A Critical Review of the Oxidation of Ti$_2$AlC, Ti$_3$AlC$_2$ and Cr$_2$AlC in Air

Darin J. Tallman*, Babak Anasori and Michel W. Barsoum

Materials Science and Technology, Drexel University, Philadelphia, PA 19104, USA

(Received 20 February 2013; final form 13 May 2013)

Of all the M$_{n+1}$AX$_n$ phases, the most resistant to oxidation in air in the 900–1,400°C temperature range are Ti$_2$AlC, Ti$_3$AlC$_2$ and Cr$_2$AlC. A literature review, however, shows that while many claim the oxidation kinetics to be parabolic, others claim them to be cubic. Whether the kinetics are parabolic or better is of vital practical importance. By carefully re-plotting the results of others and carrying out one oxidation run for \approx3,000 h at 1,200°C on a Ti$_2$AlC sample, we conclude that the oxidation kinetics are better described by cubic kinetics and that even that conclusion is an approximation. Lastly, we present compelling evidence that the rate-limiting step during the oxidation of Ti$_2$AlC is diffusion down the alumina scale grain boundaries.

Keywords: Ti$_2$AlC, Cr$_2$AlC, Ti$_3$AlC$_2$, Oxidation, Cubic Oxidation Rate

Introduction

The M$_{n+1}$AX$_n$ (MAX) phases are a class of layered, machinable, early transition ternary metal carbides and/or nitrides, where M is an early transition metal, A is a group 13–16 element, and X is C and/or N. These compounds are classified as thermodynamically stable nanolaminates having relatively high fracture toughness values (8–12 MPa$\sqrt{\text{m}}$), and yet are machinable, lightweight and relatively soft.[1–5] Some also undergo a brittle-to-plastic transition at temperatures above 1,000°C. Some aluminum, Al, containing MAX phases, notably Ti$_3$AlC$_2$, Ti$_2$AlC and Cr$_2$AlC show excellent oxidation resistance due to the formation of a dense and adherent alumina layer. These ternary carbides may prove useful in practical applications where high-temperature oxidation resistance in air is required. However, before they can be used it is imperative to be able to predict the oxide thicknesses that would form after long times at elevated temperatures. This is in turn implies that the oxidation kinetics be well understood and documented.

Literature Survey

The first papers to report on the oxidation of the Ti$_{n+1}$AlX$_n$ phases were published in 2001.[6,7] In these papers, it was shown that the oxidation resulted in the formation of a rutile-based solid solution with approximate chemistry of (Ti$_{1−y}$Al)$_{2−y/2}$O$_2$, where $y \approx 0.05$ and alumina, Al$_2$O$_3$ (Figure 1(a)). At longer times, kinetic demixing resulted in the formation of layers of rutile henceforth referred to as TiO$_2$, Al$_2$O$_3$ and porous layers (Figure 1(b)).

The oxidation kinetics were initially found to be parabolic, but at longer times tended towards linear, implying that the layers were not protective over the long run. Using Wagner’s formalism it was further concluded that the rate-limiting step was the inward diffusion of oxygen and the outward diffusion of titanium through the TiO$_2$ layer that forms. In other words, the oxidation reaction was presumed to be [6]

$$2\text{Ti}_2\text{AlC} + 7.5\text{O}_2 = 4\text{TiO}_2 + \text{Al}_2\text{O}_3 + 2\text{CO}_2. \quad (1)$$

The C was presumed to diffuse through the rutile layer and oxidize. As discussed below, when the oxide that forms is TiO$_2$, the oxidation resistance is poor. Fortuitously, in many cases, the oxide that forms is Al$_2$O$_3$, in which case the oxidation resistance is excellent. In the remainder of this paper, the discussion will deal exclusively with oxidation that results in the formation of dense protective Al$_2$O$_3$ layers.

Ti$_2$AlC

Following the initial work in 2001, there have been many studies that have explored the oxidation behavior of Ti$_2$AlC. In 2003, Wang and Zhou quantified the oxidation kinetics of Ti$_2$AlC as cubic by heating it in...
200 µm (a) 100 µm (b) 20 µm (c)

Figure 1. (a) Oxidation of the Ti$_{n+1}$AlX$_n$ phases results in the formation of a rutile-based solid solution with approximate chemistry of (Ti$_{1-y}$Al$_y$)O$_2$ - y/2, where $y \approx 0.05$ and alumina, Al$_2$O$_3$. (b) At longer times, kinetic demixing results in the formation of layers of TiO$_2$, Al$_2$O$_3$ and pores.[6] (c) Scanning electron microscope, SEM, micrograph of Ti$_2$AlC oxidized in air at 1,200°C for 2,873 h showing $a \approx 21$ µm thick, coherent and fully dense Al$_2$O$_3$ layer which conforms to the corners of the sample.

In other words, they concluded that the oxidation kinetics were best described by

$$\left(\frac{\Delta w}{A}\right)^2 = k_t t,$$

where Δw is the weight gain, A is the surface area exposed to the atmosphere, t is the time and k_t is the cubic reaction rate constant. In this case, the overall simplified reaction is assumed to be

$$\text{Ti}_2\text{AlC} + \left(\frac{3x}{4} + y\right)\text{O}_2 = \left(\frac{x}{2}\right)\text{Al}_2\text{O}_3 + \text{Ti}_2\text{Al}_{1-x}\text{C}_{1-y} + y\text{CO}_2, \quad x < 0.5. \quad (3)$$

Here again, the C is presumed to diffuse through the Al$_2$O$_3$ layer and oxidize. A typical microstructure of a Ti$_2$AlC sample oxidized for almost 3,000 h at 1,200°C is shown in Figure 1(c). Note that the reaction layer comprises almost pure Al$_2$O$_3$ and that it conforms to the samples’ corners.

In 2004, Sundberg et al. reported parabolic oxidation kinetics for Ti$_2$AlC up to 1,400°C in air.[9] In 2007, Byeon et al. reported that the oxidation kinetics were cubic in isothermal and cyclical oxidation tests at 1,000°C, 1,200°C and 1,400°C.[10] Contrary to their previously published work in which it was claimed that the kinetics were cubic,[8] in a recent review article, Wang and Zhou reported that Ti$_2$AlC exhibited parabolic behavior.[11] In 2011, Cui et al. reported parabolic kinetics for Ti$_2$AlC up to 1,400°C.[12] In 2012, Yang et al. reported cubic kinetics for Ti$_2$AlC at 1,200°C.[13] Basu et al. also reported cubic oxidation kinetics for Ti$_2$AlC in both air and steam in the 1,000–1,300°C temperature range.[14]

Ti$_3$AlC$_2$. The oxidation behavior of Ti$_3$AlC$_2$ has been less widely studied. In 2003, Wang and Zhou reported that the kinetics were parabolic.[15] Qian et al. reported the oxidation kinetic to be parabolic, in the 1,000–1,300°C range.[16] Lee and Park[17] reported that the oxidation kinetics were temperamental; some samples formed predominantly TiO$_2$ layers, others formed Al$_2$O$_3$ layers in which case the oxidation reaction is presumably

$$\text{Ti}_3\text{AlC}_2 + \left(\frac{3x}{4} + y\right)\text{O}_2 = \left(\frac{x}{2}\right)\text{Al}_2\text{O}_3 + \text{Ti}_3\text{Al}_{1-x}\text{C}_{2-y} + y\text{CO}_2, \quad x < 0.5. \quad (4)$$

In this case, a continuous Cr$_7$C$_3$ sub-layer formed between the protective alumina layer and the Cr$_2$AlC sub-strate (Figure 2). As discussed below, the presence of this sub-layer has important implications and ramifications.

Cr$_2$AlC. In 2007, Lin et al. reported that the oxidation kinetics for Cr$_2$AlC in the 800–1,300°C range were parabolic.[18] The overall oxidation reaction was surmised to be

$$28\text{Cr}_2\text{AlC} + 25\text{O}_2 = 14\text{Al}_2\text{O}_3 + 8\text{Cr}_7\text{C}_3 + 4\text{CO}_2. \quad (5)$$

In this case, a continuous Cr$_7$C$_3$ sub-layer formed between the protective alumina layer and the Cr$_2$AlC sub-strate (Figure 2). As discussed below, the presence of this sub-layer has important implications and ramifications.

At 1,300°C, the Al$_2$O$_3$ layer has a tendency to spall off and the oxidation resistance is compromised.[19] In 2008, Lee et al. further showed that the cyclic oxidation resistance of Cr$_2$AlC in air to be excellent at 1,000°C, good at 1,100°C, intermediate at 1,200°C, but poor at 1,300°C.[20] Hajas et al., in 2011, reported parabolic oxidation kinetics for Cr$_2$AlC thin films in the 1,230–1,410°C range.[21] Most recently, in 2012, Li et al. explored the effect of grain size on oxidation kinetics of Cr$_2$AlC: coarse-grained (CG) samples exhibited cubic
oxidation kinetics at 1,100 and 1,200°C, whereas fine-grained (FG) samples were less than parabolic at 1,100°C and cubic at 1,200°C.[22] Also in 2012, Lee et al. showed that at 1,200°C, after a period of about 10 h during which there was an increase in weight, beyond that time the samples lost weight more or less linearly.[23]

Parabolic, Cubic or Power Law Kinetics The brief review of the literature of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC makes it amply clear that most agree on one fact, namely the formation of an alumina layer is critical, endowing these compounds with their excellent oxidation resistance. When rutile forms instead, the oxidation resistance is greatly diminished. Where there is quite a bit of disagreement, however, is whether the kinetics are cubic or parabolic. This distinction is of utmost importance, because if the kinetics are indeed parabolic, then the long-term prognosis is not good. However, if the kinetics are slower than parabolic, e.g. cubic or even better, then the oxidation resistance would be good enough for practical applications. This is a crucial point that needs to be established beyond a reasonable doubt since many, following the lead of Wang and Zhou, also assumed parabolic oxidation kinetics. The same conclusion was reached in a recent review article [11] despite the fact that Byeon et al. [10] and more recently Basu et al. [14] clearly showed the kinetics to be cubic. More problematic is that most of the studies on the oxidation of Cr2AlC to date claim parabolic oxidation kinetics, including a recent review article on this compound.[11,18–20,24]

In the remainder of this paper, we emphatically make the case that the oxidation kinetics are better described as cubic, and quite comparable for the three compounds. The latter conclusion should not be surprising given that a dense, cohesive Al2O3-rich layer forms in all cases. We make our case using a two-pronged approach. The first is to re-plot some of the results of the early papers in which the authors maintained that the oxidation kinetics were parabolic and show that they can be better described by cubic kinetics (i.e. Equation (2)). The second is to report on the longest oxidation experiment carried out to date on Ti2AlC at 1,200°C that clearly show the oxidation kinetics to be cubic or near cubic. Before proceeding further, we note that typically three laws have been used to describe the oxidation kinetics of alumina formation in literature: parabolic, cubic and power law given by, respectively,

\[\Delta x^2 = K' \left(\frac{t}{t_0} \right), \]
\[\Delta x^3 = K' \left(\frac{t}{t_0} \right), \]
\[\Delta x = K' \left(\frac{t}{t_0} \right)^n, \]

where \(\Delta x \) is the oxide scale thickness (\(\mu \)m), \(t_0 = 1 \) s, \(K' \) is a constant and \(n \) is the power law scale growth exponent. In the following sections, we critically assess which law best fits the oxidation of Ti3AlC2, Ti2AlC and Cr2AlC.

Ti2AlC and Ti3AlC2. When the results of Wang and Zhou reported in [15] for Ti3AlC2 are re-plotted as \((\Delta w/A)^3\) vs. \(t \) (Figure 3(a)) least-squares fits of the data resulted in \(R^2 \) values that were quite high (>0.998). The \(R^2 \) value for the parabolic plot given by the authors (Figure 2 in [15]) is around 0.98. In other words, their own results fit a cubic law better than a parabolic one. It thus makes more sense to assume the kinetics to be cubic.

Also plotted in Figure 3(a) are the results by the same authors reported in [8] for Ti2AlC. This side-by-side comparison makes it clear that the kinetics for both compounds are not only both cubic, but as importantly, of the same order of magnitude. At 1,100°C, the oxidation kinetics for both ternary phases are nearly identical as they should be if in both cases, a dense alumina layer forms. Given the latter, it is highly unlikely that the kinetics would be parabolic in one case (Ti3AlC2) and cubic (Ti2AlC) in the other. This conclusion is further confirmed when the post-oxidation microstructures are compared. After 20 h oxidation at 1,300°C, the Al2O3 layer thickness is \(\approx 25 \) \(\mu \)m in Ti2AlC and \(\approx 14 \) \(\mu \)m in Ti3AlC2. After 20 h at 1,200°C, the oxide...
layer thicknesses—at ≈5 μm—are almost identical for both compounds.[8,15]

Furthermore, Byeon et al. showed that when commercially available Ti2AlC polycrystalline samples were heated in air, a continuous, adherent α-Al2O3 formed.[10] They also concluded that the oxidation kinetics were cubic.[10] The thickness of the layer was ≈15 μm after 25 h of isothermal oxidation at 1,400°C. Roughly, the same thickness was observed after 1,000 one hour cycles from ambient temperature to 1,200°C. In both cases, the layers remained adherent and protective (Figure 4(a)).

Similarly, recent results by Basu et al. [14] on the oxidation of commercially available Ti2AlC samples also showed that: (i) the oxidation kinetics up to 120 h were cubic; (ii) there is little difference between oxidation in air and in a 100% steam environment up to 1,300°C; (iii) the activation energy was about 270 kJ/mol and (iv) the oxidation results in a continuous and stable layer of α-Al2O3, along with a thin surface layer of rutile in both environments. The thin TiO2 layer, however, volatilizes by forming gaseous TiO(OH)2 in the presence of water vapor at temperatures >1,200°C.

To help resolve this question, we conducted an isothermal oxidation experiment on Ti2AlC at 1,200°C for >2,800 h. Samples were prepared by pouring pre-reacted Ti2AlC powders (Kanthal, Sweden) in a graphite die that was in turn placed in a hot press and hot pressed, HPed, for 4 h at 1,300°C under a load corresponding to a stress of ≈30 MPa and a vacuum of 10−2 torr. The resulting fully dense samples were electro-discharged machined into smaller blocks (10 × 5 × 3 mm3) with a final surface preparation of 1 μm diamond suspension polish.

The initial dimensions and weights were recorded. Samples were then loaded into a box furnace and held at 1,200°C for 25, 100, 500, 1,000, 2,000 and 2,873 h. After almost 3,000 h, the resulting microstructure (Figure 1(c)) clearly shows the formation of a thin cohesive Al2O3 layer. After holding at 1,200°C for up to 2,873 h, the oxide layer reached a thickness of about 21 μm (Figure 1(c)). Grain size was measured using the line intercept method on fractured surfaces (Figure 9). About 200 grains per sample were measured.

When Δx2 is plotted vs. t, a straight line (not shown) is obtained. Least-squares fit of the results resulted in an R2 > 0.988. To further confirm the cubic kinetics, a power law fit (Equation (8)) of the results (Figure 3(b)) resulted in the following relationship:

\[
\Delta x (\mu m) = 1.2 \left(\frac{t}{t_0} \right)^{0.36} R^2 = 0.99, \quad (9)
\]

where \(t_0 = 1 \) s. At 14 μm, the Al2O3 layer thickness observed after 1,000 h is in very good agreement to the 15 μm found after 1,000, 1 h cycles to 1,200°C conducted by Byeon et al. [10] shown in Figure 3(b) as a black square. Based on these results and previous work, it is reasonable to conclude that the oxidation kinetics of Ti2AlC are indeed near cubic. Table 1 summarizes the k values obtained from the various studies on Ti2AlC, Ti3AlC2 and Cr2AlC.

What is noteworthy and of great practical importance is the fact that even after this extended time at 1,200°C, no cracks were observed anywhere, not even at the corners (Figure 1(c)). One of the main reasons why the oxidation resistance of Ti2AlC is as good as it is, and so resistant to thermal cycling, is the excellent match in thermal expansions between it and the α-Al2O3 protective layer that forms. Photoluminescence of the α-Al2O3 scale indicates that the residual stresses formed in that layer were compressive, a function of time and temperature and of the order of 500 MPa (Figure 4(a)).[10] Such residual stresses are considered low, and partially explain the high spallation resistance of the α-Al2O3 scale (Figure 4(b)).

Figure 3. (a) Replotted results from the 2003 Wang and Zhou papers on the oxidation of Ti3AlC2 and Ti2AlC [8,15] showing a linear fit when (Δw/A)3 is plotted vs. t. Least-squares fit of the 1,300°C plot results in an R2 value of 0.998, compared to 0.98 for the parabolic fit reported in the original articles. The compounds and graphs are color coded for clarity. (b) Oxide scale thickness (x) versus time for Ti2AlC held at 1,200°C for >2,800 h. A power fit of the results shown yields a time exponent of 0.36, viz. cubic kinetics. Dashed line shows the Δx based on a parabolic rate constant fitted to the first 100 h of oxidation. The black square shows Byeon et al. results after 1000, 1 h cycles to 1,200°C.[10]
The residual stresses are compressive, a function of time and temperature, and of the order of 500 MPa which is considered low.[10] (b) Oxidation kinetics of Ti2AlC are compared with other more established/commercial oxidation-resistant alloys. Note that if the very first oxidation cycle is omitted from the Ti2AlC results, its oxidation kinetics are comparable to PM2000.[10]

Table 1. Summary of k_c (kg m$^{-6}$s$^{-1}$) values for the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC.

Phase	1,000°C	1,100°C	1,200°C	1,300°C	1,400°C	Comments and Ref.
Ti2AlC	3.2×10^{-13}	1.1×10^{-12}	3.0×10^{-12}	1.5×10^{-11}	[8]	
Ti2AlC	3.3×10^{-13}	1.9×10^{-12}	1.0×10^{-11}	5.1×10^{-11}	[10]	
Ti2AlC	5.6×10^{-13}	2.0×10^{-12}	1.2×10^{-11}	6.0×10^{-11}	[10]	
Ti3AlC2	1.7×10^{-12}	3.2×10^{-12}	2.0×10^{-11}	6.3×10^{-10}	[10]	
Cr2AlC	3.8×10^{-12}	9.7×10^{-12}	3.2×10^{-11}	6.3×10^{-10}	[10]	
Cr2AlC CG	2.8×10^{-13}	7.5×10^{-13}	1.47×10^{-11}	[10]		
Cr2AlC FG	7.5×10^{-13}	9.7×10^{-12}	3.2×10^{-11}	[10]		
Cr2AlC	4.4×10^{-13}	9.7×10^{-12}	3.2×10^{-11}	[10]		

Figure 4(b) compares the oxidation kinetics of Ti2AlC with other more established/commercial oxidation-resistant alloys.[10] We note in passing that commercially available Fe- and Ni-based Al2O3-forming alloys have relatively high coefficient of thermal expansions, CTEs, and typically require reactive element additions to improve their spallation resistance.[25] Also note that if the very first oxidation cycle is omitted from the Ti2AlC results, its oxidation kinetics are comparable to PM2000 (Figure 4(b)).

After heating Ti2AlC to 1,200°C, and cooling to room temperature, Cui et al. identified twins and stacking faults bounded by partial dislocations by transmission electron microscopy, TEM, in surface TiO2 grains.[12] These defects most probably formed as a result of the thermal stresses generated due to thermal expansion mismatches during cooling. Cui et al. also confirmed the formation of Al2TiO5 above 1,400°C following the reaction:

$$\text{TiO}_2 + \text{Al}_2\text{O}_3 = \text{Al}_2\text{TiO}_5$$ \hspace{1cm} (10)

This Al2TiO5 layer was correlated with the formation of cracks upon cooling. These cracks were ascribed to thermal expansion mismatches, and as importantly to the high anisotropy of thermal expansion of Al2TiO5. This compound has a CTE of 10.9×10^{-6} K$^{-1}$ along the a-axis, 20.5×10^{-6} K$^{-1}$ along b and -2.7×10^{-6} K$^{-1}$ along c. The formation of Al2TiO5 should thus be avoided as much as possible.

Using TEM, Lin et al. explored the microstructures of Ti3AlC2 and Ti2AlC samples after oxidation in air for 10 h at 1,200°C.[26] An enrichment of Ti in the Al2O3 grain boundaries and Ti-rich precipitates in the Al2O3 scales was identified. They also showed that Al depletion at the oxide/substrate interface was minimal, indirectly confirming that the diffusivity of Al in the carbides is quite fast at these temperatures. These results again emphasize the close similarities of the oxidation behavior observed in both Ti3AlC2 and Ti2AlC.

Crack Healing. Before discussing the oxidation of Cr2AlC, it is important to review a remarkable property of Ti2AlC and Ti3AlC2, namely their crack healing ability.[27,28] Crack healing of Ti2AlC2 was investigated.
by oxidizing partially pre-cracked samples. A crack near a notch was introduced into the sample by tensile deformation. After oxidation at 1,100°C in air for 2 h, the crack was completely healed, with oxidation products consisting primarily of α-Al2O3, as well as some rutile TiO2 (Figure 5(a)–(d)). A schematic of the process is shown in Figure 5(e). The indentation modulus and hardness of the crack-healed zone were slightly higher than those of the original Ti3AlC2 base material. The preferential oxidation of Al atoms in Ti3AlC2 grains on the crack surface resulted in the predominance of α-Al2O3 particles forming in a crack less than 1 μm wide.

In 2011, the same group [28] revisited the oxidation of Ti2AlC and carefully examined the morphology of the various oxide layers that formed both on flat and curved surfaces or cracks. They found that after oxidation at 1,200°C for 16–100 h, the α-Al2O3 particles that formed on flat surfaces were small (≈1 μm), densely packed and columnar. Those that formed in the cracks or cavities, on the other hand, were more equiaxed and less densely packed. The rutile grains, however, exhibited a broad size distribution, ranging from sub-micrometer to 10 μm. The authors also confirmed the presence of small TiO2 particles at the α-Al2O3 grain boundaries first reported by Lin et al. [26]

Even more recently, the same group [29] showed that Ti2AlC was capable of repeatedly repairing damage events. When the authors introduced Knoop indentations on the tensile side of Ti2AlC flexural bars, the flexural strength dropped from 211 ± 15 to 152 ± 20 MPa. Heating the indented bars, in air for two hours, resulted in an increase in the flexural strengths to 224 ± 50 MPa, a value that was slightly higher on average than the virgin samples, albeit with larger scatter. Even more impressively, after successively extending the same crack seven times and healing it between each fracture event, the fracture toughness dropped from ≈6.5 MPa√m, to about 3 MPa√m. It is important to note here that by the end of the seventh cracking iteration, the filled crack was of the order of 1 mm (Figure 6(a)). As in their previous work, Li et al. showed that the main healing mechanism at high temperature is the filling of the cracks by the formation of well adhering Al2O3 layers and some TiO2 (Figure 6(b)–(e)). The authors write in their abstract: “Self-healing ceramics have been studied for over 40 years to obtain some performance recovery and to prevent material failure during service, but so far only materials with the capability of single healing event per damage site have been realized.” They then proceed to show how Ti2AlC is capable of multiple healing events.

Cr2AlC. As noted above, the situation for Cr2AlC is even more muddled, since most papers claim parabolic kinetics,[18–21,24] when as shown below they are far from parabolic. Figure 7(a) re-plots the results of Lin et al.[18] together with two power fits (solid lines), assuming cubic kinetics (dotted lines) and the parabolic rate constants reported by the authors (dashed lines). The power fits result in the following relationships at 1,200°C and 1,300°C, respectively

\[
\Delta w(\text{kg/m}^2) = 1.4 \times 10^{-4} \left(\frac{t}{t_o} \right)^{0.34}, \quad R^2 = 0.986
\]

(11)

\[
\Delta w(\text{kg/m}^2) = 8.8 \times 10^{-4} \left(\frac{t}{t_o} \right)^{0.25}, \quad R^2 = 0.977
\]

(12)
When the same exercise was carried out on some recent long-term oxidation (up to one year) results by Lee et al. [23] reproduced in Figure 7(b), the following relationships—shown by the solid lines in Figure 7(b)—for samples oxidized at 700°C, 800°C and 1,000°C, respectively, were obtained:

\[x(\mu m) = 0.009 \left(\frac{t}{t_0} \right)^{0.24}, \quad R^2 = 0.91, \quad (13) \]

\[x(\mu m) = 0.001 \left(\frac{t}{t_0} \right)^{0.46}, \quad R^2 = 0.98, \quad (14) \]

\[x(\mu m) = 0.24 \left(\frac{t}{t_0} \right)^{0.18}, \quad R^2 = 0.99. \quad (15) \]

Taken in toto these results make it amply clear that with the possible exception of oxidation at 800°C, the oxidation kinetics of Cr2AlC are certainly not parabolic, and for the most part, not even cubic. These results are noteworthy because they confirm that at 700°C, 1,000°C and 1,300°C, the oxidation kinetics are significantly slower than cubic. In other words, the time exponents are significantly less than 1/3. At 1,200°C they are close to cubic. The results at 800°C are anomalous, and reflect either enhanced oxidation kinetics at 800°C for reasons that are unclear and/or experimental uncertainty. If the first point at 800°C is ignored, the exponent value drops to about 0.38, which is probably more realistic. This comment notwithstanding, more work at 800°C is needed to better understand the nature of this possible anomaly.

In the final analysis, the oxidation kinetics of Cr2AlC, for the most part cannot be fit adequately with a simple model for the simple reason that the kinetics are initially relatively fast, but then slowly decrease with time to the point where the oxide layers almost stop getting thicker.

The best example of this state of affairs can be found in the results shown in Figure 7(b). After 30 days of oxidation at 1,000°C, the oxide thickness was 3.5 μm; in the next 330 days, however, the oxide thickness increased by less than 2 μm.

Lastly, when all the results given in Table 1 are plotted on an Arrhenian plot (Figure 8), it is clear that the absolute values of the cubic rate constants are comparable in the 1,100–1,200°C. However, at 507 ± 90 kJ/mol, the activation energy for the oxidation of Cr2AlC is roughly double the 250 ± 30 kJ/mol for the Ti2AlC and Ti3AlC2 compositions. Why the activation energies are so different is not clear at this time.

Note that the results listed in Table 1 all assumed cubic kinetics, when in some cases, as discussed above, the kinetics may not have been exactly cubic. The values listed in Table 1 are nevertheless useful because it is only by using them can the oxidation kinetics of the various materials be compared. However, for practical purposes where predictions of oxide thickness values at long times need to be made, the power law fits—with may be the omission of the first 10 or so hours—are to be used instead.

Implications of the Presence of Cr7C3 Layer after the Oxidation of Cr2AlC Of more than 20 MAX phases whose oxidation response in air has been studied,[30–38] only one—Cr2AlC—forms a carbide layer. This observation indirectly implies that for this compound C is not diffusing out as fast as the Al, which results in its accumulation at the substrate/oxide interface. This in turn implies that the alumina that forms on Cr2AlC must be somewhat different from the one that forms on Ti2AlC. Further evidence for the conclusion that
the Al2O3 oxide layer that forms on Cr2AlC is different than the one that forms on Ti2AlC can be found in the over two orders of magnitude better corrosion resistance of Cr2AlC to oxidation in the presence of Na2SO4, compared with Ti2AlC or Ti3AlC2.[18] Lastly, a perusal of the results listed in Table 1 and shown in Figure 8 makes it clear that at all temperatures <1,200°C, Cr2AlC has better oxidation resistance. Why this is the case is unclear at this time, but the dissolution of small amounts of Cr2O3 in the Al2O3 layer that forms when Cr2AlC is oxidized [18,19,21,23,24] could play a role. Another factor may be the presence of small TiO2 particles at the grain boundaries of the alumina that forms on Ti2AlC.[6,8,10,13,14,26,29]

Note that the behavior of Cr2AlC cannot be traced to the stability of Cr7C3 relative to TiC since the latter is significantly more stable. It is also unlikely that the anomalous behavior is associated with a low diffusivity of Al in Cr2AlC since there is no reason to believe that the diffusivity of Al in Cr2AlC is much different than it is in Ti2AlC, which is fast enough to prevent any depletion of Al at the oxide/Ti2AlC interface.

The presence of Cr7C3, however, is quite problematic for the simple reason that if for any reason the protective alumina layer is breached, the oxidation of the underlying carbide at high temperature would, more likely than not, be catastrophic (Figure 2(b)). When this is combined with the fact at 1,200°C, scale cracking and spalling is observed and at 1,300°C, the oxidation resistance deteriorates quickly as a function of cycling owing to the formation of voids and scale spallation.[20] It follows that despite its excellent oxidation resistance, it is unlikely that Cr2AlC can be used at temperatures much higher than 1,100°C or even 1,000°C. Note the propensity for spallation can be traced to the relatively high CTE of this compound (≈12.8 × 10^-6 K^-1 [39]) relative to that of the protective alumina layer that forms.

Comparison to FeCrAl Alloys It is well documented that grain size coarsening leads to a decrease in oxide scale thickness growth rates in FeCrAl alloys, where inward oxygen diffusion dominates.[40–45] Naumenko et al. have shown a near cubic rate power law dependence by correlating oxide grain growth with the scale thickness, with a time dependence exponent ranging from 0.35 to 0.37 in FeCrAlY.[41] Liu et al. [42] developed a mathematical model to explain the dependence of scale thickness on oxide grain coarsening, which was seen to follow a \(t^{1/3} \) dependence in the scale layer in FeAlCrY, in good agreement with previous work by Whittle et al.[43] Quadakkers et al. have criticized the use of parabolic rate calculations for determining the oxidation kinetics of \(\alpha\)-Al2O3 in FeCrAl alloys, showing instead that they are better described by near cubic time dependencies with a power law fit.[40] Smeltzer et al. showed that the decrease in grain-boundary diffusion paths over time limits the inward diffusion of oxygen during oxidation.[46] As the area fraction of short circuit paths decreases, there is an overall decrease in oxide scale growth rates. Unsurprisingly, as discussed in the next section, the alumina layers formed herein are similar to those seen in other alumina forming materials (Figure 9).
Modelling of the Oxidation Kinetics In general, the scale thickening rate can be written as [47]

\[
\frac{dx}{dt} = D_{\text{eff}} \frac{\Delta \mu}{RT} \frac{1}{x},
\]

where \(D_{\text{eff}}\) is the effective diffusion coefficient, \(\Delta \mu\) the oxygen potential difference between the scale/gas and scale/metal interfaces, and \(R\) and \(T\) are the universal gas constant and the temperature in degrees Kelvin, respectively.

If one assumes that the oxidation kinetics are controlled by grain-boundary diffusion of oxygen, then [48]:

\[
D_{\text{eff}} = D_{\text{GB}} \frac{2 \delta_{\text{GB}}}{r_G},
\]

where \(D_{\text{GB}}\) is the oxygen grain-boundary diffusion coefficient, \(\delta_{\text{GB}}\) the grain-boundary width and \(r_G\) the oxide grain size.

In general, grain coarsening kinetics can be described by [49]

\[
d(t) = d_0 + K t,
\]

where \(K\) is a constant, \(m\) is the grain growth exponent and \(d_0\) the initial grain size. Combining Equations (16)–(18), it can be shown that at longer times [42]:

\[
x^2 \approx K' \left(\frac{t}{t_0} \right)^{(m-1)/m},
\]

where \(x\) is the scale thickness and \(K'\) is a constant (see [42]). It follows that if the assumptions made above are correct, then the following relationship applies:

\[
n \approx \frac{(m - 1)}{2m}.
\]

To test this idea we measured the grain sizes of the alumina films that formed on the Ti2AlC sample that was oxidized for almost 3,000 h. The results are shown in Figure 10(a). Based on the least-squares fit of the results, \(m \approx 3.23\). According to Equation (20), \(n \approx 0.345\), which, coincidentally or not, is in excellent agreement with the value of 0.36 derived from the results shown in Figure 3(b). Plotting \(d^{3.23}\) vs. \(t\) (Figure 10(b)) results in a straight line fit, with intercept \(d_0 = 0.93 \mu m\), further validating the assumption—that \(d_0\) can be ignored at longer times—made in deriving Equation (19). Whether this agreement is fortuitous or not must await the results of further work at different temperatures and different alumina forming MAX phases.

Summary and Conclusions The oxidation resistances, in air, of the MAX phases, Ti2AlC, Ti3AlC2 and Cr2AlC are excellent because, in most cases, a dense, spall-resistant and protective Al2O3 layer forms. Of the three, and despite the fact that the oxidation kinetics of Cr2AlC at temperatures <1,200°C are slower than those of Ti2AlC (Figure 8), for practical applications Ti2AlC is by far the most attractive for several reasons that include: (a) the higher concentration of Al as compared to Ti3AlC2, which is important because it increases the activity of Al at the substrate/oxide interface thus increasing the probability of the formation of the all-important alumina layer; (b) the excellent match between the thermal expansions of Ti2AlC and alumina, which in turn minimizes thermal residual stresses and concomitant propensity of spallation; (c) lower density and (d) crack healing. Lastly, the fact that the raw materials for this MAX phase are some of the lowest costing of all MAX phases cannot be underestimated.

The formation of Cr7C3 upon the oxidation of Cr2AlC is unique to this compound and implies that the alumina layer that forms is less pervious to C than the one that forms on Ti2AlC, Ti3AlC2 and other MAX phases. The reason for this somewhat surprising result is unclear at this time.

At most temperatures, the oxidation kinetics are better described as cubic than parabolic. This comment notwithstanding, even cubic kinetics are an approximation. The best strategy to predict the time dependence of the alumina layer thickness is to fit the results to a power law fit. Lastly, by measuring the grain sizes of the alumina scale, we present evidence that the rate-limiting
step is diffusion of oxygen and/or aluminum ions down the alumina scale grain boundaries. The agreement with power law equations derived assuming grain-boundary diffusion is shown to be quite good. Further studies at different temperatures with other alumina forming MAX phases are indicated at this time to further confirm these conclusions.

Acknowledgements This research is supported by DOE’s Office of Nuclear Energy University Program (DOE/NEUP).

References

[1] Barsoum MW. The M_{n+1}AX_n phases and their properties. In: Riedel R, Chen I-W, editors. Ceramics science and technology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2010. p. 299–347.
[2] Barsoum M, El-Raghy T. Room-temperature ductile carbides. Metall Mater Trans A. 1999;30:363–369.
[3] Radovic M, Barsoum MW, El-Raghy T, Seidensticker J, Wiederhorn S. Tensile properties of Ti_{3}SiC_{2} in the 25–1300°C temperature range. Acta Mater. 2000;48:453–459.
[4] Radovic M, Barsoum MW, El-Raghy T, Wiederhorn SM, Luecke WE. Effect of temperature, strain rate and grain size on the mechanical response of Ti_{3}SiC_{2} in tension. Acta Mater. 2002;50:1297–1306.
[5] Barsoum MW, Radovic M, Finkel P, El-Raghy T. Ti_{3}SiC_{2} and ice. Appl Phys Lett. 2001;79:479–481.
[6] Barsoum M, Tzenov N, Procopio A, El-Raghy T, Ali M. Oxidation of Ti_{n+1}AlX_{n} (n = 1–3 and X = C, N): II. Experimental results. J Electrochem Soc. 2001;148:C551–C62.
[7] Barsoum M. Oxidation of Ti_{n+1}AlX_{n} (n = 1–3 and X = C, N): I. model. J Electrochem Soc. 2001;148:C544–C50.
[8] Wang XH, Zhou YC. High-temperature oxidation behavior of Ti_{3}AlC_{2} in air. Oxid Met. 2003;59:303–320.
[9] Sundberg M, Malmqvist G, Magnusson A, El-Raghy T. Alumina forming high temperature silicides and carbides. Ceram Int. 2004;30:1899–1904.
[10] Byeon JW, Liu J, Hopkins M, Fischer W, Garimella K, N. Size on the mechanical response of Ti_{3}SiC_{2} in tension. Acta Mater. 2002;50:1297–1306.
[11] Wang XH, Zhou YC. Layered machinable and electrically conductive Ti_{3}AlC_{2} and Ti_{3}AlC_{2} ceramics: a review. J Mater Sci Technol. 2010;26:385–416.
[12] Cui B, Jayaseelan DD, Lee WE. Microstructural evolution during high-temperature oxidation of Ti_{3}AlC_{2} ceramics. Acta Mater. 2011;59:4116–4125.
[13] Yang HJ, Pei YT, Rao JC, De Hosson JTM. Self-healing performance of Ti_{3}AlC_{2} ceramic. J Mater Chem. 2012;22:8304–8313.
[14] Basu S, Obando N, Gowdy A, Karaman I, Radovic M. Long-term oxidation of Ti_{3}AlC_{2} in air and water vapor at 1000–1300°C temperature range. J Electrochem Soc. 2012;159:C90–C6.
[15] Wang XH, Zhou YC. Oxidation behavior of Ti_{3}AlC_{2} at 1000–1400°C in air. Corros Sci. 2003;45:891–907.
[16] Qian X, He XD, Li YB, Sun Y, Li H, Xu DL. Cyclic oxidation of Ti_{3}AlC_{2} at 1000–1300°C in air. Corros Sci. 2011;53:290–295.
[17] Lee DB, Park SW. High-temperature oxidation of Ti_{3}AlC_{2} between 1173 and 1473 K in air. Mater Sci Eng A. 2006;434:147–154.
[18] Lin Z, Li MS, Wang JY, Zhou YC. High-temperature oxidation and hot corrosion of Cr_{2}AlC. Acta Mater. 2007;55:6182–6191.
[19] Lee DB, Nguyen TD, Han JH, Park SW. Oxidation of Cr_{2}AlC at 1300°C in air. Corros Sci. 2007;49:3926–3934.
[20] Lee DB, Nguyen TD. Cyclic oxidation of Cr_{2}AlC between 1000 and 1300°C in air. J Alloys Compd. 2008;464:434–439.
[21] Hajas DE, to Baben M, Hallstedt B, Iskandar R, Mayer J, Schneider JM. Oxidation of Cr_{2}AlC coatings in the temperature range of 1230 to 1410°C. Surf Coat Technol. 2011;206:591–598.
[22] Li S, Chen X, Zhou Y, Song G. Influence of grain size on high temperature oxidation behaviour of Cr_{2}AlC ceramics. Ceram Int. 2012:2715–2721.
[23] Lee DB, Nguyen TD, Park SW. Long-time oxidation of Cr_{2}AlC between 700 and 1,000°C in air. Oxid Met. 2012;77:275–287.
[24] Tian W, Wang P, Kan Y, Zhang G. Oxidation behavior of Cr_{2}AlC ceramics at 1100 and 1250°C. J Mater Sci. 2008;43:2785–2791.
[25] Pint BA. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid Met. 1996;45:1–37.
[26] Lee DB, Liu J, Zhao M, Zhou Y, Li M, Wang J. Microstructural and adhesion of the oxide scale formed on titanium aluminum carbide substrates. J Am Ceram Soc. 2006;89:2964–2966.
[27] Song GM, Pei YT, Sloof WG, Li SB, De Hosson JTM, van der Zwaag S. Oxidation-induced crack healing in Ti_{3}AlC_{2} ceramics. Scr Mater. 2008;58:13–16.
[28] Yang HJ, Pei YT, Rao JC, De Hosson JTM, Li SB, Song GM. High temperature healing of Ti_{3}AlC_{2}: on the origin of inhomogeneous oxide scale. Scr Mater. 2011;65:135–138.
[29] Li S, Song G, Kwakernaak K, van der Zwaag S, Sloof WG. Multiple crack healing of a Ti_{3}AlC_{2} ceramic. J Eur Ceram Soc. 2012;32:1813–1820.
[30] Gupta S, Filimonov D, Barsoum MW. Isothermal oxidation of Ta_{2}AlC in air. J Am Ceram Soc. 2006;89:2974–2976.
[31] Gupta S, A. G, D. F, W. BM. High-temperature oxidation of Ti_{3}GeC_{2} and Ti_{3}(Ge_{0.5},Si_{0.5})C_{2} in air. Pennington, NJ: Electrochemical Society (ETATS-UNIS); 2006.
[32] Gupta S, Hoffman EN, Barsoum MW. Synthesis and oxidation of Ti_{3}InC, Zr_{2}InC, (Ti_{6}, Zr_{6})_{2}InC and (Ti_{6},Hf_{6})_{2}InC in air. J Alloys Compd. 2006;426:168–175.
[33] Salama I, El-Raghy T, Barsoum MW. Oxidation of Nb_{2}AlC and (Ti, Nb)_{2}AlC in air. J Electrochem Soc. 2013:150:C152–C8.
[34] Barsoum MW, Ho-Duc LH, Radovic M, El-Raghy T. Long time oxidation study of Ti_{3}SiC_{2}, Ti_{3}SiC_{2}/SiC, and Ti_{3}SiC_{2}/TiC composites in air. J Electrochem Soc. 2003;150:B166–B75.
[35] Chakraborty S, El-Raghy T, Barsoum MW. Oxidation of Hf_{2}SnC and Nb_{2}SnC in air in the 400–600°C temperature range. Oxid Met. 2003;59:83–96.
[36] Gupta S, Barsoum MW. Synthesis and oxidation of V_{2}AlC and (Ti_{6}, V_{6})_{2}AlC in air. J Electrochem Soc. 2004;151:D24–D9.
[37] Amini S, McGehee AR, Barsoum MW. Isothermal oxidation of Ti_{3}SC in air. J Electrochem Soc. 2009;156:1P101–P6.
[38] Barsoum MW, El-Raghy T, Ogbuji LJT. Oxidation Of Ti_{3}SiC_{2} in air. J Electrochem Soc. 1997;144:2508–2516.
[39] Scabarozi TH, Amini S, Leaffer O, Ganguly A, Gupta S, Tambassi W, Clipper S, Spanier JE, Barsoum MW, Heffiger JD, Lofland SE. Thermal expansion of select $M_{(n+1)}AX_n$ ($M =$ early transition metal, $A =$ A group element, $X =$ C or N) phases measured by high temperature x-ray diffraction and dilatometry. J Appl Phys. 2009;105:013543–013548.

[40] Quadakkers WJ, Naumenko D, Wessel E, Kochubey V, Singheiser L. Growth rates of alumina scales on Fe–Cr–Al alloys. Oxid Met. 2004;61:17–37.

[41] Naumenko D, Gleeson B, Wessel E, Singheiser L, Quadakkers WJ. Correlation between the microstructure, growth mechanism, and growth kinetics of alumina scales on a FeCrAlY alloy. Metall Mater Trans A. 2007;38:2974–2983.

[42] Liu Z, Gao W, He Y. Modeling of oxidation kinetics of Y-doped Fe–Cr–Al alloys. Oxid Met. 2000;53:341–350.

[43] Whittle DP, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philos Trans R Soc Lond Ser A Math Phys Sci. 1980;295:309–329.

[44] Quadakkers WJ. Growth mechanisms of oxide scales on ODS alloys in the temperature range 1000–1100°C. Mater Corros. 1990;41:659–668.

[45] Young DJ, Naumenko D, Niewolak L, Wessel E, Singheiser L, Quadakkers WJ. Oxidation kinetics of Y-doped FeCrAl-alloys in low and high pO2 gases. Mater Corros. 2010;61:838–844.

[46] Smeltzer WW, Haering RR, Kirkaldy JS. Oxidation of metals by short circuit and lattice diffusion of oxygen. Acta Metall. 1961;9:880–885.

[47] Birks N, Meier GH, Pettit FS. Introduction to the high temperature oxidation of metals. Cambridge: Cambridge University Press; 2006.

[48] Atkinson A. Transport processes during the growth of oxide films at elevated temperature. Rev Mod Phys. 1985;57:437–470.

[49] Kingery WD. Introduction to ceramics. 4th ed. New York: Wiley; 1960.