Sequence analysis

pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks

Stefan Budach¹,* and Annalisa Marsico¹,2,*

¹Otto-Warburg-Laboratory, RNA Bioinformatics, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany and ²Department of Mathematics and Computer Science, Free University Berlin, Berlin 14195, Germany

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on December 7, 2017; revised on March 21, 2018; editorial decision on April 3, 2018; accepted on April 5, 2018

Abstract

Summary: Convolutional neural networks (CNNs) have been shown to perform exceptionally well in a variety of tasks, including biological sequence classification. Available implementations, however, are usually optimized for a particular task and difficult to reuse. To enable researchers to utilize these networks more easily, we implemented pysster, a Python package for training CNNs on biological sequence data. Sequences are classified by learning sequence and structure motifs and the package offers an automated hyper-parameter optimization procedure and options to visualize learned motifs along with information about their positional and class enrichment. The package runs seamlessly on CPU and GPU and provides a simple interface to train and evaluate a network with a handful lines of code. Using an RNA A-to-I editing dataset and cross-linking immunoprecipitation (CLIP)-seq binding site sequences, we demonstrate that pysster classifies sequences with higher accuracy than previous methods, such as GraphProt or ssHMM, and is able to recover known sequence and structure motifs.

Availability and implementation: pysster is freely available at https://github.com/budach/pysster.

Contact: budach@molgen.mpg.de or marsico@molgen.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, deep convolutional neural networks (CNNs) have been shown to be an accurate method for biological sequence classification and sequence motif detection (Alipanahi et al., 2015; Angermueller et al., 2017; Kelley et al., 2016). The increasing amount of sequence data and the rise of general-purpose computing on graphics processing units (GPUs) have enabled CNNs to outperform other machine learning methods, such as random forests and support vector machines, in terms of both classification performance and runtime performance (Angermueller et al., 2017; Kelley et al., 2016). While a number of publications have made use of CNNs on biological data, these implementations are usually hard to reuse (Alipanahi et al., 2015) or tailored to a specific problem, such as prediction of DNA CpG methylation from single-cell data (Angermueller et al., 2017). Basset (Kelley et al., 2016) and iDeep (Pan and Shen, 2017) represent more general frameworks for training of CNNs on DNA and RNA data, respectively. However, they don’t provide detailed motif interpretations, such as motif locations and class enrichment of motifs, and they are not able to learn structure motifs in the RNA case. For the specific task of classifying RNA by learning sequence and structure motifs other tools not based on neural networks are available, e.g. RNAcontext (Kazan et al., 2010) and GraphProt (Maticzka et al., 2014). These tools usually learn only a single motif and similar to CNN-based methods provide no additional information such as motif locations.

To address these issues and to enable researchers to easily utilize CNNs, we implemented pysster, a python package for training CNN classifiers on biological sequences. Supervised classification is enabled by the automatic detection of sequence motifs. Our package focuses on interpretability and extends previous implementations by...
providing information about the positional and class enrichment of learned motifs. Moreover, by incorporating structure information, e.g. in the form of secondary structure predictions for RNA sequences, it is possible to learn structure motifs corresponding to the sequence motifs. We demonstrate that our tool is able to learn well-known motifs for an RNA A-to-I editing dataset and multiple CLIP-seq datasets and that it outperforms GraphProt, a state-of-the-art classifier for RNA sequences and structures, both in terms of classification and runtime performance. Providing a simple programming interface we hope that our package enables more researchers to make effective use of CNNs in classifying and interpreting large sets of biological sequences.

2 Implementation and features

We implemented an established network architecture and multiple interpretation options as an easy-to-use python package. The basic architecture of the network consists of a variable number of convolutional and max-pooling layers followed by a variable number of dense layers interspersed by dropout layers (Fig. 1A). These layers are interspersed by dropout layers after the input layer and after every max-pooling and dense layer. Using an automated grid search, the network can be tuned via a number of hyper-parameters, such as number of convolutional layers, number of kernels, length of kernels and dropout ratios. The main features of the package are:

- multi-class and single-label or multi-label classifications
- sensible default parameters and an optional hyper-parameter tuning
- interpretation of learned motifs in terms of positional and class enrichment (Supplementary Figs S1 and S3) and motif co-occurrence (Supplementary Fig. S2)
- support of input strings over user-defined alphabets (i.e. applicable to DNA, RNA and protein data)
- optional use of structure information, handcrafted features and recurrent layers
- visualization of all network layers using visualization by optimization (Olah et al., 2017)
- seamless CPU or GPU computation by building on top of TensorFlow (Abadi et al., 2016)

Structure information (e.g. for RNA in the form of dot-bracket strings or annotated dot-bracket strings) is incorporated into the network by encoding the given sequence string over an alphabet of size N and the corresponding structure string over an alphabet of size M into a single new string using an extended alphabet of size N∗M (Fig. 1B). The network is then trained on these new strings, which can be decoded back into the original strings after the training to enable the visualization of two motifs as position-weight matrices (Fig. 1C). Detailed descriptions of the model and visualization options can be found in the tutorials and documentation.

3 Case studies

pysster is freely available at https://github.com/budach/pysster. Its documentation includes a workflow tutorial that showcases the main functionality on an RNA A-to-I editing dataset (Picardi et al., 2017). Editing sites are known to be enriched in repetitive ALU sequences and we show that we are able to classify the editing locations with high accuracy and that we learn known ALU motifs (Fig. 1C). Finally, we have trained our tool on sequences derived from CLIP-seq data for a number of RNA binding proteins with known binding site motifs (Supplementary Table S1). Similar to GraphProt and ssHMM (Heller et al., 2017), an unsupervised hidden Markov model-based approach for learning sequence/structure motifs, pysster can recover the known motifs but outperforms GraphProt both in terms of classification and runtime performance.

Conflict of Interest: none declared.
References
Abadi, M. et al. (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv: 1603.04467.
Alipanahi, B. et al. (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831–838.
Angermueller, C. et al. (2017) DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol., 18, 67.
Heller, D. et al. (2017) ssHMM: extracting intuitive sequence-structure motifs from high-throughput rna-binding protein data. Nucleic Acids Res., 45, 11004–11018.
Kazan, H. et al. (2010) RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput. Biol., 6, e1000832.
Kelley, D.R. et al. (2016) Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res., 26, 990–999.
Maticzka, D. et al. (2014) Graphprot: modeling binding preferences of RNA-binding proteins. Genome Biol., 15, R17.
Olah, C. et al. (2017) Feature visualization. Distill, 2, e7.
Pan, X. and Shen, H.-B. (2017) RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. BMC Bioinformatics, 18, 136.
Picardi, E. et al. (2017) Rediportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res., 45, D750–D757.