A SYSTEMATIC STUDY OF THE THERMAL AND NONTHERMAL EMISSION IN THE SUPERNova REMNANT RCW 86 WITH SUZAKU

YOSHIo TSUBONE1, MAKOTO SAWADA1, AYA Bamba1,2,3, SATORU Katsuda4, AND JACCO VINk5

1 Department of Physics and Mathematics, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
2 Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
3 Research Center for the Early Universe, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
4 Department of Physics, Faculty of Science & Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
5 Anton Pannekoek Institute/GRAPPA, University of Amsterdam P.O. Box 94249, NL-1090 GE Amsterdam, The Netherlands

Received 2016 July 14; revised 2016 October 25; accepted 2016 December 4; published 2017 January 17

ABSTRACT

Diffusive shock acceleration by the shockwaves in supernova remnants (SNRs) is widely accepted as the dominant source for Galactic cosmic rays. However, it is unknown what determines the maximum energy of accelerated particles. The surrounding environment could be one of the key parameters. The SNR RCW 86 shows both thermal and nonthermal X-ray emission with different spatial morphologies. These emission originate from the shock-heated plasma and accelerated electrons respectively, and their intensities reflect their density distributions. Thus, the remnant provides a suitable laboratory to test possible association between the acceleration efficiency and the environment. In this paper, we present results of spatially resolved spectroscopy of the entire remnant with Suzaku. The spatially resolved spectra are well reproduced with a combination of a power-law for synchrotron emission and a two-component optically thin thermal plasma, corresponding to the shocked interstellar medium (ISM) with kT of 0.3–0.6 keV and Fe-dominated ejecta. It is discovered that the photon index of the nonthermal component becomes smaller when decreasing the emission measure of the shocked ISM, where the shock speed has remained high. This result implies that the maximum energy of accelerated electrons in RCW 86 is higher in the low-density and higher shock speed regions.

Key words: cosmic rays – ISM: individual objects (RCW 86) – ISM: supernova remnants – X-rays: ISM

1. INTRODUCTION

Cosmic rays are particles which bombard the Earth from anywhere (Hess 1912). X-ray and GeV/TeV 3-ray observations have revealed that the shocks of supernova remnants (SNRs) are the acceleration sites of the Galactic cosmic rays up to the TeV range (e.g., Koyama et al. 1995; Ackermann et al. 2013).

The diffusive shock acceleration mechanism (e.g., Malkov & Drury 2001) is believed to be the relevant mechanism, which can explain the power-law energy distribution. However it is still unclear what determines the efficiency. The surrounding environment should be one of the key parameters (Patnaude et al. 2009, for example). Typical X-ray spectra of SNRs show either synchrotron emission from high energy electrons, thermal emission from shock-heated interstellar medium (ISM), or combination of these. Therefore, by comparing spatial distributions of these emission, we may reveal association between the acceleration efficiency and the environment.

RCW 86 is an SNR located at $(l, b) = (315.4, −2.5)$ with an apparent diameter of ~ 42 arcmin. The distance is estimated to be ~ 2.8 kpc (Rosado et al. 1996). Naranan et al. (1977) discovered the X-rays from RCW 86 for the first time. Because of the low plasma temperature (~ 0.5 keV), RCW 86 had been assumed to be an old remnant. However, since the detection of high temperature emission by Chandra and XMM-Newton, RCW 86 is accepted as the remnant of SN 185 (Vink et al. 2006). The average radio spectral index is 0.6 (Green 2014). Furthermore, the X-ray spectra of the SNR show not only thermal X-rays but also synchrotron X-rays (Bamba et al. 2000; Borkowski et al. 2001), implying that this SNR is an electron accelerator up to \simTeV range, together with gamma-ray detection from GeV to TeV band (Aharonian et al. 2009; Yang et al. 2014). In fact, evidence for effective cosmic-ray acceleration has been reported (Bamba et al. 2005; Held et al. 2011, 2013), although Shimoda et al. (2015) suggested the measured efficiency could be higher than reality. It is noteworthy that the thermal and nonthermal emission in this SNR is not uniform and has different morphology, which makes this SNR a suitable laboratory to test a possible relation between the acceleration efficiency and the environment.

In this paper, we present the systematic analysis of spatially resolved spectra obtained with the X-ray Imaging Spectrometer (XIS: Koyama et al. 2007) on board Suzaku (Mitsuda et al. 2007). Unless otherwise noted the uncertainty is given at the 90% confidence interval.

2. OBSERVATION AND DATA REDUCTION

The entire region of RCW 86 is covered by six observations with Suzaku. The observation log is summarized in Table 1. The fields of views (FoVs) are shown in Figure 1 with the dashed squares.

The XIS consists of four X-ray CCD cameras, which observe in 0.2–12.0 keV with X-ray telescopes (XRT: Serlemitsos et al. 2007). Three of them (XIS 0, 2, and 3) are front-illuminated (FI) CCDs, and the other (XIS 1) is a back-illuminated (BI) CCD. The FI CCDs have larger effective area in the hard X-ray band while the BI CCD is in the soft band. A pre-flight energy resolution is ~ 130 eV (full width at half maximum, FWHM) at 5.9 keV (Koyama et al. 2007). After 2006 November 9, the XIS 2 was out of operation. The others (XIS 0, 1, and 3) use spaced-row charge injection (SCI): Nakajima et al. 2008; Uchiyama et al. 2009) to recover the charge transfer efficiency and improve the energy resolution after 2006 October. Each
3. RESULTS

3.1. Image

In Figure 1, we show the XIS images of RCW 86. Red and blue show the 0.5–2.0 keV and 3.0–5.5 keV band images, respectively. The soft band is dominated by the thermal emission, whereas the hard one is dominated by nonthermal emission. NXB events were generated by xisnxbgen (Tawa et al. 2008) and subtracted from the image. We corrected exposure and vignetting using the flat images at 1 keV (soft band) and 4 keV (hard band) generated by xissim (Ishisaki et al. 2007). Both of these images show similar shell-like structure. However, their distributions are not identical. They show offsets in the azimuthal direction. For example, in the southern half of the shell, the soft emission appears from west to southeast, while the hard emission from southwest to south. They also show difference in the radial distributions. The soft emission is sharper while the hard emission is broader and patchier. These results are consistent with previous observations (e.g., ASCA: Bamba et al. 2000; Borkowski et al. 2001, Chandra: Rho et al. 2002; Bamba et al. 2005; Castro et al. 2013, XMM-Newton: Vink et al. 2006; Broersen et al. 2014).

3.2. Spectral Analysis

As the image shows, the thermal and nonthermal emission have different spatial distribution. For the spatially resolved spectroscopy we divided RCW 86 in regions and determined physical parameters using the following steps. First, we determined the parameters such as temperature for each FoV (see Section 3.2.1). Next, we subdivided the FoV in regions, and we fitted the spectra of these regions using the best-fit model for each FoV, but the normalization and power-law index were treated as free parameters (see Section 3.2.2). Generating the ARF file, we assume the 1.7–5.0 keV image as the brightness distribution. We used the spectral data of XIS-FI CCDs.

3.2.1. Integrated Spectra in Each FoV

We show the integrated spectra in each FoV in Figure 2. These spectra have been corrected for NXB, using the spectra generated by xisnxbgen (Tawa et al. 2008).

Yamaguchi et al. (2008, 2011) showed that the emission in RCW 86 can be well reproduced by two temperature plasma and power-law component models, taking into account Galactic absorption. The low-temperature component corresponds to the shock-heated ISM, and is modeled with the vpshock model. The high-temperature component corresponds to the heated ejecta and was modeled by the vnei model. Finally, the power-law component represents the synchrotron emission from accelerated electrons. In vnei, we fixed the temperature and the ionization timescales to 5 keV and

Table 1

Region	Observation ID	Start date	Exposure	R.A.	Decl.	# of XIS	SCI
SW	500004010	2006 Feb 12	100.8	220.28	−62.68	4	off
EAST	501070100	2006 Aug 12	59.8	221.26	−62.36	4	off
NORTH	503002010	2009 Jan 29	55.4	220.50	−62.21	3	on
SOUTH	503003010	2009 Jan 31	54.8	220.83	−62.67	3	on
SE	503004010	2009 Feb 01	53.5	221.39	−62.67	3	on
WEST	503001010	2009 Feb 02	53.6	220.28	−62.43	3	on

Figure 1. The XIS image of RCW 86 in a logarithmic scale. Red and blue, respectively, show emission from 0.5–2.0 keV (soft) and 3.0–5.5 keV (hard). The FoVs of XIS are indicated by the dashed squares. They are EAST (blue), SOUTH (orange), WEST (magenta), and NORTH (red). The solid-white shapes are source regions, while the dashed-white shapes are background regions in each FoV. The white and black numbers in the SW region represent SW-A and SW-B regions, as shown in the main text.

In this paper, we use the software packages HEASoft version 6.10, XSPEC version 12.7.1, and AtomDB version 1.3.2. In the spectral analysis, we generated the redistribution matrix function and ancillary response file using xismfgen and xissimarfgen (Ishisaki et al. 2007), respectively.
Figure 2. The integrated spectra in each FoV. The blue, green, and cyan represent power-law, low-temperature plasma (v_{shock}), and high-temperature plasma (v_{nei}) components. The red lines of SW-A and SW-B are the Gaussian indicated Fe-K/β lines.
Table 2
The Best-fit Parameters for Each FoV

Parameter	EAST	NORTH	SE	SOUTH	WEST
N_{H} (10^{21} cm^{-2})	3.3 ± 0.1	3.4 ± 0.1	2.1 ± 0.1	4.2 ± 0.1	3.3 ± 0.1
kT (keV)	0.44 ± 0.03	0.46 ± 0.02	0.59 ± 0.07	0.36 ± 0.02	0.46 ± 0.01
Ne (solar)	1.9 ± 0.1	1.8 ± 0.1	2.4 ± 0.03	1.4 ± 0.1	1.8 ± 0.1
Mg (solar)	1.9 ± 0.2	1.3 ± 0.1	2.0 ± 0.03	0.96 ± 0.12	1.0 ± 0.1
Si (solar)	1.9 ± 0.3	1.8 ± 0.3	3.2 ± 0.03	1.2 ± 0.5	1.4 ± 0.1
Ca (solar)	1.2 ± 0.1	0.73 ± 0.07	1.1 ± 0.03	0.93 ± 0.09	0.62 ± 0.02
τ (10^{20} s cm^{-3})	3.2 ± 0.9	3.2 ± 0.8	2.5 ± 1.0	9.1 ± 1.6	5.7 ± 0.4
Norm (10^{-16} cm^{-5})	1.14 ± 0.02	1.30 ± 0.02	0.218 ± 0.005	2.91 ± 0.04	4.28 ± 0.03
Γ	2.72 ± 0.02	2.81 ± 0.02	2.49 ± 0.03	2.70 ± 0.01	2.86 ± 0.03
Norm	1.30 ± 0.02	0.84 ± 0.02	0.43 ± 0.01	2.74 ± 0.03	0.70 ± 0.02
Norm (10^{-21} cm^{-5})	4.6 ± 0.8	4.5 ± 0.7	2.9 ± 0.7	5.6 ± 1.0	6.9 ± 0.8

χ²/dof | 550/464 | 385/314 | 382/349 | 745/583 | 576/323 |

Note.

a Emission measure.
b In units of 10^{-2} photons keV^{-1} s^{-1} cm^{-2} at 1 keV.

Figure 3. The SOUTH08 spectrum with srcut fixed photon index and freed radio flux. The color is equivalent to Figure 2.

10^{9} cm^{-3} s, respectively, following Yamaguchi et al. (2011). Furthermore, the abundances were fixed to solar abundance except for iron, for which we set the abundance to 10^{10} solar under the assumption that the ejecta plasma consists only of Fe ions and electrons (Yamaguchi et al. 2011). Because of uncertainties in the model, we ignored the energy bands of 0.70–0.78 and 1.13–1.28 keV (Yamaguchi et al. 2011). In addition, the 1.83–1.85 keV range was ignored, as the instrument response is uncertain in this range.

Because of the differences of spectral shapes in SW (Bamba et al. 2000; Borkowski et al. 2001), we divided SW into SW-A and SW-B. SW-B contains SW 03, 04, 12, and 13 (see Figure 1). The others were included in SW-A. These regions are much brighter than other regions, thus we further included the following steps to reduce uncertainty of the responses. We applied a Gaussian for Fe-K\(_{\beta}\) line with the fixed central energy and the sigma of Gaussian to 7.1 keV and 0 eV, respectively. The Gaussian smoothing

Table 3
The Best-fit Parameters for the SW Regions

Parameter	SW-A	SW-B
N_{H} (10^{21} cm^{-2})	3.7 ± 0.1	4.5 ± 0.1
kT (keV)	0.438 ± 0.004	0.35 ± 0.01
Ne (solar)	1.18 ± 0.01	1.49 ± 0.05
Mg (solar)	1.66 ± 0.03	1.01 ± 0.07
Si (solar)	1.62 ± 0.04	1.15 ± 0.20
Ca (solar)	1.02 ± 0.01	0.83 ± 0.03
τ (10^{20} s cm^{-3})	6.6 ± 0.1	8.3 ± 0.09
Norm (10^{-16} cm^{-5})	8.36 ± 0.02	4.21 ± 0.03
Γ	3.06 ± 0.01	2.91 ± 0.01
Norm	1.60 ± 0.02	1.85 ± 0.01
Norm (10^{-21} cm^{-5})	8.9 ± 0.5	5.9 ± 0.4
–Gaussian–	2.8 ± 1.2	1.1 ± 0.7
–gain–	1.0032 ± 0.0001	0.0
offset (eV)	−1.5 ± 0.1	0.0

Note.

a In units of 10^{-2} photons keV^{-1} s^{-1} cm^{-2} at 1 keV.
b In units of 10^{-6} photons s^{-1} cm^{-2} in the line.

(gsmooth model in XSPEC), with a freely varying sigma at 6 keV and a fixed index of 0.5 to take account of the energy dependence, is also applied to mitigate residuals in the low-energy band, likely due to calibration uncertainty in instrumental broadening. Furthermore, we treated the gain as a free parameter.

In the EAST, there are the residuals of the NXB subtraction. When we checked the spectra from each FI sensor, XIS 2
implies that the low reproducibility of NXB at XIS spectrum had more residuals than those of the other XISs, implying that the low reproducibility of NXB at XIS 2 causes these residuals. Therefore, we did not use the spectra of XIS 2 for the analysis of EAST region. When we fitted EAST spectrum in 0.5–7.0 keV, the best-fit parameters did not change significantly.

By the above-mentioned method, we obtained the reasonable fitting results in all of the FoV for complicated SNR emission. Tables 2 and 3, and Figure 2 show the best-fit parameters and models. Although it is not perfect in some regions, the purpose of this paper is not to determine the thermal parameters but to measure general trends in the emission measure of the thermal emission and the properties of X-ray synchrotron emission. Therefore, we do not pursue this model further.

3.2.2. Spectra in the Divided Regions

In the next step, we analyzed the spectra of the divided regions. The spectral parameters were fixed to those of each FoV region (Tables 2 and 3), except for the normalization of each component and the power-law indices which were treated as free. We chose the background regions in each FoV, where there is no bright source nor a calibration source. For the WEST region, we used the background for SE since the FoV of

Parameter	EAST01	EAST02	EAST03	EAST04	EAST05	EAST06
--vpshock--						
Norma	2.9 ± 0.1	3.3 ± 0.1	3.1 ± 0.1	0.93 ± 0.06	0.20 ± 0.06	0.06±0.07
--power-law--						
\(\Gamma \)	2.9 ± 0.2	3.00 ± 0.08	2.90 ± 0.07	2.80 ± 0.05	2.76 ± 0.03	2.66 ± 0.04
Normb	0.7 ± 0.1	1.4 ± 0.1	1.2 ± 0.1	1.7 ± 0.1	3.4 ± 0.1	3.1 ± 0.1
\(F_{\nu} \)c	1.6±0.1	3.0±0.5	3.0 ± 0.2	4.6 ± 0.2	9.6 ± 0.2	10.1±0.3
--vnei--						
Normd	<9.9	9.8 ± 4.2	7.5 ± 2.2	<4.4	<0.9	<0.9
\(\chi^2/\text{dof} \)	219/184	304/271	330/285	357/290	468/399	265/250

Notes.
a In unit of \(10^{-17} \) cm\(^{-5} \).
b In unit of \(10^{-3} \) photons keV\(^{-1}\) s\(^{-1}\) cm\(^{-2} \) at 1 keV.
c In unit of \(10^{-21} \) erg s\(^{-1}\) cm\(^{-2} \) in the 3.0–5.0 keV band.
d In unit of \(10^{-25} \) cm\(^{-5} \).

Parameter	NORTH01	NORTH02	NORTH03	NORTH04	NORTH05	NORTH06
--vpshock--						
Normb	1.1 ± 0.1	1.7 ± 0.1	2.6 ± 0.1	2.4 ± 0.1	2.4 ± 0.1	2.2 ± 0.1
--power-law--						
\(\Gamma \)	2.87 ± 0.09	2.89 ± 0.06	2.97 ± 0.07	2.88 ± 0.09	2.78±0.10	2.8 ± 0.2
Normb	1.1 ± 0.1	1.5 ± 0.1	1.3 ± 0.1	0.9 ± 0.1	0.9 ± 0.1	0.6 ± 0.1
\(F_{\nu} \)c	2.8±0.1	3.6 ± 0.2	2.8 ± 0.2	2.3 ± 0.2	2.4 ± 0.2	1.6 ± 0.2
--vnei--						
Normd	<6.2	5.1 ± 3.7	3.4 ± 2.8	6.1 ± 3.3	8.9 ± 4.2	<10.3
\(\chi^2/\text{dof} \)	163/133	226/200	200/226	200/190	169/164	160/124

Notes.
a In unit of \(10^{-17} \) cm\(^{-5} \).
b In unit of \(10^{-3} \) photons keV\(^{-1}\) s\(^{-1}\) cm\(^{-2} \) at 1 keV.
c In unit of \(10^{-21} \) erg s\(^{-1}\) cm\(^{-2} \) in the 3.0–5.0 keV band.
d In unit of \(10^{-25} \) cm\(^{-5} \).

Parameter	SE01	SE02	SE03
--vpshock--			
Norma	1.3 ± 0.1	0.40 ± 0.03	0.05 ± 0.04
--power-law--			
\(\Gamma \)	2.92±0.11	2.64±0.11	2.63±0.10
Normb	1.1 ± 0.1	0.7 ± 0.1	1.2 ± 0.1
\(F_{\nu} \)c	2.6±0.5	2.4 ± 0.3	4.1±0.4
--vnei--			
Normd	8.4 ± 6.1	8.0 ± 5.1	<12.2
\(\chi^2/\text{dof} \)	298/259	220/197	204/186

Notes.
a In unit of \(10^{-17} \) cm\(^{-5} \).
b In unit of \(10^{-3} \) photons keV\(^{-1}\) s\(^{-1}\) cm\(^{-2} \) at 1 keV.
c In unit of \(10^{-21} \) erg s\(^{-1}\) cm\(^{-2} \) in the 3.0–5.0 keV band.
d In unit of \(10^{-25} \) cm\(^{-5} \).
parameters Tables 4–10, respectively. The model fits were generally good given the small number of free parameters. Our results can change with different AtomDB versions. We thus compared the fitting with v1.3.2, 2.0.2, and 3.0.3. The largest difference is shown in the Fe L lines in the ISM component, and it makes a difference for the best-fit emission measure with a factor of around 2. None of the other components show significant change among different AtomDB versions. Since our aim is to examine rough characteristics of thermal emission, and the best-fit emission measure scatter to more than 4 orders of magnitude, we concluded that the difference in AtomDB versions does not change our result significantly.

Tables 4–10 show that SOUTH08 region has the hardest spectrum. We also fitted the spectrum in this region with the srcut model (Reynolds & Keohane 1999) instead of the power-law model addition to thermal emission, in order to estimate the roll-off energy of synchrotron emission in this region. The index of srcut were fixed to 0.6 (Green 2014). As the \(\chi^2/\text{dof} \) is 147/155, the fit is acceptable, and this model is slightly better than the previous model with power-law. We obtained the roll-off energy \(h\nu_{\text{rolloff}} = 0.61^{+0.11}_{-0.09} \text{ keV} \).

In Figures 4–6, we show the spatial distributions of the square root of the emission measure of the ISM heated plasma (\(EM^{1/2} \)), the surface brightness of the synchrotron emission (the SB_NT), and the photon indices, respectively. \(EM^{1/2} \) is primarily proportional to the plasma density, whereas SB_NT is proportional to a combination of the density of the accelerated electrons, the magnetic field strength, and the maximum energy of the electrons in the region. Finally, the photon index of synchrotron emission has correlation with the maximum acceleration energy and/or magnetic field strength (e.g., Reynolds & Keohane 1999).

Toward southwest to west \(EM^{1/2} \) and photon index become larger, whereas SB_NT become smaller. In the northeast and south regions, we have strong and hard synchrotron emission, and faint thermal emission. According to Figure 6, we find the spatial difference of the photon indices. Then, we show the azimuthal dependence of photon indices in Figure 7. We set NORTH01 to 0°. The emission goes hard around 190° (south), and goes soft around 100° (southwest) and 260° (east). We fit it with the constant model and reject with the \(\chi^2/\text{dof} \) of 672.4/42. This result shows existence of azimuth angle dependence.

4. DISCUSSION

We have conducted the systematic spatially resolved spectroscopy of RCW 86, and found that the spectral shape changes from region to region. Here, we discuss in which environment the synchrotron emission becomes brighter and/or harder.

Figures 8(a) and (b) show photon indices and SB_NT as a function of \(EM^{1/2} \) (an indicator of the plasma density). One can see that the photon index becomes smaller when \(EM^{1/2} \) becomes smaller. The correlation coefficient is 0.38 ± 0.15 (1σ variance) ±0.03 (1σ statistical), indicating a marginally positive correlation; it implies acceleration to the higher energy in the low density medium. The northeast and south regions are obvious cases with hard nonthermal emission and low ambient density, whereas the high density region, such as southwest and west, shows softer nonthermal emission. The northeast region is known to be an efficient acceleration site with high shock velocity (Helder et al. 2013; Yamaguchi et al. 2016), whereas the shock speed in the southwest and north is much smaller (Long & Blair 1990; Ghavamian et al. 2001; Castro et al. 2013; F. Fraschetti et al. 2016, in preparation). So our results show that the maximum energy of accelerated electrons is higher in the high shock speed region. This agrees with Yamazaki et al. (2006) and
Aharonian & Atoyan (1999), which suggest that the roll-off of synchrotron emission depends only on the shock velocity if the maximum electron energy is determined by the balance between accelerating and synchrotron cooling. In order for a more quantitative study of the dependence of the maximum energy on shock velocity, we need more precise shock velocity measurement for the entire remnant. The south region is a very interesting region with the hardest spectrum and very low ambient density in this remnant. This region coincides with the void of the H\textsc{ii} cloud (Sano et al. 2016), which is consistent with our scenario. Figure 7 shows the complex azimuthal dependence of the photon index. Azimuthal dependence is also reported in SN 1006 (Rothenflug et al. 2004; Miceli et al. 2009; Katsuda et al. 2010). SN 1006 has rather simple bipolar morphology, and such a dependence is believed to be due to the effect of the magnetic field parallel to the Galactic Plane (Petruk et al. 2009) with the polarization observations in the radio band (Reynoso et al. 2013). On the other hand, it is not rejected yet the effect of perpendicular magnetic field (Bamba et al. 2003), since Richtmyer–Meshkov instability can make radial magnetic field in young SNRs, even if the background magnetic field is perpendicular to the shock (Inoue et al. 2013). The situation is not so simple in our case. The photon index is harder in the south region, but we have no bipolar trend. This result indicates the reason of the photon index change may not the global magnetic field configuration but the shock speed differences, as shown before. This may be because RCW 86 is evolving inside a stellar wind bubble (Broersen et al. 2014); the stellar wind makes complicated shock evolution, together with complex circumstellar medium structure.

On the other hand, we found no correlation between EM$^{1/2}$ and SB\textsubscript{NT} as shown in Figure 8(b), which showed that we have no clear connection between the background plasma density and the...
surface brightness of synchrotron emission. The surface brightness of synchrotron emission depends not only on the number density of accelerated particles but also the strength of magnetic field, which makes perhaps for a more complicated relation between synchrotron surface brightness and plasma density. It may also be that the magnetic field is turbulent on scales smaller than our region size. It will be needed to compare these parameters in smaller size regions with a better angular resolution.

These results may be connected with the fact that many TeV gamma-ray SNRs have no significant thermal X-rays and their plasma densities are believed to be very low. In practice, thermal emission is not found at a significant level in Vela Jr. (Slane et al. 2001), RX J1713.7−3946 (Takahashi et al. 2008), and HESS J1731-347 (Bamba et al. 2012). RCW 86 has shell-like TeV and GeV gamma-ray emission (Aharonian et al. 2009; Bamba et al. 2012).

Notes.

a In units of 10^{-17} cm^{-5}.
b In units of $10^{-3} \text{ photons keV}^{-1} \text{ s}^{-1} \text{ cm}^{-2}$ at 1 keV.
c In units of $10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$ in the 3.0−5.0 keV band.
d In units of 10^{-22} cm^{-5}.

Table 10
The Best-fit Parameter for All WEST Regions

Parameter	WEST01	WEST02	WEST03	WEST04	WEST05	WEST06
\(\nu_{\text{pshock}}\) Norm\(^a\)	14.0 \pm 0.2	15.1 \pm 0.2	8.0 \pm 0.1	3.7 \pm 0.1	4.5 \pm 0.1	1.8 \pm 0.1
\(\Gamma\)	3.9 \pm 0.2	3.3 \pm 0.1	2.6 \pm 0.2	2.7 \pm 0.2	3.2 \pm 0.2	3.0 \pm 0.1
\(F_X\)	1.1 \pm 0.1	1.7 \pm 0.2	1.3 \pm 0.2	1.0 \pm 0.2	1.2 \pm 0.2	2.6 \pm 0.3
\(\nu_{\text{vnei}}\) Norm\(^a\)	13 \pm 5.5	8.0 \pm 3.7	12 \pm 3.3	13 \pm 3.7	8.9 \pm 3.3	<6.1
\(\chi^2/\text{dof}\)	510/243	452/281	307/233	205/164	275/208	231/182

Notes.

\(^a\) In units of 10^{-17} cm^{-5}.
\(^b\) In units of $10^{-3} \text{ photons keV}^{-1} \text{ s}^{-1} \text{ cm}^{-2}$ at 1 keV.
\(^c\) In units of $10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$ in the 3.0−5.0 keV band.
\(^d\) In units of 10^{-22} cm^{-5}.

Figure 5. The SBNT map. The scale is logarithmic.

Figure 6. The photon index map. The scale is linear.

Figure 7. The azimuth angle dependence of photon indices. We set NORTH01 to 0°. The cyan line shows the best-fit constant model.
Yang et al. 2014), in addition to the thermal and nonthermal X-rays. Given that RCW 86 has regions with thermal emission and regions resembling the overall emission characteristics of RX J1713.7–3946 and Vela Jr, it may be a key object to understand the gamma-ray and X-ray synchrotron emission of these large TeV gamma-ray emitting shell-type SNRs. In the future, studies with the Cherenkov Telescope Array (Actis et al. 2011; Acharya et al. 2013) will reveal to us the detailed morphology of RCW 86 with better spatial resolution and sensitivity, allowing for more exploring in more detailed correlations between the thermal and nonthermal X-ray emission and the gamma-ray emission.

We thank the anonymous referee for the fruitful comments. We also would like to thank R. Yamazaki, Y. Ohira, and J. Shimoda for their fruitful discussion. This work is supported in part by Grant-in-Aid for Scientific Research of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, No. 22684012 and 15K05107 (AB), 15K17657 (MS), and 16K17673 (SK).

Facility: Suzaku.

REFERENCES

Acharya, B. S., Actis, M., Aghajani, T., et al. 2013, APh, 43, 3
Ackermann, M., Ajello, M., Allafort, A., et al. 2013, Sci, 339, 807
Actis, M., Agnetta, G., Aharonian, F., et al. 2011, ExA, 32, 193
Aharonian, F., Akhperjanian, A. G., de Almeida, U. B., et al. 2009, ApJ, 692, 1500
Aharonian, F. A., & Atoyan, A. M. 1999, A&A, 351, 330
Bamba, A., Koyama, K., & Tomida, H. 2000, PASJ, 52, 1157
Bamba, A., Pühlhofer, G., Acero, F., et al. 2012, ApJ, 756, 149
Bamba, A., Yamazaki, R., Ueno, M., & Koyama, K. 2003, ApJ, 589, 827
Bamba, A., Yamazaki, R., Yoshida, T., et al. 2005, ApJ, 621, 793
Borkowski, K. J., Rho, J., Reynolds, S. P., & Dyer, K. K. 2001, ApJ, 550, 334
Broersen, S., Chiotellis, A., Vink, J., & Bamba, A. 2014, MNRAS, 441, 3040

Castro, D., Lopez, L. A., Slane, P. O., et al. 2013, ApJ, 779, 49
Ghavamian, P., Raymond, J., Smith, R. C., & Hartigan, P. 2001, ApJ, 547, 995
Green, D. A. 2014, BASI, 42, 47
Helder, E. A., Vink, J., Bamba, A., et al. 2013, MNRAS, 435, 910
Helder, E. A., Vink, J., & Bassa, C. G. 2011, ApJ, 737, 85
Hess, V. F. 1912, Phys. Zeits, 13, 1084
Inoue, T., Shimoda, J., Ohira, Y., & Yamazaki, R. 2013, ApJL, 772, L20
Ishisaki, Y., Maeda, Y., Fujimoto, R., et al. 2007, PASJ, 59, 113
Katsuda, S., Acero, F., Tomimana, N., et al. 2015, ApJ, 814, 29
Katsuda, S., Petre, R., Mori, K., et al. 2010, ApJ, 723, 383
Koyama, K., Petre, R., Gotthelf, E. V., et al. 1995, Natu, 378, 255
Koyama, K., Tsunemi, H., Dotani, T., et al. 2007, PASJ, 59, 23
Long, K. S., & Blair, W. P. 1990, ApJL, 358, L13
Malkov, M. A., & Drury, L. O. 2001, RPPb, 64, 429
Miceli, M., Boccino, F., Jakubovskyi, D., et al. 2009, A&A, 501, 239
Mitsuda, K., Bautz, M., Inoue, H., et al. 2007, PASJ, 59, 1
Nakajima, H., Yamaguchi, H., Matsumoto, H., et al. 2008, PASJ, 60, 1
Narayan, S., Shulman, S., Yentis, D., Fritz, G., & Friedman, H. 1977, ApJL, 213, L53
Patnaude, D. J., Ellison, D. C., & Slane, P. 2009, ApJ, 696, 1956
Petruk, O., Dubner, G., Castelletti, G., et al. 2009, MNRAS, 393, 1034
Reynolds, S. P., & Keohane, J. W. 1999, ApJ, 525, 383
Reynoso, E. M., Hughes, J. P., & Moffett, D. A. 2013, AJ, 145, 104
Rho, J., Dyer, K. K., Borkowski, K. J., & Reynolds, S. P. 2002, ApJ, 581, 1116
Rosado, M., Ambrocio-Cruz, P., Le Coarer, E., & Marcelin, M. 1996, A&A, 315, 243
Rothenflug, R., Ballet, J., Dubner, G., et al. 2004, A&A, 425, 121
Sano, H., Nakamura, K., Furukawa, N., et al. 2016, arXiv:1606.07745
Serlemitsos, P. J., Soong, Y., Chan, K.-W., et al. 2007, PASJ, 59, 9
Shimoda, J., Inoue, T., Ohira, Y., et al. 2015, ApJ, 803, 98
Slane, P., Hughes, J. P., Edgar, R. J., et al. 2001, ApJ, 548, 814
Takahashi, T., Tanaka, T., Uchiyama, Y., et al. 2008, PASJ, 60, 131
Tawa, N., Hayashida, K., Nagai, M., et al. 2008, PASJ, 60, 111
Uchiyama, H., Ozawa, M., Matsumoto, H., et al. 2009, PASJ, 61, 9
Vink, J., Bleeker, J., van der Heyden, K., et al. 2006, ApJL, 648, L33
Yamaguchi, H., Katsuda, S., Castro, D., et al. 2016, ApJL, 820, L3
Yamaguchi, H., Koyama, K., Nakajima, H., et al. 2008, PASJ, 60, 123
Yamaguchi, H., Koyama, K., & Uchida, H. 2011, PASJ, 63, 837
Yamazaki, R., Kohri, K., Bamba, A., et al. 2006, MNRAS, 371, 1975
Yang, R.-z., Zhang, X., Yuan, Q., & Liu, S. 2014, A&A, 567, AA23