Assessment of tunicates found in the northern waters of Ambon Island and its rearing requirements in a laboratory setting

Y Tapilatu\(^1\) and T Ginzel\(^1\)

\(^1\)Center for Deep-Sea Research, Indonesian Institute of Sciences (PPLD LIPI), Jl. Y. Syaranamual Guru-guru Poka Ambon 97233, Indonesia

yosmina.tapilatu@lipi.go.id

Abstract. The Banda Sea region is situated in the Wallacea biogeographical area, known as one of the biodiversity hotspots of the world. The region harbours various types of ecosystems, ranging from mangroves and coral reefs to seaweeds, indicating its potential for harbouring organisms that produce bioactive compounds, such as sea cucumbers, soft corals, and tunicates. While many studies have been carried out on the first two organisms, much lesser is known about the latter one, notably in this region. The assessment is our first attempt to explore the tunicates found in northern coastal waters of Ambon Island, an area that is a part of the Banda Sea. Two types of tunicates were obtained during the survey, namely the violet-green and white-yellow variants of solitary tunicates Polycarpa aurata (15 specimens) and social ones of Didemnum molle (3 specimens). The Polycarpa specimens' heights ranged from 2.5 to 4.8 cm with wet weights from 9.4 to 28.03 g, and the Didemnum ones were of 1.2 - 2 cm and wet weights from 1.2 to 5 g. Feeding experiment indicated that low volume (5-10 ml) of pure cultures such as Dunaliella sp., Nannochloropsis sp. and Tetraselmis sp. in small aquarium (40 x 60 cm) resulted in good survival rate for Polycarpa aurata collected from northern Ambon Island waters. Rearing experiments in a discontinuous aquarium setting using solitary tunicates indicated the following requirements: thorough cleaning of the tanks, regular feeding intervals, and regular cleaning of each tunicate. The regular cleaning of mucous at the external part of tunicates is indispensable to ensure the wellbeing of the organisms.

Keywords: Banda Sea, Polycarpa sp., discontinuous incubation, feeding experiment

1. Introduction
The Banda Sea is situated in the Wallacea biogeographical area, known as one of the biodiversity hotspots of the world. It harbors various types of ecosystems, ranging from mangroves and coral reefs to seaweeds, indicating the Banda Sea potential for harboring organisms that produce bioactive compounds, such as sea cucumbers, soft corals, and tunicates. While many studies have been carried out on the first two organisms, much lesser is known about the latter one, notably in this region. Northern coastal waters of Ambon Island are a part of the Banda Sea. Coral reefs coverage is relatively vast in these waters, but information regarding invertebrates living in them is scarce, if not known at all. This lack of information is not only caused by the limited studies carried out but also due to the lack of infrastructures to do such studies.

Tunicates are soft-bodied invertebrates (Class Asciidae) living in all sort of ecosystems, from coral reefs to the deep sea. They are very diverse with around 2,000 different species known to date.
[1] They have various functions ranging from food sources in certain countries (Chile, South Korea, Japan and France) [2], producers of bioactive compounds [3-5] to biomarkers in ecotoxicological studies [6]. However, tunicates are much understudied in Indonesia, particularly in its eastern marine region. Literature search carried out online only yielded limited results on studies about and/or related to tunicates in Indonesian eastern marine region, such as tunicates inventory data from Siboga Expedition in 1899-1900 [7], a recent coral reef organisms inventory in Halmahera (2015) [8], the discovery of new alkaloids from Polycarpa aurata collected in north Sulawesi [4] and the identification of antimicrobial compound produced by a bacterial symbiont of Phallusia julinea, a tunicate species found in Doreri Gulf of West Papua [9]. None were available about incubation settings for tunicates found in the Banda Sea ecosystem. Moreover, there were articles available online about tunicates incubation in laboratory settings, but they were either too brief (and covered only temperate ones) [10] or only covered the social type of tunicate [11]. None to our knowledge existed on tropical tunicates incubation settings in limited infrastructures.

This assessment is thus our first attempt to explore the tunicates diversity in the Banda Sea. The main objective of this research is to provide the latest information about tunicates found in the said region and to provide initial information on its rearing possibility in a discontinuous aquarium setting for future research activities. The discontinuous setting is optimized for incubation since it is the only option available in a limited infrastructure.

2. Material and Method

2.1. Sample collection
Samples were collected from the northern coastal area of Ambon Island, in particular in three locations namely the waters of Morela, Mamala and Hitu villages (figure 1). These locations were selected due to their relatively preserved area of coral reefs. Tunicates were randomly collected using SCUBA diving equipment after visual assessment of its presence in the surveyed area. Sampling locations positions were recorded using a GPS Garmin 76 Cxi. Samples collected were put in sterile clipped plastic bags containing in situ sea water. Once reaching the surface the samples were kept in a cool box (8-10°C) throughout the sampling period until transfer to the aquaculture laboratory.

2.2. Sample identification
Tunicates obtained were identified based on its external appearance (body structure, tunic texture, etc). The identification was done according to guidelines that were available online, i.e. Sous les Mers [12], World Register of Marine Species (WoRMS) [13], Ocean Biogeographic Information System (OBIS) [14] and Reef Guide [15].

2.3. Incubation setting
Dimension and weight of samples obtained were measured and noted prior to transfer into the aquarium. Due to the limited infrastructure available at our aquaculture laboratory, we used only one aquarium in this experiment, with the dimensions of 40 x 60 cm. To mimic their original habitat, the tunicates were incubated with three sea cucumbers in the same aquarium. Natural seawater was pumped from nearby Ambon Bay and filtered prior to usage and replaced every two weeks. The bottom materials (sand and gravels) were replaced when algal growth was visible to eliminate the negative impact of organic waste build up and excessive algal growth in discontinuous incubation. Air was provided through a tube with constant pumping. Physico-chemical parameters were monitored at least once every two weeks to observe the water quality during incubation. Samples were observed daily and manual cleaning of mucous enveloping individual tunicates was done if necessary.

2.4. Feeding experiment
Tunicates obtained were fed with phytoplankton culture available at the laboratory, i.e Nannochloropsis sp., Tetraselmis sp. and Dunaliella sp. The phytoplankton cultures were fed in two
treatments, namely individually (5 and 10 ml each) and the combination of three, 10 ml each (30 ml in total). All cultures were in their stationary phase by the time of feeding. Feeding was done every two weeks, and mortality rate would be recorded 7 days after feeding until cleaning and replacement of the aquarium, the sea water and the sand-gravel materials.

3. Results and Discussion

3.1. Sampling locations profile

Blast fishing was a common practice in Lubang Buaya, Morela and adjacent area around 2005. It was done with the homemade bombs and caused important destruction in these waters. Fortunately, following the local authorities’ intervention, the fishermen inhabiting the surrounding village did not continue their usage of this destructive method of fishing. Fragments of branched coral found were mostly due to anchoring and tourism activities. The coral reef condition of Lubang Buaya Morela, in general, was relatively good visually, with water transparency reached more than 75% of water depth (cf. Table 1) during the sampling and only a few floating plastic wastes observed. Overall Morela coral reef ecosystem was in better condition compared to those in Mamala and Hitumessing. The seabed in this coastal area was a shallow shelf from the intertidal area to about 50 meters seawards, continued by a steep slope.

| Description                  | Morela          | Mamala          | Hitumessing     |
|------------------------------|-----------------|-----------------|-----------------|
| Position coordinates         | 3°31'30.8" S,   | 3°33'16.5" S,   | 3°34'58.2" S,   |
| (Latitude, Longitude)        | 128°12'47.4" E | 128°11'26.1" E | 128°10'21.0" E |
| Approximate depth (m)        | 6               | 4               | 6               |
| Transparency (m)             | 6               | 3               | 5               |
| Dominant substrate           | Coral reef and sand | Sand          | Muddy sand (close to river mouth) |
| Amount of samples collected  | 10              | 6               | 2               |
3.2. Tunicate morphology and ecology

There were 18 samples collected in total, with 15 of them were solitary tunicates and the other three were social type ones. Ten of fifteen Polycarpa sp. were collected from Morela, three from Mamala and two from Hitumessing area. Tunic morphology observation, height and distribution profile indicated solitary ones’ resemblance to the violet-green and white-yellow variants of Polycarpa aurata (Quoy and Gaimard, 1834), commonly known as the ink-spot sea squirt [15], the ox-heart ascidian or the gold-mouth sea squirt. Their body forms were ovoid, globular, or conical, with the wrinkled leathery test. Their heights ranged from 2.5 to 4.8 cm with wet weights from 9.4 to 28.03 g. Their heights were slightly less compared to the available information in the identification guide (5 to 15 cm) [12]. They were numerous at the steep slope, notably in Morela area (Figure 2a). As suggested by Berrill in 1955, some species of tunicates from the family of Styelidae such as Polycarpa are characterized by the brittle sand-embedded test and muscles to withdraw apertures and flatten the body and are adapted to life on the open sea floor [16].

Figure 2. Solitary tunicate morphologically resembled Polycarpa sp. variant white-yellow found in the coral reef in Morela (a); a colony of Didemnum sp. as observed in Mamala (b). Both pictures were taken in early April 2017. Photo credit: Robert Alik.

The other three were Didemnum molle (Herdmann, 1886), a social type that was collected from Mamala area (Figure 2b), and commonly known as the green barrel sea squirt. The observed green and brown colors were from Prochlorons sp., the cyanobacterial symbionts of Didemnum sp. [12]. The social type tunicates were visibly smaller and lighter, with height ranged from 1.2 to 2 cm and wet weights from 1.2 to 5.0 g only. The size of Didemnum sp. encountered in Mamala was smaller than reported elsewhere in Indonesia. In the Flores Sea, for example, the adult ones could reach 3 to 10 cm in height [12]. It is thus possible that the samples collected from Mamala were only young tunicates, or probably the surrounding environment did not facilitate the optimal growth of this tunicate, as was indicated by their limited occurrence in the three sampling areas.

Both tunicate types are commonly found in eastern Indonesian waters. They attach to hard substrates such as reefs and stones. Polycarpa aurata and Didemnum molle are found in the tropical eastern Indian Ocean and the western Pacific Ocean, including the Philippines, Indonesia and northern Australia. Their habitat depth ranges are 5 to 50 m (Polycarpa) and 5-30 m (Didemnum) [12]. A recent inventory of coral reef organisms recorded species of Polycarpa and Didemnum among ascidians found off western Halmahera [8], an island situated in the north Moluccas. However, further identification is necessary, either by dissection or genetically to confirm the affiliation of all samples collected in our study.

3.3. Incubation in the discontinuous setting trial

Incubation in the discontinuous setting of 40 x 60 cm aquarium (figure 3a) indicated solitary tunicates higher survival rate compared to the social type ones. In other parts of the world, certain species of Didemnum are included in invasive species list ([8] and references therein), due to its rapid growth and aggressive competing capability. However, the mortality rate of Didemnum collected was 100% by the
third day of incubation in this setting. *Didemnum molle* was reported to live in the following range of natural environmental conditions: 19.13-28.95°C (temperature), 34.07-35.13 PSU (salinity) and at 3.56-4.78 ml l\(^{-1}\) (DO) [17].

![Figure 3](image)

**Figure 3.** Incubation setting in a 40 x 60 cm aquarium (a) and solitary tunicates in the aquarium, week 9 of incubation (b). *Polycarpa* sp. variant white-yellow (upper-center), violet-green (left-bottom) and sea cucumber (upper-right). The white arrow indicates the plastic pipe that was used to deliver air to the aquarium. The black arrows indicate opened siphons of a tunicate already adapted with the aquarium condition.

The small aquarium could be the cause of this high mortality rate, as the size did not permit incubation of too many tunicates, along with the sea cucumber. Other than that, the rapid growth of existing algae in the aquarium seawater resulted in the increase of water pH (table 2). This probably created a higher stress level to the social tunicates compared to the solitary ones and thus did not allow their optimal survival. The high fluctuation of salinity values could due to the evaporation or probably because the equipment used during the measurement was not properly calibrated.

| Parameter      | Measurements  | Standard values for *Polycarpa aurata* | Standard reference |
|----------------|---------------|----------------------------------------|--------------------|
| pH             | 8.24 ± 0.40   | 7.5-9                                  | [10]               |
| Salinity (PSU) | 35.58 ± 4.25  | 34.98-35.13                            | [14]               |
| Temperature (°C)| 27.02 ± 0.50 | 26.22-26.8                             | [14]               |
| DO (ml l\(^{-1}\)) | 6.6 ± 0.65   | 4.57-4.68                              | [14]               |

3.4. **Feeding experiment**

The feeding experiment carried out using *Polycarpa* sp. indicated that the highest mortality rate (40%) was observed when the tunicates were fed with 10 ml *Nannochloropsis* sp. (Table 3). The second highest mortality rate was observed when they were fed with 30 ml of combined three phytoplankton cultures, as it provoked rapid growth of algae at the aquarium wall and thus reduced the water quality. The combination also provoked rapid mucous envelopment of tunicates that led to mortality. Manual
cleaning of enveloping mucous should be done at least once every two days to prevent mass mortality of tunicates.

Berrill [10] suggested the pure culture of Nitzchia sp. as the nutritional source, but mentioned that mixed assortment of small diatoms and algae could also be satisfactory. However, in our incubation settings, mixed culture tended to provoke a rapid increase of algal mass that occupied aquarium walls and thus increase pH values (cf. Table 2) that could provoke mortality. The lower dose (5-10 ml) of pure cultures such as Dunaliella sp., Nannochloropsis sp. and Tetraselmis sp. indicated good survival rate for Polycarpa aurata collected from northern Ambon Island waters and incubated in small aquarium. Nevertheless, this should be confirmed in the future with further experiments where the aquarium is kept in more sheltered place for incubation setting optimization.

Table 3. Feeding experiment and mortality rate of tunicates (Polycarpa sp.) from northern Ambon Island waters. The incubation was carried out for 7 days before the sea water was replaced with the clean one.

| No. | Species      | Feeding experiment | Mortality rate (%) |
|-----|--------------|--------------------|--------------------|
|     |              | Volume per species | Total volume fed   |                  |
|     |              | (ml)               |                    |                  |
| 1   | Dunaliella sp.| 5                  | 5                  | 0                 |
| 2   | Dunaliella sp.| 10                 | 10                 | 29                |
| 3   | Nannochloropsis sp. | 5         | 5                  | 0                 |
| 4   | Nannochloropsis sp. | 10       | 10                 | 40                |
| 5   | Tetraselmis sp. | 5                  | 5                  | 22                |
| 6   | Tetraselmis sp. | 10                 | 10                 | 0                 |
| 7   | Dunaliella sp. | 10                 |                    |                   |
|     | Tetraselmis sp. | 10             | 30                 | 33                |
|     | Nannochloropsis sp. | 10       |                    |                   |

4. Conclusions
The assessment is our first attempt to explore the tunicates found in northern coastal waters of Ambon Island, an area that is a part of the Banda Sea. Two types of tunicates were obtained during the survey, namely the violet-green and white-yellow variants of solitary tunicates Polycarpa aurata and social ones of Didemnum molle. Rearing experiments in a discontinuous aquarium setting using solitary tunicates indicated the following requirements: thorough cleaning of the tanks, regular feeding intervals, and regular cleaning of each tunicate. The regular cleaning of mucus at the external part of tunicates is indispensable to ensure the well-being of the organisms.

Future experiments should include incubation in a more sheltered setting, with only a certain amount of tunicates (8 to 10 solitary ones) in the same dimension of the aquarium. Further identification to confirm samples’ identity would be necessary. More importantly, bioprospecting effort could be initiated to examine whether Polycarpa aurata growing in Ambon island waters contain similar bioactive compounds as those sampled in Manado in a prior report.

Acknowledgement
This research was supported financially by LIPI’s internal funding for research, as part of the research project on sustainable utilization of marine bioresources in Ambon Island northern coastal waters. We thank Abdul Wahab Radjab, the coordinator of the project, to facilitate the sampling trip; Robert Alik, Terry Indrabudi and Arahman for their help during sampling and Wempy Barends for the provision of phytoplanktons used in this study. We gratefully acknowledge the critical reviews by two anonymous reviewers that help improve the quality of this manuscript. This is contribution number 0011 from Marine Microbiology and Biotechnology Laboratory, Centre for Deep-Sea Research LIPI.
References

[1] Ruppert E E, Fox R S and Barnes R D 2004 *Invertebrate Zoology* 7th ed (Boston: Cengage Learning) pp 940–956

[2] Lambert G, Karney R C, Rhee W Y and Carman M R 2016 Wild and cultured edible tunicates: a review *Manag. Biol. Invasions* 7(1) 59–66

[3] Suarez-Jimenez G M, Burgos-Hernandez A and Ezquerra-Brauer J M 2012 Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals *Mar. Drugs* 10(5) 963–986 doi: 10.3390/md10050963

[4] Wang W, Oda T, Fujita A, Mangindaan R E P, Nakazawa T, Ukai K, Kobayashi H and Namikoshi M 2007 Three new sulfur-containing alkaloids, polycarpaurines A, B, and C, from an Indonesian ascidian *Polycarpa aurata* *Tetrahedron* 63(2) 409–12 doi: 10.1016/j.tet.2006.10.060

[5] Oku N, Matsunaga S and Fusetani N 2003 Shishijimicins A–C, Novel Enediyne Antitumor Antibiotics from the Ascidian *Didemnum proliferum* *J. Am. Chem. Soc.* 125(8) 2044–5 http://dx.doi.org/10.1021/ja0296780

[6] Parrinello D, Bellante A, Parisi M G, Sanfratello M A, Indelicato S, Piazzese D and Cammarata M 2017 The ascidian *Styela plicata* hemocytes as a potential biomarker of marine pollution: In vitro effects of seawater and organic mercury *Ecotoxicol. Environ. Saf.* 136 126–34 doi: 10.1016/j.ecoenv.2016.11.001

[7] Sluiter C P 1904 Die Tunicaten der Siboga-Expedition: Die Socialen und Holosomen Ascidien (*Siboga Expedition* 1899-1900 vol L17) ed M Weber (Leiden: Brill) 208 p

[8] Gittenberger A, Draisma S G A, Arbi U Y, Langenberg V, Erftemeijer P L A, Tuti Y and Hoeksema BW 2015 Coral reef organisms as bioregion indicators off Halmahera, Moluccas, Indonesia *Aquat. Conserv. Mar. Freshw. Ecosyst.* 25(6) 743–55.

[9] Mogea R A, Suharjono, Ardyati T and Samino S 2015 Identification of antimicrobial compounds produced by *Pseudomonas aeruginosa* NS3 symbiont ascidian *Phallusia julinea* *Int. J. ChemTech Res.* 8(3) 1036–40 ISSN: 0974-4290

[10] Berrill N J 1937 Culture methods for ascidians (*Culture methods for invertebrate animals*) eds P S Galtsoff, F E Lutz, P S Welch and J G Needham (New York: Comstock Publishing Co.) pp 564-571

[11] Epelbaum A, Therriault T W, Paulson A and Pearce C M 2009 Botryllid tunicates: Culture techniques and experimental procedures *Aquat. Invasions* 4(1) 111–20

[12] Cornu F 2009 *Sous Les Mers* [Internet] accessed Aug 1 2017 from www.souslesmers.fr

[13] WoRMS Editorial Board 2017 *World Register of Marine Species* [Internet] accessed Aug 1 2017 from http://www.marinespecies.org at VLIZ. doi:10.14284/170

[14] AIMS Bioresources Library 2017 *Polycarpa aurata* (Quoy & Gaimard, 1834) *Ocean Biogeographic Information System* [Internet] accessed Aug 1 2017 from http://iobis.org/explore/#/taxon/495246

[15] Charpin F 2017 *Ink-Spot Sea Squirt* (*Guide to the Tropical Reefs*) [Internet] accessed Aug 1 2017 from https://reefguide.org/

[16] Kott P 2005 *Catalogue of Tunicata in Australian waters* (Brisbane: Queensland Museum) 305 p

[17] AIMS Bioresources Library 2017 *Didemnum molle* (Herdmann, 1886) *Ocean Biogeographic Information System* [Internet] accessed Aug 1 2017 from http://iobis.org/explore/#/taxon/434288