Regulation of innate and adaptive immunity using herbal medicine: benefits for the COVID-19 vaccination

Xuan Li1,2, Nuttapong Wichai3, Jiabao Wang2,4, Xiuping Liu1,2,4, Huimin Yan1,4, Yu Wang1, Mingchi Luo5, Shengyuan Zhou6, Kai Wang6, Lin Li1,2,4,*, Lin Miao1,2,*,

Abstract
Vaccination is a major achievement that has become an effective prevention strategy against infectious diseases and active control of emerging pathogens worldwide. In response to the coronavirus disease 2019 (COVID-19) pandemic, several diverse vaccines against severe acute respiratory syndrome coronavirus 2 have been developed and deployed for use in a large number of individuals, and have been reported to protect against symptomatic COVID-19 cases and deaths. However, the application of vaccines has a series of limitations, including protective failure for variants of concern, unavailability of individuals due to immune deficiency, and the disappearance of immune protection for increasing infections in vaccinated individuals. These aspects raise the question of how to modulate the immune system that contributes to the COVID-19 vaccine protective effects. Herbal medicines are widely used for their immune regulatory abilities in clinics. More attractively, herbal medicines have been well accepted for their positive role in the COVID-19 prevention and suppression through regulation of the immune system. This review presents a brief overview of the strategy of COVID-19 vaccination and the response of the immune system to vaccines, the regulatory effects and mechanisms of herbal medicine in immune-related macrophages, natural killer cells, dendritic cells, and lymphocytes T and B cells, and how they help vaccines work. Later in the article, the potential role and application of herbal medicines in the most recent COVID-19 vaccination are discussed. This article provides new insights into herbal medicines as promising alternative supplements that may benefit from COVID-19 vaccination.

Keywords: COVID-19, Herbal medicines, Immunity, Dendritic cells, Macrophage, Vaccine protection

Graphical abstract: http://links.lww.com/AHM/A31.

Introduction
Despite rapid progress in understanding the pathogenesis of coronavirus disease 2019 (COVID-19), treatment options for this disease remain limited. As vaccination is one of the most successful and effective medical interventions for preventing infectious diseases, much effort has been made to develop COVID-19 vaccines. A series of vaccines are being well deployed and have consequently reduced mortality, prolonged life expectancy, and improved quality of life, as expected[1–3]. However, in addition to the safety of vaccination in immune-deficient patients[4–5], the emergence of viral mutants with decreased sensitivity to vaccines[6–7] and the unclear magnitude and duration of vaccine-induced immune responses and memory with different vaccine platforms require distinct demands and supplemental therapies[8] in combination with vaccination for COVID-19 control and prevention. The novel, safe, and accessible strategies to enhance the immune effects of a vaccine, thus promoting body-specific and non-specific immunity, are therefore necessary and highly desirable[9].

Herbal medicines have been widely used to treat various diseases worldwide. However, partially owing to their unclear mechanism and undefined active components, their effectiveness and applications are far from being accepted. In early 2018, an article on “why Chinese medicine is heading for clinics around the world” was reported in Nature. For the first time, the World Health Organization (WHO) recognized traditional medicine as an influential global medical compendium[10]. More attractively, it has been shown that the application of traditional Chinese medicine (TCM) results in better clinical outcomes for patients with COVID-19 after evaluation of the report focused on outcomes from the reports as well as from 12 randomized controlled trials that had been registered and published[10]. However, compared with the definite advantages for patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the benefits of herbal medicines for the prevention and protection from SARS-CoV-2 infection are largely unknown. Normally, to
block pathogen inbreak, the treatment should enhance the immune system of the body to defend the “enemy” strongly and immediately; herbal medicines have a long and promising history in this regard. The regulation of the immune system by herbal medicines, including anti-inflammation, regulation of innate immunity, and balancing of cytokine levels, has also been widely observed in COVID-19[10]. However, several knowledge gaps remain in terms of our understanding of herbal medicines in relation to immune reactivity during COVID-19 vaccination. This article provides an overview of the immune response during vaccination and the potential role of medicinal herbs in promoting effective immune responses during vaccination, which may be beneficial for COVID-19 vaccination in the future.

Vaccine strategy of SARS-CoV-2

Vaccines play vital roles in the prevention of diseases and the reduction of morbidity and mortality caused by viral or bacterial infections[12–13]. During the pandemic COVID-19, extensive efforts have been made to develop and manufacture COVID-19 vaccines. Traditionally, a vaccine contains a carefully chosen molecular entity called the vaccine antigen(s), which is the target of vaccination-induced immune response[14–18]. Consistently, vaccines of SARS-CoV-2 frequently use spike (S) protein or its S1 subunit, or the receptor binding domain (RBD) in S1 as vaccine antigens because of their ability to induce neutralizing antibody production, which may block host cell entry and inhibit infection. Two mRNA-based vaccines (Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273) encoded with the stabilized ectodomain version of the S protein showed more than 94% efficacy in preventing COVID-19[16–19], and elicited natural antibodies[20,21]. Ideally, a designed vaccine is desired to induce complete protection or sterile immunity; however, due to possible safety concerns, it may have issues with incomplete immune induction[22]. Thus, improving immunity is considered an effective strategy to reduce susceptibility to disease and increase bodily defenses against pathogen invasion[23–24]. In addition, viral evolution has occurred during the high global burden of SARS-CoV-2 transmission. Numerous SARS-CoV-2 variants have emerged during the COVID-19 pandemic[25]. The Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) Delta (B.1.617.2), and Omicron (B.1.1.529) variants were successively reported between late 2020 and 2021[26–27]. Currently, Omicron (BA.4 and BA.5) is the latest variant of concern (VOC) and has become dominant globally since early 2022. The virologic and immunological features associated with VOCs indicate that a larger number of specific mutations in S proteins lead to increased infectious and transmissibility and/or easy escape of vaccination-induced immune responses[28]. Evaluation of herbal regulations on host immunity, especially during COVID-19 vaccination, may also help respond to the adaptive system induced by different vaccine platforms.

Immune responses to vaccination

The human immune system is a complex and well-organized system that supports and protects the body against foreign substances called pathogens[29–30] through two basic elements: the innate and adaptive immune systems[31]. Similarly, when vaccinating, the whole immune response is experienced, as stimulated by the antigens received from vaccines that carry epitopes with strong antigenicity but low titer[32]. To avoid an improper response when the body encounters viruses for the first time, vaccination is highly recommended to pre-educate cells of the immune system. At the early stage of the response to the antigen, pre-existing immune cells such as macrophages, natural killer (NK) cells, and neutrophils in the blood and tissues are the first to identify, capture, and destroy invading pathogens in a rapid response to virtually all pathogens, and consequently initiate inflammation at the local infectious site[33]. Subsequently, the adaptive immune system is activated, providing long-term systemic protection. A set of leukocytes and lymphocytes, T and B cells, are responsible for the adaptive responses[34]. The cellular immune response in infected cells is mediated by T lymphocytes. Helper T cells are involved in the overall adaptive immune response, and cytotoxic T cells play a significant role in the clearance of pathogen-infected cells[35–36]. Additionally, B cell–derived plasma cells produce antibodies, particularly neutralizing antibodies specific to the antigen that will effectively prevent the pathogens from entering the host cells, thus limiting the infection and protecting the body from further infection at a later stage[37].

Herbal medicines regulate the immune system and may contribute to the vaccination

Researchers are attempting to strengthen the human immune system against infections and prevent pathogens from invading. Herbal medicines and their natural bioactive components exhibit various immune regulatory activities through distinct interactions with immune cells. (Table 1)

Innate immune system

NK cells

NK cells are cytotoxic granular lymphoid cells that play a key role in initiating the primary immune response[37–38]. When viruses or bacteria infect, NK cells are immediately activated by the release of cytolytic granules containing inflammatory cytokines and chemokines[39]. During vaccination, NK cells are also involved and affected[40–43]. The secreted factors may further recruit components that subsequently activate innate and adaptive immune responses. It is known that ligand–receptor interactions between NK cell surfaces and pathogens control and mediate NK activation[44]. The major receptors responsible for NK cell recognition include Nkp46, Nkp30, Nkp44, and NKGD[45]. Several herbal medicines have exhibited their ability to stimulate NK cell proliferation and enhance NK cell toxicity. Polygonum cuspidatum is widely distributed in China and Japan owing to its lipid regulation, anti-infection, and anti-inflammatory effects[46]. The crude extract of P. cuspidatum has been found to stimulate immune responses in BALB/c mice by increasing splenic NK cell cytotoxicity. It also helps NK cells destroy the targeted YAC-1 cells[47]. A flavonoid component from the seeds of Astragalus complanatus upregulates the expression of NKG2D and Nkp44 in NK cells, which in turn stimulates NK-92 cells and serves as an immune

www.ahmedjournal.com
No	Herbal Plant Species	Active Compounds	target cell	Mechanism of Action	Related vaccines/disease	References
1	Polygonum cuspidatum	Crude extract	NK cell	It has been found that the crude extract of Polygonum cuspidatum stimulated immune responses in normal BALB/c mice partly by increasing splenic NK cell cytotoxicity. It also helped NK cells isolated from mouse spleen destroy target YAC-1 cells.	Not mentioned	[46, 48]
2	The seeds of Astragalus complanatus	Flavonoid		It has been shown that the flavonoid component from the seeds of Astragalus complanatus up-regulated the expression of NK-92 cell activating receptor NK2D and Nkp44, which in turn affects NK-92 cells, serving as an immune stimulator of NK cells for therapeutic treatment.	Tumor	[47]
3	Shengmai injection	Not mentioned		Shenmai injection increased the activity of NK cells for patients	Gastric cancer	[46, 48]
4	Peanuts, blueberries and some other berries	Resveratrol	Macrophage	Resveratrol enhanced immune responses by up-regulation of CD86 and MHC-II expressions in macrophages of immunized mice, and the levels of TLR4 and IKK, NF-κB and JNK4 proteins were significantly increased in the resveratrol-treated group	PRV vaccines	[58, 59]
5	Cordyceps militaris	Polysaccharides		Polysaccharides isolated from Cordyceps militaris activated macrophages through NF-κB and MAPK pathways via macrophage receptors DECIN-1 and TLR2. They up-regulated the uptake of NO, ROS, TNF-α and phagocytosis in mouse peritoneal macrophages and RAW264.7 macrophages, indicating a role on modulation of the immune response.	melanoa solid tumor	[50, 61]
6	Citrus unshiu peel	Polysaccharides		The polysaccharide isolated from Citrus unshiu peel activated signaling of MAPK and NF-κB and produced the cytokines of IL-6, IL-12 and TNF-α in RAW 264.7 cells, which were completely inhibited by JNK inhibitors. In addition, neutralizing antibody experiments showed that TLR2 and TLR4 were involved in the polysaccharide-stimulated RAW 264.7 cells.	Not mentioned	[62]
7	Ganoderma atrum	Polysaccharides		Ganoderma atrum polysaccharide has been demonstrated to induce immune response by recognition of mannose receptor and TLR4 and through NF-κB pathway in macrophages.	Not mentioned	[63]
8	Dried ‘Shixia’ longan pulp	Polysaccharides		The polysaccharide from dried ‘Shixia’ longan pulp significantly enhanced the phagocytic function of macrophages and promoted the production of NO, IL-1β, IL-6 and TNFα via Ca2+ and CR3-mediated MAPKs and PI3K-AKT signaling pathways.	Not mentioned	[64]
9	Astragalus membranaceous	Polysaccharides		Astragalus polysaccharides activated key nodes in TLR4/MyD88-dependent signaling pathways of RAW 264.7 macrophages, including TLR4, MyD88, TRAF-6, NF-κB, and AP-1, both in vivo and in vitro	Not mentioned	[66]
10	Rhynchosia minima root	Polysaccharides		Polysaccharides from Rhynchosia minima root remarkably enhanced the phagocytic ability of macrophages and promoted the release of NO and the secretion of cytokines (TNF-α, IL-6, and MCP-1) from macrophages. Simultaneously, the polysaccharides activated macrophages through the TLR4-NF-κB pathway. It is a promising immune enhancer that can be used in functional foods or drugs	Not mentioned	[66, 67]
11	Persimmon	Polysaccharides		The polysaccharides can activate TLR2-mediated NF-κB activation upregulates the expression of iNOS, TNF-β, IL-1β and IL-6 genes, which can act as an immunostimulator	Not mentioned	[68, 69]
12	Bupleurum falcatum L.	Saikosaponin-d	DC T cell	Saikosaponin-d reduced the differentiation of DCs, as evidenced by decreased expression levels of cluster of differentiation (CD)1a, CD80 and CD86 molecules and increased CD14 expression. Expression levels of the mannose receptor and CD32 were also significantly elevated. Saikosaponin-d treatment promoted DC maturation	Not mentioned	[73–75]

(Continued)
No	Herbal Plant Species	Active Compounds	target cell	Mechanism of Action	Related vaccines/disease	References
14	Carrot	Crude polysaccharides derived from carrot pomace	CD11c+MHCII+ cells and the expression of co-stimulatory molecules CD40 and CD80, in bone marrow-derived dendritic cells (BMDC). Moreover, innate myeloid cells in polysaccharides derived from carrot pomace-fed mice showed evidence of phenotypic modification via markedly enhanced IL-12 and IFN-γ production in response to LPS stimulation ex vivo.	Not mentioned	[76]	
15	Rehmannia glutinosa polysaccharide	The dendritic morphology of MDDCs was substantially altered the expression of co-stimulatory molecules in MDDCs was increased after Rehmannia glutinosa polysaccharide treatment. Furthermore, the activation of MDDCs by Rehmannia glutinosa polysaccharide was dependent on the ERK, p38, and JNK signaling pathways	Cancer and infectious diseases	[77,78]		
16	Chrysanthemum zawadskii Herbich var. latilobum leaves	Polysaccharide CP induced DC maturation via the activation of MAPK and NF-κB signaling pathways	Not mentioned	[79]		
17	Astragalus membranaceus, Ganoderma lucidum and Radix ophiopogonis leaves	Polysaccharides with immunoactivities showed elongated dendrites, decreased phagocytic abilities, and increased level of nitric oxide (NO) in a dose dependent manner. Interestingly, blockage of NO by iNOS inhibitor slightly decreased CD40 and MHCII but not CD80/CD86 expression induced by polysaccharides.	Not mentioned	[80]		
18	leaves of Annona muricata L.	Polysaccharides isolated from leaves of Annona muricata L functionally induced DC maturation by up-regulating the secretion of Th1 polarizing pro-inflammatory cytokines, the expression of surface molecules, and antigen presenting ability, which is dependent on the activation of the MAPK and NF-κB signaling pathways	Not mentioned	[81]		
19	Radix Glycyrrhizae	Radix Glycyrrhizae polysaccharide activate dendritic cells through TLR4 signaling.	Not mentioned	[82]		
20	the seeds of Plantago asiatica L.	The polysaccharide purified from the seeds of Plantago asiatica L. activate dendritic cells through TLR4 signaling.	Not mentioned	[83]		
21	Pleurotus tefulae Water extract	Pleurotus tefulae water extract activate dendritic cells through TLR4 signaling.	Not mentioned	[84]		
22	Ganoderma lucidum	Ganoderma lucidum polysaccharide activate dendritic cells through TLR4 signaling.	Not mentioned	[85]		
23	Grapes and peanuts	Resveratrol increasing the number of T lymphocytes pseudorabies virus vaccine rabbit hemorrhagic disease vaccine				
24	Astragalus, epimedium, propolis, ginseng	The Chinese herbal medicinal ingredients have been found to enhance immune response through promotion of T lymphocyte proliferation of and up-regulation of IFN-γ and IL-10 mRNA expressions				
25	Lentinus edodes A polysaccharide–peptide complex	Data showed that the production of IL-2 and TNF-α in murine spleen mononuclear cells and human peripheral blood mononuclear cells were all significantly augmented, indicates its regulatory effect on Th immune responses.				
26	Yanyankang Powder	Not mentioned regulates relationships of Th1/Th2, and then reduces the occurrence of uveitis.	Experimental Autoimmune Uveitis	[86,87]		
Table 1 (Continued)

No	Herbal Plant Species	Active Compounds	target cell	Mechanism of Action	Related vaccines/disease	References
27	Scolopendra subspinipes mutilans L. Koch	a polysaccharide-protein complex	It has been reported that *Scolopendra subspinipes mutilans* L. Koch increased the ratio of Th1/Th2 cytokines and percentage of CD4+ T cells that contributed to its antitumor and immunostimulatory activity.	Not mentioned	[100]	
28	Shashen Maidong Decoction	Not mentioned	Shashen Maidong Decoction regulated the immune imbalance of Th1/Th2 by increasing IFN-γ concentration and decreasing IL-4 concentration.	Not mentioned	[101]	
29	Lycium barbarum L.	Polysaccharides	It has been found that *Lycium barbarum* polysaccharide played a variety of immune-modulatory functions through activation of CXCR5+PD-1+ Tfh cells and induce IL-21 secretion.	Related vaccine	[102]	
30	Rhynchosia minima	Polysaccharides	Polysaccharides from *Rhynchosia minima* significantly up-regulated CD3+, CD4+ T lymphocyte percentage and splenocyte CD4+/CD8+ ratio, effectively alleviating cyclophosphamide-induced immunosuppression in mice.	Not mentioned	[103]	
31	Astragalus, Epimedium, Paeonia lactiflora, and Ophiopogon japonicus	Not mentioned	The Chinese herbal formula significantly increased the CD4/CD8 ratio and enhanced the humoral and cellular immune functions of immunosuppressed mice.	Not mentioned	[104]	
32	Fuzheng Qingjie granule	Not mentioned	Fuzheng Qingjie granule significantly increased the ratio of CD4+/CD8+ T cells and the serum level of TNF-α, and also increased the expression of CD69 in tumor tissue.	Not mentioned	[105]	
33	inulin Polysaccharides(Advax™)	B cell	A natural polysaccharide-derived Advax™ adjuvant showed its immunologically active that mice immunized with inactivated influenza virus vaccine in Advax™ had significantly higher frequencies of influenza-specific B cells secreting IgG and IgM in bone marrow and spleen when compared to mice immunized with vaccine alone.	Influenza vaccine	[107]	
34	Isatis indigotica root Polysaccharides(IIP-A-1,IIP-2)	The polysaccharide IIP-A-1 has been reported to activate influenza H1N1 and hepatitis B surface antigen vaccines. Another polysaccharide IIP-2 enhanced the titer of neutralizing antibody, promoted the activation of lymph node B cells and promoted the recruitment of B cells in the blood. The administration of inactivated rabies virus mixed with IIP-2 provided completed protection against HuNPB3 rabies infection.	Rabies virus	[106,109]		
35	Radix Platycodon grandiflorum Polysaccharide	Polysaccharide isolated from *Radix Platycodon grandiflorum* was found to markedly increase polyclonal IgM antibody production and B cell proliferation	Not mentioned	[110]		
36	Coriolus versicolor mushroom Polysaccharides	Polysaccharides	It has been demonstrated that *Coriolus versicolor* mushroom polysaccharides bound and induced B cell activation using membrane Ig and TLR-4 as potential immune receptors. *Coriolus versicolor* mushroom polysaccharides activate mouse B cells through the MAPK and NF-κB signaling pathways	Not mentioned	[111]	
37	Alfalfa grass Polysaccharides	Polysaccharide extracted from Alfalfa grass activated splenic B cells by TLR4 via the MAPK/p38 pathway, and it selectively improved the cell viability and IgM production of B cells.	Not mentioned	[112]		
38	the roots of Acanthopanax koreanum, Platyloden grandiflorum, and Acanthopanax senticosus Polysaccharides	Polysaccharides found in the roots of *Acanthopanax koreanum*, *Platyloden grandiflorum*, and *Acanthopanax senticosus*, stimulated B cells through CD19 and CD79b, which suggested the possibility that these polysaccharides might directly bind to the mlg of B cells	Not mentioned	[113–115]		
stimulator of NK cells for therapeutic treatment[48]. Commercial Shenmai injection is a TCM that was officially included in the 2015 edition of the \textit{Chinese Pharmacopoeia}. It has been reported that Shenmai injection in patients with gastric cancer significantly increased the activity of NK cells in serum[49]. Recently, the availability of Shenmai injections for COVID-19 has been evaluated by molecular docking and network pharmacology. Data showed that 22 compounds and 16 targets were predicted in the Shenmai injection that was shared with COVID-19[50].

Macrophages

Macrophages represent the first line of host defense behind the epithelial barrier, with a variety of complex bactericidal functions, including surveillance, chemotaxis, phagocytosis, and destruction of target organisms[51–52]. Similar to the recognition of NK cells by receptors, macrophage activation is mainly achieved through specific receptors. There are three types of receptors on macrophages, including pattern recognition receptors (e.g., toll-like receptors (TLRs), dectin-1, and mannose receptors)[53], opsonizing receptors (e.g., complement receptors)[54], and antigen presentation-related molecules (e.g., MHC1/MHCII and co-stimulatory molecules CD80 and CD86)[55–56]. As a result of binding and medication, multi-signaling pathways such as Nuclear factor kappa B (NF-κB), Mitogen-activated Protein Kinase (MAPK), and phosphatidylinositol 3 kinase (PI3K)/protein kinaseB (AKT) are involved and activated in the host defense following vaccination.

Resveratrol is a natural compound widely distributed in the red grape skin, Japanese knotweed (\textit{P. cuspidatum}), peanuts, and blueberries[57]. It has been reported that resveratrol enhances the immune response by upregulation of CD86 and MHC-II expression in macrophages from a vaccine of pseudorabies virus-immunized mice, and the expression of TLR4, inhibitor of kappa B kinase (IKK), IκBα, NF-κB, and c-Jun N-terminal kinase 4 (JNK4) were all significantly increased in the resveratrol-treated group[58]. \textit{Cordyceps militaris} is a medicinal herb with a variety of functions, such as anti-inflammatory activity[59]. Pharmacological research has shown that polysaccharides isolated from \textit{C. militaris} upregulated the uptake of Nitric Oxide (NO), Reactive Oxygen Species (ROS), and Tumor Necrosis Factor (TNF-α), promoted phagocytosis, and activated NF-κB and MAPK pathways through receptors DECIN-1 and TLR2 in mouse peritoneal and RAW264.7 macrophages, indicating a role in immune modulation[60]. The polysaccharides isolated from \textit{Citrus unshiu} induced the production of cytokines Interleukin-6 (IL-6), Interleukin-12 (IL-12), and TNF-α in RAW 264.7 cells through activation of MAPK and NF-κB signaling[61]. \textit{Ganoderma atrum} polysaccharides have been demonstrated to induce an immune response by recognizing the mannose receptor and TLR4 through the NF-κB pathway in macrophages[62]. Another polysaccharide from dried “Shixia” longan pulp significantly enhanced the phagocytic function of macrophages and promoted the production of NO, IL-1β, IL-6 and TNFα via Ca2+ and CR3-mediated MAPKs and PI3K-AKT signaling pathway[63]. \textit{Astragalus} polysaccharides, the main active extract from \textit{Astragalus membranaceus}, have been reported to activate the TLR4/MyD88-dependent signaling pathway in RAW 264.7 macrophages and in TLR4+ and MyD88+ mice[64]. \textit{Rhynchosia minima} root, a medicinal herb in southern China, has been used to inhibit upper respiratory infections in folk medicine for years[65]. Polysaccharides from \textit{R. minima} root remarkably enhanced the phagocytic ability of macrophages and promoted NO release and secretion of TNF-α, IL-6, and MCP-1, and are thus considered promising immune enhancers used in functional foods or drugs[66]. Persimmon leaves are commonly used to treat infectious diseases[60]. One study showed that polysaccharides from persimmon leaves activated TLR2-mediated NF-κB activation and upregulated the expression of iNOS, TNF-β, IL-1β, and IL-6 in macrophages, which indicated their role as immune stimulators[67].

Dendritic cells

Dendritic cells (DCs) are crucial for linking innate to specific adaptive immunity, which is associated with their activation and maturation status[68]. As bone marrow–derived cells, DCs may be generated from multiple precursor cells including lymphoid and myeloid progenitors. Before activation, DCs reside in the periphery, where they take up antigens. Once activated, they migrate to lymphoid organs and present processed antigens to T cells[69]. By upregulating co-stimulatory and surface molecule expression and inducing pro-inflammatory cytokines, DCs elicit a potent immune response[70–71]. Given the central role of DC in controlling the immune response, DCs are considered a critical cell type and potential target when vaccine injection is completed.

Saikosaponin-d is a triterpenoid saponin derived from \textit{Bupleurum falcatum L}. Its anti-inflammatory, antibacterial, and antiviral properties have been demonstrated in carrageenan-induced paw edema in rats and acetic acid-induced vascular permeability in mice, cellular RAW 264.7, and cancer cells[72–73]. Saikosaponin-d reduced the differentiation of human monocyte–derived DCs isolated from patients with condylomata acuminata by downregulating CD1a, CD80, and CD86 expression and upregulating CD14, CD32, and mannose receptor expression[74]. Saikosaponin-d also highly promoted DC maturation by increasing the expression of CD40, CD83, CD80, and CD86, whereas the function of mature DCs, including IL-12 secretion and lymphocyte growth stimulation, was significantly elevated in response to Saikosaponin-d treatment[75]. Polysaccharides are a series of compounds that have attracted considerable attention because of their intrinsic immunomodulatory characteristics[76,77]. Data have shown that crude polysaccharides derived from carrot pomace increased both the fraction of CD11c+ MHCII+ cells and the expression of CD83, CD80, and CD86 from mouse bone marrow–derived dendritic cells (BMDCs) and augmented in the frequencies of splenic DCs and vaccine-specific antibody titers in cyclophosphamide-induced immunosuppressed mice when experiencing an influenza vaccine challenge[78]. A polysaccharide derived from \textit{Rehmannia glutinosa} has been found to induce the
activation and maturation of DCs with altered dendritic morphology and increased expression of co-stimulatory molecules[77-78]. Furthermore, the activation of DCs by R. glutinosa polysaccharides was dependent on the ERK, p38, and JNK signaling pathways[78]. Similarly, it has been reported that a polysaccharide isolated from Chrysanthemum zawadskii Herbich var. latilobum leaves induced the maturation of DCs through the activation of MAPK and NF-κB signaling pathways, which subsequently activate naïve T cells to polarize CD4+ and CD8+ T cells and induce the production of IFN-γ and IL-2 in vitro[79]. Three types of polysaccharides isolated from A. membranaceus, Ganoderma lucidum, and Radix ophiopogonis were characterized and tested for their immunomodulatory activities. They significantly elongated dendrites, reduced their phagocytic abilities, and altered the phenotypic changes of BMDCs[80]. Polysaccharides isolated from Ammona muricata L also functionally induced DC maturation by upregulating Th1 polarizing cytokine secretion and surface molecule expression, which in turn enhanced the antigen-presenting ability[81]. Similar to macrophages, DCs have important toll-like receptors on their membranes. Distinct polysaccharides purified from R. Glycerribzæ[82], seeds of Plantago asiatica L[83], Pleurotus ferulae[84], and G. lucidum[85] activated DCs through TLR4 signaling.

Adaptive immune system

The adaptive immune system is the second line of defense that defends against pathogen-specific invasion, mainly through T and B lymphocytes. Briefly, T lymphocytes function by mediating cellular immunity and adjusting immunity, whereas B lymphocytes mainly participate in humoral immunity. In contrast to immediate innate immunity, adaptive immunity develops upon pathogen exposure and is long-lasting and sustained by memory cells.

T lymphocytes

T lymphocytes (also referred to as T cells) are pluripotent stem cells derived from the bone marrow, where pre-T cells migrate and mature in the thymus and export to the periphery[86]. Diverse T cell types are involved in the immune system. Naïve T cells are first activated by either antigen-specific signals delivered by the T cell receptor or by the interaction of CD28 on T cells and CD80 or CD86 on antigen-presenting cells[87]. Once activated, naïve T cells rapidly differentiate into helper T cells (CD4+ T cells/Th cells), cytotoxic T cells (CD8+ T cells), and regulatory T cells. More subsets of CD4+ T cells, including T helper 1 (Th1), T helper 2 (Th2), and follicular helper T cells (Thf)[88], are differentiated with multiple functions. Th1 cells have the ability to promote the proliferation, differentiation, and maturation of CD8+ T cells and enhance the phagocytosis of macrophages and cytolytic autologous antigen-presenting cells[89-90]. Th2 cells provide an excellent auxiliary function for antibody production by B cells, especially IgE antibodies[89-90]. Th1 cells differentiate into antibody-secreting plasma cells and memory B cells[90]. Unlike T helper cells, B cells secrete cytokines such as IFN-γ and TNFα[91]. The dynamic balances of Th1/Th2 and CD4+/CD8+ ratios are thus considered remarkable markers of immune status and body homeostasis maintenance[92-93].

Many herbal medicines enhance immunity by regulating T-cell–related functions. A series of natural compounds isolated from medicinal herbs, such as astragalus polysaccharides, epididymal polysaccharides, propolis flavonoids, and ginsenosides, have been reported to promote T lymphocyte proliferation[94]. The widely distributed compound resveratrol[95] also increases the number of T lymphocytes when used as an immune adjuvant in a pseudorabies virus vaccine[96]. The differentiation and ratio of subsets in CD4+ T cells have also been investigated when drugs are administered. A Chinese commercial medicine named Yanyankang powder inhibited the differentiation of Th0 to Th1 cells but promoted Th0 to Th2 cells in autoimmune uveitis rats through downregulation of Th1-secreted IFN-γ but upregulation of Th2 secreted IL-10, which finally reduced the ratio of Th1/Th2[95-96]. Herbal Scolopendra subspinipes mutilians L. Koch has been used for cancer treatment for hundreds of years in China, and its immunostimulatory activity has been shown to accelerate the Th1/Th2 ratio and increase the number of CD4+ T cells[97]. Similarly, Shashen Maidong decoction, a representative prescription for nourishing Yin and generating body fluid, blocked the Th1/Th2 imbalance by increasing IFN-γ and decreasing IL-4[98]. In addition, the antigen-specific Thf response plays a vital role in enhancing the protective effects of vaccines. It has been found that a Lycium barbarum-derived polysaccharide played a variety of immune-modulatory functions through activation of CXCR5+PD-1+Thf cells, as well as induction of IL-21 secretion[99]. The CD4+/CD8+ ratio was observed in herb-regulated immune responses. Polysaccharides from R. minima significantly upregulated both the percentage of CD4+ T lymphocytes and splenocyte CD4+/CD8+ ratio, which effectively alleviated cyclophosphamide–induced immunosuppression in mice[96]. A Chinese herbal formula composed of Astragalus, Epimedium, Paeonia lactiflora, and Ophiopogon japonicus increased the CD4+/CD8+ ratio and enhanced humoral and cellular immune functions in immunosuppressed mice[100]. Another report showed a similar effect of a commercialized Fuzheng Qingjie granule on upregulation of the serum CD4+/CD8+ ratio in hepatocellular H22 tumor-bearing mice[101].

B lymphocytes

One of the main protective processes induced by vaccines is antibody production from B lymphocytes (B cells), which can directly recognize extracellular antigenic moieties of pathogens through their immunoglobulin B-cell receptor present in the outer membrane and become activated and differentiate into plasma cells to produce specific antibodies[102]. The association between antibody response to different vaccines and dynamic immune repertoire changes in different cell subsets may not be equal, and there are several host- and vaccine-specific factors modulating an antibody response in B cells, which may contribute to the loss of vaccine efficacy[103].
Several studies have shown that B cells are the major target cells of herbal medicines. A natural polysaccharide-derived Advax™ adjuvant showed its immunologically activity that mice immunized with inactivated influenza virus vaccine in Advax™ had significantly higher frequencies of influenza-specific B cells secreting IgG and IgM in the bone marrow and spleen than mice immunized with vaccine alone\cite{104}. Polysaccharide IIP-A-1 isolated from the Chinese herb *Isatis indigotica* root has been reported to activate influenza H1N1 and hepatitis B surface antigen vaccines\cite{105}. Another polysaccharide, IIP-2, isolated from *I. indigotica* root, enhanced the titer of neutralizing antibodies and promoted the activation of lymph node B cells and the recruitment of B cells in the serum. Administration of inactivated rabies virus mixed with IIP-2 provided complete protection against HuNPB3 rabies infection\cite{106}. A polysaccharide isolated from *R. P. grandiflorum* markedly increased polyclonal IgM production and B-cell proliferation\cite{107}. It has been demonstrated that *Coriolus versicolor* mushroom polysaccharides bound and induced B cell activation using membrane Ig and TLR4 as potential immune receptors. *C. versicolor* mushroom polysaccharides activate mouse B cells through the MAPK and NF-κB signaling pathways\cite{108}. Polysaccharides extracted from alfalfa grass activated splenic B cells by TLR4 through the MAPK/p38 pathway, and selectively improved the cell viability and IgM production of B cells but did not affect T cell viability\cite{109}. Polysaccharides separated from the roots of *Acanthopanax koreanum, P. grandiflorum*, and *Acanthopanax senticosus* stimulate B cells through CD19 and CD79b, suggesting that these polysaccharides may directly bind to the mIg of B cells\cite{110-112}.

The potential roles of herbal medicines in the regulation of COVID-19 vaccination

The information described earlier shows that herbal medicines modulate the immune response in multiple ways on different scales, which may help to generate or optimize vaccine strategies (Figure 1). When a novel vaccine market is available, its protective function, associated immune response, and vaccination schedules are evaluated. COVID-19 vaccines have been designed and marketed by numerous countries and companies worldwide to overcome the COVID-19 pandemic. However, the dynamic immune responses and protective effects of vaccines remain elusive. Researchers have been devoted to uncovering the immune responses after COVID-19 vaccination. A study in China found that the inactivated virus COVID-19 vaccine CoronaVac had 65.9% effectiveness against COVID-19, 90.3% against intensive care, and 86.3% against death\cite{113} through induction of robust circulating and memory B cell and T cell responses\cite{114}. In a prospective cohort of 100 individuals who received SARS-CoV-2 CoronaVac\cite{114}, spike-specific IgG responses peaked after two doses and rapidly declined in 8 to 10 weeks after the booster dose. Spike-specific circulating and memory B cells were effectively induced, followed by a decrease after 8 to 10 weeks, as well. SARS-CoV-2–specific circulating CD4+ T cells and CD8+ T cells were detected 2 weeks after the booster dose and sustained over time, and memory CD4+ T cells and CD8+ T cells were identified as SARS-CoV-2-specific 8 to 10 weeks after the booster dose. Another study performed head-to-head comparisons of T cells, B cells, and antibody responses, with a particular interest in immune memory, to four diverse vaccines, namely, Moderna mRNA-1273, Pfizer/BioNTech BNT162b2, Janssen Ad26, COV2.S, and Novavax NVX-CoV2373 in humans\cite{8}. The results showed that immunological responses on memory CD4+ T cells were consistent, whereas other responses varied, which may be dependent on distinct vaccine design insights. For example, cTfh and CD4-CTL were highly expressed after mRNA or NVX30CoV2373 vaccination, comparable CD8+ T cell frequencies were induced by mRNA and Ad26. COV2.S vaccines, and mRNA vaccines had substantial declines in neutralizing antibodies, whereas memory
T cells and B cells were comparatively stable over 6 months. Importantly, the issue of protective immunity against different variants was evaluated. Studies on the impact of a large panel of variants on memory T and B cells, particularly in the context of COVID-19 vaccination, have shown that T cells of vaccines recognize SARS-CoV-2 variants, including Omicron, in which B cell RBD memory recognition of Omicron is reduced. A median of 11 CD4 and 10 CD8 spike epitopes have been recognized in vaccines.[113] One of the definite responses is the normal immune reaction that helps produce pre-existing immune cells and antibodies. Several studies on SARS-CoV-2 immunity have reported the occurrence of pre-existing immunity against SARS-CoV-2 in the population, including pre-existing antibodies and immune cells, especially specific memory T cells.[116–119]

The understanding and evidence of herbal medicines in the regulation of COVID-19 vaccines are still unclear, and their potential effects and anticipated benefits have not been thoroughly considered. However, previous findings of herbs suggest that herbal medication enhances the human immune abilities with vaccine immunization, which seems to greatly affect body defense and may benefit from their definite regulation of immunity. It may strengthen the innate immune system by NK and macrophage proliferation or secretion, reinforce the DC function to bridge the innate and adaptive immune system, or alter the patterns of evolution of antibodies arising from specific and defined antigens, such as delivery systems with T or B lymphocytes or adjuvantation to target and trigger effective adaptive immunity of the COVID-19 vaccine. In addition, it affects the response among individuals in a variation of the degree of disease, and some individuals with herbal assistants may exhibit a better response to vaccination, such as significant increases in serum nAb responses against vaccine-matched and emerging variants.

Conclusion

Although a large knowledge gap remains to be filled in herb-regulated vaccine responses, the advances discussed in this article have expanded our insights into numerous applications, including COVID-19 vaccines. This review may provide a framework for understanding herbs in vaccine strategies, and the limitations of vaccines may be alleviated the immunoregulatory activities of medicinal herbs. The COVID-19 vaccination currently requires further identification and confirmation, which is a result of increased interest and encouraged research efforts.

Conflict of interest statement

The authors declare no conflict of interests.

Funding

This work was supported by the Science and Technology Project of Tianjin (22ZXGSY00020, 22ZYJDS00080 and 21ZJYJFC0070) and National Key Research and Development Project of China (No.2021YFC1712904).

Author contributions

Lin Li and Lin Miao conceived the project. Xuan Li, Xiuping Liu, and Huimin Yan searched for and collected published data from the PubMed database. Xuan Li, Xiuping Liu, Huimin Yan, and Lin Miao wrote the manuscript. Nuttapong Wichai and Jiabao Wang constructed the figures. Yu Wang, Lin Li, Mingchi Luo, Shengyuan Zhou, and Kai Wang revised the manuscript. All authors read, contributed to, and approved the manuscript.

Ethical approval of studies and informed consent

Not applicable.

Data availability

The database of the literature cited in the review is published on the PubMed website with the Research Topic or keywords “Immune, vaccination, herbs, herbal medicine, and COVID-19.”

Acknowledgments

The authors would like to thank Prof. Zhang Han and Zhang Junhua of Tianjin University of Traditional Chinese Medicine for their critical comments and kind advice during the research process.

References

[1] Canoui E, Launay O. History and principles of vaccination. Rev Mal Respir 2019;36(1):74–81.
[2] Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ 2021;373:n1088.
[3] Kestenbaum LA, Feemster KA. Identifying and addressing vaccine hesitancy. Pediatr Ann 2015;44(4):e71–e75.
[4] Sobh A, Bonilla FA. Vaccination in primary immunodeficiency disorders. J Allergy Clin Immunol Pract 2016;4(6):1066–1075.
[5] Squire JD, Joshi AY. Safety of COVID-19 vaccination in immune-deficient patients receiving supplemental immunoglobulin therapies. J Clin Immunol 2021;41(7):1327–1330.
[6] Matta S, Rajpal S, Chopra KK, et al. Covid-19 vaccines and new mutant strains impacting the pandemic. Indian J Tuberc 2021;68(2):171–173.
[7] Lopez E, Bosch-Camós L, Ramirez-Medina E, et al. Deletion mutants of the attenuated recombinant ASF virus, BA71ΔCD2, show decreased vaccine efficacy. Viruses 2021;13(9):1678.
[8] Zhang Z, Mateus J, Coelho CH, et al. Humoral and cellular immune memory to four COVID-19 vaccines. bioRxiv 2022;185(14):2434–2451.
[9] Palgen JL, Feraoun Y, Dzangué-Tchoupou G, et al. Optimize prime/boost vaccine strategies: trained immunity as a new player in the game. Front Immunol 2021;12:612747.
[10] Cyranoski D. Why Chinese medicine is heading for clinics around the world. Nature 2018;561(7724):448–450.
[11] Li L, Wu Y, Wang J, et al. Potential treatment of COVID-19 with traditional Chinese medicine: What herbs can help win the battle with SARS-CoV-2? Engineering 2021.
[12] Zheng Z, Diaz-Arívelo D, Guan H, et al. Noninvasive vaccination against infectious diseases. Hum Vaccin Immunother 2018;14(7):1717–1733.
[13] Bachy P, Ascioglu S, Buisson Y, et al. Impact of vaccines on anti-microbial resistance. Int J Infect Dis 2020;90:188–196.
[14] Kocourkova A, Honeg J, Kuca K, et al. Vaccine ingredients: components that influence vaccine efficacy. Mimi Rev Med Chem 2017;17(5):451–466.
[15] Gumařáes LE, Baker B, Perricone C, et al. Vaccines, adjuvants and autoimmune. Pharmaco Rev 2015;100:190–209.
[16] Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384(5):403–416.
Moretta L, Moretta A. Unravelling natural killer cell function.

Flórez-Álvarez L, Hernandez JC, Zapata W. NK cells in HIV-1 infection.

Langers I, Renoux V, Reschner A, et al. A preclusion of Polyomavirus in normal blood.

Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 - preliminary report.

Wagstaffe HR, Clutterbuck EA, Bockstal V, et al. Antibody-dependent natural killer cell activation after ebola vaccination.

Kondo M, Weissman IL, Akashi K. Identification of clonogenic hematopoietic progenitor cells.

Tomar N, De RK. A brief outline of the immune system.

Zeli Z, Jose M, Coelho CH, et al. Humoral and cellular immune memory to SARS-CoV-2 variant.

McComb S, Thiriot A, Akache B, et al. Introduction to the immune system.

Wubben R, Efstathiou C, Stevenson NJ. The interplay between innate immunity and viruses.

Bernheim A, Sorek R. The pan-immune system of bacteria: viral defense: function and regulation by innate cytokines.

Gálvez JM, Chaparro-Solano HM, Pinzón-Rondón AM, et al. SARS-CoV-2 variants and viral interference in normal mice.

Chavda VP, Patel AB, Vaghasiya DD. SARS-CoV-2 variants and virulence at the global level.

Coutinho RM, Marquitti FMD, Ferreira LS, et al. Model-based estimation of transmissibility and reinfection of SARS-CoV-2 P1 variant.

Gálvez JM, Chamorro-Solano HM, Pinzón-Rondón AM, et al. Maratitumatisin in humans: a first study of the immune system.

Jia X, Zhang C, Hu J, et al. Ultrasound-assisted extraction, antioxidant activity and total phenolic content of Carica papaya L. leaves.

Lan H, Cheng Y, Mu J, et al. Glucose-rich polysaccharide from Betula platyphylla leaves activates macrophages through Ca2+ and TLR4-NF-kappaB in vitro.

Lee JS, Hong EK. Immunostimulating activity of the polysaccharide of Cordyceps militaris.

Frémont L. Biological effects of resveratrol.

Chueh FS, Lin JJ, Lin JH, et al. Crude extract of Polygonum cuspidatum Sieb.et Zucc.: a traditional food source: pharmacological potential, anti-inflammatory action and related molecular mechanisms.

Peng W, Qin R, Li X, et al. phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: a review. J Ethnopharmacol 2013;148(3):729–759.

Chueh FS, Lin JJ, Lin JH, et al. Crude extract of Polygonum cuspidatum Sieb.et Zucc.: a review. J Ethnopharmacol 2013;148(3):729–759.

Lin SY, Liu LM, Wu LC. Effects of Shenmai injection on immune function in Stomach Cancer Patients after Chemotherapy. Chin J Integr Med 1999;15(8):451–453.

Han R, Wu WQ, Wu XP, et al. Effect of total flavonoids from the seeds of Astragalus complanati on natural killer cell function. J Ethnopharmacol 2015;173:157–165.

Zhu XB, Guo M, Zhang ZH, et al. Chinese herbal injections for the treatment of COVID-19: A narrative review. Int J Med Res 2021;10(4):100778.

Zhu B. Innate immunity: an overview. Mol Immunol 2004;40(12):845–859.

Kende M. Role of macrophages in the expression of immune responses. J Am Vet Med Assoc 1982;181(10):1037–1042.

Zhu Q, Wang Q, Wang T, et al. Pattern recognition receptors (PRRs) in the innate immune system.

Zhu XB, Guo M, Zhang ZH, et al. Chinese herbal injections for the treatment of COVID-19: A narrative review. Int J Med Res 2021;10(4):100778.

McComb S, Thiriot A, Akache B, et al. Introduction to the immune system. Methods Mol Biol 2019;2024:1–24.

Barman S, Soni D, Brook B, et al. Precision vaccine development: cues from natural immunity. Front Immunol 2022;12:662188.

Chowdhury MA, Hossain N, Kashem MA, et al. Immune response in COVID-19: A review. J Infect Public Health 2020;13(11):1619–1629.

Zeh Z, Jose M, Coelho CH, et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell Mol Immunol 2021;18(14):2434–2451.

Beghelli GM, et al. Helper T cells, dendritic cells and CTL Immunol. Cell Biol 2004;48(2):84–90.

Tomar N, De RK. A brief outline of the immune system. Methods Mol Biol 2014;1184:3–12.

Kondo M, Weissman II, Akashi K. Identification of clonogenic common lymphoid progenitor cells in mouse bone marrow. Cell 1997;91(5):661–672.

Biron CA, Nguyen KB, Pien GC, et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999;17:189–220.

Iannello A, Raulet DH. Immune surveillance of unhealthy cells by natural killer cells. Cold Spring Harb Symp Quant Biol 2013;78:249–257.

Wagstaffe HR, Clutterbuck EA, Bockstal V, et al. Antibody-dependent natural killer cell activation after ebola vaccination. Infect Dis 2021;223(7):1171–1182.

Langers I, Renoux V, Reschner A, et al. Natural killer and dendritic cells collaborate in the immune response induced by the vaccine against uterine cervical cancer. Eur J Immunol 2014;44(12):3585–3595.

Langers I, Chauveau A, Hernandez JC, Zapata W. NK cells in HIV-1 infection: from basic science to vaccine strategies. Front Immunol 2018;9:2290.

Hofmann M, Thimme R. Hepatitis B virus and NK cells: a new player in memory. Gut 2021;70(2):229–230.

Lanier L. NK cell recognition. Annu Rev Immunol 2005;23:225–274.

Moretta L, Moretta A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 2004;23(2):235–259.

Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020;586(7830):567–571.

Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med 2020;383(27):2603–2615.

Vogel AB, Kanevsky I, Che Y, et al. Extract of Polygonum cuspidatum Sieb.et Zucc.: a review. J Ethnopharmacol 2013;148(3):729–759.

Titlow J, Liu JN, Jum LEH, et al. Crude extract of Polygonum cuspidatum Sieb.et Zucc.: a review. J Ethnopharmacol 2013;148(3):729–759.

Han R, Wu WQ, Wu XP, et al. Effect of total flavonoids from the seeds of Astragalus complanati on natural killer cell function. J Ethnopharmacol 2015;173:157–165.

Lin SY, Liu LM, Wu LC. Effects of Shenmai injection on immune function in Stomach Cancer Patients after Chemotherapy. Chin J Integr Med 1999;15(8):451–453.

Zhu XB, Guo M, Zhang ZH, et al. Chinese herbal injections for the treatment of COVID-19: A narrative review. Int J Med Res 2021;10(4):100778.

Zhu B. Innate immunity: an overview. Mol Immunol 2004;40(12):845–859.

Kende M. Role of macrophages in the expression of immune responses. J Am Vet Med Assoc 1982;181(10):1037–1042.

Zhu Q, Wang Q, Wang T, et al. Pattern recognition receptors (PRRs) in the innate immune system.

Zhu XB, Guo M, Zhang ZH, et al. Chinese herbal injections for the treatment of COVID-19: A narrative review. Int J Med Res 2021;10(4):100778.
activation of NF-kB signaling pathway. *Int Immunopharmacol* 2012;14(1):121–126.

[73] Wong VK, Zhang MM, Zhou H, et al. Saikosaponin-d enhances the anticancer potency of TNF-α i.va overcoming its undesirable response of activating NF-kappa B signalling in cancer cells. *Evid Based Complement Alternat Med* 2013;2013:745295.

[74] Ying ZL, Li XJ, Dang H, et al. Saikosaponin-d affects the differentiation, maturation and function of monocyte-derived dendritic cells. *Exp Ther Med* 2014;7(5):1354–1358.

[75] Sun B, Yu S, Zhao D, et al. Polysaccharides as vaccine adjuvants. *Vaccine* 2018;36(35):5226–5234.

[76] Sun P, Kim Y, Lee H, et al. Carrot Pomace Polysaccharide (CPP) improves immune vaccine efficacy in immunosuppressed mice via dendritic cell activation. *Nutrients* 2020;12(9):2740.

[77] Huang Y, Jiang C, Hu Y, et al. Immunoenhancement effect of rehmannia glutinosa polysaccharide on lymphocyte proliferation and dendritic cell. *Carbohydr Polym* 2013;96(2):516–521.

[78] Wang Y, Kwak M, Lee PC, et al. Rehmannia glutinosa polysaccharide on lymphocyte proliferation and dendritic cell activation. *Hum Vaccin Immunother* 2012;8(9):2740.

[79] Han JM, Song HY, Seo HS, et al. Immunoregulatory properties of a crude extraction fraction rich in polysaccharide from Chrysanthemum zahlerianum. *Carbohydr Polym* 2018;206:420–422.

[80] Zhu N, Lv X, Wang Y, et al. Comparison of immunoregulatory effects of Chinese herbal medicine: benefits for the COVID-19 vaccine. *Curr Biol* 2020;30(36):3573–3581.

[81] Han SB, Park SH, Lee KH, et al. Polysaccharide isolated from the radix of Platycodon grandiflorum selectively activates B cells and macrophages but not T cells. *Int Immunopharmacol* 2001;1(1):1969–1978.

[82] Yang SR, Zhuang TF, Si YM, et al. Coriolus versicolor mushroom polysaccharides exert immunoregulatory effects on mouse B cells via membrane Ig and TLR-4 to activate the MAPK and NF-kB signaling pathways. *Mol Immunol* 2015;64(1):144–151.

[83] Xie Y, Wang L, Sun H, et al. A polysaccharide extracted from alfalfa activates splenic B cells by TLR4 and acts primarily via the MAPK/p38 pathway. *Food Funct* 2020;11(10):9035–9047.

[84] Han SB, Kim YH, Lee CW, et al. Characteristic immunostimulation by angeln isolated from Angelica gigas Nakai. *Int Immunopharmacolog* 1998;20(1):139–48.

[85] Han SB, Park SK, Ahn HJ, et al. Characterization of B cell membrane receptors of polysaccharide isolated from the root of Acanthopanax koreanum. *Int Immunopharmacol* 2003;3(3):683–691.

[86] Han SB, Yoon YD, Ahn HJ, et al. Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. *Int Immunopharmacol* 2003;3(3):1301–1312.

[87] Jara A, Undurraga EA, González C, et al. Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. *N Engl J Med* 2021;385(10):875–884.

[88] Chen Y, Yin S, Tong X, et al. Dynamic SARS-CoV-2-specific B-cell and T-cell responses following immunization with an inactivated COVID-19 vaccine. *Clin Microbiol Infect* 2022;28(3):410–418.

[89] Terke A, Coolhio GH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. *Cell* 2022;185(5):847–859.e11.

[90] de Vries RD. SARS-CoV-2-specific T-cells in unexposed humans: presence of cross-reactive memory cells does not equal protective immunity. *Signal Transduct Target Ther* 2020;5:1–22.

[91] Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. *Cell* 2020;181(7):1489–1501.e15.

[92] Weiskopf D, Schmitz KS, Raadsen MP, et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. *Sci Immunol* 2020;5(48):eaaz1073.

[93] Schuhlen H, Kemmern J, Oberhardt V, et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells. Nat Med 2021;27(1):78–85.

How to cite this article: Li X, Wichai N, Wang J, Liu X, Yan H, Wang Y, Luo M, Zhou S, Wang K, Li L, Miao L. Regulation of innate and adaptive immunity using herbal medicine: benefits for the COVID-19 vaccination. *Acupunct HerbMed* 2022;2(3):196–206. doi: 10.1097/ HM9.000000000000046