DETECTION OF SHIP WAKES IN SAR IMAGERY USING CAUCHY REGULARISATION

Tianqi Yang | Oktay Karakuş | Alin Achim

Engineering and Physical Sciences Research Council

Visual Information Laboratory
Background
Background
• SAR image formation model:
\[Y = CX + N. \]
where \(C = R^{-1} \) represents the inverse Radon transform.

\[p(X|Y) = \frac{p(Y|X)p(X)}{\int p(Y|X)p(X)dX} \]

• the unnormalised posterior
\[p(X|Y) \propto p(Y|X)p(X). \]
Using maximum a-posterior (MAP) estimator in optimization algorithms:

\[\hat{X}_{MAP} = \arg \max_X p(X|Y) = \arg \min_X F(X) \]

where \(F(X) \) is denoted as the cost function.

\[F(X) \propto f(x) + g(x) \]

\[
\begin{align*}
 f(x) &= \|Y - CX\|_2^2 \\
 g(x) &= -\log(p(X))
\end{align*}
\]
Methodology

- Probability density function of Cauchy distribution:

\[p(X) \propto \frac{\gamma}{\gamma^2 + X^2} \]

- The minimization with Cauchy regularization:

\[\hat{X}_{\text{Cauchy}} = \arg \min_{x} \|Y - CX\|_2^2 - \sum_{i,j} \log \left(\frac{\gamma}{\gamma^2 + X_{i,j}^2} \right) \]

Moreau-Yoshida unadjusted Langevin algorithm (MYULA)
Moreau-Yoshida unadjusted Langevin algorithm (MYULA)

Algorithm I MYULA for Cauchy regularized cost function

Input: SAR image \(Y, \gamma \in [0.0001,0.1] \)

Output: Radon image \(X \)

Set: \(\delta = 1/25L, \omega = 1/4L \)

do

\[
Z^{(i+1)} \sim N(0, \mathbb{I}_d)
\]

\[
X^{(i+1)} = \left(1 - \frac{\delta}{\omega}\right)X^{(i)} - \delta \nabla f(X^{(i)}) + \frac{\delta}{\omega} \text{prox}_g^\omega(X^{(i)}) + \sqrt{2\delta}Z^{(i+1)}
\]

while \(\epsilon^{(i)} > 10^{-3} \) or \(i < MaxIter \)
Cauchy proximal operator:

\[
prox^\omega_g (x) = \arg \min_u \left[-\log \left(\frac{\gamma}{\gamma^2 + u^2} \right) + \frac{\|u - x\|^2}{2\omega} \right]
\]

By using Cardano’s method:

\[
prox^\omega_g (x) = \frac{x}{3} + s + t
\]

\[
s = \sqrt[3]{\frac{q}{2} + \Delta}, \quad t = \sqrt[3]{\frac{p}{2} - \Delta}, \quad \Delta = \sqrt{\frac{p^3}{27} + \frac{q^2}{4}}
\]

\[
p = \gamma^2 + 2\omega - \frac{x^2}{3}
\]

\[
q = xy^2 + \frac{2x^3}{27} - \frac{x}{3}(\gamma^2 + 2\omega)
\]
Methodology
Methodology

- The confirmation of the candidate:

\[F_l = \frac{\bar{I}_w}{\bar{I}} - 1. \]

where \(\bar{I}_w \) is the mean value over the un-confirmed wake, and \(\bar{I} \) is the mean intensity of the image.

\[
\begin{align*}
F_l &< 0 \text{ for turbulent wakes, } \\
F_l &> 0.1 \text{ for narrow-V and Kelvin wakes}
\end{align*}
\]
Table 1. Visible wakes in used image dataset *

Image	Turbulent	1st Narrow	2nd Narrow	1st Kelvin	2nd Kelvin
CSM_1	1	1	0	0	0
CSM_2	1	1	0	0	0
CSM_3	1	1	0	1	0
CSM_4	1	1	0	1	0
CSM_5	1	1	0	0	0
CSM_6	1	1	0	0	0

* 1 means visible and 0 represents invisible
Table 2. Detection results over 6 COSMO-SkyMed images

Method	TP	TN	FP	FN	%Accuracy
Cauchy	40.0%	46.7%	6.7%	6.7%	86.7%
GMC	36.7%	40%	20%	3.3%	76.7%
Graziano	33.3%	36.7%	16.7%	13.3%	70.0%
CMS_3

CMS_4

CMS_5

* Yellow: Turbulent wake
Green: Narrow-V wake
Red: Kelvin wake
Summary

• The use of Cauchy distribution in ship wake detection problem.
• Realization of MYULA in image reconstruction from SAR imagery.
• Implementation of proximal Cauchy operator in solving inverse problem.
• This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) under grant EP/R009260/1 (AssenSAR).
• Tianqi Yang, Oktay Karakuş, Alin Achim are with the Visual Information Lab, University of Bristol
Thank You!

E-mail: yang_tq@outlook.com; o.karakus@bristol.ac.uk; Alin.Achim@bristol.ac.uk
Project website: assensar.blogs.bristol.ac.uk