Genome analysis

MutaNET: a tool for automated analysis of genomic mutations in gene regulatory networks

Markus Hollander\(^1\), Mohamed Hamed\(^2\), Volkhard Helms\(^1\)* and Kerstin Neininger\(^1,3\)

\(^1\)Center for Bioinformatics, Campus Building E2.1, Saarland University, D-66123 Saarbrücken, Germany, \(^2\)Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, D-18057 Rostock, Germany and \(^3\)Saarbrücken Graduate School of Computer Science, Saarland University, D-66123 Saarbrücken, Germany

*To whom correspondence should be addressed.

Associate Editor: Bonnie Berger

Received on August 16, 2017; revised on October 4, 2017; editorial decision on October 20, 2017; accepted on October 25, 2017

Abstract

Summary: Mutations in genomic key elements can influence gene expression and function in various ways, and hence greatly contribute to the phenotype. We developed **MutaNET** to score the impact of individual mutations on gene regulation and function of a given genome. **MutaNET** performs statistical analyses of mutations in different genomic regions. The tool also incorporates the mutations in a provided gene regulatory network to estimate their global impact. The integration of a next-generation sequencing pipeline enables calling mutations prior to the analyses. As application example, we used **MutaNET** to analyze the impact of mutations in antibiotic resistance (AR) genes and their potential effect on AR of bacterial strains.

Availability and implementation: **MutaNET** is freely available at https://sourceforge.net/projects/mutanet/. It is implemented in Python and supported on Mac OS X, Linux and MS Windows. Step-by-step instructions are available at http://service.bioinformatik.uni-saarland.de/mutanet/.

Contact: volkhard.helms@bioinformatik.uni-saarland.de

Supplementary information: Supplementary data are available at *Bioinformatics* online.

1 Introduction

Mutations can affect an organismal phenotype in many ways, whereby the genomic position of a variant is of fundamental importance. Coding mutations can influence protein function (Woodford and Ellington, 2007), whereas those in regulatory sites can affect expression of the gene itself and of genes in that regulatory cascade (Grkovic et al., 2001). Thereby, gene expression levels are regulated by transcription factors (TFs) via binding to transcription factor binding sites (TFBS) (de Jong, 2002).

We developed **MutaNET** that scores the potential impact of mutations on gene expression and protein function of a given genome. **MutaNET** statistically compares the mutational impact on coding regions, promoters and TFBS using refined scoring schemes. If regulatory information is provided as well, a gene regulatory network (GRN) is constructed to examine the global effect of individual mutations. To the best of our knowledge, a similar tool that implements a combinatory analysis of variant calling, statistical analysis and incorporation of a GRN does not exist yet. Moreover, **MutaNET** supports statistical comparisons between different gene groups such as bacterial AR and non-AR genes. Since mutations in AR genes can cause or affect AR of bacterial strains, we used **MutaNET** for a detailed analysis of mutations in AR genes and their possible impact on AR.

2 MutaNET description

MutaNET consists of several analysis steps: a mutation calling pipeline, a statistical comparison of mutations in different genomic regions, and generation of the underlying GRN, see **Figure 1A**. Mutations can either be called automatically from NGS paired-end reads using the embedded mutation calling pipeline presented in
Hamed et al. (2015), or mutations can be provided by the user. Mutations are then assigned to different genomic regions (coding region, promoter and TFBS) using in-house scripts analogous to BEDTools (Quinlan et al., 2010). Statistically significant differences are identified based on the Wilcoxon rank-sum test.

MutaNET differentiates between synonymous, missense, nonsense, readthrough and reading-frame shift mutations. The effect of mutations in coding regions is assessed using an amino acid (AA) substitution matrix and a pairwise sequence alignment between reference and mutated protein sequence, see Supplementary Material. Since the impact of a mutation is influenced by its position in the protein, protein domain information downloaded from UniProt (uniprot.org) is incorporated in the analysis as well.

Mutations in TFBS can increase or decrease the ability of the corresponding regulator to bind (Grkovic et al., 2001; Melton et al., 2015). A score is computed that indicates whether mutations in TFBS are likely to increase or decrease the binding ability of the TF. This TFBS mutation score is based on a position weight matrix constructed from TF motif sequence alignments and a comparison between observed and random mutations following the method by Melton et al. (2015). A GRN is constructed to decipher the global effect of mutations. The nodes (genes) display the number of non-synonymous coding, promoter and TFBS mutations. This allows to quickly identify genes with mutations that directly or indirectly regulate specific genes, such as AR genes. GRNs can be further processed using programs such as Cytoscape (Smoot et al., 2011).

3 Case study

To demonstrate one possible application, we applied MutaNET to E.coli K-12 and S.aureus NCTC 8325 reference strains. Mutations were called with the embedded NGS pipeline from a set of 300 E.coli (NCBI, see Supplementary Material) and 30 S.aureus strains (Hamed et al., 2015). Regulatory and AR information was taken from RegulonDB (regulondb.ccg.unam.mx), AureoWiki (aureowiki.med.uni-greifswald.de), PATRIC (patricbrc.org) and the literature.

We report 93 204 and 18 447 mutations of which 3035 and 372 were found in AR genes for E.coli and S.aureus, respectively. For S.aureus, the number of missense mutations was significantly lower (P = 0.02) in AR genes (21.3%) compared to non-AR genes (28.4%). AR genes are important for survival of the strain and missense mutations in their key protein domains could decrease fitness. A more detailed report can be found in the Supplementary Material.

To analyze the global effect of mutations, an AR regulatory subnetwork of E.coli was constructed, see Figure 1B. The respective GRN for S.aureus is shown in the Supplementary Material. We found several severe mutations in the E.coli HTH domain of transcriptional regulator AcrR that could lead to malfunction. In consequence, the repression of acrA and acrB genes, which code for MDRE pump subunits, might be disturbed. This could lead to the development of AR due to over-expression of the MDRE pump. The acrAB operon is negatively regulated by repressor MprA for which a frame-shift mutation in the HTH domain and a missense mutation were observed. Dysfunction of MprA could lead to over-expression of multidrug transporters EmrA/B/E that confer AR.

Moreover, MutaNET reports several mutations in the genes parC and gyrA that are associated with AR. Interestingly, we observed these mutations for both E.coli and S.aureus proteins, see Supplementary Table S6 and Supplementary Figure S2, suggesting a similar AR mechanism.

4 Conclusion

The MutaNET software supports and facilitates the investigation of individual mutations in a given genome. The sequential analysis steps provide a detailed report of different mutation types in distinct genomic elements and also allows their statistical comparison between gene groups, such as AR and non-AR genes. Moreover, integration of the underlying GRN greatly helps in estimating the global impact of mutations on gene expression. Application of MutaNET to a resistance gene dataset considerably simplified the identification of candidate resistance mutations. It was also possible to decipher similar resistance mechanisms across species.
Acknowledgements

The authors thank Michael Hutter and Daria Gaidar for their valuable comments and Daria Gaidar for testing MutaNET prior to release.

Conflict of Interest: none declared.

References

de Jong, H. (2002) Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol., 9, 67–103.
Grkovic, S. et al. (2001) Transcriptional regulation of multidrug efflux pumps in bacteria. Semin. Cell Dev. Biol., 12, 225–237.
Hamed, M. et al. (2015) Whole genome sequence typing and microarray profiling of nasal and blood stream methicillin-resistant Staphylococcus aureus isolates: clues to phylogeny and invasiveness. Infect. Genet. Evol., 36, 475–482.
Levy, S.B. and Marshall, B. (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med., 10, 5122–129.
Melton, C. et al. (2015) Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat. Genet., 47, 710–716.
Quinlan, A. et al. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842.
Smoot, M.E. et al. (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27, 431–432.
Woodford, N. and Ellington, M.J. (2007) The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect., 13, 5–18.