Vulvar myeloid sarcoma as the presenting symptom of acute myeloid leukemia: a case report and literature review of Chinese patients, 1999–2018

Xilin Zhang¹,², Peichen Huang¹, Zhuo Chen³, Xinling Bi¹, Ying Wang¹* and Jianhua Wu¹*

Abstract

Background: Myeloid sarcoma (MS), which represents a rare malignancy that comprises of myeloid blasts occurring at extra-medullary sites, closely correlates with the onset and relapse of acute myeloid leukemia (AML) and other hemopoietic neoplasm. Female genital system is an uncommon location of MS, with the vulvar MS being even rarer that only eight cases have been reported in English-written literature.

Case presentation: A 47-year-old woman presented with chronic ulceration on her vulva for one and a half month. Microscopic examination of incisional biopsy revealed dermal infiltration of myeloid precursor cells, which were positive for MPO, lysozyme, CD43, CD68, CD38 and CD117. Bone marrow flowcytometric analysis showed myeloblast count of 74%, which expressed CD13, CD33, CD117 and HLA-DR. A diagnosis of AML (M2 type) was made and vulvar MS was the earliest symptom. The patient achieved complete remission after chemotherapy with no evidence of recurrence in a 27-month follow-up. We reviewed the literature and identified 54 cases of Chinese patients with gynecological MS between 1999 and 2018, and discovered that in Chinese population, MS most frequently involved uterine cervix followed by the ovary and vulva, and ovarian MS onset much earlier than other sites. Remarkably, vulvar MS exhibited a high rate of concurrent AML and secondary myeloid leukemia within a short time of its occurrence. Despite its limited distribution, MS should be tackled aggressively with chemotherapy followed by allogeneic hematopoietic stem cell transplantation if the appropriate donor is available.

Conclusions: Female genital MS, especially vulvar MS, should be included in the differential diagnosis of gynecological neoplasm, which will facilitate its early diagnosis and prompt management.

Keywords: Myeloid sarcoma, Acute myeloid leukemia, Female genitalia, Vulva, Chemotherapy

Background

Myeloid sarcoma (MS) represents a rare malignancy that encompasses immature or mature myeloid blasts occurring at any extra-medullary site with normal architectural effacement. It was first described by Burns [1] in 1811 and termed as chloroma by King [2] in 1853 because a subset of MS contains abundant myeloperoxidase (MPO) and turns green upon exposure to oxygen [3, 4]. Dock identified the association of MS with acute leukemia in 1893 [5], and Rappaport referred it as “granulocytic sarcoma” in 1996 for the neoplasm comprises of immature granulocytic cells and resembles a sarcoma [6]. Although other historical names have been used, MS was recommended by world health organization in 2001. MS might be isolated [7, 8], precede [9], coincide with the onset [10] and relapse [11] of AML, as well as correlated with myelodysplastic syndrome (MDS) or myeloproliferative neoplasm (MPN) [12]. The incidence of MS is between 1.1 and 9.1% in patients with AML, MDS or MPN [11, 13]. MS occurs in nearly any sites, and the most common sites include lymphoid tissues, central...
nervous system, lung, kidney and gastrointestinal tract [14]. Female genital system is a much rarer location that less than a hundred cases have been reported in English-written literature [8, 10, 11]. The frequency of gynecological involvement from high to low was the ovary, cervix, uterus and vulva [10, 15]. Precisely, only 8 MS patients involving the vulva were identified in literature [16]. Here, we report an unusual case of vulvar MS as the initial presentation of AML, and review the literature of Chinese patients with gynecological MS.

Case presentation
A 47-year-old woman presented with fever and chronic ulceration on her vulva for one and a half month in January 2017. The patient had no significant past medical or family history. She had been given levofloxacin and topical douche in another hospital, but the vulvar lesions continued to aggravate. Gynecological evaluation revealed two large well-demarcated ulcers on bilateral labia majora (Fig. 1) without involvement of labia minora and vagina. The patient underwent an incisional biopsy and the cut surface of specimen was grey-white. Microscopically, the dermis was infiltrated with diffuse noncohesive sheets of medium-sized myeloid precursor cells that have large vesicular nuclei, prominent nucleoli, and scarce ill-defined cytoplasm with mild pleomorphism (Fig. 2a). Abundant neutrophils and sparse plasma cells were observed. Immunohistochemistry (IHC) demonstrated positive reactions with MPO (Fig. 2b), lysozyme (Fig. 2c), CD43 (Fig. 2d), CD68 (Fig. 2e), CD38 and CD117, and negative reactions with T-cell markers (CD3, CD5, CD56), B-cell markers (CD20, Bcl-2, Bcl-6) and plasma-cell makers (CD138). Ki-67 was expressed in 80% of the neoplastic cells (Fig. 2f). Therefore, she was diagnosed as MS and admitted to hospital.

On admission, her peripheral blood count showed white blood cells $6.78 \times 10^9/L$, hemoglobin 80 g/L, hematocrit 26%, platelets $6.78 \times 10^9/L$. Differential blood count was as follows: blasts 71%, unclassifiable cells 16%, neutrophils 24%, lymphocytes 58%, monocytes 2%. Her peripheral blood smear revealed the percentage of leukemic cells was 28%, while the bone marrow (BM) aspirate contained 44.5% leukemic cells. Flowcytometric analysis showed myeloblast count of 74%, which expressed CD13, CD33, CD117 and HLA-DR. Cytogenetic study of the BM discovered a normal 46, XX karyotype. Fluorescence in situ hybridization (FISH) analysis did not detect any common fusion genes in hematologic diseases such as AML, MDS, eosinophilia and acute lymphoblastic leukemia (ALL). Given the results, a diagnosis of AML (M2 type, FAB classification) was made and MS of the vulva was the earliest symptom in this patient.

She subsequently received induction chemotherapy with idarubicin (10 mg/m² for 3 days) and cytarabine (100 mg/m² for 7 days) that achieved complete remission 1 month later with the ratio of minimal residual disease being 0.017%. Meanwhile, the vulvar ulceration healed without other therapy (Fig. 3). In this period, the patient developed upper gastrointestinal bleeding and acute

![Fig. 1 Two large well-demarcated ulcers on bilateral labia majora](image1)

![Fig. 2 Hematoxylin-eosin and immunohistochemical staining of vulvar ulcers. Diffuse noncohesive sheets of medium-sized myeloid precursor cells in the dermis (a); Immunohistochemical staining result is positive for myeloperoxidase (b), lysozyme (c), CD43 (d), CD68 (e) and ki-67 (f).](image2)
inferior myocardial infarction that recovered after conservative treatment. She then received 5 cycles of intensification therapy (high-dose cytarabine 3 g/m²/12 h for 3 days) along with intrathecal injection of methotrexate and cytarabine for 4 times. Neither a family nor unrelated donor for haematopoietic stem cell transplantation (HSCT) had been found. Currently, she remained in complete remission 27 months from the time of diagnosis on follow up.

Discussion and conclusions

We searched following terms of “genitals and MS” and “genitals and AML” in the PubMed and Chinese literature databases including Wanfang Data (http://www.wanfangdata.com.cn/index.html), VIP Journals (http://qikan.cqvip.com/) and China Knowledge Resource Integrated Database (http://www.cnki.net/). In total, we identified 54 MS cases involving gynecologic tract reported between 1999 and 2018, details of which are summarized in Table 1.

Being a rare entity, isolated MS often poses diagnostic challenge, and immunohistochemical examination is of great importance in the correct diagnosis. As the myeloblasts in MS have an antigen profile resembling that of the blasts and precursor cells in AML, the positivity of myeloperoxidase, CD43, CD68, CD117 and lysozyme help to recognize MS. The most important differential diagnoses include non-Hodgkin lymphoma of the lymphoblastic type, Burkitt’s lymphoma, large-cell lymphoma and small round cell tumors [61]. However, we did not detect any exclusive surface marker of MS involving gynecological tissue.

Our reviewed cohort showed that gynecological MS involved uterine cervix (40%), ovary (23.6%), vulva (10.9%), uterine body (5.5%) and vagina (3.6%) in a most-preferred-to-least-preferred order with around one sixth of cases had multifocal lesions, which differed from previous notion that the most frequently involved genital organ is the ovary followed by the cervix and uterus [10, 15, 62]. The inconsistency might partly result from ethnic diversity. A ‘skip’ phenomenon was also noticed in nearly half of the multifocal MS patients that the myeloblasts occurred at non-adjacent sites, which is uncommon in other gynecological malignancy.

The age of female-genital MS onset ranged from 22 to 78 years with an average age being 39.2 ± 1.7 years (Table 2), which differed from a predilection of general MS for children [63]. Particularly, MS arising at the ovaries mostly occurred in young adults, which was much earlier than the other single locations (27.5 ± 1.4 vs 43.5 ± 2.3, P = 0.0001). Female-genital MS could be asymptomatic (6 cases) or initially presented as mass formation (9 cases), abdominal pain (8 cases), ulceration (1 case), paramenia and vaginal bleeding (25 cases), which was similar to an earlier observation [64]. Remarkably, the onset symptom of all the previously-reported vulvar MS was regional mass with our case distinctively being ulceration.

Three fifths of MS patients are not correlated with AML or other hematopoietic disorders, with equally 14.9% cases preceding or coinciding with AML and 10.6% occurring as the first sign of AML relapse (Table 2). While the few cases of vagina and uterine-body MS revealed no linkage with AML, vulvar MS exhibited a notably high rate of concurrent AML and secondary myeloid leukemia in a short time. The interval between the initial diagnosis of MS and systemic disease with medullary involvement ranged from 0.6 to 18 months with a mean value of 5.5 month, in accordance with the formerly-reported 5 to 11 months [65–67]. And, MS heralded AML relapse with or without marrow involvement, and the duration was from 6 to 67 months with a mean value of 33.6 months.

As evidenced from prior observation, FAB subtype M4 and M5 are mostly associated with extra medullary tissue involvement [16]. Unexpectedly, our reviewed cohort displayed a predominance of M2 subtype (10 cases) with the remaining being M5 (2 cases) and M3 (1 case), suggesting that M2 subtype of AML was most inclined to develop MS in the Chinese population. The chromosomal abnormalities of MS include trisomy 4, trisomy 8,
Table 1: Reviews of Chinese cases of gynecological myeloid sarcoma

No.	Author	Age	Time of genital involvement	Non-systemic involvement	Systemic involvement	AML Type	Treatment	Outcome
							CR, ANEL 36 mo	
							CR, died 3 mo (sepsis)	
							CR, ANEL 27 mo	
							Died 10 mo	
							Died 2 mo (cerebral hemorrhage)	
							Died 3 mo	
							Died 2 mo	
							Died 2 mo	
							Died 12 mo	
							Alive 91 mo	
							Died 6 mo	
							Died 20 mo	
Table 1 | Reviews of Chinese cases of gynecological myeloid sarcoma (Continued)

No	Author	Age	Time of genital involvement	Non-systemic involvement	Systemic involvement	AML Type	Treatment	Outcome
31	Wang et al. [42]	38	Isolated	None	None	NA	SG	Not stated
32	Zhao et al. [43]	33	Isolated	None	None	NA	CT (DNR + ARA-C)	Alive
33	Hou et al. [44]	44	Isolated	None	None	NA	Not stated	Not stated
34	Zhang et al. [45]	27	Initial	None	Simultaneously	M2	CT (DNR + ARA-C)	PR, MS resolved
35	Zheng et al. [46]	26	Isolated	None	None	NA	SG → CT (DNR + ARA-C) → Auto-HSCT	ANEL 1 y after HSCT
36	Yu et al. [47]	26	Relapse (AML)	None	None	NA	SG	Not stated
37	Yu et al. [47]	35	Isolated	None	None	NA	SG	Not stated
38	Zhou et al. [48]	27	Initial	None	After 2 mo of MS	M2	SG → CT (DNR + ARA-C)	Not stated
39	Zhou et al. [49]	26	Relapse (AML-M2)	None	None	NA	SG	Not stated
40	Zhou et al. [50]	23	Isolated	None	None	NA	SG → CT (DNR + ARA-C)	Not stated
41	Zhu et al. [51]	22	Relapse (AML-M3)	None	None	NA	SG → CT	Died 39 mo
42	Zhu et al. [52]	27	Initial	None	Simultaneously	M2	SG → CT (DNR + ARA-C)	Died 1 mo (cerebral hemorrhage)
43	Zhang et al. [53]	29	Initial (vulva, ovary)	Whole body	Not stated	NA	Refused	Died 1 mo
44	Cheng et al. [54]	22	Relapse (AML-M3)	None	None	NA	CT (VP-16 + ARA-C)	Died 1 mo
45	Qu et al. [55]	44	Relapse (AML-M2a)	None	None	NA	SG → CT	ANEL 1 y
46	Li et al. [56]	25	Uterine cervix, vagina	Lymphadenopathy	Not stated	NA	CT (PTX + PDD) → RT + CT (DNR + ARA-C)	MS resolved, ANEL 6 mo after cessation of CT
47	Wu et al. [57]	43	Uterine cervix, vagina	None	None	NA	CT (IDA + ARA-C)	CR, ANEL 3 mo
48	Wang et al. [58]	46	Relapse (AML-M2)	None	None	NA	CT (DNR + ARA-C, DNR + ARA-C, DNR + ARA-C, DNR + ARA-C)	Cervical M5 resolved, ANEL 7 mo
49	Long et al. [59]	43	Uterine cervix, vagina	None	None	NA	CT (MTX + ARA-C, MTX + ARA-C, MTX + ARA-C, MTX + ARA-C)	ANEL 8 mo
50	Huang et al. [60]	51	Uterine cervix,	Colon, rectum	Not stated	NA	CT	Died 11 mo

ADM: Adriamycin, AML: acute myeloid leukemia, ANEL: alive with no evidence of leukemia, ARA-C: cytarabine, CR: complete remission, CT: chemotherapy, CTX: Cyclophosphamide, d: day, DNR: daunorubicin, FA: Fluorouracil, HHT: homoharringtonine, HSCT: hematopoietic stem cell transplantation, Allo-HSCT: allogeneic HSCT, Auto-HSCT: autologous HSCT, IDA: idarubicin, IL: intrathecal injection, LA: lymphadenopathy, MIT: Mitoxantrone, MDS: myelodysplastic syndrome, mo: month, NA: not applicable, PED: Prednisone, PDD: cisplatin, PR: partial remission, PTX: paclitaxel, RT: radiotherapy, SCC: squamous cell carcinoma, SG: surgery, TCL: T cell lymphoma, VCR: vincristine, VP-16: etoposide, y: year.
trisomy 11, monosomy 7, 16(q)-, 5q- and 20q-, while t (8;21)(q22;q22) and inv [16] (p13q22) were the most common chromosome rearrangements detected in AML-correlated MS [12, 68]. In our reviewed cases, three occurred t (8;21)(q22;q22), in conformity with the high incidence of t (8;21) in AML-M2 patients with MS [68]. And, one AML-M5 patient had complex chromosomal aberrations of t (1;7)(p22;q36), t (3;21)(q22;q26) and loss of chromosome 16 [20]. Recurrent AML1/ETO fusion genes were identified in two gynecological MS patients, whereas no cytogenetic defect was discovered in five patients.

Despite the local distribution of MS, chemotherapy was more effective than radiation MS and reviewed Chinese MS cases specifically involving gynecological MS. We discovered that MS most frequently involved uterine cervix followed by the ovary and vulva, and ovarian MS onset much earlier than other sites. Moreover, vulvar MS exhibited a notably high rate of concurrent AML and secondary myeloid leukemia in a short time, which require immediate management. Despite its limited distribution, MS should be tackled aggressively with chemotherapy followed by allogeneic HSCT if the appropriate donor is available. Female genital MS, especially vulvar MS, should be included in the differential diagnosis of gynecological neoplasm, which will facilitate its early diagnosis and prompt management.

In summary, we herein reported a rare case of vulvar MS and reviewed Chinese MS cases specifically involving gynecological system. We discovered that MS most frequently involved uterine cervix followed by the ovary and vulva, and ovarian MS onset much earlier than other sites. Moreover, vulvar MS exhibited a notably high rate of concurrent AML and secondary myeloid leukemia in a short time, which require immediate management. Despite its limited distribution, MS should be tackled aggressively with chemotherapy followed by allogeneic HSCT if the appropriate donor is available. Female genital MS, especially vulvar MS, should be included in the differential diagnosis of gynecological neoplasm, which will facilitate its early diagnosis and prompt management.

Abbreviations

- AML: Acute myeloid leukemia
- ANEL: Alive with no evidence of leukemia
- ARA-C: Cytarabine
- Auto-HSCT: Autologous HSCT
- BM: Bone marrow
- CR: Complete remission
- CT: Chemotherapy
- CTX: Cyclophosphamide
- DNR: Daunorubicin
- FA: Fludarabine
- FISH: Fluorescence in situ hybridization
- HHT: Homoharringtonine
- HSCT: Hematopoietic stem cell transplantation
- IDA: Idarubicin
- IHC: Immunohistochemistry
- II: Intrathecal injection
- LA: Lymphadenopathy
- MDS: Myelodysplastic syndrome
- MPO: Myeloperoxidase
- MPN: Myeloproliferative neoplasm
- Mo: Month
- MPO: Myeloperoxidase
- NA: Not applicable
- PDD: Cisplatin
- PED: Prednisone
- PR: Partial remission

Table 2 Onset age and correlation with AML of reviewed myeloid sarcoma patients

MS site	Onset Age (year)	Without AML	Preceding AML	Coinciding with AML	AML Relapse
Vulva	25–78 (49.5 ± 9.3)	1 (16.7%)	1 (16.7%)	4 (66.7%)	—
Vagina	55–61 (58 ± 3)	1 (100%)	—	—	—
Uterine cervix	23–63 (41 ± 2.2)	10 (58.8%)	4 (23.5%)	2 (11.8%)	1 (5.9%)
Uterine body	33–44 (38.3 ± 3.2)	3 (100%)	—	—	—
Ovary	22–36 (27.5 ± 1.4)	8 (66.7%)	1 (8.3%)	1 (8.3%)	2 (16.7%)
Multifocal	25–51 (40.1 ± 2.8)	5 (62.5%)	1 (12.5%)	—	2 (25%)
Total	22–78 (39.2 ± 1.7)	28 (59.6%)	7 (14.9%)	7 (14.9%)	5 (10.6%)

AML acute myeloid leukemia
The ethical approval and documentation for a case report was waived with the consent of the patient's lesion, and collected literature. PH and XZ analyzed patient data and wrote the manuscript. All authors read and approved the final manuscript.

Funding
This study is supported by National Science Foundation of China (81602751) and Shanghai Wu Mengchao Medical Science Foundation (JHHX-2018005).

Availability of data and materials
Please contact author for data requests.

Ethics approval and consent to participate
The ethical approval and documentation for a case report was waived with the consent of the patient's lesion. PH and XZ collected literature. PH and XZ analyzed patient data and wrote the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China. 2 Department of Dermatology, Shanghai Skin Disease Hospital, Shanghai 200433, China. 3 Department of Dermatology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.

Received: 3 June 2019 Accepted: 18 September 2019
Published online: 07 November 2019

References
1. Bums A. Observations of surgical anatomy, head and neck. Edinburgh: Thomas Royce and Company; 1811.
2. King A. A case of choroma. Monthly J Med. 1853;7:97.
3. Schultz J, Shay H, Gruenstein M. The chemistry of experimental choroma I. Phosphoryl and related myeloblastic neoplasms. Arch Intern Med. 1961;108:864–71.
4. Dock G. Choroma and its relation to leukemia. Am J Med Sci. 1893;106:152–7.
5. Rappaport H. Tumors of the hematopoietic system. In: Atlas of Pathology. Washington DC: Armed Forces Institute of Pathology; 1996. p. 241.
6. Isonishi S, Ochiai K, Nakaide T, Yano S, Alba K, Tanaka T. Isolated myeloid sarcoma of the vulva. Clin Ovarian Cancer. 2011;4(1):49–51.
7. Yu Y, Qin X, Yan S, Wang W, Sun Y, Zhang M. Non-leukemic myeloid sarcoma involving the vagina, cervix: a case report and literature review. Oncol Target Ther. 2015;8:3707–12.
8. Ershah C, Omeroglu G, Potuk RK, Saltzad A. Myeloid sarcoma of the vulva as the presenting symptom in a patient with acute myeloid leukemia. Gynecol Oncol. 2007;106(1):259–61.
9. Polcarpo-Nicolas M, Valente P, Aune G, Higgins R. Isolated vaginal myeloid sarcoma in a 16-year-old girl. Ann Diagn Pathol. 2012;16(5):374–9.
10. Nazer A, Al-Badawi I, Chebbo W, Chaudhri N, El-Gohary G. Myeloid sarcoma of the vulva post-bone marrow transplant presenting as isolated extramedullary relapse in a patient with acute myeloid leukemia. Hematol Oncol Stem Cell Ther. 2012;5(2):118–21.
11. Pileri S, Ascani S, Cox M, Campidelli C, Bacci F, Piccioli M, et al. Myeloid sarcoma: clino-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia. 2007;21(2):340–50.
12. Neiman R, Barcos M, Berard C, Bonner H, Mann R, Rydell R, et al. Granulocytic sarcoma: a clini-pathologic study of 61 reported cases. Cancer. 1981;48(3):1426–37.
13. Nevanlinna R, Barcos M, Berard C, Bonner H, Mann R, Rydell R, et al. Granulocytic sarcoma: a clino-pathologic study of 61 reported cases. Cancer. 1981;48(3):1426–37.
45. Zhang X, Li A, Li X. Acute leukemia with granulocytic sarcoma as the first manifestation. Clin Misdiagn Misther. 2003;16(3):197.
46. Zheng C, Wu J. Primary granulocytic sarcoma: report of a case and literature review. J Clin Hematol. 2006;19(2):70–2.
47. Yu H, Ma J, Shi Q, Zhou H, Lu Z. Clinicopathological features of granulocytic sarcoma of the ovary. J Med Postgrad. 2008;21(9):948–51.
48. Zhou Y, Gao H, Chen Y. Primary granulocytic sarcoma: report of 5 cases. Chinese J Diff Complicated Cases. 2009;8(12):745–6.
49. Zhou L, Wang M, Ma G. Clinical features and pathology of isolated granulocytic sarcoma of the ovary. Chinese J Postgrad Med. 2010;33(2):24–7.
50. Zhou D, Huang B. Ovarian granulocytic sarcoma progressing to leukemia: report of a case. J Clin Radiol. 2016;35(12):1926–7.
51. Pang Y, Wan D, Cao W, Zhang S, Chen X, Chen S, et al. Clinical analysis of 57 cases of granulocytic sarcoma. J Basic Clin Oncol. 2017;30(1):34–9.
52. Zhang L, Liu C. Primary granulocytic sarcoma with vulvar mass as the first presenting symptom: report of a case. Chinese J Prat Gynecol Obstet. 2017;33(4):437–40.
53. Cheng Z, Xu J, Zou S, Pan H, Zhang W. Granulocytic sarcoma complicating peripheral T-cell lymphoma: report of a case. J Clin Hematol. 2004;17(6):366.
54. Qu Q, Li D, Wang C, Ma L, Li G. Uterine granulocytic sarcoma: report of a case. Chinese Remedies Clin. 2006;6(7):558.
55. Li Y, He A, Lu Y, Lu H. Uterine cervical granulocytic sarcoma: report of a case. Chinese J Pract Gynecol Obstet. 2010;26(8):643–4.
56. Wu L, He J. Clinical and pathological analysis of granulocytic sarcoma of uterine cervix. Med Inf. 2014;27(12):23.
57. Wang Y, Zhou Y, Luo L, Liu M, Zuo X. Primary granulocytic sarcoma of cervix: a case report and review of the literature. Med J Wuhan Univ. 2014;35(4):628–31.
58. Long X, Guo Q, Yu X, Qian Y. Granulocytic sarcoma of bilateral ovaries and cervix: report of a case and review of literature. J Diagn Concepts Pract. 2012;11(6):585–8.
59. Huang D, Wang X, Su G. Analysis on clinical characteristics of 10 patients with granulocytic sarcoma. J Leuk Lymphoma. 2013;22(4):233–5.
60. Xu J, Deng G. Ovarian and uterine granulocytic sarcoma: report of a case. Guangdong Yixue. 2013;34(10):1617.
61. Audouin J, Comperat E, Le Tourneau A, Camilleri-Broet S, Adida C, Molina T, et al. Myeloid sarcoma: clinical and morphologic criteria useful for diagnosis. Int J Surg Pathol. 2003;11(4):271–82.
62. Muss H, Moloney W. Chloroma and other myeloblastic tumors. Blood. 1973;42(5):721–8.
63. Byrd J, Edenfield W, Shields D, Dawson N. Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol. 1995;13(7):1800–16.
64. Pathak B, Bruchim I, Brison M, Hammouda W, Bloom C, Gotlieb W. Granulocytic sarcoma presenting as tumors of the cervix. Digest World Core Med J. 2006;98(3):493–7.
65. Mei S, Butler J, Osborne B, Manning J. Granulocytic sarcoma in nonleukemic patients. Cancer. 1986;58(12):2677–709.
66. Iwamoto K, Yasuda M. Comparison in treatments of nonleukemic granulocytic sarcoma: report of two cases and a review of 72 cases in the literature. Cancer. 2002;94(6):1379–46.
67. Chevallier P, Mothy M, Loure B, Michel G, Contentin N, Deconinck E, et al. Allogeneic hematopoietic stem-cell transplantation for myeloid sarcoma: a retrospective study from the SFGM-TC. J Clin Oncol. 2008;26(30):4940–3.
68. Tallman M, Hakimian D, Shaw J, Lissner G, Russell E, Varejkois D. Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol. 1993;11(4):698–7.
69. Paydas S, Zorluademir S, Ergin M. Granulocytic sarcoma: 32 cases and review of the literature. Leuk Lymphoma. 2006;47(12):2527.
70. Schafer H, Becker H, Schmitt-Graff A, Lubbert M. Granulocytic sarcoma of Core-binding factor (CBF) acute myeloid leukemia mimicking pancreatic cancer. Leuk Res. 2008;32(9):1472–5.
71. Modi G, Madabhavi I, Panchal H, Patel A, Anand A, Park S, et al. Primary vaginal myeloid sarcoma: a rare case report and review of the literature. Case Rep Obstet Gynecol. 2015;2015:957490.
72. Lan T, Lin D, Tien H, Yang R, Chen C, Wu K. Prognostic factors of treatment outcomes in patients with granulocytic sarcoma. Acta Haematol. 2009;122(4):238–46.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.