PLATONIC AND ALTERNATING 2-GROUPS

NARTHANA EPA AND NORA GANTER

ABSTRACT. We recall Schur’s work on universal central extensions and develop the analogous theory for categorical extensions of groups. We prove that the String 2-groups are universal in this sense and study in detail their restrictions to the finite subgroups of the Spin groups. Of particular interest are subgroups of the 3-sphere Spin(3), as well as the spin double covers of the alternating groups, whose categorical extensions turn out to be governed by the stable 3-stem $\pi_3(S^3)$.

1. Introduction

By a categorical group or 2-group, we mean a small monoidal groupoid $(\mathcal{G}, \bullet, 1)$ with weakly invertible objects. We will think of such a \mathcal{G} as a categorical extension

$$\begin{array}{ccc}
1/\mathbb{A} & \longrightarrow & \mathcal{G} \\
\downarrow & & \downarrow \\
1/ \mathbb{U}(1) & \longrightarrow & String(3) \longrightarrow S^3,
\end{array}$$

where $\mathcal{G} = \pi_0\mathcal{G}$ is the group of isomorphism classes of objects in \mathcal{G} and the abelian group

$$\mathbb{A} = \pi_1\mathcal{G} = \text{aut}_{\mathcal{G}}(1)$$

is the center of \mathcal{G}. The purpose of this note is to study two families of finite categorical groups, sitting inside the Lie 2-groups $String(n)$. First, we discuss the platonic 2-groups, which are categorical extensions of the finite subgroups of the three sphere and have as center a cyclic group of order $|G|$. The platonic 2-groups are of interest, because the finite subgroups of

$$S^3 = SU(2) = Spin(3)$$

are the protagonists of the McKay correspondence. Their list consists of the cyclic and the binary dihedral groups, plus the three exceptional cases: the binary tetrahedral group $2T \cong \tilde{A}_4$, the binary octahedral group $2O \cong \tilde{S}_4$, and the binary icosahedral group $2I \cong \tilde{A}_5$. The fact that there are canonical categorical extensions of all these groups suggests a categorical aspect of McKay correspondence that seems worth exploring.

The second family of examples consists of the alternating 2-groups \mathbb{A}_n, which are related to the stable homotopy groups of spheres by the tower

Date: May 31, 2016.
Ganter was supported by an Australian Research Fellowship and ARC Discovery Grant DP1095815.
Here

\[O = \text{colim}O(n) \]

is the infinite orthogonal group, and the homotopy groups turning up are

\[\pi_1(S^0) \cong \mu_2, \quad \pi_2(S^0) \cong \mu_2, \quad \pi_3(S^0) \cong \mu_{24}, \quad \text{and} \quad B\pi_3(O) = U(1). \]

The homomorphism \(\tilde{\varrho}_n \) is the permutation representation, and

\[e: \pi_3(S^0) \longrightarrow U(1) \]

is the Adams e-invariant. In the philosophy of [Kap15], the stable 1-stem yields the sign governing super-symmetry, while the stable 2-stem provides the sign governing categorified supersymmetry. It was Kapranov’s question about a conceptual description of the stable 3-stem in this context that motivated our work. For \(n \) sufficiently large, the alternating 2-groups turn out to be universal in an appropriate sense. A consequence of this is the following result.

Theorem 1.1. The restriction of \(\text{String}(n) \) to \(\tilde{A}_n \) has exact order 24 for all \(n \geq 4 \). The restriction of \(\text{String}(3) \) to a finite subgroup \(G \subseteq S^3 \) has exact order \(|G| \).

It would be interesting to have a direct proof of Theorem 1.1 using any of the known constructions of the String 2-groups. Further, one can think of \(\pi_3(S^0) \) as framed bordism group, generated by the three sphere in its invariant framing and use a \(K3 \)-surface with little holes cut out as a null-bordism of 24\(S^3 \), suggesting a potential connection with the categorical groups turning up in Mathieu Moonshine.

Acknowledgments. This paper is based on the first author’s Honours thesis. It is a pleasure to thank Mikhail Kapranov for generously sharing his ideas on the subject and the American Institute of Mathematics under whose hospitality the idea for the project was formed. The first author would like to thank Tobias Dyckerhoff for helpful input. The second author would like to thank Mamuka Jibladze and Gerd Laures for helpful correspondence and Michael Hopkins for helpful conversations. We would also like to thank John Baez for his feedback on an earlier draft and for suggesting the very romantic name ‘Platonic 2-groups’.

2. Extensions and group cohomolgy

Let \(G \) be a group, and write

\[H_*(G) = H_*^{gp}(G, \mathbb{Z}) \]

for the group homology of \(G \) with coefficients in the trivial \(G \)-module \(\mathbb{Z} \). Then

\[H_1(G) \cong G^{ab} \]
is the abelianization of G, and $H_2(G)$ is the Schur multiplier of G. We will refer to $H_3(G)$ as the categorical Schur multiplier of G. Recall that a group G is called perfect if its abelianization is trivial and that a perfect group is called superperfect if its Schur multiplier also vanishes. The smallest non-trivial example of a superperfect group is the binary icosahedral group, whose categorical Schur multiplier is

$$H_3(2I) \cong \mu_{120},$$

see [Hau78]. A list of the categorical Schur multipliers of some superperfect groups exists as HAP library.

Definition 2.1. A central extension

$$A_{uni} \rightarrow \tilde{G}_{uni} \rightarrow G$$

of finite dimensional Lie groups is called a Schur cover of G, if it is universal in the following sense: for any finite dimensional central extension

$$A \rightarrow \tilde{G} \rightarrow G$$

of G there exists a unique map of central extensions

$$A_{uni} \rightarrow \tilde{G}_{uni} \rightarrow G$$

$$A \rightarrow \tilde{G} \rightarrow G.$$

If it exists, the Schur cover of G is unique up to unique isomorphism. We recall two classical results about Schur covers.

Theorem 2.2 (Schur 1904). Let G be a perfect discrete group. Then G possesses a Schur cover, whose central subgroup is the Schur multiplier

$$A_{uni} = H_2(G).$$

Lemma 2.3 (Second Whitehead Lemma). Let G be a semisimple, compact and connected Lie group. Then the universal covering group of G is a Schur cover. Its central subgroup is the fundamental group

$$A_{uni} = \pi_1(G).$$

To emphasize the analogy between these two statements, let BG be the classifying space of G. Then we have

$$\pi_i(BG) = \pi_{i-1}(G).$$

So, the Lie group G is connected if and only if $\pi_1(BG)$ is trivial. In this case, we have

$$H_1(BG; \mathbb{Z}) = 0$$

and

$$H_2(BG; \mathbb{Z}) = \pi_2(BG) \cong \pi_1(G).$$

The goal of this section is to develop the theory of Schur covers in the context of categorical central extensions. Let G be a finite dimensional Lie group, and write $\text{Ext}(G)$ for the bicategory of finite dimensional central Lie 2-group extensions.
as in [SP11]. Central in this context means that the conjugation action of G on A is trivial, Lie means that \mathcal{G} is a finite dimensional Lie groupoid and that the additional data (tensor multiplication, associator, etc.) are required to be locally continuous and smooth in an appropriate sense.

Definition 2.4. A categorical Schur cover of G is an initial object in $\mathcal{E}xt(G)$.

Explicitly,

\[
\begin{array}{ccc}
1/\!/ A & \longrightarrow & \mathcal{G} \\
\downarrow & & \downarrow \\
1/\!/ A & \longrightarrow & G
\end{array}
\]

is a categorical Schur cover of G if for any other finite dimensional central Lie 2-group extension as above there exists a 1-morphism

\[
\begin{array}{ccc}
1/\!/ A & \longrightarrow & \mathcal{G} \\
\downarrow & & \downarrow \\
1/\!/ A & \longrightarrow & G
\end{array}
\]

in $\mathcal{E}xt(G)$, which is unique up to unique 2-isomorphism. If it exists, the categorical Schur cover of G is unique up to equivalence, which in turn is unique up to unique isomorphism. The goal of this section is to prove the following result.

Theorem 2.5.

(1) Let G be a superperfect discrete group. Then G possesses a categorical Schur cover, whose center is

\[A_{uni} = H_3(G). \]

(2) Let G be a simply connected compact Lie group, and let s be the number of simple factors of G. Then G possesses a categorical Schur cover, whose center is

\[A_{uni} = U(1)^s. \]

Note that simply connected compact Lie groups are automatically semi-simple [MT91, Thm.5.29], so that the statement in (2) makes sense. Let

\[
\begin{array}{cccccc}
C^0 & \overset{d}{\longrightarrow} & C^1 & \overset{d}{\longrightarrow} & \cdots & \overset{d}{\longrightarrow} & C^{n-1} & \overset{d}{\longrightarrow} & Z^n
\end{array}
\]

be a cochain complex of abelian groups. Recall that the Dold-Kan n-groupoid of C^\bullet is the (strictly symmetric monoidal) strict n-groupoid with objects Z^n and arrows

\[
\begin{array}{ll}
1\text{Hom}(\alpha, \beta) & = \{ \gamma \in C^{n-1} \mid d\gamma = \beta - \alpha \} \\
2\text{Hom}(\gamma, \delta) & = \{ \epsilon \in C^{n-2} \mid d\epsilon = \delta - \gamma \} \\
\ldots
\end{array}
\]

Composition of arrows is given by addition, and so is the monoidal structure. The following theorem summarizes results of Schur (1911), Singh (1976), Schommer-Pries [SP11, Thm.99], Wagemann and Wockel [WW15], Schreiber [Sch13].
Theorem 2.6. Let G and A be finite dimensional Lie groups with A abelian. Let $C_\text{gp}^\bullet(G; A)$ be the cochain complex of locally continuous group cocycles on G with values in the trivial G-module A as in [WW15, Def.I.1]. Then the Dold-Kan groupoid of

$$C^1_{\text{gp}}(G; A) \xrightarrow{d} Z^2_{\text{gp}}(G; A)$$

is equivalent to the symmetric monoidal category of central extensions of the form

$$A \longrightarrow \tilde{G} \longrightarrow G.$$

The Dold-Kan 2-groupoid of

$$C^1_{\text{gp}}(G; A) \xrightarrow{d} C^2_{\text{gp}}(G; A) \xrightarrow{d} Z^3_{\text{gp}}(G; A)$$

is equivalent to the symmetric monoidal bicategory of categorical central extensions of the form

$$1//A \longrightarrow \mathcal{G} \longrightarrow G.$$

To be specific, let α be an A-valued 3-cocycle on G. Then we have the (skeletal) groupoid

$$\mathcal{G}_\alpha = \begin{pmatrix} G \times A \\ \downarrow \\ G \end{pmatrix}$$

The group multiplications give a monoidal structure on \mathcal{G}_α with the associator encoded in α, and the unit maps trivial. This is the categorical group associated to α by the equivalence in the theorem.

Corollary 2.7 ([Bro94], [SP11]). Assume we are given finite dimensional Lie groups G and A with A abelian. Then the following hold.

1. Classes in $H^2_{\text{gp}}(G; A)$ are in one to one correspondence with isomorphism classes of central extensions of G by A.
2. If we have

$$H^1_{\text{gp}}(G; A) \cong 0,$$

then a degree 2 class as in (1) determines the corresponding central extension uniquely up to unique isomorphism.
3. Classes in $H^3_{\text{gp}}(G; A)$ are in one to one correspondence with equivalence classes of categorical central extensions of G with center A.
4. If we have

$$H^i_{\text{gp}}(G; A) \cong 0$$

for $i = 1$ and $i = 2$, then a degree 3 class as in (3) determines the corresponding categorical central extension uniquely up to equivalence, which in turn is unique up to unique isomorphism.
Let G be a discrete group. Write BG for the classifying space (geometric realization of the nerve) of G. Then we have isomorphisms
\[H^i_{gp}(G) \cong H_i(BG), \]
\[H^i_{gp}(G; A) \cong H^i(BG; A), \]
where on the right-hand side we have singular (co)homology. The universal coefficient theorem gives the short exact sequence
\[0 \rightarrow Ext(H_{i-1}(G), A) \rightarrow H^i(G; A) \rightarrow Hom(H_i(G), A) \rightarrow 0, \]
natural in A.

Proof of Theorems 2.2 and 2.5 (1). Assume that G is perfect, and let A be an abelian group, viewed as trivial G-module. Then the universal coefficient theorem with $i = 1$ implies
\[0 = H^1(G; A) = Z^1(G, A). \]
By Theorem 2.6 it follows that the groupoid of central extensions of G by A is discrete in the sense that there are no non-identity automorphisms. Using the universal coefficient theorem with $i = 2$, it follows that the isomorphism classes of said groupoid are parametrised by $Hom(H_2(G), A)$. Now allow A to vary. Then we obtain an equivalence from the category of central extensions of G to the under category $H_2(G) \downarrow Ab$, sending a central extension to the homomorphism classifying it. In particular, there is a universal central extension, which is characterised uniquely, up to unique isomorphism, by the fact that it is classified by $id_{H_2(G)}$. The proof for Theorem 2.5 (1) is analogous.

We also have the following corollary of the universal coefficient theorem (using injectivity of the circle group).

Corollary 2.8. If G is finite, we have a non-canonical isomorphism
\[H^i(G; U(1)) \cong H^i(G) \cong H_i(G). \]
In particular, the (categorical) Schur multiplier of a finite group G classifies (categorical) central extensions of G by the circle group.

These categorical central extensions by the circle group are of interest for the theory of projective 2-representations \cite{GU14}, just like central group extensions by the circle group are of interest for the theory of projective representations.

Definition 2.9. Let G be a categorical group with center A. Let $\phi: A \rightarrow B$ be a homomorphism to another abelian group. Then the categorical group with center B associated to G (via ϕ) is the groupoid $G[\phi]$ with objects identical to those of G and arrows the pairs (f, b) with f an arrow of G and $b \in B$, modulo the equivalence relation
\[(f \bullet a, b) \sim (f, \phi(a) + b), \quad a \in A. \]
The multiplication data are inherited from G.

Given an abelian group H, we will write $H \downarrow Ab$ for the category of abelian groups under H.

Theorem 2.10. (1) For a perfect group G with Schur cover \tilde{G}_{uni}, the functor
sending the homomorphism

\[\phi : H_2(G) \to A \]

to the balanced product

\[A \times_{H_2(G)} \tilde{G}_{\text{uni}} \]

is an equivalence of categories.

(2) For a superperfect group \(G \) with categorical Schur cover \(\tilde{G}_{\text{uni}} \), the functor

\[\tilde{G}_{\text{uni}}[-] : H_3(G) \downarrow \text{Ab} \to \text{Ext}(G) \]

is an equivalence of (bi)categories.

Proof. The first part is classical, we prove (2). The universal coefficient theorem implies that the bicategory \(\text{Ext}(G) \) has only identity 2-morphisms and that we have an abstract equivalence

\[H_3(G) \downarrow \text{Ab} \sim \text{Ext}(G). \]

The identity map of \(H_3(G) \) is an initial object of \(H_3(G) \downarrow \text{Ab} \). Under the isomorphism of the universal coefficient theorem, this corresponds to the class of a 3-cocycle \(\alpha_{\text{uni}} \) with values in \(H_3(G) \), and for arbitrary \(A \), the universal coefficient isomorphism is

\[H^3(G; A) \cong \text{Hom}(H_3(G), A) \]

\[[\phi, \alpha_{\text{uni}}] \mapsto \phi, \]

by naturality. If

\[\tilde{G}_{\text{uni}} = \tilde{G}_{\alpha_{\text{uni}}}, \]

then, by construction,

\[\tilde{G}_{\phi, \alpha_{\text{uni}}} \simeq \tilde{G}_{\text{uni}}[\phi]. \]

An inverse of the functor \(\tilde{G}_{\text{uni}}[-] \) restricts the unique 1-morphism \(\tilde{G}_{\text{uni}} \to G \) to centers. \(\square \)

Definition 2.11. Let \(G \) be a discrete group, not necessarily perfect. Assume that the Schur multiplier \(H_2(G) \) vanishes. Then we still have the cohomology class \([\alpha_{\text{uni}}] \) and \(\tilde{G}_{\text{uni}} \) as in the above proof. We will refer to any Lie 2-group extension equivalent to \(\tilde{G}_{\text{uni}} \) as a **weak categorical Schur cover** of \(G \).

In the situation of the definition,

\[\tilde{G}_{\text{uni}}[-] : H_3(G) \downarrow \text{Ab} \to \text{Ext}(G) \]

is still essentially bijective, but may no longer be an equivalence of bicategories. Let now \(G \) be a simply connected compact Lie group, and let \(T \) be a finite dimensional abelian Lie group with cocharacter lattice

\[\tilde{T} := \text{Hom}(U(1), T). \]
Theorem 2.12. Let s be the number of simple factors of G. Then
\[H^1_{gp}(G; T) = H^2_{gp}(G; T) = 0, \]
and we have an isomorphism
\[H^3_{gp}(G; T) \cong \tilde{T}^s, \]
which is natural in G.

Proof. We have
\[\pi_i(BG) = \pi_{i-1}(G) = \begin{cases} 0 & i \leq 3 \\ \mathbb{Z}^s & i = 4, \end{cases} \]
[MT91 Thm. 4.17]. Using Hurewitz and the universal coefficient theorem, this implies
\[H^i_{gp}(G; A) = H^i(BG; A) = \begin{cases} 0 & 1 \leq i \leq 3 \\ A^s & i = 4 \end{cases} \]
for discrete coefficients A. If T_0 is the connected component of 0, then the short exact sequence
\[T_0 \longrightarrow T \longrightarrow T/T_0, \]
gives isomorphisms
\[H^i_{gp}(G; T_0) \cong H^i_{gp}(G; T) \]
for $1 \leq i \leq 3$. Let $S \subseteq T_0$ be a maximal compact subgroup. Then T_0 is the product of S with \mathbb{R}^m for some m. By [Hu52 Thm. 2.8], the cohomology of a compact Lie group with coefficients in \mathbb{R}^m vanishes for $i \geq 1$. Hence the short exact sequence
\[S \longrightarrow T_0 \longrightarrow T_0/S \]
gives isomorphisms
\[H^i_{gp}(G; S) \cong H^i_{gp}(G; T_0). \]
At the same time, we have
\[\tilde{S} = \tilde{T}. \]
We may therefore assume, without loss of generality, that T is a compact torus. Finally, the long exact cohomology sequence for
\[\tilde{T} \hookrightarrow t \longrightarrow T, \]
with t the Lie algebra of T, gives isomorphisms
\[H^i_{gp}(G; T) \cong H^{i+1}(BG; \tilde{T}). \]
\[\square \]

The statements of Lemma 2.3 and Theorem 2.5 (2) can be derived from this result:

Proof of the Second Whitehead Lemma. By Weyl’s theorem, the simply connected group \tilde{G} is again compact, and by Theorem 2.12 it has no non-trivial central extension with finite dimensional center. \[\square \]
Proof of Theorem 2.5 (2). We have functorial isomorphisms
\[
\tilde{T}^s = \text{Hom}(\mathbb{Z}^s, \text{Hom}(U(1), T)) \\
\cong \text{Hom}(U(1) \otimes \mathbb{Z}^s, T) \\
= \text{Hom}(U(1)^s, T).
\]
So, Theorem 2.12 implies that the bicategory \(\mathcal{E}xt(G) \) is equivalent to the category of finite dimensional abelian Lie groups under \(U(1)^s \).

Example 2.13 ([SP11, Thm.100]). For \(n = 3 \) and \(n \geq 5 \), the string extension
\[
\frac{1}{U(1)} \longrightarrow \text{String}(n) \longrightarrow \text{Spin}(n)
\]
is the universal central Lie 2-group extension of the simple and simply connected Lie group \(\text{Spin}(n) \).

3. The Cyclic Groups

As a warm-up to the platonic and alternating case, we study the categorical extensions of the finite subgroups of the circle group. The finite cyclic groups have integral homology
\[
H_i(\mu_n) = \begin{cases}
\mathbb{Z} & i = 0, \\
\mu_n & i \text{ odd, and} \\
0 & \text{else.}
\end{cases}
\]
This implies that \(\mu_n \) possesses a weak categorical Schur cover \(C_n \), whose centre is \(\mu_n \). Let \(\mathcal{U}(1)^- \) be the categorical extension of the circle group classified by the standard generator of \(H^3_{\text{gp}}(U(1); U(1)) \cong H^4(BU(1); \mathbb{Z}) \cong \mathbb{Z} \).

We will see that there is a 1-morphism of categorical central extensions
\[
\begin{array}{c}
\frac{1}{\mu_n} \longrightarrow C_n \longrightarrow \mu_n \\
\downarrow \downarrow \\
\frac{1}{U(1)} \longrightarrow \mathcal{U}(1)^- \longrightarrow U(1),
\end{array}
\]
identifying \(C_n \) with a sub-categorical group of \(\mathcal{U}(1)^- \). Let \(\mathbb{R} \) act on \(\mathbb{Z} \times U(1) \) by
\[
x \cdot (m, z) := (m, z \cdot e^{-2\pi imx}),
\]
and recall that
\[
\mathcal{U}(1)^- = \left(\mathbb{R} \ltimes (\mathbb{Z} \times U(1)) \right)
\]
is constructed as the strict categorical group corresponding to the crossed module

\footnote{In [Gan14], we make the convention that the basic categorical extension of the circle group is the 2-group \(\mathcal{U}(1) \) classified by the other generator. These two 2-groups differ by a sign in the action.}
\(\mathbf{v} : \mathbb{Z} \times U(1) \to \mathbb{R} \)
\[
(m, z) \mapsto m,
\]

see [Gan14]. In other words, \(U(1)^- \) has as objects \(\mathbb{R} \) and as arrows
\[
\left\{ x \xrightarrow{z} x + m \mid x \in \mathbb{R}, m \in \mathbb{Z}, \text{ and } z \in U(1) \right\},
\]
composing two arrows means multiplying their labels, and the strict monoidal structure is
given by the respective group structures of objects and arrows.

Lemma 3.1. The weak Schur cover \(C_n \) of \(\mu_n \) can be constructed as the strict categorical group corresponding to the sub-crossed module
\[
\begin{array}{ccc}
\mathbb{Z} \times \mu_n & \to & \mathbb{Z} \times U(1) \\
\kappa \downarrow & & \downarrow \mathbf{v} \\
\frac{1}{n} \mathbb{Z} & \to & \mathbb{R}.
\end{array}
\]

Proof. The circle group \(U(1) \) acts by multiplication on the spheres \(S^{2k-1} \subset \mathbb{C}^k \), and on
\[
S^\infty = \text{colim}_k S^{2k-1}.
\]
We have
\[
BU(1) \simeq S^\infty / U(1) = \mathbb{C}P^\infty
\]
\[
B\mu_n \simeq S^\infty / \mu_n = L^\infty_n
\]
(infinite dimensional lens space). Let \(i: \mu_n \hookrightarrow U(1) \) be the inclusion map. Then
\[
Bi: B\mu_n \to BU(1)
\]
is identified with the quotient map
\[
L^\infty_n \to \mathbb{C}P^\infty.
\]
This is a fibration with fiber \(S^1 \cong U(1) / \mu_n \). Its homology Leray-Serre spectral sequence has \(E^2 \)-term

For cohomology with coefficients in \(A \), we obtain an \(E_2 \)-term of the form
with
\[d_2(a) = a + \cdots + a. \]

These spectral sequences collapse to give the familiar minimal resolutions
\[\mathbb{Z} \overset{0}{\rightarrow} \mathbb{Z} \overset{n \cdot}{\rightarrow} \mathbb{Z} \overset{0}{\rightarrow} \mathbb{Z} \overset{n \cdot}{\rightarrow} \mathbb{Z} \overset{\cdots}{\rightarrow} \]
and
\[A \overset{0}{\rightarrow} A \overset{n \cdot}{\rightarrow} A \overset{0}{\rightarrow} A \overset{n \cdot}{\rightarrow} A \overset{\cdots}{\rightarrow} \]

We claim that we have a commuting diagram
\[
\begin{array}{c}
\mathbb{Z} \overset{q}{\rightarrow} H^4(CP^n; \mathbb{Z}) \overset{\sim}{\rightarrow} H^3_{gp}(U(1); U(1)) \\
\mathbb{Z}/n\mathbb{Z} \overset{\approx}{\rightarrow} H^4(L_n^\infty; \mathbb{Z}) \overset{\sim}{\rightarrow} H^3(\mu_n; U(1)) \overset{\approx}{\rightarrow} H^3(\mu_n; \mu_n) \\
\mu_n \overset{\sim}{\rightarrow} \text{Hom}(\mu_n, U(1)) \overset{\approx}{\rightarrow} \text{Hom}(\mu_n, \mu_n),
\end{array}
\]
where \(q \) is the quotient map, and the equal signs refer to the standard identifications. The commutativity of the top left square follows from the fact that \(Bi^* \) is the edge homomorphism in our cohomology spectral sequence. The commutativity of the bottom left square is a diagram chase, involving the minimal resolutions for cohomology with coefficients in \(\mathbb{Z}, \mathbb{R} \) and \(U(1) \). It follows that the restriction of \(U(1)^- \) to \(\mu_n \) is a choice of \(C_n[i] \). This categorical group \(C_n[i] \) with center \(U(1) \) associated to \(C_n \) determines \(C_n \) up to equivalence. It follows that the categorical group associated to \(\kappa \) is a choice of \(C_n \). \(\square \)

There is an alternative description of the categorical group \(C_n \). For \(a \in \frac{1}{n}\mathbb{Z} \), we write
\[a = [a] + a', \]
where the Gauß bracket \([a]\) denotes the largest integer less than or equal to \(a \).

Definition 3.2 ([HLY14], [JS93, Sec.3, p.49]). Let \(C_n' \) be the skelettal 2-group constructed from the \(\mu_n \)-valued 3-cocycle
\[\alpha(a|b|c) := \exp([a' + b']c') = \exp([a' + b']c) \]
Lemma 3.3. We have an equivalence of 2-groups between C'_n and C_n.

Proof. We define a monoidal equivalence from C'_n to C_n. On objects, we let F be the map

$$F: \frac{1}{n}\mathbb{Z}/\mathbb{Z} \longrightarrow \frac{1}{n}\mathbb{Z}$$

$$[a] \longmapsto a',$$

and on arrows, we let F be the map

$$F: \left(\frac{1}{n}\mathbb{Z}/\mathbb{Z}\right) \times \mu_n \longrightarrow \frac{1}{n}\mathbb{Z} \times (\mathbb{Z} \times \mu_n)$$

$$([a], z) \longmapsto (a', 0, z).$$

We then define the natural transformation

$$\phi: F([a]) + F([b]) \longrightarrow F([a] + [b])$$

given by the arrows

$$(a' + b', -[a' + b'], 1)$$
in C_n. It is elementary to check that (F, ϕ) is indeed a monoidal equivalence. □

4. Platonic 2-groups

The previous section will serve as blueprint for our discussion of the Platonic 2-groups. Let G be a finite subgroup of the three sphere. It is well known\footnote{Periodicity is a theorem by Artin and Tate \cite{AT68}, the full statement is a combination of \cite[XII.2(4),XII.11.1, XVI.9 Application 4]{CE99}. See also \cite[Cor. 3.1]{FHHP04} for a direct proof (following Schur) that the Schur multiplier vanishes and \cite{TZ08} for an explicit resolution and a description of the product structure in cohomology.} that the (co)homology of G is periodic with period 4, with the reduced integral homology concentrated in odd degrees,

$$H_i(G) = \begin{cases}
\mathbb{Z} & \text{if } i = 0, \\
G^{ab} & \text{if } i \equiv 1 \mod 4, \\
\mu_{|G|} & \text{if } i \equiv 3 \mod 4, \text{ and} \\
0 & \text{if } i > 0 \text{ is even},
\end{cases}$$

and the integral cohomology concentrated in even degrees,

$$H^i(G) = \begin{cases}
\mathbb{Z} & \text{if } i = 0, \\
G^{ab} & \text{if } i \equiv 2 \mod 4, \\
\mu_{|G|} & \text{if } i \text{ is a positive multiple of 4, and} \\
0 & \text{else.}
\end{cases}$$

In particular, G possesses a weak categorical Schur cover with center $\mu_{|G|}$. The following proposition shows that G_{uni} can be realized as a sub-categorical group of the third String 2-group.
Proposition 4.1. The restriction of $\text{String}(3)$ to G is equivalent to the categorical group with center $U(1)$ associated to \mathcal{G}_{uni} via the canonical inclusion $i: \mu_{|G|} \hookrightarrow U(1)$,

$$\text{String}(3)|_G \simeq \mathcal{G}_{\text{uni}}[i].$$

Proof. We follow the argument in the proof of Lemma 3.1, with the difference that the circle group of complex units, $U(1) \subset \mathbb{C}$, is replaced by the three sphere of unit quaternions, $S^3 \subset \mathbb{H}$. Viewing $S^\infty = \text{colim} S^{4n-1}$ as the colimit of the spheres in \mathbb{H}^n, we have

$$BS^3 \simeq S^\infty / S^3 = \mathbb{HP}^\infty,$$

and

$$BG \simeq S^\infty / G.$$

If j is the inclusion of G in S^3, then Bj becomes the fibration

$$S^3/G \xleftarrow{j} BG \xrightarrow{Bj} \mathbb{HP}^\infty.$$

The fibre is the spherical three manifold S^3/G and, in particular, connected and oriented. We get the following picture of the Leray-Serre spectral sequence for integral homology.

The only non-trivial differential d_4 is multiplication by $n = |G|$. The remainder of the proof is identical to that of Lemma 3.1. □

Remark 4.2. The spherical three manifolds turning up as fibres in the above proof have been the object of intense study. For instance, if G is the binary icosahedral group, then the space S^3/G is the exotic homology 3-sphere of Poincaré.

Remark 4.3. In the abelian case, where G is a finite cyclic subgroup of S^3, the inclusion j factors through a maximal torus,

$$G \xleftarrow{j} S^3 \xrightarrow{i} S^1 \xleftarrow{k} S^3,$$
and the commuting diagram

\[
\begin{array}{c}
H^3_{gp}(\mathbb{S}^3; U(1)) \xrightarrow{k^*} H^3_{gp}(\mathbb{S}^1; U(1)) \\
\downarrow \quad \downarrow \\
H^*(\mathbb{H}P^\infty; \mathbb{Z}) \xrightarrow{(Bk)^*} H^*(\mathbb{C}P^\infty; \mathbb{Z}) \\
\end{array}
\]

|v| = 4 \quad \mathbb{Z}[v] \quad \mathbb{Z}[x] \quad |x| = 2

\[
v \quad \longrightarrow \quad x^2
\]

identifies the restriction of String(3) to \(\mathbb{S}^1\) with the categorical group \(U(1)^-\) of the previous section.

5. The string covers of the alternating groups

Let \(S_n\) be the symmetric group on \(n\) elements, and let \(\varrho_n\) be its permutation representation. The alternating group \(A_n \subset S_n\) is the subgroup of even permutations. We will write \(\tilde{A}_n\) for its spin double cover. In this section, we will introduce a family of categorical groups \(\mathscr{A}_n\), fitting into commuting diagrams

\[
\begin{array}{c}
1/\pi_3(\mathbb{S}^3) \xrightarrow{e} 1/U(1) \\
\downarrow \quad \downarrow \\
\mathscr{A}_n \xrightarrow{\varrho_n} String(n) \\
\downarrow \quad \downarrow \kappa_n \\
\tilde{A}_n \xrightarrow{\bar{\varrho}_n} Spin(n) \\
\downarrow \quad \downarrow \ \\
A_n \xrightarrow{\varrho_n} SO(n) \\
\downarrow \quad \downarrow \epsilon_n \\
S_n \xrightarrow{\varrho_n} O(n).
\end{array}
\]

Here \(e\) is the Adams \(e\)-invariant, the arrows with Greek names are the canonical maps, and in each tower, the top two vertical arrows describe a categorical central extension. These \(\mathscr{A}_n\) are characterized, up to equivalence, by

\[
\mathscr{A}_n[e] \cong String(n)|\tilde{A}_n.
\]

Definition 5.1. We will refer to categorical groups \(\mathscr{A}_n\) as above as the string covers of the alternating groups or simply as the alternating 2-groups.

5.1. The Whitehead tower of the plus construction. The content of this section is folklore, see for instance the Mathoverflow discussion Plus construction considerations. Let
Let \(X \) be a connected CW-complex with basepoint, whose fundamental group has perfect commutator subgroup
\[
P = [\pi_1(X), \pi_1(X)].
\]
Let
\[
p: X \longrightarrow X^+
\]
be a homology isomorphism such that
\[
p_*(P) = 0 \subseteq \pi_1(X^+).
\]
These conditions are satisfied if and only if the map \(p \) is universal, in the homotopy category, with respect to the property (1). This universal property of the plus construction determines \(X^+ \) up to unique isomorphism in the homotopy category. We use the notation \(X^+ \) whenever the above conditions are satisfied, even when we are working in the strict category. Given \(p \) as above, we may pull back the Whitehead tower of \(X^+ \) to a tower of fibrations over \(X \),
\[
X = W_1 \leftarrow \xi_1 \leftarrow X_2 \leftarrow \xi_2 \leftarrow X_3 \leftarrow \cdots
\]
\[
p \downarrow \quad p_1 \downarrow \quad p_2 \downarrow \quad p_3
\]
\[
X^+ = W_1 \leftarrow W_2 \leftarrow W_3 \leftarrow \cdots
\]
Using the Lerray-Serre spectral sequence, one shows inductively that the \(p_i \) are homology isomorphisms. So, the fundamental group of \(X_i \) is perfect for \(i > 1 \), and
\[
p_i: X_i \longrightarrow W_i
\]
satisfies the universal property for its plus construction. In particular, \(W_i \) is a choice for \(X^+_i \), and the homology of the tower \(X_* \) encodes the homotopy groups of the plus construction of \(X \). More precisely,
\[
\tilde{H}_i(X_j) = \begin{cases} 0 & \text{if } i < j, \\ \pi_i(X^+) & \text{if } i = j. \end{cases}
\]
It is possible to construct the tower \(X_* \) directly from \(X \). For this, we let \(X_1 = X \) and then proceed inductively, as follows: once \(X_i \) has been constructed, let \(K(H_i(X_i), i) \) be the \(i \)th Eilenberg-MacLane space for the group \(H_i(X_i) \), and define \(\xi_i \) as the fibration classified by the map
\[
f_i: X_i \longrightarrow K(H_i(X_i), i)
\]
corresponding to \(id_{H_i(X_i)} \) under the universal coefficient theorem. We will refer to the resulting tower as the homology tower of \(X \). For instance, \(X_2 = \tilde{X}/P \) is the quotient of the universal cover of \(X \) by the perfect group \(P \).

Theorem 5.2. We have a diagram of pull-back squares,
Here $Q\Sigma^0 = \text{colim } \Omega^n S^n$ is the infinite loop space of the sphere spectrum, and $(Q\Sigma^0)_0$ the connected component of its basepoint, while $\eta: S^0 \to KO$ is the unit map. The composition of the solid horizontal arrows gives the maps induced, respectively, by the representation ϱ_n and its lifts $\bar{\varrho}_n$ and $\tilde{\varrho}_n$.

Proof of Theorem 5.2 It is well known that η induces isomorphisms on

$$
\pi_0 = \mathbb{Z} \quad \text{and} \quad \pi_1 = \mathbb{Z}/2\mathbb{Z} \quad \text{and} \quad \pi_2 = \mathbb{Z}/2\mathbb{Z}.
$$

So, the map $Q\eta$ pulls back the first three steps of the Whitehead tower of $Z \times BO$ to the first three steps of the Whitehead tower of $Q\Sigma^0$. The Barratt-Quillen-Priddy theorem yields a homology isomorphism

$$
p: BS_\infty \to (Q\Sigma^0)_0,
$$

satisfying

$$
p_*(A_\infty) = 0 \quad \text{and} \quad (Q\eta) \circ p = B\varrho_\infty.
$$

So, the Whitehead tower of $Q\Sigma^0$ is identified with the plus construction of the homology tower of BS_∞. It remains to identify this homology tower in the relevant degrees. The first step is the pull-back of $B\varepsilon_\infty$ along $B\varrho_\infty$. This is the non-trivial double cover $B\bar{\varrho}_\infty$, classified by the map

$$
B(sgn): BS_\infty \to B\bar{\varrho}_\infty \to BO \to B\text{det} \to B\{\pm 1\}.
$$

Indeed,

$$
X_2 = \tilde{X}/P = ES_\infty/A_\infty.
$$

Next, the double cover of $B\bar{\varrho}_\infty$ is $B\bar{\bar{\varrho}}_\infty$ and pulls back $B\kappa_\infty$ to the fibration $\xi_2 = B\sigma_\infty$. The classifying map f_2 represents the class

$$
[f_2] \in H^2(BA_\infty; H_2(BA_\infty))
$$

classifying the Schur cover of A_∞. Finally, the lift of $B\bar{\bar{\varrho}}_\infty$ to $B\tilde{A}_\infty$ is $B\bar{\bar{\varrho}}_\infty$. \qed
As an immediate consequence of the theorem, we obtain half of the tower promised in the introduction as restrictions of the short exact sequence

\[A_\infty \longrightarrow S_\infty \longrightarrow \pi_1(S^0), \]

the Schur cover of \(\tilde{A}_\infty \)

\[\pi_2(S^0) \longrightarrow \tilde{A}_\infty \longrightarrow A_\infty, \]

and the categorical Schur cover of the superperfect group \(\tilde{A}_\infty \)

\[1/\pi_3(S^0) \longrightarrow \mathcal{A}_\infty \longrightarrow \tilde{A}_\infty. \]

In other words, we can now construct the \(n \)th alternating 2-group as

\[\mathcal{A}_n := \mathcal{A}_\infty|\tilde{A}_n. \]

Consider the homomorphisms

\[
\begin{align*}
 b_1: H_1(S_n) &\longrightarrow H_1(S_\infty) \cong \pi_1(S^0) \cong \mu_2 \\
 b_2: H_2(A_n) &\longrightarrow H_2(A_\infty) \cong \pi_2(S^0) \cong \mu_2 \\
 b_3: H_3(\tilde{A}_n) &\longrightarrow H_3(\tilde{A}_\infty) \cong \pi_3(S^0) \cong \mu_{24}.
\end{align*}
\]

where the middle isomorphisms are induced by the Barratt-Priddy-Quillen map.

Lemma 5.3 ([Hau78 7.2.3]). The map \(b_1 \) is an isomorphism for \(n \geq 2 \), the map \(b_2 \) is an isomorphism for \(n = 4, 5 \) or \(n \geq 8 \), and the map \(b_3 \) is an isomorphism for \(n = 4, n = 8 \) or \(n \geq 11 \).

Proof. It is well known that the abelianization of \(S_n \) is \(\mathbb{Z}/2\mathbb{Z} \) for \(n \geq 2 \). The values where \(b_2 \) is an isomorphism are also well known. This goes back to work of Schur. For \(5 \leq n \leq \infty \), the group \(A_n \) is perfect. In this range, we have a compatible system of isomorphisms

\[H_2(A_n) \cong \pi_2(BA_n^+). \]

Similarly, we have compatible isomorphisms

\[H_3(\tilde{A}_n) \cong \pi_3(B\tilde{A}_n^+), \]

for \(n = 5 \) and \(8 \leq n \leq \infty \). Further, when \(A_n \) is perfect, the fibration

\[B\{\pm 1\} \longrightarrow B\tilde{A}_n^+ \longrightarrow BA_n^+. \]

[Hau78] Prop.7.1.3] yields an isomorphism

\[\pi_3(B\tilde{A}_n^+) \cong \pi_3(BA_n^+). \]

Apart from the case \(n = 4 \), which we will treat in Lemma [5.9], the statement of the Lemma can now be read off from the proof of Proposition A in [Hau78]. \(\square \)

In low degrees, we still have:

Corollary 5.4. When \(A_n \) is perfect, then its spin extension \(\tilde{A}_n \) is classified by the homomorphism \(b_2 \). When \(\tilde{A}_n \) is superperfect, then its string extension \(\mathcal{A}_n \) is classified by the homomorphism \(b_3 \).
5.2. The Adams e-invariant. Given a ring spectrum E with unit map $\eta = \eta_E$, we may form the exact triangle

$$E[-1] \longrightarrow \overline{E} \longrightarrow \mathbb{S}^0 \overset{\eta}{\longrightarrow} E$$

in the stable homotopy category. In the case $E = KO$, we have

$$\pi_{4k-1}(KO) = 0 \quad \text{and} \quad \pi_{4k}(KO) = \mathbb{Z}.$$

In positive degrees, the stable homotopy groups of spheres are finite. It follows that for $k \geq 1$, the map $\pi_{4k}(\eta)$ is zero, so that we obtain a short exact sequence

$$0 \longrightarrow \mathbb{Z} \longrightarrow \pi_{4k-1}(KO) \longrightarrow \pi_{4k-1}(\mathbb{S}^0) \longrightarrow 0.$$

For a finite abelian group π, we further have the isomorphism

$$(2) \quad Ext(\pi, \mathbb{Z}) \cong Hom(\pi, \mathbb{Q}/\mathbb{Z})$$

resulting from the injective resolution

$$Z \longrightarrow Q \longrightarrow \mathbb{Q}/\mathbb{Z}.$$

Definition 5.5. For $k \geq 1$, we let

$$e: \pi_{4k-1}(\mathbb{S}^0) \longrightarrow \mathbb{Q}/\mathbb{Z}$$

be the homomorphism classifying the extension $[\pi_{4k-1}(KO)]$ above.

Lemma 5.6. Our definition of e agrees with the definition of the Adams e-invariant in \[AS74\] (1.1) and \[APS75\] (4.11).

Proof. Following the discussion of the complex e-invariant in \[CF66\] III,16], Atiyah and Smith identify the real e-invariant of a framed manifold M of dimension $4k - 1$ as

$$e(M) = \begin{cases} \hat{A}(B) & k \text{ even,} \\ \frac{1}{2}\hat{A}(B) & k \text{ odd,} \end{cases}$$

where B is any spin manifold with boundary $\partial B = M$. They argue that this is a well-defined element of \mathbb{Q}/\mathbb{Z} by the integrality result \[AH59\] Cor.2(ii). To understand this formulation, consider the maps of exact triangles

$$\begin{array}{cccccc}
\mathbb{S}^0 & \longrightarrow & \mathbb{S}^0 & \longrightarrow & \mathbb{S}^0 & \longrightarrow \\
\downarrow \eta & \quad & \downarrow \eta & \quad & \downarrow & \\
MSpin & \longrightarrow & \hat{A} & \longrightarrow & KO & \longrightarrow \\
\downarrow & \quad & \downarrow & \quad & \downarrow & \\
MSpin[1] & \longrightarrow & KO[1] & \longrightarrow & KO_Q[1] & \\
\downarrow & \quad & \downarrow & \quad & \downarrow & \\
\mathbb{S}^1 & \longrightarrow & \mathbb{S}^1 & \longrightarrow & \mathbb{S}_Q^1,
\end{array}$$

3 This is the first step in the construction of the E-based Adams-Novikov spectral sequence.
where \(\hat{A} \) is the Atiyah-Bott-Shapiro orientation \(^{[ABS64]} \). Following \(^{[LM89]} (7.9), (7.13), (7.17) \), this yields a diagram with exact columns

\[
\begin{array}{cccccc}
\Omega_{4k}^{Spin} & \xrightarrow{\text{ind}} & \mathbb{Z} & \xrightarrow{1} & \mathbb{Q} \\
\downarrow & & \downarrow & & \downarrow \\
\Omega_{4k}^{Spin, fr} & \xrightarrow{\pi_{4k-1}(KO)} & \pi_{4k-1}(KO)_\mathbb{Q} & \xrightarrow{1} & 0, \\
\downarrow & & \downarrow & & \\
\Omega_{4k-1}^{fr} & & \pi_{4k-1}(S^0) & & \\
\end{array}
\]

where \(\text{ind} \) is the Atiyah-Milnor-Singer invariant,

\[
\text{ind}(X) = \begin{cases}
\hat{A}(X) & \text{k even}, \\
\frac{1}{2} \hat{A}(X) & \text{k odd}.
\end{cases}
\]

We claim that, for even \(k \), the composite of the red arrows sends a spin manifold with framed boundary to the integral over its \(\hat{A} \)-class. Indeed, this relative \(\hat{A} \)-genus is a homomorphism from \(\Omega_{4k}^{Spin, fr} \) to \(\mathbb{Q} \), which for closed manifolds agrees with the \(\hat{A} \)-genus. Since the inclusion

\[
\Omega_{4k}^{Spin} \xrightarrow{\sim} \Omega_{4k}^{Spin, fr}
\]

becomes an isomorphism after tensoring with \(\mathbb{Q} \), this property determines the relative \(\hat{A} \)-genus uniquely. By the identical argument, the red arrows compose to half the relative \(\hat{A} \)-genus for \(k \) odd. We may now reformulate the definition \(^{[AS74] (1.1)} \) as follows: Given an element \(x \) of \(\pi_{4k-1}(S^0) \), choose a pre-image \(\overline{x} \) of \(x \) in \(\pi_{4k-1}(KO) \) and take \(e(x) \) to be the image of \(\overline{x} \) in

\[
\pi_{4k-1}(KO)_\mathbb{Q} \xrightarrow{\sim} \pi_{4k}(KO)_\mathbb{Q} \xrightarrow{\sim} \mathbb{Q}
\]

modulo

\[
\pi_{4k}(KO) = \mathbb{Z}.
\]

This description of \(e \) coincides with the classifying map of the extension \([\pi_{4k-1}(KO)]\). \(\square \)

Lemma 5.7. The composite

\[
H^4(BSpin; \mathbb{Z}) \xrightarrow{(B\tilde{g}_\infty)^*} H^4(B\tilde{A}_\infty; \mathbb{Z}) \sim \ Ext(H_3(B\tilde{A}_\infty), \mathbb{Z})
\]

sends the preferred generator of \(H^4(BSpin; \mathbb{Z}) \) to the extension \([\pi_3KO]\) of

\[
H_3(B\tilde{A}_\infty) \cong \pi_3(S^0),
\]

used in Definition \(5.3 \).

Proof. The naturality of the universal coefficient theorem (the isomorphism in the lemma) allows us to replace \(B\tilde{A}_\infty \) with \(B\tilde{A}^+_\infty \) and \(B\tilde{g}_\infty \) with \(B\tilde{g}^+_\infty \). Let

\[
\xi: BSpin \longrightarrow K(\mathbb{Z}, 4)
\]
represent the preferred generator. Then $(B\tilde{\varrho}_\infty)^+([\xi])$ is represented by the composite

\[\xi' = \xi \circ B\tilde{\varrho}_\infty^+. \]

We have a homotopy commutative diagram

\[
\begin{array}{cccccc}
0 & \rightarrow & \mathbb{Z} & \rightarrow & H_3(hofib(\xi')) & \rightarrow & H_3(B\tilde{A}_\infty^+) & \rightarrow & 0 \\
\| & & \| & & \| & & \| & & \\
0 & \rightarrow & \pi_3(K(\mathbb{Z}, 3)) & \rightarrow & \pi_3(hofib(\xi')) & \rightarrow & \pi_3(B\tilde{A}_\infty^+) & \rightarrow & 0 \\
\| & & \| & & \| & & \| & & \\
0 & \rightarrow & \pi_3(Spin) & \rightarrow & \pi_3(hofib(B\tilde{\varrho}_\infty^+)) & \rightarrow & \pi_3(B\tilde{A}_\infty^+) & \rightarrow & 0 \\
\| & & \| & & \| & & \| & & \\
0 & \rightarrow & \pi_3(O) & \rightarrow & \pi_3(QKO) & \rightarrow & \pi_3(QS^0) & \rightarrow & 0.
\end{array}
\]

whose rows are homotopy fiber sequences. Using the long exact sequence of (unstable) homotopy groups, we find that all the spaces in the top two rows are 2-connected. In fact, the second row forms the 2-connected cover of the third row. Using Hurwicz and the fact that there are no non-trivial homomorphisms from a finite group to \mathbb{Z}, we arrive at the following commutative diagram with exact rows

\[
\begin{array}{cccccc}
0 & \rightarrow & \mathbb{Z} & \rightarrow & H_3(hofib(\xi')) & \rightarrow & H_3(B\tilde{A}_\infty^+) & \rightarrow & 0 \\
\| & & \| & & \| & & \| & & \\
0 & \rightarrow & \pi_3(K(\mathbb{Z}, 3)) & \rightarrow & \pi_3(hofib(\xi')) & \rightarrow & \pi_3(B\tilde{A}_\infty^+) & \rightarrow & 0 \\
\| & & \| & & \| & & \| & & \\
0 & \rightarrow & \pi_3(Spin) & \rightarrow & \pi_3(hofib(B\tilde{\varrho}_\infty^+)) & \rightarrow & \pi_3(B\tilde{A}_\infty^+) & \rightarrow & 0 \\
\| & & \| & & \| & & \| & & \\
0 & \rightarrow & \pi_3(O) & \rightarrow & \pi_3(QKO) & \rightarrow & \pi_3(QS^0) & \rightarrow & 0.
\end{array}
\]

The universal coefficient theorem identifies the class $[\xi']$ with the extension on the top row, while the bottom row is the extension in Definition 5.5. \qed

Corollary 5.8. The restriction of $\text{String}(n)$ to \tilde{A}_n is equivalent, in a manner unique up to unique isomorphism, to the categorical group with center $U(1)$ associated to \mathcal{A}_n via the Adams e-invariant,

\[\mathcal{A}_n[e] \simeq \text{String}(n)|_{\tilde{A}_n}. \]

Proof. This follows from the commutativity of the diagram.
where the horizontal isomorphisms on the right are given by the universal coefficient theorem, and the right-most vertical isomorphism is $[2]$. The left two vertical isomorphisms come from the long exact sequence associated to the short exact sequence of coefficients $\mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}/\mathbb{Z}$.

One interpretation of the isomorphism $[2]$ uses the fact that the circle group $U(1)$ is a classifying space for \mathbb{Z}. So, the central extensions of π by \mathbb{Z} are classified by homotopy classes of group homomorphisms from π to $U(1)$, and we have

$$K(\mathbb{Z}, 4) = B^3U(1).$$

Applying the construction $B(-)^+$ to the categorical central extensions of this section, we obtain the map of exact triangles

\[
\begin{array}{cccc}
B^2\pi_3(S^0) & \xrightarrow{B^2e} & B^2U(1) \\
\downarrow & & \downarrow \\
B\mathcal{A}^+ & \xrightarrow{B\tilde{\varrho}^+} & B\text{Spin} \\
\downarrow & & \downarrow \\
B\tilde{A}^+ & \xrightarrow{B\tilde{\varrho}^+} & B\text{String} \\
\end{array}
\]

whose middle square adds another floor to the map of Whitehead towers in Theorem 5.2. In particular,

$$H_4(B\mathcal{A}; \mathbb{Z}) \cong \pi_4(S^0) = 0.$$

Lemma 5.9. The canonical inclusion of $\tilde{\mathcal{A}}_4$ in $\tilde{\mathcal{A}}_\infty$ induces an isomorphism in degree three homology, sending the fundamental class of the tetrahedral spherical 3-form to the second Hopf map $\nu: S^7 \rightarrow S^4$,

\[
H_3(S^\infty/\tilde{\mathcal{A}}_4) = H_3(B\tilde{\mathcal{A}}_4) \xrightarrow{\cong} H_3(B\tilde{\mathcal{A}}_\infty) \cong \pi_3(S^0)
\]

$$[S^3/\tilde{\mathcal{A}}_4] \xrightarrow{\nu} [\nu].$$
Proof. Applying the plus construction (with respect to $\tilde{\mathcal{A}}_\infty$) to the fibration

\[
\begin{array}{c}
\text{Spin}/\tilde{\mathcal{A}}_\infty \\
\downarrow \\
B\tilde{\mathcal{A}}_\infty
\end{array}
\longrightarrow
\begin{array}{c}
B\tilde{\mathcal{A}}_\infty \\
\downarrow \\
B\tilde{\varrho}_\infty \\
\downarrow \\
B\text{Spin},
\end{array}
\]

we obtain the identification

\[
\left(\text{Spin}/\tilde{\mathcal{A}}_\infty\right)^+ = hofib\left(B\tilde{\varrho}_\infty^+\right),
\]

see [Far96, 3.D.3(2)]. From the proof of Lemma 5.7, we therefore have the short exact sequence

\[
\begin{array}{c}
0 \\
\parallel \\
0
\end{array}
\longrightarrow
\begin{array}{c}
H_3(\text{Spin}) \\
\parallel \\
Z
\end{array}
\longrightarrow
\begin{array}{c}
H_3(\text{Spin}/\tilde{\mathcal{A}}_\infty) \\
\parallel \\
24\cdot
\end{array}
\longrightarrow
\begin{array}{c}
H_3(B\tilde{\mathcal{A}}_\infty) \\
\parallel \\
Z
\end{array}
\longrightarrow
\begin{array}{c}
Z/24Z
\end{array}
\longrightarrow
0,
\]

whose first map can be identified with the differential

\[
d_4 : H_4(B\text{Spin}) \longrightarrow H_3(\text{Spin}/\tilde{\mathcal{A}}_\infty)
\]

in the Leray-Serre spectral sequence for $B\tilde{\varrho}_\infty$. This can be compared to the scenario for the platonic 2-groups. In particular, we have the commuting diagram

\[
\begin{array}{c}
0 \\
\parallel \\
0
\end{array}
\longrightarrow
\begin{array}{c}
Z
\end{array}
\longrightarrow
\begin{array}{c}
24\cdot
\end{array}
\longrightarrow
\begin{array}{c}
Z
\end{array}
\longrightarrow
\begin{array}{c}
Z/24Z
\end{array}
\longrightarrow
0
\]

\[
\begin{array}{c}
0 \\
\parallel \\
0
\end{array}
\longrightarrow
\begin{array}{c}
H_4(B\text{Spin}(3))
\end{array}
\longrightarrow
\begin{array}{c}
d_4 \\
\parallel \\
\cong \\
\downarrow \\
\parallel \\
\downarrow \\
\parallel \\
\downarrow \\
\parallel \\
\downarrow \\
\parallel \\
\downarrow
\end{array}
\begin{array}{c}
H_3(\text{Spin}(3)/\tilde{\mathcal{A}}_4)
\end{array}
\longrightarrow
\begin{array}{c}
H_5(B\tilde{\mathcal{A}}_4)
\end{array}
\longrightarrow
0
\]

\[
\begin{array}{c}
0 \\
\parallel \\
0
\end{array}
\longrightarrow
\begin{array}{c}
H_4(B\text{Spin})
\end{array}
\longrightarrow
\begin{array}{c}
d_4 \\
\parallel \\
\cong \\
\downarrow \\
\parallel \\
\downarrow \\
\parallel \\
\downarrow \\
\parallel \\
\downarrow \\
\parallel \\
\downarrow
\end{array}
\begin{array}{c}
H_3(\text{Spin}/\tilde{\mathcal{A}}_\infty)
\end{array}
\longrightarrow
\begin{array}{c}
H_3(B\tilde{\mathcal{A}}_\infty)
\end{array}
\longrightarrow
0.
\]

Here we are using a non-standard inclusion of $\text{Spin}(3)$ inside $\text{Spin}(4) \subset \text{Spin}$, covering the orthogonal complement of the trivial summand of the permutation representation. This map still gives an isomorphism in H_3, implying that all the vertical arrows are isomorphisms. It follows that the generator of

\[
H_3(B\tilde{\mathcal{A}}_\infty) \cong \pi_3(S^0)
\]

with c-invariant $\frac{1}{24}$ is the image of the fundamental class of $\text{Spin}(3)/\tilde{\mathcal{A}}_4$ under its inclusion in $B\tilde{\mathcal{A}}_\infty$. \hfill \Box

Corollary 5.10. The fourth alternating 2-group, \mathcal{A}_4, is the weak categorical Schur cover of the binary tetrahedral group, while

\[
\mathcal{A}_3 \cong \mathcal{C}_6
\]

is the weak categorical Schur cover of the cyclic group on six elements.
6. Explicit constructions

This section recalls the construction of the String 2-groups given in [Woc11] and [WW15]. We only discuss the restriction to our finite subgroups. Following [BtD95], we identify the maximal torus of $\text{Spin}(n)$ with

$$T = \mathbb{R}|_{\frac{n}{2}}/\mathbb{Z}|_{\frac{n}{2}},$$

where

$$t = \mathbb{R}|_{\frac{n}{2}}$$

is the Lie algebra and

$$Λ^\vee = \mathbb{Z}|_{\frac{n}{2}} = \{m \in \mathbb{Z}|_{\frac{n}{2}} | \langle m, m \rangle\}$$

is the coweight lattice. The basic bilinear form $\langle -, - \rangle$ on $\text{spin}(n)$ is then the multiple of the Killing form that restricts to the standard scalar product on $\mathbb{R}|_{\frac{n}{2}}$. The Cartan three form is the invariant three form ν on $\text{Spin}(n)$ with

$$\nu_1(\xi, \zeta, \eta) = \langle [\xi, \zeta], \eta \rangle.$$

Restricted to $S^3 = \text{Spin}(3)$, we have

$$\nu_1(\xi, \zeta, \eta) = \langle \xi \times \zeta, \eta \rangle = \det(\xi, \zeta, \eta).$$

So, ν is the volume form.

Let now $G \subset \text{Spin}(n)$ be a finite subgroup, and let

$$\mathbb{Z} \leftarrow \text{Bar}_\bullet G$$

be the bar resolution,

$$\text{Bar}_k G = \mathbb{Z}[G][G]^k.$$

Let $C_\bullet(\text{Spin}(n))$ be the singular chain complex of $\text{Spin}(n)$. Since $\text{Spin}(n)$ is 2-connected, and $\text{Bar}_\bullet G$ is free, we may choose maps

$$f_i: \text{Bar}_i G \rightarrow C_i(\text{Spin}(n)),$$

for $0 \leq i \leq 3$, such that f_0 maps $g()$ to the 0-simplex g in $\text{Spin}(n)$, and the f_i fit together to form a map of truncated chain complexes of $\mathbb{Z}[G]$-modules. Here G acts on the simples in $\text{Spin}(n)$ by left translation.

Explicitly, a choice of f amounts to, for each $g \in G$, a path γ_g from 1 to g, for each pair $(g|h)$ of elements of G, a 2-simplex $\Delta_{g,h}$ bounding

$$\gamma_g - \gamma gh + g\gamma_h,$$

and for each triple $(g|h|k)$, a 3-simplex $W_{g,h,k}$ bounding

$$-\Delta_{g,h} + \Delta_{g,hk} - \Delta_{gh,k} + g\Delta_{h,k}.$$

Definition 6.1. For a fixed choice of f_\bullet, let

$$\alpha: G^3 \rightarrow \mathbb{R}/\mathbb{Z}$$

be the 3-cocycle

$$\alpha(g|h|k) = \frac{1}{2\pi^2} \int_{W_{g,h,k}} \nu \mod \mathbb{Z}.$$

Lemma 6.2. Different choices of f_\bullet yield cohomologous choices of $\alpha.$
Proof. Let f' be a second choice for f, and let α' be the resulting 3-cocycle. Employing again the 2-connectedness of $\text{Spin}(n)$, we obtain a chain homotopy

$$
\begin{array}{cccc}
\text{Bar}_0G & \overset{\delta}{\rightarrow} & \text{Bar}_1G & \overset{\delta}{\rightarrow} & \text{Bar}_2G & \overset{\delta}{\rightarrow} & \text{Bar}_3G \\
0 & \downarrow & 0 & \downarrow & H_1 & \downarrow & H_2 & \downarrow & f_3-f'_3 \\
C_0(\text{Spin}(n)) & \overset{\delta}{\rightarrow} & C_1(\text{Spin}(n)) & \overset{\delta}{\rightarrow} & C_2(\text{Spin}(n)) & \overset{\delta}{\rightarrow} & C_3(\text{Spin}(n))
\end{array}
$$

relating f and f' up to degree 2 and such that

$$f_3-f'_3 - H_2 \circ \delta$$

takes values in the 3-cycles $Z_3(\text{Spin}(n))$. Letting β be the 2-cocycle

$$\beta(g|h) = \frac{1}{2\pi^2} \int_{H_2(g|h)} \nu \mod \mathbb{Z},$$

it follows that

$$\alpha - \alpha' = \delta^* \beta.$$

\[\Box\]

Remark 6.3. In [FGMNS], Femina, Galves, Neto and Sreafico describe the fundamental domain of the action of $2T$ on the three sphere as an octahedron (the join of two geodesic segments). This yields a specific description of the fundamental class of $S^3/2T$. It would be interesting to identify this class with an explicit group cocycle or to give a more direct relationship with the second Hopf map.

References

[AT68] E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR0223335

[ABS64] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl. 1, 3–38. MR0167985

[AH59] M. F. Atiyah and F. Hirzebruch, Riemann-Roch theorems for differentiable manifolds, Bull. Amer. Math. Soc. 65 (1959), 276–281. MR0110106

[APS75] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 3, 405–432. MR0397798

[AS74] M. F. Atiyah and L. Smith, Compact Lie groups and the stable homotopy of spheres, Topology 13 (1974), 135–142. MR0343269

[BrD95] Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1995. Translated from the German manuscript; Corrected reprint of the 1985 translation. MR1410059

[Bro94] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original.

[CE99] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999. With an appendix by David A. Buchsbaum; Reprint of the 1956 original. MR1731415

[CF66] P. E. Conner and E. E. Floyd, The relation of cobordism to K-theories, Lecture Notes in Mathematics, No. 28, Springer-Verlag, Berlin-New York, 1966. MR0216511

[Far96] Emmanuel Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes in Mathematics, vol. 1622, Springer-Verlag, Berlin, 1996. MR1392221
[FGMNS] L.I. Femia, A.P.T. Galves, O. Manzoli Neto, and M. Sreafico, Fundamental domain and cellular decomposition of tetrahedral spherical space forms.

[FHHP04] Bo Feng, Amihay Hanany, Yang-Hui He, and Nikolaos Prezas, Discrete torsion, non-abelian orbifolds and the Schur multiplier, Horizons in world physics. Vol. 245, Horiz. World Phys., vol. 245, Nova Sci. Publ., New York, 2004, pp. 27–44.

[Gan14] Nora Ganter, Categorical tori (June 26, 2014), available at arXiv:1406.7046.

[GU14] Nora Ganter and Robert Usher, Representation and character theory of finite categorical groups (July 25, 2014), available at arXiv:1407.6849.

[Hau78] Jean-Claude Hausmann, Manifolds with a given homology and fundamental group, Comment. Math. Helv. 53 (1978), no. 1, 113–134.

[Hu52] Sze-tsen Hu, Cohomology theory in topological groups, Michigan Math. J. 1 (1952), 11–59. MR0051244 (14,449b).

[HLY14] Hua-Lin Huang, Gongxiang Liu, and Yu Ye, The braided monoidal structures on a class of linear Gr-categories, Algebr. Represent. Theory 17 (2014), no. 4, 1249–1265.

[JS93] André Joyal and Ross Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78.

[Kap15] Mikhail M. Kapranov, Supergeometry in mathematics and physics (December 22, 2015), available at arXiv:1512.07042.

[LM89] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR1031992.

[MT91] Mamoru Mimura and Hirosi Toda, Topology of Lie groups. I, II, Translations of Mathematical Monographs, vol. 91, American Mathematical Society, Providence, RI, 1991. Translated from the 1978 Japanese edition by the authors. MR1122592 (92h:55001).

[SP11] Christopher J. Schommer-Pries, Central extensions of smooth 2-groups and a finite-dimensional string 2-group, Geom. Topol. 15 (2011), no. 2, 609–676.

[Sch13] Urs Schreiber, Differential cohomology in a cohesive infinity topos (October 29, 2013), available at arXiv:1310.7930.

[TZ08] Satoshi Tomoda and Peter Zvengrowski, Remarks on the cohomology of finite fundamental groups of 3-manifolds, The Zieschang Gedenkschrift, Geom. Topol. Monogr., vol. 14, Geom. Topol. Publ., Coventry, 2008, pp. 519–556.

[Woc11] Christoph Wockel, Categorified central extensions, étale Lie 2-groups and Lie’s third theorem for locally exponential Lie algebras, Adv. Math. 228 (2011), no. 4, 2218–2257, DOI 10.1016/j.aim.2011.07.003. MR2836119.

[WW15] Friedrich Wagemann and Christoph Wockel, A cocycle model for topological and Lie group cohomology, Trans. Amer. Math. Soc. 367 (2015), no. 3, 1871–1909, DOI 10.1090/S0002-9947-2014-06107-2. MR3286502.