Induced Polyplody in Diploid Ornamental Ginger (Hedychium muluense R. M. Smith) Using Colchicine and Oryzalin

Hamidou F. Sakhanokho
USDA, ARS, 810 Hwy 26 West, P.O. Box 287, Poplarville, MS 39470

Kannah Rajasekaran
USDA-ARS-SRRC, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124

Rowena Y. Kelley
Department of Biochemistry and Molecular Biology, Mississippi State University, P.O. Box 9650, Mississippi State, MS 39762

Nurul Islam-Faridi
Southern Institute of Forest Genetics, Southern Research Station, U.S. Forest Service, Department of Ecosystem Science and Management, TAMU-2585, Texas A&M University, College Station, TX 77843-2585

Abstract. The ploidy level of H. muluense, a diploid (2n = 2x = 34) and dwarf ornamental ginger species, has been determined and is reported for the first time. Oryzalin and colchicine were successfully used to induce polyplody in Hedychium muluense in vitro. Embryogenic cell lines were treated with oryzalin (30, 60, or 120 μM) and colchicine (2.5, 5, or 10 μM) for 24, 48, or 72 h. The control contained no antimitotic agent. Flow cytometry, chloroplast count, and stomatal frequency were more effective and reliable than stomatal number as methods for assessing ploidy. Overall, oryzalin was more effective than colchicine in inducing polyplody. The highest induction frequency (15%) of tetraploidy was achieved when embryogenic callus was exposed to 60 μM oryzalin for 72 h. For colchicine, exposure of embryogenic callus to the 2.5 μM oryzalin was the most effective in creating tetraploid (13%) plants.

Hedychium J. Koenig is one of the largest genera of the Zingiberaceae with close to 80 species (Gopanraj et al., 2005; Wood et al., 2000). As an ornamental, it is cultivated for its sweet-scented flowers and attractive green foliage. Hedychium plants are also used in perfumery and in ethnomedicine (Gao et al., 2008; Gopanraj et al., 2005). Most Hedychium species are diploid (2n = 2x = 34), but triploids (2n = 3x = 51), tetraploids (2n = 4x = 68) as well as aneuploids exist both at interspecific and intraspecific levels (Eksomtramage et al., 2009; Mukherjee, 1970; Raghavan and Venkataprabhu, 1943; Sharma and Bhattacharya, 1958). Induced polyplody is a valuable tool that offers some benefits for horticultural, pharmaceutical, and agricultural improvement of plants (Ascough et al., 2008). For instance, increased ploidy level was associated with increased flower size in rhododendrons and intensified flower colors in carnation and cyclamen (Takamura and Miyajima, 1996; Yamaguchi, 1989). Induced polyplody can also remove hybridization barriers resulting from differences in ploidy levels (Rissop-Pascotto et al., 2005).

Induced polyplody has been achieved in several plant species using the antimitotic chemicals colchicine and oryzalin (Dhooghe et al., 2009; Pickens et al., 2006; Rey et al., 2002). Colchicine binds poorly to plant tubulin, but has a high affinity for animal microtubulins and thus is toxic to humans (Morejohn et al., 1987). By contrast, oryzalin specifically binds to plant tubulins, so it can be used at lower concentrations (Bajer and Molé-Bajer, 1986; Lehrer et al., 2008). To verify the ploidy level of treated plants, several techniques are available, including the count of chromosome and chloroplast number, the measure of stomatal length and frequency, and flow cytometry. Although chromosome counts may be the most accurate technique for ploidy determination, this method is often time-consuming and very tedious, especially for plant species such as Hedychium with small meristematic cells and dense cytoplasm containing large numbers of chromosomes (Sharma and Bhattacharya, 1958). Flow cytometry equipment is expensive, but chromosome analysis through flow cytometry is a quick, reproducible, and dependable method and particularly suited for determining the ploidy levels of large numbers of samples. Flow cytometry has been used extensively to determine the ploidy levels in several plant species (Bonos et al., 2002; Dansi et al., 2001). Stomatal frequency and length and chloroplast number per pair of guard cells also have been used as indirect methods for assessing the plant ploidy levels (Beck et al., 2003; Sari et al., 1999; Singsit and Ozias-Akins, 1992; Singsit and Veilleux, 1991). Therefore, in the absence of flow cytometry, these methods could be used to assess ploidy. Stomatal frequency was negatively correlated with ploidy level in Bromus inermis Leyss., but stomatal length increased as ploidy increased (Aryavand et al., 2003; Rajendra et al., 1978; Tan and Dunn, 1973). Chloroplast frequency in guard cells was positively correlated with ploidy in several plant species (Sari et al., 1999; Singsit and Ozias-Akins, 1992; Singsit and Veilleux, 1991).

One of the traits that limits the use of Hedychium species and cultivars as potted plants is their considerable height. However, H. muluense, whose diploid (2n = 2x = 34) status was determined in the current study, is a dwarf (<2 feet or 0.60 m) species with small but beautiful flowers. Introggression of the dwarf trait into some of the more ornamentally desirable species is a desirable goal, but hybridization barriers resulting from differences in ploidy could hinder this goal. Therefore, the purpose of this study was to induce polyplody, particularly tetraploidy in H. muluense using colchicine and oryzalin.

Materials and Methods

Tissue culture. Seeds of Hedychium muluense were collected from greenhouse-grown plants, surface-sterilized, and germinated following a protocol described by Sakhanokho et al. (2008). Callus, embryos, and germinated seedlings were cultured on MS media supplemented with 0.02 μM α-naphthaleneacetic acid, 0.2 g·L⁻¹ myo-inositol, 1 g·L⁻¹ casein hydrolysate, and 1 mg·L⁻¹ thiamine. Colchicine (MP Biomedicals, Irvine, CA) and oryzalin (ChemService, West Chester, PA) were filter-sterilized through a 0.22-μm filter (Corning Inc., Corning, NY) and then added to the autoclaved media. A 1% filter-sterilized dimethyl sulfoxide (Sigma, St. Louis, MO) solution was added to each antimitotic agent.

Received for publication 22 June 2009. Accepted for publication 24 Aug. 2009. We thank Kermit Myrick, Alexandria Goins, Tigest Boutwell, and Ramata Sakhanokho for technical assistance. To whom reprint requests should be addressed; e-mail Hamidou.Sakhanokho@ars.usda.gov.
agent-containing media as well as the controls. The effects of various concentrations of colchicine (2.5, 5, or 10 mM) and oryzalin (30, 60, 120 μM) applied to these cultures for varying durations (24, 48, 72 h) were evaluated. The cultures were then transferred to 100 mm × 20 mm petri dishes containing a solid medium similar to the liquid medium described previously but also including 0.75 g L⁻¹ MgCl₂ and 2 g L⁻¹ Gelrite (Sigma). The cultures were then sealed with Parafilm® (Fishier Scientific, Atlanta, GA) and incubated at 22°C. The experiments were performed following a protocol described by Sakhanokho et al. (2008).

Experimental design and statistical analysis. Two separate experiments were conducted to evaluate the effect of two antimitotic inhibitors in inducing polyploidy in *H. muluense*. The first experiment was a factorial arrangement of three concentrations of colchicine (2.5, 5, or 10 mM) and three durations (24, 48, 72 h) and the second one was a factorial arrangement of three concentrations of oryzalin (30, 60, or 120 μM) and three durations (24, 48, 72 h). The experiment was repeated twice at different times. The controls contained no antimitotic inhibitor. In each replication, there were five flasks per treatment and per duration. The flasks were placed on an orbital shaker at 22°C and agitated at 110 rpm. The liquid medium was drained out of each flask and the content was agitated at 110 rpm. The liquid medium was poured out of a 100 mm × 20 mm petri dish and stored at liquid nitrogen. Rooting and plantlet acclimatization were performed following a protocol described by Jewel and Islam-Faridi, (2008). The preparations were counterstained with 0.2% Azure B. Digital images were described elsewhere (Jewel and Islam-Faridi, 2008). The first experiment was a factorial arrangement of three concentrations of colchicine (2.5, 5, or 10 mM) and oryzalin (30, 60, 120 μM) and three durations (24, 48, 72 h). The experiment was repeated twice at different times. Ploidy levels were determined for young, unexpanded leaf tissues from control and oryzalin-treated plants using a Partec Ploidy Analyzer (Partec, Muenster, Germany).

Chromosome preparation and microscopy. Actively growing root tips (~1 cm long) were harvested from *H. muluense* plants growing in potting soil in a greenhouse and immediately pretreated with an aqueous solution of bromo-naphthalene (0.8%) for 3.5 hours in the dark period. DNA fluorescence microscopy, 4′-6 diamidino-2-phenylindole (DAPI) staining, and chromosome spreads were prepared from nontreated control plants. Instrument gain was adjusted so that the peak of nuclei isolated from nontreated control plants was set at channel 50, and this calibration was checked periodically to minimize variations resulting from runs. Therefore, peaks representing nuclei from samples with diploid, triploid, and tetraploid levels were expected at channels 50, 75, and 100, respectively.

Evaluation of stomatal frequency and length. The adaxial leaf surface has a significantly higher stomatal frequency and less variation than the abaxial surface of the leaves (Rajendra et al., 1978; Teare et al., 1971). Preliminary results obtained in our laboratory, which showed that adaxial leaves of *Hedychium muluense* have more stomata than their abaxial leaves, confirmed these findings. Therefore, for stomatal counts, only the adaxial surface of the leaves was used in this study. Three leaf samples from each plant were analyzed and the number of stomata per square millimeter was counted from three different microscopic fields of view for each leaf sample using a light microscope (ACCU-SCOPE, Inc., Sea Cliff, NY) at 10× magnification, and the number of stomata per field of view was converted to stomata per square millimeter.

For stomatal length measurements, three leaf samples (70×50 mm² each) were collected from each plant using a #3 hole puncher (Fisher Scientific, Atlanta, GA). The samples were placed in 13-mL tubes, and a 40% nitric acid solution was added to cover the leaf pieces. The tubes were placed in a 90°C water bath for 15 minutes. Every 5 minutes, the tubes were shaken two times during heating to separate the top and bottom layers of each sample. After the end of the 15-min heating process, the tubes were removed, shaken for 2 minutes, and the acid poured off, then leaf sections were rinsed with deionized water. A 1 N sodium hydroxide (Sigma, St. Louis, MO) was added to cover the leaf samples for 10 minutes. Afterward, the sodium hydroxide was poured off and leaf samples were rinsed with deionized water. Samples were subsequently covered with toluidine blue stain (Fisher, Fair Lawn, NJ) and allowed to sit for 1 hour. The stain was then poured off and the leaf samples were rinsed with deionized water. Then samples were rinsed successively with 50%, 70%, 80%, and 95% ethanol and covered with 100% ethanol (Fisher) and stored until needed. Leaf samples were placed on slides and covered with a coverslip. Five stomata from each plant sample were viewed under a Partec ACCU-SCOPE (ACCU-SCOPE, Inc., Sea Cliff, NY) at 1000× oil immersion magnification. The stomata were photographed with an M Eye Digital camera (Ken-A-Vision, Kansas City, MO), and the stomatal length was measured using Vision Explore software (Ken-A-Vision).

Chloroplast counts. Three leaf samples from each plant were analyzed. The top mesophyll tissues were removed using a scalpel, leaving the lower epidermis. This section was placed on a slide with a drop of deionized water. A coverslip was placed on the slide and observed at 1000× under an Olympus BX 250 fluorescent microscope equipped with a fluorescein isothiocyanate filter. After a few seconds, chloroplasts could be counted when they began to glow. The chloroplasts were

Table 1. Callus growth (%) and number of somatic embryos/g callus (SEs/g) from *Hedychium muluense* callus exposed to various concentrations of colchicine for various durations.

Concentration (mM)	Exposure time (h)	Percent callus growth	Number of SEs/g callus
0	24	37.2	81.3
2.5	24	47.6	81.7
2	24	48.1	87.6
5	24	49.5	71.0
10	24	341.8	66.3
15	24	341.8	65.1
20	24	279.7	65.2
25	24	181.7	65.2
30	24	191.7	68.3
5	10	177.7	23.7

*Means with different letters within the same column and belonging to the same inhibitor concentration are significantly different at *P* = 0.05 according to Tukey's test. Means are the averages of 20 replicates (plates) per treatment and per duration. The experiment was repeated twice at different times.*
Results and Discussion

Effect of colchicine and oryzalin on callus growth and somatic embryogenesis. After 4 weeks, callus production increased in all media (Tables 1 and 2). For colchicine, callus increase rate was highest for callus exposed to 2.5 mM colchicine, regardless of exposure time, but callus growth rate dropped as colchicine concentration and/or exposure time increased for the rest of the media (Table 1). These results were consistent with several other studies, including those with carrots (Daucus spp. L.), poinsettias (Euphorbia pulcherrima Willd. ex Klotzsch), and Watsonia leptida N. E. Brown (Ascough et al., 2008; Pickens et al., 2006; Sloan and Camper, 1981). Callus production slightly increased (compared with the control media) and remained generally constant in culture media containing 30 or 60 μM oryzalin, regardless of exposure time, but steadily declined over time for medium containing 120 μM oryzalin (Table 2). The results indicated that both oryzalin and colchicine promoted callus production at lower concentrations. The decline in callus growth when colchicine concentration or exposure time was increased can be attributed to the higher toxicity level of colchicine compared with oryzalin. Similar results were obtained when shoot tips of the ornamental Alocasia michoilitiana 'Green Velvet' were treated with colchicine or oryzalin (Thao et al., 2003).

For somatic embryo production, there was a marked difference between colchicine and oryzalin (Tables 1 and 2). There was little variation among media containing 0, 2.5, or 5 mM colchicine, but the longer exposure times had a clear inhibitory effect on embryo production in medium containing 10 mM colchicine (Table 1). Both higher concentrations and longer exposure times to colchicine have been reported to adversely affect somatic embryo production in cork oak anther cultures (Pintos et al., 2007). On the other hand, media containing 0, 30, or 120 μM oryzalin produced similar numbers of embryos per gram of callus, regardless of exposure time, but the most noticeable result here was the dramatic increase in somatic embryo production obtained in media containing 30 μM oryzalin (Table 2), implying that promotion of somatic embryogenesis in H. muluense using oryzalin was mostly dose-dependent. Rey

Table 2. Callus growth (%) and number of somatic embryos/g callus (SEs/g) from Hedychium muluense callus exposed to various concentrations of oryzalin for various durations. z

Conc (μM)	Exposure time (h)	Percent callus growth	Number of SEs/g callus
0	24	397.1 a	81.5 a
0	48	396.2 a	77.7 a
0	72	391.3 a	78.7 a
30	24	421.8 a	234.4 a
30	48	467.9 a	244.7 a
30	72	453.0 a	245.1 a
60	24	478.5 a	96.8 a
60	48	462.4 ab	99.6 a
60	72	597.9 a	95.3 a
120	24	602.9 a	90.8 a
120	48	412.3 b	89.2 a
120	72	339.6 b	91.3 a

zData on callus growth and SEs/g were recorded after 4 weeks and 60 d, respectively.
*Means with different letters within the same column and belonging to the same inhibitor concentration are significantly different at P = 0.05 according to Tukey’s test. Means are the averages of 20 replicates (plates) per treatment and per duration. The experiment was repeated twice at different times.

Fig. 1. Histogram of relative DNA content of nuclei isolated from diploid (A), tetraploid (B), triploid (C), and mixoploid (D) of Hedychium muluense leaves. Diploid (control) nuclei were set to channel 50 with triploids resolving at channel 75 and tetraploids resolving at channel 100.
et al. (2002) have suggested that stimulation of somatic embryogenesis by antimitotic agents may be related to the induction or synthesis of stress proteins. Higher oryzalin concentrations have been reported to have an inhibitory effect on somatic embryo production (Pintos et al., 2007), but no such effect was found with the concentrations used in the current study.

Flow cytometric analysis of ploidy level. Ploidy level of control, colchicine- and oryzalin-treated samples was successfully determined using flow cytometry as illustrated by representatives of histograms showing diploid (2x), tetraploid (4x), triploid (3x), and mixoploid (2x + 4x) (Fig. 1A–D). Flow cytometry analysis has proven to be a rapid and efficient method for estimating the ploidy levels of the colchicine- and oryzalin-treated regenerated plants. It was particularly suited in this study because of the large number of samples that needed to be analyzed. Also, because young tissues, which have lower concentration of starch, polysaccharides, and other metabolites than in older tissues (Lee and Lin, 2005), from recently regenerated plants were used, the values of the coefficients of variation obtained were generally lower than 2.0, indicating the reliability of the results.

Stomatal frequency and length. Mean stomatal frequency per square millimeter, stomatal length, and the number of chloroplasts per guard cell were calculated. For stomatal frequency per square millimeter, ANOVA revealed significant differences among leaf samples collected from diploid, triploid, and tetraploid plants (Table 1). The stomatal frequency in diploid plants was 1.5 and 1.8 times greater than that observed in triploid and tetraploid plants, respectively. There was no overlap among diploid, triploid, and tetraploid plants. Stomatal frequency and ploidy were inversely related as confirmed by the highly significantly negative correlation coefficient ($r = -0.74, P = 0.001$) between the two parameters. These results are in agreement with those reported by others (Beck et al., 2003; Sapra et al., 1975; Tan and Dunn, 1973). The results obtained in this study clearly demonstrated that stomatal frequency differed markedly among diploid, triploid, and tetraploid *H. muluense* plants and that this characteristic can be used to determine the ploidy of this species. For stomatal length, there was a significant difference between diploid and triploid plants on the one hand and diploid and tetraploid plants on the other ($P = 0.05$); however, no statistical difference ($P = 0.05$) was found between triploid and tetraploid plants (Table 1).

Chloroplast counts. There were significant differences ($P = 0.05$) among diploid, triploid, and tetraploid plants (Table 3: Fig. 2A–B), indicating that ploidy level can be separated based on chloroplast number per pair of guard cells. There was no overlap between any two of these means, and ploidy level and chloroplast numbers were highly positively correlated ($r = 0.70, P = 0.001$). Our results were in agreement with previously published reports on other plant species (Beck et al., 2003; Sari et al., 1999; Singsit and Ozias-Akins, 1992; Singsit and Veilleux, 1991). Qin and Rotino (1995) found that chloroplast number in guard cells represented a more reliable and consistent indicator of ploidy in pepper plants compared with stomatal cell length and attributed this difference to the fact that chloroplast number is more stable than the size of stomata, which may be more influenced by age and leaf position.

Chromosome counts. Conventional chromosome staining (0.2% Azure B) was used to count the chromosome number from cell spreads and determine the ploidy level of *H. muluense*, which was found to be diploid ($2n = 2x = 34$) (Fig. 2C). This is the first report on the ploidy status of this species. Chromosome count was also used to confirm the ploidy inferred by other methods (Figs. 1B and 2D).

Effect of colchicine and oryzalin on polyploidization. No spontaneous polyploidization occurred because all control plants tested were diploid, but polyploidy was induced in both colchicine- and oryzalin-containing cultures (Tables 4 and 5). The four types of polyploids obtained included triploid (3x), tetraploid (4x), and mixoploid (2x + 4x and 3x + 4x). Interestingly, no mixoploid consisting of 2x + 3x was obtained in any of the two antimitotic treatments (Tables 4 and 5). For colchicine, the 2.5 mM concentration was generally more efficient at inducing polyploidy, regardless of exposure time, but more tetraploid plants were obtained when the cultures were exposed to this concentration for 24 h (Table 4). Polyploidization efficiency declined for media containing 5 mM colchicine. Although cultures containing 10 mM colchicine produced somatic embryos (Table 1), no plants from this treatment were tested because the embryos failed to convert into fully developed plants. High concentrations of colchicine have been associated with plant cell death because of the highly toxic effect of this antimitotic agent, which blocks spindle fiber development and modifies the differentiation process (Eckehaut et al., 1955; Pintos et al., 2007). This toxicity is in part attributable to the generally higher colchicine concentrations needed for polyploid induction because colchicine binds poorly to plant tubulins (Morejohn et al., 1987).

![Fig. 2. Guard cells showing 22 and 31 chloroplasts per pair of guard cells for a diploid plant (A) and an induced tetraploid plant (B), respectively. Somatic chromosome spreads of *H. muluense* stained with 0.2% Azure B: (C) diploid ($2n = 2x = 34$) cell and (D) tetraploid ($2n = 2x = 68$) cell. Bar for chromosome spreads is 10 μm.](image)
Table 4. Effect of colchicine concentration and exposure time on polyploidization of in vitro regenerated
Hedychium muluense plants.

Conc (μM)	Duration (h)	Total plants tested	Diploid	Triploid	Tetraploid	Mixoploid
0	24 100	100	0	0	0	0
0	48 100	100	0	0	0	0
0	72 100	100	0	0	0	0
2.5	24 100	81 3 13	2	1		
2.5	48 100	89 2	7	1		
2.5	72 100	88 2	6	3	1	
5	24 100	97 1	2	0		
5	48 100	98 0	2	0		
5	72 100	99 0	1	0		

Fully developed plants were obtained in all oryzalin-containing media, including those containing higher concentrations (Table 2), which can be explained by the less toxic effect of oryzalin as compared with colchicine (Pinto et al., 2007). Moreover, because of its higher affinity for plant tubulin, oryzalin is used at lower concentrations in chromosome duplication studies (Bajer and Molé-Bajer, 1986; Hugdahl and Morejohn, 1993). Oryzalin was effective in inducing polyploidy at all concentrations used in this study. The best result was obtained when cultures were exposed to 60 μM oryzalin for 72 h. The percentages of induced tetraploidy increased for 30 μM and 60 μM oryzalin as the exposure time increased, but this percentage decreased for 120 μM oryzalin as exposure time increased (Table 2). Overall, our results showed that oryzalin was more efficient in inducing polyploidy, in particular tetraploidy, than colchicine, a result that is in agreement with a number of recent reports (Bajer et al., 2008; Dhoooghe et al., 2009; Eeckhaut et al., 2009; Gopanraj et al., 2008; Eigsti and D. Rustin, 1995). Spindle and cytokinesis can be complementary with flow cytometry to describe periclinal chimeras arisen through the action of mitosis inhibitors. It is worth mentioning that stomata only yield information on the LIII layer unlike roots, which provide information on the LII layer and leaves on the LII + LII layers for monocots and L + LI + LII layers for dicots. Furthermore, in the absence of flow cytometry, chloroplast count and/or stomatal frequency could be used to assess the ploidy in *H. muluense*. The current study established an efficient polyploidization method for *H. muluense*. The induction of dwarf polyploid, particularly tetraploid, *H. muluense* plants could help remove the hybridization barrier resulting from ploidy differences. This could pave the way for the development of more dwarf and compact *Hedychium* plants (which are preferred by consumers) through the hybridization of the induced tetraploid *H. muluense* plants with some of the more ornamentally attractive but tall tetraploid *Hedychium* plants.

Literature Cited

Aryavand, A., B. Ehsaie, B. Tran, and J.G. Waines. 2003. Stomatal frequency and size differentiate ploidy levels in *Aegilops neglecta*. Genet. Resources Crop Evol. 50:175–182.

Ascough, G.D., J.E. Erwan, and J. van Staden. 2008. Effectiveness of colchicine and oryzalin at inducing polyploidy in *Watsonia leptis* N. E. Brown. HortScience 43:2248–2251.

Bajer, A.S. and J. Molé-Bajer. 1986. Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubules. Proc. N. Y. Acad. Sci. 466:767–784.

Beck, S.L., R.W. Dunlop, and A. Fossey. 2003. Stomatal length and frequency as a measure of ploidy in black wattle, *Acacia modesta* (de Wild), Bot. J. Linn. Soc. 141:177–181.

Binos, S.A., K.A. Plumley, and W.A. Meyer. 2002. Ploidy determination in *Agrostis* using flow cytometry and morphological traits. Cytologia 42:192–196.

Dansi, A., H.D. Mignouna, M. Pillay, and S. Zok. 2001. Ploidy variation in the cultivated yams (*Dioscorea batatas*–*Dioscorea rotundata* complex) from Cameroon as determined by flow cytometry. Euphytica 119:301–307.

De Carvalho, J.F.R.P., C.R. de Carvalho, and W.C. Otoni. 2005. In vitro induction of polyploidy in *Rosa oleifera*. Plant Cell Tiss. Org. Cult. 80:69–75.

Dhoooghe, E., S. Denis, T. Eeckhaut, D. Reheul, and M.-C. Van Laecke. 2007. *In vitro* induction of tetraploids in ornamental *Ranunculus*. Euphytica 168:33–40.

Eeckhaut, T.G.R., S.P.O. Werbrouck, L.W.H. Leus, E.J. Van Boekstaele, and P.C. Debergh. 2004. Chemically induced polyploidization in *Spithyllium walissii* Regel through somatic embryogenesis. Plant Cell Tiss. Org. Cult. 78:241–246.

Eigsti, D.I. and P. Rustin. 1995. Spindle and cytokinesis, pp. 65–139. In Colchicine in Agriculture, Medicine, Biology and Chemistry. The Iowa State College Press, Ames, IA.

Eeckhaut, T.G.R., S.P.O. Werbrouck, L.W.H. Leus, E.J. Van Boekstaele, P.C. Eigsti, D.I. and P. Rustin. 1995. Spindle and cytokinesis, p. 65–139. In: Agriculture. The Iowa State College Press, Ames, IA.

Eksomtramage, L., P. Sirirugga, P. Jivanp, and C. Makoni. 2002. Chromosome counts of some Zingiberaceae species from Thailand. Songklanakarin J. Sci. Technol. 24:312–319.

Gao, L., N. Liu, B. Huang, and X. Hu. 2008. Phylogenetic analysis and genetic mapping of *Chinese Hedychium* using SRSp markers. Scientia Hort. 117:369–377.

Gopanraj, G., M. Dan, S. Shibhuraj, M.G. Sethuraman, and V. George. 2005. Chemical composition and antibacterial activity of the rhizome oil of *Hedychium larseni*. Acta Pharm. 55:315–320.

Hugdahl, J.D. and L.C. Morejohn. 1993. Rapid and reversible high affinity binding of the dinotraunilene herbicide oryzalin to tubulin from *Zea mays* L. Plant Physiol. 102:725–740.

Jewel, D.C. and N. Islam-Faridi. 1994. A technique for somatic chromosome preparation and C-banding of maize, p. 484–493. In: Feelying, M. and W. Wallot (eds.). The maize handbook. Springer-Verlag, New York, NY.

Lee, K. and T. Lin. 2005. Isolation of plant nuclear suitable for flow cytometry from recalci-trant tissue by use of a filtration column. Plant Mol. Biol. Rpt. 23:53–58.

Lehrer, J.M., M.H. Brand, and V. Walbot (eds.). The maize handbook. Springer-Verlag, New York, NY.

Makoni. 2002. Chromosome counts of some *Dioscorea* species from Madagasikara. *Euphytica*. 119:67–71.

Morejohn, L.C. T.E. Bureau, J. Molé-Bajer, A.S. Bajer, and D.E. Fosket. 1987. Oryzalin, adini-aniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in *vitro*. Planta 172:252–264.
Mukherjee, I. 1970. Chromosome studies of some species of Hedychium. Bot. Mag. Tokyo. 83: 237–241.

Pickens, K.A., Z.M. Cheng, and S.A. Kania. 2006. Effect of colchicine and oryzalin on callus and adventitious shoot formation of Euphorbia pulcherrima ‘Winter Rose’. HortScience 41: 1651–1655.

Pintos, B., J.A. Manzanera, and M.A. Bueno. 2007. Antimitotic agents increase the productivity of double-haploid embryos from cork oak anther culture. J. Plant Physiol. 164:1595–1604.

Qin, X. and G.L. Rotino. 1995. Chloroplast number in guard cells as ploidy indicator of in vitro-grown androgenic pepper plantlets. Plant Cell Tiss. Org. Cult. 41:145–149.

Raghavan, T.S. and K.R. Venkatasubban. 1943. Cytological studies in the family Zingiberaceae with special reference to chromosome number and cyto-taxonomy. Proc. Indian Acad. of Sci. Ser. B 47:352–358.

Rajendra, B.R., K.A. Mujeeb, and L.S. Bates. 1978. Relationships between 2x *Hordum* sp., 2x *Secale* sp. and 2x, 4x, 6x *Triticum* sp. for stomatal frequency, size and distribution. Environ. Exp. Bot. 18:33–37.

Rey, H.Y., P.A. Sanberro, M.M. Collavino, J.R. Davina, A.M. Gonzales, and L.A. Mroginski. 2002. Colchicine, trifluralin, and oryzalin promoted development of somatic embryos in *Ilex paraguariensis* (Aquifoliaceae). Euphytica 123: 45–46.

Risso-Pascotto, C., M.S. Pagliarini, and C.B. do Valle. 2005. Multiple spindles and cellularization during microsporogenesis in an artificially induced tetraploid accession of Brachiaria ruziienis (Gramineae). Plant Cell Rpt. 23: 522–527.

Sakhanokho, H.F., R.Y. Kelley, and K. Rajasekaran. 2008. First report of plant regeneration via somatic embryogenesis from shoot apex-derived callus of Hedychium mukuense R. M. Smith. J. Crop Improv. 21:191–200.

Sapra, V.T., J.L. Hughes, and G.C. Sharma. 1975. Frequency, size and distribution of stomata in *Triticale* leaves. Crop Sci. 15:356–358.

Sari, N., K. Abak, and M. Pitrat. 1999. Comparison of ploidy level screening methods in waremelon: *Citrus lanatus* (Thunn.). Matsum. & Nakai. Scientia Hort. 82:265–277.

SAS Institute. 2003. SAS 9.1.3. SAS Institute, Inc., Cary, NC.

Sharma, A.K. and N.K. Bhattacharyya. 1958. Cytology of several members of Zingiberaceae and a study of the inconstancy of their chromosome complements. Cellule 59:301–346.

Singlet, C. and P. Ozias-Akins. 1992. Rapid estimation of ploidy levels in *in vitro*-regenerated interspecific *Arachis* hybrids and fertile triploids. Euphytica 64:183–188.

Singlet, C. and R.E. Veilleux. 1991. Chloroplast density in guard cells of leaves of anther-derived potato plants grown *in vitro* and *in vivo*. HortScience 26:592–594.

Sloan, M. and N.D. Camper. 1981. Effects of colchicine on carrot callus—Growth and status. Plant Cell Tiss. Org. Cult. 1:69–75.

Takamura, T. and I. Miyajima. 1996. Colchicine induced tetraploids in yellow-flowered cyclamen and their characteristics. Scientia Hort. 65:305–312.

Tan, G.Y. and G.M. Dunn. 1973. Relationship of stomatal length and frequency and pollen-grain diameter to ploidy level in *Bromus inermis* Leyss. Crop Sci. 13:332–334.

Teare, I.D., C.J. Peterson, and A.G. Law. 1971. Size and frequency of leaf stomata in cultivars of *Triticum aestivum* and other *Triticum* species. Crop Sci. 11:496–498.

Thao, N.T.P., K. Ureshino, I. Miyajima, Y. Ozaki, and H. Okubo. 2003. Induction of tetraploids in ornamental *Alocasia* through colchicine and oryzalin treatments. Plant Cell Tiss. Org. Cult. 72:19–25.

Viehnmannová, I., E.F. Cusimamani, M. Bechyne, M. Vvyadilová, and M. Greplová. 2009. *In vitro* induction of polyploidy in yacon (*Smallanthus sonchifolius*). Plant Cell Tiss. Org. Cult. 97:21–25.

Wood, T.H., W.M. Whitten, and N.H. Williams. 2000. Phylogeny of *Hedychium* and related genera (Zingiberaceae) based on ITS sequence data. Edinb. J. Bot. 57:261–270.

Yamaguchi, M. 1989. Basic studies on the flower color breeding of carnation (Dianthus caryophyllus L.). Bull. F. Hort. Mmnikyushu Univ. 19:1–78 [in Japanese with English summary].