From passengers to drivers
Impact of bacterial transposable elements on evolvability

Csaba Pál* and Balázs Papp
Synthetic and Systems Biology Unit; Institute of Biochemistry; Biological Research Center; Szeged, Hungary

Microbes have several mechanisms that promote evolutionary adaptation in stressful environments. The corresponding molecular pathways promote diversity through modulating rates of recombination, mutation or influence the activity of transposable genetic elements. Recent experimental studies suggest an evolutionary conflict between these mechanisms. Specifically, presence of mismatch repair mutator alleles in a bacterial population dramatically reduced fixation of bacterial insertion sequence elements. When rare, these elements had only a limited impact on adaptive evolution compared with other mutation-generating pathways. IS elements may initially spread like molecular parasites, but once present in many copies in a given genome, they might become generators of novelty during bacterial evolution.

Insertion sequence (IS) elements are small transposable genetic elements widely distributed in bacterial genomes.1 They are generally very short and contain only the genetic information essential for their transposition.2 By inserting to new genomic locations, they frequently inactivate or upregulate flanking genes. By inducing recombination events, they also cause deletions and inversions of large genomic segments.3 Several lines of observations point to the direction that the net effects of transposon insertions are harmful for the host.3 First, direct experimental evidences indicate that enhanced mobilization of transposable elements are generally deleterious.4,6 Second, most IS families are found only in a limited number of species.5,7 However, within any one genome, they are typically present in many copies which are very similar to each other.7 This is reminiscent to the evolutionary dynamics of other genomic parasites,8 such as retroviruses. Both retroviruses and IS elements have entered bacterial genomes only very recently and spread through horizontal gene transfer across species. Third, to minimize damage they may cause during insertions, these elements have become suppressed by host regulatory factors,9 or reside in genomic regions where they cause less harm.6

If harmful, why are they present, even if transiently, in bacterial genomes? One answer may be that in sexual populations, IS elements spread as selfish entities10 even if they deliver no beneficial effects.11 Indeed, these elements are nearly always autonomous, i.e., the genes necessary for transpositions are encoded by the elements and not by the host genome. One prediction of the theory is that bacterial species with numerous IS elements should also have more genetic exchange.12

A preliminary analysis failed to find strong support for this idea. Recently, Multi Locus Sequence Typing (MLST) data sets of bacterial and archaeal species were analyzed to explore the ecological and phylogenetic determinants of recombination frequency differences across species.13 The authors compiled a data set on the estimated ratio of nucleotide changes as the result of recombination relative to point mutations13 for 48 species. In agreement with previous studies, the data suggest that homologous recombination rates vary widely between species. Another work6 reconstructed the distribution of

Keywords: insertion sequence elements, evolution of mutation rate

Submitted: 12/19/12

Accepted: 01/15/13

Citation: Pál C, Papp B. From passengers to drivers: Impact of bacterial transposable elements on evolvability. Mobile Genetic Elements 2013; 3:e23617; http://dx.doi.org/10.4161/mge.23617

*Correspondence to: Casaba Pál; Email: pal.csaba@brc.mta.hu

Commentary to: Fehér T, Bogos B, Méhi O, Fekete G, Csörgo B, Kovács K, et al. Competition between transposable elements and mutator genes in bacteria. Mol Biol Evol 2012; 29:3153–9; PMID:22527906; http://dx.doi.org/10.1093/molbev/msq122
First, we need to understand the evolutionary forces driving gradual accumulation of these elements in nascent bacterial genomes. Second, given the wealth of other molecular pathways that boost bacterial mutation rate under times of stress, the interplay between them must be considered. To what extent does the presence of one such mechanism in the population influence the evolutionary fate of IS elements? Here we briefly summarize our current, but still rather limited state of knowledge on these issues.

When a given family of IS elements invades an initially transposon-free bacterial genome, the process is expected to start with a single or very few copies. Do they produce a sufficient number of mutations to be favored by selection? Answering this question is not straightforward, as it requires comparison of evolvability of genotypes with differences in the number of residing IS elements only.

Our lab took advantage of the availability of a *Escherichia coli* MDS42, a strain with a reduced genome devoid of all mobile genetic elements and cryptic virulence factors. This strain has several
mutagenesis hinders evolution of constitutive mutators, and sex promotes mutational robustness. Future studies should investigate the interplay between these systems.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
This work and related studies were supported by grants from European Research Council, Wellcome Trust and the “Lendület Program” of the Hungarian Academy of Sciences.

References
1. Mahillon J, Chandler M. Insertion sequences. Microbiol Mol Biol Rev 1998; 62:725-74; PMID:9729508
2. Siguer P, File J, Chandler M. Insertion sequences in prokaryotic genomes. Curr Opin Microbiol 2006; 9:526-31; PMID:16935554; http://dx.doi.org/10.1016/j.mib.2006.08.005
3. Sawyer SA, Dykhuizen DE, DuBose RF, Green L, Mutangadura-Mhlanga T, Wolczyk DF, et al. Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics 1987; 115:51-63; PMID:3030884
4. Wilke CM, Adams J. Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics 1992; 131:31-42; PMID:1317316
5. Elena SF, Ekunwe L, Hajela N, Oden SA, Lenki RE. Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetics 1998; 102-103:349-58; PMID:9720287; http://dx.doi.org/10.1093/genetics/131.3.349
6. Touchon M, Rocha EP. Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol 2007; 24:969-81; PMID:17231779; http://dx.doi.org/10.1093/molbev/msm014

This is a potentially problematic result for the mutator theory of transposable elements. IS elements may have to reach a critical number in the host genome to have a substantial impact on genome evolution. Prior to that point, bacteria could adapt more efficiently by other means, including defective MMR alleles. At the moment, we can only speculate how transposition rate depends on IS copy number and how the transition from a selfish element to a mutator beneficial for the host can take place in natural populations (Fig. 2).

Another, largely neglected issue is the long-term consequences of IS elements and other mutator alleles on survival. Once a mutator allele has spread in a bacterial population and stressful conditions are over, they will generate largely harmful mutations. Due to this long-term disadvantage, MMR deficient mutator alleles arise frequently, but low mutation rate can be restored through gain of functional variants through horizontal transfer. IS elements may have a serious advantage over constitutive mutator alleles. They are activated only under stressful conditions, and hence they may not enhance mutation load substantially.

These issues represent only the tip of the iceberg. Evolutionists suggested several key candidate molecular systems driving bacterial evolution. Pioneering works claim that mutators and sex are conflicting adaptive strategies, stress-induced mutagenesis hinders evolution of constitutive mutators, and sex promotes mutational robustness. Future studies should investigate the interplay between these systems.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
This work and related studies were supported by grants from European Research Council, Wellcome Trust and the “Lendület Program” of the Hungarian Academy of Sciences.

References
1. Mahillon J, Chandler M. Insertion sequences. Microbiol Mol Biol Rev 1998; 62:725-74; PMID:9729508
2. Siguer P, File J, Chandler M. Insertion sequences in prokaryotic genomes. Curr Opin Microbiol 2006; 9:526-31; PMID:16935554; http://dx.doi.org/10.1016/j.mib.2006.08.005
3. Sawyer SA, Dykhuizen DE, DuBose RF, Green L, Mutangadura-Mhlanga T, Wolczyk DF, et al. Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics 1987; 115:51-63; PMID:3030884
4. Wilke CM, Adams J. Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics 1992; 131:31-42; PMID:1317316
5. Elena SF, Ekunwe L, Hajela N, Oden SA, Lenki RE. Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetics 1998; 102-103:349-58; PMID:9720287; http://dx.doi.org/10.1093/genetics/131.3.349
6. Touchon M, Rocha EP. Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol 2007; 24:969-81; PMID:17231779; http://dx.doi.org/10.1093/molbev/msm014
7. Wagner A. Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes. Mol Biol Evol 2006; 23:723-33; PMID:16373392; http://dx.doi.org/10.1093/molbev/msl085

8. Wagner A. Transposable elements as genomic diseases. Mol BioSyst. 2009 Jan;5(1):32-5; PMID:19981928; http://dx.doi.org/10.1039/b814624c

9. Levin HL, Moran JV. Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 2011; 12:615-27; PMID:21850042; http://dx.doi.org/10.1038/nrg3039

10. Orgel LE, Crick FH. Selfish DNA: the ultimate parasite. Nature 1980; 284:604-7; PMID:7366731; http://dx.doi.org/10.1038/303633a0

11. Hickey DA. Evolutionary dynamics of transposable elements in prokaryotes and eukaryotes. Genetics 1992; 86:269-74; PMID:1334911; http://dx.doi.org/10.1017/BF00133725

12. Zeyl C, Bell G, Green DM. Sex and the spread of transposable elements in prokaryotes and eukaryotes. Mobile Genetic Elements Volume 3 Issue 1

13. Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME J 2009; 3:199-208; PMID:18830278; http://dx.doi.org/10.1038/ismej.2008.93

14. Siguier P, Perochon J, Lestrade L, Mahillon J, Nakayama K, Terajima J, et al. Inference of the impact of insertion sequence (IS) elements on bacterial genome diversity through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res 2009; 19:1809-16; PMID:19564451; http://dx.doi.org/10.1101/gr.089615.108

15. Chao L, Vargas C, Spear BB, Cox EC. Transposable elements in prokaryotes and eukaryotes. Genetica 1992; 86:269-74; PMID:1334911; http://dx.doi.org/10.1017/BF00133725

16. Frost LS, Leplae R, Summers AO, Toussaint A. The Origins of Genome Architecture (Sinauer Press, 2007)

17. Osuka T, Ogura Y, Asadulghani M, Ohnishi M, Ooka T, Ogura Y, Asadulghani M, Ohnishi M, Nakayama K, Terajima J, et al. Inference of the impact of insertion sequence (IS) elements on bacterial genome diversity through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res 2009; 19:1809-16; PMID:19564451; http://dx.doi.org/10.1101/gr.089615.108

18. Schneider D, Lenski RE. Dynamics of insertion sequence elements during experimental evolution of bacteria. Res Microbiol 2004; 155:339-27; PMID:15207863; http://dx.doi.org/10.1016/j.resmic.2003.12.008

19. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 2009; 461:1243-7; PMID:19838166; http://dx.doi.org/10.1038/nature08480

20. Lynch M. The Origins of Genome Architecture (Sinauer Press, 2007)

21. Stoebel DM, Dorman CJ. The effect of mobile element IS10 on experimental regulatory evolution in Escherichia coli. Mol Biol Evol 2010; 27:2105-12; PMID:20400481; http://dx.doi.org/10.1093/molbev/msq101

22. Pósfai G, Plunkett G 3rd, Fehér T, Frisch D, Keil GM, et al. Competition between transposable elements and their hosts. Nat Rev Genet 2005; 3:722-32; PMID:15986832; http://dx.doi.org/10.1038/nrg14624c

23. Fehér T, Bogos B, Méhi O, Fekete G, Csörgo B, et al. Emergent properties of reduced-size structural polymorphisms in experimental populations of Saccharomyces cerevisiae. Genetics 1996; 143:1567-77; PMID:8844146

24. Aertsen A, Michiels CW. Diversify or die: generation of diversity in response to stress. Crit Rev Biochem Mol Biol. 2009 Jan;44(1):32-5. PMID:16511495; http://dx.doi.org/10.1080/10388410802488498