In the context of an effective model for doped antiferromagnets, whereby the charge carriers are treated as hard-core bosons, we demonstrate that the ground state energy close to half-filling is an even periodic function of the external magnetic flux threading the square lattice in an Aharonov-Bohm geometry. The period is equal to the flux quantum $\Phi_0 = 2\pi \hbar c/q$ entering the Peierls phase factor of the hopping matrix elements. Thus flux quantization and a concomitant finite value of superfluid weight D_s occur along with metallic antiferromagnetism. We argue that the charge q in the associated flux quantum might be set equal to $2e$. The superconducting transition temperature T_c is related to D_s linearly, in accordance to the generic Kosterlitz-Thouless type of transition in a two-dimensional system, signalling the coherence of the phase fluctuations of the condensate. The calculated dependence of T_c on hole concentration is qualitatively similar to that observed in the high-temperature superconducting cuprates.

I. INTRODUCTION

The continuous evolution of the charge and spin dynamics upon doping with mobile holes the insulating antiferromagnetic copper oxide layers, supports the view that the high-temperature superconductivity in these materials is a fundamental property of the two-dimensional doped antiferromagnets. Of particular importance in this respect is the observed linear increase of the superfluid weight D_s with small hole concentration $(1-n_c)$, away from the Mott metal-insulator transition point at half-filling. On the theoretical side of this problem, there has been some evidence that mobile holes in doped antiferromagnets behave much like hard-core bosons. This transmutation of statistics, from bare fermionic holes to bosonic vacancy quasiparticles, should be understood as an “emergent phenomenon” due to the reduced dimensionality and the presence of a strongly correlated spin background. In the context of the simple fermionic $t-J$ model, proposed by Anderson to describe such systems, the aforementioned evidence comes from exact-diagonalization studies of the ground-state energy and the static hole-hole correlation function on small clusters. Indeed, the possibility of a hard-core boson behavior of the charged vacancies in doped antiferromagnets, opening the way to Bose-Einstein condensation and the appearance of superconductivity, was suggested by many authors in the early days of high-T_c superconductivity research. Thouless, in particular, argued that due to topological constraints, a vacancy in a two-dimensional torus lattice threaded by an external magnetic flux must be transported twice around the ring in order to recover its original configuration. Hence flux quantization with an effective charge $q = 2e$ may result from this period-doubling of the charge e bosons.

In all the aforementioned works, the lack of an effective model for doped antiferromagnets expressed in terms of hard-core bosons has prevented the systematic study of their flux quantization properties in conjunction with the optical and magnetic ones. Such a model, however, has been postulated from the outset by Psaltakis and Papa-panicolaou and consists of a $t-t^\prime-J$ Hamiltonian and a suitable $1/N$ expansion that provide a reasonably simple many-body calculational framework for the study of the relevant issues. When leading quantum-fluctuation effects are taken into account in the context of this model, the generic experimental features of the optical conductivity, the Drude weight and the total optical weight in the cuprates are qualitatively reproduced. In particular, our theory accounts aptly for the experimentally observed 0.5 eV peak of the midinfrared band and the mass enhancement factor approximately equal to 2.

Furthermore, it predicts a finite limiting value for the optical conductivity $\sigma(\omega \to 0)$, at finite hole doping, consistent with the residual far-infrared conductivity observed in the $\text{YBa}_2\text{Cu}_3\text{O}_6+x$ family of cuprates. Our results are also found to be consistent with relevant exact-diagonalization data. In view of the quoted evidence from optical experiments in favor of our effective model, we have recently undertaken a systematic study of its flux quantization properties in order to provide a more complete assessment of the main electromagnetic responses. Our study includes results for the superfluid weight D_s and the associated superconducting transition temperature T_c. In particular, our explicit numerical estimates for the doping dependence of T_c, including leading quantum-fluctuation effects, are found to reproduce qualitatively the observed trends in the cuprates. In the follow-
ing we review the main points of this approach.

II. EFFECTIVE MODEL

Our effective model is described by a t-t'-J Hamiltonian expressed in terms of Hubbard operators \(\chi^{ab} = |a\rangle \langle b| \) as

\[
H = - \sum_{i,j} t_{ij} \chi_{i}^{00} \chi_{j}^{00} + \frac{1}{2} J \sum_{(i,j)} (\chi_{i}^{\mu \nu} \chi_{j}^{\nu \mu} - \chi_{i}^{\mu \mu} \chi_{j}^{\nu \nu}) ,
\]

where the index 0 corresponds to a hole, the Greek indices \(\mu, \nu, \ldots \) assume two distinct values, for a spin-up and a spin-down electron, and the summation convention is invoked. Here \(J \) is the antiferromagnetic spin-exchange interaction between nearest-neighbor sites \((i,j) \) on a square lattice endowed with periodic boundary conditions and a total number of sites \(\Lambda = \Lambda_x \times \Lambda_y \), where \(\Lambda_x = \Lambda_y \). For the hopping matrix elements \(t_{ij} \) we assume non-zero values, \(t \) and \(-t' \), only between nearest- and next-nearest-neighbor sites, respectively, as dictated by quantum-chemistry calculations \([24] \) for Cu-O clusters and fits of the shape of the Fermi surface observed by angle-resolved photoemission spectroscopy \([23] \) \(. \) We also generalize the local constraint associated with \([3] \) to \(\chi_{i}^{00} + \chi_{i}^{\mu \mu} = N \), where \(N \) is an arbitrary integer, and consider the commutation properties of the \(\chi^{ab} \)’s to be those of the generators of the U(3) algebra. A representation of the latter algebra in terms of Bose operators can then be employed, leading to a generalization Holstein-Primakoff realization that resolves explicitly the local constraint which gives rise to the hard-core character of these bosons. One can then develop a perturbation theory based on the \(1/N \) expansion, restoring the relevant physical value \(N = 1 \) at the end of the calculation.

In the presence of an external magnetic flux \(\Phi \), threading the two-dimensional lattice in an Aharonov-Bohm torus geometry, the hopping matrix elements \(t_{ij} \) are modified by the well-known Peierls phase factor and should be substituted in \([3] \) according to

\[
t_{ij} \rightarrow t_{ij} e^{i A_{ij}} , \quad \text{with} \quad A_{ij} = \frac{2 \pi \Phi}{\Lambda_x \Phi_0} (\mathbf{R}_i - \mathbf{R}_j) \cdot \mathbf{e}_x .
\]

Here \(\mathbf{R}_i \) is the position vector for site \(i \), \(\mathbf{e}_x \) is the unit vector along the \(x \)-axis encircling the flux lines and \(\Phi_0 = 2 \pi \hbar c / q \) is the so-called flux quantum \([23] \). Conventionally, the charge \(q \) of the carriers entering \(\Phi_0 \) is, of course, equal to the electronic charge \(e \). However, the arguments of Thouless \([3] \) quoted in the Introduction imply that a vacancy actually “feels” twice as much external flux. In the context of the present effective model this may be accounted for by an extra factor of two in the expression \([3] \) for the \(A_{ij} \) which can be readily absorbed in a redefinition of \(q \) as \(q = 2e \). Evidently, this reasoning does not constitute a rigorous justification for the assignment \(q = 2e \) in the flux quantum \(\Phi_0 \). The latter justification can be provided only by an \textit{ab initio} derivation of an effective Hamiltonian for the hard-core boson vacancies, starting from a realistic electronic model for the cuprates. At present such a program is out of reach. Hence this work will be content with the study of the flux quantization properties of the effective model described by \([1] \)–\([4] \), given the flux quantum constant \(\Phi_0 \).

In the large-\(N \) limit the Bose operators become classical commuting fields which can be parametrized by the local electronic density \(n_i \), the angles \(\theta_i \) and \(\phi_i \) determining the local spin direction, and the local phase \(\psi_i \) of the condensate. The Hamiltonian \([1] \)–\([2] \) takes the form \(H(\Phi) = N^2 \Lambda E_0(\Phi) \), where \(E_0(\Phi) \) is the classical energy per lattice site for the value of physical interest \(N = 1 \). More explicitly, for uniform density states, \(n_i = n_e \), where \(n_e \) is the average electronic density, we have that

\[
\Lambda E_0(\Phi) = \mathcal{E}_1 + \mathcal{E}_2 ,
\]

where

\[
\mathcal{E}_1 = -n_e (1 - n_e) \sum_{i,j} t_{ij} \left[\cos \left(\frac{\theta_i}{2} \right) \cos \left(\frac{\theta_j}{2} \right) \cos \left(A_{ij} + \psi_i - \psi_j - \phi_i + \phi_j \right) \right. \\
\left. \quad + \sin \left(\frac{\theta_i}{2} \right) \sin \left(\frac{\theta_j}{2} \right) \cos \left(A_{ij} + \psi_i - \psi_j + \phi_i - \phi_j \right) \right] ,
\]

\[
\mathcal{E}_2 = \frac{n_e^2 J}{4} \sum_{(i,j)} \left[\cos \theta_i \cos \theta_j + \sin \theta_i \sin \theta_j \cos (\phi_i - \phi_j) - 1 \right] .
\]

As shown in Ref. \([10] \), close to half-filling \((n_e \lesssim 1) \) and for a sufficiently large \(t' \), the ground state of \((3) \)–\((4) \), in the absence of an external magnetic flux \((\Phi = 0) \), is described by a planar spin configuration \((\theta_i = \pi/2) \) in which the local twist angles and phases are modulated according to

\[
\phi_i = Q \cdot \mathbf{R}_i \quad \text{and} \quad \psi_i = Q' \cdot \mathbf{R}_i ,
\]

where \(Q = (\pi, \pi) \) is the usual spin-modulating antiferromagnetic wavevector and \(Q' = (\pi, -\pi) \) is an unusual phase-modulating wavevector. The question that is now posed is how this phase-modulated antiferromagnetic (AF) ground state will respond to the presence of an external magnetic flux \(\Phi \).

III. FLUX QUANTIZATION AND SUPERFLUID WEIGHT

Following an argument by Yang \([24] \) we note that, in the presence of \(\Phi \), the reciprocal lattice is displaced from the origin by \(2\pi \Phi / (\Lambda_x \Phi_0) \) along the \(x \)-axis. The quantization of flux therefore depends on whether the ground-state energy of the system changes under this momentum
To carefully the infinite lattice limit (Λ → ∞) of the helicity modulus (or numerical minimization data).

Example of Fig. 1, where the open circles correspond to a phase fluctuations of the condensate. These heuristic arguments lead us to consider the analytic result (6)–(7) the following modulating wavevectors: Q = (π, π) and Q' = (π, −π) − (4πm/Λ, 0), where m is an arbitrary integer. Inserting these wavevectors into (3) and taking the expression for the leading term Ds(0),

\[D_s(0) = 4t' n_e (1 - n_e) . \]

Thus for each integer m we get an individual many-body energy level that depends quadratically on Φ. The ground-state energy is given by the lower envelope of these crossing energy-level parabolas and is characterized analytically by the condition

\[\left| \frac{\Phi}{\Phi_0} - m \right| \leq \frac{1}{2}, \text{ with } m = 0, \pm 1, \pm 2, \ldots . \]

In Fig. 1 we depict by a solid line the ground-state energy calculated according to (3)–(4), for typical values of the parameters (1 - n_e) away from the half-filled-band limit (n_e = 1). This trend, present already in (9), is a fundamental characteristic of doped antiferromagnets. At higher doping values D_s = D eventually saturates and then starts to decrease.

Concerning the expected transition temperature to the superfluid weight, i.e., superconducting, state under study we note that at a finite temperature T, the ratio of the charge carriers to their average distance is proportional to \(\sqrt{D_s/(k_B T)} \), where D_s is the zero-temperature value determined by (6). Hence a naive application of the criterion for the occurrence of Bose-Einstein condensation in an ideal boson gas, whereby the latter ratio should become of order unity, suggests a transition temperature T_c of the form

\[k_B T_c = AD_s , \]

where A is a dimensionless constant of order unity. Of course, in the strictly two-dimensional model of continuous symmetry under study, a \textit{a bona fide} finite temperature phase transition can only be of the Kosterlitz-Thouless type which, nevertheless, leads again to an expression of the form (6). Indeed, the \psi_1\text{-structure of the classical Hamiltonian (3)–(4)} is a generalization of the two-dimensional XY model where the latter transition is well
studied. In this context, it is important to note that a “universal” linear relation of the form \(T_c = T_{c0} + a n^b \) has been established experimentally in the cuprates by Uemura et al. in their remarkable study of \(T_c \) as a function of the zero-temperature value of \(\lambda_L^{-2} \propto D_s \). In the large-\(N \) limit, the \(D_s \) appearing in \(T_{c0} \) is just equal to \(D_s^{(0)} \) and the corresponding critical temperature \(T_{c0}^{(0)} \) should be interpreted as the ordering temperature for the classical phase fluctuations of the condensate, in analogy with the analysis of Emery and Kivelson of the classical phase fluctuations of the conventional BCS order parameter. The higher order terms in the \(1/N \) expansion of \(D_s = D \) capture the effects of the quantum fluctuations and renormalize downwards these weights, thereby reducing the corresponding value of \(T_c \).

Following the prescription of Emery and Kivelson, we have applied \(T_{c0} \) with \(A = 0.9 \); a numerical value extracted from the two-dimensional \(XY \) model. Using the calculated \(D_s = D \) of Ref. [12], with the inclusion of the leading quantum-fluctuation correction \(D^{(1)}_s = D_s \), we depict in Fig. 2 the superconducting transition temperature \(T_c \) as a function of the hole concentration \((1-n_e) \). Evidently, the dependence of \(T_c \) on \((1-n_e) \) reflects that of \(D_s \) and reproduces qualitatively the observed trends in the cuprates. In particular, we have that: \(T_c \propto (1-n_e) \), for \(n_e \approx 0.1 \). With an estimated \(J/k_B \approx 1500 \) K in the cuprates, the value of \(T_c \) at optimum doping \((1-n_e) = 0.44 \) (0.36), seen in the solid (dashed) line of Fig. 2 is \(T_c \approx 335 \) K (218 K). This predicted value of \(T_c \), signalling the coherence of the phase fluctuations of the condensate, should be regarded as an upper bound to an actual transition temperature because of the neglect of impurity disorder, higher-order quantum fluctuations, etc. From Fig. 2 we also note that with further hole doping \(T_c \) starts to decrease while beyond a critical doping value it vanishes, as the phase-modulated AF configuration, around which the present \(1/N \) expansion is carried out, becomes unstable.

IV. CONCLUSIONS

We have demonstrated that flux quantization and a concomitant finite value of superfluid weight \(D_s \) occur in the metallic phase-modulated AF ground state of the \(t-t'J \) model. By appealing to the universality class of the two-dimensional \(XY \) model, the corresponding superconducting transition temperature \(T_c \) is related to \(D_s \) linearly, via \(T_{c0} \). The inclusion of leading quantum-fluctuation effects in \(D_s \) provides then a reasonable estimate for the order of magnitude and the doping dependence of \(T_c \) in the cuprates. These results support our effective description of the charge carriers in terms of hard-core bosons.

ACKNOWLEDGMENTS

The author would like to thank X. Zotos, E. Manousakis, and G. Varelogiannis for stimulating discussions. This work was supported by grant No. TENE∆95-145 from the Greek Secretariat for Research and Technology.

[1] J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986); M. K. Wu et al., Phys. Rev. Lett. 58, 908 (1987).
[2] M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Mod. Phys. 70, 897 (1998).
[3] Y. J. Uemura et al., Phys. Rev. Lett. 62, 2317 (1989); 66, 2665 (1991); Nature (London) 364, 605 (1993).
[4] P. W. Anderson, Science 235, 1196 (1987).
[5] M. W. Long and X. Zotos, Phys. Rev. B 45, 9932 (1992); 48, 317 (1993).
[6] Y. C. Chen and T. K. Lee, Z. Phys. B 95, 5 (1994).
[7] R. Eder et al., Phys. Rev. B 55, 12313 (1997).
[8] S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B 35, 8865 (1987); Europhys. Lett. 6, 353 (1988); X.-G. Wen and R. Kan, Phys. Rev. B 37, 595 (1988).
[9] D. J. Thouless, Phys. Rev. B 36, 7187 (1987).
[10] G. C. Psaltakis and N. Papanicolaou, Phys. Rev. B 48, 456 (1993).
[11] G. C. Psaltakis, Phys. Rev. B 51, 2979 (1995).
[12] G. C. Psaltakis, J. Phys. Condens. Matter 8, 5089 (1996).
[13] S. L. Cooper et al., Phys. Rev. B 41, 11605 (1990).
[14] J. Orenstein et al., Phys. Rev. B 42, 6342 (1990).
[15] S. Uchida et al., Phys. Rev. B 43, 7942 (1991).
[16] D. N. Basov et al., Phys. Rev. Lett. 74, 598 (1995); T. Pham et al., Phys. Rev. B 44, 5377 (1991).
[17] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
[18] G. C. Psaltakis, J. Phys. Condens. Matter 10, 10011 (1998).
[19] M. R. Presland et al., Physica C 176, 95 (1991); J. L. Tallon et al., Phys. Rev. B 51, 12911 (1995).
[20] M. S. Hybertsen, E. B. Stechel, M. Schluter, and D. R. Jennison, Phys. Rev. B 41, 11068 (1990).
[21] G. A. Sawatzky, in Earlier and Recent Aspects of Superconductivity, edited by J. G. Bednorz and K. A. Müller (Springer-Verlag, Berlin, 1990), p. 345.
[22] J. Yu and A. J. Freeman, J. Phys. Chem. Solids 52, 1351 (1991).
[23] The restriction of the hopping matrix elements \(t_{ij} \) to nearest- and next-nearest-neighbor sites implies that the factor \((R_i - R_j) \cdot e_x \) in the Peierls substitution assumes only the values: 0, ±1.
[24] C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
[25] N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961).
[26] C. E. Gough et al., Nature (London) 326, 855 (1987); P. L. Gammel et al., Phys. Rev. Lett. 59, 2592 (1987).
[27] D. J. Scalapino, S. R. White, and S. C. Zhang, Phys. Rev. Lett. 68, 2830 (1992); Phys. Rev. B 47, 7995 (1993);
Note that for a conventional BCS superconductor with a finite energy gap, a case radically different from the one under study, the identity $\mathcal{D}_s = \mathcal{D}$ is proved in Ref. 27.

V. J. Emery and S. A. Kivelson, Nature (London) 374, 434 (1995); Phys. Rev. Lett. 74, 3253 (1995).

R. Gupta et al., Phys. Rev. Lett. 61, 1996 (1988); P. Olson and P. Minnhagen, Physica Scripta 43, 203 (1991); R. Gupta and C. F. Baillie, Phys. Rev. B 45, 2883 (1992).

S. Shamoto et al., Phys. Rev. B 48, 13817 (1993).

![Ground-state energy vs external magnetic flux](image1)

FIG. 1. Ground-state energy vs external magnetic flux, for $\varepsilon = 0.45$, $t/J = 1.0$ and $1 - n_e = 0.10$. The zero-flux energy is subtracted to normalize the values. Solid line: the analytic result in the infinite lattice limit ($\Lambda \to \infty$), according to Eqs. (6)–(7). Dashed lines: remnants of the crossing energy-level parabolas discussed in the text. Open circles: numerical minimization results for the ground-state energy on a finite lattice ($\Lambda = 20 \times 20$), as determined by Eqs. (3)–(4). Evidently, the finite lattice numerical data (open circles) confirm the infinite lattice limit analytic result (solid line).

![Superconducting transition temperature vs hole concentration](image2)

FIG. 2. Superconducting transition temperature vs hole concentration, for $t/J = 1.0$ and $\varepsilon = 0.45$ (solid line) or $\varepsilon = 0.40$ (dashed line), according to Eq. (10) with the inclusion of leading quantum-fluctuation effects.