Interdisciplinary Diagnosis, Therapy and Follow-up of Patients with Endometrial Cancer. Guideline (S3-Level, AWMF Registry Nummer 032/034-OL, April 2018) – Part 1 with Recommendations on the Epidemiology, Screening, Diagnosis and Hereditary Factors of Endometrial Cancer

Interdisziplinäre Diagnostik, Therapie und Nachsorge der Patientinnen mit Endometriumkarzinom. Leitlinie (S3-Level, AWMF-Register-Nummer 032/034-OL, April 2018) – Teil 1 mit Empfehlungen zur Epidemiologie, Früherkennung, Diagnostik und hereditären Faktoren des Endometriumkarzinoms

Authors
Günter Emons 1, Eric Steiner 2, Dirk Vordermark 3, Christoph Uleer 4, Nina Bock 1, Kerstin Paradies 5, Olaf Ortmann 6, Stefan Aretz 7, Peter Mallmann 8, Volker Hagen 10, Birgitt van Oorschot 11, Stefan Höcht 12, Petra Feyer 13, Gerlinde Egerer 14, Michael Friedrich 15, Wolfgang Cremer 16, Franz-Josef Prott 17, Lars-Christian Horn 18, Heinrich Prömpeler 19, Jan Langrehr 20, Steffen Leining (†) 21, Matthias W. Beckmann 22, Rainer Kimmig 23, Anne Letsch 24, Michael Reinhardt 25, Bernd Alt-Epping 26, Ludwig Kiesel 27, Jan Menke 28, Marion Gebhardt 29, Verena Steinke-Lange 30, Nils Rahner 31, Werner Lichtenegger 32, Alain Zeimet 33, Volker Hafner 34, Joachim Weis 35, Michael Mueller 36, Ulla Henscher 37, Rita K. Schmutzler 38, Alfons Meindl 39, Felix Hilpert 40, Joan Elisabeth Panke 41, Vratislav Strnad 42, Christiane Niehues 43, Timm Dauesberg 44, Peter Niehoff 45, Doris Mayr 46, Dieter Grab 47, Michael Kreißl 48, Ralf Witteler 27, Annemarie Schorsch 49, Alexander Mustea 50, Edgar Petru 51, Jutta Hübner 52, Anne Derke Rose 53, Reina Tholen 54, Gerd J. Bauerschmitz 1, Markus Fleisch 55, Ingo Runnebaum 58, Clemens Tempfer 59, Monika J. Nothacker 60, Susanne Blödt 60, Markus Follmann 61, Thomas Langer 61, Heike Raatz 62, Simone Wesselmann 63, Saskia Erdogan 1

Affiliations
1 Klinik für Gynäkologie und Geburtshilfe, Universitätsmedizin Göttingen, Göttingen, Germany
2 Frauenklinik, GPR Klinikum Rüsselsheim am Main, Rüsselsheim, Germany
3 Radiotherapy, Universität Halle/Saale, Halle/Saale, Germany
4 Facharzt für Frauenheilkunde und Geburtshilfe, Hildesheim, Hildesheim, Germany
5 Konferenz Onkologischer Kranken- und Kinderkrankenpflege, Hamburg, Germany
6 Frauenheilkunde und Geburtshilfe, Universität Regensburg, Regensburg, Germany
7 Institut für Humangenetik, Universität Bonn, Zentrum für erbliche Tumorerkrankungen, Universitätsklinikum Bonn, Bonn, Germany
8 Frauenheilkunde, Uniklinik Köln, Köln, Germany
9 Frauenklinik, Universitätsspital Basel, Basel, Switzerland
10 Klinik für Innere Medizin II, St.-Johannes-Hospital Dortmund, Dortmund, Germany
11 Interdisziplinäres Zentrum Palliativmedizin, Universitätsklinik Würzburg, Würzburg, Germany
12 Xcare, Praxis für Strahlentherapie, Saarlouis, Saarlouis, Germany
13 Klinik für Strahlentherapie und Radioonkologie, Vivantes Klinikum Neukölln, Berlin, Germany
14 Zentrum für Innere Medizin, Universitätsklinikum Heidelberg, Heidelberg, Germany
15 Frauenklinik, HELIOS-Klinikum Krefeld, Krefeld, Germany
16 Praxis für Frauenheilkunde Hamburg, Hamburg, Germany
17 Facharzt für Radiologie und Strahlentherapie, Wiesbaden, Germany
18 Institut für Pathologie, Universitätsklinikum Leipzig, Leipzig, Germany
19 Klinik für Frauenheilkunde, Universitätsklinikum Freiburg, Freiburg, Germany
20 Klinik für Allgemein-, Gefäß- und Viszeralchirurgie, Martin-Luther-Krankenhaus, Berlin, Germany
21 Muldentalkliniken, Grimma, Germany
22 Dept. of OB/Gyn, University Hospital Erlangen, Erlangen, Germany
23 Women’s Department, University Hospital of Essen, Essen, Germany
24 Medizinische Klinik mit Schwerpunkt Hämatologie und Onkologie, Charité, Campus Benjamin Franklin, Universitätsmedizin Berlin, Berlin, Germany
25 Klinik für Nuklearmedizin, Pius Hospital Oldenburg, Oldenburg, Germany
26 Klinik für Palliativmedizin, Universitätsmedizin Göttingen, Göttingen, Germany
27 Obstetrics and Gynecology, Reproductive Medicine, University of Muenster, Germany, Münster, Germany
28 Institut für Diagnostische und Interventionelle Radiologie, Universitätsmedizin Göttingen, Göttingen, Germany
29 Frauen selvahelf nach Krebs e.V., Erlangen, Erlangen/Forchheim, Germany
30 MGZ – Medizinisch Genetisches Zentrum, München und Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, München, Germany
31 Institut für Humangenetik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
32 Frauenklinik Charité, Campus Virchow-Klinikum, Universitätsmedizin Berlin, Berlin, Germany
33 Frauenheilkunde, Medizinische Universität Innsbruck, Innsbruck, Austria
34 Frauenklinik Nathanstift – Klinikum Fürth, Fürth, Germany
35 Stiftungsprofessur Selbsthilfe in Psychoonkologie, Tumorzentrum/CCC Freiburg, Universitätsklinikum Freiburg, Freiburg, Germany
36 Universitätsklinik für Frauenheilkunde, Inselspital Bern, Bern, Switzerland
37 Praxis für Physiotherapie, Hannover, Germany
38 Center for Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
39 Frauenklinik am Klinikum rechts der Isar, München, Germany
40 Mammazentrum, Krankenhaus Jerusalem, Hamburg, Germany
41 Medizinischer Dienst des Spitzenverbands Bund der Krankenkassen e.V., Essen, Germany
42 Strahlenklinik, Universitätsklinikum Erlangen, CCC ER-EMN, Universitäts-Brustzentrum Franken, Erlangen, Germany
43 Deutsche Rentenversicherung Bund, Berlin, Germany
44 Winkelwaldklinik Nordrach, Fachklinik für onkologische Rehabilitation, Nordrach, Germany
45 Strahlenklinik, Sana Klinikum Offenbach, Offenbach, Germany
46 Pathologisches Institut, LMU München, München, Germany
47 Frauenklinik Klinikum Harlaching, München, Germany
48 Universitätsklinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg, Germany
49 Frauen selvahelf nach Krebs e.V., Bad Soden, Germany
50 Universitätsmedizin Greifswald, Greifswald, Germany
51 Frauenheilkunde, Medizinische Universität Graz, Graz, Austria
52 Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
53 Frauenklinik des Universitätsspitals Basel, Basel, Switzerland
54 Deutscher Verband für Physiotherapie, Referat Bildung und Wissenschaft, Köln, Germany
55 Landesfrauenklinik, HELIOS Universitätsklinikum Wuppertal, Wuppertal, Germany
56 Klinik für Frauenheilkunde, Geburtshilfe und Reproduktionsmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg, Saar, Germany
57 Institut für Pathologie, Landeskranenkraus Graz West, Graz, Austria
58 Frauenklinik, Universitätsklinikum Jena, Jena, Germany
59 Marien Hospital Herne – Universitätsklinikum der Ruhr-Universität Bochum, Herne, Germany
60 AWMF-IMWi, AWMF, Berlin, Germany
61 Deutsche Krebsgesellschaft, Office des Leitlinienprogramms Onkologie, Berlin, Germany
62 Institut für Klinische Epidemiologie & Biostatistik (CEB), Basel, Switzerland
63 Deutsche Krebsgesellschaft e.V., Berlin, Germany

Key words
dometrical cancer, epidemiology, genetics, guideline, screening, hereditary factors

Schlüsselwörter
endometriumkarzinom, Epidemiologie, Genetik, Leitlinie, Screening, erbliche Faktoren

received 21.8. 2018
accepted 22.8. 2018

Bibliography
DOI https://doi.org/10.1055/a-0713-1218
Geburtsh Frauenheilk 2018; 78: 949–971 © Georg Thieme Verlag KG Stuttgart · New York | ISSN 0016-5751

Correspondence
Prof. Dr. med. Günter Emons
Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Klinik für Gynäkologie und Geburtshilfe Robert-Koch-Straße 40, 37075 Göttingen, Germany
emons@med.uni-goettingen.de

Deutsche Version unter:
https://doi.org/10.1055/a-0713-1218
Summary The first German interdisciplinary S3-guideline on the diagnosis, therapy and follow-up of patients with endometrial cancer was published in April 2018. Funded by German Cancer Aid as part of an Oncology Guidelines Program, the lead coordinators of the guideline were the German Society of Gynecology and Obstetrics (DGGG) and the Gynecological Oncology Working Group (AGO) of the German Cancer Society (DKG).

Purpose The use of evidence-based, risk-adapted therapy to treat low-risk women with endometrial cancer avoids unnecessarily radical surgery and non-useful adjuvant radiotherapy and/or chemotherapy. This can significantly reduce therapy-induced morbidity and improve the patient’s quality of life as well as avoiding unnecessary costs. For women with endometrial cancer and a high risk of recurrence, the guideline defines the optimal surgical radicality together with the appropriate chemotherapy and/or adjuvant radiotherapy where required. The evidence-based optimal use of different therapeutic modalities should improve survival rates and the quality of life of these patients. The S3-guideline on endometrial cancer is intended as a basis for certified gynecological cancer centers. The aim is that the quality indicators established in this guideline will be incorporated in the certification processes of these centers.

Methods The guideline was compiled in accordance with the requirements for S3-level guidelines. This includes, in the first instance, the adaptation of source guidelines selected using the DELBI instrument for appraising guidelines. Other consulted sources include reviews of evidence which were compiled from literature selected during systematic searches of literature databases using the PICO scheme. In addition, an external biostatistics institute was commissioned to carry out a systematic search and assessment of the literature for one area of the guideline. The identified materials were used by the interdisciplinary working groups to develop suggestions for Recommendations and Statements, which were then modified during structured consensus conferences and/or additionally amended online using the DELPHI method with consent being reached online. The guideline report is freely available online.

Recommendations Part 1 of this short version of the guideline presents recommendations on epidemiology, screening, diagnosis and hereditary factors, The epidemiology of endometrial cancer and the risk factors for developing endometrial cancer are presented. The options for screening and the methods used to diagnose endometrial cancer including the pathology of the cancer are outlined. Recommendations are given for the prevention, diagnosis, and therapy of hereditary forms of endometrial cancer.
I Guideline Information

Editors
Oncology Guidelines Program of the Association of Scientific Medical Societies in Germany (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V., AWMF), German Cancer Society (Deutsche Krebsgesellschaft e.V., DKG) and German Cancer Aid (Deutsche Krebshilfe, DKH).

Lead professional societies
The German Society for Gynecology and Obstetrics (Deutsche Gesellschaft für Gynäkologie und Geburtshilfe, DGGG) and the German Cancer Society (Deutsche Krebsgesellschaft, DKG) represented by the Gynecological Oncology Working Group (Arbeitsgemeinschaft Gynäkologische Onkologie, AGO).

This guideline was developed in cooperation with the Guideline Program of the DGGG, OEGGG and SGGG. For further information see bottom of this article.

Funding
This guideline received funding from the charity German Cancer Aid to support the German Guideline Program in Oncology (GGPO).

Citation format
Interdisciplinary Diagnosis, Therapy and Follow-up of Patients with Endometrial Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Nummer 032/034-OL, April 2018) – Part 1 with Recommendations on the Epidemiology, Screening, Diagnosis and Hereditary Factors of Endometrial Cancer. Geburtsh Frauenheilk 2018; 78: 949–971

Guideline documents
The complete long version together with a summary of the conflicts of interest of all of the authors, a short version, the guideline report, and the search for external literature are available in German on the homepage of the Oncology Guidelines Program under: https://www.leitlinienprogramm-onkologie.de/leitlinien/endometriumkarzinom/, last accessed on 13.08.2018.

Guideline authors
The working groups who contributed to this guideline consisted of members of the guideline steering committee (Table 1), specialists nominated by participating professional societies and organizations (Table 2), and experts invited to participate by the steering committee (Table 3), and they are the authors of this guideline. Only mandate holders nominated by participating professional societies and organizations were eligible to vote on a chapter-by-chapter basis during the voting process (consensus

Participating professional societies and organizations	Mandate holder	Deputy
ADT (Association of German Tumor Centers [AG Deutscher Tumorzentren])	Prof. Dr. med. Olaf Ortmann, Regensburg	
AET (DKG Working Group for Hereditary Tumor Disease [AG Erbliche Tumorerkrankungen der DKG])	Prof. Dr. med. Stefan Aretz, Bonn	Prof. Dr. med. Rita Katharina Schmutzler, Köln Prof. Dr. med. Alfons Meindl, Munich (only once in 06/2015)
AGO (Gynecological Oncology Working Group of the DGGG and DKG [Arbeitsgemeinschaft Gynäkologische Onkologie in der DGGG und DKG])	Prof. Dr. med. Peter Mallmann, Cologne	
AGO Study Group (Arbeitsgemeinschaft Gynäkologische Onkologie [AGO] Studiengruppe)	PD Dr. med. Christian Kuzedez, Basel	Prof. Dr. med. Felix Hilpert, Hamburg
AIO (Internal Oncology Working Group [Arbeitsgemeinschaft Internistische Onkologie der DKG])	Dr. med. Volker Hagen, Dortmund	PD Dr. med. Anne Letsch, Berlin
APM (Palliative Medicine Working Group of the German Cancer Society [Arbeitsgemeinschaft Palliativmedizin der Deutschen Krebsgesellschaft])	Prof. Dr. med. Birgitt van Oorschot, Würzburg	Dr. med. Joan Elisabeth Panke, Essen
ARO (Radiological Oncology Working Group [Arbeitsgemeinschaft Radiologische Onkologie der DKG])	Prof. Dr. med. Stefan Höcht, Saarlouis	Prof. Dr. med. Vratislav Strnad, Erlangen
ASORS (Supportive Measures in Oncology, Rehabilitation and Social Medicine Working Group [AG Supportive Maßnahmen in der Onkologie, Rehabilitation und Sozialmedizin der DKG])	Prof. Dr. med. Petra Feyer, Berlin Prof. Dr. med. Gerlinde Egerer, Heidelberg (till 10/2015)	Dr. med. Christiane Niehues, Berlin (02–10/2016) Dr. med. Timm Dauelsberg, Nordrach

Table 1 Steering committee.

Table 2 Participating professional societies and organizations.
Table 2 Participating professional societies and organizations (Continued)

Participating professional societies and organizations	Mandate holder	Deputy
BLFG (Federal Association of Senior Physicians in Gynecology and Obstetrics [Bundesarbeitsgemeinschaft Leitender Ärzten und Ärzte in der Frauenheilkunde und Geburtshilfe])	Prof. Dr. med. Michael Friedrich, Krefeld	
BNGO (Professional Association of Gynecological Oncologists in Private Practice in Germany [Berufsverband Niedergelassener Gynäkologischer Onkologen in Deutschland])	Dr. med. Christoph Uleer, Hildesheim	
BVF (Professional Association of Gynecologists [Berufsverband der Frauenärzte])	Dr. med. Wolfgang Cremer, Hamburg	
BVDST (Federal Association of German Radiotherapists [Bundesverband Deutscher Strahlentherapeuten])	Prof. Dr. med. Franz-Josef Prött, Wiesbaden	Prof. Dr. med. Peter Niehoff, Offenbach
BV Pathologie (Federal Association of German Pathologists [Bundesverband Deutscher Pathologen])	Prof. Dr. med. Lars-Christian Horn, Leipzig	Prof. Dr. med. Doris Mayr, Munich
DEGRO (German Society for Radiation Oncology [Deutsche Gesellschaft für Radioonkologie])	Prof. Dr. med. Dirk Vordermark, Halle	
DEGUM (German Society for Ultrasound in Medicine [Deutsche Gesellschaft für Ultraschall in der Medizin])	Prof. Dr. med. Heinrich Prömpeler, Freiburg	Prof. Dr. med. Dieter Grab, Munich
DGAV (German Society for General and Visceral Surgery [Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie])	Prof. Dr. med. Jan Langrehr, Berlin	
DGCH (German Society of Surgery [Deutsche Gesellschaft für Chirurgie])	Prof. Dr. med. Steffen Leinung, Grimma († 25.11.2016)	
DGE (German Society of Endocrinology [Deutsche Gesellschaft für Endokrinologie])	Prof. Dr. med. Matthias W. Beckmann, Erlangen	
DGGG (German Society of Gynecology and Obstetrics [Deutsche Gesellschaft für Gynäkologie und Geburtshilfe])	Prof. Dr. med. Rainer Kimmig, Essen	
DCHO (German Society of Hematology and Medical Oncology [Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie])	PD Dr. med. Anne Letch, Berlin	Dr. med. Volker Hagen, Dortmund
DGN (German Society of Nuclear Medicine [Deutsche Gesellschaft für Nuklearmedizin])	Prof. Dr. med. Michael J. Reinhardt, Oldenburg	Prof. Dr. med. Michael Kreißl, Magdeburg
DGP (German Society of Palliative Medicine [Deutsche Gesellschaft für Palliativmedizin])	Prof. Dr. med. Bernd Alt-Eppin, Göttingen	
DGP (German Society of Pathology [Deutsche Gesellschaft für Pathologie])	Prof. Dr. med. Lars-Christian Horn, Leipzig	Prof. Dr. med. Doris Mayr, Munich
DMG (German Menopause Society [Deutsche Menopause Gesellschaft])	Prof. Dr. med. Ludwig Kiesel, Münster	Dr. med. Ralf Witteler, Münster
DRG (German Roentgen Society [Deutsche Röntgengesellschaft])	Prof. Dr. med. Jan Menke, Göttingen	
FSH (Self-help Group for Women after Cancer [Frauenselfhilfe nach Krebs])	Marion Gebhardt, Forchheim	Annemarie Schorsch, Bad Soden
GFH (German Society of Human Genetics [Deutsche Gesellschaft für Humangenetik])	Dr. med. Verena Steinke-Lange, Munich	Dr. med. Nils Rahner, Düsseldorf (einmalig 04/2016)
KOK (Working Group of the DKG: Conference of Oncological Nursing and Pediatric Nursing [Arbeitsgemeinschaft der DKG: Konferenz Onkologische Kranken- und Kinderkranzpflege])	Kerstin Paradies, Hamburg	
NOOGO (Northeast German Society of Gynecological Oncology [Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie])	Prof. Dr. med. Werner Lichtenegger, Berlin	Prof. Dr. med. Alexander Mustea, Greifswald
OECCG (Austrian Society of Gynecology and Obstetrics [Österreichische Gesellschaft für Gynäkologie und Geburtshilfe])	Prof. Dr. med. Alain-Gustave Zeimet, Innsbruck	Prof. Dr. med. Edgar Petru, Graz
PRO (Prevention and Integrative Oncology Working Group of the DKG [Arbeitsgemeinschaft der DKG Prävention und integrative Medizin in der Onkologie])	Prof. Dr. med. Volker Hanf, Fürth	Prof. Dr. med. Jutta Hübner, Jena
PSO (German Psycho-oncology Working Group [Deutsche Arbeitsgemeinschaft für Psychoonkologie])	Prof. Dr. phil. Joachim B. Weis, Freiburg	Dr. med. Anne D. Rose, Berlin
SGGG (Swiss Society of Gynecology and Obstetrics [Schweizer Gesellschaft für Gynäkologie und Geburtshilfe])	Prof. Dr. med. Michael D. Mueller, Berne	PD Dr. med. Edward Wight, Basel
ZVK (Central Association of Physiotherapists [Zentralverband der Physiotherapeuten/Krankengymnasten])	Ulla Henschel, Hanover	Reina Tholen, Cologne
process) after they had disclosed and excluded any conflicts of interest [1]. The guideline was compiled with the direct participation of two patient representatives. Physicians of the Competence Oncology Center of the National Association of Statutory Health Insurance Funds (Kompetenz Zentrum Onkologie des GKV-Spitzenverbandes) and the Medical Service of German Health Funds (MDK-Gemeinschaft) were involved in an advisory capacity during the formulation of specific aspects of this S3-guideline which were relevant for social medicine. They did not participate in the voting on individual recommendations and are not responsible for the contents of this guideline.

Abbreviations

Abbreviation	Description
ACR	American College of Radiology
AEG	atypical endometrial hyperplasia
AG	working group (Arbeitsgruppe)
AWMF	Association of Scientific Medical Societies in Germany (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.)
ÄZQ	Medical Center for Quality in Medicine (Ärztliches Zentrum für Qualität in der Medizin)
BMI	body mass index
CEB	Basel Institute for Clinical Epidemiology & Biostatistics of the University of Basel
CEBM	Centre for Evidence-Based Medicine (Oxford, UK)
CS	Cowden syndrome
CT	computed tomography
DELBI	German Guideline Assessment Instrument
DELPHI	multistage survey method
DKG	German Cancer Society (Deutsche Krebsgesellschaft e.V.)
DKH	German Cancer Aid (Deutsche Krebshilfe e.V.)
EC	expert consensus
FIGO	International Federation of Gynecology and Obstetrics
GoR	grade of recommendation
HCS	hereditary cancer syndrome
HNPPC	hereditary non-polyposis colorectal cancer
HT/HRT	hormone therapy in perimenopause and post-menopause (hormone replacement therapy)
IKNL	Integral Kankerzentrum Nederland
LoE	level of evidence
LS	Lynch syndrome
MMR	mismatch repair
MMMT	malignant Müllerian mixed tumor/malignant mesodermal mixed tumor: carcinosarcoma
MRI	magnetic resonance imaging
OL	Oncology Guidelines Program
PCOS	polycystic ovarian syndrome
PET-CT	positron emission tomography + computed tomography
PHTS	PTEN hamartoma tumor syndrome
PMB	postmenopausal bleeding
SEE-FIM	section and extensively examine the FIMbriated end of the fallopian tube
ST	statement
UICC	Union internationale contre le cancer
WHO	World Health Organization

II Guideline Application

Purpose and objectives

The most important reason for compiling this interdisciplinary guideline is the high epidemiological significance of endometrial cancer and its associated burden of disease. Evidence-based risk-adapted therapy to treat low-risk women with endometrial cancer can avoid unnecessarily radical surgery and non-useful adjuvant radiotherapy and/or chemotherapy. This reduces therapy-induced morbidity, improves patients’ quality of life and avoids unnecessary costs. For women with endometrial cancer and a high risk of recurrence, the guideline defines the optimal surgical radicality and the appropriate adjuvant chemotherapy and/or adjuvant radiotherapy. The evidence-based optimal use of different therapy modalities should improve survival rates and the quality of life of these patients.
Targeted areas of patient care
The guideline covers outpatient and inpatient care.

Target patient groups
The recommendations of the guideline are aimed at all women with endometrial cancer and their relatives.

Target user groups
The recommendations of the guideline are addressed to all physicians and professionals who provide care to patients with endometrial cancer. In the first instance, this group includes gynecologists, general practitioners, radiologists, pathologists, radio-oncologists, hematologists/oncologists, psycho-oncologists, palliative care professionals and nursing staff.

Other target groups are:
- Scientific medical societies and professional organizations;
- Advocacy groups for affected women (women’s health organizations, patient and self-help organizations);
- Quality assurance institutions and projects at federal and Länder levels (AQUA, the Institute for Applied Quality Improvement and Research in Healthcare, the Association of German Tumor Centers, etc.);
- Health policy institutions and decision-makers at federal and Länder levels;
- Funding agencies.

Period of validity and update procedure
This guideline is valid from April 1, 2018 through to April 1, 2023. Regular updates are planned; if changes are urgently required, amendments will be developed which will be published in the latest version of the guideline. The aim is currently to update the guideline every two years.

III Methodology of the Guideline

Basic principles
The method used to prepare this guideline was determined by the class to which this guideline was assigned. The AWMF Guidance Manual (version 1.1, https://www.awmf.org/leitlinien/awmf-regelwerk/awmf-regelwerk-offline.html, last accessed on 13.08.2018) differentiates between the lowest (S1), the intermediate (S2) and the highest (S3) class [4]. The lowest class is defined as a set of recommendations for action compiled by a non-representative group of experts. In 2004, the S2 class was subdivided into two subclasses: a systematic evidence-based subclass (S2e) and a structural consensus-based subclass (S2k). The highest class (S3) combines both approaches. This guideline is classified as: S3.

Grading of evidence
Identified trials used in this guideline were assessed using the 2011 version of the system developed by the Oxford Centre for Evidence-based Medicine. This classifies studies according to various clinical questions (benefit of therapy, prognostic value, diagnostic validity). Further information is available online at: http://www.cebm.net/index.aspx?o=5653, last accessed on 13.08.2018.

Grading of recommendations
The level of recommendation expresses the degree of certainty that the expected benefit of the intervention will outweigh the possible damage caused (net benefit) and that the expected positive effects will reach a level which will be relevant for the patient. Negative recommendations (must not) indicate the certainty that there will be no benefit or the result may potentially be damaging (Table 4). The grading of recommendations incorporates the results of evaluated trials, the applicability of study results to target patient groups, the feasibility in daily clinical practice and ethical obligations and patient preferences [2, 3].

Level of recommendation	Description	Syntax
A	Strong recommendation	shall/shall not
B	Recommendation	should/should not
0	Recommendation open	may/can

Recommendations
Recommendations are thematically grouped key sentences with a recommendation for action, which were developed by the guideline group and voted on in a formal consensus procedure.

Statements
Statements are expositions or explanations of specific facts, circumstances or problems with no direct recommendations for action. Statements are adopted after a formal consensus process using the same approach as that used when formulating recommendations and can be based either on study results or expert opinions.

Expert consensus (EC)
Recommendations for which no systematic systematic search of the literature was carried out are referred to as expert consensus (EC). As a rule, these recommendations cover approaches considered to be good clinical practice where no scientific studies are necessary or could be expected.
IV Guideline

1 Epidemiology and risk factors, prevention of endometrial cancer

1.1 Epidemiology and risk factors

1.1.1 Age

No.	Recommendation	GoR	LoE	Sources
3.1	The risk of developing endometrial cancer increases with age.	ST	1	[5]

1.1.2 Hormone therapy (HRT) without a progestogen for endometrial protection

No.	Recommendation	GoR	LoE	Sources
3.2	Hormone therapy with estrogens alone, without gestagen protection, is a risk factor for the development of endometrial cancer in women who have not undergone hysterectomy. The effect depends on the duration of administration.	ST	2	[6–11]

1.1.3 Hormone therapy with a progestogen for endometrial protection

1.1.3.1 Continuous combined estrogen-progestogen therapy

No.	Recommendation	GoR	LoE	Sources
3.3	A reduction in the risk of endometrial cancer was observed for women who received continuous combined hormone therapy with conjugated equine estrogens and medroxyprogesterone acetate as the progestogen over an average period of 5.6 years.	ST	2	[12]

| 3.3.1 | Continuous combined hormone therapy administered for < 5 years may be considered safe with regard to the risk of developing endometrial cancer. | ST | 2 | 6, 7, 9, 10, 12, 13, 14 |

1.1.3.2 Long-term administration of continuous combined HRT

No.	Recommendation	GoR	LoE	Sources
3.4	An increased risk of developing endometrial cancer was observed following the long-term administration of continuous combined hormone therapy > 6 years or > 10 years.	ST	3	[9, 10]

1.1.3.3 Sequential combined estrogen/progestogen therapy

No.	Recommendation	GoR	LoE	Sources
3.5	The administration of progesterone or dydrogesterone in the context of continuous combined hormone therapy may increase the risk of developing endometrial cancer.	ST	3	[13]

| 3.6 | Sequential combined hormone therapy may increase the risk of developing endometrial cancer. The effect depends on the duration, type and dosage of the administered progestogen. | ST | 3 | [6, 7, 9–11, 14] |

| 3.7 | Sequential combined hormone therapy administered for < 5 years which includes the administration of a synthetic progestogen for at least 12–14 days per month may be considered safe with respect to the risk of developing endometrial cancer. | ST | 3 | [6, 7, 11] |

1.1.4 Tibolone

No.	Recommendation	GoR	LoE	Sources
3.8	An increased risk of developing endometrial cancer has been observed for tibolone.	ST	3	[6, 11, 15]

1.1.5 Tamoxifen

No.	Recommendation	GoR	LoE	Sources
3.9	Therapy with tamoxifen is a risk factor for developing endometrial cancer. The effect is dependent on the duration of administration.	ST	1	[17–20]

1.1.6 Oral contraceptives

No.	Recommendation	GoR	LoE	Sources
3.10	Oral contraceptives reduce the risk for the development of endometrial carcinoma. The strength of the effect is dependent on the duration of intake.	ST	2	[21, 22]
1.1.7 Ovarian stimulation therapy

No.	Recommendation	GoR	LoE	Sources
3.11 | Ovarian stimulation therapy increases the risk of endometrial cancer compared to population-based controls, but not compared with infertile women. | ST | 4 | [23, 24] |

1.1.8 Other biological risk factors

No.	Recommendation	GoR	LoE	Sources
3.12 | Late age at menarche and late age at the birth of the last child are associated with a reduced risk of developing endometrial cancer; late onset of menopause is associated with an increased risk of developing endometrial cancer. | ST | 3 | [25 – 27] |
3.13 | Diabetes mellitus, disturbance of glucose tolerance, metabolic syndrome and polycystic ovary syndrome (PCOS) increase the risk of developing endometrial cancer. | ST | 3 | [28 – 42] |
3.14 | An increased body mass index (BMI) increases the risk of developing endometrial cancer. | ST | 3 | [43 – 48] |
3.15 | A positive family history of endometrial cancer and/or colon cancer is associated with a higher risk of developing endometrial cancer. | ST | 3 | [49] |

1.1.9 Risk-reducing factors

No.	Recommendation	GoR	LoE	Sources
3.16 | Physical activity is associated with a reduced risk of developing endometrial cancer. | ST | 3 | [50 – 54] |
3.17 | The use of intrauterine devices (IUDs; copper spirals or therapeutic levonorgestrel spirals) is associated with a reduced risk of developing endometrial cancer. | ST | 3 | [55, 56] |

2 Screening and Diagnosis of Endometrial Cancer

2.1 Screening/diagnosis of asymptomatic women

2.1.1 Asymptomatic women with no increased risk

No.	Recommendation	GoR	LoE	Sources
4.1 | The available data do not show that screening using transvaginal ultrasound in asymptomatic women with no increased risk of endometrial cancer reduces endometrial cancer-specific mortality. | EC | |
4.2 | Transvaginal ultrasonography must not be carried out for purposes of early detection of endometrial cancer in asymptomatic women who are not at increased risk for endometrial carcinoma. | EC | |

2.1.2 Asymptomatic women with an increased risk

No.	Recommendation	GoR	LoE	Sources
4.3 | The available data do not show that transvaginal ultrasound screening in asymptomatic women who have an increased risk of developing endometrial cancer (e.g., women with Lynch syndrome, obesity, diabetes mellitus, hormone therapy, metabolic syndrome, PCOS) reduces endometrial cancer-specific mortality. | EC | |
4.4 | The available data do not show that screening of asymptomatic women who have an increased risk of developing endometrial cancer (e.g., women with Lynch syndrome, obesity, diabetes mellitus, hormone therapy, metabolic syndrome, PCOS) using endometrial biopsy, pipelle sampling, Tao brush cytology, tumor marker sampling, fractional curettage or hysteroscopy reduces endometrial cancer-specific mortality. | ST | 4 | [57, 58] |
4.5 | Transvaginal ultrasound examinations must not be carried out for early detection of endometrial carcinoma in asymptomatic women who are at increased risk for endometrial carcinoma (such as those with Lynch syndrome, obesity, diabetes mellitus, hormone therapy, metabolic syndrome, PCOS). | EC | |
2.1.3 Asymptomatic women and tamoxifen therapy

No.	Recommendation	GoR	LoE	Sources
4.6	Asymptomatic patients receiving tamoxifen therapy must not be examined by transvaginal ultrasound to screen for endometrial cancer.	A	3	[59–63]

2.2 Investigations for abnormal premenopausal uterine bleeding

No.	Recommendation	GoR	LoE	Sources
4.7	The risk of premenopausal women with abnormal uterine bleeding developing endometrial cancer or atypical endometrial hyperplasia is below 1.5%.	ST	2	[64]

No.	Recommendation	GoR	LoE	Sources
4.8	In women with premenopausal abnormal uterine bleeding who do not have any risk factors (suspicious cytology, obesity, Lynch syndrome, diabetes, polyps, etc.), an attempt at conservative treatment should initially be made, provided that the bleeding is not hemodynamically relevant. If conservative therapy fails, hysteroscopy/curettage should be carried out.	EC		
4.9	Hysteroscopy combined with fractional curettage is the gold standard for obtaining a reliable diagnosis of endometrial cancer.	ST	3	[65–67]
2.3 Procedures for postmenopausal bleeding (PMB)

No. Recommendation GoR LoE Sources
4.10 In a number of small series of symptomatic patients, diagnostic procedures such as pipelle sampling and Tao brush cytology offered positive and negative predictive values for diagnosing endometrial cancer which were comparable to those obtained with curettage plus hysteroscopy. However, larger comparative studies are still lacking. ST 3 [68]
4.10.1 These diagnostic procedures are not at present comprehensively available on a quality-assured basis throughout Germany. EC

No. Recommendation GoR LoE Sources
4.11 When a woman presents with PMB for the first time and her endometrial thickness is ≤ 3 mm, then she should undergo sono graphic and clinical examination after three months. B 1 [69]
4.12 Histological investigations must be carried out if the clinical symptoms persist or reoccur or if there is an increase in endometrial thickness. EC
2.4 Diagnostic imaging procedures
2.4.1 General remarks on imaging procedures

2.4.2 Basic diagnostic imaging procedures
2.4.2.1 Chest X-ray

The IKNL and ACR guidelines recommend taking chest X-rays in 2 different views when making a primary diagnosis of endometrial cancer [71, 72]. It is a basic investigative procedure which primarily aims to assess the patient’s cardiopulmonary status preoperatively and to detect and evaluate any rare pulmonary metastases. Preoperative chest radiographs show initial findings which can be used during potential follow-up examinations.

Although pulmonary metastases are rare at the first manifestation of endometrial cancer, they lead to FIGO stage IV. In a retrospective multicenter study, Amkreutz et al. [73] reported that pulmonary metastases of endometrial cancer were detected in the chest radiographs of 1.3% (7 of 541) patients. All affected patients had high-risk subtypes of endometrial cancer (serous, clear-cell or poorly differentiated endometrioid), and the incidence of pulmonary metastases was 4.1% for these subtypes. No pulmonary metastases were detected in the chest radiographs of patients with low-risk endometrial cancer subtypes. 243 patients did not undergo thoracic imaging as a primary diagnostic procedure. The authors concluded that thoracic imaging was not required to detect metastasis in patients with low-risk subtypes of endometrial cancer. According to the study by Amkreutz et al. [73], around 4% of patients with high-risk subtypes had pulmonary metastasis, and the detection of metastases could be therapeutically relevant for these patients.

2.4.2.2 Abdominal ultrasound

Abdominal ultrasound is part of the basic workup, particularly to assess the internal organs including any possible preexisting urinary transport disorder. Evaluating the lesser pelvis and the retroperitoneum is difficult because of the superimposition of intestinal gases. This guideline concurs with the ACR guideline [72] which considers transabdominal ultrasound to be an unsuitable method for staging endometrial cancer.

2.4.2.3 Transvaginal ultrasound

2.4.3 Tomography as a diagnostic workup method to determine local spread

No. Recommendation GoR LoE Sources
4.14 After obtaining histological confirmation of primary endometrial cancer, transvaginal ultrasound should be carried out to evaluate the extent of myometrial infiltration and cervical infiltration. B 3 [70]

4.15 Preoperative imaging using transvaginal ultrasound is done to document findings and plan the surgical procedure, even if definitive loco-regional staging is only possible following histological examination after surgery. EC

2.4.4 Imaging procedures for distant metastasis

No. Recommendation GoR LoE Sources
4.19 If there is a reasonable suspicion of distant metastases, tomography (and bone scintigraphy if necessary) should be carried out to evaluate distant metastasis and plan treatment. B 3 [71, 72, 76]
2.5 Pathology

2.5.1 Morphology of endometrial cancer

Table 5 The dualistic model of endometrial cancer.

	Type I endometrial cancer	Type II endometrial cancer
Estrogen-associated	yes	no
Endometrium	usually hyperplastic	usually atrophic; SEIC
Receptor positivity	usually positive	usually negative or weakly positive
	Age 55–65 years	65–75 years
Prognosis	depends on the stage, usually favorable	depends on the stage, usually poor
Stage	usually FIGO stage I	usually FIGO stage II–IV
Histological subtype	endometrioid + variants; mucinous	serous, clear-cell
Molecular alterations	PTEN inactivation	p53 mutations
	microsatellite instability	E-cadherin inactivation
	β-catenin mutations	PIK3CA alterations
Molecular types	POLE ultramutated	copy number high
(TCGA)	microsatellite instability	(serous-like)

Table 6 2014 WHO classification of endometrial hyperplasia compared to earlier classifications [78].

Dallenbach-Hellweg classification	1994/2003 WHO classification	2014 WHO classification
Glandular cystic hyperplasia	Simple hyperplasia without atypia	Endometrial hyperplasia without atypia
Grade 1 adenomatous hyperplasia		
Grade 2	Complex hyperplasia without atypia	
Grade 3	Simple atypical endometrial hyperplasia	Atypical endometrial hyperplasia/EIN*
Complex atypical endometrial hyperplasia		

* EIN = endometrial intraepithelial neoplasia

Table 7 Histopathological classification of endometrial cancer [78, 79].

- Endometrioid adenocarcinoma
- Endometrioid adenocarcinoma variants
 - secretory variant
 - ciliated cell variant
 - villoglandular variant
 - variant with squamous differentiation
- Mucinous adenocarcinoma
- Serous adenocarcinoma
- Clear-cell adenocarcinoma
- Mixed carcinoma
- Undifferentiated carcinoma
 - monomorphic type
 - dedifferentiated type
- Neuroendocrine tumors
 - well differentiated neuroendocrine tumor (carcinoid)
 - poorly differentiated small-cell neuroendocrine carcinoma
 - poorly differentiated large-cell neuroendocrine carcinoma
- Other carcinomas

Carcinosarcomas of the endometrium used to be discussed in the S2K-guideline “Sarcomas of the Uterus”, Version 1.0, 2015, AWMF Registry Number: 015/074, http://www.awmf.org/leitlinien/detail/ll/015-074.html; they are now described in the S3-guideline “Diagnosis, Therapy and Follow-up of Patients with Endometrial Cancer” [80].

2.5.2 Staging of endometrial cancer

Table 5 The dualistic model of endometrial cancer.

No.	Recommendation	GoR	LoE	Sources
4.20| The terminology and morphological workup of endometrial hyperplasia must be based on the most current version of the WHO classification. | EC | | |
2.5.3 Frozen section analysis for endometrial cancer, malignant Müllerian mixed tumors and AEH

No.	Recommendation	GoR	LoE	Sources
4.23	Intraoperative histological examination may be carried out if there is a suspicion of stage pT1b and/or pT2 disease.	EC		
4.24	If the surgeon is of the opinion that frozen section analysis is needed to assess the depth of myometrial infiltration and/or infiltration of the endocervical stroma of the endometrial cancer, then these two parameters must be assessed macroscopically and microscopically.	EC		
4.25	Frozen section analysis must not be carried out for the purpose of grading or to determine the histological tumor type.	EC		
4.26	The fallopian tubes and ovaries must be assessed macroscopically during intraoperative frozen section analysis; findings suspicious for metastasis must be examined histologically.	EC		

2.5.4 Tissue workup

No.	Recommendation	GoR	LoE	Sources
4.27	Tissue samples obtained by (fractional) curettage or endometrial biopsy must be completely embedded.	EC		
4.28	The report on the findings of (fractional) curettage or endometrial biopsy must provide information on the evidence for and type of endometrial hyperplasia. If a carcinoma is detected, its histological tumor type must be defined based on the current WHO classification. If there is evidence of tumor tissue in the cervical part of the fractional curettage specimen, every effort must be made to find evidence of or exclude endocervical stroma infiltration.	EC		
4.29	The morphological workup of hysterectomy specimens must be carried out in such a way that all therapeutically and prognostically relevant parameters can be determined. The diagnostic workup must be based on the currently valid WHO classification of tumor types and the current TNM classification for staging.	EC		

2.5.5 Workup and diagnosis of omentectomy specimens in endometrial cancer

No.	Recommendation	GoR	LoE	Sources
4.32	The ovaries of patients with endometrial cancer should be completely embedded and must include the hilum of the ovary. The workup of the fallopian tubes should be guided by the SEE-FIM protocol.	EC		
2.5.6 Workup and diagnosis of lymphadenectomy specimens in endometrial cancer

No.	Recommendation	GoR	LoE	Sources
4.34	All resected lymph nodes in lymphadenectomy specimens obtained during surgery of a patient with endometrial cancer must be completely embedded and examined histologically.	EC		

No.	Recommendation	GoR	LoE	Sources
4.35	Lymph nodes with a maximum extent of up to approx. 0.3 cm should be embedded in their entirety and larger lymph nodes should be either halved along their longitudinal axis or sliced into sections and also completely embedded.	EC		

No.	Recommendation	GoR	LoE	Sources
4.36	Isolated tumor cells are defined as the detection of individual tumor cells or tumor cell complexes with a maximum diameter of < 0.2 mm. Micrometastases are defined as the histological confirmation of tumor cells in lymph nodes with diameters of ≥ 0.2 mm but not bigger than 0.2 cm.	EC		

2.5.7 Sentinel lymph nodes (investigated in the context of clinical studies)

No.	Recommendation	GoR	LoE	Sources
4.37	The report on the findings of lymphadenectomy specimens obtained from patients with endometrial cancer must include the following information:			
- Information about the number of affected lymph nodes compared to the number of resected lymph nodes mapped to the location where the respective lymph node was resected (pelvic, para-aortal),
- Information about the diameter of the largest lymph node metastasis in mm/cm,
- Information about the absence/evidence of any extracapsular spread of lymph node metastasis,
- Information about any evidence of isolated tumor cells in the lymph node as well as any evidence of lymph node invasion in perinodal fatty tissue and/or the lymph node capsule. | EC | |

2.5.8 Morphological prognostic factors

A detailed discussion of morphological prognostic factors is available (in German) in the long version of the guideline [80].

A risk stratification for endometrial cancer based morphological factors developed in consensus by the European Society for Medical Oncology (ESMO), the European Society for Radiotherapy & Oncology (ESTRO) and the European Society of Gynaecological Oncology (ESGO) is summarized in Table 8 [81, 82].
Table 8 Risk stratification of endometrial cancer according to the European Society for Medical Oncology (ESMO), the European Society for Radiotherapy & Oncology (ESTRO) and the European Society of Gynaecological Oncology (ESGO) [81, 82].

Risk group	Characteristics
Low risk	endometrioid endometrial cancer, G1, G2, < 50% myometrial infiltration, L0
Low-intermediate risk	endometrioid endometrial cancer, G1, G2, ≥ 50% myometrial infiltration, L0
High-intermediate risk	endometrioid endometrial cancer, G3, < 50% myometrial infiltration, L0 or L1, endometrioid endometrial cancer, G1, G2, L1, ≤/= 50% myometrial infiltration
High risk	endometrioid endometrial cancer, G3, ≥ 50% myometrial infiltration, L0 or L1, FIGO/TNM stage II/T2, endometrioid endometrial cancer, FIGO/TNM stage III/T3, R0, non-endometrioid endometrial cancer (serous/clear-cell, undifferentiated, MMMT)

Table 9 Tumor risks and mutation detection rates.

Inheritance	Lynch syndrome (LS)	Cowden syndrome (CS)
	autosomal-dominant	autosomal-dominant
Causative genes	MLH1, MSH2, MSH6, PMS2, EPCAM	PTEN
Frequency in the general population	1:300–500	1 : 200 000? [93]
Frequency in unselected patient cohorts with endometrial cancer	2–4%	< 0.5%
Frequency in patients with endometrial cancer < 50 years	9–10%	
Endometrial cancer of the lower uterine segment	14–29% [91]	
Spectrum of mutations in LS-associated endometrial cancer	PMS2: 5%, MLH1: 16%, MSH2: 26%, MSH6: 53%	
Lifetime risk of endometrial cancer up to the 70th year of life (general population around 2.6%) [107]	Overall: 16–54%, MLH1: 18–54%, MSH2: 21–30%, MSH6: 16–49%, PMS2: 12–15% [83, 86, 94–97]	Overall: 19–28%[98, 99]
Average patient age at onset of LS-/CS-associated endometrial cancer (years)	Overall: 50 years MLH1: 44 (29–54), MSH2: 50 (36–66) MSH6: 55 (26–69), PMS2: 57 (44–69) [84, 87–89, 100]	48–53 [101, 102]
Metachronous cancer after a diagnosis of endometrial cancer	10 years: 25%, 15 years: 50%, 20 years: > 50% [84, 85, 87, 103]	
Endometrioid type	57–85%	84% [102]
Other common tumors/tumor spectrum	colorectal cancer, duodenal cancer, gastric cancer, ovarian cancer, brain tumors, urothelial carcinoma	thyroid cancer, breast cancer, renal cancer, brain tumors, skin tumors
3.2 Risk determination

No.	Recommendation	GoR	LoE	Sources
10.2	An important tool for assessing a genetically caused increased risk of endometrial carcinoma is a medically obtained patient history and family history, taking specific clinical criteria into account (in Lynch syndrome: Amsterdam I/II criteria, revised Bethesda criteria).	EC		

3.3 Procedure on suspicion of a hereditary form of endometrial cancer

No.	Recommendation	GoR	LoE	Sources
10.3	If there is a suspicion that the patient has a hereditary form of endometrial cancer, the patient should be referred to a certified gynecological cancer center.	EC		

3.4 Psychosocial care

No.	Recommendation	GoR	LoE	Sources
10.4	Persons who have already developed disease, carriers, and people at risk for monogenic hereditary disease and an increased risk of developing endometrial cancer and other malignancies should be made aware of their options and the benefit of psychosocial counselling and care.	EC		

3.5 Clarifying clinically suspicious findings

No.	Recommendation	GoR	LoE	Sources
10.5	If at least one criterion of the revised Bethesda criteria has been met, the (molecular) pathology of the tumor tissue must be investigated further for changes typical for Lynch syndrome. This includes investigating the immunohistochemical expression of DNA mismatch repair proteins, microsatellite analysis and possibly the methylation of MLH1 promoters.	A	3	[84, 87–89, 100]

No.	Recommendation	GoR	LoE	Sources
10.6	A (molecular-)pathological examination for Lynch syndrome in tumor tissue should be carried out in patients under the age of 60 in whom an endometrial carcinoma is diagnosed.	B	3	[84, 87–89, 100, 104]

No.	Recommendation	GoR	LoE	Sources
10.6.1	It is still a matter of controversy whether these examinations of tumor material require medical information and counseling to be provided and consent to be given in accordance with the requirements of the law on genetic diagnosis. Until an authoritative interpretation of the gene diagnosis law relative to Lynch syndrome screening in endometrial carcinoma tumor material becomes available, the appropriate information and consent in accordance with the genetic diagnosis law should be ensured before the above molecular-pathological analyses of tumor material are carried out.	EC		

No.	Recommendation	GoR	LoE	Sources
10.7	In patients from families in which the Amsterdam criteria are met, but whose tumor tissue does not show the abnormalities typical of Lynch syndrome, Lymph syndrome is not excluded. For further assessment and additional diagnosis if appropriate, genetic counseling should therefore be carried out.	EC		
3.6 Search for germline mutations

No.	Recommendation	GoR	LoE	Sources
10.8	If a patient has abnormal molecular pathology findings suspicious for Lynch syndrome, the patient must be offered the option of searching for germline mutations in the probably affected MMR gene(s).	A	3	[84, 87–89, 100]
10.8.1	If the clinical criteria for another hereditary tumor syndrome with a higher risk of developing endometrial cancer have been met, the search for mutations in the probably affected genes must be carried out directly.	EC		

Fig. 3 Diagnostic workup of tumor samples to investigate for Lynch syndrome [80], [rerif]

- Patient is informed in accordance with the German Genetic Diagnostics Act
- Immunohistochemical examination of MMR proteins (MLH1, MSH2, MSH6, PSH2) in the endometrial cancer tissue
- MLH1 and PSH2 deficiency
 - Methylation analysis
 - Methylation of the MLH1 promoter?
 - No
 - Yes
- Other pattern of deficiencies
 - No deficiency
 - Microsatellite analysis
 - Highly instable (MSI-H)?
 - No
 - Yes
- Interpretation: no indication of Lynch syndrome
- Interpretation: indication of Lynch syndrome in the tumor
- Genetic counselling and diagnostic workup of molecular genetics

3.7 Procedure when evidence of mutations is absent or uncertain

No.	Recommendation	GoR	LoE	Sources
10.9	If molecular genetic testing was unable to clearly identify a pathogenic germline mutation, this does not mean that the patient has no hereditary tumor syndrome.	EC		

3.8 Primary prevention for high-risk groups

No.	Recommendation	GoR	LoE	Sources
10.10	Due to the lack of any data for these special risk groups, no separate recommendations can be given regarding the benefits of dietary measures or chemoprevention for primary prevention in these groups compared to the normal population.	EC		
3.9 Procedure for persons at risk for Lynch or Cowden syndrome

3.10 Endometrial cancer screening in patients with Lynch or Cowden syndrome

3.11 Syndrome-specific screening procedures for patients or high-risk carriers of Lynch or Cowden syndrome

Conflict of Interest
For conflict of interests see guideline report: https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Endometriumkarzinom/LL_Endometriumkarzinom_Leitlinienreport_1.0.pdf, last accessed on 13.08.2018.

References

1. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). Diagnostik, Therapie und Nachsorge der Patientinnen mit Endometriumkarzinom Leitlinienreport 1.0, 2018, AWMF Registernummer: 032/034-OL. 2018. Online: https://www.leitlinienprogramm-onkologie.de/leitlinien/endometriumkarzinom/; last access: 13.08.2018
2. Atkins D, Best D, Briss PA et al. Grading quality of evidence and strength of recommendations. BMJ 2004; 328: 1490
3. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Ständige Kommission Leitlinien. AWMF-Regelwerk „Leitlinien“. 2012. Online: https://www.awmf.org/leitlinien/awmf-regelwerk.html; last access: 13.08.2018
4. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V. (AWMF), Ärztliches Zentrum für Qualität in der Medizin (ÄZQ), Gemeinsame Einrichtung von Bundesärztekammer und Kassenärztlicher Bundesvereinigung. Deutsches Instrument zur methodischen Leitlinien-Bewertung (DELBI). Fassung 2005/2006 + Domäne 8 (2008). Online: https://www.leitlinien.de/mdb/edocs/pdf/literatur/delbi-fassung-2005-2006-domaeine-8-2008.pdf; last access: 13.08.2018
5. Robert Koch-Institut; Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V., Hrsg. Krebs in Deutschland 2011/2012. 10. Ausgabe. Berlin: Robert Koch-Institut, Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V.; 2015
6. Beral V, Bull D, Reeves G. Endometrial cancer and hormone-replacement therapy in the Million Women Study. Lancet 2005; 365: 1543–1551
7. Nelson HD, Humphrey LL, Nygren P et al. Postmenopausal hormone replacement therapy: scientific review. JAMA 2002; 288: 872–881
8. Grady D, Gebretsadik T, Kierlikowsk K et al. Hormone replacement therapy and endometrial cancer risk: a meta-analysis. Obstet Gynecol 1995; 85: 304–313
9. Razavi P, Pike MC, Horn-Ross PL et al. Long-term postmenopausal hormone therapy and endometrial cancer. Cancer Epidemiol Biomarkers Prev 2010; 19: 475–483
[10] Lacey JV Jr., Brinton LA, Lubin JH et al. Endometrial carcinoma risks among menopausal estrogen plus progestin and unopposed estrogen users in a cohort of postmenopausal women. Cancer Epidemiol Biomarkers Prev 2005; 14: 1724–1731

[11] Allen NE, Tsilidis KK, Key TJ et al. Menopausal hormone therapy and risk of endometrial carcinoma among postmenopausal women in the European Prospective Investigation Into Cancer and Nutrition. Am J Epidemiol 2010; 172: 1394–1403

[12] Chlebowski RT, Anderson GL, Sarto GE et al. Continuous combined estrogen plus progestin and endometrial cancer: The Women’s Health Initiative Randomized Trial. J Natl Cancer Inst 2015; 108: pii: djp350. doi:10.1093/jnci/djp350

[13] Fournier A, Dossus L, Mesrine S et al. Risks of endometrial cancer associated with different hormone replacement therapies in the E3N cohort, 1992–2008. Am J Epidemiol 2014; 180: 508–517

[14] Doherty JA, Cushing-Haugen KL, Saltzman BS et al. Long-term use of postmenopausal estrogen and progestin hormone therapies and the risk of endometrial cancer. Am J Obstet Gynecol 2007; 197: 139.e1–139.e7

[15] Manson JE, Chlebowski RT, Stefanick ML et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA 2013; 310: 1353–1368

[16] Ettinger B, Kenemans P, Johnson SR et al. Long-term use of estrogen and progestin hormone therapies and the risk of endometrial cancer. Am J Obstet Gynecol 2007; 197: 139.e1–139.e7

[17] Nelson HD, Smith ME, Griffin JC et al. Use of medications to reduce risk of primary breast cancer: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 2013; 158: 604–614

[18] Brathwaite RS, Chlebowski RT, Lau J et al. Meta-analysis of vascular and breast cancer risk: meta-analysis. Br J Cancer 2008; 99: 434–441

[19] Choi Y, Giovannucci E, Lee JF. Glycemic index and glycemic load in relation to risk of diabetes-related cancers: a meta-analysis. Br J Nutr 2012; 108: 1934–1947

[20] DeMichele A, Troxel AB, Berlin JA et al. Impact of raloxifene or tamoxifen on incidence and mortality of endometrial cancer? A systematic review and meta-analysis of cohort studies. Gynecol Oncol 2014; 135: 163–171

[21] Luo J, Beresford S, Chen C et al. Association between diabetes, diabetes treatment and risk of developing endometrial cancer. Br J Cancer 2014; 111: 1432–1439

[22] Dobbins M, Decorby K, Choi BC. The Association between Obesity and Cancer Risk: A Meta-Analysis of Observational Studies from 1985 to 2011. ISRN Prev Med 2013; 2013: 680536
[49] Win AK, Reece JC, Ryan S. Family history and risk of endometrial cancer: a systematic review and meta-analysis. Obstet Gynecol 2015; 125: 89–98

[50] Keum N, Ju W, Lee DH et al. Leisure-time physical activity and endometrial cancer risk: dose-response meta-analysis of epidemiological studies. Int J Cancer 2014; 135: 682–694

[51] Gierach GL, Chang SC, Brinton LA et al. Physical activity, sedentary behavior, and endometrial cancer risk in the NIH-AARP Diet and Health Study. Int J Cancer 2009; 124: 2139–2147

[52] Moore SC, Gierach GL, Schatzkin A et al. Physical activity, sedentary behaviours, and the prevention of endometrial cancer. Br J Cancer 2010; 103: 933–938

[53] Voskuil DW, Monnikhof EM, Elias SG et al. Physical activity and endometrial cancer risk, a systematic review of current evidence. Cancer Epidemiol Biomarkers Prev 2007; 16: 639–648

[54] Schmid D, Leitzmann MF. Television viewing and time spent sedentary in relation to cancer risk: a meta-analysis. J Natl Cancer Inst 2014; 106: pii: dju098. doi:10.1093/jnci/dju098

[55] Soini T, Hurksainen R, Grenman S et al. Cancer risk in women using the levonorgestrel-releasing intrauterine system in Finland. Obstet Gynecol 2014; 124: 292–299

[56] Felix AS, Gaudet MM, La Vecchia C et al. Intrauterine devices and endometrial cancer risk: a pooled analysis of the Epidemiology of Endometrial Cancer Consortium. Int J Cancer 2015; 136: E410–E422

[57] Manchanda R, Saridogan E, Abdelraheem A et al. Annual outpatient hysterectomy and endometrial sampling (OHES) in HNPPC/Lynch syndrome (LS). Arch Gynecol Obstet 2012; 286: 1555–1562

[58] Helder-Woolderink JM, De Boch GH, Sijmons RH et al. The additional value of endometrial sampling in the early detection of endometrial cancer in women with Lynch syndrome. Gynecol Oncol 2013; 131: 304–308

[59] Saccardi C, Gizzo S, Patrelli TS et al. Endometrial surveillance in tamoxifen users: role, timing and accuracy of hysteroscopic investigation: observational longitudinal cohort study. Endocr Relat Cancer 2013; 20: 455–462

[60] Gao WL, Zhang LP, Feng LM. Comparative study of transvaginal ultrasonographic and diagnostic hysteroscopic findings in postmenopausal breast cancer patients treated with tamoxifen. Chin Med J (Engl) 2011; 124: 2335–2339

[61] Bertelli G, Valenzano M, Costantini S et al. Limited value of sonohysterography for endometrial screening in asymptomatic, postmenopausal patients treated with tamoxifen. Gynecol Oncol 2000; 78: 275–277

[62] Gerber B, Krause A, Muller H et al. Effects of adjuvant tamoxifen on the endometrium in postmenopausal women with breast cancer: a prospective long-term study using transvaginal ultrasound. J Clin Oncol 2000; 18: 3464–3470

[63] Fung MF, Reid A, Faught W et al. Prospective longitudinal study of ultrasound screening for endometrial abnormalities in women with breast cancer receiving tamoxifen. Gynecol Oncol 2003; 91: 154–159

[64] Pennant ME, Mehta R, Moody P et al. Premenopausal abnormal uterine bleeding and risk of endometrial cancer. BJOG 2017; 124: 404–411

[65] Huang CS, Gebb JS, Einstein MH et al. Accuracy of preoperative endometrial sampling for the detection of high-grade endometrial tumors. Am J Obstet Gynecol 2007; 196: 243.e1–243.e5

[66] Leita MM Jr., Keheo S, Barakat RR et al. Accuracy of preoperative endometrial sampling diagnosis of FIGO grade 1 endometrial adenocarcinoma. Gynecol Oncol 2008; 111: 244–248

[67] Clark TJ, Mann CH, Shah N et al. Accuracy of outpatient endometrial biopsy in the diagnosis of endometrial cancer: a systematic quantitative review. BJOG 2002; 109: 313–321

[68] Al-Azemi M, Labib NS, Motawy MM et al. Prevalence of endometrial proliferation in tamoxifen-treated postmenopausal women with breast cancer in Kuwait. Med Princ Pract 2004; 13: 30–34

[69] Timmermans A, Opeere BC, Khan KS et al. Endometrial thickness measurement for detecting endometrial cancer in women with postmenopausal bleeding: a systematic review and meta-analysis. Obstet Gynecol 2010; 116: 160–167

[70] Savelli L, Ceccarini M, Ludovisi M et al. Preoperative local staging of endometrial cancer: transvaginal sonography vs. magnetic resonance imaging. Ultrasound Obstet Gynecol 2008; 31: 560–566

[71] IKNL; IKN. Endometriumcarcinoom. Versie: 3.0; 24.10.2011. Landelijke richtlijn. Oncoline; 2011. Online: https://oncoline.nl/endometriumcarcinoom; last access: 13.08.2018

[72] Lakwani N, Dubinsky T, Javit MC et al. ACR Appropriateness Criteria® pretreatment evaluation and follow-up of endometrial cancer. Ultrasound Q 2014; 30: 21–28

[73] Amkreutz LC, Mertens HJ, Nurseta T et al. The value of imaging of the lungs in the diagnostic workaround of patients with endometrial cancer. Gynecol Oncol 2013; 131: 147–150

[74] Selman Tj, Mann CH, Zamora J et al. A systematic review of tests for lymph node status in primary endometrial cancer. BMC Womens Health 2008; 8: 8

[75] Chang MC, Chen JH, Liang JA et al. 18F-FDG PET or PET/CT for detection of metastatic lymph nodes in patients with endometrial cancer: a systematic review and meta-analysis. Eur J Radiol 2012; 81: 3511–3517

[76] Kakihì VR, Shahriari S, Treglia G et al. Diagnostic performance of fluorine 18 fluordeoxyglucose positron emission tomography imaging for detection of primary lesion and staging of endometrial cancer patients: systematic review and meta-analysis of the literature. Int J Gynecol Cancer 2013; 23: 1536–1543

[77] Antonsen SL, Jensen LN, Loft A et al. MRI, PET/CT and ultrasound in the preoperative staging of endometrial cancer – a multicenter prospective comparative study. Gynecol Oncol 2013; 128: 300–308

[78] Zaino R, Carinelli SG, Ellenson LH. Tumours of the uterine Corpus: epithelial Tumours and Precursors. In: Kurman RJ CM, Herrington CS, Young RH, eds. WHO Classification of Tumours of female reproductive Tract. Lyon: IARC Press; 2014: 125–126

[79] Kurman RJ, Carcangiu ML, Herrington CS, Young RH. WHO Classification of Tumours of female reproductive Organs. Lyon: IARC Press; 2014

[80] Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). Diagnostik, Therapie und Nachsorge der Patientinnen mit Endometriumkarzinom, Langversion 1.0, 2018, AWMF Register-nummer: 032/034-OL. 2018. Online: https://www.leitlinienprogramm-onkologie.de/leitlinien/endometriumkarzinom/; last access: 13.08.2018

[81] Colombo N, Creutzberg C, Amant F et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, Treatment and Follow-up. Int J Gynecol Cancer 2016; 26: 2–30

[82] Bendilallah S, Canlorbe G, Huget F et al. A risk scoring system to determine recurrence in early-stage type 1 endometrial cancer: a French multicentre study. Ann Surg Oncol 2014; 21: 4239–4245

[83] ten Broeke SW, Brohet RM, Tops CM et al. Lynch syndrome caused by mismatch repair gene mutations in patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing. J Clin Oncol 2013; 31: 321–325

[84] Buchanan DD, Tan YY, Walsh MD et al. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing. J Clin Oncol 2014; 32: 90–100

[85] Carcangiu ML, Radice P, Casalini P et al. Lynch syndrome – related endometrial carcinomas show a high frequency of nonendometrioid types and of high FIGO grade endometrioid types. Int J Surg Pathol 2010; 18: 21–26

[86] Dowty JG, Win AK, Buchanan DD et al. Cancer risks for MLH1 and MSH2 mutation carriers. Hum Mutat 2013; 34: 490–497
Egoavil C, Alenda C, Castillejo A et al. Prevalence of Lynch syndrome among patients with newly diagnosed endometrial cancers. PLoS One 2013; 8: e79737

Hampel H, Frankel W, Panescu J et al. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res 2006; 66: 7810–7817

Leenen CH, van Lier MG, van Doorn HC et al. Prospective evaluation of molecular screening for Lynch syndrome in patients with endometrial cancer ≤ 70 years. Gynecol Oncol 2012; 125: 414–420

Lu KH, Schorge JO, Rodabaugh KJ et al. Prospective determination of prevalence of Lynch syndrome in young women with endometrial cancer. J Clin Oncol 2007; 25: 5158–5164

Westin SN, Lacour RA, Urbauer DL et al. Carcinoma of the lower uterine segment: a newly described association with Lynch syndrome. J Clin Oncol 2008; 26: 5965–5971

Win AK, Lindor NM, Winship I et al. Risks of colorectal and other cancers after endometrial cancer for women with Lynch syndrome. J Natl Cancer Inst 2013; 105: 274–279

Nelen MR, Kremer H, Konings IB et al. Novel PTEN mutations in patients with Cowden disease: absence of clear genotype-phenotype correlations. Eur J Hum Genet 1999; 7: 267–273

Barrow E, Hill J, Evans DG. Cancer risk in Lynch Syndrome. Fam Cancer 2013; 12: 229–240

Senter L, Clendenning M, Sotamaa K et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 2008; 135: 419–428

Kempers MJ, Kuiper RP, Ockeloen CW et al. Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol 2011; 12: 49–55

Lynch HT, Rieger-Johnson DL, Snyder C et al. Lynch syndrome-associated extracolonic tumors are rare in two extended families with the same EPCAM deletion. Am J Gastroenterol 2011; 106: 1829–1836

Rieger-Johnson DL, Gleeson FC, Roberts M et al. Cancer and hermitte-Duclos disease are common in Cowden syndrome patients. Hered Cancer Clin Pract 2010; 8: 6

Tan MH, Mester JL, Ngeow J et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 2012; 18: 400–407

Ferguson SE, Aronson M, Pollett A et al. Performance characteristics of screening strategies for Lynch syndrome in unselected women with newly diagnosed endometrial cancer who have undergone universal germline mutation testing. Cancer 2014; 120: 3932–3939

Bubien V, Bonnet F, Broutte V et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet 2013; 50: 255–263

Mahdi H, Mester JL, Nizialek EA et al. Germline PTEN, SDHB-D, and KLFN alterations in endometrial cancer patients with Cowden and Cowden-like syndromes: an international, multicenter, prospective study. Cancer 2015; 121: 688–696

Clarke BA, Cooper K. Identifying Lynch syndrome in patients with endometrial carcinoma: shortcomings of morphologic and clinical schemas. Adv Anat Pathol 2012; 19: 231–238

Snowsill T, Huxley N, Hoyle M et al. A systematic review and economic evaluation of diagnostic strategies for Lynch syndrome. Health Technol Assess 2014; 18: 1–406

Auranen A, Joutsiniemi T. A systematic review of gynecological cancer surveillance in women belonging to hereditary nonpolyposis colorectal cancer (Lynch syndrome) families. Acta Obstet Gynecol Scand 2011; 90: 437–444

Lecuru F, Le Frere Belda MA et al. Performance of office hysteroscopy and endometrial biopsy for detecting endometrial disease in women at risk of human non-polyposis colon cancer: a prospective study. Int J Gynecol Cancer 2008; 18: 1326–1331

Daniels MS. Genetic testing by cancer site: uterus. Cancer J 2012; 18: 338–342
