The Implementation of Breadth First Search in Determining of Waris

O T Kurahman¹, Y A Gerhana¹*, F A Perdana¹, U Syarifuddin¹, S Khosyi’ah², N Lukman¹ and I Taufik¹

¹ Departement of Informatics, UIN Sunan Gunung Djati Bandung, Jalan A H Nasution 105 Bandung 40614, Indonesia
² Departement of Family Law, UIN Sunan Gunung Djati Bandung, Jalan A H Nasution 105 Bandung 40614, Indonesia

*yanagerhana@uinsgd.ac.id

Abstract. Breadth First Search is one of the search pattern in an expert system inference mechanism. The use of methods of Breadth First Search in the science of Waris, can be used for the recipient of Waris and the amount of the accepted of Waris. Determination of Waris in this study refers to the madzhab of Hanafi and Hambali. There are three categories of recipient of Waris (Dzawil Furudh, ‘Ashabah, and Dzawil Arham), with 73 rules of Waris and added with 24 rules for heirs who obstructed, which are made in 10 level decision tree of Waris. The test results against 10 cases heirs acquired the suitability and value of the recipient of waris categorized as Dzawil Furudh, and 4 are categorized ‘Ashabah

1. Introduction
Problem of Waris is often a crucial thing that sometimes triggered a dispute and caused a crack in a marriage relationship, even to the point of criminal acts such as murder in addressing this Waris issue. In addition to the limitations of experts, the difficulty in determining the proportion of each heir is the complexity of the heirs, so that although many people know and study Waris, it is not necessarily the person can do the calculations in Waris based on Islamic law [1] [2] [3]. In principle, the division of Waris in Islamic law is not to complicate mankind, but to provide convenience for humans and to avoid family fights after the deceased died.

Advances in information technology is now a solution to overcome many problems. Technology is able to adopt the process and the way of human thinking with artificial intelligence technology. The expert system is one part of the artificial intelligence that contains the knowledge and experience inserted by one or many experts into one particular area of knowledge so that everyone can use it to solve specific problems. The purpose of expert system development is not to replace the full human role, but to substitute human knowledge into systems, so that it can be used by many people. To build an expert system must be supported by expert system components that have certain characteristics, such as the possibility of an expert system solution to a problem is varied and has many choices of answers that can be accepted all the traced factors have a large space and not certainly.

Technological devices are designed to enhance a quality of human’s life [4], one of those which are enable efficiency and effectiveness in business process within a field of expert system. Expert Systems is defined as a system that organized data process [5], it adopts several knowledge of experts into a
computational code so the computer enable to solve a specific problem and acts as an expert [6]. Refers to several researches, an expert system has an accurate data accessibility and efficient run-time [7], high accuracy [8], and to support a proper decision [9], low cost [10], extended accessibility [11], intensify user knowledge [12], increase productivity [13], provide a better data and information [14], and in the certain cases are potentially used as data storage [15].

The Breadth First Search (BFS) method is a search done by visiting each node systematically at each level until the goal state is found [16], [17]. BFS method in this research is implemented on the search process of heirs who are entitled to receive inheritance or not by using decision tree. In this decision tree there is a node in the content of each heir that is sorted by kinship factors closest to Muwaris (people who leave their inheritance). As for the calculation of inheritance, used calculations based on calculations in Islamic law.

In the previously research by Prasetiyo, Dewa, and Udjulawa, BFS algorithm was implemented for design of Edugame Icon Android based information technology device. As a result, the BFS algorithm could provide a solution in the process of finding the icon, when players had difficulty in finding paired icons [18]. In another study conducted by Astrid Novita Putri investigated BFS algorithm optimization on 3D Engine Third Person Shooter Maze based on intelligent agent android [19]. As a result, the implementation of the Third Person Shooter labyrinth game using the BFS algorithm could complete the results with the point that is used to facilitate the player to complete the game. And the accuracy was around 85% in testing and it could be concluded that BFS algorithm method in the problem of finish time longer but will make it easier for players to complete quickly.

2. Rule of Waris based on Islamic law

The rule of Waris and its division in Islamic law has the most substantial aspect of justice. The form of justice in the law of Waris does not depend on gender, but on substance. Justice lies in the balance between rights and duties or between necessities and uses, as the Qur'an has mentioned in the letter An Nisa that both men and women have equal rights. The heirs who have the right of Waris from a deceased person - whether generated through a derivative relationship (zunnasbi), ashar relationships, or trust relationships (mawali) - can be grouped into two groups, namely (1) the category of Waris rights contains certainty, based on ittifaq (discuss) by scholars of Islamic law, and (2) groups whose Waris rights are still disputed by Islamic law scholars. The heirs agreed upon Waris rights consist of 15 men and 10 women, among others: Sons; Grandsons transmit men and so on down; Father; Grandfathers from the father, and so on up; Brothers; Brother with the same father; Brother with the same mother; Sons of brothers; The son of a brother with the same father; Uncle; Uncle with the same father; Son of Uncle; Son of Uncle with the samw father; Husband; The man who freed slaves; Daughter; Granddaughters transmit men; Mother; Grandmother from the father and so on up; Grandmother from mother and so on; Sisters; Sister with the same father; Sister with the same mother; Wife; The woman who freed slaves. If the 25 of heirs mentioned above on the part of the men and from the women are all there, then that definitely gets only one of the husband / wife, mother and father, sons and daughters [12].

In Waris law, the division of inheritance is determined by the division according to the group of each category. Those heirs among others: Ashhabul Furudh or Dzawil Furudh is the heirs who have a certain part that has been established in the Qur'an, whose parts will not increase or decrease, except in the problems that occur Ar-radd or Al-'Aul. Ar-radd means the decrease of the divisor (the number of parts Furudh) and the increase of the part of the heirs. This is due to the lack of ashhabul furudh while the total number of its parts has not reached the value of 1, so there is a remaining inheritance, while there is no one of the ashbahah there who is entitled to receive the remaining property. While Al-'Aul is increasing the divisor (the number of parts furudh) thus causing the reduced part of the heirs. This is due to the number of ashhabul furudh while the total number of parts has exceeded the value of 1, so that among the ashhabul furudh there are those who have not received the appropriate part. The parts specified in the Qur'an have only six, namely: 1 / 2,1 / 4,1 / 8,1 / 3,2 / 3, and 1/6 for the heirs who are entitled to receive part -including ashhabul furudh or dzawil furudh. Next is the 'Ashabah group where
the heirs of ‘ashabah can inherit all possessions when no heirs of ashabul furudh; inherit the remaining
treasures after the part of the heirs ashabul furudh; or do not inherit the least of the estate if the property
is not left after the part of the heirs of the ashabul furudh.

3. Breadth First Search (BFS) for Waris
BFS is a search algorithm that visits all the nodes that are at the same level until the goal state is found.
BFS can also be interpreted by a vertex search algorithm in a graph (tree) transversally starting from the
root node and checking all neighboring nodes. After that, from each of its neighbor nodes, the algorithm
will continue to check all its unextracted neighbor nodes, so on until it finds the destination node of
BFS. Interpreter rules ranging from the fact that there is a hypothesis and then the THEN section began
with this search is also known as heuristic. It can be said that the BFS method works based on a
combination of the two previous methods.

The implementation of BFS algorithm begins by analyzing the needs of Waris calculations according
to Islamic law. The first is to determine the heirs classified as dzawil furudh (found in table 1), ie the
heirs who have a certain part set out in the Qur'an, whose portions shall not increase or decrease except
in special cases such as Al-‘aul and Ar-radd. Second, determine the heirs belonging to ‘Ashabah (found
in table 2), ie the heirs who get the remaining part after being taken by the heirs dzawil furudh. Third,
determine the heirs belonging to dzawil arham (listed in table 3), ie heirs who have a kinship relationship
with the heir, in addition to the heirs dzawil furudh and ‘ashabah. After determining the heirs, the next
is to determine the part of each heir and calculate part of the inheritance earned by the heirs according
to his part. The part of heirs and the rules are listed in table 4. These rules will be used by BFS to process
the distribution of the inheritance. An example of the calculation of the division of inheritance is shown
in table 5. In table 4, rules apply if + Heirs I + Logic + Heirs II + then + Portion (Part of Inheritance
value). Where, ! means no other heirs; = means existing or together with other heirs; # means only one
heir; > = 2 means more than 2 other heirs; # 2 means more than equal to 2 heirs; and AS means ‘Ashabah.
The rule presented in table 4 is the result of a decision tree representation for a 10-level Waris in figure
1.

Code	Heirs
A001	Wife
A002	Husband
A003	Mother
A004	Father
A005	Grandmother form Mother
A006	Grandmother from Father
A007	Grandfather from Father
A008	Daughter
A009	Granddaughter from Son
A010	Sister
A011	Sister with the same Father
A012	Sister with the same Mother
A013	Brother with the same Mother

Code	Heirs
B001	Son
B002	Grandson
B003	Father
B004	Grandfather from Father
B005	Brother
B006	Brother with the same Father
B007	Son of Brother
B008	Son of Brother with the same Father
B009	Brother of Father
B010	Brother of Father with the same Father
B011	Son of Brother of Father
B012	Son of Brother of Father with the same Father
B013	Boy who get freedom
B014	Girl who get freedom
Table 3. Heirs of zawil Arham.

Code	Heirs
C001	Grandson from Daughter
C002	Granddaughter from Daughter
C003	Grandfather from Mother
C004	Daughter from Brother
C005	Daughter from Brother with the same
C006	Son from Sister
C007	Daughter from Sister
C008	Son from Sister with the same Father

Figure 1. Decision tree of Waris.
Table 4. Rules of Waris with *Dzawil Furudh, *Ashabah, and *Dzawil Arham.

Code	Heirs I	Logic	Heirs II	Portion	
R1	A001	≡	A008	1/4	
R2	A001	≡	A009	1/4	
R3	A001	≡	B001	1/4	
R4	A001	≡	B002	1/4	
R5	A001		=	A008	1/8
R6	A001		=	A009	1/8
R7	A001		=	B001	1/8
R8	A001		=	B002	1/8
R9	A002		!	A008	½
R10	A002		!	A009	½
R11	A002		!	B001	½
R12	A002		!	B002	½
R13	A002		=	A008	½
R14	A002		=	1009	¼
R15	A002		=	B001	¼
R16	A002		=	B002	¼
R17	A003		!	A008	1/3
R18	A003		!	A009	1/3
R19	A003		!	B001	1/3
R20	A003		!	B002	1/3
R21	A003		=	A004	1/3
R22	A003		=	A001	1/3
R23	A003		=	A002	1/3
R24	A003		=	A008	1/6
R25	A003		=	A009	1/6
R26	A003		=	A001	1/6
R27	A003		=	B002	1/6
R28	A003	>=2	A010	1/6	
R29	A003	>=2	A011	1/6	
R30	A003	>=2	A011	1/6	
R31	A003	>=2	A013	1/6	
R32	A004		=	A008	1/6
R33	A004		=	A009	1/6
R34	A004		=	B001	1/6
R35	A004		=	B002	1/6
R36	A005		=	A008	1/6
R37	A005		=	A009	1/6
R38	A005		=	B001	1/6
R39	A005		=	B002	1/6
R40	A006		!	A008	1/6
R41	A006		!	A009	1/6
R42	A006		!	B001	1/6
R43	A006		!	B002	1/6
R44	A006		=	A008	1/6
R45	A006		=	A009	1/6
R46	A006		=	B001	1/6
R47	A006		=	B002	1/6
R48	A007		=	A008	1/6
R49	A007		=	A009	1/6
R50	A007		=	B001	1/6

Code	Heirs I	Logic	Heirs II	Portion
R51	A007	=	B002	1/6 + AS
R52	A008	#	-	½
R53	A008	#2	-	2/3
R54	A008	=	B001	½ AS
R55	A009	#	-	½
R56	A009	>=2	A008	2/3
R57	A009	=	A008	1/6
R58	A009	=	B002	AS
R59	A010	#	-	½
R60	A010	#2	-	2/3
R61	A010	=	B005	AS
R62	A010	=	A008	AS
R63	A010	=	A007	AS
R64	A011	#	-	½
R65	A011	#2	-	2/3
R66	A011	=	A010	1/6
R67	A011	=	B006	AS
R68	A011	=	A008	AS
R69	A011	=	A007	AS
R70	A012	#	-	1/6
R71	A012	#2	-	1/3
R72	A013	#	-	1/6
R73	A013	#2	-	1/3
R74	B001	=	A008	2 X A008
R75	A005	=	A003	Not Get
R76	A006	=	A003	Not Get
R77	A006	=	A004	Not Get
R78	A007	=	A004	Not Get
R79	A009	>=2	A008	Not Get
R80	A009	=	B001	Not Get
R81	A010	=	B001	Not Get
R82	A010	=	A004	Not Get
R83	A011	=	B005	Not Get
R84	A011	=	B001	Not Get
R85	A011	>=2	A010	Not Get
R86	A011	=	A004	Not Get
R87	A012	=	B002	Not Get
R88	A012	=	B001	Not Get
R89	A012	=	A009	Not Get
R90	A012	=	A008	Not Get
R91	A012	=	A007	Not Get
R92	A012	=	A004	Not Get
R93	A013	=	A004	Not Get
R94	A013	=	A007	Not Get
R95	A013	=	A008	Not Get
R96	A013	=	A009	Not Get
R97	B002	=	B001	Not Get
Table 5. The Example of Waris count.

Heirs	Total	Portion	Count	Nominal (Rp)
Wife	1	1/8	50,000.000 x 3/24	6,250,000
Mother	1	1/6	50,000.000 x 4/24	8,333,333
Father	1	1/6	50,000.000 x 4/24	8,333,333
Son	1	AS	50,000.000 x 13/24	27,083,333

Heir: Rp 50,000,000, Total Basic Problem: 24

4. Result and discussion
BFS algorithm was used for determining of waris, begin from determined the heirs classified as dzawil furudh, determined the heirs belonging to 'Ashabah, determined the heirs belonging to dzawil arham. Then, determine the part of each heir and calculate part of the inheritance earned by the heirs according to his part.

We tested the BFS algorithm with 10 scenarios of inheritance distribution cases presented in Table 6. The tests were grouped by 3 cases, including normal cases, Al-aal cases, and Ar-Radd cases. Where DF codes for heirs belonging to Dzawul Furudh, AS to 'Ashabah, and Mahjub are heirs who do not get inheritance due to being obstructed by other heirs. Based on the results of the experiments obtained that from all probable cases tested, BFS able to pass the calculation of the division of heirs exactly in accordance with the rules of Islamic law.

Table 6. Testing Cases of Waris

No	Problem	Heir	Almarhum	Heir	Rule	Portion	Correct	InCorrect
1	10000.00 Wife	Husband	DF	1/4	4,000.00	✓		
		Son	AS	Sisa	12,000.00	✓		
2	20000.00 Mother	Grandmother	DF	1/6	3,333.33	✓		
		Daughter	DF	2/3	13,333.33	✓		
		Sister	DF	AS	3,333.33	✓		
		Sister with the same Mother	Mahjub	-	Techijab	✓		
		Wife	DF	1/8	3,750.00	✓		
		Father	from	0				
		Daughter	DF	Sisa	7,083.33	✓		
		Son	AS	2xSisa	14,166.66	✓		
3	30000.00 Husband	Wife	DF	1/6	5,000.00	✓		
		Mother	DF	1/6	8,333.33	✓		
		Daughter	DF	2/3	33,333.33	✓		
		Sister	DF	Sisa	1,041.66	✓		
		Brother	AS	Sisa	1,041.66	✓		
4	50000.00 Husband	Wife	DF	1/4	5,000.00	✓		
		Mother	DF	1/6	3,333.33	✓		
		Sister from the same Mother	DF	1/3	3,333.33	✓		
		Brother from the same Mother	DF	1/3	3,333.33	✓		
		Son from Brother	AS	Sisa	5,000.00	✓		
5	20000.00 Husband	Wife	DF	1/8	3,750.00	✓		
		Father	AS	1/6	5,000.00	✓		
		Mother	DF	1/6	5,000.00	✓		
		Son	AS	2xSisa	10,833.33	✓		
		Daughter	DF	Sisa	5,416.66	✓		
6	30000.00 Husband	Wife	DF	1/8	3,750.00	✓		
		Father	AS	1/6	5,000.00	✓		
		Mother	DF	1/6	5,000.00	✓		
		Son	AS	2xSisa	10,833.33	✓		
		Daughter	DF	Sisa	5,416.66	✓		
Table 6. Cont.

Husband	DF	1/2	12,000.00	✓
Grandmother from Father	DF	1/6	4,000.00	✓
Sister with the same Father	DF	2/3	16,000.00	✓
Brother with the same Mother	DF	1/3	8,000.00	✓
Wife	DF	1/4	4,615.38	✓
Mother	DF	1/6	3,076.92	✓
Sister with the same Father	DF	2/3	12,307.69	✓
Wife	DF	1/8	2,608.69	✓
Mother	DF	1/6	3,478.26	✓
Daughter	DF	1/2	10,434.78	✓
Grand daughter	DF	1/6	3,478.26	✓
Wife	DF	1/8	3,260.87	✓
Grandmother from Father	DF	1/6	4,347.82	✓
Daughter	DF	1/2	13,043.47	✓
Grand daughter	DF	1/6	4,347.82	✓

5. Conclusion
Breadth First Search method applied to the application of Waris calculation according to Islamic law can run well. This method applies to the case of the heirs who are entitled to get the treasure by making a rule first on the database. In determining the value of Waris rights carried out first search of the heirs entitled to Waris rights, after it determined the value of inheritance rights to the heirs by using calculations according to imam Hanafi and imam Hanbali.

For the future research, it can be developed to automate the distribution of Waris for special cases such as musharakah, gharawain, and al-jaddu wal-ikhwah. Where musharakah is linguistically means "united", that is, if the heirs who in the calculation of the mawaris should have an inheritance, but did not get, it is recommended to the beneficiary who gets a share. Gharawain means two bright ones, two bright problems of solution. The two problems are: 1. Division of inheritance if the heirs of husband, mother, and father. 2. Distribution of inheritance if the heirs of wives, mothers, and fathers. While al-jaddu wal-ikhwah is a condition where there are grandfathers as heirs along with brothers of heirs.

Acknowledgement
We say many thanks Research and Publication Center of UIN Sunan Gunung Djati Bandung Indonesia for supporting publication of our research.

References
[1] R Setiawan, D Destiani and C Slamet 2012 Perancangan Sistem Pakar untuk Pembagian Waris Menurut Hukum Islam (Fara’id) J. Algorit. 9(1) pp. 1–8
[2] Y Septiana, D Kurniadi and A Mulyani 2017 Perancangan Program Aplikasi Faraid sebagai Sistem Pendukung Keputusan Pembagian Harta Waris Berorientasi Solver J. Algorit. 14(2) pp. 474–480
[3] S Khosyi’Ah, M Irfan, D S Maylawati and O S Mukhlas 2018 Analysis of Rules for Islamic Inheritance Law in Indonesia Using Hybrid Rule Based Learning in IOP Conference Series: Materials Science and Engineering 2018 288(1)
[4] M A Ramdhani, H Aulawi, A Ikhwana and Y Mauluddin 2017 Model of green technology adaptation in small and medium-sized tannery industry J. Eng. Appl. Sci. 12(4) pp. 954–962
[5] D S Maylawati, W Darmalaksana and M A Ramdhani 2018 Systematic Design of Expert
A System Using Unified Modelling Language *IOP Conf. Ser. Mater. Sci. Eng.* 288(1) p. 12047

[6] M A Ramdhani 2013 Metodologi Penelitian untuk Riset Teknologi Informasi (Bandung: UIN Sunan Gunung Djati Bandung)

[7] C Slamet, A Rahman, A Sutedi, W Darmalaksana, M A Ramdhani and D S Maylawati 2018 Social Media-Based Identifier for Natural Disaster *IOP Conf. Ser. Mater. Sci. Eng.* 288(1) p. 12039

[8] C Slamet, R Andrian, D S Maylawati, W Darmalaksana and M A Ramdhani 2018 Web Scraping and Naïve Bayes Classification for Job Search Engine 288(1) pp. 1–7

[9] Y A Gerhana, W B Zulfikar, A H Ramdani and M A Ramdhani 2018 Implementation of Nearest Neighbor using HSV to Identify Skin Disease *IOP Conf. Ser. Mater. Sci. Eng.* 288(1) p. 012153

[10] A Rahman, C Slamet, W Darmalaksana, Y A Gerhana and M A Ramdhani 2018 Expert System for Deciding a Solution of Mechanical Failure in a Car using Case-based Reasoning *IOP Conf. Ser. Mater. Sci. Eng.* 288(1) p. 12011

[11] C Slamet, A Rahman, M A Ramdhani and W Darmalaksana 2016 Clustering the Verses of the Holy Qur’an Using K-Means Algorithm *Asian J. Inf. Technol.* 15(24) pp. 5159–5162

[12] D S Maylawati, M A Ramdhani, W B Zulfikar, I Taufik and W Darmalaksana 2017 Expert system for predicting the early pregnancy with disorders using artificial neural network in 2017 5th International Conference on Cyber and IT Service Management CITSM 2017

[13] W B Zulfikar, Junadi, P K Prasetyo and M A Ramdhani 2018 Implementation of Mamdani Fuzzy Method in Employee Promotion System IOP Conf. Ser. Mater. Sci. Eng. 288(1) p. 12147

[14] D S A Maylawati, M A Ramdhani, A Rahman and W Darmalaksana 2017 Incremental technique with set of frequent word item sets for mining large Indonesian text data in 2017 5th International Conference on Cyber and IT Service Management, CITSM 2017

[15] A Taofik, N Ismail, Y A Gerhana, K Komarujaman and M A Ramdhani 2018 Design of Smart System to Detect Ripeness of Tomato and Chili with New Approach in Data Acquisition in *IOP Conference Series: Materials Science and Engineering* 2018 288(1) p. 12018

[16] R Zhou and E A Hansen 2006 Breadth-first heuristic search *Artif. Intell.* 170(4–5) pp. 385–408

[17] A Bundy and L Wallen 1984 Breadth-First Search in *Catalogue of Artificial Intelligence Tools* pp. 13–13.

[18] Y Prasetiyo, S W Dewa and D Udjulawa 2013 Penerapan Algoritma Breadth First Search Untuk Rancang Bangun Edugame Icon Perangkat (Palembang: STMIK GI MDP)

[19] A N Putri 2016 Optimasi Algoritma Breadth First Search pada Game Engine 3D Third Person Shooter Maze Berbasis Agen Cerdas Android *Transformatika* 14(1) pp. 50–55