How alkaline compounds control atmospheric aerosol acidity

Vlassis A. Karydis1,2*, Alexandra P. Tsimpidi1,2,3, Andrea Pozzer1,4, and Jos Lelieveld1,5

1 Max Planck Institute for Chemistry, Atmospheric Chemistry Dept., Mainz, 55128, Germany.
2 Forschungszentrum Jülich, Inst. for Energy and Climate Research, IEK-8, Jülich, 52425, Germany.
3 National Observatory of Athens, Inst. for Environmental Research and Sustainable Development, Athens, 15236, Greece.
4 International Centre for Theoretical Physics, Trieste, 34151, Italy
5 The Cyprus Institute, Climate and Atmosphere Research Center Nicosia, 1645, Cyprus.

Correspondence to: Vlassis A. Karydis (v.karydis@fz-juelich.de)

Abstract. The acidity of atmospheric aerosols regulates the particulate mass, composition and toxicity, and has important consequences for public health, ecosystems and climate. Despite these broad impacts, the global distribution and evolution of aerosol acidity are unknown. We used the particular, comprehensive atmospheric multiphase chemistry – climate model EMAC to investigate the main factors that control aerosol acidity, and uncovered remarkable variability and unexpected trends during the past 50 years in different parts of the world. We find that alkaline compounds, notably ammonium, and to a lesser extent crustal cations, buffer the aerosol pH on a global scale. Given the importance of aerosols for the atmospheric energy budget, cloud formation, pollutant deposition and public health, alkaline species hold the key to control strategies for air quality and climate change.

1. Introduction

Aerosol acidity is a central property of atmospheric particulates that influence clouds, climate and air quality, including impacts on human health (Raizenne et al., 1996; Lelieveld et al., 2015). It affects the partitioning of semi-volatile acids between the gas and aerosol phases (Guo et al., 2016; Guo et al., 2017; Guo et al., 2018; Nenes et al., 2020), secondary organic aerosol (SOA) formation (Xu et al., 2015; Marais et al., 2016), the solubility of trace metals in aerosols (Oakes et al., 2012), associated with their toxicity (Fang et al., 2012; Fang et al., 2017) and nutrient capacity (Jickells et al., 2005), the activation of halogens that act as oxidants (Saiz-Lopez and von Glasow, 2012), the conversion of sulfur dioxide (Seinfeld and Pandis, 2006; Cheng et al., 2016), the particle hygroscopic growth and lifetime (Metzger et al., 2006; Abdelkader et al., 2015; Karydis et al., 2016, 2017), and atmospheric corrosivity (Leygraf et al., 2016). Direct measurement of aerosol acidity is difficult and associated with much uncertainty, being dependent on filter sampling and the H⁺ molality in the aqueous extract, which is sensitive to artifacts (Pathak et al., 2004; Pathak et al., 2004). Therefore, particle
pH, a commonly used acidity metric of aqueous aerosols, is typically inferred by proxy techniques (Hennigan et al., 2015; Pye et al., 2020). Two of the most common are the ion balance and the molar ratio methods. In the past, these methods did not consider the effects of aerosol water and multiphase interactions with gas phase species as well as the partial dissociation of acids (Hennigan et al., 2015). The simultaneous measurement of gas phase species can improve aerosol pH estimates by accounting for the phase partitioning of semi-volatile species (e.g., NH₃, HNO₃). However, the accuracy of this approach relies on the availability of information on these species in both the gas and aerosol phase, being scant in most cases.

The best estimates of pH are obtained with thermodynamic equilibrium models, although the accuracy can be limited by not accounting for all ionic species. For example, most atmospheric chemistry models do not consider crustal elements (e.g., Ca²⁺, Mg²⁺, K⁺, Na⁺) and Na⁺ in sea salt. These species affect the ion balance by influencing the phase partitioning of nitrate and ammonium, especially in areas where aeolian dust is abundant (Karydis et al., 2016). Here we present 50-year global acidity trends of fine aerosols (i.e., with a diameter < 2.5 μm) by employing the EMAC chemistry–climate model (Jöckel et al., 2010). The pH calculations are performed online with the ISORROPIA II thermodynamic equilibrium model (Fountoukis and Nenes, 2007).

2. Results and Discussion

2.1 Global variability of aerosol acidity

Figure 1 shows the modeled near-surface distribution of fine aerosol acidity for the 2010-2015 period. We find predominantly acidic particles over the anthropogenically influenced regions in the northern hemisphere and the tropical biomass burning zones, and mostly alkaline particles over deserts and oceans, especially over the southern oceans. The pH typically ranges from 4.0 to 6.7 (5.3 on average) over the western USA since it is affected by crustal cations from the surrounding deserts. Therefore, polluted areas located downwind of crustal sources are of special interest since the pH calculations in this region are sensitive to the aerosol state assumption (see section 4.3). Over Pasadena, the base case model using the stable state mode estimates a mean pH of 5.9 units, while the sensitivity simulation with only liquid aerosol results in 2.7 pH units (equal to Guo et al. (2017) estimations by using the metastable assumption; Table S1). Our sensitivity analysis revealed that the aerosol state itself is not affected by the state assumption since both stable and metastable predict the same amount of water in the aerosol. Differences in the calculated pH can be due to the high concentrations of calcium from the Great Basin Desert which results in the precipitation of high amounts of CaSO₄, lowering the particle acidity (but without affecting the water activity since CaSO₄ is insoluble and does not contribute to the MDRH depression). It is worth mentioning that calcium was not included in the Guo et al. (2017) study which helps explain the differences in the observed and simulated aerosol acidity. The simulated particle-phase fraction of nitrate over Pasadena is 40% using the stable state assumption and 32% using the metastable assumption, compared to the observationally derived 51%. Over Europe, the pH
ranges from 2.6 to 6.7 (3.9 on average). Observational estimates of aerosol pH from the Po Valley (Squizzato et al., 2013; Masiol et al., 2020) and Cabauw (Guo et al., 2018) support the relatively low acidity of fine aerosols over Europe (Table S1). Model calculations compare well with observational estimates from Cabauw, however, result in higher pH (~1 unit) compared to values from Po Valley (estimated by using the E-AIM model). Over East Asia the average pH is 4.7, ranging from 2.6 to 7.4. Relatively high pH are found over regions where anthropogenic aerosols are mixed with aeolian dust, e.g., from the Gobi Desert, which buffer decrease the acidity (e.g., ~6 pH units over Hohhot, which agrees well with the estimations of Wang et al. (2019a)). The relatively low pH in large parts of Asia is explained by strong SO$_2$ emissions and associated sulfate, which have increased strongly in the past decades (e.g., over Guangzhou, supported by estimations of Jia et al. (2018)). Estimates of unrealistically high aerosol acidity can result from omitting the gas phase concentrations of semi-volatile ions from the pH calculations (e.g., estimates over Hong Kong (Yao et al., 2007; Xue et al., 2011), Singapore (Behera et al., 2013) and Shanghai (Pathak et al., 2009); Table S1). At the same time, SO$_2$ emissions have decreased over Europe and USA, and recently in China. However, aerosols over the eastern USA have remained acidic, with an average pH of 3.0 until recently, corroborating the findings of Weber et al. (2016) and Lawal et al. (2018) that aerosol acidity over this region is less sensitive to SO$_2$ than to NH$_3$ emissions.

The aerosol pH over the anthropogenically influenced/polluted northern hemispheric mid-latitudes (e.g., over East Asia) and the northern extratropical oceans exhibits a clear seasonal pattern with lower values during boreal summer and higher ones during winter, driven by the availability of ammonium and by the aerosol water content (Fig. 2). This is evident from both our model calculations and from observational estimates mostly in heavily populated areas such as the Po Valley (Squizzato et al., 2013), Beijing (Tan et al., 2018), and Tianjin (Shi et al., 2017), and to a lesser extent over areas strongly affected by aeolian dust (e.g., Hohhot; Wang et al., 2019b) (Table S1). Over tropical regions, fine particulates have a pH between 3.2 and 7.4, being strongly influenced by pyrogenic potassium, i.e., from widespread biomass burning (Metzger et al., 2006), and a high aerosol water content. Observational estimates from Sao Paulo support these high pH values (Vieira-Filho et al., 2016), albeit with 1 unit bias mainly related to the use of the E-AIM model. Over deserts, aerosols are relatively alkaline, with a pH up to 7.4. Aerosols in the marine environment tend to be alkaline also, with a pH up to 7.4 over the southern oceans. Observational estimates report highly acidic aerosols over the southern oceans due to the lack of gas phase input for the pH calculations (Dall’Osto et al., 2019). Over the Arctic and the northern Atlantic and Pacific Oceans, aerosol acidity is significantly enhanced by strong sulfur emissions from international shipping and pollution transport from industrialized areas (Fig. 1). The pH over the northern extratropical oceans and the Arctic ranges from 2.0 to 7.0 with an average of about 5.2. The annual cycle of aerosol acidity over these regions is strongly influenced by anthropogenic pollution, being relatively high during boreal summer. Over the Antarctic, aerosol pH ranges from 4.5 to 7.0 and follows a clear seasonal pattern (Fig. 2).
2.2 Temporal evolution of aerosol acidity

Figure 1 and Table 1 present the aerosol pH over the period 1970-2020. We investigated the impacts of alkaline species by omitting the emissions of ammonia and mineral cations in two sensitivity simulations.

2.2.1 Europe

Over Europe, the pH has increased strongly from about 2.8 during the 1970s to 3.9 recently. Especially during the 1990s NH$_3$ emissions over Europe increased significantly by 14%, while at the same time NOx and SO$_2$ emissions decreased by 13% and 49%, respectively. While this trend has continued in the past decade, pH changes slowed because the sulfate and nitrate decreases have been compensated through volatilization of ammonia from the particles. In addition, the recently increasing cation/anion ratio is accompanied by a reduction of aerosol water, preventing a significant decrease of the aerosol acidity (Fig. S1). Overall, the increase of aerosol pH by more than 1 unit during the last 50 years had a significant impact on the gas-particle partitioning of semi-volatile acids, e.g., nitric acid, since their dissociation into ions enhances their solubility (Nah et al., 2018). Here, the fraction of nitrate in the particle phase relative to total nitrate (gas plus particle) has increased from ~70% to 85% (Fig. 3). The increase in aerosol pH has been accompanied by an increase in aerosol hygroscopicity (Fig. 4). After the substantial reduction of SO$_2$ emissions, sulfate salts (e.g., ammonium sulfate with $\kappa = 0.53$) are replaced by more hygroscopic nitrate salts (e.g., ammonium nitrate with $\kappa = 0.67$) in the aerosol composition. In addition, the decrease of organic compound emissions during the last 50 years contributed to the increase of the aerosol hygroscopicity. Our sensitivity simulations reveal that aerosol acidity over Europe is highly sensitive to NH$_3$ emissions. Despite the decline of both SO$_2$ and NOx during the past decades, the aerosol would have remained highly acidic (pH ~1) in the absence of NH$_3$.

2.2.2 North America

Over North America, aerosol acidity also decreased with SO$_2$ and NOx emissions. Nevertheless, these emissions are still relatively strong in the eastern USA (5 times higher than in the western USA) resulting in very acidic aerosols, with a pH ranging from 2.2 in 1971 to 3.3 recently (Figs. 1 and S1). Such acidic conditions promote the dissolution of metals (e.g., Fe, Mn, Cu) in ambient particles (Fang et al., 2017; Fang et al., 2017). Soluble transition metals in atmospheric aerosols have been linked to adverse health impacts since they generate reactive oxygen species, leading to oxidative stress and increased toxicity of fine particulate matter (Fang et al., 2017; Park et al., 2018). Since the solubility of transition metals increases exponentially below a pH of 3, the decrease of aerosol acidity over the eastern USA reported here suggests that the particles have become substantially less toxic in the past few decades. Similar to Europe, the increasing pH has resulted in a growing aerosol nitrate fraction from ~50% during the 1970s to 65% recently (Fig. 3), and to a strong increase of aerosol hygroscopicity by ~0.15 units at the cloud base (Fig. 4). The role of NH$_3$ is critically important; without it the aerosol pH
over the eastern USA would be close to zero. Over the western USA, the aerosol pH is higher (~5), being affected by aeolian dust from the Great Basin Desert, although NH$_3$ is still the most important alkaline buffer.

2.2.3 East and South Asia

In Asia, SO$_2$ and NOx emissions have increased drastically since 1970. However, the simultaneous increase of NH$_3$ emissions along with the presence of mineral dust from the surrounding deserts (i.e., Gobi, Taklimakan, Thar) decelerated the increase of aerosol acidity. Over East Asia, the aerosol pH decreased from about 5.3 during the 1970s to 4.5 in 2010. This change in aerosol acidity has affected the predominant pathway of sulfate formation through aqueous phase chemistry. Under acidic conditions, SO$_2$ is mainly oxidized by dissolved H$_2$O$_2$, while at pH > 5 the oxidation by O$_3$ predominates (Seinfeld and Pandis, 2006). Aerosol aqueous phase chemistry. Under acidic conditions, SO$_2$ is mainly oxidized by transition metal ions, while at pH > 5 the oxidation by O$_3$ and NO$_2$ predominates (Cheng et al., 2016). Therefore, the decrease of pH during the last 50 years, even though being relatively modest, was sufficient to turn-off sulfate production from O$_3$ oxidation (Fig. 5). At the same time, the increased aerosol acidity hinders the partitioning of nitric acid to the aerosol phase, reducing the aerosol nitrate fraction from 90% to 80% (Fig. 3). Remarkably, the aerosol hygroscopicity has increased from ~0.3 in the 1970s to 0.45 recently (Fig. 4), revealing a reverse development compared to Europe and the USA. Here, the fraction of mineral dust in the aerosol is higher; therefore, the particles gained hygroscopicity by the acquired pollution solutes. Recently, the SO$_2$ emissions have dropped and the NOx emission increase has slowed in East Asia, while SO$_2$ emissions are soaring in South Asia. SO$_2$ emission trends since 2007 have been so drastic that inventories and scenarios tend to underestimate them. Satellite observations indicate that India has recently overtaken China as the world largest emitter of SO$_2$ (Li et al., 2017). Following the satellite observations, we implemented the large significant SO$_2$ reduction trends into our model (Fig. S2). Surprisingly, the effect only becomes noticeable over East Asia after 2016, when the aerosol pH started increasing by about 0.3 units, while we do not find any change over South Asia. This corroborates the strong buffering that we found over other regions such as Europe. Fig. 1 shows that NH$_3$ has been the major buffer, supporting the recent findings of Zheng et al. (2020) that the acid-base pair of NH$_3$/NH$_4^+$ provides the largest buffering capacity over East and South Asia. However, we also found that in East Asia and to a lesser extent in South Asia, crustal elements, not considered in the study of Zheng et al. (2020), have contributed significantly on maintaining a mean pH of 4.5–5 in the past decade (Fig. 1). Calcium is the major crustal component of dust from the Gobi and Taklimakan deserts (Karydis et al., 2016) and unlike other crustal compounds it can react with sulfate ions and form insoluble CaSO$_4$, which precipitates out of the aerosol aqueous phase. This interaction reduces the aqueous sulfate and thus the aerosol acidity.

2.2.4 Tropical forests, Middle East

Over tropical forests, aerosols are typically not very acidic with pH values >4. Note that organic acids were not included in the aerosol pH calculations, however, their contribution to the total ionic load is small (Andreae et al., 1988; Falkovich et al., 2005), and aerosol acidity can be attributed to inorganic acids. Over the Amazon and Congo basins, the aerosol pH remained
around 5 since 1970. The Southeast Asian forest atmosphere is affected by pollution from mainland Asia, and the aerosol pH
decreased to around 4 recently. This pH drop has enhanced SOA formation from isoprene, since under low-NOx conditions
typical over rainforests) the presence of acidifying sulfate increases the reactive uptake of epoxydiols (Xu et al.,
2015; Surratt et al., 2010). Nevertheless, NH$_3$ emissions provide a remarkably strong buffer over all three tropical regions
while mineral dust cations are also important over the Amazon and Congo forests. Further, the Middle East is affected by
strong anthropogenic (fossil fuel related) and natural (aeolian dust) aerosol sources. Due to the high abundance of mineral
dust, the pH has remained close to 7. Without crustal cations, the pH would drop to about 4. Despite the omnipresence of
alkaline species from the surrounding deserts, NH$_3$ still plays a central role in controlling the acidification of mineral dust
aerosols, which can affect their hygroscopic growth and hence their climate forcing (Klingmuller et al., 2019; Klingmüller et
al., 2020).

2.2.5 Oceans

Over the Arctic and northern extra-tropical oceans, aerosol acidity is strongly affected by pollution transport from the urban-
industrial mid-latitudes. The Arctic aerosol pH is highly variable, remaining relatively low up to 1990 (~4.2), after which it
increased to about 5.2. Crustal cations are found to play a significant buffering role lowering the aerosol acidity. Over the
northern extra-tropical oceans, aerosol pH has remained relatively constant (~4.8). NH$_3$ provides an important alkaline
buffer, and without it the aerosol pH would have been below 3. NH$_3$ is also proved to be important over the tropical and
southern extra-tropical oceans, where a noticeable increase in aerosol acidity occurred after June 1991, when the eruption of
Mount Pinatubo in the Philippines released ~20 million tons of SO$_2$ into the stratosphere (McCormick et al., 1995). The
impact of Pinatubo sulfate, after returning to the troposphere, on aerosol acidity is mostly evident over Antarctica, where the
pH dropped by 2 units, as the stratospheric circulation is strongest in the winter hemisphere. Over Antarctica concentrations
of dust and especially of NH$_3$ are very low, and Fig. 1 illustrates that only in this pristine environment the large Pinatubo
anomaly could overwhelm the buffering by alkaline species. Except after Pinatubo, the pH has remained nearly constant at
5.8 over Antarctica and about 5.5 in the tropics and 6.8 in the southern extra-tropics.

3. Conclusions

We find that aerosol pH is generally well-buffered by alkaline compounds, notably NH$_3$ and in some areas crustal elements.
NH$_3$ is found to supply remarkable buffering capacity on a global scale, from the polluted continents to the remote oceans. In
the absence of NH$_3$, aerosols would be highly (to extremely) acidic in most of the world. Therefore, potential future changes
in NH$_3$ are critically important in this respect. Agriculture is the main NH$_3$ source and a controlling factor in fine particle
concentrations and health impacts in some areas (e.g., Europe) (Pozzer et al., 2017). The control of agricultural ammonia
emissions must therefore be accompanied by very strong reductions of SO$_2$ and NOx to avoid that aerosols become highly
acidic with implications for human health (aerosol toxicity), ecosystems (acid deposition and nutrient availability), clouds
and climate (aerosol hygroscopicity).

4. Appendix A: Materials and Methods

4.1 Aerosol-chemistry-climate model

We used the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, which is a numerical chemistry and climate simulation system that describes lower and middle atmosphere processes (Jöckel et al., 2006). EMAC uses the Modular Earth Submodel System (MESSy2) (Jöckel et al., 2010) to link the different sub-models with an atmospheric dynamical core, being an updated version of the 5th generation European Centre - Hamburg general circulation model (ECHAM5) (Roeckner et al., 2006). EMAC has been extensively described and evaluated against in situ observations and satellite retrievals to compute particulate matter concentrations and composition, aerosol optical depth, acid deposition, gas phase mixing ratios, cloud properties, and meteorological parameters (Karydis et al., 2016; Pozzer et al., 2012; Tsimpidi et al., 2016; Karydis et al., 2017; Bacer et al., 2018). The spectral resolution of EMAC used in this study is T63L31, corresponding to a horizontal grid resolution of approximately 1.9°x1.9° and 31 vertical layers extending up to 10 hPa (i.e., 25 km) from the surface. The presented model simulations encompass the 50-year period 1970-2020.

EMAC calculates fields of gas phase species online through the Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA) Submodel (Sander et al., 2019). MECCA calculates the concentration of a range of gases, including aerosol precursor species (e.g. SO$_2$, NH$_3$, NO$_x$, DMS, H$_2$SO$_4$ and DMSO) and the major oxidant species (e.g. OH, H$_2$O$_2$, NO$_3$, and O$_3$). Aerosol microphysics are calculated by the Global Modal-aerosol eXtension (GMXe) module (Pringle et al., 2010). The organic aerosol formation and atmospheric evolution are calculated by the ORACLE Submodel (Tsimpidi et al., 2014, 2018). The aerosol size distribution is described by seven lognormal modes: four hydrophilic modes that cover the same size range except nucleation. The aerosol composition within each size mode is uniform (internally mixed), however, it varies between modes (externally mixed). Each mode is defined in terms of total number concentration, number mean radius, and geometric standard deviation (Pringle et al., 2010). The removal of gas and aerosol species through wet and dry deposition is calculated within the SCAV (Tost et al., 2006) and DRYDEP (Kerkweg et al., 2006) submodels, respectively. The sedimentation of aerosols is calculated within the SEDI submodel (Kerkweg et al., 2006). The cloud cover, microphysics and precipitation of large scale clouds is calculated by the CLOUD Submodel (Roeckner et al., 2006) which uses a two-moment stratiform microphysical scheme (Lohmann and Ferrachat, 2010), and describes liquid droplet (Karydis et al., 2017) and ice crystal (Bacer et al., 2018) formation by accounting for the aerosol physicochemical properties. The effective hygroscopicity parameter κ is used to describe the influence of chemical composition on the cloud condensation nuclei (CCN) activity of atmospheric aerosols. κ is calculated using the mixing rule of Petters and Kreidenweis (Petters and
and the individual κ parameter values for each inorganic salt (Petters and Kreidenweis, 2007; Sullivan et al., 2009). Organic aerosol species are assumed to have a constant hygroscopicity κ parameter of 0.14 while bulk mineral dust and black carbon are assumed to have zero hygroscopicity.

4.2 Emissions

The vertically distributed (Pozzer et al., 2009) CMIP5 RCP8.5 emission inventory (van Vuuren et al., 2011) is used for the anthropogenic and biomass burning emissions during the years 1970-2020. Direct emissions of aerosol components from biofuel and open biomass burning are considered by using scaling factors applied on the emitted black carbon based on the findings of Akagi et al. (Akagi et al., 2011) (Table S2). Dust emission fluxes and emissions of crustal species ($\text{Ca}^{2+}, \text{Mg}^{2+}, \text{K}^+, \text{Na}^+$) are calculated online as described by Klingmüller, et al. (Klingmüller et al., 2018) and based on the chemical composition of the emitted soil particles in every grid cell (Karydis et al., 2016); Table S3. NO$_x$ produced by lightning is calculated online and distributed vertically based on the parameterization of Grewe, et al. (Grewe et al., 2001). The emissions of NO from soils are calculated online based on the algorithm of Yienger and Levy (Yienger and Levy, 1995). The oceanic DMS emissions are calculated online by the AIRSEA Submodel (Pozzer et al., 2006). The natural emissions of NH$_3$ are based on the GEIA database (Bouwman et al., 1997). Emissions of sea spray aerosols (assuming a composition suggested by Seinfeld and Pandis (Seinfeld and Pandis, 2006); Table S2) and volcanic degassing emissions of SO$_2$ are based on the offline emission data set of AEROCOM (Dentener et al., 2006).

4.3 Thermodynamic model

The inorganic aerosol composition, which is of prime importance for the accurate pH calculation, is computed with the ISORROPIA-II thermodynamic equilibrium model (Fountoukis and Nenes, 2007). ISORROPIA-II calculates the gas/liquid/solid equilibrium partitioning of the $\text{K}^+\text{-Ca}^{2+}\text{-Mg}^{2+}\text{-NH}_4^+\text{-Na}^+\text{-SO}_4^{2-}\text{-NO}_3^\text{-Cl}^{-}\text{-H}_2\text{O}$ aerosol system and considers the presence of 15 aqueous phase components and 19 salts in the solid phase. ISORROPIA-II solves for the equilibrium state by considering the chemical potential of the species and minimizes the number of equations and iterations required by considering specific compositional “regimes”. Furthermore, the assumption of thermodynamic equilibrium is a good approximation for fine-mode aerosols that rapidly reach equilibrium. However, the equilibrium timescale for large particles is typically larger than the time step of the model (Meng and Seinfeld, 1996) leading to errors in the size distribution of semi-volatile ions like nitrate. Since the current study include reactions of nitric acid with coarse sea-salt and dust aerosol cations, the competition of fine and coarse particles for the available nitric acid can only be accurately represented by taking into account the kinetic limitations during condensation of HNO$_3$ in the coarse mode aerosols. To account for kinetic limitations by mass transfer and transport between the gas and particle phases, the process of gas/aerosol partitioning is calculated in two stages (Pringle et al., 2010). First, the gaseous species that kinetically condense onto the aerosol phase...
within the model timestep are calculated assuming diffusion limited condensation (Vignati et al., 2004). Then, ISORROPIA-II re-distributes the mass between the gas and the aerosol phase assuming instant equilibrium between the two phases.

ISORROPIA-II is used in the forward mode, in which the total (i.e., gas and aerosol) concentrations are given as input. Reverse mode calculations (i.e. when only the aerosol phase composition is known) should be avoided since they are sensitive to errors and infer bimodal behavior with highly acidic or highly alkaline particles, depending on whether anions or cations are in excess (Song et al., 2018). While it is often assumed that aerosols are in a metastable state (i.e., composed only of a supersaturated aqueous phase), here we use ISORROPIA-II in the thermodynamically stable state mode where salts are allowed to precipitate once the aqueous phase becomes saturated. For this purpose, we have used the revised ISORROPIA-II model which includes modifications proposed by Song et al. (2018), who resolved coding errors related to pH calculations when the stable state assumption is used. A sensitivity simulation with only liquid aerosols (i.e., metastable) revealed that the assumed particle phase state does not significantly impact the pH calculations over oceans and polluted regions (e.g., Europe), however, the metastable assumption produces more acidic particles (up to 2 units of pH) in regions affected by high concentrations of crustal cations (Fig. S3). Overall, the stable state assumption used here produces about 0.5 units higher global average pH than the metastable assumption. By comparing with the benchmark thermodynamic model E-AIM, Song et al. (2018) found that ISORROPIA-II produces somewhat higher pH (by 0.1-0.7 units, negatively correlated with RH). However, E-AIM model versions either lack crustal cations from the ambient mixture of components (e.g. version II) (Clegg et al., 1998), or only include Na+ with the restriction that it should be used when RH > 60% (e.g. version IV) (Friese and Ebel, 2010). - Song et al. (2018) applied the revised ISORROPIA-II during winter haze events in eastern China and found that the assumed particle phase state, either stable or metastable, does not significantly impact the pH predictions.

We performed a sensitivity simulation with only liquid aerosols (i.e., metastable), which revealed that the assumed particle phase state does not significantly impact the pH calculations over oceans and polluted regions (e.g., Europe), however, the metastable assumption produces more acidic particles (up to 2 units of pH) in regions affected by high concentrations of crustal cations and consistently low RH values (Fig. S3). Fountoukis et al. (2007) have shown that the metastable solution predicts significant amounts of water below the mutual deliquescence relative humidity (MDRH, where all salts are simultaneously saturated with respect to all components). Further, the generally high calcium concentrations downwind of deserts results in increasing pH values due to the precipitation of insoluble salts such as the CaSO4. The metastable state assumption fails to reproduce this since it treats only the ions in the aqueous phase. In general, high amounts of crustal species can significantly increase the aerosol pH which is consistent with the presence of excess carbonate in the aerosol phase (Meng et al., 1995). It is worth mentioning that the stable state solution algorithm of ISORROPIA II starts with assuming a dry aerosol, and based on the ambient RH dissolves each of the salts depending on their DRH. However, in the ambient atmosphere, when the RH over a wet particle is decreasing, the wet aerosol may not crystallize below the MDRH but instead remain in a metastable state affecting the uptake of water by the aerosol and thus the pH. This could be the case in some locations with high diurnal variations of RH. Our sensitivity calculations show that, overall, the stable state assumption produces an about 0.5 units higher global average pH than the metastable assumption. Karydis et al. (2016) have
shown that while the aerosol state assumption has a marginal effect on the calculated nitrate aerosol tropospheric burden (2% change), it can be important over and downwind of deserts at very low RHs where nitrate is reduced by up to 60% by using the metastable assumption. This is in accord with the findings of Ansari and Pandis (2000) who suggested that the stable state results in higher concentrations of aerosol nitrate when the RH is low (<35 %) and/or sulfate to nitrate molar ratios are low (<0.25).

4.4 pH calculations

The pH is defined as the negative decimal logarithm of the hydrogen ion activity \(a_{\text{H}^+} = \gamma x_{\text{H}^+} \) in a solution:

\[
\text{pH} = -\log_{10}(x_{\text{H}^+}) \]

where \(x_{\text{H}^+} \) is the molality of hydrogen ions in the solution and \(\gamma \) is the ion activity coefficient of hydrogen. Assuming that \(\gamma \) is unity, the aerosol pH can be calculated by using the hydrogen ion concentration in the aqueous aerosol phase calculated by ISORROPIA-II (in mole m\(^{-3}\)) and the aerosol water content calculated by GMXe (in mole Kg\(^{-1}\)). GMXe assumes that particle modes are internally mixed, and takes into account the contribution of both inorganic and organic (based on the organic hygroscopicity parameter, \(\kappa_{\text{org}} = 0.14 \) (Tsimpidi et al., 2014)) species to aerosol water.

The aerosol pH is calculated online at each timestep, and output stored every five hours based on instantaneous concentrations of fine aerosol water and hydrogen ions. The average pH values shown in the manuscript are based on the calculated instantaneous mean pH values. According to the Jensen’s inequality (Jensen, 1906), the average of the instantaneous pH values is less than or equal to the pH calculated based on the average of the water and hydrogen ion instantaneous values. We estimate that the average pH calculated based on 5-hourly instantaneous values is approximately 1-3 (-2 globally averaged) units higher than the pH calculated based on the average water and hydrogen ion concentrations. By including online gas-particle partitioning calculations of the NH\(_3\)/HNO\(_3\) system in polluted air, as applied here, we find that the aerosol pH is higher by approximately one unit (Guo et al., 2015). Hence by neglecting these aspects the aerosol pH would be low-biased by about 3 units.

4.5 Comparison against pH estimations from field derived PM\(_{2.5}\) compositional data

The pH calculated here is compared against pH estimations from field derived PM\(_{2.5}\) compositional data around the world compiled by Pye et al. (2020) (Table S1). pH data derived from other aerosol sizes (e.g., PM\(_{1}\)) has been omitted since aerosol acidity can vary significantly with size (Zakoura et al., 2020). It should be emphasized that the comparison presented
in Table S1 aims to corroborate the spatial variability of pH found in this study and not to strictly evaluate the model calculations. Observationally estimated aerosol pH is derived from a variety of methods that can affect the result significantly as discussed above (i.e., the use of E-AIM or ISORROPIA, stable/metastable assumption, forward/reverse mode, and the availability of gas phase NH$_3$/HNO$_3$, crustal species, and organic aerosol water observations).—evaluate the model calculations. Since direct measurements of aerosol acidity are not available, the observation-based aerosol pH is estimated by employing thermodynamic equilibrium models (e.g., ISORROPIA) and making assumptions that can significantly affect the results, especially when the data are averaged over extended periods, while RH conditions during data collection are not always accounted for, e.g. in studies based on filter sampling. The calculation of aerosol acidity on a global scale requires the advanced treatment of atmospheric aerosol chemical complexity, representing the real atmosphere, and beyond the conventional methods used by chemistry-climate models (CCM). The atmospheric chemistry model system EMAC is an ideal tool for this purpose since it is one of the most comprehensive CCM containing advanced descriptions of the aerosol thermodynamics (including e.g. dust-pollution interactions) and organic aerosol formation and atmospheric aging (affecting the aerosol water). Our model calculations for aerosol acidity are based on some processes/factors that are not included explicitly, usually neglected by model calculations used to constrain the aerosol acidity from observations. Sources of discrepancy between the pH calculations can be the following:

- The stable/metastable assumption does not affect the pH most of the time, however, in some cases with low RHs and the presence of crustal cations, the metastable assumption results in lower pHs (see section 4.3).
- Crustal species from deserts and Na$^+$ from sea salt can elevate the pH significantly in some locations, however, these are often neglected in observations.
- The organic aerosols (which are treated comprehensively by our model using the module ORACLE and the volatility basis set framework (Tsimpidi et al., 2014)) can contribute significantly to the aerosol water, and thus increase the aerosol pH. This contribution is not considered by many observational studies.
- Including gas phase species (e.g., NH$_3$, HNO$_3$) in the pH calculations is important. Using only the aerosol-phase as input (i.e., reverse mode) the inferred pH exhibits bimodal behaviour with very acidic or alkaline values depending on whether anions or cations are in excess (Hennigan et al., 2015). Even if the forward mode is used (without gas phase input), the calculated aerosol pH is biased low (approximately 1 pH unit) due to the repartition of semi-volatile anions (i.e., NH$_3$) to the gas phase to establish equilibrium (Guo et al., 2015).
- Another important aspect, not explicitly mentioned in many studies, relates to the methods used to derive the campaign-average (or for 3D models the simulated average) pH. In our model the aerosol pH is calculated online (2-minute time resolution), while output is stored every five hours based on instantaneous concentrations of fine aerosol H$_2$O and H$^+$. This mimics 5-hourly aerosol sampling. Then, the average pH values are calculated from the instantaneous mean pH values (see section 4.4). Often models use average values (and not instantaneous) as output, or field-derived pH calculations use average observed H$_2$O and H$^+$ values, which can result in important underestimation (by ~ 1-3 units) of the aerosol pH (Jensen, 1906).
• Some unrealistically high pH values in a few past studies resulted from coding errors in the stable state assumption of the ISORROPIA II model, which have been corrected in our study following the recommendation of Song et al. (2018).

• The type of thermodynamic model used is also important. Song et al. (2018) found that ISORROPIA-II produces somewhat higher pH (by 0.1-0.7 units, negatively correlated with RH) compared to the thermodynamic model E-AIM, which is used to observationally-constrain pH in some studies.

• Measurements of PM2.5 nitrate are not always reliable because of artifacts associated with the volatility of ammonium nitrate (Schaap et al., 2004). Ammonium and nitrate can partially evaporate from Teflon filters at temperatures between 15 to 20 °C and can evaporate completely at temperatures above. The evaporation from quartz filters is also significant at temperatures higher than 20 °C. This systematic underestimation of ammonium nitrate can affect the observed chemical composition of the aerosol and thus the pH calculations.

• The comparison between global model output and observations at specific locations. This also concerns the aerosol concentrations but is especially important for the aerosol acidity. Apart from the size of the model grid cells (i.e., ~1.9’x1.9’), the altitude is also important. The first vertical layer of EMAC is approximately 67m in height. On the other hand, ground observations are typically collected in a height up to 3 m. While the aerosols within size modes simulated in our model are well-mixed, perhaps this is not the case for the aerosols observed at the surface and potentially close to sources, and thus the aerosol acidity may be higher (e.g., due to the higher contribution from local primary sources like SO4^2-, lower water amounts in the aerosol, or lower concentrations of semi-volatile cations like NH4^+).

4.6 Emissions

The vertically distributed (Pozzer et al., 2000) CMIP5 RCP8.5 emission inventory (van Vuuren et al., 2011) is used for the anthropogenic and biomass burning emissions during the years 1970-2020. Direct emissions of aerosol components from biofuel and open biomass burning are considered by using scaling factors applied on the emitted black carbon based on the findings of Akagi, et al. (Akagi et al., 2011) (Table S2). Dust emission fluxes and emissions of crustal species (Ca^{2+}, Mg^{2+}, K^+, Na^+) are calculated online as described by Klingmuller, et al. (Klingmuller et al., 2018) and based on the chemical composition of the emitted soil particles in every grid cell (Karydis et al., 2016; Table S3). NOx produced by lightning is calculated online and distributed vertically based on the parameterization of Grewe, et al. (Grewe et al., 2001). The emissions of NO from soils are calculated online based on the algorithm of Yienger and Levy (Yienger and Levy, 1995). The oceanic DMS emissions are calculated online by the AIRSEA Submodel (Pozzer et al., 2006). The natural emissions of NH3 are based on the GEIA database (Bouwman et al., 1997). Emissions of sea spray aerosol (assuming a composition suggested by Seinfeld and Pandis (Seinfeld and Pandis, 2006); Table S2) and volcanic degassing emissions of SO2 are based on the offline emission data set of AGROCOM (Dentener et al., 2006).
4.5 Partitioning of nitric acid between the gas and aerosol phases

The impact of pH on the fraction of nitrate in the particle phase relative to total nitrate (gas plus particle), i.e., $\varepsilon(\text{NO}_3^-)$, during the 50 years of simulation in specific regions is calculated as follows (Nah et al., 2018):

$$\varepsilon(\text{NO}_3^-) = \frac{H_{\text{HNO}_3}\text{WRT}(0.987 \times 10^{-14})}{\gamma_{\text{NO}_3^-}\gamma_H^+10^{-pH} + H_{\text{HNO}_3}\text{WRT}(0.987 \times 10^{-14})} \quad (A2)$$

Where H_{HNO_3} is the combined molality-based equilibrium constant of HNO$_3$ dissolution and deprotonation, γ’s represent the activity coefficients, W is the aerosol water, R is the gas constant, and T is the ambient temperature. ε of NO_3^- is equivalent with the instantaneous calculations of ISOROPIA II within EMAC. However, the model output is produced after considering all processes in the model and is not calculated at every timestep. Therefore, the use of Eq. 2 can provide a clearer picture of the impact of pH on HNO$_3$ gas/particle partitioning since the model output (e.g., gas-phase HNO$_3$ and nitrate in 4 size modes) is subject to uncertainties related to other processes (e.g., deposition, coagulation, transport, etc.).

4.6 Sulfate formation in aqueous aerosols

The sulfate production rate on aqueous aerosols from the heterogeneous oxidation of S(IV) with the dissolved O$_3$ is given by

$$R_0 = k [\text{O}_3^-] \quad (A3)$$

The first-order uptake rate, k, from monodisperse aerosols with radius r_a and total aerosol surface A, is calculated following Jacob (Jacob, 2000):

$$k = \left(\frac{r_a}{D_g} + \frac{4}{\nu \gamma} \right)^{-1} A \quad (A4)$$

where ν is the mean molecular speed of O$_3$ and D_g is its gas-phase molecular diffusion coefficient calculated as follows:

$$D_g = \frac{9.45 \times 10^{17} \times T \left(3.47 \times 10^{-2} + \frac{1}{M} \right)}{\rho_{\text{air}}} \quad (A5)$$

where T is the ambient air temperature, ρ_{air} is the air density, and M the molar mass of O$_3$. γ is the reaction probability calculated following Jacob (Jacob, 2000) and Shao et al. (Shao et al., 2019).

$$\gamma = \frac{1}{\alpha} + \frac{\nu}{4HRT D_a K f_r} \quad (A6)$$

where α is the mass accommodation coefficient, D_a is the aqueous-phase molecular diffusion coefficient of O3, H is the effective Henry’s law constant of O$_3$ (Sander, 2015), R is the ideal gas constant, f$_r$ is the reacto-diffusive correction term (Shao et al., 2019), and K is the pseudo-first order reaction rate constant between S(IV) and O$_3$ in the aqueous phase (Seinfeld and Pandis, 2006).
5. References

Abdelkader, M., Metzger, S., Mamouri, R. E., Astitha, M., Barrie, L., Levin, Z., and Lelieveld, J.: Dust-air pollution dynamics over the eastern Mediterranean, Atmospheric Chemistry and Physics, 15, 9173-9189, 10.5194/acp-15-9173-2015, 2015.

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crouse, J. D., and Wrennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmospheric Chemistry and Physics, 11, 4039-4072, 10.5194/acp-11-4039-2011, 2011.

Andreae, M. O., Talbot, R. W., Andreae, T. W., and Harriss, R. C.: Formic and acetic-acid over the central Amazon region, Brazil. 1. dry season, Journal of Geophysical Research-Atmospheres, 93, 1616-1624, 10.1029/JD093iD02p01616, 1988.

Ansari, A. S., and Pandis, S. N.: The effect of metastable equilibrium states on the partitioning of nitrate between the gas and aerosol phases, Atmospheric Environment, 34, 157-168, 10.1016/s1352-2310(99)00242-3, 2000.

Bacer, S., Sullivan, S. C., Karydis, V. A., Barahona, D., Kramer, M., Nenes, A., Tost, H., Tsimpidi, A. P., Lelieveld, J., and Pozzer, A.: Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53), Geoscientific Model Development, 11, 4021-4041, 10.5194/gmd-11-4021-2018, 2018.

Behera, S. N., Bitha, R., Liu, P., and Balasubramanian, R.: A study of diurnal variations of PM2.5 acidity and related chemical species using a new thermodynamic equilibrium model, Science of The Total Environment, 452-453, 286-295, https://doi.org/10.1016/j.scitotenv.2013.02.062, 2013.

Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., VanderHoek, K. W., and Olivier, J. G. J.: A global high-resolution emission inventory for ammonia, Global Biogeochemical Cycles, 11, 561-587, 10.1029/97gb02266, 1997.

Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao, M., Zhang, Q., He, K. B., Carmichael, G., Poschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science Advances, 2, 10.1126/sciadv.1601530, 2016.

Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of the system H+−NH4+−Na+−SO42−−NO3−−Cl−−H2O, The Journal of Physical Chemistry A, 114, 11595-11604, 10.1021/jp101041j, 2010.

Dall’Osto, M., Airs, R. L., Beale, R., Cree, C., Fitzsimons, M. F., Beddows, D., Harrison, R. M., Ceburnis, D., O’Dowd, C., Rinaldi, M., Paglione, M., Nenes, A., Deescara, S., and Simó, R.: Simultaneous Detection of Alkylamines in the Surface Ocean and Atmosphere of the Antarctic Sympagic Environment, ACS Earth and Space Chemistry, 3, 854-862, 10.1021/acsearthspacechem.9b00028, 2019.

Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzenmann, J. J., Ito, A., Marelli, L., Penner, J. E., Pataud, J. P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321-4344, 2006.

Falkovich, A. H., Graber, E. R., Schkolnik, G., Rudich, Y., Maenhaut, W., and Artaxo, P.: Low molecular weight organic acids in aerosol particles from Rondonia, Brazil, during the biomass-burning, transition and wet periods, Atmospheric Chemistry and Physics, 5, 781-797, 10.5194/acp-5-781-2005, 2005.

Fang, T., Guo, H. Y., Zeng, L. H., Verma, V., Nenes, A., and Weber, R. J.: Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity, Environmental Science & Technology, 51, 2611-2620, 10.1021/acs.est.6b00615, 2017.

Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+,Ca2+−Mg2+−NH4+−Na+−SO422−−NO3−−Cl−−H2O aerosols, Atmospheric Chemistry and Physics, 7, 4639-4659, 2007.

Friese, E., and Ebel, A.: Temperature Dependent Thermodynamic Model of the System H+−NH4+−Na+−SO42−−NO3−−Cl−−H2O, The Journal of Physical Chemistry A, 114, 11595-11631, 10.1021/jp101041j, 2010.

Grew, V., Brunner, D., Dameris, M., Grenfell, J. L., Hein, R., Shindell, D., and Staehelin, J.: Origin and variability of upper tropospheric nitrogen oxides and ozone at northern mid-latitudes, Atmospheric Environment, 35, 3421-3433, 10.1016/s1352-2310(01)00134-0, 2001.
sed, G. L.: Direct radiative effect of dust on cloud mineral dust emissions in the atmospheric chemistry-climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch), Geoscientific Model Development, 11, 989-1008, 10.5194/gmd-11-989-2018, 2018.

Klingmüller, K., Lelieveld, J., Karydis, V. A., and Stenchikov, G. L.: Direct radiative effect of dust-pollution interactions, Atmospheric Chemistry and Physics, 19, 7397-7408, 10.5194/acp-19-7397-2019, 2019.

Klingmüller, K., Karydis, V. A., Bacer, S., Stenchikov, G. L., and Lelieveld, J.: Weaker cooling by aerosols due to dust-pollution interactions, Atmos. Chem. Phys. Discuss., 2020, 1-19, 10.5194/acp-2020-531, 2020.
Pozzer, A., Jöckel, P., and Van Aardenne, J.: The influence of the vertical distribution of emissions on tropospheric chemistry. Atmospheric Chemistry and Physics, 9, 9417-9432, 2009.

Pozzer, A., de Meij, A., Pringle, K. J., Tost, H., Doering, U. M., van Aardenne, J., and Lelieveld, J.: Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model. Atmos. Chem. Phys., 12, 961-987, 2012.

Pozzer, A., Tsaripidi, A. P., Karydis, V. A., de Meij, A., and Lelieveld, J.: Impact of agricultural emission reductions on fine-particle matter and public health. Atmospheric Chemistry and Physics, 17, 12813-12826, 10.5194/acp-17-12813-2017.

Pringle, K. J., Tost, H., Message, S., Steil, B., Giannadaki, D., Nenes, A., Fountoukis, C., Stier, P., Vignati, E., and Lejeune, J.: Description and evaluation of GMXe: a new aerosol submodule for global simulations (v1). Geoscientific Model Development, 3, 391-412, 2010.

Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Burth, M. C., Clegg, S. L., Collett, J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I. T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G. L., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuev, A.: The acidity of atmospheric particles and clouds. Atmospheric Chemistry and Physics, 20, 4809-4888, 10.5194/acp-20-4809-2020, 2020.

Raizenne, M., Nea, L. M., Damokosh, A. I., Dockery, D. W., Spengler, J. D., Koutrakis, P., Ware, J. H., and Speizer, F. E.: Health effects of acid aerosols on North American children: Pulmonary function. Environmental Health Perspectives, 104, 506-514, 10.2307/3432991, 1996.

Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. Journal of Climate, 19, 3771-3791, 10.1175/jcli3824.1, 2006.

Saiz-Lopez, A., and von Glasow, R.: Reactive halogen chemistry in the troposphere, Chemical Society Reviews, 41, 6448-6472, 10.1039/c2cs35208g, 2012.

Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399-4981, 10.5194/acp-15-4399-2015, 2015.

Sander, R., Baumgaertner, A., Cabrera-Perez, D., Frank, F., Gromov, S., Grooss, J. U., Harder, H., Huijnen, V., Jöckel, P., Karydis, V. A., Niemeyer, K. E., Pozzer, A., Hella, R. B., Schultz, M. G., Taraborrelli, D., and Tauer, S.: The community atmospheric chemistry box model CAABA/MECCA-4.0, Geoscientific Model Development, 12, 1365-1385, 10.5194/gmd-12-1365-2019, 2019.

Schaap, M., van Loon, M., ten Brink, H. M., Dentener, F. J., and Buitjers, P. J. H.: Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmos. Chem. Phys., 4, 857-874, 10.5194/acp-4-857-2004, 2004.

Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Second ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.

Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song, S., Zhao, Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing. Atmos. Chem. Phys., 19, 6107-6123, 10.5194/acp-19-6107-2019, 2019.

Shi, G., Xu, J., Peng, X., Xiao, Z., Chen, K., Tian, Y., Guan, X., Feng, Y., Yu, H., Nenes, A., and Russell, A. G.: pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol, Environmental Science & Technology, 51, 4289-4296, 10.1021/acs.est.6b05736, 2017.

Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., and McElroy, M. B.: Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmos. Chem. Phys., 18, 7423-7438, 10.5194/acp-18-7423-2018, 2018.

Squizzato, S., Masioli, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., and Pavoni, B.: Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy), Atmos. Chem. Phys., 13, 1927-1939, 10.5194/acp-13-1927-2013, 2013.

Sullivan, R. C., Moore, M. J. K., Petters, M. D., Kreidenweis, S. M., Roberts, G. C., and Prather, K. A.: Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmospheric Chemistry and Physics, 9, 3303-3316, 2009.
Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M. N., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Reactive intermediates revealed in secondary organic aerosol formation from isoprene, Proceedings of the National Academy of Sciences of the United States of America, 107, 6640-6645, 10.1073/pnas.0911141107, 2010.

Tan, T., Hu, M., Li, M., Guo, Q., Wu, Y., Fang, X., Gu, F., Wang, Y., and Wu, Z.: New insight into PM2.5 pollution patterns in Beijing based on one-year measurement of chemical compositions, Science of The Total Environment, 621, 734-743, https://doi.org/10.1016/j.scitotenv.2017.11.208, 2018.

Tost, H., Jockel, P. J., Kerkweg, A., Sander, R., and Lelieveld, J.: Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling, Atmos. Chem. Phys., 6, 565-574, 2006.

Tsipouri, A. P., Karydis, V. A., Pozer, A., Pandis, S. N., and Lelieveld, J.: ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere, Geoscientific Model Development, 7, 3153-3172, 10.5194/gmd-7-3153-2014, 2014.

Tsipouri, A. P., Karydis, V. A., Pandis, S. N., and Lelieveld, J.: Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets, Atmos. Chem. Phys., 16, 8939-8962, 10.5194/acp-16-8939-2016, 2016.

Tsipouri, A. P., Karydis, V. A., Pozer, A., Pandis, S. N., and Lelieveld, J.: ORACLE 2-D (v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry-climate model, Geoscientific Model Development, 11, 3369-3389, 10.5194/gmd-11-3369-2018, 2018.

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climatic Change, 109, 5-31, 10.1007/s10584-011-0148-z, 2011.

Veiga-Filho, M., Pedrotti, J. J., and Fornaro, A.: Water-soluble ions species of size-resolved aerosols: Implications for the atmospheric acidity in São Paulo megacity, Brazil, Atmospheric Research, 181, 281-287, https://doi.org/10.1016/j.atmosres.2016.07.006, 2016.

Vignati, E., Wilson, J., and Stier, P.: M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models, J. Geophys. Res.-Atmos., 109, doi: 10.1029/2003jd004485, 2004.

Wang, H., Ding, J., Xu, J., Wen, J., Han, J., Wang, K., Shi, G., Feng, Y., Ivey, C. E., Wang, Y., Nenes, A., Zhao, Q., and Russell, A. G.: Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols, Science of The Total Environment, 646, 546-572, https://doi.org/10.1016/j.scitotenv.2018.07.321, 2019a.

Wang, Y., Li, W., Gao, W., Liu, Z., Tian, S., Shen, R., Ji, D., Wang, S., Wang, L., Tang, G., Song, T., Cheng, M., Wang, G., Gong, Z., Hao, J., and Zhang, Y.: Trends in particulate matter and its chemical compositions in China from 2013–2017, Science China Earth Sciences, 62, 1857-1871, 10.1007/s11355-018-9373-1, 2019b.

Weber, R. J., Guo, H. Y., Russell, A. G., and Nenes, A.: High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years, Nature Geoscience, 9, 282-285, 10.1038/ngeo2665, 2016.

Xu, L., Guo, H. Y., Boyd, C. M., Klein, M., Bougiatioti, A., Cerulli, K. M., Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V., de Gouw, J., Baumann, K., Lee, S. H., Nenes, A., Weber, R. J., and Ng, N. L.: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States, Proceedings of the National Academy of Sciences of the United States of America, 112, 37-42, 10.1073/pnas.1417609112, 2015.

Xue, J., Lau, A. K. H., and Yu, J. Z.: A study of acidity on PM2.5 in Hong Kong using online ionic chemical composition measurements, Atmospheric Environment, 45, 7081-7088, https://doi.org/10.1016/j.atmosenv.2011.09.040, 2011.

Yao, X., Ling, T. Y., Fang, M., and Chan, C. K.: Size dependence of in situ pH in submicron atmospheric particles in Hong Kong, Atmospheric Environment, 41, 382-393, https://doi.org/10.1016/j.atmosenv.2006.07.037, 2007.

Yienger, J. J., and Levy, H.: Empirical-model of global soil-biogenic NOx emissions, Journal of Geophysical Research-Atmospheres, 100, 11447-11464, 10.1029/95jd00370, 1995.

Zakoura, M., Kakavas, S., Nenes, A., and Pandis, S. N.: Size-resolved aerosol pH over Europe during summer, Atmos. Chem. Phys. Discuss., 2020, 1-24, 10.5194/acp-2019-1146, 2020.

Zheng, G., Su, H., Wang, S., Andreae, M. O., Pöschl, U., and Cheng, Y.: Multiphase buffer theory explains contrasts in atmospheric aerosol acidity, Science, 369, 1374-1377, 10.1126/science.aba3719, 2020.
Author contributions: V.A.K. and J.L. planned the research, V.A.K., A.P.T. and A.P. performed the model calculations, V.A.K., A.P., and J.L. analyzed the results, V.A.K. and J.L. wrote the paper. All authors contributed to the manuscript.

Competing interests: Authors declare no competing interests. Code/Data availability: Data and related material can be obtained from V.A.K. (v.karydis@fz-juelich.de) upon request.
Figure 1: Mean, near-surface fine aerosol pH during the period 2010-2015 (central panel). Surrounding panels show the temporal pH evolution during the period 1970-2020 at locations defined in Table 1. Black lines represent the reference simulation. Red and blue lines show the sensitivity simulations in which crustal particle and NH\textsubscript{3} emissions are removed, respectively. Ranges represent the 1σ standard deviation. The anomaly in 1991/2 is related to the Mt Pinatubo eruption.
Figure 2: Average seasonal cycle of modelled pH during the period 2010-2015 at locations defined in Table 1. Ranges represent the 1σ standard deviation.
Figure 3: Time evolution of particle phase fraction of total nitrate as a function of pH over Europe (left), the Eastern USA (right) and East Asia (bottom) during the period 1970-2020.
Figure 4: Time evolution of annual average aerosol hygroscopicity (Kappa) as a function of pH over Europe (left), the Eastern USA (right) and East Asia (bottom) during the period 1970-2020 at the lowest cloud-forming level (940 hPa).
Figure 5: Time evolution of the sulfate production rate on aqueous aerosols from the \(\text{SO}_2 + \text{O}_3 \) multiphase chemistry reaction as a function of aerosol pH over East Asia (left) and South Asia (right) during the period 1970-2020.
Table 1: Decadal averages of aerosol pH.

Region	Longitude	Latitude	1971-1980	1981-1990	1991-2000	2001-2010	2011-2020
Western USA¹	90°-70°W	30°-46°N	4.6	4.8	4.8	5.0	5.1
Eastern USA¹	124°-114°W	30°-52°N	2.2	2.4	2.4	2.9	3.3
Central America¹	106°-52°W	4°-28°N	4.6	4.6	4.6	4.7	4.9
Europe¹	12°W-36°E	34°-62°N	2.8	3.0	3.3	3.7	3.9
East Asia¹	100°-114°E	20°-44°N	5.3	5.2	5.1	4.7	4.5
South Asia¹	68°-94°E	8°-32°N	5.6	5.5	5.3	5.0	4.9
South America¹	75°-35°W	30°-0°S	5.2	5.1	5.1	5.1	5.1
Central Africa¹	10°-40°E	10°S-10°N	4.9	4.8	4.8	4.7	4.9
Southeast Asia¹	94°-130°E	12°S-20°N	4.5	4.3	4.1	3.9	3.8
Middle East¹	36°-60°E	12°-34°N	7.0	7.0	6.9	6.9	6.8
Arctic	0°-360°	60°-90°N	4.2	4.2	4.6	4.8	5.2
North extratropics²	0°-360°	20°-60°N	4.8	4.8	4.7	4.7	4.9
Tropical oceans²	0°-360°	20°S-20°N	5.6	5.6	5.5	5.5	5.5
South extratropics²	0°-360°	60°-20°S	6.8	6.8	6.8	6.8	6.8
Antarctic	0°-360°	90°-60°S	5.9	5.9	5.6	5.8	5.8

¹Only values over land are considered for the calculation of pH
²Only values over oceans are considered for the calculation of pH
Supplementary Materials

Figure S1: Time evolution of annual average pH as a function of cation/anion molar ratio over Europe (left) and the Eastern USA (right) during the period 1970-2020.

Figure S2: Temporal pH evolution in East and South Asia during the period 2008-2020. Black lines represent the reference simulation. Red lines show the sensitivity simulation in which SO$_2$ emissions are reduced by 75% in East Asia and increased by 50% in South Asia. Ranges represent the 1σ standard deviation.
Figure S3: Absolute change in the calculated mean near-surface fine aerosol pH during the period 2010-2015 (cf. central panel in Fig. 1) by assuming that aerosols are always aqueous solution droplets (metastable state). A negative change corresponds to more acidic particles compared to the stable state assumption.
Table S1: Fractional emission factors of aerosol components for biofuel combustion, and savannah and tropical forest biomass burning (Akagi et al., 2011), and for sea salt (Seinfeld and Pandis, 2006).

Location	Latitude	Longitude	Time period	Simulated mean pH	Field derived mean pH	Method used	Reference
Pellston, MI, USA	45.55°N	84.78°W	Jul 2016	3.8	3.5	pH indicator-paper/colorimetric-image	Craig et al., 2018
Ann Arbor, MI, USA	42.28°N	83.74°W	Aug 2016	4.3	3.5	pH indicator-paper/colorimetric-image	Craig et al., 2018
Centreville, AL, USA	32.9°N	87.25°W	Jun 1998—Aug 2013	6.4	1.2	ISORROPIA (no NH₃)	Weber et al., 2016
Centreville, AL, USA	32.9°N	87.25°W	Jun—Jul 2013	7.0	1.1	ISORROPIA	Pye et al., 2018
Egbert, ON, Canada	44.23°N	79.78°W	Jul—Sep 2012	3.9	2.1	E-AIM Model II	Murphy et al., 2012
Harrow, ON, Canada	42.03°N	82.30°W	Jun—Jul 2007	4.2	1.6	E-AIM Model II	Murphy et al., 2017
Pendeleen, CA, USA	34.14°N	118.42°W	Jun 2010	5.0	3.7	ISORROPIA (metastable)	Guo et al., 2017
Toronto, Canada	43.66°N	79.40°W	2007-2010	4.6	2.6	E-AIM I (with gas NH₃ HNO₃)	Tao and Murphy, 2019
Toronto, Canada	43.66°N	79.40°W	2014-2016	4.4	2.7	E-AIM I (with gas NH₃ HNO₃)	Tao and Murphy, 2019
Ottawa, Canada	45.43°N	75.68°W	2007-2016	4.0	2.5	E-AIM I (with gas NH₃ HNO₃)	Tao and Murphy, 2019
Simcoe, Canada	44.86°N	80.27°W	2007-2016	4.4	2.41	E-AIM I (with gas NH₃ HNO₃)	Tao and Murphy, 2019
Montreal, Canada	45.65°N	73.57°W	2007-2016	4.0	2.4	E-AIM I (with gas NH₃ HNO₃)	Tao and Murphy, 2019
Windsor, Canada	42.29°N	83.07°W	2007-2010	4.4	2.1	E-AIM I (with gas NH₃ HNO₃)	Tao and Murphy, 2019
Windsor, Canada	42.29°N	83.07°W	2012-2016	4.5	2.4	E-AIM I (with gas NH₃ HNO₃)	Tao and Murphy, 2019
St. Anicet, Canada	45.12°N	74.20°W	2007-2016	4.0	2.5	E-AIM I (with gas NH₃ HNO₃)	Tao and Murphy, 2019
Sao Paulo, Brazil	23.55°S	46.63°W	Aug—Sep 2012	6.2	4.8	E-AIM	Vieira-Filho et al., 2016
Location	Latitude	Longitude	Period	EF	NOx	Model	Authors
-------------------	----------	-----------	----------------------	----	-----	---------------------	------------------
Po Valley, Italy	45.40°N	12.20°E	Mar 2009—Jan 2010	4.5	3.1	E-AIM Model IV	Squizzato et al., 2013
Po Valley, Italy	45.40°N	12.20°E	Spring 2009	4.3	3.6	E-AIM Model IV	Squizzato et al., 2013
Po Valley, Italy	45.40°N	12.20°E	Summer 2009	4.8	2.3	E-AIM Model IV	Squizzato et al., 2013
Po Valley, Italy	45.40°N	12.20°E	Fall 2009	4.5	3	E-AIM Model IV	Squizzato et al., 2013
Po Valley, Italy	45.40°N	12.20°E	Winter 2009-2010	4.4	3.4	E-AIM Model IV	Squizzato et al., 2013
Po Valley, Italy	45.40°N	12.20°E	Winter 2012-2013	4.2	3.9	ISORROPIA	Masiol et al., 2013
Po Valley, Italy	45.40°N	12.20°E	Spring 2012	4.1	2.3	ISORROPIA	Masiol et al., 2013
Cabauw, Netherlands	51.97°N	4.93°E	Jul 2012—Jun 2013	4.0	3.7	ISORROPIA	Guo et al., 2018
Cabauw, Netherlands	51.97°N	4.93°E	Jun—Aug 2013	3.6	3.3	ISORROPIA	Guo et al., 2018
Cabauw, Netherlands	51.97°N	4.93°E	Dec—Feb 2012	4.1	3.9	ISORROPIA	Guo et al., 2018
Beijing, China	39.99°N	116.30°E	Nov 2015—Dec 2016	4.8	4.3	ISORROPIA	Liu et al., 2017
Guangzhou, China	23.13°N	113.26°E	Jul 2013	2.6	2.5	E-AIM Model IV	Jia et al., 2018
Beijing, China	39.97°N	116.37°E	Nov 2014—Dec 2014	4.5	4.6	ISORROPIA	Song et al., 2018
Beijing, China	40.41°N	116.68°E	Oct 2014—Jan 2015	5.6	4.7	ISORROPIA	He et al., 2018
Beijing, China	39.99°N	116.31°E	Jan—Dec 2014	4.8	3.0	ISORROPIA	Tan et al., 2018
Beijing, China	39.99°N	116.31°E	Winter 2014	5.5	4.1	ISORROPIA	Tan et al., 2018
Beijing, China	39.99°N	116.31°E	Fall 2014	6.0	3.1	ISORROPIA	Tan et al., 2018
Beijing, China	39.99°N	116.31°E	Spring 2014	5.4	2.1	ISORROPIA	Tan et al., 2018
City, Country	Latitude	Longitude	Season	ISORROPIA Version	Reference		
--------------	----------	-----------	--------	-------------------	-----------		
Beijing, China	39.99°N	116.31°E	Summer 2014	3.1	ISORROPIA (metastable)	Tan et al., 2018	
Tianjin, China	39.44°N	117.16°E	Dec 2014—Jun 2015	4.4	ISORROPIA (metastable)	Shi et al., 2017	
Tianjin, China	39.44°N	117.16°E	Aug 2015	4.4	ISORROPIA (metastable)	Shi et al., 2017	
Beijing, China	39.98°N	116.28°E	Feb 2017	4.7	ISORROPIA	Ding et al., 2019	
Beijing, China	39.98°N	116.28°E	Apr—May 2016	5.2	ISORROPIA	Ding et al., 2019	
Beijing, China	39.98°N	116.28°E	Jul—Aug 2015	4.5	ISORROPIA	Ding et al., 2019	
Guangzhou, China	23.13°N	113.26°E	Jul—Sep 2013	2.7	E-AIM Model III	Jia et al., 2018	
Hohhot, China	40.48°N	111.41°E	Summer 2014	5.5	ISORROPIA (metastable, no NH₃)	Wang et al., 2019	
Hohhot, China	40.48°N	111.41°E	Autumn 2014	6.8	ISORROPIA (metastable, no NH₃)	Wang et al., 2019	
Hohhot, China	40.48°N	111.41°E	Winter 2014	5.8	ISORROPIA (metastable, no NH₃)	Wang et al., 2019	
Hohhot, China	40.48°N	111.41°E	Spring 2015	6.4	ISORROPIA (metastable, no NH₃)	Wang et al., 2019	
Hohhot, China	40.48°N	111.41°E	2014—2015	6.3	ISORROPIA (metastable, no NH₃)	Wang et al., 2019	
Beijing, China	40.41°N	116.68°E	Oct 2014—Jan 2015	5.6	ISORROPIA (stable state)	He et al., 2018	
Xi’an, China	34.23°N	108.89°E	Nov—Dec 2012	5.7	ISORROPIA	Wang et al., 2016	
Beijing, China	39.99°N	116.30°E	Jan—Feb 2015	5.0	ISORROPIA	Wang et al., 2016	
Beijing, China	40.35°N	116.30°E	Jun—Aug 2005	4.2	E-AIM Model II (only aerosols)	Pathak et al., 2009	
Shanghai, China	31.45°N	121.10°E	May—Jun 2005	3.5	E-AIM Model II (only aerosols)	Pathak et al., 2009	
Location	Latitude	Longitude	Date Range	E-AM Model	E-AM Model Details	Citation	
-------------------	----------	-----------	---------------------	------------	--------------------	----------------	
Lanzhou, China	36.13°N	103.68°E	Jun–Jul 2006	6.8	0.6	Pathak et al., 2009	
Beijing, China	40.32°N	116.32°E	Jan 2005–Apr 2006	5.1	0.7	He et al., 2012	
Chongqing, China	29.57°N	106.53°E	Jan 2005–Apr 2006	3.6	1.5	He et al., 2012	
Beijing, China	40°N	116.33°E	Jan 2013	4.6	5.8	Wang et al., 2016	
Singapore	1.3°N	103.78°E	Sep–Nov 2011	3.2	0.6	Behera et al., 2013	
Hong Kong	22.34°N	114.26°E	Jul 1997–May 1998	3.3	0.3	Yao et al., 2002	
Hong Kong	22.34°N	114.26°E	Nov 1996–Nov 1997	3.4	1.1	Yao et al., 2002	
Hong Kong	22.34°N	114.26°E	Oct 2008	5.0	0.6	Xue et al., 2011	
Hong Kong	22.34°N	114.26°E	Nov 2008	3.2	0.5	Xue et al., 2011	
Hong Kong	22.34°N	114.26°E	Jun–Jul 2009	1.6	0.1	Xue et al., 2011	
Pacific Ocean	47.5°S	147.5°W	Nov–Dec 1995	7.0	1.0	Fridlind and Jacobson, 2000	
South Ocean	61°S	45°W	Jan 2015	6.9	1.4	Dall’Osto et al., 2019	
South Ocean	64°S	65°W	Jan–Feb 2015	6.9	3.8	Dall’Osto et al., 2019	
Table S2: Fractional emission factors of aerosol components for biofuel combustion, and savannah and tropical forest biomass burning (Akagi et al., 2011), and for sea salt (Seinfeld and Pandis, 2006).

Source	SO$_4^{2-}$	NO$_3^-$	Cl$^-$	Na$^+$	K$^+$	Mg$^{2+}$	Ca$^{2+}$	NH$_4^+$
Biofuel combustion	-	0.014	-	0.003	0.023	0.073	-	-
Grassfire burning	0.05	0.04	0.62	0.01	0.02	0.04	0.06	0.01
Forest fire burning	0.25	0.21	0.29	0.04	0.56	0.08	0.16	0.01
Sea salt	0.077	-	0.55	0.306	0.011	0.037	0.012	-

Table S3: Fractional chemical composition of mineral dust emissions (Karydis et al., 2016).

Desert	Na$^+$	K$^+$	Ca$^{2+}$	Mg$^{2+}$	Other
Great Basin	0.064	0.023	0.053	0.018	0.842
Mojave	0.015	0.027	0.050	0.019	0.880
Sonoran	0.025	0.042	0.037	0.006	0.020
Patagonia	0.012	0.035	0.021	0.013	0.020
Monte	0.023	0.018	0.025	0.009	0.025
Atacama	0.069	0.007	0.018	0.005	0.901
Kalahari	0.030	0.050	0.120	0.090	0.710
Namibia	0.011	0.035	0.075	0.030	0.849
Sahara	0.014	0.004	0.014	0.006	0.946
Saudi Arabia	0.022	0.033	0.082	0.022	0.841
Thar/Lut	0.023	0.040	0.120	0.028	0.840
Taklimakan	0.012	0.021	0.077	0.017	0.873
Gobi	0.028	0.004	0.005	0.003	0.964
Great Sandy/Simpson	0.012	0.015	0.024	0.000	0.940
Other					