Capsular Typing of *Cap5k* and *Cap8k* Genes in *S. aureus* Isolates from Wound Samples of Cattle

Veenu Singhal*, Taruna Bhati, Pankaj Dhakarwal, Sudesh Sharma, Mahaender Milind and B. N. Shringi

Department of Veterinary Microbiology and Biotechnology, College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal Sciences, Bikaner-334 001 (Rajasthan) India

Corresponding author

A B S T R A C T

The present study was implemented to evaluate *S. aureus* for their 2 major capsular polysaccharide genes namely *cap5k* and *cap8k*. Capsule is an important virulence factor of *S. aureus* which help the organism in its survival by evading host immune system specially phagocytosis. Thirty isolates of *S. aureus* were obtained from skin wounds of cattle in Bikaner, Rajasthan which were first identified by conventional cultural and biochemical properties and then confirmed by ribotyping based on 23S rRNA gene segment. All the 30 isolates were subjected to capsular typing by duplex PCR targeting *cap5K* and *cap8K* genes with specific primers. Capsular typing revealed 9 (30 per cent) isolates with *cap5K* and 15 (50 per cent) isolates with *cap8K* gene.

Keywords

Cattle, Capsular polysaccharide, *cap5k* and *cap8k* genes, *Staphylococcus aureus*

Article Info

Accepted: 12 January 2021
Available Online: 10 February 2021

Introduction

Capsular polysaccharides (CP) produce by *Staphylococcus aureus* play an important role in its colonization, pathogenesis and confer resistance to phagocytosis by masking of surface proteins, the typical antigens that trigger an adaptive immune response and prolong its persistence in the bloodstream of the host (Keinhörster *et al.*, 2019). Many bacterial species have been shown to produce CP, and a single species can produce numerous, structurally distinct CP, forming a basis for serotyping isolates (Visansirikul *et al.*, 2020). Of the 11 capsular polysaccharides types, the majority of the human and animal staphylococci are of *cap5* and *cap8* genotypes (O'Riordan and Lee, 2004; Verdier *et al.*, 2007). *S. aureus* strains which produce a high amount of capsular polysaccharides are relatively more resistant to nonspecific opsonophagocytic killing indicating that encapsulation might be an important immune evasion strategy for the organism (Nanra *et al.*, 2019).
al., 2013). The gene cluster for CP5 and CP8 type contains 16 open reading frames (cap5A through cap5P and cap8A through cap8P, respectively) the four of which are located in the central region (H-K) and are type specific. These 16 open reading frames encode for CP5 or CP8 biosynthesis, O-acetylation, transport and regulation (O’Riordan and Lee, 2004; Weidenmaier and Lee, 2017; Rausch et al., 2019). CP enhances virulence in abscess formation (Portoles et al., 2001), surgical wound infection (McLoughlin et al., 2006), and bovine mastitis (Zaatout et al., 2020).

The objective of the present investigation was to carry out genotypic characterisation of S. aureus obtained from skin wounds in cattle from Bikaner, Rajasthan for capsular polysachharide (cap5k and cap8k) genes.

Materials and Methods

Sample collection

A total of 63 swabs from wound samples with pus were collected from cattle, belonging to different veterinary clinics in and around Bikaner (Rajasthan). All samples were collected aseptically with sterile absorbent cotton swab soaked in nutrient broth from skin wounds in cattle and brought to the laboratory immediately over ice and processed for isolation and identification of S. aureus as per standard conventional methods (Cowan and Steel, 1975; Quinn et al, 1994).

Ribotyping targeting 23S rRNA

Extraction of S. aureus genomic DNA was carried out by method described by Nachimuttu et al., (2001) and quantification as per Sambrook et al., (1989). Further, the isolates were genotypically confirmed as per the method described by Straub et al., (1999) using species specific primers i.e. Primer-F (5’-ACGGAGTTACAAAGGACGA C-3’)

Cap5k and cap8k gene amplification

The method of Verdier et al., (2007) was used for the amplification of cap5K and cap8K gene in duplex PCR with some modification. The sequences for 2 primers used for cap5k and cap8k gene according to Table 1:

Cap5k and cap8k gene amplification

The method of Verdier et al., (2007) was used for the amplification of cap5K and cap8K gene in duplex PCR with some modification. The sequences for 2 primers used for cap5k and cap8k gene according to Table 1:

Results and Discussion

Genotypic confirmation

In the present investigation, all the 30 isolates from wound samples of cattle after their identification by conventional microbiological procedures were subjected to 23S rRNA based ribotyping for genotypic confirmation. The ribotyping produced an amplicon of 1250 bp in all the isolates (Fig.1) confirming them to be S. aureus.

Similar genotypic method based on 23S rRNA ribotyping for S. aureus identification has been used by other workers from the same laboratory during the previous year viz. Upadhyay et al., (2010); Rathore et al., (2012); Khichar and Kataria (2014); Yadav et
al., (2015a), Bhati et al., (2018), Singh et al., (2018) and Nirwan (2020) from the same study area successfully and Suleiman et al., (2012), Vazquez et al., (2013), Widianingrum et al., (2016), Hamid et al., (2017) and Sundareshan et al., (2017) from elsewhere.

Cap typing

In the present study, all the 30 isolates were subjected to detection of gene fragment in the K region for cap5K and cap8K genes by duplex PCR using specific primers. The result revealed that six (20 per cent) isolates produced amplicons of 361 bp indicating presence of cap5K gene, 12 (40 per cent) isolates produced amplicon of 173 bp suggesting presence of cap8K gene, three (10 per cent) isolates were detected with both types of amplicons suggesting presence of both the gene and nine (30 per cent) isolates were non typable (Table-2, Fig.2).

The amplicons obtained in the present study were similar to those obtained by Verdier et al., (2007), Upadhyay et al., (2010), Khichar and Kataria (2014) and Yadav et al., (2015b). In the present study, nine isolates were detected non typable for both of the genes which corroborated the earlier observations of Naidu et al., (1991) who recorded 28 per cent of the S. aureus of bovine mastitis origin as non-typeable for cap5 and cap8. Upadhyay et al., (2010) recorded 20 per cent of the S. aureus of bovine and caprine mastitis origin as non-CP5 or non-CP8. Yadav et al., (2015b) reported 9.37 per cent non-typable isolates for cap 5 or 8 genes and Ambroggio et al., (2018) found that none S. aureus isolates of Argentina carrying any of the cap genes.

Table.1 Primers used for PCR for S. aureus isolates from wound samples of cattle

S. No.	Gene	Primer sequence (5´ to 3´)	Size (bp)	Annealing Temp. (°C)
1.	cap5K	F-5´-GTCAAAGATTATGTGATGCTACT GAG-3’	361	55
		R-5´-ACTTCGAATATAAAACTTGAATCAA TGTTATACAG-3’		
2.	cap8K	F-5´-GCCTTATGTGTTAGGTGATAAACC-3’	173	55
		R-5´-GGAAAAACACTATCATAGCAGG-3’		

Table.2 Capsular typing by PCR targeting cap5K and cap8K genes in S. aureus isolates from wound samples of cattle

S. No.	Type	Isolate numbers	Total isolates (per cent)	Amplicon size(bp)
1.	Cap5K	VS6, VS15, VS19, VS24, VS25, VS27	6(20 per cent)	361 bp
2.	Cap8K	VS1, VS5, VS8, VS9, VS10, VS11, VS13, VS14, VS16, VS20, VS22, VS23	12(40 per cent)	173 bp
3	Both	VS4, VS21, VS28	3(10 per cent)	361 bp, 173 bp
4	Non typable	VS2, VS3, VS7, VS12, VS17, VS18, VS26, VS29, VS30	9(30 per cent)	-

124
However, a variable percentage of isolates were detected to possess one or both of the genes which corroborated the earlier observations of Ikawaty et al., (2010), Proietti et al., (2010), Khichar and Kataria (2014) and Salimena et al., (2016).

In our study, we recorded higher frequency of *cap8K* (40 per cent) as compared to *cap5K* (20 per cent) gene which is in complete agreement to observations of Ikawaty et al., (2010) who detected *cap8* gene in 96.05 per cent isolates and *cap5* gene in 3.94 per cent isolates from clinical mastitic case of bovine. Ote et al., (2011) recorded 68.6 per cent isolates from bovine mastitis positive for *cap8* gene and 33.6 per cent isolates positive for *cap5* gene.

On the contrary, a higher frequency of *cap5* gene was detected by other scientists. Salimena et al., (2016) recorded *cap5* gene in 80 per cent and *cap8* gene in 20 per cent isolates. Khichar et al., (2016) demonstrated that among 18 (90 per cent) typable *S. aureus* isolates, 11 (55 per cent) were found to harbour *cap5K* gene and seven isolates (35 per cent) carried *cap8K* gene, while two isolates (10 per cent) were non-typable for either of the 2 genes.
In conclusion, there was considerable recovery of *S. aureus* from wound samples of cattle and all the isolates were typable using 23S rRNA ribotyping and could be identified with high specificity. An overall high prevalence of virulence genes *cap5K* and *cap8K* was observed. Hence pathogenic strains were recovered from wound samples of cattle in the present study.

References

Ambroggio, M.B., Perrig, M.S., Camussone, C., Pujato, N., Berton, A., Gianneechnini, E and Barbagelata, M.S. 2018. Survey of potential factors involved in the low frequency of CP5 and CP8 expression in *Staphylococcus aureus* isolates from mastitis of dairy cattle from Argentina, Chile, and Uruguay. *Journal of applied genetics*, 59(3): 357-363.

Bhati, T., Kumar, G., Nathiya, P., Choudhary, S. and Kataria, A.K. 2018. Detection of icaA and icaD genes for slime production in *Staphylococcus aureus* isolates from bovine mastitic milk, udder surfaces and milkers’ hands. *Journal of Entomology and Zoology Studies*, 6(5): 901-905.

Cowan, S.T., and Steel, K.J. 1975. In: Cowan and Steel's Manual for the identification of medical bacteria. Cambridge University Press, Cambridge.

Hamid, S., Bhat, M.A., Mir, I.A., Taku, A., Badroo, G.A., Nazki, S. and Malik, A. 2017. Phenotypic and genotypic characterization of methicillin-resistant *Staphylococcus aureus* from bovine mastitis. *Veterinary world*, 10(3): 363.

Ikawaty, R., Brouwer, E.C., Duijkeren, E.V., Mevius, D., Verhoef, J. and Faiut, A.C. 2010. Virulence factors of genotyped bovine mastitis *Staphylococcus aureus* isolates in the Netherlands. *International journal of dairy science*, 5(2): 60-70.

Keinhörster, D., George, S. E., Weidenmaier, C., and Wolz, C. 2019. Function and regulation of Staphylococcus aureus wall teichoic acids and capsular polysaccharides. *International Journal of Medical Microbiology*, 309(6), 151333.

Khichar, V., and Kataria, A.K. 2014. Capsular genotyping (*cap5k* and *cap8k*) of *Staphylococcus aureus* isolates from cattle with clinical mastitis. *Human and Veterinary Medicine International Journal of the Bioflux society*, 6(1): 30-33.

Khichar, V., Ruhil, S., Choudhary, V., Khyalia, M.K. and Kataria, A.K. 2016. Genotyping of *S. aureus* obtained from skin wounds of camel (*Camelus dromedarius*) based on capk genes. *Journal of Camel Practice and Research*, 23(2): 227-231.

McLoughlin, R. M., Solinga, R. M., Rich, J., Zaleski, K. J., Cocchiario, J. L., Risley, A., and Lee, J. C. 2006. CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. *Proceedings of the National Academy of Sciences*, 103(27): 10408-10413.

Nachimuthu, K., Ramadas, P., Thiagarajan, V., Raj, G.D. and Kumanam, K. 2001. Laboratory manual on Polymerase chain reaction based methods for diagnosis. A workshop sponsored by NATP at Tamil Nadu Veterinary and Animal Science University from 21.02.2001 to 07.03.2001 pp 5 13.

Nanra, J.S., Buitrago, S.M., Crawford, S., Ng, J., Fink, P.S., Hawkins, J. and Jansen, K.U. 2013. Capsular polysaccharides are an important immune evasion mechanism for *Staphylococcus aureus*. *Human Vaccines and Immunotherapeutics*, 9(3): 480-487.

Nirwan, A. 2020. The biofilm-forming potential of Staphylococcus aureus isolates from various sources using...
phenotypic and genotypic assays. *Journal of Entomology and Zoology Studies*, 8(1): 531-535.

O’Riordan, K., and Lee, J.C. 2004. *Staphylococcus aureus* capsular polysaccharides. *Clinical Microbiology Reviews*, 17(1): 218-234.

Ote, I., Tamimiau, B., Duprez, J.N., Dizier, I. and Mainil, J.G. 2011. Genotypic characterization by polymerase chain reaction of *Staphylococcus aureus* isolates associated with bovine mastitis. *Veterinary microbiology*, 153: 285-298.

Portolés, M., Kiser, K. B., Bhasin, N., Chan, K. H., & Lee, J. C. 2001. *Staphylococcus aureus* Cap5O has UDP-ManNAc dehydrogenase activity and is essential for capsule expression. *Infection and immunity*, 69(2), 917-923.

Proietti, P.C., Coppola, G., Bietta, A., Marenzoni, M.L., Hyatt, D.R., Coletti, M. and Passamonti, F. 2010. Characterization of genes encoding virulence determinants and toxins in *Staphylococcus aureus* from bovine milk in Central Italy. *Journal of Veterinary Medical Sciences*, 72(11): 1443-1448.

Quinn, P.J., Carter, M.E., Markey, B.K. and Carter, G.R. 1994. Clinical Veterinary Microbiology. Wolfe Publishing, Mosby-Year Book Europe Ltd. Lynton House, Tavistock Square, London WCH 9LB, England, pp. 7-12.

Rathore, P., Kataria, A.K., Khichar, V. and Sharma, R. 2012. Polymorphism in *coa* and *spa* virulence genes in *Staphylococcus aureus* of camel skin origin. *Journal of Camel Practice and Research*. 19(2): 129-134.

Rausch, M., Deisinger, J. P., Ulm, H., Müller, A., Li, W., Hardt, P., and Vollmer, W. 2019. Coordination of capsule assembly and cell wall biosynthesis in *Staphylococcus aureus*. *Nature Communications*, 10(1), 1-15.

Sambrook, J., Fritsch EF and Maniatis T. 1989. In: Molecular Cloning: A Laboratory Manual. 2nd Edn. Cold-Spring Harbor Laboratory, Cold-Spring Harbor, N.Y.

Salimena, A.P., Lange, C.C., Camussone, C., Signorini, M., Calvinho, L. F., Brito, M.A. and Piccoli, R.H. 2016. Genotypic and phenotypic detection of capsular polysaccharide and biofilm formation in *Staphylococcus aureus* isolated from bovine milk collected from Brazilian dairy farms. *Veterinary Research Communications*, 40(3-4): 97-106.

Singh, C.P., Mathur, M., Dadhich, H. and Ganguly, S. 2018. Molecular Characterization of *Staphylococcus aureus* of Camel (*Camelus dromedarius*) Skin Origin. *International Journal of Current Microbiology and Applied Sciences*, 7(1): 3486-3490.

Straub, J.A., hertel, C. and Hammes, W.P. 1999. A 23S rRNA-targeted polymerase chain reaction–based system for detection of *Staphylococcus aureus* in meat starter cultures and dairy products. *Journal of Food Protection*, 62(10): 1150-1156.

Suleiman, A.B., Umoh, V.J., Kwaga, J.K.P. and Shaibu, S.J. 2012. Prevalence and antibiotic resistance profiles of Methicillin resistant *Staphylococcus aureus* (MRSA) isolated from bovine mastitic milk in Plateau State, Nigeria. *International Research Journal of Microbiology (IRJM)* (ISSN: 2141-5463). 2(8): 264-270.

Sundareshan, S., Isloor, S., Babu, Y.H., Sunagar, R., Sheela, P., Tiwari, J.G. and Hegde, N.R. 2017. Isolation and molecular identification of rare coagulase-negative *Staphylococcus aureus* Variants Isolated from Bovine milk samples. *Indian Journal of Comparative Microbiology*,
Immunology and Infectious Diseases, 38(2): 66-73.
Upadhyay, A., Kataria, A.K., Sharma, R. and Singh, G. 2010. Capsular typing of Staphylococcus aureus isolates from cattle and goat mastitis by PCR targeting cap5K and cap8K genes. Indian Journal of Animal Sciences, 80(11):1062–65.
Vazquez, H.C., Jager, S., Wolter, W., Zschock, M., Vazquez, M.A.C. and El-Sayed, A. 2013. Isolation and identification of main mastitis pathogens in Mexico. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 65(2): 377-382.
Verdier, I., Durand, G., Bes, M., Taylor, K.L., Lina, G., Vandenesch, F., Fattom, A.I. and Etienne, J. 2007. Identification of the capsular polysaccharides in Staphylococcus aureus clinical isolates by PCR and agglutination tests. Journal of Clinical Microbiology, 45(3): 725-729.
Visansirikul, S., Kolodziej, S. A., and Demchenko, A. V. 2020. Staphylococcus aureus capsular polysaccharides: a structural and synthetic perspective. Organic & Biomolecular Chemistry, 18(5): 783-798.
Weidenmaier, C., and Lee, J.C., 2017. Structure and function of surface polysaccharide of Staphylococcus aureus. Current Topics in Microbiology and Immunology, 409: 57-93.
Widianingrum, D.S., Windria, S. and Salasia, S.I.O. 2016. Antibiotic resistance and Methicillin resistant Staphylococcus aureus isolated from bovine, crossbred Etawa goat and human. Asian Journal of Animal and Veterinary Advanaces. 11(2): 122-129.
Yadav, R., Sharma, S.K., Yadav, J., Bhati, T. and Kataria, A.K. 2015a. Phenotypic and genotypic haemolysin properties of Staphylococcus aureus obtained from milk of cattle and buffalo with clinical mastitis. Journal of Pure and Applied Microbiology, 9(1): 349-355.
Yadav, R., Sharma, S.K., Yadav, J., Nathawat, P. and Kataria, A.K. 2015b. Phenotypic and genotypic characterization of Staphylococcus aureus of mastitic milk origin from cattle and buffalo for some virulence properties. Journal of Pure and Applied Microbiology, 9(1): 425-431.
Zaatout, N., Ayachi, A., and Kecha, M. 2020. Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. Journal of Applied Microbiology, 129(5): 1102-1119.

How to cite this article:
Veenu Singhal, Taruna Bhati, Pankaj Dhakarwal, Sudesh Sharma, Mahaender Milind and Shringi, B. N. 2021. Capsular Typing of Cap5k and Cap8k Genes in S. aureus Isolates from Wound Samples of Cattle. Int.J.Curr.Microbiol.App.Sci. 10(02): 122-128. doi: https://doi.org/10.20546/ijcemas.2021.1002.015