Differential ion mobility mass spectrometry in immunopeptidomics identifies neoantigens carrying colorectal cancer driver mutations

Yuriko Minegishi1, Kazuma Kiyotani2, Kensaku Nemoto2, Yoshikage Inoue3, Yoshimi Haga1, Risa Fujii1, Naomi Saichi1, Satoshi Nagayama4 & Koji Ueda1

Understanding the properties of human leukocyte antigen (HLA) peptides (immunopeptides) is essential for precision cancer medicine, while the direct identification of immunopeptides from small biopsies of clinical tissues by mass spectrometry (MS) is still confronted with technical challenges. Here, to overcome these hindrances, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is introduced to conduct differential ion mobility (DIM)-MS by seamless gas-phase fractionation optimal for scarce samples. By established DIM-MS for immunopeptidomics analysis, on average, 42.9 mg of normal and tumor colorectal tissues from identical patients (n = 17) were analyzed, and on average 4921 immunopeptides were identified. Among these 44,815 unique immunopeptides, two neoantigens, KRAS-G12V and CPPED1-R228Q, were identified. These neoantigens were confirmed by synthetic peptides through targeted MS in parallel reaction monitoring (PRM) mode. Comparison of the tissue-based personal immunopeptidome revealed tumor-specific processing of immunopeptides. Since the direct identification of neoantigens from tumor tissues suggested that more potential neoantigens have yet to be identified, we screened cell lines with known oncogenic KRAS mutations and identified 2 more neoantigens that carry KRAS-G12V. These results indicated that the established FAIMS-assisted DIM-MS is effective in the identification of immunopeptides and potential recurrent neoantigens directly from scarce samples such as clinical tissues.
Human leukocyte antigen (HLA) class I is the major histocompatibility complex (MHC) of humans and serves roles in self-tolerance and innate immunity. The HLA complex contains an HLA peptide (HLAp, also called immunopeptide) that plays a role in self-nonself discrimination. In addition to the oncogenic virus proteins, mutated proteins or the epigenetically significantly increased normal proteins in cancer cells could be a source of so-called neoantigens that fill critical roles in cancer immunity. With the rapid progress in cancer immunotherapy such as the new generation of TCR-like CARs, TCR-CARs, and the bispecific antibodies, the information about shared neoantigens across cancer patients to benefit by such these therapies is highly required. The neoantigens that carries well-known oncogenic mutation is especially an attractive target for this purpose. The neoantigens presented on the surface of cancer cells are recognized as nonself antigens by the relevant repertoire of T cells and can trigger anticancer immunity. Immune checkpoint inhibitors (ICIs) have been established to invigorate this anticancer immune system as cancer immunotherapies. Although immunotherapies are efficacious against certain cancer types, there is still a lack of knowledge about predictive factors for successful ICI indication. From these perspectives, the comparative analysis of normal and tumor tissue-based immunopeptidomes from identical patients is increasingly important to avoid the adverse events of ICI in patients.

Mass spectrometry (MS) immunopeptidomics is currently the sole method that can directly identify the immunopeptides presented on the cellular surface. According to the guidelines for immunopeptidomics, one of the current disadvantages of MS-based immunopeptidomics is the inability to analyze a scarce sample, such as the tissue of an endoscopic biopsy, compared to the genomic prediction of immunopeptide in silico.

In the previous method for immunopeptidomics, to obtain thousands of convincing immunopeptides, more than 1e6 cultured cells or nearly 1 g of tissue samples were required. In addition, to ensure the best results, the process of chemical pre-fractionation is inevitable, which will become an obstacle to the analysis of scarce samples. In fact, the detection of neoantigens directly from solid tumor tissues (such as colorectal, liver, or ovarian cancer) in previous cases has been unsuccessful. The successful case of melanoma detection, at least 0.1 mg of tissue sample with at least 5 mL of lysis buffer was used for sample preparation. While we were submitting this manuscript, the successful identification of neoantigens directly from 1.5 g of colorectal tumor tissue was reported. Using a relatively large mass of tumor tissues surmounted the incapability of unsuccessful identification of neoantigens directly from tissue samples, while it has not yet achieved a fundamental solution. Tumor size varies widely in patients and across types of cancers; thus, it is not always possible to secure a large amount of tumor mass. Alternatively, patient-derived cancer cell line materials, organoids, and xenograft models were often used to secure the required amount of materials in the previous studies. This poses the risk of missing knowledge of immunopeptides at the tissue level due to the lack of a cancer-associated microenvironment that affects immunopeptide processing and presentation. Therefore, understanding the cancer immunopeptidome at the tissue level, especially with the appropriate normal control from the same individual, is essential. Furthermore, neoantigens derived from known oncogenic mutations are attractive targets as shared neoantigens for rapidly progressing cancer immunotherapies. From this perspective, establishing a more efficient approach that enables in-depth immunopeptidomics analysis from scarce tissues is indispensable in the field of advanced precision cancer immunotherapy.

It has been written in the meeting report of the Human Immuno-Peptidome Project Consortium (HIPP) that “inability to analyze immunopeptidomes from small amounts of biological material” is one of the main challenges in immunopeptidomics. We hypothesized that this hindrance is, at least in part, due to the inevitable loss of immunopeptides during the general chemical fractionation using columns. To overcome that limitation, we adopted differential ion mobility (DIM)-MS equipped with the interface of high-field symmetric waveform ion mobility mass spectrometry (FAIMS) to eliminate the possibility of unexpected sample loss, which is suitable for the analysis of scarce samples. The seamless gas phase fractionation by the FAIMS interface ensured a sufficiently deep immunopeptidomics analysis so that neoantigens became detectable directly from ~40 mg of colorectal cancer (CRC) tissue samples. Since one of the neoantigens identified from CRC tissue carried oncogenic KRAS (G12V), a major cancer driver mutation, we further explored neoantigens with oncogenic KRAS mutations in known colon cancer cell lines. As a result, two neoantigens carrying KRAS-G12V were identified. Here, we show how established DIM-MS immunopeptidomics analysis can help provide insights into the cancer-specific processing of immunopeptides and the presentation of potential neoantigens.

Results

Efficient identification of immunopeptide from scarce samples by established global-immunopeptidomics analysis. For the sample preparation of Class I immunopeptide in our study, we used W6/32 antibody for immunopurification of HLA complex (See Supplementary Methods). First, we fully optimized the parameters for DIM-MS to maximize the identification of class I immunopeptides by the collection of three fractions at a time. In particular, a set of 9 compensation voltages (CVs), from −80 to −35 V, were selected based on the preferred distribution of immunopeptides confirmed by pilot analyses (Supplementary Fig. 1a). We then further assessed the combination of CVs for the best identification efficiency (Supplementary Fig. 1b). The best performance of gas phase fractionation of immunopeptidomics analysis was established as three CVs per run and three sets of distinct CVs per sample (Fig. 1a). Other conditions, such as collision mode, detector type, maximum injection time, and scan speed, were also fitted accordingly (see Methods). Then, we verified whether the neoantigens could be identified by a database search against the FASTA file containing only somatic mutations of single amino acid substitutions. From the validation studies with or without FAIMS conditions for HCT116 cells shown in Supplementary Fig. 2a, FAIMS-assisted immunopeptidomics analysis using 5e6 HCT116 cells identified an average of 3366 immunopeptides, resulting in a 1.2-fold increase over the condition without FAIMS (average of 2772 immunopeptides, Fig. 1b, Supplementary Data 1a and 1b). According to the increase in immunopeptides, the number of identified source proteins was also greater in the FAIMS-assisted condition (2381 proteins on average) than in the without-FAIMS condition (2077 proteins on average, Fig. 1c). This result was consistent throughout the experiments and became statistically significant when the sample scale was increased to 1e7 cells (average 4126 identifications with FAIMS) or 1.5e7 cells (average 4348 immunopeptides with FAIMS, Fig. 1b). By increasing the sample size under FAIMS conditions, the frequency of neoantigen detection was correspondingly increased (Fig. 1d). Furthermore, FAIMS not only increased the number of identified peptides but also increased the purity of the identified peptides, i.e., the ratio of non-binders by NetMHCpan prediction against the peptide groups or the deduplicated candidates was decreased under FAIMS-assisted...
conditions (Supplementary Fig. 2b and c). These results indicated that gas-phase fractionation applied by DIM-MS, with an order of magnitude fewer cells or mass, exhibited the same or better analytical ability for immunopeptidomics than any previously reported methodology. From three independent analyses using 1e8 HCT116 cells, an average of 6915 immunopeptides from 4109 source proteins were identified, and a total of 9249 unique immunopeptides were derived from 5103 unique source proteins (Fig. 1e, Supplementary Data 1c). The representative results of immunopeptidomics analysis of HCT116 cells with respect to the CV distribution and the overlap are shown in Supplementary Fig. 3. The typical length (9–15 amino acids) of class I immunopeptides and the reasonable assignment of identified immunopeptides for the corresponding HLA allotype of HCT116 were observed within the immunopeptidome (Supplementary Fig. 4). From this immunopeptidome, an average of 7.3
Global-immunopeptidomics enabled direct identification of neoantigens from scarce tissues of CRC. By established global-immunopeptidomics, CRC samples of tumor or adjacent normal regions of CRC tissues from the same individuals (n = 17) were subjected to personalized immunopeptidomics analysis. The general clinical information of the samples, including pathological classification, is listed in Supplementary Data 2a. The mutation load, oncogenic KRAS status, and genetic background of class I HLA are listed in Supplementary Data 2b. Although there was no statistically significant difference in tissue weight used (43.8 ± 3.1 mg vs. 42.0 ± 3.9 mg in normal and tumor tissues, respectively; Fig. 2a), the number of identified immunopeptides was greater in the tumor samples (4378.5 ± 335.8 immunopeptides vs. 5463.2 ± 367.2 immunopeptides in normal and tumor tissues, respectively; Fig. 2b). We noticed that the protein concentration of the lysate was significantly higher in tumor samples (1.1 ± 0.1 mg vs. 1.7 ± 0.2 mg in normal and tumor samples, respectively; Fig. 2c); therefore, the normalization of the identified number of immunopeptides by protein amount diminished the significance (5365.1 ± 901.2 immunopeptides/protein vs. 4418.9 ± 825.2 immunopeptides/protein in normal and tumor samples, respectively, Fig. 2d). Similar to the protein amount, the relative quantity (RQ) of the α-chain obtained by Western blotting (Supplementary Fig. 7) was also higher in tumor samples (RQ of 0.50 ± 0.05 vs. 0.71 ± 0.07 in normal and tumor tissues, respectively, Fig. 2e); therefore, again, the normalization of the number of immunopeptides by RQ of the α-chain diminished the significance (10,166.5 ± 1268.2 immunopeptide/RQ of the α-chain vs. 8502.2 ± 783.3 immunopeptide/RQ of the α-chain in normal and tumor tissues, respectively, Fig. 2f). Among these two factors (protein amount and the QR of the α-chain), the RQ of the α-chain exhibited a stronger correlation with the number of immunopeptides identified from tissue samples (Fig. 2g, h). There was no correlation between tissue weight and the number of immunopeptides identified (Supplementary Fig. 2c). Exact amounts and numerical scores can be found in Supplementary Data 2c. The ratio of nonbinders against deduplicated candidates in tissue samples was 8.4% on average (Supplementary Data 2e).

According to the analyses, a total of 44,815 unique immunopeptide were identified (6582 peptides per patient on average) (Fig. 2i). Among these, 5623 immunopeptides (12.5%) were normal-exclusively identified, and 14,049 immunopeptides (31.3%) were tumor-exclusive, while 25,143 immunopeptides (56.1%) were shared both in normal and tumor tissues (Fig. 2j, Supplementary Data 2d). The comparison identifying the number of immunopeptides and the overlap between normal and tumor tissues in identical patients can be found in Supplementary Fig. 8. From the results, compared to previous reports on the analysis of solid tumor tissues such as colon, liver, and ovarian cancer, the number of immunopeptides has been significantly improved when considering that the required amount of sample here is smaller. From this CRC immunopeptidome, among 11,117 source proteins (average 4149 proteins per patient, Fig. 2k), 817 (9.7%) and 1869 proteins (16.5%) were identified as normal or tumor-specific (Fig. 2l, Supplementary Data 2d). The identified immunopeptides exhibited the reasonable characteristics of HLA allele-matched distribution and restraint by unsupervised clustering and binding prediction (Supplementary Fig. 9). The length of immunopeptide was variable according to the HLA allele in each individual; nevertheless, the typical dominance of Class I immunopeptide, 9-mer in length, was clearly shown, and more than 99.7% of immunopeptides were between 8 and 12 amino acids in length (Supplementary Fig. 10). Notably, two neoantigens were identified from the tumor tissues of two distinct patients (Fig. 2m, n on the top spectrum; the lower spectrum obtained from the corresponding synthetic peptide for validation of identification exhibited the similarity of sample origin.) The first neoantigen identified from the primary tumor tissue of ID 172 carried a well-known CRC driver mutation, KRAS-G12V, at the position of the 7th to 16th amino acids [p. 7–16]. The other serine/threonine-protein phosphatase CPPED1 contains the R228Q mutation (CPPED-R228Q [226–234]) and was identified from ID 261’s hepatic metastasized tumor tissue. KRAS-G12V is a representative cancer driver mutation that can induce cancer in various tissues. CPPED1 is also known as CSTP1, a negative regulator of Akt signaling, which directly dephosphorylates Akt at Ser473 and plays a role in carcinogenesis in cancers. According to the motif information at IEDB and SYFPEITHI (http://www.syfpeithi.de/0-Home.html), the neoantigen carrying KRAS-G12V was predicted to have a higher affinity against A*11:01 than the wild-type sequence due to the preferred amino acid substitution of valine at position 6 in the peptide (Fig. 2o, depicted as “Preferred: V” by an arrow). On the other hand, the CPPED1-R228Q mutation lost its deleterious amino acid arginine at position 3 by substitution with glutamine (Fig. 2p, depicted as “Deleterious: P/R” by an arrow). Therefore, compared with the corresponding wild-type (WT) sequence, the identified neoantigens showed two opposite patterns, that is, the acquisition of preferred residue or the loss of deleterious residue to increase the affinity against A*11:01. The same region of the peptide from wild-type origin was not identified from our sample. The background cause of how the mutation affected the affinity against the assigned HLA was seemingly different between the neoantigens derived from KRAS-G12V and CPPED1-R228Q, while both immunopeptides were predicted to have increased affinity compared to their wild-type counterparts by NetMHC prediction (Table 2).

Comparison of immunopeptides from tissues revealed the cancer-specific profiles of immunopeptide trimming at pΩ. For more insights from tissue-based immunopeptidomics, we next compared the trimming of the immunopeptide at the very last position of the C-terminus (pΩ) of immunopeptides. Among the overall immunopeptides identified, those peptides 8–12 amino acids in length (44,648 immunopeptides) and amino acids with a usage ratio of more than 0.5% are depicted in the pie chart (Fig. 3a, Supplementary Data 3a). Among these amino acids, cysteine had the lowest usage (0.5%). In contrast, tryptic (R, K) and chymotryptic (L, I, V, F, Y, W, A, M) amino acids were more common in the trimming of pΩ (Fig. 3a). Next, we compared the ratio (%) of each amino acid in trimming of immunopeptides at pΩ between normal and tumor immunopeptidomes within the
Table 1 Binding predictions of identified neoantigens from HCT116 by NetMHCpan4.1 and NetMHC4.0.

Gene	Genotype	Sequence	Assigned HLA by NetMHCpan4.1	Bind Level by NetMHCpan4.1	Assigned HLA by NetMHC4.0	Bind Level by NetMHC4.0	Affinity [nM] by NetMHC4.0	Detection in HCT116 Immunopeptidome (10209)	Times Detected from 3 independent global analysis	In IEDB Epitope Catalog
AGO2	WT	QEQKHTYLP	HLA-B45:01	SB	HLA-A01:01	WB	1900.2	+	1	+
	H336Y	QEQKTYLPP	HLA-B45:01	SB	HLA-A01:01	WB	980.7	+	1	−
CHMP7	WT	QTDQMVFNAY	HLA-A01:01	SB	HLA-A01:01	SB	16.3	+	3	+
	A324T	QTDQMVFNTY	HLA-A01:01	SB	HLA-A01:01	SB	33.5	+	3	+
FNBP4	WT	EEEKKGVAA	HLA-B18:01	WB	n.p.	n.p.				
	K318E	EEEKGVAA	HLA-B45:01	SB	HLA-B45:01	SB	60.6	+	3	−
NAPA	WT	KAIDIYEQV	HLA-A02:01	SB	HLA-A02:01	SB			−	
	A181V	KVIDYEQV	HLA-A02:01	SB	HLA-C05:01	WB	6269.5	+	3	+
NR1D1	WT	YSDNSNGSF	HLA-A01:01	SB	HLA-A01:01	SB	33.0	−	0	+
GAPDH	WT	AENGLKVIN	HLA-B45:01	WB	HLA-B45:01	WB	892.6	−	0	−
	I69T	AENGLKVTN	HLA-B45:01	WB	HLA-B45:01	WB	963.6	+	3	−
IQGAP	WT	VLEDKVLVS	HLA-A01:01	WB	n.p.	n.p.				
S1070T		VLEDKVLTV	HLA-A01:01	WB	n.p.	n.p.				
RBBP78	WT	EERVINEEY	HLA-A01:01	WB	HLA-A01:01	WB	5328.4	+	2	+
NOTCH2	WT	NEGMVCVTY	HLA-B18:01	SB	HLA-B18:01	SB	6.4	−	0	−
	C41S	NEGMVSTY	HLA-B18:01	SB	HLA-B18:01	SB	6.2	+	2	−
PDI	WT	NEYTGFIPP	HLA-B18:01	WB	HLA-B18:01	WB	626.2	+	3	+
N379D	DEYTGFIPP	HLA-B18:01	HLA-B18:01	SB	HLA-B18:01	SB	158.5	+	1	−
UQCRB	WT	EENFYLEP	HLA-B18:01	WB	n.p.	n.p.			−	
N88K	EEEKFYLEP	HLA-B18:01	HLA-B45:01	SB	HLA-B45:01	WB	863.2	+	1	+

n.p.: not predicted as a binder.
same individual. A comparison of samples that contained at least one or more amino acids of interest was included in the analyses. As a result, only trimming cysteine (pΩ-Cys) exhibited a statistically significant difference between the normal and tumor immunopeptidomes (13 out of 17 patients, \(p = 0.0082 \) by paired Student’s \(t \) test, Fig. 3b, Supplementary Data 3b). For more insights, the personal immunopeptidome was classified into three groups: immunopeptides only found in normal tissue (normal-exclusive), immunopeptides found in both normal and tumor tissues (shared), and immunopeptides only found in tumor tissue (tumor-exclusive) per patient. Then, the usage of amino acid frequency at pΩ was calculated as a ratio (%) against a subtotal of each group. Further breakdown of the personal immunopeptidome by exclusivity revealed an increase in pΩ-Cys
immunopeptides in the tumor-exclusive population (Fig. 3d, Supplementary Data 3b) against the number of immunopeptides in each population (Fig. 3c, Supplementary Data 3b). The ratio of pΩ-Cys in the tumor-exclusive population (0.69 ± 0.14%) was statistically significantly higher than that of shared (0.36 ± 0.11%, p < 0.001) or normal-exclusive populations (0.33 ± 0.13%, p = 0.019, Fig. 3d). For other amino acids, the proportion of arginine-trimmed immunopeptides at pΩ (pΩ-Arg) exhibited a tendency of reduction in the tumor immunopeptidome (12 out of 17 patients, p = 0.0576 by paired Student’s t test, Fig. 3e, Supplementary Data 3c). Further breakdown of the personal immunopeptidome by exclusivity revealed a significantly lower ratio of pΩ-Arg in the tumor-exclusive population (11.29 ± 3.81%) than in the shared population (15.11 ± 5.17%, p = 0.0315, Fig. 3g, Supplementary Data 3c) against the number of immunopeptides in each population (Fig. 3f, Supplementary Data 3c). Although arginine and lysine are in the same tryptic group, these two amino acids exhibit different dynamics in immunopeptide presentation. For chymotryptic peptides, unexpectedly, the proportion of tryptophan-trimmed immunopeptides at pΩ (pΩ-Trp) exhibited a tendency to increase in the tumor immunopeptidome (13 out of 17 patients, p = 0.0737 by paired Student’s t test, Fig. 3h, Supplementary Data 3d). Further breakdown of the personal immunopeptidome by exclusivity revealed a significant increase in pΩ-Trp immunopeptides in the tumor-exclusive population (2.34 ± 0.76%) compared to the shared population (1.69 ± 0.54%, p = 0.0336, Fig. 3j, Supplementary Data 3d) against the number of immunopeptides in each population (Fig. 3i, Supplementary Data 3d). In the shift of pΩ trimming, there was a negative correlation between the ratio of pΩ-Trp in the normal- and tumor-exclusive immunopeptides (r = −0.7846, p = 0.0003, Fig. 3k, Supplementary Data 3d). The lower ratios of pΩ-Trp in the normal population correlated with higher ratios of pΩ-Trp in tumor tissue implied a suppressed processing of pΩ-Trp at normal condition and this can be released by cancer environment. These results indicated that DIM-MS immunopeptidomics analysis of clinical tissue samples is of use to reveal the unknown processing mechanisms of immunopeptides in the cancer microenvironment.

Detection of oncogenic KRAS-carrying neoantigens by a global-immunopeptidomics approach. The identification of neoantigens with KRAS-G12V mutation directly from clinical tissue (ID 172) implied that many neoantigens with oncogenic mutations have yet to be identified. To assess this hypothesis, we first analyzed the cell line Colo668, a small cell lung carcinoma cell line derived from a brain metastatic site, which has the same pair of KRAS-G12V with HLA-A*11:01 as ID 172, to determine whether the same neoantigen, KRAS-G12V [p. 7–16], would be identified with reproducibility by a global-immunopeptidomics approach. By the same global-immunopeptidomics analyses from 1e8 Colo668 cells (a representative result of immunopeptidomics analysis from Colo668 for the CV distribution and the peptide overlap is shown in Supplementary Fig. 11), a total of 10,963 peptide groups were identified as candidates, and among these, 10,474 (95.5%) were predicted to be binders for the HLAs of Colo668 by NetMHCpan. Among these assigned immunopeptides, three neoantigens including KRAS-G12V [p. 7–16] were successfully identified (Table 3, Supplementary Fig. 12a). This KRAS-G12V [p. 7–16] identification was further verified by a targeted-MS approach, and a highly confident dopt score (>0.95) was obtained (Supplementary Fig. 12b). All three neoantigens were again predicted to have a stronger affinity than the corresponding wild-type sequences by NetMHC (Table 3).

Next, we analyzed the cell line RCM1, a rectal adenocarcinoma cell line with KRAS-G12V mutation without HLA-A*11:01, to determine whether any oncogenic KRAS-carrying neoantigens would be identified from different HLA allotypes. By the same global-immunopeptidomics analyses from 1e8 cells of RCM1 (a representative result of immunopeptidomics analysis from RCM for the CV distribution and the peptide overlap is shown in Supplementary Fig. 13), a total of 7534 peptide groups were identified as candidates, and among these, 7147 (94.9%) were predicted to be binders for the HLAs of RCM1 by NetMHCpan. Among these assigned immunopeptides, a sequence of neoantigen, KRAS-G12V [p.11–19] (AVGYGKSAL), was successfully identified by global-immunopeptidomics analysis (Table 3, Supplementary Fig. 14a). This KRAS-G12V [p. 11–19] identification was further verified by a targeted-MS approach, and a highly confident dopt score (>0.95) was obtained (Supplementary Fig. 14b). Another independent global-immunopeptidomics analysis of the RCM1 cell line again identified KRAS G12V [p. 11–19] with reproducibility from a total of 7662 peptide groups identified. As a result, a total of 9448 peptide groups were identified from the RCM1 cell line, and among these, 8914 (94.3%) were predicted as binders for the HLAs of RCM1 by NetMHCpan. The affinity prediction for KRAS-G12V [p. 11–19] for HLA-C*:01:02 by NetMHC was not available because of the limited coverage of HLA molecules with respect to NetMHC. These results indicated that DIM-MS is of use in global immunopeptidomics to identify potential shared neoantigens from various scarce materials.

Discussion
In this study, we established a highly efficient immunopeptidomics method allowing for the comparative analysis of the normal- or cancer-exclusive immunopeptidomes from the same individual, which revealed cancer-specific signatures of immunopeptides at
the tissue level. Next, we further demonstrated the presentation of more variation of potential shared neoantigens carrying oncogenic KRAS.

It has been a long-standing challenge to identify neoantigens directly from small clinical tissues: our personalized immunopeptidomics analysis achieved that task and exhibited a potential to reveal the distinct populations of immunopeptides in cancer tissue across patients. Intriguingly, unlike previous reports, the direct identification of neoantigens with a representative cancer driver mutation, an oncogenic KRAS, from the terminal stage of colon cancer tissue was achieved by an established DIM-MS-based global-immunopeptidomics approach.

In the past, immunopeptidomics analysis required a large number of samples, especially from clinical tissues. Alternatively, patient-derived cancer cells must be prepared as primary cultures or culture organoids to ensure a sufficient amount of sample. The purified cultures of patient-derived cancer cells are convenient for various analyses. However, there is a possibility that the time-consuming processes of cell culture without a cancer microenvironment may affect the presentation of immunopeptides and cause differences versus the original state. Although the mouse xenograft model can also secure patient-derived cancer cells, the response to ICIs may vary depending on the host organism, as shown through the discrepancy in the results of clinical trials of MEK inhibitors with PD-L1 treatment. Therefore, it is very complicated to evaluate the efficacy of cancer immunotherapy through model materials. FAIMS-assisted DIM-MS paved the way for the identification of ~5000 immunopeptides from 40 mg of tissue (a cube 3–5 mm in size) without the need for bias-prone chemical prefractionation procedures. Thus, our global-immunopeptidomics approach is an ideal method for direct and robust analysis from scarce materials.

In principle, a higher mutation load means more possible neoantigens and is considered to be associated with better outcomes of ICI treatment. However, despite the highest mutation load in sample ID 119 (1752, Table 2b), no neoantigen was detected, even from a total of 6983 immunopeptides. According to previous in vitro studies, IFN-γ stimulation induces the immunoproteasome, which facilitates more preferred immunopeptide trimming for HLA class I immunopeptide presentation, resulting in an increased presentation of immunopeptides.

In previous immunopeptidome analyses using in vitro samples with or without IFN-γ stimulation, it has been reported that chymotryptic trimming (mainly by leucine, isoleucine, and valine) becomes dominant in response to the induction of the immunoproteasome. However, of the amino acids targeted by chymotrypsin, only the immunopeptides trimmed by tryptophan exhibited a tendency to increase in tumor tissue. Further breakdown revealed that this was attributed to the increase in trimming by tryptophan at p<0.001, especially in tumor-exclusive immunopeptides. It has been reported that chronic exposure to IFN-γ is known to induce skipping/frameshifting translation at
certain tryptophan codons that leads to aberrant peptide translation. In addition, these aberrant peptides have been reported to become a source for neoantigens in melanoma cells. A significant increase in immunopeptides trimmed by cysteine in tumor samples compared to normal samples is also of note; although the trend is slight, the cysteine association in immunopeptide processing has been underrepresented in the past. The tumor-unique profiling of immunopeptides, such as increased trimming by cysteine and tryptophan and the underlying physiological mechanisms, as well as the associations with clinical outcomes, will be clarified in the future. Since the allele frequency of HLA is known to differ according to race, the combination of HLA alleles in individuals is further complicated. Under such complexity, to delineate a clinically relevant signature with more contrast, the immunopeptidome from the HLA allotype-matched normal/tumor immunopeptidome from the CRC patients will be studied.
same individual is thought to be indispensable. From the perspective of establishing signature profiling analyses from in-depth individual immunopeptidomes, DIM-MS with different search methods, such as customized aberrant peptide database searches57,133,134 or de novo MS analysis, should be beneficial133,134. Further analyses are required to clearly delineate the new aspects of processing/presentation of immunopeptides. The dataset of individual immunopeptidomes from both normal and cancer obtained in this study will be of use for those who seek to explore the new landscapes in immunopeptidomics.

Due to the eradication of neoantigen-presenting cancer cells by antitumor immunity31,35, it has been suggested that the frequency of neoantigen presentation on solid tumors might be low56,133,137, especially in CRC5,6. However, in this study, 2 neoantigens, one of which carried KRAS-G12V, were directly identified from stage IV CRC tissue. Recently, the affinity of two KRAS-G12V-carrying neoantigens for HLA-A*03:01 or A*11:01 has been quantitatively characterized by PRM using KRAS-G12V-transduced mononuclear cell samples19. Although the mononuclear expression of HLA is a useful experimental model to characterize the affinity and the restraint of immunopeptidomers, the actual presentation of immunopeptides may vary due to the similarity of binding motifs between intrinsic HLA. In this study, neoantigens were identified under fully allelic conditions. This implies that it is very likely that most of the potential neoantigens carrying cancer driver mutations have yet to be identified. Indeed, another variation of neoantigen with oncogenic KRAS was identified from RCM1, a commercially available colon cancer cell line. The identified neoantigen of oncogenic KRAS-G12V \([p.1135]\) was predicted to be a weak binder for HLA-C*01:02 by NetMHCpan, while affinity prediction by NetMHC was not available due to the limited HLA coverage in the algorithm. In some neoantigens from HCT116, e.g., FNBP4-K318E for HLA-B*45:01 and NAPA-A181V for HLA-C*05:01, C*07:01, prediction gaps between NetMHCpan and NetMHC were observed. The actual experimental affinity measurements for these inconsistent immunopeptides will also be critical to accomplish better prediction. These results indicate that the incomplete prediction algorithm will eventually erroneously predict some possible binders as nonbinders. Owing to the wide variety of binding motifs of a vast number of HLA types, more time will inevitably be required to build a complete prediction algorithm. The previous preprint version of this manuscript included the KRAS-G13D carrying neoantigen from HCT116 by the targeted-MS screening approach, while the dotp score of this neoantigen (dotp = 0.90 by targeted-MS) did not achieve the recommended threshold (dotp = 0.91 or more) and thus excluded the data from this article. The identification of immunopeptidomers by targeted-MS without fractionation makes identification more complex, and a more refined methodology will be needed. Targeted-MS with FAIMS is also an attractive option, considering the merit of fractionation from scarce sample sources. However, the optimal CV for an immunopeptide of interest varies according to peptides. For example, in this study, the corresponding synthetic peptide of KRAS-G12V \([p.716]\) was shown to have a relatively broad range of CV for neoantigen-identifying PSMs from CV =70 to -35 V (Supplementary Fig. 15a–f), while the actual neoantigen in tissue samples (ID172T and Colo668) was identified from the more restricted CV range from -60 to -65 V (Supplementary Fig. 15g). As such, most neoantigens in the actual sample exhibited a more restricted range of CV. Since the actual sample contains various competing peptides, it is thus too difficult to establish the FAIMS-assisted targeted-MS method without the knowledge of optimal CV(s), at least at present, or which CV to choose for the neoantigen of interest. Given this situation, listing the shared neoantigens from various samples first and
In the current study, we report the construction of a novel pipeline for the identification of neoantigens in tumors. The pipeline was developed to achieve higher sensitivity and specificity compared to previous approaches. We utilized a combination of high-throughput sequencing and mass spectrometry for the identification of neoantigens. The results obtained were validated using patient-derived xenografts and preclinical models.

Methods

Cell lines and clinical tissue samples. The cell lines used in this study were obtained from the American Type Culture Collection (ATCC). Clinical tissue samples were obtained from patients with stage IV colorectal cancer (CRC) undergoing resection surgery at the University of California, San Diego. The samples were processed according to the manufacturer's instructions. The exons were sequenced as 150 base pair paired-end reads using a NovaSeq6000 system (Illumina, San Diego, CA). The sequence data obtained were then analyzed to select possible germline variations and somatic mutations. In short, sequences in the list were filtrated by peptide length from 8- to 15-mer as candidate immunopeptides. Finally, the sequences predicted as no-binder with default settings (% rank threshold for strong binders as 0.5% and weak binders as 2%) by NetMHCpan 4.1 were further excluded from the list to determine the assigned HLA. The affinity between immunopeptides and the corresponding HLA allele was obtained by NetMHC4.0 with the default settings (% rank threshold for strong binders as 0.5% and weak binders as 2%). Simultaneously, for unsupervised clustering of immunopeptide and motif sequences, Gibbs Cluster 2.0 and Seq2logo were used to confirm whether the identified immunopeptide/motifs were consistent with the HLA alleles corresponding to each sample. The preferred and deleterious amino acid substitutions taken by HLA-A*1101 can be found in SYFPEITHI, the international MHC peptide database (IEDB) and analysis resource website (https://www.iedb.org/mhc/213).

Profiling of immunopeptide in normal and tumor tissues. To investigate the possible distinctions between normal and tumor-derived immunopeptides, the intersection of immunopeptides between normal and tumor tissue was calculated, and Venn diagrams were generated by a publicly available website (http://bioinf.mpi也不想会死去). Based on the obtained peptide and motif sequences, Gibbs Cluster 2.0 and Seq2logo were used to confirm whether the identified immunopeptide/motifs were consistent with the HLA alleles corresponding to each sample. The preferred and deleterious amino acid substitutions taken by HLA-A*1101 can be found in SYFPEITHI, the international MHC peptide database (IEDB) and analysis resource website (https://www.iedb.org/mhc/213).

Targeted immunopeptidomics by parallel reaction monitoring (PRM). The oncogetic KRAS status for cell lines was available from THE RAS INITIATIVE at the National Cancer Institute (NCI) of the National Institutes of Health (NIH) (https://www.cancer.gov/research/key-initiatives/ras/outreach/research-reagents/cell-lines). For the 10 cell lines, we identified 797 candidate peptides. The output of peptide groups was exported as a list in Excel format. The peptide sequences in the list were first deduplicated only for unique sequences and then filtered by peptide length from 8- to 15-mer as candidate immunopeptides. Finally, the sequences predicted as no-binder with default settings (% rank threshold for strong binders as 0.5% and weak binders as 2%) by NetMHCpan 4.1 were further excluded from the list to determine the assigned HLA. The frequency of usage of the amino acid at the C-terminus of immunopeptide (pi) was calculated as a percentage (%) relative to the total number of immunopeptides in each group. The difference in the frequency of usage of the amino acid at the C-terminus between the normal-exclusion group and the tumor-exclusive group was calculated by comparison with the frequency of the shared-peptide group.

Statistics and reproducibility. All data were expressed as the mean with standard error (mean ± SE). Unpaired Student’s t test was used for statistical significance analysis. A maximum ion injection time was 300 ms. To prepare the inclusion list, the prepare ion was calculated as a percentage (%) relative to the total number of immunopeptides in each group. The difference in the frequency of usage of the amino acid at the C-terminus between the normal-exclusion group and the tumor-exclusive group was calculated by comparison with the frequency of the shared-peptide group.
determined at $^*p<0.05$, $^{**}p<0.01$, and $^{***}p<0.001$ values. For the validation of FAIMS-assisted global-immunopeptidomics, more than three independent IL samples were prepared from HCT116 cells and analyzed in injection triplicates. All experiments were replicated and are reproducible except for the clinical tissue samples. Due to sample scarcity, global immunopeptidomics with 3 CV sets was intensively performed for clinical tissue samples.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The LCMS raw data, summarized result files and the list of identified immunopeptides from samples have been deposited into a public open access proteomic database, the Japan Proteome Standard Repository/Database (POST), as follows: HCT116 immunopeptide without FAIMS in JPST001072; HCT116 immunopeptide with FAIMS in JPST001066, global identification of HCT116 immunopeptide in JPST010668, immunopeptide from normal regions of CRC tissues in JPST001070, and immunopeptide from tumor regions of CRC tissues in JPST001069. For CRC tissue samples, the associating whole-exome sequencing data has been deposited into JPST001070 and JPST001069 respectively. The images of uncropped and unedited blots can be found in Supplementary Fig. 16. All source data underlying the graphs and charts presented in the main figures is available as Supplementary Data 1–3.

Received: 27 October 2021; Accepted: 5 August 2022; Published online: 18 August 2022

References

1. Finn, O. J. & Rammensee, H. G. Is it possible to develop cancer vaccines to neoantigens, what are the major challenges, and how can these be overcome? Neoantigens: nothing new in spite of the name. *Cold Spring Harb Perspect Biol* 10, https://doi.org/10.1101/cshperspect.a028829 (2018).

2. Poorerbrham, M. et al. TCR-like CARs and TCR-CARs targeting neoepitopes: an emerging potential. *Cancer Gene Ther.* 28, 581–589 (2021).

3. Hsie, E. H. et al. Targeting a neoantigen derived from a common TP53 mutations in class I HLA genes. *Proc. Natl Acad. Sci. USA* 114, E9942–E9951 (2017).

4. Coffin, E. J., Aebersold, R., Banaei-Esfahani, A., Chong, C. & Bassani-Sternberg, M. W. et al. Mapping the HLA ligandome of colorectal cancer reveals class I HLA, e6579 (2019).

5. Zhuo, D., Wu, Y., Luo, J., Deng, L. & Niu, X. CSTP1 inhibits IL-6 expression through targeting Akt/FoxO3a signaling pathway in bladder cancer cells. *Exp. Cell Res.* 380, 80–89 (2019).

6. Eng, C. et al. Combined transcriptome and proteome analysis of immortalized human keratinocytes expressing human papillomavirus 16 (HPV16) onogenes reveals novel key factors and networks in HPV-induced carcinogenesis. *mSphere* 4, https://doi.org/10.1128/mSphere.00129-19 (2019).

7. Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide motifs. *Immunogenetics* 50, 213–219 (1999).

8. Demmers, L. C. et al. Single-cell derived tumor organoids display diversity in HLA class I peptide presentation. *Nat. Commun.* 11, 5338 (2020).

9. Eng, C. et al. Adoxorubicin with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMBlaZe370): a multicentre, open-label, phase 3, randomised, controlled trial. *Lancet Oncol.* 20, 849–861 (2019).

10. Biber, P. J. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. *Immunity* 44, 609–621 (2016).

11. Lof, M. W. et al. Mapping the HLA ligandome of colorectal cancer reveals markers of immune evasion and in melanoma. *Nature* 590, 332–337 (2021).

12. Demmers, L. C., Heck, A. J. R. & Wu, W. Pre-fractionation extends but also creates a bias in the detectable HLA class Iota ligandome. *J. Proteome Res.* 18, 1634–1643 (2019).

13. Demmers, L. C. et al. Comprehensive molecular characterization of human colon and rectal cancer. *Nature* 487, 330–337 (2012).

14. Hwu, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. *Cell* 165, 35–44 (2016).

15. Murata, S., Takahama, Y., Kasaibara, M. & Tanaka, K. The immunopeptidomics and thymopeptidome: functions, evolution and human disease. *Nat. Immunol.* 19, 923–931 (2018).

16. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacozen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. *Cell* 160, 48–61 (2015).

17. Bartoli, O. et al. Anti-tumour immunity induces aberrant peptide presentation in melanoma. *J. Immunother. Cancer* 7, 219 (2019).

18. Choudhury, N. J. et al. Low T-cell receptor diversity, high somatic mutation burden and vascularization are predictors of response to checkpoint therapies in melanoma. *JCI Insight* 4, 2255–2262 (2016).

19. Kiyotani, K., Chan, H. T. & Nakamura, Y. Immunopharmacogenomics of targeted cancer immunotherapy. *Eur. Urol. Focus* 2, 2255–2262 (2016).

20. Kiyotani, K., Chan, H. T. & Nakamura, Y. Immunopharmacogenomics of targeted cancer immunotherapy. *Eur. Urol. Focus* 2, 2255–2262 (2016).

21. Shukla, S. A. et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. *Nat. Biotechnol.* 33, 1152–1158 (2015).

22. Bassani-Sternberg, M. et al. Direct identification of clinically relevant neo-epitopes presented on native human melanoma tissue by mass spectrometry. *Nat. Commun.* 7, 13404 (2016).

23. Chong, C. et al. High-throughput and sensitive immunopeptidomics platform reveals profound interferon-gamma-mediated remodeling of the human leukocyte antigen (HLA) ligandome. *Mol. Cell Proteom.* 17, 533–548 (2018).

24. Schuster, H. et al. The immunopeptidomics landscape of ovarian carcinomas. *Proc. Natl Acad. Sci. USA* 114, E9942–E9951 (2017).

25. Demmers, L. C. et al. Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma. *Genome Med.* 11, 28 (2019).

26. Hiram, T. et al. Proteogenomic identification of an immunogenic HLA class I neoantigen in mismatch-repair-deficient colorectal cancer tissue. *JCI Insight* 6, https://doi.org/10.1172/jci.insight.146356 (2021).

27. Newey, A. et al. Immunopeptidomics of colorectal cancer organoids reveals a sparse HLA class I neoantigen landscape and no increase in neoantigens with interferon or MEK-inhibitor treatment. *J. Immunother. Cancer* 7, 309 (2019).
45. Patiny, L. & Borel, A. ChemCalc: a building block for tomorrow’s chemical infrastructure. *J. Chem. Inf. Model* **53**, 1223–1228 (2013).

46. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. *Nat. Methods* **4**, 207–214 (2007).

Acknowledgements

This work was supported by the Development of Technology for Patient Stratification Biomarker Discovery of the Japan Agency for Medical Research and Development (20ae0101074s0302) and Grant-in-Aid for Scientific Research (C) of the Japan Society for the Promotion of Science (20K05759).

Author contributions

Conceptualization: Y.M. and K.U. Methodology: Y.M., Y.H., R.F., N.S., and K.U. Genomic Analysis and Tailored Database: K.K., K.N., and N.S. Clinical Sample Collection: Y.I., S.N., and R.F. Experiments and Data Curation: Y.M. and K.U. Original Draft: Y.M. and K.U.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-022-03807-w.

Correspondence and requests for materials should be addressed to Koji Ueda.

Peer review information Communications Biology thanks Angela Krackhardt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Eve Rogers. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2022