Proteomic insights on the metabolism in inflammatory bowel disease

Laura Francesca Pisani, Manuela Moriggi, Cecilia Gelfi, Maurizio Vecchi, Luca Pastorelli

ORCID number: Laura Francesca Pisani (0000-0002-9490-3723); Manuela Moriggi (0000-0002-4718-0307); Cecilia Gelfi (0000-0002-2996-6912); Maurizio Vecchi (0000-0003-1558-8604); Luca Pastorelli (0000-0002-2810-9951).

Author contributions: Pisani LF performed the majority of the writing; Moriggi M prepared the figure and wrote the technical proteomic paragraphs; Vecchi M provided the input in writing the review; Gelfi C revised the review and gave her support as proteomics expert; and Pastorelli L revised the review and gave his support as clinical expert.

Supported by Italy’s Ministero Italiano della Salute (Italian Ministry of Health Grant), No. GR-2016-02264736.

Conflict-of-interest statement: There is no conflict of interest associated with any of the senior author or other coauthors contributed their efforts in this manuscript.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Abstract

Inflammatory bowel diseases (IBD) are chronic and relapsing inflammatory conditions of the gut that include Crohn’s disease and ulcerative colitis. The pathogenesis of IBD is not completely unraveled, IBD are multi-factorial diseases with reported alterations in the gut microbiota, activation of different immune cell types, changes in the vascular endothelium, and alterations in the tight junctions’ structure of the colonic epithelial cells. Proteomics represents a useful tool to enhance our biological understanding and to discover biomarkers in blood and intestinal specimens. It is expected to provide reproducible and quantitative data that can support clinical assessments and help clinicians in the diagnosis and treatment of IBD. Sometimes a differential diagnosis of Crohn’s disease and ulcerative colitis and the prediction of treatment response can be deducted by finding meaningful biomarkers. Although some non-invasive biomarkers have been described, none can be considered as the “gold standard” for IBD diagnosis, disease activity and therapy outcome. For these reason new studies have proposed an “IBD signature”, which consists in a panel of biomarkers used to assess IBD. The above described approach characterizes “omics” and in this review we will focus on proteomics.

Key words: Proteomics; Inflammatory bowel disease; Crohn’s disease; Ulcerative colitis; Proteins; Biomarkers discovery

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
INFLAMMATORY BOWEL DISEASE

Ulcerative colitis (UC) and Crohn’s disease (CD) are the two main inflammatory bowel diseases (IBD)[1,2]. Despite some shared characteristics, they can be distinguished by differences in genetic predisposition, risk factors, and clinical, endoscopic and histological features. CD is characterized by diffuse chronic inflammation throughout the gastrointestinal tract, in a non-continuous manner[3]; UC presents with inflammation limited to the colon, spreading continuously from the rectum[4]. The pathogenesis of IBD is at present not completely unraveled; however, genetically susceptible individuals seem to have a dysregulated mucosal immune response to the commensal gut flora, which results in bowel inflammation[5]. IBD are multi-factorial diseases[6] with reported alterations in the gut microbiota[7-10], activation of different immune cell types[11-13], changes in the vascular endothelium[14,15], and alterations in the tight junctions structure of colon epithelial cells[16,17].

Nowadays, the diagnostic and prognostic tools for IBD and the outcome of therapy are largely based on evaluation of clinical symptoms in combination with endoscopy, histology, radiology and non-specific biomarkers from serum or stools[20].

Biomarkers in Inflammatory Bowel Disease

Inflammation in IBD is characterized by the increased levels of some molecules extensively validated but not all included in the laboratory routine. Some of them are related to the inflammatory acute-phase response, coagulation and fibrinolysis (fibrinogen, plasminogen, complement components), protease inhibitors (α1-antitrypsin and α1-anti-chymotrypsin), transport proteins (haptoglobin and ceruloplasmin) and other serum proteins[21] and cytokines[22]. Elevated platelet and white blood cell counts may also indicate inflammation but they cannot be considered strictly related to bowel inflammation[23]. C-reactive protein (CRP), anti-Saccharomyces cerevisiae (ASCA) and anti-neutrophil cytoplasmic antibody are the most widely used indicators. CRP has a short reaction time (6-10 h) and it is useful for the identification of inflammatory disease activity especially in CD, but not in UC[24]. CRP has low specificity enabling to differentiate between CD, UC and infectious colitis[25], and also the 25% of IBD patients with demonstrable disease activity have CRP levels above the normal threshold[26]. ASCA is an antibody used for the identification of CD patients who are often positive (39%-79% of CD patients, 5%-15% UC patients)[27-29], however a large part of healthy controls is also positive (14%-18%) to this antibody, limiting the diagnostic value of its detection[30]. anti-neutrophil cytoplasmic antibodies are antibodies found in immune-mediated pathologies, such as rheumatoid arthritis and Wegener’s granulomatosis[31], and have shown a different staining pattern in UC and CD patients[32,33], but as for ASCA 32% of healthy population is also positive to them[30].

Another explored field in the search for IBD biomarkers is the analysis of stool proteins, which can be dysregulated or abnormally present in patients. Stool markers have the advantage of increased specificity for bowel inflammation and reflect any mucosal barrier disruption. Fecal markers can be useful to diagnose CD, where
inflammation is patchy and is possibly missed at endoscopy\cite{30}. Fecal calprotectin (FC) accounts for up to 5% of the neutrophil granulocytes’ protein content with chemotactic and antimicrobial activities. It is stable in stool for more than a week and can resist to bacterial degradation\cite{31}. FC is not a specific marker for IBD, but it correlates with increased disease activity at least in adults\cite{32}, but not in pediatric patients where was found with high sensitivity (98%), but only modest specificity (68%)\cite{33}. Disease location should also be taken into account when interpreting FC levels. Patients with ileal CD may have ulcers even in the absence of markedly elevated FC levels. Consequently, the cut-off values for ileal CD may differ from those with ileocolic disease\cite{34,35}. A study conducted by De Vos et al\cite{36} has demonstrated that Calprotectin decreased 2 wk after Infliximab administration predicts remission in anti-TNF-naïve patients with UC. The increase of FC can also be a suitable marker for the identification of relapse, given the fact that the levels are increased as early as 6 mo before clinical and endoscopic relapse\cite{37}. Lactoferrin is an iron-binding protein expressed by neutrophils during inflammation and represents a defense against infection as part of the innate immune system\cite{38,39}. As a biomarker, Lactoferrin can distinguish IBD from Irritable Bowel Syndrome, but not between CD and UC\cite{40}.

Although many non-invasive biomarkers have been described, none can be considered as the “gold standard” for IBD diagnosis, disease activity and therapy outcome. A single ideal biomarker is very unlikely to be found. As for other pathologies as pancreatic cancer\cite{41-43}, non-small cell lung cancer\cite{44} and colorectal cancer\cite{45} new studies have proposed the idea of a “Biomarker Signature”, which consists in a panel of biomarkers used to assess various pathological conditions and response to therapy\cite{46}, and which is applicable also to IBD diagnosis and prognosis. Table 1 summarizes the biomarkers commonly used for IBD.

PROTEOMIC APPROACH TO INFLAMMATORY BOWEL DISEASE RESEARCH

Proteomics comprehensively studies the protein composition and abundance in a given cell population and its changes under biological perturbations\cite{47,48}. The proteome may be considered the signature of a disease, in fact it is the result of the interactions between the genetic background and environmental factors\cite{49}. The novel proteomic technologies now facilitate the analysis of transcriptome variations also in the IBD context and have already provided with new candidate biomarkers\cite{50}. They help to investigate the inflammatory response, epithelial barrier function and gut microbiome from different biological samples, *i.e.*, serum/blood, colon samples and feces. The proteomic strategies can be bottom-up and top-down (Figure 1). In the bottom-up approach, purified proteins or complex protein mixtures are subjected to proteolytic cleavage and the peptide products are analyzed by mass spectrometry (MS). Conversely, the top-down approach is based either on the analysis of intact proteins followed by the direct measurement of fragment ions by MS or on the isolation of the protein by gel-based separative methods, protein gel elution and MS analysis.

Proteomics in the study of IBD pathogenesis

By LC-MS analysis of colon mucosal biopsies from 10 patients with UC, Bennike et al\cite{51} identified 5711 quantifiable proteins classified by biological function, sub-cellular location and molecular function. Forty-six proteins demonstrated statistically significant changes in mean abundance between UC biopsies and control biopsies; among those proteins, the one with the largest mean fold abundance change was lactotransferrin, which was 219 times more abundant in the UC group. The relative abundance of lactotransferrin also correlated to the severity of tissue inflammation in the patients with UC, as determined by the colon inflammation grade score based on histology. Good correlation was found between the colon inflammation grade score and the relative abundance of lactotransferrin in the tissue (0.82)\cite{52}. Eleven of the 46 proteins identified in the UC biopsies are present in neutrophils and are associated with the formation of neutrophil extra-cellular traps which are released from neutrophils in response to inflammatory stimuli\cite{53,54}, and are a sign of chronic inflammation even in the absence of visible inflammation\cite{55,56}.

Proteomics has also investigated IBD-related immune-cell responses. Riaz et al\cite{57} compared Th1 and Th17 clones isolated from the intestinal mucosa of CD patients by means of label-free quantitative mass-spectrometry analysis, which led to the identification of a total number of 7401 unique protein groups and demonstrated that 334 proteins were differentially expressed. The largest differences between the two phenotypes were observed in such proteins with cytotoxic function as Granzyme B.
Table 1 Biomarkers in inflammatory bowel disease

Marker	Setting	Diagnostic accuracy	Ref.
C-Reactive Protein (CRP)	Serum	Higher in CD vs UC	Henriksen et al[24], 2008
		25% IBD patients have levels above normal	Vermeire et al[22], 2004
Anti-Saccharomyces cerevisiae Antibodies (ASCA)	Serum	39%-79% CD positive	Peyrin-Biroulet et al[25], 2015;
		5%-15% UC positive	Reumaux et al[26], 2003;
		14%-18% HC positive	Bennike et al[27], 2014
Anti-neutrophil cytoplasmic antibodies (ANCA)	Serum	Different pattern in CD and UC	Peeters et al[31], 2001;
			Peyrin-Biroulet et al[30], 2007;
			Reumaux et al[32], 2003;
Calprotectin	Colorectal mucus	Higher in IBD vs HC	Loktionov et al[28], 2016
Calgranulin C (S100A12)		Higher in UC vs CD	Bernstein et al[33], 2011
Eosinophil-derived neurotoxin (EDN)		Higher in UC vs CD	Bernstein et al[33], 2011
Fecal calprotectin (FC)	Stool	It correlates with disease activity in adults	Gisbert et al[34], 2009
Lactoferrin	Stool	It distinguishes IBD from IBS	Bennike et al[27], 2014

CD: Crohn’s disease; UC: Ulcerative colitis; HC: Healthy controls; IBS: Irritable bowel syndrome; IBD: Inflammatory bowel disease.

and perforin, which are lower in Th17 cells than in Th1 cells. Other differentially expressed proteins with higher expression in the Th1 clones included several transcription factors with both known and unknown functions in CD4+ T-cells. The most striking differences at quantitative analysis are about CD4+ T cells with Th1 phenotype having a much higher degree of cytotoxic features as compared with Th1/Th17 phenotype[58].

As discussed above, the disruption of the intestinal barrier is a typical event in IBD pathogenesis. The intestinal epithelium is the largest surface exposed and coming into contact with the external environment. The intestinal epithelial cells (IECs) are the main component of the physical barrier between the luminal micro-environment and the host and act as the host’s first line-of-defense against potential harmful stimulants. They also represent the innate immunity within the gut mucosa[59]. Normally, the intestinal epithelium is covered by a single layer of IECs, which are characterized by a fast renewal rate, and act as a protective barrier against luminal antigens, but this barrier can be damaged, thus promoting a state of chronic inflammation due to mucosal immune cell infiltration, as is typically observed in IBD patients[59]. The molecular changes in the epithelial layer, extra-cellular matrix and junction proteins in inflamed and non-inflamed intestinal tissue have been only partially addressed to date. In 2012 Poulsen et al[60] analyzed the proteomic profiles of whole colonic biopsies from UC patients using 2D-gel electrophoresis and MALDI-TOF MS for the identification of differently expressed protein spots. Forty-three proteins were identified differentially expressed between UC inflamed and non-inflamed tissue, including proteins involved in the energy metabolism and in oxidative stress[60].

Proteomic studies on isolated IECs obtained from surgical specimens of full-thickness colonic tissues from UC-, CD-affected patients and non-infamed controls were analyzed by gel-based stable-isotope label technologies (2D-DIGE and ICPL LC-MS/MS) and immunoblot assay to evaluate any proteome changes. Moreover, the results were verified on a group of patients not participating in the discovery phase[61]. The differential proteomic approaches have revealed changes in several molecules involved in extracellular matrix, mechano-transduction, metabolic rewiring and autophagy that characterize quiescent UC and quiescent CD epithelial cells and they may help understanding the complex mechanisms associated to IBD. UC patients are characterized by cytoskeletal rearrangement and increased level of specific enzymes that contribute to cell homeostasis, enabling cells to cope with energy requirements and macro-autophagy. CD patients are characterized by metabolic rewiring to sustain the cell metabolism, whereas autophagy and cell renewal are blunted[62-64]. Table 2 provides a summary of the proteins and pathways identified by the proteomic approach as involved in IBD pathogenesis.
Proteomics for the identification of novel biomarkers

Another approach is the identification of biomarkers useful for the diagnosis, treatment selection and response monitoring. A recent study focused on diagnosis has identified a serological panel which demonstrates transmural intestinal injury and is able to indicate complications in CD patients with 70% sensitivity and 72.5% specificity[64]. The increase of circulating epithelial component proteins may be a sign of transmural intestinal injury and stricturing or fistulizing intestinal complications. The serum biomarkers for the stratification of IBD patients are unable to distinguish between CD and UC[65], while the proteomic profiles of colon biopsies can identify a more precise signature of these diseases[61,66,67]. In 2016 Starr et al[68] established two candidate biomarker panels: A 5-protein panel to discriminate IBD from control patients and a 12-protein panel to distinguish CD from UC patients in children with a new IBD diagnosis.

Proteomics has been applied to the identification of treatment-response biomarkers. The anti-TNF drug called Infliximab is one of the most used drugs in IBD, but the factors predicting the response and the molecular mechanisms that are related to the loss of response or non-responsiveness are not completely known. Meuwis et al[69] have analyzed sera from responder and non-responder CD patients at baseline and then comparing sera throughout the induction period (week 4 for non-fistulizing and week 10 for fistulizing patients) and have shown that the platelet aggregation Factor 4 (PF4) was higher in non-responders than responders to Infliximab therapy (both before and after treatment). PF4 is considered as an acute-phase reactant because its level increases with general inflammation, as already observed in the plasma of CD
Table 2 Proteomics in inflammatory bowel disease pathogenesis

Protein	Setting	Diagnostic accuracy	Ref.
Lactotransferrin	UC vs HC biopsies	It correlates to the colon inflammation grade score	Bennike et al[53], 2015
Neutrophil extracellular traps (NETs)		Sign of chronic inflammation	
Granulysine B and Perforin, RO RC and FOXP3	CD Th1 and Th17 clones from intestinal mucosa	Higher in Th1 vs Th17	Riaz et al[58], 2016
Glycerol-3-phosphate dehydrogenase	UC biopsies in inflamed vs non-inflamed tissue	Higher in inflamed vs non-inflamed tissue	Poulsen et al[60], 2012
Alphaenolase		Lower in inflamed vs non-inflamed tissue	
Keratins 10, 14, 19	UC intestinal epithelial cells	Higher in QUC vs HC	Moriggi et al[61], 2017
Keratin 8		Lower in QUC vs HC	
Tricarboxylic acid cycle enzymes			
Oxidative phosphorylation enzymes			
Vinculin and α-tubulin	CD intestinal epithelial cells	Lower in QCD vs HC	
Heat shock cognate-70 (HSC70)			
Vinculin and α-tubulin			
Fibrinopeptide A (FPA)	CD serum	Higher in CD vs HC	Nanni et al[62], 2009
Complement 3 protein (C3)			
Apolipoprotein A-IV		Lower in QCD vs HC	
Apolipoprotein E			
L-lactate dehydrogenase	IBD and HC intestinal epithelial cells	Higher in IBD vs HC, Higher in CD vs UC	Shkoda et al[63], 2007
Carbonyl reductase			
Keratin 19			
Rho-GDI dissociation inhibitor α			
Annexin 2	UC intestinal epithelial cells	Higher in UC vs HC	
Programmed cell death protein 8 (PDCD8)			

IBD: Inflammatory bowel disease; CD: Crohn’s disease; UC: Ulcerative colitis; QCD: Quiescent Crohn’s disease; QUC: Quiescent ulcerative colitis; HC: Healthy controls; CRC: Colorectal carcinoma.

patients[78-79]. Gazouli et al[73] have compared sera before treatment and after IFX induction (week 12) and successfully identified 15 proteins that were differentially accumulated in the sera, most of them modifying the activation of monocytes/macrophages and directly and indirectly regulating the differentiation and activation of CD4+ T-lymphocytes. Also, a recent study by Magnusson et al[74] reported on the proteomic analysis on biopsies obtained from 6 UC patients (3 responders and 3 non-responders) treated in vitro with or without Infliximab and also from 43 UC patients’ sera at different time points: Baseline, week 2 and week 14. Those authors have shown that the response in UC patients is associated with reduced monocyte activation 2 wk after therapy initiation, suggesting that the monocytes of these patients are less responsive to inflammatory stimuli when reaching the intestinal mucosa. In therapy responders Infliximab has had influence on Tenasin C, which might be a down-regulator of the two chemokines CCL2 (mcp-1) and CXCL10 (IP-10)[75-77], which are produced by inflammatory cells and stromal cells, recruit leucocytes, and are induced in inflamed UC mucosa[75-77]. Table 3 summarized the potential biomarkers identified by proteomics in IBD.

CONCLUSION

In the IBD micro-environment a multitude of components interact. No information about a single gene, a single molecule or microbe can exhaustively explain the events that result from such a complex signaling. Also, the wide range of variability between patients’ disease features and medical histories makes it difficult to understand how every component of IBD acts and influences other components. On the other hand,
Table 3 Proteomics in inflammatory bowel disease diagnosis and response to therapy

Proteins that regulate CD4+ T-cell activation	Setting	Diagnostic accuracy	Ref.
Platelet aggregation factor 4 (PF4)	Responder vs non-responder's CD serum	Higher in non-responders	Mewuis et al[39], 2008
Proteins that regulate monocytes/macrophages activation	Serum before IFX treatment vs serum after IFX induction period	Higher before treatment	Gazouli et al[39], 2013
Tenascin C	Responder vs non-responder's UC serum	Higher in non-responders	Magnusson et al[94], 2015

CD: Crohn’s disease; UC: Ulcerative colitis.

Table 3 provides a summary of the potential biomarkers identified by proteomics in IBD.

REFERENCES

1 Ooze R. Diagnostic problems and advances in inflammatory bowel disease. Mod Pathol 2003; 16: 347-358 [PMID: 12692200 DOI: 10.1097/01.MP.0000064746.82024.D1]
2 Bosani M, Ardizzone S, Porro GB. Biologic targeting in the treatment of inflammatory bowel diseases. Biologics 2009; 3: 77-97 [PMID: 19707398]
3 Ullum T, Lazarev M. Scope early and often in ulcerative colitis and Crohn's colitis? Gastroenterology 2009; 136: 718-9; discussion 719-20 [PMID: 19105962 DOI: 10.1053/j.gastro.2008.12.032]
4 Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol 2014; 14: 329-342 [PMID: 24751956 DOI: 10.1038/nri3661]
5 Baumgart DC, Sandborn WJ. Crohn's disease. Lancet 2012; 380: 1590-1605 [PMID: 22914295 DOI: 10.1016/S0140-6736(12)60269-9]
6 Ordás I, Eckmann L, Talalimi M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet 2012; 380: 1606-1619 [PMID: 22914296 DOI: 10.1016/S0140-6736(12)60150-0]
7 Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med 2009; 361: 2066-2078 [PMID: 19923578 DOI: 10.1056/NEJMra0804647]
8 Fiocchi C. Genes and 'in-vironment': how will our concepts on the pathophysiology of inflammatory bowel disease develop in the future? Dig Dis 2012; 30 Suppl 3: 2-11 [PMID: 22956886 DOI: 10.1159/000342587]
9 Yu CG, Huang Q. Recent progress on the role of gut microbiota in the pathogenesis of inflammatory bowel disease. J Dig Dis 2013; 14: 513-517 [PMID: 23848393 DOI: 10.1111/1751-2906.12087]
10 Vetranos S, Danes S. Colitis, microbiota, and colon cancer: an infernal triangle. Gastroenterology 2013; 144: 461-463 [PMID: 23260490 DOI: 10.1053/j.gastro.2012.12.016]
11 Morgan XC, Tickle TL, Sokol H, Geyvers D, Devaney KL, Ward DV, Reyes JA, Shah SA, Le, eiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012; 13: R79 [PMID: 23013615 DOI: 10.1186/gb-2012-13-9-r79]
12 Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ding K, Cleyten J, Theatre E, Spain SL, Raychaudhuri S, Govette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininajed L, Ananthakrishnan AN, Andersen V, Andrews JM, Anderson CA, Essers J, Mitrovic M, Ding K, Cleyten J, Theatre E, Spain SL, Raychaudhuri S, Govette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininajed L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Sokol H, Geyvers D, Devaney KL, Ward DV, Reyes JA, Shah SA, Le, eiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C. Disruption of the gut microbiota and development of inflammatory bowel disease. Nat Commun 2014; 5: 4730 [PMID: 25073935 DOI: 10.1038/ncomms5730]
13 Huguet F, Souid A, Ribeiro G, Wang W, Kjeldsen S, Tjellström A, Schumacher J, Banks J, Lam I, Tai S, Li C, Sze SM, Tung HY. Identification of disease-specific signature of gut microbiota in inflammatory bowel disease. Gastroenterology 2015; 148: 1222-1232 [PMID: 25533891 DOI: 10.1053/j.gastro.2014.12.012]
Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityje J, Targan SR, Taylor KD, Trenerning M, Verspaget HW, De Vos M, Wijmenca C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012; 491: 119-124. [PMID: 23128233 DOI: 10.1038/nature11582]

13 Blumberg R. What are innate and acquired immunity, and why are they important in IBD? Inflamm Bowel Dis 2008; 14 Suppl 2: S93-S94 [PMID: 18816702 DOI: 10.1002/ibd.20689]

14 Wallace KL, Zhang LB, Kanazawa Y, Shih DQ. Immunopathology of inflammatory bowel disease. World J Gastroenterol 2014; 20: 6-21 [PMID: 24413533 DOI: 10.3748/wjg.v20.i12.3231]

15 Cader MZ, Kaser A. Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. Gut 2013; 62: 1653-1664 [PMID: 24104886 DOI: 10.1136/gutjnl-2012-303955]

16 D'Alessio S, Tacconi C, Fiocchi C, Danese S. Advances in therapeutic interventions targeting the vascular and lymphatic endothelium in inflammatory bowel disease. Curr Opin Gastroenterol 2013; 29: 608-613 [PMID: 24104771 DOI: 10.1097/MOG.0b013e3285365d7c]

17 Rieder F, Kessler SP, West GA, Bhiloacha S, de la Motte C, Sadler TM, Gopaluan B, Stylianou E, Fiocchi C. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol 2011; 179: 2660-2673 [PMID: 21943322 DOI: 10.1016/j.ajpath.2011.07.042]

18 Raleigh DR, Boe DM, Yu D, Weber CR, Marchiando AM, Bradford EM, Wang Y, Wu L, Schneeberger EE, Shen L, Turner JR. Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. J Cell Biol 2011; 193: 565-582 [PMID: 21536752 DOI: 10.1083/jcb.201010065]

19 Al-Sadi R, Guo S, Dokladny K, Smith MA, Ye D, Kaza A, Watterson DM, Ma TY. Mechanism of interleukin-1β induced increase in mouse intestinal permeability in vivo. J Interferon Cytokine Res 2012; 32: 474-484 [PMID: 22917402 DOI: 10.1089/jir.2012.0031]

20 Ye D, Guo S, Al-Sadi R, Ma TY. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology 2011; 141: 1323-1333 [PMID: 21763238 DOI: 10.1053/j.gastro.2011.07.005]

21 Stein J, Dignass AU. Laboratory diagnostics in IBD - What the gastroenterologist should know. European Gastroenterology Journal 2015; 32-47

22 Vermeire S, Van Assche G, Rutgeerts P. C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis 2004; 10: 661-665 [PMID: 15472532]

23 Cioffi M, Rosa AD, Serao R, Picone I, Vietri MT. Laboratory markers in ulcerative colitis: Current insights and future advances. World J Gastrointest Pathophysiol 2015; 6: 12-22 [PMID: 25856070 DOI: 10.4291/wjg.v6.i1.13]

24 Henrikssen M, Jahnson J, Lygren I, Stray N, Saurat J, Vath MH, Mourn B; IBSEN Study Group. C-reactive protein: a predictive factor and marker of inflammation in inflammatory bowel disease. Results from a prospective population-based study. Gut 2008; 57: 1518-1523 [PMID: 18566104 DOI: 10.1136/gut.2007.146357]

25 Peyrin-Biroulet L, Sandborn W, Sands BE, Reумaux D, Meijer AB, Duthilleul P, Roos D. Pathogenesis of diseases associated with antineutrophil cytoplasm antibodies. Hum Immunol 2004; 65: 1-12 [PMID: 14700590]

26 Bennike T, Birkelund S, Stensballe A, Andersen V. Biomarkers in inflammatory bowel diseases: current status and proteomics identification strategies. World J Gastroenterol 2014; 20: 3231-3244 [PMID: 24966607 DOI: 10.3748/wjg.v20.i12.3231]

27 Ikushima H, Ichihara MA. Biomarkers in inflammatory bowel disease: current practices and recent advances. Transl Res 2012; 159: 313-325 [PMID: 22424434 DOI: 10.1016/j.trsl.2012.01.001]

28 Reumaux D, de Boer M, Meijer AB, Duthilleul P, Roos D. Expression of myeloperoxidase (MPO) by neutrophils is necessary for their activation by anti-neutrophil cytoplasm antibodies (ANCA) against MPO. J Leukoc Biol 2003; 73: 841-849 [PMID: 12773517]

29 Peyrin-Biroulet L, Standart-Vitse A, Branche J, Chamailard I. BBD serological panels: facts and perspectives. Inflamm Bowel Dis 2007; 13: 1561-1566 [PMID: 17636565 DOI: 10.1002/ibd.20022]

30 Peeters M, Joossens S, Vermeire S, Vliegenthart R, Bossuyt X, Rutgeerts P, Engeland A, de jongh W, Scharre B, Saccharomyces cerevisiae and antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease. Am J Gastroenterol 2001; 96: 730-734 [PMID: 11280542 DOI: 10.1111.j.1572-0241.2001.03613.x]

31 Bernstein CN, El-Gabalawy H, Sargent M, Landers C, Rawsthorne P, Elias B, Targan SR. Assessing inflammatory bowel disease-associated antibodies in Caucasian and First Nations cohorts. Can J Gastroenterol 2011; 25: 269-273 [PMID: 21647462]

32 Tibble J, Teahan K, Thjodleifsson B, Roseath A, Sighorsson G, Bridger S, Foster R, Sherwood R, Fagerhol M, Bjarnason I. A simple method for assessing intestinal inflammation in Crohn's disease. Gut 2000; 47: 506-513 [PMID: 1096210]

33 Roseth AG, Fagerhol MK. Aaalden C, Schjønsby H. Assessment of the neutrophil dominating protein lactoferrin in feces. A methodologic study. Scand J Gastroenterol 2000; 35: 1040-1044 [PMID: 11093288]

34 Gisbert JP, Bermejo F, Pérez-Calle JL, Taxonera C, Vera I, McNicholl AG, Alaba A, López P, López-Palacios N, Calvo M, González-Lama Y, Carnero JA, Velasco M, Mate J. Fecal calprotectin and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflamm Bowel Dis 2009; 15: 1190-1198 [PMID: 19291789 DOI: 10.1002/ibd.20933]

35 Henderson P, Anderson NH, Wilson DC. The diagnostic accuracy of fecal calprotectin during the investigation of suspected pediatric inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol 2014; 109: 637-645 [PMID: 23670113 DOI: 10.1038/ajg.2013.131]

36 Geese KB, Brandse JF, van Wilpe S, Löwenberg M, Ponsioen C, van den Brink G, D'Haens G. Impact of disease location on fecal calprotectin levels in Crohn's disease. Scand J Gastroenterol 2015; 50: 841-847 [PMID: 25636819 DOI: 10.1080/03004579.2015.1009315]

37 Manceau H, Chicha-Cattor P, Vuy H, Pech C. Fecal calprotectin in inflammatory bowel diseases: update and perspectives. Clin Chem Lab Med 2017; 55: 474-483 [PMID: 27658156 DOI: 10.1515/cclin-2016-0522]

38 De Vos M, Louis EJ, Jahnson J, Vandervoort JG, Noman M, Dewit O, D'Haens GR, Franchimont D, Baert FJ, Tord RA, Henrikssen M, Potvin PM, Van Hootegem PP, Hindryckx PM, Moreels TG, Collard A, et al. Piispanen LI et al. Peptidomics in inflammatory bowel disease.
Pisani LF et al. Proteomics in inflammatory bowel disease

Karlsen LN, Kittinge E, Lambrecht G, Grimstad T, Koch J, Lygren I, Coche JC, Mana F, Van Gossum A, Belaiche J, Cool MR, Fontaine F, Maisin JM, Muls V, Neville B, Staessen DA, Van Assche GA, de Lange T, Solberg IC, Vander Cruyssen BJ, Vermeire SA. Consecutive fecal calprotectin measurements to predict relapse in patients with ulcerative colitis receiving infliximab maintenance therapy. *Inflamm Bowel Dis* 2013; 19: 2111-2117 [PMID: 23838959 DOI: 10.1097/MIB.0b013e318292ca37]

Molander P, Färkkilä M, Ristimäki A, Salminen K, Kemppainen H, Blomster T, Koskela R, Jussila A, Rautiainen H, Nissinen M, Haapamäki J, Akkipa L, Nieminen U, Kuismia J, Punktken J, Kolho KL, Mustonen H, Sipponen T. Does fecal calprotectin predict short-term relapse after stopping TNFα-blocking agents in inflammatory bowel disease patients in deep remission? *J Crohns Colitis* 2015; 9: 33-40 [PMID: 25052347 DOI: 10.1016/j.crohns.2014.06.012]

Kane SV, Sandborn WJ, Rufo PA, Zholudev A, Boone J, Lyerly D, Camilleri M, Hanauer SB. Fecal lactoferrin is a sensitive and specific marker in identifying intestinal inflammation. *Am J Gastroenterol* 2003; 98: 1309-1314 [PMID: 12818275 DOI: 10.1111/j.1572-0241.2003.00715.x]

Angriman I, Scarpa M, D'Inca R, Basso D, Raffa Collo, Polese L, Storniolo GC, D'Amico DF, Plebani M. Enzymes in feces: useful markers of chronic inflammatory bowel disease. *Clin Chim Acta* 2007; 381: 63-68 [PMID: 17368600 DOI: 10.1016/j.cca.2007.02.025]

Nixon AB, Pang H, Starr MD, Friedman PN, Bertagnolli MM, Kindler HL, Goldberg RM, Venook AP, Hurwitz HI. Alliance for Clinical Trials In Oncology. Prognostic and predictive blood-based biomarkers in patients with advanced pancreatic cancer: results from CALGB80303 (Alliance). *Clin Cancer Res* 2013; 19: 6957-6966 [PMID: 24907873 DOI: 10.1158/1078-0432.CCR-13-0926]

Ingvarsson J, Wingren G, Carlsson A, Ellmark P, Wahren B, Enström G, Harmenberg U, Krogh M, Peterson C, Borrebaeck CA. Detection of pancreatic cancer using antibody microarray-based serum protein profiling. *Proteomics* 2008; 8: 2211-2219 [PMID: 18729842 DOI: 10.1002/prrin.200701158]

Vigren E, Hamberg M, Zhaunerchyk V, Kaminska M, Thomas RD, Trippel S, Zhang M, Kashperka I, Uglgas MA, Walch C, Wester R, Semaniak J, Larsson M, Geppert WD. Dissociative recombination of the acetaldehyde cation, CH(3)CHO(+). *Phys Chem Chem Phys* 2010; 12: 11670-11673 [PMID: 20714489 DOI: 10.1039/c003857a]

Wingren C, Sandström A, Segersvård R, Carlsson A, Andersson R, Löhr M, Borrebaeck CA. Identification of serum biomarker signatures associated with pancreatic cancer. *Cancer Res* 2012; 72: 2481-2490 [PMID: 22589272 DOI: 10.1158/0008-5472.CAN-11-2883]

Mehan MR, Williams SA, Siegfried JM, Bigbee WL, Weissfeld JL, Wilson DO, Pass III, Rom WN, Maley T, Meister M, Franklin W, Miller YE, Brody EN, Ostroff RM. Validation of a blood protein signature for non-small cell lung cancer. *Clin Proteomics* 2014; 11: 32 [PMID: 25114462 DOI: 10.1186/1559-0275-11-32]

Pommier AJ, Shaw R, Spencer SK, Morgan SR, Hoff PM, Robertson JD, Barry ST, Jürgensmeier JM. Serum protein profiling reveals baseline and pharmacodynamic biomarker signatures associated with clinical outcome in mCRC patients treated with chemotherapy ± cetuximab. *Br J Cancer* 2014; 111: 1590-1604 [PMID: 25121956 DOI: 10.1038/bjc.2014.436]

Viennos E, Zhao Y, Merlin D. Biomarkers of Inflammatory Bowel Disease: From Classical Laboratory Tools to Personalized Medicine. *Inflamm Bowel Dis* 2015; 21: 2467-2474 [PMID: 25985250 DOI: 10.1097/MIB.0000000000000444]

Anderson NJ, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. *Electrophoresis* 1998; 19: 1853-1861 [PMID: 9740045 DOI: 10.1002/elps.1150191103]

Barnett M, Young W, Cooney J, Roy N. Metabolomics and Proteomics, and What to Do with All These 'Omes': Insights from Nutrigenomic Investigations in New Zealand. *J Nutrigenet Nutrigenomics* 2014; 7: 274-282 [PMID: 25997469 DOI: 10.1111/j.1572-0234.2014.00314.x]

Hong SN, Young JG, Bae JS, Lee CS, Koo JS, Park SJ, Kim YS, Park WY, Kim YH. Serum protein profiling reveals Translomic Differences in Inflamed and Noninflamed Intestinal Mucosa of Crohn's Disease Patients Compared with Normal Mucosa of Healthy Controls. *Inflamm Bowel Dis* 2017; 23: 1098-1108 [PMID: 28613233 DOI: 10.1097/MIB.0000000000001066]

Bennike TB, Carlsen TG, Ellingsen T, Bonderup OK, Glerup H, Bogsted M, Christiansen G, Birkeland S, Stensballe A, Andersen V. Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies. *Inflamm Bowel Dis* 2015; 21: 2052-2067 [PMID: 25993694 DOI: 10.1097/MIB.0000000000001460]

Mantovani A, Cassatella MA, Costantini C, Jallion S. Neutrophils in the activation and regulation of innate and adaptive immunity. *Nat Rev Immunol* 2011; 11: 519-531 [PMID: 21785456 DOI: 10.1038/nri3024]

O'Donoghue AJ, Jin Y, Knudsen GM, Perera NC, Jenne DE, Murphy JE, Craik CS, Hermiston TW. Neutrophil extracellular traps kill bacteria. *Science* 2015; 347: 519-531 [PMID: 21785456 DOI: 10.1038/nri3024]

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. *Science* 2004; 303: 1532-1535 [PMID: 15001782 DOI: 10.1126/science.1092385]

Delgado-Rizo V, Martinez-Guzman MA, Hiriogu-Gutierrez J, Garcia-Orozco A, Alvarado-Navarro A, Fatatari-Morris M. Neutrophil Extracellular Traps and Its Implications in Patients with Chronic Inflammatory Diseases: An Overview. *Front Immunol* 2017; 8: 81 [PMID: 28220120 DOI: 10.3389/fimmu.2017.00081]

Riaz T, Sollid LM, Olsen I, de Souza GA. Quantitative Proteomics of Gut-Derived Th1 and Th1/Th17 Clones Reveal the Presence of CD28(+), NKG2D(-) Th1 Cytotoxic CD4(+), T Cells. *Mol Cell Proteomics* 2016; 15: 1007-1016 [PMID: 26637359 DOI: 10.1074/mcp.M115.05138]

Pastorelli L, De Salvi C, Mercado JR, Vecchi M, Pizarro TT. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics. *Front Immunol* 2013; 4: 280 [PMID: 24662746 DOI: 10.3389/fimmu.2013.00280]

Poulsen NA, Andersen V, Møller JC, Møller HS, Jessen F, Purup S, Larsen LB. Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteome imaging profile in patients with ulcerative colitis. *BMC Gastroenterol* 2012; 12: 76 [PMID: 22726385 DOI: 10.1186/1471-230X-12-76]

Moriggi M, Pastorelli L, Torretta E, Tontini GE, Capitanio D, Bogetto SF, Vecchi M, Gelfi C. Contribution of Extracellular Matrix and Signal Mechanotransduction to Epithelial Cell Damage in Inflammatory Bowel Disease Patients: A Proteomic Study. *Proteomics* 2017; 17 [PMID: 29027377 DOI: 10.1002/prm2.201700164]
of HT29 Cl.16E and intestinal epithelial cells by LC ES/TOF mass spectrometry. J Proteomics 2009; 72: 865-873 [PMID: 19168159 DOI: 10.1016/j.jprot.2008.12.010]

65 Shkoda A, Werner T, Daniel H, Grunckel M, Rogler G, Haller D. Differential protein expression profile in the intestinal epithelium from patients with inflammatory bowel disease. J Proteome Res 2007; 6: 1114-1125 [PMID: 17330946 DOI: 10.1021/pr060433m]

66 Yau YY, Leong RWL, Pudipeddi A, Redmond D, Wasinger VC. Serological Epithelial Component Proteins Identify Intestinal Complications in Crohn’s Disease. Mol Cell Proteomics 2017; 16: 1244-1257 [PMID: 28490445 DOI: 10.1074/mcp.M116.066508]

67 Korsukova OV, Myers JN, Pellom ST, Wang L, MKoura AE. Characterization of Serum Cytokine Profile in Predominantly Colonic Inflammatory Bowel Disease to Delineate Ulcerative and Crohn's Colitis. Clin Med Insights Gastroenterol 2015; 8: 29-44 [PMID: 26078592 DOI: 10.4137/CIGast.S20612]

68 M'Koura AE, Seeley EH, Washington MK, Schwartz DA, Muldoon RL, Herline AJ, Wise PE, Caprioli RM. Proteomic profiling of mucosal and submucosal colonic tissues identifies protein signatures that differentiate the inflammatory colitides. Inflamm Bowel Dis 2011; 17: 875-883 [PMID: 20806340 DOI: 10.1002/ibd.21442]

69 Seeley EH, Washington MK, Caprioli RM, M'Koura AE. Proteomic patterns of colonic mucosal tissues delineate Crohn's colitis and ulcerative colitis. Proteomics Clin Appl 2013; 7: 541-549 [PMID: 23382084 DOI: 10.1002/prca.201200107]

70 Stumgaard A. Platelet factor 4 modulation of the thrombomodulin-protein C system. Crit Care Med 2004; 32: S331-S335 [PMID: 15118540]

71 Bikfalvi A. Platelet factor 4: an inhibitor of angiogenesis. Semin Thromb Hemost 2004; 30: 379-385 [PMID: 15282661 DOI: 10.1055/s-2004-831051]

72 Simi M, Lardi S, Tebano MT, Castelli M, Costantini FM, Speranza V. Raised plasma concentrations of platelet factor 4 (PF4) in Crohn's disease. Gut 1997; 28: 115-118 [PMID: 22716938 DOI: 10.1136/gut.31.7.115]

73 Gasull M, Anagnostopoulos AK, Papadopoulos A, Vaisisopoulos A, Papamichail K, Mantzaris G, Theodoropoulos GE, Anagnostou NP, Tsangaris GT. Serum protein profile of Crohn’s disease treated with infliximab. J Crohns Colitis 2013; 7: e461-e470 [PMID: 23562004 DOI: 10.1016/j.crohns.2013.02.021]

74 Magnussen MK, Strid H, Isaksson S, Bajor A, Lasson A, Ung KA, Öhman L. Response to infliximab therapy in ulcerative colitis is associated with decreased monocyte activation, reduced CCL2 expression and downregulation of Tenascin C. J Crohns Colitis 2015; 7: 56-65 [PMID: 25518051 DOI: 10.1093/ecco-jcc/jju008]

75 Banks C, Bateman A, Payne R, Johnson P, Sheron N. Chemokine expression in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn's disease. J Pathol 2003; 199: 28-35 [PMID: 12474223 DOI: 10.1002/path.1245]

76 Ugucisoni M, Gionchetti P, Robbiani DF, Rizzello F, Peruzzo S, Campieri M, Baggiolini M. Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. J Pathol 1999; 188: 331-336 [PMID: 10433925 DOI: 10.1002/(SICI)1096-9896(199902)188:3<331::AID-JPATH124>3.0.CO;2-6]

77 Leal RF, Planell E, Najdenov D, Lozano JJ, Ondás I, Iotti I, Esteller M, Masamunt MC, Parmar H, Ricart E, Panés J, Salas A. Identification of inflammatory mediators in patients with Crohn's disease unresponsive to anti-TNFα therapy. Gut 2015; 64: 233-242 [PMID: 24700437 DOI: 10.1136/gutjnl-2013-306518]

78 Fiocchi C. Inflammatory Bowel Disease: Complexity and Variability Need Integration. Front Med (Lausanne) 2018; 5: 75 [PMID: 29619371 DOI: 10.3389/fmed.2018.00075]

79 Loktionov A, Chihaya Y, Bandalehova T, Poullis A. Inflammatory bowel disease detection and monitoring by measuring biomarkers in non-invasively collected colorectal mucus. J Gastroenterol Hepatol 2017; 32: 992-1002 [PMID: 27787913 DOI: 10.1111/jgh.13627]
