Members of the genus *Sphingopyxis* (Alphaproteobacteria) are strictly aerobic, chemoheterotrophic, yellow-pigmented, rod-shaped Gram-negative bacteria that contain glycosphingolipids as cell envelope components (1). *Sphingopyxis* spp. have been isolated from a variety of environments, including wetland (2), sludge (3), seawater (4), natural mineral water (5), and soil (6). Recent reports have confirmed the presence and dominance of *Sphingopyxis* spp. in drinking water distribution systems (DWDS) (7–9), and their ability as early colonizers to form biofilms (10, 11). Little information is available about their ecological role in DWDS or potential to cause public health problems (12, 13).

Two strains (H107 and H115) were isolated from a chloraminated DWDS simulator (11), by plating biofilm on R2A plates for 7 days at 27°C. Both strains were identified (100% sequence homology) as dominant members of the bulk water and biofilm community (7). Phylogenetic analysis of 16S rRNA genes indicated that strains H107 and H115 should be classified in the genus *Sphingopyxis* and were closely related to *Sphingopyxis soli* BL03 (99.5%) (14) and *Sphingopyxis chilensis* S37 (99.1%) (15), respectively.

Genomic DNA was extracted using the Ultra-Clean DNA microbial isolation kit (MoBio Laboratories, Solana Beach, CA) and sequenced by rapid mode sequencing on the HiSeq 2500 platform (Illumina Inc., San Diego, CA) using a paired-end 125 bp Nextera XT DNA library. Prior to assembly, libraries were (i) cleaned from contaminants (adapters, phiX, artifacts, and human), (ii) error corrected via Tadpole, (iii) normalized to \(\leq 100 \times \), (iv) removed of low \((<6 \times) \) coverage reads, and (v) filtered to a minimum length read of 125 nucleotides (nt). Reads were processed using the software package BBMap v35.34 (http://sourceforge.net/projects/bbmap) and *de novo* assembly with SPAdes v3.5.0 (16). The draft genomes of strains H107 and H115 consist of 57 and 63 contigs for a total of 4,308,137 and 4,493,891 bp with a G+C content of 64.84 and 64.33\%, respectively. Genome assemblies were annotated with Prokka v1.10 (17) available as an application in Illumina BaseSpace Labs. The genome sequence of strain H107 contains 4,244 genes, 4,191 coding sequences (CDSs), 3 rRNAs, and 50 tRNAs, and strain H115 contains 4,327 genes, 4,277 CDSs, 3 rRNAs, and 47 tRNAs.

The average nucleotide identity (ANI) between the two *Sphingopyxis* strains, a similarity index between two genomes (18), is 83.018\% and was calculated using the online calculator available from EzGenome (http://www.ezbiocloud.net/ezgenome/ani). The proposed cut-off for species is 95\% to 96\% (19). Comparison against reference genomes estimated an ANI average of 82.931\% with *Sphingopyxis alaskensis* RB2256 (20), 82.777\% with *Sphingopyxis fribergensis* Kp5.2 (21), and 69.271\% with *Sphingopyxis baikryungensis* DSM 16222 (22).

Genomic annotation of the environmental H115 strain confirmed the presence of the class 1 integrase (*intI1*) gene associated with the dihydropteroate synthase (*sul1*) gene, encoding resistance to sulfonamide (23). In addition, *sul1* gene was found linked to the puromycin-N-acetyltransferase (*pac*) gene. The *pac* gene encodes resistance to puromycin, an aminonucleoside antibiotic whose mode of action is distinct from the dihydropteroate synthase (24). Class 1 integrons are often embedded in plasmids and transposons, facilitating the lateral transfer of antibiotic resistance genes among bacteria (25).

Nucleotide sequence accession numbers. The whole-genome shotgun project has been deposited in DDBJ/ENA/GenBank under the accession numbers LNSJ00000000 and LNSA00000000. The versions described in this paper are the first versions, LNSJ01000000 and LNSA01000000.

ACKNOWLEDGMENTS

We thank Jonathan Pressman and David Wahman for valuable discussions and assistance for this project. The opinions expressed are those of the authors, and do not necessarily reflect the official positions and policies of the U.S. EPA. Any mention of product or trade names does not constitute recommendation for use by the U.S. EPA.

FUNDING INFORMATION

The U.S. EPA, through the Office of Research and Development, funded and managed this research.
REFERENCES

1. Takeuchi M, Hamana K, Hiraishi A. 2001. Proposal of the genus Staphylococcus novus stricto and three new genera, Staphylo-
 monas, Novisphaeria, and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol
 51:1405–1417. http://dx.doi.org/10.1099/0027713-51-4-1405.

2. Baik KS, Choe HN, Park SC, Hwang YM, Kim EM, Park C, Seong CN. 2013. Sphingopyxis rigui sp. nov. and Sphingopyxis
 wuoponensis sp. nov., isolated from wetland freshwater, and emended description of the genus Sphingopyxis. Int J Syst Evol
 Microbiol 63:1297–1303. http://dx.doi.org/10.1099/0.044057-0.

3. Kämpfer P, Wittenberger R, Denner EB, Busse HJ, Neef A. 2002. Sphingopyxis wittiarensis sp. nov., isolated from activated sludge.
 Int J Syst Evol Microbiol 52:2029–2034. http://dx.doi.org/10.1099/0027713-52-6-2029.

4. Kim BS, Lim YW, Chun J. 2008. Sphingopyxis marina sp. nov. and Sphingopyxis litoris sp. nov., isolated from seawater. Int J Syst
 Evol Microbiol 58:2415–2419. http://dx.doi.org/10.1099/ijs.0.65614-0.

5. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR, Park YH. 2001. Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp.
 nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol
 Microbiol 51:1491–1498. http://dx.doi.org/10.1099/0027713-51-4-1491.

6. Lee HW, Ten IL, Jung HM, Liu QM, Im WT, Lee ST. 2010. Bacteria from distribution sections of a drinking water system in Budapest,
 Hungary. J Water Pollut Control Fed 82:1174–1178. http://dx.doi.org/10.2175/0841ZZZ039.217.

7. Gomez-Alvarez V, Pfäffler S, Revetta RP. 2015. Comparative genomic analysis of nontuberculous mycobacteria (NTM) and environmental iso-
 late associated with a simulated chloraminated drinking water distribution system subjected to episodes of nitrification. In Final Program of the
 115th General Meeting of the American Society for Microbiology, Washington, DC.

8. Homonnay ZG, Török G, Makk J, Brumbauer A, Major E, Márialigeti K, Tóth E. 2014. Bacterial communities in the collection and chlorinated
 distribution sections of a drinking water system in Budapest, Hungary. J Basic Microbiol 54:729–738. http://dx.doi.org/10.1002/jobm.201300960.

9. Li D, Li Z, Yu J, Cao N, Liu R, Yang M. 2010. Characterization of bacterial community structure in a drinking water distribution system
 during an occurrence of red water. Appl Environ Microbiol 76:7171–7180. http://dx.doi.org/10.1128/AEM.00832-10.

10. Douterelo I, Sharpe R, Boxall J. 2014. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimen-
 tal drinking water distribution system: implications for drinking water discolouration. J Appl Microbiol 117:286–301. http://dx.doi.org/10.1111/
 jam.12516.

11. Revetta RP, Gomez-Alvarez V, Gerke Tl, Curioso C, Santo Domingo JW, Ashbolt NJ. 2013. Establishment and early succession of bacterial
 communities in monochloramine-treated drinking water biofilms. FEMS Microbiol Ecol 86:404–414. http://dx.doi.org/10.1111/j.1574-6941.12170.

12. Lee J, Lee CS, Hugunin KM, Maute CJ, Dysko RC. 2010. Bacteria from drinking water supply and their fate in gastrointestinal tracts of germ-
 free mice: a phylogenetic comparison study. Water Res 44:5050–5058. http://dx.doi.org/10.1016/j.watres.2010.07.027.

13. Vaz-Moreira I, Nunes OC, Manaia CM. 2011. Diversity and antibiotic resistance patterns of Sphingomonas isolates from drinking water.
 Appl Environ Microbiol 77:5697–5706. http://dx.doi.org/10.1128/AEM.00579-11.

14. Choi JH, Kim MS, Jung MJ, Roh SW, Shin KS, Bae JW. 2010. Sphingopyxis solt sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol
 60:1682–1686. http://dx.doi.org/10.1099/ijs.0.013128-0.

15. Godoy F, Vancanneyt M, Martinez M, Steinbüchel A, Swings J, Rehm BH. 2003. Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bac-
 terium that accumulates polyhydroxylkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int J Syst Evol
 Microbiol 53:473–477. http://dx.doi.org/10.1099/ijs.0.02375-0.

16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolaenko SI, Pham S, Prjibelski AD, Pyshkin AV,
 Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-
 cell sequencing. J Comput Biol 19:455–477. http://dx.doi.org/10.1089/cmb.2012.0021.

17. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. http://dx.doi.org/10.1093/bioinformatics/btu153.

18. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-DNA hybridization values and their relationship
 to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. http://dx.doi.org/10.1099/ijs.0.64483-0.

19. Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:
 19126–19131. http://dx.doi.org/10.1073/pnas.0906412106.

20. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A,
 Anderson I, Kyrpides N, Munk AC, Detter C, Han CS, Brown MV, Robb FT, Kjelleberg S, Cavichioli R. 2009. The genomic basis of trophic
 strategy in marine bacteria. Proc Natl Acad Sci USA 106:15527–15533. http://dx.doi.org/10.1073/pnas.0903507106.

21. Oelschlägel M, Rüchert C, Kalinowski J, Schmidt G, Schlömann M, Tischler D. 2015. Sphingopyxis fribergensis sp. nov., a soil bacterium with
 the ability to degrade styrene and phenylacetic acid. Int J Syst Evol Microbiol 65:3008–3015. http://dx.doi.org/10.1099/ijs.0.000371.

22. Yoon JH, Lee CH, Yeo SH, Oh TK. 2005. Sphingopyxis backyryngenensis sp. nov., an orange-pigmented bacterium isolated from seawater of
 the Yellow Sea in Korea. Int J Syst Evol Microbiol 55:1223–1227. http://dx.doi.org/10.1099/ijs.0.63495-0.

23. Sköld O. 2000. Sulfonamide resistance: mechanisms and trends. Drug Resist Updat 3:155–160. http://dx.doi.org/10.1016/S1223-1227(00)00046-9.

24. Lalanne RA, Pulido D, Vara J, Zalacaín M, Jiménez A. 2009. Molecular analysis of the pac gene encoding a puromycin N-acetyl transferase from
 Streptomyces alboniger. Gene 437:157–168. http://dx.doi.org/10.1016/j.gene.2009.06.028.

25. Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, Stokes HW. 2008. The evolution of class 1 integrons and the rise of anti-
 biotic resistance. J Bacteriol 190:5095–5100. http://dx.doi.org/10.1128/JB.00152-08.