Non-Markovian Reactivation of Quantum Relays

Stefano Pirandola,1 Carlo Ottaviani,1 Christian S. Jacobsen,2 Gaetana Spedalieri,1 Samuel L. Braunstein,1 Tobias Gehring,2 and Ulrik L. Andersen2

1Computer Science and York Centre for Quantum Technologies, University of York, York YO10 5GH, United Kingdom
2Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark

We consider a quantum relay which is used by two parties to perform several continuous-variable protocols: Entanglement swapping, distillation, quantum teleportation, and quantum key distribution. The theory of these protocols is extended to a non-Markovian model of decoherence characterized by correlated Gaussian noise. Even if bipartite entanglement is completely lost at the relay, we show that the various protocols can progressively be reactivated by the separable noise-correlations of the environment. In fact, above a critical amount, these correlations are able to restore the distribution of quadripartite entanglement, which can be localized into an exploitable bipartite form by the action of the relay. Our findings are confirmed by a proof-of-principle experiment and show the potential advantages of non-Markovian effects in a quantum network architecture.

PACS numbers: 03.65.Ud, 03.67.–a, 42.50.–p

The concept of a relay is at the basis of network information theory. Indeed the simplest network topology is composed by three nodes: two end-users, Alice and Bob, plus a third party, the relay, which assists their communication. This scenario is inherited by quantum information theory, where the mediation of a quantum relay can be found in a series of fundamental protocols. By sending quantum systems to a middle relay, Alice and Bob may perform entanglement swapping, entanglement distillation, quantum teleportation and quantum key distribution (QKD) [11, 12].

Quantum relays are crucial elements for quantum network architectures at any scale, from short-range implementations on quantum chips to long-distance quantum communication. In all cases, their working mechanism has been studied assuming Markovian decoherence models, where the errors are independent and identically distributed (iid). Removing this iid approximation is one of the goals of modern quantum information theory.

In a quantum chip (e.g., photonic [13, 14] or superconducting [15]), quantum relays can distribute entanglement among registers and teleport quantum gates. Miniaturizing this architecture, correlated errors may come from unwanted interactions between quantum systems. A common bath may be introduced by a variety of imperfections, e.g., due to diffraction, slow electronics etc. It is important to realize that non-Markovian dynamics will become increasingly important as the size of quantum chips further shrinks.

At long distances (in free-space or fibre), quantum relays intervene to assist quantum communication, entanglement and key distribution. Here, noise-correlations and memory effects may naturally arise when optical modes are employed in high-speed communications [17], or propagate through atmospheric turbulence and diffraction-limited linear systems [18, 20]. Most importantly, correlated errors must be considered in relay-based QKD, where an eavesdropper (Eve) may jointly attack the two links with the relay (random permutations and de Finetti arguments cannot remove these residual correlations). Eve can manipulate the relay itself as assumed in measurement-device independent QKD [11, 12]. Furthermore, Alice’s and Bob’s setups may also be subject to correlated side-channel attacks.

For all these reasons, we generalize the study of quantum relays to non-Markovian conditions, developing the theory for continuous variable (CV) systems (qubits are discussed in the Supplemental Material). We consider an environment whose Gaussian noise may be correlated between the two links. In this scenario, while the relay always performs the same measurement, the parties may implement different protocols (swapping, distillation, teleportation, or QKD) all based, directly or indirectly, on the exploitation of bipartite entanglement.

We find a surprising behavior in conditions of extreme decoherence. We consider entanglement-breaking links, so that no protocol can work under Markovian conditions. We then induce non-Markovian effects by progressively increasing the noise correlations in the environment while keeping their nature separable (so that there is no external reservoir of entanglement). While these correlations are not able to re-establish bipartite entanglement (or tripartite entanglement) we find that a critical amount reactivates quadripartite entanglement, between the setups and the modes transmitted. In other words, by increasing the separable correlations above a ‘reactivation threshold’ we can retrieve the otherwise lost quadripartite entanglement (it is in this sense that we talk of ‘reactivated’ entanglement below). The measurement of the relay can then localize this multipartite entanglement into a bipartite form, shared by the two remote parties and exploitable for the various protocols.

As a matter of fact, we find that all the quantum protocols can be reactivated. In particular, their reactivation
occurs in a progressive fashion, so that increasing the environmental correlations first reactivates entanglement swapping and teleportation, then entanglement distillation and finally QKD. Our theory is confirmed by a proof-of-principle experiment which shows the reactivation of the most nested protocol, i.e., the QKD protocol.

RESULTS

General scenario.— As depicted in Fig. 1, we consider two parties, Alice and Bob, whose devices are connected to a quantum relay, Charlie, with the aim of implementing a CV protocol (swapping, distillation, teleportation, or QKD). The connection is established by sending two modes, A and B, through a joint quantum channel \mathcal{E}_{AB}, whose outputs A' and B' are subject to a CV Bell detection \mathcal{B}. This means that modes A' and B' are mixed at a balanced beam splitter and then homodyned, one in the position quadrature $\hat{q}_- = (\hat{q}_A - \hat{q}_{B'})/\sqrt{2}$ and the other in the momentum quadrature $\hat{p}_+ = (\hat{p}_A + \hat{p}_{B'})/\sqrt{2}$. The classical outcomes q_- and p_+ can be combined into a complex variable $\gamma := q_- + ip_+$, which is broadcast to Alice and Bob through a classical public channel.

![Fig. 1: Quantum relay.](image)

Alice and Bob connect their devices (red boxes) to a quantum relay, Charlie, for implementing a CV protocol. On the received modes, Charlie always performs a CV Bell detection whose outcome γ is broadcast.

Separable Gaussian environment. The travelling modes are subject to a joint Gaussian channel \mathcal{E}_{AB}. This is realized by two beam splitters with transmissivity τ which mix A and B with two ancillary modes, E_1 and E_2, respectively. These ancillas inject thermal noise with variance ω and belong to a correlated (but separable) Gaussian state ρ_{E_1,E_2}. **Entanglement breaking.** For $\omega > \omega_{EB}(\tau)$, bipartite (and tripartite) entanglement cannot survive at the relay. In particular, A' is disentangled from Alice’s device, and B' is disentangled from Bob’s, no matter if the environment is correlated or not. **Non-Markovian reactivation.** Above a critical amount of separable correlations, quadripartite entanglement is reactivated between Alice’s and Bob’s devices and the transmitted modes, A' and B'. Bell detection can localize this multipartite resource into a bipartite form and reactivate all the protocols.

The joint quantum channel \mathcal{E}_{AB} corresponds to an environment with correlated Gaussian noise. This is modelled by two beam splitters (with transmissivity $0 < \tau < 1$) mixing modes A and B with two ancillary modes, E_1 and E_2, respectively (see Fig. 1). These ancillas are taken in a zero-mean Gaussian state ρ_{E_1,E_2} with covariance matrix (CM) in the symmetric normal form

$$V_{E_1E_2}(\omega, g, g') = \left(\begin{array}{cc} \omega I & G \\ G^* & \omega I \end{array} \right), \quad I := \text{diag}(1,1), \quad G := \text{diag}(g, g').$$

Here $\omega \geq 1$ is the variance of local thermal noise, while the block G accounts for noise-correlations.

For $G = 0$ we retrieve the standard Markovian case, based on two independent lossy channels $[5-7]$. For $G \neq 0$, the lossy channels become correlated, and the local dynamics cannot reproduce the global non-Markovian evolution of the system. Such a separation becomes more evident by increasing the correlation parameters, g and g', whose values are bounded by the bona-fide conditions $|g| < \omega$, $|g'| < \omega$, and $\omega|g + g'| \leq \omega^2 + gg' - 1$ $[29,30]$. In particular, we consider the realistic case of separable environments (ρ_{E_1,E_2} separable), identified by the additional constraint $\omega|g - g'| \leq \omega^2 - gg' - 1$ $[30]$. The amount of separable correlations can be quantified by the quantum mutual information $I(g, g')$, which is the sum of the quantum discord $[31,32]$ and the classical correlations (see Supplemental Material).

To analyse entanglement breaking, assume the asymptotic infinite-energy scenario where Alice’s (Bob’s) device has a remote mode a (b) which is maximally entangled with A (B). We then study the separability properties of the global system composed by a, b, A', and B'. In the Markovian case ($G = 0$), all forms of entanglement (bipartite, tripartite, and quadripartite $[33]$) are absent for $\omega > \omega_{EB}(\tau) := (1 + \tau)/(1 - \tau)$, so that no protocol can work. In the non-Markovian case ($G \neq 0$) the presence of separable correlations does not restore bipartite or tripartite entanglement when $\omega > \omega_{EB}(\tau)$. However, a sufficient amount of these correlations is able to reactivate 1×3 quadripartite entanglement $[34]$, in particular, between mode a and the set of modes $bA'B'$. See Fig. 2.

Once quadripartite entanglement is available, the Bell detection on modes A' and B' can localize it into a bipartite form for modes a and b. For this reason, entanglement swapping and the other protocols can be reactivated by sufficiently-strong separable correlations. In the following, we discuss these results in detail for each specific protocol, starting from the basic scheme of entanglement swapping. For each protocol, we first generalize the theory to non-Markovian decoherence, showing how the various performances are connected. Then, we analyze the protocols under entanglement breaking conditions.

Entanglement swapping.— The standard source of Gaussian entanglement is the EPR state $[25]$. This is a two-mode Gaussian state with zero mean-value and CM

$$V(\mu) = \left(\begin{array}{cc} \mu I & \sqrt{\mu^2 - 1} Z \\ \sqrt{\mu^2 - 1} Z & \mu I \end{array} \right), \quad Z := \text{diag}(1,-1),$$
They keep states, state through the joint channel E modes the smallest partially-transposed symplectic eigenvalue $\max \mu$. Indeed the log-negativity \cite{35–37} is strictly increasing in μ.

Suppose that Alice and Bob have two identical EPR states, $\rho_{aA}(\mu)$ describing Alice’s modes a and A, and $\rho_{bB}(\mu)$ describing Bob’s modes b and B, as in Fig. 3(i). They keep a and b, while sending A and B to Charlie through the joint channel E_{AB} of the Gaussian environment. After the broadcast of the outcome γ, the remote modes a and b are projected into a conditional Gaussian state $\rho_{ab|\gamma}$, with mean-value $x = x(\gamma)$ and conditional CM $V_{ab|\gamma}$. In the Supplemental Material, we compute

$$V_{ab|\gamma} = \begin{pmatrix} A & C \\ C^T & B \end{pmatrix},$$

where the 2×2 blocks are given by

$$A = B = \text{diag} \left[\mu - \frac{\mu^2 - 1}{2(\mu + \kappa)}, \mu - \frac{\mu^2 - 1}{2(\mu + \kappa')} \right],$$

$$C = \text{diag} \left[\frac{\mu^2 - 1}{2(\mu + \kappa)}, \frac{\mu^2 - 1}{2(\mu + \kappa')} \right],$$

and the κ’s contain all the environmental parameters

$$\kappa := (\tau^{-1} - 1)(\omega - g), \ \kappa' := (\tau^{-1} - 1)(\omega + g').$$

From $V_{ab|\gamma}$ we compute the log-negativity $N = \max\{0, -\log_2 \varepsilon\}$ of the swapped state, in terms of the smallest partially-transposed symplectic eigenvalue γ. From $V_{ab|\gamma}$ we derive

$$\varepsilon = \left(\frac{1 + \mu \kappa}{\mu + \kappa'}\right)^{1/2}.$$

For any input entanglement ($\mu > 1$), swapping is successful ($\varepsilon < 1$) whenever the environment has enough correlations to satisfy the condition $\kappa \kappa' < 1$. The actual amount of swapped entanglement N increases in μ, reaching its asymptotic optimum for large μ, where

$$\varepsilon \simeq \varepsilon_{\text{opt}} := \sqrt{\kappa \kappa'}.$$

Quantum teleportation.-- As depicted in Fig. 3(ii), we consider Charlie acting as a teleporter of a coherent state $|\nu\rangle$ from Alice to Bob. Alice’s state and part of Bob’s EPR state are transmitted to Charlie through the joint channel E_{AB}. After detection, the outcome γ is communicated to Bob, who performs a conditional quantum operation $\rho_{\text{out}}(\nu) \simeq |\nu\rangle \langle \nu|$ on mode b to retrieve the teleported state $\rho_{\text{out}}(\nu) \simeq |\nu\rangle \langle \nu|$. In the Supplemental Material, we find a formula for the teleportation fidelity $F = F(\mu, \kappa, \kappa')$, which becomes asymptotically optimal for large μ, where

$$F \simeq F_{\text{opt}} := \left[(1 + \kappa)(1 + \kappa') \right]^{-1/2} \leq (1 + \varepsilon_{\text{opt}})^{-1}.$$
Thus, there is a direct connection between the asymptotic protocols of teleportation and swapping: If swapping fails ($\epsilon_{\text{opt}} \geq 1$), teleportation is classical ($F_{\text{opt}} \leq 1/2$). We retrieve the relation $F_{\text{opt}} = (1 + \epsilon_{\text{opt}})^{-1}$ in environments with antisymmetric correlations $g + g' = 0$.

Entanglement distillation.— Entanglement distillation can be operated on top of entanglement swapping as depicted in Fig. 3(iii). After the parties have run the swapping protocol many times and stored their remote modes in quantum memories, they can perform a one-way entanglement distillation protocol on the whole set of swapped states $\rho_{\text{ab}||\gamma}$. This consists of Alice locally applying an optimal quantum instrument $[38]$ A on her modes a, whose quantum outcome α is a distilled system while the classical outcome k is communicated. Upon receipt of k, Bob performs a conditional quantum operation B_k transforming his modes b into a distilled system β. The process can be designed in such a way that the distilled systems are collapsed into entanglement bits (ebits), i.e., Bell state pairs $[3]$. The optimal distillation rate (ebits per relay use) is lower-bounded [38] by the coherent information I_C (39, 40) computed on the single copy state $\rho_{\text{ab}||\gamma}$. In the Supplemental Material, we find a closed expression $I_C = I_C(\mu, \kappa, \kappa')$ which is maximized for large μ, where $I_C \approx -\log_2(\epsilon_{\text{opt}})$. Asymptotically, entanglement can be distilled for $\epsilon_{\text{opt}} < e^{-1} \approx 0.367$.

Secret key distillation.— The scheme of Fig. 3(iii) can be modified into a key distillation protocol, where Charlie (or Eve [11]) distributes secret correlations to Alice and Bob, while the environment is the effect of a Gaussian attack. Alice’s quantum instrument is here a measurement with classical outputs α (the secret key) and k (data for Bob). Bob’s operation is a measurement conditioned on k, which provides the classical output β (key estimate). This is an ideal key-distribution protocol [41] whose rate is lower-bounded by the coherent information, i.e., $K \geq I_C$ (see Supplemental Material).

Practical QKD.— The previous key-distribution protocol can be simplified by removing quantum memories and using single-mode measurements, in particular, heterodyne detections. This is equivalent to a run-by-run preparation of coherent states, $|\alpha\rangle$ on Alice’s mode A, and $|\beta\rangle$ on Bob’s mode B, whose amplitudes are Gaussianly modulated with variance $\mu - 1$. As shown in Fig. 3(iv), these states are transmitted to Charlie (or Eve [11]) who measures and broadcasts $\gamma \approx \alpha - \beta^\ast$.

Assuming ideal reconciliation [25], the secret key rate $R = R(\mu, \kappa, \kappa')$ increases in μ. Modulation variances $\mu \gtrsim 50$ are experimentally achievable and well approximate the asymptotic limit for $\mu \gg 1$, where the key rate is optimal and satisfies (see Supplemental Material)

$$R_{\text{opt}} \gtrsim \log_2 \left(\frac{F_{\text{opt}}}{e^2 \epsilon_{\text{opt}}} \right) + h(1 + 2\epsilon_{\text{opt}}),$$

with $h(x) := \frac{x+1}{2} \log_2 \frac{x+1}{2} - \frac{x-1}{2} \log_2 \frac{x-1}{2}$. Using Eq. (5), we see that the right hand side of Eq. (7) can be positive only for $\epsilon_{\text{opt}} \lesssim 0.192$. Thus the practical QKD protocol is the most difficult to reactivate: Its reactivation implies that of entanglement/key distillation and that of entanglement swapping. This is true not only asymptotically but also at finite μ as we show below.

Reactivation from entanglement breaking.— Once the theory of the previous protocols has been extended to non-Markovian decoherence, we can study their reactivation from entanglement breaking conditions. Consider an environment with transmissivity τ and entanglement-breaking thermal noise $\omega > \omega_{\text{EB}}(\tau)$, so that no protocol can work for $G = 0$. By increasing the separable correlations in the environment, not only can quadrupartite entanglement be reactivated but, above a certain threshold, it can also be localized into a bipartite form by the relay’s Bell detection. Once entanglement swapping is reactivated, all other protocols can progressively be reactivated. As shown in Fig. 4 there are regions of the correlation plane where entanglement can be swapped ($N > 0$), teleportation is quantum ($F > 1/2$), entanglement and keys can be distilled ($I_C, K > 0$), and practical QKD can be performed ($R > 0$). This occurs both for large and experimentally-achievable values of μ.

![FIG. 4: Non-Markovian reactivation of quantum protocols from entanglement-breaking](image)

Note that the reactivation is asymmetric in the plane only because of the specific Bell detection adopted, which generates correlations of the type $g > 0$ and $g' < 0$. Using another Bell detection (projecting onto \hat{q}_+ and \hat{p}_-), the performances would be inverted with respect to the
origin of the plane. Furthermore, the entanglement localiza
tion (i.e., the reactivation of entanglement swapping) is trig
gerated for correlations higher than those required for
restoring quadrupartite entanglement, suggesting that
there might exist a better quantum measurement for this
task. The performances of the various protocols improve
by increasing the separable correlations of the environ-
ment, with the fastest reactivation being achieved along
the diagonal $g + g' = 0$, where swapping and teleporta-
tion are first recovered, then entanglement/key distilla-
tion and practical QKD, which is the most nested region.

Correlated additive noise.— The phenomenon can also
be found in other types of non-Markovian Gaussian envi-
enments. Consider the limit for $\tau \to 1$ and $\omega \to +\infty,$
while keeping constant $n := (1 - \tau)\omega$, $c := g/(\omega - 1)^{-1}$
and $c' := g'/(\omega - 1)^{-1}$. This is an asymptotic environment
which adds correlated classical noise to modes A and $B,$
so that their quadratures undergo the transformations

$$(\hat{q}_A, \hat{p}_A, \hat{q}_B, \hat{p}_B) \to (\hat{q}_A, \hat{p}_A, \hat{q}_B, \hat{p}_B) + (\xi_1, \xi_2, \xi_3, \xi_4).$$

Here the ξ_i’s are zero-mean Gaussian variables whose co-
variances (ξ_i, ξ_j) are specified by the classical CM

$$V(n, c, c') = n \left(\begin{array}{cc} I & \text{diag}(c, c') \\ \text{diag}(c, c') & I \end{array} \right), \quad (8)$$

where $n \geq 0$ is the variance of the additive noise, and
$-1 \leq c, c' \leq 1$ quantify the classical correlations. The
entanglement-breaking condition becomes $n > 2$.

To show non-Markovian effects, we consider the proto-
col which is the most difficult to reanimate, the practical
QKD protocol. We can specify its key rate $R(\mu, n, c, c')$
for $c = c' = 1$ and assume a realistic modulation $\mu \simeq 52$.
We then plot R as a function of the additive noise n in
Fig. 5. As we can see, the rate decreases in n but remains
positive in the region $2 < n < 4$ where the links with the
relay become entanglement-breaking. As we show below,
this behaviour persists in the presence of loss, as typically
introduced by experimental imperfections.

Experimental results.— Our theoretical results are con-

Fig. 5: Plot the secret-key rate R (bits per relay use) as
function of the additive noise n. The solid curve is the
theoretical rate computed for a correlated-additive environ-
ment ($c = c' = 1$) and realistic signal modulation ($\mu \simeq 52$).
This rate is shown to be positive after entanglement break-
ing ($n > 2$). Points are experimental data: Blue circles refer
to ideal reconciliation, and purple squares to achievable re-
ocallization efficiency ($\simeq 0.97$). Due to loss at the untrusted
relay, the experimental key rate is slightly below the theor eti-
cal curve (associated with the correlated side-channel attack).
The reactivation of QKD is confirmed experimentally.

Experimental setup. Alice and Bob receive 1064
nm light from the same laser source (local oscillator). At both
stations, the incoming beams are Gaussianly modulated in
phase and amplitude using electro-optical modulators driven
by uncorrelated signal generators. In addition, the phase and
amplitude modulators for Alice and Bob have correlated in-
puts respectively, such that a noisy modulation identical for
both Alice and Bob is added to the phase and amplitude sig-
als (side-channel attack). The magnitudes of the correlated
noise modulations are progressively increased (from $n = 0$ to
4), and kept symmetrical between the quadratures, while the
signal modulations are kept constant at the same level in both
quadratures for Alice and Bob ($\mu \simeq 52$). At the untrusted re-
lay, the modes are mixed at a balanced beam splitter and
the output ports photo-detected, with an overall efficiency of
$\simeq 98\%$. Photocurrents are then processed to realize a CV Bell
measurement. See Supplemental Material for details.
From the point of view of Alice and Bob, the side-channel attack and the additional (small) loss at the relay are jointly perceived as a global coherent Gaussian attack of the optical modes. Analysing the statistics of the shared classical data and assuming that Eve controls the entire environmental purification compatible with this data, the two parties may compute the experimental secret-key rate (see details in the Supplemental Material). As we can see from Fig. 5 the experimental points are slightly below the theoretical curve associated with the correlated-additive environment, reflecting the fact that the additional loss at the relay tends to degrade the performance of the protocol. Remarkably, the experimental rate remains positive after the entanglement-breaking threshold, so that the non-Markovian reactivation of QKD is experimentally confirmed.

DISCUSSION

We have theoretically and experimentally demonstrated that the most important protocols operated by quantum relays can work in conditions of extreme decoherence thanks to non-Markovian effects. Assuming high Gaussian noise in the links, we have considered a regime where any form of entanglement (bipartite, tripartite or quadripartite) is broken under Markovian conditions. In this regime, we have proven that a suitable amount of separable correlations can reactivate the distribution of a 1 × 3 quadripartite entanglement, and this resource can be successfully localised into a bipartite form exploitable by Alice and Bob. As a result, all the basic protocols can be progressively reactivated by the action of the relay.

The non-Markovian reactivation of a quantum relay is a new physical phenomenon which points out several interesting facts. It shows that, in the absence of bipartite entanglement, we can still rely on a multipartite form of this resource, which can be manipulated, converted and exploited for quantum information tasks. Then, it also shows how separable correlations can play a role in the distribution of this multipartite resource within a quantum network topology (see Supplemental Material for more details and relations with previous literature).

In conclusion, our results show new perspectives for all quantum systems where correlated errors, memory effects, and non-Markovian dynamics are the most important form of decoherence. This may involve both very short-distance implementations, such as chip-based quantum computing, and long-distance implementations, as is the case of diffraction-limited quantum communication or relay-based QKD, where the most general eavesdropping strategies are based on correlated attacks. Thanks to their potential benefits, non-Markovian effects should be regarded as a physical resource to be exploited in quantum network implementations.

METHODS

Theoretical and experimental methods are given in the Supplemental Material. Theoretical methods contain details about the following points: (i) Study of the Gaussian environment with correlated thermal noise, including a full analysis of its classical and quantum correlations. (ii) Study of the various forms of entanglement available before the Bell detection of the relay. (iii) Study of the entanglement swapping protocol, i.e., the computation of the CM V_{ab}, in Eq. (1) and the derivation of the eigenvalue ε in Eq. (5). (iv) Generalization of the teleportation protocol with details on Bob’s quantum operation Q, and the analytical formula for the fidelity $F(\mu, \kappa, \kappa')$. (v) Details of the distillation protocol with the analytical formula of $I_C(\mu, \kappa, \kappa')$. (vi) Details of the ideal key-distillation protocol, discussion on MDI-security, and proof of the lower-bound $K \geq I_C$. (vii) Derivation of the general secret-key rate $R(\xi, \mu, \kappa, \kappa')$ of the practical QKD protocol, assuming arbitrary reconciliation efficiency ξ and modulation variance μ. (viii) Explicit derivation of the optimal rate R_{opt} and the proof of the tight lower bound in Eq. (7). (ix) Derivation of the correlated-additive environment as a limit of the correlated-thermal one. (x) Study of entanglement swapping and practical QKD in the correlated-additive environment, providing the formula of the secret-key rate $R(\xi, \mu, n, c, c')$.

Acknowledgements

S. P. acknowledges support from the EPSRC via the ‘Quantum Communications HUB’ (EP/M013472/1) and the grant ‘qDATA’ (EP/L011298/1). S. P. also thanks the Leverhulme Trust (research fellowship ‘qBIO’). T. G. acknowledges support from the H. C. Ørsted postdoc programme. U. L. A. thanks the Danish Agency for Science, Technology and Innovation (Sapere Aude project).

* Electronic address: [stefano.pirandola@york.ac.uk]
[1] Cover, T. M. & Thomas, J. A. Elements of Information Theory (2nd edition, John Wiley & Sons, Inc., Hoboken, New Jersey 2006).
[2] Wilde, M. M. Quantum Information Theory (Cambridge University Press, Cambridge 2013).
[3] Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
[4] Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. “Eventready- detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993).
[5] van Loock, P. & Braunstein, S. L. Unconditional teleportation of continuous-variable entanglement. Phys. Rev. A 61, 010302(R) (1999).
[6] Polkinghorne, R.E.S. & Ralph, T. C. Continuous Variable Entanglement Swapping. *Phys. Rev. Lett.* **83**, 2095 (1999).

[7] Pirandola, S., Vitali, D., Tombesi, P. & Lloyd, S. Macroscopic Entanglement by Entanglement Swapping. *Phys. Rev. Lett.* **97**, 150403 (2006).

[8] Briegel, H.-J., Cirac, J. I. & Zoller, P. Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication. *Phys. Rev. Lett.* **81**, 5932 (1998).

[9] Bennett, C. H. *et al.* Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. *Phys. Rev. Lett.* **70**, 1895 (1993).

[10] Furusawa, A., *et al.* Unconditional quantum teleportation. *Science* **282**, 706 (1998).

[11] Braunstein, S. L. & Pirandola, S., Side-Channel-Free Quantum Key Distribution. *Phys. Rev. Lett.* **108**, 130502 (2012).

[12] Pirandola, S. *et al.* High-Rate Measurement-Device-Independent Quantum Cryptography. *Preprint arXiv:1312.4104* (2013).

[13] Metcalf, B. J., *et al.* Quantum teleportation on a photonic chip. *Nature Photonics* **8**, 770–774 (2014).

[14] Masada, G., *et al.* Continuous-variable entanglement on a chip. *Nature Photonics* **9**, 316–319 (2015).

[15] L. Steffen, L., *et al.* Deterministic quantum teleportation with feed-forward in a solid state system. *Nature* **500**, 319 (2013).

[16] Breuer, H.-P. & Petruccione, F. *The Theory of Open Quantum Systems* (Oxford University Press, Oxford, 2002).

[17] Lassen, M., Berni, A., Madsen, L. S., Filip, R. & Andersen U. L. Gaussian Error Correction of Quantum States in a Correlated Noisy Channel. *Phys. Rev. Lett.* **111**, 180502 (2013).

[18] Tyler, G. A. & Boyd, R. W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. *Opt. Lett.* **34**, 142 (2009).

[19] Semenov, A. A. & Vogel, W. Quantum light in the turbulent atmosphere. *Phys. Rev. A* **80**, 021802(R) (2009).

[20] Boyd, R. W., Rodenburg, B., Mirhosseini, M. & Barnett, S. M. Influence of atmospheric turbulence on the propagation of quantum states of light using plane-wave encoding. *Opt. Express* **19**, 18310 (2011).

[21] Lupo, C., Giovannetti, V., Pirandola, S., Mancini, S. & Lloyd, S. Enhanced quantum communication via optical refocusing. *Phys. Rev. A* **84**, 010303(R) (2011).

[22] Lupo, C., Giovannetti, V., Pirandola, S., Mancini, S. & Lloyd, S. Capacities of linear quantum optical systems. *Phys. Rev. A* **85**, 062314 (2012).

[23] Renner, R. Symmetry of large physical systems implies independence of subsystems. *Nature Phys.* **3**, 645–649 (2007).

[24] Renner, R. & Cirac, J. I. de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. *Phys. Rev. Lett.* **102**, 110504 (2009).

[25] Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N. J., Ralph, T. C., Shapiro, J. H. & Lloyd, S. Gaussian quantum information. *Rev. Mod. Phys.* **84**, 621 (2012).

[26] Horodecki, M., Shor, P. W. & Ruskai, M. B. General Entanglement Breaking Channels. *Rev. Math. Phys.* **15**, 629 (2003).

[27] Holevo, A. S. Entanglement-breaking channels in infinite dimensions. *Problems of Information Transmission* **44**, 3 (2008).

[28] Spedalieri, G., Ottaviani, C. & Pirandola, S. Covariance matrices under Bell-like detections. *Open Syst. Inf. Dyn.* **20**, 1350011 (2013).

[29] Pirandola, S., Serafini, A. & Lloyd, S. Correlation matrices of two-mode bosonic systems. *Phys. Rev. A* **79**, 052327 (2009).

[30] Pirandola, S. Entanglement reactivation in separable environments. *New J. Phys.* **15**, 113046 (2013).

[31] Modi, K., Brodutch, A., Cable, H., Paterek, T. & Vedral, V. The classical-quantum boundary for correlations: Discord and related measures. *Rev. Mod. Phys.* **84**, 1655 (2012).

[32] Pirandola, S., Spedalieri, G., Braunstein, S. L., Cerf, N. J. & Lloyd, S. Optimality of Gaussian Discord. *Phys. Rev. Lett.* **113**, 140405 (2014).

[33] Giedke, G., Kraus, B., Lewenstein, M. & Cirac, J. I. Separability Properties of Three-mode Gaussian States. *Phys. Rev. A* **64**, 052303 (2001).

[34] Werner, R. F. & Wolf, M. M. Bound entangled Gaussian states. *Phys. Rev. Lett.* **86**, 3658 (2001).

[35] Vidal, G. & Werner, R. F. Computable measure of entanglement. *Phys. Rev. A* **65**, 032314 (2002).

[36] Eisert, J. Entanglement in quantum information theory. PhD thesis (Potsdam, February 2001).

[37] Plenio, M. B. The logarithmic negativity: A full entanglement monotone that is not convex. *Phys. Rev. Lett.* **95**, 090503 (2005).

[38] Devetak, I. & Winter, A. Distillation of secret key and entanglement from quantum states. *Proc. R. Soc. Lond. A* **461**, 207 (2005).

[39] Schumacher, B. & Nielsen, M. A. Quantum data processing and error correction. *Phys. Rev. A* **54**, 2629 (1996).

[40] Lloyd, S. Capacity of the noisy quantum channel. *Phys. Rev. A* **55**, 1613 (1997).

[41] Pirandola, S., García-Patrón, R., Braunstein, S. L. & Lloyd, S. Direct and reverse secret-key capacities of a quantum channel. *Phys. Rev. Lett.* **102**, 050503 (2009).

[42] Eckstein, A., Christ, A., Mosley, P. J. & Silberhorn, C. Highly Efficient Single-Pass Source of Pulsed Single-Mode Twin Beams of Light. *Phys. Rev. Lett.* **106**, 013603 (2011).

[43] Eberle, T., Händchen, V. & Schnabel R. Stable control of 10 dB two-mode squeezed vacuum states of light. *Opt. Express* **21**, 11546 (2013).