Simultaneous Observations of PKS 2155–304 with H.E.S.S.,
Fermi, RXTE and ATOM: Spectral Energy Distributions and
Variability in a Low State

The H.E.S.S. Collaboration

F. Aharonian1a,13a, A.G. Akhperjanian2a, G. Anton16a, U. Barres de Almeida8a,30a, A.R. Bazer-Bachi3a, Y. Becherini12a, B. Behera14a, K. Bernlohr1a,5a, C. Boisson6a, A. Bochow1a, V. Borrel3a, E. Brion7a, J. Brucker16a, P. Brun7a, R. Bühler1a, T. Bulik24a, I. Büsching9a, T. Boutelier17a, P.M. Chadwick8a, A. Chardonner19a, R.C.G. Chaves1a, A. Cheesbrough8a, L.-M. Chounet10a, A.C. Clapson1a, G. Coignet11a, M. Dalton5a, M.K. Daniel8a, I.D. Davids22a,9a, B. Degrange10a, C. Deil1a, H.J. Dickinson8a, A. Djannati-Ataï12a, W. Dominko1a, L.O’C. Drury13a, F. Dubois11a, G. Dubus17a, J. Dyks24a, M. Dyrda28a, K. Egberts1a, D. Emmanoulopoulos14a, P. Espigat12a, C. Farnier25b, F. Feinstein25b, A. Fiasson25b, A. Förster1a, G. Fontaine10a, M. Füßling5a, S. Gabici13a, Y.A. Gallant25b, L. Gérard12a,24b, B. Giebels10a,24b, J.F. Glicenstein7a, B. Glück16a, P. Goret7a, D. GöhRING16a, D. Hauser14a, M. Hauser14a, S. Heinz16a, G. Heinzelmann4a, G. Henri17a, G. Hermann1a, J.A. Hinton25a, A. Hoffmann18a, W. Hofmann1a, M. Holleran9a, S. Hoppe1a, D. Horns4a, A. Jacholkowska19a, O.C. de Jager9a, C. Jahn16a, I. Jung16a, K. Katarzynski27a, U. Katz16a, S. Kaufer14a, E. Kendziorra18a, M. Kerschhaggl5a, D. Khangulyan1a, B. Khélli10a, D. Keogh8a, W. Kluzniak24a, Nu. Komin7a, K. Kosack1a, G. Lamanna11a, J.-P. Lenain6a, T. Lohse5a, V. Marandon12a, J.M. Martin6a, O. Martinou-Huynh19a, A. Marcowith25b, D. Maurin19a, T.J.L. McComb8a, M.C. Medina6a, R. Moderski24a, E. Moulin7a, M. Naumann-Godo10a, M. de Naurois19a, D. Nedbal20a, D. Nekrassov1a, J. Niemiec28a, S.J. Nolan8a, S. Ohm1a, J.-F. Olive3a, E. de Oña-Willmeh12a,29a, K.J. Orford8a, M. Ostrowski23a, M. Panter1a, M. Paz Arribas5a, G. Pedealetti14a, G. Pelletier17a, P.-O. Petrucci17a, S. Pita12a, G. Pühlhofer14a, M. Punch12a, A. Quirrenbach14a, B.C. Raubenheimer9a, M. Raue1a,29a, S.M. Rayner8a, M. Renaud12a,1a, F. Rieger1a,29a, J. Ripken4a, L. Rob20a, S. Rosier-Lees11a, G. Rowell26a, B. Rudak24a, C.B. Rulten8a, J. Ruppel21a, V. Sahakian2a, A. Santangelo18a, R. Schlickeiser21a, F.M. Schöck16a, R. Schröder21a, U. Schwanke5a, S. Schwarzburg18a, S. Schwemmer14a, A. Shalchi21a, M. Sikora24a, J.L. Skilton25a, H. Sol6a, D. Spangler8a, L. Stawarz23a, R. Steenkamp22a, C. Stegmann16a, G. Superina10a, A. Szostek23a,17a, P.H. Tam14a, J.-P. Tavernet19a, R. Terrier12a, O. Tibolla1a,14a, C. van Eldik1a, G. Vasileiadis25b, C. Venter9a, L. Venter6a, J.P. Vialle11a, P. Vincent19a, M. Vivier7a, H.J. Völk1a, F. Volpe1a,10a,29a, S. J. Wagner14a, M. Ward8a, A.A. Zdziarski24a, A. Zech6a

The Fermi-LAT collaboration

A. A. Abdo16,26, M. Ackermann3b, M. Ajello3b, W. B. Atwood14b, M. Axelsson5b,6b, L. Baldini7b, J. Ballet8a, G. Barbiellini9b,10b, D. Bastieri11b,12b, M. Battelino9b,13b, B. M. Baughman14d, K. Bechtol3b, R. Bellazzini7b, B. Berenji3b, E. D. Bloom26, E. Bonamente15b,16b, A. W. Borgland3b, J. Bregeon7b, A. Brez7b, M. Brigida17b,18b, P. Bruel10a, G. A. Caliandro17b,18b, R. A. Cameron3b, P. A. Caraveo20b, J. M. Casandjian8b, E. Cavazzuti21b, C. Cecchi15b,16b, E. Charles3b,
1a Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany
2a Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan, Armenia
3a Centre d’Étude Spatiale des Rayonnements, CNRS/UPS, BP 44346, F-31028 Toulouse Cedex 4, France
4a Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany
5a Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany
6a LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 Place Jules Janssen, 92190 Meudon, France
7a IRFU/DSM/CEA, CE Saclay, F-91191 Gif-sur-Yvette, Cedex, France
8a University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.
9a Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa
10a Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau, France
11a Laboratoire d’Annecy-le-Vieux de Physique des Particules, CNRS/IN2P3, 9 Chemin de Bellevue - BP 110 F-74941 Annecy-le-Vieux Cedex, France
12a Astroparticule et Cosmologie (APC), CNRS, Universite Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13, France & UMR 7164 (CNRS, Université Paris VII, CEA, Observatoire de Paris)
13a Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland
14a Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany
15a Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany
16a Laboratoire d’Astrophysique de Grenoble, INSU/CNRS, Université Joseph Fourier, BP 53, F-38041 Grenoble Cedex 9, France
17a Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D 72076 Tübingen, Germany
18a LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5, France
19a Institute of Particle and Nuclear Physics, Charles University, V Holesovickach 2, 180 00 Prague 8, Czech Republic
20a Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, D 44780 Bochum, Germany
21a University of Namibia, Private Bag 13301, Windhoek, Namibia
22a Obserwatorium Astronomiczne, Uniwersytet Jagielloński, ul. Orla 171, 30-244 Kraków, Poland
23a Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland
School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, UK
School of Chemistry & Physics, University of Adelaide, Adelaide 5005, Australia
Toruń Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Toruń, Poland
Instytut Fizyki Jądrowej PAN, ul. Radzikowskiego 152, 31-342 Kraków, Poland
European Associated Laboratory for Gamma-Ray Astronomy, jointly supported by CNRS and MPG
supported by CAPES Foundation, Ministry of Education of Brazil
National Research Council Research Associate
Space Science Division, Naval Research Laboratory, Washington, DC 20375
W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305
Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064
The Oskar Klein Centre for Cosmo Particle Physics, AlbaNova, SE-106 91 Stockholm, Sweden
Stockholm Observatory, Albanova, SE-106 91 Stockholm, Sweden
Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa, Italy
Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, 91191 Gif sur Yvette, France
Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste, Italy
Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
Dipartimento di Fisica “G. Galilei”, Università di Padova, I-35131 Padova, Italy
Department of Physics, Royal Institute of Technology (KTH), AlbaNova, SE-106 91 Stockholm, Sweden
Department of Physics, Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210
Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia, Italy
Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia, Italy
Dipartimento di Fisica “M. Merlin” dell’Università e del Politecnico di Bari, I-70126 Bari, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano, Italy
Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma), Italy
George Mason University, Fairfax, VA 22030
ABSTRACT

We report on the first simultaneous observations that cover the optical, X-ray, and high energy gamma-ray bands of the BL Lac object PKS 2155−304. The gamma-ray bands were observed for 11 days, between 25 August and 6 September 2008 (MJD 54704–54715), jointly with the Fermi Gamma-ray Space Telescope and the H.E.S.S. atmospheric Cherenkov array, providing the first simultaneous MeV–TeV spectral energy distribution (SED) with the new generation of γ-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and Very High Energy (VHE, > 100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little (~ 30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155−304.

Subject headings: Galaxies: active – BL Lacertae objects: Individual: PKS 2155−304 – Gamma rays: observations

1. Introduction

The underlying particle distributions of blazars are usually studied by matching broadband observations with predictions from radiative models. Since these sources are highly variable, simultaneous observations are essential. The most energetic BL Lac spectra extend up to TeV energies, and positive detections have usually indicated flaring states. However, with their improved sensitivity, the new generation of Atmospheric Cherenkov Telescopes (ACTs), which has more than quadrupled the number of known extragalactic VHE sources,
finds a few of these sources in marginally variable states with consistent detections after short exposures. One of these objects, the blazar PKS 2155–304 at \(z = 0.116 \), is an ideal target for such studies. Crucial information is expected from the Fermi Gamma-ray Space Telescope, since its improved sensitivity over EGRET would constrain dramatically the existing models that predict a wide variety of fluxes in the 100 MeV–10 TeV energy range. Since the H.E.S.S. experiment detects this source in a low state within \(\sim 1 \) h, significant daily detections were guaranteed and the source was targeted for a 11-day multiwavelength campaign.

2. Observations and Analysis Results

The H.E.S.S. observations of PKS 2155–304 took place during MJD 54701–54715, for a total of 42.2 hours. After applying the standard H.E.S.S. data-quality selection criteria, an exposure of 32.9 hours live time remains (MJD 54704–54715), at a mean zenith angle of 18.3°. The data set has been calibrated using the standard H.E.S.S. calibration method \cite{Aharonian2004}. The analysis tools and the event-selection criteria used for the VHE analysis are presented in \cite{Aharonian2008}. The events have been selected using “loose cuts”, preferred for their lower energy threshold of 200 GeV and higher \(\gamma \)-ray acceptance. A 0.2° radius circular region centered on PKS 2155–304 was defined to collect the on-source events. The background was estimated using the “Reflected Region” method \cite{Aharonian2006b}. Those observations yield an excess of 8800 events, a signal with a significance of 55.7σ calculated following \cite{Li1983}. Using standard cuts an excess of 3612 events with a significance of 68.7σ is found. An independent analysis and calibration \cite{Benbow2005} yields similar results.

The data from the Large Area Telescope (LAT; \cite{Atwood2008}) have been analyzed by using ScienceTools v9.7, which will be publicly available from the HEASARC in the future. Events having the highest probability of being photons (class 3, called “diffuse”) and coming from zenith angles < 105° (to avoid Earth’s albedo) were selected. The diffuse emission along the plane of the Milky Way, mainly due to cosmic-ray interactions with the Galactic interstellar matter, has been modeled using the 54.59Xvarh7S model prepared with the GALPROP code \cite{Strong2004} which has been refined with Fermi-LAT data taken during the first 3 months of operation. The extragalactic diffuse emission and the residual instrumental background have been modeled as an isotropic power-law component and included in the fit. Photons were extracted from a region with 10° radius centered on the coordinates of PKS 2155–304 and analyzed with an unbinned maximum likelihood technique \cite{Cash1979,Mattox1996} using the Likelihood analysis software provided by the LAT team. Because of calibration uncertainties at low energies,
data in the 0.2–300 GeV energy band were selected.

A total of 75 ks of exposure was taken with RXTE, spread over 10 days coinciding with the H.E.S.S. observations, and a 6.4 ks exposure with Swift was made towards the end of the campaign. The data taken with the PCA (Jahoda et al. 1995) and the XRT (Burrows et al. 2005) instruments were analyzed using the HEASOFT 6.5.1 package using the Guest Observer Facility recommended criteria. The XRT data were extracted from a 56″ slice, both for the source and the background. Since the rate was less than 10 Hz, no pile-up is expected in the Windowed Timing (WT) mode.

During the multiwavelength campaign a total of 106 observations were taken with the 0.8 m ATOM optical telescope (Hauser et al. 2004) located on the H.E.S.S. site. Integration times between 60 s and 200 s in the Bessel BVR filter bands were used. Photometric accuracy is typically between 0.01 and 0.02 mag for BVR.

2.1. Spectral Analyses

The H.E.S.S. time-averaged photon spectrum is derived using a forward-folding maximum likelihood method (Piron et al. 2001). The very high energy data are well described by a power-law of the form \(dN/dE = I_0(E/E_0)^{-\Gamma} \), with a differential flux at \(E_0 = 350 \) GeV (the fit decorrelation energy) of \(I_0 = 10.4 \pm 0.24 \) stat \(\pm 2.08 \) sys \(10^{-11} \) cm\(^{-2}\) s\(^{-1}\) TeV\(^{-1}\) and a spectral index \(\Gamma = 3.34 \pm 0.05 \) stat \(\pm 0.1 \) sys. As before, during non-flaring states of PKS 2155–304, the spectrum, measured with limited event statistics, shows no indication of curvature. The spectral index is similar to that previously measured by H.E.S.S. when the source was at a comparable flux level, in 2003 (Aharonian et al. 2005ab) and between 2003 and 2005 (Aharonian et al. 2008). The VHE spectrum is affected by interactions with the Extragalactic Background Light (EBL) which modifies the intrinsic shape and intensity. Using the P0.45 model (Aharonian et al. 2006a), the intrinsic spectral index is derived to be \(\Gamma_{\text{int}} \approx 2.5 \).

The average Fermi spectra over the duration of the campaign are fitted by a simple power law for which \(I_0 = (2.42 \pm 0.33 \) stat \(\pm 0.16 \) sys \() \times 10^{-11} \) cm\(^{-2}\) s\(^{-1}\) MeV\(^{-1}\), \(\Gamma = 1.81 \pm 0.11 \) stat \(\pm 0.09 \) sys, and \(E_0 = 943 \) MeV is the energy at which the correlation between the fitted values of \(\Gamma \) and \(I_0 \) is minimized. The total exposure is \(7.7 \times 10^8 \) cm\(^2\) s. There is no statistical preference for a broken power law in this data set. The light curve derived for Fermi data between MJD 54682–54743 shows a similar state on average as during this campaign, so in order to increase the photon statistics for the spectral fits, those data were included, resulting in an increase of the exposure by a factor of 3.6. The longer data set is then fit by a broken power law spectrum, which is preferred over the single power law with a significance of 97% using
the likelihood ratio test. We obtain a low-energy photon index of $\Gamma_L = 1.61^{+0.16}_{-0.17}$ stat ± 0.17 sys, a break energy of $E_{br} = 1.0 \pm 0.3$ GeV, a high-energy index of $\Gamma_H = 1.96^{+0.05}_{-0.08}$ stat ± 0.08 sys, and a 0.2–300 GeV flux of $(1.13^{+0.05}_{-0.11}) \times 10^{-7}$ cm$^{-2}$ s$^{-1}$. The Fermi spectrum is consistent with the hard photon index of 1.71 ± 0.24 during a flaring episode detected by EGRET (Vestrand, Stacy & Sreekumar 1995), but it differs from the Third EGRET Catalog spectrum (Hartman et al. 1999) where the index is 2.35 ± 0.26.

The 4–10 keV PCA and 0.5–9 keV XRT data were analyzed simultaneously with XSPEC v12.4.0 (Arnaud 1996), using a broken power law model and taking into account the uncertainty in the cross-calibrations, as well as the variability across the non-simultaneous observations, by using a multiplicative factor for each instrument (fixed to 1 for the PCA data) as in Falanga, Belloni & Campana (2006). Using a fixed Galactic hydrogen column of $N_H = 1.48 \times 10^{-20}$ cm$^{-2}$, we obtain a low-energy photon index of $\Gamma_1 = 2.36 \pm 0.01$, a break energy of $E_{br} = 4.44 \pm 0.48$ keV, and a high-energy index of $\Gamma_2 = 2.67 \pm 0.01$, for an unabsorbed 2–10 keV flux of 4.99×10^{-11} ergs cm$^{-2}$ s$^{-1}$, which is approximately 2 times higher than during the 2003 campaign (Aharonian et al. 2006a). This is similar to the VHE flux increase reported above, while still being well below the high state fluxes reported by Vestrand, Stacy & Sreekumar (1995).

2.2. Light Curves

The light curves from H.E.S.S., Fermi, RXTE and ATOM are shown in Fig. 11 where the H.E.S.S. runs (~ 28 min) were combined to derive nightly flux values. The average integrated flux above 200 GeV, $(5.56^{+0.13}_{-1.11}$ stat ± 1.11 sys) $\times 10^{-11}$ ph cm$^{-2}$ s$^{-1}$, corresponds to $\sim 20\% F_{Crab, > 200\text{GeV}}$, or $\sim 50\%$ higher than the quiescent state of 2003 (Aharonian et al. 2006a) and 70 times lower than its peak flaring flux (Aharonian et al. 2007). The positive excess variance σ^2_{XS}, indicating variability, allows a fractional root mean square (rms) of $F_{\text{var, VHE}} = 23 \pm 3\%$ (see Vaughan et al. 2003 for definitions of σ^2_{XS} and F_{var}) to be derived, which is 3 times less than the high state flaring variability reported by Aharonian et al. (2007). A spectrum was obtained for each night when possible, otherwise two or three nights were combined. No indication of spectral variability was found during those observations, with a limit on the nightly index variations of $\Delta \Gamma < 0.2$.

The Fermi light curve shows the photon fluxes for the high energy (HE) range, 0.2–300 GeV, and the photon spectral indices for each interval. Each bin is the result of a power law fit, using the background values found on the overall time-averaged fit, and centered on the H.E.S.S. observations. The light curve fit to a constant has a χ^2 probability of $p(\chi^2) = 0.95$, clearly consistent with a constant flux. The normalized excess variance of
−0.16 ± 0.09 sets a 90% confidence level limit of $F_{\text{var,HE}} \leq 20\%$ on the fractional variance (Feldman & Cousins 1998).

The X-ray light curve, derived from spectral fits of the nightly RXTE (and Swift) data sets, shows flux doubling episodes on time scales of days, similar to the optical and VHE measurements. The lowest fluxes of $\sim 3–6 \times 10^{-11}\text{erg cm}^{-2}\text{s}^{-1}$ are at the same level as those seen in the low state (Aharonian et al. 2005b) but with larger fluctuations, $F_{\text{var,X}} = 35 \pm 0.05\%$. The time history of the fitted spectral indices in Fig. 1 show clearly that the X-ray spectrum hardens significantly, $\Delta \Gamma_x \approx 0.5$, as the 2–10 keV flux increases.

The ATOM fluxes are ~ 5 times higher than the low state found in Aharonian et al. (2005b), but the V-band magnitudes reported here are in the range 12.7–13 which is well on the lower side of the measurements of PKS 2155–304 reported by Foschini et al. (2008) when the source was quoted to be in a low state with V-band magnitudes in the range 12–12.7. The host galaxy flux is estimated to be $\approx 10^{-11}\text{ergs cm}^{-2}\text{s}^{-1}$ (Kotilainen et al. 1998), hence most of the optical flux can be attributed to the central AGN. The average fractional rms over all bands is $F_{\text{var,opt}} \sim 8 \pm 0.5\%$. The $B – R$ lightcurve is compatible with a constant, $p(\chi^2) = 0.66$, indicating little or no optical spectral variability.

3. Discussion

The two-component broad band spectra of high energy-peaked BL Lac objects (HBLs) are typically modeled with synchrotron self-Compton (SSC) scenarios (e.g., Band & Grindlay 1985). Despite the simplicity of these models, they have been successful in reproducing many blazar SEDs and make definite predictions for the flux and spectral variability that should be seen in the two components. In particular, for typical parameters, the electrons responsible for the X-ray emission also produce the VHE emission; and if the underlying particle distributions were to vary, the resulting flux and spectral changes in the VHE band should be related to variations in the X-rays. In fact, for the July 2006 flare, a non-linear relationship was seen between the X-ray and VHE bands, though the observed variability patterns do not quite fit the simple SSC model in detail (Costamante et al. 2008).

In Fig. 2 we overlay a model SSC calculation that roughly fits the time-averaged SED. The electron distribution model parameters, a three-component power-law with indices $p_0 = 1.3$, $p_1 = 3.2$, $p_2 = 4.3$ ($dn/d\gamma \propto \gamma^{-p}$), minimal and maximal Lorentz factors $\gamma_{\text{min}} = 1$ and $\gamma_{\text{max}} = 10^{6.5}$, break electron Lorentz factors $\gamma_1 = 1.4 \times 10^4$, $\gamma_2 = 2.3 \times 10^5$, and total electron number $N_{\text{tot}} = 6.8 \times 10^{51}$, have been set to reproduce the shape of the lower energy component of the SED. The overall SED is then adjusted with the remaining parameters:
radius of the emitting region in the comoving frame, $R = 1.5 \times 10^{17}$ cm; bulk Doppler factor, $\delta = 32$; magnetic field, $B = 0.018$ G. Even though we regard this fit as a “straw-man” model, it is perhaps reassuring that the joint \textit{Fermi}-H.E.S.S. time-averaged spectra can be reasonably well-described as SSC emission. Katarzynski, et al. (2008) found similar values for R, B and δ in their SSC description of a steady large jet component in the SED of PKS 2155$-$304.

Some features of this model calculation are particularly noteworthy. The electrons that produce the synchrotron X-ray emission have Lorentz factors $> \gamma_2$. When the power-law component for those electrons is omitted from the calculation, the dot-dashed curve in Fig. 2 results. For this particular set of parameters, the electrons that produce the X-rays have higher energies than the electrons that produce the VHE emission. Furthermore, the lack of a significant impact on the shape of the SSC component when those electrons are removed indicates that Klein-Nishina effects suppress any significant contribution by those electrons to the emission at \sim TeV energies.

These features of this calculation allow that there need not be a correlation between the X-ray and VHE fluxes; and in fact, this is what is observed. In contrast with the July 2006 flare, we do not find any evidence of flux correlation between the X-ray and H.E.S.S. bands with a Pearson’s r of 0.12 ± 0.1 between these bands. Furthermore, the 2–10 keV X-ray spectra show spectral variability consistent with an underlying electron distribution for which the cooling time scales are of order the flux variability time scales, i.e., the spectra are softer when the flux is lower, with changes in photon index of $\Delta \Gamma_x \approx 0.5$ (Fig. 1); whereas the VHE emission shows no evidence for significant spectral variability despite flux variations of a factor of 2. Since radiative cooling time scales vary inversely with electron energy, this supports the conclusion that the electrons responsible for the synchrotron emission in the X-ray band have higher energies than the electrons that produce the inverse-Compton emission in the VHE range, assuming they are part of the same overall non-thermal distribution.

Even though this all fits in with our straw-man SED calculation, the variability patterns in the optical, X-ray, HE and VHE bands suggest a much more complex situation. In the absence of spectral variability, the mechanisms that would produce the observed flux variability in the VHE band are rather constrained. Increases in flux could be driven by injection of particles with a constant spectral shape, and decreases in flux could be caused by particle escape from the emitting region or by expansion (“adiabatic”) losses, assuming those latter two processes can operate independent of particle energy.

However, since the electrons that produce the VHE emission must be in the weak radiative cooling regime, a more natural mechanism for the flux variability would be that changes in the seed photon density are driving the variability. Comparing the daily flux values in
the optical and the VHE bands, we find indications of fairly strong correlations that suggest that the optical emission provides the target photons for the IC emission. In the B, V, and R bands, the correlations with the H.E.S.S. fluxes have Pearson’s r values in the range $0.77–0.86$ with uncertainties ≤ 0.09. This correlated behavior is readily apparent in the light curves shown in Fig. 1 and these results provide the first quantitative evidence of correlated variability between the optical and VHE bands on these time scales for an HBL. Confirmation of this behavior, not only from this source but also from other VHE emitting blazars in a low state, would provide important constraints on emission models for these objects.

In the context of a single-zone SSC model, we would expect that any flux variability in the optical bands should also appear as variability in the Fermi-LAT energy range. To illustrate this, we plot, as the dashed curve in Fig. 2 the SED that results if we omit contributions from electrons with energies $> \gamma_1$. For the original model parameters, the electrons that produce the optical-soft X-ray emission also produce the bulk of the IC component, including the HE and VHE emission. Since we do not find any indication of a correlation between the optical and HE fluxes, this suggests that the optical emission may arise from a separate population of electrons than those responsible for the HE and VHE emission. If so, then these electrons probably also occupy a distinct physical region with different physical parameters (magnetic field, size scale, bulk Lorentz factor). Multizone SSC models of this kind have already been proposed to account for the “orphan” γ-ray flare in 1ES 1959+650 during May 2002 (Krawczynski et al. 2004).

Although the 0.2–300 GeV photon fluxes measured by Fermi are consistent with being constant, we find more significant variations of the photon spectral index in the daily analyses ($p(\chi^2) = 0.19$). The fitted values range from fairly soft, $\Gamma = 2.7 \pm 0.7$, to extremely hard, $\Gamma = 1.1 \pm 0.4$.

These values, along with the constant, intrinsic VHE index of $\Gamma_{\text{VHE}} \approx 2.5$ derived from the H.E.S.S. data, imply spectral breaks between the HE and VHE bands of $\Delta \Gamma$ as large as 1.4. Very sharp spectral breaks ($\Delta \Gamma \gtrsim 1$) would require rather narrow electron distributions and would therefore pose difficulties in fitting a broad lower energy component in the context of a single-zone model. Interestingly, we find a significant anticorrelation between the nightly X-ray fluxes and the Fermi-LAT spectral indices of $r_{\chi \Gamma} = -0.80 \pm 0.15$. A fit to a linear model is preferred over a constant at the 2.6σ level, with a slope of -0.14 ± 0.05. If the electrons that produce the X-rays are at higher energies than those that produce the TeV

\footnote{Donnarumma et al. (2008) mention possible correlated variability in the recent June 2008 flare of Mrk 421 in a high state.}
emission, the cause for such a correlation would be difficult to understand. An important caveat in considering these results is that the Fermi coverage for PKS 2155−304 was relatively uniform over each 24 hour period, whereas the optical, X-ray, and VHE observations were restricted to 4–6 hour intervals each night. Hence, the Fermi observations are not strictly simultaneous with the other measurements, so it is possible that some of the observed HE spectral variability occurred outside of the nightly observing windows.

As the first multiwavelength campaign of an HBL that includes Fermi and an ACT instrument, these observations have yielded results that strongly challenge the standard models for these sources. Having caught PKS 2155−304 in a low state, we see that its spectral and variability properties are significantly different than its flaring, high state behavior. The variability patterns, in particular, defy easy explanation by the usual SSC models and should provide valuable constraints for models that attempt to describe the emission mechanisms in blazar jets.

The support of the Namibian authorities and of the University of Namibia in facilitating the construction and operation of H.E.S.S. is gratefully acknowledged, as is the support by the German Ministry for Education and Research (BMBF), the Max Planck Society, the French Ministry for Research, the CNRS-IN2P3 and the Astroparticle Interdisciplinary Programme of the CNRS, the U.K. Science and Technology Facilities Council (STFC), the IPNP of the Charles University, the Polish Ministry of Science and Higher Education, the South African Department of Science and Technology and National Research Foundation, and by the University of Namibia. We appreciate the excellent work of the technical support staff in Berlin, Durham, Hamburg, Heidelberg, Palaiseau, Paris, Saclay, and in Namibia in the construction and operation of the equipment.

The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l’Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.

Additional support for science analysis during the operations phase from the following agencies is also gratefully acknowledged: the Istituto Nazionale di Astrofisica in Italy and the K.A. Wallenberg Foundation in Sweden for providing a grant in support of a Royal Swedish Academy of Sciences Research fellowship for JC.
REFERENCES

Aharonian, F., et al. (H.E.S.S. Collaboration) 2004, Astropart. Phys., 22, 109
Aharonian, F., et al. (H.E.S.S. Collaboration) 2005a, A&A, 430, 865
Aharonian, F., et al (H.E.S.S. Collaboration) 2005b, A&A, 442, 895
Aharonian, F., et al. (H.E.S.S. Collaboration) 2006a, Nature, 440, 20
Aharonian, F., et al. (H.E.S.S. Collaboration) 2006b, A&A, 457, 899
Aharonian, F., et al (H.E.S.S. Collaboration) 2007, ApJ, 664, L71
Aharonian, F., et al. (H.E.S.S. Collaboration) 2009, in preparation

Arnaud, K. A. 1996, in Astronomical Data Analysis Software and Systems V., ed. G. H. Jacoby, & J. Barnes (San Francisco: ASP), ASP Conf. Ser., 101, 17

Atwood, W. B., Abdo, A. A., Ackermann, M., et al., 2008, ApJ, submitted

Band, D. L., & Grindlay, J. E., 1985, ApJ, 298, 128

Benbow, W. 2005, Proc. of Towards a Network of Atmospheric Cherenkov Detectors VII (Palaiseau), 163

Burrows, D. N., Hill, J. E., Nousek, J. A., et al. 2005, Space Science Review, 120, 165

Cash, W., 1979, ApJ, 228, 939

Costamante, L. (H.E.S.S. Collaboration) 2008, International Journal of Modern Physics D, 17, 1449

Donnarumma, I., et al., 2008, ApJ, 691, 13

Falanga, M., Belloni, T. & Campana, S. 2006, A&A, L5, 456

Feldman, G. J., & Cousins, R. D., 1998, Phys. Rev. D, 57, 3873

Foschini, L., et al., 2008, A&A, 484, 35

Hartman, R. C., Bertsch, D. L., Bloom, S. D., et al., 1999, ApJS, 123, 79

Hauser, M., et al., 2004, AN, 325, 659

Jahoda, K., Swank, J. H., Giles, A. B., et al. 1996, Proc. SPIE, 2808, 59
Katarzyński, K., Lenain, J.-P., Zech, A., Boisson, C., & Sol, H., 2008, MNRAS, 390, 371

Krawczynski, H., et al., 2004, ApJ, 601, 151

Kotilainen, J. K., Falomo, R., & Scarpa, R. 1998, A&A, 336, 479

Li, T.-P., & Ma, Y.-Q. 1983, ApJ, 272, 317L

Mattox, J. R., Bertsch, D. L., Chiang, J., et al., 1996, ApJ, 461, 396

Piron F., Djannati-Ataï A., Punch M., Tavern et J.P. et al., 2001, A&A, 374, 895

Strong, A. W., Moskalenko I. V., Reimer O., 2004, ApJ, 613, 962

Strong, A. W., Moskalenko, I. V., Reimer, O., Digel, S., Diehl, R., 2004, A&A, 422, L47

Vaughan, S., Edelson, R., Warwick, R. S., & Uttley, P., 2003, MNRAS, 345, 1271

Vestrand, W. T., Stacy, J. G., & Sreekumar, P., 1995, ApJ, 454, 93
Fig. 1.— Light curves from (top to bottom): H.E.S.S., Fermi, RXTE/Swift, and ATOM. The Fermi and RXTE/Swift panels also show the spectral index measurements (red) for each night. Vertical bars show statistical errors only. Horizontal bars represent the integration time and are apparent only for the RXTE and Fermi data. The ATOM bands are B (blue circles), V (green squares) and R (red squares).
Fig. 2.— The SED of PKS 2155−304. The red butterfly is the Fermi spectrum restricted to the MJD 54704–54715 period, while the black butterfly covers MJD 54682–54743. As a cross check of the fit robustness, the differential flux was estimated in 8 limited energy bins by a power law fit (black circles) and are found to be consistent within 1σ of the global fit, including a clear spectral break at ∼ 1 GeV. The gray points are archival NED data, and the two gray butterflies are EGRET measurements. The solid line is a 1-zone SSC model. The dashed and the dot-dashed lines are the same model without electrons above γ_1 and γ_2, respectively. The VHE part is absorbed with the P0.45 extragalactic background model described in [Aharonian et al] (2006a).