 06269-3009, USA

E-mail address: schiffler@math.uconn.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720-3840, USA

E-mail address: khrystyna.serhiyenko@berkeley.edu