PROBABLE JUVENILE FRONTAL OF DASPLETOSAURUS HORNERI (DINOSAURIA: THEROPODA) FROM THE TWO MEDICINE FORMATION OF MONTANA, WITH IMPLICATIONS FOR TYRANNOSAURID ONTOGENY

Chan-gyu Yun

Received: 2 January 2022 / Accepted: 12 July 2022 / Published online: 22 July 2022

Abstract A partial left frontal (UCM 55499) of a small tyrannosaurid theropod from the Campanian Two Medicine Formation of Montana is described, and is considered to probably represent a juvenile of Daspletosaurus horneri. UCM 55499 compares favorably with the frontals of other young juvenile tyrannosaurid specimens, and its diminutive size suggests that the element comes from a small juvenile individual. Differences (including width of the nasal process, and degree of expansion of the postorbital buttress and the caudal shelf) between it and frontals of the larger individuals of Daspletosaurus horneri are similar to those between juveniles and adults of other tyrannosaurs such as Tyrannosaurus rex, suggesting that overall ontogenetic trends in the frontal bone of Daspletosaurus horneri are largely consistent with the patterns seen in other tyrannosaurs.

Keywords: Juvenile, Frontal, Theropoda, Tyrannosauridae, Daspletosaurus, Tyrannosaurus

INTRODUCTION

Ontogenetic changes in the cranial anatomy of tyrannosaurid theropods have been described in substantial detail for several taxa, based on the study of well-preserved skulls or isolated cranial elements (e.g., Carr, 1999, 2020; Currie, 2003a, b; Carr & Williamson, 2004). These descriptions have demonstrated that patterns of cranial change during the ontogeny of tyrannosaurs are largely shared between different species (Carr, 1999), and have made it possible to establish the correct taxonomic identities of some initially misclassified juvenile or subadult specimens (e.g., Carr, 1999; Currie, 2003b; Carr & Williamson, 2004; Tsuihiji et al., 2011; Fowler et al., 2011; Voris et al., 2019, 2022). Despite these thorough descriptions of tyrannosaurian cranial ontogeny, the degree to which ontogenetic patterns are shared across species is still a matter of debate, as treatments of tyrannosaurid ontogeny have largely been focused on taxa known from individuals ranging from small juveniles to large adults, such as Gorgosaurus libratus or Tyrannosaurus rex (Carr, 1999, 2020). Other taxa have received relatively scant attention, mostly due to a lack of specimens representing multiple growth stages (e.g., Voris et al., 2019). Daspletosaurus horneri is a species that currently represents the geologically youngest member of the lineage Daspletosaurini, and is from the Two Medicine Formation of Montana, USA (Carr et al., 2017; Voris et al., 2020). Specimens that represent different ontogenetic stages of this taxon are known (Carr et al., 2017). Unfortunately, while well-preserved skulls of a large subadult and an adult are known, reported young juvenile and small subadult specimens of this taxon are limited to isolated elements such as a dentary or a maxilla (Carr et al., 2017; Delcourt, 2017), so that inferences about ontogenetic change are limited to these parts of the skeleton.

Currie et al. (2005) reported a tyrannosaurid bonebed with individuals of different sizes which are probably referable to Daspletosaurus horneri, but the recovered material was only briefly described. An embryonic dentary (MOR 268) was recently assigned provisionally to this taxon (Funston et al., 2021) but it is equally possible that this specimen belongs to the contemporaneous species Gorgosaurus libratus (Yun, 2021). In sum, current data about the ontogeny of Daspletosaurus horneri is limited.

In this work, a partial left frontal (UCM 55499) of a juvenile tyrannosaurid from the Two Medicine Formation, which is probably referable to Daspletosaurus horneri, is described in detail. This specimen provides an opportunity to infer ontogenetic changes in the frontal bone of Daspletosaurus horneri and to compare the juvenile morphology of the frontal of this taxon with those of other young tyrannosaurs.

Institutional abbreviations

AMNH, American Museum of Natural History, New York, USA; CMNH, Cleveland Museum of Natural History, Ohio, USA; LACM, Los Angeles County Museum of Natural History, California, USA; MOR, Museum of the Rockies, Montana, USA; MPC-D, Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia; TMP, Royal Tyrrell Museum of Palaeontology, Alberta, Canada; UCM, The Fossil Vertebrate Collection at the University of Colorado Boulder Museum of Natural History, Colorado, USA.
MATERIAL AND METHODS

Because of travel restrictions that were imposed in response to the COVID-19 pandemic, this study was mainly conducted using a high-quality cast, as well as a scan, of the original specimen shared by the UCM collections manager Jacob Van Veldhuizen. Comparisons with other tyrannosaurid specimens and other theropod clades were made through prior observation of several specimens and a review of the literature. Angles between the postorbital suture/frontal suture and the rostrocaudal axis of frontal/postorbital were measured from images using the program ImageJ (Schneider et al., 2012). Alioramus altai is considered a junior synonym of Alioramus remotus following Carr et al. (2017). Following Currie (2003a) and Paulina-Carabajal et al. (2021), specimens of Daspletosaurus from the Dinosaur Park Formation are referred to Daspletosaurus sp. to reflect the possibility that they represent a distinct taxon from the type species of the genus, Daspletosaurus torosus (contra Carr et al., 2017). Anatomical terminology for the frontal follows Currie (2003a), Carr et al. (2017), Yun (2020), and Yun (2022).

GEOLOGICAL SETTING

UCM 55499 was recovered from the Two Medicine Formation of Montana, USA. Unfortunately, more detailed provenance data for the specimen is missing. However, it is likely that this specimen was collected from the upper section of this formation, as reported tyrannosaurid fossils from the Two Medicine Formation have mainly been restricted to this part (e.g., Currie et al., 2005; Carr et al., 2017; Dalman et al., 2018; Funston et al., 2021; Yun, 2021). This is further supported by the high probability that UCM 55499 belongs to Daspletosaurus horneri, as all known material definitely attributable to this taxon comes from the upper section of the Two Medicine Formation (Currie et al., 2005; Carr et al., 2017).

The thickness of the Two Medicine Formation is 600 m to 1500 m (Fowler, 2017). The formation is composed of fine-grained lenticular sandstone, mudstone and siltstone, and these sediments were derived from erosion of the rising Sevier Thrust Belt and the Elkhorn Mountains Volcanics (e.g., Rogers et al., 1993; Penkalski, 2014; Panasci & Varriichio, 2020). Deposition of the formation occurred in a volcanically active area with a paleolatitude of about 53-55° N, in which fluvi al and lacustrine systems intergraded (e.g., Freimuth & Varriichio, 2019; Freimuth et al., 2021). ⁴⁰Ar/³⁹Ar radiometric dates near the base and the top of the Two Medicine Formation constrain the age of the formation to between 81.5 Ma and 75 Ma (Rogers et al., 1993; Fowler, 2017). Therefore, the age of the Two Medicine Formation is middle to late Cenomanian. The Two Medicine Formation is well-known for its rich abundance of vertebrate fossils, and especially of dinosaur specimens that include well-preserved skeletons, as well as coprolites, eggs, gastric pellets and nests (e.g., Rogers, 1997; Trexler, 2001; Freimuth et al., 2021). Patterns of preservation of dinosaur fossils vary within the formation: the fossils from the lower half are generally rare, and are mostly isolated bones and teeth (Rogers, 1997; Trexler, 2001) whereas the upper part of the formation is remarkably fossiliferous, containing most of the dinosaur bonebeds and nests reported from the formation (Rogers, 1997). Dinosaurian clades documented within the Two Medicine Formation include ankylosaurs, avialans, ceratopsians, dromaeosaurs, ornithopods, ornithomimosurs, oviraptorosaurs, troodontids, and tyrannosaurids (e.g., Trexler, 2001; Varrichio, 2001; Dalman et al., 2018; Freimuth et al., 2021).

SYSTEMATIC PALEONTOLOGY

Tyrrannosauroidea Osborn, 1906
Tyrrannosauridae Osborn, 1906
Tyrrannosaurinae Osborn, 1906
Daspletosarini Voris et al., 2020
cf. Daspletosaurus Russell, 1970
cf. Daspletosaurus horneri Carr et al., 2017

Material: UCM 55499, a left juvenile frontal of a tyrannosaurid theropod (Figs. 1, 2).

Horizon and age: Upper Cretaceous (Campanian) Two Medicine Formation, Montana, USA.

Taxonomic referral: UCM 55499 is referable to Tyrannosauridae and not to any other contemporaneous theropod clade (e.g., Dromaeosauridae, Ornithomimosauria, Troodontidae) based on several features that are unique to tyrannosaurids, including rostrocaudally short orbital slot, expanded postorbital suture which occupies caudal half of the bone and is divided into a postorbital buttress and a caudal shelf, extensive dorso temporal fossa that covers the entire dorsal surface of the bone caudal to the orbital slot and would have met the opposing fossa at the midline, flat “forehead” (sensu Carr & Williamson, 2010) region, sagittal crest that extends onto the frontal, and frontoparietal suture that projects rostrally along the midline (e.g., Currie, 1987; Tsuihiji et al., 2012; Lehman & Wick, 2013; Carr et al., 2017; Figs. 1, 2). Currently, two tyrannosaurid taxa are recognized in the Two Medicine Formation fauna, namely the albertosaurine Gorgosaurus libratus and the tyrannosaurine Daspletosaurus horneri (Carr et al., 2017; Dalman et al., 2018; Yun, 2021). In lateral view, the postorbital suture in UCM 55499 slopes caudoventrally, which is similar to tyrannosaurines but differs from the horizontal condition in albertosaurines (Voris, 2018). Indeed, a juvenile postorbital of Daspletosaurus (TMP 2013.018.0011) from the Dinosaur Park Formation reported by Voris et al. (2019) preserves a frontal suture that slopes more caudoventrally compared to similarly-sized Gorgosaurus frontals (Voris, 2018; J.T. Voris pers. comm.). The angle between the frontal suture and the rostrocaudal axis of the bone in the medial...
surface of TMP 2013.018.0011 (14.2°; Voris et al., 2019: fig. 2) and that of the postorbital suture and the rostrocaudal axis (19.7°) in the lateral surface of UCM 55499 are comparable to each other. Additionally, the laterosphenoid suture in UCM 55499 is facing caudoventrally, unlike the subvertical, caudally-facing suture in Gorgosaurus frontals (e.g., Yun, 2020; pers. obs). This appears to be consistent with the description of Voris (2018), who noted the angle between frontal and laterosphenoid sutures in Daspletosaurus postorbitals is obtuse, in which the former slopes caudoventrally. Furthermore, the mediolateral width of the caudal shelf in UCM 55499 is slightly wider than that of the postorbital buttress, which is reminiscent to the condition in tyrannosaurs (Voris, 2018; Voris et al., 2022). In contrast, the widest part of the albertosaurine frontals is located at the rostral end of postorbital suture (Voris, 2018; Voris et al., 2022). Thus, UCM 55499 can be identified as a tyrannosaurine, of which Daspletosaurus horneri is the only known example in the Two Medicine Formation. Therefore, this specimen is probably referable to this taxon. Of note, UCM 55499 does resemble Gorgosaurus frontals by possessing mediolaterally oriented orbital slot in dorsal view (Voris et al., 2022) but it is interpreted in this work that this apparent similarity is likely due to the “transitional” growth stage that the specimen represents, between small juveniles with rostrocaudally elongated shallow slot (Carr, 1999; Tsuihiji et al., 2011) and the folded, narrow and deep slot present in tyrannosaurine adults (Carr, 2020; Voris et al., 2022), or else as an individual variation. Furthermore, the area between the postorbital buttress and the caudal shelf in UCM 55499 is extremely thin and plate-like, similar to the condition reported in the holotype of tyrannosaurine Alioramus “altaï” (Bever et al., 2013) but differs from the relatively deep condition in juvenile Gorgosaurus (e.g., Voris et al., 2019: fig. S15). Lastly, Gorgosaurus does not approach the abundance of Daspletosaurus horneri in the Two Medicine Formation (e.g., Farlow & Pianka, 2002; Carr et al., 2017; Voris et al., 2020). In summary, the combination of aforementioned Daspletosaurus-like or tyrannosaurine-like features, differences from similarly-sized Gorgosaurus frontals as well as its provenance favours identification of the specimen as Daspletosaurus horneri through a balance of probability.

Comparative description: UCM 55499 is an isolated, mostly complete left frontal that lacks the nasal process, the rostral part of the area that articulated with the prefrontal, and the dorsal part of the sagittal crest. As preserved, the maximum rostrocaudal length of the specimen is 82 mm. When measured after the methodology of Currie (2003a), the width and depth are 44 mm and 18 mm, respectively. The specimen is comparable in its dimensions to small frontals of Daspletosaurus sp., Gorgosaurus libratus, Tarbosaurus bataar, and Tyrannosaurus rex, but much smaller than large frontals of any of these (Currie, 2003a; Lehman & Wick, 2013). The subcutaneous surface of the “forehead” region is flat, like in some individuals of Daspletosaurus spp., and in Lythronax argestes (Voris et al., 2020; Yun, 2020; Figs. 5

Fig. 1 UCM 55499, left frontal of a juvenile cf. Daspletosaurus horneri, in A, dorsal view; B, ventral view; C, rostral view; D, lateral view; E, medial view; F, caudal view. Abbreviations: cbf, cerebral fossa; ccr, crista cranii; cpos, caudal part of postorbital suture; cr, cylinder-like ridge; cs, caudal shelf; dtr, dorso-temporal ridge; es, ethmoid scar; fh, forehead region; ifs, interfrontal suture; lac, lacrimal socket; lss, laterosphenoid suture; ms, joint surface for the mesethmoid; obf, olfactory bulb fossa; or, orbital wall; os, orbital slot; oss, orbitosphenoid suture; pb, postorbital buttress; prf, joint surface for prefrontal; ps, parietal suture; rpos, rostral part of postorbital suture; sc, sagittal crest. Images are courtesy of The Fossil Vertebrate Collection at the University of Colorado Boulder Museum of Natural History.
Caudally, a large but shallow dorso-temporal fossa is present, and would have occupied at least half of the entire subcutaneous surface when the bone was complete, like in other derived tyrannosaurs (Carr et al., 2017; Figs. 1A, 2A). While the nasal process is broken in UCM 55499, the frontal is wide at the rostromedial level of the joint surface for the prefrontal, indicating the base of the nasal process was transversely wide as well (Figs. 1A, B, 2A, B). This is similar to the condition in albertosaurines and juvenile tyrannosaurs, which have a wide nasal process (Carr, 1999; Carr & Williamson, 2004, 2010; Lehman & Wick, 2013) but differs from the transversely narrow process in subadults and adults of the latter clade (Carr & Williamson, 2004, 2010; Lehman & Wick, 2013; Yun, 2020, 2022). The apex of the joint surface for the prefrontal is narrow in UCM 55499, indicating that the prefrontal was narrowly exposed on the skull roof of this individual (Figs. 1C, 2C). This contrasts with the broad, teardrop-shaped prefrontal of adult daspletosaurines (Voris et al., 2020). Ventrally, the trace of the prefrontal contact suggests that the prefrontal had only one medially projecting prong, like all other tyrannosaurids excepting Thanatotheristes which has two ventral prongs on the prefrontal (Voris et al., 2020; Yun, 2020, 2022).

Laterally, there is a rostrally facing, cup-shaped lacrimal contact that is similar to those in Daspletosaurus spp., Gorgosaurus libratus, Nanuqsaurus hoglundi, Teratophoneus curriei, and several examples of Tyrannosaurus rex (Currie, 2003a; Fiorillo & Tykoski, 2014; Yun, 2020, 2022). Dorsally, the medial and caudal margins of the socket are continuous, forming a crescent shape (Figs. 1A, 2A) that differs from the right-angled shape observed in some tyrannosaurid frontals (Currie, 2003a; Yun, 2020, 2022). Nevertheless, the medial margin is elongated while the caudal margin is narrow, as in juvenile tyrannosaurids (Carr, 1999; Carr & Williamson, 2004). Caudolateral to the lacrimal socket is a narrow, groove-like, deep orbital slot that is oriented subvertically (Figs. 1D, 2D). This differs from the rostrocaudally broad shallow condition seen in small juveniles of Tarbosaurus bataar and Tyrannosaurus rex (Carr, 1999; Carr & Williamson, 2004; Tsuihiji et al., 2011). The apex of this slot is slightly inclined rostrally. Medial to the orbital slot there is a weakly developed, sinusous, medially oriented dorso-temporal ridge (Figs. 1A, 2A). This differs from the rostrolaterally oriented condition seen in large individuals of Daspletosaurus horneri but agrees with the condition seen in most tyrannosaurines (Carr et al., 2017; Voris et al., 2020).

Caudal to the orbital slot on the lateral surface of the frontal, a postorbital buttress bears the rostral part of the postorbital suture. The rostral part of the postorbital suture is circular, and considerably shallower (13 mm in dorsoventral depth) than in large subadult and adult tyrannosaurines (Carr & Williamson, 2004; Voris et al.,
of UCM 55499 is rostrocaudally elongate (52 mm), forming the entire medial part of the dorsoptemoral fossa (Figs. 1D, 2D). Such an elongate, well-developed sagittal crest is a typical feature in derived tyrannosaurines that are phylogenetically nested between Alioramus and the Tarbosaurus bataar + Tyrannosaurus rex clade (e.g., Carr, 1999; Carr & Williamson, 2004; Lehman & Wick, 2013; Carr et al., 2017; McDonald et al., 2018; Voris et al., 2020; Yun, 2020, 2022). The sagittal crest is rostrally extended to a similar degree in CMNH 7541, a juvenile Tyrannosaurus rex specimen in which the frontal has similar dimensions to UCM 55499 (Carr, 1999; Currie, 2003a). While the dorsal part of the sagittal crest is broken in UCM 55499, the curvature of the bone grain that is lateral to the crest strongly indicates that the sagittal crest would have been dorsoventrally tall as well (Figs. 1F, 2F), like in derived tyrannosaurines (e.g., Currie, 2003a; Lehman & Wick, 2013; Carr et al., 2017; McDonald et al., 2018; Voris et al., 2020; Yun, 2020, 2022). The orientation of the caudal part of the sagittal crest suggests the rostral extent of the median spur of the parietal that separated the frontals caudally was slight.

The interfrontal surface occupies the entire medial surface of the bone, and is vertical (Figs. 1E, 2E). While the rostral part of the suture is generally flat, a series of distinct ridges appears caudally. The ridges suggest that the frontals interdigitated with each other in this area, like in larger tyrannosaurid individuals (e.g., Currie, 2003a; Yun, 2020, 2022). In a Tarbosaurus bataar juvenile considered to be two to three years old (MPC-D 107/07), this area is smooth (Tsuihiji et al., 2011).

A distinct, transversely wide (10 mm) joint surface for the mesethmoid is situated at the rostromedial corner of the ventral surface of the frontal, as in Gorgosaurus libratus and Daspletosaurus spp. (Yun, 2020; Paulina-Carabajal et al., 2021: fig. 2). This feature differs from the narrow joint surface seen in Alioramus remotus and Teratophoneus curriei (Bever et al., 2013; Yun, 2022). Lateral to the joint surface for the mesethmoid there is a concave region that represents the caudal end of the nasal cavity, which would have been lined with olfactory epithelium when the animal was alive (e.g., Bever et al., 2013; McDonald et al., 2018; Yun, 2022). Caudally, a short, distinct and ridge-like ethmoid scar separates the nasal cavity from the olfactory bulb fossa (Figs. 1B, 2B). The olfactory bulb fossa is rectangular, and is bounded by the joint surface for the mesethmoid and ethmoid scar rostrally, and the crista cranii laterally (Figs. 1B, 2B). The width and length of this fossa are 24 mm and 25 mm, respectively. The crista cranii is a thick, process-like structure whose rostral portion trends rostroventrally as in other tyrannosaurids (Ali et al., 2008; Bever et al., 2013; Yun, 2022). Caudally, a deep, wide (20 mm) and ovoid cerebral fossa is separated from the olfactory bulb fossa by a thick, cylinder-like ridge, similar to other tyrannosaurids (Carr, 2020; Yun, 2022; Figs. 1B, 2B). The rostrocaudal length of the endocranial region in UCM 55499 is therefore 64 mm. Lateral to the cerebral fossa lies the orbitosphenoid suture, which is an ovoid concavity that faces medioventrally (Figs. 1B, 2B), as in other tyrannosaurids (McDonald et al., 2018; Yun, 2020, 2022). The caudoventrally facing laterosphenoid suture is square-shaped, and located caudolateral to the orbitosphenoid suture. The orbital wall occupies a large part of the lateral portion of the ventral surface, and is a half-moon shaped concavity that is bounded by the crista cranii and the orbitosphenoid suture caudally.

DISCUSSION

Ontogenetic status of UCM 55499: Specimen UCM 55499 can be confidently interpreted as coming from a juvenile individual based on several features that are shared with specimens considered to be juveniles of other tyrannosaurids, such as Gorgosaurus libratus, Tarbosaurus bataar, and Tyrannosaurus rex (Carr, 1999, 2020; Carr & Williamson, 2004; Tsuihiji et al., 2011). The specimen is diminutive in size, the mediolateral width of the bone at the level of the orbital slot being most similar
to the corresponding measurement in tyrannosaurid specimens (e.g., CMNH 7541) which are considered young juveniles (Carr, 1999; Currie, 2003a). It has been demonstrated that body size correlates with maturity for tyrannosaurids at juvenile-subadult growth stages (e.g., Carr, 2020), and that young tyrannosaurids of different species had similar body sizes at equivalent ages (e.g., Erickson et al., 2004; Funston et al., 2021).

Additionally, several morphological features other than small size also indicate the immature status of UCM 55499. The lacrimal socket is longer than wide (Figs. 1A, 2A), and such an elongated but narrow socket is consistent with the condition seen in juveniles of Gorgosaurus libratus, Tarbosaurus bataar, and Tyrannosaurus rex (Carr, 1999, 2020; Carr & Williamson, 2004; Tsujihiji et al., 2011). The dorsotemporal ridge is only weakly developed, similar to juveniles of Tarbosaurus bataar and Tyrannosaurus rex (Carr & Williamson, 2004; Tsujihiji et al., 2011), but differing from larger subadult and adult tyrannosaurids, in which this ridge is distinctly developed (Currie, 2003a; Carr & Williamson, 2004; Carr et al., 2017). The dorsotemporal fossa is shallow (Figs. 1A, 2A), unlike the deep condition seen in larger and more mature individuals, but similar to the condition previously reported from juvenile tyrannosaurids (Carr, 1999; Carr & Williamson, 2004). Although the rostral and caudal parts of the postorbital suture are well separated and each developed into a postorbital buttress and caudal shelf (Figs. 1A, 2A), they are not as transversely expanded as in large subadults and adults (Carr, 1999, 2020; Carr & Williamson, 2004). The mediolateral width of the tyrannosaurid frontal is strongly positively allometric with respect to skull length (Currie, 2003b), and the undeveloped buttress and shelf in UCM 55499 closely match the condition found in juvenile Gorgosaurus libratus and Tyrannosaurus rex (Carr, 1999, 2020). Lastly, UCM 55499 is dorsoventrally shallow, being only 18 mm deep at the medial surface directly rostral to the dorsotemporal fossa. Frontal depth is strongly positively allometric with respect to frontal width in tyrannosaurids (Currie, 2003a), so the dorsoventrally shallow condition of UCM 55499 is consistent with its juvenile status. It is also noteworthy that the postorbital suture in UCM 55499 is much shallower than those of larger tyrannosaurid individuals (e.g., Voris et al., 2020; Yun, 2020, 2022). In summary, both small size and presence of multiple immature characters in UCM 55499 strongly indicate the juvenile status of the individual this specimen represents.

While it can be confidently stated that UCM 55499 originates from a small juvenile, this individual was probably more mature than some of the youngest tyrannosaurids described so far. Aside from embryonic material (Funston et al., 2021), these are the two-year-old Tyrannosaurus rex LACM 28471 (Erickson et al., 2004; Carr, 2020) and the two-to-three-year-old Tarbosaurus bataar MPC-D 107/07 (Tsujihiji et al., 2011). In these specimens, the postorbital buttress is not clearly separated from the caudal shelf (Tsujihiji et al., 2011; Carr, 2020), whereas these structures are well-separated in UCM 55499 like in more mature tyrannosaurids. Furthermore, the sagittal crest is either not present (Tsujihiji et al., 2011) or present only as a low ridge (Carr, 2020) in MPC-D 107/07 and LACM 28471, respectively, but is well-developed in UCM 55499. Lastly, the frontals of LACM 28471 and MPC-D 107/07 are considerably smaller than UCM 55499 (Currie, 2003a; Carr & Williamson, 2004; Tsujihiji et al., 2011). Therefore, it is reasonable to assume that UCM 55499 belonged to an individual that was more ontogenetically mature than LACM 28471 and MPC-D 107/07.

Implications for ontogeny of Daspletosaurus horneri: As mentioned above, UCM 55499 probably represents Daspletosaurus horneri, and its small size as well as the presence of a suite of immature characters suggest its juvenile status. Currie (2003b)’s allometric equation relating frontal width (FW) to frontal length (FL) in tyrannosaurines (Log FL = 0.507*Log FW + 1.1523, R² = 0.8313) indicates that the length of UCM 55499 was likely about 95.5 mm when the bone was complete. This estimated length, as well as the directly measurable depth and width of UCM 55499, are comparable to the corresponding dimensions of some juvenile tyrannosaurid specimens such as CMNH 7541 and TMP 1994.143.0001, which have skull lengths of about 575 mm and 620 mm, respectively (Currie, 2003a). Within the growth series of Daspletosaurus horneri initially reported by Carr et al. (2017), the skull length of the individual represented by the smallest juvenile dentary specimen (MOR 553S/7.19.0.97) was estimated as slightly more than 496 mm. The next smallest individual in the sample, represented by the partial maxilla AMNH FARB 5477, is either a large juvenile (Carr et al., 2017) or a small subadult (Delcourt, 2017), and has a maxillary tooth row about 384.2 mm long. An equation of Currie (2003b) that relates maxillary tooth row length (MTR) to skull length (SKL) in tyrannosaurines (Log SKL = 0.98*Log MTR + 0.40, R² = 0.96) estimates the complete skull length for this specimen to be about 848 mm. Therefore, UCM 55499 is important in being one of the few known examples of juvenile Daspletosaurus horneri (Carr et al., 2017; Voris et al., 2019), and potentially represents an intermediate growth stage between the previously described smallest juvenile and the next smallest available specimen.

Previously, the only known frontals of Daspletosaurus horneri were those of MOR 590 and MOR 1130, respectively a large subadult and an adult (Carr et al., 2017). As both of these specimens have been described only briefly (Carr et al., 2017), investigating ontogenetic variation in the frontal of Daspletosaurus horneri is difficult. Nevertheless, several preliminary inferences can be made, based on the available information. Frontals of large Daspletosaurus horneri individuals are like those of similarly-sized Daspletosaurus torosus, and of derived tyrannosaurines such as Tyrannosaurus rex, in having a narrow nasal process, an elongated and tall sa-
gittal crest, and a transversely expanded body with a roughly quadrangular outline (e.g., Carr, 1999; Currie, 2003a; Carr & Williamson, 2004; Lehman & Wick, 2013; Carr et al., 2017; Yun, 2020). The nasal process of UCM 55499 was presumably wide, based on the width of the area preserved medial to the joint surface for the prefrontal. An ontogenetic transition from a wide to a narrow nasal process of the frontal has been reported in *Tyran
nosaurus rex* (Carr & Williamson, 2004; Carr, 2020). The sagittal crest of UCM 55499 is elongated and likely was tall. Such an elongated and tall sagittal crest is present in similarly-sized juvenile *Tyran
nosaurus rex* (Carr, 1999, 2020; Carr & Williamson, 2004). While the postorbital buttress and the caudal shelf of UCM 55499 are separated from each other and extend laterally (Figs. 1A, 2A), they are obviously not expanded to the degree seen in large tyran
nosaurines (Currie, 2003a; Carr & Williamson, 2004; Lehman & Wick, 2013; Yun, 2020). The caudal margin of the lacrimal socket of UCM 55499 is transversely narrow in dorsal view, and this reflects the minimally expanded shape of the bone as well (e.g., Carr, 1999; Carr & Williamson, 2004; Yun, 2020, 2022). These characters are also shared with a similarly-sized juvenile specimen (CMNH 7541) of *Tyran
nosaurus rex* (Carr, 1999; Carr & Williamson, 2004). The “forehead” region in UCM 55499 is flat, unlike the concave condition that slopes towards the interfrontal suture in adult *Daspleto
saurus horneri* (Carr et al., 2017; Voris et al., 2020, 2022). Transition from flat to medioventrally concave condition in this region has been reported in *Tyran
nosaurus rex* (Carr, 1999, 2020). Lastly, the cerebral fossa in UCM 55499 is well-defined and deep, unlike the relatively shallow condition in larger tyrannosaurid frontals (Carr, 2020; Yun, 2020, 2022). Ontogenetic transition between deep to shallow cerebral fossa is present in *Tyran
nosaurus rex* (Carr, 2020). Intriguingly, a similar ontogenetic variation is present in ornithischian dinosaur *Psittacosaurus*, and such change is likely due to increasing distance between the brain and the braincase during growth (Bullar et al., 2019).

Collectively, these features suggest that patterns of ontogenetic changes in the frontal of *Daspleto
saurus horneri* were largely similar to those seen in *Tyran
nosaurus rex*. However, UCM 55499 differs from the similarly-sized juvenile *Tyran
nosaurus rex* (CMNH 7541) in at least one respect, as the orbital slot in the former is a subverti
cal groove (Figs. 1D, 2D) similar to larger tyrannosaurids (Currie, 2003a; McDonald et al., 2018; Yun, 2020, 2022), but in the latter it is a shallow slot with a relatively elongated margin (Carr, 1999, 2020). A shallow orbital slot with an elongate margin is a plesiomorphic feature in tyran
nosaurids (e.g., Tsuihiji et al., 2012) and can be seen in young individuals of tyrannosaurids (e.g., Carr, 1999, 2020; Tsuihiji et al., 2011; Bever et al., 2013). This indicates that the derived state of this character (i.e., subvertical groove-like slot) may have developed earlier in ontogenetic growth in *Daspleto
saurus horneri* than in *Tyran
nosaurus rex*. Of note, Voris et al. (2022) found that major cranial ontogenetic changes in *Gorgosa
urus libratus* occurred at smaller body size and younger age compared to the larger *Tyran
nosaurus rex*. Given that the adult body size of *Daspleto
saurus horneri* is similar to that of *Gorgosaurus libratus* (Carr et al., 2017), the difference in morphology of the orbital slot between CMNH 7541 and UCM 55499 may also potentially due to similar reason.

Large individuals of *Daspleto
saurus horneri* have a broad, teardrop-shaped prefrontal in dorsal part of the skull (Carr et al., 2017: fig. 1F), like other members of the same genus (Voris et al., 2020). The dorsal part of the preserved joint surface for the prefrontal in UCM 55499 is narrow and groove-like (Figs. 1C, 2C), which suggests that the prefrontal would have been only narrowly ex
posed on the skull roof. Carr (2020) noted an ontogenetic shift in *Tyran
nosaurus rex* from a narrow joint surface for the prefrontal to a wide one. Therefore, the morphol
ogy of this feature in UCM 55499 implies that *Daspleto
saurus horneri* exhibited an ontogenetic change in this character similar to that seen in *Tyran
nosaurus rex*. However, identification of this possible ontogenetic variation should be considered provisional, as significant individu
al variation exists in tyrannosaurids with regard to the degree of exposure of the prefrontal, including its occa
sional fusion to the adjacent bones (e.g., Brochu, 2003; Currie, 2003a; Bever et al., 2013).

Another potential ontogenetic variation involves the orienta
tion of the dorso-temporal ridge. The ridge in UCM 55499 is sinuous, just as in larger specimens of *Daspleto
saurus horneri* (Carr et al., 2017), but differs from these in having a mediolateral orientation (Figs. 1A, 2A) rather than a rostrolateral one (Voris et al., 2020). Ontogenetic variation in this feature is present in *Tyran
nosaurus rex* (Carr, 2020). It is noteworthy, however, that some tyrannosaurids, like *Daspleto
saurus torosus* and *Tyran
nosaurus rex*, show individual, non-ontogenetic variation in the orientation of the dorso-temporal ridge (Carr et al., 2017; Voris et al., 2020). Additional discoveries of more *Daspleto
saurus horneri* specimens representing different growth stages will be necessary to determine whether true ontogenetic variation in this feature is present in this taxon.

CONCLUSIONS

The specimen UCM 55499 represents a left juvenile tyr
nosaurine frontal from the Two Medicine Formation of Montana, and is probably referable to *Daspleto
saurus horneri*. This specimen is important for filling a size gap between small juvenile and large juvenile/small subadult stages in previously reported growth series of *Daspleto
saurus horneri* (Carr et al., 2017; Delcourt, 2017), and also represents the first juvenile frontal documented for this taxon. Additionally, comparisons between UCM 55499 and frontals of other tyrannosaurids, including larger examples of *Daspleto
saurus horneri*, indicate that despite some minor differences, ontogenetic changes in
the frontal bone of *Daspletosaurus horneri* were similar to those reported in other tyrannosaurs, such as *Tyrannosaurus rex*.

ACKNOWLEDGEMENTS

The author thanks J. Van Veldhuizen for the permission to study the specimen described in this work, and sharing a scan of it. J.T. Voris shared important information about the morphology of the postorbital-frontal contact in juvenile tyrannosaurs, and the author is truly grateful to him. The author is thankful to the editor Z. Csiki-Sava, and to the reviewers C. Sullivan and G. Funston, whose comments greatly improved this manuscript.

REFERENCES

Ali, F., Zelenitsky, D.K., Therrien, F. & Weishampel, D.B., 2008. Homology of the ethmoid complex of tyrannosaurs and its implications for the reconstruction of the olfactory apparatus of non-avian theropods. Journal of Vertebrate Paleontology, 28: 123–133.

Bever, G.S., Brusatte, S.L., Carr, T.D., Xu, X., Balanoff, A.M. & Norell, M.A., 2013. The braincase anatomy of the Late Cretaceous dinosaur *Alioramus* (Theropoda: Tyrannosauroidea). Bulletin of the American Museum of Natural History, 376: 1–72.

Brochu, C.A., 2003. Osteology of *Tyrannosaurus rex*: Insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. Journal of Vertebrate Paleontology, 22(Supplement 4): 1–138.

Bullar, C.M., Zhao, Q., Benton, M.J. & Ryan, M.J., 2019. Ontogenetic braincase development in *Psittacosaurus lijiatunensis* (Dinosauria: Ceratopsia) using micro-computed tomography. PeerJ, 7: e7217.

Carr, T. D., 1999. Craniofacial ontogeny in Tyrannosauridae (Dinosauria, Coelurosauria). Journal of Vertebrate Paleontology, 19: 497–520.

Carr, T.D., 2020. A high-resolution growth series of *Tyrannosaurus rex* obtained from multiple lines of evidence. PeerJ, 8: e9192.

Carr, T.D. & Williamson, T.E., 2004. Diversity of late Maastrichtian Tyrannosauridae (Dinosauria: Theropoda) from western North America. Zoological Journal of the Linnean Society, 142: 479–523.

Carr, T.D. & Williamson, T.E., 2010. *Bistiheversor sealeyi*, gen. et sp. nov., a new tyrannosaurid from New Mexico and the origin of deep snouts in Tyrannosauroidea. Journal of Vertebrate Paleontology, 30: 1–16.

Carr, T.D., Varricchio, D.J., Sedlmayr, J.C., Roberts, E.M. & Moore, J.R., 2017. A new tyrannosaur with evidence for anagenesis and a crocodile-like facial sensory system. Scientific Reports, 7: 44942.

Currie, P.J., 1987. Theropods of the Judith River Formation of Dinosaur Provincial Park, Alberta, Canada. Tyrrell Museum of Palaeontology, Occasional Papers in Palaeontology, 3: 52–60.

Currie, P.J., 2003a. Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta, Canada. Acta Palaeontologica Polonica, 48: 191–226.

Currie, P.J., 2003b. Allometric growth in tyrannosaurs (Dinosauria: Theropoda) from the Upper Cretaceous of North America. Canadian Journal of Earth Sciences, 40: 651–665.

Currie, P.J., Trexler, D., Koppelhus, E.B., Wicks, K. & Murphy, N., 2005. An unusual multi-individual tyrannosaurid bonebed in the Two Medicine Formation (Late Cretaceous, Campanian) of Montana (USA). In: Carpenter, K. (ed.), The Carnivorous Dinosaurs (pp. 313–324). Indiana University Press, Bloomington.

Dalman, S.G., Lucas, S.G. & Malinzak, D.E., 2018. Tyrannosaur teeth from the Upper Cretaceous Two Medicine Formation of Montana. New Mexico Museum of Natural History and Science Bulletin, 79: 125–139.

Delcourt, R., 2017. A subadult maxilla of a Tyrannosauridae from the Two Medicine Formation, Montana, United States. Papéis Avulsos de Zoologia, 57:113–118.

Erickson, G.M., Makovicky, P.J., Currie, P.J., Norell, M.A., Yerby, S.A. & Brochu, C.A., 2004. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature, 430: 772–775.

Farlow, J.O. & Pianka, E.R., 2002. Body size overlap, habitat partitioning and living space requirements of terrestrial vertebrate predators: implications for the paleoecology of large theropod dinosaurs. Historical Biology, 16: 21–40.

Fiorillo, A.R. & Tykoski, R.S., 2014. A diminutive new tyrannosaur from the top of the world. PLoS ONE, 9: e91287.

Fowler, D.W., 2017. Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America. PLoS ONE, 12: e0188426.

Fowler, D.W., Woodward, H.N., Freedman, E.A., Larson, P.L. & Horner, J.R., 2011. Reanalysis of “Raptorex kriegsteini”: A Juvenile Tyrannosaurid Dinosaur from Mongolia. PLoS ONE, 6: e21376.

Freimuth, W.J. & Varricchio, D.J., 2019. Insect trace fossils elucidate depositional environments and sedimentation at a dinosaur nesting site from the Cretaceous (Campanian) Two Medicine Formation of Montana. Palaeogeography, Palaeoclimatology, Palaeoecology, 534: 109262.

Freimuth, W.J., Varricchio, D.J., Brannick, A.L., Weaver, L.N. & Wilson Mantilla, G.P., 2021. Mammal-bearing gastric pellets potentially attributable to *Troodon formosus* at the Cretaceous Egg Mountain
locality, Two Medicine Formation, Montana, U.S.A. Palaeontology, 64: 699–725.

Funston, G.F., Powers, M.J., Whitebone, S.A., Brusatte, S.L., Scannella, J.B., Horner, J.R. & Currie, P.J., 2021. Baby tyrannosaurid bones and teeth from the Late Cretaceous of western North America. Canadian Journal of Earth Sciences, 58: 756–777.

Hurum, J.H. & Sabath, K., 2003. Giant theropod dinosaurs from Asia and North America: Skulls of *Tarbosaurus bataar* and *Tyran nnsauras rex* compared. Acta Palaeontologica Polonica, 48: 161–190.

Lehman, T.M. & Wick, S.T., 2013. Tyrannosaurid dinosaurs from the Aguja Formation (Upper Cretaceous) of Big Bend National Park, Texas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 103: 471–485.

McDonald, A.T., Wolfe, D.G. & Dooley, A.C., 2018. A new tyrannosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Menefee Formation of New Mexico. PeerJ, 6: e5749.

Osborn, H.F., 1906. *Tyrannosaurus*, Upper Cretaceous carnivorous dinosaur (Second communication). Bulletin of the American Museum of Natural History, 22: 281–296.

Panasci, G. & Varricchio, D.J., 2020. A new terrestrial trace *Feoichnus martini*, ichnosp. nov., from the Upper Cretaceous Two Medicine Formation (USA). Journal of Paleontology, 94: 922–930.

Paulina-Carabajal, A., Currie, P.J., Dudgeon, T.W., Larson, H.C. & Miyashita, T., 2021. Two braincases of *Daspletosaurus* (Theropoda: Tyrannosauridae): anatomy and comparison. Canadian Journal of Earth Sciences, 58: 885–910.

Penkalski, P., 2014. A new ankylosaurid from the late Cretaceous Two Medicine Formation of Montana, USA. Acta Palaeontologica Polonica, 59: 617–634.

Rogers, R.R., 1997. Two Medicine Formation. In: Currie, P.J. & Padian, K. (eds.), Encyclopedia of Dinosaurs (pp. 760–765), Academic Press, San Diego.

Rogers, R.R., Swisher, C.C. & Horner, J.R., 1993. 40Ar/39Ar age and correlation of the nonmarine Two Medicine Formation (Upper Cretaceous), northwestern Montana, U.S.A. Canadian Journal of Earth Science, 30: 1066–1075.

Rusell, D.A., 1970. Tyrannosaurs from the Late Cretaceous of western Canada. National Museum Natural Sciences Publications in Palaeontology, 1: 1–34.

Schneider C.A., Rasband W.S. & Eliceiri K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9: 671–675.

Trexler, D., 2001. Two Medicine Formation, Montana: geology and fauna. In: Tanke, D.H. & Carpenter, K. (eds.), Mesozoic Vertebrate Life (pp. 298–309). Indiana University Press, Bloomington.

Tsuhihi, T., Watabe, M., Tsogtbataar, K., Tsubamoto, T., Barsbold, R., Suzuki, S., Lee, A.H., Ridgely, R.C., Kawahara, Y. & Witmer, L.M., 2011. Cranial osteology of a juvenile specimen of *Tarbosaurus bataar* (Theropoda, Tyrannosauridae) from the Nemegt Formation (Upper Cretaceous) of BuginTsav, Mongolia. Journal of Vertebrate Paleontology, 31: 497–517.

Voris, J.T., 2018. Cranial anatomy and ontogeny of *Gorgosaurus libratus* (Tyrannosauridae: Albertosaurinae). Master’s Thesis. University of Calgary, Calgary, 115 pp.

Voris, J.T., Zelenitsky, D.K. & Brown, C.M., 2020. A new tyrannosaurine (Theropoda: Tyrannosauridae) from the Late Cretaceous of Alberta, Canada with implications for the identification of immature tyrannosaurids. Scientific Reports, 9: 17801.

Voris, J.T., Therrien, F. & Currie, P.J., 2019. Reassessment of a juvenile *Daspletosaurus* from the Late Cretaceous of Alberta, Canada with implications for the identification of immature tyrannosaurids. Scientific Reports, 9: 17801.

Yun, C.-G., 2020. A Subadult Frontal of *Daspletosaurus torosus* (Theropoda: Tyrannosauridae) from the Late Cretaceous of Alberta, Canada with implications for Tyrannosaurid Ontogeny and Taxonomy. PalArch’s Journal of Vertebrate Palaeontology, 17: 1–13.

Yun, C.-G., 2021. A juvenile metatarsal of cf. *Daspletosaurus torosus*: Implications for ontogeny in tyrannosaurid theropods. Acta Palaeontologica Romanae, 17: 15–22.

Yun, C.-G., 2022. Frontal bone anatomy of *Terrarhopheus curriei* (Theropoda: Tyrannosauridae) from the Upper Cretaceous Kaiparowits Formation of Utah. Acta Palaeontologica Romanae, 18: 51–64.