TOP QUARK PRODUCTION CROSS-SECTION AT THE TEVATRON RUN 2

S.CABRERA, for the CDF and DØ collaborations.
Department of Physics, Box 90305, Duke University, Durham, NC 27708-0305, USA

The top quark pair production cross-section σ_{tt} has been measured in $p\bar{p}$ collisions at center of mass energies of 1.96 TeV using Tevatron Run 2 data. In the beginning of Run 2 both CDF and DØ σ_{tt} measurements in the dilepton channel $tt\rightarrow Wb\bar{W}b\ell\bar{\ell}$ and in the lepton plus jets channel $tt\rightarrow WbW\bar{b}\rightarrow q\bar{q}b\bar{q}\ell\bar{\nu}\ell\nu$ agree with the NLO (Next-to-Leading-Order) theoretical predictions. The presence of a top signal in Tevatron data has been reestablished.

1 Introduction

To date, all direct measurements of top quark production have been performed by the CDF and DØ experiments at the Fermilab Tevatron collider in $p\bar{p}$ collisions. At the Tevatron top quarks are produced predominantly in pairs through the QCD processes $q\bar{q}\rightarrow tt$ and $gg\rightarrow tt$. Top quarks can also be produced singly via the electroweak vertex Wtb with about half the cross section, but with final states difficult to extract from background.

In Run 1, at center of mass energies $\sqrt{s} = 1.8$ TeV, the top pair production cross-section was expected to be $5.19^{+0.52}_{-0.68}$ pb at $m_{top} = 175$ GeV/c2 with a 90% (20%) contribution from $q\bar{q}\rightarrow tt$ ($gg\rightarrow tt$). The precision of the measured cross-sections by the Tevatron from about 100 pb$^{-1}$ of data in Run 1 was approximately 25%. The ratio of cross-sections at 1.96 TeV (Run 1) and 1.8 TeV (Run 2) is 1.295$^{+0.015}_{-0.01}$, with an expected Run 2 cross-section of $6.70^{+0.71}_{-0.88}$ pb with 85% (15%) contribution from $q\bar{q}\rightarrow tt$ ($gg\rightarrow tt$). In Run 2a, with the increased center of mass energy and the expected integrated luminosity of 2 fb$^{-1}$, we should measure σ_{tt} to better than 7% precision and observe single top production for the first time with a 20% precision on the cross-section measurement.

a Results BCMN[1] updated in[2] taking into account the most recent determinations of systematic uncertainties in the extraction of the PDFs.

b The σ_{tt} from all channels combined measurement by CDF[3] and DØ[4] was $6.5^{+1.7}_{-1.4}$ pb for $m_{top} = 176.1\pm6.6$ GeV/c2 and 5.9 ± 1.7 pb for $m_{top} = 172.1\pm6.8$ GeV/c2 respectively.
Within the SM the top quark decays almost exclusively into Wb. The $t\bar{t}$ dilepton channel, where both W’s decay leptonically to e or μ, has the smallest BR: 5%. In the so called “lepton plus jets” one W decays leptonically and the other hadronically giving a higher BR: \sim 30%.

The Tevatron has delivered about 170 pb$^{-1}$ in Run 2a up until January 2003. The detector upgrades have been extensive. CDF has expanded the silicon coverage and installed a new drift chamber. DØ has a new inner tracking (silicon and fiber trackers) with a new 2T superconducting solenoid. CDF has extended the electron identification to rapidity regions $|\eta| > 1$ with a new plug calorimeter and the coverage of the muon systems.

2 σ_{tt} measurements in the dilepton channel

The background processes that mimic the top dilepton signature are Drell-Yan ($Z^*/\gamma \rightarrow e^+e^-, \mu\mu$), $Z \rightarrow \tau\tau$, WW/WZ and processes with a real lepton and a jet or a track faking a second lepton.

Dilepton selection starts with 2 high-P_T ($P_T > 20$ GeV/c) e or μ oppositely charged. CDF requires both leptons to be well isolated from nearby calorimeter activity greatly reducing the fake lepton, Wbb and bb backgrounds. The dilepton invariant mass, $M_{\ell\ell}$ or $M_{\mu\mu}$, is required to be outside the interval $76 - 106$ GeV/c2 to reject $Z \rightarrow \ell^+\ell^-X$ events. DØ discriminates $t\bar{t}$ from Z's in this interval by demanding larger E_T than in the region outside this interval.

A large E_T is required as a signature of the two W decay neutrinos. All backgrounds with real E_T contribution due to the presence of neutrinos are reduced. In addition CDF requires $|E_T| > 50$ GeV if $\Delta\phi(E_T, \ell)$ or $j < 20^{\circ}$ to eliminate instrumental contributions to the E_T due to mismeasured energies of lepton or jetsd (see Figure 2).

![Figure 1: On the left side, the 5 CDF $t\bar{t}$ dilepton candidates found in 72 pb$^{-1}$ in the plane $\Delta\phi(E_T, \text{nearest } \ell \text{ or } j)$ versus E_T in comparison with MC Herwig $t\bar{t}$. On the right side, number of events in the $W + \text{jets}$ sample with at least one b-tag: the 3 and ≥ 4 jet bins are used to extract σ_{tt}.](image)

Figure 1: On the left side, the 5 CDF $t\bar{t}$ dilepton candidates found in 72 pb$^{-1}$ in the plane $\Delta\phi(E_T, \text{nearest } \ell \text{ or } j)$ versus E_T in comparison with MC Herwig $t\bar{t}$. On the right side, number of events in the $W + \text{jets}$ sample with at least one b-tag: the 3 and ≥ 4 jet bins are used to extract σ_{tt}.

Two high energy jets are demanded as expected by the fragmentation of the top decay b quarks. The backgrounds with softer jets originating from QCD radiation are reduced. Finally, to enhance the signal-to-background ratio, large H_T is requirede. The results from CDF and DØ are summarized in Tables 1 and 2.

3 σ_{tt} measurements in the lepton+jets channel

The CDF event selection required one e or μ with $P_T > 20$ GeV/c, $E_T > 20$ GeV and at least 3 high E$_T$ jets. Cosmic rays, electron conversions, Drell-Yan and $t\bar{t}$ dilepton events are removed.

$^d\Delta\phi(E_T, \ell)$ or j) is the azimuthal separation between the vector E_T and the nearest lepton or jet.

eH_T is the scalar sum of the transverse energy of the leptons, jets and neutrinos in the event.
Table 1: Run 2 CDF results in the $t\bar{t}$ dilepton channel for a data sample of 72 pb^{-1}

Source	ee	$\mu\mu$	$e\mu$	$\ell\ell$
All Backgrounds	0.103±0.056	0.093±0.054	0.100±0.037	0.30±0.12
Expected $t\bar{t}\rightarrow\ell\nu b\bar{b}\ell\nu\bar{b}$	0.47±0.05	0.59±0.07	1.44±0.16	2.5±0.3
Data	1	1	3	5

To increase the signal-to-background ratio, CDF uses the Silicon Vertex Detector to identify the b-quark displaced vertices. A jet is b-tagged if it contains a secondary vertex with at least two charged tracks and $L_{xy}/\sigma_{xy}>3$. The efficiency for identifying at least one of the b quarks from $t\bar{t}$ decays is about 45%, which is measured using $t\bar{t}$ MC and corrected with a data to MC scale factor. The mistags from light quarks and gluon jets are evaluated using the negative rate of L_{xy} extracted from inclusive jet data and applied to $W+$jets data. The W/Z+heavy flavour: $g\rightarrow b\bar{b}, c\bar{c}$ background is evaluated from $W+$jets data, the b tag rate and the Run 1 flavour composition in $W+$jets events. The non-W background is evaluated from $W+$jets data assuming it is flat in the plane of lepton calorimeter isolation versus \not{E}_T, and extrapolated from the low isolation and small \not{E}_T (non-W) region to the high isolation and large \not{E}_T (W dominated) region. Small contributions from diboson WW/WZ, Drell-Yan and single top production are evaluated from MC (see results in Table 3).

Table 2: Run 2 DØ results in the $t\bar{t}$ dilepton channel

Source	ee	$\mu\mu$	$e\mu$
L pb$^{-1}$	48.2	42	33
All Backgrounds	1.00±0.48	0.6±0.30	0.07±0.01
Expected $t\bar{t}\rightarrow\ell\nu b\bar{b}\ell\nu\bar{b}$	0.25±0.02	0.3±0.04	0.50±0.01
Data	4	2	1

The DØ topological analysis does not use b-tagging. First, a data sample enriched with W events is preselected by demanding a loose e or μ with $P_T>20$ GeV/c, $\not{E}_T>20$ GeV and a Soft Muon Tag veto. Then, the QCD background is evaluated from data for each jet multiplicity. In the e-channel this background is due to π^0 and γ QCD compton in jets faking e’s and in the μ-channel is due to real μ’s from heavy flavour decays. The $W+\geq 4$ jets background is estimated using the Berends scaling law. Finally, the topological cuts are applied to further reduce background: at least 4 jets, and large values of H_T and A^θ (see results in Table 4).

The DØ Soft Muon Tag analysis has same preselection as the topological analysis. The topological requirements on H_T and A are milder and at least 3 high-E_T jets are required.

LA_{xy} is the distance in the transverse plane to the beam direction between the secondary vertex and the primary vertex. σ_{xy} is the resolution in the determination of L_{xy}.

AThe Aplanarity A measures the relative activity perpendicular to the plane of maximum activity.
Background is reduced by demanding one low momentum μ in a jet coming from the semileptonic b decay (see results in Table 5).

Table 4: Run 2 DØ results in the $t\bar{t}$ lepton plus jets topologic analysis

	N_W	N_{QCD}	All BG	Exp Signal	N_{obs}	$\mathcal{L}(pb^{-1})$
$e+$jets	1.3 ± 0.5	1.4 ± 0.4	2.7 ± 0.6	1.8	4	49.5
$\mu+$jets	2.1 ± 0.9	0.6 ± 0.4	2.7 ± 1.1	2.4	4	40

Table 5: Run 2 DØ results in the $t\bar{t}$ lepton plus jets Soft Muon Tag analysis

	All BG	Exp Signal	N_{obs}	$\mathcal{L}(pb^{-1})$
$e+$jets	0.2 ± 0.1	0.5	2	49.5
$\mu+$jets	0.7 ± 0.4	0.8	0	40

4 Summary and conclusions

The $t\bar{t}$ production cross-section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV has been determined from the number of observed top candidates in a given channel, the estimated background, the integrated luminosity and the $t\bar{t}$ acceptance for a top mass 175 GeV/c2: $\sigma_{t\bar{t}} = \frac{N_{\text{obs}} - N_{\text{bkq}}}{A \cdot \mathcal{L}}$. All results are in agreement with the NLO prediction: $6.70^{+0.71}_{-0.88} \text{ pb}$. Attributing the excess of events over the expected backgrounds to $t\bar{t}$ production in the decay channels considered, we obtain the following first Run 2 results:

- **CDF dilepton channels**: $\sigma_{t\bar{t}} = 13.2 \pm 5.9(\text{stat}) \pm 1.5(\text{sys}) \pm 0.8(\text{lum})$ pb.
- **CDF lepton plus jets channels**: $\sigma_{t\bar{t}} = 5.3 \pm 1.9(\text{stat}) \pm 0.8(\text{sys}) \pm 0.3(\text{lum})$ pb.
- **DØ dilepton channels**: $\sigma_{t\bar{t}} = 29.9^{+21.0}_{-15.7}(\text{stat})^{+14.1}_{-6.1}(\text{sys}) \pm 3.0(\text{lum})$ pb.
- **DØ lepton plus jets channels**: $\sigma_{t\bar{t}} = 5.8^{+4.3}_{-3.4}(\text{stat})^{+4.1}_{-2.6}(\text{sys}) \pm 0.6(\text{lum})$ pb.
- **DØ all combined channels**: $\sigma_{t\bar{t}} = 8.5^{+4.5}_{-3.6}(\text{stat})^{+6.3}_{-3.5}(\text{sys}) \pm 0.8(\text{lum})$ pb.

Acknowledgments

Thanks to all the participants in the CDF and DØ top physics groups. Their extraordinary amount of effort made the Winter 2003 measurements reported in this proceedings a reality. Thanks to P. Azzi-Bachetta, J. Konigsberg, E. Barberis and C. Gerber to motivate and coordinate all this effort.

References

1. R. Bonciani et al, Nucl. Phys. B 529, 424 (1998), arXiv:hep-ph/9801375.
2. M. Cacciari et al, CERN-TH-2003-054, arXiv:hep-ph/0303085.
3. T. Affolder et al, Phys. Rev. D 64, 0320022 (2001).
4. V.M. Abazov et al, Phys. Rev. D 67, 012004 (2003).
5. M. Kruse for the CDF collaboration. FERMILAB-CONF-03/050-E.
6. R. Zitoun, these proceedings.

\[^{\text{h}}\text{For the latest results on top mass see}^{3}\]