Battery Management System for E-Vehicle using Kalman Filter

Balachander K¹, Amudha A², Naveen KT³
¹,² Department of Electrical and Electronics Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
Email: kaybe.ind@gmail.com

Abstract. For safe and proper battery management system the main aspect is to do a optimization of SOC which is State-of-Charge estimation. This paper gives you the maximum achievement of BMS with the electric vehicle Lithium ion Battery. Kalman filter design is implemented in this in order to reduce the mechanical noise and further voltage and current ripples where the man aim of this research work using Kalman is that it must have some proper sequence like a proper electronics and electrical model to get rid of the noises and ripples, thus the models current state and its system design is verified where it can apply to all sorts of problems and can apply to all such current manufacturers. From this point of view, we implemented a design which matches the output source of Kalman filter design and takes the less time for giving the accurate output. Hence the simulation with the Kalman filter design and its respective needed electronics components are therefore simulated and programmed by the MATLAB Simulink.

1. Introduction
At the intro part the electric vehicle takes a main role it has many forms of input sources that will make the motor to run for an electric vehicle [1-3]. It can be get the electricity from non-vehicle sources that we discuss further and also it can have its own battery system inbuilt [4-8]. The non or off-vehicle sources contains the renewable form of energy resources which are wind power, solar power and sometimes fuels are used to convert the system into electric vehicle by producing electricity on running the rotor [9-11]. Electric vehicles are not only working or limited road and railways of transport it can also run in the ships, aircrafts and space craft of systems which gives less cost and major advantages.

Electric vehicle first proposed in the era of 19th and mid- 19th centuries where at that period electricity used for motor kind of applications mainly used for toys and in further development it used for propulsion in vehicles which makes the use of vehicles in the easiest ways and gives the less cost that is not even achieved by the fuel type of engines in that time which makes the world to advanced level [12]. We used to hear about the modern internal combustion engine which makes the vehicles to run in great propulsion almost ruled most of the centuries and at the time of electric vehicle idea came it currently rules the world [14-17].

BMS which is abbreviated as battery management system which is kind of system to calculate all the aspects of battery whether it is running smoothly or it makes the system to its worse mainly it depends upon the atmosphere factors like the temperature in the outer environment which makes the system overheated and failure of batteries [18]. Thus, we are calculating the nominal voltage and currents carried out by the battery monitoring its state how it being in the atmosphere analysing the data about SOC which is state of charge calculating, it reporting it and balancing it [19].
In considering a thermal management system we can have the Liquid cooling system to lower the temperature of battery in the fossil fuel internal combustion engine we use the coolant oil for compensating the temperature where in this advanced technology we can use running cooling fan of applications. But liquid cooling has the major changes like it is the best system than the coolant fan type of applications. Batteries can directly implement with the coolant system without going for the battery management systems like it directly merged with the cooling system. If we use indirect cooling type of systems it makes the system heavy even it can compensate thermal quickly with its larger cooling channels [20].

The simulation is done using MATLAB Simulink it has the nice programming interfaces with the serial communication to the embedded systems in this research work we use both the MATLAB and Simulink which is a part of it. Its graphical programming interface is the main thing which gives the environment to interact with other type of domains such as control systems and VLSI. Simulink used in the way like simulating, analysing and interfacing with other systems which has vast number of libraries and can create a user defined library [21].

2. Existing system

In the existing system of technology, when there is a demand in Peak load all loads make the battery inn the situation of wear and tear which is carried out by the battery management system. Batteries historical performance cannot be seen due to lack of scalability from the manufacture side. In the existing system of methodology, the battery management systems are normal where it can only reduce the state of charge with respect to the normal battery performance. And it also makes the overall system design to complex. In the existing models of BMS system, the data acquisition is an important issue in our proposed model we can overcome all that kind of design and strategies [22-30].

3. Proposed system

In this proposed system we can see the improvised technology of battery management system which give great performance and overcome all the things of drawback which we saw in the previous models and papers. The performance of battery is all fine with the State of charge and its charge and discharging operations [13]. From the models of Thevenin’s the Kalman filter method is the one which cannot obtain its correct precision output because of its limited supplies of model precision. On creating a theory to solve that kind of problem we go for the second-order model of Thevenin’s algorithm. So from this we have the UKF which is abbreviated as Unscented Kalman Filter which leads to the idea of the Sage-Hausa adaptive algorithm and square root filter algorithm. Soc optimization and precision is more comfortable with the introduction of adaptive square root Unscented Kalman Filter (ASRUKF) algorithm. On experimenting the state of charge and its circuit the ASRUKF’s results shows the best way to get the high precision model of SOC experiments.
The above design (Fig. 1) describes the entire circuit diagram of this research work “Electric Vehicle Battery Management System Using Kalman Filter Design”.

Fig. 2 represents the current efficiency by three major things which are temperature condition, state of charge and coulombic efficiency.

The Fig. 3 represents the circuit of capacity correction where it gets the inputs from the outer battery temperature.

This above Fig. 4 represents the total circuit of Kalman filter configuration where its main module is to get the state of charge for the correct level of batteries charging and discharging operations.
The parameter configuration which is given as the input for Kalman filter design where it plays the main key role in designing shown in Fig. 5 and getting correct level of SOC with the MATLAB programming.

This above circuit (Fig. 6) represents the simulation stop method when there is a low State of charge in the circuit of BMS.

4. Output and Results
In this section provides the output and results of the Electric Vehicle Battery Management System Using Kalman Filter Design, it includes Current efficiency, Capacity correction, Error covariance and State of charge.

The Fig. 7 represents the output current efficiency from the battery.
The temperature compensation and capacity correction is shown in Fig. 8.

The error covariance from the Kalman filter represents in Fig. 9.

The state of charge is shown in Fig. 10.
The Fig. 10 and 11 represents the state of charges 1 and 2 with respect to x parameter of battery management system model.

Conclusion

By using this work of kalman filter based battery management system we have a high gain of state of charge and therefore there is a smooth maintenance needed for the batteries so that battery is enabled to enhance the electric vehicle power. And there is a great energy source. Thus the electric vehicle based battery management system using kalman filter is implemented using MATLAB Simulink.

References

1. Raszmann, E.; Baker, K.; Shi, Y.; Christensen, D. Modeling stationary lithium-ion batteries for optimization and predictive control. In Proceedings of the 2017 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 23–24 February 2017.
2. Liu-Henke, X.; Scherler, S.; Jacobitz, S. Verification oriented development of a scalable battery management system for lithium-ion batteries. In Proceedings of the 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 11–13 April 2017.
3. Ordoñez, J.; Gago, E.J.; Girard, A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 2016, 60, 195–205.
4. Dubarry, M.; Devie, A.; Liaw, B.Y. The value of battery diagnostics and prognostics. J. Energy Power Sources 2014, 1, 242–249.
5. W. Chang, "The state of charge estimating methods for battery: a review", ISRN App. Mathematics 2013,
6. S. Pang, J. Farrell, J. Du and M. Barth, "Battery state-of-charge estimation", American Control Conf. 2001. Proceedings of the 2001, vol. 2, pp. 1644-1649, 2001.
7. J. Chiasson and B. Vairamohan, "Estimating the state of charge of a battery", IEEE Trans. on Control Systems Technology, vol. 13, no. 3, pp. 465-470, 2005.
8. M. Coleman, Chi Kwan Lee, Chumbo Zhu and W.G. Hurley, "State-of-Charge Determination From EMF Voltage Estimation: Using Impedance Terminal Voltage and Current for Lead-Acid and Lithium-Ion Batteries", Ind. Electronics IEEE Trans. on, vol. 54, no. 5, pp. 2550-2557, Oct 2007.
9. S. Piller, M. Perrin and A. Jossen, "Methods for state-of-charge determination and their applications", J. of Power Sources, vol. 96, no. 1, pp. 113-120, 2001.
10. Fathabadi, M. Shabazian, K. Salahshour and L. Jargani, "Comparison of adaptive Kalman filter methods in state estimation of a nonlinear system using asynchronous measurements", Proceedings of the World Congress on Engg. and Computer Science, vol. 2, 2009.
11. M. Rubagotti, S. Onori and G. Rizzoni, "Automotive battery prognostics using dual Extended Kalman Filter", ASME 2009 Dynamic Systems and Control Conf,. pp. 257-263, 2009.
12. Ganesh Babu R, Dhineshkumar K, Rohit Sharma and krishnamoorthy R 2020 A Survey of Machine Learning Techniques using for Image Classification in Home Security Proc. Int. Virt. Conf. Robo.
11. G.L. Plett, "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation", J. of Power Sources, vol. 134, no. 2, pp. 277-292, 2004.
12. S. Lee, J. Kim, J. Lee and B.H. Cho, "State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage state-of-charge", J. of Power Sources, vol. 185, no. 2, pp. 1367-1373, 2008.
13. M. Charkhgard and M. Farrokhi, "State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF", Ind. Electronics IEEE Trans. on, vol. 57, no. 12, pp. 4178-4187, Dec 2010.
14. Ganesh Babu R, Chellaswamy C, Surya Bhupal Rao M, Saravanan M, Kanchana E and Shalini J 2020 Deep Learning Based Pothole Detection and Reporting System Proceedings of 7th IEEE International Conference on Smart Structures and Systems Proc. 7th IEEE Int. Conf. Smart Structures and Systems, Saveetha Engineering College, Chennai, pp.1–6. https://doi.org/10.1109/ICSSS49621.2020.9202061
15. Rahul Krishnan, Ganesh Babu R, Karthi J, Vanaja S and Keren Naomi Devnesh 2020 Autonomous Underground Water Detection Robot Int. Virt. Conf. Robo. Auto. Inte. Syst. Ener. IOP Conference Series: Materials Science and Engineering (MSE), vol 1055 Kongu Engineering College, Erode, pp.1-6. https://iopscience.iop.org/article/10.1088/1757-899X/1055/1/012002
16. H. He, R. Xiong, X. Zhang, F. Sun and J. Fan, "State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model", Vehicular Technology IEEE Trans. on, vol. 60, no. 4, pp. 1461-1469, May 2011.
17. J. Han, D. Kim and M. Sunwoo, "State-of-charge estimation of lead-acid batteries using an adaptive extended Kalman filter", J. of Power Sources, vol. 188, no. 2, pp. 606-612, 2009.
18. D. Di Domenico, G. Fiengo and A. Stefanopoulou, "Lithium-ion battery state of charge estimation with a Kalman Filter based on a electrochemical model", Control App. 2008. CCA 2008. IEEE Int. Conf. pp. 702-707, Sept 2008.
19. WB Gu and CY Wang, "Thermal-electrochemical modeling of battery systems", J. of The Electrochemical Society, vol. 147, no. 8, pp. 2910-2922, 2000.
20. Ganesh Babu R, Chellaswamy C, Geetha T S, Daniel Raj T, Venkatachalam K and Mulla M A 2020 Soil Test Based Smart Agriculture Management System Proc. 7th IEEE Int. Conf. Smart Structures and Systems, Saveetha Engineering College, Chennai, pp.1–6. https://doi.org/10.1109/ICSSS49621.2020.9202313
21. F. Codec, S.M. Savalesi and G. Rizzoni, "On battery state of charge estimation: A new mixed algorithm", Control App. 2008. CCA 2008. IEEE Int. Conf. on, pp. 102-107, Sept 2008.
22. L. Gao, S. Liu and R.A. Dougal, "Dynamic lithium-ion battery model for system simulation", Components and Packaging Technologies IEEE Trans. on, vol. 25, no. 3, pp. 495-505, Sep 2002.
23. M. Ceraolo, "New dynamical models of lead-acid batteries", Power Systems IEEE Transactions on, vol. 15, no. 4, pp. 1184-1190, Nov 2000.
24. P. Rong and M. Pedram, "An analytical model for predicting the remaining battery capacity of lithium-ion batteries", Very Large-Scale Integration (VLSI) Systems IEEE Transactions on, vol. 14, no. 5, pp. 441-451, May 2006.
25. M. Mathankumar, Tamilarasu Viswanathan, K. Balachander, S. Suryaparaksh 2021, Design and implementation of improved sliding mode control for electric vehicle voltage stabilization, Materials Today: Proceedings, 45, Part 2, 1747-49.
26. Gunapiya B, Pavithra C, V, Divya R, Mathankumar M and Karthikeyan P 2020, An Improved Intelligent Controller for Brushless DC Motor Drive Based Electric Vehicles, J of green Engineering, 10, 11, 11943-57.
27. Dineshkumar T, Mathankumar M, and Sundaram M, 2016, High efficient single stage single phase boost inverter with minimized harmonic distortion, Int. Conf. on Sustainable Green Buildings and Communities (SGBC), 1-5, IEEE.
28. Chellaswamy C, Ganesh Babu R, Saravanan M, Abirami M, Boosuphasri R and Manjalam Balaji 2020 Machine Learning Based Condition Recognition System for Bikers Proc. 7th IEEE Int. Conf. Smart Structures and Systems, Saveetha Engineering College, Chennai, pp.1–6. https://doi.org/10.1109/ICSSS49621.2020.9202245.
29. Natarajan, B., Obaidat, M.S., Sadoun, B., Manoharan, R., Ramachandran, S. and Velusamy, N., 2020. New Clustering-Based Semantic Service Selection and User Preferential Model.
IEEE Systems Journal. DOI: 10.1109/JSYST.2020.3025407.

[32] Nataraj, S.K., Al-Turjman, F., Adom, A.H., Sitharthan, R., Rajesh, M. and Kumar, R., 2020. Intelligent Robotic Chair with Thought Control and Communication Aid Using Higher Order Spectra Band Features. IEEE Sensors Journal, DOI: 10.1109/JSEN.2020.3020971.

[33] Babu, R.G., Obaidat, M.S., Amudha, V., Manoharan, R. and Sitharthan, R., 2020. Comparative analysis of distributive linear and non-linear optimised spectrum sensing clustering techniques in cognitive radio network systems. IET Networks, DOI: 10.1049/iet-net.2020.0122.

[34] Sitharthan, R., Yuvaraj, S., Padmanabhan, S., Holm-Nielsen, J.B., Sujith, M., Rajesh, M., Prabaharan, N. and Vengatesan, K., 2021. Piezoelectric energy harvester converting wind aerodynamic energy into electrical energy for microelectronic application. IET Renewable Power Generation, DOI: 10.1049/rpg2.12119.

[35] Sitharthan, R., Sujatha Krishnamoorthy, Padmanaban Sanjeevikumar, Jens Bo Holm-Nielsen, R. Raja Singh, and M. Rajesh. "Torque ripple minimization of PMSM using an adaptive Elman neural network-controlled feedback linearization-based direct torque control strategy." International Transactions on Electrical Energy Systems 31, no. 1 (2021): e12685. DOI: 10.1002/2050-7038.12685.