Transcriptomic Differences Between Monozygotic Adolescent Twins Discordant For Metabolic Syndrome Following Weight Loss: A Case Study

Kaitlin Day1, Alan J. McCubbin1, Chiara Murgia2, Melissa C. Southey3,4,5, Justin Brown6,7 and Helen Truby8

1Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia, 2School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3Precision Medicine, School of Clinical Science at Monash Health, Monash University Clayton, Victoria, Australia, 4Department of Clinical Pathology, The University of Melbourne, Victoria, Australia, 5Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia, 6Department of Paediatrics, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia, 7Department of Paediatric Endocrinology and Diabetes, Monash Children’s Hospital, Melbourne, Victoria, Australia and 8School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia

Abstract
This case reports peripheral blood mononuclear cell (PBMC) transcriptomic changes in a pair of male monozygotic pediatric twins with metabolic syndrome (MetS) undertaking assisted weight loss. These 14-year-old boys presented with similar baseline biochemistry and body composition. After a 16-week weight-loss intervention, percent body weight loss was similar (Twin A 12%, and Twin B 13%). MetS resolved in Twin A but Twin B maintained elevated triglycerides after weight loss. Analysis of the PBMC transcriptome before and after weight loss revealed very different changes in gene expression including differences in the direction of expression of genes related to immune cell activation. 48.7% of genes that were downregulated in Twin A were upregulated in Twin B. This case highlights a novel approach to report the influence of chronic low-grade inflammation and metabolic dysfunction on the PBMC transcriptome. It explores whether expression of genes related to immune functions may underlie the differences in response to weight loss or whether transcriptomic alterations in immune cells may precede more traditional biomarkers of chronic pro-inflammation. These monozygotic twins present an example of divergence of phenotypic outcomes despite identical genetic background and similar treatment response.

Keywords: Pediatric obesity; gene expression; metabolic syndrome

(Received 18 July 2022; revise received 5 October 2022; accepted 5 October 2022)
Twin B (−0.5mmol/L), such that Twin A (but not Twin B) no longer met the adolescent criteria for MetS.

**RNA Extraction and Analysis**

RNA was isolated from PBMCs collected at baseline and after weight loss at week 16. RNA integrity (RIN) was measured using an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, California, United States). Samples were advanced to RNA sequencing (Illumina NextSeq 500, Illumina, San Diego, California, United States) with a RIN above 8; all twin samples had a RIN above 8.

For immune cell subsets within PBMC samples, enrichment scores were calculated using SPEC (version 0.5.0; Bolen et al., 2011) whereby the twins’ gene expression signatures were correlated with the default package gene signatures for each cell type (T cells, myeloid cells, monocytes and lymphocytes).

Fastq files of raw sequence reads were aligned to the human genome (GRCh38) using the STAR aligner and read counts generated using the featureCounts package as part of the ‘RNAsig’ pipeline (Tsyganov et al., 2018) developed by the Monash Bioinformatics Platform (Monash University, Melbourne, Australia). Only genes with a mean count >10 were included in the downstream analysis. Due to the case study design, genes were determined as differentially expressed with a log-fold change (logFC) <−0.26 or >0.26 (Muñoz García et al., 2019), a cut-off used in nutrition research to define differentially expressed genes, since standard statistical testing could not be performed in this case (N=2). To explore the biological processes that differentially expressed genes were associated with, these genes were mapped to gene ontologies (GO) using the ClueGO plugin via the CluePedia app (version 3.8.2). GO terms were considered enriched with an adjusted p value <0.05 after Bonferroni stepped-down correction for false discovery rate (Dunn, 1961), and at least five included genes were mapped to the GO term. Terms were grouped into networks using a connectivity kappa threshold of 0.4.

**Results**

**Peripheral Blood Mononuclear Cell Subpopulations**

SPEC analysis demonstrated that cell populations were comparable between twins with both twin gene signatures most strongly correlated with the T-cell gene signature both before and after the intervention (Table 2).
Baseline Gene Expression

A mean count of >10 was detected in a total of 15,071 genes across all samples. At baseline, 4369 genes (28%) were found to have a logFC of either >0.26 (1179 genes) or <−0.26 (3189 genes) between twins. Gene ontology analysis found 64 GO terms associated with genes that were upregulated, and 222 GO terms associated with genes that were downregulated in Twin A compared to Twin B at baseline.

Gene Expression Following the Intervention

Following the intervention, 13,281 genes were differentially expressed in Twin A compared to baseline, and in Twin B, 9604 genes were differentially expressed. Very few genes (12.2% and 1.2%) were differentially expressed in the same direction following weight loss in the twins (Figure 1). In contrast, following weight loss, 6463 transcripts (48.1%) were downregulated in Twin A and upregulated in Twin B (Figure 2). Due to the large number, only those genes with a logFC <−0.58 or >0.58 following weight loss were used in the downstream analysis (2280 genes), which represents a more conservative cut-off commonly used in medical research (Rapaport et al., 2013). Ninety GO terms were enriched (adjusted p value <.05) between the 2280 genes inversely regulated following weight loss. Nine of the 10 top enriched terms were related to immune function (leukocyte degranulation and granulocyte activation) were upregulated at baseline but downregulated following the intervention in Twin A compared to Twin B, suggesting Twin A had a greater capacity for change in expression of genes related to immune functions than Twin B. The baseline discordance observed in gene expression related to immune function between the twins may underlie the differences in gene expression following the intervention.

Differences in whole blood and PBMC gene expression levels have been previously identified between people with metabolically healthy and metabolically unhealthy obesity, particularly for genes related to lipid metabolism and some immune functions (TRIM11, ADAMTSL2; Plaza-Florido et al., 2021), suggesting that differences in gene expression may underlie different metabolic phenotypes and transcriptomic differences could, in this case, precede differences in classical pro-inflammatory markers. A recent review into differences in PBMC gene expression between responders to a weight-loss intervention demonstrated...
consistent changes in toll-like receptor signalling between high responders to a weight loss intervention (Day et al., 2021), which belongs to the same broader gene ontological process of ‘activation of immune response’ as leukocyte and neutrophil activation, which were observed in the current study (Figure 2). A study into PBMC gene expression of African American males with obesity observed that neutrophil specific genes were upregulated in obesity, suggesting a role of neutrophils in obesity and its treatment (Xu et al., 2015).

Both genomewide association studies and twin studies have been used to characterize the heritability of body weight and body shape (Locke et al., 2015; Min et al., 2013; Thorleifsson et al., 2009). Genomewide association studies have suggested that less than 1−3% of BMI variation can be explained by differences in genotype (Locke et al., 2015; Thorleifsson et al., 2009). Despite this, a systematic review of twin studies has suggested moderate heritability of weight at birth, which increases to a maximum heritability of 79% at around 20 years of age before waning again into adulthood (Min et al., 2013); suggesting that the genetic influence of body weight wanes with increasing age and that environmental impacts may accumulate over time before reaching a critical threshold to impact phenotype. Interestingly, this places the twins reported here close to their peak age of body weight heritability. Indeed, body weight at baseline and follow-up were similar between twins, despite differences in gene expression responses at both baseline and in response to the dietary intervention. The birth weights of the twins described here were borderline discordant (17.8% difference), compared to the criteria (≥18% difference) for assessing birthweight-associated adverse outcomes (Breathnach et al., 2011). In several large cohort and twin studies, low birth weight has been associated with obesity and lower lean mass in adulthood, independent of genetic and maternal influences (Hertfordshire Study, 2005; Labayen et al., 2008; Loos et al., 2001). Low birth weight is an indicator of in-utero stress, which can be caused by multiple factors, including undernutrition (Mayer & Joseph, 2013) and multiple pregnancy (Sankilampi et al., 2013). Multiple pregnancies may be more susceptible to fetal undernutrition due to competition for maternal and placental supply, and this competition may lead to differences in birth weight that can impact upon body weight and adiposity later in life (Fox et al., 2011). In the twins described here, the twin with a lower birth weight presented at baseline with a higher BMI, waist circumference, and percentage body fat, although there were no differences in the criteria for MetS.

Fig. 2. Network connectivity map of gene ontology terms enriched for the genes downregulated in twin A and upregulated in twin B following weight loss (log-fold change > −0.58 or < −0.58, 2280 genes). Terms were considered enriched with an adjusted FDR < 0.05 and grouped into networks with a connectivity kappa threshold of 0.4. These networks were broadly characterised as leukocyte degranulation and granulocyte activation.
The contrasting response of the PBMC transcriptome following similar weight loss in these twins is particularly puzzling given the similarity in phenotypic response. Body composition changes were similar between twins and most metabolic outcomes were similarly decreased, as one would anticipate with substantial body weight loss. Interestingly, despite very similar reductions in weight and body fat, it was the twin with the higher birth weight who still met the criteria for MetS following the 16-week intervention, due to minimal change in fasting triglycerides from baseline. Hyperlipidaemia can lead to activation of circulating leukocytes via increased fatty acid uptake, and mouse models have shown that MetS increases circulating immune cell counts (Alipour et al., 2008; Kanneganti & Dixit, 2012) and may explain the persistent upregulation of immune-related genes and may explain the persistent upregulation of immune-related genes observed in this case study. CRP is a nonspecific marker of both acute and chronic inflammation, susceptible to multiple environmental factors that influence the immune system (Sproston & Ashworth, 2018). It is therefore probable that other factors, not measured in the current study as such acute illness history, could have impacted measured CRP.

The divergent gene expression changes following weight loss between these twins may be a precursor to more traditional markers of pro-inflammation and may underlie the mechanism behind the MetS only resolving in one twin. Central obesity and the immune system are closely linked (Hotamisligil, 2006). Many metabolic derangements arising from obesity, such as insulin resistance and atherosclerosis, involve inappropriate activation of the immune system. Evidence from both mouse and human studies suggests that an upregulation of immune signalling genes and stress markers on the surface of adipocytes precedes macrophage recruitment to the adipose tissue microenvironment (Bai & Sun, 2015), and the adhesion of monocytes to the endothelium in the initial stages of atherosclerosis development (Wu et al., 2020). Increased expression of the toll-like receptor and the cluster of differentiation (CD) families of genes precedes fibrosis development in mouse adipose tissue following a high fat diet (Kwon et al., 2012). Additionally, individuals with hyperlipidaemia have a higher number of primed PBMCs in circulation compared to healthy controls, which precedes adhesion to the endothelium during atherosclerotic plaque formation (Mazor et al., 2008). This suggests that changes in the expression of immune signaling genes may precede metabolic dysfunction and the presence of classical pro-inflammatory markers.

The epigenome is a key regulator of gene expression, inhibiting access of transcriptional machinery to DNA. It has been proposed that differences in the epigenome arise due to epigenetic drift over the life course, and as such the culmination of environmental impacts on gene expression and regulation can result in different phenotypic outcomes (Poulsen et al., 2007). One of the first studies to record this evaluated the epigenomes of 3-year-old and 50-year-old twins and found that epigenetic differences between twin pairs were greater in the older twins (Fraga et al., 2005). These differences were stable over the short term (12 weeks), suggesting long-term exposure is necessary to promote changes in the epigenome (Fraga et al., 2005). Obesity may also promote epigenetic divergence (Barrès & Zierath, 2016) and has been suggested to accelerate biological aging measured through DNA methylation signatures (de Toro-Martín et al., 2019; Nevalainen et al., 2017) and telomere length (Buxton et al., 2011). Differences in the epigenome between twins may lead to differences in gene expression and ultimately phenotypic outcomes, suggesting that the divergent PBMC transcriptomic response observed in the current study may be through DNA methylation differences accumulated through different environmental exposures, which would be an interesting avenue for future exploration.

Monozygotic twins provide a unique model to examine the variability in gene expression following weight loss. This case provides some evidence that changes in the transcriptome may precede the development of more traditional biomarkers of chronic inflammation in susceptible individuals. Further exploration of the transcriptome with weight trajectory over the life course is needed to determine whether expression of genes relating to immune function or alterations in the transcriptome can precede traditional metabolic disease risk factors and to determine what age or developmental stage would be optimal to intervene.

Data availability. Data is available upon reasonable request to the corresponding author.

Acknowledgments. The authors would like to thank the twins and their parents for their involvement and consent to publish this case study.

Financial support. This work has been supported by the National Health and Medical Research Council (grant number 1128317).

Conflict of interest. None.

Ethical standards. The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

References

Alipour, A., Oostrom, A. J. H. M. V., Izraeljan, A., Versyden, C., Collins, J. M., Frayn, K. N., Plokker, T. W. M., Elte, J. W. F., & Cabezas, M. C. (2008). Leukocyte activation by triglyceride-rich lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 792–797. https://doi.org/10.1161/ATVBAHA.107.159749

Angelovich, T. A., Hearps, A. C., & Jaworowski, A. (2015). Inflammation-induced foam cell formation in chronic inflammatory disease. Immunology & Cell Biology, 93, 683–693. https://doi.org/10.1038/icb.2015.26

Table 3. The 10 most enriched gene ontology terms for the genes oppositely regulated between the twins following weight loss. All top ten terms were significantly enriched after Bonferroni adjusted for multiple testing (adj. p value < .01).

| GO_term              | Name                                   |
|----------------------|----------------------------------------|
| GO:0036230           | Granulocyte activation                 |
| GO:0042119           | Neutrophil activation                  |
| GO:0002274           | Myeloid leukocyte activation           |
| GO:0002283           | Neutrophil activation involved in immune response |
| GO:0043312           | Neutrophil degranulation               |
| GO:0042299           | Leukocyte degranulation                |
| GO:0002275           | Myeloid cell activation involved in immune response |
| GO:0002446           | Neutrophil mediated immunity           |
| GO:0006793           | Phosphorus metabolic process           |
poly morphonuclear leukocytes constitute a possible link between inflammation and oxidative stress in hyperlipidemic patients. Atherosclerosis, 197, 937–943. https://doi.org/10.1016/j.atherosclerosis.2007.08.014

Min, J., Chiu, D. T., & Wang, Y. (2013). Variation in the heritability of body mass index based on diverse twin studies: A systematic review. Obesity Reviews, 14, 871–882. https://doi.org/10.1111/obr.12065

Muñoz García, A., Eijssen, L. M., Kutmon, M., Sarathy, C., Cengo, A., Hewison, M., Erole, C. T., Lenz, M., & Court, S. L. (2019). A bioinformatics workflow to decipher transcriptomic data from vitamin D studies. Journal of Steroid Biochemistry and Molecular Biology, 189, 28–35. https://doi.org/10.1016/j.jsbmb.2019.01.003

Nevalainen, T., Kanani, L., Marttila, S., Jylhävä, J., Mononen, N., Kähönen, M., Raitakari, O. T., Hervonen, A., Jylhä, M., Lehtimäki, T., & Hurme, M. (2017). Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals. Clinical Epigenetics, 9, 20. https://doi.org/10.1186/s12314-016-0301-7

Plaza-Florido, A., Altmie, S., Esteban, F. J., Cadenas-Sanchez, C., Aguilar, C. M., Einarsdottir, E., Catayama, S., Krujtskov, K., Kere, J., Zaldivar, F., Radom-Aizik, S., & Ortega, F. B. (2021). Distinct whole-blood transcriptome profile of children with metabolic healthy overweight/obesity compared to metabolic unhealthy overweight/obesity. Pediatric Research, 89, 1687–1694. https://doi.org/10.1007/s00280-019-01276-7

Poulsen, P., Esteller, M., Vaag, A., & Fraga, M. F. (2007). The epigenetic basis of twin discordance in age-related diseases. Pediatric Research, 61, 38R–42R. https://doi.org/10.1203/pdr.0b013e318037bcb3

Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C. E., Socci, N. D., & Betel, D. (2013). Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology, 14, Article 3158. https://doi.org/10.1186/gb-2013-14-9-195

Sankilampi, U., Hannila, M.-L., Saar, A., Gissler, M., & Dunkel, L. (2013). New population-based references for birth weight, length, and head circumference in singletons and twins from 23 to 43 gestation weeks. Annals of Medicine, 45, 446–454.

Sproston, N. R., & Ashworth, J. J. (2018). Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.00754

Swirski, F. K., Libby, P., Aikawa, E., Alcaide, P., Luscinskas, F. W., Weissleder, R., & Pittet, M. J. (2007). Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in athelromata. The Journal of Clinical Investigation, 117, 195–205. https://doi.org/10.1172/JCI29950

Thorleifsson, G., Walters, G. B., Gudbjartsson, D. F., Steinthorsdottir, V., Holm, V. V., Sigurgeirsson, B., Thorgeirsson, T., Manolescu, A., Thorsteinsdottir, U., Magnusson, H. G., Thorleifsson, E., Kivinen, K., Aurness, D. V., Stefansson, K., & Thorsteinsdottir, U. (2011). Unusual genomic architecture at a common region for type 2 diabetes. Nature Genetics, 43, 299–306.