In this paper we develop the confidence intervals for estimating the expected value of the units in the system and the maximum likelihood estimates of the parameters are derived for truncated single-channel Markovian queue with balking, reneging and reflecting barrier by using quality control process under steady-state simulation. Some important queueing systems are developed and discussed as special cases of the model. A simulated numerical example is used to illustrate its application for estimating the parameters under quality control process.
some Poissonian queues ignoring the initial probability. Lillifeors [7] treated confidence intervals of the Markovian queues $M/M/1$ and $M/M/2$ without any concepts. Kotb et al. [6] addressed and concerned statistical sampling design in quality control processes for queueing systems of units in different institutions adding the concept of balking via steady - state simulation. Tapiero and Hsu [10] integrated a quality control procedure into a job shop manufacturing process described by an $M/M/1$ queue. Some papers can be found in the literature for the parameter estimation problems for many distributions. See, for example, Louzada et al. [8], Keeble [5], Acharya et al. [2] and Wang et al. [11]. Recently, Quinino and Cruz [9] studied the sample size planning problem by focusing on a Bayesian point estimation for $M/M/1$ queue for the utilization factor.

The purpose of this paper is to study statistical inference in quality control procedure for truncated single-server Markovian queue with balking, reneging and reflecting barrier under steady-state simulation. As a result of this model, we treat both point estimation using modified likelihood function and confidence intervals for estimating the mean and control charts. Some important queueing systems are derived as special cases. Finally, the queueing system is then investigated to obtain greater insights regarding the mutual and join effects of quality control and model design.

2. BASIC NOTATIONS AND ASSUMPTIONS

The following notations are adopted for developing the model:

- $1/\lambda = \text{Mean inter-arrival time.}$
- $1/\mu = \text{Mean service time.}$
- $\rho = \lambda/\mu = \text{Utilization factor.}$
- $k = \text{Balking limit.}$
- $n = \text{Number of units in the system.}$
- $N = \text{System Capacity.}$
- $P_0 = \text{Probability that no units are in the system.}$
- $P_n = \text{Steady-state probability that there are } n \text{ units in the system.}$
- $P_n(t) = \text{Transient state probability that there are } n \text{ units in the system.}$
- $\beta = \text{Probability that an arriving unit joins the queue when it finds } n \text{ units in the system.}$
- $1 - \beta = \text{Probability that a unit balks, } 0 \leq \beta < 1 \text{ for } k \leq n \leq N - 1 \text{ and } \beta = 1 \text{ elsewhere.}$
- $g = \text{Reneging rate of a certain length of time, which a unit will wait for service.}$
- $r = \text{Probability that a barrier reflects a unit at state } n = N.$
- $1 - r = \text{Probability that a barrier absorbs a unit at state } n = N, 0 < r \leq 1.$
- $E(n) = \text{Expected number of units in the system.}$
CL = Control limit (average of subgroup ranges).

UCL = \(E_U(n) \) = Upper control limit.

LCL = \(E_L(n) \) = Lower control limit.

\(E_U(n) - E_L(n) = \) Subgroup ranges.

In addition, the following assumptions are made for developing the model:

1. Inter-arrival times of the units follow the exponential distribution with mean \(1/\lambda \).
2. Service times are also an exponential distribution with mean \(1/\mu \). The units are served according to FIFO discipline.
3. An arriving unit joins the queue when it finds \(n \) units in the system with probability \(\beta \) and balks with probability \((1-\beta) \).
4. After joining the queue each unit will wait a certain length of time for his service to begin. If it does not begin by then, he will get reneged and may leave the queue without getting service with probability \((n-1)g \) for \(n \geq 2 \).
5. For truncated queue with capacity \(N \), there is a barrier reflects or absorbs a unit at the state \(n = N \) with probability \(r \) or \((1-r) \) respectively.

3. STEADY-STATE SIMULATION

Using the above notations and assumptions and applying Markov conditions, we obtain the following system of steady-state probability difference equations:

- \[\lambda p_0 + \mu p_1 = 0, \quad n = 0 \] (1)
- \[(\lambda + \mu) p_1 + \lambda p_0 + (\mu + g) p_2 = 0, \quad n = 1 \] (2)
- \[-[\lambda + \mu + (n-1)g] p_n + \lambda p_{n-1} + (\mu + ng) p_{n+1} = 0, \quad 2 \leq n \leq k-1 \] (3)
- \[-[\beta\lambda + \mu + (k-1)g] p_k + \lambda p_{k-1} + (\mu + kg) p_{k+1} = 0, \quad n = k \] (4)
- \[-[\beta\lambda + \mu + (n-1)g] p_n + \beta\lambda p_{n-1} + (\mu + ng) p_{n+1} = 0, \quad k+1 \leq n \leq N-2 \] (5)
- \[-[\beta\lambda + \mu + (N-2)g] p_{N-1} + \beta\lambda p_{N-2} + [\mu + (N-1)g] r p_N = 0 \quad n = N-1 \] (6)
- \[-[\mu + (N-1)g] r p_N + \beta\lambda p_{N-1} = 0, \quad n = N \] (7)

Solving this system of equations iteratively, the probability that here are \(n \) units in the system is easily obtained as:

\[
p_n = \begin{cases}
\frac{\delta^n}{(\gamma)_n} p_0, & 0 \leq n \leq k-1 \\
\frac{(\beta \delta)^n}{\beta^k (\gamma)_n} p_0, & k \leq n \leq N-1 \\
\frac{(\beta \delta)^N}{r \beta^k (\gamma)_N} p_0, & n = N
\end{cases}
\] (8)

Where

\[\delta = \frac{\lambda}{g}, \gamma = \frac{\mu}{g} \]

And

\[(\gamma)_n = \gamma (\gamma + 1)(\gamma + 2) \ldots [\gamma + (n-1)], \quad n \geq 1, \quad (\gamma)_0 = 1. \]

To find \(p_0 \), use the boundary condition \(\sum_{n=0}^{N} p_n = 1 \), then we get:
\[P_0 = \frac{\Gamma(1-k)}{\Gamma(2-k)} + \beta \frac{\Gamma(1-k)}{\Gamma(2-k-k)} + \beta \frac{\Gamma(1-k)}{\Gamma(2-k-k)} \frac{\beta \delta^N}{r \beta (\gamma)^N} \]

Where
\[\binom{n}{m} \] is the general hypergeometric function.

Using Abou-El-Ata's theorem [1] of moments, the expected number of units in the system during the interval \([0, \tau]\) is given by:
\[E(n) = \frac{\partial \ln p_0}{\partial \lambda} \]
\[= p_0 \left(\frac{k-k}{\gamma+1} \right) + \beta \frac{k-k}{\gamma+1} \delta(N-k-1) \]
\[\cdot \frac{\prod_{i=1}^{n} \left(\frac{k-k}{\gamma+1} \right) + \beta \delta \prod_{i=1}^{m} \left(\frac{k-k}{\gamma+1} \right) + \beta \delta \prod_{i=1}^{h} \left(\frac{k-k}{\gamma+1} \right) + \beta \delta \prod_{i=1}^{w} \left(\frac{k-k}{\gamma+1} \right) \right] \]

4. ESTIMATE

To estimate the parameters \(\lambda, \mu, g \) and \(\rho \) of this system, consider \(n \) units enter the system during the interval \([0, T]\), \(m \) units are served during the interval \([0, \tau]\), \(h \) units are reneged during the interval \([0, t^*]\) and \(w \) is the initial number of units at \(t = 0 \). Thus the modified likelihood function is:
\[L(\lambda, \mu, g) = \prod_{i=1}^{n} a(t_i) \prod_{i=1}^{m} b(t_i) \prod_{i=1}^{h} c(t_i') \prod_{i=1}^{w} p_v \]
\[= \lambda^n \mu^m g^h e^{-(\lambda T + \mu T + g T)} \]

where
\[T = \sum_{i=1}^{n} t_i, \quad \tau = \sum_{i=1}^{m} \tau_i, \quad T^* = \sum_{i=1}^{h} t_i' \]

\(t_i \) is the entrance time of the \(i^{th} \) unit,
\(\tau_i \) is the service time of the \(i^{th} \) unit,
\(t_i' \) is the reneging time of the \(i^{th} \) unit and
\(a(t_i), b(t_i), c(t_i'), p_v \) are independently distributed.

The maximum likelihood estimates (MLEs) of the parameters \(\lambda, \mu, g \) are obtained by the direct maximization of the log-likelihood function given by:
\[L(\lambda, \mu, g) = \ln L = n \ln \lambda + m \ln \mu + h \ln g \]

\[-(\lambda T + \mu T + g T) + \ln p_0 \]

Differentiating \(L(\lambda, \mu, g) \) with respect to \(\lambda, \mu, g \) respectively and using
Abou-El-Ata's theorem [1], we get for
\[0 \leq v \leq N : \]
\[\hat{\lambda} = \frac{n + v - \hat{E}(n)}{T}, \quad \hat{\mu} = \frac{m + \hat{E}(n)}{\tau + (\gamma)^v / (\gamma)^v} \]
\[\hat{g} = \frac{h - \mu + \hat{E}(n)}{T^* / (\tau + (\gamma)^v / (\gamma)^v)} \]

And
\[\hat{\rho} = \hat{\lambda} / \hat{\mu} = \frac{n + v - \hat{E}(n)}{T} \cdot \frac{\tau + (\gamma)^v / (\gamma)^v}{m + \hat{E}(n)} \]

Thus
\[f(\hat{\lambda}, \hat{\mu}, \hat{g}) = \hat{\rho} T m + [\hat{\rho} T + \tau + (\gamma)^v / (\gamma)^v] \hat{E}(n) \]

\[- (n + v) [\tau + (\gamma)^v / (\gamma)^v] = 0 \]

where
\(\hat{E}(n) \) is given in relation (10).
Which is an algebraic equation of degree \(N+1 \)
in \(\hat{\rho} \). and it is impossible to solve
mathematically except for some special cases,
but in fact could be numerically oriented.

5. SPECIAL CASES

Some queueing models can be obtained
as special cases of this system:

Case (1):
Let \(\beta = 1 \), this is the queue: \(M/M/1/N \) with
reneging and reflecting barrier. In view (8), (9),
(10) and (15):
The probability that there are \(n \) units in the
system is:
\[
p_n = \begin{cases}
\frac{\delta^n}{(\gamma)_n} p_0, & 0 \leq n \leq N - 1 \\
\frac{\delta^N}{r(\gamma)_N^N} p_0, & n = N
\end{cases}
\]
(16)
The delay probability is:
\[
p_0^{-1} = F_{\gamma}\left(1 - \frac{N \delta}{r(\gamma)_N^N}\right)
\]
(17)
The expected number of units in the system is:
\[
E(n) = p_0 \left((N-1)\delta F_{\gamma}\left(\frac{2-N}{\gamma}; -\delta\right) + \frac{N \delta^N}{r(\gamma)_N^N} \right)
\]
(18)
And
\[
f(\lambda, \mu, \hat{\gamma}) = \hat{\rho} T m + [\hat{\rho} T + \tau + (\gamma)_v'] [\gamma, \hat{\gamma}] \hat{E}(n)
\]
(19)

Case (2):
Let \(\gamma = 0 \), this is the queue: \(M/M/1/N \) with
balking and reflecting barrier. In view (8), (9),
(10) and (15):
The probability that there are \(n \) units in the
system is:
\[
p_n = \begin{cases}
\frac{\rho^n p_0}{\beta^k}, & 0 \leq n \leq k - 1 \\
\frac{(\beta \rho)^n}{\beta^k} p_0, & k \leq n \leq N - 1 \\
\frac{(\beta \rho)^N}{r \beta^k} p_0, & n = N
\end{cases}
\]
(20)
The delay probability is:
\[
p_0^{-1} = \frac{1 - \rho^k}{1 - \rho} + \rho^k \frac{1 - (\beta \rho)^{N-k}}{1 - \beta \rho} + \frac{\beta^{N-k} \rho^N}{r}
\]
(21)
The expected number of units in the system is:
\[
E(n) = p_0 \left\{ -k \rho^k (1 - \rho) + \rho - \rho^{k+1} + \frac{\beta^{N-k} \rho^N}{r} \frac{N \beta^{N-k}}{(1 - \rho)^2} \right\}
\]
(22)
And
\[
f(\lambda, \mu, \hat{\gamma}) = \hat{\rho} T m + [\hat{\rho} T + \tau + (\gamma)_v'] [\gamma, \hat{\gamma}], \hat{E}(n)
\]
(23)

Case (3):
Let \(N \to \infty \), this is the queue: \(M/M/1 \) with
balking and reneging. In view (8), (9), (10) and
(15):
The probability that there are \(n \) units in the
system is:
\[
p_n = \begin{cases}
\frac{\delta^n}{r(\gamma)_N^N} p_0, & 1 \leq n \leq k - 1 \\
\frac{(\beta \delta)^n}{(\beta \gamma)_N^N} p_0, & n \geq k
\end{cases}
\]
(24)
The delay probability is:
\[
p_0^{-1} = \frac{1}{\gamma} F_i\left(1 - \frac{k - 1}{\gamma}; -\delta\right) + \frac{\zeta^k}{(\gamma + k)} F_i\left(1 - \frac{\beta \delta}{\gamma + k}\right)
\]
(25)
The expected number of units in the system is:
\[E(n) = p_0 \left\{ (k-1)\delta \cdot F_1 \left(\frac{2-k}{\gamma}; -\delta \right) + \delta^{k+1} \frac{2}{(\gamma)^k} \cdot F_1 \left(\frac{2}{\gamma+k}; \beta\delta \right) \right\} \]
\[\text{And} \]
\[f(\lambda, \mu, \gamma) = \hat{\rho} T m + [\hat{\rho} T + \tau + (\gamma)'/\gamma] \hat{E}(n) \]
\[-(n+v)[\tau + (\gamma)'/\gamma] = 0 \]

Case (4):

Let \(r = 1 \), this is the queue: \(M/M/1/N \) for balking and reneging. In view (8), (9), (10) and (15):

The probability that there are \(n \) units in the system is:

\[p_n = \begin{cases}
\frac{\delta^n}{\gamma^n} p_0, & 0 \leq n \leq k-1 \\
\frac{(\beta\delta)^n}{\gamma^n} p_0, & k \leq n \leq N
\end{cases} \]
\[(26) \]

The expected number of units in the system is:

\[E(n) = p_0 \left\{ (k-1)\delta \cdot F_1 \left(\frac{2-k}{\gamma+1}; -\delta \right) + \delta^{k+1} \frac{1+k-N}{\gamma+1} \cdot F_1 \left(\frac{1+k-N}{\gamma+k+1}; -\beta\delta \right) \right\} \]
\[(28) \]

And

\[f(\lambda, \mu, \gamma) = \hat{\rho} T m + [\hat{\rho} T + \tau + (\gamma)'/\gamma] \hat{E}(n) \]
\[-(n+v)[\tau + (\gamma)'/\gamma] = 0 \]
\[(27) \]

Case (5):

Let \(r = 1, \beta = 1 \) and \(g = 0 \), this is the queue: \(M/M/1/N \) without any concepts.

Which is the same work as in Gross and Harris [4].

Case (6):

Let \(k = 1, g = 0 \) and \(N \to \infty \), this is the queue: \(M/M/1 \) with balking, which is the same work as in Kotb [6].

Case (7):

Let \(k = 1, \beta = 1, g = 0 \) and \(N \to \infty \), this is the simple queue: \(M/M/1 \) which is the same work as in Clarke [3].

6. SAMPLING DESIGN IN QUALITY CONTROL

In this section, we discuss the confidence intervals of \(E(n) \) and design in quality control for \(M/M/1/N \) system with balking, reneging and reflecting barrier. The \((1-\alpha)\) upper and lower limits of \(E(n) \) are given by:

\[E_\alpha(p_0) = p_0 \cdot \frac{2-k}{\gamma_{\alpha+1}} \cdot F_1 \left(\frac{1+k-N}{\gamma+1}; -\beta\delta \right) \]
\[+ \beta^{N-k-l} \frac{N(\beta\delta)^N}{rB(\gamma_{\alpha+1})} \]
\[(32) \]

And

\[E_\alpha(p_0) = p_0 \cdot \frac{2-k}{\gamma_{\alpha+1}} \cdot F_1 \left(\frac{2+k-N}{\gamma_{\alpha+1}}; -\beta\delta \right) \]
\[+ \beta^{N-k-l} \frac{N(\beta\delta)^N}{rB(\gamma_{\alpha+1})} \]
\[(33) \]
Let
\[g = 10, \ k = 3, \ \rho_{ext} = 0.70, \ r = 0.50, \ \lambda = 10, \ N = \]

And
\[\beta = 0.25, \ 0.50, \ 0.75 \ \text{and} \ 1.00 \ , \ \text{in relations} \]
(32) and (33) then we get TABLE 6.1 for each values of \(n \):
The results of \(E(n)_U, E(n)_L \) and \((E(n)_U - E(n)_L) \)
are given in TABLE 6.1 for each values of \(n \):
Solution of the system may be
determined more readily by plotting
\[[E(n)_U, E(n)_L] \ \text{and} \ [(E(n)_U - E(n)_L)] \]
again
st \(n \) for each values of \(\beta \) as given in
FIGUERE 6.1 and FIGUERE 6.2
respectively.

In order to study quality control for the
system, applying control limit (CL) approach
when \(\sigma \) is unknown. The control charts for
upper control limit \(UCL = E_U(n) \) and lower
control limit \(LCL = E_L(n) \).

The average of the subgroup ranges
(CL) for all values of \(\beta \) is:
\[
\overline{E}(n) = \frac{1}{9} \sum_{j=1}^{9} E_j
\]
\[= 0.8827, \ 0.9391, \ 1.0103 \ \text{and} \ 1.1004 \]
For
\[\beta = 0.25, \ 0.50, \ 0.75 \ \text{and} \ 1.00 \ \text{respectively} \]
Where
\[E_j = (E_U - E_L)_j \]
The standard deviation of the subgroup
ranges is:
\[S_E = \sqrt{\frac{1}{9} \sum_{j=1}^{9} (E_j - \bar{E})^2} \]

\[= 0.278, 0.296, 0.32 \text{ and } 0.35 \]

For

\[\beta = 0.25, 0.50, 0.75 \text{ and } 1.00 \] respectively

The control charts for upper control limit \(UCL = E_U(n) = \bar{E} + 3S_E \), lower control limit \(LCL = E_L(n) = \bar{E} - 3S_E \) and the averages of the subgroup ranges \(\bar{E} \) are shown in FIGURE 7.1, FIGURE 7.2, FIGURE 7.3 and FIGURE 7.4 respectively for all values of \(\beta \).
It is clear that all of values in the mean charts fall between the control limits, therefore the process is in control.

With the same manner, we can discuss the confidence intervals of $E(n)$ and design in quality control for other concepts at $M/M/1/N$ system.

8. CONCLUSION

This paper is has discussed statistical inference in quality control procedure truncated single-server Markovian queue with balking, reneging and reflecting barrier under steady-state simulation. We treated both point estimation using modified likelihood function and confidence intervals for estimating the mean, difference of means and control charts. Some important queueing systems are derived as special cases.

9. REFERENCES

[1] M. O. Abou-El-Ata, New approach for the moments of the simple birth-death processes and discrete distributions II, Journal of faculty of education, Ain shams university, Cairo, Egypt, Vol. 11(1987), pp. 53 - 62.

[2] Acharya, S. Kumar, Villarreal-Rodriguez and C. Emilio, Change point estimation of service rate in an M/M/1/m queue, International journal of mathematics in operational research, Vol. 5 no.1(2013), pp. 110 - 120.

[3] A. B. Clarke, Maximum likelihood estimates in a simple queue, Ann. Math. Stat. 28(1957), pp. 1036 – 1040.

[4] D. Gross and C. M. Harris, fundamentals of queueing theory, New York, John Wiley and Sons, (1974).

[5] C. Keeble, Maximum-likelihood estimation for sample surveys, Journal of applied statistics, Vol. 40, Issue 12(2013), pp. 27 - 77.

[6] K. A. M. Kotb, S. E. Albendary and Zenab M. Elakkad, Statistical sampling design in quality control processes for queueing systems of units in different institutions, International Journal of Mathematical Archive, 4(12), (2013), pp. 1 - 9.

[7] H. W. Lilliefors, Some confidence intervals for queues, Oper. Res., 14(1966), pp. 723 – 727.

[8] F. Louzada, M. Roman and V. Cancho, The complementary exponential geometric distribution: model, properties,
and a comparison with its counterpart,
Computational statistics and data analysis,
55(2011), 2516 - 2524.

[9] R. C. Quinino and F. R. B. Cruz,
Bayesian sample sizes in an $M/M/1$
queueing systems, Int. J. Adv. Manuf.
Technol., 88 (2017), pp. 995 – 1002.

[10] C. S. Tapiero and L. F. Hsu, Quality
Control of the $M/M/1$ Queue.
International Journal of Production
Research, Vol. 25, Issue 3 (1987), pp. 447
- 455.

[11] T. Y. Wang, J. C. Ke, K. H. Wang and S.
C. Ho, Maximum likelihood estimates
and confidence intervals of an M/M/R
queue with heterogeneous servers, Math.
Meth. Oper. Res., 63 (2006), pp. 371–384.

[12] R. W. Wolf, Problems in statistical
inference, Operations research, 11 (1963),
pp. 343-357.