Cubic lead perovskite PbMoO$_3$ with anomalous metallic behavior

Hiroshi Takatsu, Olivier Hernandez, Wataru Yoshimune, Carmelo Prestipino, Takafumi Yamamoto, Cedric Tassel, Yoji Kobayashi, Dmitry Batuk, Yuki Shibata, Artem M. Abakumov, Craig M. Brown, and Hiroshi Kageyama

Phys. Rev. B 95, 155105 — Published 4 April 2017

DOI: 10.1103/PhysRevB.95.155105
Cubic lead perovskite PbMoO₃ with anomalous metallic behavior

Hiroshi Takatsu,¹ Olivier Hernandez,² Wataru Yoshimune,¹ Carmelo Prestipino,² Takafulmi Yamamoto,¹ Cedric Tassel,¹ Yoji Kobayashi,¹ Dmitry Batuk,³ Yuki Shibata,¹ Artem M. Abakumov,⁴ Craig M. Brown,⁵ and Hiroshi Kageyama¹

¹Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
²Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Université de Rennes 1, Batiment 10B, Campus de Beaulieu, Rennes F-35042, France
³EMAT, University of Antwerp, 2020 Antwerpen, Belgium
⁴Skolkovo Institute of Science and Technology, Nobel str. 3, 143026 Moscow, Russia
⁵National Institute of Standards and Technology, Center for Neutron Research Gaithersburg, MD 20899-6102, U.S.A.

A novel Pb-based perovskite PbMoO₃ is obtained by high-pressure and high-temperature synthesis. This material crystallizes in the Pnma cubic structure at room temperature, making it distinct from typical Pb-based perovskite oxides with a structural distortion. PbMoO₃ exhibits a metallic behavior down to 0.1 K with an unusual T² linear dependence of the electrical resistivity. Moreover, a large specific heat is observed at low temperatures accompanied by a peak in C_p/T² around 10 K, in marked contrast to the isostructural metallic system SrMoO₃. These transport and thermal properties for PbMoO₃, taking into account anomalously large Pb atomic displacements detected through diffraction experiments, are attributed to a low-energy vibrational mode, associated with incoherent off-centering of lone pair Pb²⁺ cations. We discuss the unusual behavior of the electrical resistivity in terms of a polaron-like conduction, mediated by the strong coupling between conduction electrons and optical phonons of the local low-energy vibrational mode.

PACS numbers: 72.15.-v, 72.80.Ga, 75.40.Cx, 61.05.cf

I. INTRODUCTION

Insulating oxides with a stereochemically active lone pair of Pb²⁺ and Bi³⁺ cations have been the subject of long-standing interest due to large remnant polarization and high temperature structural/electronic transitions, as found in Pb(Zr,Ti)O₃ with a coherent displacement of Zr/Ti atoms.¹,² A surge of interest in multiferroics over the last decade has led to numerous studies of BiFeO₃³ targeting applications in ferroelectric non-volatile memory devices with high working temperature. More recently, there has been a growing attention in ferroelectric-like structural distortion or transition in metallic compounds.¹⁻⁸ This is because unprecedented behaviors can appear distinct from conventional metals, such as an enhanced thermoelectric property in (Mo,Nb)Te₂⁶ and possible odd-parity superconductivity proposed in Cd₂Re₂O₇ and doped SrTiO₃ heterostructures.⁷

The concept of introducing polar distortion in a metallic phase has been recently demonstrated in a material of the LiNbO₃-structure type, LiOsO₃⁸. It is discussed that large thermal vibration or incoherent disorder of Li and O ions allows cooperative order upon cooling. A ferroelectric-type structural phase transition occurs at Tₛ = 140 K, where the metallic conduction associated with Os half-filled t₂g states is retained across Tₛ. In this context, compounds with stereochemically active lone-pair electrons can be considered as an alternative path for designing ferroelectric-like metal or a new class of metal, since the lone pairs electrons may promote a certain structural distortion.⁹,¹⁰ However, the research seeking for novel properties from metallic materials with Pb²⁺ or Bi³⁺ cations is rather limited.¹¹⁻¹³

In this paper, we report the synthesis of a Pb-based perovskite PbMoO₃ crystallizing in the cubic structure, despite the presence of Pb²⁺ cations. While this material shows an orthorhombic distortion with coherent octahedral tiltings at low temperature, it retains a metallic behavior down to 0.1 K. We found an unusual temperature dependence of the electrical resistivity ρ and a large specific heat C_p accompanied by a peak in C_p/T². These unusual behaviors are likely originated from a low-energy vibrational mode induced by the incoherent off-centering of lone pair Pb²⁺ cations as suggested from structural refinements. The weak T dependence of ρ is presumably understood in terms of incoherent transport driven by the formation of the polaron-like conduction.

II. EXPERIMENTAL

Polycrystalline samples of Pb₁₋ₓSrₓMoO₃ (x = 0.0, 0.25, 0.5, 0.75), were synthesized by a high-pressure and high-temperature technique. Stoichiometric mixtures of PbO, SrO, and MoO₃ were reacted at 1000 °C and 7 GPa for 30 min using a multianvil press. SrMoO₃ (x = 1) was synthesized by heating SrMoO₄ (prepared by a solid-state reaction) at 1000 °C for 12 h in H₂/Ar flow as reported in Ref. 14.

X-ray powder-diffraction (XRD) experiments were performed with Cu Kα radiation at room temperature (RT).
For an additional structural study of PbMoO$_3$, synchrotron X-ray powder diffraction (SXRD) experiments were performed at RT on the BL02B2 beam line at SPring-8. The wavelength of the incident beam was $\lambda = 0.42089$ Å. Neutron diffraction experiments of PbMoO$_3$ were performed at RT and 5 K using the high resolution powder diffractometer BT-1 at the NIST center for Neutron Research. Incident neutrons of wavelength $\lambda = 1.5398$ Å were monochromated by vertical-focused Cu (311) monochromator was used. The structural refinements were performed using the FullProf and RIETAN-FP softwares15,16. The $x = 0$ sample was also characterized using transmission electron microscopy (TEM). The data were acquired on an aberration-corrected FEI Titan 80-300 microscope at 300 kV. The chemical composition data were acquired on an aberration-corrected FEI Titan 80-300 microscope at 300 kV. The valence was checked by the X-ray absorption near edge structure (XANES) spectroscopy at the Mo K-edge. The spectra of PbMoO$_3$, SrMoO$_3$, MoO$_2$ and MoO$_3$ were measured at RT on the BL01B1 beamline at SPring-8. The XANES spectra were recorded in a transmittance mode, using Si (111) and Si (311) double crystal monochromator.

The specific heat (C_P) and dc magnetic susceptibility (M/H) were measured, respectively, with a commercial calorimeter (Quantum Design, PPMS) and a SQUID magnetometer (Quantum Design, MPMS). The electrical resistivity ρ was measured by means of a standard four-probe method using rectangular samples cut out from pellets. Gold wires were attached to samples with silver paste, and the samples were then cooled down to 0.1 K using an adiabatic demagnetization refrigerator installed in PPMS. Note that the density of the polycrystalline sample pellet is 8.7 g/cm3 for PbMoO$_3$, 7.4 g/cm3 for Pb$_{0.5}$Sr$_{0.5}$MoO$_3$, and 5.4 g/cm3 for SrMoO$_3$. These values correspond to 89–97% of the calculated ones estimated from the RT crystal structures, suggesting that the difference in density provides only small effect on the absolute values of ρ in these compounds.

III. RESULTS AND DISCUSSION

Figure 1 shows the powder SXRD pattern of PbMoO$_3$ recorded at RT. Observed peaks are indexed in a cubic unit cell, without any splitting and shoulder indicating symmetry lowering (see, for example, 211 and 321 reflections in Figs. 1(b) and 1(c)). This result demonstrates the absence of any distortions from the cubic symmetry at RT. The Rietveld refinement assuming the ideal cubic perovskite (space group: $Pm\bar{3}m$, R factors of $R_{wp} = 3.85\%$, $R_e = 3.03\%$, $R_p = 2.99\%$, and $R_B = 3.51\%$. The goodness-of-fit parameter, $S = R_{wp}/R_e$, was $S = 1.27$, indicating excellent quality of the fitting. The solid solution Pb$_{1-x}$Sr$_x$MoO$_3$ was successfully obtained in the entire x range, with the lattice constant decreasing linearly with increasing x (Fig. 1 of the Supplemental Material [17]). These results ensure a continuous change in the A-site composition. Refining the occupancy factor of each atomic site did not improve the overall fit, indicating the stoichiometric composition of the title compound at least for the heavy atoms on the A and B sites. The Mo K-edge XANES spectra of PbMoO$_3$ (Fig. 2), measured together with other Mo compounds, indicate that the formal valence in PbMoO$_3$ is Mo$^{4+}$ (thus yielding Pb$^{2+}$), which is consistent with the result of bond valence sum calculations based on the RT structure, giving Mo$^{4.08+}$ and Pb$^{1.74+}$. EDS experiments verified the compositional ratio between Pb and Mo, for example, Pb/Mo = 1.01(6) for the $x = 0$ sample.

Interestingly, a large atomic displacement parameter (ADP) of Pb was obtained (isotropic root-mean-square displacement of 0.15(1) Å), suggesting unusually large thermal vibration of Pb ions and/or random displacements of Pb away from the ideal position. Given the presence of stereochemically active 6s electrons of Pb$^{2+}$, the obtained cubic structure in PbMoO$_3$ is unusual and contrasts markedly with other reported Pb-based perovskites with a distortion from the cubic symmetry11. In order to gain more insight into the RT crystal structure for PbMoO$_3$, we performed TEM ex-
Rietveld analysis of the synchrotron X-ray and neutron diffraction data. For each model, the Mo atom was positioned at the origin. U_{iso} represents the isotropic atomic displacement parameter. Numbers in parentheses indicate one standard deviation in the value.

Space group	X-ray (RT)	neutron (RT)	neutron (5 K)
$Pm3m$	$Pm3m$	$Imma$	
a (Å)	3.999(3)	3.9986(1)	5.6348(2)
b (Å)		7.9680(3)	
c (Å)		5.6508(2)	
Pb x	0.5	0.5	0.0
Pb y	0.5	0.5	0.25
Pb z	0.5	0.5	0.5008(17)
O1 x	0.5	0.5	0.0
O1 y	0.0	0.0	0.25
O1 z	0.0	0.0	0.0259(12)
O2 x			0.25
O2 y		-0.0128(5)	
O2 z		0.25	
U_{iso} (10^{-2}Å2)			
Pb	2.08(6)	2.58(5)	1.2(2)
Mo	0.30(6)	0.64(4)	0.36(4)
O1	0.8(3)	0.99(6)	0.6(2)
O2		0.42(8)	

The normalized absorption is plotted against the photon energy (keV) for PbMoO$_3$, SrMoO$_3$, MoO$_2$, and MoO$_3$. The peak centered at 10 K is absent in the SrMoO$_3$ spectrum, while it is present in PbMoO$_3$ and SrMoO$_3$. The presence of this peak provides evidence for the existence of a low-energy vibrational mode in PbMoO$_3$.

Experiments. As shown in Figs. 3(d)–(f), electron diffraction patterns can be consistently indexed on the cubic perovskite structure with the $Pm3m$ symmetry. They do not contain any extra reflections or diffuse intensities associated with long or short range ordered structural deformations due to the Pb off-center displacements. Also, high-angle-annular-dark-field scanning-transmission-electron microscopy (HAADF-STEM) images in Figs. 3(d)–(f) do not show any notable discrepancy from the ideal cubic perovskite structure. No anomaly associated with Pb disorder is observed in any principle directions of the cubic structure, [100], [110], and [111]. These results suggest that the Pb off-center displacements, if present, are random at RT, and the local cooperative structure related to correlated disorder or the formation of polar nano region for relaxor phenomena of Pb$_x$Mo$_{3-x}$O$_6$ is absent.

Rietveld refinement of the RT neutron diffraction data gave a consistent result compared to the SXRD data, confirming the full occupancy of the anionic site, while at $T = 5$ K we found an orthorhombic distortion with additional peaks corresponding to a $\sqrt{2} \times \sqrt{2} \times 2$ cell (Fig. 2 of the Supplemental Material): a preliminary SXRD experiment shows the structural phase transition appears at $T_s \approx 200$ K. This superstructure is presumably related to a structural transition as observed in SrMoO$_3$ below 125 K involving the softening of a R_{25} phonon mode that results in MoO$_6$ octahedral tilting. Indeed, a successful structural refinement at 5 K was conducted assuming a low-temperature structural phase analogous to SrMoO$_3$ (space group: $Imma$): details are given in Tables I and the Supplemental Material.

It is notable that, unlike SrMoO$_3$, the displacement parameter of the Pb site is still quite large even at 5 K (root-mean-square displacement of 0.15 Å along the a axis and ~ 0.08 Å along the b and c axes), suggesting a strong "statically" remaining incoherent Pb off-centering. It is worth underlining that the difference in U_{iso} with T for Pb between RT and 5 K is at least three times higher than that for Mo in PbMoO$_3$ or Sr in SrMoO$_3$, additionally revealing an unusual thermal behavior possibly related to the dynamic component of lead disorder. We will discuss the effect of the Pb off-centering on physical properties in the next section. As will be shown below, the absence of any anomalies related to the structural transition in C_P, M/H and ρ may be related to the associated subtle octahedral tilt of about 4° along the a axis.

It is expected that the off-centered Pb$^{2+}$ derived from lone pair electrons in PbMoO$_3$ may provide essential influence on physical properties. In fact, C_P/T of PbMoO$_3$ is much larger than that of SrMoO$_3$ below 150 K. Moreover, the C_P/T^3 vs. T plot for PbMoO$_3$ clearly exhibits a peak centered at about 10 K, which is however absent in SrMoO$_3$ (see the inset of Fig. 4). This low-temperature peak cannot be explained in terms of the structural phase transition of PbMoO$_3$ and the simple Debye law with $C_P(T) \propto T^3$, and hence implies a significant contribution of a low-energy vibrational mode to the specific heat.
Pb, since conventional disorder is known to shift the peak temperature25-27. The C_P/T^3 peak for PbMoO$_3$ can be roughly reproduced by the Einstein specific heat with an Einstein temperature $\Theta_E \approx 50$ K which corresponds to the value estimated from the ADP value of Pb at RT17. An upturn of C_P/T^3 observed in Pb$_{1-x}$Sr$_x$MoO$_3$ systems below 5 K is ascribed to the electronic specific heat γT, and we obtained $\gamma = 9.2(1)$ mJ/K2-mol for PbMoO$_3$ and $\gamma = 7.6(1)$ mJ/K2-mol for SrMoO$_3$, the latter being in agreement with the previous estimation28,29. The Wilson ratio $R_W \equiv \pi^2 k_B^2 \chi_0/(3\mu_B^2 \gamma)$ is obtained as 1.8 and 2.2 for PbMoO$_3$ and SrMoO$_3$, respectively, using the Pauli paramagnetic susceptibility χ_0 after diamagnetic correction for PbMoO$_3$ and χ_0 from the report on SrMoO$_3$17,28. The values of R_W for both compounds are close to 2 as expected in Fermi liquids within the strong correlation limit30.

Temperature dependence of the electrical resistivity $\rho(T)$ of PbMoO$_3$ (Fig. 5) shows a metallic behavior down to 0.1 K (apart from a tiny contribution of the superconductivity (SC) from the Pb impurity below 7 K). This SC contribution can be removed by applying a magnetic field of 0.5 T, which is above the critical field of the SC transition of Pb. The resulting $\rho(T)$ is almost identical with the zero-field data, implying that the magnetoresistance is negligible. Interestingly, $\rho(T)$ of PbMoO$_3$ exhibits an unusual T-sub linear dependence in a wide temperature range below 100 K, where the fitting with $\rho(T) = A + B T^n$ to the data yielded $n \approx 0.5$ (the inset of Fig. 5). Moreover, the resistive change in temperature is rather small, with a residual resistivity ratio $\rho(300 K)/\rho(0.1 K) = 11$. These features are distinct from $\rho(T)$ of typical non-magnetic metals, where $\rho(T) \propto T$ or $\propto T^5$ due to the electron-phonon scattering with the weak electron-phonon coupling31,32 and/or $\rho(T) \propto T^2$ due to the electron-electron scattering are observed at low temperature33,34. Note that SrMoO$_3$ shows $\rho(T) \propto T^2$ below 140 K (the main panel of Fig. 5) owing to the enhanced electron-electron correlation29. We also observed that $\rho(T) \propto T^2$ is recovered by substituting Pb ions by Sr ions at low temperatures for the $x = 0.5$ sample. Therefore, it appears that incoherent off-centered Pb$^{2+}$ ions disturb the electrical conduction. It is known that a weak coupling between optical phonons and conduction electrons gives rise to a T-super linear dependence with $\rho(T) \propto T^n$ ($n \geq 1$)32,35. It is thus possible that the observed polaron-like incoherent transport is mediated by strong coupling between conduction electrons and optical phonons of the local low-energy vibrational mode for PbMoO$_3$, as proposed theoretically by Millis et al.36 It was suggested that $\rho(T) \propto T^{0.5}$ may appear in the critical regime around the crossover from Fermi liquid to polaron behaviors.

Add to note: in the final stage before the submission of this paper, we became aware of the work on Pb$_2$Cr$_{1+x}$Mo$_{1-x}$O$_6$ reporting a synthesis for $x = -1, -2/3, -1/3, 0, 1/3$ ($x = -1$ means PbMoO$_3$), yet with no structural refinement (thus no indication of Pb off-centering) nor detailed physical properties37.

FIG. 3: (a)–(c) Electron diffraction patterns and (d)–(f) high resolution HAADF-STEM images of PbMoO$_3$ taken at RT along the [100], [110], and [111] axes. The intensity I in the HAADF-STEM images is proportional to the average atomic number, Z_i of the projected atomic column and scales as $I \sim Z^n (n = 1.6 - 1.9)$.

FIG. 4: (Color online) Temperature dependence of C_P/T for powder samples of PbMoO$_3$ and SrMoO$_3$. Large difference of C_P/T emerges below 150 K, suggesting the contribution of a low-energy vibrational mode in PbMoO$_3$. The inset represents the C_P/T^3 vs T plot for Pb$_{1-x}$Sr$_x$MoO$_3$.

FIG. 5: (Color online) Temperature dependence of $\rho(T)$ for Pb$_{1-x}$Sr$_x$MoO$_3$.
IV. CONCLUSION

To summarize, we have synthesized a novel lead perovskite PbMoO$_3$ using a high-pressure and high-temperature reaction. This lead-based compound represents a rare case with the $Pm3m$ cubic structure at room temperature, despite the presence of Pb$^{2+}$ cations with lone pair electrons. We observed an unusual T-sublinear dependence in $\rho(T)$ as well as large specific heat at low temperatures, which could be explained in terms of a low-energy vibrational mode mediated by the incoherent off-centering of Pb$^{2+}$ cations as experimentally indicated by anomalously large Pb atomic displacements. Furthermore, the weak T dependence of $\rho(T)$ implies a polaron-like conduction, mediated by the strong trapping of conduction electrons by local phonon vibration.

Acknowledgment

This work was supported by CREST and JSPS KAKENHI Grants No. 25240909, No. 24248016, No. 26106514, and No. 26400336. The synchrotron radiation experiments, performed at the BL02B2 of SPring-8, were supported by the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2014B1360).

1. N. Setter and E. L. Cross, Ferroelectric Ceramics (Birkhauser Verlag AG, Basel, 1993).
2. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Elsevier Science & Technology, New York, 1971).
3. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaitheyanathan, D. G. S. U. V. Waghmare, N. A. Spaldin, et al., Science 299, 1719 (2003).
4. P. W. Anderson and E. I. Blount, Phys. Rev. Lett. 14, 217 (1965).
5. I. A. Sergienko, V. Keppens, M. McGuire, R. Jin, J. He, S. H. Curnoe, B. C. Sales, P. Blaha, D. J. Singh, K. Schwarz, et al., Phys. Rev. Lett. 92, 065501 (2004).
6. H. Sakai, K. Ikeura, M. S. Bahramy, N. Ogawa, D. Hashizume, J. Fujioka, Y. Tokura, and S. Ishiwata, Sci. Adv. 2, e1601378 (2016).
7. V. Kozi and L. Fu, Phys. Rev. Lett. 115, 207002 (2015).
8. Y. Shi, Y. Guo, XiaWang, A. J. Princep, D. Khalyavin, P. Manuel, Y. Michine, A. Sato, K. Tsuda, S. Yu, et al., Nat. Mat. 12, 1024 (2013).
9. N. V. Sidgwick, The Electronic Theory of Valency (Oxford University Press, UK, 1927).
10. L. Shimoni-Livny, J. P. Glusker, and C. W. Bock, Inorg. Chem. 37, 1853 (1998).
11. S. A. J. Kimber, J. A. Rodgers, H. Wu, C. A. Murray, D. N. Argyriou, A. N. Fitch, D. I. Khomskii, and J. P. Attfield, Phys. Rev. Lett. 102, 046409 (2009).
12. J. G. Cheng, J. S. Zhou, and J. B. Goodenough, Phys. Rev.B 80, 174426 (2009).
13. J. B. Goodenough and J. Zhou, Sci. Technol. Adv. Mater. 16, 036003 (2015).
14. S. Hayashi and R. Aoki, Mat. Res. Bull. 14, 409 (1979).
15. J. Rodriguez-Carvajal, Physica B 192, 55 (1993).
16. F. Izumi and K. Momma, Solid State Phenom. 130, 15 (2007).
17. Supplemental Material of this paper for the powder XRD data of Pb$_{1-x}$Sr$_x$MoO$_3$, and for the detailed structure analysis for the neutron diffraction data, and for the analysis of the specific heat and magnetic susceptibility of PbMoO$_3$.
18. D. A. Keen and A. L. Goodwin, Nature 521, 303 (2015).
19. G. Burns and F. H. Dacol, Solid State Commun. 48, 853 (1983).
20. S. B. Vakhrushev, B. E. Kvyatkovsky, A. A. Naberezhnov, N. M. Okuneva, and B. P. Toperverg, Ferroelectrics 90, 173 (1989).
21. K. Hirota, Z. G. Ye, S. Wakimoto, P. M. Gehring, and G. Shirane, Phys Rev B 65, 104105 (2002).
22. R. B. Macquart, B. J. Kennedy, and M. Avdeev, J Solid State Chem. 183, 249 (2010).
A. P. Ramirez and G. R. Kowach, Phys. Rev. Lett. 80, 4903 (1998).
24 T. H. K. Barron and G. K. White, Heat Capacity and Thermal Expansion at Low Temperatures (Springer, New York, 1999).
25 R. O. Pohl and E. T. Swartz, J. Non-Cryst. Solids 76, 117 (1985).
26 D. J. Safarik, R. B. Schwarz, and M. F. Hundley, Phys. Rev. Lett. 96, 195902 (2006).
27 B. C. Melot, R. Tackett, J. O’Brien, A. L. Hector, G. Lawes, R. Seshadri, and A. P. Ramirez, Phys. Rev. B 79, 224111 (2009).
28 S. I. Ikeda and N. Shirakawa, Physica C 341 (2000).
29 I. Nagai, N. Shirakawa, S. ichi Ikeda, R. Iwasaki, H. Nishimura, and M. Kosaka, Applied Physics Letters 87, 024105 (2005).
30 H. Kronmüller and S. Parkin, Handbook of Magnetism and Advanced Magnetic Materials (Wiley-Interscience, USA, 2007).
31 J. M. Ziman, Electrons and Phonons (Oxford University Press, New York, 1960).
32 P. B. Allen and W. W. Schulz, Phys. Rev. B 47, 14434 (1993).
33 A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).
34 K. Kadowaki and S. B. Woods, Solid State Commun. 58, 507 (1986).
35 T. Masui, K. Yoshida, S. Lee, A. Yamamoto, and S. Tajima, Phys. Rev. B 65, 214513 (2002).
36 A. J. Millis, R. Mueller, and B. I. Shraiman, Phys. Rev. B 54, 5389 (1996).
37 H. F. Zhao, L. P. Cao, Y. J. Song, S. M. Feng, X. Shen, X. D. Ni, Y. Yao, Y. G. Wang, R. M. Wang, C. Q. Jin, et al., J. Solid. State Chem. 246, 92 (2017).