Search for Direct CP Violation in Quasi-Two-Body Charmless B Decays

The BABAR Collaboration

October 29, 2018

Abstract

We have searched for direct CP violation in quasi-two-body charmless B decays observed in a sample of about 45 million B mesons collected with the BABAR detector at the PEP-II collider. We measure the following charge asymmetries in decay: $A_{CP}(B^\pm \rightarrow \eta' K^\pm) = -0.11 \pm 0.11 \pm 0.02$, $A_{CP}(B^\pm \rightarrow \omega \pi^\pm) = -0.01_{-0.031}^{+0.29} \pm 0.03$, $A_{CP}(B^\pm \rightarrow \phi K^\pm) = -0.05 \pm 0.20 \pm 0.03$, $A_{CP}(B^\pm \rightarrow \phi K^{*\pm}) = -0.43_{-0.36}^{+0.36} \pm 0.06$, and $A_{CP}(B^0/\bar{B}^0 \rightarrow \phi K^{*0}/\bar{K}^{*0}) = 0.00 \pm 0.27 \pm 0.03$.

Submitted to the 9th International Symposium on Heavy Flavor Physics, 9/10—9/13/2001, Pasadena, CA, USA

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported in part by Department of Energy contract DE-AC03-76SF00515.
The BABAR Collaboration,

B. Aubert, D. Boutigny, J.-M. Gaillard, A. Hicheur, Y. Karyotakis, J. P. Lees, P. Robbe, V. Tisserand
Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France

A. Palano, A. Pompili
Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy

G. P. Chen, J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu
Institute of High Energy Physics, Beijing 100039, China

G. Eigen, B. Stugu
University of Bergen, Inst. of Physics, N-5007 Bergen, Norway

G. S. Abrams, A. W. Borgland, A. B. Breon, D. N. Brown, J. Button-Shafer, R. N. Cahn, A. R. Clark, M. S. Gill, A. V. Gritsan, Y. Graysman, R. G. Jacobsen, R. W. Kadel, J. Kadyk, L. T. Kerth, Yu. G. Kolomensky, J. F. Kral, C. LeClerc, M. E. Levi, G. Lynch, P. J. Oddone, A. Perazzo, M. Pripstein, N. A. Roe, A. Romosun, M. T. Ronan, V. G. Shelkov, A. V. Telnov, W. A. Wenzel
Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA

P. G. Bright-Thomas, T. J. Harrison, C. M. Hawkes, D. J. Knowles, S. W. O’Neale, R. C. Penny, A. T. Watson, N. K. Watson
University of Birmingham, Birmingham, B15 2TT, United Kingdom

T. Deuperrmann, K. Goetzen, H. Koch, M. Kunze, B. Lewandowski, K. Peters, H. Schmuecker, M. Steinke
Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

J. C. Andress, N. R. Barlow, W. Bhimji, N. Chevalier, P. J. Clark, W. N. Cottingham, N. De Groot
University of Bristol, Bristol BS8 1TL, United Kingdom

N. Dyce, B. Foster, J. D. McFall, D. Wallom, F. F. Wilson
University of Bristol, Bristol BS8 1TL, United Kingdom

K. Abe, C. Hearty, T. S. Mattison, J. A. McKenna, D. Thiessen
University of British Columbia, Vancouver, BC, Canada V6T 1Z1

S. Jolly, A. K. McKenney, J. Tinslay
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

V. E. Blinov, A. D. Bukin, D. A. Bukin, A. R. Buzyaev, V. B. Golubev, V. N. Ivanchenko, A. A. Korol, E. A. Kravchenko, A. P. Onuchin, A. A. Salnikov, S. I. Serednyakov, Yu. I. Skovpen, V. I. Telnov, A. N. Yushkov
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

D. Best, A. J. Lankford, M. Mandelkern, S. McMahon, D. P. Stoker
University of California at Irvine, Irvine, CA 92697, USA

A. Ahsan, K. Arisaka, C. Buchanan, S. Chun
University of California at Los Angeles, Los Angeles, CA 90024, USA

1 Also with Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
F. Anulli, R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, D. Falciai, G. Finocchiaro, P. Patteri, I. M. Peruzzi, M. Piccolo, Y. Xie, A. Zallo
Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy

S. Bagnasco, A. Buzzo, R. Contri, G. Crosetti, M. Lo Vetere, M. Macri, M. R. Monge, S. Passaggio, F. C. Pastore, C. Patrignani, M. G. Pia, E. Robutti, A. Santroni, S. Tosi
Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy

M. Morii
Harvard University, Cambridge, MA 02138, USA

R. Bartoldus, R. Hamilton, U. Mallik
University of Iowa, Iowa City, IA 52242, USA

J. Cochran, H. B. Crawley, P.-A. Fischer, J. Lamsa, W. T. Meyer, E. I. Rosenberg
Iowa State University, Ames, IA 50011-3160, USA

G. Grosdidier, C. Hast, A. Höcker, H. M. Lacker, S. Laplace, V. Lepeltier, A. M. Lutz, S. Plaszczynski, M. H. Schune, S. Trincas-Duvoid, G. Wormser
Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France

R. M. Bionta, V. Brigljević, D. J. Lange, M. Mugge, K. van Bibber, D. M. Wright
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

M. Carroll, J. R. Fry, E. Gabathuler, R. Gamet, M. George, M. Kay, D. J. Payne, R. J. Sloane, C. Touramanis
University of Liverpool, Liverpool L69 3BX, United Kingdom

M. L. Aspinwall, D. A. Bowerman, P. D. Dauncey, U. Egede, I. Esrich, N. J. W. Gunawardane, J. A. Nash, P. Sanders, D. Smith
University of London, Imperial College, London, SW7 2BW, United Kingdom

D. E. Azzopardi, J. J. Back, P. Dixon, P. F. Harrison, R. J. L. Potter, H. W. Shorthouse, P. Strother, P. B. Vidal, M. I. Williams
Queen Mary, University of London, E1 4NS, United Kingdom

G. Cowan, S. George, M. G. Green, A. Kurup, C. E. Marker, P. McGrath, T. R. McMahon, S. Ricciardi, F. Salvatore, I. Scott, G. Vaitisas
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

D. Brown, C. L. Davis
University of Louisville, Louisville, KY 40292, USA

J. Allison, R. J. Barlow, J. T. Boyd, A. C. Forti, J. Fullwood, F. Jackson, G. D. Lafferty, N. Savvas, E. T. Simopoulos, J. H. Weatherall
University of Manchester, Manchester M13 9PL, United Kingdom

2 Also with Università di Perugia, I-06100 Perugia, Italy
3 Also with Università di Perugia, I-06100 Perugia, Italy
A. Farbin, A. Jawahery, V. Lillard, J. Olsen, D. A. Roberts, J. R. Schieck
University of Maryland, College Park, MD 20742, USA

G. Blaylock, C. Dallapiccola, K. T. Flood, S. S. Hertzbach, R. Kofler, V. G. Koptchev, T. B. Moore, H. Staengle, S. Willocq
University of Massachusetts, Amherst, MA 01003, USA

B. Brau, R. Cowan, G. Sciolla, F. Taylor, R. K. Yamamoto
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139, USA

M. Milek, P. M. Patel
McGill University, Montréal, QC, Canada H3A 2T8

F. Palombo
Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy

J. M. Bauer, L. Cremaldi, V. Eschenburg, R. Kroeger, J. Reidy, D. A. Sanders, D. J. Summers
University of Mississippi, University, MS 38677, USA

J. P. Martin, J. Y. Nief, R. Seitz, P. Taras, V. Zacek
Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7

H. Nicholson, C. S. Sutton
Mount Holyoke College, South Hadley, MA 01075, USA

N. Cavallo, G. De Nardo, F. Fabozzi, C. Gatto, L. Lista, P. Paolucci, D. Piccolo, C. Sciacca
Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy

J. M. LoSecco
University of Notre Dame, Notre Dame, IN 46556, USA

J. R. G. Alsmiller, T. A. Gabriel, T. Handler
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

J. Brau, R. Frey, M. Iwasaki, N. B. Sinev, D. Strom
University of Oregon, Eugene, OR 97403, USA

F. Colecchia, F. Dal Corso, A. Dorigo, F. Galeazzi, M. Margoni, G. Michelon, M. Morandin, M. Posocco, M. Rotondo, F. Simonetto, R. Stroili, E. Torassa, C. Voci
Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy

M. Benayoun, H. Briand, J. Chauveau, P. David, Ch. de la Vaissière, L. Del Buono, O. Hamon, F. Le Diberder, Ph. Leruste, J. OCARIZ, L. Roos, J. Stark, S. Versilié
Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France

P. F. Manfredi, V. Re, V. Speziali
Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy

4 Also with Università della Basilicata, I-85100 Potenza, Italy
1 Introduction

The phenomenon of CP violation has played an important role in understanding fundamental physics since its initial discovery in the K meson system in 1964 [1]. Recently, a significant CP violating asymmetry has been observed in the B meson system [2]. Both effects may be accounted for by a non-zero phase in the mixing of two neutral mesons ($K^0 - \bar{K}^0$ or $B^0 - \bar{B}^0$). There is a different type of CP violation due to interference among decay amplitudes which differ in both weak and strong phases. This “direct" CP violation has been observed recently in kaon decays [3]. While CP violation effects are small in the kaon system they are anticipated to be larger in B decays [4]. Direct CP violation would be evident in an asymmetry of B decay rates:

$$A_{CP} = \frac{\Gamma(B \rightarrow f) - \Gamma(B \rightarrow \bar{f})}{\Gamma(B \rightarrow f) + \Gamma(B \rightarrow \bar{f})}. \quad (1)$$

Rare B meson decays are particularly interesting in searches for direct CP violation because they have significant penguin amplitudes. In the Standard Model substantial CP violation in B decays could arise from interference of penguin (P) and tree (T) amplitudes [4]:

$$A_{CP} = \frac{2 \ |P| \ |T| \ \sin \Delta \phi \ \sin \Delta \delta}{|P|^2 + |T|^2 + 2 \ |P| \ |T| \ \cos \Delta \phi \ \cos \Delta \delta}, \quad (2)$$

where $\Delta \phi$ and $\Delta \delta$ are the differences in weak and strong phases. The weak phase difference, $\Delta \phi$, between the $b \rightarrow u$ tree and $b \rightarrow s$ (or $b \rightarrow d$) penguin amplitudes is γ (or $\gamma + \beta$), as in the case of the decays $B^\pm \rightarrow \eta'^K^\pm$ (or $B^\pm \rightarrow \omega \pi^\pm$). Thus, A_{CP} is sensitive to the CKM angles γ and $\alpha = \pi - (\gamma + \beta)$, where $\gamma = \text{arg}(V_{ub}^*)$ and $\beta = \text{arg}(V_{td})$ in the usual phase convention [5, 6]. However, there is large uncertainty in the strong phases, which weakens any quantitative relationship to the weak phase angles.

Even more interesting is the scenario of direct CP violation in the pure penguin modes, such as $B \rightarrow \phi K^{(*)}$. In the Standard Model, the expected A_{CP} is negligible. However, new particles in loops, such as charged Higgs or SUSY particles, would provide additional amplitudes with different phases. Depending on the model parameters, A_{CP} may be as large as 30% with new physics [7]. Complementary searches for new physics would involve measurements of the time-dependent asymmetries in B decays to CP eigenstates, such as $\phi K^0_{S(L)}$ and $\eta' K^0_{S(L)}$. Comparison of the value of $\sin 2\beta$ obtained from these modes with that from charmonium modes can probe for new physics participating in penguin loops. In these measurements, direct CP violation in the decay becomes highly relevant.

A search for direct CP violation in B meson decays to πK, $\eta' K$, and $\omega \pi$ was performed previously by the CLEO experiment [8]. In this paper we improve the precision of the measurements and extend the search for direct CP violation to new modes with data from the BABAR experiment. We present measurements of the charge asymmetry in the quasi-two-body charmless B decays [9, 10]: $B^\pm \rightarrow \eta' K^\pm$, $B^\pm \rightarrow \omega \pi^\pm$, $B^\pm \rightarrow \phi K^\pm$, $B^\pm \rightarrow \phi K^{*\pm}$, and $B^0/\bar{B}^0 \rightarrow \phi K^{*0}/\bar{K}^{*0}$. We choose modes where the B flavor is tagged by its charge, except for the $\phi K^{*0}/\bar{K}^{*0}$ final state where the flavor is tagged by the charge of the kaon from the $K^{*0} \rightarrow K^+\pi^-$ decay. A measurement from BABAR of the πK charge asymmetry may be found elsewhere [11].

2 Detector and Data

The data were collected with the BABAR detector [12] at the PEP-II asymmetric e^+e^- collider [13] located at the Stanford Linear Accelerator Center. The results presented in this paper are based on
data taken in the 1999–2000 run. An integrated luminosity of 20.7 fb\(^{-1}\) was recorded corresponding to 22.7 million \(B\overline{B}\) pairs at the \(\Upsilon\) resonance (“on-resonance”) and 2.6 fb\(^{-1}\) about 40 MeV below this energy (“off-resonance”).

The asymmetric beam configuration in the laboratory frame provides a boost to the \(\Upsilon\) increasing the momentum range of the \(B\) meson decay products up to 4.3 GeV/c. Charged particles are detected and their momenta are measured by a combination of a silicon vertex tracker (SVT) consisting of five double-sided layers and a 40-layer central drift chamber (DCH), both operating in a 1.5 T solenoidal magnetic field. With the SVT, a position resolution of about 40 \(\mu\)m is achieved for the highest momentum charged particles near the interaction point, allowing the precise determination of decay vertices. The tracking system covers 92\% of the solid angle in the center-of-mass system (CM). The track finding efficiency is, on average, (98\±1\)% for momenta above 0.2 GeV/c and polar angle greater than 0.5 rad. Photons are detected by a CsI electromagnetic calorimeter (EMC), which provides excellent angular and energy resolution with high efficiency for energies above 20 MeV \[^{[2]}\].

Charged particle identification is provided by the average energy loss \((\text{d}E/\text{d}x)\) in the tracking devices and by a unique, internally reflecting ring imaging Cherenkov detector (DIRC) covering the central region. A Cherenkov angle \(K\)–\(\pi\) separation of better than 4\(\sigma\) is achieved for tracks below 3 GeV/c momentum, decreasing to 2.5\(\sigma\) at the highest momenta in our final states. Electrons are identified with the use of the tracking system and the EMC.

3 Event Selection

All the selection requirements are identical to those used in the branching fraction measurements \[^{[3]}\] \[^{[4]}\]. Hadronic events are selected based on track multiplicity and event topology. We fully reconstruct \(B\) meson candidates from their charged and neutral decay products, where we recover the intermediate states \(\eta'\rightarrow \eta\pi^+\pi^-\) (\(\eta_{\eta\pi\pi}\)) or \(\rho^0\gamma\) (\(\rho_{\gamma\gamma}\)), \(\omega\rightarrow \pi^+\pi^-\pi^0\), \(\phi\rightarrow K^+K^-\), \(K^{*+}\rightarrow K^0\pi^+\) (\(K^{*+}_{K^0}\)) or \(K^+\pi^0\) (\(K^{*+}_{K^+}\)), \(K^{*0}\rightarrow K^+\pi^-\), \(\rho^0\rightarrow \pi^+\pi^-\), \(\pi^0\rightarrow \gamma\gamma\), \(\eta\rightarrow \gamma\gamma\), and \(K^0\rightarrow K^0_S\rightarrow \pi^+\pi^-\). Candidate charged tracks are required to originate from the interaction point, and to have at least 12 DCH hits and a minimum transverse momentum of 0.1 GeV/c. Looser criteria are applied to tracks forming \(K^0_S\) candidates to allow for displaced decay vertices. Kaon tracks are distinguished from pion and proton tracks via a likelihood ratio that includes, for momenta below 0.7 GeV/c, \(\text{d}E/\text{d}x\) information from the SVT and DCH, and, for higher momenta, the Cherenkov angle and number of photons as measured by the DIRC.

We combine pairs of tracks with opposite charge from a common vertex to form \(K^0_S\), \(\phi\), \(K^{*0}\), and \(\rho^0\) candidates. We further combine a pair of charged tracks with a \(\pi^0\) or \(\eta\) candidate to select \(\omega\) or \(\eta_{\eta\pi\pi}\) candidates. The selection of \(K^0_S\) candidates is based on the invariant two-pion mass \(|M_{\pi\pi} - m_{K^0}| < 12 \text{ MeV}/c^2\), the angle \(\alpha\) between the reconstructed flight and momentum directions \((\cos \alpha > 0.995)\), and the measured lifetime significance \((\tau/\sigma_\tau > 3)\).

We reconstruct \(\pi^0\) (\(\eta\)) mesons as pairs of photons with a minimum energy deposition of 30 MeV (100 MeV). The typical width of the reconstructed \(\pi^0\) mass is 7 MeV/c\(^2\). A \(\pm 15 \text{ MeV}/c^2\) interval is applied to select \(\pi^0\) candidates. We combine a \(\rho^0\) candidate with a photon of energy above 200 MeV to obtain an \(\eta_{\rho\gamma}\) candidate.

We select \(\phi\), \(\omega\), \(\eta'\), and \(\eta\) candidates with the following requirements on the invariant masses of their final states (in MeV/c\(^2\)): \(990 < m(K^+K^-) < 1050\), \(735 < m(\pi^+\pi^-\pi^0) < 830\), \(930 < m(\eta\pi^+\pi^-) < 990\), \(900 < m(\rho\gamma) < 1000\), and \(490 < m(\gamma\gamma) < 600\). The natural widths of the \(K^*\) and \(\rho\) dominate the resolution in the invariant mass spectrum. We require the invariant \(\rho\) mass to
be between 500 MeV/c^2 and 995 MeV/c^2. For K^* candidates the $K\pi$ invariant mass interval is either ± 100 or 150 MeV/c^2.

The helicity angle θ_H of a ϕ, K^*, or ω is defined as the angle between the direction of one of the two daughters, or the normal to the ω decay plane, and the parent B direction in the resonance rest frame. To suppress combinatorial background we restrict the $K^{*+} \rightarrow K^+\pi^0$ helicity angle ($\cos \theta_H > -0.5$). This effectively requires the π^0 momentum to be above 0.35 GeV/c.

We identify B meson candidates kinematically using two nearly independent variables [2], the energy-substituted mass $m_{ES} = \sqrt{(s/2 + p_i \cdot p_B)^2/E_i^2 - p_B^2}$ and $\Delta E = (E_i E_B - p_i \cdot p_B - s/2)/\sqrt{s}$, where \sqrt{s} is the total e^+e^- CM energy. The initial-state four-momentum (E_i, p_i) derived from the beam kinematics and the four-momentum (E_B, p_B) of the reconstructed B candidate are all defined in the laboratory. An alternative to m_{ES} is the energy constrained mass m_{EC}, which is obtained from the kinematic fit of the measured candidate four momentum in the $\Upsilon(4S)$ frame with the constraint of the B energy to the beam energy. Both m_{ES} and m_{EC} provide almost identical background separation, while m_{EC} is less correlated to ΔE than is m_{ES}. For signal events ΔE peaks at zero and m_{ES} and m_{EC} at the B mass.

Monte Carlo (MC) simulation [3] demonstrates that contamination from other B decays is negligible. However, charmless hadronic modes suffer from large backgrounds due to random combinations of tracks produced in the quark-antiquark ($q\bar{q}$) continuum. This background is distinguished by its jet structure as compared to the spherical decay of the Υ. To reject continuum background we make use of the angle θ_T between the thrust axes of the B candidate and the rest of the tracks and neutral clusters in the event, calculated in the center-of-mass frame. The distribution of $\cos \theta_T$ is sharply peaked near ± 1 for combinations drawn from jet-like $q\bar{q}$ pairs, and nearly uniform for the isotropic B meson decays. Thus we require $|\cos \theta_T| < 0.9$ (0.8 for $\phi K^{*\pm}$). We also construct a Fisher discriminant [4] which combines eleven variables: the angles of the B momentum vector and the B two-body decay axis with respect to the beam axis in the $\Upsilon(4S)$ frame, and a nine bin representation of the energy flow about the B decay axis.

\section{Maximum Likelihood Fit}

We use an extended unbinned maximum likelihood (ML) fit to extract signal yields and charge asymmetries simultaneously. The extended likelihood for a sample of N events is

$$\mathcal{L} = \exp \left(-\sum_{i=1}^{M} \sum_{k=1}^{2} n_{ik} \right) \prod_{j=1}^{N} \left(\sum_{i=1}^{M} \sum_{k=1}^{2} n_{ik} \mathcal{P}_{ik}(x_j; \alpha) \right),$$

where $\mathcal{P}_{ik}(x_j; \alpha)$ describes the probability for candidate event j to belong to category i and flavor state k, based on its measured variables x_j, and fixed parameters α that describe the expected distributions of these variables in each of the M categories. This probability is non-zero only for the right final state flavor ($k = 1$ for $B \rightarrow f$ and $k = 2$ for $B \rightarrow \bar{f}$). In the simplest case, the probabilities are summed over two categories ($M = 2$), signal and background. The decays with the charged primary daughter h^{\pm} (K^{\pm} or π^{\pm}) are fit simultaneously with two signal and two corresponding background categories ($M = 4$). These are: $B^{\pm} \rightarrow \eta' h^{\pm}$, ωh^{\pm}, and ϕh^{\mp}. We rewrite the event yields n_{ik} in each category in terms of the asymmetry A_i and the total event yield n_i: $n_{i1} = n_i \times (1 + A_i)/2$ and $n_{i2} = n_i \times (1 - A_i)/2$. The event yields n_i and asymmetries A_i in each category are obtained by maximizing \mathcal{L} [3]. Statistical errors correspond to unit changes in the quantity $\chi^2 = -2 \ln \mathcal{L}$ around its minimum value. The significance of non-zero asymmetry is
defined by the square root of the change in χ^2 when constraining the asy-

The probability $P_{ik}(\vec{x}_j; \vec{\alpha})$ for a given event j is the product of inde-

The fixed parameters $\vec{\alpha}$ describing the PDFs are extracted from signal and background distributions from MC simulation, on-resonance $\Delta E-m_{ES}$ sidebands, and off-resonance data. The MC resolutions are adjusted by comparisons of data and simulation in abundant calibration channels with similar kinematics and topology, such as $B \to D\pi, D\rho$ with $D \to K\pi, K\pi\pi$. The simulation reproduces the event-shape variable distributions found in data. The Cherenkov angle residual parameterizations are determined from samples of $D^0 \to K^-\pi^+$ originating from D^* decays.

5 Results

The results of our ML fit analyses are summarized in Table 1. The signal yields along with branching fraction results have been reported earlier [9, 10]. In all cases we find significant signal event yields, and hence proceed with asymmetry measurements. The dependence of the χ^2 on A_{CP} for each decay mode and sub-channel is shown in Fig. 1 and asymmetry measurements are summarized in Fig. 2. We see no significant asymmetries and set 90% C.L. intervals.

Most of the systematic error contributions relevant to branching fraction analyses cancel for the ratio in Eq. 1. Some level of charge asymmetry bias is inevitable as neither the BABAR detector nor PEP-II is perfectly charge symmetric. However these effects are mostly very small for the final states considered here. Charge biases in the detector and track reconstruction have been studied in a sample of more than a billion charged tracks in multi-hadron events. After proton and electron rejection we find an asymmetry consistent with zero with an uncertainty of less than 1% for a wide range of momenta. Taking into account particle identification requirements, this consistency is still better than 2%. The $D^{*\pm}$ control sample of kaon and pion tracks is used to estimate systematic uncertainties in the asymmetries arising from possible charge biases in the Cherenkov angle residual,
Figure 1: Distribution of χ^2 for the charge asymmetries A_{CP} in the physically allowed range. Top plots: two secondary channels (dashed and dotted lines) are combined to produce a final result (solid line); left plot: $\eta'K^\pm$ with $\eta'_{\pi\pi}K^\pm$ (dashed) and $\eta'_{\eta\gamma}K^\pm$ (dotted); right plot: $\phi K^{*\pm}$ with $\phi K^{*\pm}_{K^0}$ (dashed) and $\phi K^{*\pm}_{K^+}$ (dotted). Bottom plots, from left to right: $\omega\pi^{\pm}$, ϕK^\pm, and $\phi K^{*0}/\bar{K}^{*0}$.
Table 1: Results of the ML fits: number of signal events \((n_{\text{sig}})\), their charge asymmetry \((A_{\text{CP}})\), asymmetry 90\% C.L. limits and significance \((S_A)\). All results include systematic errors.

Mode	\(n_{\text{sig}}\)	\(A_{\text{CP}}\)	90\% C.L.	\(S_A\) (\(\sigma\))
\(\eta'/K^{\pm}\)	–	\(-0.11 \pm 0.11 \pm 0.02\)	\([-0.28;+0.07]\)	1.0
\(\eta'\eta\pi K^{\pm}\)	\(-0.17 \pm 0.15 \pm 0.01\)	\([-\infty;+\infty]\)	1.1	
\(\eta'\rho\gamma K^{\pm}\)	\(-0.05 \pm 0.15 \pm 0.03\)	\([-\infty;+\infty]\)	0.3	
\(\omega\pi^{\pm}\)	\(-0.01^{+0.29}_{-0.31} \pm 0.03\)	\([-0.50;+0.46]\)	0.0	
\(\phi K^{\pm}\)	\(-0.05 \pm 0.20 \pm 0.03\)	\([-0.37;+0.28]\)	0.2	
\(\phi K^{*\pm}\)	\(-0.43^{+0.36}_{-0.30} \pm 0.06\)	\([-0.88;+0.18]\)	1.2	
\(\phi K^{*0}\)	\(-0.55^{+0.51}_{-0.35} \pm 0.05\)	\([-0.37;+0.28]\)	1.1	
\(\phi K^{0}\)	\(-0.31^{+0.34}_{-0.30} \pm 0.06\)	\([-0.43;+0.43]\)	0.0	

which are found to be less than 1%.

From these studies we assign a systematic uncertainty of 1\% on \(A_{\text{CP}}\) for all the modes with a charged primary daughter: \(B^{\pm} \rightarrow \eta'h^{\pm}, \omega h^{\pm}, \text{and } \phi h^{\pm}\). For the modes with a \(K^*\) we account for the broader momentum spectrum of the charged daughters and particle identification applied to the kaon candidates with a 2\% systematic error. All measured background asymmetries and signal asymmetries in MC are consistent with zero within statistical uncertainties.

A different type of uncertainty originates in the ML fit from assumptions about the signal and background distributions. We vary the PDF parameters within their respective uncertainties, and derive the associated systematic errors in the event yield and its asymmetry. Corresponding systematic errors on asymmetry are found to be 2\% for \(\eta'/K^{\pm}\) and \(\phi K^{*0}\), 3\% for \(\omega\pi^{\pm}\) and \(\phi K^{\pm}\), and 6\% for \(\phi K^{*\pm}\), the latter being dominated by the mode with a \(\pi^0\). These systematic errors are conservatively estimated and may be improved with higher statistics.

We combine the correlated (due to selection requirements) and uncorrelated (due to PDF variations) systematic errors, and convolute systematic errors into \(\chi^2\) distributions in order to obtain results with systematics. We also treat the correlated and uncorrelated systematic errors separately when we combine the sub-channels. The uncertainties in the final results presented in Table 1 are dominated by statistical errors.
Figure 2: Results of the direct CP violation search in the B decays into final states $\eta' K^\pm$, $\omega \pi^\pm$, ϕK^\pm, $\phi K^{*\pm}$, and $\phi K^{*0}/\bar{K}^{*0}$. Points with error bars represent experimental measurements of A_{CP}. Solid thick lines delimit the 90% C.L. intervals. For the modes $\eta' K^\pm$ and $\omega \pi^\pm$ smaller points with error bars show results of the CLEO experiment [8].
6 Conclusions

We have searched for direct CP violation in quasi-two-body charmless B decays observed in BABAR data. The measured charge asymmetries of the B decays into final states $\eta'K^\pm$, $\omega\pi^\pm$, ϕK^\pm, and $\phi K^{*0}/\bar{K}^{*0}$ are summarized in Table 1 and Fig. 2. The 90% C.L. limits rule out a significant part of the physical A_{CP} region.

7 Acknowledgements

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l’Énergie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from the Swiss National Science Foundation, the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

References

[1] J. H. Christenson, J. Cronin, V. Fitch, R. Turlay, Phys. Rev. Lett. 13, 138 (1964).
[2] $BABAR$ Collaboration, B. Aubert et al., Phys. Rev. Lett. 87, 091801 (2001); BELLE Collaboration, K. Abe et al., Phys. Rev. Lett. 87, 091802 (2001).
[3] KTeV Collaboration, A. Alavi-Harati et al., Phys. Rev. Lett. 83, 22 (1999); NA48 Collaboration, V. Fantini et al., Phys. Lett. B 465, 335 (1999).
[4] M. Bander, D. Silverman, A. Soni, Phys. Rev. Lett. 43, 242 (1979).
[5] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
[6] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[7] I. Hinchliffe, N. Kersting, Phys. Rev. D 63, 015003 (2001).
[8] CLEO Collaboration, S. Chen et al., Phys. Rev. Lett. 85, 525 (2000).
[9] $BABAR$ Collaboration, B. Aubert et al., $BABAR$-PUB-01/11, hep-ex/0105001, to appear in Phys. Rev. Lett.
[10] $BABAR$ Collaboration, B. Aubert et al., $BABAR$-PUB-01/15, hep-ex/0108017, submitted to Phys. Rev. Lett.
[11] $BABAR$ Collaboration, B. Aubert et al., $BABAR$-PUB-01/10, hep-ex/0105061, submitted to Phys. Rev. Lett; $BABAR$-CONF-01/05, hep-ex/0107074.
[12] BABAR Collaboration, B. Aubert et al., SLAC-PUB-8569, hep-ex/0105044, to appear in Nucl. Instrum. and Methods.

[13] PEP-II Conceptual Design Report, SLAC-R-418 (1993).

[14] CLEO Collaboration, D.M. Asner et al., Phys. Rev. D 53, 1039 (1996).

[15] The BABAR detector Monte Carlo simulation is based on GEANT: R. Brun et al., CERN DD/EE/84-1.

[16] F. James, CERN Program Library, D506.

[17] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 241, 278 (1990).