A VARIANT PROOF OF Con(b < a)

JÖRG BRENDLE AND ANDREW D. BROOKE-TAYLOR

Abstract. We present a variation of the proof in [2] of Con(b < a), which in particular removes some of the obstacles to generalising the argument to cardinals κ > ω.

§1. Introduction. The generalisations of cardinal characteristics of the continuum to cardinals κ greater than ω has generated significant interest recently. A particular result that has so far resisted attempts at generalisation is the statement that b < a is consistent. Blass, Hyttinen and Zhang [1, Section 5] briefly survey the different approaches known for proving Con(b < a), highlighting the difficulties each presents for a generalisation.

We present here a variation on the proof of Con(b < a) given in [2], which we hope will be more amenable to generalisation. In particular, the proof in [2] relies on a rank argument, which of course cannot be naively generalised to uncountable κ. We show here that it may be replaced by a suitable formulation in terms of games, which does generalise to higher κ. Indeed, with this observation, the question of forcing bκ > aκ for some suitable large cardinal κ seems to boil down to interesting questions about the existence of suitable filters on κ.

§2. Preliminaries. Let κ be an infinite cardinal. A family A ⊆ [κ]κ is called almost disjoint if |A ∩ B| < κ for any two distinct members A and B of A. A is a maximal almost disjoint family (mad family, for short) if A is almost disjoint and maximal with this property. This means that for every C ∈ [κ]κ there is A ∈ A such that |A ∩ C| = κ. The almost disjointness number aκ is the least

Received by the editors April 11, 2014.
Partially supported by Grant-in-Aid for Scientific Research (C) 24540126, Japan Society for the Promotion of Science.
Written while holding a JSPS Postdoctoral Fellowship for Foreign Researchers at Kobe University and supported by JSPS Grant-in-Aid no. 23 01765.
size of a mad family on κ of size at least $cf(\kappa)$ (equivalently, of size $> cf(\kappa)$). In case $\kappa = \omega$ write a for a_ω.

Now assume κ is a regular cardinal. For functions $f, g \in \kappa^\kappa$, say that g eventually dominates f ($f \leq^* g$ in symbols) if $f(\alpha) \leq g(\alpha)$ holds for all α beyond some $\alpha_0 < \kappa$. The unbounding number b_κ is the least size of an unbounded family F in the order $\langle \kappa^\kappa, \leq^* \rangle$. That is, for all $g \in \kappa^\kappa$ there is $f \in F$ with $f(\alpha) > g(\alpha)$ for cofinally many α's. Again we write b instead of b_ω.

Let F be a filter on ω. Mathias forcing $\mathbb{M}(F)$ with F consists of conditions $\langle s, F \rangle$ such that $s \in [\omega]^<\omega$, $F \in F$, and $\max(s) < \min(F)$. $\mathbb{M}(F)$ is ordered by $\langle t, G \rangle \leq \langle s, F \rangle$ if $s \subseteq t \subseteq s \cup F$ and $G \subseteq F$. It is well-known and easy to see that $\mathbb{M}(F)$ is a σ-centered forcing which introduces a pseudointersection Z of the filter F. This means that $Z \subseteq^* F$ for all $F \in F$, where \subseteq^* denotes almost inclusion: $A \subseteq^* B$ iff $A \setminus B$ is finite.

In [2], the notion of pseudocontinuity is used. This notion and the corresponding basic lemma can be nicely phrased in terms of continuity with respect to an appropriate topology.

Definition 1. The initial segment topology on ω is the topology which has the (von Neumann) ordinals as open sets. We denote ω endowed with this topology by ω_i.

Definition 2. A function to ω or ω^ω is pseudocontinuous if it is continuous as a function to ω_i or ω^ω_i respectively.

Thus, a pseudocontinuous function $F : X \to \omega$ is one such that for every $n \in \omega$, the set of x in X with image at most n is open.

Lemma 3. Compact sets in ω_i and ω_i^ω are bounded. In particular, any pseudocontinuous image in ω or ω^ω of a compact set must be bounded.

Proof. The Lemma is clear for ω_i. Similarly, compact $K \subset \omega_i^\omega$ are in fact bounded in the strict (not just \leq^*) sense. Otherwise, there would be some m in ω such that $f(m)$ is unbounded in ω for $f \in K$, and then the open sets $O_{m,n} = \{ f \in \omega_i^\omega \mid f(m) \leq n \}$ for $n < \omega$ would form an open cover of K with no finite subcover. \Box

As usual we may identify $\mathcal{P}(\omega)$ with 2^ω by way of the map taking sets to their characteristic functions, $\chi : X \mapsto \chi_X$. We give $\mathcal{P}(\omega)$ the corresponding topology, making χ a homeomorphism from $\mathcal{P}(\omega)$ to the Cantor space 2^ω.

A V A R I A N T P R O O F O F C o n (b < a)

Definition 4. For any cardinal \(\lambda \), we call a filter \(\mathcal{G} \subseteq \mathcal{P}(\omega) \) a \(K_\lambda \)-filter if it is generated by the union of fewer than \(\lambda \) many compact subsets of \(\mathcal{P}(\omega) \). We write \(K_\sigma \) for \(K_{\aleph_1} \).

Lemma 5. If \(K_0, \ldots, K_{n-1} \) are (finitely many) compact subsets of \(\mathcal{P}(\omega) \), then the pointwise intersection

\[
\bigwedge_{i<n} K_i = \left\{ \bigcap_{i<n} G_i \mid (G_0, \ldots, G_{n-1}) \in \prod_{i<n} K_i \right\}
\]

and the pointwise union

\[
\bigvee_{i<n} K_i = \left\{ \bigcup_{i<n} G_i \mid (G_0, \ldots, G_{n-1}) \in \prod_{i<n} K_i \right\}
\]

are compact. Furthermore, for any compact set \(K \subseteq \mathcal{P}(\omega) \), the upward closure

\[
\bar{K} = \{ A \in \mathcal{P}(\kappa) \mid \exists B \in K (A \supseteq B) \}
\]

is also compact.

Proof. The product \(\prod_{i<n} K_i \) is compact by the Tychonoff theorem, and the functions \(\mathcal{P}(\omega)^n \to \mathcal{P}(\omega) \) given by \((G_0, \ldots, G_{n-1}) \mapsto \bigcap_{i<n} G_i \) and \((G_0, \ldots, G_{n-1}) \mapsto \bigcup_{i<n} G_i \) are clearly continuous, so \(\bigwedge_{i<n} K_i \) and \(\bigvee_{i<n} K_i \) are compact. Finally, for compact \(K \subseteq \mathcal{P}(\omega) \), \(\bar{K} \) is just \(K \cup \mathcal{P}(\omega) \).

\(\Box \)

§3. **The proof.** We work in a model \(V \) of ZFC in which \(\lambda = \mathfrak{c}^V \) is a regular cardinal satisfying \(2^\lambda = \lambda^+ \), and there is an unbounded, \(<^*\)-well-ordered sequence \(\langle f_\alpha : \alpha < \lambda \rangle \) of strictly increasing functions from \(\omega \) to \(\omega \). For example, any model of GCH will suffice as a ground model, and these properties will be preserved in intermediate stages of our forcing iteration.

Let \(\mathcal{A} \) be an infinite maximal almost disjoint family in \(V \) of subsets of \(\omega \).

Theorem 6. There is a ccc forcing \(\mathbb{P}(\mathcal{A}) \) such that

\[\models_{\mathbb{P}(\mathcal{A})} \mathcal{A} \text{ is not mad and } \langle f_\alpha : \alpha < \lambda \rangle \text{ is still unbounded.} \]

Proof. Let \(\mathcal{F} = \mathcal{F}(\mathcal{A}) \) be the dual filter of \(\mathcal{A} \), that is, the filter generated by the sets whose complements are finite or in \(\mathcal{A} \). Note that this filter is proper: if for some \(k < \omega \) there were \(\{ A_i \mid i < k \} \subseteq \mathcal{A} \) such that \(|\bigcap_{i<k} \omega \setminus A_i| < \omega \), any other element of \(\mathcal{A} \) would have infinite intersection with one of the \(A_i \), violating almost disjointness. Note that the generic subset of \(\omega \) introduced by Mathias forcing with
\(\mathcal{F} \), or any filter extending \(\mathcal{F} \), will end the madness of \(A \), as it will be almost contained in \(\omega \setminus A \) for every \(A \in \mathcal{A} \).

First we add \(\lambda \) many Cohen reals. It is well-known that the unboundedness of \(\langle f_\alpha : \alpha < \lambda \rangle \) is preserved in this intermediate extension. In case \(\mathcal{A} \) is not mad anymore in this extension we are done. Also, if \(\mathcal{F} \) is contained in a \(K_\lambda \) filter \(\mathcal{G} \) in the intermediate extension, we may simply force with \(\mathbb{M}(\mathcal{G}) \) for it is well-known, and easy to see [2, 3.2], that Mathias forcing with a \(K_\lambda \)-filter does not destroy the unboundedness of \(\langle f_\alpha : \alpha < \lambda \rangle \). So assume that \(\mathcal{F} \) is not contained in any \(K_\lambda \)-filter.

We shall recursively construct a filter \(\mathcal{G} \supseteq \mathcal{F} \) such that furthermore (*): \(\mathbb{M}(\mathcal{G}) \langle f_\alpha : \alpha < \lambda \rangle \) is unbounded.

Along the construction we shall take care of every potential \(\mathbb{M}(\mathcal{G}) \)-name for a function in \(\omega^\omega \), either “killing it” or “sealing it off”.

To be precise: let us refer to partial functions \(\tau : [\omega]^<\omega \times \omega \rightarrow \omega \) as preterms, and let \(\mathcal{T} = \{ \tau_\beta : \beta < \lambda \} \) be an enumeration of the set of all preterms. Note in particular that if \(\mathcal{G} \supseteq \mathcal{F} \) is a filter and \(\dot{g} \) is an \(\mathbb{M}(\mathcal{G}) \)-name for a function in \(\omega^\omega \), then \(\tau = \tau_\beta \) given by

\[
\tau(s, m) = n \text{ iff } \exists G \in \mathcal{G} ((s, G) \models \dot{g}(m) = n)
\]

is a preterm, the preterm associated with \(\dot{g} \). We shall constrain attention to names \(\dot{g} \) such that \(1 \models \mathbb{M}(\mathcal{H}) \dot{g} \in \omega^\omega \), since every function from \(\omega \) to \(\omega \) in the generic extension has such a name; we call such names total names.

We construct filters \(\mathcal{G}_\beta \) for \(0 \leq \beta \leq \lambda \), starting from \(\mathcal{G}_0 = \mathcal{F} \), such that

- for each \(\beta < \lambda \), \(\mathcal{G}_{\beta+1} \) is generated by \(\mathcal{G}_\beta \) and a \(K_\sigma \) filter \(\mathcal{H}_\beta \),
- \(\mathcal{G}_\delta = \bigcup_{\beta < \delta} \mathcal{G}_\beta \) for each limit ordinal \(\delta \leq \lambda \),

and either

(KILL): for all filters \(\mathcal{H} \supseteq \mathcal{G}_{\beta+1} \), \(\tau_\beta \) is not associated with any total \(\mathbb{M}(\mathcal{H}) \)-name, or

(SEAL): there is an \(\alpha < \lambda \) such that for all filters \(\mathcal{H} \supseteq \mathcal{G}_{\beta+1} \) and all \(\mathbb{M}(\mathcal{H}) \)-names \(\dot{g} \), if \(\tau_\beta = \tau_\beta \) then \(1 \models \mathbb{M}(\mathcal{H}) \dot{g} \not\subseteq^* \dot{f}_\alpha \).

Clearly any filter \(\mathcal{G} \supseteq \mathcal{G}_\lambda \) will then satisfy (*).

So suppose \(\mathcal{G}_\beta \) has been defined for some \(\beta < \lambda \); we wish to find an appropriate \(K_\sigma \) filter \(\mathcal{H}_\beta \). Note that \(\mathcal{G}_\beta \) is generated by \(\mathcal{F} \) and a \(K_\lambda \) filter \(\mathcal{G}'_\beta \); without loss of generality we may assume that \(\mathcal{F} \) contains all cofinite subsets of \(\omega \). Let \(\mathcal{K}_\beta \) be a family of fewer than \(\lambda \) many compact subsets of \(2^\omega \) generating \(\mathcal{G}'_\beta \). By Lemma 5 we may assume...
that \mathcal{K}_β is closed under finite pointwise intersections, and that for all $K \in \mathcal{K}_\beta$, K is upwards-closed under \subseteq, so that $G'_\beta = \bigcup \mathcal{K}_\beta$.

Everything that has come so far can actually be considered to have occurred in a partial extension model, between the original model and the full extension with λ-many Cohens. More explicitly, all (codes of) elements of \mathcal{K}_β belong to this intermediate model.

Let $\subset \subseteq$ denote the strict end-extension relation on $[\omega]^{<\omega}$: that is, $s \subset s'$ if and only if $s \subset s'$ and $\max(s) < \min(s' \setminus s)$; define \subseteq, \supseteq and \supseteq accordingly.

In [2], a rank function was used. For our generalisation, we take a different approach using games, but use these games to much the same end as the rank function is used in [2]. It should be noted that our games are very closely related to the games independently introduced by Guzmán, Hrušák, and Martínez [3], also in the context of a proof of Con($b < a$).

Let $\tau = \tau_\beta$.

Definition 7. Given $\tau \in \mathcal{T}$, the τ nominalisation exercise is the following game. There are two players, Sensei and Student. On turn 0, Sensei chooses an $m \in \omega$ and $t_0 \in [\omega]^{<\omega}$. At odd stages $2d + 1$, Student plays a filter set $F(d) \in \mathcal{F}$ and a compact set $K(d) \in \mathcal{K}_\beta$. At even stages $2d + 2$, Sensei plays an element t_{d+1} of $[\omega]^{<\omega}$ such that

- t_{d+1} end-extends t_d
- $t_{d+1} \setminus t_d \subseteq F(d)$
- $t_{d+1} \setminus t_d$ meets every member of $K(d)$.

If there is $s \subseteq t_{d+1}$ end extending t_0 such that $(s, m) \in \text{dom}(\tau)$, Sensei declares Student to have passed and the game ends. If the game continues for infinitely many stages, then (clearly) Student has failed.

Note that, since G_β is a filter, and by compactness of $K(d)$, a t_{d+1} satisfying the requirements always exists. Also notice that if Student wins, he wins after finitely many steps. Hence the game is open and, by the classical Gale-Stewart Theorem, determined.

As in [2], we now distinguish two cases (in [2] they are Subcases), corresponding to options (KILL) and (SEAL) above.

3.1. Case a. There are $m \in \omega$ and $t_0 \in [\omega]^{<\omega}$ such that Sensei has a winning strategy in the τ nominalisation exercise with 0th move (m, t_0): play will continue for infinitely many steps. In this case we
shall choose \mathcal{H}_β in such a way that (KILL) holds: τ will not correspond to a name for a function $\omega \to \omega$ in the generic extension. The reader may wish to remember which case is which by the mnemonic "the τ that can be named is not the eternal τ.

We shall actually work in the extension of such the intermediate model by one further Cohen function $c : \omega \to \omega$.

Consider the tree T of all possible sequences of plays (t_0, t_1, t_2, \ldots) for Sensei according to his strategy, corresponding to all possible plays of Student. Note that T is infinitely branching since \mathcal{F} extends the Frechet filter. Use the Cohen function c to choose a branch through T, and denote the union of the t_i of this branch by G.

There is no (s, m) with m from Sensei’s first move and $t_0 \subseteq s \subseteq G$ such that $(s, m) \in \text{dom}(\tau_\beta)$. Indeed otherwise, the τ_β nominalisation exercise would have ended once Sensei played t_d sufficiently long to cover s. Thus, for any filter $\mathcal{H} \ni G$, $\tau \neq \tau_\beta$ for any total $M(\mathcal{H})$ name \dot{g}. We may therefore simply take $\mathcal{H}_\beta = \{G\}$ in order to satisfy (KILL). To check that $\{G\} \cup G_\beta$ generates a filter, consider any $F \in \mathcal{F}$ and $G' \in G'_\beta$, say G' is in the compact set $K \in K_\beta$. For every $t_d \in T$, there is a successor node t_{d+1} in the tree T that is Sensei’s response, according to his strategy, to Student playing F and K, and so in particular this t_{d+1} meets the intersection of F and every member of K. Thus, by Cohen genericity we have that $|G \cap F \cap G'| = \omega$, completing Case a. (Note that G' may not belong to the intermediate model; this, however, is irrelevant for it is sufficient that K does. By genericity the Cohen real c will produce infinitely many d such that $t_{d+1} \setminus t_d$ is contained in F and meets every $G'' \in K$, and this is clearly absolute and thus also holds for G'.)

3.2. **Case b.** The negation of Case a: for every 0th move (m, t_0) by Sensei, Student has a winning strategy in the τ_β nominalisation exercise. In this case we wish to choose \mathcal{H}_β in such a way that (SEAL) holds.

Since Sensei chooses his moves from a countable set, there are clearly only countable many filter sets $F_\ell \in \mathcal{F}$, $\ell \in \omega$, which appear as $F(d)$ in some $2d + 1$st move of Student playing according to his strategy.

Suppose that for all but less than λ many members A of \mathcal{A}, there is $G \in G'_\beta$ such that $A \cap G$ is finite. Then, adding less than λ many sets of the form $\omega \setminus A$, $A \in \mathcal{A}$, to G'_β results in a K_λ filter containing \mathcal{F}. This contradicts our initial assumption. Hence, for λ many $A \in \mathcal{A}$, $A \cap G$ is infinite for all $G \in G'_\beta$. Let A_j, $j \in \omega$, be countably many
such A's such that for each j and ℓ, A_j is almost contained in F_ℓ: this is possible because F is the dual filter of the mad family A.

For each $G' \in \mathcal{G}_\beta'$, $k \in \omega$, $j \in \omega$, and finite subset T of $[\omega]^{<\omega}$, we define a function $f_{G',k,j,T} : \omega \to \omega$ as follows.

$$f_{G',k,j,T}(m) = \min\{n \mid \text{for any partition } A_j = \bigcup_{i<k} B_i \text{ there is } i < k \text{ s.t. }$$

$$\forall t \in T \exists s \supseteq t (s \cap B_i \cap G' \land \tau_\beta(s,m) \leq n)\}.$$

Lemma 8. For every $G' \in \mathcal{G}_\beta'$, $k,j \in \omega$, and $T \in [[\omega]^{<\omega}]^\omega$, $f_{G',k,j,T}$ is well-defined.

Proof. Fix $m \in \omega$. Given a partition $\{B_i \mid i < k\}$ of A_j, let "n suffices for $\{B_i \mid i < k\}$" mean the natural thing in the context of the definition of $f_{G',k,j,T}$, namely, that there is $i < k$ such that for every $t \in T$ there is $s \supseteq t$ with $s \cap B_i \subseteq B_i \cap G'$ and $\tau_\beta(s,m) \leq n$. So now fix a partition $\{B_i \mid i < k\}$ of A_j; we shall show that there is a $n \in \omega$ that suffices for it. Let $i < k$ be such that $|B_i \cap G' \cap G| = \omega$ for every $G \in \mathcal{G}_\beta'$: such an i must exist, since A_j has infinite intersection with every member of the filter \mathcal{G}_β'. Finally, fix $t \in T$.

Consider a play of the τ_β naming exercise in which Student follows his strategy, Sensei's 0th move is (m,t_0) with $t_0 = t$, and his later moves always satisfy the additional requirement $t_{d+1} \cap t_d \subseteq B_i \cap G'$. Since B_i is almost contained in all $F(d)$ played by Student according to his strategy and since B_i has infinite intersection with all $G \in \mathcal{G}_\beta'$, Sensei always has a valid such move.

So we have that eventually Sensei plays a t_d such that

$$\exists n_t \in \omega \exists s \subseteq t_d (s \supseteq t \land \tau_\beta(s,m) = n_t).$$

Of course, by the construction of the game, $s \cap t_0 \subseteq B_i \cap G'$. Taking such an n_t for each $t \in T$ and setting $n = \max_{t \in T}(n_t)$, we have that n suffices for $\{B_i \mid i < k\}$.

Now, with k still fixed but allowing the partition $\{B_i \mid i < k\}$ to vary, let us denote by $n(\{B_i \mid i < k\})$ the least n that suffices for $\{B_i \mid i < k\}$. The space of partitions of A_j into k pieces can be identified with k^{A_j} and thus when endowed with the product topology is a compact topological space. Moreover, with this topology on the space of partitions, the function n sending $\{B_i \mid i < k\}$ to $n(\{B_i \mid i < k\})$ is clearly pseudocontinuous, since n being sufficient for $\{B_i \mid i < k\}$ is witnessed by finitely many finite tuples $s \cap t$ from B_i, which of course define an open set in k^{A_j}. Thus by Lemma 3 the image of
the function \(n \) is bounded below \(\omega \). The least such upper bound will be \(f_{G',k,j,T}(m) \), and it follows that \(f_{G',k,j,T} \) is well-defined. \(\dashv \)

Lemma 9. There exists an \(\alpha < \lambda \) such that for all \(G' \in \mathcal{G}'_\beta \), \(k, j \in \omega \) and \(T \in [[\omega]^{<\omega}]^{<\omega} \), \(f_\alpha \not\leq^* f_{G',k,j,T} \).

Proof. We first note that, given \(k, j \), \(T \), and compact \(K \in \mathcal{K}_\beta \), the function \(f_{k,j,T} \) sending \(G' \) to \(f_{G',k,j,T}(m) \) is pseudocontinuous from \(K \) to \(\omega^\omega \), by much the same argument as in the proof of Lemma 8. Indeed, fixing \(m \) and \(n \), \(\{G' \mid f_{G',k,j,T}(m) \leq n\} \) is open in \(K \).

We thus have from Lemma 3 that for each \(K \in \mathcal{K}_\beta \), \(f_{k,j,T} \) is bounded in \(\omega^\omega \), say by \(h_K \). Since \(\mathcal{K}_\beta \) has fewer than \(\lambda \) many elements, there is an \(\alpha < \lambda \) such that \(f_\alpha \) is not eventually dominated by any of the \(h_K \), and hence not by any \(f_{G',k,j,T} \). \(\dashv \)

We now show that \(\alpha \) as given by Lemma 9 will make (SEAL) hold for an appropriate choice of \(\mathcal{H}_\beta \). Given \(t \in [[\omega]^{<\omega}]^{<\omega} \), \(G \in \mathcal{P}(\omega) \), and \(m \in \omega \), let

\[
g^\beta_{t,G}(m) = \min\{n \mid \exists s \supseteq t(s \setminus t \subseteq G \land \tau_\beta(s, m) = n)\}
\]

if the set on the right hand side is non-empty, and otherwise put \(g^\beta_{t,G}(m) = \omega \). Thus, \(g^\beta_{t,G} \) is a function in \((\omega + 1)^\omega\). Let \(\alpha < \lambda \) be such that \(f_\alpha \) is not dominated by any \(f_{G',k,j,T} \), as given by Lemma 9, and define

\[
\mathcal{H}_\beta = \{H \subseteq \omega \mid \exists t \in [[\omega]^{<\omega}]^{<\omega} g^\beta_{t,\omega \setminus H} \geq^* f_\alpha\}.
\]

Note that given \(t \in [[\omega]^{<\omega}]^{<\omega} \) and \(m_0 \in \omega \), the set

\[
\{H \subseteq \omega \mid \forall m \geq m_0 (g^\beta_{t,\omega \setminus H}(m) \geq f_\alpha(m))\}
\]

is closed in \(\mathcal{P}(\omega) \), and hence compact. Therefore, \(\mathcal{H}_\beta \) is a \(K_\sigma \) set.

To see that this set is an appropriate choice of \(\mathcal{H}_\beta \) as called for above, we check the following.

Claim 10. Any filter \(\mathcal{H} \supseteq \mathcal{H}_\beta \) satisfies (SEAL).

Proof. Let \(\mathcal{H} \supseteq \mathcal{H}_\beta \) be a filter, and assume \(\tau_\beta = \dot{\tau}_g \) for some \(\dot{M}(\mathcal{H}) \)-name \(\dot{g} \) for a function in \(\omega^\omega \). Suppose there were \((t, G) \in \dot{M}(\mathcal{H}) \) and \(m_0 \in \omega \) such that

\[
(t, G) \models_{\dot{M}(\mathcal{H})} \forall m \geq m_0 \left(\dot{g}(m) \geq \dot{f}_\alpha(m) \right).
\]

By the definition of \(g^\beta_{t,G} \), we must then also have \(g^\beta_{t,G}(m) \geq f_\alpha(m) \) for all \(m \geq m_0 \). So \(\omega \setminus G \in \mathcal{H}_\beta \subseteq \mathcal{H} \), contradicting the fact that \(\mathcal{H} \) is a filter. \(\dashv \)
CLAIM 11. \(H_\beta \cup G_\beta \) generates a filter.

PROOF. We take \(F \in \mathcal{F}, G' \in G'_\beta \), and for some \(k < \omega, H_i \in H_\beta \) for \(i < k \), and argue that \(F \cap G' \cap \bigcap_{i<k} H_i \) has cardinality \(\omega \). Assume for the sake of contradiction that \(F \cap G' \subseteq \bigcup_{i<k} \omega \setminus H_i \). For each \(i < k \), fix \(t_i \in [\omega]^{< \omega} \) such that \(g_{t_i, \omega \setminus H_i}^\beta \geq^* f_\alpha \). Also fix \(j \) such that \(A_j \subseteq^* F \). Without loss of generality, we may take \(a < \omega \) such that \(A_j \setminus a \subseteq F, F \cap G' \setminus a \subseteq \bigcup_{i<k} \omega \setminus H_i \) and \(\max(t_i) \geq a \) for every \(i < k \) (if necessary by extending each \(t_i \) with a sufficiently large element of \(\omega \setminus H_i \); this can only increase the values of \(g_{t_i, \omega \setminus H_i}^\beta \)). Fix \(m_0 \in \omega \) such that \(g_{t_i, \omega \setminus H_i}^\beta (m) \geq f_\alpha (m) \) for all \(m \geq m_0 \) and \(i < k \).

Let \(T = \{ t_i \mid i < k \} \) and let \(\{ B_i \mid i < k \} \) be a partition of \(A_j \) such that \(B_i \cap G' \setminus a \subseteq \omega \setminus H_i \) for all \(i < k \). By the definition of \(f_\alpha \), there is some \(m > m_0 \) such that \(f_\alpha (m) > f_{G', k, j, T} (m) \); take such a \(m \), and denote \(f_{G', k, j, T} (m) \) by \(n \). By the definition of \(f_{G', k, j, T} \), there is an \(i \) such that for all \(t \in T \), there is \(s \supseteq t \) such that \(\tau (s, m) \leq n \) and \(s \setminus t \) is a subset of the intersection of \(G' \) and \(B_i \). In particular, \(\min (s \setminus t_i) > \max (t_i) \geq a \), \(s \setminus t_i \subseteq B_i \cap G' \), and \(\tau (s, m) \leq n \). Thus \(s \setminus t_i \subseteq \omega \setminus H_i \), from which we have \(g_{t_i, \omega \setminus H_i}^\beta (m) \leq n < f_\alpha (m) \), contradicting the choice of \(m_0 \).

This completes the construction of \(G_{\beta+1} \) from \(G_{\beta} \), and hence the proof of Theorem 6.

We are now ready for the consistency of \(b < a \). Recall from the beginning of this section that our ground model \(V \) satisfies \(c = \lambda \) is regular, \(2^\lambda = \lambda^+ \), and \(\langle f_\alpha : \alpha < \lambda \rangle \) is unbounded \(\langle \cdot \rangle^{\omega} \)-well-ordered.

THEOREM 12. There is a ccc forcing \(\mathbb{P} \) such that

\[\models_{\mathbb{P}} b = \lambda^+ \text{ and } \langle f_\alpha : \alpha < \lambda \rangle \text{ is still unbounded.} \]

In particular, \(b \leq \lambda < \lambda^+ = a \) is consistent.

PROOF. Perform a finite support iteration of orderings of type \(\mathbb{P}(\mathcal{A}) \) of length \(\lambda^+ \), going through all (names for) mad families along the way by a bookkeeping argument (this is possible by the assumption \(2^\lambda = \lambda^+ \)). The unboundedness of \(\langle f_\alpha : \alpha < \lambda \rangle \) is preserved in the successor step of the iteration by Theorem 6 and in the limit step, by standard preservation results.
REFERENCES

[1] Andreas Blass, Tapani Hyttinen, and Yi Zhang, Mad families and their neighbors, preprint.

[2] Jörg Brendle, Mob families and mad families, Archive for Mathematical Logic, vol. 37 (1998), pp. 183–197.

[3] Osvaldo Guzmán, Michael Hrušák, and Arturo Antonio Matínez, Cанjar filters, preprint.

GROUP OF LOGIC, STATISTICS AND INFORMATICS,
GRADUATE SCHOOL OF SYSTEM INFORMATICS,
KOBE UNIVERSITY
ROKKO-DAI 1-1,
NADA, KOBE, 657-8501
JAPAN
E-mail: brendle@kurt.scitec.kobe-u.ac.jp
E-mail: andrewbt@kurt.scitec.kobe-u.ac.jp