PIASy Represses CCAAT/Enhancer-binding Protein δ (C/EBPδ) Transcriptional Activity by Sequestering C/EBPδ to the Nuclear Periphery

Received for publication, February 19, 2008, and in revised form, May 1, 2008. Published, JBC Papers in Press, May 12, 2008, DOI 10.1074/jbc.M801307200

Shanggen Zhou, Junling Si, Tong Liu, and James W. DeWille

From the Ohio State Biochemistry Program, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210

CCAAT/enhancer binding protein δ (C/EBPδ) plays a key role in mammary epithelial cell G0 growth arrest, and “loss of function” alterations in C/EBPδ have been reported in breast cancer and acute myeloid leukemia. C/EBPδ is regulated at the transcriptional, post-transcriptional, and post-translational levels, suggesting tight control of C/EBPδ content and function. Protein inhibitors of activated STATs (PIASs) regulate a growing number of transcription factors, including C/EBPs. HC11 nontransformed mammary epithelial cells express PIAS3, PIASxβ, and PIASy, and all three PIAS family members repress C/EBPδ transcriptional activity. PIASy is the most potent, however, repressing C/EBPδ transcriptional activity by >80%. PIASy repression of C/EBPδ transcriptional activity is dependent upon interaction between the highly conserved PIASy N-terminal nuclear matrix binding domain (SAPD) and the C/EBPδ transactivation domain (TAD). PIASy repression of C/EBPδ transcriptional activity is independent of histone deacetylase activity, PIASy E3 SUMO ligase activity, and C/EBPδ sumoylation status. PIASy expression is associated with C/EBPδ translocation from nuclear foci, where C/EBPδ co-localizes with p300, to the nuclear periphery. PIASy-mediated translocation of C/EBPδ is dependent upon the PIASy SAPD and C/EBPδ TAD. PIASy reduces the expression of C/EBPδ adhesion-related target genes and enhances repopulation of open areas within a cell monolayer in the in vitro "scratch" assay. These results demonstrate that PIASy represses C/EBPδ by a mechanism that requires interaction between the PIASy SAPD and C/EBPδ TAD and does not require PIASy SUMO ligase activity or C/EBPδ sumoylation. PIASy alters C/EBPδ nuclear localization, reduces C/EBPδ transcriptional activity, and enhances cell proliferation/migration.

Six mammalian C/EBP family members have been identified, including C/EBPα, C/EBPβ, C/EBPγ, C/EBPδ, C/EBPε, and C/EBPζ (CHOP10) (1). C/EBPs are highly conserved in evolution, with homologues identified in the sea slug (Aplysia californica (ApC/EBP)), zebrafish (Danio rerio (c ebpδ)), frog (Xenopus laevis (C/EBPδ-1 and -2)), and fruit fly (Drosophila melanogaster (DmC/EBP)) (2–5). C/EBPs are characterized by conserved structural domains, including a transactivation domain (TAD), a regulatory domain, and highly conserved DNA binding (DB) and leucine zipper domains (LZ) (1). Although primarily recognized as transcriptional activators, C/EBP family members, including C/EBPδ, also function in protein-protein interactions with key cell cycle-regulatory proteins, such as Rb, p21, CDK2, and CDK4 (6–9).

Reports from our laboratory and others demonstrate that C/EBPδ is regulated at the transcriptional, post-transcriptional, and post-translational levels (10–17). At the transcriptional level, the C/EBPδ gene promoter is induced by activated (phosphorylated) STAT3 (pSTAT3), Sp1, pCREB, and the transcriptional co-activator NcoA/SRC-1 (10, 16). Using nuclear run-on assays, we made the unexpected observation that C/EBPδ gene transcription rates are markedly elevated in G0 growth-arrested cells, although overall biosynthetic activity is reduced during G0 growth arrest (11). Although C/EBPδ gene transcription is highly induced, C/EBPδ gene products (i.e. C/EBPδ mRNA and protein) exhibit relatively short half-lives in G0 growth-arrested cells (13, 17). The rapid turnover of C/EBPδ gene products suggests that cells maintain tight control of C/EBPδ content and functional activity.

Published reports support a role for C/EBPδ in cell cycle arrest, differentiation, and cell fate determination. C/EBPδ gene expression is highly induced in G0 growth-arrested, non-transformed, human and mouse mammary epithelial cells, and antisense-mediated reduction of C/EBPδ delays entry into G0 growth arrest (11, 12, 14, 15, 18–21). In vivo, virgin female C/EBPδ knock-out mice exhibit increased mammary epithelial cell proliferation and mammary gland ductal hyperplasia (22). In adipocyte differentiation models, C/EBPδ is expressed in...
PIASy Represses C/EBPβ by Nuclear Sequestration

PIASy prior to commitment to differentiation, and adipocyte differentiation is defective in C/EBPβ knock-out mouse embryo fibroblasts (23–25). Recent work indicates that C/EBPβ inhibits growth and promotes self-renewal in human limbic stem cells, suggesting a role for C/EBPβ in the maintenance of stem cell pluripotency (26). In addition, “loss of function” alterations in C/EBPβ have been reported in human breast cancer and acute myeloid leukemia (27–30). Collectively, these results demonstrate that C/EBPβ functions in growth control and cell fate determination, and alterations in C/EBPβ are associated with tumorigenesis.

PIAS gene family members (PIAS1, PIAS3, PIASy, and PIASx) regulate transcription factor function by sumoylation, inhibition of DNA binding, HDAC recruitment, and sequestration in nuclear foci or in the nuclear periphery (31, 32). PIAS proteins are characterized by a highly conserved domain structure that includes a SAP domain (SAPD) that contains an LXXLL motif and a conserved Ring finger-like domain (RFD) that is required for PIAS SUMO E3 ligase activity (31, 32). PIAS proteins regulate C/EBPα and C/EBPβ sumoylation status and function (33–35); however, it is unknown if PIAS proteins regulate C/EBPβ exclusively by sumoylation or if alternate mechanisms (i.e. HDAC recruitment or subnuclear sequestration) are also utilized. In this report, we demonstrate that PIASy represses C/EBPβ transcriptional activity by sequestering C/EBPβ in the nuclear periphery. PIASy-mediated sequestration of C/EBPβ is associated with reduced expression of adhesion-related C/EBPβ target genes and enhanced mammary epithelial cell proliferation/migration. These results suggest a potential role for PIASy-C/EBPβ interactions in the control of mammary epithelial cell growth or migration.

EXPERIMENTAL PROCEDURES

Plasmid Construction—C/EBPβ constructs (C/EBPβ full-length cDNA, C/EBPβ ΔTAD (amino acids 102–268), and K120R mutant) were cloned into the PCDNA3.1/V5-HisTOPO TA expression vector (Invitrogen). The FLAG-PIASy expression plasmid was constructed by PCR amplification of the PIASy coding sequence using a forward primer bearing a FLAG tag coding sequence, and the PCR product was inserted into the PCDNA3 expression vector. The ΔSAP and ΔRFD PIASy mutants were generated by site-directed mutagenesis, where amino acids 12–46 were deleted in ΔSAP and amino acids 319–363 were deleted in ΔRFD. The GST-C/EBPβ expression vector was generated by cloning the full-length C/EBPβ cDNA into pGEX-4T-1 vector (Amersham Biosciences) for expression in the Escherichia coli strain DE3 (BL21). ΔTAD (102–268), DBLZ (171–268), ΔLZ (1–233), and TAD (1–102) GST fusion protein expression plasmids were constructed by PCR amplification of the corresponding cDNA sequences and cloned into the same vector. All expression vectors and inserts were verified by DNA sequencing.

Cell Culture and Transient Transfections—HC11 cells (mouse immortalized mammary epithelial cell line) were grown in complete growth media (CGM) containing RPMI 1640 medium (Invitrogen) containing 10% fetal bovine serum and supplemented with 10 ng/ml epidermal growth factor, 10 μg/ml insulin, 50 units/ml penicillin, 50 μg/ml streptomycin, and 500 ng/ml fungizone in a humidified incubator at 37 °C and 5% CO2. Transient transfections were performed using Lipofectamine transfection reagent and Plus reagent according to the manufacturer’s instructions (Invitrogen). Lipofectamine reagent is a 3:1 (w/w) liposome formulation of the polycationic lipid 2,3-dioleyloxy-N-[2(„spermine-carboxamido)ethyl]-NN-dimethyl-1-propanaminium trifluoroacetate and the neutral lipid dioleoyl phosphatidylethanolamine in membrane-filtered water. Selected transient transfection experiments were performed using the Nucleofector device (Amaxa, Gaithersburg, MD) according to the manufacturer’s instructions and utilizing proprietary reagents (Amaxa). Following Lipofectamine and nucleasefication protocols, HC11 cells were cultured in CGM.

Luciferase Reporter Assay—HC11 cells were cultured in 12-well plates. Experiments were performed by co-transfecting each well with 100 ng of wild type C/EBPβ full-length (FL) or C/EBPβ K120R mutant plus 100 ng of C/EBPβ consensus site promoter-driver luciferase reporter vector (pC/EBPβ-Luc, ATTCGCCAAT)3 (catalog number 240112; Stratagene, La Jolla, CA), 200 ng of PIAS protein, and/or 100 ng of SENP1 expression vectors (Open Biosystems, Huntsville, AL). Co-transfection experiments were also performed with increasing amounts of SUMO-1, SUMO-2, and SUMO-3 (0, 50, and 100 ng). A Renilla luciferase expression plasmid was used as the transfection efficiency control (1 ng/well). Luciferase activity was analyzed 24 h after transfection using a dual luciferase reporter assay system (Promega, Madison, WI), and the luciferase results were normalized to Renilla luciferase activity. The normalized luciferase data for each independent experiment were derived from triplicate wells; experiments were replicated 2–3 times. Statistical analysis was performed with pooled data using one-way analysis of variance and post-test analysis by Dunnet’s test with each PIAS treatment compared with the no PIAS control. Statistical significance was set at α = 0.05. Results from transfection experiments in which Trichostatin A was used are representative of three independent experiments with at least two replicates/experiment. Pooled data were analyzed with two-way analysis of variance with statistical significance set at α = 0.05.

In Vivo Sumoylation Assay—HC11 cells (cultured in 10-cm dishes) were co-transfected with HA-SUMO (SUMO-1, SUMO-2, or SUMO-3) expression constructs (2 μg), C/EBPβ-V5-His (wild type or K120R mutant) (2 μg), FLAG-PIASy (2 μg), and SENP1 expression vectors (2 μg). The total amount of DNA was equalized for each treatment by the addition of PCDNA3 vector DNA. Cells were harvested 24 h after transfection. Cell pellets were lysed in buffer A (8 M urea, 0.1 M Na2HPO4/NaH2PO4, 10 mM imidazole, pH 8.0), and lysate protein levels were quantitated by the Micro-BCA protein assay (Pierce). Equal amounts of lysate protein were incubated with Ni2+ -nitrilotriacetic acid-agarose beads (Qiagen, Valencia, CA), and the beads were sequentially washed with buffer A, buffer A/TI (1 volume of buffer A, 3 volumes of buffer TI), and buffer TI (25 mM Tris-HCl, 20 mM imidazole, pH 6.3). Bound proteins were eluted in 40 μl of 2× Laemmli...
PIASy Represses C/EBPβ by Nuclear Sequestration

sample buffer by boiling for 5 min. Samples were analyzed by SDS-PAGE/Western blotting with anti-HA antibody (Cell Signaling, Danvers, MA).

GST Pull-down Assay—E. coli expressing GST-C/EBPβ fusion proteins were lysed with lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM DTT, 1% Triton X-100, 1 mM EDTA, pH 7.5) supplemented with protease inhibitors, including 1 mM PMSE, 1 μg/ml aprotinin, and 1 μg/ml pepstatin. GST-C/EBPβ fusion proteins were immobilized on glutathione-Sepharose 4B beads (Amersham Biosciences). HC11 cells expressing wild type or mutant FLAG-PIASy were lysed in the same lysis buffer, and lysates were incubated overnight with glutathione-Sepharose beads bound with GST-C/EBPβ fusion proteins at 4°C. Glutathione-Sepharose beads were then collected by centrifugation, washed with lysis buffer, and boiled in 40 μl of 2× Laemmli sample buffer for 5 min. Samples were analyzed by SDS-PAGE/Western blotting with anti-FLAG antibody (Cell Signaling).

Immunofluorescent Staining and Confocal Microscope Imaging—HC11 cells were transfected with C/EBPβ-V5-His vector constructs (wild type or mutant) using the Lipofectamine Plus protocol and cultured on coverslips with or without FLAG-PIASy (wild type or mutant) expression vector. Approximately 24 h after transfection, cells were fixed with 2% paraformaldehyde/phosphate-buffered saline and permeabilized with 1% Triton X-100/phosphate-buffered saline. Cells were blocked in 10% normal goat serum in 0.1% Triton X-100/phosphate-buffered saline at room temperature for 1 h and then incubated with mouse anti-V5 and rabbit anti-p300 or rabbit anti-FLAG antibody at 4°C overnight in a humidified chamber. Cells were then incubated with Alexa Fluor 633 goat anti-mouse and Alexa Fluor 488 goat anti-rabbit secondary antibodies (Invitrogen) at room temperature for 1 h. Coverslips were mounted with a drop of Vectashield mounting media with 4′,6-diamidino-2-phenylindole (Vector Laboratories, Burlingame, CA). Protein localization was visualized using a Leica DM IRE2 confocal microscope system (Wetzlar, Germany).

HC11 Cell Proliferation and Migration; the “Scratch” Assay—The *in vitro* “scratch” assay was performed essentially as described by Liang et al. (36). Briefly, an open area was produced in ~90% HC11 cell monolayers using a 200-μl pipette tip, and repopulation of the open area was assessed by crystal violet staining at 0, 24, and 48 h. Staining was performed with crystal violet and crystal violet solution for 20 min. Coverslips were washed with water, and crystal violet was dissolved in 100% methanol. Crystal violet and methanol were dried using a hot air blower. The number of cells in the open area was counted using a microscope (×40 magnification).

To investigate the influence of C/EBPβ on the capacity of cells to repopulate the open area produced by the scratch protocol, transfections were performed using the Lipofectamine transfection reagent and Plus reagent according to the manufacturer’s instructions (Invitrogen). C/EBPβ levels were reduced using the pSilencer™ Neo kit (Ambion, Inc., Austin TX). Briefly, HC11 cells were subjected to the Lipofectamine transfection protocol in which cells received either the vector control and C/EBPβ siRNA cell lines were selected and maintained in G418 (200 μg/ml). To investigate the influence of PIASy expression on repopulation of the open area created in the monolayer by the scratch protocol, HC11 cells were subjected to transient transfection with the C/EBPβ or C/EBPβ plus PIASy expression constructs using the Lipofectamine transfection reagent and Plus reagent protocol according to the manufacturer’s instructions (Invitrogen). Following transfection, HC11 cells were cultured in CGM and grown to a monolayer, and the scratch assay was performed as described above.

mRNA Isolation and Real Time PCR—Total mRNA was isolated using RNAzol B (Tel-Test, Inc., Friendswood, TX) according to the manufacturer’s instructions. Total mRNA (1 μg) was used for reverse transcription using the reverse transcriptase kit (Invitrogen). The reverse transcription products were amplified by real time PCR using the LightCycler® 480 real time PCR system (Roche Applied Science). Amplification was performed in a total volume of 20 μl containing 10 μl of 2× SYBR Green PCR master mix, 0.2 μl of forward and reverse primers, and 1 μl of cDNA in each reaction. PCR specificity was verified by assessing the melting curves of each amplification product. The following primers were used to assess C/EBPβ cell adhesion related target gene mRNA levels: glycophorin V (G5) sense, 5′-GGCCCCAGCTGTCTCGTTCT; G5 antisense, 5′-GCGCTGTTATTGGAGCTTTAC; integrin β8 (ITGB8) sense, 5′-TTCTCTCTGTCTCTATCTCCA; ITGB8 antisense, 5′-TGAGAGAAGATTGTGAGGGTG; podocadherin 9 (PCDH9) sense, 5′-AACGCCACACGGTCCCTCTA; PCDH9 antisense, 5′-CCCTTTGTTTCCGGCCTAC; GAPDH sense, 5′-CACTGGGATGGCCTCG; GAPDH antisense (37), 5′-ACACCCTTGTTGCTTAGCC. The -fold change in specific mRNA levels was calculated using the comparative CT (ΔΔCT) method (38). Results are presented as mean ± S.E. of the -fold changes derived from three experiments with triplicate analyses performed for each treatment. Student’s *t* test was used to analyze the real time PCR results, and the -fold change in individual C/EBPβ target gene mRNA levels was considered significant at *p* < 0.05.

RESULTS

PIAS Family Members Repress C/EBPβ Transcriptional Activity—Previous reports have demonstrated that PIAS mediated sumoylation of the conserved regulatory domain motif (RDM) of C/EBPβ increases C/EBPβ transcriptional activity (33, 34, 39). These results suggest that PIAS proteins can regulate the function of C/EBPβs in cells that co-express PIAS and C/EBP family members. Kim and co-workers reported that C/EBPβ contains an RDM and that C/EBPβ can be sumoylated; however, the role of specific PIAS proteins in C/EBPβ sumoylation was not defined (39). C/EBPβ gene expression is highly induced in G0 growth-arrested human and mouse mammary epithelial cells, and C/EBPβ protein levels are essentially undetectable in growing cells (11, 12, 14, 15, 18–21). We hypothesized that PIAS family members expressed in G0 growth-arrested cells could influence
C/EBPδ transcriptional activity and alter cell function. Since the influence of growth status on the expression of PIAS family members in mammary epithelial cells had not been previously reported, we assessed the expression of three PIAS family members (PIAS3, PIASxβ, and PIASy) in exponentially growing and G₀ growth-arrested HC11 mouse mammary epithelial cells. The results demonstrated that the mRNA levels of all three PIAS family members were present at relatively constitutive levels in growing and G₀ growth-arrested HC11 cells (Fig. 1A). The constitutive expression of PIAS family members suggests that PIAS proteins function in a broad range of cellular contexts.

Having determined that PIAS family members were expressed in the HC11 mammary epithelial cell line, we next investigated the influence of PIAS proteins on C/EBPδ transcriptional activity by nuclear sequestration. Full-length PIAS3, PIASxβ, and PIASy cDNAs cloned into the pcDNA3 expression vector were co-transfected into HC11 cells with a pC/EBP-Luciferase (pC/EBP-Luc) reporter construct, and luciferase activity was assessed. The results demonstrated that each of the three PIAS family members significantly repressed C/EBPδ transcriptional activity; however, PIASy was the most potent, inhibiting C/EBPδ transcriptional activity by ~80% (Fig. 1B). In addition, PIASy inhibited C/EBPδ transcriptional activity in a dose-dependent manner, demonstrating a direct correlation between PIASy levels and inhibition of C/EBPδ transcriptional activity (Fig. 1C).

PIASy inhibits transcriptional activity by a multiple mechanisms, including histone deacetylase (HDAC) recruitment (37, 40). To investigate HDAC recruitment as the mechanism underlying PIASy-mediated inhibition of C/EBPδ transcriptional activity, HC11 cells were co-transfected with PIASy plus the pC/EBP-Luc reporter construct in the presence or absence of trichostatin A, an HDAC inhibitor (37). PIASy expression significantly reduced C/EBPδ transcriptional activation of the pC/EBP-Luc reporter construct (Fig. 1D). However, treatment with increasing doses of trichostatin A (0–330 nM) had no effect on PIASy-mediated inhibition of C/EBPδ transcriptional activation of the pC/EBP-Luc reporter construct, as assessed by luciferase activity (Fig. 1D). These results suggest that HDAC recruitment does not play a major role in PIASy-mediated inhibition of C/EBPδ transcriptional activity.

The Lys²⁰⁰ Residue within the C/EBPδ RDM ((I/V/L)KXE P) is the Site for Post-translational SUMO Modification; however, SUMOylation Does Not Influence C/EBPδ Transcriptional Activity—Having determined that PIASy significantly inhibits C/EBPδ transcriptional activity, we sought to determine if PIASy expression increased C/EBPδ sumoylation. Using transient transfection and co-expression/pull-down assays, we found that C/EBPδ is sumoylated by SUMO-1 (Fig. 2A), SUMO-2, and SUMO-3 (data not shown). PIASy co-expression, however, did not enhance C/EBPδ sumoylation (Fig. 2A, lane 2 versus lane 3). Co-expression of SENP1, an isopeptidase that cleaves the SUMO moiety from protein sub-

![Image](image-url)
These results demonstrate that C/EBP was assessed and normalized to increasing amounts of HA-SUMO-1 (0, 50, and 100 ng). Luciferase activity

Lane 2

anti-FLAG antibodies, respectively. Lane 1, HA-SUMO-1 plus empty vector (negative control); lane 2, HA-SUMO-1 plus C/EBP-His; lane 3, HA-SUMO-1, C/EBP, and PIASy; lane 4, HA-SUMO-1, C/EBP, PIASy, and SENP1; lane 5, HA-SUMO-1, C/EBP K120R mutant, and PIASy. HC11 cells were co-transfected with C/EBP-His, C/EBP K120R plus pC/EBP-Luc and PIASy, and SENP1; HC11 cells were co-transfected with C/EBP-His wild type, C/EBP K120R mutant, and PIASy. The following GST tagged C/EBP constructs plus the pC/EBP-Luc reporter construct. The results indicate that PIASy significantly inhibits the transcriptional activity of both wild type (WT) C/EBP and the C/EBP K120R mutant (Fig. 3A). In addition, the results confirm the finding that the C/EBP K120R mutant transcriptional activity is ~30% higher than that of wild type C/EBP (see Figs. 2B and 3A). Co-expression of PIASy plus the SENP1 isopeptidase, which cleaves SUMO-1 from substrate proteins, slightly increased C/EBP wild type and C/EBP K120R transcriptional activity; however, both remained at ~50% of the control (CON) levels (Fig. 3A). Western blot analysis demonstrated that the protein levels of the expressed constructs (i.e. C/EBP WT/C/EBP K120R mutant and PIASy) were relatively even. This indicates that PIASy-mediated inhibition of wild type C/EBP and C/EBP K120R transcriptional activity was not due to artifactual differences in protein levels (Fig. 3B). The combined data from the PIASy, C/EBP wild type, and C/EBP K120R mutant co-expression experiments and the SENP1 isopeptidase treatments indicate that PIASy inhibition of C/EBP transcriptional activity is sumoylation-independent.

PIASy Represses C/EBP Transcriptional Activity Is Independent of C/EBP Sumoylation Status—We next investigated the effect of PIASy on the transcriptional activity of wild type C/EBP and the sumoylation-defective C/EBP K120R mutant by transfecting HC11 cells with PIAS and C/EBP expression constructs plus the pC/EBP-Luc reporter construct. The results indicate that PIASy significantly inhibits the transcriptional activity of both wild type (WT) C/EBP and the C/EBP K120R mutant (Fig. 3A). In addition, the results confirm the finding that the C/EBP K120R mutant transcriptional activity is ~30% higher than that of wild type C/EBP (see Figs. 2B and 3A). Co-expression of PIASy plus the SENP1 isopeptidase, which cleaves SUMO-1 from substrate proteins, slightly increased C/EBP wild type and C/EBP K120R transcriptional activity; however, both remained at ~50% of the control (CON) levels (Fig. 3A). Western blot analysis demonstrated that the protein levels of the expressed constructs (i.e. C/EBP WT/C/EBP K120R mutant and PIASy) were relatively even. This indicates that PIASy-mediated inhibition of wild type C/EBP and C/EBP K120R transcriptional activity was not due to artifactual differences in protein levels (Fig. 3B). The combined data from the PIASy, C/EBP wild type, and C/EBP K120R mutant co-expression experiments and the SENP1 isopeptidase treatments indicate that PIASy inhibition of C/EBP transcriptional activity is sumoylation-independent.

PIASy Represses C/EBP by Nuclear Sequestration

PIASy Represses C/EBP by Nuclear Sequestration—To gain a better understanding of the mechanism by which PIASy inhibits C/EBP transcriptional activity, we investigated the structural domains that mediate PIASy-C/EBP protein-protein interactions. The following GST tagged C/EBP constructs...
PIASy Represses C/EBPδ by Nuclear Sequestration

FIGURE 3. PIASy represses C/EBPδ transcriptional activity independent of C/EBPδ sumoylation status. A, HC11 cells were co-transfected with C/EBPδ WT or C/EBPδLys120 mutant (K120R) plus pc/EBP-luc plus empty expression vector (pcDNA3.1/V5-his) (His) (control; CON), PIASy, or PIASy plus SENP1. Luciferase activity was assessed and normalized to Renilla luciferase control activity. Analysis of variance with pooled data demonstrated a significant effect of PIASy on C/EBPδ transcriptional activity compared with control (α = 0.05). B, Western blot analysis of C/EBPδ WT or C/EBPδ Lys120 mutant, PIASy, and β-actin (loading control) protein levels. Western blot results shown are representative of three independent experiments.

(Fig. 4A) were used in pull-down assays with full-length FLAG-PIASy: C/EBPδ FL, C/EBPδ ΔTAD (TAD deleted), C/EBPδ DBLZ (TAD and regulatory domain deleted), and C/EBPδ ΔLZ (LZ deleted). The initial results demonstrated that the GST-C/EBPδ FL construct pulled down the full-length FLAG-tagged PIASy protein from HC11 cell lysates (Fig. 4B). To identify the C/EBPδ domains that interact with PIASy, additional pull-down experiments were performed with GST-C/EBPδ domain constructs. The results demonstrated that GST-C/EBPδ constructs that contain the TAD (i.e. C/EBPδ FL and C/EBPδ ΔLZ) pulled down the full-length FLAG-tagged PIASy protein (Fig. 4C). In contrast, GST-C/EBPδ constructs lacking the TAD (ΔTAD, DBLZ) were ineffective in pulling down PIASy (Fig. 4C). We next performed the pull-down assays with the C/EBPδ TAD (TAD alone, regulatory domain, DB, and LZ deleted) and demonstrated that the C/EBPδ TAD alone is capable of pulling down PIASy (Fig. 4C, right). The results demonstrate that the C/EBPδ TAD, a region that encompasses amino acids 1–102, is required for C/EBPδ-PIASy interaction.

To investigate the domains of the PIASy protein that directly or indirectly interact with C/EBPδ, we performed pull-down experiments with GST-full-length C/EBPδ FL and PIASy ΔSAP (lacking the SAPD) and PIASy ΔRFD (lacking the RFD) constructs (Fig. 4A). The results demonstrated that GST-C/EBPδ FL pulled down the PIASy ΔRFD (SAPD present) construct but was ineffective in pulling down the PIASy ΔSAP (SAPD deleted) construct (Fig. 4D). These results are consistent with a direct or indirect interaction between the C/EBPδ TAD and the PIASy SAPD. These results also indicate that the RFD domain, which has been shown in previous reports to mediate substrate recognition and to catalyze SUMO conjugation (42, 43), does not play a major role in the interaction between PIASy and C/EBPδ.

PIASy Inhibits C/EBPδ Transcriptional Activity—Having demonstrated that full-length PIASy inhibits C/EBPδ transcriptional activity (Fig. 1, B–D) and that full-length PIASy and PIASy ΔRFD (SAPD intact) interact with C/EBPδ (Fig. 4, B–D), we next investigated the influence of PIASy ΔRFD and ΔSAP mutant constructs on C/EBPδ transcriptional activity. As expected, the full-length, WT PIASy significantly (~70%) inhibited C/EBPδ transcriptional activity (compare Fig. 1A and Fig. 5A). The PIASy ΔSAP deletion mutant, which did not interact with C/EBPδ in pull-down assays (Fig. 4D), also did not inhibit C/EBPδ transcriptional activity (Fig. 5A). However, the PIASy ΔRFD deletion mutant, which did interact with C/EBPδ in vitro pull-down assays (Fig. 4D), did not inhibit C/EBPδ transcriptional activity (Fig. 5A). Western blot analysis of whole cell lysates demonstrated that C/EBPδ protein levels were relatively even across all treatments (Fig. 5B, top). However, the PIASy WT and PIASy ΔSAP protein levels were ~5-fold higher than the PIASy ΔRFD level (Fig. 5B, middle).

PIASy Translocates C/EBPδ from Discrete Nuclear Foci to the Nuclear Periphery—We next used confocal microscopy to investigate the intracellular interaction between PIASy and C/EBPδ and the influence of this interaction on C/EBPδ sub-nuclear localization in HC11 mammary epithelial cells. We previously reported that C/EBPδ is almost exclusively localized to the nucleus in mammary epithelial cells using cell lysis protocols that separate nuclear and cytoplasmic compartments with C/EBPδ detection by Western blot (13, 18). In this report, we used confocal microscopy to extend these findings, and the results indicated that full-length C/EBPδ, C/EBPδ ΔTAD, and the C/EBPδ K120R (sumoylation-defective) mutant are all localized to discrete foci within the nucleus (Fig. 6, A–C). In addition, confocal image merging demonstrated that all three C/EBPδ constructs co-localize with p300, a key co-activator of RNA polymerase II-mediated transcription (Fig. 6, A–C). As a critical transcriptional co-activator, p300 is localized in subnuclear regions associated with active gene transcription (44, 45). These results demonstrate that nuclear localized C/EBPδ constructs co-localize with p300 in transcriptionally active nuclear foci (Fig. 6, A–C). We next used confocal analyses to demonstrate that PIASy (full-length) is localized to the nuclear periphery (Fig. 6D), PIASy ΔSAP is diffusely dispersed within the nucleus (Fig. 6E), and PIASy ΔRFD does not enter the nucleus at all, localizing in the cytoplasm (Fig. 6F).

Having determined that nuclear localized C/EBPδ constructs are concentrated in nuclear foci in association with p300, we next investigated the influence of full-length PIASy and the PIASy ΔSAP and ΔRFD constructs on C/EBPδ nuclear localization. Co-expression of full-length C/EBPδ plus full-length PIASy resulted in the dramatic translocation of C/EBPδ from
PIASy Represses C/EBPβ by Nuclear Sequestration

Discrete nuclear foci to the nuclear periphery (Fig. 6G). Confocal image merging demonstrated that C/EBPβ and PIASy co-localized to the nuclear periphery (Fig. 6G). Co-expression of the C/EBPβ ΔTAD mutant plus full-length PIASy resulted in differential localization of both proteins within the nucleus with the C/EBPβ ΔTAD mutant present in nuclear foci and the full-length PIASy localized to the nuclear periphery (Fig. 6H). Co-expression of the sumoylation-defective C/EBPβ K120R mutant plus full-length PIASy resulted in the co-localization of both proteins to the nuclear periphery (Fig. 6I). However, co-expression of full-length C/EBPβ plus the PIASy ΔSAP (SAP domain-deleted) mutant did not alter C/EBPβ subnuclear localization from nuclear foci (Fig. 6J). Co-expression of full-length C/EBPβ plus the PIASy ΔRFD (RFD domain-deleted) mutant resulted in a complex localization pattern in which C/EBPβ remained within nuclear foci and the PIASy ΔRFD mutant localized to the cytoplasm, exhibiting an apparent defect in nuclear import despite the presence of a nuclear localization signal (Fig. 6K).

Previous reports have shown that C/EBPβ and C/EBPδ interact with CBP/p300, and this interaction is associated with increased transcriptional activity (46, 47). To determine if PIASy expression induced p300 subnuclear localization in a manner similar to C/EBPδ, we expressed PIASy and assessed endogenous p300 nuclear localization. The results demonstrated that p300 remained localized in discrete nuclear foci and did not co-localize to the nuclear periphery with PIASy (Fig. 6L). This indicates that PIASy does not translocate intact C/EBPβ/p300 transcription complexes and suggests that PIASy may interact with and translocate “free” or uncomplexed C/EBPδ prior to or after interaction with p300 on target gene promoters. Finally, the specificity of the primary and secondary antibodies used in these experiments was assessed by confocal microscopy, and the results were negative, indicating that no antibody binding occurs in the absence of specific target proteins (data not shown).

PIASy Decreases the Expression of C/EBPδ Cell Adhesion-related Target Genes and Enhances HC11 Cell Proliferation/Migration—Having demonstrated that PIASy sequesters C/EBPδ in the nuclear periphery and reduces C/EBPδ transcriptional activity, we hypothesized that PIASy expression would influence biological responses associated with C/EBPδ, such as growth control. We implemented the in vitro “scratch” assay to investigate the biological effects of PIASy-C/EBPδ interactions (36). The scratch assay assesses the capacity of cells to repopulate an open area created in a confluent cell monolayer by the combined effects of cell proliferation and migration (36, 48). We hypothesized that PIASy mediated sequestration of C/EBPδ would mimic C/EBPδ siRNA treatment, since both reduce C/EBPδ function. To determine if C/EBPδ siRNA treatment influenced mammary epithelial cell proliferation/migration, we performed “scratch” assays, using parental HC11 cells (nontransfected), HC11 cells stably transfected with PIASy or FLAG-PIASy, and HC11 cells expressing FLAG-PIASy plus the PIASy ΔSAP (SAP domain-deleted) mutant. The results demonstrated that PIASy expression induced p300 subnuclear localization in a manner similar to C/EBPδ, we expressed PIASy and assessed endogenous p300 nuclear localization. The results demonstrated that p300 remained localized in discrete nuclear foci and did not co-localize to the nuclear periphery with PIASy (Fig. 6L). This indicates that PIASy does not translocate intact C/EBPβ/p300 transcription complexes and suggests that PIASy may interact with and translocate “free” or uncomplexed C/EBPδ prior to or after interaction with p300 on target gene promoters. Finally, the specificity of the primary and secondary antibodies used in these experiments was assessed by confocal microscopy, and the results were negative, indicating that no antibody binding occurs in the absence of specific target proteins (data not shown).

FIGURE 4. PIASy N-terminal SAP domain interacts with C/EBPβ N-terminal TAD domain. A, schematic representation of C/EBPβ (C/EBPβ FL, C/EBPβ ΔTAD, C/EBPβ ΔDB, and C/EBPβ ΔLZ) and PIASy (PIASy, PIASy ΔSAP, and PIASy ΔRFD) constructs. B, C/EBPβ and PIASy interact. GST-C/EBPβ FL was expressed in E. coli, immobilized on glutathione-Sepharose beads, and incubated with lysates from HC11 cells transfected with a FLAG-PIASy expression construct. Protein complexes formed in pull-down reactions were analyzed by SDS-PAGE and detected with an anti-FLAG antibody. The 5% input lane is derived from the crude HC11 lysate (positive control). Lysates incubated with glutathione-Sepharose beads alone are presented in the GST lane. C, analysis of C/EBPβ and PIASy-interacting domains. Bacterially expressed GST-tagged C/EBPβ FL, C/EBPβ ΔTAD, C/EBPβ ΔDB, and C/EBPβ ΔLZ deletion constructs were immobilized on glutathione-Sepharose beads and incubated with lysates from HC11 cells transfected with FLAG-PIASy constructs (PIASy, PIASy ΔSAP, and PIASy ΔRFD). Protein complexes formed in pull-down reactions were analyzed by SDS-PAGE and detected with an anti-FLAG antibody. GST-C/EBPβ proteins present in pull-down assays were detected by Coomassie Blue staining (lower panel). D, bacterial expressed GST-C/EBPβ FL was immobilized on glutathione-Sepharose beads and incubated with lysates from HC11 cells expressing FLAG-PIASy ΔSAP or FLAG-PIASy ΔRFD constructs. Protein complexes were analyzed by SDS-PAGE and detected with an anti-FLAG antibody. E, an empty lane. The 5% input lane contains 5% of the crude HC11 cell lysate used for the pull-down assay (positive control). GST-C/EBPβ proteins present in pull-down assays were detected by Coomassie Blue staining (lower panel). IB, immunoblot.
PIASy Represses C/EBPδ by Nuclear Sequestration

infected with the pSilencer vector (vector control), and HC11 cells stably transfected with C/EBP δ siRNA-pSilencer vector (C/EBP δ siRNA) (Fig. 7A). The results demonstrated that repopulation of the open area created by the “scratch” was markedly enhanced in C/EBP δ siRNA-treated HC11 cells compared with nontransfected parental and vector control-transfected HC11 cells (Fig. 7A). The efficiency of reduction in C/EBP δ protein levels by the siRNA treatment was confirmed by Western blot analysis of HC11 cells at ~90% confluence (determined by visual inspection, t = 0) and 24, 48, and 72 h after reaching confluence (Fig. 7B). The results demonstrated that C/EBP δ expression was induced in parental HC11 cells and vector control HC11 cells within 24 h of reaching confluence and that C/EBP δ protein levels remained elevated 48 and 72 h after reaching confluence (Fig. 7B). In contrast, C/EBP δ protein levels were minimally detectable in C/EBP δ siRNA-treated HC11 cells at all time points, indicating

FIGURE 5. The PIASy SAP domain is required for inhibition of C/EBPδ activity. HC11 cells were co-transfected with C/EBPδ plus pC/EBP-Luc and PIASy WT, PIASy ΔSAP, or PIASy ΔRFD constructs. Luciferase activity was assessed and normalized to Renilla luciferase activity. HC11 cells co-transfected with C/EBPδ plus pC/EBP-Luc without PIASy expression vectors were used as the positive control for the luciferase activity in the absence of exogenous PIASy (Con). Statistical analysis was performed with pooled data using analysis of variance with post-test analysis by Dunnet’s test with each PIAS treatment compared with the no PIAS control. Statistical significance was set at α = 0.05. B, Western blot analysis of C/EBPδ, PIASy WT, PIASy ΔSAP, PIASy ΔRFD, and β-actin (loading control) protein levels. Results shown are representative of three independent experiments.

FIGURE 6. PIASy sequesters C/EBPδ from discrete nuclear foci to the nuclear periphery. HC11 cells were transfected with designated expression constructs (A–L). A, C/EBPδ WT; B, C/EBPδ ΔTAD; C, C/EBPδ K120R; D, PIASy WT; E, PIASy ΔSAP; F, PIASy ΔRFD; G, C/EBPδ WT plus PIASy WT; H, C/EBPδ ΔTAD plus PIASy WT; I, C/EBPδ K120R plus PIASy WT; J, C/EBPδ WT plus PIASy ΔSAP; K, C/EBPδ WT plus PIASy ΔRFD; L, PIASy WT constructs. C/EBPδ full length, C/EBPδ ΔTAD, and K120R constructs were detected with a mouse anti-V5 antibody and visualized with Alexa Fluor 633 goat anti-mouse antibody (red). PIASy full length, PIASy ΔSAP, and PIASy ΔRFD constructs were detected with a rabbit anti-FLAG antibody and visualized with Alexa Fluor 488 goat anti-rabbit antibody (green). Nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI). In panel (L), endogenous p300 was detected with a rabbit anti-p300 antibody and visualized with Alexa Fluor 488 goat anti-mouse antibody (red). The results presented are representative of 3–5 independent experiments.

20144 JOURNAL OF BIOLOGICAL CHEMISTRY
that the siRNA treatment was effective in reducing C/EBPβ protein levels (Fig. 7B).

C/EBPs are well established transcriptional activators (1); therefore, we hypothesized that reducing C/EBPβ content by specific siRNA or repression of C/EBPβ transcriptional activity by PIASy expression would reduce C/EBPβ target gene expression. In experiments using "ChIP-chip" assays, we have identified C/EBPβ target genes that function in transcriptional regul
PIASy Represses C/EBPβ by Nuclear Sequestration

lation, cell adhesion, signal transduction, apoptosis, DNA repair, and intermediary metabolism. Having demonstrated in this study that cellular confluence is associated with the persistent induction of C/EBPβ protein levels (Fig. 7B), we assessed the influence of cellular confluence on the expression of a subset of C/EBPβ target genes that function in cell adhesion (i.e. glycoprotein V (GP5) (platelet), protocadherin 9 (PCDH9), and integrin, β3 (ITGB8). The rationale for analyzing these three adhesion-related C/EBPβ target genes is that contact-mediated growth inhibition plays a major role in cell growth control and tissue homeostasis, and C/EBPβ has been identified as a regulatory gene that is highly induced in contact inhibition-mediated growth arrest (49). The results indicated that cellular confluence is associated with a dramatic (~15–30-fold) increase in the mRNA levels of all three adhesion-related C/EBPβ target genes (GP5, PCDH9, and ITGB8) compared with growing cells (Fig. 7C). To determine if reducing C/EBPβ levels also reduced C/EBPβ cell adhesion-related target gene expression, HC11 cells were transiently transfected with C/EBPβ siRNA and a scrambled siRNA control. The results demonstrated that transient C/EBPβ siRNA treatment reduced GP5, PCDH9, and ITGB8 mRNA levels, but only ITGB8 reduction, were statistically significant (Fig. 7D).

To test the hypothesis that PIASy-mediated sequestration of C/EBPβ would mimic the effects of C/EBPβ siRNA treatment, the scratch assay was performed using HC11 cells transiently transfected with C/EBPβ and C/EBPβ plus PIASy expression constructs. The results demonstrated that PIASy plus C/EBPβ-expressing HC11 cells exhibited enhanced repopulation of the open area created by the scratch at 24 and 48 h compared with C/EBPβ-expressing controls (Fig. 7E). We next investigated the hypothesis that PIASy expression would reduce the expression of C/EBPβ cell adhesion-related target genes. The results indicated that PIASy expression significantly reduced PCDH9 and ITGB8 mRNA levels (Fig. 7F). These results indicate that PIASy expression reduces C/EBPβ target gene expression and increases cell proliferation/migration in the in vitro scratch assay.

DISCUSSION

This report demonstrates that PIASy is a potent inhibitor of C/EBPβ transcriptional activity. Mechanistic studies indicate that PIASy translocates C/EBPβ from discrete transcriptionally active nuclear foci to the nuclear periphery, a region generally associated with reduced transcriptional activity (50). PIASy-mediated inhibition of C/EBPβ transcriptional activity is independent of HDAC recruitment, C/EBPβ sumoylation status, and PIASy E3 SUMO ligase activity.

PIAS proteins alter transcription by a number of mechanisms, including post-translational modification with SUMO family members, SUMO-1, SUMO-2, and SUMO-3 (32, 51). In this study, we found that co-expression of SUMO-1, SUMO-2, or SUMO-3 resulted in sumoylation of wild type C/EBPβ; however, expression of SUMOs at levels up to ~4 times those used in previous studies did not affect C/EBPβ transcriptional activity (Fig. 2B) (data not shown). Although co-expression of SUMO family members had little effect on C/EBPβ transcriptional activity, PIASy significantly inhibited the transcriptional activity of both the C/EBPβ wild type and the sumoylation-defective C/EBPβ K120R mutant constructs. This inhibition was mediated by interaction between the PIASy N-terminal SAP domain and the C/EBPβ N-terminal TAD domain. These findings are consistent with accumulating evidence indicating that the PIASy SAP domain interacts with transcription factors and represses transcription factor activity by multiple mechanisms, including interaction with the nuclear matrix and AT-rich DNA (32, 51).

The essential role of the PIASy SAP domain in PIASy-mediated inhibition of C/EBPβ transcriptional activity contrasts with the apparently limited role of the Ring finger domain. The PIASy RDF is homologous to the Ring finger domain of ubiquitin E3 ligases and functions in substrate protein recognition and SUMO conjugation (32). The PIASy ΔRFD construct interacts with C/EBPβ in in vitro GST pull-down experiments (Fig. 4D), but the PIASy ΔRFD construct does not inhibit C/EBPβ transcriptional activity in cell-based luciferase assays (Fig. 5A). Confocal microscopy demonstrated that PIASy ΔRFD does not enter the nucleus, localizing in the cytoplasm (Fig. 6, F and K). This indicates that nuclear import or nuclear retention of the PIASy ΔRFD is defective, despite the presence of the PIASy NLS. These results suggest that PIASy SUMO ligase activity may play a role in PIASy nucleocytoplasmic transport. Sumoylation has been shown to regulate nuclear pore function and nucleocytoplasmic trafficking (52). In addition, our results demonstrate that the PIASy N-terminal SAP domain, which is highly conserved among PIAS proteins, plays a major role in PIAS-mediated C/EBPβ repression by subnuclear translocation and sequestration.

The mechanism underlying PIASy sequestration of C/EBPβ within the nuclear periphery is under investigation. The nuclear periphery is associated with inner nuclear membrane proteins that have been linked to transcriptional repression including LBR (lamin B receptor), LAP2β (lamin-associated polypeptide 2β), and emerin (50). Sachdev et al. (43) reported that PIASy represses LEF1 transcriptional activity by sumoylation-independent sequestration of LEF1 in promyelocytic leukemia nuclear bodies. PIASy also represses the transcriptional activation of Nur1 and Ets-1 by targeting to the nuclear matrix and this repression is also independent of sumoylation status (53, 54). The present results are similar to these observations in that we also found that PIASy-mediated repression of C/EBPβ transcriptional activity is independent of sumoylation. One area in which our results differ from previous studies is that although PIASy repression and sequestration of LEF1, Nur1, and ETS is sumoylation-independent, PIASy enhances LEF1, Nur1, and ETS sumoylation (43, 53, 54). Our results demonstrate that PIASy does not significantly enhance sumoylation of C/EBPβ. These collective findings highlight the complexity of the role of PIASy and sumoylation in the regulation of individual transcription factors. In addition, it has recently been reported that C/EBPα transcriptional activity may be regulated by sequestration in transcriptionally inactive pericentromeric heterochromatin (55). Since the PIASy SAP domain binds AT-rich DNA present in scaffold attachment regions, also called
matrix attachment regions, it is possible that subnuclear sequestration could include the binding of C/EBPδ to AT-rich or repetitive DNA present at the nuclear periphery (31, 56). C/EBPδ and C/EBPβ have been reported to bind to satellite DNA, and this binding was associated with reduced C/EBPδ and C/EBPβ transcriptional activity (57).

In studies investigating the biological significance of PIASy subnuclear sequestration of C/EBPδ, we found that PIASy-expressing HC11 cells exhibited reduced expression of C/EBPδ cell adhesion related target genes (GP5, PCDH9, and ITGB) and an increased capacity to repopulate open areas in the cell monolayer induced by the “scratch.” These responses paralleled those observed in C/EBPδ siRNA-treated HC11 cells, suggesting that PIASy could alter mammary epithelial cell growth and migration through interactions with C/EBPδ. However, PIASy interacts with a broad range of transcriptional control proteins, and these interactions may also impact mammary epithelial cell growth control and migration (32). In addition, C/EBPδ activates a broad range of target genes that may be altered by PIASy expression. Therefore, these findings both identify new regulatory interactions and raise new questions regarding the broad biological significance of these interactions.

From the perspective of mammary gland biology, these results suggest that PIASy-C/EBPδ interactions could influence mammary gland development, gestation, differentiation, or involution by regulating C/EBPδ transcriptional activity and target gene expression. From a breast cancer perspective, adhesion molecules function in epithelial cell contact inhibition, and disruption of this critical function by aberrant PIASy expression could promote tumorogenesis (58). The inhibitory effects of PIASy on ITGB8 may be particularly relevant to mammary gland biology and breast cancer. ITGB8 functions in epithelial cell contact inhibition, and reduced ITGB8 levels are associated with increased mammary epithelial cell proliferation in vivo and in vitro (59–62).

Finally, the results from this work indicate that the expression of PIAS gene family members, including PIASy, is independent of mammary epithelial cell growth status. This suggests that biological responses that are influenced by PIAS proteins may be determined by the cellular content of individual PIAS-interacting proteins, such as C/EBPδ. Recent results indicate that PIASy induces cellular senescence or apoptosis, depending on the cellular content of p53 and Rb (63). The results from the present study suggest that the role of PIASy in cellular senescence and apoptosis may also be influenced by interactions with C/EBPδ. In addition, it has recently been shown that C/EBPδ induces G0 growth arrest of chronic myelogenous leukemia (CML) cell lines, and this arrest is associated with increased detection of C/EBPδ-Rb complexes (64). These findings raise the possibility that interactions between Rb, C/EBPδ, and PIASy could play a major role in cell fate determination. Future work will investigate the functional interactions between Rb, C/EBPδ, and PIASy as a potential convergence point in cell fate determination.

REFERENCES

1. Ramji, D. P., and Foka, P. (2002) Biochem. J. 365, 561–575
2. Yamamoto, N., Hegde, A. N., Chain, D. G., and Schwartz, J. H. (1999) J. Neurochem. 73, 2415–2423
3. Lyons, S. E., Shue, B. C., Lei, L., Oates, A. C., Zon, L. I., and Liu, P. P. (2001) Gene (Anct.) 281, 43–51
4. Ikuwaza, M., Kobayashi, K., Yasumasa, S., and Iuchi, I. (2005) Comp. Biochem. Physiol. B Biochem. Mol. Biol. 140, 505–511
5. Scott, L. M., Cavin, C. I., Rorth, P., and Friedman, A. D. (1992) Blood 80, 1725–1735
6. Chen, P. L., Riley, D. J., Chen, Y., and Lee, W. H. (1996) Genes Dev. 10, 2794–2804
7. Timchenko, N. A., Wilde, M., and Darlington, G. J. (1999) Mol. Cell Biol. 19, 2936–2945
8. Harris, T. E., Albrecht, J. H., Nakanishi, M., and Darlington, G. J. (2001) J. Biol. Chem. 276, 29200–29209
9. Wang, H., Iakova, P., Wilde, M., Welm, A., Goode, T., Roessler, W. J., and Timchenko, N. A. (2001) Mol. Cell 8, 817–828
10. Cantwell, C. A., Sternneck, E., and Johnson, P. F. (1998) Mol. Cell Biol. 18, 2108–2117
11. O’Rourke, J. P., Hutt, J. A., and DeWille, J. (1999) Biochem. Biophys. Res. Commun. 262, 696–701
12. Hutt, J. A., O’Rourke, J. P., and DeWille, J. (2000) J. Biol. Chem. 275, 29123–29131
13. Dearth, L. R., and DeWille, J. (2003) J. Biol. Chem. 278, 11246–11255
14. Sivko, G. S., and DeWille, J. W. (2004) J. Cell Biol. 93, 830–843
15. Sivko, G. S., Sanford, D. C., Dearth, L. D., Tang, D., and DeWille, J. W. (2004) J. Cell Biol. 165, 844–856
16. Zhang, Y., Sif, S., and Dewille, J. (2007) J. Cell Biol. 120, 1256–1270
17. Zhou, S., and Dewille, J. W. (2007) Biochem. J. 405, 341–349
18. O’Rourke, J., Yuan, R., and DeWille, J. (1997) J. Biol. Chem. 272, 6291–6296
19. O’Rourke, J., Newbound, G. C., Hutt, J. A., and DeWille, J. (1999) J. Biol. Chem. 274, 16582–16589
20. Hutt, J. A., and DeWille, J. W. (2002) Mol. Cancer Ther. 1, 601–610
21. Tang, D., Sivko, G. S., and Dewille, J. W. (2005) Breast Cancer Res. Treat. 1–10
22. Gigliotti, A. P., Johnson, P. F., Sternneck, E., and DeWille, J. W. (2003) Exp. Biol. Med. (Maywood) 228, 278–285
23. Farmer, S. R. (2006) Cell Metab. 4, 263–273
24. Cao, Z., Umek, R. M., and McKnight, S. L. (1991) Genes Dev. 5, 1538–1552
25. Takeda, K., Naguchi, K., Shi, W., Tanaka, T., Matsumoto, M., Yoshida, N., Kishimoto, T., and Akira, S. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 3801–3804
26. Barbaro, V., Testa, A., Di Iorio, E., Mavilio, F., Pellegrini, G., and De Luca, M. (2007) J. Cell Biol. 177, 1037–1049
27. Charles, A., Tang, X., Crouch, E., Brody, J. S., and Xiao, Z. X. (2001) J. Cell. Biochem. 83, 414–425
28. Porter, D., Lahti-Domensici, J., Keshaviah, A., Bae, Y. K., Argani, P., Marks, J. A., Richardson, A., Cooper, A., Strauberg, R., Riggins, G. J., Schmitt, S., Gabrielson, E., Gelman, R., and Polyak, K. (2003) Mol. Cancer Res. 1, 362–375
29. Porter, D. A., Krop, I. E., Nasser, S., Sgroi, D., Kaelin, C. M., Marks, J. R., Riggins, G., and Polyak, K. (2001) Cancer Res. 61, 5697–5702
30. Agrawal, S., Hofmann, W. K., Tidow, N., Ehrich, M., van den Boom, D., Koschmieder, S., Berdel, W. E., Serve, H., and Muller-Tidow, C. (2007) Blood 109, 3895–3905
31. Shuai, K., and Liu, B. (2005) Nat. Rev. Immunol. 5, 593–605
32. Schmidt, D., and Muller, S. (2003) Cell Mol. Life Sci. 60, 2561–2574
33. Kim, J., Sharma, S., Li, Y., Cobos, E., Palvimo, J. J., and Williams, S. C. (2005) J. Biol. Chem. 280, 12246–12254
34. Subramanian, L., Benson, M. D., and Iniguez-Lluhi, J. A. (2003) J. Biol. Chem. 278, 9134–9141
35. Eaton, E. M., Hanlon, M., Bundy, L., and Sealy, L. (2001) J. Cell Physiol. 189, 91–105
36. Liang, C. C., Park, A. Y., and Guan, J. L. (2007) Nat. Protoc. 2, 329–333
37. Long, J., Matsuura, I., He, D., Wang, G., Shuai, K., and Liu, F. (2003) Proc.
PIASy Represses C/EBPβ by Nuclear Sequestration

38. Livak, K. J., and Schmittgen, T. D. (2001) Methods 25, 402–408
39. Kim, J., Cantwell, C. A., Johnson, P. F., Pfarr, C. M., and Williams, S. C. (2002) J. Biol. Chem. 277, 38037–38044
40. Dillon, S. R., Sprecher, C., Hammond, A., Bilsborough, J., Rosenfeld-Franklin, M., Pressnell, S. R., Haugen, H. S., Maurer, M., Harder, B., Johnston, J., Bort, S., Mudri, S., Kuijper, J. L., Bukowski, T., Shea, P., Dong, D. L., Davovich, M., Grant, F. J., Lockwood, L., Levin, S. D., LeCiel, C., Waggie, K., Haugen, H. S., Maurer, M., Harder, B., Johnston, J., Bort, S., Mudri, S., Kuijper, J. L., Bukowski, T., Shea, P., Dong, D. L., Davovich, M., Grant, F. J., Lockwood, L., Levin, S. D., LeCiel, C., Waggie, K., Day, H., Topouzis, S., Kramer, J., Kuestner, R., Chen, Z., Foster, D., Parrish-Novak, I., and Gross, J. A. (2004) Nat. Immunol. 5, 752–760
41. Wang, J. M., Ko, C. Y., Chen, L. C., Wang, W. L., and Chang, W. C. (2006) Nucleic Acids Res. 34, 217–231
42. Kotaja, N., Karvonen, U., Janne, O. A., and Palvimo, J. J. (2002) Mol. Cell Biol. 22, 5222–5234
43. Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F., and Grosschedl, R. (2001) Genes Dev. 15, 3088–3103
44. Kalkhoven, E. (2004) Biochem. Pharmacol. 68, 1145–1155
45. von Miko, L., Zhang, S., Montminy, M., Tan, E. M., and Hemmerich, P. (2000) J. Cell Biol. 150, 265–273
46. Schwartz, C., Beck, K., Mink, S., Schmolke, M., Budde, B., Wenning, D., and Klempnauer, K. H. (2003) EMBO J. 22, 882–892
47. Kovacs, K. A., Steinmann, M., Magistretti, P. J., Halfon, O., and Cardinaux, J. R. (2003) J. Biol. Chem. 278, 36959–36965
48. Diaz, G., Batteta, B., Sanna, F., Uda, S., Reali, C., Angius, F., Melis, M., and Falchi, A. M. (2008) Histochem. Cell Biol. 129, 611–621
49. Nelson, P. J., and Daniel, T. O. (2002) Kidney Int. 61, 99–105
50. Shaklai, S., Amarigliog, N., Rechavi, G., and Simon, A. J. (2007) FEBS J. 274, 1383–1392
51. Johnson, E. S. (2004) Annu. Rev. Biochem. 73, 355–382
52. Melchior, F., Schergaut, M., and Pichler, A. (2003) Trends Biochem. Sci. 28, 612–618
53. Galleguillos, D., Vecchiola, A., Fuentealba, J. A., Ojeda, V., Alvarez, K., Gomez, A., and Andres, M. E. (2004) J. Biol. Chem. 279, 2005–2011
54. Nishida, T., Terashima, M., and Fukami, K. (2006) Biochem. Biophys. Res. Commun. 345, 1536–1546
55. Liu, X., Wu, B., Szary, J., Kofoed, E. M., and Schaufele, F. (2007) J. Biol. Chem. 282, 20868–20876
56. Spector, D. L. (2003) Annu. Rev. Biochem. 72, 573–608
57. Bowcock, A. M., Kidd, J. R., Lathrop, G. M., Daneshvar, L., May, L. T., Ray, A., Sehgal, P. B., Kidd, K. K., and Cavalli-Sforza, L. L. (1988) Genomics 3, 8–16
58. Balda, M. S., and Matter, K. (2003) Trends Cell Biol. 13, 310–318
59. Cambier, S., Mu, D. Z., O’Connell, D., Boylen, K., Travis, W., Liu, W. H., Broaddus, V. C., and Nishimura, S. L. (2000) Cancer Res. 60, 7084–7093
60. Fjellbirkeland, L., Cambier, S., Broaddus, V. C., Hill, A., Brunetta, P., Dorganov, G., Jablons, D., and Nishimura, S. L. (2003) Am. J. Pathol. 163, 533–542
61. Li, N., Zhang, Y., Naylor, M. J., Schatzmann, F., Maurer, F., Wintermantel, T., Schuetz, G., Mueller, U., Streuli, C. H., and Hynes, N. E. (2005) EMBO J. 24, 1942–1953
62. Naylor, M. J., Li, N., Cheung, J., Lowe, E. T., Lambert, E., Marlow, R., Wang, P., Schatzmann, F., Wintermantel, T., Schuetz, G., Clarke, A. R., Mueller, U., Hynes, N. E., and Streuli, C. H. (2005) J. Cell Biol. 171, 717–728
63. Bischof, O., Schwamborn, K., Martin, N., Werner, A., Sustmann, C., Grosschedl, R., and Dejean, A. (2006) Mol. Cell 22, 783–794
64. Gery, S., Tanosaki, S., Hofmann, W. K., Koppel, A., and Koefler, H. P. (2005) Oncogene 24, 1589–1597