3-degenerate induced subgraph of a planar graph

Yangyan Gu1, H. A. Kierstead2, Sang-il Oum*3,4,
Hao Qi†5,6,1, and Xuding Zhu‡1

1Department of Mathematics, Zhejiang Normal University, Jinhua, China
2School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
3Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea
4Department of Mathematical Sciences, KAIST, Daejeon, South Korea
5College of Mathematics and Physics, Wenzhou University, Wenzhou, China
6Institute of Mathematics, Academia Sinica, Taipei

Email: 254945335@qq.com, kierstead@asu.edu, sangil@ibs.re.kr,
qihao@wzu.edu.cn, xdzhu@zjnu.edu.cn

December 18, 2021

Abstract

A graph G is d-degenerate if every non-null subgraph of G has a vertex of
degree at most d. We prove that every n-vertex planar graph has a 3-degenerate
induced subgraph of order at least $3n/4$.

Keywords: planar graph; graph degeneracy.

1 Introduction

Graphs in this paper are simple, having no loops and no parallel edges. For a graph
$G = (V, E)$, the neighbourhood of $x \in V$ is denoted by $N(x) = N_G(x)$, the degree of
x is denoted by $d(x) = d_G(x)$, and the minimum degree of G is denoted by $\delta(G)$. Let
$\Pi = \Pi(G)$ be the set of total orderings of V. For $L \in \Pi$, we orient each edge $vw \in E$
as (v, w) if $w <_L v$ to form a directed graph G_L. We denote the out-neighbourhood,
also called the back-neighbourhood, of x by $N_G^L(x)$, the out-degree, or back-degree, of x
bys $d_G^L(x)$. We write $\delta^+ (G_L)$ and $\Delta^+ (G_L)$ to denote the minimum out-degree and the

*Supported by the Institute for Basic Science (IBS-R029-C1)
†Partially supported by research grants NSFC 11771403, NSFC 11871439 and MOST 107-2811-M-
001-1534.
‡Corresponding author. Partially supported by research grants NSFC 11971438,12026248,
U20A2068.
maximum out-degree, respectively, of G_L. We define $|G| := |V|$, called the order of G, and $\|G\| := |E|$.

An ordering $L \in \Pi(G)$ is d-degenerate if $\Delta^+(G_L) \leq d$. A graph G is d-degenerate if some $L \in \Pi(G)$ is d-degenerate. The degeneracy of G is $\min_{L \in \Pi(G)} \Delta^+(G_L)$. It is well known that the degeneracy of G is equal to $\max_{H \subseteq G} \delta(H)$.

Alon, Kahn, and Seymour [4] initiated the study of maximum d-degenerate induced subgraphs in a general graph and proposed the problem on planar graphs. We study maximum d-degenerate induced subgraphs of planar graphs. For a non-negative integer d and a graph G, let

$$\alpha_d(G) = \max\{|S| : S \subseteq V(G), \ G[S] \text{ is } d\text{-degenerate}\} \text{ and }$$

$$\bar{\alpha}_d = \inf\{\alpha_d(G)/|V(G)| : G \text{ is a non-null planar graph}\}.$$

Let us review known bounds for $\bar{\alpha}_d$. Suppose that $G = (V, E)$ is a planar graph. For $d \geq 5$, trivially we have $\bar{\alpha}_d = 1$ because planar graphs are 5-degenerate.

For $d = 0$, a 0-degenerate graph has no edges and therefore $\alpha_0(G)$ is the size of a maximum independent set of G. By the Four Colour Theorem, G has an independent set I with $|I| \geq |V(G)|/4$. Both K_4 and C_8^2 witness that $\bar{\alpha}_0 \leq 1/4$, so $\bar{\alpha}_0 = 1/4$. In 1968, Erdős (see [5]) asked whether this bound could be proved without the Four Colour Theorem. This question still remains open. In 1976, Albertson [2] showed that $\bar{\alpha}_0 \geq 2/9$ independently of the Four Colour Theorem. This bound was improved to $\bar{\alpha}_0 \geq 3/13$ independently of the Four Colour Theorem by Cranston and Rabern in 2016 [8].

For $d = 1$, a 1-degenerate graph is a forest. Since K_4 has no induced forest of order greater than 2, we have $\bar{\alpha}_1 \leq 1/2$. Albertson and Berman [3] and Akiyama and Watanabe [1] independently conjectured that $\bar{\alpha}_1 = 1/2$. In other words, every planar graph has an induced forest containing at least half of its vertices. This conjecture received much attention in the past 40 years; however, it remains largely open. Borodin [7] proved that the vertex set of a planar graph can be partitioned into five classes such that the subgraph induced by the union of any two classes is a forest. Taking the two largest classes yields an induced forest of order at least $2|V(G)|/5$. So $\bar{\alpha}_1 \geq 2/5$. This remains the best known lower bound on $\bar{\alpha}_1$. On the other hand, the conjecture of Albertson and Berman, Akiyama and Watanabe was verified for some subfamilies of planar graphs. For example, C_3-free, C_5-free, or C_6-free planar graphs were shown in [20] [11] to be 3-degenerate, and a greedy algorithm shows that the vertex set of a 3-degenerate graph can be partitioned into two parts, each inducing a forest. Hence C_3-free, C_5-free, or C_6-free planar graphs satisfy the conjecture. Moreover, Raspaud and Wang [16] showed that C_4-free planar graphs can be partitioned into two induced forests, thus satisfying the conjecture. In fact, many of these graphs have larger induced forests. Le [14] showed that if a planar graph G is C_3-free, then it has an induced forest with at least $5|V(G)|/9$ vertices; Kelly and Liu [12] proved that if in addition G is C_4-free, then G has an induced forest with at least $2|V(G)|/3$ vertices.

Now let us move on to the case that $d = 2$. The octahedron has 6 vertices and is 4-regular, so a 2-degenerate induced subgraph has at most 4 vertices. Thus $\bar{\alpha}_2 \leq 2/3$.

We conjecture that equality holds. Currently, we only have a more or less trivial lower bound: \(\bar{\alpha}_2 \geq 1/2 \), which follows from the fact that \(G \) is 5-degenerate, and hence we can greedily 2-colour \(G \) in an ordering that witnesses its degeneracy so that no vertex has three out-neighbours of the same colour, i.e., each colour class induces a 2-degenerate subgraph. Dvořák and Kelly [10] showed that if a planar graph \(G \) is \(C_3 \)-free, then it has a 2-degenerate induced subgraph containing at least \(4|V(G)|/5 \) vertices.

For \(d = 4 \), the icosahedron has 12 vertices and is 5-regular, so a 4-degenerate induced subgraph has at most 11 vertices. Thus \(\bar{\alpha}_4 \leq 11/12 \). Again we conjecture that equality holds. The best known lower bound is \(\bar{\alpha}_4 \geq 8/9 \), which was obtained by Lukoťka, Mazák and Zhu [15].

In this paper, we study 3-degenerate induced subgraphs of planar graphs. Both the octahedron \(C_6^2 \) and the icosahedron witness that \(\bar{\alpha}_3 \leq 5/6 \). Here is our main theorem.

Theorem 1.1. Every \(n \)-vertex planar graph has a 3-degenerate induced subgraph of order at least \(3n/4 \).

We conjecture that the upper bounds for \(\bar{\alpha}_d \) mentioned above are tight. We remark that it is possible to obtain infinitely many 3-connected tight examples for each \(d \) by gluing together many copies of the tight example discussed above.

Conjecture 1.1. \(\bar{\alpha}_2 = 2/3, \bar{\alpha}_3 = 5/6, \) and \(\bar{\alpha}_4 = 11/12 \).

The problem of colouring the vertices of a planar graph \(G \) so that colour classes induce certain degenerate subgraphs has been studied in many papers. Borodin [7] proved that every planar graph \(G \) is acyclically 5-colourable, meaning that \(V(G) \) can be coloured in 5 colours so that a subgraph of \(G \) induced by each colour class is 0-degenerate and a subgraph of \(G \) induced by the union of any two colour classes is 1-degenerate. As a strengthening of this result, Borodin [6] conjectured that every planar graph has degenerate chromatic number at most 5, which means that the vertices of any planar graph \(G \) can be coloured in 5 colours so that for each \(i \in \{1,2,3,4\} \), a subgraph of \(G \) induced by the union of any \(i \) colour classes is \((i-1) \)-degenerate. This conjecture remains open, but it was proved in [13] that the list degenerate chromatic number of a graph is bounded by its 2-colouring number, and it was proved in [9] that the 2-colouring number of every planar graph is at most 8. As consequences of the above conjecture, Borodin posed two other weaker conjectures: (1) Every planar graph has a vertex partition into two sets such that one induces a 2-degenerate graph and the other induces a forest. (2) Every planar graph has a vertex partition into an independent set and a set inducing a 3-degenerate graph. Thomassen confirmed these conjectures in [18] and [19].

This paper is organized as follows. In Section 2 we will present our notation. In Section 3 we will formulate a stronger theorem that allows us to apply induction. This will involve identifying numerous obstructions to a more direct proof. In Section 4 we will organize our proof by contradiction around the notion of an *extreme counterexample*. In Sections 5–7, we will develop properties of extreme counterexamples that eventually lead to a contradiction in Section 8.
2 Notation

For sets X and Y, define $Z = X \cup Y$ to mean $Z = X \cup Y$ and $X \cap Y = \emptyset$. Let $G = (V, E)$ be a graph with $v, x, y \in V$ and $X, Y \subseteq V$. Then $\|v, X\|$ is the number of edges incident with v and a vertex in X and $\|X, Y\| = \sum_{v \in X} \|v, Y\|$. When X and Y are disjoint, $\|X, Y\|$ is the number of edges xy with $x \in X$ and $y \in Y$. In general, edges in $X \cap Y$ are counted twice by $\|X, Y\|$. Let $N(X) = \bigcup_{x \in X} N(x) - X$.

We write $H \subseteq G$ to indicate that H is a subgraph of G. The subgraph of G induced by a vertex set A is denoted by $G[A]$. The path P with $V(P) = \{v_1, \ldots, v_n\}$ and $E(P) = \{v_1v_2, \ldots, v_{n-1}v_n\}$ is denoted by $v_1 \cdots v_n$. Similarly the cycle $C = P + v_nv_1$ is denoted by $v_1 \cdots v_nv_1$.

Now let G be a simple connected plane graph. The boundary of the infinite face is denoted by $B = B(G)$ and $V(B(G))$ is denoted by $B = B(G)$. Then B is a subgraph of the outerplanar graph $G[B]$. For a cycle C in G, let $\text{int}_{G}[C]$ denote the subgraph of G obtained by removing every exterior vertices and edges and let $\text{ext}_{G}[C]$ be the subgraph of G obtained by removing all interior vertices and edges. Usually the graph G is clear from the text, and we write $\text{int}[C]$ and $\text{ext}[C]$ for $\text{int}_{G}[C]$ and $\text{ext}_{G}[C]$. Let $\text{int}(C) = \text{int}[C] - V(C)$ and $\text{ext}(C) = \text{ext}[C] - V(C)$. Let $N^\circ(x) = N(x) - B$ and $N^\circ(X) = N(X) - B$.

For $L \in \Pi$, the up-set of x in L is defined as $U_L(x) = \{y \in V : y >_L x\}$ and the down-set of x in L is defined as $D_L(x) = \{y \in V : y <_L x\}$. Note that for each $L \in \Pi$, $y <_L x$ means that $y \leq_L x$ and $y \neq x$. For two sets X and Y, we say $X \leq_L Y$ if $x \leq_L y$ for all $x \in X$, $y \in Y$.

3 Main result

In this section we phrase a stronger, more technical version of Theorem [17] that is more amenable to induction. This is roughly analogous to the proof of the 5-Choosability Theorem by Thomassen [17].

If $G = G_1 \cup G_2$ and $G_1 \cap G_2 = G[A]$ for a set A of vertices, then we would like to join two 3-degenerate subgraphs obtained from G_1 and G_2 by induction to form a 3-degenerate subgraph of G. The problem is that vertices from A may have neighbours in both subgraphs. Dealing with this motivates the following definitions.

Let $A \subseteq V(G)$. A subgraph H of G is (k, A)-degenerate if there exists an ordering $L \in \Pi(G)$ such that $A \leq_L V - A$ and $d_H'(v) \leq k$ for every vertex $v \in V(H) - A$. Equivalently, every subgraph H' of H with $V(H') - A \neq \emptyset$ has a vertex $v \in V(H') - A$ such that $d_{H'}(v) \leq k$. A subset Y of V is A-good if $G[Y]$ is $(3, A)$-degenerate. We say a subgraph H is A-good if $V(H)$ is A-good. Thus if $A = \emptyset$ then G is A-good if and only if G is 3-degenerate. Let

$$f(G; A) = \max\{|Y| : Y \subseteq V(G) \text{ is } A\text{-good}\}.$$

Since \emptyset is A-good, $f(G; A)$ is well defined.
For an induced subgraph H of G and a set Y of vertices of H, we say Y is \emph{collectable} in H if the vertices of Y can be ordered as y_1, y_2, \ldots, y_k such that for each $i \in \{1, 2, \ldots, k\}$, either $y_i \notin A$ and $d_{H-\{y_1, y_2, \ldots, y_{i-1}\}}(y_i) \leq 3$ or $V(H)-\{y_1, y_2, \ldots, y_{i-1}\} \subseteq A$.

In order to build an A-good subset, we typically apply a sequence of operations of deleting and collecting. Deleting $X \subset V$ means replacing G with $G-X$. An ordering witnessing that Y is collectable is called a \emph{collection} order. For disjoint subsets V_1, \ldots, V_s of V, if V_i is collectable in $G-\bigcup_{j=1}^{s-1} V_j$ for each $i = 1, 2, \ldots, s$, then collecting V_1, \ldots, V_s means first putting V_1 at the end of L in a collection order for V_1, then putting V_2 at the end of $L-V_1$ in a collection order for V_2 in $G-V_1$, etc. Note that if Y is a collectable set in G and $V-Y$ is A-good, then V is A-good.

\textbf{Definition 3.1.} A path $v_1v_2 \ldots v_\ell$ of a plane graph G is \emph{admissible} if $\ell > 0$ and it is a path in $B(G)$ such that for each $1 < i < \ell$, $G-v_i$ has no path from v_{i-1} to v_{i+1}.

A path of length 0 has only 1 vertex in its vertex set.

\textbf{Definition 3.2.} A set A of vertices of a plane graph G is \emph{usable} in G if for each component G' of G, $A \cap V(G')$ is the empty set or the vertex set of an admissible path of G'.

\textbf{Lemma 3.1.} Let G be a plane graph and let A be a usable set in G. Then for each vertex v of G, $|N_G(v) \cap A| \leq 2$.

\textit{Proof.} This is clear from the definition of an admissible path. \hfill \Box

\textbf{Observation 3.1.} If G is outerplanar and A is a usable set in G, then G is $(2, A)$-degenerate.

Observation 3.1 motivates the expectation that plane graphs with large boundaries have large 3-degenerate induced subgraphs. Roughly, we intend to prove that $f(G; A) \leq 3|V(G)|/4 + |B|/4$. This formulation provides a potential function for measuring progress as we collect and delete vertices. For example, deleting a boundary vertex with at least four interior neighbours provides a smaller graph whose potential is at least as large. Some of the bonus $|B|/4$ is needed for dealing with chords. But this does not quite work; C_6^2 is a counterexample, and there are infinitely many more. The rest of this section is devoted to formulating a more refined potential function.

A set Z of vertices is said to be \emph{exposed} if $Z \subseteq B$. We say that a vertex z is \emph{exposed} if $\{z\}$ is exposed. We say that deleting Y and collecting X \emph{exposes} Z if $Z \subseteq B(G-Y-X)-B$.

\textbf{Definition 3.3.} Let $Q = \{Q_1, Q_2, Q_2^+, Q_3, Q_4, Q_4^+, Q_4^{++}\}$ be the set of plane graphs shown in Figure 4. For a plane graph G, a cycle C of G is \emph{special} if $G_C := \text{int}_G[C]$ is isomorphic to a plane graph in Q, where C corresponds to the boundary. In this case, G_C is also \emph{special}.

5
For a special cycle C of a plane graph G, we define

\[T_C := \text{int}_G(C), \] which is isomorphic to K_3,
\[X_C := \{ v \in V(C) : \text{there is a facial cycle } D \text{ such that} \]
\[v \in V(C) \cap V(D) \text{ and } |V(T_C) \cap V(D)| = 2 \}, \]
\[V_C := V(G_C), Y_C := X_C \cup V(T_C), \text{ and } \overline{Y}_C := V_C - Y_C = V(C) - X_C. \]

Then $V(C) = X_C \cup \overline{Y}_C$.

Observation 3.2. Let A be a usable set in a plane graph G. Let $C = v_1 \ldots v_kv_1$ be a special cycle of G. If G_C is (not only isomorphic but also equal to a plane graph) in Q, then the following hold.

(a) $T_C = xyzx$ with $N_G(x) = \{y, z, v_2, v_3\}$ and $N_G(y) = \{x, z, v_1, v_2\}$.
(b) $X_C = \{v_1, v_2, v_3\}$ if $G_C \neq Q_3$ and $X_C = \{v_1, v_2, v_3, v_4\}$ if $G_C = Q_3$.
(c) Deleting any vertex in $X_C \cap B$ exposes two vertices of T_C.
(d) For each vertex $v \in X_C$, $V(T_C)$ is collectable in $G - v$, except that if $G_C = Q_4^{++}$ and $v = v_2$ then only $\{x, y\}$ is collectable in $G - v$.
(e) If $\overline{Y}_C \neq \emptyset$ then there is a facial cycle C^* containing $\overline{Y}_C \cup \{v\}$ for some $v \in V(T_C)$.
 Moreover, $v = z$ is unique, and if $|\overline{Y}_C| = 2$, then C^* is unique.
(f) T_C has at least two vertices v such that $d_G(v) = 4$.

Note that vertices on C may have neighbours in $\text{ext}(C)$ or maybe contained in A. Thus we may not be able to collect vertices of C.

A special cycle C is called exposed if $X_C \subseteq B(G)$. A special cycle packing of G is a set of exposed special cycles $\{C_1, \ldots, C_m\}$ such that $Y_{C_i} \cap Y_{C_j} = \emptyset$ for all $i \neq j$. Let

Figure 1: Plane graphs in Q defining special subgraphs G_C where C corresponds to the boundary cycle. Solid black vertices denote vertices in X_C.
τ(G) be the maximum cardinality of a special cycle packing and
\[\partial(G) = \frac{3}{4}|V(G)| + \frac{1}{4}(|B| - \tau(G)). \]
We say that a special cycle packing of G is \textit{optimal} if its cardinality is equal to \(\tau(G) \).

\textbf{Theorem 3.2.} For all plane graphs G and usable sets \(A \subseteq B(G) \),
\[f(G; A) \geq \partial(G). \quad (3.1) \]

Clearly \(|B| - \tau(G) \geq 2\) for any plane graph G with at least 2 vertices. This is trivial if \(\tau(G) = 0 \). If \(\tau(G) = k \), then each of the \(k \) exposed cycles in the maximum cardinality special cycle packing of G has at least 3 vertices in B and therefore \(|B| - \tau(G) \geq 2k \geq 2\).

The following consequence of Theorem 3.2 is the main result of this paper.

\textbf{Corollary 3.3.} Every \(n \)-vertex planar graph G (with \(n \geq 2 \)) has an induced 3-degenerate subgraph H with \(|V(H)| \geq (3n + 2)/4\).

\section{Setup of the proof}

Suppose Theorem 3.2 is not true. Among all counterexamples, choose \((G; A)\) so that
(i) \(|V(G)|\) is minimum,
(ii) subject to (i), \(|A|\) is maximum, and
(iii) subject to (i) and (ii), \(|E(G)|\) is maximum.
We say that such a counterexample is \textit{extreme}.

If \(A' \not\subseteq V(G') \), then we may abbreviate \((G'; A' \cap V(G'))\) by \((G'; A')\), but still (ii) refers to \(|A' \cap V(G')|\). We shall derive a sequence of properties of \((G; A)\) that leads to a contradiction. Trivially \(|V(G)| > 2\), G is connected (if G is the disjoint union of \(G_1 \) and \(G_2 \), then \(f(G; A) = f(G_1; A) + f(G_2; A) \) and \(\partial(G) = \partial(G_1) + \partial(G_2) \)).

\textbf{Lemma 4.1.} Let G be a plane graph and \(X \) be a subset of \(V(G) \). If \(A \) is usable in \(G \), then \(A - X \) is usable in \(G - X \).

\textbf{Proof.} We may assume that G is connected and \(X = \{v\} \). If \(v \notin A \), then it is trivial. Let \(P = v_0v_1 \cdots v_k \) be the admissible path in G such that \(A = V(P) \). If \(v = v_0 \) or \(v = v_k \), then again it is trivial. If \(v = v_i \) for some \(0 < i < k \), then by the definition of admissible paths, \(G - v_i \) is disconnected, and \(v_{i-1} \) and \(v_{i+1} \) are in distinct components. Thus again \(A - \{v\} \) is usable in \(G - v \). \(\square \)

Suppose \(Y \) is a nonempty subset of \(V(G) \) and \(G[Y] \) is connected. Let \(C \) be an exposed special cycle of \(G' = G - Y \). Then \(C \) satisfies one of the following conditions.
(a) \(C \) is an exposed special cycle of \(G \).
(b) \(C \) is a non-exposed special cycle of \(G \); in this case \(X_C \cap (B(G') - B) \neq \emptyset \).
(c) \(C \) is not a special cycle of \(G \); in this case \(Y \subseteq \text{int}_G(C) \), and so \(Y \cap B = \emptyset \).
Lemma 4.2. Let Y be a nonempty subset of $V(G)$ such that $G[Y]$ is connected. Let $G' = G - Y$. If C, C' are distinct exposed type-c special cycles of G', then $Y_C \cap Y_{C'} \neq \emptyset$.

Proof. Let C, C' be distinct exposed type-c special cycles of G'. Since $B \cap Y = \emptyset$ and $G[Y]$ is connected, there exists a facial cycle D of G' such that $\text{int}_C(D) = G[Y]$. Then D is a facial cycle of both G'_C and $G'_{C'}$. Arguing by contradiction, suppose $Y_C \cap Y_{C'} = \emptyset$.

Since $V(D) \subseteq V(G'_C) = Y_C \cup \bar{Y}_C$ and $V(D) \subseteq V(G'_{C'}) = Y_{C'} \cup \bar{Y}_{C'}$, we have

$$V(D) \subseteq V(G'_C) \cap V(G'_{C'}) \subseteq \bar{Y}_C \cup \bar{Y}_{C'}.$$

By symmetry we may assume that $|\bar{Y}_C \cap V(D)| \geq |\bar{Y}_{C'} \cap V(D)|$. Using $|\bar{Y}_C|, |\bar{Y}_{C'}| \leq 2$, we deduce that

$$3 \leq |V(D)| \leq |V(G'_C) \cap V(G'_{C'})| \leq 4, \quad \bar{Y}_C \subseteq V(D), \quad |\bar{Y}_C| = 2, \quad \text{and} \quad \bar{Y}_{C'} \cap V(D) \neq \emptyset.$$

We will show that H is isomorphic to H_1 or H_2 in Figure 2. Since $|\bar{Y}_C| = 2$, by Observation 3.2(e), D is the unique facial cycle in G'_C such that there is a vertex $\hat{z} \in V(T_C)$ with $\bar{Y}_C \cup \{\hat{z}\} \subseteq V(D)$. As $\hat{z} \in V(D)$ and $\hat{z} \in Y_C$, we have $\hat{z} \in \bar{Y}_{C'}$. Since $\bar{Y}_{C'} \neq \emptyset$, again by Observation 3.2(e), there is a unique vertex $\bar{z} \in V(T_{C'})$ such that $\bar{Y}_{C'} \cup \{\bar{z}\}$ is contained in a facial cycle of $G'_{C'}$. Then $\bar{z} \in \bar{Y}_{C'} \cap V(D)$.

First we show that $|V(G'_C) \cap V(G'_{C'})| = 4$. Assume to the contrary that $|V(G'_C) \cap V(G'_{C'})| = 3$. Since $V(D) \subseteq V(G'_C) \cap V(G'_{C'})$, we conclude that $|V(D)| = 3$. Then $\bar{z}\bar{z}$ is an edge, and the two inner faces of G' incident with $\bar{z}\bar{z}$ are contained in $V(G'_C) \cap V(G'_{C'})$.

Since the intersection of any two inner faces of G'_C has at most 2 vertices, we have $|V(G'_C) \cap V(G'_{C'})| \geq 4$, a contradiction.

As $V(G'_C) \cap V(G'_{C'}) = \bar{Y}_C \cup \bar{Y}_{C'}$, we conclude that $|\bar{Y}_{C'}| = 2$ and $|V(C)| = 5 = |V(C')|.$

Let $Q \in Q$ be the plane graph isomorphic to G'_C. By inspection of Figure 1, $G'_{C'}$ is isomorphic to Q. We may assume that $G'_C = Q$ by relabelling vertices. Let $u \mapsto u'$ be an isomorphism from G'_C to $G'_{C'}$. Using uniqueness from Observation 3.2(e), $z = \bar{z}$, $z' = \bar{z}$, $\bar{Y}_C = \{v_4, v_5\}$ and $\bar{Y}_{C'} = \{v'_4, v'_5\}$. To prove our claim let us divide our analysis into two cases, resulting either in H_1 or H_2.

- If $|V(D)| = 4$, then $Q = Q_4^{+}$ and $V(G'_C) \cap V(G'_{C'}) = V(D) = \{v_4, v_5, v_1, z\}$. Since $v_4, v_5 \in \bar{Y}_C$, we have $v_1, z \in \bar{Y}_{C'}$. Then $v'_4 = v_1, v'_5 = z$, and $v_5 = z'$. As X_C and $X_{C'}$ are exposed in G', the cycle $v_1v_2v_3v'_4v'_3v_2v_3v_1$ is in $G'[B(G')]$ and so $H = H_1$ in Figure 2(a).

- If $|V(D)| = 3$, then $Q = Q_4^{++}$, $V(D) = \{z, v_4, v_5\}$. By symmetry, we may assume that $z' = v_5$. Then $V(G'_C) \cap V(G'_{C'}) = \{z, v_4, v_5, v_1\}$, as C' contains all common
neighbors of z and z' in G', which is a property of Q_{41}^+. Since $v_4, v_5 \in \overline{Y}_C$ and $V(G'_C) \cap V(G''_C) \subseteq \overline{Y}_C \cup \overline{Y}_{C'}$, we deduce that $v_1, z \in \overline{Y}_{C'}$. By symmetry in G''_C, we may assume that $z = v'_5$ and $v_1 = v'_4$. As X_C and $X_{C'}$ are exposed in G', the cycle $v_1v_2v_3v'_1v'_2v'_3v_1$ is in $G''[B(G')]$. So $H = H_1 + zz' = H_2$ in Figure 2(b).

Notice that in both cases, $v_4 = v'_1 \in B(G')$ and $v_4 \in V(D)$. Set $Y' = \{v_4, x', y'\}$ and $G'' = G - Y'$. As $V(\text{int}_G(D)) = Y$, in $G - v_4$, we can collect both x' and y' and at least one vertex of Y is exposed. Thus $B(G'') - B$ contains z, z' and $(B(G'') - B) \cap Y \neq \emptyset$. So $|B(G'') - B| \geq 3$.

Let \mathcal{P} be an optimal special cycle packing of G'', and put

$$\mathcal{P}_0 = \{C^* \in \mathcal{P} : C^* \text{ is a non-exposed special cycle of } G\}.$$

Consider $C^* \in \mathcal{P}_0$. As $v_4 = v'_1 \in B \cap Y'$, there is no exposed type-c special cycle in G''. Thus C^* is type-b, and so $X_{C^*} \cap (B(G'') - B) \neq \emptyset$. Let $w \in X_{C^*} \cap (B(G'') - B)$. Since T_{C^*} is connected, has a neighbour of w, and has no vertex from $B(G'')$, we have $V(T_{C^*}) \subseteq Y$ and $X_{C^*} \subseteq (B(G'') - B) \cup \{v_1\}$.

As \mathcal{P}_0 is a packing, $3|\mathcal{P}_0| \leq |B(G'') - B| + 1$. This implies that $|\mathcal{P}_0| \leq |B(G'') - B| - 2$, because $|B(G'') - B| \geq 3$. We now deduce that

$$|\mathcal{P}_0| \leq |B(G'') - B| - 2 = |B(G'')| - (|B| - 1) - 2 = |B(G'')| - |B| - 1.$$

Therefore

$$\tau(G) \geq \tau(G'') - |\mathcal{P}_0| \geq \tau(G'') - |B(G'')| + |B| + 1.$$

Hence, using $V(G) = V(G'') \cup Y'$,

$$\partial(G) = \frac{3}{4}|V(G)| + \frac{1}{4}(|B| - \tau(G)) \leq \frac{3}{4}(|V(G'')| + 3) + \frac{1}{4}(|B(G'')| - \tau(G'') - 1) = \partial(G'') + 2.$$

Now, as we have already collected x', y', we have

$$f(G; A) \geq f(G''; A) + 2 \geq \partial(G'') + 2 \geq \partial(G).$$
This contradicts the assumption that G is a counterexample.

\begin{lemma}
Let Y be a nonempty subset of $V(G)$ such that $G[Y]$ is connected and let $G' = G - Y$. Then
\[\partial(G) \leq \partial(G') + \frac{3|Y|}{4} + \frac{|B - B(G')| + \delta(Y)}{4}. \]
Moreover, if G has an exposed special cycle C such that $Y_C \cap Y \neq \emptyset$ and $Y_C \cap Y_{C'} = \emptyset$ for any other exposed special cycle C' of G, then
\[\partial(G) \leq \partial(G') + 3\frac{|Y|}{4} + \frac{|B - B(G')| + \delta(Y) - 1}{4}. \]
\end{lemma}

\begin{proof}
An optimal special cycle packing of G' has at most $|B(G') - B|$ type-b cycles by definition and has $\delta(Y)$ type-c cycles by Lemma 4.2. We can remove such cycles from the special cycle packing of G to obtain a special cycle packing of G. So
\[\tau(G) \geq \tau(G') - |B(G') - B| - \delta(Y) = \tau(G') - |B(G')| + |B| - |B - B(G')| - \delta(Y). \]
Plugging this into the definition of $\partial(G)$, we obtain
\[\partial(G) \leq \partial(G') + \frac{3|Y|}{4} + \frac{|B - B(G')| + \delta(Y)}{4}. \]
If G has an exposed special cycle C such that C is not a special cycle of G' and Y_C is disjoint from $Y_{C'}$ for any other exposed special cycle C' of G, then we can add cycle C to the special cycle packing of G obtained above. So
\[\tau(G) \geq \tau(G') - |B(G') - B| - \delta(Y) + 1 = \tau(G') - |B(G')| + |B| - |B - B(G')| - \delta(Y) + 1. \]
Plugging this into the definition of $\partial(G)$, we obtain
\[\partial(G) \leq \partial(G') + 3\frac{|Y|}{4} + \frac{|B - B(G')| + \delta(Y) - 1}{4}. \]
\end{proof}

\begin{lemma}
Every vertex $v \in V - A$ satisfies $d(v) \geq 4$.
\end{lemma}

\begin{proof}
Suppose that $d(v) \leq 3$. Apply Lemma 4.3 with $Y = \{v\}$. Let $G' = G - Y$. Note that if v is a boundary vertex, then $\delta(Y) = 0$. So $|B - B(G')| + \delta(Y) \leq 1$. Therefore
\[\partial(G) \leq \partial(G') + \frac{3}{4} + \frac{1}{4}. \]
By the minimality of $(G; A)$, $f(G'; A) \geq \partial(G')$. Therefore $f(G; A) = f(G'; A) + 1 \geq \partial(G)$, a contradiction.
\end{proof}

\begin{lemma}
There are no disjoint nonempty subsets X, Y of $V(G)$ such that Y is a set of $4|X|$ interior vertices of G, $G[X \cup Y]$ is connected, and Y is collectable in $G - X$.
\end{lemma}
Proof. Suppose that there exist disjoint nonempty sets $X, Y \subseteq V(G)$ such that Y is a subset of $4|X|$ interior vertices of G, $G[X \cup Y]$ is connected, and Y is collectable in $G - X$. Let $G' = G - (X \cup Y)$. We apply Lemma 4.3. Since $|B - B(G')| + \delta(X \cup Y) \leq |X|$, we have $\partial(G) \leq \partial(G') + \frac{2}{3}(|X| + |Y|) + \frac{1}{4}|X| = \partial(G') + 4|X|$. As G is extreme, $f(G'; A) \geq \partial(G')$. Hence $f(G; A) \geq f(G'; A) + |Y| = f(G'; A) + 4|X| \geq \partial(G') + 4|X| \geq \partial(G)$, a contradiction. \hfill\(\Box\)

Lemma 4.6. For any two distinct special cycles C_1, C_2 of G, $Y_{C_1} \cap Y_{C_2} = \emptyset$.

Proof. Assume to the contrary that C_1, C_2 are two special cycles of G with $Y_{C_1} \cap Y_{C_2} \neq \emptyset$. Observe that for each $i = 1, 2$, $V(T_{C_i})$ has two vertices of degree 4 and one vertex of degree 4, 5, or 6 in G.

If T_{C_1} and T_{C_2} share an edge, say $T_{C_1} = xyz$ and $T_{C_2} = xyz'$, then one of x, y, z, has degree 4. Since G is simple, $z \neq z'$. Let v be the other neighbor of x. By inspecting all graphs in Q, we deduce that each of z, z' is either adjacent to v or has degree at most 5 in G. So in $G - v$, the set $\{x, y, z, z'\}$ is collectable, contrary to Lemma 4.5.

Assume T_{C_1} and T_{C_2} have a common vertex, say $T_{C_1} = xyz$ and $T_{C_2} = xyz'$. If none of y, z, y', z' have degree 6, then we can delete x and collect y, z, y', z', contrary to Lemma 4.5. So we may assume that $d_G(y) = 6$ and hence $d_G(x) = d_G(z) = 4$ and all the faces incident to x are triangles because G_{C_1} is isomorphic to Q_4^4. Thus we may assume $yy', zz' \in E(G)$. By deleting y, we can collect x, z, z', and y', again contrary to Lemma 4.5. (We collect y' ahead of z' if $d_G(z') = 6$ and collect z' ahead of y' otherwise.) Thus $V(T_{C_1}) \cap V(T_{C_2}) = \emptyset$.

If $X_{C_1} \cap V(T_{C_2}) \neq \emptyset$, then for a vertex v of maximum degree in $V(T_{C_2})$, after deleting v, we can collect the other two vertices of T_{C_2} and two vertices of T_{C_1}, contrary to Lemma 4.5. So $X_{C_1} \cap V(T_{C_2}) = \emptyset$ and by symmetry, $X_{C_2} \cap V(T_{C_1}) = \emptyset$.

If $X_{C_1} \cap X_{C_2}$ contains a vertex v, then by deleting v, we can collect two vertices from each of T_{C_1} and T_{C_2}, again contrary to Lemma 4.5 because $V(T_{C_1}) \cap V(T_{C_2}) = \emptyset$. \hfill\(\Box\)

Lemma 4.7. If C is a special cycle of G, then there is a vertex $u \in X_C$ such that $V(T_C)$ is collectable in $G - u$ and $G' = G - (V(T_C) \cup \{u\})$ has no type-c special cycle.

Proof. Suppose the lemma fails for some special cycle C of G with $|E(C)| = k$. Then G_C is isomorphic to a graph $Q \in Q$. We may assume $G_C = Q$. Then $V(T_C)$ is collectable in $G - v_1$. Put $Y = V(T_C) \cup \{v_1\}$ and $G' = G - Y$. Since G' has a type-c special cycle C', $G'_{C'}$ has a facial cycle C'' with $Y = V(int(C''))$.

Then C'' consists of the subpath $C - v_1$ from v_2 to v_k of length $k - 2$ and a path P from v_k to v_2 in G'. As $G'_{C'}$ is special, $3 \leq |E(C'')| \leq 5$. So $|E(P)| \leq 5 - (k - 2) \leq 4$. Now $N_G(v_1) \subseteq V(P) \cup \{y, z\}$, so $d_G(v_1) \leq |E(P)| + 3 \leq 10 - k \leq 7$. If $d_G(v_1) \leq 6$, then after deleting v_2 we can collect Y: use the order x, y, v_1, z if $d_G(v_1) \leq 5$; else $d_G(v_1) = 6$ and $k \leq 4$, so use the order x, y, z, v_1. This contradicts Lemma 4.5. Thus $d_G(v_1) = 7$. So $k = 3$, $|E(P)| = 4$, $|E(C'')| = 5$, $G_C = Q_1$, and v_1 is adjacent to all vertices of P.

Setting $u = v_3$, and using symmetry between v_1 and v_3, we see that v_3 is also an interior vertex with $d_G(v_3) = 7$.
Let $P = v_3u_1u_2u_3v_2$. Now $G'_{C'}$ is isomorphic to Q_4 since C'' is a facial 5-cycle. Assume $u \mapsto u'$ is an isomorphism from Q_4 to $G'_{C'}$. Then $C'' = z'v'_3v'_4v'_5v'_1z'$.

If there is $w \in \{v_2, v_3\} \cap \{v'_1, v'_3\}$ then after deleting w we can collect $\{x, y, z, x', y', z'\}$, contrary to Lemma 4.5. Else $\{v'_1, v'_3\} = \{u_1, u_3\}$ and therefore $z' = u_2$, see Figure 3. After deleting $\{v_2, u_1\}$, we can collect $\{x, y, z, v_3, v_1, z', x', y'\}$, contrary to Lemma 4.5, as both v_1 and v_3 are interior vertices.

\[\square \]

Lemma 4.8. G has no special cycle.

Proof. Assume to the contrary that C is a special cycle of G. By Lemma 4.7 there is a vertex $u \in X_C$ such that $V(T_C)$ is collectable in $G - u$ and $G' = G - (V(T_C) \cup \{u\})$ has no type-c special cycle. Observe that $f(G; A) \geq f(G'; A) + 3$. So it suffices to show that $\partial(G) \leq \partial(G') + 3$. Since G' has no type-c special cycles, every exposed special cycle of G' is a special cycle of G.

If $u \notin B$, then $B(G') = B$ and so $B - B(G') = \emptyset$. As $\delta(V(T_C) \cup \{u\}) = 0$, we deduce from Lemma 4.3 that $\partial(G) \leq \partial(G') + \frac{3}{4} \cdot 4$.

Thus we may assume that $u \in B$ and so $|B - B(G')| = 1$. If C is exposed in G, then by Lemmas 4.3 and 4.6, $\partial(G) \leq \partial(G') + \frac{3}{4} \cdot 4 + \frac{1}{4}$. If C is not exposed in G, then X_C has some interior vertex v. Since v is adjacent to a vertex of T_C, v is exposed in G'. By Lemma 4.6 $v \notin X_{C'}$ for every exposed special cycle C' of G', because C' is a special cycle of G. Therefore, in an optimal special cycle packing of G', at most $|B(G') - B| - 1$ of the cycles are not exposed in G. So,

\[
\tau(G) \geq \tau(G') - (|B(G') - B| - 1) = \tau(G') - (|B(G')| - |B| + 1) + 1.
\]

Thus

\[\partial(G) = \frac{3}{4}|V(G)| + \frac{1}{4}(|B| - \tau(G)) \leq \frac{3}{4}(|V(G')| + 4) + \frac{1}{4}(|B| + (-\tau(G') + |B(G')| - |B|)) = \partial(G') + 3. \]
Lemma 4.9. Let s be an integer. Let X and Y be disjoint subsets of V(G) such that Y is collectable in G−X. If \(|B(G − (X ∪ Y))| ≥ |B(G)| + s\), G[X ∪ Y] is connected, and \((X ∪ Y) ∩ B(G) ≠ \emptyset\), then \(s + |Y| < 3|X|\).

Proof. Let \(G′ = G − (X ∪ Y)\). Since \((X ∪ Y) ∩ B(G) ≠ \emptyset\) and G[X ∪ Y] is connected, any special cycle of \(G′\) is also a special cycle of G. So \(τ(G′) = 0\) and \(\partial(G) ≤ \partial(G′) + \frac{3}{4}|X ∪ Y| − \frac{s}{4}\). As \(X ∪ Y ≠ \emptyset\) and \((G; A)\) is extreme, \(f(G′; A) ≥ \partial(G′)\). Thus

\[f(G′; A) + |Y| ≤ f(G; A) < \partial(G) ≤ \partial(G′) + \frac{3}{4}|X ∪ Y| − \frac{s}{4} ≤ f(G′; A) + \frac{3}{4}|X ∪ Y| − \frac{s}{4}. \]

This implies that \(s + |Y| < 3|X|\). \(\Box\)

Lemma 4.10. G is 2-connected and |A| = 2.

Proof. Suppose G is not 2-connected. If \(|V(G)| ≤ 3\), then G is (3, A)-degenerate, so \(f(G; A) = \partial(G)\) and we are done. Else \(|V(G)| > 3\). As G is connected, it has a cut-vertex x. Let \(G_1, G_2\) be subgraphs of G such that \(G = G_1 ∪ G_2\), \(V(G_1) ∩ V(G_2) = \{x\}\), and \(|V(G_1) ∩ A| ≤ |V(G_2) ∩ A|\). Observe that if \(x ∉ A\), then \(A ∩ V(G_1) = \emptyset\) by the choice of G_1 because A is usable in G.

Let \(A_1 = V(G_1) ∩ A\) if \(x ∉ A\) and \(A_1 = \{x\}\) otherwise. Let \(A_2 = V(G_2) ∩ A\). Note that for each \(i = 1, 2\), \(A_i\) is usable in \(G_i\). For \(i = 1, 2\), let \(X_i\) be a maximum \(A_i\)-good set in \(G_i\).

Let \(X := (X_1 ∪ X_2 − \{x\}) ∪ (X_1 ∩ X_2)\). We claim that X is \(A\)-good in G. If \(x ∈ A\), then collect \(X_1 − A, X_2 − A, A ∩ X\). If \(x ∉ A\) and \(x ∈ X_1 ∩ X_2\), then collect \(X_1 − \{x\}, X_2\). If \(x ∉ A\) and \(x ∉ X_1 ∩ X_2\), then collect \(X_1 − \{x\}, X_2 − \{x\}\). This proves the claim that X is \(A\)-good in G.

As \((G; A)\) is extreme, \(f(G_i; A_i) ≥ \partial(G_i)\) for \(i = 1, 2\).

If \(x ∈ B\) then \(B(G_i) = B(G) ∩ V(G_i)\) for \(i = 1, 2\). Note that any special cycle of \(G_i\) is a special cycle of G and so \(τ(G_i) = 0\) for \(i = 1, 2\) by Lemma 4.8 and hence \(\partial(G) = \partial(G_1) + \partial(G_2) − 1\).

If \(x ∉ B\), then we may assume \(V(G_1) ∩ B(G) = \emptyset\). Hence \(B(G) = B(G_2)\). Since only one inner face of \(G_2\) contains vertices of \(G_1\), \(τ(G_2) ≤ 1\) by Lemma 4.8. Note that

\[\partial(G) = \partial(G_1) + \partial(G_2) − \frac{3}{4} + \frac{1}{4}τ(G_2) − \frac{1}{4}(|B(G_1)| − τ(G_1)). \]

Since \(τ(G_1) ≤ |B(G_1)| − 2\), we have \(\partial(G) ≤ \partial(G_1) + \partial(G_2) − 1\).

In both cases, we have the contradiction:

\[f(G; A) ≥ |X_1| + |X_2| − 1 = f(G_1; A_1) + f(G_2; A_2) − 1 ≥ \partial(G_1) + \partial(G_2) − 1 ≥ \partial(G). \]

Thus G is 2-connected, and hence |A| ≤ 2. As \((G; A)\) is extreme, we have |A| = 2. \(\Box\)

In the following, set \(A = \{a, a′\}\).

Lemma 4.11. The boundary cycle B has no chord.
Proof. Assume \(B \) has a chord \(e := xy \). Let \(P_1, P_2 \) be the two paths from \(x \) to \(y \) in \(B \) such that \(A \subseteq V(P_1) \). Since \(e \) is a chord, both \(P_1 \) and \(P_2 \) have length at least two.

Set \(G_1 = \text{int}[P_1 + e] \) and \(G_2 = \text{int}[P_2 + e] \). As \(\tau(G) = 0 \) by Lemma 4.3, we know that \(\tau(G_1) = \tau(G_2) = 0 \). Hence \(\partial(G) = \partial(G_1) + \partial(G_2) - 2 \). We may assume that \(A \subseteq V(G_2) \). Let \(A_1 = \{x, y\} \) and \(A_2 = A \).

For \(i = 1, 2 \), let \(X_i \) be a maximum \(A_i \)-good set in \(G_i \). Then \(X = (X_1 \cup X_2 - \{x, y\}) \cup (X_1 \cap X_2) \) is an \(A \)-good set in \(G \): collect \(X_1 - \{x, y\}, (X_2 - \{x, y\}) \cup (X_1 \cap X_2) \). Thus

\[
f(G; A) \geq f(G_1; A_1) + f(G_2; A_2) - 2 \geq \partial(G_1) + \partial(G_2) - 2 = \partial(G),
\]

contrary to the choice of \(G \).

\(\square \)

Lemma 4.12. \(G \) is a near plane triangulation.

Proof. By Lemma 4.10, every face boundary of \(G \) is a cycle of \(G \). Assume to the contrary that \(G \) has an interior face \(F \) which is not a triangle. Then \(V(F) \) has a pair of vertices non-adjacent in \(G \) because \(G \) is a plane graph. Let \(e \notin E(G) \) be an edge drawn on \(F \) joining them. Then \(G' = G + e \) is a plane graph with \(B(G') = B(G) \). As \(G \) is extreme, \(G' \) is not a counterexample. As \(f(G'; A) \leq f(G; A) \), we conclude \(\tau(G') > \tau(G) \), and hence \(G' \) has an exposed special cycle \(C \) and \(e \) is an edge of \(G' \). By (d) of Observation 3.2, there is a vertex \(v \in X_C \) such that after deleting \(v \), we can collect all the three vertices of \(T_C \). In \(G - (V(T_C) \cup \{v\}), \) all vertices in \(V(G) - (V(T_C) \cup \{v\}) \) are exposed. By Lemma 4.9, none of these vertices can be an interior vertex of \(G \), because otherwise \(B(G - (V(T_C) \cup \{v\})) \geq |B(G)| \). So all these vertices are boundary vertices of \(G \). By Lemmas 4.14 and 4.11, \(G \) is 2-connected, \(|A| = 2 \), and \(B(G) \) has no chord, so \(G \) has no other vertices and \(\text{int}(B(G)) = T_C \), as \(v \in X_C \) is also a boundary vertex of \(G \). By the definition of usable sets, the two vertices in \(A \) are adjacent.

By Lemma 4.3 \(\|u, V(T_C)\| \geq 2 \) for every vertex \(u \in B(G) - A \), and \(\|w, B(G)\| \geq 2 \) for every vertex \(w \in V(T_C) \). On the other hand, the number of vertices \(u \in B(G) \) with \(\|u, V(T_C)\| \geq 2 \) is at most 3. So \(|B(G)| \leq 3 + |A| = 5 \).

If \(|B(G)| = 3 \), then \(G \) is triangulated. Suppose \(|B(G)| = 4 \). If \(\|u, V(T_C)\| \geq 2 \) for three vertices \(u \in B(G) \), then \(G \) is isomorphic to \(Q_2 \); else \(G \) is isomorphic to \(Q_3 \). Both are contradictions. If \(|B(G)| = 5 \), then \(G \) is isomorphic to \(Q_4 \) or \(Q_4^+ \), again a contradiction.

\(\square \)

5 Properties of separating cycles

In a plane graph \(G \), a cycle \(C \) is called separating if both \(V(\text{int}(C)) \) and \(V(\text{ext}(C)) \) are nonempty. In this section we will discuss properties of separating cycles in \(G \).

Lemma 5.1. Suppose \(T \) is a separating triangle of \(G \) and let \(I = \text{int}(T) \). Then

(a) \(\|V(T), V(I)\| \geq 6 \),

(b) \(|I| \geq 3 \),

(c) \(\|x, V(I)\| \geq 1 \) for all \(x \in V(T) \), and
(d) for all distinct x, y in \(V(T) \), \(|N(\{x, y\}) \cap V(I)| \geq 2 \).

Proof. If \(|I| \leq 2 \), then \(I \) contains a vertex \(v \) with \(d_G(v) \leq 3 \), contrary to Lemma 4.4. Thus \(|I| \geq 3 \) and (b) holds. Moreover, \(I^+ := \text{int}[T] \) is triangulated and therefore \(|I^+| = 3|I^+| - 6 \) and \(|I| \leq 3|I| - 6 \). Thus

\[
|V(T), V(I)| = |I^+| - |I| - |I| \geq 3(3 + |I|) - 6 - 3 - (3|I| - 6) = 6.
\]

Thus (a) holds. As \(I^+ \) is triangulated and \(T \) is separating, every edge of \(T \) is contained in a triangle of \(I^+ \) other than \(T \); so (c) holds.

If \(|(N(x) \cup N(y)) \cap V(I)| \leq 1 \), then \(|I| = 1 \) because \(G \) is a near plane triangulation. This contradicts (b). So (d) holds. \(\square \)

Lemma 5.2. Let \(C \) be a separating cycle in \(G \) such that \(V(C) \cap A = \emptyset \). Assume \(X, Y \) are disjoint subsets of \(G \) such that \(X \cup Y \neq \emptyset \), \(Y \) is collectable in \(G - X \), and \(G[X \cup Y] \) is connected. Let \(G_1 = \text{int}[C] - (X \cup Y) \), \(G_2 = \text{ext}(C) - (X \cup Y) \), \(B_1 = B(G_1) \), \(B_2 = B(G_2) \), \(G'_2 = \text{ext}[C] - (X \cup Y) \), \(A' = V(C) - (X \cup Y) \). If \(A' \) is usable in \(G_1 \) and collectable in \(G'_2 \), then

\[
|Y| + |B_1| + |B_2| < 3|X| + |B| + \tau(G_2) \leq 3|X| + |B| + 1.
\]

In particular,

\[
|Y| < \begin{cases}
3|X| + |B| - |B_1| - |B_2| & \text{if } (X \cup Y) \cap B \neq \emptyset, \\
3|X| + \tau(G_2) - |B_1| & \text{otherwise}.
\end{cases}
\]

Proof. Since \(A' \) is usable, \((X \cup Y) \cap V(C) \neq \emptyset \) and so \(X \cup Y \) lies in the infinite face of \(G_1 \). Thus any special cycle of \(G_1 \) is also a special cycle of \(G \). Thus by Lemma 4.8, \(\tau(G) = \tau(G_1) = 0 \). By Lemma 4.2 in an optimal special cycle packing of \(G_2 \), at most one cycle is type-c and there are no type-a or type-b cycles. Therefore \(\tau(G_2) \leq 1 \).

As \(A' \) is collectable in \(G'_2 \), we have

\[
f(G; A) \geq f(G_1; A') + f(G_2; A) + |Y|.
\]

On the other hand,

\[
\partial(G) = \partial(G_1) + \partial(G_2) + \frac{3}{4}(|X| + |Y|) - \frac{1}{4}(|B_1| + |B_2| - |B| - \tau(G_2)).
\]

As \(f(G_1; A') \geq \partial(G_1) \) and \(f(G_2; A) \geq \partial(G_2) \), we have

\[
\partial(G) - \frac{3}{4}(|X| + |Y|) + \frac{1}{4}(|B_1| + |B_2| - |B| - \tau(G_2)) \leq f(G_1; A') + f(G_2; A) \leq f(G; A) - |Y|.
\]

As \(f(G; A) < \partial(G) \), it follows that

\[
|Y| + |B_1| + |B_2| < 3|X| + |B| + \tau(G_2) \leq 3|X| + |B| + 1.
\]

Note that if \((X \cup Y) \cap B \neq \emptyset \), then \(\tau(G_2) = 0 \). In this case, we have

\[
|Y| + |B_1| + |B_2| < 3|X| + |B|.
\]

If \((X \cup Y) \cap B = \emptyset \), then \(B_2 = B \). In this case, we have \(|Y| + |B_1| < 3|X| + \tau(G_2) \). \(\square \)
Lemma 5.3. Let C be a separating triangle of G. If C has no vertex in $B(G)$, then either $\|v, V(\text{ext}(C))\| \geq 3$ for all vertices $v \in V(C)$ or $\|v, V(\text{ext}(C))\| \geq 4$ for two vertices $v \in V(C)$.

Proof. Suppose not. Let $C = xyzx$ be a counterexample with the minimal area. We may assume that $\|x, V(\text{ext}(C))\| \leq 2$ and $\|y, V(\text{ext}(C))\| \leq 3$. By Lemma 5.1(c), z has a neighbour w in $I := \text{int}(C)$. If w is the only neighbour of z in I, then by Lemma 5.3. Let $C' := xwyx$ is a separating triangle. However, w has only 1 neighbour in $\text{ext}(C')$ and x has at most 3 neighbours in $\text{ext}(C')$, contradicting the choice of C.

Thus $\|z, V(I)\| \geq 2$.

We apply Lemma 5.2 with C, $X = \{z\}$ and $Y = \emptyset$. Then $A' := \{x, y\}$ is usable in $G_1 := \text{int}[C] - z$, A' is collectable in $G_2' := \text{ext}[C] - z$ and $B_1 := B(G_1) \supseteq \{x, y\} \cup N_I(z)$. So $|B_1| \geq 4$, and this contradicts Lemma 5.2.

Lemma 5.4. Let C be a separating induced cycle of length 4 in G having no vertex in $B(G)$. Then exactly one of the following holds.

(a) $|B(\text{int}(C))| \geq 4$.
(b) $|V(\text{int}(C))| \leq 2$ and every vertex in $\text{int}(C)$ has degree 4 in G.

Proof. Suppose that $|B(\text{int}(C))| \leq 3$. By Euler’s formula, we have

$$\|\text{int}[C]\| = 3|V(\text{int}[C])| - 7 = 3|V(\text{int}(C))| + 5$$

as G is a near plane triangulation. Then since C is induced, by Lemma 4.4,

$$0 \leq \sum_{v \in V(\text{int}(C))} (d(v) - 4)$$

$$= \|\text{int}[C]\| - \|C\| + \|\text{int}(C)\| - 4|V(\text{int}(C))|$$

$$= (3|V(\text{int}(C))| + 5) - 4 + \|\text{int}(C)\| - 4|V(\text{int}(C))|$$

$$= 1 - |V(\text{int}(C))| + \|\text{int}(C)\|.$$ (5.1)

Suppose that $\text{int}(C)$ has a cycle. Since $|B(\text{int}(C))| \leq 3$, we deduce that $B(\text{int}(C)) = xyzx$ is a triangle. By Euler’s formula applied on $G[V(C) \cup B(\text{int}(C))]$, we have

$$\|V(C), B(\text{int}(C))\| = (3 \cdot 7 - 7) - 3 - 4 = 7,$$

hence $B(\text{int}(C))$ is a facial triangle by Lemma 5.3. Therefore, x, y, z have degree 4, 4, 5 in G by (5.1) and Lemma 4.4. Let $w, w' \in V(C)$ be consecutive neighbours of x in $V(C)$. From G, we can delete w and collect x, y, z. Let $G' = G - \{w, x, y, z\}$. If G' has an exposed special cycle, then the face of G' containing w has length at least 5, implying that $\|w, V(\text{ext}(C))\| \leq 2$ because $C - w$ is a subpath of an exposed special cycle of G', as C is induced. Then we can delete w' and collect x, y, z, w, contradicting Lemma 4.5. Therefore G' has no exposed special cycles. Then $\partial(G) = \partial(G') + 3$ and $f(G; A) \geq f(G'; A) + 3 \geq \partial(G') + 3 = \partial(G)$, a contradiction.
Therefore $\text{int}(C)$ has no cycles. Then \(\|\text{int}(C)\| \leq |V(\text{int}(C))| - 1 \), and so in (5.11) the equality must hold. This means $\text{int}(C)$ is a tree and every vertex in $\text{int}(C)$ has degree 4 in G by Lemma 4.4. If $\text{int}(C)$ has at least 3 vertices, then let w be a vertex in $V(C)$ adjacent to some vertex in $\text{int}(C)$. By deleting w, we can collect all the vertices in $\text{int}(C)$. Similarly we can choose w so that $G' = G - w - V(\text{int}(C))$ contains no special cycle, and that leads to the same contradiction. Thus we deduce (b). \qed

6 Degrees of boundary vertices

Lemma 6.1. Each vertex in B has degree at most 5.

Proof. Assume to the contrary that $x \in B$ has $d(x) \geq 6$. Then deleting x exposes at least 4 interior vertices. Apply Lemma 4.9 with $X = \{x\}$, $Y = \emptyset$ and $s = 3$, we obtain a contradiction. \qed

Recall that $A = \{a, a'\}$.

Lemma 6.2. Each vertex in $B - A$ has degree 5.

Proof. Suppose that there is a vertex $x \in B - A$ with $d(x) < 5$. By Lemma 4.4, $d(x) = 4$. By Lemma 4.11, exactly two of the neighbors of x are in B. Consider two cases.

Case 1: x has a neighbour $y \in B - A$. As $|A| = 2$, we have $|B| \geq 4$. As G is a near plane triangulation, there is a vertex $z \in N(x) \cap N(y)$ such that $xyzx$ is a facial triangle. As B has no chords by Lemma 4.11, $(N(x) \cap N(y)) \cap B(G) = \emptyset$.

Suppose there is $z' \in N(x) \cap N(y) - \{z\}$. Since $d(x) = 4$ and G is a near plane triangulation, $xz'z'$ is a facial triangle. Since $d(z) \geq 4$ by Lemma 4.4, $T := yzz'y$ is a separating triangle. As $d(y) \leq 5$ by Lemma 6.1, y has a unique neighbour $y' \in V(\text{int}(T))$ and therefore both $yyzy$ and $yy'z'y$ are facial triangles. By Lemma 5.1(b), $\text{int}(T)$ contains at least three vertices and so $T' := zz'y'z$ is a separating triangle with $\|z, V(\text{ext}(T'))\| = 2$ and $\|y', V(\text{ext}(T'))\| = 1$, contrary to Lemma 5.3. So $N(x) \cap N(y) = \{z\}$.

If $d(y) = 5$, then deleting z and collecting x and y exposes three vertices in $(N^\circ(x) \cup N^\circ(y)) - \{z\}$, the resulting graph $G' = G - \{x, y, z\}$ has $|B(G')| \geq |B| + 1$. Apply Lemma 4.9 with $X = \{z\}, Y = \{x, y\}$, and $s = 1$, we obtain a contradiction.

Hence $d(y) = 4$. By repeating the same argument, we deduce that for all edges $vv' \in B - A$, we have (i) $d(v) = 4 = d(v')$ and (ii) $|N(v) \cap N(v')| = 1$.

Let x', y' be vertices such that $N^\circ(x) = \{x', z\}$ and $N^\circ(y) = \{y', z\}$. As G is a near plane triangulation and B is chordless, $G - B$ is connected. Let $J = \{x', z, y'\}$. If $V - B \neq J$, then there exist $b \in J$ and $t \in (V - B) - J$ such that b and t are adjacent. Then deleting b and collecting x, y exposes all vertices in $(J - \{b\}) \cup \{t\}$. Let $G' = G - \{x, y, b\}$. Then $|B(G')| \geq |B| + 1$. With $X = \{b\}, Y = \{x, y\}$, and $s = 1$, this contradicts Lemma 4.9. Hence $V - B = J$. \qed
Let \(u, v \) be vertices in \(B \) so that \(uxyzv \) is a path in \(B \). Since \(G \) is a near plane triangulation, \(x' \) is adjacent to \(u \) and \(z \), and \(y' \) is adjacent to \(v \) and \(z \), see Figure 4. Then \(ux'zy, xzyv \) are paths in \(G \). If \(A = \{u, v\} \), then \(B \) is a 4-cycle and as \(d(x'), d(y') \geq 4 \), we must have \(x'y' \in E(G) \), which implies that \(G \) is isomorphic to \(Q_4^+ \) and \(B \) is a special cycle, contrary to Lemma 4.8. Therefore \(A \neq \{u, v\} \) and since \(y \notin A \), we deduce that \(v \notin A \). This implies \(d(v) = 4 \). Then \(v \) has another neighbour in \(J \), and by the observation that \(y \) and \(v \) have only one common neighbour \(y' \), we deduce that \(v \) is non-adjacent to \(z \). Thus \(v \) is adjacent to \(x' \), and \(x' \) is adjacent to \(y' \).

Furthermore every vertex in \(B - \{u, x, y, v\} \) has degree at most 3, because \(B \) has no chords and \(x' \) is the only possible interior neighbor. By Lemma 4.4 every vertex in \(B - \{u, x, y, v\} \) is in \(A \). Then \(G \) is isomorphic to \(Q_4^{++} \) and \(B \) is a special cycle, contrary to Lemma 4.8.

Case 2: \(N_G(x) \cap B \subseteq A \). Then \(B = xaa'a \). Since \(G \) is a near plane triangulation and \(d(x) = 4 \), the neighbours of \(x \) form a path of length 3 from \(a \) to \(a' \), say \(ayzx' \) where \(a, y, z, a' \) are the neighbours of \(x \). (See Figure 5)

If \(|N^o(y)| \geq 3 \), then deleting \(y \) and collecting \(x \) exposes at least three vertices in \(N^o(y) \). Let \(G' = G - \{x, y\} \). Then \(|B(G')| \geq |B| + 2 \). With \(X = \{y\}, Y = \{x\} \), and \(s = 2 \), this contradicts Lemma 4.9.

Thus \(|N^o(y)| \leq 2 \) and so \(d(y) \leq 5 \). (Note that \(y \) may be adjacent to \(a' \).) By symmetry, \(|N^o(z)| \leq 2 \) and \(d(z) \leq 5 \).

If \(y \) is adjacent to \(a' \), then \(z \) is non-adjacent to \(a \) and so \(d(z) = 4 \) by Lemma 4.4. Then \(T := yza'y \) is a separating triangle, as \(\text{int}(T) \) contains a neighbour of \(z \). Since \(d(y) \leq 5 \) and \(d(z) = 4 \), we have \(|N(\{y, z\}) \cap V(\text{int}(T))| = 1 \), contrary to Lemma 5.1(d).

So \(y \) is non-adjacent to \(a' \). By symmetry, \(z \) is non-adjacent to \(a \). As \(|N^o(y)|, |N^o(z)| \leq 2 \) and \(d(y), d(z) \geq 4 \), \(y \) and \(z \) have a unique common neighbour \(w \) and \(d(y) = d(z) = 4 \). Since \(G \) is a near plane triangulation, \(w \) is adjacent to both \(a \) and \(a' \).
If \(d(w) > 4 \), then deleting \(w \) and collecting \(y, z, x \) exposes at least one vertex and so \(|B(G - \{x, y, z, w\})| \geq |B| \). With \(X = \{w\}, Y = \{x, y, z\} \), and \(s = 0 \), this contradicts Lemma 4.9. This implies \(d(w) = 4 \), hence \(B(G) \) is a special cycle, contrary to Lemma 4.8.

7 The boundary is a triangle

In this section we prove that \(|B| = 3\).

Lemma 7.1. If \(xy \in E(B - A) \), then the following hold:

(a) There are \(S := \{x_1, x_2, u, y_1, y_2\} \subseteq V - B \) and \(x^*, y^* \in B \) such that \(x^*x_1x_2uy \) is a path in \(G[N(x)] \) and \(xuy_1y_2y^* \) is a path in \(G[N(y)] \).

(b) \(d(x_2), d(u), d(y_1) \geq 5 \).

(c) The vertices \(x_1, x_2, u, y_1, y_2 \) are all distinct.

(d) \(|N^c(\{x_2, u\}) - S| \leq 2 \) and \(|N^c(\{y_1, u\}) - S| \leq 2 \).

(e) \(x_2y_1, x_2y_2, x_1y_1, ux_1, uy_2 \notin E \).

(f) There is \(w_1 \in N(\{x_2, u, y_1\}) \cap B) - \{x, y\} \); in particular \(G[S] \) is an induced path.

(g) \(x_2, u \notin N(x^*) \) and \(y_1, u \notin N(y^*) \).

(h) Neither \(x^* \) nor \(y^* \) is equal to the vertex \(w_1 \) from (f).

Proof. (a) By Lemma 6.2, \(d(x) = 5 = d(y) \). By Lemmas 4.10 and 4.11 there are \(x^*, y^* \in B \) with \(N(x) \cap B = \{x^*, y\} \) and \(N(y) \cap B = \{x, y^*\} \). As \(G \) is a near plane triangulation, there is \(u \in N(x) \cap N(y) \). So (a) holds.

(b) (See Figure 6) As \(d(u) \geq 4 \) by Lemma 4.3, \(x_2 \neq y_1 \). Assume \(d(x_2) = 4 \). If \(x_2 \) is adjacent to \(y \), then \(x_2 = y_2 \), implying that \(d(x_2) > 4 \), contradicting the assumption. Thus \(x_2 \) is non-adjacent to \(y \) and deleting \(u \) and collecting \(x_2, x, y \) exposes \(y_1, y_2 \) (note that it is possible that \(x_1 \in \{y_1, y_2\} \), so we do not count it as exposed). We have \(|B(G - \{u, x_2, x, y\})| \geq |B| \). With \(X = \{u\}, Y = \{x_2, x, y\} \), and \(s = 0 \), this contradicts Lemma 4.9. Thus \(d(x_2) \geq 5 \) by Lemma 4.3. By symmetry, \(d(y_1) \geq 5 \). If \(d(u) = 4 \), then we can delete \(x_2 \), collect \(u, x, y \), and expose \(y_1, y_2 \). This contradicts Lemma 4.9 applied with \(X = \{x_2\}, Y = \{u, x, y\} \), and \(s = 0 \). So (b) holds.

(c) Since \(d(u) \geq 5 \), we deduce \(x_2 \neq y_1 \), and if \(x_1 = y_1 \), then \(T := x_1x_2ux_1 \) is a separating triangle (see Figure 7), since \(d(x_2) \geq 5 \). As \(\|x_2, V(\text{ext}(T))\| = 1 \) and \(\|u, V(\text{ext}(T))\| = 2 \), this contradicts Lemma 5.3. So \(x_1 \neq y_1 \). By symmetry, \(x_2 \neq y_2 \).
This contradicts Lemma 4.9 applied with x.

Thus $\|x\| = 4$, contrary to (7.1). So (c) holds.

It remains to show that $x_1 \neq y_2$. Suppose not. By (b) $d(x_2) \geq 5$, so $C := x_1x_2uy_1x_1$ is a separating 4-cycle (see Figure 8). We first prove the following.

For all $u' \in V(C) - \{u\}$, $|N(\{u, u'\}) \cap V(\text{int}(C))| \leq 3$. \hspace{1cm} (7.1)

Suppose not. Then deleting u, u' and collecting x, y exposes two vertices in $V(C) - \{u, u'\}$ and at least 4 vertices in $\text{int}(C)$. So $|B(G - \{u, u', x, y\})| \geq |B| - 2 + 2 + 4$. This contradicts Lemma 4.9 with $X = \{u, u'\}$, $Y = \{x, y\}$, and $s = 4$. This proves (7.1).

If u is adjacent to x_1, then $C_1 := x_1x_2ux_1$ and $C_2 := x_1uy_1x_1$ are both separating triangles by (b). Then $|N(\{u, x_1\}) \cap V(\text{int}(C_i))| \geq 2$ for each $i \in \{1, 2\}$ by Lemma 5.1(d). Thus $|N(\{u, x_1\}) \cap V(\text{int}(C_i))| \geq 4$, contrary to (7.1). So u is non-adjacent to x_1.

If x_2 is adjacent to y_1, then $C_3 := ux_2y_1u$ is a separating triangle by (b). Then $|N(\{u, x_2\}) \cap V(\text{int}(C_3))| \geq 2$ by Lemma 5.1(d). As $|u, V(\text{ext}(C_3))| = 2$, Lemma 5.3 implies that $|x_2, V(\text{ext}(C_3))| \geq 4$, hence $|N(\{u, x_2\}) \cap V(\text{int}(x_1x_2y_1x_1))| \geq 2$. Thus $|N(\{u, x_2\}) \cap V(\text{int}(C))| \geq 4$, contrary to (7.1). So C has no chord.

By (b) C is a separating induced cycle of length 4 in G. By Lemma 5.4 either $|B(\text{int}(C))| \geq 4$ or $|V(\text{int}(C))| \leq 2$ and every vertex in $\text{int}(C)$ has degree 4 in G.

By (7.1), $d(x_2), d(y_1) \leq 6$. If $|B(\text{int}(C))| \geq 4$, then deleting u, x_1 and collecting x, y, x_2, y_1 exposes at least 4 vertices and therefore $|B(G - \{u, x_1, x, y, x_2, y_1\})| \geq |B| + 2$. This contradicts Lemma 4.9 applied with $X = \{u, x_1\}$, $Y = \{x, y, x_2, y_1\}$, and $s = 2$.

Therefore we may assume $1 \leq |V(\text{int}(C))| \leq 2$ and every vertex in $\text{int}(C)$ has degree 4 in G. As x_2 is non-adjacent to y_1, x_1 has at least one neighbour in $\text{int}(C)$ and therefore after deleting x_1, we can collect all vertices in $V(\text{int}(C))$ and then collect x_2, y_1 and u, this contradicts Lemma 4.5. So (c) holds.
Figure 9: The situation in the proof of Lemma (d): x_1, x_2, u, y_1, y_2 are all distinct. The gray region has other vertices.

(d) (See Figure 9) If $|N^o(\{x_2, u\}) - S| \geq 3$, then deleting x_2, u and collecting x, y exposes x_1, y_1, y_2, and three other vertices and so $|B(G - \{x_2, u, x, y\})| \geq |B| - 2 + 6$. By applying Lemma 4.9 with $X = \{x_2, u\}$, $Y = \{x, y\}$, and $s = 4$, we obtain a contradiction. So we deduce that $|N^o(\{x_2, u\}) - S| \leq 2$. By symmetry, $|N^o(\{y_1, u\}) - S| \leq 2$.

(e) Suppose x_1 is adjacent to u. By (b) and (d) $d(x_2) = 5$. Thus $T := ux_1x_2u$ is a separating triangle. Let w_1, w_2 be the two neighbours of x_2 other than x_1, x, u so that $x_1w_1w_2u$ is a path in G. Such a choice exists because G is a near plane triangulation. As $d(w_2) \geq 4$ by Lemma 4.4 and u has no neighbours in $\text{int}(ux_1w_1w_2u)$ by (d) x_1 is adjacent to w_2. As $d(w_1) \geq 4$, $T' := x_1w_1w_2x_1$ is a separating triangle. Note that $x_2x_1w_1x_2$, $x_2w_1w_2x_2$, $x_2w_2ux_2$, and w_1w_2u are facial triangles. Thus $\|w_1, V(\text{ext}(T'))\| = 1$ and $\|w_2, V(\text{ext}(T'))\| = 2$, contrary to Lemma 5.3. So x_1 is non-adjacent to u. By symmetry, y_2 is non-adjacent to u.

Suppose that x_2 is adjacent to y_1. Let $T'' := ux_2y_1u$. By (b) $d(u) \geq 5$, so T'' is a separating triangle. By (d) $\|z, V(\text{int}(T''))\| \leq 2$ for all $z \in V(T'')$. By Lemma 5.1

$$\sum_{z \in V(T'')} \|z, V(\text{int}(T''))\| = \|V(T''), V(\text{int}(T''))\| \geq 6$$

and therefore $\|z, V(\text{int}(T''))\| = 2$ for all $z \in V(T'')$. By (d) $N(u) \cap V(\text{int}(T'')) = N(x_2) \cap V(\text{int}(T'')) = N(y_1) \cap V(\text{int}(T''))$. Then u, x_2, y_1, and their neighbours in $\text{int}(T'')$ induce a K_5 subgraph, contradicting our assumption on G. Thus x_2 is non-adjacent to y_1.

Suppose that x_2 is adjacent to y_2. Since x_2 is non-adjacent to y_1, (b) and (d) imply that $d(y_1) = 5$. Let w_1, w_2 be the two neighbours of y_1 other than u, y, y_2 such that $uw_1w_2y_2$ is a path in G. By (d) $N^o(u) - S \subseteq \{w_1, w_2\}$. If u is adjacent to both w_1 and w_2, then uw_1w_2u, uy_1w_1u, $y_1w_1w_2y_1$ are facial triangles, implying that w_1 has degree 3, contradicting Lemma 4.4. Thus, as $d(u) \geq 5$ by (b) we deduce that $d(u) = 5$. Since G is a near plane triangulation, x_2 is adjacent to w_1 and ux_2w_1u, uw_1y_1u are facial triangles. If $x_2w_1w_2y_2x_2$ is a separating cycle, then deleting w_1, w_2 and collecting y_1, u, y, x exposes at least 4 vertices and so $|B(G - \{w_1, w_2, y_1, u, y, x\})| \geq |B| - 2 + 4$. By applying Lemma 4.9 with $X = \{w_1, w_2\}$, $Y = \{y_1, u, y, x\}$, and $s = 2$, we obtain a contradiction. So $x_2w_1w_2y_2x_2$ is not a separating cycle. By Lemma 4.1, $d(w_2) \geq 4$. Therefore w_2 is adjacent to x_2 and $d(w_1) = 4 = d(w_2)$. Then, deleting y_1 and collecting
\(w_1, w_2, u, y, x\) exposes 3 vertices and \(|B(G - \{y_1, w_1, w_2, u, y, x\})| = |B| - 2 + 3\). By applying Lemma 4.9 with \(X = \{y_1\}, \ Y = \{w_1, w_2, u, y, x\}\), and \(s = 1\), we obtain a contradiction. So \(x_2\) is non-adjacent to \(y_2\). By symmetry, \(x_1\) is non-adjacent to \(y_1\).

\([f]\) Suppose that none of \(x_2, u, y_1\) has neighbours in \(B - \{x, y\}\). By \([b], [d]\) and \([e]\), \(d(x_2) = 5 = d(y_1)\). If
\[
|N^c(\{x_2, y_1\}) - \{u\}| \geq 5
\]
then deleting \(u, x_2\) and collecting \(x, y, y_1\) exposes all vertices in \(N^c(\{x_2, y_1\}) - \{u\}\) and so \(|B(G - \{u, x_2, x, y, y_1\})| \geq |B| - 2 + 3\). By applying Lemma 4.9 with \(X = \{u, x_2\}, \ Y = \{x, y, y_1\}\), and \(s = 3\), we obtain a contradiction. Thus \(|N^c(\{x_2, y_1\}) - \{u\}| \leq 4\) and therefore \(x_2, y_1\) have the same set of neighbours in \(V(G) - (B \cup S)\) by \([c]\) and \([e]\). Let \(w, w'\) be the neighbours of \(x_2\) (and also of \(y_1\)) such that \(w \in V(\text{int}(uy_1w'x_2u))\). Then \(w\) is the unique common neighbour of \(x_2, u\), and \(y_1\). By \([d]\) and Lemma 4.4, \(w\) is adjacent to \(w'\). Thus \(d(w) = 4\). Deleting \(u\) and collecting \(w, x_2, y_1, x, y\) exposes at least 3 vertices including \(w'\) and so \(|B(G - \{u, w, x_2, y_1, x, y\})| \geq |B| - 2 + 3\). This contradicts Lemma 4.9 applied with \(X = \{u\}, \ Y = \{w, x_2, y_1, x, y\}\), and \(s = 1\).

Thus at least one vertex of \(x_2, u\), and \(y_1\) is adjacent to a vertex in \(B - \{x, y\}\). Then \(x_1\) is non-adjacent to \(y_2\). By \([e]\) \(G[S]\) is an induced path and \([f]\) holds.

\([g]\) Suppose that \(x^*\) is adjacent to \(x_2\). As \(d(x_1) \geq 4\) by Lemma 4.4, \(T := x^*x_1x_2x^*\) is a separating triangle. Since \(d(x^*) \leq 5\) by Lemma 6.1, \(x^*\) has a unique neighbour \(w \in V(\text{int}(T))\). So \(w\) is adjacent to both \(x_1\) and \(x_2\). As \(d(w) \geq 4\) by Lemma 4.4, \(T' := wx_1x_2w\) is a separating triangle with \(|w, V(\text{ext}(T'))| = 1\) and \(|x_1, V(\text{ext}(T'))| = 2\), contrary to Lemma 5.3. So \(x^*\) is non-adjacent to \(x_2\). By symmetry, \(y^*\) is non-adjacent to \(y_1\).

Suppose \(u\) is adjacent to \(x^*\). As \(d(x_1) \geq 4\) and \(d(x^*) \leq 5\) by Lemmas 4.4 and 6.1, \(x^*\) has a unique neighbour \(w \in V(\text{int}(x^*x_1x_2ux^*))\) adjacent to both \(x_1\) and \(u\). By \([b]\) and \([d]\), \(w\) is adjacent to \(x_2\). If \(uwx_2u\) is a separating triangle, then by Lemma 5.1(d), \(|N(\{x_2, u\}) \cap N(\text{int}(uxw_2u))| \geq 2\), hence \(|N^c(\{x_2, u\}) - S| \geq 3\), contrary to \([d]\). So \(uwx_2u\) is facial. As \(d(x^*) \leq 5\), \(wx_1x_2w\) and \(wx^*uw\) are facial triangles. As \(d(x_2) \geq 5\) by \([d]\), \(T' := wx_1x_2w\) is a separating triangle. So \(|x_1, V(\text{ext}(T'))| = 2\) and \(|x_2, V(\text{ext}(T'))| = 2\), contrary to Lemma 5.3. Thus \(u\) is non-adjacent to \(x^*\). By symmetry, \(u\) is non-adjacent to \(y^*\). So \([g]\) holds.

\([h]\) Suppose that \(w_1 = y^*\). By \([g]\) \(y^*\) is adjacent to \(x_2\). Let \(C := y^*x_2uy_1y_2y^*\) and \(C'\) be the cycle formed by the path from \(x^*\) to \(y^*\) in \(B(G) - x - y\) together with the path \(y^*x_2x_1x^*\). Since \(G\) is a plane triangulation and \(d(y_2) \geq 4\), by \([f]\) there is \(w \in N(y^*) \cap N(y_2) \cap N(\text{int}(C))\). By Lemma 6.1, \(d(y^*) = 5\), and therefore \(x_2\) is adjacent to \(w\) and \(x_2wy^*x_2\) is a facial triangle. Let \(y^{**} \in B\) be the neighbour of \(y^*\) other than \(y\). Then \(x_2y^{**}y^*x_2\) is also a facial triangle in \(G\). Because \(x_2\) is non-adjacent to \(x^*\) by \([g]\), \(y^{**} \neq x^*\). By \([f]\) applied to \(yy^*\), we have \(y^* \in A\) because \(uy_1y_2wx_2\) is not an induced path in \(G\). Thus \(x^* \notin A\) because \(|A| = 2\). By Lemma 4.11, \(B(G)\) is chordless. Therefore by Lemma 6.2, \(d(x^*) = 5\) and so \(|x^*, V(\text{int}(C'))| = 2\). By \([b], [d]\), and \([e]\), we have \(|N^c(y_1) - S| = 2\). Deleting \(x_1, u\) and collecting \(x, x^*, y, y_1\) exposes at least 6.
vertices, including two neighbours of \(x^* \) in \(\text{int}(C') \) and two neighbours of \(y_1 \) in \(\text{int}(C) \). So \(|B(G - \{ x_1, u, x, x^*, y, y_1 \})| \geq |B| - 3 + 6 \). By applying Lemma 4.9 with \(X = \{ x_1, u \} \), \(Y = \{ x, x^*, y, y_1 \} \), and \(s = 3 \), we obtain a contradiction. So \(w_1 \neq y^* \). By symmetry, \(w_1 \neq x^* \). Thus (h) holds.

Lemma 7.2. \(|B| = 3\).

Proof. For an edge \(e = xy \in E(B - A) \), let \(x^*, x_1, x_2, u, y_1, y_2, y^* \) be as in Lemma 7.1. Suppose that \(|B| \geq 4\). Then \(x^* \neq y^* \). Lemma 7.1(h) implies that \(B \) has a vertex other than \(x, y, x^* \), and \(y^* \). So, \(|B| \geq 5\).

We claim that \(N^{\circ}(u) = \{ x_2, y_1 \} \). Suppose not. By Lemma 4.10 \(|A| = 2\), so at least one vertex of \(\{ x^*, y^* \} \), say, \(y^* \) is not in \(A \). By Lemma 7.1(f) applied to \(yy^* \), we deduce that \(u \) is non-adjacent to vertices in \(N^{\circ}(y^*) \). Thus deleting \(u, y_2 \) and collecting \(y, x, y^* \) exposes at least 6 vertices and so \(|B(G - \{ u, y_2, y, x, y^* \})| \geq |B| - 3 + 6 \). By applying Lemma 4.9 with \(X = \{ u, y_2 \} \), \(Y = \{ y, x, y^* \} \), and \(s = 3 \), we obtain a contradiction. So \(N^{\circ}(u) = \{ x_2, y_1 \} \).

Since \(d(u) \geq 5 \) by Lemma 7.1(b) \(u \) has at least one boundary neighbour \(z \neq x, y \). Let \(B(x, z) \) be the boundary path from \(x \) to \(z \) not containing \(y \), and \(B(y, z) \) be the boundary path from \(y \) to \(z \) not containing \(x \). So \(B(x, z) \) and \(B(y, z) \) have only one vertex in common, namely \(z \). One of \(B(x, z) \), \(B(y, z) \) has no internal vertex in \(A \). We denote this path by \(P(e, z) \). We choose \(e = xy \) and \(z \) so that \(P(e, z) \) is shortest. Assume \(P(e, z) = B(y, z) \). Let \(e' = yy^* \). Then \(e' \in E(B - A) \). Let \(y_2 \) be the common neighbour of \(y \) and \(y^* \) and let \(z' \neq y, y^* \) be a boundary neighbour of \(y_2 \). Then \(P(e', z') \) is a proper subpath of \(P(e, z) \), and hence is shorter. This contradicts our choice of \(e \) and \(z \). \(\square \)

8 The final contradiction

In this section we complete the proof of Theorem 3.2. First we prove a lemma.

Lemma 8.1. If \(B = \{ a, a', v \} \) and \(axyza' \) is a path in \(G[N(v)] \) (see Figure 10), then the following hold.

(a) \(x \) is non-adjacent to \(z \).
(b) \(y \) is adjacent to neither \(a \) nor \(a' \).
(c) \(z \) is non-adjacent to \(a \) and \(x \) is non-adjacent to \(a' \).

\(23 \)
Lemma 5.3 implies \(\| \) is a separating triangle. By Lemma 5.1, \(| \) adjacent to \(a \) is collectable in \(G \). By symmetry, assume \(x \) is non-adjacent to \(a \). Since \(d(y) \geq 4 \), \(T := xwyx \) is a separating triangle. By Lemma 5.2, \(| \) adjacent to \(y \) is non-adjacent to \(C \). By Lemma 5.4, either \(| \geq 4 \) or \(| \geq 4 \). By applying Lemma 4.9 with \(y \), \(| \) exposes at least 7 vertices, and \(| \geq 4 \). Therefore, \(d(y) \geq 7 \). Then \(| \geq 4 \) and so deleting \(x, y \) and collecting \(v \) exposes at least 7 vertices, and \(| \geq 4 \). By applying Lemma 4.9 with \(x, y \), \(| \geq 4 \). By symmetry, \(y \) is non-adjacent to \(a \). So \(| \) holds.

(b) Suppose \(y \) is adjacent to \(a \). Then \(T := axya \) is a separating triangle, because \(d(x) \geq 4 \) and the other triangles incident with \(x \) are facial. As \(d(a) \leq 5 \) by Lemma 6.1, \(a \) has a unique neighbour \(w \) in \(int(T) \). As \(d(w) \geq 4 \), \(T' := xwyx \) is a separating triangle. Now \(|w, V(\text{ext}(T'))| = 1 \), and \(|x, V(\text{ext}(T'))| = 2 \), contrary to Lemma 5.3. Thus \(y \) is non-adjacent to \(a \). So \(| \) holds.

(c) Suppose that \(z \) is adjacent to \(a \). By \(| \) \(\geq 4 \) and \(d(a) \leq 5 \) by Lemmas 4.4 and 4.5, there is \(w \in (N(a) \cap N(x) \cap N(z)) \setminus \{v\} \), and \(xawx, wazw, azxa' \) are all facial triangles. (See Figure 11.) By \(y \neq w \). Since \(d(y) \geq 4 \) by Lemma 4.4, \(C := xzywxa \) is a separating cycle of length 4. Let \(I = \text{int}(C) \). Then \(V = B \cup V(C) \cup V(I) \), \(|x, V(\text{ext}(C))| = 2 \), \(|y, V(\text{ext}(C))| = 1 \), \(|z, V(\text{ext}(C))| = 3 \), and \(|w, V(\text{ext}(C))| = 1 \).

If \(w \) is adjacent to \(y \), then we apply Lemma 5.2 with \(C, X = \{w\} \), and \(Y = \emptyset \). As \(y \) is adjacent to \(w \), \(A' := \{x, y, z\} \) is usable in \(G_1 := \text{int}(C) - w \), and by (i–iii), \(A' \) is collectable in \(G_2' := \text{ext}(C) - w \). As \(|V(G_2')| = |B| = 3 \), \(\tau(G_2) = 0 \). This contradicts Lemma 5.2.

So using \(| \), \(C \) is chordless and \(x \) has at least one neighbour in \(\text{int}(C) \).

By Lemma 5.4, either \(|B(I)| \geq 4 \) or \(|V(I)| \leq 2 \) and every vertex in \(I \) has degree 4 in \(G \). If \(|V(I)| \leq 2 \) and every vertex in \(I \) has degree 4 in \(G \), then \(V \setminus \{x\} \) is \(A \)-good as we

\(\begin{align*}
(d) & \quad d(x), d(y), d(z) \geq 5. \\
(e) & \quad |N^o(\{x, y, z\})| \leq 4. \\
(f) & \quad x \text{ and } z \text{ have a common neighbour } w \notin \{y, v\}. \\
(g) & \quad N(x) \cap N(z) = \{v, w, y\}.
\end{align*} \)
can collect \(V(I), y, w, z, v, a', a \). Then \(f(G;A) \geq |V(G)| - 1 \geq \partial(G) \), a contradiction. Therefore \(|B(I)| \geq 4 \).

If there is an edge \(uu' \in E(C) \) with \(|N(\{u, u'\}) \cap V(I)| \geq 4 \), then we apply Lemma 5.2 with \(C, X = \{u, u'\} \) and \(Y = \emptyset \). Now \(A' := V(C) - \{u, u'\} \) is usable in \(G_1 := \text{int}[C] - \{u, u'\}, A' \) is collectable in \(G_2' := \text{ext}[C] - \{u, u'\}, |B_1| \geq 6 \), and \(B_2 = B \). As \(G_2 = B \), \(\tau(G_2) = 0 \). This contradicts Lemma 5.2. So \(|N(\{u, u'\}) \cap V(I)| \leq 3 \) for all edges \(uu' \in E(C) \) and in particular, \(\|u, V(I)| \leq 3 \) for all \(u \in V(C) \). This implies \(d(y) \leq 6 \).

If \(|N(\{x, y, z\}) \cap V(I)| \geq 4 \), then we apply Lemma 5.2 with \(C, X = \{x, z\} \) and \(Y = \{v, y\} \). Then \(Y \) is collectable in \(G - X, A' := \{w\} \) is usable in \(G_1 := \text{int}[C] - \{x, y, z\}, A' \) is collectable in \(G_2' := \text{ext}[C] - \{x, y, z\}, |B_1| \geq 5 \), and \(B_2 = B - \{v\} \). As \((X \cup Y) \cap B = \emptyset \), this contradicts Lemma 5.2.

Therefore \(|N(\{x, y, z\}) \cap V(I)| \leq 3 \). Since \(|B(I)| \geq 4 \), there exists a vertex \(u \) in \(B(I) - N(\{x, y, z\}) \). Then \(w \) is the only neighbour of \(u \) in \(C \).

Because \(G \) is a plane triangulation and \(d(u) \geq 4 \), \(w \) is adjacent to \(u \). Since \(u \) is non-adjacent to \(x, y, z \), we deduce that \(B(I) \cap N(w) \) contains \(u \) and at least two of the neighbours of \(u \). Since \(\|w, V(I)| \leq 3 \), we deduce that \(\|w, V(I)| = 3 \). Since \(\|N(\{x, w\}) \cap V(I)| \leq 3 \), all neighbours of \(x \) in \(I \) are adjacent to \(w \). Similarly all neighbours of \(z \) in \(I \) are adjacent to \(w \). Since \(|B(I)| \geq 4 \), there is a vertex \(t \) in \(B(I) \) non-adjacent to \(w \). Then \(t \) is non-adjacent to \(x \) and \(z \). Therefore \(t \) is adjacent to \(y \). By the same argument, \(\|y, V(I)| = 3 \) and every neighbour of \(x \) or \(z \) in \(I \) is adjacent to \(y \). Thus, every vertex in \(N(\{x, z\}) \cap V(I) \) is adjacent to both \(y \) and \(w \).

If \(\|x, V(I)| \geq 2 \), then \(x, y, w \), and their common neighbours in \(I \) together with \(a \) are the branch vertices of a \(K_{3,3} \)-subdivision, using the path \(avy \). So \(G \) is nonplanar, a contradiction. Thus, \(\|x, V(I)| \leq 1 \) and similarly \(\|z, V(I)| \leq 1 \). This means that \(d(x) \leq 5 \) and \(B(\text{int}[C] - \{x, y, w\}) = B(I) \cup \{z\} \).

We apply Lemma 5.2 with \(C, X = \{w, y\} \) and \(Y = \{x\} \). Then \(Y \) is collectable in \(G - X \) and \(A' = \{z\} \) is usable in \(G_1 := \text{int}[C] - \{w, x, y\}, A' \) is collectable in \(G_2' := \text{ext}[C] - \{w, x, y\}, |B_1| = |B(I) \cup \{z\}| \geq 5, B_2 = B \), and \(G_2 = B \). Thus \(\tau(G_2) = 0 \) and this contradicts Lemma 5.2. Hence \(z \) is non-adjacent to \(a \). By symmetry, \(x \) is non-adjacent to \(a' \). Thus \(\text{(c)} \) holds.

(d) Suppose \(d(u) \leq 4 \) for some \(u \in \{x, y, z\} \). By Lemma 4.4 \(d(u) = 4 \). Let \(u' := y \) if \(u \neq y \), \(u' := x \) otherwise. Then, deleting \(u' \) and collecting \(u, v \) exposes at least 2 vertices in \(N^o(\{u, u'\}) \) by \(\text{(a)} \) and \(\text{(c)} \) and so \(|B(G - \{u, u', v\})| \geq |B| - 1 + 2 \). By applying Lemma 4.9 with \(X = \{u'\}, Y = \{u, v\} \), and \(s = 1 \), we obtain a contradiction. So \(\text{(d)} \) holds.

(e) Suppose \(|N^o(\{x, y, z\})| \geq 5 \). If \(d(y) \leq 6 \), then deleting \(x \), \(z \) and collecting \(v \), \(y \) exposes at least 5 vertices and so \(|B(G - \{x, z, v, y\})| \geq |B| - 1 + 5 \). By applying Lemma 4.9 with \(X = \{x, z\}, Y = \{v, y\} \), and \(s = 4 \), we obtain a contradiction. Thus \(d(y) \geq 7 \). Then either \(|N^o(\{x, y\}) - \{z\}| \geq 5 \) or \(|N^o(\{z, y\}) - \{x\}| \geq 5 \). We may assume by symmetry that \(|N^o(\{x, y\}) - \{z\}| \geq 5 \). Then deleting \(x \), \(y \) and collecting \(v \) exposes at least 6 vertices and so \(|B(G - \{x, y, v\})| \geq |B| - 1 + 6 \). By applying Lemma 4.9 with
Let x or zw. By Observation 3.1 applied to $int(axyzaw)$ and $d(x) = d(z) = 5$. So each of x and z have exactly two neighbours in $int(axyzaw)$ and $d(x) = d(z) = 5$. Let x_1, x_2 be those neighbours of x and z_1, z_2 be those two neighbours of z. We may assume that $x_1x_2y_1z_2$ is a path in G by swapping labels of x_1 and x_2 and swapping labels of z_1 and z_2 if necessary. By (e) we have $N^o(y) - \{x, z\} \subseteq \{x_1, x_2, z_1, z_2\}$. As $d(x_2) \geq 4$, y is not adjacent to x_1 because otherwise $x_1x_2y_1x_1$ is a separating triangle, that will make a new interior neighbour of y by Lemma 5.1(c), contrary to (e). By symmetry, y is not adjacent to z_2. So x_2 is adjacent to z_1 as G is a plane triangulation. Therefore $d(y) = 5$.

Let $C^* := ax_1x_2z_1z_2a'$. Suppose that $w \in N(\{x_1, x_2, z_1, z_2\}) \cap V(int(C^*))$. Then by symmetry, we may assume w is adjacent to x_1 or x_2. Deleting x_1, x_2 and collecting x, y, v, z exposes w, z_1, z_2 and so $|B(G - \{x_1, x_2, x, y, v, z\})| \geq |B| - 1 + 3$. By applying Lemma 4.9 with $X = \{x_1, x_2\}$, $Y = \{x, y, v, z\}$, and $s = 2$, we obtain a contradiction. Thus $N(\{x_1, x_2, z_1, z_2\}) \cap V(int(C^*)) = \emptyset$ and therefore $|G| = 10$. See Figure 12.

By Observation 3.1 applied to $int[C^*]$, there is a vertex $w \in \{x_1, x_2, y_1, y_2\}$ having degree at most 2 in $int[C^*]$. By symmetry, we may assume that $w = x_i$ for some $i \in \{1, 2\}$. Since $d(x_i) \leq 4$, after deleting x_{3-i}, we can collect x_i, x, y, v, z, resulting in an outerplanar graph, which can be collected by Observation 3.1. So, $f(G; A) \geq 9 \geq \partial(G)$, a contradiction. So (f) holds.

(g) Suppose there is $w' \in N(x) \cap N(z) - \{v, w, y\}$. Let $C := xw'yx$. We may assume that w is chosen to maximize $|V(int(C))|$. So w' is in $V(int(C))$ and together with (a), we deduce that C is an induced cycle.

We claim that y is non-adjacent to w'. Suppose not. As $d(y) \geq 5$ by (d) $xw'yx$ or $zw'y$ is a separating triangle. By symmetry, we may assume $xw'yx$ is a separating triangle. Thus $|N(\{x, y\}) \cap V(int(xw'yx))| \geq 2$ by Lemma 5.1(d). Because G is a plane triangulation, by (e) w is adjacent to w' and $xw'x$, $zw'z$, and $ywu'y$ are facial triangles. Thus $||y, V(\text{ext}(xw'yx))|| = ||w', V(\text{ext}(xw'yx))|| = 2$, contrary to Lemma 5.3. This proves the claim that y is non-adjacent to w'.
Therefore \(\|y, V(\text{int}(xyzw')x)\| = 2 \), by (d) and (e). Let \(y_1, y_2 \) be two neighbours of \(y \) in \(\text{int}(xyzw'x) \) such that \(xy_1y_2z \) is a path in \(G \). Because \(G \) is a plane triangulation, by (c), \(w' \) is adjacent to both \(y_1 \) and \(y_2 \) and \(\text{int}(xw'zwx) \) has no vertex. Then \(C \) is a separating induced cycle of length 4 and \(|B(\text{int}(C))| = 3 \), contrary to Lemma 5.3. So (g) holds.

\[\text{Proof of Theorem 5.2}\]

Let \((G; A)\) be an extreme counterexample. Then \(G \) is a near plane triangulation. Let \(B = B(G) \) and \(B = B(G) \). By Lemmas 4.10 and 7.2, \(|B| = 3 \) and \(|A| = 2 \). Let \(A = \{a, a'\} \) and \(v \in B - A \). By Lemma 6.2, \(d(v) = 5 \). As \(G \) is a plane triangulation, the neighbours of \(v \) form a path \(axyza' \). By Lemma 8.1(g), \(x \) and \(z \) have exactly one common neighbour \(w \) in \(G - v - y \). Then \(C := xyzwx \) is a cycle of length 4. By symmetry and Lemma 8.1(d), we may assume that \(d(x) \geq d(z) \geq 5 \). By Lemma 8.1(e).

\[
(d(x) - 3) + (d(z) - 3) - 1 \leq |N^\circ(\{x, y, z\})| \leq 4.
\]

Therefore \(d(z) = 5 \) and \(d(x) = 5 \) or 6.

We claim that \(y \) is non-adjacent to \(w \). Suppose that \(y \) is adjacent to \(w \). By Lemma 8.1(d), \(d(y) \geq 5 \) and therefore at least one of \(xywz \) and \(yzwz \) is a separating triangle. If both of them are separating triangles, then \(|N(\{x, y\}) \cap V(\text{int}(xywz))| \geq 2 \) and \(|N(\{y, z\}) \cap V(\text{int}(yzwz))| \geq 2 \), by Lemma 5.1(d). Therefore \(|N^\circ(\{x, y, z\})| \geq 2 + 2 + 1 = 5 \), contrary to Lemma 8.1(e). This means that exactly one of \(xywz \) and \(yzwz \) is a separating triangle.

Suppose \(yzwz \) is a separating triangle. Then \(xywz \) is a facial triangle, and \(x \) has a neighbour in \(V(\text{int}(yzwz)) \). As \(d(z) = 5 \), \(z \) has no neighbour in \(V(\text{int}(axwzda')) \). Therefore, \(w \) is adjacent to \(a' \), and \(wza'w \) is a facial triangle. Thus \(\|y, V(\text{ext}(yzwz))\| = \|z, V(\text{ext}(yzwz))\| = 2 \), contrary to Lemma 5.3. So \(yzwz \) is not a separating triangle.

Therefore \(xywz \) is a separating triangle. By Lemma 5.1(d), \(\text{int}(xywz) \) has at least two vertices in \(N^\circ(\{x, y, z\}) \). By Lemma 8.1(d), \(z \) has a neighbour in \(V(\text{int}(axwzda')) \). Then already we found four vertices in \(N^\circ(\{x, y, z\}) \). This means that \(x \) has no neighbours in \(V(\text{int}(axwzda')) \) by Lemma 8.1(f). Hence \(\|y, V(\text{ext}(xywz))\| = \|x, V(\text{ext}(xywz))\| = 2 \), contrary to Lemma 5.3. This completes the proof of the claim that \(y \) is non-adjacent to \(w \).

Therefore \(C \) is chordless by Lemma 8.1(a). By Lemma 8.1(d), \(d(y) \geq 5 \). Thus \(C \) is a separating induced cycle of length 4. By Lemma 5.4, either \(|B(\text{int}(C))| \geq 4 \) or both \(|V(\text{int}(C))| \leq 2 \) and every vertex in \(\text{int}(C) \) has degree 4 in \(G \).

If \(|B(\text{int}(C))| \geq 4 \), then deleting \(w, y \) and collecting \(z, v, x \) exposes at least 4 vertices and so \(|B(G - \{w, y, z, v, x\})| = |B| - 1 + 4 \). By applying Lemma 4.9 with \(X = \{w, y\}, Y = \{z, v, x\} \), and \(s = 3 \), we obtain a contradiction.

Therefore \(1 \leq |V(\text{int}(C))| \leq 2 \) and every vertex in \(\text{int}(C) \) has degree 4 in \(G \). Deleting \(y \) and collecting all vertices in \(\text{int}(C) \) and \(z, v, x \) exposes \(w \) and so \(B(G - (\{y, z, v, x\} \cup V(\text{int}(C)))) \geq |B| - 1 + 1 \). By applying Lemma 4.9 with \(X = \{y\}, Y = V(\text{int}(C)) \cup \{z, v, x\} \), and \(s = 0 \), we obtain a contradiction. \(\square \)
References

[1] Jin Akiyama and Mamoru Watanabe, *Maximum induced forests of planar graphs*, Graphs Combin. 3 (1987), no. 1, 201–202. MR 1554352

[2] Michael O. Albertson, *A lower bound for the independence number of a planar graph*, J. Combinatorial Theory Ser. B 20 (1976), no. 1, 84–93. MR 424599

[3] Michael O. Albertson and David M. Berman, *A conjecture on planar graphs*, Graph Theory and Related Topics (J. A. Bondy and U. S. R. Murty, eds.), Academic Press, 1979, p. 357.

[4] Noga Alon, Jeff Kahn, and Paul Seymour, *Large induced degenerate subgraphs*, Graphs Combin. 3 (1987), no. 3, 203–211. MR 903609 (88i:05104)

[5] Claude Berge, *Graphes et hypergraphes*, Dunod, Paris, 1970, Monographies Universitaires de Mathématiques, No. 37. MR 0357173

[6] Oleg V. Borodin, *The decomposition of graphs into degenerate subgraphs*, Diskret. Analiz. (1976), no. Vyp. 28 Metody Diskretnogo Analiza v Teorii Grafov i Logičeskih Funkcij, 3–11, 78. MR 0498204

[7] , *A proof of B. Grünbaum’s conjecture on the acyclic 5-colorability of planar graphs*, Dokl. Akad. Nauk SSSR 231 (1976), no. 1, 18–20. MR 0447031

[8] Daniel W. Cranston and Landon Rabern, *Planar graphs have independence ratio at least 3/13*, Electron. J. Combin. 23 (2016), no. 3, Paper 3.45, 28. MR 3558082

[9] Zdeněk Dvořák, Adam Kabela, and Tomáš Kaiser, *Planar graphs have two-coloring number at most 8*, J. Combin. Theory Ser. B 130 (2018), 144–157. MR 3772738

[10] Zdeněk Dvořák and Tom Kelly, *Induced 2-degenerate subgraphs of triangle-free planar graphs*, Electron. J. Combin. 25 (2018), no. 1, Paper 1.62, 18. MR 3785041

[11] Gašper Fijavž, Martin Juven, Bojan Mohar, and Riste Škrekovski, *Planar graphs without cycles of specific lengths*, European J. Combin. 23 (2002), no. 4, 377–388. MR 1914478

[12] Tom Kelly and Chun-Hung Liu, *Minimum size of feedback vertex sets of planar graphs of girth at least five*, European J. Combin. 61 (2017), 138–150. MR 3588714

[13] Hal Kierstead, Bojan Mohar, Simon Špacapan, Daqing Yang, and Xuding Zhu, *The two-coloring number and degenerate colorings of planar graphs*, SIAM J. Discrete Math. 23 (2009), no. 3, 1548–1560. MR 2556548 (2011b:05073)

[14] Hung Le, *A better bound on the largest induced forests in triangle-free planar graph*, Graphs Combin. 34 (2018), no. 6, 1217–1246. MR 3881263
[15] Robert Lukoǐka, Ján Mazák, and Xuding Zhu, *Maximum 4-degenerate subgraph of a planar graph*, Electron. J. Combin. 22 (2015), no. 1, Paper 1.11, 24. MR 3315453

[16] André Raspaud and Weifan Wang, *On the vertex-arboricity of planar graphs*, European J. Combin. 29 (2008), no. 4, 1064–1075. MR 2408378

[17] Carsten Thomassen, *Every planar graph is 5-choosable*, J. Combin. Theory Ser. B 62 (1994), no. 1, 180–181. MR 1290638 (95f:05045)

[18] , *Decomposing a planar graph into degenerate graphs*, J. Combin. Theory Ser. B 65 (1995), no. 2, 305–314. MR 1358992

[19] , *Decomposing a planar graph into an independent set and a 3-degenerate graph*, J. Combin. Theory Ser. B 83 (2001), no. 2, 262–271. MR 1866722

[20] Weifan Wang and Ko-Wei Lih, *Choosability and edge choosability of planar graphs without five cycles*, Appl. Math. Lett. 15 (2002), no. 5, 561–565. MR 1889505