Interacting multi-channel topological boundary modes in a quantum Hall valley system

Mallika T. Randeria1,2, Kartiek Agarwal2,7, Benjamin E. Feldman1,5,6, Hao Ding1, Huiwen Ji1, R. J. Cava1, S. L. Sondhi1, Siddharth A. Parameswaran4 & Ali Yazdani1*

Symmetry and topology are central to understanding quantum Hall ferromagnets (QHFMs), two-dimensional electronic phases with spontaneously broken spin or pseudospin symmetry whose wavefunctions also have topological properties1,2. Domain walls between distinct broken-symmetry QHFM phases are predicted to host gapless one-dimensional modes—that is, quantum channels that emerge because of a topological change in the underlying electronic wavefunctions at such interfaces. Although various QHFMs have been identified in different materials3–8,9, interacting electronic modes at these domain walls have not been probed. Here we use a scanning tunnelling microscope to directly visualize the spontaneous formation of boundary modes at domain walls between QHFM phases with different valley polarization (that is, the occupation of equal-energy but quantum mechanically distinct valleys in the electronic structure) on the surface of bismuth. Spectroscopy shows that these modes occur within a topological energy gap, which closes and reopens as the valley polarization switches across the domain wall. By changing the valley flavour and the number of modes at the domain wall, we can realize different regimes in which the valley-polarized channels are either metallic or develop a spectroscopic gap. This behaviour is a consequence of Coulomb interactions constrained by the valley flavour, which determines whether electrons in the topological modes can backscatter, making these channels a unique class of interacting one-dimensional quantum wires. QHFM domain walls can be realized in different classes of two-dimensional materials, providing the opportunity to explore a rich phase space of interactions in these quantum wires.

The broken symmetry of QHFMs is often a purely internal electronic degree of freedom such as electron spin, valley flavour or orbital index. However, anisotropic multi-valley electronic systems present a special case in which the QHFM order parameter couples to the spatial degrees of freedom9,10. This gives rise to discrete nematic order, which breaks the discrete rotational symmetry of the underlying crystal lattice and hence is especially sensitive to spatial inhomogeneities, for example from disorder or strain. When present, these break uniform nematic quantum Hall phases into domains, the boundaries of which host one or more sets of valley-polarized one-dimensional (1D) modes (Fig. 1a, b). These edge modes can be mapped to Luttinger liquids11; they are analogous to those studied in purely 1D systems12–15, but with the novelty that valley flavour can dictate their properties. So far, QHFM has been observed via bulk measurements16,17 and, very recently, with the scanning tunnelling microscope (STM)16,17. Transport studies, which measure macroscopically averaged electrical resistance, are poorly suited to address the microscopic properties of domain walls between phases. Our experimental approach is to leverage the accessibility of quantum Hall states formed on the surface of bismuth (Bi) and use STM measurements to directly visualize domain walls between different valley-polarized phases. We use the tunability of valley occupation in this system in combination with high-resolution STM spectroscopy to probe the properties of valley-polarized topological boundary modes. The presence of such boundary modes is guaranteed by the Callan–Harvey anomaly cancellation mechanism18, which allows the strongly interacting setting of our experiment to be treated with theoretical generality. Our results, combined with a recent theoretical analysis of nematic quantum Hall domain walls19, show that these interacting systems harbour a new class of symmetry-protected Luttinger liquids.

The multi-valley system that we study here is associated with the six quasi-elliptical hole valleys of the Bi(111) surface Brillouin zone (in momentum space)3–8 (Fig. 1c, d). The six-fold degeneracy can be lifted in the quantum Hall regime either partially by strain, or fully by electron–electron interactions16,17. When interaction effects are dominant, this system can form domain walls between distinct valley-polarized states, with different number and valley flavour of the boundary modes depending on the filling factor (Fig. 1a, b). Here we explore two QHFM domain walls that emerge when either one-out-of-four or two-out-of-four degenerate valleys are occupied. We label these two cases by their effective filling factors, \( \nu = 1 \) and \( \nu = 2 \) respectively, where \( \nu \) is defined as the number of occupied states within the relevant subset of valleys participating in the domain-wall formation. For \( \nu = 1 \), the domain wall hosts a single pair of counter-propagating modes arising from different valleys (for example valleys A and B; Fig. 1b). At \( \nu = 2 \), there are two pairs of counter-propagating modes, and the valley flavours of each of the two co-propagating channels are also different (that is, states from valleys A and B moving in one direction and states from valleys B and A moving in the other direction along the domain wall; Fig. 1a). Such domains with different orientations of the broken valley symmetry are also topologically distinct—intuitively, they have different ‘valley Chern number’, defined as \( N_{\text{v}} = \nu_{\text{A}} + \nu_{\text{B}} - \nu_{\text{A}} - \nu_{\text{B}} = \nu \). Consequently, these boundary modes may be identified with the gapless conducting states that occur as a bulk topological invariant of the quantum Hall state changes across the domain wall, depicted schematically in Fig. 1e, f.

We use a combination of energy-resolved and spatially resolved spectroscopy with a high-field dilution refrigerator STM21 to study the QHFM domains and their 1D edge modes on the Bi(111) surface. Measurements of differential tunnelling conductance \( dI/dV \) with high energy resolution in Fig. 2a, b show examples of different broken symmetry states of the six hole valleys, where the occupation of a Landau level can be tuned by changing the magnetic field (see Methods). In the vicinity of the domain wall that we describe here, strain lifts the degeneracy for two of the six valleys. Electron–electron interactions further split in energy the remaining fourfold multiplet around the Fermi level (\( E = 0 \)), either into a pair of doubly degenerate levels (corresponding to \( \nu = 2 \); Fig. 2a), or, at a different value of the magnetic field, into one singly and one triply degenerate state (\( \nu = 1 \); Fig. 2b). The interaction-induced exchange gap between occupied and unoccupied valleys at the Fermi level (\( \Delta_{\text{exch}} \approx 650 \mu\text{eV} \)) is a signature of spontaneous

1Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA. 2Department of Electrical Engineering, Princeton University, Princeton, NJ, USA. 3Department of Chemistry, Princeton University, Princeton, NJ, USA. 4The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK. 5Present address: Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA. 6Present address: Department of Physics, Princeton University, Princeton, NJ, USA. 7These authors contributed equally: Mallika T. Randeria, Kartiek Agarwal. *e-mail: yazdani@princeton.edu
symmetry breaking. We identify the valley ordering of these quantum Hall phases and their emergent nematicity by imaging the corresponding Landau level wavefunctions near individual impurities, as we have demonstrated previously\cite{6,7}. Here we extend this capability to visualize the interface between different nematic phases, identify the valleys that participate in the formation of the domains and investigate the resultant boundary modes.

We locate the nematic domain walls by STM spectroscopic mapping of spatial variations in $\frac{dI}{dV}$ at an energy near the Fermi level, such as those in Fig. 2c, e that are measured in large pristine areas of the Bi(111) surface (Fig. 2d). In maps measured at the energies corresponding to the exchange-split Landau levels, the domain walls appear as a stripe of low tunnelling conductance between two regions with inequivalent broken rotational symmetry, as shown in Fig. 2c, e. On either side of the domain walls, the spectroscopic maps show elliptical features corresponding to Landau orbits pinned to individual atomic defect sites (see Methods). The orientations of these wavefunctions reflect the direction of the anisotropy of the hole pockets (Fig. 1d) from which they originate, indicating the specific valleys associated with each domain. Considering the orientations of the wavefunctions on either side of the domain wall in Fig. 2c together with the corresponding spectra in Fig. 2a, we conclude that there are pairs of valleys occupied in each domain: that is, they have an effective filling factor $\nu = 2$ (Fig. 2a). Measurements taken in the same area of the sample as Fig. 1d show a switch of Landau level wavefunction directionality when probing the occupied versus unoccupied valleys (see Methods). Finally, tuning the Landau levels away from the Fermi level or increasing temperature (conditions in which exchange effects are absent or suppressed) results in the disappearance of the domains and domain walls (see Methods). From these measurements, we conclude that the nematic domains in our sample, with typical size of a few micrometres, are spontaneously formed because of electron–electron interactions, although local strain probably provides a small symmetry-breaking perturbation that determines which valleys are occupied in each domain (see Methods).

A hallmark of topological boundary modes is that they energetically occur in the gap of the corresponding bulk states and spatially reside where a topological invariant linked to this gap changes sign at an interface between two topologically distinct phases\cite{22}. Spatially resolved STM spectroscopic line-cuts measured across the domain walls shown in Fig. 2a, b demonstrate how the exchange gaps defining our local valley-polarized domains close and reopen. This profile of the gap (Fig. 2a, b), and the measurements described above of the underlying valley state wavefunctions on either side, together demonstrate the effective sign change of the topological invariant at the domain walls in our system. Spectroscopic maps obtained at the Fermi energy reveal the spatial structure of electronic states within the gaps and exhibit high tunnelling conductance along the domain walls, establishing the presence of low-energy boundary modes (Fig. 2c, d). Unlike the chiral edge modes along the perimeter of a quantum Hall system, we show a switch of Landau level wavefunction directionality when probing the occupied versus unoccupied valleys (see Methods). Finally, tuning the Landau levels away from the Fermi level or increasing temperature (conditions in which exchange effects are absent or suppressed) results in the disappearance of the domains and domain walls (see Methods). From these measurements, we conclude that the nematic domains in our sample, with typical size of a few micrometres, are spontaneously formed because of electron–electron interactions, although local strain probably provides a small symmetry-breaking perturbation that determines which valleys are occupied in each domain (see Methods).

A hallmark of topological boundary modes is that they energetically occur in the gap of the corresponding bulk states and spatially reside where a topological invariant linked to this gap changes sign at an interface between two topologically distinct phases\cite{22}. Spatially resolved STM spectroscopic line-cuts measured across the domain walls shown in Fig. 2a, b demonstrate how the exchange gaps defining our local valley-polarized domains close and reopen. This profile of the gap (Fig. 2a, b), and the measurements described above of the underlying valley state wavefunctions on either side, together demonstrate the effective sign change of the topological invariant at the domain walls in our system. Spectroscopic maps obtained at the Fermi energy reveal the spatial structure of electronic states within the gaps and exhibit high tunnelling conductance along the domain walls, establishing the presence of low-energy boundary modes (Fig. 2c, d). Unlike the chiral edge modes along the perimeter of a quantum Hall system, we
Fig. 3 | Spectroscopic characterization of topological boundary modes. a, b, Spectroscopic line-cuts along the line marked in Fig. 2d, showing the closing and reopening of the exchange gaps as the topological invariant changes sign across the $\bar{\nu} = 2$ and $\bar{\nu} = 1$ domain walls (DW), respectively. Individual spectra from the line-cut at positions marked by coloured triangles (red, blue) are shown in the corresponding side panels. c, d, Conductance maps at the Fermi energy between exchange-split Landau levels, showing enhanced local density of states at the domain wall, indicative of low energy boundary modes. e, f, Local density of states (LDOS) calculations for line-cuts across a $\bar{\nu} = 2$ and a $\bar{\nu} = 1$ domain wall. The Landau-level amplitude asymmetry in the vicinity of the $\bar{\nu} = 2$ domain wall arises from a dipole moment at the boundary, and qualitatively matches theoretical calculations well. Black and green spectra are taken on the left and right sides of the domain wall, respectively, at locations marked by corresponding coloured triangles in a and e.

expect these topological 1D states that emerge at the boundary between valley-polarized domains to be counter-propagating. Although many topological electronic phases have been identified, previous experimental work has not demonstrated a direct link between closing an interaction-induced energy gap and a spatial ‘twist’ in a bulk topological invariant. In contrast to domain-wall modes in bilayer graphene, which can be understood from a single-particle perspective, here the physics is entirely interaction-driven so that the domain walls host strongly interacting Luttinger liquids.

Theoretically, we can understand key aspects of our experimentally observed topological edge modes between nematic quantum Hall states. The highly anisotropic shape of the Landau orbits is due to the large effective mass anisotropy ($m_{\parallel}/m_\perp$ $\approx$ 25) of the Bi valleys, which favours an abrupt change in the valley occupation across the nematic domain wall. The extent of the wavefunctions perpendicular to the domain wall determines the spatial width of the boundary modes (approximately 100 nm in Fig. 3c, d). The spectra also reveal an asymmetry in the amplitude of the Landau level peaks near the domain wall (Fig. 3g), which is a signature of a dipole moment that arises from the different spatial extent of the Landau orbits from the two differently oriented valleys projected onto the 1D boundary. Detailed numerical Hartree–Fock calculations not only capture the closing and opening of the exchange gap and the experimental width of the domain wall (Fig. 3e, f), but also account for the asymmetry in the local density of states near the domain wall due to the presence of a dipole moment (Fig. 3g; see Supplementary Information).

Further investigation of the electronic behaviour at the domain walls using STM spectroscopy reveals that these 1D channels can be metallic or insulating depending on the nature of valley states from which they emerge. Although we observe the presence of low-energy modes along the boundary between topologically distinct nematic phases (Fig. 3a, c), individual spectra taken at the domain wall for $\bar{\nu} = 2$ exhibit a local charge gap of $\Delta_{\text{charge}}$ ranging from 325 $\mu$eV to 425 $\mu$eV (Fig. 4a, Methods). This $\bar{\nu} = 2$ domain wall is expected to contain two pairs of counter-propagating 1D channels, with states from valleys A, $\bar{\mathbf{A}}$ moving in one direction and valleys B, $\bar{\mathbf{B}}$ moving in the opposing direction along the boundary (Fig. 1a). By contrast, at the $\bar{\nu} = 1$ domain wall, we find a single peak in the density of states (Fig. 4b), with no resolvable gap when the boundary is expected to host singly degenerate counter-propagating modes (Fig. 1b). These markedly different spectra are observed for $\bar{\nu} = 1$ and $\bar{\nu} = 2$ domain walls formed at the same location on the sample, subject to the same background of impurities. If the $\bar{\nu} = 2$ charge gap were induced by disorder, then we expect the same effect to produce a visible gap for the $\bar{\nu} = 1$ modes, but the latter remain gapless (see Methods for measurements at multiple locations along domain wall). We therefore attribute the formation of an insulating state not to localization from disorder, but to Coulomb interactions between 1D modes, which provides a natural explanation of why the
interaction-induced backscattering can be understood by treating the valley flavour analogously to spin. Our experimentally observed dichotomy between edge modes at \( \nu = 1 \) and \( \nu = 2 \) is similar to that seen in spinless versus spinful Luttinger liquids, where an energy gap is only expected in the latter case\(^{11}\) (see Supplementary Information). In addition to the charge gap at \( \nu = 2 \), a gapless neutral valley mode is also expected at the domain wall\(^{29}\), and the detection of such valley-charge separation in a Luttinger liquid would be an exciting avenue to pursue with other measurement techniques.

The valley-polarized QHFMs states examined here can be realized in a wide range of materials and provide the opportunity not only to examine different types of Luttinger liquids but also to explore ways of connecting them. Multi-valley systems such as graphene\(^{27}\), transition metal dichalcogenides\(^{28}\) or topological crystalline insulator surface states\(^{29,30}\) can be used as material platforms to explore domain boundaries between a multitude of QHFMs. These 2D systems naturally lend themselves to STMs similar to those performed here that can both visualize electronic domain walls and probe the properties of their associated boundary modes. Moreover, the Bi(111) hole states provide an intriguing opportunity for domain structures involving all three nematic orientations. Theoretically, the possibility of such Luttinger liquid Y-junctions has been shown to have a variety of possible electronic behaviour\(^{31}\), the interplay of which with the underlying quantum Hall and valley physics can potentially drive a rich phase structure. Finally, the application of in situ strain to control the location of domain walls in nematic QHFMs opens up the possibility of imaging domain-wall dynamics and makes these boundary modes more accessible to other measurements, including transport studies.

### Online content

Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41586-019-0913-0.

Received: 11 July 2018; Accepted: 23 November 2018; Published online 6 February 2019.

1. Girvin, S. M. in Topological Aspects of Low Dimensional Systems, Les Houches Session LIX (eds Comtet, A. et al.) 53–175 (Springer, Berlin, 1999).
2. Ezawa, Z. F. & Tsitsishvili, G. Quantum Hall ferromagnets. Rep. Prog. Phys. 72, 086502 (2009).
3. Barrett, S. E., Dabbagh, G., Pfeiffer, L. N., West, K. W. & Tycko, R. Optically pumped NMR evidence for finite-size skyrmions in GaAs quantum wells near Landau level filling \( v = 1 \). Phys. Rev. Lett. 74, 5112–5115 (1995).
4. Schmeller, A., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for skyrmions and single spin flips in the integer quantized Hall effect. Phys. Rev. Lett. 75, 4290–4293 (1995).
5. Shyagayev, M. et al. Two-dimensional electrons occupying multiple valleys in AlS\(\text{e} \). Phys. Status Solidi B 243, 3629–3642 (2006).
6. Kott, T. M., Hu, B., Brown, S. H. & Kane, B. E. Valley-degenerate two-dimensional electrons in the lowest Landau level. Phys. Rev. B 89, 041107 (2014).
7. Young, A. F. et al. Spin and valley quantum Hall ferromagnetism in graphene. Nat. Phys. 8, 550–556 (2012).
8. Zhu, Z., Collaudin, A., Fauquê, B., Kang, W. & Behnia, M. Field-induced polarization of Dirac valleys in bismuth. Nat. Phys. 8, 89–94 (2012).
9. Abanin, D. A., Parmesanwaran, S. A., Kivelson, S. A. & Sondhi, S. L. Nematic valley ordering in quantum Hall systems. Phys. Rev. B 82, 035428 (2010).
10. Li, X., Zhang, F. & MacDonald, A. H. SU(3) Quantum Hall Ferromagnetism in SnTe. Phys. Rev. Lett. 116, 026803 (2016).
11. Kane, C. L. & Fisher, M. P. A. Transport in a one-channel Luttinger liquid. Phys. Rev. Lett. 68, 1220–1223 (1992).
12. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).
13. Ichii, H. et al. Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003).
14. Auslaender, O. M. et al. Spin-charge separation and localization in one dimension. Science 308, 88–92 (2005).
15. Chang, A. M., Pfeiffer, L. N. & West, K. W. Observation of chiral Luttinger behavior in electron tunneling into fractional quantum Hall edges. Phys. Rev. Lett. 77, 2538–2541 (1996).
16. Feldman, B. E. et al. Observation of a nematic quantum Hall liquid on the surface of bismuth. Science 354, 316–321 (2016).
17. Randeria, M. T. et al. Ferroelectric quantum Hall phase revealed by visualizing Landau level wavefunction interference. Nat. Phys. 14, 796–800 (2018).
18. Callan, C. G. & Harvey, J. A. Anomalies and fermion zero modes on strings and domain walls. Nucl. Phys. B 250, 427–436 (1985).

---

**Fig. 4 | Interacting multi-channel boundary modes.** a, b, Individual spectra taken at the location of the domain wall. For \( \nu = 2 \), a well-defined charge gap \( \Delta_{\text{charge}} \approx 380 \mu \text{eV} \) is observed (a), in contrast to a single peak at the \( \nu = 1 \) domain wall (b). The behaviour far from the domain wall is shown in the grey spectrum (reproduced from side panels in Fig. 3a and b respectively). c–f, Possible interactions between the relevant valley-polarized edge modes account for the difference in insulating versus metallic behaviour at the domain wall. The four valley-flavoured modes at the \( \nu = 2 \) domain wall can be gapped by interactions of the form \( \text{AA} \rightarrow \text{BB} \) (c), which reverses the chirality of the modes (backscatters them) in a manner where no net momentum is transferred in the surface Brillouin zone. Processes such as \( \text{AB} \rightarrow \text{BA} \) (d) do not conserve 2D momentum and are therefore exponentially suppressed. In the case of the \( \nu = 1 \) domain wall, which consists of two counter-propagating valley-polarized boundary modes, interactions are either gapless (\( \text{AB} \rightarrow \text{BA}; \nu = 1 \)) and \( \nu = 1 \) exponentially suppressed due to the large 2D momentum transfer between states (\( \text{AA} \rightarrow \text{BB}; \nu = 2 \)).
19. Agarwal, K., Randeria, M. T., Yazdani, A., Sondhi, S. L. & Parameswaran, S. A. Symmetry-protected Luttinger liquids at domain walls in quantum Hall nematics. Preprint at https://arxiv.org/abs/1807.10293 (2018).

20. Hofmann, P. The surfaces of bismuth: structural and electronic properties. Prog. Surf. Sci. 81, 191–245 (2006).

21. Misra, S. et al. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields. Rev. Sci. Instrum. 84, 103903 (2013).

22. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

23. Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

24. Yin, L.-J., Jiang, H., Qiao, J.-B. & He, L. Direct imaging of topological edge states at a bilayer graphene domain wall. Nat. Commun. 7, 11760 (2016).

25. Huang, S. et al. Emergence of topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018).

26. Kumar, A., Parameswaran, S. A. & Sondhi, S. L. Microscopic theory of a quantum Hall Ising nematic: domain walls and disorder. Phys. Rev. B 88, 045133 (2013).

27. Maher, P. et al. Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nat. Phys. 9, 154–158 (2013).

28. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

29. Dziawa, P. et al. Topological crystalline insulator states in Pb$_{1-x}$Sn$_x$. Nat. Mater. 11, 1023–1027 (2012).

30. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012); erratum 4, 1901 (2013).

31. Chamon, C., Oshikawa, M. & Affleck, I. Junctions of three quantum wires and the dissipative Hofstadter model. Phys. Rev. Lett. 91, 206403 (2003).

Acknowledgements The experiments in this project were primarily supported by the Gordon and Betty Moore Foundation as part of the EPiQS initiative (GBMF4530) (B.E.F., H.D., A.Y.) and DOE-BES grant DE-FG02-07ER46419 (M.T.R., A.Y.). Other financial support for the experimental effort came from NSF-DMR-1608848 (A.Y.), NSF-MRSEC programs through the Princeton Center for Complex Materials DMR-142054 (A.Y., R.J.C.) and a Dickie fellowship (B.E.F.). A.Y. acknowledges the hospitality of The Aspen Center for Physics supported under NSF grant PHY-1607611. K.A. acknowledges support from DOE-BES grant no. DE-SC000214D and from a private bequest to Princeton University by the UK foundation. S.A.P. acknowledges support from NSF DMR-1455366 during the early stages of this project. We acknowledge discussions with S. Kivelson and E. Fradkin.

Reviewer information Nature thanks Brian LeRoy and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author contributions M.T.R., B.E.F., H.D. and A.Y. designed and conducted the STM measurements and their analysis. K.A., S.L.S. and S.A.P performed the theoretical calculations. H.J. and R.J.C. synthesized the samples. All authors contributed to the writing of the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41586-019-0913-0.

Supplementary information is available for this paper at https://doi.org/10.1038/s41586-019-0913-0.

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence and requests for materials should be addressed to A.Y.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019
METHODS
Sample preparation and measurement. Single Bi crystals were grown using the Bridgman method from 99.999% pure Bi that had been treated to remove oxygen impurities. The samples were cleaved in ultrahigh vacuum at room temperature, immediately inserted into a home-built dilution refrigerator STM and cooled to cryogenic temperatures. Except where noted, all measurements were performed at 250 mK using a tungsten tip. Spectra and conductance maps were acquired using a lock-in amplifier with a.c. r.m.s. excitation $V_{\text{exc}} = 30 \mu \text{V}$ or $V_{\text{exc}} = 74 \mu \text{V}$. The setpoint bias voltage was $V_{\text{setp}} = -400 \text{ mV}$ and the setpoint current was $I_{\text{setp}} = 5 \text{ nA}$.

Landau levels of the Bi(111) surface. In the presence of a large magnetic field $B$, the Bi(111) surface states (see Fermi surface in Fig. 1c) are quantized into Landau levels, resulting in sharp peaks in the STM spectra. We use the evolution of these states as a function of magnetic field to distinguish between electron- and hole-like Landau levels, which disperse in energy with a positive or negative slope, respectively. We find that the surface charge density is constant, allowing us to tune the filling factor of a Landau level by changing magnetic field. The six-fold valley degeneracy of the hole-like states can be lifted by both strain and exchange interactions. Strain is a single particle effect that opens a gap, which varies by location but is independent of magnetic field and affects the hole-like Landau levels regardless of their energy. By contrast, exchange interactions result in spontaneous symmetry breaking that lifts the Landau level degeneracy only around the Fermi level ($E = 0 \mu \text{V}$). In this location of the sample, the strain-induced splitting gives rise to a two- and fourfold degenerate multiplet for the Landau level with orbital index $N = 3$, marked as $\Delta_{\text{L}}$, in Fig. 2a, b, and Extended Data Fig. 1a. As the fourfold degenerate multiplet is tuned to the Fermi level by varying magnetic field, an additional pair of the cyclotron orbits with guiding centre index $m = -(N-1)$ up or down in energy depending on the sign of the defect potential. Conductance maps at the Landau level energies display this missing orbit, where the number of concentric ellipses reflect the number of antinodes of the wavefunction. The ellipticity of the Landau orbits results from the effective mass anisotropy of the valleys, with the usual 90° rotation in orientations between real space and momentum space.

Role of interactions in domain-wall formation. Interactions play a central role in the formation of the domain wall, corroborated by the absence of two inequivalent nematic states in measurements under conditions where exchange effects are absent. At a magnetic field corresponding to $\nu = 0$, where the fourfold-degenerate Landau level is completely unoccupied (that is, tuned away from the Fermi level) and is not split by exchange (Extended Data Fig. 1a), a conductance map taken in the same field of view as the maps in Fig. 2 shows Landau orbits of both orientations throughout the entire image (Extended Data Fig. 1b). In this regime, the symmetry between these two orientations is not broken and no domain wall is present. The absence of domains is further highlighted by the line-cut of spectra in Extended Data Fig. 1c, which crosses the original position of the domain wall, but shows that the Landau level remains fourfold degenerate throughout. These observations confirm that the domains form as a result of exchange interactions, although the strain probably provides a bias that determines which valley(s) the QHEFM spontaneously occupies. Furthermore, the exchange interactions are suppressed and the Landau level remains fourfold degenerate when the temperature is raised from 250 mK to 2 K, for the same magnetic field that produced the $\nu = 2$ domain wall (spectrum in Extended Data Fig. 1d). A conductance map at this higher temperature, taken in the same region as Fig. 2, shows two superimposed orientations of Landau levels (inset Extended Data Fig. 1c), in stark contrast to the nematic domains at base temperature. A corresponding line-cut (Extended Data Fig. 1f) across the initial domain-wall location demonstrates that we cannot resolve exchange splitting between the two valley orientations. It is possible that the absence of splitting is a sign that the sample is above the critical temperature of the nematic transition or it could reflect a decreased energy resolution from thermal broadening. Regardless, these data show that the domain wall does not exist in the absence of electronic interactions.

Role of strain in domain-wall formation. Although we show above that this nematic domain wall forms only in the presence of Coulomb interactions, it is likely that a local strain field stabilizes the position of the domain wall. Strain is a natural candidate that couples to the valley degree of freedom. Extended Data Fig. 2a shows a schematic of a possible strain field that gives rise to the particular valley splittings we observe. Specifically, there is a large strain in the direction of valleys C and $\overline{C}$, which remains relatively unchanged across the domain wall and lowers the energy of these two valleys compared with the other four. However, in the presence of exchange interactions, a small shift in orientation of the strain field from favouring valleys A and $\overline{A}$ to favouring valleys B and $\overline{B}$ provides a symmetry-breaking perturbation which gives rise to a nematic domain wall. An experimental line-cut across the $\nu = 2$ domain wall (Extended Data Fig. 2b) shows that the energy of the two-fold-degenerate valley state (at $E = -1.25 \text{ meV}$ corresponding to valleys C and $\overline{C}$, which is split off from the other valley states, does not change substantially across the domain wall associated with valleys A, $\overline{A}$ and B, $\overline{B}$.

Properties of domain-wall boundary modes. The quantum Hall valley states are intrinsically topological and therefore any crossing of valley states (either due to exchange or strain) would create domain walls between different quantum Hall states with boundary modes that are topological. Theoretically, we expect the boundary between two topologically distinct domains that are valley-polarized to host counter-propagating modes. Experimentally, we directly demonstrate the presence of low-energy modes at such domain walls that form spontaneously and visualize the difference in nematic order on either side. However, our experiments thus far do not probe the counter-propagating or the valley-polarization properties of the boundary modes themselves. Nevertheless, our spectroscopic measurements of this interacting 1D system, which shows very different behaviour at the domain wall depending on the valley flavour of the boundary modes (insulating for $\nu = 2$ and metallic for $\nu = 1$), support the existence of counter-propagating valley-polarized modes. We note that if the Landau level crossing occurs away from the Fermi level, the interactions do not affect the properties of the boundary modes as all the states are either occupied or unoccupied. We emphasize that the role of interactions is not to render boundary modes trivial or topological (they are all topological when they occur in such a quantum Hall system) but rather to change the properties of these modes.

We note the slight differences in the meanderings of the two domain walls, where the $\nu = 2$ boundary is straighter than that of $\nu = 1$. It is possible that the charge gap for $\nu = 2$ makes it more rigid, whereas the metallic nature of the $\nu = 1$ domain wall makes it more accommodating to distortions. However, addressing the cause of this difference in shape would require further investigation into the stiffness of each of these domain walls.

Differential conductance maps at additional energies. The experimental measurements of differential conductance $dI/dV$ presented in Figs. 2, 3 demonstrate the electronic behaviour of a nematic domain wall for two key energies: at the higher energy exchange-split Landau level and at the Fermi level for both the $\nu = 1$ and $\nu = 2$ domain walls. These data clearly show the presence of two distinct regions with different broken rotational symmetry as well as low-energy states at the boundary between them. To further illustrate the evolution of electronic properties across these domain walls, we show additional conductance maps taken in the same set of the sample.

Extended Data Fig. 3 displays maps for the $\nu = 2$ domain wall, taken at $B = 14 \text{T}$, with approximately $100 \mu \text{eV}$ energy spacing. Comparing Extended Data Fig. 3a with Extended Data Fig. 3i highlights the switch in the orientation of the Landau level wavefunction and the corresponding valleys between the occupied and unoccupied exchange split states. These conductance maps in conjunction with the exchange splitting of a four-fold-degenerate Landau level into two doubly degenerate states as shown in Fig. 2a establish that the domains occur from pairs of valleys at opposite momenta, specifically valleys A and $\overline{A}$ in the left region and valleys B and $\overline{B}$ to the right of the domain wall in Extended Data Fig. 3i. Furthermore, as the energy is decreased from $400 \mu \text{eV}$, the inward evolution of the regions of high differential conductance is a manifestation of the exchange gap closing in the vicinity of the domain wall.

We note here that in Extended Data Fig. 3d–f, the orientation of the high conductance Landau orbits (that is, those shifted in energy from their respective Landau levels due to defect potentials) is not fully uniform within each domain. This reflects the fact that certain defects shift the Landau orbit to higher energy, whereas others shift it to lower energy. As a result, for measurements at energies between the Landau level peaks, cyclotron orbits shifted upward in energy from the lower peak and downward in energy from the upper peak are both simultaneously present. This reflects the fact that certain defects shift the Landau orbit to higher energy, whereas others shift it to lower energy. As a result, for measurements at energies between the Landau level peaks, cyclotron orbits shifted upward in energy from the lower peak and downward in energy from the upper peak are both simultaneously present. We emphasize that the presence of both directionality at these energies does not reflect any imperfection in the domains, the uniformity of which is clear from Extended Data Fig. 4a and Extended Data Fig. 3i.

Changing the magnetic field to $B = 13.4 \text{T}$ allows us to tune the filling factor of the Landau levels to $\nu = 1$, where the fourfold-degenerate Landau level is split into one singly and one triply degenerate state (Fig. 2b). Conductance maps under these conditions at several different energies are shown in Extended Data Fig. 4. The three-fold-degenerate Landau level corresponds to three of the valleys, and accordingly, conductance maps at approximately that energy (Extended Data Fig. 4c, d) show dark Landau orbits of two orientations on either side of the stripe of low
conductance that marks the domain wall. In either domain, one of the two orientations is more pronounced, in agreement with a triply degenerate Landau level, which arises from two valleys with the same anisotropy and a third valley with a different anisotropy direction. The favoured directionality switches across the boundary as consistent with a nematic domain wall (see also Fig. 2e). Moreover, conductance maps measured at the energy of the singly degenerate Landau level show wavefunctions of only one orientation within each region (Extended Data Fig. 4a), the directionality of which matches the weaker direction in Extended Data Fig. 4c, d and changes across the boundary. At this energy, there is also residual spectral weight from the tails of the gapless topological boundary mode (refer to Fig. 3b and Fig. 4b for the width of the peak), which results in the enhanced boundary conductance that tracks the domain wall at $E = -120 \, \mu eV$.

The map at the Fermi level in Extended Data Fig. 4b reveals increased conductance between domains, indicating the presence of low-energy edge modes at the domain wall. In the case of $\nu = 1$, a single hole valley switches its occupation with another one that has a different anisotropy orientation. Our previous work established that a singly degenerate Landau level in this system is valley polarized, but we cannot experimentally distinguish which specific valley is occupied\textsuperscript{17}. Without loss of generality, we label the two states that cross at the $\nu = 1$ domain wall by valleys A and B. 

**Robust metallic versus insulating behaviour at the domain wall.** We present additional measurements of line-cuts across the $\nu = 2$ domain wall (Extended Data Fig. 5a–f) and across the $\nu = 1$ domain wall (Extended Data Fig. 5g–l). The variation in the spectra is probably due to disorder in the samples.

Extended Data Fig. 6 demonstrates that the difference in electronic behaviour at the two filling factors is a robust feature along the domain walls in each case. Individual spectra from several locations at the domain wall exhibit an interaction-driven charge gap at the $\nu = 2$ domain wall (Extended Data Fig. 6a), in contrast to the gapless spectra in the case of a $\nu = 1$ domain wall (Extended Data Fig. 6b). The spectra at the $\nu = 2$ domain wall exhibit a charge gap, which ranges from 325 $\mu$eV to 425 $\mu$eV, as also seen in a line-cut along the boundary (Extended Data Fig. 7). The greater variation in spectra for $\nu = 2$ at the domain wall is possibly due to a gap enhancement from atomic defect backscattering, which can further localize valley-polarized edge modes through inter-valley scattering. However, the isolated effect of individual defects is minimal and does not open a resolvable gap in spectra at the $\nu = 1$ domain wall, which is measured with the same disorder potential as the $\nu = 2$ domain wall, thus supporting our claim that this charge gap occurs because of Coulomb interactions constrained by valley flavour.

**Data availability**

The data that support the findings of this study are available from the corresponding author on reasonable request.
Extended Data Fig. 1 | Role of electron–electron interactions in domain-wall formation. 
a, Spectrum away from the domain wall at $B = 13.1 \text{ T}$ and $T = 250 \text{ mK}$, where the effective filling factor $\tilde{\nu} = 0$, so the fourfold-degenerate Landau level is not split by exchange. 
b, Conductance map at the fourfold-degenerate Landau level peak energy $E = 700 \mu\text{eV}$ in the same area as in Fig. 2. The presence of cyclotron orbits of both orientations throughout the image indicates the absence of a domain wall under these conditions. 
c, Spectroscopic line-cut along the dashed line in b also show a fourfold-degenerate Landau level that does not change across the original location of the domain wall, in stark contrast to the line-cut in Fig. 3a. 
d, Spectrum away from the domain wall at $B = 14 \text{ T}$ corresponding to the $\tilde{\nu} = 2$ domain wall but at a higher temperature of $T = 2 \text{ K}$. Again, we do not resolve any exchange splitting, and the Landau level is fourfold degenerate. 
e, Topography of the same area (identical to Fig. 2d) overlaid with a $dI/dV$ map at $E = -100 \mu\text{eV}$. We observe cyclotron orbits of both orientations at this increased temperature, and no domain wall is visible. 
f, Line-cut along the dashed line in e. The absence of splitting in the fourfold-degenerate Landau level confirms that the domain wall is not present at 2 K.
Extended Data Fig. 2 | Schematic of strain field and comparison to experimental line-cut. **a**, Schematic of possible strain field (top) and the resulting energies of the different valley states (bottom). A large component of the strain in the direction of valleys C and C lowers the energy of these two valleys compared with the other four. In the presence of exchange interactions, the switch in strain field from a slight favouring of valleys A and A to valleys B and B gives rise to the nematic domain wall. **b**, Experimental line-cut across the \( \nu = 2 \) domain wall showing that the energy of the twofold-degenerate valley state (corresponding to C and C at \( E \approx -1.25 \text{ meV} \)) is split off from the other valley states by strain, and does not change substantially across the domain wall associated with the crossing between pairs of valleys (A, A) and (B, B) at the Fermi level.
Extended Data Fig. 3 | Energy-dependence of the domain-wall behaviour at $\nu = 2$. a–i. Differential conductance maps measured in the same location and under identical conditions to those in Fig. 2c. Each panel shows $dI/dV$ at a different energy, ranging from the lower-energy exchange-split Landau level at $E = -400 \mu\text{eV}$ (a) to the higher-energy Landau level peak at $E = 400 \mu\text{eV}$ (i). The data demonstrate the different preferred wavefunction orientations for each respective domain as well as the different orientations of occupied and unoccupied states within a given domain.
Extended Data Fig. 4  | Energy-dependence of the domain-wall behaviour at $\nu = 1$. a–d, Differential conductance maps measured in the same location and under identical conditions to those in Fig. 2e. Each panel shows $dI/dV$ at a different energy, ranging from the singly degenerate LL at $E = -120 \, \mu eV$ (a) to the triply degenerate LL peak at $E = 330 \, \mu eV$ (d).
Extended Data Fig. 5 | Additional spectroscopic line-cuts across the domain wall. a–f, Spectroscopic line-cuts across the $\nu = 2$ domain wall. The six different line-cut trajectories are indicated by the dashed lines in m. Although minor variations in the spectra are seen, probably due to the effects of local disorder, the key features of exchange gap closing and Landau level crossing at the domain wall are consistent. g–l, Spectroscopic line-cuts across the $\nu = 1$ domain wall. Again, the same features of the change in topological invariant are present in each line-cut. m, n, $dI/dV$ maps reproduced from Fig. 2c and Fig. 2e, respectively, overlaid with dashed lines showing the locations of the spectroscopic line-cuts in a–l.
Extended Data Fig. 6 | Variation in individual spectra at the domain wall. a, Individual spectra (blue, green, brown, purple, black, red) measured for $\tilde{\nu} = 2$ (a) and $\tilde{\nu} = 1$ (b), at domain-wall positions corresponding to line 1 to line 6 (Extended Data Fig. 5). All spectra in a show a charge gap $\Delta_{\text{charge}}$ that is smaller than the exchange gap far from the domain wall (grey dashed spectrum). No Landau level splitting is visible at the $\tilde{\nu} = 1$ domain wall (b), in contrast to the behaviour in a and far from the domain wall (grey dashed spectrum).
Extended Data Fig. 7 | Line-cut along $\tilde{\nu} = 2$ domain wall. a, Line-cut parallel to the $\tilde{\nu} = 2$ domain wall, along the white line in b, showing spatial variation in the spectra. b, Conductance map reproduced from Fig. 2c, with the location of the spectroscopic line-cut in a marked by the white line.