Recurring nuclear band spectra

B. Buck, A.C. Merchant and S.M. Perez

E-mail: b.buck1@physics.ox.ac.uk, a.merchant1@physics.ox.ac.uk, S.Perez@uct.ac.za

1 Department of Physics, University of Oxford, Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK.
2 Department of Physics, University of Cape Town, Private Bag, Rondebosch 7700, South Africa and iThemba LABS, P.O.Box 722, Somerset West 7129, South Africa.

Abstract. We demonstrate that the ground-state band spectra of most heavy even-even elements can all be well described by the same non-parametric equations.

1. Introduction

Close inspection of the data on heavy even-even isotopes showed that the quasi-rotational band spectra of very many rare-Earth and Actinide nuclei possessed some identical internal structures. These structures take the form of recursion relations which depend only on the energies and associated angular momenta of the band levels and are therefore parameter-free.

Remarkably, our proposed difference equations can be interpreted by means of the cluster model and they lead to some interesting physical predictions.

2. The Basic Equation

Writing $E(J)$ and $E(K)$ for the excitation energies of two levels of a band with spins $J > K$ we found empirically that

$$
E(J) - E(K) = \frac{E(J+L) - E(K-L)}{(J-K)} \cdot [E(J) - E(K)]
$$

where L changes in steps of 2 for $K^\pi = 0^+$ and $K^\pi = 0^-$ bands and indeed also, separately, for the alternating even and odd states of other bands.

As the spin values $(J + L)$ and $(K - L)$ change with L we see that their sum remains equal to $(J + K)$. This simple recursive formula can be rearranged (and modified) in several ways for various purposes, e.g. for illustration of its extensive range of application, for prediction of missing band levels and for checking or correcting experimental assignments.

3. Application

To show the accuracy, or otherwise, of the formula, we here consider the ground state $K^\pi = 0^+$ bands in a database of 76 even-even nuclei as presented in Table 1 [1].

We now rewrite the recursion relation in the form:

$$
[E(J + L) - E(K - L)] = \frac{J - K + 2L}{(J - K)} [E(J) - E(K)]
$$

© 2008 IOP Publishing Ltd
Table 1. Database of 76 rare-Earth and Actinide nuclei

Table Position	Z	A	Table Position	Z	A
01	56	144	39	72	168
02	56	146	40	72	170
03	58	148	41	72	172
04	60	150	42	72	174
05	60	152	43	72	176
06	62	150	44	72	178
07	62	152	45	72	180
08	62	154	46	74	168
09	64	152	47	74	170
10	64	154	48	74	172
11	64	156	49	74	174
12	64	158	50	74	180
13	64	160	51	74	182
14	66	154	52	74	186
15	66	156	53	76	180
16	66	158	54	76	184
17	66	160	55	76	186
18	66	162	56	76	188
19	66	164	57	76	192
20	68	156	58	88	222
21	68	158	59	88	224
22	68	160	60	88	226
23	68	162	61	90	222
24	68	164	62	90	226
25	68	166	63	90	228
26	68	168	64	90	230
27	68	170	65	90	232
28	70	158	66	90	234
29	70	162	67	92	230
30	70	164	68	92	232
31	70	166	69	92	234
32	70	168	70	92	236
33	70	170	71	92	238
34	70	172	72	94	238
35	70	174	73	94	240
36	70	176	74	94	242
37	72	164	75	94	244
38	72	166	76	96	248

and plot the energy differences on each side against each other. The plotted data points for the various nuclei should then all lie in a straight line with slope:

\[M = \frac{(J - K + 2L)}{(J - K)}. \]
Figure 1. Plots of excitation energies, \(E(J + L) - E(K - L) \) against \(E(J) - E(K) \), all in keV, for all nuclei listed in Table 1. Each nucleus generates a point for each of the four \(J, K, L \) pairings listed in Table 2. The expected gradients \(\frac{J - K + 2L}{J - K} \) of 5/3, 2, 3 and 5 are indicated by the solid lines through the origin. See discussion of Eq.(2) in text, and Table 2, for details.

From each band we select several pairs of energy differences as shown below in Table 2, together with the predicted slopes \(M \). The resulting fan plot is shown in Figure 1.

Table 2. Selected \(J, K, L \) values and predicted slopes \(M \).

\(J + L \)	\(K - L \)	\(L \)	\(J \)	\(K \)	\(M \)
12	2	2	10	4	5/3
10	2	2	8	4	2
10	4	2	8	6	3
12	2	4	8	6	5

4. Refining the Equation

Clearly, the plotted points in Figure 1 produce fairly good straight lines. But, the slopes of these lines are not *quite* equal to the predicted ones. So we now indicate a revised version of the basic formula. After some algebra, which involves a (parametrised) solution of the recursion relation [2], we were able to show that, if we define: \(e(J) = E(J)/J \), etc., then these new quantities obey the same form of recurrences as before, i.e.,

\[
[e(J + L) - e(K - L)] = \frac{(J - K + 2L)}{(J - K)} [e(J) - e(K)].
\] (4)
Figure 2. Plots of modified excitation energies, $e(J+L) - e(K-L)$ against $e(J) - e(K)$, where $e(J) = E(J)/J$, all in keV/ℏ, for all nuclei listed in Table 1. Each nucleus generates a point for each of the four J, K, L pairings listed in Table 2. The expected gradients $\frac{J-K+2L}{J-K}$ of $5/3$, 2, 3 and 5 are indicated by the solid lines through the origin. See discussion of Eq.(4) in text, and Table 2, for details.

The result of plotting this equation for the same data as before is now in better agreement with predictions, as is evident in Figure 2. Further, the above relation can be slightly modified so as to apply to excited bands in both even-even and even-odd nuclei.

5. Clues to the Physics

A possible approach to an explanation of these regularities is provided by the core-cluster model of heavy elements, which has proved very useful in accounting for many other observed properties of nuclei [3,4]. One form of the radial equation for an energy level $E(J)$ of a binary cluster-core system of spin J can be written as

$$
\frac{h^2}{2\mu} \left[-\frac{d^2}{dr^2} + \frac{J(J+1)}{r^2} \right] \phi(J) + V(r)\phi(J) = E(J)\phi(J),
$$

(5)μ being the reduced mass and $\phi(J)$ the radial wave function. Considering also the similar equation for $\phi(K)$ and assuming that the potential is unchanged, it is easy to show that:

$$
\frac{h^2}{2\mu} \int_0^\infty \frac{\phi(J)\phi(K)}{r^2} dr [J(J+1) - K(K+1)] = [E(J) - E(K)] \int_0^\infty \phi(J)\phi(K)dr,
$$

(6)and that $[J(J+1) - K(K+1)] = (J-K)(J+K+1)$. This equation has been used in the past to show that two degenerate energy levels imply that the matrix element $\langle J|\frac{1}{r^2}|K \rangle = 0$ [5]. However, we have found other uses for this interesting result, which give clues to the physical
meaning of our observations. On rewriting Eq.(6) for \(E(J) - E(K) \), and the corresponding equation for \(E(J + L) - E(K - L) \), as

\[
\frac{\hbar^2}{2\mu} \langle J | \frac{1}{r^2} | K \rangle (J + K + 1) = \frac{E(J) - E(K)}{(J - K)}
\]

and

\[
\frac{\hbar^2}{2\mu} \langle J + L | \frac{1}{r^2} | K - L \rangle [(J + L) + (K - L) + 1] = \frac{E(J + L) - E(K - L)}{(J + L) - (K - L)}
\]

we see, by dividing Eq.(7) by Eq.(8), that recovery of our basic recursion equation

\[
\frac{E(J) - E(K)}{J - K} = \frac{E(J + L) - E(K - L)}{(J + L) - (K - L)}
\]

implies that the matrix element ratios in Eqs.(7) and (8) must be equal.

This equality of physical matrix elements is not entirely mysterious since it can be shown that in at least one realistic example it must be true. Let us suppose that there is a potential \(V(r) \) which yields something close to a pure rotational spectrum (such potentials exist [6]). Then Eq.(6) could be specialised to give the result:

\[
\frac{\hbar^2}{2\mu} \langle J | \frac{1}{r^2} | K \rangle [J(J + 1) - K(K + 1)] = C[J(J + 1) - K(K + 1)]
\]

where \(C = 1/2I \), \(I \) being the constant moment of inertia. It follows at once that all the matrix element ratios are equal in this case. It is still, perhaps, a little puzzling that such equalities persist even when the spectra are only quasi-rotational.

6. Conclusions
We have shown that ground-state bands in many even-even nuclei have a recursive parameter-free structure. We believe that this type of result will hold also for numerous other bands in both even-even and even-odd nuclei. One possible physical explanation for these observations involves the cluster model, but more research is required before this can be further verified.

References
[1] Brookhaven National Nuclear Data Center at www.nndc.bnl.gov/
[2] Buck B, Merchant A C and Perez S M 2007 Phys. Rev. C76 034326
[3] Buck B, Merchant A C and Perez S M 1997 Phys. Rev. C57 R2095
[4] Buck B, Merchant A C and Perez S M 1998 Nucl. Phys. A634 15
[5] Feinberg G 1958 Phys. Rev. 112 1637
[6] Buck B, Spiers J A and Merchant A C 1989 J. Phys. A22 3477