Transgenerational inheritance of ethanol preference is caused by maternal NPF repression.

Julianna Bozler, Balint Z Kacso, Giovanni Bosco*

1. Geisel School of Medicine at Dartmouth, Molecular and Systems Biology, Hanover NH 03755

*Corresponding author: Giovanni.Bosco@Dartmouth.edu

Summary

Rapid or even anticipatory adaptation to environmental conditions can provide a decisive fitness advantage to an organism. The memory of recurring conditions could also benefit future generations, however neuronally-encoded behavior isn’t thought to be inherited across generations. We tested the possibility that environmentally triggered modifications could allow "memory" of parental experiences to be inherited. In Drosophila melanogaster, exposure to predatory wasps leads to inheritance of a predisposition for ethanol-rich food for five generations. Inhibition of Neuropeptide-F (NPF) activates germline caspases required for transgenerational ethanol preference. Further, inheritance of low NPF expression in specific regions of F1 brains is required for the transmission of this food preference: A maternally derived NPF locus is necessary for this phenomenon, implicating a maternal epigenetic mechanism of NPF-repression. Given the conserved signaling functions of NPF and its mammalian NPY homolog in drug and alcohol disorders, these observations raise the intriguing possibility of NPY-related transgenerational effects in humans.
Introduction

To what extent is personality and behavior predetermined at birth? Philosophers and scientists alike have struggled with this question, and many have settled on the *tabula rasa*, or *blank slate* perspective. This long-standing notion posits we are without form or direction until our individual experiences shape us. Over the past decades however, evidence has accumulated that suggests parental environment can have significant phenotypic consequences on the next generation, thus eroding this notion of a blank slate.

The Dutch Hunger Winter Study was one of the first documented examples of ancestral experiences influencing subsequent generations. Children conceived in the Netherlands during the World War II blockade, and ensuing famine, had higher rates of obesity and diabetes (Heijmans et al., 2008; Schulz, 2010; Stein, Susser, Saenger, & Marolla, 1975). More recent studies have found that neurological and mental health conditions also appear to have persistent impact on the next generations (Yeshurun & Hannan, 2018). Further, risk factors for children of Holocaust survivors, such as reduced cortisol sensitivity has been linked to methylation state of the glucocorticoid receptor promoter, and increased methylation in offspring was associated with paternal diagnosis of posttraumatic stress disorder (Yehuda et al., 2014).

Studied largely in the public health context, there are limited examples of environmental inheritance that can be experimentally tested. Genetic model systems thus are indispensable for understanding molecular mechanisms of causation. For example, male mice trained to associate fear with an odor-transmitted sensitivity of this odor to their sons. In this instance, researchers concluded that offspring possessed an increased abundance of sensory neurons specific to the same odor their fathers were trained to fear.
Similarly, environmental enrichment activities can ameliorate behavioral defects of mutant mice defective in long-term potentiation and memory, and this behavioral rescue is heritable to the next generation through the activation of an otherwise latent p38 signaling cascade (Arai, Li, Hartley, & Feig, 2009). Parental exposure to toxins and nutritional challenges also can change germline information, affecting growth and metabolism of future generations (Carone et al., 2010; Chen et al., 2016; Sharma et al., 2016; Skinner et al., 2013). These few examples suggest that parental environment can have a profound impact on subsequent generations. Elucidating mechanisms behind these environmentally triggered epigenetic programs is essential for a complete understanding of the foundational principles upon which biological inheritance is based.

Drosophila melanogaster females, when cohabitated with endoparasi-toid wasps, shift to prefer ethanol food as an egglaying substrate, where ethanol food protects Drosophila larvae from wasp (Kacsoh, Lynch, Mortimer, & Schlenke, 2013a).

Drosophila suzukii similarly shifts egglaying preference to food with atropine, giving its progeny protection against wasp (Poyet et al., 2017). Ethanol preference in *D. melanogaster* is linked to a decrease in Neuropeptide F (NPF) in the female brain (Kacsoh et al., 2013a), consistent with previous work on NPF (Shohat-Ophir, Kaun, Azanchi, Mohammed, & Heberlein, 2012), and its mammalian homolog NPY studied in the context of drug addiction (Gonçalves, Martins, Baptista, Ambrósio, & Silva, 2016; Landayan & Wolf, 2015). NPY modulation governs ethanol consumption in rats (Thiele, Marsh, Marie, Bernstein, & Palmiter, 1998) and is implicated in human alcohol abuse disorders (Mayfield et al., 2002; Mottagui-Tabar et al., 2005). This behavioral
output is believed to be a consequence of the NPF/NPY role in the rewards pathway, with NPF signaling being inherently rewarding (Desai, Upadhya, Subhedar, & Kokare, 2013; Shao et al., 2017). NPF activity is considered representative of the motivational state of the fly (Krashes et al., 2009; Landayan & Wolf, 2015). Several recent studies also have shown that ‘stressful’ experiences regulate NPY/NPF levels, providing a link between environmental cues and NPF/NPY signaling (Broqua, Wettstein, Rocher, Gauthier-Martin, & Junien, 1995; Sah et al., 2009; Shohat-Ophir et al., 2012). Here we present findings that link maternal environmental conditions to cause inheritance of an altered reward pathway via depressed NPF signaling and preference for ethanol.

Results

Inheritance of ethanol preference

Drosophila were cohabitated with female wasps for four days, then separated and flies were placed into embryo collection chambers for 24 hours. Embryos were divided into two cohorts and each developed in the absence of adult flies or wasp. One cohort was used to propagate the next generation and never treated to ethanol food; the second cohort was used in the ethanol preference assay and then discarded (Fig. 1a).

Wasp-exposed Canton-S flies lay approximately 94% of their eggs on ethanol food (Fig. 1b). This behavior persists in their offspring despite the F1 generation never having direct interaction with wasps (Fig. 1b). Ethanol preference in F1 was less potent, with 73% of the eggs laid on ethanol food (p = 8.6e-7, Table S1). Remarkably, this inherited ethanol preference persisted for five generations, gradually reverting back to the mock exposed baseline (Fig. 1b). These observations were replicated in an additional
wild type Oregon R (OR) strain (Table S2), suggesting that the phenomenon is not specific to a particular genetic aberration or background. This indicates that inheritance of ethanol preference is not a permanent germline change, but rather it is a reversible trait. Ethanol preference was measured for two days for initial experiments (Fig. 1-3 & S1); day one and day two showed similar trends, suggesting that flies do not habituate to ethanol nor does the preference fade over the course of the experiment (Table S3).

Confirming previous findings, following a wasp exposure F0 flies have an ethanol preference that persists for more than a week, returning to baseline after ten days (Fig. S1a). Sister cohorts of F1 flies were collected at two time points along this F0 ethanol preference decay; one immediately following wasp exposure (brood 1), and the second ten days post wasp exposure (brood 2). Brood 2 did not display an inherited ethanol preference, suggesting that wasp exposure does not inflict a permanent change in the F0 germline (Fig. S1d). Again, these findings replicated in OR flies (Table S2), indicating that these observations are robust and not dependent on the context of a particular genetic background.

To explore further the role of time and dynamics of wasp exposure, multiple generations of flies were exposed to wasps. We found that inherited ethanol preference can be enhanced with successive generations of wasp exposure (Fig. S1e). This trend did not repeat when nonconsecutive generations were repeatedly exposed to wasps (Fig. S1f). This suggests that the enhancing effect observed in the successive exposures is time sensitive and may be linked to the ethanol preference of the parental flies.

To explore the required neural signaling to the germline, mutants defective for long-term memory were assayed. Previous studies have shown that flies defective in
long-term memory exhibit an ethanol preference only in the presence of wasps but not after wasp removal. The long-term memory mutant Orb^{24Q} produced offspring with an ethanol preference when the embryo collection was conducted in the presence of wasps, but this ethanol preference was greatly reduced in offspring collected post-wasp exposure (Fig. 1c). These data provide insight in two ways. First, functional long-term memory is not a compulsory requirement to generate ethanol-preferring offspring. Secondly, intact long-term memory is not required to inherit ethanol preference. Given that ethanol preference in the absence of wasps is long-term memory dependent, this experiment reveals that the neuronal signaling is different for maintained ethanol preference in the F$_0$ and F$_1$ flies (Bozler et al., 2017).

Several other factors point to distinctions between the F$_0$ and F$_1$ ethanol preference behavior. Male F$_1$ legacy flies, mated to naïve females produced offspring with an ethanol preference (Fig. S2a). Additionally, 14-16 day old F$_1$ flies displayed an ethanol preference, demonstrating that F$_1$ flies do not have an ethanol preference decay curve similar to that of the F$_0$ (Fig. S2b).

Transcriptional changes

Global transcriptional changes in the female head across generations were examined with RNA sequencing. Heads from the F$_1$ and F$_2$ generation were collected and compared with the F$_0$ generation, which was previously reported (Bozler et al., 2017). Analysis of the F$_0$ data detected 98 differentially expressed transcripts (15 down and 83 up) (Fig. S3, Table S4). F$_1$ and F$_2$ heads showed very few differentially expressed transcripts, 4 and 5 transcripts respectively. Of the differentially expressed transcripts, no transcript was
shared between groups. These data indicate that although wasp exposure itself results in
global transcriptional changes in the female head, this observation does not hold true for
the subsequent generations.

Germline caspases are necessary

Mid-oogenesis germline apoptosis (stage 7-8 oocytes) is triggered upon wasp exposure
(Fig. 2a) (Kacsoh, Bozler, & Bosco, 2018; Kacsoh et al., 2018; Kacsoh, Bozler,
Ramaswami, & Bosco, 2015). However, this wasp response is not heritable like the
ethanol preference behavior, and F₁ females do not exhibit germline apoptosis (Fig. 2a).
Nevertheless, maternal germline knockdown of effector caspases *Dcp-1* and *drice*
produce offspring without an ethanol preference, regardless of parental treatment (Fig.
2c). Although protein-starvation triggers germline apoptosis similar to wasp exposure
(Fig. 2b), offspring from mothers with starvation-induced apoptosis do not inherit an
ethanol preference (Fig. 2d). This indicates that germline apoptosis in and of itself is not
sufficient for inheritance of ethanol preference.

NPF and its receptor modulate germline apoptosis

NPF is known to play a role in food seeking, ethanol consumption, and numerous other
reward pathways, and NPF levels decrease in the fan shaped body of female brains
following wasp exposure (Kacsoh, Lynch, Mortimer, & Schlenke, 2013b). Even in the
presence of wasp overexpression of NPF inhibits ethanol preference, while in the absence
of wasp knockdown of NPF is sufficient to induce the ethanol preference behavior (Fig.
3a). Given this NPF modulation of ethanol preference in females we asked whether NPF
also signaled to germline cells, triggering caspases and apoptosis. Strikingly, NPF knockdown induces mid-oogenesis apoptosis in the absence of wasps (Fig. 3b), while overexpression of NPF results in no elevation in germline apoptosis even in the presence of wasps (Fig. 3b). Similarly, NPF-receptor (NPFR) knockdown alone leads to significantly elevated levels of apoptosis (28%, when compared to parental line controls \(p = 6.2 \times 10^{-4} \) & \(1.5 \times 10^{-4} \)), and this effect is enhanced with wasp exposure (61%, \(p = 7.0 \times 10^{-4} \)) (Fig. 3c). Taken together these observations link ethanol preference behavior and mid-oogenesis apoptosis in the F0 females, both processes likely caused by changes in NPF and NPFR signaling.

Changes in NPF trigger transgenerational inheritance of ethanol preference

The NPF-triggered changes in F0 behavior and germline also correlate with observed changes in offspring. F1 flies from mothers with NPF knockdown exhibit ethanol preference, even in the absence of wasp exposure (Fig. 3d). Inherited ethanol preference is enhanced when the parental NPF knockdown flies are exposed to wasps (Fig. 3d). By contrast, NPF overexpression in F0 mothers exposed to wasp produced offspring lacking the ethanol preference (Fig. 3d). NPFR knockdown experiments mirror these findings: Maternal NPFR knockdown produces offspring with an ethanol preference compared to unexposed control lines, again this effect is enhanced when NPFR knockdown is paired with wasp exposure (Fig. 3e). Interestingly, overexpression of NPF in F1 flies blocks ethanol preference in the exposed F1 legacy group (Fig. 3f), raising the possibility that F1 legacy flies inherit NPF in a repressed or low expression state.
We therefore speculated that regulation or depression of NPF might be a means of this behavioral inheritance. Global changes in NPF RNA were not detected in either the F0 or F1 female heads (Fig. S4). However, antibody staining allowed for a region specific examination of NPF protein levels (Fig. 4a). Anti-NPF signal has clear overlap with the NPF-Gal4 driving the cd8-GFP reporter (Fig. 4a). The fan shaped body has previously been implicated in ethanol preference, and therefore was a focus in this experiment (Kacsoh et al., 2013a). NPF protein levels measured through immunofluorescence were significantly reduced in the fan shaped body of F0, F1, and F2 (two-generations exposed) flies (Fig. 4b). We note that NPF was not reduced in all regions of the F1 and F2 brains, as intensity of P1 neurons was not reduced in either the F1 or F2 flies, although significant reduction was observed in P1 neurons of F0 flies (Fig. 4c).

Given the observed link between depressed NPF and oocyte apoptosis, it is notable that F1 flies do not have germline apoptosis. It is possible that apoptosis is due to a localized decrease in NPF not shared between the two generations; perhaps the apoptosis is triggered by other NPF neurons or synapses. It is also conceivable that other neural processes are altered in the flies that we did not detect, decoupling the apoptosis and ethanol preference behaviors in the later generations.

Maternal Chromosomal Inheritance of Ethanol Preference Behavior

To determine whether maternal or paternal exposure were equally important for transgenerational inheritance of ethanol preference, wasp-exposure and mating were controlled in two separate experiments. First, mated females were exposed to wasps in the absence of male flies. Second, wasp-exposed males were mated to naïve virgin
females, removing the maternal exposure as a factor. Interestingly, F1 offspring from exclusively maternal wasp exposure inherit ethanol preference while F1 offspring from exclusively paternal exposures did not (Fig. 5a). We have previously reported that female flies require sight to induce a behavioral response to wasp exposure (Kacsoh et al., 2015). In further support of the maternal contribution to the inheritance of ethanol preference, blind female flies did not produce offspring with an ethanol preference (Fig. 5b). In the reciprocal experiment, blind fathers did generate ethanol-preferring offspring following a wasp exposure (Fig. 5b).

Maternal epigenetic inheritance of ethanol preference could be conferred by chromosomal elements and/or cytoplasmic factors. If ethanol preference is inherited through a chromatin mark then chromosome parental-origin tests should reveal a requirement for maternal chromosomal inheritance; however, if inheritance is conferred through cytoplasmic factors, such as noncoding-RNAs, then passage of all chromosomes through paternal gametes should have no effect since wasp-exposed females can still maternally deposit molecules and organelles into the oocyte. To test what maternal components may be conferring inheritance of ethanol preference we first focused on chromosomal elements using attached or compound chromosomes. Flies where each of the two homologs are fused cannot make haplo-chromosome gametes. Instead, they can only make gametes with one or zero copies of the fused chromosome, and therefore F1 flies inherit "pairs" of homologs that are entirely maternally or paternally derived (Fig. 5c). In this manner, we tested each of the two major autosomes for parent-of-origin effects. Using phenotypic markers, flies were sorted as having either a maternal or paternal exclusive homolog pair and assayed for ethanol preference. Chromosome-II
fusion flies had similar results when inheriting exclusively maternal or paternal Chromosome-II elements (Fig. 5c). Chromosome-III fusion flies also had inheritance of ethanol preference when receiving both copies of Chromosome-III maternally. However, flies with both copies of Chromosome-III from their fathers failed to inherit an ethanol preference (Fig. 5d). This observation has at least three implications: Most importantly, this indicates that some element on Chromosome-III must be inherited from wasp-exposed mothers in order for ethanol preference behavior to be passed on to F₁ legacy flies. This also suggests that maternal copies of the Chromosome-X, Chromosome-II or cytoplasmic factors, if important, are not sufficient for inheritance of ethanol preference. Lastly, that oocytes giving rise to eggs with zero copies of maternal Chromosome-II still confer ethanol preferences indicates that exclusion of maternal chromosomes itself does not generally interfere with transgenerational inheritance.

A Maternal NPF Locus is Required for Epigenetic Inheritance

To further delineate what parts of maternally derived Chromosome-III were required for transgenerational inheritance of ethanol preference we tested chromosomes with well defined deletions. As NPF has previously been shown to control ethanol preference behavior, we speculated that the NPF locus on Chromosome-III may be a target of maternal epigenetic reprogramming (Shohat-Ophir et al., 2012). We also observed that F₁ legacy flies inherit low levels of NPF expression specifically in the fan shaped body of the brain (Fig. 4a-b), consistent with the possibility that F₁ flies inherit repressed NPF expression. If the critical maternal Chromosome-III element is the NPF gene locus, then F₁ offspring with maternal deletions of this chromosomal region may prevent inheritance
of ethanol preference, much like not having inherited any maternal copies of Chromosome-III (Fig. 5d). Using females with one Chromosome-III carrying a large deletion of the NPF gene region and one copy of wild-type NPF on a balancer Chromosome-III allowed us to ask whether an intact maternal NPF gene region was necessary for F₁ inheritance of ethanol preference. We found that legacy F₁ flies from unexposed mothers had no preference for ethanol, regardless of whether they inherited an intact NPF gene on a balancer chromosome or a chromosomal deletion of the NPF region (Fig. 5e-f). Legacy F₁ flies from exposed mothers inheriting a wild-type NPF on a balancer chromosome exhibited a strong preference for ethanol, suggesting that multiple rearrangements, deletions and mutations of a balancer Chromosome-III are not sufficient to prevent ethanol preference in F₁ flies. By contrast, legacy F₁ flies from exposed mothers inheriting a Chromosome-III deletion of the NPF gene region do not inherit any preference for ethanol (Fig. 5f). This was true for two different Chromosome-III deletions at the NPF locus, whereas a Chromosome-III deletion that does not disrupt the NPF gene had no effect (Fig. 5f). Paternally inherited Chromosome-III deletions were not sufficient to prevent ethanol preference in F₁ flies (Fig. 5f).

Discussion

Perhaps the blank slate has more written on it than we once thought. Indeed it would appear that animals are bound to their ancestors in a way that some might consider Lamarckian (Galloway & Etterson, 2007; Herman & Sultan, 2011; J Marshall & Uller, 2007). The ethanol preference we observed in this study is heritable but modifiable and responsive to environmental cues, as it can be enhanced or decay across generations. Our
data suggest that there is an ultimate return to pre-wasp exposed state by the F₆ generation. If there are lingering effects of wasp exposure beyond this generation, they are not detected in our assays. Not only does the ethanol preference behavior revert to unexposed levels, but we also detected no priming or enhancement effect in the F₈ generation following a second wasp exposure (Fig S1f).

Inheritance of ethanol preference requires several factors: We found that the initiation of the epigenetic program in the founding generation (F₀) is maternal in nature, and requires effector caspases in the female germline. However, continuation of the epigenetic program throughout the remaining generations is distinctly different in several ways. Both male and female progeny (F₁) are able to pass on ethanol preference to their offspring. Although, it is possible that the F₁ generation requires germline effector caspases for the transmission of the ethanol preference, the lack of female germline apoptosis and paternal ability to confer this behavior points to a caspase-independent maintenance mechanism. A further and curious distinction between the generations is in the ethanol preference itself, as it persists in the F₁ generation, rather than mirroring the F₀ generation and decaying over 10 days.

The unifying mechanism behind many of these observations is the central role of NPF signaling in this system. Governing both germline apoptosis and the ethanol preference neuronal NPF signaling modulates the ethanol preference as well as its inheritance. Maternal imprinting of the NPF locus or nearby regions has a dominant effect, leading to the possibility that the F₁ paternal locus is imprinted in trans. It is tempting to speculate on the role of canonical imprinting mechanisms, such as the
Polycomb repressive complexes, although a molecular apparatus remains elusive for the time being. This multi-generational ethanol preference underscores the importance of environmental conditions on behavior and physiology. Numerous studies have indicated that we may need to look beyond the individual, to longer lasting and persistent effects of environmental stresses. This study illustrates the complexity of inheritance and highlights the incredible resiliency and plasticity of organisms to adapt to changing circumstance. Of particular interest is the conserved functions of NPF and its mammalian homolog NPY in modulating a variety of human behaviors, including stress responses and alcohol abuse disorders (Thorsell & Mathé, 2017). Our studies raise the intriguing possibility that NPF/NPY and their receptors could be subjected to epigenetically modified states determined by parental environment and experience. Germline inheritance of epigenetically modified neuro-signaling networks, such as those modulated by NPF/NPY, could be one mechanism through which trans-generational inheritance of behavioral predispositions persist, as reported here for Drosophila. It should be noted that such epigenetically inherited behaviors that persist for multiple generations could be interpreted as dominant familial genetic traits. If mammalian NPY is inherited in epigenetically modified states, then this would require a fundamental change in how we study and view inheritance of NPY-related behavioral disorders and possible effects of parental environment.
Aken, B. L., Achuthan, P., Akanni, W., Amode, M. R., Bernsdorff, F., Bhai, J., et al. (2016). Ensembl 2017. *Nucleic Acids Research*, 45(D1), D635-D642.

Arai, J. A., Li, S., Hartley, D. M., & Feig, L. A. (2009). Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment. *The Journal of Neuroscience: The Official Journal of the Society for Neuroscience*, 29(5), 1496-1502. doi:10.1523/JNEUROSCI.5057-08.2009 [doi]

Bozler, J., Kacsoh, B. Z., Chen, H., Theurkauf, W. E., Weng, Z., & Bosco, G. (2017). A systems level approach to temporal expression dynamics in drosophila reveals clusters of long term memory genes. *PLoS Genetics*, 13(10), e1007054.

Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. *Nature Biotechnology*, 34(5), 525.

Broqua, P., Wettstein, J., Rocher, M., Gauthier-Martin, B., & Junien, J. (1995). Behavioral effects of neuropeptide Y receptor agonists in the elevated plus-maze and fear-potentiated startle procedures. *Behavioural Pharmacology*,

Carone, B. R., Fauquier, L., Habib, N., Shea, J. M., Hart, C. E., Li, R., et al. (2010). Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. *Cell*, 143(7), 1084-1096.

Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., et al. (2016). Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder.
Desai, S. J., Upadhya, M. A., Subhedar, N. K., & Kokare, D. M. (2013). NPY mediates reward activity of morphine, via NPY Y1 receptors, in the nucleus accumbens shell. *Behavioural Brain Research, 247*, 79-91.

Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. *Nature Neuroscience, 17*(1), 89.

Galloway, L. F., & Etterson, J. R. (2007). Transgenerational plasticity is adaptive in the wild. *Science (New York, N.Y.), 318*(5853), 1134-1136. doi:10.1126/science.1142099

Gonçalves, J., Martins, J., Baptista, S., Ambrósio, A. F., & Silva, A. P. (2016). Effects of drugs of abuse on the central neuropeptide Y system. *Addiction Biology, 21*(4), 755-765.

Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., et al. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. *Proceedings of the National Academy of Sciences, 105*(44), 17046-17049.

Herman, J. J., & Sultan, S. E. (2011). Adaptive transgenerational plasticity in plants: Case studies, mechanisms, and implications for natural populations. *Front Plant Sci, 2*, 1-10.
Marshall, D., & Uller, T. (2007). When is a maternal effect adaptive? *Oikos, 116*(12), 1957-1963.

Kacsoh, B. Z., Barton, S., Jiang, Y., Zhou, N., Mooney, S. D., Friedberg, I., et al. (2018). New drosophila long-term memory genes revealed by assessing computational function prediction methods. *bioRxiv*, 414565.

Kacsoh, B. Z., Bozler, J., & Bosco, G. (2018). Drosophila species learn dialects through communal living. *PLoS Genetics, 14*(7), e1007430.

Kacsoh, B. Z., Bozler, J., Hodge, S., Ramaswami, M., & Bosco, G. (2015). A novel paradigm for nonassociative long-term memory in drosophila: Predator-induced changes in oviposition behavior. *Genetics, 199*(4), 1143-1157. doi:10.1534/genetics.114.172221 [doi]

Kacsoh, B. Z., Bozler, J., Ramaswami, M., & Bosco, G. (2015). Social communication of predator-induced changes in drosophila behavior and germ line physiology. *eLife, 4*, 10.7554/eLife.07423. doi:10.7554/eLife.07423 [doi]

Kacsoh, B. Z., Lynch, Z. R., Mortimer, N. T., & Schlenke, T. A. (2013a). Fruit flies medicate offspring after seeing parasites. *Science (New York, N.Y.), 339*(6122), 947-950. doi:10.1126/science.1229625 [doi]

Kacsoh, B. Z., Lynch, Z. R., Mortimer, N. T., & Schlenke, T. A. (2013b). Fruit flies medicate offspring after seeing parasites. *Science (New York, N.Y.), 339*(6122), 947-950. doi:10.1126/science.1229625 [doi]
Krashes, M. J., DasGupta, S., Vreede, A., White, B., Armstrong, J. D., & Waddell, S. (2009). A neural circuit mechanism integrating motivational state with memory expression in drosophila. *Cell, 139*(2), 416-427.

Landayan, D., & Wolf, F. W. (2015). Shared neurocircuitry underlying feeding and drugs of abuse in drosophila. *Biomedical Journal, 38*(6), 496-509.

Mayfield, R. D., Lewohl, J. M., Dodd, P. R., Herlihy, A., Liu, J., & Harris, R. A. (2002). Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. *Journal of Neurochemistry, 81*(4), 802-813.

Mottagui-Tabar, S., Prince, J. A., Wahlestedt, C., Zhu, G., Goldman, D., & Heilig, M. (2005). A novel single nucleotide polymorphism of the neuropeptide Y (NPY) gene associated with alcohol dependence. *Alcoholism: Clinical and Experimental Research, 29*(5), 702-707.

Pimentel, H., Bray, N. L., Puente, S., Melsted, P., & Pachter, L. (2017). Differential analysis of RNA-seq incorporating quantification uncertainty. *Nature Methods, 14*(7), 687.

Poyet, M., Eslin, P., Chabrerie, O., Prud’homme, S., Desouhant, E., & Gibert, P. (2017). The invasive pest drosophila suzukii uses trans-generational medication to resist parasitoid attack. *Scientific Reports, 7*, 43696.
Sah, R., Ekhator, N. N., Strawn, J. R., Sallee, F. R., Baker, D. G., Horn, P. S., et al. (2009). Low cerebrospinal fluid neuropeptide Y concentrations in posttraumatic stress disorder. *Biological Psychiatry, 66*(7), 705-707.

Schulz, L. C. (2010). The dutch hunger winter and the developmental origins of health and disease. *Proceedings of the National Academy of Sciences of the United States of America, 107*(39), 16757-16758. doi:10.1073/pnas.1012911107 [doi]

Shao, L., Saver, M., Chung, P., Ren, Q., Lee, T., Kent, C. F., et al. (2017). Dissection of the drosophila neuropeptide F circuit using a high-throughput two-choice assay. *Proceedings of the National Academy of Sciences of the United States of America, 114*(38), E8091-E8099. doi:10.1073/pnas.1710552114 [doi]

Sharma, U., Conine, C. C., Shea, J. M., Boskovic, A., Derr, A. G., Bing, X. Y., et al. (2016). Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. *Science (New York, N.Y.), 351*(6271), 391-396. doi:10.1126/science.aad6780 [doi]

Shohat-Ophir, G., Kaun, K. R., Azanchi, R., Mohammed, H., & Heberlein, U. (2012). Sexual deprivation increases ethanol intake in drosophila. *Science (New York, N.Y.), 335*(6074), 1351-1355. doi:10.1126/science.1215932 [doi]

Skinner, M. K., Manikkam, M., Tracey, R., Guerrero-Bosagna, C., Haque, M., & Nilsson, E. E. (2013). Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. *BMC Medicine, 11*(1), 228.
Stein, Z., Susser, M., Saenger, G., & Marolla, F. (1975). Famine and human development: The dutch hunger winter of 1944-1945.

Thiele, T. E., Marsh, D. J., Marie, L. S., Bernstein, I. L., & Palmiter, R. D. (1998). Ethanol consumption and resistance are inversely related to neuropeptide Y levels. *Nature, 396*(6709), 366.

Thorsell, A., & Mathé, A. A. (2017). Neuropeptide Y in alcohol addiction and affective disorders. *Frontiers in Endocrinology, 8*, 178.

Yehuda, R., Daskalakis, N. P., Lehrner, A., Desarnaud, F., Bader, H. N., Makotkine, I., et al. (2014). Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in holocaust survivor offspring. *American Journal of Psychiatry, 171*(8), 872-880.

Yeshurun, S., & Hannan, A. J. (2018). Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders. *Molecular Psychiatry, 1*.
Figure 1. Maternally inherited ethanol preference persists for multiple generations.

Schematic of experimental design is shown (A). Flies are exposed to wasps for a period of four days prior to egg collection. The descendants from either wasp-exposed or unexposed treatment groups, termed ‘legacy’ flies, are reared until maturity in the absence of both wasps and parental exposure. Legacy flies are either used to propagate the next generation, or are assayed for ethanol preference. Flies from a particular generation are referred to as F_n, where n denotes the number of generations removed from the treatment. For example, the treatment group itself is F_0, whereas their direct offspring are F_1. Ethanol preference is quantified as proportion of eggs laid on ethanol food (B), illustrating that this behavior is heritable through the F_5 generation. Flies with deficient long-term memory were tested for transgenerational inheritance of ethanol (C). Asterisk indicates p-value of <0.05.
Germline apoptosis and activated caspases play a role in the inheritance of ethanol preference. Apoptosis in stage 7-8 egg chambers was quantified in F₀ and F₁ (legacy) flies (A). Flies fed a protein-restricted diet have elevated levels of stage 7-8 oocyte apoptosis (B). Ethanol preference is not inherited from mothers with Dcp-1 or Drice knockdown (C). Offspring from protein-restricted parents don’t inherit an ethanol preference (D). Points within violin plots denote the group mean. Asterisk indicates a p-value of <0.05.
Figure 3. NPF affects ethanol preference and germline apoptosis. NPF overexpression (OE) or knockdown (KD) can alter ethanol preference (A). Genetic manipulation of NPF levels can alter levels of germline apoptosis (B). Knockdown of NPF receptor leads to increased germline apoptosis (C). F1 legacy flies have altered ethanol preference depending on the maternal NPF genotype (D). F1 exposed and unexposed legacy flies inherit ethanol preference from mothers with NPF receptor knockdown (E). F1 legacy flies overexpressing NPF do not inherit an ethanol preference (F). Points within violin plots denote the group mean. Asterisk indicates a p-value of <0.05.
Figure 4. NPF protein is reduced in the fan shaped body following wasp exposure. NPF antibody staining has a similar pattern to that of NPF-Gal4 expression in an adult female brain, inset shows a magnification of the two large P1 neurons and the fan shaped body (FSB) (A). NPF protein levels are reduced in the fan shaped body across generations (B). NPF depression in P1 neurons is observed only in the F0 generation (C). Points within violin plots denote the group mean. Asterisk indicates a p-value of <0.05.
Figure 5. Maternal chromosome 3 is required for inherited ethanol preference. Experiments with exclusively maternal or paternal wasp exposure demonstrate that maternal wasp exposure is necessary for ethanol preference inheritance (A). Maternal sight is required for ethanol preference inheritance, but paternal sight is dispensable (B). Schematic of compound chromosome 2; progeny inherit both copies from either maternal or paternal source (C). Flies receiving either maternal or paternal copies of chromosome 2 have inheritance of ethanol preference, but compound chromosome 3 must be maternally derived to facilitate inheritance of ethanol preference (D). Diagram shows the relative location of NPF (red) on chromosome 3 and the deleted region of the deficiency stock (E). Inheritance of ethanol preference was observed in flies receiving an intact maternal NPF locus on a balancer chromosome and not in flies from receiving a maternal NPF deficiency (Df3) chromosome: Paternal inheritance of the NPF deficiency had no effect on transmission of ethanol preference (F). Asterisk indicates a p-value of <0.05.
Figure 6. Model for fly-wasp mediated ethanol preference. Wasp encounter leads to a depression of NPF in the female fly brain. Normally NPF inhibits ethanol preference and caspase mediated germline apoptosis. The reduction of NPF triggers ethanol preference and germline caspases. Legacy F₁ female flies inherit depressed NPF in the FSB, both male and female progeny have altered germline. Measured behavioral outputs are in blue. Dashed lines indicate a speculative or unknown mechanism of action.
Supplementary Materials for

Transgenerational inheritance of ethanol preference is caused by maternal NPF repression.

Julianna Bozler¹, Balint Z Kacsoh¹, Giovanni Bosco¹*

Correspondence to: Giovanni.Bosco@Dartmouth.edu

This file includes:

Materials and Methods
Figs. S1 to S4
Tables S1 to S5
Materials and Methods

Fly husbandry

Flies were maintained at room temperature on standard cornmeal-molasses media. A list of fly lines and genotypes used is reported in Table S5. Female flies were considered mature adults at three to five days post eclosion. Flies outside of this age range were not used for experimentation unless specifically noted, as for example in S Fig. 1d. Experiments involving manipulation of the maternal genotype, such as the maternal NPF knockdown, had a crossing scheme to avoid transgene expression in the F1 generation. Virgin females with the genotype of interest were crossed to y,w males and offspring were scored by eye color to ensure that flies assayed were not carrying both the Gal4 and UAS constructs.

Wasp-exposure

Mature adult flies were used for wasp exposures: 40 female flies, 10 male flies, and 20 female Lh14 (Leptopilina heterotoma) wasps were placed in a vial with cornmeal-molasses media. This cohabitation (wasp exposure period) lasted for four days. The unexposed control consisted of the 40 female flies and 10 male flies with no wasp cohabitation. Both treatment groups were maintained at room temperature (approximately 22° C) with a 12 hour light-dark cycle for the duration of the exposure period.

At the conclusion of the exposure period, flies were separated into two cohorts. Following the removal of all wasps, one group of flies was used to propagate the next generation, while the second group was assayed for ethanol preference. Group one was
placed on molasses-based embryo collection plates, supplemented with yeast paste, for egg collection. The collection period lasted for 24-hours, at which point the adult flies were removed. First instar larvae were transferred from these embryo plates to standard media vials. Larvae were density controlled to approximately 40 larvae per vial.

The second group was assayed for ethanol preference using a food-choice assay (Kacsoh, Bozler, Hodge, Ramaswami, & Bosco, 2015). Briefly, five female flies and one male fly were placed into a modified petri dish with mesh top, termed the ‘fly corral’. Two food sources were placed at opposite ends of the ‘fly corral’. Each food source consisted of 0.45 g of instant drosophila media, hydrated with 2mL liquid. Control food was hydrated entirely with distilled water, whereas ethanol food was prepared with distilled water and a final addition of 95% ethanol to the top of the prepared food, creating a food with 6% ethanol by volume. Food sources were removed and replaced after 24 hours. Figures report the egg laying behavior of the first 24-hour interval unless otherwise noted. Total number of eggs laid on each food source was counted in a blinded fashion with treatment unknown to the counter. These egg counts are reported as a proportion of eggs laid on ethanol food. Flies that encountered ethanol-containing food were excluded from additional experimentation or lineage propagation. Fly corral experiments had ten replicates (cages) per condition.

Transgenerational behavior experiments

Legacy flies, those descending from either the unexposed or exposed treatment, were divided into cohorts as described above for behavioral assay or embryo collection. These flies were not re-exposed to wasps except in the instance of multigenerational
exposure experiments. Two experiments were conducted that involved multiple

generations of treatment. For the successive exposures, three groups of flies were

assayed; exposed legacy (2 generations), exposed legacy (1 generation), and unexposed

legacy. In this instance, the exposed legacy (2 generations) group was generated by

subjecting F$_1$ exposed legacy flies to an additional round of wasp exposures. These flies

therefore had grandparental and parental wasp exposure. Exposed legacy (1 generation)

had parental wasp exposure only (Figure 3 B). It is important to note that the parents of

the ‘exposed legacy (1 generation)’ flies were F$_1$ unexposed legacy flies, and therefore

had the same density control and egg collection as the other groups for the

multigenerational duration of the experiment.

It is critical to note that baseline ethanol preference is highly variable depending

on environmental conditions. Key factors are temperature and humidity, all ethanol

oviposition assays were conducted in an environmentally controlled room at 25°C,

approximately 30% humidity (+/- 10%) with overhead lighting and a 12-hour light/dark

cycle. Despite these controls, baseline ethanol preference varies day-to-day. For this

reason, all groups for direct comparison (used in statistical tests) were tested at the same

time.

Pertaining to the nonconsecutive exposure experiments; again three groups were

assayed, the exposed legacy F$_8$ (2 generations), exposed legacy (1 generation), and the

unexposed legacy. For these experiments, the exposed legacy F$_8$ (2 generations) group

was created by subjecting F$_7$-exposed legacy flies to an additional round of wasp

exposures. These flies had a six-generation gap between ancestral wasp exposures. Flies
in the exposed legacy (1 generation) group were produced by exposing F7 unexposed legacy flies to wasps, and collecting the subsequent offspring.

Several experiment specific modifications were made to the methods described above. To parse the maternal and paternal contributions to the inheritance of ethanol preference two experiments were conducted. First, 40 mated female flies were used for wasp exposure, in the absence of males. Ten males were added to the population for the embryo collection period. For paternal contribution, male flies were removed from the exposure chamber and mated to unexposed virgin females. To test the role of vision in maternal inheritance, blind female flies mutant in ninaB, were crossed to wild type (CS) males. The reciprocal experiment crossed ninaB[1] males to CS female. These experiments were run in parallel and wasp exposures were preformed as previously described.

Compound chromosome experiments crossed two fusion stocks together (either chromosome-II or chromosome-III). The fusion lines retained phenotypic markers, and offspring with maternal or paternal chromosomes were sorted accordingly. Deficiency lines were crossed to CS flies and the genotype of the offspring (balancer or deficiency) was inferred from phenotypic markers.

Particular modifications for the Orb2ΔQ memory-mutant experiments included an extra day of embryo collection. Following three-days of wasp exposure, flies and wasps were moved to the embryo collection chamber for the final treatment day. Eggs were collected for 24-hours in the presence of the 20 female Lh14 wasps. At the end of this period, wasps were removed and a new embryo collection plate was introduced for the second day of embryo collections. This second day of collection corresponds to the
standard embryo collection timeframe in the above-described experiments. F₁ flies had the same genotype as the parental line.

Sibling cohorts were collected to assess the longevity of the germline change. ‘Brood 1’ flies were collected in the 24-hours immediately following the removal of the wasps. ‘Brood 2’ flies were collected from the same parents, 10 days after the termination of the wasp exposure.

Finally, diet restriction experiments had two groups one with high protein and the other low protein diets. Low protein flies were maintained on molasses based embryo plates. The high protein group was maintained in similar fashion, but with the addition of yeast paste. High/low diet was maintained for four days prior to embryo collection.

Apoptosis quantification

Following the treatment period, ovaries were dissected and fixed in 4% formaldehyde for 30 minutes. Samples were stained with DAPI and apoptosis was scored based on the morphology of the nurse cell DNA. A researcher blinded to the genotype and treatment group of the samples performed the scoring. At a minimum, 15 ovaries were scored across 3 replicates (independent wasp exposures) for each group.

Immunostaining and microscopy

Antibody to neuropeptide F was generated in a rabbit to the full length NPF peptide: C-Ahx-SNSRPPRKNVNTMADAYKFLQDLDTYYGDRARVRFamide. The antibody was subsequently purified using a truncated peptide containing the first 28 amino acids of NPF. Following purification, the antibody was depleted using a peptide.
of the eight amino acid C-terminal tail, shared by many neuropeptides. All peptide syntheses, antigen injection, serum preparation and peptide purification and depletions were performed by 21st Century Biochemicals.

Whole flies were fixed in 4% formaldehyde overnight at 4°C. Female brains were dissected, blocked, and incubated with anti-NPF (1:1000) overnight at 4°C. Antibody solution was removed and samples were blocked before the addition of the secondary antibody, anti-rabbit 488 (1:200), at room temperature for two-hours. Samples were counter stained with DAPI.

For NPF quantification, flies expressing a RFP tagged histone were dissected along with treatment groups and stained in the same solution. Pixel intensity of the fan shaped body (FSB) was measured in Image J. The FSB was outlined by hand and intensity measured. A background measure was made of the region immediately ventral to the FSB, with the same total area as the outlined FSB. The background value was subtracted from FSB measurement. Finally, the background-adjusted intensity value for each brain was divided by the arc length of its’ FSB. This process was repeated for each treatment group and the corresponding histone-RFP flies. These values were normalized to the histone-RFP flies to serve as a control for batch specific variation in staining. Each treatment group was normalized to the unexposed average of that replicate using the formula(s):

\[
\text{Fluorescence} = \frac{(\text{FSB}_{\text{intensity}} - \text{background}_{\text{intensity}})}{\text{FSB}_{\text{length}}}
\]

\[
\text{BatchNormalized} = \frac{\text{Fluorescence}_{\text{CantonS}}}{\text{Fluorescence}_{\text{avg}}_{\text{his-RFP}}}
\]

\[
\text{AFU} = \frac{\text{BatchNormalized}_{\text{exposed}}}{\text{BatchNormalized}_{\text{avg}}_{\text{unexposed}}}
\]
Standard fluorescent images were visualized with the Nikon Eclipse E800 microscope and the Olympus DP71 camera. For each experiment, wasp exposure and staining were performed on two separate occasions and final data was pooled after checking for the absence of a batch effect. A minimum of 10 brains were dissected for each treatment replicate as well as RFP-histone co-staining brains. Final quantified sample size range from 15 to 20 (normalized brains), due to sample loss or damage. Imaged samples were only excluded if clear damage or trauma (from dissection or staining process) was evident in the region of interest (FSB or P1 neurons).

RNA quantification

Mature female flies were anesthetized with CO₂ and collected in 15 mL conical tubes, either immediately following the treatment period (F₀), or 3-5 days post eclosion (F₁-F₂). Flies were frozen in liquid nitrogen and briefly vortexed to separate whole heads. Approximately 100 heads were collected for each replicate. A miRNeasy Kit (Qiagen) with on-column DNase treatment was used for RNA isolation. Four samples of each treatment group were prepared. RNA samples were depleted of rRNA followed by random priming. Minimum sequencing depth per sample was 40 million paired-end reads on the Illumina platform. Sequencing reads were indexed to transcripts using Kallisto and the Ensembl genome (BDGP6) with 100 bootstraps (Aken et al., 2016; Bray, Pimentel, Melsted, & Pachter, 2016). Downstream processing and statistical analyses used Sleuth (Pimentel, Bray, Puente, Melsted, & Pachter, 2017). Heat maps were generated using hierarchical clustering and the R package pheatmap.
NPF transcript was measured by qPCR (SYBR Green, Thermo-Fisher 4309155).

NPF primer targeted mRNA (TCCTGGTTGCCTGTGTGG, TCAGCCATAGTGGACATCG). Actin served as the control gene (CGCAAGGATCTGTATGCAA, ACGGAGTACTTGCCTCTGG). Fold change was calculated using the delta-delta Ct method.

Statistics

Statistical tests were run in R (3.0.2 version, ‘Frisbee Sailing’). P-values for egg count data, NPF staining, and apoptosis quantification, were produced by applying a Mann-Whitney Rank Sum test. Error bars presented in the egg count ethanol preference graphs are bootstrap confidence intervals, generated using the boot package.
Figure S1. Temporal dynamics of wasp exposure effect inheritance of ethanol preference.

Ethanol preference decays following wasp exposure (in F₀ flies), with loess regression, shaded region indicates standard error (A). Diagram of multigenerational exposure is shown for successive generations (B), and non-consecutive generations (C). Quantification of ethanol preference from sister cohorts collected at different intervals post-wasp exposure (D). Flies with successive generations of wasp exposure have enhanced ethanol preference (E). Alternatively, flies from a second generation of non-consecutive wasp exposure (exposure of F₇ flies) exhibit an ethanol preference similar to that of one-generation wasp exposed flies (F). Asterisk indicates a p-value of <0.05.
Figure S2. F₁ ethanol preference has distinct characteristics from those of the parental F₀ generation. Male F₁ flies are able to pass on ethanol preference to their offspring (A). Ethanol preference of F₁ flies has not decayed two-weeks post eclosion (B). Asterisk indicates a p-value of <0.05.
Figure S3. Global transcriptional changes in the female head. RNA sequencing was performed on heads of F₀, F₁, and F₂ females. Volcano plots show the distribution of transcript expression and significance. F₀ flies have a considerable number of differentially expressed transcripts (A). Where as F₁ and F₂ heads have very few changes in transcripts (B) & (C). The beta value is approximately analogous to the natural log fold change of the transcript, and the q-value is the measure of significance. Grey points indicate a transcript with non-significant q-value, dark blue points indicate transcripts with significant q-value but that do not meet the beta value threshold. Light blue dots have significant q-value and an absolute value of beta greater or equal to one. Heat map shows the trend of transcript expression over the three generations (D). Transcript meeting the threshold criteria (q-value and beta) for any one generation was included in the map.
Figure S4. mRNA quantification of NPF in female fly heads. Asterisk indicates a p-value of <0.05.
Table S1. Statistical tests and p-values relating to main text figures.

Figure	Comparison groups	p-value	statistical test
1B	F0 (Exposed vs unexposed)	1.08E-05	Mann-Whitney Rank Sum
1B	F1 (Exposed vs unexposed)	8.64E-07	Mann-Whitney Rank Sum
1B	F2 (Exposed vs unexposed)	2.58E-08	Mann-Whitney Rank Sum
1B	F3 (Exposed vs unexposed)	1.29E-08	Mann-Whitney Rank Sum
1B	F4 (Exposed vs unexposed)	4.13E-06	Mann-Whitney Rank Sum
1B	F5 (Exposed vs unexposed)	0.00833	Mann-Whitney Rank Sum
1B	F6 (Exposed vs unexposed)	0.6063	Mann-Whitney Rank Sum
1C	CS-during (Exposed vs unexposed)	0.0001817	Mann-Whitney Rank Sum
1C	Orb2-during (Exposed vs unexposed)	0.000278	Mann-Whitney Rank Sum
1C	CS-post (Exposed vs unexposed)	1.08E-05	Mann-Whitney Rank Sum
1C	Orb2-post (Exposed vs unexposed)	0.02065	Mann-Whitney Rank Sum
2A	F0 (Exposed vs unexposed)	0.0001593	Mann-Whitney Rank Sum
2A	F1 (Exposed vs unexposed)	0.3144	Mann-Whitney Rank Sum
2B	High protein vs low protein	0.0001079	Mann-Whitney Rank Sum
2C	Drice[RNAi] (Exposed vs unexposed)	0.5787	Mann-Whitney Rank Sum
2C	Dcp-1[RNAi] (Exposed vs unexposed)	0.05889	Mann-Whitney Rank Sum
2D	High protein vs low protein	0.933864	Mann-Whitney Rank Sum
3A	NPF OE (Exposed vs unexposed)	0.5787	Mann-Whitney Rank Sum
3A	NPF KD vs NPF-Gal4	1.08E-05	Mann-Whitney Rank Sum
3B	NPF OE (Exposed vs unexposed)	0.1758	Mann-Whitney Rank Sum
3B	NPF KD vs NPF-Gal4	1.76E-05	Mann-Whitney Rank Sum
3C	Elav-Gal4 (Exposed vs unexposed)	0.0001697	Mann-Whitney Rank Sum
3C	NPFR[RNAi] (Exposed vs unexposed)	3.07E-06	Mann-Whitney Rank Sum
3C	NPFR KD (Exposed vs unexposed)	0.0007069	Mann-Whitney Rank Sum
3C	NPFR KD vs NPFR[RNAi] unexposed	0.0001503	Mann-Whitney Rank Sum
3C	NPFR KD vs Elav-Gal4 unexposed	0.0006232	Mann-Whitney Rank Sum
3D	NPFR OE (Exposed vs unexposed)	0.4359	Mann-Whitney Rank Sum
3D	NPFR KD (Exposed vs unexposed)	1.08E-05	Mann-Whitney Rank Sum
3D	NPFR-Gal4 (Exposed vs unexposed)	1.08E-05	Mann-Whitney Rank Sum
3D	NPFR KD vs NPFR-Gal4 unexposed	1.08E-05	Mann-Whitney Rank Sum
3E	Elav-Gal4 (Exposed vs unexposed)	0.0001817	Mann-Whitney Rank Sum
3E	NPFR[RNAi] (Exposed vs unexposed)	0.0001817	Mann-Whitney Rank Sum
3E	NPFR KD (Exposed vs unexposed)	0.0001817	Mann-Whitney Rank Sum
3E	NPFR KD vs NPFR[RNAi] unexposed	1.08E-05	Mann-Whitney Rank Sum
3E	NPFR KD vs Elav-Gal4 unexposed	0.0001817	Mann-Whitney Rank Sum
3F	NPF OE (Exposed vs unexposed)	0.7333	Mann-Whitney Rank Sum
4B	F0 (Exposed vs unexposed)	0.009027	Mann-Whitney Rank Sum
4B	F1 (Exposed vs unexposed)	0.0004949	Mann-Whitney Rank Sum
4B	F2 (Exposed vs unexposed)	0.002572	Mann-Whitney Rank Sum
4C	F0 (Exposed vs unexposed)	3.09E-11	Mann-Whitney Rank Sum
4C	F1 (Exposed vs unexposed)	0.3972	Mann-Whitney Rank Sum
4C	F2 (Exposed vs unexposed)	0.6378	Mann-Whitney Rank Sum
5A	maternal (Exposed vs unexposed)	0.000011	Mann-Whitney Rank Sum
5A	paternal (Exposed vs unexposed)	0.1904	Mann-Whitney Rank Sum
5B	Blind mothers (Exposed vs unexposed)	0.3154	Mann-Whitney Rank Sum
5B	Blind fathers (Exposed vs unexposed)	0.0002712	Mann-Whitney Rank Sum
5D	Chr-II Maternal C(2)EN b[1] pr[1] (Exposed vs unexposed)	0.0001796	Mann-Whitney Rank Sum
5D	Chr-II Paternal C(2)EN b[1] pr[1] (Exposed vs unexposed)	0.0002695	Mann-Whitney Rank Sum
5D	Chr-II Maternal C(2)EN bw[1] sp[1] (Exposed vs unexposed)	0.0004456	Mann-Whitney Rank Sum
5D	Chr-III Maternal C(3)EN Diap1[1] sp[1] (Exposed vs unexposed)	0.0006306	Mann-Whitney Rank Sum
5D	Chr-III Maternal C(3)EN st[1] cu[1] e[s] (Exposed vs unexposed)	0.0006258	Mann-Whitney Rank Sum
5F	Maternal Df(3)ED10642 (Exposed vs unexposed)	0.8796	Mann-Whitney Rank Sum
5F	Maternal ED10642-balancer (Exposed vs unexposed)	0.001766	Mann-Whitney Rank Sum
5F	Maternal Df(3)BCS472 (Exposed vs unexposed)	0.7569	Mann-Whitney Rank Sum
5F	Maternal Df(3)BCS510-balancer (Exposed vs unexposed)	0.002141	Mann-Whitney Rank Sum
5F	Paternal Df(3)ED10642 (Exposed vs unexposed)	0.0001756	Mann-Whitney Rank Sum
5F	Paternal ED10642-balancer (Exposed vs unexposed)	0.0001796	Mann-Whitney Rank Sum
5F	Paternal Df(3)BCS472 (Exposed vs unexposed)	0.0004426	Mann-Whitney Rank Sum
5F	Paternal Df(3)BCS510-balancer (Exposed vs unexposed)	0.002141	Mann-Whitney Rank Sum
S1D	Brood 1 (Exposed vs unexposed)	2.49E-10	Mann-Whitney Rank Sum
S1D	Brood 2 (Exposed vs unexposed)	0.6305	Mann-Whitney Rank Sum
S1E	Exposed (1 gen) vs unexposed	1.08E-05	Mann-Whitney Rank Sum
S1E	Exposed (2 gen) vs unexposed	1.08E-05	Mann-Whitney Rank Sum
S1F	Exposed (gen) vs exposed (2 gen)	1.08E-05	Mann-Whitney Rank Sum
S1F	Exposed F8 (2 gen) vs unexposed	1.08E-04	Mann-Whitney Rank Sum
S1F	Exposed (1 gen) vs exposed F8 (2 gen)	0.472	Mann-Whitney Rank Sum
S2A	Exposed vs unexposed	1.08E-05	Mann-Whitney Rank Sum
S2B	Exposed vs unexposed	0.000181	Mann-Whitney Rank Sum
S4	F0 (Exposed vs unexposed)	0.3429	Mann-Whitney Rank Sum
S4	F1 (Exposed vs unexposed)	0.3429	Mann-Whitney Rank Sum
Table S2. Oregon R experimental data. Key experiments were replicated using the additional wild-type strain OreR. “Corresponding Figure” indicates the experiment that was replicated: A listing of Fig1B therefore indicates that the experimental conditions for Figure 1B were duplicated using OreR flies.

Corresponding Figure	Description	Day 1		Day 2			
		Mean (experimental)	Mean (control)	p-value	Mean (experimental)	Mean (control)	p-value
1B	F0	0.913	0.288	1.08E-05	0.927	0.276	1.08E-05
1B	F1	0.704	0.303	1.08E-05	0.695	0.276	1.81E-04
1B	F2	0.679	0.286	1.08E-05	0.691	0.271	1.82E-04
1B	F3	0.675	0.25	1.08E-05	0.647	0.266	1.82E-04
1B	F4	0.556	0.211	2.44E-04	0.534	0.221	1.82E-05
1B	F5	0.366	0.277	0.07526	0.41	0.221	0.000129
1B	F6	0.273	0.263	0.7392	0.224	0.238	0.6305
Not shown in figure	F7	0.202	0.208	0.4359	0.211	0.193	0.3429
2A	F0 apoptosis (Exposed vs unexposed)	0.705	1.70E-02	0.000144	0.017	3.10E-02	0.2931
5A	Paternal	0.36	0.45	0.1655	0.34	0.35	0.8534
S1D	Brood 2	0.23	0.27	0.705	0.24	0.27	0.6842
S1E	Exposed (1 gen) vs unexposed	0.744	0.213	1.81E-04	0.723	0.186	1.82E-04
S1E	Exposed (2 gen) vs unexposed	0.91	-	1.08E-05	0.924	-	1.82E-04
S1E	Exposed (1 gen) vs exposed (2 gen)	-	-	1.81E-04	-	-	1.81E-04
S1F	Exposed (1 gen) vs unexposed	0.79	0.258	1.82E-04	0.81	0.223	1.82E-04
S1F	Exposed F8 (2 gen) vs unexposed	0.76	-	1.82E-04	0.792	-	1.80E-04
S1F	Exposed (1 gen) vs exposed F8 (2 gen)	-	-	0.1209	-	-	0.7048
Table S3. Canton S day-2 data; mean(s) and p-value(s).

Corresponding Figure	Description	Mean (experimental)	Mean (control)	p-value
1B	F0	0.959	0.201	2.71E-04
1B	F1	0.8	0.369	3.38E-06
1B	F2	0.689	0.349	1.29E-08
1B	F3	0.595	0.258	6.12E-06
1B	F4	0.523	0.262	2.58E-08
1B	F5	0.431	0.267	0.01256
1B	F6	0.237	0.264	0.1577
Not shown in figure	F7	0.158	0.163	0.7674
2C	Drice[RNAi]	0.295	0.291	0.6774
2C	Dcp-1[RNAi]	0.329	0.261	0.4359
2D	Low protein v high (control)	0.163	0.173	0.575213
5A	maternal	0.754	0.244	0.000182
5A	paternal	0.425	0.29	0.001031
5ID	Brood 1	0.81	0.335	3.12E-08
5ID	Brood 2	0.33	0.273	0.1903
S1E	Exposed (1 gen) v Unexposed	0.769	0.164	1.08E-05
S1E	Exposed (2 gen) v Exposed (1 gen)	0.908	-	1.82E-04
S1E	Exposed (2 gen) v Unexposed	-	-	1.82E-04
S1F	Exposed (1 gen) v Unexposed	0.737	0.172	1.82E-04
S1F	Exposed F8 (2 gen) v Exposed (1 gen)	0.784	-	0.08873
S1F	Exposed F8 (2 gen) v Unexposed	-	-	1.82E-04
S2A	paternal (F1)	0.569	194	1.08E-05
S2B	Two-week old F1	0.833	0.127	0.000022
Table S4. RNA sequencing results from female fly heads.

Transcript ID	Gene Name	q-value	b-value	Data set
FBr0332131	CG42255	1.25E-32	1.320266165	F0
FBr0087004	Amy-p	1.84E-12	4.110027459	F0
FBr0086983	Amy-d	3.40E-09	2.577135928	F0
FBr0077220	lcs	6.05E-09	-1.490020237	F0
FBr0074375	CG15865	9.56E-09	2.330606904	F0
FBr0302527	CG33346	1.25E-08	4.447797727	F0
FBr0079607	Mur29B	3.32E-08	2.203753518	F0
FBr0083372	CG8907	4.13E-08	1.300100455	F0
FBr0079136	CG11029	1.23E-07	1.536917077	F0
FBr0078953	Skp2	7.62E-07	1.383516598	F0
FBr0076063	Muc68E	8.69E-07	3.848174764	F0
FBr0085472	CG7567	1.09E-06	3.047754006	F0
FBr0074626	CG15043	2.25E-06	4.756372803	F0
FBr0083164	CG5399	2.78E-06	3.575384524	F0
FBr0088432	Def	4.45E-06	1.378119365	F0
FBr00310455	CG43680	1.48E-05	-4.62766656	F0
FBr0083823	CG4783	2.91E-05	2.545384042	F0
FBr0030506	CG42397	2.91E-05	4.470662763	F0
FBr0083030	Mf	3.72E-05	1.206382413	F0
FBr0087792	CG13321	3.85E-05	3.747204916	F0
FBr0083026	CG3987	4.51E-05	1.512498647	F0
FBr0087797	CG13323	4.51E-05	4.453581565	F0
FBr00345521	Amy-p	4.80E-05	5.396352897	F0
FBr00308229	CG13810	7.37E-05	2.80924618	F0
FBr00310431	CG32633	8.70E-05	3.026437806	F0
FBr00306289	CG43236	0.000133305	1.148856362	F0
FBr0087796	CG13324	0.000164657	4.546214478	F0
FBr0075069	CG6839	0.00017266	3.983281993	F0
FBr0079500	Acp1	0.000202054	1.732372175	F0
FBr0100028	obst-H	0.000407687	2.801483865	F0
FBr0072879	CG13806	0.000427043	3.340054966	F0
FBr0084957	Kaz-m1	0.000550781	3.632660457	F0
FBr0076119	Muc68D	0.000716285	3.009816876	F0
FBr0072121	CG3906	0.000755348	3.097285784	F0
FBr0078908	CG14645	0.000861022	2.982720707	F0
FBr0088161	alphaTry	0.001040886	4.610885525	F0
FBr0072938	CG1246	0.001327451	4.323284994	F0
FBr00302854	Phae2	0.001328434	3.958342039	F0
FBr0080370	Oatp33Eb	0.001447556	3.186358438	F0
FBr0081865	CG11672	0.001634501	3.317037455	F0
FBr00346383	whe	0.001932977	-5.350102624	F0
FBr0076044	CG14125	0.002352177	5.47281471	F0
FBr0082900	CG33109	0.002647488	-1.460634359	F0
FBr0112526	CG34324	0.002778253	2.696535128	F0
FBr0306805	CG9626	0.003698463	-4.667810078	F0
FBr0290275	tgy	0.00374776	3.498024408	F0
FBr0114524	Pgant4	0.004076224	2.997652431	F0
FBr0303096	Sscalpha	1.35E-06	5.882649017	F1
FBr0083763	CG31221	0.000862597	1.050809868	F1
FBr0100880	mt:ND4L	0.001724056	-1.24427752	F1
name	genotype	source	stock number	
-----------------	---	----------------------	--------------	
CS	+	Bosco Lab		
OreR	+	Bosco Lab		
Orb2[deltaQ]	Orb2[deltaQ]	Bosco Lab		
NPF-Gal4	y[1] w[+]; P[w[+mC]=NPF-GAL4.1]	Bloomington Stock C	25681	
UAS-NPF	UAS-NPF	Shen Lab		
Elav-Gal4	Elav-Gal4	Bosco Lab		
UAS-NPF[RNAi]	y[1] v[1]; P[y[+t7.7] v[+t1.8]=TRiP.JF02555]attP2	Bloomington Stock C	27237	
UAS-NPFR[RNA]	y[1] v[1]; P[y[+t7.7] v[+t1.8]=TRiP.JF01959]attP2	Bloomington Stock C	25939	
UAS-Dcp1[RNAi]	y[1] v[1]; P[y[+t7.7] v[+t1.8]=TRiP.HM05120]attP2	Bloomington Stock C	28990	
UAS-Drice[RNAi]	y[1] sc[+]* v[1]; P[y[+t7.7] v[+t1.8]=TRiP.HMS00398]attP2	Bloomington Stock C	32403	
Matnα-Gal4	w[+]*; P[w[+mC]=matalpha4-GAL-VP16]V37	Bloomington Stock C	7063	
ninaB	w[*]/Dp(1;Y)++; ninaB[1], P[w[+mC]=UAS-ninaB.G]3	Bloomington Stock C	24776	
compound ch-II	C(2)EN, b[1] pr[1]	Bloomington Stock C	1112	
compound ch-II	C(2)EN, bw[1] sp[1]	Bloomington Stock C	1020	
compound ch-III	C(3)EN, Diap1[1] st[1]	Bloomington Stock C	1114	
compound ch-III	C(3)EN, st[1] cu[1] e[1] s	Bloomington Stock C	1117	
Df(3)10642	w[1118]; Df(3R)ED10642, P[3'.RS5+3.3']ED10642/TM6C, Sb[1]	Bloomington Stock C	9482	
Df(3)BSC472	w[1118]; Df(3R)BSC472/TM6C, Sb[1] cu[1]	Bloomington Stock C	24976	
Df(3)BSC510	w[1118]; Df(3R)BSC510/TM6C, Sb[1] cu[1]	Bloomington Stock C	25014	
yw	y[1] w[1]	Bloomington Stock C	1495	

Table S5. Drosophila stock list and source information.