Review article

Mobile genetic elements associated with carbapenemase genes in South American Enterobacterales

Jorge Aníbal Reyes a,b,*, Roberto Melano c,d, Paúl Andrés Cárdenas b,a, Gabriel Trueba b,a

a Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Ecuador
b Universidad Central del Ecuador, Facultad de Ciencias Químicas, Quito, Ecuador
c Public Health Ontario, Toronto, Canada
d University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Canada

ARTICLE INFO

Article history:
Received 15 November 2019
Accepted 21 March 2020
Available online 21 April 2020

Keywords:
Mobile genetic elements
Carbapenemase
South America

ABSTRACT

Introduction: Carbapenem resistance in members of order Enterobacterales is a growing public health problem causing high mortality in developing and industrialized countries. Its emergence and rapid propagation worldwide was due to both intercontinental spread of pandemic strains and horizontal dissemination via mobile genetic elements (MGE) such as plasmids and transposons.

Objective: To describe MGE carrying carbapenem resistance genes in Enterobacterales which have been reported in South America.

Search strategy and selection criteria: A search of the literature in English or Spanish published until 2019 in PubMed, Google Scholar, LILACS and SciELO databases was performed for studies of MGE in Enterobacterales reported in South American countries.

Results: Seven South American countries reported MGE related to carbapenemases. Carbapenemase-producing Klebsiella pneumoniae belonging to clonal complex 258 were the most prevalent pathogens reported; others carbapenemase-producing Enterobacterales such as Escherichia coli, Serratia marcescens, and Providencia rettgeri also have been reported. The MGE implicated in the spread of the most prevalent carbapenemase genes are Tn4401 and non-Tn4401 elements for blaKPC and ISAb125 for blanDM, located in different plasmid incompatibility groups, i.e. L/M, A/C, FII and bacterial clones.

Conclusion: This review indicates that, like in other parts of the world, the most commonly reported carbapenemases in Enterobacterales from South America are being disseminated through clones, plasmids, and transposons which have been previously reported in other parts of the world.

© 2020 Sociedade Brasileira de Infectologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.
E-mail address: jorgereyes83@gmail.com (J.A. Reyes).
https://doi.org/10.1016/j.bjid.2020.03.002
1413-8670/© 2020 Sociedade Brasileira de Infectologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Enterobacteriales are the most prevalent opportunistic pathogens in hospital settings, causing sepsis, pneumonia, soft tissue infections, urinary tract infections, and others. To make this problem worse, the emergence of resistance to \(\beta \)-lactams, the most commonly used family of antibiotics, has drastically reduced treatment options for those infections.\(^1\) Since Alexander Fleming described the penicillin in 1928, a large number of \(\beta \)-lactams have been developed belonging to five groups: penams, penems, cephems, monobactams, and carbapenems, all of which possess a \(\beta \)-lactam ring. The carbapenems group is the election to treat infections caused by bacteria producing extended-spectrum \(\beta \)-lactamases (ESBLs) or AmpC cephalosporinases.\(^2\)

In recent years, the carbapenem-resistant Enterobacteriales (CRE) have rapidly emerged and disseminated worldwide. This resistance is caused by either production of carbapenemases or a combination of mechanisms such as the presence of different ESBLs (or AmpC) in addition to porin loss. The evidence suggests that clonal dissemination of carbapenemase-producing Enterobacteriales (CPE) plays a critical role in hospital outbreaks of life-threatening infections, which have increased mortality, morbidity and hospitalization costs.\(^3\) However, mobile genetic elements (MGEs) including plasmids, transposable elements (TEs), and integrons are probably the most important factors implicated with the dissemination of carbapenemase genes among different bacterial species. TE, including insertion sequences (ISs) and transposons (Tns), are discrete DNA structures, located in plasmids or chromosomes, which can move (through the activity of self-encoded transposases) to new locations in the genome. The ISs are the smallest TEs that can move resistance genes as part of a composite transposon; a gene bounded by two copies of the same or related IS that can move as a single unit.\(^4,5\) In this review, we describe different MGEs associated with carbapenemase genes in Enterobacteriales members reported in South American countries.

Methodology

A search of literature published in English or Spanish until August 2019 was performed using PubMed, Google Scholar, LILACS and SciELO databases. In a first-round, the keywords ‘mobile genetic elements AND carbapenemase resistance, carbapenemase AND Enterobacteriales OR Enterobacteriales AND (Argentina OR Brazil OR Bolivia OR Colombia OR Chile OR Ecuador OR Guyana OR French Guiana OR Paraguay OR Peru OR Suriname OR Uruguay OR Venezuela)’ were used. Abstracts or conference reports were not included unless the article form was unavailable. All selected articles were subjected to a second search round for selection of specific studies using molecular analysis criteria: (a) description of clonality based in sequence type (ST) using multilocus sequence typing (MLST) or whole genome sequencing and (b) descriptions of MGEs associated with carbapenemase genes in Enterobacteriales species, including plasmid incompatibility groups (based on replicon typing or restriction digestion performed with S1 nuclease) and/or description of TE or integrons structures using DNA sequencing.

Results

Argentina

The first report of chromosomally encoded NMC-A carbapenemase was in an Enterobacter cloacae isolate recovered from a leukemia patient in 2004.\(^6\) Four years later a KPC-2-producing K. pneumoniae strain was reported.\(^7\) Gomez et al. described the Tn4401a isoform associated with bla\(_{KPC-2}\) harbored in the international clone K. pneumoniae ST258. Interestingly, a bla\(_{KPC-2}\) gene was associated with non-Tn4401 elements (NTE) in the non-ST258 clones of K. pneumoniae (ST11, ST476, and ST526). In other Enterobacteriales species, it was harbored in transferable plasmids belonging to IncHI2, IncI/M and IncA/C incompatibility groups.\(^8\) Thebla\(_{NDM-1}\) gene was located in a Tn125 composite transposon harbored in plasmids of different sizes, reported in Providencia rettgeri.\(^9\) A bla\(_{IMP-8}\)-harboring plasmid IncA/C1-ST13 was described in E. coli, and the carbapenemase gene was associated with integron class I flanked by two IS26 elements.\(^10\) Other metallo-\(\beta \)-lactamases (MBL), such as bla\(_{VIM-2}\) and bla\(_{VIM-11}\), were associated with integrons In883, In885, In346, In900 in E. cloacae,\(^11\) and bla\(_{VIM-16}\) associated with class I integron in Serratia marcescens.\(^12\) Two genetically related K. pneumoniae isolates were recovered from the same patient, one isolate harboring bla\(_{OXA-163}\) and the other bla\(_{OXA-242}\). Interestingly, their genetic environment in both genes comprised the insertion sequence IS4321 upstream and IS4-like insertion downstream.\(^13\)

Colombia

The first description of KPC-2-producing K. pneumoniae isolate in South America was reported in Colombia in 2005.\(^14\) Later, a KPC-3-producing K. pneumoniae was isolated from an Israeli patient (international spread).\(^15\) Another report showed that the bla\(_{KPC-2}\) was more prevalent than bla\(_{KPC-3}\) in ST258 and non-ST258 K. pneumoniae isolates, and the isoform Tn4401a was more prevalent than Tn4401b.\(^16\) Other reports showed a close relationship of bla\(_{KPC-2}\) with Tn4401b isoform (harbored in IncI/M plasmids) in isolates of K. pneumoniae ST14, ST338, and ST339.\(^17\) Interestingly, the isoform “b” was also harbored in IncA/C and IncF plasmids in non-K. pneumoniae isolates.\(^18\) bla\(_{NDM-1}\)-1 was reported in Escherichia coli associated with Tn125 and Tn3593, located in IncA/C plasmids.\(^19\) An outbreak caused by a K. pneumoniae ST1043 carrying an IncA/C, bla\(_{NDM-1}\)-1 plasmid was also reported.\(^20\)

Brazil

Carbapenem-resistant K. pneumoniae is the most common CPE pathogen in this country. KPC-2-producing K. pneumoniae belonging to the clonal complex (CC) 258 (including ST258, ST11, and ST437) has been described in a variety of MGEs associations (IncI1, IncN, IncI/M, and untypeable plasmids carrying Tn4401a or Tn4401b), which were successfully disseminated among species of Enterobacteriales.\(^21\) Similarly, another study
Ecuador

A blaKPC-2 gene was detected in K. pneumoniae ST258 and ST25 and associated with Tn4401a (Reyes et al., manuscript in preparation), whereas the blaNDM-1 gene harbored in IncA/C plasmid was reported in K. pneumoniae ST147. A blaOXA-48-like gene harbored in a Tn1999 was reported in a clinical isolate Raoultella ornithinolytica.

Chile

The Tn4401a isoform harboring blaKPC gene was reported in K. pneumoniae ST258, ST101, ST25 clones and an NTE variant 1 in K. pneumoniae ST11, ST1161, and ST29.

Uruguay

The presence of blaKPC-2 gene harbored in Tn4401a was identified in K. pneumoniae ST 258 causing an outbreak.

Venezuela

The blaKPC-2 located in a Tn4401b was reported in K. pneumoniae ST11, ST15, ST833, ST1271, ST1857, ST1859 and ST1860 clones. K. pneumoniae ST833 was also described carrying blaKPC-2 and a class 1 integron harboring blavim-2.

Discussion

Although some successful bacterial clones can disseminate resistance vertically (e.g. K. pneumoniae belonging to CC258 carrying Tn4401blaKPC), carbapenemase genes (as well as other antibiotic resistance determinants) are frequently transmitted horizontally between different enterobacterial clones, species, and genera. Furthermore, these genes also disseminate among different plasmids and chromosomes through transposition or recombination events.

In South America, we observed the same patterns reported worldwide (Table 1), which indicates that some clones are being transmitted among South American countries (or elsewhere), raising the need for tracking carbapenemase clone dissemination. There is also evidence of carbapenemase gene mobility between plasmids and clones which potentially facilitates the emergence of new epidemic CRE clones such as K. pneumoniae ST11 and the hypervirulent clone ST25 (Table 1). This type of mobility is more difficult to track; plasmids carrying these genes could be identified (by replicon typing or plasmid/whole genome sequencing), but the rearrangements due to recombination and transposition sometimes complicate their traceability.

Another approach to partially assess some of these complexities could be analyzing the genetic environment in which these genes are located. A classic example would be Tn4401, a Tn3-type, 10-kb mobile transposon frequently associated with blaKPC genes. Its structure consists of a Tn3 transposase gene (tnpA), a resolvase gene (tnpR) and additional insertion sequences (ISKpm6 and ISKpm7) delimited by two 39-bp imperfect inverted repeats (IRs). The isoforms (a to h) are classified based in nucleotide deletions upstream of blaKPC gene (affecting its promoter region and the KPC-expression), lacking genes or both: for instance, isoform “a” has a 99 bp deletion; isoform “b” has no deletion; isoforms “c”, “d”, a 215 bp deletion; isoform “e”, a 255 bp deletion; isoform “f”, a truncation in tnpA, absence of tnpR, ISKpm7 left part and Tn4401 IRL-1; isoform “g” is similar to “f” plus a 215 bp deletion (like isoform c); and isoform “h” has a 188-bp deletion.

Non-Tn4401 elements are other genetic environments of the blaKPC gene. These are complex DNA structures harboring some Tn4401 elements such as ISKpm6. Some examples are shown in Fig. 1,11,49,50 In South America the isolates Tn4401a and b were the most commonly found in regional studies (e.g. in Argentina, Colombia, Brazil, Chile, Ecuador, and Venezuela), but NTEs and the isoforms Tn4401c and d were also described in Brazil, respectively, mainly in non-K. pneumoniae isolates (Table 1). As mentioned before, this lateral dissemination between genera and species would be more
Table 1 – Summary of mobile genetic elements reported in carbapenemase-producing Enterobacterales in South America.

Country	Isolate	Replicon typing (incompatibility group)	Transposable element	Carbapenemase gene	Reference
Argentina	K. pneumoniae ST258	L/M	Tn4401a	blaKPC-2	8
	C. freundii, E. cloacae	H12, L/M, A/C	NTE: variant 1a and Variant 1b		
	K. pneumoniae	non-258	Tn125	blaVIM-1	9,10
	P. rettgeri	B/O	Class 1 integron	blabin3	11
	E. coli	Non-typeable	Class 1 integron: In883, In885, In946 and In900		
	E. cloacae	N/D	IS4321-1S4	blaOXA-48	13
Brazil	K. pneumoniae ST258, ST11 and ST48	FII	Tn4401a	blaKPC-2	21
	K. pneumoniae ST327 and ST437 and E. coli	N	Tn4401b	blaKPC-2	21,23
	K. pneumoniae	Q1	NTE	blaKPC-2	
	S. marcescens and C. freundii	L/M	N/D	blaKPC-2	25
	E. coli, E. cloacae, E. aerogenes, C. freundii and P. stuartii	N/D	Tn4401b and Tn4401d	blaKPC-2	25
	K. pneumoniae ST11 and E. coli ST502	W	Tn4401c	blaKPC-2	21,26
	K. pneumoniae ST1781	IncQ	ISKpn23	blaKPC-1	
Enterobacter hormaechei	FII	ISAb125 and Tn3000	NTE	27,29	
	P. rettgeri	N/D	Tn125	blaVIM-1	28,29
	E. coli	IncX3	Tn3000	blaVIM-1	
	K. pneumoniae, P. rettgeri	N/D	Class 1 integrons		
	S. marcescens	N/D	Class 1 integrons		
	E. hormaechei	N/D	Tn3 truncated-Tn4 truncated		
Chile	K. pneumoniae ST258, ST101, ST25	N/D	Tn4401a	blaKPC-2	36
	K. pneumoniae ST258, ST101, ST25	N/D	NTE: variant 1a	blaKPC-2	36
Ecuador	K. pneumoniae ST147	A/C	Tn4401a	blaOXA-48	34-35
	K. pneumoniae ST248, 25, 42	FII	Tn1999	blaKPC-2	
Raoulletia ornithinolytica	N/D				
Uruguay	K. pneumoniae ST 258	N/D	Tn4401a	blaKPC-2	37
	K. pneumoniae ST11, ST15, ST33, ST1271, ST1857, ST1859 and ST1860	N/D	Tn4401b	blaKPC-2	38
	K. pneumoniae ST833	N/D	class 1 integron	blaVIM-2-blaKPC-2	39

N/D: not determined.
related to the type of conjugative plasmid where the transposon ‘landed’.

Currently, more than 70 MBLs (chromosomally- and plasmid-encoded) have been reported and grouped based on DNA sequence similarity. NDM is one of the most successfully plasmid-disseminated MBL detected in different members of the Enterobacteriales around the world and their frequent association with ISAbα125 suggests a possible Acinetobacter spp. origin, a bacterium in which this association is very common. Tn125, an ISAbα125-based composite transposon, was one of the genetic elements described to be involved in blaNDM dissemination, but in Enterobacteriaceae
Tn125 it has been interrupted or truncated, generating a variety of different genetic contexts for bla_{NDM}.⁵³ *K. pneumoniae*, *E. coli*, and *Enterobacter* spp. are the predominant carriers of bla_{NDM}, with heterogeneous clonal backgrounds and multiple acquisitions of bla_{NDM} genes across bacterial species, also, different replicon types of bla_{NDM}-carrying plasmids in the Enterobacteriaceae were described, being the most common IncA/C, FIA, FIB, FII and X⁵³ (in our bibliographic review we found less frequent descriptions of MBL-producing Enterobacteriaceae). Reported bla_{NDM-1} genes were associated with ISAba125 composite transposon Tn125 (Table 1). There are no extensive descriptions of bacterial clones and plasmid incompatibility groups related to bla_{NDM} in South America. In Argentina, there was one description of a bla_{NDM-1}-harboring, IncB/O plasmid recovered from *P. rettgeri*; in Colombia and Ecuador, bla_{NDM-1} was detected on IncA/C plasmids from *E. coli* (Colombia) and *K. pneumoniae* (both countries). More information has to be developed and analyzed to have a clearer picture of bla_{NDM} spread in South America. A similar scenario was found regarding bla_{VIM} (Argentina-Venezuela) and bla_{IMP} (Brazil), both carbapenemase genes associated to class 1 integrons, also described in *Pseudomonas aeruginosa*, evidencing that class 1 integrons are efficient genetic platforms to incorporate MBLs genes and disseminated once a transposon or plasmid is involved.^{54,55}

The OXA-enzymes have higher hydrolysis rates against clavulanic and oxacillin than other β-lactams. In addition, they are poorly inhibited by clavulanic acid, tazobactam, and aztreonam, and some can inactivate carbapenems.⁵⁶

We found few descriptions of MGEs associated with these carbapenemase genes in South America; in Ecuador, the bla_{OXA-48}-like gene was related to Tn1999-like.⁵⁷ However, in Brazil bla_{OXA-48}, a variant of bla_{OXA-48}, showed association with truncated Tn3 and Tn4 transposons.

Conclusions

Current evidence enhances the importance of MGEs for carbapenemase gene dissemination. Except for Argentina, Brazil, and Colombia, the reports of MGEs are scarce in other South American countries. The bla_{KPC} and bla_{NDM} are the most prevalent carbapenemase genes reported in Enterobacteriaceae species are associated with Tn4401/non-Tn4401 elements and ISAba125/Tn125 respectively while bla_{VIM} and bla_{IMP} carbapenemase genes are related to class 1 integrons. The location of transposons or integrons in different plasmid incompatibility groups and bacterial clones denotes their capacity in transferability and mobilization. It is possible that intercontinental dissemination of CRE clones was followed by horizontal gene transfer of plasmids carrying carbapenem resistance genes to local bacteria. Any control measure intended to tackle antibiotic resistance genes dissemination requires the identification of the potential sources of these genes, which nowadays is carried out by DNA polymorphisms. Unfortunately, carbapenem resistance genes have very little polymorphisms. We argue that the study of MGEs associated with these genes could provide very valuable epidemiological information to detect the potential sources.

Funding information

This study was funded by Instituto de Microbiología, Universidad San Francisco de Quito.

Conflict of interest

The authors declare no conflicts of interest.

REFERENCES

1. Hawkey P, Warren R, Livermore D, et al. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/healthcare Infection Society/British Infection Association Joint Working Party. J Antimicrob Chemother. 2018;73 Suppl. 3:i1i2–78.

2. El-gamal MI, Brahim I, Hisham N, et al. Recent updates of carbapenem antibiotics. Eur J Med Chem. 2017;131:185–95.

3. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215:28–36.

4. Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev. 2011;35:790–819.

5. Trueba G. Why does evolution matter? The importance of understanding evolution. The forces behind the dissemination of bacterial virulence and antibiotic. Cambridge Scholar Publishing; 2014. p. 155–64.

6. Radice M, Power P, Guttkind G, et al. First class A carbapenemase isolated from Enterobacteriaceae in Argentina. Antimicrob Agents Chemother. 2004;48:1068–9.

7. Pasteran FG, Otaegui L, Guerrero L, et al. Klebsiella pneumoniae carbapenemase – 2, Buenos Aires, Emerg Infect Dis. 2008;14:1178.

8. Gomez SA, Pasteran FG, Faconn D, et al. Clonal dissemination of Klebsiella pneumoniae ST258 harboring KPC-2 in Argentina. Clin Microbiol Infect. 2011;17:1520–4.

9. Pasteran F, Meo A, Gomez S, et al. Emergence of genetically related NDM-1-producing Providencia rettgeri strains in Argentina. J Glob Antimicrob Resist. 2014;2:344–5.

10. Elena A, Cejas D, Magarinos F, et al. Spread of clonally related Escherichia coli strains harboring an IncA/C1 plasmid encoding IMP-8 and its recruitment into an unrelated MCR-1-containing isolate. Antimicrob Agents Chemother. 2018;62:e02414–2417.

11. De Belder D, Facon D, Tijet N, et al. Novel class 1 Integrons and sequence types in VIM-2 and VIM-11-producing clinical strains of Enterobacter cloacae. Infect Genet Evol. 2017;54:374–8.

12. Nastri M, Monge R, Zintgraff J, et al. First nosocomial outbreak of VIM-16-producing Serratia marcescens in Argentina. Clin Microbiol Infect. 2013;19:617–9.

13. Gomez S, Pasteran F, Facon D, et al. Intrapatient emergence of OXA-247: a novel carbapenemase found in a patient previously infected with OXA-163-producing Klebsiella pneumoniae. Clin Microbiol Infect. 2013;19: E233–5.

14. Villegas MV, Lolans K, Correa A, et al. First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob Agents Chemother. 2006;50:2880–2.
15. Lopez JA, Correa A, Navon-Venezia S, et al. Intercontinental spread from Israel to Colombia of a KPC-3-producing Klebsiella pneumoniae strain. Clin Microbiol Infect. 2011;17:52-6.

16. Mojica MF, Correa A, Vargas DA, et al. Molecular correlates of the spread of KPC-producing Enterobacteriaceae in Colombia. Int J Antimicrob Agents. 2012;40:277-9.

17. Cuzon G, Naas T, Truong H, et al. Worldwide diversity of Klebsiella pneumoniae that produce β-lactamase blaKPC-2 gene. Emerg Infect Dis. 2010;16:1349.

18. Cuzon G, Naas T, Correa A, et al. Dissemination of the KPC-2 carbapenemase in non-Klebsiella pneumoniae enterobacterial isolates from Colombia. Int J Antimicrob Agents. 2013;42:59-62.

19. Rojas LJ, Wright MS, De La Cadena E, et al. Initial assessment of the molecular epidemiology of blaoXA-48 in Colombia. Antimicrob Agents Chemother. 2016;60:4346-50.

20. Escobar Pérez JA, Olarte Escobar NM, Castro-Carazo B, et al. Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia, South America. Antimicrob Agents Chemother. 2013. AAC-01447-12.

21. Andrade LN, Curiao T, Ferreira JC, et al. Dissemination of blaKPC-2 by the spread of Klebsiella pneumonia clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFI, IncN, IncI1/M) among Enterobacteriaceae species in Brazil. Antimicrob Agents Chemother. 2011;55:3579-91.

22. Almeida ACS, de SS Cavalcanti FL, Vilela MA, et al. Escherichia coli ST502 and Klebsiella pneumoniae ST11 sharing an IncW plasmid harbouring the blaKPC-2 gene in an intensive care unit patient. Int J Antimicrob Agents. 2012;40:374-6.

23. Cerdeira IT, Läm MMC, Wyres KL, et al. Small IncQ1 and Col-like plasmids harbouring blaKPC-2 and Non-Tn4401 elements (NTEKPC-IId) in high-risk lineages of Klebsiella pneumoniae CG258. Antimicrob Agents Chemother. 2019;AAC-C2140.

24. Zahner V, Carvalho-Assef APD, Asensi MD, et al. Update of the molecular epidemiology of KPC-2-producing Klebsiella pneumoniae in Brazil: spread of clonal complex 11 (ST11, ST437 and ST340). J Antimicrob Chemother. 2012;68:312-6.

25. Tavares CP, Pereira PS, Marques Ede A, et al. Molecular epidemiology of KPC-2-producing Enterobacteriaceae (non-Klebsiella pneumoniae) isolated from Brazil. Diagn Microbiol Infect Dis. 2015;82:326-30.

26. Nicoletti AG, Marcondes MF, Martins WB, et al. Characterization of BKC-1 class A carbapenemase from Klebsiella pneumoniae clinical isolates in Brazil. Antimicrob Agents Chemother. 2015;59:5159-64.

27. Carvalho-Assef AP, Pereira PS, Albano RM, et al. Detection of NDM-1, CTX-M-15-, and qnr84-producing Enterobacter hormaechei isolates in Brazil. Antimicrob Agents Chemother. 2014;58:2475-6.

28. Carvalho-Assef AP, Pereira PS, Albano RM, et al. Isolation of NDM-producing Providencia rettgeri in Brazil. J Antimicrob Chemother. 2013;68:2956-7.

29. Campos JC, da Silva MF, dos Santos PRN, et al. Characterization of Tn3000, a transposon responsible for blaoXA-48 dissemination among Enterobacteriaceae in Brazil, Nepal, Morocco, and India. Antimicrob Agents Chemother. 2015;59:7387-95.

30. Lincopan N, McCulloch JA, Reinert C, et al. First isolation of metallo-β-lactamase-producing multiresistant Klebsiella pneumoniae from a patient in Brazil. J Clin Microbiol. 2005;43:516-9.

31. Lincopan N, Leis R, Vianello MA, et al. Enterobacteria producing extended-spectrum β-lactamases and IMP-1 metallo-β-lactamases isolated from Brazilian hospitals. J Med Microbiol. 2006;55:1611-3.

32. Silva KE, Cayó R, Carvalhaes CG, et al. Coproduction of KPC-2 and IMP-10 in carbapenem-resistant Serratia marcescens isolates from an outbreak in a Brazilian teaching hospital. J Clin Microbiol. 2015;53:2324-8.

33. Sampaio JLM, Ribeiro VB, Campos JC, et al. Detection of OXA-370, an OXA-48-related class D β-lactamase, in Enterobacter hormaechei from Brazil. Antimicrob Agents Chemother. 2014;58:3566-7.

34. Romero-Alvarez D, Reyes J, Quezada V, et al. First case of New Delhi metallo-β-lactamase in Klebsiella pneumoniae from Ecuador: an update for South America. Int J Infect Dis. 2017;65:119-21.

35. Reyes JA, Villavicencio F, Villacís JE, et al. First report of a clinical isolate of blaOXA-48-carbapenemase producing Raoultella ornitholytica in South America. Rev Argent Microbiol. 2019.

36. Barria-Loaiza C, Pincheira A, Quezada M, et al. Molecular typing and genetic environment of the blaoXA gene in Chilean isolates of Klebsiella pneumoniae. J Glob Antimicrob Resist. 2016;4:28-34.

37. Marquez C, Ingold A, Echeverría N, et al. Emergence of KPC-producing Klebsiella pneumoniae in Uruguay: infection control and molecular characterization. New Microbes New Infect. 2014;2:58-63.

38. Falco Restrepo AD, Nieves MAV, Takihi H. Molecular characterization of KPC-producing Klebsiella pneumoniae isolated from patients in a Public Hospital in Caracas, Venezuela. Enferm Infecct Microbiol Clin. 2017;35:411-6.

39. Falco A, Ramos Y, Franco E, et al. A cluster of KPC-2 and VIM-2-producing Klebsiella pneumoniae ST833 isolates from the pediatric service of a Venezuelan hospital. BMC Infect Dis. 2016;16:595.

40. Duin DV, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence. 2017;8:460-9.

41. Partridge SR, Kwong SM, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31, e00086-17.

42. Conlan S, Park M, Deming C, et al. Plasmid dynamics in KPC-positive Klebsiella pneumoniae during long-term patient colonization. Mbio. 2016;7, e00742-ss16.

43. Doumith M, Findlay J, Hirani H, et al. Major role of pKpQIL-like plasmids in the early dissemination of KPC-type carbapenemases in the UK. J Antimicrob Chemother. 2017;72:2241-8.

44. Chen YT, Lin JC, Fung CP, et al. KPC-2-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. J Antimicrob Chemother. 2013;69:628-31.

45. Chen L, Chavda KD, Frazins WS, et al. Complete nucleotide sequences of blaKPC-4, and blaKPC-1, harboring IncN and IncX plasmids from Klebsiella pneumoniae strains isolated in New Jersey. Antimicrob Agents Chemother. 2013;57:269-76.

46. Rozwandowicz M, Brouwer MSM, Fischer J, et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother. 2018;73:1121-37.

47. Naas T, Cuzon G, Villegas MV, et al. Genetic structures at the origin of acquisition of the β-lactamase blaoXA gene. Antimicrob Agents Chemother. 2008;52:1257-63.

48. Cheruvanky A, Stoesser N, Sheppard AE, et al. Enhanced Klebsiella pneumoniae carbapenemase (KPC) expression from a novel Tn4401 deletion. Antimicrob Agents Chemother. 2017;61. AAC-00025-17.

49. Shen P, Wei Z, Jiang Y, et al. Novel genetic environment of the carbapenem-hydrolyzing β-lactamase KPC-2 among Enterobacteriaceae in China. Antimicrob Agents Chemother. 2009;53:4333-8.

50. Wolter DJ, Kuriel PM, Woodford N, et al. Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4. Antimicrob Agents Chemother. 2009;53:557-62.
51. Naas T, Oueslati S, Bonnin RA, et al. Beta-lactamase database (BLDB) – structure and function. J Enzyme Inhib Med Chem. 2017;32:917–9.

52. Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int. 2014:249–856.

53. Wu W, Feng Y, Tang G, et al. NDM metallo-β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev. 2019;32:e00115–18.

54. Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2014;20:831–8.

55. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20:440–58.

56. Oueslati S, Nordmann P. Heterogeneous hydrolytic features for OXA-48-like β-lactamases. J Antimicrob Chemother. 2015;70:1059–63.

57. Mairi A, Pantel A, Sotto A, et al. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur J Clin Microbiol Infect Dis. 2018;37:587–604.