Applications of a new P-Q modular equation of degree two

D. J. Prabhakaran and K. Ranjith Kumar

Abstract. At scattered places in his first notebook, Ramanujan recorded the values for 107 class invariants or irreducible monic polynomials satisfied by them. On pages 294-299 in his second notebook, he gave a table of values for 77 class invariants G_n and g_n in his second notebook. Traditionally, G_n is determined for odd values of n and g_n for even values of n. On pages 338 and 339 in his first notebook, Ramanujan defined the remarkable product of theta-functions $a_{m,n}$. Also, he recorded eighteen explicit values depending on two parameters, namely, m, and n, where these are odd integers. In this paper, we initiate to study explicit evaluations of G_n for even values of n. We establish a new general formula for the explicit evaluations of G_n involving class invariant g_n. For this purpose, we derive a new P-Q modular equation of degree two. Further application of this modular equation, we establish a new formula to explicit evaluation of $a_{m,2}$. Also, we compute several explicit values of class invariant g_n and singular moduli α_n.

1. Introduction

The following definitions of theta functions \[\varphi, \psi, \text{ and } f \text{ with } |q| < 1 \] are classical:

\[
\varphi(q) = f(q, q) = \sum_{n=-\infty}^{\infty} q^{n^2} = (-q; q^2)_{\infty}^2 (q^2; q^2)_{\infty},
\]

\[
\psi(q) = f(q, q^3) = \sum_{n=0}^{\infty} q^{n(n+1)/2} = (q^2; q^2)_{\infty} (q^2; q^2)_{\infty}^{-1},
\]

\[
f(-q) = f(-q, -q^2) = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(n-1)/4} = (q; q)_{\infty},
\]

where, $(a; q)_{\infty} = \prod_{n=0}^{\infty} (1 - aq^n)$.

For $q = e^{-\pi \sqrt{n}}$, Weber-Ramanujan class invariants \[\text{[2] p.183, (1.3)} \] are defined by

\[
G_n = 2^{-1/4} q^{-1/24} \chi(q) \quad ; \quad g_n = 2^{-1/4} q^{-1/24} \chi(-q),
\]

where, n is a positive rational number and $\chi(q) = (-q; q^2)_{\infty}$. Ramanujan \[\text{[2] Entry 2.1, p.187} \] recorded simple formula relating these class invariants as follows:

\[
g_{4n} = 2^{1/4} g_n G_n.
\]

Ramanujan evaluated a total of 116 class invariants \[\text{[2] p.189-204} \]. Traditionally, G_n is determined for odd values of n and g_n for even values of n. These have been proved by

Key words and phrases. Modular equation, theta functions, class invariants.
various authors using techniques such as modular equations, Kronecker limit formula, and empirical process (established by Watson) [2, Chapter 34].

The ordinary or Gaussian hypergeometric function is defined by

$$2F_1(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n n!} z^n, \quad |z| < 1$$

where, a, b, c are complex numbers such that $c \neq 0, -1, -2, \ldots$, and $(a)_0 = 1, (a)_n = a(a + 1)(a + 2)\ldots(a + n - 1)$ for any positive integer n.

Now, we shall recall the definition of modular equation from [1]. The complete elliptic integral of the first kind $K(k)$ of modulus k is defined by

$$K(k) = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} = \frac{\pi}{2} \sum_{n=0}^{\infty} \frac{(\frac{1}{2})^n}{(n!)^2} k^{2n} = \frac{\pi}{2} \varphi^2 \left(e^{-\pi \sqrt{k^2}} \right), \quad (0 < k < 1) \quad (1.3)$$

and let $K' = K(k')$, where $k' = \sqrt{1 - k^2}$ is represented as the complementary modulus of k. Let K, K', L, L' denote the complete elliptic integrals of the first kind associated with the moduli k, k', l, l' respectively. In case, the equality

$$n \frac{K'}{K} = \frac{L'}{L} \quad (1.4)$$

holds for a positive integer n, then a modular equation of degree n is the relation between the moduli k, l, which is implied by equation (1.4). Ramanujan defined his modular equation involving α, β, where, $\alpha = k^2$, and $\beta = l^2$. Then we say β is of degree n over α.

Ramanujan recorded 23 $P-Q$ modular equations in terms of their theta function in his notebooks [6]. All those proved by Berndt et al. by employing the theory of theta functions and modular forms.

If, as usually quoted in the theory of elliptic functions, $k = k(q)$ denotes the modulus, then, the singular moduli k_n is defined by $k_n = (e^{-\pi \sqrt{\alpha}})$, where n is a positive integer. In terms of Ramanujan, set $\alpha = k^2$ and $\alpha_n = k_n^2$, he hypothesized the values of over 30 singular moduli in his notebooks. On page 82 of his first notebook, Ramanujan stated three additional theorems for calculating α_n for even values of n. Particularly, he offered formulae for α_{4p}, α_{8p}, and α_{16p}. Moreover, he recorded several values of α_n for odd values of n in his first and second notebook. All these results have proved by Berndt et al. by employing Ramanujan’s class invariants G_n and g_n. Also we observed that representation for α_n in terms of theta function. This is given by [1] Entry 12 (i),(iv) Ch.17, p.124

$$\alpha_n = \left(\frac{f(q)}{2^{1/2} q^{1/8} f(-q^4)} \right)^{-8}, \quad \text{where}, \quad q = e^{-\pi \sqrt{\alpha}}. \quad (1.5)$$

On page 338 in his first notebook [6], Ramanujan defined

$$a_{m,n} = \frac{nq^{(n-1)/4} \psi^2 (q^n) \varphi^2 (-q^{2n})}{\psi^2 (q) \varphi^2 (-q^2)} \quad (1.6)$$
where, \(q = e^{-\pi \sqrt{m/n}} \) and \(m, n \) are positive rationals then, on page 338 and 339, he offered a list of 18 particular values. All those 18 values have proved by Berndt, Chan, and Zhang [3]. Recently, Prabhakaran, and Ranjith Kumar [5] have established a new general formula for the explicit evaluations of \(a_{3m,3} \) and \(a_{m,9} \) by using \(P - Q \) mixed modular equations, and the values for certain class invariant of Ramanujan. Also they have calculated some new explicit values of \(a_{3m,3} \) for \(m = 2, 7, 13, 17, 25, 37 \), and \(a_{m,9} \) for \(m = 17, 37 \).

Naika, and Dharmendra [4] have given alternative form of (1.6) as follows:

\[
a_{m,n} = \frac{nq^{(n-1)/4} \psi^2(-q^n) \varphi^2(q^n)}{\psi^2(-q) \varphi^2(q)}.
\]

(1.7)

They have proved some general theorems to calculate explicit values of \(a_{m,n} \).

The organisation of the present study is as follows. In Section 2, we collect some identities which are useful in proofs of our main results. In Section 3, we derive a new \(P - Q \) modular equation of degree two. Applying this modular equation, we establish new general formulae for the explicit evaluations of class invariant \(G_n \) for even values of \(n \), and the Ramanujan’s remarkable product of theta functions \(a_{m,2} \) along with class invariant \(g_n \). By using these formulae, we compute several explicit values of class invariant \(G_n \), and \(a_{m,2} \). Also, we evaluate several explicit values of class invariant \(g_n \), and singular moduli \(\alpha_n \). These are presented in Section 4.

2. Preliminaries

We list a few identities which are useful in establishing our main results.

Lemma 2.1. [1] Entry 24(iii) p. 39] We have

\[
f(q)f(-q^2) = \psi(-q)\varphi(q).
\]

(2.1)

Lemma 2.2. [1] Entry 12(i),(iii) Ch.17, p.124] We have

\[
f(q) = \sqrt{z2^{-1/6}} \frac{(\alpha(1 - \alpha)/q)^{1/24}}{\varphi(1 - \alpha + \beta)};
\]

\[
f(-q^2) = \sqrt{z2^{-1/3}} \frac{(\alpha(1 - \alpha)/q)^{1/12}}{\varphi(1 - \alpha + \beta)}.
\]

(2.2)

(2.3)

Lemma 2.3. [1] Entry 24(ii), p. 214] If \(\beta \) is of degree 2 over \(\alpha \), then,

\[
m\sqrt{1 - \alpha} + \sqrt{\beta} = 1,
\]

\[
m^2\sqrt{1 - \alpha} + \beta = 1.
\]

(2.4)

(2.5)

where, \(m = z_1/z_2 = \varphi^2(q)/\varphi^2(q^2) \).

Lemma 2.4. [7] Theorem 3.5.1] If \(P = \frac{f(-q)}{q^{1/8}f(-q^4)} \) and \(Q = \frac{f(-q^2)}{q^{1/4}f(-q^8)} \), then,

\[
(PQ)^4 + \left(\frac{4}{PQ}\right)^4 = \left(\frac{Q}{P}\right)^{12} - 16 \left(\frac{P}{Q}\right)^4 - 16 \left(\frac{Q}{P}\right)^4.
\]

(2.6)
3. GENERAL FORMULAE FOR THE EXPLICIT EVALUATIONS OF \(G_{2n}, G_{n/2}, \) AND \(a_{m,2} \)

In this section, we derive a new P-Q modular equation of degree two. As application of this modular equation, we establish some general formulae for the explicit evaluations of \(G_{2n}, G_{n/2}, \) and \(a_{m,2} \) in term of the class invariant \(g_n. \)

Theorem 3.1. If \(P = \frac{f(q)}{q^{1/24} f(q^2)} \) and \(Q = \frac{f(-q^2)}{q^{1/12} f(-q^4)}, \) then,

\[
Q^{16} - P^4 Q^{14} + 8 P^4 Q^2 - 4 P^8 = 0.
\]

Proof. Transcribing \(P, \) and \(Q \) using (2.2), and (2.3), then simplifying, we arrive at

\[
P = \sqrt{z_1} \left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)} \right)^{1/24}; \quad Q = \sqrt{z_2} \left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)} \right)^{1/12},
\]

where, \(\beta \) is of degree 2 over \(\alpha. \) It follow that

\[
\frac{Q}{P} = \left(\frac{\alpha(1-\alpha)}{\beta(1-\beta)} \right)^{1/24}; \quad m = \frac{P^4}{Q^2}.
\]

Now isolating \(\alpha, \) and \(\beta \) from (2.4), and (2.5), we deduce that

\[
\alpha = \frac{4(m-1)}{m^2}; \quad \beta = (m-1)^2.
\]

By (3.4), we observe that

\[
\alpha(1-\alpha) = \frac{4(m-1)(m-2)^2}{m^4}; \quad \beta(1-\beta) = -m(m-1)^2(m-2).
\]

Employing (3.5) in first term of (3.3), and simplifying, we arrive at

\[
(m-1)(m-2) \left(m^6 Q^{24} - m^5 Q^{24} + 4 m P^{24} - 8 P^{24} \right) = 0.
\]

We observe that the last factor of the above equation vanish for \(q \to 0, \) whereas, the other factors does not vanish for that specific value. Thus, we obtain that

\[
m^6 Q^{24} - m^5 Q^{24} + 4 m P^{24} - 8 P^{24} = 0.
\]

Now applying the value of \(m \) in the above equation, we complete the proof. \(\Box \)

Theorem 3.2. If \(n \) is any positive rational, and

\[
\Lambda = \frac{g_{2n}^{12} + g_{2n}^{-12}}{2},
\]

then,

\[
\frac{G_{2n}}{G_{n/2}} = \frac{1}{g_{2n}} \left(\sqrt{\Lambda} + \sqrt{\Lambda - 1} \right)^{1/4},
\]

\[
\left(\sqrt{2} G_{2n} G_{n/2} \right)^{12} - 16 \left(\left(\sqrt{2} G_{2n} G_{n/2} \right)^4 + \left(\sqrt{2} G_{2n} G_{n/2} \right)^{-4} \right)
= 16 g_{2n}^{12} \left(\sqrt{\Lambda} + \sqrt{\Lambda - 1} \right) + 16 g_{2n}^{-12} \left(\sqrt{\Lambda} - \sqrt{\Lambda - 1} \right).
\]
Proof. Solving (3.1) for \(P/Q \), and choosing the appropriate root, we obtain that
\[
\frac{P}{Q} = \frac{Q}{2^{3/4}} \left(\sqrt{Q^{12} + \frac{64}{Q^{12}}} - \sqrt{Q^{12} + \frac{64}{Q^{12}} - 16} \right)^{1/4}.
\]
(3.8)

We observed that some representations for \(G_n \) and \(g_n \) in terms of \(f(q) \) and \(f(-q) \) by Entry 24(iii) [1, p.39] as follow:
\[
G_n = \frac{f(q)}{2^{1/4}q^{1/24}f(-q^2)}; \quad g_n = \frac{f(-q)}{2^{1/4}q^{1/24}f(-q^2)}.
\]
(3.9)

Employing (3.9) in (3.8) along with \(q = e^{-\pi \sqrt{m/2}} \), we arrive at (3.6). Now, setting \(q = e^{-\pi \sqrt{m/2}} \) in Lemma 2.4 and employing the definition of \(g_n \), we obtain that
\[
PQ = 2g_{2n}g_{n/2}g_{8n}; \quad \frac{P}{Q} = \frac{g_{n/2}}{g_{8n}}.
\]
(3.10)

Now applying (1.2) in (3.10), we deduce that
\[
PQ = 2g_{4n}^2G_{2n}G_{n/2}; \quad \frac{P}{Q} = \frac{1}{\sqrt{2G_{2n}G_{n/2}}}.
\]
(3.11)

By (3.6), we observe that
\[
g_{2n}^4G_{2n}/G_{n/2}^3 = g_{2n}^3 \left(\frac{g_{2n}^{12} + g_{2n}^{-12}}{2} + \sqrt{\frac{g_{2n}^{12} + g_{2n}^{-12}}{2} - 1} \right)^{1/4}.
\]
(3.12)

Now applying (3.11) and (3.12) in (2.6), we obtain (3.7). \(\square\)

Theorem 3.3. If \(m \) is any positive rational, then
\[
a_{m,2} = \frac{1}{g_{4m}^6} \left(\sqrt{\frac{g_{2m}^{12} + g_{2m}^{-12}}{2}} + \sqrt{\frac{g_{2m}^{12} + g_{2m}^{-12}}{2} - 1} \right)^{1/2}.
\]

Proof. Solving (3.1) for \(P^4Q^4 \), and choosing the appropriate root, we arrive at
\[
P^4Q^4 = \frac{Q^{12}}{8} \left(\sqrt{Q^{12} + \frac{64}{Q^{12}}} - \sqrt{Q^{12} + \frac{64}{Q^{12}} - 16} \right).
\]
(3.13)

Let \(q = e^{-\pi \sqrt{m/2}} \), then the identity (1.7), becomes
\[
a_{m,2} = \frac{2q^{1/4}g^2(-q^2)\varphi^2(q^2)}{q^2(-q)\varphi^2(q)}.
\]
(3.14)

Now applying (2.1) in (3.14), we conclude that
\[
a_{m,2} = \frac{2q^{1/4}f^2(q^2)f(-q^4)}{f^2(q)f^4(-q^2)}.
\]
(3.15)

Employing the second term of (3.9) in (3.13) along with \(q = e^{-\pi \sqrt{m/2}} \), then it follow that reporting in (3.15), we arrive at desired result. \(\square\)
4. Explicit evaluations

In section, we compute several explicit evaluations of class invariant G_n for even values of n, and $a_{m,2}$ by using Theorem 3.2 and Theorem 3.3 respectively. After obtaining class invariant G_n, then we evaluate several explicit evaluations of class invariant g_n, and singular moduli α_n.

Theorem 4.1. We have

$$G_{46} = \frac{1}{2^{1/8}} \left(78\sqrt{2} + 23\sqrt{23}\right)^{1/16} \left(5 + \frac{\sqrt{23}}{\sqrt{2}}\right)^{1/8} \left(\sqrt{\frac{3\sqrt{2} + 8}{4}} + \sqrt{\frac{3\sqrt{2} + 4}{4}}\right)^{1/2}$$

$$\times \left(\frac{6\sqrt{2} + 11}{4} - \frac{6\sqrt{2} + 7}{4}\right)^{1/4}.$$

Proof. From the table in Chapter 34 of Ramanujan’s notebooks [2, p.201], we have

$$g_{46} = \sqrt{\frac{3 + \sqrt{2} + \sqrt{7} + 6\sqrt{2}}{2}}.$$

It follows that

$$g_{46}^{12} + g_{46}^{-12} = 2646 + 1872\sqrt{2}. \quad (4.1)$$

Employing (4.1) in (3.6) with $n = 23$, we conclude that

$$\frac{G_{46}}{G_{23/2}} = \left(2645 + 1872\sqrt{2} + \sqrt{14004792 + 9902880\sqrt{2}}\right)^{1/8}$$

$$\times \left(\sqrt{\frac{6\sqrt{2} + 11}{4}} - \sqrt{\frac{6\sqrt{2} + 7}{4}}\right)^{1/2}. \quad (4.2)$$

By (9.5) [1, p.284], observe that

$$\sqrt{14004792 + 9902880\sqrt{2}} = 552\sqrt{23} + 390\sqrt{46}. \quad (4.3)$$

Reporting (4.3) in (4.2), and further simplification, we obtain that

$$\frac{G_{46}}{G_{23/2}} = \left(78\sqrt{2} + 23\sqrt{23}\right)^{1/8} \left(5 + \frac{\sqrt{23}}{\sqrt{2}}\right)^{1/4} \left(\sqrt{\frac{6\sqrt{2} + 11}{4}} - \sqrt{\frac{6\sqrt{2} + 7}{4}}\right)^{1/2}. \quad (4.4)$$

Applying (4.1) in (3.7), and after a straightforward, lengthy calculation, we deduce that

$$h^{32} - 32h^{24} - \left(4356352 + 3080448\sqrt{2}\right)h^{20} + 224h^{16} + \left(69701632 + 49287168\sqrt{2}\right)h^{12}$$

$$- \left(3587934720 + 2537054208\sqrt{2}\right)h^{8} + \left(69701632 + 49287168\sqrt{2}\right)h^{4} + 256 = 0,$$
APPLICATIONS OF A NEW P-Q MODULAR EQUATION OF DEGREE TWO

where, \(h = \sqrt{2}G_{46}G_{23/2} \). Now isolating the terms involving \(\sqrt{2} \) on one side of the above equation, squaring both sides, and simplifying, we deduce that

\[
(h^{16} - 208h^{12} + 456h^8 - 832h^4 + 16) (h^{48} + 208h^{44} + 42744h^{40} + 84032h^{36} - 1838096h^{32} + 33126912h^{28} + 104902912h^{24} - 1089853440h^{20} - 761938176h^{16} + 10947629056h^{12} - 7091652608h^8 + 2230665216h^4 + 4096) = 0.
\]

A numerical calculation show that \(h \) is not a root of the second factor. Since the first factor has positive roots, and it follows that

\[
h^{16} - 208h^{12} + 456h^8 - 832h^4 + 16 = 0,
\]

or equivalently,

\[
\left(h^4 + \frac{4}{h^4} \right)^2 - 208 \left(h^4 + \frac{4}{h^4} \right) + 448 = 0.
\]

Solving the above quadric equation, and choosing the convenient root, we deduce that

\[
h^4 + \frac{4}{h^4} = 104 + 72\sqrt{2}.
\]

(4.5)

Again solving (4.5) for \(h \), and \(h > 1 \), we obtain that

\[
G_{46}G_{23/2} = \frac{1}{2^{1/4}} \left(26 + 18\sqrt{2} + \sqrt{1323 + 936\sqrt{2}} \right)^{1/4}.
\]

(4.6)

Now we apply Lemma 9.10 [2] p.292 with \(r = 26 + 18\sqrt{2} \). Then \(t = \left(3\sqrt{2} + 6 \right) / 4 \), and so

\[
26 + 18\sqrt{2} + \sqrt{1323 + 936\sqrt{2}} = \left(\sqrt{3\sqrt{2} + 8} / 4 + \sqrt{3\sqrt{2} + 4} / 4 \right)^4.
\]

(4.7)

Now combining (4.4), (4.6), and (4.7), we arrive at the desired result. \(\square \)

Theorem 4.2. We have

\[
G_{14} = \frac{1}{2^{1/8}} \left(2\sqrt{2} + \sqrt{7} \right)^{1/16} \left(3 + \sqrt{7} \right)^{1/8} \left(\sqrt{2\sqrt{2} + 3} / 2 + \sqrt{2\sqrt{2} + 1} / 2 \right)^{1/4} \times \left(\sqrt{2\sqrt{2} + 3} / 4 - \sqrt{2\sqrt{2} - 1} / 4 \right)^{1/4},
\]

\[
G_{22} = \frac{1}{2^{1/8}} \left(\sqrt{2} - 1 \right)^{1/4} \left(3\sqrt{11} + 7\sqrt{2} \right)^{1/8} \left(\sqrt{11} + 3 \right)^{1/4} / \sqrt{2}.
\]
\[G_{34} = \frac{1}{2^{1/8}} \left(\sqrt{2} + 1 \right)^{1/4} \left(3\sqrt{2} + \sqrt{17} \right)^{1/8} \left(\frac{\sqrt{17} + 5}{4} + \frac{\sqrt{17} + 1}{4} \right) \]
\[\times \left(\frac{3\sqrt{17} + 13}{8} - \frac{3\sqrt{17} + 5}{8} \right)^{1/4} \]

\[G_{58} = \frac{1}{2^{1/8}} \left(\sqrt{2} + 1 \right)^{3/4} \left(13\sqrt{58} + 99 \right)^{1/8} \left(\frac{\sqrt{29} - 5}{2} \right)^{1/4} \]

\[G_{70} = \frac{1}{2^{1/8}} \left(\sqrt{2} - 1 \right)^{1/4} \left(2\sqrt{2} + \sqrt{7} \right)^{1/4} \left(3\sqrt{14} + 5\sqrt{5} \right)^{1/8} \left(\frac{\sqrt{7} + \sqrt{5}}{\sqrt{2}} \right)^{1/4} \]
\[\times \left(\frac{3 + \sqrt{7}}{\sqrt{2}} \right)^{1/4} \left(\frac{\sqrt{5} - 1}{2} \right)^{1/2} \]

\[G_{82} = \frac{1}{2^{1/8}} \left(\sqrt{2} + 1 \right)^{1/2} \left(\sqrt{82} + 9 \right)^{1/8} \left(\frac{\sqrt{41} + 7}{2} + \frac{\sqrt{41} + 5}{2} \right)^{1/2} \]
\[\times \left(\frac{\sqrt{41} + 13}{8} - \frac{\sqrt{41} + 5}{8} \right)^{1/2} \]

\[G_{130} = \frac{1}{2^{1/8}} \left(\sqrt{2} + 1 \right)^{1/2} \left(\sqrt{10} + 3 \right)^{1/4} \left(\sqrt{26} + 5 \right)^{1/4} \left(5\sqrt{130} + 57 \right)^{1/8} \]
\[\times \left(\frac{\sqrt{5} - 1}{2} \right)^{3/4} \left(\frac{\sqrt{13} - 3}{2} \right)^{1/4} \]

\[G_{142} = \frac{1}{2^{1/8}} \left(287\sqrt{71} + 1710\sqrt{2} \right)^{1/16} \left(\frac{59 + 7\sqrt{71}}{\sqrt{2}} \right)^{1/8} \left(\sqrt{27\sqrt{2} + 40} + \sqrt{27\sqrt{2} + 36} \right)^{1/2} \]
\[\times \left(\sqrt{\frac{90\sqrt{2} + 131}{4}} - \sqrt{\frac{90\sqrt{2} + 127}{4}} \right)^{1/4} \]

\[G_{190} = \frac{1}{2^{1/8}} \left(\sqrt{10} - 3 \right)^{3/4} \left(2\sqrt{5} + \sqrt{19} \right)^{1/4} \left(\sqrt{19} + 3\sqrt{2} \right)^{1/4} \left(37\sqrt{19} + 51\sqrt{10} \right)^{1/8} \]
\[\times \left(\frac{3\sqrt{19} + 13}{\sqrt{2}} \right)^{1/4} \left(\frac{\sqrt{5} - 1}{2} \right)^{3/4} \]

Proof. Employing class invariant \(g_n \) for \(n = 14, 22, 34, 58, 70, 82, 130, 142, \) and 190 [2, p. 200-203] in Theorem 3.2, we obtain all the above values. Since the proof is analogous to the previous theorem, so we omit the details. \(\square \)
Theorem 4.3. We have

\[g_{56} = 2^{1/8} \left(2\sqrt{2} + \sqrt{7} \right)^{1/16} \left(\frac{3 + \sqrt{7}}{\sqrt{2}} \right)^{1/8} \left(\sqrt{\frac{2\sqrt{2} + 3}{2}} + \sqrt{\frac{2\sqrt{2} + 1}{2}} \right)^{1/4} \times \left(\sqrt{\frac{2\sqrt{2} + 3}{4}} + \sqrt{\frac{2\sqrt{2} - 1}{4}} \right)^{1/4} \]

\[g_{88} = 2^{1/8} \left(\sqrt{2} + 1 \right)^{1/4} \left(3\sqrt{11} + 7\sqrt{2} \right)^{1/8} \left(\frac{\sqrt{11} + 3}{\sqrt{2}} \right)^{1/4} \]

\[g_{136} = 2^{1/8} \left(\sqrt{2} + 1 \right)^{1/4} \left(3\sqrt{2} + \sqrt{17} \right)^{1/8} \left(\sqrt{\frac{17}{4}} + \sqrt{\frac{17 + 1}{4}} \right)^{1/2} \times \left(\sqrt{\frac{3\sqrt{17} + 13}{8}} + \sqrt{\frac{3\sqrt{17} + 5}{8}} \right)^{1/4} , \]

\[g_{184} = 2^{1/8} \left(78\sqrt{2} + 23\sqrt{23} \right)^{1/16} \left(\frac{5 + \sqrt{23}}{\sqrt{2}} \right)^{1/8} \left(\sqrt{\frac{3\sqrt{2} + 8}{4}} + \sqrt{\frac{3\sqrt{2} + 4}{4}} \right)^{1/2} \times \left(\sqrt{\frac{6\sqrt{2} + 11}{4}} + \sqrt{\frac{6\sqrt{2} + 7}{4}} \right)^{1/4} , \]

\[g_{232} = 2^{1/8} \left(\sqrt{2} + 1 \right)^{3/4} \left(13\sqrt{58} + 99 \right)^{1/8} \left(\frac{\sqrt{29} + 5}{2} \right)^{1/4} \]

\[g_{280} = 2^{1/8} \left(\sqrt{2} + 1 \right)^{1/4} \left(2\sqrt{2} + \sqrt{7} \right)^{1/4} \left(3\sqrt{14} + 5\sqrt{5} \right)^{1/8} \left(\frac{\sqrt{7} + \sqrt{5}}{\sqrt{2}} \right)^{1/4} \times \left(\frac{3 + \sqrt{7}}{\sqrt{2}} \right)^{1/4} \left(\frac{\sqrt{5} + 1}{2} \right)^{1/2} , \]

\[g_{328} = 2^{1/8} \left(\sqrt{2} + 1 \right)^{1/2} \left(\sqrt{82} + 9 \right)^{1/8} \left(\sqrt{\frac{41}{2}} + \sqrt{\frac{41 + 7}{2}} \right)^{1/2} \times \left(\sqrt{\frac{41 + 13}{8}} + \sqrt{\frac{41 + 5}{8}} \right)^{1/2} , \]

\[g_{520} = 2^{1/8} \left(\sqrt{2} + 1 \right)^{1/2} \left(\sqrt{10} + 3 \right)^{1/4} \left(\sqrt{26} + 5 \right)^{1/4} \left(5\sqrt{130} + 57 \right)^{1/8} \times \left(\frac{\sqrt{5} + 1}{2} \right)^{3/4} \left(\frac{\sqrt{13} + 3}{2} \right)^{1/4} . \]
\[g_{568} = 2^{1/8} \left(287\sqrt{71} + 1710\sqrt{2} \right)^{1/16} \left(\frac{59 + 7\sqrt{71}}{\sqrt{2}} \right)^{1/8} \left(\sqrt{\frac{27\sqrt{2} + 40}{4}} + \sqrt{\frac{27\sqrt{2} + 36}{4}} \right)^{1/2} \]
\times \left(\sqrt{\frac{90\sqrt{2} + 131}{4}} + \sqrt{\frac{90\sqrt{2} + 127}{4}} \right)^{1/4},
\]
\[g_{760} = 2^{1/8} \left(\sqrt{10} + 3 \right)^{1/4} \left(2\sqrt{5} + \sqrt{19} \right)^{1/4} \left(\sqrt{19} + 3\sqrt{2} \right)^{1/4} \left(37\sqrt{19} + 51\sqrt{10} \right)^{1/8} \]
\times \left(\sqrt{\frac{3\sqrt{19} + 13}{\sqrt{2}}} \right)^{1/4} \left(\frac{\sqrt{5} + 1}{2} \right)^{3/4}.
\]

Proof. Employing pervious theorems in (1.2), we obtain all the above values. □

Theorem 4.4. We have

\[\alpha_{14} = \left(2\sqrt{2} - \sqrt{7} \right)^2 \left(\frac{3 - \sqrt{7}}{\sqrt{2}} \right)^2 \left(\sqrt{\frac{2\sqrt{2} + 3}{2}} - \sqrt{\frac{2\sqrt{2} + 1}{2}} \right)^4, \]
\[\alpha_{22} = \left(3\sqrt{11} - 7\sqrt{2} \right)^2 \left(\frac{\sqrt{11} - 3}{\sqrt{2}} \right)^4, \]
\[\alpha_{34} = \left(\sqrt{2} - 1 \right)^4 \left(3\sqrt{2} - \sqrt{17} \right)^2 \left(\sqrt{\frac{\sqrt{17} + 5}{4}} - \sqrt{\frac{\sqrt{17} + 1}{4}} \right)^8, \]
\[\alpha_{46} = \left(78\sqrt{2} - 23\sqrt{23} \right)^2 \left(\frac{5 - \sqrt{23}}{\sqrt{2}} \right)^2 \left(\sqrt{\frac{3\sqrt{2} + 8}{4}} - \sqrt{\frac{3\sqrt{2} + 4}{4}} \right)^8, \]
\[\alpha_{58} = \left(\sqrt{2} - 1 \right)^{12} \left(13\sqrt{58} - 99 \right)^2, \]
\[\alpha_{70} = \left(2\sqrt{2} - \sqrt{7} \right)^4 \left(3\sqrt{14} - 5\sqrt{5} \right)^2 \left(\sqrt{\frac{\sqrt{7} - \sqrt{5}}{\sqrt{2}}} \right)^4 \left(\frac{3 - \sqrt{7}}{\sqrt{2}} \right)^4, \]
\[\alpha_{82} = \left(\sqrt{2} - 1 \right)^8 \left(\sqrt{82} - 9 \right)^2 \left(\sqrt{\frac{\sqrt{41} + 7}{2}} - \sqrt{\frac{\sqrt{41} + 5}{2}} \right)^8, \]
\[\alpha_{130} = \left(\sqrt{2} - 1 \right)^8 \left(\sqrt{10} - 3 \right)^4 \left(\sqrt{26} - 5 \right)^4 \left(5\sqrt{130} - 57 \right)^2, \]
\[\alpha_{142} = \left(287\sqrt{71} - 1710\sqrt{2} \right)^2 \left(\frac{59 - 7\sqrt{71}}{\sqrt{2}} \right)^2 \left(\sqrt{\frac{27\sqrt{2} + 40}{4}} - \sqrt{\frac{27\sqrt{2} + 36}{4}} \right)^8, \]
\[\alpha_{190} = \left(2\sqrt{5} - \sqrt{19} \right)^4 \left(\sqrt{19} - 3\sqrt{2} \right)^4 \left(37\sqrt{19} - 51\sqrt{10} \right)^2 \left(\frac{3\sqrt{19} - 13}{\sqrt{2}} \right)^4. \]
Proof. Employing (3.9) in (1.5), we obtain $\alpha_n = (G_n g_{4n})^{-8}$. Applying theorems 4.1-4.3 in the identity, we obtain all the above values. □

Theorem 4.5. We have

\[
a_{2,2} = \left(\frac{1}{2^{7/8}} (\sqrt{2} + 1)^{1/2}\right),
\]

\[
a_{7,2} = \left(2\sqrt{2} + \sqrt{7}\right)^{1/4} \left(\frac{3 + \sqrt{7}}{\sqrt{2}}\right)^{1/2} \left(\sqrt{\frac{2\sqrt{2} + 3}{4}} - \sqrt{\frac{2\sqrt{2} - 1}{4}}\right)^3,
\]

\[
a_{11,2} = \left(\sqrt{2} - 1\right)^3 \left(3\sqrt{11} + 7\sqrt{2}\right)^{1/2},
\]

\[
a_{15,2} = \left(\sqrt{10} - 3\right) \left(\sqrt{6} + \sqrt{3}\right)^{1/2} \left(\frac{\sqrt{5} + \sqrt{3}}{\sqrt{2}}\right) \left(\frac{\sqrt{5} - 1}{2}\right)^3,
\]

\[
a_{17,2} = \left(\sqrt{\frac{17 + 5}{4}} + \sqrt{\frac{17 + 1}{4}}\right)^2 \left(\sqrt{\frac{3\sqrt{17} + 13}{8}} - \sqrt{\frac{3\sqrt{17} + 5}{8}}\right)^3,
\]

\[
a_{21,2} = \left(\sqrt{2} + 1\right) \left(2\sqrt{2} - \sqrt{7}\right) \left(\frac{\sqrt{3} + 1}{\sqrt{2}}\right)^2 \left(\frac{\sqrt{7} - \sqrt{3}}{2}\right)^3,
\]

\[
a_{23,2} = \left(78\sqrt{2} + 23\sqrt{23}\right)^{1/4} \left(\frac{5 + \sqrt{23}}{\sqrt{2}}\right)^{1/2} \left(\sqrt{\frac{6\sqrt{2} + 11}{4}} - \sqrt{\frac{6\sqrt{2} + 7}{4}}\right)^3,
\]

\[
a_{29,2} = \left(\sqrt{2} + 1\right)^3 \left(\frac{\sqrt{29} - 5}{2}\right)^3,
\]

\[
a_{35,2} = \left(\sqrt{2} - 1\right)^3 \left(3\sqrt{14} + 5\sqrt{5}\right)^{1/2} \left(\frac{3 + \sqrt{7}}{\sqrt{2}}\right) \left(\frac{\sqrt{5} - 1}{2}\right)^6,
\]

\[
a_{39,2} = \left(\sqrt{26} - 5\right) \left(\sqrt{13} + 2\sqrt{3}\right) \left(3\sqrt{3} + \sqrt{26}\right)^{1/2} \left(\frac{\sqrt{13} - 3}{2}\right)^3,
\]

\[
a_{41,2} = \left(\sqrt{\frac{41 + 7}{2}} + \sqrt{\frac{41 + 5}{2}}\right)^2 \left(\sqrt{\frac{41 + 13}{8}} - \sqrt{\frac{41 + 5}{8}}\right)^6,
\]

\[
a_{51,2} = \left(\sqrt{2} - 1\right)^3 \left(\sqrt{3} + \sqrt{2}\right)^2 \left(3\sqrt{2} - \sqrt{17}\right)^2 \left(\sqrt{51} + 5\sqrt{2}\right)^{1/2},
\]

\[
a_{65,2} = \left(\sqrt{10} + 3\right) \left(\sqrt{26} + 5\right) \left(\frac{\sqrt{13} - 3}{2}\right)^3 \left(\frac{\sqrt{5} - 1}{2}\right)^9,
\]

\[
a_{71,2} = \left(287\sqrt{71} + 1710\sqrt{2}\right)^{1/4} \left(\frac{59 + 7\sqrt{71}}{\sqrt{2}}\right)^{1/2} \left(\sqrt{\frac{90\sqrt{2} + 131}{2}} - \sqrt{\frac{90\sqrt{2} + 127}{2}}\right)^3,
\]
\[a_{95,2} = \left(\sqrt{10} - 3 \right)^3 \left(2\sqrt{5} + \sqrt{19} \right) \left(37\sqrt{19} + 51\sqrt{10} \right)^{1/2} \left(\frac{\sqrt{5} - 1}{2} \right)^9. \]

Proof. We set \(m = 2, 7, 11, 15, 17, 21, 23, 29, 35, 39, 41, 51, 65, 71, \) and 95 in Theorem 3.3 and use the corresponding values of \(g_{2m} \) from [7, Theorem 4.1.2 (i)], and [2, p. 200-203] to complete the proof. □

References

[1] B. C. Berndt, *Ramanujan’s notebooks. Part III*, Springer-Verlag, New York, 1991.
[2] B. C. Berndt, *Ramanujan’s notebooks. Part V*, Springer-Verlag, New York, 1998.
[3] B. C. Berndt, H. H. Chan and L.-C. Zhang, Ramanujan’s remarkable product of theta-functions, Proc. Edinburgh Math. Soc. (2) 40 (1997), no. 3, 583–612.
[4] M. S. Mahadeva Naika and B. N. Dharmendra, On some new general theorems for the explicit evaluations of Ramanujan’s remarkable product of theta-functions, Ramanujan J. 15 (2008), no. 3, 349–366.
[5] D. J. Prabhakaran, K. Ranjithkumar, The explicit formulae and evauations of Ramanujan’s remarkable product of theta-functions, In press. doi: 10.11650/tjm/190706
[6] S. Ramanujan, *Notebooks. Vols. 1, 2*, Tata Institute of Fundamental Research, Bombay, 1957.
[7] Yi J, Construction and Application of Modular Equations, Ph. D. Thesis, University of Illionis USA 2000.