Oral health practices and self-reported adverse effects of E-cigarette use among dental students in 11 countries: an online survey

Mohammed Nasser Alhajj1*, Sadeq Ali Al-Maweri2, Morenike O. Folyan3, Esam Halboub4,5, Yousef Khader6, Ridwaan Omar7, Abdullah G. Amran8, Ola B. Al-Batayneh9, Asja Celebic10, Sanja Persic10, Humeyra Omar7, Abdullah G. Alkheraif12, Darshan D. Divakar13, Abdulbaset A. Mufadhal14, Mohammed A. Al-Wesabi15, Wadhah A. Alhajj16,17, Mokhtar A. Aldumaini18, Saadika Khan19, Thiyezen A. Al-Dhelai20,21, Ahmed Shaher Alqahtani22, Ali H. Murad23, Joseph E. Makzoume24, Shivani Kohli25 and Tareq A. Ziyad26

Abstract

Objectives: E-cigarette use has become popular, particularly among the youth. Its use is associated with harmful general and oral health consequences. This survey aimed to assess self-reported oral hygiene practices, oral and general health events, and changes in physiological functions (including physical status, smell, taste, breathing, appetite, etc.) due to E-cigarette use among dental students.

Methods: This online, multicounty survey involved undergraduate dental students from 20 dental schools across 11 different countries. The questionnaire included demographic characteristics, E-cigarette practices, self-reported complaints, and associated physiological changes due to E-cigarette smoking. Data were descriptively presented as frequencies and percentages. A Chi-square test was used to assess the potential associations between the study group and sub-groups with the different factors. Statistical analysis was performed using SPSS at P < 0.05.

Results: Most respondents reported regular brushing of their teeth, whereas only 70% used additional oral hygiene aids. Reported frequencies of complaints ranged from as low as 3.3% for tongue inflammation to as high as 53.3% for headache, with significant differences between E-cigarette users and non-users. Compared to non-smokers, E-cigarette users reported significantly higher prevalence of dry mouth (33.1% vs. 23.4%; P < 0.001), black tongue (5.9% vs. 2.8%; P = 0.002), and heart palpitation (26.3% vs. 22.8%; P = 0.001). Although two-thirds of the sample reported no change in their physiological functions, E-cigarette users reported significant improvement in their physiological functions compared to never smokers or tobacco users.

Conclusion: Dental students showed good oral hygiene practices, but E-cigarette users showed a higher prevalence of health complications.

Keywords: E-cigarette, Smoking, Dental students, Oral health, General health, Survey

Introduction

Electronic cigarettes (E-cigarette) or electronic nicotine delivery systems are a relatively new phenomenon amongst tobacco smokers largely because of claims that they may help with smoking cessation [1, 2]. E-cigarette...
use is increasingly popular among the youth and young adults [3]. Indeed, it has been the most popular form of smoking among the youth since 2014 [4, 5]. Typically, E-cigarette users inhale an aerosol containing nicotine, flavorings, and other additives [1]. The Food and Drug Administration (FDA), however, has reported that E-cigarette cartridges and solutions contain contaminants that are potentially harmful to humans: at a minimum, these contaminants cause irritation and inflammation of the airway epithelium [6, 7] and suppressed the immune response of the nasal mucosa [8]. In fact, the proinflammatory signals, and immune-suppressive changes in the respiratory mucosa of E-cigarette uses have been reported to be different from those of non-smokers [8, 9]. Recently, a United States court has recognized the E-cigarette as a smoking tobacco product that should be prohibited or regulated as a dangerous nicotine delivery system that needs to comply with the Federal Food Drug and Cosmetic Act [10].

As with traditional cigarettes, E-cigarettes have oral health consequences [9, 11, 12]. Basically, the oral cavity, being the first part of the body exposed to the constituents of E-cigarettes or any other forms of tobacco, is at increased risk of exposure to the carcinogenic, immunologic, microbial, and clinical effects of these products. The viscosity of e-liquid promotes the colonization of Streptococcus mutans, a major causative factor of dental caries [9]. It has been found that the major ingredients of the e-liquid (nicotine, acetaldehyde, acrolein, formaldehyde and flavoring chemicals like cinnamaldehyde [13, 14]) modify the oral microbiome toward higher abundance of oral pathobionts, alter host response, and enhance periodontal inflammation [11]. Nicotine, a well-known vasoconstrictor, decreases gingival blood flow, and depresses cytokine production (IL-1β, IL-2, TNF-α, and IFN-γ), neutrophil number, and immune cell function, leading ultimately to periodontal disease and tooth loss [15–17]. The propylene glycol content of the E-cigarette breaks down into acetic and lactic acids, and other harmful compounds to the enamel and oral soft tissue [18]. In addition, E-cigarette use can lead to hyposalivation resulting in tissue drying that promotes caries, periodontal disease, and other oral health problems [9, 11, 12, 19]. The vegetable glycerin with other flavoring agents can increase microbial adhesion to enamel and promote biofilm formation, which results in a decreased enamel hardness [18]. Cinnamaldehyde can suppress the phagocytic function of neutrophils and macrophages; and inhibit the natural killer cells’ cell–killing ability of tumor cells, and ciliary beating of airway epithelial cells [20, 21].

Good oral health behaviors may lessen the negative impact of E-cigarette use on oral health; and, of course, quitting smoking is the most effective way to ensure improved oral health [22–24]. Toothbrushing twice a day with fluoride-containing toothpaste, along with adjunct mouth rinses, should help reduce the risk of caries and periodontal disease [25–27]. Additionally, reducing the daily frequency of refined carbohydrate intake can reduce the risk of caries [28], and regular dental visits will facilitate prompt detection of oral lesions and the institution of caries reversal protocols.

Dental health professionals report their own oral health status more reliably, and are clearly more aware of the positive impact of good oral health behaviors on oral health than the general public [26]. There has always been a strong drive for active engagement of dental practitioners in smoking cessation programs [29–31]. Therefore, dental professionals would be a good study cohort to assess the relationship between oral health practices and cigarette smoking. Unfortunately, only a few studies have assessed dental students’ attitudes and knowledge about the negative effects of E-cigarette use [32, 33]. Hence, there is a paucity of information related to reported health effects, and negative impact of E-cigarette on oral health, particularly among health sciences students. In this study, we aimed to explore the self-reported practices of oral healthcare and hygiene measures, and the possible adverse effects of E-cigarette among dental students in different countries.

Materials and methods

This study is a part of a large multinational survey conducted on E-cigarette use amongst dental students. An online cross-sectional survey was conducted among undergraduate dental students from 20 dental schools in 11 countries. Postgraduate students, academic staff, assistants, or technicians were excluded. The study was approved primarily by the Research Ethics Committee at the Faculty of Dentistry, Thamar University (Ref #2019003). In parallel with that, ethical clearance was obtained from all respective participating universities. The study fully complied with the Helsinki declaration. The electronic questionnaire was distributed to the target students via different methods including social media such as WhatsApp and Facebook groups. A hard copy of the questionnaire was also available for coauthors who could meet the dental students face-to-face. The survey had an introductory statement about the study team, study objectives, and confidentiality assurance. Each participant was able to answer the survey once and to edit their answers freely until they chose to submit. By clicking submit it was considered that the student consented to participate in the study.

The questionnaire comprised close-ended questions adopted from some previous studies [34–37] and covered: (1) sociodemographic data (age, sex, current
educational level); (2) tobacco and E-cigarette use (current habits, frequency, etc.); (3) self-perceived oral health, including number of decayed, filled, and missing teeth (DMFT); (4) oral hygiene practices, including frequency of brushing, additional aids, type of toothpaste, dental visits, etc.; (5) self-perceived symptoms due to smoking; and (6) self-perceived changes in physiological functions (including physical status, smell, taste, breathing, appetite, etc.).

Statistical analysis
Responses were exported to Excel sheets (MS Excel 2016) where they were checked, coded, and then transferred to a statistical software program (SPSS V25, IBM Corp. USA). Descriptive statistics in terms of frequencies and percentages were obtained for the study variables according to the smoking status (non-smokers, tobacco smokers, E-cigarette users, and dual users). The potential associations between the outcome and explanatory variables were assessed by Chi-square test, with a P-value less than 0.5 considered statistically significant.

Results
A total of 5697 dental students from 11 different countries (Croatia, Iraq, Jordan, Kuwait, Lebanon, Malaysia, Nigeria, Saudi Arabia, South Africa, Turkey, and Yemen) took part in the study. Numbers varied greatly across countries, ranging from 110 in Kuwait to 1626 in Yemen.

Of the total participants, 51.1% (n = 2909) were in the clinical years of study. The majority were females (60.5%, n = 3433) and unmarried (94.1%, n = 5361) (Table 1).

As presented in Table 2, 1112 (19.6%) students were current smokers in the following proportions: 596 (10.5%) were tobacco smokers, 255 (4.5%) were E-cigarette users, and 261 (4.6%) were tobacco/E-cigarette dual users. The distribution of respondents by their current smoking status differed significantly by sex and country of origin. With regard to sex, there were significantly more males than females who smoke tobacco, E-cigarettes, or both. With regard to country, Nigeria had the highest proportion of respondents who had never smoked; Saudi Arabia had the least proportion of respondents who had never smoked; no respondent smoked tobacco in Kuwait and no respondent was a dual smoker in Nigeria. No statistically significant associations were observed between smoking status and marital status, age, and education level.

The reported DMFT and oral hygiene practices are presented in Table 3. Slightly more than one-third of the sample (35.8%, n = 2029) reported having DMFT ≥ 3, 30.9% (n = 1748) reported to having DMFT < 3, and 33% (n = 1889) reported having DMFT = 0, with no statistically significant differences according to the students’ smoking status. A majority of students reported brushing their teeth 2 times or more daily (63.8%) and using fluoride-containing toothpaste (65.6%), with significant differences according to their smoking status (P = 0.003 each). Almost 80% of the participants reported that they eat sweets or drink sugary soft drinks on a daily (36.7%) or weekly basis (45.3%), and up to 72% of the participants reported that they use other oral-care devices, but with no significant differences according to the smoking status (P = 0.104 and P = 0.217, respectively). Most participants (n = 3069, 54.4%) reported regularly visiting the dentist (at least once a year), with a significant difference between E-cigarette users and other groups: 66.1% of E-cigarette smokers compared to 54.3% of non-smokers.

Table 1 Characteristics of participants by country (N = 5697); % in brackets

Country	Total (N)	Gender	Age groups	Educational level	Marital status				
		Male	Female	≤ 20 years	> 20 years				
				Pre-clinical	Clinical				
				Married	Unmarried				
All	5697 (100.0)	2264 (39.7)	3433 (60.3)	1844 (32.4)	3853 (67.6)	2788 (48.9)	2909 (51.1)	336 (5.9)	5361 (94.1)
Croatia	233 (4.1)	43 (18.5)	190 (81.5)	64 (27.5)	169 (72.5)	109 (46.8)	124 (53.2)	5 (2.1)	228 (97.9)
Iraq	369 (6.5)	129 (35.0)	240 (65.0)	146 (39.6)	223 (60.4)	227 (61.5)	142 (38.5)	11 (3.0)	358 (97.0)
Jordan	461 (8.1)	123 (26.7)	338 (73.3)	205 (44.5)	256 (55.5)	303 (65.7)	158 (34.3)	6 (1.3)	455 (98.7)
Kuwait	110 (1.9)	12 (10.9)	98 (89.1)	25 (22.7)	85 (77.3)	39 (35.5)	71 (64.5)	4 (3.6)	106 (96.4)
Lebanon	257 (4.5)	82 (31.9)	175 (68.1)	137 (53.3)	120 (46.7)	118 (45.9)	139 (54.1)	1 (0.4)	256 (99.6)
Malaysia	148 (2.6)	35 (23.6)	113 (76.4)	38 (25.7)	110 (74.3)	32 (21.6)	116 (78.4)	0 (0.0)	148 (100.0)
Nigeria	240 (4.2)	138 (57.5)	102 (42.5)	49 (20.4)	191 (79.6)	64 (26.7)	176 (73.3)	10 (4.2)	230 (95.8)
Saudi Arabia	596 (10.5)	292 (49.0)	304 (51.0)	91 (15.3)	505 (84.7)	178 (29.9)	418 (70.1)	55 (9.2)	541 (90.8)
South Africa	204 (3.6)	60 (29.4)	144 (70.6)	97 (47.5)	107 (52.5)	81 (39.7)	123 (60.3)	7 (3.4)	197 (96.6)
Turkey	1453 (25.5)	695 (47.8)	758 (52.2)	640 (44.0)	813 (56.0)	710 (48.9)	743 (51.1)	33 (2.3)	1420 (97.7)
Yemen	1626 (28.5)	655 (40.3)	971 (59.7)	352 (21.6)	1274 (78.4)	927 (57.0)	699 (43.0)	204 (12.5)	1422 (87.5)
49.3% of tobacco smokers (49.3%), and 55.9% of dual smokers.

Table 4 shows the subjective complaints reported by respondents. The frequencies of perceived health problems associated with smoking ranged from as few as 3.3% who reported tongue inflammation to as many as 53.3% who reported headache. Compared to non-smokers, tobacco users, E-cigarette users, and dual users reported significantly higher prevalence of dry mouth (29.3%, 33.1% and 28.1%, respectively, vs. 23.4%; \(P < 0.001 \)), black tongue (3.9%, 5.6% and 6.1%, respectively, vs. 2.8%; \(P = 0.002 \)), and heart palpitation (29.6%, 26.3% and 28.4%, respectively, vs. 22.8%; \(P = 0.001 \)).

Table 5 highlights the self-reported changes in physiological functions within the past month as reported by respondents. Overall, a majority reported “no change” in their physiological functions compared to non-smokers, tobacco users and dual users (\(P < 0.05 \)).

Discussion

E-cigarette use is associated with numerous oral health consequences, including, but not limited to, xerostomia, oral candidiasis, oral mucosal lesions, halitosis, dental caries, and periodontal disease [9, 12, 19, 38]. Although the negative impact of tobacco use on oral health can, to a degree, be mitigated by good oral health behaviors, quitting smoking, and not resorting to E-cigarette use, is the most effective way to ensure good and sustained oral health [22–24]. In this context, dental students and professionals are considered role models for the community and should be at the forefront of fighting dental diseases and the associated deleterious habits. The present survey aimed to assess self-reported oral hygiene practices and the perceived effects of E-cigarettes among dental students across 11 different countries. Collectively, the results revealed good oral hygiene practices including tooth brushing and using additional oral hygiene means,
Table 3 DMFT and oral hygiene practices among dental students based on the current status of smoking

Number of decayed, filled, and missing teeth do you have?	Total	Never smoke	Tobacco only	E-cigarette only	Dual user	P
None	1889	1525 (33.5)	198 (33.3)	77 (30.2)	89 (34.1)	0.517
< 3 teeth	1748	1403 (30.8)	171 (28.7)	92 (36.1)	82 (31.4)	
≥ 3 teeth	2029	1627 (35.7)	226 (38.0)	86 (33.7)	90 (34.5)	
How many times do you brush your teeth per day?						0.003
None	255	185 (4.1)	44 (7.4)	16 (6.3)	10 (3.8)	
Once a day	1799	1449 (31.8)	195 (32.8)	83 (32.5)	72 (27.6)	
≥ 2 times a day	3614	2924 (64.2)	355 (59.8)	156 (61.2)	179 (68.6)	
Do you use fluoride containing toothpaste?						0.003
Yes	3709	3013 (66.3)	356 (59.9)	181 (71.3)	159 (61.2)	
No	608	476 (10.5)	85 (14.3)	21 (8.3)	26 (10.0)	
I don’t know	1334	1054 (23.2)	153 (25.8)	52 (20.5)	75 (28.8)	
How often do you eat sweets or drink sugary soft drinks?						0.104
On a daily basis	2081	1698 (37.3)	217 (36.5)	92 (36.1)	74 (28.4)	
On a weekly basis	2569	2041 (44.8)	279 (46.9)	120 (47.1)	129 (49.4)	
Rarely	1016	816 (17.9)	99 (16.6)	43 (16.9)	58 (22.2)	
Do you use other oral-care devices besides toothbrush and toothpaste?						0.217
No	1594	1291 (28.4)	176 (29.7)	59 (23.2)	68 (26.1)	
Yes	4056	3251 (71.6)	417 (70.3)	195 (76.8)	193 (73.9)	
How often do you visit your dentist?						0.002
> 2 times a year	737	585 (12.9)	71 (12.0)	39 (15.4)	42 (16.1)	
1–2 times a year	2332	1880 (41.4)	221 (37.3)	127 (50.0)	104 (39.8)	
Rarely	2577	2073 (45.7)	301 (50.8)	88 (34.6)	115 (44.1)	

Table 4 Perceived related effects/events among dental students based on the current status of smoking

Have you experienced the following problems in the last month?	Total	Never smoke	Tobacco only	E-cigarette only	Dual user	P
Sore mouth and/or throat	1600	1314 (28.9)	162 (27.4)	54 (21.4)	70 (26.8)	0.062
Dry mouth and/or throat	1367	1042 (23.4)	172 (29.3)	81 (33.3)	72 (28.1)	< 0.001
Mouth and/or tongue inflammation	517	425 (9.4)	52 (8.8)	25 (9.9)	15 (5.7)	0.245
Black tongue	182	129 (2.8)	23 (3.9)	14 (5.6)	16 (6.1)	0.002
Gingivitis	1077	883 (19.4)	111 (18.7)	42 (16.7)	41 (15.8)	0.354
Nose bleeding	485	390 (8.6)	46 (7.7)	21 (8.4)	28 (10.7)	0.557
Headache	3015	2476 (54.5)	311 (52.4)	112 (44.3)	116 (44.6)	< 0.001
Cough	1635	1293 (28.5)	198 (33.4)	62 (24.6)	82 (31.4)	0.026
Chest pain	1000	756 (16.7)	141 (23.7)	44 (17.5)	59 (22.7)	< 0.001
Dizziness	1715	1390 (30.9)	179 (30.4)	68 (27.4)	78 (30.1)	0.698
Heart palpitation	1351	1035 (22.8)	176 (29.6)	66 (26.3)	74 (28.4)	0.001
Allergy	997	823 (18.1)	93 (15.7)	35 (13.9)	46 (17.6)	0.195

Yes response is reported
but it also revealed that more E-cigarette users reported dry mouth and heart palpitation compared to non-smokers. Unexpectedly, however, E-cigarette users reported some improvements in some of their physiological functions compared to tobacco smokers or non-smokers.

Owing to a lack of studies on the oral health effects amongst dental students who are E-cigarette users, we weighed the results of our study against what has been reported in the general population. Many recent population-based studies in USA found an association between E-cigarette use and/or dual use, and untreated dental caries [39], self-reported bad oral health [40], chronic obstructive pulmonary disease [41] and other respiratory [42] and health symptoms [43]. Although a recent systematic review stated that E-cigarette use was less harmful than smoking conventional cigarettes, it pointed to a greater susceptibility of E-cigarette users to the development of alterations in oral soft tissues than

| Table 5 Perceived physiological functions among dental students based on the current status of smoking |
|---------------------------------|-----------|-----------|----------|-----------|-----------|
| Have you experienced changes in the following physiological functions in the past month? |
Physical status	Total	Smoking status	Never smoke	Tobacco only	E-cigarette only	Dual user
Worsened	564 (10.3)	436 (10.0)	89 (15.1)	13 (5.2)	26 (10.2)	
No change	4362 (79.8)	3520 (80.6)	454 (76.8)	193 (76.6)	195 (76.2)	
Improved	542 (9.9)	413 (9.5)	48 (8.1)	46 (18.3)	35 (13.7)	
Smell						
Worsened	259 (4.7)	175 (4.0)	64 (10.8)	9 (3.6)	11 (4.3)	
No change	4873 (89.1)	3958 (90.6)	497 (84.2)	202 (80.2)	216 (84.4)	
Improved	335 (6.1)	236 (5.4)	29 (4.9)	41 (16.3)	29 (11.3)	
Taste						
Worsened	224 (4.1)	148 (3.4)	53 (9.0)	11 (4.4)	12 (4.7)	
No change	4918 (90.0)	3998 (91.5)	499 (84.4)	204 (81.0)	217 (84.8)	
Improved	325 (5.9)	222 (5.1)	39 (6.6)	37 (14.7)	27 (10.5)	
Breathing						
Worsened	546 (10.0)	376 (8.6)	106 (17.9)	25 (10.0)	39 (15.2)	
No change	4564 (83.5)	3742 (85.7)	442 (74.8)	185 (74.0)	195 (76.2)	
Improved	354 (6.5)	249 (5.7)	43 (7.3)	40 (16.0)	22 (8.6)	
Appetite						
Worsened	869 (16.0)	688 (15.8)	115 (19.5)	30 (12.0)	36 (14.1)	
No change	3879 (71.2)	3114 (71.6)	407 (69.0)	175 (70.3)	183 (71.8)	
Improved	697 (12.8)	549 (12.6)	68 (11.5)	44 (17.7)	36 (14.1)	
Mood						
Worsened	1437 (26.3)	1179 (27.0)	172 (29.1)	30 (11.9)	56 (21.9)	
No change	3355 (61.3)	2682 (61.4)	349 (59.0)	167 (66.3)	157 (61.3)	
Improved	678 (12.4)	509 (11.6)	71 (12.0)	55 (21.8)	43 (16.8)	
Memory						
Worsened	907 (16.6)	743 (17.0)	110 (18.6)	18 (7.2)	36 (14.1)	
No change	4087 (74.8)	3263 (74.8)	430 (72.8)	198 (78.9)	196 (76.6)	
Improved	469 (8.6)	359 (8.2)	51 (8.6)	35 (13.9)	24 (9.4)	
Quality of sleep						
Worsened	1257 (23.0)	1015 (23.2)	157 (26.6)	35 (13.9)	50 (19.5)	
No change	3441 (62.9)	2750 (62.9)	355 (60.1)	175 (69.4)	161 (62.9)	
Improved	774 (14.1)	608 (13.9)	79 (13.4)	42 (16.7)	45 (17.6)	
Stamina						
Worsened	1035 (18.9)	803 (18.4)	155 (26.4)	29 (11.5)	48 (18.8)	
No change	3761 (68.8)	3025 (69.3)	373 (63.4)	189 (75.0)	174 (68.0)	
Improved	667 (12.2)	539 (12.3)	60 (10.2)	34 (13.5)	34 (13.3)	
ex-smokers and non-smokers, and concluded that neither
the safety nor efficacy of E-cigarette use in the long-term,
either as a smoking cessation aid or as an alternative to
tobacco smoking that is less harmful to health, has been
established [44].

The present findings concur with previous stud-
ies among dental students elsewhere [26, 45]. However,
dental students still seem to need some motivation in
the use additional oral hygiene devices such as flossing,
mouth rinses, and/or interdental brush use and even flu-
oride-containing paste. Dental students, the future den-
tal professional, through good oral hygiene attitude and
practices, can act as role models and play a positive role
in improving the oral health status of their patients and
the community at large [26, 46].

Another important finding of the present study was the
significantly higher proportion of E-cigarette users who
had dry mouth and black tongue when compared to non-
smokers. This finding is not surprising, as E-cigarette
use has been reported to cause numerous oral mucosal
conditions such as xerostomia and hairy tongue [9, 12,
19]. These findings agree with those of previous studies
that reported a significant association between E-ciga-
rette and oral mucosal diseases [11, 22, 38]. The harm-
ful consequences of nicotine on oral tissues have been
well established [11, 38]. Thus it is important to include
information about the harmful effects of E-cigarettes in
the oral health/dental education curriculum, and to train
personnel on how to support quitting the habit [32].
Additionally, the dental curriculum and that of other
health disciplines should include information on the oral/
general health impact of E-cigarettes [32, 47].

More E-cigarette users reported better physiological
functions, especially breathing, mood, taste, physical sta-
tus, and memory, compared to non-smokers and tobacco
users. Although these findings are consistent with many
previous studies that reported improvement of general
health outcomes, they must be interpreted with caution
since such improvement were in context of switching
from traditional smoking to E-cigarette use [2, 19, 34,
48]. In other words, after long-term exposure to the very
deterious effects of conventional smoking, the switch-
ers perceive the less deleterious effects of E-cigarettes as
an improvement.

The main strength of the present study is the large sam-
ple size and involvement of students from various coun-
tries with different economic and cultural backgrounds.
Nevertheless, the study has some limitations that should
be considered when interpreting the results. The main
limitation is the self-reported nature of responses, which
might have introduced bias. But this might not be of such
great concern given that the respondents are dental stu-
dents: that is to say they can easily determine whether
there are alterations in their mouths, and whether these
alterations, if present, may be E-cigarette-induced. This is
also applied to the self-reported DMFT. Another limita-
tion is the non-response bias, and thus the results cannot
be extrapolated to non-participants. Also, despite the
multicultural, multi-county sample, the percentage of
E-cigarette users in the total sample was relatively small,
and subsequently we were not able to run multivariate
analysis so as to identify predictors of the outcomes. It
follows that the results of the study should be interpreted
with caution. Finally, we did not investigate the time of
smoke smoking before switching to E-cigarette use
among E-cigarette users with previous experience of cig-
arette smoking. We focused only on the current status of
smoking whether cigarette smoking, E-cigarette use, dual
smoking or never.

Overall, the perceived improvement in health outcomes
and the wrong perception about the safety of E-cigarettes
may explain the growing popularity of E-cigarettes [5].
Unfortunately, E-cigarette users do not view E-cigarette
use (vaping) as a harmful habit, and studies have shown
that vaping is considered favorably by users concern-
ning overall health perception [49–51]. This emphasizes
the urgent need for educating dental students about the
long-term health effects of E-cigarettes and implement-
ing tobacco cessation programs.

Conclusion
Irrespective of the noted good oral hygiene practices
among dental students, those who were E-cigarette users
reported more oral health-related conditions, particu-
larly xerostomia and black tongue, and heart palpati-
one, even though they unexpectedly reported significant
improvement in their physiological functions compared
to non-smokers.

Abbreviations
E-cigarette: Electronic cigarettes; FDA: Food and drug administration; IL: Inter-
leukin; TNF: Tumor necrosis factor; IFN: Interferon; DMFT: Decayed, missing,
filled teeth; SPSS: Statistical package for the social sciences; US: United States.

Acknowledgements
The authors are grateful to the Deanship of Scientific Research, King Saud
University for funding through the Vice Deanship of Scientific Research for
Research Chairs.

Authors’ contributions
MNA, SAA, MOF, EH, YK, RO, AGA, OBA, AC, SP, HK, FS, AAA, DOD, AAM, MAA,
WAA, NAA, SK, TAA, ASA, AHM, JEM, and S K participated in acquisition of data.
MNA, SAA, MOF, EH, YK, RO and TAZ participated in analysis and interpretation of data.
ALL authors of this paper received the primary analysis and interpretation of data and any comments/
suggestions from them were addressed. ALL authors of this paper approved the final study design.
MNA, SAA, MOF, EH, YK, RO, AGA, OBA, AC, SP, HK, FS, AAA, DOD, AAM, MAA,
WAA, NAA, SK, TAA, ASA, AHM, JEM, and S K participated in acquisition of data. MNA, SAA, MOF, EH, YK, RO and TAZ
participated in drafting of manuscript. ALL authors of this paper received
the drafted manuscript and any comments/suggestions from them were addressed. ALL authors have read and approved the final version submitted.

Funding
Dental Biomaterials Research Chair, Deanship of Scientific Research, King Saud University. The funder has no role in the design of the study as well as in the methodology, analysis, and interpretation of the data.

Availability of data and materials
The datasets supporting the findings of this article are available from the corresponding author.

Declarations

Ethics approval and consent to participate
This study was approved primarily by the Research Ethics Committee at the Faculty of Dentistry, Thamar University, Dhamar, Yemen (Ref#: 2019003). The study was conducted in accordance with the Declaration of Helsinki Ethical Principles. All participants were informed about the study objectives. Participation was voluntary and the participant can withdraw from the study at any time without penalty. Informed consent was obtained from all participants. By clicking on 'submit' the student consented to participate in the study. Names, email, or any other personal identifiers were not included in the data collected.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1. Department of Prosthodontics, Faculty of Dentistry, Thamar University, Dhamar, Yemen. 2. College of Dental Medicine, QLI Health, Qatar University, Doha, Qatar. 3. Department of Child Dental Health, Obafemi Awolowo University, Ile-Ife, Nigeria. 4. Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia. 5. Department of Oral Medicine, Oral Pathology and Oral Radiology, Faculty of Dentistry, Sana’a University, Sana’a, Yemen. 6. Department of Public Health, Community Medicine and Family Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan. 7. Department of Restorative Sciences, Division of Prosthodontics, Faculty of Dental Medicine, Kuwait University, Safat, Kuwait. 8. Department of Periodontics, Faculty of Dentistry, Thamar University, Dhamar, Yemen. 9. Department of Preventive Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan. 10. Department of Removable Prosthodontics, School of Dental Medicine and Clinical Hospital Centre, University of Zagreb, Zagreb, Croatia. 11. Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey. 12. Department of Prosthodontics, Faculty of Dental Medicine, University of Health Sciences, Istanböl, Turkey. 13. Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia. 14. Department of Conservative Dentistry, Faculty of Dentistry, Sana’a University, Sana’a, Yemen. 15. Department of Preventive and Biomedical Science, Faculty of Dentistry, University of Science and Technology, Taiz, Yemen. 16. Department of Periodontics, Faculty of Dentistry, Thamar University, Dhamar, Yemen. 17. Department of Dentistry, Faculty of Medical Sciences, Civilization University, Sana’a, Yemen. 18. Department of Fixed and Removable Prosthodontics, Faculty of Dentistry, University of Ibb, Ibb, Yemen. 19. Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa. 20. Department of Orthodontic and Pediatric Dentistry, College of Dentistry, Qassim University, Buraydah, Saudi Arabia. 21. Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Ibb, Ibb, Yemen. 22. Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia. 23. Department of Oral Diagnosis, College of Dentistry, University of Al-Qadisiyah, Al-Diwaniya, Iraq. 24. Department of Removable Prosthodontics, Faculty of Dental Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon. 25. Division of Clinical Dentistry, School of Dentistry, International Medical University (IMU), Kuala Lumpur, Malaysia. 26. Private Dental Clinic, Sana’a, Yemen.

Received: 16 October 2021 Accepted: 18 January 2022
Published online: 26 January 2022

References
1. Breland A, Soule E, Lopez A, Ramoâ C, El-Hellani A, Eisenberg T. Electronic cigarettes: What are they and what do they do? Ann NY Acad Sci. 2017;1394(1):15–30.
2. Gucht DV, Adriaens K, Baeyens F. Online vape shop customers who use E-cigarettes report abstinence from smoking and improved quality of life, but a substantial minority still have vaping-related health concerns. Int J Environ Res Public Health. 2017;14(7):798.
3. Duderstadt KG. E-cigarettes: youth and trends in vaping. J Pediatr. 2015;296(4):553–7.
4. QuickStats: Smoking Status* Among Current Adult E-cigarette Users by Age Group—National Health Interview Survey, United States, 2015. MMWR Mort Morb Wkly Rep. 2016, 65(42):1177.
5. Carroll Chapman SL, Wu LT. E-cigarette prevalence and correlates of use among adolescents versus adults: a review and comparison. J Psychiatr Res. 2014;54:43–54.
6. Ghosh A, Cokalrey RC, Mascenik T, Rowell TR, Davis ES, Rogers K, Webster MJ, Dang H, Hering LE, Lasano MF, et al. Chronic E-cigarette exposure alters the human bronchial epithelial proteome. Am J Respir Crit Care Med. 2018;198(1):67–76.
7. Reidel B, Radicioni G, Clapp PW, Ford AA, Abelwalhab S, Rebuli ME, Haridass P, Alexis NE, Jaspers I, Ksimer M. E-cigarette use causes a unique innate immune response in the lung, involving increased neutrophil activation and altered mucin secretion. Am J Respir Crit Care Med. 2018;197(4):492–501.
8. Martin EM, Clapp PW, Rebuli ME, Pavlak EA, Glista-Baker E, Benowitz NL, Fry RC, Jaspers I. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am J Physiol Lung Cell Mol Physiol. 2016;311(1):L135–144.
9. Tomar SL, Hecht SS, Jaspers I, Gregory RL, Stepnan I. Oral health effects of combusted and smokeless tobacco products. Adv Dent Res. 2019;30(1):4–10.
10. Palazzolo DL. Electronic cigarettes and vaping: a new challenge in clinical dental medicine and public health: a literature review. Front Public Health. 2013;1:56.
11. Javed F, Kellesarian SV, Sundar IK, Romanos GE, Rahman I. Recent updates on electronic cigarette aerosol and inhaled nicotine effects on periodontal and pulmonary tissues. Oral Dis. 2017;23(8):1052–7.
12. Yang L, Sandeep S, Rodriguez J. The oral health impact of electronic cigarette use: a systematic review. Crit Rev Toxicol. 2020;50(2):97–127.
13. Salamanca JC, Munheizna I, Escobedo JO, Jensen RP, Shaw A, Campbell R, Luo W, Peyton DH, Strongin RM. Formaldehyde hemiacetal sampling, recovery, and quantification from electronic cigarette aerosols. Sci Rep. 2017;7(1):11044.
14. Bleiman M, Logue JM, Montesinos VN, Russell ML, Litter MJ, Gundel LA, Destaillats H. Emissions from electronic cigarettes: key parameters affecting the release of harmful chemicals. Environ Sci Technol. 2016;50(17):9644–51.
15. Mavropoulos A, Aars H, Brodin P. Hyperaemic response to cigarette smoking in healthy gingiva. J Clin Periodontol. 2003;30(3):214–21.
16. Madettsma S, Wolters LM, van Dijk JP, Tak CJ, Feyenbarend C, Wilson JH, Zijlstra FJ. In-vivo effect of nicotine on cytokine production by human non-adoherent mononuclear cells. Eur J Gastroenterol Hepatol. 1996;8(10):1017–20.
17. Madettsma GS, Donze GJ, van Dijk AP, Tak CJ, Wilson JH, Zijlstra FJ. Nicotine inhibits the in vitro production of interleukin 2 and tumour necrosis factor-alpha by human mononuclear cells. Immunopharmacology. 1996;35(1):47–51.
18. Sapuru S, Vardhan M, Li Q, Guo Y, Li X, Saxena D. E-cigarettes use in the United States: reasons for use, perceptions, and effects on health. BMC Public Health. 2020;20(1):1518.
19. Karasneh R, Al-Azzam S, Nusair M, Hawamdeh S. Perceptions, symptoms, and practices of electronic cigarette users: descriptive analysis and validation of Arabic short form vaping consequences questionnaire. PLoS ONE. 2021;16(11)e0245443.
20. Clapp PW, Pawlak EA, Lackey JT, Keating JE, Reeber SL, Glish GL, Jaspers I. Flavored e-cigarette liquids and cinna... situe cell function. Am J Physiol Lung Cell Mol Physiol. 2017;313(2):L278-L292.

21. Clapp PW, Lavitch KS, van Heusden CA, Lazarowski ER, Carson JL, Jaspers I. Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am J Physiol Lung Cell Mol Physiol. 2019;316(3):L470-L486.

22. Almeida-da-Silva CLL, Matshik Dakafay H, O'Brien K, Montierth D, Xiao N, Ojcius DM. Effects of electronic cigarette aerosol exposure on oral and systemic health. Biomed J. 2021;44(3):252–9.

23. Rouabha M. Impact of electronic cigarettes on oral health: a review. Jurnal. 2020;6:1488–2159.

24. Holliday R, Cheaffee BW, Jakubovics NS, Kist R, Preshaw PM. Electronic cigarettes and oral health. J Dent Res. 2021;100(9):906–13.

25. Cvik J, Gonzalez LA, Si, X, Sipigel GC, Yankell S. Plaque reduction and tensile strength evaluations of three dental floss products. Am J Dent. 2021;34(3):123–6.

26. Halboub ES, Al‑Maweri SA, Al‑Jamaei AA, Al‑Wesabi MA, Shamala A, Al‑Kamel A, Alsharani A, Essa N. Self-reported oral health attitudes and behavior of dental and medical students, Yemen. Global J Health Sci. 2016;8(10):56676.

27. Eltein R, Abdel‑Sater F, Fakhreddine S, Hanna PA, Feghali R, Hamad H, Ayoub F. In vivo evaluation of the virucidal efficacy of chlorhexidine and povidone-iodine mouthwashes against saliva: SARS-CoV-2: a randomized-controlled clinical trial. J Evid Based Dental Pract. 2021;21(3):101584.

28. Lin PY, Lee YC, Chang HJ, Chi LY. Association between sugary drinks consumption and dental caries incidence among Taiwanese schoolchildren with mixed dentition. Community Dent Oral Epidemiol. 2021. https://doi.org/10.1111/cdeo.12683.

29. Al‑Maweri SA, Al‑Sameer DA, Al‑Majdari A, Al‑Hunais A, Al‑Sufyan J, Halbou E. Tobacco cessation counseling: attitudes and practices among Yemeni dental professionals. J Cancer Educ Off J Am Assoc Cancer Educ. 2018;33(5):1088–93.

30. Mungia R, Case K, Valero MA, Mendoza M, Taverna M, de la Rosa EM, Nguyen T, Saenz G, Winkler P, Tsevat J. Development of an E-cigarette awareness and cessation program: a South Texas oral health network study. Health Promot Pract. 2021;22(1):18–20.

31. Al‑Kamel A, Alsharani A, Eissa N. Self‑reported oral health attitudes and beliefs of prosthodontists practicing in Saudi Arabia. J Prosthet Dent. 2014;112(1):566–74.

32. Martin Carreras‑Presas C, Naem M, Hsou D, Somacarrera Pérez ML, Messadi DV. The need to educate future dental professionals on E-cigarette effects. Eur J Dental Educt Off J Assoc Dental Educ Europe. 2018;2(4):e751–8.

33. Natto ZS. Dental students' knowledge and attitudes about electronic cigarettes: a cross-sectional study at one Saudi University: J Dent Educ. 2020;84(12):1–27.

34. Abafalvi L, Péneses M, Urbán R, Foley KL, Kaán R, Kispély B, Herrmann P. Perceived health effects of vaping among Hungarian adult e-cigarette-only and dual users: a cross-sectional internet survey. BMC Public Health. 2019;19(1):302.

35. Hafz A, Rahman MM, Jantan Z. Factors associated with knowledge, attitude and practice of e-cigarette among adult population in KOPSE areas of Kuching district, Sarawak, Malaysia. Int J Commun Med Public Health. 2019;6(6):2300.

36. Novald V, Ganti L. E-cigarette awareness among young adults: a pilot survey study. Cureus. 2019;11(7):e5234.

37. Hinderaker K, Power D, Allen S, Parker E, Okuyemi K. What do medical students know about e-cigarettes? A cross-sectional survey from one US medical school. BMC Med Educ. 2018;18(1):32.

38. Ramôa CP, Eisenberg T, Sahingur SE. Increasing popularity of waterpipe tobacco smoking and electronic cigarette use: implications for oral healthcare. J Periodontal Res. 2017;52(5):815–23.

39. Vinumalappilly A, Mandapati SR, Kota H, Aryan S. Association between vaping and untrained caries: a cross-sectional study of National Health and Nutrition Examination Survey 2017–2018 data. J Am Dent Assoc. 2021;152(9):720–9.

40. Huilgol P, Bhattacharya BK, Bisigowda N, Wright NC, Wells J.M. Association of e-cigarette use with oral health: a population-based cross-sectional questionnaire study. J Public Health (Oxf). 2019;41(2):354–61.

41. Xie Z, Osip DJ, Rahman I, Li D. Use of electronic cigarettes and self-reported chronic obstructive pulmonary disease diagnosis in adults. Nicotine Tob Res. 2020;22(7):1155–61.

42. Xie Z, Li D. Cross-sectional association between lifetime use of electronic cigarettes with or without marijuana and self-reported past 12-month respiratory symptoms as well as lifetime respiratory diseases in US adults. Nicotine Tob Res. 2020;22(Suppl 1):S70–5.

43. Chen L, Lu X, Yuan J, Luo J, Luo J, Xie Z, Li D. A social media study on the associations of flavored electronic cigarettes with health symptoms: observational study. J Med Internet Res. 2020;22(6):e17496.

44. Alhajj et al. BMC Oral Health (2022) 22:18

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more: biomedcentral.com/submissions