The research on bearing capacity of supports with annular section

V L Shchutskiy¹, A S Nasevich¹*, V E Chubarov¹, A M Blyagoz²
¹Don State Technical University, 162 Sotsialisticheskaya str, Rostov-on-Don, 344022, Russia
²Federal State Budgetary Educational Institution of Higher Education «Kuban State Agrarian University named after I.T. Trubilin» 13, Kalinina str, Krasnodar, 350044, Russia

E-mail: x609km@mail.ru

Abstract. Our research work on the physical and mechanical properties of centrifuged concrete, the strength and deformability of cylindrical and conical transmission towers made it possible to reveal some incorrect calculations according to the old and new standards. To identify discrepancies in the calculations for the supports with annular section according to the SNiP 2.03.01-84 and according to the SP 63.13330.2012, we carried out the numerical experiments on the example of the transmission tower supports. As the test sample, the cylindrical transmission tower according to the Certification System GOST 22687.2

Introduction
The reinforced concrete structures with annular section are widely used in road construction (non-pressure water pipes), energy construction (transmission towers, contact network supports), industrial construction (industrial buildings columns) etc.

The greatest contribution to the research of centrifuged concrete properties, as well as the strength and deformability of structures with annular section under bending and eccentric compression, was made by I.N. Akhverdov [1], A.P. Kudzis [2, 3], V.M. Batashev [5, 6], S.A. Dmitriev [6], T.M. Petsold [7], S.T. Androsov, T.F. Nagornaya [5].

The research works of these authors were the basis for the calculation of reinforced concrete structures with annular section according to the SNiP 2.03.01-84.

Experimental program and research results
In new standards of the SP 63.13330.2012, the methodology for calculating the elements with annular section has not undergone significant changes, however, in the basic equations for determining the relative height of the compressed zone $ξ_{cp}$ and the bearing capacity M_{ult}, the separate influence of prestressed reinforcement A_{sp} and non-prestressed reinforcement A_s is not taken into account (Figure 1)
Figure 1. Reinforcement scheme of an element with an annular section.

\[r_1, r_2 - \text{outer and inner radius of the section; } \]
\[r_{sp}, r_s - \text{radius of prestressed and non-prestressed reinforcement; } \]
\[A_{sp}, A_s - \text{areas of prestressed and non-prestressed reinforcement, respectively.} \]

Our research work on the physical and mechanical properties of centrifuged concrete [8], the strength and deformability of cylindrical and conical transmission towers [9, 10] made it possible to reveal some incorrect calculations according to the old and new standards.

Let us examine the formulas for determining the relative height of the compressed zone of concrete \(\xi_{cir} \) of annular elements according to the SNiP 2.03.01-84 in the form (1) and according to the SP 63.13330.2012 in the form (2):

\[
\xi_{cir} = \frac{N + (\sigma_{sp} + \omega_{sp} r_{sp}) A_{sp} + \omega_s r_s A_s}{R_b A_b + (R_{scp} + \delta_{sp} \omega_{sp} r_{sp}) A_{sp} + (R_{sc} + \delta_s \omega_s r_s) A_s}
\] (1)

Where \(\delta_{sp(s)} = 1.5 + 6R_{sp(s)} 10^{-4} \)
\[
\omega_s = 1; \quad \omega_{sp} = 1.1 - \frac{\sigma_{sp}}{R_{sp}}
\]

\[
\xi_{cir} = \frac{N + R_s A_{s,tot}}{R_b A_b + (R_{sc} + 1.7 R_s) A_{s,tot}}
\] (2)

Where \(A_{s,tot} = A_{sp} + A_s \)

The comparison shows that in formula (1) the influence of prestressed reinforcement \(A_{sp} \) and non-prestressed reinforcement \(A_s \) is taken into account differentially with the corresponding influence coefficients \(\delta_{sp}, \omega_{sp} \), and in formula (2) there is no differentiated approach of taking into account the effect of prestressed and non-prestressed reinforcement.

Similarly, let us compare the formulas for determining the bearing capacity according to the old standards [11] in the form of (3) and to the new standards [12] in the form of (4):

\[
M_{ult} \leq \left(R_b A_b r_m + R_{scp} A_{sp} r_{sp} + R_{sc} A_s r_s \right) \frac{\sin(\pi \xi_{cir})}{\pi} + \left(R_{sp} A_{sp} \varphi_{sp} z_{sp} + R_s A_s \varphi_s z_s \right)
\] (3)

Where \(\varphi_{sp(s)} = \omega_{sp(s)} (1 - \delta_{sp(s)} \xi_{cir}); \)
\[
z_{sp} = (0.2 + 1.3 \xi_{cir}) r_{sp(s)}, \text{ but } 0.15 \leq \xi_{cir} \leq 0.6
\]

In the particular case, when the prestressed and non-prestressed reinforcement are located with the same radius (Figure 1) \(r_s = r_{sp} \), the lever arm for the prestressed and non-prestressed reinforcement will be constant \(z_s = z_{sp} \). However, the parameters \(\varphi_{sp} \) and \(\varphi_s \) will differ significantly.

\[
M_{ult} \leq \left(R_b A_b r_m + R_{sc} A_{s,tot} r_s \right) \frac{\sin(\pi \xi_{cir})}{\pi} + R_s A_{s,tot} (1 - 1.7 \xi_{cir}) z_s
\] (4)
Where $z_s = (0.2 + 1.3 \xi_{cir}) r_s$.

The comparison shows that the first terms of equation (3) and (4) are identical with the equality $r_s = r_{sp}$, however, the relative height of the compressed zone ξ_{cir} will differ. The second term of equations (3) and (4), which reflects the effect of reinforcement on the bearing capacity of the section, varies significantly.

It should be noted that according to formulas (2) and (4), it is not possible to analyze the influence of the relation between the prestressed reinforcement A_{sp} and non-prestressed reinforcement A_s explicitly, as well as the effect of the prestressed reinforcement level σ_{sp}.

To identify discrepancies in the calculations for the supports with annular section according to the SNiP 2.03.01-84 [11] and according to the SP 63.13330.2012 [12], we carried out the numerical experiments on the example of the transmission tower supports. As the test sample, the cylindrical transmission tower according to the Certification System GOST 22687.2, the parameters of which are given in Table 1, was adopted.

Table 1. Parameters of the investigated transmission tower

Type of transmission tower according to GOST	Diameter of support, mm	Wall thickness, mm	Class and amount of reinforcement	Level of reinforcement prestress
Cylindrical support 20.2-1.0	800, 640	80	Prestressed A-IV (A600) Non-prestressed A-IV (A600)	0.8R_{sp,n}

The amount of reinforcement corresponds to the most prestressed section of the support in a restrained condition.

The bending stiffness of support D and the critical force N_{cr} were determined, respectively, according to the formulas (5) and (6):

$$D = \frac{0.15 E_b l_b}{\varphi_l(0.3 + \delta_e)} + 0.7E_d l_d \tag{5}$$

$$N_{cr} = \frac{\pi^2 D}{T_0} \tag{6}$$

Where $\varphi_l = 1$ with short-term load;

$\delta_e = \frac{\varepsilon_0}{H}$ relative eccentricity of external force

N, a H- outer diameter of the support.

In a numerical experiment, the value of longitudinal force N in formulas (1) and (2) varied in the range (0.1-1.0) N_{cr}, and the value $\delta_e =$0.15-0.75.

This allowed us to analyze in a numerical experiment the change in bending stiffness D for the support under study, critical strength N_{cr}, load bearing capacity M_{sh}, in a real area of possible loads, all other things being equal (section geometry, reinforcement percent, concrete classes and reinforcement).

Table 2 shows the calculation results of ξ_{cir} according to the SNiP 2.03.01-84 [11], and Table 3 shows the calculation results of ξ_{cir} according to the SP 63.13330 / 2012 [12], depending on the N/N_{cr} and δ_e ratios. Figure 2 shows the graphs of the variation of ξ_{cir} at $\delta_e = 0.15; 0.45; 0.75$ depending on the ratio N/N_{cr}.

The analysis of these data shows that with an increase of δ_e, the values of ξ_{cir} decrease, but at the same time, the obtained values approximate to each other as a result of calculation according to the SNiP and the SP. For example, when calculating by the SNiP [11] with the ratio $N/N_{cr}=0.5$, the value of ξ_{cir} changes from 0.4260 ($\delta_e = 0.15$) to 0.3879 ($\delta_e = 1$). And when calculating by the SP [12] with...
the same parameters, the value of ξ_{cir} changes from 0.3631 ($\delta_c = 0.15$) to 0.3282 ($\delta_c = 1$). This pattern is clearly visible in the graphs of Figure 2.

It should be noted that the value of ξ_{cir} in the SNIp [11] exceeds their values in the SP [12], while the graphs are almost parallel and their convergence with the increase of δ_c takes place.

Table 2. Change of ξ_{cir} depending on the N/N_cr and δ_c ratios (SNIp)

δ_c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0.15	0.48	0.37	0.39	0.40	0.42	0.42	0.44	0.46	0.48	0.51
0.3	0.35	0.36	0.38	0.39	0.41	0.42	0.46	0.47	0.46	0.46
0.45	0.35	0.36	0.37	0.38	0.40	0.41	0.45	0.45	0.45	0.46
0.6	0.35	0.35	0.37	0.38	0.39	0.40	0.42	0.42	0.43	0.43
0.75	0.35	0.35	0.37	0.38	0.39	0.40	0.41	0.41	0.42	0.42
0.9	0.35	0.35	0.37	0.38	0.39	0.40	0.41	0.41	0.41	0.42
1	0.35	0.35	0.37	0.38	0.39	0.40	0.41	0.41	0.42	0.42

Table 3. Change of ξ_{cir} depending on the N/N_cr and δ_c ratios (SP)

δ_c	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0.15	0.29	0.31	0.33	0.34	0.36	0.37	0.39	0.41	0.42	0.44
0.3	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40	0.41
0.45	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40	0.41
0.6	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40	0.41
0.75	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40	0.41
0.9	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40	0.41
1	0.29	0.30	0.32	0.33	0.35	0.36	0.38	0.39	0.40	0.41

Table 4 shows the calculation results of the bearing capacity of M_{ult} supports according to the SNIp 2.03.01-84 [11], and Table 5 shows the calculation results of M_{ult} according to the SP 63.13330 / 2012 [12], depending on the N/N_cr and δ_c ratios. Figure 3 shows the graphs of the variation of M_{ult} at $\delta_c = 0.15; 0.45: 0.75$ depending on the N/N_cr ratio.

The analysis of these data shows that, with an increase of δ_c, the values of M decrease, but at the same time, the obtained values approximate to each other as a result of calculation according to the SNIp and the SP. For example, when calculating by the SNIp [11] with the ratio N/N_cr = 0.5, the value of the moment changes from 1288.8 kN*m ($\delta_c=0.15$) to 1271.9 kN*m ($\delta_c=1$). And when calculating by the SP [12] with the same parameters, the value of the moment changes from 1330.29 kN*m ($\delta=0.15$) to 1297.86 kN*m ($\delta=1$). This pattern is clearly visible in the graphs of Figure 3.
Figure 2. Change of ξ_{cir} depending on the N/N_{cr} and δ_e ratios

Table 4. Change of M depending on the N/N_{cr} and δ_e ratios according to the SNiP

δ_e	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										

Table 5. Change of M depending on the N/N_{cr} and δ_e ratios according to the SP

δ_e	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										

5
0.6 1251.6 1267.2 1281.5 1294.7 1306.6 1317.3 1326.7 1334.7 1341.5 1347.0
0.75 1250.5 1265.1 1278.7 1291.2 1302.6 1313.0 1322.3 1330.4 1337.4 1343.3
0.9 1249.7 1263.5 1276.5 1288.5 1299.5 1309.6 1318.8 1326.9 1334.0 1340.1
1.0 1249.2 1262.9 1275.3 1287.0 1297.9 1307.8 1316.8 1324.9 1332.1 1338.3

Figure 3. Change of M depending on the N/N_cr and δ_e ratios

It should be noted that the bearing capacity of M_{ult} according to the SNiP [11] is constantly increasing with the increase of N/N_cr ratio, and according to the SP [12], a decrease of M_{ult} is observed at certain values of N/N_cr depending on the relative eccentricity of δ_e. So, for example, at δ_e = 0.15, M_{ult} according to the SP [12] begins to decrease at N/N_cr ≥0.6, and at δ_e = 0.45, the decrease begins at N/N_cr ≥0.85 (See graphs in Figure 3).

The reason for this incorrectness in the calculations of the bearing capacity of supports with annular section should be explained by the fact that the new standards [12] do not have a differentiated approach to taking into account the effects of prestressed reinforcement A_{sp} and non-prestressed reinforcement A_s when determining the relative value of the compressed zone ξ_{cir} by the formula (2) and M_{ult} by the formula (four). As it follows from the graphs of changes in the bearing capacity of the supports (Figure 4), the convergence in the calculations noticeably improves with the increase of δ_e.

This improvement in convergence is also associated with the change in stiffness of the support D according to the formula (5) and the critical force N_{crc} according to the formula (6).

Table 6 shows the calculation results of the stiffness (D) of the support according to the SP 63.13330 / 2012 [12] depending on the eccentricity (δ_e). Figure 4 shows the graphs of the change in D concrete, reinforcement and the total stiffness of the support for various values of δ_e from 0.15 to 1.5.
Table 6. Change of the support stiffness depending on the eccentricity

δ_e	$D_{\text{concrete}} \times 10^{-7}$ N*mm2	$D \times 10^{-7}$ N*mm2
0.15	1525.29	2332.06
0.30	1143.97	1950.74
0.45	915.17	1721.95
0.60	762.64	1569.42
0.75	653.70	1460.47
0.90	571.98	1378.76
1.00	527.98	1334.76
1.05	508.43	1315.20
1.20	457.59	1264.36
1.35	415.99	1222.76
1.50	381.32	1188.10

The analysis of these data shows that with an increase of δ_e, the values of D_{concrete} decrease, while $D_{\text{reinforcement}}$ remains constant and equal to 806.77 N * mm2. Thus, with an increase in eccentricity, the stiffness of the support decreases, which is clearly shown in Figure 4.

![Figure 4. Change in stiffness according to δ_e.](image)

Considering the formulas (5) and (6) and the graphs of changes in the stiffness of the supports (Figure 4), it is not difficult to verify that the graphs of the change in the critical force N_{crc} of the function δ_e will be similar to the graphs $D = f(\delta_e)$.

For this reason, the convergence of ξ_{circ} according to the formulas (1) and (2) improves (See Figure 2), and the convergence of M_{ult} according to the formulas (5) and (6) (See Figure 2) improves with the increase of δ_e and N/N_{crc}.

Summary

1. The relative height value of the supports compressed zone with annular section ξ_{circ} determined according to the Construction Standards and Regulations [11], significantly exceeds its value according to the Code Specification [12].
2. The quantity ξ_{cr} decreases with the increase in the relative eccentricity of the longitudinal force δ_e while with the increase in δ_e and N/N_{cr} the graphs $\xi_{cr} = f(\delta_e)$ approximate to each other (Fig. 2).

3. The bearing capacity of supports with annular section M_{ult} according to the Construction Standards and Regulations [11] is constantly rising with the increase of N/N_{cr}, but according to the Code Specification [12] a decrease of M_{ult} is observed at certain values N/N_{cr} (Fig. 3). Moreover, the convergence of the graphs $M_{ult} = f(N/N_{cr})$ according to different standards improves with the increase of δ_e.

4. The incorrectness in the calculations of bearing capacity of supports with annular section according to the standards [11] and [12] revealed in the numerical experiment is due to the fact that the new standards [12] do not have a differentiated effect on prestressed reinforcement A_{pre} and non-prestressed reinforcement A_e when determining ξ_{cr} by the formula (2), as well as M_{ult} by the formula (4).

5. The stiffness of supports with annular section D according to the formula (5) significantly decreases with the increase in the eccentricity of the longitudinal force δ_e (Fig. 4). This change in stiffness proportionally affects the critical force N_{cr} according to the formula (6). An increase in the convergence of ξ_{cr} and M_{ult} according to the standards [11] and [12] with an increase in δ_e and N_{cr} (Fig. 2, Fig. 3) is associated with the nature of the change in the stiffness of the supports D and N_{cr}.

6. The new standards [12] for calculating supports with annular section contain higher reliability coefficients in comparison with the standards [11]. However, when making scientific experiments and studies with elements of the circular section, standards should be preferred over experimental results with theoretical ones [11].

References

[1] Akhverdov N N 1969 Reinforced concrete pressure centrifuged pipes (Gosstroizdat).
[2] Kudzis A P1969 About strength calculation of eccentrically compressed elements of annular cross section at small eccentricities (Proceedings of the KPI "Research on reinforced concrete structures" Vilnius).
[3] Kudzis A P 1975 Reinforced concrete structures of annular section (Vilnius, Mintis) p. 224.
[4] Batashev V M, Nagornay T C 1969 Researches of strength of eccentrically compressed reinforced concrete elements with annular section (Abstract collection, Intersectoral issues of construction, TSNII Os Gostroy of the USSR) 12.
[5] Batashev V M, Androsov C T, Lebedev V N, Nagornay T F Strength calculation of bent and eccentrically compressed reinforced concrete elements with annular and circular section (Concrete and reinforced concrete) 5 pp. 31-34.
[6] Dmitriev S A, Batashchev V M 1969 Deformations (deflections) of reinforced concrete elements with annular section and the opening of cracks in them (Collection of works of the NIIZhB “Features of the deformation of concrete and reinforced concrete and the use of computers to assess their impact on the behavior of structures”, Stroyizdat, Moscow) 157-189.
[7] Petsold T M 1983 Reinforced concrete centrifuged structures of industrial buildings and structures (Dis. ... doc. tech. sciences, Minsk) p. 459.
[8] Shutsky V L, Dedukh D A, Gritsenko M Y 2015 The study of the physical and mechanical properties of centrifuged concrete (Electronic scientific journal "Engineering Bulletin of the Don") 2 (2).
[9] Shutsky V L, Shilov A V, Talipova T D 2016 The strength of the conical supports of power lines, taking into account the limitations of the second group of limit states (Electronic scientific journal "Science studies") 8 (2) (2016).
[10] Nasevich A S, Shchutskiy V L, Stelmakh S A, Antipov O V Crack strength and deformability of power transmission line conical poles.
[11] SP 63.13330/2012 Concrete and reinforced concrete structures.