Thomas, A. C., & Mattila, J. (2014). “Of mice and men”: arginine metabolism in human macrophages. *Frontiers in Immunology, 5*, [479]. https://doi.org/10.3389/fimmu.2014.00479

Publisher's PDF, also known as Version of record

Link to published version (if available): 10.3389/fimmu.2014.00479

Link to publication record in Explore Bristol Research
PDF-document

Copyright: © 2014 Thomas and Mattila. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
"Of mice and men": arginine metabolism in macrophages

Anita C. Thomas1* and Joshua T. Mattila2

1 Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
2 Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA

*Correspondence: a.thomas@bristol.ac.uk

Keywords: arginase, human macrophage, macrophage polarization, nitric oxide synthase, macrophage activation

INTRODUCTION

Macrophages are involved in inflammation from induction to resolution. Polarization of macrophages along the M1 (classical) or M2 (alternative) axis occurs during inflammation and can be at least partly categorized by the route of arginine metabolism. The macrophage, balancing the activities of the arginase and nitric oxide synthase (NOS) enzyme families (1, 2). Arginase activity is associated with tissue repair responses (via ornithine production and pro-proliferative effects). In contrast, NOS2 generates nitric oxide (NO) species with anti-proliferative effects that is necessary for protection against pathogens and aberrant cells (2, 3). Other NOS enzymes produce NO that acts in the regulation of smooth muscle tone and other cellular processes (4). Macrophages preferentially expressing the arginase or NOS2 pathways enzymes also influence T-cell activation, proliferation, signaling, and apoptosis in different ways (1).

While arginase and NOS enzymes can be used to ascertain the pathway of macrophage activation in rodents, there has been debate as to whether they are present in macrophages from humans and other mammals. The arginase and NOS enzymes are extensively conserved, and the NOS forms found in mammals are similar to those in cnidarians, mollusks, and other chordates (5, 6). These arginine-metabolizing enzymes are present in some human leukocytes, and there is evidence that they are also present in macrophages from other vertebrates, including chickens, rabbits, cows, and primates (7–12). However, comparisons of tissue macrophages of different species are lacking, which limits our understanding (13). Many studies in humans have principally focused on blood monocytes, leading some researchers to question the suitability of rodents as model of macrophage activation, as there is not always a direct correlation with human cells. Was Robert Koch correct when he said “Gentlemen, never forget that mice are not humans,” or can the differing results between species be explained, in part, by differences in the types of monocyte or macrophage studied? Our purpose here is to examine this question.

ARGININE METABOLISM IN MAMMALIAN CELLS

Many mammalian cells, including neutrophils, granulocytes, erythrocytes, hepatocytes, cardiac myocytes, dendritic cells, myeloid-derived suppressor cells, foam cells, natural killer cells, endothelial cells, and smooth muscle cells, have arginase (12, 14–16) or NOS activity (8, 17–19), albeit to different degrees. Macrophages are the primary circulating cells that can express either of these enzymes, depending on the inflammatory circumstance. Experiments that detect NO, ornithine, or urea production (via NOS2 or arginase) have most often been performed on rodent macrophages. Macrophages from some mouse strains (e.g., the M1-biased C57BL/6 strain) can be stimulated by lipopolysaccharide (LPS) to produce considerable quantities of NO. Macrophages from other strains (e.g., M2-skewed BALB/c mice) produce much less NO (20) and produce more ornithine instead. Some researchers did not detect any NO production in macrophages from humans, pigs, and rabbits (8, 11, 14, 21–23), but others (including ourselves) have observed NOS or arginase activity in macrophages from rabbits, humans, and other primates (4, 7, 10, 12, 17, 24–26).

WHY IS THERE CONTROVERSY?

One main difference between the studies from laboratories is that some use monocyte-derived macrophages (MDM), while others study tissue macrophages directly. A number of groups have detected NOS or arginase activity in human monocytes or macrophages (3, 27–29); but others have not. Why is this so? Part of the explanation lies in the fact that in vitro-derived macrophages can generate different responses from macrophages obtained in vivo as discussed below (and shown in Table 1). Another explanation is that many groups use the identification of enzyme protein rather than detection of enzyme activity as evidence of enzyme expression. Failure to detect the presence of a protein is not definitive evidence for absence of expression (especially when considering potentially different detection thresholds of antibodies or the high Vmax of arginase, i.e., very little enzyme is required for ornithine production).

MACROPHAGES PRODUCED IN VITRO

Macrophages have been produced in vitro in a number of ways. Cells from bone marrow have been isolated and “differentiated” in culture medium containing high levels of cytokines (such as colony stimulating factors, CSFs) to produce bone marrow-derived macrophages (BMDM) (13, 23, 44–46). Macrophages have also been produced by isolating and culturing monocytes from blood, to produce MDM (10, 13, 22, 30, 37, 47, 48). Production of these in vitro-derived macrophages is cheap, simple, and reproducible, but they may not be a...
Table 1 | The presence of arginine-metabolizing enzymes in human monocytes and macrophages varies with cell source, treatment and health status/stress level of the individual.

Cell origin	Cell	Treatment	NOS test	ARG test	Result	Reference
Blood monocytes	Monocyte, mono-mac	0, 2, 3, or 5d culture	RNA, citrulline, FC	RNA, urea	NOS, ARG1 and ARG2 levels vary between monocyte subpopulations	(27)
Blood monocytes	Monocyte, mono-mac	0, 3, or 7d culture or 7d M-CSF, 0.75d IFNγ/LPS, or IL4	Gene array		No difference (≤ 2-fold cut-off, therefore genes with smaller differences discounted)	(30)
Blood monocytes (filaria-infected)	Monocyte	1d culture	RNA	RNA	↑ARG1, ↓NOS2	(28)
Blood monocytes	Monocyte	2d culture	Urea		↑ARG1	(29)
Blood monocytes	Mono-mac	2d microfilaria, M-CSF, IL4, or IFNγ/LPS	RNA	RNA	Most donors had low but detectable NOS2 and ARG1 RNA expression which did not change with any treatment.	(31)
Blood monocytes	Mono-mac	3d IFNγ and/or IL4 (No M-CSF)	RNA		↓ARG1, but detectable in all conditions	(32)
Monocyte/macrophage cell line (U937)	Mono-mac	7d LPS and/or IFNγ	Transcription run-on assay		No induction of NOS2 gene transcription (for that particular region of the promoter region)	(33)
Monocyte/macrophage cell line (U937)	Mono-mac	1d selenomethionine and 1d LPS and/or IFNγ	Griess, RNA Western		Selenomethionine ↓LPS-induced NOS2 expression (RNA and protein) and nitrite production	(34)
Blood monocytes, peritoneal macrophages	Mono-mac, macrophage	7d culture, 2d LPS, IFNγ, or TNFa/GM-CSF	Griess, amino acid HPLC		No nitrite, ornithine, citrulline production, no arginine consumption	(22)
Blood monocytes, peritoneal macrophages	Monocyte, mono-mac	0d or 3d LPS or cytokine	RNA, IB, ICC, biopterin, citrulline, Griess		NOS2 mRNA and protein present in monocytes, ↑peritoneal macrophages (↑ with LPS). Both cell types produce neopterin, nitrite/nitrate and citrulline (low levels)	(35)
Blood monocytes (MS sufferers)	Macrophage	6d GM-CSF 0.75d IL4, IFNγ, LPS, or TNFa	RNA, Griess	RNA, WB, urea	ARG1 and NOS2 mRNA and nitrite production in MS and controls, ↑with M1 or M2 cytokine challenge. ARG1 protein and urea production present in controls, ↑in MS	(36)
Blood monocytes	Macrophage	8d M-CSF, 5d oxLDL	RNA		No change in ARG1 levels	(10)
Blood monocytes	Macrophage	10d M-CSF, 1d IL4, or IL10	Urea, WB arginine		No ARG1 after induction by IL4 or IL10	(14)
Blood monocytes	Macrophage	14d IFNγ/LPS	Griess		No nitrite production	(37)
Alveolar macrophages (volunteers)	Macrophage	IFNγ	Griess, citrulline		No NO production, no effect of NOS inhibitor	(21)
Alveolar macrophages	Macrophage	7d (short), 0.8d IL4, or forskolin (i.e., ↑cAMP)	Urea		Untreated macrophages have ARG activity similar to unstimulated RAW cells. ↑ARG with IL4/forskolin but not IL4 alone	(38)
Alveolar macrophages	Macrophage	0.75d IFNγ/LPS or IL-10	RNA, WB		↑ARG with IL10 stimulated cells, ↑NOS2 with IFNγ/LPS stimulated cells	(39)

(Continued)
Table 1 | Continued

Cell origin	Cell origin	Cell Treatment	NOS test	ARG test	Result	Reference
Alveolar macrophages	Macrophage	None	IHC, WB, RNA, diaphorase		45–49% of cells from TB patients have NOS2. Smoking controls had some NOS2-positive macrophages, non-smoking controls have few NOS2-positive cells	(24)
(TB patients, volunteers)						
Alveolar macrophages	Macrophage	None	IHC		Macrophages in TB granulomas stain for NOS1, NOS2 and nitrotyrosine (i.e., active)	(26)
(TB patients)						
Alveolar macrophages	Macrophage	None	IHC	IHC	ARG1 in macrophages in TB granulomas, few have Arg2. Some macrophages on outer margins have both NOS2 and ARG1, some near center have NOS2, NOS3 and ARG1	(12)
(TB patients)						
Atherosclerotic plaque	Macrophage	None	ISH, IHC		NOS2 in macrophages and smooth muscle cells, co-localized with oxidized lipoproteins and peroxynitrite (i.e., NOS is active)	(7)
Macrophages						
Atherosclerotic plaque	Macrophage	None	IHC, WB		Fatty streaks: no NOS2. Advanced plaques: NOS2 present in macrophages near necrotic core, associated with ceroid accumulation and nitrotyrosine (i.e., active)	(25)
Macrophages						
Atherosclerotic plaque	Macrophage	None	IHC		tARG1 in macrophages in superficial layers, tARG1 in macrophages surrounding lipid core	(10)
Foamy macrophages						
Atherosclerotic plaque	Macrophage	None	IHC, ISH		NOS2 and nitrotyrosine localized to smooth muscle cells, macrophages and foam cells (i.e., active)	(17)
Macrophages						
Oral macrophages	Macrophage	None	IHC, nitrate		NOS2 present in macrophages from gingivitis samples	(40)
Macrophages						
Placental macrophages	Macrophage	None	FC		Some M2 macrophages have ARG1	(18)
Skin macrophages	Macrophage	None	IHC, HPLC		NOS2 present in macrophages, some have ARG2, but none have ARG1. Controls: no ARG2	(41)
(wound)						
Tumor-associated macrophages	Macrophage	None	IHC		NOS2 present in some macrophages (bladder)	(42)
Macrophages						

While changes in RNA expression of arginine-metabolizing enzymes have been used to identify macrophage activation states, protein changes [such as western blotting (WB) or immunohistochemistry (IHC)] are also useful. Nitric oxide synthase (NOS) activity can be assessed directly [e.g., production of citrulline or NO (e.g., Griess assay)] or by the presence of markers of NO production (such as peroxynitrite, nitrotyrosine or ceroid, a complex of oxidized lipids and proteins). Arginase (ARG) activity can be measured as urea or ornithine production (e.g., urea assays, amino acid HPLC).

d, number of days; ?d, unspecified number of days; FC, flow cytometry; M-CSF, macrophage colony-stimulating factor; IFNγ, interferon-γ; LPS, lipopolysaccharide; IL, interleukin; TNFα, tumor necrosis factorα; GM-CSF, granulocyte-macrophage colony-stimulating factor; IB, immunoblot; ICC, immunocytochemistry; MS, multiple sclerosis; oxLDL, oxidized low density lipoprotein; TB, tuberculosis; ISH, in situ hybridization; Griess, Griess assay for nitrite/nitrate production.

It should be noted that NO production below the detection levels of this relatively insensitive assay may still have functional effects (43).

full representative of tissue macrophages, as the preparation and culture procedures may not be sufficient to induce cell activation (4). The differences between tissue macrophages and in vitro-derived macrophages are at least partly dependent on cell source, time in culture, and the degree of manipulation in culture. Each research group will use different types and sources of culture media and sera, which vary greatly in the concentrations of factors that influence NOS2 or arginase expression, such as transforming growth factor β (TGFβ) (4, 20, 49). Another confounding issue is that circulating monocytes and
tissue macrophages arise from different stem cell populations (50), although some macrophages found at sites of infection or inflammation may derive from infiltrating monocytes (51). Together, these factors may account for many of the differences observed in NO and urea production in these macrophages (8, 20).

Monocyte-derived macrophages or BMDM from different strains of mice can differ in their response to interferon-γ (IFNγ), LPS, and tumor necrosis factor-α (TNFα) (4,8), and differences in the rodent background can result in differences in macrophage gene expression (13, 20, 49). Human in vitro-derived macrophages also show variability in their responses to LPS (4,22,46). It may be that the same stimulus is able to generate quite different responses in genetically diverse individuals, as it does between mouse strains (38, 49, 52). In general, human macrophages are not as responsive to LPS as mouse macrophages, possibly because of the lower environmental exposure of humans to LPS. It is also possible that human monocytes may be more effectively stimulated to become M1-activated macrophages by cytokines other than IFNγ and LPS/TNFα (e.g., IFNα) (4, 18, 43). Human macrophages take longer time to respond to the stimulatory factors in vitro than mouse macrophages, and some experiments using human MDM may have ended before a response was detected (48). There are other indications that the timing and length of the exposure of the cells to varying cytokines in vitro are important. For example, when M1-polarizing cytokines were removed from the culture medium, NO2 levels in mouse BMDM were reduced and NO production (measured as nitrite) ceased (45). In addition, whichever arginase or NOS enzyme was induced earliest, the alternative enzyme decreased in expression and activity, unless arginase was present in excess (15, 45, 53). Macrophages require the local environment to continuously give appropriate activation cues. Changes in environmental cues can stimulate macrophage populations in vitro to express varying percentages of M1 or M2 dominant activity (54). When activation cues are reduced or removed, macrophages may become deactivated (e.g., M2c) or indeterminate (e.g., have features of M1 and M2).

Macrophages obtained in vivo

Macrophages can be identified in whole tissues and organs or isolated in large numbers from in vivo sources such as the peritoneum or granulomas, and either examined immediately or used ex vivo. Macrophages obtained in vivo or made from monocytes can respond differently to the same stimulus (35, 47). In one study, monocytes and tissue macrophages were obtained from patients with an inflammatory disease (either rheumatoid or psoriatic arthritis). Compared with tissue macrophages, the MDM had a blunted response to the M2 cytokines interleukin-4 (IL-4) and IL-13, at least partly due to a reduction in some of the receptor elements for these cytokines (47). These results suggest that the response of the macrophages to M2 cytokines may be source specific, but it is possible that these cytokines alone were not sufficient to fully stimulate the MDM (38). Several lines of evidence suggest that macrophages in vivo express functional NOS2. Blood monocytes and peritoneal macrophages obtained from women during laparoscopic procedures contained NOS2 mRNA and protein. The macrophages had higher NO levels than the monocytes, and this could be increased by treatment with LPS. The monocytes and macrophages also produced neopterin, nitrite/nitrate, and citrulline (suggesting that the enzyme was active). Although the production of NO from these macrophages was low, it would probably have been sufficient to cause functional changes (35).

Macrophages can also be obtained from alveolar aspirates, skin, and the placenta (10, 16, 21, 38, 39, 55, 56). For example, sponges placed subcutaneously into mice, rats, or rabbits attract large numbers of macrophages. The sponges can be removed from the animal and the macrophages were isolated and purified (10, 55, 56). It is a little more difficult to obtain and purify macrophages from other tissues, such as atherosclerotic vessels (44), but intact biopsy, surgical, or cadaveric specimens can also be investigated. It should be noted that resident macrophages from different tissues observed at different times (and different health states) may not necessarily have identical properties (51, 57).

In order to perform their full range of functions, macrophage populations exhibit “plasticity” of phenotype (52, 58), regardless of whether they are found in vivo or derived in vitro. As macrophages adapt or change their functions, they can simultaneously express markers of M1 and M2 activation, including NOS2 and arginase-1 (12, 59, 60). For example, tissue macrophages (and MDM) from Mycobacterium tuberculosis-infected cynomolgus macaques have been observed to co-express functional NOS and arginase enzymes (12). We suggest that macrophages display a spectrum of activation phenotypes, and it is the relative (and not absolute) proportion of M1 or M2 markers that we can use as a “handle” to determine the type of activation state.

Effect of disease and trauma on macrophage activation

Blood monocytes from healthy volunteers do not usually need to produce NOS or arginase, so it is not surprising that many studies have not detected NOS or arginase in these cells (10, 14, 21, 22, 29, 30, 37). However, studies performed on tissue or cells from people undergoing stress, trauma (e.g., burns (29)), pregnancy (16), or disease (such as infection e.g., tuberculosis (12, 24, 26) or filarial infection (28)), atherosclerosis (7, 10, 17, 25), autoimmune diseases (27, 36) and cancer (42, 61) demonstrate that human macrophages (and sometimes monocytes) can produce active forms of the arginine-metabolizing enzymes (Table 1).

Trauma results in a pattern of gene expression in macrophages that is consistent with a wound-healing response, with an initial increase in NOS followed by decreased NOS production and activity, elevated IL-4, IL-10, and TGFβ levels, and increased arginase expression and activity, resulting in decreased plasma arginine levels (28, 29, 62).

Disease, however, causes different patterns of gene expression. For example, monocytes from multiple sclerosis sufferers not only have higher levels of arginase-1 and increased urea production, but also have increased NOS2 mRNA and nitrite production (particularly when stimulated by M1 cytokines or LPS) (36). Macrophages from patients with inflammatory diseases, such as tuberculosis,
malaria, or rheumatoid arthritis, have increased levels of NOS2 mRNA and active protein (4, 8, 24, 26, 63), which may contribute to elevated plasma NO levels (64). Atherosclerosis is another inflammatory disease with a considerable macrophage contribution, with oxidized low-density lipoproteins taken up by macrophages during their transformation into foam cells. Plaque macrophages express NOS2 RNA and protein, as well as markers of NOS activity (including the presence of nitrotyrosine or ceroid) (4, 7, 17, 25). Plaque macrophages and foam cells express arginase-1 (10), and macrophages laser-dissected from plaque have upregulated levels of arginase-2 and NOS2 (65). Macrophages present in some neoplastic diseases also produce active NOS2 (4, 42, 66). Reducing the local levels of arginine has been proposed as a treatment for these diseases, by reducing inflammation-triggered immune dysfunction, tumor escape, fibrosis, and immunosuppression (61). Possible pharmacological interventions include treatment with arginine degrading enzymes, NOS competitors and inhibitors, asymmetric dimethylarginine, NO-releasing aspirins, cyclooxygenase, and phosphodiesterase or arginase inhibitors (8, 61). These studies suggest that an inflammatory environment is necessary in order to observe NOS or arginase in human monocytes and macrophages. The in vitro experiments that do not demonstrate arginase or NOS expression may simply be lacking the additional cues needed for expression rather than demonstrating an inability to actually express these factors.

CONCLUSION
The modulation of macrophages to express NOS or arginase has clear benefits for treating disease in humans (and other species). To do this, one needs to either determine suitable signals to stimulate these pathways or obtain a sufficient number of human macrophages (e.g., by tissue culture) that serve as a source of the macrophages. The in vitro experiment using current protocols tend not to have detectable levels of arginase and NOS enzymes, whereas MDM from diseased or stressed individuals or tissue macrophages obtained from normal, diseased, or stressed individuals do express NOS and/or arginase. Together these observations suggest that the current system of differentiating macrophages from human peripheral monocytes in vitro needs further refinement before it can be considered to be an accurate model of human macrophage behavior in vivo (63). In turn, we need to understand the differences and similarities between the different species and the cells being studied to develop experimental models that will answer some of the outstanding questions regarding macrophage M1/M2 or other activation states: What regulates macrophage activation in tissues? What mechanisms regulate macrophage plasticity and stability? How does plasticity of phenotype affect tissue macrophages? What are the full in vivo ramifications of the M1/M2 paradigm?

Further work is important to be sure that our observations of the human system in vitro are real, and not due to our cell source, measurements, or manipulations. We suggest that macrophages obtained from mice remain useful for investigating aspects of these questions in humans/human macrophages. So, although mice are not men (as Robert Koch observed), we agree with Rudolf Virchow that “Between animal and human medicine there is no dividing line – nor should there be. The object is different but the experience obtained constitutes the basis of all medicine” [Rudolph Virchow, 1821–1902].

ACKNOWLEDGMENTS
Anita C. Thomas is supported by funding from the British Heart Foundation. Joshua T. Mattila is supported in part by NIH RO1A103785 and Bill and Melinda Gates Foundation grants to JoAnne Flynn (University of Pittsburgh).

REFERENCES
1. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, et al. Tumors induce a subset of inflammatory monocytes with immunosuppresive activity on CD8+ T cells. J Clin Invest (2006) 116:2777–90. doi:10.1122/JCI228028
2. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest (2007) 117:175–84. doi:10.1172/JCI29881
3. Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol (2012) 32:463–88. doi:10.1615/CritRevImmunol.v32.i6.10
4. Weinberg JB. Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Mol Med (2008) 14:557–91.
5. Perozich J, Hempel J, Morris J. Roles of conserved residues in the arginase family. Biochim Biophys Acta (1998) 1382:23–37.
6. Dzik JM. The ancestry and cumulative evolution of immune reactions. Acta Biochim Pol (2010) 57:443–66.
7. Luoma JS, Stralin P, Marklund SL, Hiltunen TP, Sarkoja T, Yla-Herttuala S. Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol (1998) 18:157–67. doi:10.1161/01.ATV.18.2.157
8. Bogdan C. Nitric oxide and the immune response. Nat Immunol (2001) 2:907–16. doi:10.1038/ ni001-907
9. Djeraba A, Musset E, van RN, Queer P. Resistance and susceptibility to Marek’s disease: nitric oxide synthase/arginase activity balance. Vet Microbiol (2002) 86:229–44. doi:10.1016/S0378-1135(02)00010-X
10. Thomas AC, Sala-Newby GB, Ismail Y, Johnson JL, Pasterkamp G, Newby AC. Genomics of foam cells and nonfoamy macrophages from rabbits identifies arginase-I as a differential regulator of nitric oxide production. Arterioscler Thromb Vasc Biol (2007) 27:571–7. doi:10.1161/01.ATV.0000256470.23842.94
11. Zelnickova P, Matiasiovic J, Pavlova B, Kudlackova H, Kovaru F, Faldyna M. Quantitative nitric oxide synthase and arginase expression in rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol (1998) 18:157–67. doi:10.1161/01.ATV.18.2.157
12. Mattila JT, Ojo OO, Kerka-Lenhart D, Marino S, Kim JH, Eum SY, et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol (2013) 191:773–84. doi:10.4049/jimmunol.1300113
13. Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol (2011) 89:557–63. doi:10.1189/jlb.0710409
14. Munder M, Mollenkède E, Calafat I, Canchado JI, Gil-Lamaignere C, Fuentes JM, et al. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood (2005) 105:2549–56. doi:10.1182/blood-2004-07-2525
15. Morris SM. Arginine metabolism: boundaries of our knowledge. J Nutr (2007) 137:16025–95.
16. Kropp F, Baud D, Marshall SE, Munder M, Mosley A, Fuentes JM, et al. Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol (2007) 37:935–45. doi:10.1002/eji.200636542

17. Buttery LD, Springall DR, Chester AH, Evans TJ, Standfield EN, Parums DV, et al. Inducible nitric oxide synthase is present within human athero- sclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest (1996) 75:77–85.

18. Bronte V, Zanovello P. Regulation of immune responses by t-arginine metabolism. Nat Rev Immunol (2005) 5:641–54. doi:10.1038/nri1668

19. Lechner MG, Megiel C, Russell SM, Bingham B, Arger N, Woo T, et al. Functional characterization of human Cd33+ and Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl Med (2011) 9:10. doi:10.1186/1479-5876-9-90

20. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM, M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol (2000) 164:1666–73. doi:10.4049/jimmunol.164.12.6166

21. Carmona-Brunet JL, Granger DI, Weinberg IB, Kurzmo BM, Koren HS. Human alveolar and peritoneal macrophages mediate fungistasis independently of t-arginine oxidation to nitrite or nitrate. Am Rev Respir Dis (1990) 142:1313–9. doi:10.1164/ajrccm/142.6 Pt_1.1313

22. Schmeissner M, Schroedon G, Hofer S, Blau N, Guerrero L, Schaffner A. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis (1995) 170:358–63. doi:10.1086/352586

23. Kapetanovic R, Fairbairn L, Bezdali D, Sest DP, Archibald AL, Tuggle CK, et al. Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide. J Immunol (2012) 188:3382–94. doi:10.4049/jimmunol.1102649

24. Nicholson S, Bonecini-Almeida MG, Lapa e WJ, Koren HS. Human alveolar and peritoneal macrophages mediate fungistasis independently of t-arginine oxidation to nitrite or nitrate. Am Rev Respir Dis (1990) 142:1313–9. doi:10.1164/ajrccm/142.6 Pt_1.1313

25. Cromheeke KM, Kockx MG, Megiel C, Russell SM, Bingham B, Arger N, Woo T, et al. Functional characterization of human Cd33+ and Cd11b+ myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J Transl Med (2011) 9:10. doi:10.1186/1479-5876-9-90

26. Choi HS, Rai PR, Chu HW, Cool C, Chan ED. Transcriptional profiling of the human monocyte macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol (2006) 177:7303–11. doi:10.4049/jimmunol.177.10.7303

27. Martínez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol (2006) 177:7303–11. doi:10.4049/jimmunol.177.10.7303

28. Babu S, Kumaraswami W, Nuttman TB. Alternatively activated and immunoregulatory monocytes in human filarial infections. J Infect Dis (2009) 199:1837–37. doi:10.1086/599090

29. Kobayashi M, Jeshke MG, Shimagata K, Asai A, Yoshida S, Herndon DN, et al. M2b monocytes predominated in peripheral blood of severely burned patients. J Immunol (2010) 185:7174–9. doi:10.4049/jimmunol.0903935

30. Rouzaut A, Subira ML, de Miguel C, Domingo-Vilalt P, Tarrand JJ, Rago T, et al. Inducible nitric oxide synthase colocalizes with signs of apoptosis regulated by endogenous NO. The Am J Pathol (2002) 159:1113–21. doi:10.1016/S0002-9440(10)63718-5

31. Senmami RT, Matapata L, Moore V, Vanpraet S, Nuttman TB. Functional and phenotypic characteristics of alternative activation induced in human monocytes by interleukin-4 or the parasitic nematode Brugia malayi. Infect Immun (2011) 79:3957–65. doi:10.1128/IAI.05191-11

32. Raes G, Blys L, Dahal BK, Brandt J, Grootab J, Beelaerts WJF, et al. Inducible nitric oxide synthase-expressed C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J Leukoc Biol (2005) 77:321–7. doi:10.1189/jlb.0304212

33. Zhang X, Laubach VE, Alley EW, Edwards KA, Sherman PA, Russell SW, et al. Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-gamma. J Leukoc Biol (1996) 59:785–85.

34. Shen Y, Yang S, Shi Z, Lin T, Zhu H, Bi F, et al. SeMet mediates anti-inflammation in LPS-induced U937 cells targeting NF-kB signaling pathway. Inflammation (2014), doi:10.1007/s10753-014-9984-0

35. Weinberg IB, Msukosana MA, Shami PJ, Mason SN, Sauls DL, Dittman WA, et al. Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, and inducible nitric oxide production by blood monocytes and peritoneal macrophages. Blood (1995) 86:5918–24. doi:10.1182/blood.v86.11.5918

36. Liu YH, et al. Population alterations of M1/M2 macrophages and the Th1/Th2 par-...
55. Albina JE, Mills CD, Barbul A, Thirkill CE, Henry WL, Mastrofrancesco B, et al. Arginine metabolism in wounds. *Am J Physiol* (1988) **254**:E459–67.
56. Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype of murine wound macrophages. *J Leukoc Biol* (2010) **87**:59–67. doi: 10.1189/jlb.0409236
57. Johnson JL, Newby AC. Macrophage heterogeneity in atherosclerotic plaques. *Curr Opin Lipidol* (2009) **20**(5):370–8. doi:10.1097/MOL.0b013e3283309848
58. Hume DA. Plenary perspective: the complexity of constitutive and inducible gene expression in mononuclear phagocytes. *J Leukoc Biol* (2012) **92**:433–44. doi:10.1189/jlb.0312166
59. Poljakovic M, Porter DW, Millecchia L, Kepka-Lenhart D, Beighley C, Wolfarth MG, et al. Cell- and isoform-specific increases in arginase expression in acute silica-induced pulmonary inflammation. *J Toxicol Environ Health A* (2007) **70**:118–27. doi:10.1080/15287390600755075
60. Arora S, Olszewski MA, Tsang TM, McDonald RA, Toews GB, Huffnagle GB. Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with *Cryptococcus neoformans*. *Infect Immun* (2011) **79**:1915–26. doi:10.1128/IAI.01270-10
61. Munder M. Arginase: an emerging key player in the mammalian immune system. *Br J Pharmacol* (2009) **158**:638–51. doi:10.1111/j.1476-5381.2009.00291.x
62. Ochoa JB, Bernard AC, O’Brien WE, Griffen MM, Maley ME, Rockich AK, et al. Arginase I expression and activity in human mononuclear cells after injury. *Ann Surg* (2001) **233**:393–9. doi:10.1097/00000658-200103000-00004
63. Nathan C. Role of iNOS in human host defense. *Science* (2006) **312**:1874–5. doi:10.1126/science.312.5782.1874b
64. Boutlis CS, Tjitra E, Maniboey H, Misukonis MA, Saunders JR, Suprianto S, et al. Nitric oxide production and mononuclear cell nitric oxide synthase activity in malaria-tolerant papuan adults. *Infect Immun* (2003) **71**:3682–9. doi:10.1128/IAI.71.7.3682-3689.2003
65. Tuomisto TT, Korkeela A, Rutanen J, Viita H, Brasen HI, Riekkinen MS, et al. Gene expression in macrophage-rich inflammatory cell infiltrates in human atherosclerotic lesions as studied by laser microdissection and DNA array: overexpression of HMGR-CoA reductase, colony stimulating factor receptors, CD11a/CD18 integrins, and interleukin receptors. *Atherosclerosis Thromb Vasc Biol* (2003) **23**:2325–30. doi:10.1161/01.ATV.0000102551.91154.96
66. Pantano F, Berti P, Guida FM, Perrone G, Vincenti B, Amato MM, et al. The role of macrophages polarization in predicting prognosis of radically resected gastric cancer patients. *J Cell Mol Med* (2013) **17**:1415–21. doi:10.1111/jcm.121097

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 01 August 2014; **accepted:** 19 September 2014; **published online:** 07 October 2014. Citation: Thomas AC and Mattila JT (2014) "Of mice and men": arginine metabolism in macrophages. *Front. Immunol.* **5**:479. doi: 10.3389/fimmu.2014.00479

This article was submitted to Inflammation, a section of the journal *Frontiers in Immunology*. Copyright © 2014 Thomas and Mattila. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.