Prognosis-Related Autophagy Genes in Female Lung Adenocarcinoma

Zhongxiang Liu
first people's hospital of yancheng

Haicheng Tang
Shanghai Public Health Clinical Center

Yongqian Jiang
first people's hospital of yancheng

Xiaopeng Zhan
Shanghai East Hospital

Sheng Kang
Shanghai East Hospital

Koudong Zhang
First People's Hospital of Yancheng

Li Lin
Shanghai East Hospital

Research

Keywords: Autophagy genes, Prognosis, Female lung adenocarcinoma, Risk score

DOI: https://doi.org/10.21203/rs.3.rs-53994/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](https://creativecommons.org/licenses/by/4.0/)
Abstract

Background: To screen the prognosis-related autophagy genes of female lung adenocarcinoma by the transcriptome data and clinical data from TCGA database.

Methods: In this study, Screen meaningful female lung adenocarcinoma differential genes in TCGA, use univariate COX proportional regression model to select genes related to prognosis, and establish the best risk model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied for carrying out bioinformatics analysis of gene function.

Results: The gene expression and clinical data of 260 female lung adenocarcinoma patient samples were downloaded from TCGA. 12 down-regulated genes: NRG3, DLC1, NLRC4, DAPK2, HSPB8, PPP1R15A, FOS, NRG1, PRKCQ, GRID1, MAP1LC3C, GABARAPL1. Up-regulated 15 genes: PARP1, BNIP3, P4HB, ATIC, IKBKE, ITGB4, VMP1, PTK6, EIF4EBP1, GAPDH, ATG9B, ER01A, TMEM74, CDKN2A, BIRC5. GO and KEGG analysis showed that these genes were significantly associated with autophagy and mitochondria (animals). Multi-factor COX analysis of autophagy-related genes showed that ITGA6, ER01A, FKBP1A, BAK1, CCR2, FADD, EDEM1, ATG10, ATG4A, DLC1, VAMP7, ST13 were identified as independent prognostic indicators. According to the multivariate COX proportional hazard regression model, there was a significant difference in the survival rate observed between the high-risk group (n=124) and the low-risk group (n=126) during the 10-year follow-up (p<0.05). Univariate COX analysis showed that tumor stage, T, M and N stages, and risk score were all related to the survival rate of female lung adenocarcinoma patients. Multivariate COX analysis found that autophagy-related risk scores were independent predictors, with an AUC value of 0.842. At last, there are autophagy genes differentially expressed among various clinicopathological parameters: ATG4A, BAK1, CCR2, DLC1, ER01A, FKBP1A, ITGA6.

Conclusion: The risk score can be used as an independent prognostic indicator for female patients with lung adenocarcinoma. The autophagy genes ITGA6, ER01A, FKBP1A, BAK1, CCR2, FADD, EDEM1, ATG10, ATG4A, DLC1, VAMP7, ST13 were identified as prognostic genes in female lung adenocarcinoma, which may be the targets of treatment in the future.

Background

Lung cancer is the most common malignancies with high morbidity worldwide, which represents the second leading cause of cancer-related deaths[1]. Data from the National Cancer Registry[2] show a significant increase in lung cancer incidence in women and a gradual decrease in men, while men have an overall survival advantage in the patients with non-small cell lung cancer (NSCLC)[3]. Although current treatment approaches, including maximum safe resection, chemotherapy, radiotherapy and targeted therapy, have been adopted[4], the survival time has not improved significantly, and the five-year survival rate is 4% – 17%[5]. Despite the progress of experimental technologies and therapeutic regimens in the field, lung cancer remains incurable. It is thus necessary to explore the novel therapeutic targets or treatment methods.
Autophagy is a genetically conserved cellular process and widely exists in eukaryotic cells, which is one of the necessary ways of organelle renewal and metabolism dynamic balance\[^6\], especially for maintaining homeostasis in vivo and tumor growth of lung cancer, thus it prevents the p53 activation, growth arrest, apoptosis, senescence and immune response activation. Autophagy in NSCLC can maintain mitochondrial mass and regulate its abundance, while the genetic deficiency of essential autophagy genes in tumors will reduce tumor growth\[^7\]. Even DNA methylation of autophagy genes plays an important role in cancer development, and the epigenetic-mediated aberrant gene silencing has been considered to be closely related to the pathogenesis of cancers, including lung cancer\[^8\]. Generally, autophagy is thought to prevent carcinogenesis by eliminating oncogenic protein substrates, misfolded proteins, and damaged organelles\[^9\]. Therefore, more and more studies have shown that autophagy has an important role in NSCLC\[^10\].

Methods

Gene expression data, clinical characteristics and survival information of 260 samples from female patients with lung adenocarcinoma were downloaded from TCGA database on June 02, 2020. A total of 221 autophagy-related genes were extracted from Human Autophagy Database (HADb http://www.autophagy.lu/index.html).

Statistical analysis

A series of gene function enrichment analysis was performed. After screening the differentially expressed autophagy-related genes, to determine the main biological properties. Univariate Cox proportional hazard regression analysis was used to assess the association between overall survival (OS) and the selected autophagy genes. Next, multivariate Cox proportional hazard regression analysis was performed on the identified autophagy genes. Independent prognostic factors were determined by multivariate Cox proportional hazards regression analysis, and regression coefficient and risk ratio (HR) were calculated by Cox regression model for establishing an autophagy related model, which can be used as the prognosis model of female lung adenocarcinoma. The risk score of patients was divided into high-risk group and low-risk group according to the median score. Survival curve, risk curve, ROC curve of risk score and other clinical characteristics, and beeswarm of correlation between autophagy gene, the risk score and clinical characteristics were drawn.

All the statistical analyses including the different expression of autophagy-related genes in univariate and multivariate Cox regression models, ROC curve and K-M survival were performed using R version 3.6.6 (The R Foundation for Statistical Computing). GO plot software package was used to Gene Ontology (GO) enrichment analysis, and the same tool is also used for the enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. P < 0.05 was used as the significant threshold.

Results
Identification analysis of ATGs

The expression values of 221 ATGs were integrated from the female patients with lung adenocarcinoma, and 12 downregulated genes and 15 upregulated genes were identified. Boxplots (Figure 1a), Heat maps (Figure 1b), and volcano maps (Figure 1c) were used to reveal the expression patterns of these differentially expressed genes in tumor and non-tumor tissues.

Functional enrichment analysis

A total of 27 differentially expressed genes were performed functional analysis to provide biological function for these genes. In order to inquire the potential signal pathways related 27 ATGs in female lung adenocarcinoma, we analyzed them with GO and KEGG. GO analysis (Figure 2a-c) showed that these ATGs were enriched in some basic biological processes (BP), including the process of autophagy and apoptotic signaling pathways. The cellular components affected those of autophagy and mitochondria. Based on molecular functions, the genes were most enriched in cellular response to oxidative stress, protein phosphatase binding, and phosphatase binding. KEGG analysis (Figure 3a,b) showed that the 27 ATGs were significantly associated with autophagy and mitochondria (animals), and the most scores of enriched pathways were greater than zero, indicating that these pathways were more likely to be enhanced.

Construction of prognostic markers in female LUAD

28 ATGs were analyzed by univariate Cox regression. 8 genes were identified as protective factors (HR<1), while another 20 genes were identified as risk factors (HR>1). The 28 genes were further analyzed by multivariate Cox regression analysis, and finally 12 genes (ITGA6, ERO1A, FKBP1A, BAK1, CCR2, FADD, EDEM1, ATG10, ATG4A, DLC1, VAMP7, ST13) were identified as independent prognostic indicators, which might be helpful in predicting prognosis.

The 12 genes were further analyzed by multivariate Cox regression analysis, the expression coefficients of each independent risk gene were obtained and shown in table 1, and finally the model for predicting prognosis based was developed using the following formulas: prognostic index (PI) = (-0.162*ITGA6 expression level) + (0.466*ERO1A expression level) + (0.872*FKBP1A expression level) + (0.373*BAK1 expression level) + (-0.392*CCR2 expression level) + (0.416*The expression level of FADD) + (-0.625*EDEM1) + (0.778*ATG10 expression level) + (-0.899*ATG4A expression level) + (0.399*DLC1 expression level) + (0.367*VAMP7 expression level) + (0.572*ST13 expression level).

The risk score of each patient was calculated on the basis of the relevant mRNA expression level and risk coefficient of each ATG. The risk score is used to predict the prognosis of female LUAD, and the median risk score is the critical value to divide patients into high-risk and low-risk groups (Figure 5b). Heatmap was drawn to show gene expression profiles in high-risk and low-risk female LUAD groups (Figure 5c). The genes with HR>1 were considered to be dangerous genes, while the genes with HR<1 were the protective genes (Figure 4b). As shown in the figure 4, patients in the high-risk group have more
possibilities to express the risk genes. In contrast, patients in the low-risk group have a disposition to express the protective genes (Figure 4b), and the Kaplan–Meier cumulative curve showed that the survival time of patients with low-risk score was significantly longer than that of patients with high-risk score at 10-year follow-up (p < 0.05) (Figure 4a; Figure 5a).

Autophagy acted as an independent prognostic factor

We assessed the prognostic value of autophagy-related risk score by univariate COX regression analysis and multivariate COX regression analysis, the autophagy-related risk score in univariate analysis was significantly correlated with overall survival (OS) (HR=1.235, 95% CI=1.173-1.299, P<0.001) in T, M, N stage(Figure 6a). Multivariate analysis further showed that autophagy-related risk score was an independent prognostic indicator HR=1.208, 95% CI=1.143-1.277 (Figure 6b). The results confirmed that the autophagy-related risk score could be used as an independent prognostic factor in clinic practice.

Multi-index ROC curve of risk score and other indicators

The ROC curve of OS has applied for revealing the predictive performance of the 12 autophagy-related gene risk scores (Figure 6c). The AUC value of risk score (AUC=0.842) was significantly larger than that of other indicators including age (AUC=0.510), tumor stage (AUC=0.755), T stage (AUC=0.682), N stage (AUC=0.662) and M stage (AUC=0.578), suggesting that the risk would better predict survival in female patients with LUAD than other individual indicators. However, due to the lack of clinical data such as treatment regimen, personal history, and tumor grade, we were unable to perform ROC analysis for other clinical factors.

Association between autophagy-related risk characteristics and clinicopathological characteristics in female patients with LUAD

These related genes were differentially expressed among various clinicopathological parameters. As shown in the figure 7, different ATG4A expression was found in different tumor stages (Figure 7c), and different BAK1 expression was found in different M stages (Figure 7e). Different CCR2 expression was found in different tumor stages (Figure 7g), different DLC1 expression was found in different tumor stages and N stages (Figure 7b, i), different ERO1A expression was found in different tumor stages and M stages (Figure 7d, f), different FKBP1A expression was found in different N stages (Figure 7h), and different ITGA6 expression was found in different age stages (Figure 7j). Different risk score expression was found in different tumor stages (Figure 7a).

Discussion

Recent years, many studies have shown that autophagy is closely related to the prognosis of LUAD, Considering the importance of autophagy in LUAD, we can reasonably speculate that autophagy related genes have broad prospects in the prognosis evaluation of female LUAD, but autophagy plays a complex role in the lung, which can produce protective and injurious effects on the development of lung diseases.
Therefore, the design of autophagy as an effective therapeutic intervention strategy needs careful consideration and further study\cite{11}.

The role of autophagy is not constant, so in this study, based on the existing genetic data of female lung adenocarcinoma, after screening autophagy-related genes and identifying 12 key prognostic genes that may be prognostic markers or potential therapeutic targets for female LUAD, the mechanisms of these 12 genes in lung cancer are summarized as follows.

ITGA6, a member of the integrin family, plays a key role in the interaction between many cell types and participates in multiple biological processes, including cell proliferation and invasion\cite{12}. ITGA6 has been shown to play a carcinogenic role in non-small cell lung cancer\cite{13}.

Co-expression analysis of ERO1A gene in cancer patients showed that ERO1A was significantly upregulated in lung adenocarcinoma, promoting cell migration and invasion\cite{14}. High expression of ERO1A is associated with poor OS in lung adenocarcinoma patients\cite{15}. BAK1 is a key effector of apoptosis\cite{16}, especially for mitochondrial apoptosis\cite{17}. Several studies have confirmed that it can induce proliferation inhibition and apoptosis of NSCLC cells\cite{18}. CCR2 expression is associated with tumor stage and metastasis\cite{19}. Experiments have confirmed that endothelial CCR2 expression is necessary for tumor cell extravasation and lung metastasis. Endothelial cells lacking CCR2 can greatly reduce lung metastasis, but the growth of primary tumors is not affected\cite{20}. ATG10, located in chromosome 5q14, is an autophagic E2-like enzyme and participates in autophagosome formation\cite{21}. ATG10 expression is up-regulated in lung cancer tumors, and its high expression is a risk factor for death in lung cancer patients\cite{22}. ATG4A has a proteolytic effect and plays an effective role in autophagy\cite{23}. Variation of intron SNP rs807185 in ATG4A was significantly associated with reduced risk of lung cancer and may be a protective factor for lung cancer\cite{24}. DLC1 is located on chromosome 8p21.3-22, a region that shows loss of heterozygosity in many human cancers, including prostate, colon, breast, ovarian, liver, lung, bladder, and bladder\cite{25}. Loss of DLC1 leads to dysregulation of the Rho pathway, which may contribute to cancer progression\cite{26}. Among smokers with lung adenocarcinoma, DLC1 downregulation and TP53 mutations are as usual\cite{27}. VAMP7 is involved in the transport of autophagosomes to the periphery of cells\cite{28}. Meanwhile, VAMP7 is a key regulator of MT1-MMP-mediated matrix degradation and invasion. MT1-MMP-mediated pericellular proteolytic activity is necessary for cancer cells to break through the basement membrane and migrate mesenchymally in the fibrous collagen matrix\cite{29}. FADD has been observed to be highly expressed in NSCLC and is thought to be associated with increased aggressive behavior and predictive markers of prognosis in NSCLC\cite{30,31}.

It can be seen that these genes play two roles in the development of cancer, especially in lung cancer, which are consistent with the consensus that autophagy plays a bidirectional role in tumors. However, in this study we found that autophagy related genes which showed consistent effects might promote the development of lung cancer in some way. This investigation suggests autophagy may be a promising target for female LUAD treatment in the future.
Among these genes, fkbp1a, edem1, ST13 and VAMP7 are more attractive, which have not been found in lung cancer research before and can be regarded as potential prognostic biomarkers of female LUAD.

In addition, GO and KEGG analyses were performed to reveal abundant molecular and biological pathways. The results showed that the most abundant GO terms were highly correlated with autophagy in biological process and cell composition. Consistent with GO analysis, KEGG analysis also enriched the most important autophagy pathway. Therefore, we speculate that this autophagy pattern may act as a tumor promoter in the occurrence and development of female LUAD.

Conclusions

In summary, our study identified the twelve autophagy-related genes (ITGA6aER01AaFKBP1AaBAK1bCCR2bFADDbEDEM1bATG10bATG4AbDLC1bVAMP7bST13) that were associated with female LUAD survival. Based on the twelve genes, a risk marker was established and proven to be an independent prognostic factor for female patients with LUAD. Our results are expected to be applied in clinical practice, which may become a potential targeted therapy for female lung adenocarcinoma, and further research will provide us with its exact mechanism. However, the limitations of this study were retrospective analysis. The prospective studies should be carried out to verify the prognostic value of autophagy related genes, and the multicenter data will confirm our findings.

Declarations

Ethics approval and consent to participate

This study was approved by the Ethics Committee of the first hospital of yancheng.

Consent for publication

Not applicable.

Availability of data and materials

The original source data and material will be available upon reasonable request.

Competing interests

The authors declare that they have no competing interests to declare.

Funding

National Natural Science Foundation of China (81570237; 81870197; 81870247), Shanghai Municipal Health Commission (2020-031), Key Disciplines Group Construction Project of Pudong Health Bureau of Shanghai (PWZxq2017-05), Top-level Clinical Discipline Project of Shanghai Pudong District (PWYgf2018-02)
Authors' contributions

HCT, YQJ and XPZ collected the data, ZXL and KDZ drafted this article. SK, LL contributed to the design of this work. All authors read and approved the final manuscript.

Acknowledgements

We thank all authors who participated in this study for their cooperation.

References

1. Siegel RL, Miller KD. Cancer statistics, 2019[J]. 2019, 69(1): 7–34.
2. Zhang Y, Ren JS, Huang HY, et al. International trends in lung cancer incidence from 1973 to 2007[J]. Cancer Med. 2018;7(4):1479–89.
3. Ye Y, Jing Y, Li L, et al. Sex-associated molecular differences for cancer immunotherapy[J]. 2020, 11(1): 1779.
4. Jones GS, Baldwin DR. Recent advances in the management of lung cancer[J]. Clin Med (Lond). 2018;18(Suppl 2):s41–6.
5. Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments[J]. Lancet. 2017;389(10066):299–311.
6. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy[J]. Nat Cell Biol. 2010;12(9):814–22.
7. Guo JY, White E. Autophagy, Metabolism, and Cancer[J]. Cold Spring Harb Symp Quant Biol. 2016;81:73–8.
8. Chen Y, Schnitzler KL, Ma Y, et al. The Clinical Influence of Autophagy-Associated Proteins on Human Lung Cancer[J]. 2018, 2018: 8314963.
9. Liu Y, Wu L, Ao H, et al. Prognostic implications of autophagy-associated gene signatures in non-small cell lung cancer[J]. Aging. 2019;11(23):11440–62.
10. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer[J]. Nat Rev Cancer. 2017;17(9):528–42.
11. Zhan L, Li J, Wei B. Autophagy in endometriosis: Friend or foe?[J]. Biochem Biophys Res Commun. 2018;495(1):60–3.
12. Lowell CA, Mayadas TN. Overview: studying integrins in vivo[J]. Methods Mol Biol. 2012;757:369–97.
13. Chen W, Zhuang X, Qi R, et al. MiR-302a-5p suppresses cell proliferation and invasion in non-small cell lung carcinoma by targeting ITGA6[J]. Am J Transl Res. 2019;11(7):4348–57.
14. Shergalis AG, Hu S, Bankhead A 3. Role of the ERO1-PDI interaction in oxidative protein folding and disease[J]. Pharmacol Ther. 2020;210:107525. rd, et al.
15. Hsu CH, Hsu CW, Hsueh C, et al. Identification and Characterization of Potential Biomarkers by Quantitative Tissue Proteomics of Primary Lung Adenocarcinoma[J]. Mol Cell Proteomics.
16. Strasser A, Vaux DL. Viewing BCL2 and cell death control from an evolutionary perspective[J]. 2018, 25(1): 13–20.
17. Upreti M, Chu R, Galitovskaya E, et al. Key role for Bak activation and Bak-Bax interaction in the apoptotic response to vinblastine[J]. Mol Cancer Ther. 2008;7(7):2224–32.
18. Gu XY, Wang J, Luo YZ, et al. Down-regulation of miR-150 induces cell proliferation inhibition and apoptosis in non-small-cell lung cancer by targeting BAK1 in vitro[J]. Tumour Biol. 2014;35(6):5287–93.
19. Schmall A, Al-Tamari HM, Herold S, et al. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer[J]. Am J Respir Crit Care Med. 2015;191(4):437–47.
20. Roblek M, Protsyuk D, Becker PF, et al. CCL2 Is a Vascular Permeability Factor Inducing CCR2-Dependent Endothelial Retraction during Lung Metastasis[J]. Mol Cancer Res. 2019;17(3):783–93.
21. Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex[J]. Nat Rev Mol Cell Biol. 2013;14(12):759–74.
22. Xie K, Liang C, Li Q, et al. Role of ATG10 expression quantitative trait loci in non-small cell lung cancer survival[J]. Int J Cancer. 2016;139(7):1564–73.
23. Pan B, Chen Y, Song H, et al. Mir-24-3p downregulation contributes to VP16-DDP resistance in small-cell lung cancer by targeting ATG4A[J]. Oncotarget. 2015;6(1):317–31.
24. He Q, Lu Y, Hu S, et al. An intron SNP rs807185 in ATG4A decreases the risk of lung cancer in a southwest Chinese population[J]. Eur J Cancer Prev. 2016;25(4):255–8.
25. Yuan BZ, Miller MJ, Keck CL, et al. Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP[J]. Cancer Res. 1998;58(10):2196–9.
26. Lahoz A, Hall A. DLC1: a significant GAP in the cancer genome[J]. Genes Dev. 2008;22(13):1724–30.
27. Wang D, Qian X, Rajaram M, et al. DLC1 is the principal biologically-relevant down-regulated DLC family member in several cancers[J]. Oncotarget. 2016;7(29):45144–57.
28. Fader CM, Aguilera MO, Colombo MI. ATP is released from autophagic vesicles to the extracellular space in a VAMP7-dependent manner[J]. Autophagy. 2012;8(12):1741–56.
29. Steffen A, Le Dez G, Poincloux R, et al. MT1-MMP-dependent invasion is regulated by TI-VAMP/VAMP7[J]. Curr Biol. 2008;18(12):926–31.
30. Chen G, Bhojani MS, Heaford AC, et al. Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas[J]. Proc Natl Acad Sci U S A. 2005;102(35):12507–12.
31. Luo J, Chen B, Gao CX, et al. SPOP promotes FADD degradation and inhibits NF-κB activity in non-small cell lung cancer[J]. Biochem Biophys Res Commun. 2018;504(1):289–94.
Tables

id	coef	HR	HR.95L	HR.95H	pvalue
ITGA6	0.162206	1.176102	0.94486	1.463938	0.146451
ERO1A	0.466256	1.594014	1.208955	2.101718	0.00095
FKBP1A	0.872513	2.392917	1.40425	4.077657	0.001335
BAK1	0.37309	1.452215	0.940708	2.241852	0.092169
CCR2	-0.39243	0.675416	0.452277	1.008646	0.055125
FADD	0.416963	1.517346	0.840807	2.738247	0.166265
EDEM1	-0.6252	0.535156	0.314568	0.910428	0.021105
ATG10	0.778336	2.177845	1.044688	4.540119	0.037838
ATG4A	-0.89978	0.406658	0.209542	0.789204	0.00782
DLC1	0.399282	1.490753	1.049771	2.116981	0.025654
VAMP7	0.367026	1.443436	0.869826	2.395314	0.155524
ST13	0.572087	1.771961	1.063007	2.95374	0.028212

Figures

Figure 1

Boxplots (a), Heat maps (b), and volcano maps (c) were used to reveal the expression patterns of autophagy genes in female lung adenocarcinoma.
Figure 2

a-c: GO analysis chart of autophagy gene. The cellular components affected those of autophagy and mitochondria, the genes were most enriched in cellular response to oxidative stress, protein phosphatase binding, and phosphatase binding.

Figure 3

a and b: KEGG analysis diagram of autophagy genes. the most scores of enriched pathways were greater than zero, indicating that these pathways were more likely to be enhanced.
Figure 4

a: Kaplan-Meier curve of 12-gene risk score. b: Univariate COX regression analysis, the genes with HR>1 were considered to be dangerous genes, while the genes with HR<1 were the protective genes.
Figure 5

a: the Kaplan–Meier cumulative curve showed that the survival time of patients with low-risk score was significantly longer than that of patients with high-risk score.
b: The risk score is used to predict the prognosis of female LUAD.
c: Heatmap was drawn to show gene expression profiles in high-risk and low-risk female LUAD groups.
Figure 6

a: univariate COX regression analysis showed that the autophagy-related risk score in univariate analysis was significantly correlated with overall survival (OS) in T, M, N stage. b: Multivariate analysis further showed that autophagy-related risk score was an independent prognostic indicator. c: The ROC curve of OS has applied for revealing the predictive performance of the 12 autophagy-related gene risk scores.
Figure 7

Autophagy genes are differentially expressed among various clinicopathological parameters.