Data Article

Datasets on the statistical and algebraic properties of primitive Pythagorean triples

Hilary I. Okagbue a,⁎, Muminu O. Adamu b, Pelumi E. Oguntunde a, Abiodun A. Opanuga a, Enahoro A. Owoloko a, Sheila A. Bishop a

a Department of Mathematics, Covenant University, Canaanland, Ota, Nigeria
b Department of Mathematics, University of Lagos, Akoka, Lagos, Nigeria

A R T I C L E I N F O

Article history:
Received 26 March 2017
Received in revised form 4 August 2017
Accepted 24 August 2017
Available online 1 September 2017

Keywords:
Pythagorean triples
Primitive Pythagorean triples
Correlation
Normality test
Skewness
Statistics

A B S T R A C T

The data in this article was obtained from the algebraic and statistical analysis of the first 331 primitive Pythagorean triples. The ordered sample is a subset of the larger Pythagorean triples. A primitive Pythagorean triple consists of three integers a, b and c such that; \(a^2 + b^2 = c^2\). A primitive Pythagorean triple is one which the greatest common divisor (gcd), that is; \(\text{gcd}(a, b, c) = 1\) or a, b and c are coprime, and pairwise coprime. The dataset describe the various algebraic and statistical manipulations of the integers a, b and c that constitute the primitive Pythagorean triples. The correlation between the integers at each analysis was included. The data analysis of the non-normal nature of the integers was also included in this article. The data is open to criticism, adaptation and detailed extended analysis.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Mathematics
More specific subject area	Number Statistics
Type of data	Tables and Figures
How data was acquired	The raw data is available in mathematical literature.
Data format	Analyzed
Experimental factors	Negative and non-primitive Pythagorean triples and negative were not considered.
Experimental features	Correlation coefficient, Normality tests.
Data source location	Covenant University Mathematics Laboratory, Ota, Nigeria
Data accessibility	All the data are in this data article

Value of the data

- The data provides the descriptive statistics of the primitive Pythagorean triples.
- The data when completely analyzed can provide insight on the various patterns that characterizes the primitive Pythagorean triples.
- The data analysis can be applied to other known numbers. That is the study of probability distribution of numbers.
- The data can provide more clues on the normal or non-normal nature of similar numbers.

1. **Data**

The data in this article is a description of some observed algebraic and statistical properties of the integers that constitute the primitive Pythagorean triples. Correlation between the pairs of the integers was investigated and different nature and strength of relationships were obtained. The line plots were used to visualize the patterns of distribution of variability of the integers.

The detailed description and the contents of the data are contained in different sub sections.

1.1. **The descriptive statistics of the integers a, b and c**

The description statistics and the differences between the ordered pairs of the integers that make up the primitive Pythagorean triples can be assessed as Supplementary Data 1.

Scatter plots of the three positive integers and the differences between each pair that constitute the primitive Pythagorean triples and the mean plots are shown in Supplementary Data 2. The mean is monotone increasing.

Variance is the measure of variability or deviation from the mean or median. The line plots of the variance and skewness of the primitive Pythagorean triples are shown in Supplementary Data 3. The variance is increasing as the ordered sample size increases.

Different types of correlation coefficients for the integers a, b and c of the primitive Pythagorean triples were obtained and shown in Table 1. There are strong positive correlations between b and c and moderate positive correlation between a and b, and a and c.

Different types of correlation coefficients for the integers (b–a, c–b and c–a) of the primitive Pythagorean triples were obtained and shown in Table 2. Increase or decrease in (b–a) leads to decrease or increase in (c–b). However, (c–a) and (b–a) are strongly positively correlated.

1.2. **The trigonometric integers of the primitive Pythagorean triples**

The trigonometric aspects of the integers a, b and c that constitute the primitive Pythagorean triples were considered. The details are shown in Supplementary Data 4.
The summary of scatter plots of the sine, cosine and tangent of a, b and c are shown in Supplementary Data 5.

Different types of correlation coefficients for the trigonometric values of integers a, b and c of the primitive Pythagorean triples were obtained and shown in Tables 3–5. Weak correlations were the results.

Table 1
Correlation coefficients of a, b and c.

Correlation coefficient	b	c
a		
Pearson correlation	0.535	0.682
Kendall’s tau	0.427	0.535
Spearman’s rho	0.583	0.699
b		
Pearson correlation		0.981
Kendall’s tau		0.893
Spearman’s rho		0.983

Table 2
Correlation coefficients of b–a, c–b and c–a.

Correlation coefficient	c-b	c-a
b–a		
Pearson correlation	−0.297	0.965
Kendall’s tau	−0.150	0.826
Spearman’s rho	−0.201	0.940
c–b		
Pearson correlation		−0.037
Kendall’s tau		0.042
Spearman’s rho		0.057

Table 3
Correlation coefficients of sine a, sine b and sine c.

Correlation coefficient	sine b	sine c
sine a		
Pearson correlation	0.033	−0.021
Kendall’s tau	0.022	−0.025
Spearman’s rho	0.032	−0.038
sine b		
Pearson correlation		0.400
Kendall’s tau		0.265
Spearman’s rho		0.378

Table 4
Correlation coefficients of cosine a, cosine b and cosine c.

Correlation coefficient	cosine b	cosine c
cosine a		
Pearson correlation	0.005	−0.036
Kendall’s tau	0.008	−0.016
Spearman’s rho	0.009	−0.025
cosine b		
Pearson correlation		0.341
Kendall’s tau		0.240
Spearman’s rho		0.333
1.3. The hyperbolic transformations of integers of the primitive Pythagorean triples

The hyperbolic aspects of the integers a, b and c that constitute the Primitive Pythagorean triples were considered. The details are shown in Supplementary Data 6.

The summary of scatter plots of the sinh, cosh and tanh of a, b and c are shown in Supplementary Data 7.

Different types of correlation coefficient for the hyperbolic values of integers a, b and c of the primitive Pythagorean triples were obtained and shown in Tables 6–8. The correlations are weak with the exception of hyperbolic of b and c.

Table 5
Correlation coefficients of tangent a, tangent b and tangent c.

Correlation coefficient	tangent b	tangent c	
tangent a	Pearson correlation	−0.016	−0.064
	Kendall’s tau	−0.039	0.000
	Spearman’s rho	−0.059	0.007
tangent b	Pearson correlation	0.011	
	Kendall’s tau	0.212	
	Spearman’s rho	0.282	

Table 6
Correlation coefficients of sinh a, sinh b and sinh c.

Correlation coefficient	sinh b	sinh c	
sinh a	Pearson correlation	−0.015	0.323
	Kendall’s tau	0.427	0.535
	Spearman’s rho	0.583	0.699
sinh b	Pearson correlation	0.468	
	Kendall’s tau	0.893	
	Spearman’s rho	0.983	

Table 7
Correlation coefficients of cosh a, cosh b and cosh c.

Correlation coefficient	cosh b	cosh c	
cosh a	Pearson correlation	−0.015	0.323
	Kendall’s tau	0.427	0.535
	Spearman’s rho	0.583	0.699
cosh b	Pearson correlation	0.468	
	Kendall’s tau	0.893	
	Spearman’s rho	0.983	
1.4. The logarithmic and exponential transformations of integers of the primitive Pythagorean triples

The logarithmic and exponential aspects of the integers a, b and c that constitute the Primitive Pythagorean triples were considered. The details are shown in Supplementary Data 8.

The summary of scatter plots of the log, natural log and exponential of the inverse of a, b and c are shown in Supplementary Data 9.

Different types of correlation coefficient for the logarithmic, natural log and exponential values of integers a, b and c of the primitive Pythagorean triples were obtained and shown in Tables 9–11. Strong positive correlations are the results.

Table 8
Correlation coefficients of tan h a, tan h b and tan h c.

Correlation coefficient	tan h b	tan h c
tan h a		
Pearson correlation	0.640	0.638
Kendall’s tau	0.505	0.536
Spearman’s rho	0.615	0.645
tan h b		
Pearson correlation		0.995
Kendall’s tau		0.935
Spearman’s rho		0.962

Table 9
Correlation coefficients of log a, log b and log c.

Correlation coefficient	log b	log c
log a		
Pearson correlation	0.708	0.766
Kendall’s tau	0.427	0.535
Spearman’s rho	0.583	0.699
log b		0.995
Pearson correlation		0.995
Kendall’s tau		0.893
Spearman’s rho		0.983

Table 10
Correlation coefficients of ln a, ln b and ln c.

Correlation coefficient	ln b	ln c
ln a		
Pearson correlation	0.708	0.766
Kendall’s tau	0.427	0.535
Spearman’s rho	0.583	0.699
ln b		
Pearson correlation		0.995
Kendall’s tau		0.893
Spearman’s rho		0.983
1.5. The digital sum and digital root (iterative digits sum) of the integers of the primitive Pythagorean triples

The digital sum and iterative digits sum of the integers that constitute the primitive Pythagorean triples were considered. The details are shown in Supplementary Data 10.

The summary of scatter plots of the digital sum and iterative digits sum of a, b and c is shown in Supplementary Data 11.

Different types of correlation coefficient for the digital sum and iterative digits sum values of integers a, b and c of the primitive Pythagorean triples were obtained and shown in Tables 12 and 13. Weak correlations are the main results here.

Table 11
Correlation coefficients of exp 1/a, exp 1/b and exp 1/c.

Correlation coefficient	exp 1/b	exp 1/c
exp 1/a	Pearson correlation 0.893	0.920
	Kendall’s tau 0.427	0.535
	Spearman’s rho 0.583	0.699
exp 1/b	Pearson correlation	0.998
	Kendall’s tau 0.893	0.983
	Spearman’s rho	0.983

Table 12
Correlation coefficients of digital sum of a, b and c.

Correlation coefficient	Digits sum b	Digits sum c
Digits sum a	Pearson correlation 0.147	0.139
	Kendall’s tau 0.120	0.098
	Spearman’s rho 0.165	0.139
Digits sum b	Pearson correlation	0.283
	Kendall’s tau 0.225	0.294
	Spearman’s rho	0.294

Table 13
Correlation coefficients of Iterative digits sum of a, b and c.

Correlation coefficient	Iterative digits sum b	Iterative digits sum c
Iterative digits sum a	Pearson correlation −0.081	0.007
	Kendall’s tau −0.062	0.008
	Spearman’s rho −0.083	0.010
Iterative digits sum b	Pearson correlation	0.028
	Kendall’s tau 0.024	0.026
	Spearman’s rho	0.026
1.6. Test of normality for a, b and c

Normality tests are conducted to show how well the given data is fitted by normal distribution and the likelihood of the random variables that defined the given data is normally distributed. The data was subjected to some frequentist tests and the results are shown in Tables 14–16. The null hypothesis implies normality while the alternative implies otherwise.

Table 14
Test of normality for a.

Test	Details	Decision
Kolmogorov-Smirnov test	Statistic = 0.123, p value = 0.000	Accept alternative hypothesis
Shapiro-Wilk test	Statistic = 0.902, p value = 0.000	Accept alternative hypothesis
Jarque-Bera Normality test	JB = 45.216 > 4.605 = χ^2_0.012	Accept alternative hypothesis
D’Agostino Skewness test	skew = 0.90526, Z = 5.96690, p-value = 0.000	Accept alternative hypothesis, data have a skewness
Geary Kurtosis test	0.8258283±0.7979	Accept alternative hypothesis
Anscombe-Glynn kurtosis test	kurtosis = 2.97770, Z = 0.10578, p-value = 0.9158	Accept alternative hypothesis, kurtosis is not equal to 3
Anderson-Darling test	p-value < 0.001	Accept alternative hypothesis
Lilliefors-van Soest test	p-value < 0.01	Accept alternative hypothesis
Cramer-von Mises test	p-value < 0.005	Accept alternative hypothesis
Ryan-Joiner test	p-value < 0.010	Accept alternative hypothesis

Table 15
Test of normality for b.

Test	Details	Decision
Kolmogorov-Smirnov test	Statistic = 0.065, p value = 0.002	Accept alternative hypothesis
Shapiro-Wilk test	Statistic = 0.963, p value = 0.000	Accept alternative hypothesis
Jarque-Bera Normality test	JB = 17.231 > 4.605 = χ^2_0.012	Accept alternative hypothesis
D’Agostino Skewness test	skew = 0.077656, Z = 0.588370, p-value = 0.5563	Accept alternative hypothesis, data have a skewness
Geary Kurtosis test	0.8588865±0.7979	Accept alternative hypothesis
Anscombe-Glynn kurtosis test	kurtosis = 1.8931, Z = -10.3490, p-value = 0.0000	Accept alternative hypothesis, kurtosis is not equal to 3
Anderson-Darling test	p-value < 0.001	Accept alternative hypothesis
Lilliefors-van Soest test	p-value < 0.01	Accept alternative hypothesis
Cramer-von Mises test	p-value < 0.005	Accept alternative hypothesis
Ryan-Joiner test	p-value < 0.010	Accept alternative hypothesis

2. Experimental design, materials and methods

Primitive Pythagorean triples are one of the most popular number sequences in number theory which has been studied over time [1–12].

2.1. Descriptive statistics

The mean, skewness, range and variance distribution was obtained for the first 331 terms of the sequence. The same statistics were obtained for the trigonometric, hyperbolic, logarithm, natural logarithm, exponential, digital root and iterative digits sum of the integers. Different data was obtained for each of the process. The descriptive analysis of the digital sum and iterative digits sum can be obtained from the analysis. Similar pattern of analysis of digits sum can be seen in [13–16]. In addition, the algebraic properties were also analyzed.
2.2. Correlation

Three different types of correlation coefficient were computed for all integers at the different processes. They are; Pearson product moment correlation coefficient [17], Kendall’s tau correlation coefficient [18] and Spearman rank correlation coefficient [19]. In addition, three dimensional scatter plots were obtained for all the difference between the integers that constitute the primitive Pythagorean triples.

2.3. Tests of normality

Normality tests were conducted for the integers a, b and c of the first 331 Primitive Pythagorean triples. Normality tests indicated non-normality but with different degrees. Normality tests used are: Kolmogorov-Smirnov test [20], Shapiro-Wilk test [21], Jarque-Bera Normality test [22], D’Agostino Skewness test [23], Geary Kurtosis test [24], Anscombe-Glynn kurtosis test [25], Anderson-Darling test [26], Lilliefors-van Soest test [27,28], Cramer-von Mises test [29], and Ryan-Joiner test [30]. The summary of the analysis is available in [31].

Similar analysis can be obtained for the sum of digits of cubed integers, sum of winning integers in lotto and other numbers such as Fibonacci, Lucas, Happy, Weird, magic, Niven, Sophie Germain and so on [32–39].

Acknowledgements

This research was sponsored by the following: Covenant University Centre for Research, Innovation and Discovery and Statistics sub cluster of the Software Engineering, Modeling and Intelligent System Research Cluster of Covenant University.

Transparency document. Supplementary material

Transparency document associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.08.021

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.08.021.

Test	Details	Decision
Kolmogorov-Smirnov test	Statistic = 0.065, p value = 0.002	Accept alternative hypothesis
Shapiro-Wilk test	Statistic = 0.955, p value = 0.000	Accept alternative hypothesis
Jarque-Bera Normality test	JB = 19.681 > 4.605 = χ²0.012	Accept alternative hypothesis
D’Agostino Skewness test	skew = 0.0012575, Z = 0.0095410, p-value = 0.9924	Accept alternative hypothesis, data have a skewness
Geary Kurtosis test	0.8643199 ≠ 0.7979	Accept alternative hypothesis
Anscombe-Glynn kurtosis test	Kurtosis = 1.8054, Z = −13.3610, p-value = 0.0000	Accept alternative hypothesis, kurtosis is not equal to 3
Anderson-Darling test	p-value < 0.001	Accept alternative hypothesis
Lilliefors-van Soest test	p-value < 0.01	Accept alternative hypothesis
Cramer-von Mises test	p-value < 0.005	Accept alternative hypothesis
Ryan-Joiner test	p-value < 0.010	Accept alternative hypothesis

Table 16
Test of normality for c.
References

[1] D. Kalman, Angling for Pythagorean triples, Coll. Math. J. 17 (1986) 167–168.
[2] D. McCullough, Height and excess of Pythagorean triples, Math. Mag. 78 (2005) 26–44.
[3] J.H. Conway, R.K. Guy, The Book of Numbers, Copernicus/Springer, New York, 1996.
[4] K. Vajha, On Pythagorean triples of the form (i, i + 1, k), Resonance 15 (9) (2010) 843–849.
[5] E.J. Eckert, Primitive Pythagorean triples, Coll. Math. J. 22 (5) (1992) 413–417.
[6] B. Moshan, Primitive Pythagorean triples, Math. Teach. 52 (7) (1959) 541–545.
[7] L. Bernstein, Primitive Pythagorean triples, Fibonacci Q. 20 (1982) 227–241.
[8] K.K. Kubota, Pythagorean triples in unique factorization domains, Am. Math. Mon. 79 (5) (1972) 503–505.
[9] J.V. Leyendekkers, A.G. Shannon, Why 3 and 5 are always factors of primitive Pythagorean triples, Int. J. Math. Educ. Sci. Technol. 42 (1) (2011) 102–105.
[10] D.W. Mitchell, 85.27 an alternative characterisation of all primitive Pythagorean triples, Math. Gaz. 85 (503) (2001) 273–275.
[11] L.J. Gerstein, Pythagorean triples and inner products, Math. Mag. 78 (3) (2005) 205–213.
[12] D. McCullough, Height and excess of Pythagorean triples, Math. Mag. 78 (1) (2005) 26–44.
[13] H.I. Okagbue, M.O. Adamu, S.A. Iyase, A.A. Opanuga, Sequence of integers generated by summing the digits of cubed positive integers, Indian J. Sci. Technol. 18 (1) (2017) 97.
[14] S.A. Bishop, H.I. Okagbue, M.O. Adamu, F.A. Olajide, Sequences of numbers obtained by digit and iterative digit sums of Sophie Germain primes and its variants, Glob. J. Pure Appl. Math. 12 (2) (2016) 1473–1480.
[15] S.A. Bishop, H.I. Okagbue, M.O. Adamu, A.A. Opanuga, Patterns obtained from digit and iterative digit sums of Palindromic, Repdigit and Repunit numbers, its variants and subsets, Glob. J. Pure Appl. Math. 12 (2) (2016) 1481–1490.
[16] H.I. Okagbue, M.O. Adamu, S.A. Bishop, A.A. Opanuga, Digit and iterative digit sum of Fibonacci numbers, their identities and powers, Int. J. Appl. Engine. Res. 11 (6) (2016) 4623–4627.
[17] P. Sedgwick, Pearson’s correlation coefficient, Br. Med. J. 11 (6) (2012) 4623–4627.
[18] M.G. Kendall, A new measure of rank correlation, Biometrika 30 (1/2) (1938) 81–93.
[19] C. Spearman, The proof and measurement of association between two things, Am. J. Psychol. 15 (1) (1904) 72–101.
[20] N. Smirnov, Table for estimating the goodness of fit of empirical distributions, Ann. Math. Stat. 19 (2) (1948) 279–281.
[21] S.S. Shapiro, M.B. Wilk, An analysis of variance test for the exponential distribution (complete samples), Technometrics 14 (2) (1972) 355–370.
[22] C.M. Jarque, A.K. Bera, Efficient tests for normality, homoscedasticity and serial independence of regression residuals, Econ. Lett. 6 (3) (1980) 255–259.
[23] R.B. D’agostino, A. Belanger, R.B. D’Agostino Jr, A suggestion for using powerful and informative tests of normality, Am. Stat. 44 (4) (1990) 316–321.
[24] R.C. Geary, Testing for normality, Biometrika 34 (3/4) (1947) 209–242.
[25] F.J. Anscombe, W.J. Glynn, Distribution of the kurtosis statistic b2 for normal samples, Biometrika 70 (1) (1983) 227–244.
[26] T.W. Anderson, D.A. Darling, A test of goodness of fit, J. Am. Stat. Assoc. 49 (268) (1954) 765–769.
[27] H.W. Lilliefors, On the Kolmogorov-Smirnov test for normality with mean and variance unknown, J. Am. Stat. Assoc. 62 (318) (1967) 399–402.
[28] J. Soest, Some experimental results concerning tests of normality, Stat. Neerl. 21 (1) (1967) 399–402.
[29] A. Darling, The kolmogorov-smirnov test for normality with mean and variance unknown, J. Am. Stat. Assoc. 62 (318) (1967) 399–402.
[30] T.A. Ryan, B.L. Joiner, Normal Probability Plots and Tests for Normality, Technical Report, Statistics Department, The Pennsylvania State University, 1976 (http://www.minitab.com/uploadedFiles/Shared_Resources/Documents/Articles/normal_probability_plots.pdf).
[31] P. Wessa, Free Statistics Software, Office for Research Development and Education,version 1.1.23-r7, 2017. URL (http://www.wessa.net/).
[32] H.I. Okagbue, M.O. Adamu, S.A. Bishop, A.A. Opanuga, Digit and iterative digit sum of Fibonacci numbers, their identities and powers, Int. J. Appl. Eng. Res. 11 (6) (2016) 4623–4627.
[33] H.I. Okagbue, M.O. Adamu, S.A. Bishop, A.A. Opanuga, Properties of sequences generated by summing the digits of cubed positive integers, Indian J. Nat. Sci. 6 (32) (2015) 10190–10201.
[34] H.I. Okagbue, A.A. Opanuga, P.E. Oguntunde, G.A. Eze, Positive numbers divisible by their iterative digit sum revisited, Pac. J. Sci. Technol. 18 (1) (2017) 101–106.
[35] H.I. Okagbue, A.A. Opanuga, P.E. Oguntunde, G.A. Eze, On some notes on the engel expansion of ratios of sequences obtained from the sum of digits of squared positive integers, Pac. J. Sci. Technol. 18 (1) (2017) 97–100.
[36] O. Deveci, S. Taş, A. Kılıçman, On the 2k-step Jordan-Fibonacci sequence, Adv. Diifer. Equ. (1) (Art. 121).
[37] J.H.F. Cohn, Lucas and Fibonacci numbers and some Diophantine equations, Glasg. Math. J. 7 (1) (1965) 24–28.
[38] T. Cai, On 2-Niven numbers and 3-Niven numbers, Fibonacci Q. 34 (1996) 118–120.
[39] H.I. Okagbue, M.O. Adamu, P.E. Oguntunde, A.A. Opanuga, M.K. Rastogi, Exploration of UK Lotto results classified into two periods, Data Brief 14 (2017) 213–219.