Route selection of an ambulance considering the disease or injury of a patient

Takahiko ONO*1, Soichiro YOSHIMURA*2 and Yuki SHIMIZU*3

*1-*3 Graduate School of Information Sciences, Hiroshima City University
3-4-1 Ozuka-higashi, Asa-minami-ku, Hiroshima-shi, Hiroshima 731-3194, Japan

Abstract
To improve patient safety in ambulance transport service, this paper proposes a new method for finding an optimal route of an ambulance depending on the disease or injury of a patient. Three transport cases are considered in this paper: Heart disease (HD), hemorrhagic cerebrovascular accident (HCV A) and fracture/dislocation (Fx/dx). The route optimality is measured with three evaluation functions. The first function evaluates an elapsed time from the scene of an emergency to a hospital. The second evaluates a blood pressure variation induced by the acceleration/deceleration motion of an ambulance. The third evaluates a compression load acting on the back of a patient due to the centrifugal force. They are calculated by applying the traveling model of an ambulance to the three-dimensional road network. The optimal route is selected in two stages. First, the candidate routes are found by solving the multiobjective optimization problem of minimizing the three evaluation functions. If the completely optimal solution (route), which minimizes the three functions simultaneously, is found, the selection process is finished. Otherwise, obtain the Pareto solutions to go to the second stage, in which a preference solution is selected from the Pareto solutions depending on the disease or injury of a patient. In the numerical example, the route selection is shown for HD, HCV A and Fx/dx. For the reference sake, the real routes of the ambulance recorded in Hiroshima City and the shortest routes obtained by Google Maps Navigation are also presented and compared to each other.

Keywords: Route optimization, Path search, Ambulance, Multiobjective optimization, Genetic algorithm

1. 緒 言

急救車による搬送では、病院への早期到着といった迅速性と、傷病者の容態を悪化させないといった安全性が求められる。後者の安全性を阻害する要因の一つに、慣性力がある。加速減速時に生じる前後方向の慣性力は、傷病者の血圧を強制的に変動させるため、脳血管障害の場合には、再出血を引き起こしかねない（佐川他，1993；鈴木他，2002；小野，吉栖，2017）。また、カーブ通過時や交差点右左折時に生じる左右方向の慣性力、いわゆる遠心力は、傷病者をストレッチャーのマットやサイドバーに押しつけるため、骨折や脱臼の場合には、転位や激痛を与える。安全性より一層の向上のためには、このような慣性力への対策が重要となるが、活用可能な手段はいくつかある。例えば、ストレッチャーの姿勢角が変わるアクティブ制御ヘッド（Ono and Inooka, 2009）や振り子式防振架台（桑田他，2011）のように、慣性力と重力の相殺効果を利用して悪影響を軽減するシステム

No.20-00223 [DOI: 10.1299/transjsme.20-00223]
*1 正員，広島市立大学大学院情報科学研究科（〒731-3194 広島県広島市安佐南区大塚東3-4-1）
*2 広島市立大学大学院情報科学研究科（現 日本無線（株）デンソーティ）
*3 広島市立大学大学院情報科学研究科（現 日本無線（株））
E-mail of corresponding author: ono@hiroshima-cu.ac.jp

© The Japan Society of Mechanical Engineers
や、過度な加速度を検知した際に機関員に報知することで、慣性力を小さく抑える運転へと改善を促す報知システム（山岸，猪岡，2005；小野，牧野，2016、車両間通信または車両間通信を活用して、救急車のスムーズな走行を支援する緊急車両走行支援システム（南他，2014）が挙げられる。ところで、慣性力自体は、救急車の加速度運動で生じるものであることから、搬送経路の選択においても影響される。極端な例として、直線的に停止することなく走行できる経路と、信号機交差点で何度もストップ・アンド・ゴーを繰り返す経路を比較すれば、影響度の違いは容易に理解できるよう。経路が変われば、搬送時間も変わることから、経路選択は迅速性と安全性のいずれにも影響を与える。よって、経路の最適化が、救急搬送の質向上の有力な手段になる可能性がある。

救急車の経路は、道路事情（法定最高速度、標記、路面状態、道路線形、起伏、信号機設置数など）や交通事情（渋滞や工事）に基づき、救急隊員の経験から組合的に判断していると考えられる。多くの場合、病院への短期到着を重視して、最短距離で到着可能な経路を選定していると考えられるが、したがって、傷病者に慣性力の影響が異なるため、それも考慮している場合もある。例えば、血圧変動が伴う急性に発症した例で、出血性脳卒中の場合は、最短距離で到着できなくても、ストップ・アンド・ゴーの少ない経路を選ぶためのものかもしれない。慣性力を考慮した経路選定は、現状では救急隊員の経験に依存せざるを得ないが、傷病ごとにその影響を測る指標を設けることができれば、コンピュータを利用して選定できる。これが実現できれば、経路計の効かない管轄外での搬送や、将来的に実現の可能性もあるが、救急車の自動運転での活用も期待できる。

そこで本論文では、救急搬送の迅速性と安全性の向上を図る新しいアプローチとして、傷病を考慮した搬送経路の選定法を提案する。搬送患者の傷病が多岐にわたるが、搬送時間と慣性力が大きく影響すると考えられる心疾患、出血性脳卒中、骨折・脱臼を対象とする。経路の適正化は、搬送開始地点から病院までの搬送時間、血圧変動、背中むか強さに関する3つの指標を評価する。これらの指標は、道路網を用いたネットワーク上を、救急車が走行するモデル（小野，2019）に従って進行するという条件下で計算する。経路は、2段階で選定する。第1段階では、各指標を用いて施行するように、経路の候補を探索的手法を求め、3つの指標を同時に最小化する経路が選ばれる。これにより、経路として確定させ、選定過程を終了する。搬送開始地点と病院との位置関係によっては、完全な経路が存在しないことがある。この場合、パレート最適となる経路を候補として複数出し、第2段階に進める。第2段階は、選定順を選定するため、傷病ごとに本論文独自の基準を経路を一つに絞込む。なお、本提案は、本質的には、搬送時間、傷病の特性、左右慣性力の影響を考慮した経路選定法である。よって、これら3要素の影響を強く受ける傷病であれば、幅広く適用可能と考えられる。

本論文の構成は、以下の通りである。第2節では、経路の選定法を述べた後、選定方法を示す。第3節は、経路の選定方法を用いた提案法を示し、実際の救急車の経路と Googleマップナビによる経路も示し、比較検討を行う。第5節で、数値例の結果を考察する。第6節で、本論文をまとめめる。

2. 傷病を考慮した搬送経路の選定法

2.1 経路の選定方法

心疾患、出血性脳卒中、骨折・脱臼による搬送を対象として、経路の選定方針を与える。いずれの傷病であれ、救急車の到着の及ぼす影響を考慮し、より適正な経路を選定することを目的とする。本報では、救急車が到着するまでの間、出血性脳卒中に関わらず、再出血のリスクを減らすために、慣性力をも考慮した経路の選定法を提案する。実際の救急車の経路と Googleマップナビによる経路も示し、比較検討を行う。第5節で、数値例の結果を考察する。第6節で、本論文をまとめめる。
や救急隊員と付添者の影響も考慮し、第 2 方針まで合致するように、探究的手法で経路を選定する。

2.2 救急車の走行シミュレーション

経路探索は、救急車の走行を模擬しながら実行する。その環境を説明する。図 1 に示すように、道路網が緯度、経度、標高に基づいて形成される 3 次元ネットワークで表現される。図中でノード（白丸）が交差点、リンク（直線）が道路に対応しており、一部のリンクには、道路線形を表す補間点（黒点）が設けられている。ノードには、固有番号、緯度、経度、標高、信号機の有無の情報が与えられている。リンクには、リンク長と法定最高速度が与えられている。補間点には、固有番号、緯度、経度、標高が与えられているとする。搬送開始地点（始点）から搬送先病院（終点）までの経路の表し方として、経路上にあるノードを通過順に並べたノードベクトル \(N \) で表す方法と、ノードと補間点を通過順に並べた通過点ベクトル \(\tilde{N} \) で表す方法を用いる。

\[
N = [N(1), N(2), N(3), \ldots, N(I_{\text{end}})]^T
\]
\[
\tilde{N} = [\tilde{N}(1), \tilde{N}(2), \tilde{N}(3), \ldots, \tilde{N}(I_{\text{end}})]^T
\]

\(N \) と \(\tilde{N} \) のインデックス集合を、それぞれ \(I \) と \(\tilde{I} \) と表記する。すなわち、

\[
I = \{1, 2, 3, \ldots, I_{\text{end}}\}
\]

\[
\tilde{I} = \{1, 2, 3, \ldots, \tilde{I}_{\text{end}}\}
\]

例えば、図 1 の赤線の経路では、\(N = [1, 5, 4, 7, 9]^T, \tilde{N} = [1, 151, 152, 5, 4, 7, 9]^T, I = \{1, 2, 3, 4, 5\}, \tilde{I} = \{1, 2, 3, 4, 5, 6, 7\} \) となる。また、\(N(i) \) と \(N(i+1) \) を結ぶリンクを \(E(i) \)、\(\tilde{N}(j) \) と \(\tilde{N}(j+1) \) を結ぶリンクの一部を \(E(j) \) と表す。\(\tilde{N}(j) \) を通過する際の方位角偏差 \(\tilde{\theta}(j) \) [rad] は、図 2 のように、\(E(j-1) \) の延長線と \(E(j) \) の先端角度として定義し、符号は上空から見て反時計回りを正とする。\(E(j) \) の道路勾配は、一定であるとする。

救急車は、上記の道路ネットワーク上を走行モデル（小野，2019）に従って移動すると仮定する。走行モデルは、以下の 5 項目からなる。

(C1) ノード通過時の方位角偏差が 60 度以上あれば右折または左折と見なし。これ未満は直進と見なし。
(C2) ノード間の走行状態は、1.1 m/s² の等加速走行、等速走行、−0.5 m/s² の等減速走行のいずれかに限る。
(C3) リンクに与えられている法定最高速度が 30, 40, 50, 60 km/h のいずれかであるとき、そのリンクにおける救急車の最高速度を、それぞれ 20.5, 37.8, 45.4, 71.7 km/h とする。可能な限り、この速度で走行し、これを超えはならない。
(C4) 信号機のあるノードを直進通過する場合は、信号機の灯火色を問わず、速度は 27.0 km/h 以下に制限される。
原則, この速度で通過するが、それができない場合に限り、これ未満的速度で通過する。

(C5) 信号機の有無によらず、ノードで左折する場合には、速度は1.5 km/h 以下に制限される。原則、この速度で右左折するが、それができない場合に限り、これ未満的速度で右左折する。

このモデルに基づいて時間-速度線図を例示すると、図3のようになる。

2.3 評価関数

病院への早期到着、血圧変動、背面圧迫を、それぞれ以下の(i)〜(iii)に示す関数 $J_q(N)$ ($q = 1, 2, 3$)で数値的に評価する。これらは、図3のような時間-速度線図と道路勾配に基づいて計算されるが、具体的な計算方法は、文献（小野，2019）を参照された。

(i) 搬送時間: 経路Nに対して、各リンク$E(i)$の通過時間を$T(i)$ [s]とする。始点から終点までの$T(i)$の総和を搬送時間$J_1(N)$とする。すなわち、

\[
J_1(N) = \sum_{i=1}^{I_{end}} T(i) \quad [s]
\]

$J_1(N)$の値が小さいほど、迅速性が高いことを意味する。

(ii) 血圧変動: 血液は、心臓を起点として足頭方向に循環している。車両の加速減で慣性力が生じると、仰臥位の姿勢では、その作用方向と血液の体循環方向が一致するため、血圧が変動する。坂道を走行する場合も重力の一部が足頭方向に割り込むため、同様な現象が起きる。この血圧変動の度合いを次式で数値化する。

\[
J_2(N) = \int_0^{I_{end}} |y(t)| dt \quad [mmHg \cdot s]
\]

ここで、$y(t)$ [mmHg]は平均血圧の安定時からの増減量を表し、以下のモデル（小野、牧野、2016）から推定する。

\[
y(t) = \begin{cases}
5.15a_2(t) \quad (a_2(t) \geq 0) \\
4.03a_2(t) \quad (a_2(t) < 0)
\end{cases}
\]

$a_2(t)$ [m/s²]は、被搬送者の足から頭の方向にかかる加速度であり、車両の加減速で生じる慣性加速度と道路勾配に起因する重力加速度成分の和として与えられる。式 (7) は、脳内動脈圧の変動を捉えることを目的に作られており、図4のように、仰臥位で頭部の横に置いた左手指尖の平均血圧の安定時からの変動量を推定する。平地で赤信号交差点に進入する時に、車両が減速して、傷病者の足から頭の方向に加速度が作用すると、$y(t) > 0$（血圧上昇）となる。加速しながら交差点を抜けて、頭から足方向に加速度が作用すると、$y(t) < 0$（血圧下降）となる。$J_2(N)$の値が小さいほど、血圧変動の影響が小さいと解釈する。

(iii) 背面圧迫: 救急車が交差点を右左折またはカーブを走行すると、遠心力の影響で傷病者の後背面遠心側がストレッチャーマットに押しつけられる。本来、マットからの圧迫荷重は後背面全体にかかるが、図5のように、これ
2.4 経路選定

評価関数 \(J_q (q = 1, 2, 3) \) を用いて、経路選定の第 1 方針と第 2 方針をまとめて記述すると、次のようになる。

- 心疾患 : \(J_1, J_2, J_3 \) がより小さい経路の中で、特に、\(J_1 \) が小さい経路を選定
- 出血性脳卒中 : \(J_1, J_2, J_3 \) がより小さい経路の中で、特に、\(J_1 \) と \(J_2 \) が小さい経路を選定
- 骨折・脱臼 : \(J_1, J_2, J_3 \) がより小さい経路の中で、特に、\(J_1 \) と \(J_3 \) が小さい経路を選定

\(J_1, J_2, J_3 \) を同時に最小にする経路が存在すれば、どの病状に対しても選定方針が満たされる。このような完全最適な経路を得ることが理想的である。しかし、始点と終点の位置関係によっては、完全最適な経路が存在しないことがある。例えば、\(J_1 \) を下げようすると、\(J_2 \) が増大するといった \(J_q \) 間で競合が起きる場合である。この場合にも対応できるように、多目的最適化の一種であるパレート最適化の枠組みに当てはめて経路を求める（Haupt and Haupt, 2004）。この枠組みでは、経路の優劣は \(J_q \) そのもので評価され、バランスの異なる \(J_1, J_2, J_3 \) を持つ理想に近い複数の解（パレート解）を求めたのち、最終的に解を 1 つに絞り込む。線形加和重などにより単一目的関数に作り直し優劣を比較することがないため、異なる単位やスケールを持つ複数の評価関数を最適化する場合に都合よい。最適化の手順は、パレート解の獲得と選好解の選定の 2 段階で行う。以下、順に説明する。

第 1 段階では、上記方針の前半部分に当たる \(J_1, J_2, J_3 \) をより小さくする経路を、パレート解として求める。すなわち、以下の (I)(II) を同時に満たす \(N^* \) が存在しないような経路 \(N^* \) として求める。

\[
(\text{I}) \quad \forall q \in \{1, 2, 3\} : J_q(N) \leq J_q(N^*)
\]

\[
(\text{II}) \quad \exists q \in \{1, 2, 3\} : J_q(N) < J_q(N^*)
\]

もし、\(N^* \) が唯一に存在すれば、各 \(J_q(N^*) \) は同時に最小となる。つまり、この方法では、完全最適な経路を得ることもできる。完全最適な経路が得られた場合、これが求める経路となり、経路選定は終了する。得られなかった場合には、第 2 段階へと進む。

第 2 段階は、上記方針の後半部分の選定過程に当たる。第 1 段階で、パレート解である経路 \(N^* \) が \(m \) 個得られ

\[
\begin{align*}
J_3(N) &= \sum_{j \in \{1, 1 \} \in \theta} |\bar{v}(j)\bar{\theta}(j)| \quad [(\text{m/s}) \cdot \text{rad}] \\
\bar{v}(j) \text{ [m/s]} &= N(j) \text{における通過速度である。} J_3(N) \text{の値が小さいほど、背面圧迫の影響が小さいと解釈する。}
\end{align*}
\]
たと仮定し、その集合を N^* としよう。

$$N^* = \{N_1^*, N_2^*, \ldots, N_m^*\}$$ \hfill (11)

N^* の中には、J_1, J_2, J_3 のバランスが悪い経路が含まれることがある。例えば、大きく遠回りすることで左右折の回数は減るが、時間がかかる経路である。このような経路では、J_3 は小さいが、J_1 は大きい。いずれの状況でも、J_1 が小さいことが求められることから、J_1 が大きな経路は除外すべきである。本論文では、J_1 に上限を設けることで、これに対処する。N^* 内の経路の中で、J_1 の最小値を x [s] としよう。すなわち、

$$x := \min_{N^*} J_1(N^*)$$ \hfill (12)

J_1 の上限は、図 6 の $h(x)$ に対して、$x + h(x)$ で与える。$h(x)$ は、x からの最大猶予時間に当たる。経路の選択自由度を下げすぎず、かつ早期到着性を損なわないように、10 分までは一律 1 分、30 分までは x の 0.1 倍、30 分以上は一律 3 分として設定した。この上限に対して、$J_1(N^*) \leq x + h(x)$ を満たす経路は残し、これ以外は除外する。心疾患、出血性脳卒中、骨折・脱臼に対して、最終的に求める経路をそれぞれ N_1^1, N_2^1, N_3^1 とする。選定方針の後半部分を満たすように、これらを式 (13) で決定する。

$$N_i^1 = \arg\min_{N^*} J_i(N^*) \text{ s.t. } J_i(N^*) \leq x + h(x) \quad (i = 1, 2, 3)$$ \hfill (13)

この場合、心疾患に対する経路 N_1^1 については、J_1 を最小にする最短時間経路に等しくなる。

3. GA による経路探索

本節では、経路選定の第 1 段階で求めるパレート解集合 N^* の求め方を示す。救急車の走行モデルでは、ノードを直進するか右左折するかにより、ノードでの通過速度 $v(j)$ が変わる。そのため、式 (5) の $T(i)$, 式 (6) の $y(i)$, 式 (8) の $v(j)\theta(j)$ をリンクごとに計算すると、それらの値は、直接にどのリンクを経由したかによって変わる。つまり、図 1 の道路ネットワークは、動的ネットワークとなる。この場合、ダイクストラ法のような静的ネットワークに対する経路探索法は適用できない。そこで、GA を用いた N^* の求め方を示す。なお、GA には、様々なバリエーションがある（橘垣他, 1999; Haupt and Haupt, 2004; Chakraborty et al., 2005; Chiu, 2010; 原他, 2006; Cui et al., 2007）。以下に示す手順は、その一例である。
式(1)で表された経路 N を1つ個体として扱う。この場合、ノードの固有番号 $N(i)$ が遺伝子となる。経路ごとに通過ノードが異なるため、個体の遺伝子長は可変となる。1世代につき M 個の個体で集団を形成し、1番目の個体を $N_1(i=1,2,...,M)$ と表す。この集団に対して、以下のStep1〜Step6の操作を行い、最大世代数 Q に達するまで進化させながら、N^* を求める。

Step 1：初期集団の生成
どの場合でも、J_1 を小さくすることが求められる点を考慮し、J_1 が小さい多様な経路が数多く含まれるように初期集団（第1世代）を生成する。その方法として、動的ネットワークと同じトポロジーを持つ M 種類の静的ネットワーク $G_k(i=1,2,...,M)$ を用いて、初期経路探索を行う。

1番目のネットワーク G_1 は、通過時間をリンクコストとする静的ネットワークである。通過時間は、リンク長をそのリンクの法定最高速度で除した値として与える。一般に、法定最高速度が30 km/hの道路（以下、30 km/h道路と略す）は幅員が狭いため、このような道路を通過する経路は現実的ではない。現実性の低い経路を集団から外しておくと解の早期収束が期待できる。そこで、30 km/h道路のリンクコストを過大に設定し、30 km/h道路が選択されにくくする。初期集団の1番目の個体 N_1 は、G_1 にダイアストラ法を適用して、始点から終点までの最短時間経路として与える。N_1 は、本来の動的ネットワークに対して、J_1 を最小にする経路の候補となるものである。30 km/h道路のリンクコストを過大に設定したので、N_1 に30 km/h道路が含まれる確率は低くなる。初期集団の2番目以降の個体 $N_k(i=2,3,...,M)$ については、G_{k-1} 内の経路 N_{k-1} と一致する全リンクに対して、そのリンクコストを1〜2倍の範囲でランダムに増幅させたネットワークを G_k と定義し、これに対して始点から終点までの最短時間経路として与える。この手続きを繰り返し、M 個の初期集団個体を生成する。結果として、N_1 を中心にして、それを取り囲む巡回路のような個体が多数生成される。G_1 については、この後にも使用するので保存しておく。また、パレート解 N^* の候補を格納する空集合 P を用意する。

Step 2：適応度の計算とエリート個体の保存
式(9)(10)を満たす N と N^* が存在するとき、N は N^* を支配していると言う。いま、N_i が支配している個体が D_i 個あるとする。このとき、N_i の適応度 F_i を、N_i が支配している全ての個体 N_j に対して、それらが同じ D_j の総和として与える。N_i がパレート解であれば、$F_i = 0$ となる。そうでなければ、$F_i > 0$ となる。この F_i の値でパレート解であるかを判定する。また、J_1〜J_M をそれぞれ最小にする3つの個体をエリート個体と定義し、これらは選別保存する。

Step 3：交又
次世代に継承する個体の割合（選択率）を $r_x (0 < r_x < 1)$ とする。すなわち、$r_x M$ 個の個体が次世代に継承する。残りの $(1-r_x) M$ 個は、選択された個体どうしの交又して新たに生成する。継承される個体は、適応度 F_i を利用してランキング方式で決定する。交又は、継承される個体群の中からランダムに2つの個体 N_i と N_j を選択し、これに基づいて、以下の2種類のいずれかの方法で行う。ひとつは、1点交又である（図7）。N_i と N_j が共通したノードを持つ場合、その中からランダムに1つ選び、それ以降の経路を入れ替えて、2つの新しい個体を生成する。もう
Fig. 8 単点カロスと接続。親の個体に対してランダムに交差点を一つ選ぶ。このときに、親の個体の2つの分岐点を選び、その間に新しいリンクを生成する。このようにして、新しい順路を作成することができる。親の個体の順路を変更した順路と、変更前の順路を用いて、親の個体の順路と接続点を決める。

Fig. 9 マルチネイティブと順路の変更。親の個体に対してランダムに2つのノードを選び、その間に新しいリンクを生成する。このようにして、親の個体の順路を変更した順路と、変更前の順路を用いて、親の個体の順路を変更することができる。
Step 6：終了判定

現世代が最終世代（第 Q 世代）でなければ、Step 5 終了後の集団を次世代集団として扱い、Step 2 に戻る。最終世代であれば、終了する。集合 P の個体に対して、適合度 F を求める。$F = 0$ の個体を見つけ出し、これらをパレート解集合 N^* とする。

なお、最大世代数 Q は、$N_i^* (i = 1,2,3)$ が収束するように設定する。例えば、各世代で得られたパレート解が集合 P に追加される点に着目し、各世代の最終段階で、P に含まれる経路から暫定的に N_i^* を求め、世代間でそれらの更新が起こる十分な世代数として設定すれば良い。この場合、予備的な探索を経て Q を設定することになる。これとは別に、Q を固定化せず、探索中に N_i^* の収束状況をモニタし、収束しているければ Q を減らし、収束していないければ Q を増加させるといった方法も適用できる。また、上記の Step 1～Step 6 を 1 サイクルとし、これを何サイクルか繰り返して、各サイクルで得たパレート解から N^* を求めてもよい。この場合、各サイクルで静的ネットワーク G_i がリセットされるため、異なる初期経路集団から探索が開始される。その結果、より多様なパレート解が得られる可能性がある。

4. 数値例

心疾患、出血性脳卒中、骨折・脱臼に対する選定例を示す。比較対象として、2011 年に広島市で記録した救急車の実経路を示す。始点と終点は、この実経路を含む。実経路に対しては、傷害者の名前と病院到着後の医師の初診による重症度を記載する。これらは消毒局から提供されたデータである。また、Google マップナビ（以下、Google と略す）で探索した最短経路も同時に示す。この探索は、救急車の実経路を記録した日時に関わって行った。複数の経路が提示された場合は、到着予想時間が最短の経路のみを取り上げる。

道路ネットワークは、住友電気工業の全国デジタル道路地図データベースを用いて構築した。ただし、法定最高速度が完全には登録されていなかったため、始点と終点の周辺およびその 2 点間で経路の一部となりそうな速度未登録リンクに対しては、Google ストリートビューで道路標識を読み取り、手作業で速度情報を探求した。それ以外の速度未登録リンクは、住宅街の道路や基本道路（幅員 5.5 m 以上の道路）への接続路に当たる狭い道路が多かったことから、30 km/h を割り当てた。ノードおよび補助点の標高は、Google Maps Elevation API を利用して取得した。経路選定の第 1 段階で求めるパレート解集合 N^* は、第 3 節の GA を適用して取得した。実行条件は、1 世代当たりの個体数 $M = 50$、選択率 $r_s = 0.5$、突然変異率 $r_m = 0.3$、最終世代 $Q = 50$ である。これを 1 サイクルと見なし。パレート解を漏れなく見つけるために、合計 10 サイクル実行して、各サイクルで得たパレート解から N^* を求めた。各病院に対する最終経路 $N_i^* (i = 1,2,3)$ の選定は、式 (13) に従った。緊急走行中の救急車は、通行方向の規制が免除されているので、一方通行道路でも逆走できるが、本例題では逆走は認めないこととした。

図 10 に、心疾患に対する結果を示す。この図は、平圧直角座標系に経路をマッピングし、始点と原点と一致するように平行移動させたものである。赤の実線が、本手法で得た心疾患に対する経路 N_1^* である。灰色の太線が心不全（中等症）で搬送された救急車の実経路であり、水色の太線が Google による経路である。緑と青の実線は、参考値として記載した経路であり、それぞれ出血性脳卒中に対する経路 N_2^* と骨折・脱臼に対する経路 N_3^* である。白の丸印は、N_1^* 上にある信号機交差点を示す。表 1 は、各経路に対する評価関数 J_1 ～ J_3 の値を示す。実経路の J_i の括弧内の値は、始点から終点までに要した実際の時間から、交差点等で停止していた時間を差し引いた走行時間を表す。Google の J_i の括弧内の値は、Rout ポーター結果と同時に提示される到着予想時間を示す。どの経路も、見かけ上、経路自体は大差はない。ただし、最小化すべき J_i については、N_1^* は実経路よりも 14%（約 2 分）短く、Google よりも 2%（12 秒）短い。N_2^* と実経路に大きな差が見られるが、これは次の理由による。図 10 の $(y,x) = (6,0)$ 付近は、高架道路の下部に一般道（下道）が並走している。N_1^* と実経路とも、始点から $(y,x) = (6,0)$ までは同じであるが、N_1^* は直線走行を引き続き高架道路である一方、実経路は下道を切られpt より短い。この切り替え地点から終点までに通過する信頼性交差点の数は、N_1^* では 5 個、実経路では 15 個である。走行モデルでは、信頼性交差点を通過する際、一旦減速するため時間をロスする。N_1^* の方が J_1 が小さいい理由は、この通過する信頼性交差点が少ないことによる。

図 11 と表 2 に、出血性脳卒中に対する結果を示す。緑の実線が、本手法で得た N_2^* である。灰色の太線は、脳血管障害（中等症）で搬送された救急車の実経路である。N_1^* と N_2^* は、参考までに記載した J_i の値から、どの
経路も搬送時に差はない。一方，J_2については，N_2^i は実経路よりも13%小さく，Google よりも5%小さい値となった。

図12と表3に，骨折・脱臼に対する結果を示す。骨の実線が，本手法で得た N_2^i である。灰色の太線は，前腕骨骨折（中等症）で搬送された救急車の実経路である。N_1^i と N_2^i は，参考までに記載した。N_1^i と実経路では，大きく異なる結果となった。N_3^i は，全て下道である。実経路は，図12の $(y,x) = (2.5, 2.9)$ から $(y,x) = (6, 3)$ の区間は，高架区間を含む法定最高速度60 km/hの国道バイパスとなっている。実経路と比べると，N_3^i の J_1 は5%（48秒）短く，J_3 は45%も小さい。一方，N_3^i とGoogleの経路は，似た結果となった。Googleの経路に対して，N_3^i の J_1 は2%（14秒）長が，J_3 は7%小さい。

5. 考察

数値例から，現実的な道路網に対して，提案法が適用できることが確認できた。本節では，実経路およびGoogleの経路と比較しながら，提案法の有効性と検討課題について述べる。また，実経路を記録した救急車が所属する消防署から，推測される実経路の選定理由，およびN_3^i とGoogleの経路の妥当性についても意見を収集したので，それらも示す。

図10の心疾患に対しては，最小化すべき J_1 の値から，N_1^i とGoogleの経路は，ほぼ同等と考えて良かろう。一方，実経路と比較すると，N_1^i の方が約2分早く到着可能といった優位な結果となった。心疾患では，早期到着が
Fig. 11 Example of routes for the hemorrhage cerebrovascular accident (HCVA). The green line shows the route \(N_2 \) which was selected for HCVA by the proposed method. The thick gray line is the real route of the ambulance for the case of cerebrovascular accident. The thick cyan line is the shortest route obtained by Google Maps Navigation. The red and the blue lines show \(N_1 \) and \(N_3 \), respectively, which are just for reference. The white small circles indicate the intersections with traffic lights on \(N_i \).

Table 2 Evaluation function values for the routes in Fig. 11. Each route has almost same value of \(J_1 \), but \(N_2 \) has much smaller value of \(J_2 \) than the real route. The parenthesized value of \(J_1 \) for the route of the ambulance is the pure traveling time calculated by subtracting the stop time from the whole time taken to move from the start point to the hospital. The parenthesized value of \(J_1 \) for the route of Google Maps Navigation is the estimation time shown together with the shortest route.

Route Description	\(J_1 \) [s]	\(J_2 \) [mmHg·s]	\(J_3 \) [(m/s)·rad]
\(N_1 \) (HD)	257	613	69
\(N_2 \) (—)	257	613	69
\(N_3 \) (—)	258	647	25
Real route of the ambulance (—)	259 (283)	704	59
Google Maps Navigation (—)	258 (300)	647	25

重要視される。鈴川ら (2006) は、急性心筋梗塞の重症例において、覚知時刻から病院収容時刻までの時間 \(t \) [min] と入院後 30 日目の自宅退院率 \(y \) が、\(y = 2.9619 \exp(-0.07t) \) で関係付けられ、\(t \) の短縮により、\(y \) を向上できることを示した。本例は中等症の例であるが、仮に、この重症ケースに当てはめてみる。本例では、覚知時刻から現場発時刻まで 22 分要している。これに、表 1 の \(J_1 \) の値を加算して、\(N_1 \) で \(t = 34 \)、実経路を 2 分遅れの \(t = 36 \) として \(y \) を求めると、\(N_1 \) を選択した場合、自宅退院率は約 3% 向上する。ストレッチャーに寝ている時間が長いほど、慣性力や振動で体に負担がかかり、2 分の短縮は早期回復への効果が期待できる。実経路が 2 分遅い理由は、途中で高架道路から下道に移ったことによるが、下道に降りた理由として、消防署からは、高架道路前方での渋滞が挙げられた。高架道路の終点付近は幅員が狭く、通過時刻（午前 9 時 30 分頃）は渋滞が発生する可能性が高い場所である。渋滞に遭遇した場合、高架道路では経路を変更できないが、下道では変更できるため対処しやすい。よって、救急隊長の経験的な判断で、渋滞回避のために、前もって下道に移動した可能性が高いとの推測であった。しかし、別な救急隊長によっては、または渋滞が起きにくい時間帯であれば、\(N_1 \) は Google と同様に高架道路の終点まで進むとのことである。\(N_1 \) の妥当性については、\(N_1 \) の最短の左折地点から病院に向けて北上する区間が住宅街に面しているため、サイレンによる騒音問題が危惧されること、また、Google の経路の方が車線数が多いため、交通事故に遭う危険性が低いという理由から、Google の方が現実的であるとの見解であった。

図 11 の出血性脳卒中に対しては、\(N_1 \) を他の 2 つの経路と同程度に維持しつつ、できるだけ小さく抑えたい \(J_2 \) は、実経路と Google の経路より 5%以上小さく改善した。鈴木ら (2002) は、脳動脈瘤再破裂症例の報告において、救急隊到着時の平均収縮期血圧が、再破裂の場合で 216.6 mmHg、再破裂の場で 164.6 mmHg と有
Fig. 12 Example of routes for the fracture and/or dislocation (Fx/dx). The blue line shows the route N_1^d which was selected for Fx/dx by the proposed method. The thick gray line is the real route of the ambulance for the case of Fx. The thick cyan line is the shortest route obtained by Google Maps Navigation. The red and the green lines show N_1^d and N_2^d, respectively, which are just for reference. There is a big difference between N_1^d and the real route of the ambulance. The white small circles indicate the intersections with traffic lights on N_1^d.

Table 3 Evaluation function values for the routes in Fig. 12. The parenthesesized value of J_1 for the route of the ambulance is the pure traveling time calculated by subtracting the stop time from the whole time taken to move from the start point to the hospital. The parenthesesized value of J_1 for the route of Google Maps Navigation is the estimation time shown together with the shortest route.

Route	J_1 [s]	J_2 [mmHg·s]	J_3 [(m/s)-rad]
N_1^d (——)	791	1210	287
N_2^d (——)	843	1176	130
N_3^d (——)	869	1611	104
Real route of the ambulance (——)	917 (964)	1725	188
Google Maps Navigation (——)	855 (840)	1317	112

意に高かったことを示し、急激な血圧上昇を引き起こす行為を避けることが望ましいと述べている。仮に、このような再破裂のケースで J_2 が5%でも改善されれば、更なる出血や破裂のリスクを下げる効果はあると考えられる。実験路は、前半は N_1^d と一致しているが、途中で大きく分かれる。この理由として、消防署からは、大型交差点の通行の回避が挙げられた。N_2^d 上にある $(y,x) = (0.3, -0.8)$ 近傍の 2 つの信号機交差点は、国道を横切る大型交差点であり、交通量の多さから交通事故に遭うリスクがあり、かつ渋滞する可能性もある。そこで、この交差点の通行を避けるために、実験路を選んだ可能性があると推測された。ただし、ここを通ることもあるため、N_1^d 自体妥当であるとの見解であった。一方、Google の経路は、途中でアップダウンのある区間を通過するため、上下的揺れによる悪影響を考え、選択する可能性はないとのことである。

図 12 の骨折・脱臼に対しては、N_1^d は、実験路と比べると、J_1 を短縮し、できるだけ小さく抑えたい J_1 を 45% も小さく改善する。横揺れによる身体圧迫の影響を半減させる程度まで改善できるので、患部の痛みの軽減効果は大きいと考えられる。実験路は、途中から高架道路となる国道バイパスを通る。バイパス以降は、車線数および幅員とも十分であり、かつ直進のみで病院に到着できるため、交通事故に遭うリスクが低い。消防署からは、このような走行安全性の高さが選択理由として推測された。ただし、N_3^d または Google の経路を選択することもあり、双方妥当であるとの見解であった。なお、J_1 と J_3 のバランスを考慮すれば、N_2^d も適している。N_1^d の J_1 がやや大きいため、経路選定の第 2 段階において、図 6 の最大遭遇時間 $h(x)$ をもう少し小さくして、修正となる経路をより締め込んで良いと考えられる。

いずれの傷病でも、提案法により、実験路および Google と同等以上の迅速性と安全性を有する経路が得られた。
実経路と比べると、評価関数 J_p の値または経路自体に大きな差があった。この差は、実経路が、渋滞や走行安全
に関わる車線数、幅員、大型交差点での事故遭遇リスクも考慮して選ばれたことが原因と考えられる。消防署に
よれば、この他にも、道路規制、乗り心地に影響する路面の粗さや平坦性、サイレンによる騒音問題も考慮する
ことである。提案法では、これらの点は考慮していない。提案法は、慣性力の悪影響を軽減する経路選定を
可能にするものの、多角的な視点から総合的に選定するためには、上記への対応が必要である。

6. 結言

本論文では、心疾患・出血性脳卒中、骨折・脱臼による搬送を想定し、傷病ごとに救急車の搬送経路の選定法
を提案した。選定は、2段階で実行される。第1段階では、経路選定問題を、搬送時間、血圧変動、踏面圧迫に関
する3つの評価関数を最小化する多目的最適化問題として定式化する。すべての評価関数を同時に最小にする経
路が得られれば、これを完全最適な経路として選定し、経路選定はここで終了する。一方、完全最適な経路が得
られないときは、パレート解にして経路を選び、第2段階に入れる。パレート解を得る1つの方法として、GA
による導出法を示した。第2段階では、傷病ごとに選定方法を設け、パレート解の中から最終的な経路を1つに
絞り込む。対象例では、傷病ごとに選定例を示し、提案法による経路、救急車の実経路、Googleマップナビによ
る経路を比較した。選定のための前提条件が異なるため、厳密な比較はできないものの、同等以上の迅速性と安
全性を有する経路を得ることができ、提案法の実効性が示された。実経路との相違から、渋滞、走行安全性、路
面状態、サイレンによる騒音問題など、対応すべき点が残されていることが明らかになった。これらへの対応が、
今後の課題である。

謝辞

広島市消防局佐伯消防署との関係実、救急車の実経路の選定理由の推測および経路の妥当性評価に協力いた
した。また、JA広島総合病院地域救急救命センターの桜谷正明師匠には、搬送時間の上限を設定するにあたり、
参考となる貴重な意見を頂いた。ここに深く感謝の意を表します。

文献

鈴川勝彦、前原隆一、上津原真一、島弘志、有村敏明、高井隼人、藤本昭、救急車搬送患者の搬送時間と自宅退
院率の関係。日本救急医学会雑誌、Vol.17, No.3 (2006). pp.92–98.
Chakraborty, B., Maeda, T. and Chakraborty, G., Multiobjective route selection for car navigation system using genetic
algorithm, Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications
(SMCia/05) (2005), DOI: 10.1109/SMCIA.2005.1466971.
Chiu, C.S., A genetic algorithm for multiobjective path optimisation problem, 2010 Sixth International Conference on
Natural Computation (ICNC 2010) (2010), pp.2217–2222, DOI: 10.1109/ICNC.2010.5582429.
Cui, X., Li, Q. and Tao, Q., Genetic algorithm for pareto optimum-based route selection, Journal of Systems Engineering
and Electronics, Vol.18, No.2 (2007), pp.360–368, DOI: 10.1016/S1004-4132(07)60099-1.
原健太、塚原壮一、狩野均、曾田敏弘、黒河久、多目的遺伝的アルゴリズムを用いたカーナビゲーションのため
の予測経路探索、情報処理学会研究報告、ITS-24 (2006). pp.31–38.
Haupt, R.L. and Haupt, S.E., Practical Genetic Algorithms, 2nd ed., Wiley-Interscience (2004).
稲垣潤、長谷川美紀、北島秀夫、遺伝的アルゴリズムを用いた経路探索における複数経路候補の決定法、電子情
報通信学会論文誌、Vol.J82-D1, No.8 (1999), pp.1102–1111.
桑田勝義、大下裕樹、小島重行、小倉由美、藤田悦則、篠原正人、上野義雪、金子成彦、磁気ダンパを用いた救
急車用防振架台の開発、Dynamics & Design Conference 2011 (2011), 605.
南浩明、木下敦志、高木由美、太田彪、玉置久、都市部における車両間通信を用いた緊急車両通信用システム
に関する評価、電子情報通信学会技術研究報告、Vol.114, No.166 (2014), pp.19–24.
小野貴彦、病院への最適経路探索のための救急車の走行モデル、日本機械学会論文集、Vol.85, No.871 (2019).
DOI:10.1299/transjsme.18-00308.

© The Japan Society of Mechanical Engineers
Ono, T. and Inooka, H., Actively-controlled beds for ambulances, International Journal of Automation and Computing, Vol.6, No.1 (2009), pp.1–6.

Ono, T., Traveling model of an ambulance for finding optimal routes to a hospital, Transactions of the JSME (in Japanese), Vol.85, No.871 (2019), DOI:10.1299/transjsme.18-00308.

Ono, T., and Makino, Y., Drive training assistant system for ambulances to reduce blood pressure variation during deceleration, Transactions of the JSME (in Japanese), Vol.82, No.839 (2016), DOI:10.1299/transjsme.16-00039.

Ono, T. and Imada, R., Modeling of load variation on the back of supine persons induced by centrifugal acceleration during transportation by ground vehicles, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.78, No.787 (2012), pp.863–871.

References

Ayukawa, K., Maehara, J., Uetsuhara, K., Shima, H., Arimura, T., Takayama, H. and Fujimoto, A., The relationship between EMS transportation time and 30-day discharge rates for patients with severe disease, Journal of Japanese Association for Acute Medicine, Vol.17, No.3 (2006), pp.92–98 (in Japanese).

Ayukawa, K., Maehara, J., Uetsuhara, K., Shima, H., Arimura, T., Takayama, H. and Fujimoto, A., The relationship between EMS transportation time and 30-day discharge rates for patients with severe disease, Journal of Japanese Association for Acute Medicine, Vol.17, No.3 (2006), pp.92–98 (in Japanese).

Chakraborty, B., Maeda, T. and Chakraborty, G., Multiobjective route selection for car navigation system using genetic algorithm, Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications (SMCia/05) (2005), DOI: 10.1109/SMCIA.2005.1466971.

Chakraborty, B., Maeda, T. and Chakraborty, G., Multiobjective route selection for car navigation system using genetic algorithm, Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications (SMCia/05) (2005), DOI: 10.1109/SMCIA.2005.1466971.

Chiu, C.S., A genetic algorithm for multiobjective path optimisation problem, 2010 Sixth International Conference on Natural Computation (ICNC 2010) (2010), pp.2217–2222, DOI: 10.1109/ICNC.2010.5582429.

Cui, X., Li, Q. and Tao, Q., Genetic algorithm for pareto optimum-based route selection, Journal of Systems Engineering and Electronics, Vol.18, No.2 (2007), pp.360-368, DOI: 10.1016/S1004-4132(07)60099-1.

Cui, X., Li, Q. and Tao, Q., Genetic algorithm for pareto optimum-based route selection, Journal of Systems Engineering and Electronics, Vol.18, No.2 (2007), pp.360-368, DOI: 10.1016/S1004-4132(07)60099-1.

Hara, K., Tsukahara, S., Knoh, H., Sota, T. and Kurokawa, H., Route planning for car navigation systems using multi-objective genetic algorithm and predicted traffic, IPSJ SIG Technical Report, ITS-24 (2006), pp.31–38 (in Japanese).

Haupt, R.L. and Haupt, S.E., Practical Genetic Algorithms, 2nd ed., Wiley-Interscience (2004).

Haupt, R.L. and Haupt, S.E., Practical Genetic Algorithms, 2nd ed., Wiley-Interscience (2004).

Inagaki, J., Haseyama, M. and Kitajima, H., A method of determining various solutions for routing application with a genetic algorithm, The Transactions of the Institute of Electronics, Information and Communication Engineers, Vol.J82-D1, No.8 (1999), pp.1102–1111 (in Japanese).

Inagaki, J., Haseyama, M. and Kitajima, H., A method of determining various solutions for routing application with a genetic algorithm, The Transactions of the Institute of Electronics, Information and Communication Engineers, Vol.J82-D1, No.8 (1999), pp.1102–1111 (in Japanese).

Kuwata, K., Oshimo, H., Kojima, S., Ogura, Y., Fujita, E., Enokizono, M., Ueno, Y. and Kaneko, S., Development of vibration isolating bed for ambulance using magnetic damper, Dynamics & Design Conference 2011 (2011), 605 (in Japanese).

Kuwata, K., Oshimo, H., Kojima, S., Ogura, Y., Fujita, E., Enokizono, M., Ueno, Y. and Kaneko, S., Development of vibration isolating bed for ambulance using magnetic damper, Dynamics & Design Conference 2011 (2011), 605 (in Japanese).

Minami, H., Kitajima, M., Ueda, Y., Ohta, C. and Tanaka, H., Performance evaluation of V2V emergency vehicle warning system in urban area, IEICE technical report, Vol.114, No.166 (2014), pp.19–24 (in Japanese).

Minami, H., Kitajima, M., Ueda, Y., Ohta, C. and Tanaka, H., Performance evaluation of V2V emergency vehicle warning system in urban area, IEICE technical report, Vol.114, No.166 (2014), pp.19–24 (in Japanese).

Ono, T., Traveling model of an ambulance for finding optimal routes to a hospital, Transactions of the JSME (in Japanese), Vol.85, No.871 (2019), DOI:10.1299/transjsme.18-00308.

Ono, T. and Imada, R., Modeling of load variation on the back of supine persons induced by centrifugal acceleration during transportation by ground vehicles, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.78, No.787 (2012), pp.863–871 (in Japanese).

Ono, T. and Inooka, H., Actively-controlled beds for ambulances, International Journal of Automation and Computing, Vol.6, No.1 (2009), pp.1–6.

Ono, T. and Makino, Y., Drive training assistant system for ambulances to reduce blood pressure variation during deceleration, Transactions of the JSME (in Japanese), Vol.82, No.839 (2016), DOI:10.1299/transjsme.16-00039.
Ono, T. and Yoshizumi, M., Analysis of acceleration-induced blood pressure variation assumed in ambulance services, Estimation of difference between body portions, The Japanese Journal of Ergonomics, Vol.53, No.6 (2017), pp.195–204 (in Japanese).

Sagawa, K., Takahashi, T., Inooka, H. and Inooka, E., Modeling of the blood pressure variation at the deceleration of an ambulance, Japanese Society for Medical and Biological Engineering, Vol.31, No.2 (1993), pp.183–190 (in Japanese).

Suzuki, N., Kitsuta, Y. and Sugiyama, M., Rebleeding attack of the cerebral aneurysm at emergency scenes, Journal of Japanese Society for Emergency Medicine, Vol.5, No.3 (2002), pp.269–274 (in Japanese).

Yamagishi, Y. and Inooka, H., Driver assistant system for improvement of ride quality, Transactions of Society of Automotive Engineers of Japan, Vol.36, No.1 (2005), pp.241–246 (in Japanese).