On the $L_{q,p}$-cohomology of Riemannian Manifolds with Negative Curvature

Vladimir Gold'shtein and Marc Troyanov

May 7, 2008

Dedicated to the Memory of Sergei L'vovich Sobolev

Abstract

We prove a non-vanishing result for the $L_{q,p}$-cohomology of complete simply-connected Riemannian manifolds with pinched negative curvature.

AMS Mathematics Subject Classification: 53C20, 58A10, 46E35.
Keywords: $L_{q,p}$-cohomology, negative curvature.

1 Introduction

In the paper [2], we have established a connection between Sobolev inequalities for differential forms on a Riemannian manifold (M, g) and an invariant called the $L_{q,p}$-cohomology $(H_{q,p}^k(M))$ of that manifold. It is thus important to try and compute this cohomology, and in this paper we shall prove some non-vanishing results for the $L_{q,p}$-cohomology of simply connected complete manifolds with negative curvature.

1.1 $L_{q,p}$-cohomology and Sobolev inequalities

To define the $L_{q,p}$-cohomology of a Riemannian manifold (M, g), we first need to remember the notion of weak exterior differential of a locally integrable differential form. Let us denote by $C_c^\infty(M, \Lambda^k)$ the space of smooth differential forms of degree k with compact support on M.

Definition 1. One says that a form $\theta \in L^1_{loc}(M, \Lambda^k)$ is the weak exterior differential of a form $\phi \in L^1_{loc}(M, \Lambda^{k-1})$ and one writes $d\phi = \theta$ if for each $\omega \in C_c^\infty(M, \Lambda^{n-k})$, one has

$$\int_M \theta \wedge \omega = (-1)^k \int_M \phi \wedge d\omega.$$
The Sobolev space $W^{1,p}(M,A^k)$ of differential k-forms is then defined to be the space of k-forms ϕ in $L^p(M)$ such that $d\phi \in L^p(M)$ and $d(\ast \phi) \in L^p(M)$, where $\ast : A^k \to A^{n-k}$ is the Hodge star homomorphism. But we are interested in a different “Sobolev type” space of differential forms, that will be denoted by $\Omega^k_{q,p}(M)$. This is the space of all k-forms ϕ in $L^q(M)$ such that $d\phi \in L^p(M)$ (1 $\leq q, p \leq \infty$), and it is a Banach space for the graph norm

$$\|\omega\|_{\Omega^k_{q,p}} := \|\omega\|_{L^q} + \|d\omega\|_{L^p}. \quad (1.1)$$

When $k = 0$ and $q = p$, the space $\Omega^0_{p,p}(M)$ coincides with the classical Sobolev space $W^{1,p}(M)$ of functions in L^p with gradient in L^p. Let us stress that the more general space $\Omega^0_{q,p}(M)$ has been considered in [10] in the context of embedding theorems and Sobolev inequalities.

To define the L^q,p–cohomology of (M,g), we also introduce the space of weakly closed forms

$$Z^k_p(M) = \{ \omega \in L^p(M,A^k) \mid d\omega = 0 \},$$

and the space of differential forms in $L^p(M)$ having a primitive in $L^q(M)$

$$B^k_{q,p}(M) = d(\Omega^{k-1}_{q,p}).$$

Note that $Z^k_p(M) \subset L^p(M,A^k)$ is always a closed subspace but that is generally not the case of $B^k_{q,p}(M)$, and we will denote by $\overline{B}_{q,p}(M)$ its closure in the L^p-topology. Observe also that $\overline{B}_{q,p}(M) \subset Z^k_p(M)$ (by continuity and because $d \circ d = 0$), we thus have

$$B^k_{q,p}(M) \subset \overline{B}_{q,p}(M) \subset Z^k_p(M) = \overline{Z}_p^k(M) \subset L^p(M,A^k).$$

Definition 2. The L^q,p-cohomology of (M,g) (where $1 \leq p, q \leq \infty$) is defined to be the quotient

$$H^k_{q,p}(M) := Z^k_p(M)/B^k_{q,p}(M),$$

and the reduced L^q,p-cohomology of (M,g) is

$$\overline{H}^k_{q,p}(M) := Z^k_p(M)/\overline{B}^k_{q,p}(M).$$

The reduced cohomology is naturally a Banach space and the unreduced cohomology is a Banach space if and only if it coincides with the reduced one.

In [2, Theorem 6.1], we have established the following connection between Sobolev inequalities for differential forms on a Riemannian manifold (M,g) and its L^q,p-cohomology of (M,g):
Theorem 1. $H^k_{q,p}(M, g) = 0$ if and only if there exists a constant $C < \infty$ such that for any closed p-integrable differential form ω of degree k there exists a differential form θ of degree $k - 1$ such that $d\theta = \omega$ and

$$\|\theta\|_{L^q} \leq C \|\omega\|_{L^p}.$$

Suppose $k = 1$. If M is simply connected (or more generally $H^1_{\text{deRham}}(M) = 0$), then any $\omega \in Z^1_p(M)$ has a primitive locally integrable function f, $df = \omega$. It means that for simply connected manifolds the space $Z^1_p(M)$ coincides with the seminormed Sobolev space $L^1_p(M)$, $\|f\|_{L^1_p(M)} := \|df\|_{L^p(M)}$. The previous Theorem then says that

Corollary 2. Suppose (M, g) is a simply connected Riemannian manifold, then $H^1_{q,p}(M, g) = 0$ if and only if there exist a constants $C < \infty$ depending only on M, (q, p) and a constant $a_f < \infty$ depending also on $f \in L^1_p(M, g)$ such that

$$\|f - a_f\|_{L^q} \leq C \|df\|_{L^p}.$$

for any $f \in L^1_p(M, g)$.

In the present paper, we prove nonvanishing results on the L^q_p-cohomology of simply connected complete manifolds with negative curvature i.e. results about non existence of Sobolev inequality for such pairs (q, p).

1.2 Statement of the main result

The main goal of the present paper is to prove the following nonvanishing result on the L^q_p-cohomology of simply connected complete manifolds with negative curvature.

Theorem 3. Let (M, g) be an n-dimensional Cartan-Hadamard manifold\(^4\) with sectional curvature $K \leq -1$ and Ricci curvature $\text{Ric} \geq -(1+\epsilon)^2(n-1)$.

(A) Assume that

$$\frac{1+\epsilon}{p} < \frac{k}{n-1} \quad \text{and} \quad \frac{k-1}{n-1} + \epsilon < \frac{1+\epsilon}{q},$$

then $H^k_{q,p}(M) \neq 0$.

(B) If furthermore

$$\frac{1+\epsilon}{p} < \frac{k}{n-1} \quad \text{and} \quad \frac{k-1}{n-1} + \epsilon < \min \left\{ \frac{1+\epsilon}{q}, \frac{1+\epsilon}{p} \right\},$$

then $\overline{H}^k_{q,p}(M) \neq 0$.

\(^4\) recall that a Cartan-Hadamard manifold is a complete simply-connected Riemannian manifold of non positive sectional curvature.
Theorem 3 together with Theorem 1 has the following (negative) consequence about Sobolev inequalities for differential forms:

Corollary 4. Let \((M, g)\) be a Cartan-Hadamard manifold as above. If \(q\) and \(p\) satisfy the condition \((A)\) of Theorem 3, then there is no finite constant \(C\) such that any smooth closed \(k\)-form \(\omega\) on \(M\) admits a primitive \(\theta\) such that \(d\theta = \omega\) and

\[
\|\theta\|_{L^q(M)} \leq C \|\omega\|_{L^p(M)}.
\]

The proof of Theorem 3 will be based on a duality principle proved in [2] and a comparison argument inspired from the chapter 8 of the book of M. Gromov [8]. This will be explained below, but let us first discuss some particular cases.

- If \(M\) is the hyperbolic plane \(\mathbb{H}^2\) \((n = 2, \epsilon = 0)\), Theorem 3 says that \(\overline{H}^k_{q,p}(\mathbb{H}^2) \neq 0\) for any \(q, p \in (1, \infty)\); and another proof can be found in [2, Theorem 10.1].

- For \(q = p\), the Theorem says that \(\overline{H}^k_{p,p}(M) \neq 0\) provided

\[
\frac{k - 1}{n - 1} + \epsilon < \frac{1 + \epsilon}{p} < \frac{k}{n - 1},
\]

this result was already known by Gromov (see [8, page 244]). The inequalities (1.2) can also be written in terms of \(k\) as follows:

\[
\frac{n - 1}{p} < k < \frac{n - 1}{p} + \tau
\]

with \(\tau = 1 - \epsilon(n - 1)\).

- By contrast, Pierre Pansu has proved that \(H^k_{p,p}(M) = 0\) if the sectional curvature satisfies \(-(1 + \epsilon)^2 \leq K \leq -1\) and

\[
(1 + \epsilon) p \leq \frac{n - 1}{k} + \epsilon,
\]

see [12, Théorème A].

- A Poincaré duality for reduced \(L^p\)-cohomology has been proved in [5], it says that for a complete Riemannian manifold, we have \(\overline{H}_k^{p,p}(M) = \overline{H}_{k,p'}^{q}(M)\) with \(p' = p/(p - 1)\), this duality, together with the result of Pansu and some algebraic computations, implies that for a manifold \(M\) as in Theorem 3 we also have \(\overline{H}_k^{p,p}(M) = 0\) if

\[
p \geq \frac{(n - 1) + \epsilon(n - k)}{k - 1}.
\]

- Consider for instance the case of the hyperbolic space \(\mathbb{H}^n\), this is a Cartan-Hadamard manifold with constant sectional curvature \(K \equiv -1\) and the reduced cohomology is known. Indeed, we have \(\epsilon = 0\) and the three inequalities above say in this case that \(\overline{H}_k^{p,p}(\mathbb{H}^n) \neq 0\) if and only if \(p \in \left(\frac{n - 1}{k}, \frac{n - 1}{k - 1}\right)\) (or, equivalently, for \(\frac{n - 1}{p} < k < \frac{n - 1}{p} + 1\)). This result also follows from the computation of the \(L^p\)-cohomology of warped cylinders given in [6, 7].
When \(\epsilon > 0 \), there remains a gap between the vanishing and the non vanishing result for \(L^{p,p} \)-cohomology. When \(\epsilon \geq \frac{1}{n-1} \), the estimate (1.2) no longer gives any information on \(L^{p,p} \)-cohomology. Note by contrast that Theorem 3 always produces some non vanishing \(L^{q,p} \)-cohomology.

2 Manifolds with a contraction onto the closed unit ball

As an application of a concept of almost duality from [2], we have the following Theorem which is inspired from [8] and will be used in the proof of Theorem 3. Recall that by the Rademacher theorem a Lipschitz map \(f : M \to N \) is differentiable for almost any \(x \in M \) and its differential \(df_x \) defines a homomorphism

\[
\Lambda^k f_x : \Lambda^k(T_f x N) \to \Lambda^k(T_x M).
\]

We shall denote by \(|\Lambda^k f_x| \) the norm of this homomorphism.

Theorem 5. Let \((M, g)\) be a complete Riemannian manifold, and let \(f : M \to \mathbb{B}^n \) be a Lipschitz map such that

\[
|\Lambda^k f| \in L^p(M) \quad \text{and} \quad |\Lambda^{n-k} f| \in L^{q'}(M),
\]

where \(\mathbb{B}^n \) is the closed unit ball in \(\mathbb{R}^n \) and \(q' = q/(q - 1) \), assume also that

\[
f^* \omega \in L^1(M) \quad \text{and} \quad \int_M f^* \omega \neq 0,
\]

where \(\omega = dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n \) is the standard volume form on \(\mathbb{B}^n \). Then \(H^k_{q,p}(M) \neq 0 \).

Furthermore, if \(|\Lambda^{n-k} f| \in L^{q'}(M) \) for \(p' = \frac{p}{p-1} \), then \(\overline{H}^k_{q,p}(M) \neq 0 \).

The proof will use the following “almost duality” result:

Proposition 6. Assume that \((M, g)\) is a complete Riemannian manifold. Let \(\alpha \in Z^k_p(M) \), and assume that there exists a closed \((n-k)\)-form \(\gamma \in Z^{n-k}_q(M) \) for \(q' = \frac{q}{q-1} \), such that \(\gamma \wedge \alpha \in L^1(M) \) and

\[
\int_M \gamma \wedge \alpha \neq 0,
\]

then \(H^k_{q,p}(M) \neq 0 \). Furthermore, if \(\gamma \in Z^{n-k}_p(M) \cap Z^{n-k}_q(M) \) for \(p' = \frac{p}{p-1} \) and \(q' = \frac{q}{q-1} \), then \(\overline{H}^k_{q,p}(M) \neq 0 \).
This result is contained in [2, Proposition 8.4 and 8.5].

We will also need some fact on locally Lipschitz differential forms:

Lemma 7. For any locally Lipschitz functions \(g, h_1, ..., h_k : M \to \mathbb{R} \), we have

\[
\frac{\partial}{\partial x^i} (g \, dh_1 \wedge \ldots \wedge dh_k) = \frac{\partial g}{\partial x^i} \wedge dh_1 \wedge \ldots \wedge dh_k
\]

in the weak sense.

Let us denote by \(\text{Lip}^*(M) \) the algebra generated by locally Lipschitz functions and the wedge product. By the previous lemma \(\text{Lip}^*(M) \) is a graded differential algebra, an element in this algebra is called a locally Lipschitz form.

Proposition 8. For any locally Lipschitz map \(f : M \to N \) between two Riemannian manifolds, the pullback \(f^*(\omega) \) of any locally Lipschitz form \(\omega \) is a locally Lipschitz form and \(d(f^*(\omega)) = f^*(d\omega) \).

A proof of the lemma and the proposition can be found in [1]; see also [3] for some related results.

Proof of Theorem 5

Let us set \(\omega' = dx_1 \wedge dx_2 \wedge \ldots \wedge dx_k \) and \(\omega'' = dx_{k+1} \wedge dx_2 \wedge \ldots \wedge dx_n \).

Using the fact that \(|(f^*\omega)| \leq |\Lambda^k f| \cdot |\omega(x)| \), we observe that

\[
\|f^*\omega\|_{L^p(M, \Lambda^k)} = \left(\int_M |(f^*\omega)|^p \, dx \right)^{\frac{1}{p}}
\]

\[
\leq \left(\int_M \left(|\Lambda^k f|^p \cdot |\omega'\wedge \omega''| \right)^{\frac{p}{p'}} \, dx \right)^{\frac{1}{p'}}
\]

\[
\leq \left| \Lambda^k f \right|_{L^p(M)} \|\omega'\|_{L^\infty(M, \Lambda^k)}
\]

\[< \infty.\]

Let us set \(\alpha = f^*\omega' \). Because \(f \) is a Lipschitz map \(\alpha \) is a lipschitz form we have by Proposition 8 that \(\alpha \in L^p(M, \Lambda^k) \) and we thus have \(\alpha \in Z^k_p(M) \). The same argument shows that \(\gamma = f^*\omega'' \).

By hypothesis, we have \(\alpha \wedge \gamma = f^*(\omega' \wedge \omega'') = f^*(\omega) \in L^1(M) \) and

\[
\int_M \gamma \wedge \alpha = \int_M f^*\omega \neq 0,
\]

and we conclude from Proposition 8 that \(H^k_{q,p}(M) \neq 0 \).

If we also assume that \(\Lambda^{n-k} f_x \in L^p'(M) \) for \(p' = \frac{p}{p-1} \), then \(\gamma \in Z^{n-k}_{p'}(M) \) and by the second part of Proposition 8 we conclude that \(\check{H}^k_{q,p}(M) \neq 0 \).

The paper [1] contains other results relating \(L_{q,p} \)-cohomology and classes of mappings.
3 Proof of the main Theorem

Let (M, g) be a complete simply connected manifold of negative sectional curvature of dimension n. Fix a base point $o \in M$ and identify $T_o M$ with \mathbb{R}^n by a linear isometry. The exponential map $\exp_o : \mathbb{R}^n = T_o M \to M$ is then a diffeomorphism and we define the map $f : M \to \overline{\mathbb{B}}^n$ where $\overline{\mathbb{B}}^n \subset \mathbb{R}^n$ is the closed Euclidean unit ball by

$$f(x) = \begin{cases} \exp_o^{-1}(x) & \text{if } |\exp_o^{-1}(x)| \leq 1, \\ \frac{\exp_o^{-1}(x)}{|\exp_o^{-1}(x)|} & \text{if } |\exp_o^{-1}(x)| \geq 1. \end{cases}$$

Using polar coordinates (r, u) on M, i.e. writing a point $x \in M$ as $x = \exp_o(r \cdot u)$ with $u \in S^{n-1}$ and $r \in [0, \infty)$, we can also write this map as $f(r, u) = \min(r, 1) \cdot u$. Because the exponential map is expanding, the map $f : M \to \overline{\mathbb{B}}^n$ is contracting and in particular it is a Lipschitz map.

Recall that $\omega = dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n$ is the volume form on $\overline{\mathbb{B}}^n$. It can also be written as $r^n dr \wedge d\sigma_0$ where $d\sigma_0$ is the volume form of the standard sphere S^{n-1}. It follows that $f^* \omega = 0$ on the set $\{x \in M \mid d(o, x) > 1\}$ and $f^* \omega$ has thus compact support and is in particular integrable. Let us denote by $U_1 = \{x \in M \mid d(o, x) < 1\}$ the Riemannian open unit ball in M, the restriction of f to U_1 is a diffeomorphism onto $\overline{\mathbb{B}}^n$ and therefore

$$\int_M f^* \omega = \int_{U_1} f^* \omega = \int_{\overline{\mathbb{B}}^n} \omega = \text{Vol}(\overline{\mathbb{B}}^n) > 0.$$

The next lemma implies that if

$$\frac{1 + \epsilon}{p} < \frac{k}{n - 1},$$

then $|\Lambda^k f| \in L^p(M)$ and that if

$$\frac{1 + \epsilon}{q'} < \frac{n - k}{n - 1},$$

then $|\Lambda^{n-k} f| \in L^{q'}(M)$. Observe that the inequality

$$\frac{1 + \epsilon}{q'} < \frac{n - k}{n - 1}$$

is equivalent to

$$\frac{k - 1}{n - 1} + \epsilon < \frac{1 + \epsilon}{q}.$$
since \(q' = q/(q-1) \). Likewise, \(|\Lambda^{n-k} f| \in L^p(M) \) if

\[
\frac{k-1}{n-1} + \epsilon < \frac{1 + \epsilon}{p}.
\]

In conclusion, the map \(f \) satisfies all the hypothesis of Theorem 5 as soon as the conditions of Theorem 3 (A) or (B) are fulfilled. The proof of Theorem 3 is complete.

Lemma 9. The map \(f : M \to \mathbb{R}^n \) satisfies \(|\Lambda^m f| \in L^s(M) \) as soon as

\[
\frac{1 + \epsilon}{s} < \frac{m}{n-1}.
\]

Proof. Using the Gauss Lemma from Riemannian geometry, we know that in polar coordinates \(M \simeq [0, \infty) \times \mathbb{S}^{n-1}/(\{0\} \times \mathbb{S}^{n-1}) \), the Riemannian metric can be written as

\[
g = dr^2 + g_r,
\]

where \(g_r \) is a Riemannian metric on the sphere \(\mathbb{S}^{n-1} \). The Rauch comparison theorem tells us that if the sectional curvature of \(g \) satisfies \(K \leq -1 \), then

\[
g_r \leq \bigg(\frac{\sinh(r)}{r} \bigg)^2 g_0, \tag{3.1}
\]

where \(g_0 \) is the standard metric on the sphere \(\mathbb{S}^{n-1} \) (see any textbook on Riemannian geometry, e.g. Corollary 2.4 in [13, section 6.2] or [9, Corollary 4.6.1]). Using the fact that the euclidean metric on \(\mathbb{R}^n = T_0 M \) writes in polar coordinates as \(ds^2 = dr^2 + r^2 g_0 \) together with the first inequality in (3.1), we obtain that

\[
|f^*(\theta)| \leq \frac{r}{\sinh(r)}|\theta|
\]

for any covector \(\theta \in T^*_{r,u} M \) that is orthogonal to \(dr \). Because \(f^*(dr) \) has compact support, we conclude that

\[
|f^*(\phi)| \leq \text{const.} \left(\frac{r}{\sinh(r)} \right)^m \phi
\]

for any \(m \)-form \(\phi \in \Lambda^m(T^*_{r,u} M) \). In other words, we have obtained the pointwise estimate

\[
|\Lambda^m f|_{(r,u)} \leq \text{const.} \left(\frac{r}{\sinh(r)} \right)^m. \tag{3.2}
\]

The Ricci curvature comparison estimate says that if \(Ric \geq -(1+\epsilon)^2(n-1) \), then the volume form of \((M, g) \) satisfies

\[
dvol \leq \left(\frac{\sinh((1+\epsilon)r)}{1 + \epsilon} \right)^{n-1} dr \wedge d\sigma_0 \tag{3.3}
\]
where $d\sigma_0$ is the volume form of the standard sphere S^{n-1} (see e.g \[13\] section 9.1.1). The previous inequalities give us a control of the growth of $|\Lambda^m f|_{(r,u)}\,d\text{vol}$. To be precise, let us choose a number t such that

\[
\frac{m(1+\epsilon)}{n-1} < t < s,
\]

then (3.2) and (3.3) imply

\[
|\Lambda^m f|_{s,(r,u)}\,d\text{vol} \leq \text{const. } e^{-ar}\,dr \wedge d\sigma_0,
\]

with $a = mt - (n-1)(1+\epsilon) > 0$. The latter inequality implies the integrability of $|\Lambda^m f|_{s,(r,u)}$: we have indeed

\[
\int_M |\Lambda^m f|_{s,(r,u)}\,d\text{vol} \leq \text{Vol}(S^{n-1}) \int_0^\infty e^{-ar}\,dr < \infty.
\]

\[\square\]

References

[1] V. M. Gol’dshtein, V. I. Kuz’minov, I. A. Shvedov, \textit{Differential forms on Lipschitz Manifolds} Siberian Math. Journal, 23, No 2 (1982), 16-30.

[2] V. Gol’dshtein and M. Troyanov, \textit{Sobolev Inequality for Differential forms and $L_{q,p}$-cohomology}, Journal of Geom. Anal.(2006), 16, No 4, 597-631.

[3] V. Go’ldshtein and M. Troyanov, \textit{On the naturality of the exterior differential} To appear in Mathematical Reports of the Canadian Academy of Sciences (also on arXiv:0804.0025v1)

[4] V. Go’ldshtein and M. Troyanov, \textit{Distortion of Mappings and $L_{q,p}$-Cohomology} preprint arXiv:0804.0025v1.

[5] V.M. Gol’dshtein, V.I. Kuz’minov, I.A.Shvedov, \textit{Dual spaces of Spaces of Differential Forms} Siberian Math. Journal, 54, No 1 (1986).

[6] V.M. Gol’dshtein, V.I. Kuz’minov, I.A.Shvedov, \textit{Reduced L_p-cohomology of warped products} Siberian Math. J., V. 31, N5, 1990. p. 10-23).

[7] V.M. Gol’dshtein, V.I. Kuz’minov, I.A.Shvedov, \textit{Lp-cohomology of warped products} Siberian Math. J., V. 31, N6, 1990. p. 55-69).

[8] M. Gromov, \textit{Asymptotic invariants of infinite groups}, in “Geometric group theory, volume 2” London Math. Soc. Lecture Notes 182, Cambridge University Press (1992).
[9] J. Jost, *Riemannian Geometry and Geometric Analysis* Forth edition, Springer Universitext 2005

[10] V. Mazya, Sobolev Spaces, Springer-Verlag, 1985 (Russian version: Leningrad University Press, 1985).

[11] P. Pansu, *Cohomologie L^p des variétés à courbure négative, cas du degré 1*. Conference on Partial Differential Equations and Geometry (Torino, 1988). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 95–120 (1990).

[12] P. Pansu, *Cohomologie L^p et pinçement* Comment. Math. Helv. 83 (2008), 327–357

[13] P. Petersen *Riemannian Geometry* Graduate Texts in Mathematics, 171. Springer, New York.

Vladimir Gol’dshtein, Department of Mathematics, Ben Gurion University of the Negev, P.O.Box 653, Beer Sheva, Israel
email: vladimir@bgu.ac.il

Marc Troyanov, Institut de Géométrie, algèbre et topologie (IGAT) Bâtiment BCH, École Polytechnique Fédérale de Lausanne, 1015 Lausanne - Switzerland
email: marc.troyanov@epfl.ch