Backflow in a Fermi Liquid

W. Zwerger

Sektion Physik, Universität München, Theresienstraße 37, D-80333 München, Germany

(June 8, 2022)

We calculate the backflow current around a fixed impurity in a Fermi liquid. The leading contribution at long distances is radial and proportional to \(1/r^2\). It is caused by the current induced density modulation first discussed by Landauer. The familiar \(1/r^3\) dipolar backflow obtained in linear response by Pines and Nozieres is only the next to leading term, whose strength is calculated here to all orders in the scattering. In the charged case the condition of perfect screening gives rise to a novel sum rule for the phase shifts. Similar to the behavior in a classical viscous liquid, the friction force is due only to the leading contribution in the backflow while the dipolar term does not contribute.

long ago by Landauer. We also calculate the familiar dipolar backflow to all orders in the scattering potential and discuss the modifications of our results for interacting Fermi liquids. It is found that the condition of perfect screening entails a sum rule for the scattering phase shifts which is similar to, but different from the one by Friedel. Finally we determine the systematic force exerted on the impurity by the moving fermions. It is shown that only the leading \(1/r^{d-1}\) term of the backflow current contributes to the force, a situation which is completely analogous to that in a classical viscous liquid.

Let us consider a fixed scattering center at the origin which is characterized by a spherically symmetric interaction potential \(V(\vec{x})\). In the frame where the impurity is at rest, the Fermi system is flowing past with asymptotic velocity \(\vec{v} \neq 0\). The unperturbed current density is therefore \(\vec{j}(\vec{x})|_0 = n\vec{v}\), with \(n\) the equilibrium number density. Due to scattering off the impurity, the actual current density \(\vec{j}(\vec{x})\) differs from \(n\vec{v}\) by a backflow current \(\delta\vec{j}(\vec{x})\). To lowest order in \(\vec{v}\) the Fourier transform \(\delta\vec{j}(\vec{q})\) of the backflow is of the form

\[
\delta\vec{j}(\vec{q}) = h(q)[(q\vec{v})\hat{q} - \vec{v}]
\]

where \(\hat{q}\) is the unit vector in the direction of \(\vec{q}\). Indeed the vector in Eq. (1) is uniquely determined by the requirement that it is linear in \(\vec{v}\) and the zero divergence condition \(\vec{q} \cdot \delta\vec{j}(\vec{q}) = 0\) due to the stationarity of the flow. For small velocities the backflow pattern is thus completely determined by the scalar function \(h(q)\). As pointed out above, a treatment of the interaction potential \(V(\vec{x})\) in linear response gives rise to a dipolar backflow which is characterized by \(\lim_{q\to 0} h(q) = h_0\). The associated dimensionless constant \(h_0\) is equal to \(\partial n/\partial p \cdot V(q = 0)\) in the case of a neutral Fermi liquid. Here the compressibility \(\partial n/\partial p\) is just the \(q \to 0\) limit of the general density response function \(\chi(q)\). For an impurity with charge \(Z\), the product \(\chi(q) \cdot V(q)\) is replaced by \(Z [\epsilon(q) - 1] \) with \(\epsilon(q)\) the static dielectric constant. As a result of the perfect screening condition \(\epsilon(q) = 0\), this leads to a universal value \(h_0^c = -Z\) for the strength of the dipolar backflow in the charged case.

In order to discuss the generalization of these results beyond linear response, still keeping the asymptotic velocity \(\vec{v}\) small however, we start by considering a noninteracting Fermi gas. In this case the backflow can be calculated analytically from the single particle eigenstates \(\psi_k(\vec{x})\), which are the exact outgoing scattering states in \(V(\vec{x})\). Indeed describing the finite asymptotic current \(n\vec{v}\)
by a shifted Fermi distribution \(f(\epsilon_{\mathbf{k}}-\mathbf{q}/\hbar)\) for the incoming momenta \(\mathbf{k}\), the total fermionic current density at zero temperature and to linear order in \(\mathbf{v}\) is given by

\[
\mathbf{j}(\mathbf{x}) = \frac{k_{F}^{-1}}{(2\pi)^{d}} \int d\Omega_{k} \mathbf{k} \cdot \mathbf{v} \Im \left[\psi_{k}^{\ast}(\mathbf{x}) \nabla_{x} \psi_{k}(\mathbf{\hat{x}}) \right]_{k=k_{F}} . \tag{2}
\]

Here \(d\Omega_{k}\) denotes an integration over the directions of the unit vector \(\mathbf{k}\), while the magnitude \(k = |\mathbf{k}|\) is fixed at the Fermi wave vector \(k_{F}\). Thus at \(T = 0\) and to linear order in \(\mathbf{v}\) the backflow is completely determined by the exact scattering states right at the Fermi surface. Clearly the behavior of \(\mathbf{j}(\mathbf{x})\) at arbitrary distances depends on the details of \(\psi_{k}(\mathbf{x})\). For large distances, however, it is sufficient to know the asymptotic form of the scattering states. In order to obtain the first two leading contributions to \(\mathbf{j}(\mathbf{x})\) it is necessary to expand

\[
\psi_{k}(\mathbf{x}) = e^{i\mathbf{k} \cdot \mathbf{x}} + f \cdot \frac{e^{ikr}}{r} + f_{2} \cdot \frac{e^{ikr}}{r^{2}} + \ldots \tag{3}
\]

to order \(1/r^{2}\) in three dimensions. Here \(f\) is the standard scattering amplitude while the coefficient of the \(1/r^{2}\) contribution is given by

\[
f_{2} = \frac{i}{2k^{2}} \sum_{l=0}^{\infty} (2l+1)(l+1)e^{i\delta_{l}} \sin \delta_{l} P_{l}(\hat{k} \cdot \hat{x}) \tag{4}
\]

with phase shifts \(\delta_{l}\) and the usual Legendre polynomials \(P_{l}\). This result is obtained by a straightforward asymptotic expansion of the free particle solutions with given angular momentum \(l\). In two dimensions the corresponding result turns out to be

\[
\psi_{k}(\mathbf{x}) = e^{i\mathbf{k} \cdot \mathbf{x}} + f \cdot \frac{e^{ikr}}{r^{1/2}} + f_{2} \cdot \frac{e^{ikr}}{r^{3/2}} + \ldots \tag{5}
\]

with amplitudes \(f\) and \(f_{2}\) which are not given here explicitly. It is now straightforward to insert the asymptotic behavior of the scattering states into our expression (2) for the current. Apart from the trivial term \(\delta\) which accounts for the background current density \(\mathbf{n}\), the leading contributions to \(\Im[\psi^{\ast} \nabla \psi]_{k=k_{F}}\) obviously arise from the square \(k_{F} f/|f|^{2}/r^{d-1}\) of the outgoing wave and the two interference terms linear in \(f\). Now \(\exp i(kr - \mathbf{q} \cdot \mathbf{x})\) is asymptotically proportional to a \(\delta\)-function \(\delta(\Omega_{k} - \Omega_{\mathbf{q}})\) which singles out the forward direction \(\mathbf{k} = \mathbf{\hat{x}}\). Using the optical theorem it is straightforward to show that the leading term to the backflow is given by

\[
\delta j(\mathbf{x}) \rightarrow \frac{k_{F}}{(2\pi)^{d}} \frac{\sigma_{tr}}{r^{d-1}} (\mathbf{x} \cdot \mathbf{\hat{x}}) + \mathbf{O}(r^{-d}) \tag{6}
\]

with \(\sigma_{tr} = \int d\Omega_{k}(1-\mathbf{k} \cdot \mathbf{\hat{x}})|f|^{2}\) the standard transport cross section. Obviously the contribution (6) is a purely radial current which vanishes in the direction perpendicular to \(\mathbf{v}\) (see Fig.1). It has vanishing divergence as it should, but finite curl.

In order to understand its physical origin we consider the current induced part \(\delta n(\mathbf{x})\) of the density modulation which is caused by the scattering off the impurity. As predicted by Landauer this modulation asymptotically has the form \(\delta n(\mathbf{x}) \sim -(\mathbf{x} \cdot \mathbf{\hat{v}})/r^{d-1}\) of a dipole potential. Comparing the exact expression obtained for \(\delta n(\mathbf{x})\) in a scattering theory calculation with our result (6), it turns out that at \(T = 0\) and to linear order in \(\mathbf{v}\) the asymptotic backflow current is simply given by

\[
\delta j(\mathbf{x}) = v_{F} \delta n(\mathbf{x}) \cdot \mathbf{\hat{x}} \tag{7}
\]

The leading term in the backflow is thus directly proportional to the current induced density change \(\delta n(\mathbf{x})\) which is positive in front and negative behind the scatterer, in agreement with the intuitive picture developed by Landauer. As a result, the sign of this contribution to the backflow remains unchanged upon going from a repulsive to an attractive potential \(V(\mathbf{x})\). This is in contrast to the dipolar contribution

\[
\delta j(\mathbf{x})|_{\text{dip}} = -\frac{\hbar a}{2\pi(d-1)} \frac{d(\mathbf{x} \cdot \mathbf{\hat{v}}) \mathbf{\hat{x}} - \mathbf{\hat{v}}}{r^{d}} \tag{8}
\]

which is only the next to leading term in an asymptotic expansion of \(\delta j(\mathbf{x})\). Using (3) and (5) a straightforward but rather tedious calculation indeed gives a contribution to \(\delta j(\mathbf{x})\) of the form (8) with strength.
These are functionals of both the energy and the quasiparticle potential are characterized by phase shifts \(\delta_l\) at long distances it is always the radial term which dominates.

Nevertheless at long distances it is always the radial term which dominates.

In a Fermi liquid the interacting state develops adiabatically from the noninteracting one. The resulting asymptotic distribution is again a Fermi sphere shifted by \(\delta k = mv\hat{v}/\hbar\), with \(m\) the bare mass. At \(T = 0\) the energy is fixed at \(\epsilon_F\) and there are no collisions other than with the impurity. Moreover since the deviation of \(n_k\) from equilibrium is already linear in \(\vec{v}\), we may neglect the dependence of \(\delta_l\) both on energy and on \(n_k\). The resulting values of \(\delta_l\) then define an effective force \(\vec{F}_k\) on the quasiparticles which appears in the corresponding transport equation \(\mathcal{E}\). In a fully quantum mechanical treatment of the Wigner function \(n_k(\vec{x})\) the associated local particle current must then be equal to \(\vec{j}_k(\vec{x}) = \frac{A}{\hbar} \text{Im} \psi_k^* \nabla \psi_k\) where \(\psi_k\) are the exact scattering states in an effective potential with phase shifts \(\delta_l\). As was shown above, \(h_{-1}\) and \(h_0\) can be expressed completely in terms of \(k_F\) and the scattering phase shifts \(\delta_l\). The generalization of our results to the interacting case is therefore rather obvious.

Indeed since \(k_F\) is unchanged one only needs to replace the phase shifts by those for quasiparticles. The general form of the backflow as determined by (1) and (12) thus applies also in the interacting case, however with renormalized parameters \(h_{-1}\) and \(h_0\). For a charged impurity in an electron liquid, the perfect screening condition must hold to all orders in \(V\). As we have seen, this implies a universal dipolar backflow characterized by \(h_0 = -Z\) for an impurity with charge \(Z\). Since \(h_0\) is completely determined by the \(\delta_l\) via (9) and (11), perfect screening gives a nontrivial condition on the scattering phase shifts at a charged impurity. In the limit \(\delta_l \ll 1\) it reduces to the well known Friedel sum rule \(\mathcal{F}\) which fixes the number of bound states. The novel sum rule shows that even for \(Z = 1\) no purely s-wave scattering potential can account for the backflow in the charged case. Regarding the dominant radial contribution, the transport cross section appearing in the coefficient \(h_{-1}\) has to be replaced by its value for the screened potential \(V(q)/\epsilon(q)\). In contrast to \(h_0\) the strength of the radial backflow is therefore not universal.

Finally we calculate the systematic force \(\vec{F}\) due to the transfer of momentum between liquid and scatterer. In the context of electromigration theory this is known as the wind force \(\mathcal{F}\). Taking the gradient of the interaction energy with respect to the impurity position, it is straightforward to see that

\[
\vec{F} = - \int d^d x \, n(\vec{x}) \nabla \vec{x} \cdot V .
\]

Clearly at zero current \(\vec{v} = 0\) this force vanishes although the fermion density is not uniform even in this case. Therefore only the current induced density change \(\delta n(\vec{x})\) contributes to \(\vec{F}\). For simplicity we consider again a Fermi gas at \(T = 0\) with scattering states \(|\vec{k}+\rangle\). To lowest order in \(\vec{v}\) the current induced density then has the asymptotic behavior \((d = 2, 3)\)

\[
\delta n(\vec{x}) = - \frac{1}{2\pi v_F} \left[\frac{(1.2/\pi)h_{-1}}{r^{d-1}} + \frac{h_0}{r^d} + \ldots \right] \vec{x} \vec{v} .
\]
which shows that the two leading terms in \(v_F \delta n(\vec{x})\) are identical with the radial component \(\hat{\delta} j(\vec{x})\) of the backflow. The associated total force can be written as

\[
\vec{F} = \frac{k_F^{d-1}}{(2\pi)^d} \int d\Omega_{\vec{k}} \hat{\vec{k}} \cdot \vec{v} \frac{m}{\hbar} \left< \vec{k} + | - \nabla_x V |k^+ > < k = k_F \right>
\]

(16)
similar to (2). Now the relevant matrix element of \(\nabla_x V\) between the exact scattering states is equal to \(2\epsilon_F \sigma_{tr}(|k_F\vec{r}|)\cdot k\). Thus (16) immediately gives a conventional friction force \(\vec{F} = -\eta_F \vec{v}\) with \(\eta_F = \hbar k_F n\sigma_{tr}\). The fermionic friction coefficient \(\eta_F\) is proportional to the transport cross section which appears in the radial contribution \(h_{-1}\) to the backflow. It is this term which determines the single impurity contribution to the residual resistivity \(\Omega\). This is a simple example of the so called Das-Peierls theorem \([9,10]\) in electromigration, which states that the total force on the impurity is proportional to the additional resistivity \([4,7]\). This is a simple example of the so called Das-Peierls theorem \([9,10]\) in electromigration, which states that the total force on the impurity is proportional to the additional resistivity it causes. The fact that the dipolar contribution \(h_0\) to the backflow does not contribute to the friction force can be understood most easily by considering the linear response regime. Indeed to linear order in \(V\) the response at low velocities is purely reactive \([4]\), while a finite resistivity can only appear at order \(V^2\). More generally, the coefficient \(h_0\) is odd in \(\delta_1\), while the force must be an even function of the phase shifts. This situation is in fact very similar to the case of a classical, incompressible and viscous liquid. Calculating the backflow current around a sphere of radius \(R\) with boundary condition \(\vec{v} = 0\) at the surface, one finds \([6]\) that \(\delta j(\vec{x})\) has a contribution proportional to \(1/r\) and a dipolar one. The associated function \(h(q)\) as defined in (1) is thus of the form

\[
\lim_{q \rightarrow 0} h_{aj}(q) = \frac{h_{-2}}{q^2} + h_0 + \ldots .
\]

(17)

The coefficient of the \(1/r\) contribution is \(h_{-2} = 6\pi R n\) while the strength of the dipolar backflow is negative and given by \(h_0 = -\pi R^2 n\) (the corresponding problem in two dimensions has no solution which is known as the Stokes paradox). Calculating the associated friction \(\vec{F} = -\eta_s \vec{v}\) in a fluid with kinematic viscosity \(\nu\) it turns out \([6]\) that only the leading term \(h_{-2}\) contributes to \(\eta_s = 6\pi R n \cdot \nu\) while the dipolar backflow again drops out. Comparing the Stokes result with that for a Fermi liquid, we see that the fermionic friction coefficient for a scattering potential with characteristic range \(R\) such that \(\sigma_{tr} = \pi R^2\) is equal to that of a classical liquid with finite kinematic viscosity \(\nu_F = v_F R/6\). With typical values \(R = 2 \AA\) and \(v_F = 1.5 \cdot 10^6 \text{cm/sec}\) for electrons in metals, we obtain \(\nu_F = 0.5 \text{cm}^2/\text{sec}\) which is about fifty times the viscosity of water. From this point of view therefore, electrons in metals behave like a rather viscous liquid indeed!

In summary we have calculated the backflow around a fixed impurity in a Fermi liquid at low velocities and zero temperature. The dominant contribution is radial and decays like \(1/r^{d-1}\). It is directly proportional to the current induced density modulation first discussed by Landauer and is responsible for the frictional force i.e. the finite resistivity. The subleading dipolar contribution of Pines and Nozieres has been evaluated to arbitrary orders in the scattering. It has been shown that the condition of perfect screening of a charged impurity gives rise to a novel sum rule for the corresponding phase shifts. We have also evaluated the total force on the impurity. In agreement with the Das-Peierls theorem it is proportional to the scatterers contribution to the resistivity. For our simple situation this is just a consequence of Newtons third law. The fact that the dipolar term in the backflow gives no contribution to the force shows that the so called direct force in electromigration theory \([9,10]\) vanishes in the present case. This is a consequence of the way we have set up the problem: Instead of calculating a current as the response to an external field we have specified the incoming current which gives rise to a certain backflow or potential distribution \([4]\). It is an interesting future problem to develop a theory of electromigration from this point of view, including the lattice, background scattering etc.

ACKNOWLEDGMENTS

Constructive comments by H. Wagner are gratefully acknowledged. This work has been supported by the SFB 348.

[1] L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon Press Oxford (1975)
[2] R.P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956)
[3] D. Pines and P. Nozieres, The Theory of Quantum Liquids, Benjamin New York (1966)
[4] R. Landauer, IBM J. Res. Dev. 1, 223 (1957) and Z. Phys. B21, 247 (1975)
[5] J. Friedel, Phil. Mag. 43, 153 (1952)
[6] L. Bönig and K. Schönhammer, Phys. Rev. 39, 7413 (1989)
[7] W. Zwerger, L. Bönig and K. Schönhammer, Phys. Rev. B43, 6434 (1991)
[8] P. Nozieres, J. Low Temp. Phys. 17, 31 (1974)
[9] See A.H. Verbruggen, IBM J. Res. Dev. 32, 93 (1988) for a brief introduction
[10] A.K. Das and R. Peierls, J. Phys. C6, 2811 (1973) and ibid. C8, 3348 (1975)
[11] C. Bosvieux and J. Friedel, J. Phys. Chem. Sol. 23, 123 (1963)