An analogue of Serre’s conjecture for a ring of distributions

https://doi.org/10.1515/taa-2020-0100
Received May 7, 2020; accepted May 16, 2020

Abstract: The set $A := \mathbb{C}\delta_0 + D'$, obtained by attaching the identity δ_0 to the set D' of all distributions on \mathbb{R} with support contained in $(0, \infty)$, forms an algebra with the operations of addition, convolution, multiplication by complex scalars. It is shown that A is a Hermite ring, that is, every finitely generated stably free A-module is free, or equivalently, every tall left-invertible matrix with entries from A can be completed to a square matrix with entries from A, which is invertible.

Keywords: Hermite ring, Serre’s conjecture, algebraic K-theory, Schwartz distribution theory

MSC: Primary 46F10; Secondary 19B10, 19K99, 46H05

1 Introduction

The aim of this note is to show that the ring A is a Hermite ring. The relevant definitions are recalled below. For preliminaries on the distribution theory of L. Schwartz, we refer the reader to [1] and [2]. For the commutative algebraic terminology used below, we refer to [3] and [4].

Let D' denote the set of all distributions $T \in D'(\mathbb{R})$ having their distributional support contained in the half line $(0, \infty)$. Then D' is an algebra with pointwise addition, pointwise multiplication by scalars, and with convolution taken as multiplication in the algebra. However, D' lacks the identity element with respect to multiplication. We can adjoin the identity element to the algebra D', hence obtaining the larger algebra $A := \mathbb{C}\delta_0 + D'$, whose elements are of the form $\alpha \delta_0 + T$, where $\alpha \in \mathbb{C}$ and $T \in D'$. A is also an algebra with the same operations. We will denote the convolution operation henceforth by \ast.

Serre’s question from 1955 was if, for the ring $R = \mathbb{F}[x_1, \cdots, x_d]$ (\mathbb{F} a field), every finitely generated projective R-module is free. This was eventually settled in 1976, independently, by Quillen and by Suslin, and the considerations over this question gave rise to the subject of algebraic K-theory. In light of the Hilbert-Serre theorem, Serre’s question for $R = \mathbb{F}[x_1, \cdots, x_d]$ can be reduced to the question of whether every finitely generated stably free R-module is free. A commutative unital ring R having the property that every finitely generated stably free R-module is free is called a Hermite ring. In terms of matrices over the ring R, one has the following characterisation of Hermite rings, see for example [3, p.VIII], [5, p.1029], [6, Lemma 8.1.20, p.290].

Let R be a commutative unital ring with multiplicative identity denoted by 1. For $m, n \in \mathbb{N} = \{1, 2, 3, \cdots\}$, we denote by $R^{m \times n}$ the matrices with m rows and n columns having entries from R. The identity element in $R^{k \times k}$ having 1s on the diagonal and zeroes elsewhere will be denoted by I_k. A tall matrix $F \in R^{k \times k}$ is said to be left-invertible if there exists a $g \in R^{k \times k}$ such that $gf = I_k$. The ring R is Hermite if and only if
for all k and $K \in \mathbb{N}$ such that $k < K$, and
for all $f \in R^{K \times K}$ such that there exists a $g \in R^{k \times K}$ so that $gf = I_k$,
there exists an $f_c \in R^{K \times (K-k)}$ and there exists a $G \in R^{K \times K}$
such that $G \begin{bmatrix} f & f_c \end{bmatrix} = I_K$.

In other words, the ring R is Hermite if every left invertible matrix over R can be extended to an invertible one.

Example 1.1. $R = \mathbb{C}$ is a Hermite ring. Indeed, suppose that $f \in C^{K \times k}$ is left-invertible, and that $gf = I_k$ for some $g \in C^{k \times K}$. Then if $v \in C^K$ is such that $f v = 0$, it follows that $v = f g v = g 0 = 0$. So the columns v_1, \ldots, v_k of f are linearly C^K, and hence we can find $v_{k+1}, \ldots, v_K \in C^K$ such that \{ $v_1, \ldots, v_K, v_{k+1}, \ldots, v_K$ \} forms a basis for C^K. Defining $f_c = \begin{bmatrix} v_{k+1} & \cdots & v_K \end{bmatrix} \in C^{K \times (K-k)}$, we have that \[\begin{bmatrix} f & f_c \end{bmatrix} \in C^{K \times K} \] is invertible in $C^{K \times K}$.

The following example is well-known, see e.g. [6, Example 8.1.27, p.292].

Non-example 1.2. Let $S^2 \subset \mathbb{R}^3$ be the unit sphere, and let $C(S^2, \mathbb{R})$ be the ring of real-valued continuous functions on S^2, with pointwise operations. Then $C(S^2, \mathbb{R})$ is not a Hermite ring. Indeed, taking $f \in (C(S^2, \mathbb{R}))^{3 \times 1}$ as the map sending the point x to the normal vector $x \times$ to the manifold S^2, that is, $x \mapsto \hat{n}(x) = x : S^2 \to \mathbb{R}^3$, we see that f is left invertible, thanks to the fact that $(x, x) = 1$ in \mathbb{R}^3 for each $x \in S^2$. But if $C(S^2, \mathbb{R})$ were a Hermite ring, then f could be extended to an invertible matrix $\begin{bmatrix} f & g & h \end{bmatrix} \in (C(S^2, \mathbb{R}))^{3 \times 3}$. This results in continuous maps $v_1, v_2 : S^2 \to \mathbb{R}^3$ so that $\{ f(x) = n(x), v_1(x), v_2(x) \}$ forms an orthonormal basis for \mathbb{R}^3.\footnote{This is impossible since the normal vector $\hat{n}(x)$ is a continuous function on S^2.}

In particular, $v_1 : S^2 \to \mathbb{R}^3$ would be a continuous tangent vector field on S^2 which is nowhere vanishing, contradicting the Hairy Ball Theorem [7].

Our result is the following:

Theorem 1.3. $(C \delta_0 + D', +, *)$ is a Hermite ring.

Proof. Let A be the ring $C \delta_0 + D'$. Let $f \in A^{k \times k}$ be left invertible, with $gf = I_k \delta_0$ for some $g \in A^{k \times K}$. Write
\[f = \delta_0 f_0 + f_* , \]
\[g = \delta_0 g_0 + g_* , \]
where $f_* \in (D')^{k \times k}, f_0 \in C^{K \times k}$, and $g_* \in (D')^{k \times K}, g_0 \in C^{k \times K}$. From $gf = I_k \delta_0$, we obtain that
$g_0 f_0 \delta_0 + (g_0 f_* + g_* f_0 + g_* f_*) = \delta_0 I_k$.

As the entries of f_*, g_* belong to D', it follows that there exists an $\varepsilon > 0$ such that each of the entries of $g_0 f_* + g_* f_0 + g_* f_*$ has its support in (ε, ∞). So if we act both sides (entry-wise) on a test function $\varphi \in D'(|\mathbb{R})$ such that $\text{supp}(\varphi) \subset (-\infty, \varepsilon)$, then we obtain
$g_0 f_0 \varphi(0) = I_k \varphi(0)$.

Choosing $\varphi(0) \neq 0$, this now shows that $g_0 f_0 = I_k$. But as C is Hermite, we can now find a $f_c \in C^{K \times (K-k)}$ and a $G_0 \in C^{K \times K}$ such that
$G_0 \begin{bmatrix} f_0 & f_c \end{bmatrix} = I_K$.

that is,
$(G_0 \delta_0) \begin{bmatrix} f_0 \delta_0 + f_* & f_c \delta_0 \end{bmatrix} = I_K \delta_0 - (G_0 \delta_0) \begin{bmatrix} -f_* & 0 \delta_0 \end{bmatrix}$.

As $f_* \in (D')^{K \times k}$, it follows that $T \in (D')^{K \times K}$. Suppose that $\varepsilon' > 0$ is such that each entry of T has its support contained in (ε', ∞). We claim that $I_K \delta_0 - T$ is invertible in $(A)^{K \times K}$. Define the “geometric series”
$S = I_K \delta_0 + T + T^2 + T^3 + \cdots$.

We will now show that S is well-defined. We recall the theorem on supports for convolution of distributions [1, Theorem 8, p.120], namely that

$$\text{supp}(T_1 * T_2) \subset \text{supp}(T_1) + \text{supp}(T_2)$$

for any two distributions $T_1, T_2 \in \mathcal{D}'(\mathbb{R})$ whose supports satisfy the convolution condition. It follows that in our case, each entry T_n has its support contained in $n \cdot \text{supp}(T) = n[e', \infty) = [ne', \infty)$. So it follows that the series for S converges. Indeed, given any test function $\phi \in \mathcal{D}(\mathbb{R})$, the series (with the action $\langle T_n^0, \phi \rangle$ understood to be entry-wise)

$$\sum_{n=1}^{\infty} \langle T_n^0, \phi \rangle$$

contains only finitely many nonzero terms. Now if S_n denotes the nth partial sum of the series $I_K\delta_0 + T + T^2 + T^3 + \cdots$, we have

$$(I_K\delta_0 - T)S = (I_K\delta_0 - T) \lim_{n \to \infty} S_n = \lim_{n \to \infty} (I_K\delta_0 - T)S_n = \lim_{n \to \infty} (I_K\delta_0 - T^{n+1}) = I_K\delta_0.$$

The second equality above follows from the continuity of convolution in \mathcal{D}'; see [1, Theorem 7, p.120]. Now, setting

$$G = S(G_0\delta_0) = (I_K\delta_0 - T)^{-1}(G_0\delta_0) \in \mathcal{A}^{K \times K},$$

we have

$$G \left[f \mid f_c\delta_0 \right] = (I_K\delta_0 - T)^{-1}(G_0\delta_0) \left[f_0\delta_0 + f, \mid f_c\delta_0 \right] = (I_K\delta_0 - T)^{-1}(I_K\delta_0 - T) = I_K\delta_0.$$

This completes the proof.

\[\square\]

2 Remarks

2.1 A conjecture

Another natural convolution algebra is the algebra $\mathcal{E}'(\mathbb{R})$ of all compactly supported distributions, again the usual pointwise addition and convolution taken as multiplication. We have the following:

Conjecture 2.1. $(\mathcal{E}'(\mathbb{R}), +, *)$ is a Hermite ring.

2.2 A corona-type condition for left invertibility

The famous Carleson corona theorem [8] answered Kakutani’s 1942 question of whether the ‘corona’ $M(H^\infty)\downarrow D$ is empty. Here H^∞ denotes the Banach algebra of bounded holomorphic functions in the unit disc $D := \{ z \in \mathbb{C} : |z| < 1 \}$, with pointwise operations and the supremum norm $\|f\|_{\infty} := \sup\{|f(z)| : z \in D\}$. Also, $M(H^\infty)$ denotes the maximal ideal space of H^∞ (the set of all multiplicative linear functionals $\phi : H^\infty \to \mathbb{C}$, endowed with the Gelfand topology, that is the topology induced from the dual space $\mathcal{L}(H^\infty, \mathbb{C})$ equipped with the weak-* topology). From the elementary theory of Banach algebras (see e.g. [9, Lemma 9.2.6]), the answer to this question in the affirmative is equivalent to the following result (the matricial version given below is attributed to [10], and is a consequence of [8]).
Theorem 2.2. Let $f \in (H^{\infty})^{k-k}$, where $K \geq k$. Then the following are equivalent:
1. There exists a $g \in (H^{\infty})^{k-k}$ such that $gf = I_k$.
2. There exists an $\epsilon > 0$ such that for all $z \in D$, $f(z)^*f(z) \geq \epsilon^2 I_k$.

(Here $f(z)^*f(z) \geq \epsilon^2 I_k$ means that $\|f(z)v\|_{C^k} \geq \epsilon^2\|v\|_{C^k}^2$ for all $v \in C^k$, and $\| \cdot \|_{C^k}$ denotes the usual Euclidean norm on C^k.)

Theorem 2.3. Let A be the ring $(\mathbb{C}\delta_0 + \mathcal{D}', +, *)$. Then the following are equivalent for $f = f_0\delta_0 + f_* \in A^{k-k}$, where $f_0 \in C^{k-k}$ and $f_* \in (\mathcal{D}')^{k-k}$, $K, k \in \mathbb{N}$ with $K \geq k$:
1. There exists a $g \in A^{k-k}$ such that $gf = I_k\delta_0$.
2. There exists an $\epsilon > 0$ such that $f_0^*f_0 \geq \epsilon^2 I_k$.

Proof. (1)\Rightarrow(2): Write $g = g_0\delta_0 + g_*$, where $g_0 \in C^{k-k}$ and $g_* \in (\mathcal{D}')^{k-k}$. Then
$$I_k\delta_0 = gf = g_0f_0\delta_0 + (g_0f_* + g_*f_0 + g_*f_*),$$
and since the bracketed expression has support in $(0, \infty)$, it follows that $I_k = g_0f_0$. Then with $\epsilon := \|g_0^*\|^2$, where $\|g_0^*\|$ denotes the induced operator norm of the multiplication map $\nu \mapsto g_0^*\nu : C^k \to C^k$, and C^k, C^k are equipped with the usual Euclidean 2-norms.

(2)\Rightarrow(1): If (2) holds, then $\ker(f_0^*f_0) = \{0\}$, and so $f_0^*f_0$ is invertible. Taking $g_0 := (f_0^*f_0)^{-1}f_0^*$, we then have $g_0f_0 = (f_0^*f_0)^{-1}f_0^*f_0 = I_k$. We have
$$g_0f = I_k\delta_0 + g_0f_*,$$
and since the support of $T := g_0f_*$, is contained in $(0, \infty)$, it follows that $I_k\delta_0 + T$ is invertible as an element of A^{k-k}, with the inverse
$$(I_k\delta_0 + g_0f_*)^{-1} = (I_k\delta_0 + T)^{-1} = I_k\delta_0 - T + T^2 - T^3 + \cdots.$$
So $g := (I_k\delta_0 + g_0f_*)^{-1}g_0 \in A^{k-k}$ and
$$gf = (I_k\delta_0 + g_0f_*)^{-1}g_0 = (I_k\delta_0 + g_0f_*)^{-1}(I_k\delta_0 + g_0f_*) = I_k\delta_0.$$
This completes the proof. \square

References

[1] L. Schwartz, Mathematics for the physical sciences. Addison-Wesley, 1966.
[2] L. Schwartz, Théorie des Distributions. Hermann, Paris, 1966.
[3] T.Y. Lam, Serre’s conjecture, Lecture Notes in Mathematics, 635. Springer, 1978.
[4] T.Y. Lam, Serre’s problem on projective modules, Monographs in Mathematics. Springer, 2006.
[5] V. Tolokonnikov, Extension problem to an invertible matrix, Proceedings of the American Mathematical Society, 117 (1993), no. 4, 1023-1030.
[6] M. Vidyasagar, Control System Synthesis. A Factorization Approach, Series in Signal Processing, Optimization, and Control, 7. MIT Press, 1985.
[7] E. Curtin, Another short proof of the hairy ball theorem, American Mathematical Monthly, 125 (2018), no. 5, 462-463.
[8] L. Carleson, Interpolations by bounded analytic functions and the corona problem, Annals of Mathematics, 76 (1962), 547-559.
[9] N.K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 1, Mathematical Surveys and Monographs, 92. American Mathematical Society, 2002.
[10] P.A. Fuhrmann, On the corona theorem and its applications to spectral problems in Hilbert space, Transactions of the American Mathematical Society, 132 (1968), 55-56.