Multifractal analysis of Birkhoff averages on ‘self-affine’ symbolic spaces

Julien Barral1 and Mounir Mensi2

1 Inria Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France
2 Faculté des Sciences de Monastir, 5019 Monastir, Tunisia

E-mail: julien.barral@inria.fr and mounirmensi@yahoo.fr

Received 4 February 2008, in final form 21 August 2008
Published 16 September 2008
Online at stacks.iop.org/Non/21/2409

Recommended by M Tsujii

Abstract
We achieve on self-affine Sierpinski carpets the multifractal analysis of the Birkhoff averages of potentials satisfying a Dini condition. Given such a potential, the corresponding Hausdorff spectrum cannot be deduced from that of the associated Gibbs measure by a simple transformation. Indeed, these spectra are, respectively, obtained as the Legendre transform of two distinct concave differentiable functions that cannot be deduced from one another by a dilation and a translation. This situation is in contrast to what is observed in the familiar self-similar case. Our results are presented in the framework of almost-multiplicative functions on products of two distinct symbolic spaces and their projection on the associated self-affine carpets.

Mathematics Subject Classification: 28A78, 28A80, 37D35, 37D40

1. Introduction

Let φ be a real-valued continuous potential defined on the one sided symbolic space A over a finite alphabet A of cardinality $|A| \geq 2$, endowed with the shift operation denoted σ and the standard metric. As usual the Birkhoff sums associated with φ are defined by $S_n \varphi = \sum_{k=0}^{n-1} \varphi \circ \sigma^k$. The Hausdorff spectrum associated with the asymptotic behaviour of the Birkhoff averages of φ is the mapping (dim stands for the Hausdorff dimension and we refer to [15] or [37] for its definition)

$$\alpha \in \mathbb{R} \mapsto \dim \left\{ x \in A : \lim_{n \to \infty} \frac{S_n \varphi(x)}{n} = \alpha \right\}. \quad (1.1)$$

This mapping, as well as its analogue when the symbolic space A is replaced by its geometric realization on a conformal repeller, has been studied intensively...
[2, 9, 11, 16, 21, 22, 27, 34, 38, 41] (extensions replacing $S_n \varphi(x)$ by vector valued Birkhoff sums or the logarithm of the norm of Birkhoff products of positive matrices have also been considered [3, 17–19]). In all these situations, for finding the Hausdorff spectrum of the Birkhoff averages of φ amounts to finding the singularity spectrum of the (possibly weak, see [22, 27]) Gibbs measure μ associated with φ, i.e. the mapping

$$\alpha \in \mathbb{R}_+ \mapsto \dim \left\{ x \in \mathcal{A} : \lim_{r \to 0^+} \frac{\log \mu(B(x,r))}{\log(r)} = \alpha \right\}. \quad (1.2)$$

Indeed, spectra (1.1) and (1.2) are deduced from one another by a dilation and a translation. Moreover, the measure μ obeys the multifractal formalism in the sense that its singularity spectrum is obtained as the Legendre transform $\tau_* \mu(\alpha) = \inf_{q \in \mathbb{R}} \alpha q - \tau\mu(q)$ of the L^q-spectrum $\tau\mu(q)$, which is defined by

$$\tau\mu(q) = \liminf_{r \to 0^+} \frac{\log \sup \left\{ \sum_i \mu(B_i)^q \right\}}{\log(r)},$$

where the supremum is taken over all the families of disjoint closed balls B_i of radius equal to r with centre in $\text{supp}(\mu)$ (see [5, 9, 35, 37, 39] for detailed expositions of multifractal formalisms). Besides, $\tau\mu(q)$ is related to the topological pressure $P(q\varphi)$ of $q\varphi$ by the relation $\tau\mu(q) = (qP(\varphi) - P(q\varphi))/\log(#\mathcal{A})$.

The same kind of relation holds between the Hausdorff spectra of Birkhoff averages and Gibbs measures on conformal repellers.

Symbolic spaces and conformal repellers share the property of being endowed with a metric distance giving them a self-similar structure, which is responsible for so simple a relation. It is thus natural to investigate the relationship between the Hausdorff spectra of Birkhoff averages and Gibbs measures when this self-similarity property is relaxed. A natural way to do this consists of endowing the symbolic space with a metric distance, making its geometry very close to that of a self-affine Sierpinski carpet in the sense that balls are naturally projected on 'almost squares' in the plane, while cylinders are projected on the rectangular cells covering the carpet.

The multifractal analysis of Gibbs measures on such 'self-affine' symbolic spaces (see section 2.2 for the definition) and their projections on self-affine Sierpinski carpets has been achieved in [28, 36] for the special case where the potential is constant over the cylinders of the first generation and in [1] for general potentials satisfying a Dini condition. It turns out that the singularity spectrum of the Gibbs measure μ associated with such a potential ψ is given by the Legendre transform of a differentiable function $\beta\psi$. In general the function $\beta\psi$ differs from the L^q-spectrum. This difference with respect to the self-similar case recalls and extends a phenomenon arising in the study of the dimensions of self-affine Sierpinski carpets and more general self-affine sets [4, 23, 25, 32, 40]: the Hausdorff and box dimensions may be different (see also [12–14] for works related to this issue).

In this paper we complete the work achieved in [1]. Given a Dini potential φ on a self-affine symbolic space or on its projection to a self-affine Sierpinski carpet, we perform the multifractal analysis of the Birkhoff averages of φ. Our results show that in the absence of self-similarity, the associated Hausdorff spectra are obtained as the Legendre transform of a differentiable function $T_\varphi(q)$, which cannot be simply related to $\beta\psi(q)$, and like $\beta\psi(q)$ cannot be related linearly to the topological pressure of $q\varphi$. Nevertheless, it is worth noting that the differentiability of T_φ is obtained as a consequence of that of $\beta\psi$ (see proposition 4.3(2)).

Actually, we adopt a framework in which Birkhoff sums of potentials appear as special examples among more general objects. Specifically, we achieve on self-affine symbolic spaces the multifractal analysis of the asymptotic behaviour of almost-multiplicative functions of
cylinders (see section 2 for the definition, properties and examples). Our result, namely, theorem 3.1 (section 3.1.2), requires the extension of the class of Gibbs measures considered in [1]. The singularity spectrum of such a measure is provided by theorem 3.2 (section 3.1.1). For this result, the ideas of the proof are the same as for the special case studied in [1], but we write in detail some arguments whose verifications, though not immediate, were left to the reader in [1]. Theorems 3.1 and 3.2 are proved simultaneously in section 4. Our results regarding the multifractal analysis of Birkhoff averages and Gibbs measures on self-affine Sierpinski carpets are, respectively, described in theorems 3.3 and 3.4 in section 3.2. Theorem 3.3 appears to be a direct consequence of theorem 3.1. The multifractal analysis of Gibbs measures on Sierpinski carpets requires the completion of the work achieved on the symbolic space. The approach is the same as the approach explained in detail in [1] for a smaller class of Gibbs measures, and we will not provide a proof of theorem 3.4.

2. Almost-multiplicative functions and ‘self-affine’ symbolic spaces

Let A be a finite set of cardinality $r \geq 2$. $A^* = \bigcup_{k \geq 0} A^k$ the set of finite words built over the alphabet A (with the convention $A^0 = \{\emptyset\}$) and $\mathcal{A} = A^\mathbb{N}$, the symbolic space over A.

The set $A^* \cup \mathcal{A}$ is endowed with the concatenation operation. If $w \in A^*$, $[w]$ denotes the cylinder $w \cdot \mathcal{A} = \{w \cdot w', \ w' \in \mathcal{A}\}$. The set of cylinders is denoted by \mathcal{C}_A and it is naturally endowed with the concatenation operation $[w] \cdot [w'] = [w \cdot w']$.

The shift operation on \mathcal{A} is denoted by σ.

If $z = z_1 z_2 \cdots z_p \cdots \in \mathcal{A}$ and $n \in \mathbb{N}$ then $z \upharpoonright n$ stands for the prefix $z_1 \cdots z_n$ of z if $n \geq 1$ and the empty word otherwise.

The length of a word $w \in A^* \cup \mathcal{A}$ is denoted by $|w|$.

For $z, z' \in A^* \cup \mathcal{A}$, let $z \wedge z'$ stand for the word u of maximal length in $A^* \cup \mathcal{A}$ such that u is a prefix of z and z'.

The set \mathcal{A} is endowed with the ultrametric distance $d : (z, z') \in \mathcal{A}^2 \mapsto r^{-|z \wedge z'|}$.

We denote by λ the unique measure on \mathcal{A} such that $\lambda([w]) = r^{-n}$ for all $n \geq 0$ and $w \in A^n$.

If $\{f_i\}_{i \in I}$ and $\{g_i\}_{i \in I}$ are two families of real-valued functions defined on a set E, then we say that there exists $C > 0$ such that $f_i(x) \approx g_i(x)$ for all $i \in I$ and $x \in E$, if there exists $C > 0$ such that $C^{-1} f_i(x) \leq g_i(x) \leq C f_i(x)$ for all $i \in I$ and $x \in E$. When there is no ambiguity, we just write $f_i(x) \approx g_i(x)$ for all $i \in I$ and $x \in E$ to mean that such a constant exists. This notation enables one to shorten certain mathematical formulae.

2.1. Almost-multiplicative functions and quasi-Bernoulli measures

Proposition–definition 2.1. We say that a non-zero non-negative function $\psi : \mathcal{C}_A \to \mathbb{R}_+$ is almost-multiplicative if there exists $C > 0$ such that for all $([w], [w']) \in \mathcal{C}_A^2$ we have

$$C^{-1} \psi([w]) \psi([w']) \leq \psi([w \cdot [w']]) \leq C \psi([w]) \psi([w']) \quad \text{(2.1)}$$

The support of ψ is defined by

$$\text{supp}(\psi) = \{z \in \mathcal{A} : \forall n \geq 0, \psi([z \upharpoonright n]) > 0\}.$$
By construction, if \([A]\) stands for the set \([\{a : a \in A, \, \psi(\{a\}) > 0\}\), then
\[
\text{supp}(\psi) = \bigcap_{n \geq 0} \sigma^{-n}(\{A\}).
\]

Due to (2.1) the sequence \((s_n = \sum_{w \in A^n} \psi(\{w\}))_{n \geq 1}\) is submultiplicative in the sense that
\[
C^{-1}s_n s_p \leq s_{n+p} \leq C s_n s_p\text{ for all } n, p \geq 1.
\]
Consequently, the topological pressure \(P(\log \psi)\) of the function \(\log \psi\) is well defined by
\[
P(\log \psi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{w \in A^n} \psi(\{w\})
\]
and for all \(n \geq 1\) we have
\[
C^{-1} \exp(n P(\log \psi)) \leq \sum_{w \in A^n} \psi(\{w\}) \leq C \exp(n P(\log \psi)).
\]

We denote by \(AM(\mathcal{C}_A)\) the set of almost-multiplicative functions on \(\mathcal{C}_A\).

For the sake of completeness, we sketch the proofs of (2.2) and (2.3).

Proof. For \(n \geq 1\) set \(u_n = \log(s_n) + \log(C)\) and \(v_n = -\log(s_n) + \log(C)\). The sequence \((u_n)_{n \geq 1}\) is subadditive so \(u_n/n\) converges as \(n \to \infty\) to a limit that we denote as \(P(\log(\psi))\). Also, \(P(\log(\psi)) \leq u_n/n\) for all \(n \geq 1\). Similarly, \(-P(\log(\psi)) \leq v_n/n\) for all \(n \geq 1\). These two inequalities yield (2.3). \(\square\)

If \(\psi \in AM(\mathcal{C}_A)\) is the restriction to \(\mathcal{C}_A\) of a probability measure, the ‘almost multiplicity’ property is nothing but the quasi-Bernoulli property introduced in [9, 30, 31]. Examples of such functions are given in section 2.4.

Since for \(\psi \in AM(\mathcal{C}_A)\) our purpose will be to study the asymptotic behaviour of \(\log \psi([w])/|w|\), it will be possible to assume, without loss of generality, that \(\psi\) is the restriction to \(\mathcal{C}_A\) of a quasi-Bernoulli measure. Let us explain why it is so. It follows from (2.1) and (2.3) that if we define
\[
\tilde{\psi}([w]) = \frac{\psi([w])}{\sum_{w' \in A^n} \psi([w'])}, \quad [w] \in \mathcal{C}_A,
\]
then \(\tilde{\psi} \in AM(\mathcal{C}_A)\). Consider on \(A^n\) the sequence of probability measures
\[
\mu_n = r^n \sum_{w \in A^n} \tilde{\psi}([w])\lambda_{[w]}, \quad n \geq 1,
\]
where \(\lambda_{[w]}\) stands for the restriction of \(\lambda\) to \([w]\). Due to (2.1) and (2.3), there exists \(C_1 > 0\) such that for all \(n \geq 1, p \geq n\) and \(w \in A^n\)
\[
C^{-1}_1 \tilde{\psi}([w]) \leq \mu_p([w]) \leq C_1 \tilde{\psi}([w]).
\]
Consequently, for any measure \(\mu\) which is the limit of a subsequence of \((\mu_n)_{n \geq 1}\), for all \(n \geq 1\) and \(w \in A^n\) we have
\[
C^{-1}_1 \tilde{\psi}([w]) \leq \mu([w]) \leq C_1 \tilde{\psi}([w]),
\]
and thus for some other constant \(C_2 > 0\)
\[
C_2^{-1} \exp(-n P(\log \psi)) \psi([w]) \leq \mu([w]) \leq C_2 \exp(-n P(\log \psi)) \psi([w]).
\]
(2.4)
In particular, the restriction of \(\mu\) to \(\mathcal{C}_A\) belongs to \(AM(\mathcal{C}_A)\) and \(\text{supp}(\mu) = \text{supp}(\psi)\). This implies that there exists on \((\text{supp}(\psi), \sigma)\) a unique ergodic measure \(\mu_{\psi}\) strongly equivalent to the restriction of each of these measures \(\mu\) to \(\text{supp}(\psi)\) (see [10, 24]). This measure deserves to be called the Gibbs measure since (2.4) is an extension of the relation linking the Birkhoff
sums and the Gibbs measure associated with a potential satisfying the Dini condition (2.6) in the thermodynamic formalism (see [8] and section 2.4.1).

We also denote by μ_ψ the extension of μ_φ to A defined by $\mu_\psi(E) = \mu_\varphi(E \cap \text{supp}(\varphi))$ for any Borel subset E of A.

2.2. ’Self-affine’ symbolic spaces

Let $2 \leq r_1 \leq r_2$ be two integers. For $i \in \{1, 2\}$ let A_i denote the set $\{0, \ldots, r_i - 1\}$. The symbolic spaces built from A_1 and A_2 like A is from A above are, respectively, denoted by \hat{A}_1 and \hat{A}_2. The symbolic space built from $A_1 \times A_2$ is equal to $\hat{A}_1 \times \hat{A}_2$. The shift operations over the symbolic spaces \hat{A}_1, \hat{A}_2 and $\hat{A}_1 \times \hat{A}_2$ are, respectively, denoted by σ_1, σ_2 and σ (we have $\sigma = (\sigma_1, \sigma_2)$).

Each set \hat{A}_i, $i \in \{1, 2\}$ is endowed with the ultrametric distance $d_i : (z, z') \in \hat{A}_i^2 \mapsto r_i^{-|z \wedge z'|}$. Then the product symbolic space $\hat{A}_1 \times \hat{A}_2$ is endowed with the ultrametric distance $d((x, y), (x', y')) = \max(d_1(x, x'), d_2(y, y'))$ and called self-affine because the natural projections of its cylinders in the Euclidean plane are the rectangular cells of the self-affine grid

$$\{[kr_1^{-n}, (k + 1)r_1^{-n}] \times [lr_2^{-n}, (l + 1)r_2^{-n}] \mid 0 \leq k < r_1^n, 0 \leq l < r_2^n\}.$$

For every $n \geq 1$, let F_n be the set of balls of radius r_2^{-n} in $(\hat{A}_1 \times \hat{A}_2, d)$. Let $g(n)$ be the smallest integer m such that $r_1^{-m} \leq r_2^{-n}$. We have

$$F_n = \left\{(w_1, \tilde{w}_1) \times \{w_2\} : (w_1, \tilde{w}_1, w_2) \in A_1^n \times A_1^{g(n)-n} \times A_2^n\right\}. \quad (2.5)$$

If $z \in \hat{A}_1 \times \hat{A}_2$ and $n \geq 0$, let $B_n(z)$ stand for the unique element of F_n containing z. We have $B_n(z) = B(z, r_2^{-n})$.

The diameter of a subset E of $(\hat{A}_1 \times \hat{A}_2, d)$ is denoted by $|E|$. For $i \in \{1, 2\}$, let π_i stand for the projection from $\hat{A}_1 \times \hat{A}_2$ to \hat{A}_i.

2.3. Some properties of almost-multiplicative functions

From now on, we adopt the convention $0^0 = 0$ for all $\gamma \in \mathbb{R}$.

If $\psi \in \text{AM}(\mathcal{C}_1 \times A_2)$ and $q \in \mathbb{R}$, we define

$$I_{\psi, q} : [w_1] \in \mathcal{C}_1 \mapsto \sum_{w_2 \in A_2^{g(n)}} \psi([w_1] \times [w_2])^q.$$

Proposition 2.1. Let $(\psi, \tilde{\psi}) \in \text{AM}(\mathcal{C}_1 \times A_2)^2$.

1. For every $(q, \gamma) \in \mathbb{R}_2$, the function $I_{\psi, q}^\gamma$ belongs to $\text{AM}(\mathcal{C}_1)$ and its support is $\text{supp}(\psi)$.

2. If $(\gamma, \tilde{\gamma}) \in \mathbb{R}_2$ and $q \in \mathbb{R}$ the function $I_{\psi, q}^\gamma \cdot I_{\tilde{\psi}, q}^{\tilde{\gamma}}$ belongs to $\text{AM}(\mathcal{C}_1)$. Also, the mapping $q \mapsto P\left(\log(I_{\psi, q}^\gamma \cdot I_{\tilde{\psi}, q}^{\tilde{\gamma}}) = P(q \gamma \log(I_{\psi, 1}^\gamma) + \tilde{\gamma} \log(I_{\tilde{\psi}, 1}^{\tilde{\gamma}})\right)$ is convex.

Proof.

1. It is enough to prove the result for $\gamma = 1$. Indeed, it is immediate that if $\rho \in \text{AM}(\mathcal{C}_1)$ and $\gamma \in \mathbb{R}$ then $\rho^\gamma \in \text{AM}(\mathcal{C}_1)$ and $\text{supp}(\rho^\gamma) = \text{supp}(\rho)$. Let $q \in \mathbb{R}$. Due to (2.1), there
exists $C > 0$ depending on ψ and q such that for all $n, p \geq 1$ and $(w_1, \tilde{w}_1) \in A_1^n \times A_1^p$ we have

$$I_{\psi,q}(\{w_1 \cdot \tilde{w}_1\}) = \sum_{(w_2, \tilde{w}_2) \in A_1^n \times A_1^p} \psi([w_1 \cdot \tilde{w}_1] \times [w_2 \cdot \tilde{w}_2])^q$$

$$= \sum_{(w_2, \tilde{w}_2) \in A_1^n \times A_1^p} \psi([w_1] \times [w_2])^q \psi([\tilde{w}_1] \times [\tilde{w}_2])^q$$

$$= \sum_{w_2 \in A_1^n} \psi([w_1] \times [w_2])^q \sum_{\tilde{w}_2 \in A_1^p} \psi([\tilde{w}_1] \times [\tilde{w}_2])^q$$

$$= I_{\psi,q}(\{w_1\}) I_{\psi,q}(\{\tilde{w}_1\}).$$

Let $x \in \text{supp}(I_{\psi,q})$. By definition, $I_{\psi,q}([x|n]) > 0$ for all $n \geq 1$. In particular, $I_{\psi,q}([x|1]) > 0$ and we can choose $y_1 \in A_2$ such that $\psi(x|1, y_1) > 0$. Suppose that for $n \geq 1$ we have built $(y_1, \ldots, y_n) \in A_2^n$ such that $\psi(x|n, y_1 \cdots y_n) > 0$. Since $I_{\psi,q} \in \text{AM}(\mathcal{C}_{A_2})$, we have $I_{\psi,q}([y_{n+1}]) > 0$ so there exists $y_{n+1} \in A_2$ such that $\psi([y_n \times y_{n+1}] > 0$ and thus $\psi([x|x+1, y_1 \cdots y_{n+1}]) > 0$. Consequently, we can construct by induction an infinite word $y \in A_2^\infty$ such that $(x, y) \in K$, hence $\text{supp}(I_{\psi,q}) \subset \pi(K)$. The opposite inclusion is immediate.

(2) Let $(\gamma, \tilde{\gamma}) \in \mathbb{R}^2$. It follows from (1) that for any $q \in \mathbb{R}$, $I_q \cdot I_{\psi,q}$ belongs to $\text{AM}(\mathcal{C}_{A_1})$ as a product of two elements of $\text{AM}(\mathcal{C}_{A_1})$.

Fix $[w_1] \in \mathcal{C}_{A_1}$. On the one hand, the mapping $q \mapsto I_{\gamma,q}([w_1])$ is log-convex as the sum of the log-convex functions $q \mapsto \tilde{\psi}([w_1] \times [w_2])^q, w_2 \in A_2^{|w_1|}$, so $q \mapsto I_{\gamma,q}([w_1])$ is log-convex as well. On the other hand, the mapping $q \mapsto I_{\tilde{\gamma},q}([w_1])^\tilde{\gamma}$ is clearly log-convex. Consequently, $q \mapsto I_{\gamma,1}(\{w_1\})^{\gamma} \cdot I_{\tilde{\gamma},q}([w_1])^{\tilde{\gamma}}$ is log-convex. It follows from these remarks and the definition of the pressure of an element of $\text{AM}(\mathcal{C}_{A_1})$ (see (2.2)) that $q \in \mathbb{R} \mapsto P\left(\log(I_{\gamma,1} \cdot I_{\tilde{\gamma},q}\right)$ is the limit of a sequence of convex functions.

Proposition 2.2. Let $\psi \in \text{AM}(\mathcal{C}_{A_1 \times A_2})$. Suppose that ψ is the restriction to $\mathcal{C}_{A_1 \times A_2}$ of a Gibbs measure μ_ψ. Then

1. $\mu_\psi \circ \pi_1^{-1} \in \text{AM}(\mathcal{C}_{A_1})$ and $\text{supp}(\mu_\psi \circ \pi_1^{-1}) = \pi_1(\text{supp}(\psi))$.
2. There exists $C > 0$ such that

$$\mu_\psi([w_1 \cdot \tilde{w}_1] \times [w_2]) \approx \psi([w_1] \times [w_2]) \mu_\psi \circ \pi_1^{-1}([\tilde{w}_1]),$$

for all $n \geq 1$ and ball $B = [w_1 \cdot \tilde{w}_1] \times [w_2] \in \mathcal{F}_n$.

Proof.

(1) It is enough to note that the restriction of $\mu_\psi \circ \pi_1^{-1}$ to $\text{AM}(\mathcal{C}_{A_1})$ is equal to the function $I_{\psi,1}$.

(2) For $n \geq 1$ and $B = [w_1 \cdot \tilde{w}_1] \times [w_2] \in \mathcal{F}_n$ we have

$$\mu_\psi([w_1 \cdot \tilde{w}_1] \times [w_2]) = \sum_{\tilde{w}_1 \in A_2^n} \mu_\psi([w_1 \cdot \tilde{w}_1] \times [w_2 \cdot \tilde{w}_2])$$

$$\approx \sum_{\tilde{w}_1 \in A_2^n} \psi([w_1] \times [w_2]) \psi([\tilde{w}_1] \times [\tilde{w}_2])$$

$$= \psi([w_1] \times [w_2]) \sum_{\tilde{w}_1 \in A_2^n} \psi([\tilde{w}_1] \times [\tilde{w}_2])$$

$$= \psi([w_1] \times [w_2]) \mu_\psi \circ \pi_1^{-1}([\tilde{w}_1]).$$
2.4. Examples

Let us fix a subset \(A \subset A_1 \times A_2 \) such that \(\#A \geq 2 \) (to avoid trivial cases). Then let
\[[A] = \{ [a_1] \times [a_2] : (a_1, a_2) \in A \} \]
and consider the invariant compact subset of \(A_1 \times A_2 \) defined by
\[K = \bigcap_{n \geq 0} \sigma^{-n}([A]). \]

The set \(K \) will be the support of the functions \(\psi \) that we are going to consider. The first example is a special case of the second one, which is itself a particular case of the third one.

2.4.1. \(\psi \) as the exponential of Birkhoff sums. Let \(\varphi : K \to \mathbb{R} \) be a continuous function satisfying the Dini condition
\[\int_{[0,1]} \sup_{z, z' \in K, d(z, z') \leq r} |\varphi(z) - \varphi(z')| \frac{dr}{r} < \infty \quad (2.6) \]
(this holds for instance if \(\varphi \) is Hölder continuous). Equivalently,
\[\text{Var}(\varphi) := \sup_{n \geq 0} \sup_{(w_1, w_2) \in A_1^d \times A_2^d} \sup_{z, z' \in K([w_1] \times [w_2])} |S_n \varphi(z') - S_n \varphi(z)| < \infty, \quad (2.7) \]
with the convention, adopted also in the following, that the supremum over the empty set is equal to 0. Then if for \(n \geq 1 \) and \((w_1, w_2) \in A_1^d \times A_2^d\) we define
\[\psi([w_1] \times [w_2]) = \sup_{z \in K([w_1] \times [w_2])} \exp (S_n \varphi(z)), \]
property (2.7) implies that \(\psi \in \text{AM}(\mathcal{C}_{A_1 \times A_2}) \). This is the well-known principle of bounded distortions.

2.4.2. \(\psi \) as the norm of Birkhoff products of matrices. Fix an integer \(d \geq 1 \) and for \(1 \leq i, j \leq d \) let \(\varphi_{i,j} : K \to \mathbb{R} \) satisfying the Dini condition (2.6). Then let \(M \) be the mapping from \(K \) to \(M_d(\mathbb{R}_+^d) \), the set of square matrices of order \(d \) whose entries are positive, defined by \(M_{i,j} = \exp(\varphi_{i,j}) \) for \(1 \leq i, j \leq d \). Finally, for \(n \geq 1 \) and \((w_1, w_2) \in A_1^d \times A_2^d\) let
\[\psi([w_1] \times [w_2]) = \sup_{z \in K([w_1] \times [w_2])} \| M(\sigma^{n-1}z) \cdots M(z) \|. \]
Here \(\| \cdot \| \) denotes the matrix norm defined by \(\| B \| := 1 \cdot B \cdot 1 \), where 1 is the \(d \)-dimensional column vector each coordinate of which is 1.

Let us check that \(\psi \in \text{AM}(\mathcal{C}_{A_1 \times A_2}) \). For \(z \in K \) we denote \(M(\sigma^{n-1}z) \cdots M(z) \) by \(\xi_n M(z) \). The submultiplicativity property of \(\| \cdot \| \) implies \(\| \xi_{n+p} M(z) \| \leq \| \xi_n M(z) \| \cdot \| \xi_p M(\sigma^n z) \| \) for all \(n, p \geq 1 \). This yields \(\psi([w_1 \cdot \tilde{w}_1] \times [w_2 \cdot \tilde{w}_2]) \leq \psi([w_1] \times [w_2]) \psi([\tilde{w}_1] \times [\tilde{w}_2]) \) for all pairs of cylinders \([w_1] \times [w_2], [\tilde{w}_1] \times [\tilde{w}_2] \) in \(\mathcal{C}_{A_1 \times A_2} \).

We now deal with the opposite inequality. Since \(M \) is continuous, lemma 2.1 in [20] yields \(C > 0 \) such that for all \(n, p \geq 1 \) and \(z \in K \),
\[\| \xi_{n+p} M(z) \| \geq C \| \xi_n M(z) \| \cdot \| \xi_p M(\sigma^n z) \|. \quad (2.8) \]
Now fix \(z \in K, n \geq 1 \) and \(z' \in K \cap [z]|n| \). We have
\[
\|\xi_n M(z')\| = \sum_{1 \leq i \leq d} \sum_{1 \leq j \leq d} \sum_{1 \leq k_0, \ldots, k_n \leq d} \prod_{l=0}^{n-1} M_{k_l, k_{l+1}}(\sigma^l z').
\]
Due to the Dini property satisfied by the entries of \(M \), by using (2.7) we get
\[
\prod_{l=0}^{n-1} M_{k_l, k_{l+1}}(\sigma^l z') \geq \tilde{C}^{-1} \prod_{l=0}^{n-1} M_{k_l, k_{l+1}}(\sigma^l z),
\]
where
\[
\tilde{C} = \prod_{1 \leq i \leq d} \prod_{1 \leq j \leq d} \exp(\text{Var}(\varphi_{i,j})).
\]
Consequently, due to (2.8), for all \(n, p \geq 1 \) and \(z \in K \) we have
\[
\|\xi_{n+p} M(z)\| \geq C \tilde{C}^{-1} \sup_{z' \in K/\gamma[z]} \|\xi_n M(z')\| \|\xi_p M(\sigma^n z)\|.
\]
This yields \(\psi([w_1 \cdot \tilde{w}_1] \times [w_2 \cdot \tilde{w}_2]) \geq C \tilde{C}^{-1} \psi([w_1] \times [w_2])\psi([\tilde{w}_1] \times [\tilde{w}_2]) \) for all pairs of cylinders \([w_1] \times [w_2], [\tilde{w}_1] \times [\tilde{w}_2] \) in \(\mathcal{C}_A \times \mathcal{A}_s \).

2.4.3. \(\psi \) as a kind of skew product. Suppose that \(\rho \in \text{AM}(\mathcal{C}_A \times \mathcal{A}_s) \) with \(\text{supp}(\psi) = K \) as obtained in section 2.4.2 and let \(\theta_1 \in \text{AM}(\mathcal{C}_A) \) such that \(\text{supp}(\theta_1) = \pi_1(K) \). Then for \(n \geq 1 \) and \((w_1, w_2) \in \mathcal{A}_s^n \times \mathcal{A}_s^n \) let
\[
\psi([w_1] \times [w_2]) = \theta_1([w_1]) \frac{\rho([w_1] \times [w_2])}{I_{\rho,1}([w_1])}.
\]
We have \(\psi \in \text{AM}(\mathcal{C}_A \times \mathcal{A}_s) \) because \(\theta_1, \rho \) and \(I_{\rho,1} \) are almost multiplicative. If we take for \(\rho \) a function constructed like in section 2.4.1 and for \(\theta_1 \) the restriction to \(\mathcal{C}_A \) of an ergodic quasi-Bernoulli measure whose support is equal to \(\pi_1(K) \), the measure \(\mu_\psi \) constructed from \(\psi \) in section 2.1 is a Gibbs measure like those considered in [1] (the interpretation of these measures in terms of the thermodynamic formalism for random transformations [7, 26] is provided in [1]). The model proposed in this section is more general.

3. Main results

3.1. Multifractal analysis on self-affine symbolic spaces

We fix an element \(\psi \) of \(\text{AM}(\mathcal{C}_A \times \mathcal{A}_s) \) and we assume without loss of generality that \(P(\log(\psi)) = 0 \) and \(\psi \) is the restriction to \(\mathcal{C}_A \times \mathcal{A}_s \) of a Gibbs measure (see section 2.1). We are interested in finding the Hausdorff spectra associated with the level sets
\[
E_\psi(\alpha) = \left\{ (x, y) \in \text{supp}(\psi) : \lim_{n \to \infty} \frac{\log_{\sigma_{\psi}} \psi([x]|n] \times [y]|n]}{-n} = \alpha \right\}, \quad (\alpha \geq 0)
\]
and
\[
E_{\mu_\psi}(\alpha) = \left\{ (x, y) \in \text{supp}(\psi) : \lim_{n \to \infty} \frac{\log_{\mu_\psi} \mu_\psi(B_n(x, y))}{-n} = \alpha \right\}, \quad (\alpha \geq 0).
\]
These spectra are, respectively, defined by
\[d_\psi : \alpha \geq 0 \mapsto \dim E_\psi(\alpha) \quad \text{and} \quad d_\mu_\psi : \alpha \geq 0 \mapsto \dim E_{\mu_\psi}(\alpha). \]

Let \(s = \log r_1 / \log r_2 \) and for \(f : \mathbb{R} \to \mathbb{R} \cup \{-\infty\} \), define the Legendre transform of \(f \) by \(f^* : \alpha \geq 0 \mapsto \inf_{q \in \mathbb{R}} \alpha q - f(q). \)

3.1.1. Multifractal analysis of Birkhoff averages

For \(q \in \mathbb{R} \) define \(T_\psi(q) = -P(s \log(I_{\psi_1,q}) / \log(r_1)). \)

It follows from proposition 2.1(2) that the function \(T_\psi \) is concave. Also, due to proposition–definition 2.1, there exists a constant \(C \) (depending on \(\psi \) and \(q \) only) such that
\[
\sum_{w_1 \in A_1^*} I_{\psi,q}([w_1])^s \approx r_1^{-nT_\psi(q)}, \quad n \geq 1.
\]

Theorem 3.1.

(i) The concave function \(T_\psi \) is differentiable and non-decreasing.

(ii) For every \(\alpha \in \mathbb{R}_+ \), \(d_\psi(\alpha) = T^*_\psi(\alpha) \) if \(T^*_\psi(\alpha) > 0 \) and \(E_\psi(\alpha) = \emptyset \) if \(T^*_\psi(\alpha) < 0 \).

Remark 3.1. If in example 2.4.1 we assume that the restriction of \(\varphi \) to each set \(K \cap [a_1] \times [a_2] \), \((a_1, a_2) \in A \), takes a constant value \(\varphi_{a_1,a_2} \), then
\[
T_\psi(q) = -\log \sum_{a_1 \in A_1} \left[\sum_{a_2 \in A_2} \exp(q \varphi_{a_1,a_2}) \right]^s,
\]
with the convention \(\exp(q \varphi_{a_1,a_2}) = 0 \) if \((a_1, a_2) \notin A \). In this case, theorem 3.1 is obtained by seeking, for each \(\alpha \geq 0 \), a Bernoulli measure of maximal Hausdorff dimension supported by \(E_\psi(\alpha) \). Then \(T_\psi(q) \) appears as a Lagrange multiplier (the same approach was used in \cite{28} for the multifractal analysis of Bernoulli measures on Sierpinski carpets). Our general result is an extension of this situation, and \(d_\psi(\alpha) \) is the maximal Hausdorff dimension of an ergodic measure on \(\text{supp}(\psi) \) supported by \(E_\psi(\alpha) \). Such a measure is introduced in section 4.1.

3.1.2. An extension of the result obtained in [1] for \(d_\mu_\psi \)

The central property used in [1] was that the restriction to \(\mathcal{F}_{A_1 \times A_2} \) of the Gibbs measures considered in that paper (see the discussion of section 2.4.3) satisfies the same property as \(\psi \), namely (2.1). We obtain the following generalized form of theorem 1.1 of [1].

For \(q \in \mathbb{R} \) define
\[\beta_\psi(q) = -P(q(1 - s) \log(I_{\psi_1,1}) + s \log(I_{\psi_1,q})) / \log(r_1). \]

It follows from proposition 2.1(2) that the function \(\beta_\psi \) is concave. Also, due to proposition–definition 2.1, there exists a constant \(C \) (depending on \(\psi \) and \(q \) only) such that
\[
\sum_{w_1 \in A_1^*} I_{\psi_1,1}([w_1])^{s(1-s)} I_{\psi,q}([w_1])^s \approx r_1^{-n\beta_\psi(q)}, \quad n \geq 1.
\]

Theorem 3.2.

(i) The concave function \(\beta_\psi \) is differentiable and non-decreasing.

(ii) For every \(\alpha \in \mathbb{R}_+ \), \(d_\mu_\psi(\alpha) = \beta^*_\psi(\alpha) \) if \(\beta^*_\psi(\alpha) > 0 \) and \(E_{\mu_\psi}(\alpha) = \emptyset \) if \(\beta^*_\psi(\alpha) < 0 \).

Remark 3.2. In [1], the function \(\beta_\psi \) is not interpreted as a topological pressure.
3.2. Geometric realizations on self-affine Sierpinski carpets

Let $\mathbb{T} = \mathbb{R}/2\mathbb{Z}$. Let A and K be defined as in section 2.4 and let \tilde{K} be the self-affine Sierpinski carpet obtained in the torus \mathbb{T}^2 as the attractor of the iterated function system:

$$S_{a_1,a_2} : (x, y) \mapsto (a_1r_1^{-1} + r_1^{-1}x, a_2r_2^{-1} + r_2^{-1}y), \quad (a_1, a_2) \in A.$$

By construction $\tilde{K} = \tilde{\pi}(K)$.

Let $\tilde{A}_1 = \{a_1 \in A_1 : \exists a_2 \in A_2, \ (a_1, a_2) \in A\}$, and for $a_1 \in A_1$ let $A_1(a_1) = \{a_2 \in A_2 : (a_1, a_2) \in A\}$.

For $i \in \{1, 2\}$ define the canonical projections from A_i to \mathbb{T}

$$\tilde{\pi}_i : z \in A_i \mapsto \sum_{k \geq 1} z_kr_i^{-k}, \quad \text{and let } \tilde{\pi} = (\tilde{\pi}_1, \tilde{\pi}_2).$$

The torus \mathbb{T}^2 is endowed with the transformation $T : (x, y) \mapsto (r_1x, r_2y)$ and the canonical metric distance denoted as δ.

3.2.1. Multifractal analysis of Birkhoff averages. Let $\tilde{\varphi} : \tilde{K} \subset \mathbb{T}^2 \to \mathbb{R}$ be a continuous function satisfying the same Dini condition as φ in (2.6) but with d replaced by δ and K replaced by \tilde{K}. The mapping $\varphi = \tilde{\varphi} \circ \tilde{\pi}$ satisfies (2.6), and we associate ψ with φ as in section 2.4.1. By considering $\tilde{\varphi} - P(\log(\tilde{\varphi}))$ instead of $\tilde{\varphi}$ if necessary, we can assume without loss of generality that the topological pressure of ψ is equal to 0. For $\beta \in \mathbb{R}$ let

$$F_\psi(\beta) = \left\{ z \in \tilde{K} : \lim_{n \to \infty} \frac{S_n\tilde{\varphi}(z)}{n} = \beta \right\}.$$

Theorem 3.3. For all $\beta \in \mathbb{R}$, $\dim F_\psi(\beta) = T^*_\psi(-\beta/\log r_2)$ if $T^*_\psi(-\beta/\log r_2) > 0$ and $F_\psi(\beta) = \emptyset$ if $T^*_\psi(-\beta/\log r_2) < 0$.

3.2.2. Multifractal analysis of Gibbs measures. Let $\psi \in \text{AM}(\mathcal{H}_{A_1 \times A_2})$ such that supp(ψ) = K and ψ is normalized to be the restriction of a Gibbs measure μ_ψ to $\mathcal{H}_{A_1 \times A_2}$. Let $\tilde{\mu}_\psi = \mu_\psi \circ \tilde{\pi}^{-1}$ be the projection of μ_ψ on the Sierpinski carpet \tilde{K}. We now focus on the Hausdorff dimension of the sets

$$E_{\tilde{\mu}_\psi}(\alpha) = \left\{ z \in \tilde{K} : \lim_{r \to 0} \frac{\log \tilde{\mu}_\psi(B(z, r))}{\log r} = \alpha \right\}, \quad \alpha \geq 0.$$

Theorem 1.2 of [1] deals with a special case of the construction of ψ proposed in section 2.4.3. It possesses the following extension.

We need to introduce three properties, namely, (P1), (P2) and (P3). Properties (P1) and (P2) correspond to properties (G1) and (G2) of [1], and property (P3) is the extension of property (G3) of [1] to the more general situation studied in this paper.

(P1) $|a_1 - a_i'| \geq 2$ for every pair (a_1, a_i') of distinct elements of \tilde{A}_1.
(P2) $[0, r_1 - 1] \cap (A_1 \setminus \tilde{A}_1) = \emptyset$.
(P3) $[0, r_1 - 1] \subset \tilde{A}_1$ and for all $q > 0$,

$$\lim_{n \to \infty} \frac{1}{n} \log I_{\tilde{\psi}, \varphi}([0^n]) = \lim_{n \to \infty} \frac{1}{n} \log I_{\tilde{\psi}, \varphi}([(r_1 - 1)^n]),$$

where for $j \in A_i$ and $n \geq 1$, j^n stands for the word of length n whose letters are all equal to j.
Theorem 3.4.

(i) For every $\alpha \in \mathbb{R}_+$ such that $\beta_\alpha^1(\alpha) > 0$, $\dim E_{\tilde{\mu}_\alpha}(\alpha) \geq \beta_\alpha^1(\alpha)$.

(ii) If $\alpha > \beta_\alpha^0(0)$ then $\dim E_{\tilde{\mu}_\alpha}(\alpha) \leq \beta_\alpha^0(\alpha)$ and $E_{\tilde{\mu}_\alpha}(\alpha) = \emptyset$ if $\beta_\alpha^0(\alpha) < 0$.

(iii) Suppose that one of the properties (P1), (P2) or (P3) holds. If $0 \leq \alpha < \beta_\alpha^0(0)$ then $\dim E_{\tilde{\mu}_\alpha}(\alpha) \leq \beta_\alpha^0(\alpha)$ and $E_{\tilde{\mu}_\alpha}(\alpha) = \emptyset$ if $\beta_\alpha^0(\alpha) < 0$.

4. Proofs of theorems 3.1 and 3.2

4.1. Auxiliary measures

Recall that we have adopted in section 2.3 the convention $0^q = 0$ for all $q \in \mathbb{R}$. For $q \in \mathbb{R}$, $n \geq 1$ and $(w_1, w_2) \in A_n^1 \times A_n^2$ let

$$
\theta_q([w_1]) = r_1^{\beta_\alpha^1(q)} I_{\psi_{\alpha}([w_1])^q} I_{\tilde{\psi}_\alpha([w_1])^q},
$$

$$
\tilde{\theta}_q([w_1]) = r_1^{\beta_\alpha^0(q)} I_{\psi_{\alpha}([w_1])^q} I_{\tilde{\psi}_\alpha([w_1])^q}
$$

and

$$
\tilde{\psi}_q([w_1] \times [w_2]) = \theta_q([w_1]) \frac{\psi([w_1] \times [w_2])^q}{I_{\psi_{\alpha}([w_1])}},
$$

$$
\tilde{\psi}_q([w_1] \times [w_2]) = \tilde{\theta}_q([w_1]) \frac{\psi([w_1] \times [w_2])^q}{I_{\tilde{\psi}_\alpha([w_1])}}.
$$

It follows from proposition 2.1(1) that the functions θ_q and $\tilde{\theta}_q$ belong to AM(\mathcal{E}_{A_1}). Consequently, the functions ψ_q and $\tilde{\psi}_q$ belong to AM($\mathcal{E}_{A_1 \times A_2}$). Moreover, due to (3.1) and (3.2), by construction the topological pressures of $\log \psi_q$ and $\log \tilde{\psi}_q$ are equal to 0. Thus, the discussion of section 2.1 yields two ergodic measures μ_{ψ_q} and $\mu_{\tilde{\psi}_q}$ on $\text{supp}(\psi)$ that are, respectively, strongly equivalent to ψ_q and $\tilde{\psi}_q$ over $\mathcal{E}_{A_1 \times A_2}$. In the following we denote these measures by μ_q and $\tilde{\mu}_q$, respectively, and the measure μ_{ψ} by μ. Note that $\mu_1 = \mu$.

The following proposition exhibits the fundamental relation that links the μ_q-measure and the μ-measure of a ball, as well as the fundamental relation that links the $\tilde{\mu}_q$-measure of a ball and the μ-measure of the cylinder of the same generation the ball is contained in.

Proposition 4.1. Let $q \in \mathbb{R}$. For all $(x, y) \in \text{supp}(\psi)$ and $n \geq 1$, define

$$
u_n(x) = \frac{I_{\psi_\alpha([x|n])^q}}{I_{\tilde{\psi}_\alpha([x|n])}} \quad \text{and} \quad \tilde{\nu}_n(x) = I_{\tilde{\psi}_\alpha([x|n])}^{-1}.
$$

There exists a constant C depending on ψ and q only such that

1. $\frac{\mu_q(B_n(x,y))}{\mu(B_n(x,y))} \approx \frac{\nu_n(x)}{u_n(x)}(x,y) \in \text{supp}(\psi), \ n \geq 1$;

2. $\frac{\tilde{\nu}_q(B_n(x,y))}{\psi([x|n] \times [y|n])} \approx \frac{\tilde{\nu}_n(x)}{\tilde{\nu}_n(x)}(x,y) \in \text{supp}(\tilde{\psi}), \ n \geq 1$.

Proof. For $(x,y) \in \text{supp}(\psi)$ and $n \geq 1$, the ball $B_n(x,y) = [x|g(n)] \times [y|n]$ has the form $[w_1 \tilde{w}_1] \times [w_2]$, where $(w_1, \tilde{w}_1) \in A_n^1 \times A_n^{g(n)}$ and $w_2 \in A_n^2$.

(1) Due to proposition 2.2 and the fact that \(\theta_q \) is strongly equivalent to \(\mu \circ \pi_1^{-1} \) over \(\mathcal{C}_{A_1} \), by using the definitions and properties of \(\psi_q, \theta_q \) and \(\theta_1 \) we have

\[
\frac{\mu_q(B_n(x, y))}{\mu(B_n(x, y))^{q}} \approx \frac{\psi_q([w_1] \times [w_2])}{\psi([w_1] \times [w_2])^{q}} \theta_q([\tilde{w}_1])^{q} \\
= \frac{\theta_q([w_1])}{\theta_1([w_1])} \theta_q([\tilde{w}_1]) I_{\psi,1}([w_1])^{q} \\
= \frac{\theta_q([w_1 \cdot \tilde{w}_1])}{\theta_1([w_1 \cdot \tilde{w}_1])} I_{\psi,1}([w_1])^{q} \\
\approx \frac{I_{\psi,1}([w_1 \cdot \tilde{w}_1])^{q(1-s)}}{I_{\psi,q}([w_1])} \frac{I_{\psi,q}([w_1 \cdot \tilde{w}_1])}{I_{\psi,q}([w_1])}.
\]

(2) We use the strong equivalence of \(\tilde{\mu}_q \circ \pi_1^{-1} \) and \(\tilde{\theta}_q \) and proceed as for (1):

\[
\tilde{\mu}_q(B_n(x, y)) \approx \tilde{\theta}_q([\tilde{w}_1]) \tilde{\mu}_q([w_1 \times [w_2]) \\
\approx \psi([w_1] \times [w_2]) \frac{\tilde{\theta}_q([w_1])}{I_{\psi,q}([w_1])} \\
\approx \psi([w_1] \times [w_2]) \frac{\tilde{\theta}_q([w_1 \cdot \tilde{w}_1])}{I_{\psi,q}([w_1])} \\
\approx \sum_{w_1 \in A_s^{n}} \frac{I_{\psi,1}(w_1)^{\nu}}{I_{\psi,q}([w_1])} \frac{I_{\psi,q}([w_1 \cdot \tilde{w}_1])}{I_{\psi,q}([w_1])}. \quad \square
\]

4.2. The differentiability of \(\beta_\psi \) and \(\tau_\mu \)

The \(L^q \)-spectrum \(\tau_\mu \) of \(\mu \) is equal to

\[
\tau_\mu(q) = \liminf_{n \to \infty} \tau_{\mu,n}(q), \quad \text{where} \quad \tau_{\mu,n}(q) = -\frac{1}{n} \log_{\mu} \sum_{B \in T_n} \mu(B)^{q}
\]

still with the convention \(0^0 = 0 \) (recall that \(T_n \) is defined in (2.5)).

Proposition 4.2. The functions \(\beta_\psi \) and \(\tau_\mu \) are differentiable at \(1 \) and \(\beta_\psi'(1) = \tau_\mu'(1) \). In particular, the measure \(\mu \) is monodimensional in the following sense: for \(\mu \)-almost every \(z \in \text{supp}(\mu) \),

\[
\lim_{n \to \infty} \frac{\log \mu(B_c(z))}{\log |B_c(z)|} = \beta'(1).\]

Consequently, if \(B \) is a Borel set of positive \(\mu \)-measure, then \(\dim B \geq \beta'(1) \).

Proof. The result regarding the differentiability of \(\beta_\psi \) and \(\tau_\mu \) at \(1 \) is proved in the same way as proposition 2.3 in [1] (note that in [1] which deals with a smaller class of Gibbs measures, \(\mu \circ \pi_1^{-1} \) is denoted by \(\mathbb{P} \)). The result regarding the monodimensionality comes from the existence of \(\tau_\mu'(1) \) (see [33] or [24]). The last property is a direct consequence of the monodimensionality and the mass distribution principle (see [6, pp 136–45], [15, section 4.2] or [37, p 43]). \(\square \)
Part (1) of the next proposition is stated without proof in [1] for a special class of measures in AM($\mathcal{A}_1 \times \mathcal{A}_2$). However the property it claims is not so easy to prove it. Part (2) of this proposition provides the new fundamental relation that links the function T_θ to the family of functions $\{\beta_{\psi,q}\}_{q \in \mathbb{R}}$.

Proposition 4.3. For all $(q, r) \in \mathbb{R}$ we have

1. $\beta_{\psi}(r) = \beta_\varphi(q) - r \beta_\varphi(q)$.
2. $\beta_{\psi}(r) = T_\theta(qr) - rT_\theta(q)$.

Proof. Let $(q, r) \in \mathbb{R}$.

1. By (3.2) for $n \geq 1$ we have

\[
I_{\tilde{\psi},1}([w_1])^r I_{\tilde{\psi}}([w_1])^s \approx \sum_{w_1 \in A_1^r} \psi_q([w_1] \times [w_2])^r \psi([w_1] \times [w_2])^s.
\]

Also, by definition we have

\[
\sum_{w_2 \in A_2^s} \psi_q([w_1] \times [w_2])^r \psi_q([w_1] \times [w_2])^s = \theta_q([w_1]) = r_1^{n \beta_\varphi(q)} I_{\psi,1}([w_1])^r I_{\psi,q}([w_1])^s.
\]

Inserting the two previous equalities in the approximation of $r_1^{n \beta_\psi(r)}$ and using (3.2) again we find that the powers of $I_{\psi,q}([w_1])$ vanish and

\[
r_1^{n \beta_\psi(r)} \approx r_1^{n \beta_\varphi(q)} \sum_{w_1 \in A_1^r} I_{\psi,1}([w_1])^r I_{\psi,q}([w_1])^s \approx r_1^{n \beta_\varphi(q)} r_1^{n \beta_\psi(q)}.
\]

2. By (3.1) for $n \geq 1$ we have

\[
I_{\tilde{\psi},1}([w_1])^r I_{\tilde{\psi}}([w_1])^s \approx \sum_{w_1 \in A_1^r} \psi_q([w_1] \times [w_2])^r \psi_q([w_1] \times [w_2])^s.
\]

Also,

\[
\sum_{w_2 \in A_2^s} \psi_q([w_1] \times [w_2])^r \psi_q([w_1] \times [w_2])^s = \tilde{\theta}_q([w_1]) = r_1^{n T_\varphi(q)} I_{\psi,q}([w_1])^s.
\]

and

\[
\sum_{w_2 \in A_2^s} \psi_q([w_1] \times [w_2])^r \psi([w_1] \times [w_2])^s = \tilde{\theta}_q([w_1])^r \psi([w_1] \times [w_2])^s = r_1^{n T_\varphi(q)} I_{\psi,q}([w_1])^s I_{\psi,q}([w_1])^s \approx r_1^{n T_\varphi(q)} r_1^{n T_\varphi(q)}.
\]

Inserting the two previous equalities in the approximation of $r_1^{n \beta_\psi(r)}$ and using (3.1) again yields $r_1^{n \beta_\psi(r)} \approx r_1^{n T_\varphi(q)} \sum_{w_1 \in A_1^r} I_{\psi,q}([w_1])^s \approx r_1^{n T_\varphi(q)} r_1^{n T_\varphi(q)}$.

\square
Corollary 4.1. The functions β_ψ and T_ψ are differentiable.

Proof. Proposition 4.2 implies that β_ψ and β_ψ^* are differentiable at 1, so that parts (1) and (2) of proposition 4.3 yield directly the differentiability of β_ψ and T_ψ at $q \neq 0$ with the relations $\beta_\psi'(1) = q\beta_\psi(q) - \beta_\psi(q)$ and $\beta_\psi^*(1) = qT_\psi(q) - T_\psi(q)$. For the case $q = 0$, we mimic the approach of [24] for the L^q-spectrum of a quasi-Bernoulli measure. Property (3.1) can be made precise as follows: there exists $C > 0$ such that for all $n, m \geq 1$ and $q \in \mathbb{R}$ we have $-C|q| \leq (m + n)T_\psi(q) - mT_\psi,q_n(q) - nT_\psi,q_m(q) \leq C|q|$. This yields $|T_\psi(q) - T_\psi,q_n(q)| \leq C|q|/n$ for all $n \geq 1$ and $q \in \mathbb{R}$. Since $T_\psi,q_n(0) = T_\psi(0)$ for all $n \geq 1$, we have for all $n \geq 1$ and $q \in \mathbb{R}^*$, $|\frac{T_\psi(q) - T_\psi,q_n(0)}{q} - \frac{T_\psi(q) - T_\psi(0)}{q}| \leq C/n$. Consequently, since T_ψ is concave and $T_\psi,q_n(0)$ exists for all $n \geq 1$, the previous inequality implies that the left and right derivatives of T_ψ at 0 are equal. The same argument works for β_ψ. □

4.3. Upper bounds for the dimensions

Recall proposition 4.1.

Proposition 4.4. Let $q \in \mathbb{R}$. For all $x \in \pi_1($supp$(\psi))$ we have

$$\min \left(\limsup_{n \to \infty} \left(\frac{u_n(x)}{u_{g(n)}(x)^{1/g(n)}} \right)^{1/n}, \limsup_{n \to \infty} \left(\frac{u_n(x)}{\tilde{u}_n(x)^{1/g(n)}} \right)^{1/n} \right) \geq 1.$$

Proof. Let $v \in \{u, \tilde{u}\}$ and $x \in \pi_1($supp$(\psi))$. We use an argument introduced in [32]. We write

$$\left(\frac{v_n(x)}{v_{g(n)}^{1/g(n)}(x)^{1/g(n)}} \right)^{1/g(n)} = \frac{v_n(x)^{1/g(n)}}{v_{g(n)}^{1/g(n)}(x)^{1/g(n)}} v_{g(n)}^{1/g(n)}(x)^{1/g(n) - s}.$$

Now since by construction there exists $0 < a < b < \infty$ independent of x such that $a^n \leq v_n(x) \leq b^n$ for all $n \geq 1$ and $[n/g(n) - s] = O(1/n)$, we have $\lim_{n \to \infty} v_{g(n)}^{1/g(n)}(x)^{1/g(n) - s} = 1$. The conclusion then comes from the fact that since $s = \lim_{n \to \infty} n/g(n) < 1$, we must have $\lim sup_{n \to \infty} \frac{v_n(x)^{1/g(n)}}{\tilde{v}_n^{1/g(n)}(x)^{1/g(n)}} \geq 1$ because $v_n(x)^{1/g(n)}$ is bounded away from 0. □

Corollary 4.2. For all $\alpha > 0$, we have $\dim E_\mu(\alpha) \leq \beta_\psi^*(\alpha)$ and $\dim E_\psi(\alpha) \leq T_\psi^*(\alpha)$, a negative dimension meaning that the set is empty.

Proof. We need the following lemma. It is a simple adaptation to $\mathbb{H}_1 \times \mathbb{H}_2$ of proposition 4.9(b) of [15] which enables us to find upper bounds for the Hausdorff dimension of sets in \mathbb{R}^n.

Lemma 4.1. Let F be a non-empty subset of $\mathbb{H}_1 \times \mathbb{H}_2$. Suppose that there exists a positive Borel measure ν on $\mathbb{H}_1 \times \mathbb{H}_2$ and $\gamma > 0$ such that $\liminf_{n \to \infty} \frac{\log \nu_n(\mathbb{H}_n)}{\log |\mathbb{H}_n|} \leq \gamma$ for all $z \in F$. Then $\dim F \leq \gamma$.

Let $\alpha \in \mathbb{R}$ and $q \in \mathbb{R}$. It follows from proposition 4.4 that if $E_\mu(\alpha)$ is not empty, then for all $z \in E_\mu(\alpha)$ we have $\limsup_{n \to \infty} \frac{\log \nu_n(\mathbb{H}_n)}{\log |\mathbb{H}_n|} \leq \alpha q - \beta_\psi(q)$. Then lemma 4.1 yields $\dim E_\mu(\alpha) \leq \alpha q - \beta_\psi(q)$. Since this holds for all $q \in \mathbb{R}$, we have the desired conclusion. Similarly, if $E_\psi(\alpha)$ is not empty, then for all $q \in \mathbb{R}$ and $z \in E_\psi(\alpha)$ we have $\limsup_{n \to \infty} \frac{\log \nu_n(\mathbb{H}_n)}{\log |\mathbb{H}_n|} \leq \alpha q - T_\psi(q)$. □
Proof of lemma 4.1. Fix ε > 0. Let δ > 0 and for all z ∈ F let n_ε ≥ 1 such that the diameter r_2^{−n_ε} of B_δ(z) is less than δ and |B_δ(z)|^{−ε} ≤ v(B_δ(z)). Let F = {B_δ(z) : z ∈ F}. The elements of F form a δ-covering of F and

\[\sum_{B ∈ F} |B|^{γ + 2ε} \leq \sum_{B ∈ F} r_2^{−n_ε} v(B_δ(z)) \leq \sum_{n ≥ 1} \sum_{B ∈ F} r_2^{−n} v(B) \leq \sum_{n ≥ 1} r_2^{−n} n_ε \|v\| < ∞. \]

It results from this finite bound independent of δ that dim F ≤ γ + 2ε. Since this holds for all ε > 0, we have the desired conclusion.

4.4. Lower bounds for the dimensions

Proposition 4.5. Let q ∈ ℝ. We have

\[
\begin{align*}
\mu_q(E_{n_q}(β_q^*(β_q^*(q)))) &= \mu_q(E_{n_q}(β_q(q))) = 1, \\
\tilde{μ}_q(E_{n_q}(T_q^*(T_q^*(q)))) &= \tilde{μ}_q(E_{n_q}(T_q^*(q))) = 1.
\end{align*}
\]

Consequently, dim E_{n_q}(β_q^*(q)) ≥ β_q^*(β_q^*(q)) and dim E_{n_q}(T_q^*(q)) ≥ T_q^*(T_q^*(q)).

Proof. Suppose first that q ≠ 0. Due to proposition 4.3 and its corollary 4.1 we know that β_q^*(1) = qβ_q(q) = β_q(q) = β_q^*(β_q^*(q)) and β_q^*(1) = qT_q^*(q) = T_q^*(q) = T_q^*(T_q^*(q)). Thus, proposition 4.2 yields \(\mu_q(E_{n_q}(qβ_q(q) − β_q(q))) = 1 \) and \(\tilde{μ}_q(E_{n_q}(qT_q^*(q) − T_q^*(q))) = 1 \).

Now, for \(x ∈ π_1(\text{supp}(ψ)) \) let \((u_n(x))_{n≥1} \) and \((\widetilde{u}_n(x))_{n≥1} \) be defined as in proposition 4.1. Proposition 2.1(1) implies \(u_{np}(x) ≈ u_n(x)u_p(σ_n(σ_n(x))) \) for all \(n, p ≥ 1 \) and \(x ∈ π_1(\text{supp}(ψ)) \). The same property holds for \((\widetilde{u}_n(x))_{n≥1} \). Consequently, \(\mu_q \) and \(\tilde{μ}_q \) being ergodic, Kingman’s submultiplicative ergodic theorem [29] applied to \(u_n \circ π_1 \) and \(μ_q \) and then to \(π_1(\text{supp}(ψ)) \) and \(\tilde{u}_n \circ π_1 \) and \(\tilde{μ}_q \) yields \(l_q \) and \(l_q^\ast \) in ℝ such that \(\lim_{n→∞} \frac{1}{n} \log u_{n}(x) = l_q, \ \tilde{μ}_q \)-a.e. Since \(\lim_{n→∞} n/g(n) = s \), this implies \(\lim_{n→∞} \frac{1}{n} \log \left(\frac{u_{n}(x)}{u_{n}(x)} \right) = 0, \ \mu_q \)-a.e. and \(\lim_{n→∞} \frac{1}{n} \log \left(\frac{\tilde{u}_{n}(x)}{\tilde{u}_{n}(x)} \right) = 0, \ \tilde{μ}_q \)-a.e.

Then it follows from proposition 4.1 that for \(\mu_q \)-a.e. \((x, y) ∈ \text{supp}(ψ) \), since, \((x, y) ∈ E_{n_q}(qβ_q^*(q) − β_q(q)) \) and \(q ≠ 0 \), we have \((x, y) ∈ E_{n_q}(β_q^*(q)) \); similarly since \((x, y) ∈ E_{n_q}(qT_q^*(q) − T_q^*(q)) \), we have \((x, y) ∈ E_{n_q}(T_q^*(q)) \) Thus \(\mu_q(E_{n_q}(β_q^*(q))) = 1 \) and \(\tilde{μ}_q(E_{n_q}(T_q^*(q))) = 1 \). The lower bounds for \(\dim E_{n_q}(β_q^*(q)) \) and \(\dim E_{n_q}(T_q^*(q)) \) come now from proposition 4.2.

If \(q = 0 \), we first notice that \(β_q(0) = T_q(0) \). Also \(μ_0 = \tilde{μ}_0 \) and this measure, which belongs to the class of multinomial measures, is the measure considered in [32] to find a sharp lower bound for \(\dim \text{supp}(ψ) \) ([32] deals with the self-affine Sierpinski carpet but its result has a direct transposition to the self-affine symbolic space). It turns out that \(\dim \text{supp}(μ_0) = \dim \text{supp}(ψ) = −β_q(0) = −T_q(0) = \log_{2} A_1 \left(\{a_1\} × \{a_2\} \cap \text{supp}(ψ) \neq \emptyset \right) \). Moreover, if \(B \) is a Borel set of positive \(μ_0 \)-measure, then \(\dim B ≥ −β_q(0) \).

Let us suppose for a while that there exists \((α, \tilde{α}) ∈ ℝ^2 \) such that the sets \(E_{n_q}(α) \) and \(E_{n_q}(\tilde{α}) \) are of full \(μ_0 \)-measure. We then necessarily have \(\dim E_{n_q}(α) = \dim E_{n_q}(\tilde{α}) = −β_q(0) \). Moreover, it follows from corollary 4.2 that if \(α ≠ β_q^*(q) \) then \(\dim E_{n_q}(α) < −β_q(0) \), and if \(\tilde{α} ≠ T_q^*(0) \) then \(\dim E_{n_q}(\tilde{α}) < −T_q^*(0) \). Indeed, \(β_q^*(q) \) and \(T_q^*(q) \) reach their absolute maximum at \(β_q^*(q) \) and \(T_q^*(q) \), respectively. Consequently, \(α = β_q^*(q) \) and \(\tilde{α} = T_q^*(q) \).

The existence of \(α \) and \(\tilde{α} \) is obtained as follows. By proposition 2.2(2), there exists \(C > 0 \) such that if \((x, y) ∈ \text{supp}(ψ) \) and \(n ≥ 1 \) we have

\[
\mu(B_n(x, y)) ≈ \text{ψ}([x|n] × [y|n]) \frac{θ_1([x|g(n)])}{θ_1([x|n])}.
\]
Moreover, since $\psi \in \text{AM}(\mathcal{E}_{A_1} \times \mathcal{E}_{A_2})$ and $\theta_1 \in \text{AM}(\mathcal{E}_{A_1})$, we have $\psi([x|n + p] \times [y|n + p]) \approx \psi([x|n] \times [y|n])\psi((\sigma_1^n(x)|p) \times (\sigma_2^n(y)|p))$ and $\theta_1([x|n + p]) \approx \theta_1([x|n])\theta_1((\sigma_1^n(x)|p))$ for all $n, p \geq 1$ and $(x, y) \in \text{supp}(\psi)$. Hence, Kingman’s ergodic theorem applied to $(x, y) \mapsto \psi([x|n] \times [y|n]), (x, y) \mapsto \theta_1([x|n])$ and the ergodic measure μ_0 yields the conclusion.

5. Proofs of theorems 3.3 and 3.4

Proof of theorem 3.3. Let $\widetilde{\varphi}, \varphi$ and ψ be as in section 3.2.1. Let us make the following observations. On the one hand, the projection of a ball of $\mathcal{A}_1 \times \mathcal{A}_2$ in the torus is an almost-square of comparable diameter, and the family of these projections can be used to cover sets when estimating their Hausdorff dimension. On the other hand, the projection of a Gibbs measure μ on \mathbb{T} does not affect a positive mass to the boundary of such almost-squares (this follows for instance from proposition 4.1 in [1]). Consequently, the μ-mass of a ball is equal to the $\mu \circ \widetilde{\varphi}^{-1}$-mass of its projection. Another point is that for $z \in K$, $\sum_{n \geq 1} \psi(z)/n$ possesses a limit as $n \to \infty$ if and only if it is the case for $\sum_{n \geq 1} \widetilde{\psi}(\widetilde{\varphi}(z))$. Finally, the measures $\mu_q \circ \widetilde{\varphi}^{-1}$ can be used to transpose to the sets $E^q(\beta)$ the results of corollary 4.2 and proposition 4.5 concerning the sets $E^q(\alpha)$.

Proof of theorem 3.4. We said in the introduction that the same arguments as those used in the proof of theorem 1.2 of [1] work in the more general situation studied in this paper. These arguments are too long to be sketched here but they are exposed in detail in [1].

Acknowledgment

This work was supported by a grant of the ‘Action Intégrée Franco-Tunisienne du Ministère des Affaires Etrangères Français CMCU-05S1501.’

References

[1] Barral J and Mensi M 2007 Gibbs measures on self-affine Sierpinski carpets and their singularity spectrum Ergod. Theory Dyn. Syst. 27 1419–43
[2] Barreira L, Pesin Y and Schmeling J 1997 On a general concept of multifractality: multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity Chaos 7 27–38
[3] Barreira L, Saussol B and Schmeling J 2002 Higher-dimensional multifractal analysis J. Math. Pures Appl. 81 67–91
[4] Bedford T 1984 Crinkly curves, Markov partitions and box dimensions in self-similar sets University of Warwick
[5] Ben Nasr F 1994 Analyse multifractale de mesures C.R. Acad. Sci. Paris, Série I 319 807–10
[6] Billingsley P 1965 Ergodic Theory and Information (New York: Wiley)
[7] Bogenschütz T and Gundlach V M 1995 Ruelle’s transfer operator for random subshifts of finite type Ergod. Theory Dyn. Syst. 15 413–47
[8] Bowen R 1975 Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics vol 470) (Berlin: Springer)
[9] Brown G, Michon G and Peyrière J 1992 On the multifractal analysis of measures J. Stat. Phys. 66 775–90
[10] Carleson L 1985 On the support of harmonic measure for sets of Cantor type Ann. Acad. Sci. Fenn. 10 113–23
[11] Collet P, Lebowitz J L and Porzio A 1987 The dimension spectrum of some dynamical systems, Proc. Symp. on Statistical Mechanics of Phase Transitions—Mathematical and Physical Aspects (Trebon 1986) J. Stat. Phys. 47 609–44
[12] Falconer K J 1988 The Hausdorff dimension of self-affine fractals Math. Proc. Camb. Phil. Soc. 103 339–50
Birkhoff averages on ‘self-affine’ symbolic spaces

[13] Falconer K J 1992 The dimension of self-affine fractals. II Math. Proc. Camb. Phil. Soc. 111 169–79
[14] Falconer K J 1999 Generalized dimensions of measures on self-affine sets Nonlinearity 12 877–91
[15] Falconer K J 2003 Fractal Geometry. Mathematical Foundations and Applications 2nd edn (New York: Wiley)
[16] Fan A H 1997 Multifractal analysis of infinite products J. Stat. Phys. 86 1313–36
[17] Fan A H and Feng D J 2000 On the distribution of long-term time averages on symbolic space J. Stat. Phys. 99 813–56
[18] Fan A H, Feng D J and Wu J 2001 Recurrence, dimension and entropy J. Lond. Math. Soc. 64 229–44
[19] Feng D J 2003 Fractal Geometry. Mathematical Foundations and Applications 2nd edn (New York: Wiley)
[20] Feng D J 2004 The variational principle for products of non-negative matrices Isra¨el J. Math. 138 353–76
[21] Feng D J and Olivier E 2003 Multifractal analysis of the weak Gibbs measures and phase transition—application to some Bernoulli convolutions Ergod. Theory Dyn. Syst. 23 1751–84
[22] Feng D J and Wang Y 2005 A class of self-affine sets and self-affine measures J. Fourier Anal. Appl. 11 107–24
[23] Kesseb¨ohmer M 2001 Large deviation for weak Gibbs measures and multifractal spectra Nonlinearity 14 395–409
[24] Olsen L 1995 A multifractal formalism Adv. Math. 116 82–196
[25] Olsen L 1998 Self-affine multifractal Sierpinski sponges in \(\mathbb{R}^d \) Pac. J. Math. 183 143–99
[26] Pesin Y and Weiss H 1997 The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples Chaos 7 89–106