SCREENING OF TOMATO VARIETIES FOR RESISTANCE TO MAJOR FUNGAL DISEASES AND BACTERIAL WILT

The resistance of local and introduced tomato varieties to early blight (Alternaria solani Sorauer) and late blight (Phytophthora infestans (Mont.) de Bary) were evaluated in the field and to bacterial wilt (Ralstonia solanacearum) were tested under artificial infection in greenhouse conditions. Three varieties (De-brao krasnii, De-brao Rozovii and Sultan F1) showed the moderate resistance to early blight, while the only two varieties (De-brao krasnii and De-brao Rozovii) were moderate resistant to late blight. The remaining samples showed susceptibility to disease.

The tested varieties showed a different degree of resistance to the bacterial wilt. Four varieties: Rozovii Gigant, Krachodarskii Krasnii, Tarasenko and Lagidnii appeared to be resistant; Two varieties: Fakel and Polbig showed the moderate resistance and the rest ten varieties were susceptible to the disease.

tomato, Ralstonia solanacearum, early blight, late blight, resistance

The cultivated tomato (Solanum lycopericum) is one of the most popular and widely used foods in Georgia. It was introduced in the second half of the XVIII century in Georgia and now it is grown in all regions up to 1700 meters above sea level. Of the several major diseases infecting tomato, late blight (caused by Phytophthora infestans) and early blight (caused by Alternaria solani Sorauer) are prevalent and severe diseases, reducing yields significantly. Average yield losses of a tomato crop caused by these pathogens are 40—50%, but during severe outbreaks of diseases, the affected foliage area reached 70—100% [1, 2].

Very harmful, restricted distributed quarantine disease of tomato is bacterial wilt (caused by Ralstonia solanacearum). In tomato, bacterial wilt was identified for the first time in 2011 in Chkorotsku and Kutaisi regions (west Georgia). Where it caused up to 100% plant loss in greenhouse- and
field-grown crops [3]. Since then, several cases of this disease have been documented on potato in home gardens [4]. Natural climatic conditions of Georgia are favorable for development tomato diseases, however, the level of damage depends on the varieties, on the infection time and severity, crop grown season climate, etc.

Chemical control of the disease has commonly been used in Georgia, but it is expensive and despite their usefulness, pesticides could pose potential risks to food safety and the environment. Adoption of disease resistant varieties/hybrids is the most environmentally friendly practical way to solve this problem, especially to control *Ralstonia solanacearum*.

Successful production of tomato depends on the choice of resistant varieties adapted to a concrete location. The purpose of this study was to evaluate the level of resistance of tomato varieties introduced recently in Georgia to above mentioned diseases.

Material and methods. Two Georgian: Choportula, Kedis vardisferi and fourteen introduced tomato varieties: Cheri, Rozovii gigant, Grusha Rozavaya, Biche Sertse, Mikado Rozovi, Belii Naliv, De-Bravo Krasni, De-bravo rozovi, Polbig, Volgogradskii nizzkii, Krasnodarski krasnii, Taracenko, Lagidni, Sultan F1 were evaluated in the field conditions under natural infection on the trial of Institute’s plot (Kobuleti).

Plots with three times replication were 1 m wide × 3 m long. Intra-row spacing was 50 cm and inter-row spacing — 70 cm. Late blight and Early blight severity was evaluated weekly on the basis of the percent leaf area infected using unified scale of resistance of vegetable plants (Table 1) [5].

The tomato varieties were also tested to *Ralstonia solanacearum* under artificial infection in greenhouse conditions with temperature 26—28°C, humidity — 60—80%. The tested plants were grown in plastic pots contained sterilized mixture of peat, moss and soil (1:1:1). As a inoculum, a mixture of strains of *Ralstonia solanacearum* spread in Georgia was used. The strains of

Disease severity, %	Type of reaction	Description of symptoms
0.0	9 Highly resistant(HR)	healthy
0.1—15.0	7 Resistant(R)	first foliar symptoms present and no defoliation
15.1—35.0	5 Moderately resistant(MR)	up to 25% de-foliation plus foliar blight
35.1—50.0	3 Susceptible (S)	up to 50% defoliation plus foliar blight
50.1—100	1 Highly susceptible (HS)	up to 75% defoliation plus foliar blight

1. **Unified scale of resistance of vegetable**
pathogen were subcultured and multiplied on the Casamino Acid-Peptone-Glucose (CPG) media. Plants in the phase of three to four leaves were inoculated with a suspension (10⁹ cfu/ml) of 24 hours cultivation cultures of *Ralstonia solanacearum* by injection into the plants stem. Control plants were inoculated with sterile water. The experiments were carried out in three replicates with 10 plants in each replication. After the first visible disease symptoms tested cultivars were observed weekly. Disease severity was recorded at an interval of 7 days after inoculation according to 0—5 scale developed by [6], where RT (reaction type), 0 — means no symptom, 1 — one leaf wilted, 2 — two or three leaves wilted, 3 — the majority of leaves wilted except the top two or three leaves, 4 — all leaves wilted, and 5 — plant dead. Also, disease severity has been calculated using the following formula:

\[
DI = \left[\frac{\sum Ni \times i}{N \times 5} \right] \times 100\% ,
\]

where DI-diseases index, Ni = number of infected plants with a scale, I — RT’s from 0 to 5, N=total plant tested. On the base of disease index, the level of resistance of cultivar was determined as follows: when DI is less than 10% the cultivar considered as resistant (R), when DI =10—20%, cultivar is moderately resistant(MR), DI = 21—40%, cultivar shows moderately susceptibility — MS and when DI is more than 40%, cultivar is susceptible — S.

RESULTS

In accordance with results of the field trials only two varieties: de-bravo krasnii, de-bravo rozovi were moderate resistant to late blight and three varieties (de-bravo krasnii, de-bravo rozovi, sulthan F1) showed moderate resistance to early blight. The most of tested tomato cultivars were susceptible to both diseases (Table 2).

The results from greenhouse experiments indicated that potato varieties

№	Tomato varieties	Reaction types to diseases	
		Early blight	Late Blight
1	Cheri	S	S
2	Rozovi gigant	S	S
3	Grusha Rozavaia	S	S
4	Biche Sertse	S	S
5	Mikado Rozovi	S	S
6	Belii Naliv	S	S

2. The level of resistance of tomato varieties to Early Blight and Late Blight
Volgogradskii nizkii, Taracenko, Lagidni, Rozovii gigant were resistant to *Ralstonia solanacearum*. Varieties Polbig and Fakel showed moderate resistance to pathogen and the left varieties (Kedis vardisferi, Choportula, Cheri, Grusha Rozavaya, Biche Sertse, Mikado Rozovi, Belii Naliv, De-Bravo Krasni, De-bravo rozovi, Krasndarski krasnii, Sultan F1 were susceptible and their severity ranged from 33% to 90% (Table 3).

3. The resistance of local and introduced tomato varieties to *Ralstonia solanacearum*

№	Tomato varieties	Reaction types to diseases	Early blight	Late Blight
8	De-bravo rozovi	S	MR	MR
9	Kedis vardisferi	S	S	S
10	Polbig	S	S	S
11	Volgogradskii nizkii	S	S	S
12	Choportula	S	S	S
13	Krasnodarski krasnii	S	S	S
14	Tarasenko	S	S	S
15	Lagidni	S	S	S
16	Sultan F1	MR	S	S

№	Tomato varieties	Disease severity, %	Type of reaction
1	Cheri	50	MS
2	Rozovii gigant	13	R
3	Belii Naliv	33	MS
4	Biche Sertse	42	MS
5	De-Bravo Krasni	86	S
6	De-bravo rozovi	53	MS
7	Kedis vardisferi	86	S
8	Volgogradskii hizkii	84	S
9	Choportula	90	S
10	Fakel	35	MR
11	Grusha Rozavaia	50	MS
12	Mikado Rozovy	60	MS
Field and greenhouse experiments have shown that tomato varieties "Rozovi gigant," "Krasnodarski krasni," "Tarasenko," "Lagidnii," and "Polbig" and "Torch" were resistant and moderate resistant to bacterial wilt, respectively. Three varieties ("De-brao krasnii," "De-brao Rozovii," and "Sultan F1") showed the moderate resistance to early blight, while the only two varieties ("De-brao krasnii" and "De-brao Rozovii") were moderate resistant to late blight.

REFERENCES

1. Уланова С.Н., Филипов А.В., Дяков Ю.Т. и др. “Устойчивость к фитофторозу некоторых перспективных линии диких Lycopersicon hirsutum” J. Rusian Phytopathol. Soc. 4, 2003. p. 9—15.

2. Chaerani R., Roeland E. Voorrips. Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance. J Jen Plant Pathol. 2006, 72:335—347.

3. Mepharishvili G., Sikharulidze Z., Thwaites R., and all. First confirmed report of bacterial wilt of tomato in Georgia caused by Ralstonia solanacearum. New Disease Reports. 2012. 25, 16. on-line at www.ndrs.org.uk

4. Muradashvili M., Meparishvili G., Sikharulidze Z., Meparishvili S. First report of potato brown rot caused by Ralstonia solanacearum in Georgia. Journal of Plant Pathology Vol. 96, № 4 Supplement) S.4. 113. S4. 131. 2014. http://sipav.org/main/jpp/index.php/jpp/issue/current

5. Лысак С.А., Лысак З.В. "Устойчивость томата к черной бактериальной пятнистости (XANTHOMONAS VESICATORIA DOWSON), ВІСНИК Поолтавської державной аграрной академии. С. 42—46.

6. Winsted N. and Kelman A., 1952 Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Pytopathology 42, 628—634.

CONCLUSIONS

Field and greenhouse experiments have shown that tomato varieties "Rozovi gigant," "Krasnodarski krasni," "Tarasenko," "Lagidnii," and "Polbig" and "Torch" were resistant and moderate resistant to bacterial wilt, respectively. Three varieties ("De-brao krasnii," "De-brao Rozovii," and "Sultan F1") showed the moderate resistance to early blight, while the only two varieties ("De-brao krasnii" and "De-brao Rozovii") were moderate resistant to late blight.

REFERENCES

1. Уланова С.Н., Филипов А.В., Дяков Ю.Т. и др. “Устойчивость к фитофторозу некоторых перспективных линии диких Lycopersicon hirsutum” J. Rusian Phytopathol. Soc. 4, 2003. p. 9—15.

2. Chaerani R., Roeland E. Voorrips. Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance. J Jen Plant Pathol. 2006, 72:335—347.

3. Mepharishvili G., Sikharulidze Z., Thwaites R., and all. First confirmed report of bacterial wilt of tomato in Georgia caused by Ralstonia solanacearum. New Disease Reports. 2012. 25, 16. on-line at www.ndrs.org.uk

4. Muradashvili M., Meparishvili G., Sikharulidze Z., Meparishvili S. First report of potato brown rot caused by Ralstonia solanacearum in Georgia. Journal of Plant Pathology Vol. 96, № 4 Supplement) S.4. 113. S4. 131. 2014. http://sipav.org/main/jpp/index.php/jpp/issue/current

5. Лысак С.А., Лысак З.В. "Устойчивость томата к черной бактериальной пятнистости (XANTHOMONAS VESICATORIA DOWSON), ВІСНИК Поолтавської державной аграрной академии. С. 42—46.

6. Winsted N. and Kelman A., 1952 Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Pytopathology 42, 628—634.

Цецхладзе Ц.М., Сихарулідзе З.В., Мурадашвлі М.Т., Сихарулідзе К.Т. Скринінг сортів томатів щодо стійкості проти основних грибних захворювань і бактеріального в’янення

В результаті оцінки стійкості шістнадцяти місцевих та інтродукованих сортів томатів проти альтернаріозу (Alternaria solani Sorauer)

CONCLUSIONS

Field and greenhouse experiments have shown that tomato varieties "Rozovi gigant," "Krasnodarski krasni," "Tarasenko," "Lagidnii," and "Polbig" and "Torch" were resistant and moderate resistant to bacterial wilt, respectively. Three varieties ("De-brao krasnii," "De-brao Rozovii," and "Sultan F1") showed the moderate resistance to early blight, while the only two varieties ("De-brao krasnii" and "De-brao Rozovii") were moderate resistant to late blight.

REFERENCES

1. Уланова С.Н., Филипов А.В., Дяков Ю.Т. и др. “Устойчивость к фитофторозу некоторых перспективных линии диких Lycopersicon hirsutum” J. Rusian Phytopathol. Soc. 4, 2003. p. 9—15.

2. Chaerani R., Roeland E. Voorrips. Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance. J Jen Plant Pathol. 2006, 72:335—347.

3. Mepharishvili G., Sikharulidze Z., Thwaites R., and all. First confirmed report of bacterial wilt of tomato in Georgia caused by Ralstonia solanacearum. New Disease Reports. 2012. 25, 16. on-line at www.ndrs.org.uk

4. Muradashvili M., Meparishvili G., Sikharulidze Z., Meparishvili S. First report of potato brown rot caused by Ralstonia solanacearum in Georgia. Journal of Plant Pathology Vol. 96, № 4 Supplement) S.4. 113. S4. 131. 2014. http://sipav.org/main/jpp/index.php/jpp/issue/current

5. Лысак С.А., Лысак З.В. "Устойчивость томата к черной бактериальной пятнистости (XANTHOMONAS VESICATORIA DOWSON), ВІСНИК Поолтавської державной аграрной академии. С. 42—46.

6. Winsted N. and Kelman A., 1952 Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Pytopathology 42, 628—634.
і фітофторозу (*Phytophthora infestans* (Mont.) De Bary) в польових умовах на природному інфекційному фоні помірну стійкість проти альтернаріо-зу показали три сорти томатів — Де-брао червоний, Де-брао рожевий і Султан F1, а проти фітофторозу — тільки два сорти: Де-брао черво-ний і Де-брао рожевий. Інші зразки проявили сприйнятливість до хвороб.

Згідно з результатами оцінки стійкості тих же сортів томат проти бактеріального в'янення (*Ralstonia solanacearum*) на штучному інфекційному фоні в теплиці чотири сорти Рожевий гігант, Краснодарський червоний, Таразенко і Лагідний були стійкими, два сорти — Полбіг і Факел — помірно стійкими. Десять сортів проявили сприйнятливість до захворювання.

Цецхладзе Ц.М., Сихарулидзе З.В., Мурадашвили М.Т., Сихарулидзе К.Т. Скрининг сортов томата на устойчивость против основных грибных заболеваний и бактериального увядания

В результаті оцінки устойчивости шестнадцати местных и ін-тродуцированных сортов томата против *Alternaria solani* Sorauer і *Phytophthora infestans* (Mont.) De Bary в полевых условиях на природном инфекционном фоні умеренную устойчивость против альтернариоза показали три сорта томата — Де-брао красный, Де-брао розовый і Султан F1, а против фітофтороза — тільки два сорта: Де-брао крас-нный і Де-брао розовый. Остальные образцы проявили восприимчивость к болезням.

Согласно с результатами оценки устойчивости тех же сортов тома-тата против бактериального увядания (*Ralstonia solanacearum*) на искус-ственном инфекционном фоні в теплице четыре сорта Розовый гигант, Краснодарский красный, Таразенко і Лагідний були устойчивыми, два сорта — Полбіг і Факел — умеренно устойчивыми. Десять сортів про-явили восприимчивость к заболеванию.