RESEARCH REPORT

Purification of a phospholipase A₂ from Daboia russelii siamensis venom with anticancer effects

Suchitra Khunsap, Narumol Pakmanee, Orawan Khow, Lawan Chanhome, Visith Sitprija, Montamas Suntravat, Sara E Lucena, John C Perez, Elda E Sánchez

Queen Saovabha Memorial Institute, Bangkok 10330, Thailand, National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA, Department of Chemistry and NNTRC, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA

*Correspondence to: Elda E. Sánchez, E-mail: elda.sanchez@tamuk.edu, Tel: +1 361 593 3796, Fax: +1 361 593 3798

Received: 08 September 2011; Revised 15 October 2011; Accepted: 17 October 2011; Published: 22 October 2011

© Copyright The Author(s): Published by Library Publishing Media. This is an open access article, published under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5). This license permits non-commercial use, distribution and reproduction of the article, provided the original work is appropriately acknowledged with correct citation details.

ABSTRACT

Venom phospholipases A2 (PLA₂) are associated with neurotoxic, myotoxic, cardiotoxic, platelet aggregation, and edema activities. A PLA₂ (Drs-PLA₂) was purified from Daboia russelii siamensis venom by a two-step purification procedure consisting of size-exclusion, followed by anion exchange high performance liquid chromatography (HPLC). The molecular weight of the Drs-PLA₂ was 13,679Da, which was determined by MALDI-TOF mass spectrometry. Its N-terminal amino acid sequence was homologous to basic PLA₂s of viperid snake venoms. The Drs-PLA₂ had indirect hemolytic and anticoagulant activities, cytotoxic activity with a CC₅₀ of 65.8nM, and inhibited SK-MEL-28 cell migration with an IC₅₀ of 25.6nM. In addition, the Drs-PLA₂ inhibited the colonization of B16F10 cells in lungs of BALB/c mice by ~65%.

KEYWORDS: Daboia russelii siamensis, phospholipase A₂, cytotoxic, cell migration inhibition, lung tumor colonization

INTRODUCTION

The superfamily of phospholipase A₁ enzymes have been classified as 15 groups and many subgroups that include five distinct types of enzymes, namely the secreted PLA₂ (sPLA₂), the cytosolic PLA₂ (cPLA₂), the Ca²⁺ independent PLA₂ (iPLA₂), the platelet-activating factor acetylhydrolases (PAF-AH), lysosomal PLA₂s, and a recently identified adipose-specific PLA₂ (Duncan et al, 2008; Burke and Dennis 2009a; Ramar et al, 2010). Snake venom is one of the most abundant sources of secretory PLA₂ (sPLA₂), which are one of the potent molecules in snake venoms (Ritonja and Gubensek, 1985; Maung-Maung et al, 1995; Chakrabarty et al, 2000). sPLA₂ are low molecular weight proteins with molecular masses ranging from 13-19 kDa and generally requires Ca²⁺ for their activities (Kini, 1997; Valentin and Lambeau, 2000). Snake venom sPLA₂ are secreted enzymes belonging to only two groups that are based on their primary structure and disulfide bridge pattern (Six and Dennis, 2000; Rouault et al, 2003; Ramar et al, 2010). Those of group I are the same as pancreatic sPLA₂, present in mammals and are found in venom of Elapidae snakes, while group II PLA₂s belong to the Viperidae and are similar to mammals’ nonpancreatic, inflammatory sPLA₂s (Lambeau and Lazdunski, 1999; Dennis, 2000). Despite a high identity of their amino acid sequences, they exhibit distinct pharmacological effects including pre- or post-synaptic neurotoxicity, myonecrosis, cardiotoxicity, anticoagulant, antiplatelet aggregation, hemorrhagic, hemolytic, and cytolytic activities (Kini and Evans, 1988; Kasturi and Gowda, 1989; Stefansson et al, 1989; Maung Maung et al, 1995; Huang et al, 1997; Kole et al., 2000; Chakrabarty et al, 2002; Dong et al., 2003; Kini, 2003). Recently, acidic PLA₂s, basic PLA₂s, and synthetic peptides derived from PLA₂ homologues have been shown to possess antitumor and anti-angiogenic properties (Roberto et al, 2004; Araya and Lomonte, 2007; Maity et al, 2007; Bazaa et al, 2009; Zouari-Kessentini et al, 2009; Bazaa et al, 2010; Kessentini-Zouari et al, 2010).
The Russell’s viper (*Daboia* species) is a common venomous *Viperinae* snake, usually found in many South Asian countries. The subspecies found in Thailand is *Daboia russelli siamensis*, which is also discovered in Myanmar, Cambodia, southern Taiwan, and Indonesia (Warrell, 1989). The key lethal component of *D. r. siamensis* venom is the phospholipase A₂, Daboitoxin, which produces neurotoxicity in mice and exhibits oedema-inducing and myonecrotic activities (PLA₂, EC 3.1.1.4) (Ritonja and Gubenscak, 1985; Maung-Maung et al, 1995; Risch et al, 2009). PLA₂ is a multifunctional enzyme that specifically catalyzes the hydrolysis of the fatty acid ester bond at the position 2 of 1,2-diacyl-sn-3-phosphoglycerides to produce free fatty acids and lysophospholipids (Kini, 2003; Burke and Dennis, 2009b).

In this study, we reported the purification and inhibitory activities of a PLA₂ from *D. r. siamensis* venom. The Drs-PLA₂ displayed a cytotoxic effect and inhibited cell migration in human skin melanoma cells (SK-MEL-28). It also reduced tumor lung colonization of B16F10 melanoma cells in BALB/c mice.

MATERIALS AND METHODS

Venom collection

Daboia russelli siamensis venom was obtained from the Queen Saovabha Memorial Institute (QSMI, Thai Red Cross Society, Bangkok) and was pooled venom from an under-determined number of snakes. The venom was extracted by allowing the snake to bite into a container covered with parafilm. The venom was centrifuged at 9,000x

Purification of Drs-PLA₂

Five milligrams of lyophilized crude *D. r. siamensis* venom was suspended in 0.2ml of 0.05M ammonium acetate buffer, pH 8.2 and filtered through a 0.45micron filter. A total of 200μl (25mg/ml) was injected into a Waters 300SW (PROTEIN-PAK™, 7.5x300mm) size-exclusion column. The column was previously equilibrated with the elution buffer (0.05M ammonium acetate buffer, pH 8.2). The collection process required 60min at a flow rate of 0.5ml/min. A Waters 2487 Dual λ absorbance detector was used to monitor absorbencies at 280nm. Waters™ Breeze software was used to control the pumps and store data. Each fraction was applied to NuPAGE® Novex 4-12% SDS-PAGE gels (Invitrogen™) using a Semi-Dry Transblot Cell (Bio-Rad) at 100mV for 1hr. The membrane was stained with Coomasie R-250 stain for 5min. The sample membrane was sent to the Iowa State University for N-terminal amino acid sequencing.

Anticoagulant activity

The anticoagulant activity of crude venom, fraction 8 from size exclusion purification, and Drs-PLA₂ from anion exchange purification were measured using the Sonoclot analyzer by a modification of the procedure of Sánchez et al (2010). Briefly, a cuvette containing glass beads as the clotting activator was placed into the cuvette holder which maintained the temperature at 37°C. A pre-warmed 13μl of 0.25M CaCl₂, were added to one side of the cuvette. A 10μl of Drs-PLA₂ at the concentration of 0.3mg/ml (24μM) was added to the opposite side of the cuvette. A constant volume of 360μl of normal 10% (v/v) citrated human whole blood was added to the cuvette. The activated clot time (ACT) and clot rate (CR) were measured and the data were analyzed by Signature Viewer, software provided by Sienco, Inc. on an iMAC computer and analyzed by Microsoft Excel 2007. The negative control consisted of whole blood incubated with 0.02M Tris-HCl, pH 8.0 and 0.25M CaCl₂.

Several studies have demonstrated that PLA₂ inhibit blood coagulation by binding to FXa, which is the target protein in the coagulation cascade (Stefansson, 1990; Kerns et al, 1999; Kini, 2005). To test whether Drs-PLA₂ specifically inhibits factor Xa, anticoagulation was assayed utilizing...
Figure 1. Purification of Drs-PLA₂. A. Size exclusion (SE) chromatographic profile of crude *D. r. siamensis* venom. The grey-shaded areas indicate the location of PLA₂ activities using cytotoxicity and cell migration assays. B. SDS-PAGE analysis of venom fractions from SE HPLC column. Crude venom or venom fractions were run on 4-12% (w/v) bis-Tris Gel under non-reducing conditions at 200V for 50min. The gel was stained with RapidStain. Lane 1: SeeBlue Plus2 Markers (Invitrogen™); lane 2: crude venom (7μg); lanes 3-10: fractions 2-9 (7μg). C. DEAE anion exchange HPLC profile of fraction 8 from the SE HPLC column. The grey-shade areas indicate the location of PLA₂ activities using indirect hemolytic, cytotoxicity, and cell migration assays. D. SDS-PAGE analysis of venom fractions from DEAE HPLC column. Crude and venom fractions from DEAE HPLC column were run on a 4-12% (w/v) bis-Tris gel under non-reducing conditions at 200V for 50min. The gel was stained with RapidStain for 1hr and destained overnight with 18megaohm water. Lane 1: SeeBlue Plus2 Markers (Invitrogen™); lane 2: crude venom (7μg); lane 3: fraction 8 from SE (7μg); lane 4: fraction 8.1 (1.4μg); lane 5: fraction 8.2 (1.2μg); lane 6: fraction 8.3 (6μg); lane 7: fraction 8.4 (1.6μg); lane 8: fraction 8.5 (1.4μg); lane 9: fraction 8.6 (2μg); lane 10: fraction 8.7 (1.2μg); lane 11: fraction 8.8 (1.6μg); lane 12: fraction 8.9 (1.4μg); lane 13: fraction 8.10 (1 μg). E. SDS-PAGE analysis of fraction 8 and 8.3 (Drs-PLA₂). Drs-PLA₂ was run on 4-12% (w/v) bis-Tris Gel under reducing conditions. Lane 1: SeeBlue Plus2 Markers (Invitrogen™); lane 2: reduced form of fraction 8 from SE (7μg); lane 3: reduced form of Drs-PLA₂ (3μg). F. Mass spectrometry analysis of Drs-PLA₂.
FX deficient plasma by a method of Suntravat et al (2010). Briefly, 300μl of FX deficient plasma were added to a cuvette without glass beads (Sienco, Inc, USA). Coagulation was activated by the addition of 10μl of pre-warmed 0.30M CaCl₂ and 10μl of 6nM FXa pre-incubated at 37°C for 30min with 10μl of 0.1mg/ml (8μM) of Drs-PLA₁. The controls included FX deficient plasma, 0.30M CaCl₂ and 3nM FXa without Drs-PLA₁ (positive control), and FX deficient plasma, 0.30M CaCl₂ without 3nM FXa (negative control).

Indirect hemolytic assay

The crude venom and fractions were tested for PLA₁ activity. The hemolysis indirect was tested on human washed red blood cells (1.2%, v/v) agarose plates (0.8%, w/v) with calcium chloride (0.01M-1%, v/v). The egg yolk solution was added to the agarose medium at a final concentration of 1.2% (v/v). Three millimeters diameter wells were made into the agarose plates. Twenty-five microliters of D. r. siamensis and Crotalus atrox crude venoms were tested as positive hemolytic controls at a concentration of 1mg/ml. Fractions 8 (Figure 1A) and 8.3 (Figure 1C) were tested at a concentration of 0.5 and 0.3mg/ml, respectively. PBS was used as a negative hemolytic control. The plates were incubated at 37°C for 24hr. The specific activities were estimated as the ratio between the diameter (millimeters) of the hemolytic halo and the amount of protein added per well (micrograms).

Cytotoxicity assay of crude venom and Drs-PLA₁ on cancer cell lines

Human skin melanoma (SK-MEL-28), human urinary bladder carcinoma (T24), human lung bronchus carcinoma (ChaGo-K-1), human fibrosarcoma (HT-1080), and murine der carcinoma (T24), human lung bronchus carcinoma (SK-MEL-28), human urinary bladder carcinoma (HT-1080), and murine der carcinoma (T24) were the most sensitive, and were further used for the determination of the cytotoxic and cell migration inhibition activities of venom fractions.

Each fraction collected from HPLC (100μg/ml), or Drs-PLA₁ at various concentrations was added to SK-MEL-28 cell suspension at 37°C for 72hr. Then, 10µl of MT (5mg/ml) was added to each well. After incubation for 4hr at 37°C, MT was aspirated and 150µl of DMSO was added to lyse the cells. The absorbance at 570nm was read using a Beckman Coulter™ model AD 340 reader. Doxorubicin (5μg/ml), an anticancer drug was used as the positive control. The negative control was cells treated with 0.02M Tris-HCl, pH 8.0. The percentage of cell viability was calculated relative to the negative control, which was defined as 100%. The 50% cytotoxic concentration (CC₅₀) of sample is defined as the protein concentration generating cell viability of 50%. The values of the percentages of cell viability were plotted against venom concentrations, and the CC₅₀ was determined. Experiments were performed in triplicate.

Cell migration assays of the Drs-PLA₁

Cell migration inhibition was determined by a wound-healing assay according to the procedure of Galán et al (2008). Briefly, SK-MEL-28 cells were plated (5x10⁴ cells/ml) on a 24-well plate. After 24hr, the confluent monolayer was scratched with a sterile pipette tip creating the scratch wound of 16-23mm width. The detached cells were washed away and renewed with 0.9ml of EMEM mixed with crude venom at various concentrations, venom fractions collected from HPLC (6.25μg/ml), or Drs-PLA₁ at various concentrations. The cells were then incubated at 37°C in a CO₂ incubator for 0, 3, 6, 12, 24, and 48hr. After the incubation period, cell migration was observed under an inverted microscope (ULWC0 0.3 Olympus CK2, Japan). Echistatin (10μg/ml), a disintegrin known to inhibit SK-MEL-28 cell migration was used as the positive control (Sánchez et al, 2009). The negative control was cells treated with 0.02 M Tris-HCl, pH 8.0. The percentage of cell migration inhibition was calculated by the following equation:

\[
\% \text{ inhibition} = \frac{C - E}{C} \times 100
\]

where C is the distance of the wound scratch (mm) at zero time of the negative control, and E is the distance of the wound scratch (mm) at the final incubation time for the venom. The 50% inhibitory concentration (IC₅₀) is defined as the protein concentration that inhibits cell migration by 50%. The values of the percentages of cell migration inhibition were plotted against protein concentrations, and the IC₅₀ was determined. Experiments were performed in triplicate.

Inhibition of lung tumor colonization in vivo

B16F10 murine skin melanoma cells (10⁶ cells) were mixed with Drs-PLA₁ at the concentration of 100μg/kg body weight and then incubated at 37°C for 1hr. A 200μl of the sample mixture was injected into the tail veins of 18-20gm BALB/c mice. After 19 days, the mice were sacrificed to detect tumors in the lungs. Mice injected with only B16F10 cells were used as the positive control group. Mice injected with only Dulbecco’s modified Eagle’s medium were used as the negative control group. The tumors were counted and compared to the positive control group.
Statistical analysis
All results were expressed as mean ± standard deviation (SD). Their significance was analyzed by the Student’s t-test. The level of significance was at P <0.05.

RESULTS

Purification of Drs-PLA₁
Crude venom was fractionated by size exclusion chromatography and nine fractions were collected (Figure 1A). The high molecular weight proteins (97kDa) were observed in fractions 2, 3, and 4. Low molecular weight proteins at molecular weights of about 14 and 6kDa were found in fractions 4 through 9. Fractions 2 through 9 were screened for cytotoxic and migration inhibition activities using the most sensitive cell towards the cytotoxic action of crude D. r. siamensis venom. Fraction 8 showed the most intense protein band at about 14kDa (Figure 1B, lane 9). Fraction 8 had the highest cytotoxicity with a CC₅₀ of 1.47μg/ml, the migration inhibition activity with an IC₅₀ of 1.22μg/ml, and the indirect hemolytic activity (data not shown). Fraction 8 was further purified by anion exchange HPLC chromatography. Ten different fractions were collected (Figure 1C). The molecular weight of fraction 8.3 was verified by mass spectrometry (13,679Da) (Figure 1F). The characteristics of the crude venom, fractions 8 and Drs-PLA₁ used in this study are shown in Table 1.

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
Fractions from all chromatographic fractionation were applied to NuPAGE® Novex 4-12% (w/v) Bis-Tris SDS-PAGE gels. Drs-PLA₁ showed a single band at about 14kDa using SDS-PAGE under non-reducing and reducing conditions (Figure 1D, lane 6 and 1E, lane 3). These results suggest that Drs-PLA₁ is a purified monomeric protein. The monomeric Drs-PLA₁ is similar to the PLA₂ isolated from Cerastes cerastes venom (Zouari-Kessentini et al, 2009).

Mass spectrometry (MALDI-TOF-TOF)
Mass analysis was performed on Drs-PLA₁ using a Bruker AUTOFLEX II-TOF (Bruker Daltonics) resulting with a mass of 13,679Da, which falls in the range of many venom PLA₂s (Figure 1F).

N-terminal sequencing
The N-terminal amino acid sequencing of Drs-PLA₁ was homology with basic PLA₂ from viperid species (Table 1). In addition, it is very similar (95% identity) to other basic PLA₂s from viperid species (Table 1).

Anticoagulant activity
Crude venom, fraction 8, and the Drs-PLA₁ were examined for coagulant activity using the Sonoclot analyzer. The Sonoclot signatures of crude venom, fraction 8, and

Table 1. Comparison of N-terminal sequence homology between Drs-PLA₁ and other snake venom PLA₂s.

Snake PLA₁	Accession No. or Ref.	Organism	N-terminal sequence	Identity (%)
Drs-PLA₁	-	D. r. siamensis	NLFQFARMINGKLGAFSV†	-
Basic PLA₁	AAZ53185	D. r. limitis	NLFQFARMINGKLGAFSV	100
R²RV7 (basic PLA₁)	1OQS	Vipera russelli formosensis	NLFQFARMINGKLGAFSV	100
Viperotoxin (basic PLA₁)	Q02471.1	D. r. siamensis	NLFQFARMINGKLGAFSV	100
Basic PLA₁	2I0U	V. nikolskii	NLFQFAMINGKLGAFSV	95
Vaspin basic subunit	CAE47300	V. aspis zinnikeri	NLFQFAMINGKLGAFSV	95
Basic PLA₁ (B chain)	Q8JFG0	V. aspis	NLFQFAMINGKLGAFSV	95
Vipoxin complex	1AOK	V. ammodytes meridionalis	NLFQFAMINGKLGAFSV	95
Basic PLA₁	B60512	V. aspis	NLFQFAMINGKLGAFSV	95
Vaspin basic subunit	CAE47291.1	V. aspis	NLFQFAMINGKLGAFSV	89
Vaspin B isoform 1	AAO86503.1	V. aspis	NLFQFAMINGKLGAFSV	89
Basic PLA₁-II	ABD24037.1	D. r. russellii	NLFQFARMIDAKQEAFS	77
Basic PLA₁	AAZ53178.1	D. r. siamensis	NLFQFARLIDAKQEAFS	71
Basic PLA₁	AAP37177.1	D. r. siamensis	NLFQFARLIDAKQEAFS	71
Acidic PLA₁	ACD43469	D. r. siamensis	NLFQFGDMINKTGFRGFL	61
Acidic PLA₁	1	D. r. siamensis	NFFQFAEMIVKMKTGKEAV	50
Acidic PLA₁	2	Cerastes cerastes	NLYQFGMKIHKTGKSAI	44
Acidic PLA₁	AAP41217.1	Echis carinatus	NLYQFGRMIWNRTGKL	43

*This work
†The sequences were aligned using BLASTP 2.2.25 program of GenBank.
1 Maung-Maung et al., 1995; Risch et al., 2009; Ritonja and Gubensek, 1985
2 Zouari-Kessentini et al., 2009

Bold letters indicate different residues as compared to Drs-PLA₁.
the Drs-PLA₂ are shown in Figure 2. Crude D. r. siamensis venom known to have the coagulant activity significantly shortened ACT (0.32±0.03min) and increased the CR (86.50±7.78U). Fraction 8 has the signature of coagulant activity with a shortened the ACT (0.66±0.03min) and enhanced the CR (44.00±5.66U). In contrast, the Drs-PLA₂ had a signature of anticoagulant activity with an extended ACT (3.88±0.78min) and slower CR (5.60±0.36U). The positive blood control incubated with 0.02M Tris, pH 8.0 buffer had an average ACT of 3.46±0.30min, and a CR of 15.10±2.72U.

To identify FXa as a target protein of Drs-PLA₂, we demonstrated that Drs-PLA₂ significantly prolonged the ACT (3.21±0.11min) and lowered the CR (1.70±0.28U). The positive control had an average ACT of 2.73±0.22 min and a CR of 3.37±0.91 U.

Indirect hemolytic assay

All samples displayed indirect hemolytic activity with Drs-PLA₂, having the highest specific activity of 2mm/μg±0.2 followed by fraction 8 at 1.4mm/μg ±0.1. D. r. siamensis and C. atrox crude venoms had specific activities of 0.8±0.1 and 1.0mm/μg ±0.2, respectively.

Cytotoxicity assay of crude venom on cancer cell lines

Four different cell lines (SK-MEL-28, T24, ChaGo-K-1, and HT-1080 cells) were treated with a 100μg/ml of crude D. r. siamensis venom. The SK-MEL-28 cell line was the most sensitive (15-20% cell viability) to crude venom at all three incubation times (data not shown). All other cell lines exhibited 50-60% cell viability (data not shown). Thus, SK-MEL-28 cells were further used for the determination of cytotoxic and cell migration inhibition activities of the venom fractions.

Effects of crude venom at the various concentrations (6.25, 12.5, 25, 50, and 100μg/ml) and various incubation times on SK-MEL-28 cell viability were determined. Crude venom reduced cell viability in a dose-dependent manner. Crude venom at the concentration of 100μg/ml showed the lowest cell viability (20%) at 24hr and slightly decreased in the percentage of cell viability at 48hr and 72hr (data not shown).

Cytotoxicity and cell migration assays of the Drs-PLA₂

Purified Drs-PLA₂ decreased SK-MEL-28 percent cell viability in a dose-dependent manner (0.012μg/ml-98% ±10; 0.060μg/ml-94% ±5; 0.30μg/ml-80% ±3; 1.5μg/ml-40% ±10; and 7.5 μg/ml-20% ±5). The cytotoxic activity of the PLA₂ was compared to crude venom. The CC₅₀ value of the Drs-PLA₂ (0.90μg/ml) was approximately 6 times less than the CC₅₀ value of crude venom (5.63μg/ml). In addition, the Drs-PLA₂ inhibited the migration of SK-MEL-28 with an IC₅₀ of 0.35μg/ml, which was 11.3x lower than crude venom (3.97 μg/ml). Effects of the Drs-PLA₂ at various incubation times on cell migration inhibition were determined. The percent inhibition of SK-MEL-28 cell migration of echistatin (positive control) at 3-12hr showed no significant difference to the percent inhibition of the Drs-PLA₂. Subsequently, similar inhibition activity was found at 24hr. After a 48hr incubation period, cell migration inhibition activity of the Drs-PLA₂ was higher than the positive control (Figure 3A). The actual images of SK-MEL-28 cell migration with the Drs-PLA₂ at 24hr are shown in Figure 3B.

Inhibition of lung tumor colonization in vivo

The Drs-PLA₂ was further tested for anti-metastatic property using an in vivo skin melanoma cell colonization assay. The Drs-PLA₂ significantly reduced tumor nodules by ~65% compared with the positive control group (Table 2; Figure 4).

DISCUSSION

Heart attack, stroke, and cancers are among the most serious medical problems worldwide. Venomous snakes contain an array of molecules with many different biological activities.

Table 2. Comparative analysis of tumor foci per lung in BALB/c mice using purified Drs-PLA₂ compared to controls

	Control	Drs-PLA₂ (100 μg/kg)
Mice no.	13	19
Minimum tumors	21	0
Maximum tumors	90	40
Mean tumors	49.15	17.42
Standard deviation	24.54	13.91
Tumor inhibition (%)^a	-	64.50
P value^b	-	0.0002

^a The percent tumor inhibition was calculated by the following equation: [((E/C) x 100)-100, where E is the mean tumors of the Drs-PLA₂ group, and C is the mean tumors of the control group.

^b P value as compared to the control. The level of significance was at P < 0.05.
Figure 3. Inhibition of Cell Migration by Drs-PLA₂. A. Cell migration inhibition activity of the Drs-PLA₂ on SK-MEL-28 cells using a wound-healing assay. Cell migration inhibition was evaluated by incubating 5x10⁵ cells with Drs-PLA₂ (6μg/ml) for 3, 6, 12, 24, or 48hr incubation periods. Echistatin (10μg/ml) was used as the positive control. The negative control consisted of cells treated with 0.02M Tris-HCl, pH 8.0. The results are expressed as the percentage of cell migration inhibition with respect to activity of the negative control, and as mean ±SD (n=3). B. SK-MEL-28 cells with the Drs-PLA₂ (1.2μg/ml) at 24hr. (1) SK-MEL-28 cells were treated with 0.02M Tris-HCl, pH 8.0 at 24hr. (2) SK-MEL-28 cells were treated with Drs-PLA₂ at 0hr, (3) 12hr, and (4) 24hr.

Figure 4. Inhibition of Lung Tumor Colonization by Drs-PLA₂. The effect of the Drs-PLA₂ on B16F10 lung tumor colonization in BALB/c mice at 100μg/kg mouse. The B16F10 cells (2x10⁵) were injected in the lateral tail vein in the absence or presence of the Drs-PLA₂. The lungs were isolated from the mice 19-days post-injections and observed for tumor colonization. A. Medium-treated mice (control); B. B16F10 cells in medium; C. 100μg of the Drs-PLA₂/kg mouse.
activities, which could have beneficial applications in medicine and biomedical research. In this study, we reported the purification and characterization of Drs-PLA\textsubscript{2}, isolated from crude \textit{D. r. siamensis} venom. The Drs-PLA\textsubscript{2} (13,679 Da) was purified from crude venom by a two-step purification procedure (Figure 1A, 1B and 1C) with approximately 27.4\% yield (data not shown). The N-terminal sequence (18 amino acids) showed 100\% homology to basic PLA\textsubscript{s} from the viperid snakes (Table 1). However, it should be noted that this homology is based on the comparison of amino acid sequences at the N-terminal region of the molecules, without taking into account the remaining sequence of our PLA\textsubscript{2}. A basic PLA\textsubscript{2} has been identified in the venom of \textit{D. r. siamensis} (viperotoxin) sharing 100\% N-terminus sequence homology with Drs-PLA\textsubscript{2} (Table 1); however, viperotoxin is a basic protein with an approximate pI of 8.96. The pI for Drs-PLA\textsubscript{2} appears to be slightly acidic since it bound to the anion exchange column, but was easily eluted with slightly above a 10\% (w/v) NaCl (0.5M) solution (Figure 1C). These results suggest that viperotoxin is different from Drs-PLA\textsubscript{2}.

Although many PLA\textsubscript{s} exhibit a high degree of similarity in their amino acid sequences, they display different biological effects. Tsai et al (2007) reported that PLA\textsubscript{2}s isolated from Myanmar Russell’s viper venom (\textit{D. r. siamensis}) and Eastern India Russell’s viper (\textit{D. russelli}) venom share 97–100\% amino acid sequence identity, but they differ in their enzymatic and lethality effects.

Previous studies have indicated that several PLA\textsubscript{s} isolated from the families Crotalidae, Viperidae, and Elapidae possessed anticoagulant properties (Mukherjee, 2007; Pereanze et al, 2009; Garcia Denegri et al, 2010). In this study, based on the ACT and CR data, fraction 8 from size exclusion purification exhibited a coagulant signature with a shortened ACT and an increased CR (Figure 2). In contrast, the Drs-PLA\textsubscript{2} from the anion exchange purification had an anticoagulant activity with an extended ACT and a decreased CR. These results indicated that low molecular weight procoagulant molecules were completely removed from the first purification step (Figure 1E). Since most snake venoms contain PLA\textsubscript{s}, isoforms, it would be important to purify PLA\textsubscript{s} from venom of individual snakes. In addition, the Drs-PLA\textsubscript{2} had an anticoagulation effect on FX deficient plasma by inhibiting FXa, which is the target protein for anticoagulant PLA\textsubscript{s} as previously reported (Stefansson, 1990; Kerns et al, 1999).

In recent studies, cytotoxicity, inhibition of cell migration, and tumor metastasis properties of PLA\textsubscript{s} have been widely investigated. For example, a basic PLA\textsubscript{2}, RRV-7 (7.2kDa) isolated from \textit{D. r. russelli} venom had strong cytotoxic activity on B16F10 melanoma cells. It also inhibited tumor growth in BL6 mice (Maity et al, 2007). Furthermore, an acidic Asp49 PLA\textsubscript{2} (13,626.64Da) isolated from \textit{Macroviper a lebetina transmediterranea} venom completely inhibited cell adhesion and migration of various human tumor cells mediated by α5β1 and αv integrins, but lacked cytotoxicity (Bazaar et al, 2009). Two acidic PLA\textsubscript{s} purified from \textit{Cerastes cerastes} venom, CC-PLA2-1 and CC-PLA2-2, inhibited HT-1080 cell migration towards fibrinogen and fibronectin (Zouari-Kessentini et al, 2009). In our study, crude venom had a higher cytotoxic activity on SK-MEL-28 cells than T24, HT-1080, and ChaGo-K-1 (data not shown). In addition, the PLA\textsubscript{2} inhibited migration of SK-MEL-28 cells (Figure 3A and 3B). Although, there are studies demonstrating the anti-tumor activity of PLA\textsubscript{s} \textit{in vitro}, to the best of our knowledge, with the exception of the study by Maity et al (2007), there is insufficient \textit{in vivo} evidence of the effects of secreted PLA\textsubscript{s} on tumors. To confirm the metastasis property in our study, we determined the inhibition of skin melanoma cell colonization by Drs-PLA\textsubscript{2} \textit{in vivo}. It was observed that the pretreatment of B16F10 melanoma cells with the Drs-PLA\textsubscript{2} inhibited growth of tumors in BALB/c mice by ~65\%.

Phospholipases A\textsubscript{s} are enzymes that spark interest in the medical field because of their participation in a large number of human inflammatory diseases (Rodrigues et al, 2009). The activity and expression of several PLA\textsubscript{s} isoforms are augmented in numerous human cancers, signifying that these enzymes have a vital role in both tumor development and progression and can be targets for anti-cancer drugs. On the other hand, some PLA\textsubscript{s} isolated from Viperidae venoms are capable of inducing antitumoral activity (Rodrigues et al, 2009), suggesting that these molecules can be a new class of anticancer agents and provide novel molecular and biological insights of cancer development. Furthermore, the initiation of the coagulation system in cancer patients is a well-known phenomenon accountable for recurrent thrombosis, which is the second most common cause of death in cancer patients (Xie et al, 2005). Thromboembolic complications consist of a wide range of clinical tribulations, from pulmonary embolism and deep venous thrombosis to superficial thrombophlebitis and clotting of central venous catheters (Versteeg et al, 2004; Xie et al, 2005; Furie and Furie, 2006).

CONCLUSIONS

In this study, we report for the first time a PLA\textsubscript{2} purified from Thailand \textit{D. r. siamensis} venom that had cytotoxic, anticoagulant, and antitumor activity, \textit{in vivo} and \textit{in vitro}. With the increase in protein engineering, it is now possible to produce a smaller fragment of this molecule that could preserve or improve its anticoagulant and antitumor activities, which could be useful in medical applications.

ACKNOWLEDGEMENTS

The research was supported by the NNTRC, Texas A&M University-Kingsville, NCRR NIH/Viper Resource Center #5 P40 RR018300-08, the National Research Council of Thailand, and the QSMI, Thai Red Cross Society of Thailand. We gratefully acknowledge Nora Diaz DeLeon and all NNTRC staff for their technical assistance.

CONFLICT OF INTEREST

None declared.

ETHICAL STATEMENT

This research was approved by the Texas A&M University-Kingsville Animal Care and Use Committee (#2009-04-8C).
LIST OF ABBREVIATIONS
PLA₂: Phospholipases A₂
CC₅₀: Cytotoxic concentration at 50%
HPLC: High Performance Liquid Chromatography
Drs: Daboia russelli siamensis
MALDI-TOF: Matrix-Assisted Laser Desorption/Ionization-Time of Flight
FX: Factor X
FXa: Activated Factor Ten

REFERENCES
Araya C and Lomonte B. 2007. Antitumor effects of cationic synthetic peptides derived from Lys49 phospholipase A2 homologues of snake venoms. Cell Biol Int, 31, 263-268.
Bazaa A, Luis J, Srairi-Abid N et al. 2009. MVL-PLA2, a phospholipase A2 from Macroovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration. Matrix Biol, 28, 188-193.
Bazaa A, Pasquier E, Defilles C et al. 2010. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PloS ONE, 5, e10124.
Burke JE and Dennis EA. 2009a. Phospholipase A₂, inhibit angiogenesis both in vitro and in vivo. Lab Invest, 90, 510-519.
Kini RM. 1997. Phospholipase A₂-a complex multifunctional protein puzzle, In: Kini, R.M., (Ed) Enzymes: Structure, Function and Mechanism, John Wiley and Sons, Chichester, England, pp 1-28.
Kini RM and Evans HJ. 1988. Correlation between the enzymatic activity, anticoagulant and antiplatelet effects of phospholipase A₂ isoenzymes from Naja nigricollis venom. Thromb Haemost, 60, 170-173.
Kini RM. 2003. Excitement ahead: structure, function and mechanism of snake venom phospholipase A₂ enzymes. Toxicon, 42, 827-840.
Kini RM. 2005. Structure-function relationships and mechanism of anticoagulant phospholipase A₂ enzymes from snake venoms. Toxicon, 45, 1147-1161.
Kole I, Chakrabarty D, Datta K et al. 2000. Purification and characterization of an organ specific haemorrhagic toxin from Vipera russelli russelli (Russell’s viper) venom. Indian J Biochem Biophys, 37, 114-120.
Lambeau G and Ladzunska M. 1999. Receptors for a growing family of secreted phospholipases A₂. Trends Pharmacol Sci, 20, 162-170.
Maity G, Mandal S, Chatterjee A et al. 2007. Purification and characterization of a low molecular weight multifunctional cystotoxic phospholipase A₂ from Russell’s viper venom. J Chromatogr B Analyt Technol Biomed Life Sci, 845, 232-243.
Maung-Maung T, Gopalakrishnakone P, Yuen R et al. 1995. A major lethal factor of the venom of Burmese Russell’s viper (Daboia russelli siamensis): isolation, N-terminal sequencing and biological activities of daboiatoxin. Toxicon, 33, 63-76.
Mukherjee AK. 2007. Correlation between the phospholipids domains of the target cell membrane and the extent of Naja kaouthia PLA₂-induced membrane damage: evidence of distinct catalytic and cystotoxic sites in PLA₂(2) molecules. Biochim Biophys Acta, 1770, 187-195.
Pereanez JA, Nunez V, Huancahuire-Vega S et al. 2009. Biochemical and biological characterization of a PLA₂ from crotoxin complex of Crotalus durissus cumanensis. Toxicon, 53, 534-542.
Ramar PS, Gopalakrishnakone P, Bow H et al. 2010. Identification and characterization of a phospholipase A₂, from the venom of the Saw-scaled viper: Novel bactericidal and membrane damaging activities. Biochim, 92, 1854-1866.
Risch M, Georgieva D, Von Bergen M et al. 2009. Snake venomes of the Siamese Russell’s viper (Daboia russelli siamensis)- Relation to pharmacological activities. J Proteomics, 72, 256-269.
Ritonja A and Gubensek F. 1985. Ammodytoxin A, a highly lethal phospholipase A₂ from Vipera ammodytes ammodytes venom. Biochim Biophys Acta, 828, 306-312.
Roberto PG, Kashima S, Marcussi S et al. 2004. Cloning and identification of a complete cDNA coding for a bactericidal and antitumor phospholipase A₂ from Bothrops jararacussu venom. Protein I, 23, 273-285.
Rodrigues RS, Izidoro LF, De Oliveira JR Jr et al. 2009. Snake venom phospholipases A₂: a new class of antitumor agents. Protein Pept Lett, 16, 894-898.
Rouault, M, Bollinger JG, Ladzunska M et al. 2003. Novel mammalian group XII secreted phospholipase A₂ lacking enzymatic activity. Biochemistry, 42, 11494-11503.
Sánchez EE, Rodríguez-Acosta A, Palomar R et al. 2009. Colombistatin: A disintegrin isolated from the venom of the South American snake (Bothrops colombiense) that effectively inhibits platelet aggregation and SK-MEL-28 cell adhesion. Arch Toxicol, 83, 271-227.
Sánchez EE, Lucena SE, Reyes S et al. 2010. Cloning, expression, and hemostatic activities of a disintegrin, r-mojaatin 1, from the mohave rattlesnake (Crotalus scutulatus scutulatus) Thrombosis Research, 126, e211-e219.
Six DA and Dennis EA. 2000. The expanding superfamily of phospholipase A₂ enzymes: classification and characterization. Biochim Biophys Acta, 1488, 1-19.
Stefansson S, Kini, RM and Evans HJ. 1989. The inhibition of clotting complexes of the extrinsic coagulation cascade by the phospholipase A₂ isoenzymes from Naja nigricollis venom. Thromb Res, 55, 481-491.
Stefansson S, Kini RM and Evans HJ. 1990. The basic phospholipase A2 from Naja nigricollis venom inhibits the prothrombinase complex by a novel nonenzymatic mechanism. Biochemistry, 29, 7742-7746.

Suntravat M, Nuchprayoon I and Perez JC. 2010. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell’s viper venom-factor X activator (RVV-X). Toxicon, 56, 544-553.

Tsai IH, Tsai HY, Wang YM et al. 2007. Venom phospholipases of Russell’s vipers from Myanmar and eastern India—cloning, characterization and phylogeographic analysis. Biochim Biophys Acta, 1774, 1020-1028.

Umthong S, Puthong S and Chanchao C. 2009. Trigona laeviceps propolis from Thailand: antimicrobial, antiproliferative and cytotoxic activities. Am J Chin Med, 37, 855-865.

Valentin E and Lambeau G. 2000. Increasing molecular diversity of secreted phospholipases A2 and their receptors and binding proteins. Biochim Biophys Acta, 1488, 59-70.

Versteeg H, Spek CA, Peppelenbosch MP et al. 2004. Tissue factor and cancer metastasis: The role of intracellular and extracellular signaling pathways. Mol Med, 10, 6-11.

Warrell DA. 1989. Snake venoms in science and clinical medicine. 1. Russell’s viper: biology, venom and treatment of bites. Trans R Soc Trop Med Hyg, 83, 732-740.

Xie WZ, Leibl M, Clark MR et al. 2005. Activation of the coagulation system in cancerogenesis and metastasation. Biomed Pharmacother, 59, 70-75.

Zouari-Kessentini R, Luis J, Karray A et al. 2009. Two purified and characterized phospholipases A2 from Cerastes cerastes venom, that inhibit cancerous cell adhesion and migration. Toxicon, 53, 444-453.