Ranibizumab in Diabetic Macular Oedema – A Benefit–Risk Analysis of Ranibizumab 0.5 mg PRN Versus Laser Treatment

Focke Ziemssen,1 Alan Cruess,2 Cornelia Dunger-Baldauf,3 Philippe Margaron,2 Howard Snow1 and William David Strain2

Focke Ziemssen, 1. Center for Ophthalmology, Eberhard Karl University of Tuebingen, Germany; 2. Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada; 3. Novartis Pharma AG, Basel, Switzerland; 4. Diabetes and Vascular Medicine, University of Exeter Medical School, Exeter, UK

Introduction: The structured Benefit–risk Action Team (BRAT) approach aims to assist healthcare decision makers in treatment assessments. We applied BRAT to compare the benefit-risk profile of ranibizumab 0.5 mg versus laser photocoagulation for the treatment of diabetic macular oedema (DMO). Methods: One-year data for the ranibizumab 0.5 mg pro re nata (PRN) and laser arms of the phase III trials RESPOND (NCT01135914; n=220), RESTORE (NCT00687804; n=345), and REVEAL (NCT00989989; n=396) were included in the analysis. The benefit measures included ≥10 letters gain/avoidance of loss in best-corrected visual acuity (BCVA), achieving central retinal thickness (CRT) <275 μm, and 25-item Visual Function Questionnaire (VFQ-25) outcomes. The risks measures included endophthalmitis, intraocular pressure increase, hypertension, proteinuria, arterial/venous thromboembolic events and deaths. Results: Ranibizumab treatment provided significant benefits compared with laser for ≥10 letter BCVA gain at month 12 (387/1,000 versus 152/1,000 patients), CRT <275 μm at 12 months (474/1,000 versus 348/1,000 patients), and improvement of ≥6.06 on the VFQ-25 near activities subscale (325/1,000 versus 245/1,000 patients). Results for the risk measures were similar for both treatments. Conclusions: Superior clinically relevant outcomes were observed with ranibizumab 0.5 mg PRN compared with laser without compromising on safety. This analysis further supports the positive benefit-risk profile of ranibizumab 0.5 mg PRN.

Keywords
Ranibizumab, laser, diabetic macular oedema, benefit–risk profile

Disclosure: Focke Ziemssen is consultant for Alimera, Allergan, Bayer Healthcare, Boehringer Ingelheim, Biogen, Novartis and Roche; Cornelia Dunger-Baldauf, Philippe Margaron and Howard Snow are employees of Novartis Pharma AG, Basel, Switzerland. William David Strain reports grants and personal fees from Novartis, during the conduct of the study, personal fees from Boehringer Ingelheim, Eli-Lilly, Janssen, Pfizer and Novo-Nordisk outside the submitted work. Alan Cruess has nothing to declare in relation to this article.

Acknowledgements: The authors acknowledge Claire Bailey for her significant contribution towards the design and conduct of the analysis and for the development of this manuscript. Writing support was provided by Jennifer Green (Green ink Communications) and was funded by Novartis. William David Strain would like to acknowledge the support of the National Institute for Health Research (NIHR) Exeter Clinical Research Facility and the NIHR Biomedical Research Centre scheme. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR Exeter Clinical Research Facility, the NHS, the NIHR or the Department of Health in England.

Compliance with Ethics: This study involves a retrospective analysis of data and did not involve any studies with human or animal subjects performed by any of the authors.

Authorship: All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship of this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval to the version to be published.

Open Access: This article is published under the Creative Commons Attribution Noncommercial License, which permits any non-commercial use, distribution, adaptation and reproduction provided the original author(s) and source are given appropriate credit.

Received: 30 May 2017
Accepted: 10 July 2017
Citation: European Endocrinology, 2017;13(2):91-8
Corresponding Author: Focke Ziemssen, University Eye Hospital Tuebingen, Ettelbese-Auernr Str. 7, 72074 Tuebingen, Germany. E: focke.ziemssen@med.uni-tuebingen.de

Support: The publication of this article was supported by Novartis.

Diabetic retinopathy is a common microvascular complication of diabetes, characterised by one or more features including retinal microaneurysms, cotton wool spots, microvascular abnormalities, hard exudates and haemorrhage, and, in the most severe form of the condition, neovascularisation.1 Diabetic macular oedema (DMO) is a manifestation of diabetic retinopathy characterised by swelling of the macula due to a breakdown in the blood–retinal barrier, leading to hyperpermeability (Figure 1).2 The retinal swelling caused by DMO is considered clinically significant if it involves or threatens the fovea, necessitating treatment to avoid potentially permanent vision loss.3 Central retinal thickness (CRT) can be measured using optical coherence tomography (OCT). OCT is a non-invasive imaging technique, and this parameter is often used alongside functional measures of vision (such as the number of letters that can be read from a vision chart) in order to monitor disease progression and response to therapy in patients with DMO. Without treatment, between a quarter and a third of eyes with clinically significant DMO will have significant vision loss within 3 years.1

In 1985, the Early Treatment Diabetic Retinopathy Study (ETDRS) demonstrated a net benefit of laser photocoagulation for the treatment of DMO,4 establishing laser as the gold standard for treatment at the time due to the technique’s ability to stabilise vision in many patients, although improvements in visual function were uncommon.1 In a trial comparing laser with intravitreal triamcinolone acetate, treatment group differences at three years slightly favoured the laser group.6 However, laser treatment can cause atrophic changes in the retinal pigment epithelium (RPE), which may increase in size over time,7 thereby resulting in the formation of scotoma, a partial loss of vision or blind spot in an otherwise normal visual field.

Vascular endothelial growth factor (VEGF)-A plays a vital role within the vascular system as a regulator of developmental angiogenesis, vascular
Diabetic Macular Oedema Original Research

Figure 1: Clinical presentation of diabetic macular oedema

Optical coherence tomography image presenting characteristic features of diabetic macular oedema.

analyses. The results of this study are discussed within the context of other studies in DMO.

Methods
The Benefit-risk Action Team (BRAT) structured approach was developed by the Pharmaceutical Research and Manufacturers of America (PhRMA) BRAT, in order to present a structured framework to facilitate regulatory decision making.22 The BRAT framework enables the selection, organisation, summarisation and interpretation of data to provide a rationale for decision-making based on benefit-risk assessments.22 The structured benefit-risk analysis reported here was performed based upon the steps of this BRAT framework.

Selection of comparisons to be made
Ranibizumab 0.5 mg PRN was compared to laser photocoagulation as the previous gold standard therapy, with benefit and risk outcomes collated from trials which included a controlled period of 1 year (Tables 1 and 2).

Data to be included
Studies included in this analysis were limited to those pharmaceutical company-sponsored trials comparing a control laser arm with ranibizumab therapy from which the authors had full access to patient-level data, in order provide the format laid out by BRAT, which is not available from published studies. Studies fulfilling the selection criteria were RESTORE (a phase III, multicentre, 12-month, double-masked, randomised study, predominantly \(>94\%\) Caucasian patients; n=345),13 REVEAL (a 12-month, phase II, multicentre, double-masked, randomised, laser-controlled study in Asian patients; n=396)14 and RESPONSE (a 12-month, multicentre, open-label, parallel-group, randomised, active-control study, also predominately \(87.7\%\) Caucasian patients; n=220).11,12 Additional published controlled studies of anti-VEGF therapy in DMO are included in the discussion section of this paper where relevant, but are not included in the pooled analysis for the following reasons:

- Studies where the authors did not have access to patient-level data and used anti-VEGF other than ranibizumab, for example DA VINCI, VIVID and VISTA.21,22
- Studies in DMO that included a sham injection control arm rather than laser, for example RISE and RIDE.23
- Studies in DMO with only active (anti-VEGF) control arms, for example Protocol T.24
- Single-arm studies in DMO with no control arm, for example RELIGHT.25

Outcome measures
The outcome measures chosen by the authors for presentation in this structured benefit-risk analysis were selected from the predefined primary endpoints within the contributing studies, predefined patient-related outcomes, and the important safety topics included within the ranibizumab Risk Management Plan.27 The selected endpoints were considered by the authors to be of high clinical relevance. In order to permit presentation of all selected endpoints on the same scale, a number of efficacy endpoints were transformed to a binary scale. For scores on the 25-item version of the National Eye Institute’s Visual Function Questionnaire (VFQ-25), responsiveness thresholds were used.26 The VFQ-25 can be divided into several subscales, each assessing a different aspect of visual function. In addition to the overall (composite) VFQ-25 score, three of the VFQ-25 subscales were included separately in the analysis as key aspects of vision-related quality of life for patients with DMO: near activities (e.g., reading), distance activities (e.g., ability to read street signs), and driving ability. The responsiveness threshold for the near activities subscale of the VFQ-25 was a change of 6.06. This was
A Benefit–risk Analysis of Ranibizumab 0.5 mg PRN Versus Laser Treatment

The selected benefits and risks presented in this benefit–risk analysis are (Figure 2):

- **Benefits**: gain of ≥10 letters in BCVA from baseline and avoidance of loss of ≥10 letters from baseline (well-recognised functional endpoints that provide a clinically meaningful measure); CRT <275 µm (an accepted anatomical limit of normal retinal size); patient-oriented VFQ-25 quality of life outcomes.
- **Risks** associated with intravitreal injection into the eye: endophthalmitis and the more general term of intraocular inflammation; intraocular pressure (IOP) increase.
- **Risks** known to be associated with systemic inhibition of VEGF: hypertension, proteinuria, myocardial infarction, non-myocardial arterial thromboembolic events (a composite endpoint that includes strokes, transient ischaemic attacks and arterial peripheral vascular events), venous thromboembolic events.
- **Mortality** endpoints: vascular and non-vascular deaths.

Adverse events were identified using pre-defined searches based upon appropriate Medical Dictionary for Regulatory Activities (MedDRA) hierarchy. Where possible, standard MedDRA queries were used.

The variables included in the structured benefit–risk assessment are included in a Forest plot output (Figure 2). The relative risk was expressed as risk difference, which is always defined, including if the response or event rate is 0 in one or both treatment groups. Exact 95% confidence intervals (CI) were obtained by iterative computation.

Results

Benefit–risk analysis – efficacy outcomes

The selected endpoint of visual improvement showed increased benefits for ranibizumab versus laser (Table 3 and Figure 3). At month 12, the difference between ranibizumab and laser in the incidence rate of a gain from baseline in BCVA of ≥10 letters was significant, with an additional 235 subjects for every 1,000 patients achieving a gain from baseline in BCVA of ≥10 letters with ranibizumab than with laser (474 versus 348 per 1,000 patients, respectively; 95% CI 158.5, 310.2). There was a trend toward patients given ranibizumab being more likely to avoid a loss of ≥10 letters or more at 12 months (incidence rate of 969 versus 897 per 1,000 patients for ranibizumab and laser, respectively; 95% CI -5.8, 149.8).

Furthermore, for every 1,000 patients, significantly more had a CRT of <275 µm at 12 months with ranibizumab than with laser (474 versus 348 per 1,000 patients, respectively; 95% CI 158.5, 310.2). There was a trend toward patients given ranibizumab being more likely to avoid a gain of ≥10 letters with ranibizumab (387 versus 152 per 1,000 patients for ranibizumab versus laser (95% CI -5.8, 149.8).

Benefit–risk analysis – safety outcomes

At month 12, there were no statistically significant differences observed in the rates of risk of selected ocular and systemic safety outcomes between ranibizumab 0.5 mg and laser treatment (Figure 3 and Tables 4).

Table 1: Key clinical trials of ranibizumab in patients with diabetic macular oedema

Study (reference)	ClinicalTrials.gov registration	Study design	Treatment (number of patients enrolled)
Studies comparing ranibizumab versus laser			
RESPOND11,12	NCT01135914	12-month, prospective, multicentre, randomised, open-label study using three parallel treatment arms	Ranibizumab 0.5 mg monotherapy (n=71); ranibizumab in combination with laser (n=70); laser monotherapy (n=62)
RESTORE13	NCT00687804	12-month, randomised, double-masked, multicentre study	Ranibizumab 0.5 mg (n=114); ranibizumab in combination with laser (n=118); laser monotherapy (n=111)
REVEAL14	NCT00989989	12-month, randomised, double-masked, multicentre, active-controlled study	Ranibizumab 0.5 mg monotherapy (n=133); ranibizumab in combination with laser (n=132); laser monotherapy (n=131)
Studies comparing ranibizumab versus sham			
RESOLVE15	NCT00284050	Randomised, double-masked, multicentre, sham-controlled, phase II study	Ranibizumab 0.3 mg (n=51); ranibizumab 0.5 mg (n=51); sham (n=49)
RISE16,25	NCT00473382	Randomised, multicentre, double-masked, 3-year trial, sham-controlled phase III study	Ranibizumab 0.3 mg (n=125); ranibizumab 0.5 mg (n=127); sham (n=130)
RIDE16,25	NCT0047333D	Randomised, multicentre, double-masked, 3-year trial, sham-controlled phase III study	Ranibizumab 0.3 mg (n=125); ranibizumab 0.5 mg (n=125); sham (n=127)
Other comparisons			
DRCR.net Protocol I8	NCT00445003	12-month, multicentre, randomised phase III study	Sham + prompt laser (n=293); ranibizumab + prompt laser (n=187); ranibizumab + deferred laser (n=188); triamcinolone + prompt laser (n=186)
DRCR.net Protocol 59	NCT01489189	2-year, multicentre, randomised, phase III study in patients with proliferative diabetic retinopathy	Pan retinal photocoagulation (n=203 eyes); ranibizumab 0.5 mg + deferred pan retinal photocoagulation (n=191 eyes)
DRCR.net Protocol T21	NCT01627249	2-year, multicentre, randomised, phase III study	Aflibercept 2.0 mg (n=224); bevacizumab 1.25 mg (n=218); ranibizumab 0.3 mg (n=218)
RETAIN37	NCT01171976	2-year, single-masked, multicentre phase IIb study	T&E regimen of ranibizumab with laser (n=121); treat-and-extend regimen of ranibizumab monotherapy (n=128); PRN regimen of ranibizumab monotherapy (n=123)

PRN = pro re nata; T&E = Treat and Extend.
and 5). Raised IOP was reported as an adverse event with ranibizumab treatment but not with laser (46 versus 0 per 1,000 patients, respectively; 95% CI −31.5, 124.2).

The number of events of endophthalmitis and intraocular inflammation in ranibizumab-treated patients was low (1 and 3 in a total of 323 patients, respectively; Table 4). Hypertension was the most common systemic adverse event reported in both ranibizumab and laser groups (68 versus 71 per 1,000 patients, respectively; 95% CI −80.4, 75.4). Rates of all other systemic adverse events assessed (proteinuria, myocardial infarction, non-myocardial arterial thromboembolic events [including strokes, transient ischemic attacks and arterial peripheral vascular events], venous thromboembolic events, vascular and non-vascular deaths) were extremely low and balanced between ranibizumab and laser-treated patients – between 3 and 19 events per 1,000 patients for ranibizumab and between 3 and 22 events per 1,000 patients for laser (Table 5).

Treatment exposure

The mean number of ranibizumab 0.5 mg injections administered in the patients from the ranibizumab 0.5 mg monotherapy group was 7.0 to 9.2. The mean number of laser treatments received by patients in the laser monotherapy group ranged from 1.9 to 2.6.

Discussion

Benefit–risk analysis of ranibizumab 0.5 mg versus laser

This benefit–risk analysis pooled data from three phase III clinical studies of ranibizumab in DMO11–14 in a patient-level data meta-analysis that utilised the BRAT framework to select for analysis those efficacy and safety endpoints which the authors considered important for clinical decision making (Figure 2). Based upon the identified endpoints, the

Table 2: Efficacy outcomes from key clinical trials

Study	Characteristics	Ranibizumab 0.5 mg + laser	Ranibizumab 0.5 mg	Laser
RESPOND11,12†	Mean BCVA gain, ETDRS letters	+8.2	+8.9	+0.3
	BCVA gain of ≥10 ETDRS letters	34.4%	52.1%	16.1%
	Avoided BCVA loss of ≥10 ETDRS letters	–	–	–
	Mean CRT change, µm	−152.2	−143.5	−107.1
RESTORE13	Mean BCVA gain, ETDRS letters	+5.9	+6.1	+0.8
	BCVA gain of ≥10 ETDRS letters	43.2%	37.4%	15.5%
	Avoided BCVA loss of ≥10 ETDRS letters	95.8%	94.5%	87.3%
	Mean CRT change, µm	−118.7	−128.3	−61.3
REVEAL14†	Mean BCVA gain, ETDRS letters	+6.4	+6.8	+1.8
	BCVA gain of ≥10 ETDRS letters	37.2%	33.8%	13.3%
	Avoided BCVA loss of ≥10 ETDRS letters	94.6%	97.0%	93.8%
	Mean CRT change, µm	−163.8	−148.0	−57.1

Study	Characteristics	Ranibizumab 0.5 mg	Sham
RESOLVE15†	Mean BCVA gain, ETDRS letters	+10.3	−1.4
	BCVA gain of ≥10 ETDRS letters	60.8%	18.4%
	Avoided BCVA loss of ≥10 ETDRS letters	95.1%	75.5%
	Mean CRT change, µm	−194.2	−48.4
RISE16*	Mean BCVA gain, ETDRS letters	+12.5	+2.6
	BCVA gain of ≥10 ETDRS letters	62.4%	29.9%
	Avoided BCVA loss of ≥10 ETDRS letters	–	–
	Mean CFT change, µm	−253.1	−133.4
RIDE16*	Mean BCVA gain, ETDRS letters	+12.0	+2.3
	BCVA gain of ≥10 ETDRS letters	64.4%	25.4%
	Avoided BCVA loss of ≥10 ETDRS letters	–	–
	Mean CFT change, µm	−270.7	−125.8

†Data for Month 12; *Data for Month 24; BCVA = best-corrected visual acuity; CFT = central foveal thickness; CI = confidence interval; CRT = central retinal thickness; ETDRS = Early Treatment Diabetic Retinopathy Study.
A Benefit–risk Analysis of Ranibizumab 0.5 mg PRN Versus Laser Treatment

Table 3: Benefit–risk analysis – efficacy outcomes

Benefit measures at month 12	Ranibizumab 0.5 mg PRN (n=323)	Laser (n=310)	Difference in incidence rate per 1,000 patients, ranibizumab 0.5 mg PRN versus laser (95% CI)		
Gain of ≥10 letters in BCVA from baseline at month 12	125	387	47	152	235 (158.5, 310.2)
Without loss of ≥10 letters in BCVA from baseline at month 12	313	969	278	897	72 (5.8, 149.8)
CRT <275 µm at month 12	153	474	108	348	125 (47.5, 202.2)
VFQ-25: near-activities subscale improved by ≥6.06 at month 12	105	325	76	245	80 (1.7, 157.2)
VFQ-25: distance activities subscale improved by ≥5.38 at month 12	89	276	68	219	56 (–21.8, 133.9)
VFQ-25: patients who could drive at month 12	122	378	108	348	29 (–48.8, 107.1)

Discrepancies in language translation in one country have been identified since the original RESTORE analysis; therefore, mental health dependency related VFQ questions 20–25 were excluded for RESTORE. BCVA = best-corrected visual acuity; CI = confidence interval; CRT = central retinal thickness; PRN = pro re nata; VFQ = Visual Functional Questionnaire.

The current EU label for ranibizumab allows for a flexible, individualised treatment approach with monitoring and treatment intervals based on disease activity, which enables physicians to choose a treatment schedule with reduced visit burden.36,37 This flexibility of dosing is particularly valuable in the management of patients with DMO, even in patients without DMO.35

Figure 3: Forest plot of efficacy and safety endpoints of ranibizumab versus laser treatment in patients with diabetic macular oedema

RISK*	Endophthalmitis	Intravascular inflammation	Intracocular pressure increase	Hypertension	Proteinuria	Myocardial infarction	Non-myocardial arterial thromboembolic events	Venous thromboembolic events	Vascular death	Non-vascular death
BENEFIT*	Gain of ≥10 letters in BCVA from baseline	Without loss of ≥10 letters in BCVA from baseline	CRT <275 µm	VFQ: near-activities subscale improved by ≥6.06	VFQ: distance activities subscale improved by ≥5.38	VFQ: Patients who could drive				
BF	–100	0	100	200	300	400	500	600	700	800
SF	–1000	–300	300	700	1000	1300	1700	2100	2500	2900

*At month 12; BCVA = best-corrected visual acuity; CRT = central retinal thickness; M = month; VFQ = Visual Functional Questionnaire.

Potential additional benefits of ranibizumab treatment

Intravitreal ranibizumab 0.5 mg was compared with laser/grid laser alone for the treatment of DMO in the Protocol I trial carried out by the Diabetic Retinopathy Clinical Research Network (DRCR.net). Diabetic retinopathy progression from baseline to the 1-year primary outcome visit was less likely to occur in eyes treated with ranibizumab compared with those given sham plus prompt laser. Similarly, in the RISE and RIDE trials, significantly more patients treated with ranibizumab 0.5 mg versus sham achieved a two- or three-step improvement on the ETDRS diabetic retinopathy severity scale (a scoring system which classifies the stages of the disease) at month 24 (35.9% versus 5.4% for a two-step improvement, and 14.5% versus 1.3% for a three-step improvement for ranibizumab and laser, respectively, both p<0.001). Since the additional benefits of ranibizumab over laser are seen not only on DMO but also on diabetic retinopathy disease progression, these findings suggest that ranibizumab may have a disease modifying effect on the underlying diabetic retinopathy pathology. Indeed, the Protocol S trial, also carried out by the DRCR.net, has recently reported statistically significantly greater gains in visual acuity over 2 years with ranibizumab versus pan-retinal photocoagulation (PRP, the application of many small laser spots across the retina but avoiding the central area) in patients with proliferative diabetic retinopathy (PDR; 2.8 versus 0.2 letters, p<0.001), with ranibizumab remaining more effective than PRP in the treatment of PDR, even in patients without DMO.36

Ophthalmic risks of ranibizumab

Endophthalmitis is a severe inflammation of the anterior and/or posterior chambers of the eye and is a potential risk following any intravitreal injection into the eye. It may be sterile or associated with bacterial infection (e.g., *staphylococci* or *streptococci*), with the risk minimised through proper injection technique and aseptic procedure. Patients must be made aware of the potential for endophthalmitis, to allow
timely assessment, diagnosis and treatment. Rates of endophthalmitis following intravitreal injection are extremely low, with only one instance of endophthalmitis (in a patient given ranibizumab) reported across the three studies included in this analysis (Table 4). Outside the studies included in this analysis, the rate of endophthalmitis over 3 years in the RISE and RIDE studies was 1.2%, or around 0.06% per injection;42 the rate over two years in Protocol T was 0.45%, evenly split across all treatment arms,43 while no cases of endophthalmitis were observed over 100 weeks in the VIVID and VISTA studies.44 In the LUMINOUS 30,000-patient, real-world evidence observational study, the overall rate of endophthalmitis was three events in 4,710 patients with DMO (0.06%) or three cases in 19,258 injections (0.016%).45

Transient increases in IOP have been seen within 60 minutes of injection of ranibizumab.46 In this analysis, IOP was reported as an adverse event in 4.6% of subjects receiving ranibizumab and in no patients receiving laser. Following the administration of intravitreal injections, IOP and the perfusion of the optic nerve head must be checked.

Systemic risks of ranibizumab
VEGF plays a crucial role within the cardiovascular system as a regulator of normal and pathological angiogenesis, vascular permeability and inflammation. Systemic VEGF inhibition using intravenous bevacizumab for the management of colon cancer has been associated with hypertension, thrombo-embolism (arterial and venous), haemorrhage, congestive heart failure, cardiac arrhythmia, proteinuria, gastrointestinal perforation, surgery and wound healing complications.47 For the treatment of DMO, anti-VEGF therapy is administered as an intravitreal injection in order to deliver effective drug concentrations to the retina while minimising any systemic exposure. Only a fraction of the administered dose of ranibizumab reaches the systemic circulation, and even then it has a very short half-life (around 2 hours), as a result of the molecule’s small size and lack of the Fc portion of the antibody,48 giving it a low systemic exposure.49 Even so, it is important to be mindful of any potential risk associated with even low levels of exposure when considering the large DMO patient population receiving intravitreal anti-VEGF in clinical practice, and the high risk of systemic comorbidities including cardiovascular and cerebrovascular events in patients with DMO.50

The comparison of systemic risks between ranibizumab and laser across the three trials included in this analysis does not show significant differences in systemic safety between subjects receiving ranibizumab and those randomised to laser. Both myocardial arterial thrombotic events (ATEs) and non-myocardial ATEs (a collection of adverse events that include strokes, transient ischemic attacks and peripheral vascular events) were reported at similarly low rates in both ranibizumab and laser-treated subjects, with no overall excess compared with laser treatment over the 1 year of observation in these trials.

Additional meta-analyses have been conducted to pool data from controlled studies in which ranibizumab was compared with sham or laser treatment. In a meta-analysis of six controlled phase II and III clinical trials conducted by Novartis and Genentech (1,767 patients in total, 936 treated with ranibizumab 0.5 mg [1095 patient-years]), no meaningful differences in cardiovascular or cerebrovascular safety were observed for ranibizumab 0.5 mg compared with sham and laser control participants (Table 6).51 In another recent pooled analysis, Avery and colleagues have published data from four pivotal registration trials for Lucentis (RISE/RIDE) and Eylea (VISTA/VIVID).52 These trials were sham injection controlled and required monthly dosing. Avery et al. have reported an increase in stroke, but not myocardial infarction, with both agents, and concluded that caution may be required when using these agents in the subgroup of what was described as ‘high risk patients’.

Table 4: Benefit–risk analysis – ocular safety outcomes

Risk measures at month 12	Ranibizumab 0.5 mg PRN (n=323)	Laser (n=312)	Difference in incidence rate per 1,000 patients, ranibizumab 0.5 mg PRN versus laser (95% CI)		
Number of patients with at least one event	Incidence rate* per 1,000 patients	Number of patients with at least one event	Incidence rate* per 1,000 patients		
Endophthalmitis	1	3	0	0	3 (-74.9, 81.1)
Intraocular inflammation including uveitis	3	9	3	10	0 (-78.2, 77.7)
Retinal detachment, retinal tear and RPE tears	0	0	0	0	0
Intraocular pressure increase	15	46	0	0	46 (-31.5, 124.2)

*Incidence rate of patients with one or more relevant events per 1,000 patients. CI = confidence interval; PRN = pro re nata; RPE = retinal pigment epithelium.

Table 5: Benefit–risk analysis – systemic safety outcomes

Risk measures at month 12	Ranibizumab 0.5 mg PRN (n=323)	Laser (n=312)	Difference in incidence rate per 1,000 patients, ranibizumab 0.5 mg PRN versus laser (95% CI)		
Number of events	Incidence rate per 1,000 patients	Number of events	Incidence rate per 1,000 patients		
Hypertension	22	68	22	71	-2 (-80.4, 75.4)
Proteinuria	2	6	2	6	0 (-78.2, 77.8)
Myocardial infarction	5	15	7	22	-7 (-84.7, 71.2)
Non-myocardial arterial thromboembolic events	6	19	2	13	1 (-72.1, 83.8)
Venous thromboembolic events	2	6	2	6	0 (-78.2, 77.8)
Vascular death	1	3	1	3	0 (-78.1, 77.9)
Non-vascular death	2	6	1	3	3 (-75.0, 81.0)

CI = confidence interval; PRN = pro re nata.
requiring monthly injections.21 Clinical studies that compare the safety of the available anti-VEGF agents within the same study are limited.

The 2-year analysis of Protocol T reported an increased rate of Anti-Platelet Treatments’ Collaboration (APTC) events in ranibizumab 0.3 mg-treated patients compared with those receiving bevacizumab or aflibercept; albeit, not statistically different from that of patients treated with the other anti-VEGF agents after adjusting for baseline risk factors.21 The authors noted the variability of their safety results compared with those consistently reported in previous clinical trials of ranibizumab 0.5 mg in DMO, and stated that the “inconsistencies in the totality of the evidence create uncertainty as to whether there is a true increased risk of APTC events with ranibizumab at this time.”21

\textbf{Strengths and weaknesses of this analysis}

The strengths of this analysis include the fact that it pools together patient-level data from three randomised, controlled, phase III trials, and presents in a single graphical format the key benefits and risks of the two treatment options considered.

In terms of weaknesses, this analysis does not include any of the other available treatment options for DMO (including other anti-VEGF agents or steroids), as the authors did not have access to patient-level data for any trials fitting the inclusion criteria, other than those sponsored by Novartis. This analysis includes only the dose of ranibizumab approved within Europe (0.5 mg) – the studies meeting the inclusion criteria for this analysis did not include the 0.3 mg dose approved for use in DMO and diabetic retinopathy for monthly use in the US. It was also not possible to include in this analysis a number of endpoints that may have proved important, including measures of retinal scarring (as scarring was not specifically defined or scored within the selected trials) and focal loss of vision (again, as this was not specifically tested within the trials). The analysis did not take into consideration any effect of injection frequency on level of systemic risk. The patient-level data included in our analysis may not be an accurate reflection of the general DMO population as a result of clinical trial exclusion criteria selecting against those at highest risk of systemic cardio- and cerebrovascular events. Finally, this analysis, like many other clinical trials and meta-analyses, lacks sufficient power to detect differences in absolute risk rates for rare safety events such as arterial thromboembolic events and vascular death. It might be that the risk–benefit profile is different for subgroups of individual patients.

In this benefit–risk analysis comparing ranibizumab 0.5 mg PRN with laser treatment, significant benefits were seen with ranibizumab 0.5 mg PRN over laser therapy, on benefit measures including gain of ≥10 letters in BCVA from baseline, achievement of CRT <275 µm, and patient-reported quality of life outcomes. There were no clinically relevant differences in key ocular and systemic safety endpoints. The authors consider that the BRAT framework, facilitating the summary of key efficacy and safety endpoints into a single chart, may help when counselling patients with regard to the specific benefits and risks of the laser and ranibizumab therapy approaches. Consultation and decision should be made on the basis of the individual scenario including adherence and reimbursement.

\begin{table}
\centering
\begin{tabular}{|l|c|c|c|c|}
\hline
Adverse event & Ranibizumab 0.5 mg versus control & Control, rate per 100 patient-years (n/N) & Ranibizumab 0.3 mg versus control & Control, rate per 100 patient-years (n/N) \\
\hline
Stroke plus transient ischemic attack & 1.18 (4/396) & 1.18 (4/396) & 1.18 (4/396) & 1.18 (4/396) \\
Stroke excluding transient ischemic attack & 1.29 (14/936) & 1.29 (14/936) & 1.29 (14/936) & 1.29 (14/936) \\
Myocardial infarction & 2.02 (28/1581) & 2.02 (28/1581) & 2.02 (28/1581) & 2.02 (28/1581) \\
APTC events & 2.96 (32/1086) & 2.96 (32/1086) & 2.96 (32/1086) & 2.96 (32/1086) \\
Vascular deaths & 0.73 (8/1106) & 0.73 (8/1106) & 0.73 (8/1106) & 0.73 (8/1106) \\
\hline
\end{tabular}
\caption{Pairwise cardiovascular and cerebrovascular safety comparisons for ranibizumab 0.5 mg versus control and ranibizumab 0.3 mg versus control from a pooled analysis of six phase II and III clinical trials (n=1,767).}
\end{table}
aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies, Ophthalmology, 2015;122:2044–52.

25. Brown DM, Nguyen QD, Marcus DM, et al., Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE, Ophthalmology, 2013;130:2013–22.

26. Pearce J, Bariyeh M, Burton BII, et al., Ranibizumab 0.5 mg for diabetic macular edema with monthly monitoring after a phase of initial treatment: 18-month, multicenter, phase III RELIght study, Ophthalmology; 2015;122:1811–9.

27. European Medicines Agency. Lucentis. European public assessment report (EPAR). 2014. Available from: www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000715/human_med_000890.jsp&mid=WC0b01ac058001d125 (accessed 24 August 2015).

28. Suner I, Gokce M, Yu E, et al., Responsiveness of NEI VFQ-25 to changes in visual acuity in neovascular AMD: validation studies from two phase 3 clinical trials, Invest Ophthalmol Vis Sci, 2009;50:3629–35.

29. Rosenfeld PJ, Brown DM, Heier JS, et al., Ranibizumab for neovascular age-related macular degeneration, N Eng J Med, 2006;355:1419–31.

30. Kumar V, Ghosh B, Mehta DK, Goel N, Functional outcome of subthreshold versus threshold diode laser photocoagulation in diabetic macular oedema, Eye (Lond), 2010;24:1459–65.

31. Ishikawa S, Ogasa-awa H, Yoshida A, Hanada K, The use of scanning laser ophthalmoscope microperimetry to detect visual impairment caused by macular photocoagulation, OptomJ 1998;29:95–8.

32. Pearce J, Sivaprasad S, Chong NV, Factors affecting reading speed in patients with diabetic macular edema treated with laser photocoagulation, Oculi One, 2014;9:e105696.

33. Elman MJ, Aiello LP, Beck RW, et al., Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema, Ophthalmology, 2010;117:1064–77.

34. Ip MS, Dornally A, Hopkins S, et al., Long-term effects of ranibizumab on diabetic retinopathy severity and progression, Arch Ophthalmol, 2012;130:1145–52.

35. Writing Committee for the Diabetic Retinopathy Clinical Research Network, The use of intravitreal ranibizumab versus intravitreal bevacizumab for the treatment of diabetic macular edema: a randomized clinical trial, JAMA, 2015;314:2137–46.

36. LUCENTIS® (ranibizumab injection) Prescribing Information, 2014. www.gene.com/download/pdf/lucentis_prescribing.pdf (accessed 28 January 2015).

37. Prunte C, Fajkusche J, Mahmod S, et al., Ranibizumab 0.5 mg treat-and-extend regimen for diabetic macular oedema: the RETAIN study, Br J Ophthalmol, 2016;100:787–95.

38. Bressler SB, Glassman AR, Almujar T, et al. Five year outcomes of ranibizumab with prompt or deferred laser versus laser or triamcinolone plus deferred ranibizumab for diabetic macular edema, Am J Ophthalmol, 2016;164:57–68.

39. Novartis data on file.

40. LUCENTIS® Summary of Product Characteristics. Novartis Pharma AG, 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000715/WC500043546.pdf (Accessed on 15 April 2010).

41. Avery RL, Castellari A, Steiner N, et al., Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab, or aflibercept in patients with DME. 2014 Annual Meeting of the Association for Research in Vision and Opthalmology (ARVO). Orlando, FL, US, May A–K 2014.

42. Nguyen-Khoa BA, Goehring EL, Wether W, et al., Hospitalized cardiovascular events in patients with diabetic macular edema, BMJ Ophthalmol, 2012;12:11.

43. Zarbin MA, Durger-Baldauf C, Haskova K, et al., Vascular safety of ranibizumab in patients with diabetic macular edema: a pooled analysis of patient-level data from randomized clinical trials, JAMA Ophthalmol, 2017;135:424–31.