Comorbidity Burden and Adverse Outcomes After Transcatheter Aortic Valve Replacement

Daniel R. Feldman, MD; Mikhail D. Romashko, MD; Benjamin Koethe, MPH; Sonika Patel, MD; Hassan Rastegar, MD; Yong Zhan, MD; Charles D. Resor, MD; Annie C. Connors, RN; Carey Kimmelstiel, MD; David Allen, MD; Andrew R. Weintraub, MD; Benjamin S. Wessler, MD, MS

BACKGROUND: Transcatheter aortic valve replacement (TAVR) has become the preferred treatment for symptomatic patients with aortic stenosis and elevated procedural risk. Many deaths following TAVR are because of noncardiac causes and comorbid disease burden may be a major determinant of postprocedure outcomes. The prevalence of comorbid conditions and associations with outcomes after TAVR has not been studied.

METHODS AND RESULTS: This was a retrospective single-center study of patients treated with TAVR from January 2015 to October 2018. The association between 21 chronic conditions and short- and medium-term outcomes was assessed. A total of 341 patients underwent TAVR and had 1-year follow-up. The mean age was 81.4 (SD 8.0) years with a mean Society of Thoracic Surgeons predicted risk of mortality score of 6.7% (SD 4.8). Two hundred twenty (65%) patients had ≥4 chronic conditions present at the time of TAVR. There was modest correlation between Society of Thoracic Surgeons predicted risk of mortality and comorbid disease burden (r=0.32, P<0.001). After adjusting for Society of Thoracic Surgeons predicted risk of mortality, age, and vascular access, each additional comorbid condition was associated with increased rates of 30-day rehospitalizations (odds ratio, 1.21; 95% CI, 1.02–1.44), a composite of 30-day rehospitalization and 30-day mortality (odds ratio, 1.20; 95% CI, 1.02–1.42), and 1-year mortality (odds ratio, 1.29; 95% CI, 1.05–1.59).

CONCLUSIONS: Comorbid disease burden is associated with worse clinical outcomes in high-risk patients treated with TAVR. The risks associated with comorbid disease burden are not adequately captured by standard risk assessment. A systematic assessment of comorbid conditions may improve risk stratification efforts.

Key Words: cardiac disease ■ cardiovascular disease risk factors ■ clinical cardiology ■ transcatheter aortic valve implantation

Aort stenosis (AS) is increasingly common with advancing age1 and if left untreated has a mortality rate of 50% 2 years after the onset of symptoms.2 In recent years, transcatheter aortic valve replacement (TAVR) has revolutionized the treatment of AS for many patients with symptomatic disease.3,4 While TAVR improves quality of life and decreases mortality, for high-risk patients mortality is ≈24% 1 year after treatment.5 Approximately half of deaths after TAVR are noncardiac in nature6, an observation that highlights the importance of understanding chronic disease burden for patients considering treatment.

Patients with cardiovascular disease are commonly affected by comorbid conditions7 that impact quality of life, overall prognosis, treatment decisions, and increase healthcare costs.8 Chronic conditions may decrease the absolute benefit of disease-specific interventions by presenting competing risks. For patients with cardiovascular disease, the most common comorbid conditions are hypertension,
Feldman et al Comorbid Conditions and Outcomes After TAVR

There is no consensus on how to assess chronic disease burden, and it is likely that different conditions are relevant for distinct clinical settings. Recently, a score based on the presence or absence of 21 cardiac and noncardiac conditions was shown to be predictive of 1-year mortality for older adults. The clinical relevance of these conditions for patients with advanced cardiovascular disease remains unknown. Here, using detailed chart review, our aim is to determine the association between comorbid disease burden and short- and medium-term clinical outcomes after TAVR, and to determine whether comorbid disease burden has added prognostic significance beyond standard approaches to risk stratification.

METHODS

Cohort Description
This is a retrospective single-center cohort study that was performed at Tufts Medical Center (Boston, MA). The data that support the findings of this study are available from the corresponding author upon reasonable request. The study cohort included patients with symptomatic AS who underwent TAVR between January 2015 and October 2018. Severe AS was defined by standard echocardiographic criteria, and all patients had symptoms at the time of treatment. All patients were deemed to be at elevated risk for conventional surgical aortic valve replacement. Patients were excluded from the study if they had a previous history of either a prior surgical or prior TAVR that was implanted before the study dates. This study was approved by the Tufts institutional review board and the informed consent requirement was waived.

Baseline Characteristics and Outcomes
The STS/ACC TVT Registry (Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry) was used to evaluate basic demographic data including the STS predicted risk of mortality (STS-PROM) score. Morbidity and mortality were assessed by investigating the 30-day rehospitalization rate, 30-day mortality (a composite of 30-day rehospitalization and 30-day mortality), and 1-year mortality from the studied patient population. The 1-year mortality outcome was determined through a combination of chart review and events identified in the Institutional STS/ACC TVT Registry report.

Comorbid Disease Burden
Comorbidity burden was assessed based on physician review of the electronic medical record. Consensus definitions of the 21 distinct conditions present in the Combined Comorbidity Score were created. The clinical definitions are shown in Table S1 and are consistent with the originally presented definitions. Presence or absence of a condition was defined based on whether or not the condition was present in the electronic medical record at any point in the year before TAVR. Two physician members of the study team (D.R.F. and M.D.R.) reviewed all records. Discrepancies and instances of diagnostic ambiguity were discussed by the study group to arrive at consensus.

Nonstandard Abbreviations and Acronyms

Acronym	Definition
AS	aortic stenosis
STS-PROM	Society of Thoracic Surgeons predicted risk of mortality
TAVR	transcatheter aortic valve replacement

Dyslipidemia, and diabetes mellitus. Chronic conditions for older adults with advanced cardiac disease, in particular those seeking interventional treatments, have not been systematically studied. TAVR, which has seen rapid adoption over the past few years, provides an opportunity to study chronic conditions for high-risk patients with advanced cardiovascular disease.
Statistical Analysis

The overall prevalence of comorbid conditions was assessed. The 30-day follow-up was available for 346/358 (96.6%) patients and the 1-year follow-up was available for 341/358 (95%) patients. We present a complete case analysis of patients with 1-year follow-up. Event rates are presented across tertiles of comorbid diseases present at the time of TAVR. The association between comorbid disease burden and rates of 30-day rehospitalization, 30-day mortality, composite of 30-day rehospitalization and 30-day mortality, and 1-year mortality was assessed using logistic regression. Multivariable logistic regression was used to evaluate the association between comorbid disease burden with clinical outcomes after adjusting for age, STS-PROM, and vascular access site. Comorbid disease burden was plotted against STS-PROM at the time of TAVR. Correlation was assessed using the Pearson correlation coefficient.

RESULTS

The cohort consisted of 358 patients treated with TAVR during this timeframe. Our analysis focuses on the 341 patients (95%) with available 1-year follow-up. Baseline demographic, clinical, and echocardiographic parameters are shown in Table 1. The mean patient age was 81.4 years old (SD 8.0 years) and 51.9% of the patients were female. A transfemoral approach was performed with 86.8% of these patients. The average STS-PROM score was 6.7% (SD 4.8).

Outcomes

A total of 199 (58.4%) of patients had a long length of stay (defined as >4 days). The 30-day rehospitalization rate was 13.2%. The observed inpatient, 30-day, and 1-year mortality rates were 1.2% (4 patients), 2.9% (10 patients), and 9.1% (31 patients), respectively.

Comorbid Disease Burden

The average number of comorbid conditions present in the year leading up to TAVR was 4.4 (SD 1.9). A total of 325 (95%) of patients had ≥2 chronic conditions in the year before TAVR and 220 (65%) patients had ≥4 chronic conditions. The graphical representation of these comorbid conditions among the studied population is shown in Figure 1, while the full list of comorbid conditions is shown in Table 2. The most common noncardiac comorbid conditions seen in this patient population were anemias (132, 38.7%), chronic pulmonary disease (112, 32.8%), electrolyte disorders (73, 21.4%), and coagulopathy (71, 20.8%). Dementia was documented in 25 (7.3%) patients. Among these patients, 20 (5.9%) had a history of alcohol abuse and 19 (5.6%) had a history of renal dysfunction.

The association between burden of comorbid conditions and STS-PROM is shown in Figure 2. One hundred sixty-six (49%) patients had a STS-PROM score ≥4.0% and high comorbid disease burden that was defined as ≥4 comorbid conditions (Q1, concordant risk markers). Sixty-five (19%) patients had a
STS-PROM score ≥4.0% and low comorbid disease burden defined as <4 comorbidity conditions (Q2, discordant risk markers). Fifty-six (16%) patients had a STS-PROM score <4.0% and low comorbid disease burden (Q3, concordant risk markers) and 54 patients (16%) had a STS-PROM score <4.0% with high comorbid disease burden at the time of TAVR (Q4, discordant risk markers). Twenty-five percent of patients with high comorbid disease burden present at the time of TAVR (Q1 + Q4) had a STS-PROM score <4.0%. There was modest correlation between STS-PROM and comorbid disease burden (r=0.32, P<0.001).

Association with Clinical Outcomes

As the burden of comorbid disease present at the time of TAVR increases, rates of 30-day rehospitalization, 30-day rehospitalization or death, and 1-year mortality increase (Table 3). Average length of stay also increased as comorbid disease burden increased (P=0.0017). There was no association between comorbid disease burden and inpatient mortality or 30-day mortality, though rates of these events were low (4 total inpatient deaths, 10 total deaths by 30 days). The association between comorbid disease burden and outcomes is shown in Table 4. Each additional comorbid condition present at the time of TAVR was associated with increased 30-day rehospitalization rate (odds ratio [OR], 1.28; 95% CI, 1.09–1.51), 30-day mortality (OR, 1.37; 95% CI, 1.00–1.87), composite of 30-day rehospitalizations and mortality (OR, 1.27; 95% CI, 1.09–1.49), and 1-year mortality (OR, 1.39; 95% CI, 1.14–1.68). After adjusting for age, STS-PROM, and access site, each additional comorbid condition present at the time of TAVR remained independently associated with 30-day rehospitalizations (OR, 1.21; 95% CI, 1.02–1.44), a composite of 30-day rehospitalization and 30-day mortality (OR, 1.20; 95% CI, 1.02–1.42), and 1-year mortality (OR, 1.29; 95% CI, 1.05–1.59).

DISCUSSION

These data demonstrate that comorbid conditions are common for patients with elevated procedural risk and symptomatic AS who are treated with TAVR and that chronic disease burden present at the time of TAVR is associated with worse outcomes and increased resource utilization after the procedure. Two thirds of high-risk patients have ≥4 chronic conditions present at the time of treatment and of those, 25% have STS-PROM <4.0%. Taken together, these observations suggest that for patients considered for treatment with TAVR, there are clinically relevant short- and medium-term risks associated with comorbid illness that are not adequately captured by standard risk assessment.
The STS-PROM was used for inclusion in early TAVR clinical trials and is a prediction tool that continues to play a role in preprocedure risk stratification. This was the primary motivation for including this variable in our analysis. There are known limitations to these predictive models applied to TAVR. These regression models were originally created to predict 30-day outcomes for patients undergoing surgical aortic valve replacement with or without coronary artery bypass grafting\(^\text{14}\) and as a result, tend to perform poorly when used to predict in-hospital and 30-day mortality after TAVR.\(^\text{15}\) This poor performance may be because important risk predictors are not included in these models—in the effort to achieve a parsimonious (and usable) model. Newer models\(^\text{16,17}\) exclude many of the chronic conditions studied here and thus are unlikely to fully capture the risks associated with comorbid disease burden present at the time of treatment. A more comprehensive approach to risk stratification should include conceptions of procedural risk and also consideration of the competing risks that may be present from comorbid conditions.

It is increasingly recognized that information about comorbid diseases should be considered when making treatment decisions for older adults with advanced cardiac disease. This issue is especially important in the context of treatment decisions for patients with structural heart disease since older adults with increased procedural risk are regularly treated with these advanced procedures. Comorbid disease burden has historically been difficult to define and quantify\(^\text{18}\) and as a result there is no consensus method of assessment. The Combined Comorbidity Score\(^\text{19}\) was recently proposed as a way to combine existing models to predict 1-year mortality. In a claims-based environment, this score demonstrated better performance (discrimination and calibration) than preexisting models for predicting long-term mortality for older adults. Given the strengths of this score (it captures both cardiac and noncardiac conditions) and the potential applicability to large databases, we studied electronic medical record–based definitions of the chronic conditions contained in this index. We demonstrate that worse outcomes are seen as the number of chronic conditions present at the time of TAVR increases. The associations seen with these conditions stand to be replicated in larger (multicenter) databases since the comorbidity index used here is compatible with claims-based data resources.

Many of the comorbid conditions studied here, when evaluated in isolation, have been shown to be associated with worse outcomes after TAVR. For example, patients with end-stage renal disease\(^\text{19}\) and chronic pulmonary disease\(^\text{20}\) are documented to have worse outcomes after TAVR. Unfortunately, analyses of lone chronic conditions do not adequately capture the complexity of older adults encountered in real-world practice who often have more than 1 condition and who would have been excluded from pivotal clinical trials (eg, an 88-year-old who has symptomatic AS, peptic ulcer disease, thrombocytopenia, and end-stage renal disease and who is referred for treatment). Multiple conditions (and multiple treatments) that may interact with each other can increase the risk of adverse outcomes over time and present competing risks that often persist after AS is treated. Ultimately, understanding the comorbid disease burden and specific interactions between conditions and treatments and planned procedures as well as patient-centered goals can enhance shared decision-making for these high-risk older adults.

Limitations

There are several limitations to this analysis. Because this is a single-center retrospective study, the relevance to other electronic medical records and other health systems needs to be further explored. The limited sample size and rare outcomes do not allow us to create a usable predictive model and that is

Table 2. Comorbidity Count
Hypertension
Cardiac arrhythmia
Congestive heart failure
Deficiency anemia
Peripheral vascular disease
Chronic pulmonary disease
Fluid and electrolyte disorders
Coagulopathy
Cerebrovascular disease
Active tumor
Complicated diabetes mellitus
Dementia
Pulmonary circulation disorders
Alcohol abuse
Renal failure
Liver disease
Hemiplegia
Weight loss
Metastatic cancer
Psychosis
HIV/AIDS

Full list of comorbid conditions for our studied population. Data provided as n (%). The most common conditions were hypertension (284, 83.3%), cardiac arrhythmias (231, 67.7%), and congestive heart failure (223, 65.4%). The most common noncardiac comorbid conditions seen in this patient population were anemias (132, 38.7%), chronic pulmonary disease (112, 32.8%), electrolyte disorders (73, 21.4%), and coagulopathy (71, 20.8%).
not our intent, because there are numerous predictive models available for TAVR. While we assessed comorbid conditions based on detailed chart review, the reproducibility of these results should be explored using claims data so that these observations can be assessed in larger data sets. The comorbidity index that was used here was originally derived using claims data. Additionally, the outcomes that were evaluated here were hard clinical outcomes that are relatively easily measured (rehospitalizations and rehospitalization).

Table 3. Clinical Outcomes by Comorbidity Count Tertile

Comorbid Condition Tertile	1	2	3	P Value
Comorbid condition range	0–3	4–5	6–11	
N	121	123	97	
Age, mean (SD)	81.0 (8.5)	83.2 (7.4)	79.7 (7.6)	0.2687
STS-PROM, mean (SD)	5.4 (3.8)	6.4 (3.7)	9.1 (6.5)	<0.0001
Length of stay, mean (SD)	5.6 (4.3)	7.2 (4.8)	7.9 (6.6)	0.0017
Inpatient mortality, n (%)	2 (1.7)	0 (0.0)	2 (2.1)	0.8589
30-d rehospitalization, n (%)	8 (6.6)	17 (13.8)	20 (20.6)	0.0023
30-d death/rehosp, n (%)	10 (8.3)	17 (13.8)	22 (22.7)	0.0027
30-d mortality, n (%)	3 (2.5)	1 (0.8)	6 (6.2)	0.1386
1-y mortality, n (%)	4 (3.3)	12 (8.8)	15 (15.5)	0.0018

Outcomes according to comorbid disease burden. Presented as tertile of cumulative conditions present at the time of TAVR. P value represents P for trend across tertiles. STS-PROM indicates Society of Thoracic Surgeons predicted risk of mortality; and TAVR, transcatheter aortic valve replacement.
Table 4. Comorbid Disease Burden Associations

Panel A	Unadjusted	Adjusted for Age, STS-PROM Score, and Access Site				
	OR	95% CI	P Value	OR	95% CI	P Value
30-d rehospitalization	1.28	1.09–1.51	0.0025	1.21	1.02–1.44	0.0337
30-d mortality	1.37	1.00–1.87	0.0470	1.33	0.91–1.95	0.1385
30-d rehospitalization and mortality composite	1.27	1.09–1.49	0.0024	1.20	1.02–1.42	0.0322
1-y mortality	1.39	1.14–1.68	0.0008	1.29	1.05–1.59	0.0169

OR are presented as single condition increase in cumulative comorbid disease count present at the time of TAVR. Unadjusted associations with outcomes are presented in panel A. OR adjusted for age, STS-PROM, and access site are shown in panel B. OR indicates odds ratio; ST-PROM, Society of Thoracic Surgeons predicted risk of mortality; and TAVR, transcatheter aortic valve replacement.

CONCLUSIONS

This analysis demonstrates the importance of systematically assessing comorbid disease burden when considering treatment of complex older adults with symptomatic AS. High-risk patients considering TAVR have a significant burden of comorbid conditions present at the time of treatment and these risks are not adequately captured by standard risk assessment tools. These conditions are associated with worse outcomes and higher resource utilization after the procedure. A better understanding of the comorbid disease burden present at the time of treatment may lead to improved risk stratification tools and better help us improve our understanding of who is more (or less) likely to do well following treatment.

ARTICLE INFORMATION

Received December 27, 2020; accepted January 21, 2021.
Affiliations

Department of Internal Medicine (D.R.F.); Division of Cardiology (M.D.R., C.D.R., A.C.C., C.K., A.R.W., B.S.W.); and Institute for Clinical Research and Health Policy Studies, Biostatistics, Epidemiology, and Research Design (BERD) Center (B.K.), Tufts Medical Center, Boston, MA; Department of Internal Medicine, University of Maryland, Baltimore, MD (S.P.); Division of Cardiothoracic Surgery (H.R., Y.Z.) and Department of Interventional Radiology, Tufts Medical Center, Boston, MA (D.A.)

Sources of Funding

Dr Wessler reported support from the National Institutes of Health (grants K23AG055667 and R03AG056447) during the conduct of the study.

DISCLOSURES

None.

SUPPLEMENTARY MATERIAL

Table S1

REFERENCES

1. Thaden JJ, Nkomo VT, Enriquez-Sarano M. The global burden of aortic stenosis. Prog Cardiovasc Dis. 2014;56:565–571. DOI: 10.1016/j.pcad.2014.02.006.
2. Ross J Jr, Braunwald E. Aortic stenosis. Circulation. 1968;38:61–67.
3. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–1607. DOI: 10.1056/NEJMoa1008232.
4. Reardon MJ, Van Mieghem NM, Popma JJ, Kleiman NS, Søndergaard L, Murtaza M, Adams DH, Deeb GM, Maini B, Gada H, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376:1321–1331. DOI: 10.1056/NEJMoa1700456.
5. Holmes DR Jr, Brennan JM, Rumsfeld JS, Dai D, O’Brien SM, Vemulapalli S, Edwards FH, Carroll J, Shahian D, Grover F, et al. Clinical outcomes at 1 year following transcatheter aortic valve replacement. JAMA. 2015;313:1019–1028. DOI: 10.1001/jama.2015.1474.
6. Xiong TY, Liao YB, Zhao ZG, Xu YN, Wei X, Zuo ZL, Li YJ, Cao JY, Tang H, Jiaihaw H, et al. Causes of death following transcatheter aortic valve replacement: a systematic review and meta-analysis. J Am Heart Assoc. 2015;4:e002096. DOI: 10.1161/JAHA.115.002096.
7. Forman DE, Maurer MS, Boyd C, Brindis R, Salive ME, Horne FM, Bell SP, Fulmer T, Reuben DB, Zieman S, et al. Multimorbidity in older adults with cardiovascular disease. J Am Coll Cardiol. 2018;71:2149–2161. DOI: 10.1016/j.jacc.2018.03.022.
8. Boyd CM, Darer J, Boult C, Fried LP, Boult L, Wu AW. Clinical practice guidelines and quality of care for older patients with multiple comorbid diseases: implications for pay for performance. JAMA. 2005;294:716–724. DOI: 10.1001/jama.294.6.716.
9. Murray MIK, Thalmann IN, Mossialos EA, Zeiher AM. Comorbidities of coronary heart disease and the impact on healthcare usage and productivity loss in a nationally-based study. Epidemiology (Sunnyvale). 2018;3:347. DOI: 10.4172/2161-1165.1000347.
10. Gagne JJ, Glynn RJ, Avorn J, Levin R, Schneesweiss S. A combined comorbidity score predicted mortality in elderly patients better than...
existing scores. J Clin Epidemiol. 2011;64:749–759. DOI: 10.1016/j.jclinepi.2010.10.004.

11. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:2440–2492. DOI: 10.1161/CIR.0000000000000229.

12. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–383. DOI: 10.1016/0021-9681(87)90171-8.

13. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998;36:8–27. DOI: 10.1097/00005650-199801000-00004.

14. Shahian DM, Jacobs JP, Badhwar V, Kurlansky PA, Furnary AP, Cleveland JC Jr, Lobdell KW, Vassileva C, Wyler von Ballmoos MC, Thorani VH, et al. The society of thoracic surgeons 2018 adult cardiac surgery risk models: part 1-background, design considerations, and model development. Ann Thorac Surg. 2018;105:1411–1418. DOI: 10.1016/j.athoracsur.2018.03.002.

15. Beohar N, Whisenant B, Kirtane AJ, Leon MB, Tuzcu EM, Makkar R, Svensson LG, Miller DC, Smith CR, Richar AD, et al. The relative performance characteristics of the logistic European System for Cardiac Operative Risk Evaluation score and the Society of Thoracic Surgeons score in the Placement of Aortic Transcatheter Valves trial. J Thorac Cardiovasc Surg. 2014;148:2830–2837.e1. DOI: 10.1016/j.jtcvs.2014.04.006.

16. Arnold SV, Cohen DJ, Dai D, Jones PG, Li F, Thomas L, Baron SJ, Frankel NZ, Strong S, Matsouaka RA, et al. Predicting quality of life at 1 year after transcatheter aortic valve replacement in a real-world population. Circ Cardiovasc Qual Outcomes. 2018;11:e004693. DOI: 10.1161/CIRCOUTCOMES.118.004693.

17. Edwards FH, Cohen DJ, O’Brien SM, Peterson ED, Mack MJ, Shahian DM, Grover FL, Tuzcu EM, Thorani VH, Carroll J, et al. Development and validation of a risk prediction model for in-hospital mortality after transcatheter aortic valve replacement. JAMA Cardiol. 2016;1:46–52. DOI: 10.1001/jamaccardio.2015.0326.

18. Boyd CM, Kent DM. Evidence-based medicine and the hard problem of multimorbidity. J Gen Intern Med. 2014;29:552–553. DOI: 10.1007/s11606-013-2658-z.

19. Szerlip M, Zajarias A, Vemalapalli S, Brennan M, Dai D, Maniar H, Lindman BR, Brindis R, Carroll JD, Hamandi M, et al. Transcatheter aortic valve replacement in patients with end-stage renal disease. J Am Coll Cardiol. 2019;73:2806–2815. DOI: 10.1016/j.jacc.2019.03.496.

20. Dvir D, Waksman R, Barbash IM, Kodali SK, Svensson LG, Tuzcu EM, Xu K, Minha S, Alu MC, Szeto WY, et al. Outcomes of patients with chronic lung disease and severe aortic stenosis treated with transcatheter versus surgical aortic valve replacement or standard therapy: insights from the PARTNER trial (placement of AoRtic TranScatheter Valve). J Am Coll Cardiol. 2014;63:269–279. DOI: 10.1016/j.jacc.2013.09.024.
Supplemental Material
| **Active tumor (includes lymphoma, leukemia)** | Any tumor, lymphoma, or leukemia that was active or underwent treatment for within the 12 months prior to TAVR |
|---|--|
| **Alcohol abuse** | Alcohol dependence, history of alcohol withdrawal, or end-organ effects of chronic alcohol use such and amnesia, dementia, or psychosis, within the prior 12 months |
| **Cardiac arrhythmia** | Previous diagnosis of any supraventricular tachycardia (including atrial fibrillation, atrial flutter, atrial tachycardia, multifocal atrial tachycardia, AVNRT, AVRT), VT, VF, and/or Torsades de pointes. Also includes a previous diagnosis of recurrent or persistent sinus tachycardia, junctional tachycardia, or sick sinus syndrome. In addition, was considered positive if the patient had a bundle branch block, 1st, 2nd, or 3rd degree AV block within the last 12 months or ever requiring pacemaker |
| **Cerebrovascular Disease** | Previous history of TIA, Ischemic Stroke (includes lacunar stroke) or hemorrhagic stroke ever in the patient’s life as based on history or imaging |
| **Chronic Pulmonary disease** | Chronic obstructive or restrictive disease including but not limited to chronic bronchitis, emphysema, bronchiectasis, asthma, allergic alveolitis, pneumoconiosis, fibrotic lung disease |
| **Coagulopathy** | Factor deficiency, thrombocytopenia (defined as platelets <= 120), qualitative platelet defect, or any unspecified coagulation defect in the last 12 months. Also includes a history of iatrogenic or pathogenic coagulopathy causing clinically significant hemorrhage ever in the patient’s history |
| **Complicated diabetes** | Diabetes complicated by renal, ophthalmic, circulatory, and other complications. Includes patients with unknown complications with HbA1c >= 8% within last 12 months |
| **Congestive Heart Failure** | Diastolic or systolic heart failure, cardiomyopathy, or heart transplant. Diastolic HF is defined by requirement of fluid removal by dialysis or a diuretic, and/or signs of diastolic HF on echocardiogram |
| **Deficiency anemia** | Anemia defined as (Male Hgb < 13.5 AND Hct 37.0. Female Hgb<11.0 AND Hct < 32.0 measured as such within the last 12 months) due to what is most likely nutritional deficiency such iron, B12, folate or EPO deficiency in CKD |
| **Dementia** | Any dementia such as Alzheimer’s, vascular, frontotemporal, lewy body, parkinsonian, or otherwise unspecified. For patients that had a designated MOCA conducted, a score of less than 22 was considered positive |
| **Fluid and electrolyte disorders** | Any derangement in Na, K, Mg, Ca (corrected for Alb or iCa), Phos, bicarbonate, or acidosis/ alkalosis seen on repeat measurements at least 72 consecutive hours apart immediately prior to TAVR |
| **Hemiplegia** | Spastic or flaccid hemiplegia or hemiparesis, mono-, di-, and paraplegia, and/or other unspecified paralytic syndromes |
| **HIV/AIDS** | Previous diagnosis of HIV |
| Condition | Definition |
|---------------------------------|--|
| Hypertension | Diagnosis of hypertension ever in the patient’s history |
| Liver disease | Active cirrhosis or history of previous liver transplant |
| Metastatic cancer | Active solid tumor with known metastatic disease within the 12 months prior to TAVR or requiring chemotherapy within that time period |
| Peripheral vascular disease | Previously diagnosed with peripheral vascular disease, including aortic aneurysm (at least moderate grade), intestinal ischemia |
| Pulmonary circulation disorders | Pulmonary hypertension (excluding what is believed to be Group II, secondary to left heart disease). Includes active pulmonary |
| Psychosis | History of schizophrenia, delusions, psychosis not otherwise specified ever |
| Renal Failure | CKD stage 5 (or eGFR < 15 prior to TAVR), dialysis dependence, or history of renal transplant |
| Weight loss | BMI < 20 or loss of >20% of weight over the previous 12-month period |

Clinical definitions for comorbid conditions used in this study. The presence or absence of any of these conditions were based on whether or not the condition was present in the EMR at any point in the year prior to TAVR.