Graphical Representations of Experimental and ANN Predicted Data for Mechanical and Electrical Properties of AlSiC Composite Prepared by Stir Casting Method

Philip O. Babalola*, Christian A. Bolu†, Anthony O. Inegbenebor‡, Oluseun Kilanko†

Department of Mechanical Engineering, College of Engineering, Covenant University, Ota, Nigeria
E-mail address: philip.babalola@covenantuniversity.edu.ng

Abstract. Artificial Neural network is a field of man-made intelligence that is able to undertake design prediction, mechanical property forecast, and process selection. In this paper, Aluminium Silicon Carbide composite was developed by reinforcing aluminium metal with silicon carbide powder using stir casting method. The produced aluminium matrix composites (AMC) were subjected to tensile, hardness and electrical tests to obtain tensile extension (mm), load (N), modulus (N/mm²), yield strength (MPa), hardness (HV), ultimate tensile strength (MPa), tenacity at fracture (gf/tex), time at fracture (s), hardness (HV), conductivity (Mﬁ/m), and tensile stress (MPa) data. Artificial Neural Network (ANN) was then used to train, test, and validate the obtained experimental data and then predict new set of data. The experimental and ANN predicted data were represented using graphical illustrations. The results showed that ANN could be used to replace rigorous, costly and time consuming experimental exercise with minimal loss in accuracy.

Keywords: AlSiC composite, artificial neural network (ANN), mechanical properties, electrical properties, stir casting

1. Introduction

Aluminium metal is the most severely used non-ferrous metal in our world today and it is only second to steel, when it comes to automobile body frame [1], with 5xxx and 6xxx series on the lead. Light weight, high strength, and high resistance to corrosion in an aggressive environment make aluminium a suitable material for use in conventional and non-conventional applications. Aluminium also responds readily to strengthening mechanisms. However, aluminium does not perform very well in high temperature applications due to its low melting temperature. It also has very little resistance to abrasive wear because of small hardness value [2]. Improved mechanical properties is obtained by reinforcing aluminium alloy matrix with ceramic materials [3-6]. Some ceramic materials like alumina, B4C, SiC, Si3N4, AlN, TiC, TiB2, TiO2 and hard metals such as tungsten and titanium are used for this purpose [7]. The resultant aluminium matrix composites now have numerous use in reciprocating internal combustion engine members (cylinder liners, pistons, pushrods, cylinder blocks), rotors, brake for high speed locomotives, transmission parts, turbocharger vanes, forks for gear shift, clutch plate, golf clubs, bicycles, electronic boards, and heat fins. Bringing aluminium and reinforcing material together may be done using processing methods such as powder metallurgy, cryomilling, vacuum infiltration, vacuum hot pressing, thixoforming, co-spray deposition process, compocasting, squeeze casting, centrifugal casting, laser alloying and stir casting methods [6, 8]. Stir casting method is used in this work due to its cost-effectiveness and ease of varying and monitoring of processing parameters. Many studies have been conducted on properties and characterization of Al/SiCp composites [9-13]. Evaluated properties of the composites depend on the particularly critical one for the material application. Some of these properties are tensile, hardness, thermal conductivity, electrical conductivity, fatigue, creep, wear rate and so on.

However, the same properties are now being predicted using Artificial Neural Network (ANN) method. Kavimani and Prakash used ANN and Taguchi method to predict wear rate properties of magnesium composite [14], while Rashed and Mahmoud in their work used ANN to predict the same property but
with aluminium composite [15]. Apart from material properties, ANN is also used in process parameters in surface engineering [16], machining [17] and composite.

2. Materials and Methods

In this work, stir casting method was adopted to synthesize samples of AMCs using 1170Al reinforced with Silicon Carbide (SiC) particulates of 3 µm, 9 µm, 29 µm, and 45 µm sizes respectively. The chemical composition of Aluminium and Silicon Carbide are presented in Table 1 and Table 2 below.

Table 1 The Compositions in Percentage of Aluminium Ingot Used in the Experiment

Fe	Mg	Sn	Cu	Zn	Ti	Si	Pb	Mn	Al
0.232	0.0027	0.007	0.0006	0.0016	0.006	0.078	0.0012	0.000	99.66

Table 2 The Chemical Composition in Percentage of Silicon Carbide

Si	Al	Fe	C	SiO2	Magnetic Iron	SiC
0.80	0.30	0.20	0.50	0.60	0.04	97.6

The liquid metallurgy method (stir casting technique) was used to formulate AMC. An oil-fired tilting furnace was used to melt measured mass of 1170Al to 750 °C inside a graphite crucible. A K-type thermocouple was used to monitor the temperature of the melt to avoid overheating and energy wastage. A mould preheated to 450 °C was used to receive the melt where it was mixed with the help of an impeller to form a fine vortex. SiC particles heated to temperature of 1100 °C was then introduced into the melt simultaneously with mechanical stirring at 500rpm for about 5mins. Mixing occurs when the slurry is at semisolid form. The melt behaves as a solid when no stress is involved but flows like a liquid when pressure is applied-this is thixotropic property. Uniform dispersion is produced by introducing particles when cooling of the melt is combined with rigorous agitation. The agitation helped in breaking the liquid-solid mixture by break down the dendritic structure. The AMCs having different particle sizes (3 µm, 9 µm, 29 µm and 45 µm) and each size with different weight percentage (2.5, 5.0, 7.5 and10 wt %) of SiC were fabricated by the same procedure.

2.1 Tensile test

All specimens produced through stir casting method had circular cross-section with dimensions of 110 mm Ø and 30 mm length. Five tensile specimen with dimensions of 5 mm x 10 mm with a gauge length of 25 mm were machined out and tested in Universal Testing Machine (Instron:Model 3369) of 30kN load using ASTM International E8/E8M-09 standard. Five measurements (modulus) were recorded for each sample and the average was calculated.

2.2 Microhardness test

Microhardness measurements were carried according to ASTM Standard E 384. Test machine was LECO 700AT with a load of 492.3 mN and a dwell time of 10 s. Surface preparation was done with emery papers down to 1000 mesh. Six tests were conducted for each sample and the average recorded.

2.3 Electrical conductivity

Specimen of each cast were cut out and milled in the machine shop for electrical conductivity testing.. The working voltage of 20 mV was selected in 4-point probe machine on samples with dimensions 10 mm L x 10 mm B x 100 mm H. Keithley Instruments Model 2400 was used to generate current, voltage, conductivity and resistivity for each sample.
2.4 ANN predicted data

ANN was used for modelling and forecasting tensile, electrical conductivity and micro-hardness properties. ANN architecture as shown in Figure 1 was employed to train, test and validate the measured data and then generate new forecasted data. Figure 1 consists of number of joints, arranged in layers that are identified as output layer, hidden layer, and input layer. Iterative computations are done viz-a-viz input layers through network structure depicted by the hidden layers until it arrives at the output layer. The input is a 3x17 matrix, representing 17 samples of 3 elements (see Table 3). Three input elements are percentage weight of aluminium, percentage weight of SiC and size of SiC particle. The output (target) is a 11x17 matrix, representing 17 samples of 11 elements (see Table 4). The eleven output elements are microhardness, yield strength, tensile extension, modulus, ultimate tensile strength, tensile stress, time at fracture (break), load at maximum extension, tenacity, electrical resistivity and conductivity. Training and simulation steps used exactly 70% of the data, validation steps used 15% of the data, while remaining 15% was used for testing the network. The architecture of the network can be represented as (3, HL, 11), where HL is the hidden layer, hence the network topology (3,15,11), used the trained data to understand the weights, and records the Mean Square Error (MSE) values.

A dataset of experimental results was grouped into three categories: testing, training, and validation of the artificial neural network. The weights of all the connecting nodes is adjusted during training sessions until error level no longer improved. Coefficient of determination R (also called R2 coefficient) used to measure the effectiveness of ANN is denoted by:

\[B = 1 - \frac{\sum_{i=1}^{M} (O(p(i)) - O(i))^2}{\sum_{i=1}^{M} (O(i) - O)^2} \]

where \(O(p(i)) \) is the ith forecasted property characteristic, \(O(i) \) is the ith experimental value, \(O \) is the mean value of \(O(i) \), and \(M \) is the number of test data. Good output approximation competencies of ANN is measured with higher B coefficients. Hence, best quality could be deduced when \(B \) is equal or greater than 0.9. The relationship between outputs and targets is measured by the regression R values. A close relationship is known by an R value of 1, while 0 denotes random relationship and from Figure 2, training has R value of 1.0, validation has R value of 0.96298, test has R value of 0.90984 and all has R value of 0.96361. It can be inferred that there is close relationship between the outputs and the targets.

Training data were used to modify the network during training using its error, validation samples were used to measure network generalization and to halt training when generation no longer improve, while testing data have no direct effect on training and so provided an autonomous measurement of network evaluation during and after training (Figure 2 and Figure 3). The summary of ANN results, a pattern recognizing tool is indicated in Figure 4.

Table 3 ANN Input Data

S/N	Al % wt.	SiC % wt.	SiC Size (µm)
1	100	0	0
2	97.5	2.5	3 x 10^-6
3	95	5	3 x 10^-6
4	92.5	7.5	3 x 10^-6
5	90	10	3 x 10^-6
6	97.5	2.5	9 x 10^-6
7	95	5	9 x 10^-6
8	92.5	7.5	9 x 10^-6
9	90	10	9 x 10^-6
10	97.5	2.5	2.9 x 10^-5
11	95	5	2.9 x 10^-5
12	92.5	7.5	2.9 x 10^-5
13	90	10	2.9 x 10^-5
14	97.5	2.5	4.5 x 10^-5
Table 4 ANN Output (Target) Data

S/N	Extensio n at Maximum Tensile Extension (N)	Load at Maximum Tensile Extension (N/m²)	Modulus (N/mm²)	Yield Strength (MPa)	Ultimate Tensile Strength (MPa)	Tenacity at Fracture (gf/tex)	Time at Fracture (Standar d) (sec)	Hardness (HV)	Conductivity, (MΩ/m)	Resistivity, (μΩ·m)	Tensile Stress at Maximum Tensile Extension (MPa)
1	20.78311 8 720.0062 4 402.4332 40.8 61.3	845.662 9 40.8032 9 19.6 70.2578	0.014234 2 15.7552								
2	10.68599 8 353.27605 8 1293.4288	381.467 4 21.3124	20.05 8 68.82136	0.01453 8 16.0014							
3	10.84656 8 419.33323 1028.5612 65	320.943 9 15.883	24.75	64.14723	0.015589 6.7695						
4	7.945935 8 514.26053 8 1517.5921	438.427 9 17.3	25.9	47.94072	0.020517 5.69625						
5	8.676912 5 420.84332 878.92865 75	434.305 1 17.1	25.9	47.94072	0.020517 5.69625						
6	8.14303 8 688.62665 1290.1191	711.551 16.22	22.95	67.83901	0.014741 13.03994						
7	7.156814 8 374.45122 888.77210	383.527 4 14.3	24.65	62.96254	0.015882 6.403696						
8	7.01875 5 498.46985 1092.8752	519.208 5 13.975	26.05	59.82686	0.016715 10.04436						
9	6.402343 3 291.13028 760.35671	301.748 12.73333	26.2	48.96254	0.020424 4.439326						
10	11.06132 3 698.09315 1233.8652	721.580 22.075	23.55	68.63504	0.01457 13.08390						
11	9.46796 5 688.29939 1233.8652	746.233 3 18.7772	25.2	66.9015	0.014934 13.08390						
12	6.303333 3 62.09007 1326.2131	63.567 6 12.57733	33.65	65.26178	0.015323 1.14747						
13	13.49165 4 615.04728 990.41521	756.338 4 46.5948	34.25	56.63504	0.017657 12.17387						
14	12.40481 8 503.244 580.91621	610.116 7 14.2568	23.85	67.80000	0.014749 8.642638						
15	12.6141 2 453.28249 793.22991	497.320 15.1	33.45	61.58648	0.016238 9.340932						
16	6.746216 75 762.19295 935.02849	780.567 2 40.42	33.65	63.45271	0.01576 13.02127						
17	10.78546 8 382.01291 645.46291	398.223 7 21.52	35.2	50.27102	0.019892 6.350372						

ICESW IOP Publishing
IOP Conf. Series: Materials Science and Engineering 413 (2018) 012063
doi:10.1088/1757-899X/413/1/012063
Fig. 1 ANN Architecture

![Fig. 1 ANN Architecture](image1)

Fig. 2 ANN Output Graph for the Dataset

![Fig. 2 ANN Output Graph for the Dataset](image2)

Fig. 3 ANN Training Graph for the Data Used

![Fig. 3 ANN Training Graph for the Data Used](image3)
Fig. 4 The ANN Validation Checks, Mu and Gradient

3. Results and discussion

There were seventeen (17) specimens as indicated in Table 3. The first specimen contains no ceramic silicon carbide, whereas the remaining specimens were mixture of aluminium (97.5, 95.0, 92.5 and 90 wt %) and silicon carbide (2.5, 5.0, 7.5 and 10 wt %) as indicated in the first two columns. The third column showed variation of particle sizes of silicon carbide (3 μm, 9 μm, 29 μm and 45 μm). The seventeen specimens were characterized to obtain the eleven material properties for Al/SiCp composites listed in Table 4. These measured data were presented to ANN for training, validation and testing. ANN subsequently generated new set of predicted properties for all the seventeen specimens.

Figures 5-15 showed graphically the measured and ANN predicted properties for tensile extension (mm), hardness and electrical tests to obtain tensile extension (mm), load (N), modulus (N/mm²), yield strength (MPa), ultimate tensile strength (MPa), tenacity at fracture (gf/tex), time at fracture (s), hardness (HV), electrical conductivity (MΩ/m), electrical resistivity (µΩ·m) and tensile stress (MPa) respectively.

Fig. 5 Measured and predicted tensile extension properties of AMC Composites
It is observed that ANN predicted data is quite successful with perfect matches seen in ten (10) out of eleven (11) material properties. Aside resistivity, perfect predictions were seen in tensile extension (mm), load (N), modulus (N/mm²), yield strength (MPa), hardness (HV), ultimate tensile strength (MPa), tenacity at fracture (gf/tex), time at fracture (s), electrical conductivity(MΩ/m), and tensile stress (MPa) respectively.

Fig. 6 Measured and predicted load of AMC Composites

Fig. 7 Measured and predicted modulus of AMC Composites
Fig. 8 Measured and predicted yield strength of AMC Composites

Fig. 9 Measured and predicted ultimate tensile strength of AMC Composites

Fig. 10 Measured and predicted tenacity of AMC Composites
Fig. 11 Measured and predicted fracture time of AMC Composites

Fig. 12 Measured and predicted hardness of AMC Composites

Fig. 13 Measured and predicted conductivity of AMC Composites
4. Conclusions

In the present study, prediction of Al/SiCp composites with varied aluminium content, SiC content and silicon particle size was done. The following results were obtained:

i. Artificial Neural Network (ANN) is a versatile and effective tool in forecasting composite properties. In an established processing route and constituent materials, the resultant composite material properties could be predicted by designers and process engineers, thereby saving cost in the process.

ii. Forecasted tensile, electrical conductivity and hardness from ANN model were consistent and showed good agreement with measured results from the specimens.

Funding: The authors acknowledge Covenant University (CU) and Covenant University Centre for Research, Innovation and Discovery (CUCRID) Ota, Nigeria for the sponsorship and provision of research facilities for this work.
References

[1] Davies G. Materials for Automobile bodies. Butterworth-Heinemann, Oxford, MA 01803, 2003, pp. 90.
[2] Kok M, and Ozdin K. Wear resistance of aluminium alloy and its composites reinforced by Al2O3 particles. Journal of Materials Processing Technology, 2007, 183: 301–309.
[3] Prabu S.B., Karunamoorthy L., Kathiresan S., and Mohan B. Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. Journal of Materials Processing Technology, 2006, 171: 268–273.
[4] Inegbenebor A.O., Bolu C.A., Babalola P.O., Inegbenebor A.I. and Fayomi O.S.I. Aluminum Silicon Carbide Particulate Metal Matrix Composite Development Via Stir Casting Processing. Silicon, 2016, DOI 10.1007/s12633-016-9451-7.
[5] Inegbenebor A.O., Bolu C.A., Babalola P.O., Inegbenebor A.I. and Fayomi O.S.I. Influence of the Silicon Carbide Gritsize Particles on the Mechanical and Electrical Properties of Stir Casting Aluminium Matrix Composite Material. Silicon, 2015, DOI 10.1007/s12633-015-9305-8.
[6] Babalola P.O., Bolu C.A., Inegbenebor A.O and Odunfa K.M. Development of Aluminium Matrix Composites: A review. Online International Journal of Engineering and Technology Research, ISSN 2346-7452; 2014, 2: 1-11.
[7] Babalola P.O., Inegbenebor, A.O., Bolu, C.A., Inegbenebor, A.I. The Development of Molecular-Based Materials for Electrical and Electronic Applications. JOM, 2015, 67(4): 830-833.
[8] Luan B.F., Hansen N., Godfrey A., Wu G.H., and Liu Q. High strength Al–Al2O3p composites: Optimization of extrusion parameters. Materials and Design, 2011, 32:3810–3817.
[9] Singla M., Dwivedi D.D., Singh L., and Chawla V. Development of aluminium based silicon carbide particulate metal matrix composite. Journal of Minerals & Materials Characterization & Engineering, 2009, 8(6): 455-467.
[10] Naher S., Brabuzon D., and Looney L. Examination of the semi-solid stir casting method for producing Al-SiC metal matrix composites. Materials Processing Research Centre, Dublin City University, Dublin 9, Ireland, 2012.
[11] Mohanavel V., Rajan K., Kumar S. S., Udishkumar S., Jayasekar C. Effect of silicon carbide reinforcement on mechanical and physical properties of aluminium matrix composites. Materials Today: Proceedings, 2018, 5:2938–2944.
[12] Alaneme K. K., Bodunrin M.O., Awe A. A. Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. Journal of King Saud University – Engineering Sciences, 2018, 30: 96-103.
[13] Sulaiman S., Marjom Z., Ismail M.I.S, Ariffin M.K.A. and Ashrafi N. Effect of Modifier on Mechanical Properties of Aluminium Silicon Carbide (Al-SiC) Composites. Procedia Engineering, 2017, 184: 773 – 777.
[14] Kavimani V., Prakash K.S. Tribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approach. Journal of Physics and Chemistry of Solids, 2017, 110: 409–419.
[15] Rashed F.S. and Mahmoud T.S. Prediction of wear behaviour of A356/SiCp MMCs using neural networks. Tribology International, 2009, 42: 642–648.
[16] Ali S. Hammoood, Haider Mahdi. Development Artificial Neural Network Model to Study the Influence of Oxidation Process and Zinc-Electroplating on Fatigue Life of Gray Cast Iron. International Journal of Mechanical & Mechatronics Engineering, IJMME-IJENS, 2012, 12(5):74-78.
[17] Shandilya Pragya, Jain P.K., Jain N.K. RSM and ANN Modeling Approaches for Predicting Average Cutting Speed During WEDM of SiCp/6061 Al MMC. Procedia Engineering, 2013, 64: 767 – 774.