Molecular Imaging in the selection and evaluation of response in patients treated with Radium-223 in six different solid tumors: A single center experience

CURRENT STATUS: POSTED

SEVASTIAN MEDINA-ORNELAS
Instituto Nacional de Cancerologia

dr.sevastian@outlook.com Corresponding Author
ORCID: https://orcid.org/0000-0002-5761-2337

FRANCISCO OSVALDO GARCIA-PEREZ
Instituto Nacional de Cancerologia

MIGUEL Alvarez-Avitia
Instituto Nacional de Cancerologia

NORA SOBREVILLA-MORENO
Instituto Nacional de Cancerologia

ZAEL SANTANA-RIOS
Instituto Nacional de Cancerologia

DORIAN GARCIA-ORTEGA
Instituto Nacional de Cancerologia

FELICIANO BARRON-BARRON
Instituto Nacional de Cancerologia

OSCAR ARRIETA-RODRIGUEZ
Instituto Nacional de Cancerologia

DOI:
10.21203/rs.3.rs-19016/v1

SUBJECT AREAS
Nuclear Medicine & Medical Imaging

KEYWORDS
18F-NaF PET/CT, Prostate Cancer, Radium-223, skeletal tumor burden, osteosarcoma, chordoma, chondrosarcoma
Abstract
Objective: Evaluate impact after 223 Ra therapy and 18 F-NaF (sodium fluoride) PET/CT in the selection and evaluation of response in patients treated with 223 Ra in six different solid tumors.

Material and Methods: Twenty patients with metastatic castration-resistant prostate cancer (mCRPC), seven metastatic castration-sensitive prostate cancer (mCSPC), three osteosarcoma, two breast cancer, two non-small cell lung cancer (NSCLC), one chondrosarcoma, one chordoma and one patient lung neuroendocrine carcinoma. Three groups of study were defined according total skeletal tumor-burden obtained by 18 F-NaF PET/CT, group 1 <1000cm³, group 2 1001–2999cm³ and group 3 >3000cm³ VOI’s. A semi-quantitative comparison was performed measuring the SUVmax values of VOIs values in all bone metastases in each patient previous to receive the first cycle of 223 Ra, after 3 and 6 cycles.

Results: 30 patients non-progress disease was documented after 24±4 weeks. 8 patients progress disease was presented after three cycles of 223 Ra, two patients with osteosarcoma, four patients with mCRPC, one patient with chondrosarcoma and one patient with NSCLC. Group 1 patients showed better response rates compared to group 3 (p<0.05). Group 2 patients who showed improvement clinical and radiological, had prostate malignancies compared to those in the same group, but non-prostatic malignancies (p<0.05). No significant difference in group 2 patients compared to group 3 (p<0.67). Symptomatic skeletal-related event was observed in 7 patients.

Conclusion: 18 F-NaF PET/CT allows to identify patients who show osteoblastic bone activity and discard or confirm progression in the interval PET/CT image, allowing change of treatment, reducing costs. High tumor-burden strongly suggests a poor response to treatment

Introduction
Radium-223 (²²³Ra) was the first bone-targeting agent to demonstrate improved overall survival in patients with Castration Resistant Prostate Cancer and bone metastases (mCRPC), in addition to bone pain relief, improvement in quality of life (QoL), and prolonging time to skeletal-related events (SREs); in addition is the first therapeutic alpha-emitting radionuclide approved for treating metastatic skeletal disease in prostate cancer [1, 2].
Although there are currently multiple publications about the benefits of 223Ra in patients with mCRPC; currently 223Ra is being tested in 2 phase 3 trials in combination with novel antihormonal agents in the chemotherapy-naive setting of asymptomatic or mildly symptomatic mCRPC, the radiological response during 223Ra therapy is at present poorly defined [3, 4]. Recently interest has grown to demonstrate its usefulness in other types of solid tumors, such as breast cancer (BC), osteosarcoma, lung cancer (LC) and metastatic castration-sensitive prostate cancer (mCSPC) [5–8].

For decades, the evaluation of metastatic bone disease in PC has been limited to the use of the bone scintigraphy, a method with high sensitivity but limited specificity. 18F-Fluoride PET/CT (18F-NaF) bone imaging is ideal for staging and restaging patients with PC because of greater sensitivity, specificity, and accuracy than conventional bone scintigraphy [9]. Moreover, the project named Focus 1 to develop consensus statements in prostate cancer, recommend 68Ga-prostate specific membrane antigen (PSMA), 18F-Choline and recently 18F-Fluciclovine, cancer-targeted PET at biochemical recurrence to replace conventional imaging methods (bone scintigraphy or CT), and the preferred imaging method was PET-CT with a PSMA-targeting tracer. [10]

In clinical practice, bone scintigraphy with 99mTc-MDP has been most commonly used to assess osteoblastic metastases after 6 cycles of 223Ra and sometimes interim (after 3 cycles) to evaluate to response; in some centers in Europe, PET/CT with 18F-Choline or 68Ga-PSMA are the preferred radiotracers; however, these radiotracers are not yet approved for the evaluation of metastatic bone disease in other types of solid tumors; in addition, there are no criteria for response of bone metastases, but only criteria for disease progression, as evident by the emergence of new lesions [10–11]. Unfortunately, there are many limitations in evaluate response to metastatic osteoblastic lesions because is considerate non-measurable lesion, unless it is a lytic lesion associated with soft tissue component. In addition, there is a poor evidence in the role of 18F-NaF PET/CT in staging, restaging or evaluate to response of another solid tumors such as osteosarcoma or lung cancer, for
this reason we hypothesized that 18F-NaF PET/CT is a better modality in selecting candidate, evaluate quantitative and qualitative response in the bone metastasis tumors treated with bone-targeted alpha particle therapy.

The objective of this study were to evaluate the impact after 223Ra therapy and the potential use of 18F-NaF PET/CT in the selection and evaluation of response in patients treated with 223Ra in six different solid tumors.

Materials And Methods

The present retrospective clinical study was conducted at nuclear medicine and molecular Imaging department in Instituto Nacional de Cancerologia, Mexico, between February 2015 and January 2019. All PET and PET/CT examinations were performed in compliance with 1964 Declaration of Helsinki, and the responsible regulatory bodies in Mexico. All patients (except mCRPC) received 223Ra under the “compassionate use” clause of the Mexico. Written informed consent was obtained from each subject.

Patients

Thirty-seven patients with a mean age of 55 years (29 men and 3 women, age range 20–69 years) were included in this retrospective study. Twenty patients had mCRPC, seven had mCSPC, three patients had osteosarcoma, two patients had breast cancer, two patients had non-small cell lung cancer (NSCLC), one patient had chondrosarcoma, one patient with chordoma and one patient with lung neuroendocrine carcinoma. Inclusion criteria for 18F-NaF PET/CT was diagnosis of metastatic bone disease and progression disease after conventional therapy, with previous 18F-FDG-PET/CT imaging as usually imaging in the evaluation of different disease, and before to initiate therapy with 223Ra. The most representative characteristics of the population study are summarized in Table 1. In addition, patients with non-prostatic malignances experienced progression under first or second-line chemotherapy (platinum agents, doxorubicin, ifosfamide, docetaxel and everolimus) or were not eligible for chemotherapy were included. In patients with mCRPC next-generation androgen-deprivation therapy (abiraterone or enzalutamide) or first- or second-line chemotherapy (docetaxel or
cabazitaxel) were included. Patients with evidence of visceral metastases, lymph nodes metastases > 3 cm in long-axis diameter, confirmed by a CT scan, were excluded. Other exclusion criteria included recent or complicated nonhealing fracture and use of concomitant radiotherapy.

Table 1
Baseline characteristics of patients studied (n = 37)

	Patients	
	No.	%
Sex		
Female	4	10.8
Male	33	89.2
Age		
Range	20–70	55
Mean		
Type cancer		
mCRPC	20	54.1
mCSPC	3	18.9
Osteosarcoma	2	5.4
Breast cancer	2	5.4
Lung cancer	1	2.7
Chordoma	1	2.7
Chondrosarcoma	1	2.7
Lung neuroendocrine carcinoma	1	2.7
Previous treatment		
QT	23	62.2
RT	2	5.4
QT + RT	3	8.1
Hormonal therapy*	7	18.9
Other**	2	5.4
Concomitant treatment		
Zoledronic acid	19	51.4
Denosumab	11	29.7
LHRH + Bicalutamide	7	18.9
ECOG		
0–1	22	59.5
2	13	35.1
3	2	5.4

mCRPC = metastatic castration-resistant prostate cancer. mCSPC = metastatic castration-sensitive prostate cancer. QT = chemotherapy. RT = radiotherapy. LHRH = luteinizing hormone-releasing hormone agonist. *Patients with mCSPC androgen deprivation therapy was initiated after diagnosis of mCSPC and before compassionate exemption of 223Ra treatment, and was given continuously. **other treatments include antiproliferative therapy or surgery.

Imaging protocol

Imaging was performed with a Biograph mCT 20 PET/CT (Siemens Medical Solutions, USA) at the at nuclear medicine and molecular Imaging department in Instituto Nacional de Cancerologia. After intravenous injection of 18F-NaF a mean of 250 MBq (4 MBq per kg bodyweight, range 230–290 MBq) WB emission scans were acquired at 60 minutes post-injection. Low-dose CT (from the vertex of the skull to the feet) correction was performed for both attenuation correction and topographic localization. The CT parameters used for acquisition were 140 kV, 80 mA, and 0.5 s per rotation, with a pitch of 6:1 and a slice thickness of 5 mm. After completion of the CT scan, PET data were acquired for 3 min per bed position. Emission data were corrected for randoms, dead time, scatter, and attenuation and were reconstructed iteratively by an ordered-subsets expectation maximization
algorithm (4 iterations, 8 subsets) followed by a post-reconstruction smoothing gaussian filter (5 mm in full width at one-half maximum).

Timing imaging

All patients had documented disease progression before the initiation of 223Ra therapy. Before to begun therapy all patients underwent baseline 18F-NaF PET/CT and after 3 and 6 cycles of 223Ra. Same activity, biodistribution time and parameters of acquisition was applied in subsequent imaging in each patient.

Imaging analysis

PET/CT images in all standard planes were reviewed by use of the dedicated software (syngo by SIEMENS). Images were analyzed visually and quantitatively by two nuclear medicine physicians with more than 5 years of experience. Maximum standardized uptake values (SUVmax) were obtained by drawing circular regions of interest, which were automatically adapted (40% isocontour) to a 3D VOI using syngo software. Volumes of interest (VOIs) with edges around 1 to 3 cm were drawn on regions of interest, the uptake in the VOIs was classified as malignant on the basis of the radiopharmaceutical distribution pattern with match CT images (Fig. 1).

Three groups of study was defined according total skeletal burden obtained by VOIs and SUVmax values (TLSB), group 1 had less 1000 cm3, group 2 had 1001–2999 cm3 and group 3 more than 3000 cm3, these classification was established by consensus between two nuclear medicine physicians ($\kappa = 0.85$). (Fig. 2).

Treatment

223Ra (Xofigo; Bayer®) was administered to 37 patients. Patients were administered intravenous 223Ra at 50 kBq/kg body weight (until June 2016, after this point the dose were calculated at 55 kBq/kg body weight) every 4 weeks for 6 cycles. Patients with mCSPC were maintained on androgen deprivation therapy (ADT) was initiated after diagnosis of mCSPC and before compassionate exemption of 223Ra treatment, and was given continuously. ADT included bicalutamide + luteinizing hormone-releasing hormone agonist. One patient with lung cancer (EGFR mutation) gefitinib was given concomitant. One patient with breast cancer was Luminal A, letrozole and zoledronic acid was
given concomitant.

Safety
Previous to each cycle, absolute blood count (hemoglobin, erythrocytes, leukocytes, platelets, neutrophils and lymphocytes) was evaluated. Treatment was continued as long as absolute blood count was ≥ 1.0 g/L for neutrophils and ≥ 50 g/L for platelets. Written informed consent was obtained from each patient before administration of 223Ra. On the basis of blood levels, toxicity was categorized using the Common Toxicity Criteria for Adverse Events (CTCAE version 4.03).

Efficacy and Response
Patient follow-up consisted of assessment of pain (according to Visual Analog Scale for Pain), physical examinations and laboratory assessments including hematologic, alkaline phosphatase (ALP), dehydrogenase lactic (DHL) in all patients, plus prostate specific antigen (PSA) in mCRPC and mCSPC patients; in addition, carcinoembryonic antigen (CEA) in LC patient and CA 15 – 3 in BC patient, at baseline and after 3 and 6 cycles of 223Ra. IN patients with prostatic malignances the tumor marker PSA was used for the response evaluation. The response was defined as any decline in the PSA level after after 3 and 6 cycles of 223Ra compared with the baseline PSA, PSA decline of > 30% were determined as well; however, because small number of patients with non-prostatic malignances, another markers were used only for monitoring disease and correlated with PET/CT. Treatment response and diagnosis of progression were evaluated using CT 18F-NaF PET/CT, according to RECIST 1.1 criteria; in addition or molecular evaluation of TLSB, the 18F-NaF PET images were evaluated as follows: partial response, > 30% reduction in 18F-NaF expression in the TLSB; progressive disease, > 30% increase in 18F-NaF expression in the TLSB or developing new lesions; and stable disease, < 30% change in 18F-NaF expression in the TLSB

Statistical Analyses
A semi-quantitative comparison was performed measuring the TLSB in each patient. The means of the lesions VOIs measurements in each patient were used as a quantitative measure of global metastatic activity previous to receive the first cycle of 223Ra, after 3 and 6 cycles of 223Ra. Univariate analysis
was performed according to each subtype of neoplasm. A p < 0.05 was considered to be statistically significant. Statistical analyses were conducted with software SPSS (version 22).

Results
All patients had bone metastases without soft-tissue lesions or visceral metastases; they all had baseline 18F-NaF PET/CT. None of the patients were pretreated with 223Ra or another bone seeking radiopharmaceutical. Five patients had a history of localized radiotherapy (3–4 months before starting treatment with 223Ra) to bone, due to intense pain. All patients had pain at least Visual Analog Scale for Pain (VAS) 7, despite to receive painkillers such as NAIDS and opioids. Baseline characteristics before starting treatment with 223Ra are presented in Table 2–4.

Patient	Skeletal burden group	TLSB (Range)	PSA (ng/ml)	ALP (UI/L)	LDH (UI/L)	VAS	Hb (g/dl)	Plt (x 10^3/µL)	Neutrophils (x 10^3/µL)	Previous RT
1	3	91.6 (79.1–144.1)	3.2	270	181	8	13.3	286	4.5	NO
2	2	66.8 (26.9–84.2)	34	196	189	8	12.9	190	4.1	YES
3	1	58.7 (22.5–76.4)	26	348	207	8	14.8	323	5.4	NO
4	1	81.7 (33.1–91.9)	36.4	160	291	8	14.2	263	3.8	NO
5	2	69.1 (36.9–101.2)	18.3	455	299	7	11.1	328	3.2	NO
6	3	89.7 (53.1–101.6)	6.7	211	189	7	13.1	401	3.7	NO
7	3	96.6 (84.7–155.0)	71	901	604	7	12.1	388	2.9	YES

mCSPC = metastatic castration-sensitive prostate cancer; RT = Radiotherapy; Hb = Hemoglobin; Plt = platelets; TLSB = total skeletal burden
Table 3
Baseline characteristics only patients with mCRPC before starting treatment with Ra-223

Patient	Skeletal burden group	TLSB (Range)	PSA (ng/ml)	ALP (UI/L)	LDH (UI/L)	VAS	Hb (g/dl)	Plt (x 10^3/µL)	Neutrophils (x 10^3/µL)	Previous RT
1	3	99.6 (89.1–164.8)	21.2	499	685	8	11.9	277	4.0	NO
2	2	70.1 (46.9–88.2)	44	802	377	9	10.9	289	3.9	NO
3	2	68.0 (32.9–96.7)	29.5	398	299	7	13.0	303	5.5	NO
4	1	34.7 (13.0–67.2)	22.9	170	287	8	13.2	290	3.9	6.6 NO
5	1	49.1 (26.0–86.8)	58.1	495	248	8	13.2	328	4.2	5.0 YES
6	1	55.3 (23.1–99.6)	46.1	491	309	8	12.1	387	4.0	5.0 YES
7	3	92.8 (81.7–135.0)	49	401	504	9	11.0	348	3.9	3.1 YES
8	2	77.8 (49.0–100.8)	71.2	569	700	9	10.8	199	3.9	5.0 NO
9	1	49.1 (26.9–89.9)	59	708	487	8	14.0	248	4.3	3.9 YES
10	2	60.7 (36.9–80.9)	36.7	590	449	8	11.4	278	5.2	3.9 YES
11	1	39.9 (19.0–64.2)	44.3	450	397	7	12.2	302	3.6	4.6 NO
12	1	40.7 (30.0–79.8)	40.2	790	448	8	10.9	128	4.1	4.1 NO
13	1	53.9 (29.7–77.6)	88.1	571	609	9	13.4	307	3.7	4.3 NO
14	3	102.3 (66.7–155.1)	59.1	780	569	9	11.9	149	4.3	5.1 NO
15	3	90.1 (76.3–128.5)	64	662	607	9	14.2	209	4.5	4.1 NO
16	3	88.0 (62.9–116.5)	79.0	798	669	9	10.4	153	3.5	3.7 YES
17	1	44.1 (14.6–87.8)	19.9	370	245	7	12.9	280	4.3	4.6 NO
18	3	109.1 (66.0–156.8)	78.4	590	688	9	10.4	131	3.2	3.0 YES
19	1	57.0 (19.1–84.3)	33.2	391	299	7	12.1	400	3.9	5.4 YES
20	3	91.9 (74.9–137.3)	89.2	587	504	9	11.9	148	4.1	3.7 NO

mCRPC = metastatic castration-resistant prostate cancer; RT = Radiotherapy; Hb = Hemoglobin; Plt = platelets
TLSB = total skeletal burden
Thirteen patients corresponded to group 1; ten patients corresponded to group 2 and fourteen patients corresponded to group 3 according to TLSB. The mostly patients with group 2 and all patients with group 1 showed a reduction of levels serum markers such as APE, LDH and AP; none patient with NSCLC and BC showed significant changes of tumor markers. All patients with mCSPC showed reduction of PSA values of interim and after 6 cycles of 223Ra. Moreover half patients with mCRPC showed reduction of PSA values (Table 5–7).
Table 5
Characteristics only patients with mCSPC after 6 cycles with Ra-223

Patient	TLSB (Range)	TLSB (Range) [% of baseline After 3 cycles*]	TLSB (Range) [% of baseline After 6 cycles**]	PSA (ng/ml)	ALP (UI/L)	LDH (UI/L)	VAS	Hb (g/dl)	Plt (x 10^3/µL)	Neutrophils (x 10^3/µL)	
1	91.6 (79.1–144.1)	63.3 (45.4–99.1) [69.1%]	58.1 (40.7–70.3) [63.4%]	0.6	70	145	4	12.5	216	3.7	4.9
2	66.8 (26.9–84.2)	49.3 (18.9–69.7) [73.8%]	19.9 (4.4–49.0) [30%]	5.7	129	148	2	13.1	202	4	5.5
3	58.7 (22.5–76.4)	40.2 (17.2–54) [68.5%]	17.3 (4.1–28.8) [29.5%]	0.13	49	120	1	13.1	300	3.3	4.7
4	81.7 (33.1–91.9)	73.0 (28.6–80.1) [89.3%]	38.7 (14.8–66.2) [47.4%]	1.3	53	230	1	13.1	277	3.9	6.3
5	69.1 (36.9–101.2)	52.9 (31.0–89.7) [76.5%]	27.3 (14.4–49.9) [39.5%]	1.2	119	85	2	9.7	188	2.5	4.1
6	89.7 (53.1–101.6)	70.5 (42.1–88.8) [78.6%]	56.9 (38.7–80.9) [74.6%]	0.9	101	113	2	9.9	283	3.4	3.9
7	96.6 (84.7–155.0)	95.3 (88.3–141.1) [98.6%]	90.9 (80.7–131.7) [94.1%]	2.4	120	134	4	8.8	209	2.9	2.9

*Percentage of declined Mean SUVmax after 3 cycles of Ra-223
**Percentage of declined Mean SUVmax after 6 cycles of Ra-223

Table 6
Characteristics only patients with mCRPC after 6 cycles with Ra-223

Patient	TLSB (Range)	TLSB (Range) [% of baseline After 3 cycles*]	TLSB (Range) [% of baseline After 6 cycles**]	PSA (ng/ml)	ALP (UI/L)	LDH (UI/L)	VAS	Hb (g/dl)	Plt (x 10^3/µL)	Neutrophils (x 10^3/µL)	
1	99.6 (89.1–164.8)	88.1 (70.3–152.2) [88%]	80.9 (65.2–123.6) [81.2%]	18.3	377	381	4	8.1	114	2.7	4.1
2	70.1 (46.9–88.2)	66.2 (40.2–84.2) [94.4%]	60.6 (37.3–77.2) [86.4%]	21.9	709	316	4	10.5	195	3.3	2.5
3	68.0 (32.9–96.7)	65.2 (29.9–94.0) [95.8%]	59.9 (25.5–88.2) [88%]	14.7	323	291	2	10.8	244	3.6	5.1
4	34.7 (13.0–67.2)	19.9 (8.8–40.1) [57.3%]	13.8 (6.6–30.8) [39.7%]	10.2	185	253	1	12.4	290	4.2	4.3
5	49.1 (26.0–30.8)	19.9 (15.4–33.4)	33.4	437	233	1	9.9	208	2.9	3.6	
	Percentage of declined	Mean	SUVmax after 3 cycles	Ra-223	Percentage of declined	Mean	SUVmax after 6 cycles	Ra-223			
---	------------------------	------	-----------------------	--------	------------------------	------	-----------------------	--------			
6	55.3 (23.1–99.6)	62.9 [62.7%]	50.8 [40.5%]	40.1	399	331	8.1	283	3.4	3.9	
7	92.8 (81.7–135.0)	102 (92.2–178.6) [109.9%]	Not completed	62.3	495	683	6	8.3	209	2.9	2.9
8	77.8 (49.0–100.8)	70.2 [43.3–92.1 [90.2%]	66.2 [38.5–82.7 [85%]	68.4	483	516	6	9.4	248	3.1	4.0
9	49.1 (26.9–89.9)	31.4 [21.2–68.8 [63.9%]	23.1 [16.5–44.8 [47%]	55.4	518	401	4	10.9	233	4.0	4.2
10	60.7 (36.9–80.9)	55.4 [31.9–75.3 [91.2%]	50.2 [25.9–70.2 [82.7%]	33.1	498	356	4	10.3	183	3.6	4.4
11	39.9 (19.0–64.2)	28.8 [16.2–56.7 [72.1%]	20.7 [13.1–42.2 [51.8%]	22.8	393	302	1	11.0	113	2.9	3.9
12	40.7 (30.0–79.8)	34.7 [22.9–65.5 [85.2%]	21.3 [12.8–40.6 [52.3%]	41.4	683	397	4	11.7	121	3.2	3.3
13	53.9 (29.7–77.6)	49.3 [26.4–70.7 [91.4%]	35.5 [18.3–58.9 [65.8%]	73.2	416	412	2	10.1	113	3.9	4.0
14	102.3 (66.7–155.1)	15.6 [89.4–196.6 [152%]	Not completed	66.3	777	551	10	7.2	101	2.2	3.2
15	90.1 (76.3–128.5)	137.8 [88.9–157.4 [152.9%]	Not completed	77.4	794	650	10	7.0	95	2.6	3.0
16	88.0 (62.9–116.5)	99.4 [79.3–132.8 [112.9%]	Not completed	85.4	795	701	10	8.2	66	2.5	2.9
17	44.1 (14.6–87.8)	39.4 (11.7–70.1 [89.3%]	23.9 (8.9–51.2 [54.1%]	11.2	318	227	1	8.9	129	4.0	3.8
18	109.1 (66.0–156.8)	119.4 [71.3–171.2 [109.4%]	92.1 [59.8–137.3 [84.4%]	55.3	392	471	2	8.1	78	2.9	2.7
19	57.0 (19.1–84.3)	45.8 [15.3–77.8 [80.3%]	40.1 [12.8–70.3 [70.3%]	21.7	316	251	1	11.5	155	4.1	3.7
20	91.9 (74.9–137.3)	88.3 [77.4–131.3 [96%]	85.4 [72.1–116.9 [92.9%]	91.3	518	366	2	8.4	99	3.2	3.6

*Percentage of declined Mean SUVmax after 3 cycles of Ra-223
** Percentage of declined Mean SUVmax after 6 cycles of Ra-223
Table 7

Characteristics rest of patients (none prostatic malignances) after 6 cycles with Ra-223

Tumor	TLSB (Range)	TLSB (Range)	ACE (ng/ml)	CA 15 – 3	ALP (UI/L)	LDH (UI/L)	VAS	Hb (g/dl)	Plt (x 10^3/µL)	Neutrophiles		
	[range]	[range]										
Osteosarcoma	93.3 (89.7–137.1)	99.5 (92.1–149.3)	Not completed	-	-	771	668	8	8.5	106	3.2	5.8
Osteosarcoma	71.7 (46.9–82.9)	84.3 (52.9–95.8)	Not completed	-	-	516	691	10	10.3	122	4.1	4.1
Osteosarcoma	49.9 (21.0–72.9)	44.1 (18.8–66.9)	40.2 (15.5–60.8)	-	-	316	397	4	10.6	201	3.0	3.7
Breast cancer	95.1 (41.1–92.5)	66.1 (30.5–79.2)	-	-	80	354	301	2	11.4	157	4.2	4.7
Breast cancer	59.5 (34.2–88.9)	50.8 (28.8–76.7)	-	-	41	408	309	1	9.2	108	4.0	3.8
Lung cancer	88.5 (54.1–102.5)	85.2 (50.1–97.8)	19	-	301	391	6	9.1	102	3.1	4.4	
Lung cancer	106.7 (88.5–175.3)	112.9 (94.3–153.3)	Not completed	56	901	663	10	7.8	101	2.5	2.9	
Chordoma	81.4 (52.0–101.7)	70.3 (40.3–93.6)	-	-	319	331	2	10.9	288	3.7	4.2	
Chondrosarcoma	93.4 (79.9–159.8)	142.3 (99.2–193.2)	Not completed	-	-	685	703	8	7.6	96	2.3	3.3
Lung neuroendocrine	91.9 (80.8–149.9)	83.4 (71.2–124.6)	-	-	385	419	4	10.4	211	2.9	4.2	

*Percentage of declined Mean SUVmax after 3 cycles of Ra-223
** Percentage of declined Mean SUVmax after 6 cycles of Ra-223

Improvement of bone pain was observed in 32 patients at the end of treatment compared to baseline.

In three patients a significant decrease in pain was observed after the first two cycles of Ra-223; in two patients after four cycles.
Treatment-related adverse events were observed in 10 patients (6 patients with superscan); such as fatigue, diarrhea and nausea; meanwhile did not affect continuation of therapy. We found slight to moderate decreases in neutrophils and hemoglobin in 14 (38%) patients at the end of entire therapy. During treatment and at term, 8 patients required transfusion. Four patients (two with superscan) required prior to the last cycle administration of colony stimulating factor. None patient presented severe adverse event´s Grade III or IV according to CTCAE.

in 30 patients no progress disease was documented after 24 ± 4 weeks. In 8 patients progress disease was presented after three cycles of 223Ra (two presented visceral metastases), two patients with osteosarcoma, four patients with mCRPC, one patient with chondrosarcoma and one patient with NSCLC (Figs. 3 and 4)

Symptomatic skeletal-related event (SSE) was observed in 7 patients, 3 patients with mCRPC (two development pathologic fracture, and one patient required radiation therapy for worsening pain), one patient with NSCLC (pathologic fracture), one patient with osteosarcoma, one patient with chondrosarcoma and one patient with chordoma (the three patients for worsening pain)

Those patients in group 1 showed better response rates compared to those in group 3 (p < 0.05). Patients in group 2 who showed improvement clinical and radiological, had prostate malignancies compared to those in the same group, but non-prostatic malignancies (p < 0.05). While there was no significant difference in the group of patients in group 2 compared to group 3 (p < 0.67). Response rates were established according to the percentage of decreasing TLSB values, biochemical markers and improvement in pain (Fig. 5)

Nine patients progressed, five patients with mCRPC, two patients with osteosarcoma, one patient with chondrosarcoma and one patient with NSCLC. All patients had high tumor burden because corresponding to group 2 and 3, but only 7 patients developed SSE as previously mentioned. In addition, the mean TLSB doesn´t improve after three cycles of 223Ra.

Discussion

223Ra is a bone-seeking radiopharmaceutical that emits α-particles that deposit high linear energy within a short penetration range to areas of increased bone turnover, as radioactive decay occurs,
near osseous metastatic sites, it selectively kills cancer cells. 223Ra has a complex decay scheme in which 4 alpha particles resulting in high energy deposition (28.2 MeV), the high linear energy transfer of radiation results in generation of double-strand DNA breaks, and gives rise to cytotoxicity that is independent of dose rate, cell cycle growth phase, and oxygen concentration. The range of the α particles (< 100 µm) results in less hematologic toxicity than expected from β emitters [12, 13].

Currently 223Ra is recommended as a first-line treatment in mCRPC symptomatic or mildly symptomatic without visceral metastases [14]

Maybe one of the doubts that does not end with clearing the ALSYMPCA trial is the poor evaluation of response with bone scan or another molecular imaging method, only was performed a baseline bone scan [1]. In recent years several studies have been published as a result of research conducted with different radiotracers, due to the need to assess the response and toxicity associated with this therapy [15, 16].

However, the current recommendations of the Prostate Cancer Working Group 3 (PCWG3), European Association of Urology (EAU), NCCN, and many another guidelines, are unclear in defining the evaluation of response to any treatment of a non-measurable disease such as bone disease of the blastic type; for these reason numerous investigations have suggested the use of nuclear medicine techniques for patient selection and response evaluation, in addition similar to other therapies for mPC, a flare phenomenon with increase of bone metastases-related pain, or “increase” in apparent number of bone metastases on bone scan, may be noted during the first treatment cycles, and should not be interpreted as disease progression [14–19]

The present study showed that besides that 223Ra do not approved in another neoplasm such as BC, LC, mCSPC, and bone tumors the osteoblastic activity of the bone metastases may represent a therapeutic target due to calcium-mimetic characteristic of 223Ra.

Skeletal evaluation with 18F-NaF PET/CT is better to bone scintigraphy in mPC patients because of greater sensitivity, specificity, and accuracy; also, in another neoplasm such as breast cancer or lung cancer when the osteoblastic component predominates, for this reason molecular imaging always
should precede therapy with 223Ra to determine active osteoblastic lesions, because the focal uptake with 18F-NaF PET/CT or MDP-bone scan correlates with the intensity of bone metabolism and eventually the uptake of 223Ra [20–22].

Because the work done by Subbiah V, et al [23], the 223Ra was considerate as second-line therapy in metastatic osteosarcoma according to most recently National Comprehensive Cancer Network (NCCN) practical guidelines for osteosarcoma, they showed in 18 patients treated with higher doses of 223Ra (100 kBq/kg) a mixed responses rates, one patient had partial responses in metastatic site (brain), and another patient in liver metastases [24].

To our knowledge, at the time of writing this article, we are the first to report the value of 18F-NaF PET/CT in the selection and evaluation of patients treated with 223Ra in non-prostatic neoplasms such as chondrosarcoma and chondroma. Where we found that 18F-NaF PET/CT plays an important role in the selection of patients who are candidates for treatment with 223Ra since it allows visualizing and quantifying the osteoblastic tumor burden, which is the therapeutic target of 223Ra, in addition to monitored response. Unfortunately, the aggressiveness of tumors such as osteosarcoma and chondrosarcoma did not allow the completion of the 6 cycles of 223Ra; for which the PET/CT allowed to easily identify the visceral and bone progression in these patients.

In patients with both types of lung cancer, the 6 cycles were allowed to conclude; however, in one of them, the progression occurred 8 weeks after the end of the treatment. Taber AM, et al, showed that 5 patients with NSCLC who have received front-line chemotherapy, the progression free survival (PFS) at 6 months was 80.0% and 40.0% at 12 months in patients treated with 6 cycles of 223Ra; in addition, only one patient developed SSE after 219 days, and the four remaining patients did not experience a SSE during follow-up [25]

Tahara RK, et al, carried out a single-center phase II study to determine the efficacy and safety of 223Ra in combination with hormonal therapy and denosumab, a total of 22 patients were studied the security of this combination, observed that most common hematological AEs were grade 1 or 2
neutropenia (23%), anemia (14%), and thrombocytopenia (18%) in median follow-up time was 4 months; in addition, there were no grade 3 or 4 AEs [26]; however, no PET/CT with any radiotracer was performed baseline or in the follow-up. Our results in two patients showed a good tolerability and no progression was observed in 18F-NaF PET/CT.

One of the most important limitations of the present study is the wide variety of tumors which determines that the results are not uniform; to counteract such a limitation, we chose to categorize them into three study groups according to the bone tumor burden to highlight the value of PET/CT. Unfortunately, the small subgroup of patients with bone neoplasms prevents conclusions with an impact on survival.

More studies dedicated to each subgroup of patients are needed to obtain important data such as progression-free survival and overall survival.

Conclusion

The molecular imaging with 18F-NaF allows identify patients who show osteoblastic bone activity and discard or confirm progression in the interval PET/CT image, allowing an opportune change of the treatment reducing the costs for the patient and the institution. In addition, a high tumor burden strongly suggests a poor response to treatment, which in all cases is not synonymous with progression. 223Ra is an agent with good tolerability with low SSEs rate and good pain response after completing 6 treatment cycles.

Declarations

ETHICAL APPROVAL

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

INFORMED CONSENT

The institutional review board of our institute approved this retrospective study, and the requirement to obtain informed consent was waived.

AVAILABILITY OF SUPPORTING DATA
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

COMPETING INTERESTS
All authors declare that they have no conflict of interest.

FUNDING
Not applicable

AUTHOR CONTRIBUTION STATEMENT
All authors have read this final version of the manuscript and have agreed with its present form. S. Medina-Ornelas and F. García-Pérez contributed equally to this work in conceptualization and design and methodology. All co-authors provided critical revisions of the manuscript for important intellectual content and formal analysis and investigation. The authors read and approved the final manuscript.

ACKNOWLEDGEMENTS
We thank Nuclear Medicine Department at Instituto Nacional de Cancerologia, México.

AUTHOR INFORMATION
Affiliations

Nuclear Medicine and Molecular Imaging Department, Instituto Nacional de Cancerologia, Mexico City, Mexico.

Medina-Ornelas Sevastian and García-Pérez Francisco

Genitourinary Oncology Department, Instituto Nacional de Cancerologia, Mexico City, Mexico.

Álvarez-Avitia Miguel and Sobrevilla-Moreno Nora

Urooncology Department, Instituto Nacional de Cancerologia, Mexico City, Mexico.

Santana-Ríos Zael

Skin and Soft Tissue Surgical oncology Department, Instituto Nacional de Cancerologia, Mexico City, Mexico.

García-Ortega Dorian Y

Thoracic Oncology Department, Instituto Nacional de Cancerologia, Mexico City, Mexico
Barron-Barron Feliciano and Arrieta-Rodriguez Oscar

CORRESPONDING AUTHOR

Medina-Ornelas Sebastian

CONSENT FOR PUBLICATION

Not applicable

References

1. Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fosså SD, Chodacki A, Wiechno P, Logue J, Seke M, Widmark A, Johannessen DC, Hoskin P, Bottomley D, James ND, Solberg A, Syndikus I, Kliment J, Wedel S, Boehmer S, Dall'Oglio M, Franzén L, Coleman R, Vogelzang NJ, O'Bryan-Tear CG, Staudacher K, Garcia-Vargas J, Shan M, Bruland ØS, Sartor O. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013. 369:213-23.

2. Sartor O, Coleman R, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fosså SD, Chodacki A, Wiechno P, Logue J, Widmark A, Johannessen DC, Hoskin P, James ND, Solberg A, Syndikus I, Vogelzang NJ, O'Bryan-Tear CG, Shan M, Bruland ØS, Parker C. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol 2014; 15:738-46.

3. Radium-223 Dichloride and Abiraterone Acetate Compared to Placebo and Abiraterone Acetate for Men With Cancer of the Prostate When Medical or Surgical Castration Does Not Work and When the Cancer Has Spread to the Bone, Has Not Been Treated With Chemotherapy and Is Causing No or Only Mild Symptoms (ERA 223) (NCT02043678)

4. Phase III radium 223 mCRPC-PEACE III (PEACE III) (NCT02194842). https://www.clinicaltrials.gov/ct2/show/NCT02194842

5. Coleman R, Aksnes AK, Naume B, et al. A phase IIa, nonrandomized study of radium-
223 dichloride in advanced breast cancer patients with bone-dominant disease.
Breast Cancer Res Treat. 2014;145(2):411-

6. Ueno NT, Tahara RK, Fujii T, et al. Phase II study of Radium-223 dichloride combined with hormonal therapy for hormone receptor-positive, bone-dominant metastatic breast cancer. Cancer Med. 2020;9(3):1025-1032

7. Wenter V, Herlemann A, Fendler WP, et al. Radium-223 for primary bone metastases in patients with hormone-sensitive prostate cancer after radical prostatectomy. Oncotarget 2017;8:44131-40.

8. Osvaldo GF, Salvador MS, Zael SR, Nora SM. Radium-223 IN metastatic hormone-sensitive high-grade prostate cancer: initial experience. Am J Nucl Med Mol Imaging. 2017;7(5):236–245

9. Bortot DC, Amorim BJ, Oki GC, et al. 18F-fluoride PET/CT is highly effective for excluding bone metastases even in patients with equivocal bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:1730–1736.

10. Fanti S, Minozzi S, Antoch G, Banks I, Briganti A, et al. Consensus on molecular imaging and theranostics in prostate cancer. Lancet Oncol. 2018 Dec;19(12):e696-e708.

11. Avinash DL, Bal C, Bandopadhyaya GP, et al. The role of 18Ffluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol. 2013;31:262-9

12. Carrasquillo JA, O'Donoghue JA, Pandit-Taskar N, Humm JL, Rathkopf DE, Slovin SF, Williamson MJ, Lacuna K, Aksnes AK, Larson SM, Scher HI, Morris MJ. Phase I pharmacokinetic and biodistribution study with escalating doses of 223Ra dichloride in men with castration resistant metastatic prostate cancer. Eur J Nucl Med Mol Imaging 2013;40(9):1384-93
13. Pandit-Taskar N, Larson SM and Carrasquillo JA. Bone-Seeking Radiopharmaceuticals for Treatment of Osseous Metastases, Part 1: α Therapy with 223Ra-Dichloride. J Nucl Med 2014; 55:268-74

14. National Comprehensive Cancer Network. Prostate Cancer (Version 2.2019). http://www.nccn.org/professionals/physician_gls/pdf/bone.pdf. Accessed April 11, 2019.

15. Scher HI, Morris MJ, Stadler WM, Higano C, Basch E, et al. Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol 2016;34:1402-1418

16. Etchebehere EC, Araujo JC, Milton DR, et al. Skeletal tumor burden on baseline 18F-fluoride PET/CT predicts bone marrow failure after 223Ra therapy. Clin Nucl Med. 2016;41:268-273

17. Etchebehere EC, Araujo JC, Fox PS, Swanston NM, Macapinlac HA, Rohren EM. Prognostic factors in patients treated with 223Ra: the role of skeletal tumor burden on baseline 18F-fluoride PET/CT in predicting overall survival. J Nucl Med. 2015;56:1177–1184

18. EAU Guidelines. Edn. presented at the EAU Annual Congress Barcelona 2019. ISBN 978-94-92671-04-2. https://uroweb.org/guideline/prostate-cancer/. Accessed June 11, 2019.

19. Parker C, Gillessen S, Heidenreich A, Horwich A. Cancer of the prostate: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2015; 26 (Suppl 5): v69-v77.

20. Bortot DC, Amorim BJ, Oki GC, et al. 18F-fluoride PET/CT is highly effective for excluding bone metastases even in patients with equivocal bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:1730-1736.
21. Avinash DL, Bal C, et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 2013; 31:262–269

22. Florimonte L, Dellavedova L, Maffioli LS. Radium-223 dichloride in clinical practice: a review. Eur J Nucl Med Mol Imaging. 2016;43:1896–1909.

23. Subbiah V; Rohren E; Huh WW; Kappadath CS; Anderson PM. Phase 1 dose escalation trial of intravenous radium 223 dichloride alpha-particle therapy in osteosarcoma. J Clin Oncol 2014;32(5s): Abstract TPS10600

24. National Comprehensive Cancer Network. Bone Cancer (Version 2.2019). http://www.nccn.org/professionals/physician_gls/pdf/bone.pdf. Accessed June 19, 2019.

25. Taber AM, Riley D, Olszewski AJ, Birnbaum AE, Khurshid H, et al. Radium-223 following front-line chemotherapy for patients with non-small cell lung cancer and bone metastases. J Clin Oncol 2018;36:15_suppl, e21211-e21211

26. RK Tahara, T Fujii, B Saigal, NK Ibrahim, S Damodaran, et al. Phase II study of the feasibility and safety of radium-223 dichloride in combination with hormonal therapy and denosumab for the treatment of patients with hormone receptor-positive breast cancer with bone-dominant metastasis. Cancer Res 2018;78 (4 Supplement) P1-16-02: Abstract P1-16-02

Figures
Figure 1
Top left. Multiple sites of focal increased uptake that result in metastatic bone disease predominantly blastic type axial skeleton in the MIP 18F-NaF PET. Top right. Volumes of interest (VOIs) with edges around 1 to 3 cm were drawn on regions of interest, the uptake in the VOIs was classified as malignant on the basis of the radiopharmaceutical distribution pattern with match CT images. Lower. Fused sagittal and axial slices showed intense focal uptake in multiple vertebral bodies and pelvis.
Left. MIP 18F-NaF PET showed multiple sites of focal increased uptake that result in metastatic bone disease blastic type axial skeleton, VOI’s and SUVmax values according group 1 (less 1000 cm³). Middle. MIP 18F-NaF PET showed multiple sites of focal increased uptake that result in metastatic bone disease blastic type axial skeleton, VOI’s and SUVmax values according group 2 (1001 to 2999 cm³). Right. MIP 18F-NaF PET showed multiple sites of focal increased uptake that result in metastatic bone disease blastic type axial skeleton, VOI’s and SUVmax values according group 3 (more than 3000 cm³), note the intense metastatic burden disease compared with group 1 and 2.
Figure 3

Top left. MIP 18F-NaF PET showed focal uptake in pelvis corresponding to patient with chondrosarcoma. Top right. MIP 18F-NaF PET (after 3 cycles of 223Ra) showed incremental osteoblastic lesion in pelvis and new lesions. Middle. Fused sagittal slices showed osteoblastic lesion in pelvis in addition tumoration soft tissue in left side of pelvis. Lower. Fused sagittal slices (after 3 cycles of 223Ra) showed incremental osteoblastic lesion in pelvis and size of tumoration soft tissue in left side of pelvis, more structures in pelvis was affected. Progression disease was documented and 223Ra was stopped, these patient was corresponding to group 2.
Top left. MIP 18F-NaF PET showed focal uptake in skull and pelvis corresponding to patient with osteosarcoma. Top right. MIP 18F-NaF PET (after 3 cycles of 223Ra) showed decrease osteoblastic lesion in sacrum, no changes in skull and new lesions in lung. Middle left. Fused sagittal slices showed osteoblastic lesion in sacrum and pelvis with intense uptake. Middle right. Fused sagittal slices (after 3 cycles of 223Ra) showed osteoblastic lesion in sacrum and pelvis with sclerotic changes and decrease uptake Lower. Fused sagittal slices (after 3 cycles of 223Ra) showed new metastatic lesion in left lung with calcification. Progression disease was documented and 223Ra was stopped, these patient was corresponding to group 3.
Figure 5

Top left. Baseline MIP 18F-NaF PET showed focal uptake in skull, multiple vertebral bodies and pelvis corresponding to patient with breast cancer, according to group 1. Top right. MIP 18F-NaF PET (after 6 cycles of 223Ra) showed decrease osteoblastic lesion in all lesions. Lower left. Fused sagittal slices showed multiple osteoblastic lesion in skull and vertebral bodies with intense uptake. Lower right. Fused sagittal slices (after 6 cycles of 223Ra) showed decrease osteoblastic lesion in all lesions. Partial response was documented. (interval PET no showed important changes respect to baseline)