Research Article

Detection of Campylobacter jejuni Based on a Real-Time Fluorescence Loop-Mediated Isothermal Amplification Method

Ying Liu,1 Meidi Xu,2 Jiang Wang,1 Yang Cao,1 Tao Wang,1 Lan Mu1,2, and Chao Niu1

1Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
2College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China

Correspondence should be addressed to Lan Mu; 1821093025@qq.com and Chao Niu; niuchao601@126.com

Received 1 August 2021; Revised 24 June 2022; Accepted 28 July 2022; Published 31 August 2022

Academic Editor: Stefania Cantore

Copyright © 2022 Ying Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Campylobacter jejuni (C. jejuni), a foodborne pathogenic bacterium, is among the most prevalent causes of human gastroenteritis globally. We developed and evaluated a loop-mediated isothermal amplification (LAMP) method to detect C. jejuni. Outer primers and inner primers were designed based on the hipO gene. The ratio between the concentrations of the inner and outer primers and the reaction temperature were then optimized to achieve optimal assay conditions. The analytical specificity tests showed that, among 12 genera of 74 pure bacterial culture strains, only four C. jejuni isolates could be detected, whereas no amplification was observed in C. coli, C. lari, and the other 11 genera of foodborne pathogens (n = 70). Moreover, the LAMP assay showed a higher analytical sensitivity (34.2 fg μL⁻¹) than the conventional PCR method (342 fg μL⁻¹). The limit of detection of C. jejuni based on the LAMP assay was 10³ CFU g⁻¹ in the artificially spiked samples of chicken meat. In conclusion, the developed LAMP assay will be a powerful and practical tool for the fast, specific, and sensitive detection of C. jejuni.

1. Introduction

The burden of foodborne diseases continues to be a substantial and serious health risk in both developing and developed countries despite the adoption of food safety measures [1]. The high incidence of campylobacteriosis, as well as its duration, makes it highly problematic. The Campylobacter genus, which can cause campylobacteriosis, includes the most common pathogens causing gastroenteritis in humans worldwide [2]. The main way in which humans are infected is generally believed to be the consumption of undercooked meat products, as well as raw milk or contaminated dairy products and water [3, 4].

Campylobacter spp. infection has been estimated to cause 500 million infections globally every year [5]. Within the genus Campylobacter, C. jejuni and C. coli have been reported to be the most frequent human and animal pathogens [6].

Because of the fastidious and slow growth of C. jejuni, conventional culture testing techniques are arduous and time-consuming [7]. In addition, the major concerns are false-negative results and the insufficient sensitivity of the culture-based methods. Presently, nucleic acid-based molecular techniques, such as PCR and qPCR (real-time quantitative PCR), are used to detect foodborne pathogens [8]. However, the need for sophisticated and expensive instruments and the purity of the template DNA prevent them from broad application for routine detection [9]. In addition, there is a cross-reaction between bacterial antigens when serological techniques are used [10].

Loop-mediated isothermal amplification (LAMP) is an innovative technique that amplifies nucleic acid under iso-thermal conditions taking advantage of autocycling strand displacement behavior of the Bst DNA polymerase [11, 12]. LAMP can be run easily in any heating block or dry bath at constant temperature instead of a thermocycler needed in PCR or real-time PCR. Furthermore, LAMP produces approximately 10³-fold higher amounts of DNA within an hour than PCR and comparably low susceptibility to inhibitors [9, 13]. Thus, LAMP can be a rapid and simple tool for detecting and identifying foodborne bacterial pathogens.
The selection of target genes determined the analytical specificity of LAMP. The hipO gene encoding hippuricase that is exclusively within the C. jejuni genome has been used as an identification marker for C. jejuni [14]. This study developed a simple, fast, sensitive, and highly specific LAMP assay to detect C. jejuni using specific primers designed based on the conserved gene hipO. We then evaluated the performance and compared it with conventional PCR. Finally, LAMP was used to distinguish C. jejuni from other pathogens in artificially spiked samples of chicken meat.

2. Materials and Methods

2.1. Bacterial Strains and Culturing. 74 isolates, including four C. jejuni strains, additional five strains of Campylobacter spp., and 65 strains of other 11 species, were used for the analytical specificity testing. Details of the 74 strains are listed in Table 1. Campylobacter strains (C. jejuni, C. coli, and C. lari) were grown on Columbia blood agar substituted with 5% sheep blood under microaerophilic environment (85% N2, 10% CO2, and 5% O2) at 42°C for 48 hours. Other strains were cultured under optimal culture conditions as described previously [15]. C. jejuni in the enrichment broth containing the raw chicken samples were isolated and cultured through the method of scribing on the plate.

2.2. Genomic DNA Extraction. The genomic DNA used as a template was extracted from a freshly grown bacterial culture following the manufacturer’s protocol. The genomic DNA used as a template was extracted from a freshly grown bacterial culture through the method of scribing on the plate. Approximately 2 g chicken meat was determined as previously described [15]. Details were as follows. The chicken meat was purchased from a local supermarket. The C. jejuni (ATCC33252) strain was freshly cultured on blood agar with cultivation under microaerobic conditions as described above. Serial 10-fold dilutions with sterile phosphate-buffered saline were prepared, and colony-forming units were calculated through direct plating. Furthermore, the desired concentration of C. jejuni (ATCC33252) pure cultures (10^7-10^1 CFU/mL) was spiked onto 25 g of fresh chicken meat. The samples in 225 mL of buffered peptone water (BPW) in a plastic stomacher bag were homogenized with a stomacher. DNA from 1 mL homogenate in chicken samples with bacterial concentrations in a range from 10^7 to 10^1 CFU/g was isolated using the DNeasy miceron Food kit (QIAGEN, Germany) as recommended by the manufacturer. These experiments were conducted in triplicate.

2.3. LAMP Primer Design and LAMP Assay. The online tool PrimerExplorer V4 (http://primerexplorer.jp/elamp4.0.0/index.html) was employed. A set of four primers (F3, B3, FIP, and BIP) targeting six sequences on the hipO gene according to the sequence database in GenBank (NC_002163.1) was designed. Subsequently, the specificity of primers was determined in silico using the BLAST tool (http://www.ncbi.nlm.nih.gov/). Table 2 lists the sequence, position, and length of the primers. The primer synthesis service was provided by Sangon Biotechnology Co., Ltd. (Shanghai, China). The final optimized LAMP test was performed using the WarmStart LAMP kit containing Bst 2.0 WarmStart DNA polymerase (New England Biolabs, USA). A 50x fluorescent dye (New England Biolabs, USA) is also supplied to enable real-time fluorescence measurement of the LAMP amplification. The LAMP reaction was conducted in a 25 μL mixture containing 2.5 μL of 10x LAMP Primer Mix (1.2 μM FIP/BIP, 0.2 μM F3/B3), 12.5 μL of Warm Start LAMP 2x Master Mix, 0.5 μL of 50x fluorescent dye, 2 μL of target gDNA, and 7.5 μL of sterile double distilled water (ddH2O) for 60 min at 65°C, followed by 80°C for 5 min, to terminate the reaction on a LightCycler 480 Real-Time PCR System (Roche Applied Science, USA). The melting curve was monitored on the device. The LAMP products were detected visually by turbidity and 2% agarose gel electrophoresis.

2.4. PCR Assay. Conventional PCR was carried out with outer primers F3 and B3 (Table 2). The PCR assay was conducted in 25 μL of reaction mixture containing 12.5 μL of 2x Premix master (Takara Taq™ Version 2.0, Takara Biotechnology Co.), 1 μL of 20 μM outer primers F3/B3 each, 1 μL of template genomic DNA (gDNA), and supplementary ddH2O. The reaction was carried out using the cycling protocol of 95°C for 5 min and subjected to 30 s at 94°C, 30 s at 55°C, and 30 s at 72°C for 35 cycles followed by a final extension cycle for 10 min at 72°C. The amplified products were subjected to 2% agarose gel electrophoresis.

2.5. Validation of the LAMP Assay with Spiked Chicken Meat Sample. The assay’s detection limit in chicken samples was determined as previously described [15]. Details were as follows. The chicken meat was purchased from a local supermarket. The C. jejuni (ATCC33252) strain was freshly prepared on blood agar with cultivation under microaerobically spiked samples of chicken meat. The selection of target genes determined the analytical specificity of LAMP. The hipO gene encoding hippuricase that is exclusively within the C. jejuni genome has been used as an identification marker for C. jejuni [14]. This study developed a simple, fast, sensitive, and highly specific LAMP assay to detect C. jejuni using specific primers designed based on the conserved gene hipO. We then evaluated the performance and compared it with conventional PCR. Finally, LAMP was used to distinguish C. jejuni from other pathogens in artificially spiked samples of chicken meat.
Table 1: Genomic DNA of bacterial isolates and results for the LAMP assays.

| Bacterial strains | Source | Targeted gene (hipO) |
|-------------------|--------|---------------------|
| *Escherichia* spp. (n = 6) |        |                     |
| *Escherichia coli* O157:H7 | ATCC\(^a\) 35150 | − |
| *Escherichia coli* O157:H7 | NCTC\(^b\) 12900 | − |
| *Escherichia coli* O157:H7 | CICC\(^c\) 21531 | − |
| *Escherichia coli* O26 | Stored in our laboratory | − |
| *Escherichia coli* O138 | Stored in our laboratory | − |
| *Escherichia coli* O139 | Stored in our laboratory | − |
| *Salmonella* spp. (n = 8) |        |                     |
| *Salmonella enterica* subsp. *enterica* | ATCC14028 | − |
| *Salmonella enterica* serovar Choleraesuis | CMCC\(^d\) 50306 | − |
| *Salmonella enterica* serovar Typhimurium | CMCC50115 | − |
| *Salmonella enterica* serovar Paratyphi | CMCC50774 | − |
| *Salmonella enterica* serovar Rubislaw | CMCC50798 | − |
| *Salmonella enterica* serovar Champaign | CMCC50067 | − |
| *Salmonella enterica* serovar Paratyphi A | CMCC50093 | − |
| *Salmonella enterica* serovar Paratyphi B | CMCC50094 | − |
| *Staphylococcus* spp. (n = 5) |        |                     |
| *Staphylococcus aureus* | ATCC43300 | − |
| *Staphylococcus aureus* | ATCC29213 | − |
| *Staphylococcus aureus* | ATCC27217 | − |
| *Staphylococcus aureus* | ATCC6538 | − |
| *Staphylococcus epidermidis* | ATCC14990 | − |
| *Enterococcus* spp. (n = 3) |        |                     |
| *Enterococcus faecalis* | ATCC19433 | − |
| *Enterococcus faecalis* | ATCC29212 | − |
| *Enterococcus faecalis* | CMCC32001 | − |
| *Streptococcus* spp. (n = 4) |        |                     |
| *Streptococcus pyogenes* | ATCC19615 | − |
| β-Hemolytic streptococcus | CMCC32210 | − |
| *Streptococcus pneumoniae* | ATCC49619 | − |
| *Streptococcus thermophilus* | CGMCC1.6472 | − |
| *Campylobacter* spp. (n = 9) |        |                     |
| *Campylobacter jejuni* | ATCC33252 | + |
| *Campylobacter jejuni* | ATCCBAA-1153 | + |
| *Campylobacter jejuni* | ATCC33291 | + |
| *Campylobacter jejuni* | ATCC33560 | + |
| *Campylobacter coli* | ATCC33559 | − |
| *Campylobacter coli* | ATCC BAA-370 | − |
| *Campylobacter coli* | NCTC11366 | − |
| *Campylobacter coli* | CICC23925 | − |
| *Campylobacter lari* | ATCC35223 | − |
| *Vibrio* spp. (n = 9) |        |                     |
| *Vibrio fluvialis* | ATCC33809 | − |
| *Vibrio fluvialis* | CGMCC\(^e\) 1.1610 | − |
| *Vibrio parahaemolyticus* | ATCC17802 | − |
| *Vibrio parahaemolyticus* | CMCC20502 | − |
| *Vibrio parahaemolyticus* | CMCC20516 | − |
| *Vibrio vulnificus* | ATCC27562 | − |
the LAMP assays were performed with ratios of inner primers to outer primers ranging from 1:2 to 1:8. A ratio of 1:6 resulted in ideal amplification (Supplementary Figure 1). In addition, reaction mixtures were incubated at different temperatures ranging from 61 to 66°C for 60 min. The optimum temperatures were 65°C and 66°C (Supplementary Figure 2). Therefore, a reaction temperature of 65°C was used for the subsequent experiments.

3.2. Analytical Specificity of the LAMP Assay. 74 pure culture reference strains were used to evaluate the analytical specificity (Table 1). All four strains of *C. jejuni* (ATCC33252, ATCCBA-1153, ATCC33291, and ATCC33560) were detected but not any of the other 70 non-*C. jejuni* strains (Figure 1a). Likewise, white precipitate in positive reactions was observed visually, but no visible precipitate was seen in the 70 non-*C. jejuni* LAMP reaction tubes.
The amplification products of those positive by LAMP reaction showed typical ladder patterns analyzed by agarose gel electrophoresis (Figure 1(c)). None of the 70 non- C. jejuni bacterial strains yielded false-positive results in the assays, indicating their very high analytical specificity. Furthermore, 74 DNA templates were detected by PCR simultaneously, which resulted in a 238 bp hipO-specific fragment of C. jejuni. No amplicon was obtained from the 70 non-C. jejuni strains (Figure 1(d)). The results of PCR were consistent with those of the LAMP assays.

3.3. Sensitivity of LAMP Assay. The standard strain C. jejuni ATCC 33252 was used. The sensitivity of the LAMP and PCR was performed using a 10-fold serial diluted positive DNA template of C. jejuni (ATCC33252) with DNA concentrations ranging from 3.2 ng/μL to 3.2 × 10^−8 ng/μL. The amplification product of LAMP and PCR was detected by real-time fluorescence monitoring and agarose gel electrophoresis, respectively. The results are shown in Figure 2. In the LAMP experiment, the melting temperature (Tm) of seven series (10^0-10^6) of the specific amplification was around 82.5°C and therefore was specific (Figure 2(b)). From the products of LAMP, fluorescent amplification curves and multiple DNA bands in agarose gel electrophoresis were observed with ATCC 33252 gDNA from 3.2 × 10^7 to 3.2 × 10^8 ng/μL, but not from 3.2 × 10^−7 ng/μL (Figures 2(a) and 2(c)). In addition, the 238 bp hipO gene amplicons were produced from 3.2 × 10^6 to 3.2 × 10^5 ng/μL, but not from 3.2 × 10^−6 ng/μL by conventional PCR (Figure 2(d)). In conclusion, the sensitivity of the LAMP assay for hipO gene was 34.2 fg/μL (34.2 × 10^−6 ng/μL), and that of PCR was 342 fg/μL (34.2 × 10^−5 ng/μL) from pure culture, indicating that LAMP showed 10 times greater sensitivity than PCR (Figure 2(d)). We also evaluated the application of established LAMP reaction to detect C. jejuni from artificially contaminated samples. In spiked chicken meat samples, the detection limits targeting the hipO gene were 10^3 CFU g^-1.

3.4. Comparison of Using the Real-Time LAMP Assay to Detect C. jejuni and Culture-Based Assay Methods in Raw Chicken Meat. A total of 60 chicken meat samples were tested to compare the two methods of detecting C. jejuni. 20 C. jejuni-positive chicken samples were detected using the culture-based method, whereas 19 samples were detected positive with one as a false-negative case by the LAMP assay (Table 3). Two negative results detected by the LAMP assay were negative in the culture-based assay. Thus, the accuracy, sensitivity, and specificity for the real-time LAMP to detect C. jejuni based on hipO gene were 95%, 95%, and 95%, respectively. Also, the real-time LAMP had a positive predictive value (PPV) of 90.48% and negative predictive value (NPV) of 97.43%.

### Table 2: The primers for LAMP and PCR in this study.

| Assay | Primer | Position | Sequence (5’-3’) | Length |
|-------|--------|----------|-----------------|--------|
| LAMP  | F3     | 21-40    | ACTAGACTTACAAAGCGAAT | 20     |
|       | B3     | 240-258  | TGGTGCATTCTTGTAAAGGC | 19     |
|       | F1c-F2 | F1c: 98-119 F2: 58-79 | TGGGCCACTAATTGCGATGTC-CAAAATTCATGAAAATCCTGAGC | 44     |
| BIP   | B1c-B2 | B1c: 169-189 B2: 219-236 | GCCGTTGTGCGGTTTTTAAA-GCATCCATATCTGCACGA | 39     |
| PCR   | F (F3) | 21-40    | ACTAGACTTACAAAGCGAAT | 20     |
|       | R (B3) | 240-258  | TGGTGCATTCTTGTAAAGGC | 19     |

### 4. Discussion

Campylobacter, a leading cause of foodborne human gastrointestinal diseases, has become a global concern for food safety [6, 16, 17]. The incidence and prevalence of Campylobacter infections have increased, causing a substantial burden worldwide compared to the diseases caused by Escherichia coli and Salmonella [18, 19]. The detection methods have been improving. However, the standard culture method and nucleic acid-based molecular techniques are far from being ideal because they are time-consuming, expensive, labor-intensive, and difficult to perform on-site [12]. Recent studies suggested that LAMP is a practical and efficient tool for the rapid and sensitive detection of Campylobacter species [20-22]. Furthermore, the improving fluorescent LAMP assays were evaluated by Yamazaki et al., and a paper-based sensor has been explored to detect C. jejuni and E. coli through measuring fluorescence images of the ampiclons during LAMP reaction in real time recently, which indicated a robust and high accuracy compared with the turbidimetric LAMP approaches [23, 24].

Several LAMP assays for detecting C. jejuni targeting cj0414 and CJSA_1356 (a unique gene for C. jejuni SA clone) have been developed [25-29]. Furthermore, a region of the 16S RNA gene was targeted to detect Campylobacter spp. [21, 30, 31]. Besides the cj0414 gene, the conserved hippurate (hipO) gene specific and unique to C. jejuni was used as an alternative gene [32]. The analytical specificity of the LAMP targeting the hipO gene was evaluated in 74 bacterial strains. The LAMP assay did not detect the hipO gene in any 70 non-C. jejuni strains, and only the four C. jejuni strains were amplified correctly showing high analytical specificity (100%) for C. jejuni.

Melting temperature analysis has been used to distinguish different pathogenic bacteria reliably [33]. In this assay, the melting temperatures of hipO LAMP products were specific. According to the previous studies, the LAMP assay had an analytical sensitivity of 34.2 fg/μL, and it was 10-fold higher than conventional PCR [34].

As previously reported, the detection limits targeting the cj0414 gene were 7.9 CFU/tube in the chicken meat, 5.6 × 10^3 CFU g^-1 (1.4 CFU per test) in spiked human stool, and
Figure 1: Analytical specificity of the LAMP and PCR for detecting C. jejuni. (a) The amplification reaction of 74 bacterial strains was monitored by a real-time PCR system. (b) The result of the LAMP assay was identified with naked eyes. White magnesium pyrophosphate was visualized in the positive amplification (15-18), while no precipitate was found in the negative amplifications (5-8). (c, d) Analytical specificity evaluation of the LAMP assay (c) and conventional PCR (d) by electrophoresis. M: DL2000 marker; M: DL500 marker (Takara). 15: C. jejuni, ATCC33252; 16: C. jejuni, ATCCBAA-1153; 17: C. jejuni, ATCC33291; 18: C. jejuni, ATCC33560. Others were the non-C. jejuni bacterial strains and negative control (NC) which are listed in Table 1.
Figure 2: Continued.
3.89 log CFU g⁻¹ and 3.6 CFU g⁻¹ in artificially spiked fecal samples [26, 28, 35, 36]. The detection limit of our LAMP assay (34.2 fg μL⁻¹) targeting the *hipO* gene was 10⁻³ CFU g⁻¹ in the spiked samples of chicken meat, whereas 2.5 × 10⁻² CFU mL⁻¹ (100 fg μL⁻¹) has been reported in the literature [34]. These indicated that the sensitivity of our LAMP assay is comparable to or higher than the sensitivity of previous studies.

### 5. Conclusions

In summary, a sensitive, specific, rapid, and practical LAMP method for *C. jejuni* detection was developed targeting the *hipO* gene even in chicken meat samples. The designed primers based on the *hipO* gene successfully and specifically amplified the target gene from isolated genomic DNA in no more than 90 min, and the analysis was completed using just a water bath, making on-site *C. jejuni* detection feasible. Another important advantage of the LAMP assay is that the result can be judged directly with the naked eye based on white precipitate, which provides results consistent with the gel electrophoresis data. Overall, the LAMP technique for *C. jejuni* detection is a valuable tool in clinical, on-site, and resource-poor settings.

### Data Availability

The data used to support the findings of this study are available from the corresponding authors upon request.

### Conflicts of Interest

The authors have no conflicts of interest to declare.

### Authors’ Contributions

CN, JW, and LM conceived the ideas. YL and Meidi Xu performed the experiments. TW and YC designed the primers and interpreted the data. YL and MDX wrote the manuscript. The manuscript has been read and approved by all named authors.

### Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81402681).

### Supplementary Materials

Supplementary Figure 1: optimization of concentration ratio of inner to outer primers in LAMP experiment. 1-7: the inner and outer primer concentration ratios are 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, and 2:1; 8: negative control. Supplementary Figure 2: optimization of the amplification reaction temperature in LAMP. a-f: LAMP amplification curve at 61, 62, 63, 64, 65, and 66°C. (Supplementary Materials)

### References

[1] E. P. Marder, Mph, P. M. Griffin et al., "Preliminary incidence and trends of infections with pathogens transmitted commonly through food - Foodborne Diseases Active Surveillance
[2] D. He, Z. Wu, B. Cui, E. Xu, and Z. Jin, "Establishment of a dual mode immunochromatographic assay for _Campylobacter jejuni_ detection," *Food Chemistry*, vol. 289, pp. 708–713, 2019.

[3] H. Jribi, H. Sellami, S. Mariam et al., "Isolation and identification of Campylobacter spp. from poultry and poultry by-products in Tunisia by conventional culture method and multiplex real-time PCR," *Journal of Food Protection*, vol. 80, no. 10, pp. 1623–1627, 2017.

[4] J. U. An, H. Ho, J. Kim et al., "Dairy cattle, a potential reservoir of human Campylobacteriosis: epidemiological and molecular characterization of Campylobacter jejuni from cattle farms," *Frontiers in Microbiology*, vol. 9, 2018.

[5] A. Chlebicz and K. Slizewska, "Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: a review," *International Journal of Environmental Research and Public Health*, vol. 15, no. 5, p. 863, 2018.

[6] H. Wang, L. Wang, and Q. Hu, "Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation," *Journal of Food Protection*, vol. 81, no. 8, pp. 1321–1330, 2018.

[7] J. W. Law, N. S. Ab Mutalib, K. G. Chan, and L. H. Lee, "Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations," *Frontiers in Microbiology*, vol. 5, 2015.

[8] Y. Li, P. Fan, S. Zhou, and L. Zhang, "Loop-mediated isothermal amplification (LAMP): a novel rapid detection platform for pathogens," *Microbial Pathogenesis*, vol. 107, pp. 54–61, 2017.

[9] L. Niessen, J. Luo, C. Denschlag, and R. F. Vogel, "The application of loop-mediated isothermal amplification (LAMP) in food testing for bacterial pathogens and fungal contaminants," *Food Microbiology*, vol. 36, no. 2, pp. 191–206, 2013.

[10] S. Shams, B. Bakhshi, T. Tohidi Moghadam, and M. Behmanesh, "A sensitive gold-nanorods-based nanobiosensor for specific detection of Campylobacter jejuni and Campylobacter coli," *Journal of Nanobiotechnology*, vol. 17, no. 1, p. 43, 2019.

[11] T. Notomi, H. Okayama, H. Masubuchi et al., "Loop-mediated isothermal amplification of DNA," *Nucleic Acids Research*, vol. 28, no. 12, pp. 63e–e63, 2000.

[12] Y. P. Wong, S. Othman, Y. L. Lau, S. Radu, and H. Y. Chee, "Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms," *Journal of Applied Microbiology*, vol. 124, no. 3, pp. 626–643, 2018.

[13] X. Zhao, C. W. Lin, J. Wang, and D. H. Oh, "Advances in rapid detection methods for foodborne pathogens," *Journal of Microbiology and Biotechnology*, vol. 24, no. 3, pp. 297–312, 2014.

[14] M. Petersen, L. Ma, and X. Lu, "Rapid determination of viable but non-culturable _Campylobacter jejuni_ in food products by loop-mediated isothermal amplification coupling propidium monoazide treatment," *International Journal of Food Microbiology*, vol. 351, p. 109263, 2021.

[15] Y. Liu, Y. Cao, T. Wang, Q. Dong, J. Li, and C. Niu, "Detection of 12 common food-borne bacterial pathogens by TaqMan real-time PCR using a single set of reaction conditions," *Frontiers in Microbiology*, vol. 10, 2019.

[16] B. M. Allos, "Campylobacter jejuni infections: update on emerging issues and trends," *Clinical Infectious Diseases*, vol. 32, no. 8, pp. 1201–1206, 2001.

[17] H. Ushijima, S. Nishimura, A. Thongprachum et al., "Sensitive and rapid detection of campylobacter species from stools of children with diarrhea in Japan by the loop-mediated isothermal amplification method," *Japanese Journal of Infectious Diseases*, vol. 67, no. 5, pp. 374–378, 2014.

[18] N. O. Kaakoush, N. Castano-Rodriguez, H. M. Mitchell, and S. M. Man, "Global epidemiology of Campylobacter infection," *Clinical Microbiology Reviews*, vol. 28, no. 3, pp. 687–720, 2015.
[29] W. Yamazaki, “Sensitive and rapid detection of Campylobacter jejuni and Campylobacter coli using loop-mediated isothermal amplification,” *Methods in Molecular Biology*, vol. 943, pp. 267–277, 2013.

[30] M. R. Romero and N. Cook, “A rapid LAMP-based method for screening poultry samples for Campylobacter without enrichment,” *Frontiers in Microbiology*, vol. 9, 2018.

[31] T. L. Quyen, S. Nordentoft, A. C. Vinayaka et al., “A sensitive, specific and simple loop mediated isothermal amplification method for rapid detection of Campylobacter spp. in broiler production,” *Frontiers in Microbiology*, vol. 10, 2019.

[32] Y. Geng, G. Liu, L. Liu et al., “Real-time recombinase polymerase amplification assay for the rapid and sensitive detection of _Campylobacter jejuni_ in food samples,” *Journal of Microbiological Methods*, vol. 157, pp. 31–36, 2019.

[33] A. Kreitlow, A. Becker, M. F. E. Ahmed et al., “Combined loop-mediated isothermal amplification assays for rapid detection and one-step differentiation of Campylobacter jejuni and Campylobacter coli in meat products,” *Frontiers in Microbiology*, vol. 12, 2021.

[34] H. J. Dong, A. R. Cho, T. W. Hahn, and S. Cho, “Development of a loop-mediated isothermal amplification assay for rapid, sensitive detection of Campylobacter jejuni in cattle farm samples,” *Journal of Food Protection*, vol. 77, no. 9, pp. 1593–1598, 2014.

[35] W. Yamazaki-Matsune, M. Taguchi, K. Seto et al., “Development of a multiplex PCR assay for identification of Campylobacter coli, Campylobacter fetus, Campylobacter hyointestinalis subsp. hyointestinalis, Campylobacter jejuni, Campylobacter lari and Campylobacter upsaliensis,” *Journal of Medical Microbiology*, vol. 56, no. 11, pp. 1467–1473, 2007.

[36] I. I. Sabike, R. Uemura, Y. Kirino et al., “Use of direct LAMP screening of broiler fecal samples for Campylobacter jejuni and Campylobacter coli in the positive flock identification strategy,” *Frontiers in Microbiology*, vol. 7, 2016.