Evaluation of Manganese Ion on Controlling Harmful Microorganisms In vitro and In vivo for the Early-Weaned Pig

I. H. Kim¹, D. H. Kang, C. S. Kim² and H. B. Seok²

Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA

ABSTRACT: Two experiments were conducted to determine the effects of MnSO₄ on controlling harmful microorganisms in vitro and in vivo. The in vitro experiment was conducted to examine the effects of manganese sulfate (MnSO₄) on the reduction of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by growth stimulation of Pediococcus acidilactici (P. acidilactici; lactic acid bacteria). Manganese ion (0.003 %) was found to stimulate the growth of P. acidilactici in the In Vitro system. When E. coli and S. aureus were grown in a mixture with P. acidilactici, their numbers were reduced. This may be the result of a reduction of pH in the medium as a result of better growth of P. acidilactici due to stimulation by the Mn ion. The in vivo experiment was conducted to determine the effects of MnSO₄ in diets on controlling harmful microorganisms in fecal samples of pigs. There were no significant differences for the microbial numbers (i.e., total microorganisms, E. coli, lactic acid bacteria and S. aureus) in feces of pigs fed MnSO₄ compared to feces of pigs fed the control diet through 7 days. However, on day 7 of experiment, the pH of feces in pigs fed MnSO₄ (0.1%) decreased faster than pigs fed the control diet.

(Key Words: Manganese, Microorganisms, In vitro, In vivo, Feces, Pig)

INTRODUCTION

At birth, the piglet is essentially devoid of circulating antibodies, since placental transfer of maternal immunoglobulins to the fetus is minimal (Kim et al., 1966). Consequently, the piglet receives immunological protection from the sow via passive transfer of immunoglobulins contained in the colostrum. Typically, the pig's passive immunity is maximized 24-36 hours postpartum, and decreases logarithmically thereafter (Miller et al., 1962). At 5 weeks of age, humoral immunity is low, presenting potential problems in the early-weaned pig. Blecha et al. (1983) reported that the pig's ability to mount an immune response was suppressed as weaning age was decreased from 5 to 2 weeks of age.

In pigs, postweaning diarrhea causes great economic loss due to the reduced growth, occasional death, and cost of medical treatment and prophylaxis (Svendsen et al., 1974; Jahn and Uecker, 1987; Svenmark et al., 1989). Strains of Escherichia coli (E. coli) are the primary cause of diarrheic diseases at weaning and the period immediately thereafter (Kenworthy and Crabb, 1963; Sojka, 1965; Svendsen et al., 1977; Sarmiento et al., 1988).

Manganese ion was found to accelerate the growth and bacteriocin production of lactic acid bacteria (LAB) (Biswas et al., 1991). According to Raccah (1983), manganese ion appears to be essential to the growth and metabolic activities of LAB. The effects of manganese ion on LAB include enhancement of lactic acid fermentation and protection from oxygen toxicity. Furthermore, the rapid increase in LAB number can attribute to the inhibition of harmful microorganisms such as E. coli or Staphylococcus spp. by antimicrobial agents (i.e., lactic acid, bacteriocin or enzyme etc.) (Bruno et al., 1992; Kone and Fung, 1992).

Therefore, the objectives of the experiments reported herein were to determine the effects of manganese sulfate (MnSO₄) on the reduction of E. coli and Staphylococcus aureus (S. aureus) by growth stimulation of Pediococcus acidilactici (P. acidilactici) for the in vitro experiment and the effects of MnSO₄ in diets on controlling harmful microorganisms in fecal samples of pigs for the in vivo experiment.

MATERIALS AND METHODS

1. In vitro experiment

AJAS 1998 Vol. 11 (No. 1) 8-12
MANGANESE ION ON CONTROLLING HARMFUL MICROORGANISMS

(1) Cultures tested

Pedioococcus acidilactici isolated from HP starter culture (Diversitech Inc., Duncanville, TX) was transferred into Brain Heart Infusion (BHI, Difco) and incubated at 40°C for 48 hours. A 1% inoculum (0.75 ml) of the suspension was transferred into a Klett flask containing 75 ml of BHI broth with 1.5% sucrose added. *Escherichia coli* and *S. aureus* obtained from the culture collection at Kansas State University was inoculated into the same BHI medium either individually or in combination with *P. acidilactici*.

(2) Laboratory medium with MnSO₄

The BHI + MnSO₄ media (BHIM: 0.003% MnSO₄) broth was prepared as follows. A stock solution of MnSO₄ was prepared by adding 0.5 g of MnSO₄ to 10 ml sterilized water. After mixing, the stock solution was filter sterilized through 0.2 µm membrane filter and added 0.06 ml to 100 ml BHI broth. The control (0%) and 0.003% of MnSO₄ in BHI broth were tested for acid production and growth of *P. acidilactici*.

(3) Effect of MnSO₄ on inhibiting *E. coli* by *P. acidilactici*

Escherichia coli (10⁴ CFU/ml) was inoculated into BHIM broth, BHI broth with each individual supplement, or BHI broth with no supplement along with *P. acidilactici* (10⁴ CFU/ml). The Klett flasks with cultures were incubated at 40°C. Klett units and viable cell counts of *E. coli* were obtained using Violet Red Blue (VRB, Difco) agar and *P. acidilactici* using Lactobacilli deMan Rogosa and Sharp (MRS, Difco) agar. *Escherichia coli* without *P. acidilactici* was evaluated as a control.

(4) Effect of MnSO₄ on inhibiting *S. aureus* by *P. acidilactici*

Staphylococcus aureus (10⁴ CFU/ml) was inoculated into BHIM broth and BHI broth along with *P. acidilactici* (10⁴ CFU/ml). Viable cell counts of *S. aureus* using Baird-Parker (Difco) agar and *P. acidilactici* using MRS agar were measured at regular intervals (after 0, 6, 12, 18 and 24 hours) incubation at 40°C. *Staphylococcus aureus* without *P. acidilactici* were evaluated as control.

(5) Statistical analysis

Data from this experiment were analyzed using the General Linear Model (GLM) procedures of SAS (1988) with LSD (Steel and Torrie, 1980) to compare treatment means.

2. In vivo experiment

(1) Animals

Eighteen pigs (initially 5.1 kg body weight and 21 days of age) were used in 7 days to determine the effect of MnSO₄ in diets on controlling harmful microorganisms in fecal samples. The pigs were housed in individual cages (46 cm × 46 cm) equipped with woven-wire flooring. Each cage contained a one-hole self feeder and one nipple waterer to allow ad libitum consumption of feed and water. Room temperature was maintained at 28°C.

(2) Treatments and diets

Treatments were: 1) corn-soybean meal based control diet, 2) corn-soybean meal based diet with 0.01% MnSO₄, and 3) corn-soybean meal based diet with 0.1% MnSO₄. The concentrations of MnSO₄ were diluted with distilled water and sprayed diluted MnSO₄ into the diets. All diets were formulated to contain 1.50% lysine, 0.42% methionine, 0.9% Ca and 0.8% P and contained 25% dried whey, 9% lactose and 7.5% porcine plasma protein (table 1). The diets were fed in pellet form and were

Table 1. Composition of basal diet

Ingredient	%
Corn	31.78
Dried whey	25.00
Soybean meal, 48.5%	15.03
Lactose	9.00
Spray-dried plasma protein	7.50
Soybean oil	5.00
Fish meal	3.00
Monocalcium phosphate	1.56
Antibiotic b	1.00
Limestone	0.38
Vitamin premix c	0.25
L-Lysine • HCl	0.15
Trace mineral premix d	0.15
DL-Methionine	0.12
Copper sulfate	0.08
Total	100.00

a Diets were formulated to contain 1.50% lysine, 0.42% methionine, 0.9% Ca and 0.8% P.
b Provided 165 µg/kg of apramycin.
c Premix provided per kilogram of complete diet: vitamin A, 11,025 IU; vitamin D₃, 1,103 IU; vitamin E, 44 IU; menadione (menadione sodium bisulfate complex), 4.4 mg; riboflavin, 8.3 mg; d-pantothenic acid, 29 mg; niacin, 50 mg; choline, 166 mg; and vitamin B₁₂, 33 µg.
d Premix provided per kilogram of complete diet: Mn, 12 mg; Fe, 165 mg; Zn, 165 mg; Cu, 16 mg; I, 0.3 mg; and Se, 0.3 mg.
formulated to meet or exceed all other nutrient concentrations as recommended by the NRC (1988).

(3) Feces sampling

On day 0, 3 and 7 of the experiment, fecal samples were collected from six pigs per treatment by rectal massage to measure microbiological change. Fecal samples were transferred to filter stomacher bags (Model SFB 0410, Spiral Biotech Inc., Bethesda, MD) to make 10^{-1} dilution with 0.1% sterile peptone water and pummeled for 2 minutes in a stomacher (Model 400, Seward Medical, London, UK). Serial dilutions were prepared with 9 ml dilution blanks of 0.1% sterile peptone water. Dilutions were plated with spiral plater (Model DV2, Spiral Systems, Inc., Cincinnati, OH) on the appropriate media (plate count agar for total microorganisms, MRS for LAB, VRB for E. coli and Baird-Parker for Staphylococcus spp.).

(4) Statistical analysis

Data collected were analyzed as a randomized complete block design with pen as the experimental unit and initial weight as the blocking factor. Data were analyzed using the General Linear Model (GLM) procedures of SAS (1988). Duncan’s multiple range test was used to separate means (Steel and Torrie, 1980).

RESULTS AND DISCUSSION

1. In vitro experiment

(1) Inoculum of E. coli with P. acidilactici

Figure 1 shows the growth (CFU/ml) of inoculated E. coli (10^6 CFU/ml) in the laboratory medium containing P. acidilactici. Without MnSO$_4$, E. coli increased to 8.34 log CFU/ml at 40°C incubation with P. acidilactici. However, the final numbers of E. coli in the medium with the mixture of MnSO$_4$ with P. acidilactici, after 16 hours of incubation at 40°C, increased to only 7.41 log CFU/ml ($p < 0.05$). In the presence of MnSO$_4$ and E. coli, the numbers of P. acidilactici increased from 6.2 log to 9.23 log CFU/ml, whereas with E. coli alone, P. acidilactici increased from 6.2 log to 8.5 log CFU/ml ($p < 0.05$; figure 2). The suppression of growth of E. coli by P. acidilactici in the presence of supplement was great. In conclusion, 0.003% of MnSO$_4$ was a good stimulator for the growth of P. acidilactici. In the mixed culture with E. coli (10^6 CFU/ml) and P. acidilactici (10^6 CFU/ml), Mn ion was a good stimulator to control E. coli by P. acidilactici during fermentation.

(2) Inhibition of S. aureus by P. acidilactici with and without growth factor

Figure 3 shows the growth of S. aureus in laboratory media containing P. acidilactici. Without MnSO$_4$, S. aureus increased from 4.7 log to 7.42 log CFU/ml after 16 hours of incubation with P. acidilactici. However, the final numbers of S. aureus in the medium with the mixture of MnSO$_4$ plus P. acidilactici after 16 hours were
reduced from 4.7 log to under 1.0 log CFU/ml (p < 0.05). In the presence of MnSO₄ and S. aureus, the numbers of P. acidilactici increased from 6.8 log to 9.3 log CFU/ml, whereas with S. aureus alone, P. acidilactici increased from 7.2 log to 8.75 log CFU/ml (p < 0.05; figure 4). The suppression of growth of S. aureus by P. acidilactici in the presence of supplement was great (reduction of about 6-7 log CFU/ml units).

In conclusion, 0.003% of MnSO₄ was a good stimulator for growth and acid production of P. acidilactici in cultures with E. coli or S. aureus in the in vitro system.

2. In vivo experiment.

Table 2 shows the effect of MnSO₄ on microbial changes in feces of pigs. There were no significant differences for the microbial numbers (i.e., total microorganisms, E. coli, lactic acid bacteria and S. aureus) in feces of pigs fed MnSO₄ compared to feces of pigs fed the control diet through 7 days. Table 3 shows the effects of MnSO₄ on pH changes in feces of pigs. For day 0 and 3 of experiment, there was no significant difference for the pH change among the treatments. However, after 7 days, the pH of feces in pigs fed MnSO₄ (0.1%) decreased faster (p < 0.05) than pigs fed the control diet (8% less). Manganese ion contributes to the rapid decrease in pH through stimulation for LAB. Low pH is important to control harmful microorganisms and bacteriocin production from LAB (Biswas et al., 1991). From these data, MnSO₄ did not show the significant effect as in the short term (7 days) in vivo experiment. However, on the basis of the rapid pH decrease of treated pig's feces, MnSO₄ might affect the microbial numbers in a long term experiment.

Item	MnSO₄			
	0%	0.01%	0.1%	SE
Total microorganisms				
day 0	8.06	8.13	8.07	0.11
day 3	8.77	8.53	8.62	0.18
day 7	8.58	8.67	8.66	0.25
Escherichia coli				
day 0	6.80	6.61	6.73	0.12
day 3	6.95	6.75	6.80	0.26
day 7	6.93	6.90	6.89	0.17
Lactic acid bacteria				
day 0	7.36	7.36	7.42	0.25
day 3	7.43	7.63	7.59	0.31
day 7	7.60	7.71	7.74	0.17
Staphylococcus spp.				
day 0	4.37	4.23	4.17	0.22
day 3	4.13	4.10	4.07	0.15
day 7	3.93	4.10	3.80	0.20

A total of 18 pigs were allotted with one pig per pen and six pens per treatment.
Table 3. Effects of MnSO₄ on pH changes in feces of pigs

Item	MnSO₄			
	0%	0.01%	0.1%	SE
day 0	6.89	6.91	6.92	0.12
day 3	6.82	6.84	6.66	0.05
day 7	6.90	6.95	6.34	0.02

* A total of 18 pigs were allotted with one pig per pen and six pens per treatment.

** Means with different superscripts in the same row differ significantly (p < 0.05).

REFERENCES

Biswas, S. R., R. Purbita, M. C. Johnson and B. Ray. 1991. Influence of growth conditions on the production of a bacteriocin pediocin ACh, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57:1265.

Blecha, F., D. S. Pollmann and D. A. Nichols. 1983. Weaning pigs at an early age decreases cellular immunity. J. Anim. Sci. 56:396.

Bruno, M. E. C., A. Kaiser and T. J. Montville. 1992. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl. Environ. Microbiol. 58:2255.

Jahn, S. and E. Uecker. 1987. Ökonomische Untersuchungen zur Kolienterotoxämie des Schweines [Economical studies of colienterotoxaemia of pigs]. Monatshfte für Veterinar Medizin 42:769.

Kim, Y. B., A. Bradley and D. W. Watson. 1966. Ontogeny of the immune response. I. Development of immunoglobulins in conventional and colostrum deprived piglets. J. Immunol. 78:112.

Kenworthy, R. and W. E. Crabb. 1963. The intestinal flora of young pigs, with reference to early weaning, Escherichia coli, and scours. J. Comp. Path. 73:215.

Kone, K. and D. Y. C. Fung. 1992. Control of Escherichia coli 0157:117 by fermentation. IAMFES 79th Annual Meeting, Toronto, Canada. July 26-29.

Miller, E. R., B. G. Hamton, D. E. Ullrey, D. A. Schmidt, R. W. Luecke and J. A. Hoefer. 1962. Antibody absorption, retention and production by the baby pig. J. Anim. Sci. 21:309.

NRC. 1988. Nutrient Requirements of Swine (9th Ed.). National Academy Press, Washington, D.C.

Racech, M. 1983. Fermentation method using a selected Lactobacillus. U. S. Patent 4,407,383, October 4.

Samiento, J. L., T. H. A. Casey and H. W. Moon. 1988. Postweaning diarrhoea in swine: Experimental model of enterotoxigenic Escherichia coli infection. Am. J. Vet. Res. 49:1154.

SAS. 1988. SAS/STAT User's Guide (Release 6.03 Ed.). SAS Inst. Inc., Cary, NC.

Seojka, W. J. 1965. Escherichia coli in domestic animals. Commonwealth Agricultural Bureaux, Farnham Royal, Bucks., UK. p. 104.

Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics. McGraw-Hill Book Co. New York.

Svendsen, J., J. L. Larsen and N. Bille. 1974. Outbreaks of postweaning Escherichia coli diarrhea in pigs. Nordisk Vet. Med. 26:314.

Svendsen, J., H. J. Riising and S. Christensen. 1977. Studies on the pathogenesis of enteric E. coli infections in weaned pigs: Bacteriological and immunofluorescent studies. Nordisk Vet. Med. 29:212.

Svendsmark, B., P. Nielsen, P. Wilhede and S. E. Jorsal. 1989. Epidemiological studies of piglet diarrhea in intensively managed Danish sow herds. Acta Vet. Scandinavia 30:55.