Abstract and References: Ecology

DOI: 10.15587/1729-4061.2022.255537
DEVELOPMENT OF THE REGULATION OF HYDROBIOLOGICAL MONITORING IN CIRCULATION COOLING SYSTEM OF THE ZAPORIZHZHIA NUCLEAR POWER PLANT (p. 6–17)

Natalia Yesipova
Oles Honchar Dnipro National University, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0003-1924-2547

Oleh Marenkov
Oles Honchar Dnipro National University, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-3456-2496

Tatiana Sharamok
Oles Honchar Dnipro National University, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0003-3523-5283

Oleh Nesterenko
Oles Honchar Dnipro National University, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-7407-7911

Viktoria Kurchenko
Oles Honchar Dnipro National University, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-1199-3760

The article proposes a new approach to solving the problem of biofouling at the facilities of the circulating cooling system of the Zaporizhzhia Nuclear Power Plant (ZNPP) by regulating hydrobiological studies. In the course of the studies, 4 species of hydrobions were found that formed massive fouling on water supply facilities: filamentous algae Oedogonium sp. and Ulotrix zonata with a total biomass of 123.6±18.44 g/m², tropical molluscs Melanoides tuberculata and Tarebia granifera of the Thiaridae family with a biomass of 20.09 g/m². The shells of dead mollusks drifted along the pipes of the circulation system with the flow of water and interfered with the operation of pumping stations. Also, the blue-green algae Microcystis aeruginosa, which dominated the phytoplankton of the cooling pond, belonged to the potential biohazards. The hydrobiological regulation was developed with the aim of timely detection of hydrobions capable of active reproduction and creation of biological obstacles. It provides for four types of monitoring: current (operational), extreme (control), deployed (research) and background (hydrobiological monitoring of the Kakhovka reservoir in the zone of influence of waste warm waters). For each type of monitoring, the subjects of control (a group of hydrobions), control parameters (species composition, abundance, biomass) and frequency of control are determined. The regulation of hydrobiological monitoring makes it possible to minimize the consequences or prevent the occurrence of accidents and emergencies in the operation of the ZNPP cooling circulation systems associated with biological obstacles, and can be used as an example for solving similar problems at other power facilities. The article also contains practical recommendations for improving the ecological state of the cooling pond and preventing the massive development of dangerous aquatic organisms by introducing biomeliorator fish with a different food spectrum into the reservoir.

Keywords: Zaporizhzhia nuclear power plant, hydraulic structures, environmental factors, problem of biofouling, hydrobiological monitoring, bioreclamation.

References
1. Romanenko, V., Kuzmenko, M., Afanasyev, S. et. al. (2012). Hydro-ecological Safety of Nuclear Power Engineering in Ukraine. Visnik Natsional’noi Akademii Nauk Ukraini, 6, 41–51. doi: https://doi.org/10.15407/vsn.2012.06.041
2. Grohmann, A. P. (2008). Bioencrustation in the turbine cooling system at the funil hydroelectric power plant, Itatiaia, Rio de Janeiro, Brazil. Naturalia, 31, 16–21. Available at: https://www.periodicos.rca.biblioteca.unesp.br/index.php/naturalia/article/view/1212
3. Zvyagintsev, A. Y., Poltarukha, O. P., Maslenikov, S. I. (2015). Fouling on technical water supply marine systems and protection method analysis of fouling on water conduits (analytical review). Voda: khimiya i ekologiya, 1, 37–60. Available at: https://www.researchgate.net/publication/339696835
4. Samoilenko, V. M., Sviriid, A. A. (2014). Long-term changes in phytoplankton of cooling pond. Al’gologiya, 24 (3), 371–375. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/81407/28-Samoilenko.pdf?sequence=1
5. Krahzan, S., Protasov, A., Bazueva, A., Grygorenko, T., Sylaeva, A. (2011). Hydrobiological state of cooling reservoir of the Khmel’nitsky nuclear power plant during autumn period. Rybohospodarska nauka Ukrainy, 3 (17), 29–33. Available at: https://ssu.iepindex.org/uk/2011-3-2011-17-2011-03-029-03
6. Slepnev, A. E., Silaeva, A. A. (2013). About Naturalization of Melanoïdes tuberculata (Thiaridae, Gastropoda) in Cooling Pond of the South-Ukrainian Nuclear Power Plant. Vestn. zoologii, 47 (2), 178. Available at: http://maif.izan.kiev.ua/vz-pdf/2013/2/22_Prokopenko.pdf
7. Yakovenko, V. A., Silaeva, A. A., Protasov, A. A. (2018). Invasive bryukhonomie molluski v tekhnokosistemme Zaporozhskoy AES. Yaderna enerhetyka ta dovkillia, 1 (11), 61–65. Available at: https://www.researchgate.net/publication/329659147_Yakovenko_V_Sylaeva_A_Protasov_A_Invasive_gasropods_in_the_technoeosystem_of_Zaporozhskaya_AES
8. Protasov, A. A., Silaeva, A. A., Novoselova, T. N., Gromova, Y. F., Morozovskaya, I. A. (2017). Nuclear Power Plant Tecnosystem: 18 Years of Hydrobiological Observations. Journal of Siberian Federal University. Biology, 11 (4), 459–484. doi: https://doi.org/10.17516/1997-1389-0045
9. Albloushi, M. A. (2017). Biofouling control of industrial seawater cooling towers. Thuwal. 267. Available at: https://repository.kunst.edu.sa/bitstream/handle/10754/626149/Mohammed%20Albloushi%20Dissertation.pdf?sequence=1&isAllowed=n
10. Jafidi, P., Zeinodlilmi, M. (2020). Influence of hard marine fouling on energy harvesting from Vortex-Induced Vibrations of a single-cylinder. Renewable Energy, 152, 516–528. doi: https://doi.org/10.1016/j.renene.2020.01.083
11. Protasov, A. A., Panaenko, G. A., Babariga, S. P. (2008). Biologicheskie pomehki v ekspluatatsii energeticheskikh stantsiy, ikh tipizatsiya i osnovnye gidrobiologicheskie printsiy ikh ogranichenny. Gidrobiologicheskiy zhurnal, 44 (5), 36–54
12. Fedomenko, O., Marenkov, O., Petrovsky, O. (2019). The Problem of Biological Obstacles in the Operation of Nuclear Power Plants (Illustrated by the Operation of Zaporizhzhia NPP Techno-Ecosystem). Nuclear and Radiation Safety, 2 (82), 54–60. doi: https://doi.org/10.32918/ars.2019.2(82)10
This paper reports the results of studying soil hydraulic structures (SHS) of the CC1 class of consequences on small rivers. The representativeness of the results for the domestic and world practice of further operation of such structures is ensured by the typical technical and technological approaches to the construction, materials, and conditions of their work. Dams are built of soil materials and operated over significant time periods while their standard service life has been exhausted, which increases the environmental and technical danger of their further operation. Visual surveys were conducted and the technical condition was instrumentally diagnosed by the geophysical method of the earth’s natural pulsed electromagnetic field (ENPEMF); observational data were mathematically treated.

The possibility of arranging areas of increased water filtration field (ENPEMF) is considered as a result of filtration deformations of the body and the base of the structure. Under current operating conditions, the possibility of letting the normative and excess (forced) water volumes through water discharge facilities due to precipitation or a breakthrough of the structure located upstream was estimated. The proposed approach makes it possible to manage the cascade of hydraulic structures at different stages of operation: planned, operational decision-making, forecasting. This allows diagnostic examinations to be performed in order to identify structures that require priority in raising funds for repair and restoration work or demolition (dismantling).

Keywords: hydraulic structure, soil dam, small river, geophysical research methods, filtration deformations.

References

1. Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G. et al. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51 (5), 2388–2397. doi: https://doi.org/10.4319/lo.2006.51.5.2388

2. DBN V.2.4-3:2010. Hidroteknichni sporudy. Osnovni polozhennia. Kyiv: Minrehionbud Ukrainy, 37.

3. Andreev, V. H., Hapich, H. V., Kovalenko, V. V. (2021). Impact of economic activity on geoeconomic transformation of the basin of the Zhovtenka River (Ukraine). Journal of Geography, Geography and Geocology, 30 (1), 3–12. doi: https://doi.org/10.15421/112101

4. Rudakov, L. M., Hapich, H. V., Orlinska, O. V., Pikarenia, D. S., Kovalenko, V. V., Chushkina, I. V., Zaporozhchenko, Y. Y. (2020). Problems of technical exploitation and ecological safety of hydrotechnical facilities of irrigation systems. Journal of Geography, Geography and Geocology, 29 (4), 776–788. doi: https://doi.org/10.15421/112070

5. Andrieiev, V. G., Hapich, H. V. (2020). Impact of ponds and reservoirs construction on the environmental safety of small river basins of the steppe zone of Ukraine (the case of Dniproprotevsk region). Mizhvidomchyi Tematychnyi Naukovyi Zbirnyk “Melioratsiya i Vodne Hospodarstvo”, 1, 158–166. doi: https://doi.org/10.31073/mv202001-22

6. Hapich, H. V. (2019). Analiz prychyn hidrodinamichnoi avariyi na gruntovykh hidroteknichnykh sporudakh kaskadu slUCHykh vod. Visnyk NUVHP (Seriya «Hidrotekhni nauky»), 1 (85), 73–82. doi: https://doi.org/10.31713/vt120198

7. Bondar, O. I., Mykhailenko, L. Ye., Vaschenko, V. L., Lapshen, Yu. S. (2014). Suchasni problemy hidroteknichnykh sporud v Ukraini. Visnyk NAN Ukrainy, 2, 40–47.

8. Stefanishyn, D. V. (2009). Pro otsinku ymovirnosti avarii na richkovykh hidrosporudakh v rezultati ekstremalnykh yavyshch, povizaanych z poveniamy. Ekolohichna bezpeka ta pryrodokorytuvannia, 4, 28–48.

9. Schehrim, V. N., Kosichenko, Yu. M., Baklanova, D. V., Baev, O. A., Mikhailov, E. D. (2016). Obespechenie bezopasnosti i nadezhnosti gruzotransportnykh vozov ukazhikh vozov s sasudnymi ruchamimi. Novocherkask: RosNIPM, 283.

10. Johansson, S. (1997). Seepage Monitoring in Embankment Dams. Stockholm.

11. Chinedu, A. D., Ogah, A. J. (2013). Electrical Resistivity Imaging of Suspected Seepage Channels in an Earthen Dam in Zaria, North-Western Nigeria. Open Journal of Applied Sciences, 03 (01), 145–154. doi: https://doi.org/10.4236/ojapps.2013.1.1020

12. Lin, C.-P., Hung, Y.-C., Wu, Z.-H., Wu, P.-L. (2013). Investigation of abnormal seepages in an earth dam using resistivity tomography. Journal of GeoEngineering, 8 (2), 61–70. Available at: http://yo-1.et.mst.edu.tw/jge/files/articlefiles/v8i2013090101492635170.pdf

13. Maimali, G. (2006). Monitoring of Tailings Dams with Geophysical Methods. Luleå University of Technology.

14. Putrenko, V., Benatov, D., Stefanishyn, D. (2016). A geoinformation system of “the hydrocomplexes of Ukraine” as an important part in supporting managerial decisions. Eastern-European Journal of Enterprise Technologies, 1 (3 (79)), 46–53. doi: https://doi.org/10.15587/1729-4061.2016.61135

15. Benatov, D. (2015). System analysis of natural-technogenic safety elements of the largest Ukrainian hydro-complexes. Eastern-Euro-
pean Journal of Enterprise Technologies, 5 (10 (77)), 12–21. doi: https://doi.org/10.15587/1729-4061.2015.49270

16. Hapich, H. (2019). Assessing level of environmental and operational safety of low-pressure hydroengineering structures. Transactions of Kremenchuk Mykhailo Ostrohradsky National University, 4, 46–52. doi: https://doi.org/10.39092/1995-0519.2014.46-52

17. Malakhov, V. V. (1990). Tekhnicheskaya diagnostika gruntovykh plotin. Moscow: Energopromizdat, 120.

18. Hapich, H. V. (2013). Otsenka tekhnicheskogo sostoyaniya gruntovykh plotin, kak elementa sistemy ekologicheskogo monitoringa territorii. Zhirnyk naukovykh prats NRU, 42, 168–173. Available at: http://ir.nmu.org.ua/bitstream/123456789/152565/25.pdf?sequence=1

19. Yatsyk, A. V., Bystroverts, L. V., Bohatov, Ye. O. (1991). Mali richky Ukrainy. Kyiv: Urozhai, 296.

20. Romaschenko, M. I., Rokochynskyi, A. M., Halik, O. I., Kolodych, O. D., Suvchuk, T. V. (2007). Suchasni zmiry klimatu ta yikh proiyav v globalnogo do regionalnogo rivn. Hidromelioratsiia ta hidrotekhnikhe budynivstva, 32, 65–79.

21. Vyshnevskiy, V. I. (2001). Zmirnyk naukovykh prats NRU, 42, 168–173. Available at: http://ir.nmu.org.ua/bitstream/123456789/152565/25.pdf?sequence=1

23. Stefanystyn, D. V., Korbutiak, V. M., Trofymchuk, O. M. (2013). Perspektivy vykorystannia heoinformatsiykh tekhnolohiy v za-zdaniakh zabezpechenня nadynosti y bezpeky hidroenergetychnykh ob’ektiv Visnyk Natsionalnoho universytetu vodnoho hospodarstva ta pryrodokorystuvannya, 2 (6), 42–75.

24. Shulga, V. A. (2020). Advanced algorithm for diagnostic control of water-development constructions of Ukraine. Hidroenergetyka Ukrainy, 1-2, 17–23. Available at: https://uhy.gov.ua/sites/default/files/2020-07/7.pdf

25. Pikarenia, D. S., Orlinskaya, O. V. (2009). Opyt primeneniya metoda estestvennogo impul'snogo elektromagnitnogo polya Zemli (EIEMPZ) diya resheniya inzhenerno-geologicheskih i geologicheskikh zadach. Dnepropetrovsk: Izd-vo «SVIDLER», 120.

26. Hao, G., Wang, H. (2012). Study on Signals Sources of Earth’s Natural Pulse Electromagnetic Fields. Computational Intelligence and Intelligent Systems, 631–638. doi: https://doi.org/10.1504/1729-4061.2012.042899-9.72

27. Chashkina, I., Pikarenia, D., Orlinska, O., Makysnova, N. (2019). Experimental substantiation of the NPEMF geophysical method to solve engineering and geological problems. Visnyk of V.N.Karazin Kharkiv National University. Series «Geology. Geography. Ecology», 51, 109–125. doi: https://doi.org/10.26565/2140-7360-2019-51-08

28. Kuzmenko, E. D., Bahri, S. M., Drsiba, U. O. (2019). The depth range of the Earth’s natural pulse electromagnetic field (or ENPEMF). Journal of Geology, Geography and Geoeconomy, 27 (3). 466–477. doi: https://doi.org/10.15421/111870

29. Orlinska, O. V., Pikarenia, D. S., Makysnova, N. M., Hapich, H. V., Ischenko, V. M. (2012). Otsinka mitsnostnykh vlastyvoistey grun-tovykh damb metodom prirodnoho impulsnoho elektromagnitnogo polia Zemli. Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu, 37, 17–23.

30. Koschenko, Yu. M., Baklanova, D. V. (2012). Oproshenie veroятностnego riska avaria krupnogo kanala vseobstvennosti fil’trasionnykh deformatsiy. Nauchny zhurnal Rossiyiskogo NII problem melioratsii, 1 (65), 145–156.

31. Nikolaieva, I. O., Rudakov, D. V. (2015). Development of a Checklist for improvement of tailings safety. Scientific Bulletin of NMU, 2, 97–103.

DOI: 10.15587/1729-4061.2022.255054

DEVISING RECOMMENDATIONS BASED ON A COMPREHENSIVE ASSESSMENT OF THE SOIL-GEOBOTANICAL CONDITION OF LAND PLOTS FOR EXECUTING AFFORESTATION ACTIVITIES (p. 30–41)

Nazymin Shogolova
International Educational Corporation, Almaty, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-5220-1459

Sergey Sartin
North Kazakhstan University named after Manash Kozybayev, Petropavllovsk, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-5637-3311

Timur Zvervachenko
North Kazakhstan University named after Manash Kozybayev, Petropavllovsk, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-2432-2041

The land fund is in constant flux. Lands are transferred from one category and land to another. The deterioration of the ecological state of the land, the development of erosion processes, desertification, salinization, pollution by chemical and radioactive substances, forest and shrubland overgrowth of land annually exclude significant areas from use.

This paper reports a study of forestry stations located on the territory of Northern Kazakhstan. The soil was investigated by the method of laying soil sections and semi-pits with a description of the power of the horizons. The structure of the soil was determined by the method of breaking down soil samples. The granulometric composition was determined by the wet method with a division into sand, loam, light loam, medium loam, heavy loam, and clay. The chemical analysis of soil samples was carried out in a certified laboratory. Soluble carbonates are present in the samples from the Burluk forestry station. According to the structure and chemical analysis, the types of soils for each forestry station were defined. Based on the study’s results, recommendations were devised for the categories of areas. In addition, the areas of plots suitable for all major forest species and areas with existing forests, forest crops, overgrown with self-sowing were determined.

During the reconnaissance route-loop survey of land plots, the types of plant associations were identified. A comprehensive ecological and geographical study of a forestry station was carried out to execute afforestation operations. Basically, the identification of types of plant associations has made it possible to conduct a preliminary assessment on the ground about the quality of the studied areas for the restoration of forest areas. General recommendations were compiled from the direct conduct of surveys on the ground; however, systematic monitoring, using remote sensing methods of the Earth, could facilitate the ongoing research. Building on the method of integrated ecological and geographical research could in the future significantly improve the efficiency of forest management activities in general and minimize losses associated with environmental influences.

Keywords: remote sensing, geobotanical study of land plots, afforestation, integrated assessment.

References

1. Belov, A. V., Sokolova, L. P. (2009). The socio-economic role of vegetation in the cartographic substantiation of rational management of nature in the geobotanical forecasting system. Geography and Natural Resources, 30 (2), 119–125. doi: https://doi.org/10.1016/j.jgrn.2009.06.005

2. Ruhtsov, M. V. (1984). A classification of the function and role of forest. Lesovedenie, 2, 3–9.
Abstract and References. Ecology.

3. Belov, A., Sokolova, L. (2008). Vegetation stability in the system of geobotanical forecasting. Geography and Natural Resources, 29 (2), 124–131. doi: https://doi.org/10.1016/j.gnr.2008.06.016

4. Sochava, V. B. (1978). An Introduction to the Theory of Geosystems. Novosibirsk: Nauka, 319.

5. Sochava, V. B. (1979). Vegetation on Thematic Maps. Novosibirsk: Nauka, 188.

6. Soudek, P., Petřík, P., Vágner, M., Tykva, R., Plojhr, V., Petrová, S., Vaněk, T. (2007). Botanical survey and screening of plant species which accumulate 226Ra from contaminated soil of uranium waste depot. European Journal of Soil Biology, 43 (4), 251–261. doi: https://doi.org/10.1016/j.ejsobi.2007.02.008

7. Semenkov, I., Konysheva, M., Heidari, A., Nukhminovskaya, Y., Klink, G. (2020). Data on the soilscape and vegetation properties at the key site in the NW Caspian sea coast, Russia. Data in Brief, 31, 105972. doi: https://doi.org/10.1016/j.dib.2020.105972

8. Kozyr, I. V. (2014). Forest Vegetation Dynamics Along an Altitudinal Gradient in Relation to the Climate Change in Southern Transbaikalia, Russia. Achievements in the Life Sciences, 8 (1), 23–28. doi: https://doi.org/10.1016/j.ajls.2014.11.006

9. Goncharova, O., Matysyuk, G., Udovenko, M., Semenyuk, O., Epstein, H., Bobrik, A. (2020). Temporal dynamics, drivers, and components of soil respiration in urban forest ecosystems. CATENA, 185, 104299. doi: https://doi.org/10.1016/j.catena.2019.104299

10. Belov, A. V., Sokolova, L. P. (2017). Geobotanical forecasting in the nature management ecological optimization in Baikalian Siberia. Geography and Natural Resources, 38 (1), 38–45. doi: https://doi.org/10.1134/s1875372817010055

11. Gongalsky, K. B., Iurmanov, A. A., Ulkova, N. L., Korobushkin, D. I. (2020). The size of burnt areas has little effect on the recovery of soil macrofauna in the boreal forests of Middle Ural, Russia. Pedosphere, 30 (5), 714–718. doi: https://doi.org/10.1016/s1002-0160(20)60032-7

12. Belov, A. V., Sokolova, L. P. (2009). Functional organization of vegetation in the system of cartographic forecasting. Geography and Natural Resources, 30 (1), 8–13. doi: https://doi.org/10.1016/j.gnr.2009.03.003

DOI: 10.15587/1729-4061.2022.254285

DEVELOPING PLASTIC RECYCLING CLASSIFIER BY DEEP LEARNING AND DIRECTED ACYCLIC GRAPH RESIDUAL NETWORK (p. 42–49)

Ahmed Burhan Mohammed
University of Kirkuk, Kirkuk, Iraq
ORCID: https://orcid.org/0000-0003-4326-0120

Ahmad Abdullah Mohammed Al-Mafraj
University of Kirkuk, Kirkuk, Iraq
ORCID: https://orcid.org/0000-0002-5272-3935

Mounena Salah Yassen
University of Kirkuk, Kirkuk, Iraq
ORCID: https://orcid.org/0000-0001-5075-8356

Ahmad H. Sabry
Universiti Tenaga Nasional
Jalan Ikram-Uniit, Kajang, Selangor, Malaysia
ORCID: https://orcid.org/0000-0002-2736-5382

Recycling is one of the most important approaches to safeguard the environment since it aims to reduce waste in landfills while conserving natural resources. Using deep Learning networks, this group of wastes may be automatically classified on the belts of a waste sorting plant. However, a basic set of connected layers may not be adequate to give satisfactory accuracy for such multi output classifier tasks. To optimize the gradient flow and enable deeper training for network design with multi label classifier, this study suggests a residual-based deep learning convolutional neural network. For network training, ten classes have been explored. The Directed Acyclic Graph (DAG) is a structure with hidden layers that have inputs, outputs, and other layers. The DAG network’s residual-based architecture features shortcut connections that bypass some levels of the network, allowing gradients of network parameters to travel freely among the network output layers for deeper training. The methodology includes:

1) preparing the data and creating an augmented image data store;
2) defining the main serially-connected branches of the network architecture;
3) defining the residual interconnections that bypass the main branch layers;
4) defining layers, and finally;
5) creating a residual-based deeper layer graph.

The concept is to split down the multiclass classification problem into minor binary states, where every classifier performs as an expert by concentrating on discriminating between only two labels, improving total accuracy. The results achieve (2.86 %) training error and (9.76 %) a validation error. The training results of this classifier are evaluated by finding the training error, validation error, and showing the confusion matrix of validation data.

Keywords: Directed Acyclic Graph (DAG), deep learning, Recycling, classification, Convolutional Neural Network (CNN).

References
1. Wong, K. C. L., Moradi, M. (2019). SegNAS3D: Network Architecture Search with Derivative-Free Global Optimization for 3D Image Segmentation. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019, 393–401. doi: https://doi.org/10.1007/978-3-030-32248-9_44
2. Taheri, S., Toygar, O. (2019). On the use of DAG-CNN architecture for age estimation with multi-stage features fusion. Neurocomputing, 329, 300–310. doi: https://doi.org/10.1016/j.neucom.2018.10.071
3. Fiahom Gouabou, A. C., Damaoiseaux, J.-L., Monnier, J., Igermannai, R., Moudafi, A., Merad, D. (2021). Ensemble Method of Convolutional Neural Networks with Directed Acyclic Graph Using Dermo-scopic Images: Melanoma Detection Application. Sensors, 21 (12), 3999. doi: https://doi.org/10.3390/s21123999
4. Golrizkhazani, Z., Taheri, S., Aran, A. (2018). Multi-scale features for heartbeat classification using directed acyclic graph CNN. Applied Artificial Intelligence, 32 (7-8), 613–628. doi: https://doi.org/10.1080/08839514.2018.1501910
5. Agarwal, N., Balasubramanian, V. N., Jawahar, C. V. (2018). Improving multiclass classification by deep networks using DAGSVM and Triplet Loss. Pattern Recognition Letters, 112, 184–190. doi: https://doi.org/10.1016/j.patrec.2018.06.034
6. Austin, A. E., Desrosiers, T. A., Shanahan, M. E. (2019). Directed acyclic graphs: An under-utilized tool for child maltreatment research. Child Abuse & Neglect, 91, 78–87. doi: https://doi.org/10.1016/j.chiabu.2019.02.011
7. Anilkumar, K. K., Manoj, V. J., Sagi, T. M. (2021). Automated detection of leukemia by pretrained deep neural networks and transfer learning: A comparison. Medical Engineering & Physics, 98, 8–19. doi: https://doi.org/10.1016/j.medengphy.2021.10.006
8. Zhu, T., Cao, C., Wang, Z., Xu, G., Qiao, J. (2020). Anatomical Landmarks and DAG Network Learning for Alzheimer’s Disease Diagnosis. IEEE Access, 8, 206063–206073. doi: https://doi.org/10.1109/access.2020.3037107
9. Oyewola, D. O., Augustine, A. F. (2021). Predicting Impact of CO-
VID-19 on Crude Oil Price Image with Directed Acyclic Graph
Deep Convolutional Neural Network. Journal of Robotics and Control
(JRC), 2 (2). doi: https://doi.org/10.18196/jrc.2261

10. Pachón-Suescún, C. G., Pinzón-Arenas, J. O., Jiménez-Moreno, R.
(2020). Fruit Identification and Quality Detection by Means of
DAG-CNN. International Journal on Advanced Science, Engineer-
ing and Information Technology, 10 (5), 2183. doi: https://doi.org/
10.15817/jaiset.10.5.88684

11. Plastic Waste DataBase of Images – WaDaBa. Available at: http://
wadaba.pecz.pl/

12. Jwaid, W. M., Al-Husseini, Z. S. M., Sabry, A. H. (2021). Develop-
ment of brain tumor segmentation of magnetic resonance imaging
(MRI) using U-Net deep learning. Eastern-European Journal of
Enterprise Technologies, 4 (9 (112)), 23–31. doi: https://doi.org/
10.15587/1729-4061.2021.238957

DOI: 10.15587/1729-4061.2022.254471
DETERMINING PATTERNS IN THE GENERATION OF
MAGNETIC FIELDS WHEN USING DIFFERENT ARC
WELDING TECHNIQUES (p. 50–56)

Oleg Levchenko
National Technical University of Ukraine «Igor Sikorsky Kyiv
Polytechnic Institute», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-9737-7212

Yury Polukarov
National Technical University of Ukraine «Igor Sikorsky Kyiv
Polytechnic Institute», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-6261-3991

Olga Goncharova
E. O. Paton Electric Welding Institute of the National Academy of
Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-5213-6300

Olga Bezushko
E.O. Paton Electric Welding Institute of the National Academy of
Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-6148-1675

Olexandr Arlamov
National Technical University of Ukraine «Igor Sikorsky Kyiv
Polytechnic Institute», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-2174-5928

Olena Zemlyanska
National Technical University of Ukraine «Igor Sikorsky Kyiv
Polytechnic Institute», Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-9608-3677

This paper reports a study into the levels of magnetic fields
induced by arc welding equipment in various ways in order to as-
sess their impact on the body of welders. It is known that welders
are exposed to a magnetic field of high intensity. Depending on the
welding technique and the type of welding equipment, it may exceed
the maximum permissible levels (MPL). Note that new Ukrainian
sanitary standards for magnetic fields have been introduced, which
regulate their levels depending on the frequency range. Therefore,
it became necessary to carry out their hygienic assessment accord-
ing to the new standards in order to devise appropriate methods for
protecting welders. To this end, it was required to choose a new genera-
tion of devices to determine the intensity of magnetic fields induced
by welding equipment. Based on the analysis of the constructed
oscillograms and spectrograms of magnetic fields, it was found that
semi-automatic welding with a metal electrode in carbon dioxide is
characterized by an increased level of magnetic field in the frequency
range of 50–1000 Hz. With automatic arc welding under the flux, there
are no excess of the maximum permissible levels of individual harmoni-
ces of the magnetic field but there is an excess of the total value of all
harmonic components of the magnetic field. Manual arc welding with
direct current involving a non-melting electrode in argon is character-
ized by a moderate level of magnetic field in workplace. During manual
arc welding with coated electrodes, the exceeded level of the magnetic
field is observed only on the electrode cable itself. It is shown that the
spectral composition of the magnetic field signal is determined mainly
by the welding technique itself, the peculiarities of arc combustion, and
the nature of the transfer of electrode metal in the arc gap, as well as the
initial parameters of the power supplies of the welding arc.

Keywords: arc welding, magnetic field, field intensity, oscillo-
grams, spectrograms, welder protection.

References

1. Modenes, A., Gobba, F. (2021). Occupational Exposure to Elec-
tromagnetic Fields and Health Surveillance according to the Eu-
ropean Directive 2013/35/EU. International Journal of Environ-
mental Research and Public Health, 18 (4), 1730. doi: https://doi.
org/10.3390/ijerph18041730

2. Stam, R. (2018). Comparison of international policies on electro-
magnetic fields (power frequency and radiofrequency fields).
Publication for the National Institute for Public Health and the En-
vironment. Available at: https://rivm.openrepository.com/bistream/
handle/10029/623629/2018998.pdf?sequence=1

3. Fuentes, M. A., Trakic, A., Wilson, S. J., Crozier, S. (2008). Analysis
and Measurements of Magnetic Field Exposures for Healthcare
Workers in Selected MR Environments. IEEE Transactions on
Biomedical Engineering, 55 (4), 1355–1364. doi: https://doi.org/
10.1109/tbme.2007.913410

4. Pažaiová, H., Oravec, M., Šmelko, M., Lipovský, P., Forraj, F. (2018).
Extra low frequency magnetic fields of welding machines and per-
sonal safety. Journal of Electrical Engineering, 69 (6), 493–496. doi:
https://doi.org/10.2478/jee-2018-0084

5. Yamaguchi-Sekino, S., Eqima, J., Sekino, M., Hiro, M., Saito, H.,
Okuno, T. (2011). Measuring Exposed Magnetic Fields of Welders
in Working Time. Industrial Health, 49 (3), 274–279. doi: https://
doi.org/10.2486/indhealth.ms1269

6. Michałowska, J., Przystupa, K., Krupski, P. (2020). Empirical as-
essment of the MAG welder’s exposure to an electromagnetic
field. Przegląd Elektrotechniczny, 1 (12), 224–227. doi: https://
doi.org/10.15199/48.2020.12.48

7. Levchenko, O., Goncharova, O., Levcyuk, V., Dudan, A. (2013).
Influence of the mode of resistance spot welding on the level of mag-
netic field in the working area of a welder. Vestnik polotnikovo gosu-
darstvenogo universeteta. Seriya V, 86–90. Available at: https://
elib.psu.by/handle/123456789/240

8. Pro zatverdzenijnia Derzavnykh sanitarnykh norm ta pravyl pry
roboti z dzerhelamy elektronomagnitnykh poliv (DSNIP 3.3.6.096-
2002). Available at: https://rozrocka.rada.gov.ua/laws/show/dz0203-03

9. Predel’no dopusnimye urovni magneznykh poliv chastooty 50 Gts.
Available at: https://docs.cntd.ru/document/120031592

10. Glyva, V., Kovalenko, V., Levchenko, L., Tykhonen, O. (2017).
Research into protective properties of electromagnetic screens based
on the metal-containing nanostructures. Eastern-European Journal of
Enterprise Technologies, 3 (12 (87)), 50–56. doi: https://doi.org/
10.15587/1729-4061.2017.103167

11. Glyva, V., Lyashek, J., Matvievea, I., Frolov, V., Levchenko, L.,
Tykhonen, O. et. al. (2018). Development and investigation of pro-
tective properties of the electromagnetic and soundproofing screen.
DEFINING THE FEATURES OF AMPLITUDE AND PHASE SPECTRA OF DANGEROUS FACTORS OF GAS MEDIUM DURING THE IGNITION OF MATERIALS IN THE PREMISES (p. 57–65)

Boris Pospelov
Scientific-methodical Center of Educational Institutions in the Sphere of Civil Defence, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-9057-3839

Evgeniy Rybka
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-5996-3121

Mikhail Samoilov
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-8924-7944

Ihor Morozov
National Academy of the National Guard of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-9643-481X

Yuliia Bezuhla
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-4022-2807

Tetiana Butenko
Scientific-methodical Center of Educational Institutions in the Sphere of Civil Defence, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-0115-7224

Yuliia Mykhailovska
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-1090-5033

Oleksandr Bondarenko
National Academy of the National Guard of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-1755-3333

Julia Veretennikova
Kharkiv National University of Civil Engineering and Architecture, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-0245-784X

This paper theoretically substantiates research into the spectral features of the dynamics of the main dangerous parameters of a gas environment when igniting materials in a laboratory chamber. Studying such spectral features is based on the calculation of the direct discrete Fourier transform for discrete measurements, equal in number, over the current intervals of observation of the hazardous examined parameter of the gas medium before and after the material is ignited. In this approach, a Fourier discrete transform makes it possible to determine the instantaneous amplitude and phase spectra for the time intervals under consideration. This makes it possible to explore the peculiarities of the distribution of amplitudes and phases of harmonic components in the spectrum of the dynamics of dangerous parameters of the gas environment before and after the ignition of materials. The results of experimental studies established that the nature of the amplitude spectrum is low-informative and not sensitive enough to fires. The main contribution to the amplitude spectrum of the dynamics of the investigated hazardous parameters of the gas environment in the chamber is made by the frequency components in the range of 0–0.2 Hz. The contribution to the amplitude spectrum of frequency components over 0.2 Hz is insignificant and decreases with increasing frequency. It is established that from the phase spectrum, the nature of the random scattering of phases for frequency components exceeding 0.2 Hz is informative. It was found that the nature of the phase spread for these frequency components in the spectrum depends on the type of ignition material. The results reported here could prove useful when devising new effective technologies for detecting fires in the premises of objects in various fields to protect against fires. This is explained by the fact that for the detection of fires in the premises, high-frequency components are important, characterized by the increase in dangerous parameters of the gas environment.

Keywords: ignition of materials, gas environment of premises, amplitude instant spectrum, phase instantaneous spectrum.

References
1. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 57–64. doi: https://doi.org/10.15587/1729-4061.2017.118213
2. Tan, P., Steinbichl, M., Kumar, V. (2005). Introduction to Data Mining. Addison Wesley, 864.
3. Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 635–664.
4. Andronov, V., Pospelov, B., Rybka, E., Skliarow, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.101985
5. Migalenko, K., Nuanzin, V., Zemlianskiy, A., Dominik, A., Pardieiev, S. (2015). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: https://doi.org/10.15587/1729-4061.2018.121727
6. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4). doi: https://doi.org/10.6001/energetika.v64i4.3893
7. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finely-dispersed water. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 38–43. doi: https://doi.org/10.15587/1729-4061.2018.127865
8. Kovalov, A., Otrzoy, Y., Ostrovzhe, O., Krashovchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: https://doi.org/10.1051/e3conf/20186000003
9. Reproduced with permission from fire loss in the United States during 2019 (2020). National Fire Protection Association.
10. Otrzoy, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. doi: https://doi.org/10.1088/1757-899x/ 708/1/012065
11. Dadashov, I., Lobochenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77.
12. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhko, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimi i Khimicheskoi Tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4062-2019-122-1-92-99
13. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et. al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
14. Sadkiovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Ottrosh, Yu. et. al.; Sadkiovyi, V., Rybka, E., Ottrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: PC TECHNOLOGY CENTER, 180. doi: https://doi.org/10.15587/978-617-7319-43-5
15. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et. al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
16. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: https://doi.org/10.15587/1729-4061.2017.969604
17. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 33–39. doi: https://doi.org/10.15587/1729-4061.2017.108448
18. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by self-adjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092
19. Cheng, C., Sun, F., Zhou, X. (2011). One fire detection method using neural networks. Tsinghua Science and Technology, 16 (1), 31–35. doi: https://doi.org/10.1006/tsst.2011.0701
20. Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. Algorithms, 7 (4), 523–537. doi: https://doi.org/10.3390/a7040523
21. BS EN 54-20:2015. Fire detection and fire alarm systems. Multi-sensor fire detectors. Point detectors using a combination of carbon monoxide and heat sensors. doi: https://doi.org/10.15587/30266889
22. BS EN 54-31:2014. Fire detection and fire alarm systems. Multi-sensor fire detectors. Point detectors using a combination of smoke, carbon monoxide and optionally heat sensors. doi: https://doi.org/10.15587/30256418a
23. ISO 7240-8:2014. Fire detection and alarm systems. Point-type fire detectors using a carbon monoxide sensor in combination with a heat sensor. doi: https://doi.org/10.15587/30280584
24. Aspey, R. A., Brazier, K. J., Spencer, J. W. (2005). Multiwavelength sensing of smoke using a polychromatic LED: Mist extinction characterization using ILS analysis. IEEE Sensors Journal, 5 (5), 1050–1056. doi: https://doi.org/10.1109/jeson.2005.845207
25. Chen, S.-J., Hovde, D. C., Peterson, K. A., Marshall, A. W. (2007). Fire detection using smoke and gas sensors. Fire Safety Journal, 42 (8), 507–515. doi: https://doi.org/10.1016/j.firesaf.2007.01.006
26. Shi, M., Bermak, A., Chandrasekaran, S., Amira, A., Braham-Belhouari, S. (2008). A Committee Machine Gas Identification System Based on Dynamically Reconfigurable FPGA. IEEE Sensors Journal, 8 (4), 403–414. doi: https://doi.org/10.1109/jossen.2008.917124
27. Skinner, A. J., Lambert, M. F. (2006). Using Smart Sensor Strings for Continuous Monitoring of Temperature Stratification in Large Water Bodies. IEEE Sensors Journal, 6 (6), 1473–1481. doi: https://doi.org/10.1109/jsen.2006.881373
28. Cheon, J., Lee, J., Lee, I., Chae, Y., Yoo, Y., Han, G. (2009). A Single-Chip CMOS Smoke and Temperature Sensor for an Intelligent Fire Detector. IEEE Sensors Journal, 9 (8), 914–921. doi: https://doi.org/10.1109/jossen.2009.2024703
29. Wu, Y., Harada, T. (2004). Study on the Burning Behaviour of Plantation Wood. Scientia Silvae Sinicac, 40, 131.
30. Zhang, D., Xue, W. (2010). Effect of Heat Radiation on Combustion Heat Release Rate of Larch. Journal of West China Forestry Science, 39, 148.
31. Ji, J., Yang, L., Fan, W. (2003). Experimental Study on Effects of Burning Behaviours of Materials Caused by External Heat Radiation. Journal of Combustion Science and Technology, 9, 139.
32. Peng, X., Liu, S., Lu, G. (2005). Experimental Analysis on Heat Release Rate of Materials. Journal of Chongqing University, 28, 122.
33. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 25–30. doi: https://doi.org/10.15587/1729-4061.2018.142995
34. Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127
35. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et. al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.235060
36. Pospelov, B., Rybka, E., Togibytyska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
37. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. (2016). Fire Dynamics Simulator Technical Reference Guide. Vol. 3. National Institute of Standards and Technology.
38. Floyd, J., Forney, G., Hostikka, S., Korchenon, T., McDermott, R., McGrattan, K. (2013). Fire Dynamics Simulator. User’s Guide. V. 6. National Institute of Standard and Technology.
39. Polstiankin, R. M., Pospelov, B. B. (2015). Stochastic models of hazardous factors and parameters of a fire in the premises. Problemly poharnoy bezopasnosti, 38, 130–135.
40. Heskstad, G., Newman, J. S. (1992). Fire detection using cross-correlations of sensor signals. Fire Safety Journal, 18 (4), 355–374. doi: https://doi.org/10.1016/0379-7112(92)90024-7
41. Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrson, S. L., Hart, S. et. al. (2002). Prototype Early Warning Fire Detection Systems: Test Series 4 Results. NRL/MB/8180-02-8602. Naval Research Laboratory.
42. Pospelov, B., Rybka, E., Meleshchenko, R., Gornostal, S., Shcherbak, S. (2017). Results of experimental research into correla-
Optimizing the Process of Fire Detection in Warehouses Considering the Type and Location of Fire Detectors

Volodymyr Sharry
Lviv State University of Life Safety, Lviv, Ukraine
ORCID: https://orcid.org/0000-0001-8746-2184

Ivan Pasnak
Lviv State University of Life Safety, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-8405-4625

Artur Renkas
Lviv State University of Life Safety, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-5518-3508

An integral condition for avoiding damage due to fires in warehouses, or at least minimizing them, is the early detection of fires using fire protection systems, as well as its timely localization. Depending on which fire detectors are selected to protect the relevant premises and where they are installed, the time of operation of all elements of automatic control systems in case of a fire will depend. The review of literary data revealed that at present there is no comprehensive approach to choosing the optimal placement in warehouses. In addition, the optimal placement of fire detectors within the room, taking into consideration the type of fire load, has not been sufficiently studied. Therefore, the purpose of the current study is to establish the dependence of the time of operation of different types of fire detectors on the type of combustible material, namely its mass burnout rate, distance, and height of placement of detectors from a potential fire site. This paper reports a procedure for conducting an experimental study to identify the appropriate dependence for warehouses. The results of the experiments showed that the most effective in warehouses are targeted fire smoke detectors and aspiration systems. Based on the results of a complete factor experiment, nonlinear empirical dependences were determined to the time of operation of smoke fire detectors on the above factors were built. The resulting empirical dependences make it possible to choose fire detectors and optimally place them within a room. The average error in these dependences when compared with the experimental data is 6.9%. The use of the derived dependences makes it possible to reduce the time of operation of fire detectors by 14 s in comparison with their placement in accordance with building codes.

Keywords: fire detector, fire development, fire protection system, full-factor experiment, trigger time.

References
1. DBN V.2.5-56:2014. Systemy protyopohrebnogo zakhrysty. Available at: http://kha.org.ua/assets/app/documents/dbn2/981.20
DBN%20V.2.5-56%20-%20Системи%20протиопожежного%20захисту.pdf
2. Hulida, E., Pasnak, I., Renkas, A., Sharry, V. (2020). Engineering method for determining rational fire protection parameters of warehouses. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 38–45. doi: https://doi.org/10.15587/
1729-4061.2020.201819
3. Nan, C., Xiameng, M., Wenhui, D. (2012). Experimental Study on the Testing Environment Improvement of Fire Smoke Detectors. Procedia Engineering, 45, 610–616. doi: https://doi.org/10.1016/
.j.proeng.2012.08.211
4. Kruell, W., Schultze, T., Tobera, R., Willms, I. (2013). Analysis of Dust Properties to Solve the Complex Problem of Non-fire Sensitivity Testing of Optical Smoke Detectors. Procedia Engineering, 62, 859–867. doi: https://doi.org/10.1016/j.proeng.2013.08.136
5. Zhang, W., Olenick, S. M., Klassen, M. S., Carpenter, D. J., Roby, R. J., Torero, J. L. (2008). A smoke detector activation algorithm for large eddy simulation fire modeling. Fire Safety Journal, 43 (2), 96–107. doi: https://doi.org/10.1016/j.firesaf.2007.05.004
6. Liu, F., Zhao, Z., Yao, H., Liang, D. (2013). Application of Aspirating Smoke Detectors at the Fire Earliest Stage. Procedia Engineering, 52, 671–675. doi: https://doi.org/10.1016/j.proeng.2013.02.204
7. Choi, M.-S., Lee, K.-O. (2018). Study on Influence of Air Flow of Ceiling Type Air Conditioner on Fire Detector Response. Fire Science and Engineering, 32 (5), 40–45. doi: https://doi.org/10.7731/
ksfe.2018.32.5.040
8. Zheng, W., Zhang, X., Wang, Z. (2016). Experimental Study of Performances of Fire Detection and Fire Extinguishing Systems in a Subway Train. Procedia Engineering, 135, 393–402. doi: https://doi.org/10.1016/j.proeng.2016.01.147
9. Ko, E. Y., Hong, S.-H., Cha, J. (2020). A Study on Remote IoT operating time for Fire Detector of Smart Home. The Journal of the Institute of Internet, Broadcasting and Communication, 20 (2), 235–238. doi: https://doi.org/10.7236/JIBBC.2020.20.2.235
10. Liu, X., Hou, D., Ji, J., Zhu, H. (2021). Experiment and numerical simulation of cable trench fire detection. Case Studies in Thermal Engineering, 28, 101338. doi: https://doi.org/10.1016/
j.csite.2021.101338
11. Hong, S.-H. (2016). An Experimental Study on the Response Characteristics of Fire Detector for Early Stage Fire Detection in Warehouse. Fire Science and Engineering, 30 (3), 41–47. doi: https://doi.org/10.7731/ksfe.2016.30.3.041

Establishing Regularities of Temperature Conductivity Reduction When Protecting Fabric Against Fire by Intumescent Coating (p. 77–80)

Yuriy Tsapko
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-0625-0783

Aleksei Tsapko
Ukrainian State Research Institute “Resource”, Kyiv, Ukraine
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-2298-068x

Natallia Buiskykh
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-3229-7235

Oleksandra Horbachova
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-7533-5628

Serhii Mazurchuk
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-6008-9591
This paper has analyzed materials for fire protection of textile products; it was found that there are not enough data to explain and describe the process of fire protection. Neglecting modern coatings leads to the ignition of fabric structures under the action of flame. Devising reliable methods for studying the conditions of fabric fire protection leads to the design of new types of fireproof materials. Therefore, there is a need to determine the conditions that form a barrier to high fabric temperature and to establish a mechanism for inhibiting heat transfer to the material. In this regard, the thermal conductivity process was simulated on the fabric surface using an intumescent coating, which makes it possible to estimate the coefficient of thermal conductivity at high temperatures. Based on the experimental data and theoretical dependences, the thermal conductivity coefficient of the fire-retardant layer of coked foam was calculated, which is 8.9 \times 10^{-6} \, \text{m}^2/\text{s}, due to the formation of a heat-insulating layer. The study results proved that the process of thermal insulation of textile material involves not only the decomposition of flame retardants with the formation of inert gases that interact with the flame on the sample surface but also the inhibition of heat transfer to the material treated with an intumescent coating that forms a thermally-insulating layer of coked foam on the fabric surface. The maximum possible penetration of temperature was estimated, namely generating a temperature on the sample's surface that significantly exceeds the ignition temperature of the fabric, and does not exceed 215 °C on the unheated surface. Thus, there is reason to argue about the possibility of targeted adjustment of the processes of fabric fire protection by applying coatings capable of forming a protective layer on the surface of the material, which inhibits the rate of heat transfer.

Keywords: protective means, textile material, combustion, weight loss, fabric surface treatment, swelling.

References

1. Horrocks, A. R. (2014). High performance textiles for heat and fire protection. High Performance Textiles and Their Applications, 144–175. doi: https://doi.org/10.1533/9780857099675.144
2. Ahmed, M. T., Morshed, M. N., Farjana, S., An, S. K. (2020). Fabrication of new multifunctional cotton–modal–recycled aramid blended protective textiles through deposition of a 3D-polymer coating: high fire retardant, water repellent and antibacterial properties. New Journal of Chemistry, 44 (28), 12122–12133. doi: https://doi.org/10.1039/D0NJ02142C
3. Dolež, P., Tomer, N. S., Malajati, Y. (2018). A quantitative method to compare the effect of thermal aging on the mechanical performance of fire protective fabrics. Journal of Applied Polymer Science, 136 (6), 47045. doi: https://doi.org/10.1002/app.47045
4. Chan, S. Y., Si, L., Lee, K. I., Ng, P. F., Chen, L., Yu, B. et al. (2017). A novel boron–nitrogen intumescent flame retardant coating on cotton with improved washing durability. Cellulose, 25 (1), 843–857. doi: https://doi.org/10.1007/s10570-017-1577-2
5. Fire safety requirements on textile membranes in temporary building structures (2013). SP Technical research Institute of Sweden. Available at: https://www.diva-portal.org/smash/get/diva2:962753/FULLTEXT01.pdf
6. Mandal, S., Song, G., Rossi, R. M., Grover, I. B. (2021). Characterization and modeling of thermal protective fabrics under Molotov cocktail exposure. Journal of Industrial Textiles, 1528083720988497. doi: https://doi.org/10.1177/15280837209884973
7. Zhu, H., Kannan, K. (2020). Determination of melamine and its derivatives in textiles and infant clothing purchased in the United States. Science of The Total Environment, 710, 136396. doi: https://doi.org/10.1016/j.scitotenv.2019.136396
8. Ackerman, M., Batcheller, J., Paskaluk, S. (2015). Off Gas Measurements from FR Materials Exposed to a Flash Fire. AATCC Journal of Research, 2 (2), 1–12. doi: https://doi.org/10.14504/ajr.2.2.1
9. Magovac, E., Vončina, B., Jordon, I., Grunlan, J. C., Bischof, S. (2022). Layer-by-Layer Deposition: A Promising Environmentally Benign Flame-Retardant Treatment for Cotton, Polyester, Polyamide and Blended Textiles. Materials, 15 (2), 432. doi: https://doi.org/10.3390/ma15020432
10. Kozlowski, R., Muczyczek, M., Mieleniak, B. (2004). Upholstery Fire Barriers Based on Natural Fibers. Journal of Natural Fibers, 1 (1), 85–95. doi: https://doi.org/10.1300/J395v01n01_06
11. Skorodumova, O., Tarakhno, O., Chebotaryova, O., Hapon, Y., Emen, F. M. (2020). Formation of Fire Retardant Properties in Elastic Silica Coatings for Textile Materials. Materials Science Forum, 1006, 25–31. doi: https://doi.org/10.4028/www.scientific.net/MSF.1006.25
12. Tsapko, Y., Tsapko, A., Bondarenko, O. P. (2020). Research of Conditions of Removal of Fire Protection from Building Construction. Key Engineering Materials, 864, 141–148. doi: https://doi.org/10.4028/www.scientific.net/KEM.864.141
13. Tsapko, Y., Tsapko, O., Bondarenko, O. (2020). Determination of the laws of thermal resistance of wood in application of fire-retardant fabric coatings. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 13–18. doi: https://doi.org/10.15587/1729-4061.2020.200467
14. Tsapko, Y., Rogovskii, I., Titova, L., Bilko, T., Tsapko, A., Bondarenko, O., Mazurchuk, S. (2020). Establishing regularities in the insulating capacity of a foaming agent for localizing flammable liquids. Eastern-European Journal of Enterprise Technologies, 5 (10 (107)), 51–57. doi: https://doi.org/10.15587/1729-4061.2020.215130
15. Potter, M. C. (2019). Engineering analysis. Springer. 434. doi: https://doi.org/10.1007/978-3-319-91683-5
16. Janna, W. S. (2010). Engineering Heat Transfer. CRC Press, 692.
17. Tsapko, Y., Tsapko, A., Bondarenko, O., Chudovska, V. (2021). Thermophysical characteristics of the formed layer of foam coke when protecting fabric from fire by a formulation based on modified phosphorus-ammonium compounds. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 34–41. doi: https://doi.org/10.15587/1729-4061.2021.233479
18. Tsapko, Y., Tsapko, A., Bondarenko, O. (2021). Defining patterns of heat transfer through the fire-protected fabric to wood. Eastern-European Journal of Enterprise Technologies, 6 (10 (114)), 49–56. doi: https://doi.org/10.15587/1729-4061.2021.245713
U статті пропонується новий підхід до вирішення проблеми біообростань на спорудах циркуляційної системи охолодження ЗАЕС шляхом регламентації гідробіологічних досліджень. У ході проведених досліджень були виявлені 4 види гідробіонтів, які утворювали масові обростання на водопостачальних спорудах: нитчасті водорості Oedogonium sp. і Ulotrix zonata із загальною біомасою 123,6±18,44 г/м², тропічні молюски Melanoides tuberculata і Tarebia granifera родини Thiaridae з біомасою 20,09 г/м². Мушлі відмерлих молюсків з течією води дрейфували по трубах циркуляційної системи і заважали роботі насосних станцій. Також до потенційного утворювача біоперешкод належала синьозелена водорість Microcystis aeruginosa, яка домінувала у фітопланктоні водоймі-охолоджувача. Гідробіологічний регламент був розроблений з метою своєчасного виявлення гідробіонтів, здатних до активного розмножування і створення біоперешкод. Він передбачає здійснення чотирьох типів моніторингу: поточного (оперативного), екстремального (контрольного), розгорнутого (дослідницького) та фонового (гідробіологічного контролю Каховського водосховища у зоні впливу скидних теплих вод). Для кожного типу моніторингу визначені предмети контролю (угрупування гідробіонтів), параметри контролю (видовий склад, чисельність, біомаса) і частота контролю. Регламент гідробіологічного моніторингу дозволяє мінімізувати наслідки або запобігти виникненню аварійних та надзвичайних ситуацій у роботі циркуляційних систем охолодження ЗАЕС, пов’язаних з біоперешкодами, і може бути використаний як приклад для вирішення подібних проблем на інших енергетичних об’єктах. Стаття також містить практичні рекомендації щодо поліпшення екологічного стану водойми-охолоджувача і запобігання масового розвитку небезпечних гідробіонтів шляхом внесення у водойму риб-біомеліораторів з різним спектром живлення.

Ключові слова: Запорізька атомна електростанція, гідротехнічні споруди, екологічні чинники, проблема біообростання, гідробіологічний моніторинг, біомеліорація.

DOI: 10.15587/1729-4061.2022.255287

UДОСКОНАЛЕННЯ СИСТЕМИ ТЕХНІЧНОЇ ДІАГНОСТИКИ ТА ЕКОЛОГІЧНО БЕЗПЕЧНОЇ ЕКСПЛУАТАЦІЇ ГРУНТОВИХ ГІДРОТЕХНІЧНИХ СПОРУД НА МАЛІХ РІЧКАХ (с. 18–29)

Г. В. Гапіч, Д. С. Пікареня, О. В. Орлінська, В. В. Коваленко, Л. М. Рудаков, І. В. Чушкіна, Н. М. Максимова, Т. К. Макарова, В. В. Кацевич

Представлені результати досліджень ґрунтових гідротехнічних споруд (ГТС) класу наслідків (відповідальності) СС1 на малих річках. Репрезентативність отриманих результатів для вітчизняної і світової практики подальшої експлуатації таких споруд забезпечується типовістю технічних і технологічних підходів до будівництва, матеріалу та умов їх роботи. Греблі зведені з ґрунтових матеріалів, експлуатуються значні терміни часу та вичерпали нормативний термін експлуатації, що посилює екологічну та технічну небезпеку їх подальшої роботи. Проведені візуальні обстеження, інструментальна діагностика технічного стану геофізичним методом природного імпульсного електромагнітного поля Землі (ПІЕМПЗ) та математичний аналіз отриманих даних спостережень. Представлена можливість встановлення в тілі ГТС ділянок підвищеної фільтрації води крізь споруду, обводнення, розущільнення та суфозії, визначення потенційно небезпечних зон формування зсувів, тріщин та можливих проранів. Виконано оцінювання імовірності ризику виникнення аварій на дамбах при їх каскадному розташуванні унаслідок фільтраційних деформацій тіла та основи споруди. За сучасних умов експлуатації розрахована можливість пропуску водоскидними пристроями нормативних та понаднормових (форсованих) витрат води або прориву розташованої вище за течію споруди. Запропонований підхід надає можливість управління каскадом гідротехнічних споруд на різних стадіях експлуатації: планової, оперативного прийняття рішень, прогнозування. Це дозволяє виконувати діагностичне обстеження з метою виявлення споруд, які потребують першочергового залучення коштів на проведення ремонтно-відновлювальних робіт або знесення (демонтажу).

Ключові слова: гідротехнічна споруда, ґрунтовна дамба, мала річка, геофізичні методи досліджень, фільтраційні деформації.

DOI: 10.15587/1729-4061.2022.255054

РОЗРОБКА РЕКОМЕНДАЦІЙ НА ОСНОВІ КОМПЛЕКСНОЇ ОЦІНКИ ҐРУНТОВО-ГЕОБОТАНІЧНОГО СТАНУ ЗЕМЕЛЬНИХ ДІЛЯНОК ДЛЯ ЗДІЙСНЕННЯ РОБІТ З ЛІСОРОЗВЕДЕННЯ (с. 30–41)

Nazym Shogelova, Sergey Sartin, Timur Zveryachenko

Земельний фонд перебуває у постійному русі. Землі переводяться з одних категорій та угідь до інших. Погіршення екологічного стану земель, розвиток ерозійних процесів, опустелювання, засолення, забруднення хімічними та радіоактивними речовинами, зарости на лісі та чагарником земель щорічно виключають із використання значні площі.
Проведено роботу з дослідження лісництва, розташованих на території Північного Казахстану. Вивчення ґрунту здійснювалося методом закладки грунтових розрізів та полів з описом потужності горизонтів. Структура ґрунту визначалася методом розбики зразків ґрунту. Визначення ґрунтохімічного складу проводили вологим методом із підводом на пісків, суглинок, глина. При цьому визначається тип ґрунту. За результатами дослідження було вироблено рекомендації для категорій ґрунтів. Також були визначені площини ліній, придатних для всіх основних лісових порід, та площі з наявними лісами, лісовими культурами, що заросли самосівом.

При рекомпостуванні маргінально-петлювого обстеження земельних ділянок виділено типи рослинних асоціацій. Було проведено комплексне еколого-географічне дослідження лісництва для здійснення робіт із лісорозведення. Головним чином визначення типів рослинних асоціацій дозволило провести попередню оцінку на місцевості для визначення якості досліджуваних ділянок щодо відновлення ґрунту.

Загальні рекомендації були сформовані при безпосередньому проведенні обстежень на місцевості, але системний моніторинг, із застосуванням методів дистанційного зондування Землі, міг би полегшити дослідження. Розвиток методу комплексного еколого-географічного дослідження у майбутньому може значно підвищити ефективність лісовпорядних робіт загалом та мінімізувати втрати, пов’язані з впливами зовнішнього середовища.

Ключові слова: дистанційне зондування, геоботанічний стан земельних ділянок, лісорозведення, комплексна оцінка.

DOI: 10.15587/1729-4061.2022.254285

Розробка класифікатора з переробки пластика з допомогою глибинного навчання і прями аціклічної графічної залишкової мережі (c. 42–49)

Ahmed Burhan Mohammed, Ahmad Abdullah Mohammed AL-Mafraj, Moumena Salah Yassen, Ahmad H. Sabry

Переробка є одним із найбільш важливих підходів до захисту навколишнього середовища, оскільки вона спрямована на скорочення відходів на звалищах за збереження природних ресурсів. Використовуючи мережу САГ, засновану на залишках, має короткі з'єднання, які обходитимуть деякі рівні мережі, дозволяючи градієнтам проникати вглиб структури. Тому виникла необхідність в створенні САГ з залишковою архітектурою, що розглядає основні послідовно поєднані гілки мережевої архітектури; визначення залишкових взаємозв’язків в обхід основних відгалужених рівнів; підготовку даних та створення сховища даних доповненого зображення; створення графа глобального шару, що зв’язує всі вузли залишкової мережі.

Ідея полягає в тому, щоб розділити проблему мультикласової класифікації на другорядні бінарні стани, де кожен класифікатор відповідає для відповідного клаусу. В результаті, за допомогою методів глобального зондування, із застосуванням методів дистанційного зондування Землі, міг би полегшити дослідження. Розвиток методу комплексного еколого-географічного дослідження у майбутньому може значно підвищити ефективність лісовпорядних робіт загалом.

Ключові слова: спрямований аціклічний граф (САГ), глобинне навчання, переробка, класифікація, згорткова нейронна мережа (ЗНМ).

DOI: 10.15587/1729-4061.2022.254471

Визначення закономірностей створення магнітних полів при різних способах дугового зварювання (с. 50–56)

О. Г. Левченко, Ю. О. Полукаров, О. М. Гончарова, О. М. Безушко, О. Ю. Арламов, О. В. Землянська

Досліджено різні магнітних полів, що створюються обладнанням дугового зварювання різними способами, для оцінювання їх впливу на організм закладів. Відомо, що виробники піддають дії магнітного поля великої інтенсивності. У залежності від способу зварювання і їх рівнів зварювальних обладнань вони можуть перевищувати гранично допустимі рівні (ЕДР). Разом з тим в дію уведено нові українські санітарні норми на магнітні поля, які регламентують їх рівні в залежності від діапазону частот. Таким чином, необхідність в проведенні гігієнічних оцінок і їх незалежності від діапазону частот. Таким чином, необхідність в проведенні гігієнічних оцінок і їх незалежності від діапазону частот.

Для цього необхідно було вибрати приклади нового покоління для визначення напруженості магнітних полів, що створюються саме зварювальним обладнанням. На основі аналізу отриманих осцилограм та спектрограм магнітних полів встановлено, що вплив відповідно змінюються відповідно до різних рівнів зварювальних обладнань.

Висновок:

1) гігієнічні оцінки виявлені що на діапазону частот.
2) гігієнічні оцінки виявлені що на діапазону частот.
3) гігієнічні оцінки виявлені що на діапазону частот.
4) гігієнічні оцінки виявлені що на діапазону частот.
5) гігієнічні оцінки виявлені що на діапазону частот.

Ключові слова: гігієна, магнітне поле, дугове зварювання.
робочому місці. Під час ручного дугового зварювання покриттями електродами перевищений рівень магнітного поля має місце лише на самому електродному кабелі. Показано, що спектральний склад сигналу магнітного поля визначається, переважно, самим способом зварювання, особливостями горіння дуги і характером переносу електродного металу в дуговому проміжку, а також вихідними параметрами джерел живлення зварювальної дуги.

Ключові слова: дугове зварювання, магнітне поле, напруженість поля, осцилограми, спектрограми, захист зварників.

DOI: 10.15587/1729-4061.2022.254590

ВИЯВЛЕННЯ ОСОБЛИВОСТІ АМПІЛЮДНОГО ТА ФАЗОВОГО СПЕКТРІВ НЕБЕЗПЕЧНИХ ФАКТОРІВ ГАЗОВОГО СЕРЕДОВИЩА ПРИ ЗАГОРЯННЯХ МАТЕРІАЛІВ (с. 57–65)

Б. Б. Поспілов, Є. О. Рибка, М. О. Самойлов, І. Є. Морозов, Ю. С. Бузгала, Т. Ю. Бутенко, Ю. В. Михайловська, О. Г. Бондаренко, Ю. А. Веретенникова

Виконано теоретичне обґрунтування досліджень спектральних особливостей динаміки основних небезпечних параметрів газового середовища при загораннях матеріалів у лабораторній камері. Дослідження таких спектральних особливостей ґрунтується на обчисленні проміжного дискретного перетворення Фур'є для рівних за кількістю дискретних вимірювань на поточних інтервалах спостереження небезпечного досліджуваного параметра газового середовища до і після загоряння матеріалу. При цьому підхід дискретне перетворення Фур'є дозволяє визначити миттєвий амплітудний і фазовий спектри для часових інтервалів, що розглядаються. Це дозволяє досліджувати особливості розподілу амплітуд та фаз гармонійних складових у спектрі динаміки небезпечних параметрів газового середовища до та після загоряння матеріалів. В результаті експериментальних досліджень встановлено, що характер амплітудного спектру виявляється малонормативним і недостатньо чутливим до загоряння. Основний внесок у амплітудний спектр динаміки досліджуваних небезпечних параметрів газового середовища в камері працює частотні складові диапазону 0—0,2 Гц. Високий внесок у миттєвий спектр частотних складових понад 0,2 Гц виявляється незначним та зменшується зі збільшенням частоти. Встановлено, що з фазового спектра інформативним є характер випадкового розкиду фаз для частотних складових, які перевищують 0,2 Гц. Виявлено, що характер розкиду фаз для зазначених частотних складових у спектри залежить від типу матеріалу загоряння. Отримані результати є корисними при розробці нових ефективних технологій виявлення загорянь у приміщеннях об’єктів різної сфери для захисту від пожеж. Пояснюється це тим, що для виявлення загорянь у приміщеннях важливими є високочутливі складові, що характеризуються природними небезпечними параметрами газового середовища.

Ключові слова: загоряння матеріалів, газове середовище приміщень, амплітудний миттєвий спектр, фазовий миттєвий спектр.

DOI: 10.15587/1729-4061.2022.254620

ОПТИМИЗАЦІЯ ПРОЦЕСУ ВИЯВЛЕННЯ ПОЖЕЖІ В СКЛАДСЬКИХ ПРИМІЩЕННЯХ ІЗ УРАХUVANЯМ TИПУ ТА РОЗМІщенНЯ ПОЖЕЖНИХ СПОВІЩУВАЧІВ (с. 66–73)

В. В. Шарий, І. В. Наснак, А. А. Ревкас

Невід’ємною умовою уникнення збитків внаслідок пожеж у складських об’єктах, або, принаймні, їх мінімізації, є раннє виявлення загорянь за допомогою систем протипожежного захисту та своєчасна її локалізація. Залежно від того, які пожежні сповіщувачі вибрано для захисту відповідного приміщення, та де вони встановлені, буде залежати час спрацювання усіх елементів систем автоматичного управління у різкі пожежі. Аналіз літературних даних показав, що на сьогоднішній день відсутня комплексний підхід існує вибір оптимального розміщення у складських приміщеннях. Окрім цього неможливо вивчити оптимальне розміщення пожежних сповіщувачів в об’ємі приміщення з урахуванням типу пожежного навантаження. Тому метою дослідження є встановлення залежності часу спрацювання різних типів пожежних сповіщувачів від виду газового матеріалу, а саме його масової швидкості виторгання, відстані від зони розміщення сповіщувачів від потенційного осередку пожежі. Представлена методика проведення експериментального дослідження для виявлення залежності для складських приміщень. Результати експериментів показали, що найбільш ефективними у складських приміщеннях є адресні пожежні димові сповіщувачі та аспіраційні системи. За результатами повного факторного експерименту отримано нелінійні емпіричні залежності для визначення часу спрацювання димових пожежних сповіщувачів від відстані від співхрестових чинників. Отримані емпіричні залежності дозволяють брати пожежні сповіщувачі та оптимально розміщувати їх в об’ємі приміщення. Середня похибка даних залежностей для порівняння з даними експерименту становить 69 %. Використання отриманих залежностей дозволяє зменшити час спрацювання пожежного сповіщувача у порівнянні із розрахунками їх згідно будівельних норм на 14 с. Ключові слова: пожежний сповіщувач, розвиток пожежі, системи протипожежного захисту, новофакторний експеримент, час спрацювання.

DOI: 10.15587/1729-4061.2022.254546

ВСТАНОВЛЕННЯ ЗАКОНОМІРНОСТЕЙ ЗНІЖЕННЯ ТЕМПЕРАТУРОПРОВІДНІСТІ ПРИ ВОГНЕЗАХИСТІ ТКАНИНИ ІНТУМЄСЕНЦІЙ ПОКРИТТЯМ (с. 74–80)

Ю. В. Цапко, О. Ю. Цапко, Н. В. Буйськіх, О. Ю. Горбачова, С. М. Мазурчук, А. В. Матвійчук, Ю. О. Сарапін

Проведено аналіз матеріалів для вогнезахисту текстильних виробів і встановлено, що недостатньо даних для пояснення і опису процесу вогнезахисту, нехтування сучасних покриттів призводить до загоряння конструкцій з тканин під дією полум’я. Розробка
надійних методів дослідження умов вогнезахисту тканин призводить до створення нових типів вогнезахисних матеріалів. Тому виникає необхідність для визначення умов утворення бар'єру до високої температури тканини і встановлення механізму гальмування теплопередачі до матеріалу. У зв'язку з цим проведено моделювання процесу температуропровідності на поверхні тканини при застосуванні інтумсентного покриття, що дозволяє оцінити коефіцієнт температуропровідності при високотемпературній дії. За експериментальними даними та теоретичними залежностями розраховано коефіцієнт температуропровідності вогнезахисного шару пінококсу, який становить 8,9×10^-6 м^2/с за рахунок утворення теплоізоляційного шару. У результаті досліджень доведено, що процес теплоізольювання текстильного матеріалу полягає не тільки в розкладі антипіренів з утворенням інертних газів, які взаємодіють з полум'ям на поверхні зразка, а і гальмуванні процесу передавання тепла до матеріалу, який оброблений інтумсентним покриттям та утворює на поверхні тканини теплозахисний шар пінококсу. Проведено оцінку максимально можливого проникнення температури, а саме створення на поверхні зразка температури, що значно перевищує температуру займання тканини, а на необігрівній поверхні не перевищує 215 °С. Таким чином, є підстави стверджувати про можливість спрямованого регулювання процесів вогнезахисту тканини шляхом застосування покриттів, здатних утворювати на поверхні матеріалу захисний шар, який гальмує швидкість передавання тепла.

Ключові слова: захисні засоби, текстильний матеріал, горіння, втрата маси, оброблення поверхні тканини, спучення.