Near-Infrared Spatial Self-Phase Modulation in Ultrathin Niobium Carbide Nanosheets

Si Xiao 1, Yi-lin He 1, Yu-lan Dong 2, Yi-duo Wang 1, Li Zhou 1, Xue-jun Zhang 1, Ying-wei Wang * and Jun He * 1

1 Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, China, 2 Key Laboratory of Hunan Province for Statistical Learning and Intelligent Computation, School of Mathematics and Statistics, Hunan University of Technology and Business, Changsha, China

Spatial self-phase modulation (SSPM) as a purely coherent non-linear optical effect (also known as Kerr effect) can support strong broadband phase modulation, which is essential for all-optical applications. Besides this, the increasing use of two-dimensional (2D) materials opens up new prospects in this field of research. In this work, we report a broadband SSPM response from 2D transition metal carbonitrides (MXenes) and Nb2C, arising in the near-infrared (1,550 nm) range. Based on the SSPM measurements of few-layer Nb2C nanosheets, the third-order non-linear optical parameters of Nb2C, including the non-linear refractive index \(n_2 \) and susceptibility \(\chi^{(3)} \), were determined at 400, 800, 1,300, and 1,550 nm. Moreover, the physics mechanism of the dynamic formation process of SSPM diffraction rings was exploited. The formation time of SSPM diffraction rings can be divided into two typical parts which correspond to the polarization and reorientation of 2D Nb2C nanosheets. As a proof of concept, we demonstrate the nonreciprocal light propagation at wavelengths of 1,300 and 1,550 nm by constructing an Nb2C/water hybrid structure. Our results reveal strong optical phase modulation of Nb2C in the infrared region, thus showing the great potential of MXene materials for use in passive photonic devices.

Keywords: spatial self-phase modulation, niobium carbide (Nb2C), non-linear optics, 2D materials, infrared rage

INTRODUCTION

Spatial self-phase modulation (SSPM) is one of the typical third-order optical processes [1, 2]. It provides a way to measure the non-linear refractive index and third-order non-linear susceptibility of a medium. Owing to their fascinating non-linear photonics applications [3, 4], tremendous efforts have been made to explore the non-linear optical properties of 2D materials including graphene [5, 6], transition metal chalcogenides (TMDCs) [7], black phosphorus [8–10], and MXenes [11, 12]. Previous studies report on SSPM in various 2D materials such as graphene [13], MoS2 [14, 15], MoTe2 [16], tellurium [17], NbSe2 [18], and so on [19–26]. Over the past years, large-scale production of 2D materials has enabled their application in all-optical switches, all-optical modulators, and passive photonic diodes [27]. For example, excitation of the SSPM in MoS2 allows one to achieve the two-color and high-contrast all-optical switching with a full contrast ratio, \(I_{\text{weak}} : I_{\text{strong}} = 1:60 \) [28]. Furthermore, non-reciprocal light propagation was observed in a solid-state graphdiyne/SnS2-based photonic diode [27]. Thereafter, an all-optical information carrier and conversion system was designed to transmit/convert information [18, 19]. To gain insight into...
the underlying mechanism of SSPM, numerous theoretical investigations have been carried out to promote experimental research in this field of study [29, 30].

Intrinsically, 2D materials are attracting increasing attention due to their unique optical modulation in a visible region; however, experimental evidence of the infrared light response of the SSPM in 2D materials has been rarely reported so far [31]. In particular, the SSPM patterns of black phosphorus were successfully acquired by our group at a wavelength of 1,160 nm [32]. Very recently, the use of SSPM technique allowed one to measure the third-order non-linear susceptibility of Ti3C2Tx MXene within a visible-to-near-infrared (Vis–NIR) range (400–1,064 nm) [33]. The near-infrared region, especially presented by the optical communication band, is essential for all-optical modulation applications of the SSPM as it ensures the low-loss characteristics of the optical fiber communications.

Belonging to a class of two-dimensional (2D) inorganic compounds such as transition-metal carbides, nitrides, and carbonitrides, MXenes share a general formula of M_{n+1}X_n (n = 1–3), where M is an early transition metal (e.g., Ti, Zr, V, Nb, Ta, and Mo), and X is a C or N. As a new member of the MXene family, Nb2C has attracted great attention due to its excellent performance in the fields of energy storage [34], electrochemical catalytic [35], and biomedicine [36]. Being semimetals with fascinating electrical properties, few-layer Nb2C nanosheets exhibit a narrow optical bandgap which favors the infrared optical response. Moreover, their superior photothermal conversion efficiency in the infrared region has even been proven in photothermal cancer therapy [36].

In this work, we investigate the near-infrared SSPM response of few-layer Nb2C nanosheets and expand SSPM response of 2D material to the communication band which cover 1,550 nm wavelength. The third-order non-linear susceptibility and the near-infrared region, especially presented by the optical communication band, is essential for all-optical modulation applications of the SSPM as it ensures the low-loss characteristics of the optical fiber communications.

RESULTS AND DISCUSSION

A typical two-step exfoliation strategy was employed to obtain Nb2C nanosheets (see Experimental section). Briefly, the Nb2AlC MAX phase was etched in hydrofluoric (HF) acid solution to remove the Al atoms. Ultrasound-assisted TPAOH co-intercalated exfoliation was effective to reduce the lateral size and the thickness of the obtained Nb2C nanosheets [12]. Figure 1A shows the SEM images of Nb2AlC powder. Before the HF etching, the MAX-phase Nb2AlC had the particle size of several or tens of micrometers along with a high interlayer bond strength. Inset in panel A is the zoom-in images of the single Nb2AlC particle which exhibits dense cross section. After the removal of Al atoms from the Nb2AlC, the multi-layer Nb2C was formed like an accordion pulled open, as shown in Figure 1B. As can be seen in Figure 1C, the AFM measurement of present few-layer Nb2C was performed to characterize its thickness of about 3–4 nm. Figure 1D1 depicts the TEM images of Nb2C nanosheets, revealing their transparent morphology and ultrathin structure. As shown in Figures 1D2–D4, HAADF and EDS mapping results of Nb2C nanosheets with clear boundaries confirm the coexistence of Nb and C elements, which provides evidence for the elemental composition of as-prepared 2D Nb2C nanosheets. Figure 1E displays the XRD patterns of samples. Two sharp peaks $\theta = 12.8$ and 38.8° are observed in the case of Nb2AlC, which is in good agreement with JCDS PDF#30-0033 for Nb2AlC. The disappearance of the peak at $\theta = 38.8°$ indicates that the Al atoms have been successfully removed after etching in HF solution. The downshift of the peak at $\theta = 12.8°$
and its broadening mean that MAX is converted into MXene. Figure 1F shows the UV–Vis–NIR absorption spectra of Nb$_2$C. (To note, the gap may attribute to be an error from instruments.) The abruptly enhanced near-IR absorption suggests a strong light-matter interaction within the near-infrared range.

The SSPM measurements of Nb$_2$C nanosheets were carried out at four different wavelengths including the light communication band at 1,550 nm (Figure 2). The solvent we use is N-methyl pyrrolidone (NMP) which possessed low volatility, good thermal, and chemical stability. To exclude the influence of solvents to the formation of diffraction rings, the control group was set in which only the NMP solvent was contained for SSPM experiments. There are no diffraction rings for NMP at 400, 800, 1,300, and 1,550 nm. Figure 2A shows the experimental configuration used in the SSPM measurements. The typical SSPM diffraction patterns at different laser excitation wavelengths (from 400 to 1,550 nm) were captured by a CCD detector, as shown in Figures 2B–E. The distinguishable diffraction rings are observed at a wavelength of 1,550 nm, which indicates its potential versatility for optoelectronic applications within a range of a near-infrared telecom C band.

The quantitative information about the non-linear optical response of Nb$_2$C is available from the third-order non-linear optical parameters that can be evaluated by fitting the experimental results in the context of the non-linear optical theory. The number of rings N is plotted in Figure 2F as a function of incident intensity I, and the linear relationship between both parameters is evident. According to the Kerr law, the refractive index of Nb$_2$C can be obtained as follows [1]:

$$n = n_0 + n_2 I$$ \hspace{1cm} (1)$$

where $n_0 = 1.47$ (NMP) and n_2 are the linear and non-linear refractive indexes, respectively, and I represents the laser beam intensity. When the laser beam passes through the Nb$_2$C suspension, the phase shift ($\Delta \psi$) can be expressed as follows [1]:

$$\Delta \psi = \frac{2\pi n_0}{\lambda} \int_0^{L_{\text{eff}}} n_2 I (r, z) \, dz$$ \hspace{1cm} (2)$$

where λ is the wavelength, L_{eff} is the effective optical thickness, $r \in [0, \infty)$ is the radial coordinate, and $I(r, z)$ represent the radial intensity distribution of a focused laser beam. The total number
of rings N is determined by the formula $\Delta \Psi (0) - \Delta \Psi (\infty) = 2N\pi$ [1]. As for the Gaussian beam, the intensity at the center of the beam (I_0) is twice the average intensity I, which can be found experimentally. Then the effective thickness of the cuvette L_{eff} can be calculated from the following formula [1]:

$$L_{\text{eff}} = \int_{L_1}^{L_2} \left(1 + \frac{z^2}{z_0^2}\right)^{-1} dz, \left(z_0 = \frac{\pi \omega_0^2}{\lambda} \right)$$

(3)

where L_1 and L_2 are the distances from the focal point to the back and front surfaces of the quartz cuvette respectively, and $L = L_2 - L_1$ is the thickness of the quartz cuvette. In our experiment, the focal length of the lens is $f = 20$ cm, $L = 1$ cm, and ω_0 is the waist radius of the laser beam. Therefore, the non-linear index n_2 can be defined as follows [37]:

$$n_2 = \frac{\lambda}{2n_0 L_{\text{eff}}} \cdot \frac{N}{I}$$

(4)

To gain insight into the intrinsic non-linear optical property of Nb$_2$C nanosheets, the third-order non-linear susceptibility $\chi^{(3)}_{\text{total}}$ can be described by the equation below [37]:

$$\chi^{(3)}_{\text{total}} = \frac{c \lambda n_0}{2.4 \times 10^4 \pi^2 L_{\text{eff}}}, \frac{dN}{dI}$$

(5)

Then, $\chi^{(3)}_{\text{monolayer}}$ of Nb$_2$C can be obtained as follows [37]:

$$\chi^{(3)}_{\text{total}} = \chi^{(3)}_{\text{monolayer}} \cdot A_{\text{eff}}^2$$

(6)

The number of layers A_{eff} can be found as [28], where $\rho = 0.00286$ mol/L is the Nb$_2$C concentration, and $V = 4 \times 10^{-3}$ L. The number of molecules in a single layer $m = 1 \times 4 \text{ cm}^2/(\sin 60^\circ) \times (6.302)^2 \text{ Å}^2 = 1.83 \times 10^{16}$. Hence the number of layers is $A_{\text{eff}} = 374$.

The experimentally measured non-linear optical parameters of different 2D materials are summarized in Table 1. The superior non-linear refractive response of Nb$_2$C at 1,550 nm is a unique
and attractive result. The intrinsic third-order non-linear optical susceptibility of an effective single layer reaches a value of 5.14×10^{-9} e.s.u. at 1,300 nm and 3.73×10^{-9} e.s.u. at 1,550 nm.

As can be seen in Table 1, Nb$_2$C possesses relatively high values of non-linear parameters within the near-infrared range. Using femtosecond laser pulses allows one to greatly suppress the thermal effects that may arise during the formation of the diffraction ring patterns due to spatial self-phase modulation [38, 39]. Non-local electronic coherence is a common mechanism to explain spatial self-phase modulation, which is also known as wind-chime model. However, since the optical bandgap of few-layer Nb$_2$C nanosheets is found to be 0.81 eV [12], the single-photon energy at 1,550 nm is not high enough to excite electronic transitions. The parallel-band absorption effects [40] induced two-photon absorption has been discovered in present metallic Nb$_2$C nanosheets. Therefore, the two-photon SSPM is the most likely mechanism responsible for the emergence of the below-gap SSPM [28]. When the two-photon absorption establishes a new electric field polarization, the excited carriers will diffract with photons not only above but also below the bandgap [28].

After exploring the formation mechanism of the diffraction ring patterns within the near-infrared wavelength range, we were focused on the investigation of the dynamic formation process of Nb$_2$C. Figures 3A–D depict the SSPM diffraction patterns acquired using a high-speed CCD detector at different time points and a laser excitation wavelength of 1,550 nm. First, the incidence of the laser beam on a sample leads to its self-focusing. During the reorientation process, non-local electron coherence among the 2D nanosheets will be formed gradually. Such a non-local electron coherence-induced formation of typical SSPM diffraction rings have been observed in MoS$_2$ system previously [28]. In terms of the response time, the excited carriers generation and 2D nanosheets polarization will appear in the first part which corresponds to a timescale of about a picosecond or even a femtosecond. Considering the second part, there is typical interaction between polarized 2D nanosheets and Newton fluid with constant viscosity coefficient under the laser incidence. This process is a relatively slow one (about millisecond) and will be influenced by many parameters including viscosity coefficient of solvent, size of the 2D nanosheets, and incident laser power [28].

Taking into account the advantage of the SSPM response of Nb$_2$C, non-reciprocal light propagation was designed as a proof-of-concept nanophotonic device. To construct asymmetric composite film system with non-reciprocal light transmission property, the composite films always contain a saturable absorption layer and a reverse saturable absorption material layer [41]. In the Kerr non-linearity-based, non-reciprocal light transmission work, the energy absorption of the incident light is the most important function of the reverse saturable absorption material layer [27]. We use the water to replace these reverse saturable absorption materials to construct an asymmetric composite film system. As we know, water has the advantages of stable physical and chemical properties and is environmentally friendly. Furthermore, water is low-cost and can be procured everywhere. When the laser beam passes forward (Nb$_2$C/water), the SSPM diffraction rings will be excited due to a strong SSPM response of Nb$_2$C caused by the Kerr effect. In other words, its large non-linear refractive index modulates the phase of the laser beam. Thereafter, water just reduces the intensity of the laser but makes no difference to the number of rings. Figures 5A–D display the SSPM patterns collected at the backward movement of the laser beam through the Nb$_2$C/water hybrid structure at different beam intensities and a wavelength of 1,300 nm. However, when the laser passes backward, water reduces the incident light intensity that is small enough not
to excite diffraction rings in the Nb$_2$C layer due to its strong absorption in the near-infrared range. Figures 5E,F summarize the results of non-reciprocal light propagation for a Nb$_2$C/water hybrid structure at wavelengths of 1,300 and 1,550 nm, where it easily observes the unidirectional excitation of the diffraction rings. This discovery not only enabled one to find a new medium for the non-reciprocal light propagation implementation, but also to broaden the insight into the non-linear optical devices operating within the near-infrared range (especially at 1,550 nm).

CONCLUSION

In summary, few-layer Nb$_2$C nanosheets have been synthesized and their non-linear optical characteristics were measured via the SSPM technique within a near-infrared broadband range. The few-layer Nb$_2$C nanosheets were shown to exhibit excellent non-linear optical response and their non-linear refractive index was as high as 9.53 × 10$^{-6}$ cm2/W at 1,550 nm. Moreover, in order to understand the physics mechanism behind it, dynamic formation process of SSPM diffraction rings was exploited. Based on the
FIGURE 4 | Schematic illustration of the time required for the diffraction ring formation. The time can be divided into two parts. The t_0 indicates the laser start to incident on the medium. The polarization of 2D nanosheets finished in t_0-t_1 region. The reorientation of 2D Nb$_2$C occurs in t_1-t_2 time zone. t_0-t_2 time zone represents the time of the diffraction ring formation, t_2 diffraction rings become maximum.

FIGURE 5 | (A–D) SSPM patterns (acquired at the forward advancement of the laser beam) of a Nb$_2$C/water hybrid structure at a wavelength of 1,300 nm and laser beam intensities of (A) 3.5 W/cm2, (B) 10.6 W/cm2, (C) 21.2 W/cm2, (D) 31.8 W/cm2. (E,F) Number of diffraction rings vs. laser beam intensity at (E) 1,300 nm and (F) 1,550 nm at the forward (backward) movement of a laser beam through the hybrid structure. The inserted images explain the beam incidence direction.
time of the rings formation, the dynamic formation process of SSPM diffraction rings can be divided into two typical time parts which correspond to the polarization and reorientation of 2D Nb$_2$C nanosheets. Finally, the non-reciprocal light propagation was implemented through a Nb$_2$C/water hybrid structure, giving a strong boost to research in the field of non-linear nanophotonic applications.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

REFERENCES

1. Durbin SD, Arakelian SM, Shen YR. Laser-induced diffraction rings from a nematic-liquid-crystal film. Opt Lett. (1981) 6:411–3. doi: 10.1364/OL.6.000411
2. Wu L, Yuan X, Ma D, Zhang Y, Huang W, Ge Y, et al. Recent advances of spatial self-phase modulation in 2D materials and passive photonic device applications. Small. (2020) 16:2000252. doi: 10.1002/smll.202002252
3. Yu S, Wu X, Wang Y, Guo X, Tong L. 2D materials for optical modulation: challenges and opportunities. Adv. Mater. (2017) 29:1606128. doi: 10.1002/adma.201606128
4. Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nat Photonics. (2016) 10:227–38. doi: 10.1038/nphoton.2016.15
5. Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen ZX, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater. (2009) 19:3077–83. doi: 10.1002/adfm.200901007
6. Wang Y, Mu H, Li X, Yuan J, Chen J, Xiao S, et al. Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength. Appl Phys Lett. (2016) 108:221901. doi: 10.1063/1.4953072
7. Wang K, Wang J, Fan J, Lotya M, O’Neill A, Fox D, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano. (2013) 7:9260–7. doi: 10.1021/nl3038868
8. Wang K, Szydlowska BM, Wang G, Zhang X, Wang JJ, Mangan JJ, et al. Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared. ACS Nano. (2016) 10:6923–32. doi: 10.1021/acsnano.6b02770
9. Wang Y, Huang G, Mu H, Lin S, Chen J, Xiao S, et al. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension. Appl Phys Lett. (2017) 109:091905. doi: 10.1063/1.4950077
10. Wang Y, Liu S, Zeng B, Huang H, Xiao J, Li J, et al. Ultraviolet saturable absorption and ultrafast carrier dynamics in ultrasmall black phosphorus quantum dots. Nanoscale. (2017) 9:4683–90. doi: 10.1039/C6NR09235G
11. Wang G, Bennett D, Zhang C, Ó Coileáin C, Liang M, McEvoy N, Wang JJ, et al. Two-photon absorption in monolayer Moxenes. Adv Opt Mater. (2020) 8:1902021. doi: 10.1002/adom.201902021
12. Wang Y, Wang Y, Chen K, Qi K, Xue T, Zhang H, et al. Niobium-Carbide mxenes with broadband nonlinear optic response and ultrafast carrier dynamics. ACS Nano. (2020) 14:10492–10502. doi: 10.1021/acsnano.0c04390
13. Wu Y, Zhu LL, Wu Q, Sun F, Wei JK, Tian Y, et al. Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene. Appl Phys Lett. (2016) 108:241110. doi: 10.1063/1.4953827
14. He L, Ye J, Shuai M, Zhu Z, Zhou X, Wang Y, et al. Graphene oxide liquid crystals for reflective displays without polarizing optics. Nanoscale. (2015) 7:1616–22. doi: 10.1039/C4NR06008C
15. Xiao S, Ma Y, He Y, Wang Y, Xin H, Fan Q, et al. Revealing the intrinsic nonlinear optical response of a single MoS 2 nanosheet in a suspension based on spatial self-phase modulation. Photonics Res. (2020) 8:1725–33. doi: 10.1364/PRJ.399364

AUTHOR CONTRIBUTIONS

SX and JH conceived the idea. Y-wW, Y-ID, Y-dW, and LZ prepared the 2D material and conducted the characterization of 2D material. Y-HH, X-jZ, and SX performed SSPM measurement of 2D material and analyzed results. All authors involved in the discussion and manuscript writing.

FUNDING

This work was financially supported by the National Natural Science Foundation of China (61875232, 61874141, and 11904239).
in liquid suspensions of 2D nanomaterials. Nanoscale. (2017) 9:3547–54. doi: 10.1039/C6NR08487G

30. Xiao S, Zhang Y, Ma Y, Wang Y, He Y, Zhang J, et al. Observation of spatial self-phase modulation induced via two competing mechanisms. Opt Lett. (2020) 45:2850–3. doi: 10.1364/OL.392689

31. Shi B, Mao L, Wang Q, Du J, Tang P, Liu J, et al. Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions. Appl Phys Lett. (2015) 107:151101. doi: 10.1063/1.4932590

32. Zhang J, Yu X, Han W, Lv B, Li X, Xiao S, et al. Broadband spatial self-phase modulation of black phosphorous. Opt Lett. (2016) 41:1704–7. doi: 10.1364/OL.41.001704

33. Li J, Zhang Z, Yi J, Miao L, Huang J, Zhang J, et al. Broadband spatial self-phase modulation and ultrafast response of MXene Ti3C2Tx (T=O, OH or F). Nanophotonics. (2020) 9:2415–24. doi: 10.1515/nanoph-2019-0469

34. Du L, Duan H, Xia Q, Jiang C, Yan Y, Wu S. Hybrid charge-storage route to Nb2CTx MXene as anode for sodium-ion batteries. ChemistrySelect. (2020) 5:1186–92. doi: 10.1002/slct.201903888

35. Pang SY, Io WF, Wong LW, Zhao J, Hao J. Efficient energy conversion and storage based on robust fluoride-free self-assembled 1D niobium carbide in 3D nanowire network. Adv Sci. (2020) 7:1903680. doi: 10.1002/advs.201903680

36. Lin H, Gao S, Dai C, Chen Y, Shi J. Two-Dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II bio-windows. J Am Chem Soc. (2017) 139:16235–47. doi: 10.1021/jacs.7b07818

37. Wu R, Zhang Y, Yan S, Bian F, Wang W, Bai X, et al. Purely coherent nonlinear optical response in solution dispersions of graphene sheets. Nano Lett. (2011) 11:5159–64. doi: 10.1021/nl2023405

38. Qi P, Su Q, Lu D, Lin L, Zhang N, Liu W. Optical nonlinearities of alcoholic liquids under high-repetition-rate femtosecond lasers by single beam time-resolved eclipsed Z-scan. Opt Laser Technol. (2019) 109:643–7. doi: 10.1016/j.optlastec.2018.08.054

39. Falconieri M, Salvetti G. Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2. Appl Phys B. (1999) 69:133–6. doi: 10.1007/s003400050785

40. Harrison WA. Parallel-band effects in interband optical absorption. Phys Rev. (1966) 147:467. doi: 10.1103/PhysRev.147.467

41. Anand B, Podila R, Lingam K, Krishnan SS, Sai SS, Philip R, et al. Optical diode action from axially asymmetric nonlinearity in an all-carbon solid-state device. Nano Lett. (2013) 13:5771–6. doi: 10.1021/nl403366d

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Xiao, He, Dong, Wang, Zhou, Zhang, Wang and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.