BL Lacertae objects and the extragalactic γ-ray background

Fan Li1,2 and Xin-Wu Cao1

1 Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China; lifan@shao.ac.cn
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received 2011 March 28; accepted 2011 April 29

Abstract A tight correlation between γ-ray and radio emission is found for a sample of BL Lacertae (BL Lac) objects detected by the Fermi Gamma-ray Space Telescope (Fermi) and the Energetic Gamma-Ray Experiment Telescope (EGRET). The γ-ray emission of BL Lac objects exhibits strong variability, and the detection rate of γ-ray BL Lac objects is low, which may be related to the γ-ray duty cycle of BL Lac objects. We estimate the γ-ray duty cycle, $\delta_\gamma \simeq 0.11$, for BL Lac objects detected by EGRET and Fermi. Using the empirical relation of γ-ray emission with radio emission and the estimated γ-ray duty cycle δ_γ, we derive the γ-ray luminosity function (LF) of BL Lac objects from their radio LF. Our derived γ-ray LF of BL Lac objects can almost reproduce that calculated with the recently released Fermi bright active galactic nuclei (AGN) sample. Comparison of the derived LF of the γ-ray BL Lac objects in this work with that derived by Abdo et al. (2009a) requires the γ-ray duty cycle of BL Lac objects to be almost luminosity-independent. We find that $\sim 45\%$ of the extragalactic diffuse γ-ray background (EGRB) is contributed by BL Lac objects. Combining the estimate of the quasar contribution to the EGRB in the previous work, we find that $\sim 77\%$ of the EGRB is contributed by BL Lac objects and radio quasars.

Key words: galaxies: active — galaxies: BL Lacertae objects: general — cosmology: diffuse radiation — gamma rays: theory

1 INTRODUCTION

There are 66 high-confidence identifications of blazars in the third catalog of active galactic nuclei (AGN) detected by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory (CGRO), which include 20 BL Lac objects (e.g. Hartman et al. 1999; Mattox et al. 2001). The LAT bright AGN Sample (LBAS) detected by Fermi includes 104 blazars consisting of 42 BL Lac objects, 57 flat spectrum radio quasars (FSRQs), and 5 blazars with uncertain classifications (Abdo et al. 2009a). Comptonization is believed to be responsible for the γ-ray emission from blazars, which can be classified into two categories: the external Comptonization (EC) model and the synchrotron self-Comptonization (SSC) model, according to the origin of the soft seed photons (see, e.g., Böttcher 2007 for a review and references therein). The different models are summarized in Table 1. The statistical analysis of a sample of EGRET blazars implied that the

* Supported by the National Natural Science Foundation of China.
Table 1 Comptonization Model of the Gamma-ray Emission Mechanism for Blazars

Comptonization	SSC	EC	Ref.
the origin of	the synchrotron photons emitted by the relativistic electrons in jet	emission from external fields e.g. broad-line regions (BLRs)	[1, 2, 3]
the soft seed photons	jet	jet	
the origin of relativistic electrons			
the type of Blazar	BL Lac objects/FSRQ	FSRQ	[4]

Notes: References [1] Ghisellini & Madau (1996), [2] Georganopoulos et al. (2001), [3] Dermer & Schlickeiser (2002), [4] Dondi & Ghisellini (1995).

soft seed photons may be predominantly from the BLRs (e.g., Fan & Cao 2004; Fan et al. 2006), which is consistent with the lack of BLR and other external field emissions in most BL Lac objects. Their results are roughly consistent with the detailed modeling of SEDs for a large sample of γ-ray bright AGNs by (Ghisellini et al. 2010), in which all external field photons from the BLR, the accretion disk and associated dust torus are properly considered. However, the situation becomes more complicated for radiation in other wavebands (e.g., see Kataoka & Stawarz 2005; Bai et al. 2009; Liu et al. 2008). It was found that the X-ray radiation from some FSRQs (e.g., 3C 273) is consistent with combined SSC and EC mechanisms (e.g., Pacciani et al. 2009).

The extragalactic diffuse γ-ray background (EGRB) was first discovered by the SAS 2 satellite (Fichtel et al. 1978; Thompson & Fichtel 1982) and subsequently confirmed after the launch of EGRET (Michelson 1995; Sreekumar et al. 1998). The EGRB integrated above 100 MeV was determined to be \((1.45 \pm 0.05) \times 10^{-5} \text{ photon cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}\) (Sreekumar et al. 1998). Using a new model of the Galactic background, Strong et al. (2004) obtained a slightly smaller value of the EGRB, \((1.14 \pm 0.12) \times 10^{-5} \text{ photon cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}\). Almost all extragalactic γ-ray sources in the third EGRET catalog are identified as blazars, which account for about 13% of the EGRB (Hartman et al. 1999). The contribution of unresolved blazars to the EGRB has been explored in many previous works, either by extrapolating the observed γ-ray luminosity distribution to obtain a γ-ray luminosity function (LF) or using the correlation of γ-ray emission with the emission in radio bands derived from EGRET blazars, which showed that \(~25\%\text{ to }~100\%\text{ of the EGRB can be attributed to the unresolved blazars (e.g., Padovani et al. 1993; Chiang et al. 1995; Stecker & Salamon 1996; Chiang & Mukherjee 1998; M¨ucke & Pohl 2000; Narumoto & Totani 2006; Cao & Bai 2008; Zhou et al. 2011). The contribution to the EGRB by radio-quiet sources is still quite uncertain and was estimated based on their specific γ-ray emission model (e.g., Wang 2008; Feng & Wang 2010).

A new revised catalog of EGRET γ-ray sources (EGR2008) was given by Casandjian & Grenier (2008) and a larger catalog of the LAT Bright AGN Sample (LBAS) detected by Fermi was released recently (Abdo et al. 2009a). In this paper, we derive a correlation between γ-ray and radio emission for a sample of BL Lac objects detected by EGRET or/and Fermi (Casandjian & Grenier 2008; Abdo et al. 2009a). We estimate the γ-ray duty cycle of BL Lac objects detected by EGRET and Fermi, and the γ-ray LF of BL Lac objects is calculated with this empirical correlation from their radio LF and γ-ray duty cycle. The radio LF of BL Lac objects derived by Padovani et al. (2007) based on the Deep X-ray Radio Blazar Survey (DXRBS) is used in this work. We further estimate the total number of BL Lac objects to be detected by Fermi, and the contribution of all BL Lac objects to the EGRB. The cosmological parameters \(\Omega_M = 0.3, \Omega_\Lambda = 0.7\), and \(H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}\) have been adopted in this paper.

2 THE CORRELATION BETWEEN γ-RAY AND RADIO EMISSION

The recently released LAT Bright AGN Sample (LBAS) detected by Fermi includes 42 BL Lac objects, of which 11 sources were already detected by EGRET. Until now, there are 51 BL Lac
objects detected either by EGRET or Fermi (with the Test Statistic (TS) value above the EGRET threshold (4σ for \(|b| > 10^\circ\), and 5σ for \(|b| < 10^\circ\); or 10σ for the sources detected by Fermi). There are 40 BL Lac objects with measured redshifts, which are adopted for our present investigation. The radio/\(\gamma\)-ray flux and photon index \(\Gamma\) above 100 MeV for the sources are listed in Table 2.

In Figure 1, we plot the relation between radio luminosity \(L_{R,5G}\) at 5 GHz and \(\gamma\)-ray luminosity \(L_\gamma\) (\(\geq 100\) MeV) for these BL Lac objects, where the average K-corrected radio and \(\gamma\)-ray fluxes are adopted for calculating \(L_\gamma\) and \(L_{R,5G}\). We find a significant correlation between \(L_{R,5G}\) and \(L_\gamma\) (the correlation coefficient \(r = 0.926\)). The linear regression of the sample gives

\[
\log \nu L_\gamma = (1.0 \pm 0.016) \log \nu L_{R,5G} + (2.9 \pm 0.58).
\]

The relation between radio and \(\gamma\)-ray emission has been investigated by many authors (e.g. Zhou et al. 1997; Fan et al. 1998; Zhang et al. 2001; Ghirlanda et al. 2010). Abdo et al. (2009a) investigated the relation between 8.4 GHz radio flux density and \(\gamma\)-ray flux density for a Fermi blazar sample. The peak values are adopted by Abdo et al. (2009a), which are likely to correspond to a short time-scale flare state of a source. Kovalev et al. (2009) investigated the relation between quasi-simultaneous \(\gamma\)-ray and 15 GHz radio flux densities in a Fermi blazar sample, which includes 22 BL Lac objects. The mean fluxes above 100 MeV are adopted in this work and the sample is limited to BL Lac objects, which should be a suitable choice because we focus on the statistical properties of \(\gamma\)-ray BL Lac objects as a whole population in this work. The significance of the correlation found in this work is higher than that found by Abdo et al. (2009a), which may be attributed to the fact that only the peak \(\gamma\)-ray fluxes were adopted in their analysis. For \(\gamma\)-ray quasars, the situation is more complicated, since their \(\gamma\)-ray emission is not only dependent on their radio emission, but also on the origin of the soft seed photons, which is beyond the scope of this work.

3 GAMMA-RAY LUMINOSITY FUNCTION OF BL LAC OBJECTS

Based on the correlation between \(L_{R,5G}\) and \(L_\gamma\) established with a sample of BL Lac objects, we can calculate the \(\gamma\)-ray LF of BL Lac objects from their radio LF. Recently, Padovani et al. (2007)
extends to a lower luminosity than that derived by Stickel et al. (1991). In this work, we use Padovani
that only a small fraction of BL Lac objects were detected by EGRET, which may imply that
\(\Gamma \) on their improved. Abdo et al. (2009a) found that the redshift distribution of Fermi BL Lac objects (zF
 scheduler)
\(\Delta \) \(\leq 1.2 \)
is similar to that of the DXRBS BL Lac sample ($z \lesssim 1.0$, Padovani et al. 2007). This may imply that the radio-gamma correlation found in this work has not been affected by the redshift distribution of γ-ray BL Lac objects. Thus, we induce a γ-ray duty cycle δ_γ for BL Lac objects, which can be estimated from the ratio of γ-ray BL Lac objects to the total (e.g., Stecker & Salamon 1996; Vercellone et al. 2004). There were 36 BL Lac objects detected by EGRET and Fermi, among which the lowest radio flux density at 5 GHz is $\sim 0.25 \text{ Jy}$. The number of BL Lac objects above this flux density limit with the same sky coverage of the survey carried out with EGRET/Fermi is ~ 330 (e.g., see fig. 4 in Padovani et al. 2007), which leads to $\delta_\gamma \simeq 0.11$. Vercellone et al. (2004) estimated the γ-ray activity using three different methods. Our result is consistent with the maximum distribution of blazars’ active fraction computed in Vercellone et al. (2004) (see fig. 14 of Vercellone et al. 2004).

The γ-ray LF of BL Lac objects can then be calculated with

$$\Phi_\gamma(L_\gamma, z) = \delta_\gamma \Phi_R(L_{R,5G}, z) \frac{dL_{R,5G}}{dL_\gamma} = \frac{\delta_\gamma L_{R,5G}}{L_\gamma} \Phi_R(L_{R,5G}, z),$$

(2)

where Φ_γ is the γ-ray LF, and the radio LF Φ_R is given by Padovani et al. (2007). We can use a simple GLF model defined as

$$\Phi_\gamma(L_\gamma, z) \propto L_\gamma^\beta,$$

(3)

In Figure 2, we compared our γ-ray LF ($\beta = -2.13$) derived from the radio LF and that directly derived with a sample of γ-ray BL Lac objects detected by Fermi (Abdo et al. 2009a). The slope of our γ-ray LF is well in agreement with the value of -2.17 ± 0.05 reported for Fermi BL Lac objects. Our γ-ray LF is slightly less than that of (Abdo et al. 2009a), but taking into account observational error, we can also say that our γ-ray LF is roughly consistent with that of Fermi.

The number count of BL Lac objects as a function of γ-ray flux above 100 MeV can be calculated with the derived γ-ray LF,

$$N(\geq f_{\nu,\gamma}^{\text{min}}) = \int_{0}^{z_m} \frac{dV}{dz} dz \int 4\pi d^2_f f_{\nu,\gamma}^{\text{min}} \phi_\gamma(L_{\nu,\gamma}, z) dL_{\nu,\gamma},$$

(4)
Fig. 3 Number count of γ-ray BL Lac objects as a function of flux limit at 100 MeV. The dotted line and dot-dashed line represent the sensitivity of Fermi. We note $f_{\text{min}} \simeq 5 \times 10^{-8}$ photon cm$^{-2}$ s$^{-1}$ for EGRET (see, e.g., Cao & Bai 2008). The flux limit of Fermi at 100 MeV can be 30 times lower than that of EGRET for a two year all-sky survey (Gehrels & Michelson 1999) and the sensitivity for one year will be 3.0×10^{-9} photon cm$^{-2}$ s$^{-1}$ (Atwood et al. 2009).

where $z_m = 1$ is adopted in our calculations, because the radio LF for BL Lac objects was derived with a sample of sources with redshifts $z = 0 - 1$ (see Padovani et al. 2007 for the details). This means that the results derived here are only the lower limits. In fact, almost all γ-ray BL Lac objects detected have redshifts $z \lesssim 1$ (only 2 of 40 have redshifts slightly higher than unity). We plot the number count of γ-ray BL Lac objects derived from the LF calculated with Equation (2) in Figure 3. Obviously, an increasing number of sources can be detected following a decreasing flux limit, such as $N \sim 500$ at $f_{\text{limit}} = 0.06f_{\text{EGRET}}$ (the Fermi sensitivity for one year) (Gehrels & Michelson 1999), and $N \sim 1000$ at $f_{\text{limit}} = 1/30f_{\text{EGRET}}$ (the Fermi sensitivity for two years) (Atwood et al. 2009).

The EGRB contributed by all BL Lac objects can be calculated with the γ-ray LF derived with Equation (2),

$$f_{\text{EGRB}} = \frac{1}{4\pi} \int_0^{z_m} \frac{dz}{dL_{\nu,\gamma}} \frac{dN(L_{\nu,\gamma}, z) L_{\nu,\gamma}(1 + z)^{2-\Gamma}}{4\pi d_L^2 E_{100\text{MeV}}} dL_{\nu,\gamma},$$

where the average photon spectral index $\Gamma = 2.04$ for BL Lac objects is adopted, which is slightly higher than $\Gamma = 1.99 \pm 0.22$ given by Abdo et al. (2009a). This is due to the fact that our sample includes nine EGRET sources, of which the photon spectral indexes are all greater than 2.0 except for 1011+496. The contribution of the BL Lac objects to the EGRB as a function of γ-ray flux limit f_{limit} is plotted in Figure 4.

4 DISCUSSION

It was suggested that the γ-ray radiative mechanisms are different for quasars and BL Lac objects, i.e., the EC mechanism may be responsible for quasars, while the SSC is for BL Lac objects (e.g., Dondi & Ghisellini 1995). A linear relation between radio and γ-ray emission is expected for AGNs, if the SSC mechanism is responsible for γ-ray emission (see, e.g., eq. (28) of Dermer et al. 1997).
The correlation between radio and \(\gamma\)-ray emission for BL Lac objects found in this work is very close to a linear one as described in Equation (1), which seems to support the SSC mechanism for \(\gamma\)-ray emission from BL Lac objects.

The variability of \(\gamma\)-ray emission in 10 sources of 42 Fermi BL Lac objects have been detected. The fraction is much less than that of FSRQs (45/57) (Abdo et al. 2009a), which implies that the variability of \(\gamma\)-ray emission from BL Lac objects could be weaker than that from FSRQs. The detection rate in the \(\gamma\)-ray band may be dominantly related to the duty cycle of \(\gamma\)-ray BL Lac objects.

Vercellone et al. (2004) investigated the \(\gamma\)-ray activity of EGRET blazars and estimated their \(\gamma\)-ray duty cycle. They found that about 48 percent of the sources fall into \(\delta_\gamma = 0 - 5\%\), and 74 percent of the sources are in \(\delta_\gamma \leq 10\%\). The duty cycle \(\delta_\gamma \simeq 0.11\) derived in this work is roughly consistent with the results in Vercellone et al. (2004) (but their \(\gamma\)-ray duty-cycle was computed without a clear distinction between BL Lacs and FSRQs). The physics of the \(\gamma\)-ray duty cycle is unknown and we assume a constant value for all BL Lac objects in this work. An alternative luminosity-dependent duty cycle is possible, for example, if we assume a luminosity-dependent duty cycle, \(\delta_\gamma \propto L^\beta_{\text{lc}}\). Substituting it into Equation (2), we arrive at \(\Phi_{\gamma}(L_{\gamma}, z) \propto L_{\gamma}^{-2.13+\beta_{\text{lc}}}\). Comparison of the derived LF of the \(\gamma\)-ray BL Lac objects in this work with that derived by Abdo et al. (2009a) requires \(\beta_{\text{lc}} \sim 0\), i.e., the \(\gamma\)-ray duty cycle of BL Lac objects is almost luminosity-independent.

5 CONCLUSIONS

In this work, the \(\gamma\)-ray LF of BL Lac objects is derived from the radio LF using the empirical correlation of \(\gamma\)-ray emission with radio emission, which can almost reproduce the \(\gamma\)-ray LF calculated directly with the \(\gamma\)-ray BL Lac objects detected by Fermi/EGRET (see Fig. 2). Based on the derived \(\gamma\)-ray LF for BL Lac objects, we can calculate the number count of \(\gamma\)-ray BL Lac objects as a function of flux limit in the \(\gamma\)-ray band. We find that about 1000 BL Lac objects will be detected by Fermi, if its sensitivity is 30 times higher than that of EGRET at 100 MeV (Gehrels & Michelson 1999). Cao & Bai (2008)'s estimate shows that about 1200 quasars can be detected by Fermi based on the EC mechanism for their \(\gamma\)-ray emission. The recently released bright AGN sample detected

Fig. 4 Contribution of the BL Lac objects with \(\gamma\)-ray flux \(f \geq f_{\text{limit}}\). The dashed line indicates the measured EGRB with photon energy above 100 MeV. We use the value of the EGRB obtained by Strong et al. (2004), \((1.14 \pm 0.12) \times 10^{-5}\) photon cm\(^{-2}\) s\(^{-1}\) sr\(^{-1}\). The dotted line and dot-dashed line are the same as in Fig. 3.
by Fermi together with the sources already detected by EGRET with high confidence leads to a sample of 135 γ-ray blazars (77 quasars, 51 BL Lac objects and 7 blazars with uncertain classification). The ratio of quasars to BL Lac objects for the present sample (LBAS+EGRET) is about 1.5, which is slightly higher than 1200/1000, implying that more BL Lac objects are expected to be detected by Fermi in the future.

Integrating the derived γ-ray LF, we calculate the contribution of all BL Lac objects to the EGRB, which accounts for $\sim$$45\%$ of the EGRB (see Fig. 4). Cao & Bai (2008)'s calculation shows that all radio quasars and FR II radio galaxies contribute about $\sim$$32\%$ of the EGRB. This means that the contribution of BL Lac objects is similar to that of quasars, which is roughly consistent with the predicted number ratio of quasars to BL Lac objects to be detected by Fermi. The contribution of all blazars (quasars+BL Lac objects) can account for $\sim$$77\%$ of the EGRB, which implies that there is still some space ($<\sim 23\%$) left for other sources in the EGRB. Considering that our calculations are limited to $z = 0 \sim 1$ for BL Lac objects, the contribution of sources other than blazars to the EGRB should be lower than the value derived in this work. We also noticed the detection of γ-ray emission from relativistic jets in the narrow-line Seyfert-1 galaxies (PMN 0948+0022, Abdo et al. 2009b), which means that the mechanism of γ-ray radiation from narrow-line Seyfert-1 galaxies is similar to that for blazars. Considering that a fraction of narrow-line Seyfert-1 galaxies are radio-loud (e.g. Komossa et al. 2006; Yuan et al. 2008) and some of them show evidence for relativistic jets (e.g. Gu & Chen 2010), the contribution of radio-loud narrow-line Seyfert-1 galaxies to the EGRB may be important, however, the detailed calculation is beyond the scope of this work.

Acknowledgements We thank the referee for his/her helpful comments, and J. M. Bai for helpful discussion. This work is supported by National Natural Science Foundation of China (Grant Nos. 10773020, 10821302 and 10833002), the CAS (Grant No. KJCX2-YWT03), the Science and Technology Commission of Shanghai Municipality (10XD1405000), and the National Basic Research Program of China (Grant No. 2009CB824800).

References

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009a, ApJ, 700, 597
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009b, ApJ, 699, 976
Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071
Bai, J. M., Liu, H. T., & Ma, L. 2009, ApJ, 699, 2002
Becker, R. H., White, R. L., & Edwards, A. L. 1991, ApJS, 75, 1
Böttcher, M. 2007, Ap&SS, 309, 95
Cao, X., & Bai, J. M. 2008, ApJ, 673, L131
Casandjian, J., & Grenier, I. A. 2008, A&A, 489, 849
Chiang, J., Fichtel, C. E., von Montigny, C., Nolan, P. L., & Petrosian, V. 1995, ApJ, 452, 156
Chiang, J., & Mukherjee, R. 1998, ApJ, 496, 752
Derm, C. D., Schlickeiser, R. 2002, ApJ, 575, 667
Derm, C. D., Sturmer, S. J., & Schlickeiser, R. 1997, ApJS, 109, 103
Dodson, R., Fomalont, E. B., Wiik, K., et al. 2008, ApJS, 175, 314
Dondi, L., & Ghisellini, G. 1995, MNRAS, 273, 583
Fan, J. H., Adam, G., Xie, G. Z., et al. 1998, A&A, 338, 27
Fan, Z., & Cao, X. 2004, ApJ, 602, 103
Fan, Z., Cao, X., & Gu, M. 2006, ApJ, 646, 8
Feng, M., & Wang, J. 2010, Chin. Astrono. Astrophys., 34, 30
Fichtel, C. E., Simpson, G. A., & Thompson, D. J. 1978, ApJ, 222, 833
Gear, W. K., Stevens, J. A., Hughes, D. H., et al. 1994, MNRAS, 267, 167
Gehrels, N., & Michelson, P. 1999, Astroparticle Physics, 11, 277
BL Lacertae Objects and the EGRB

Georganopoulos, M., Kirk, J. G., & Mastichiadis, A. 2001, ApJ, 561, 111
Ghirlanda, G., Ghisellini, G., Tavecchio, F., & Foschini, L. 2010, MNRAS, 407, 791
Ghisellini, G., & Madau, P. 1996, MNRAS, 280, 67
Ghisellini, G., Tavecchio, F., Foschini, L., et al. 2010, MNRAS, 402, 497
Giroletti, M., Giovannini, G., Taylor, G. B., & Falomo, R. 2004, ApJ, 613, 752
Gregory, P. C., & Condon, J. J. 1991, ApJS, 75, 1011
Griffith, M. R., Wright, A. E., Burke, B. F., & Ekers, R. D. 1994, ApJS, 90, 179
Gu, M., & Chen, Y. 2010, AJ, 139, 2612
Hartman, R. C., Bertsch, D. L., Bloom, S. D., et al. 1999, ApJS, 123, 79
Helmholtz, J. F., Taylor, G. B., Tremblay, S., et al. 2007, ApJ, 658, 203
Horiuchi, S., Fomalont, E. B., Taylor, W. K., et al. 2004, ApJ, 616, 110
Kataoka, J., & Stawarz, Ł. 2005, in AIP Conf. Ser. 745, High Energy Gamma-Ray Astronomy, eds. F. A. Aharonian, H. J. Völk, & D. Horns, 522
Komossa, S., Voges, W., Xu, D., et al. 2006, AJ, 132, 531
Kovalev, Y. Y., Aller, H. D., Aller, M. F., et al. 2009, ApJ, 696, L17
Liu, H. T., Bai, J. M., & Ma, L. 2008, ApJ, 688, 148
Mattox, J. R., Hartman, R. C., & Reimer, O. 2001, ApJS, 135, 155
Michelson, P. F. 1995, in Gamma Ray Sky with Compton GRO and SIGMA, Proceedings of the NATO
Advanced Study Institute, eds. M. Signore, P. Salati, & G. Vedrenne, (Kluwer Academic Publishers), 159
Mücke, A., & Pohl, M. 2000, MNRAS, 312, 177
Narumoto, T., & Totani, T. 2006, ApJ, 643, 81
Pacciani, L., Donnarumma, I., Vittorini, V., et al. 2009, A&A, 494, 49
Padovani, P., Ghisellini, G., Fabian, A. C., & Celotti, A. 1993, MNRAS, 260, L21
Padovani, P., Giommi, P., Landt, H., & Perlman, E. S. 2007, ApJ, 662, 182
Sreekumar, P., Bertsch, D. L., Dingus, B. L., et al. 1998, ApJ, 494, 523
Stecker, F. W., & Salamon, M. H. 1996, ApJ, 464, 600
Stickel, M., Padovani, P., Urry, C. M., Fried, J. W., & Kuehr, H. 1991, ApJ, 374, 431
Strong, A. W., Moskalenko, I. V., & Reimer, O. 2004, ApJ, 613, 956
Thompson, D. J., & Fichtel, C. E. 1982, A&A, 109, 352
Vercellone, S., Soldi, S., Chen, A. W., & Tavani, M. 2004, MNRAS, 353, 890
Wang, J. 2008, ApJ, 682, L81
Wright, A. E., Griffith, M. R., Burke, B. F., & Ekers, R. D. 1994, ApJS, 91, 111
Yuan, W., Zhou, H. Y., Komossa, S., et al. 2008, ApJ, 685, 801
Zhang, L., Cheng, K. S., & Fan, J. H. 2001, PASJ, 53, 207
Zhou, M., Wang, J., & Gao, X. 2011, ApJ, 727, L46
Zhou, Y. Y., Lu, Y. J., Wang, T. G., Yu, K. N., & Young, E. C. M. 1997, ApJ, 484, L47