Research Article

Xin Liu, Guiyun Chen, and Yanxiong Yan*

A new characterization of the automorphism groups of Mathieu groups

Abstract: Let $\text{cd}(G)$ be the set of irreducible complex character degrees of a finite group G. $\rho(G)$ denotes the set of primes dividing degrees in $\text{cd}(G)$. For any prime p, let $p^{\rho(x)} = \max\{\chi(1) | \chi \in \text{Irr}(G)\}$ and $V(G) = \{p^{\rho(x)} | p \in \rho(G)\}$. The degree prime-power graph $\Gamma(G)$ of G is a graph whose vertices set is $V(G)$, and two vertices $x, y \in V(G)$ are joined by an edge if and only if there exists $m \in \text{cd}(G)$ such that $\chi|\langle m \rangle$. It is an interesting and difficult problem to determine the structure of a finite group by using its degree prime-power graphs. Qin proved that all Mathieu groups can be uniquely determined by their orders and degree prime-power graphs. In this article, we continue this topic and successfully characterize all the automorphism groups of Mathieu groups by using their orders and degree prime-power graphs.

Keywords: finite group, character degree, degree prime-power graph, automorphism group

MSC 2020: 20C33

1 Introduction

The groups involved in this paper are all finite groups, and all characters are complex characters.

We use $\text{Irr}(G)$ to denote the set of all complex irreducible characters of a group G, and $\text{cd}(G) = \{\chi(1) | \chi \in \text{Irr}(G)\}$ to denote the set of all irreducible character degrees of G forgetting multiplicities. In particular, $\text{cd}(G)$ denotes a multi-set whose elements can be repeated and $|\text{cd}(G)| = |\text{Irr}(G)|$. Denote by $\rho(G)$ the set of primes dividing degrees in $\text{cd}(G)$. We use $\text{Out}(G)$ to denote the outer automorphism group of a group G. We use $\pi(n)$ to denote the set of all prime divisors of n and n_p the maximum power of p such that $n_p | n$, where n is a positive integer and p is a prime. Let $\Psi(n) = \{n_p | p \in \pi(n)\}$. For convenience, we write $\Psi(G) = \Psi(|G|)$ and $\pi(G) = \pi(|G|)$. All other symbols and terms are standard (see [1,2]).

In 2000, Huppert proposed the following conjecture:

Huppert’s conjecture: Let M be a non-abelian simple group such that $\text{cd}(G) = \text{cd}(M)$, then $G \cong M \times A$, where A is an abelian group.

Huppert conjectured that all finite non-abelian simple groups can be uniquely determined by their orders and the sets of irreducible character degrees. Huppert checked the conjecture case-by-case for many non-abelian simple groups such as $S_2(q)$, the alternating groups A_n with $5 \leq n \leq 11$, and most of the sporadic simple groups and some other simple groups of Lie type (see [3–5]). Tong-Viet and Wakefield...
proved that if M is one of $G_2(q)$ ($q \geq 7$), $\text{PSL}_3(q)$, $\text{PSU}_3(q^2)$, $2^G ancestry (q^2)$, and $\text{PSp}_6(q)$ ($q > 7$), then the conjecture holds (see [6–9]). Nguyen continued Huppert’s work and proved the conjecture for the alternating groups A_n with $n = 12, 13$ (see [10]). Bessenrodt et al. solved the remaining alternating groups and showed that Huppert’s conjecture follows for all the simple alternating groups A_n ($n \geq 14$) (see [11]). In addition, Daneshkhah proved that all the sporadic simple groups can also be uniquely characterized by the set of their irreducible character degrees (see [12,13]). However, up to now, Huppert’s conjecture is still open. So, a natural problem is what the influence on the structure of a finite group is by weakening the condition of Huppert’s conjecture. In particular, an interesting question is that if G and M have the same order, when we just consider some subset of $\text{cd}(M)$, whether we can determine the structure of such finite groups? Some people found that many non-abelian simple groups can be characterized by their orders and some largest irreducible character degrees. For example, Xu proved that simple K_4-groups and Mathieu groups can be uniquely determined by their orders and one or two irreducible character degrees (see [14,15]). In addition, Heydari characterized simple K_4-groups according to their orders and at most three distinct irreducible character degrees (see [16]).

The character degree graph of G, which is denoted by $\Delta(G)$, is a graph with the vertex set $\rho(G)$ and two vertices x and y are adjacent in $\Delta(G)$, if there is some $f \in \text{cd}(G)$ such that $xyff$ (see [17]). Many researchers began to investigate the relationship between $\Delta(G)$ and structure of finite group, trying to know about the properties of $\Delta(G)$. Khosravi et al. proved that A_5, A_6, A_7, A_8, $L_3(3)$, $L_3(4)$, $L_2(64)$, $L_2(q)$ (where q is an odd prime or a square of an odd prime, and $q \geq 5$), and $L_2(2^\alpha)$ (where α is a positive integer such that $2^\alpha - 1$ or $2^\alpha + 1$ is a prime) can be determined by their orders and character degree graphs (see [18,19]). Furthermore, the authors also proved that some simple groups of orders less than 6,000 are uniquely determined by their orders and character degree graphs (see [20]).

But an interesting fact is that not all non-abelian simple groups can be uniquely determined by their orders and character degree graphs. We knew that the Mathieu M_{10}, M_{22}, and M_{23} can be uniquely determined by their orders and character degree graphs, while M_{23} cannot be determined by the order of M_{22} and the character degree graph $\Delta(M_{23})$ (see [21]). In fact, M_{23} and $A_8 \times A_7$ have the same orders and the same character degree graphs. So it is a difficult problem whether there exists some graph such that any Mathieu group can be uniquely determined by the graph. Based on this fact, in 2018, Qin et al. for the first time put forward the degree prime-power graph via the set of irreducible character degrees. Also, the authors successfully characterized all the Mathieu groups and sporadic simple groups just by using their orders and character degree prime-power graphs (see [22,23]). In this article, we continue this topic and prove that all the automorphism groups of Mathieu groups can also be uniquely determined by their orders and character degree prime-power graphs.

We first give the following definition:

Definition 1.1. Let G be a group. For every $p \in \rho(G)$, let $\rho^p(G) = \max\{\chi(1)_p | \chi \in \text{Irr}(G)\}$ and $V(G) = \{\rho^p(G) | p \in \rho(G)\}$. Define the degree prime-power graph $\Gamma(G)$ as follows: $V(G)$ is the vertex set, and there is an edge between distinct numbers $x, y \in V(G)$ if xy divides some integer in $\text{cd}(G)$. Denote the edge between distinct numbers $x, y \in V(G)$ by $x \sim y$, and the set of all edges of $\Gamma(G)$ by $E(G)$.

Definition 1.2. Let G be a group, for any $p \in \rho(G)$. We define $\nu_p(G)$ the p-exponent variation of G as follows: $\nu_p(G) = \min\left\{\log_p\left(\frac{\rho^p(\chi)}{\chi(1)_{1p}}\right) | \chi \in \text{Irr}(G)\right\}$. Obviously, $\nu_p(G) = \log_p(|G|_p) - e_p(G)$.

Definition 1.3. Let G be a group and $p \in \pi(G)$. An irreducible character χ has p-defect zero if $\chi(1)_p = |G|_p$.

In this article, we successfully characterize all the automorphism groups of Mathieu groups by using their orders and degree prime-power graphs. Our main result is:

Theorem 1.4. Let G be a group. Suppose that M is one of the automorphism groups of a Mathieu group. Then $G \cong M$ if and only if $|G| = |M|$ and $\Gamma(G) = \Gamma(M)$.

2 Preliminary results

In what follows, we need to make some preparations for the proof of Theorem 1.4 and we begin with some important lemmas which will be used in what follows.

Lemma 2.1. [22] Suppose there is an irreducible character of G with p-defect zero for some $p \in \pi(G)$. If $N \trianglelefteq G$ and $p \in \pi(N)$, then there is an irreducible character of N which has p-defect zero, and $O_p(N) = 1$.

Lemma 2.2. [22] Let G be a finite solvable group of order $p_1^{n_1}p_2^{n_2} \cdots p_k^{n_k}$, where p_1, p_2, \ldots, p_k are distinct primes. If $kp_n + 1 \mid p_i^{n_i}$ for each $1 \leq i \leq n - 1$ and $k \in \mathbb{Z}^+$, then the Sylow p_i-subgroup is normal in G.

Lemma 2.3. [22] Let G be a non-solvable group. If T/S is a non-abelian chief factor of G, then there is a normal series $1 < H < K < G$ such that $K/H \cong T/S$ and $|G|/|K| \mid |\text{Out}(T/S)|$.

Lemma 2.4. [23] Let G be a group. For any $p \in \pi(G) \setminus \{2\}$, we have $v_p(G) = 0$, but $v_p(G) = 2$. If N is an arbitrary non-unit and solvable subnormal subgroup of group G, then N satisfies one of the following conditions:

1. $|N| = 2$ or 4;
2. $|N| = 2^3$, and $\text{cd}^+(N) = \{1, 1, 1, 2\}$;
3. $|N| = 2^2 \cdot 3$, and $\text{cd}^+(N) = \{1, 1, 1, 3\}$;
4. $|N| = 2^3 \cdot 3$, and $\text{cd}^+(N) = \{1, 1, 1, 2, 2, 2, 3\}$ or $\text{cd}^+(N) = \{1, 2, 3, 3\}$;
5. $|N| = 2^4 \cdot 3$, and $\text{cd}^+(N) = \{1, 2, 2, 2, 3, 3, 4\}$.

Lemma 2.5. [22] Let G be a group of order $672 = 2^5 \cdot 3 \cdot 7$. If $3, 7 \in V(G)$, then one of the following holds:

1. The number of irreducible characters with same degree is less than 11;
2. G has a normal abelian Sylow 2-subgroup.

Corollary 2.6. [22] Let G be a non-solvable group. Then there is a subnormal series

$$G = G_0 \triangleright G_1 > G_2 \triangleright \cdots \triangleright G_{2k-1} > G_{2k} \triangleright 1$$

such that G_{2k} is solvable, G_{2i-1}/G_{2i} is a non-abelian chief factor of G_{2i-2} and $|G_{2i-2}/G_{2i-1}||\text{Out}(G_{2i-2}/G_{2i})|$ for each $1 \leq i \leq k$.

3 Proof of Theorem 1.4

Remark. If G is a simple group, then $G \cong \text{Inn}(G)$. By [1], it is easy to check that $|\text{Out}(M_{11})| = 1, |\text{Out}(M_{22})| = 1$ and $|\text{Out}(M_{24})| = 1$. Hence, in what follows we just need to discuss the automorphism groups of the Mathieu groups M_{12} and M_{22}.

Proof of Theorem 1.4. The necessity of Theorem 1.4 is obvious and so it is enough to prove the sufficiency. In what follows, we write up the proof of what M is case-by-case.

Case 1. $M = \text{Aut}(M_{22})$.

From [1], we have $|G| = 2^3 \cdot 3^3 \cdot 5 \cdot 11$, $V(G) = \{2^3, 3^3, 5, 11\}$, and $E(G) = \{5 \sim 11\}$. By Lemma 2.1, $O_2(G) = O_2(G) = O_H(G) = 1$. We claim that G is non-solvable. Otherwise, if the group G is solvable, a Sylow 11-subgroup G_{11} of G is normal in G by Lemma 2.2. This is in contradiction with $O_H(G) = 1$.

By Lemma 2.3, there is a normal series $1 < H < K < G$ such that K/H is a non-abelian chief factor of G and $|G/K| \mid |\text{Out}(K/H)|$. By comparing the order of G and the orders of the simple groups in [1], every non-abelian chief factor of G is isomorphic to one of the following groups: $A_5, A_6, L_2(11), M_{11}$, and M_{22}. And the non-abelian chief factors of G are pairwise non-isomorphic.
If $K/H \cong A_5$, by $|A_5| = 2^2 \cdot 3 \cdot 5$, and $|\text{Out}(A_5)| = 2$, then $|G/K|2$, which implies that $|H| = 2^a \cdot 3^b \cdot 11$, where $a = 4$ or 5. Since the order of the group H cannot be divisible by the order of any non-abelian simple group, H is solvable. By Lemma 2.2 a Sylow 11-subgroup of H is normal in H, and this is in contradiction with $O_{11}(G) = 1$.

If $K/H \cong A_6$, by $|A_6| = 2^3 \cdot 3^2 \cdot 5$, and $|\text{Out}(A_6)| = 4$, we have $|G/K|4$, and so $|H| = 2^a \cdot 3^2 \cdot 11$, where $a = 2, 3, 4, or 5$. For the same reasons as above, we also get a contradiction.

If $K/H \cong L_2(11)$, since $|L_2(11)| = 2^3 \cdot 3 \cdot 5 \cdot 11$ and $|\text{Out}(L_2(11))| = 2$, then $|G/K|2$. One has that $|H| = 2^a \cdot 3^2$, where $a = 4$ or 5. Then H is solvable. By Lemma 2.4, it is easy to deduce that there exists no such group $|H|$ such that H satisfies the above condition, and hence H is unsolvable, which leads to a contradiction.

Assume that $K/H \cong M_{11}$, by $|M_{11}| = 2^3 \cdot 3^2 \cdot 5 \cdot 11$, and $|\text{Out}(M_{11})| = 1$, $|G/K|1$, we have $|K| = |G|$, $G/H \cong M_{11}$, and $|H| = 2^a \cdot 3^b \cdot 5 \cdot 11$. According to $v_3(H) = v_3(G) = 0$, then θ is G-invariant. Since the Schur multiplier $H(M_{11}, C^\circ)$ of M_{11} is 1, θ is extendible to G by [2, Theorem 11.7]. Note that $3^2 \cdot 5 \cdot 11 \in \text{cd}(M_{11})$. Then, we have $3^2 \cdot 5 \cdot 11 \in \text{cd}(G)$ by [2, Corollary 6.17]. This is in contradiction with $3^2 \cdot 5 \in E(G)$.

Now, assume that $K/H \cong M_{12}$, by $|M_{12}| = 2^4 \cdot 3^3 \cdot 5 \cdot 11$, and $|\text{Out}(M_{12})| = 2$, $|G/K|2$. This means that $|H| = 2^a$, where $a = 0$ or 1. By N/C theorem, we have $G/H \cong \text{Aut}(K/H)$. So we get $K/H \cong G/H \cong \text{Aut}(K/H)$, that is, $M_{12} \leq G/H \leq \text{Aut}(M_{12})$.

If $G/H \cong \text{Aut}(M_{12})$, and since $|G| = |\text{Aut}(M_{12})|$, we deduce $H = 1$ and $G \cong \text{Aut}(M_{12})$.

If $G/H \cong M_{12}$, then $|H| = 2$. So $H \leq Z(G)$. Therefore, G is a central extension of Z_2 by M_{12} and G is isomorphic to one of the following groups:

\[2 \cdot M_{12} \text{ (a non-split extension of } Z_2 \text{ by } M_{12}) \]
\[Z_2 \times M_{12} \text{ (a split extension of } Z_2 \text{ by } M_{12}) \]

If $G \cong 2 \cdot M_{12}$, by [1], we have $\chi \in \text{Irr}(2 \cdot M_{12})$ such that $\chi(1)_2 = 2^6$. This is in contradiction with $V(G)$.

If $G \cong Z_2 \times M_{12}$, by [1] and [2, Theorem 4.21], we have $\chi \in \text{Irr}(Z_2 \times M_{12})$ such that $\chi(1)_2 = 2^4$. This is in contradiction with $V(G)$.

Case 2. $M = \text{Aut}(M_{12})$.

From [1], we have $|G| = 2^8 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11$, $V(G) = \{2^3, 3^2, 5, 7, 11\}$, and $E(G) = \{2^4 \cdot 5, 2^5 \cdot 7, 3^2 \cdot 5, 3^2 \cdot 7, 5 \cdot 7, 5 \cdot 11, 7 \cdot 11\}$. By Lemma 2.1, $O_2(G) = O_3(G) = O_5(G) = O_{11}(G) = 1$. We claim that G is not solvable. Otherwise, if the group G is solvable, a Sylow 11-subgroup G_{11} of G is normal in G by Lemma 2.2. This is in contradiction with $O_{11}(G) = 1$.

By Lemma 2.3, there is a normal series $1 \leq H < K < G$ such that K/H is a non-abelian chief factor of G and $|G/K|\text{cd}(H))$. Since $|G| = 2^8 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11$, the non-abelian chief factors of G are pairwise non-isomorphic, and by [1], we see that K/H is isomorphic to one of the following groups: A_5, $L_2(2)$, A_6, $L_2(8)$, $L_2(11)$, A_7, M_{11}, A_8, $L_4(4)$, and M_{32}.

The orders of the outer automorphisms of these simple groups are not divisible by 11. We claim that there is a non-abelian simple chief factor of G whose order is divisible by 11. Otherwise, there is a solvable subnormal subgroup N of G such that $|N|/|N|$ by Corollary 2.6. Then N has a normal Sylow 11-subgroup by Lemma 2.2. This contradicts $O_{11}(N) = 1$ by Lemma 2.1. Hence, G has a chief factor isomorphic to $L_2(11)$, M_{11}, or M_{32}.

Assume that G has a chief factor isomorphic to $L_2(11)$. By Lemma 2.3, there is a chief factor K/H of G such that $K/H \cong L_2(11)$. According to $|L_2(11)| = 2^3 \cdot 5 \cdot 11$, and $|\text{Out}(L_2(11))| = 2$, $|G/K|2$, this shows that $|H| = 2^a \cdot 3 \cdot 7$, where $a = 5$ or 6. Since the edge $5 \leq 11 \in E(G)$, we have that $5 \leq 11 \in E(K)$ by [2, Corollary 11.29]. Hence, there exists a character $\chi \in K$ such that $5\chi(1)$ is of the form $\chi \in \text{Irr}(K)$ be an irreducible constituent of χ_H. By [2, Theorem 6.2], we see that $\chi_H = \alpha \sum_{i=1}^{\xi} \xi$, where $\xi = \xi_1, \xi_2, \ldots, \xi_s$ are the distinct conjugates of ξ in K and $e = ||H|, \xi_H|$. If $s = |K : \text{ker}(\xi)| \neq 1$, then there is a maximal subgroup T/H of K/H such that $t_k(\xi)/H \leq T/H$. Since the index of the maximal subgroup of $L_2(11)$ is 11, 12, or 55 (see [1]), s is divisible by 11, 12, or 55. Since $3^2, 7 \in V(G)$, we know 3, 7 $\in V(H)$.

If $\alpha = 5$, $|H| = 2^5 \cdot 3 \cdot 7$. By Lemma 2.5, we have $s < 11$, then $s = 1$, $\chi_H = e \xi$. Since $\xi(1)|\{H\}$, $5 \cdot 11|\xi(1)$, then $55|e$ and $55^2 \leq |A_N, X_H| \leq |K : H| \cdot \chi(1) = 2^3 \cdot 3 \cdot 5 \cdot 11$, where X_H is the restriction of χ to H, a contradiction. Therefore, H has a normal abelian Sylow 2-subgroup H_2. By [2, Theorem 6.15], we have $2^4|G : H_2|$, i.e., $2^4 2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$, a contradiction too.

If $\alpha = 6$, then $|H| = 2^6 \cdot 3 \cdot 7$. Noting that $|G| = |K|$ and $s = |G : L_2(\xi)|$, we have $\chi(1) = e s \xi(1)$. Since $\xi(1)|\{H\}$, it follows that $5 \cdot 11|\xi(1)$, and hence $5 \cdot 11|es$. If H is solvable, there exists $N \leq H$ such that the normal subgroup of H/N is elementary abelian, so that $|N| \leq 2^6$ and $|H/N| \leq 2^6$. Since $|GL(6, 2)|$ is indivisible by 11, it implies that $L_2(11)$ induces the identity on N and H/N, and so $L_2(11)$ acts trivially on H. Consequently,

$$G = (H \rtimes SL_2(11)) \times (H \rtimes L_2(11))$$

It follows that $H \leq L_2(\xi)$, and hence χ can be viewed as an irreducible character of G/H, which is impossible because 55 divides $\chi(1)$.

Thus, H is non-solvable. By Lemma 2.3 and [1], there is a normal series $1 \leq S \leq T \leq H$ such that T/S is a non-abelian chief factor of H, and $T/S \cong L_2(7)$, we get $|S| = 2^t$, where $t = 3$ or 2. If $t = 3$, then $H/S \cong L_2(7)$, and hence $H \cong AGL_2(2)$ or $S \times L_2(7)$. According to $C_H(H) \leq L_2(\xi)$, then $s | s [G : C_H(H)] = |G : L_2(\xi)| \cong |L_2(\xi) : C_{H}(H)|$. By N/C theorem, we have $G/C_H(H) \leq Aut(H)$, that is, $s | Aut(H)$. In either case, $55 | Aut(H)$, then $55|e$, again a contradiction. In a similar fashion, we rule out the possibility where $t = 2$.

Assume that G has a chief factor isomorphic to M_{12}. By $|M_{12}| = 2^4 \cdot 3^2 \cdot 5 \cdot 11$, $|Out(M_{12})| = 1$, we have $|G/K| \leq |K| = |G|$, then $|H| = 2^4 \cdot 7$. Since $\nu(H) = \nu(G) = 0$, H has a G-invariant irreducible character η of degree 7. Since the Schur multiplier $H(M_{12}, C^0)$ of M_{12} is 1, η is extendible to G. Since $3^2 \in V(M_{12})$, we see that $7 \sim 3^2 \in E(G)$ by [2, Theorem 6.17]. This is in contradiction with $7 \sim 3^2 \notin E(G)$.

Now, assume that $K/H \cong M_{22}$, by $|M_{22}| = 2^2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$, $|Out(M_{22})| = 2$, we know $|G/K| \leq |H| = 2^a$, where $a = 0$ or 1. By N/C theorem, we have $G/H \leq Aut(K/H)$. So we get $K/H \leq G/H \leq Aut(K/H)$, that is $M_{22} \leq G/H \leq Aut(M_{22})$.

If $G/H \cong Aut(M_{22})$, and since $|G| = |Aut(M_{22})|$, we deduce $H = 1$ and $G \cong Aut(M_{22})$.

If $G/H \cong M_{22}$, then $|H| = 2$. So $H \leq Z(G)$. Therefore, G is a central extension of Z_2 by M_{22} and G is isomorphic to one of the following groups:

$$2 \cdot M_{22} \text{ (a non-split extension of } Z_2 \text{ by } M_{22}),$$

$$Z_2 \times M_{22} \text{ (a split extension of } Z_2 \text{ by } M_{22}).$$

If $G \cong 2 \cdot M_{22}$, by [1], we have $\chi \in Irr(2 \cdot M_{22})$ such that $3^2 \cdot 7|\chi(1)$, then $3^2 \sim 7 \in E(2 \cdot M_{22})$. This is in contradiction with $E(G)$.

If $G \cong Z_2 \times M_{22}$, by [1] and [2, Theorem 4.21], we have $\chi \in Irr(Z_2 \times M_{22})$ such that $\chi(1)_2 = 2^3$, a contradiction to $V(G)$, which completes the proof of Theorem 1.4.

Acknowledgements: The authors would like to express his deep gratitude to the referee for their or her invaluable comments and suggestions which helped to improve the paper.

Funding information: This work was partially supported by Natural Science Foundation of China (Grant Nos. 12071376 and 11971391), Natural Science Foundation Project of CQ CSTC (No. cstc2021jcyj-msxmX0426), and Fundamental Research Funds for the Central Universities (Nos. XDJK2019C16 and XDJK2019B030).

Conflict of interest: Authors state no conflict of interest.

References

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, *Atlas of Finite Groups*, Clarendon Press, New York, 1985.
and order less than 6000

H. P. Tong-Viet, T. P. Wakefield, On Huppert’s conjecture for $G_2(q), q \geq 7$, J. Pure Appl. Algebra 216 (2012), no. 12, 2720–2729.

T. P. Wakefield, Verifying Huppert’s conjecture for $PSL_3(q)$ and $PSU_3(q^2)$, Comm. Algebra 37 (2009), 2887–2906.

T. P. Wakefield, Verifying Huppert’s conjecture for $G_2(q^2)$, Algebr. Represent. Theory 14 (2011), 609–623.

T. P. Wakefield, Verifying Huppert’s conjecture for $PSp(q)$ when $q > 7$, Algebr. Represent. Theory 15 (2012), 427–448.

H. N. Nguyen, H. P. Tong-Viet, and T. P. Wakefield, On Huppert’s conjecture for alternating groups of low degrees, Algebra Colloq. 22 (2015), no. 2, 293–308, DOI: https://doi.org/10.1142/S1005386715000267.

C. Bessenrodt, H. P. Tong-Viet, and J. P. Zhang, Huppert’s conjecture for alternating groups, J. Algebra 470 (2017), 353–378.

S. H. Alavi, A. Daneshkhah, H. P. Tong-Viet, and T. P. Wakefield, Huppert’s conjecture for Fi_{23}, Rend. Semin. Math. Univ. Padova 126 (2011), 201–211.

S. H. Alavi, A. Daneshkhah, H. P. Tong-Viet, On Huppert’s conjecture for Conway and Fischer families of sporadic simple groups, J. Aust. Math. Soc. 94 (2013), no. 3, 289–303.

H. J. Xu, G. Y. Chen, and Y. X. Yan, A new characterization of simple K_4-groups by their orders and large degrees of their irreducible characters, Comm. Algebra 42 (2014), no. 12, 5374–5380.

H. J. Xu, Y. X. Yan, and G. Y. Chen, A new characterization of Mathieu-groups by the order and one irreducible character degree, J. Inequal. Appl. 2013 (2013), 209.

S. Heydari and N. Ahanjideh, Characterization of some simple K_4-groups by some irreducible complex character degrees, Int. J. Group Theory 5 (2016), no. 2, 61–74.

O. Manz, R. Staszewski, and W. Willems, On the number of components of a graph related to character degrees, Proc. Amer. Math. Soc. 103 (1988), no. 1, 31–37, DOI: https://doi.org/10.1090/S0002-9939-1988-0938639-1.

B. Khosravi, B. Khosravi, B. Khosravi, and Z. Momen, Recognition of some simple groups by character degree graph and order, Math. Rep. (Bucur.) 18 (2016), no. 68, 51–61.

B. Khosravi, B. Khosravi, B. Khosravi, B. Khosravi, and Z. Momen, Recognition of the simple group $PSL(2, p^3)$ by character degree graph and order, Monatsh. Math. 178 (2015), no. 2, 251–257.

B. Khosravi, B. Khosravi, B. Khosravi, B. Khosravi, and Z. Momen, Recognition by character degree graph and order of simple groups of order less than 6000, Miskolc Math. Notes 15 (2014), no. 2, 537–544.

N. Ahanjideh and S. Heydari, Some simple groups which are determined by their character degree graphs, Sib. Elektron. Mat. Izv. 13 (2016), 1290–1299.

C. Qin, Y. Yan, K. Shum, and G. Chen, Mathieu groups and its degree prime-power graphs, Comm. Algebra 47 (2019), no. 10, 4173–4180, DOI: https://doi.org/10.1080/00927872.2019.1579342.

C. Qin, Study on the all sporadic simple groups and its irreducible character degree prime-power graphs, Ph.D. Dissertation, Southwest University, Chongqing, 2019. (in Chinese)