Further Evidence of an Association between *NCAN* rs1064395 and Bipolar Disorder

Lu Wanga Weiqing Liub Xingxing Lic Xiao Xiaoa Lingyi Lia Fang Liub Yuanfang Heb Yan Baib Hong Changa Dong-Sheng Zhouc Ming Lia

aKey Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, PR China; bDepartment of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China; cDepartment of Psychiatry, Ningbo Kangning Hospital, Ningbo, PR China

Abstract

Genome-wide association studies suggest that rs1064395 in the neurocan gene (*NCAN*) is a potential risk factor for bipolar disorder (BPD), and further replication analyses in larger independent samples are needed. We herein analyzed rs1064395 in a Han Chinese sample of 1,146 BPD cases and 2,031 controls, followed by a meta-analysis of BPD samples from worldwide populations including a total of 15,318 cases and 91,990 controls. The meta-analysis found that rs1064395 showed a genome-wide significant association with BPD ($p = 4.92 \times 10^{-9}$, OR = 1.126 for the A allele), although it did not reach the significance level in the Han Chinese sample ($p = 0.415$, OR = 1.070 for the A allele). We also examined the association between the single nucleotide polymorphisms and major depressive disorder (MDD) given the presumed genetic overlap between BPD and MDD, and rs1064395 was also associated with MDD ($p = 0.0068$, OR = 1.067 for the A allele) in a meta-analysis of 14,543 cases and 14,856 controls. Our data provide further evidence for the involvement of *NCAN* in the genetic susceptibility to BPD and also implicate its broader role in major mood disorders.

Introduction

Bipolar disorder (BPD) is a severe mental illness with a lifetime prevalence of up to 1.6% [1, 2]. Previous studies showed that the child of an affected parent has about a ten-fold increased risk of developing BPD, and twin studies of this illness has revealed an estimated heritability of 0.7–0.8 [3, 4]. Interestingly, previous analyses have found increased morbidity of major depressive disorder (MDD) within family members of a proband with BPD [5]. This work.

L. Wang and W. Liu contributed equally to this work.

Keywords

NCAN · Genome-wide association studies · Bipolar disorder · Major mood disorders · Meta-analysis
leads to the idea that BPD and MDD may have common genetic risk features. In fact, clinical, epidemiological, and genetic studies have revealed similar phenotypic characteristics between BPD and MDD [3, 6], and there are also overlapping risk genes, such as CACNA1C [7], CREB1 [8], and AS3MT [9–11]. It is thus proposed that genetic analyses of these two illnesses could uncover important genes underlying the symptoms observed in both diseases.

To uncover the BPD susceptibility genes, several genome-wide association studies (GWAS) have been conducted in multiple case-control samples, and a number of such genes (CACNA1C, ANK3, TRANK1, etc.) have been reported [12–22]. Among those genes, the neurocan gene (NCAN) (encodes neurocan, containing 15 exons and spanning 40.3 kb in the genome, and locates in 19p13.11) was one of the first genes showing genome-wide significant associations with BPD and caught wide attention from the community [13]. The single nucleotide polymorphism (SNP) rs1064395 in NCAN was found to be genome-wide significantly associated with BPD in a GWAS plus replication analysis in a total of 8,441 cases and 35,362 controls by Cichon et al. [13] (p = 2.14 × 10−9). However, this SNP did not reach genome-wide significance in other BPD GWAS [15, 17–19], which may be the result of genetic background heterogeneity among different samples. However, a potential impact of rs1064395 on the risk of BPD was supported by its associations with brain function, cognitive performance, and risk of other psychiatric disorder (i.e., schizophrenia) [23–27]. In addition, a previous study found that the rs1064395 risk allele was significantly associated with the “mania” factor, which was confirmed by the discovery that compared to wild-type mice, the homozygous Ncan knockout mice were more hyperactive and exhibited more frequent risk-taking and repetitive behaviors, less depression-like conduct, plus impaired prepulse inhibition, amphetamine hypersensitivity, as well as increased saccharin preference [28]. All these lines of evidence support the link between NCAN and BPD susceptibility.

In the present study, to further investigate whether NCAN confers risk of BPD, we conducted a replication analysis of rs1064395 in a Han Chinese sample of 1,146 BPD cases and 2,031 controls. We then collected the published data of 15,318 cases and 91,990 controls worldwide and conducted a meta-analysis to further verify the replication results. In addition, considering the substantial genetic overlap between BPD and MDD [6, 29], we also examined rs1064395 in two MDD GWAS samples.

Materials and Methods

Han Chinese BPD Case-Control Sample

A total of 1,146 BPD cases and 2,031 controls of Han Chinese origin were included in the present study. We collected BPD patients from seven mental health centers and psychiatric departments of general medical hospitals in five provinces from the Southern China area. Each patient was independently interviewed and diagnosed as having BPD by a consensus of at least two experienced psychiatrists. Diagnoses were further confirmed with an Extensive Clinical Interview and a Structured Clinical Interview for DSM-IV Axis/Disorders, Patient Version given by a research psychiatrist. Cases were excluded if they had a preexisting history of other psychiatric disorders, mental retardation, or drug/alcohol addiction. Mentally healthy controls of Han Chinese origin were also collected from Southern China. Subjects with any history of major psychiatric or neurological disorders, drug abuse, or any family history of severe forms of psychiatric disorders were excluded. All participants provided written informed consent before any study-related procedures were performed.

SNP Genotyping and Statistical Analysis

Genomic DNA was isolated from blood samples using the standard phenol-chloroform. Each sample was genotyped on a custom array using the Sequenom MassARRAY system according to the manufacturer’s instructions. MassARRAY TYPER 4.0 was used to analyze the mass spectromograms and to generate the final calling of genotypes. Allele-specific logistic p values, ORs, and 95% CIs were calculated with PLINK assuming an additive genetic model [30]. In addition to our Chinese sample, we also collected the statistical data (OR and p value) of rs1064395 from two independent Japanese samples (Japan 01: 1,545 cases and 7,408 controls; Japan 02: 1,419 cases and 54,479 controls) [20] and six European datasets (MoodDS GWAS, PGC1 GWAS, Iceland, France, Bosnia and Herzegovina/Serbia, and Romania) from previously published studies [13, 17, 18, 31]. The PGC1 GWAS statistical results were obtained from the Psychiatric Genomics Consortium public website (https://www.med.unc.edu/pgc). Table 1 presents a list of these studies and their information such as sample area, definition criteria for psychiatric disorders, sample size, etc. The “metafor” package in R was used to perform the meta-analysis to calculate the pooled ORs and 95% CIs across different samples [32]. The heterogeneity between individual studies was estimated using the Cochran (Q) χ2 test through calculating the weighted sum of squares of deviations of individual OR estimates from the overall estimate [33, 34]. The pooled ORs and the 95% CIs were graphically presented in a forest plot, in which squares represented different studies and sizes of the squares denoted their respective weights.

Results

Association of NCAN rs1064395 with BPD

rs1064395 is a SNP in the 3′ untranslated region of NCAN and was initially implicated in a GWAS of BPD in Europeans [13]. This SNP did not show genome-wide significance in the following GWAS [12, 15, 17–19], rais-
ing the need for further replication analyses. In our Han Chinese case-control sample, while rs1064395 did not achieve the conventional nominal significance ($p = 0.415$, OR = 1.070 for the A allele, Table 1), the direction of allelic effect was the same as those in European studies.

We then retrieved the statistical data of rs1064395 from previously published GWAS and candidate gene studies (see detailed information in Table 1) and conducted a meta-analysis using these available data. A total of nine case-control datasets were included in the meta-analysis, yielding 15,318 cases and 91,990 controls. The full results of the meta-analysis are shown in Figure 1. We did not observe significant heterogeneity between samples ($p = 0.387$, $I^2 = 5.8\%$) and thus applied a fixed-effect model for the analyses. Interestingly, rs1064395 showed genome-wide significance ($p = 4.92 \times 10^{-9}$, OR = 1.126 for the A allele, Fig. 1). A post hoc analysis stratified by ethnic groups showed that rs1064395 was associated with BPD in both European ($p = 1.35 \times 10^{-8}$, OR = 1.149 for the A allele) and East Asian ($p = 0.0418$, OR = 1.077 for the A allele) populations.

Table 1. Characteristics of included BPD samples in this meta-analysis

Sample	Pheno-type	Diagnostic criteria	Cases, n	Controls, n	Genotyping method	rs1064395 OR 95% CI	Data source
MooDS GWAS BPD	DSM-IV, RDC	2,266	5,028		Illumina Human610-Quad, HumanOmni1-Quad	1.25 1.13–1.39	17
PGC1 GWAS BPD	DSM-IV, RDC	7,481	9,250		Illumina and Affymetrix platforms	1.10 1.04–1.17	18
Iceland	DSM-IV, RDC	422	11,487		Illumina HumanHap300	1.10 0.91–1.34	13
France	DSM-IV	471	1,758		Illumina HumanHap300, 550, 610-Quad	1.28 1.07–1.53	13
Bosnia and Herzegovina/	DSM-IV	107	113		Sequenom iPLEX Gold assay	1.20 0.75–1.93	13
Serbia	DSM-IV	461	436		Sequenom iPLEX Gold assay	1.22 0.95–1.54	31
Iceland	DSM-IV	1,545	7,408		Illumina HumanOmniExpress v1	1.09 0.97–1.23	20
Japan 01	DSM-IV-TR	1,419	54,479		Illumina HumanOmniExpressExome v1.2	1.07 0.95–1.19	20
Japan 02	DSM-IV-TR	1,146	2,031		Sequenom MassARRAY	1.07 0.91–1.26	current

BPD, bipolar disorder; GWAS, genome-wide association study.

Association of NCAN rs1064395 with MDD

We also examined the association of rs1064395 in two datasets of MDD GWAS. In the PGC1 GWAS including 9,240 MDD cases and 9,519 controls of European ancestry [35], rs1064395 was associated with MDD ($p = 0.0127$, OR = 1.075 for the A allele); in the CONVERGE GWAS of 5,303 cases and 5,337 controls in a Chinese population [36], the association of rs1064395 with MDD did not achieve conventional nominal significance ($p = 0.339$, OR = 1.049 for the A allele), but was in the same direction as that reported by PGC1 GWAS [35]. A meta-analysis of two MDD GWAS including 14,543 cases and 14,856 controls in total found that rs1064395 was also nominally associated with MDD ($p = 0.0068$, OR = 1.067 for the A allele). The allelic effects of rs1064395 in BPD and MDD analyses were in the same direction.

Discussion

NCAN was one of the first genes showing genome-wide significant association with BPD in general populations. In 2011, Cichon et al. [13] conducted a GWAS of 682 BPD cases and 1,300 controls in tandem with a follow-up replication analysis of an additional 7,759 cases and 34,062 controls, and found that rs1064395 in NCAN was significantly associated with BPD ($p = 2.14 \times 10^{-9}$, OR = 1.17).
To further understand the genetic susceptibility of BPD conferred by this SNP, we carried out a case-control analysis in a Han Chinese population and a follow-up meta-analysis combining all available samples, and observed a genome-wide significant association between rs1064395 and BPD in this large-scale sample. Based on the hypothesized genetic overlap between BPD and MDD, we then took one step further to show that rs1064395 was also associated with MDD, providing important evidence supporting the shared genetic risk components between these two illnesses. These data indicate that rs1064395 is likely a true risk variant for a broader spectrum of major mood disorders. More importantly, our meta-analysis included samples from both European and Asian populations, providing essential information regarding the genetic susceptibility conferred by this locus across different ethnic samples. Indeed, the observed consistent effect sizes of allelic risk at rs1064395 in different populations makes it compelling to further study the association of rs1064395 with major mood disorders in Asians.

The discovered association between rs1064395 and major mood disorders appeals studies revealing the underlying biological mechanisms of this GWAS locus on the pathogenesis of these diseases [37]. Although the precise function of this SNP remains unclear, as it locates in the 3' untranslated region of the NCAN gene, previous studies have implicated its regulative effects on the mRNA expression of NCAN in the frontal and cerebellar cortex [27]. As stated in a previous study [28], NCAN preferentially affected mania symptoms in humans, and homozygous Ncan knockout mice showed behavioral abnormalities that were strikingly similar to those of the human mania phenotype; neurobiological studies from this perspective are necessary.

In summary, the present study strongly suggests that NCAN is a susceptibility gene for BPD in general populations. These data also provide useful insights for a better understanding of the genetic mechanism by which NCAN affects the risk of major mood disorders.

Acknowledgment

The authors acknowledge with appreciation all the individuals with BPD and mentally healthy controls whose contributions made this work possible. They are deeply grateful to all the participants as well as to the doctors working on this project. This study was supported by the National Natural Science Foundation of China (grant numbers 81722019 to M.L., 31701133 to X.X., 31701088 to L.L.); the Medical and Health Science and Technology Project in Zhejiang (2018KY721); Yunnan Provincial Science and Technology Department – Kunming Medical University Joint Applied Basic Research Project (2015FB031) and Health Science and Technology Plan projects in Yunnan Province (2017NS028) to W. Liu; and Research Foundation of West China Psychiatric Association to F. Liu.

Statement of Ethics

All the protocols and methods used in this study were approved by the institutional review board of the Kunming Institute of Zoology, Chinese Academy of Sciences.

Disclosure Statement

The authors declare no conflict of interest.
References

1. Muller-Oerlinghausen B, Berghofer A, Bauer M: Bipolar disorder. Lancet 2002;359:241–247.
2. Grozeva D, et al: Common variation in neurocan (NCAN), a genet-
ic risk factor for bipolar disorder. Mol Psychiatry 2011;16:580–585.
3. Craddock N, Sklar P: Genetic of bipolar disorder. Lancet 2013;381:1560–1567.
4. Harrison PJ, Geddes JR, Tunbridge WM: The emerging neurobiology of bipolar disorder. Trends Neurosci 2018;41:18–30.
5. Craddock N, Jones E: Genetics of bipolar disorder. J Med Genet 1999;36:585–594.
6. Ding Y, Chang LC, Wang X, Guilloux JP, Parrish J, Oh H, et al: Molecular and genetic character-
ization of depression: overlap with other psychiatric disorders and aging. Mol Neuro-
psychiatry 2015;1:1–12.
7. Green MK, Grozeva D, Jones L, Iwata G, Caesar S, et al: The human-specific AS3MT iso-
form and BORCS7 are molecular risk factors for bipolar disorder. Nat Commun 2014;5:3339.
8. Li M, Luo XJ, Jaffe AE, Straub RE, Tao R, Shin JH, et al: Association of age-of-onset groups with GWAS
significant schizophrenia and bipolar disor-
der loci in Romanian bipolar I patients. Psychi-
atri Res 2015;230:964–967.
9. Viechthauer W: Conducting meta-analyses in R with the metafor package. J Stat Softw 2010;
36:1–48.
10. Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-
anal-
yses. BMJ 2003;327:557–560.
11. Higgins JP, Thompson SG: Quantifying het-
rogenicity in a meta-analysis. Stat Med 2002;
21:1539–1558.
12. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium, Ripke S, Wray NR, Lewis CM, Hamilton SP, Weiss-
man MM, et al: A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 2013;18:497–511.
13. CONVERGE Consortium: Sparse whole-gen-
ome sequencing identifies two loci for major depressive disorder. Nature 2015;523:888–891.
14. Ferrera MA, O’Donovan MC, Meng YA, Jones JR, Ruderfer DM, Jones L, et al: Collaborative
genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008;40:1056–1058.
15. Hou L, Bergen SE, Akula N, Song J, Hultman CM, Landen M, et al: Genome-wide associa-
tion study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum Mol Genet 2016;25:3383–3394.
16. McMahon FJ, Akula N, Schulze TG, Muglia P, Tozzi F, Detera-Wadleigh SD, et al: Meta-
analyses identification of a risk locus for major mood disorders on 3p21.1. Nat Genet 2010;42:128–131.
17. Muhleisen TW, Leber M, Schulze TG, Stroh-
maier J, Degenhardt F, Treutlein J, et al: Ge-
nome-wide association study identifies two new risk loci for bipolar disorder. Nat Commun 2014;5:5339.
18. Psychiatric GWAS Consortium Bipolar Dis-
order Working Group: Large-scale genome-
wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011;43:977–983.
19. Ruderfer DM, Fanous AH, Ripke S, McQuil-
lin A, Amdur RL: Schizophrenia Working Group of the Psychiatric Genomics Consor-
tium, et al: Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophre-
nia. Mol Psychiatry 2014;19:1017–1024.
20. Ikeda M, Takahashi A, Kamatani Y, Okahisa Y, Kunugi H, Mori N, et al: A genome-wide associa-
tion study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol Psychi-
atry 2018;23:639–647.
21. Stahl E, Forstner A, McQuillin A, Ripke S, Ophoff R, Scott L, et al: Genomewide association study identifies 30 loci associated with bipolar disorder. Biol Psychiatry 2017;173062.
22. Ryu E, Nassan M, Jenkins GD, Armasu SM, Andreazza A, McElroy SL, et al: A genome-
wide search for bipolar disorder risk loci modi-
ified by mitochondrial genome variation. Mol Neuropsychiatry 2017;3:125–134.
23. Dannlowski U, Kugel H, Grotegerd D, Red-
lich R, Suchy J, Opel N, et al: NCAN cross-
disorder risk variant is associated with limbic gray matter deficits in healthy subjects and major depression. Neuropsychopharmacology 2015;40:2510–2516.
24. Muhleisen TW, Matthiesen M, Strohmaier J, Degenhardt F, Priebe L, Schultz CC, et al: As-
sociation between schizophrenia and com-
mon variation in neurocan (NCAN), a genet-
ic risk factor for bipolar disorder. Schizophr Res 2012;138:69–73.
25. Raun H, Dietsche B, Nagels A, Witt SH, Rietshel M, Kircher T, et al: A genome-wide sup-
ported psychiatric risk variant in NCAN influences brain function and cognitive per-
formance in healthy subjects. Hum Brain Mapp 2015;36:378–390.
26. Schulz CC, Muhleisen TW, Nenadic I, Koch K, Wagner G, Schachtzabel C, et al: Common variation in NCAN, a risk factor for bipolar disorder and schizophrenia, influences local cortical folding in schizophrenia. Psychiatr Med 2014;4:811–820.
27. Wang P, Cai J, Ni J, Zhang J, Tang W, Zhang C: The NCAN gene: schizophrenia suscepti-
bility and cognitive dysfunction. Neuropsy-
chiatr Dis Treat 2016;12:2875–2883.
28. Miro X, Meier S, Dreisow ML, Frank J, Stroh-
maier J, Breuer R, et al: Studies in humans and mouse implicate neurocan in the etiology of mania. Am J Psychiatry 2012;169:982–990.
29. Schulze TG, Akula N, Breuer R, Steele J, Nalls MA, Singleton AB, et al: Molecular genetic over-
lap in bipolar disorder, schizophrenia, and major depressive disorder. World J Biol Psychiatry 2014;15:200–208.
30. Porcelli S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al: PLINK: a tool set for whole-genome association and popu-
lation-based linkage analyses. Am J Hum Genet 2007;81:559–575.
31. Grigoriou-Serbanescu M, Diaconu CC, Heil-
mann-Heimbach S, Neagu AI, Becker T: As-
sociation of age-of-onset groups with GWAS
significant schizophrenia and bipolar disor-
der loci in Romanian bipolar I patients. Psy-
chiatry Res 2015;230:964–967.
32. Li M, Luo XJ, Jaffe AE, Straub RE, Tao R, Shin JH, Wang Y, et al: A human-specific AS3MT iso-
form and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated lo-
cus. Nat Med 2016;22:649–656.
33. Cross-Disorder Group of the Psychiatric Ge-
nomics Consortium: Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013;381:1371–1379.
34. Chen DT, Jiang X, Akula N, Shugart YY, Wendland JR, Steele CJ, et al: Genome-wide associ-
ation study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry 2013;18:195–205.
35. Cichon S, Muhleisen TW, Degenhardt FA, Matthiesen M, Miro X, Strohmaier J, et al: Ge-
nome-wide association study identifies genet-
ic variant in neurocan as a susceptibility fac-
tor for bipolar disorder. Am J Hum Genet 2011;88:372–381.