A characterization of the family of secant lines to a hyperbolic quadric in $PG(3, q)$, q odd

Puspendu Pradhan Bikramaditya Sahu

January 6, 2022

Abstract

We give a combinatorial characterization of the family of lines of $PG(3, q)$ which meet a hyperbolic quadric in two points (the so called secant lines) using their intersection properties with the points and planes of $PG(3, q)$.

Keywords: Projective space, Hyperbolic quadric, Secant line, Combinatorial characterization

AMS 2010 subject classification: 05B25, 51E20

1 Introduction

Throughout, q is a prime power. Let $PG(3, q)$ denote the three-dimensional Desarguesian projective space defined over a finite field of order q. Characterizations of the family of external or secant lines to an ovoid/quadric in $PG(3, q)$ with respect to certain combinatorial properties have been given by several authors. A characterization of the family of secant lines to an ovoid in $PG(3, q)$ was obtained in [7] for q odd and in [4] for $q > 2$ even, which was further improved in [6] for all $q > 2$. A characterization of the family of external lines to a hyperbolic quadric in $PG(3, q)$ was given in [5] for all q (also see [9] for a different characterization in terms of a point-subset of the Klein quadric in $PG(5, q)$) and to an ovoid in $PG(3, q)$ was obtained in [6] for all $q > 2$. One can refer to [1, 2, 11, 12] for characterizations of external lines in $PG(3, q)$ with respect to quadric cone, oval cone and hyperoval cone. Here we give a characterization of the secant lines with respect to a hyperbolic quadric in $PG(3, q)$, q odd.

Let Q be a hyperbolic quadric in $PG(3, q)$, that is, a non-degenerate quadric of Witt index two. One can refer to [8] for the basic properties of the points, lines and planes of $PG(3, q)$ with respect to Q. Every line of $PG(3, q)$ meets Q in 0, 1, 2 or $q + 1$ points. A line of $PG(3, q)$ is called secant with respect to Q if it meets Q in 2 points. The lines of $PG(3, q)$ that meet Q in $q + 1$ points are called generators of Q. Each point of Q lies on two generators. The quadric Q consists of $(q + 1)^2$ points and $2(q + 1)$ generators.

The total number of secant lines of $PG(3, q)$ with respect to Q is $q^2(q + 1)^2/2$. We recall the distribution of secant lines with respect to points and planes of $PG(3, q)$ which plays an important role in this paper. Each point of Q lies on q^2 secant lines. Each point
of $\text{PG}(3, q) \setminus \mathcal{Q}$ lies on $q(q + 1)/2$ secant lines. Each plane of $\text{PG}(3, q)$ contains q^2 or $q(q + 1)/2$ secant lines. If a plane contains q^2 secant lines, then every pencil of lines in that plane contains 0 or q secant lines. If a plane contains $q(q + 1)/2$ secant lines, then every pencil of lines in that plane contains $(q - 1)/2, (q + 1)/2$ or q secant lines.

In this paper, we prove the following theorem when q is odd.

Theorem 1.1. Let \mathcal{S} be a family of lines of $\text{PG}(3, q)$, q odd, for which the following properties are satisfied:

(P1) There are $q(q + 1)/2$ or q^2 lines of \mathcal{S} through a given point of $\text{PG}(3, q)$. Further, there exists a point which is contained in $q(q + 1)/2$ lines of \mathcal{S} and a point which is contained in q^2 lines of \mathcal{S}.

(P2) Every plane π of $\text{PG}(3, q)$ contains $q(q + 1)/2$ or q^2 lines of \mathcal{S}. Further,

(P2a) if π contains q^2 lines of \mathcal{S}, then every pencil of lines in π contains 0 or q lines of \mathcal{S}.

(P2b) if π contains $q(q + 1)/2$ lines of \mathcal{S}, then every pencil of lines in π contains $(q - 1)/2, (q + 1)/2$ or q lines of \mathcal{S}.

Then either \mathcal{S} is the set of all secant lines with respect to a hyperbolic quadric in $\text{PG}(3, q)$, or the set of points each of which is contained in q^2 lines of \mathcal{S} form a line l of $\text{PG}(3, q)$ and \mathcal{S} is a hypothetical family of $q^3 + q^3 + 2q^2\over 2$ lines of $\text{PG}(3, q)$ not containing l.

2 Combinatorial results

Let \mathcal{S} be a set of lines of $\text{PG}(3, q)$ for which the properties (P1), (P2), (P2a) and (P2b) stated in Theorem 1.1 hold. A plane of $\text{PG}(3, q)$ is said to be tangent or secant according as it contains q^2 or $q(q + 1)/2$ lines of \mathcal{S}. For a given plane π of $\text{PG}(3, q)$, we denote by \mathcal{S}_π the set of lines of \mathcal{S} which are contained in π. By property (P2), $|\mathcal{S}_\pi| = q^2$ or $q(q + 1)/2$ according as π is a tangent plane or not.

We first show that both tangent and secant planes exist. We call a point of $\text{PG}(3, q)$ black if it is contained in q^2 lines of \mathcal{S}.

Lemma 2.1. Let l be a line of $\text{PG}(3, q)$. Then the number of tangent planes through l is equal to the number of black points contained in l.

Proof. Let t and b, respectively, denote the number of tangent planes through l and the number of black points contained in l. We count in two different ways the total number of lines of $\mathcal{S} \setminus \{l\}$ meeting l. Any line of \mathcal{S} meeting l is contained in some plane through l. If $l \in \mathcal{S}$, then we get

$$t(q^2 - 1) + (q + 1 - t) \left(\frac{q(q + 1)}{2} - 1 \right) = b(q^2 - 1) + (q + 1 - b) \left(\frac{q(q + 1)}{2} - 1 \right).$$

If $l \notin \mathcal{S}$, then we get

$$tq^2 + (q + 1 - t) \frac{q(q + 1)}{2} = bq^2 + (q + 1 - b) \frac{q(q + 1)}{2}.$$

In both cases, it follows that $(t - b)\frac{q^2 - q}{2} = 0$ and hence $t = b$. \qed
Corollary 2.2. Both tangent and secant planes exist.

Proof. By property (P1), let \(x \) (respectively, \(y \)) be a point of \(PG(3, q) \) which is contained in \(q^2 \) (respectively, \(\frac{q(q+1)}{2} \)) lines of \(S \). Taking \(l \) to be the line through \(x \) and \(y \), the corollary follows from Lemma 2.1 using the facts that \(x \) is a black point but \(y \) is not a black point.

As a consequence of Lemma 2.1 we have the following.

Corollary 2.3. Every line of a tangent plane contains at least one black point.

Corollary 2.4. Every black point is contained in some tangent plane.

2.1 Tangent planes

Note that, by property (P2a), each point of a tangent plane \(\pi \) is contained in no line or \(q \) lines of \(S_\pi \).

Lemma 2.5. Let \(\pi \) be a tangent plane. Then there are \(q^2 + q \) points of \(\pi \), each of which is contained in \(q \) lines of \(S_\pi \). Equivalently, there is only one point of \(\pi \) which is contained in no line of \(S_\pi \).

Proof. Let \(A_\pi \) (respectively, \(B_\pi \)) be the set of points of \(\pi \) each of which is contained in no line (respectively, \(q \) lines) of \(S_\pi \). Then \(|A_\pi| + |B_\pi| = q^2 + q + 1 \). We show that \(|A_\pi| = 1 \) and \(|B_\pi| = q^2 + q \).

Observe that if \(l \) is a line of \(S_\pi \), then each of the \(q+1 \) points of \(l \) lies on \(q \) lines of \(S_\pi \) by property (P2a) and hence is contained in \(B_\pi \). Consider the following set of point-line pairs:

\[X = \{(x, l) : x \in B_\pi, l \in S_\pi, x \in l\}. \]

Counting \(|X| \) in two ways, we get \(|B_\pi| \times q = |X| = q^2 \times (q + 1) \). This gives \(|B_\pi| = q^2 + q \) and hence \(|A_\pi| = 1 \).

For a tangent plane \(\pi \), there is a unique point of \(\pi \) which is contained in no line of \(S_\pi \) by Lemma 2.5. We denote this unique point by \(p_\pi \) and call it the pole of \(\pi \).

Corollary 2.6. Let \(\pi \) be a tangent plane. Then the \(q+1 \) lines of \(\pi \) not contained in \(S_\pi \) are precisely the lines of \(\pi \) through the pole \(p_\pi \).

2.2 Secant planes

By property (P2b), each point of a secant plane \(\pi \) is contained in \(\frac{q-1}{2}, \frac{q+1}{2} \) or \(q \) lines of \(S_\pi \). For a secant plane \(\pi \), we denote by \(\alpha(\pi), \beta(\pi) \) and \(\gamma(\pi) \) the set of points of \(\pi \) which are contained in \(\frac{q-1}{2}, \frac{q+1}{2} \) and \(q \) lines of \(S_\pi \), respectively. Similarly, for a line \(l \) of a secant plane \(\pi \), we denote by \(\alpha(l), \beta(l) \) and \(\gamma(l) \) the set of points of \(l \) which are contained in \(\frac{q-1}{2}, \frac{q+1}{2} \) and \(q \) lines of \(S_\pi \), respectively. We have \(\alpha(l) = l \cap \alpha(\pi), \beta(l) = l \cap \beta(\pi) \) and \(\gamma(l) = l \cap \gamma(\pi) \).

Lemma 2.7. Let \(\pi \) be a secant plane and \(l \) be a line of \(\pi \). Then the following hold:

(i) If \(l \in S_\pi \), then \((|\alpha(l)|, |\beta(l)|, |\gamma(l)|) = (\frac{q-1}{2}, \frac{q+1}{2}, 2) \) or \((0, q, 1)\).
(ii) If \(l \notin S_\pi \), then \((|\alpha(l)|, |\beta(l)|, |\gamma(l)|) = (\frac{q+1}{2}, \frac{q-1}{2}, 0) \) or \((q, 0, 1)\).

Proof. We have \(|\alpha(l)| + |\beta(l)| + |\gamma(l)| = q + 1\), that is, \(|\gamma(l)| = q + 1 - |\alpha(l)| - |\beta(l)|\). We first assume that \(l \in S_\pi \). Counting the total number of lines of \(S_\pi \setminus \{l\} \) meeting \(l \), we get

\[
|\alpha(l)| \left(\frac{q-1}{2} - 1\right) + |\beta(l)| \left(\frac{q+1}{2} - 1\right) + |\gamma(l)|(q - 1) = |S_\pi| - 1 = \frac{q(q + 1)}{2} - 1.
\]

This gives

\[
|\alpha(l)| \left(\frac{q - 3}{2}\right) + |\beta(l)| \left(\frac{q - 1}{2}\right) + |\gamma(l)|(q - 1) = \frac{q^2 + q - 2}{2}.
\]

Putting the value of \(|\gamma(l)|\) in equation (1), we thus get

\[
|\alpha(l)| \left(\frac{q + 1}{2}\right) + |\beta(l)| \left(\frac{q - 1}{2}\right) = \frac{q(q - 1)}{2},
\]

that is,

\[
|\alpha(l)| \left(\frac{q + 1}{2}\right) = (q - |\beta(l)|) \left(\frac{q - 1}{2}\right).
\]

Since \(\frac{q+1}{2} \) and \(\frac{q-1}{2} \) are co-prime (being consecutive integers), it follows that \(\frac{q+1}{2} \) must divide \(q - |\beta(l)| \) and so

\[
|\beta(l)| \equiv q \mod \frac{q + 1}{2}.
\]

Since \(0 \leq |\beta(l)| \leq q + 1 \), we have \(|\beta(l)| = \frac{q-1}{2} \) or \(q \). Consequently, \((|\alpha(l)|, |\beta(l)|, |\gamma(l)|) = (\frac{q-1}{2}, \frac{q+1}{2}, 2)\) or \((0, q, 1)\). This proves (i).

Now assume that \(l \notin S_\pi \). If \(|\beta(l)| = q + 1\), then the numbers lines of \(S \) which are contained in \(\pi \) would be \((q + 1) \left(\frac{q+1}{2}\right)\) which is greater than \(|S_\pi| = \frac{q(q+1)}{2}\), a contradiction. So \(0 \leq |\beta(l)| \leq q \). Counting the total number of lines of \(S_\pi \setminus \{l\} \) meeting \(l \), we get

\[
|\alpha(l)| \left(\frac{q - 1}{2}\right) + |\beta(l)| \left(\frac{q + 1}{2}\right) + |\gamma(l)|q = |S_\pi| = \frac{q(q + 1)}{2}.
\]

Putting the value of \(|\gamma(l)|\) in equation (2), we get

\[
|\alpha(l)| \left(\frac{q + 1}{2}\right) + |\beta(l)| \left(\frac{q - 1}{2}\right) = \frac{q(q + 1)}{2},
\]

that is,

\[
|\beta(l)| \left(\frac{q - 1}{2}\right) = (q - |\alpha(l)|) \left(\frac{q + 1}{2}\right).
\]

If \(|\alpha(l)| = q\), then \(|\beta(l)| = 0\) and so \((|\alpha(l)|, |\beta(l)|, |\gamma(l)|) = (q, 0, 1)\). Suppose that \(|\alpha(l)| \neq q\). Since the integers \(\frac{q+1}{2} \) and \(\frac{q-1}{2} \) are co-prime, it follows that \(\frac{q+1}{2} \) divides \(|\beta(l)|\). Then the restriction on \(|\beta(l)|\) that \(0 \leq |\beta(l)| \leq q \) implies \(|\beta(l)| = 0 \) or \(\frac{q+1}{2} \). Considering all the possibilities, we get \((|\alpha(l)|, |\beta(l)|, |\gamma(l)|) = (\frac{q+1}{2}, \frac{q+1}{2}, 0)\) or \((q, 0, 1)\). This proves (ii).
Recall that an arc in the projective plane $PG(2, q)$ is a nonempty set of points such that no three of them are contained in the same line. A line of $PG(2, q)$ is called external or secant with respect to a given arc according as it meets the arc in 0 or 2 points. If q is odd, then the maximum size of an arc is $q + 1$. An oval is an arc of size $q + 1$.

Corollary 2.8. Let π be a secant plane. Then the following hold.

(a) The set $\gamma(\pi)$ is an arc in π.

(b) The lines of π, which are secant with respect to the arc $\gamma(\pi)$, are contained in S_π.

Proof. (a) Note that the set $\gamma(\pi)$ is nonempty. This follows from the fact that $|\gamma(l)| \geq 1$ for any line $l \in S_\pi$ (Lemma 2.7(i)). If there is a line l of π containing at least three points of $\gamma(\pi)$, then $|\gamma(l)|$ would be at least 3, which is not possible by Lemma 2.7.

(b) If l is a line of π containing two points of $\gamma(\pi)$, then $|\gamma(l)| = 2$ and hence l must be a line of S_π, which follows from Lemma 2.7. □

Lemma 2.9. Let π be a secant plane. If $|\gamma(\pi)| = k$, then $|\alpha(\pi)| = \frac{k(k-1)}{2}$.

Proof. By Lemma 2.7(i), each line of S_π contains either 1 or 2 points of $\gamma(\pi)$. Note that $|\gamma(l)| = 1$ for any line l of S_π which contains a unique point of $\gamma(\pi)$. For such a line l, we have $|\alpha(l)| = 0$ (follows from Lemma 2.7(i)) and hence l does not contain any point of $\alpha(\pi)$. Similarly, $|\gamma(l)| = 2$ for any line l of S_π which contains two points of $\gamma(\pi)$ and in that case, l contains $\frac{k-1}{2}$ points of $\alpha(\pi)$. Counting the cardinality of the set $Y = \{(x, l) : x \in \alpha(\pi), l \in S_\pi \text{ and } x \in l\}$, we get

$$|\alpha(\pi)| \times \frac{q-1}{2} = |Y| = 0 + \frac{k(k-1)}{2} \times \frac{q-1}{2}.$$

This gives $|\alpha(\pi)| = \frac{k(k-1)}{2}$. □

Lemma 2.10. For any secant plane π, the set $\gamma(\pi)$ is an oval in π and so $|\gamma(\pi)| = q + 1$. Further, S_π is precisely the set of lines of π which are secant with respect to $\gamma(\pi)$.

Proof. Let $|\gamma(\pi)| = k \geq 1$. In order to prove that $\gamma(\pi)$ is an oval in π, it is enough to show that $k = q + 1$ by Corollary 2.8(a). We have $|\alpha(\pi)| = \frac{k(k-1)}{2}$ by Lemma 2.9.

Fix a point $x \in \gamma(\pi)$ and let $l_1, l_2, \ldots, l_{q+1}$ be the $q + 1$ lines of π through x. Note that there are q lines of S_π through x. Since $\gamma(\pi)$ is a k-arc in π, there are $k - 1$ lines of S_π, say $l_1, l_2, \ldots, l_{k-1}$, through x each of which contains two points of $\gamma(\pi)$. There are $q - (k - 1)$ lines of S_π, say $l_k, l_{k+1}, \ldots, l_q$, each of which contains a unique point (namely, x) of $\gamma(\pi)$. The line l_{q+1} through x is not a line of S_π and contains one point (namely, x) of $\gamma(\pi)$. Since $l_i \in S_\pi$ for $1 \leq i \leq q$, we have $|\gamma(l_i)| = 2$ for $1 \leq i \leq k - 1$ and $|\gamma(l_i)| = 1$ for $k \leq i \leq q$. Then Lemma 2.7(i) implies that each of the lines $l_1, l_2, \ldots, l_{k-1}$ contains $\frac{q-1}{2}$ points of $\alpha(\pi)$ and each of the lines $l_k, l_{k+1}, \ldots, l_q$ contains no point $\alpha(\pi)$. Since $l_{q+1} \notin S_\pi$ and $|\gamma(l_{q+1})| = 1$, Lemma 2.7(ii) implies that the line l_{q+1} contains q points of $\alpha(\pi)$. Therefore, we get $|\alpha(\pi)| = (k-1) \times \frac{q-1}{2} + (q - (k-1)) \times 0 + q$. Thus, we have

$$(k - 1) \times \frac{q-1}{2} + q = \frac{k(k-1)}{2}.$$
On solving the above equation, we get $k = -1$ or $q + 1$. Since $k \geq 1$, we must have $k = q + 1$.

Since $\gamma(\pi)$ is an oval in π, the number of lines of π which are secant to $\gamma(\pi)$ is equal to $\frac{q(q+1)}{2} = |S_\pi|$. Therefore, by Corollary 2.3(b), S_π is precisely the set of secant lines to $\gamma(\pi)$. This completes the proof.

Corollary 2.11. Let π be a secant plane. Then $|\alpha(\pi)| = \frac{q^2 + q}{2}$ and $|\beta(\pi)| = \frac{q^2 - q}{2}$.

Proof. We have $|\gamma(\pi)| = q + 1$ by Lemma 2.10 and so $|\alpha(\pi)| = \frac{q^2 + q}{2}$ by Lemma 2.9. Since $|\alpha(\pi)| + |\beta(\pi)| + |\gamma(\pi)| = q^2 + q + 1$, it follows that $|\beta(\pi)| = \frac{q^2 - q}{2}$.

3 Black points

Recall that every point of $PG(3, q)$ is contained in q^2 or $\frac{q(q+1)}{2}$ lines of S by property (P1) and the black points are the ones which are contained in q^2 lines of S.

Lemma 3.1. If π is a secant plane, then the set of black points in π is contained in the oval $\gamma(\pi)$.

Proof. Let x be a black point in π. Suppose that x is not contained in $\gamma(\pi)$. Fix a line l of S_π through x and consider the $q + 1$ planes of $PG(3, q)$ through l. There are q^2 lines of S through x and each of them is contained in some plane through l. Since $x \notin \gamma(\pi)$, the plane π contains at most $\frac{q+1}{2}$ lines of S through x. Each of the remaining q planes through l contains at most q lines of S through x. This implies that there are at most $\frac{q+1}{2} + q(q - 1)$ lines of S through x. This is not possible, as $\frac{q+1}{2} + q(q - 1) < q^2$. So $x \in \gamma(\pi)$.

Corollary 3.2. Let π be a secant plane and x be a black point of π. Then there are exactly q lines of π through x which are contained in S.

Proof. This follows from the fact that x is contained in the oval $\gamma(\pi)$ by Lemma 3.1.

Lemma 3.3. The number of black points in a given secant plane is independent of that plane.

Proof. Let π be a secant plane and λ_π denote the number of black points in π. We count the total number of lines of S. The lines of S are divided into two types:

(I) the $\frac{q(q+1)}{2}$ lines of S which are contained in π,

(II) those lines of S which meet π in a singleton.

Let θ be the number of type (II) lines of S. In order to calculate θ, we divide the points of π into four groups:

(a) The λ_π black points contained in π: These points are contained in $\gamma(\pi)$ by Lemma 3.1. Out of the q^2 lines of S through such a point, q of them are contained in π.

6
(b) The \(|\gamma(\pi)| - \lambda_{\pi}\) points of \(\gamma(\pi)\) which are not black: Out of the \(\frac{q(q+1)}{2}\) lines of \(S\) through such a point, \(q\) of them are contained in \(\pi\).

(c) The points of \(\alpha(\pi)\): Out of the \(\frac{q(q+1)}{2}\) lines of \(S\) through such a point, \(\frac{q-1}{2}\) of them are contained in \(\pi\).

(d) The points of \(\beta(\pi)\): Out of the \(\frac{q(q+1)}{2}\) lines of \(S\) through such a point, \(\frac{q+1}{2}\) of them are contained in \(\pi\).

Using the values of \(|\alpha(\pi)|, |\beta(\pi)|, |\gamma(\pi)|\) obtained in Lemma 2.10 and Corollary 2.11, we get

\[
\theta = \lambda_{\pi} (q^2 - q) + (q + 1 - \lambda_{\pi}) \left(\frac{q(q+1)}{2} - q \right) + |\alpha(\pi)| \left(\frac{q(q+1)}{2} - \frac{q-1}{2} \right)
+ |\beta(\pi)| \left(\frac{q(q+1)}{2} - \frac{q+1}{2} \right)
= \lambda_{\pi} \left(\frac{q^2 - q}{2} \right) + q^3(q+1) + q^4 + q^2 + q
\]

Then \(|S| = \theta + \frac{q(q+1)}{2} = \lambda_{\pi} \left(\frac{q^2 - q}{2} \right) + \frac{q^4 + q^3 + q^2 + q}{2}\). Since \(|S|\) is a fixed number, it follows that \(\lambda_{\pi}\) is independent of the secant plane \(\pi\).

By Lemma 3.3, we denote by \(\lambda\) the number of black points in a secant plane. From the proof of Lemma 3.3, we thus have the following equation involving \(\lambda\) and \(|S|\):

\[
\lambda \left(\frac{q^2 - q}{2} \right) + \frac{q^4 + q^3 + q^2 + q}{2} = |S|.
\]

As a consequence of Lemma 3.1, we have

Corollary 3.4. \(\lambda \leq q + 1\).

Lemma 3.5. The number of black points in a given tangent plane is independent of that plane.

Proof. Let \(\pi\) be a tangent plane with pole \(p_{\pi}\) and \(\mu_{\pi}\) be the number of black points in \(\pi\). We shall apply a similar argument as in the proof of Lemma 3.3 by calculating \(|S|\). The lines of \(S\) are divided into two types: (I) the \(q^2\) lines of \(S\) which are contained in \(\pi\), and (II) those lines of \(S\) which meet \(\pi\) in a singleton. Let \(\theta\) be the number of type (II) lines of \(S\). In order to calculate \(\theta\), we divide the points of \(\pi\) into two groups:

(a) The \(\mu_{\pi}\) black points contained in \(\pi\),

(b) The \(q^2 + q + 1 - \mu_{\pi}\) points of \(\pi\) which are not black.

If \(x\) is a point of \(\pi\) which is different from \(p_{\pi}\), then Lemma 2.15 implies that the number of lines of \(S\) through \(x\) which are not contained in \(\pi\) is \(q^2 - q\) or \(\frac{q(q+1)}{2} - q\) according as \(x\) is a black point or not. We consider two cases depending on \(p_{\pi}\) is a black point or not.
Case-1: p_{π} is a black point. In this case, Lemma 2.5 implies that none of the q^2 lines of S through p_{π} is contained in π. Then

$$\theta = q^2 + (\mu_{\pi} - 1)(q^2 - q) + (q^2 + q + 1 - \mu_{\pi})\left(\frac{q(q+1)}{2} - q\right)$$

$$= \mu_{\pi}\left(\frac{q^2 - q}{2}\right) + \frac{q^4 + q}{2}.$$

Case-2: p_{π} is not a black point. In this case, none of the $\frac{q(q+1)}{2}$ lines of S through p_{π} is contained in π by Lemma 2.5. Then

$$\theta = \mu_{\pi}(q^2 - q) + \frac{q(q+1)}{2} + (q^2 + q - \mu_{\pi})\left(\frac{q(q+1)}{2} - q\right)$$

$$= \mu_{\pi}\left(\frac{q^2 - q}{2}\right) + \frac{q^4 + q}{2}.$$

In both cases, $|S| = \theta + q^2 = \mu_{\pi}\left(\frac{q^2 - q}{2}\right) + \frac{q^4 + 2q^2 + q}{2}$. Since $|S|$ is a fixed number, it follows that μ_{π} is independent of the tangent plane π. \hfill \Box

By Lemma 3.5 we denote by μ the number of black points in a tangent plane. From the proof of Lemma 3.5 we thus have the following equation involving μ and $|S|:

$$\mu\left(\frac{q^2 - q}{2}\right) + \frac{q^4 + 2q^2 + q}{2} = |S| \quad (4)$$

From equations (3) and (4), we have

$$\mu = \lambda + q. \quad (5)$$

Lemma 3.6. The following hold:

(i) Every line of $PG(3,q)$ contains 0, 1, 2 or $q+1$ black points.

(ii) If a line of $PG(3,q)$ contains exactly two black points, then it is a line of S.

Proof. Let l be a line of $PG(3,q)$ and b be the number of black points contained in l. Assume that $b > 2$. If there exists a secant plane π through l, then Lemma 3.1 implies that the line l contains $b \geq 3$ number of points of the oval $\gamma(\pi)$ in π, which is not possible. So all planes through l are tangent planes. Then all the $q+1$ points of l are black by Lemma 2.1. This proves (i).

If $b = 2$, then Lemma 2.1 implies that there exists a secant plane π through l. By Lemma 3.1 l is a secant line of π with respect to the oval $\gamma(\pi)$. So l is a line of S_{π} by the second part of Lemma 2.10 and hence l is a line of S. This proves (ii). \hfill \Box
4 Proof of Theorem 1.1

We shall continue with the notation used in the previous sections. We denote by \(\mathcal{H} \) the set of all black points of \(PG(3, q) \), and by \(\mathcal{H}_\pi \) the set of black points of \(PG(3, q) \) which are contained in a given plane \(\pi \).

Lemma 4.1. \(|\mathcal{H}| = \lambda(q + 1).\) In particular, \(|\mathcal{H}| \leq (q + 1)^2\).

Proof. Fix a secant plane \(\pi \). Let \(l \) be a line of \(\pi \) which is external to the oval \(\gamma(\pi) \). By Lemma 3.1, none of the points of \(l \) is black. Then, by Lemma 2.1, each plane through \(l \) is a secant plane. The number of black points contained in a secant plane is \(\lambda \). Counting all the black points contained in the \(q + 1 \) planes through \(l \), we get \(|\mathcal{H}| = \lambda(q + 1)\). Since \(\lambda \leq q + 1 \) by Corollary 3.4, we have \(|\mathcal{H}| \leq (q + 1)^2\). \(\square \)

The following result was proved by Bose and Burton in [3, Theorem 1]. We need it in the plane case.

Proposition 4.2. [3] Let \(B \) be a set of points of \(PG(n, q) \) such that every line of \(PG(n, q) \) meets \(B \). Then \(|B| \geq (q^n - 1)/(q - 1) \), and equality holds if and only if \(B \) is a hyperplane of \(PG(n, q) \).

Lemma 4.3. If \(\pi \) be a tangent plane, then \(\mathcal{H}_\pi \) contains a line.

Proof. By Corollary 2.3, every line of \(\pi \) meets \(\mathcal{H}_\pi \). By Proposition 4.2 (taking \(n = 2 \)), we have \(|\mathcal{H}_\pi| \geq q + 1 \), and equality holds if and only if \(\mathcal{H}_\pi \) itself is a line of \(\pi \).

Therefore, assume that \(|\mathcal{H}_\pi| > q + 1 \). Since \(q \) is odd, the maximum size of an arc in \(\pi \) is \(q + 1 \). So \(\mathcal{H}_\pi \) cannot be an arc and hence there exists a line \(l \) of \(\pi \) which contains at least three points of \(\mathcal{H}_\pi \). Then all points of \(l \) are black by Lemma 3.6(i) and so \(l \) is contained in \(\mathcal{H}_\pi \). \(\square \)

Lemma 4.4. Let \(\pi \) be a tangent plane. Then \(\mathcal{H}_\pi \) is either a line or union of two (intersecting) lines.

Proof. Since \(q \geq 3 \), using Lemmas 3.6(i) and 4.3 observe that there are only four possibilities for \(\mathcal{H}_\pi \):

1. \(\mathcal{H}_\pi \) is a line.
2. \(\mathcal{H}_\pi \) is the union of a line \(l \) and a point of \(\pi \) not contained in \(l \).
3. \(\mathcal{H}_\pi \) is the union of two (intersecting) lines.
4. \(\mathcal{H}_\pi \) is the whole plane \(\pi \).

We show that the possibilities (2) and (4) do not occur. If \(\mathcal{H}_\pi \) is the whole plane \(\pi \), then \(\mu = q^2 + q + 1 \) and so \(\lambda = q^2 + 1 \) by equation (3), which is not possible by Corollary 3.4.

Now suppose that \(\mathcal{H}_\pi \) is the union of a line \(l \) and a point \(x \) not on \(l \). If \(p_\pi \neq x \), then take \(t \) to be the line through \(p_\pi \) and \(x \) (note that \(p_\pi \) may or may not be on \(l \)). If \(p_\pi = x \), then take \(t \) to be any line through \(p_\pi = x \). Since \(\pi \) is a tangent plane, \(t \) is not a line of \(S_\pi \) by Corollary 2.6 and hence is not a line of \(S \). On the other hand, since \(t \) contains only two black points (namely, the point \(x \) and the intersection point of \(l \) and \(t \)), \(t \) is a line of \(S \) by Lemma 3.6(ii). This leads to a contradiction. \(\square \)
Lemma 4.5. Let π be a tangent plane. If H_{π} is a line of $PG(3, q)$, then the following hold:

(i) H_{π} is not a line of S.

(ii) $H_{\pi} = H$.

(iii) S is a set of $\frac{q^4 + q^3 + 2q^2}{2}$ lines of $PG(3, q)$ not containing the line H.

Proof. (i) Suppose that H_{π} is a line of S. Then, by Corollary 2.6 the pole p_{π} of π must be a point of $\pi \setminus H_{\pi}$. Fix a line m of π through p_{π}. Note that $m \notin S$ again by Corollary 2.6. Let x be the point of intersection of m and H_{π}. Since m contains only one black point (which is x), Lemma 2.1 implies that m is contained in one tangent plane (namely, π) and q secant planes. Since $x \neq p_{\pi}$, by Lemma 2.5 there are q lines of π through x which are contained in S. In each of the q secant planes through m, by Corollary 3.2 there are q lines through x which are contained in S. Since $m \notin S$, we get $q(q + 1) = q^2 + q$ lines of S through x, which is not possible by property (P1).

(ii) Suppose that x is a black point which is not contained in H_{π}. Let π' be the plane generated by the line H_{π} and the point x. We have $\pi \neq \pi'$ as x is not a black point of π. Each of the planes through the line H_{π} is a tangent plane by Lemma 2.1. In particular, π' is a tangent plane. Note that π contains $q + 1$ black points, whereas π' contains at least $q + 2$ black points. This contradicts Lemma 4.5.

(iii) The line H is not contained in S by (i) and (ii). Since the tangent plane π contains $q + 1$ black points, we have $\mu = q + 1$. Then equation (4) gives that $|S| = \frac{q^4 + q^3 + 2q^2}{2}$. □

In the rest of this section, we assume that H_{π} is the union of two (intersecting) lines for every tangent plane π. So $\mu = 2q + 1$ and then equation (4) gives that $\lambda = q + 1$. From equation (4) and Lemma 4.1 we get

$$|S| = \frac{q^2(q + 1)^2}{2} \quad \text{and} \quad |H| = (q + 1)^2. \quad (6)$$

Lemma 4.6. Let π be a tangent plane. If H_{π} is the union of the lines l and l' of π, then the pole p_{π} of π is the intersection point of l and l'.

Proof. Let x be the intersection point of l and l'. Suppose that $p_{\pi} \neq x$. Let t be a line of π through p_{π} which does not contain x (note that p_{π} may or may not be contained in $l \cup l'$). Since π is a tangent plane, t is not a line of S_{π} by Corollary 2.6 and hence is not a line of S. On the other hand, since t contains two black points (namely, the two intersection points of t with l and l'), it is a line of S by Lemma 3.6(ii). This leads to a contradiction. □

We call a line of $PG(3, q)$ black if it is contained in H.

Lemma 4.7. Every black point is contained in at most two black lines.
Proof. Let \(x \) be a black point. If possible, suppose that there are three distinct black lines \(l, l_1, l_2 \) each of which contains \(x \). Let \(\pi \) (respectively, \(\pi' \)) be the plane generated by \(l, l_1 \) (respectively, \(l, l_2 \)). Each plane through \(l \) is a tangent plane by Lemma 2.1. So \(\pi \) and \(\pi' \) are tangent planes. Since \(\mathcal{H}_x = l \cup l_1 \) and \(\mathcal{H}_{\pi'} = l \cup l_2 \), it follows that \(\pi \neq \pi' \). By Lemma 4.6, \(x \) is the pole of both \(\pi \) and \(\pi' \). So the lines through \(x \) which are contained in \(\pi \) or \(\pi' \) are not lines of \(\mathcal{S} \) by Corollary 2.6. Thus each line of \(\mathcal{S} \) through \(x \) is contained in some plane through \(l \) which is different from both \(\pi \) and \(\pi' \). It follows that the number of lines of \(\mathcal{S} \) through \(x \) is at most \(q(q-1) \), which contradicts to the fact that there are \(q^2 \) lines of \(\mathcal{S} \) through \(x \) (being a black point).

\[
\square
\]

Lemma 4.8. Every black point is contained in precisely two black lines.

Proof. Let \(x \) be a black point and \(l \) be a black line containing \(x \). The existence of such a line \(l \) follows from the facts that \(x \) is contained in a tangent plane (Corollary 2.3) and that the set of all black points in that tangent plane is a union of two black lines. By Lemma 2.1, let \(\pi_1, \pi_2, \ldots, \pi_{q+1} \) be the \(q+1 \) tangent planes through \(l \). For \(1 \leq i \leq q+1 \), we have \(\mathcal{H}_{\pi_i} = l \cup l_i \) for some black line \(l_i \) of \(\pi_i \) different from \(l \). Let \(\{p_i\} = l \cap l_i \). Lemma 3.7 implies that \(p_i \neq p_j \) for \(1 \leq i \neq j \leq q+1 \), and so \(l = \{p_1, p_2, \ldots, p_{q+1}\} \). Since \(x \in l \), we have \(x = p_j \) for some \(1 \leq j \leq q+1 \). Thus, applying Lemma 3.7 again, it follows that \(x \) is contained in precisely two black lines, namely, \(l \) and \(l_j \).

We refer to [10] for the basics on finite generalized quadrangles. Let \(s \) and \(t \) be positive integers. A generalized quadrangle of order \((s, t)\) is a point-line geometry \(\mathcal{X} = (P, L) \) with point set \(P \) and line set \(L \) satisfying the following three axioms:

(Q1) Every line contains \(s+1 \) points and every point is contained in \(t+1 \) lines.

(Q2) Two distinct lines have at most one point in common (equivalently, two distinct points are contained in at most one line).

(Q3) For every point-line pair \((x, l) \in P \times L \) with \(x \notin l \), there exists a unique line \(m \in L \) containing \(x \) and intersecting \(l \).

Let \(\mathcal{X} = (P, L) \) be a generalized quadrangle of order \((s, t)\). Then, \(|P| = (s+1)(st+1)\) and \(|L| = (t+1)(st+1)\) [10, 1.2.1]. If \(P \) is a subset of the point set of some projective space \(PG(n, q) \), \(L \) is a set of lines of \(PG(n, q) \) and \(P \) is the union of all lines in \(L \), then \(\mathcal{X} = (P, L) \) is called a projective generalized quadrangle. The points and the lines contained in a hyperbolic quadric in \(PG(3, q) \) form a projective generalized quadrangle of order \((q, 1)\). Conversely, any projective generalized quadrangle of order \((q, 1)\) with ambient space \(PG(3, q) \) is a hyperbolic quadric in \(PG(3, q) \), this follows from [10, 4.4.8].

The following two lemmas complete the proof of Theorem 1.1.

Lemma 4.9. The points of \(\mathcal{H} \) together with the black lines form a hyperbolic quadric in \(PG(3, q) \).

Proof. We have \(|\mathcal{H}| = (q+1)^2 \) by (6). It is enough to show that the points of \(\mathcal{H} \) together with the black lines form a projective generalized quadrangle of order \((q, 1)\).
Each black line contains $q+1$ points of \mathcal{H}. By Lemma 4.8, each point of \mathcal{H} is contained in exactly two black lines. Thus the axiom (Q1) is satisfied with $s = q$ and $t = 1$. Clearly, the axiom (Q2) is satisfied.

We verify the axiom (Q3). Let $l = \{x_1, x_2, \ldots, x_{q+1}\}$ be a black line and x be a black point not contained in l. By Lemma 4.8, let l_i be the second black line through x_i (different from l) for $1 \leq i \leq q+1$. If l_i and l_j intersect for $i \neq j$, then the tangent plane π generated by l_i and l_j contains l as well. This implies that \mathcal{H} contains the union of three distinct black lines (namely, l, l_i, l_j), which is not possible. Thus the black lines $l_1, l_2, \ldots, l_{q+1}$ are pairwise disjoint. These $q+1$ black lines contain $(q+1)^2$ black points and hence their union must be equal to \mathcal{H}. In particular, x is a point of l_j for unique $j \in \{1, 2, \ldots, q+1\}$. Then l_j is the unique black line containing x_j and intersecting l.

From the above two paragraphs, it follows that the points of \mathcal{H} together with the black lines form a projective generalized quadrangle of order $(q, 1)$. This completes the proof.

\textbf{Lemma 4.10.} The lines of \mathcal{S} are precisely the secant lines to the hyperbolic quadric \mathcal{H}.

\textbf{Proof.} By (6), we have $|\mathcal{S}| = \frac{q^2(q+1)^2}{2}$, which is equal to the number of secant lines to \mathcal{H}. It is enough to show that every secant line to \mathcal{H} is a line of \mathcal{S}. This follows from Lemma 3.6(ii), as every secant line to \mathcal{H} contains exactly two black points.

\textbf{Acknowledgments}

We thank Dr. Binod Kumar Sahoo for his helpful comments. The first author was supported by the Council of Scientific and Industrial Research grant No. 09/1002(0040)/2017-EMR-I, Ministry of Human Resource Development, Government of India and the second author was supported by Department of Science and Technology grant No. EMR/2016/006624, by the UGC Center for Advanced Studies and by National Board for Higher Mathematics grant No. 0204/18/2019/R&D-II/10462, Department of Atomic Energy, Government of India.

\textbf{References}

[1] S. G. Barwick and D. K. Butler, A characterisation of the lines external to a quadric cone in $PG(3, q)$, q odd, Innov. Incidence Geom. \textbf{8} (2008), 39–48.

[2] S. G. Barwick and D. K. Butler, A characterisation of the lines external to an oval cone in $PG(3, q)$, q even, J. Geom. \textbf{93} (2009), 21–27.

[3] R. C. Bose and R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combinatorial Theory \textbf{1} (1966), 96–104.

[4] M. J. de Resmini, A characterization of the secants of an ovaloid in $PG(3, q)$, q even, $q > 2$, Ars Combin. \textbf{16-B} (1983) 33–49.
[5] R. Di Gennaro, N. Durante and D. Olanda, A characterization of the family of lines external to a hyperbolic quadric of $PG(3, q)$, *J. Geom.* 80 (2004), 65–74.

[6] N. Durante and D. Olanda, A characterization of the family of secant or external lines of an ovoid of $PG(3, q)$, *Bull. Belg. Math. Soc. Simon Stevin* 12 (2005), 1–4.

[7] O. Ferri and G. Tallini, A characterization of the family of secant lines of an elliptic quadric in $PG(3, q)$, q odd, Proceedings of the conference on combinatorial and incidence geometry: principles and applications (La Mendola, 1982), 297–305, Rend. Sem. Mat. Brescia, 7, Sci. Mat., 7, Vita e Pensiero, Milan, 1984.

[8] J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford Mathematical Monographs, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1985.

[9] S. Innamorati, M. Zannetti and F. Zuanni, A characterization of the lines external to a hyperbolic quadric in $PG(3, q)$, *Ars Combin.* 103 (2012), 3–11.

[10] S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Second edition, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2009.

[11] M. Zannetti, A characterization of the external lines of a hyperoval cone in $PG(3, q)$, q even, *Discrete Math.* 311 (2011), 239–243.

[12] F. Zuanni, A characterization of the external lines of a hyperoval in $PG(3, q)$, q even, *Discrete Math.* 312 (2012), 1257–1259.

Addresses:

Puspendu Pradhan (Email: puspendu.pradhan@niser.ac.in)

1) School of Mathematical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, P.O.- Jatni, District- Khurda, Odisha - 752050, India.

2) Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai - 400094, India.

Bikramaditya Sahu (Email: bikramadityas@iisc.ac.in)

1) Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India.