Biomarker analysis beyond angiogenesis: RAS/RAF mutation status, tumour sidedness, and second-line ramucirumab efficacy in patients with metastatic colorectal carcinoma from RAISE—a global phase III study

T. Yoshino1*, D. C. Portnoy2, R. Obermannová3, G. Bodoky4, J. Prausová5, R. Garcia-Carbonero6, T. Ciuleanu7, P. García-Alfonso8, A. L. Cohn9, E. Van Cutsem10, K. Yamazaki11, S. Lonardi12, K. Muro13, T. W. Kim14, K. Yamaguchi15, A. Grothey16†, J. O’Connor17, J. Taieb18, S. R. Wijayawardana19, R. R. Hozak19, F. Nasroulah20 & J. Tabernero21

1National Cancer Center Hospital East, Kashiwa, Japan; 2The West Clinic, Memphis, USA; 3Masarykuv Onkologicky Ustav, Brno, Czech Republic; 4St. László Hospital, Budapest, Hungary; 5Fakultní Nemocnice v MOTOLE, Prague, Czech Republic; 6Hospital Universitario Doce de Octubre, IIS imas12, UCM, CNIO, CIBERONC, Madrid, Spain; 7Institut Oncologico Ion Chiricuta and UMF Iuliu Hatieganu, Cluj-Napoca, Romania; 8Hospital General Univ Gregorio Marañón, Madrid, Spain; 9Rocky Mountain Cancer Center, LLP, Denver, USA; 10Univ Hospital Gasthuisberg Leuven and KU Leuven, Leuven, Belgium; 11Shizuoka Cancer Center, Shizuoka, Japan; 12Istituto Oncologico Veneto-IRCCS, Padova, Italy; 13Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan; 14Asian Medical Center, University of Ulsan, Seoul, Republic of Korea; 15The Cancer Institute Hospital of JFCR, Tokyo, Japan; 16Mayo Clinic, Phoenix, USA; 17Instituto Alexander Fleming, Buenos Aires, Argentina; 18Sorbonne Paris Cité, Paris Descartes University, Georges Pompidou European Hospital, Paris, France; 19Eli Lilly and Company, Indianapolis, USA; 20Eli Lilly and Company, Buenos Aires, Argentina; 21Vall d’Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain

*Correspondence to: Dr Takayuki Yoshino, Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwa-shi, Chiba 277-8577, Japan. Tel: +81-4-7134-6920; Fax: +81-4-7134-6928; E-mail: tyoshino@east.ncc.go.jp

†Present address: West Cancer Center, Germantown, USA.

‡Both authors contributed equally to this work.

Background: Second-line treatment with ramucirumab+FOLFIRI improved overall survival (OS) versus placebo+FOLFIRI for patients with metastatic colorectal carcinoma (CRC) [hazard ratio (HR)=0.84, 95% CI 0.73–0.98, P = 0.022]. Post hoc analyses of RAISE patient data examined the association of RAS/RAF mutation status and the anatomical location of the primary CRC tumour (left versus right) with efficacy parameters.

Patients and methods: Patient tumour tissue was classified as BRAF mutant, KRAS/NRAS (RAS) mutant, or RAS/BRAF wild-type. Left-CRC was defined as the splenic flexure, descending and sigmoid colon, and rectum; right-CRC included transverse, ascending colon, and cecum.

Results: RAS/RAF mutation status was available for 85% of patients (912/1072) and primary tumour location was known for 94.4% of patients (1012/1072). A favourable and comparable ramucirumab treatment effect was observed for patients with RAS mutations (OS HR = 0.86, 95% CI 0.71–1.04) and patients with RAS/BRAF wild-type tumours (OS HR = 0.86, 95% CI 0.64–1.14). Among the 41 patients with BRAF-mutated tumours, the ramucirumab benefit was more notable (OS HR = 0.54, 95% CI 0.25–1.13), although, as with the other genetic sub-group analyses, differences were not statistically significant. Progression-free survival (PFS) data followed the same trend. Treatment-by-mutation status interaction tests (OS P = 0.523, PFS P = 0.655) indicated that the ramucirumab benefit was not statistically different among the mutation subgroups, although the small sample size of the BRAF group limited the analysis. Addition of ramucirumab to FOLFIRI improved left-CRC median OS by 2.5 month over placebo (HR = 0.81, 95% CI 0.68–0.97); median OS for ramucirumab-treated patients with right-CRC was
Introduction

The global, randomised, double-blind, placebo-controlled, RAISE phase III trial examined whether patients with metastatic colorectal carcinoma (mCRC) who had been previously treated with first-line bevacizumab, oxaliplatin, and a fluoropyrimidine would exhibit improved survival when ramucirumab was added to second-line FOLFIRI (folinic acid, 5-fluorouracil, and irinotecan) treatment [1]. The human IgG1 monoclonal antibody, ramucirumab, inhibits tumour angiogenesis by binding to vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) and interfering with VEGF ligand binding [2]. Results from the RAISE trial indicated that the addition of ramucirumab to second-line FOLFIRI improved overall survival (OS) over placebo+FOLFIRI [median OS 13.3 versus 11.7 months; hazard ratio (HR)=0.84; 95% confidence interval (CI) 0.73–0.98; P = 0.022] [1]. Median progression-free survival (PFS) was also extended by the addition of ramucirumab (5.7 versus 4.5 months, HR = 0.79; 95% CI 0.70–0.90; P < 0.0005) [1].

Analysis of patient sub-groups and biomarkers has aimed to identify patient or tumour characteristics associated with an improved ramucirumab benefit. Using an exploratory assay, high baseline plasma VEGF-D levels (≥115 pg/ml) were associated with better survival outcomes for ramucirumab-treated patients [3]. Low baseline plasma carcinoembryonic antigen (CEA) levels (≤10 ng/ml) were also associated with an enhanced ramucirumab response [4]. The KRAS exon 2 mutation is known to affect CRC response to EGFR inhibitors, but its impact, if any, on ramucirumab is not known. A pre-specified analysis showed that both KRAS exon 2 mutant and KRAS exon 2 wild-type tumours demonstrated a consistent survival benefit in favour of the ramucirumab+FOLFIRI arm [5]. More recent data demonstrated that other RAS mutations (KRAS exons 3 and 4, NRAS) and the BRAF mutation also reduce benefit from anti-EGFR therapies [6]; therefore, the impact of these mutations on ramucirumab efficacy must be examined as well.

In addition to the possible impact of gene mutations, evidence indicates that the location of the primary CRC has prognostic implications and may be predictive of response to anti-EGFR therapy [7, 8]. This phenomenon may be explained in part by the different embryologic origin of the left and right colon and the resultant anatomical, histological, molecular, and environmental differences that impact tumours arising along its length [7].

Given evidence that additional RAS/RAF mutations and tumour sidedness impact EGFR-directed treatment, we undertook retrospective analyses of the association of these parameters and the efficacy of the VEGFR inhibitor, ramucirumab, using data from the RAISE phase III clinical trial.

Methods

Study design

The design of the RAISE phase III trial (ClinicalTrials.gov, NCT01183780) has been reported [1]. In brief, eligible patients had pathologically confirmed mCRC that had progressed during first-line treatment with bevacizumab, oxaliplatin, and a fluoropyrimidine or within 6 months of the last dose of first-line therapy. Patients were randomised (1:1) to ramucirumab or placebo, with stratification by geography (North America versus Europe versus all other regions), KRAS exon 2 status (wild-type versus mutant), and time to first-line disease progression (≥6 versus <6 months). Ramucirumab (8 mg/kg) or placebo was administered on day 1 of each 2-week cycle, followed by FOLFIRI for both treatment arms. Treatment cycles were continued until disease progression, decision by physician or patient, toxicity, or death.

Tumour tissue collection was undertaken for all study participants. In samples reported locally as KRAS wild-type, further RAS (KRAS exon 3 or 4 mutation, NRAS exon 2, 3, or 4 mutation) and BRAF mutations were assessed centrally by multiplex qPCR using the Modaplex system (Qiagen) for patients who had sufficient tumour remaining for multiple comparisons.

Statistical analyses

OS and PFS were evaluated by RAS/RAF and tumour sidedness subgroups using the Kaplan–Meier method. The unstratified Cox proportional hazards model was used to estimate HR and 95% CI. The study stratification factors were used as covariates in the RAS/RAF sub-group Cox models. For both OS and PFS, treatment-by-sub-group interaction was examined using the likelihood ratio test. P-values were not adjusted for multiple comparisons.

Results

Among the 1072 patients randomised to a treatment arm for the RAISE trial [intent-to-treat (ITT) population], RAS/RAF mutation status was available for 912 (85%), and primary tumour location was known for 1012 patients (94%). RAS mutations were found in 63% of patients (579/912); BRAF mutation in 4.5% (41/912, all...
V600E positive); 32% of patients were RAS/BRAF wild-type (292/912) (see flowchart of supplementary Figure S1 and Table S1, available at Annals of Oncology online for details). Within RAS/BRAF wild-type and RAS mutant sub-groups (Table 1), baseline characteristics were balanced between treatment arms, although the RAS/BRAF wild-type placebo arm had more males (71% versus 55%) and patients with >10 ng/ml CEA (68% versus 60%) than the ramucirumab arm. Within the 41-patient BRAF mutant sub-group, treatment arms were relatively balanced. BRAF mutations were more prevalent in right-sided tumours. Among the tumour sidedness sub-groups, left CRC predominated (69%, 699/1012) (supplementary Table S2, available at Annals of Oncology online). Within left versus right sub-groups, baseline patient and tumour characteristics were largely balanced between treatment arms. The left sub-group had a lower percentage of females (40% versus 48%) than the right.

| Table 1. Summary of patient and disease characteristics in the RAS/RAF mutation sub-groups |
|---|---|---|---|---|
| | Ramucirumab + FOLFIRI (N = 285) | Placebo + FOLFIRI (N = 294) | Ramucirumab + FOLFIRI (N = 20) | Placebo + FOLFIRI (N = 21) |
| Age group | n (%) | n (%) | n (%) | n (%) |
| ≥65 years | 128 (45) | 112 (38) | 6 (30) | 10 (48) |
| ≥70 years | 65 (23) | 70 (24) | 4 (20) | 6 (29) |
| Gender | | | | |
| Male | 150 (53) | 161 (55) | 12 (60) | 12 (57) |
| Female | 135 (47) | 133 (45) | 8 (40) | 9 (43) |
| Geographical region | | | | |
| Japan/East Asia | 54 (19) | 45 (15) | 2 (10) | 1 (5) |
| Rest of world | 231 (81) | 249 (85) | 18 (90) | 20 (95) |
| Race | | | | |
| Black | 9 (3) | 10 (3) | 0 | 1 (5) |
| Other | 57 (20) | 48 (16) | 4 (20) | 2 (10) |
| White | 219 (77) | 234 (80) | 16 (80) | 17 (81) |
| Missing | 0 | 2 (1) | 0 | 1 (5) |
| ECOG PS | | | | |
| 0 | 142 (50) | 147 (50) | 13 (65) | 11 (52) |
| 1 | 143 (50) | 146 (50) | 6 (30) | 10 (48) |
| Missing | 0 | 1 (<1) | 1 (5) | 0 |
| Time to progression after first-line | | | | |
| <6 months | 64 (22) | 66 (22) | 7 (35) | 11 (52) |
| ≥6 months | 221 (78) | 228 (78) | 13 (65) | 10 (48) |
| Colorectal tumour sidedness | | | | |
| Left | 178 (62) | 175 (60) | 7 (35) | 6 (29) |
| Right | 95 (33) | 99 (34) | 11 (55) | 14 (67) |
| Missing | 12 (4) | 20 (7) | 2 (10) | 1 (5) |
| Baseline plasma VEGF-D level\(^b\) | | | | |
| High | 143 (50) | 133 (45) | 13 (65) | 14 (67) |
| Low | 97 (34) | 100 (34) | 5 (25) | 3 (14) |
| Missing | 45 (16) | 61 (21) | 2 (10) | 4 (19) |
| Baseline plasma CEA level | | | | |
| >10 ng/ml | 196 (67) | 196 (67) | 13 (65) | 9 (43) |
| ≤10 ng/ml | 76 (27) | 80 (27) | 7 (35) | 11 (52) |
| ≥200 ng/ml | 64 (22) | 82 (27) | 3 (15) | 2 (10) |
| <200 ng/ml | 212 (72) | 17 (85) | 18 (86) | |
| Missing | 18 (6) | 0 | 1 (5) | |

\(^a\) A single patient was found to have mutations in both RAS and BRAF; this patient was included only in the BRAF mutant sub-group for all summaries and analyses and in the counts listed above.

\(^b\) VEGF-D high ≥115 pg/ml; VEGF-D low <115 pg/ml.

CEA, carcinoembryonic antigen; ECOG, Eastern Cooperative Oncology Group; FOLFIRI, folinic acid, 5-fluorouracil and irinotecan; PS, performance status; VEGF, vascular endothelial growth factor.
A favourable ramucirumab treatment effect was found in the RAS/BRAF wild-type sub-group and the RAS mutant sub-group. Ramucirumab treatment was associated with prolonged OS (HR < 1) for the RAS/BRAF wild-type sub-group (median 16.2 months versus 15.5 months; HR = 0.86, 95% CI 0.64–1.14) and the RAS mutant sub-group (median 12.9 versus 11.5 months; HR = 0.86, 95% CI 0.71–1.04) (Figure 1A and C; Table 2). A similar trend was observed with PFS for both the RAS mutant and RAS/BRAF...
wild-type sub-group (Figure 1B and D; Table 2). Treatment–by-
mutation status interaction tests indicated that the ramucirumab
benefit was not statistically different among the three mutation
status sub-groups (OS $P = 0.523$, PFS $P = 0.655$).

Analysis of the Kaplan–Meier plots of the $BRAF$ mutant sub-
group showed that ramucirumab+FOLFIRI treatment appears
to substantially benefit patients harbouring $BRAF$-mutated
tumours. Ramucirumab-treated patients exhibited a non-
statistically significant OS and PFS benefit over placebo (median
OS 9.0 versus 4.2 months, HR $= 0.54$, 95% CI 0.25–1.13; median
PFS 5.7 versus 2.7 months, HR $= 0.55$, 95% CI 0.28–1.08) (Figure 1E and F; Table 2); although this analysis is limited by
sample size. The RAS/Raf sub-groups showed no substantial dif-
ference between arms in post-discontinuation treatment that
may have differentially impacted survival (supplementary Table
S3, available at Annals of Oncology online).

Since high VEGF-D levels from an exploratory assay seem to
suggest a greater benefit with ramucirumab, we examined base-
line VEGF-D expression in RAS/Raf mutation sub-groups and its
association with treatment effects. When treated as a con-
tinuous variable, there was no evidence suggesting different
VEGF-D expression among the RAS/BRAF wild-type, RAS mu-
tant, and $BRAF$ mutant sub-groups ($P = 0.358$), although $BRAF$
mutant population had a slightly higher percentage of patients
classified as having high VEGF-D (Table 1). Treatment effects in
the RAS/Raf mutation sub-groups by baseline plasma VEGF-D
levels showed that RAS mutants with high baseline VEGF-D lev-
els ($n = 276$) benefitted from ramucirumab with statistically sig-
ificantly higher OS (HR $= 0.64$, 95% CI 0.49–0.84, $P = 0.0014$)
and PFS (HR $= 0.54$, 95% CI 0.42–0.70, $P < 0.0001$) (supple-
mentary Table S4, available at Annals of Oncology online). In
contrast, patients with RAS mutations with low baseline VEGF-
D ($n = 197$) exhibited no ramucirumab benefit but rather OS
and PFS favoured the placebo arm. The RAS/BRAF wild-type
sub-group behaved similarly to the RAS mutant sub-group.
Patients with high baseline VEGF-D exhibited a significant PFS
benefit from ramucirumab (although no OS benefit was observed), and the low VEGF-D sub-group displayed no benefit
from ramucirumab (supplementary Table S4, available at
Annals of Oncology online). The small number of patients in the
$BRAF$ mutation sub-group precluded conclusions regarding ef-
fect of ramucirumab by VEGF-D level. Stem-and-leaf plots were
constructed to examine data distribution by baseline VEGF-D level
(supplementary Figure S2, available at Annals of Oncology
online). In patients with $BRAF$ mutations, there was no indica-
tion of a differential ramucirumab benefit in patients by VEGF-
D level.

The treatment effect of ramucirumab+FOLFIRI by tumour
sidedness was also evaluated. Ramucirumab–treated patients with
left-sided tumours exhibited improved OS ($HR = 0.81$, 95% CI 0.68–0.97), with median OS increasing 2.5 months for ramu-
cirumab over placebo (14.5 versus 12.0 months) (Figure 2A;
Table 2). Patients with right CRC tumours also exhibited a direc-
tional ramucirumab survival benefit on aggregate, but of smaller
magnitude, with a 1.1-month increase in median OS (12.7 versus
11.6 months, $HR = 0.97$, 95% CI 0.75–1.26) (Figure 2C; Table 2).
The interaction P-value was not statistically significant (0.276),
indicating that sidedness is not predictive of the efficacy of adding
ramucirumab to FOLFIRI in these analyses. A similar trend was
observed with PFS (Figure 2B and D); the interaction P-value was
again not significant (0.578).

There was no association between VEGF-D levels and sided-
ness (supplementary Table S5, available at Annals of Oncology
online); the ramucirumab benefit in patients with high VEGF-D
levels was seen in both right- and left-sided tumours (supple-
mentary Table S6, available at Annals of Oncology online). There
was no substantial difference among the sidedness sub-groups in
post-discontinuation treatment that likely would have impacted

Sub-group	Treatment arm	n	Overall survival	Progression-free survival				
			Median (months)	HR (95% CI) P-value b	Interaction P-value a	Median (months)	HR (95% CI) P-value b	Interaction P-value a
RAS/BRAF wild-type	Ramucirumab	149	16.2	0.86 (0.64–1.14) $P = 0.2899$	0.523	5.7	0.78 (0.61–1.00) $P = 0.0512$	0.655
	Placebo	143	15.5	0.86 (0.71–1.04) $P = 0.1110$	4.3	5.7	0.81 (0.68–0.97) $P = 0.0209$	0.523
RAS mutant	Ramucirumab	285	12.9	0.86 (0.71–1.04) $P = 0.1110$	4.3	5.7	0.81 (0.68–0.97) $P = 0.0209$	0.523
	Placebo	294	11.5	0.54 (0.25–1.13) $P = 0.1030$	4.3	5.7	0.55 (0.28–1.08) $P = 0.0826$	0.523
$BRAF$ mutant	Ramucirumab	20	9.0	0.81 (0.68–0.97) $P = 0.0188$	0.276	6.0	0.78 (0.66–0.91) $P = 0.0014$	0.578
	Placebo	21	4.2	0.81 (0.68–0.97) $P = 0.0188$	0.276	6.0	0.78 (0.66–0.91) $P = 0.0014$	0.578
Left-sided CRC	Ramucirumab	353	14.5	0.97 (0.75–1.26) $P = 0.8242$	0.276	6.0	0.86 (0.67–1.08) $P = 0.1955$	0.276
	Placebo	346	12.0	0.97 (0.75–1.26) $P = 0.8242$	0.276	6.0	0.86 (0.67–1.08) $P = 0.1955$	0.276

aBoth ramucirumab and placebo were given in combination with FOLFIRI.

bLikelihood ratio.

CI, confidence interval; CRC, colorectal carcinoma; FOLFIRI, folinic acid, 5-fluorouracil and irinotecan; HR, hazard ratio.
survival results (supplementary Table S7, available at Annals of Oncology online).

Discussion

Analyses of mCRC trials have revealed that the RAS/RAF gene mutation profile and tumour sidedness are both determinants of patient prognosis and have bearing on anti-EGFR treatment efficacy in first-line trials [9, 10]. Published data on the impact of tumour sidedness and RAS/RAF mutations on the efficacy of antiangiogenic therapy is limited, especially in the second-line setting. Our exploratory retrospective analyses of the RAISE phase III trial data examined whether RAS/RAF mutation status and tumour sidedness influenced the antiangiogenic treatment efficacy of ramucirumab in patients with mCRC that progressed during or after a first-line treatment with bevacizumab, oxaliplatin, and a fluoropyrimidine. While these exploratory analyses are limited because they are retrospective and may be underpowered, they are useful indicators of areas to investigate more completely.

Analysis of patients with RAS mutations in the RAISE trial showed these mutations were associated with a worse prognosis than the RAS/BRAF wild-type. Other studies have made a similar observation [10]. Consistent with the prior RAISE analysis, this analysis showed ramucirumab added to FOLFIRI improved patient outcomes over placebo regardless of RAS mutation status. The ramucirumab benefit to patients with KRAS/NRAS mutation could not be ascribed to an imbalance between treatment arms in baseline characteristics, including any imbalance in VEGF-D and CEA baseline plasma levels. However, it was noteworthy that both RAS mutant patients and RAS/BRAF wild-type patients with high baseline VEGF-D levels displayed a more robust response to ramucirumab treatment than those with low VEGF-D levels, suggesting the predictive value of VEGF-D is independent of the RAS mutation status.

In agreement with other studies [10], the RAISE data showed that the BRAF mutation was present in a low percentage of patients with CRC (4.5%) and occurred more frequently in right-sided tumours. Patients with the BRAF mutation had worse survival than patients who were RAS/BRAF wild-type, irrespective of

Figure 2. Kaplan–Meier curves of OS and PFS in left and right CRC sub-groups. OS (A, C) and PFS (B, D) were determined using Kaplan–Meier plots of RAISE ITT patients with left (A, B) and right (C, D) CRC. HRs and 95% CI were estimated from an unstratified Cox model with treatment group as the only covariate. Tick marks represent censored events.
Tumour sidedness acted as a strong prognostic factor, but the antiangiogenic benefit was seen on both sides, with a numerically superior antiangiogenic benefit in patients with left-sided tumours. The second-line mCRC VELOUR study also found that addition of an antiangiogenic was efficacious for left- and right-sided tumours [13].

The efficacy of EGFR inhibitors appears to be limited by tumour sidedness. Studies have identified that left CRC tumours seem to be responsive to anti-EGFR therapy (cetuximab, panitumumab), but right-sided tumours are not [14, 19, 20]. Therefore, treatment guidelines currently recommend using these agents only in tumours originating from the left side of the colon [21, 22].

In conclusion, exploratory retrospective analyses of RAISE trial data have shown ramucirumab treatment is effective in a second-line setting, regardless of RAS/RAF mutation status and tumour sidedness. While the EGFR inhibitor treatments appear more circumscribed in their effective usage, ramucirumab is effective for patients with mutant RAS or BRAF tumours and patients who are RAS/BRAF wild-type. Of interest, evidence was found that patients with BRAF mutant tumours have a potentially increased benefit with ramucirumab, but the relationship was not significant in this small sub-population and requires further validation.

Acknowledgements
The authors thank the patients, investigators, and institutions involved in this study. They also thank Mary Dugan Wood for writing assistance.

Funding
This work was supported by Eli Lilly and Company. No grant number is applicable.

Disclosure
TC reports personal fees from Astellas, BMS, Amgen, Roche, Pfizer, Boehringer Ingelheim, Astra Zeneca, Novartis, Ipsen, Sanofi, Servier, Janssen, and Merck Serono, outside the submitted work. RG-C reports grants from Lilly, during the conduct of the study; and grants and personal fees from Lilly, Roche, and Sanofi, outside the submitted work. AG reports that the Mayo Clinic received consulting fees from Eli Lilly, and grants and consulting fees from Bayer, Genentech, Boston Biomedical, during the conduct of the study. SL reports a consulting or advisory role for Amgen, Bayer, Merck, and Lilly, serving on the Speakers’ Bureau for Lilly, Roche, and BMS, and research funding from Amgen. KM reports grants from Ono Pharmaceutical, Kyowa Hakko Kirin, Gilead Sciences, Bayer, MSD, Shionogi Pharmaceutical, and personal fees from Chugai Pharmaceutical, Taiho Pharmaceutical, Ono Pharmaceutical, Takeda Pharmaceutical, and Eli Lilly, outside the submitted work. JTb reports an Advisory Board position for Bayer, Boehringer Ingelheim, Genentech/Roche, Lilly, MSD, Merck Serono, Merrimack, Novartis, Peptomyc, Roche, Sanofi, Symphogen and Taiho, outside the submitted work. JTb reports honoraria for advisor or speaker role for Lilly, Amgen, Roche, Merck,
Cegene, Sanofi, Sirtex, Servier, MSD, and Shire. EVC reports grants from Amgen, Bayer, BMS, Boehringer, Celgene, Ipsen, Lilly, Merck, MSD, Novartis, Roche, and Servier, outside the submitted work. KYG reports grants and personal fees from Lilly, during the conduct of the study, and grants and/or personal fees from Taiho, Chugai, Merck, Takeda, Yakult Honsha, Ono, Eli Lilly, BMS, Daiichi-Sankyo, Boehringer Ingelheim, and Dainippon-Sumitomo, outside the submitted work. KYZ reports personal fees from Sanofi K.K., Chugai Pharmaceutical Co., Ltd., Eli Lilly Japan K.K., Merck Serono Co., Ltd., Yakult Honsya Co., Ltd., Bayer Yakuhin, Ltd., Taiho Pharmaceutical Co., Ltd., Sanofi K. K, Takeda Pharmaceutical Co., Ltd., and Bristol-Myers Squibb K. K, outside the submitted work. RRH reports grants from MSD K.K., Sanofi K.K., Sumitomo Dainippon Pharma Co., Ltd., Chugai Pharmaceutical Co., Ltd, and GlaxoSmithKline K.K., outside the submitted work. RRH, FN, and SRW are employees of Eli Lilly. RRH reports Lilly stock ownership and a pending patent. All remaining authors have declared no conflicts of interest.

References

1. Tabernero J, Yoshino T, Cohn AL et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol 2015; 16(5): 499–508.

2. Spratlin JL, Cohen RB, Eadens M et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol 2010; 28(5): 780–787.

3. Tabernero J, Hozak RR, Yoshino T et al. Analysis of angiogenesis biomarkers for ramucirumab efficacy in patients with metastatic colorectal cancer from RAISE, a global, randomized, double-blind, phase III study. Ann Oncol 2018; 29(3): 602–609.

4. Yoshino T, Obermannová R, Bodoky G et al. Baseline carcinoembryonic antigen as a predictive factor of ramucirumab efficacy in RAISE, a second-line metastatic colorectal carcinoma phase III trial. Eur J Cancer 2017; 78: 61–69.

5. Obermannová R, Van Cutsem E, Yoshino T et al. Subgroup analysis in RAISE: a randomized, double-blind phase III study of irinotecan, folinic acid, and 5-fluorouracil (FOLFIRI) plus ramucirumab or placebo in patients with metastatic colorectal carcinoma progression. Ann Oncol 2016; 27(11): 2082–2090.

6. Van Cutsem E, Cervantes A, Adam R et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016; 27(8): 1386–1422.

7. Lee GH, Malietzis G, Askari A et al. Is right-side colon cancer different to left-side colorectal cancer? A systematic review. Eur J Surg Oncol 2015; 41(3): 300–308.

8. Schrag D, Weng S, Brooks G et al. The relationship between primary tumor sidedness and prognosis in colorectal cancer. J Clin Oncol 2016; 34(Suppl 15): abstract 3505.

9. Arnold D, Lueza B, Douillard JY et al. Prognostic and predictive value of primary tumour site in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol 2017; 28(8): 1713–1729.

10. De Stefano A, Carlomagno C. Beyond KRAS: predictive factors of the efficacy of anti-EGFR monoclonal antibodies in the treatment of metastatic colorectal cancer. World J Gastroenterol 2014; 20(29): 9732–9743.

11. Seymour MT, Brown SR, Middleton G et al. Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type, fluorouracil-resistant advanced colorectal cancer (PICCOLO). Lancet Oncol 2013; 14(8): 749–759.

12. Van Cutsem E, Tabernero J, Lakomy R et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012; 30(28): 3499–3506.

13. Wirapati P, Pomella V, Vandenbosch B et al. Velour trial biomarkers update: impact of RAS, BRAF, and sidedness on aflibercept activity. J Clin Oncol 2017; 35(Suppl 15): abstract 3538.

14. Tejpar S, Stintzing S, Ciardiello F et al. Prognostic and predictive relevance of primary tumor location in patients with RAS wild-type metastatic colorectal cancer retrospective analyses of the CRystal and FIRE-3 trials. JAMA Oncol 2017; 3(2): 194–201.

15. Venook AP, Niedzwiecki D, Lenz HJ et al. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: a randomized clinical trial. JAMA 2017; 317(23): 2392–2401.

16. Loupakis F, Yang D, Yau L et al. Primary tumor location as a prognostic factor in metastatic colorectal cancer. J Natl Cancer Inst 2015; 107: dju427.

17. Wong HL, Lee B, Field K et al. Impact of primary tumor site on bevacizumab efficacy in metastatic colorectal cancer. Clin Colorectal Cancer 2016; 15(2): e9–e15.

18. Reimacher-Schick AC, Noepel-Duennebacke S, Hertel J et al. Localization of the primary tumor and maintenance strategies after first-line oxaliplatin, fluoropyrimidine, and bevacizumab in metastatic colorectal cancer (mCRC). J Clin Oncol 2017; 35(Suppl 15): abstract 3543.

19. Heinemann V, Gniadecki R, Fischer von Weikersthal LF et al. Gender and tumor location as predictors for efficacy: influence on endpoints in first-line treatment with FOLFIRI in combination with cetuximab or bevacizumab in the AIO KRK 0306 (FIRE3) trial. J Clin Oncol 2014; 32(Suppl 15): abstract 3600.

20. Venook AP, Niedzwiecki D, Innocenti F et al. Impact of primary tumor location on overall survival and progression-free survival in patients with metastatic colorectal cancer: analysis of CALGB/SWOG 80405 (Alliance). J Clin Oncol 2016; 34(Suppl 15): abstract 3504.

21. Benson AB III, Venook AP, Cederquist L et al. Colon cancer, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2017; 15(3): 370–398.

22. Yoshino T, Arnold D, Taniguchi H et al. Pan-Asian adapted ESMO consensus guidelines for the management of patients with metastatic colorectal cancer; a JSMO-ESMO initiative endorsed by CSCO, KACO, MOS, SSO and TOS. Ann Oncol 2018; 29(1): 44–70.