Liposomal binding of imipramine in human red cell/albumin solution with simulated plasmaphareisis

Grant Cave1*, Mohan Raghavan1, Julie Burrows2, Martyn Harvey3 and Anuj Chauhan4

*Correspondence: grantcave@gmail.com

1Tamworth Rural Referral Hospital, Tamworth, NSW, Australia.
2University of Newcastle Department of Rural Health Tamworth, NSW, Australia.
3Waikato Hospital Hamilton, New Zealand.
4University of Florida, Gainsville, Florida.

Abstract

There has been much recent interest in the use of intravenous lipid based products in the treatment of tricyclic antidepressant toxicity. High affinity liposomal carriers have been designed which may be more effective binders of tricyclic antidepressant than intravenous lipid emulsion in the setting of intoxication. The uniformity and size of the liposomes opens the theoretical potential for extracorporeal removal of drug once bound. Imipramine was added to a suspension of human red blood cells and albumin. Liposomes of known high affinity for tricyclics were then added to this suspension. It was hypothesized that the imipramine would be bound to liposomes, which could then be filtered off in a staged process, first using a commercially available plasmapharesis filter and then through a 100nm filter. Statistically significant reductions in imipramine concentration were seen in the final components post filtration, both red cell rich (median, 24% original level, IQR 9-43%) and “pharesate”, liposomes filtered off (median 23%, IQR 9-37%). We have demonstrated significant experimental binding of imipramine to liposomes in a human albumin/red blood cell suspension, and have removed liposomes from this suspension after drug sequestration. Further work is planned to investigate the effect of liposomes in TCA toxicity in an animal model.

Keywords: Liposomes, antidepressants, tricyclic, toxicology, poisoning

Background

There has been much recent interest in the use of intravenous lipid based products in the treatment of tricyclic antidepressant (TCA) toxicity. New treatment modalities are of importance as TCA toxicity remains a major cause of mortality from poisoning [1]. Hypertonic sodium bicarbonate solution remains the mainstay of specific antidotal therapy. Intravenous lipid emulsions have been demonstrated to be effective in animal models, with clinical case reports suggesting additive benefit in TCA toxicity when sodium bicarbonate has not reversed shock [2,3,4].

The initial experimental discovery of lipid emulsion as antidote was the result of structured observation rather than drug design. The proposed mechanism of action of lipid emulsions is pharmacokinetic – creating a new high affinity blood compartment into which the toxin redistributes. Recognition of potential for higher affinity lipid based toxin carriers has led to the development of toxin specific liposomes with higher affinity for TCA’s than lipid emulsions. Those used in the present study are spherical phospholipid bilayers coated with polyethylene glycol to diminish interaction with plasma proteins. As weak bases, TCA’s have been shown to bind to the surface of the liposomes due to electrostatic interaction with the charged phospholipids accompanied by hydrophobic interaction with the liposome annulus [5].

Liposomal formulations have been shown to be effective in sequestering TCA from plasma proteins in vitro [6,7]. At present there is no in vitro demonstration that liposomes bind TCA in the presence of red blood cells.

Liposomes are also of a size and uniformity that brings theoretical potential for removal from the circulation once toxin is bound. It is the purpose of the present study to pilot investigation into the binding of imipramine by liposomes in a suspension of human albumin and red blood cells and removal of these liposomes from solution once imipramine is bound. The filtering process by which liposomes and bound drug is removed from solution involves simulation of a clinically utilised plasmaphpheresis process.

Method

An ethical waiver was obtained from the Hunter New England Clinical Ethics Committee.

Constitution of blood/albumin/imipramine suspension

Imipramine in solution (Sigma Aldrich) was added to a suspension comprised of 40%/60% human red blood cells (expired for clinical use)/human albumin (4% concentration, CSL Bioplasma). The target imipramine concentrations in the end suspension were 20 micromole/litre and 40 micromole/litre, these being concentrations above those seem in human case reports of fatal imipramine...
toxicity [8]. That these were the concentrations present in the initial study suspensions was confirmed by measuring levels at this stage of the experiment.

Liposome preparation

1,2-Dioleoyl-sn-glycero-3-Phospho-rac-1-glycerol] and 1,2-Dipalmitoyl-sn-glycero-3-Phosphoethanolamine-N-Methoxy(Polyethylene glycol)-2000 (Sigma pharmaceuticals, USA) were combined using the method described previously for liposome manufacture [4] in University of Otago Department of Pharmacy. Mean liposome diameter was 180nm. Liposomes were added to 500ml of the blood/albumin/toxin suspension at a concentration of 2 grams per litre.

Plasmapharesis

The blood/albumin/imipramine/liposome suspension was placed in a standard inflatable pressure bag and pressurised to 250mmHg. This was attached via standard fashion to a plasmapharesis filter of pore size 500nm (Infomed, Switzerland). The purpose of this phase was to divide the suspension into red cell rich and liposome rich, red cell depleted components. The liposome rich component was then passed through a 100 nm filter (Merck millipore) intended to filter off liposomes along with any bound drug from this suspension. A schematic of the experimental setup is presented pictorially in Figure 1.

Imipramine estimation

Imipramine levels in each of the suspensions were measured after acetonitrile extraction of all drug bound to protein, red cells and liposomes (Chromatography unit, Royal Prince Alfred Hospital, Sydney, Australia). Acetonitrile extraction from liposomes was confirmed by measuring a known level of drug from a solution containing liposomes.

Statistical analysis

The primary outcome variable was percentage of initial imipramine concentration in the end suspensions. Previous work suggests a very high affinity of the liposomes for imipramine and large effect sizes were expected. Non Gaussian distributions were expected. Given these two factors, a minimum of four samples were taken across the two concentrations at each stage as this is the minimum number where statistical significance can be demonstrated using a rank sum test. The sole test used in the study was the Mann Whitney. Statistical analysis was undertaken using Graphpad Instat (r).

Results

Results are displayed graphically in Figure 2. The bars are a percentage of concentration of imipramine in pre plasmapharesis solution. One of the lab values for the “pharesate”, liposomes filtered off group returned from the lab was 0. While it was possible that this was either a lab or sample error this value was included in the analysis in keeping with an “intention to treat” principal.

Median values as % initial concentration imipramine

Figure 2 shows a box and whisker plot for suspensions at different points in the protocol. Significant differences were seen between the liposome rich post plasmapharesis (median 100%, IQR 84-135%) and both the red cell rich post...
Conclusions
We have demonstrated significant experimental binding of imipramine to liposomes in a human albumin/red blood cell solution, and have removed bound imipramine from this solution after drug sequestration utilising a clinically available plasmapharesis technique. Further work is planned to investigate the effect of liposomes in TCA toxicity in an animal model.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
The study was initially conceived by Dr Cave. Dr’s Cave, Raghavan, Burrows and Harvey designed study methodology. Professor Chauhan designed the liposomal formulation and aided the manufacture process for liposomes. Dr’s Cave and Raghavan undertook the study protocol. Dr’s Cave and Harvey analysed study results. Dr Cave prepared the initial draft of the manuscript. All authors contributed to manuscript review.

Funding discloser
Liposome manufacture and Merck Millipore filters were self funded by the lead author. Plasmapharesis filter donated by Baxter, Australia. Laboratory results funded by the University of Newcastle Department of Rural Health.

Acknowledgement
Assoc Professor Sarah Hook, School of Pharmacy, University of Otago, assisted with liposome manufacture. Mr Tim Constable, equipment nurse, Tamworth Rural Referral Hospital, assisted with the study protocol.

Publication history
Received: 05-Dec-2012 Revised: 01-Jan-2013 Accepted: 10-Jan-2013 Published: 19-Feb-2013

References
1. Tsai V and Arabar A: Tricyclic Antidepressant Toxicity in Emergency Medicine. | Website
2. Harvey M and Cave G: Case report: successful lipid resuscitation in multi-drug overdose with predominant tricyclic antidepressant toxidrome. Int J Emerg Med 2012, 5:8. | Article | PubMed Abstract | PubMed Full Text
3. Bieber MS, Khan JN, Brebner JA and McColl R: “Lipid rescue” for tricyclic antidepressant cardiotoxicity. J Emerg Med 2012, 43:465-7. | Article | PubMed
4. Hendron D, Menagh G, Sandlants EA and Scullion D: Tricyclic antidepressant overdose in a toddler treated with intravenous lipid emulsion. Pediatrics 2011, 128:e1628-32. | Article | PubMed
5. Howell BA and Chauhan A: Interaction of cationic drugs with liposomes. Langmuir 2009, 25:12056-65. | Article | PubMed
6. Howell BA and Chauhan A: Binding of imipramine, dosulepin, and opipramol to liposomes for overdose treatment. J Pharm Sci 2009, 98:3718-29. | Article | PubMed
7. Howell BA and Chauhan A: A physiologically based pharmacokinetic (PBPK) model for predicting the efficacy of drug overdose treatment with liposomes in man. J Pharm Sci 2010, 99:3601-19. | Article | PubMed
8. Toxinz poisons information, Imipramine. | Website
9. Immiordino Mt, Dosio F and Cattel L: Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006, 1:297-315. | PubMed Abstract | PubMed Full Text

Citation:
Cave G, Raghavan M, Burrows J, Harvey M and Chauhan A: Liposomal binding of imipramine in human red cell/albumin solution with simulated plasmapharesis. Journal of Pharmaceutical Technology and Drug Research 2013, 2:8. http://dx.doi.org/10.7243/2050-120X-2-8