Presentation cardiac troponin and early computed tomography coronary angiography in patients with suspected acute coronary syndrome: a pre-specified secondary analysis of the RAPID-CTCA trial

Kang-Ling Wang 1,2,3*, Carl Roobottom 4, Jason E. Smith 5, Steve Goodacre 6, Katherine Oatey 7, Rachel O’Brien 8, Robert F. Storey 9, Nick Curzen 10,11, Liza Keating 12, Attila Kardos 13,14, Dirk Felmeden 15, Praveen Thokala 6, Nicholas L. Mills 16, David E. Newby 1, and Alasdair J. Gray 8,16 on behalf of the RAPID-CTCA Investigators

1Centre for Cardiovascular Science, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; 2School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; 3General Clinical Research Center, Taipei Veterans General Hospital, Taipei, Taiwan; 4Department of Radiology, University Hospitals Plymouth NHS Trust, Plymouth, UK; 5Emergency Department, University Hospitals Plymouth NHS Trust, Plymouth, UK; 6School of Health and Related Research, University of Sheffield, Sheffield, UK; 7Edinburgh Clinical Trials Unit, University of Edinburgh, Edinburgh, UK; 8Department of Emergency Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK; 9Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; 10Faculty of Medicine, University of Southampton, Southampton, UK; 11Department of Cardiology, University Hospital Southampton NHS Foundation Trust, Southampton, UK; 12Department of Emergency Medicine, Royal Berkshire NHS Foundation Trust, Reading, UK; 13Translational Cardiovascular Research Group, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, UK; 14Faculty of Medicine and Health Science, University of Buckingham, Buckingham, UK; 15Department of Cardiology, Torbay and South Devon NHS Foundation Trust, Torquay, UK; and 16Usher Institute, University of Edinburgh, Edinburgh, UK

Received 25 February 2022; revised 6 May 2022; accepted 9 May 2022; online publish-ahead-of-print 1 June 2022

Aims
To evaluate the potential associations between presentation cardiac troponin and the clinical impact of early computed tomography coronary angiography (CTCA) in intermediate-risk patients with suspected acute coronary syndrome.

Methods and results
In a large multicentre randomized controlled trial of patients with intermediate-risk chest pain due to suspected acute coronary syndrome, early CTCA had no effect on the primary outcome—death or subsequent Type 1 or 4b myocardial infarction—but reduced the rate of invasive coronary angiography. In this pre-specified secondary analysis, cardiovascular testing and clinical outcomes were compared between those with or without cardiac troponin elevation at presentation. Of 1748 patients, 1004 (57%) had an elevated cardiac troponin concentration and 744 (43%) had a normal concentration. Patients with cardiac troponin elevation had a higher Global Registry of Acute Coronary Events score (132 vs. 91; \(P < 0.001 \)) and were more likely to have obstructive coronary artery disease (59 vs. 33%; \(P < 0.001 \)), non-invasive (72 vs. 52%; \(P < 0.001 \)) and invasive (72 vs. 38%; \(P < 0.001 \)) testing, coronary revascularization (47 vs. 15%; \(P < 0.001 \)), and the primary outcome (8 vs. 3%; \(P = 0.007 \)) at 1 year. However, there was no evidence that presentation cardiac troponin was associated with the relative effects of early CTCA on rates of non-invasive (\(P_{\text{interaction}} = 0.33 \)) and invasive (\(P_{\text{interaction}} = 0.99 \)) testing, coronary revascularization (\(P_{\text{interaction}} = 0.57 \)), or the primary outcome (\(P_{\text{interaction}} = 0.41 \)).

Conclusion
Presentation cardiac troponin had no demonstrable associations between the effects of early CTCA on reductions in non-invasive and invasive testing, or the lack of effect on coronary revascularization or the primary outcome in intermediate-risk patients with suspected acute coronary syndrome.

* Corresponding author. Email: k.l.wang@ed.ac.uk

© The Author(s) 2022. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Graphical Abstract

A pre-specified secondary analysis of the RAPID-CTCA trial

Elevated cardiac troponin	Normal cardiac troponin		
Early CTCA	SoC only		
Non-invasive cardiovascular testing			
HR 0.88	95% CI 0.76–1.02	HR 0.78	95% CI 0.64–0.95
72%	73%	48%	55%
Non-invasive ischaemia investigation			
HR 0.74	95% CI 0.55–0.98	HR 0.59	95% CI 0.44–0.80
17%	21%	19%	30%
Invasive coronary angiography			
HR 0.82	95% CI 0.71–0.95	HR 0.82	95% CI 0.65–1.04
69%	74%	35%	42%
Coronary revascularization			
HR 1.03	95% CI 0.86–1.24	HR 1.17	95% CI 0.81–1.69
48%	46%	17%	14%
Death or subsequent Type 1 or 4b myocardial infarction			
HR 0.85	95% CI 0.55–1.31	HR 1.26	95% CI 0.55–2.87
8%	8%	3%	3%

Early computed tomography coronary angiography in suspected acute coronary syndrome with or without cardiac troponin elevation.

Keywords Acute coronary syndrome • Cardiac troponin • Computed tomography coronary angiography • Non-invasive testing

Introduction

Cardiac troponin is a highly specific marker of myocardial injury that is central to the diagnosis of myocardial infarction in patients with acute chest pain as well as being a key determinant of prognosis. However, with the advent of high-sensitivity cardiac troponin testing, increasing numbers of patients are being identified with cardiac troponin elevation above the 99th centile upper reference limit, which may reflect acute or chronic myocardial injury or Type 2 myocardial infarction rather than Type 1 myocardial infarction. Indeed, 1 in 20 patients presenting to the hospital and undergoing a blood test for any reason had a high-sensitivity cardiac troponin concentration above the 99th centile upper reference limit. This distinction is important, because evidence-based pharmacological and mechanical interventions that are used to treat Type 1 myocardial infarction have not yet been shown to benefit those with myocardial injury or Type 2 myocardial infarction, and may even result in harm to such patients. In fact, 30% of patients undergoing invasive coronary angiography with a provisional diagnosis of non-ST-segment elevation myocardial infarction are found to have no coronary artery stenosis.

Patients with acute chest pain and no cardiac troponin elevation represent a heterogenous group, with a diagnosis ranging from stable or unstable angina to non-ischaemic cardiac pathologies or non-cardiac causes. The distinction between these patient groups is also critical since the former will potentially benefit from dual antiplatelet therapy and coronary revascularization, and the latter may receive such therapy and invasive testing inappropriately. Consequently, early non-invasive anatomical assessment for the presence of coronary artery disease could avoid unnecessary investigations in those without coronary artery disease and conversely, potentially improve treatment and outcomes in those with unrecognized disease.

The Rapid Assessment of Potential Ischaemic Heart Disease with CTCA (RAPID-CTCA) trial recently reported that, among intermediate-risk patients with suspected acute coronary syndrome, the rates of invasive coronary angiography and other non-invasive investigations for coronary artery disease and myocardial ischaemia were reduced with early computed tomography coronary angiography (CTCA), although this did not impact on the rates of coronary revascularization or the primary outcome—death or subsequent Type 1 or 4b myocardial infarction at 1 year.

In this pre-specified secondary analysis, we aimed to evaluate the relationship between presentation cardiac troponin and clinical effects of early CTCA in intermediate-risk patients with suspected acute coronary syndrome.
Methods

Patients
The RAPID-CTCA trial (ClinicalTrials.gov identifier, NCT02284191) enrolled 1749 patients, with 1748 available for analysis, with suspected acute coronary syndrome at 37 sites across the UK between March 2015 and June 2019. Eligible patients had one or more of the following criteria: (i) prior coronary artery disease; (ii) electrocardiographic abnormalities; or (iii) an elevated cardiac troponin concentration. Those with any high-risk features (such as ST-segment elevation or ST-segment depression >3 mm on the electrocardiogram), inability to undergo CTCA, or either known obstructive coronary artery disease (within 2 years) or normal coronary arteries (within 5 years) by invasive coronary angiography or CTCA were excluded. Patients were randomized 1:1, grouped by site, and with variable block sizes (4–8), to standard of care plus early CTCA or standard of care only. The trial was conducted with the approval of the South East Scotland Research Ethics Committee, and all patients provided written informed consent.

Cardiac troponin
Cardiac troponin concentrations were measured using a high-sensitivity or contemporary assay in local accredited clinical biochemistry laboratories according to standard clinical practice at each site. Assays varied between sites, and local laboratory reference standards, based upon the recommended 99th centile upper reference limit, were used to define the threshold for cardiac troponin elevation.

Study outcomes
Data on the use of non-invasive imaging were systematically collected in the RAPID-CTCA trial. For the purposes of this substudy, non-invasive cardiovascular testing was post hoc categorized into either ischaemia (exercise electrocardiogram, stress echocardiogram, stress cardiac magnetic resonance imaging or angiogram, stress nuclear myocardial perfusion imaging, or CTCA other than trial assignment) or other cardiac (echocardiogram, cardiac magnetic resonance imaging, or electrocardiographic rhythm monitoring) investigations.

Invasive coronary angiography and coronary revascularization were the secondary outcomes in the RAPID-CTCA trial, whereas the primary outcome of the trial was death or subsequent Type 1 or 4b myocardial infarction adjudicated by an independent clinical endpoint committee blinded to trial assignment. Myocardial infarction was defined according to the Third Universal Definition.

Statistical analysis
In this pre-specified secondary analysis, patients were categorized into two subgroups according to their presentation cardiac troponin concentration (above or below the 99th centile upper reference limit). The initial cardiac troponin concentration was not available in three patients, for whom the second cardiac troponin concentration was used.

Demographics and clinical characteristics by presentation cardiac troponin

	Elevated cardiac troponin (N = 1004)	Normal cardiac troponin (N = 744)	P-value
Age (years)	61 (52–72)	61 (53–70)	0.31
Sex, male	674 (67)	440 (59)	<0.001
Diabetes mellitus	193 (19)	125 (17)	0.19
Hypertension	455 (45)	362 (49)	0.17
Dyslipidaemia	375 (37)	319 (43)	0.02
Former or current smoker	635 (63)	426 (57)	0.01
Family history of premature coronary artery disease	287 (29)	252 (34)	0.02
Estimated glomerular filtration rate 30–59 mL/min/1.73 m²	156 (16)	83 (11)	0.009
Prior coronary artery disease	250 (25)	351 (47)	<0.001
Abnormal electrocardiogram	607 (60)	457 (61)	0.68
GRACE score	132 (109–151)	91 (73–109)	<0.001
Killip, class I	979 (98)	726 (98)	0.90
Randomized to the early CTCA group	492 (49)	385 (52)	0.26
CTCA finding*			<0.001
Normal coronary arteries	69 (16)	109 (32)	
Non-obstructive coronary artery disease	104 (25)	118 (35)	
Obstructive coronary artery disease	249 (59)	110 (33)	
Coronary calcium score*	119 (6–602)	32 (0–247)	<0.001

CTCA, computed tomography coronary angiography; GRACE, Global Registry of Acute Coronary Events.
*Data are limited to patients in the early CTCA group who have available data.

Table 1 Baseline demographics and clinical characteristics by presentation cardiac troponin
were used to test the interaction between trial assignment and subgroups and to derive effect estimates and their 95% confidence intervals for patients with an elevated or a normal cardiac troponin concentration. Models were adjusted for fixed [Global Registry of Acute Coronary Events (GRACE) score (using a restricted cubic spline) and prior coronary artery disease] and random effects (study site). To examine the temporal effects of early CTCA on the rate of invasive coronary angiography, a landmark analysis was performed. A 30-day landmark was chosen because the first few weeks after acute coronary syndrome are a high-risk period for adverse outcomes, and prior studies suggested that early CTCA was associated with an early rise in the rate of invasive coronary angiography. Post hoc sensitivity analyses were conducted by including data only from sites using a high-sensitivity cardiac troponin assay since trial inception as well as exploring whether patients with an elevated cardiac troponin concentration who were discharged without a diagnosis of myocardial infarction differed from those who had a diagnosis of myocardial infarction. Because this study was exploratory, there was no adjustment for multiplicity.

All analyses were presented on an intention-to-treat basis and were conducted using SAS version 9.4 (SAS Institute, Cary, NC, USA).

Results

Baseline characteristics

Of 37 sites, 28 used a high-sensitivity cardiac troponin I or T assay since trial inception, two adopted a high-sensitivity assay during the trial, six remained with a contemporary assay, and one used both a contemporary point of care and a high-sensitivity laboratory assay (see Supplementary material online, Table S1).

Among 1748 patients, 1004 (57%) had an elevated and 744 (43%) had a normal cardiac troponin concentration at presentation (Table 1). Patients with an elevated cardiac troponin concentration were of similar age but more likely to be men (67 vs. 59%; P < 0.001), having a former or current smoking habit (63 vs. 57%; P = 0.01), renal impairment (16 vs. 11%; P = 0.009), and a higher GRACE score (132 vs. 91; P < 0.001) compared with those with a normal cardiac troponin concentration. In addition, among those who were randomized to the early CTCA group and underwent CTCA, patients with an elevated cardiac troponin concentration were more likely to have obstructive coronary artery disease (59 vs. 33%; P < 0.001).

Non-invasive cardiovascular testing

During follow-up, non-invasive cardiovascular testing was performed in 727 (72%) patients with an elevated cardiac troponin concentration and 384 (52%) with a normal concentration (hazard ratio 1.53, 95% confidence interval 1.29–1.82; P < 0.001; see Supplementary material online, Figure S1A). The rate of non-invasive cardiovascular testing (see Supplementary material online, Table S2) was consistently lower in the early CTCA group among those with an elevated (hazard ratio 0.88, 95% confidence interval 0.76–1.02) or a normal (hazard ratio 0.78, 95% confidence interval 0.64–0.95; Pinteraction = 0.33) cardiac troponin concentration (see Supplementary material online, Figure S1B and C). The rate of non-invasive ischaemia investigations was similar between those with an elevated cardiac troponin concentration and a normal concentration (hazard ratio 0.89, 95% confidence interval 0.67–1.17; P = 0.39; see Supplementary material online, Figure S2A) but was again consistently reduced by early CTCA in those with an elevated cardiac troponin concentration (hazard ratio 0.74, 95% confidence interval 0.55–0.98) and a normal (hazard ratio 0.59, 95% confidence interval 0.44–0.80) concentration (Figure 1A; Pinteraction = 0.31). Although other non-invasive cardiac investigations were more frequently performed in those with an elevated rather than a normal cardiac troponin concentration (hazard ratio 1.87, 95% confidence interval 1.55–2.26; P < 0.001; see Supplementary material online, Figure S2B), the rate of other non-invasive cardiac investigations was comparable between trial assignment in those with an elevated cardiac troponin concentration and a normal concentration (Figure 1B; Pinteraction = 0.62).

Invasive coronary angiography and coronary revascularization

Patients with an elevated cardiac troponin concentration had double the rate of invasive coronary angiography (72 vs. 38%; hazard ratio 2.56, 95% confidence interval 2.13–3.06; P < 0.001) and approximately three times the rate of coronary revascularization (47 vs. 15%; hazard ratio 3.15, 95% confidence interval 2.44–4.07; P < 0.001) compared with patients with a normal cardiac troponin concentration (see Supplementary material online, Figure S3). The rate of invasive coronary angiography was consistently lower in the early CTCA group than in the standard of care only group among those with (hazard ratio 0.82, 95% confidence interval 0.71–0.95) and without (hazard ratio 0.82, 95% confidence interval 0.65–1.04) cardiac troponin elevation (Figure 2A; Pinteraction = 0.99). The reduction of invasive coronary angiography by early CTCA was comparable across the first 30 days but proportionately appeared to be more marked beyond 30 days in those with a normal cardiac troponin concentration (Table 2). Although there was no heterogeneity in the rates of coronary revascularization between trial assignment by cardiac troponin concentration (Figure 2B; Pinteraction = 0.57), coronary revascularization was more frequently performed in the early CTCA group than in the standard of care only group among those referred to invasive coronary angiography (Table 3).

Primary outcome

At 1 year, the rate of death or subsequent Type 1 or 4b myocardial infarction was substantially higher among patients with an elevated cardiac troponin concentration (8 vs. 3%; hazard ratio 2.31, 95% confidence interval 1.25–4.25; P = 0.007; see Supplementary material online, Figure S4). For the relative effect of early CTCA on the primary outcome, there was no interaction (Pinteraction = 0.41) between those with an elevated cardiac troponin concentration (hazard ratio 0.85, 95% confidence interval 0.55–1.31) and a normal (hazard ratio 1.26; 95% confidence interval 0.55–2.87) concentration (Figure 3).

Sensitivity analyses

The restriction of our analysis to the 28 sites using a high-sensitivity cardiac troponin assay since trial inception demonstrated findings that were consistent with the main analysis with no major demonstrable differences in outcomes (see Supplementary material online, Table S3). In contrast, early CTCA appeared to have a heterogenous impact on non-invasive ischaemia investigations. Compared with those who had a discharge diagnosis of myocardial infarction,
there was a halving in the rate of non-invasive ischaemia investigations in patients with an elevated cardiac troponin concentration who had a discharge diagnosis other than myocardial infarction ($P_{\text{interaction}} = 0.003$; see Supplementary material online, Table S4).

Discussion

In this pre-specified secondary analysis of the RAPID-CTCA trial, patients with suspected acute coronary syndrome and an elevated cardiac troponin concentration at presentation had higher rates of non-invasive and invasive testing, coronary revascularization, and death or subsequent Type 1 or 4b myocardial infarction at 1 year. Early CTCA reduced the use of non-invasive cardiovascular testing and non-invasive ischaemia investigations, and invasive coronary angiography without altering the use of coronary revascularization and the primary outcome regardless of cardiac troponin elevation. This reconfirms that cardiac troponin is an excellent diagnostic and prognostic biomarker that is associated with the greater use of investigations and treatments for patients with acute coronary syndrome. However, reductions in the rates of non-invasive ischaemia investigations and invasive coronary angiography associated with CTCA were seen irrespective of cardiac troponin concentration, suggesting that early CTCA safely reduces downstream investigations regardless of the presence of myocardial injury or infarction. Guidelines have suggested the use of CTCA in those at low risk of coronary artery disease. It would, therefore, be expected that early CTCA would have been particularly useful in patients with acute

![Figure 1](image-url) Cumulative incidence for non-invasive cardiovascular testing. Kaplan–Meier estimates for non-invasive ischaemia (A) and other non-invasive cardiac (B) investigations stratified by the presence (solid lines) or absence (dashed lines) of cardiac troponin elevation at presentation and by trial assignment. CI, confidence interval; HR, hazard ratio.
chest pain and no cardiac troponin elevation. In our population of patients with a normal cardiac troponin concentration at presentation, the median GRACE score was 91, and the primary event rate was 3% at 1 year, thereby confirming their lower risk status. Indeed, two-thirds of patients had either normal coronary arteries or non-obstructive coronary artery disease, consistent with our recent observation. We would, therefore, have anticipated greater benefit from CTCA in those with a normal cardiac troponin concentration. However, we identified no evidence of heterogeneity in any trial outcomes by the presence or absence of cardiac troponin elevation at presentation.

Earlier studies focusing on patients with low-risk acute chest pain who had a normal cardiac troponin concentration suggested that incorporating CTCA into the initial management pathway in emergency departments yielded a different clinical trajectory, being associated with a more rapid diagnosis, shorter lengths of stay, and higher rates of invasive coronary angiography and coronary revascularization. However, the introduction of more sensitive cardiac troponin assays into contemporary clinical pathways for acute coronary syndrome has challenged the role of CTCA in the initial management of such patients. Indeed, in the Better Evaluation of Acute Chest Pain with Coronary Computed Tomography Angiography (BEACON) trial, early CTCA did not result in differences in length of stay or rates of hospitalization, invasive coronary angiography, and coronary revascularization among patients with a cardiac troponin concentration ≤3 times the 99th centile upper reference limit. This partly reflects the low-positive predictive value of modest cardiac troponin elevations for obstructive coronary artery disease.

Figure 2 Cumulative incidence for invasive coronary management. Kaplan–Meier estimates for invasive coronary angiography (A) and coronary revascularization (B) stratified by the presence (solid lines) or absence (dashed lines) of cardiac troponin elevation at presentation and by trial assignment. CI, confidence interval; HR, hazard ratio.
Table 2 Landmark analysis on rates of invasive coronary angiography by presentation cardiac troponin

	Follow-up ≤30 days		Follow-up >30 days					
	Early CTCA	SoC only	Hazard ratio	P-valuea	Early CTCA	SoC only	Hazard ratio	P-valuea
Elevated cardiac	313/492 (64)	359/512 (70)	0.82 (0.70–0.95)	0.38	25/176 (14)	22/151 (15)	0.91 (0.51–1.63)	0.14
Normal cardiac	111/384 (29)	106/358 (30)	0.94 (0.72–1.23)		24/272 (9)	42/250 (17)	0.51 (0.31–0.85)	

CTCA, computed tomography coronary angiography; SoC, standard of care.

aInteractions between trial assignment and presentation cardiac troponin were tested.

and Type 1 myocardial infarction.22,23 In our analysis, patients with a normal cardiac troponin concentration at presentation were less likely to undergo further non-invasive ischaemia investigations or invasive coronary angiography when assessed by CTCA. This was most prominent beyond 30 days where rates of invasive angiography were halved by early CTCA. This reduction rather than an increase in the rates of invasive coronary angiography may also reflect differences in risk of the populations studied and duration of follow-up.15

We observed that patients who were randomized to early CTCA and subsequently underwent invasive coronary angiography were proportionately more likely to undergo coronary revascularization. This was particularly true for patients without cardiac troponin elevation with a two-fold increase in the likelihood of percutaneous coronary intervention. Given that there were no differences in the overall rates of coronary revascularization by trial assignment, this reflects the identification of normal or minimally diseased coronary arteries by CTCA such that only those with potentially obstructive coronary artery disease underwent invasive coronary angiography. This, therefore, enables a more efficient use of cardiac catheterization facilities by accurately selecting candidates who may benefit from coronary revascularization.

For patients with acute coronary syndrome and an elevated cardiac troponin concentration, current guidelines favour invasive coronary angiography as the primary tool to visualize coronary artery anatomy and to decide the optimal revascularization strategy. Indeed, one guideline recommends this should be performed within 24 h of presentation.24 However, CTCA is diagnostically consistent with, and prognostically equivalent to, invasive coronary angiography in patients with non-ST-segment elevation acute coronary syndrome.25,26 In the role of initial CARDiovascular Magnetic rEsoNance imaging and computed Tomography Angiography in non-ST-elevation myocardial infarction patients (CARMENa) trial, a CTCA-first strategy reduced the immediate and overall referral for invasive coronary angiography by a third without an increase in the rate of major cardiac or procedure-related adverse events at 1 year.27 Consistent with this, our analysis showed an 18% reduction in the likelihood of invasive coronary angiography with similar rates of coronary revascularization irrespective of cardiac troponin concentration. Again, in those referred for invasive coronary angiography, coronary revascularization was more likely in the early CTCA group, indicating that early CTCA avoids unnecessary invasive coronary angiography and allows for efficient identification of those who might benefit from coronary revascularization, even in those with an elevated cardiac troponin concentration. Our findings, along with those from the CARMENa trial, suggest that CTCA does assist in the selection of patients for invasive coronary angiography and coronary revascularization in patients with an elevated cardiac troponin concentration. This contrasts with the 2020 European Society of Cardiology guidelines, which recommend the use of CTCA only in those with normal or inconclusive cardiac troponin concentrations.24

The use of high-sensitivity cardiac troponin assays has increased the numbers of patients with acute chest pain who have an elevated cardiac troponin concentration. Many of these patients have small elevations and do not have myocardial infarction but acute or chronic myocardial injury. It can be very challenging to identify which patients have myocardial infarction and which have myocardial injury. Indeed, many patients undergoing invasive coronary angiography with a provisional diagnosis of myocardial infarction have no obstructive coronary artery disease.25,28 In our analysis, we found that a third of patients with an elevated cardiac troponin concentration at presentation were ultimately discharged without a diagnosis of myocardial infarction. In this group of patients, early CTCA appeared to be particularly useful and halved the rates of non-invasive ischaemia testing and invasive coronary angiography. Thus, where there is uncertainty regarding the diagnosis of myocardial infarction in a patient with cardiac troponin elevation, early CTCA appears to be particularly helpful in avoiding further non-invasive and invasive testing.

In the CARDiac cT in the treatment of acute Chest pain (CATCH) trial, early CTCA improved clinical outcomes at a median of 18 months in those with acute chest pain and a normal cardiac troponin concentration.29 Although the extent and burden of coronary artery disease predicts adverse outcomes in patients with acute coronary syndrome independently of cardiac biomarkers,30 we found no differences in the rate of death or subsequent Type 1 or 4b myocardial infarction at 1 year either across the whole trial population or within these subgroups stratified by cardiac troponin elevation. Whether
Our study has a number of limitations which we should highlight. First, although this study is a pre-specified secondary analysis, randomization was not stratified by cardiac troponin, and we evaluated only the presentation concentration rather than the complete profile of serial cardiac troponin measurements. Cardiac troponin assays employed in the RAPID-CTCA trial varied by site, and not all sites used a high-sensitivity assay or the 99th centile upper reference limit recommended by the guidelines. However, most sites used both, and our sensitivity analysis that was restricted to those sites where high-sensitivity cardiac troponin testing was performed throughout the trial demonstrated the consistency of our findings. In addition, cardiac troponin concentrations below the diagnostic threshold for myocardial infarction provide further prognostic information, and whether this can be used in conjunction with CTCA to improve long-term outcomes is unknown. This is currently being investigated in the Troponin in Acute chest pain to Risk stratify and Guide EffecTive use of Computed Tomography Coronary Angiography (TARGET-CTCA) trial (ClinicalTrials.gov identifier, NCT03952351). Furthermore, the RAPID-CTCA trial entry criteria required enrichment for risk, and patients were required to have an elevated cardiac troponin concentration, an abnormal electrocardiogram, or a prior history of coronary artery disease. As such, our findings were restricted to this population.

Table 3 Rates of coronary revascularization among patients referred to invasive coronary angiography by presentation cardiac troponin

	Elevated cardiac troponin	Normal cardiac troponin	P-value*				
	Early CTCA (N = 338)	SoC only (N = 381)	Odds ratio (95% confidence interval)	Early CTCA (N = 136)	SoC only (N = 149)	Odds ratio (95% confidence interval)	
PCI	201 (59)	197 (52)	1.43 (1.05–1.93)	59 (43)	43 (29)	1.91 (1.16–3.15)	0.33
CABG surgery	44 (13)	46 (12)	1.01 (0.64–1.60)	8 (6)	9 (6)	1.08 (0.40–2.93)	0.90
PCI or CABG surgery	236 (70)	237 (62)	1.43 (1.04–1.98)	64 (47)	51 (34)	1.83 (1.12–3.00)	0.42

CABG, coronary artery bypass graft; CTCA, computed tomography coronary angiography; PCI, percutaneous coronary intervention; SoC, standard of care.

*Interactions between trial assignment and presentation cardiac troponin were tested.

Figure 3 Cumulative incidence for death or subsequent Type 1 or 4b myocardial infarction. Kaplan–Meier estimates stratified by the presence (solid lines) or absence (dashed lines) of cardiac troponin elevation at presentation and by trial assignment. CTCA, computed tomography coronary angiography; SoC, standard of care.
and might not be representative of the broader population of patients with acute chest pain who present to the Emergency Department. We should also acknowledge that the RAPID-CTCA trial was powered to assess the effect of early CTA on the primary outcome. Given that there were no differences in the rate of the primary outcome, our findings on secondary and post hoc outcomes were hypothesis-generating in nature. Finally, as with any open trial, there is a likelihood for bias in the RAPID-CTCA trial.

Conclusion

Presentation cardiac troponin does not influence the impact of early CTA on rates of non-invasive testing, invasive coronary angiography, coronary revascularization, or clinical outcomes in intermediate-risk patients with suspected acute coronary syndrome. Our findings suggest that decisions regarding the early use of CTA in these patients should not be based upon cardiac troponin alone.

Supplementary material

Supplementary material is available at European Heart Journal: Acute Cardiovascular Care.

Acknowledgements

The RAPID-CTCA trial was investigator led, and oversight was delivered by a trial management group supported by independent trial steering and data monitoring committees. The RAPID-CTCA trial was coordinated by Edinburgh Clinical Trials Unit, and governance and monitoring were provided by the Academic and Clinical Office for Research and Development on behalf of the trial sponsors (University of Edinburgh and NHS Lothian).

Funding

The RAPID-CTCA trial was funded by the UK National Institute for Health and Care Research Health Technology Assessment Programme (13/04/108). N.L.M. is supported by the British Heart Foundation (CH/F/21/90010, RG/20/10/34966, RE/18/5/34216). D.E.N. is supported by the British Heart Foundation (CH/09/002, RG/16/10/32375, RE/18/5/34216) and is the recipient of a Wellcome Trust Senior Investigator Award (WT103782AIA).

Conflict of interest: None declared.

Data availability

De-identified data are available on reasonable request which should be submitted to the Chief Investigator of the RAPID CTCA trial—Prof Alasdair J Gray.

References

1. Shah ASV, Anand A, Strachan FE, Ferry AV, Lee KK, Chapman AR, Sanderon D, Stables CL, Adamson PD, Andrews JPM, Anwar MS, Hung J, Blackman T, Blankstein R, Boyd J, Bullock-Palmer RP, Conejo T, Diercks DB, Gentile F, Greenwood JP, Hepp E, Hollenberg SM, Jheng J, Jobson OA, Johnson DA, Keerie C, Weir CJ, Mills NL, Wang K-L, Mooney DA, Raff GL, Goldstein JA, Litt H, Frati G, Reed MJ, Moretti C, Gaita F. Coronary computed tomographic angiography for patients with suspected acute coronary syndrome: a post hoc analysis of the randomized SCOT-HEART trial. JAMA Cardiol 2020;5:920–928.
2. Gray AJ, Roobottom C, Smith JE, Goodacre S, Oates K, O'Brien R, Storey RF, Curzen N, Kesting L, Kardos A, Felminden D, Lee RJ, Thomlisa P, Lewis SC, Newby DE, RAPID-CTCA Investigators. Early computed tomography coronary angiography in patients with suspected acute coronary syndrome: randomised controlled trial. BMJ 2021;374:n2106.
3. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Thygesen K, Alpert JS, White HD, Jaffe AS, Katus HA, Apple FS, Lindahl B, Morroe DA, Chaitman BR, Clemmensen PM, Johannson P, Had H, Underwood R, Bax J, Bonow RO, Pinto F, Gibbons RJ, Fox KA, Atar D, Newby LK, Galvan M, Hann CM, Uretsky BF, Steg PG, Wijns W, Raukas J, Menasché P, Raukas J, Menasché P, Raukas J, Menasché P, Raukas J, Menasché P, Wallentin LC, Armstrong PW, Simoons ML, Januza J, Nilienmen MS, Gheorghe-Chi M, Filipatos G, Luepker RV, Fortmann SP, Rosamond WD, Levy D, Wold SM, Thompson SC, Ht Lopez-Sendon J-L, Robertson RM, Weaver D, Tendera M, Bove AA, Parkhomenko AN, Vaskens BJ, Mendis S. Third universal definition of myocardial infarction. J Am Coll Cardiol 2013;60:1581–1598.
4. Rossello X, Gonzalez-Del-Hoyo M. Survival analyses in cardiovascular research, part I: the essentials. Rev Esp Cardiol 2022;75:67–76.
5. Rossello X, Gonzalez-Del-Hoyo M. Survival analyses in cardiovascular research, part II: statistical methods in challenging situations. Rev Esp Cardiol 2022;75:77–85.
6. Debh O, Hall M, Fox KAA, Dondo TB, Timmins A, Bueno H, Schiele F, Gale CP. Performance of hospitals according to the ESC ACCA quality indicators and 30-day mortality for acute myocardial infarction: national cohort study using the United Kingdom Myocardial Ischaemia National Audit Project (MINAP) register. Eur Heart J 2017;38:974–982.
7. Hulten E, Pickett C, Bittencourt MS, Villines TC, Pettitlo S, Di Carli MF, Blankstein R. Outcomes after coronary computed tomographic angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J Am Coll Cardiol 2013;61:1880–1892.
8. Lee KK, Bularga A, O'Brien R, Ferry AV, Daoudas D, Fujiwara T, Kelly S, Stewart S, Weresi R, Cranley D, van Beek EJ, Lowie DJ, Newby DE, Williams MC, Gray AJ, Mills NL. Troponin-guided coronary computed tomographic angiography after exclusion of myocardial infarction. J Am Coll Cardiol 2021;78:1407–1417.
9. D'Ascenzo F, Cerrato E, Blodi-Zocca G, Omede P, Sciuto F, Presutti DG, Quadri G, Raff GL, Goldstein JA, Litt H, Frati G, Reed MJ, Moretti C, Gaita F. Coronary computed tomographic angiography for detection of coronary artery disease in patients presenting to the emergency department with chest pain: a meta-analysis of randomized clinical trials. Eur Heart J Cardiovasc Imaging 2013;14:782–789.
10. Goldstein JA, Chinaiyan KM, Abdov A, Achenbach S, Berman DS, Hayes SW, Hoffmann U, Lesser JR, Mikati IA, O'Neil BJ, Shaw L, Shen MYH, Valeti US, Raff...
GL. The CT-STAT (coronary computed tomographic angiography for systematic triage of acute chest pain patients to treatment) trial. J Am Coll Cardiol 2011;58:1414–1422.

19. Litt HI, Gatsonis C, Snyder B, Singh H, Miller CD, Enrickin DW, Learning JM, Gavin LJ, Pacella CB, Hollander JE. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med 2012;366:1393–1403.

20. Hoffmann U, Truong QA, Schoenfeld DA, Chau ET, Woodard PK, Nagurney JT, Pope JH, Hauser TH, White CS, Weiner SG, Kalanjian S, Mullins ME, Mikati I, Peacock WF, Zakrovsy P, Hayden D, Goehler A, Lee H, Gazelle GS, Wiviott SD, Fleg JL, Udelson J. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med 2012;367:299–308.

21. Dedic A, Lubbers MM, Schaab J, Lamfers EJ, Rensing BJ, Braam RL, Nathoe HM, Post JC, Nielsen T, Beelen D, Le Coq d'Armandville M-C, Rood Pleunie PM, Schultz C, Moelker A, Ouhlous M, Boersma E, Nieman K. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins: randomized multicenter study. J Am Coll Cardiol 2016;67:16–26.

22. Januzzi JL, Sharma U, Zakrovsy P, Truong QA, Woodard PK, Pope JH, Peacock WF, Fleg JL, Wiviott S, Pang PS, Udelson J, Hoffmann U. Sensitive troponin assays in patients with suspected acute coronary syndrome: results from the multicenter rule out myocardial infarction using computer assisted tomography II trial. Am Heart J 2015;169:572–578.e1.

23. Werneski R, Kimeri DM, Taggart C, Doudesis D, Lee KK, Lowry MTH, Bularga A, Lowe DJ, Fujisawa T, Apple FS, Collinson PO, Anand A, Chapman AR, Mills NL. Cardiac troponin thresholds and kinetics to differentiate myocardial injury and myocardial infarction. Circulation 2021;144:528–538.

24. Collet JP, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, Dendale P, Dedic A, Lubbers MM, Schaap J, Lammers J, Lambers J, Lamfers EJ, Rensing BJ, Braam RL, Nathoe HM, Post JC, Nielsen T, Beelen D, le Coq d’Armandville M-C, Rood Pleunie PM, Schultz CJ, Moelker A, Ouhlous M, Boersma E, Nieman K. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins: randomized multicenter study. J Am Coll Cardiol 2016;67:16–26.

25. Dedic A, Lubbers MM, Schaab J, Lamfers EJ, Rensing BJ, Braam RL, Nathoe HM, Post JC, Nielsen T, Beelen D, Le Coq d’Armandville M-C, Rood Pleunie PM, Schultz C, Moelker A, Ouhlous M, Boersma E, Nieman K. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins: randomized multicenter study. J Am Coll Cardiol 2016;67:16–26.

26. Kofoed KF, Engstrom T, Sigvardsen PE, Linde JJ, Torp-Pedersen C, de Knecht M, Hansen PR, Fritz-Hansen T, Bech J, Heitmann M, Nielsen OW, Haefsten D, Kühl JT, Raymond IE, Kristiansen OP, Svendsen IH, Dominguez Vall-Lamora MH, Krügelund C, Hove JD, Jørgensen T, Forntizzi G, Steffensen R, Ljurlander B, Abdulla J, Lyngbaek S, Elming H, Therkelsen SK, Jørgensen E, Kleivgaard L, Bang LE, Hansen PR, Helqvist S, Galatsi S, Pedersen F, Abildgaard U, Clemmensen P, Saunamaa K, Holmvang L, Engstrom T, Gislon G, Køber LV, Kofoed KF. Coronary CT angiography in patients with non-ST-segment elevation acute coronary syndrome. J Am Coll Cardiol 2020;75:453–463.

27. Smulders MW, Kietsebaer B, Wildaeger JE, Dagnelie PC, Brunner-La Rocca H-P, Meigs AM, van Cauteren YM, Theunissen RALJ, Post MJ, Schalla S, van Kuik SMJ, Das M, Kim RJ, Irjins H, Beks M, Bekkers C. Initial imaging-guided strategy versus routine care in patients with non-ST-segment elevation myocardial infarction. J Am Coll Cardiol 2019;74:2466–2477.

28. Lin WY, Hung Y, Lin GM, Lin CS, Liu JT, Cheng CC, Tsai TN, Tsai WC, Lin TC, Liu WC, Liu PY, Wu KY, Hsu CH, Yu FH, Cheng SP, Yang SP, Lin WS, Wu CH. Profiles of hospitalized patients with angiographic coronary heart disease in Taiwan during 2014-2016: report of a tertiary hospital. Acta Cardiol Sin 2021;37:365–376.

29. Linde JJ, Hove JD, Sorgaard M, Kelbaek H, Jensen GB, Kühl JT, Hindse L, Køber L, Nielsen WB, Kofoed KF. Long-term clinical impact of coronary CT angiography in patients with recent acute-onset chest pain: the randomized controlled CATCH trial. JACC Cardiovasc Imaging 2015;8:1404–1413.

30. Landsky AJ, Goto K, Cristea E, Fahy M, Parise H, Feit F, Olhman EM, White HD, Alexander KP, Bertrand ME, Desmet W, Hamon M, Mehran R, Moses J, Leon M, Stone GW. Clinical and angiographic predictors of short- and long-term ischemic events in acute coronary syndromes: results from the acute catheterization and urgent intervention triage strategy (ACUITY) trial. Circ Cardiovasc Interv 2010;3:308–316.