SOME PROPERTIES OF THE CLASS \mathcal{U}

MILUTIN OBRADOVIĆ AND NIKOLA TUNESKI

Abstract. In this paper we study the class \mathcal{U} of functions that are analytic in the open unit disk $\mathbb{D} = \{z : |z| < 1\}$, normalized such that $f(0) = f'(0) - 1 = 0$ and satisfy
\[\left| \frac{z}{f(z)} \right|^2 f'(z) - 1 < 1 \quad (z \in \mathbb{D}). \]
For functions in the class \mathcal{U} we give sharp estimate of the second and the third Hankel determinant, its relationship with the class of α-convex functions, as well as certain starlike properties.

1. Introduction

Let \mathcal{A} denote the family of all analytic functions in the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ and satisfying the normalization $f(0) = f'(0) - 1$. Let \mathcal{S}^* and \mathcal{K} denote the subclasses of \mathcal{A} which are starlike and convex in \mathbb{D}, respectively, i.e.,
\[\mathcal{S}^* = \left\{ f \in \mathcal{A} : \Re \left[\frac{zf'(z)}{f(z)} \right] > 0, \ z \in \mathbb{D} \right\} \]
and
\[\mathcal{K} = \left\{ f \in \mathcal{A} : \Re \left[1 + \frac{zf''(z)}{f'(z)} \right] > 0, \ z \in \mathbb{D} \right\}. \]

Geometrical characterisation of convexity is the usual one, while for the starlikeness we have that $f \in \mathcal{S}^*$, if, and only if, $f(\mathbb{D})$ is a starlike region, i.e.,
\[z \in f(\mathbb{D}) \quad \Rightarrow \quad tz \in f(\mathbb{D}) \text{ for all } t \in [0, 1]. \]

The linear combination of the expressions involved in the analytical representations of starlikeness and convexity brings us to the classes of α-convex functions introduced in 1969 by Mocanu (3) and consisting of functions $f \in \mathcal{A}$ such that
\[\Re \left\{ (1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left[1 + \frac{zf''(z)}{f'(z)} \right] \right\} > 0, \quad (z \in \mathbb{D}), \]
where $\frac{f(z)f'(z)}{z} \neq 0$ for $z \in \mathbb{D}$ and $\alpha \in \mathbb{R}$. Those classes he denoted by \mathcal{M}_α.

Further, let \mathcal{U} denote the set of all $f \in \mathcal{A}$ satisfying the condition
\[|U_f(z)| < 1 \quad (z \in \mathbb{D}), \]

2000 Mathematics Subject Classification. 30C45, 30C50, 30C55.
Key words and phrases. analytic, class \mathcal{U}, starlike, α-convex, Hankel determinant.
where the operator U_f is defined by

$$U_f(z) := \left[\frac{z}{f(z)} \right]^2 f'(z) - 1.$$

All this classes consist of univalent functions and more details on them can be found in [11, 10].

The class of starlike functions is very large and in the theory of univalent functions it is significant if a class doesn’t entirely lie inside S^\star. One such case is the class of functions with bounded turning consisting of functions f from A that satisfy $\Re f'(z) > 0$ for all $z \in \mathbb{D}$. Another example is the class U defined above and first treated in [5] (see also [6, 7, 10]). Namely, the function $-\ln(1 - z)$ is convex, thus starlike, but not in U because $U_f(0.99) = 3.621 \ldots > 1$, while the function f defined by $z f(z) = 1 - \frac{3}{2} z + \frac{1}{2} z^3 = (1 - z)^2 (1 + \frac{i}{2})$ is in U and such that $\frac{z f'(z)}{f(z)} = -\frac{2(z^2 + z + 1)}{z^2 + z - 2} = -\frac{1}{5} + \frac{3i}{5}$ for $z = i$. This rear property is the main reason why the class U attracts huge attention in the past decades.

In this paper we give sharp estimates of the second and the third Hankel determinant over the class U and study its relation with the class of α-convex and starlike functions.

2. **Main results**

In the first theorem we give the sharp estimates of the Hankel determinants of second and third order for the class U. We first give the definition of the Hankel determinant, whose elements are the coefficients of a function $f \in A$.

Definition 2. Let $f \in A$. Then the qth Hankel determinant of f is defined for $q \geq 1$, and $n \geq 1$ by

$$H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \ldots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+q-1} & a_{n+q} & \ldots & a_{n+2q-2} \end{vmatrix}.$$

Thus, the second and the third Hankel determinants are, respectively,

$$H_2(2) = a_2 a_4 - a_3^2,$$

$$H_3(1) = a_3 (a_2 a_4 - a_3^2) - a_4 (a_4 - a_2 a_3) + a_5 (a_3 - a_2^2).$$

Theorem 1. Let $f \in U$ and $f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$. Then we have the sharp estimates:

$$|H_2(2)| \leq 1 \quad \text{and} \quad |H_3(1)| \leq \frac{1}{4}.$$
Given:

Also, from (4) we have

where function \(\omega \) is analytic in \(\mathbb{D} \) with \(\omega(0) = \omega'(0) = 0 \) and \(|\omega(z)| < 1 \) for all \(z \in \mathbb{D} \).

If we put \(\omega_1(z) = \int_0^z \frac{\omega(t)}{t^2} \, dt \), then we easily obtain that \(|\omega_1(z)| \leq |z| < 1 \) and \(|\omega_1'(z)| \leq 1 \) for all \(z \in \mathbb{D} \). If \(\omega_1(z) = c_1z + c_2z^2 + \cdots \), then

\[
\omega_1'(z) = c_1 + 2c_2z + 3c_3z^2 + \cdots \text{ and } |\omega_1'(z)| \leq 1, \quad z \in \mathbb{D},
\]

gives (see relation (13) in the paper of Prokhorov and Szynal [8]):

\[
|c_1| \leq 1, \quad |2c_2| \leq 1 - |c_1|^2 \quad \text{and} \quad 3c_3(1 - |c_1|^2) + 4c_1c_2^2 \leq (1 - |c_1|^2)^2 - 4|c_2|^2.
\]

Also, from (4) we have

\[
f(z) = z + a_2z^2 + (c_1 + a_2^2)z^3 + (c_2 + 2a_2c_1 + a_2^3)z^4 + \cdots.
\]

From the last relation we have

\[
a_3 = c_1 + a_2^2, \quad a_4 = c_2 + 2a_2c_1 + a_2^3, \quad a_5 = c_3 + 2a_2c_2 + c_1^2 + 3a_2^2c_1 + a_2^4.
\]

We may suppose that \(c_1 \geq 0 \), since from (4) we have \(c_1 = a_3 - a_2^2 \) and \(a_3 \) and \(a_2^2 \) have the same turn under rotation. In that sense, from (5) we obtain

\[
0 \leq c_1 \leq 1, \quad |c_2| \leq \frac{1}{2}(1 - c_1^2) \quad \text{and} \quad |c_3| \leq \frac{1}{3}\left(1 - c_1^2 - \frac{4|c_2|^2}{1 + c_1}\right).
\]

If we use (3), (6) and (7), then

\[
|H_2(2)| = |c_2a_2 - c_1^2| \leq |c_2| \cdot |a_2| + c_1^2 \leq \frac{1}{2}(1 - c_1^2) |a_2| + c_1^2
\]

\[
= \frac{1}{2} \cdot |a_2| + \left(1 - \frac{1}{2} \cdot |a_2|\right)c_1^2 \leq 1.
\]

The functions \(k(z) = \frac{z}{(1 - z)^2} \) and \(f_1(z) = \frac{z}{1 - z^2} \) show that the estimate is the best possible.
Similarly, after some calculations we also have
\[
|H_3(1)| = |c_1c_3 - c_2^2| \leq c_1|c_3| + |c_2|^2 \\
\leq \frac{1}{3}c_1 \left(1 - c_1^2 - \frac{4|c_2|^2}{1 + c_1} \right) + |c_2|^2 \\
= \frac{1}{3} \left(c_1 - c_3^2 + \frac{3 - c_1}{1 + c_1}|c_2|^2 \right) \\
= \frac{1}{3} \left(c_1 - c_3^2 + \frac{3 - c_1}{1 + c_1} \cdot \frac{1}{4} (1 - c_1)^2 \right) \\
= \frac{1}{12} \left(3 - 2c_1^2 - c_1^4 \right) \leq \frac{3}{12} = \frac{1}{4}.
\]

The function \(f_2(z) = \frac{z}{1 - z^2/2}\) shows that the result is the best possible. □

In the rest of the paper be consider some starlikeness problems for the class \(U\) and its connection with the class of \(\alpha\)-convex functions.

First, let recall the classical results about the relation between the starlike functions and \(\alpha\)-convex functions.

Theorem 2.

(a) \(M_\alpha \subseteq S^*\) for every real \(\alpha\) (\([4]\));
(b) for \(0 \leq \frac{\beta}{\alpha} \leq 1\) we have \(M_\alpha \subset M_\beta\) and for \(\alpha > 1\), \(M_\alpha \subset M_1 = K\) (\([9, 4]\)).

As an anologue of the above theorem we have

Theorem 3. For the classes \(M_\alpha\) the next results are valid.

(a) \(M_\alpha \subset U\) for \(\alpha \leq -1\);
(b) \(M_\alpha\) is not a subset of \(U\) for any \(0 \leq \alpha \leq 1\).

Proof.

(a) Let \(p(z) = U_f(z)\). Then \(p\) is analytic in \(D\) and \(p(0) = p'(0) = 0\). From here we have that \(\left[\frac{z}{f(z)} \right]^2 f'(z) = p(z) + 1\) and, after some calculations that
\[
2 \frac{zf'(z)}{f(z)} - \left[1 + \frac{zf''(z)}{f'(z)} \right] = 1 - \frac{zp'(z)}{p(z) + 1}.
\]

The relation (11) is equivalent to

\[
\text{Re} \left\{ (1 + \alpha) \frac{zf'(z)}{f(z)} - \alpha \left[1 - \frac{zp'(z)}{p(z) + 1} \right] \right\} > 0, \ z \in \mathbb{D}.
\]

We want to prove that \(|p(z)| < 1, \ z \in \mathbb{D}\). If not, then according to the Clunie-Jack Lemma (\([2]\)) there exists a \(z_0, |z_0| < 1\), such that \(p(z_0) = e^{i\theta}\)
and \(z_0 p'(z_0) = kp(z_0) = k e^{i\theta}, \ k \geq 2. \) For such \(z_0, \) from (8) we have that

\[
\text{Re} \left\{ (1 + \alpha) \frac{z_0 f'(z_0)}{f(z_0)} - \alpha \left[1 - \frac{k e^{i\theta}}{e^{i\theta} + 1} \right] \right\} \\
= (1 + \alpha) \text{Re} \left\{ \frac{z_0 f'(z_0)}{f(z_0)} \right\} + \alpha \frac{k - 2}{2} \leq 0
\]

since \(f \in S^* \) (by Theorem 2) and \(\alpha \leq -1. \) That is the contradiction to (1).

It means that \(|p(z)| = |u_f(z)| < 1, \ z \in \mathbb{D}, \ i.e. \ f \in \mathcal{U}. \)

(b) To prove this part, by using Theorem 2(b), it is enough to find a function \(g \in K \) such that \(g \) not belong to the class \(\mathcal{U}. \) Really, the function \(g(z) = -\ln(1-z) \) is convex but not in \(\mathcal{U}. \)

\[\square \]

Open problem. It remains an open problem to study the relationship between classes \(\mathcal{M}_\alpha \) and \(\mathcal{U} \) when \(-1 < \alpha < 0 \) and \(\alpha > 1. \)

In the next theorem we consider starlikeness of the function

\[
g(z) = \frac{z/f(z) - 1}{-a_2}
\]

where \(f \in \mathcal{U} \) and \(a_2 = \frac{f''(0)}{2} \neq 0, \) i.e., its second coefficient doesn’t vanish.

Namely, we have

Theorem 4. Let \(f \in \mathcal{U}. \) Then, for the function \(g \) defined by (9) we have:

(a) \(|g'(z) - 1| < 1 \) for \(|z| < |a_2|/2; \)

(b) \(g \in S^* \) in the disc \(|z| < |a_2|/2 \) and even more

\[
\left| \frac{zg'(z)}{g(z)} - 1 \right| < 1 \quad (|z| < |a_2|/2);
\]

(c) \(g \in \mathcal{U} \) in the disc \(|z| < |a_2|/2 \) if \(0 < |a_2| \leq 1. \)

The results are best possible.

Proof. Let \(f \in \mathcal{U} \) with \(a_2 \neq 0. \) Then, by using (4), we have that

\[
\frac{z}{f(z)} = 1 - a_2 z - z\omega_1(z),
\]

where \(\omega_1 \) is analytic in \(\mathbb{D} \) such that \(|\omega_1(z)| \leq |z| \) and \(|\omega_1'(z)| \leq 1. \) The appropriate function \(g \) from (9) has the form

\[
g(z) = z + \frac{1}{a_2} z\omega_1(z).
\]

From here \(|g'(z) - 1| = \frac{1}{|a_2|} |\omega_1(z) + z\omega_1'(z)| < 1 \) for \(|z| < |a_2|/2. \)

By using previous representation, we obtain

\[
\left| \frac{zg'(z)}{g(z)} - 1 \right| = \left| \frac{z\omega_1'(z)}{a_2 + \omega_1(z)} \right| \leq \frac{|z|}{|a_2| - |z|} < 1
\]

if \(|z| < |a_2|/2. \) It means that the function \(g \) is starlike in the disk \(|z| < |a_2|/2. \)
If we consider function f_b defined by
\begin{equation}
\frac{z}{f_b(z)} = 1 + bz + z^2, \quad 0 < b \leq 2,
\end{equation}
then $f_b \in U$ and
\begin{equation}
g_b(z) = \frac{\frac{z}{b} - 1}{b} = z + \frac{1}{b}z^2.
\end{equation}
For this function we easily have that for $|z| < b/2$:
\[\text{Re} \frac{z g'_b(z)}{g_b(z)} \geq 1 - \frac{2|z|}{1 - \frac{b}{2}|z|} > 0.\]
On the other hand side, since $g'_b(-b/2) = 0$, the function g_b is not univalent in a bigger disc, which implies that our result is best possible.

Also, by using (10) and the next estimation for the function ω_1:
\[|z \omega'_1(z) - \omega_1(z)| \leq \frac{r^2 - |\omega_1(z)|^2}{1 - r^2},\]
(where $|z| = r$ and $|\omega_1(z)| \leq r$), after some calculation we get
\begin{align*}
|U_g(z)| &= \left| \frac{\frac{1}{a_2}(z \omega'_1(z) - \omega_1(z)) - \frac{1}{a_2} \omega_1'(z)}{(1 + \frac{1}{a_2} \omega_1(z))^2} \right| \\
&\leq \frac{|a_2||z \omega'_1(z) - \omega_1(z)| + |\omega_1(z)|^2}{(|a_2| - |\omega_1(z)|)^2} \\
&\leq \frac{|a_2| r^2 - |\omega_1(z)|^2}{1 - r^2} + |\omega_1(z)|^2 \\
&=: \frac{1}{1 - r^2} \varphi(t),
\end{align*}
where we put
\[\varphi(t) = \frac{(1 - r^2 - |a_2|)t^2 + |a_2|r^2}{(|a_2| - t)^2}\]
and $|\omega_1(z)| = t$, $0 \leq t \leq r$. Since
\[\varphi'(t) = \frac{2|a_2|}{(|a_2| - t)^3} ((1 - r^2 - |a_2|)t + r^2) = \frac{2|a_2|}{(|a_2| - t)^3} ((1 - |a_2|)t + (1 - t)r^2) \geq 0,
\]
because $0 < |a_2| \leq 1$ and $0 \leq t < 1$. It means that the function φ is an increasing function and that
\[\varphi(t) \leq \varphi(r) = \frac{(1 - r^2)r^2}{(|a_2| - r)^2}.
\]
Finally we have that
\[|U_g(z)| \leq \frac{r^2}{(|a_2| - r)^2} < 1,
\]
since $|z| < |a_2|/2$. That is implies the second statement of the theorem.
As for sharpness, we can also consider the function f_b defined by (10) with $0 < b \leq 1$. For $|z| < \frac{b}{2}$ we have

$$|U_{g_b}(z)| \leq \frac{\frac{1}{b^2}|z|^2}{(1 - \frac{1}{b}|z|)^2} < 1,$$

which implies that g_b belongs to the class \mathcal{U} in the disc $|z| < b/2$. □

We believe that part (b) of the previous theorem is valid for all $0 < |a_2| \leq 2$. In that sense we have the next

Conjecture 1. Let $f \in \mathcal{U}$. Then the function g defined by the expression (9) belongs to the class \mathcal{U} in the disc $|z| < |a_2|/2$. The result is the best possible.

References

1. Goodman A.W., *Univalent functions* Vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983.
2. Jack I.S., Functions starlike and convex of order α, *J. London Math. Soc.*, (2) 3, 469-474, 1971.
3. Mocanu P.T., Une proprit de convexit gnralse dans la thorie de la representation conforme. (French), *Mathematica (Cluj)* 11 (34) 1969 127–133.
4. Miller S.S., Mocanu P., Reade M.O., All α-convex functions are univalent and starlike, *Proc. Amer. Math. Soc.*, 37 (1973), 553–554.
5. Obradović, M.; Pascu, N. N.; Radomir, I. A class of univalent functions, *Math. Japon.*, 44 (1996), no. 3, 565–568.
6. Obradović M., Ponnusamy S., New criteria and distortion theorems for univalent functions, *Complex Variables Theory Appl.*, 44 (3) (2001), 173–191.
7. Obradović M., Ponnusamy S., On the class \mathcal{U}, *Proc. 21st Annual Conference of the Jammu Math. Soc. and a National Seminar on Analysis and its Application*, 11-26, 2011.
8. Prokhorov D.V., Szynal J., Inverse coefficients for (α, β)-convex functions, *Ann. Univ. Mariae Curie-Skodowska Sect. A*, 35 (1981), 125–143 (1984).
9. Sakaguchi K., A note on p-valent functions, *J. Math. Soc. Japan*, 14 1962 312–321.
10. Thomas D.K., Tuneski N., Vasudevarao A., *Univalent functions. A primer*, De Gruyter Studies in Mathematics, 69, De Gruyter, Berlin, 2018.

Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000, Belgrade, Serbia

E-mail address: obrad@grf.bg.ac.rs

Department of Mathematics and Informatics, Faculty of Mechanical Engineering, SS. Cyril and Methodius University in Skopje, Karpoš II b.b., 1000 Skopje, Republic of Macedonia.

E-mail address: nikola.tuneski@mf.edu.mk