On a certain class of operator algebras and their derivations

Sh.A. Ayupov 1,*, R.Z. Abdullaev 2, K.K. Kudaybergenov 3

August 10, 2009

Abstract

Given a von Neumann algebra M with a faithful normal finite trace, we introduce the so called finite tracial algebra M_f as the intersection of L_p-spaces $L_p(M, \mu)$ over all $p \geq 1$ and over all faithful normal finite traces μ on M. Basic algebraic and topological properties of finite tracial algebras are studied. We prove that all derivations on these algebras are inner.

1 Institute of Mathematics and Information Technologies, Uzbekistan Academy of Science, Dormon Yoli str. 29, 100125, Tashkent, Uzbekistan
and
Abdus Salam International Centre for Theoretical Physics, Trieste, Italy,
e-mail: shayupov@mail.ru
2 Institute of Mathematics and Information Technologies, Uzbekistan Academy of Science, Dormon Yoli str. 29, 100125, Tashkent, Uzbekistan,
e-mail: arustambay@yandex.ru
3 Karakalpak state university, Ch. Abdirov str. 1, 142012, Nukus, Uzbekistan,
e-mail: karim2006@mail.ru

AMS Subject Classifications (2000): 46L51, 46L52, 46L57, 46L07.

Key words: von Neumann algebra, faithful normal finite trace, non commutative L_p-spaces, Arens algebra, finite tracial algebra, derivations.

* Corresponding author
1 Introduction

In the present paper we introduce a new class of algebras, the so-called finite tracial algebras, which are defined as the intersection of non commutative L_p-spaces $L_p(M, \mu)$ \[1\] over all $p \in [1, \infty)$ and over all faithful normal finite (f.n.f.) traces μ on a von Neumann algebra M. Equivalently, a finite tracial algebra M_f is the intersection of all non commutative Arens algebras $L^\omega(M, \mu) = \bigcap_{p \geq 1} L_p(M, \mu)$, over all f.n.f. traces μ. It is known that Arens algebras are metrizable locally convex *-algebras with respect to the topology generated by the system of L_p-norms for a fixed trace. Algebraic and topological properties of Arens algebras have been investigated in the papers \[1\]-\[3\], \[7\], \[10\].

In the present paper we study basic properties of finite tracial algebras with the topology generated by all L_p-norms $\{\| \cdot \|_p^\mu\}$, where $p \in [1, \infty)$ and μ runs over all f.n.f. traces on the given von Neumann algebra M. We prove that a finite tracial algebra M_f is metrizable or reflexive if and only if the center of the von Neumann algebra M is finite dimensional; in this case M_f coincides with an appropriate Arens algebra. We also give a necessary and sufficient condition for M_f to coincide (as a set) with M. But even in this case one has a new topology on the von Neumann algebra M. We obtain also a description of the dual space for the algebra M_f.

Finally we prove that every derivation on a solid subalgebra of the Arens algebra $L^\omega(M, \tau)$ is inner. In particular we obtain that the algebra M_f admits only inner derivations.

Throughout the paper we consider a von Neumann algebra M with a f.n.f. trace. Therefore M is a finite von Neumann algebra and thus all closed densely defined operators affiliated with M are measurable with respect to M, i.e. the set of all such operators coincides with the algebra $S(M)$ of all measurable operators and hence also with the algebra $LS(M)$ of all locally measurable operators affiliated with M; moreover the center of $S(M) = LS(M)$ coincides with the set of operators affiliated with the center of M.

2 Preliminaries

Let M be a von Neumann algebra with the positive cone M^+ and let 1 denote the identity operator in M.

A positive linear functional μ is called a finite trace if $\mu(u^* xu) = \mu(x)$ for all $x \in M$ and each unitary operator $u \in M$.

A finite trace μ is said to be faithful if for $x \in M^+$, $\mu(x) = 0$ implies that $x = 0$.

A finite trace μ is normal if given any monotone net $\{x_\alpha\}$ increasing to $x \in M$, one has $\mu(x) = \sup \mu(x_\alpha)$.

Let τ be a fixed faithful normal finite (f.n.f.) trace on a von Neumann algebra M. The Radon — Nikodym theorem [13, Theorem 14] implies that given any f.n.f. trace μ on M, there exists a positive operator $h \in L^1(M, \tau)$ affiliated with the center of M such that $\mu(x) = \tau(hx)$ for all $x \in M$. This operator h is called the Radon — Nikodym derivative of the trace μ with respect to the trace τ and it is denoted as $\frac{d\mu}{d\tau}$.

We recall [13, 15] that given a f.n.f. trace τ on a von Neumann algebra M, the space $L^p(M, \tau)$, $p \in [1, \infty)$, is defined as

$$L^p(M, \tau) = \{x \in S(M) : |x|^p \in L^1(M, \tau)\}.$$

The space $L^p(M, \tau)$ equipped with the norm $\|x\|_p = (\tau(|x|^p))^{1/p}$ is a Banach space and its dual space coincides with $L^q(M, \tau)$ where $\frac{1}{p} + \frac{1}{q} = 1$, and the duality is given by

$$\langle x, a \rangle = f_a(x) = \tau(ax),$$

for all $f_a \in L^p(M, \tau)^*$, $a \in L^q(M, \tau)$ (see [15, Theorem 4.4]).

Following [10] consider the intersection

$$L^\omega(M, \tau) = \bigcap_{p \in [1, \infty)} L^p(M, \tau).$$

It is known (see also [1, 3, 7]), that $L^\omega(M, \tau)$ is a complete locally convex $*$-algebra with respect to the topology t^τ generated by the system of norms $\{\| \cdot \|_p\}_{p \in [1, \infty)}$.

Each operator $a \in \bigcup_{q \in (1, \infty)} L^q(M, \tau)$ defines a continuous linear functional f_a on $(L^\omega(M, \tau), t^\tau)$ by the formula $f_a(x) = \tau(ax)$, and conversely given an arbitrary continuous linear functional f on the algebra $(L^\omega(M, \tau), t^\tau)$ there exists an element $a \in \bigcup_{q \in (1, \infty)} L^q(M, \tau)$ such that $f(x) = \tau(ax)$.

3
3 Finite Tracial Algebras

Let M be a finite von Neumann algebra. Denote by \mathcal{F} the set of all f.n.f. traces on M and from now on suppose that $\mathcal{F} \neq \emptyset$.

Consider the space

$$M_f = \bigcap_{\mu \in \mathcal{F}} \bigcap_{p \in [1, \infty)} L_p(M, \mu) = \bigcap_{\mu \in \mathcal{F}} L^\omega(M, \mu).$$

On the space M_f one can consider the topology t, generated by the system of norms $\{\| \cdot \|_p^\mu : \mu \in \mathcal{F}, p \in [1, \infty)\}$.

Since each Arens algebra $L^\omega(M, \mu)$, $\mu \in \mathcal{F}$, is a complete locally convex topological $*$-algebra in $S(M)$ from the above definition one easily obtains the following

Theorem 3.1. (M_f, t) is a complete locally convex topological $*$-algebra.

Definition. The topological $*$-algebra M_f is called the finite tracial algebra with respect to the von Neumann algebra M.

Remark. Finite tracial algebras present examples of so called GW*-algebras in the sense of [12].

Recall (see [12]) that a topological $*$-algebra (A, t_A) is called GW*-algebra, if A has a W^*-subalgebra B with $(1 + x^*x)^{-1} \in B$ for all $x \in A$ and the unit ball of B if t_A-bounded.

The finite tracial algebra M_f is a GW*-algebra. Since $M \subset M_f$ it is sufficient to show that the unit ball in M is t-bounded in M_f.

Let $x \in M$, $\|x\|_\infty \leq 1$. For $\mu \in \mathcal{F}$, and $1 \leq p < \infty$ we have

$$\|x\|_p^\mu = \|x1\|_p^\mu \leq \|x\|_\infty \|1\|_p^\mu \leq \mu(1)^{\frac{1}{p}},$$

i. e. $\|x\|_p^\mu \leq \mu(1)^{\frac{1}{p}}$ for all $x \in M$, $\|x\|_\infty \leq 1$. This means that the unit ball of M is t-bounded in M_f. Therefore M_f is a GW*-algebra.

The algebra M_f contains M but it is a rather small algebra, since it is contained in all $L^p(M, \mu)$ for all $p \geq 1$ and f.n.f. traces μ on M. The following result gives necessary and sufficient conditions for M_f to coincide with M.

Theorem 3.2. For a finite von Neumann algebra M the following conditions are equivalent

i) $M_f = M$;

ii) M is a finite sum of homogeneous type I_n, $n \in \mathbb{N}$ von Neumann algebras.
The proof of this theorem consists of several auxiliary propositions which are interesting in their own right. Let us start with the commutative case.

Proposition 3.1. Let M be a von Neumann algebra with a faithful normal trace and let Z be its center. Then the center of the algebra M_f coincides with Z, i.e. $Z(M_f) = Z$. In particular if M is commutative then $M_f = M$.

Proof. Let M be a von Neumann algebra with a faithful normal finite trace τ, and $\tau(1) = 1$.

Consider $x \in Z(M_f)$, $x \geq 0$, and let $x = \int_0^\infty \lambda d\varepsilon$ be the spectral resolution of x. Since $x \in Z(M_f)$ and $M \subset M_f$, we have that $e_\lambda \in Z$ for all $\lambda \in \mathbb{R}$. Passing if necessary to the element $\varepsilon 1 + x$ we may suppose without loss of generality that $e_1 = 0$.

For $n \in \mathbb{N}$ set

$$p_n = e_{(n+1)^2} - e_n$$

and

$$y = \sum_{n \in \mathbb{N}} n^2 p_n.$$

Since $xp_n \geq n^2 p_n$ for all $n \in \mathbb{N}$, we have that $0 \leq y \leq x$ and hence $y \in M_f$.

Let

$$F = \{ n \in \mathbb{N} : t_n = \tau(p_n) \neq 0 \}$$

and

$$h = \sum_{n \in F} \frac{1}{n^2 t_n} p_n \in Z(S(M)).$$

Since

$$\bigvee_{n=1}^m p_n = \bigvee_{n=1}^m (e_{(n+1)^2} - e_n^2) = \sum_{n=1}^m (e_{(n+1)^2} - e_n^2) = e_{(m+1)^2} - e_1 = e_{(m+1)^2} \uparrow 1,$$

one has that

$$\bigvee_{n=1}^\infty p_n = 1.$$

Therefore there exists $h^{-1} \in S(M)$. Further we have

$$\tau(h) = \sum_{n \in F} \frac{1}{n^2 t_n} \tau(p_n) = \sum_{n \in F} \frac{1}{n^2 t_n} t_n = \sum_{n \in F} \frac{1}{n^2} \leq \sum_{n \in \mathbb{N}} \frac{1}{n^2} < \infty,$$
i.e. \(h \in L_1(M, \tau) \).

Put \(\mu(\cdot) = \tau(h\cdot) \). Since \(y \in M_f \), it follows that \(y \in L_1(M, \mu) \). Therefore \(\mu(y) < \infty \).

On the other hand

\[
hy = \sum_{n \in F} \frac{1}{n^2} p_n \sum_{n \in \mathbb{N}} n^2 p_n = \sum_{n \in F} \frac{1}{t_n} p_n,
\]

and thus

\[
\mu(y) = \tau(hy) = \sum_{n \in F} \frac{1}{t_n} \tau(p_n) = \sum_{n \in F} \frac{1}{t_n} = \sum_{n \in F} 1 = |F|,
\]

where \(|F| \) is the cardinality of the set \(F \). Since \(\mu(y) < \infty \) this implies that \(F \) is a finite set. Let \(k = \max\{n : n \in F\} \). Then \(\tau(p_n) = 0 \) for all \(n > k \), and since \(\tau \) is faithful we have that \(p_n = 0 \) for all \(n > k \), i.e. \(e_{(n+1)^2} = e_{n^2} \). But \(e_{n^2} \uparrow 1 \) and thus \(e_{n^2} = 1 \) for all \(n > k \). This means that \(0 \leq x \leq (k+1)^2 1 \), i.e. \(x \in Z \).

The proof is complete. \(\blacksquare \)

Proposition 3.2. Let \(M \) be a type \(I_n \), \(n \in \mathbb{N} \) von Neumann algebra. Then \(M_f = M \).

Proof. By [14, Ch. V, Theorem 1.27] the von Neumann algebra \(M \) of type \(I_n \) (\(n \in \mathbb{N} \)) can be represented as \(M = Z \otimes B(H_n) \), where \(Z \) is the center \(M \) and \(H_n \) is the \(n \)-dimensional Hilbert space. Put \(\mathcal{F}_Z = \{ \tau|_Z : \tau \in \mathcal{F} \} \). Therefore from Proposition 3.1 we obtain

\[
M_f = \bigcap_{p \in [1, \infty)} \bigcap_{\tau \in \mathcal{F}} L_p(M, \tau) = \bigcap_{p \in [1, \infty)} \bigcap_{\mu \in \mathcal{F}_Z} L_p(Z, \mu) \otimes B(H_n) =

= \left(\bigcap_{p \in [1, \infty)} \bigcap_{\mu \in \mathcal{F}_Z} L_p(Z, \mu) \right) \otimes B(H_n) = Z_f \otimes B(H_n) =

= Z \otimes B(H_n) = M,
\]

i.e. \(M_f = M \).

The proof is complete. \(\blacksquare \)

Proposition 3.3. Let \(M \) be a finite von Neumann algebra which is isomorphic to the direct sum of an infinite number of homogeneous type \(I_n \) \((n \in \mathbb{N}) \) von Neumann algebras. Then \(M_f \neq M \).
Proof. Suppose that \(M = \sum_{k \in K} \oplus M_k \), where \(K \) is an infinite subset of \(\mathbb{N} \), and \(M_k \) is a homogeneous type \(I_k \) von Neumann algebra.

Since the set \(K \) is infinite, there exists a sequence \(\{k_n\} \subset K \) such that \(k_n \geq 2^n \) for all \(n \in \mathbb{N} \). We have that

\[
M_{k_n} = Z_{k_n} \otimes B(H_{k_n}),
\]

where \(Z_{k_n} \) is the center of \(M_{k_n} \). Therefore the algebra \(M \) contains a subalgebra *-isomorphic to the algebra \(N = \sum_{n \in \mathbb{N}} \oplus N_n \).

Hence, without loss of generality we may assume that \(M = \sum_{n \in \mathbb{N}} \oplus N_n \), where \(N_n = B(H_{2^n}) \) is the algebra of all \(2^n \times 2^n \) matrices over \(\mathbb{C} \). On each \(N_n \) we consider the unique tracial state (i. e. normalized f.n.f. trace) \(\mu_n \) and define on \(M \) the following f.n.f. trace

\[
\tau(x) = \sum_{n \in \mathbb{N}} 2^{-n} \mu_n(x_n),
\]

where \(x = \sum_{n \in \mathbb{N}} \oplus x_n \in M \). Then every f.n.f. trace \(\mu \) on \(M \) has the form

\[
\mu(x) = \tau(hx) = \sum_{n \in \mathbb{N}} 2^{-n} \mu_n(h_n x_n) = \sum_{n \in \mathbb{N}} 2^{-n} \alpha_n \mu_n(x_n),
\]

where

\[
h = \sum_{n \in \mathbb{N}} \oplus h_n = \sum_{n \in \mathbb{N}} \oplus \alpha_n 1_n \in L_1(M, \tau),
\]

i. e. \(\alpha_n > 0, \ n \in \mathbb{N}, \sum_{n \in \mathbb{N}} 2^{-n} \alpha_n < \infty \).

Take a minimal projection \(p_n \) in each \(N_n = B(H_{2^n}) \). Then \(\mu_n(p_n) = \frac{1}{2^n} \).

Consider the unbounded element \(x = \sum_{n \in \mathbb{N}} \oplus np_n \) in \(S(M) \setminus M \) and let us prove that \(x \in M_f \). For every f.n.f. trace \(\mu \) on \(M \) one has that

\[
\mu(x^p) = \sum_{n \in \mathbb{N}} 2^{-n} \alpha_n \mu_n(n^p p_n) = \sum_{n \in \mathbb{N}} 2^{-n} \alpha_n n^p 2^{-n} < \infty,
\]
because \(n^p2^{-n} < 1 \) for sufficiently large \(n \in \mathbb{N} \). Therefore \(x \in L_p(M, \mu) \) for all \(p \geq 1 \) and every f.n.f. trace \(\mu \in \mathcal{F} \), i.e. \(x \in M_f \).

The proof is complete. \(\square \)

Proposition 3.4. Let \(M \) be a type II\(_1\) von Neumann algebra with a f.n.f. trace \(\tau \). Then \(M_f \neq M \).

Proof. Suppose that the trace \(\tau \) is normalized, i.e. \(\tau(1) = 1 \), and denote by \(\Phi \) the canonical center-valued trace on \(M \). Since \(M \) is of type II\(_1\) there exists a projection \(p_1 \) such that

\[
p_1 \sim 1 - p_1.
\]

Therefore from \(\Phi(p_1) + \Phi(p_1^+) = \Phi(1) = 1 \) and \(\Phi(p_1) = \Phi(p_2) \) we obtain that

\[
\Phi(p_1) = \Phi(p_1^+) = \frac{1}{2} 1.
\]

Suppose that we have constructed mutually orthogonal projections \(p_1, p_2, \ldots, p_n \) in \(M \) such that

\[
\Phi(p_k) = \frac{1}{2^k} 1, \quad k = 1, n.
\]

Set \(e_n = \sum_{k=1}^{n} p_k \). Then \(\Phi(e_n^+) = \frac{1}{2^n} 1 \). Now take a projection \(p_{n+1} \leq e_n^+ \) such that

\[
p_{n+1} \sim e_n^+ - p_{n+1},
\]

i.e.

\[
\Phi(p_{n+1}) = \frac{1}{2^{n+1}} 1.
\]

In this manner we obtain a sequence \(\{p_n\}_{n \in \mathbb{N}} \) of mutually orthogonal projections such that

\[
\Phi(p_n) = \frac{1}{2^n} 1, \quad n \in \mathbb{N}.
\]

It is clear that \(\tau(p_n) = \tau(\Phi(p_n)) = \frac{1}{2^n}, \quad n \in \mathbb{N} \).

From

\[
\sum_{n=1}^{\infty} ||np_n||_1^\tau = \sum_{n=1}^{\infty} \tau(np_n) = \sum_{n=1}^{\infty} \frac{n}{2^n} < \infty,
\]

it follows that the element \(x = \sum_{n=1}^{\infty} np_n \) belongs to \(L_1(M, \tau) \), and it is unbounded, i.e. \(x \notin M \).
On the other hand for an arbitrary central element \(h \in L_1(M, \tau), h > 0, \) and \(n \in \mathbb{N} \) we have
\[
\tau(hp_n) = \tau(\Phi(hp_n)) = \tau(h\Phi(p_n)) = \tau(h \frac{1}{2^n} 1) = \frac{1}{2^n} \tau(h).
\]
Therefore for an arbitrary f.n.f. trace \(\mu \) on \(M \) with \(\frac{d\mu}{d\tau} = h \) we have
\[
\mu(|x|^p) = \mu(x^p) = \tau(h^p) = \tau(h \sum_{n=1}^{\infty} n^p p_n) = \sum_{n=1}^{\infty} n^p \tau(hp_n) = \tau(h) \sum_{n=1}^{\infty} n^p < \infty,
\]
i.e. \(x \in L_p(M, \mu) \) for all \(p \geq 1 \) and every f.n.f. trace \(\mu \). Therefore \(x \in M_f \backslash M \).

The proof is complete. ■

Proof of Theorem 3.2. The implication \((i) \Rightarrow (ii)\) follows from Propositions 3.3 and 3.4, while \((ii) \Rightarrow (i)\) follows from Propositions 3.2.

The proof is complete. ■

Now let us describe continuous linear functionals on the space \((M_f, t)\).

Theorem 3.3. Given any \(\mu \in \mathcal{F} \), \(1 < q < \infty \), and \(a \in L_q(M, \mu) \) the functional \(\varphi(x) = \mu(xa) \), \(x \in M_f \), is a continuous linear functional on \((M_f, t)\). Conversely for any continuous linear functional \(\varphi \) on \((M_f, t)\) there exist \(\mu \in \mathcal{F} \), \(1 < q < \infty \), \(c > 0 \) such that
\[
\varphi(x) = \mu(xa), \ x \in M_f.
\]

Proof. Let \(\mu \in \mathcal{F} \), \(1 < q < \infty \), \(a \in L_q(M, \mu) \). Put
\[
\varphi_a(x) = \mu(xa), \ x \in M_f.
\]
Take \(p \in \mathbb{R} \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \). Since
\[
|\varphi_a(x)| = |\mu(xa)| \leq ||a||_q ||x||_p^\mu
\]
for all \(x \in M_f \), one has that \(\varphi_a \) is a continuous linear functional on \((M_f, t)\).

Conversely, let \(\varphi \) be a continuous linear functional on \((M_f, t)\). By [16, Corollary 1 on p.43] there exist \(\mu \in \mathcal{F} \), \(1 \leq p < \infty \), \(c > 0 \), such that
\[
|\varphi(x)| \leq c ||x||_p^\mu
\]
for all $x \in M_f$. Since $M \subset M_f$ and M is $\| \cdot \|_p^\mu$-dense in $L_p(M, \mu)$, the functional φ can be uniquely extended onto $L_p(M, \mu)$. By [15, Theorem 4.4] there exists $a \in L_q(M, \mu), \frac{1}{p} + \frac{1}{q} = 1$, such that

$$\varphi(x) = \mu(xa)$$

for all $x \in L_p(M, \mu)$. In particular

$$\varphi(x) = \mu(xa)$$

for all $x \in M_f$, i.e. $\varphi = \varphi_a$.

The proof is complete. ■

If the von Neumann algebra M is a factor then it has a unique (up to a scalar multiple) f.n.f. trace μ. In this case the finite tracial algebra M_f coincides with the Arens algebra $L^\omega(M, \mu)$ and the topology t merges to the topology t^μ generated by the system of norms $\{\| \cdot \|_p^\mu\}_{p \geq 1}$. The following theorem describes the general case where this phenomenon occurs.

Recall some notions from the theory of linear topological spaces. Let E be a locally convex linear topological space. An absolutely convex absorbing set in E is called a barrel. If each barrel in E is a neighborhood of zero, then E is said to be a barreled space.

It is known ([16], Theorem 2, p.200) that every reflexive locally convex space is barreled.

Theorem 3.4. Let M be a finite von Neumann algebra and suppose that $\mathcal{F} \neq \emptyset$ is the family of all f.n.f. traces on M. The following conditions are equivalent:

(i) $M_f = L^\omega(M, \mu)$ for some (and hence for all) $\mu \in \mathcal{F}$;

(ii) (M_f, t) is metrizable;

(iii) $(M_f; t)$ is reflexive;

(iv) the center Z of M is finite dimensional, i.e. $M = \sum_{i=1}^m M_i$, where all M_i are I_n-factors or II_1-factors.

Proof. Suppose that Z is finite dimensional. Then M is a finite direct sum of factors M_i, $i = 1, k$. Then for each factor M_i the algebras $(M_i)_f$ and $L^\omega(M_i, \mu_i)$ coincide and the topology t_i is the same as $t_i^\mu_i$. Therefore

$$M_f = (\sum_{i=1}^n M_i)_f = \sum_{i=1}^n (M_i)_f = \sum_{i=1}^n L^\omega(M_i, \mu_i) = L^\omega(M, \mu),$$
where \(\mu = \sum_{i=1}^{n} \mu_i \in \mathcal{F} \), i.e. \(M_f = L^\omega(M, \mu) \).

Now since the topology \(t^\mu \) on the Arens algebra \(L^\omega(M, \mu) \) is metrizable \[1\] it follows that \(t = t^\mu \) is also metrizable.

It is known \[2\] that for finite traces \(\mu \) the Arens algebra \((L^\omega(M, \mu), t^\mu) \) is reflexive and hence \((M_f, t) \) is also reflexive.

Therefore \((iv)\) implies \((i), (ii)\) and \((iii)\).

\((i) \Rightarrow (iv)\). Suppose that \(M_f = L^\omega(M, \mu) \) for an appropriate \(\mu \in \mathcal{F} \). Then there exists a sequence of mutually orthogonal projections \(\{p_n\} \) in \(Z \) such that \(p_n \neq 0 \) for all \(n \in \mathbb{N} \). Since the trace \(\mu \) is finite one has that \(\sum_{k=1}^{\infty} \mu(p_k) < \infty \) and hence there is a subsequence \(\{n_k : k \in \mathbb{N}\} \) such that \(\mu(p_{n_k}) \leq \frac{1}{2^k} \) for all \(k \).

Set
\[
x = \sum_{k=1}^{\infty} kp_k
\]

For \(p \geq 1 \) we have
\[
\mu(|x|^p) = \sum_{k=1}^{\infty} k^p \mu(p_k) \leq \sum_{k=1}^{\infty} k^p \frac{1}{2^k} < \infty,
\]
and hence \(x \in L^\omega(M, \mu) = M_f \).

On the other hand \(x \) is a central element in \(M_f \) and Proposition 3.1 implies that \(x \in Z(M_f) = Z \subset M \). But it is clear that the element \(x \) is unbounded, i.e. \(x \notin M \). The contradiction shows that \(Z \) is finite dimensional.

\((ii) \Rightarrow (iv)\). Suppose that \((M_f, t) \) is metrizable. By Theorem 3.1 it is complete and hence it is a Fre'chet space. In particular the center of \(M_f \) which coincides with \(Z_f \) is also a Fre'chet space. By Proposition 3.1 \(Z_f = Z \) and hence \(Z \) is a Fre'chet space with respect to the induced topology \(t_z = t|_Z \).

Consider the identity mapping
\[
I : (Z, \| \cdot \|_\infty) \rightarrow (Z, t_z)
\]
where \(\| \cdot \|_\infty \) is the operator norm on \(Z \). From the inequalities
\[
\|x\|_\mu \leq C_\mu^p \|x\|_\infty
\]
(where \(C_\mu^p \) is an appropriate constant for each \(p \geq 1, \mu \in \mathcal{F} \)) it follows that the mapping \(I \) is continuous. Since \((Z, t_z) \) is a Fre'chet space, from Banach...
Theorem on the inverse operator ([10], Chapter II, Section 5) we obtain that the inverse mapping

\[I^{-1} : (Z, t_z) \rightarrow (Z, \| \cdot \|_{\infty}) \]

is also continuous. This means that for some \(p \in [1, \infty) \) and an appropriate \(\mu \in \mathcal{F} \) there exists a constant \(K^\mu_p \) such that

\[\|x\|_{\infty} \leq K^\mu_p \|x\|_p^\mu \]

(1)

for all \(x \in Z \) ([10], Theorem 1, p. 42).

Now suppose that \(\dim Z = \infty \). There exists a sequence \(\{p_n\} \) of projections in \(Z \) such that \(p_n \uparrow 1 \), \(p_n \neq p_{n+1} \). Thus \(p_n^\perp \neq 0 \), \(\tau(p_n^\perp) \rightarrow 0 \), i.e. \(\|p_n^\perp\|_p^\mu \rightarrow 0 \). From the inequality (1) we obtain that \(\|p_n^\perp\|_{\infty} \rightarrow 0 \).

On the other hand \(\|p_n^\perp\|_{\infty} = 1 \). This contradiction implies that \(Z \) is finite dimensional.

\((iii) \Rightarrow (iv)\). Suppose that \(M_f \) is reflexive. Then the center \(Z(M_f) = Z \) is also reflexive as a closed subspace of a reflexive space.

The set

\[B = \{x \in Z : \|x\|_{\infty} \leq 1\} \]

is a barrel in \((Z, t) \) and since \(Z \) is reflexive, we have that \(B \) is a neighborhood of zero in \(Z \). Therefore there exist \(p \geq 1 \), \(\mu \in \mathcal{F} \) and \(\varepsilon > 0 \) such that

\[\{x \in Z : \|x\|_p^\mu \leq \varepsilon\} \subseteq B \]

i.e.

\[\|x\|_{\infty} \leq \varepsilon^{-1} \|x\|_p^\mu \]

for all \(x \in Z \). From this as above it follows that \(Z \) is finite dimensional.

The proof is complete. \(\blacksquare \)

Remark. In the von Neumann algebra \(M \) the operator topology is stronger than the topology \(t \), \(t \) is stronger than \(\tau \), and \(\tau \) is stronger than each \(L_p \)-norm topology for any \(p \geq 1 \).

4 Derivations on Finite Tracial Algebras

Derivations on unbounded operator algebras, in particular on various algebras of measurable operators affiliated with von Neumann algebras, appear to be a very attractive special case of general unbounded derivations on operator algebras.
Let A be an algebra over the complex numbers. A linear operator $D : A \to A$ is called a derivation if it satisfies the identity $D(xy) = D(x)y + xD(y)$ for all $x, y \in A$ (Leibniz rule). Each element $a \in A$ defines a derivation D_a on A given as $D_a(x) = ax - xa$, $x \in A$. Such derivations D_a are said to be inner derivations.

In [4] we have investigated and completely described derivations on the algebra $LS(M)$ of all locally measurable operators affiliated with a type I von Neumann algebra M and on its various subalgebras. Recently the above conjecture was also confirmed for the type I case in the paper [8] by a representation of measurable operators as operator valued functions. Another approach to similar problems in AW^*-algebras of type I was suggested in the recent paper [9].

In the paper [3] we have proved the spatiality of derivations on the noncommutative Arens algebra $L^ω(M, τ)$ associated with an arbitrary von Neumann algebra M and a faithful normal semi-finite trace $τ$. Moreover if the trace $τ$ is finite then every derivation on $L^ω(M, τ)$ is inner.

In this section we prove that each derivation on a finite tracial algebra is inner.

The following result is an immediate corollary of [6, Proposition 3.6].

Lemma 4.1. Let M be a von Neumann algebra with a faithful normal trace $τ$. Given any derivation $D : M \to L^ω(M, τ)$ there exists an element $a \in L^ω(M, τ)$ such that $D(x) = ax - xa$, $x \in M$.

Further we need also the following assertion from [8, Proposition 6.17].

Lemma 4.2. Let A be a $*$-subalgebra of $LS(M)$ such that $M \subseteq A$ and A is solid (that is, if $x \in LS(M)$ and $y \in A$ satisfy $|x| \leq |y|$ then $x \in A$). If $ω \in LS(M)$ is such that $[ω, x] \in A$ for all $x \in A$, then there exists $ω_1 \in A$ such that $[ω, x] = [ω_1, x]$ for all $x \in A$.

The main result of this section is the following theorem.

Theorem 4.1. Let M be a von Neumann algebra with a faithful normal finite trace $τ$. If $A \subseteq L^ω(M, τ)$ is a solid $*$-subalgebra such that $M \subseteq A$, then every derivation on A is inner.

Proof. Since $A \subseteq L^ω(M, τ)$, by Lemma 4.1 there exists an element $a \in L^ω(M, τ)$ such that $D(x) = ax - xa$, $x \in M$. (2)
Let us show that in fact

\[D(x) = ax - xa, \text{ for all } x \in A. \]

Consider \(x \in A, \ x \geq 0 \). Then \((1 + x)^{-1} \in M\). From the Leibniz rule it follows that for each invertible \(b \in A \) one has

\[D(b) = -bD(b^{-1})b. \]

Therefore

\[D(x) = D(1 + x) = -(1 + x)D((1 + x)^{-1})(1 + x). \]

On the other hand since \((1 + x)^{-1} \in M\) the equality (2) implies that

\[D((1 + x)^{-1}) = a(1 + x)^{-1} - (1 + x)^{-1}a. \]

Therefore

\[-(1 + x)D((1 + x)^{-1})(1 + x) = -(1 + x)[a(1 + x)^{-1} - (1 + x)^{-1}a](1 + x) = \]

\[= -(1 + x)a + a(1 + x) = ax - xa, \]

i.e.

\[D(x) = ax - xa, \ x \in A, \ x \geq 0. \]

Since each element from \(A \) is a finite linear combination of positive elements, we obtain the equality (3) for arbitrary \(x \in A \).

Now since \(A \) is a solid *-subalgebra in \(L^\omega(M, \tau) \) containing \(A \), Lemma 4.2 implies that the element \(a \) implementing the derivation \(D \) may be chosed from the algebra \(A \), i.e.

\[D(x) = ax - xa, \ x \in A \]

for an appropriate \(a \in A \).

The proof is complete. ■

Since the algebra \(M_f \) is a solid *-subalgebra of \(L^\omega(M, \tau) \) and contains \(M \), we obtain the following result.

Corollary 4.1. If \(M \) is a von Neumann algebra with a faithful normal trace, then every derivation on \(M_f \) is inner.
Acknowledgments. Part of this work was done within the framework of the Associateship Scheme of the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. The first author would like to thank ICTP for the kind hospitality and for providing financial support and all facilities (July-August, 2009). This work is supported in part by the DFG 436 USB 113/10/0-1 project (Germany).

References

[1] Abdullaev R.Z. Isomorphism of Arens algebras, Siberian J. Industrial Math. 1998, Vol. 1, no 2, p. 3-13.

[2] Abdullaev R.Z. The dual space for Arens algebra, Uzbek. Math. J., 1997, no 2, p. 3-7.

[3] Albeverio S., Ayupov Sh.A., Kudaybergenov K.K. Non commutative Arens algebras and their derivations, J. Func. Anal., 253 (2007), no. 1, p. 287-302.

[4] Albeverio S., Ayupov Sh. A., Kudaybergenov K. K. Structure of derivations on various algebras of measurable operators for type I von Neumann algebras, J. Func. Anal., 256 (2009), no. 9, p. 2917-2943.

[5] Albeverio S., Sh.A. Ayupov, R.Z. Abdullaev. Arens Spaces associated with von Neumann Algebras and Normal States, SFB 611, Universität Bonn, Preprint, No 381, 2008.(to appear in POSITIVITY, doi:10.1007/s11117-009-0008-5)

[6] Ayupov Sh. A., Kudaybergenov K. K. Innerness of derivations on subalgebras of measurable operators, Lobachevskii J. Math. 29 (2008) 60–67.

[7] Arens R. The space \(L^\omega(0; 1) \) and convex topological rings. Bull. Amer. Math. Soc., 52, 1946, p. 931-935.

[8] Ber A. F., de Pagter B., Sukochev F. A. Derivations in algebras of operator-valued functions, arXiv.math.OA.0811.0902. 2008.

[9] Gutman A. E., Kusraev A. G., Kutateladze S. S. The Wickstead problem, Sib. Electron. Mat. Izv. 5: 293–333, 2008.
[10] Inoue A. On class of unbounded operators II, Pacific J. Math. 66 (1976) 411-431.

[11] Krein S.G., Petunin Yu.N., Semenov E.M. Interpolation of linear operators, Nauka, Moscow, 1978 (in Russian); English translation: American Math. Soc., Providence, RI, 1982.

[12] Kunze W. Zur algebraischen struktur der GC*-algebren, Mathematische Nachrichten, 1979, Vol. 88, no 1, p. 7-11.

[13] Segal I. A non-commutative extension of abstract integration. Ann.of Math. 1953, vol. 57, p.401-457.

[14] Takesaki M. Theory of operator algebras. I. New-York Heidelberg Berlin: Springer, 1979, XII+415 p.

[15] Yeadon F.J. Non-commutative L_p-spaces. Math.Proc. Cambridge Phil. Soc., 1975, v. 77, No 1, p.91-102.

[16] Yosida K. Functional Analysis, Springer-Verlag New York Inc., New York, 1968.