A sample of mJy radio sources at 1.4 GHz in the Lynx and Hercules fields – II. Cosmic evolution of the space density of FR I radio sources

E. E. Rigby,1,2⋆ P. N. Best2 and I. A. G. Snellen3
1School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff CF24 3YB
2SUPA†, University of Edinburgh, Institute for Astronomy, Royal Observatory, Edinburgh EH9 3HJ
3Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2300RA Leiden, the Netherlands

Accepted 2007 December 7. Received 2007 November 14; in original form 2007 September 26

ABSTRACT
In this paper the cosmic evolution of the space density of Fanaroff–Riley Class I (FR I) radio sources is investigated out to $z \sim 1$, in order to understand the origin of the differences between these and the more powerful FR IIs. High-resolution radio images are presented of the best high-redshift FR I candidate galaxies, drawn from two fields of the Leiden–Berkeley Deep Survey, and previously defined by Rigby, Snellen & Best in Paper 1. Together with lower resolution radio observations (both previously published in Paper 1 and, for a subset of sources, also presented here) these are used to morphologically classify the sample. Sources which are clearly resolved are classified by morphology alone, whereas barely or unresolved sources were classified using a combination of morphology and flux density loss in the higher resolution data, indicative of resolved-out extended emission. The space densities of the FR Is are then calculated as a function of redshift, and compared to both measurements of the local value and the behaviour of the more powerful FR IIs. The space density of FR I radio sources with luminosities (at 1.4 GHz) $> 10^{25} \, \text{W Hz}^{-1} \, \text{sr}^{-1}$ is enhanced by a factor of 5–9 by $z \sim 1$, implying moderately strong evolution of this population; this enhancement is in good agreement with models of FR II evolution at the same luminosity. There are also indications that the evolution is luminosity dependent, with the lower powered sources evolving less strongly.

Key words: galaxies: active – galaxies: evolution – radio continuum: galaxies.

1 INTRODUCTION
It has been known for some time that powerful ($P_{178\,\text{MHz}} > 10^{24} - 10^{25} \, \text{W Hz}^{-1} \, \text{sr}^{-1}$) radio galaxies undergo strong cosmic evolution, with density enhancements, over the local value, ranging from ~10 to 100–1000 for the most luminous sources at redshifts 1–2 (e.g. Wall 1980). These results were supported by Dunlop & Peacock (1990, hereafter DP90) who found that including a high-luminosity, strongly evolving population in their modelling of the radio luminosity function fitted the data well.

The increased difficulty in detecting lower powered radio galaxies over comparable distances means that their evolutionary behaviour is less clear. Initial, low-redshift studies suggested that they had a constant space density (e.g. Jackson & Wall 1999) and this was subsequently supported at higher redshift by Clewley & Jarvis (2004). However, DP90 found that their models were better fitted if the low-luminosity population was weakly evolving, and Sadler et al. (2007), using a sample selected in a similar way to that of Clewley & Jarvis, found that the no-evolution scenario is ruled out at a significance level of $> 6 \, \sigma$. Additionally, Willott et al. (2001), also see evolution in their low-luminosity, weak emission-line population.

This high-/low-power radio galaxy split corresponds to the division between Fanaroff–Riley Class I and II sources (FR I and FR II; Fanaroff & Riley 1974). Of the two types, FR IIs are the more powerful, but it should be noted that there is significant overlap at the break luminosity. The bulk of the emission in FR IIs originates from the hotspots at the ends of their highly collimated, ‘edge-brightened’ jets. FR Is, on the other hand, typically have ‘edge-darkened’ jets which are brighter towards their central regions and which also tend to flare out close to the nucleus. It is not yet clear whether the differences between the two classes arise from fundamental differences in their central engines (e.g. advection dominated accretion flow in FR Is arising from a lower accretion rate) as argued by a.e.g. Baum, Zirbel & O’Dea (1995), or whether it is the environment in which the jets of these objects reside which determines their observed properties (e.g. Gopal-Krishna & Wiita 2000; Gawroński et al. 2006), or even some combination of the two.

An important tool, therefore, for investigating the morphological differences between the two FR classes comes from measurements of their cosmic evolution. Since the FR I/FR II break luminosity...

⋆E-mail: Emma.Rigby@astro.cf.ac.uk
†Scottish Universities Physics Alliance

© 2008 The Authors. Journal compilation © 2008 RAS
is not fixed, but is a function of host galaxy magnitude (Ledlow & Owen 1996), morphological classification of the radio galaxies in a sample is a necessity if an accurate picture of the cosmic evolution of FR Is is to be obtained. Any similarities detected in the variation of FR Is and FR IIs over cosmic time lends weight to the extrinsic, environmental, model since objects with similar underlying properties, at the same luminosity, would be expected to evolve similarly as well. If this is the case, then it implies that FR Is and FR IIs may simply represent different stages in the evolution of a radio galaxy, which, in this scenario, would start as a high-luminosity FR II with powerful jets, which then weakens and dims over time (e.g. Willott et al. 2001; Kaiser & Best 2007).

In addition to clarifying the FR I/II differences, the cosmic evolution of FR Is in particular may also be important for galaxy formation and evolution models, which are increasingly using radio galaxies to provide the feedback necessary to halt the problem of massive galaxy overgrowth (e.g. Bower et al. 2006). Best et al. (2006) suggest that it is the lower luminosity sources, perhaps the FR I population alone, that are mainly responsible for this. Understanding their behaviour may therefore provide the key to understanding this mechanism as well.

Snellen & Best (2001) made a first attempt at determining the space density of morphologically classified FR Is, using the two $z > 1$ FR Is detected in the Hubble Deep and Flanking Fields (HDF + FF) area. The small number of sources meant that a direct calculation would have been unreliable, but they were able to show that the probability of detecting these two FR Is if the population undergoes no evolution was < 1 per cent, and was instead consistent with a space density enhancement comparable to that of less luminous FR II galaxies at the same redshift. More recently, Jamrozy (2004), using the number counts of two complete, morphologically classified, radio samples, also found that a positive cosmic evolution for the most luminous FR I sources is needed to fit their observational data out to $z \sim 2$.

The aim of this work is to improve on the results of these previous analyses using a deep, wide-field, 1.4-GHz, Very Large Array (VLA) A-array survey, an order of magnitude larger than the HDF + FF; this area is large enough to allow the space density to be directly measured for the first time. The survey was split over two fields of 0.29 deg$^2$ each – one in the constellation of Lynx at right ascension, $\alpha = 8h45m$, declination, $\delta = +44.6$ (J2000) and one in Hercules at $\alpha = 17^h20^m$, $\delta = +49.9$ (J2000) – which were originally observed as part of the Leiden–Berkeley Deep Survey (Kron 1980; Koo & Kron 1982). These fields are ideal for this work due to the existence of previous low-resolution (12.5 arcsec) radio observations (Windhorst, van Heerde & Katgert 1984; Oort & Windhorst 1985; Oort & van Langevelde 1987). These can be used, in conjunction with higher resolution data, to look for flux density losses in the sample, which in turn can be used for FR I classification (see Section 4 for full details). Alongside this, the Hercules field has some previous optical and spectroscopic observations by Waddington et al. (2000), whilst the Lynx field is also covered by the Sloan Digital Sky Survey (SDSS; York et al. 2000; Stoughton et al. 2002).

The survey consists of a complete sample of 81 radio sources, evenly spread over the two fields, all above the limiting flux density, $S_{1.4GHz}$, of 0.5 mJy in the A-array radio data. Optical and infrared observations with the Isaac Newton Telescope and the United Kingdom Infrared Telescope, respectively, resulted in a host galaxy identification fraction of 85 per cent, with 12 sources remaining unidentified at a level of $r' \geq 25.2$ mag (Hercules; four sources) or $r' \geq 24.4$ mag (Lynx; seven sources) or $K \geq 20$ mag. New spectroscopic data obtained with the Telescopio Nazionale Galileo, combined with previously published results, meant that the redshift completeness was 49 per cent. The redshifts for the remaining sources with a host galaxy detection were estimated using either the $K - z$ or $r - z$ magnitude–redshift relations (Snellen et al. 1996; Willott et al. 2003). Full details of the observations used to define the sample, and the resulting 1.4-GHz flux densities, magnitudes and redshifts, can be found in Rigby, Snellen & Best (2007, hereafter Paper I).

In this paper we present the additional radio observations, both low and high resolution, along with the FR I source classification and space density measurements. The layout of the paper is as follows. Section 2 describes the low-resolution VLA B-array observations of the Lynx field; Section 3 then describes the high-resolution FR I candidate selection and their high-resolution radio follow-up. Section 4 outlines the method used to classify the sample and Section 5 then describes the steps taken to measure the space density of the identified FR Is. Finally Section 6 discusses the results and presents the conclusions of this work. Throughout this paper values for the cosmological parameters of $H_0 = 71$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.27$ and $\Omega_\Lambda = 0.73$ are used.

2 LOW-RESOLUTION LYNX FIELD RADIO OBSERVATIONS

The aim of the low-resolution Lynx field VLA B-array observations was to provide a measure of the total flux density for each field source, and to look for any extended emission that may have been resolved out in the 1.5-arcsec resolution A-array data presented in Paper I. Complimentary observations of the Hercules field in this configuration were not done due to time constraints.

The observations took place on 2003 October 30, in $L$ band (1.4 GHz), using the wide-field mode. The flux, point and phase calibrators used were 3C 286, 3C 147 and 0828+493, respectively, and the total exposure time on the field was 7000 s; this was split into five periods which were interspersed with $\sim$120-s visits to the phase calibrator. Eight channels, at frequencies of 1.474 and 1.391 GHz, with a total bandwidth of 25 MHz, were used to minimize bandwidth smearing effects. Full polarization was observed.

The data were calibrated using the NRAO AIPS package. Since sources located at all positions in the final radio image need to be considered, the non-coplanar array wide-field imaging techniques, incorporated into the AIPS task IMAGR, were used. The field was split into facets, centred on the positions of each source from the A-array observations and the centre was shifted to the centre of each facet and imaged and deconvolved in turn. Each facet was 256 $\times$ 256 pixels (with 1.0 arcsec pixel$^{-1}$).

The deconvolution and cleaning of each facet was done using 5000 iterations and nearly natural weighting to minimize the noise in the resulting clean image. No self-calibration was carried out due to the weakness of the sources. The final noise level reached for all the facets was $\sim$50 mJy beam$^{-1}$, with a resolution of 5.36 $\times$ 4.67 arcsec$^2$. Finally a primary beam correction was applied to each image to account for the attenuation of the beam away from the pointing centre.

2.1 Source detection and flux density measurement

All the sources in the Lynx field complete sample were detected in these observations. Their flux densities were, as with the A-array data (see Paper I), measured with tvstat if they showed extension or with imfit if they appeared compact. The method used for each source in the complete sample, along with the resulting flux densities and primary beam correction factors, can be found in Table 1.
Table 1. The primary-beam-corrected flux densities for the (complete sample) Lynx field B-array observations along with the correction factors, $C_B$, used. An I in the final column indicates an imfit measured flux density; a T indicates a tvstat measurement. A primary beam correction error of 20 per cent of the difference between the corrected and uncorrected flux density has been incorporated into the quoted errors.

| Name     | $S_{1.4\ GHz}$ (mJy) | $C_P B$ | Measure |
|----------|-----------------------|---------|---------|
| 55w116   | 2.05 ± 0.43           | 2.22    | T       |
| 55w118   | 0.85 ± 0.13           | 1.92    | I       |
| 55w120   | 1.91 ± 0.43           | 2.68    | T       |
| 55w121   | 1.24 ± 0.14           | 1.60    | I       |
| 55w122   | 0.76 ± 0.18           | 1.45    | I       |
| 55w123   | 1.09 ± 0.14           | 1.33    | I       |
| 55w124   | 2.58 ± 0.10           | 1.35    | I       |
| 55w127   | 1.72 ± 0.11           | 1.36    | I       |
| 55w128   | 4.10 ± 0.56           | 2.05    | T       |
| 55w131   | 1.20 ± 0.20           | 1.48    | T       |
| 55w132   | 1.83 ± 0.36           | 2.05    | T       |
| 55w133   | 2.17 ± 0.13           | 1.47    | I       |
| 55w135   | 2.61 ± 0.37           | 1.98    | T       |
| 55w136   | 0.90 ± 0.11           | 1.10    | I       |
| 55w137   | 1.70 ± 0.17           | 1.29    | T       |
| 55w138   | 1.81 ± 0.12           | 1.37    | I       |
| 55w140   | 0.58 ± 0.09           | 1.06    | I       |
| 55w141   | 0.60 ± 0.60           | 1.19    | I       |
| 55w143a  | 2.22 ± 0.11           | 1.34    | I       |
| 55w143b  | 0.65 ± 0.17           | 1.33    | I       |
| 55w147   | 2.24 ± 0.14           | 1.82    | I       |
| 55w149   | 7.63 ± 1.14           | 3.20    | T       |
| 55w150   | 0.60 ± 0.14           | 1.88    | I       |
| 55w154   | 12.90 ± 0.44          | 1.13    | T       |
| 55w155   | 1.63 ± 0.15           | 1.55    | I       |
| 55w156   | 4.02 ± 0.26           | 1.19    | T       |
| 55w157   | 1.61 ± 0.13           | 1.68    | I       |
| 55w159a  | 6.61 ± 0.21           | 2.69    | I       |
| 55w159b  | 1.08 ± 0.31           | 2.55    | I       |
| 55w160   | 0.77 ± 0.09           | 1.32    | I       |
| 55w161   | 0.87 ± 0.16           | 1.87    | I       |
| 55w165a  | 17.51 ± 1.33          | 2.06    | T       |
| 55w165b  | 1.40 ± 0.23           | 1.99    | I       |
| 55w166   | 2.26 ± 0.17           | 2.07    | I       |
| 60w016   | 0.57 ± 0.15           | 1.52    | I       |
| 60w024   | 0.25 ± 0.08           | 1.29    | I       |
| 60w032   | 0.29 ± 0.10           | 1.51    | I       |
| 60w039   | 0.64 ± 0.15           | 1.38    | I       |
| 60w055   | 0.80 ± 0.27           | 2.34    | I       |
| 60w067   | 0.65 ± 0.11           | 1.70    | I       |
| 60w071   | 0.59 ± 0.19           | 1.42    | I       |
| 60w084   | 0.54 ± 0.16           | 2.08    | I       |

The corresponding radio contour maps (without primary-beam corrections applied) can be found in Fig. A1. The results for additional sources not in the complete sample can be found in Table 2 and Fig. A2; these sources were excluded as they did not fall within the field of view of the optical imaging described in Paper I.

3 FR I CANDIDATE SELECTION AND HIGH-RESOLUTION RADIO OBSERVATIONS

The high-resolution radio observations were, by necessity, limited to the best high-redshift FR I candidates only. The next step, therefore, was to select these candidate sources from the sample. The candidate criteria were, first, that their redshifts (or estimated redshifts) were $\geq 1.0$ and, secondly, that extended emission was visible in their radio image; this extension was defined, by inspection, as structure that deviated from a compact form. Since the high-resolution observations took place using two different instruments, the VLA + PieTown (VLA + Pt) link (Section 3.1) and the MERLIN (Multi-Element Radio Linked Interferometer) array (Section 3.2), with slightly different characteristics, as described below, two different subsamples of these candidates were observed. Where possible, candidate sources were included in both observations to increase the possibility of detecting and classifying significant extended emission. Three of the high-redshift candidates were not able to be included in either observation due to time constraints; these were 53w081 in Hercules and 55w155 and 55w166 in Lynx.

3.1 VLA + PieTown observations

The 27 radio antennae of the VLA can be linked with one of the antennas of the Very Long Baseline Array, located 50 km away from the array centre at PieTown. The extra baselines this adds means that the VLA + Pt can reach subarcsecond resolution at 1.4 GHz.

The candidate sources in the Hercules field, listed in Table 3, were individually observed on 2004 September 26 with the VLA + Pt at 1.4 GHz (L band). The candidate Lynx sources were observed similarly on 2006 February 18.50-MHz channels at 1.385 and 1.465 GHz were used for both observations. The details of the exposure times for each source can be found in Table 3. The flux and noise limits.

Table 3. Details of the VLA + Pt exposure times for the Lynx and Hercules high-redshift candidate sources, along with the resulting flux densities and noise limits.

| Source name | Exposure time (s) | $S_{1.4\ GHz}$ (mJy) | rms (µJy) |
|-------------|------------------|----------------------|-----------|
| Hercules    |                  |                      |           |
| 53w054a     | 2600             | 1.82 ± 0.07          | 29        |
| 53w054b     | 2600             | 2.58 ± 0.07          | 29        |
| 53w059      | 2580             | 21.23 ± 0.21         | 30        |
| 53w061      | 2580             | 1.68 ± 0.06          | 28        |
| 53w065      | 2590             | 6.26 ± 0.09          | 33        |
| 53w069      | 2570             | 3.50 ± 0.18          | 36        |
| 53w087      | 2600             | 4.19 ± 0.17          | 28        |
| 53w088      | 2590             | 14.11 ± 0.09         | 30        |
| Lynx        |                  |                      |           |
| 55w116      | 2550             | 0.91 ± 0.16          | 49        |
| 55w120      | 2570             | 0.98 ± 0.13          | 47        |
| 55w121      | 2560             | 1.32 ± 0.11          | 43        |
| 55w128      | 2570             | 2.94 ± 0.45          | 47        |
| 55w132      | 2560             | 1.02 ± 0.19          | 45        |
| 55w133      | 2570             | 2.23 ± 0.14          | 44        |
| 55w136      | 2570             | 0.76 ± 0.17          | 44        |
| 55w138      | 2570             | 1.74 ± 0.18          | 45        |
point calibrator for both fields was 3C 286 and the phase calibrators were 1727+455 for the Hercules and 0832+492 for the Lynx field. The data were again calibrated using the NRAO AIPS package. Each calibrated source observation was edited to remove bad data and then cleaned using 10,000 iterations, with a pixel size of 0.15 arcsec and nearly pure uniform weighting to avoid downweighting the longest, PieTown, baselines and thus achieve high-resolution images. The noise level reached for each source observation is given in Table 3 above and the resolution of the images was typically 1.1 $\times$ 0.6 arcsec$^2$ with the highest resolution direction determined by the location of the PieTown antenna.

All the candidate sources included in the VLA + Pt observations were detected and their flux densities were then measured with tvstat; these can be found in Table 3. The corresponding contour plots can be found in Figs B1 and B2.

### 3.2 MERLIN observations
The MERLIN observations were done in wide-field mode, with an individual field size of about 2.5 arcmin radius; at this distance from the pointing centre the bandwidth smearing is $<10$ per cent. Three of these subfields were used in the Hercules field and four in the Lynx field. The pointing positions were designed such that the maximum number of non-candidate sources could also be observed whilst still including as many of the candidates as possible. Whilst these extra sources were not selected as high-redshift FR I candidates, observing them at higher resolution may help to classify some of the lower redshift objects in the sample. 53w091, one of the sources not included in the complete sample, was also included in the MERLIN observations as a result of this process.

MERLIN consists of up to seven antennas spread across the UK, giving baselines up to 217 km and a resolution, at $L$ band, of $\sim0.15$ arcsec. The sources were observed with MERLIN on 2005 March 11 for the Hercules and on 2006 May 13, 19, 20, 28 and 29 for the Lynx field, both using 32 channels, with a combined bandwidth of 15.5 MHz. It should be noted that due to technical problems the Lovell telescope, the largest antenna in the array, was only included in the observations of Lynx B, C and D; this increased the sensitivity for these subfields by a factor of $\sim2.2$.

For the Hercules subfields, the flux calibrators used were 3C 286 and OQ208 and the phase calibrator was 1734+508. For three of the Lynx subfields (B, C and D), the flux calibrators were again 3C 286 and OQ208; for Lynx A, however, 3C 286 and 2134+004 were used. The Lynx phase calibrator was 0843+463. Two flux calibrators are necessary as 3C 286 is resolved on all but the shortest MERLIN baselines. All subfields were observed for 12 h.

The initial editing and calibration of the data were done at Jodrell Bank using local software specially written for the MERLIN array. Following this the data were loaded into AIPS and the MERLIN pipeline (Diamond et al. 2003), which uses the AIPS calibration tasks with MERLIN specific inputs, was then used to complete the calibration. Data which included the Lovell telescope were then reweighted to account for the different sensitivities of the instruments in the array.

Finally each subfield was Fourier transformed and deconvolved to form the final cleaned image. To minimize the non-coplanar array effects the centre of each subfield was again shifted to the position of each source it contained and treated separately. Each source facet was $512 \times 512$ pixels with 0.045 arcsec pixel$^{-1}$. The rms noise reached for each source was between 27 and 49 $\mu$Jy, and can be found in Tables 4 and 5. This process was then repeated for Lynx subfields B, C and D, with all baselines including the

![Table 4](image)

| Subfield | Name | $S_{1.4\,\text{GHz}}$ (mJy) | $C_{PB}$ | rms ($\mu$Jy) |
|----------|------|-------------------|----------|--------------|
| A        | 53w054a | 1.47 ± 0.13 | 1.03 | 41 |
| A        | 53w054b | 1.83 ± 0.13 | 1.02 | 41 |
| A        | 53w057  | 2.04 ± 0.14 | 1.00 | 40 |
| B        | 53w059  | 18.87 ± 0.62 | 1.06 | 46 |
| A        | 53w061  | 1.06 ± 0.10 | 1.03 | 34 |
| B        | 53w065  | 4.62 ± 0.18 | 1.05 | 46 |
| B        | 53w066  | 3.32 ± 0.18 | 1.00 | 47 |
| B        | 53w070  | 2.29 ± 0.15 | 1.08 | 46 |
| C        | 53w087  | *               |       | 43 |
| C        | 53w088  | 10.80 ± 0.18 | 1.05 | 49 |

| Extra sources |
|----------------|
| C 53w082  | 2.40 ± 0.15 | 1.09 | 45 |
| C 53w089  | *              |       | 42 |
| C 53w091  | 32.81 ± 1.00 | 1.04 | 47 |

Lovell telescope removed from the data. This was done as, without Lovell, a 76 m diameter dish, the MERLIN antennae are all comparable in size (similar to those of the VLA) and so a simple primary beam correction method can be applied. The non-Lovell images were therefore used to measure the primary-beam corrected flux densities of the sources but the deeper, Lovell included, images were used for the morphological classification. The rms noise reached in the non-Lovell images can also be found in Table 5.

For the Hercules sources, one candidate and one of the ‘extra’ sources were resolved out; the rest were all detected. In the Lynx subfields all the candidates were detected and three of the ‘extra’ sources were resolved out. A primary beam correction was then applied to correct for the attenuation of the primary beam on the off-centre sources and the flux densities were measured; the resulting values can be found in Tables 4 and 5. The corresponding contour maps can be found in Figs B1 and B2.

### 3.3 Comparison of results
Comparing the flux density values at the different radio resolutions, it is clear that, for many of the sources, the measured flux density decreases as the resolution of the observations increases. For the non-quasar sources, it is likely that this loss indicates the presence of resolved-out, extended emission, which in the absence of hotspots may indicate an FR I-type structure. The four quasars in the sample are variable at some level, so any flux density loss they exhibit may be due to this.

Since the resolutions of the four radio observations are so different, it is hard to gain an overview of the structure of individual sources in the sample from considering the respective contour maps separately. Therefore, Figs B1 and B2 show, for the sources included in the VLA + Pt or MERLIN observations, all the available radio contour maps at the same scale, centred on the optical host galaxy positions, if available, or otherwise on the A-array position.1 Collecting the images together like this illustrates the power of the

1 The starburst galaxy 55w127 is not included in this figure as it is not an FR I candidate.
high-resolution observations in differentiating FR I objects from FR IIIs. For example, the Hercules field source 53w059 is an FR I candidate in the A-array data but it is only in the MERLIN map, showing its inner jet and resolved-out lobes, that it can be firmly classified as such. On the other hand, the A-array image of the Lynx field source 55w138 does not show any clear structure and whilst it can be firmly classified in the A-array data but it is only in the MERLIN map.

FR I-type, as described above, can also be inferred by comparing the source flux densities at the low and high resolutions; a drop in flux density indicates the presence of resolved-out, extended emission, relative to a compact core, is impossible for the majority of the sample sources due to the lack of firm jet detections. FR I-type, as described above, can also be inferred by comparing the source flux densities at the low and high resolutions; a drop in flux density indicates the presence of resolved-out, extended emission, which in the absence of hotspots is likely to be due to an FR I.

The classifications were therefore done by inspecting the source morphologies where possible, or by using the flux-loss method elsewhere, ignoring the possibly variable quasars. However, since the comparison between the Oort & Windhorst (1985), Oort & van Langevelde (1987) and the A-array data cannot be relied upon to determine flux density loss, as discussed in Paper I, the only loss comparison that could be done for the Hercules field was between the A-array and VLA + Pt map indicates that it is extended, the MERLIN map is needed to show the location of the jet hotspots.

### 4 FR I IDENTIFICATION AND CLASSIFICATION

The most secure method of FR I classification, the detection of weak extended emission relative to a compact core, is impossible for the majority of the sample sources due to the lack of firm jet detections. FR I-type, as described above, can also be inferred by comparing the source flux densities at the low and high resolutions; a drop in flux density indicates the presence of resolved-out, extended emission, which in the absence of hotspots is likely to be due to an FR I.

The classifications were therefore done by inspecting the source morphologies where possible, or by using the flux-loss method elsewhere, ignoring the possibly variable quasars. However, since the comparison between the Oort & Windhorst (1985), Oort & van Langevelde (1987) and the A-array data cannot be relied upon to determine flux density loss, as discussed in Paper I, the only loss comparison that could be done for the Hercules field was between the A-array and VLA + Pt map. As a result, Hercules sources which were not covered by the higher resolution observations, and which showed no obvious FR I-type jets in the A-array radio maps, could not be firmly classified. For the Lynx field sources, the existence of the B-array observations, which are of a similar resolution to the Oort & Windhorst (1985) data, meant that these could be used for a more internally consistent comparison with the A-array, MERLIN and VLA + Pt data, instead.

Considering all these factors, five classification groups were defined for the sample.

(i) Certain FR I – these clearly show typical weak, edge-darkened, FR I jets and compact cores.

(ii) Likely FR I – these show some morphological extension consistent with an FR I structure, but not enough to be definitely classified as FR I, along with a flux loss of $3\sigma$ or greater at higher resolution.

(iii) Possible FR I – either no extension is seen for these sources but they still lose $\gtrsim 3\sigma$ of their flux when going to higher resolution, or some extension consistent with an FR I structure is seen but little flux is lost.

(iv) Not FR I – this group consists of sources which either have no flux loss or have FR II-type morphology.

(v) Unclassifiable sources – this group is for sources in the Hercules field which are compact in the A-array maps, lose no flux between the Oort et al. and A-array data and were not included in the higher resolution observations.

The flux density loss between all the different observations was calculated using $(1 - S_h/S_l)$, where $S_h$ and $S_l$ are the flux densities measured in the higher and lower resolutions, respectively. The $\sigma$ values for these losses were then found by dividing the loss by its corresponding error; these can be found in Tables 6 and 7 with...
Table 6. The σ flux density loss and classification groups (for the three testers in no particular order) for the sources in the Hercules field complete sample with values of >3σ highlighted in bold. A, P and M represent the VLA A-array, VLA A + Pt and MERLIN observations, respectively. A ‘*’ indicates a source which was resolved out in the MERLIN observations. Sources previously classified as starburst galaxies and quasars are labelled with the superscripts ‘SB’ and ‘Q’, respectively.

| Name      | σP/A | σM/A | Test 1 group | Test 2 group | Test 3 group | Final group |
|-----------|------|------|--------------|--------------|--------------|-------------|
| 53w052    | 1.06 | 2.46 | 3            | 3            | 3            | 3           |
| 53w054a   | −0.40| 2.22 | 4            | 4            | 4            | 4           |
| 53w054b   | −0.35| 4.33 | 1            | 1            | 1            | 1           |
| 53w059    | 2.35 | 4.33 | 1            | 1            | 1            | 1           |
| 53w061    | 1.07 | 2.22 | 3            | 3            | 3            | 3           |
| 53w062    |      |      | 5            | 5            | 5            | 5           |
| 53w065    | −2.16| 5.96 | 2            | 2            | 2            | 2           |
| 53w066    | 5.81 |      | 3            | 3            | 3            | 3           |
| 53w067    | 1    | 2    | 1            | 1            | 1            | 1           |
| 53w069    | 6.33 |      | 2            | 2            | 2            | 2           |
| 53w070    | 1.54 |      | 4            | 4            | 4            | 4           |
| 53w075    | 2    | 2    | 1            | 1            | 1            | 1           |
| 53w076    | 4    | 4    | 4            | 4            | 4            | 4           |
| 53w077    |      |      | 3            | 3            | 3            | 3           |
| 53w078    | 4    | 4    | 5            | 5            | 5            | 5           |
| 53w079    | 1.38 |      | 5            | 5            | 5            | 5           |
| 53w080    | 1.38 |      | 5            | 5            | 5            | 5           |
| 53w081    |      |      | 1            | 1            | 1            | 1           |
| 53w082    | 4    | 4    | 4            | 4            | 4            | 4           |
| 53w083    | 3    | 3    | 3            | 3            | 3            | 3           |
| 53w084    | 2    | 2    | 2            | 2            | 2            | 2           |
| 53w085    | 3    | 3    | 3            | 3            | 3            | 3           |
| 53w086a   | 2    | 3    | 2            | 2            | 2            | 2           |
| 53w086b   | 3    | 3    | 3            | 3            | 3            | 3           |
| 53w087    | 15.08|      | 2            | 2            | 2            | 2           |
| 53w088    | 0.14 | 1.71 | 3            | 3            | 3            | 3           |
| 53w089    |      |      | 3            | 3            | 3            | 3           |
| 66w009a   |      |      | 4            | 4            | 4            | 4           |
| 66w009b    | 4    | 4    | 4            | 4            | 4            | 4           |
| 66w014    | 4    | 4    | 4            | 4            | 4            | 4           |
| 66w027b    | 3    | 3    | 3            | 3            | 3            | 3           |
| 66w031    | 3    | 3    | 3            | 3            | 3            | 3           |
| 66w035    | 2    | 2    | 2            | 2            | 2            | 2           |
| 66w036    | 3    | 3    | 3            | 3            | 3            | 3           |
| 66w042    | 2    | 2    | 2            | 2            | 2            | 2           |
| 66w047    | 3    | 3    | 3            | 3            | 3            | 3           |
| 66w049    | 4    | 4    | 5            | 5            | 5            | 5           |
| 66w058    |      |      | 5            | 5            | 5            | 5           |

>3σ losses highlighted in bold. Each source was classified into one of the groups in turn using the flowchart shown in Fig. 1. For the sources that were classified by morphology alone, the process was repeated by all three authors independently to ensure that the results were consistent. If there was a disagreement between the three testers, the median grouping value was taken. The results given were consistent. If there was a disagreement between the three testers, the median grouping value was taken. The results given were consistent. If there was a disagreement between the three testers, the median grouping value was taken. The results given were consistent. If there was a disagreement between the three testers, the median grouping value was taken. The results given were consistent.

5 Investigating the FR I Subsample

Now that the radio sample has been classified, the sources in groups 1–3 (the certain, likely and possible FR Is) can be used to investigate the changes in comoving space density out to high redshift. To ensure that this measurement is robust out to a significant distance, a 1.4-GHz radio power limit \( P_{\text{lim}} \) of \( \geq 10^{25} \text{ WH Hz}^{-1} \), was imposed on the sample. This limit corresponds to a maximum redshift, \( z_{\text{max}} \), of 1.86 out to which a source at the 0.5 mJy sample flux density limit, and with a typical spectral index, \( \alpha \), of 0.8, could be seen.

There is a possibility that group 5, the ‘unclassifiable sources’, contains FR Is which should be included in the space density analysis. However, of the six sources which fall into this category, half are at \( z \sim 0.6 \) and half lie at \( z > z_{\text{max}} \). Since it is the \( z \sim 1.0 \) redshift behaviour that is being investigated here, these missing sources should not significantly affect the results.

The section here describes the steps taken to measure the minimal and maximal comoving space density of the three FR I groups in the sample. First, the parameters and techniques used for the measurement are defined, followed by the methods used to determine the local FR I space density, and finally, the results of the space density calculation are presented.

5.1 The Evolving FR I Space Density

The space densities were calculated using the \( 1/V_{\text{max}} \) statistic, where the space density, \( \rho \), of sources in some redshift bin \( \Delta z \) is simply

\[
\rho_{\Delta z} = \sum_{i=0}^{N} w_i / V_{\text{max}} \tag{1}
\]

where \( V_i \) is the volume over which a source \( i \), with weight \( w_i \), could be seen in a particular bin. Four redshift bins of width 0.5, covering the range \( 0.0 < z < 2.0 \), were used for the sample. The upper end of the final, \( z = 1.5–2.0 \), bin exceeded the value of \( z_{\text{max}} \) corresponding to the limiting flux density for \( \alpha = 0.8 \); as a result the individual maximum redshifts of the sources in this bin were determined, so that only the volumes over which each source could be observed were used to find the density here.

It should be noted that the redshift limit strongly depends on the value of \( \alpha \) used; as the spectral index steepens from 0.5 to 1.5, \( z_{\text{max}} \) decreases from 2.16 to 1.43. It is important to stress that \( \alpha \) needs to be \( \geq 1.37 \) before \( z_{\text{max}} \) falls below the start of the final redshift bin, for the limiting power of \( 10^{25} \text{ WH Hz}^{-1} \). This spectral index is steeper than that found for essentially all radio sources which suggests that the space density results in the \( z < 1.5 \) bins are robust to changes in the assumed value of \( \alpha \). Therefore, it is only in the final, \( 1.5 < z < 2.0 \), bin that the values of \( V_i \) (and hence the density) depend on the assumed value of \( \alpha \); the \( V_i \) values for sources in the other bins are all the full bin volume. In reality though, the three sources that do lie in the last bin have flux densities which are all much greater than the 0.5 mJy limit (the faintest is 4.53 mJy), and consequently the result does not change if \( \alpha \) is varied.

The three different FR I classification groups used meant that a minimum (eight sources; group 1 only), maximum (16 sources; groups 1–3) and probable (12 sources; groups 1 and 2) FR I space...
Table 7. The $\sigma$ flux density loss and classification group (for the three testers in no particular order) for the sources in the Lynx field complete sample with values of $>3\sigma$ highlighted in bold. B, A, P and M represent the VLA A- and B-array, VLA A + Pt and MERLIN observations, respectively. A '*' indicates a source which was resolved out in the MERLIN observations. Sources previously classified as starburst galaxies and quasars are labelled with the superscripts 'SB' and 'Q', respectively.

| Name    | $\sigma_{A/B}$ | $\sigma_{P/B}$ | $\sigma_{P/A}$ | $\sigma_{M/B}$ | $\sigma_{M/A}$ | Test 1 Test 2 Test 3 Final group group group group |
|---------|----------------|----------------|----------------|----------------|----------------|-------------------------------------------------|
| 55w116  | 1.30           | 4.59           | 2.79           | 0.75           | $-0.36$        | 4 3 3 3 3 |
| 55w118  | 0.68           | 0.36           | $-0.13$        | 2.62           | 2.12           | 4 |
| 55w120  | 0.50           | 3.64           | $3.26$         | 1.52           | 0.40           | 2 3 2 2 2 |
| 55w121  | 1.23           | $-0.43$        | $-1.54$        | 1.52           | 0.40           | 3 |
| 55w122  | 0.51           | 2.62           | 2.12           | 0.45           | 1.14           | 4 |
| 55w123  | $-0.47$        | 0.45           | 1.14           | 4 |
| 55w124  | $-1.10$        | $-3.55$        | $-2.01$        | 4 |
| 55w127  | 0.52           | 1.26           | 1.01           | 4 |
| 55w128  | $-0.79$        | 1.92           | $3.26$         | 6.71           | 8.86           | 1 2 1 1 1 1 |
| 55w131  | 2.77           | *              | *              | 2 2 1 2 2 2 2 |
| 55w132  | 0.43           | 2.98           | 2.74           | 1.36           | 1.04           | 4 3 3 3 3 |
| 55w133  | $-0.38$        | $-0.31$        | 0.09           | 2.75           | $3.01$         | 2 |
| 55w135  | $-1.80$        |               |               |               |               | 4 |
| 55w136  | $-0.15$        | 0.72           | 0.87           | 2.38           | 2.54           | 4 4 3 4 3 4 |
| 55w137  | 0.20           |               |               | 2.69           | 2.74           | 3 |
| 55w138  | $-0.91$        | 0.33           | 1.13           | 2.78           | $3.08$         | 3 4 2 3 3 |
| 55w140  | 0.29           |               |               |               |               | 4 |
| 55w141  | 1.70           |               |               |               |               | 3 |
| 55w143  | 0.18           |               |               |               |               | 3 3 2 3 3 |
| 55w143  | $3.01$         |               |               |               |               | 3 |
| 55w147  | 1.19           |               |               |               |               | 4 |
| 55w149  | $-0.12$        |               |               |               |               | 1 1 1 1 1 1 |
| 55w150  | $-0.17$        |               |               |               |               | 4 |
| 55w154  | $-1.31$        |               |               |               |               | 4 |
| 55w155  | $-0.33$        |               |               |               |               | 4 |
| 55w156  | $-2.01$        |               |               |               |               | 1 1 1 1 1 |
| 55w157  | 2.34           | $-2.48$        | $-3.26$        |               |               | 4 |
| 55w159  | 0.14           | $4.17$         | 2.42           | 2 2 2 2 2 2 2 |
| 55w159  | 0.23           | *              | *              |               |               | 3 |
| 55w160  | $-0.34$        |               |               |               |               | 4 |
| 55w161  | $-1.39$        |               |               |               |               | 3 |
| 55w165  | $-0.65$        |               |               |               |               | 3 |
| 55w165  | 2.36           |               |               |               |               | 4 |
| 55w166  | $-0.16$        |               |               |               |               | 4 |
| 60w016  | $-1.14$        | 0.45           | 2.28           |               |               | 3 |
| 60w024  | $-0.93$        |               |               |               |               | 4 |
| 60w032  | $-0.97$        |               |               |               |               | 4 |
| 60w039  | $-0.35$        |               |               |               |               | 4 |
| 60w055  | $-0.05$        |               |               |               |               | 4 |
| 60w067  | 0.74           |               |               |               |               | 4 |
| 60w071  | 0.38           |               |               |               |               | 4 |
| 60w084  | $-1.75$        |               |               |               |               | 3 |

density could be calculated. The flux densities used to calculate the source radio powers are those resulting from the A-array observations (Paper I), and sources that were previously classified as starburst galaxies have been removed from the sample. The average luminosity in each bin can be found in Table 8; they indicate that there is a small luminosity–redshift trend but the effect of this has been largely mitigated by the $P_{\text{lim}}$ limit. The spectral indices for 51 per cent of the Hercules field sources were taken from Waddington et al. (2000); for the remainder of the sample $\alpha$ was assumed to be 0.8. The validity of this assumption was tested by recalculating the radio powers using two extreme $\alpha$ values of 0.5 and 1.8 for all the sources in the sample. Up to and including these limits, the number of sources in each bin does not change.

5.2 The local FR I space density

An accurate measurement of the local FR I space density is vital for determining whether the sample described here demonstrates a density enhancement at high redshift. This can be obtained by directly measuring the FR I numbers in two different local, complete radio samples.

The first local measurement was carried out using a complete subsample of the 3CR galaxy survey (Laing, Riley & Longair 1983) which contains 30 FR I sources with $S_{178\text{MHz}} \geq 10.9 \text{ Jy}$ (corresponding to $S_{1.4\text{GHz}} \geq 2.09 \text{ Jy}$, using $\alpha = 0.8$), in an area of 4.24 sr. A source with power $P_{\text{lim}} = 10^{25} \text{ W Hz}^{-1}$ and $\alpha = 0.8$ can be seen out to a redshift of 0.046 if it was in this survey.
Converting the 3CR flux densities to 1.4 GHz using their published spectral indices (Laing et al. 1983), it was found that there were four FR Is with $P_{1.4\text{GHz}} \geq P_{\text{lim}}$ in the comoving volume of $V(z \leq 0.046) \times (4.24/4\pi) = 1.0 \times 10^7$ Mpc$^3$, which gives a local space density of $402 \pm 201$ FR Is Gpc$^{-3}$.

The second local sample used was the equatorial radio galaxy survey of Best, Röttgering & Lehnert (1999) which contains 178 sources, including nine FR Is, with $S_{408\text{MHz}} > 5$ Jy (corresponding to $S_{1.4\text{GHz}} > 1.9$ Jy, again using $\alpha = 0.8$), in an area of 3.66 sr. In this survey a source at $P_{\text{lim}}$ can be seen out to $z = 0.048$; there are two FR Is in this volume with powers greater than or equal to this which gives a local density of $196 \pm 139$ FR Is Gpc$^{-3}$.

Combining the results from these two surveys gives a total of six FR I sources in a comoving volume of $2.0 \times 10^7$ Mpc and a corresponding comoving local FR I space density of $298 \pm 122$ FR Is Gpc$^{-3}$.

An alternative estimate can be obtained by integrating the local radio luminosity function of Best et al. (2005), which was calculated from a sample of 2215 radio-loud AGN, formed by comparing the SDSS with two radio surveys: the National Radio Astronomy Observatory (NRAO) VLA Sky Survey (NVSS) (Condon et al. 1998) and the Faint Images of the Radio Sky at Twenty centimetres (FIRST) survey (Becker, White & Helfand 1995).

Figure 1. The procedure followed for the source morphological classification.
Since the radio luminosity function decreases rapidly above \( \log P \approx 24.5 \), the calculated total number is not strongly dependent on the chosen value for the upper limit of the integration. Although there will be some FR Is included, the majority of sources will be FR Is, therefore integrating out to \( \infty \) will derive a maximal FR I space density which ought also to be close to the true value. This calculation gives 460 FR Is Gpc\(^{-3}\) brighter than \( 10^{25} \) W Hz\(^{-1}\), which is in good agreement with the values calculated by the two direct measurements.

### 5.3 Results of the space density calculation

Fig. 2 shows the results of the space density calculation (calculated using equation 1) for the four redshift bins, plotted at the bin mid-points; the numbers are given in Table 8 and the weights used for each source can be found in Paper I.

The space densities for the minimum, probable and maximum FR I groups show a high-redshift comoving density enhancement for the FR Is in this sample, compared to the local FR I space density. The turnover in space density seen at \( z \gtrsim 1.5 \) is supported by the work of Waddington et al. (2001) who found evidence for a high-redshift cutoff for their lower luminosity radio sources by \( z \simeq 1–1.5 \). However, since the values of \( V_i \) in the last bin can depend on assumed spectral indices, the addition of a small number of steep spectrum sources, close to the luminosity limit, would result in a large increase in density; for example, around three more sources of flux density \( S_{\text{lim}} \) and \( \alpha = 1.0 \) would be needed to give the same maximum value of \( \rho \) as in the previous \( 1.0 < z < 1.5 \) bin. Sources may also have been missed in this bin because of the strong observational bias against FR Is at these distances (i.e. a clear group 1 source at \( z = 1 \) could be classified as a group 3 source if it was at \( z = 2 \)).

Two potential concerns in calculating the space densities are the estimated redshifts\(^2\) and the assumed spectral indices of 0.8 used for some of the sample sources. Error in both of these factors could affect the radio power determination, and lead to sources falsely falling below \( P_{\text{lim}} \), whilst error in the former alone could also move sources between redshift bins. To investigate the effect of these on the results, two Monte Carlo simulations, with 10 000 iterations each, were performed. In the first simulation, in each iteration, the redshifts which were estimated were varied by a factor drawn randomly from a Gaussian distribution of width equal to 0.2 in \( \log z \), the approximate spread in both the \( r - z \) and \( K - z \) relations. Similarly, in the second simulation, in each iteration, the assumed spectral indices were varied from 0.8 by a factor drawn randomly from a Gaussian distribution of width 0.5. This value was chosen as it represents a reasonable spread in \( \alpha \). Fig. 3 shows the \( \pm 1\sigma \) density results of the two simulations, carried out for the probable FR Is (i.e. groups 1 and 2) only. Also shown are the errors on the densities calculated from the simple Poisson errors on the number of sources in each bin (for

\(^2\) A full description of the redshift estimation methods used, and the results obtained for those sample sources without a secure redshift, can be found in Paper I.

| Bin No. | Minimum | Probable | Maximum |
|---------|---------|----------|---------|
| \( 0.0 < z \leq 0.5 \) | \( P \geq 10^{25.0} \) W Hz\(^{-1}\) | \( P \geq 10^{24.5} \) W Hz\(^{-1}\) | \( P \geq 10^{24.0} \) W Hz\(^{-1}\) |
| \( 0.5 < z \leq 1.0 \) | \( 0 < 3 \) | \( 4 < 5 \) | \( 1 \geq 2 \) |
| \( 1.0 < z \leq 1.5 \) | \( 4 < 7 \) | \( 5 < 8 \) | \( 1 \geq 2 \) |
| \( 1.5 < z \leq 2.0 \) | \( 1 < 4 \) | \( 2 < 5 \) | \( 1 \geq 2 \) |
| \( 0.5 < z \leq 1.5 \) | \( 7 < 11 \) | \( 11 < 15 \) | \( 15 < 20 \) |

Table 8. The results of the space density calculations for both redshift bin sizes, for the limiting power of \( 10^{25} \) W Hz\(^{-1}\). ‘No.’ is the number of sources in each bin and \( P \) is the mean luminosity in each bin. Also shown are the results of the space density calculations using the additional luminosity limits \( P \geq 10^{24} \) and \( 10^{24.5} \) W Hz\(^{-1}\). All results are shown for the maximum, minimum and probable FR I numbers.
they show enhancements of 3.2, 2.9 and 2.1 for the FR I sources. The resulting densities can also be found in Table 8; these results clearly show that it is the small number of sources in each bin that has the most effect on the results.

the bin containing no sources, an error of ±1 source was assumed). These results are also given in numerical form in Table 9. It is clear from this that the major limiting factor for the results is the small number of sources in the sample, rather than the redshift estimates, or the assumed spectral indices, that were used for some of the sources. It should also be noted that the radio FR I classifications are as comparably large a source of error as the redshift estimates.

5.3.1 Quantifying the space density enhancement

The calculations above show that the uncertainty in the space density results is dominated by the Poissonian error. In order to better quantify the high-redshift enhancements therefore, the density calculation was repeated using a single, large, redshift bin spanning 0.5 < z < 1.5, containing a minimum of seven and a maximum of 13 FR I sources. The resulting densities can also be found in Table 8; they show enhancements of 3.2, 2.9 and 2.1 over the local FR I space density, for the maximum, probable and minimum groupings, respectively.

Measuring these significance levels is not the best way of judging the reliability of the space density increase, however. A better method, following Snellen & Best (2001), is to assume no evolution of the FR I population and then calculate the probability of detecting the numbers of minimum (P\(_{<7}\)), probable (P\(_{>7-11}\)) and maximum (P\(_{>11}\)) objects seen in the 0.5 < z < 1.5 bin, if this no-evolution scenario was correct. The volume contained within this bin is 0.005 Gpc\(^3\) which, assuming no evolution occurs from a local density of 298 FR Is Gpc\(^{-3}\), gives an expected number of 1.44 FR Is over this range. (For comparison, repeating this calculation for z < 0.5 suggests that 0.12 FR Is should have been detected in the sample, in this volume, for a constant comoving space density.) The resulting probabilities are summarized in Table 10. These are all ≪1 per cent which indicates that, as expected, the no-evolutionary scenario can be discounted.

The pure luminosity evolution (PLE) and luminosity/density evolution (LDE) models of DP90, which fit the overall radio source population well out to z ~ 2, can also be compared to the results using this method. If the behaviour of the FR Is here is consistent with these PLE and LDE models; this would suggest that they evolve in the same way as FR II objects of the same radio power.

In the PLE model, the local radio luminosity function (fitted using a dual power law, with a steeper slope, for the higher powered sources, above the luminosity break) shifts horizontally in the ρ–z plane only, and its overall shape does not change. These redshift changes were confined to the luminosity normalization, P\(_{c}\), only and DP90 parameterized these as a quadratic in log z. Conversely, in the LDE model, the local radio luminosity function can move both horizontally and vertically and, therefore, can steepen or flatten. As a result, DP90 allowed the density normalization, ρ\(_{c}\), to also vary with redshift. For full details of these two models, the reader is referred to Section 3.4 of DP90.

For each of these two models, the total number of sources in the interval 0.5 < z < 1.5 was found by integrating

\[
N_{\text{tot}} = \Omega \int_{0.5}^{1.5} \int_{P_1}^{P_2} \rho(P, z) \, dV(z),
\]

where Ω is the area of the survey in steradians and the luminosity limits of the integration are \(P_1 = 10^{25}\) W Hz\(^{-1}\) and \(P_2 = 10^{27.5}\) W Hz\(^{-1}\). The coefficients used in these calculations were those determined for the steep spectrum population by DP90. Where necessary these values were converted from their original 2.7 to 1.4 GHz, the frequency used here, again assuming an average α of 0.8. Changing this assumption does not significantly alter the final results.

### Table 9. The errors calculated from the Monte Carlo simulations, \(z\sigma_{\text{mc}}\) and \(\sigma_{\text{mc}}\) along with the Poissonian, \(\sigma_p\), errors and the spread in the calculated space densities for each redshift bin (\(\rho_{\text{max}} - \rho_{\text{min}}\)); all values are in FR Is Gpc\(^{-3}\). Also shown is the probable FR I space density, \(\rho_{\text{prob}}\).

|          | 0.0 < z ≤ 0.5 | 0.5 < z ≤ 1.0 | 1.0 < z ≤ 1.5 | 1.5 < z ≤ 2.0 |
|----------|----------------|---------------|---------------|---------------|
| \(\rho_{\text{prob}}\) | 0              | 2492          | 2329          | 276           |
| \(\rho_{\text{max}} - \rho_{\text{min}}\) | 0              | 1401          | 1331          | 553           |
| \(z\sigma_{\text{mc}}\) | 810            | 496           | 391           | 257           |
| \(\sigma_{\text{mc}}\) | 0              | 345           | 124           | 0             |
| \(\sigma_p\) | 2442           | 1246          | 880           | 276           |

### Table 10. The probabilities calculated for the no-evolution, PLE and LDE scenarios for the minimum, probable and maximum numbers of FR Is.

|          | Expected number | \(P_{<7}\) (per cent) | \(P_{>11}\) (per cent) | \(P_{>13}\) (per cent) |
|----------|-----------------|------------------------|------------------------|------------------------|
| No evolution | 1.44            | 0.07                   | 3.8 × 10^{-5}          | 4.9 × 10^{-7}          |
| PLE      | 11.63           | 94                     | 61                     | 38                     |
| LDE      | 11.67           | 95                     | 62                     | 39                     |
results. Additionally, since the DP90 models were determined using Einstein–de Sitter (EdeS) cosmology, the luminosity limits actually used for the integration were the EdeS values corresponding to $P_1$ and $P_2$ at each redshift step to ensure that the correct, concordance cosmology values of $N_{\text{tot}}$ were found.

Carrying out the integrations results in $N_{\text{int}} \sim 11$ for both models, over this redshift range, and corresponding enhancements over the local value used here of $\sim 8$. This expected number agrees very well with the observed numbers of 7, 11 and 13 for the minimum, probable and maximum samples, confirming that these space densities can be consistent with these models. The subsequent probabilities arising from these numbers can again be found in Table 10. This result is further supported by Fig. 2, in which the density values predicted by the PLE and LDE models are overplotted with the results previously calculated for the four redshift bins. The low-redshift disagreement seen between the models and the local FR I space density is likely to arise from the poor constraints locally, at these radio powers, in the DP90 results.

### 5.3.2 Including the lower luminosity FR Is

The space density calculation can be repeated using different luminosity limits to investigate the behaviour of the weaker sources in the sample. Figs 4 and 5 show the results of this for limits of $10^{23}$ and $10^{24.5}$ W Hz$^{-1}$ and the density values are given in Table 8. The calculation was, in both cases, carried out for the minimum, maximum and probable numbers of FR I, using redshift bins of width 0.5, with the final bin dependent on the value of the limiting luminosity as discussed previously. The local values were again found using a combination of the 3CR and equatorial galaxy samples.

The comoving space densities for these two new limits indicate that the enhancement over the local values in both cases is smaller than that seen when $P_{\text{lim}} = 10^{23}$ W Hz$^{-1}$ (Fig. 2). These results are supported by the work of Sadler et al. (2007) who found that the cosmic evolution of their low-power ($10^{23} \leq P_{1.4\text{GHz}} < 10^{25}$ W Hz$^{-1}$) population was significant but less rapid than that seen for their higher powered sources.

Inspection of Figs 4 and 5 also suggests that the peak comoving density moves to lower redshifts at lower luminosities, though the large errors on these results, and the restricted redshift range sampled at these low powers prohibit strong conclusions from being drawn.

### 6 SUMMARY AND DISCUSSION

The radio observations presented here, along with the data previously presented in Paper I, allowed the 81 sources of the complete sample to be classified into five groups; group 1 was for secure, morphologically classified FR Is; group 2 for sources with indications of FR I-type extension, alongside a flux density loss of $3\sigma$ or more; group 3 for sources with either flux density loss or some extension and groups 4 and 5 for sources which were either definitely not FR Is or which were unclassifiable. The FR Is in the sample, together with the two FR Is in the HDF + FF, were then used to calculate the maximum, probable and minimum space densities over the range $0.0 < z < 2.0$. The main results of this calculation are listed below.

(i) Clear density enhancements, by a factor of 5–9, were seen at $z \sim 1.0$, over the local FR I value, for FR Is brighter than $10^{25}$ W Hz$^{-1}$.

(ii) This result is secure, with the main source of error arising from the low number of sources in the FR I subsample.

(iii) The no-evolution scenario was ruled out at the $>99.9$ per cent confidence limit.

(iv) The results were consistent with previously published models which in turn suggests that, at a particular radio power, FR Is evolve like FR Is.

(v) The results also indicate that the FR I evolution may be luminosity dependent, with lower powered sources evolving less strongly, and the peak in space density possibly moving to lower redshifts for weaker objects.

Now that the space density enhancements of this sample have been determined it is useful to compare them to the results of previous work. Sadler et al. (2007), for instance, found increases in space density, out to $z = 0.7$, by a factor of $\sim 2–10$ for the high ($P_{1.4\text{GHz}} > 10^{25}$ W Hz$^{-1}$) luminosity radio galaxies in their sample; these are consistent with the range of enhancements ($\sim 5–9$) to $z \sim 1$ seen in the large redshift bin here. Jamrozy (2004) also find that positive evolution, this time PLE, of the form $\rho(z) = \rho(0) \exp [M(L)\tau]$ [where $\tau = 1 - (1 + z)^{-1.3}$ and the evolution rate, $M(L)$, ...
was found to be 5.0] is necessary to fit the number counts of the highest luminosity, morphologically selected FR Is in their sample. At $z = 1$ this corresponds to an enhancement of 25 which is significantly higher than that seen here. Additionally, Willott et al. (2001) see a rise of about 1 dex, between $z \sim 0$ and 1, in the comoving space density of their low-luminosity, weak emission-line population which contains mainly FR I sources, along with some FR IIs. It should be noted that other studies of radio galaxy evolution do not directly measure the amount of space density evolution present in their samples. Instead they test for evolution using the $P_1$ statistic and therefore cannot be directly compared to the results of this work.

In general, all the previous studies of radio galaxy evolution conclude that the more luminous sources undergo more cosmic evolution. For samples in which the FR I population was determined by a luminosity cut, this tends to imply little or no evolution for these sources (e.g. the lower luminosity sources of Clewley & Jarvis (2004) show no evolution, whereas evolution is seen for sources of comparable luminosity to those here). However, for samples which either morphologically classify their sources or which apply a different dual-population scheme (e.g. the low-/high-luminosity division based on line luminosity of Wilott et al. 2001), evolution of at least some of the FR Is objects is typically seen. It would seem, therefore, that the previous models in which all FR Is have constant space density, whereas all FR IIs undergoing strong, positive, cosmic evolution, are too simplistic and do not accurately represent the behaviour of the FR I-type objects. A better representation of the FR I/II space density evolution seen here and in other work, is the picture in which the amount of positive evolution it undergoes between $z \sim 0$ and 1–2. It should be noted though that the behaviour of the low-power FR Is is not thoroughly investigated here, but the evolution seen for higher power objects is consistent with this model.

The detection in this work of FR I space density enhancements for sources with $P_{1.4\text{GHz}} \geq 10^{25}$ WHz$^{-1}$, along with the previous studies which find essentially luminosity-dependent evolution for the FR I population, strongly suggests that neither the intrinsic or the extrinsic difference models can fully explain the observed FR I/II differences. When radio galaxies are divided according to their line luminosities, as in Wilott et al. (2001), there are both FR I and FR II sources in the low-excitation, low-luminosity population; this implies that these FR IIs may also have inefficient accretion flows similar to those previously proposed for FR Is (e.g. Giolelli & Celotti 2001). Jets produced by low accretion flow sources are generally weak with the majority having an FR I-type structure, whereas higher accretion flows give rise to stronger, mainly FR II-type jets. In this scenario therefore, both low and high accretion flows are capable of producing both FR jet structures and the morphological differences between the two classes can be explained extrinsically, as a function of their individual environments, whilst the differences in line luminosity can be explained intrinsically, as a function of their black hole properties (e.g. Hardcastle, Evans & Croston 2006).

In summary, therefore, combining these results with the previously published work in this field leads to the conclusion that the intrinsic/extrinsic models used to describe the differences in radio sources are too simplistic, and that what is needed is some combination of the two. Dividing radio galaxies according to line luminosity, instead of according to their observed morphology, may be the answer as, in this classification, weak, inefficiently accreting, FR IIs can be grouped together with FR Is.

**ACKNOWLEDGMENTS**

EER acknowledges a research studentship from the UK Particle Physics and Astronomy Research Council. PNB would like to thank the Royal Society for generous financial support through its University Research Fellowship scheme. The VLA is operated by the NRAO, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities Inc. MERLIN is a National Facility operated by the University of Manchester at Jodrell Bank Observatory on behalf of STFC.

**REFERENCES**

Baum S. A., Zirbel L., O’Dea C. P., 1995, ApJ, 451, 88
Becker R. H., White R. L., Helfand D. J., 1995, ApJ, 450, 559
Best P. N., Kauffmann G., Heckman T. M., Ivezić Ž., 2005, MNRAS, 362, 9
Best P. N., Kaiser C. R., Heckman T. M., Kauffmann G., 2006, MNRAS, 368, L67
Best P. N., Röttgering H. J. A., Lehnert M. D., 1999, MNRAS, 310, 223
Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh C. M., Cole S., Lacey C. G., 2006, MNRAS, 370, 645
Clewley L., Jarvis M., 2004, MNRAS, 352, 909
Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor G. B., Broderick J. J., 1998, AJ, 115, 1693
Diamond P. J., Garrington S. T., Gunn A. G., Leahy J. P., McDonald A., Muxlow T. W. B., Richards A. M. S., Thomasson P., 2003, The MERLIN User Guide
Dunlop J. S., Peacock J. A., 1990, MNRAS, 247, 19 (DP90)
Fanaroff B. L., Riley J. M., 1974, MNRAS, 167, 31
Gawroński M. P., Marecki A., Kunert-Bajraszewska M., Kus A. J., 2006, A&A, 447, 63
Ghisellini G., Celotti A., 2001, A&A, 379, L1
Gopal-Krishna, Wiita P. J., 2000, A&A, 363, 507
Hardcastle M. J., Evans D. A., Croston J. H. 2006, MNRAS, 370, 1893
Jackson C. A., Wall J. V., 1999, MNRAS, 304, 160
Jamrozy M., 2004, A&A, 419, 63
Kaiser C. R., Best P. N., Willott C. J., Rawlings S., Jarvis M. J., Blundell K. M., 2003, MNRAS, 341, 1548
Koo D. C., Kron R. G., 1982, A&A, 105, 107
Kron R. G., 1980, ApJS, 43, 305
Laing R. A., Riley J. M., Longair M. S. 1983, MNRAS, 204, 151
Ledlow M. J., Owen F. N., 1996, AJ, 112, 9
Muxlow T. W. B. et al., 2005, MNRAS, 358, 1159
Oort M. J. A., Windhorst R. A., 1985, A&A, 145, 405
Oort M. J. A., van Langevelde H. J., 1987, A&A, 71, 25
Rigby E. E., Snellen I. A. G., Best P. N., 2007, MNRAS, 380, 1449 (Paper I)
Sadler E. M. et al., 2007, MNRAS, 381, 211
Snellen I. A. G., Best P. N., 2001, MNRAS, 328, 897
Snellen I. A. G., Bremer M. N., Schilizzi R. T., Miley G. K., van Ojik R., 1996, MNRAS, 279, 1294
Stoughton C. et al., 2002, AJ, 123, 485
Waddington I., Windhorst R. A., Dunlop J. S., Koo D. C., Peacock J. A., 2000, MNRAS, 317, 801
Waddington I., Dunlop J. S., Peacock J. A., Windhorst R. A., 2001, MNRAS, 328, 882
Ward J. V., 1980, Phil. Trans. R. Soc., A296, 367
Willott C. J., Rawlings S., Blundell K. M., Lacy M., Eales S. A., 2001, MNRAS, 322, 536
Willott C. J., Rawlings S., Jarvis M. J., Blundell K. M., 2003, MNRAS, 339, 173
Windhorst R. A., van Heerde G. M., Katgert P., 1984, A&AS, 58, 1
York D. G. et al., 2000, AJ, 120, 1579

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS
APPENDIX A: LYNX B-ARRAY RADIO IMAGES

Figure A1. The radio contour images, for the Lynx field complete sample, from the VLA 1.4-GHz B-array observations. The beam size is $5.36 \times 4.67$ arcsec$^2$. Contours start at 50 $\mu$Jy beam$^{-1}$ and are separated by factors of $\sqrt{2}$. The images are centred on the optical host galaxy positions from Paper I if available.

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS
Figure A1 – continued
Figure A1 — continued
Figure A1 – continued

Figure A2. The B-array radio contour images, for the sources not included in the Lynx field complete sample. The beam size is 5.4 \times 4.5 \text{arcsec}^2. Contours start at 50 \mu\text{Jy beam}^{-1} and are separated by factors of \sqrt{2}. The images are centred on the optical host galaxy positions from Paper I if available.
APPENDIX B: COMPLETE RADIO IMAGES FOR SOURCES INCLUDED IN THE HIGH-RESOLUTION OBSERVATIONS

Figure B1. The A-array, A + Pt and MERLIN contour maps for the sources in the Hercules field, included in the A + Pt or MERLIN observations, all centred on the optical host galaxy position if available, with the aim of comparing the source morphologies at the three different resolutions, ∼1.5, ∼0.5 and ∼0.18 arcsec. The contour maps for each source are all of equal size and all contours increase by a factor of $\sqrt{2}$. 

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS
Figure B1 – continued
Figure B1 – continued
Figure B2. The B-array, A-array, A + Pt and MERLIN contour maps for the sources in the Lynx field, included in the A + Pt or MERLIN observations, all centred on the optical host galaxy position if available, with the aim of comparing the source morphologies at the four different resolutions, ~5, ~1.5, ~0.5 and ~0.18 arcsec. The contour maps for each source are all of equal size and all contours increase by a factor of $\sqrt{2}$. 
Figure B2 – continued
Figure B2 – continued
Figure B2 — continued
Figure B2 – continued
This paper has been typeset from a \LaTeX\ file prepared by the author.