Markers of Acute Toxicity in Pancreatic Beta-Cells Exposed to Lethal Doses of the Organochlorine Pollutant DDT Determined by a Proteomic Approach

Nela Pavlíková¹, Jan Šrámek¹, Michael Jelínek¹, Petr Halada², Jan Kovář¹

¹ Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic

² BioCeV – Institute of Microbiology, The Czech Academy of Sciences, Vestec, Czech Republic

Corresponding author:

Email: nela.pavlikova@lf3.cuni.cz (NP) (https://orcid.org/0000-0001-7468-1505)

Declarations of interest: none
Many compounds have the potential to harm pancreatic beta-cells; organochlorine pollutants belong to those compounds. In this work, we aimed to find markers of acute toxicity of p,p'-DDT among proteins expressed in human pancreatic beta-cells NES2Y and visible at 2-D electrophoresis. We exposed NES2Y cells to a lethal dose of p,p'-DDT (150 μM) for 24 hours and 30 hours and determined changes in protein expression using 2-D electrophoresis. We also stained the cells exposed to p,p'-DDT to visualize the altered phenotype of the exposed cells. Among proteins with changed expression, we identified proteins involved in ER stress (GRP78, and endoplasmin), mitochondrial proteins (GRP75, ECHM, IDH3A, NDUS1, and NDUS3), proteins with potential to change the cell morphology (EFHD2, TCPA, NDRG1, and ezrin), and some other proteins (HNRPF, HNRH1, K2C8, vimentin, PBDC1, EF2, PCNA, biliverdin reductase, G3BP1, FRIL, and HSP27). These proteins can be used as markers of acute DDT toxicity.

Keywords: p,p'-DDT, pancreatic beta-cells, 2-D electrophoresis, MALDI-TOF mass spectrometry
1. INTRODUCTION

Many compounds have the potential to harm pancreatic beta-cells and disrupt glucose homeostasis in the human organism (1). Such compounds include pharmaceuticals like pentamidine (2), or fluoxetine (SSRI antidepressant) (3) or saturated fatty acids palmitate (4), or stearate (5); and potentially also organochlorine pollutants, such as the now-banned pesticide DDT (6, 7). Even decades after most of the countries banned its use, DDT and its metabolites persist in the environment (8, 9) and represent a threat to living organisms (10, 11). Epidemiologic studies (12-15) showed a correlation between the presence of DDT in the human organism and the incidence of diabetes mellitus. Nevertheless, they did not specify if DDT affected insulin production by pancreatic beta-cells or insulin signaling in target tissues (7, 16, 17).

In our previous study, we used 2-D electrophoresis coupled to mass spectrometry to find proteins possibly involved in mechanisms mediating prolonged (1 month) effect of non-lethal doses of organochlorine pollutant \(p,p' \)-DDT in pancreatic beta-cells (6, 18). In our present study, we aimed to find markers of acute toxicity of lethal doses of \(p,p' \)-DDT in human pancreatic beta-cells NES2Y, also employing 2-D electrophoresis. To achieve that, we exposed human pancreatic beta cells NES2Y to lethal doses of \(p,p' \)-DDT for 24 and 30 hours and analyzed proteins with changed expression using a proteomic approach (2-D electrophoresis coupled to MALDI-TOF mass spectrometry). Moreover, we stained the cells exposed to \(p,p' \)-DDT to visualize the altered shape of those cells. Obtained data could generally help us to better understand the meaning and significance of changes in the expression of respective proteins found after prolonged exposure to \(p,p' \)-DDT in NES2Y cells.
2. MATERIAL AND METHODS

2.1. Material

We purchased \(p,p' \)-DDT (1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane; product number 31041-100MG) from Sigma-Aldrich (www.sigmaaldrich.com), and propidium iodide from Abcam (www.abcam.cz; ab14085). For the western blot analysis, we used the following primary and secondary antibodies: anti-cleaved caspase-6 (#9761), anti-cleaved caspase-7 (#9491), anti-cleaved caspase-8 (#9496), anti-cleaved caspase-9 (#9505) anti-cleaved and total PARP (#9542), anti-GRP78 (#3177), and anti-CHOP (#2895) from Cell Signaling Technology (www.cellsignal.com). We purchased anti-actin (clone AC-40) primary antibody from from Sigma-Aldrich.

2.2. Viability of cells

The NES2Y human pancreatic \(\beta \)-cell line was kindly provided by Dr. Roger F. James (Department of Infection, Immunity and Inflammation, University of Leicester). We seeded the cells in 24-well plate in concentration 100 000 cells / 250 \(\mu \)l / well. After 24 hours, we exposed the cells to various \(p,p' \)-DDT concentrations, i.e., 100 \(\mu \)M, 125 \(\mu \)M, 150 \(\mu \)M, 175 \(\mu \)M, 200 \(\mu \)M, and to DMSO (solvent control). After 24 hours, we harvested the cells by centrifugation (2000 rpm, 9 min, 4°C). We resuspended cell pellets in staining buffer containing propidium iodide (PI; dilution 1:100, ab14085, Abcam, Cambridge, UK) and incubated them for 10 minutes at room temperature in the dark. We detected the fluorescence of cells using a FACS Calibur cytometer (Becton Dickinson, San Jose, CA, USA) channel FL2. We performed this experiment for 3 independent sets of samples.

2.3. Western blot analysis

We seeded the cells (approximately \(1 \times 10^6 \) cells into a small Petri dish), and after 24 hours of cultivation, we replaced the culture medium with a medium containing \(p,p' \)-DDT at a concentration 150
μM. After 24 or 30 hours of incubation, we harvested the cells, lysed them, quantified the protein concentration in samples, and performed the western blot analysis as described previously (19). We diluted all primary antibodies 1:1000. We detected the chemiluminescent signal employing a Carestream Gel Logic 4000 PRO Imaging System equipped with Carestream Molecular Imaging Software (Carestream Health, New Haven, CT, USA). We employed Image Master™ 2D Platinum 6.0 software (GE Healthcare, Uppsala, Sweden) to obtain data for densitometric analyses.

2.4. 2-D electrophoresis and subsequent gel analysis

We run 2-D electrophoresis for at least 3 independent sets of samples.

2.4.1. Exposure to p,p’-DDT

For the experiment, we seeded the cells at a density 5x10^6 into a medium-sized flask. After 24 hours of cultivation, we replaced the medium with the medium containing 150 μM p,p’-DDT, or DMSO. After 24 or 30 hours, we harvested the cells. The concentration of DMSO (solvent control) in the medium did not exceed 0.5%. For the experiment, we wanted to use a concentration of p,p’-DDT that would kill approximately 20 % of cells after 24 hours of exposure (see Results). p,p’-DDT 150 μM was the lowest tested concentration (see Fig. 1) that passed this requirement. The remaining 80 % of cells would provide us with enough proteins for 2-D electrophoresis. 2-D electrophoresis revealed only several changes after exposure to the chosen concentration for 24 hours, so we decided to prolong the exposure time to 30 hours to induce more changes in protein expression. After 72 hours of exposure, 150 μM concentration of p,p’-DDT killed 96 % of NES2Y cells (data not shown), so we consider this concentration to be lethal.

2.4.2. Preparation of samples for 2-D electrophoresis

We trypsinized the cells, washed them 3x times with ice-cold PBS, and resuspended them in Protein Extraction Buffer-V (GE Healthcare, Uppsala, Sweden) (urea, thiourea, CHAPS) containing 2% of Protease Inhibitor Mix (GE Healthcare, Uppsala, Sweden). We purified all samples using a 2-D Clean-Up
Kit (GE Healthcare, Uppsala, Sweden) following the manufacturer’s instructions. Consequently, we dissolved the proteins in Protein Extraction Buffer-V suitable for isoelectric focusing. We used the 2-D Quant Kit (GE Healthcare, Uppsala, Sweden) to determine protein concentrations.

2.4.3. 2-D electrophoresis: isoelectric focusing

We used an IPGphor focusing unit (GE Healthcare, Uppsala, Sweden) for isoelectric focusing of samples loaded on 7 cm pH 4-7 Immobiline DryStrips (GE Healthcare, Uppsala, Sweden). We rehydrated each strip for 48 hours, as described previously (20). After rehydration, pH 4-7 strips were focused with a limited current of 50 μA/strip at 20 °C using the following conditions: gradient 0→150 V for 2 h, 150 V for 1 h, gradient 150→300 V for 1 h, 300 V for 2 h, gradient 300→1200 V for 3 h, 1200 V for 1 h, gradient 1200→3500 V for 5 h, and 3500 V for 5.5 h.

2.4.4. 2-D electrophoresis: SDS-PAGE

Following isoelectric focusing, we equilibrated the strips as described previously. We equilibrated the strips for 20 min in an equilibration buffer (21) containing 2% DTT. Then, we changed the buffer for a new one containing 2.5% iodoacetamide instead of 2% DTT and equilibrated strips for another 20 min. After equilibration, we placed the strips on top of the gels, sealed them using 0.5% agarose containing bromphenol blue, and run SDS-PAGE. We employed a Mini-PROTEAN Tetra cell (Bio-Rad, Redmond, WA, USA) devise for the second dimension and used 10% polyacrylamide gels with 4% stacking gels for separation. We run gels at a constant voltage of 50 V until the blue line reached the bottom of the gels (approximately 3 h). After running the second dimension, we washed each gel 3 x 5 min in distilled water and stained in 50 ml of colloidal Coomassie brilliant blue (CBB) solution (22) overnight.
2.4.5. **Gel image and analysis**

After staining, we scanned gels using a calibrated UMAX PowerLook 1120 scanner running LabScan software (both GE Healthcare, Uppsala, Sweden). We used Image Master™ 2D Platinum 6.0 software (GE Healthcare, Uppsala, Sweden) to analyze gels. We analyzed differences between corresponding spots in each set of gels (NES2Y exposed to DMSO and \(p, p' \)-DDT 150 \(\mu \)M). We selected spots with an approximately twofold (or bigger) difference in expression between the cell lysate exposed to DMSO and the cell lysate exposed to 150 \(\mu \)M DDT as spots with a different expression. We determined the statistical significance of changes in protein expression using the Student’s t-test. Spots with significantly different intensities were cut and sent for MS analysis.

2.4.6. **Enzymatic digestion, MALDI-TOF mass spectrometry, and protein identification**

We destained CBB-protein spots and incubated them overnight at 37 \(^\circ \)C in a buffer containing 25 mM 4-ethyl morpholine acetate, 5% acetonitrile, and trypsin (100 ng; Promega). We mixed the resulting peptides with a MALDI matrix consisting of an aqueous 50% acetonitrile/0.1% TFA solution of \(\alpha \)-cyano-4-hydroxycinnamic acid (5 mg/ml; Sigma-Aldrich, www.sigmaaldrich.com). We measured mass spectra using an Ultraflex III MALDI-TOF (Bruker Daltonics, Bremen, Germany) in a mass range of 700-4000 Da calibrated externally using a mixture of PepMix II standard (Bruker Daltonics). We searched both MS and MS/MS data against the SwissProt 2017_03 database subset of human proteins using the in-house MASCOT software with the following settings: peptide tolerance of 30 ppm, missed cleavage site set to one, variable carbamidomethylation of cysteine and oxidation of methionine. We considered proteins with MOWSE scores over the threshold of 54 (calculated for the settings used) as identified. We confirmed the identity of each protein candidate using MS/MS analysis.
2.5. Confocal microscopy

We seeded the NES2Y cells at a density of 60 000 cells / 0.5 ml of the medium onto coverslips. After 24 hours, we replaced the medium with a fresh one containing 150 μM p,p’-DDT. We used cells cultivated in medium without pollutants as control cells.

After 24 hours, we discarded the medium and washed the cells three times with PBS (5–10 min). Then, we fixed cells using 4% paraformaldehyde for 20 min, washed them by PBS, permeabilized them with 0.3% Triton X-100 for 10 min, and washed them again. After that, we blocked cells with 1% BSA for 60 minutes and stained them with the primary anti-tubulin antibody (ab6046 from Abcam, Cambridge, UK) diluted 1:300 in 1% BSA, at 4 °C overnight. After washing the cells with PBS, we incubated the cells with a secondary goat anti-rabbit antibody (ab150077, from Abcam) diluted 1:300, in the dark at room temperature for 2 hours. To complete tubulin staining, we washed cells again with PBS. Then, we stained actin in the cells by rhodamine-phalloidin (R415, from Invitrogen) diluted according to manufacturer instruction for 20 min. The unbound staining solution was removed by PBS washing. Finally, we transferred cells onto a droplet of Vectashield® Vibrance™ Antifade Mounting Medium with DAPI (Vector Laboratories, Burlingame, CA, USA) and sealed them. Samples were analyzed using a Leica TCS SP5 confocal microscope (Bannockburn, IL, USA).

2.6. Statistical Analysis

We analyzed statistical significance of results of 2-D electrophoresis and western blot using the Student’s t-test. We analyzed statistical significance of results of flow cytometry using a one-way ANOVA Dunnett’s test (SigmaPlot 14 Software).
3. RESULTS

3.1. Effect of various concentrations of \(p,p'\)-DDT on the viability of NES2Y cells

For our study, we wanted to establish a concentration of \(p,p'\)-DDT that would kill approximately 20% of cells after 24 hours of exposure, so the remaining 80% of cells would provide us with enough proteins for 2-D electrophoresis. Tested concentrations were chosen based on our previous results (6). After 24 hours of exposure, the two lower concentrations of \(p,p'\)-DDT (100 \(\mu\)M and 125 \(\mu\)M) caused only a non-significant decrease in cell viability when compared with control (Fig. 1). The three higher concentrations (150 \(\mu\)M, 175 \(\mu\)M, and 200 \(\mu\)M) caused a significant reduction of viability of cells (Fig. 1), \(p = 0.11\) for 150 \(\mu\)M, \(p < 0.001\) for 175 \(\mu\)M, \(p < 0.001\) for 200 \(\mu\)M). For the planned experiments, we chose 150 \(\mu\)M concentration that reduced cell viability to 82% of control after 24 hours of exposure. To confirm that 150 \(\mu\)M \(p,p'\)-DDT is a lethal dose for NES2Y cells, we tested the effect of 150 \(\mu\)M \(p,p'\)-DDT on cell viability employing Neutral Red Assay. After 72 hours of exposure, the viability of cells exposed to 150 \(\mu\)M \(p,p'\)-DDT dropped to 4% of the viability of control cells (data not shown). Therefore, we consider this concentration to be lethal.

Figure 1: Viability of NES2Y cells exposed to various concentrations of \(p,p'\)-DDT for 24 hours. We determined the number of viable cells using flow cytometry after staining with propidium iodide. We used cells exposed to DMSO (final concentration of 0.5%) as solvent control. The graph represents the average of results from 3 independent experiments. * means statistically significant difference (\(p < 0.05\)) when compared to the solvent control (one way ANOVA, Dunnett’s test).

3.2. Effect of \(p,p'\)-DDT on apoptotic and ER stress markers

In order to confirm that \(p,p'\)-DDT induced apoptotic cell death in NES2Y cells we tested the presence of main markers of apoptosis, i.e., activated caspase-8, -9, -6, -7 and cleaved PARP (poly (ADP-
ribose) polymerase) - a substrate of caspase-7, (Fig. 2). We did not detect caspase-3 since we know that it is not functional in NES2Y cells (19). The level of cleaved caspase-8 increased to 235 % of control (p = 0.039) after 24-hour exposure, and to 391 % of control (p = 0.015) after 30-hour exposure (Fig. 3). The level of cleaved caspase-9 also increased after both 24-hour exposure (581 % of control, p = 0.018) and 30-hour exposure (423 % of control, p = 0.004), (Fig. 3). The level of cleaved caspase-6 increased to 555 % of control (p = 0.042) after 24 hours of exposure, and to 635 % of control (p = 3.77 x 10^{-4}) after 30-hour exposure (Fig. 3). The level of cleaved caspase-7 represented the highest increase; it reached 1434 % of control (p = 0.003) after 24-hour exposure, and after 30-hour exposure, it reached 1820 % (p = 0.008) of control. The level of cleaved PARP reached 240 % of control after 24-hour exposure (p = 0.022), and after 30-hour exposure, it reached 226 % of control (p = 0.003), (Fig. 3).

Figure 2. Representative western blots of selected markers of ER stress (CHOP, GRP78) and apoptosis (cleaved caspase-6, -7, -8, -9, and PARP). The picture shows the expression of chosen proteins in NES2Y cells exposed to DMSO as a solvent control (con) and 150 μM p,p’-DDT for 24 and 30 hours. We used actin as a loading control. CHOP means C/EBP homologous protein, GRP78 means 78kDa glucose-regulated protein, and PARP means poly (ADP-ribose) polymerase.

To confirm that p,p’-DDT induces ER stress in NES2Y cells, we have tested the effect of p,p’-DDT on the expression of proteins BiP and CHOP - the main markers of ER stress. The level of CHOP increased to 1599 % of control (p = 0.021) after 24-hour exposure, and to 893 % of control (p = 0.002) after 30-hour exposure. The expression of GRP78 was upregulated to 1213 % of control (p = 0.002) after 24-hour exposure, and to 1875 % of control (p = 0.034) after 30-hour exposure (Fig. 2, Fig. 3).

Figure 3. Densitometry of western blots of chosen markers of ER stress and apoptosis. Columns represent mean values ± SEM of protein levels from 3 independent sets of experiments. CHOP means C/EBP homologous protein, GRP78 means 78kDa glucose-regulated protein, and PARP means poly (ADP-
ribose) polymerase. *, **, *** means statistically significant difference with p<0.05, p<0.01, and p<0.001, respectively, when compared to the control at the relevant time (analyzed by student’s t-test).

3.3. Proteins with changed expression after 24 hours of exposure to p,p'-DDT

The 24-hour exposure to 150 μM p,p'-DDT changed the expression of 10 spots; 4 spots were upregulated, and 6 spots were downregulated when compared with control (Fig. 4, Tab. 1). 78 kDa glucose-regulated protein (GRP78, also known as BiP) was represented by three upregulated spots (GRP78*, GRP78**, GRP78***); spot GRP78* was upregulated to 1610 % of control (p = 0.045), spot GRP78** to 240 % of control (p = 0.003), and spot GRP78*** to 285 % of control (p = 0.044). Another glucose-regulated protein, 75 kDa glucose-regulated protein (GRP75, also known as mortalin) was found upregulated too (spot GRP75, expression increased to 1083 %, p = 3.38 x 10^-4).

Fold change -24 h	Fold change -30 h	Protein name	DTB No.	No. peptides	Coverage [%]	MS/MS confirmation	MW protein	pl
0.44	0.39	ECHM (enol-CoA hydratase, mitochondrial)	ECHM_HUMAN	5	25	AGANIPEYAEKR AQGIEPGLTIQGGSQ	31	8.3
10.83	8.57	GRP75 (78 kDa glucose-regulated protein)	GRP75_HUMAN	10	18	VSIWTVVYHDSGR SIKPEFTEGDIKQKL	74	5.9
16.10	---	GRP78* (78 kDa glucose-regulated protein)	GRP78_HUMAN	13	22	PSISVMTTFGER VTVHGVYHMDGR SEEHYGDEKSFTR	72	5.1
2.40	2.42	GRP78** (78 kDa glucose-regulated protein)	GRP78_HUMAN	15	27	PSISVMTTFGER IEISPEFSLTEFTR	72	5.1
2.85	1.97	GRP78*** (78 kDa glucose-regulated protein)	GRP78_HUMAN	14	24	PSISVMTTFGER MVTVVYHMDGR SEEHYGDEKSFTR	72	5.1
0.48	0.50	HNRPF (heterogeneous nuclear ribonucleoprotein f)	HNRPF_HUMAN	6	17	HSGPGNASGDVK ATVQYHPKSNPR	46	5.4
0.54	0.42	HSP27 (heat shock protein 27)	HSPB1_HUMAN	9	43	RVPRSLIDNKGDR LATQSNTPYPSSR	23	6.0
0.41	0.43	IDH3A (isocitrate dehydrogenase [NAD] 3 subunit alpha, mitochondrial)	IDH3A_HUMAN	5	17	VIAEAYAR TTDGNYFTTR	40	6.5
0.41	0.26	K2CB (keratin, type II cytoskeletal 8)	K2CB_HUMAN	7	15	IEGHDNIFER AEILDADNKDFAK	54	5.5
0.31	0.36	VIME (vimentin)	VIME_HUMAN	16	43	ISPEFPPSSLK KKLKAYAANNGGSR OVDSTCVDGKGTSTL	54	5.1

Table 1: Differentially expressed proteins after both 24-hour and 30-hour exposure to 150 μM p,p'-DDT

identified in 2-DE experiments using 3 independent sets of samples. The table covers the proteins that changed expression after both 24 hours and 30 hours of exposure. The table includes fold change after
219 24 hours and 30 hours, protein name, SwissProt database number, number of peptides matched to the
220 identified protein, sequence coverage, peptide sequences confirmed by MS/MS, theoretical molecular
221 weight and pI of the protein. *, **, *** mark different spots identified as the same protein.

222 The 24-hour exposure to 150 μM p,p’-DDT downregulated the expression of enoyl-CoA
223 hydratase mitochondrial to 44 % of control (spot ECHM, p = 0.006), the expression of vimentin to 51 % of
224 control (spot VIME, p = 4.82 x 10^{-5}), the expression of heat shock protein 27 to 54 % of control (spot
225 HSP27, p = 0.026), the expression of isocitrate dehydrogenase [NAD] subunit alpha mitochondrial to 41
226 % of control (spot IDH3A, p = 3.84 x 10^{-5}), the expression of keratin, type II cytoskeletal 8 to 41 % of
227 control (spot K2C8, p = 3.09 x 10^{-8}), and the expression of heterogeneous nuclear ribonucleoprotein F to
228 48 % of control (spot HNRPF, p = 0.021) (Fig. 4, Tab. 1).

229

230 Figure 4: Representative 2-DE gels (pI range 4-7) of NES2Y cells exposed to 150 μM p,p’-DDT in DMSO
231 for 24 hours and 30 hours. Part A shows spots/proteins that changed their expression after both 24-hour
232 and 30-hour exposure. *, **, *** mark different spots identified as the same protein. Part B shows
233 spots/proteins that changed their expression only after 30-hour exposure. *, ** mark different spots
234 identified as the same protein. BIEA/EF2, NDUS3/HSP27, and PBDC1/PCNA represent spots that
235 contained two different proteins. For the full names of detected proteins, see Tab. 1, and Tab. 2.

236 3.4. Proteins with changed expression after 30 hours of exposure to p,p’-DDT

237 Almost all proteins that changed their expression after 24-hour exposure changed expression
238 also after 30-hour exposure (Fig. 4, Tab. 1). The only exception was spot GRP78* (78 kDa glucose-
239 regulated protein). The spot was smeared and blended with surrounding spots; therefore, it could not be
240 analyzed. The 30-hour exposure to 150 μM p,p’-DDT upregulated the expression of 78 kDa glucose-
241 regulated protein to 242% of control (spot GRP78**, p = 7.59 x 10^{-8}, and to 197% of control (spot
The 30-hour exposure to 150 μM \(p,p'\)-DDT downregulated the expression of more proteins than were upregulated. The expression of enoyl-CoA hydratase mitochondrial (spot ECHM, \(p = 3.91 \times 10^{-5} \)) decreased to 39% of control, vimentin (spot VIME, \(p = 2.97 \times 10^{-4} \)) to 36% of control, heat shock protein 27 (spot HSP27, \(p = 8.34 \times 10^{-5} \)) to 42% of control, isocitrate dehydrogenase [NAD] 3 subunit alpha mitochondrial (spot IDH3A, \(p = 1.86 \times 10^{-4} \)) to 43% of control, keratin type II cytoskeletal 8 (spot K2C8, \(p = 8.94 \times 10^{-6} \)) to 26% of control, and heterogeneous nuclear ribonucleoprotein F (spot HNRPF, \(p = 1.11 \times 10^{-4} \)) to 50% of control. The changes of expression remained quite similar after both exposure times in most of the proteins (see Tab. 1).

Besides 10 proteins with changed expression detected after both 24-hour exposure and 30-hour exposure, there were also 14 more spots with changed expression detected only after 30-hour exposure. (Fig. 4, Tab. 2). Those 14 spots represented 14 proteins; nevertheless, some spots contained two proteins, and some proteins occurred as two different spots. We found 3 proteins upregulated: N-myc downregulated gene 1 protein (spot NDRG1, \(p = 0.019 \)) to 312% of control, EF-hand domain-containing protein D2 (spot EFHD2, \(p = 3.01 \times 10^{-3} \)) to 274% of control, and one of the two spots representing endoplasmin (spot ENPL*, \(p = 1.31 \times 10^{-4} \)) to 199% of control (Fig. 4, Tab. 2).
Table 2: Differentially expressed proteins identified in 2-DE experiments. The table covers proteins that changed expression ONLY after 30 hours of exposure. Some spots contained two different proteins. The table includes fold change after 30 hours, protein name, SwissProt database number, number of peptides matched to the identified protein, sequence coverage, peptide sequences confirmed by MS/MS, theoretical molecular weight and pl of the protein. * , ** , *** mark different spots identified as the same protein.

Fold change - 30 h	Protein name	DBT No.	No. peptides	Coverage [%]	MS/MS confirmation	MW protein	pl
0.43	BIEA ↓ (biliverdin reductase A), and EF2 ↓ [elongation factor 2]	BIEA_HUMAN	4	17	33	6.6	
2.74	EFHD2 ↑ [EF-hand domain-containing protein D2]	EFHD2_HUMAN	6	27	27	5.2	
1.99	ENPL* ↑ (endoplasmic)	ENPL_HUMAN	13	18	92	4.8	
0.51	ENPL** ↓ (endoplasmic)	ENPL_HUMAN	8	10	92	4.8	
0.50	EZRI ↓ (ezrin)	EZRI_HUMAN	8	11	69	5.9	
0.49	FRIL ↓ (ferritin light chain)	FRIL_HUMAN	6	40	20	5.5	
0.53	G3BP1 ↓ (Ras GTPase-activating protein-binding protein 1)	G3BP1_HUMAN	6	17	52	5.4	
0.53	HNRH1* ↓ (heterogeneous nuclear ribonucleoprotein H)	HNRH1_HUMAN	7	24	49	5.9	
0.33	HNRH1** ↓ (heterogeneous nuclear ribonucleoprotein H)	HNRH1_HUMAN	4	13	49	5.9	
3.12	NDRG1 ↑ (N-myc downstream regulated 1)	NDRG1_HUMAN	3	14	43	5.5	
0.53	NDUS3 ↓ (NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial), and HSP70 ↓ (heat shock protein 27)	NDUS3_HUMAN	9	31	30	7.0	
0.25	NDUS1 ↓ (NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial)	NDUS1_HUMAN	10	15	79	5.9	
0.55	PBDC1 ↓ (polysaccharide biosynthesis domain containing 1), and PCNA ↓ (proliferating cell nuclear antigen)	PBDC1_HUMAN	5	25	26	4.7	
0.40	TCPA ↓ (T-complex protein 1 subunit alpha)	TCPA_HUMAN	6	12	60	5.8	

Downregulated proteins included Ras GTPase-activating protein-binding 1 (spot G3BP1, p = 1.57 x 10^{-4}) with the expression downregulated to 53% of control, NADH-ubiquinone oxidoreductase 75 kDa subunit mitochondrial (spot NDUS1, p = 1.71 x 10^{-8}) with the expression downregulated to 25% of control, and T-complex protein 1 subunit alpha (spot TCPA, p = 7.28 x 10^{-4}) with the expression...
downregulated to 40% of control. The expression of ferritin light chain (spot FRIL, $p = 3.23 \times 10^{-5}$) was
downregulated to 49% of control, and the expression of ezrin (spot EZRI, $p = 1.11 \times 10^{-4}$) to 50% of
control. The position of spot EZRI on 2-D gel did not correlate with its predicted molecular; spot EZRI
represents a fragment of ezrin. We identified two other spots as heterogeneous nuclear
ribonucleoprotein H (HNRH1): expression of HNRH1** (a fragment of a protein) decreased to 33% of
control ($p = 2.50 \times 10^{-4}$), and expression of HNRH1* (a whole form of protein) to 53% of control ($p = 1.61 \times 10^{-5}$). Expression of endoplasmin fragment (spot ENPL**, $p = 3.69 \times 10^{-5}$) decreased to 51% of control
(Fig. 4, Tab. 2).

Several spots with downregulated expressions contained two proteins each. The spot with
expression downregulated to 53% of control (spot NDUS3/HSP27, $p = 7.28 \times 10^{-4}$) contained both NADH
dehydrogenase [ubiquinone] iron-sulfur protein 3 mitochondrial and heat shock protein 27. The spot
with the expression downregulated to 56% of control (spot PBDC1/PCNA, $p = 1.37 \times 10^{-3}$) contained
protein PBDC1 and proliferating cell nuclear antigen (PCNA). Furthermore, the spot with the expression
downregulated to 43% of control (spot BIEA/EF2, $p = 3.11 \times 10^{-4}$) contained both biliverdin reductase
(BIEA) and elongation factor 2 (EF2), (Fig. 4, Tab. 2). The position of the BIEA/EF2 spot did not correlate
with predicted size for EF2, which means that the spot contained an EF2 fragment.

3.5. Morphology of cells exposed to p,p’-DDT

To visualize changes in the morphology of cells exposed to p,p’-DDT (150 μM), we employed
immunofluorescence of cytoskeletal proteins actin and tubulin. We found no cells undergoing mitosis or
cytokinesis among cells exposed to p,p’-DDT, but such cells occurred among cells exposed to solvent
control (DMSO), (Fig. 5). Many cells exposed to p,p’-DDT had a more elongated shape than control cells.
Some cells exposed to p,p’-DDT were even divided into two parts connected by a long thin “neck” and
with a nucleus located in one of those parts.
Figure 5. Effect of 150 μM p,p'-DDT on the cell shape of NES2Y pancreatic beta-cells. Cells incubated without p,p'-DDT represented control cells. After 24 hours of incubation, we stained actin (red), tubulin (green), and nuclei (blue) of the cells. The figure shows representative pictures.

4. DISCUSSION

In this study, we used 2-D electrophoresis coupled to mass spectrometry to find markers of acute toxicity of lethal doses of organochlorine pesticide p,p'-DDT in human pancreatic beta-cells NES2Y. We planned to use a concentration of p,p'-DDT that would kill approximately 20 % of cells after 24-hour exposure; the remaining 80 % of cells would provide us with enough proteins for 2-D electrophoresis. 2-D electrophoresis revealed only several changes after exposure to the chosen concentration for 24 hours, so we decided to prolong the exposure time to 30 hours to induce more changes in protein expression. We have found 22 proteins with altered expression. We have sorted these proteins into groups based on their function and tried to evaluate the meaning and importance of changes in the expression of individual proteins.

4.1. Proteins involved in the stress of endoplasmic reticulum

Strong upregulation of 78 kDa glucose-regulated protein (GRP78, also known as BiP) indicated the presence of the stress of endoplasmic reticulum (ER stress) in cells exposed to p,p'-DDT (23, 24). Another protein, CHOP mediates the ER stress-induced apoptosis (25), and its upregulation in cells exposed to p,p'-DDT supports the idea that ER stress played a role in cell death induced by p,p'-DDT in pancreatic beta-cells.

The exposure to p,p'-DDT also increased the expression of endoplasmin (or heat shock protein 90 kDa beta member 1) in pancreatic beta-cells (see Tab. 2). Endoplasmin plays a vital role in cell survival under ER stress (26-28). Therefore, its upregulation supports the idea that exposure to p,p'-DDT induces ER stress in beta-cells. Another spot identified as endoplasmin had a smaller size than predicted, and its
expression was downregulated. Endoplasmin is a dimer (27), and theoretically, the downregulated spot could represent the endoplasmin monomer.

4.2. Mitochondrial proteins

We found four mitochondrial proteins downregulated in pancreatic beta-cells after exposure to p,p'-DDT: ECHM, IDH3A, NDUS1, and NDUS3. Enoyl-CoA hydratase (ECHM) participates in β-oxidation, isocitrate dehydrogenase \([\text{NAD}]\) 3 subunit alpha (IDH3A) in the citric acid cycle, NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUS1) and NADH dehydrogenase [ubiquinone] iron-sulfur protein 3 (NDUS3) belong to the complex I of the respiratory chain. The 24-hour exposure to p,p'-DDT reduced the expression of ECHM and IDH3; the 30-hour exposure followed that trend. The 30-hour exposure to p,p'-DDT also reduced the expression of both NDUS1 and NDUS3. We hypothesize that DDT exposure affected first the metabolic pathways that precede the respiratory chain and later the respiratory chain itself.

Another protein with changed expression, 75 kDa glucose-regulated protein (GRP75), is a molecular chaperone localized preferentially (but not exclusively) in mitochondria. This chaperone interacts with many proteins, including NDUS3 mentioned above (29). In mitochondria, GRP75 helps to maintain mitochondrial shape and function (30, 31). The exposure to p,p'-DDT strongly upregulated expression of GRP75 (see Tab. 1, and 2), which may suggest that, after the exposure to DDT, mitochondria needed full support to maintain their functionality.

4.3. Heterogeneous nuclear ribonucleoproteins

We found two members of heterogeneous nuclear ribonucleoprotein family downregulated after exposure to p,p'-DDT: heterogeneous nuclear ribonucleoprotein F (HNRPF) and heterogeneous nuclear ribonucleoprotein H (HNRH1). HNRPF and HNRH1 bind to the p53 transcript and protect it against degradation (32); therefore, their downregulation could play a role in apoptosis initiation.
4.4. **Cytoskeletal proteins**

In 2-D electrophoresis, researchers usually see the presence of fragments of cytoskeletal proteins as a sign of cell degradation (33). Nevertheless, we found only two cytoskeletal proteins with altered expression, i.e., vimentin (VIME) and keratin type II cytoskeletal (K2C8). Both spots were at positions corresponding to their predicted size, which means that they were full-size proteins and not fragments. It is interesting to compare these data to our previous results, where we exposed NES2Y work to a non-lethal concentration of \(p,p'\)-DDT for 1 month and found changed expression of several cytoskeletal proteins and their fragments (6). We hypothesize that the presence of fragments of cytoskeletal proteins does not necessarily correlate with the presence of cell death.

4.5. **Proteins affecting cell shape**

We also tried to identify proteins that could play a role in the altered shape of exposed cells. Some of the cells exposed to \(p,p'\)-DDT achieved a singular shape: a prolonged one, with a long thin middle section (see Fig. 5). We have identified several proteins with a changed expression that could play a role in this phenomenon.

We found a downregulated expression of a fragment of ezrin after exposure to \(p,p'\)-DDT. Ezrin binds actin filaments to the plasma membrane (34), but it is difficult to evaluate the meaning of the downregulation of its fragment. **EF-hand domain-containing protein D2 (EFHD2)**, upregulated after exposure to \(p,p'\)-DDT, represents another protein with an altered expression that can bind actin (35). EFHD2 participates in the formation of structures associated with actin, such as lamellipodia and membrane ruffles (36). **T-complex protein 1 subunit alpha (TCPA)**, downregulated after exposure to \(p,p'\)-DDT, is a part of a chaperonin called TCC (chaperonin containing t-complex polypeptide 1) responsible for proper folding of actin and tubulin (37, 38). **N-myc downstream-regulated gene 1 (NDRG1)** expression can be induced by DNA damage (39), Fe deprivation (40), \(\text{Ca}^{2+} \) deprivation or...
hypoaxia (41). Interestingly, NDRG1 overexpression led to an altered shape of prostate cancer cells DU145 (42). Therefore, increased expression of NDRG1 could also play a role in the altered shape of NES2Y cells exposed to p,p'-DDT. So could the changed protein expression of EFHD2, and TCPA.

4.6. Proteins involved in processes connected with DNA or RNA

The exposure to p,p'-DDT downregulated the expression of three proteins connected with transcription, translation, or replication: PBDC1, EF2, and PCNA. Polysaccharide biosynthesis domain containing 1 protein (PBDC1, also known as CXorf26) is an unexplored protein with predicted function connected with RNA polymerase II and ribosomes (43). Elongation factor 2 (EF2) regulates peptide chain elongation on the ribosome during translation (44), but we found only a fragment of this protein downregulated. Proliferating cell nuclear antigen (PCNA) recruits participant proteins to the replication fork (45). Downregulation of PBDC1 due to p,p'-DDT treatment could, therefore, negatively affect protein synthesis; downregulation of PCNA could negatively affect replication in cells. It is difficult to predict the effect of downregulation of only a fragment of EF2 on protein synthesis.

4.7. Proteins involved in oxidative stress

The exposure to p,p'-DDT downregulated the expression of biliverdin reductase A (BIEA). The bilirubin/biliverdin system represents powerful protection against oxidative stress (46). Recently, Lee and coworkers (47) described that forced upregulation of BIEA protected rat pancreatic beta-cells INS1E from ER stress and oxidative stress. Pancreatic beta-cells have a low antioxidative defense (48). BIEA with better quenching ability than glutathione (47) can represent an effective defense mechanism against ROS and ER stress in pancreatic beta-cells.

The exposure to p,p'-DDT reduced the expression of Ras GTPase-activating protein-binding protein 1 (G3BP1). G3BP1 controls an antioxidative ability of stress granules under stress conditions (49, 50). The exposure to p,p'-DDT also reduced the expression of ferritin light chain (FRIL). The
downregulation of FRIL can indicate that \(p,p' \)-DDT-treated cells are less able to quench ROS (51). Together with the downregulation of biliverdin reductase A, these changes in protein expression suggest that after 30-hour exposure to \(p,p' \)-DDT, beta-cells are losing their defense against oxidative stress.

4.8. Heat shock protein 27

The exposure to \(p,p' \)-DDT reduced the level of **heat shock protein 27** in pancreatic beta-cells.

HSP27 inhibits apoptosis: it prevents the activation of caspase-9 by blocking the formation of apoptosome (52, 53). The downregulation of HSP27 could be the reason why HSP27 failed to prevent the activation of caspases; activated caspase-9 was detected in cells exposed to DDT by western blot analysis.

5. CONCLUSIONS

In this study, we aimed to find markers of acute toxicity of lethal doses of \(p,p' \)-DDT in human pancreatic beta-cells NES2Y employing 2D electrophoresis. Moreover, we stained the cells exposed to \(p,p' \)-DDT to visualize the altered shape of these cells.

We have found 22 proteins that can be used as markers of acute cell toxicity of \(p,p' \)-DDT in pancreatic beta-cells NES2Y. Those included proteins involved in ER stress (GRP78, and endoplasm), mitochondrial proteins (GRP75, ECHM, IDH3A, NDUS1, and NDUS3), heterogeneous nuclear ribonucleoproteins (HNRPF, and HNRH1), cytoskeletal proteins (K2C8, and vimentin), proteins with potential to change the cell shape (EFHD2, TCPA, NDRG1, and ezrin), proteins involved in processes connected with DNA or RNA (PBDC1, EF2, and PCNA), proteins involved in oxidative stress (BIEA, and G3BP1, and FRIL), and heat shock protein 27.

Also, we have found that \(p,p' \)-DDT-induced cell death is apoptotic cell death and that lethal doses of \(p,p' \)-DDT induces ER stress in NES2Y cells.
6. ACKNOWLEDGMENTS

Declarations of interest: The authors have declared that no competing interests exist.

Support: This work was supported by research projects UNCE 204015 and PROGRES Q36 of Charles University in Prague, Czech Republic, and by the project BIOCEV CZ.1.05/1.1.00/02.0109 from the European Regional Development Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions: N.P. carried out the exposure of cells to pesticides, and 2-D electrophoresis experiments, coordinated experiments and wrote the manuscript; J.S. carried out western blot experiments; M.J. carried out flow cytometry and confocal microscopy; P.H. carried out mass spectrometry experiments; J.K. helped to complete the manuscript.

7. REFERENCES

1. Andel M, Nemcova V, Pavlikova N, Urbanova J, Cechakova M, Havlova A, et al. Factors causing damage and destruction of beta-cells of the islets of Langerhans in the pancreas. Vnitrni lekarstvi. 2014;60(9):684-90.

2. Liegl U, Bogner JR, Goebel FD. Insulin-Dependent Diabetes-Mellitus Following Pentamidine Therapy In A Patient With Aids. Clin Investig. 1994;72(12):1027-9.

3. De Long NE, Hyslop JR, Raha S, Hardy DB, Holloway AC. Fluoxetine-induced pancreatic beta cell dysfunction: New insight into the benefits of folic acid in the treatment of depression. J Affect Disord. 2014;166:6-13.

4. Cunha DA, Hekerman P, Ladriere L, Bazarra-Castro A, Ortis F, Wakeham MC, et al. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. Journal of Cell Science. 2008;121(14):2308-18.

5. Šrámek J, Němcová-Fürstová V, Pavliková N, Kovář J. Effect of Saturated Stearic Acid on MAP Kinase and ER Stress Signaling Pathways during Apoptosis Induction in Human Pancreatic β-Cells Is Inhibited by Unsaturated Oleic Acid. International Journal of Molecular Sciences. 2017;18(11).

6. Pavliková N, Smetana P, Halada P, Kvar J. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells. Environ Res. 2015;142:257-63.

7. Lee YM, Ha CM, Kim SA, Thoudam T, Yoon YR, Kim DJ, et al. Low-Dose Persistent Organic Pollutants Impair Insulin Secretory Function of Pancreatic beta-Cells: Human and In Vitro Evidence. Diabetes. 2017;66(10):2669-80.

8. Chen LG, Feng QH, He QS, Huang YM, Zhang Y, Jiang G, et al. Sources, atmospheric transport and deposition mechanism of organochlorine pesticides in soils of the Tibetan Plateau. Sci Total Environ. 2017;577:405-12.
9. Carravieri A, Cherel Y, Brault-Favrou M, Churlaud C, Peluhet L, Labadie P, et al. From Antarctica to the subtropics: Contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.). Environmental Pollution. 2017;228:464-73.

10. Kartalovic B, Novakov NJ, Mihaljev Z, Petrovic J, Prica N, Babic J, et al. Organochlorine pesticides in canned tuna and sardines on the Serbian market. Food Addit Contam Part B-Surveill. 2016;9(4):299-304.

11. Ploteau S, Antignac JP, Volteau C, Marchand P, Venisseau A, Vacher V, et al. Distribution of persistent organic pollutants in serum, omental, and parietal adipose tissue of French women with deep infiltrating endometriosis and circulating versus stored ratio as new marker of exposure. Environment International. 2016;97:125-36.

12. Lee D-H, Porta M, Jacobs DR, Jr., Vandenberg LN. Chlorinated Persistent Organic Pollutants, Obesity, and Type 2 Diabetes. Endocrine Reviews. 2014;35(4):557-601.

13. Lee YM, Kim KS, Kim SA, Hong NS, Lee SJ, Lee DH. Prospective associations between persistent organic pollutants and metabolic syndrome: a nested case-control study. The Science of the total environment. 2014;496:219-25.

14. Tang M, Chen K, Yang F, Liu W. Exposure to Organochlorine Pollutants and Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS One. 2014;9(10).

15. Al-Othman AA, Abd-Alrahman SH, Al-Daghi NM. DDT and its metabolites are linked to increased risk of type 2 diabetes among Saudi adults: a cross-sectional study. Environmental Science and Pollution Research. 2015;22(1):379-86.

16. Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, Lillefosse H, et al. Persistent Organic Pollutant Exposure Leads to Insulin Resistance Syndrome. Environ Health Perspect. 2009;118(4):465-71.

17. Ibrahim MM, Fjaere E, Lock EJ, Naville D, Amlund H, Meugnier E, et al. Chronic consumption of farmed salmon containing persistent organic pollutants causes insulin resistance and obesity in mice. PLoS One. 2011;6(9):e25170.

18. Pavlikova N, Daniel P, Sramek J, Jelinek M, Sramkova V, Nemcova V, et al. Upregulation of vitamin D-binding protein is associated with changes in insulin production in pancreatic beta-cells exposed to p,p'-DDT and p,p'-DDE. Sci Rep. 2019;9(1):18026.

19. Nemcova-Furstova V, James RF, Kovar J. Inhibitory effect of unsaturated fatty acids on saturated fatty acid-induced apoptosis in human pancreatic beta-cells: activation of caspases and ER stress induction. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2011;27(5):525-38.

20. Weiszenstein M, Pavlikova N, Elkalaf M, Halada P, Seda O, Trnka J, et al. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware. PLoS One. 2016;11(3):14.

21. Pavlikova N, Weiszenstein M, Pala J, Halada P, Seda O, Elkalaf M, et al. THE EFFECT OF CULTUREWARE SURFACES ON FUNCTIONAL AND STRUCTURAL COMPONENTS OF DIFFERENTIATED 3T3-L1 PREADIPOCYTES. Cell Mol Biol Lett. 2015;20(5):919-36.

22. Dyballa N, Metzger S. Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J Vis Exp. 2009;30(30):1-5.

23. Foufelle F, Ferre P. Unfolded protein response: its role in physiology and physiopathology. M S-Med Sci. 2007;23(3):291-6.

24. Gong J, Wang XZ, Wang T, Chen JJ, Xie XY, Hu H, et al. Molecular signal networks and regulating mechanisms of the unfolded protein response. J Zhejiang Univ-SCI B. 2017;18(1):1-14.

25. Nishitoh H. CHOP is a multifunctional transcription factor in the ER stress response. J Biochem. 2012;151(3):217-9.

26. Marzec M, Eletto D, Argon Y. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta-Mol Cell Res. 2012;1823(3):774-87.
27. Eletto D, Dersh D, Argon Y. GRP94 in ER quality control and stress responses. Seminars in Cell & Developmental Biology. 2010;21(5):479-85.
28. Prell T, Lautenschlager J, Grosskreutz J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium. 2013;54(2):132-43.
29. Londono C, Osorio C, Gama V, Alzate O. Mortalin, Apoptosis, and Neurodegeneration. Biomolecules. 2012;2(1):143-64.
30. Kaul SC, Taira K, Pereira-Smith OM, Wadhwa R. Mortalin: present and prospective. Experimental Gerontology. 2002;37(10-11):1157-64.
31. Liu YX, Hu YY, E QK, Zuo J, Yang L, Liu W. Salvianolic acid B inhibits mitochondrial dysfunction by up-regulating mortalin. Sci Rep. 2017;7:13.
32. Decorsiere A, Cayrel A, Vagner S, Millevoi S. Essential role for the interaction between hnRNP H/F and a G quadruplex in maintaining p53 pre-mRNA 3'-end processing and function during DNA damage. Genes Dev. 2011;25(3):220-5.
33. Petrak J, Ivanek R, Toman O, Cmejla R, Cmejlova J, Vyoral D, et al. Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics. 2008;8(9):1744-9.
34. Kuo WC, Yang KT, Hsieh SL, Lai MZ. Ezrin is a negative regulator of death receptor-induced apoptosis. Oncogene. 2010;29(9):1374-83.
35. Huh YH, Oh S, Yeo YR, Chae IH, Kim SH, Lee JS, et al. Swiprosin-1 stimulates cancer invasion and metastasis by increasing the Rho family of GTPase signaling. Oncotarget. 2015;6(15):13060-71.
36. Park KR, An JY, Kang JY, Lee JG, Lee Y, Mun SA, et al. Structural mechanism underlying regulation of human EFhd2/Swiprosin-1 actin-bundling activity by Ser183 phosphorylation. Biochemical and Biophysical Research Communications. 2017;483(1):442-8.
37. Kaisari S, Sitry-Shevah D, Miniowitz-Shemtov S, Teichner A, Hershko A. Role of CCT chaperonin in the disassembly of mitotic checkpoint complexes. Proc Natl Acad Sci U S A. 2017;114(5):956-61.
38. Liou AKF, Willison KR. Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes. Embo J. 1997;16(14):4311-6.
39. Le NTV, Richardson DR. Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: a link between iron metabolism and proliferation. Blood. 2004;104(9):2967-75.
40. Wang HS, Li W, Xu J, Zhang T, Zuo DQ, Zhou ZF, et al. NDRG1 inhibition sensitizes osteosarcoma cells to combretastatin A-4 through targeting autophagy. Cell Death Dis. 2017;8:12.
41. Chen ZQ, Zhang DH, Yue F, Zheng MH, Kovacevic Z, Richardson DR. The Iron Chelators Dp44mT and DFO Inhibit TGF-beta-induced Epithelial-Mesenchymal Transition via Up-Regulation of N-Myc Downstream-regulated Gene 1 (NDRG1). Journal of Biological Chemistry. 2012;287(21):17016-28.
42. Alchetron. https://alchetron.com/PBDC1.
43. Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: A major physiologic cytoprotectant. Proc Natl Acad Sci U S A. 2002;99(25):16093-8.
44. Lee SJ, Kang HK, Eun WS, Park J, Choi SY, Kwon HY. Tat-biliverdin reductase A protects INS-1 cells from human islet amyloid polypeptide-induced cytotoxicity by alleviating oxidative stress and ER stress. Cell Biol Int. 2017;41(5):514-24.
48. Lenzen S. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic beta-cells. Biochim Biophys Acta-Gen Subj. 2017;1861(8):1929-42.

49. Aulas A, Caron G, Gkogkas CG, Mohamed NV, Destroismaisons L, Sonenberg N, et al. G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA. J Cell Biol. 2015;209(1):73-84.

50. Aulas A, Stabile S, Velde CV. Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP. Mol Neurodegener. 2012;7:14.

51. Buranrat B, Connor JR. Cytoprotective effects of ferritin on doxorubicin-induced breast cancer cell death. Oncol Rep. 2015;34(5):2790-6.

52. Arya R, Mallik M, Lakhotia SC. Heat shock genes - integrating cell survival and death. J Biosci. 2007;32(3):595-610.

53. Voss OH, Batra S, Kolattukudy SJ, Gonzalez-Mejia ME, Smith JB, Doseff AI. Binding of caspase-3 prodomain to heat shock protein 27 regulates monocyte apoptosis by inhibiting caspase-3 proteolytic activation. Journal of Biological Chemistry. 2007;282(34):25088-99.
Figure 1
Figure 2
Figure 3
Figure 4
