Performance of Positron Emission Tomography and Positron Emission Tomography/Computed Tomography Using Fluorine-18-Fluorodeoxyglucose for the Diagnosis, Staging, and Recurrence Assessment of Bone Sarcoma

A Systematic Review and Meta-Analysis

Fanjiao Liu, MMed, Qingyu Zhang, MMed, Dezhi Zhu, MMed, Zhenfeng Li, MD, Jianmin Li, MD, Boim Wang, MD, Dongsheng Zhou, BMed, and Jinlei Dong, MD

Abstract: To investigate the performance of fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and PET/CT in the diagnosis, staging, restaging, and recurrence surveillance of bone sarcoma by systematically reviewing and meta-analyzing the published literature.

To retrieve eligible studies, we searched the MEDLINE, Embase, and the Cochrane Library databases using combinations of following Keywords: “positron emission tomography” or “PET,” and “bone tumor” or “bone sarcoma” or “sarcoma.” Bibliographies from relevant articles were also screened manually. Data were extracted and the pooled sensitivity, specificity, and diagnostic odds ratio (DOR), on an examination-based or lesion-based level, were calculated to appraise the diagnostic accuracy of 18F-FDG PET and PET/CT. All statistical analyses were performed using Meta-Disc 1.4.

Forty-two trials were eligible. The pooled sensitivity and specificity of PET/CT to differentiate primary bone sarcomas from benign lesions were 96% (95% confidence interval [CI], 93–98) and 79% (95% CI, 63–90), respectively. For detecting recurrence, the pooled results on an examination-based level were sensitivity 92% (95% CI, 89–95), specificity 93% (95% CI, 88–96), positive likelihood ratio (PLR) 10.26 (95% CI, 5.99–18.98), and negative likelihood ratio (NLR) 0.11 (95% CI, 0.05–0.22).

For detecting distant metastasis, the pooled results on a lesion-based level were sensitivity 90% (95% CI, 86–93), specificity 85% (95% CI, 81–88), PLR 5.16 (95% CI, 2.37–11.25), and NLR 0.15 (95% CI, 0.11–0.20). The accuracies of PET/CT for detecting local recurrence, lung metastasis, and bone metastasis were satisfactory. Pooled outcome estimates of 18F-FDG PET were less complete compared with those of PET/CT.

INTRODUCTION

In human neoplasms, primary bone sarcoma is a rare entity, among which, osteosarcoma ranks as the most common histological type, followed by chondrosarcoma, Ewing sarcoma, chordoma, malignant fibrous histiocytoma, angiosarcoma, and others. According to a large report, the former 5 types account for >90% of all bone sarcomas. The incidence of osteosarcoma peaks in the second decade of life, with a second peak occurring in patients >60 years old. Although the 5-year overall survival of bone sarcoma has improved greatly with the introduction of pre and postoperative chemotherapy and with advances in surgical techniques, the prognosis of patients with local recurrence or distant metastasis remains unfavorable. Therefore, stratifying high-risk patients at an early stage or during follow-up plays a crucial role for implementing appropriate treatment strategies.

Diagnostic imaging provides information concerning the appearance, extent, and radiographical characteristics of bone lesions, contributing significantly to the diagnosis and prognosis of the disease. Morphological imaging modalities such as plain film, computed tomography (CT), and magnetic resonance imaging (MRI) are all commonly used to assess bone sarcoma. In addition, fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) can be used to quantify the physiological activity of bone sarcomas, denoted by increased glucose uptake, which leads to biochemical changes before the onset of anatomic changes. More recently, the incorporation of CT-derived morphological information with...
traditional 18F-FDG PET has further improved the diagnostic performance of imaging techniques. Presently, 18F-FDG PET and PET/CT have been broadly applied for diagnosis, biopsy guidance, and chemotheraphy response evaluation in a variety of solid tumors, including lung cancer, cervical cancer, and pancreatic carcinoma.10–14

Multiple trials have investigated the value of 18F-FDG PET and PET/CT for the diagnosis, staging, and recurrence detection of bone sarcoma, but the results have been inconclusive. However, most of those trials analyzed a small number of patients, which weakened their power and reliability. A 2004 meta-analysis15 reported a sensitivity of 91% and a specificity of 85% for 18F-FDG PET for the differentiation of bone and soft-tissue sarcomas from benign lesions. However, this investigation was not specially aimed at bone sarcomas and did not appraise the utility of 18F-FDG PET comprehensively. Presently, 18F-FDG PET or PET/CT are not regarded as a routine procedures in the management algorithm of bone sarcomas. To obtain a more precise conclusion on the utility of 18F-FDG PET or PET/CT for the management of bone sarcoma, we searched the published literature and conducted a systematic review and meta-analysis.

METHODS

Search Strategy

A systematic electronic search of MEDLINE, Embase, and Cochrane Library databases was conducted to select relevant articles. We used combinations of following keywords: “PET” or “positron emission tomography,” and “bone tumor” or “bone sarcoma” or “sarcoma.” The search process was last updated on May 1, 2015 without language limitations. The bibliographies of pertinent articles (meta-analysis, reviews, editorials, and trials) and guidelines were also screened manually to retrieve additional eligible studies.

Study Selection

Eligible studies for this meta-analysis had to meet following criteria: clinical studies; diagnosis, staging, restaging, or recurrence surveillance performance of 18F-FDG PET or PET/CT in participants with primary bone sarcoma; definite outcome confirmed with trustworthy reference tests (histopathological examination or follow-up); all participants were human; 18F-FDG was administered intravenously as tracer. Exclusion criteria included case reports or trials evaluating <5 patients with bone sarcoma; reviews, editorials, meta-analyses, letters, comments, and other nonoriginal articles; and congress proceedings, because of the lack of necessary information. If ≥2 articles contained overlapping data, the 1 with the most comprehensive data or that was published most recently was included in the quantitative analysis.

Three investigators (FL, QZ, and ZL) independently evaluated retrieved articles. Any disagreements were resolved by discussion and consensus.

Data Extraction

Data retrieved from eligible studies included: study-related information: first author’s surname, year of publication, country of origin, and study design; patient-related data: number and participants, age, and sex; technical details: 18F-FDG PET or

![Selection flow chart for studies included in the systematic review and meta-analysis.](image-url)
Study, yr	Country	No. of Patients	Gender, M/F	Age, yr	Imaging Device	Injected Dose	Time Between Injection and Image Acquisition, min	Image Analysis Design	Type of Bone Sarcoma	Inclusion Interval	QUADAS Scores	
Adler et al, 1991	The USA	8	NA	NA	PET/CT	110–410 MBq	60	VS	R, OS, EW, others	NA	9	
Kole et al, 1998	The Netherlands	12	9/3	Median 20.5 (16–65)	PET	370 MBq	50	V	R	OS and EW	NA	13
Schulte et al, 1999	Germany	27	17/10	Median 17 (5–36)	PET	120–300 MBq	45–60	VS	P	OS 1993.1–NA	11	
Aoki et al, 1999	Japan	6	2/4	Median 54.5 (25–78)	PET	5 MBq/kg	40–50	VS	P	Chondrosarcoma 1997.8–1998.12	15	
Watanabe et al, 1999	Japan	6	4/2	Median 53.5 (24–76)	PET	185–350 MBq	50	VS	NA	OS, EW, others	NA	10
Franzius et al, 2000	Germany	70	43/27	Median 14 (3–42)	PET	3.7 MBq/kg	60	VS	R	OS and EW	1995.8–1999.6	11
Schulte et al, 2000	Germany	83	NA	NA	PET	120–300 MBq	45–60	VS	R	OS, EW, others	NA	12
Franzius et al, 2001	Germany	71	45/26	Median 14 (3–42)	PET	3.7 MBq/kg	60	VS	R	OS and EW	1995.8–1999.6	11
Franzius et al, 2002	Germany	27	18/9	Median 17 (8–35)	PET	3.7 MBq/kg	60	VS	R	OS and EW	NA	11
Feldman et al, 2003	The USA	12	NA	NA	PET	0.14 mCi/kg	50	VS	NA	OS, EW, others	NA	9
Rajendran et al, 2003	The USA	17	NA	NA	PET	3.7 MBq/kg	45–60	VS	NA	OS, EW, others	1996.3–1998.3	9
Yanagawa et al, 2003	Japan	8	7/1	Median 17.5 (11–81)	PET	45 MBq/kg	50	VS	P	OS and others	NA	13
Gyorke et al, 2006	Germany	24	17/7	Median 28.4 (6–62)	PET	5 MBq/kg	90	VS	R	EW	1996.1–2002.6	11
Iagaru et al, 2006	The USA	22	NA	NA	PET/CT	4.1–19.5 mCi	60	VS	R	OS, EW, others	2003.1–2005.12	12
Kneisl et al, 2006	The USA	55	28/27	Range 6–29	PET	12–20 mCi	60	V	R	OS and EW	1994.12–2004.11	13
Arush et al, 2007	Israel	12	6/6	Median 13 (8–21)	PET/CT	5.3 MBq/kg	60–90	V	R	OS and EW	2000.1–2005.12	10
Gerth et al, 2007	Germany	53	36/17	Median 6.5 (4–38)	PET	4 MBq/kg	60	VS	R	OS, EW, others	NA	11
Volker et al, 2007	Germany	34	NA	NA	PET/CT	4 MBq/kg	60	VS	R	OS, EW, others	NA	11
Shin et al, 2008	South Korea	20	NA	NA	PET/CT	8.14 MBq/kg	60	VS	R	OS, EW, others	2004.5–2007.6	12
Charest et al, 2009	Canada	40	NA	NA	PET	379–500 MBq	60	VS	R	EW	2004.5–2008.4	12
Hawkins et al, 2009	The USA	55	28/27	Median 14 (7–22)	PET	7–10 MBq/kg	60	VS	R	OS, EW, others	1994.5–2008.4	12
Mody et al, 2010	Michigan	16	6/10	Median 12.5 (2–24)	PET	7–17 MBq/kg	60	VS	R	OS, EW, others	1991.4–2002.10	11
Gerth et al, 2007	Germany	53	36/17	Median 6.5 (4–38)	PET	4 MBq/kg	60	VS	R	OS, EW, others	NA	11
Vrachimis et al, 2010	Germany	34	NA	NA	PET/CT	3–4 MBq/kg	60	VS	R	OS, EW, others	2002.7–2009.3	11
Lindholm et al, 2011	Finland	6	4/2	Median 16.5 (4–38)	PET	370 MBq	60	VS	R	OS and EW	NA	13
Yamamoto et al, 2011	Japan	11	5/6	Median 65 (12–77)	PET	3.7 MBq/kg	60	VS	R	OS, EW, others	NA	11
Bandopadhyaya et al, 2012	India	22	14/8	Mean 21.55 (8–66)	PET/CT	370 MBq	60	VS	R	OS, EW, others	NA	13
Cistaro et al, 2012	Italy	18	11/7	Mean 21 (1–72)	PET	7–10 MBq/kg	60	VS	R	OS, EW, others	2004.5–2008.4	12
Fulgo et al, 2012	Denmark	30	14/16	Median 30 (11–65)	PET	120–277 MBq	60	VS	R	OS, EW, others	2000.1–2010.10	11
Gerth et al, 2007	USA	22	14/8	Mean 21.55 (8–66)	PET	370 MBq	60	VS	R	OS, EW, others	2004.5–2008.4	12
Byun et al, 2013	South Korea	206	127/79	Median 15 (4–71)	PET	7.4 MBq/kg, or 370 MBq	60	VS	R	OS, EW, others	2006.6–2008.12	11
Costelloe et al, 2013	USA	64	NA	NA	PET	370 MBq	60	VS	R	OS, EW, others	2001.1–2011.10	11
Kong et al, 2013	South Korea	26	16/10	Mean 21 (9–55)	PET	370 MBq	60	VS	R	OS, EW, others	2010.1–2011.10	11
Sharma et al, 2013	India	53	39/14	Median 18 (9–31)	PET	370 MBq or 6–7 MBq/kg	60	VS	R	OS, EW, others	2006.3–2012.11	11
PET/CT, injection dose, injection-to-measure interval, methods of image analysis, and reference tests; accuracy data: the number of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) cases on a per examination-based or lesion-based level (extracted directly or recalculated if necessary). To avoid bias, this process was conducted by 2 reviewers (FL and QZ) independently and checked repeatedly.

Quality Assessments

The methodological quality of eligible studies was estimated using the quality assessment tool for diagnostic accuracy studies (QUADAS).15 This system is composed of 14 items including the patient spectrum covered, reference standards, test execution, study withdrawals, indeterminate results as well as verification, review, clinical review, incorporation, and disease progression biases. A 1-point score was given for each item and studies with high scores were considered as good reports.

Statistical Methods

For individual studies, we recalculated the sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) (with 95% confidence interval [CI]) of 18F-FDG PET or PET/CT for the diagnosis, staging, restaging, and recurrence surveillance of bone sarcoma on examination-based or lesion-based level. We visualized the summary receiver operating characteristic (sROC) curve to see if there is threshold effect. If a threshold effect was not found, the random-effect model was applied to pool outcome estimates. Otherwise, diagnostic accuracy was assessed using the Q* index and the area under the sROC (AUC). Subgroup analyses were performed according to metastases locations, recurrence, and the modality used (18F-FDG PET or PET/CT). All statistical analyses were conducted using Meta-Disc software 1.4.

Because data were extracted from published literature, informed consent or ethical approval was not required for this study. This study conformed to the standardized items described by “the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)” statement.17

RESULTS

Eligible Studies

During database and bibliography searches, 1901 relevant articles were identified. We firstly excluded 1770 ineligible articles by browsing titles and abstracts. Subsequently, the remaining ones were downloaded and reviewed as full-text versions. Eventually, 42 articles published between 1991 and 2015 were included in our investigation, among which 1918–36 evaluated bone sarcomas using 18F-FDG PET or PET/CT. The article searching process and exclusion criteria are shown in Figure 1.

Of the 42 articles, 3519–24,27–29,32–34,36–52,54–59 provided enough data to recalculate sensitivity and specificity and were included in the quantitative analysis, whereas the remaining 7,18,25,26,30,31,35,53 were analyzed qualitatively. One article was published in Chinese45 and the remainder were published in English. Lesions were classified by 18F-FDG status according to the methods and cutoffs defined in individual trials. Although several studies included overlapping patients, they presented different data concerning subgroup analysis. For methodological quality according to QUADAS, 9 studies achieved 13 points.
6 studies achieved 12, 18 achieved 11, 3 achieved 10, and 6 achieved 9. The detailed information of included studies and extracted data are presented in Tables 1–3.

Differentiation of Primary Bone Sarcoma From Benign Lesions

Nine studies involving 251 patients investigated the performance of PET/CT to differentiate primary bone sarcomas from benign bone diseases. On a lesion-based level, there was no threshold effect. The pooled sensitivity and specificity were 96% (95% CI, 93–98) (Figure 2A) and 79% (95% CI, 63–90), respectively. There was no significant between-study heterogeneity for included outcome estimates (all $I^2 = 0$).

Seven studies involving 434 patients described the ability of 18F-FDG PET to differentiate bone sarcomas from benign lesions. There was no threshold effect in lesion-based data. The pooled sensitivity and specificity were 95% (95% CI, 92–97) (Figure 2B) and 68% (95% CI, 60–76), respectively. There was no significant between-study heterogeneity for included outcome estimates (all $I^2 = 0$).

Recurrence

Six trials involving 270 examinations addressed bone sarcoma recurrence using 18F-FDG PET/CT. There was no threshold effect in examination-based data. The pooled results for 18F-FDG PET to detect recurrence indicated that the sensitivity was 92% (95% CI, 85–97), specificity was 93% (95% CI, 88–96), PLR was 10.26 (95% CI, 5.99–17.60), NLR was 0.11 (95% CI, 0.05–0.22), and DOR was 113.12 (95% CI, 40.34–317.26) (Figure 3). There was no significant between-study heterogeneity for included outcome estimates (all $I^2 = 0$).

Two trials involving 58 examinations addressed bone sarcoma recurrence using 18F-FDG PET. The pooled results for 18F-FDG PET to detect recurrence indicated that sensitivity was 89% (95% CI, 74–97, specificity was 91% (95% CI, 71–99), NLR was 9.34 (95% CI, 2.49–35.06), PLR was 0.12 (95% CI, 0.05–0.22), and DOR was 6.71 (95% CI, 1.84–23.87) (Figure 4A). There was no significant between-study heterogeneity for included outcome estimates (all $I^2 = 0$).

TABLE 2. Diagnostic Accuracy of PET/CT and PET on a Lesion-Based Analysis

Study, yr	Total	TP	FP	FN	TN	Metastatic Sites	Device
Franzius et al, 2002	41	24	1	3	13	Recurrence	PET
Gyorke et al, 2006	17	8	1	1	7	Recurrence	PET
Arush et al, 2007	12	5	1	0	6	Recurrence	PET/CT
Charest et al, 2009	27	11	0	1	15	Recurrence	PET/CT
Ozkan et al, 2012	21	4	0	0	17	Recurrence	PET/CT
Walter et al, 2012	30	17	0	0	13	Recurrence	PET/CT
Sharma et al, 2013	71	38	4	2	27	Recurrence	PET/CT
Chang et al, 2015	109	7	6	2	94	Recurrence	PET/CT
Arush et al, 2007	12	5	1	0	6	Local recurrence	PET/CT
Ozkan et al, 2012	21	3	0	0	18	Local recurrence	PET/CT
Sharma et al, 2013	71	35	3	2	31	Local recurrence	PET/CT
Chang et al, 2015	109	7	6	2	94	Local recurrence	PET/CT
Schulte et al, 1999	27	4	0	0	23	Lung	PET
Franzius et al, 2001	110	13	11	4	82	Lung	PET
Volker et al, 2007	34	3	0	3	28	Lung	PET
Mody et al, 2010	28	1	1	1	25	Lung	PET
Arush et al, 2007	12	2	0	0	10	Lung	PET/CT
Bandopadhyaya et al, 2012	22	10	1	0	11	Lung	PET/CT
Cistaro et al, 2012	37	18	0	3	16	Lung	PET/CT
Ozkan et al, 2012	21	1	0	0	20	Lung	PET/CT
Bai et al, 2013	14	2	0	0	12	Lung	PET/CT
Sharma et al, 2013	71	8	0	0	63	Lung	PET/CT
Byun et al, 2014	30	1	0	0	29	Lung	PET/CT
Ulaner et al, 2014	47	6	0	0	41	Lung	PET/CT
Arush et al, 2007	12	5	0	1	6	Bone	PET/CT
Ozkan et al, 2012	21	1	0	0	20	Bone	PET/CT
Bai et al, 2013	14	7	0	0	7	Bone	PET/CT
Byun et al, 2013	833	52	15	3	763	Bone	PET/CT
Sharma et al, 2013	71	9	0	0	62	Bone	PET/CT
Ulaner et al, 2014	47	10	0	1	36	Bone	PET/CT
Arush et al, 2007	12	1	0	0	11	Lymph node	PET/CT
Fulgo et al, 2012	29	1	0	0	24	Lymph node	PET/CT
Ozkan et al, 2012	21	4	0	0	17	Lymph node	PET/CT
Sharma et al, 2013	70	7	1	0	62	Lymph node	PET/CT
Ulaner et al, 2014	47	1	0	0	46	Lymph node	PET/CT

CT = computed tomography; FN = false negative; FP = false positive; PET = positron emission tomography; TN = true negative; TP = true positive.
Local Recurrence

Four trials involving 213 examinations addressed local bone sarcoma recurrence using 18F-FDG PET/CT. There was no threshold effect in examination-based data. The pooled results for 18F-FDG PET to detect local recurrence were sensitivity 91% (95% CI, 80–97), specificity 93% (95% CI, 88–97), PLR 10.89 (95% CI, 6.01–19.72), NLR 0.12 (95% CI, 0.06–0.28), and DOR 96.69 (95% CI, 30.59–305.59) (Figure 4). There was no significant between-study heterogeneity for included outcome estimates (all $I^2 = 0$).

There were no studies addressing local recurrence of bone sarcoma using 18F-FDG PET.

Distant Metastasis

Five trials involving 1001 lesions were available. There was no threshold effect in lesion-based data. The pooled results for 18F-FDG PET to detect distant metastatic lesions of bone sarcoma were sensitivity 90% (95% CI, 86–93), specificity 85% (95% CI, 81–87), PLR 5.16 (95% CI, 2.37–11.25), NLR 0.15 (95% CI, 0.11–0.20), and DOR 33.87 (95% CI, 11.50–99.77) (Figure 5). There was significant between-study heterogeneity for specificity, PLR, and DOR ($I^2 = 96.1\%, 93.8\%$, and 81.7%, respectively).

For lesion-based analysis of 18F-FDG PET/CT, 3 trials involving 337 lesions were available. There was no threshold effect in lesion-based data. The pooled results were sensitivity 83% (95% CI, 75–90), specificity 89% (95% CI, 84–93), PLR 9.75 (95% CI, 3.67–25.92), NLR 0.20 (95% CI, 0.13–0.30), and DOR 52.05 (95% CI, 15.17–178.60).

Four trials involving 58 examinations addressed lung metastasis using 18F-FDG PET. There was no threshold effect in examination-based data. The pooled results for 18F-FDG PET to detect lung metastasis were sensitivity 71% (95% CI, 52–86), specificity 92% (95% CI, 87–96), PLR 8.78 (95% CI, 4.11–18.76), NLR 0.38 (95% CI, 0.23–0.64), and DOR 32.98 (95% CI, 11.96–97.45). There was significant between-

TABLE 3. Diagnostic Accuracy of PET/CT and PET on an Examination-Based Analysis

Study, yr	Total	TP	FP	FN	TN	Sources of Lesion	Device
Kleis et al, 2009	83	33	18	6	26	All metastatic lesions	PET/CT
Cistaro et al, 2012	63	28	2	3	30	All metastatic lesions	PET/CT
London et al, 2012	314	27	7	6	274	All metastatic lesions	PET/CT
Byun et al, 2013	134	93	17	8	16	All metastatic lesions	PET/CT
Quartuccio et al, 2015	407	161	52	16	178	All metastatic lesions	PET/CT
Kole et al, 1998	19	10	3	2	3	Primary lesion	PET
Aoki et al, 1999	11	6	1	0	4	Primary lesion	PET
Schulte et al, 2000	202	107	29	8	58	Primary lesion	PET
Yanagawa et al, 2003	9	5	1	0	3	Primary lesion	PET
Kneis et al, 2006	55	55	0	0	0	Primary lesion	PET
Hawkins et al, 2009	40	40	0	0	0	Primary lesion	PET
Costelloe et al, 2015	98	61	8	3	26	Primary lesion	PET
Iagaru et al, 2006	22	22	0	0	0	Primary lesion	PET/CT
Shin et al, 2008	98	61	5	3	29	Primary lesion	PET/CT
Charest et al, 2009	25	24	0	1	0	Primary lesion	PET/CT
Lindholm et al, 2011	6	6	0	0	0	Primary lesion	PET/CT
Bandopadhyaya et al, 2012	22	22	0	0	0	Primary lesion	PET/CT
Bai et al, 2013	14	14	0	0	0	Primary lesion	PET/CT
Costelloe et al, 2013	98	61	5	3	29	Primary lesion	PET/CT
Kong et al, 2013	26	26	0	0	0	Primary lesion	PET/CT
Michael et al, 2015	18	18	0	0	0	Primary lesion	PET/CT
Cistaro et al, 2012	63	28	2	3	30	Lung	PET/CT
London et al, 2012	86	12	3	3	68	Lung	PET/CT
Quartuccio et al, 2015	188	51	20	12	105	Lung	PET/CT
Byun et al, 2013	134	93	17	8	16	Bone	PET/CT
Quartuccio et al, 2015	131	80	14	2	35	Bone	PET/CT

CT = computed tomography; FN = false negative; FP = false positive; PET = positron emission tomography; TN = true negative; TP = true positive.
study heterogeneity for specificity ($I^2 = 51.1\%$). A lesion-based analysis could not be performed because of lack of data.

Bone Metastasis

Six trials involving 998 examinations addressed bone metastasis of bone sarcoma using $^{18}\text{F}-\text{FDG}$ PET/CT on an examination-based level. There was no threshold effect in examination-based data. The pooled results for $^{18}\text{F}-\text{FDG}$ PET to detect bone metastasis were sensitivity 92% (95% CI, 85–97), specificity 98% (95% CI, 97–99), PLR 46.23 (95% CI, 28.97–73.77), NLR 0.10 (95% CI, 0.05–0.20), and DOR 566.19 (95% CI, 206.02–1556.04). There was no significant between-study heterogeneity for included outcome estimates (all $I^2 = 0$).

Two trials involving 265 lesions investigated $^{18}\text{F}-\text{FDG}$ PET/CT on a lesion-based level. The pooled results for $^{18}\text{F}-\text{FDG}$ PET/CT to detect bone metastases were sensitivity 95% (95% CI, 90–97), specificity 62% (95% CI, 51–73), PLR 2.43 (95% CI, 1.26–4.67), NLR 0.08 (95% CI, 0.01–0.46), and DOR 30.64 (95% CI, 3.34–281.48).

A single study was available to analyze the diagnostic accuracy of $^{18}\text{F}-\text{FDG}$ PET for detecting bone metastasis of bone sarcoma. The sensitivity was 80% on a lesion-based level.

Lymph Node Metastasis

Five studies used PET/CT on an examination-based level. These studies presented a total of 14 TP cases and no FN cases. The specificity was 96% (95% CI, 91–98). However, because lymph node metastases occur rarely in patients with bone sarcoma, these results should be interpreted cautiously.

DISCUSSION

Multiple studies have attempted to investigate the performance of $^{18}\text{F}-\text{FDG}$ PET and PET/CT as noninvasive diagnostic tools for bone sarcomas, but the results have been heterogeneous. By performing a systematic review and meta-analysis of the published data, we could safely suggest that PET/
FIGURE 3. Performance of 18F-FDG PET/CT to detect recurrence of bone sarcomas on an examination-based analysis: (A) pooled sensitivity and (B) pooled specificity. 18F-FDG = fluorine-18-fluorodeoxyglucose; CT = computed tomography; PET = positron emission tomography.

FIGURE 4. Performance of 18F-FDG PET/CT to detect local recurrence of bone sarcomas on an examination-based analysis: (A) pooled sensitivity and (B) pooled specificity. 18F-FDG = fluorine-18-fluorodeoxyglucose; CT = computed tomography; PET = positron emission tomography.
CT is a useful tool for the diagnosis, staging, restaging, and recurrence surveillance of bone sarcoma. Bone sarcomas have an elevated rate of glycolysis. After intravenously injection, fluorine-18-fluorodeoxyglucose (18F-FDG), a radioactive analogue of glucose, accumulates in malignant cells. By detecting lesions with high uptake of this tracer, 18F-FDG PET and PET/CT have been utilized for several aspects of bone sarcoma assessment. For example, 18F-FDG uptake in different tumor areas is closely correlated to biological aggressiveness and histological grade; therefore, taking biopsies from maximum uptake regions improves the diagnostic success rate. In addition, standardized uptake value before (SUV1) and after (SUV2) chemotherapy can be suggestive of histological response. A previous meta-analysis of osteosarcoma revealed that an SUV2:1 ratio of <0.5 or an SUV2 of <2.5 significantly predicted tumor necrosis, whereas >90% decrease of metabolic sarcoma volume was sought for Ewing sarcomas. Functional imaging of primary lesions to determine local extent and soft-tissue involvement is performed as an adjuvant to MRI. In 1996, Dehdashti et al first described the ability of 18F-FDG PET to differentiate bone malignancies from benign lesions. When using a SUVmax cut-off of 2.0, the sensitivity and specificity were 93% and 80%, respectively. Subsequent studies supported their findings. FDG uptake can also provide valuable information for histological grading of musculoskeletal sarcoma. However, in the present study, the specificities of 18F-FDG PET and PET/CT for differentiating malignant and benign bone lesions and for determining histological grade were not satisfactory because overlapping SUVmax values were observed for several histological subtypes and grades of malignant and benign bone lesions. Therefore, although 18F-FDG PET and PET/CT possessed a high sensitivity for identifying primary bone sarcomas, they could not replace histopathological examination as the gold standard for initial grading. However, after the initial diagnosis, 18F-FDG PET and PET/CT could be used for whole-body staging and recurrence surveillance.

Bone sarcoma metastasis to distant sites can result in unfavorable survival outcomes. According to the published data, the lung was the most commonly involved site, closely followed by “other” bone sites, whereas lymph node and soft-tissue metastases rarely occurred. Because the early management of metastatic lesions could improve survival, initial staging and timely restaging during follow-up are indispensable. Compared with other imaging modalities, a major advantage of 18F-FDG PET and PET/CT is the ability to assess systemic metastases. We found that the performance of 18F-FDG PET/CT in detecting metastases was excellent. However, in the subgroup analysis, the performance of PET/CT in detecting lung metastases was not as good as that for detecting “other” bone metastases on a lesion-based level. In addition, the subgroup analysis revealed that the sensitivity of 18F-FDG PET for identifying metastases on the examination-based level was unsatisfactory (71%). The discrepancies in subgroup analyses could be explained by the size of the metastatic nodules at
specific sites, which might influence the data. CT imaging is usually performed at low resolution and conducted during shallow breathing. In addition, because of the partial volume effect caused by respiratory activities, the recorded SUV normally dwindles. Iagaru et al examined 106 bone and soft-tissue sarcomas, and the FN rates for lung metastases were significantly higher in patients with subcentimeter nodules. Furthermore, Cistaro et al evaluated 18 bone sarcomas and did not find any significance of the SUVmax or SUV ratio for the appraisal of lung nodules <6 mm in size. The survival of bone sarcoma patients with bone-plus-lung or even bone-only metastases is poorer than those with lung-only metastasis. Bone scintigraphy is another commonly used whole-body modality to detect bone metastases. In 2000, Franzius et al compared the performance of 18F-FDG PET and bone scintigraphy for the detection of bone metastasis. They suggested that bone scintigraphy was superior to 18F-FDG PET. However, more recently, several trials have suggested that, compared with bone scintigraphy, PET/CT demonstrated better accuracy for detecting bone metastases. In agreement, the present meta-analysis revealed remarkable sensitivity and specificity of PET/CT for the detection of bone metastases, suggesting that PET/CT could improve survival outcome because of an enhanced ability for detecting bone metastases.

Imaging follow-up is designed to detect postsurgical recurrences. Recurrent bone sarcomas are entirely curable as long as lesion resection is possible. Because of post-treatment changes and image artifacts caused by metallic endoprostheses, the detection of local recurrence using traditional anatomic modalities has been shown to be inferior to functional imaging. We found that 18F-FDG PET/CT had good accuracy for the detecting bone sarcoma recurrence, which was similar to that noted for other recurrent malignancies. The histological response to chemotherapy, number and sites of distant metastatic lesions, and local recurrence are all significant prognostic indicators. However, radical resection of metastatic lesions significantly improves survival. Therefore, accurate staging, restaging, and recurrence surveillance of bone sarcomas by 18F-FDG PET and PET/CT could provide information for risk stratification that could eventually translate into a clinical survival benefit.

Although satisfactory results have been demonstrated, considering the mechanism of 18F-FDG PET and PET/CT, FP and FN cases are unavoidable. There are multiple factors...
affecting the possibility of a misdiagnosis. First, some aggressive benign tumors (such as giant cell tumor of the bone) and inflammatory lesions are 18F-FDG-avid, with the inflammatory lesions being responsible for the majority of FP cases. Second, not all bone sarcoma types can be definitively identified according to 18F-FDG uptake, for example, chondrosarcoma shows only low or moderate 18F-FDG uptake. Third, nonspecific 18F-FDG uptake and asymmetric 18F-FDG distribution in malignant diseases can complicate the interpretation for radiologists. Morphologic information acquired by the CT portion of PET/CT partially compensates for the limitations of PET in malignant diseases can complicate the interpretation for radiologists. Morphologic information acquired by the CT portion of PET/CT partially compensates for the deficiencies in 18F-FDG uptake in a small proportion of bone sarcomas, therefore improving diagnostic accuracy. However, as mentioned above, because of the limitations of CT, some subcentimeter lesions may still be missed. Therefore, the findings of 18F-FDG PET and PET-CT in bone sarcomas should be confirmed by a histopathological examination or follow-up.

Besides inherent limitations of meta-analysis such as publication and selection bias, there are some limitations to the present study. First, the proportions of sarcoma subtypes in retrieved trials varied. Because of the low incidence of primary bone sarcoma, detailed and homogeneous analysis based on sarcoma subtype was not possible. Consequently, underestimations or overestimations might exist in the present data. Second, multiple methods to measure 18F-FDG avidity and multiple cutoffs to determine lesion positivity, as well as multiple other study factors, were employed across different studies. Third, the patients’ characteristics information was incomplete in some studies. Although we tried to obtain comprehensive information from the authors of original papers, some data remained unavailable. Fourth, several subgroup analyses were based on a small number of studies or were not possible because of incomplete data; especially for 18F-FDG PET, which could reduce the power of our statistical analyses.

CONCLUSION

This systematic review of the published literature demonstrated that 18F-FDG PET and PET/CT could be applied to differentiate primary bone sarcomas from benign lesions. Moreover, PET/CT was useful for the diagnosis, staging, restaging, and recurrence surveillance of bone sarcomas, although a relatively low sensitivity at detecting lung metastatic lesions was observed. Nevertheless, the possible existence of FP and FN cases merits consideration. Pathological examination or long-term follow-up should be carried out for 18F-FDG-avid lesions in patients with bone sarcomas.

REFERENCES

1. NCI. SEER Cancer Statistics Review, 1975–2008. National Cancer Institute; 2011. http://seer.cancer.gov/csr/1975_2008/
2. Fletcher CDM, Bridge JA, Hogendoorn PCW, et al. Pathology and Genetics of Tumours of Soft Tissue and Bone. 4th ed. Lyon: IARC Press; 2013.
3. Yin K, Liao Q, Zhong D, et al. Meta-analysis of limb salvage versus amputation for treating high-grade and localized osteosarcoma in patients with pathological fracture. Exp Ther Med. 2012;4:889–894.
4. Takeuchi A, Lewis VO, Satcher RL, et al. What are the factors that affect survival and relapse after local recurrence of osteosarcoma? Clin Orthop Relat Res. 2014;472:3188–3195.
5. Esasihihi N, Goodman M, Marcus RJ. Changes in incidence and survival of Ewing sarcoma patients over the past 3 decades: surveillance epidemiology and end results data. J Pediatr Hematol Oncol. 2008;30:425–430.
6. Bakhshi S, Radhakrishnan V. Prognostic markers in osteosarcoma. Expert Rev Anticancer Ther. 2010;10:271–287.
7. Nishio J, Ideta S, Iwasaki H, et al. Scapular osteochondromatoma: imaging features with pathological correlation. Oncol Lett. 2013;6:817–820.
8. Quak E, van de Luijtgaarden AC, de Geus-Oei LF, et al. Clinical applications of positron emission tomography in sarcoma management. Expert Rev Anticancer Ther. 2011;11:195–204.
9. Schuetze SM. Utility of positron emission tomography in sarcomas. Curr Opin Oncol. 2006;18:369–373.
10. Wang HY, Ding HJ, Chen JH, et al. Meta-analysis of the diagnostic performance of [18F]FDG-PET and PET/CT in renal cell carcinoma. Cancer Imaging. 2012;12:464–474.
11. Li XF, Dai D, Song XY, et al. Comparison of the diagnostic performance of F-fluorodeoxyglucose versus F-fluorodeoxyglucose positron emission tomography on pulmonary lesions: a meta analysis. Mol Clin Oncol. 2015;3:101–108.
12. Xiao Y, Wei J, Zhang Y, et al. Positron emission tomography alone, positron emission tomography-computed tomography and computed tomography in diagnosing recurrent cervical carcinoma: a systematic review and meta-analysis. Arch Med Sci. 2014;10:222–231.
13. Zou H, Zhao Y. 18F-FDG PET-CT for detecting gastric cancer recurrence after surgical resection: a meta-analysis. Surg Oncol. 2013;22:106–162.
14. Wang Z, Chen JQ, Liu J, et al. FDG-PET in diagnosis, staging and prognosis of pancreatic carcinoma: a meta-analysis. World J Gastroenterol. 2013;19:4808–4817.
15. Bastiaanet N, Groen H, Jager PL, et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas: a systematic review and meta-analysis. Cancer Treat Rev. 2004;30:83–101.
16. Whiting P, Rutjes AW, Reitsma JB, et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3:25.
17. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.
18. Yamamoto Y, Kawaguchi Y, Kawase Y, et al. A comparative study of F-18 FDG PET and 201Tl scintigraphy for detection of primary malignant bone and soft-tissue tumors. Clin Nucl Med. 2011;36:290–294.
19. Mody RJ, Bui C, Hutchinson RJ, et al. FDG PET imaging of childhood sarcomas. Pediatr Blood Cancer. 2010;54:222–227.
20. Hawkins DS, Conrad ER, Butrynski JE, et al. [F-18]-fluorodeoxyglucose-18F-FDG PET and PET/CT in bone sarcoma. Radiol Clin North Am. 2014;52:101–118.
21. Volker T, Denecke T, Steffen I, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol. 2007;25:5435–5441.
22. Kneisl JS, Patt JC, Johnson JC, et al. Is PET useful in detecting occult non pulmonary metastases in pediatric bone sarcomas? Clin Orthop Relat Res. 2006;450:101–104.
23. Gyorke T, Zajic T, Lange A, et al. Impact of FDG PET for staging of Ewing sarcomas and primitive neuroectodermal tumours. Nucl Med Commun. 2006;27:17–24.
24. Yagawa T, Watanabe H, Inoue T, et al. Carbon-11 choline positron emission tomography in musculoskeletal tumors: comparison with fluorine-18 fluorodeoxyglucose positron emission tomography. J Comput Assist Tomogr. 2003;27:175–182.
25. Feldman F, van Heertum R, Manos C. 18FDG PET scanning of benign and malignant musculoskeletal lesions. *Skeletal Radiol.* 2003;32:201–208.

26. Rajendran JG, Wilson DC, Conrad EU, et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. *Eur J Nucl Med Mol Imaging.* 2003;30:695–704.

27. Franzius C, Daldrup-Link HE, Wagner-Bohn A, et al. FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. *Ann Oncol.* 2002;13:157–160.

28. Franzius C, Daldrup-Link HE, Sciuì J, et al. FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT. *Ann Oncol.* 2001;12:479–486.

29. Schulte M, Brehk-Krauss D, Heymer B, et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. *J Nucl Med.* 2000;41:1695–1701.

30. Franzius C, Sciuì J, Daldrup-Link HE, et al. FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. *Eur J Nucl Med.* 2000;27:1305–1311.

31. Watanabe H, Shinozaki T, Yanagawa T, et al. Glucose metabolic analysis of musculoskeletal tumors using 18F-fluorine-FDG PET as an aid to preoperative planning. *J Bone Joint Surg Br.* 2000;82:760–767.

32. Aoki J, Watanabe H, Shinozaki T, et al. FDG-PET in differential diagnosis and grading of chondrosarcomas. *J Comput Assist Tomogr.* 1999;23:603–608.

33. Schulte M, Brehk-Krauss D, Heymer B, et al. Fluorodeoxyglucose positron emission tomography of soft tissue tumors: is a non-invasive determination of biological activity possible? *Eur J Nucl Med.* 1999;26:599–605.

34. Kole AC, Nieweg OE, Hoekstra HJ, et al. Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. *J Nucl Med.* 1998;39:810–815.

35. Adler LP, Blair HF, Makley JT, et al. Noninvasive grading of musculoskeletal tumors using PET. *J Nucl Med.* 1991;32:1508–1512.

36. Costelloe CM, Chuang HH, Chasan BA, et al. Bone windows for distinguishing malignant from benign primary bone tumors on FDG PET/CT. *J Cancer Res.* 2015;4:524–530.

37. Quartuccio N, Fox J, Kuk D, et al. Pediatric bone sarcoma: diagnostic performance of 18F-FDG PET/CT versus conventional imaging for initial staging and follow-up. *Ann J Roentgenol.* 2015;204:153–160.

38. Chang KJ, Kong CB, Cho WH, et al. Usefulness of increased 18F-FDG uptake for detecting local recurrence in patients with extremity osteosarcoma treated with surgical resection and endoprosthetic replacement. *Skeletal Radiol.* 2015;44:529–537.

39. Gelfand MJ, Sharp SE. [F-18]2-fluoro-2-deoxyglucose (FDG) positron emission tomography after limb salvage surgery: post-surgical appearance, attenuation correction and local complications. *Pediatri Radiol.* 2015;3290–3293(Doi:10.1007/s00247-015-3290-3).

40. Ulamer GA, Magnan H, Healey JH, et al. Is methylene diphosphonate bone scan necessary for initial staging of Ewing sarcoma if 18F-FDG PET/CT is performed? *Ann J Roentgenol.* 2014;202:859–867.

41. Byun BH, et al. Kong CB, Lim I. Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential [18F]FDG PET/CT and MRI. *Eur J Nucl Med Mol Imaging.* 2014;41:1553–1562.

42. Sharma P, Khangemamb BC, Sunan KC, et al. Diagnostic accuracy of 18F-FDG PET/CT for detecting recurrence in patients with primary skeletal Ewing sarcoma. *Eur J Nucl Med Mol Imaging.* 2013;40:1036–1043.

43. Kong CB, Byun BH, Lim I, et al. (18)F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. *Eur J Nucl Med Mol Imaging.* 2013;40:728–736.

44. Byun BH, Kong CB, Lim I, et al. Comparison of (18)F-FDG PET/CT and (99 m)Tc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. *Skeletal Radiol.* 2013;42:1673–1681.

45. Bai CJ, Zhu R, Fang ZW, et al. A comparison between preoperative PET/CT and CT images of long bone osteosarcoma of the lower extremity. *Acad J Second Mil Med Univ.* 2013;34:100–103.

46. London K, Stege C, Cross S, et al. 18F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors. *Pediatr Radiol.* 2012;42:418–430.

47. Walter F, Czermiń J, Hall T, et al. Is there a need for dedicated bone imaging in addition to 18F-FDG PET/CT imaging in pediatric sarcoma patients? *J Pediatr Hematol Oncol.* 2012;34:131–136.

48. Ozkan E, Soydl C, Araz M, et al. Clinical experience of 18F-FDG PET/CT in soft tissue and osseous sarcomas. *UHOD-Uluslararasi Hematoloji-Onkoloji Dergisi.* 2012;22:163–169.

49. Fuglo HM, Jorgensen SM, Loft A, et al. The diagnostic and prognostic value of (18)F-FDG PET/CT in the initial assessment of high-grade bone and soft tissue sarcoma: a retrospective study of 89 patients. *Eur J Nucl Med Mol Imaging.* 2012;39:1416–1424.

50. Cistaro A, Lopeci E, Gastaldo L, et al. The role of 18F-FDG PET/CT in the metabolic characterization of lung nodules in pediatric patients with bone sarcoma. *Pediatr Blood Cancer.* 2012;59:1206–1210.

51. Bandopadhyaya GP, Gupta P, Singh A, et al. (99m)Tc-DMSA (V) in evaluation of osteosarcoma: comparative studies with (18)F-FDG PET/CT in detection of primary and malignant lesions. *ISRN Oncol.* 2012;2012:371830.

52. Lindholm P, Sutinen E, Oikonen V, et al. PET imaging of blood flow and glucose metabolism in localized musculoskeletal tumors of the extremities. *Nucl Med Biol.* 2011;38:295–300.

53. Vrachimis A, Dirksen U, Weessling J, et al. PET surveillance of patients with Ewing sarcomas of the trunk: must the lower legs be included? *Nuklearmedizin.* 2010;49:183–189.

54. Charest M, Hickeson M, Lisbona R, et al. FDG PET/CT imaging in primary osseous and soft tissue sarcomas: a retrospective review of 212 cases. *Eur J Nucl Med Mol Imaging.* 2009;36:1944–1951.

55. Kleis M, Daldrup-Link H, Matthay K, et al. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. *Eur J Nucl Med Mol Imaging.* 2009;36:23–36.

56. Shin DS, Shon OJ, Han DS, et al. The clinical efficacy of 18F-FDG PET/CT in benign and malignant musculoskeletal tumors. *Ann Nucl Med.* 2008;22:603–609.

57. Arush MW, Israel O, Postovsky S, et al. Positron emission tomography/computed tomography with 18fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. *Pediatr Blood Cancer.* 2007;49:901–906.

58. Gerth HU, Juergens KU, Dirksen U, et al. Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors. *J Nucl Med.* 2007;48:1932–1939.

59. Jagaru A, Chawla S, Menendez L, et al. 18F-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcoma. *Nucl Med Commun.* 2006;27:795–802.

60. Folpe AL, Lyles RH, Sprouse JT, et al. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. *Clin Cancer Res.* 2000;6:1279–1287.
61. Hongtao L, Hui Z, Bingshun W, et al. 18F-FDG positron emission tomography for the assessment of histological response to neoadjuvant chemotherapy in osteosarcomas: a meta-analysis. *Surg Oncol.* 2012;21:e165–e170.

62. Gaston LL, Di Bella C, Slavin J, et al. 18F-FDG PET response to neoadjuvant chemotherapy for Ewing sarcoma and osteosarcoma are different. *Skeletal Radiol.* 2011;40:1007–1015.

63. Dehdashti F, Siegel BA, Griffeth LK, et al. Benign versus malignant intraosseous lesions: discrimination by means of PET with 2-[F-18]fluoro-2-deoxy-D-glucose. *Radiology.* 1996;200:243–247.

64. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. *Cancer.* 2009;115:1531–1543.

65. Kempf-Bielack B, Bielack SS, Jurgens H, et al. Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). *J Clin Oncol.* 2005;23:559–568.

66. Strobel K, Stumpe KD. PET/CT in musculoskeletal infection. *Semin Musculoskelet Radiol.* 2007;11:353–364.

67. Boas FE, Fleischmann D. Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. *Radiology.* 2011;259:894–902.

68. Gao S, Li S, Yang X, et al. 18FDG PET-CT for distant metastases in patients with recurrent head and neck cancer after definitive treatment: a meta-analysis. *Oral Oncol.* 2014;50:163–167.

69. Ding XP, Feng L, Ma L. Diagnosis of recurrent uterine cervical cancer: PET versus PET/CT: a systematic review and meta-analysis. *Arch Gynecol Obstet.* 2014;290:741–747.

70. ESMO/European Sarcoma Network Working Group. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol.* 2014;25(Suppl 3):iii113–iii123.

71. Peller PJ. Role of positron emission tomography/computed tomography in bone malignancies. *Radiol Clin North Am.* 2013;51:845–864.