>// 33 //</br>

Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel Through Staggered Antenna Switching

Jeong-Su Kim*, Moon-Ho Lee**, Daechul Park***

요약 본 연구에서는 K 사용자 다중 셀 다중 입력 다중 출력 (MIMO) 가우시안 간섭 채널에 대한 조인트 간섭 정렬 및 전력 할당 전략을 특성화한다. 수신기에서 스태거드 안테나 스위칭을 통해 블라인드 (blind) 간섭 정렬을 갖는 MIMO 간섭 채널을 고려한다. 우리는 재구성 가능한 다중 모드 안테나 (스태거드 안테나 스위칭 패턴)가 장착되어 있으며 수신기는 사전 설정된 T 모드를 전환한다. 제안된 기법은 원하는 신호와 간섭 신호를 지원하고 정렬하여 제거한다. 수신된 신호는 예상한 간섭신호 공간을 가지게 하기 때문에, 공통 간섭 신호를 포함한다. 제구성 가능한 다중 모드 안테나를 사용하는 K 사용자 다중 셀 MIMO 가우시안 간섭 채널의 총 용량을 완벽하게 나타낸다.

Abstract In this paper, we characterise the joint interference alignment and power allocation strategies for a K-user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with a blind interference alignment through staggered antenna switching on the receiver. We explore the power allocation and the feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired and interference signals to cancel the common interference signals, since the received signal must have a corresponding independent signal subspace. The sum capacity for a K-user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised.

Key Words : Blind interference alignment; multiple-input multiple-output (MIMO); Gaussian interference channel; reconfigurable multimode antenna

*정회원, 숭실사이버대학교 컴퓨터정보통신학과(주저자)
**정회원, 전북대학교 전자공학부(교신저자)
***정회원, 한남대학교 컴퓨터정보통신학과

Received: 4 January, 2018 / Revised: 6 February, 2018
Accepted: 6 April, 2018

Corresponding Author: moonho@jbnu.ac.kr
Dept: Division of Electronic Engineering, Chonbuk National University, Korea
Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel Through Staggered Antenna Switching

Ⅰ. 서 론
간섭 정렬은 무선 통신 시스템에서 가장 두드러진 기술 중 하나이다. 무선 네트워크의 크기가 복잡성과 직면하는 문제를 증가시키기 때문이다[1]. 다중 입력 및 다중 출력 (MIMO) 갤렌 채널의 정확한 채널 용량 영역은 독립 적인 채널 행렬 및 각각의 독립적 사용자 노드에서의 입력 및 수의 안테나를 기반으로 특징 지어진다[2,3]. 달성 가능한 자유도 (DoF)는 독립적인 간섭없는 신호 크기의 총수를 기반으로 결정된다. 이러한 기술에는 유사한 차원 부문 공간에서 정렬된 간섭 신호의 정렬 및 취소가 포함된다. 그리고 이러한 정렬은 다중 사용자 및 다중 셀 네트워크 설정 [4-6]으로 분류된다. 최근에, 간섭 정렬 기술은 간섭 신호를 정렬함으로써 무선 네트워크의 총 용량과 DoF를 증가시키는 것을 목격했다[7]. 간섭 정렬 (IA)은 시간, 주파수 및 사용자 수와 같은 제한된 자원을 필요로 하지만, 이러한 기술은 개별 사용자 채널을 기반으로 간섭 신호를 정렬하고 재구성하기 위해서 시공간 간섭 정렬 (STIA) 기술이 사용된다. STIA는 R-STIA 기술은 릴레이 (CSIR) 지식에서의 제한된 채널 상태 정보와 다양한 시간 슬롯으로부터의 정보를 사용하여 개별 사용자의 인터페이스를 정렬하고 재구성하는 데 도움이 된다. 또한, 다중 사용자 MIMO 채널에 대한 범 포핑 행렬은 선호적으로 사용되는 밸런스 빌러멘 부분을 필요로 하는 수신기에서 간섭 신호를 정렬하고 재구성하기 위한 개별 채널 정렬 (STIA) 기술이 사용된다. 이는 CSIT 또는 CSIR 기술에서의 제한된 채널 상태 정보와 다양한 시간 슬롯으로부터의 정보를 사용하여 개별 사용자의 인터페이스를 정렬하고 재구성하는 데 도움이 된다. 그러나 간섭 정렬 화학은 불안정한 간섭을 정렬하고 재구성하기 위한 개별 채널 정렬 (STIA) 기술이 사용된다. STIA는 R-STIA 기술은 릴레이 (CSIR) 지식에서의 제한된 채널 상태 정보와 다양한 시간 슬롯으로부터의 정보를 사용하여 개별 사용자의 인터페이스를 정렬하고 재구성하는 데 도움이 된다. 최근의 여러 연구에서 전력 채널을 사용하는 MIMO 갤렌 채널에 대한 DoF를 계산하는 것이 특징이다. 예를 들어, K 사용자의 단일 입력 단일 출력 갤렌 채널에서의 DoF는 [7,8]에 대한 CSIT 지식으로 계산된다.

1. 주요 Contribution
이 논문의 주요 공헌은 다음과 같이 요약된다.
이 연구의 새로운 점은 간섭 신호 부분 공간이 무작위로 생성된 전송 전략을 고려하여 정렬된다는 것이다.

본 논문에서는 셀 간 사용자 간섭 (IUI) 누수 (K = 5 사용자) 및 셀 간 간섭 (ICI 누출) (L = 3 셀)을 최소화하기 위해 기지국에서 부분적으로 협력하는 CE MU 기법과 2 계층 송신기 빔 형성 전략을 제안한다.

우리의 제안된 알고리즘은 단지 (T = 2) 프리셋 모드들을 중에서 저가의 재구성 가능한 안테나 스위칭을 고려하기 때문에 CSJ가 없는 경우에 간편한 안테나 스위칭을 사용하여 K 사용자 MIMO 가우시안 간섭 채널에 대한 IA 및 전력 할당 접근법을 일반화한다.

가장 중요하게 제안된 방식이 있는 아이디어는, 하나의 바람직하지 않은 수신기에서 정렬된 임의의 벡터가 다른 의도되지 않은 수신기에서 정렬될 수 없기 때문에, 유사한 차수 스브 스페이스 신호를 소거함으로써 원하는 신호 및 간섭 신호를 돕고 정렬하는 것이다.

우리는 또한 다중 셀 MIMO 네트워크를 위한 CE MU와 ICI 기법 간의 부분 힘행 역할에 대한 우리의 접근 방식을 확장했다. 협업 CE MU와 ICI 스키림 간의 데이터 공유는 전반적인 시스템 성능을 향상시키는 것이다.

또한, 우리의 결과는 수신기에서 재구성 가능한 안테나를 사용하는 다중 랜드 K 사용자 다중 셀 MIMO 가우시안 간섭 채널에 적용되며 CSJ 존재가 없는 간섭 채널 시나리오에서 CE MU의 부분 협력 효과를 고려한다.

수치적으로, 우리는 K 사용자 다중 셀 MIMO 스케줄링과 K 사용자 L 셀 CE 무유한 CSJ 존재가 없는 간섭 채널에 대한 협업 CE MU 및 ICI 방식보다 우수한 시스템 성능을 보인다.

이 논문의 나머지 부분은 다음과 같이 구성된다. 2 장은 K = 5 사용자와 L = 1 셀 MIMO 가우시안 간섭 채널에 대한 시스템 모델과 정의를 소개한다. 3 장에서는 제안된 스레드 다중 모드 안테나 스위칭 기법을 설명한다. 4장은 CEU 성능을 향상시키는데 도움을 주는 다중 셀 MIMO 협력 네트워크를 제시한다. 5장에서는 CEU (Staggered Antenna Switching) 부분 협력을 통한 K 사용자 다중 셀 MIMO 가우시안 간섭 채널과 전력 분석을 한다. 7장에서는 수치 결과를 제시하고 8장에서 결론을 맺는다.

II. 시스템모델과 정의

셀 당 5명의 사용자 (K = 5 및 L = 1)에 대한 MIMO 가우시안 간섭 채널 모델이 그림 1에 나타난다.

그림 1. 셀 당 5명의 사용자에 대한 MIMO 가우시안 간섭 채널 (K = 5 및 L = 1).

Fig. 1. MIMO Gaussian interference channel for five users per cell (K = 5 and L = 1).

임의의 사용자 K에 대해, 전송 전략은 재구성 가능한 다중 모드 안테나 및 T 프리셋 모드들 사이의 수신기 스위치에 기초하여 미리 결정된다. 여기서 단 2개의 모드 T = 2 사이의 재구성 가능한 다중 모드 안테나 스위칭을 고려한다.

보조정리 1: 재구성 가능한 다중 모드 안테나 스위칭 패턴은 항상 벡터스

\[\tilde{P}_K = \left[\tilde{p}_1, \tilde{p}_2, ..., \tilde{p}_K \right] = B^{(1/2)}[(K+1) + (K-1) \times K] \]

와 같이 존재한다. 예를 들어 행렬 \(P_K \)의 컬럼 벡터는 \(\tilde{P}_K \)가 전체 컬럼 순위를 갖는 것과 동일한 차원을 가져야한다.

완전히 독립적인 K = 5 MU MIMO 가우시안 간섭
채널을 고려하면, 각각의 독립적인 사용자는 8 개의 (간섭) 시간 슬롯에 걸쳐 2 개의 독립적인 심볼 \(s_1^{[k]} \) 및 \(s_2^{[k]} \)을 송신하기 때문에 가능한 재구성 가능한 다중 모드 애테나 패턴 중 하나가 아래에 주어진다.

증명: \(\mathbf{P}_k \)는 위의 조건을 만족하는 행렬임을 쉽게 증명할 수 있다. 우리는 제안된 방식의 전송 전략이 미리 결정된다는 것을 안다. \(K = 5 \) 사용자들에 대한 스테가드 애테나 스위칭 패턴, 행렬 \(\mathbf{P}_k \)의 가능한 선택은 다음과 같이 정의된다.

\[
P^T = \begin{bmatrix} 1 & 1 & 2 & 2 & 2 & 1 \ 2 & 1 & 2 & 2 & 1 \ 2 & 2 & 2 & 1 \ 1 & 1 & 2 & 2 & 2 \ 1 & 1 & 1 & 2 & 2 \ \end{bmatrix} \tag{1}
\]

제안된 방식은 [1, 2]에서 제안된 두 가지 스위칭 모드에 서반 동작하는 저가의 재구성 가능한 애테나를 사용한다. 여기서는 수신기 k에 대한 안테나 스위칭 패턴을 설계한다. 두 번째 타임 슬롯이 끝날 때 수신기 1의 모드 1에서 모드 2로 애테나를 전환한다.

\[
P^T_1 = \begin{bmatrix} 1 & 1 & 2 & 2 \ \end{bmatrix} \tag{2}
\]

송신기 k 및 수신기 1에 기초하여 설계된 채널 행렬은 식 (3)이다.

\[
H_{1K} = diag([h_{1k}(1)h_{1k}(1)h_{1k}(2)h_{1k}(2)]) \tag{3}
\]

세 번째 타임 슬롯이 끝나면 수신기 2의 모드 2에서 모드 1로 애테나를 전환한다.

\[
P^T_2 = \begin{bmatrix} 2 & 1 & 2 & 2 \ \end{bmatrix} \tag{4}
\]

송신기 k 및 수신기 2에 기초하여 설계된 채널 행렬은 다음과 같이 표현될 수 있다.

\[
H_{2K} = diag([h_{2k}(2)h_{2k}(1)h_{2k}(2)h_{2k}(2)h_{2k}(1)]) \tag{5}
\]

수신기 3의 경우 안테나 모드를 두 번 전환한다. 제 1 시간 슬롯의 끝에서, 안테나를 모드 1에서 모드 2로 스위칭하고, 제 4 시간 슬롯의 끝에서 안테나를 1 모드 1로 다시 스위칭한다.

\[
P^T_3 = \begin{bmatrix} 1 & 2 & 2 & 1 \ \end{bmatrix} \tag{6}
\]

송신기 k 및 수신기 3에 기초하여 설계된 채널 행렬은 다음과 같다.

\[
H_{3K} = diag([h_{3k}(1)h_{3k}(2)h_{3k}(2)]) \tag{7}
\]

세 번째 타임 슬롯이 끝나면 수신기 4의 모드 2에서 모드 1로 안테나를 전환한다.

\[
P^T_4 = \begin{bmatrix} 2 & 2 & 1 & 1 \ \end{bmatrix} \tag{8}
\]

송신기 k 및 수신기 4에 기초하여 설계된 채널 행렬은 다음과 같다.

\[
H_{4K} = diag([h_{4k}(2)h_{4k}(2)h_{4k}(2)h_{4k}(1)]) \tag{9}
\]

수신기 5의 경우 안테나 모드를 두 번 전환합니다. 제 1 시간 슬롯의 끝에서, 안테나를 모드 2에서 모드 1로 전환하고 제 4 시간 슬롯의 끝에서 모드 2로 안테나를 다시 스위칭한다.

\[
P^T_5 = \begin{bmatrix} 1 & 2 & 1 \ \end{bmatrix} \tag{10}
\]

송신기 k 및 수신기 5에 기초하여 설계된 채널 행렬은 다음과 같다.

\[
H_{5K} = diag([h_{5k}(2)h_{5k}(1)h_{5k}(2)h_{5k}(1)]) \tag{11}
\]

\[K = 5 \] 사용자의 경우, 각 사용자는 두 개의 기호 \(s_1^{[k]} \)와 \(s_2^{[k]} \)를 전송합니다. 그러므로 범 포밍 벡터는 다음과 같이 주어진다.
III. 다중 모드 안테나 스위칭

이 섹션에서는 단일 셀 5 사용자 MIMO 가운데 간섭 채널에 대한 간섭 정렬에 대해 설명한다. 스위칭 패턴과 전송된 심볼을 기반으로 수신된 신호를 표시한다. 제안된 최적화 프레임 워크 기법의 핵심 단계는 그림 2와 같다. 수신기 1은 각각의 범 포밍 벡터와 채널 벡터를 곱하여 두 개 이상의 심볼과 8개의 간섭 심볼을 디코딩 할 수 있어야한다. 이를 다음과 같이 간략하게 보인다.

수신기가 1시간 슬롯에 걸쳐 총 10개의 심볼(원하는 심볼 및 간섭 심볼)을 디코딩 할 수 있다는 것을 관찰하는 것이 또한 필수적이며, 우리는 이것을 다음과 같이 논의한다. 우리는 각각의 수신된 신호를 검사하고 원하는 신호와 잡음 신호를 디코딩한다. Y1은 2개의 원하는 신호와 8개의 간섭 신호를 가지므로 수신기 1에 대한 수신 신호 벡터는 다음과 같다.

그림 2. 제안 된 최적화 프레임 워크의 단계별 절차

Fig. 2. Step-by-step procedure of the proposed optimisation framework.

표 1. 수신기 1의 안테나 스위칭 패턴

At receiver 1	h1(1)	h1(2)	h2(1)	h2(2)	h3(1)	h3(2)	h4(1)	h4(2)	h5(1)	h5(2)
H1 = s1	0	0	h1(1)	h1(2)	0	0	h1(2)	0	h1(1)	0
H2 = s2	0	0	h2(1)	h2(2)	0	0	h2(2)	0	h2(1)	0
H3 = s3	0	0	h3(1)	h3(2)	0	0	h3(2)	0	h3(1)	0
H4 = s4	0	0	h4(1)	h4(2)	0	0	h4(2)	0	h4(1)	0
H5 = s5	0	0	h5(1)	h5(2)	0	0	h5(2)	0	h5(1)	0

표 2. 수신기 2의 안테나 스위칭 패턴

At receiver 2	h6(1)	h6(2)	h7(1)	h7(2)	h8(1)	h8(2)	h9(1)	h9(2)	h10(1)	h10(2)
H6 = s6	0	0	h6(1)	h6(2)	0	0	h6(2)	0	h6(1)	0
H7 = s7	0	0	h7(1)	h7(2)	0	0	h7(2)	0	h7(1)	0
H8 = s8	0	0	h8(1)	h8(2)	0	0	h8(2)	0	h8(1)	0
H9 = s9	0	0	h9(1)	h9(2)	0	0	h9(2)	0	h9(1)	0
H10 = s10	0	0	h10(1)	h10(2)	0	0	h10(2)	0	h10(1)	0

2차원 원하는 신호 부분 공간을 생성하기 위해, 8차원 부분 공간을 정렬하고 유사한 차원의 간섭 부분 공간 신호를 제거해야한다. 행렬 R은 2개의 원하는 기호 및 간섭 심볼을 가지며, 동일한 차수 부 공간에서 정렬되는 간섭 심볼은 소거된다.

상기 수학 식 R로부터, 간섭하는 심볼들 (h_{11} 및 h_{12}), (h_{12} 및 h_{13}), (h_{14} 및 h_{15})는 자연적으로 동일한 방향으므로 정렬된다. 수신기 1에서, 송신기 신호는 간섭 신호 서브 스페이스에서 정렬되고, 동일 차수 서브 스페이스에 정렬 된 간섭 심볼은 소거되고, 정렬 된 세트는 다음과 같이 구성된다.
동일한 차원 공간에서 정렬되는 간섭 심볼을 제거한 후, 전체 - 등급 행렬 \(R \)는 다음과 같이 기록된다.

\[
R = \begin{bmatrix}
 h_{11}(1) & 0 & 0 & 0 & h_{11}(2) & h_{11}(2) & h_{11}(2) \\
 h_{12}(1) & h_{12}(1) & 0 & 0 & h_{12}(2) & 0 & 0 \\
 0 & h_{12}(2) & h_{12}(2) & h_{12}(2) & h_{12}(2) & 0 & 0 \\
 0 & 0 & h_{13}(1) & 0 & 0 & h_{13}(1) & 0 \\
 0 & 0 & 0 & h_{13}(1) & 0 & 0 & h_{13}(1) \\
 h_{14}(2) & 0 & 0 & 0 & 0 & 0 & 0 \\
 h_{15}(2) & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(16)

남아있는 것은 5 x 7(full-rank) 행렬 \(R \)이 2 차원 원하는 신호 부분 공간 및 5 차원 간섭 신호 부분 공간을 포함한다고 한다. 동일한 차수 서브 스페이스에 정렬 된 3차원 간섭 신호를 제거함으로써, 수신기 (1)는 2/7의 정규화된 DoF를 얻는다. 수신기 (3)는 아래에서 간략하게 설명되는 바와 같이, 동일한 차원 부분 공간에서 정렬되는 간섭 심볼들을 제거한 후에, 5x7 풀 - 랭크 행렬 \(R \)은 다음과 같이 기록된다.

\[
R = \begin{bmatrix}
 h_{12}(1) & h_{12}(1) & 0 & h_{12}(2) & h_{12}(2) & 0 & h_{12}(2) \\
 h_{13}(1) & h_{13}(1) & 0 & h_{13}(2) & h_{13}(2) & 0 & h_{13}(2) \\
 0 & h_{13}(2) & h_{13}(2) & h_{13}(2) & 0 & 0 & 0 \\
 h_{14}(1) & 0 & 0 & 0 & 0 & 0 & 0 \\
 h_{15}(1) & 0 & 0 & 0 & 0 & 0 & 0 \\
 h_{16}(2) & 0 & 0 & 0 & 0 & 0 & 0 \\
 h_{17}(2) & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(20)

마지막으로, 수신기 (5)가 대응하는 빔 포밍 벡터 및 채널 벡터를 각각 균일으로써 2개의 원하는 심볼 및 8개의 간섭 심볼을 디코딩 할 수 있다는 것을 관찰 할 필요가 있다. 수신기 (3)에 대한 수신 된 신호 벡터는 다음과 같다.

\[
\mathbf{s}_3 = [s_1^1, s_1^2, s_1^3, s_1^4, s_1^5, s_1^6, s_1^7, s_1^8] \in \text{span}(H_1, s_1^2, V_1)
\]

(19)

우리는 각각의 수신 된 신호를 검사하고 원하는 신호와 간섭 신호를 디코딩한다. \(Y \)는 2개의 원하는 신호와 8개의 간섭 신호를 가지고 수신기 1의 수신 신호 벡터는 다음과 같다.

\[
\mathbf{s}_1 = [s_1^1, s_1^2, s_1^3, s_1^4, s_1^5, s_1^6, s_1^7, s_1^8] \in \text{span}(H_1, s_1^2, V_1)
\]

(15)
위의 R_i 방정식으로부터 간섭 기호 (h_{15}와 h_{13}), (h_{12}와 h_{14}), (h_{15}와 h_{13})은 자연스럽게 동일한 방향으로 정렬된다. 수신기 (5)에서, 송신기 신호는 간섭 신호 서브스페이스에서 정렬되고; 동일 치수 서브스페이스에 정렬 된 간섭 심볼은 소거되고, 정렬 된 세트는 다음과 같이 구성된다.

$$
\begin{align*}
S_{15} = S_{23} &\implies H_{55} S_{15} = \text{span} (H_{55} S_{23}) \\
S_{12} = S_{14} &\implies H_{52} S_{12} = \text{span} (H_{52} S_{14}) \\
S_{13} = S_{14} &\implies H_{53} S_{13} = \text{span} (H_{53} S_{14})
\end{align*}
$$ (22)

위의 행렬로부터, 동일한 차원 부분 공간에서 정렬되는 신호는 취소된다는 것을 알 수 있다. 동일한 차원 부분 공간에서 정렬되는 간섭 심볼들을 제거한 후에, 5x7 랜덤 행렬 R_5은 다음과 같이 얻어진다.

$$
R_5 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$ (23)

Ⅳ. 멀티 셀 MIMO 협동 네트워크

이 절에서는 CE MU 간의 부분 협력을 고려하여 다중 셀 MIMO 네트워크에 초점을 맞춘다. CE 협력에 초점을 맞추기 때문에, 주파수 제한기술이 무선 시스템에서 일관된 거리와 동일한 주파수를 사용하는 것으로 간주한다. BS 협력은 송신기와 MU를 동기화하기 위해 수신 백홀 링크를 통해 제어 분배, 데이터 신호 전송, CSI 및 프리 코더를 포함한다. BS는 이러한 정보를 이용하여 환경 및 동신 전략을 현실하는 채널 조건에 적응한다. CEU 성능을 향상시키기 위해 다중 셀 환경 시나리오에서 다중 사용자 부분 협력을 조사한다. 신호 대 간섭 잡음비 (SINR)는 각 MU의 전송 속도를 결정한다. 우리는 한 번에 한 명의 사용자를 동적으로 전송함으로써 SINR을 개선하기 위해 3 개의 BS ($L = 3$)에 대한 CEU 간의 부분 협력 전송을 고려한다. 이러한 유형의 BS 협력 방법은 BS가 전체 시스템 성능을 극대화하기 위해 정보를 교환하는 고속 유선 백홀을 통해 연결되기 때문에 합리적이다. 이러한 완전히 협력적인 다중 링크 MIMO 가우시안 간섭 채널 네트워크는 최대 합계 속도 및 처리량을 초래한다. MU와 BS 사이의 많은 양의 글로벌 CSI 정보 교환으로 인해 전체 비용이 증가한다.

![그림 3. 두 개의 미리 설정된 모드, 즉 MS [1,3,5] 간섭 정렬을 사용하는 단일 셀 5 사용자 MIMO 가우시안 채널에 대한 설명.](image)

Fig. 3. Description for the single-cell five-user MIMO Gaussian interference channel with two preset modes, i.e., MS[1,3,5] interference alignment.
다음과 같이 표현된다.

\[C_{nc} = \log_2(1 + \lambda \text{SINR}_{nc}) \]
(25)

비협조적 전송 방식 하에서 MU의 비트 / s / Hz 용량은 Shannon 용량 공식을 사용하여 표현되며, 여기서 \(\lambda\)는 이론적 코딩 기법과 실제 코딩 기법 사이의 결정된 SINR 차이이다.

\[C_{coop} = \alpha \log_2(1 + \lambda \text{SINR}_{coop}) \]
(26)

여기서 \(\alpha\)는 협조하는 CEU 간의 개별 환경 중단 비율을 정의한다. \(\alpha = 1/2\)는 제안된 계획의 개별 환경 공정성으로 간주한다. CE 및 인접 CE에서 사용자 간의 협력은 인접 CE 사용자간에 사용 자원을 공유함으로써 SINR 개선을 고려한 것입니다. 개별 SINR의 모든 CE의 합은 낮은 SINR 체계에 대한 (29) 및 (43)에서 \(\lambda = 1\)을 고려하여, (43)에 도시된 바와 같이, 다른 링크 MIMO 가우스 간섭 협력 방식의 실제 용량의 \(\alpha = 1/2\)로 고려된다. log(1 + x) \(\approx\) x. MIMO 다른 링크 전송 방식, 즉, \(C_{coop}\)를보다 양호하게 수행하기 위한 자원 제약에 대한 CE 협력 방식에 대한 정확한 표현은 다음과 같다:

\[C_{coop} > C_{coop} \]
(27)

따라서, CEU들이 인접한 CEU들 간의 협력 다중 링크 MIMO 전송 방식을 수행할지 여부를 결정하는 것이 현명하다.

2. 세포 가중치 사용자 (CEUs) 사이 협력

일반적으로 사용자 간의 완전한 협력은 높은 합계 비율과 향상을 이끌어낸다. CE 근처에 위치하는 사용자는 인접 세단과 동일 셀 내만 주요 단기로 간주된다. 완전한 협조는 CSI, 송신기 및 프리 코딩 정보와 같은 사용자 및 BS 간의 많은 양의 정보 교환으로 인해 비용 효율성을 증가시키지만. CCU, CMU 및 CEU 사용자 간의 완전한 협력은 일반적으로 복잡성을 높여주고 백호 링크에 많은 부하를 부과한다. 우리는 CEU 간의 협력이 불가능하며 비용 효율성을 개선하고, BS에서 많은 정보와 복잡한 진호를 교환한다. 우리는 인접한 CEU들과의 CEU 협력과 고려한다. 다른 링크 MIMO 가우스 간섭 네트워크에 대한 SINR_{coop}_특성은 제안된 CEUs 협력 계획에 의존한 것이기 때문에, 비트 / s / Hz 단위의 CEUs 협력 하에서 MU의 용량은 다음과 같다.

\[C_{coop} = \alpha \log_2(1 + \lambda \text{SINR}_{coop}) \]
(26)

3. 주파수 재사용 (FR)

주파수 재사용 (FR)은 셀룰러 무선 시스템에서 일정 거리 후에 동일한 주파수를 재사용하는 것이다. 일반적으로, 제한된 주파수 대역폭은 BS로부터 사용자 위치를 식별 할 때 다수의 서브 그룹들로 분할되며, 여기서 몇몇 서브 캐리어들을 포함할 수 있는 각각의 그룹은 차례로 인접한 셀들에 할당된다. 분수 FR (FFR) 및 소프트 FR (SFR) 기술은 ICI 조정 (ICIC)을 줄이고 CEU 성능의 스펙트럼 효율성을 향상시키는 데 도움이 된다.

4. 주파수 재사용 (FR)

일반적으로, FFR 및 SFR 기법은 셀 내부 및 외부 영역으로 분할하고, 각 영역에 대해 상이한 FR 인자가
사용된다. 그러나, BS로부터 CEU까지의 거리는 나쁜 체널 조건 및 낮은 QoS (quality of service)를 야기할 수 있다. 이러한 문제를 해결하기 위해서는 셀 센터 CC, 센터 - 중앙 (CM) 및 센터 - 에지 (CE) 사용자의 위치를 파악해야 한다. 다운 링크 MIMO 가우시안 간섭 채널에서, L 셀 내의 k 개의 MU에 대한 SINR은 다음과 같이 주어진다.

\[SINR_{k,n}^L = \frac{P_n^L G_{k,n}^L}{\sum_{j=L}^N P_n^L G_{k,n}^j + \beta'} \] \hspace{1cm} (28)

여기서 \(P_n^L \)는 BS에 의해 할당된 다운 링크 송신 전력이고, \(G_{k,n}^L \)는 K 번째 MU에 대한 채널 이득이고, \(\beta' \)는 체널 평균 가산 백색 가우스 잡음 (AWGN) 전력이다.

5. 사용자 위치 식별

중요한 문제는 CE 사용자가 ICI의 영향을 크게 받기 때문에 주변 셀의 간섭을 고려하는 것이다. 따라서 ICI 신호는 낮은 QoS 및 낮은 처리량 문제를 극복하기 위해 식별되고 정렬되어야한다. BS 근처의 사용자는 센터 사용자 (CCUs)로 간주되고 평균 간섭을 갖는 사용자는 센터 중앙 사용자 (CMUs)로 간주되며 인접 셀의 간섭이 더 높은 사용자는 CEUs로 간주된다. 사용자를 효율적으로 배치하기 위해 중앙값을 사용하여 CCUs, CMUs 및 CEUs의 세 가지 기본 그룹으로 사용자를 분할한다. CMUs는 식 (29)에서 증명된다.

\[CMU_s = \sqrt{\frac{h_k}{2}} + \sqrt{\frac{h_{k+1}}{2}} \] \hspace{1cm} (29)

(29)의 CMU 방정식을 고려하여 CE 사용자를 식별한다. CEU와 ICI 간의 조정은 BS 및 MU 성능의 전반적인 스펙트럼 효율성을 향상시키는 데 도움이 된다. \(MS_{(1,5)} \)\(\rightarrow (u_4, w_5) \) 센에, \(MS_{(1,5)} \)\(\rightarrow (v_4, v_5) \)은 센 2에서, \(MS_{(1,5)} \)\(\rightarrow (w_4, w_5) \)는 센 3에서 발생한다. 센 1과 센 2의 CE MU (u_5 and v_5), 센 1과 센 3의 (u_4 and w_5), 센 2와 센 3의 (v_5 and w_5).

V. CE MU와 전력 분석 간의 부분 협력

이 장에서는 협업 CE MU와 전력 분석에 초점을 둔다. \(L = 3 \)의 경우, CEU 간의 협업, 총용량, 전력 배분 및 실현 가능 조건은 다음의 세 가지 경우에서 논의된다.

1. 사례 1 : 센 1 및 센 3의 CE MU \{u_4 및 w_5\} 간의 부분 협력

\[SINR_{u_4} = \frac{P_{u_4}^1 G_{u_4}}{\beta_{u_4} + P_{w_5}^3 G_{w_5}} \] \hspace{1cm} (30)

\[SINR_{w_5} = \frac{P_{w_5}^3 G_{w_5}}{\beta_{w_5} + P_{u_4}^1 G_{u_4}} \] \hspace{1cm} (31)

센 1과 센 3의 사용자들에 대한 협력을 위해 \(SINR_{u_4} \)와 \(SINR_{w_5} \)을 고려해야한다. 여기서 \(\beta_{u_4} = \frac{\sigma_{u_4}^2}{\sigma_{u_4}^2} \)이고 \(\beta_{w_5} = \frac{\sigma_{w_5}^2}{\sigma_{w_5}^2} \)가 있습니다. CE 사용자의 부분 협력에 대해 논의된 총 용량은 다음과 같습니다.

\[C_{comp} = C_u + C_w \]
\[C_{comp}(u_4, w_5) = \frac{1}{2} \log_2 \left(\frac{P_{u_4}^1 G_{u_4}}{\beta_{u_4} + P_{w_5}^3 G_{w_5}} \right) + \frac{1}{2} \log_2 \left(\frac{P_{w_5}^3 G_{w_5}}{\beta_{w_5} + P_{u_4}^1 G_{u_4}} \right) \] \hspace{1cm} (32)

센 1과 센 3에서의 CEU 부분 협력을 위한 최적의 전력 협력은 \{\(P_{u_4}^1, P_{w_5}^3 \)\}이고 해당 채널 이득은 각각 \{\(G_{u_4}, G_{w_5} \)\}이다.
여기서 $\Omega = \{ P_{u_i}, P_{w_i} \mid 0 \leq P_{u_i}, P_{w_i} \leq P_{\max} \}$는 실행 가능한 $C_{\text{coop} \{ u_i, w_i \}}$ CEUs 세트입니다.

2. 사례 2 : 셀 1과 셀 2의 CE MU \{u5 및 v4\} 간의 부분 협력

$$SINR_{u5} = \frac{P_{u5}^1 G_{u5}}{\beta_{u5} + P_{w1}^1 G_{w1}}$$ \hspace{1cm} (34)$$SINR_{v4} = \frac{P_{v4}^2 G_{v4}}{\beta_{v4} + P_{w1}^2 G_{w1}}$$ \hspace{1cm} (35)

셀 1과 셀 2에서 CE 사용자의 부분 협력을 위해 $SINR_{u5}$ 및 $SINR_{v4} \{ u_5 \text{ 및 } v_4 \}$를 고려해야한다. 여기서 $\beta_{u5} = \frac{\sigma_{u5}^2}{\sigma_{v4}^2}$와 $\beta_{v4} = \frac{\sigma_{v4}^2}{\sigma_{u5}^2}$가 있다. CE 사용자의 부분 협력에 대해 달성된 총 용량은 다음과 같다.

$$C_{\text{coop}} = C_u + C_v$$
$$C_{\text{coop} \{ u_5, v_4 \}} = \frac{1}{2} \log_2 \left(\frac{P_{u5}^1 G_{u5}}{\beta_{u5} + P_{w1}^1 G_{w1}} \right) + \frac{1}{2} \log_2 \left(\frac{P_{v4}^2 G_{v4}}{\beta_{v4} + P_{w1}^2 G_{w1}} \right)$$ \hspace{1cm} (36)

3. 사례 3 : 셀 2 및 셀 3의 CE MU \{v5 및 w1\} 간의 부분 협력

$$SINR_{v5} = \frac{P_{v5}^1 G_{v5}}{\beta_{v5} + P_{w1}^1 G_{w1}}$$ \hspace{1cm} (38)$$SINR_{w1} = \frac{P_{w1}^2 G_{w1}}{\beta_{w1} + P_{v5}^2 G_{v5}}$$ \hspace{1cm} (39)

셀 2와 셀 3에서 CE 사용자의 부분 협력을 위해 $SINR_{v5}$와 $SINR_{w1} \{ v_5 \text{ 및 } w_1 \}$를 고려해야한다. 여기서 $\beta_{v5} = \frac{\sigma_{v5}^2}{\sigma_{w1}^2}$와 $\beta_{w1} = \frac{\sigma_{w1}^2}{\sigma_{v5}^2}$가 있다. CE 사용자의 부분 협력에 대한 총 용량은 다음과 같다.

$$C_{\text{coop}} = C_u + C_v$$
$$C_{\text{coop} \{ v_5, w_1 \}} = \frac{1}{2} \log_2 \left(\frac{P_{v5}^1 G_{v5}}{\beta_{v5} + P_{w1}^1 G_{w1}} \right) + \frac{1}{2} \log_2 \left(\frac{P_{w1}^2 G_{w1}}{\beta_{w1} + P_{v5}^2 G_{v5}} \right)$$ \hspace{1cm} (40)

셀 2와 셀 3에서의 CEU 부분 협력을 위한 최적의 전력 할당은 $\{ P_{v5}, P_{w1} \}$이고 해당 채널 이득은 각각 G_{v5}, G_{w1}이다.

$$C_{\text{coop} \{ u_5, v_4 \}} = \arg \max_{\{ P_{u5}, P_{v4} \} \in \Omega} \{ C_u + C_v \}$$ \hspace{1cm} (41)

여기서 $\Omega = \{ P_{u5}, P_{v4} \mid 0 \leq P_{u5}, P_{v4} \leq P_{\max} \}$는 실행 가능한 $C_{\text{coop} \{ u_5, v_4 \}}$ CEUs 세트다.

VI. 지터 안테나 스위칭 및 전력 분석을 통한 K-user Multicell MIMO 가우스 간섭 채널

이 절에서는 CSI 부재시 CE MU에 대한 스 테그 드 안테나 스위칭 및 전력 분석을 통해 K- 사용자 다중 셀 MIMO 가우스안 간섭 채널을 특성화한다. 우리는 총 K 사용자 통신 쌍의 수를 충실히 M과 수신기 안테나 N의
수보다 작게 제한한다. 여기서 $K \leq M \times N$는 K 개의 독립 사용자가 n 개의 심볼을 전송하기 때문에 완전히 연결된 K 사용자 MIMO 가우시안 간섭 채널을 고려한다. 여기서 $s \in \{s_1^{[k]}, s_2^{[k]}, \ldots, s_n^{[k]}\}$. 우리는 K 사용자 $P = [\tilde{p}_1, \tilde{p}_2, \ldots, \tilde{p}_K]$에 대한 무작위로 생성된 송신 전략을 가정하여 안테나 스위칭 패턴을 설계한다. 그러나, 우리는 미리 설정된 $T = 2$ 모드들 중에서 재구성 가능한 다중 모드 안테나 스위치를 고려한다. 따라서 다음과 같이 원하는 신호와 간섭 신호에 대한 입력 및 출력 관계를 계산할 수 있다.

$$K \in \{1, 2, 3, \ldots, k\}; s \in \{s_1^{[k]}, s_2^{[k]}, \ldots, s_n^{[k]}\};$$

$$\text{SINR}_{k,n}^{p} = \frac{p_{k,n} G_{k,n}}{\sum_{j \neq k} P_{j,n} G_{j,n} + \beta_{N}};$$

$$\tilde{P} = [\tilde{p}_1, \tilde{p}_2, \ldots, \tilde{p}_K] = B \left(k/(K+1) + (K-1) \times K \right)$$

단계 2. 다자인: 스위칭 패턴 및 채널 메트릭스 :

1: 예: $K = \{1, 2, \ldots, 5\}$ 앤 $s = \{s_1^{[i]}, s_2^{[i]}\}$

$$P^T = \begin{bmatrix} 1 & 1 & 2 & 2 & 2 \\ 1 & 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 2 & 1 \\ 2 & 1 & 2 & 1 & 1 \end{bmatrix}$$

$K = 1$; $P_1^T = [1 \ 1 \ 2 \ 2 \ 2]$;

$H_{1k} = diag(\{h_{11}(1) h_{1k}(1) h_{1k}(2) h_{1k}(2) h_{1k}(2)\})$.

2: 범 형성 벡터: 사용자 당 2 개의 심볼 $x_1^{[k]} = (x_1^{[k]}, x_2^{[k]})$

$s_1 = [11001]; s_2 = [01110]$.

3: 수신기 1에 대한 수신 신호 벡터 : $y_1^{[1]} = H_{1k} (s_1^{[k]} + s_2^{[k]}) + Z_r$.

$s_1^{[1]} = [h_{11}(1) h_{11}(1) 0 0 h_{11}(2)]$;

$s_2^{[2]} = [0 h_{11}(1) h_{11}(2) h_{11}(2) 0]$;

4: 선형 독립 심볼 정렬 : $H_{1k} = [h_{11}, h_{12}, h_{13}, h_{14}, h_{15}]$

$s_1 = s_1^{[1]}, s_2 = s_2^{[2]}, s_3 = s_3^{[3]}, s_4 = s_4^{[4]}, s_5 = s_5^{[5]}$.

알고리즘 1: K 사용자 다중 사용자 및 다중 셀 MIMO 스케줄링

단계 1. 초기화 :
고정된 $SINR_{kn}^L, P^T$와 $\{s_1, s_2, s_3, s_4, s_5\}$; 정렬 될 때까지 $K = \{1, 2, ..., 5\}$와 $L = \{2, 3\}$를 계산한다.

6 : 마무리.

알고리즘 2는 모든 K 사용자에 대해 라운드 로빈 방식으로 반복한다. $s_1 \in \{s_1, s_2, s_3, s_4, s_5\}$ 기호 및 K 사용자를 위한 $\tilde{P} = [\tilde{p}_1, \tilde{p}_2, ..., \tilde{p}_K]$ 전환 패턴.

알고리즘 2는 모든 K 사용자에 대해 라운드 로빈 방식으로 반복한다. 제안 된 알고리즘의 K 사용자와 L 셀 CEUs의 부분 협력을 위해 순열하고 모든 CEUs에 최대 전력을 할당한다는 것을 증명할 수 있다. A_i 차원 원하는 신호 부분 공간을 생성하기 위해, s_1 차원 간섭 신호 부분 공간을 정렬하고 유사한 차원 신호를 제거해야 한다. 또한, 우리는 스 테거드 안테나 스위칭 패턴에 대한 다중 사용자 및 다중 셀 MIMO 스케줄링을 위한 효율적인 알고리즘 1을 제안한다. 알고리즘 2에서는 L 셀 간의 CEUs 부분 협력에 대해 설명한다.

알고리즘 2 : K 사용자 및 L 셀에 가장 사용자 (CEUs) 부분 협력

단계 1. 초기화:

$C_{nc} = \log_2 (1 + \lambda SINR_{nc})$;
$C_{coop} = \log_2 (1 + \lambda SINR_{coop})$;

$SINR_{kn}^L = \frac{P^L_n G_{kn}^L}{\sum_{j=L}^{n} P^L_j G_{kn}^L + \beta_N}$;

$CMU_s = \frac{\|h_k\|_2 + \|h_k\|_1}{2}$.

단계 2. 비교 : CEUs (협력 및 비협력) 계획:

1 : 예 : $L = \{2, 3\}$

$C_{coop} > C_{nocoop}$

$\frac{1}{2} \log_2 (1 + \lambda SINR_{coop}) > \log_2 (1 + \lambda SINR_{nc})$

$SINR_{coop} > (\lambda SINR_{nc}^2 + 2SINR_{nc})$

2 : CEU와 인접한 CEU 간의 부분 협력

$Ie \{u_1, u_2\}$; $SINR_{u_1} = \frac{P^1_n G_{u_1}}{\beta_{u_1} + P^1_n G_{u_5}}$;

$SINR_{u_5} = \frac{P^3_n G_{u_5}}{\beta_{u_5} + P^3_n G_{u_5}}$.

[셀 1 및 셀 3로부터 그림 4에서 보여진다.

3 : 부분 협력 사용자의 총 용량:

$C_{coop} = C_{n} + C_{\epsilon}$;

$C_{coop}(u_1, u_5) = \frac{1}{2} \log_2 (1 + P^1_n G_{u_1} + P^3_n G_{u_5}) + \frac{1}{2} \log_2 (1 + P^3_n G_{u_5} + P^1_n G_{u_1})$.

4 : 부분 CEU를 위한 최적의 전력 할당

$\Omega = \{P^1_n, P^3_n, 0 \leq P^1_n, P^3_n \leq P_{\max}\}$는 가능한 세트 $C_{coop}(u_1, u_5)$ CEUs이다.

5 : 고정 $SINR_{kn}$; [셀 1 및 셀 2의 $[u_1, u_2]$을 계산한다. $[u_5, w_5]$에서 [셀 2 셀 3] CEUs.

6 : 마무리

$K = \{1, 2, ..., k\}$ 부분 협력 K-edge 사용자에 대해서도 동일한 접근법을 반복한다.

VII. 수치적 결과

제안된 5-유저 3-셀 다운 링크 MIMO 가우시안 간섭 채널은 그림 5에 보여지며, 여기서 MUs {1, 2}는 CCUs이고, MUs 3은 CMUs이고, MUs {4, 5}는 각각 CEUs이다.

그림 7에서는 두 가지 주요 시나리오 (ICI 및 ICI 제외)
The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)
Vol. 18, No. 2, pp.33–48, Apr. 30, 2018. pISSN 2289–0238, eISSN 2289–0246

을 사용하여 CEU의 SINR (dB) 대 거리 (km)의 성능을 평가한다. 따라서 ICI 협조가 있는 제안 된 계획의 성능은 ICI 협력이 없는 제안과 비교된다. ICI가 없는 10 dB와 0 dB의 SINR에서 SINR은 0.55에서 0.9 km로 각각 증가하지만, ICI가 있는 제안 된 방식에서 SINR 값은 0.6에서 1 km까지 다양하다. 수치 결과는 ICI가 없는 경우에 비해 ICI 설계가 더 나은 성능을 달성한다는 것을 보여준다. 인접 셀로부터의 CEU들 사이의 협력이 ICI가 없는 경우에 비해 CE MU 성능을 향상시키는 것을 고려하면, ICI를 갖는 제안 된 방식에 대한 SINR의 과다한 변화가 기대된다. 위의 논의에서 우리는 CCI 및 CMU에 비해 ICI가 CEU에 더 큰 영향을 미친다고 할 수 있다.

表 4. 시뮬레이션 매개 변수
Table 4. Simulation parameters.

Parameters	Values
Number of cells and users	L = 5 and K = 5
Cell shape	Hexagonal
User location	U2, U3, U4, U5
Identified user positions	CCI, CMU and CEUs
Number of base station antennas and users	3
Bandwidth and carrier frequency	10MHz and 2GHz
Channel fading and log-normal shadowing	Logistic distribution and Riceleigh fading

그림 7. 다중 사용자 MIMO 채널에 대한 ICI
Fig. 7. ICI for multiuser MIMO channel

그림 8은 두 가지 주요 시나리오 (CEU 간 협력과 CEU 간 비 협업)로 용량 C [bps / Hz] 대 SINR (dB)를 나타낸다. SINR이 5 [dB]에서 20 [dB]로 증가할 때 제안된 부분 협력 CEU 체계 용량은 12 C [bps / Hz]에서 37.5 C [bps / Hz]로 증가한다. 협력을 위해 용량은 9.5 C [bps / Hz]에서 22 C [bps / Hz]로 증가한다. 그러나 비 협력 CEU의 경우 15 C [bps / Hz]에서 47.5 C [bps / Hz]까지 다양하다. 이 결과는 인접한 CE MU 간의 완벽한 협력을 고려하여 전반적인 MU 성능이 항상 될 것으로 예상된다. 제안된 방법은 CE MU 간의 동일한 부분 협력을 통해 비 협력 CE MU 기법보다 우수한 성능을 보였고, 전체 협력 CE MU 기법과 비교하여 거의 비슷한 성능을 보였다. 이 결과는 제 2의 MUH(1,5)\(\Rightarrow\{v_1, v_5\}\) 및 평균 3의 MUH(4,5)\(\Rightarrow\{v_4, v_5\}\)와 같은 부분 협력 CE MU의 사례에서 비롯된다.

그림 8. CE 다중 사용자 MIMO 채널의 총 용량
Fig. 8. Sum capacity for CE Multiuser MIMO channel.

Ⅷ. 결론

본 연구에서는 수신기에서 멀티 모드 스 태거 드 안테나 모드 스위칭을 사용하여 간섭 신호를 정렬했다. 제안된 정렬 방식 위에 있는 해석 동작률은 비슷한 차수의 부분 공간 신호가 효율적으로 원하는 신호와 간섭 신호를 정렬하도록 취소되기 때문에 하나의 원하지 않는 수신기에서 정렬 된 벡터를 다른 의도하지 않은 수신기에서 정렬할 수 없다는 것이다. 또한, 우리는 CSI 지식이 없는 경우 협력 형 CE MU에 대한 전력 배분 및 타당성 조건을 계산했다. 새로운 접근 방식 (무작위로 생성된 전송 전략)은 비슷한 차원의 부분 공간 신호를 효과적으로 정렬하고 제거한다. 중요하게, 다중 셀 MIMO 가우시안 간섭 채널은 CEU 간의 협력은 ICI를 제거하고 전반적인 시스템 성능을 대폭 향상시킨다. 또한, 수치적 결과는 제안된 셀간 간섭 기법이 부분적으로 협조적인 CE
MU를 사용하여 비 간섭 성 CE MU에 비해 셀 용량과 SINR 성능을 향상 시킨다는 것을 보였다.

References

[1] Karmakar, S.; and Varanasi, M.K. The capacity region of the MIMO interference channel and its reciprocity to within a constant gap. IEEE Transactions on Information Theory, 59(8), 4781-4797, doi:10.1109/TIT.2013.2256231.

[2] Lee, N.; Heath, R.W., Jr. Space–time interference alignment and degree-of-freedom regions for the MISO broadcast channel with periodic CSI feedback. IEEE Trans. Inf. Theory, 2014, 60, 515–528, doi:10.1109/TIT.2013.2285216.

[3] Shin, W.; Lee, N.; Lee, J.; and Poor, H. V. Guiding blind transmitters for K-user MISO interference relay channels with Imperfect channel knowledge. International Symposium on Information Theory (ISIT), 2016, 363 545-549, doi: 10.1109/ISIT.2016.7541358.

[4] Love, D. J.; and Heath, R. W. Limited feedback unitary precoding for spatial multiplexing systems. IEEE Transactions on Information theory, 51(8), 2005,2967–2976, doi:10.1109/TIT.2005.850152.

[5] Ko, K. and Lee, J. Multiuser MIMO user selection based on chordal distance. IEEE Transactions on Communications, 60(3), 2012,649–654, doi: 10.1109/TCOMM.2012.020912.110060.

[6] Lee, K. J.; Sung, H.; Park, E.; and Lee, I. Joint optimization for one and two-way MIMO AF multiple-relay systems. IEEE Transactions on Wireless Communications, 9(12), 2010,3671–3681, doi:10.1109/TWC.2010.102210.091021.

[7] Khan, M. H. A.; Shin, T.; Lee, M. H; and Chung, J. G. Signal Constellations of Quasi-Orthogonal Space-Time Codes for MIMO Systems. Wireless Personal Communications, 85(4), 2003–2019, doi:10.1007/s11277-015-2887-z.

[8] Selvaprabhu, P.; Chinnadurai, S.; Song, S.; Lee, M.H. Interference alignment for K-user MIMO interference channel using multiple relays. In Proceedings of the International Conference on Information and Communication Technology Conference (ICTC), Incheon, South Korea, 24 – 26 September,2015, doi:10.1109/ISCTT.2014.7011860.

[9] Selvaprabhu, P.; Chinnadurai, S.; Song, S.; Lee, M.H. Topological interference alignment for MIMO interference broadcast channel. In Proceedings of the International Conference on Information and Communication Technology Conference (ICTC), Jeju, South Korea, 19–21 October, 2016, doi:10.1109/ICTC.2016.7765370.

[10] Selvaprabhu, P.; Chinnadurai, S.; Li, J. and Lee, M.H. Topological Interference Management for K–User Downlink Massive MIMO Relay Network Channel. Sensors, 2017, doi:1896,10.3390/s17081896.

[11] Jin, J.; Gao, X. C.; Li, X.; Li, S.; and Wang, Z. Achievable Degrees of Freedom for the Two–Cell Two–Hop MIMO Interference Channel With Half-Duplex Relays. IEEE Access, 2017, 1376–1381, doi: 10.1109/ACCESS.2017.2656558.

[12] Soo Cho, Y.; Kim, J.; Yang, W.Y.; Kang, C.G.MIMO-OFDMWireless Communications with MATLAB; IEEE Press, JohnWiley & Sons (Asia) Pte Ltd.: Singapore, 2010; Volume 12, pp. 294 – 297, 381 – 382, ISBN 978–0–470–82361–7.

[13] Yi, X.; Sun, H.; Jafar, S. A.; and Gesbert, D. TDMA is Optimal for All-unicast DoF Region of TIM if and only if Topology is Chordal Bipartite. arXiv:1501.07870 [cs.IT], Feb. 2017.

[14] Shen, 389 Z.; Chen, R.; Andrews, J. G.; Heath, R. W.; and Evans, B. L. Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization. IEEE Transactions on Signal Processing, 2006, 54(9), 391 3658–3663, doi: 10.1109/TSP.2006.879369.

[15] Gherelkhslo, S.; Chaaban, A.; Di, C.; and Sezgin, A. (Sub-) optimality of treating interference as noise in the cellular uplink with weak interference. IEEE Transactions on Information Theory, 2016,62(1) ,
[16] Abdoli, M.; J.; Ghasemi, A.; and Khandani, A. K. On the degrees of freedom of K-user SISO interference and X channels with delayed CSIT. IEEE transactions on Information Theory, 2013, 59(10), 6542–6561, doi:10.1109/TIT.2013.2368154.

[17] Stuber, G. L.; Barry, J. R.; McLaughlin, S. W.; Li, Y.; Ingram, M. A.; and Pratt, T. G. Broadband MIMO-OFDM wireless communications. Proceedings of the IEEE, 92(2), 271–294, doi: 10.1109/JPROC.2003.821912.

[18] Li, Z.; Xia, X.G. A simple Alamouti space time transmission scheme for asynchronous cooperative systems. IEEE Signal Process. Lett. 2007, 14, 804 - 807, doi:10.1109/LSP.2007.900224.

[19] Maleki, H.; Jafar, A.S; Shamai, S. Retrospective interference alignment over interference networks. IEEE J. Sel. Top. Signal Process. 2012, 6, 228 – 240, doi:10.1109/JSTSP.2011.2181155.

[20] Sun, H.; and Jafar, S. A. Blind interference alignment for private information retrieval. IEEE International Symposium on Information Theory (ISIT), 2016, 500–504, doi:10.1109/TIT.2013.2268154.

[21] Lee, J. H.; and Park, D. Antenna selection and unitary precoding for interference alignment with ML receiver. IEEE Communications Letters, 2012, 16(8), 1216–1219, doi:10.1109/LCOMM.2012.060112. 120568.

[22] Sung, H.; Park, S.-H.; Lee, K.-J.; Lee, I. Linear precoder designs for K-user interference channels. IEEE Trans. Wirel. Commun. 2010, 9, 291 - 301, doi:10.1109/TWC.2010.01.090221.

[23] Shu, Y.; Wang, Q.; Zhang, J.; and Sun, T. Relay-aided interference alignment and neutralization for 3-cellular interference channels. IEEE/CIC International Conference on Communications in China (ICCC), 2014, 637–64, doi:10.1109/ICCChina.2014.7068554.

[24] Wang, C. Degrees of freedom characterization: The 3-user SISO interference channel with blind interference alignment. IEEE Communications letters, 2014, 757–760, doi:10.1109/LCOMM.2014.030714.140177.

[25] Geng, C.; Naderializadeh, N.; Avestimehr, A. S.; and Jafar, S. A. On the optimality of treating interference as noise. IEEE Transactions on Information Theory, 2015,61(4), 1753–1767, doi:10.1109/TIT.2015.240842.

[26] Ying, T.; Feng, W.; Su, W.; and Jiang, W. On the Degrees of Freedom of MIMO X Networks With Non–Cooperation Transmitters. IEEE Transactions on Wireless Communications, 2017,16(4), 2490–2504, doi:419 10.1109/TWC.2017.2665544.

[27] Tannious, R.-A.; Nosratinia, A. Relay-assisted interference network: degree of freedom. IEEE Trans.Inf. Theory. 2012, 58, 3780 - 3786, doi:10.1109/TIT.2012.2184644.

[28] Jindal, N.; Rhee, W.; Vishwanath, S.; Jafar, S. A., and Goldsmith, A. Sum power iterative water-filling for multi-antenna Gaussian broadcast channels. IEEE Transactions on Information Theory, 2005, 1570–1580,doi: 10.1109/TIT.2005.844082.

[29] Etkin, R.; Ordentlich, E. On the degrees–of–freedom of the K-user Gaussian interference channel. Proceedings of the IEEE International Symposium on Information Theory, 2009: 1919 – 1923.

[30] Shen, C.; Fitz, M.P. MIMO-OFDM Beamforming for Improved Channel Estimation. IEEE J. Sel. Areas Commun. 2008, 26, 948 - 959, doi:10.1109/JSAC.2008.080811.

[31] Li, S.; Zhou, X.; Wang, C. X.; Yuan, D.; and Zhang, W. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks. Sensors, 2017:17(7), 1566, doi:10.3390/s17071566.
저자 소개

김 정 수(정회원)

• 1998년 : 전북대학교 정보통신공학과 석사
• 2003년 : 전북대학교 컴퓨터공학과 박사
• 2002년 6월 ~ 현재 : 숭실사이버대학교 컴퓨터정보통신학과 부교수

<주관심분야 : 이동통신, IoT>

이 문 호(정회원)

• 1984년 : 전남대학교 전기공학과 박사, 통신기술사
• 1985년 ~ 1986년 : 미국 미네소타 대학 전기과 포스트닥터
• 1990년 : 일본동경대 정보통신공학과 박사
• 1970년 ~ 1980년 : 남양MBC 송신소장
• 1980년 10월 ~ 2010년 2월 : 전북대학교 전자공학부 교수
• 2009년 4월 ~ 2013년 : WCU-2 연구책임교수
• 2015년 : 국가연구개발 우수성과 100선
• 현재 : 전북대학교 전자공학부 초빙교수

<주관심분야 : 무선이동통신, 통신이론, Molecular communication>

박 대 철(정회원)

• 1989년: Univ. of New Mexico 전기컴퓨터공학과 박사
• 1977 ~ 1982년 : 국방과학연구소 연구원
• 1989 ~ 1993년 : 한국전자통신연구소 산업연구원
• 1991 ~ 1992년 : 컬럼비아대학교 CTR 객원연구원
• 1999년 ~ 현재 : 한남대학교 컴퓨터정보통신공학과 교수

<주관심분야 : 영상처리, 정밀농업 빅데이터 분석>

<E-mail: daechul@hnu.kr>

※ 본 논문은 2017년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (No.2015R1A2A1A05000977)