Comparing direct limit and inverse limit of even K-groups in multiple \mathbb{Z}_p-extensions

Meng Fai Lim*

Abstract

Iwasawa first established a duality relating the direct limit and the inverse limit of class groups in a \mathbb{Z}_p-extension, and this result has recently been extended to multiple \mathbb{Z}_p-extensions by many authors. In this paper, we establish an analogous duality for the direct limit and the inverse limit of higher even K-groups in a \mathbb{Z}_p-extension.

Keywords and Phrases: Even K-groups, \mathbb{Z}_d-extension.

Mathematics Subject Classification 2020: 11R23, 11R70, 11S25.

1 Introduction

Let F be a number field and let K be a \mathbb{Z}_p-extension of F. For every finite extension L of F contained in K, we let A_L denote the p-primary part of the ideal class group of L. The ring of integer of L is then denoted by \mathcal{O}_L. Suppose that L' is an extension of L contained in K. Then there is a natural map $A_L \rightarrow A_{L'}$ induced by the natural inclusion $\mathcal{O}_L \subseteq \mathcal{O}_{L'}$. On the other hand, we have a map $A_{L'} \rightarrow A_L$ going the other way which is induced by the (ideal) norm. Then one has

$$\lim_{\rightarrow L'} A_L \quad \text{and} \quad \lim_{\leftarrow L} A_L,$$

where the direct limit (resp., the inverse limit) is taken with respect to the inclusion maps (resp., the norm maps). These two limit modules come naturally equipped with $\mathbb{Z}_p[[\Gamma]]$-module structures, where $\Gamma = \text{Gal}(K/F) \cong \mathbb{Z}_p$. For a $\mathbb{Z}_p[[\Gamma]]$-module M, we write M' for the $\mathbb{Z}_p[[\Gamma]]$-module which is the same underlying \mathbb{Z}_p-module M but whose Γ-action is given by

$$\gamma \cdot x = \gamma^{-1}x, \quad \gamma \in \Gamma, x \in M.$$

A classical theorem of Iwasawa [5] then asserts that there is a pseudo-isomorphism

$$\left(\lim_{\rightarrow L} A_L\right)' \sim \left(\lim_{\leftarrow L} A_L\right)^\vee.$$
of $\mathbb{Z}_p[[G]]$-modules. Here $(-)\vee$ is the Pontryagin dual. This result of Iwasawa has been generalized to the context of a \mathbb{Z}_p^d-extension (see the works of Nekovář [12], Vaclav [23] and, more recently, that of Lai and Tan [7]).

In this paper, we will consider the situation of the higher even K-groups. As before, let p be a prime, and let F be a number field. In the event that $p = 2$, we shall assume further that the number field F has no real primes. Let F_∞ be a \mathbb{Z}_p^d-extension of F. Fix an integer $i \geq 2$. For each finite intermediate extension L of F_∞/F, the works of Quillen [22] and Borel [3] tell us that the higher even K-group $K_{2i-2}(O_L)$ is finite. As is standard in Iwasawa theory, we are interested in the Sylow p-subgroup $K_{2i-2}(O_L)[p^\infty]$ of $K_{2i-2}(O_L)$. Now, for two finite subextensions $L \subseteq L'$, the inclusion $O_L \hookrightarrow O_{L'}$ induces a map $j_{L/L'} : K_{2i-2}(O_L)[p^\infty] \rightarrow K_{2i-2}(O_{L'})[p^\infty]$ by functoriality. In the other direction, there is the norm map (also called the transfer map) $\text{Tr}_{L'/L} : K_{2i-2}(O_{L'})[p^\infty] \rightarrow K_{2i-2}(O_L)[p^\infty]$. Similar to the class groups situation, we consider the following direct limit and inverse limit

$$\lim_{\leftarrow L} K_{2i-2}(O_L)[p^\infty] \text{ and } \lim_{\rightarrow L} K_{2i-2}(O_L)[p^\infty],$$

whose transition maps are given by the maps $j_{L/L'}$ and $\text{Tr}_{L'/L}$ respectively. Again, these limit modules come equipped with natural $\mathbb{Z}_p[[G]]$-module structures, where $G = \text{Gal}(F_\infty/F) \cong \mathbb{Z}_p^d$. For a $\mathbb{Z}_p[[G]]$-module M, the module M^\vee is defined similarly as before. The main result of this paper is then as follows.

Theorem (Theorem 3.1). Retain the notation as above. Then there is a pseudo-isomorphism

$$\left(\lim_{\leftarrow L} K_{2i-2}(O_L)[p^\infty] \right)^\vee \sim \left(\lim_{\rightarrow L} K_{2i-2}(O_L)[p^\infty] \right)^\vee$$

of $\mathbb{Z}_p[[G]]$-modules.

Since $K_0(O_L)[p^\infty] = A_L$, our result may therefore be interpreted as a generalization of the previous results of Iwasawa et al. to the higher even K-groups. For the remainder of the introductional section, we shall sketch the ideas of our proof, leaving the details to the body of the paper.

Let M be a finitely generated $\mathbb{Z}_p[[G]]$-module. For two open subgroups $V \subseteq U$ of G, the norm map $N_{U/V}$ on M_V factors through $M_U = (M_V)_{U/V}$ to yield a map $M_U \rightarrow M_V$, which by abuse of notation is also denoted by $N_{U/V}$. Then $\{M_U\}$ forms a direct system. We then say that the $\mathbb{Z}_p[[G]]$-module M is systematically coinvariant-finite if M_U is finite for every open subgroup U of G. For such a systematically coinvariant-finite module M, the direct limit $\lim_{U} M_U$ is naturally a discrete $\mathbb{Z}_p[[G]]$-module. The following algebraic result, which will be proved in Section 2, is an important ingredient for the proof of our main theorem.

Theorem (Theorem 2.10). Let M be a finitely generated $\mathbb{Z}_p[[G]]$-module which is systematically coinvariant-finite. Then we have an isomorphism

$$\text{Ext}^1_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[[G]]) \cong \left(\lim_{U} M_U \right)^\vee$$

(1.1)

of $\mathbb{Z}_p[[G]]$-modules.
Since a systematically coinvariant-finite \(\mathbb{Z}_p[[G]] \)-module is automatically torsion over \(\mathbb{Z}_p[[G]] \) (see Lemma 2.2 below), the left hand of the isomorphism (1.1) is pseudo-iso morphic to \(M \) (for instance, see [15, Proposition 8]). In view of this, to prove our Theorem 3.1 it suffices to take \(M = \lim_{\leftarrow L} K_{2i-2}(\mathcal{O}_L)[p^\infty] \), and show that this module satisfies the following properties:

(I) For every open subgroup \(U \) of \(G \), we have an isomorphism

\[
t_U : \left(\lim_{\leftarrow L} K_{2i-2}(\mathcal{O}_L)[p^\infty] \right)_U \cong K_{2i-2}(\mathcal{O}_{L_U})[p^\infty],
\]

where \(L_U \) is the fixed field of \(U \). In particular, the \(\mathbb{Z}_p[[G]] \)-module \(\lim_{\leftarrow L} K_{2i-2}(\mathcal{O}_L)[p^\infty] \) is systematically coinvariant-finite.

(II) For open subgroups \(V \subseteq U \) of \(G \), the following diagram

\[
\begin{array}{ccc}
\left(\lim_{\leftarrow L} K_{2i-2}(\mathcal{O}_L)[p^\infty] \right)_U & \xrightarrow{\sim} & K_{2i-2}(\mathcal{O}_{L_U})[p^\infty] \\
\downarrow_{\mathcal{N}_{U/V}} & & \downarrow_{\mathbb{Z}_{U/L_V}} \\
\left(\lim_{\leftarrow L} K_{2i-2}(\mathcal{O}_L)[p^\infty] \right)_V & \xrightarrow{\sim} & K_{2i-2}(\mathcal{O}_{L_V})[p^\infty]
\end{array}
\]

commutes.

The verification of the above two properties will be dealt with in Section 3 (in particular, see Proposition 3.2). As a corollary, we have the following result which is reminiscent to that for the class groups (see [2, Proposition 2], [7, Corollary 1.2.1] and [8, Théorème 4.1 and Théorème 4.4]).

Corollary (Corollary 3.3). Retain the above notation. Then \(\lim_{\leftarrow L} K_{2i-2}(\mathcal{O}_L)[p^\infty] \) is pseudo-null over \(\mathbb{Z}_p[[G]] \) if and only if \(\lim_{\leftarrow L} K_{2i-2}(\mathcal{O}_L)[p^\infty] = 0 \).

Acknowledgement

This research is supported by the National Natural Science Foundation of China under Grant No. 11771164.

2 Systematically coinvariant-finite modules

Throughout this section, \(p \) will always denote a fixed prime. Let \(d \geq 1 \). We shall denote by \(G \) the group isomorphic to the \(d \)-copies of the additive group \(\mathbb{Z}_p \). The completed group algebra \(\mathbb{Z}_p[[G]] \) is defined by

\[
\lim_{\leftarrow U} \mathbb{Z}_p[G/U],
\]
where U runs through all open subgroups of G and the transition maps are given by the natural projection $\mathbb{Z}_p[G/V] \to \mathbb{Z}_p[G/U]$ for $V \subseteq U$. It is well-known that the ring $\mathbb{Z}_p[[G]]$ can be identified with the power series ring in d variables over \mathbb{Z}_p. In particular, it is a local ring.

Definition 2.1. Let M be a $\mathbb{Z}_p[[G]]$-module. For an open subgroup U of G, we write M_U for the largest quotient of M on which U acts trivially. The $\mathbb{Z}_p[[G]]$-module M is then said to be **systematically coinvariant-finite** if M_U is finite for every open subgroup U of G. As seen in the introduction, $\{M_U\}_U$ forms a direct system of finite modules with transition maps given by

$$N_{U/V} : M_U \to M_V$$

for $V \subseteq U$. In particular, $\varprojlim_U M_U$ is a discrete $\mathbb{Z}_p[[G]]$-module.

Lemma 2.2. A systematically coinvariant-finite $\mathbb{Z}_p[[G]]$-module M is finitely generated torsion over $\mathbb{Z}_p[[G]]$.

Proof. Let m be the (unique) maximal ideal of $\mathbb{Z}_p[[G]]$. Then it contains the augmentation ideal I_G (for instances, see [13, Proposition 5.2.16]). Thus, M/mM is a quotient of M_G and hence finite. By the Nakayama lemma, this in turn implies that M is finitely generated over $\mathbb{Z}_p[[G]]$. Finally, since $G \cong \mathbb{Z}_p^d$, it is in particular a solvable p-adic Lie group. Therefore, we may apply the main result of [1] to conclude that M is torsion over $\mathbb{Z}_p[[G]]$.

We can now state the main theorem of this section.

Theorem 2.3. Let M be a systematically coinvariant-finite $\mathbb{Z}_p[[G]]$-module. Then we have an isomorphism

$$\text{Ext}^1_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[[G]]) \cong \left(\varprojlim_U M_U \right)^\vee.$$

Before giving the proof, we make two remarks.

Remark 2.4. Note that the conclusion of theorem is false if we remove the “systematically coinvariant-finite” hypothesis. We give a counterexample to illustrate this. Suppose that $d \geq 2$. Let $M = \mathbb{Z}_p$ be the module with trivial G-action. Then one has $\text{Ext}^1_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[[G]]) = 0$ but $\varprojlim_U M_U = \mathbb{Q}_p$.

Remark 2.5. It is instructive to specialize our theorem to the context of $G = \Gamma \cong \mathbb{Z}_p$. In this context, $\mathbb{Z}_p[[\Gamma]]$ identifies with the power series ring $\mathbb{Z}_p[[T]]$ in one variable. Denote by $w_n := w_n(T)$ the polynomial $(1 + T)^{p^n} - 1$. For a $\mathbb{Z}_p[[T]]$-module, one has a natural identification $M/w_nM \cong M_{\Gamma_n}$, where Γ_n is the subgroup of Γ of index p^n. If M is systematically coinvariant-finite, then the prime ideals dividing w_n, $n \geq 0$, are disjoint to the set of prime ideals of height one in the support of M. Our Theorem 2.3 therefore coincides with the isomorphism

$$\text{Ext}^1_{\mathbb{Z}_p[[\Gamma]]}(M, \mathbb{Z}_p[[\Gamma]]) \cong \left(\varprojlim_n M/w_n \right)^\vee$$

obtained via the theory of Iwasawa adjoint as in [13, Proposition 5.5.6].
We split the proof of Theorem 2.3 into a few lemmas. The first of which is the following general observation.

Lemma 2.6. For every finitely generated $\mathbb{Z}_p[[G]]$-module M, there is an isomorphism

$$\text{Ext}^1_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[[G]]) \cong \lim_{\leftarrow U} \text{Ext}^1_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[G/U]),$$

where the inverse limit is taken with respect to the canonical projection maps.

Proof. The isomorphism

$$\text{Hom}_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[[G]]) \cong \lim_{\leftarrow U} \text{Hom}_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[G/U]).$$

plainly holds when M is free of finite rank. But since the ring $\mathbb{Z}_p[[G]]$ is Noetherian, every finitely generated module M has a resolution consisting of finitely generated free $\mathbb{Z}_p[[G]]$-modules. Applying the above isomorphism to this free resolution and taking homology, we obtain the conclusion of the lemma.

Before continuing, we make another remark.

Remark 2.7. Let U be an open (normal) subgroup of G and let M be a $\mathbb{Z}_p[[G]]$-module. A $\mathbb{Z}_p[[G]]$-module homomorphism $M \rightarrow \mathbb{Z}_p[G/U]$ naturally factors through $M_U \rightarrow \mathbb{Z}_p[G/U]$. Furthermore, one sees easily that this latter map can be viewed as a $\mathbb{Z}_p[G/U]$-module homomorphism. Conversely, given a $\mathbb{Z}_p[G/U]$-module homomorphism $M_U \rightarrow \mathbb{Z}_p[G/U]$, by considering the composition $M \rightarrow M_U \rightarrow \mathbb{Z}_p[G/U]$, we obtain a $\mathbb{Z}_p[[G]]$-module homomorphism. In conclusion, we have identifications

$$\text{Hom}_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[G/U]) = \text{Hom}_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Z}_p[G/U]) = \text{Hom}_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Z}_p[G/U]).$$

These identifications will be frequently utilized in the subsequent discussion of this paper without any further mention.

For the next two lemmas, we shall require the module M to be systematically coinvariant-finite. In particular, the next lemma also makes use of the property of G being commutative.

Lemma 2.8. Suppose that M is a systematically coinvariant-finite $\mathbb{Z}_p[[G]]$-module. Then we have an isomorphism

$$\theta_U : \text{Ext}^1_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[G/U]) \cong \text{Ext}^1_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Z}_p[G/U]).$$

Furthermore, if V is another open subgroup of G which is contained in U, then we have the following commutative diagram

$$\begin{array}{ccc}
\text{Ext}^1_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[G/V]) & \xrightarrow{\sim} & \text{Ext}^1_{\mathbb{Z}_p[G/V]}(M_V, \mathbb{Z}_p[G/V]) \\
\downarrow & & \downarrow \\
\text{Ext}^1_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[G/U]) & \xrightarrow{\sim} & \text{Ext}^1_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Z}_p[G/U])
\end{array}$$

where the vertical maps are induced by the projection $\mathbb{Z}_p[G/V] \rightarrow \mathbb{Z}_p[G/U]$.

5
Proof. Since M is finitely generated over $\mathbb{Z}_p[[G]]$, we can find a short exact sequence

$$0 \rightarrow N \rightarrow \mathbb{Z}_p[[G]]^r \rightarrow M \rightarrow 0$$

of finitely generated $\mathbb{Z}_p[[G]]$-modules. Taking U-homology of this short exact sequence, we obtain an exact sequence

$$0 \rightarrow H_1(U, M) \rightarrow N_U \rightarrow \mathbb{Z}_p[G/U]^r \rightarrow M_U \rightarrow 0$$

of $\mathbb{Z}_p[G/U]$-modules. Let C denote the kernel of the map $\mathbb{Z}_p[G/U]^r \rightarrow M_U$. Consider the following diagram

$$\begin{array}{ccccccccc}
\text{Hom}_{\mathbb{Z}_p[[G]]}[\mathbb{Z}_p[G/U]^r, \mathbb{Z}_p[G/U]] & \rightarrow & \text{Hom}_{\mathbb{Z}_p[[G]]}(C, \mathbb{Z}_p[G/U]) & \rightarrow & \text{Ext}^1_{\mathbb{Z}_p[[G]]}(M_U, \mathbb{Z}_p[G/U]) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
\text{Hom}_{\mathbb{Z}_p[[G]]}[\mathbb{Z}_p[G/U]^r, \mathbb{Z}_p[G/U]] & \rightarrow & \text{Hom}_{\mathbb{Z}_p[[G]]}(N, \mathbb{Z}_p[G/U]) & \rightarrow & \text{Ext}^1_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[G/U]) & \rightarrow & 0
\end{array} \tag{2.2}$$

with exact rows. Here the middle vertical map α_U is given by

$$\text{Hom}_{\mathbb{Z}_p[[G]]}(C, \mathbb{Z}_p[G/U]) \rightarrow \text{Hom}_{\mathbb{Z}_p[[G]]}(N, \mathbb{Z}_p[G/U]) = \text{Hom}_{\mathbb{Z}_p[[G]]}(N, \mathbb{Z}_p[G/U]).$$

It is straightforward to check that the leftmost square is commutative and this in turn induces the rightmost vertical map which is our θ_U. Furthermore, the map α_U is injective with cokernel contained in

$$\text{Hom}_{\mathbb{Z}_p[[G/U]]}(H_1(U, M), \mathbb{Z}_p[G/U]).$$

Since U is an open subgroup of G, it is also isomorphic to \mathbb{Z}_p^d as a group. In view that M_U is finite, we also have that $H_1(U, M)$ is finite (cf. [17] Chap. IV, Theorem 1); one may also consult p. 106 in op. cit., where they obtain such a finiteness result for $k[[G]]$, where k is a field. But the same discussion carries over if k is replaced by \mathbb{Z}_p.) Since a $\mathbb{Z}_p[G/U]$-module homomorphism is also a group homomorphism and $\mathbb{Z}_p[G/U]$ has no p-torsion, one must have $\text{Hom}_{\mathbb{Z}_p[[G/U]]}(H_1(U, M), \mathbb{Z}_p[G/U]) = 0$. Consequently, the map α_U is an isomorphism. From this and the diagram (2.2), we have that θ_U is an isomorphism. Finally, one checks easily that the leftmost square in (2.2) is natural in U, which in turn implies that the map θ_U is natural in U. The proof of the lemma is therefore completed. \qed

Lemma 2.9. Suppose that M is a systematically coinvariant-finite $\mathbb{Z}_p[[G]]$-module. Then we have an isomorphism

$$\psi_U : \text{Ext}^1_{\mathbb{Z}_p[[G/U]]}(M_U, \mathbb{Z}_p[G/U]) \cong (M_U)^\vee.$$

Furthermore, if V is another open subgroup of G which is contained in U, there is a commutative diagram

$$\begin{array}{cccccc}
\text{Ext}^1_{\mathbb{Z}_p[[G/U]]}(M_V, \mathbb{Z}_p[G/V]) & \rightarrow & (M_V)^\vee \\
\downarrow & & \downarrow \\
\text{Ext}^1_{\mathbb{Z}_p[[G/U]]}(M_U, \mathbb{Z}_p[G/U]) & \rightarrow & (M_U)^\vee
\end{array} \tag{2.3}$$

where the vertical map on the left is induced by the projection $\mathbb{Z}_p[G/V] \rightarrow \mathbb{Z}_p[G/U]$ and the vertical map on the right is induced by the norm map $N_{U/V} : M_U \rightarrow M_V$.

6
Proof. Since M_U is finite, it is annihilated by p^t for some large enough t. On the other hand, multiplication by p^t induces an automorphism on $\mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. Hence it follows that

$$\text{Ext}^i_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) = 0$$

for every $i \geq 0$. Taking this into account, upon applying $\text{Hom}_{\mathbb{Z}_p[G/U]}(M_U, -)$ to the short exact sequence

$$0 \rightarrow \mathbb{Z}_p[G/U] \rightarrow \mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \rightarrow \mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p \rightarrow 0,$$

we see that the connecting morphism

$$\partial_U : \text{Hom}_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p) \rightarrow \text{Ext}^1_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Z}_p[G/U])$$

is an isomorphism which is natural in U. It therefore remains to show the existence of an isomorphism

$$\eta_U : \text{Hom}_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p) \cong (M_U)^\vee$$

for every open subgroup U of G with the property that if $V \subseteq U$, there is a commutative diagram

\[
\begin{array}{ccc}
\text{Hom}_{\mathbb{Z}_p[G/V]}(M_V, \mathbb{Z}_p[G/V] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p) & \xrightarrow{\eta_V} & (M_V)^\vee \\
\downarrow & & \\
\text{Hom}_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p) & \xrightarrow{\eta_U} & (M_U)^\vee \\
\end{array}
\]

where the left vertical map is induced by the projection $\mathbb{Z}_p[G/V] \rightarrow \mathbb{Z}_p[G/U]$ and the right vertical map is induced by the norm map $N_{U/V} : M_U \rightarrow M_V$. To simplify notation, we shall write $\mathbb{Q}_p/\mathbb{Z}_p[G/U] = \mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p$. Now, for each $f \in \text{Hom}_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Q}_p/\mathbb{Z}_p[G/U])$ and $x \in M_U$, we write

$$f(x) = \sum_{\sigma \in G/U} f_\sigma(x) \sigma,$$

where $f_\sigma(x) \in \mathbb{Q}_p/\mathbb{Z}_p$. We then define the map

$$\eta_U : \text{Hom}_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Q}_p/\mathbb{Z}_p[G/U]) \rightarrow (M_U)^\vee$$

by sending $f \mapsto f_1$, where “1” denotes the identity of the group G/U. Let $\tau \in G/U$. Since f is a $\mathbb{Z}_p[G/U]$-homomorphism, we have the identity $\tau f(x) = f(\tau x)$ which in turn yields

$$f_\sigma(\tau x) = f_{\tau^{-1}\sigma}(x)$$

for every $\sigma \in G/U$. In particular, we have

$$f_1(\tau x) = f_{\tau^{-1}}(x)$$

for every $\tau \in G/U$. Hence f is uniquely determined by f_1, and therefore, η_U is an isomorphism. It remains to show that η_U is natural in U. Let V be an open subgroup of G which is contained in U. The projection $\mathbb{Z}_p[G/V] \rightarrow \mathbb{Z}_p[G/U]$ induces a map

$$\rho_{VU} : \text{Hom}_{\mathbb{Z}_p[G/V]}(M_V, \mathbb{Q}_p/\mathbb{Z}_p[G/V]) \rightarrow \text{Hom}_{\mathbb{Z}_p[G/U]}(M_V, \mathbb{Q}_p/\mathbb{Z}_p[G/U]) = \text{Hom}_{\mathbb{Z}_p[G/U]}(M_U, \mathbb{Q}_p/\mathbb{Z}_p[G/U]).$$
Let $x \in M_U$ and $h \in \text{Hom}_{\mathbb{Z}_p[G/V]}(M_V, \mathbb{Z}_p[G/V] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p/\mathbb{Z}_p)$. By abuse of notation, we write $x \in M_V$ for a preimage of x under natural surjection $M_V \to (M_V)_{U/V} = M_U$. Let $\sigma_1, \sigma_2, \ldots, \sigma_r \in G/V$ be a complete set of coset representatives of U/V in G/V. Then one has

$$h(x) = \sum_{\tau \in U/V} \sum_{i=1}^r h_{\tau \sigma_i}(x) \tau \sigma_i.$$

From which, we have

$$\rho_{VU}(h)(x) = \sum_{i=1}^r \left(\sum_{\tau \in U/V} h_{\tau \sigma_i}(x) \right) \sigma_i,$$

which in turn implies that

$$\rho_{VU}(h_1)(x) = \sum_{\tau \in U/V} h_1(\tau x) = \sum_{\tau \in U/V} h_1(\tau^{-1} x) = h_1 \left(\sum_{\tau \in U/V} \tau^{-1} x \right) = h_1 \left(N_{U/V}(x) \right).$$

This establishes the commutativity of the diagram (2.4). The proof is therefore completed.

Theorem 2.3 is now a consequence of a combination of Lemmas 2.6, 2.8 and 2.9. We end this section with two useful corollaries. Recall that for a $\mathbb{Z}_p[[G]]$-module M, M' denotes the $\mathbb{Z}_p[[G]]$-module which is the same underlying \mathbb{Z}_p-module M with G-action given by

$$g \cdot x = g^{-1} x, \quad g \in G, \quad x \in M.$$

Corollary 2.10. Let M be a systematically coinvariant-finite $\mathbb{Z}_p[[G]]$-module. Then one has a pseudo-isomorphism

$$M' \cong \left(\lim_{U} M_U \right)^\vee.$$

of $\mathbb{Z}_p[[G]]$-modules.

Proof. Since $\text{Ext}^1_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[[G]]) \sim M'$ (cf. [15, Proposition 8]), the conclusion of the corollary follows from this and Theorem 2.3.

Corollary 2.11. Let M be a systematically coinvariant-finite $\mathbb{Z}_p[[G]]$-module. Then M is pseudo-null over $\mathbb{Z}_p[[G]]$ if and only if $\lim_{U} M_U = 0$.

Proof. By virtue of Lemma 2.9, we already know that M is finitely generated torsion over $\mathbb{Z}_p[[G]]$. Therefore, for M to be pseudo-null over $\mathbb{Z}_p[[G]]$, it is equivalent to having $\text{Ext}^1_{\mathbb{Z}_p[[G]]}(M, \mathbb{Z}_p[[G]]) = 0$. In view of Theorem 2.3, this is the same as saying that $\lim_{U} M_U = 0$.

8
3 Arithmetic

Let F be a number field. In the event $p = 2$, we assume further that F has no real places. For a ring R with identity, write $K_n(R)$ for the algebraic K-groups of R in the sense of Quillen [21] (also see [3, 26]). Let $i \geq 2$. We let \mathcal{O}_F denote the ring of integers of F. By the fundamental results of Quillen [22] and Borel [3], the group $K_{2i-2}(\mathcal{O}_F)$ is finite for each $i \geq 2$. For a finite extension L of F, we have a map

$$j_{F/L} : K_{2i-2}(\mathcal{O}_F) \rightarrow K_{2i-2}(\mathcal{O}_L)$$

induced by the inclusion $\mathcal{O}_F \rightarrow \mathcal{O}_L$ via functionality. On the other hand, we have the transfer map

$$\text{Tr}_{L/F} : K_{2i-2}(\mathcal{O}_L) \rightarrow K_{2i-2}(\mathcal{O}_F).$$

Let F_∞ be a \mathbb{Z}_p^d-extension of F, where $d \geq 1$. The Galois group $\text{Gal}(F_\infty/F)$ will always be denoted by G. We then consider the following direct limit and inverse limit

$$\lim_{\leftarrow} K_{2i-2}(\mathcal{O}_L)[p^\infty]$$

and

$$\lim_{\rightarrow} K_{2i-2}(\mathcal{O}_L)[p^\infty],$$

where the transition maps for the direct limit (resp., the inverse limit) are given by $j_{L/L'}$ (resp., $\text{Tr}_{L/L'}$). For the direct limit, we shall sometimes write

$$K_{2i-2}(\mathcal{O}_{F_\infty})_p := \lim_{\leftarrow} K_{2i-2}(\mathcal{O}_L)[p^\infty].$$

The following is the main theorem of this paper.

Theorem 3.1. For $i \geq 2$, there is a pseudo-isomorphism

$$\left(\lim_{\leftarrow} K_{2i-2}(\mathcal{O}_L)[p^\infty] \right)^i \sim \left(K_{2i-2}(\mathcal{O}_{F_\infty})_p \right)^\vee$$

of $\mathbb{Z}_p[[G]]$-modules.

As seen from the discussion in the introduction, it suffices to show the following assertion.

Proposition 3.2. The $\mathbb{Z}_p[[G]]$-module $\lim_{\leftarrow} K_{2i-2}(\mathcal{O}_L)[p^\infty]$ is systematically coinvariant-finite such that for every open subgroup U of G, there is an isomorphism

$$t_U : \left(\lim_{\leftarrow} K_{2i-2}(\mathcal{O}_L)[p^\infty] \right)_U \cong K_{2i-2}(\mathcal{O}_{L_U})[p^\infty],$$

where L_U is the fixed field of U. Furthermore, if V is an open subgroup of G contained in U with fixed field L_V, we then have the following commutative diagram

$$\begin{array}{ccc}
\left(\lim_{\leftarrow} K_{2i-2}(\mathcal{O}_L)[p^\infty] \right)_U & \xrightarrow{j_{L_U/L_V}} & K_{2i-2}(\mathcal{O}_{L_V})[p^\infty] \\
\downarrow \kappa_{U/V} & & \downarrow j_{L_U/L_V} \\
\left(\lim_{\leftarrow} K_{2i-2}(\mathcal{O}_L)[p^\infty] \right)_V & \xrightarrow{j_{L_V/L_U}} & K_{2i-2}(\mathcal{O}_{L_U})[p^\infty]
\end{array}$$

(3.1)
Theorem 3.1 will then follow immediately from a combination of Corollary 2.10 and Proposition 3.2. Furthermore, combining Corollary 2.11 with Proposition 3.2 yields the following corollary.

Corollary 3.3. Retain the above notation. Then \(\lim_{L \to K} K_{2i-2}(O_L)[p^\infty] \) is pseudo-null over \(\mathbb{Z}_p[[G]] \) if and only if \(\lim_{L \to K} K_{2i-2}(O_L)[p^\infty] = 0 \).

The remainder of the section will be devoted to the verification of Proposition 3.2. Throughout, we shall let \(S \) denote the set of primes of \(F \) consisting of those above \(p \) and the infinite primes. Write \(F_S \) for the maximal algebraic extension of \(F \) unramified outside \(S \). Denoting by \(\mu_{p^n} \) the cyclic group generated by a primitive \(p^n \)-root of unity, we then write \(\mu_{p^n} \) for the direct limit of the groups \(\mu_{p^n} \). These have natural \(G_S(F) \)-module structures. The action of \(G_S(F) \) on \(\mu_{p^n} \) induces a continuous character

\[\chi : G_S(F) \to \text{Aut}(\mu_{p^n}) \cong \mathbb{Z}_p^\times. \]

For a discrete or compact \(G_S(F) \)-module \(X \), we shall write \(X(i) \) for the \(G_S(F) \)-module which is \(X \) as a \(\mathbb{Z}_p \)-module but with a \(G_S(F) \)-action given by

\[\sigma \cdot x = \chi(\sigma^i) \sigma x, \]

where the action on the right is the original action of \(G_S(F) \) on \(X \). Plainly, we have \(X(0) = X \) and \(\mu_{p^n} \cong \mathbb{Q}_p/\mathbb{Z}_p(1) \). One can also check directly that

\[X(i + j) \cong (X(i)))(j). \]

The key approach towards proving Proposition 3.2 is via cohomology. For this, we need to recall the works of 20, Rost and Voevodsky [24] which allows us to translate our problem into a cohomological one. In 20, Soulé connected the \(K \)-groups with continuous cohomology groups via the \(p \)-adic Chern class maps

\[\text{ch}_i^F : K_{2i-2}(O_F)[p^\infty] \cong K_{2i-2}(O_F) \otimes \mathbb{Z}_p \to H^2(G_S(F), \mathbb{Z}_p(i)) \]

for \(i \geq 2 \). For the precise definition of these maps, we refer readers to loc. cit. Soulé has proved that these maps are surjective (see 20 Théorème 6(iii))). Thanks to the deep work of Rost and Voevodsky [24] (also see [25]), we now know that these maps are isomorphisms.

Now, if \(L \) is a finite extension of \(F \) contained in \(F_S \), we shall write \(G_S(L) \) for the Galois group \(\text{Gal}(F_S/L) \). Then one has the following commutative diagrams (see 20 Chap. III)

\[
\begin{align*}
K_{2i-2}(O_F)[p^\infty] &\xrightarrow{\text{ch}_i^F} H^2(G_S(F), \mathbb{Z}_p(i)) \\
K_{2i-2}(O_L)[p^\infty] &\xrightarrow{\text{ch}_i^L} H^2(G_S(L), \mathbb{Z}_p(i)) \\
K_{2i-2}(O_L)[p^\infty] &\xrightarrow{\text{Tr}_{L/F}} H^2(G_S(L), \mathbb{Z}_p(i))
\end{align*}
\]

(3.2)

\[
\begin{align*}
K_{2i-2}(O_F)[p^\infty] &\xrightarrow{\text{ch}_i^F} H^2(G_S(F), \mathbb{Z}_p(i)) \\
K_{2i-2}(O_L)[p^\infty] &\xrightarrow{\text{ch}_i^L} H^2(G_S(L), \mathbb{Z}_p(i)) \\
K_{2i-2}(O_F)[p^\infty] &\xrightarrow{\text{Tr}_{L/F}} H^2(G_S(F), \mathbb{Z}_p(i))
\end{align*}
\]

(3.3)
We turn back to our \mathbb{Z}_p^d-extension F_∞. Note that by \cite[Theorem 1]{5}, the extension F_∞ is contained in F_S. Hence it makes sense to speak of $G_S(L) = \text{Gal}(F_S/L)$. We then define the Iwasawa cohomology group $H^k_{\text{Iw}}(F_\infty/F, \mathbb{Z}_p(i))$ to be

$$H^k_{\text{Iw}}(F_\infty/F, \mathbb{Z}_p(i)) := \lim_{\leftarrow L} H^k(G_S(L), \mathbb{Z}_p(i)),$$

where the inverse limit is taken over all the finite extensions L of F contained in F_∞ and with respect to the corestriction maps. It can be shown that these cohomology groups are finitely generated over $\mathbb{Z}_p[[G]]$ (for instance, see \cite[Proposition 4.1.3]{11}). From the commutative diagram (3.3), we obtain the following relation between the inverse limit of K-groups and the second Iwasawa cohomology groups.

Lemma 3.4. Suppose that $i \geq 2$. Then there is an isomorphism

$$\lim_{\leftarrow L} K_{2i-2}(\mathcal{O}_L)[\mathbb{Z}_p^\infty] \cong H^2_{\text{Iw}, S}(F_\infty/F, \mathbb{Z}_p(i))$$

of $\mathbb{Z}_p[[G]]$-modules.

We now recall the following version of Tate’s descent spectral sequence for Iwasawa cohomology groups. This will allow us to relate the coinvariant of the Iwasawa cohomology group with the intermediate cohomology groups.

Proposition 3.5. Let U be an open normal subgroup of $G = \text{Gal}(F_\infty/F)$ and write L for the fixed field of U. Then we have a homological spectral sequence

$$H_r(U, H^{-s}_{\text{Iw}}(F_\infty/F, \mathbb{Z}_p(i))) \Rightarrow H^{-r-s}(G_S(L), \mathbb{Z}_p(i)).$$

In particular, we have an isomorphism

$$H^2_{\text{Iw}}(F_\infty/F, \mathbb{Z}_p(i))_U \cong H^2(G_S(L), \mathbb{Z}_p(i)).$$

induced by the corestriction map on cohomology.

Proof. Had F_∞/F being a finite extension, this is essentially the Tate spectral sequence (for instance, see \cite[Theorem 2.5.3]{13}). In the general context of the proposition, this follows from the work of Nekovář \cite[Proposition 8.4.8.1]{12}. The final isomorphism in the proposition follows from reading off the initial $(0,-2)$-term of the spectral sequence.

In view of the preceding proposition and commutative diagram (3.2), for the verification of the commutativity of (3.1), one is reduced to proving the following lemma.

Lemma 3.6. For open subgroups U, V of G such that $V \subseteq U$, let L (resp., K) be the fixed field of U (resp., V). Then we have the following commutative diagram

$$\begin{CD}
H^2_{\text{Iw}}(F_\infty/F, \mathbb{Z}_p(i))_U @>\text{cor}>> H^2(G_S(L), \mathbb{Z}_p(i)) \\
@V\text{res}VV @V\text{res}VV \\
H^2_{\text{Iw}}(F_\infty/F, \mathbb{Z}_p(i))_V @>\text{cor}>> H^2(G_S(K), \mathbb{Z}_p(i))
\end{CD}$$
Proof. Let W be any open subgroup of G contained in V. Write $E = E_W$ for the fixed field of W. By either appealing to the double coset formula (cf. [13, Proposition 1.5.11]) or a direct verification, one has a commutative diagram

$$
\begin{array}{c}
H^2(G_S(E), \mathbb{Z}_p(i)) \\ \downarrow \text{res} \\
H^2(G_S(E), \mathbb{Z}_p(i))
\end{array}
\xrightarrow{\text{cor}}
\begin{array}{c}
H^2(G_S(L), \mathbb{Z}_p(i)) \\ \downarrow \text{res} \\
H^2(G_S(K), \mathbb{Z}_p(i))
\end{array}
$$

Varying W, we obtain a commutative diagram

$$
\begin{array}{c}
H^2(Iw(F_{\infty}/F, \mathbb{Z}_p(i))) \\ \downarrow \text{res} \\
H^2(Iw(F_{\infty}/F, \mathbb{Z}_p(i)))
\end{array}
\xrightarrow{\text{cor}}
\begin{array}{c}
H^2(G_S(L), \mathbb{Z}_p(i)) \\ \downarrow \text{res} \\
H^2(G_S(K), \mathbb{Z}_p(i))
\end{array}
$$

By Proposition 3.5, the horizontal maps factor through $H^2(Iw(F_{\infty}/F, \mathbb{Z}_p(i)))_U$ and $H^2(Iw(F_{\infty}/F, \mathbb{Z}_p(i)))_V$ respectively. From which, we obtain the required diagram of the lemma.

We may now conclude the section.

Proof of Proposition 3.2. The isomorphism t_U is a consequence of Lemma 3.4 and Proposition 3.5. On the other hand, the commutativity of diagram (3.1) follows from a combination of Proposition 3.5, Lemma 3.6 and diagram (3.2).

4 Some further remarks

A conjecture of Schneider (cf. [16, p. 192]) asserted that the cohomology group $H^2(G_S(F), \mathbb{Z}_p(i))$ is finite for $i \leq 0$. Granted this conjecture, the argument in the preceding section carries over to yield a similar sort of result for these cohomology groups. We will just record two situations, where the conjecture of Schneider is known to hold.

Theorem 4.1. Suppose that we are in either of the following situations.

(a) The number field F is totally real (and so $p \geq 3$ by our standing assumption), F_{∞} is the cyclotomic \mathbb{Z}_p-extension of F and i is a negative odd integer.

(b) The number field F is an imaginary quadratic field, F_{∞} is a \mathbb{Z}_p^d-extension of F (note that $d = 1$ or 2) and $i = 0$.

Then we have a pseudo-isomorphism

$$
\left(\lim_{L} H^2(G_S(L), \mathbb{Z}_p(i)) \right)^{\vee} \sim \left(\lim_{L} H^2(G_S(L), \mathbb{Z}_p(i)) \right)^{\vee}
$$

of $\mathbb{Z}_p[[\text{Gal}(F_{\infty}/F)]]$-modules.
Proof. The proof is similar as before. We simply mention that in case (a), the finiteness of \(H^2(G_S(L), Z_p(i)) \) is a consequence of \([14]\) Proposition 3.8. For case (b), since each intermediate extension \(L \) of \(F \) contained in \(F_\infty \) is abelian over \(F \), Brumer’s theorem (cf. \([13]\) Theorem 10.3.16) applies telling us that \(H^2(G_S(L), Z_p) \) is finite. \(\square \)

5 Some classes of examples

We end giving some classes of examples, where \(\lim L \to K_{2i-2}(O_L)[p^\infty] \) can be either zero or not. We first show that one can construct many examples of nonzero \(\lim L \to K_{2i-2}(O_L)[p^\infty] \). Recall that for every \(Z_p[[G]] \)-module \(M \), there is a \(Z_p[[G]] \)-homomorphism

\[
M[p^\infty] \to \bigoplus_{i=1}^s Z_p[[G]]/p^{\alpha_i}
\]

with pseudo-null kernel and cokernel. The \(\mu_G \)-invariant of \(M \) is then defined to be \(\sum_i \alpha_i \). Note that if \(M \) (and hence \(M[p^\infty] \)) is pseudo-null over \(Z_p[[G]] \), then its \(\mu_G \)-invariant is trivial.

Proposition 5.1. Let \(i \geq 2 \) and let \(G = Z_{p^d} \), where \(d \geq 1 \). Suppose that \(p \) is a prime such that \(p > 2d+1 \). Then there exist infinitely many pairs \((F, F_\infty) \), where \(F \) is a finite cyclic extension of \(\mathbb{Q}(\mu_p) \) and \(F_\infty \) is a \(Z_{p^d} \)-extension of \(F \) such that \(K_{2i-2}(O_{F_\infty}) \neq 0 \).

Proof. Indeed, under the hypothesis of the result, it has been shown that there exist infinitely many pairs \((F, F_\infty) \), where \(F \) is a finite cyclic extension of \(\mathbb{Q}(\mu_p) \) and \(F_\infty \) is a \(Z_{p^d} \)-extension of \(F \) such that \(H^2_G(F_\infty/F, Z_p(i)) \) has nontrivial \(\mu_G \)-invariant (cf. \([10]\) Proposition 5.2.2). By the remark before the proposition, the module \(H^2_G(F_\infty/F, Z_p(i)) \) is therefore not pseudo-null over \(Z_p[[G]] \). Consequently, it follows from Lemma \([4,4]\) and Corollary \([3,3]\) that \(K_{2i-2}(O_{F_\infty}) \neq 0 \). \(\square \)

Proposition 5.2. Let \(F = \mathbb{Q}(\mu_p) \), where \(p \) is an irregular prime \(< 1000 \). If \(F_\infty \) is the compositum of all \(Z_p \)-extensions of \(F \), then \(K_{2i-2}(O_{F_\infty}) = 0 \) for every \(i \geq 2 \).

Proof. Let \(L_\infty \) be the maximal unramified abelian pro-\(p \) extension of \(F_\infty \), and let \(L'_\infty \) be the maximal subextension of \(L_\infty \) in which every prime of \(F_\infty \) above \(p \) splits completely. Sharifi has shown that the Greenberg conjecture is valid under the hypothesis of the proposition (cf. \([18, \text{Theorem 1.3}]\)). In other words, \(\text{Gal}(L_\infty/F_\infty) \) is pseudo-null over \(Z_p[[G]] \). Since \(\text{Gal}(L'_\infty/F_\infty) \) is a quotient of \(\text{Gal}(L_\infty/F_\infty) \), it is also pseudo-null over \(Z_p[[G]] \). Now, by the Poitou-Tate sequence, we have an exact sequence

\[
0 \to \text{Gal}(L'_\infty/F_\infty) \to H^2_{tw}(F_\infty/F, Z_p(1)) \to \lim_{\substack{\longrightarrow \\mathbb{L} \to L \in S(L) \atop \bigoplus}} H^2(L_{w, L}, Z_p(1)),
\]

where \(S(L) \) is the set of primes of \(L \) above \(p \). Since the decomposition group of \(F_\infty/F \) at the prime of \(F \) above \(p \) has dimension \(\geq 2 \) (cf. \([8, \text{Théorème 3.2}]\)), we may apply a similar argument to that in \([9, \text{Lemma 5.3}]\) to conclude that \(\lim_{\substack{\longrightarrow \\mathbb{L} \to L \in S(L) \atop \bigoplus}} H^2(L_{w, L}, Z_p(1)) \) is pseudo-null over \(Z_p[[G]] \), and whence,
$H^2_{Iw}(F_\infty/F, \mathbb{Z}_p(1))$ is pseudo-null over $\mathbb{Z}_p[[G]]$. On the other hand, as F_∞ contains μ_{p^∞}, an application of [19, Lemma 2.5.1(c)] tells us that

$$H^2_{Iw}(F_\infty/F, \mathbb{Z}_p(i)) \cong H^2_{Iw}(F_\infty/F, \mathbb{Z}_p(1)) \otimes \mathbb{Z}_p(i-1)$$

for every $i \geq 2$. Thus, it follows that $H^2_{Iw}(F_\infty/F, \mathbb{Z}_p(i))$ is pseudo-null over $\mathbb{Z}_p[[G]]$ for every $i \geq 2$. Combining this latter observation with Lemma 3.1 and Corollary 3.3, we obtain the conclusion of the proposition.

References

[1] P. N. Balister; S. Howson, Notes on Nakayama's lemma for compact Λ-modules, Asian J. Math. 1(2) (1997) 224–229.
[2] A. Bandini, Greenberg’s conjecture and capitulation in \mathbb{Z}_p^d-extensions, J. Number Theory 122 (2007) 121–134.
[3] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272.
[4] R. Greenberg, Iwasawa theory–past and present, in: Class field theory–its centenary and prospect (Tokyo, 1998), 335–385, Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001.
[5] K. Iwasawa, On \mathbb{Z}_l-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246–326.
[6] M. Kolster, K-theory and arithmetic. Contemporary developments in algebraic K-theory, 191–258, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004.
[7] K. F. Lai; K.-S. Tan, A generalized Iwasawa’s theorem and its application, Res. Math. Sci. 8 (2021), no. 2, Paper No. 20, 18 pp.
[8] A. Lannuzel; T. Nguyen Quang Do, Conjectures de Greenberg et extensions pro-p-libres d’un corps de nombres, Manuscripta Math. 102 (2000), no. 2, 187–209.
[9] M. F. Lim, Notes on the fine Selmer groups, Asian J. Math. 21(2) (2017) 337–362.
[10] M. F. Lim, On the growth of even K-groups of rings of integers in p-adic Lie extensions, accepted for publication in Israel J. Math., [arXiv:2009.01477][math.NT].
[11] M. F. Lim; R. Sharifi, Nekovář duality over p-adic Lie extensions of global fields, Doc. Math. 18 (2013), 621–678.
[12] J. Nekovář, Selmer complexes, Astérisque No. 310 (2006), viii+559 pp.
[13] J. Neukirch; A. Schmidt; K. Wingberg, Cohomology of Number Fields. 2nd edn., Grundlehren Math. Wiss. 323 (Springer-Verlag, Berlin, 2008).
[14] A. Nickel, Annihilating wild kernels, Doc. Math. 24 (2019), 2381–2422.
[15] B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. France (N.S.) No. 17 (1984), 130 pp.
[16] P. Schneider, Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979), no. 2, 181–205.
[17] J.-P. Serre, Local Algebra. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000
[18] R. Sharifi, On Galois groups of unramified pro-p-extensions, Math. Ann. 342 (2008), no. 2, 297–308.
[19] R. Sharifi, Reciprocity maps with restricted ramification, [arXiv:1609.03611][math.NT].
[20] C. Soulé, K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295.
[21] D. Quillen, Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85–147. Lecture Notes in Math., Vol. 341, Springer, Berlin 1973.
[22] D. Quillen, Finite generation of the groups K_i of rings of algebraic integers. Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 179–198. Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973.

[23] D. Vauclair, Sur la dualité et la descente d’Iwasawa, Ann. Inst. Fourier Grenob. 59(2) (2009) 691–767.

[24] V. Voevodsky, On motivic cohomology with \mathbb{Z}/l-coefficients, Ann. of Math. (2) 174 (2011), no. 1, 401–438.

[25] C. Weibel, The norm residue isomorphism theorem, J. Topol. 2 (2009), no. 2, 346–372.

[26] C. Weibel, The K-book. An introduction to algebraic K-theory. Graduate Studies in Mathematics, 145. American Mathematical Society, Providence, RI, 2013. xii+618 pp.