Long Wavelength Fluctuations and the Glass Transition in 2D and 3D

Skanda Vivek, Colm P. Kelleher, Paul M. Chaikin, and Eric R. Weeks

1Department of Physics, Emory University, Atlanta, Georgia 30322, USA
2Department of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, USA

(Dated: October 18, 2016)

Phase transitions significantly differ between two-dimensional and three-dimensional systems, but the influence of dimensionality on the glass transition is unresolved. We use microscopy to study colloidal systems as they approach their glass transitions at high concentrations, and find differences between 2D and 3D. We find that in 2D particles can undergo large displacements without changing their position relative to their neighbors, in contrast with 3D. This is related to Mermin-Wagner long-wavelength fluctuations that influence phase transitions in 2D. However, when measuring particle motion only relative to their neighbors, 2D and 3D have similar behavior as the glass transition is approached, showing that the long wavelength fluctuations do not cause a fundamental distinction between 2D and 3D glass transitions.

Introduction

If a liquid can be cooled rapidly to avoid crystallization, it can form into a glass: an amorphous solid. The underlying cause of the glass transition is far from clear, although there are a variety of theories [1–3]. One recent method of understanding the glass transition has been to simulate the glass transition in a variety of dimensions (including 4 dimensions or higher) [4–8]. Indeed, the glass transition is often thought to be similar in 2D and 3D [9–10] and in simple simulation cases such as hard particles, one might expect that dimensionality plays no role. As a counterargument, two-dimensional and three-dimensional fluid mechanics are qualitatively quite different [11]. Likewise, melting is also known to be qualitatively different in 2D and 3D [12–15].

Recent simulations give evidence that the glass transition is also quite different in 2D and 3D [11–15]. In particular, Flenner and Szamel [1] simulated several different glass-forming systems in 2D and 3D, and found that the dynamics of these systems were fundamentally different in 2D and 3D. They examined translational particle motion (motion relative to a particle’s initial position) and bond-orientational motion (topological changes of neighboring particles). They found that in 2D these two types of motion became decoupled near the glass transition. In these cases, particles could move appreciable distances but did so with their neighbors, so that their local structure changed slowly. In 3D, this was not the case; translational and bond-orientational motions were coupled. They additionally observed that the transient localization of particles well known in 3D was absent in the 2D data. To quote Flenner and Szamel, “these results strongly suggest that the glass transition in two dimensions is different than in three dimensions.”

In this work, we use colloidal experiments to test dimension dependent dynamics approaching the glass transition. Colloidal samples at high concentration have been established as model glass formers [10–16]. We perform microscopy experiments with two 2D bidisperse systems, one with with quasi-hard interactions, and the other with long range dipolar interactions. 3D data are obtained from previous experiments by Narumi et al. [20] which studied a bidisperse mixture of hard particles. Our results are in qualitative agreement with the simulations of Flenner and Szamel.

We believe our observations are due to the Peierls instability [21–22], also called Mermin-Wagner fluctuations [23–24]. As Peierls originally argued, there exist long-range thermal fluctuations in positional ordering in one-dimensional and two-dimensional solids. Klix et al. and Illing et al. recently noted that these arguments should apply to disordered systems as well [25–26]. One can measure particle motion relative to the neighbors of that particle to remove the influence of these long wavelength fluctuations [27]. Using this method we observe that the translational and structural relaxations are similar between 2D and 3D, demonstrating that the underlying glass transitions are unaffected by the Mermin-Wagner fluctuations.

Results

We analyze three different types of colloidal samples, all using bidisperse mixtures to avoid crystallization. The first sample type is a quasi-2D sample with hard particles (short range, purely repulsive interactions) which we term ‘2DH.’ The 2DH sample is made by allowing silica particles to sediment to a monolayer on a cover slip [28]. Our 2DH system is analogous to a 2D system of hard disks of the sort studied with simulations [9–20]. The control parameter is the area fraction \(\phi \), which glassy samples found for \(\phi \geq 0.79 \). The second sample type is also quasi-2D but with softer particles, which we term ‘2DS.’ The 2DS system is composed of bidisperse PMMA particles dispersed in oil, at an oil-aqueous interface [29]. The interactions in this system are dipolar in the far-field limit, and the control parameter is the dimensionless interaction parameter \(\Gamma_{2DS} \), related to the area fraction. \(\Gamma_{2DS} \) is defined in the Methods section, with glassy be-
3D experiments. The parameters for the experiments are:

functions. The columns correspond to 2DH, 2DS, and

D responding to the peak of the structure factor (see Meth-

ods and Materials). (D-F) Bond-orientational correlation functions. The columns correspond to 2DH, 2DS, and 3D experiments. The parameters for the experiments are: \(\phi_{2DH} = 0.55, 0.65, 0.70, 0.74, 0.75, 0.76, 0.78, \) and \(0.78; \) 2DS (\(\Gamma_{2DS} = 60, 100, 100, 140, 180, 310, 300, \) and \(460) \); 3D \(\phi_{3D} = 0.40, 0.42, 0.52, 0.53, 0.54, 0.54, \) and \(0.57. \) These parameters increase from left to right in each panel; or equivalently, from bottom to top.

behavior found for \(\Gamma \geq 530. \) For the third sample type, ‘3D,’ we use previously published 3D data on a bidis-
perse sample of hard-sphere-like colloids \([20]. \) For these data, the control parameter is the volume fraction \(\phi \) with glasses found for \(\phi \geq 0.58 \) \([20]. \) Details of the sample preparation and data acquisition for these three sample types are in the Methods section. For each sample type the glass transition is defined as the parameter \((\Gamma \) or \(\phi \)) above which the sample mean square displacement (MSD) does not equilibrate in experimental time scales, \(\sim 10 \) hours for the 2D samples and \(\sim 3 \) hours for the 3D samples.

Flenner and Szamel found that in 2D particles move large distances without significantly changing local structure \([4]. \) They noted that time scales for translational motion and time scales for changes in local structure were coupled in 3D, but not in 2D. The standard way to define these time scales is through autocorrelation functions. Following ref. \([4], \) we compute the self-intermediate scattering function \(F_S(k, \Delta t) \) to characterize translational motion, and a bond-orientational correlation function \(C(\Delta t) \) to characterize changes in local structural configuration (see Methods for details). These are plotted in Fig. \([4] - C \) and \([4] - F \) respectively. At short time scales, particles have barely moved, and so both of these correlation functions are close to 1. At longer time scales these functions decay, taking longer time scales to do so at larger concentrations. The traditional relaxation time scale \(\tau_0 \) is defined from \(F_S(\tau_0) = 1/e \approx 0.37. \) For the bond-orientational correlation functions, we quantify lo-
al arrangements of particles through \(\psi_S \) in 2D and \(Q_S \) in 3D, both of which are sensitive to hexagonal order \([31]. \)

Decay of the autocorrelation functions for these quantities (Fig. \([4] - F \)) reflects how particles move relative to one another, thus changing their local structure, whereas decay of \(F_S \) reflects motion relative to each particle’s initial position.

Specifically, Flenner and Szamel found that \(F_S(\Delta t) \) and \(C(\Delta t) \) had qualitatively different decay forms in 2D, but were similar in 3D \([4]. \) In particular, \(F_S(\Delta t) \) decayed significantly faster than \(C(\Delta t) \) for 2D simulations. This means that in 2D particles could move significant distances (of order their interparticle spacing) but did so in parallel with their neighbors, so that their positions were changed but not their local structure.

To compare translational and bond orientational cor-
rrelation functions of our data, we replot some of the data in Fig. \([4] - C. \) The translational correlation functions for different parameters are solid curves with different colors. The bond-orientational correlation functions are dashed curves, with same color as corresponding trans-

lational correlation functions.

The 2D data of Fig. \([4] - B \) exhibit decoupling, whereas the 3D data of \(C \) are coupled. For the latter case, cou-
pling means that the two functions decrease together, and their relative positions do not change dramatically as the glass transition is approached. Even for the most concentrated case, for which we do not observe a final decay of either function, it still appears that the two correlation functions are related and starting an initial decay around the same time scale. In contrast, for both 2D cases (Fig. \([4] - A, B), F_S \) and \(C_\psi \) change in relation to one another as the glass transition is approached. For 2DH (panel A), at the most liquid-like concentration (black curves), \(C \) decays faster than \(F_S \) (dashed curve as compared to the solid curve). As the glass transition is approached, initially \(C \) decays faster, but then the decay of \(F_S \) overtakes \(C. \) A similar trend is seen for 2DS (panel B). For both 2DH and 2DS, the decoupling is most strongly seen for the most concentrated samples (green curves), for which \(F_S(\Delta t) \) decays on experimental time scales but where \(C_\psi(\Delta t) \) decays little on the same time scales.

The slower decay of bond-orientational correlations rel-
ative to translational correlations for our 2D data is in good qualitative agreement with Flenner and Szamel’s ob-
servations \([4]. \) Upon approaching the glass transition in 2D, particles are constrained to move with their neigh-
bors such that \(C \) decays less than might be expected on time scales where \(F_S \) has decayed significantly. In 3D, however, on approaching the glass transition particles move in a less correlated fashion. To quantify the correlated motion of neighboring particles we compute a two-particle correlation function \([9, 32]. \) This function correlates the vector displacements of pairs of nearest neighbor particles (see Methods). Fig. \([5] \) shows these cor-

FIG. 1: Structural relaxation in two and three dimen-
sions. (A-C) Self-intermediate scattering functions charac-
terizing translational motion, using the wave vector \(k \) cor-
responding to the peak of the structure factor (see Meth-
ods and Materials). (D-F) Bond-orientational correlation functions.
relations: 1 corresponds to complete correlation, and 0 is completely uncorrelated. For both 2D samples (solid symbols) the correlations increase for larger τ_α, as indicated by the fit lines. This increased correlation reflects particles moving in parallel directions with their nearest neighbors. For the 3D data (open squares in Fig. 3) the correlations are small and do not grow as the glass transition is approached. Particle motion uncorrelated with neighboring particles decorrelates both positional information and bond-orientational structure.

To qualitatively visualize the differences between dynamics in 2D and 3D, the top row of Fig. 4 shows displacement vectors for particles in the three samples near their glass transitions. For both 2DH and 2DS samples, there are clusters of particles moving in similar directions as seen by adjacent displacement arrows pointing in a similar direction. This clustering is less pronounced in 3D, consistent with the small correlations between nearest neighbor motions in 3D (Fig. 3).

As suggested in the Introduction, it is plausible that some of the significant translational motion in the 2D samples is due to Mermin-Wagner fluctuations which act at long wavelengths [25, 33]. To disentangle the potential influences of long wavelength fluctuations from relative motions, we subtract collective motions by measuring “cage relative” particle motions [27]. The key idea is to measure displacements relative to the average displacements of each particle’s nearest neighbors, that is, relative to the cage of neighbors surrounding each particle. Previous work has shown that using cage-relative coordinates reveals the dynamical signatures of phase transitions for systems of monodisperse colloids [14]. We compute these cage-relative displacements and then calculate the self-intermediate scattering function F_{S-CR} us-

FIG. 2: Translational, bond-orientational, and bond-break correlation functions. (A-C) The solid curves are $F_S(\Delta t)$ (translational correlations) and the dashed curves are $C(\Delta t)$ (bond-orientational correlations) for the 2DH, 2DS, and 3D samples as labeled. The colors indicate different control parameters. For 2DH the colors black, red, blue, and green denote $\phi_{2DH} = 0.55, 0.75, 0.78,$ and 0.78 respectively. For 2DS the colors black, red, blue, and green denote $\Gamma_{2DS} = 60, 180, 310,$ and 460 respectively. For 3D the colors black, red, blue and green denote $\phi_{3D} = 0.42, 0.52, 0.54,$ and 0.58 respectively. (D-F) The solid curves with circles are $F_{S-CR}(\Delta t)$ (cage-relative translational correlations). The dashed curves are $C(\Delta t)$ which are identical to those shown in (A-C). (G-I) The solid curves with circles are $F_{S-CR}(\Delta t)$ (cage-relative translational correlations) and the dot-dashed curves are $B(\Delta t)$ (bond-break correlations) for the 2DH, 2DS, and 3D samples.
The lines are least-squares fits to the correlation function \(g \) is determined from the large-large peak position in the pair of particles separated by the nearest neighbor spacing \(d \). \(d \) is determined from the large-large peak position in the pair correlation function \(g(r) \) at the highest concentrations, and has values \(d = 3.38, 6.5, \) and \(3.10 \) \(\mu m \) for 2DH, 2DS, and 3D respectively. (The location of the \(g(r) \) peak depends slightly on \(\phi \) for 2DH and 3D experiments, and more strongly on \(\Gamma \) for the 2DS experiments; for consistency, we keep \(d \) fixed to these specific values.) The lines are least-squares fits to the data. The data are plotted as a function of \(\tau_0/\tau_0 \) where \(\tau_0 \) is the relaxation time scale for the large particles in a dilute sample. 2DH (closed circles), 2DS (closed triangles), and 3D (open squares) samples have \(\tau_0 = 5.4, 20, \) and 3.8 s respectively.

Motivated by the considerations above, we investigate the cage-relative mean square displacements (CR-MSD) \(F_{S_{-CR}}(k, \Delta t) \) and \(B(\Delta t) \) (panels \(G-I \)). We turn now to the question of transient localization, which Flenner and Szamel found to be present in 3D but not 2D. The trajectories of 3D particles showed localized motions separated by abrupt jumps, while trajectories of 2D particles did not have these two distinct types of motion. In their data, this caused a plateau in the 3D MSD, which was not seen in the 2D MSD. The plateau is due to particles being transiently trapped in cages formed by their neighbors, with the plateau height set by the cage size [35].
FIG. 4: Particle displacements. These images show displacement vectors of particles using a time interval Δt chosen such that $F_s(\Delta t) = 0.5$. For the 3D image we use an xy cut at fixed z. All scale ticks are at 10 μm intervals and all displacement vectors are multiplied by two for easier visualization. The circles denote particle positions and sizes. Samples are $\phi_{2DH} = 0.78$, $\Gamma_{2DS} = 300$, and $\phi_{3D} = 0.54$, from left to right, with corresponding $\Delta t = 4290, 1720$, and 3540 s. τ_α for these samples are 14000, 3800, and 7600 s respectively. Circles with no arrows are those with displacements less than 10 % of symbol size.

FIG. 5: Mean square displacements and cage-relative mean square displacements. The data ($A - C$) are for the experiments as indicated. The solid curves are mean square displacements $\langle \Delta r^2 \rangle$ calculated for all particles, normalized by d as described in the caption to Fig. 3. The solid curves with circles are cage-relative mean square displacements. The colors indicate different control parameters, as given in Fig. 2. For the 3D samples, the z direction is neglected due to noise and also to facilitate the comparison with the 2D experiments.

FIG. 6: Transient localization parameter. (A) $\gamma_{\min,CR}$ is the minimum logarithmic slope of the cage-relative mean square displacements. (B) Difference $\gamma_{\min,CR} - \gamma_{\min}$ between the original mean square displacement data and the cage-relative version. Negative values indicate the enhancement of measured transient localization using the cage-relative analysis.

at the inflection point of the MSD or CR-MSD. Fig. 4A shows the CR data for the 2D samples (filled symbols) and 3D (open squares) as a function of τ_α. While the 3D
data reach lower values, the overall trend is similar between 2D and 3D: the closer to the glass transition, the more pronounced transient localization is. Note that in the work of Flenner and Szamel, they tested both Newtonian dynamics and Brownian dynamics; the latter is more appropriate for colloids. With Brownian dynamics in 2D, they found slightly more pronounced MSD plateaus. It is possible that the presence of Brownian dynamics in our experiments also contributes to our observed similarities in transient localization between 2D and 3D.

Fig. 5B shows the slight enhancement of transient localization caused by the cage-relative analysis. We plot the change in γ_{min} upon using the cage-relative analysis, and it is generally negative. The largest changes are seen in the 2DS data (solid triangles), which is sensible as these are the data with the strongest correlations with their neighbors.

Discussion

Our experiments show apparent differences in dynamics approaching the 2D and 3D colloidal glass transition, in agreement with the simulation results of Flenner and Szamel [4].

In 2D, we observe that particles move in parallel with their neighbors, such that their local structure changes less than if the motions were uncorrelated. While it is clear from prior work that in 3D particle motions have some correlation with their neighbors [22], in our data the correlations are more significant for the 2D samples. These are likely related to Mermin-Wagner fluctuations / the Peierls instability in 2D [21–26].

Our 2D samples are, of course, quasi-2D. Both are influenced by nearby large 3D regions of fluid. The 2DH sample also has hydrodynamic interactions between particles and the nearby bottom of the sample chamber. We find that 2DS samples are more affected by long-wavelength fluctuations than 2DH, which could be due to the difference in interactions [23–25]. It is certainly plausible that softer interactions allow for more fluctuations in the nearest-neighbor distance, whereas for dense samples with hard interactions, fluctuations are by necessity smaller (as particles cannot move too close together before they repel) [25]. Recent simulation work has shown differences in correlation lengths for disks with soft and hard interaction potentials during 2D melting [23]. Nonetheless, the agreement between the two 2D data sets is striking, especially given the different particle interaction potentials. Namely as distinct from the 3D samples, both 2D samples show large Mermin-Wagner fluctuations.

Another important experimental factor is the system size: approximately $10^5 - 10^6$ for both 2D systems and 10^9 for the 3D system. It is likely that for even larger 2D systems, the Mermin-Wagner fluctuations would be more pronounced [4, 33, 10]. Klix, Maret, and Keim [20] recently argued that Mermin-Wagner fluctuations should be present in glassy systems. Probably the most interesting aspect of our study is the suggestion that indeed 2D Mermin-Wagner fluctuations are present in our amorphous samples. Mermin-Wagner fluctuations conventionally result from elasticity associated with the development of an order parameter. The origin of elasticity in glassy systems is less well understood. While we have not proven that our observed long-wavelength fluctuations are indeed Mermin-Wagner fluctuations, one could vary the system size in future investigations to examine how the difference between conventional and cage-relative measurements depends on system size. In conclusion, with our efforts and other recent work, there is a compelling collection of evidence that 2D and 3D glass transitions are fundamentally the same: there is strong qualitative agreement between our observations studying three colloidal systems, the colloidal experiments and simulations of Illing et al. [25], and the soft particle simulations of Shiba et al. [33]. The similarities between the conclusions, despite the differences in methods and dynamics, suggest the results are independent of the details. All of these observations show that the 2D glass transition is similar to the 3D glass transition, but with the added influence of Mermin-Wagner fluctuations in 2D.

Materials and Methods

For 2DH experiments, we confine bidisperse non-functionalized silica particles (diameters $\sigma_S = 2.53$ and $\sigma_L = 3.38$ μm, Bangs Laboratories, SS05N) to a monolayer by gravity. Prior to taking data, the sample is quenched by shaking and letting particles sediment on the coverslip. The coverslip is made hydrophobic by treatment with Alfa Aesar Glassclad 18 to prevent particle adhesion. All particles are observed to move during the experiment; none adhere to the glass. We do not add salt. The sedimentation lengths for both small ($l_p/\sigma_S = 0.019$) and large particles ($l_p/\sigma_L = 0.006$) are small enough to ensure fast sedimentation and formation of a quasi-2D monolayer; that is, thermal energy is not enough to overcome the gravitational potential energy of the particles [10]. We verify that in all experiments, only one layer of particles is present (ensured by keeping the overall particle concentration below the level that requires a second layer to form). We use bright-field microscopy and a CCD camera to record movies of particles diffusing. This system is analogous to 2D hard disks. The only caveat is that the centers of the large and small particles are not at the same height, so adjacent large and small particles do not contact each other at their midplane [41].

For 2DS, the experimental system is composed of bidisperse poly-methyl-methacrylate (PMMA) colloids of diameters 1.1 and 2.6 μm. The particles are at the interface between oil and a glycerol/water mixture. The aqueous phase consists of 10mM NaCl 70 wt. % glycerol solution,
while the oil phase consists of a 50-30-20 v/v mixture of cyclohexyl bromide, hexane and dodecane. Interactions between particles are dipolar in the far-field limit. A dimensionless interaction parameter is used to characterize the system:

$$\Gamma_{2DS} = \frac{(\pi n)^{3/2}}{8\pi \kappa_B T}(\xi p_B + (1 - \xi)p_A)^2$$ \hspace{1cm} (1)

where \(\epsilon = 4.2\epsilon_0\). The electric dipole moments are \(p_A\) and \(p_B = 2300\) and 590 \(\epsilon_0 \cdot \mu\) respectively. \(\xi \approx 0.57 - 0.83\) is the number fraction of small particles, and \(n\) is the areal density, measured from a Voronoi tessellation.

The 3D sample data were obtained from a previous experiment by Narumi et al. [20]. In 3D experiments, PMMA colloids were stabilized sterically by a thin layer of poly-12-hydroxy-stearic acid. A binary mixture with diameters \(\sigma_L = 3.10\) \(\mu\m\) and \(\sigma_S = 2.36\) \(\mu\m\) were used. The number ratio of small particles to large particles was 1.56.

The imaging regions encompass roughly 400, 1500, and 2000 particles for 2DH, 2DS, and 3D samples respectively at their highest concentrations. The total system sizes are much larger, approximately \(10^5 - 10^6\) for both 2D systems and \(10^6\) for the 3D system. We post-processed 2DH and 2DS movies using particle tracking algorithms [42] to extract particle positions from individual frames. The 3D data were previously tracked using the same algorithm. Our uncertainty in particle position is 0.1 \(\mu\m\) for the 2DH experiment, 0.5 \(\mu\m\) for the 2DS experiment, and 0.2 \(\mu\m\) (\(x,y\)) and 0.3 \(\mu\m\) (\(z\)) for the 3D experiment [20].

The \(\alpha\) relaxation timescales are computed from self-intermediate scattering functions: \(F_S(k, \Delta t) = \langle \exp(i\vec{k} \cdot \Delta\vec{r}) \rangle\), where \(\Delta\vec{r} = \vec{r}(t + \Delta t) - \vec{r}(t)\). The wave vector \(k\) corresponds to the peak of the structure factor \(S(k) = \langle N^{-1} \sum_{i=1}^{N} \exp(i\vec{k} \cdot \vec{r}_i(t)) \rangle^2\), where \(\vec{r}_i(t)\) denotes particle positions at time \(t\) and the average is over all times. Corresponding to 2DH, 2DS, and 3D, \(k = 2.2, 1.0,\) and 2.6 \(\mu\m^{-1}\), obtained using the average \(k\) across all samples of a particular type.

Several other functions we compute require identifying nearest neighbors, which we do using the Voronoi tessellation [17].

We define cage-relative translational correlation functions as: \(F_{S-\alpha}(k, \Delta t) = \langle \exp(i\vec{k} \cdot \Delta\vec{r}_i) \rangle\), where \(\Delta\vec{r}_i = \vec{r}(t + \Delta t) - \vec{r}(t) - \sum_j |\vec{r}_i(t + \Delta t) - \vec{r}_j(t)|\), \(j\) denotes nearest neighbors of the particle at initial time \(t\), and the sum is over all neighbors. The cage-relative mean square displacement is defined using the same displacements \(\Delta\vec{r}_i\).

To measure bond-orientational correlations in 2D [4], we define \(\Psi_6^m(t) = \sum_m (N_m^{-1}) \exp(i\theta_m)\), where \(m\) are the nearest neighbors of particle \(n\) and \(\theta_m\) is the angle made by particle \(m\) with defined axis. From this, the bond-orientational correlation function can be found as \(C_b(\Delta t) = \sum_n [\Psi_6^n(t)^* \Psi_6^n(t + \Delta t)]/\sum_n [\Psi_6^n(t)^2]_t\). In 3D, we define \(Q_{lm}^m(t) = (N_{ij}^{-1}) \sum_j q_{lm}(\theta_{ij}(t), \phi_{ij}(t))\) where \(q_{lm}(\theta, \phi)\) are spherical harmonics [4] and the sum is over neighbors of particle \(i\). Next we define the correlation function \(Q(t_1, t_2) = 4\pi/(2l + 1) \sum_i \sum_{m=-l}^l Q_{lm}(t_2) [Q_{lm}(t_1)]^*\). We calculate \(C_Q(\Delta t) = \langle Q_{lm}(t + \Delta t) i/(Q_{lm}(t)) \rangle\) corresponding to \(l = 6\), given that \(l = 6\) is sensitive to hexagonal order known to be present even in disordered samples.

The two-particle vector correlations are determined from a spatial-temporal correlation function defined as \(S_{\alpha}(R, \Delta t) = \langle \Delta\vec{r}_i \Delta\vec{r}_j \rangle/\langle |\Delta\vec{r}|^2 \rangle\). The average is over all particles with initial separation \(R = d\), and over the initial time \(t\). For the initial separation \(R\), we use \(R = 3.38\pm0.2\), \(R = 6.5\pm0.4\), and \(R = 3.1\pm0.2\) \(\mu\m\) for the 2DH, 2DS, and 3D data. To determine the displacements \(\Delta\vec{r}\) we use the time scale \(\Delta t\) such that \(F_{S}(\Delta t) = 0.5\). This is chosen to be a shorter time scale than \(\tau_\alpha\), as particle displacements are typically maximally spatially heterogeneous at a shorter time scale [17, 55].

Acknowledgments

We thank E. Flenner, G. Szamel, R. Guerra, P. Keim, H. Shiba, and V. Trappe for useful discussions. The work of S.V. and E.R.W. was supported by a grant from the National Science Foundation (CMMI-1250235). C.P.K. and P.M.C. were supported by grants from the National Science Foundation (DMR-1105417), NASA (NNX 13AR67G), and the MRSEC program of the National Science Foundation (DMR-1420073).

[1] Biroli G, Garrahan JP (2013) Perspective: The glass transition. J. Chem. Phys. 138:12A301.
[2] Ediger MD, Harrowell P (2012) Perspective: Supercooled liquids and glasses. J. Chem. Phys. 137:080901.
[3] Cavagna A (2009) Supercooled liquids and pedestrians. Phys. Rep. 476:51–124.
[4] Flenner E, Szamel G (2015) Fundamental differences between glassy dynamics in two and three dimensions. Nature Comm. 6:7392.
[5] Sengupta S, Karmakar S, Dasgupta C, Sastry S (2012) Adam-Gibbs relation for glass-forming liquids in two, three, and four dimensions. Phys. Rev. Lett. 109:095705.
[6] van Meel JA, Frenkel D, Charbonneau P (2009) Geometrical frustration: A study of four-dimensional hard spheres. Phys. Rev. E 79:030201(R).
[7] Charbonneau P, Ikeda A, van Meel JA, Miyazaki K (2010) Numerical and theoretical study of a monodisperse hard-sphere glass former. Phys. Rev. E 81:040501(R).
[8] Charbonneau P, Ikeda A, Parisi G, Zamponi F (2011) Glass transition and random close packing above three dimensions. Phys. Rev. Lett. 107:185702.
