Low-temperature chemistry between water and hydroxyl radicals: H/D isotopic effects

T. Lamberts\(^1,2\)*, G. Fedoseev\(^1\), F. Puletti\(^3\), S. Ioppolo\(^2\), H. M. Cuppen\(^2\), and H. Linnartz\(^1\)

\(^1\) Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, P.O. Box 9513, NL 2300 RA Leiden, The Netherlands.

\(^2\) Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

\(^3\) Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK

ABSTRACT

Sets of systematic laboratory experiments are presented - combining UHV cryogenic and plasma-line deposition techniques - that allow to compare H/D isotopic effects in the reaction of H\(_2\)O (D\(_2\)O) ice with the hydroxyl radical OD (OH). The latter is known to play a key role as intermediate species in the solid state formation of water on icy grains in space. The main finding of our work is that the reaction H\(_2\)O+OD \(\rightarrow\) OH+HDO occurs and that this may affect the HDO/H\(_2\)O abundances in space. The opposite reaction D\(_2\)O + OH \(\rightarrow\) OD + HDO is much less effective, and also given the lower D\(_2\)O abundances in space not expected to be of astronomical relevance. The experimental results are extended to the other four possible reactions between hydroxyl and water isotopes and are subsequently used as input for Kinetic Monte Carlo simulations. This way we interpret our findings in an astronomical context, qualitatively testing the influence of the reaction rates.

Key words: astrochemistry – methods: laboratory: molecular – methods: laboratory: solid state – solid state: volatile – ISM: molecules

1 INTRODUCTION

Surface reactions on grains have been proposed as an effective way to form water at the low temperatures typical for the interstellar medium (van de Hulst 1949; Tielens & Hagen 1982). Over the last ten years many of the possible reactions have been tested in various laboratories and reaction routes, rates, and branching ratios have been determined (Hiraoka et al. 1998; Miyauchi et al. 2008; Ioppolo et al. 2008, 2010; Cuppen et al. 2010; Romanzin et al. 2011). The general conclusions obtained in these studies are in line with each other (Dulieu 2011) and the astronomical relevance has been summarized by van Dishoeck et al. (2013).

A detailed study of the solid state formation of water also holds the potential to characterize deuteration effects. With the goal to understand how water was delivered to Earth, there has been much interest in linking the HDO/H\(_2\)O ratio in cometary, interstellar, and laboratory ices as well as astronomical (gas-phase) observations to ratios as found in our oceans (Rodgers & Charnley 2002; Hartogh et al. 2011). Therefore, both the origin of the HDO/H\(_2\)O ratio in the ices and their subsequent chemical and thermal processing are currently widely studied (Caselli & Ceccarelli 2012). It is in fact during the water formation on dust surfaces when the deuterium fractionation commences. The preferential incorporation of D over H in molecules can lead to D/H ratios in molecules that are much larger than the primordial ratio of \(\sim 1.5 \times 10^{-5}\) (Piskunov et al. 1997; Oliveira et al. 2003). To understand the origin of this fractionation, it is necessary to consider both the gas-phase and solid-state processes that are at play. The driving forces behind these processes are the lower zero-point energy of an X-D bond with respect to an X-H bond and the difference in tunneling behavior, both as a result of the larger mass of deuterium (Roberts et al. 2003; Tielens 1983; Caselli & Ceccarelli 2012; Lipshtat et al. 2004). One of the possible enhancement routes for hydrocarbon bonds is the simple replacement of a hydrogen by a deuterium via a deuterium mediated abstraction mechanism: \(-\text{CH} + \text{D} \rightarrow -\text{C} + \text{HD}\) followed by \(-\text{C} + \text{D} \rightarrow -\text{CD}\) (Nagaoka et al. 2005, 2007). An example is substitution of H for D in solid methanol, which has been found to be efficient, whereas the reverse

* corresponding author, current address: Computational Chemistry Group, Inst. of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany
reaction (substituting D for H) is not. Note that Nagaoka et al. (2005) have also attempted to substitute hydrogen in water by the same process, but did not find any deuteration upon D exposure. The non-occurrence of reaction H$_2$O + D has been confirmed in our laboratory (unpublished data).

Another abstraction process, so far studied in less detail, involves OH and OD radicals. Hydroxyl radicals play an important role as reactive intermediates in water formation (see e.g. Cuppen et al. 2010). Furthermore, recent microscopic models have shown that the radical concentration in the ice can be very high if photon penetration is included (Chang & Herbst 2013). Garrod (2013) indicated the importance of abstraction reactions by the hydroxyl radical in the framework of complex hydrocarbon molecules. Such an OH induced abstraction mechanism is particularly important in water-rich ices, because both OH and OD radicals are produced on the surface by radical chemistry and by photodissociation of water isotopologues (Ioppolo et al. 2008; Andersson & van Dishoeck 2008; Oberg et al. 2009).

Considering again the formation of HDO in the ice, the water surface reaction network needs to be duplicated, involving both reactions with hydrogen and deuterium. As a result of the large number of reactions that are in competition with each other and with diffusion, it is experimentally challenging to study hydrogenation and deuteration, simultaneously. Therefore, in the past, either the deuteration pathways have been studied separately, e.g., O$_2$ + D (Chaabouni et al. 2012), or specific reaction routes are tackled theoretically and experimentally, e.g., OH (OD) + H$_2$ (HD or D$_2$) and H$_2$O$_2$ (D$_2$O$_2$) + H (D) (Kristensen et al. 2011; Oba et al. 2012, 2014). Here, we add to these studies and investigate the cross links between the hydrogenation and deuteration networks by the following four hydrogen abstraction reaction via hydroxyl radicals:

\[
\begin{align*}
\text{H}_2\text{O} + \text{OD} &\rightarrow \text{H} + \text{HDO} \\
\text{HDO} + \text{OD} &\rightarrow \text{OH} + \text{D}_2\text{O} \\
\text{HDO} + \text{OH} &\rightarrow \text{OD} + \text{H}_2\text{O} \\
\text{D}_2\text{O} + \text{OH} &\rightarrow \text{OD} + \text{HDO}.
\end{align*}
\]

Hydrogen abstraction of OH from H$_2$O (or the fully deuterated analog) can also take place

\[
\begin{align*}
\text{H}_2\text{O} + \text{OH} &\rightarrow \text{OH} + \text{H}_2\text{O} \\
\text{D}_2\text{O} + \text{OD} &\rightarrow \text{OD} + \text{D}_2\text{O}
\end{align*}
\]

and although this does not have a net effect on the abundances in the ice, it can be seen as an analog of bulk diffusion, of which models indicate it is of great importance in ice chemistry (Vasyunin & Herbst 2013; Lambers et al. 2014; Chang & Herbst 2014). The isolated OH-H$_2$O complex has been detected in a variety of matrices (Ar, Ne, O$_2$) as has been summarized by Do (2014). This shows that a pre-reactive complex indeed can be formed.

Reactions [R2] and [R3] cannot be studied in the laboratory, because it is not feasible to deposit pure HDO. Room-temperature rapid proton transfer reactions scramble the protons and deuterons and yield a statistical ~ 1:2:1 mixture of H$_2$O:HDO:D$_2$O if one were to start from a pure HDO liquid. Such scrambling has been found to take place efficiently even in ices at temperatures far below room temperature.

Angle	Rate Constant (cm2 s$^{-1}$)	Theory	Experiment
90°	f_{dep}	4×10^{12}	2×10^{12}
45°	f_{dep}	4×10^{12}	2×10^{12}

*The upper limit is derived from the D$_2$O and H$_2$O deposition rate when the microwave source is turned off.

Therefore, here, only reactions [R1] and [R4] are tested experimentally, at low temperature and using reflection absorption infrared spectroscopy (RAIRS) as an in-situ diagnostic tool.

Table 1. Summary of the performed experiments with additional calibration and control experiments and corresponding parameters, $T_{\text{surf}} = 15$ K and $t_{\text{exp}} = 90$ min in all cases.

In the following, we outline the experimental setup and sets of experiments performed (Section 2), the analysis of the resulting RAIRS spectra (Section 3), the astrochemical implications by means of a Kinetic Monte Carlo model (Section 4), and we conclude with summarizing remarks (Section 5).

2 EXPERIMENTAL METHODS

Two sets of representative experiments and their corresponding control experiments are summarized in Table 1. All measurements are performed at a surface temperature of 15 K for a duration of 90 minutes. The two experiments that are used for this study are part of a larger set, varying mixing ratios and temperatures, and found to be optimum for the goals set in this work. The findings of the other experiments are largely in line with the ones discussed here, but do not provide additional information.

Experiments are performed using the SURFRESIDE setup, which was constructed to systematically investigate solid-state reactions leading to the formation of molecules of astrophysical interest at cryogenic temperatures. The setup has already been extensively described in Ioppolo et al. (2013) and therefore only a brief description of the procedure is given here.

SURFRESIDE consists of three UHV chambers with a room-temperature base-pressure between 10^{-9} – 10^{-10} mbar. A rotatable gold-coated copper substrate in the center
of the main chamber is cooled to the desired temperature using a He closed-cycle cryostat with an absolute temperature accuracy of $\lesssim 2$ K.

Both reactions R1 and R4 require a water isotopologue to be co-deposited along with a hydroxyl isotopologue. The former are deposited through a metal deposition line under an angle of 90° and are prepared in a separate pre-pumped ($\lesssim 10^{-5}$ mbar) dosing line. After undergoing several freeze-pump-thaw cycles room-temperature vapor of H$_2$O or D$_2$O can partake in the co-deposition. Secondly, the hydroxyl radicals are generated in a Microwave Atom Source (MWAS, Oxford Scientific Ltd, (Anton et al. 2000)) using a microwave discharge (300 W at 2.45 GHz) of pure water or heavy water. This discharge is located in a separate UHV beam line with an angle of 45° with respect to the surface. This beam line can be operated independently and is separated from the main chamber by a metal shutter. We cannot quantify the relative deposition rates of all fragments – O, O$_2$, H, H$_2$, OH, HO$_2$, and H$_2$O (or deuterated equivalents). However, an upper limit can be derived from the H$_2$O deposition rate when the microwave source is turned off: $\sim 10^{13}$ cm2 s$^{-1}$. Many discharge products are thus deposited onto the surface, but only one reacts with D$_2$O (or H$_2$O). First, during the calibration stage of our setup the reaction O + H$_2$O is found not to take place, indicating that discharge fragments that reach the surface are no longer in an excited state (Ioppolo et al. 2013). Both H$_2$O and O$_2$ are inert to reactions with other non-radical species as confirmed previously (Ioppolo et al. 2010). The reaction of H with water isotopologues has been discussed in the Introduction and does not take place in ices for which the water molecules are hydrogen bonded (Nagaoka et al. 2005). The reaction of HO$_2$ with water is endergonic and has been found to occur in the gas phase only with high barriers (several thousand Kelvin) (Lloyd 1974). This leaves only the hydroxyl radical to react with a water isotopologue.

To confirm the presence of OH among the H$_2$O discharge products, we co-deposited H$_2$O discharge dissociation products with N$_2$ in a $1:20$ ratio during a separate experiment (not listed in Table 1). The presence of the OH radical is confirmed via its infrared absorption at 3547 cm$^{-1}$ (Cheng et al. 1988). Furthermore, both O + H \rightarrow OH and O$_2$ + H \rightarrow HO$_2$ + OH can lead to additional hydroxyl radicals on the surface, which we expect to thermalize quickly on a picosecond timescale (Arasa et al. 2013; Meyer & Reuter 2014). Finally, our OH radicals or rather the produced H$_2$O$_2$ that forms upon OH recombination on the surface, exhibits a comparable temperature dependent behavior to the H$_2$O$_2$ features apparent after depositing H$_2$O dissociation fragments from a similar microwave-discharge plasma by Oba et al. (2011).

A RAIR difference spectrum with respect to the background is acquired every 5 minutes up to the final time of the experiment, 90 minutes. RAIR spectra comprise a spectral range between 4000 and 700 cm$^{-1}$ with a spectral resolution of 1 cm$^{-1}$ and are averaged over 512 scans. Our region of interest lies in the 2000-1000 cm$^{-1}$ range, i.e., the bending modes of H$_2$O, HDO and D$_2$O: 1660, 1490, and 1250 cm$^{-1}$, respectively. Although the bands are broad, the modes are relatively well separated and can be distinguished from each other, whereas that is not the case in the stretching regions.

To further enhance the peak separation between the bands of different species we made use of H$_2$O18O instead of regular H$_2$O16O. In the end, the effect was limited as in matrix isolation experiments the bending mode of H$_2$O18O is redshifted instead of blueshifted with respect to that of H$_2$O16O. In the following, we will refer to all species without mentioning explicitly the oxygen isotope at hand. Band strengths for the bending modes are typically ill-constrained and therefore we focus here on the qualitative conclusions that can be drawn.

The fluxes mentioned in Table 1 are calculated using the following relation

$$f_{X_2O} = \frac{c_{X_2O} P_{X_2O}(v)}{4 k_B T}$$

where P_{X_2O} is the pressure, c_{X_2O} is the calibration factor for the pressure gauge for the isotopologues of water, v is the thermal velocity of the vapor molecules at 300 K, k_B is the Boltzmann constant, and T corresponds to the (room) temperature. The calibration factors for both water and heavy water are found to be equal (Straub et al. 1998; Hikawa & Mason 2005) and we assume here that this also holds for H$_2$O18O.

The separate experiments within a series, 1a – 1d and 2a – 2d (Table 1), are performed sequentially, i.e., on top of each other to make sure that the plasma conditions and deposition rates do not vary between experiments focusing on the abstraction process and the corresponding control experiments. The order in which the measurements are performed is (c)-(a)-(b)-(d). In this particular way, first the plasma is able to stabilize before experiment (c) is started. During experiment (c) only the plasma products are dosed and spectra of the accumulated products are recorded. Subsequently, the shutter of the plasma chamber is closed, while the plasma remains switched on and a new background spectrum is recorded. It is then possible to perform experiment (a), simply by opening the shutter of both the plasma chamber and the regular deposition line. At the end of this experiment, the discharge is switched off, the shutters of both beamlines are closed and another background spectrum is recorded. By opening the shutters, experiment (b) is performed, i.e., no plasma fragments are deposited, but rather the parent molecule itself. Finally, both shutters are closed and a background spectrum is recorded, followed by recording the deposition of the non-dissociated species, that is, experiment (d), for which only the shutter of the regular deposition line is opened.

3 RESULTS AND DISCUSSION

In Figures 1 and 2 the RAIR spectra recorded after 90 minutes of co-deposition are depicted for experiments 1a - 1c (to investigate reaction R1) and 2a - 2c (idem reaction R4) mentioned in Table 1. The graphs represent nearly unprocessed data with only a two-point baseline subtracted (1900 and 4000 cm$^{-1}$). In both figures, a difference curve between experiment a and control experiment c is depicted as well. The overlapping peaks prohibit that direct quantitative information can be derived. An overview of the products found in the various spectra and their respective origins is given in Table 2. A clear finding is that HDO is only seen for the reaction H$_2$O + OD (Figure 1) and not for D$_2$O + OH.
(Figure 2), indicative for different reaction efficiencies. The interpretation of this observation is discussed below.

In Figure 1, five characteristic infrared features are visible, namely for H_2O, HDO, D_2O, D_2O_2, and $^{16}\text{O}_3$. The presence of these species can be explained either by deposition, by (re-)combination of discharge products, or through additional reactions. During experiment 1a ($\text{H}_2\text{O} + \text{OD}$), three molecules are formed in the course of the co-deposition: HDO, D_2O_2, and O_3. Both deuterated peroxide and ozone are also visible in experiment 1c when only dissociated D_2O is deposited on the surface. This indicates that reactions between discharge fragments are responsible for the production of these species. The formation of HDO is, however, observed as a result of reaction [1] which only takes place when the plasma is switched on. The small amount of HDO observed in control experiment 1b, is attributed to contamination in the D_2O sample and is clearly much weaker compared to the feature present in experiment 1a.

To rule out that non-thermalized reaction mechanisms are at play here, such as the Eley-Rideal or hot-atom mechanism, an extra experiment was performed similar to experiment 1, but at a surface temperature of 60 K. At this temperature, the residence time of thermalized OD radicals on the surface is much shorter ([Oba et al. 2011]) and therefore if HDO formation is observed, this must proceed through a non-thermalized mechanism. However, the characteristic HDO peak was not detected throughout this experiment, which indicates that reaction [1] on the surface takes place via the thermalized Langmuir-Hinshelwood mechanism.

In Figure 2, four characteristic infrared features are observed, corresponding to H_2O, H_2O_2, D_2O, and $^{16}\text{O}_3$. Here, the ozone consists of ^{18}O atoms, as a result of the H_2^{18}O plasma that produces both $^{18}\text{O}_2$ and ^{18}O. Again, ozone and hydrogen peroxide are generated as a result of discharge fragment (re-)combinations. Throughout experiment 2a ($\text{D}_2\text{O} + \text{OH}$), these are the only two molecules that are formed while HDO production seems to be lacking. This also becomes clear when comparing the lower panels in Figures 1 and 2. In Figure 2, the HDO peak around 1450 cm$^{-1}$ is much weaker. However, the peak positions of hydrogen peroxide and singly deuterated water in water-rich environments are very close to each other: \sim1435 versus \sim1475 cm$^{-1}$ ([DeVilin 1990] [Oba et al. 2014]). Therefore, special care is needed to interpret this experiment and to conclude that HDO is not formed efficiently, as its absorption feature may be buried in the H_2O_2 signal. For a detectable level, one expects to see a clear shift and a change in total integrated intensity of the peak. In Figure 3, a direct comparison between experiment 2a and control experiment 2c is shown. The right panel zooms in on the region of the OH bending mode of both HDO and H_2O_2 (discussed here), while the left panel zooms in on the $\nu_2 + \nu_6$ combination band of H_2O_2 at 2860 cm$^{-1}$. The latter is the only H_2O_2 band which does not overlap with other species ([Lannon et al. 1971]) and, as such, can be used as a reference point.

The figure shows that the spectra shift. The OH bending mode band shifts by about 20 cm$^{-1}$, halfway the peak positions of the H_2O_2 and HDO bands. At a first glance, this would be consistent with HDO formation, but a closer look learns that this shift is due to the changing matrix environment, i.e., the presence of D_2O in experiment 2a or lack thereof in experiment 2c, rather than a detectable amount of HDO formation. The first argument to support this is that also the combination band (at 2860 cm$^{-1}$) shifts, roughly 7 cm$^{-1}$, but in this case the band does not overlap with HDO and is therefore expected not to shift unless the matrix plays a role.

Secondly, to further study the influence of a mixed HDO and H_2O_2 ice on the bandwidth of the OH bending mode, we artificially added an HDO component to the H_2O_2 component of the H_2O plasma deposition. This is done by selecting specifically the HDO band in experiment 1a in Fig. 4, setting its baseline to zero around 1350 and 1530 cm$^{-1}$, and adding it to the same region of the spectrum obtained in experi-
The experimentally found difference in reaction probabilities assuming that the tunneling is not form, i.e., the reaction $\text{D}_2\text{O} + \text{OH} \rightarrow \text{OD} + \text{HDO}$ is not efficient.

The third argument follows from a comparison of the integrated band areas (A) of the OH bending mode in experiments 1a, 2a, and 2c. The ratio between $A_{\text{exp. 1a}}$, A_{2a}, and A_{2c} is derived by integrating the three spectra over the same range and comparing the values. Since this involves a choice of the range over which to integrate, the three experiments were all integrated over several ranges. The first integration point was chosen between 1340 and 1365 cm$^{-1}$ and the second point between 1520 and 1550 cm$^{-1}$. The values found for the ratio k_3/k_1 were all lower than 0.2, depending on the exact range chosen. Here, we remain conservative and stay with the upper limit and therefore set k_3/k_1 to 0.2. This factor is in agreement with the difference curve depicted in Fig. 2. We therefore conclude that the observed shift in Fig. 3 is largely due to a matrix effect, ruling out an effective HDO formation in reaction $\text{R}4$.

A final, independent argument comes from theory. From the experimental set presented here, we conclude that reaction $\text{R}1$ does, and reaction $\text{R}4$ does not efficiently take place at a detectable level for the specific conditions studied. To understand this difference and the overall likelihood of the reactions to take place at low temperatures, the gas-phase Gibbs free energies at 15 K are calculated using the enthalpies and entropies given by Chase (1998):

- $\text{R}1$: -1.2 kJ mol$^{-1}$ = -146 K
- $\text{R}2$: -1.3 kJ mol$^{-1}$ = -159 K
- $\text{R}3$: -1.2 kJ mol$^{-1}$ = 146 K
- $\text{R}4$: 1.3 kJ mol$^{-1}$ = 159 K.

The experimentally found difference in reaction probability for reactions $\text{R}1$ and $\text{R}4$ is in line with the predictions from gas-phase Gibbs free energies. Extrapolating the experiments, a similar behavior for reactions $\text{R}2$ and $\text{R}3$ is expected.

Additionally, from a tunneling point-of-view, the first two reactions transfer a hydrogen atom, whereas the final two reactions transfer a deuteron. Calculating the effective mass, μ, for this system as outlined by Oba et al. (2012) to find the kinetic isotope effect involved, we find a $\sim 25\%$ decrease in the reaction probabilities assuming that the tunneling rate is well-described by the Wentzel-Kramers-Brillouin or square-potential with width a and height E approximation:

$$k_{\text{tunneling}} \propto \exp \left(-\frac{2a}{h} \sqrt{2\mu E} \right).$$

This is in agreement with our experimental comparison between the first and the last reaction. Note, however, that the endergonicity still plays a role when tunneling is considered to further decrease the reaction probability (Lamberts et al. 2013).

To summarize all experimental and theoretical findings and considerations, we expect the following relations to hold:

- $k_4 \ll k_1$ (with an absolute upper limit $k_4 < 0.2 k_1$)
- $k_1 \approx k_2$ (assuming thermal activation only)
- $k_1 > k_2$ (assuming that tunneling plays a role)
- $k_3 \approx k_4$.

We cannot draw any definitive conclusions concerning reactions $\text{R}5$ and $\text{R}6$ although it is important to note that the change in Gibbs free is zero on average and if tunneling is involved $k_6 < k_5$.

Table 2. List of assigned species in the experiments and their respective origins.

Experiment 1	Products	Origin
H$_2$O	Deposition	
D$_2$O	Reaction of H$_2$O with discharge fragments: H$_2$O + OD \rightarrow OH + HDO	
O$_3$	Reaction of discharge fragments: O + O \rightarrow O$_2$ and O + O$_2$ \rightarrow O$_3$	
D$_2$O$_2$	Undissociated molecules in the plasma line	

Experiment 2	Products	Origin
H$_2$O	Undissociated molecules in the plasma line	
H$_2$O$_2$	Reaction of discharge fragments: OH + OH \rightarrow H$_2$O$_2$	
O$_3$	Reaction of discharge fragments: O + O \rightarrow O$_2$ and O + O$_2$ \rightarrow O$_3$	
D$_2$O$_2$	Deposition	

Figure 3. Comparison of H$_2$O RAIR spectra acquired after 90 minutes of co-deposition for experiments (2a) and (2c), Table 1. The right panel shows the OH bending wavelength domain studied here. The left panel is an additional spectrum in the ν$_2$ + ν$_6$ combination band domain. Graphs are offset in such a way that the bands in both experiments overlap regardless of the baseline.
Table 3. Parameters used in the astrochemical simulations for a translucent cloud. See text regarding the values for n(O(I)), n(HD), n(H$_2$O) and n(D).

n(H$_2$O)	n(HD)	n(H(I))	n(D(I))	n(O(I))
5×10^{12}	8×10^{-4}	2	6×10^{-3}	3×10^{-1}

4 ASTROCHEMICAL IMPLICATIONS

The key to the astrochemical relevance of the reactions studied here lies in the relative abundances of the water isotopes (n(H$_2$O) > n(HDO) > n(D$_2$O)) and the ice abundance of both hydroxyl radical isotopes, OH and OD. These species can be either formed on the interstellar dust surfaces via O + H and O + D reactions or via photodissociation of frozen H$_2$O, HDO or D$_2$O. Therefore, especially in rather low-A_V regions such as translucent clouds, the deuterium enrichment effect of the reactions studied here can be substantial. In these regions, water is continuously formed and destroyed on the surface until a steady state is reached (Cuppen & Herbst 2007; Cazaux et al. 2010; Lamberts et al. 2014). Each time a formed HDO molecule is dissociated into OH + D or, more likely, OD + H (Koning et al. 2013), there is a chance that the hydroxyl radical evaporates. The OD evaporation is in competition with three solid-state reactions creating or recreating HDO:

$$\text{H} + \text{OD} \rightarrow \text{HDO} \quad (R7)$$
$$\text{H}_2 + \text{OD} \rightarrow \text{H} + \text{HDO} \quad (R8)$$
$$\text{H}_2\text{O} + \text{OD} \rightarrow \text{OH} + \text{HDO} \quad (R1)$$

To further characterize this, a previously-used continuous-time random-walk Kinetic Monte Carlo model – including desorption, diffusion, reaction, and evaporation processes – for water formation (Lamberts et al. 2013; 2014) is adapted here with an extension of the chemical surface network including all deuteration reactions. All hydrogenation reactions are duplicated and replaced with deuterium analogue(s). Deuterium chemistry is initiated by surface reactions with HD or D. If tunneling is expected to be involved, the activation energies are altered accordingly (Oba et al. 2012; 2014). Furthermore, for reactions that can result in more than one product, the branching ratios between the product channels are distributed statistically. We realize that this model is a rather crude approximation; the intention is not to derive accurate values since the number of involved reactions and dependencies is too extensive for this. It merely serves to test which parameters are crucial when including OH and OD abstraction reactions in the solid state water formation network.

The parameters of the ‘translucent cloud’ studied here are summarized in Table 3. They are chosen such to have a high enough photon flux to induce photodissociation of water, but simulatenously to allow for a minimal build-up of an icy layer. A high D abundance (one order of magnitude higher compared to Figure 4 in (Le Petit et al. 2002) for a molecular fraction of ~0.9) is adapted to enhance the HDO abundance on the surface to reduce the total simulation time. The atomic hydrogen density is chosen to be 2 cm$^{-3}$ (Goldsmith & Li 2005). The remaining fractional densities of the species involved have been chosen typical for a cloud with nH$_2$ = 1000 cm$^{-3}$, i.e., n(HD)/nH$_2$ = 8 \times 10$^{-7}$ and n(O(I))/nH$_2$ = 3 \times 10$^{-4}$ (Le Petit et al. 2002; Nguyen et al. 2002). The binding energies of the deuterated species are copied from their regular counterparts, e.g., the binding energy of OH and OD radicals on a flat surface is ~650 K, but increases with 210 K for each local neighbor as explained in Lamberts et al. (2013). This binding energy is quite low compared to recent experimental studies (He & Vidali 2014) and therefore we have performed additional simulation runs doubling the binding energy.

All simulations have been performed five times to increase the low S/N ratio that is inherent to the low HDO abundances. The results for different runs are summarized in Table 3 and visualized in Fig. 4. The HDO/H$_2$O values mentioned in Table 4 are average values with standard deviations of approximately 35% corresponding to a time of 6.5 \times 104 years.

Run I neglects the effects studied in this work, but includes reactions $R5$ and $R6$ runs II and III incorporate $R5$ $R6$ and $R1$, $R2$, $R4$, $R5$ and $R6$, respectively, for a binding energy of 660 K. Run IV is similar to run I, but for 1300 K. Run V is the 1300 K equivalent of run II. The relations for k_1 – k_4 derived experimentally are implemented in the Monte Carlo routine in two ways. Firstly, all reactions are incorporated with a non-zero rate, assuming a conservative upper limit corresponding to (k_3, k_4) < 0.2 (k_1, k_2), i.e., simulation run II. Secondly, as experimentally no clear evidence of the occurrence of reaction $R4$ is found, both k_3 and k_4 are set to zero in run III. These simulations are compared to run I, where reactions $R1$, $R6$ are excluded from the network. The reaction rates of the reactions $R3$ and $R6$ are equal throughout all simulations, but have been reduced artificially to reduce the computational cost of the simulation and avoid that a series of reactions between two neighboring species keeps occurring without a net change in OH and H$_2$O abundance.

The influence of including reactions $R1$, $R6$ in the network as well as of different OH and OD binding energies on the ice HDO/H$_2$O ratio is discussed below. It is directly clear that there is no substantial effect on the H$_2$O formation (upper two panels). In the case of HDO, it takes time before the reactions discussed here start changing abundances w.r.t. a model in which these are not taken into account (run I). Reactions $R1$ and $R3$ start to play a role only after sufficient HDO has been produced on the surface, i.e., either at later
stages in the simulation (\(> 3 \times 10^4 \) years) or upon artificial increase of the D abundance. Indeed, reactions \(R2, R3 \) and \(R9 \) do not take place in the simulations, as a result of the low concentrations of OD and D\(_2\)O.

We find that the absolute HDO abundance, and therefore also the HDO/H\(_2\)O ice ratio increases upon including the studied reactions in the reaction network, compare simulation I to II/III, and simulation IV to V. Each time that an OD radical is created – either by reaction or dissociation of HDO – this species can easily regenerate deuterated water.

The same conclusions hold upon an increase in the binding energy, from 650 to 1300 K on a flat surface, of the OH and OD radicals. This primarily results in thicker ice layers, since less desorption takes place, which can be seen directly from Fig. 4.

Finally, including reactions \(R1, R6 \) also decreases the absolute abundance of deuterated peroxide, HDO\(_2\), and the ratio HDO\(_2\)/H\(_2\)O by a factor 1.5 to 4.5, depending on the simulation run. An OD radical is more likely to react with H\(_2\)O than to find a OH fragment and form HDO\(_2\).

In summary: incorporating reactions \(R1, R4 \) can change the HDO/H\(_2\)O ratio by as much as a factor 2-3 compared to models not taking into account these reactions.

5 CONCLUSIONS

We demonstrated experimentally that the reaction between water and a deuterated hydroxyl radical produces singly deuterated water, and that the deuterated analogue of this reaction does not proceed with the same efficiency, namely:

\[
\begin{align*}
\text{H}_2\text{O} + \text{OD} & \rightarrow \text{OH} + \text{HDO} \quad (R1) \\
\text{D}_2\text{O} + \text{OH} & \rightarrow \text{OD} + \text{HDO} \quad (R4)
\end{align*}
\]

with \(k_4 < 0.2 k_1 \). This result is theoretically supported by the difference in gas-phase Gibbs free energy of the reactions which renders the reaction \(R4 \) exergonic, but the reaction \(R1 \) endergonic. If such a proton/deuteron transfer reaction was to occur (partially) via tunneling, the kinetic isotope effect also points towards a lower reaction rate for the deuteron transfer, \(i.e., k_4 < k_1 \).

Furthermore, a deuterated-water-formation Kinetic Monte Carlo model shows that including reactions between water and hydroxyl radical isotopes can change the HDO/H\(_2\)O ice ratio with respect to surface formation schemes neglecting these processes. The extent of this change depends on the exact parameters included as well as on the astronomical conditions. More information on the exact role of crucial parameters, such as precise values for the reaction rates and the role of the excess heat upon reaction, in general, is needed before this model can be further extended.

Placing this in context with other studies, we want to stress that the previous experimental solid-state reactions involving different reaction efficiencies for different isotopologues all point towards the involvement of tunneling in overcoming the reaction activation barrier (Oba et al. 2012, 2014). This essentially results in H-enrichment of the ices since tunneling favors reactions with hydrogen over those with deuterium. The reactions discussed in the present work, however, could offer a pathway to D-enrichment. In light of the recent investigations of the HDO/H\(_2\)O and D\(_2\)O/H\(_2\)O ratios, it is thus pivotal to understand the isotopic effect of all single reactions included in the water formation network (van Dishoeck et al. 2013). The present study adds one specific reaction channel that is relevant within the large picture. Although it is often implicitly assumed that the ratios in the ice and in the gas are coupled, this is not always the case (Taquet et al. 2014; Furuya 2015).

Finally, the importance of the abstraction reactions induced by the hydroxyl radical previously reported (Oba et al. 2012; Garrod 2013) is reinforced by the present results, especially since this radical plays an important role as reactive intermediate in water formation. Such reactions can strongly affect the local OH (and OD) abundance in interstellar ices, not only via abstraction reactions, but also influence, \(e.g., \) CO\(_2\) formation, via the diffusion analog reaction \(R15 \) (H\(_2\)O + OH \(\rightarrow \) H\(_2\)O + OH\(_{-}\)), in the case that CO\(_2\) forms through CO+OH recombination (Mennella et al. 2004; Oba et al. 2011; Ioppolo et al. 2011; Noble et al. 2011).

6 ACKNOWLEDGEMENTS

We thank Magnus Persson, Kenji Furuya, and Xander Tielens for stimulating discussions.

Astrochemistry in Leiden in general and the visit of F.P. to our laboratory in particular was supported by the European Communitys Seventh Framework Programme (FP7/2007- 2013) under grant agreement n.238258, the Netherlands Research School for Astronomy (NOVA) and from the Netherlands Organization for Scientific Research (NWO) through a VICI grant. T.L. is supported by the Dutch Astrochemistry Network financed by The Netherlands Organization for Scientific Research (NWO). Support for S.I. from the Marie Curie Fellowship (FP7-PEOPLE-2011-IOF-300957) is gratefully acknowledged. H.M.C. is grateful for support from the VIDI research program 700.10.427, which is financed by The Netherlands Organization for Scientific Research (NWO) and from the Euro-
pean Research Council (ERC-2010-StG, Grant Agreement no. 259510-KISMOL).

REFERENCES

Andersson S., van Dishoeck E. F., 2008, Astron. Astrophys., 491, 907
Anton R., Wiegner T., Naumann W., Liebmann M., Klein C., Bradley C., 2000, Rev. Sci. Instrum., 71, 1177
Arasa C., van Hemert M. C., van Dishoeck E. F., Kroes G. J., 2013, The Journal of Physical Chemistry A, 117, 7064
Caselli P., Ceccarelli C., 2012, Astron. Astrophys. Rev., 20, 56
Cazaux S., Cobut V., Marseille M., Spaans M., Caselli P., 2010, Astron. Astrophys., 522, A74
Chaobouni H., Minissale M., Manicò G., Congiu E., Noble J. A., Baouche S., Accolla M., Lemaire J. L., Pirronello V., Dulieu F., 2012, J. Chem. Phys., 137, 234706
Chang Q., Herbst E., 2014, Astrophys. J., 787, 135
Chase M. W., 1998, Journal of physical and chemical reference data, Monograph, no. 9. American Chemical Society, Washington DC
Cheng B.-M., Lee Y.-P., Ogilvie J., 1988, Chemical Physics Letters, 151, 109
Cuppen H. M., Herbst E., 2007, Astrophys. J., 668, 294
Cuppen H. M., Ioppolo S., Romanzin C., Linnartz H., 2010, Phys. Chem. Chem. Phys., 12, 12077
Devlin J., 1990, Journal of Molecular Structure, 224, 33
Do N. H. V. D. C. P. D., 2014, Mon. Not. R. Astron. Soc., 443, 207
Dulieu F., 2011, in Cernicharo J., Bachiller R., eds, IAU Symposium Vol. 280 of IAU Symposium, Water Ice Formations and the o/p Ratio. pp 405–415
Furuya K., 2015, Atmospheric Chemistry and Physics, 15, 8287
Furuya K., 2014, Subm. Linnartz H., Visser R., van Dishoeck E. F., 2009, Astrophys. J., 693, 1209
Garrad R. T., 2013, The Astrophysical Journal, 765, 60
Goldsmith P. F., Li D., 2005, Astrophys. J., 622, 938
Hartogh P., Lis D. C., Bockelée-Morvan D., de Val-Borro M., Biver N., Küppers M., Emprechtinger M., Bergin E. A., Crovisier J., Reuland M., Moreno R., Szutowicz S., Blake G. A., 2011, Nature, 478, 218
He J., Vidali G., 2014, Astrophys. J., 788, 50
Hiraoka K., Miyagoshi T., Takayama T., Yamamoto K., Kihara Y., 1998, Astrophys. J., 498, 710
Ioppolo I., Fedoseev G., Lamberts T., Romanzin C., Linnartz H., 2013, Rev. Sci. Instrum., 84, 073112
Ioppolo S., Cuppen H. M., Romanzin C., van Dishoeck E. F., Linnartz H., 2008, Astrophys. J., 686, 1474
Ioppolo S., Cuppen H. M., Romanzin C., van Dishoeck E. F., Linnartz H., 2010, Phys. Chem. Chem. Phys., 12, 12065
Ioppolo S., van Boheemen Y., Cuppen H. M., van Dishoeck E. F., Linnartz H., 2011, Mon. Not. R. Astron. Soc., 412
Itikawa Y., Mason N., 2005, Journal of Physical and Chemical Reference Data, 34
Koning J., Kroes G. J., Arasa C., 2013, The Journal of Chemical Physics, 138, 074308
Kristensen L. E., Amiaud L., Fillion J.-H., Dulieu F., Lemaire J.-L., 2011, Astron. Astrophys., 527, A44
Lamberts T., Cuppen H. M., Fedoseev G., Ioppolo S., Chuang K.-J., Linnartz H., 2014, Astron. Astrophys., 570, A57
Lamberts T., Cuppen H. M., Ioppolo I., Linnartz H., 2013, Phys. Chem. Chem. Phys., 15, 5287
Lamberts T., de Vries X., Cuppen H. M., 2014, Far. Disc., 168, 327
Lamberts T., Ioppolo S., Cuppen H. M., Fedoseev G., Linnartz H., 2015, subm.
Lannon J. A., Verderame F. D., Anderson R. W., 1971, The Journal of Chemical Physics, 54
Le Petit F., Roueff E., Le Bourlot J., 2002, Astron. Astrophys., 390, 369
Lipshtat A., Biham O., Herbst E., 2004, Mon. Not. R. Astron. Soc., 348, 1055
Lloyd A. C., 1974, International Journal of Chemical Kinetics, 6, 169
Mennella V., Palumbo M. E., Baratta G. A., 2004, Astrophys. J., 615, 1073
Meyer J., Reuter K., 2014, Angewandte Chemie International Edition, 53, 4721
Miyauchi N., Hidaka H., Chigai T., Nagaoka A., Watanabe N., Kouchi A., 2008, Chem. Phys. Lett., 456, 27
Nagaoka A., Watanabe N., Kouchi A., 2005, Astrophys. J. Lett., 624, L29
Nagaoka A., Watanabe N., Kouchi A., 2007, The Journal of Physical Chemistry A, 111, 3016
Nguyen T. K., Ruffle D. P., Herbst E., Williams D. A., 2002, Mon. Not. R. Astron. Soc., 329, 301
Noble J. A., Dulieu F., Congiu E., Fraser H. J., 2011, The Astrophysical Journal, 735, 121
Oba Y., Osaka K., Watanabe N., Chigai T., Kouchi A., 2014, Far. Disc., 168, 185
Oba Y., Watanabe N., Hama T., Huwahata K., Hidaka H., Kouchi A., 2012, Astrophys. J., 749, 67
Oba Y., Watanabe N., Kouchi A., Hama T., Pirronello V., 2011, Phys. Chem. Chem. Phys., 13, 15792
Öberg K. I., Linnartz H., Visser R., van Dishoeck E. F., 2009, Astrophys. J., 693, 1209
Oliva E. M., Hebrard G., Howk J. C., Kruk J. W., Chayer P., Moos H. W., 2003, Astrophys. J., 587, 235
Piskunov N., Wood B. E., Linsky J. L., Dempsey R. C., Ayres R., 1997, Astrophys. J., 474, 315
Roberts H., Herbst E., Millar T. J., 2003, Astrophys. J. Lett., 591, L41
Rodgers S. D., Charnley S. B., 2002, Mon. Not. R. Astron. Soc., 330, 660
Romanzin C., Ioppolo S., Cuppen H. M., van Dishoeck E. F., Linnartz H., 2011, J. Chem. Phys., 134, 084504
Straub H. C., Lindsay B. G., Smith K. A., Stebbings R. F., 2011, Phys. Chem. Chem. Phys., 13, 15792
Taquet V., Charnley S. B., Sipilä O., 2014, Astrophys. J., 791, 1
Tielens A. G. G. M., Hagen W., 1982, Astron. Astrophys., 114, 245
Tielens A. G. G. M., Hagen W., 1983, Astron. Astrophys., 119, 177
Tielens A. G. G. M., 1983, Astron. Astrophys., 119, 177
Vasyunin A. I., Herbst E., 2013, Chemical Reviews, 113, 9043
Zel’dovich Y. B., Novikov I. D., 1983, RelativisticAstrophysics. Drukkerij Schotanus & Jens, Utrecht