Total thyroidectomy versus lobectomy for papillary thyroid cancer

A systematic review and meta-analysis

Chi Zhang, MDa, Yanshuang Li, MDb, Jiyu Li, MDa,*, Xiao Chen, MDa

Abstract

Background: This systematic review and meta-analysis collected data for evaluating the effect of surgical extent on overall survival (OS) and recurrence-free survival (RFS) in patients with papillary thyroid cancer (PTC).

Methods: We searched the PubMed, Embase, and Cochrane Library databases. The included studies compared two groups of patients with PTC: the total thyroidectomy (TT) group and the lobectomy (LT) group. The combined hazard ratio (HR) was calculated.

Results: Thirteen studies were included in the present study. The TT and LT groups had similar OS results (HR = 1.04; 95% CI: 0.90–1.21; \(P = .80 \)). In the subgroup analysis, the combined HR of the \(\leq 1 \) cm group and the 1.0 to 2.0 cm group showed that TT had no advantage with regard to OS compared to LT. In the 2.0 to 4.0 cm group, TT provided better OS than LT (HR = 0.88; 95% CI: 0.79–0.99; \(P = .03 \)). Patients who underwent TT had a better RFS outcome than those who underwent LT (HR = 0.56; 95% CI: 0.41–0.77; \(P < .0001 \)). In the subgroup analysis, both the \(\leq 1 \) cm group and >1 cm group that underwent TT were associated with better RFS.

Conclusions: Our meta-analysis suggested that LT increased the risk of recurrence in PTC patients with tumors \(\leq 1.0 \) cm and in PTC patients with tumors >1.0 cm. More importantly, LT was associated with higher mortality in PTC patients with 2.0 to 4.0 cm tumors. Caution is warranted when LT is performed in this group of patients.

Abbreviations: ATA = American Thyroid Association, CI = confidence interval, HR = hazard ratio, LT = lobectomy, NOS = Newcastle-Ottawa Scale, OS = overall survival, PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses, PTC = papillary thyroid cancer, PTMC = papillary thyroid microcarcinoma, RFS = recurrence-free survival, TT = total thyroidectomy

Keywords: lobectomy, mortality, papillary thyroid cancer, recurrence, total thyroidectomy

1. Introduction

The incidence of thyroid cancer has increased greatly worldwide in the past few decades.[11–17] This increase has been attributed mainly to papillary thyroid cancer (PTC),[16–19] which is the most common histologic subtype of thyroid cancer, comprising up to 88% of all thyroid cancers.[11–14]

Surgery is the mainstay treatment for PTC. The extent of the surgery can be categorized as total thyroidectomy (TT) or lobectomy (LT). There has been controversy regarding the optimal surgical extent of PTC for decades. TT provides advantages such as enabling the use of radioactive iodine as an adjuvant therapy, clearing microscopic cancer foci in the contralateral lobe, and allowing accurate postoperative thyroglobulin surveillance. LT decreases the risk of permanent hypoparathyroidism and recurrent laryngeal nerve injury.[14–16] Furthermore, whether TT provides better overall survival (OS) or recurrence-free survival (RFS) than LT is unclear.

In general, patients with PTC have an excellent survival rate. There is no randomized clinical trial comparing the different surgical extent of PTC because it would require too many patients to be followed for a long time. The results of different retrospective studies addressing the surgical extent are inconsistent. Bilimoria’s study demonstrated that TT results in a lower recurrence rate and improved survival for PTC >1.0 cm compared to LT.[17] The 2009 American Thyroid Association (ATA) guidelines recommended TT for PTC patients with tumors >1.0 cm.[18] However, Adam’s study and Mendelsohn’s study contained many patients with tumors >1.0 cm and showed no difference in survival between TT and LT for patients with PTC.[19,20] The 2015 updated ATA guidelines recommend that for tumors 1.0 to 4.0 cm without extrathyroidal extension and lymph node metastasis, both TT and LT are acceptable in patients with PTC.[21]

Studies comparing TT and LT in patients with PTC have grown substantially since the 2015 ATA guidelines were...
published. In the current review, we performed a meta-analysis to collect data for evaluating the effect of surgical extent on OS and RFS in patients with PTC.

2. Materials and methods

2.1. Literature search strategy

We searched PubMed, Embase, and the Cochrane Library database using a combination of MeSH terms (“thyroid neoplasms”, “papillary thyroid cancer”, and “thyroidectomy”) and free text terms (“thyroid lobectomy” and “well-differentiated thyroid cancer”). Only articles published in English were selected. The search strategy is presented in Figure 1. Approval for this study was obtained from the Ethic Committee of Shandong Provincial Hospital Affiliated to Shandong University.

2.2. Study inclusion and exclusion criteria

The studies included in this review met the following criteria. First, the studied patients were diagnosed with PTC. Second, the studies included two groups: the TT group and LT group. Third, studies should compare the survival or recurrence of two different groups, and the hazard ratio (HR) and the 95% confidence interval (CI) should be obtained. Exclusion criteria included patients <18 years old, patients whose pathologic type was not PTC, and patients with recurrent or distant metastatic thyroid cancer. Letters, reviews, studies without full text, and non-English studies were also excluded.

2.3. Study quality assessment

The quality of the included studies was evaluated by the Newcastle-Ottawa Scale (NOS).[22] A maximum of nine points was assigned to each study, including the selection of the study groups, comparability of the groups, and outcomes. Studies with more than 6 points were considered to be of high quality. Otherwise, studies were excluded from the final meta-analysis.

2.4. Data extraction

The data were independently extracted by two reviewers and checked by other reviewers for accuracy. Discrepancies were resolved by consensus after discussion. Specific essential information was extracted, including first author, publication year, country of origin, number of patients, tumor size, median follow-up time, outcome of OS and/or RFS reported as HR and whether it was a multiple analysis.

2.5. Statistical analysis

The present study was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.[23] HRs and 95% CI for each comparison...
in the studies were extracted and pooled using the random-effects model in Review Manager (version 5.3; Cochrane Collaboration [http://www.cochrane.org]). An HR of less than one indicated a survival or recurrence benefit from TT. The heterogeneity of the studies was evaluated using the inconsistency statistic (I^2).[24] An I^2 of <25% represents low heterogeneity, 25–50% represents moderate heterogeneity, and >50% represents high heterogeneity.

3. Results

3.1. Characteristics of the included studies

Thirteen studies that met the inclusion criteria were analyzed in our meta-analysis.[17,19,20,25–28] Our search strategy is presented in Figure 1. The 13 studies were published between 2004 and 2018. Five studies were from the United States, and eight were from Korea. The characteristics of the 13 studies, including publication year, number of patients, patient age, sex, tumor size, follow-up time, multiple analyses, and outcomes assessed are listed in Table 1.

3.2. OS

Meta-analysis for OS included seven comparative studies. Among the seven studies, Haigh divided the patients into a high-risk group and a low-risk group, and Rajjoub also divided patients into two groups according to the tumor size. In these two studies, HR was reported separately according to two different groups of patients. The I^2 value was 72%, reflecting a high degree of HR heterogeneity among the included studies. Therefore, a random-effects model was used to estimate the combined HR. The combined HR was 1.04 (95% CI: 0.90–1.21; $P = 0.60$; Fig. 2A), showing that TT and LT had similar OS results.

We performed subgroup analysis according to different tumor sizes. In patients with tumors ≤ 1 cm, the combined HR was 0.85 (95% CI: 0.66–1.09; $P = 0.21$; Fig. 2B) and showed similar OS for TT and LT. In patients with tumors between 1 cm and 2 cm, the combined HR was 0.99 (95% CI: 0.85–1.15; $P = 0.86$; Fig. 2C), showing that TT and LT had similar OS results. In patients with tumors between 2 cm and 4 cm, the combined HR was 0.88 (95% CI: 0.79–0.99; $P = 0.03$; Fig. 2D), indicating that TT provides better OS than LT.

3.3. RFS

Meta-analysis for RFS included nine comparative studies. The I^2 value was 78%, reflecting a high degree of HR heterogeneity among the included studies. Therefore, a random-effects model was used to estimate the combined HR, and the result was 0.56 (95% CI: 0.41–0.77; $P < 0.001$; Fig. 3A), showing that patients who underwent TT had a better RFS outcome than those who underwent LT.

Some studies have demonstrated that TT for PTC improves RFS only in patients with tumors > 1 cm. Whether TT for PTC improves RFS in patients with tumors ≤ 1 cm is controversial. Therefore, we performed subgroup analysis according to different tumor sizes. We compared the RFS of TT with that of LT in patients with tumors ≤ 1 cm. Five studies were included, and the combined HR was 0.51 (95% CI: 0.32–0.81; $P = 0.04$; Fig. 3B). This result indicated that TT can provide better RFS than LT in patients with tumors ≤ 1 cm. In patients with tumors larger than 1 cm, the combined HR was 0.85 (95% CI: 0.76–0.96; $P = 0.009$; Fig. 3C). This result also showed that TT can provide better RFS than LT in patients with tumors > 1 cm.

Some studies revealed that most recurrence of PTC patients who underwent LT occurred in the contralateral lobe. We compared the RFS of TT with that of LT after exclusion of contralateral lobe recurrence. Two studies were included, and the combined HR was 0.66 (95% CI: 0.29–1.49; $P = 0.32$; Fig. 3D).

Table 1

Characteristics of the included studies.

First author	Publication year	Country of origin	Number of patients	Mean age (years)	Female	Tumor size	Mean follow-up time (years)	Multiple analysis	Outcomes assessed
Haigh	2005	USA	4612	NA	4191	$< 5 \text{ cm}$ 5027*; $\geq 5 \text{ cm}$ 405*	7.4	Yes	Mortality
Bilmoria	2007	USA	43,227	8946	39,426	$< 1 \text{ cm}$ 10,247*; $\geq 1 \text{ cm}$ 38,705*	5.8	Yes	Recurrence, mortality
Mendelsohn	2010	USA	16,760	5964	17,727	$< 1 \text{ cm}$ 6542*; $\geq 1 \text{ cm}$ 16,182*	9.1	Yes	Recurrence, mortality
Lee	2013	Korea	506	506	908	$< 1 \text{ cm}$	11.8	Yes	Recurrence, mortality
Adam	2014	USA	54,926	6849	48,788	1–4 cm	6.8		Mortality
Lim	2015	Korea	97	126	201	$< 4 \text{ cm}$	5.4		Recurrence
Hwangbo	2016	Korea	2839	443	2897	$< 2 \text{ cm}$	5.8		Recurrence, mortality
Kim SK	2016	Korea	5387	3289	7057	$< 1 \text{ cm}$	5.4		Recurrence
Kim MJ	2017	Korea	298	147	368	1–4 cm	7.01	No	Recurrence
Kwon	2017	Korea	688	47	1216	0.5–0.8 cm	8.53	No	Recurrence
Rajjoub	2018	USA	21,589	1310	18,055	1.0–3.3 cm	6.49	Yes	Mortality
Zhang	2018	Korea	4262	968	4449	$< 1 \text{ cm}$ 2934*; $\geq 1 \text{ cm}$ 2131*	10.23	Yes	Mortality
Song	2018	Korea	381	381	644	1–4 cm	9.81	Yes	Recurrence

*: Number of patients of corresponding tumor size.

1: The median follow up time.
showing that there were no significant differences in RFS between TT and LT.

3.4. Quality of the included studies and publication bias

The quality of the 13 included studies was evaluated by NOS, and the scores were all ≥ 6 points (Table 2). This indicated that all the included studies were high quality.

To evaluate the publication bias of aggregated data in this meta-analysis, we generated funnel plots for OS and RFS (Fig. 4A and B). Overall, the included studies showed optimal symmetry, suggesting minimal publication bias.

4. Discussion

Thyroid cancer is the most rapidly increasing cancer in the past few decades in many countries. The incidence of thyroid cancer increased by 24.2% per year from 1999 to 2010.13 The American Cancer Society projected an incidence of 53,990 cases of thyroid cancer in 2018 in the United States.136 The estimated
The number of new cases of thyroid cancer in 2018 in 185 countries was 567,233.[37] The increasing incidence of thyroid cancer is largely because of the increased diagnosis of PTC through diagnostic changes.[37]

The debate on the appropriate extent of surgery for PTC has persisted for several decades. This controversy is mainly due to the positive prognosis of PTC patients and the questionable effect that TT has on patient OS and RFS. The 2006 ATA guidelines recommended TT for most patients with PTC.[38] As many studies revealed a positive prognosis of patients with tumors <1 cm, the 2009 ATA guidelines recommended TT for PTC patients with a tumor ≥1 cm,[18] and LT can be performed in low-risk patients with a tumor <1 cm. In 2015, ATA guidelines recommended that LT can be performed in selected patients with 1.0–4.0 cm tumors.[21] Recently, Gartland reviewed whether LT versus TT for PTC patients with tumors measuring 1.0 to 4.0 cm impacts tumor recurrence and survival.[39] They concluded that most data support that LT yields comparable oncologic outcomes for PTC patients with 1.0 to 4.0 cm tumors. Although the new ATA guideline has widened the group of patients with

Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV	Random	95% CI Year
Bilimoria	-0.451	0.1368	14.4%	0.64	0.40/0.84	2007
Mendelsohn	0.0944	0.1266	16.5%	1.10	0.86/1.41	2010
Lee	-1.1249	0.2228	12.4%	0.32	0.21/0.50	2013
Lim	-1.1712	0.5333	5.9%	0.31	0.11/0.88	2015
Hwangbo	-0.5365	0.1834	13.3%	0.58	0.41/0.84	2016
Kim SK	-0.9213	0.2075	12.7%	0.40	0.27/0.60	2016
Kim MJ	-0.2151	0.4138	7.9%	0.81	0.36/1.81	2017
Kwon	-0.8916	0.3414	9.4%	0.41	0.21/0.80	2017
Song	-0.3577	0.3482	9.3%	0.70	0.35/1.38	2018

Total (95% CI) 100.0% 0.56 [0.41, 0.77]

Test for overall effect: Z = 3.56 (P = 0.0004)

Figure 3. Forest plot of studies comparing TT with LT for RFS in patients with PTC. (A) including all group of patients; (B) in patients with tumors ≤1.0 cm; (C) in patients with tumors >1 cm; (D) after exclusion of contralateral lobe recurrence. LT = lobectomy, RFS = recurrence-free survival, PTC = papillary thyroid cancer, TT = total thyroidectomy.
PTC who are suitable for LT, many low-risk patients with small
tumor sizes still received TT in many centers. The debate
regarding the proper surgical extent for PTC is still ongoing.
Macedo and his colleagues systematically evaluated the impact
of the surgical extent of thyroid resection on RFS and OS for
papillary thyroid microcarcinoma (PTMC).
They found that TT was associated with better RFS and could not
draw a conclusion about the correlation of surgical extent and OS due to
the small number of mortality events. A similar meta-analysis was
recently performed by Zheng and his colleagues. They drew a
similar conclusion with a previous meta-analysis by Macedo,
where patients who received TT had a decreased risk of
recurrence but not mortality compared to patients who had
LT for PTMC. In the current meta-analysis, tumor size was not
restricted, and several new published studies were included to
evaluate the effect of surgical extent on OS and RFS in patients
with PTC.

The combined HR of OS indicated that TT did not show an OS
advantage compared to LT. This result was similar to previous
two meta-analyses. All seven included comparative studies
underwent multiple analyses. Factors including age, sex, tumor
size, lymph node metastasis, and extrathyroidal extension were
adjusted in most of the multiple analyses. In Haigh’s study,
patients with low-risk PTC had worse OS after TT, which was an
unexpected finding. The authors attributed this result to the
strong section bias in favor of the use of TT. In Bilimoria’s
research, the results of multivariate analyses showed that LT was
associated with a 21% higher risk of death compared to TT. However,
potential influence factors in surgical type selection,
such as multifocality and extrathyroidal extension, were not
adjusted for in this study. The 10-year survival after TT was
98.4% compared with 97.1% after LT. The absolute benefit of
TT for OS is very low. In subgroup analysis, the corresponding
combined HR of the <1 cm group as well as the 1.0–2.0 cm group
indicated similar OS for TT and LT. In the 2.0–4.0 cm group, the
combined HR showed that TT was associated with improved OS.
This finding suggested that LT might be insufficient for PTC
patients with tumors larger than 2 cm. According to the 2015
ATA guidelines, LT can be performed in selected patients in this
group. To address this question, further study is needed.

ATA guidelines mainly focus on mortality. However, the most
important advantage conferred by TT was a decrease in the risk
of recurrence. In the present study, the combined HR indicated a
better RFS of patients who underwent TT compared with LT. In
the subgroup analysis, the combined HR in both the ≤1 cm group
and the >1 cm group suggested that TT was associated with

Table 2	Newcastle-Ottawa Scale for quality assessment.									
Study	Selection	Comparability	Outcome							
	Exposed cohort	Non-exposed cohort	Ascertainment of exposure	Outcome of interest	Control for factor	Assessment of outcome	Follow-up long enough	Adequacy of follow-up	Total score	
Haigh	*	*	*	*	*	*	*	*	*	8
Bilimoria	*	*	*	*	*	*	*	*	*	8
Mendelsohn	*	*	*	*	*	*	*	*	*	8
Lee	*	*	*	*	*	*	*	*	*	9
Adam	*	*	*	*	*	*	*	*	*	8
Lim	*	*	*	*	*	*	*	*	*	8
Hwangbo	*	*	*	*	*	*	*	*	*	8
Kim SK	*	*	*	*	*	*	*	*	*	8
Kim MJ	*	*	*	*	*	*	*	*	*	8
Kwon	*	*	*	*	*	*	*	*	*	9
Rajjoub	*	*	*	*	*	*	*	*	*	8
Zhang	*	*	*	*	*	*	*	*	*	8
Song	*	*	*	*	*	*	*	*	*	9

Figure 4. Funnel plots used to assess the effects of publication bias on the OS and RFS. (A) funnel plot to assess publication bias effect on the OS; (B) funnel plot to assess publication bias on the RFS. Each dot represents a separate study. The funnel plots revealed no apparent evidence of publication bias. OS = overall survival, RFS = recurrence-free survival.
better RFS than LT. These results were similar to previous studies.\(^1\) Most recurrences in patients who received LT occurred in the contralateral lobe of the thyroid. Local recurrence in the remnant lobe after LT can be managed safely by a second operation. Therefore, recurrence in the contralateral lobe can also be regarded as a new developing disease instead of being considered a recurrence. Two studies focusing on PTMC included in the current meta-analysis compared the TT group with LT group for RFS after exclusion of contralateral lobe recurrence. The combined HR after exclusion of contralateral lobe recurrence showed TT had similar RFS with LT. This result suggested that the advantage of TT for RFS in PTMC was mainly due to a decrease in the risk of contralateral lobe recurrence.

We acknowledge that there are several limitations that should be considered when interpreting our current meta-analysis. First, all included studies were nonrandomized observational clinical studies classified as low quality studies in meta-analysis. Second, there are different patient selection criteria in different studies that could lead to heterogeneity. Third, different follow-up times and inadequate records of adverse events may lead to bias. Fourth, only studies published in English were included in the present study, which may lead to publication bias. Fifth, factors including lymph node metastasis and radioactive iodine treatment can affect the recurrence. Although most studies included in this meta-analysis performed multivariate or risk factor matched analyse in comparing the surgical extent, these factors may still lead to bias.

In conclusion, based on data of current meta-analysis, LT increased the risk of recurrence in both PTC patients with tumors \(\leq 1\) cm and in PTC patients with tumors \(>1\) cm. Most recurrences occurred in the contralateral lobe, which were thought to be managed safely by a second operation. More importantly, our meta-analysis suggests that LT was associated with higher mortality in PTC patients with 2.0 to 4.0 cm tumors. Caution is warranted when LT is performed in this group of patients.

Author contributions

Conceptualization: Jiyu Li.

Data curation: Chi Zhang, Yanshuang Li.

Formal analysis: Chi Zhang, Jiyu Li.

Investigation: Chi Zhang, Jiyu Li.

Methodology: Chi Zhang, Jiyu Li.

Resources: Yanshuang Li, Jiyu Li.

Software: Chi Zhang, Yanshuang Li, Xiao Chen.

Validation: Chi Zhang.

Writing – original draft: Chi Zhang.

Writing – review & editing: Yanshuang Li, Xiao Chen.

References

1. Burgess JR. Temporal trends for thyroid carcinoma in Australia: an increasing incidence of papillary thyroid carcinoma (1982–1997). Thyroid 2002;12:141–9.
2. Colonna M, Uhry Z, Guizard AV, et al. Recent trends in incidence, geographical distribution, and survival of papillary thyroid cancer in France. Cancer Epidemiol 2015;39:511–8.
3. Dal Maso L, Lise M, Zambon P, et al. Incidence of thyroid cancer in Italy, 1991–2005: time trends and age-period-cohort effects. Ann Oncol 2011;22:947–63.
4. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 2006;295:2164–7.
5. Koke A, Naruse T. Incidence of thyroid cancer in Japan. Semin Surg Oncol 1991;7:107–11.
6. Topstad D, Dickinson JA. Thyroid cancer incidence in Canada: a national cancer registry analysis. CMAJ Open 2017;5:E612–6.
7. Wang Y, Wang W. Increasing incidence of thyroid cancer in Shanghai, China, 1983–2007. Asia Pac J Public Health 2015;27:N223–9.
8. McNally RJ, Blakely K, James PW, et al. Increasing incidence of thyroid cancer in Great Britain, 1976–2005: age-period-cohort analysis. Eur J Epidemiol 2012;27:615–22.
9. Elsei R, Molinaro E, Agate L, et al. Are the clinical and pathological features of differentiated thyroid carcinoma really changed over the last 35 years? Study on 4187 patients from a single Italian institution to answer this question. J Clin Endocrinol Metab 2010;95:1516–27.
10. Cho BY, Choi HS, Park YJ, et al. Changes in the clinicopathological characteristics and outcomes of thyroid cancer in Korea over the past four decades. Thyroid 2013;23:797–804.
11. Aschebroek-Kilfoy B, Ward MH, Sabra MM, et al. Thyroid cancer incidence patterns in the United States by histologic type, 1992–2006. Thyroid 2011;21:125–34.
12. Bui R, Mallona I, Dez-Villanueva A, et al. Kallikrein stepwise scoring reveals three subtypes of papillary thyroid cancer with prognostic implications. Thyroid 2018;28:601–12.
13. Lubitz CC, Economopoulos KP, Pawlk AC, et al. Hobnail variant of papillary thyroid carcinoma: an institutional case series and molecular profile. Thyroid 2014;24:958–63.
14. Baldassarre RL, Chang DC, Brumund KT, et al. Predictors of hypocalcemia after thyroidectomy: results from the nationwide inpatient sample. ISRN Surg 2012;2012:838614.
15. Ryu J, Ryu YM, Jung YS, et al. Extent of thyroidectomy affects vocal and throat functions: a prospective observational study of lobectomy versus total thyroidectomy. Surgery 2013;154:611–20.
16. Shiriyazi SM, Kargar S, Akhami-Andakani M, et al. Risk of postoperative hypocalcemia in patients underwent total thyroidectomy, subtotal thyroidectomy and lobectomy surgeries. Acta Med Iran 2014;52:206–9.
17. Bilimora KY, Bentrem DJ, Ko CY, et al.Extent of surgery affects survival for papillary thyroid cancer. Ann Surg 2007;246:375–81. [discussion 381–4].
18. American Thyroid Association Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer , Cooper DS, Doherty GM, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:1167–214.
19. Adam MA, Pura J, Gu L, et al. Extent of surgery for papillary thyroid cancer is not associated with survival: an analysis of 61,775 patients. Ann Surg 2014;260:601–5. [discussion 605–7].
20. Mendelsohn AH, Elashoff DA, Abemayer E, et al. Surgery for papillary thyroid carcinoma: is lobectomy enough? Arch Otolaryngol Head Neck Surg 2010;136:1055–61.
21. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1–33.
22. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25:603–5.
23. Moher D, Liberati A, Tetzlaff J, et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. BMJ 2009;339:b2535.
24. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
25. Haigh PI, Urbach DR, Rotliegen LE. Extent of thyroidectomy is not a major determinant of survival in low- or high-risk papillary thyroid cancer. Ann Surg Oncol 2005;12:81–9.
26. Hwangbo Y, Kim JM, Park YJ, et al. Long-term recurrence of small papillary thyroid cancer and its risk factors in a Korean Multicenter Study. J Clin Endocrinol Metab 2017;102:625–33.
27. Wang Y, Li S, Wang W, et al. Incidence of thyroid cancer in China. Cancer Epidemiol 2015;39:511–8.
28. Kim MJ, Lee MC, Lee GH, et al. Extent of surgery did not affect recurrence during 7-years follow-up in papillary thyroid cancer sized 1–4 cm: preliminary results. Clin Endocrinol (Oxf) 2017;87:80–6.
29. Kim SK, Park I, Woo JW, et al. Total thyroidectomy versus lobectomy in conventional papillary thyroid microcarcinoma: analysis of 8,676 patients at a single institution. Surgery 2017;161:485–92.
30. Kwon H, Jeon MJ, Kim WG, et al. A comparison of lobectomy and total thyroidectomy in patients with papillary thyroid microcarcinoma: a retrospective individual risk factor-matched cohort study. Eur J Endocrinol 2017;176:371–8.
[30] Lee J, Park JH, Lee CR, et al. Long-term outcomes of total thyroidectomy versus thyroid lobectomy for papillary thyroid microcarcinoma: comparative analysis after propensity score matching. Thyroid 2013;23:1408-15.

[31] Lim ST, Jeon YW, Suh YJ. Correlation between surgical extent and prognosis in node-negative, early-stage papillary thyroid carcinoma originating in the isthmus. World J Surg 2016;40:344-9.

[32] Rajjoub SR, Yan H, Calcatera NA, et al. Thyroid lobectomy is not sufficient for T2 papillary thyroid cancers. Surgery 2018;163:1134-43.

[33] Song E, Han M, Oh HS, et al. Lobectomy is feasible for papillary thyroid carcinomas sized 1-4 cm: a 10-year propensity score matched pair analysis on recurrence. Thyroid 2019;29:64-70.

[34] Zhang HS, Lee EK, Jong YS, et al. Total thyroidectomy’s association with survival in papillary thyroid cancers and the high proportion of total thyroidectomy in low-risk patients: analysis of Korean nationwide data. Surgery 2019;165:529-36.

[35] Park S, Oh CM, Cho H, et al. Association between screening and the thyroid cancer “epidemic” in South Korea: evidence from a nationwide study. BMJ 2016;355:i5745.

[36] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7-30.

[37] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.

[38] Cooper DS, Doherty GM, Haugen BR, et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2006;16:109-42.

[39] Gartland RM, Lubitz CC. Impact of extent of surgery on tumor recurrence and survival for papillary thyroid cancer patients. Ann Surg Oncol 2018;25:2520-5.

[40] Nixon IJ, Ganly I, Patel SG, et al. Thyroid lobectomy for treatment of well differentiated intrathyroid malignancy. Surgery 2012;151:571-9.

[41] Macedo FI, Mittal VK. Total thyroidectomy versus lobectomy as initial operation for small unilateral papillary thyroid carcinoma: a meta-analysis. Surg Oncol 2015;24:117-22.

[42] Zheng W, Li J, V F, et al. Treatment efficacy between total thyroidectomy and lobectomy for patients with papillary thyroid microcarcinoma: a systemic review and meta-analysis. Eur J Surg Oncol 2018;44:1679-84.

[43] Ross DS, Litofsky D, Ain KB, et al. Recurrence after treatment of micropapillary thyroid cancer. Thyroid 2009;19:1043-8.