A Note on Coloring Digraphs of Large Girth

Raphael Steiner *

April 7, 2020

Abstract

The digirth of a digraph is the length of a shortest directed cycle. The dichromatic number \(\chi(D) \) of a digraph \(D \) is the smallest size of a partition of the vertex-set into subsets inducing acyclic subgraphs. A conjecture by Harutyunyan and Mohar [7] states that \(\chi(D) \leq \lceil \frac{\Delta}{4} \rceil + 1 \) for every digraph \(D \) of digirth at least 3 and maximum degree \(\Delta \). The best known partial result by Golowich [5] shows that \(\chi(D) \leq 2\frac{5}{\Delta} + O(1) \). In this short note we prove for every \(g \geq 2 \) that if \(D \) is a digraph of digirth at least \(g \) and maximum degree \(\Delta \), then \(\chi(D) \leq \left(\frac{1}{3} + \frac{1}{3g} \right)\Delta + O(1) \). This improves the bound of Golowich for digraphs without directed cycles of length at most 10.

1 Introduction

Preliminaries. All digraphs in this note are finite and do not contain loops or parallel arcs. Given a digraph \(D \), we denote by \(V(D) \) its vertex-set and by \(A(D) \) the arc-set. A digraph is called acyclic if it does not contain directed cycles. By \(\Delta(D), \Delta^+(D), \Delta^-(D), \delta^+(D), \delta^-(D) \) we denote, respectively, the maximum degree in (the underlying graph of) \(D \), and the extremal out- and in-degrees in \(D \). We furthermore denote by \(\Delta(D) = \max\{\sqrt{d^+(v)d^-(v)}|v \in V(D)\} \) the maximum geometric mean of the in- and out-degree of a vertex in \(D \). Note that in case \(D \) has no cycles of length 2, the inequality of geometric and arithmetic mean shows that \(\Delta(D) \leq \frac{\Delta}{2} \). Given a vertex set \(X \subseteq V(D) \), we denote by \(D[X] \) the induced subdigraph of \(D \) with vertex-set \(X \) and call \(X \) acyclic if \(D[X] \) is acyclic. By \(\bar{g}(D) \) we denote the digirth of \(D \), that is, the shortest length of a directed cycle in \(D \) (\(\bar{g}(D) := \infty \) if \(D \) is acyclic). Given a family \(A_1, \ldots, A_m \) of finite sets, a system of representatives of this family is a set \(X \subseteq \bigcup_{i=1}^{m} A_i \) such that \(X \cap A_i \neq \emptyset \) for all \(i \in [m] \).

We deal with a notion of coloring for directed graphs introduced in 1982 by Neumann-Lara [13]. Given a digraph \(D \), an acyclic coloring of \(D \) is a vertex-coloring in which all color classes are acyclic. The smallest number of colors sufficient for an acyclic coloring of \(D \) is denoted by \(\chi(D) \) and called dichromatic number of \(D \). This notion has received a fair amount of attention in the past two decades, see [1, 3, 4, 6, 9, 12] for some recent results. As for undirected graphs, there is a Brooks-type upper bound on the dichromatic number of a digraph, see [11, 13], which implies \(\chi(D) \leq \left[\frac{\Delta(D)}{2} \right] + 1 \) for every digraph of girth at least 3 and maximum degree \(\Delta \geq 3 \). In this note, we are motivated by the following conjecture from [7], which claims that this Brook’s type bound can be improved by a factor of 2 if we forbid directed cycles of length 2 in the digraph.

Conjecture 1 (cf. [7], Conjecture 1.5). Let \(D \) be a digraph of digirth at least 3 and maximum degree \(\Delta \). Then \(\chi(D) \leq \left[\frac{\Delta(D)}{4} \right] + 1 \leq \left[\frac{\Delta}{4} \right] + 1 \).

*Institute of Mathematics, Technische Universität Berlin, Germany, email: steiner@math.tu-berlin.de. Funded by DFG-GRK 2434 Facets of Complexity.
Approaching their conjecture, in [7] Harutyunyan and Mohar proved that there is a small absolute constant \(\varepsilon > 0 \) such that \(\bar{\chi}(D) \leq (1 - \varepsilon)\Delta(D) \leq \left(\frac{1}{2} - \frac{\varepsilon}{2} \right)\Delta(D) \) for every digraph \(D \) of digirth at least 3 and \(\Delta \) sufficiently large. Subsequently Golowich [5] improved the multiplicative constant in the upper bound, by showing that every digraph \(D \) of digirth at least 3 satisfies \(\bar{\chi}(D) \leq \frac{\Delta}{2}\Delta(D) + O(1) \). Our contribution is to further improve the multiplicative constant in this upper bound for digraphs without short directed cycles.

Theorem 1. Let \(g \geq 2 \) a natural number, and let \(D \) be a digraph with \(\bar{\chi}(D) \geq 2g - 1 \) and maximum degree \(\Delta \). Then \(\bar{\chi}(D) \leq \left(\frac{1}{3} + \frac{1}{3g} \right)\Delta + (g + 1) \).

2 Proof of Theorem 1

We need three auxiliary results by Neumann-Lara, by Aharoni, Berger and Kfir, and by Lovász.

Lemma 2 (cf. [13, Theorem 5]). Let \(k \in \mathbb{N} \) and let \(D \) be a \((k + 1)\)-critical digraph, that is, \(\bar{\chi}(D) = k + 1 \) but \(\bar{\chi}(D') \leq k \) for every proper subdigraph \(D' \subseteq D \). Then \(\delta^+(D), \delta^-(D) \geq k \).

Lemma 3 (cf. [2, Corollary II.13]). Let \(D \) be a digraph of digirth at least \(\gamma \geq 2 \) and let \(V_1, V_2, \ldots, V_m \) be a partition of \(V(D) \). If \(\vert V_i \vert \geq \frac{3}{2^m} \Delta^+(D) \) for all \(i \in [m] \), then there is a system \(X \) of representatives of \(V_1, \ldots, V_m \) which is acyclic in \(D \).

Lemma 4 ([10]). Let \(G \) be an undirected graph, \(k \in \mathbb{N} \). Then \(V(G) \) admits a partition \(X_1, \ldots, X_k \) such that for every \(v \in X_i, i \in [k] \), we have \(\deg_{G[V]}(v) \leq \frac{1}{k} \deg(v) \).

The proof of Theorem 1 relies on the following bound on the dichromatic number for digraphs of large girth compared to their maximum out-degree.

Lemma 5. Let \(D \) be a digraph such that \(\bar{\chi}(D) > \Delta^+(D) \). Then

\[
\bar{\chi}(D) \leq \left\lfloor \frac{\Delta(D)}{3} \right\rfloor + 2.
\]

Proof. Abbreviate \(\Delta = \Delta(D) \) and \(\gamma = \bar{\chi}(D) \) and put \(k := \left\lfloor \frac{\Delta}{3} \right\rfloor + 1 > \frac{\Delta}{3} \). By Lemma 2 there is a partition \(X_1, \ldots, X_k \) of \(V(D) \) such that for every \(i \in [m] \) we have \(\Delta(D[X]) \leq \frac{\Delta}{3} < 3 \). Hence, \(D[X_i] \) is a disjoint union of oriented paths and oriented cycles. For every \(i \), let us denote by \(\bar{C}_i \) the set of all directed cycles in \(D[X_i] \) and put \(V' := \bigcup_{i \in [k], C \in \bar{C}_i} V(C) \). We claim that there is an acyclic set \(X \subseteq D \) such that \(X \cap V(C) \neq \emptyset \) for all \(C \in \bar{C}_i \) and \(i \in [k] \). To see this, note that \(\deg_{V'}(v) \geq \gamma \geq \frac{3}{2^m} \Delta^+(D) \geq \frac{3}{2^m} \Delta^+(D[V']) \) for every \(C \in \bar{C}_i \) and \(i \in [k] \). We can therefore apply Lemma 3 to the digraph \(D[V'] \) equipped with the partition \((V'(C) \in \bar{C}_i, i \in [k]) \) to find a system of representatives \(X \) which is acyclic in \(D[V'] \) and thus in \(D \). Next we claim that each of the sets \(X_i \setminus X, i \in [k] \) is acyclic in \(D \). Indeed, the digraph \(D[X_i \setminus X] = D[X_i] - (X_i \cap X) \) is obtained from a disjoint union of oriented paths and cycles by removing at least one vertex from each directed cycle, and is therefore acyclic. Hence, \(X_1 \setminus X, X_2 \setminus X, \ldots, X_k \setminus X \) is a partition of \(V(D) \) into acyclic sets which certifies that \(\bar{\chi}(D) \leq k + 1 = \left\lfloor \frac{\Delta}{3} \right\rfloor + 2 \).

We can now complete the proof of Theorem 1 by applying Lemma 4 a second time.

Proof of Theorem 1 Let \(\ell := \left\lfloor \frac{\Delta}{3g} \right\rfloor + 1 \). By Lemma 4 there exists a partition \(Y_1, \ldots, Y_\ell \) of \(V(D) \) such that \(\Delta(D[Y_i]) \leq \Delta < 3g \) for every \(i \in [\ell] \). We claim that for every \(i \in [\ell] \), we have \(\bar{\chi}(D[Y_i]) \geq g + 1 \). Suppose by way of a contradiction that \(\bar{\chi}(D[Y_i]) \geq g + 2 \) for some \(i \in [\ell] \).
Consider a subgraph D_i of $D[Y_i]$ with $\chi(D_i) \geq g + 2$ minimizing $|V(D_i)| + |A(D_i)|$. Clearly, D_i is $(g+2)$-critical, and thus $\delta^-(D_i) \geq g + 1$ by Lemma 2. Hence we have

$$\Delta^+(D_i) \leq \Delta(D_i) - \delta^-(D_i) \leq \Delta(D[Y_i]) - \delta^-(D_i) \leq (3g - 1) - (g + 1) = 2g - 2 < g(D) \leq g(D_i).$$

We can therefore apply Lemma 5 to obtain $\chi(D_i) \leq \left\lfloor \frac{3g - 1}{3g} \right\rfloor + 2 = g + 1$, which is the desired contradiction. This shows that indeed we have $\chi(D[Y_i]) \leq g + 1$ for all $i \in [\ell]$. The claim now follows from

$$\chi(D) \leq \sum_{i=1}^{\ell} \chi(D[Y_i]) \leq (g + 1) \left(\left\lfloor \frac{\Delta}{3g} \right\rfloor + 1 \right) \leq \left(\frac{1}{3} + \frac{1}{3g} \right) \Delta + (g + 1).$$

\[\square\]

References

[1] P. Aboulker, N. Cohen, F. Havet, W. Lochet, P. Moura, and S. Thomassé. Subdivisions in digraphs of large out-degree or large dichromatic number. Electronic Journal of Combinatorics, 26(3):P3.19, 2019.

[2] R. Aharoni, E. Berger, and O. Kfir. Acyclic systems of representatives and acyclic colorings of digraphs. Journal of Graph Theory, 59:177–198, 2008.

[3] S. D. Andres and W. Hochstättler. Perfect digraphs. Journal of Graph Theory, 79(1):21–29, 2015.

[4] J. Bensmail, A. Harutyunyan, and N. Khang Le. List coloring digraphs. Journal of Graph Theory, 87(4):492–508, 2018.

[5] N. Golowich. The m-degenerate chromatic number of a digraph. Discrete Mathematics, 339(6):1734–1743, 2016.

[6] A. Harutyunyan, T.-N. Le, S. Thomassé, and H. Wu. Coloring tournaments: From local to global. Journal of Combinatorial Theory, Series B, 2019.

[7] A. Harutyunyan and B. Mohar. Strengthened brooks’ theorem for digraphs of girth at least three. Electronic Journal of Combinatorics, 18(1), 2011. P195.

[8] A. Harutyunyan and B. Mohar. Planar digraphs of digirth five are 2-colorable. Journal of Graph Theory, 84(4):408–427, 2017.

[9] Z. Li and B. Mohar. Planar digraphs of digirth four are 2-colorable. SIAM J. Discrete Math., 31:2201–2205, 2017.

[10] L. Lovász. On decompositions of graphs. Studia Sci. Math. Hungar., 1:237–238, 1966.

[11] B. Mohar. Eigenvalues and colorings of digraphs. Linear Algebra and its Applications, 432:2273–2277, 2010.

[12] B. Mohar and H. Wu. Dichromatic number and fractional chromatic number. Forum of Mathematics, Sigma, 4, E32, 2016.

[13] V. Neumann-Lara. The dichromatic number of a digraph. Journal of Combinatorial Theory, Series B, 33(3):265–270, 1982.