CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation

Ryan Michael Reyes, Yilun Deng, Deyi Zhang, Niannian Ji, Neelam Mukherjee, Karen Wheeler, Harshita B Gupta, Alvaro S Padron, Aravind Kancharla, Chenghao Zhang, Myrna Garcia, Anand V R Kornepati, Onur Boyman, Jose R Conejo-Garcia, Robert S Svatek, Tyler J Curiel

ABSTRACT

Background Anti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αPD-1 complexes (IL-2c) that preferentially target IL-2 receptor β (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1.

Methods We studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites.

Results IL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or promotor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells.

Conclusions Mechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.

BACKGROUND

Bladder cancer (BC) is a common malignancy with more than 80,000 new cases diagnosed in the United States annually.1 Tumor recur after treatment in approximately 50% of high-risk non-muscle invasive BC patients, and advanced or metastatic BC has low 5-year survival.2 3 Immune checkpoint blockade with anti-programmed death-ligand 1 (αPD-L1) and anti-programmed death-1 (αPD-1) antibodies are effective against muscle invasive and metastatic BC4 and the αPD-L1 antibody pembrolizumab was recently approved in non-metastatic, high risk non-muscle invasive BC. However, only 10%–30% of BC patients respond to immune checkpoint blockade and clinically useful biomarkers guiding treatment selection are still poorly defined.5 Immune checkpoint blockade outcomes vary widely in distinct cancers and is rarely curative outside specific settings,6 necessitating development of additional immunotherapeutic strategies.

High-dose interleukin-2 (IL-2) was approved for cancer immunotherapy in 1986, but is currently limited by severe IL-2-induced toxicity and capacity to generate immunosuppressive T regulatory cells (Tregs).7 Deleterious Treg effects are fueled by IL-2 preferentially binding the high-affinity IL-2 receptor alpha subunit (IL-2Rα, CD25) on Tregs in lieu of the intermediate-affinity beta subunit (IL-2Rβ, CD122) preferentially used by antitumor CD8+ T cells.8 Selective IL-2 receptor stimulation with CD122-directed IL-2/αIL-2 complexes (IL-2c) improves antitumor immunity in many cancer models by augmenting CD8+ T cell effector function while largely avoiding Treg expansion and/or reducing...
Treg activation and function.9,10 CD122-directed IL-2 therapy using distinct molecules is also promising in human BC trials, including when combined with αPD-1.11 Effects on other CD25+ and CD122+ cells including γδ T cells using targeted IL-2 therapies are unreported to our knowledge and recent reports suggest IL-2c can also act through non-IL-2 receptor expressing cells such as dendritic cells,12 necessitating improved understanding of specific treatment mechanisms in distinct tumor microenvironments.

Here, we define IL-2c and αPD-L1 immunotherapy effects in orthotopic primary (bladder) versus metastatic (lung) BC models. We show that the two agents have distinct mechanisms, including a novel γδ T cell requirement for IL-2c treatment efficacy, in a tissue-dependent manner. These studies provide significant insight into means to improve existing BC immunotherapies and suggest novel treatment strategies by elucidating specific immune contributions to BC treatment efficacy in primary and metastatic BC, including the utility of improving γδ T cell functions.

METHODS

Mice

Wild-type C57BL/6J (BL6) and C3H/HeJ (C3H) mice were obtained from The Jackson Laboratory (Bar Harbor, Maine, USA). Genetic knock out mice on the BL6 background purchased from Jackson include: B6.129P2-Tcrdm1Mom+/J (TCRβKO), B6.129P2-Tcrdm1Mom+/J (TCRδKO), and B6.129S7-Rag1m1Mom+/J (RAG1KO). Mice were bred in our animal facility, given ad libitum water and food, and housed under specific pathogen-free conditions. All mice were at least 8 weeks old and age- and sex-matched for each experiment.

Tumor cell lines and cell culture

Mouse MB49 and MBT-2 BC cell lines were provided by R. Svaték. We developed the highly aggressive (ID8agg) subline expressing luciferase9 and generated luciferase-expressing MB49 using similar methods.

Cells were passaged <5 times prior to challenge and maintained in 5% fetal bovine serum (FBS)-containing DMEM (Dulbecco’s Modified Eagle Medium, MB49) or RPMI-1640 (Roswell Park Memorial Institute, MBT-2 and ID8agg), supplemented with 1% penicillin/streptomycin, 1% L-glutamate and 1% 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES).

In vivo challenges

Orthotopic MB49 and MBT-2 challenges were 8×104 or 1×106 cells in 50 μL. Dulbecco’s Phosphate Buffered Saline (DPBS, Sigma Aldrich) into bladder, respectively, via indwelling urinary catheter in female mice under isoflurane anesthesia, as described.13 Bladder tumor growth was monitored in vivo by tumor bioluminescence and bladder weight at sacrifice.

Subcutaneous tumor challenge was 2×105 MB49 cells in 100 μL DPBS in each hind flank of female mice (two tumors/mouse).14 Tumor growth was measured using Vernier calipers and volume was calculated as (length x width2)/2. Orthotopic challenge of ID8agg was 4×106 cells injected intraperitoneally into females.9 Lung tumors were generated via intravenous injection of 7×105 or 2.5×105 MB49 or MBT-2 cells, respectively,15 in 200 μL DPBS into male mice. Survival was defined as moribundity, spontaneous death, tumor volume ≥ 2000 mm3 (subcutaneous challenge), or significant weight loss from baseline (≥15% for bladder and ≥20% for lung tumors). To ensure uniform tumor size across all treatment groups, mice were occasionally excluded on first tumor measurement before randomization, if determined to be an outlier by Grubbs’ test.

In vivo tumor bioluminescence monitoring

Bioluminescent imaging (IVIS Lumina Imaging System; Perkin Elmer; Waltham, Massachusetts, USA) was used for treatment randomization and in vivo tumor monitoring as we reported.9 Briefly, mice were imaged 15 min after intraperitoneal injection of 3 mg PBS-dissolved d-luciferin K+ (Gold Biotechnology; St. Louis, Missouri, USA) with 1 min exposure, small binning, and F/stop=1. Identical regions of interest were drawn over each mouse and average radiance (photons/sec/cm2/sr) was quantified with Living Image software V.3.2.

In vivo treatments

Carrier-free recombinant mouse IL-2 was purchased from Biolegend (San Diego, California, USA). αPD-L1 (clone 10F.9G2), αIL-2 (clone JES6-5H4), and isotype control antibodies (clone LTF-2 rat IgG2b and polyclonal Armenian hamster IgG) were purchased from BioXCell (Lebanon, New Hampshire, USA). IL-2c is 1.5 μg/mouse IL-2 complexed with 7.5 μg/mouse αIL-2 at an optimal 1:2 molar ratio in PBS at 37°C for 15–30 min, prior to intraperitoneal administration in 100 μL DPBS on days 7, 9, 11, and 13 after orthotopic or subcutaneous challenge, or days 8, 10, 12, and 14 after intravenous challenge. 100 μg/mouse αPD-L1 was given intraperitoneally on days 8, 13, and 18 for orthotopic and subcutaneous challenge, or days 9, 14, and 19 for intravenous challenge. Relevant isotype controls were used in all experiments.

In vivo cell depletions

Anti-γδ TCR (clone UC7-13D5) was purchased from Biolegend. αCD8 (clone 2.43) and isotype control antibodies were purchased from BioXCell. Antibodies were given intraperitoneally to deplete relevant cells every 3 days until the end of the tumor treatment regimen. Doses/mouse: 250 μg αCD8 and 75 μg anti-γδ TCR. Confirmation of depletion efficiency is shown in online supplemental figures S1 and S2.
Carcinogen-induced BC

Wild-type BL6 and TCRδKO male mice were given 0.05% N-Butyl-N-(4-hydroxybutyl)nitrosamine in drinking water for 4 months to induce BC as reported,\(^{17}\) then sacrificed to assess bladder weight and cancer prevalence.

Flow cytometry

Mice were sacrificed by cervical dislocation after induction of deep isoflurane anesthesia. Bladder tumors were dissected and placed in a 60 mm x 15 mm petri dish and minced with a scalpel blade. Cells were incubated for 45–60 min in 3 mL serum-free RPMI-1640 with 0.25 mg/mL DNAse I and 1.65 mg/mL collagenase type IV (both Sigma Aldrich; St. Louis, Missouri, USA) and passed through a 70 µm filter to generate single cell suspensions. Then, 5×10⁶ cells were transferred to 96-well plates and samples with <5×10⁶ cells from the same group were pooled to ensure uniform cell counts for all replicates.

Dead cells were excluded by LIVE/DEAD Fixable Blue Dead Cell Stain Kit for ultraviolet excitation (Thermo Fisher Scientific; Waltham, Massachusetts, USA). Non-specific labeling was preblocked with anti-CD16/32 at 1:100 dilution (clone 93, Biolegend). Cells were stained for surface antigens by incubating at 4°C for 30–45 min with antibodies from Biolegend: αCD3 (17A2), αCD11b (M1/70), αPD-1 (29F.1A12), αCD45 (30-F11), αCD8 (53–6.7), αDNAM-1 (10E5), and αCD27 (LG.3A10); Thermo: αNKG2A (16A11) and αTCR gamma/delta (GL-3); and BD (San Jose, California, USA): αLy-6G (1A8), αCD4 (GK1.5), αCD69 (H1.2F3), αCD122 (TM-ß1), αVγ2 (UL3-10A6), αVγ1.1/Cr4 (2.11), αVδ4 (GL2), αLy-6C (AL-21) and αCD25 (PC61), all at manufacturer recommended dilutions. Of note, while the Garman γ chain nomenclature is used by the antibody manufacturers, the Heilig and Tonegawa nomenclature is used throughout the text.\(^{18}\)

For intracellular staining, cells were fixed and permeabilized with a FoxP3/transcription factor buffer kit (eBioscience; San Diego, California, USA) according to manufacturer instructions, and incubated at 4°C for 45 min. Cells were then stimulated with Cell Activator Cocktail (Biolegend) containing phorbol 12-myristate 13-acetate, ionomycin, and brefeldin A at 2 µL cocktail/mL CR10 medium (RPMI-1640 with 10% FBS, L-glutamine, sodium pyruvate, non-essential amino acids, penicillin/streptomycin and HEPES buffer) for 6 hours in a 37°C incubator. After stimulation, intracellular staining was performed by incubating cells at 4°C for 30–45 min.

Figure 1 Single agent IL-2c or αPD-L1 effectively treats orthotopic bladder cancer. Wild-type BL6 (A–C) or C3H (D) female mice were challenged orthotopically with (A–C) 8×10⁴ MB49 or (D) 1×10⁶ MBT-2 cells and treated with IL-2c on days 7, 9, 11 and 13, 100 µg αPD-L1 on days 8, 13 and 18, or isotype control (100 µg/mouse). (A) Tumor bioluminescence corresponding with pre-treatment, mid-treatment, and post-treatment timepoints. N=8/group, p value, two-way ANOVA of day 15 signal. (B) Mice sacrificed on day 21. N=7–8/group, p value, one-way ANOVA. Mouse survival in orthotopic (C) MB49 (N=6–8/group) or (D) MBT-2 (N=7–10/group) challenge, p value, log-rank. ANOVA, analysis of variance; IL-2, interleukin-2; PD-L1, programmed death-ligand 1.
with antibodies from Biolegend: \(\alpha \)-Tumor necrosis factor (TNF)-\(\alpha \) (MP6-XT22), \(\alpha \)Eomes (W17001A), and \(\alpha \)IL-17A (TC11-18H10.1); Thermo: \(\alpha \)Granzyme B (NGZB), \(\alpha \)FoxP3 (FJK-16s), and \(\alpha \)T-bet (4B10) and BD: \(\alpha \)Interferon (IFN)-\(\gamma \) (XMG1.2), all at manufacturer recommended dilutions in 1X FoxP3 permeabilization buffer. Surface and intracellular staining also included Brilliant Stain Buffer Plus (BD) at the manufacturer recommended dilution. Absolute cell numbers were determined by multiplying the cell ratio per live, singlet cells in each flow sample by total cell numbers in the sample. Flow data were acquired on a Cytek Aurora flow cytometer (Cytek Biosciences; Freemont, California, USA) and analyzed using FlowJo software (BD) V.10.7.1.

Statistical and data analyses

Data were analyzed and graphed with GraphPad Prism V.9.0.0. Data with error bars represent the mean±SEM. To compare two means, we used an unpaired t-test. Three or more means were compared with one-way analysis of variance (ANOVA) and post hoc Sidak’s test. Tumor growth curves were compared by two-way ANOVA, analyzed for overall treatment effect, followed by post hoc Sidak’s test of discrete time points. Log-rank test was used to compare Kaplan-Maier survival curves. Tumor prevalence was compared using a two-tailed Mann-Whitney U test. Occasionally, data sets with suspected outliers were identified by Grubbs’ test (used only once for a given data set) and removed from analysis. For all analyses, significance was based on a multiplicity corrected \(\alpha \) of 0.05.

RESULTS

Single agent IL-2c or \(\alpha \)PD-L1 effectively treats orthotopic BC

We studied BC immunotherapy using the established orthotopic mouse BC cell lines MB49 and MBT-2 on BL6 and C3H genetic backgrounds, respectively. Single agent IL-2c reduced tumor growth and bladder weight (figure 1A,B) and improved survival (figure 1C,D) after orthotopic challenge with either MB49 or MBT-2. As both tumors express PD-L1, we tested \(\alpha \)PD-L1 for comparison, which also significantly reduced tumor growth in vivo (figure 1A), reduced bladder weight (figure 1B) and improved survival (figure 1C,D) in both models.

IL-2c treats orthotopic BC independent of CD8\(^+\) T cells

Improving CD8\(^+\) T cell antitumor immunity is a major mechanism of many cancer immunotherapies, including the IL-2c used here. To assess the role of CD8\(^+\) T cells in IL-2c treatment of orthotopic BC, we administered an anti-CD8 antibody concurrently with IL-2c, which thoroughly depleted bladder CD8\(^+\) T cells (online supplemental figure S1). Surprisingly though, tumor growth (figure 2A) and survival (figure 2B) of mice receiving IL-2c ± \(\alpha \)CD8 was indistinguishable. Flow cytometric analysis of MB49 bladder tumors confirmed CD8\(^+\) T cell content and showed that IL-2c did not significantly improve CD8\(^+\) T cell frequency, number, activation status or IFN-\(\gamma \) production over control treatment (figure 2C-G). In support, IL-2c significantly improved survival in orthotopic MB49 challenge into TCR\(^{\beta} \)KO mice lacking all conventional T cells (figure 2H). By striking contrast, but as expected based on known CD8\(^+\) T cell requirements for \(\alpha \)PD-L1 efficacy, \(\alpha \)PD-L1 was ineffective in treating orthotopic BC in TCR\(^{\beta} \)KO mice (figure 2I). These data suggest that CD8\(^+\) T cells are not essential for IL-2c-mediated treatment of orthotopic BC, contrasting with the critical role of CD8\(^+\) T cells in the efficacy of \(\alpha \)PD-L1 and other cancer immunotherapies.

\(\gamma^\delta \) T cells are essential for IL-2c treatment efficacy in orthotopic BC

IL-2c is well known to activate protective, antitumor natural killer (NK) cell immunity. However, IL-2c failed to treat orthotopic MB49 in RAG1\(^{KO} \) mice (figure 3A,B) that have functional NK cells but lack \(\gamma^\delta \) and conventional T cells, compared with IL-2c efficacy in TCR\(^{\beta} \)KO mice (figure 2H) that have functional \(\gamma^\delta \) T and NK cells but lack conventional T cells. These data suggest that NK cells are dispensable for IL-2c efficacy against orthotopic MB49, or that NK cells also require \(\gamma^\delta \) T cells, conventional T cells, or RAG\(^{KO} \) to mediate IL-2c treatment efficacy in this setting.

We then studied \(\gamma^\delta \) T cells as they express the IL-2c target (CD122) and can kill orthotopic BC. We administered IL-2c plus a \(\gamma^\delta \) T cell depleting antibody to wild-type mice bearing orthotopic MB49 BC (online supplemental figure S2A), which completely abrogated IL-2c treatment efficacy as measured by bioluminescence (Fig. 3C), bladder weight (figure 3D), and mouse survival (figure 3E). In confirmation, we found difference in tumor growth (figure 3F), bladder weight (figure 3G), or mouse survival (figure 3H) in control versus IL-2c-treated TCR\(^{\beta} \)KO mice lacking \(\gamma^\delta \) T cells. By contrast, \(\alpha \)PD-L1 efficacy against orthotopic MB49 challenge was unaffected in TCR\(^{\beta} \)KO mice (figure 3H). Survival of isotype-treated wild-type and TCR\(^{\beta} \)KO mice challenged with MB49 was comparable (figure 3E vs 3H) and we found no difference in BC size or prevalence between wild-type and TCR\(^{\beta} \)KO mice receiving the carcinogen N-Butyl-N-(4-hydroxybutyl) nitrosamine to induce BC (online supplemental figure S2B,C), suggesting that \(\gamma^\delta \) T cell-mediated BC immunity is not critical for endogenous BC immune surveillance but can be mobilized by IL-2c for effective anti-BC immunotherapy. These data firmly establish that IL-2c and \(\alpha \)PD-L1 have distinct mechanisms of action against orthotopic BC, which could be exploited in distinct scenarios, and suggest that these agents could cooperate to treat BC.

IL-2c treatment effects on \(\gamma^\delta \) T cells are tissue-specific

The tumor microenvironment plays an important role in BC pathogenesis and immunotherapy responsiveness, leading us to explore IL-2c effects outside the bladder tumor microenvironment. We challenged MB49 cells subcutaneously into wild-type mice and found that IL-2c did not slow tumor growth (figure 4A) or extend survival (figure 4B), in direct contrast to our findings in orthotopic BC.
Reyes RM, et al. J Immunother Cancer 2021;9:e002051. doi:10.1136/jitc-2020-002051

Orthotopic MB49 Challenge (figure 1). As \(\gamma \delta \) T cells have tissue-specific properties,\(^{32} \) we challenged TCR\(\delta ^{KO} \) mice with subcutaneous MB49, treated with IL-2c or isotype control and observed a trend toward reduced tumor growth (figure 4C) and a dramatic improvement in survival with IL-2c versus control-treated mice (figure 4D). These data suggest differences in skin versus bladder \(\gamma \delta \) T cells in immunotherapy treatment mechanisms, including that \(\gamma \delta \) T cells could impede IL-2c efficacy against subcutaneous MB49, a difference not based on tumor type. To test an alternative orthotopic tumor and anatomic compartment, we challenged TCR\(\delta ^{KO} \) mice intraperitoneally with ID8agg mouse ovarian carcinoma cells. ID8agg tumors in TCR\(\delta ^{KO} \) mice were also sensitive to IL-2c (figure 4E), as we previously reported in wild-type mice,\(^{9} \) consistent with tissue- and/or tumor-specific \(\gamma \delta \) T cell effects of IL-2c.

Figure 2 IL-2c treats orthotopic bladder cancer in the absence of CD8\(^{+} \) T cells. Wild-type (A–G) or TCR\(\beta ^{KO} \) (H, I) female mice were challenged orthotopically with 8\(\times 10^{4} \)MB49 cells and treated with (A–H) IL-2c on days 7, 9, 11, and 13 \pm (A, B) 250\(\mu \)g \(\alpha \)CD8 on days 6, 9, 12, and 15, (I) 100\(\mu \)g \(\alpha \)PD-L1 on days 8, 13, and 18, or (C–I) isotype control. (A) Tumor bioluminescence corresponding with pre-treatment, mid-treatment and post-treatment timepoints. N=9–10/group, p value, two-way ANOVA of day 14 signal. (B) Mouse survival. N=9–10/group, p value, log-rank. Flow cytometric analysis of CD8\(^{+} \) T cell frequency (C), number (D), activation status (E), and IFN-\(\gamma \) production (F, G). N=6–8/group, p value, unpaired t-test. (H, I) Mouse survival. N=6–8/group, p value, log-rank. ANOVA, analysis of variance; IFN, interferon; IL-2, interleukin-2; PD-L1, programmed death-ligand 1; MFI, mean fluorescence intensity.
IL-2c enhances antitumor Tγδ1 effects and reduces protumor Tγδ17 effects in MB49 bladder tumors

Murine γδ T cell subsets can be functionally divided into Tγδ1 and Tγδ17 subsets that produce IFN-γ or IL-17A (herein IL-17), respectively. Tγδ1 cells express CD27 and mediate antitumor immunity in many mouse tumor models, whereas a pro-tumorigenic role is attributed to Tγδ17 cells, which lack CD27 expression. Tγδ1 cells also express CD122 (IL-2Rβ) whereas Tγδ17 cells express CD25 (IL-2Rα), resulting in preferential IL-2 binding and downstream signaling by Tγδ17 cells versus Tγδ1 cells. We observed increased total intratumoral γδ T cell prevalence (figure 5A), CD27+ T-bet+ γδ T cells (figure 5B), and a significant increase in CD27+ Vγ1+ cells with increased DNAM-1 expression (figure 5C), consistent with an activated Tγδ1 immune phenotype. We also found increased numbers of IL-17 γδ T cells expressing CD69 and Eomes (figure 5D) that had increased DNAM-1 and reduced expression of the inhibitory receptor NKG2A (figure 5E,F). Collectively, these populations represent functionally active Tγδ1 cells based on their CD27, Vγ1, Eomes, CD69, and DNAM-1 expression with lack of IL-17 production.

The loss of IL-2c efficacy with γδ T cell depletion or genetic knock out is likely due to loss of beneficial Tγδ1 effects. However, we also considered that IL-2c could reduce deleterious Tγδ17 cells, defined as CD27− CD25+ IL-17+ γδ T cells. Prior studies of CD27 Tγδ17 cells have also shown that compared with CD27+ γδ T cells, high-density CD25+ on Tγδ17 leads to more robust STAT5
Figure 4: IL-2c treatment effects on γδ T cells are tissue-specific. WT (A, B) or TCRγδKO (C, D) female mice were challenged subcutaneously with 2x10^6 MB49 cells/flank (two tumors/mouse) and treated with IL-2c on days 8, 10, 12, and 14, or isotype control (100µg/mouse). (A) Mouse tumor volume. N=5–6 mice and 10–12 tumors/group, p value, two-way ANOVA of day 14 tumor volume. (B) Mouse survival of (A). N=5–6 mice/group, p value, log-rank. (C) Mouse tumor volume. N=7 mice and 14 tumors/group, p value, two-way ANOVA of day 14 tumor volume. (D) Mouse survival of (C). N=7 mice/group, p value, log-rank. (E) Bioluminescent signal of female mice orthotopically (intraperitoneally) challenged with 4x10^6 ID8agg cells and treated with isotype control or IL-2c on days 7, 9, 11, and 13. N=11 mice/group, p value, two-way ANOVA of day 28 signal. ANOVA, analysis of variance; IL-2, interleukin-2; PD-L1, programmed death-ligand 1; WT, wild-type.

Neither IL-2c nor αPD-L1 alone treat BC lung metastases, but their combination is effective

We next generated lung metastases that are relevant to BC by intravenous tumor cell injection. Strikingly, but consistent with tissue-specific effects, neither single agent IL-2c nor αPD-L1 was effective against lung metastatic MB49 or MBT-2 (figure 7A,B). By contrast, their combination provided a significant survival benefit in both models (figure 7C,D). We investigated if treatment mechanisms for successful immunotherapy treatment of BC lung tumors were similar to bladder. Combination treatment of lung metastatic MB49 in TCRγKO mice was ineffective (figure 7E), suggesting a role for conventional T cells against lung metastasis in this model. TCRγKO mice had a similar median survival as wild-type (figure 7E), consistent with our prior report that Tregs impact MB49 BC in bladder more than lung and suggesting that CD8+ T cells are responsible for combination treatment efficacy in lung metastatic BC. Accordingly, combination therapy plus a CD8+ T cell depleting antibody in mice bearing lung metastatic MB49, abrogated the combination therapy survival benefit (figure 7F). Studies of γδ T cells in lung metastases are limited. Because of γδ T cell requirements for IL-2c efficacy in bladder and differing effects in skin (figures 3 and 4), we evaluated γδ T cell effects in lung metastatic MB49 and found that IL-2c plus αPD-L1 still improved survival in TCRγKO mice (figure 7G), with isotype controls having a similar median survival as wild-type mice (figure 7G vs figure 7C). Collectively, these data establish tissue-specific signaling in response to IL-2c, suggesting that this γδ T cell population could be sensitive to loss of CD25 signals from IL-2c. IL-2c reduced the prevalence of γδ17 cells in orthotopic BC (figure 5G), which are known to segregate functionally into Vγ4 or Vγ6 populations in mice. We found Vγ4 cells to be the predominant γδ17 subtype in orthotopic MB49 BC (online supplemental figure S3A). Vγ4 cells are thought to pair with Vδ1 and in IL-2c treated tumors, we found a significant reduction in Vγδ17 prevalence (figure 5H) and a trend to decreased numbers (online supplemental figure S3B). This γδ17 subset has known pro-tumorigenic properties and expressed CD25 in MB49 challenge.

IL-2c reduces bladder Tregs without inducing fragility and alters myeloid-derived suppressor cell content

To assess other candidate immune-suppressive cells that could be altered by IL-2c, we undertook initial studies of Tregs and myeloid-derived suppressor cells (MDSCs), both of which are detrimental in human BC and we previously reported that Tregs affect MB49 BC growth in bladder more than lung. In our studies of IL-2c mechanisms in ovarian cancer, we found that IL-2c induces fragile Tregs with reduced suppressive function which are identified by maintained FoxP3 expression, and upregulated IFN-γ, T-bet, and PD-1. However, in wild-type mice bearing orthotopic MB49, IL-2c reduced Treg frequency (figure 6A) and number (figure 6B) but did not affect functional molecules (figure 6C) or induce a fragile phenotype (online supplemental figure S4A–D). Similar to γδ T cell effects, these data demonstrate a tissue- and/ or tumor-specific IL-2c effect on Tregs and suggest that reduced Treg effects could contribute to IL-2c treatment efficacy.

Tγδ17 cell production of IL-17 and TNF-α can recruit and promote polymorphonuclear MDSC (PMN-MDSC) in human colorectal carcinoma. Interestingly, we found that IL-2c reduced the frequency (figure 6D) and number (figure 6E) of bladder TNF-α+ γδ17 cells, with a concomitant reduction in PMN-MDSC frequency (figure 6F). Intratumoral monocytic MDSC (M-MDSC) content was unchanged by IL-2c (online supplemental figure S4E), suggesting that IL-2c treatment could include a specific reduction of PMN-MDSCs, possibly via IL-17 or TNF-α effects that could include IL-2c-induced TNF-α production by innate lymphoid cells recently described in a subcutaneous melanoma model, an area requiring further investigation.
effects of individual immunotherapy agents and demonstrate that effective treatment strategies can engage different immune subsets in bladder and lungs to treat BC tumors.

DISCUSSION

BC is highly immunogenic and boasts United States Food and Drug Administration approvals for five immune checkpoint blockade agents and bacillus Calmette-Guérin (BCG) as distinct immunotherapy agents to treat non-muscle invasive, muscle invasive, and metastatic disease. However, typically under 30% of BC patients respond to immune checkpoint blockade and BCG suffers from high relapse rates, necessitating further insights to improve these therapies, as well as look for alternative or complementary treatment strategies.

Because the tumor microenvironment is an important determinant of BC immunotherapy success, we used orthotopic mouse BC models to assess immune responses to immune checkpoint blockade with αPD-L1 and showed effective immune checkpoint blockade treatment in two orthotopic BC models as a baseline for comparison versus IL-2 complexes made by incubating recombinant IL-2 with the CD122-directing αIL-2 antibody clone JES5H416 (IL-2c). We previously described distinct IL-2c treatment mechanisms in mouse melanoma and ovarian cancer models and here we found IL-2c to be efficacious for orthotopic BC via mechanisms distinct from those tumors and strikingly distinct from other BC models.

Figure 5 IL-2c enhances antitumor Tγδ1 and reduces protumor Tγδ17 effects in bladder. Wild-type female mice were challenged orthotopically with 8×10^4MB49, treated with IL-2c on days 7, 9, 11, and 13 or isotype control and sacrificed on day 16. Flow cytometric analysis of (A–F) Tγδ1 and (G, H) Tγδ17 populations. (A–H) N=6–8/group, p value, unpaired t-test. IL-2, interleukin-2; MFI, mean fluorescence intensity.
αPD-L1 immune checkpoint blockade, including previously unreported γδ T cell requirements.

Most studies of the bladder immune landscape in early stage BC have been following BCG immunotherapy.49 CD122 (to which IL-2c directs IL-2) is expressed on conventional T (CD4+ and CD8+), NK, and γδ T cells, all of which are important in localized human BC treatment with BCG.50

We explored immune cell contributions to IL-2c and αPD-L1 treatment success in mouse BC models and found that surprisingly, conventional T cells, specifically CD8+ T cells, were dispensable for IL-2c treatment effects, despite their necessity for αPD-L1 efficacy here, as also shown by others.24 As CD8+ T cell content in BC is a favorable prognostic indicator,25 the relative independence of IL-2c efficacy on CD8+ T cells in orthotopic BC and reliance on γδ T cells that do not affect αPD-L1 efficacy suggests that these agents could combine clinically for improved treatment efficacy. In support, we found that neither IL-2c nor αPD-L1 alone was effective in lung metastatic BC, whereas their combination was effective.

IL-2c requirements for γδ T cells were noted in orthotopic but not subcutaneous BC, and were dispensable for treating orthotopic ovarian cancer in the peritoneal cavity. It appears that γδ T cells could be detrimental to IL-2c treatment efficacy of subcutaneous MB49. Thus, γδ T cell effects in IL-2c treatment are tissue-selective, consistent with known γδ T cell biology and could also be tumor specific, which requires additional investigations. In this regard, if specific scenarios are identified in which γδ T cells impede IL-2c treatment efficacy, its efficacy could be improved by depleting γδ T cells or their functions in specific anatomic compartments, outcomes not achievable in humans with currently available agents.

In bladder, IL-2c promoted frequency, numbers, and activation of beneficial Tγδ1 cells and reduced frequency of detrimental Tγδ17 cells. Tγδ1 cells express CD122 whereas Tγδ17 cells express CD25, which likely contributes to outcomes using this CD122-selective agent. These studies also include, to our knowledge, the first report of specific γδ T
cell subsets in murine bladder, including what appears to be an
antitumor Vγ1 and protumor Vγ4 (specifically Vγ4δ4) γδ T
cell subset. Unlike our prior studies in ovarian cancer and
melanoma, IL-2c did not induce a fragile Treg phenotype,

Granulocytic but not M-MDSC number is elevated in
the circulation of human BC patients and PMN-MDSCs
predominate over M-MDSCs in BC patient peripheral

Blood52 and bladder tissue.33 We found that IL-2c reduced
orthotopic PMN-MDSC frequency, which could be from
a IL-17/TNF-α signaling effect based on prior reports,43 and
could specifically include TNF-α from innate lymphoid cells,
a novel IL-2c effect just reported.12 MDSC-mediated immuno-
suppression of BC immunotherapy responses merit addi-
tional investigation and may be linked to other beneficial
IL-2c effects. A Tγδ17-MDSC immunosuppressive axis had
been previously identified in human colorectal carcinoma,
which could be disrupted by IL-2c treatment based on our
data. Further, RAG1-1 mice have functional innate lymphoid
cells that contributed to IL-2c efficacy against subcutaneous
B16 melanoma challenge,12 whereas IL-2c did not treat
subcutaneous MB49 in these studies, further supporting
tissue- and/or tumor-specific IL-2c effects requiring addi-
tional investigations.

Of great interest was the lack of conventional T cell
activation and participation in IL-2c efficacy in orthot-
opic BC, despite αPD-L1 activation of these cells and
their requirement for αPD-L1 treatment efficacy, as well
as contributions to other cancers as described.33 Potential
explanations include specific attributes of CD8+ T cells in
bladder, contributions from specific immunosuppressive
factors such as Tregs and MDSCs, and specialized dendritic
cell effects as have been noted with IL-2c in subcutaneous
tumors,9 areas requiring further study. Identification of
such factors could be exploited to improve IL-2c, αPD-L1,
and other immunotherapies.

Optimal initial immunotherapy of metastatic BC should
reduce tumor burden in both primary and metastatic
sites.34 Evaluating the ability of BC immunotherapies to
treat metastatic tumors or reduce metastases from the
primary site requires a detailed understanding of tissue-
specific immunity in the local BC microenvironment. In
this regard, neither IL-2c nor αPD-L1 alone effectively
treated BC lung metastases, whereas their combination
was highly effective and required CD8+ T cells. This combi-
natorial efficacy could arise from additive effects of indi-
vidually ineffective single agents or from contributions
from distinct mechanisms of these agents in lung as we
found in bladder treatments, requiring further investiga-
tion. Our metastatic models relied on intravenous tumor
challenge, omitting several critical steps in spontaneous
metastasis. In mice surviving treatment of orthotopic
BC (single agent of combination) we occasionally found
macroscopic metastases, including focal lung metastases,
suggesting that additional strategies to prevent metastatic
tumor spread will be required for optimal treatment
efficacy. As metastatic BC is clinically challenging to treat,
additional studies of innate and adaptive immune contribu-
tions to immunotherapy of metastatic BC in lung and
other metastatic sites are required.

Collectively, these data show important new effects
of CD122-targeted BC immunotherapy in orthotopic
and metastatic disease that complement known mecha-
nisms for existing BC immunotherapies. IL-2c-mediated
promotion of antitumor immunity makes it a promising
candidate for BC trials and for combinations with αPD-
L1, where we showed improved treatment efficacy in
melanoma and ovarian cancer models, with induction of
durable, protective immunity.32 Whether other directed
IL-2 molecules now in cancer clinical trials have similar
γδ T cell activating properties also merits investigation.

Author affiliations
1South Texas Medical Scientist Training Program, University of Texas Health
San Antonio, San Antonio, Texas, USA
2Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas,
USA
3Division of Hematology/Oncology, Department of Medicine, University of Texas
Health San Antonio, San Antonio, Texas, USA
4National Heart, Blood, and Lung Institute, National Institutes of Health, Bethesda,
MD, USA
5Department of Urology, University of Texas Health San Antonio, San Antonio, Texas,
USA
6Department of Immunology, University Hospital Zurich, and Faculty of Medicine,
University of Zurich, Zurich, Switzerland
7Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
8Clayton Foundation for Research, Houston, Texas, USA

Twitter Robert S Svatko @SvatkoRob

Acknowledgements Graphical abstract created using BioRender.

Contributors RMR: conceptualization, data curation, formal analysis, funding
acquisition, investigation, methodology, validation, visualization, writing—original
draft, writing—review and editing. YD: data curation, formal analysis, investigation,
methodology, visualization and writing—review and editing. DZ: conceptualization,
methodology, investigation, methodology, N: investigation, methodology, resources. NM: data
curation, investigation, methodology, resources. KW: investigation, methodology,
resources. HBG: investigation, methodology, validation. ASP: investigation,
resources. AK: investigation. C2: investigation, validation. MG: investigation. ARVK:
investigation and methodology. OB: conceptualization, writing - review and editing.
JRC-G: conceptualization, writing—review and editing. RS: conceptualization, data
curation, formal analysis, funding acquisition, resources, supervision, and writing—
review and editing. TC: conceptualization, data curation, formal analysis, funding
aquisition, methodology, project administration, resources, software, supervision,
writing—original draft, writing—review and editing.

Funding R. Reyes (NIH T32GM113896, NIH/NCATS TL1 TR002647, NIA T32 AG 021900, YD (CRPT Research Training Award (RP 170345) and Ovarian Cancer
Research Alliance Ann and Sol Schreiber Mentored Investigator Award), NM (CRPT Research Training Award (RP170345)), MG (NIH T32GM113896, NIH/NCATS TL1
TR002647), ARVK (NIH F30CA239390), RS (8KL2 TR000118, K23, P30 CA054174,
Rogel L. And Laura D. Zeller Charitable Foundation Chair in Urologic Cancer, CDMRP
CA170270/P1P2), T. Curiel (CA054174, CA205965, CDMRP, The Owens Foundation,
The Skinner endowment, The Barker endowment, P30 CA054174), Flow cytometry
data was generated in the UT Health San Antonio Flow Cytometry Shared Resource
Facility, which is supported by UT Health San Antonio, the Mays Cancer Center P30
Cancer Center Support Grant (NIH-NCI P30 CA054174) and the National Center for
Advancing Translational Sciences, National Institutes of Health, through Grant UL1
TR002643.

Competing interests OB holds a patent on IL-2c.

Patient consent for publication Not required.

Ethics approval All animal studies were approved by the UT Health San
Antonio Institutional Animal Care and Use Committee and each experiment was

Reyes RM, et al. J Immunother Cancer 2021;9:e002051. doi:10.1136/jitc-2020-002051

J Immunother Cancer: first published as 10.1136/jitc-2020-002051 on 13 April 2021.
Downloaded from https://www.ncbi.nlm.nih.gov on August 3, 2023 by guest. Protected by copyright.
conducted in accordance with the standards required by the UT Health San Antonio Department of Laboratory Animal Resources.

Data availability statement The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Ryan Michael Reyes http://orcid.org/0000-0002-9562-5809
Onur Boyman http://orcid.org/0000-0001-8279-5545
Tyler J Curiel http://orcid.org/0000-0001-6962-9411

REFERENCES
1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70:7–30.
2 Cookson MS, Herr HW, Zhang ZF, et al. The treated natural history of high risk superficial bladder cancer: 15-year outcome. J Urol 1997;158:62–7.
3 American Cancer Society. Cancer Facts & Figures 2020; 2020.
4 Balar AV, Castellano D, O’Donnell PH, et al. First-Line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol 2018;19:1483–92.
5 Darvin P, Toor SM, Sasaharain N, et al. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018;50:1–11.
6 Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2019;2:e192535.
7 Ye C, Brand D, Zheng SG. Targeting IL-2: an unexpected effect in cancer. Immunology 2009;58:493–502.
8 Mariathasan S, Tandeau de Marsac N, et al. Systemic immunotherapy by a CD25-redirected IL-2 cytokine immune complexes. Cells 2016;5:1724–46.
9 Yang G, Shen W, Zhang Y, et al. Accumulation of myeloid-derived suppressor cells (MDSCs) induced by low levels of IL-6 correlates with poor prognosis in bladder cancer. Oncotarget 2017;8:38378–88.
10 Bengsch E, van de Bor H, van der Bruggen P, et al. Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERα/CCL2/CCR2 EMT/MMP9 signals. Oncotarget 2017;8:7842–55.
11 Pang DJ, Neves JF, Sumaria N, et al. Understanding the complexity of γδ T cell subsets in mouse and human. Immunology 2012;136:283–90.
12 Wuasa T, Sato K, Ashihara E, et al. Intravesical administration of γδ T cells successfully prevents the growth of bladder cancer in the murine model. Cancer Immunol Immunother 2009;58:493–502.
13 Balar A, Tebbane J, Desai N, et al. Phase II trial of pembrolizumab in patients with locally advanced or metastatic urothelial cancer. J Clin Oncol 2017;35:1759–65.
14 Crockard-Hay AO, Fishman MN, Balar AV, NKT-214+ nivolumab in first-line advanced/metastatic urothelial carcinoma (MUC): updated results from PIVOT-02. American Society of Clinical Oncology 2019.
15 Parker ME, Ciofi M, Regulation of γδ T cells effector diversification in the thymus. Front Immunol 2020;11:
16 Lino CNR, Barr Westerhausen AL, et al. Selective IL2-producing Th1-like γδ T cells. Eur J Immunol 2017;47:970–81.
17 Khairallah C, Chu TH, Sheridan BS. Tissue adaptations of memory and tissue-resident gamma delta T cells. Front Immunol 2018;9:1263.
18 O’Brien RL, Borm WK. Two functionally distinct subsets of IL-17 producing γδ T cells. Immunol Rev 2020;30:18–34.
19 Ma S, Cheng Q, Cai Y, et al. IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma. Cancers 2014;7:1969–82.
20 Murali R, Itoh Y, Kayagam E, et al. Prediction of intravesical recurrence of non-muscle-invasive bladder cancer by evaluation of intratumoral Foxp3+ T cells in the primary transurethral resection of bladder tumor specimens. PLoS One 2018;13:e0204745.
21 Miyake M, Tatsumi Y, Gohde D, et al. Regulatory T cells and tumor-associated macrophages in the tumor microenvironment in non-muscle invasive bladder cancer treated with intravesical Bacille Calmette-Guérin. Int J Mol Sci 2017;18:2186.
22 Wheeler K, Ji N, Mukherjee N, et al. PD47-05 regulatory T cells play a key role in bladder cancer development. J Urol 2020;203:e627.
23 Wu P, Wu D, Ni C, et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 2014;40:785–800.
Shinagar AB, Ramaiya NH, Jagannathan JP et al. Metastatic pattern of bladder cancer: correlation with the characteristics of the primary tumor. AJR Am J Roentgenol 2011;196:117–22.

Takeda K, Nakayama M, Sakaki M, et al. IFN-γ production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice. J Leukoc Biol 2011;90:777–85.

Song D, Powles T, Shi L, et al. Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches. J Pathol 2019;249:151–65.

Gopalakrishnan D, Koshkin VS, Ornstein MC, et al. Immune checkpoint inhibitors in urothelial cancer: recent updates and future outlook. Ther Clin Risk Manag 2018;14:1019–40.

Kim TJ, Cho KS, Koo KC. Current status and future perspectives of immunotherapy for locally advanced or metastatic urothelial carcinoma: a comprehensive review. Cancers 2020;12:192.

Joseph M, Enting D. Immune responses in bladder Cancer-Role of immune cell populations, prognostic factors and therapeutic implications. Front Oncol 2019;9:1270.

Ji N, Mukherjee N, Reyes RM, et al. Rapamycin enhances BCG-specific γδ T cells during intravesical BCG therapy for non-muscle invasive bladder cancer: a randomized, double-blind study. J Immunother Cancer 2021;9:e001941.

Eruslanov E, Neuberger M, Daurkin I, et al. Circulating and tumor-infiltrating myeloid cell subsets in patients with bladder cancer. Int J Cancer 2012;130:1109–19.

Sheng FY, Diaz-Montero CM, Rayman P, et al. Blood myeloid-derived suppressor cells correlate with neutrophil-to-lymphocyte ratio and overall survival in metastatic urothelial carcinoma. Target Oncol 2020;15:211–20.

Ornstein MC, Diaz-Montero CM, Rayman P, et al. Myeloid-Derived suppressors cells (MDSC) correlate with clinicopathologic factors and pathologic complete response (pCR) in patients with urothelial carcinoma (UC) undergoing cystectomy. Urol Oncol 2018;36:405–12.

Brahmer JR, Tykodi SS, Chow LQM, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012;366:2455–65.
CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation

Ryan M Reyes, Yilun Deng, Deyi Zhang, Niannian Ji, Neelam Mukherjee, Karen Wheeler, Harshita B Gupta, Alvaro S Padron, Aravind Kancharla, Chenghao Zhang, Myrna G Garcia, Anand VR Kornepati, Onur Boyman, José R Conejo-Garcia, Robert S Svatek, Tyler J Curiel

Supplemental Figures
Supplemental Fig 1

CD8+ T cell depletion in orthotopic MB49 bladder cancer. (A) Depletion efficiency of CD8+ T cells using 250 μg αCD8, two days after injection, as gated on live CD45+ cells in bladder.
Supplemental Fig 2 γδ T cell effects in orthotopic MB49 bladder cancer. (A) Depletion efficiency of γδ T cells using 75 μg anti-γδ TCR, two days after injection, as gated on live CD45+ CD8− CD4− NK1.1− cells in bladder. Assessment of bladder weight (B) and tumor prevalence (C) in wild-type and TCRδKO mice using an autochthonous carcinogen-based bladder cancer model. (B-C) N=22-25/group. (B) p, unpaired t test. (C) p, two tailed Mann-Whitney U test.
Supplemental Fig 3

Supplemental Fig 3 Tγδ17 cell prevalence and IL-2c effects in orthotopic MB49 bladder cancer. Flow cytometric analysis showing (A) frequency of Vγ4 chain usage in bladder as gated on live Vγ1− Tγδ17 cells and (B) absolute Tγδ17 cell number. (A-B) N=6-8/group. (B) p, unpaired t test.
Supplemental Fig 4

IL-2c does not affect Treg function or M-MDSC content in orthotopic MB49 bladder cancer. Flow cytometric analysis of regulatory T cell (Treg) function using the frequency of (A) Granzyme B producing Tregs. (B-D) Assessment of a fragile Treg phenotype defined as IFN-γ⁺ PD-1⁺ T-bet⁺ FoxP3⁺ Tregs using either (B,C) mean fluorescence intensity (MFI) or (D) frequency of FoxP3⁺ Tregs. (E) Frequency of monocytic-myeloid derived suppressor cells (M-MDSCs), defined as CD11b⁺ Ly6G⁻ Ly6C⁺⁺ cells, in orthotopic MB49 bladder cancer. (A-E) N=6-8/group. p, unpaired t test.
CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation

Ryan M Reyes, Yilun Deng, Deyi Zhang, Niannian Ji, Neelam Mukherjee, Karen Wheeler, Harshita B Gupta, Alvaro S Padron, Aravind Kancharla, Chenghao Zhang, Myrna G Garcia, Anand VR Kornepati, Onur Boyman, José R Conejo-Garcia, Robert S Svatek, Tyler J Curiel

- IL-2c and αPD-L1 treat primary MB49 and MBT-2 bladder cancer and combine to treat metastatic bladder cancer
- IL-2c mechanisms are distinct from αPD-L1 and differential effects on CD8 and γδ T cells are present in bladder and lung tumor microenvironments
- IL-2c enhances anti-tumor Tyδ1 effects and reduces tumor-promoting Tyδ17 effects in bladder