An overview of environmental impacts of lighting products at the end of life stage through life cycle impact assessment

C J Grigoropoulos 1,3, L T Doulos 1, S C Zerefos 1 and A Tsangrassoulis 2
1 School of Applied Arts and Sustainable Design, Hellenic Open University, Patra, Greece
2 Department of Architecture, University of Thessaly, Pedion Areos, 38334 Volos, Greece
3 E-mail: cgrgi@upatras.gr

Abstract. Life Cycle Impact Assessment (LCIA) of lighting products is a methodology that analyses and evaluates environmental impacts throughout their total life cycle, from the extraction and processing of raw materials, design, construction, transportation, distribution, use, recycling and re-use of materials, and last their final disposal. According to the results of a large number of LCIA, lighting products have a substantial environmental impact in multiple areas, as for example in primary energy, toxicological effects, the effect on global warming, the level of environmental acidification, etc. All of those impacts could result in more efficient products by enhancing the product design process (using Ecodesign). At the initial design stage of lighting products, the manufacturer should also take into consideration circular economy aspects at the End of Life stage (EoL) such as repair, reuse, remanufacturing, retrofitting, recycling, and upcycling and not only the energy savings from the use stage or the selection of raw materials. The scope of this paper is to collect and present an overview of all environmental impacts of LCIA analyses focusing at EoL stage of lighting products. Those impacts could be used as data input into a future model that determines which lighting products are more environmentally friendly.

1. Introduction
Sustainability and viability are dynamically entering the research, development, and design phase of lighting products by integrating life cycle analysis (LCA) into the overall context of environmental management. Sustainability should be a crucial factor in the decision making process, in order to choose which lighting products should be used when performing a lighting system upgrade or an initial placement [1-5]. The main problem is that lighting products are mainly studied during their use and not during their total life cycle. Sustainable Lighting Design (SLD) is a process that could change not only the selection process of lighting products, but also the criteria of lighting design itself. The Life Cycle Impact Assessment (LCIA) of lighting products is a method that converts inventory data from a life cycle assessment (LCA) into an environmental impact of their total life cycle. The outcomes of LCIA can be used to make decisions about which products can be chosen as being more environmentally friendly and also which of them contribute most to the sustainability of our society.
The results of many LCIA analysis have shown that lighting products have serious environmental impacts, particularly at the EoL [6-8]. For example, high and low pressure discharge lamps such as fluorescent lamps use mercury for their operation. Mercury is toxic to humans and to the environment. Therefore, proper recycling should be encouraged through certified recycling systems where proper collection and management of mercury and other toxic materials made up of the lamps is done. Recycling reduces the total cost of production of lighting products by taking into account the cost of dealing with the environmental impacts they cause and also the reusing of recovered materials.

The impacts of the analysis are given as categories of environmental impact such as primary energy, toxicological effects, the effect on global warming, the level of environmental acidification, etc. Also, the total environmental impacts of a product can be described as an indicator (i.e. EDIP97, CML2001 and Eco-indicator 99) [9-11]. Furthermore, these can be calculated using simulation tools, such as Sima Pro, Gabi, etc., where the result can be given in different categories of impacts, such as Resources, Ecosystems, and Human Health [12]. The most effective approach to deal with them is during the design phase of lighting products, so that these impacts can be identified and addressed by emphasizing real effective solutions. This can be done by choosing the proper materials (using Ecolabel), by changing the product design process (using Ecodesign), and participate circular economy by re-using materials that are recovered during the recycling process [13-16]. The first two steps are identified already by EU directives but the last one is gaining attention only in the last decade. Eco-design products have approximately 60% less environmental impact than non-eco design products, in decreasing order at the stages of use, manufacturing, end of life, and transporting [17-20]. The scope of this paper is to collect through literature all the LCIA analyses, focusing on the EoL of lighting products in the last decade, and present an overview of their environmental impacts. The outcome data of this overview can be organized and used as indicators in a future model which will take into account these impacts in order to recognize the products with the lower environmental impacts and thus being more environmentally friendly.

2. Methodology

The standard methodology used to review and evaluate the LCIA analyses of lighting products in the international literature was STARR-LCA for the last decade [21]. The checklist used by STARR-LCA relies heavily on the PRISMA checklist which is widely used for medical review. The proposed criteria that LCIA must meet in order to select and create a list of life cycle impact analysis (LCIA) characteristics are the following according to STARR-LCA:

1. Literature review by using abstract title and keywords. The literature search was done as a first step, based on keywords such as: life cycle analysis, light bulbs, light sources, luminaires, lighting products, environmental impact, energy, carbon emissions. To verify the results, independent studies were found for cross-referencing data and results, where the results are based on scientific standards

2. The selection of the LCA was based on the following International Standards: ISO 14040: 2006 [22], ISO 14044: 2006 [23], ISO / TR 14047: [24].

3. Environmental impacts. The environmental impact at the End of Life (EoL) of the lighting products were analyzed, specifically on their impacts on Resources - Air - Water – Soil – Human health – Ecosystem quality and Resource consumption.

4. The selected LCA must refer to a well-documented process database for thousands of lighting products such as Ecoinvent 3, Chinese Life Cycle Database CLCD, etc. Thus, the results could be safe to be used.

5. The selected LCA must refer to the methodology or software which could be used to calculate the environmental impact as for example Ecoindicator 99, CML2001, EDIP97, SimaPro, Gabi etc.

6. The selected LCA must have used a function unit such as megalumen, hour of light, lux hour etc.
3. Results and Discussions
A large number of LCAs have been performed in the last 10 years. The first analyses focused more on incandescent lamps and Compact Fluorescent Lamps (CFL). More recent analyses included more contemporary technologies in lighting products such as LED lamps. The LCAs of the last decade are presented in the below Table 1.

Table 1: Overview of Environmental Impacts of LCA analysis of Lighting products at the EoL Stage

Reference Pub. Year	Lamps a	Function Unit b	Software c	Database d	Method End Point e	Environmental Impacts and Categories f
Witoon Apisitpuvakul et al.[18]	LFL		Simapro 6.0	Simapro	Eco-Indicator99	Ecosystem quality, human health and resource depletion
Welz et al. [25]	IL, HL, FL, CFL and LED	one hour of lighting	ISO 14040:2006 ISO 14044:2006	Ecoinvent 2.01	Eco-Indicator99	Ecosystem quality, human health and resource consumption
Dale et al.[26]	HPS, MH, LED	100,000 h of light	No access to paper in order to have more information			GWP, respiratory effects, ecotoxicity
U.S. DOE [27]	IL, CFL, LED	20 Mlmh	ISO 14040:2006 ISO 14044:2006	Ecoinvent 2.2	CML 2001	ADP, AP, EP, GWP, ODP, POCP
Elijošiutė et al. [28]	IL, CFL	10,000 h	Gabi 4.2 internal database		CML 2001	Ecosystem quality, human health and resource consumption
Abdul Hadi et al., [29]	CMH and LED		SimaPro V.7.3	Ecoinvent	Eco-Indicator99	Ecosystem quality, human health and resource consumption
Tähkämo et al., [30]	LED	lm-h	SimaPro 7.3.2	Ecoinvent 2.2 and European Reference Life Cycle	CML 2001	AP, ADP, AiP, EP, GWP, HW, IW, NHW, NRE, ODP, PE, POC, RE, RW, WaC, WaP
Principi and Fioretti [31]	LED, CFL	lm-h	SimaPro 7.3.0	Ecoinvent 2.1		AP, CED, FEP, FETP, GWP, HTPe HTPnce, LUP, MEP, ODP, POP, TEP
Kuldip Singh Sangwan et al. [32]	ICL, LFL, CFL and LED	lumen–hours, FLL:36375, CFL:14400, LED:6000, ICL:720	Umberto	Ecoinvent 2.2	Eco-Indicator99	Ecosystem quality, human health and resource consumption
Reference Pub. Year	Lamps \(^a\)	Function Unit \(^b\)	Software \(^c\)	Database \(^d\)	Method End Point \(^e\)	Environmental Impacts and Categories \(^f\)
---------------------	----------------	---------------------	-----------------	-----------------	---------------------	---
Tähkämo and Halonen, [33]	HPS and LED Streetlight	lumen hour and a kilometre of lit road	ISO 14040:2006	ISO 14044:2006	Ecoinvent 2.2	CML-IA
Quanyin Tan et al. [34]	LFL, CFL	Operating time in the use stage	Simapro 8.0	Ecoinvent v3.2	Eco-Indicator99	Ecosystem quality, human health and resource consumption
JL Casamayor et al. [19]	LED		SimaPro V.8	Ecoinvent V.3	ReCiPe V1.12	Human health, ecosystems and resources availability
Sha Chen et al. [20]	LFL, CFL		EBalance	EcolInvent and CLCD		GHG emissions
Heather E. Dillon et al. [7]	LED		Heijungs and Suh	Ecoinvent 3.0		
Kévin Bertin et al. [35]	CFL, LED, LFL (T5 type).	megalumen hour	Simapro 9	Ecoinvent 3.5	Recipe 2016	Resources, Ecosystems, and Human Health
Manuel Jesús Hermoso-Orzáez et al. [36]	LED Streetlight		SIMAPRO 8.3	Simapro internal database	EPS 2000	Ecosystem Production Capacity, Human Health, Damage Recourses, Biodiversity depletion
Camila Vicente de Farias et al. [37]	Fluorescent		RISC4®	IRIS – U.S. EPA	SES Method	Human health risk by soil contamination
José Adolfo Lozano-Miralles et al. [38]	LED streetlight LED Luminaire		SimaPro 8.3	Ecoinvent	EPS 2000	Ecosystem production capacity Human health Damage recourses Biodiversity depletion

\(^a\) IL Incandescent Lamp, HL Halogen Lamp, (C)FL (Compact) Fluorescent Lamp, (L)FL (Linear) Fluorescent Lamp, CMH Ceramic Metal Halide lamp, HPS High Pressure Sodium.

\(^b\) Function unit is the basic parameter in the LCIA and when we want to compare two or more products they must have the same function unit.

\(^c\) The software which was used in the corresponding Life Cycle Analysis.
4. Conclusions

Lighting products have many environmental impacts that are very crucial and often irreversible as highlighted in Table 1. The most common impact categories that have been used in LCA studies of lighting products were seven. These were 1) global warming, 2) acidification, 3) eutrophication, 4) abiotic depletion, 5) photochemical ozone creation, 6) ozone depletion, and 7) primary energy demand. The results of the analyses indicate that the environmental impact can be reduced if the lighting products at the EoL stage can be easily disassembled, in order to recover materials that can be reused. Also, many lighting products contain toxic substances such as mercury that require special treatment and should not be dispersed into the environment because they contaminate it irreparably. Also, it has been estimated that large quantities of materials can be recovered through recycling, and then can be reused in other sectors of industry, in order to save energy and reduce CO₂ emissions [39].

As future work the results of the LCIA analyses (Table 1) can be analyzed and organized in order to be used as indicators in a new model which will calculate the energy and the annual CO₂ emissions saved from a lighting project depending the equipment used in real-time. According to the amount of savings, a recycling identity will be given. The recycling identity will be based on the European policy, where it has been adopted and at a national level, of "zero-carbon across the lifecycle 2050" [40], which refers that by 2050, all buildings, new and existing, must have a clear zero carbon footprint throughout their life using the circular economy concept.

In the future, a regulation needs to be implemented, which will define and oblige manufacturers of lighting products to publish data in order to inform the public about the environmental impact of lighting products at all stages of their life, so, that consumers can make their choice, by knowing which product has the highest performance and which product has the smallest environmental impact throughout its life cycle (Eco Label). Also, the creation of eco-label (Eco Label) will help manufacturers to advertise and promote their lighting products as ecological and environmentally friendly.

5. Appendix

Environmental Impacts and Categories
ADP
AiP
AP
ARD
CC
CED
EDP
EP
ETX
Environmental Impacts and Categories

Abbreviation	Description
FAETP	freshwater aquatic ecotoxicity potential
MAET	marine aquatic ecotoxicity potential
TET	terrestrial ecotoxicity potential
FEP	freshwater eutrophication potential
MEP	marine eutrophication potential
WaC	water consumption potential
FETP	freshwater ecotoxicity potential
WaP	water pollution potential
FSET	freshwater sediment ecotoxicity
MOCVD	metalorganic chemical vapor deposition
HT/HTP	human toxicity potential
GHG	greenhouse gas
MOVPE	metal organic chemical vapor phase epitaxy
MSET	marine sediment ecotoxicity
GWP	global warming potential

References

[1] Bista D, Bista A, Shrestha A, Doulos L.T, Bhusal P, Zissis G, Topalis F and Chhetri B.B 2021 Lighting for Cultural and Heritage Site: An Innovative Approach for Lighting in the Distinct Pagoda-Style Architecture of Nepal Sustainability 13 2720 https://doi.org/10.3390/su13052720

[2] Doulos L T et al. 2020 Examining the Impact of Daylighting and the Corresponding Lighting Controls to the Users of Office Buildings Energies 13 4024 https://doi.org/10.3390/en13150424

[3] Doulos L T, Sioutis I, Tsangrassoulis A, Canale L and Faidas K 2020 Revision of Threshold Luminance Levels in Tunnels Aiming to Minimize Energy Consumption at No Cost: Methodology and Case Studies Energies 13 1707 https://doi.org/10.3390/en13071707

[4] Anthopoulou E and Doulos L T 2019 The Effect of the Continuous Energy Efficient Upgrading of LED Street Lighting Technology: The Case Study of Egnatia Odos Proc. Int. Conf. 2019 2nd Balkan Junior Conference on Lighting (Plovdiv Balkan Light Junior 2019 – Proceedings) pp 4-5 doi: 10.1109/BLJ.2019.8883662

[5] Doulos L T, Sioutis I, Tsangrassoulis A, Canale L and Faidas K 2019 Minimizing lighting consumption in existing tunnels using a no-cost fine-tuning method for switching lighting stages according revised luminance levels Proc. Int. Conf. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPES Europe) (Genova, Italy) doi: 10.1109/EEEIC.2019.8783789

[6] Tähkämö A L and Dillon H 2017 Life Cycle Assessment of Lighting Technologies. Handbook of Advanced Lighting Technology 935-56 https://link-springer-com.proxy.eap.gr/referenceworkentry/10.1007%2F978-3-319-00295-8_41-1

[7] Dillon, H E, Ross C and Dzombak R 2020 Environmental and energy improvements of LED lamps over time: a comparative life cycle assessment Leukos 16 (3) 229-37 https://doi.org/10.1080/15502724.2018.1541748

[8] Dzombak R, Padon J, Salsbury J and Dillon H 2019 Assessment of end-of life design in solid-state lighting Environmental Research Letters 12 8 https://doi-org.proxy.eap.gr/10.1088/1748-9326/aa7ab1

[9] Wenzel H, Hauschild M and Airing L 1997 Methodology, tools and case studies in product development Environmental Assessment of Products Vol. 1-First edition (Chapman & Hall, United Kingdom : Kluwer Academic Publishers, Hingham, MA. USA) ISBN 0-412-80800-5
[10] Guinée J B 2001 Life Cycle Assessment: An operational guide to the ISO Standards *LCA in Perspective Guide Operational Annex to Guide* (The Netherlands: Centre for Environmental Science, Leiden University)

[11] Goedkoop M, Effting S and Collignon M 2000. The Eco-indicator 99-A damage oriented method for Life Cycle Impact Assessment *Manual for Designers* Second edition 17-4-2000 (The Netherlands: PRé Consultants B V Amersfoort)

[12] Herrmann I T and Moltesen A 2015 Does it matter which Life Cycle Assessment (LCA) tool you choose? — a comparative assessment of SimaPro and GaBi *Journal of Cleaner Production* 86 163-9 https://doi.org/10.1016/j.jclepro.2014.08.004

[13] Beu D, Ciugudeanu C and Buzdugan M 2018 Circular Economy Aspects Regarding LED Lighting Retrofit—from Case Studies to Vision *Sustainability* 10 (10) 3674 https://doi.org/10.3390/su10103674

[14] Madias E N D, Doulos L T, Kontaxis P A and Topalis F V 2021 A decision support system for techno-economic evaluation of indoor lighting systems with LED luminaires. *Oper. Res. Int. J.* 21 1403-22 https://doi.org/10.1007/s12351-019-00485-1

[15] Manolis E, Doulos L, Niavis S and Canale L 2019 The impact of energy efficiency indicators on the office lighting planning and its implications for office lighting market *In: Proceedings of 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPSEurope)* pp 1–6 https://doi.org/10.1109/EEEIC.2019.8783856

[16] Ardavani O, Zerefos S and Doulos L 2019 Redesigning the exterior lighting as part of the urban landscape: The role of transgenic bioluminescent plants in mediterranean urban and suburban lighting environments *Journal of Cleaner Production* 242 118477 https://doi.org/10.1016/j.jclepro.2019.118477

[17] Fang S, Wenyi Y, Hongbin C, Qingbin S, Yi Z and Zhi S 2018 Evaluation on end-of-life LEDs by understanding the criticality and recyclability for metals recycling *Journal of Cleaner Production* 182 624–33 https://doi.org/10.1016/j.jclepro.2018.01.260

[18] Apisitpuvakul W, Piumsomboon P, Watts D J and Koetsinchai W 2008 LCA of spent fluorescent lamps in Thailand at various rates of recycling *Journal of Cleaner Production* 16 (10) 1046–61 https://doi.org/10.1016/j.jclepro.2007.06.015

[19] Casamayor J L, Su D and Ren Z 2017 Comparative life cycle assessment of LED lighting products *Soc. Light Lighting* 50 801–26 https://doi.org/10.1177%2F477153517708597

[20] Chen S, Zhang J and Kim J 2017 Life cycle analysis of greenhouse gas emissions for fluorescent lamps in mainland China *Science of The Total Environment* 575 467–73 https://doi.org/10.1016/j.scitotenv.2016.07.058

[21] Zumsteg J M, Cooper J S and Noon M S 2012 Systematic Review Checklist: A Standardized Technique for Assessing and Reporting Reviews of Life Cycle Assessment Data *Journal of Industrial Ecology* 16 (S1) https://dx.doi.org/10.1111%2Fj.1530-9290.2012.00476.x

[22] ISO 14040 Environmental management — Life cycle assessment — Principles and framework 2006 International Standard *International Organization for Standardization* https://www.iso.org/standard/37456.html (accessed June 2021).

[23] ISO 14044 Environmental management — Life cycle assessment — Requirements and guidelines 2006 International Standard *International Organization for Standardization* https://www.iso.org/standard/38498.html (accessed June 2021).

[24] ISO/TR 14047 Environmental management — Life cycle assessment — Illustrative examples on how to apply ISO 14044 to impact assessment situations 2012 International Standard *International Organization for Standardization* https://www.iso.org/standard/57109.html (accessed June 2021).

[25] Welz T, Hischier R and Hilty L M 2011 Environmental impacts of lighting technologies — Life cycle assessment and sensitivity analysis. *Environmental Impact Assessment Review* 31 (3) 334-43 https://doi.org/10.1016/j.eiar.2010.08.004
[26] Dale A T, Bilec M M, Marriott J, Hartley D, Jurgens C and Zatcoff E 2011 Preliminary Comparative Life-Cycle Impacts of Streetlight Technology *Journal of Infrastructure Systems* **17** (4): 65-72. https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29IS.1943-555X.000064

[27] U.S. Department of Energy 2012 Life-Cycle Assessment of Energy and Environmental Impacts of LED lighting products *Pacific Northwest National Laboratory* (accessed June 2021) https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-21443.pdf

[28] Elijoštė E, Balciukevičiūtė J and Denafas G 2012 Life Cycle Assessment of Compact Fluorescent and Incandescent Lamps: Comparative Analysis *Environmental Research, Engineering and Management* **61** (3): 65-72. https://doi.org/10.5755/j01.erm.61.3.2425

[29] Hadi S A, Al Kaabi M R, Al Ali M O and Arafat H A 2013 Comparative Life Cycle Assessment (LCA) of streetlight technologies for minor roads in United Arab Emirates *Energy for Sustainable Development* **17** (5): 438-50 https://doi.org/10.1016/j.esd.2013.05.001

[30] Tähkämö L, Bazzana M, Ravel P, Grannee F, Martinsons C and Zissis G 2013 Life cycle assessment of light-emitting diode downlight luminaire a case study *The International Journal of Life Cycle Assessment* **18**: 1009-18 https://doi.org/10.1007/s11367-012-0542-4

[31] Principi P and Fioretti R 2014 A comparative life cycle assessment of luminaires for general lighting for the office - compact fluorescent (CFL) vs Light Emitting Diode (LED) a case study *Journal of Cleaner Production* **83**: 96-107 https://doi.org/10.1016/j.jclepro.2014.07.031

[32] Sangwan K S, Bhakar V, Naik S and Andrat S.N 2014 Life Cycle Assessment of Incandescent, Fluorescent, Compact Fluorescent and Light Emitting Diode Lamps in an Indian Scenario. *Procedia CIRP* **15**: 467-72 https://doi.org/10.1016/j.procir.2014.06.017

[33] Tähkämö L and Halonen L 2015 Life cycle assessment of road lighting luminaires – Comparison of light-emitting diode and high-pressure sodium technologies *Journal of Cleaner Production* **93**: 234-42 https://doi.org/10.1016/j.jclepro.2015.01.025

[34] Tan Q, Song Q and Li J 2015 The environmental performance of fluorescent lamps in China, assessed with the LCA method *The International Journal of Life Cycle Assessment* **20**: 807-18 https://doi.org/10.1007/s11367-015-0870-2

[35] Bertin K, Canale L, Abdellah O B, Méquignon M A and Zissis G 2019 Life Cycle Assessment of Lighting Systems and Light Loss Factor: A Case Study for Indoor Workplaces in France. *Electronics* **8**(11) 1278 https://doi.org/10.3390/electronics8111278

[36] Hermoso-Orzáez M J, Lozano-Miralles J A, Lopez-Garcia R and Brito P 2019 Environmental Criteria for Assessing the Competitiveness of Public Tenders with the Replacement of Large-Scale LEDs in the Outdoor Lighting of Cities as a Key Element for Sustainable Development: Case Study Applied with PROMETHEE Methodology *Sustainability* **11** (21): 5982 https://doi.org/10.3390/su11215982

[37] Vicente de Farias C, Paulino J F, Barcelos D A, Paula de Castro Rodrigues A and Pontes F V M 2020 Is mercury in fluorescent lamps the only risk to human health? A study of environmental mobility of toxic metals and human health risk assessment *Chemosphere* **261**: 128107 https://doi.org/10.1016/j.chemosphere.2020.128107

[38] Lozano-Miralles J A, Hermoso-Orzáez M J, Gago-Calderón A and Brito P 2020 LCA Case Study to LED Outdoor Luminaries as a Circular Economy Solution to Local Scale. *Sustainability* **12**(1): 190 https://doi.org/10.3390/su12010190

[39] Grigoropoulos C J, Doulos L T, Zerefos S C, Tsangrassoulis A and Bhupal P 2020 Estimating the benefits of increasing the recycling rate of lamps from the domestic sector: Methodology, opportunities and case study *Waste Management* **101**: 188-99 https://doi.org/10.1016/j.wasman.2019.10.010

[40] 2050 long-term strategy *European Commission Energy, Climate change Environment. Climate Action. EU Action. Climate strategies & targets* (accessed June 2021) https://ec.europa.eu/clima/policies/strategies/2050_en