This is the accepted manuscript made available via CHORUS. The article has been published as:

Muon capture on the deuteron and the neutron-neutron scattering length
L. E. Marcucci and R. Machleidt
Phys. Rev. C 90, 054001 — Published 7 November 2014
DOI: 10.1103/PhysRevC.90.054001
Muon capture on deuteron and the neutron-neutron scattering length

L.E. Marcuccia,b, R. Machleidtc
aDepartment of Physics, University of Pisa, 56127 Pisa, Italy
bINFN-Pisa, 56127 Pisa, Italy
cDepartment of Physics, University of Idaho, Moscow, Idaho 83844, USA

(Dated: October 24, 2014)

\textbf{Background:} We consider the muon capture reaction $\mu^+ + ^2\text{H} \rightarrow \nu_\mu + n + n$, which presents a “clean” two-neutron (nn) system in the final state. We study here its capture rate in the doublet hyperfine initial state (Γ^D). The total capture rate for the muon capture $\mu^- + ^3\text{He} \rightarrow \nu_\mu + ^3\text{H}$ (Γ_0) is also analyzed, although, in this case, the nn system is not so “clean” anymore.

\textbf{Purpose:} We investigate whether Γ^D (and Γ_0) could be sensitive to the nn S-wave scattering length (a_{nn}), and we check on the possibility to extract a_{nn} from an accurate measurement of Γ^D.

\textbf{Method:} The muon capture reactions are studied with nuclear potentials and charge-changing weak currents, derived within chiral effective field theory. The next-to-next-to-leading order (N3LO) chiral potential with cutoff parameter $\Lambda = 500$ MeV is used, but the low-energy constant (LEC) determining a_{nn} is varied so as to obtain $a_{nn} = -18.95$ fm, -16.0 fm, -22.0 fm, and $+18.22$ fm. The first value is the present empirical one, while the last one is chosen such as to lead to a di-neutron bound system with a binding energy of 139 keV. The LEC’s c_D and e_D, present in the three-nucleon potential and axial-vector current (c_D), are constrained to reproduce the $A = 3$ binding energies and the triton Gamow-Teller matrix element.

\textbf{Results:} The capture rate Γ^D is found to be $399(3)$ s$^{-1}$ for $a_{nn} = -18.95$ and -16.0 fm, and $399(3)$ s$^{-1}$ for $a_{nn} = -22.0$ fm. However, in the case of $a_{nn} = +18.22$ fm, the result of $275(3)$ s$^{-1}$ ($135(3)$ s$^{-1}$) is obtained, when the di-neutron system in the final state is unbound (bound). The total capture rate Γ_0 for muon capture on ^3He is found to be $1494(15)$ s$^{-1}$, $1491(16)$ s$^{-1}$, $1488(18)$ s$^{-1}$, and $1475(16)$ s$^{-1}$ for $a_{nn} = -18.95$ fm, -16.0 fm, -22.0 fm, and $+18.22$ fm, respectively. All the theoretical uncertainties are due to the fitting procedure and radiative corrections.

\textbf{Conclusions:} Our results seem to exclude the possibility of constraining a negative a_{nn} with an uncertainty of less than ± 3 fm through an accurate determination of the muon capture rates, but the uncertainty on the present empirical value will not complicate the interpretation of the (forth-coming) experimental results for Γ^D. Finally, a comparison with the already available experimental data discourages the possibility of a bound di-neutron state (positive a_{nn}).

PACS numbers: 23.40.-s, 21.45.-v, 27.10.+h

\section{I. INTRODUCTION}

Muon capture reactions on light nuclei, in particular the $\mu^- + ^2\text{H} \rightarrow \nu_\mu + n + n$ ($\mu - 2$) and $\mu^- + ^3\text{He} \rightarrow \nu_\mu + ^3\text{H}$ ($\mu - 3$) reactions, have recently attracted considerable attention, both theoretically and experimentally [1–8]. One of the reasons for the interest in this issue is the on-going MuSun experiment at the Paul Scherrer Institute (PSI), which is expected to reach a precision of 1.5 % in the measurement of the doublet $\mu - 2$ capture rate (Γ^D) [3, 9]. In fact, the available experimental data for Γ^D are quite inaccurate: Wang et al. obtained $\Gamma^D = 365(96)$ s$^{-1}$ [10] more than forty years ago. A few years later, Bertin et al. measured $\Gamma^D = 445(60)$ s$^{-1}$ [11], while the measurements performed in the eighties yielded $\Gamma^D = 470(29)$ s$^{-1}$ [12] and $\Gamma^D = 490(40)$ s$^{-1}$ [13]. Note that all the experiments, except that of Ref. [12], used the neutron detection technique, i.e. detected a neutron in the final state. On the other hand, for the $\mu - 3$ total capture rate (Γ_0), a very accurate measurement is available [14], namely, $\Gamma_0 = 1496(4)$ s$^{-1}$.

Recent theoretical work on the $\mu-2$ and $\mu-3$ reactions are summarized in Refs. [5–7]. In particular, the work of Ref. [7] represents the first attempt to apply to the considered processes a “consistent” chiral effective field theory (χEFT) approach. We briefly review it here: the considered two-nucleon (NN) potential is that derived in χEFT up to next-to-next-to-leading order (N3LO) in the chiral expansion by Entem and Machleidt [15, 16]. When applied to the $A = 3$ systems, the NN potential is augmented by the three-nucleon (NNN) interaction derived at next-to-next-to leading order (N2LO), in the local form of Ref. [17]. The charge-changing weak current has been derived up to N3LO in Ref. [18]. Its polar-vector part is related, via the conserved-vector-current constraint, to the (isovector) electromagnetic current, which includes, apart from one- and two-pion-exchange terms, two contact terms—one isoscalar and the other isovector—whose strengths are parametrized by the low-energy constants (LEC’s) g_{4S} and g_{4V}. The two-body axial-vector current includes terms of one-pion range as well as a single contact current, whose strength is parametrized by the LEC d_R. The latter is related to the LEC c_D, which, together with c_E, enters the N2LO NN potential [19]. The cutoff Λ of the momentum-cutoff function, needed to regularize potentials and currents before they can be used in practical calculations, is taken to be in the range (500–600) MeV. The LEC’s c_D (or d_R) and c_E are determined with the following procedure: (i) the ^3H and ^3He wave...
functions are calculated with the hyperspherical harmonics method (see Ref. [20] for a review), using the chiral potentials mentioned above. The corresponding set of LEC’s, \(c_D \) and \(c_E \), are determined by fitting the \(A = 3 \) experimental binding energies. (ii) For each set of \(c_D \) and \(c_E \), the \(^3\)H and \(^3\)He wave functions are used to calculate the Gamow-Teller (GT) matrix element in tritium \(\beta \)-decay. Comparison with the experimental value leads to a range of values for \(c_D \) for each cutoff parameter \(\Lambda \), from which the corresponding range for \(c_E \) is determined. Such a procedure has been widely used by now in a variety of studies, like elastic few-nucleon scattering [21], electromagnetic structure of light nuclei [22], the proton-proton weak capture [23], and the nuclear matter equation of state up to third order in many-body perturbation theory [24]. Finally, after determining the LEC’s \(g_{4S} \) and \(g_{4V} \) by reproducing the \(A = 3 \) magnetic moments, it has been shown in Ref. [7] that the consistent \(\chi \)EFT approach leads to predictions (with an estimated theory uncertainty of about 1%) for the rates of muon capture on deuteron and \(^3\)He, that are in excellent agreement with the experimental data.

Although extensively studied, a crucial aspect of the \(\mu \)-2 reaction has not been enough investigated so far: the \(\mu \)-2 reaction contains in the final state a “clean” two-neutron (\(nn \)) system, and therefore the doublet capture rate \(\Gamma_0 \) could be sensitive to the \(nn \) \(S \)-wave scattering length (\(a_{nn} \)). In the present work, we work on this possibility, and investigate whether the \(\mu \)-2 reaction offers the possibility to extract \(a_{nn} \) from an accurate measurement of \(\Gamma_0 \), as it will be available soon from the PSI experiment [3, 9]. To this aim, we work in the same \(\chi \)EFT framework as in Ref. [7], but apply N3LO \(NN \) potentials (with cutoff \(\Lambda = 500 \) MeV [15]) that predict different values for \(a_{nn} \), i.e., the empirical value \(a_{nn} = -18.95 \) fm and two more values within a range of \(\pm 3 \) fm from this empirical one. Note that the empirical value has been obtained from pion capture on the deuteron [25] and neutron-deuteron breakup experiments [26]. We will consider also a case for which \(a_{nn} > 0 \), which leads to a shallow bound di-neutron state. The reason behind this choice resides in the work of Ref. [27], where it was shown that a hypothetical \(^1S_0 \) \(nn \) bound state would affect the angular distributions of the neutron-deuteron elastic scattering and deuteron breakup cross sections, although a comparison to the available data for the total cross section and angular distributions could not decisively exclude the existence of such a bound state. The analysis was carried out based on the CD Bonn potential [28], where for \(a_{nn} = +18.22 \) fm a bound \(nn \) state was found with a binding energy \(B_{nn} = 0.144 \) MeV.

The paper is organized as follows: in Sec. II we present the details of the calculation, and in Sec. III we list and discuss the results. Our concluding remark are given in Sec. IV.

II. CALCULATION

We summarize the various steps of our calculations. We consider the \(NN \) potential at N3LO of Entem and Machleidt [15], with cutoff value fixed at \(\Lambda = 500 \) MeV. The N3LO \(NN \) potential includes a charge-symmetry breaking contact term without derivatives that contributes only in the \(^1S_0 \) state [16]. This contact is used to create different values for \(a_{nn} \), which are, in particular, \(-18.95 \) fm, \(-16.0 \) fm and \(-22.0 \) fm. We refer to these different versions of the \(NN \) potential as N3LO18, N3LO16, and N3LO22, respectively. The value \(a_{nn} = -18.95 \) fm corresponds to the empirical one. Finally, we have also constructed a version of the N3LO potential, which produces \(a_{nn} = +18.22 \) fm (N3LO18+), leading to a two-neutron bound state, with binding energy \(B_{nn} = 0.139 \) MeV. Then, for each given \(NN \) potential, we add the N2LO \(NNN \) interaction, and calculate the \(^3\)H and \(^3\)He binding energies as function of the LEC’s \(c_D \) and \(c_E \). The corresponding \(c_D \rightarrow c_E \) trajectories are given in Fig. 1. Note that the trajectories which reproduce the \(^3\)He binding energy for the various potentials are all on top of each other. Moreover, in the case of the N3LO18 potential, the \(^3\)H trajectory is essentially the same as the \(^3\)He one. However, for the other \(NN \) potentials, the \(^3\)H trajectories differ from the corresponding \(^3\)He ones and from each other. This is particularly pronounced in the case of N3LO18+. For all cases, except N3LO18, no average curve is displayed, and all the \(A = 3 \) wave functions have been calculated using, for a given \(c_D \), two different values of \(c_E \), one for \(^3\)H and one for \(^3\)He, i.e. allowing for charge-symmetry-breaking in the \(NNN \) interaction. Finally, using the \(\chi \)EFT weak axial current of Ref. [7], as discussed in Sec. I, the GT matrix element of tritium \(\beta \)-decay (\(GT^\text{TH} \)) is determined. The ratio \(GT^\text{TH}/GT^{\text{EXP}} \) is shown in Fig. 2, for all \(NN \) potentials. The value \(GT^{\text{EXP}} = 0.955 \pm 0.004 \) has been used, as obtained in Ref. [7]. The range of \(c_D \) values for which \(GT^\text{TH} = GT^{\text{EXP}} \) within the experimental error, and the corresponding ranges for \(c_E \) are given in Table I. A few comments are in order: (i) in the N3LO18 case, the \(^3\)H and \(^3\)He values for \(c_E \) are the same, since, as mentioned above, no charge-symmetry-breaking effect is needed in the \(NNN \) interaction (see Fig. 1). (ii) The \(^3\)He values for \(c_E \) are all close to each other. This reflects the fact that the \(np \) and \(pp \) interactions are not affected by varying the LEC in the \(NN \) potential to obtain different \(a_{nn} \) values. The small difference between the various \(^3\)He values is due to the different range of \(c_D \) as obtained by the GT fitting procedure. This is again due to the different \(nn \) interaction, which affects the \(^3\)H wave function. (iii) The values for \(c_E \) in the \(^3\)H case are quite different between each other, especially in the N3LO18+ case. Here we should remark that by using the N3LO18+ potential alone, i.e., without the \(NNN \) interaction, the triton and \(^3\)He binding energies are found to be 9.935 MeV and 7.128 MeV, respectively, with an overbinding in the case of the triton and an underbinding in the case of \(^3\)He. A large
The results for the μ–2 doublet capture rate Γ_{D^0}, also when only the 3S_0 nn partial wave is retained [$\Gamma_{D^0}^{(3S_0)}$], calculated with the different NN potential models, are listed in Table III. The numbers in parentheses are the theoretical uncertainties obtained by summing, in a very conservative way, those arising from the LEC’s fitting procedure and those present in the electroweak radiative corrections [29]. By inspection of the table, we can conclude that the μ–2 doublet capture rate is not sensitive to a variation of a_{nn} by $\sim \pm 3$ fm, as the change in Γ_{D^0} and $\Gamma_{D^0}^{(1S_0)}$ as well, is smaller than the theoretical uncertainty of 1% or less. On the other hand, a large difference is present for the N3LO18+ results, as $\Gamma_{D^0}^{(1S_0)}$ is a factor of almost 2 smaller than in the other cases. This reflects on Γ_{D^0} as well, although the contributions from the waves other than the S-wave remain unchanged, and this reduces the difference between the N3LO18+ result and all the others to a factor of ~ 1.5. Note that the already available experimental data on Γ_{D^0} obtained with the neutron detection technique, 365(96) s$^{-1}$ [10], 445(60) s$^{-1}$ [11], and 409(40) s$^{-1}$ [13], although affected by large uncertainties, seem to rule out the N3LO18+ case. For completeness we note that in the case of a bound di-neutron 1S_0 state, $(nn)_b$, the reaction μ–2 could go through the channel $\mu^- + ^2\text{He} \rightarrow \nu_{\mu} + (nn)_b$ (subsequently denoted by ‘μ–2b’). We have studied the μ–2b doublet capture rate and found $\Gamma_{D^0} = 135(3)$ s$^{-1}$. By summing this value with the one listed in Table III, we obtain $\Gamma_{D^0} = 410(6)$ s$^{-1}$, where again, in a very conservative way, we have linearly combined the theoretical uncertainties. Notice, however, that this result is irrelevant in regard to the experiments of Refs. [10, 11, 13], because they all used the neutron detection method, which implies that they measured μ–2 without a bound nn state contribution.

In Table III we list also the results for the the μ–3 total capture rate Γ_0, although, in this case, the nn system is not “clean” anymore, as in the μ–2 case. From these results, we can conclude that the N3LO18+ case is significantly smaller than all the others, but only slightly in disagreement with the accurate experimental datum of 1496(4) s$^{-1}$ [14], due to our theoretical uncertainty of about 1%.

Finally, the number in parentheses are the theoretical errors arising from numerics as explained in Ref. [5].

III. RESULTS

The results for the μ–2 doublet capture rate Γ_{D^0}, also when only the 3S_0 nn partial wave is retained [$\Gamma_{D^0}^{(3S_0)}$], calculated with the different NN potential models, are listed in Table III. The numbers in parentheses are the theoretical uncertainties obtained by summing, in a very conservative way, those arising from the LEC’s fitting procedure and those present in the electroweak radiative corrections [29]. By inspection of the table, we can conclude that the μ–2 doublet capture rate is not sensitive to a variation of a_{nn} by $\sim \pm 3$ fm, as the change in Γ_{D^0} and $\Gamma_{D^0}^{(1S_0)}$ as well, is smaller than the theoretical uncertainty of 1% or less. On the other hand, a large difference is present for the N3LO18+ results, as $\Gamma_{D^0}^{(1S_0)}$ is a factor of almost 2 smaller than in the other cases. This reflects on Γ_{D^0} as well, although the contributions from the waves other than the S-wave remain unchanged, and this reduces the difference between the N3LO18+ result and all the others to a factor of ~ 1.5. Note that the already available experimental data on Γ_{D^0} obtained with the neutron detection technique, 365(96) s$^{-1}$ [10], 445(60) s$^{-1}$ [11], and 409(40) s$^{-1}$ [13], although affected by large uncertainties, seem to rule out the N3LO18+ case. For completeness we note that in the case of a bound di-neutron 1S_0 state, $(nn)_b$, the reaction μ–2 could go through the channel $\mu^- + ^2\text{He} \rightarrow \nu_{\mu} + (nn)_b$ (subsequently denoted by ‘μ–2b’). We have studied the μ–2b doublet capture rate and found $\Gamma_{D^0} = 135(3)$ s$^{-1}$. By summing this value with the one listed in Table III, we obtain $\Gamma_{D^0} = 410(6)$ s$^{-1}$, where again, in a very conservative way, we have linearly combined the theoretical uncertainties. Notice, however, that this result is irrelevant in regard to the experiments of Refs. [10, 11, 13], because they all used the neutron detection method, which implies that they measured μ–2 without a bound nn state contribution.

In Table III we list also the results for the the μ–3 total capture rate Γ_0, although, in this case, the nn system is not “clean” anymore, as in the μ–2 case. From these results, we can conclude that the N3LO18+ case is significantly smaller than all the others, but only slightly in disagreement with the accurate experimental datum of 1496(4) s$^{-1}$ [14], due to our theoretical uncertainty of about 1%.

IV. SUMMARY AND CONCLUSIONS

The muon capture reaction μ–2 and μ–3 have been studied with nuclear potentials and charge-changing weak currents derived within χEFT. The LEC present in the N3LO NN potential determining a_{nn} is varied so as to obtain values within a range of $\sim \pm 3$ fm around...
the previous cases, unless the case of a negative value for \(a_{nn}\) can be ruled out. However, in our opinion, should the existence of a bound di-neutron state be confirmed, then our current very successful picture of muon capture processes and, more general, of light nuclei would have to be severely revised. This is a similar conclusion to what was obtained in Ref. [30], where the possibility of a bound tetra-neutron system was investigated.

Acknowledgements

We would like to thank P. Kammel for encouraging us to carry out this study and for useful discussions. The work by R.M. was supported in part by the U.S. Department of Energy under Grant No. DE-FG02-03ER41270. Finally, we would like to acknowledge the assistance of the staff of the INFN-Pisa computer center, where the calculations here presented were performed.

[1] D.F. Measday, Phys. Rep. 354, 243 (2001).

[2] T. Gorringe and H.W. Fearing, Rev. Mod. Phys. 76, 31 (2004).

[3] P. Kammel and K. Kubodera, Ann. Rev. Nucl. Part. Sci. 60, 327 (2010).

[4] L.E. Marcucci, R. Schiavilla, S. Rosati, A. Kievsky, and M. Viviani, Phys. Rev. C 66 054003 (2002).

[5] L.E. Marcucci et al., Phys. Rev. C 83, 014002 (2011).

[6] L.E. Marcucci, Int. J. Mod. Phys. A 27, 1230006 (2012).

[7] L.E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, and M. Viviani.
M. Viviani, Phys. Rev. Lett. 108, 052502 (2012).
[8] J. Golak et al., Phys. Rev. C 90, 024001 (2014).
[9] V.A. Andreev et al. (MuSun Collaboration), arXiv:1004.1754.
[10] I.-T. Wang et al., Phys. Rev. 139, B1528 (1965).
[11] A. Bertin et al., Phys. Rev. D 8, 3774 (1973).
[12] G. Bardin et al., Nucl. Phys. A 453, 591 (1986).
[13] M. Cargnelli et al., *Workshop on fundamental μ physics*, Los Alamos, 1986, LA 10714C; Nuclear Weak Process and Nuclear Structure, Yamada Conference XXIII, ed. M. Morita, H. Ejiri, H. Ohtsubo, and T. Sato (Word Scientific, Singapore), p. 115 (1989).
[14] P. Ackerbauer et al., Phys. Lett. B 417, 224 (1998).
[15] D.R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
[16] R. Machleidt and D.R. Entem, Phys. Rep. 503, 1 (2011).
[17] P. Navrátil, Few-Body Syst. 41, 117 (2007).
[18] T.-S. Park, D.-P. Min, and M. Rho, Nucl. Phys. A 596, 515 (1996); Y.-H. Song, R. Lazauskas, and T.-S. Park, Phys. Rev. C 79, 064002 (2009).
[19] A. Gardestig and D.R. Phillips, Phys. Rev. Lett. 96, 232301 (2006); D. Gazit, S. Quaglioni, and P. Navrátil, Phys. Rev. Lett. 103, 102502 (2009).
[20] A. Kievsy et al., J. Phys. G: Nucl. Part. Phys. 35, 063101 (2008).
[21] M. Viviani, L. Girlanda, A. Kievsky, and L.E. Marcucci, Phys. Rev. Lett. 111, 172302 (2013).
[22] M. Piarulli et al., Phys. Rev. C 87, 014006 (2013).
[23] L.E. Marcucci, R. Schiavilla, and M. Viviani, Phys. Rev. Lett. 110, 192503 (2013).
[24] L. Coraggio et al., Phys. Rev. C 89, 044321 (2014).
[25] Q. Chen et al., Phys. Rev. C 77, 054002 (2008).
[26] D.E. González Trotter et al., Phys. Rev. C 73, 034001 (2006).
[27] H. Witala and W. Glöckle, Phys. Rev. C 85, 064003 (2012).
[28] R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C 53, 1483R (1996).
[29] A. Czarnecki, W.J. Marciano, and A. Sirlin, Phys. Rev. Lett. 99, 032003 (2007).
[30] Steven C. Pieper, Phys. Rev. Lett. 90, 252501 (2003).