Do educational robotics competitions impact students’ learning?

M S Zuhrie¹, I G P A Budijahjanto², L Nurlaela³, I Basuki⁴
¹,²,³,⁴Vocational Education Doctoral Study Program, Postgraduate Program, Universitas Negeri Surabaya, Indonesia
E-mail: asto@unesa.ac.id

Abstract. The development of robot technology has grown rapidly. Robots have been widely used in various aspects to help human’s interests. In the education sector, robots have also been used as a learning tool to assist in studying fields such as science and technology. Currently, to encourage the development of robots in the education sector, robot competitions are held with various kinds of events. The types of robots developed to participate in robot competitions are also varied, such as mobile robot contest, modular robot contest, humanoid robot contest, flying robot contest, underwater robot contest, innovation robot contest, brick robot contest, and VR robot contest. The robot competition events are held nationally and internationally. The purposes of this study were to identify what kind of skills obtained by students after following the learning process using educational robotics competitions and to determine the appropriate learning model for the use of educational robotics competitions in studying the field of science and technology. This research was a literature review research. The research method was the Comprehensive Literature Review (CLR). This method has three phases such as 1) exploring phase, 2) interpretation phase, and 3) communication phase. The results showed that the learning model that was widely used in educational robotics competitions was project-based learning and was followed by problem-based learning. The skills obtained were to assist understanding science and technology, to develop computer programming skills, to sharpen problem-solving capability, to foster creativity and innovation, to bridge the gap between theory and practice, and to practice teamwork and social skills.

1. Introduction
Many robot competitions have been held both in Indonesia and in the world. Robot competitions also can be in many kinds. There are some famous world robot competitions such as Abu Robocon, Trinity College International Robot Contest, RoboCup Soccer Humanoid League, and RoboCup Soccer. Additionally, robot competitions in Indonesia have also been widely held both locally and nationally. The national robot competition which is held annually is the Indonesian Robot Contest (KRI). KRI is intended to be followed by university students in Indonesia.

Robot competitions can promote the development of robots in the sector of education rapidly. Through robot competition, it is able to give information and to get access for students to advance the accomplishments in science and technology [19], to supply grants for the development of knowledge and [21], and to provide educational institutions with modern teaching programs for achieving practical skills and theoretical knowledge [4]. The impact of the robotics competitions on the students’ interest is to make students more deepen the knowledge toward science and technology [3].
Robots can attract students' attention to learn learning materials related to robots. The use of robots as a learning tool has been widely used to assist learning. Learning using robots or often referred to as educational robotics can be used for different environments. The educational robotics can be held in an ordinary school program or after-school programs. Meanwhile, using educational robotics for the competition taught in schools is called educational robotics competition [18]. The educational robotics competition is capable to develop students to encourage knowledge and achieve practical skills and scientific experience during the learning process. As a consequence, new skills are immediately applicable to implement robotics practice [3]. The objectives of this research are to identify what kind of skills that are obtained by students after following the learning process using educational robotics competitions and to identify the appropriate learning model for the use of educational robotics competitions in the field of science and technology.

2. Robotics Competition
A robotic competition is an event in which robots have to complete an assignment. Every robot competition has different objectives. For instance, RoboCup as an event of robotic competition has the main objective to promote research related to Artificial Intelligence. Meanwhile, The First Lego League is a robot competition particularly aimed at education where elementary and junior high school students can participate [15]. Meanwhile, according to [13], the objective of the educational robot competition is a practical application of knowledge learned during class by solving various assignments. The students can deepen their knowledge from various fields and skills.

Some robot competitions are held around the world, ranging from national to international scales. In Indonesia, the Indonesian Robot Contest is divided into 6 divisions, namely [12]: 1) Indonesian ABU Robot Contest (KRAI); 2) Indonesian Fire Extinguisher Robot Contest (KRPAI); 3) Indonesian Dance Robot Contest (KRSTI); 4) Indonesian Football Robot Contest (KRSBI) Humanoid; 5) Indonesian Football Robot Contest (KRSBI) Wheeled; and new division 6) Indonesian Thematic Robot Contest (KRTMI). Meanwhile, the international robotic competitions are FTC (First Tech Challenge), FLL (First LEGO League) in the United States, ELROB (European Land-Robot Trial) in Europe, and ABU ROBOCON (Asia-Pacific Broadcasting Union Robotics-Contest) in Asia. RoboFest is a robotics competition in Russia that has the main types of competition such as mobile systems which is made under the regulations, android which is an android robot competition, freestyle with categories such as robotic assistants, creative class, sports category, and “Hello, robot!” which is for novice to engage in robotics [3]. Another world's class robotics competition is The World Robot Summit (WRS). It is a competition held to realize a world where humans and robots can collaborate and coexist and goals to compete for robot technology that can be used as a familiar product. The WRS presents robot technology competitions designed, especially, to enable humans and robots to collaborate and complement each other [15].

2.1. Skills in educational robotics competitions
Skills are one of the learning outputs resulting from the learning process in the classroom. Skills are needed to determine the level of students’ understanding of the theory being learned. The skills that students acquire can be trained in the learning process [22]. The various types of skills obtained are following the learning design in the classroom. The use of robotics competition in classroom learning can develop students’ skills [11].

The educational robotics competitions have some advantages such as: to inspire the students in learning STEM, to help the student to understand science and technology, to develop computer programming skill, to sharpen problem-solving capability, to develop design and integration skill, to foster creativity and innovation, to cultivate the technical skill, to bridge the gap between theory in the class and practice in the real world, to practice teamwork and social skills and to improve presentation skill [6].
2.2. Learning model in educational robotics

The use of robotic competition in classroom learning is an interesting thing. This is because students can directly practice the theories that they get in class to be practiced directly in the form of a robot competition they want to participate in [25]. For this reason, it is necessary to determine the appropriate learning model to teach robot competition in the classroom. Some researchers suggest using project-based learning [7], [16]. This is because students can directly apply robot projects aimed directly at the competition [23], [3].

Some researchers used problem-based learning using educational robotics competitions. The use of problem-based learning can train students problem-solving skill [5], [14], [9]. This skill is needed when there are problems arise when the robot competition is taking place, how students can solve the problems that arise as quickly as possible so that they can win the competition [20], [6].

3. Methods

This study used the Comprehensive Literature Review (CLR) as the method [17]. The CLR method has seven steps, namely: 1) Exploring Beliefs and Topics, 2) Initiating the Search, 3) Storing and Organizing Information, 4) Selecting / Deselecting Information, 5) Expanding the Search to Include One or More MODES (Media, Observation(s), Documents, Expert(s), Secondary Data), 6) Analyzing and Synthesizing Information, and 7) Presenting the CLR Report. This CLR method has 3 phases consisting of the seven steps, namely Exploration Phase (Exploring Beliefs and Topics, Initiating the Search, Storing and Organizing Information, Selecting/Deselecting Information, Expanding the Search to Include One or More MODES (Media, Observation(s), Documents, Expert(s), Secondary Data)), Interpretation Phase (Analyzing and Synthesizing Information) and Communication Phase (Presenting the CLR Report). Figure 1 shows the phases and steps of the CLR method.

![Figure 1. Comprehensive Literature Review (CLR) method.](image)

4. Result

The first phase of CLR provides the necessary aspects of discussing educational robotics competitions. These three aspects are the Name of Robot Competition, Knowledge and Skill, and Learning Model/Method. Determining the aspect of the Name of Robot Competition to find out what kind of robot competition is being carried out and to focus on what kind of robot competition. The Knowledge and Skill aspect is determined to find out what skills and knowledge are being trained in this learning. Identifying Learning Model/Method is to identify the learning model used in an educational robotics competition in the classroom.
Table 1. The aspects of educational robotics competitions.

References	Name of Robot Competition	Technical Skill	Non-Technical Skill	Learning Model/Method
[24]	Robot soccer competition	Programming skills	critical thinking skills, problem-solving, Personal skills	Student self-centred learning method
[9]	the Amazon Robotics Challenge 2017	Programming, gripper design, sensor design	Problem-solving,	Problem-based learning
[7]	Eurobot contest	Mechanical and electrical robot design	Collaboration skills	Project-based learning
[8]	RoboCupJunior	STEM	Innovation and creativity	The hands-on, project-based and goal-oriented learning experience
[14]	MicroFactory competition	Localization, scheduling, navigation	Cooperation problem	Project-based learning
[16]	Field Robot Event	Mechatronics, computing development	Team working	Project-based learning
[26]	KRPAI	Programming skills	Problem-solving in the project,	Contextual Teaching and Learning
[3]	RoboFest	Computer programming and control theory	Team working	Project-based learning
[15]	The World Robot Summit	Robot design	Cooperate skills, practical problem	Project-based
[13]	Online robot contest	Programming skills, mechatronics system	Problem-solving skill	Problem-based
[6]	Robotex International	Robot design, programming skill	Problem-solving skill	Problem-based

The second phase of CLR produces some literature that discusses three aspects mentioned in the first phase. Table 1 shows that there are a variety of skills trained in robotic competition in the classroom. The most widely used problem-solving skills are shown in references [24], [9], [14]. Next are the Programming skills shown in [24], [9] and the collaboration skills or team working skills shown in the references [7],[16]. Meanwhile, the most widely used aspects of learning models/methods are those that use project-based learning as shown by references [7], [8],[16]. This is followed by problem-based learning as shown in references [9],[14].

4.1. Discussion
The third phase of CLR produces a report on the results of the literature review. The results of the literature review show that educational robotics competition provides many benefits for learning. Educational robotic competitions are an excellent way to foster research and to attract students to technological areas [24]. Educational robotic competitions have helped students to learn a lot, especially on materials related to science and technology. In line with this, research by [1] stated that educational robotics competition makes the learning process more effective and to make students learn to be independent to study the subject material of robotics and mechatronics and to enhance the students’ motivation for competing in the robotics competition. This is also supported by [8] who state that educational robotics competition can also be used to deepen subject matter such as in the fields of physics, programming, mechanical engineering, electronics, and science. Likewise, the results of research conducted by [2] showed that using educational robotics competitions intervention in a scientific field material can improve students’ learning outcomes.

Univestitas Negeri Surabaya, a state university in Surabaya-Indonesia, has implemented an educational robotic competition in the microprocessor course. In this course, students are taught to program to move robots, detect fires, and blow the wind. Students can learn how to use problem-solving during robotic competitions and how to overcome problems that arise when the competition occurs [26]. Figure 2 shows the firefighting robot used by the Universitas Negeri Surabaya in the KRPAI competition on a national scale. This robot is also used in classroom learning to train programming skills and to introduce robot-forming components. This refers to the literature review that the use of educational robotic competitions can train students in skills such as programming skills, problem-solving skills, and collaboration skills. This is in line with the opinion from [8], which states that using educational robotics competitions can enhance confidence in using technology, to enhance understanding of the value of working in teams, to enhance self-confidence, and to increase skills of teamwork, personal development, and communication. In line with the results of research by [24] which showed that the application of robot soccer competition in the class has shown increased performance in analytical and critical thinking skills in problem-solving, and programming skills and technical report writing. Educational robotics competitions can be used with objectives that have been set such as to let students apply theoretical knowledge in practice; to teach team working skills, and to get acquainted with robot design [16]. Educational robotics competitions can provide students with hands-on and real-time practical experiences so that students can experience the activities. [10] state that with Educational robotics competitions, students not only acquiring many technical skills but also are involved in practical activities, thus increasing their interest in the subject. It is also supported by [8] who states that some of the educational robotics competitions have reported their positive impacts on participating students.
especially on their learning and increased understanding of the role of science and technology in solving real-world problems.

![Diagram](image)

Figure 3. Educational robotics competition.

The results of the literature review show that there have been many studies that have implemented educational robotic competition using a project-based model. This is because project-based learning can involve students directly in projects that will be used in educational robot competitions. This is in line with research by [16] which implements project-based learning in teaching students to build robots according to agricultural areas. The results obtained from the project-based learning were in the form of various robot models according to students' creativity in the challenges given. [26] also implemented a project in building firefighting robots. The project built is modular, so students can observe their learning progress per module before moving on to the next project [7] used project-based learning by dividing projects for robot mechanical aspects and electric design built for the Eurobot competition. [3] modeled educational robotics competition as shown in Figure 3. The learning model emphasizes projects that are realized in research and development (R&D). This project-based learning function is to facilitate students to develop practical skills. The output of the implementation of project-based learning can make students increasingly master theoretical knowledge.

5. Conclusion
Conventional learning which has only been involved in theories is deemed less attractive to students, especially those who study science and technology. The development of practical skills and mastery of theoretical knowledge is needed by students in facing today's challenges. Educational robotics competition is a way for students to develop practical skills and mastery of theoretical knowledge. The use of educational robotics competitions can develop students' practical skills through the direct practice of arranging modular robots and operating robots. The use of learning models such as project-based learning, problem-based learning, student self-centered learning, and goal-oriented learning experiences in educational robotics competitions can help students to increasingly master theoretical knowledge.

Acknowledge
The research work was supported in funding grant by the Ministry of Education and Culture under Research agreement task KEMENDIKBUD 2020, Number B/11621/UN38.9/LK.04.00/2020.

References
[1] Akagi T, Fujimoto S, Kuno H, Araki K, Yamada S and Dohta S 2015 Systematic educational program for robotics and mechatronics engineering in OUS using robot competition Proc. Computer Science 76 2-8
[2] Barker B S and Ansorge J 2007 Robotics as means to increase achievement scores in an informal learning environment. *Research on Technology in Education* **39** (3) 229–243

[3] Bazylev D, Margun A, Zimenko K, Kremlev A and Rukuzhia E 2014 Participation in robotics competition as motivation for learning *Procedia Social and Behavioral Sciences* pp 835 – 840.

[4] Caro I A 2011 VEX Robotics: STEM program and robotics competition expansion into europe *Research and Education in Robotics – EUROBOT 2011* ed D Obdržálek and A Gottsheber (Prague: Springer) pp 10-16

[5] Chen X 2019 How does participation in first lego league robotics competition impact children’s problem-solving process? *Robotics in Education Methods and Applications for Teaching and Learning* ed W Lepuschitz, M Merdan, G Koppensteiner, R Balogh and D Obdržálek (Cham: Springer) pp 162-167

[6] Christoforou E G, Masouras P, Cheng P, Avgousti S, Tsekos N V and Panayides A S 2020 Educational robotics competitions and involved methodological aspects *Robotics in Education Current Research and Innovations* ed M Merdan, W Lepuschitz, G Koppensteiner, R Balogh and D Obdržálek (Cham: Springer) pp 305-312

[7] Daniel V, Csorba K, Szaloki D, Beck Z and Tevesz G 2012 Educational aspects of designing robot for eurobot contest *Proc. of the 9th IFAC Symposium Advances in Control Education The International Federation of Automatic Control* (Nizhny Novgorod: Elsevier) pp 342-348

[8] Eguchi A 2015 RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition *Robotics and Autonomous System* 1-14

[9] Fujita M, Domae Y, Noda A, Garcia Ricardez G A, Nagatani T and Zeng A 2019 What are the important technologies for bin picking? Technology analysis of robots in competitions based on a set of performance metrics. *Advanced Robotics* 1-15

[10] Grandi R, Falconi R and Melchiorri C 2014 Robotic competitions: teaching robotics and real-time programming with LEGO mindstorms *The 19th World Congress The Int. Federation of Automatic Control* (Cape Town: Elsevier) pp 10598-10604

[11] Gueorguiev I, Todorova C, Varbanov P, Sharkov P, Sharkov G and Girvan C 2018 Educational robotics for communication, collaboration and digital fluency *Robotics in Education Latest Results and Developments* ed W. Lepuschitz, M. Merdan, G. Koppensteiner, R. Balogh, & D. Obdržálek (Cham: Springer) pp 113-125

[12] Indonesia K R (2020, September 17). *Kontes Robot Indonesia 2019* Retrieved from Kontes Robot Indonesia: https://kontesrobotindonesia.id/kri-2019.html

[13] Masar I and Bahnik P 2011 Online robot simulation contest *2011 14th International Conference on Interactive Collaborative Learning* (Piestany, Slovakia: IEEE) pp 1-6

[14] Neves D, Silva M, Gonçalves J and Costa P 2016 Prototyping small robot for junior competitions: microfactory case study *Int. Federation of Automatic Control* (Bratislava: Elsevier) pp 121-126

[15] Okada H, Inamura T and Wada K 2019 What competitions were conducted in the service categories of the world robot summit? *Advanced Robotics* pp 1-11.

[16] Oksanen T, Kostamo J, Tamminen P and Tiusanen J 2011 Robot competition as a teaching and learning platform *The 18th World Congress The Int. Federation of Automatic Control* (Milano: Elsevier) pp 5176-5182

[17] Onwuegbuzie A J and Frels R 2016 *Seven Steps to a Comprehensive Literature Review A Multimodal and Cultural Approach* (South Florida: Sage Publishing.)

[18] Patiño K P, Diego B C, Rodilla V M, Conde M J and Rodriguez-Aragón J F 2014 Using robotics as a learning tool in latin america and spain. *IEEE Revista Iberoamericana De Tecnologias Del Aprendizaje* **9** (4) 144-151

[19] Paturca S, Enescu C, Illas C and Morega A 2010 Robot workshop and contest for high-school students organized *Research and Education in Robotics - EUROBOT 2010* ed D Obdržálek and A Gottsheber (Rapperswil-Jona: Springer) pp 87-92
[20] Rativa A S 2019 How can we teach educational robotics to foster 21st learning skills through pbl, arduino and S4A? *Robotics in Education Methods and Applications for Teaching and Learning* ed W Lepuschitz, M Merdan, G Koppensteiner, R Balogh and D Obdržálek (Cham: Springer) pp 149-161

[21] Stier J, Zechel G and BeitelSchmidt M 2011 A robot competition to encourage first-year students in mechatronic sciences *Research and Education in Robotics – EUROBOT 2011* ed D Obdržálek and A Gottscheber (Prague: Springer) pp 288-299

[22] Valls A, Albó-Canals J and Canaleta X 2018 creativity and contextualization activities in educational robotics to improve engineering and computational thinking *Robotics in Education Latest Results and Developments* ed W Lepuschitz, M Merdan, G Koppensteiner, R Balogh and D Obdržálek, (Cham: Springer) pp 100-112

[23] Yudin A, Vlasov A, Salmina M and Sukhotskiy V 2019 challenging intensive project-based education: short-term class on mobile robotics with mechatronic elements *Robotics in Education Methods and Applications for Teaching and Learning* ed W Lepuschitz, M Merdan, G Koppensteiner, R Balogh and D Obdržálek, (Cham: Springer) pp 79-83

[24] Zainal N F, Abdullah S N and Prabuwono A S 2012 Adapting robot soccer game in student self-centered learning *Procedia - Social and Behavioral Sciences* 59 130 – 137.

[25] Ziaeeefard S and Mahmoudian N 2018 Marine robotics: an effective interdisciplinary approach to promote STEM education *Robotics in Education Latest Results and Developments* ed W Lepuschitz, M Merdan, G Koppensteiner, R Balogh and D Obdržálek, (Cham: Springer) pp 154-165

[26] Zuhrie M S, Munoto M and Buditjahjanto, I G P A 2020 Learning tool for robotics basic programming based on contextual teaching and learning to improve problem-solving skills *Jurnal Pendidikan Teknologi dan Kejuruan* 26 (1)