"Evidence for a bottom baryon resonance Lambda_b* in CDF data"

Aaltonen, T. ; Vizan Garcia, Jesús Manuel ; The CDF Collaboration

ABSTRACT

Using data from proton-antiproton collisions at $E_{\text{cms}}=1.96$ TeV recorded by the CDF II detector at the Fermilab Tevatron, evidence for the excited resonance state Λ_b^* is presented in its $\Lambda_b^0 \pi^+ \pi^-$ decay, followed by the $\Lambda_b^0 \rightarrow \Lambda_c^+ (\rightarrow \text{proton} K^- \pi^+) \pi^-$ decays. The analysis is based on a data sample corresponding to an integrated luminosity of 9.6/fb collected by an online event selection based on charged-particle tracks displaced from the proton-antiproton interaction point. The significance of the observed signal is 3.5 Gaussian sigmas. The mass of the observed state is found to be 5919.22 ± 0.76 MeV in agreement with similar findings in proton-proton collision experiments.

CITE THIS VERSION

Aaltonen, T. ; Vizan Garcia, Jesús Manuel ; The CDF Collaboration ; et. al. Evidence for a bottom baryon resonance Lambda_b* in CDF data. In: Physical Review. D, Particles, Fields, Gravitation and Cosmology, Vol. 88, no.7, p. 071101(R [8 pages] (2013) http://hdl.handle.net/2078.1/137083 -- DOI : 10.1103/PhysRevD.88.071101

Le dépôt institutionnel DIAL est destiné au dépôt et à la diffusion de documents scientifiques émanants des membres de l'UCLouvain. Toute utilisation de ce document à des fins lucratives ou commerciales est strictement interdite. L'utilisateur s'engage à respecter les droits d'auteur lié à ce document, principalement le droit à l'intégrité de l'oeuvre et le droit à la paternité. La politique complète de copyright est disponible sur la page Copyright policy

DIAL is an institutional repository for the deposit and dissemination of scientific documents from UCLouvain members. Usage of this document for profit or commercial purposes is strictly prohibited. User agrees to respect copyright about this document, mainly text integrity and source mention. Full content of copyright policy is available at Copyright policy

Available at: http://hdl.handle.net/2078.1/137083
(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439, USA
3 University of Athens, 157 71 Athens, Greece
4 Institut de Física d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798, USA
6a Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6b University of Bologna, I-40127 Bologna, Italy
7 University of California, Davis, California 95616, USA
8 University of California, Los Angeles, California 90024, USA
9 Instituto de Física de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
10 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
11 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
12 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
13 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14 Duke University, Durham, North Carolina 27708, USA
15 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
16 University of Florida, Gainesville, Florida 32611, USA
17 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18 University of Geneva, CH-1211 Geneva 4, Switzerland
19 Glasgow University, Glasgow G12 8QQ, United Kingdom
20 Harvard University, Cambridge, Massachusetts 02138, USA
21 Department of Physics, Division of High Energy Physics, University of Helsinki, FIN-00014 Helsinki, Finland; Helsinki Institute of Physics, FIN-00014 Helsinki, Finland
22 University of Illinois, Urbana, Illinois 61801, USA
23 The Johns Hopkins University, Baltimore, Maryland 21218, USA
24 Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
25 Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea; Ewha Womans University, Seoul 120-750, Korea
26 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
27 University of Liverpool, Liverpool L69 7ZE, United Kingdom
28 University College London, London WC1E 6BT, United Kingdom
29 Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
30 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
31 University of Michigan, Ann Arbor, Michigan 48109, USA
32 Michigan State University, East Lansing, Michigan 48824, USA
33 Institute for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
34 University of New Mexico, Albuquerque, New Mexico 87131, USA
35 The Ohio State University, Columbus, Ohio 43210, USA
36 Okayama University, Okayama 700-8530, Japan
37 Osaka City University, Osaka 558-8585, Japan
38 University of Oxford, Oxford OX1 3RH, United Kingdom
39a Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
39b University of Padova, I-35131 Padova, Italy
40 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
41a Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
41b University of Pisa, I-56127 Pisa, Italy
41c University of Siena, I-56127 Pisa, Italy
41d Scuola Normale Superiore, I-56127 Pisa, Italy
41e INFN Pavia, I-27100 Pavia, Italy
41f University of Pavia, I-27100 Pavia, Italy
42 University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
43 Purdue University, West Lafayette, Indiana 47907, USA
44 University of Rochester, Rochester, New York 14627, USA
45 The Rockefeller University, New York, New York 10065, USA
Using data from proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV recorded by the CDF II detector at the Fermilab Tevatron, evidence for the excited resonance state Λ_b^0 is presented in its $\Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+$ decay followed by the $\Lambda_c^+ \to pK^- \pi^+$ decays. The analysis is based on a data sample corresponding to an integrated luminosity of 9.6 fb$^{-1}$ collected by an online event selection based on charged-particle tracks displaced from the proton-antiproton interaction point. The significance of the observed signal is 3.5σ. The mass of the observed state is found to be 5919.22 ± 0.76 MeV/c2 in agreement with similar findings in proton-proton collision experiments.

DOI: 10.1103/PhysRevD.88.071101

PACS numbers: 14.20.Mr, 13.30.Eg, 14.65.Fy
Baryons with a heavy-quark Q are useful for probing quantum chromodynamics (QCD) in its confinement domain. Observing new heavy-quark baryon states and measuring their properties provides further experimental constraints to the phenomenology in this regime. This report provides an additional contribution to the currently small number of heavy-quark baryon observations.

In the framework of heavy-quark effective theories (HQET) [1,2], a bottom quark b and a spin-zero [ud] diquark, carrying an angular momentum $L = 1$ relative to the b quark (hence named P-wave states) can form two excited states. These are named Λ_b^{0}, with same quark content as the singlet Λ_b^0 [3] and isospin $I = 0$ but total spin and parity $J^P = \frac{1}{2}^-$ and $J^P = \frac{3}{2}^-$ [4]. These isoscalar states are the lightest P-wave states that can decay to the Λ_b^0 baryon via strong-interaction processes. The decays require the emission of a pair of low-momentum (soft) pions. Both Λ_b^{0} [5] particles are classified as bottom-baryon resonant states. Several recent theoretical predictions of their masses are available. An approach based on a quark-potential model with the color hyperfine interaction is used in Ref. [6]. The authors in Ref. [7] use a constituent quark model incorporating the basic properties of QCD and solving exactly the three-body problem. A heavy baryon is considered in Ref. [8] as a heavy-quark and light-diquark system in the framework of the relativistic quark model based on the quasipotential approach in QCD. The spectroscopy of isoscalar heavy baryons and their excitations is studied in Ref. [9] within the framework of HQET at leading and next-to-leading orders in the combined inverse heavy-quark mass, $1/m_Q$, and inverse number of colors, $1/N_c$, expansions. The nonperturbative formalism of QCD sum rules is applied within HQET to calculate the mass spectra of the bottom baryon states [10]. Some calculations predict Λ_b^{0} masses smaller than the hadronic decay kinematic threshold ($=5900$ MeV/c^2) allowing only radiative decays [7,10]. Other calculations predict the mass difference $M(\Lambda_b^{0}) - M(\Lambda_b^0)$ for the $J^P = \frac{1}{2}^-$ state to be approximately in the range of 300–310 MeV/c^2 [6,8,9]. The mass splitting between the two states is predicted to be in the range of 10–17 MeV/c^2.

The first experimental studies of b-quark baryon resonant states were reported by CDF with the observation of the S-wave states $\Sigma_b^{(*)}$ in their $\Lambda_b^0\pi^\pm$ decays [11,12]. The ground states of the charged bottom-strange Ξ_b baryon [13–15] and bottom doubly strange Ω_b [15,16] were reported by both CDF and D0, and later CDF observed the neutral bottom-strange baryon Ξ_b^0 [17]. Recently, LHCb reported precise mass measurements of the ground state Λ_b^0, the Ξ_b^+ state, and the Ω_b^0 state [18]. The CMS Collaboration observed another bottom-strange state, $\Xi_b^{0\prime}$, which is interpreted as a $J^P = \frac{3}{2}^-$ resonance [19]. Most recently, two states interpreted as the two $\Lambda_b^{0\prime}$ resonant states were observed by the LHCb Collaboration for the first time [20].

In this report, we present evidence for the production of a $\Lambda_b^{0\prime}$ resonance state in CDF data. We search for candidate $\Lambda_b^{0\prime}$ baryons produced in proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV using a data sample from an integrated luminosity of 9.6 fb$^{-1}$ collected by CDF with a specialized online event selection (trigger) that collects events enriched in fully hadronic decays of b hadrons. The $\Lambda_b^{0\prime}$ candidates are identified in the pseudorapidity range $|\eta| < 1.0$ using their exclusive decays to Λ_b^0 baryons and two oppositely charged soft pions. The excellent performance of the CDF devices for measuring charged-particle trajectories (tracks) allows reconstructing charged particles with transverse momenta as low as 200 MeV/c. The result in this paper is the first to support the LHCb observation [20].

The component of the CDF II detector [21] most relevant to this analysis is the charged-particle tracking system, which operates in a uniform axial magnetic field of 1.4 T generated by a superconducting solenoidal magnet. The inner tracking system is comprised of a silicon tracker [22]. A large open-cell cylindrical drift chamber [23] completes the tracking system. The silicon tracking system measures the transverse impact parameter of tracks with respect to the primary interaction point, d_0 [24], with a resolution of $\sigma(d_0) = 40$ m, including an approximately 32 m contribution from the beam size [22]. The transverse momentum resolution of the tracking system is $\sigma(p_T)/p_T^2 = 0.07\%$ with p_T in GeV/c [24].

This analysis relies on a three-level trigger to collect data samples enriched in multibody hadronic decays of b hadrons (displaced-track trigger). The trigger requires two charged particles in the drift chamber, each with $p_T > 2.0$ GeV/c [25]. The particle tracks are required to be azimuthally separated by $2^\circ < \Delta \phi < 90^\circ$ [24]. Silicon information is added and the impact parameter d_0 of each track is required to lie in the range of 0.12–1 mm providing efficient discrimination of long-lived b hadrons [26]. Finally, the distance L_{xy} in the transverse plane between the collision space point (primary vertex) and the intersection point of the two tracks projected onto their total transverse momentum is required to exceed 200 m.

The mass resolution of the $\Lambda_b^{0\prime}$ resonances is predicted with a Monte Carlo simulation that generates b quarks according to a calculation expanded at next-to-leading order in the strong coupling constant [27] and produces events containing final-state hadrons by simulating b-quark fragmentation [28]. In the simulations, the $\Lambda_b^{0\prime}$ baryon is assigned the mass value of 5920.0 MeV/c^2. Decays are simulated with the EvtGen [29] program, and all b hadrons are simulated unpolarized. The generated events are passed to a Geant3-based [30] detector simulation, then to a trigger simulation, and finally the same reconstruction algorithm as used for experimental data.

The $\Lambda_b^{0\prime}$ candidates are reconstructed in the exclusive strong-interaction decay $\Lambda_b^{0\prime} \rightarrow \Lambda_b^0\pi^\mp\pi^\pm$, where the low-momentum pions π^\mp are produced near kinematic
threshold [31]. The Λ_b^0 baryon decays through the weak interaction to a baryon Λ_c^+ and a pion labeled as $\pi_{c\pi}$ to distinguish it from the soft pions. This is followed by the weak-interaction decay $\Lambda_c^+ \rightarrow pK^-\pi^+$. We search for a Λ_b^0 signal in the Q-value distribution, where $Q = m(\Lambda_b^0\pi_c\pi_{c\pi}) - m(\Lambda_b^0) - 2m_{\pi_c}$, $m(\Lambda_b^0)$ is the reconstructed $\Lambda_c^+\pi_{c\pi}$ mass, and m_{π_c} is the known charged-pion mass. The effect of the Λ_b^0 mass resolution is suppressed, and most of the systematic uncertainties are reduced in the mass difference. We search for narrow structures in the 6–45 MeV/c² range of the Q-value spectrum motivated by the theoretical estimates [6,8,9] and the LHCb findings [20].

The analysis begins with the reconstruction of the $\Lambda_c^+ \rightarrow pK^-\pi^+$ decay space point by fitting three tracks to a common point. Standard CDF quality requirements are applied to each track, and only tracks corresponding to particles with $p_T > 400$ MeV/c are used. No particle identification is used. All tracks are refitted using pion, kaon, and proton mass hypotheses to correct for the mass-dependent effects of multiple scattering and ionization-energy loss. The invariant mass of the Λ_c^+ candidate is required to match the known value [3] within ± 18 MeV/c². The momentum vector of the Λ_c^+ candidate is then extrapolated to intersect with a fourth track that is assumed to be a pion, to form the $\Lambda_b^0 \rightarrow \Lambda_c^+\pi_{c\pi}$ candidate. The Λ_b^0 reconstructed decay point (decay vertex) is subjected to a three-dimensional kinematic fit with the Λ_c^+ candidate mass constrained to its known value [3]. The probability of the Λ_b^0 vertex fit must exceed 0.01% [12]. The proton from the Λ_c^+ candidate is required to have $p_T > 2.0$ GeV/c to ensure that the proton is consistent with having contributed to the trigger decision. The minimum requirement on $p_T(\pi_{c\pi})$ is determined by an optimization procedure maximizing the quantity $S_{\Lambda_c^+}/(1 + \sqrt{B})$ [32], where $S_{\Lambda_c^+}$ is the number of Λ_b^0 signal events obtained from the fit of the observed $\Lambda_c^+\pi_{c\pi}$ mass distribution, and B is the number of events in the sideband region of $50 < Q < 90$ MeV/c² scaled to the background yield expected in the signal range $14.0 < Q < 26.0$ MeV/c². The sideband region boundaries are motivated by the signal predictions in Refs. [6,8,9]. The resulting requirement is found to be $p_T(\pi_{c\pi}) > 1.0$ GeV/c. The momentum criteria both for proton and $\pi_{c\pi}$ candidates favor these particles to be the two that contribute to the displaced-track trigger decision. To keep the soft pions from Λ_b^{00} decays within the kinematic acceptance, the Λ_b^0 candidate must have $p_T(\Lambda_b^0) > 9.0$ GeV/c. This maximizes the quantity $S_{\text{MC}}/(1 + \sqrt{B})$, where S_{MC} is the Λ_b^0 signal reconstructed in the simulation.

To suppress prompt backgrounds from primary interactions, the decay vertex of the long-lived Λ_b^0 candidate is required to be distinct from the primary vertex by requiring the proper decay time and its significance to be $ct(\Lambda_b^0) > 200$ μm and $ct(\Lambda_b^0)/\sigma_{ct} > 6.0$, respectively. The first criterion validates the trigger condition, while the second is fully efficient on simulated Λ_b^0 signal decays. We define the proper decay time as $ct(\Lambda_b^0) = L_{xym}m_{\Lambda_b^0}/p_T$, where $m_{\Lambda_b^0}$ is the known mass of the Λ_b^0 baryon [3]. We require the Λ_c^+ vertex to be associated with a Λ_b^0 decay by requiring $ct(\Lambda_c^+) > -100$ μm, as derived from the quantity $L_{xym}(\Lambda_c^+)$ measured with respect to the Λ_b^0 vertex. This requirement reduces contributions from Λ_c^+ baryons directly produced in $p\bar{p}$ interactions and from random combinations of tracks that accidentally are reconstructed as Λ_c^+ candidates. To reduce combinatorial background and contributions from partially reconstructed decays, Λ_b^0 candidates are required to point towards the primary vertex by requiring the impact parameter $d_0(\Lambda_b^0)$ not to exceed 80 μm. The $ct(\Lambda_c^+)$ and $d_0(\Lambda_b^0)$ criteria [12] are fully efficient for the Λ_b^{00} signal.

Figure 1 shows the resulting prominent Λ_b^0 signal in the $\Lambda_c^+\pi_{c\pi}$ invariant mass distribution. The binned maximum-likelihood fit finds a signal of approximately 15 400 candidates at the expected Λ_b^0 mass, with unity signal-to-background ratio. The fit model describing the invariant mass distribution comprises the Gaussian $\Lambda_b^0 \rightarrow \Lambda_c^+\pi_{c\pi}$ signal overlapping a background shaped by several contributions. Random four-track combinations dominating the right sideband are modeled with an exponentially decreasing function. Coherent sources populate the left sideband and leak under the signal. These include reconstructed B mesons that pass the $\Lambda_b^0 \rightarrow \Lambda_c^+\pi_{c\pi}$ selection criteria, partially reconstructed Λ_b^0 decays, and fully reconstructed Λ_b^0 decays other than $\Lambda_c^+\pi_{c\pi}$ (e.g., $\Lambda_b^0 \rightarrow \Lambda_c^+K^-$). Shapes representing the physical background sources are derived from Monte Carlo simulations. Their normalizations are constrained to branching ratios that are either measured (for B meson decays reconstructed within the same $\Lambda_c^+\pi_{c\pi}$ sample) or theoretically predicted (for Λ_b^0 decays). The discrepancy between the fit and the data at smaller masses

FIG. 1 (color online). Invariant mass distribution of $\Lambda_b^0 \rightarrow \Lambda_c^+\pi_{c\pi}$ candidates with a fit overlaid. The shoulder at the left sideband is dominated by fully reconstructed B mesons and partially reconstructed Λ_b^0 decays.
than the Λ_b^0 signal is attributed to incomplete knowledge of
the branching fractions of decays populating this region
\cite{11,12,33,34} and is verified to have no effect on the final
results. The fit is used only to define the Λ_b^{*0} search sample.

To reconstruct the Λ_b^{*0} candidates, each Λ_b^0 candidate
with mass within the range of 5.561–5.677 GeV/c^2 (±3σ)
was combined with a pair of oppositely charged particles,
assigned the pion mass. To increase the efficiency for
reconstructing Λ_b^{*0} decays near the kinematic threshold,
the quality criteria applied to soft-pion tracks are loosened. The
basic requirements for hits in the drift chamber and main silicon
tracker are imposed on the π^\pm tracks, and tracks reconstructed
with a valid fit, proper error matrix, and with $p_T > 200$ MeV/c are accepted.

The relaxed requirements on the soft-pion tracks increase
the reconstructed Λ_b^{*0} candidates’ yield by a factor of
approximately 2.6.

To reduce the background, a kinematic fit is applied to
the resulting Λ_b^0, π^-, and π^+_c candidates that constrains
them to originate from a common point. The Λ_b^0 candidates
are not constrained to the Λ_b^0 mass in this fit. Furthermore,
since the bottom-baryon resonance originates and decays
at the primary vertex, the soft-pion tracks are required to
originate from the primary vertex by requiring an impact
parameter significance $d_0(\pi^\pm)/\sigma_{d_0}$ smaller than 3 \cite{11,12}
determined by maximizing the quantity $S_{MC}/(1 + \sqrt{B})$.

The observed Q-value distribution is shown in Fig. 2.
A narrow structure at $Q = 21$ MeV/c^2 is clearly seen. The
projection of the corresponding unbinned likelihood fit is
overlaid on the data. The fit function includes a signal and
a smooth background. The signal is parametrized by two
Gaussian functions with common mean, and widths and
relative sizes set according to Monte Carlo simulation
studies. Approximately 70% of the signal function is a narrow
core with 0.9 MeV/c^2 width, while the wider tail portion
has a width of about 2.3 MeV/c^2. The background is
described by a second-order polynomial. The fit parameters
are the position of the signal and its event yield. The
negative logarithm of the extended likelihood function is
minimized over the unbounded set of Q values observed.
The fit over the Q range 6–75 MeV/c^2 finds 17\cite{33,34}$
signal candidates at $Q = 20.96 ± 0.35$ MeV/c^2.

The significance of the signal is determined using a
log-likelihood-ratio statistic, $D = -2 \ln (L_0/L_1)$ \cite{35,36}.
We define the hypothesis H_1 as corresponding to the
presence of a Λ_b^{*0} signal in addition to the background
and described by the likelihood L_1. The null hypothesis
H_0 assumes the presence of only background with a mass
distribution described by the likelihood L_0 and is nested in
H_1. The H_1 hypothesis involves two additional degrees
of freedom with respect to H_0, the signal position, and its
size. The significance for a Q search window of
6–45 MeV/c^2 is determined by evaluating the distribution
of the log-likelihood ratio in pseudoeperiments simulated
under the H_0 hypothesis. The fraction of the generated
trials yielding a value of D larger than that observed
in experimental data determines the significance. The
fraction is 2.3×10^{-4} corresponding to a significance
for the signal equivalent to 3.5 one-tailed Gaussian standard
deviations.

The systematic uncertainties on the mass determination
derive from the tracker momentum scale, the resolution
model, and the choice of the background model. To
calibrate the momentum scale, the energy loss in the
tracker material and the intensity of the magnetic field
must be determined. Both effects are calibrated and ana-
yzed in detail using large samples of J/ψ, $\psi(2S)$, $Y(1S)$,
and Z^0 particles reconstructed in the $\mu^+\mu^-$ decay modes
as well as $D^{**+} \rightarrow D^0(\rightarrow K^- \pi^+)\pi^+$, and
$\psi(2S) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ samples \cite{37,38}.
The corresponding corrections are taken into account by the tracking
algorithms. Any systematic uncertainties on these corrections
are negligible in the Q-value measurements due to
the mass difference term, $m(\Lambda_b^0 \pi^- \pi^+_c) - m(\Lambda_b^0)$.
The uncertainties on the measured mass differences due to
the momentum scale of the low-$p_T \pi^\pm$ tracks are
estimated from a large calibration sample of $D^{**+} \rightarrow D^0\pi^+_c$ decays.
A scale factor of 0.990 ± 0.001 for the soft-pion transverse
momentum is found to correct the difference between
the Q value observed in D^{**+} decays and its known value \cite{3}.
The same factor applied to the soft pions in a full simulation
of $\Lambda_b^0 \rightarrow \Lambda_b^0 \pi^- \pi^+_c$ decays yields a Q-value change of
-0.28 MeV/c^2. Taking the full value of the change as the
uncertainty, we adjust the Q value determined by the fit
to the Λ_b^{*0} candidates by -0.28 ± 0.28 MeV/c^2. The
Monte Carlo simulation underestimates the detector
resolution, and the uncertainty of this mismatch is considered
as another source of systematic uncertainty \cite{12}. To evalu-
ate the systematic uncertainty due to the resolution, we use a
model with floating width parameter where only the ratio
of the widths of the two Gaussians is fixed. The resulting
uncertainty is found to be ± 0.11 MeV/c^2. To estimate the

FIG. 2 (color online). Distribution of Q value for Λ_b^{*0} candi-
dates, with fit projection overlaid.

\[071101-6\]
uncertainty associated with the choice of background shape, we increase the degree of the chosen polynomial and find the uncertainty to be ±0.03 MeV/c². The statistical uncertainties on the resolution-model parameters due to the finite size of the simulated data sets introduce a negligible contribution. Adding in quadrature the uncertainties of all sources results in a total Q-value systematic uncertainty of ±0.30 MeV/c².

Hence, the measured Q value of the identified Λb⁰ state is found to be 20.68 ± 0.35(stat) ± 0.30(syst) MeV/c². Using the known values of the charged pion and Λb⁰ baryon masses [3], we obtain the absolute Λb⁰ mass value to be 5919.22 ± 0.35(stat) ± 0.30(syst) ± 0.60(Λb⁰)MeV/c², where the last uncertainty is the world’s average Λb⁰ mass uncertainty reported in Ref. [3]. The result is closest to the calculation based on 1/mQ, 1/Nc expansions [9]. The result is also consistent with the higher state Λb⁰(5920) recently observed by the LHCb experiment [20]. LHCb also reports a state at approximately 5912 MeV/c² [20]. Assuming similar relative production rates and relative efficiencies for reconstructing the Λb⁰(5912) and Λb⁰(5920) states in the CDF II and LHCb detectors, the lack of a visible Λb⁰(5912) signal in our data is statistically consistent within 2σ with the Λb⁰(5912) yield reported by LHCb.

In conclusion, we conduct a search for the Λb⁰ → Λb⁰π⁻π⁺ resonance state in its Q-value spectrum. A narrow structure is identified at 5919.22 ± 0.76 MeV/c² mass with a significance of 3.5σ. This signal is attributed to the orbital excitation of the bottom baryon Λb⁰ and supports similar findings in proton-proton collisions.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); the EU community Marie Curie Fellowship Contract No. 302103.
[24] We use a cylindrical coordinate system with z axis along the nominal proton beam line, radius r measured from the beam line, and ϕ defined as an azimuthal angle. The transverse plane (r, ϕ) is perpendicular to the z axis. The polar angle θ is measured from the z axis. Transverse momentum p_T is the component of the particle's momentum projected onto the transverse plane. Pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$. The impact parameter of a charged-particle track d_0 is defined as the distance of closest approach of the particle track to the point of origin (primary vertex) in the transverse plane.

[25] E. J. Thomson et al., IEEE Trans. Nucl. Sci. 49, 1063 (2002).

[26] B. Ashmanskas et al., Nucl. Instrum. Methods Phys. Res., Sect. A 518, 532 (2004); L. Ristori and G. Punzi, Annu. Rev. Nucl. Part. Sci. 60, 595 (2010).

[27] P. Nason, S. Dawson, and R. K. Ellis, Nucl. Phys. B303, 607 (1988); B327, 49 (1989).

[28] C. Peterson, D. Schlatter, I. Schmitt, and P. M. Zerwas, Phys. Rev. D 27, 105 (1983).

[29] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[30] R. Brun, R. Hagelberg, M. Hansroul, and J. C. Lassalle, CERN Reports No. CERN-DD-78-2-REV and No. CERN-DD-78-2.

[31] All references to a specific charge combination imply the charge conjugate combination as well.

[32] G. Punzi, in Proceedings of the Conference on Statistical Problems in Particle Physics, Astrophysics and Cosmology, PHYSTAT 2003, Stanford, USA, 2003, edited by L. Lyons, R. P. Mount, and R. Reitmeyer, eConf C030908, MODT002 (2003).

[33] A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 98, 122002 (2007).

[34] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 104, 102002 (2010).

[35] S. S. Wilks, Ann. Math. Stat. 9, 60 (1938).

[36] R. Royall, J. Am. Stat. Assoc. 95, 760 (2000).

[37] D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 96, 202001 (2006).

[38] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 152001 (2009).