Abstract. In 1980, White conjectured that the toric ideal associated to a matroid is generated by quadrics. Blum defined the base-sortable matroid and showed that the class of base-sortable matroids is closed under duality, contraction, deletion, series and parallel extension, and direct sums. In this paper, we prove that the class of matroids for which the toric ideal is generated by quadrics and that has quadratic Gröbner bases, is closed under series and parallel extensions, series and parallel connections, and 2-sums.

1. Introduction

A matroid has multiple equivalent definitions. We define a matroid as a collection of subsets that satisfies the exchange axiom: A matroid M is a pair (E, B), where $E = [d] = \{1, \ldots, d\}$ and B is a collection of subsets of E, that satisfies

- for every B and B' in B, for any $x \in B$, there exists $y \in B'$ such that $(B \cup \{y\}) \setminus \{x\}$ is a member of B.

For a detailed introduction to matroid theory, see [10]. We call a member of B a basis of M. All the members of B have the same cardinality. This cardinality is said to be the rank of M and is denoted by $r(M)$. Let $B(M) = \{B_1, \ldots, B_n\}$ be the collection of bases of a matroid M on E. Let K be a field, and let $K[X] = K[x_1, \ldots, x_n]$ be the polynomial ring over K. We consider the ring homomorphism

$$
\pi_M : K[X] \to K[S] = K[s_1, \ldots, s_d] \quad x_j \mapsto \prod_{l \in B_j} s_l.
$$

The toric ideal J_M is the kernel of π_M. The semigroup ring $R_M = K[X]/J_M$ is called the bases monomial ring of M, and it was introduced by N. White. White proved that the bases monomial ring R_M is normal and, in particular, it is a Cohen-Macaulay ring for any matroid M (see [14]).

Let \mathcal{M}_{QG} be the class of matroids for which the toric ideal J_M has a Gröbner basis consisting of quadratic binomials, let \mathcal{M}_{Q} be the class of matroids for which J_M is generated by quadrics, and let \mathcal{M} be the class of all matroids. Clearly, the inclusions $\mathcal{M}_{\text{QG}} \subset \mathcal{M}_{\text{Q}} \subset \mathcal{M}$ hold. In the toric ideal of a matroid, there is the following conjecture:

Conjecture 1.1. The equalities $\mathcal{M}_{\text{QG}} = \mathcal{M}_{\text{Q}} = \mathcal{M}$ hold.

The equality $\mathcal{M}_{\text{Q}} = \mathcal{M}$ was conjectured by White [15, Conjecture 12]. Classes of uniform matroids and matroids with rank ≤ 2 belong to \mathcal{M}_{QG} [2] [9] [11]. Blum proved that the toric ideal of graphic matroids without $M(K_4)$-minor has a quadratic
Gröbner basis. In the case of \mathcal{M}_Q, classes of graphic matroids, matroids with rank ≤ 3, and transversal polymatroids are included in $\mathcal{M}_Q [1, 4, 6]$.

Let M be a matroid on E, and let $\mathcal{B}(M)$ be the collection of bases of M. An element $i \in E$ is called a **loop** of M if it does not belong to any basis of M. Dually, an element $i \in E$ is said to be a **coloop** of M if it is contained in all the bases of M. Let

$$B^*(M) = \{ E \setminus B \mid B \in \mathcal{B}(M) \}.$$

Then a pair $(E, B^*(M))$ is a matroid, and it is called the **dual** of M and is denoted as M^*.

Let M and $\mathcal{B}(M)$ be as above, and let $c \in E$. We consider the following collection of subsets of $E \setminus \{c\}$:

$$\mathcal{B}(M) \setminus c = \begin{cases}
\{B \setminus \{c\} \mid B \in \mathcal{B}(M)\} & \text{if } c \text{ is a coloop of } M \\
\{B \mid c \notin B \in \mathcal{B}(M)\} & \text{otherwise.}
\end{cases}$$

A pair $(E \setminus \{c\}, \mathcal{B}(M) \setminus c)$ is a matroid, and it is called the **deletion** of c from M and is denoted as $M \setminus c$. Dually, let M/c, the **contraction** of c from M, be given by $M/c = (M^* \setminus c)^*$. We call a matroid M' a **minor** of a matroid M if M' can be obtained from M by a finite sequence of contractions and deletions.

Let M_1 and M_2 be matroids with $E_1 \cap E_2 = \emptyset$. Let $\mathcal{B}(M_1)$ and $\mathcal{B}(M_2)$ be collections of bases of M_1 and M_2, and let

$$\mathcal{B}(M_1) \oplus \mathcal{B}(M_2) = \{ B \cup D \mid B \in \mathcal{B}(M_1), D \in \mathcal{B}(M_2) \}.$$

Then a pair $(E, \mathcal{B}(M_1) \oplus \mathcal{B}(M_2))$, where $E = E_1 \cup E_2$, is a matroid. This matroid is called the **direct sum** of M_1 and M_2, and it is denoted as $M_1 \oplus M_2$.

Proposition 1.2. [2, 15] Classes \mathcal{M}_{QG} and \mathcal{M}_Q are closed under duality, contraction, deletion, and direct sums.

Note that the associated semigroup ring R_{M^*} is isomorphic to R_M as K-algebras, and $R_{M/P}$ and $R_{M/P'}$ are combinatorial pure subrings of R_M, as defined in [8]. Furthermore, $R_{M_1 \oplus M_2}$ is the Segre product $R_{M_1} \ast R_{M_2}$ of R_{M_1} and R_{M_2}. Blum defined base-sortable matroids and proved that the class of base-sortable matroids is closed under series and parallel extensions. In particular, the class of base-sortable matroids belongs to \mathcal{M}_{QG} (See [2]).

The outline of this paper is as follows. In Section 2, we describe how to compute generating sets and Gröbner bases for the toric ideal of the series and parallel extensions. In Section 3, we use the results from Section 2 to form generating sets and Gröbner bases for the toric ideal of the series and parallel connections and the 2-sum.

We study the classes \mathcal{M}_{QG} and \mathcal{M}_Q with respect to series and parallel extensions, series and parallel connections, and 2-sums of matroids. From the theories of toric fiber products and combinatorial pure subrings, we have

Theorem. Classes \mathcal{M}_{QG} and \mathcal{M}_Q are closed under series and parallel extensions, series and parallel connections, and 2-sums.
This theorem follows as a corollary of Theorem 2.2, Corollary 2.3, and Theorem 3.1.

2. A series and parallel extension of a matroid

Let M be a matroid on $E = [d]$, and let $\mathcal{B}(M)$ be the collection of bases of M. Then a series extension of M at $c \in E$ by $d + 1$ is a matroid on $E \cup \{d + 1\}$ that has

$$\{B \cup \{d + 1\} \mid B \in \mathcal{B}(M)\} \cup \{B \cup \{c\} \mid c \notin B \in \mathcal{B}(M)\}$$

as the collection of bases and is denoted as $M \oplus_c (d + 1)$. Dually, we call a matroid $(M^* \oplus_c (d + 1))^*$ a parallel extension of M at c by $d + 1$. A series-parallel extension of M is any matroid derived from M by a finite sequence of series and parallel extensions. We suppose that M does not have $c \in E$ as a coloop. Let $\mathcal{B}(M) = \{B_1, \ldots, B_\gamma, \ldots, B_n\}$ be the collection of bases of M, where $c \notin B_j$ for $j \in [\gamma]$ and $c \in B_j$ for $j \in [n] \setminus [\gamma]$. We renumber the bases of M, if necessary. Let $\mathcal{D}_M = \{b^1_j \mid j \in [n]\}$ denote a vector configuration satisfying $b^1_j = \sum_{i \in B_j} e_i$, where e_i is the l-th standard vector. As necessary, we consider \mathcal{D}_M as a collection of vectors or as a matrix. Now we consider a new vector configuration $\tilde{\mathcal{D}}_M = \{(b^1_j, a^i) \mid i \in [2], j \in [\alpha_i]\}$ that satisfies $b^1_j = b^1_l$ for $j \in [\gamma]$, where $(\begin{smallmatrix} \alpha_1 \\ \alpha_2 \end{smallmatrix}) = (\begin{smallmatrix} \gamma \\ 1 \end{smallmatrix})$, and $\mathbf{a}^2 = (\begin{smallmatrix} 1 \\ 1 \end{smallmatrix})$. We define the ring homomorphism $\tilde{\pi}_M$ as follows:

$$\tilde{\pi}_M : K[X] = K[x^i_j \mid i \in [2], j \in [\alpha_i]] \to K[S, W] = K[s, w_l \mid k \in [d], l \in [2]]$$

$$x^i_j \mapsto S^{b^1_j} W^{a^i}.$$

Then $J_{\tilde{\mathcal{D}}_M} = \ker(\tilde{\pi}_M)$.

Let $\omega \in \mathbb{Z}_{\geq 0}^n$, and let \prec be an arbitrary monomial order. We define a new monomial order \prec_ω as follows:

$$X^a \prec_\omega X^b \iff \left\{ \begin{array}{l}
\omega \cdot a < \omega \cdot b ; \\
\omega \cdot a = \omega \cdot b \text{ and } X^a \prec X^b,
\end{array} \right. $$

for $a, b \in \mathbb{Z}_{\geq 0}^n$. We call a monomial order \prec_ω a weight order on $K[x_1, \ldots, x_n]$. We use the following useful result:

Proposition 2.1. [11, Proposition 1.11] For any monomial order \prec and any ideal $I \subset K[x_1, \ldots, x_n]$, there exists a vector $w \in \mathbb{Z}_{\geq 0}^n$ such that $\text{in}_\omega(I) = \text{in}_\prec(I)$.

Let \mathbf{F} be a homogeneous generating set for $J_{\mathcal{D}_M}$, and let

$$f = \prod_{l=1}^{u_f} x^{1_{j_l}}_l \prod_{l=1}^{v_f} x^{1_{k_l}}_l - \prod_{l=1}^{u'_f} x^{1_{j'_l}}_l \prod_{l=1}^{v'_f} x^{1_{k'_l}}_l \in \mathbf{F},$$

where $j_l, j'_l \in [\gamma], k_l, k'_l \in [n] \setminus [\gamma]$. However, if $u_f \neq u'_f$, then $\pi_M(f) \neq 0$ since the c-th entry of $\sum_{l=1}^{u_f} b^1_{j_l}$ does not coincide with the c-th entry of $\sum_{l=1}^{u'_f} b^1_{j'_l}$, and the c-th
entries of $\sum_{l=1}^{u_f} b_{kl}^l$ and $\sum_{l=1}^{u_f'} b_{kl}^l$ are zero. Therefore $u_f = u_f'$ and $v_f = v_f'$. Now let $I = (i_1, \ldots, i_{u_f}) \in \{1, 2\}^{u_f'}$ and consider the binomial $f^I \in K[X]$ defined by

$$f^I = \prod_{l=1}^{u_f} x_{j_l}^{i_l} \prod_{l=1}^{v_f} x_{k_l}^{1} - \prod_{l=1}^{u_f} x_{j_l}^{i_l'} \prod_{l=1}^{v_f} x_{k_l}^{1}.$$

Since $f \in J_{\tilde{D}_M}$, the new homogeneous binomial $f^I \in J_{\tilde{D}_M}$. We set

$$\tilde{F} = \{ f^I \mid f \in F, I \in \{1, 2\}^{u_f'} \} \cup \{ x_{j_1}^{1}x_{j_2}^{2} - x_{j_1'}^{1}x_{j_2'}^{2} \mid 1 \leq j_1 < j_2 \leq \gamma \}.$$

Theorem 2.2. Let M be a matroid on E, and let F be a Gröbner basis for $J_{\tilde{D}_M}$. Then \tilde{F} is a Gröbner basis for $J_{\tilde{D}_M}$.

Proof. First, it is easy to see that $\tilde{F} \subset J_{\tilde{D}_M}$. Let $\omega = (\omega_1, \ldots, \omega_{\gamma})$ be a weight vector. We denote the underlined monomial of f as the initial monomial of f with respect to a weight order ω. Let $\tilde{\omega} = (\omega_1', \ldots, \omega_{\gamma}')$ denote a weight vector satisfying $\omega_j = \omega_j'$ for $j \in [\gamma]$. Then the underlined monomial of f^I is the initial monomial of f^I with respect to a weight order \prec_{ω}. We choose a tie-breaking monomial order on $K[X]$ that makes the monomial $x_{j_2}^{1}x_{j_1}^{2}$ for $1 \leq j_1 < j_2 \leq \gamma$ the initial monomial. Let $\text{in}(F) = \{ (\text{in}_{\omega}(f) \mid f \in F) \}$ and $\text{in}(F) = \{ (\text{in}_{\omega\prec_{\omega}}(f) \mid f \in \tilde{F}) \}$. Let u and v be monomials that are not in $\text{in}(F)$:

$$u = \prod_{l=1}^{m_1} (x_{i_l}^{1})^{p_l} \prod_{l=1}^{m_2} (x_{j_l}^{2})^{q_l} \prod_{l=1}^{m_3} (x_{k_l}^{1})^{r_l},$$

$$v = \prod_{l=1}^{m_1'} (x_{i_l}^{1})^{p_l'} \prod_{l=1}^{m_2'} (x_{j_l}^{2})^{q_l'} \prod_{l=1}^{m_3'} (x_{k_l}^{1})^{r_l'},$$

where $p_l, q_l, r_l, p_l', q_l', r_l' \in \mathbb{Z}_{\geq 0}$ for any l, and $I = \{i_1, \ldots, i_{m_1}\}$, $I' = \{i_1', \ldots, i_{m_1}'\}$, $J = \{j_1, \ldots, j_{m_2}\}$, and $J' = \{j_1', \ldots, j_{m_2}'\}$ are subsets of $[\gamma]$ with cardinalities m_1, m_1', m_2, and m_2', respectively; and $K = \{k_1, \ldots, k_{m_3}\}$ and $K' = \{k_1', \ldots, k_{m_3}'\}$ are subsets of $[n] \setminus [\gamma]$ with cardinalities m_3 and m_3', respectively. Since neither u nor v is divided by $x_{j_2}^{1}x_{j_1}^{2}$ for $1 \leq j_1 < j_2 \leq \gamma$, it follows that $i_l \leq j_{l'}$ for $l \in [m_1]$ and $l' \in [m_2]$, and $i_{l'} \leq j_{l'}'$ for $l \in [m_1']$ and $l' \in [m_2']$. We suppose that $\pi_M(u) = \pi_M(v)$:

$$\pi_M(u) = w_1^q w_2^{p+q} r_1 \prod_{l=1}^{m_1} S^{p_l b_{kl}} \prod_{l=1}^{m_2} S^{q_l b_{kl}} \prod_{l=1}^{m_3} S^{r_l b_{kl}},$$

$$\pi_M(v) = w_1^{q'} w_2^{p'+q'} r_1' \prod_{l=1}^{m_1'} S^{p_l' b_{kl}} \prod_{l=1}^{m_2'} S^{q_l' b_{kl}} \prod_{l=1}^{m_3'} S^{r_l' b_{kl}}.$$
Here we set \(p = \sum_{i=1}^{m_1} p_i, \ q = \sum_{i=1}^{m_2} q_i, \ r = \sum_{i=1}^{m_3} r_i, \ p' = \sum_{i=1}^{m_1'} p_i, \ q' = \sum_{i=1}^{m_2'} q_i, \) and \(r' = \sum_{i=1}^{m_3'} r_i. \) Since \(b_j^1 = b_j^2 \) for \(j \in [\gamma], \) it follows that \(\pi_M(u') = \pi_M(v'), \) where

\[
\begin{align*}
 u' &= \prod_{i=1}^{m_1} (x_{i_1})^{p_i} \prod_{i=1}^{m_2} (x_{i_2})^{q_i} \prod_{i=1}^{m_3} (x_{i_3})^{r_i} \\
 v' &= \prod_{i=1}^{m_1'} (x_{i_1}')^{p_i} \prod_{i=1}^{m_2'} (x_{i_2}')^{q_i} \prod_{i=1}^{m_3'} (x_{i_3}')^{r_i}.
\end{align*}
\]

Hence \(u' - v' \) belongs to \(J_{\mathcal{D}}. \) If \(u' \) and \(v' \) belong to \(\text{in}(F), \) then \(u' \) and \(v' \) are in \(\text{in}(\tilde{F}). \) This is a contradiction. Therefore neither \(u' \) nor \(v' \) belongs to \(\text{in}(F). \) Since \(F \) is a Gröbner basis for \(J_{\mathcal{D}}, \) it follows that \(u' = v'. \)

In particular, \(L = L', \ J = J', \ K = K', \ p_i = p_i', q_i = q_i', \) and \(r_i = r_i' \) for any \(l. \) Thus \(u = v. \) Therefore \(\tilde{F} \) is a Gröbner basis for \(J_{\mathcal{D}}. \) \hfill \(\Box \)

Corollary 2.3. Let \(M \) be a matroid on \(E. \) If \(F \) is a homogeneous generating set for \(J_{\mathcal{D}}, \) then \(\tilde{F} \) is a generating set for \(J_{\mathcal{D}}. \)

Proof. We assume that \(F \) and \(F' \) are generating sets for \(\mathcal{D}. \) Then \(\tilde{F} \) and \(\tilde{F}' \) generate the same ideal. In particular, this holds if \(F' \) is a Gröbner basis for \(\mathcal{D}. \) Thus \(\langle \tilde{F} \rangle = \langle \tilde{F}' \rangle. \) By Theorem 22, if \(F' \) is a Gröbner basis for \(J_{\mathcal{D}}, \) then \(\tilde{F}' \) is a generating set for \(J_{\mathcal{D}}, \) since \(\tilde{F}' \) is a Gröbner basis for \(J_{\mathcal{D}}. \) \hfill \(\Box \)

Corollary 2.4. Let \(M \) be a matroid on \(E, \) and let \(M +c \ (d+1) \) denote a series extension of \(M \) at \(c \) by \(d+1. \) Then, by replacing variables, \(\tilde{F} \) becomes a generating set (resp. a Gröbner basis) for \(J_{M+c(d+1)}. \)

Proof. By elementary row operations on \(\tilde{D}_M, \) we obtain the vector configuration arising from \(M +c \ (d+1). \) \hfill \(\Box \)

Remark 2.5. If \(c \) is a coloop of \(M, \) then \(J_{M+c(d+1)} = J_M. \)

Corollary 2.6. Classes \(\mathcal{M}_Q \) and \(\mathcal{M}_Q \) are closed under series and parallel extensions.

3. A SERIES AND PARALLEL CONNECTION OF MATROIDS

Let \(M_1 \) and \(M_2 \) be matroids with \(E_1 \cap E_2 = \{ c \} \) and \(E = E_1 \cup E_2. \) Suppose that for both \(M_1 \) and \(M_2, \ c \) is neither a loop nor a coloop. Let

\[
\begin{align*}
 \mathcal{B}_S &= \{ B \cup D \mid B \in \mathcal{B}(M_1), D \in \mathcal{B}(M_2), B \cap D = \emptyset \} \\
 \mathcal{B}_P &= \{ B \cup D \mid B \in \mathcal{B}(M_1), D \in \mathcal{B}(M_2), c \in B \cap D \} \\
 &= \cup \{(B \cup D) \setminus \{ c \} \mid B \in \mathcal{B}(M_1), D \in \mathcal{B}(M_2), \text{c is in exactly one of } B \text{ and } D \}.
\end{align*}
\]

Then pairs \((E, \mathcal{B}_S)\) and \((E, \mathcal{B}_P)\) are matroids. These matroids are said to be the *series* and *parallel* connections of \(M_1 \) and \(M_2 \) with respect to the basepoint \(c. \) We denote them as \(S(M_1; c), (M_2; c) \) and \(P((M_1; c), (M_2; c)), \) or briefly, \(S(M_1, M_2) \) and \(P(M_1, M_2) \) [10, Proposition 7.1.13].
On the other hand, when c is a loop of M_1, then we define

$$P(M_1, M_2) = M_1 \oplus (M_2/c) \quad \text{and} \quad S(M_1, M_2) = (M_1/c) \oplus M_2.$$

When c is a coloop of M_1, then we define

$$P(M_1, M_2) = (M_1 \setminus c) \oplus M_2 \quad \text{and} \quad S(M_1, M_2) = M_1 \oplus (M_2 \setminus c)$$

(see [10] 7.1.5 - 7.1.8]. Moreover, the 2-sum $M_1 \oplus_2 M_2$ of M_1 and M_2 is $S(M_1, M_2)/c$, or equivalently, $P(M_1, M_2) \setminus c$, where c is neither a loop nor a coloop of either M_1 or M_2.

Let M_1 and M_2 be matroids on $E_1 = [d_1]$ and $E_2 = [d_2]$. We identify the set $[d_2]$ with the set $\{d_1 + 1, \ldots, d_1 + d_2\}$. Assume that $c_i \in E_i$ is not a coloop of M_i for $i \in [2]$. Let

$$
B(M_1) = \{ B_1, \ldots, B_{\gamma_1}, \ldots, B_{n_1} \} \quad \text{and} \quad B(M_2) = \{ D_1, \ldots, D_{\gamma_2}, \ldots, D_{n_2} \}
$$

be collections of bases of M_1 and M_2, where $c_1 \notin B_j$ for $j \in [\gamma_1]$ and $c_2 \notin D_k$ for $k \in [\gamma_2]$. Let $\mathcal{D}_{M_1} = \{ b_j^1 \mid j \in [n_1] \}$ and $\mathcal{D}_{M_2} = \{ d_k^2 \mid k \in [n_2] \}$ be two vector configurations satisfying $b_j^1 = \sum_{i \in B_j} e_i$ and $d_k^2 = \sum_{i \in D_k} e_i$. We define the ring homomorphisms π_{M_1} and π_{M_2} by setting

$$
\pi_{M_1} : K[x_j^1 \mid j \in [n_1]] \to K[S] \quad x_j^1 \mapsto S^{b_j^1},
$$

$$
\pi_{M_2} : K[y_k^2 \mid k \in [n_2]] \to K[T] \quad y_k^2 \mapsto T^{d_k^2}.
$$

Similar to what we did in Section 2, we consider two new vector configurations

$$
\tilde{\mathcal{D}}_{M_1} = \{ (b_j^1, a^i) \mid i \in [2], j \in [\alpha_i] \} \quad \text{and} \quad \tilde{\mathcal{D}}_{M_2} = \{ (d_k^2, a^i) \mid i \in [2], k \in [\beta_i] \},
$$

such that $b_j^1 = b_j^2$ for $j \in [\gamma_1]$ and $d_k^1 = d_k^2$ for $k \in [\gamma_2]$, where $\binom{n_1}{\alpha_i} = \binom{\gamma_1}{\gamma_1}, \binom{n_2}{\beta_i} = \binom{\gamma_2}{\gamma_2}, a^1 = (0),$ and $a^2 = (1)$. We define the ring homomorphisms $\tilde{\pi}_{M_1}$ and $\tilde{\pi}_{M_2}$ as follows:

$$
\tilde{\pi}_{M_1} : K[X] = K[x_j^1 \mid j \in [2], j \in [\alpha_i]] \to K[S, W] \quad x_j^i \mapsto S^{b_j^i} W^{a^i},
$$

$$
\tilde{\pi}_{M_2} : K[Y] = K[y_k^2 \mid i \in [2], k \in [\beta_i]] \to K[T, W] \quad y_k^2 \mapsto T^{d_k^2} W^{a^i}.
$$

Then $J_{\tilde{\mathcal{D}}_{M_i}} = \ker(\tilde{\pi}_{M_i})$ for $i \in [2]$. Moreover, consider the vector configuration

$$
\tilde{\mathcal{D}} = \{ (b_j^1, d_k^2, a^i) \mid i \in [2], j \in [\alpha_i], k \in [\beta_i] \}.
$$

Let $K[Z] = K[z_{jk}^j \mid i \in [2], j \in [\alpha_i], k \in [\beta_i]]$ be the polynomial ring over K. The ring homomorphism π is defined by

$$
\pi : K[Z] \to K[S, T, W] \quad z_{j,k}^i \mapsto S^{b_j^i} T^{d_k^i} W^{a^i}.
$$

Then $J_{\tilde{\mathcal{D}}} = \ker(\pi)$.

Let \mathcal{F}_1 and \mathcal{F}_2 be homogeneous generating sets for $J_{\mathcal{D}_{M_1}}$ and $J_{\mathcal{D}_{M_2}}$, respectively. Then we define $\tilde{\mathcal{F}}_1$ and $\tilde{\mathcal{F}}_2$ in a way analogous to what we did in Section 2. Let

$$f = \prod_{l=1}^{u_f} x_{j_l^1}^{i_l^1} - \prod_{l=1}^{u_f} x_{j_l^2}^{i_l^2} \in \tilde{\mathcal{F}}_1,$$
and let $k = (k_1, \ldots, k_{uf})$, with $k_l \in [\beta_l]$ for $1 \leq l \leq uf$. We consider the binomial $f_k \in K[Z]$ defined by

$$f_k = \prod_{i=1}^{uf} z_j^i k_l - \prod_{i=1}^{uf} z_j^i k_l.$$

Since $f \in J_{\tilde{D}_{M_1}}$, the new homogeneous binomial $f_k \in J_{\tilde{D}}$. If \tilde{F}_1 is any set of binomials in $J_{\tilde{D}_{M_1}}$, then

$$\text{Lift}(\tilde{F}_1) = \left\{ f_k \mid f \in \tilde{F}_1, k = \prod_{i=1}^{uf} [\beta_i] \right\}.$$

We define Lift(\tilde{F}_2) in an analogous way. Furthermore, the quadratic binomial set Quad$(\tilde{D}_{M_1}, \tilde{D}_{M_2})$ is defined by

$$\text{Quad}(\tilde{D}_{M_1}, \tilde{D}_{M_2}) = \left\{ z_j^i k_l z_j^i k_l - z_j^i k_l - z_j^i k_l \mid i \in [2], 1 \leq j_1 < j_2 \leq \alpha_i, 1 \leq k_1 < k_2 \leq \beta_i \right\}.$$

We set $\tilde{N} = \text{Lift}(\tilde{F}_1) \cup \text{Lift}(\tilde{F}_2) \cup \text{Quad}(\tilde{D}_{M_1}, \tilde{D}_{M_2})$.

Theorem 3.1. Let M_1 and M_2 be matroids on $E_1 = [d_1]$ and $E_2 = [d_2]$, respectively; and assume that $c_i \in E_i$ is not a coloop of M_i for $i \in [2]$. Let $S(M_1, M_2)$ be a series connection of M_1 and M_2 with respect to the basepoint $c = c_1 = c_2$. Then, by replacing variables,

$$N = \tilde{N} \cap K[\tilde{Z}]$$

is a generating set for $J_{S(M_1, M_2)}$. Here we set $K[\tilde{Z}] = K[z_j^i k_l \mid i \in [2], j \in [\alpha_i], k \in V_i]$, where $V_1 = [\gamma_2]$ and $V_2 = [\gamma_2] \setminus [\gamma_2]$. Moreover, if F_1 and F_2 are Gröbner bases for $J_{\tilde{D}_{M_1}}$ and $J_{\tilde{D}_{M_2}}$, then there exists a monomial order such that N is a Gröbner basis for $J_{S(M_1, M_2)}$.

For the proof of Theorem 3.1, we use the results in [5, 13]. Let $r > 0$ be a positive integer, and let $\alpha, \beta \in \mathbb{Z}_{>0}$ be two vectors of positive integers. Let

$$K[X] = K[x_j^i \mid i \in [r], j \in [\alpha_i]] \quad \text{and} \quad K[Y] = K[y_k^i \mid i \in [r], k \in [\beta_i]]$$

be two multigraded polynomial rings with the multigrading $\deg(x_j^i) = \deg(y_k^i) = a_i^j \in \mathbb{Z}^d$. We write $\mathcal{A} = \{a^1, \ldots, a^u\}$ and assume that \mathcal{A} is linearly independent. If I and J are homogeneous ideals of $K[X]$ and $K[Y]$, then the quotient rings $R_1 = K[X]/I$ and $R_2 = K[Y]/J$ are also multigraded by \mathcal{A}. Consider the polynomial ring

$$K[Z] = K[z_j^i k_l \mid i \in [r], j \in [\alpha_i], k \in [\beta_i]]$$

and consider the ring homomorphism

$$\phi_{I,J} : K[Z] \to R_1 \otimes_K R_2 \quad z_j^i k_l \mapsto x_j^i \otimes y_k^i.$$

The kernel of $\phi_{I,J}$ is called the toric fiber product of I and J. It is denoted as $I \times_{\mathcal{A}} J = \ker(\phi_{I,J})$. The following result is in [13, Theorem 12 and Corollary 14].
Theorem 3.2. Suppose that the set \(A \) of degree vectors is linearly independent. Let \(F_1 \) and \(F_2 \) be homogeneous generating sets for \(I \) and \(J \), respectively. Then

\[
N = \text{Lift}(F_1) \cup \text{Lift}(F_2) \cup \text{Quad}_A
\]

is a homogeneous generating set for \(I \times_A J \). Moreover, if \(F_1 \) and \(F_2 \) are Gröbner bases of \(I \) and \(J \), then there exists a monomial order such that \(N \) is a Gröbner basis for \(I \times_A J \). The sets \(\text{Lift}(F_1) \), \(\text{Lift}(F_2) \), and \(\text{Quad}_A \) are defined in [13].

On the other hand, if \(I \) and \(J \) are toric ideals, then \(I \times_A J \) is also a toric ideal. If \(K[S] \) and \(K[T] \) are polynomial rings, and

\[
\phi : K[X] \rightarrow K[S], \quad x_i^j \mapsto f^j_i(S)
\]

\[
\psi : K[Y] \rightarrow K[T], \quad y_k^i \mapsto g^i_k(T)
\]

are ring homomorphisms, then we can form the toric fiber product homomorphism

\[
\phi \times_A \psi : K[Z] \rightarrow K[S, T], \quad z_{jk}^i \mapsto f^j_i(S)g^i_k(T).
\]

If \(I = \ker(\phi) \) and \(J = \ker(\psi) \) and both ideals are homogeneous with respect to the grading by \(A \), then \(I \times_A J = \ker(\phi \times_A \psi) \) (see [5]).

Proof of Theorem 3.1. Let \(F_1 \) and \(F_2 \) be generating sets (resp. Gröbner bases) for \(J_{D_{M_1}} \) and \(J_{D_{M_2}} \). From Theorem 2.2, Corollary 2.3, and Theorem 3.2, \(N \) is a generating set (resp. a Gröbner basis) for \(J_{\hat{D}} \). Now we consider two vector configurations

\[
\hat{D}' = \{(b^i_j, d^i_k, c^i) \mid i \in [2], j \in [\alpha], k \in [\beta], \}
\]

\[
D = \{(b^i_j, d^i_k, a^i) \mid i \in [2], j \in [\alpha], k \in V_i, \}
\]

where \(c^1 = a^1 \) and

\[
c^2 = \begin{cases}
a^2 & \text{if } k \in [\gamma_2] \\
a^1 & \text{otherwise.}
\end{cases}
\]

Then \(J_{\hat{D}'} = J_{\hat{D}} \) because \(\hat{D}' \) can be obtained by an elementary row operation on \(\hat{D} \). Let \(\delta = (0, \ldots, 0, -1, 0) \in \mathbb{Z}^{d_1 + d_2 + 2} \). Since the usual inner product \(\delta \cdot (b^i_j, d^i_k, c^i) \) equals

\[
\begin{cases}
-1 & \text{if } i = 2 \text{ and } k \in [\gamma_2] \\
0 & \text{otherwise,}
\end{cases}
\]

it follows that a subring \(K[\hat{Z}] / J_D \) of \(K[Z] / J_{\hat{D}'} \) is a combinatorial pure subring of \(K[Z] / J_{\hat{D}'} \) (see [7]). Thus \(J_D = J_{\hat{D}'} \cap K[\hat{Z}] \). In particular, \(N \) is a generating set (resp. a Gröbner basis) for \(J_D \). Furthermore, by elementary row operations on \(D \), we can obtain the vector configuration arising from \(S(M_1, M_2) \) with respect to the basepoint \(c \). Therefore, by replacing variables, \(N \) is a generating set (resp. a Gröbner basis) for \(J_{S(M_1, M_2)} \).

Corollary 3.3. Classes \(\mathcal{M}_{\text{QG}} \) and \(\mathcal{M}_{\text{Q}} \) are closed under series and parallel connections and 2-sums.
Proof. Let M_1 and M_2 be matroids with $E_1 \cap E_2 = \{c\}$. Let $S(M_1, M_2)$ (resp. $P(M_1, M_2)$) denote a series (resp. parallel) connection of M_1 and M_2 with respect to the basepoint c.

In the case of series and parallel connections, if c is a loop or a coloop of M_1, then $\mathcal{M}_{\mathcal{QG}}$ and $\mathcal{M}_\mathcal{Q}$ are closed under series and parallel connections. Suppose that neither M_1 nor M_2 has c as a loop or a coloop. Then by Theorem 2.2 and Theorem 3.1, $\mathcal{M}_{\mathcal{QG}}$ and $\mathcal{M}_\mathcal{Q}$ are closed under series connections. Also, $\mathcal{M}_{\mathcal{QG}}$ and $\mathcal{M}_\mathcal{Q}$ are closed under parallel connections from Proposition 1.2, and $P(M_1, M_2) = [S(M_1^*, M_2^*)]^*$ for any matroids M_1 and M_2 [10, Proposition 7.1.14].

In the case of the 2-sum, since $M_1 \oplus_2 M_2 = S(M_1, M_2)/c$, $\mathcal{M}_{\mathcal{QG}}$ and $\mathcal{M}_\mathcal{Q}$ are closed under 2-sums. □

Using the above results, we have

Theorem 3.4. Let M be a matroid. Then if M has no minor isomorphic to any of $M(K_4)$, W^3, P_6, or Q_6, then the toric ideal J_M has a Gröbner basis consisting of quadratic binomials.

Theorem 3.4 immediately holds from the following result:

Theorem 3.5. [3, Corollary 3.1] A matroid M is a minor of direct sums and 2-sums of uniform matroids if and only if M has no minor isomorphic to any of $M(K_4)$, W^3, P_6, or Q_6.

Let M be a matroid on E, and let

$$\text{rk} : 2^E \to \mathbb{Z}_{\geq 0} \quad X \mapsto |B_X|,$$

where B_X is a basis for $M \setminus (E - X)$. A function rk is said to be the rank function of M. Let $\lambda_M(X) = \text{rk}(X) + \text{rk}(E - X) - r(M)$ for $X \subset E$. We call $\lambda_M(X)$ the connectivity function of M. For $X \subset E$, if $\lambda_M(X) < k$, where k is a positive integer, then both X and $(X, E - X)$ are called k-separating. A k-separating pair $(X, E - X)$ for which $\min\{|X|, |E - X|\} \geq k$ is called a k-separation of M with sides X and $E - X$. For all $n \geq 2$, we say that M is n-connected if, for any $k < n$, it has no k-separation.

Any matroid that is not 3-connected can be constructed from 3-connected proper minors of itself by a sequence of the operations of direct sum and 2-sum. Therefore, in order to prove Conjecture 1.1, it is enough to prove the following conjecture:

Conjecture 3.6. The class of all 3-connected matroids belongs to $\mathcal{M}_\mathcal{Q}$ and $\mathcal{M}_{\mathcal{QG}}$.

Acknowledgement

The author would like to thank Hidefumi Ohsugi for useful comments and suggestions.

References

[1] J. Blasiak, The toric ideal of a graphic matroid is generated by quadrics, *Combinatorica*, 28(3), (2008), 283-297.
[2] S. Blum, Base-sortable matroids and Koszulness of semigroup rings, *Europ. J. Combin.* **22** (2001), 937-951.

[3] B. Chaourar, “A characterization of uniform matroids,” *ISRN Algebra*, vol. 2011, Article ID 208478, 4 pages, 2011. doi:10.5402/2011/208478.

[4] A. Conca, Linear spaces, transversal polymatroids and ASL domain, *J. Algebraic Comb.* **25** (2007), 25-41.

[5] A. Engstr" om, T. Kahle, S. Sullivant, Multigraded commutative algebra of graph decompositions, *J. Algebr. Comb.*, doi:10.1007/s10801-013-0450-0.

[6] K. Kashiwabara, The toric ideal of a matroid of rank 3 is generated by quadrics, *Electron. J. Combin.*, **17**, (2010), #R28.

[7] H. Ohsugi, A geometric definition of combinatorial pure subrings and Gr" obner bases of toric ideals of positive roots, *Comment. Math. Univ. St. Pauli*, **56** (2007), no. 1, 27-44.

[8] H. Ohsugi, J. Herzog, T. Hibi, Combinatorial pure subrings, *Osaka J. Math.* **37** (2000), no. 3, 745-757.

[9] H. Ohsugi, T. Hibi, Compressed polytopes, initial ideals and complete multipartite graphs, *Illinois J. Math.* **44** (2000), no. 2, 141-146.

[10] J. Oxley, Matroid Theory, Second Edition, Oxford University Press, New York, (2011).

[11] B. Sturmfels, “Gr" obner bases and convex polytopes,” Amer. Math. Soc., Providence, RI, 1996.

[12] B. Sturmfels, Equations defining toric varieties, *Proc. Sympos. Pure Math.* **62** (1997), 437-449.

[13] S. Sullivant, Toric fiber products, *J. Algebra* **316** (2007), no. 2, 560-577.

[14] N. White, The basis monomial ring of a matroid, *Adv. Math.* **24** (1977), 292-297.

[15] N. White, A unique exchange property for bases, *Linear Algebra Appl.* **31** (1980), 81-91.

KAZUKI SHIBATA, DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, RIKKYO UNIVERSITY, TOSHIKADU, TOKYO 171-8501, JAPAN.

E-mail address: 12rc003c@rikkyo.ac.jp