Evolution of plant sucrose uptake transporters

Anke Reinders¹, Alicia B. Sivitz² and John M. Ward¹*
¹ Department of Plant Biology, University of Minnesota, St. Paul, MN, USA
² Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
*Correspondence: John M. Ward, Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St. Paul, MN 55108, USA. E-mail: jward@umn.edu

INTRODUCTION

In angiosperms, sucrose uptake transporters (SUTs) have important functions especially in vascular tissue. Here we explore the evolutionary origins of SUTs by analysis of angiosperm SUTs and homologous transporters in a vascular early land plant, Selaginella moellendorffii, and a non-vascular plant, the bryophyte Physcomitrella patens, the charophyte algae Chlorokybus atmosphyticus, several red algae and fission yeast, Schizosaccharomyces pombe. Plant SUTs cluster into three types by phylogenetic analysis. Previous studies using angiosperms had shown that types I and II are localized to the plasma membrane while type III SUTs are associated with vacuolar membrane. SUT homologs were not found in the chlorophyte algae Chlamydomonas reinhardii and Volvox carteri. However, the characean algae Chlorokybus atmosphyticus contains a SUT homolog (CaSUT1) and phylogenetic analysis indicated that it is basal to all other streptophyte SUTs analyzed. SUTs are present in both red algae and S. pombe but they are less related to plant SUTs than CaSUT1. Both Selaginella and Physcomitrella encode type II and III SUTs suggesting that both plasma membrane and vacuolar sucrose transporter activities were present in early land plants. It is likely that SUT transporters are important for scavenging sucrose from the environment and intracellular compartments in charophyte and non-vascular plants. Type I SUTs were only found in eudicots and we conclude that they evolved from type III SUTs, possibly through loss of a vascular targeting sequence. Eudicots utilize type I SUTs for phloem (vascular tissue) loading while monocots use type II SUTs for phloem loading. We show that HvSUT1 from barley, a type II SUT, reverted the growth defect of the Arabidopsis atsuc2 (type I) mutant. This indicates that type I and II SUTs evolved similar (and interchangeable) phloem loading transporter capabilities independently.

Keywords: sucrose transporter, SUT, phylogeny, evolution

In angiosperms, H⁺-coupled sucrose-uptake transporters (SUTs) have important functions especially in vascular tissue. Here we explore the evolutionary origins of SUTs by analysis of angiosperm SUTs and homologous transporters in a vascular early land plant, Selaginella moellendorffii, and a non-vascular plant, the bryophyte Physcomitrella patens, the charophyte algae Chlorokybus atmosphyticus, several red algae and fission yeast, Schizosaccharomyces pombe. Plant SUTs cluster into three types by phylogenetic analysis. Previous studies using angiosperms had shown that types I and II are localized to the plasma membrane while type III SUTs are associated with vacuolar membrane. SUT homologs were not found in the chlorophyte algae Chlamydomonas reinhardii and Volvox carteri. However, the characean algae Chlorokybus atmosphyticus contains a SUT homolog (CaSUT1) and phylogenetic analysis indicated that it is basal to all other streptophyte SUTs analyzed. SUTs are present in both red algae and S. pombe but they are less related to plant SUTs than CaSUT1. Both Selaginella and Physcomitrella encode type II and III SUTs suggesting that both plasma membrane and vacuolar sucrose transporter activities were present in early land plants. It is likely that SUT transporters are important for scavenging sucrose from the environment and intracellular compartments in charophyte and non-vascular plants. Type I SUTs were only found in eudicots and we conclude that they evolved from type III SUTs, possibly through loss of a vascular targeting sequence. Eudicots utilize type I SUTs for phloem (vascular tissue) loading while monocots use type II SUTs for phloem loading. We show that HvSUT1 from barley, a type II SUT, reverted the growth defect of the Arabidopsis atsuc2 (type I) mutant. This indicates that type I and II SUTs evolved similar (and interchangeable) phloem loading transporter capabilities independently.

Keywords: sucrose transporter, SUT, phylogeny, evolution

In angiosperms, H⁺-coupled sucrose-uptake transporters (SUTs) have important functions especially in vascular tissue. Here we explore the evolutionary origins of SUTs by analysis of angiosperm SUTs and homologous transporters in a vascular early land plant, Selaginella moellendorffii, and a non-vascular plant, the bryophyte Physcomitrella patens, the charophyte algae Chlorokybus atmosphyticus, several red algae and fission yeast, Schizosaccharomyces pombe. Plant SUTs cluster into three types by phylogenetic analysis. Previous studies using angiosperms had shown that types I and II are localized to the plasma membrane while type III SUTs are associated with vacuolar membrane. SUT homologs were not found in the chlorophyte algae Chlamydomonas reinhardii and Volvox carteri. However, the characean algae Chlorokybus atmosphyticus contains a SUT homolog (CaSUT1) and phylogenetic analysis indicated that it is basal to all other streptophyte SUTs analyzed. SUTs are present in both red algae and S. pombe but they are less related to plant SUTs than CaSUT1. Both Selaginella and Physcomitrella encode type II and III SUTs suggesting that both plasma membrane and vacuolar sucrose transporter activities were present in early land plants. It is likely that SUT transporters are important for scavenging sucrose from the environment and intracellular compartments in charophyte and non-vascular plants. Type I SUTs were only found in eudicots and we conclude that they evolved from type III SUTs, possibly through loss of a vascular targeting sequence. Eudicots utilize type I SUTs for phloem (vascular tissue) loading while monocots use type II SUTs for phloem loading. We show that HvSUT1 from barley, a type II SUT, reverted the growth defect of the Arabidopsis atsuc2 (type I) mutant. This indicates that type I and II SUTs evolved similar (and interchangeable) phloem loading transporter capabilities independently.
monocot and eudicot divergence. Type III SUTs were first cloned from *Arabidopsis*, potato and tomato and characterized as H^+^-coupled symporters (Weise et al., 2000). Type III SUTs are localized at the vacuolar membrane (Endler et al., 2006; Reinders et al., 2008) and function in sucrose-uptake into the cytoplasm (Reinders et al., 2008; Schulz et al., 2011).

Advances in genome sequencing allow us for the first time to investigate the origins of angiosperm SUTs. Complete genome sequence is available for representative bryophyte (*Physcomitrella patens*), lycophyte (*Selaginella moellendorfii*), and chlorophytes (*Chlamydomonas reinhardtii* and *Volvox carterii*). In addition, partial sequence is available for the red algae *Galdieria sulphuraria* and *Cyanidioschyzon merolae* and EST sequence is available for several charophyte algae (Timme and Delwiche, 2010). The main questions that we can address by phylogenetic analysis are whether type I SUTs were derived from type II or type III SUTs and whether both type II and III SUTs were represented in the earliest land plants and algae.

MATERIALS AND METHODS

SUT PROTEIN SEQUENCES

All SUT protein sequences were obtained from the following species in which genome sequence is available: the eudicot *Arabidopsis thaliana*, the monocot rice (*Oryza sativa*), the lycophyte *Selaginella moellendorfii*, and the bryophyte *Physcomitrella patens* using BLAST searches on the Phytozome website 1. The same database was searched for SUT protein sequences from the chlorophytes *Chlamydomonas reinhardtii* and *Volvox carterii*. Dr. Charles F. Delwiche and Mr. James Thierer, University of Maryland, provided support by searching their algal sequence database (Timme and Delwiche, 2010). The main questions that we can address by phylogenetic analysis are whether type I SUTs were derived from type II or type III SUTs and whether both type II and III SUTs were represented in the earliest land plants and algae.

PHYLGENETIC ANALYSIS

Multiple protein sequence alignments were generated with Clustal X (Larkin et al., 2007). The variable length N- and C-terminal regions of the alignment were removed. Percent protein sequence identity is presented, based on the trimmed alignment, as average for each cluster (±SD). Sequences with greater than 90% overall sequence identity were not included in the phylogenetic analysis. Phylogenetic analysis was performed through the iPlant Collaborative website 4. Maximum likelihood analysis was done using PhyML 3.0 with 100 bootstrap replicates (Guindon and Gascuel, 2003; Guindon et al., 2010). Trees were visualized using the FigTree program 5.

1 http://phytozome.net
2 http://genomics.msu.edu/cgi-bin/galderia/blast.cgi
3 http://merolae.biol.s.u-tokyo.ac.jp/
4 http://www.ipplantcollaborative.org/
5 http://tree.bio.ed.ac.uk/software/figtree/

COMPLEMENTATION OF THE ARABIDOPSIS atsuc2-1 MUTANT

Constructs for plant transformation contained the AtSUC2 (*At1g22710*) promoter, coding region of either AtSUC2 or HvSUT1 (CA2)1231.1 cDNAs and the AtSUC2 3’UTR. The AtSUC2 promoter (2 kb) was amplified using the primers 5’gaggaacttctatagaaaagttgtaccagatttcggtaaatt and 5’gaggaacttctatagaaaagttgtaccagatttcggtaaatt and cloned into the pDONR P4-P1R vector (Invitrogen) using BP clonase II. The AtSUC2 ORF was amplified using 5’caccggtttcaaatagggcgcggcgcggggcgcggcgcggggcgcggcgcggg gcggggcgcggggcgcggggcgcggggcgcggggcgcggggcgcggggcgcggg gcgg
Reinders et al. Evolution of plant sucrose transporters

FIGURE 1 | Phylogenetic analysis of plant sucrose transporters and homologs. Protein alignment was done using Clustal X. Sequences with greater than 90% identity were not used in construction of the tree (they are shown in Table 1). The variable length N- and C-terminal regions were trimmed from the alignment. The maximum likelihood tree was generated using PhyML 3.0. Numbers indicate percent of 100 bootstrap analyses. Asterisk indicates the single charophyte SUT sequence, CaSUT1, from Chlorokybus atmosphyticus.
Table 1 | Sucrose transporter homologs.

Type	Organism	Common name	Gene	Prot ID	Length (aa)	Reference
I	Alonsoa meridionalis	Thale cress	AmSUT1	AAF04295	502	Knop et al. (2001)
I	Arabidopsis thaliana	Thale cress	AtSUC1 (At1g71880)	CAAS3147	513	Sauer and Stolz (1994)
I	Arabidopsis thaliana	Thale cress	AtSUC2 (At1g22710)	CAAS3150	512	Sauer and Stolz (1994)
I	Arabidopsis thaliana	Thale cress	AtSUC5 (At1g71890)	AAGS2226	512	Theologis et al. (2000)
I	Arabidopsis thaliana	Thale cress	AtSUC8 (At1g14670)	AAC69375	492	Lin et al. (1999)
I	Arabidopsis thaliana	Thale cress	AtSUC9 (At5g06170)	BAB09682	491	Tabata et al. (2000)
I	Arasinia barclaiana	Twining snapdragon	AsSUT1	AAF04294	510	Knop et al. (2001)
I	Beta vulgaris	Sugar beet	BvSUT1	CAAS3730	523	Vaughn et al. (2002)
I	Brassica oleracea	Broccoli	BoSUC1	AALS071	513	Gapper et al. (2005)
I	Citrus sinensis	Sweet orange	CsSUT1	AAM29150	528	Li et al. (2003)
I	Daucus carota	Carrot	DcSUT2	CAA7369	515	Shkaya and Sturm (1998)
I	Euphorbia esula	Leafy spurge	EsSUT1	AAF65765	530	
I	Hevea brasiliensis	Para rubber tree	HbSUT3/ HbSUT1A	ABK609190	535	Tang et al. (2010)
II	Juglans regia	English walnut	JrSUT1	AUA11810	516	Decourteix et al. (2006)
II	Solanum lycopersicum	Tomato	LeSUT1	CAAS7726	512	Barker et al. (2000)
II	Medicago truncatula	Barrel medic	MtSUT1	TC175182	525	http://compbio.dfci.harvard.edu/tgi/
IIA	Nicotiana tabacum	Common tobacco	NiSUT3	AAD34610	521	Lemoine et al. (1999)
IIA	Phaseolus vulgaris	Common bean	PsSUF1	ABB30165	509	Zhou et al. (2007)
IIA	Pisum sativum	Pea	PsSUF1	AAD41024	524	Tegeder et al. (1999)
IIA	Pisum sativum	Pea	PsSUF1	ABB30163	511	Zhou et al. (2007)
IIA	Plantago major	Common plantain	PmSUC1	CAAS9115	503	Gahrt et al. (1996)
IIA	Plantago major	Common plantain	PmSUC2	CAAS3390	510	Gahrt et al. (1996)
IIA	Populus trichocarpa	Black poplar	PtaSUT1/ PtaSUT1.2	18221401	535	Tuskan et al. (2006)
IIA	Ricianus communis	Castor bean	RsSCR1	CAAS3436	533	Weig and Komor (1996)
IIA	Spinacia oleracea	Spinach	SoSUT1	CAAS7604	526	Riesmeier et al. (1992)
IIA	Vitis vinifera	Grape	VvSUC27	AAF68331	505	Davies et al. (1999)
IIA	Arabidopsis thaliana	Thale cress	AtSUT2/AtSUC3(At2g02880)	CAS92307	595	Meyer et al. (2000), Schulze et al. (2000)
IIA	Eucomma ulmoides	Gutta-percha tree	EuSUT2	AAX49396	604	Pang et al. (2008)
IIA	Hevea brasiliensis	Para rubber tree	HbSUT2C/ HbSUT2A	CAM13449	539	Duscoito-Coucaud et al. (2009)
IIA	Oryza sativa japonica	Rice	OsSUT4 (Os02g58080)	BAC67164	595	Aoki et al. (2003)
IIA	Physcomitrella patens	Tomato	LeSUT2	AAG12987	605	Davies et al. (1999)
IIA	Physcomitrella patens	Tomato	LeSUT2	AAG12987	605	Davies et al. (1999)
IIA	Populus trichocarpa	Black poplar	PtaSUT2A	18241888	602	Tuskan et al. (2006)
IIA	Selaginella moellendorffii	Tomato	SmSUT2	15412113	521	Banks et al. (2011)
IIA	Solanum lycopersicum	Tomato	LeSUT2	AAG12987	605	Barker et al. (2000)
(Continued)						
Type	Organism	Common name	Gene	Prot ID	Length (aa)	Reference
------	----------	-------------	------	---------	-------------	-----------
IIB	Bambusa oldhamii (Dendrocalamopsis oldhamii)	Bamboo	BooSUT1	AAY43226	525	
IIB	Hordeum vulgare	Barley	HvSUT1	CAB75882	523	Weschke et al. (2000), Sivitz et al. (2005)
IIB	Oryza sativa japonica	Rice	OsSUT1 (Os03g07480)	BAA24071	537	Hirose et al. (1997)
IIB	Oryza sativa japonica	Rice	OsSUT3 (Os10g26740)	BAB68368	506	Aoki et al. (2003)
IIB	Oryza sativa japonica	Rice	OsSUT5 (Os02g36700)	BAC67165	535	Aoki et al. (2003)
IIB	Saccharum hybrid cultivar	Sugarcane	ShSUT1	AAV41028	517	Rae et al. (2005)
IIB	Zea mays	Corn	ZmSUT1	BAA83501	521	Aoki et al. (1999)
III	Arabidopsis thaliana	Thale cress	AtSUT4 (At1g09960)	AAL59915	510	Weise et al. (2000)
III	Datisca glomerata	Durango root	DgSUT4	CAG70682	498	Schubert et al. (2010)
III	Daucus carota	Carrot	DcSUT1a	CAA76367	501	Shakya and Sturm (1998)
III	Hevea brasiliensis	Para rubber tree	HbSUT4A	ABK60191	498	Tang et al. (2010)
III	Hordeum vulgare	Barley	HvSUT2	CAB75881	506	Weschke et al. (2000)
III	Lotus japonicus	LjSUT4	CAD61275	511	Flemetakis et al. (2003)	
III	Malus x domestica	Apple	MdSUT1	AAR17700	499	Fan et al. (2009)
III	Medicago truncatula	Barrel medic	MtSUT4	17466537	504	
III	Oryza sativa japonica	Rice	OsSUT2	BAC67163	501	Aoki et al. (2003)
III	Physcomitrella patens		PsSUT4A	18040351	532	Rensing et al. (2008)
III	Physcomitrella patens		PsSUT4B	18037160	500	Rensing et al. (2008)
III	Physcomitrella patens		PsSUT4C	18053343	524	Rensing et al. (2008)
III	Pisum sativum	Pea	PsSUF4	ABB30162	507	Zhou et al. (2007)
III	Ricinus communis	Castor bean	RcSUC4	AAU21439	509	
III	Selaginella moellendorffii		SmSUT4A	15419655	514	Banks et al. (2011)
III	Selaginella moellendorffii		SmSUT4B	15407332	492	Banks et al. (2011)
III	Selaginella moellendorffii		SmSUT4C	15417411	493	Banks et al. (2011)
III	Selaginella moellendorffii		SmSUT4D	15402611	531	Banks et al. (2011)
III	Solanum lycopersicum (Lycopersicon esculentum)	Tomato	LeSUT4	AAG09270	501	Weise et al. (2000)
III	Vitis vinifera	Grape	VvSUC11	AAF08329	501	Davies et al. (1999)
III	Zea mays	Corn	ZmSUT4	AAT35810	501	
Chlorokybus	Soil alga		CaSUT1			
atmospheric	Cyanidioschyzon merolae		CmSUT1	CMO328C	502	Matsuzaki et al. (2004)
Galderia sulphuraria			GsSUT1	Gs18190	471	Weber et al. (2004), Barbier et al. (2005)
Galderia sulphuraria			GsSUT2	Gs34550	546	Weber et al. (2004), Barbier et al. (2005)
Galderia sulphuraria			GsSUT3	Gs56657	430	Weber et al. (2004), Barbier et al. (2005)
Galderia sulphuraria			GsSUT4	Gs29860	526	Weber et al. (2004), Barbier et al. (2005)
Galderia sulphuraria			GsSUT5	Gs08920	638	Weber et al. (2004), Barbier et al. (2005)
Schizosaccharomyces pombe	Fission yeast		SpSUT1	NPS61487	553	Reinders and Ward (2001)

*sequence from DFCI (http://compbio.dfci.harvard.edu/cgi-bin/tgi/tgi/gimain.pl?gudb=medicago).

1 sequence from Phytozome v7.0 (http://www.phytozome.net/).

*not included in the phylogenetic analysis (< 90% identical to another SUT).

1 sequence from Cyanidioschyzon merolae genome project (http://merolae.biol.s.u-tokyo.ac.jp/).

1 sequence from Galderia sulphuraria genome project (http://genomics.msu.edu/galderia/index.html).
In Arabidopsis thaliana, type I SUTs display specialization in both expression and transport function. AtSUC2 is necessary for loading sucrose into the phloem (Gottwald et al., 2000). It has a K_{m} (affinity) for sucrose of 1.4 mM (Chandran et al., 2003) and a wide substrate specificity for α and β glucosides that is shared with other type I SUTs (Figure 2; Chandran et al., 2003). AtSUC1 transport activity is very similar to AtSUC2 but its expression pattern is quite different. AtSUC1 is expressed in trichomes, pollen and roots (Sivitz et al., 2007). AtSUC1 is necessary for normal pollen function (Sivitz et al., 2008). Expression of AtSUC1 in the phloem, under control of the AtSUC2 promoter, has been shown to revert the growth defects of atsuc2 mutants (Wippel and Sauer, 2011). There are also examples of type I SUTs with modified transport activity. AtSUC9 has a much higher affinity for sucrose compared to other type I SUTs (66 μM; Sivitz et al., 2007) while the substrate specificity is typical of other type I SUTs (Figure 2; Sivitz et al., 2007).

TYPE II SUTs

Type II SUT sequences were identified in eudicots, monocots, non-vascular land plants (Physcomitrella), and vascular non-seed land plants (Selaginella). A total of 16 SUT sequences clustered in the type II group with an average of 62% (±9%) identity. The type II group was divided into two subgroups IIA and IIB. These two subgroups were identified previously (Braun and Slewinski, 2009). There is also a structural difference between type IIA and IIB SUTs. Type IIA proteins have a longer central cytoplasmic loop compared to type IIB SUTs. This is reflected in the average length of proteins in type IIA of 587 amino acids (aa) compared to 523 aa in type IIB (Table 1). Each angiosperm genome appears to have one gene in the IIA subgroup. Sequences from Physcomitrella (two) and Selaginella (one) are also included in the IIA subgroup. PpSUT2A and B from Physcomitrella and SmSUT2 contain longer central loops with conserved sequence characteristic of angiosperm type IIA transporters. Overall, this indicates that a type IIA transporter with a longer central loop was an ancestral form of the type II SUTs found in angiosperms.

The type IIB subgroup is monocot specific, rice encodes three type IIB transporters. This group contains the monocot phloem loading SUTs. ZmSUT1 has been shown to be expressed in vascular tissue and to function in phloem loading (Slewinski et al., 2009). Similar to the amplification of type I SUTs in Arabidopsis, type IIB SUTs appear to have been amplified in rice. Transport activities of OsSUT1 and OsSUT5 were analyzed by expression in oocytes and electrophysiology. OsSUT5 was found to have a higher affinity for sucrose (2.3 mM) compared to OsSUT1 (7.5 mM) and the activity of OsSUT5 was found to be less pH dependent (Sun et al., 2010).

It is interesting to note that monocots and eudicots utilize different SUTs to load sucrose into the phloem. Differences in substrate specificity between type I SUTs such as AtSUC2 that transport sucrose into the phloem in eudicots and type II SUTs such as HvSUT1 that performs the same function in monocots have been identified (Chandran et al., 2003; Sivitz et al., 2005, 2007; Reinders et al., 2006, 2008; Sun et al., 2008). Figure 2 shows a summary of substrate specificity results for five sucrose transporters. AtSUC2 and AtSUC9 are both type I sucrose transporters and although AtSUC9 has approximately a 20-fold lower $K_{0.5}$ for sucrose (Sivitz et al., 2007) compared to AtSUC2, they have almost (depending on the transporter affinity and substrate solubility). All currents were normalized to sucrose-dependent currents and are presented as mean ± SE with at least three oocytes per mean. Indicates substrate not tested. Modified with permission from Chandran et al. (2003), Sivitz et al. (2005, 2007), Reinders et al. (2006, 2008).
identical substrate specificities. These type I SUTs transport the plant \(\beta\)-glucosides salicin, arbutin, esculin, fraxin, and helicin. Notably, arbutin, esculin, and fraxin are not transported by the type II transporters ShSUT1 and HvSUT1 (Figure 2). Synthetic \(\beta\) phenyl glucosides are also transported by type I and not by type II SUTs (Figure 2).

The differences in substrate specificity between type I and type II SUTs might suggest that the specificity of phloem loading in eudicots is different from that in monocots. It is possible that type I SUTs load other glucosides, in addition to sucrose, into the phloem. To begin to address this question we used either AtSUC2 or HvSUT1 to complement the Arabidopsis atsuc2-1 mutant (Gottwald et al., 2000). The homozygous atsuc2-1 mutant has greatly reduced growth and accumulates starch in source leaves due to its reduced ability for phloem loading (Figure 3A). By comparison, growth of the atsuc2-1 heterozygous plants is indistinguishable from wild-type (Figures 3A,B). As expected, the atsuc2-1 mutant growth phenotype was complemented by expression of the AtSUC2 gene. Expression of the HvSUT1 coding region driven by the AtSUC2 promoter also resulted in growth that was indistinguishable from wild-type (Figure 3B). The type II SUT HvSUT1 appears to revert the growth reduction caused by the loss of AtSUC2 in Arabidopsis. This indicates that differences in substrate specificity between type I and II SUTs might not reflect a significant difference in physiological function, although this result is preliminary. Further work is necessary to determine if HvSUT1 fully complements under different growth and stress conditions.

Finally, the grouping of moss type II SUTs can give us a few more clues about the evolution and function of these ancestral type II SUTs. The type II moss and spikemoss sequences cluster with type IIA and contain longer central loops. Both Physcomitrella and Selaginella lack type I and type IIB SUTs. If early vascular plants such as Selaginella have SUTs that function in phloem loading, those transporters are likely to be type IIA such as SmSUT2 and are different from those used by monocots and eudicots. Also, type IIA SUTs in angiosperms do not compensate for loss of the main phloem loading SUT as evidenced by mutant phenotypes of atsuc2 (Gottwald et al., 2000) and zmsut1 (Slewinski et al., 2009) mutants.

TYPE III SUTs

The first type III SUTs were isolated from Arabidopsis, tomato, potato, and barley and named AtSUT4, LeSUT4, StSUT4, and HvSUT2, respectively (Weise et al., 2000; Weischke et al., 2000). AtSUT4 from Arabidopsis and HvSUT2 from barley (Endler et al., 2006), LjSUT4 from Lotus japonicus (Reinders et al., 2008), and OsSUT2 from rice (Eom et al., 2011) were demonstrated to localize to the vacuole membrane. Twenty type III SUT sequences were included in this study (Table 1) and these have an average of 65% (±8%) identity. Each angiosperm genome appears to contain a single type III SUT gene. Both Selaginella and Physcomitrella contain multiple type III SUT genes. No type III SUT homologs have been identified in green algae.

Transport activity has been characterized in detail for type III SUT LjSUT4 (Reinders et al., 2008). The substrate specificity of LjSUT4 is intermediate between type I and II SUTs (Figure 2). Like other type III SUTs (Weise et al., 2000; Weischke et al., 2000) LjSUT4 functions as a \(H^+\)-coupled sucrose-uptake transporter. This indicates that its physiological function in the vacuolar membrane is sucrose-uptake into the cytoplasm from the vacuolar lumen. This activity for AtSUT4 has been demonstrated in Arabidopsis vacuoles (Schulz et al., 2011).

SUTs in Chlorokybus atmosphyticus, Galdieria sulphuraria, Cyanidioschyzon merolae, and Schizosaccharomyces pombe

No SUT sequences were found in chlorophytes Chlamydomonas reinhardtii and Volvox carteri. Charophyte green algae are considered to represent ancestors of land plants. A single SUT sequence was found in the charophyte Chlorokybus atmosphyticus (CaSUT1). It did not cluster with type I, II, or III SUTs from land plants but appears to be basal to these clades (Figure 1). Since a complete genome sequence of a charophyte is not yet available it remains to be determined whether additional SUTs are present in charophyte genomes. The central loop of CaSUT1 is not extended as in type IIA SUTs. Also, the N-terminal sequence for CaSUT1 is not available so we could not determine if the putative vacuole targeting sequence is present (see Discussion).

Galdieria sulphuraria and Cyanidioschyzon merolae are closely related, unicellular red microalgae. While G. sulphuraria can grow...
on 27 different sugars and sugar alcohols (Gross and Schnarrenberger, 1995), C. merolae can not grow heterotrophically (Matsumaki et al., 2004). Five SUT homologs were identified in G. sulphuraria (GsuSUT1-5) and one, CmSUT1, was identified in the C. merolae genome (Figure 1: Table 1). This is consistent with the larger number of genes encoding transporters and enzymes involved in carbohydrate metabolism identified in G. sulphuraria compared to C. merolae (Barbier et al., 2005).

DISCUSSION

THE ORIGIN OF PLANT SUTs IN CHAROPTHYTE ALGAE

SUTs function as H\(^{+}\)-coupled cellular sucrose uptake transporters. In angiosperms, type I and II SUTs are localized to the plasma membrane while type III SUTs are localized to the vacuole membrane. They are important for the long-distance transport of sucrose in apoplastic phloem loaders (requiring transmembrane transport). Another important function for SUTs in angiosperms is in sucrose-uptake into sinks that are symplastically isolated such as seeds and pollen. The availability of bryophyte (non-vascular), lycophyte (early vascular), and algal genome sequences allows us to begin to analyze the origins of SUTs in land plants. The presence of CaSUT1 in the charophyte alga Chlorokybus atmosphyticus as well as the absence of SUTs in chlorophyte algae (Chlamydomonas reinhardtii and Volvox carterii) is consistent with the hypothesis that charophyte algae are ancestral to land plants (McCourt et al., 2004).

The physiological function of SUT homologs in Chlorokybus, which exists as small clusters of cells and in the unicellular red alga Gallideria and Cyanidioschyzon is currently unknown but will depend on their membrane localization. They are likely to function as H\(^{+}\)-coupled symporters for glucoside uptake into the cytosol whether they are localized to the plasma membrane or an internal membrane. Interestingly, Cyanidioschyzon lacks a central vacuole (Barbier et al., 2005), so it is more likely that CmSUT1 is a plasma membrane transporter. Bryophytes lack true vascular tissue yet Physcomitrella contains both type IIA and type III SUTs. In angiosperms, type IIA SUTs are localized to the plasma membrane (Barker et al., 2000; Meyer et al., 2000) while type III SUTs are vacuolar (Endler et al., 2006; Reinders et al., 2008). Therefore, it is likely that Physcomitrella contains both plasma membrane and vacuolar SUTs but this will need to be determined experimentally. Long-distance transport of photosynthate in mosses involves leptoid cells and the mechanism appears to be symplasmic, involving plasmodesmata not transmembrane transport (Raven, 2003). Therefore, if SUTs are localized to the plasma membrane in bryophytes their function is not in phloem loading but may be involved in recovery of sucrose that is released to the apoplast. Although leptoid cells evolved independently of phloem, many groups of angiosperms that utilize a similar passive mechanism for phloem loading (Rennie and Turgeon, 2009) also encode SUTs. The function of type III SUTs in bryophytes is likely to be the same as in angiosperms. Sucrose is transiently stored in the vacuole in angiosperms and type III SUTs function in the vacuole membrane to return sucrose from the vacuole lumen to the cytoplasm (Reinders et al., 2008; Schulz et al., 2011). The more recent development of type I SUTs in eudicots and type IIB SUTs in monocots is likely to be linked to the evolution of active phloem loading requiring energy and transmembrane transport.

PUTATIVE VACUOLAR TARGETING MOTIF IN TYPE III SUTs

Recently, a dileucine-like motif (LXXXL) in the N-terminal cytoplasmic domain of the Arabidopsis monosaccharide transporter ESL1 was shown to be necessary for localization of the transporter to the vacuole membrane (Yamada et al., 2010). Dileucine-like motifs are recognized by a clathrin-associated, heterotetrameric adaptor protein (AP-3) complex and function in sorting of vacuole membrane proteins in yeast (Vowels and Payne, 1998). Similar dileucine motifs contain an acidic residue spaced several residues prior to the leucine pair with a consensus of DXXXL or DE[LXXL][L1] (Braulke and Bonifacio, 2009). The AP-3 complex has been shown to be necessary for normal vacuole function in Arabidopsis (Zwievelka et al., 2011). An LXXL motif is found in the cytoplasmic N-terminus of type III SUTs (Figure 4) but is lacking in type I and II SUTs. All of the angiosperm type III SUTs contain a perfect LXXL motif with the exception of AtSUT4 that has the sequence KRVLL (Figure 4). AtSUT4 has been demonstrated to localize to the vacuole membrane (Endler et al., 2006) so it is likely that the first leucine of the motif is not strictly required. Recently, localization of AtSUT4 to the vacuole membrane in Arabidopsis was shown to be dependent on AP-3 (Wolfenstetter et al., 2012). None of the Physcomitrella or Selaginella type III SUTs contain a...
complete LXXLL motif and it is unknown whether they localize to the vacuole membrane.

The Origin of Type I SUTs

Type I SUTs are localized to the plasma membrane in eudicots. Based on phylogeny (Figure 1) and substrate specificity (Figure 2) they are more similar to type III SUTs than to type II SUTs. Since type III SUTs are present in bryophytes and lycophytes, we suggest that type I SUTs are derived from vacuolar-type III SUTs. This would likely involve mutation of the vacuolar targeting information resulting in localization to the plasma membrane, the default targeting pathway for membrane proteins in plants. We hypothesize that the LXXLL motif found in type III SUTs serves as the vacuolar targeting domain but this needs to be tested directly.

Conclusion

Angiosperm SUTs clustered into three groups, type I, II, and III. Type I SUTs, only found in eudicots, appear to have evolved from vacuolar-type III SUTs which were found in all land plants from bryophytes to angiosperms. Type II SUTs were divided into an ancestral form, type IA, that exist in all land plants and have an extended central loop. Type IIB SUTs only exist in monocots and include the plasmol loading transporters in those species. Here we identify an algal SUT (CaSUT1) from the charophyte *Chlorokybus* *atmosphericus*. Based on phylogenetic analysis, CaSUT1 appears basal to three types of land plant SUTs and this is consistent with the hypothesis that charophytes are ancestral to land plants.

Acknowledgments

We thank Dr. Charles F. Delwiche and Mr. James Thierer, Cell Biology and Molecular Genetics, University of Maryland for providing sequences from charophyte algae prior to publication. We thank Dr. Andreas Weber, University of Düsseldorf for providing sequences of SUT homologs from *Galdieria sulphuraria*. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy grant DE-FG02-10ER15886 (John M. Ward).

References

Aoki, N., Hirose, T., Scofield, G. N., Whitfield, P. R., and Furbank, R. T. (2003). The sucrose transporter gene family in rice. *Plant Cell Physiol.* 44, 223–232.

Aoki, N., Hirose, T., Takahashi, S., Ono, K., Ishimaru, K., and Ohsumi, R. (1999). Molecular cloning and expression analysis of a gene for a putative sucrose sensor in sieve tube cells of rice (*Zea mays* L.). *Plant Cell Physiol.* 40, 1072–1078.

Ayre, B. G. (2011). Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. *Mol. Plant* 4, 377–394.

Banks, J. A., Nishiyama, T., Hasebe, M., Bowman, J. L., Gribkov, M., Depamphilis, C., Albert, V. A., Aono, N., Aoyama, T., Ambrose, B. A., Ashton, N. W., Axcell, M. J., Barker, E., Barker, M. S., Bennetzen, J. L., Bonavidez, N. D., Chappelle, C., Cheng, C., Correa, L. G., Dacre, M., Debarry, J., Dreyer, L., Elia, M., Engstrom, E. M., Estelle, M., Feng, L., Finet, C., Floyd, S. K., Frommer, W. B., Fujita, T., Gnamzow, I., Guttensohn, M., Hartholt, J., Hattori, M., Heyl, A., Hirai, T., Hiwatashi, Y., Ishikawa, M., Iwata, M., Karol, K. G., Koehler, B., Kolukisaoglu, U., Kubo, M., Kurata, T., Lalonde, S., Li, K., Li, Y., Litt, A., Lyons, E., Manning, G., Maniyama, T., Michael, T. P., and Frommer, W. B. (2000). *SUT2*, a putative sucrose sensor in sieve elements. *Plant Cell* 12, 1153–1164.

Barbier, G., Oesterhelt, C., Larson, M. D., Halgren, R. W., Willkerson, C., Garavito, R. M., Benning, C., and Weber, A. P. (2005). Comparative genomics of two closely related unicellular thermo-acidophilic red algae, *Galdieria sulphuraria* and *Cyanidioschyzon merolae*, reveals the molecular basis of the metabolic flexibility of *Galdieria sulphuraria* and significant differences in carbohydrate metabolism of both algae. *Plant Physiol.* 137, 460–474.

Barker, L., Kuhn, C., Weise, A., Schulz, A., Gebhardt, C., Hirner, B., Hellmann, H., Schulze, W., Ward, J. M., and Frommer, W. B. (2000). *SUT2*, a putative sucrose sensor in sieve elements. *Plant Cell* 12, 1153–1164.

Braule, T., and Bonifacio, J. S. (2009). Sorting of lysosomal proteins. *Biochim. Biophys. Acta* 1793, 605–614.

Braun, D. M., and Slevinski, T. L. (2009). Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in plasmol loading. *Plant Physiol.* 149, 71–81.

Chandran, D., Reinders, A., and Ward, J. M. (2003). *Substrate specificity of the Arabidopsis thaliana sucrose transporter AtSUC2*. *J. Biol. Chem.* 278, 44320–44325.

Chang, A. B., Lin, R., Keith Studley, W., Tran, C. V., and Saier, M. H. Jr. (2004). Phylogeny as a guide to structure and function of membrane transport proteins. *Mol. Membr. Biol.* 21, 171–181.

Clough, S. J., and Bent, A. E. F. (1998). *Floral dip*; a simplified method for *Agrobacterium*-mediated transformation of Arabidopsis thaliana. *Plant J.* 16, 735–743.

Costin, G. E., Valencia, J. C., Vieira, D. W., Lamoreux, M. L., and Hearing, V. J. (2003). Tyrosine processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underiv- (u) mutation. A model for ocucoutaneous albinism (OCA) type 4. *J. Cell Sci.* 116, 3203–3212.

Davies, C., Wolf, T., and Robinson, S. P. (1999). Three putative sucrose transporters are differentially expressed in grapevine tissues. *Plant Sci.* 147, 93–100.

Decourtieux, M., Alves, G., Brunel, N., Ameglio, T., Guillou, A., Lemoine, R., Petel, G., and Sakre, S. (2006). *JrSUT1*, a putative sucrose xylem loading transporter, could mediate sucrose influx into xylem parenchyma cells and be up-regulated by freeze-thaw cycles over the autumn-winter period in walnut tree (*Juglans regia* L.). *Plant Cell Environ.* 29, 36–47.

Dussoit-Coucaud, A., Brunel, N., Kongawawdorakul, P., Viboajjonn, U., Lacoointe, J., Menil, L., Cresrion, H., and Sakre, S. (2009). Sucrose importation into laticifers of *Hevea brasiliensis*, in relation to ethylene stimulation of latex production. *Ann. Bot.* 104, 635–647.

Endler, A., Meyer, S., Schellert, S., Schneider, T., Wieschke, W., Peters, W. W., Keller, F., Baginsky, S., Martinoia, E., and Schmidt, U. G. (2006). Identification of a vacuolar sucrose transporter in barley and *Arabidopsis* mesophyll cells by a tonoplasmodic tool for plant sequestration approach. *Plant Physiol.* 141, 196–207.

Eom, J. S., Cho, J. I., Reinders, A., Lee, S.W., Yoo, Y., Tuan, F.Q., Choi, S. B., Bang, G., Park, Y. I., Cho, M. H., Bhoos, S. H., An, G., Hahn, T. R., Ward, J. M., and Jeon, I. S. (2011). Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. *Plant Physiol.* 157, 109–119.

Fan, R. C., Peng, C. C., Xu, Y. H., Wang, X. F., Li, Y., Shang, Y., Du, S. Y., Zhao, R., Zhang, X. Y., Zhang, L. Y., and Zhaning, D. P. (2009). Apple sucrose transporter SUT1 and sorbitol transporter SOT6 interact with cytochrome b5 to regulate their affinity for substrate sugars. *Plant Physiol.* 150, 1880–1901.

Flemetakis, E., Dimou, M., Cotzur, D., Efros, R. C., Avkalakis, G., Colebatch, G., Uhwardi, M., and Katinakis, K. (2003). A sucrose transporter, LgSUT4, is up-regulated during *Lotus japonicus* nodule formation.
Slewinski, T. L., Meeley, R., and Braun, D. E., Senters, A. E., Zanis, M. J., Sivitz, A. B., Reinders, A., and Ward, J. M. (2010). Evolution of plant sucrose transporters OsSUT1 and OsSUT5. Plant Cell Physiol. 51, 114–122.

Tabata, S., Kaneko, T., Nakamura, Y., Kotani, H., Kato, T., Azamia, E., Miyajima, N., Sasamoto, S., Kimura, M., Tsubouchi, K., Kawashima, K., Kohara, M., Matsumoto, M., Matsuno, A., Muraki, A., Nakazaki, S., Nakazaki, N., Naruo, K., Okuma, M., Shino, S., Takeuchi, K., Wada, T., Watanabe, A., Yamada, M., Yasuda, S., Mato, S., De La Bastide, M., Huang, E., Spiegel, L., Gnoj, L., O’Shaughnessy, A., Preston, R., Habermann, K., Murray, J., Johnson, R., Rohlfing, T., Nelson, J., Stoneking, T., Pepin, K., Spithet, J., Sekhon, M., Armstrong, J., Becker, M., Belter, E., Cordum, H., Cordes, M., Courtney, L., Courtoyn, W., Dante, M., Du, H., Edwards, J., Fryman, J., Haakney, E., Lamarr, E., Latercre, P., Leonard, S., Meyer, R., Mulveyan, A., Ozeski, P., Riley, A., Strowlman, C., Wagner-McPherson, C., Wollam, A., Voakum, M., Bell, M., Dodlia, N., Parnell, L., Shah, R., Rodriguez, M., See, I. H., Vil, D., Baker, J., Kirchoff, K., Toth, K., King, L., Bahret, A., Miller, B., Marra, M., Martienssen, R., McCombie, W. R., Wilson, K. R., Murphy, G., Bancroft, J., Volckert, A., Wambutt, R., Dusterhoff, A., Stekema, W., Pohl, T., Entian, K. D., Trewyn, N., Hartley, N., B. E., Johnson, S., Langham, S. A., McCul- lough, B., Robben, J., Gymnospreo, B., Zimmermann, W., Ramserger, U., Wedler, H., Bale, K., Wedler, E., Peters, S., van Stavenere, M., Dirke, W., Moomjian, P., Lankhorst, R. K., Weizenegger, T., Gothe, G., Rose, M., Haut, J., Berenstein, S., Hempel, S., Feldpauoch, M., Lambert, S., Vil- larroel, G., Gienel, J., Arildes, W., Bents, O., Lemcke, K., Kolesov, G., Mayer, K., Rudd, S., Schoof, H., Schueller, C., Zacaria, P., Mewes, H. W., Bevan, M., Frans, P., Kazaza, DNA Research Institute, Cold Spring Harbor and Washington University in St Louis Sequencing Consortium, and European Union Arabidop- sis Genome Sequencing Consor- tium (2000). Sequence and analy- sis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408, 823–826.

Tang, C., Huang, D., Yang, J., Liu, S., Sakr, S., Li, H., Zhou, Y., and Qin, Y. (2010). The sucrose transporter Htr2B plays an active role in sucrose loading to laticifer and rub- ber productivity in exploited trees of Hevea brasiliensis (para rub- ber tree). Plant Cell Environ. 33, 1708–1720.

Tegeder, M., Wang, X. D., Frommer, W. B., Ollier, C. E., and Patrick, J. W. (1999). Sucrose transport into developing seeds of Pisum sativum L. Plant J. 18, 151–161.

Theologis, A., Ecker, J. R., Palm, C. J., Federeski, N. A., Kaul, S., White, O., Alonso, J. M., Altali, H., Araujo, R., Bow- man, C. L., Brooks, S. Y., Bueler, E., Chan, A., Chao, Q., Chen, H., Creuk, R. F., Chin, C. W., Chung, M. K., Conn, L., Conroy, A. B., Conway, A. R., Creasy, T. H., Dewar, K., Dunn, P., Egu, P., Feldblyum, T. V., Feng, J., Feng, B., Fuji, C. Y., Gill, E. E., Gold- smith, A. D., Haas, B., Hansen, N., Hughes, B., Huizan, L., Hunter, J. L., Jenkins, K., Johnson-Hopson, C., Khan, S., Khaykin, E., Kim, C. J., Koo, H. L., Kremenetskaia, K., Kurtz, D. B., Kwan, A., Lam, B., Lang-Hooper, S., Lee, A., Lee, J. M., Lenz, C. A., Li, J. H., Li, Y., Lin, L., Liu, Y. S., Liu, Z. A., Luros, J. S., Maiti, R., Marziali, A., Mitlitscher, J., Miranda, M., Nguyen, N., Nierman, W. C., Osborne, B. L., Paig, G., Peterson, J., Pham, P. K., Rizzo, M., Rooney, T., Rowley, D., Sakano, H., Salzberg, S. L. W., Schwartz, J. R., Shinn, P., Southwick, A. M., Sun, H., Tailon, L. J., Tambanga, G., Toriumi, M., Town, C. D., Utter- back, T., Van Aken, S., Vaysberg, M., Vysotskaia, V. S., Walker, M., Wu, D., Yu, G., Fraser, C. M., Venter, J. C., and Davis, R. W. (2000). Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408, 816–820.

Timme, R. E., and Delwiche, C. F. (2010). Uncovering the evo- lutionary origin of plant mol- ecular processes: comparison of Coleochaete (Coleochaetales) and Syringa (Zygnematales) transcrip- tomes. BMC Plant Biol. 10, 96. doi:10.1186/1471-2229-10-96

Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Helli- sten, U., Putnam, N., Ralph, S., Rombouts, S., Salamow, A., Schein, J., Sterek, L., Aerts, A., Blaherao, R. R., Blaherao, R. P., Blandau, D., Boerjan, W., Brun, A., Brar, A., Busov, V., Camp- bell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G. L., Cooper, D., Coutinio, P. M., Curtier, J., Covert, S., Cronk, C. Q., Cunningham, R., Davis, J., Degroeve, S., Dejardin, A., Depampilis, C., Dexter, J., Dirks, B., Dubach, J., Duplessis, S., Elht- ing, J., Ellis, B., Gender, K., Good- steed, D., Gribkov, M., Grimmel, J., Groover, A., Gunter, L., Ham- berger, B., Heineze, B., Helariutta, Y., Hennissat, B., Holligan, D., Holt, R., Huang, W., Islam-Faridi, N., Jones, S., Jones-Rhoades, M., Jorgensen, R., Joshi, C., Kangasjarvi, J., Karlsson, J., Keelher, C., Kirkpatrick, R., Kist, M., Kohler, A., Kullari, L., Larimer, F., Leebens-Mack, J., Leple, J. C., Locascio, P., Lou, Y., Lucas, S., Mar- tin, F., Montanini, B., Napoli, C., Nelson, D. R., Nelson, C., Niemi- tin, K., Nilsson, O., Pereda, V., Peter, G., Philippe, R., Pikate, G., Poljakov, A., Razumovskaya, J., Richardson, P., Rinaldi, C., Ritland, K., Rouze, P., Ryaboy, D., Schmutz, J., Schrader, J., Segerman, B., Shin, H., Siddiqui, A., Sterky, E., Terry, A., Tao, C. J., Uberbacher, E., Uneberg, P., Vahala, J., Wall, K., Wessler, S., Yang, G., Yin, T., Douglas, C., Marra, M., Sandberg, G., Van De Peer, Y., and Roskhar, S. (2006). The genome of black cottonwood, Populus tri- chocarpa (Torr. & Gray). Science 313, 1596–1604.

Vughs, M. W., Harrington, G. N., and Bush, D. R. (2002). Sucrose- mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc. Natl. Acad. Sci. U.S.A. 99, 10876–10880.

Vowell, J. I., and Payne, G. S. (1998). A dileucine-like sorting signal directs transport into an AP-3-dependent, clathrin-independent pathway to the yeast vacuole. EMBO J. 17, 2482–2493.

Weber, A. P., Oesterhelt, C., Gross, W., Brautigam, A., Imboden, L. A., Krassovskaya, I., Linka, N., Truchina, J., Schneider, J., Voss, G., Voss, L. M., Zimmermann, M., Jamal, A., Riekhoft, W. R., Yu, B., Garavito, R. M., and Benning, C. (2004). EST- analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of car- bon export from rhodoplasts. Plant Mol. Biol. 55, 17–32.

Weig, A., and Komor, E. (1996). An active sucrose carrier (Sec1) that is predominantly expressed in the seedling of Ricinus communis L. Plant Physiol. 147, 685–690.

Weisz, A., Barker, L., Kuhn, C., Lalonde, S., Buschmann, H., Frommer, W., and Ward, J. M. (2000). A new subfamily of sucrose symporter SUT4 with low affinity/high capac- ity localized in enucleate sieve ele- ments of plants. Plant Cell 12, 1345–1355.

Wesche, A., Wanitz, R., Sauer, N., Wang, B., Neubohn, B., Weber, H., and Weber, R., S. (2004). Symporter SUT4: A barley specific sucrose transporter that functions in barley seeds; molecular charac- terization of two transporters and implications for seed development and starch accumulation. Plant J. 21, 455–467.
Wippel, K., and Sauer, N. (2011). *Arabidopsis* SUC1 loads the phloem in suc2 mutants when expressed from the SUC2 promoter. *J. Exp. Bot.* 63, 669–679.

Wolfenstetter, S., Wirsching, P., Dotzauer, D., Schneider, S., and Sauer, N. (2012). Routes to the tonoplast: the sorting of tonoplast transporters in *Arabidopsis* mesophyll protoplasts. *Plant Cell.* [Epub ahead of print].

Yamada, K., Osakabe, Y., Mizoi, J., Nakashima, K., Fujita, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). Functional analysis of an *Arabidopsis thaliana* abiotic stress-inducible facilitated diffusion transporter for monosaccharides. *J. Biol. Chem.* 285, 1138–1146.

Zhou, Y., Qu, H., Dibley, K. E., Offler, C. E., and Patrick, J. W. (2007). A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators. *Plant J.* 49, 750–764.

Zwiewka, M., Feraru, E., Moller, B., Hwang, I., Feraru, M. L., Klein-Vehn, J., Weijers, D., and Friml, J. (2011). The AP-3 adaptor complex is required for vacuolar function in *Arabidopsis*. *Cell Res.* 21, 1711–1722.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 15 December 2011; accepted: 20 January 2012; published online: 15 February 2012.