Features of the energy spectrum of cosmic rays above 2.5×10^{18} eV using the pierre auger observatory

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1803295 since 2021-09-21T17:29:55Z

Published version:
DOI:10.1103/PhysRevLett.125.121106

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Features of the energy spectrum of cosmic rays above 2.5×10^{18} eV using the Pierre Auger Observatory

A. Aab,1 P. Abreu,2 M. Aglietta,3,4 J.M. Albury,5 I. Allekotte,6 A. Almela,7,8 J. Alvarez-Castillo,9 J. Alvarez-Muñiz,10 R. Alves Batista,11 G.A. Anastasi,11,13 L. Anchordoqui,12 B. Andraad,7 S. Andringa,2 C. Aramo,13 P.R. Arzoumanian,14 H. Asorey,7 P. Assis,2 G. Avila,15,16 A.M. Badescu,17 A. Bakalo,18 A. Balaceanu,19 P.L. Biermann,23 T. Bister,14 J. Biteau,24 A. Blanco,2 J. Blazek,18 C. Bleve,22 M. Bohočová,18 D. Boncioli,25,26 C. Bonifazi,27 L. Bonne-Arbelteche,28 N. Borodai,29 A.M. Botti,7 J. Brack,30 T. Bretz,14 F.L. Briechle,14 P. Buchholz,31 A. Bueno,32 S. Buittink,33 M. Buscemi,34,35 K.S. Caballero-Mora,36 L. Caccianiga,37,38 L. Calcagni,39 A. Cancio,8,7 F. Canfora,1,40 I. Caracas,21 J.M. Carceller,32 R. Caruso,34,35 A. Castellina,3,4 F. Cataldi,41 G. Cataldi,2 L. Cazon,2 M. Cerda,15 J.A. Chinnellato,43 K. Choi,10 J. Chudoba,18 L. Chytilka,44 R.W. Clay,5 A.C. Cobos Cerutti,45 R. Colalillo,20,13 A. Coleman,46 M.R. Coluccia,47,42 R. Conceição,2 A. Condorelli,48,26 C. Consolati,38,49 F. Contreras,15,16 F. Convencio,47,42 C.E. Covault,50,51 S. Dasso,52,53 K. Daumiller,54 B.R. Dawson,5 J.A. Day,5 R.M. de Almeida,55 J. de Jesús,7,54 S.J. de Jong,1,40 G. De Mauro,1,40 J.R.T. de Mello Neto,27,56 I. De Miti,48,26 J. de Oliveira,55 D. de Oliveira Franco,43 V. de Souza,57 E. De Vito,47,42 J. Debatin,58 M. del Río,16 O. Deligny,24 H. Dembinski,53,54 N. Dhital,29 C. Di Giulo,59,60 A. Di Matteo,1 M.L. Díaz Castro,43 C. Dobrigkeit,43 J.C. D’Olivo,9 Q. Dorosti,31 R.C. dos Anjos,61 M.T. Dova,39 J. Ebr,18 R. Engel,58,54 I. Epicoco,47,42 M. Erdmann,14 C.O. Escobar,62 A. Etchegoyen,7,8 H. Falcke,1,63,40 J. Farmer,64 G. Farrar,65 A.C. Fauth,43 N. Fazzini,62 F. Feldbusch,66 F. Fenu,11,4 B. Fick,67 J.M. Figueira,7 A. Filipièc,68,69 T. Fedran,1 M.M. Freire,70 T. Fuji,61 A. Fuster,7,8 C. Galea,7 C. Gallelli,37,38 B. Garcia,45,47 A.L. García Vegas,14 H. Gemmeke,66 F. Gesualdi,57 A. Gherghel-Lascu,19 P.L. Ghia,44 U. Giaccari,1 M. Giampaoli,38 M. Giller,72 J. Glombitza,14 F. Gobbi,15 F. Gollan,7 G. Golup,6 M. Gómez Berisso,6 P.F. Gómez Vitale,15,16 J.P. Gongora,15 N. González,7 I. Goos,6,54 D. Góra,29 A. Gorgi,3,4 M. Gottowik,21 T.D. Grubb,5 F. Guarino,20,13 G.P. Guedes,73 E. Guido,4,11 S. Hahn,44 R. Halliday,58 M.R. Hampel,7 P. Hansen,39 D. Harari,6 V.M. Harvey,5 A. Haungs,54 T. Hebbeker,14 D. Heck,54 G.C. Hill,5 C. Hohvat,62 J.R. Hörandel,1,40 P. Horváth,44 M. Hrabovský,44 T. Huege,54,33 J. Hulsman,7,54 A. Insolia,34,35 P.G. Isar,74 J.A. Johnsenn,75 J. Jurysek,18 A. Kääpä,21 K.H. Kampert,21 B. Keilhauer,54 J. Kemp,14 H.O. Klages,54 M. Kleifges,66 J. Kleinfeller,15 M. Köpke,58 G. Kukec Mezak,69 B.L. Lago,76 D. LaHurd,60 R.G. Lang,56 M.A. Leigoi de Oliveira,77 V. Lenock,54 A. Letessier-Selvon,78 I. Henry-Yvon,24 D. Lo Presti,34,35 L. Lopes,2 R. López,79 R. Loret,56 Q. Luche,58 A. Lucero,7 A. Machado Payeiras,43 M. Malacara,64 G. Mancarella,57,42 D. Mandat,18 B.C. Manning,5 J. Manshanden,80 P. Mantsch,62 S. Marañón,24 A.G. Mariazza,39 I.C. Maris,81 G. Marsella,47,42 D. Martello,47,42 H. Martínez,57 O. Martínez Bravo,79 M. Mastrodicasa,25,36 H.J. Mathes,44 J. Matthews,82 G. Matthiae,59,60 E. Mayotte,21 P.O. Mazur,62 G. Medina-Tanco,9 D. Melo,7 A. Menshikov,66 K.-D. Merenda,75 S. Michal,44 M.I. Míchálek,70 L. Miramonti,37,38 D. Mockler,83 S. Mollerach,8 F. Montanet,22 C. Morello,5,4 M. Mostafá,39 A.L. Müller,75,54,39 A. Müller,53,84 J. Mücke,37 R. Muccino,13,15 F. Mulderrig,57 B. Mellery,61 W.M. Namikata,13 M. Namerow,21 L. Nellen,9 P.H. Nguyen,5 M. Niculescu-Ogliazanu,79 M. Niechciol,31 D. Nitze,67,85 D. Nosek,86 V. Novotný,86 L. Nožka,44 A. Nucita,47,42 L.A. Núñez,87 M. Palatka,18 J. Pallotta,58 M.P. Panetta,47,42 P. Papenbreer,21 G. Parente,10 A. Parra,79 M. Pech,18 F. Pedreira,10 J. Peckla,29 R. Pelayo,89 J. Peña-Rodríguez,75 E. Perez Armand,28 M. Perlin,7,54 L. Perrone,47,42 C. Peters,14 S. Petrasera,48,26 T. Pierog,54 M. Pimenta,2 V. Pirrinello,34,35 M. Platino,7 B. Pont,1 M. Pothast,40,1 P. PRIVITERA,64 M. Prouza,18 A. Puyleart,67 S. Querchfeld,21 J. Rautenberg,21 D. Ravigani,7,54 J. Reininghaus,54,7 J. Ridley,18 F. Rielens,6 M. Risse,31 P. Ristori,88 V. Rizi,25,26 W. Rodrigues de Carvalho,28 G. Rodriguez Fernandez,59,60 J. Rodriguez Rojo,15 M.J. Ronchetti,7 G. Roth,54 E. Roulet,6 A.C. Rovero,52 P. Ruehl,31 S.J. Safi,9 A. Saftoiu,19 F. Salamida,25,26 H. Salazar,79 G. Salina,64 J.D. Sanabria Gomez,87 F. Sánchez,7 E.M. Santos,28 E. Santos,18 F. Sarazin,75 R. Sarmento,2 C. Sarmiento-Cano,7 R. Sato,15 P. Savina,47,42,44 C. Schäfer,54 V. Scherini,42 H. Schieler,54 M. Schimmack,58,7 M. Schimpf,21 F. Schütz,54 D. Schmidt,58 O. Scholten,90,33 P. Schovánek,18 F.G. Schröder,46,54 S. Schröder,21 A. Schulz,54 S.J. Sciutto,39 M. Scornavacche,7,54 R.C. Sheard,91 G. Sigl,80 G. Silli,7,54 O. Sima,19,51 R. Šmída,64 P. Sommers,83 J.F. Soriano,12 J. Souchard,22 R. Squartini,15 M. Stadelmaier,54,7 D. Stanca,19 S. Stanić,69 J. Stasielak,29 P. Stassi,22 A. Streich,58,7 M. Suárez-Durán,87 T. Sudholz,9 T. Suomi,24 A.D. Supanich,7 J. Šupík,44 Z. Szadkowski,92 A. Taboada,58 A. Tapia,93 C. Timmermans,40,1 O. Tkachenko,28 P. Tobiska,18 C.J. Todero Peixoto,1 B. Tomé,9 G. Torralba Eлипэ,10 A. Travaini,15 P. Travnieck,18 C. Trimarelli,25,26 M. Trini,69 M. Tuerers,39 R. Ulrich,54 M. Unger,54 M. Urban,14 L. Vaclavec,54 M. Vacula,44 J.F. Valdés Galicia,9 I. Valiño,48,26 L. Valore,20,13 A. van Vliet,5 E. Varela,79 B. Vargas
energy-dependent mass composition. The energy density in cosmic rays above 5×10^{10} eV, while no significant dependence of spectral features on the declination.

We report a measurement of the energy spectrum of cosmic rays above 2×10^{18} eV based on 215,030 events. New results are presented: at about 1.8×10^{18} eV, the spectral index changes from 1.8 ± 0.5 (stat.) to 2.05 ± 0.05 (stat.) ± 0.10 (sys.), evolving to 5.1 ± 0.3 (stat.) ± 0.1 (sys.) beyond 5×10^{19} eV, while no significant dependence of spectral features on the declination is seen in the accessible range. These features of the spectrum can be reproduced in models with energy-dependent mass composition. The energy density in cosmic rays above 5×10^{18} eV is $(5.66 \pm 0.03$ (stat.) ± 1.40 (sys.))$ \times 10^{73}$ erg Mpc$^{-3}$.

*Electronic address: auger@spokespersons@fnal.gov; URL: http://www.auger.org
Although cosmic rays having energies above 10^{19} eV were first detected nearly 60 years ago [1, 2] and are being investigated by the two largest-ever built detectors, the Pierre Auger Observatory [3] and the Telescope Array [4], the question of their origin remains unanswered. Only recently has the belief that such particles are of extragalactic origin been demonstrated experimentally with the discovery of significant directional anisotropies above 8×10^{18} eV [5]. These data are well-described by a dipole pattern, the amplitude of which increases from $\approx 6\%$ to $\approx 10\%$ as the energy rises to 4×10^{19} eV [6].

An important observable for an understanding of ultra-high energy cosmic rays (UHECRs) is the energy spectrum. We report a measurement above 2.5×10^{18} eV based on 215,030 events, over 10 times that used in [7]. Over 16,000 events have energies beyond 10^{19} eV. This spectral determination is unique in making no assumptions about the mass composition or the hadronic physics. Full details are reported in [8].

UHECRs can only be studied through the detection of the showers of particles (extensive air-showers) they create in the atmosphere. A calorimetric estimate of the energy carried by the primary particle is possible using telescopes to collect the fluorescence light emitted by atmospheric nitrogen excited by the shower. The on-time of this technique is limited to nights with low-background light while, by contrast, an array of particle detectors deployed on the ground can be operated with a duty-cycle close to 100%. The traditional method of assessing the energy of the primary cosmic-ray from observations made with the particle detectors requires assumptions about its mass and the hadronic processes that control the cascade development. This is clearly unsatisfactory as the mass is unknown and the centre-of-mass energy reached at the LHC corresponds only to that of a proton of $\approx 10^{17}$ eV colliding with a nitrogen nucleus. Also, details of pion interactions, which play a key role in shower development, are lacking. The presence of unknown processes could also lead to hidden systematic uncertainties.

To circumvent these limitations, the energies are obtained by making use of a subset of events detected simultaneously by the fluorescence detector (FD) and the particle surface detectors (SD). This “hybrid” approach allows a calorimetric estimate of the energy for events recorded during periods when the FD cannot be operated. A spectrum can thus be derived that is free from assumptions about primary mass or hadronic physics.

The Pierre Auger Observatory is such a hybrid system [3]. It is sited near the city of Malargüe, Argentina, at latitude 35.2° S with a mean atmospheric overburden of 875 g cm$^{-2}$ [3]. The SD comprises 1600 water-Cherenkov detectors deployed on a 1500 m triangular grid, covering about 3000 km2. The array is overlooked from four stations, each containing six telescopes used to detect the emitted fluorescence light. Comprehensive atmospheric monitoring, particularly of the aerosol content and the cloud cover, is undertaken [3, 9].

The SD samples the shower particles that reach the ground. Signals in the individual detectors are quantified in terms of their response to a muon travelling vertically and centrally through it (a vertical equivalent muon or VEM). The signals are used to determine the impact point of the shower axis, the arrival direction and the shower size. For the latter, the signal at 1000 m from the shower axis, $S(1000)$, is used. For the grid spacing of 1500 m, this is the distance that minimizes the uncertainty arising in $S(1000)$ from the imperfect knowledge of the functional form describing the fall-off of signal with distance from the shower axis in individual events [10].

Showers detected by the SD arrive from a range of zenith angles, and they are attenuated according to how much atmosphere is traversed. Accordingly, for each event, $S(1000)$ is adjusted to a reference value, S_{38}, the magnitude that it would have had, had the cosmic ray arrived at the median zenith angle of 38°. The long-established procedure for making this correction, the Constant Intensity Method [11], relies on the quasi-isotropy of cosmic rays in zenith angle given the small anisotropy contrasts in celestial coordinates [8]. The large number of events has made it possible to refine the original approach and quantify the change in shower absorption as a function of energy. Such an evolution is anticipated as, at a given zenith angle, the ratio of the muon to electromagnetic components falls as the energy increases, even for an energy-independent composition.

For showers detected by the FD, it is possible to measure the deposit of energy lost to ionisation of the atmosphere using a fit to a modified Gaisser-Hillas profile [12]. The integration of the profile yields a calorimetric measure of this loss. The energy of the primary particle, E_{FD}, is then obtained by the addition of an energy-dependent correction of less than 14%, driven by data [13], to allow for the “invisible energy”, carried into the ground by muons and neutrinos. The resolution in E_{FD} is well-described by $\sigma_{FD}(E)/E \approx 7.4\%$ over the whole energy range [14].

Hybrid events are thus used to develop a calibration curve such that every estimate of S_{38} can be assigned a valuation of E_{FD}. Here 3,338 hybrid events surviving rigorous quality cuts [8] are used to obtain a relationship between S_{38} and E_{FD} of the form $E_{FD} = A S_{38} B$, where $A = (1.86 \pm 0.03) \times 10^{17}$ eV and $B = 1.031 \pm 0.004$. No zenithal dependence of A or B has been found, further validating the use of the Constant Intensity Method [8]. Such a simple dependence is sufficient to describe the data in full detail. The energies of the hybrid events range from 2.5×10^{18} eV to 8×10^{19} eV. The most energetic event, detected at all fluorescence stations, has an energy $E_{FD} = (8.5 \pm 0.4) \times 10^{19}$ eV, derived from a weighted average of the four independent estimates of the calorimetric energy. For this event $S_{38} = 354$ VEM so that the energy deduced from the calibration curve is $E_{SD} \equiv A S_{38} B = (7.9 \pm 0.6) \times 10^{19}$ eV. The systematic uncertainty in the energy assignment is about 14%.
over the whole energy range [15]. This benefits from the high-precision AIRFLY measurement of the fluorescence yield [16] and from an accurate data-driven estimation of the invisible energy [13]. Other contributions to the uncertainty are related to the estimation of the A and B parameters, the characterization of the atmosphere, the reconstruction of the longitudinal profile and the FD calibration, which provides the largest contribution.

To derive the energy spectrum, we use events recorded by the SD with the largest-signal station not located on the boundary of the array, with zenith angle $\theta < 60^\circ$ and energy $\geq 2.5 \times 10^{18}$ eV. These selection criteria not only ensure adequate sampling of the shower but also allow the evaluation of the aperture of the SD in a purely geometrical manner in the regime where the array trigger is fully efficient and independent of the mass or energy of the primary particle [17]. The resulting SD data set consists of 215,030 events recorded between 1 January 2004 and 31 August 2018, from an exposure, E, of $(60,400 \pm 1,810)$ km2sr yr. The determination of E, dependent only on the acceptance angle, the surface area and the live-time of the array, is discussed in detail in [17].

The procedure for extracting the spectrum from the observations, fully discussed in [8], is summarised here.

The energy spectrum, typically a power law $(\propto E^{-\gamma})$ with spectral index γ in a given energy interval, is estimated as $J_i = c_i N_i/(E \Delta E_i)$, with N_i the number of observed events in differential bins of width $\Delta \log_{10} E_i = 0.1$ and c_i the correction factors required to eliminate the biases caused by the finite energy resolution. The size of the bins is such that it corresponds approximately to the energy resolution in the lowest energy bin, which starts at 2.5×10^{18} eV.

The correction factors are needed because, as the spectrum is steep, the finite resolution causes migration between bins, particularly from lower to higher energies, artificially enhancing the flux. At the lowest energies, the correction depends also on the behaviour of the detection efficiency in the energy region where the array is not fully efficient as well as on the bias in the energy due to trigger-selection effects.

A forward-folding approach is used to determine the correction factors. It consists of finding the model of the energy spectrum folded for detector effects that best describes the data, and then using this model to calculate the values of c_i. The SD efficiency can be estimated from the fraction of hybrid events that also satisfy the SD trigger-selection effects. It consists of finding the model of the detection efficiency in the energy region where the array is not fully efficient as well as on the bias in the energy due to trigger-selection effects.

Thanks to the hybrid measurements, the correction factors are estimated avoiding any reliance on model and primary mass assumptions. The factors are maximal at the lowest energies, $\approx 8\%$, and less than 5% at the highest energies available. Further details are given in [8].

The model of the energy spectrum that we used for over a decade is a series of two power laws followed by a slow suppression. With the current exposure, this model turns out to describe the data poorly, as the reduced deviance is found to be $35.6/15$ [8]. Consequently, we adopt a more complex function with a sequence of four power laws with smooth transitions [19],

$$J(E) = J_0 \left(\frac{E}{10^{18.5} \text{ eV}} \right)^{-\gamma_i} \prod_{i=1}^{3} \left[1 + \left(\frac{E}{E_{ij}} \right)^{-\omega_{ij}} \right]^{(\gamma_i - \gamma_j) \omega_{ij}} ,$$

with $j = i + 1$ and $\omega_{ij} = 0.05$. The ω_{ij} factors control the widths of the energy intervals over which the slope transitions occur [8]. This model describes the data with a reduced deviance 17.0/12, which allows us to disfavor the previous parameterization with 3.9σ confidence [8].

The resulting differential energy spectrum and the fitted function are shown in Fig. 1. The normalization is $J_0 = (1.315 \pm 0.004 \pm 0.400) \times 10^{-18}$ km$^{-2}$ sr$^{-1}$ yr$^{-1}$ eV$^{-1}$. The
ankle is described by a rollover at \(E_{12} = (5.0 \pm 0.1 \pm 0.8) \times 10^{18} \text{ eV} \), marking a hardening of the spectrum from \(\gamma_1 = 3.29 \pm 0.02 \pm 0.10 \) to \(\gamma_2 = 2.51 \pm 0.03 \pm 0.05 \). At \(E_{23} = (13 \pm 1 \pm 2) \times 10^{18} \text{ eV} \), the spectrum softens from \(\gamma_3 \) to \(\gamma_3 = 3.05 \pm 0.05 \pm 0.10 \). Finally, the spectrum softens further above a suppression energy of \(E_{34} = (46 \pm 3 \pm 6) \times 10^{18} \text{ eV} \) with \(\gamma_4 = 5.1 \pm 0.3 \pm 0.1 \), confirming with higher precision previous reports of the strong attenuation of the flux at the highest energies \([7, 20, 21]\). The feature at \(E_{23} \), calling for a 2-step suppression, is a new observation. For all parameters and observables presented in the text, the first error is statistical and the second systematic.

From the measured energy spectrum one can infer the differential energy density per dex\(^1\), obtained as \(\ln(10) (4\pi/c) E^2 J(E) \). It provides a measurement of the energy density of the local Universe attributable to cosmic rays. Above the ankle, a range in which UHECRs are of extragalactic origin \([5]\), the integration over energy results in \((5.66 \pm 0.03 \pm 1.40) \times 10^{53} \text{ erg Mpc}^{-3} \). This translates into constraints on the luminosity of the sources, as discussed below.

A detailed examination of the systematic uncertainties of the energy spectrum is reported in \([8]\). The uncertainty in the flux amounts to 30 – 40% near \(2.5 \times 10^{18} \text{ eV} \), 25% at \(10^{19} \text{ eV} \) and 60% at the highest energies. The uncertainties include contributions from the absolute energy scale (the largest), the exposure, the unfolding procedure and the \(S(1000) \) reconstruction. No indication of further systematic uncertainties has been found from a comparison of the spectra calculated over different time periods, seasons and ranges of zenith angle.

Table I: Spectral parameters in three different declination periods, seasons and ranges of zenith angle.

\(-90.0^\circ, -42.5^\circ \)	\(-42.5^\circ, -17.3^\circ \)	\(-17.3^\circ, +24.8^\circ \)	
\(J_0 \)	1.329 \pm 0.007	1.306 \pm 0.007	1.312 \pm 0.006
\(\gamma_1 \)	3.26 \pm 0.03	3.31 \pm 0.03	3.30 \pm 0.03
\(\gamma_2 \)	2.53 \pm 0.04	2.54 \pm 0.04	2.44 \pm 0.05
\(\gamma_3 \)	3.1 \pm 0.1	3.0 \pm 0.1	3.0 \pm 0.1
\(\gamma_4 \)	5.2 \pm 0.4	4.4 \pm 0.3	5.7 \pm 0.6
\(E_{12} \)	5.1 \pm 0.2	4.9 \pm 0.2	5.2 \pm 0.2
\(E_{23} \)	14 \pm 2	14 \pm 2	12 \pm 1
\(E_{44} \)	47 \pm 4	37 \pm 4	51 \pm 4

The wide declination range covered, from \(\delta = -90^\circ \) to \(\delta = +24.8^\circ \), allows a search for dependencies of energy spectra on declination. For this, we have divided the sky into three declination bands of equal exposure. In each band, the estimation of the spectrum is made as for the whole field of view, but using unfolding-correction factors relevant to the band in question. We report in \(^1 \text{dex indicates decade in } \log_{10} E, \text{ following the convention of } [22] \).
source is excluded by limits set on extragalactic magnetic fields from rotation measures [35]. Approximately, protons would thus arrive to the Galaxy as a uniform, parallel beam that may subsequently be focused or defocused while propagating in the Galactic magnetic field. As seen from the Earth, the image of the source is expected to be shifted and broadened, with the effect growing with decreasing energy. Also, multiple broad images may be produced if uncorrelated regions of the magnetic field are experienced by the particles [36–38]. Such a scenario would thus imply the observation of an anisotropy at intermediate angular scales, the size of which depends on the model of turbulence for the magnetic field [39]. Spectral differences would also consequently appear in some parts of the sky. The softening at \(\approx 10^{19} \text{ eV} \), in particular, would not be expected in every declination range. The absence of such dependence accordingly disfavors the interpretation that the steepening is due to a source in the local Universe emitting protons. Furthermore, the interplay between the luminosity of a given source and its flux attenuation with distance requires fine-tuning to make viable a scenario in which several sources would emit protons with a distinctive spectrum while at the same time no directional effect would be imprinted upon the observed intensity.

By contrast, our results fit a scenario in which several nuclear components contribute to the total intensity and in which the electromagnetic fields permeate source environments where nuclei are accelerated to a maximum energy proportional to their charge \((Z)\). This scenario, e.g., [40–43], provides a natural framework to explain the tendency towards heavier masses with increasing energy as inferred from recent works [23–25]. To illustrate the main physics aspects without distraction by the many details a full model scenario would require, we consider here, as in [43], several nuclear components injected at the sources with a power-law spectrum and with the maximal energy of the sources modeled with an exponential cut-off. For simplicity, the sources are assumed to be stationary and uniform in a co-moving volume. We show in Fig. 2 the best reproduction of the data by simultaneously fitting the energy spectrum above \(5 \times 10^{18} \text{ eV} \) and the distribution of the depths of the shower maximum \((X_{\text{max}})\), which is mass-sensitive (using EPOS LHC [44] as model of hadronic interactions in their interpretation). The abundance of nuclear elements at the sources is dominated by intermediate-mass nuclei accelerated to \(\approx 5 \, Z \times 10^{18} \text{ eV} \) and escaping from the source environments with a very hard spectrum. In this scenario, the steepening observed above \(\approx 5 \times 10^{19} \text{ eV} \) results from the combination of the maximum energy of acceleration of the heaviest nuclei at the sources and the GZK effect. The steepening at \(\approx 10^{19} \text{ eV} \) reflects the interplay between the flux contributions of the helium and carbon-nitrogen-oxygen components injected at the source with their distinct cut-off energies, shaped by photodisintegration during the propagation. We note that the ratio \(E_{\text{He}}/E_{\text{CNO}} \) is 3.4 \(\pm \) 0.3, matching the mass/charge ratio of CNO to He, as expected from the benchmark scenario shown in Fig. 2.

Some cautionary comments on the illustrative model considered here are in order. The presence of a sub-dominant light component at the highest energies is not excluded by our data, see e.g. [45]. Also, viable source scenarios can be found without resorting to a mixed composition with a rigidity-dependent maximum energy if, for instance, predominately heavy (Si to Fe) nuclei are accelerated and photo-disintegrate in the source environment [46] or en route to Earth [47, 48]. Scenarios with a predominantly light composition [32, 49] can fit our \(X_{\text{max}} \) data as well as those of Telescope Array [50] in the ankle energy range, but these scenarios are at odds with measurements of the correlation of particle densities at ground and \(X_{\text{max}} \) [26]. At ultra-high energies, a significant re-adjustment of current hadronic interaction models would be required [51] to fit our data with a p/He-dominated model while the data of Telescope Array, because of limited statistical power above \(10^{19} \text{ eV} \), cannot yet be used to draw reliable conclusions about composition in this energy range [52].

Interactions of the accelerated nuclei in the environment of the sources may give rise to copious fluxes of nucleons below the ankle energy, produced through photodisintegration. Neutrons escaping from the magnetic confinement regions may then explain the observed flux of protons deduced from \(X_{\text{max}} \) measurements [24, 25] in this energy range, due to neutron decay during propagation [46, 53–57]. To make up the all-particle spectrum and to fit the composition data below \(\approx 5 \times 10^{18} \text{ eV} \), an additional component is further required (see e.g. [58–60] for discussions). This could be the high-energy tail from the sources emitting the bulk of Galactic cosmic rays of
lower energies or, as in the “B-component scenario” [61], further explored in [62, 63], this additional high-energy component is produced by different sources in the Galaxy.

Finally, within this scenario, our data constrain the luminosity density that continuously emitting sources must inject into extragalactic space in UHECRs to supply the observed energy density. This amounts to $\approx 6 \times 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$ above $5 \times 10^{18} \text{ eV}$ at a redshift of zero, in line with the value of $2 \times 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$ that can be inferred dividing the measured energy density by the typical cosmic-ray energy loss time $O(1 \text{ Gpc/c})$ (3.3 Gyr) [64]. Classes of extragalactic sources that match such rates in the gamma-ray band include active galactic nuclei and starburst galaxies [65]. The flux pattern from these objects also provides an indication of anisotropy in UHECR arrival directions [27, 28].

Acknowledgments

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support:

- Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Brazil – Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ); São Paulo Research Foundation (FAPESP) Grants No. 2019/10151-2, No. 2010/07359-6 and No. 1999/05404-3; Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC); Czech Republic – Grant No. MSMT CR LTT18004, LM2015038, LM2018102, CZ.02.1.01/0.0/0.0/16_013/0001402, CZ.02.1.01/0.0/0.0/18_046/0016010 and CZ.02.1.01/0.0/0.0/17_049/0008422; France – Centre de Calcul IN2P3/CRNS; Centre National de la Recherche Scientifique (CNRS); Conseil Régional Ile-de-France; Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CRNS); Département Sciences de l’Univers (SDU-INSU/CNRS); Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63 within the Investissements d’Avenir Programme Grant No. ANR-11-IDEX-0004-02; Germany – Bundesministerium für Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Württemberg; Helmholtz Alliance for Astroparticle Physics (HAP); Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen; Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg; Italy – Istituto Nazionale di Fisica Nucleare (INFN); Istituto Nazionale di Astrofisica (INAF); Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR); CETEMPS Center of Excellence; Ministero degli Affari Esteri (MAE); México – Consejo Nacional de Ciencia y Tecnología (CONACYT) No. 167733; Universidad Nacional Autónoma de México (UNAM); PAPIIT DGAPA-UNAM; The Netherlands – Ministry of Education, Culture and Science; Netherlands Organisation for Scientific Research (NWO); Dutch national e-infrastructure with the support of SURF Cooperative; Poland – Ministry of Science and Higher Education, grant No. DI/WK/2018/11; National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2016/23/B/ST9/01635 and No. HARMONIA 5–2013/10/M/ST9/00062, UMO-2016/22/M/ST9/00198; Portugal – Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia (COMPETE); Romania – Romanian Ministry of Education and Research, the Program Nucleu within MCI (PN19150291/16N/2019 and PN19060102) and project PN-III-P1.1.2-PCCDI-2017-0839/19PCCDI/2018 within PNCDI III; Slovenia – Slovenian Research Agency, grants P1-0031, P1-0385, I0-0033, N1-0111; Spain – Ministerio de Economía, Industria y Competitividad (FPA2017-85114-P and FPA2017-85197-P), Xunta de Galicia (ED431C 2017/07), Junta de Andalucía (SOMM17/6104/UGR), Feder Funds, RENATA Red Nacional Temática de Astropartículas (FPA2015-68783-REDT) and María de Maeztu Unit of Excellence (MDM-2016-0692); USA – Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FG02-99ER41300, No. DE-FG02-03ER41508 and No. DE-SC0011689; National Science Foundation, Grant No. 0450696; The Grainger Foundation; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; and UNESCO.

[1] J. Linsley, L. Scarsi, and B. Rossi, Phys. Rev. Lett. 6, 485 (1961).
[2] J. Linsley, Phys. Rev. Lett. 10, 146 (1963).
[3] Pierre Auger Collaboration, Nucl. Instrum. Methods A 798, 172 (2015).
[4] Telescope Array Collaboration, Nucl. Instrum. Methods A 689, 87 (2012).
[5] Pierre Auger Collaboration, Science 357, 1256 (2017).
