A Case of Mexiletine-induced Hypersensitivity Syndrome Presenting as Eosinophilic Pneumonia

An 82-yr-old man was presented with fever and cough accompanied by generalized erythematous rash. He had taken mexiletine for 5 months, as he had been diagnosed with dilated cardiomyopathy and ventricular arrhythmia. Laboratory studies showed peripheral blood eosinophilia and elevated liver transaminase levels. Chest radiographs showed multiple nodular consolidations in both lungs. Biopsies of the lung and skin lesions revealed eosinophilic infiltration. After a thorough review of his medication history, mexiletine was suspected as the etiologic agent. After discontinuing the mexiletine and starting oral prednisolone, the patient improved, and the skin and lung lesions disappeared. Subsequently, mexiletine was confirmed as the causative agent based on a positive patch test. Drug-induced hypersensitivity syndrome is a severe adverse reaction to drugs and results from treatment with anticonvulsants, allopurinol, sulfonamides, and many other drugs. Several cases of mexiletine-induced hypersensitivity syndrome have been reported in older Japanese males with manifestation of fever, rash, peripheral blood eosinophilia, liver dysfunction without other organ involvement. Here, we report a case of mexiletine-induced hypersensitivity syndrome which presented as eosinophilic pneumonia in a Korean male.

Key Words: Drug Hypersensitivity; Mexiletine; Pulmonary Eosinophilia

INTRODUCTION

Drug-induced hypersensitivity syndrome is a severe adverse drug reaction, which often manifests as an erythematous skin eruption, fever, lymphadenopathy, peripheral blood eosinophilia, and visceral organ involvement (1). Many drugs cause hypersensitivity syndrome, including anticonvulsants, sulfonamides, dapsone, allopurinol, minocycline, and gold salts (2). Mexiletine is an antiarrhythmic agent that has been used to treat ventricular tachycardia for more than 30 yr (3). Since the first report by Higa et al. (4), in 1997, a few cases of mexiletine-induced hypersensitivity syndrome have been reported, especially in Japanese males over 45 yr of age (5-8). These cases manifested with fever, rash, peripheral blood eosinophilia, elevation of liver transaminase enzymes without other organ involvement. Here, we present the first case of mexiletine-induced hypersensitivity syndrome in Korea. This case manifested as eosinophilic pneumonia, in addition to fever, a papuloerythematous skin rash, peripheral blood eosinophilia, and liver dysfunction.

CASE REPORT

An 82-yr-old man was admitted to the hospital with a fever and cough. The patient had been diagnosed with an arrhythmia associated with dilated cardiomyopathy 9 months earlier and had been taking mexiletine for 5 months in addition to furosemide and spironolactone, which was continued since the diagnosis. He developed a fever, cough, and sputum 1 week before admission (Fig. 1). He was a retired pharmacist who lived in downtown Seoul, Korea. On physical examination, variable-sized, fused erythematous macules and plaques covered his entire body, including the trunk and extremities; this rash developed on the day of admission (Fig. 2). His body temperature was 38.3 °C, and his respiratory rate was 22 times per min. Auscultation of the lungs disclosed diminished breath sounds throughout both lungs, with crackles at the bases. Laboratory studies showed leukocytosis (13,700/μL) with eosinophilia (3,310/μL; 24.2% of the white blood cells) in the peripheral blood. Liver dysfunction was also detected (aspartate transaminase 193 U/L; alanine transaminase 321 U/L; lactate dehydrogenase 290 U/L). Chest radiographs showed multiple increased opacities with a patchy distribution in both lungs. Biopsies of the lung and skin lesions revealed eosinophilic infiltration.
Hypersensitivity Syndrome by Mexiletine

lungs (Fig. 3A). Chest computed tomography (CT) on admission showed multiple nodular consolidations with ground-glass density in both hemithoraxes and multiple mediastinal lymphadenopathy (Fig. 3B). A fine needle aspiration biopsy of a lung lesion was performed and showed eosinophilic infiltration with histiocytes, and granular pneumocytes with an organizing alveolar exudate (Fig. 4A). In addition, a right abdominal skin lesion was biopsied. The dermis showed extravasated red blood cells and moderate perivascular infiltration of lymphocytes and eosinophils (Fig. 4B). After admission, he was diagnosed with type II diabetes mellitus for the first time based on a fasting serum glucose of 183 mg/dL and hemoglobin A1c of 8.6%. The patient was diagnosed with drug-induced hypersensitivity syndrome based on the clinical findings and laboratory evidence. The mexiletine was suspected to cause these adverse reactions and was withdrawn, while furosemide and spironolactone was continued. For the treatment of severe immune response, prednisolone 0.5 mg/kg was given for 10 days and tapered. Subsequently, his temperature decreased, with resolution of the blood eosinophilia, liver dysfunction, and cutaneous and lung lesions (Fig. 3C). With the resolution of adverse reactions, digoxin was substituted for mexiletine to treat arrhythmia.

Four months after resolution of the adverse findings, a patch test was performed to confirm the etiologic diagnosis. Mexiletine (Mexitil®, Boehringer Ingelheim Korea, Seoul, Korea), furosemide (Lasix®, Handok Pharmaceuticals Co., Seoul, Korea), and spironolactone (Aldactone®, Pharmacia Ltd., UK) at concentrations of 0, 1, 2, 5, 10, and 20% in petrolatum was applied at the back of the patient using Finn chambers on Scanpor tape for 48 hr. At 30 min and 48 hr after removal of the tape, the responses were scored according to the International Contact Dermatitis Research Group guidelines (9). Weakly positive reactions were detected with 5, 10, and 20% mexiletine, while ten control subjects showed negative result to the test. Based on clinical course and patch test, we were able to identify mexiletine as the etiologic agent for the development of drug-induced hypersensitivity syndrome. To explore the association of these events with human herpes virus 6 (HHV-6) infections, we performed polymerase chain reaction (PCR) analysis for HHV-6 in the serum of the patient taken at the time of patch test. The PCR analysis did not detect HHV-6 DNA.

DISCUSSION

Drug-induced hypersensitivity syndrome is the name for the severe adverse reactions to drugs as a result of systemic immune responses and is often called DRESS (drug reaction
Anticonvulsants such as carbamazepine and phenytoin are the most common etiologic agents causing drug-induced hypersensitivity syndrome (11). In addition, allopurinol, sulfonamides, dapsone, and minocycline can cause these reactions. Mexiletine has been reported to cause severe hypersensitivity reactions, including drug-induced hypersensitivity syndrome (or DR-ESS). Although mexiletine is prescribed worldwide, all pre-
Hypersensitivity Syndrome by Mexiletine

1. Shiohara T, Inaoka M, Kano Y. Drug-induced hypersensitivity syndrome (DIHS): a reaction induced by a complex interplay among herpesviruses and antiviral and antidrug immune responses. Allergy 2000; 55: 1-8.

2. Aihara Y, Ito SI, Kobayashi Y, Yamakawa Y, Aihara M, Yokota S. Carbamazepine-induced hypersensitivity syndrome associated with transient hypogammaglobulinaemia and reactivation of human herpesvirus 6 infection demonstrated by real-time quantitative polymerase chain reaction. Br J Dermatol 2003; 149: 165-9.

3. Talbot RG, Nimmo J, Julian DG, Clark RA, Neilson JM, Prescott LF. Treatment of ventricular arrhythmias with mexiletine (Ko 1173). Lancet 1973; 2: 399-404.

4. Higa K, Hirata K, Dan K. Mexiletine-induced severe skin eruption, fever, eosinophilia, atypical lymphocytosis, and liver dysfunction. Pain 1997; 73: 97-9.

5. Sasaki K, Yamamoto T, Kishi M, Yokozeki H, Nishio A. Acute exanthematous pustular drug eruption induced by mexiletine. Eur J Dermatol 2001; 11: 469-71.

6. Seino Y, Yamauchi M, Hiroi C, Okumura A, Kondo K, Yamamoto M, Okazaki Y. A case of fulminant type 1 diabetes associated with mexiletine hypersensitivity syndrome. Diabet Med 2004; 21: 1156-7.

7. Sekiguchi A, Kashiwagi T, Ishida-Yamamoto A, Takahashi H, Hashimoto Y. Kimura H, Tohyama M, Hashimoto K, Iizuka H. Drug-induced hypersensitivity syndrome due to mexiletine associated with human herpes virus 6 and cytomegalovirus reactivation. J Dermatol 2005; 32: 278-81.

8. Yagami A, Yoshikawa T, Asano Y, Koie S, Shiohara T, Matsunaga K. Drug-induced hypersensitivity syndrome due to mexiletine hydrochloride associated with reactivation of human herpesvirus 7. Dermatology 2006; 213: 341-4.

9. Wilkinson DS, Fregert S, Magnusson B, Bandmann HJ, Calnan CD, Cronin E, Hjorth N, Maibach HJ, Malalten KE, Pirila Y. Terminology of contact dermatitis. Acta Derm Venereol 2006; 86: 381-6.

10. Bouquet H, Bagot M, Roujeau JC. Drug-induced pseudolymphoma and drug hypersensitivity syndrome (drug rash with eosinophilia and systemic symptoms; Dress). Semin Cutan Med Surg 1996; 15: 250-7.

11. Shear NH, Spielberg SP. Anticonvulsant hypersensitivity syndrome. In vitro assessment of risk. J Clin Invest 1988; 82: 1826-32.

12. Chung WH, Hung SI, Hong HS, Hsihs MS, Yang LC, Ho HC, Wu JY, Chen YT. Medical genetics: A marker for stevens-johnson syndrome. Nature 2004; 428: 486.

13. Lonjou C, Thomas L, Borot N, Ledger N, de Toma C, LeLouet H, Graf E, Schumacher M, Hovnanian A, Mockenhaupt M, Roujeau JC. A marker for stevens-johnson syndrome ...: Ethnicity matters. Pharmacogenomics J 2006; 6: 265-8.

14. Chung WH, Hung SL, Chen YT. Human leukocyte antigens and drug hypersensitivity. Curr Opin Allergy Clin Immunol 2007; 7: 317-23.

15. Sullivan JR, Shear NH. The drug hypersensitivity syndrome: What is the pathogenesis? Arch Dermatol 2001; 137: 357-64.