Overall Goal(s) and Objective(s):

While SETI is often thought of as a part of radio astronomy with optical SETI, artifact SETI, METI, and other approaches to finding intelligent life considered to be allied fields, SETI is better understood as an interdisciplinary field with many subfields, approaches, and components. [5,6,12]

In particular, Robert Bradbury [5] has argued for a broad view of SETI between two extremes: “orthodox SETI,” or radio communication SETI, and a “Dysonian Approach” that searches for the extreme effects of alien life on its environment.

Here, I build on these ideas and attempt to organize the terminology and efforts of SETI within a single framework for SETI as an interdisciplinary and multi-pronged approach.

Examples of Interdisciplinarity:

In this broader conception of SETI, the field spans a large number of disciplines. For instance:

Just as old as radio as a branch of radio astronomy [11, 13] is the hunt for the effects of extraterrestrial technology on its environment [14]. Unfortunately, hopes in the 1980’s that space-based infrared astronomy would be a quickly fruitful avenue for discovery in SETI were dashed with the discovery of the infrared cirrus background by IRAS, although Richard Carrigan, Jr. [8] was nonetheless able to establish some weak upper limits. Today, WISE and JWST provide new opportunities to pursue this avenue [27]. Optical and near-infrared laser SETI engages cutting-edge optical and NIR instrumentation.

The discovery of exoplanets, especially the ubiquity of apparently terrestrial bodies, has altered the astrobiological landscape across all of its subfields, and SETI is no exception [25,30]. Understanding how a civilization might interact with its terrestrial environment is a study in Earth system science [e.g. 16]. Game theory tells us that communication SETI is akin to a cooperative game where the participants cannot communicate [24], and exoplanets make excellent “focal points” in the strategy space, giving us guidance on where, when, and how to search [30].

Because SETI can involve guesses and deductions not just about alien biology and evolution (as the rest of astrobiology does) but also (alien analogs of) psychology and sociology, it is necessary to include the social sciences such as anthropology [31] to help practitioners “step out of their brains” [6] and avoid anthropocentric assumptions in their reasoning.

Understanding the spread of spacefaring life throughout the Galaxy is an exercise in galactic dynamics and stellar population synthesis, requiring participation from galactic astrophysics. [25] Understanding how large-scale technology feeds back on a star thermodynamically and chemically is a study in stellar astrophysics.

The dawn of time-domain astronomy, and especially the upcoming LSST era provide an opportunity to search for new kinds of technosignatures. The enormous quantity of data produced by upcoming time-domain missions means that even if unambiguous technosignatures are detected, our computer search algorithms may miss them because they are not looking for them. The hunt for the unexpected in enormous quantities of data requires the use of new techniques in machine learning and “big data,” meaning a close relationship with computer science.

Since extraterrestrial technology might be enormously more advanced than humanity’s, we must not neglect the possibility that evidence for it might be found in an unexpected region of the electromagnetic spectrum or even beyond it in neutrinos or gravitational waves, which puts multi-messenger astronomy within the domain of SETI.

Solar System SETI (the search for evidence of extraterrestrial technology in the Solar System) requires incorporating planetary science, remote sensing, and the Earth sciences (indeed, it is not even clear if we have sufficiently searched the Earth for evidence of such technology [29], and see also Schmidt & Frank 2018, in prep).

Finally, arguments about post-detection protocols, METI (the deliberate provocation of such signals via strong transmissions from Earth [17]), discovery priority, and communication of SETI results to the public require the incorporation of media and communications, law and political science in any mature portfolio of SETI activities.

Jargon and Taxonomy:

Iván Almár[1] has pointed out that difficulties in jargon arise when different forms of SETI coin and define terms narrowly, and then these terms are borrowed by practitioners in the other forms with different meanings (indeed, I have been guilty of this on many occasions). Especially if we wish to make SETI more interdisciplinary, we should ensure that our own jargon is cleaned up, and that we do not misappropriate jargon terms from the disciplines we wish to incorporate.
Indeed, the term “SETI” itself has been defined in various contexts to refer strictly to radio searches, specific NASA programs, to any search for communication, and broader searches. I concur with Almár that “SETI” should be the name for the entire field—after all, the field needs a name, and this is sense most consistent with the natural meaning of the term. I also endorse a slightly modified version of his definition of SETI: “the collective name of a number of activities, based on science, aimed to detect messages, signals or traces” of extraterrestrial intelligence.

Within the broader framework of science, SETI is best conceived as a part of astrobiology. Although the NASA Astrobiology Strategy 2015 declares that “[t]raditional SETI is not part of astrobiology,” it clearly is.

The primary goal of astrobiology is the discovery of extraterrestrial life. Using Earth life as a guide, it seeks to understand how life might have arisen elsewhere, and to use this understanding detect it. One approach is the remote and in situ search for biosignatures, that is, features of creatures or their environments that distinguish them as alive.

SETI has a similar goal, except that it seeks intelligent life. By this, SETI practitioners use a functional definition of “intelligence” to mean “using technology whose effects we can detect.” Since the term “intelligence” is loaded with anthropocentric meaning, and since explorations of the potential natures of alien intelligence is an interesting aspect of SETI, we might prefer “Search for Extraterrestrial Technologies” [as advocated by 15] but this jargon version of “intelligence” is so well entrenched now that I feel we should let it stand rather than attempt a rebranding.

The reason it is worthwhile to search for intelligent life is that it might be more detectable, because its technology can produce signatures that are both more obvious (a narrow-band radio signal is easier to detect than photosynthesis on part of an Earth-like planet orbiting a distant star) and more obviously artificial (one might always be able to “explain away” biosignatures via unlikely but plausible abiogenic means; not so for a narrow-band carrier wave).

Thus, SETI is distinguished from some other parts of astrobiology by its search for technosignatures. Iván Almár [2] used this term to mean any technology other than a communicative signal (because he was concerned with how to score the importance of various kinds of detections in SETI) but I believe the term should include any technological signature, including communication, both because that is the term’s natural meaning and because the contrast with biosignatures helps identify SETI’s place within astrobiology.

The most data-centered aspects of SETI have historically been searches for communication—primarily in the optical, near-infrared, and radio—and the most natural term for this subfield is communication SETI. This we can define as searches for technosignatures that involve the transmission of information through space by carriers such as photons.

The search for other effects of technology on its environment has many names. Almár[2] refers to “technomarkers,” and many have referred to searches for “artifacts” (SETA), Solar System “probes”, or discussed such searches in the context of “interstellar archeology.”[7,9] Milan Ćirković [10] and Robert Bradbury [5] refer to this synthesis of approaches beyond “traditional” SETI as “Dysonian SETI,” in part because of Freeman Dyson’s seminal paper on non-communication SETI [14].

Rather than define such searches by what they are not or use an eponym that refers to a small subset of them, I prefer to define the subfields by their distinguishing characteristics. So, the broad search for any sort of substance—whether megastructures [4,28] or probes or bases in the Solar System[3,18,19,23,29], or cities [20] or atmospheric pollution [22] on other planets—would be artifact SETI (although the distinction between this and communication SETI might not always be clean, since structures might communicate information [4] and communication might take place via a physical artifact.) Under this umbrella we would then have waste-heat SETI, probe SETI, Solar System SETI, and so on as appropriate.

The deliberate attempt to elicit a response by sending a message has been called “active SETI” and “messaging to extraterrestrial intelligence” (METI). However controversial [17] this may be, this strategy is properly considered part of SETI in my taxonomy, and I think both terms are appropriate names for it.

Recently, some have begun searching for astrophysical exotica as part of SETI, along the lines of Davies’ [12] suggestion that alien life might be exhibited as “nature plus.” Examples include disappearing stars [33], unphysical stellar pulsational modes [21], or anomalous binary stars [32]. I like the term “nature plus”, and find the more obvious “natural SETI” to be too vague, but I feel that the name for this field should arise organically from its practitioners (hopefully in the near future). Regardless, I would classify this as part of the search for technosignatures.

I illustrate the above taxonomy in Figure 1.

Other Jargon:

The term “beacon” is a useful one and should be well defined. Iván Almăr[1] favors defining a beacon as a content-free attempt at communication (a “dial tone”, or simple carrier wave), however the term is
usually used more broadly to mean any “We Are Here” message. The latter sense has several benefits: it is the more natural meaning of the term, it allows the term to be applied across SETI, and it directly informs search strategies.

The last point is worth elaboration: if we assume that beacons in this latter sense exist, then our SETI strategy can be focused on Schelling points [24,30] or aspects of mutual understanding between us and the species that wishes to be found. That is, we should define a beacon as a signal or artifact is meant to be discovered by strangers, and will therefore be both obvious and obviously artificial. This means that we should be able to use physics, mathematics, or other presumed universal concepts to guess at the forms beacons might take (a topic of many SETI papers, e.g. those proposing “magic frequencies”).

Perhaps the most elusive jargon is what to call what we are looking for. Given that we have already accepted the jargon term “intelligence,” it is simplest to refer to ETIs as the targets of the search. Other common terms are “extraterrestrial civilization” (ETC) or “advanced technological civilization” (ATC) but “civilization” has a jargon meaning in anthropology. If we are to incorporate anthropology into SETI then we should honor their jargon, and acknowledge that that term may unnecessarily bring along more anthropocentric meaning than necessary. After all, if we make contact with an ETI we might expect it to be composed of multiple civilizations, or even none at all. “Alien race” is an even more loaded term, and should be avoided.

When referring collectively to the actual creatures, I prefer the term species because it implies separate evolutionary descent and, by analogy with H. sapiens might reinforce that not all members of an ETI can be expected to share similar cultural properties (and so might help avoid the “monocultural fallacy” that so often crops up in SETI papers, [cf. 26]).

Similarly, the discussion of the colonization of other planets and the Galaxy connotes analogy to the colonial activities of European powers on Earth (indeed, early uses of the term in this context did so quite deliberately [31]) which is unnecessarily anthropocentric. Unless one really intends such connotations, cognates of settle are more appropriate.

Summary:

There have been many calls for a broader view of SETI than is typically projected, and the present call [6] is part of what seems to me to be a recently-achieved critical mass for this attitude.

We should consider SETI to be an interdisciplinary study that includes the humanities and social sciences, and a subfield of astrobiology that focuses on the detection of technosignatures (as opposed to biosignatures). Two major branches of SETI are communication SETI and artifact SETI (although the line between them is not always sharp), and others include METI and the search for “nature plus”.

References:

1. Almár, I., 2011a Acta Astronautica 68, 351
2. Almár, I., 2011b Acta Astronautica 69, 699
3. Arkhipov, A. V., & Graham, F. G., 1996 SPIE 2704, 150A
4. Arnold, L. F. A., 2005 ApJ, 627, 534–539
5. Bradbury, R. J., et al. (2011) JBIS, 64, 156–165.
6. Cabrol, N. A. 2016, Astrobiology, 16, 9
7. Campbell, J. B. 2005, Proceedings of the International Astronomical Union, 1(C200), 247-250
8. Carrigan, R. A., Jr., 2009, ApJ 698, 2075
9. Carrigan, R. A., Jr., 2012, Acta Astronautica, 78, 121
10. Ćirković, M. M., 2012, arXiv:astro-ph/0606102
11. Cocconi, G. & Morrison, P. 1959 Nature 184, 844
12. Davies, P 2010 The Eerie Silence, Houghton Mifflin Harcourt
13. Drake, F. 1961 Physics Today 14, 40
14. Dyson, F. 1960 Science, 131, 1667
15. Dyson, F. 1966 in Perspectives in Modern Physics, Essays in Honor of Hans A. Bethe, R. E. Marshak, ed., New York, John Wiley and Sons, pp. 641-655
16. Frank, A., Kleidon, A., & Alberti M. 2017 Anthropocene 19, 13-21
17. Gertz, J., 2016a, arXiv:1605.05663
18. Gertz, J., 2016b, arXiv:1609.04635
19. Haqq-Misra, J., & Kopparapu, R. K, 2012 Acta Astronautica, 72, 15–20
20. Kuhn, J. R., & Berdyugina, S. V., 2015, IJA, 14, 401
21. Learned, J. G., et al. 2008 arXiv:0809.0339L
22. Lin, H. W., Gonzalez Abad, G., & Loeb, A., 2014, ApJ, 792, L7
23. Papagiannis, M. D., 1978 QJRAS, 19, 277.
24. Schelling, T., 1960 The strategy of conflict, Galaxy book, Harvard University Press
25. Siemion, A. P. V., et al., 2013 ApJ, 767, 94
26. Wright, J. T., et al. 2014a, ApJ 792, 26
27. Wright, J. T., et al. 2014b, ApJ 792, 27
28. Wright, J. T., et al. 2016, ApJ 816, 17
29. Wright, J. T. 2017a, IJA (in press), doi:10.1017/S1473550417000143
30. Wright, J. T. 2017b, in the Handbook of Exoplanets, ed. H. J. Deeg, Springer, arXiv:1707.02175
31. Wright, J. T. & Oman-Reagan, M. P. 2017, IJA, doi:10.1017/S1473550417000222
32. Vidal, C. 2016, Acta Astronautica 128, 251
33. Villarroel, B. et al. 2016 AJ 152, 76
Astrobiology

Biosignatures
- Exoplanets:
 - Atmospheric gases
 - Reflection spectra
- Solar System:
 - Microfossils
 - Molecular Biomarkers

Technosignatures (SETI)

Communication	Artifact	“Nature-plus”	METI
NIROSETI:	Waste heat:	Disappearing stars	Strong radio transmission
pulsed lasers	Dyson spheres		
continuous lasers	Kardashev		
	Type III galaxies		
Solar System:	Probes	“Tickling” Cepheids	Embedded messages in leaked emission
carrier wave	Structures		
broadband			
Exoplanets:	Pollution	Ø red spirals	Voyager records
	Waste heat		
		3 red spirals	Pioneer plaques
Transits:	Arnold megastructures	Przybylski’s Star	