Relationship of Programmed Death-1 (PD-1) and Programmed Death Ligand-1 (PD-L1) Polymorphisms with Overall Cancer Susceptibility: An Updated Meta-Analysis of 28 Studies with 60,612 Subjects

Wenjing Zhang
Yuxuan Song
Xiangcheng Zhang

Authors’ Contribution:
BCDEF 1,2
ABEF 3,4
ACEG 1

Corresponding Authors:
Xiangcheng Zhang, e-mail: drxczhang2012@163.com, Yuxuan Song, e-mail: songyuxuan@tmu.edu.cn

Source of support:
Departmental sources

Background:
Programmed death-1 and its ligand-1 (PD-1/PD-L1) regulate tumor immunotherapy. A large number of studies have explored the relationship between PD-1, PD-L1, and different tumor susceptibility. However, these conclusions are not always consistent. Therefore, we updated this meta-analysis.

Material/Methods:
MEDLINE, Web of Science, EMBASE and other databases were searched systematically to obtain related research. Then, we used STATA15.0 software to carry out the final meta-analysis. The computational advantage is better than OR to evaluate this relationship.

Results:
A total of a total of 28 related studies were involved in our meta-analysis. It was found that PD-1 rs11568821 and rs7421861 increased the overall cancer probability in the allelic genetic model, while PD-1 rs36084323 effectively reduced the risk of cancer in the dominant genetic model. In the homozygous genetic model, PD-L1 rs17718883 effectively increased the probability of tumorigenesis. PD-L1 rs4143815 is associated with a reduced incidence of cancer in heterozygote, homozygote and dominant genetic patterns. Subgroup analysis showed that PD-1 rs2227981 can promote the susceptibility to breast cancer, while PD-1 rs2227982 can reduce the susceptibility to breast cancer. PD-L1 rs2890658 can significantly reduce the risk of lung and liver cancer.

Conclusions:
PD-1 rs11568821, rs36084323, rs7421861, PD-L1 rs17718883, and rs4143815 are associated with tumor susceptibility. However, a review based on more experimental evidence is needed to verify our findings.

Keywords:
Disease Susceptibility • Genes, Neoplasm • Meta-Analysis • PDCD1 Protein, Human

Abbreviations:
PD-1 – programmed cell death-1; PD-L1 – programmed cell death ligand-1; CNKI – China National Knowledge Infrastructure; ORs – odds ratios; CIs – confidence intervals; TME – the tumor microenvironment; APCs – antigen-presenting cells; ICB – immune checkpoint blockade; SNPs – single-nucleotide polymorphisms; HWE – Hardy-Weinberg equilibrium; CTLA-4 – cytotoxic T lymphocyte-associated protein 4; FDA – Food and Drug Administration; NOS – Newcastle-Ottawa Scale; PCR – polymerase chain reaction; LDR – ligase detection reaction; qRT – quantitative real time; RFLP – restriction fragment length polymorphism

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/932146

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/EMBASE] [Chemical Abstracts/CAS]

© Med Sci Monit, 2021; 27: e932146
DOI: 10.12659/MSM.932146
Background

Cancer is a serious global problem. According to the American Cancer Society (ACS), there were more than 1.8 million new cancer cases and 606,520 cancer-related deaths in the United States last year [1]. In the past few decades, considerable progress has been made in understanding how cancer successfully escapes from the immune system and survives, and these advances provide an active way to overcome tumor immune escape and may help to eliminate cancer cells [2]. As a preliminary study, immunotherapy is mainly concentrated in immune checkpoints [3]. Programmed cell death protein 1 and its ligand (PD-1/PD-L1) pathway play an important role in the induction and maintenance of immune tolerance in the tumor microenvironment [4]. Early studies have shown that several IgG4 antibodies point to PD-1/PD-L1 in some solid tumors. These studies have helped to improve the first round of PD-1 inhibitors, such as nivolumab, which were approved by the U.S. Food and Drug Administration (FDA) in 2014 [5]. PD-L1, pointing to PD-1, on T cells helps to destroy cancer cells. However, tumor cells show immune escape through the expression of PD-L1 [6]. The overexpression of PD-L1 in many kinds of cells, such as cancer cells and antigen-presenting cell (APC), is considered to be the key factor for maintaining anti-tumor immunity in the tumor microenvironment (TME) and tumor draining lymph nodes. The increase of PD-L1 level is related to the enhancement of (ICB) response blocked by immune checkpoints against PD-1/PD-L1 [7]. Due to the complexity of tumor immunity, there is no definite biomarker to evaluate the results of PD-1/PD-L1 targeted therapy [8]. It is very important to identify the single-nucleotide polymorphism (SNP) that affects expression of the PD-1 gene and participates in tumor susceptibility. Therefore, it will help to predict potential individuals and clarify the pathophysiological mechanism of cancer [9]. A growing number of studies have explored the relationship between PD-1 and PD-L1 single-nucleotide polymorphisms and multiple cancer susceptibility. However, their results are not consistent, and the same location has different effects in different studies [10-19]. More systematic reviews are needed to support the evidence of these results. To address this problem, we propose a new meta-analysis to assess the relationship between PD-1 and PD-L1 and cancer susceptibility.

Material and Methods

Literature Search

The related literatures in the databases of PubMed, Web of Science, EMBASE, and China National knowledge Infrastructure (CNKI) and Wanfang data information Service platform were searched by computer, and the related research was carried out. To determine the relationship between PD-1/PD-L1 mutations and cancer susceptibility, we used the following keywords: (programmed cell death 1 or programmed cell death ligand1 or PD-1 or PDCD1 or PD-L1 or CD274 or B7-H1) and (polymorphism or genotype or variant or SNP) and (cancer or carcinoma or neoplasm).

We searched for relevant published research until March 28, 2019, and also searched the literature for relevant dissertations. **Figure 1** shows a flowchart of search strategies that illustrate PD-1 and PD-L1 variants and cancer predisposition.

Inclusion and Exclusion Criteria

The process of retrieving studies is shown in **Figure 1**. We list the inclusion and exclusion standards below.

Inclusion Criteria

The inclusion criteria were: (1) Case-control studies on the relationship of PD-1 and PD-L1 variant with cancer predisposition; (2) The genotypes of control groups were in Hardy-Weinberg equilibrium (HWE); (3) Allele frequencies in studies were shown; (4) English and Chinese articles; and (5) Studies with human subjects.

Exclusion Criteria

The exclusion criteria were as follows: (1) genotypes in the control group did not conform to HWE; (2) studies of genotype frequency estimates of odds ratio (OR) and 95% confidence interval (CI) could not be obtained; (3) useful data or results could not be extracted; (4) the results were not related to cancer susceptibility; (5) the article was a duplicate publication or existed only as an abstract.

Data Extraction

The data were extracted independently by 2 authors. If necessary, the differences between the 2 authors were resolved through discussion with a third investigator. All valid data are shown in **Table 1**: author’s name, year, country, nationality, cancer type, number of groups, P value of HWE, and genotype method.

Trials Quality Assessment

The quality of the selected articles was evaluated with the Ottawa Newcastle scale (NOS). The NOS score was ranged from 0 to 9. Scores greater than 5 indicate high-quality articles. **Table 2** lists the quality of all selected studies. The assessment includes the following 3 parts: (1) selection of subjects; (2) comparability between groups; and (3) exposure assessment.
Statistical Analyses

STATA15.0 software was used for statistical analysis. Q test and heterogeneity coefficient I^2 were used to evaluate the heterogeneity of the study. If there was no statistical heterogeneity ($I^2 < 50\%$), our meta-analysis used a fixed-effect model, as well as random effects. The combined OR value and its 95% CI were evaluated to assess the relationship. We include 5 genetic models: (1) allele, (2) heterozygote, (3) homozygote, (4) dominance, and (5) recessive model, and studies the relationship between them. If it was indispensable, we analyzed the relevant causes that may have led to heterogeneity in groups. We used the funnel chart and the P value of Egger’s and Begg’s test to judge the publication deviation.

Results

Based on our search strategy, a total of 476 appropriate and related articles were identified. In the end, 28 articles were screened out for analysis.
Table 1. Characteristics of the selected articles.

Genotype	n	First author	Year	Country	Ethnicity	Cancer type	Case	Control	HWE	Genotype methods	
PD-1 rs10204525	6	Zhou R-M	2016	China	Asian	Esophageal cancer	33	226 325	51	238 296 0.748	PCR–LDR
		Zang B	2019	China	Asian	Esophageal cancer	63	329 420	50	359 551 0.388	qRT-PCR
		Ren H-T	2016	China	Asian	Breast cancer	54	248 257	51	240 291 0.879	PCR
		Tang WF	2015	China	Asian	Gastric cancer	21	123 169	53	219 309 0.119	PCR–LDR
		Qiu H	2014	China	Asian	Esophageal cancer	43	240 317	63	243 345 0.038	PCR–LDR
		Tang WF	2017	China	Asian	Esophageal cancer	544	397 98	870	672 132 0.887	PCR–LDR
PD-1 rs11568821	5	Fathi F	2019	Iran	Asian	Basal cell cancer	3	183 24	7	58 255 0.099	PCR-RFLP
		Bayram S	2012	Turkey	Asian	Hepatocellular carcinoma	0	191 45	0	56 180 0.038	PCR-RFLP
		Haghsenas MR	2011	Iran	Asian	Breast cancer	8	365 63	4	55 231 0.725	PCR-RFLP
		Ma Y	2015	China	Asian	Non-small cell lung cancer	0	426 102	2	142 456 0.009	PCR-RFLP
		Fathi F	2018	Iran	Asian	Carcinomas of head and neck	4	119 27	5	32 113 0.162	PCR-RFLP
PD-1 rs17718883	3	Xie Q	2018	China	Asian	Hepatocellular carcinoma	215	8 2	108 69	23 0.025	PCR-RFLP
		Li Q	2018	China	Asian	Gastric cancer	87	13 1	77	48 16 0.054	PCR
		Chen S	2017	China	Asian	Hepatocellular carcinoma	122	1 0	77	48 16 0.054	PCR
PD-1 rs2227981	11	Fathi F	2019	Iran	Asian	Basal cell carcinoma	30	87 93	150 134	36 0.466	PCR-RFLP
		Zhou R-M	2016	China	Asian	Esophageal cancer	52	241 291	46	229 310 0.683	PCR–LDR
		Li XF	2016	China	Asian	Cervical cancer	44	167 45	87	101 62 0.004	PCR-RFLP
		Ma Y	2015	China	Asian	Non-small cell lung cancer	68	216 244	98	246 256 0.004	PCR-RFLP
		Fathi F	2018	Iran	Asian	Carcinomas of head and neck	16	69 65	13	71 66 0.317	PCR-RFLP
		Hua Z	2011	China	Asian	Breast cancer	22	169 295	24	210 244 0.012	PCR-RFLP
		Mojtabehed Z	2012	Iran	Asian	Colorectal cancer	32	109 59	36	89 75 0.290	PCR-RFLP
		Li Y	2016	China	Asian	Ovarian cancer	351	233 351	51	250 319 0.837	PCR–LDR
		We L	2017	China	Asian	Ovarian cancer	7	42 67	6	44 60 0.571	RT-PCR
		Haghsenas MR	2010	Iran	Asian	Breast cancer	50	191 194	46	145 137 0.445	PCR-RFLP
		Sanaz Savabkar	2013	Iran	Asian	Gastric cancer	6	66 50	7	70 89 0.136	PCR-RFLP
Table 1 continued. Characteristics of the selected articles.

Genotype	n	First author	Year	Country	Ethnicity	Cancer type	Case	Control	HWE	Genotype methods
PD-1										
rs2227982	10	Zhou R-M	2016	China	Asian	esophageal cancer	149 305 130	150 297 138	0.702	PCR-LDR
		Tan D	2017	China	Asian	ovarian cancer	87 60 17	111 48 11	0.075	qRT-PCR
		Ma Y	2015	China	Asian	non-small cell lung cancer	343 148 37	404 168 28	0.056	PCR-RFLP
		Hua Z	2011	China	Asian	breast cancer	111 249 127	95 268 143	0.121	PCR-RFLP
		Kasamatsu T	2019	Japan	Asian	multiple myeloma	55 116 40	43 55 26	0.285	PCR-RFLP
		Tang WF	2015	China	Asian	gastric cancer	75 168 87	163 292 148	0.448	PCR-LDR
		Qiu H	2014	China	Asian	esophageal cancer	159 303 154	189 325 167	0.245	PCR-LDR
		Tang WF	2017	China	Asian	esophageal cancer	220 549 272	416 816 442	0.309	PCR-LDR
		Tang WF	2017	China	Asian	esophageal cancer	87 168 75	148 292 163	0.448	PCR-LDR
		Ren H-T	2016	China	Asian	breast Cancer	172 257 128	137 299 146	0.503	PCR
PD-1										
rs2890658	6	Chen Y-B	2014	China	Asian	non-small cell lung cancer	242 48 3	266 26 1	0.671	PCR-RFLP
		Xie Q	2018	China	Asian	hepatocellular carcinoma	170 49 6	139 55 6	0.844	PCR-RFLP
		Zhou R-M	2017	China	Asian	esophageal cancer	18 161 396	15 144 418	0.541	PCR-LDR
		Li Q	2016	China	Asian	gastric cancer	79 20 2	98 39 4	0.959	PCR
		Ma Y	2015	China	Asian	non-small cell lung cancer	416 106 6	512 84 4	0.785	PCR-RFLP
		Chen S	2017	China	Asian	hepatocellular carcinoma	95 27 1	98 39 4	0.959	PCR
PD-1										
rs3608432	10	Zhou R-M	2016	China	Asian	esophageal cancer	134 303 147	142 298 145	0.649	PCR-LDR
		Zang B	2019	China	Asian	esophageal cancer	8 132 673	12 188 761	0.919	qRT-PCR
		Hua Z	2011	China	Asian	esophageal cancer	116 271 103	112 260 140	0.673	PCR
		Kasamatsu T	2019	Japan	Asian	multiple myeloma	50 110 51	33 54 37	0.154	PCR-RFLP
		Bôas Gomez GV	2018	Brazil	Caucasian	Cutaneous Melanoma	6 18 226	0 25 225	0.405	qRT-PCR
		Ma Y	2015	China	Asian	non-small cell lung cancer	138 246 144	148 296 156	0.747	PCR-RFLP
		Li Y	2016	China	Asian	ovarian cancer	169 301 150	129 323 168	0.251	PCR-RFLP
		We L	2017	China	Asian	ovarian cancer	37 57 22	21 53 36	0.849	PCR-LDR
		Zhao Y	2018	China	Asian	colorectal cancer	116 207 96	123 253 121	0.686	PCR-RFLP
		Tang WF	2017	China	Asian	esophageal cancer	282 521 238	444 800 430	<0.001	PCR-LDR
mutations and cancer susceptibility. Six trials involving 3797 subjects confirmed the relationship between PD-L1 rs2890658 and cancer susceptibility. Six studies, including 3015 subjects, estimated the relationship between PD-L1 rs4143815 and cancer susceptibility.

Meta-analysis Results

Table 3 contains our meta-analysis summary of PD-1 and PD-L1 variants and cancer susceptibility. Table 4 lists the subgroup analyses based on cancer type.

ORs of PD-1 SNPs and Cancer Predisposition

As regards PD-1 rs11568821 polymorphism, we revealed the variant increased the cancer predisposition in the allele genetic model (OR=1.314, 95% CI=1.116-1.547, P=0.001, G vs A). PD-1 rs36084323 variant was proved to decrease the cancer risk in dominant genetic model (OR=0.903, 95% CI =0.819-0.995, P=0.038, GG+GA vs AA). PD-1 rs7421861 variant was found to enhance cancer predisposition in the heterozygote model (OR=1.202, 95% CI=1.031-1.402, P=0.0019, TT vs CC) and dominant genetic model (OR=1.181, 95% CI=1.020-1.368, P=0.026, TT+CT vs CC). No clear relationship was found between rs2227981, rs227982, and rs10204525 variants and cancer susceptibility. Forest plots of meta-analysis of PD-1 rs11568821 and rs10204525 in the allele model are demonstrated in Figure 2. Forest plots of meta-analysis on PD-1 rs36084323 and rs2227981 in the dominant model are shown in Figure 3. Forest plots of the meta-analysis of PD-1 rs7421861 in the heterozygote model and dominant model are presented in Figure 4.

Subgroup Analysis of PD-1 SNPs and the Cancer Predisposition

We conducted some subgroup analyses that were based on cancer types. We detected PD-1 rs2227981 promoted the predisposition of breast cancer (OR=1.219, 95% CI=1.045-1.422, p=0.012, C vs T, Figure 5). PD-1 rs2227982 variant was

Table 1 continued. Characteristics of the selected articles.

Genotype	n	First author	Year	Country	Ethnicity	Cancer type	Case	Control	HWE	Genotype methods	
PD-L1											
rs4143815	6	Wang W	2013	China	Asian	Gastric cancer	45	72	88	135 188 79 0.746	PCR
		Tan D	2017	China	Asian	Ovarian cancer	31	82	51	54 78 38 0.334	qRT-PCR
		Xie Q	2018	China	Asian	Hepatocellular carcinoma	50	101	74	65 104 31 0.316	PCR-RFLP
		Zhou R-M	2017	China	Asian	Esophageal cancer	211	277	87	203 289 85 0.275	PCR-LDR
		Li Q	2016	China	Asian	Gastric cancer	41	47	13	49 76 16 0.09	PCR
		Chen S	2017	China	Asian	Hepatocellular carcinoma	50	50	23	49 76 16 0.09	PCR
PD-1	8										
rs7421861		Tang WF	2017	China	Asian	Esophageal cancer	7	91	226	22 168 408 0.368	PCR-LDR
		Zang B	2019	China	Asian	Esophageal cancer	343	370	100	457 411 92 0.977	PCR-RFLP
		Hua Z	2011	China	Asian	Breast cancer	11	146	333	12 130 370 0.884	PCR-RFLP
		Tang WF	2015	China	Asian	Gastric cancer	7	91	226	22 168 408 0.367	PCR-LDR
		Qiu H	2014	China	Asian	Esophageal cancer	21	168	411	25 188 460 0.295	PCR-LDR
		Jie Ge	2015	China	Asian	Colorectal cancer	14	187	395	17 163 440 0.684	PCR-RFLP
		Tang WF	2017	China	Asian	Esophageal cancer	41	358	642	54 454 1166 0.232	PCR-LDR
		Ren H-T	2016	China	Asian	Breast cancer	23	196	341	28 205 347 0.746	PCR
Table 2. Quality assessment based on the Newcastle-Ottawa Scale of trials included in this meta-analysis.

Items	Adequacy of case definition	Representativeness of the cases	Selection of controls	Definition of controls	Comparability	Ascertained of exposure	Same method of ascertainment	Non-response rate	Total scores
Tao, 2017	◆	◆	NA	NA	NA	◆	◆	NA	4
Cheng, 2017	NA	◆	NA	◆	◆	◆	◆	NA	7
Zhou, 2017	◆	◆	NA	◆	◆	◆	◆	◆	8
Li, 2016	◆	◆	NA	NA	◆	◆	◆	◆	6
Mojtabahi, 2012	◆	NA	NA	◆	◆	◆	◆	◆	6
Qiu, 2014	◆	◆	NA	◆	◆	◆	◆	◆	8
Tang, 2015	◆	◆	NA	NA	◆	◆	◆	◆	7
Haghshenas, 2011	◆	NA	NA	◆	◆	◆	◆	◆	6
Li, 2016	◆	◆	NA	◆	◆	◆	◆	◆	8
Kasamatsu, 2019	◆	◆	NA	NA	NA	◆	◆	◆	5
Boas, 2018	NA	◆	NA	NA	◆	◆	◆	◆	5
Wei, 2017	◆	◆	NA	◆	◆	◆	◆	◆	8
Fathi, 2018	◆	NA	NA	◆	◆	◆	◆	◆	6
Xie, 2018	◆	◆	NA	◆	◆	◆	◆	◆	8
Emma, 2010	NA	◆	NA	◆	◆	◆	◆	◆	4
Bay, 2012	◆	◆	NA	◆	◆	◆	◆	◆	8
Zhou, 2016	◆	◆	NA	◆	◆	◆	◆	◆	7
Li, 2016	◆	◆	NA	◆	◆	◆	◆	◆	8
Haghshenas, 2016	NA	NA	NA	◆	NA	◆	◆	◆	3
Namavar, 2017	◆	NA	NA	◆	◆	◆	◆	◆	6
Ge, 2015	◆	◆	NA	◆	◆	◆	◆	◆	6
Wang, 2013	◆	◆	NA	◆	◆	◆	◆	◆	7
Chen, 2014	NA	◆	NA	◆	◆	◆	◆	◆	6
Tan, 2017	◆	◆	NA	◆	◆	◆	◆	◆	7
Zang, 2020	NA	NA	NA	NA	NA	◆	◆	◆	5
Ren, 2016	◆	◆	NA	◆	◆	◆	◆	◆	6
Ma, 2015	◆	◆	NA	◆	◆	◆	◆	◆	7
Hua, 2011	◆	◆	NA	◆	◆	◆	◆	◆	7
Tang, 2017	◆	◆	NA	◆	◆	◆	◆	◆	6
Fathi, 2019	◆	◆	NA	◆	◆	◆	◆	◆	7
Zhao, 2018	◆	◆	NA	◆	◆	◆	◆	◆	5
Genotype	Contrast model	OR (95%CI)	P	Test for heterogeneity	L² (%)	P	Analysis model		
------------------	-------------------------	----------------	--------	------------------------	--------	--------	----------------		
rs10204525	A vs G	1.002 (0.889-1.129)	0.976	67.50	0.009	R			
	AA vs GG	1.073 (0.866-1.331)	0.517	49.00	0.081	R			
	AA+GA vs GG	1.068 (0.843-1.354)	0.586	61.80	0.023	R			
	AA vs AG+GG	0.995 (0.856-1.599)	0.943	59.40	0.031	R			
rs11568821	G vs A	1.314 (1.116-1.547)	0.001	0.00	0.609	T			
	AG vs AA	0.911 (0.437-1.898)	0.803	0.00	0.716	F			
	GG vs AA	1.298 (0.644-2.618)	0.466	0.00	0.691	F			
	GG+GA vs AA	1.221 (0.606-2.459)	0.576	0.00	0.698	T			
	GG vs GA+AA	1.061 (0.955-1.180)	0.270	0.00	1.000	F			
rs17718883	C vs G	14.156 (4.024-49.805)	<0.001	85.10	0.001	R			
	GC vs GG	2.077 (0.645-6.691)	0.221	0.00	0.626	F			
	CC vs GG	25.488 (8.494-76.481)	<0.001	0.00	0.829	F			
	CC+CG vs GG	16.615 (5.365-49.609)	<0.001	0.00	0.869	F			
	CC vs CG+GG	16.361 (4.203-63.685)	<0.001	84.60	0.001	R			
	C vs T	1.077 (0.753-1.539)	0.686	96.20	<0.001	R			
	TC vs TT	1.054 (0.542-2.058)	0.873	0.00	0.036	F			
rs2227981	CC vs TT	1.095 (0.531-2.260)	0.805	95.20	<0.001	R			
	CC+CT vs TT	1.085 (0.548-2.146)	0.815	95.50	<0.001	R			
	CC vs CT+TT	1.059 (0.759-1.464)	0.771	91.60	<0.001	R			
rs2227982	C vs T	0.981 (0.898-1.071)	0.665	56.00	0.015	R			
	TC vs TT	1.050 (0.952-1.158)	0.330	0.00	0.773	F			
	CC vs TT	0.977 (0.824-1.157)	0.787	50.20	0.034	R			
	CC+CT vs TT	1.028 (0.938-1.127)	0.555	0.00	0.498	F			
	CC vs CT+TT	0.942 (0.809-1.096)	0.437	64.30	0.003	R			
rs2890658	A vs C	1.002 (0.718-1.400)	0.989	79.80	<0.001	R			
	CA vs CC	1.154 (0.902-1.476)	0.254	0.00	0.933	F			
	AA vs CC	1.121 (0.596-1.806)	0.638	0.00	0.036	F			
	AA+AC vs CC	1.159 (0.915-1.469)	0.220	0.00	0.640	F			
	AA vs AC+CC	1.002 (0.662-1.515)	0.994	76.90	0.001	R			
	G vs A	0.930 (0.862-1.000)	0.106	49.80	0.036	F			
rs36084323	AG vs AA	0.933 (0.842-1.034)	0.189	31.30	0.158	F			
	GG vs AA	0.829 (0.701-0.981)	0.029	38.80	0.099	R			
	GG+GA vs AA	0.903 (0.819-0.995)	0.038	35.10	0.127	T			
	GG vs GA+AA	0.913 (0.798-1.044)	0.183	49.00	0.039	R			
	C vs G	0.752 (0.555-1.019)	0.066	86.90	<0.001	R			
rs4143815	GC vs GG	0.560 (0.365-0.860)	0.008	76.00	0.001	R			
	CC vs GG	0.537 (0.315-0.918)	0.023	82.00	<0.001	R			
	CC+CG vs GG	0.555 (0.351-0.877)	0.012	81.50	<0.001	R			
	CC vs CG+GG	0.809 (0.575-1.138)	0.223	75.70	0.001	R			

Table 3. Meta-analyses on PD-1 and PD-L1 variants and cancer susceptibility.
confirmed to decrease breast cancer risk in the allele model (OR=1.173, 95% CI=1.040-1.322, P=0.010, C vs T, Figure 5); homozygote model (OR=1.379, 95% CI=1.081-1.758, P=0.010, CC vs TT) and recessive genetic model (OR=1.375, 95% CI=1.126-1.679, P=0.002, CC vs TT). As regards the PD-1 rs36084323, our analyses results showed this polymorphism lowered the ovarian cancer predisposition in the heterozygote model (OR=0.695, 95% CI=0.538-0.897, P=0.005, AG vs AA); homozygote model (OR=0.615, 95% CI=0.459-0.823, P=0.001, GG vs AA, Figure 6) and dominant genetic model (OR=0.666, 95% CI=0.523-0.847, P=0.001, GG+GA vs AA, Figure 6).

Meta-analyses on PD-1 and PD-L1 variants and cancer susceptibility.

Genotype	Contrast model	OR (95%)	P	Test for heterogeneity	Analysis model		
				I² (%)			
rs7421861	T vs C	0.980	0.855-1.124	0.777	74.20	<0.001	R
	TC vs CC	1.202	1.031-1.402	0.019	0.00	0.963	F
	TT vs CC	1.171	0.969-1.416	0.102	19.80	0.272	F
	TT+CT vs CC	1.181	1.020-1.368	0.026	0.00	0.642	F
	TT vs CT+CC	0.947	0.811-1.106	0.492	68.10	0.003	R

Discussion

It has recently been confirmed that checkpoint blockade immunotherapy is one of the reasons for the continued decline in cancer mortality [1]. Single-nucleotide polymorphisms are expected to become biomarkers to help scientists classify tumors and will allow patients to be assigned to the most appropriate treatment [42]. PD-1 and PD-L1 play an indispensable role in immune tolerance, and they have become key targets in cancer therapy [43]. Some articles have discussed the relationship between PD-1 and PD-L1 mutations and different cancer susceptibility, but the conclusions are still inconsistent. Our study estimated the relationship between 9
Table 4. Subgroup analyses based on cancer type.

Genotype	Subgroup	n	Contrast model	OR (95% CI)	P	Test for heterogeneity	Analysis model	
			A vs G	1.015 (0.862-1.195)	0.859	77.40	0.004	R
rs10204525	Breast cancer	4	GA vs GG	1.063 (0.796-1.419)	0.679	63.70	0.041	R
			AA vs GG	1.122 (0.749-1.681)	0.576	77.70	0.004	R
rs10204525	Gastric cancer	1	AA vs AG+GG	1.030 (0.832-1.274)	0.787	71.90	0.014	R
rs10204525	Breast cancer	1	A vs G	0.891 (0.745-1.064)	0.202	-	-	R
rs2227981			GA vs GG	0.976 (0.640-1.488)	0.910	-	-	R
			AA vs GG	0.834 (0.549-1.267)	0.395	-	-	R
rs2227981	Gastric cancer	1	AA vs AG+GG	0.898 (0.601-1.342)	0.600	-	-	R
rs2227981	Breast cancer	2	A vs G	1.085 (0.871-1.351)	0.021	-	-	R
rs2227981			GA vs GG	1.417 (0.817-2.461)	0.215	-	-	R
rs2227981			AA vs GG	1.380 (0.805-2.366)	0.241	-	-	R
rs2227981			AA+GA vs GG	1.396 (0.825-2.360)	0.213	-	-	R
rs2227981			AA vs AG+GG	0.851 (0.674-1.074)	0.174	-	-	R
rs2227982			C vs T	1.219 (1.045-1.422)	0.012	6.70	0.301	R
rs2227982			TC vs TT	1.081 (0.750-1.557)	0.677	0.00	0.408	R
rs2227982			CC vs TT	1.309 (0.910-1.883)	0.147	0.00	0.975	R
rs2227982			CC+CT vs TT	1.206 (0.852-1.707)	0.291	0.00	0.750	R
rs2227982			CC vs CT+TT	1.301 (0.991-1.706)	0.058	49.60	0.159	R
rs2227982			C vs T	0.639 (0.241-1.694)	0.368	94.60	<0.001	R
rs2227982			CC+CT vs TT	0.336 (0.058-1.942)	0.223	89.00	<0.003	R
rs2227982			CC vs CT+TT	0.769 (0.390-1.516)	0.449	82.90	0.015	R
rs2227982	Esophageal cancer	4	C vs T	0.982 (0.914-1.056)	0.623	10.20	0.342	F
rs2227982	Esophageal cancer	4	CC vs TT	1.095 (0.966-1.241)	0.154	0.00	0.813	F
rs2227982	Esophageal cancer	4	CC+CT vs TT	0.961 (0.831-1.112)	0.592	15.10	0.316	F
rs2227982	Breast cancer	2	C vs T	1.173 (1.040-1.322)	0.010	0.00	0.599	F
rs2227982	Breast cancer	2	TC vs TT	1.012 (0.823-1.245)	0.908	0.00	0.758	F
rs2227982	Breast cancer	2	CC vs TT	1.079 (1.081-1.758)	0.010	0.00	0.734	F
rs2227982	Breast cancer	2	CC+CT vs TT	1.120 (0.921-1.361)	0.257	0.00	0.980	F
rs2227982	Breast cancer	2	CC vs CT+TT	1.375 (1.126-1.679)	0.002	0.00	0.536	F
Table 4 continued. Subgroup analyses based on cancer type.

Genotype	Subgroup	n	Contrast model	OR (95% CI)	P	Test for heterogeneity	Analysis model	
rs2890658	Non-small cell lung	2	A vs C	0.609 (0.477-0.777)	0.000	5.20	0.304	F
			CA vs CC	0.777 (0.252-2.398)	0.661	0.00	0.817	F
			AA vs CC	0.465 (0.155-1.397)	0.172			
			AA+AC vs CC	0.503 (0.167-1.510)	0.221	0.00	0.668	F
			AA vs AC+CC	0.589 (0.454-0.765)	0.000	0.00	0.345	F
	Hepato-cellular carcinoma	2	CA vs CC	1.195 (0.430-3.323)	0.733	0.00	0.380	F
			AA vs CC	1.648 (0.612-4.436)	0.323	0.00	0.361	F
			AA+AC vs CC	1.516 (0.566-4.065)	0.408	0.00	0.362	F
			AA vs AC+CC	1.405 (1.002-1.970)	0.049	0.00	0.794	F
rs36094323	Esophageal cancer	3	G vs A	1.036 (0.893-1.202)	0.639	0.00	0.629	F
			AG vs AA	1.041 (0.893-1.214)	0.608	0.00	0.960	F
			GG vs AA	0.942 (0.789-1.125)	0.510	0.00	0.436	F
			GG+GA vs AA	0.908 (0.872-1.165)	0.317	0.00		
			GG vs GA+AA	1.024 (0.810-1.295)	0.843	68.90	0.040	R
			G vs A	0.727 (0.523-1.012)	0.059	64.70	0.092	R
	Ovarian cancer	2	A vs G	1.065 (0.538-0.897)	0.005	0.00		
			AG vs AA	0.615 (0.459-0.823)	0.001	61.80	0.106	F
			GG vs AA	0.666 (0.523-0.847)	0.001	0.00	0.333	F
			GG+GA vs AA	0.645 (0.197-1.196)	0.085	30.00	0.092	R
rs4143815	Gastric cancer	2	C vs G	0.708 (0.307-1.630)	0.417	92.90	<0.001	R
			GC vs GG	0.449 (0.185-1.089)	0.077	73.90	0.050	R
	Hepato-cellular carcinoma	2	C vs G	0.736 (0.440-1.233)	0.245	81.50	0.200	R
			GC vs GG	0.422 (0.279-0.639)	0.000	0.00	0.795	R
			CC vs GG	0.498 (0.132-1.878)	0.303	87.00	0.006	R
			CC+CG vs GG	0.473 (0.162-1.384)	0.172	83.80	0.013	R
			CC vs CG+GG	0.815 (0.348-1.911)	0.638	85.20	0.009	R
	Esophageal cancer	4	C vs G	0.708 (0.307-1.630)	0.417	92.90	<0.001	R
			GC vs GG	0.449 (0.185-1.089)	0.077	73.90	0.050	R
			CC vs GG	0.498 (0.132-1.878)	0.303	87.00	0.006	R
			CC+CG vs GG	0.473 (0.162-1.384)	0.172	83.80	0.013	R
			CC vs CG+GG	0.815 (0.348-1.911)	0.638	85.20	0.009	R
	Breast cancer	2	C vs G	0.708 (0.307-1.630)	0.417	92.90	<0.001	R
			GC vs GG	0.449 (0.185-1.089)	0.077	73.90	0.050	R
			CC vs GG	0.498 (0.132-1.878)	0.303	87.00	0.006	R
			CC+CG vs GG	0.473 (0.162-1.384)	0.172	83.80	0.013	R
			CC vs CG+GG	0.815 (0.348-1.911)	0.638	85.20	0.009	R

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
FAHDI F (2019)
BAHAM S (2012)
HAHSHENAS MR (2011)
MA Y (2015)
FAHDI F (2018)
OVERALL (I-squared=0.0%, p=0.869)

Study ID OR (95% CI) % weight
Fahdi F (2019) 1.65 (1.06, 2.57) 12.68
Bayram S (2012) 1.28 (0.84, 1.93) 15.65
Haghshenas MR (2011) 1.22 (0.86, 1.73) 22.19
Mai Y (2015) 1.30 (0.99, 1.69) 37.60
Fahdi F (2018) 1.23 (0.76, 1.99) 11.87
OVERALL (I-squared=0.0%, p=0.869) 1.31 (1.12, 1.55) 100.00

Zhou R-M (2016)
ZANG B (2019)
REN H-T (2016)
TANG W (2015)
QIU H (2014)
TANG W (2017)
OVERALL (I-squared=67.5%, p=0.009)

Study ID OR (95% CI) % weight
Zhou R-M (2016) 1.23 (1.02, 1.48) 15.85
Zang B (2019) 0.81 (0.69, 0.94) 17.99
Ren H-T (2016) 0.89 (0.75, 1.06) 16.16
Tang W (2015) 1.08 (0.87, 1.35) 13.65
Qiu H (2014) 1.06 (0.89, 1.26) 16.35
Tang W (2017) 1.03 (0.91, 1.16) 19.99
OVERALL (I-squared=67.5%, p=0.009) 1.00 (0.89, 1.13) 100.00

Note: Weights are from random effects analysis

Figure 2. Forest plots of meta-analysis. (A) PD-1 rs11568821 in allele model (B) PD-1 rs10204525 in allele model.

Zhou R-M (2016)
ZANG B (2019)
HAHSHENAS MR (2011)
MA Y (2015)
LI Y (2016)
WEI L (2017)
ZHAO Y (2018)
TANG W (2017)
OVERALL (I-squared=35.1%, p=0.127)

Study ID OR (95% CI) % weight
Zhou R-M (2016) 1.08 (0.82, 1.41) 11.81
Zang B (2019) 1.27 (0.52, 3.13) 1.00
Hua Z (2011) 0.90 (0.67, 1.21) 10.77
Kasamatsu T (2019) 1.17 (0.70, 1.94) 3.16
Boas Gomez GV (2018) 0.08 (0.00, 1.34) 0.75
Ma Y (2015) 0.93 (0.71, 1.23) 12.86
Li Y (2016) 0.70 (0.54, 0.91) 15.56
Wei (2017) 0.50 (0.27, 0.93) 3.39
Zhan (2018) 0.86 (0.64, 1.15) 11.01
Tang W (2017) 0.97 (0.82, 1.16) 29.70
OVERALL (I-squared=35.1%, p=0.127) 0.90 (0.82, 0.99) 100.00

Note: Weights are from random effects analysis

Figure 3. Forest plots of meta-analysis. (A) PD-1 rs36084323 in dominant model (B) PD-1 rs2227981 in dominant model.

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Figure 5. Forest plots of Subgroup analysis. (A) breast cancer (PD-1 rs2227981 in allele model); (B) breast cancer (PD-1 rs2227982 in allele model).

Figure 6. Forest plots of Subgroup analysis. (A) ovarian cancer (PD-1 rs36084323 in homozygote model); (B) ovarian cancer (PD-1 rs36084323 in homozygote model).

Figure 7. Forest plots of meta-analysis. (A) PD-L1 rs17718883 in homozygote model; (B) PD-L1 rs2890658 in homozygote model.
Study ID	OR (95% CI)	% weight
Wang W (2013)	0.30 (0.20, 0.46)	18.93
Tan D (2017)	0.78 (0.46, 1.32)	17.16
Xie Q (2018)	0.41 (0.25, 0.67)	17.51
Zhou R-M (2017)	0.94 (0.67, 1.32)	20.08
Li Q (2016)	0.76 (0.34, 1.72)	12.54
Cheng S (2017)	0.46 (0.22, 0.95)	13.79
Overall	0.56 (0.36, 0.86)	100.00

Note: Weights are from random effects analysis.

Study ID	OR (95% CI)	% weight
Wang W (2013)	0.30 (0.17, 0.42)	18.23
Tan D (2017)	0.78 (0.46, 1.32)	17.16
Xie Q (2018)	0.41 (0.25, 0.67)	17.51
Zhou R-M (2017)	0.94 (0.67, 1.32)	20.08
Li Q (2016)	0.76 (0.34, 1.72)	12.54
Cheng S (2017)	0.46 (0.22, 0.95)	13.79
Overall	0.56 (0.36, 0.86)	100.00

Note: Weights are from random effects analysis.

Figure 8. Forest plots of meta-analysis. (A) PD-L1 rs4143815 in heterozygote model; (B) PD-L1 rs4143815 in homozygote model.

Study ID	OR (95% CI)	% weight
Non-small cell lung cancer	Non-small cell lung cancer	Non-small cell lung cancer
Chen Y-B (2014)	0.49 (0.31, 0.79)	21.34
Ma Y (2015)	0.66 (0.50, 0.88)	48.11
Subtotal (I-squared=5.2%, p=0.304)	Subtotal (I-squared=5.2%, p=0.304)	Subtotal (I-squared=5.2%, p=0.304)
Xie Q (2018)	1.28 (0.88, 1.87)	17.57
Cheng S (2017)	1.50 (0.91, 2.46)	10.71
Subtotal (I-squared=0.0%, p=0.629)	Subtotal (I-squared=0.0%, p=0.629)	Subtotal (I-squared=0.0%, p=0.629)
Overall (I-squared=83.0%, p=0.001)	Overall (I-squared=83.0%, p=0.001)	Overall (I-squared=83.0%, p=0.001)
0.84 (0.70, 1.01)	100.00	

Note: Weights are from random effects analysis.

Study ID	OR (95% CI)	% weight
Non-small cell lung cancer	Non-small cell lung cancer	Non-small cell lung cancer
Chen Y-B (2014)	0.48 (0.29, 0.79)	22.61
Ma Y (2015)	0.64 (0.47, 0.87)	49.66
Subtotal (I-squared=0.0%, p=0.345)	Subtotal (I-squared=0.0%, p=0.345)	Subtotal (I-squared=0.0%, p=0.345)
Xie Q (2018)	1.36 (0.88, 2.08)	17.57
Cheng S (2017)	1.49 (0.86, 2.59)	10.15
Subtotal (I-squared=0.0%, p=0.794)	Subtotal (I-squared=0.0%, p=0.794)	Subtotal (I-squared=0.0%, p=0.794)
Overall (I-squared=82.0%, p=0.001)	Overall (I-squared=82.0%, p=0.001)	Overall (I-squared=82.0%, p=0.001)
0.82 (0.66, 1.00)	100.00	

Note: Weights are from random effects analysis.

Figure 9. Forest plots of Subgroup analysis. (A) hepatocellular cancer (PD-L1 rs2890658 in allele model); (B) hepatocellular cancer (PD-L1 rs2890658 in recessive model).

Study ID	OR (95% CI)	% weight
Gastric cancer	Gastric cancer	Gastric cancer
Wang W (2013)	0.30 (0.20, 0.46)	38.13
Li Q (2016)	0.76 (0.34, 1.72)	14.38
Subtotal (I-squared=73.9%, p=0.050)	Subtotal (I-squared=73.9%, p=0.050)	Subtotal (I-squared=73.9%, p=0.050)
Xie Q (2018)	0.41 (0.25, 0.67)	30.22
Cheng S (2017)	0.46 (0.22, 0.95)	17.27
Subtotal (I-squared=0.0%, p=0.993)	Subtotal (I-squared=0.0%, p=0.993)	Subtotal (I-squared=0.0%, p=0.993)
Overall (I-squared=27.6%, p=0.013)	Overall (I-squared=27.6%, p=0.013)	Overall (I-squared=27.6%, p=0.013)
0.41 (0.29, 0.57)	100.00	

Note: Weights are from random effects analysis.

Study ID	OR (95% CI)	% weight
Gastric cancer	Gastric cancer	Gastric cancer
Wang W (2013)	0.40 (0.17, 0.42)	29.33
Li Q (2016)	1.03 (0.44, 2.39)	20.82
Subtotal (I-squared=63.5%, p=0.098)	Subtotal (I-squared=63.5%, p=0.098)	Subtotal (I-squared=63.5%, p=0.098)
Xie Q (2018)	0.32 (0.18, 0.56)	27.10
Cheng S (2017)	0.71 (0.34, 1.50)	22.75
Subtotal (I-squared=72.6%, p=0.013)	Subtotal (I-squared=72.6%, p=0.013)	Subtotal (I-squared=72.6%, p=0.013)
Overall (I-squared=76.0%, p=0.001)	Overall (I-squared=76.0%, p=0.001)	Overall (I-squared=76.0%, p=0.001)
0.46 (0.26, 0.84)	100.00	

Note: Weights are from random effects analysis.

Figure 10. Forest plots of Subgroup analysis. (A) PD-L1 rs4143815 in heterozygote model (B) PD-L1 rs4143815 in homozygote model.
Table 5. Publication bias consequences.

Genotype	Contrast model	Publication bias (Egger’s test)	Publication bias (Begg’s test)		
		t	P	Z	P
rs11568821	G>A	0.52	0.642	-0.24	1.000
rs17718883	C>G	1.03	0.49	1.04	0.296
rs36094323	G>A	-0.61	0.557	0.36	0.721
rs4143815	C>G	-0.45	0.676	0.75	0.452
rs7421861	T>C	-0.62	0.71	0.49	0.621

Figure 11. Publication bias. (A) Begg’s funnel plot for PD-1 rs11568821 in allele model; (B) Begg’s funnel plot for PD-1 rs36094323 in allele model.

Figure 12. Publication bias. (A) Begg’s funnel plot for PD-L1 rs4143815; (B) Begg’s funnel plot for PD-1 rs7421861 in allele model.
variants of PD-1 and PD-L1 and cancer susceptibility. Our results suggest that PD-1 rs36084323 and PD-L1 rs4143815 are significantly associated with decreased cancer susceptibility, while PD-1 rs7421861, rs11568821, and PD-L1 rs17718883 variants increase overall cancer susceptibility. We found that there was no clear relationship between PD-1 rs2227981, rs2227982, rs10204525, and PD-L1 rs2890658 mutations and cancer susceptibility.

Subgroup analysis showed that PD-1 rs2227981 increased the susceptibility to breast cancer. In addition, PD-1 rs2227982 is associated with reduced susceptibility to breast cancer. However, PD-1 rs36084323 is associated with reduced susceptibility to ovarian cancer. In addition, our results suggest that the PD-L1 rs4143815 mutation significantly reduces the susceptibility to liver cancer. There was a negative correlation between PD-L1 rs2890658 and susceptibility to non-small cell lung cancer.

Recently, Hashemi et al. [44] conducted a meta-analysis of 27 case-control studies to explore the relationship between PD-1 genes rs11568821, rs2227981, rs2227982, and rs7421861 and tumor susceptibility. The results showed that the mutations of PD-1 rs2227981, rs11568821, rs7421861, and PD-L1 rs4143815 were related to the overall susceptibility to cancer. However, Hashemi et al. did not include Chinese studies, nor did they rule out low-quality studies based on NOS scores. Shan et al. [10] conducted a meta-analysis of 10 studies (9571 subjects) and found that PD-1 rs36084323 was associated with reduced susceptibility to cancer in Asians, which is consistent with our findings. Compared with the meta-analysis of Shan et al., the genetic polymorphism studied in this paper is more comprehensive and includes more recent research results. However, a study by Zhou et al. [14] showed that PD-L1 rs1771883 polymorphism may have led to a lack of statistical ability to study this relationship. Secondly, there is obvious heterogeneity in several polymorphisms; therefore, we conducted a subgroup analysis to find out the causes of heterogeneity. Finally, we inferred that the type of cancer and the country of residence of the participants may lead to heterogeneity. These mean that our results should be interpreted carefully.

Tumor immunotherapy targeting PD-1 and PD-L1 immune checkpoint pathways has begun in the field of oncology. The combination of anti-PD-1 and anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) has produced an effective pathological response rate in the treatment of breast and lung cancer [45]. At present, 3 PD-L1 inhibitors have been approved for non-small cell lung cancer [46]. Aaron et al confirmed that the effective rate of blocking PD-1 with nivolumab was more than half in unselected patients with Hodgkin’s lymphoma [47]. Melanoma patients with other types of cancer showed the best response [48]. Our meta-analysis includes more case and control samples than previous studies, and we also included Chinese studies. In addition, we evaluated the quality of NOS research, including high-quality research and excluding low-quality articles. Last but not least, in our study, 26 of the 27 trials were conducted in Asians and only 1 in Whites, which could reduce the potential effects of different races on genetic susceptibility. Therefore, our meta-analysis makes a more convincing assessment than previous studies.

However, this study also has some limitations. First of all, the small number of participants with the PD-L1 rs1771883 polymorphism may have led to a lack of statistical ability to study this relationship. Secondly, there is obvious heterogeneity in several polymorphisms; therefore, we conducted a subgroup analysis to find out the causes of heterogeneity. Finally, we inferred that the type of cancer and the country of residence of the participants may lead to heterogeneity. These mean that our results should be interpreted carefully.

Conclusions

In conclusion, our results suggest that both PD-1 rs36084323 and PD-L1 rs4143815 variants decrease cancer predisposition, while PD-1 rs7421861, rs11568821, and PD-L1 rs17718883 polymorphisms significantly increase the risk of cancer.

Conflicts of Interest

None.
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. Cancer J Clin. 2020;70:7-30

2. Yang Y. Cancer immunotherapy: Harnessing the immune system to battle cancer. J Gen Intern Med. 2015;30:3335-37

3. Salmaninejad A, Valliou SF, Shabagh AH, et al. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J Cell Physiol. 2019;234:16824-37

4. Han Y, Liu D, Li P. PD-1/PD-L1 pathway: current research in cancer. Am J Cancer Res. 2020;10:727-42

5. Gong J, Chehrazi-Raffle A, Reddi S, Salvija R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6:8

6. Guo Q, Dong C, Xu H, et al. PD-L1 degradation pathway and immunotherapeutics for cancer. Cell Death Dis. 2020;11:955

7. Cha J, Chan L, Li C, et al. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76:359-70

8. Guan J, Lim KS, Mekhallal T, Chang C. Programmed death ligand-1 (PD-L1) gene polymorphism (PD-1.5 C/T) is associated with colon cancer. Gene. 2015;646:211-16

9. Ren H, Li Y, Wang X, et al. PD-1 rs2227982 polymorphism is associated with the decreased risk of breast cancer in Northwest Chinese women: A hospital-based observational study. Medicine. 2016;95:e3760

10. Da L, Zhang Y, Zhang C, et al. The PD-1 rs36084323 A>G polymorphism decrease cancer risk in Asian: A meta-analysis. Pathol Res Pract. 2018;214:1758-64

11. Zang B, Chen C, Zhao J. PD-1 gene rs10204525 and rs7421861 polymorphisms are associated with increased risk and clinical features of esophageal cancer in a Chinese Han population. Aging. 2020;12:3711-90

12. Dong W, Gong M, Shi Z, et al. Programmed cell death-1 polymorphisms decrease the cancer risk: A meta-analysis involving twelve case-control studies. PloS One. 2016;11:e0152448

13. Tang D, Sheng L, Yi Q. Correlation of PD-1/PD-L1 polymorphisms and expression with clinicopathologic features and prognosis of ovarian cancer. Cancer Biomark. 2018;21:287-97

14. Zou J, Zhu H, Wang T, et al. Association of the programmed cell death-1 gene rs4143815 C>G polymorphism and human cancer susceptibility: A systematic review and meta-analysis. Pathol Res Pract. 2019;215:219-34

15. Zhang J, Zhao T, Xu G, et al. The association between polymorphisms in the PDCD1 gene and the risk of cancer: A PRISMA-compliant meta-analysis. Medicine. 2016;95:e4423

16. Xie Q, Chen Z, Xia L, et al. Correlations of PD-1 gene polymorphisms with susceptibility and prognosis in hepatocellular carcinoma in a Chinese Han population. GENE. 2018;74:188-94

17. Zhao X, Peng Y, Li X, et al. The association of PD-1 gene polymorphisms with non-small-cell lung cancer susceptibility and clinical outcomes in a Chinese population. Int J Clin Exp Pathol. 2013;6:2130-36

18. Zhao Y, Gang M, Pang H, et al. [Association of gene polymorphisms with colorectal cancer in chinese han population.] Chinese Journal of Medical Genetics. 2015;35:219-23 [in Chinese].

19. Cheng S. [PD-1 single nucleotide polymorphisms and serum detection in primary liver cancer and its clinical significance.] Third Military Medical University. 2017 [in Chinese]

20. Mojtahedzadeh Z, Mohmededi M, Rahimifar S, et al. Programmed death-1 gene polymorphism (PD-1.3 C/T) is associated with colon cancer. Gene. 2012;508:229-32

21. Qiu H, Zheng L, Tang W, et al. Programmed death-1 (PD-1) polymorphisms in Chinese patients with esophageal cancer. Clin Biochem. 2014;47:612-17

22. Tang W, Chen Y, Shen S, et al. Programmed death-1 (PD-1) polymorphism is associated with gastric cardia adenocarcinoma. Int J Clin Exp Med. 2015;8:8086-93

23. Haghshenas MR, Naemi S, Talei A, et al. Program death 1 (PD1) haplotyping in patients with breast carcinoma. Mol Biol Rep. 2011;38:4205-10

24. Deng L. [Differential and prognostic value of PD-L1 expression and gene polymorphisms in gastric cancer.] Second Military Medical University. 2016 [in Chinese]

25. Li Y, Zhang H, Kang S, et al. The effect of polymorphisms in PD-1 gene on the risk of epithelial ovarian cancer and patients’ outcomes. Gynecol Oncol. 2017;144:140-45

26. Zhou R, Li Y, Liu J, et al. Programmed death-1 ligand-1 gene rs2890658 polymorphism associated with the risk of esophageal squamous cell carcinoma in smokers. Cancer Biomark. 2017;21:65-71

27. Gomez GV, Rinck-Junior JA, Oliveira C, et al. PDCD1 gene polymorphisms as regulators of T-lymphocyte activity in cutaneous melanoma risk and prognosis. Pigment Cell Melanoma Res. 2018;31:308-17

28. Fathi F, Faghih Z, Khademi B, et al. PD-1 haplotype combinations and susceptibility of patients to squamous cell carcinomas of head and neck. Immunol Invest. 2019;48:1-10

29. Bayram S, Akkiz H, Ulger Y, et al. Lack of an association of programmed cell death-1 PD1.3 polymorphism with hepatocellular carcinoma susceptibility in Turkish population: A case-control study. Gene. 2012;511:308-13

30. Zhou R, Li Y, Wang N, et al. Association of programmed death-1 polymorphisms with the risk and prognosis of esophageal squamous cell carcinoma. Cancer Genet. 2016;209:365-75

31. Li X, Jiang XQ, Zhang JM, Jia YJ. Association of the programmed cell death-1 PD1.3 C>T polymorphism with cervical cancer risk in a Chinese population. Genet Mol Res. 2016;15:15061357

32. Wei L, Wang J, Men Y, Xiao L. [The relationship between PD-1 gene polymorphism and EOC susceptibility and prognosis.] Study on maternal and child health in china. 2017;28:78-96 [in Chinese]

33. Namavar JF, Samadi M, Majathedji Z, et al. Association of PD-1.5 C/T, but not PD-1.3 G/A, with malignant and benign brain tumors in Iranian patients. Immunol Invest. 2017;46:469-80

34. Ge J, Zhu L, Zhou J, et al. Association between co-inhibitory molecule gene tagging single nucleotide polymorphisms and the risk of colorectal cancer in Chinese. J Cancer Res Clin Oncol. 2015;141:1533-44

35. Chen YB, Mu CY, Chen C, Huang JA. Association between single nucleotide polymorphism of PD-L1 gene and non-small cell lung cancer susceptibility in a Chinese population. Asia Pac J Clin Oncol. 2014;10:e1-6

36. Ma Y, Liu X, Zhu J, et al. Polymorphisms of co-inhibitory molecules (CTLA-4/PD-1/PD-L1) and the risk of non-small cell lung cancer in a Chinese population. Int J Clin Exp Med. 2015;8:16585-91

37. Hua L, Li D, Xiang G, et al. PD-1 polymorphisms are associated with sporadic breast cancer in Chinese Han population of Northeast China. Breast Cancer Res Treat. 2011;129:195-201

38. Wang W, Li F, Mao Y, et al. A mir-570 binding site polymorphism in the B7-H1 gene is associated with the risk of gastric adenocarcinoma. Hum Genet. 2015;132:641-48

39. Fathi F, Ebrahimim L, Eslami A, et al. Association of programmed death-1 gene polymorphisms with the risk of basal cell carcinoma. Int J Immunogenet. 2019;46:444-50

40. Tang W, Chen S, Chen Y, et al. Programmed death-1 polymorphisms is associated with risk of esophageagastric junction adenocarcinoma in the Chinese Han population: A case-control study involving 2,740 subjects. Oncotarget. 2017;8:39198-208

41. Kasamatsu T, Awata M, Ishihara R, et al. PDCD1 and PDCD1LG1 polymorphisms affect the susceptibility to multiple myeloma. Clin Exp Med. 2020;20:51-62

42. Heinrichs S, Look AT. Identification of structural aberrations in cancer by SNP array analysis. Genome Biol. 2007;8:219

43. Qin W, Hu L, Zhang X, et al. The diverse function of PD-1/PD-L pathway beyond cancer. Front Immunol. 2019;10:2298

44. Hashemi M, Karami S, Sarabandi S, et al. Association between PD-1 and PD-L1 polymorphisms and the risk of hepatocellular carcinoma susceptibility in Turkish population: A meta-analysis. Pathol Res Pract. 2017;213:208-12 [in Chinese]

45. Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science. 2020;367(6477):aax0182

46. Haschemi M, Karami S, Sarabandi S, et al. Association between PD-1 and PD-L1 polymorphisms and the risk of breast cancer. Cancer Res Treat. 2011;43:299-305

47. Heinrichs S, Look AT. Identification of structural aberrations in cancer by SNP array analysis. Genome Biol. 2007;8:219