The Study of Analytical Identification on Main Monomer Compounds of Spoiled Grass Carp by High Performance Liquid Chromatography of Quadrupole Time of Flight Mass Spectrometry

Sheng ZY, SI HJ, Ming LX, Rong CJ, Yi CZ and Hui ZY*
Sericulture and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China

Abstract

Background: The change of monomer compounds of materials during preservation is becoming increasingly important in the background of food preservation. It can help to understand underlying causes of quality change of materials in preservation substantially. The objective of this study was to infer and analyze the change of main monomer compounds during spoiled Grass carp (*Ctenopharyngodon Idellus*), and in favor of understanding the quality change of Grass carp in preservation.

Methods and materials: The spoiled Grass carp was studied as materials by High Performance Liquid Chromatography of Quadrupole Time of Flight Mass Spectrometry (HPLC-Q-TOF-MS). HPLC-Q-TOF-MS has two scan modes, positive one and negative one. Special related substances and molecular components of this characteristic fragment ion were identified by quasi-molecular ion peaks and accurate molecular weight of fragment ion from high-resolution mass spectrometry.

Results: 46 kinds of monomer compounds were determined in spoiled Grass carp, which have 3 kinds of non-nitrogenous compounds and 43 nitrogenous compounds. 43 nitrogenous compounds including 6 kinds of amino acids (2 kinds of α-amino acids), 10 kinds of amines, 12 kinds of amide compounds, 2 kinds of nitro compounds, 12 kinds of heterocyclic nitrogenous compounds, and 1 kinds of nitriles compound.

Conclusion and suggestion: Structure of monomer compounds in fresh and perishable materials can be inferred and identified by HPLC-Q-TOF-MS. They can be used to increase efficiency in identification and analysis of chemical component. It will be benefit for identification, evolution, and deduction of active ingredients and new compounds of fresh material in preservation.

Keywords: High performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF MS); Analytical identification; Spoiled; Grass carp; Chemical compounds; Fragment ions

Introduction

Grass carp (*Ctenopharyngodon idellus*) which is one of the four major Chinese carps has been introduced into more than 100 countries [1]. It is an important economic species in freshwater and its global production is more than 4.5 million tons annually [2], it has become the most important freshwater fish in consumption worldwide [3]. Compared to other types of meats, Grass carp is beneficial to human’s body due to its low fat, low cholesterol and high unsaturated fatty acids. However, it is most at risk of damage and perishable as aquatic products because it is easy to cause the spoilage quickly and the freshness loss [4].

Similar to other types of fresh aquatic products, storage conditions play an important role in grass carp quality. Improper storage time and storage environment will bring about decrease in freshness and deterioration of fish, decrease in the freshness of the fish may influence meat quality and taste, or even deterioration that will bring about great loss to fisheries production. The fish spoilage is a multifaceted process; it involves physical, chemical and microorganism mechanisms and is related to color changes, texture collapse, protein denaturation, lipid oxidation, ATP degradation and microbial spoilage [5,6].

At present, There are many indicators in studying fish preservation, such as sensory assessment, cooking quality and structure, salt-soluble protein, thiol, disulfide bond, total volatile base nitrogen (TVB-N), electrical conductivity (EC), total viable counts (TVC), biogenic amines (BAs), freshness quality index (K value), SOD, MDA and ATP enzyme, changes in metal ion content, etc. [7-14], some of these indicators are formulated relevant standards in china, for example, the determination of total volatile base nitrogen (TVB-N) in aquatic products (SC/T3032-2007), the freshness index for fish muscle (K-value)-high performance liquid chromatography (SC/T3048-2014) and so on, they have laid the foundation for the research of preservation of fish and other aquaculture products.

However, during the process of fish preservation, most of these indicators reflected change of the apparent indexes not the internal material compositions, so there is insufficient in describing the preservation process or revealing the change rules.

In fact, the actual changes in apparent indexes are reflected by the existence and quantity of the monomeric compounds which is material foundation. Studying the monomeric compounds is necessary to reveal the changes in apparent indexes. During the period of storage, compounds decomposition and polymerization of Grass carp are always occurred by enzymolysis, microbial metabolism and
temperature and so on as well as other aquatic materials. Thus, low attainment of the high degree of purity of monomeric compounds from fish is main bottleneck in research and has been one of the hot points in the fish study in recent years.

In recent years, with the development of the inspection instruments, the technology which combines both efficient separation of liquid chromatography with high sensitivity of mass spectrometry especially combined high resolution mass spectrometry with multi-stage mass spectrometry has been widely used in plant and animal components analysis and identification, it has opened up a new way on the study of natural products, heavy metals, pesticide residues and so on [15-20].

High Performance Liquid Chromatography of Quadrupole Time of Flight Mass Spectrometry (HPLC-Q-TOF-MS) is a kind of typical technology which has qualitative and quantitative analyses in effective ingredients by the combination of Liquid Chromatography and Mass Spectrometry, this technology can be utilized in the structure analysis of trace components without reference substance, it has highly efficient and sensitive advantages.

In this study, HPLC-Q-TOF-MS was utilized to analyze the main monomeric compounds of Grass carp (*Ctenopharyngodon idellus*) in the process of maintaining the freshness qualitatively; accurate information of molecular weight and fragment was got. At the same time, the main monomeric compounds were inferred according to structure databases of a variety of compound and the cracking rules of mass spectrometry. The aim was to provide the scientific basis for active ingredients identification and preservation research of Grass carp, and to provide a reference for chemical composition analysis and identification of fresh material.

In this experiment, chemical composition of the species and its change rule of Grass carp in different stages like fresh raw materials, preservation process and deterioration were studied. Study of chemical composition in deterioration of Grass carp is as follows.

Materials and Methods

Materials and chemicals

In refrigerator, Grass carp was kept for 6 months during -10°C (fresh Grass carp was bred in Guangzhou Huadu district, weighted 1200 g ± 200 g, obtained from Guangzhou Grandview supermarket, Guangdong, China). It was removed from the refrigerator and placed at room temperature for three days until it smelled badly. At the same time, its content of TVB-N was 32.5 mg/100 g, and identified it as rotten fish according to the National Food Safety Standard of China for Fresh and Frozen Aquatic Animal Products (GB 2733-2015).

Methanol (CH\(_3\)OH) which was purchased from Sigma-Aldrich-(St. Louis, MO, USA) was used as a solvent in LC/MS/MS, it was used throughout the study. Ultra-pure water was produced by Milli-Q type 3 ultra-pure water machines (Millipore, USA).

Equipment

Ekspert“ ultraLC type 110-XL HPLC and AB SCIEX Triple TOF “ type 5600 Q-TOF MS, Duo Spray “ ion source, with AB SCIEX- Analyst “ TF Software, Multi Quant “ Software quantitative analysis Software were used. All equipment were supplied by the SCIEX companies in the United States.

Integln Milli-Q type 3 ultrapure water machine was supplied by the Millipore companies in the United States.

Experiment methods

Preparation of sample solution: Firstly, 10 g of spoiled grass carp was obtained by a sterile knife respectively, they were extracted with 100 ml ultrapure water and 100 ml chromatographic pure methanol respectively, refluxing extraction (extraction temperature is 95°C in ultrapure water and 70°C for reflux in chromatographic pure methanol, respectively) for 2 hours. The extract was stand for 24 h during 0°C, then centrifuged it (12 000 r. min-1, 5 min). At the last, supernatant were filtered through 0.35μm filters and analyzed by HPLC–MS. Blank is frequently prepared as described above.

Analysis of test conditions

HPLC analysis: The chromatographic separation was carried on ZORBAX®RPHD Eclipse pluse C18 column (2.1 mm × 100 mm, 1.8 μm particle size). The mobile phase, which consisted of methanol (A) and 0.1% formic acid in water (B) was delivered at a flow rate of 0.5 mL/min under the following gradient program: 10% (A) from 0.1 to 5 min, 20% (A) from 5 to 10 min, 25% (A) from 10 to 15 min, 30% (A) from 15 to 20 min, and returning to the initial condition over 5 min. The sample injection volume was 10 μL. The column oven temperature was set at 40°C.

MS analysis: Each sample was analyzed in positive and negative ionization modes. Column effluent was directed to the ESI source. The curtain gas, nebulizer gas, and heater gas were set to 30, 50, and 55 psi. Source temperature was 550°C for both modes. In an ESI source, positive ion mode produced 4500V atomizing voltage (ISVF) and 100 V declustering potential; negative one produced -4500 V atomizing voltage (ISVF) and -100 V declustering potential.

The experiment was carried out to collect by using one TOF MS survey scan (250 ms) and 4 TOF MS/MS scans (100 ms each). The scan types of TOF MS was 100-1000 m/z, and the scan types of TOF MS/MS was 50-1000 m/z. Acquisition of MS/MS spectra was controlled by IDA function of the Analyst TF software (AB Sciex, Concord, Canada) with application of following parameters—dynamic background subtraction, charge monitoring to exclude multiply charged ions and isotopes, and dynamic exclusion of former target ions for 5 s. Rolling collision energy was set whereby the software calculated the CE value to be applied as a function of m/z. Data quality was corrected by CDS system (automated calibration delivery system, SCIEX, Concord, Canada) under Duospray source.

Data processing: MarkerView 2.0 (AB Sciex, Concord, Canada) was used to generate a peak table of m/z and RT for samples in the individual study using the following parameters. For peak detection: noise threshold of 50 counts, minimum chromatographic peak width of 3 scans, minimum spectra width of 10 mDa, background subtraction offset of 20 scans and subtraction multiplication factor of 1.2. For peak alignment: RT window of 0.7-10 min, RT tolerance of 0.3 min, mass tolerance of 12 ppm.

Results and Discussion

HPLC-Q-TOF-MS analysis of spoiled grass carp

It is important to prevent monomeric compounds of spoiled Grass carp degrade and accumulate; it is the basis of the component identification. In this experiment, ultrapure water and methanol were used as solvent extractions at a relatively low temperature (reflux extraction temperature of ultrapure water is 95°C, and one of chromatographic pure methanol is 70°C). Then, scanning test of extract solution is processed by positive and negative ion modes, respectively.
The results showed that the characteristic information of the total ion current (TIC) under positive ion modes was stronger and with higher sensitivity than negative one in the methanol extract, and information of compounds in the methanol extract was more than one in aqueous extraction. Therefore, methanol extract under the scanning mode of positive ion (Fig. 1) were compared, analyzed and identified.

The analytical identification of main monomer compounds in spoiled grass carp

In experiment, possible elements (error is less than \(\pm 5 \times 10^{-5} \)) was calculated by the combination of the precise molecular mass from test of ESI positive ion mode with the high resolution data given by peakview 2.0 workstation. Then possible molecular formula of the main monomeric compounds was determined. The characteristic fragment ions and accurate chemical elements of the main monomeric one were obtained by the secondary mass spectrometry analysis.

46 kinds of monomeric compounds included 43 nitrogenous compounds and 3 non-nitrogenous compounds were identified by Combination of Chemspider database and fragment cracking rules of mass spectrometry. 43 nitrogenous compounds including 6 kinds of amino acids (2 kinds of α-amino acids), 10 kinds of amines, 12 kinds of amide compounds, 2 kinds of nitro compounds, 12 kinds of heterocyclic nitrogenous compounds and 1 kinds of nitriles compound. Cracking way of TOF MS/MS fragment ions for each compound were inferred the characteristics were shown in Tables 1 and 2.

No.	RT (min)	Molecular formula	Molecular weight (u)	Precursor ions \([M+H]^{+}\) (m/z)	The main fragment ions of TOF-MS/MS	Observed (u)	Theoretical (u)
1	0.96	C₁₇H₂₃NO	271.1781	100.07645	120.0765, 86.0964		
2	2.15	C₂₀H₂₉NO	325.2381	103.12331	103.1233, 86.0964		
3	2.59	C₁₇H₂₄N₂	284.1941	105.0704	105.0708, 79.0556		
4	0.56	C₁₈H₂₅NO	302.2079	114.06642	114.06618, 86.0729		
5	0.78	C₁₉H₂₆NO	310.2229	120.07097	120.0806, 93.0716		
6	1.89	C₂₀H₃₂O	324.2381	121.06468	121.0650, 93.0705, 77.0407		
7	2.6	C₂₁H₂₅N₂	315.2229	122.06964	122.0695, 105.0710		
8	0.57	C₂₀H₂₅NO	302.2079	136.04588	137.0460, 119.0354, 94.0407		
9	1.79	C₁₈H₂₃NO	291.1832	144.04776	144.0478, 126.0371, 113.0300		
10	2.71	C₁₉H₂₆N₂	300.2229	144.08068	144.0807, 128.0497, 103.0546		
11	1.34	C₂₀H₂₄N₂	310.2079	145.13337	145.1334, 128.1080, 86.0978		
12	2.58	C₂₁H₂₇N₂	324.2381	145.16961	145.1695, 86.979, 69.0719, 60.0827		
13	0.52	C₂₁H₂₅N₂	315.2229	146.11728	146.1182, 87.0455, 60.0834		
14	0.53	C₂₁H₂₆NO	317.2081	159.14872	159.1488, 142.1227, 86.0615		
15	0.77	C₂₂H₂₇N₂	326.2139	160.08598	160.0860, 120.0813, 103.0547		
16	0.92	C₂₂H₂₉NO	328.2079	168.11287	168.1127, 150.1028, 112.0872		
17	2.27	C₂₃H₂₇N₂	339.2139	173.16472	173.1647, 156.1377, 100.751		
18	1.5	C₂₄H₂₉NO	348.2139	182.12861	182.1285, 164.1193, 95.0607		
19	8.14	C₂₅H₃₁N₂	355.2229	183.07811	183.07755, 97.9687		
20	2.12	C₂₅H₂₉NO	353.2081	188.07371	188.0737, 131.1180, 117.1027		
21	2.2	C₂₆H₃₁NO	362.2139	188.17254	188.1752, 152.0522, 117.1014		
22	0.54	C₂₆H₃₃NO	366.2079	189.15992	189.1599, 144.1348, 130.0867		
23	1.7	C₂₇H₃₅N₂	370.2139	201.15954	201.1595, 183.1488, 159.1495		
24	0.53	C₂₇H₃₃NO	368.2079	207.98815	207.9882, 189.9757, 165.9665		
25	2.76	C₂₈H₃₅NO	374.2139	215.17458	215.1749, 159.1490, 129.9939		
26	10.13	C₂₉H₃₇O₂	414.2381	217.10692	217.10689, 137.0812, 156.0709, 111.0450, 83.0501		
27	14.48	C₂₉H₃₇NO	412.2381	228.23206	228.2321, 88.0757, 70.659		
28	0.56	C₃₀H₃₉NO	420.2431	229.15465	229.15465, 96.0823		
29	5.71	C₃₀H₄₁NO	422.2581	229.19083	229.19093, 156.1383, 142.1231, 129.9960, 100.762		
Citation: Sheng ZY, Si HJ, Ming LX, Rong CJ, Yi CZ, et al. (2016) The Study of Analytical Identification on Main Monomer Compounds of Spoiled Grass Carp by High Performance Liquid Chromatography of Quadrupole Time of Flight Mass Spectrometry. J Food Process Technol 7: 600. doi:10.4172/2157-7110.1000600

Table 1: Dates and the main fragment ions from HPLC-Q-TOF-MS.

No.	Derivation pathways of the main fragment ions	Classification
1	[M+H-HO_2]^+82.0670, [M+H-HO_2-CN]^+56.0517	Heterocyclic nitrogenous
2	[M+H]^+103.1233, [M+H+NH_3]^+86.0964	Amines
3	[M+H]^+105.0708, [M+H-C_2_H_4_N_O]^+79.0556	Non-nitrogenous compounds
4	[M+H-HCOOH]^+117.1054	Heterocyclic nitrogenous
5	[M+H]^+120.0815, [M+H+CN]^+93.0716	Heterocyclic nitrogenous
6	[M+H]^+121.0650, [M+H-C_2_H_4_N_O]^+77.0407	Non-nitrogenous compounds
7	[M+H]^+122.0695, [M+H+NH_3]^+105.0710	Amines
8	[M+H]^+137.0460, [M+H-HO_2]^+119.0354, [M+H+H_2_O-N_H_3]^+94.0407	Heterocyclic nitrogenous
9	[M+H-HCOOH]^+144.0478, [M+H+O_2]^+105.0374, [M+H+O_2+H_2_O]^+87.0382	Heterocyclic nitrogenous
10	[M+H]^+144.0807, [M+H+H_2_O]^+128.0497, [M+H+H_2_O]^+110.0546	Non-nitrogenous compounds
11	[M+H]^+145.1334, [M+H-HCOOH]^+128.1080, [M+H+H_2_O]^+86.0978	Heterocyclic nitrogenous
12	[M+H]^+145.1695, [M+H-C_2_H_4_N_O]^+86.0979, [M+H+H_2_O]^+60.0827	Amines
13	[M+H]^+146.1182, [M+H+H_2_O]^+87.0455, [M+H+H_2_O]^+60.0834	Amines
14	[M+H]^+159.1488, [M+H+H_2_O]^+142.1227, [M+H+H_2_O]^+86.0615	Amines
15	[M+H]^+166.0860, [M+H+HCOOH]^+120.0813, [M+H+HCOOH]^+110.0547	Amino acids
16	[M+H]^+168.1127, [M+H+H_2_O]^+150.1028, [M+H+H_2_O]^+112.0872	Nitriles compound
17	[M+H]^+173.1647, [M+H+H_2_O]^+156.1377, [M+H+H_2_O]^+100.0751	Amines
18	[M+H]^+182.1286, [M+H+H_2_O]^+164.1193, [M+H+H_2_O]^+95.0607	Amines
19	[M+H-HCOOH]^+155.0465, [M+H-HCOOH]^+127.0414, [M+H-HCOOH]^+97.9687	Nitro compounds
20	[M+H]^+188.0737, [M+H+H_2_O]^+131.1180, [M+H+H_2_O]^+117.1027	Amines
21	[M+H]^+188.1752, [M+H+H_2_O]^+152.0522, [M+H+H_2_O]^+117.1014	Amines
22	[M+H]^+189.1599, [M+H+H_2_O]^+144.1384, [M+H+H_2_O]^+130.0867	Amid compounds
Table 2: The N compounds mainly fractured fragment ions derivation and classification.

Compound Type	Formula	Fragment Ions
Amino acids	[M+H]+	171.1409, [M+H-H2O]+100.0764
	[M+H-C4H8]+159.1490	[M+H-C4H8-C4H8]+129.9960
	[M+H-C2H5O]+142.0861	[M+H-C2H5O-C2H5]+114.0939
	[M+H-H2O]+142.0861	[M+H-C2H5O-CH2]+100.0762
	[M+H-C10H20]+88.0757	[M+H-C10H20-H2O]+68.0757
	[M+H-C10H20-H2O]+70.659	Amide compounds
	[M+H]+	173.1662, [M+H-C4H8]+173.0812
	[M+H-C4H8]+173.0812	[M+H-C4H8-C4H8]+140.0336
	[M+H-C2H5O]+173.0812	[M+H-C2H5O-C2H5]+140.0336
	[M+H-C10H20]+88.0757	[M+H-C10H20-H2O]+68.0757
	[M+H-C10H20-H2O]+70.659	Amide compounds
Amide compounds	[M+H]+	177.0596, [M+H-C4H8]+175.0475
	[M+H-C4H8]+175.0475	[M+H-C4H8-C4H8]+142.0861
	[M+H-C2H5O]+175.0475	[M+H-C2H5O-C2H5]+142.0861
	[M+H-C10H20]+88.0757	[M+H-C10H20-H2O]+68.0757
	[M+H-C10H20-H2O]+70.659	Amide compounds
Amino acids	[M+H]+	171.1409, [M+H-H2O]+100.0764
	[M+H-C4H8]+159.1490	[M+H-C4H8-C4H8]+129.9960
	[M+H-C2H5O]+142.0861	[M+H-C2H5O-C2H5]+114.0939
	[M+H-C10H20]+88.0757	[M+H-C10H20-H2O]+68.0757
	[M+H-C10H20-H2O]+70.659	Amide compounds
Amide compounds	[M+H]+	177.0596, [M+H-C4H8]+175.0475
	[M+H-C4H8]+175.0475	[M+H-C4H8-C4H8]+142.0861
	[M+H-C2H5O]+175.0475	[M+H-C2H5O-C2H5]+142.0861
	[M+H-C10H20]+88.0757	[M+H-C10H20-H2O]+68.0757
	[M+H-C10H20-H2O]+70.659	Amide compounds
Amino acids	[M+H]+	171.1409, [M+H-H2O]+100.0764
	[M+H-C4H8]+159.1490	[M+H-C4H8-C4H8]+129.9960
	[M+H-C2H5O]+142.0861	[M+H-C2H5O-C2H5]+114.0939
	[M+H-C10H20]+88.0757	[M+H-C10H20-H2O]+68.0757
	[M+H-C10H20-H2O]+70.659	Amide compounds

Notes: The name of the compound is the same as Table 1.

Figure 1: TIC in methanol extract from spoiled Grass carp under the positive ion mode.
took off NH$_2$ and COOH, redundant H reset to the other atoms), and to produce fragment ions at m/z 298.1756; the second one was to take off the peptide chain and lost C$_6$H$_{13}$NO (115 u), then to create fragment ions at m/z 142.0863, 124.0757 and 96.0814 m/z. Its possible fragment pathways were shown in Figure 3.

Amines: Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Molecular ion of Amines is formed by loss of the electrons of N atom. β-fragment is the most fragment pathway in collision induced dissociation. R group (substituent group) of fat amine was lost easily, CH$_2$ = CH$_2$ (28u) group of ring amine was lost easily, too, and HCN (27u) of aromatic amine was lost easily [25]. 10 amine compounds were analyzed and identified in this experiment. Using 1,8-Diaminoctane as an example, it was produced the proton molecular ion peak [1,8-Diaminoctane +H]$^+$ (m/z145.1695) by electrospray ionization. The MS2 spectrum shown in Figure 4. In MS/MS spectrum, under collision induced dissociation, the [1,8-Diaminoctane +H]$^+$ lost C$_3$H$_9$N (59 u) firstly to produce ions at m/z 86.09, then the fragment ions fractured to lose NH$_3$ (17u) so as produced ions at m/z 69.07. Or C$_5$H$_{11}$N (85 u) was lost to produce fragment ions at m/z 60.08 ions which is stable and highly abundant. Its possible fragment pathways were shown in Figures 4 and 5.
Amide: Amide is a special form of amines; the simplest amides are derivatives of ammonia wherein one hydrogen atom has been replaced by an acyl group. Amide can also be considered as compounds that hydroxyl group of carboxylic acid molecules are replaced by amino or phenyl group. Its fragment pathway was similar to carboxylic acid, McLafferty rearrangement is the important pathway among them [26]. 12 amide compounds were analyzed and indentified in this experiment. For example, Propamocarb produced the proton molecular ion peak [Propamocarb+H]^+ (m/z 189.1599) by electrospray ionization. The MS^2 spectrum is shown in Figure 6.

In MS/MS spectrum, under collision induced dissociation, the [Propamocarb+H]^+ ions lost C_2H_6NH (45u) firstly to produce ions at m/z144.1384, then the fragment ions continue to fractured to lose CH_3 (14u) and CH_2O (56u)and formed ions at m/z130.0867 and m/z84.0819. Its possible fragment pathways were shown in Figure 7.

Nitro compounds: Nitro compounds are organic compounds that contain one or more nitro functional groups (−NO₂), mainly including aliphatic and aromatic nitro compounds. It has a little or no proton molecular ion peak. The ion peaks of M-OH, M-CO and M-NO were easy produced in MS/MS spectrum by rearrangement of r-hydrogen atoms [27]. 2 nitro compounds were identified in this experiment. For example, the obvious proton molecular ion peak was not produced by 4-Methoxy-N-methyl-2-nitroaniline of electrospray ionization. The MS^2 spectrum is shown in Figure 8.

In MS/MS spectrum, under collision induced dissociation the [4-Methoxy-N-methyl-2-nitroaniline +H]^+ ions lost C_6H_5 (45u) firstly to produce ions at m/z78.0924, then the unstable ions at m/z127.0157 was formed by CO (28u) lost and ions at m/z 98.9851 was formed by C_H_3 (28u) lost. Its possible fragment pathways were shown in Figure 9.

Other compounds containing N: 13 other nitrogen compounds which include 12 N-heterocycles and 1 nitriles were identified in this experiment. Although the fragment pathways of other nitrogen compounds are complicated, there is a general rule in the secondary mass spectrometry, that [M+H]^+ was broken into different daughter ions, by the loss of neutral molecules such as H_2O, 2H_2O, 3H_2O, CH_3OH, 2CH_3OH, 3CH_3OH, CO, CO_2, CHNH_2, CHCH_2, NO, NH_3 would be lost [28]. The details are shown in Table 2.

Non-nitrogenous compounds: 3 Non-nitrogenous compounds were identified in this experiment. Non-nitrogenous compounds were not identified in fresh fish and in the prophase of fish preservation processing, non-nitrogenous compounds which were not identified were produced of loss of N compounds in the process of preservation (Specific data published article). Thus, the quantity of non-nitrogenous compounds (type and quantity) can be used as an index of fresh fish. For example, 4-Acetyl-4-methylheptanedioic acid proton molecular ion peak [4-Acetyl-4-methylheptanedioic acid +H]^+ (m/z 217.1071) was produced by electrospray ionization. The MS^2 spectrum is shown in Figure 10.
Figure 8: MS² spectrum of 4-Methoxy-N-methyl-2-nitroaniline under positive ion mode.

Figure 9: Fragmentation pathways of 4-Methoxy-N-methyl-2-nitroaniline under positive ion mode.

Figure 10: MS² spectrum of 4-Acetyl-4-methylheptanedioic acid under positive ion mode.

Figure 11: Fragmentation pathways of 4-Acetyl-4-methylheptanedioic acid under positive ion mode.
In MS/MS spectrum, the [4-Acetyl-4-methylheptanedioic acid +H]+ ions first lost CH3COOH (60u) to produce ions at m/z 256.9781 by collision induced dissociation, then the fragment ions lost COOH (45u) to produce ions at m/z 211.0450 and CH3 (28 u) continued to fractured to produce ions at m/z 83.0514. Or it may lose CH2O, (44u) to produce ions at m/z 173.0791. Its possible fragment pathways were shown in Figure 11.

Conclusion

46 kinds of monomeric compounds has which 3 kinds of non-nitrogenous compounds, 43 nitrogenous compounds in bad grass carp were determined by HPLC-Q-TOF-MS. 43 nitrogenous compounds includes 6 kinds of amino acids (2 kinds of α-amino acids), 10 kinds of amines, 12 kinds of amide compounds, 2 kinds of nitro compounds, 12 kinds of heterocyclic nitrogenous compounds and 1 kinds of nitriles compound.

Compared with the low-resolution MS methods such as quadrupole, triple quadrupole and ion trap mass spectrometry, HPLC-Q-TOF-MS has relative high resolution and the extraction functions of ion characteristics, it can measure mass of both parent ion and fragment ions accurately. And it can provide selectivity because it has ability to discriminate peak which has same nominal masses but different exact masses between interference and mass peaks having similar [29,30]. Consequently, the role of Q-TOF MS/MS instruments has high efficiency on identifying non-target compounds in complex matrices when the reference compounds were unavailable [29,30].

HPLC-Q-TOF-MS has less complex pretreatment such as excessive chromatographic separation and simplifies the research process, increases the efficiency of analysis [30]. For fresh materials like Grass carp, it is difficult to obtain monomer compounds of high purity by traditional extraction, separation and purification and is easy to decompose and polymerize the compounds in traditional one. Therefore, HPLC-Q-TOF-MS used have important significance for studying monomeric compounds.

Acknowledgement

This work is part of the research projects of Guangdong Science and technology (2015B020200001) and National High Technology Research and Development Program of China (2013AA102208). In addition, thanks to Huang haoshen (a student of Guangdong Pharmaceutical University in the class of 2012) for performing TOF-MS in the study.

References

1. Yang XX, Zhang MH, Xie JG (2012) Composing of fatty acid of Ctenopharyngodon idella. GC-MS. Guangzhou Chem Industry 11:135-137.
2. Song X, Li SF, Wang CH, Xu JW, Yang QL (2009) Grass carp (Ctenopharyngodon idella) genetic structure analysis among native populations in China and introduced populations in USA, Europe and Japan based on mitochondrial sequence. Acta Hydrobiol Sin 33: 709-716.
3. Stephan M, Hobsdawn P (2013) Australian fisheries and aquaculture statistics. Fisheries Research and 2014.
4. Cheng JH, Sun DW, Ou JH, Pu HB, Zhang XC, et al. (2016) Developing a multispectral imaging for simultaneous prediction of freshness indicators during chemical spoilage of grass carp fish fillet. Journal of Food Engineering 192: 9-17.
5. Alishahi A, Alder M (2012) Applications of chitosan in the seafood industry and aquaculture: a review. Food Bioprocess Technol 3:817-830.
6. Ghaly AE, Dave D, Budge S, Brooks M (2010) Fish spoilage mechanisms and preservation techniques. review. Am. J. Appl. 7: 859-877.
7. Qin N, Li DP, Hong H (2016) Effects of different stunning methods on the flesh quality of grass carp(Ctenopharyngodon idella) fillets stored at 4°C. Food Chem 201: 131-138.
8. Ryder JM (2002) Determination of adenosine triphosphate and its breakdown products in fish muscle by high-performance liquid chromatography. J Agric Food Chem 33:676-680.
9. Özogul F, Gökbütlü C, ÖzoguY, Özyurt G (2006) Biogenic amine production and nucleotide ratios in gutted wild sea bass (Dicentrarchus labrax) stored in ice, wrapped in aluminum foil and wrapped in cling film at 4°C. Food Chem 98:76-84.
10. ÖzoguY, Özogul F (2004) Effects of slaughtering methods on sensory, chemical and microbiological quality of rainbow trout (Onchorhynchus mykiss) stored in ice and MAP. Eur Food Res Techno 219:211-216.
11. Song Y, Liu L, Shen H, You J, Luo Y (2011) Effect of sodium alginat-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control 22: 608-615.
12. Hong H, Luo Y, Zhou Z, Shen H (2012) Effects of low concentration of salt and sucrose on the quality of bighead carp (Aristichthys nobilis) fillets stored at 4°C. Food Chem 133: 102-107.
13. Wang H, Luo Y, Huang H, Xu Q (2014) Microbial succession of grass carp (Ctenopharyngodon idella) fillets during storage at 4°C and its contribution to biogenic amines' formation. Int J Food Microbiol 190: 66-71.
14. Wang H, Luo Y, Yin X, Wu H, Bao Y, et al. (2014) Effects of salt concentration on biogenic amine formation and quality changes in grass carp (Ctenopharyngodon idella) fillets stored at 4°C and 20°C. J Food Protect 77: 796-804.
15. Seie V, Sloth J, Holmetid B, Valdersnes S, Skov K, et al. (2014) Arsenic-containing fatty acids and hydrocarbons in marine oils - determination using reversed-phase HPLC-IP-MS and HPLC-Q-TOF-MS. Talanta 121: 89-96.
16. Guo P, Qi YJ, Zhu CH, Wang Q (2015) Purification and identification of antioxidant peptides from cherry (Prunus pseudocerasus Lind.) seeds. J Funct Foods 19: 394-403.
17. Zhang MX, Wang XC, Liu Y, Xu XL, Zhou GH (2012) Isolation and identification of flavour peptides from Puffer fish (Takifugu obscurus) muscle using an electronic tongue and MALDI-TOF/TOF/MS. Food Chem 135: 1463-1470.
18. Cheng XL, Wei F, Xiao XY, Zhao YY, Shi Y, et al. (2012) Identification of five gelatin by ultra performance liquid chromatography/time-of-flight mass spectrometry (UPLC-Q-TOF-MS) using principal component analysis. J Pharm Biomed Anal 62: 191-195.
19. Zhang XP, Jiang KZ, Lv HQ, Nie J, Li ZG (2015) Identification and characterization of major chemical compounds in the ethyl acetate extract from ficus pandurata hance aerial roots by HPLC-Q-TOF-MS. Journal of Chinese Mass Spectrometry 4:310-320.
20. Yan Y, Chai CZ, Wang DW, Yin YY, Dan NZ, et al. (2013) HPLC-DAD-Q-TOF-MS / MS analysis and HPLC quantitation of chemical constituents in traditional Chinese medicinal formula Ge-Gen Decotion. J Pharm Biomed Anal 80: 192.
21. Zhou JL, Qi LW, Li P (2009) Herbal medicine analysis by liquid chromatography/time-of-flight mass spectrometry. J Chromatog A 1216: 7562-7594.
22. Qu CL, Zhang HQ, Zhang HR, Bai YP, Wen H (2008) Studies on fragmentation pathways of amino acids and their interactions with ginsenoside Rb3 by spectrospray ionization mass spectrometry. J Chromatog 989: 11-20.
23. Huang YF, Hu J (2010) Simultaneous analysis of twenty free amino acids in tobacco using liquid chromatography-electrospray ionization/offset trap tandem mass spectrometry. Chin J Chromatog 6: 615-622.
24. Wang Y, Li SM, He MW (2014) Fragment characterization and utility of ammonium ions for peptide identification by MALDI TOF/TOF spectrometry. Chinese J Anal Chem 7: 1010-1016.
25. Daniel D, Dos Santos VB, Vidal DT, Do Lago CL (2015) Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry. J Chromatog A 1416: 121-126.
26. Wu YL, Chen RX, Zhu Y, Zhao J, Yang T (2015) Simultaneous determination of sixteen amide fungicides in vegetables and fruits by dispersive solid phase extraction and liquid chromatography - tandem mass spectrometry. J Chromatog B 989: 11-20.
27. Zoran K, Irena G, Reinholdt V, Magda C, Willy M (2012) Liquid chromatography tandem mass spectrometry method for characterization of mono-aromatic nitro-compounds in atmospheric particulate matter. J Chromatog 1268: 35-43.
28. Sun Y, Li H, Hu J, Li J, Fan YW, et al. (2013) Qualitative and quantitative
analysis of phenolics in *Tetrastigma hemsleyanum* and their antioxidant and anti-proliferative activities. *J Agric Food Chem* 61: 10507-10515.

29. Fu Y, Gao W, Yu JJ, Chen J, Li HJ, et al. (2012) Characterization and identification of baccharane glycosides in Impatientis Semen by rapid-resolution liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. *J Pharm Biomed Anal* 65: 64-71.

30. Chen XF, Wu HT, Tan GG, Zhu ZY, Chai YF (2011) Liquid chromatography coupled with time-of-flight and ion trap mass spectrometry for qualitative analysis of herbal medicines. *J Pharmaceut Ana* 4:235-245.