Clinical significance of tumor cells in the peripheral blood of patients with esophageal squamous cell carcinoma
Lu Han, MDa,b, Yun-Jie Li, MDc, Wei-Di Zhang, MDd, Ping-Ping Song, PhDd,e, Hao Li, MDe,f, Sheng Li, PhDb,*

Abstract
Circulating tumor cells (CTCs) are suspected of predicting the prognosis of malignant tumor, but there are few relevant reports specific to esophageal squamous cell carcinoma (ESCC). This study investigated the clinical significance of CTCs in patients with ESCC.
Sixty patients with ESCC were enrolled, from whom CTCs had been tested by our team previously. Peripheral blood samples were obtained from these patients before treatment; and CTCs were assayed by isolation by size of epithelial tumor cells (ISET). Associations between the presence of CTCs and patients’ clinicopathological parameters and clinical outcomes were analyzed.

CTCs were detected in 20 patients (33.3%), who experienced significantly shorter progression-free survival (PFS) than did the CTC-negative patients. Overall, PFS was negatively associated with the number of CTCs. Multivariate analyses showed that a CTC count >2 was a strong independent prognostic indicator of tumor recurrence (hazard ratio [HR] 5.63; 95% confidence interval [CI] 1.77–17.89; \(P =.003 \)). In the subgroup of 50 patients who underwent R0 resection and postoperative adjuvant radiotherapy or chemotherapy, CTC was a strong, independent, and prognostic indicator of tumor recurrence (HR 10.70; 95% CI, 1.40–81.91; \(P =.022 \)). The number of CTCs correlated with the T stage (\(r =0.26, P =.043 \)) but not with the N or M stage. For subgroups in stages II or I-IIIB or T3 or T3+T4, the PFS of patients with CTCs >1 or >2 was significantly shorter than that of the patients with CTCs ≤2. In the stage III or T3 + T4 groups, the PFS of patients with CTCs >0 was significantly shorter than that of patients with CTCs =0.

This is the first study to report that the CTC detected by ISET is an independent and prognostic indicator of patients’ outcome in ESCC. Consideration of CTCs may improve the accuracy of preoperative staging in ESCC.

Abbreviations: CEA = carcinoembryonic antigen, CI = confidence interval, CTCs = circulating tumor cells, ESCC = esophageal squamous cell carcinoma, HR = hazard ratio, ISET = isolation by size of epithelial tumor cells, PFS = progression free survival, WHO = World Health Organization.

Keywords: circulating tumor cells, clinical significance, esophageal squamous cell cancer, ISET, prognostic value

1. Introduction
Esophageal carcinoma is a common and deadly cancer in China and ranked as the fourth cause of cancer-related deaths. Since the early symptoms of esophageal squamous cell carcinoma (ESCC) are often hard to recognize, patients are usually at an advanced stage at the initial diagnosis. Late treatment leads to a poor prognosis, with 5-year survival rates of only 15% to 25%.1–3 A poor prognosis is usually due to recurrence and metastasis.

Clinically, a considerable number of early-stage ESCC patients do not have obvious metastasis, but die of early tumor recurrence and distant metastasis after radical surgery.4,4 This suggests that the spread of cancer cells cannot be detected by conventional clinical or histopathological methods.

Circulating tumor cells (CTCs) are tumor cells that are released into the peripheral blood from the primary tumor or metastatic lesions, either spontaneously or due to surgery.5 CTCs from various tumors have the potential to act as precursors of metastases, including esophageal cancer.6,7 Methods to detect CTCs in esophageal cancer are mainly the following: reverse transcription (RT)-PCR, the Celltracks AutoPrep system, and isolation by size of epithelial tumor cells (ISET). RT-PCR disrupts the cells and is not applicable to a small number of CTCs, and the Celltracks AutoPrep system is limited by its inability to detect nonepithelial CTCs, which leads to a low detection rate. Although ISET technology loses a few small CTCs (<8 μm diameter), the technique is simple, inexpensive, and capable of separating viable CTCs. Thus, ISET is an ideal technique to detect CTCs of esophageal cancer.
The detection of CTCs is important for guiding the treatment strategy, and has been confirmed for prognostic evaluation of breast, prostate, gastric cancer, and other common malignant tumors. However, there are few studies regarding the clinical significance of CTCs in ESCC, and most relevant studies used the CellTracks AutoPrep system for evaluations.

The present study investigated the clinical significance of CTCs in patients with ESCC. ISET was to detect the CTCs of ESCC patients before treatment.

2. Patients and methods

2.1. Patients

The Shandong Provincial Cancer Research Institute Ethics Committee approved this study. All the enrolled patients provided written consent.

The inclusion criteria of the present study were the following: age ≥18 years; histological diagnosis of ESCC; World Health Organization (WHO) performance status between 0 and 2; and, treated only once or were without treatment for at least 6 months. Patients with any of the following were excluded: a history of unrelated carcinoma in the preceding 5 years; a history of dermatologic disease; or cervical esophageal cancer.

From May to December 2014, a cohort of 60 consecutive patients with primary ESCC who underwent R0 resection and postoperative adjuvant radiotherapy or chemotherapy were included. The isolated cells were assigned as CTCs if there were ≥4 of any of the following morphological characteristics: atypical nucleus (irregular shape or presence of a nodular, lobulated contour); nuclear-cytoplasmic ratio >0.8; nuclear long diameter >18 mm; hyperchromatic nuclei and nonhomogeneous staining; thickened, sunken, wrinkled, and jagged nuclear membrane; presence of nuclear chromatin side-shift or a large nucleoli; presence of abnormal mitotic figures; and presence of tumor cell aggregations, or circulating tumor microemboli.

In the 60 patients, 20 were determined as CTC-positive, a rate of 33.3%.

2.2. CTC analysis

CTC analysis was completed in our previous study using the CTC BIOPSY system to detect peripheral blood CTCs in a cohort of 61 patients. Because in the present study 1 patient who withdrew from this follow-up study by his own initiative. Of the 60 patients, 50 patients had undergone R0 resection and postoperative adjuvant radiotherapy or chemotherapy, and were analyzed as a subgroup (surgery + chemoradiotherapy). Excluded were the remaining 10 patients with distant organ metastatic lesions and treated only with radiotherapy and chemotherapy and without surgical resection.

2.3. Clinical follow-up

The 60 patients with ESCC were followed for at least 2 years. ESCC progression, and times of recurrence, death, and disease-free survival were recorded.

Progression-free survival (PFS) was defined as the time from the onset of CTCs testing to CT progression or patient death. If the patient was lost to follow-up, or at the end of follow-up ESCC had not progressed, then this was recorded as a delete value. When a patient was not rehospitalized after discharge and the telephone follow-up was not answered by patients or their relatives, the patient’s initial hospitalization time was also taken as a PFS deletion. Overall survival was analyzed when patients were followed for 3 to 5 years.

2.4. Statistical analysis

All statistical analyses were performed using Statistical Package for Social Sciences software (SPSS version 22.0). Continuous variables were analyzed by t test and expressed as mean ± standard deviation. The chi-squared analysis or Fisher exact test was used to explore any correlation between CTC and clinicopathological variables. Kaplan–Meier survival curves were then used to describe the survival distributions of patients with different levels of CTCs. The log-rank test was used to analyze the survival data and calculate the P value. For the multivariate analysis, the Cox regression model was used. The results are presented as hazard ratio (HR) with 95% confidence interval (CI), that is, a multivariate analysis with stepwise regression. Correlations among the number of CTCs, the 2-year PFS, and

Table 1	Clinical pathological characteristics of the patients.	
	Surgery + CRT	Surgery alone
Subjects, n	60	50
Age, yr	62.2 ± 7.2 (40.0–78.0)	61.3 ± 6.8 (49.0–78.0)
Gender, male/female	52/8	44/6
Alcohol consumption, yr	12.4 ± 14.8 (0–40)	11.3 ± 14.2 (0–40)
WHO PS, 0/1/2	15/59/6	14/33/1
Tumor location, upper/middle/lower	8/32/22	3/27/20
Tumor size, cm	-	
AJCC-UICC stage, I/II/III/IV	4/31/20/1	4/13/22/3
Differentiation grade, Gx/G1/G2/G3	7/5/27/21	4/5/24/17
Tumor depth, Tis-T1/T2/T3/T4	6/4/26/4	6/4/17/23
UMN, yes/no	36/24	26/24
Lymphatic or venous invasion	Positive: 11	11
Negative: 39	39	
Unknown: 10	0	
Serum CEA, ng/mL	<3.4: 45	41
≥3.4: 15	9	
Platelet × 10^9/L, n	228.6 ± 74.0 (131–402)	225.0 ± 76.5 (131–402)
NLR ratio *	2.9 ± 1.8 (0.90–3.80)	2.6 ± 1.5 (0.92–3.84)

AJCC-UICC = American Joint Committee on Cancer-UICC, CRT = chemoradiotherapy, PS = performance status, WHO = World Health Organization.

* Reported a mean (range).
Table 2
Presence of CTCs in the study population of 60 ESCC patients by clinicopathological characteristics.

CTC*	CTC -	N	P		
Subjects, n	20	40			
Age, yr	63.50 ± 6.621	61.60 ± 7.472	.34		
Gender, male/female	19/1	33/7	52/8	.179	
Alcohol consumption, yr	13.00 ± 15.93	12.13 ± 14.45	.832		
Platelet × 10^9/L	254.65 ± 95.426	215.63 ± 57.65	.053		
N/L ratio	3.17 ± 1.55	2.811 ± 1.86	.462		
Serum CEA, ng/mL	7	8	15	.206	
≥ 3.4	13	32	45		
WHO performance status, 0/1/2	5/12/3	10/27/3	15/39/6	.65	
AJCC-UICC stage, I/II/III/IV	0/4/11/5	4/9/23/4	4/13/34/9	.26	
AJCC-UICC stage, I-III/IV-V	7/13	28/12	35/25	.01	
Tumor location, upper/middle/lower	2/12/6	4/20/16	6/32/22	.73	
Differentiation, well/mod/poor/other	2/6/11/1	3/21/10/6	5/27/17/7	.10	
Tumor size, cm	< 3	3	11	14	.512
3–5	11	17	28		
> 5	6	12	18		
Tumor depth, Tis-T1/T2/T3/T4	0/0/9/11	6/4/17/13	6/4/20/24	.082	
LNM, yes/no	12/8	24/16	36/24	1	
Lymphatic or venous invasion	Positive	4	7	11	.415
Negative	11	27	38		
Unknown	4	7	11		

* Student t-test.
† Fisher exact test.
‡ Median ± standard deviation.
AJCC-UICC = American Joint Committee on Cancer-Union for International Cancer Control, CTC = circulating tumor cell, PS = performance status, WHO = World Health Organization.

Table 3
Presence of CTCs by clinicopathological characteristics of the 50 surgically treated ESCC patients.

CTC*	CTC -	N	P		
Subjects, n	20	40			
Age, yr	62.20 ± 6.327	60.94 ± 7.100	.557		
Gender, male/female	15/0	29/6	44/6	.16	
Alcohol consumption, yr	12.67 ± 15.34	10.71 ± 13.83	.66		
Platelet × 10^9/L	260.87 ± 106.82	209.63 ± 52.20	.026		
N/L ratio	2.81573 ± 1.27	2.57 ± 1.62	.612		
Serum CEA, ng/mL	12	29	41	.81	
WHO PS, 0/1/2	5/0/1	10/25/0	15/34/1	.27	
AJCC-UICC stage, I/II/III/IV	0/4/10/1	4/9/22/4	4/13/32/1	.253	
AJCC-UICC stage, I-III/IV-V	7/8	27/8	34/16	.034	
Tumor location, upper/middle/lower	1/9/5	2/18/15	3/27/20	.92	
Differentiation, well/mod/poor/other	2/5/8/0	3/19/9/4	5/24/17/4	.309	
Tumor size, cm	< 3	3	6	9	.222
3–5	9	10	15		
> 5	5	15	24		
Tumor depth, Tis-T1/T2/T3/T4	0/0/9/11	6/4/17/13	6/4/20/24	.099	
LNM, yes/no	7/8	19/16	26/24	.621	
Lymphatic or venous invasion, yes/no	4/11	7/28	11/39	.602	

* Student t-test.
† Fisher exact test.
‡ Median ± standard deviation.
x² test.
AJCC-UICC = American Joint Committee on Cancer-Union for International Cancer Control, CTC = circulating tumor cell, ESCC = esophageal squamous cell carcinoma, PS = performance status, WHO = World Health Organization.
TNM staging were analyzed by Spearman method. \(P < .05 \) was considered statistically significant.

3. Results

3.1. Patient characteristics

The sixty patients (53 men, 7 women; 62.2 ± 7.2 years, range 49–78 years) with ESCC were recruited from May to December 2014 (Table 1). All of the patients were being treated for the first time or had experienced a minimum of 6 months without treatment. The 60 patients were treated with chemotherapy, with or without surgery. Among them, a subgroup of 50 patients, who had undergone R0 resection and postoperative adjuvant radiotherapy or chemotherapy (surgery + therapy), were analyzed separately to control for variations in the treatments.

The clinical manifestations of the patients (Table 1) were investigated, including the following: age, gender, duration of alcohol consumption, routine blood analysis, serum carcinoembryonic antigen (CEA) levels, WHO performance status, primary tumor location, tumor size, differentiation, lymph node metastasis, venous invasion, and stage.

3.2. Association between CTC and clinicopathological characteristics

In the total of 60 patients, the presence of CTCs was significantly associated with clinical stages (I-IIIB cf. III-IV \(P = .01 \)) of the cancer (Table 2). CTCs were not significantly associated with patient age, gender, median alcohol consumption, platelet, neutrophil/lymphocyte (N/L) ratio, serum CEA, or WHO performance status. Moreover, CTCs were not correlated with pathological features such as tumor location, tumor size, grade of differentiation, tumor depth, lymph node metastasis, or lymphatic or venous invasion.

In the subgroup of 50 surgically treated patients, the presence of CTCs was significantly associated with platelet \((P = .026) \) and clinical stages (I-IIIB cf. III-IV \(P = .034 \); Table 3). CTCs were not significantly associated with age, gender, duration of alcohol consumption, neutrophil-to-lymphocyte ratio, serum CEA, or WHO performance status. CTCs were also not significantly associated with pathological features such as tumor location, tumor size, grade of differentiation, tumor depth, lymph node metastasis, or lymphatic or venous invasion.

Figure 1. Comparison of the survival time of the patients with different count of CTCs counts in the 60 patient group. (A) Patients with CTCs > 0 cf. CTCs = 0; (B) patients with CTCs > 1 cf. CTCs ≤ 1; (C) patients with CTCs > 2 cf. CTCs ≤ 2; (D), patients with CTCs = 0, CTCs = 1, and CTCs ≥ 2. CTCs = circulating tumor cells.
3.3. Association between CTC count and survival time

The median survival time of the 60 patients was 21 months. The number of CTCs was associated with PFS (Fig. 1). PFS was significantly shorter for patients with CTCs > 0 compared with patients with CTCs = 0; CTCs > 1 compared with CTCs ≤ 1; and CTCs > 2 compared with CTCs ≤ 2 (median survival time: 9 cf. 7 months).

In the group of 50 surgically treated patients, PFS decreased as the CTC count increased (P = .031) from 0 to 1, to ≥ 2 (Fig. 2D).

The 60 patients were further divided into 4 groups according to the presence of CTCs and treatment (Fig. 3A): CTC+ with surgery; CTC− with surgery; CTC+ with chemoradiotherapy; and CTC− with chemoradiotherapy. The comparative analysis showed that the PFS of the CTC− with surgery group was significantly longer than that of the other 3 groups (P = .001).

The 60 patients were also stratified into 4 groups based on the presence of CTCs and clinical stage (Fig. 3B): CTC+ and I-IIIB; CTC− and I-IIIB; CTC+ and III-C-IV; and CTC− and III-C-IV. The PFS of patients in the CTC− and I-IIIB group was significantly longer than that of the other 3 groups (P = .006).

In the 50 surgical patients (Table 5), the univariate (P = .015, HR 3.3, 95% CI 1.20–8.65) and multivariate (P = .022, HR 10.70, 95% CI 1.40–81.91) analyses showed that the

Figure 2. Comparison of the survival time of the patients with different count of CTCs in the 50 patients treated with surgery. (A) Patients with CTCs > 0 cf. CTCs = 0; (B) patients with CTCs > 1 cf. CTCs ≤ 1; (C) patients with CTCs > 2 cf. CTCs ≤ 2; (D), patients with CTCs = 0, CTCs = 1, and CTCs ≥ 2. CTCs = circulating tumor cells.
preoperative presence of CTCs was significantly associated with a shorter PFS ($P < .05$).

3.4. Association between CTC count and TNM staging

Spearman rank correlation analysis showed that there was a correlation between the number of CTCs and T stage ($r = 0.26$, $P = .043$; Table 6); but no significant correlations were found between the number of CTCs and N stage ($r = -0.037$, $P = .78$; Table 7), or M stage ($r = 0.19$, $P = .15$; Table 8).

3.5. Associations among CTC count, TNM staging, and survival times

Of the 60 patients enrolled in this study, 12 patients were lost. Spearman rank correlation analysis showed that there was a negative correlation between the number of CTCs and PFS in the remaining 48 ESCC patients ($r = -0.342$, $P = .017$; Table 6); but no significant correlation between the number of CTCs and PFS was found when patients were stratified as II/III/IV/I-II/III-IV stages (Table 6).

![Figure 3. Effect of CTCs on the survival time of the patients when the patients were treated differently or at different stages. (A) Patients treated with surgery cf. chemoradiotherapy; (B) patients at I-IIIB cf. III-C-IV. CTCs = circulating tumor cells.](image)

Table 4

Prognostic factors	Univariate Hazard ratio	95% CI	P value	Multivariate Hazard ratio	95% CI	P value
CTCs (positive vs negative)	2.34	1.059–5.169	.036	5.627	1.77–17.887	.003
CTCs (\leq2 vs >2)	3.876	1.423–10.562	.008	5.627	1.77–17.887	.003
Age (\leq65 vs >65)	1.166	0.515–2.638	.713	1.166	0.515–2.638	.713
Gender (male vs female)	0.724	0.216–2.420	.6	0.724	0.216–2.420	.6
Alcohol consumption (positive vs negative)	0.682	0.311–1.497	.34	0.682	0.311–1.497	.34
Serum CEA (\leq3.4 vs >3.4)	2.063	0.884–4.813	.094	2.063	0.884–4.813	.094
Tumor size, cm						
<3 versus 3–5	0.557	0.219–1.413	.218	0.557	0.219–1.413	.218
<3 versus >5	1.121	0.406–3.099	.825	1.121	0.406–3.099	.825
Tumor location						
Upper versus middle	0.514	0.162–1.631	.259	0.514	0.162–1.631	.259
Upper versus lower	0.54	0.164–1.784	.313	0.54	0.164–1.784	.313
Grade of differentiation						
G1 versus G2	2.024	0.253–16.209	.507	2.024	0.253–16.209	.507
G1 versus G3	5.088	0.666–38.857	.117	5.088	0.666–38.857	.117
G1 versus G4	1.634	0.148–18.027	.689	1.634	0.148–18.027	.689
T stage						
T1/T2 versus T2	0.574	0.06–5.523	.63	0.574	0.06–5.523	.63
T1/T2 versus T3	1.093	0.308–3.877	.89	1.093	0.308–3.877	.89
T1/T2 versus T4	1.152	0.312–4.261	.332	1.152	0.312–4.261	.332
Lymph node metastasis (positive vs negative)	1.779	0.763–4.146	.182	1.779	0.763–4.146	.182

CI = confidence interval, CTC = circulating tumor cell, PFS = progression free survival.
In the 50 surgically treated patients stratified as stage II or I-IIIB or T3 and T3+T4, the PFS of the patients with CTCs > 1 or CTCs > 2 was significantly shorter than that of patients with CTCs ≤ 1 or CTCs ≤ 2, respectively (P < .05; Tables 7 and 8). In stage III and T3 + T4 groups, the PFS of patients with CTCs > 0 was significantly shorter than that of the patients with CTCs = 0 (P < .05).

Variable	S ± D	n	R	P
All patients				
CTC count	0.75 ± 1.242	48	-0.34	.017
PFS	15.13 ± 7.967	48		
Stage I				
CTC count	0.82 ± 1.537	11	-0.407	.214
PFS	16.09 ± 6.833	11		
Stage II				
CTC count	0.67 ± 1.007	24	-0.366	.079
PFS	17.13 ± 7.703	24		
Stage IV				
CTC count	1.22 ± 1.641	9	0.08	.838
PFS	7 ± 5.123	9		
Stage IIB				
CTC count	0.43 ± 1.073	30	-0.225	.232
PFS	17.83 ± 7.057	30		
Stage IIC-IV				
CTC count	1.28 ± 1.364	18	-0.032	.899
PFS	10.61 ± 7.484	18		
Stage III				
CTC count	0.64 ± 1.393	14	-0.29	.315
PFS	16.29 ± 6.911	14		
Stage III				
CTC count	0.79 ± 1.200	34	-0.336	.052
PFS	14.65 ± 8.413	34		
4. Discussion

In this study, CTCs were detected in ESCC by using ISET technology, and were found to be associated with the number of platelets, ESCC staging, and patient’s PFS. These results indicate that CTCs are independent prognostic indicators of patient clinical outcomes in ESCC.

4.1. CTCs detection in ESCC patients

Methods to detect CTCs in esophageal cancer are mainly RT-PCR, the Celltracks AutoPrep system, and ISET technology. In the present study, among 61 ESCC patients, CTCs were detected in 20 patients via the ISET method, a rate of 32.8%. Whereas, in the same patient cohort as our previous study,[11] CTCs were detected in only 1.6% when tested using the Celltracks AutoPrep system. This strongly indicates that the ISET method is more sensitive than the Celltracks AutoPrep. The greater sensitivity of the ISET system was also observed by Khoja et al[13] in patients with metastatic colorectal cancer.

In other studies, ISET was also found to be a better method for detection of esophageal cancer CTCs compared with RT-PCR or the Celltracks AutoPrep system.[15,16] The high detection of CTCs in ESCC patients may explain the clinical observation that many patients with early-stage ESCC, in whom traditional detection methods found no signs of distant metastasis, soon died of tumor recurrence and metastasis, due to micrometastases from the spread of CTCs.[14]

4.2. CTCs are prognostic clinical outcomes of ESCC patients

Although the TNM staging system can predict the prognosis of cancer patients and guide clinicians to choose a treatment strategy, combining it with the CTCs count will be more effective.[17,18] The positive association between CTCs count and ESCC clinical stage observed in the present study is in accord with previous observations that CTCs correlated with tumor differentiation, T stage, lymph node micrometastasis, and pathological stage.[19,20]

Our observation of an association between CTCs and the number of platelets is in agreement with the finding that platelets facilitate the generation of CTCs, and protect them from various host attacks, such as immune assaults, apoptosis, and shear stress.[21] Platelets also regulate the intravasation/extravasation of CTCs, and promote the survival of CTCs in the bloodstream.[22] The negative correlation found between PFS and CTCs in the ESCC patients of the present study was also found in patients with breast, pancreatic, or prostate cancer.[22–24] All these results indicate that CTCs are prognostic indicators of disease progress and poor clinical outcomes in ESCC patients.

5. Conclusion

This study is the first to show that the CTC, detected by ISET, is an independent and prognostic indicator of patients’ outcome in ESCC. CTCs in patients with ESCC may lead to micrometastases that cannot be detected by traditional examination methods. CTCs detected by ISET technology may be used as prognostic indicators of disease progress and clinical outcomes in ESCC.

Author contributions

Conceptualization: Wei-Di Zhang.
Data curation: Lu Han, Yun-Jie Li, Hao Li.
Formal analysis: Lu Han.
Investigation: Yun-Jie Li.
Project administration: Sheng Li.
Supervision: Ping-Ping Song.
Writing – original draft: Lu Han.
Writing – review and editing: Lu Han, Ping-Ping Song, Hao Li, Sheng Li.

References

[1] Chen WH, Xin PL, Pan QX, et al. ERCC1 single nucleotide polymorphism C8092A, but not its expression is associated with survival of esophageal squamous cell carcinoma patients from Fujian province, China. PLoS One 2014;9:e106600.
[2] Wang AH, Liu Y, Wang B, et al. Epidemiological studies of esophageal cancer in the era of genome-wide association studies. World J Gastrointest Pathophysiol 2014;5:335–43.
[3] Domper Arnal MJ, Ferrández Arenas Á, Lanas Arbeloa Á. Esophageal cancer: risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol 2015;21:7933–43.
[4] Ren C, He P, Zhang J, et al. Malignant characteristics of circulating tumor cells and corresponding primary tumor in a patient with esophageal squamous cell carcinoma before and after surgery. Cancer Biol Ther 2011;11:633–8.
[5] Hong B, Zu Y. Detecting circulating tumor cells: current challenges and new trends. Theranostics 2013;3:377–94.
[6] Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004;351:781–91.
[7] Cohen SJ, Punt CJ, Iannotti N, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:3213–21.
[8] Olmos D, Arkenau HT, Ang JE, et al. Circulating tumor cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann Oncol 2009;20:27–33.
Agelaki S, Kalykaki A, Markomanolaki H, et al. Efficacy of lapatinib in therapy-resistant HER2-positive circulating tumor cells in metastatic breast cancer. Ann Oncol 2009;20:27–33.

Li Y, Gong J, Zhang Q, et al. Dynamic monitoring of circulating tumour cells to evaluate therapeutic efficacy in advanced gastric cancer. Br J Cancer 2016;114:138–45.

Li H, Song P, Zou B, et al. Circulating tumor cell analyses in patients with esophageal squamous cell carcinoma using epithelial marker-dependent and -independent approaches. Medicine (Baltimore) 2015;94:e1365.

Li H, Song P, Zou B, et al. Circulating tumor cell analyses in patients with esophageal squamous cell carcinoma using epithelial marker-dependent and -independent approaches. Medicine (Baltimore) 2015;94:e1365.

Li H, Song P, Zou B, et al. Circulating tumor cell analyses in patients with esophageal squamous cell carcinoma using epithelial marker-dependent and -independent approaches. Medicine (Baltimore) 2015;94:e1365.

Yu M, Bardia A, Wittner BS, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013;339:580–4.

Kallergi G, Papadaki MA, Politaki E, et al. Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res 2011;13:R39.

Konigsberg R, Obermayer E, Bises G, et al. Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncol 2011;50:700–10.

Edge SB, Byrd DR, Compton CC, et al. AJCC Cancer Staging Manual. 7th ed. New York: Springer; 2009.

Amin MB, Edge S, Greene FL, et al. AJCC Cancer Staging Manual. 8th ed. New York: Springer; 2016.

Matsushita D, Uenosono Y, Arigami T, et al. Clinical significance of circulating tumor cells in peripheral blood of patients with esophageal squamous cell carcinoma. Ann Surg Oncol 2015;22:3674–80.

Qiao Y, Li J, Shi C, et al. Prognostic value of circulating tumor cells in the peripheral blood of patients with esophageal squamous cell carcinoma. Oncol Targets Ther 2017;10:1363–73.

Lou XL, Sun J, Gong SQ, et al. Interaction between circulating cancer cells and platelets: clinical implication. Chin J Cancer Res 2015;27:450–60.

Resel Folkersma L, San Jose Manso L, Galante Romo I, et al. Prognostic significance of circulating tumor cell count in patients with metastatic hormone-sensitive prostate cancer. Urology 2012;80:1328–32.

Gao Y, Zhu Y, Zhang Z, et al. Clinical significance of pancreatic circulating tumor cells using combined negative enrichment and immunostaining-fluorescence in situ hybridization. J Exp Clin Cancer Res 2016;35:66.

Yagata H, Nakamura S, Toi M, et al. Evaluation of circulating tumor cells in patients with breast cancer: multi-institutional clinical trial in Japan. Int J Clin Oncol 2008;13:252–6.