We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

5,300
Open access books available

130,000
International authors and editors

155M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Chapter

Bulk and Nanocatalysts Applications in Advanced Oxidation Processes

Luma Majeed Ahmed

Abstract

Advanced oxidation processes (AOPs) are considered to be vital methods for treating the contaminations produced mainly by the human activations. In present-day, UV light or solar light, bulk and nano-photocatalysts are often used to enhance this technology by creating the highly reactive species such as the hydroxyl radicals. Extreme hydroxyl radical is considered as a key to start the photoreaction. Photoreaction is widely used in treatment of Lab and industrial contaminations, preparation of compounds and produced the renewable energy, so it’s classified as green technique. In order to improve the efficiency of this reaction with fabrication the surface of the used photocatalyst such as metal doped, sensitized and produced a composite as bulk catalyst or nano catalyst.

Keywords: nanocatalysts, bulk catalyst, advanced oxidation processes, wastewater treatment, photocatalysis, Fenton reaction, photo-Fenton

1. Introduction

In this section, the advanced Oxidation Processes concepts will be related to use of the bulk and the nano- catalysts as vital materials for easily generating a highly oxidizing species and reactive oxygen species (ROSs) such as in aqueous or alcoholic solution [1]. ROSs are contains three primary kinds: superoxide anion (O$_2^•$), hydrogen peroxide (H$_2$O$_2$) and the hydroxyl radical (HO$^•$) [2], which produced from reaction of adsorbed oxygen molecule on catalyst’s surface with one electron in conductive band under illumination by light as UV, or visible or solar light, this mechanism is useful to reduce the recombination process and increased the life time of hole in valance band [3, 4]. As explained in Figure 1.

The ROSs are having the electron configurations as tabled in Table 1 [5–8].

2. Advance oxidation process applications

In the last few years, several researches have predominated in many universities and research centers on the scientific ventures to mainly treat the contaminations that produced by textile factories [9–11], reduced the degradation of food’s
Oxidoreductase

dye [12], decolorization of colored organometallic complexes [13], degradation of toxic cyclic compounds [14] and produced a hydrogen from alcohol as renewable energy [15]. The effective materials for all above mention research are generated the hydroxyl radical in aqueous solution with maximum oxidation power equals to 2.8 V [1]. Based on to the AOPs, the common sources for creation

Figure 1.
Essential mechanism for generating the ROSs under illumination of photo-catalyst particles [1].

Table 1.
Electronic configurations and chemical formulas for the ROSs types.

dye [12], decolorization of colored organometallic complexes [13], degradation of toxic cyclic compounds [14] and produced a hydrogen from alcohol as renewable energy [15]. The effective materials for all above mention research are generated the hydroxyl radical in aqueous solution with maximum oxidation power equals to 2.8 V [1]. Based on to the AOPs, the common sources for creation
of OH in AOPs are illustrated in Figure 2, which regards as power to start the dark or photo reactions [1, 16–19]. Fortunately, the benefits of AOPs are more than those of drawbacks. The benefits of AOPs are summarized up as [1, 20] follows to:

1. Create a large number of free radicals species.
2. Have the appropriate potential to depress the hazardous organic pollutants by complete their mineralization and producing CO₂ and H₂O.
3. Reduce the time of dark or photoreaction.
4. Have low economic cost.

Whereas, the drawbacks of AOPs [1, 21] are quenching the reaction rate with increasing the scavenger contains (mostly peroxide ion) and may be generated the undesirable hazardous products that prevented the complete of mineralization process, hence, the altered of pH or using further cost steps may be essentially to treat their problems.

3. Bulk and nano-catalysts

In general, the catalysts may be metal or alloy or semiconductor. Semiconductor is wide used as catalyst and can be element or compound as amorphous or crystalline or rock salt crystal. Because of semiconductors have intermediate properties between metal and insulator, which has given them rescannable electronic and structural properties, hence, semiconductor is classified as a better-known kinds, as mentioned in Figure 3 [22–24].

The usages of the bulk and nano catalysts are increment with increasing the development of life activations. The catalysts were known for the long time to increase the rate of reaction with decreasing the time of reaction and the activation energy in dark reaction or photoreaction. In order to use the catalyst in
photoreaction as photo catalyst, must have a band gap with raged about 1.1 eV to 5.0 eV \([1, 24]\). Referring to Figure 4, several band gap energy positions of some common photo catalysts can be displayed \([1, 25–27]\). The mainly problem in bulk and nano catalyst is recombination process, which results in diminishing the efficiency of used photocatalyst by returning the photoelectron from conductive band to valance band and reacting with photohole immediately. The recombination includes four kinds can be followed in Table 2 and Figure 5 \([1, 28–30]\).

In order to improve the activity of photocatalysts must depress the recombination with modify their surfaces with three main methods: surface sensitization, metalized photocatalyst surface and coupled for two or more photocatalysts as Composite. The details of these modification methods are mention in Table 3 and Figure 6 \([40]\).
Bulk and Nanocatalysts Applications in Advanced Oxidation Processes
DOI: http://dx.doi.org/10.5772/intechopen.94234

Table 2.
The most common recombination types concepts.

Kinds	Other name	Info	Type of photocatalyst
Direct recombination	Band-to-band recombination	In this kind, the transition occurs as a radiative transition in direct band gap semiconductor. It is created when the Free photo electron in CB drops directly into free photo hole (an unoccupied state) in the VB and associated together. Note Figure 5(A).	ZnO have a direct band gap.
Volume recombination	Centers recombination or Trap-assisted recombination	This case obtains, when defect of semiconductor by impurities that given a new levels (as traps of photoelectron and photohole). It leads to liberate heat as phonon in indirect band gap semiconductor. Note Figure 5(B).	Pure TiO$_2$ and defect of TiO$_2$, by metal, which had given an indirect band gap.
Surface recombination	Recombination of an exciton	This case occurs at low temperature, when the traps at or near the surface or interface of the semiconductor, capture the photo electron- hole as exciton. That attitude to dangling bonds caused by the sudden discontinuation of the semi-conductor crystal with energy just below the band gap value. Note Figure 5(C).	It happed in solar cells and light emitting diode (LED) containing shallow levels.
Auger recombination	—	This recombination involves three carriers: Free photo electron, free photo whole recombine, and the emitting the energy as heat or as a photon (non-radiative process). The transition of energy deals with as intra-band transitions, which resulting when either electron elevates in higher levels of conduction band or hole deeper push into the valence band. Note Figure 5(D).	This case can be obtained wit short lifetime when heavy doping defects (like Ag) in direct-gap semiconductors under present sunlight.

Figure 5.
The schematic diagram of the most common recombination kinds.
Kinds	Info	References
Surface sensitization	This case favors for modified the wide band gap semiconductor by physical or chemical adsorption of colored materials mostly dye. The colored material will absorb the visible or solar light after irradiation, and excite it either singlet or triplet excited state. The excited colored material will inject its electron via the conductive band of semiconductor.	[31–34]
Metallized photocatalyst surface	The metal deposits on the surface of semiconductor must choose with high work functions of metal compared to work function of the metal in semiconductor. The doped metal will act as sink of electron, with create a Schottky barrier. That will increase the lifetime of photo holes. Examples: Pt and Au doped on TiO$_2$, Ag doped on ZnO, Cr and Mn doped on ZnS.	[2, 4, 14, 35–37]

Coupled for two or more photocatalysts as composite

When the energy of the irradiated light is not enough to promote electron from conductive band of the photocatalyst, that attitude to it has a big band gap, hence, can couple it with other semiconductor has a small band gap. This coupling process includes three kinds type (I), type(II) and type(III).

Type I

Type II

Type III

Examples: CdS-ZnS (Type I), WO$_3$-TiO$_2$ (Type II). And Mn$_2$O$_3$, ZnO, (Type III).

Table 3.

The description of the methods for modifying photocatalysts [31–39].
Application field	Type of used AOPs	Efficiency	References
Textile dye	O₂/UV-A(250 W)/ZnO/ H₂O₂	89.8% (Photodecolorization) (5 mmole/L of H₂O₂ (T = 25°C), (pH = 10)	[41]
Textile dye	O₂/UV-A(250 W)/ZnO	92.7% (Photodecolorization) (T = 35°C), (pH = 6.68)	[42]
Textile dye	O₂/UV-A(250 W)/ZnO	91.41% (Photodecolorization) (T = 38°C), (pH = 6.75)	[43]
Industrial dye	O₂/UV-A/ZnO	99.07% (Photodecolorization) (T = 15°C), (pH = 7.63)	[44]
Industrial dye	O₂/UV-A(125 W)/ZnO	74.4.5% (Photodecolorization) (T = 38°C), (pH = 8.6)	[32]
	O₂/UV-A(250 W)/ZnO	98.5% (Photodecolorization) (T = 38°C), (pH = 8.6)	
	O₂/Solar/ZnO	96.5% (Photodecolorization) (T = 42°C), (pH = 8.6)	
Textile dye	O₂/UV-A(125 W)/ZnO	94.40% (Photodecolorization) (T = 20°C), (pH = 7.7)	[10]
	O₂/UV-A(125 W)/ZnO/Fe²⁺	60.86% (Photodecolorization) (T = 20°C), (pH = 7.7)	
	O₂/UV-A(125 W)/ZnO/Fe²⁺+1% H₂O₂	16.44% (Photodecolorization) (5 x 10⁻⁴ mole/L of Fe²⁺ (T = 20°C), (pH = 7.7)	
Oxidoreductase

Application field	Type of used AOPs	Efficiency	References	
Drug dye Cobalamin(Vit B12)	O_2/UV-A(250 W)/ZnO	79.33% (Photodecolorization) (T = 30°C), (pH = 6.5)	[19]	
	O_2/UV-A(250 W)/ZnO/ $\text{K}_2\text{S}_2\text{O}_8$	88.75% (Photodecolorization) (1 x 10^{-4} mole/L) of $\text{K}_2\text{S}_2\text{O}_8$ (T = 30°C), (pH = 6.5)		
	O_2/UV-A(250 W)/ZnO/ 0.025% H_2O_2	90.80% (Photodecolorization) (T = 30°C), (pH = 6.5)		
	O_2/UV-A(250 W)/ZnO/ $\text{K}_2\text{S}_2\text{O}_8$ + 0.025% H_2O_2	95.85% (Photodecolorization) (1 x 10^{-4} mole/L) of $\text{K}_2\text{S}_2\text{O}_8$ (T = 30°C), (pH = 6.5)		
Food dye Carmoisine (E122) dye	O_2/UV-A(250 W)/ZnO	73.11% (Photodecolorization) (T = 18°C), (pH = 7.55)	[12]	
	O_2/UV-A(250 W)/ZnO/ 0.1% H_2O_2	62.58% (Photodecolorization) (T = 18°C), (pH = 7.55)		
	O_2/UV-A(250 W)/ZnO/ Fe^{2+}	36.99% (Photodecolorization) (1 x 10^{-5} mole/L) of Fe^{2+} (T = 18°C), (pH = 7.55)		
Lab materials Co(II) Complex of Schiff Base	O_2/UV-A(250 W)/ZnO	99.11% (Photodecolorization) (T = 38°C), (pH = 7.55)	[13]	
Industrial dye Methyl green dye	O_2/UV-A(400 W)/ ZnO NPs	37% (Photodecolorization) (T = 25°C), (pH = 5.4)	[35]	
	O_2/UV-A(400 W)/Ag(2%) ZnO NPs	87.87% (Photodecolorization) (T = 25°C), (pH = 5.4)		
Liberated of hydrogen from Methanol as renewable energy	Ar/UV-B(1000 W)/ (0.5 Pt) TiO_2 NPS	8.8% (Photo hydrogen production) (T = 25°C), (pH = 7.3)	[14]	
	Ar/UV-B(1000 W)/ (0.5 Au) TiO_2 NPS	4.5% (Photo hydrogen production) (T = 25°C), (pH = 7.3)		
Industrial dye Light Green SF Yellowish (Acid Green 5) Dye	O_2/UV-A(400 W)/ TiO_2 NPS	90.2% (Photodecolorization) (T = 20°C), (pH = 7.3)	[45]	
	O_2/UV-A(400 W)/ TiO_2 NPS	88.1% (Photodecolorization) (T = 20°C), (pH = 7.3)		
Application field	Type of used AOPs	Efficiency	References	
-------------------	------------------	------------	------------	
Industrial dye	**Safranine O Dye**	O$_2$/UV-A(125 W)/TiO$_2$ NPS	90.2% (Photodecolorization) (T = 30°C), (pH = 6)	[34]
		O$_2$/UV-A(125 W)/TiO$_2$ NPS/Fe$^{2+}$	85.92% (Photodecolorization) (1 x 10$^{-3}$ mole/L) of Fe$^{2+}$ (T = 30°C), (pH = 6)	
		O$_2$/UV-A(125 W)/TiO$_2$ NPS/Fe$^{2+}$/0.1% H$_2$O$_2$	92.73% (Photodecolorization) (T = 30°C), (pH = 6)	
		O$_2$/UV-A(125 W)/TiO$_2$ NPS/0.1% H$_2$O$_2$+Fe$^{2+}$	98.83% (Photodecolorization) (1 x 10$^{-3}$ mole/L) of Fe$^{2+}$ (T = 30°C), (pH = 6)	
Industrial dye	**Acid Red 87 (Eosin Yellow) dye**	O$_2$/UV-A(250 W)/TiO$_2$ NPS	63.58% (Photodecolorization) (T = 25°C), (pH = 6.09)	[16]
		O$_2$/UV-A(250 W)/TiO$_2$ NPS/H$_2$O$_2$	50.44% (Photodecolorization) (1 x 10$^{-2}$ mmole/L) of H$_2$O$_2$ (T = 25°C), (pH = 6.09)	
		O$_2$/UV-A(250 W)/WO$_3$ NPS	27.84% (Photodecolorization) (T = 25°C), (pH = 6.09)	
		O$_2$/UV-A(250 W)/WO$_3$ NPS/H$_2$O$_2$	21.54% (Photodecolorization) (1 x 10$^{-2}$ mmole/L) of H$_2$O$_2$ (T = 25°C), (pH = 6.09)	
		O$_2$/UV-A(250 W)/WO$_3$/TiO$_2$ nanocomposite	25.11% (Photodecolorization) (T = 25°C), (pH = 6.09)	
		O$_2$/UV-A(250 W)/WO$_3$/TiO$_2$ nanocomposite+H$_2$O$_2$	73.88% (Photodecolorization) (1 x 10$^{-2}$ mmole/L) of H$_2$O$_2$ (T = 25°C), (pH = 6.09)	
Industrial dye	**Methyl green dye**	O$_2$/UV-A(250 W)/ZrO$_2$	92.31% (Photodecolorization) (T = 30°C), (pH = 5.4)	[46]
		O$_2$/UV-A(250 W)/ZrO$_2$+Fe$^{2+}$	39.93% (Photodecolorization) (1 x 10$^{-3}$ mmole/L) of Fe$^{2+}$ (T = 30°C), (pH = 5.4)	
		O$_2$/UV-A(250 W)/ZrO$_2$+1.5%H$_2$O$_2$	98.78% (Photodecolorization) (T = 30°C), (pH = 5.4)	
		O$_2$/UV-A(250 W)/ZrO$_2$+K$_2$S$_2$O$_8$	74.62% (Photodecolorization) (1 x 10$^{-3}$ mmole/L) of K$_2$S$_2$O$_8$ (T = 30°C), (pH = 5.4)	
Lab materials	**Fe(II)-(4,5-DIAZAFLUOREN-9-ONE 11) COMPLEX**	O$_2$/UV-A(400 W)/MnO$_4$	22.64% (Photodecolorization) (T = 15°C), (pH = 4)	[47]
		O$_2$/UV-A(400 W)/(1)MnO$_4$- (4) ZrO$_2$ nanocomposite	40% (Photodecolorization) (T = 17°C), (pH = 4)	
Oxidoreductase

4. Used of bulk or nano catalyst in AOPs

There are many common application of AOPs in environment fields by using the white photocatalyst or its modified such as ZnO, TiO$_2$, ZrO$_2$, ZnS, WO$_3$, CdS and Mn$_3$O$_4$. The efficiencies with used these photocatalysts are altered with using AOPs methods. The efficiency of the photoreaction depends mostly on the concentration of colored material, initial pH which affected on the surface of photocatalyst and the temperature. As shown in Table 4.

5. Conclusions

This chapter focuses on the source of hydroxyl radical which produces via the advance oxidation process. Indeed, this process interests in the forming the different species, which in the final step generates a hydroxyl radical. The photocatalyst enhances the generating of hydroxyl radicals (2.8 V) in aqueous solution under Uv-light or visible or solar. The photoexitation of photocatalyst leads to jump of electron to conductive band then return to valance band and liberates a hot this process called recombination. It is depressed the efficiency of photoreaction. However, some procedures used to modify the photocatalyst surface.

Acknowledgements

The author wants to thank his family for helping him in carrying out this work.

Application field	Type of used AOPs	Efficiency	References
Textile dye	O$_2$/UV-A(400 W)/ ZnS NPs	59% (Photodecolorization) (T = 15°C), (pH = 6.3)	[36]
Reactive blue 5 dye	O$_2$/UV-A(400 W)/ Cr-ZnS NPs	94% (Photodecolorization) (T = 17°C), (pH = 4.1)	
Industrial dye	O$_2$/UV-A(400 W)/ ZnS NPs	95% (Photodecolorization) (T = 30°C), (pH = 75)	[39]
Congo red dye	O$_2$/UV-A(400 W)/ CdS-ZnS nanocomposite	98% (Photodecolorization) (T = 30°C), (pH = 75)	

Table 4. Some applications of bulk and nano photocatalysts in AOPs, with environment chemistry and green chemistry.
Bulk and Nanocatalysts Applications in Advanced Oxidation Processes
DOI: http://dx.doi.org/10.5772/intechopen.94234

Author details

Luma Majeed Ahmed
Department of Chemistry, College of Science, University of Kerbala, Kerbala, Iraq

*Address all correspondence to: luma.ahmed@uokerbala.edu.iq
Oxidoreductase

References

[1] Ahmed L, and Hussein F. Roles of Photocatalytic Reactions of Platinized TiO2 Nanoparticles. 1st ed. LAP Lambert Academia Published: 2014. 103 P. ISBN-10: 3659538817.

[2] Collin F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019; 20, 2407:1-17. DOI: 10.3390/ijms20102407.

[3] Ahmed L, Ivanova I, Hussein F and Bahnemann D. Role of Platinum Deposited on TiO2 in Photocatalytic Methanol Oxidation and Dehydrogenation Reactions. International Journal of Photoenergy. 2014; 1:1-9. DOI: 10.1155/2014/503516.

[4] Ahmed L, Hussen F, Mahdi A. Photocatalytic Dehydrogenation of Aqueous Methanol Solution by Naked and Platinized TiO2 Nanoparticles. Asian Journal of Chemistry. 2012; 24(12): 5564-5568. DOI:

[5] Krumova K, Cosa G. Chapter 1:Overview of Reactive Oxygen Species . In: Nonell S, Flors C, editors. Singlet Oxygen: Applications in Biosciences and Nanosciences, Volume 1. Uk: Royal social of chemistry; 2016, p. 1-21 DOI: 10.1039/9781782622208-00001

[6] Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine , 5th ed. Oxford Oxford: University Press; 2007. 961 P. ISBN 978-0-19-871747-8 (hbk.). ISBN 978-0-19-871748-5 (pbk.)

[7] Sharma S, Ruparelja J, Patel M. A general review on Advanced Oxidation Processes for waste water treatment. Institute of Technology. Nirma University. Ahmed Abad. 2011: 382-481.

[8] Bielski B, Cabelli D, Arudi R, Ross A. Reactivity of HO2/O2 Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data. 1985; 14(4):1041-1100.

[9] Karam F, Saeed N, Al-Yasari A, Ahmed L, Saleh H. Kinetic Study for Reduced the Toxicity of Textile Dyes (Reactive Yellow 14 Dye and Reactive Green Dye) Using UV-A Light/ ZnO System. Egypt. J. Chem. 2020; 63(8): 211-224. DOI: 10.21608/ejchem.2020.25893.2511.

[10] Alattar R, Saleh H, AL-Hilfi J, Ahmed L. Influence the addition of Fe2+ and H2O2 on removal and decolorization of textile dye (dispersive yellow 42 dye). Egypt. J. Chem., 2020; 63(9): 3191-3201. DOI:10.21608/EJCHEM.2020.23542.2400.

[11] Kzar K, Mohammed Z, Saeed S, Ahmed L, Kareem D, Hadyi H, Kadhim A. Heterogeneous photo-decolourization of cobaltous phthalocyaninate dye (reactive green dye) catalyzed by ZnO. In AIP Conference Proceedings, 2144(1)020004, AIP Publishing LLC,2019: 020004-01 -020004-10 .

[12] Ahmed L, Jassim M, Mohammed M and Hamza D. Advanced oxidation processes for carmoisine (E122) dye in UVA/ZnO system: Influencing pH, temperature and oxidant agents on dye solution. Journal of Global Pharma Technology. 2018; 10(07): 248-254.

[13] Abass S, Al-Hilfi J, Abbas S and Ahmed L. Preparation, Characterization and Study the Photodecolorization of Mixed-Ligand Binuclear Co(II) Complex of Schiff Base by ZnO. Indonesian Journal of Chemistry. 2020; 20(2):404-412.

[14] Ahmed L, Al-Kaim A, Halbus A, Hussein F. Photocatalytic hydrogen production from aqueous methanol solution over metallized TiO2. International Journal of ChemTech. 2016; 9(10):90-98.
13

15] Karam, F, Hussein, F, Baqir S, Halbus A, Dillert R, Bahnemann, D. Photocatalytic degradation of anthracene in closed system reactor. International Journal of Photoenergy. 2014; 1: 1-6.

16] Jawad T, Ahmed L. Direct Ultrasonic Synthesis of WO3/TiO2 Nanocomposites and applying them in the Photodecolorization of Eosin Yellow Dye. Periódico Tché Química. 2020; 17(34): 621-633.

17] Stasinakis A. Use of Selected Advanced Oxidation Processes (AOPs) For Wastewater Treatment –A mini review. Global NEST Journal. 2008; 10(3): 376-385.

18] Marhoon A, Saeed S, Ahmed L. Application of some effects on the Degradation of the aqueous solution of Fuchsin dye by photolysis. Journal of Global Pharma Technology. 2019; 11(9): 76-81.

19] Ahmed L, Saeed S, Marhoon A. Effect of Oxidation Agents on Photo-Decolorization of Vitamin B12 in the Presence of ZnO/UV-A System. Indones. J. Chem. 2018; 18: 272-278.

20] Hai F, Yamamoto K, Fukushima K. Hybrid Treatment Systems for Dye Wastewater. Critical Reviews. Environmental Science and Technology. 2007; 37(4): 315-377.

21] Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology. 2001; 77: 247-255.

22] Yu P, and Cardona M. Fundamentals of Semiconductors Physics and Materials Properties. 4th ed. Germany : Springer-Verlag Berlin Heidelberg; 2010. CH 1.

23] Yacobi B. Semiconductor Materials- An Introduction to Basic Principles. 1st ed. New York : Kluwe Academic Publishers. 2004. CH 6.

24] Singh V. Band Gap and Resistivity Measurements of Semiconductor Materials For Thin Films. Journal of Emerging Technologies and Innovative Research (JETIR). 2017; 4(12): 1200-1210.

25] Material S. Physics Semiconductors and Band Theory. 1st ed. HIGHER: Learning and Teaching Scotland; 2011. 4-5 pp.

26] Carp O, Huisman C and Reller A. Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 2004; 32: 33-177.

27] Kudo A. and Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev.2009; 38: 253-278.

28] Kuang W, Tolner H, and Li Q. Cathode-luminescence diagnostics of MgO, MgO:Si, MgO:Sc, and MgCaO . Journal of the SID . 2012; 20(1): 63- 69S.

29] Pierret R. Advanced semiconductor Fundamentals. 1st ed. vol. VI, Modular series on solid state devices, New Jersey : Pearson Education, Inc. Upper Saddle River;2002. 07458 p. CH5.

30] Hayawi M. Preparation, Characterization of Spinel Mn3O4/ ZrO2 Composite and Application on Colored Material[MSC thesis]. Karbala: Kerkbala University:2020.

31] Giwa A, Nkeonye P, Bello K., Kolawole G. and Campos A. Solar Photocatalytic Degradation of Reactive Yellow 81 and Reactive Violet 1 in Aqueous Solution Containing Semiconductor Oxides. International Journal of Applied Science and Technology. 2012; 2(4): 90-105.
[32] Ahmed L. Photo-decolorization kinetics of acid red 87 dye in ZnO suspension under different types of UV-A light. Asian J. Chem. 2018; 30(9): 2134-2140.

[33] Pare B, Singh P and Jonnalagadda S, Visible Light-drive Photocatalytic Degradation and Mineralization of neutral Red dye in a slurry Photoreactor. Indian Journal Chemistry Technoogy. 2010; 17: 391-395.

[34] Jasim K, and Ahmed L. TiO2 Nanoparticles Sensitized by Safranine O Dye using UV-A Light System. In IOP Conference Series. Materials Science and Engineering. 2019; 571(012064):1-9.

[35] Fadhil F, Ahmed L., and Mohammed A. Effect of silver doping on structural and photocatalytic circumstances of ZnO nanoparticles. Iraqi Journal of Nanotechnology, Synthesis and Application. 2020; 1: 13-20.

[36] Mahammed B, and Ahmed L. Enhanced Photocatalytic Properties of Pure and Cr-Modified ZnS Powders Synthesized by Precipitation Method. Journal of Geoscience and Environment Protection. 2017; 5: 101-111.

[37] Mohammed B, and Ahmed L. Improvement the Photo Catalytic Properties of ZnS nanoparticle with Loaded Manganese and Chromium by Co-Precipitation Method. Journal of Global Pharma Technology. 2018; 10(7):129-138.

[38] Jawad T. Synthesis and Characterization of Nano-Composite WO3/ TiO2 by Using Ultrasonic and it is Application on Photo decolorization of Eosin Yellow Dye [MSC thesis]. Karbala: Kerbala University: 2020.

[39] Fakhri F, and Ahmed L. Incorporation CdS with ZnS as nanocomposite and Using in Photo-Decolorization of Congo Red Dye. Indones. J. Chem.2019; 19(4):936-943.

[40] Fakhri F. Preparation, Characterization of ZnS/CdS Composites nano particles and using in photocatalytic-decolorization of Congo red dye[MSC thesis]. Karbala: Kerbala University: 2019.

[41] Mashkour M, Al-Kaim A, Ahmed L, and Hussein F. Zinc Oxide Assisted Photocatalytic Decolourization of Reactive Red 2 Dye. Int. J. Chem. Sci. 2011; 9(3): 969-979.

[42] Zaafuani S, and Ahmed L. Photocatalytic Decolourization of Direct Orange Dye by Zinc Oxide under UV Irradiation. Int. J. Chem. Sci.2015; 13(1):187-196.

[43] Ahmed L, Tawfeeq F, Abed Al-Ameer F, Abed Al-Hussein K. and Athaab A. Photo-Degradation of Reactive Yellow 14 Dye (A Textile Dye) Employing ZnO as Photocatalyst. Journal of Geoscience and Environment Protection.2016; 4: 34-44.

[44] Abbas S, Hassan Z, and Ahmed L. Influencing the Artificial UV-A light on decolorization of Chlorazol black BH Dye via using bulk ZnO Suspensions. In Journal of Physics: Conference Series. IOP Publishing. 052050. 2019; 1294(5):1-8.

[45] Eesa M, Juda A, and Ahmed L. Kinetic and thermodynamic study of the photocatalytic decolorization of light green SF yellowish (acid green 5) dye using commercial bulk Titania and commercial Nanotitania. Int. J. Sci. Res.2016; 5(11): 1495-1500.

[46] Hussein Z, Abbas S, and Ahmed, L. UV-A activated ZrO2 via photodecolorization of methyl green dye. In IOP Conference Series: Materials
Bulk and Nanocatalysts Applications in Advanced Oxidation Processes
DOI: http://dx.doi.org/10.5772/intechopen.94234

Science and Engineering. 012132, IOP Publishing. 2018; 454(1): 1-11.

[47] Hayawi M, Kareem M, and Ahmed L. Synthesis of Spinel Mn3O4 and Spinel Mn3O4/ZrO2 Nanocomposites and Using Them in Photo-Catalytic Decolorization of Fe(II)-(4,5-Diazafluoren-9-One 11) Complex. Periódico Tchê Química. 2020; 17(34): 689-699.