BDO-RFQ Program Complex of Modelling and Optimization of Charged Particle Dynamics

D A Ovsyannikov, A D Ovsyannikov, I V Antropov and V A Kozynchenko
Saint-Petersburg State University, 7/9 Universitetskaya nab., Saint-Petersburg, 199034, Russia
Email: i.antropov@spbu.ru

Abstract. The article is dedicated to BDO Code program complex used for modelling and optimization of charged particle dynamics with consideration of interaction in RFQ accelerating structures. The structure of the program complex and its functionality are described; mathematical models of charged particle dynamics, interaction models and methods of optimization are given.

1. Introduction
When an accelerator of the charged particles is being developed an important task is an optimization of charged particle dynamics in order to improve the quality of the output beam. Different mathematical models of beams dynamic, models of particles interaction and methods of optimization are used for optimization problem solving in accelerator structures. BDO Code is a program complex, which has a developed graphic interface and different sets of instruments, methods and algorithms and allows researcher to concentrate time on implementation of the model. BDO RFQ project is included into this complex and it’s general description is given in this article.

2. Program Complex
BDO Code Program Complex consists of managing program, models and libraries (Fig. 1):
- BDO Shell – managing program, which has developed graphic interface, libraries of the parameters of the model and system functions. The specialties of this product are a possibility to divide into the stages of the calculation process with setting of your own group of input and output data files; a possibility of automatization of the modelling process for the given parameters ranges; usage of the scenarios with setting of the determined parameters, input and output data files, setting up of the calculation stages.
- BDO RFQ – project for modelling and optimization of charged particle dynamics in RFQ structure [1]. The project contains several models, which allow to perform a step-by-step optimization on “from easy to hard” basis, and library of the consideration of the particle interaction and library of optimization methods.

3. Models
Consider in details the models realized in BDO-RFQ project [2-7]:

1 To whom any correspondence should be addressed.
3.1. **BDO RFQ TW (Travelling wave)**

This model was proposed in works [5,6] and successfully used for modelling and optimization of the longitudinal motion of the beam of charged particles in the field of equivalent travelling wave in RFQ structure [5-8]. The functional realized in this model allow modelling the beam dynamic with interaction of particles, to perform the optimization with usage of the gradient method. Main window BDO RFQ TW is presented on Figure 2.

![Structure of BDO Code Program Complex](image)

Figure 1. Structure of BDO Code Program Complex

The advantages of this model are the following:

- The consideration of the particle interaction is performed by the method of macro particles for conventional and periodic cases;
- The joint optimization for program and perturbed motions is performed;
- Different quality functionals are used for characteristics at the exit of the accelerator and also for along the structure;
- Recalculation of the managing parameters of the model after optimization for the model of the dynamics in stationary wave.

3.2. **BDO RFQ SW (Stationary wave)**

This model is used for modelling and optimization of the longitudinal and transversal motion of the beam of charged particles in the field of stationary wave in RFQ structure. The realized functional of this model allows to calculate acceptance of the channel, to model and optimize the matcher, to model the dynamic of the beam for the envelopes with the interaction of particles, to optimize by different methods.

The advantages of this model are the following:

- The consideration of the particle interaction is performed with cylindrical models;
- The joint optimization for longitudinal and transversal motion of the beam is performed;
- Optimization of a radial matching section.

3.3. **BDO RFQ 3D**

The results of the optimization are checked with the current 3D dynamic model. The consideration of the particles interaction is performed by the method of the pair interaction or by the grid method. There is also a possibility of comparison of the coulomb field on the axis of accelerator calculated with the different models of the particle interaction.
4. Interaction models toolbox
In modelling of the dynamic of the charged particles beams with particle interaction in BDO Code program complex the following calculation methods of the coulomb field of the beam are realized:

- Method of thin discs – for calculation of the coulomb field, the beam is a set of infinitely thin and proportionally charged discs with the same radius.
- Method of thick discs – for calculation of the coulomb field, the beam is a set of proportionally charged discs with the finite thickness of the same radius.

These methods allow to calculate approximately only longitudinal component of the coulomb field of the beam and are used for modelling of the longitudinal beam dynamic and also for comparison of the calculation results of longitudinal component of the coulomb field on the axis of accelerator by other methods.

- Cylindrical model – for calculation of the coulomb field the beam is a cylinder with a constant radius, proportionally charged in each transversal section with heterogeneous distribution of the charge along the axis of accelerator.
- Method of nested circular cylinders [9] – for calculation of the coulomb field the beam is a set of embed cylinders with constant radius. Each cylinder is proportionally charged in each transversal section with heterogeneous distribution of the charge along the axis of accelerator.
- Pair interaction method - for calculation of the coulomb field the beam is a set of proportionally charged balls with the same radius. The coulomb field of the beam is calculated as a vector sum of the fields, made by each ball.
- Grid method - the coulomb field the beam is calculated by the grid method, boundary value problem for Poisson equation is solved.

5. Optimization toolbox
For optimization of charged particle dynamics in BDO-RFQ system, various optimization methods have been developed [7,10-14]. In directed optimization methods of charged particle dynamics external accelerating and focusing fields in the accelerator and internal coulomb field of the beam are calculated with analytic approximate expressions. Analytic models of the external and internal fields allow using analytic expressions for the gradient of the optimized functional. In optimization with analytic formulas for functional gradient in BDO-RFQ system there are two optimization methods
realized: gradient descent method (method of steepest descent) and ravine method. Along with directed optimization techniques and other methods of numerical optimization are used. There are two numerical optimization methods used: genetic algorithm and Box-Wilson method. When genetic algorithm is used the system user defines the parameters of the crossing, mutation and population size.

In conclusion we would like to mention, that there is a possibility to exchange files of BDO-RFQ program complex with files of LIDOS.RFQ program complex [6].

References
[1] Kapchinsky I M and Teplyakov V A 1970 Linear Ion Accelerator with Spatially Homogeneous Strong Focusing Prib. Tekh. Eksp. no 2 pp 19-22
[2] Ovsyannikov D A, Ovsyannikov A D, Antropov I V and Kozychenko V A 2015 Software complex BDO-RFQ Proc. Int. Conf. Stability and Control Processes in Memory of V.I. Zubov (SCP) (Saint-Petersburg: Saint-Petersburg State University) pp 335-37 DOI: 10.1109/SCP.2015.7342132
[3] Ovsyannikov D A 2012 Mathematical modeling and optimization of beam dynamics in accelerators RuPAC 2012 Contributions to the Proc. – 23rd Russian Particle Accelerator Conference pp 68-72
[4] Ovsyannikov D A, Ovsyannikov A D, Antropov I V and Kozychenko V A 2005 BDO-RFQ code and optimization models Proc. Int. Conf. on Physics and Control pp 282-88 DOI: 10.1109/PHYCON.2005.1513994
[5] Bondarev B I, Durkin A P and Ovsyannikov A D 1999 New mathematical optimization models for RFQ structures Proc. of the IEEE Particle Accelerator Conf. The 18th Biennial Particle Accelerator Conf. (New York, NY, USA) pp 2808-10
[6] Bondarev B, Durkin A, Ivanov Y, Shumakov I, Vinogradov S, Ovsyannikov A and Ovsyannikov D 2001 The Lidos RFQ designer development Proc. of the IEEE Particle Accelerator Conf. 2001 Particle Accelerator Conf. (Chicago, IL, USA) pp 2947-49
[7] Ovsyannikov D A, Ovsyannikov A D, Vorogushin M F , Svistunov Yu A and Durkin A P 2006 Beam dynamics optimization: models, methods and applications Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment vol 558 no 1 pp 11-19
[8] Svistunov Y, Durkin A and Ovsyannikov A D 2012 Beam dynamics investigations for 433 MHz RFQ accelerator RuPAC 2012 Contributions to the Proc. – 23rd Russian Particle Accelerator Conference pp 82-84
[9] Kozychenko V A and Boyko A A Modeling and simulation of beam dynamics in linear accelerator with RFQ 20th International Workshop on Beam Dynamics and Optimization (BDO 2014) pp 96-97 DOI: 10.1109/BDO.2014.6890041
[10] Ovsyannikov A D, Ovsyannikov D A, Balabanov M Yu and Chung S L 2009 On the beam dynamics optimization problem Int. Journal of Modern Physics A vol 24 no 5 pp 941-51
[11] Ovsyannikov D A 1997 Modelling and optimization problems of charged particle beams dynamics ECC 1997 – European Control Conf. 4 pp 1463-67
[12] Antropov I V and Ovsyannikov A D 2013 Modelling and optimization radial motion in charged particles accelerator with Radio Frequency Quadrupole Vestnik of St. Petersburg State University of Technology and Design (Series 1 Natural and Engineering Sciences) no 4 pp 19-23
[13] Antropov I V and Ovsyannikov A D 2009 Modelling and optimization in Radio Frequency Quadrupole structure Vestnik of Saint-Petersburg State University (Series 10: Applied mathematics. Computer science. Control processes) no 4 pp 12-24
[14] Ovsyannikov A D, Ovsyannikov D A and Chung S L 2009 Optimization of a radial matching section Int. Journal of Modern Physics A vol 24 no 5 pp 952-58