Reachability of Black-Box Nonlinear Systems after Koopman Operator Linearization

Authors: Stanley Bak, Sergiy Bogomolov, Parasara Sridhar Duggirala, Adam R. Gerlach, Kostiantyn Potomkin

Presenter: Kostiantyn Potomkin
Presentation outline

• Motivation
• Koopman Operator
• Challenges
• Verifying linear systems with nonlinear observables
• Evaluation
• Conclusions
Motivation
Reliability and Safety
Koopman Operator
Example

Nonlinear dynamics:

\[
\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= x_2 - x_1^2
\end{align*}
\]
Example

Nonlinear dynamics:

\[\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= x_2 - x_1^2
\end{align*} \]

Substitution:

\[\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix} \]
Example

Nonlinear dynamics:

\[
\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= x_2 - x_1^2
\end{align*}
\]

Substitution:

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix} = \begin{bmatrix}
x_1 \\
x_2 \\
x_1^2
\end{bmatrix}
\]

\[
\frac{d}{dt} y_3 = \frac{d}{dt} x_1^2 = 2x_1 \dot{x}_1
\]
Example

Nonlinear dynamics:

\[
\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= x_2 - x_1^2
\end{align*}
\]

Substitution:

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix} =
\begin{bmatrix}
x_1 \\
x_2 \\
x_1^2
\end{bmatrix}
\]

\[
\frac{d}{dt} y_3 = \frac{d}{dt} x_1^2 = 2x_1 \dot{x}_1
\]
Example

Nonlinear dynamics:

\[
\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= x_2 - x_1^2
\end{align*}
\]

Substitution:

\[
\begin{bmatrix}
y_1 \\ y_2 \\ y_3
\end{bmatrix} =
\begin{bmatrix}
x_1 \\ x_2 \\ x_1^2
\end{bmatrix}
\]

\[
\frac{d}{dt} y_3 = \frac{d}{dt} x_1^2 = 2x_1 \dot{x}_1 = 2x_1^2
\]
Koopman Operator

Example

Nonlinear dynamics:

\[
\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= x_2 - x_1^2
\end{align*}
\]

Substitution:

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix} =
\begin{bmatrix}
x_1 \\
x_2 \\
x_1^2
\end{bmatrix}
\]

\[
\frac{d}{dt} y_3 = \frac{d}{dt} x_1^2 = 2x_1 \dot{x}_1 = 2x_1^2 = 2y_3
\]
Example

Nonlinear dynamics:

\[
\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= x_2 - x_1^2
\end{align*}
\]

Substitution:

\[
\begin{bmatrix}
\dot{y}_1 \\
\dot{y}_2 \\
\dot{y}_3
\end{bmatrix} =
\begin{bmatrix}
x_1 \\
x_2 \\
x_1^2
\end{bmatrix}
\]

\[
\begin{align*}
\dot{y}_1 &= y_1 \\
\dot{y}_2 &= y_2 - y_3 \\
\dot{y}_3 &= 2y_3
\end{align*}
\]
Example

Nonlinear dynamics:

\[
\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= x_2 - x_1^2
\end{align*}
\]

Koopman linear system:

\[
\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \quad \text{for} \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix}
\]
Example

Nonlinear dynamics:

\[
\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= x_2 - x_1^2
\end{align*}
\]

Koopman linear system:

\[
\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 2
\end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}
\text{for}
\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} =
\begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix}
\]
Example

Nonlinear dynamics:

\[
\begin{align*}
\dot{x}_1 &= x_1 \\
\dot{x}_2 &= x_2 - x_1^2
\end{align*}
\]

Koopman linear system:

\[
\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \quad \text{for} \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix}
\]

Koopman operator:

\[
\mathcal{K}_t = e^{\tilde{\mathcal{K}}t}
\]
Example

\[y_1(0) \in [1, 3] \]
\[y_2(0) \in [0, 2] \]
\[y_3(0) = y_1(0)^2 \in [1, 9] \]
Red dots – linear system, green curves – trajectories of the original nonlinear system, blue sets – output of Flow*
Challenges
• Obtain a Koopman linearized model of the nonlinear dynamics with a good approximation of the original system (ideally no approximation).
• Add a support of nonlinear initial state sets to state-of-the-art linear reachability algorithms.
Challenges

• Obtain a Koopman linearized model of the nonlinear dynamics with a good approximation of the original system (ideally no approximation).
• Add a support of nonlinear initial state sets to state-of-the-art linear reachability algorithms.
Verifying linear systems with nonlinear observables
Direct Encoding

\[y = g(x_0) \]

State space of the observables

\[y_t = K_t y \]

Original state space

\[x_t = My_t \]
Overapproximating Nonlinear Constraints with Intervals

\[y_1(0) \in [1, 3] \]
\[y_3(0) = y_1(0)^2 \in [1, 9] \]
Hyperplane Backpropagation

\[q^T y \leq r \]
Hyperplane Backpropagation

\[q^T y \leq r \]
\[q^T K_t y \leq r \]
Hyperplane Backpropagation

The 7th IFAC Conference on Analysis and Design of Hybrid Systems, July 7-9, 2021
Hyperplane Backpropagation
Hyperplane Backpropagation

The 7th IFAC Conference on Analysis and Design of Hybrid Systems, July 7-9, 2021
Zonotope Domain Splitting
Zonotope Domain Splitting

The 7th IFAC Conference on Analysis and Design of Hybrid Systems, July 7-9, 2021
Evaluation
Implementation

- SMT Solver: dReal
- Programming Language: Julia
- Koopman Linearization: DataDrivenDiffEq.jl - github.com/SciML/DataDrivenDiffEq.jl
Benchmarks

Model Name	Number of original state variables	Number of observables
Roessler	3	70
Steam	3	71
Coupled Van der Pol oscillator	4	131
Biological	7	104

From HyPro benchmark repository: https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
Evaluation

Computational time (seconds) comparing Flow*, Direct Encoding and the Zonotope Domain Splitting. The dReal tool timed out on all models.

- dReal TO’s on all original nonlinear models
- Flow* outperforms Direct Encoding on most of the instances.
- Zonotope Domain Splitting outperforms all other tools on most of the instances.

Name	i	Flow*	Direct	Zono
Roessler	0	55.28	181.06	9.53
	10	78.33	177.92	5.01
	20	55.29	174.63	3.5
Steam	0	61.06	197.08	182.62
	5	285.20	59.53	37.27
	10	77.68	29.21	18.52
Coupled VP	1	251.11	788.45	0.57
	8	497.61	680.61	53.91
	16	1665.16	557.24	18.52
Biological	1	260.69	470.59	0.59
	5	250.26	426.37	49.41
	10	238.56	427.00	179.25
Conclusions
Conclusions

• We presented novel techniques to efficiently handle non-linear initial sets which demonstrate competitive results.
• Koopman operator can be used as part of reachability analysis workflow.