Lipoprotein-associated phospholipase A\textsubscript{2} and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies

The Lp-PLA\textsubscript{2} Studies Collaboration*

Summary

Background Lipoprotein-associated phospholipase A\textsubscript{2} (Lp-PLA\textsubscript{2}), an inflammatory enzyme expressed in atherosclerotic plaques, is a therapeutic target being assessed in trials of vascular disease prevention. We investigated associations of circulating Lp-PLA\textsubscript{2} mass and activity with risk of coronary heart disease, stroke, and mortality under different circumstances.

Methods With use of individual records from 79,036 participants in 32 prospective studies (yielding 17,722 incident fatal or non-fatal outcomes during 474,976 person-years at risk), we did a meta-analysis of within-study regressions to calculate risk ratios (RRs) per 1 SD higher value of Lp-PLA\textsubscript{2}, or other risk factor. The primary outcome was coronary heart disease.

Findings Lp-PLA\textsubscript{2} activity and mass were associated with each other (r=0.51, 95% CI 0.47–0.56) and proatherogenic lipids. We noted roughly log-linear associations of Lp-PLA\textsubscript{2} activity and mass with risk of coronary heart disease and vascular death. RRs, adjusted for conventional risk factors, were: 1.10 (95% CI 1.05–1.16) with Lp-PLA\textsubscript{2} activity and 1.11 (1.07–1.16) with Lp-PLA\textsubscript{2} mass for coronary heart disease; 1.08 (0.97–1.20) and 1.14 (1.02–1.27) for ischaemic stroke; 1.16 (1.09–1.24) and 1.13 (1.05–1.22) for vascular mortality; and 1.10 (1.04–1.17) and 1.10 (1.03–1.18) for non-vascular mortality, respectively. RRs with Lp-PLA\textsubscript{2} did not differ significantly in people with and without initial stable vascular disease, apart from for vascular death with Lp-PLA\textsubscript{2} mass. Adjusted RRs for coronary heart disease were 1.10 (1.02–1.18) with non-HDL cholesterol and 1.10 (1.00–1.21) with systolic blood pressure.

Interpretation Lp-PLA\textsubscript{2} activity and mass each show continuous associations with risk of coronary heart disease, similar in magnitude to that with non-HDL cholesterol or systolic blood pressure in this population. Associations of Lp-PLA\textsubscript{2} mass and activity are not exclusive to vascular outcomes, and the vascular associations depend at least partly on lipids.

Funding UK Medical Research Council, GlaxoSmithKline, and British Heart Foundation.

Introduction Lipoprotein-associated phospholipase A\textsubscript{2} (Lp-PLA\textsubscript{2}), an enzyme expressed by inflammatory cells in atherosclerotic plaques,1,2 is carried in the circulation bound predominantly to LDL.3 Lp-PLA\textsubscript{2} and other human A\textsubscript{2} phospholipases (such as secretory phospholipase A\textsubscript{2})4 propagate inflammation by producing precursors of arachidonic acid from membrane glycerophospholipids.5 Lp-PLA\textsubscript{2}, (also called platelet-activating factor acetylhydrolase) hydrolyses oxidised phospholipids to yield pro-inflammatory products that are implicated in endothelial dysfunction, plaque inflammation, and formation of necrotic core in plaque,6,7 and is postulated to link oxidative modification of LDL and development of inflammatory responses in the arterial intima.8,9

Since the initial report in 2000,10 many prospective epidemiological studies have investigated the associations between circulating Lp-PLA\textsubscript{2}, (assayed either as its enzymatic activity or mass concentration) and subsequent risk of vascular disease outcomes. A meta-analysis of 14 such studies has been reported.11 However, because that review was based on published data, it was unable to provide detailed analyses (eg, separate examination of associations with coronary heart disease and stroke; characterisation of the shape of any dose-response relations) or to adjust consistently for potential confounding factors.

The objective of the Lp-PLA\textsubscript{2} Studies Collaboration,12 an analysis of individual data from relevant prospective studies, was to assess the independence, specificity, magnitude, and shape of associations of Lp-PLA\textsubscript{2}, mass and activity are not exclusive to vascular outcomes, and the vascular associations depend at least partly on lipids.
Study participants were drawn from three groups (webappendix p 7): (1) 35,945 people with no history of vascular disease at the initial examination (baseline); (2) 35,494 patients with a history of stable vascular disease (ie, diagnosis more than 30 days before baseline of any of myocardial infarction, angina, other coronary heart disease, stroke [including transient ischaemic attack], peripheral vascular disease, or coronary surgery, including revascularisations); and (3) 10,638 patients diagnosed with acute ischaemic events occurring no more than 30 days before baseline. (This final group has been analysed separately because risk factor levels might be more liable to distortion immediately after acute ischaemic events and because these studies had much shorter follow-up than did the other groups.) Baseline information was not available for non-vascular diseases.

Of the 19 studies that measured Lp-PLA\(_2\) enzyme activity, eight used radiometric and 11 used colorimetric assays (of which eight used Colorimetric Activity Method [CAM] assays [diaDexus, San Francisco, CA, USA], two used Azwell assays [Azwell, Osaka, Japan], and one used Cayman assays [Cayman Chemical, Ann Arbor, MI, USA]). Of the 25 studies that measured Lp-PLA\(_2\) mass concentration, two used in-house enzyme-linked immunoassays and 23 used commercial immunoassays, including three studies that used first generation Phospholipase A\(_2\)—Cardiovascular (PLAC I) assays, 19 that used second generation (PLAC II), and one study that used third generation (PLAC III; all PLAC assays were manufactured by diaDexus, San Francisco, CA, USA). In registering fatal outcomes, all but one study used international classification of disease codings to at least three digits, and ascertainment was based on death.
certificates. 24 of the 32 contributing studies were also known to have classified deaths using medical records, autopsy findings, and other supplementary sources. 28 studies used standard definitions of myocardial infarction based on criteria of monitoring trends and determinants in cardiovascular disease. 21 studies reported diagnosis of stroke subtypes on the basis of typical clinical features and characteristic changes on brain imaging. The study was approved by the Cambridgeshire Ethics Research Committee.

Statistical analyses
The webappendix p 3 provides details of the statistical methods. Because of differences in the mean and SD of concentrations of Lp-PLA, recorded across studies using different assay methods (webappendix pp 8 and 18), concentrations were Z transformed to a mean of 0 and an SD of 1 within each study (as well as doing sensitivity analyses with exclusion of studies with outlier values). Cross-sectional associations of Lp-PLA, with various markers were assessed by calculation of mean Lp-PLA, concentrations within tenths of these characteristics, with linear mixed models adjusted for age as previously described. The primary outcome was coronary heart disease (ie, non-fatal myocardial infarction or fatal coronary heart disease). All participants contributed only either the first non-fatal outcome or death during follow-up recorded at age 20 years or older (ie, deaths preceded by non-fatal coronary heart disease or stroke were not included in the main analyses). Principal analyses used a two-stage approach. Estimates of association were calculated within each study before pooling across studies by random-effects meta-analysis (parallel analyses used fixed-effect models). For cohort studies, hazard ratios were calculated with Cox proportional hazards models stratified by sex and baseline history of vascular disease.
Articles

Assumptions of proportionality of hazards were satisfied for both Lp-PLA\textsubscript{2} markers. For case-control studies that were nested within prospective cohorts, odds ratios were calculated with either conditional or unconditional logistic regression models, as appropriate. Odds ratios were assumed to approximate hazard ratios and are collectively described as risk ratios (RRs). Studies contributing ten or fewer outcomes to any particular analysis were excluded. When data were missing for covariates, we restricted analyses to subsets of participants with complete information.

To assess shapes of association, study-specific RRs calculated within fifths of baseline Lp-PLA\textsubscript{2} values were pooled on the log scale by multivariate random-effects meta-analysis and plotted against the mean levels in each fifth. We estimated 95% CIs from floated variances that correspond to the amount of information underlying each group (including the reference group). Since associations were roughly log-linear, we calculated regression coefficients to estimate the RR associated with one Z score higher Lp-PLA\textsubscript{2}, equivalent to a 1 SD higher Lp-PLA\textsubscript{2}. RRs were adjusted progressively for conventional risk factors. Because directly measured LDL cholesterol values were available in only a subset of participants, non-HDL cholesterol was used as the principal marker of cholesterol content in proatherogenic lipoproteins, avoiding potential biases of use of LDL cholesterol estimated by the Friedewald formula (webappendix p 6). The Wald χ^2 statistic indicated the evidence of association. Heterogeneity was assessed by the I^2 statistic. Diversity in study characteristics was investigated by grouping studies by recorded characteristics and by meta-regression. We investigated effect modification by formal tests of interaction, with main emphasis on age, sex, and lipid-related variables. Analyses related to prediction of vascular risk were not attempted, principally owing to the briefness of follow-up (eg, median follow-up of <6 years) and missing information about relevant risk factors. We used Stata (version 11.0) for analyses.

Figure 2: Minimally adjusted risk ratios for coronary heart disease, ischaemic stroke, and death due to vascular and non-vascular causes by fifths of Lp-PLA\textsubscript{2} activity or mass at baseline

Risk ratios were adjusted for age, sex, baseline history of vascular disease, history of diabetes, and trial group (as appropriate). The webappendix p 11 shows more fully adjusted risk ratios. Data are shown for the 21 439 participants who were initially healthy or had a history of stable vascular disease at baseline only. One unit on the standardised scale is equal to 1 SD on the untransformed scale. Error bars represent 95% CIs. The sizes of the boxes are proportional to the inverse of the variance of the risk ratios. Lp-PLA\textsubscript{2}=lipoprotein-associated phospholipase A\textsubscript{2}. *Fatal and non-fatal events.
History of vascular disease* Number of Number of RR (95% CI)
participants cases

History of vascular disease*	Number of participants	Number of cases	RR (95% CI)
A Lp-PLA2, activity			
Coronary heart disease: 12 studies†			
No history	16 145	1534	1.03 (0.95–1.12)
Stable disease	24 976	2429	1.17 (1.09–1.27)
Overall	41 121	3963	1.10 (1.05–1.16)
Ischaemic stroke: 4 studies†			
No history	8 663	456	1.01 (0.71–1.43)
Stable disease	17 437	673	1.17 (0.78–1.76)
Overall	26 100	1129	1.08 (0.97–1.20)
Vascular death: 9 studies†			
No history	13 143	459	1.05 (0.93–1.19)
Stable disease	24 962	2230	1.21 (1.12–1.30)
Overall	38 105	2689	1.16 (1.09–1.24)
Non-vascular death: B studies†			
No history	13 143	1201	1.07 (0.93–1.24)
Stable disease	23 941	1594	1.15 (1.02–1.31)
Overall	37 084	2795	1.10 (1.04–1.17)
B Lp-PLA2, mass			
Coronary heart disease: 12 studies†			
No history	17 089	1813	1.09 (1.02–1.16)
Stable disease	23 202	2648	1.14 (1.07–1.21)
Overall	40 291	4361	1.11 (1.07–1.16)
Ischaemic stroke: 5 studies†			
No history	9 704	1252	1.22 (0.99–1.51)
Stable disease	17 825	845	1.12 (0.97–1.31)
Overall	27 529	2097	1.14 (1.02–1.27)
Vascular death: 11 studies†			
No history	15 572	763	1.01 (0.92–1.09)
Stable disease	23 202	2126	1.26 (1.19–1.34)
Overall	38 874	2889	1.13 (1.05–1.22)
Non-vascular death: 11 studies†			
No history	15 572	1556	1.09 (0.97–1.21)
Stable disease	23 202	1567	1.17 (1.04–1.32)
Overall	38 874	3123	1.10 (1.03–1.18)

Figure 3: Risk ratios for coronary heart disease, ischaemic stroke, and vascular and non-vascular mortality per 1 SD higher Lp-PLA2, activity or mass at baseline, adjusted for several risk factors

Risk ratios were adjusted for the non-lipid and lipid risk factors described in table 2. We noted no significant differences in risk ratios between people with and without a history of stable vascular disease at baseline, apart from for vascular death with Lp-PLA2 mass (p=0.007). Data for patients with recent acute ischaemic events are shown in webappendix p16. Error bars represent 95% CIs. The sizes of the boxes are proportional to the inverse of the variance of the RRs. Lp-PLA2, lipoprotein-associated phospholipase A2; RR, risk ratio. *Diagnosis more than 30 days before baseline of myocardial infarction, angina, other coronary heart disease, stroke (including transient ischaemic attack), peripheral vascular disease, or coronary surgery (including revascularisations). †Fatal and non-fatal events.

Role of the funding source

The independent academic coordinating centre, based at the University of Cambridge and University of Oxford, designed the study, did data collection and management, did statistical analysis, and wrote the report. GlaxoSmithKline was represented on the study’s Operations Group. The study was undertaken independently from the funders. AT and JD had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

Mean age at entry of the 79 036 participants was 64 years (SD 10). 50 290 (64%) were men, 46 418 (59%) were from western Europe, and 20 663 (26%) were from North America (webappendix pp 17–18). 7 639 incident coronary heart disease outcomes, 2 547 ischaemic strokes, 198 haemorrhagic strokes, 1 191 unclassified strokes, and 1 490 deaths from other vascular diseases, 4 424 deaths from non-vascular diseases, and 233 from unknown causes were recorded during at least 474 976 person-years at risk. In the 71 439 participants who were initially healthy or had a history of stable vascular disease at baseline, Lp-PLA2, activity was available in 57 931 participants from 18 studies and Lp-PLA2 mass in 58 224 participants from 21 studies (table 1 and webappendix p 7).

For Lp-PLA2 activity, much of the variation in mean values across studies was explained by differences in the assay methods used (webappendix p 8). In studies using the CAM assay, the mean was 151 nmol/min/mL (SD 32), whereas it was 42 nmol/min/mL (14) in studies using radiometric assays. For mass, apart from the two studies that used in-house ELISA, mean concentrations were broadly similar across studies, with a mean of 312 μg/L (SD 95) in studies that used the PLAC II assay. Lp-PLA2 activity and mass were roughly linearly associated with each other (partial correlation coefficient r=0.51, 95% CI 0.47–0.56; figure 1). Lp-PLA2 activity was higher in men than in women (table 1) and positively correlated with non-HDL cholesterol (r=0.49, 0.45–0.52), directly measured LDL cholesterol (r=0.48, 0.41–0.55), apolipoprotein B (r=0.45, 0.38–0.51), and log, triglycerides (r=0.22, 0.19–0.26), and inversely correlated with HDL cholesterol (r=0.24, 0.29 to 0.19) and apolipoprotein AI (r=0.15, 0.23 to 0.05; figure 1). Lp-PLA2 activity was only weakly or non-significantly associated with age, systolic blood pressure, body-mass index, smoking, log, C-reactive protein (CRP), and fibrinogen or leucocyte count (table 1 and figure 1). Associations of Lp-PLA2 mass followed similar patterns, although mass was more strongly associated with smoking and less strongly associated with lipids than was activity (table 1 and webappendix p 9). A combined estimate of the within-person variability of Lp-PLA2 could not be made reliably because results from different studies were widely divergent.20 Furthermore, only some of the sources of heterogeneity could be identified (eg, studies that used CAM assays tended to have higher reproducibility values than did those that used radiometric activity assays; webappendix p 10).

We noted roughly log-linear associations of Lp-PLA2 activity with risk of coronary heart disease and all vascular mortality, and less distinct associations with ischaemic stroke and the aggregate of non-vascular mortality (figure 2 and webappendix p 11). Because RRs did not differ significantly in initially healthy participants and in patients with stable vascular disease, we combined them to improve precision (figure 3). The RR for coronary heart disease with 1 SD higher Lp-PLA2 activity was reduced from 1.16 (95% CI 1.10–1.21) in minimally adjusted analyses to 1.10 (1.05–1.16) after further adjustment for conventional risk factors (the Wald χ² reduced from 33 to 14, most of which was due...
to adjustment for lipids; table 2). We recorded no clear evidence of heterogeneity (I²=20%, 95% CI 0–59) nor of effect modification (webappendix pp 12–13). In subsets of participants with relevant information, RRs for coronary heart disease were: 1·10 (95% CI 1·02–1·18) after adjustment for apolipoproteins AI and B (instead of HDL cholesterol and non-HDL cholesterol, respectively); 1·12 (1·07–1·18) after adjustment for several conventional risk factors plus cholesterol concentrations and apolipoprotein B; 1·13 (1·08–1·19) after adjustment for directly measured LDL and HDL cholesterol (instead of non-HDL and HDL cholesterol); and 1·07 (1·00–1·14) after adjustment for several conventional risk factors plus Lp-PLA2 mass (webappendix p 21). The RR for ischaemic stroke after adjustment for conventional risk factors was 1·08 (0·97–1·20; table 2). Adjusted RRs were 0·97 (0·79–1·19) for haemorrhagic stroke, 1·02 (0·93–1·12) for unclassified stroke, and 1·16 (1·09–1·24) for all vascular mortality (figure 3 and webappendix p 14). The RR for the aggregate of non-vascular mortality was 1·10 (1·04–1·17) after adjustment for several risk factors (figure 3), with an RR for cancer death of 1·05 (0·97–1·14), and 1·18 (1·07–1·30) for non-vascular mortality not attributed to cancer (webappendix p 22). There were too few outcomes to attempt detailed subdivisions of non-vascular deaths (eg, by cancer site).

We recorded roughly log-linear associations of Lp-PLA2 mass with vascular and non-vascular outcomes (figure 2 and webappendix p 11). Because RRs did not differ significantly in initially healthy participants and in those with stable vascular disease (apart from for the outcome of vascular death; webappendix p 23), they were combined (figure 3). The RR for coronary heart disease with 1 SD higher Lp-PLA2 mass, reduced from 1·15 (1·11–1·19) to 1·11 (1·07–1·16) after adjustment for several risk factors (the Wald χ² reduced from 55 to 25; table 2). Again, we noted no clear evidence of heterogeneity (I²=26%, 95% CI 0–62) nor of effect modification (webappendix pp 12–13). The adjusted RR for coronary heart disease with Lp-PLA2 mass was 1·08 (1·04–1·12) after further adjustment for Lp-PLA2 activity (further reducing the Wald χ² from 33 to 14; webappendix p 21). Adjusted RRs for other outcomes were: 1·14 (1·02–1·27) for ischaemic stroke (table 2); 1·13 (1·05–1·22) for all vascular mortality; 1·10 (1·03–1·18) for the aggregate of non-vascular mortality; 1·08 (0·98–1·18) for cancer death; and 1·13 (1·04–1·23) for non-vascular mortality not attributed to cancer (webappendix p 22).

Adjusted RRs for coronary heart disease with Lp-PLA2 mass and activity were broadly similar to those with non-HDL cholesterol and systolic blood pressure (figure 4). For both Lp-PLA2 markers, we recorded qualitatively similar results to those reported in sensitivity analyses that: adjusted RRs further for CRP or fibrinogen (webappendix p 21); used fixed-effect models

Table 2: Risk ratios for coronary heart disease and ischaemic stroke per 1 SD higher Lp-PLA2 activity or mass at baseline, with progressive adjustment for baseline levels of potential confounders

Lp-PLA2, activity	RR (95% CI)	Wald χ²	p (95% CI)
Lp-PLA2 mass			
Non-HDL cholesterol	1·10 (1·02–1·18)	2	0·01 (0·00–1·38)
HDL cholesterol†	1·15 (1·05–1·25)	3	0·00 (0·00–1·38)

Figure 4: Adjusted risk ratios for coronary heart disease per 1 SD higher baseline Lp-PLA2 activity, mass, and several conventional risk factors in a common set of participants

Analyses were restricted to participants with complete information. The Wald χ² statistic indicates the significance of the accompanying RR. The χ² statistic estimates the percentage of heterogeneity in the study-specific RRs that can be accounted for by between-study differences and not chance. RRs for other outcomes are shown in webappendix p 22. Lp-PLA2=lipoprotein-associated phospholipase A2. RR=risk ratio. *For Lp-PLA2 activity: 12 studies, 41 121 participants, and 2097 events; for Lp-PLA2 mass: 12 studies, 40 291 participants, and 4361 events. †Adjusted for age and history of diabetes, and stratified by sex, baseline history of vascular disease, and trial group (as appropriate). ‡For Lp-PLA2 activity: 12 studies, 26 100 participants, and 1129 events; for Lp-PLA2 mass: five studies, 27 529 participants, and 2097 events.
than did other participants (1·1 [IQR 0·6–2·3] vs 5·8 [4·0–8·4] years). The cross-sectional correlations of Lp-PLA₂ in these patients were broadly similar to those described above (webappendix p 24). RRs for recurrent vascular outcomes in these patients were essentially null, albeit with wide confidence intervals (webappendix p 16).

Discussion

Our analysis of 79036 participants has shown that Lp-PLA₂ activity and mass are associated with each other, proatherogenic lipids, and vascular risk. Lp-PLA₂ activity was more strongly associated with various lipid markers than was Lp-PLA₂ mass, which could indicate their varying distributions across lipoprotein classes, differences in measurement precision, or both.²⁰⁻²¹ By contrast with previous suggestions of risk thresholds,²⁷ our analysis shows roughly log-linear associations of Lp-PLA₂ with risk of coronary heart disease and total vascular mortality. The shape of relations of circulating Lp-PLA₂ with ischaemic stroke and with the aggregate of non-vascular mortality are less clear than is that with coronary heart disease, perhaps as a result of the fewer outcomes recorded. As has been reported previously for CRP and fibrinogen,²⁵⁻²⁶ Lp-PLA₂ is associated with risk of both major vascular and non-vascular outcomes. However, because Lp-PLA₂ mass and activity are not materially correlated with these circulating inflammatory markers, Lp-PLA₂ measurements could have the potential to provide distinct insight into the relation between inflammation and atherothrombosis.

The strength of association for coronary heart disease with Lp-PLA₂ was reduced after adjustment for baseline concentrations of lipids and apolipoproteins. Since Lp-PLA₂ is physically linked (through apolipoprotein B) with LDL, however, the validity of statistical attempts to distinguish the effects of Lp-PLA₂ on risk of coronary heart disease from those of proatherogenic lipids remains uncertain. A practical approach, as used in this study, is to present RRs with and without statistical adjustment for such lipid markers, and across participants with different lipid concentrations at baseline. Even in adjusted analyses, however, substantial residual confounding might persist because lipids (and other risk factors) are measured with some error,²⁷ and because detailed information about some potential confounding factors (eg, medication for vascular diseases) was not uniformly available from the contributing studies.

The adjusted RR of baseline Lp-PLA₂ with risk of coronary heart disease was similar to those for concentration of non-HDL cholesterol and systolic blood pressure. The RR with each of these conventional risk factors was, however, fairly moderate in magnitude—ie, about 10–15% higher risk per 1 SD higher value of the risk factor, or about a third as strong as in previous reports in which mean age at baseline survey was about 10 years lower than that reported in this study.²⁷ Our findings of such weaker than expected RRs with conventional risk factors could be explained by the older mean age of participants in this study, since RRs with vascular risk factors tend to decrease with age (by contrast with absolute risk).²⁷⁻²⁹ Furthermore, the high percentage of participants who had prevalent vascular disease at entry could have disrupted natural relations between risk factors and subsequent coronary heart disease. These effects could, therefore, have blunted RRs with Lp-PLA₂.

The strength and potential limitations of this investigation merit consideration. It is a large and comprehensive study, encompassing more than 95% of the relevant available data. Use of individual records allowed detailed analysis and a consistent approach to adjustment for several potential confounders. Because most contributing studies agreed to participate before publication of their data, the effect of selective reporting should be reduced. However, because data for serial Lp-PLA₂ measurements were sparse and apparently divergent, we could not reliably correct for regression dilution.²³ If, for example, the true correlation of Lp-PLA₂ concentrations taken a few years apart in the same people is about 0·5, then the degree of underestimation of RRs could be as large as two-fold. Furthermore, the median follow-up duration in this study was about 6 years, which is too brief to enable informative study of the incremental value of Lp-PLA₂ measurement in standard 10-year prediction of vascular disease risk. These limitations draw attention to the need for large studies of first-ever coronary heart disease with serial measurements and extended follow-up. Furthermore, more detailed studies are needed of non-vascular outcomes, especially because recorded associations of Lp-PLA₂ with risk of non-cancer, non-vascular deaths might be attributed, at least partly, to confounding by comorbidity at baseline. Nevertheless, a potential limitation of any observational studies of circulating Lp-PLA₂ is that the enzyme in the blood could be an imperfect indicator of its relevance to atherosclerotic plaques.

Loss-of-function mutations in the PLA2G7 gene, which are common in east-Asian populations, effectively abolish Lp-PLA₂ activity (or, in heterozygotes, substantially reduce activity).³⁰ Vascular risk is, however, not clearly lower in people carrying such mutations,³¹⁻³³ although available studies might have been limited by heterogeneous outcomes and possible pleiotropic effects.³³ Because known Lp-PLA₂-related genotypes that are common in people of European continental ancestry have only weak effects on Lp-PLA₂ activity,³³ their study would need very large numbers of patients with coronary heart disease. Randomised trials of potent reversible pharmacological inhibitors of Lp-PLA₂ activity should help to establish whether modification of Lp-PLA₂ can reverse vascular risk.³⁴⁻³⁷
Contributors
Alexander Thompson and John Danesh drafted the report. Pei Gao and Lia Orfei did the analyses. All members of the writing committee provided critical revisions. All investigators shared individual data and had opportunities to contribute to the interpretation of the results and critical revision of the report. Members of the operations group monitored the study’s progress. The data management team undertook data collation and harmonisation. All members of the coordinating centre contributed to the collection, harmonisation, analysis, and interpretation of the data.

The LP-PLA, Studies Collaboration

Writing committee Alexander Thompson, Pei Gao, Lia Orfei, Sarah Watson, Emanuele Di Angelantonio, Stephen Kaptoge, Christy Ballantyne, Yuval Tabib, Rory Collins, Sarah Watson, Emanuele Di Angelantonio, Stephen Kaptoge, John Danesh, Martin Brown, Lina M Almgren, Mark J Buring, Angela Wood, Stephen Kaptoge, Rory Collins, Fiona Doll, Simon G Thompson, and Simon G Thompson.

Data Management Team Nevin Zariffa, Andrew Zalewski, Albert Hofman, Jeanenne J Nelson, Chris Packard, Simon G Thompson, and Simon G Thompson.

Coordinating Centre Alexander Thompson, Christy Ballantyne, Yuval Tabib, Rory Collins, Sarah Watson, John Danesh, Albert Hofman, Jeanenne J Nelson, Chris Packard, Simon G Thompson, Nevin Zariffa, Andrew Zalewski, and Simon G Thompson.

Conduct of the studies

Investigators (study acronyms are defined in webappendix p 2) ARIC: Christy Ballantyne; Bruneck: Johann Willett, Stefan Kiechl, Christian Wiedermann; CHS: Mary Cushman, Bruce Psaty, Curt Furberg; EPIC-Norfolk: Kay-Tee Khaw, Manjinder Sandhu; FHS Offspring: Emelia J Benjami, Ramachandran S Vasan, Renate B Schmabel, FRIC II: Jonas Olsson; GENICA: Gian Paolo Rossi, Maurizio Cesari, Livia Lenzi, Mario Zanchetta; GUSTO IV: Stefan K James; IPFSP: Eric Rimm, Ida Hatoum; HPS: Rory Collins; IHCS: Jeffrey L Anderson, Heidi T May, Benjamin D Horne, John F Carlquist, Joseph B Muhlestein; KAROLA: Wolfgang Koenig, Hermann Brenner, Dietrich Rothenbacher; LURIC: Winfried Marz, Bernhard Böhm, Bernhard R Winkelmann, Karl Winkel; MDCS: Gordan Berghold, Margarethta Persson; MAYO CLINIC (Olmsted County): Veronica Roger, Yariv Gerber; MAYO CLINIC (Refferal practice): Peter B Berger, Emmanuelou S Brilakis, Joseph P McConnell; MONICA-KORA: Wolfgang Koenig, Christa Messinger; NHS: Eric Rimm, Ida Hatoum; NOMAS: Ralph Sacco, Mitchell Elkind; NPS II: Philippa J Talmud; OPUS-TIMI I: Michelle O’Donoghue; PEACE: Marc S Sabatine, David A Morrow; PROSPER: Chris Packard; Muriel Caslake; PROVEIT-TIMI 22: Eugene Braunwald, Christopher P Cannon; Rancho Bernardo: Elizabeth Barrett-Connor, Lori B Daniels, Gail A Laughlin; Rotterdam Study: Albert Hofman, Isabella Koppes, Jacqueline C M Wittman; SDYC: Michael Crippi; THROMBO: James P Corsetti, David L Rainwater, Arthur J Moss; WHI-HA:BS, Sylvia Wassertheil-Smoller; WHS: Paul Ridker; WOSCOPS: Chris Packard.

Operations group Christy Ballantyne, Christopher P Cannon, Rory Collins, Michael Crippi, Mary Cushman, John Danesh, Albert Hofman, Jeanenne J Nelson, Chris Packard, Simon G Thompson, Nevin Zariffa, Andrew Zalewski.

Data Management Team Sarah Watson, Mat Walker.

Collaborating centres

Coordinating Centre
Alexantonio were supported by UK Medical Research Council (G0601284) and GlaxoSmithKline, and by a single isolated contributor to a list naming some of these funding sources, which can be found at http://www.phpc.cam.ac.uk/ceu/lsc. Pierre Jacob and Clément Pravin provided statistical support. Hannah Sneath, Angela Harper, and Karina Frasad provided administrative support. Mary Cushman provided limited tabular data on LP-PLA, reproducibility on behalf of the Multi-Ethnic Study of Atherosclerosis (MESA) investigators.

Acknowledgments

The independent academic LP-PLA, Studies Collaboration coordinating centre has been supported by specific grants from the UK Medical Research Council (G0601284) and GlaxoSmithKline, and is underpinned by a grant from the British Heart Foundation (RG/08/014). Alexander Thompson and Emanuele Di Angelantonio were supported by UK Medical Research Council doctoral training grants. A variety of sources have supported recruitment, follow-up, and laboratory measurements in the 32 studies contributing to the LP-PLA, Studies Collaboration. Investigators of several of these studies have contributed to a list naming some of these funding sources, which can be found at http://www.phpc.cam.ac.uk/ceu/tsc. Pierre Jacob and Clément Pravin provided statistical support. Hannah Sneath, Angela Harper, and Karina Frasad provided administrative support. Mary Cushman provided limited tabular data on LP-PLA, reproducibility on behalf of the Multi-Ethnic Study of Atherosclerosis (MESA) investigators.

References

1. Kolodgie FD, Burke AP, Skorja KS, et al. Lipoprotein-associated phospholipase A, protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26: 2523–29.
2. Mannheim D, Hermann J, Versari D, et al. Enhanced expression of LP-PLA, and lypoxygenidicholylphosphoryl in symptomatic carotid atherosclerotic plaques. Stroke 2008; 39: 1448–53.
3. Stafforini DM, Tjoelker LW, McCormick SP, et al. Molecular basis of the interaction between plasma platelet-activating factor acetylatedlhydrolase and low density lipoprotein. J Biol Chem 1999; 274: 7018–24.
4. Rosenson RS, Hulop C, McConnell D, et al. For the PLASMA Investigators, Effects of 1-H-indole-3-glyoxamide (A-002) on secretion of secretory phospholipase A (PLASMA study): a phase II double-blind, randomised, placebo-controlled trial. Lancet 2009; 373: 649–58.
Corson MA. Phospholipase A inhibitors in atherosclerosis: the race is on. *Lancet* 2009; 373: 608–10.

Karabina SA, Elisaf M, Bairaktari E, Tzallas C, Siamopoulos KC, Tsatsopoulos AD. Increased activity of platelet-activating factor acetylhydrolase in low-density lipoprotein subfractions induces enhanced lysophosphatidylcholine production during oxidation in patients with heterozygous familial hypercholesterolemia. *Eur J Clin Invest* 1997; 27: 595–602.

Macphee CH, Moore KE, Boyd HF, et al. Lipoprotein-associated phospholipase A₂, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. *Biochem J* 1999; 338: 479–87.

Zaleswki A, Macphee C. Role of lipoprotein-associated phospholipase A₂ in atherosclerosis: biology, epidemiology, and possible therapeutic target. *Arterioscler Thromb Vasc Biol* 2005; 25: 923–31.

Caslake MJ, Packard CJ. Lipoprotein-associated phospholipase A₂, platelet-activating factor acetylhydrolase and cardiovascular disease. *Curr Opin Lipidol* 2003; 14: 347–52.

Packard CJ, O’Reilly DS, Caslake MJ, et al. Lipoprotein-associated phospholipase A₂, as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. *N Engl J Med* 2000; 343: 148–55.

Garza CA, Montori VM, McConnell JP, Somers VK, Somers VK, Kullo IJ, Chamberlain P, Macphee CH. Lipoprotein-associated phospholipase A₂ activity and cardiovascular disease. *Mayo Clin Proc* 2007; 82: 159–65.

The Fibrinogen Studies Collaboration. Measures to assess the regression dilution methods in long-term follow-up of prospective studies. *Am J Epidemiol* 1999; 150: 341–53.

Clarke R, Shipley M, Lewington S, et al. Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. *Am J Cardiol* 2008; 101: 51F–57F.

The Fibrinogen Studies Collaboration. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. *JAMA* 2005; 294: 1799–809.

The Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. *Lancet* 2010; 375: 132–40.

The Emerging Risk Factors Collaboration. Major lipids, apolipoproteins, and risk of vascular disease. *JAMA* 2009; 302: 1933–40.

Manolio TA, Pearson TA, Wenger NK, Barrett-Connor E, Payne GH, Harlan WR. Cholesterol and heart disease in older persons and women. Review of an NHLBI workshop. *Ann Epidemiol* 1992; 2: 161–76.

Prospective Studies Collaboration. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55 000 vascular deaths. *Lancet* 2007; 370: 1829–39.

Stafforini DM, Satoh K, Atkinson DL, et al. Platelet-activating factor acetylhydrolase deficiency. A nonsense mutation near the active site of an anti-inflammatory phospholipase. *J Clin Invest* 1996; 97: 2784–91.

Yamada Y, Matsuo H, Segawa T, et al. Assessment of genetic risk for myocardial infarction. *Thromb Haemost* 2006; 96: 220–27.

Hou L, Chen S, Yu H, et al. Associations of PLA2G7 gene polymorphisms with plasma lipoprotein-associated phospholipase A₂ activity and coronary heart disease in a Chinese Han population: the Beijing atherosclerosis study. *Hum Genet* 2009; 125: 11–20.

Hoffmann MM, Winkler K, Renner W, et al. Genetic variants and haplotypes of lipoprotein associated phospholipase A₂ and their influence on cardiovascular disease (The Ludwigshafen Risk and Cardiovascular Health Study). *J Thromb Haemost* 2007; 5: 41–48.

Mohler ER 3rd, Ballantyne CM, Davidson MH, et al. The effect of darapladib on plasma lipoprotein-associated phospholipase A₂ activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent: the results of a multicenter, randomized, double-blind, placebo-controlled study. *J Am Coll Cardiol* 2008; 51: 1632–41.

Wilesney RL, Shi Y, Mohler ER 3rd, et al. Inhibition of lipoprotein-associated phospholipase A₂ reduces complex coronary atherosclerotic plaque development. *Nat Med* 2008; 14: 1059–66.

The Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy Trial (STABILITY). http://clinicaltrials.gov/ct2/show/NCT00799903 (accessed April 6, 2010).

The Stabilization Of Plaques using Darapladib-Thrombolysis In Myocardial Infarction 52 Trial (SOLID-TIMI 52). http://clinicaltrials.gov/ct2/show/NCT01000072 (accessed April 6, 2010).