Good manufacturing practices for risk management in food safety sustainability: An empirical study

D P Andriani¹, A P N Aini¹, M Lestari², and P Purba¹

¹Department of Industrial Engineering, Universitas Brawijaya, Malang, Indonesia
²Central Laboratory of Life Sciences, Universitas Brawijaya, Malang, Indonesia
E-mail: debrina@ub.ac.id

Abstract. Food is an essential need for the sustainability of human life so that consumers have the right to get a product that is safe for consumption. However, food poisoning cases due to the risk of biological, chemical, physical, and other contamination still occur frequently. In this study, an empirical investigation was conducted on apple pie production in a food processing SME that is known to have a risk of physical, chemical, and biological. This study used the hazard analysis and critical control point (HACCP) and good manufacturing practice (GMP) approaches to analyze each production process's hazards. This study also identified factors that harm using failure mode and effect analysis (FMEA) and provided recommendations for improving food safety and security for the SME business sustainability.

1. Introduction

Food is the most basic need for humans. Consumers have a right to get food that is safe for consumption [1, 2]. The food product that is appropriate to consume must meet several criteria: safe, healthy, excellent, and halal [3, 4]. Regarding government regulation, food safety, quality, and nutrition are defined as a condition to prevent foods from the biological, chemical, physical, and other hazards that could harm the consumers [5].

In 2016, the National Agency of Drug and Food Control (BPOM) Indonesia conducted a study about the safety and the quality of food products on the market. Their study found that 3,957 out of 26,537 products on the market were ineligible [6]. They also found 110 cases of food poisoning in Indonesia. One of the causes of food poisoning was food-processed consumption [7]. One of the foods processed industry was the SME in Indonesia [8, 9].

This study was conducted at the SME in Indonesia that produced apple pie. Apple products are one of the superior local products in this region [10]. The SME produced approximately 600 packs/day. Unfortunately, the SME has not yet implemented food safety standards. The implementation of food safety standards was essential to control the production process [11, 12]. The workers, raw materials, or the production process that not followed the standard operating procedure (SOP) causes the potential hazard [13]. The workers in the SME did not follow the SME's SOP. For example, the workers did not use the standard personal protective equipment (PPE) and hand gloves and masked when processing the apple pie. Figure 1 shows an example of potential hazards.
Based on a preliminary study, there were 11 processes to make the apple pie. It began with gathering the raw materials (apples and flour), sorting and cutting the fruit, washing, grating into small parts, cooking until the texture changed into a jam, making the pie skin (inner and outer skin), mixing the inner and outer skin, moulding, baking, cooling the apple pie and packing. In each production process may cause a potential hazard that can lead to food risks [14]. One example is in the grating process. If the grating machine and equipment that were not properly sterilized, it might cause the rusty engine to contaminate the apple. The other hazards were the pesticides that attached to apples and apple oxidation. Therefore, this study aims to identify hazards for minimizing the risks that can occur at any stage of the apple pie production process.

In this study, the apple pie's production process hazards were analyzed with hazard analysis and critical control point (HACCP) approach. HACCP is a monitoring system to prevent the hazard in food product [15-17]. HACCP approach may ensure the products are safe for human consumption by installing the proper tools to detect the occurrence of contamination and indicate a corrective action whenever the contamination occurs [18]. HACCP is used to analyze the biological, chemical, and physical hazards, in particular, apple pie's production process [19-22]. Biological hazard is the macro-biology and microbiology that contain in food. Chemical hazard is the various chemical elements that cause pollution or contaminants in food. A physical hazard is the foreign objects in physical form, which generally are not present in food that may cause disease.

In HACCP, it is essential to identify the critical control point (CCP). CCP is a step at which control could be applied. It is essential to prevent or eliminate food safety or reduces it to an acceptable level [23, 24]. The next phase after determines which process is CCP was to conduct a deviation analysis at each CCP process with failure mode and effect analysis (FMEA). The aim of using the FMEA method was to determine the hazard that could be minimized or eliminated [25]. The FMEA result would be the priority list to improve the implementation of good manufacturing practices (GMP) [26]. In addition to overcoming food hazards and risks in apple pie production, proposed improvements regarding GMP aspects are also expected to help business sustainability.

2. Research Method
The data was collected by observing the production process and identifying the potential hazards in each process. The next phase was a critical control point (CCP) identification. This phase can be controlled and very important to prevent the potential food safety hazard or minimize the hazard to an acceptable level. The CCP was conducted through the decision tree, as shown in Figure 2. The phase continued with critical limit determination. The critical limit is the minimum and maximum value of biological, chemical, or physical parameters that must be controlled at CCP [27, 28]. The critical limit separates acceptability from unacceptability in food processing.
Figure 2. CCP decision tree.

The next phase was identifying the implementation of good manufacturing practices (GMP) at the SME. GMP is a system that assures proper design, monitoring, and control of manufacturing processes and facilities [29]. GMP’s implementation avoids or reduces the contamination of food by biological, chemical, and physical hazards [30].

The study continued with measuring potential hazards at CCP with failure mode and effect analysis (FMEA). The FMEA method analyzes the severity, the occurrence, and the level of difficulty or ease of hazard control (detection) [31]. The FMEA result was a risk priority number (RPN) of each potential hazard obtained through the multiplication of the severity, occurrence, and detection rank [32, 33]. The RPN was used to determine critical RPN. The critical RPN was obtained based on equation (1) [34]. The potential hazard with the RPN score equal to or higher than the critical RPN must be the priority in recommendation planning [35].

\[
RPN = \frac{\text{Total RPN}}{\Sigma \text{risk}}
\]

3. Results and Discussion
This phase included hazard identification, CCP analysis, critical limit determination, GMP analysis, identification of potential hazards at CCP with FMEA, and recommendation for this study.

3.1. Hazard identification
In this phase, the potential hazards were identified. There were three types of hazards, i.e., biological hazards, chemical hazards, and physical hazards. The hazards were identified at each production process, starting from collecting the raw materials until packing the apple pie. For example, for the baking process, the biological hazards were *Escherichia coli* and *Staphylococcus aureus*. The hazard identification is shown in Table 1.

3.2. Critical control point (CCP) analysis
Critical Control Point (CCP) was identified from the collecting raw materials process until the packing process. CCP analysis was identified using a decision tree, as shown in Figure 2. Based on the CCP analysis, seven processes were included as CCP. One of the examples is collecting the raw material process. There was a chemical hazard (a pesticide that was still left at the apple) and a physical hazard (soil, hair, dust). CCP analysis is shown in Table 2.
3.3. Critical limit identification

The critical limit is used to determine the control limit for each Critical Control Point (CCP). The critical limit for CCP could be defined as one or more tolerance levels that must be met to ensure that CCP has controlled the hazard effectively. Critical limit identification was referred to as the National Agency of Drug and Food Control (BPOM) standards. Critical limit identification is shown in Table 3.

Table 1. Hazard identification in apple pie production process.

No	Process	Biological hazard	Chemical Hazard	Physical Hazard
1	Collecting the raw materials	Patulin from fungus,	Pesticide	Soil, hair, dust
	a. Apple	*Escherichia coli*		
	b. Flour, water, sugar, oil, salt	*Staphylococcus aureus*		
2	Sorting and cutting the apple	Patulin from fungus,	Fe (iron) from the knife,	Fruit seed, soil, dust
		Escherichia coli	pesticide	
		Staphylococcus aureus		
3	Cleaning	Patulin from fungus,	Pesticide, apple oxidation	Fruit seed, soil
		Escherichia coli		
		Staphylococcus aureus		
4	Grating	Patulin from fungus,	Fe (iron) from the grating	Hair, dust
		Escherichia coli	machine, pesticide, and apple oxidation	
		Staphylococcus aureus		
5	Cooking the apple	Patulin from fungus,	Fe (iron) from the knife and	Hair, plastic, dust
		Escherichia coli	machine, pesticide, and apple oxidation	
		Staphylococcus aureus		
6	Making the pie skin	*Escherichia coli*	-	Hair, dust
		Staphylococcus aureus		
7	Combining inner and outer skin	*Escherichia coli*	Plastic residue	Dust, hair, and other foreign things
		Staphylococcus aureus		
8	Molding	*Escherichia coli*	-	Hair, dust
		Staphylococcus aureus		
9	Baking	*Escherichia coli*	-	-
		Staphylococcus aureus		
10	Cooling	-	-	Dust
11	Packing	-	-	Dust

Table 2. CCP analysis in apple pie production process.

No	Process	Q1	Q2	Q3	Q4	CCP?
1	Collecting raw materials	Yes	Yes	-	-	Yes
2	Cleaning the apple	Yes	Yes	-	-	Yes
3	Grating	Yes	Yes	-	-	Yes
4	Cooking the apple	Yes	Yes	-	-	Yes
5	Combining inner and outer skin	Yes	No	Yes	No	Yes
6	Baking	Yes	Yes	-	-	Yes
7	Cooling the pie	Yes	No	Yes	No	Yes

3.4. Good manufacturing practices (GMP) analysis

Good Manufacturing Practices (GMP) is a guide for food-producing to meet food products [36]. According to the Ministry of Industry of Indonesia about GMP guidelines, there are 14 requirements for food producing, e.g., the factory location and environment, the factory facility, sanitation, employees, and process control.

Based on the analysis, GMP implementation at the SME had not good enough because several GMP aspects could be optimized. GMP is essential to support the HACCP method, so the apple pie product has a good quality and also safe to consume.
Table 3. Critical limit identification at apple pie production process.

No	Process	Potential Hazard	Critical limit
1.	Collecting raw materials	1. Chemical: pesticide	1. Control the use of pesticides. Following the maximum dose, the maximum residue for benomyl pesticide is BMR 5 mg/kg
		2. Physical: hair, plastic, soil, dust	2. There are no rotten fruits, freckles, or dusty
2.	Cleaning the apple	Chemical: pesticide and apple oxidation	The apple should be cleaned using the running water.
3.	Grating	Chemical: Fe (iron) rust	The machine and equipment should be inspected regularly.
4.	Cooking the apple	Biological: Patulin from fungus, Escherichia coli, Staphylococcus aureus	The cooking temperature must be 200°C.
5.	Combining inner and outer skin	Chemical: plastic residue	Keep the cleanliness of the plastic, replace the plastic regularly (not using plastic twice).
6.	Baking	Chemical: Escherichia coli, Staphylococcus aureus	The temperature should be 200°C for top heat and 150°C for bottom heat.
7.	Cooling the pie	Physical: Dust	The product must be protected from the dust.

3.5. Potential failure identification at critical control point (CCP)

This study used FMEA to identify the deviation at CCP. FMEA had three components to be assessed: severity (S), occurrence (O), and ease to detect (detection/D). In this study, each score was obtained through brainstorming with the SME. The output was a risk priority number (RPN) obtained through multiplying the score of each component.

There were eight potential failures at CCP. One of the potential failures is the pesticide that is still left at the apple. The potential cause of the failure was that the supplier did not clean the apple well, and the SME worker did not check the apple quality from the supplier. The potential effect of failure was that the apple could endanger the consumer. The complete analysis and assessment for each potential failure are shown in Table 4.

The next phase was the critical RPN determination using Eq. (1). The total RPN was 200, and the total risk was 8, so the critical RPN was 25. If the potential failure has RPN higher than 25, the potential failure should be prioritized for further analysis. According to Table 4, three potential failures have a score higher than 25. The three potential failures were the pesticide that was still left at the apple, the rusty machine, and the bacteria's growth possibility.

3.6. Monitoring system recommendation

Monitoring system recommendation is a suggestion for the SME to improve the system so that the SME could minimize/eliminate the hazard, especially at the CCP process. The recommendations were given based on the potential failures that have a score higher than 25. It was recommended for the SME to implement Standard Operating Procedure (SOP) for each process, especially for cleaning the apple and cleaning the machining process. The SOP would be a guideline that every worker should follow SOP for each process.

The other recommendation for the SME was making and implementing the rules about everything that the workers should pay attention to before do the production process. The rules must include the standard of personal protective equipment (PPE) and worker hygiene. The supervisor should read the rules every day and brief the worker before they start to work. In order to control the obedience of the rules, every worker should fill the check-sheet. The check-sheet contained the PPE list that needs to be used before the workers do the production process.

With monitoring system recommendation, it was expected to minimize or eliminate the hazard at each CCP so that the SME could produce the best quality of apple pie. These monitoring system recommendations should be conducted and monitored by managerial and all related elements to improve the SME.
Table 4. FMEA analysis in apple pie production process.

No	Potential Failure	Failure Mode	Failure Effect	S	O	D	RPN
1.	The pesticide is still left at the apple	The supplier did not clean the apple well, and the SME worker did not check the apple quality from the supplier	Endanger consumer health	2	4	4	32
2.	The apple seed left	The worker did not clean the apple seed well after cutting the apple	Endanger consumer health	1	6	4	24
3.	Contamination from the plastic, soil, and dust at the apple	The supplier did not clean the apple well	The bacteria grow in the human body	4	3	1	12
4.	Apple browning	The cut or grate apple left open	The benefit from the apple is a decrease	1	6	4	24
5.	The apple cleaned by the water in the tub	The worker did not clean the apple well	The water in the tub could contaminate the apple	3	2	1	6
6.	The rusty machine	The machine did not clean properly	Endanger consumer health	8	6	1	48
7.	The growth possibility of bacteria	The worker did not follow the SOP. For example: did not use the hand gloves	Endanger consumer health	7	6	1	42
8.	Repeated use of plastic	The plastic was not cleaned before the second use	Endanger consumer health	3	4	2	24

4. Conclusions
In the hazard identification, there were three types of biological hazards, five types of chemical hazards, and seven types of physical hazards that could be met at every production process. Based on the CCP analysis with the decision tree, seven processes were included as CCP. After determining the process included as the CCP, the next phase determined the critical limit at each process. The critical limit was essential to control the excellent apple pie.

At GMP analysis, the SME was not good enough to implement GMP because several aspects could be maximized. The last step was measuring the potential failure at CCP with the FMEA method. Three potential failures have an RPN value more than a critical RPN. The monitoring system recommendation was the implementation of new rules and SOP for the production process. Check sheets also essential to control the obedience of the workers to the rules and SOP.

This study contributes to the enrichment of the references regarding risk management in food safety. With the optimization of GMP aspects in food processing, it is also expected to grow SME productivity, profitability, and business sustainability. Future studies should investigate other identical SMEs so that they can become a benchmark and a basis for determining quality standardization in this industry later.

Acknowledgment
The authors express gratitude to the Industrial Engineering Department and Faculty of Engineering, Universitas Brawijaya, for extraordinary support.

References
[1] Liu R, Gao Z, Snell H A, Ma H 2020 Food safety concerns and consumer preferences for food safety attributes: Evidence from China Food Control 112 107157
[2] Odeyemi O A, Sani N A, Obadina A O, Saba C K S, Bamidele F A, Abughoush M, Asghar A, Dongmo F F D, Macer D, Aberoumand A 2019 Food safety knowledge, attitudes and practices among consumers in developing countries: An international survey Food Research
International 116 1386-1390

[3] Mostafa M M 2020 A knowledge domain visualization review of thirty years of halal food research: Themes, trends and knowledge structure Trends in Food Science & Technology 99 660-677

[4] Ahmad A N, Rahman R A, Othman M, Abidin U F U Z 2017 Critical success factors affecting the implementation of halal food management systems: Perspective of halal executives, consultants and auditors Food Control 74 70-78

[5] Fardiaz D 2017 Food regulations and enforcement in Indonesia Reference Module in Food Science 2017

[6] Mabrur F 2017 Distribusi sumber keracunan pangan di Dki Jakarta berdasarkan laporan kasus sentra informasi keracunan nasional – BPOM RI (Distribution of food poisoning sources in Dki Jakarta based on case reports of the national poisoning information center - BPOM RI). Undergraduate Thesis, Fakultas Kedokteran Dan Ilmu Kesehatan, UIN Syarif Hidayatullah Jakarta [In Indonesian]

[7] Morya S, Amoah A E D D, Snaebjornsson S O 2020 19 - Food poisoning hazards and their consequences over food safety Microorganisms for Sustainable Environment and Health 2020 383-400

[8] Eravia D, Handayani T, Julina J 2015 The opportunities and threats of small and medium enterprises in Pekanbaru: Comparison between SMES in food and restaurant industries Procedia - Social and Behavioral Sciences 169 88-97

[9] Najib M, Kiminami A, Yagi H 2011 Competitiveness of Indonesian small and medium food processing industry: Does the location matter? International Journal of Business and Management 6 9 57-67

[10] Andriani D P, Zamroni M H, Alesi T C, Rahman F 2017 The layout optimization of production process facilities in apple processing to improve productivity and sustainability. SMEs 6th IEEE International Conference on Advanced Logistics and Transport (ICALT), Bali, 2017 184-188

[11] Montet D, Hazm J E, Ouadia A, Chichi A, Mbaye M S, Mobinzo P, DIansambu I, Scher J, Scippo M L, Crespo M T B 2019 Contribution of the methodology of collective expertise to the mitigation of food safety hazards in low- or medium-income countries Food Control 99 84-88

[12] Nugroho A 2014 The impact of food safety standard on Indonesia’s coffee exports Procedia Environmental Sciences 20 425-433

[13] Schmidt R H, Pierce P D 2016 The use of standard operating procedures (SOPs). Handbook of Hygiene Control in the Food Industry, second edition (Cambridge:Woodhead Publishing) chapter 16 - pp 221-233

[14] Dewantara A S, Liqiddanu E, Rosyidi C N, Hisjlam M, Yuniaristanto 2018 Assessment of the readiness of SME to entering the modern market by using the good manufacturing practice and halal assurance system (case study on Sari Murni SME) AIP Conf. Proc. 1931 030032-1-030032-7

[15] Fajri M 2020 Integrated food assurance system IOP Conf. Ser.: Earth Environ. Sci. 443 012095.

[16] Chernova E, Bychenkova V, Kotova N, Pupynik K 2019 Automation of process of temperature modes control in security system based on HACCP principles IOP Conf. Ser.: Mater. Sci. Eng. 497 012108

[17] Citraresmi A D P, Wahyuni E E 2018 Implementation of hazard analysis and critical control point (HACCP)) in dried anchovy production process IOP Conf. Ser.: Earth Environ. Sci. 131 012021

[18] Ropkins K, Beck A J 2003 Using HACCP to control organic chemical hazards in food wholesale, distribution, storage and retail Trends in Food Science & Technology 14 9 374-389

[19] Eygue M, Richard-Forget F, Cappelier J M, Pinson-Gadais L, Membre J M 2020 Development
of a risk-ranking framework to evaluate simultaneously biological and chemical hazards related to food safety: Application to emerging dietary practices in France Food Control 115 107279

[20] Liu F, Rhim H, Park K, Xu J, Lo C K Y 2021 HACCP certification in food industry: Trade-offs in product safety and firm performance International Journal of Production Economics 231 107838

[21] Dzwolak W 2019 Assessment of HACCP plans in standardized food safety management systems – The case of small-sized Polish food businesses Food Control 106 106716

[22] Corlett D A 1992 Overview of biological, chemical, and physical hazard (US: Chapman and Hall)

[23] FAO 2003 General Principles of Food Hygiene (US: Food and Agriculture Organization)

[24] Karnaningroem N , Sunaya M U L 2020 The role of HACCP method in determining drinking water quality IOP Conf. Ser.: Earth Environ. Sci. 506 012031

[25] Trafialek J, Kolanowski W 2014 Application of failure mode and effect analysis (FMEA) for audit of HACCP system Food Control 44 35-44

[26] Grau-Vorster M, Rodriguez L, Mazo-Barbara A D, Mirabel C, Blanco M, Codinach M, Gomez S G, Querol S, Garcia-Lopez J, Vives J 2019 Compliance with good manufacturing practice in the assessment of immunomodulation potential of clinical grade multipotent mesenchymal stromal cells derived from wharton's jelly Cells 8 5 484

[27] Barlow S M, Boobis A R, Bridges J, Cockburn A, Dekant W, Hepburn P, Houben G F, Konig J, Nauta M J, Schuermans J, Banati D I 2015 The role of hazard- and risk-based approaches in ensuring food safety Trends in Food Science & Technology 46 2 A 176-188

[28] Marwati T, Hendrawanto P P, Widodo S, Djaafar T F, Utami T, Rahayu E S 2019 GMP implementation and CCP determination on chocolate candy processing in ATP Nglanggeran Yogyakarta IOP Conf. Ser.: Earth Environ. Sci. 309 012042

[29] Blanchfield J R 2005 Good manufacturing practice (GMP) in the food industry. Handbook of hygiene control in the food industry first edition (Cambridge: Woodhead Publishing) chapter 21 pp 324-347

[30] Purwantiningrum L, Widy hastuty W, Christian J, Sari N 2018 IOP Conf. Ser.: Earth Environ. Sci. 131 012028

[31] Scipioni A, Saccarola G, Centazzo A, Arena F 2002 FMEA methodology design, implementation and integration with HACCP system in a food company Food Control 13 8 495-501

[32] Varzakas T 2016 HACCP and ISO 22000: Risk assessment in conjunction with other food safety tools such as FMEA, ishikawa diagrams and pareto Encyclopedia of Food and Health 295-302

[33] Andriani D P, Novianti V D, Adnandy R, Ayunin Q 2019 Quantitative risk modelling of occupational safety in green-port IOP Conf. Ser.: Mater. Sci. Eng. 546 052007

[34] Arvanitoyannis I S, Varzakas T H 2008 Application of ISO 22000 and failure mode and effect analysis (FMEA) for industrial processing of salmon: a case study Critical Reviews in Food Science and Nutrition 48 411-429

[35] Andriani D P, Aini A P N, Anwar A A, Adnandy R 2020 Risks analysis on digital platforms adoption to elevate SME businesses in developing country J. Phys.: Conf. Ser. 1569 022096

[36] Oliveira C A F, Cruz A G, Tavolaro P, Corassin C H 2016 Food Safety: Good Manufacturing Practices (GMP), Sanitation Standard Operating Procedures (SSOP), Hazard Analysis and Critical Control Point (HACCP) Antimicrobial Food Packaging (Cambridge: Academic Press) chapter 10 pp 129-139