Concept of Lie Derivative of Spinor Fields. A Geometric Motivated Approach

Rafael F. Leão, Waldyr A. Rodrigues Jr. and Samuel A. Wainer

April 9, 2015

In this paper using the Clifford and spin-Clifford bundles formalism, which permits to give a meaningful representative of a Dirac-Hestenes spinor field (even section of $\mathcal{C}\ell_{\text{Spin}^\frac{1}{2}}(M, g)$) in the Clifford bundle $\mathcal{C}\ell(M, g)$, we give two distinct geometrical motivated definitions for possible Lie derivative of spinor fields in a Lorentzian structure (M, g) where M is a manifold such that $\dim M = 4$, g is Lorentzian of signature (1, 3). These Lie derivatives, called the spinor Lie derivative ($\overset{s}{\mathcal{L}}$) and the g-Lie derivative ($\overset{g}{\mathcal{L}}$) are given by identical formulas when applied to spinor fields, but whereas in general $\overset{s}{\mathcal{L}} \xi g \neq 0$ (unless ξ is a Killing vector field) we always have for any arbitrary differentiable vector field ξ that $\overset{g}{\mathcal{L}} \xi g = 0$. We compare our definitions and results with the many others appearing in (a vast and confused) literature on the subject.