Decrease of activity of antioxidant enzymes, lysozyme content, and protein degradation in milk contaminated with heavy metals (cadmium and lead)

G. Grassi, A. Simonetti,* E. Gambacorta, and A. Perna

Summary
The addition of cadmium (Cd) and lead (Pb) to the bulk milk of Friesian cows resulted in a significant change in its oxidative stability. The activity of endogenous antioxidant enzymes such as catalase (CAT), xanthine oxidase (XO), glutathione peroxidase (GPX), and superoxide dismutase (SOD) was significantly lower in contaminated milk. The presence of the toxic heavy metals significantly reduced the lysozyme content, whereas the protein oxidation compounds, dityrosine and advanced oxidation protein products (AOPP), increased compared with the control milk. Comparing the effect of the 2 metals, it was found that the Cd caused a more marked inhibition of the activity of CAT and SOD, while Pb inhibited the activity of XO and GPX more. Furthermore, compared with the control milk, the lysozyme content was lower in the Pb milk and the dityrosine and AOPP values were significantly higher in the Pb milk than in the Cd milk.

Highlights
- Cadmium and lead in milk influenced the oxidative stability of protein.
- Contaminated milk showed a significant reduction in activity of all studied enzymes.
- The milk contamination led to a significant reduction in the lysozyme content.
- Contaminated milk resulted in an increase of dityrosines and AOPP.
- Dityrosine and AOPP values were higher in the Pb milk than in the Cd milk.
Decrease of activity of antioxidant enzymes, lysozyme content, and protein degradation in milk contaminated with heavy metals (cadmium and lead)

G. Grassi, A. Simonetti, E. Gambacorta, and A. Perna

Abstract: The aim of this study was to evaluate the effect of added Cd and Pb to milk on its stability by determining antioxidant enzymatic activities, lysozyme content, and protein degradation. Antioxidant enzymatic activities were spectrophotometrically determined by superoxide dismutase, catalase, xanthine oxidase, and glutathione peroxidase assays; lysozyme was identified and quantified by HPLC-UV analysis, and protein degradation was investigated by spectrophotometric analysis of advanced oxidation protein products (AOPP) and dityrosine content. In this study, contaminated milk samples showed a significant reduction in activity of all studied enzymes compared with control milk. The contamination of milk also led to a significant reduction in the lysozyme content; lysozyme content was decreased about 22% and 18% in Pb milk and Cd milk, respectively, compared with control milk. The presence of the contaminants in the milk resulted in a significant increase of both dityrosine concentration and AOPP compared with the control milk. Moreover, between types of contaminated milk, dityrosine and AOPP values were significantly higher in the Pb milk than in the Cd milk. Therefore, it is important to monitor the presence of these toxic elements in milk for the damage they cause to consumer health both directly due to their ingestion and indirectly due to loss of milk stability.

Environmental contamination by heavy metals is a growing concern due to the adverse health effects. Among heavy metals, lead (Pb) and cadmium (Cd), the two most present, often coexist in a polluted environment (Ozmen and Mor, 2004). Concern about these toxic elements also stems from the numerous routes of exposure. The most common sources of contamination are contaminated water, lead paint, car emissions, industrial emissions, and mining extractions. The food chain is one of the most important causes of Cd and Pb accumulation because the abundance of these heavy metals in the atmosphere creates a direct connection with the distribution in the chain soil–cattle feed–milk (Vidovic et al., 2005).

Significant quantities of Pb and Cd can be transferred from contaminated soil, plants, and grass to grazing animals (Miranda et al., 2005). Ingestion of these elements causes toxic effects to the animals through direct contact, and to humans who consume contaminated meat and milk (Cai et al., 2009). In fact, milk is an excretion of the mammary gland and as such can carry numerous xenobiotic substances including toxic metals. The high content of Cd and Pb in milk could pose a public health problem (Swarup et al., 2005). Many authors have highlighted the presence of Cd and Pb in land used for both livestock grazing and to grow crops for animal feed (Nabulo et al., 2011). At the early stages of an animal’s life, the intake of heavy metals could cause harmful effects such as reduced developmental performance, neurotoxicity, oxidative stress, cell death, and immunotoxicity (Santos et al., 2018).

Oxidative stress is one of the main toxic effects linked to the mechanism of action of Pb and Cd. However, the mechanisms involved in this effect are still unclear and are the subject of ongoing research. It is known that the body’s defense mechanism is directly related to the effects of antioxidant activity of specific enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione transferase (GST; Gusti et al., 2021). Dalle-Donne et al. (2008) showed that limited exposure to toxic metals improved the enzymatic performance, specifically the SOD, CAT, GPx, and glutathione reductase activities; this could be linked to the cell’s ability to adapt and activate defense mechanisms to counteract oxidative action. Conversely, studies have shown that when exposure to Pb and Cd lasts longer, the activity of antioxidant enzymes in cells drastically decreases due to the displacement of Mn, Cu, and Zn ions from the active site of MnSOD and CuZnSOD, Fe ions from catalase, or Se ions from glutathione peroxidase (Dalle-Donne et al., 2008; Patra et al., 2011). In addition, Cd and Pb modify the composition of fatty acids of the cell membrane and promote the synthesis of reactive oxygen species (ROS; Singh et al., 2019). Cadmium and Pb also showed a high affinity with the sulfanyl groups (–SH) of proteins, such as GSH, GPx, and CAT, affecting the molecule functionality and, therefore, their antioxidant activity (Ercal et al., 2001). Thus, the aim of this study was to evaluate, as a first step, the effect of direct milk contamination with Cd and Pb on activity of antioxidant enzymes and lysozyme content, and protein degradation of milk.

Milk from Italian Holstein cows reared indoors on farm in the province of Potenza (southern Italy) was used in this experiment. Animal care and use approval was not necessary because the study was conducted on bulk milk purchased at the company.
The SOD activity was detected by measuring the inhibition of pyrogallol autoxidation following the method proposed by Li et al. (2018), with some modifications. Briefly, the reaction mixture was prepared by adding 1.9 mL of Tris-HCl 0.1 M, 50 μL of sample, and 50 μL of pyrogallol 20 mM in HCl 1 mM. Inhibition of self-oxidation was followed by spectrophotometrically (UV-VIS Spectrophotometer1204; Shimadzu) at 325 nm every 30 s for 3 min. The results were expressed as percentage inhibition [I (%)] and were calculated by the following equation:

\[
I(\%) = \frac{[A_b - (A_s - A_i)/A_b]}{1} \times 100,
\]

where \(A_b\) = absorbance of blank sample (sample was replaced by solvent; \(t = 3\) min); \(A_s\) = absorbance of sample (\(t = 3\) min); and \(A_i\) = absorbance of the test sample (pyrogallol was replaced by distilled water; \(t = 3\) min).

The CAT activity was assessed in accordance with the method described by Hadwan and Abed (2016). The absorbance of the complex was measured at 374 nm (UV-VIS Spectrophotometer 1204; Shimadzu) against blank and the first-order reaction rate constant (k) equation was used to determine catalase activity, as follows:

\[
kU = \frac{2.303}{t} \times \left[\log \frac{S^o}{S - M} \right] \times \frac{V_t}{V_s},
\]

where \(t =\) time (3 min); \(S^o =\) absorbance of standard (without sample); \(S =\) absorbance of sample; \(M =\) absorbance of the control test (without hydrogen peroxide; correction factor); \(V_t =\) total volume (0.19 mL); and \(V_s =\) volume of sample (0.02 mL).

Xanthine oxidase (XO) activity was evaluated by a spectrophotometric assay as described by Durak and Oztürk (2014). The reaction mixture was prepared by adding 2.7 mL of 46.7 mM buffer phosphate (pH 7.5); 100 μL of 0.17 mM xanthine; and 100 μL of sample heated at 37°C. The mixture was incubated at 37°C for 30 min; after that, 100 μL of trichloroacetic acid 3.33% (wt/vol) was added and centrifuged at 5,000 × g for 10 min at room temperature. The absorbance was measured at 293 nm and the activity was calculated by the following equation:

\[
\frac{U}{mL} = \frac{(A_s - A_b)}{\min} \times \frac{1}{\varepsilon} \times \frac{V_T}{V_S} \times \frac{1}{1,000 \text{ mL}},
\]

where \(A_s\) = absorbance of sample; \(A_b\) = absorbance of blank (trichloroacetic acid addition before incubation to stop the reaction); \(\varepsilon =\) uric acid (obtained by conversion reaction of XO) extinction coefficient; \(V_T =\) total volume (3 mL); and \(V_S =\) volume of sample (0.100 mL).

For GPx activity, a spectrophotometric method was conducted as described by Torres et al. (2003). The absorbance was measured at 340 nm for 2 min, using a thermostated spectrophotometer at 37°C. Oxidized NADPH (nmol/min per mL) in samples to which enzymatic activity is directly related were calculated as follows:

\[
\text{GPx} \left(\frac{\text{nmol/min}}{\text{mL}} \right) = \left(\frac{\Delta A_{340}/\text{min}}{0.00373 \text{ } \text{M}^{-1}} \right) \times \frac{V_r}{V_s} \times D_s,
\]

where \(\Delta A_{340}/\text{min} =\) change in absorbance per minute of samples; \(V_r =\) total volume (0.19 mL); \(V_s =\) volume of sample (0.02 mL); \(D_s =\) sample dilution; and 0.00373 M⁻¹ = the extinction coefficient of NADPH.

Lysozyme extraction and quantification were carried out as described by Matera et al. (2022). The analysis was performed in liquid chromatography equipped with Varian ProStar Pump model 210, Rheodyne injector with a 20-mL loop, UV-VIS detector Varian ProStar model 325, and Galaxie Chromatography Software (Varian Inc.) using a C18Vbuilders column (5 μm, 4.6 mm, 150 mm; Restek, USA). The mobile phase consisted of trifluoroacetic acid (1 mL/L in deionized water; eluent A) and 1 mL/L trifluoroacetic acid, 950 mL/L acetonitrile in deionized water (eluent B). The injection volume for all samples was 20 μL. The elution was with flow rate 1.0 mL min⁻¹, and the gradient elution was as follows: 100% solvent A for 5 min followed by a linear gradient to 50% B (vol/vol) over 15 min, increasing to 60% B (vol/vol) over 5 min and running at 60% B (vol/vol) for 10 min. The eluted protein was monitored at 280 nm, the standard solution of lysozyme from chicken egg (Sigma-Aldrich; 5–100 μg/mL) was used for identification and quantification of the peaks, and the results were expressed as micrograms per milliliter of milk.

Advanced oxidation protein products (AOPP) and dityrosine in milk samples were determined by spectrophotometric method. The AOPP were determined as described by Witko-Sarsat et al. (1996), using a calibration curve with chloramine-T standard solution (Sigma-Aldrich; 0–100 μM). The absorbance was measured at 340 nm and AOPP concentrations were expressed in nM chloramine-T equivalent. Dityrosines were determined as described by Witko-Sarsat et al. (1996). The absorbance was measured at 315 nm and dityrosine concentration was determined using the Lambert-Beer formula (\(\varepsilon = 5 \text{ M}^{-1} \text{ cm}^{-1}\), pH 7.5).

Statistical analysis was performed using the general linear model procedure of SAS (1996, SAS Institute Inc.) using a monofactorial model. Differences among contaminated milk were analyzed using Student’s t-test, and differences between means at the 95% (\(P < 0.05\)) confidence level were considered significant.

In this study, the Cd and Pb contents in milk samples without any addition were 6.32 ± 0.58 and 12.78 ± 1.16 ppb, respectively;
dismutation to O₂ plus H₂O₂ (Fattman et al., 2003). In contaminated dismutase is an enzyme capable of removing ROS by catalyzing its reaction of enzyme activity compared with control milk. Superoxide samples with and without contaminants is shown in Table 1. The standard organizations. The activity of antioxidant enzymes in milk these values were lower than the allowed limits announced by the other peroxides at a high rate. The Pb milk showed almost twice as much inhibition of activity as the Cd milk (30.56 and 17.46%, respectively). In support of our results, Ikediobi et al. (2004) found that in rat Cd-stressed liver cells, the enzymatic activity of SOD, CAT, GPx, and glutathione reductase was reduced over a 4-h exposure to Cd²⁺ concentrations ranging from 100 to 300 μM. It is known that heavy metals are elements that affect the catalytic activities of the enzyme (Hinojosa et al., 2004); Cd and Pb have high affinity for thiol groups (−SH) present in enzymes, inhibiting their activity (Nair et al., 2013).

Recent studies have shown the presence of phosphorylated binding sites in the molecule of some antioxidant enzymes, such as xanthine oxidoreductase, which could increase the affinity especially with Pb (Henry et al., 2015). Moreover, many authors detected the antagonism between Cd and Pb and some trace elements that have an important functional role being cofactors of many enzymes, such as zinc, magnesium, and selenium (Matović et al., 2012). Cadmium and lead are bivalent cations and tend to replace these elements, leading to the inactivation of the enzyme itself, with loss of antioxidant function. The marked reduction of CAT detected in the present study in contaminated milk could also be due to the interaction of metals, particularly Cd, with iron (Fe) present in the heme group of the enzyme (Mylroie et al., 1984). Cadmium and lead showed a high affinity with the −SH of proteins; this influences the functionality of the molecule and, therefore, the antioxidant activity of the enzymes (GPx, GSH, and CAT) that use a −SH group as a hydrogen donor (Ercal et al., 2001). Lysozyme is an enzyme naturally present in animal tissues with bactericidal properties by lysing the cell wall of bacteria (Jash et al., 2015). The milk contamination also led to a significant reduction in the lysozyme content (P < 0.001; Table 2), which adversely affects the bactericidal capacity of lysozyme, thus making milk more susceptible to bacterial alterations. In terms of percentage decrease, compared with control milk it was more than 22% and 18% in Pb milk and Cd milk, respectively. Olmo et al. (2001) and

Item	Milk control	Milk + Cd	Milk + Pb
SOD (%)	74.66 ± 0.72	77.29 ± 0.73	10.75 ± 1.07
CAT (kU)	8.16 ± 0.39	8.89 ± 0.48	1.48 ± 0.30
GPx (μmol/min/mL)	5.38 ± 0.33	3.87 ± 0.33	0.90 ± 0.30
XO (μmol/L)	7.10 ± 1.27	5.86 ± 1.12	4.93 ± 1.07

a,b Different lowercase superscripts depict a significant difference within a row (P < 0.01).

Item	Milk control	Milk + Cd	Milk + Pb
SOD (%)	87.04 ± 0.72	77.29 ± 0.73	10.75 ± 1.07
CAT (kU)	8.16 ± 0.39	8.89 ± 0.48	1.48 ± 0.30
GPx (μmol/min/mL)	5.38 ± 0.33	3.87 ± 0.33	0.90 ± 0.30
XO (μmol/L)	7.10 ± 1.27	5.86 ± 1.12	4.93 ± 1.07

Different lowercase superscripts depict a significant difference within a row (P < 0.01).

SOD = superoxide dismutase; CAT = catalase; XO = xanthine oxidase; GPx = glutathione peroxidase.
Zhang et al. (2013) observed that Cd and Pb can form complexes with lysozyme with conformational changes and a reduction in molecule size. Wang et al. (2016), thanks to a study conducted on the interaction between CdCl₂ and lysozyme content, showed that Cd binding mechanisms are driven by hydrophobic forces. In particular, the above mentioned study, thanks to the use of biophysical methods, dynamics simulation, and measurements of enzymatic activity, highlighted how CdCl₂ interacted directly with amino acid residues in the lysozyme chain, causing conformational changes and thus its degradation. The measurement of protein oxidation products is an index of oxidative stress in milk (Lindmark-Månsson and Åkesson, 2000). The oxidation of proteins is one of the main responses to a chemical alteration. However, the oxidation of protein components is a less studied phenomenon than lipid oxidation, but is noteworthy as it is linked to the loss of the nutritional value and organoleptic properties of the food; moreover, the intake of the resulting catabolites can have deleterious consequences on human health (Estévez and Luna, 2017). The oxidation of proteins generated by radicals can lead to damage to the protein skeleton or side chains and the oxidative damage of proteins is irreversible due to a slight unfolding and loss of function (Celi and Gabai, 2015). In this regard, in this study 2 markers were considered: dityrosines, components of protein oxidation resulted from the interaction of 2 tyrosine molecules (Fuentes-Lemus et al., 2018), and the AOPP, which determine the formation of reactive species with an increase in protein oxidation. As shown in Table 2, the presence of the contaminants in the milk resulted in a significant increase of both dityrosine concentration and AOPP compared with the control milk (P < 0.01). Furthermore, among the contaminated milk, the values of dityrosine were significantly higher in the Pb milk compared with the Cd milk (P < 0.01), which with the control increased by 28.22% for Pb milk and by 26.29% for Cd milk. The presence of contaminants in milk also determined a percentage increase compared with the control of AOPP, equal to 40.23% for Pb milk and 26.29% for Cd milk.

The aim of this study was to highlight the effect of Cd and Pb on the oxidative stability of milk proteins. Contaminated milk showed a significant reduction of both antioxidant enzyme activities and lysozyme content; moreover, the presence of Cd and Pb in the milk resulted in a significant increase of protein oxidation compounds such as dityrosine concentration and AOPP. Therefore it is important to monitor the presence of these toxic elements in milk for the damage they cause to the consumer health both directly due to their ingestion and indirectly due to loss of milk stability.

References

Alghazali, M. A., V. Lenártová, K. Holovská, A. Sobeková, M. Falis, and J. Legáth. 2008. Activities of antioxidant and detoxifying enzymes in rats after lead exposure. Acta Vet. Brno 77:347–354. https://doi.org/10.2754/avb200877030347.

Annabi Berrahal, A., A. Nehdi, N. Hajjaji, N. Gharbi, and S. El-Fazîa. 2007. Antioxidant enzymes activities and bilirubin level in adult rat treated with lead. C. R. Bioul. 330:581–588. https://doi.org/10.1016/j.crvi.2007.05.007.

Cai, Q., M. L. Long, M. Zhu, Q. Z. Zhou, L. Zhang, and J. Liu. 2009. Food chain transfer of cadmium and lead to cattle in a lead–zinc smelter in Guizhou, China. Environ. Pollut. 157:3078–3082. https://doi.org/10.1016/j.envpol.2009.05.048.

Celi, P., and G. Gabai. 2015. Oxidant/antioxidant balance in animal nutrition and health: The role of protein oxidation. Front. Vet. Sci. 2:48. https://doi.org/10.3389/fvets.2015.00048.

Dalle-Donne, L., A. Milzani, N. Gagliano, R. Colombo, D. Giustarini, and R. Rossi. 2008. Molecular mechanisms and potential clinical significance of S-glutationylation. Antioxid. Redox Signal. 10:445–473.

Durak, Z. E., and B. Öztürk. 2014. A modified xanthine oxidase activity method based on uric acid absorption. ChemXpress 6:9–13.

Ercal, N., H. Gurer-Ohan, and N. Aykin-Burns. 2001. Toxic metals and oxidative stress Part 1: Mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem. 1:529–539. https://doi.org/10.2174/1568026013394831.

Estévez, M., and C. Luna. 2017. Dietary protein oxidation: A silent threat to human health? Crit. Rev. Food Sci. Nutr. 57:3781–3793. https://doi.org/10.1080/00941110.2016.1165182.

Fattman, C. L., L. M. Schaefer, and T. D. Oury. 2003. Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med. 35:236–256. https://doi.org/10.1016/S0891-5849(03)00275-2.

Fuentes-Lemus, E., E. Silva, P. Barrias, A. Aspée, E. Escobar, L. G. Lorenzen, L. Carroll, F. Leinisch, M. J. Davies, and C. López-Alarcón. 2018. Aggregation of α- and β-caseins induced by peroxyl radicals involves secondary reactions of carbonyl compounds as well as di-tyrosine and di-trypophan formation. Free Radic. Biol. Med. 124:176–188. https://doi.org/10.1016/j.freeradbiomed.2018.06.005.

Gupta, D. K., F. Nicoloso, M. Schetinger, L. Rossato, L. Pereira, G. Y. Castro, S. Srivistava, and R. D. Tripathi. 2009. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J. Hazard. Mater. 172:479–484. https://doi.org/10.1016/j.jhazmat.2009.06.141.

Gusti, A. M. T., S. Y. Qusti, E. M. Alshammarri, E. A. Toraib, and M. S. Fawzy. 2021. Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A preliminary case-control study. Antioxidants 10:595. https://doi.org/10.3390/antiox10040595.

Hadwan, M. H., and H. N. Abed. 2016. Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief 6:194–199. https://doi.org/10.1016/j.dib.2015.12.012.

Henry, C., B. Saadaoui, F. Bouvier, and C. Cebo. 2015. Phosphoproteomics of the goat milk fat globule membrane: New insights into lipid droplet secretion from the mammary epithelial cell. Proteomics 15:2307–2317. https://doi.org/10.1002/pmi.201400245.

Hinojosa, M. B., J. A. Carreira, R. García-Ruíz, and R. P. Dick. 2004. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biol. Biochem. 36:1559–1568. https://doi.org/10.1016/j.soilbio.2004.07.003.

Ikedobi, C. O., V. L. Badisa, L. T. Ayuk-Takem, L. M. Latinwo, and J. West. 2004. Response of antioxidant enzymes and redox metabolites to cadmi-
Grassi et al. | Milk contaminated with heavy metals (cadmium and lead) 316

un-imposed oxidative stress in CRL-1439 normal rat liver cells. Int. J. Mol. Med. 14:87–92. https://doi.org/10.3892/ijmm.14.1.87.

Jash, C., P. Basu, P. P. Payghan, N. Ghoshal, and G. S. Kumar. 2015. Chelythrine–lysozyme interaction: Spectroscopic studies, thermodinamics and molecular modeling exploration. Phys. Chem. Chem. Phys. 17:16630–16645. https://doi.org/10.1039/C5CP00244A.

Li, Y., D. Chen, J. Li, X. X. Zhang, C. F. Wang, and J. M. Wang. 2018. Changes in superoxide dismutase activity postpartum from Laoshan goat milk and factors influencing its stability during processing. Ital. J. Anim. Sci. 17:835–844. https://doi.org/10.1080/1826051X.2018.1448306.

Lindmark-Månsson, H., and B. Åkesson. 2000. Antioxidative Li, Y. Ozmen, O., and F. Mor. 2004. Inhibition of cathepsin-D activity in breast cancer cell line MCF-7 by a new glycoprotein, α1-antitrypsin. J. Biochem. Biophys. Methods. 59:71–75. https://doi.org/10.1016/j.jbiomac.2004.09.025.

Matović, V., T. Spasojević, B. Vuković, D. Krivoš, and N. Stojanović. 2019. The effect of dietary copper supplementation on erythrocyte superoxide dismutase activity, ceruloplasmin and glutathione peroxidase activity in human milk. Nahrung 47:430–433. https://doi.org/10.1002/food.200390095.

Valko, M., D. Leibfritz, J. Monkol, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39:44–84. https://doi.org/10.1016/j.biocell.2006.07.001.

Nair, A. R., O. DeGheselle, K. Smeets, E. Van Kerkhove, and A. Cuyvers. 2013. Cadmium-induced pathologies: Where is the oxidative balance lost (or not)? Int. J. Mol. Sci. 14:6116–6143. https://doi.org/10.3390/ijms1406116.

Nand, A., L.-J. Yan, C. K. Jana, and N. Das. 2019. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid. Med. Cell. Longev. 2019:1–19. https://doi.org/10.1155/2019/9613090.

Olmo, R., M. D. Blanco, J. M. Socorro, J. A. Martin, and J. M. Teijón. 2001. Effect of cadmium acetate on the conformation of lysozyme: Functional implications. J. Enzyme Inhib. 16:65–80. https://doi.org/10.1080/14756360196162556.

Ozmen, O., and F. Mor. 2004. Acute lead intoxication in cattle housed in an old battery factory. Vet. Hum. Toxicol. 46:255–256.

Patra, R. C., A. K. Rautray, and D. Swarup. 2011. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet. Med. Int. 2011:457327. https://doi.org/10.4061/2011/457327.

Santos, D., R. Vieira, A. Luzio, and L. Félix. 2018. Zebrafish early life stages for toxicological screening: Insights from molecular and biochemical markers. Adv. Mol. Toxicol. 12:151–179. https://doi.org/10.1016/B978-0-444-64199-1.00007-5.

Shi, H., Y. Sui, X. Wang, Y. Luo, and L. Ji. 2005. Hydroxyl radical production and oxidative damage induced by cadmium and naphthenalene in liver of Carassius auratus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 140:115–121. https://doi.org/10.1016/j.cca.2005.01.009.

Singh, A., R. Kukreти, L. Saso, and S. Kukreти. 2019. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 24:1583. https://doi.org/10.3390/molecules24081583.

Swarup, D., R. C. Patra, R. Naresh, P. Kumar, and P. Shekhar. 2005. Blood lead levels in lactating cows reared around polluted localities: transfer of lead into milk. Sci. Total Environ. 347:106–110. https://doi.org/10.1016/j.scitotenv.2004.12.055.

Torres, A., R. Farré, M. J. Lagarda, and J. Monleón. 2003. Determination of glutathione peroxidase activity in human milk. Nahrung 47:430–433. https://doi.org/10.1002/food.200390095.

This study received no external funding. The authors have not stated any conflicts of interest.