On the Complexity of Computing Minimal Unsatisfiable LTL Formulas

Francois Hantry\(^1\), Lakhdar Saïs\(^2\), and Mohand-Saïd Hacid\(^1\)

\(^1\) Université Claude Bernard Lyon 1, LIRIS CNRS UMR 5205, France
\{mohand-said.hacid,francois.hantry\}@liris.cnrs.fr
\(^2\) Université d’Artois,
CRIL CNRS UMR 8188, France
sais@cril.univ-artois.fr

Abstract. We show that (1) the Minimal False QCNF search-problem (MF-search) and the Minimal Unsatisfiable LTL formula search problem (MU-search) are \(\text{FPSPACE} \) complete because of the very expressive power of QBF/LTL, (2) we extend the \(\text{PSPACE}\)-hardness of the MF decision problem to the MU decision problem. As a consequence, we deduce a positive answer to the open question of \(\text{PSPACE}\) hardness of the inherent Vacuity Checking problem. We even show that the Inherent Non Vacuous formula search problem is also \(\text{FPSPACE}\)-complete.

1 Introduction

Recently, the notion of Minimal Unsatisfiable Linear Temporal Logic formula (MU for LTL) has been introduced in \cite{32}. This notion is, for instance, fundamental to reduce the search space in LTL sat-solvers \cite{11}, \cite{19}, or to understand the cause of unsatisfiability and enable debugging \cite{32}, \cite{31}, \cite{19}. Intuitively, an element \(g \in MU(f)\) from a LTL unsatisfiable formula \(f\) is a limit weakening\(^3\) of \(f\) such that \(g\) remains unsatisfiable. We consider the following two fundamental problems:

MU-decision problem
\begin{align*}
\text{input:} & \text{ a LTL formula } f \\
\text{output:} & \begin{cases}
yes & \text{while } f \text{ is minimal unsatisfiable,} \\
no & \text{no otherwise.}
\end{cases}
\end{align*}

MU-search problem
\begin{align*}
\text{input:} & \text{ a LTL formula } f \\
\text{output:} & g \in MU(f) \text{ while } f \text{ is unsatisfiable, no otherwise.}
\end{align*}

The aim of this work is to study computational complexity of the above MU-decision/search problems. The authors of \cite{13} have shown that the \(MU_{\text{CNF}}\) decision problem is \(D^P\)-complete for propositional logic with formula in Conjunctive Normal Form (CNF) but it is in P while the deficiency is fixed \cite{20}. An important effort has been devoted to approaches allowing to approximate/compute \(MU_{\text{CNF}}\) of propositional logic (see, \cite{37}, \cite{23}, \cite{20}, \cite{27}, \cite{33}). The Minimal False QBF decision problem is \(\text{PSPACE} \) complete \cite{22} but it is in \(D^P\) for fixed deficiency \cite{21}. However, only a few investigations dealt with MF \cite{36}. The author in \cite{32} defines MU for LTL, and recalls that given a formula and a fixed occurrence, deciding if it is not necessary (w.r.t unsatisfiability) is \(\text{PSPACE} \) complete (MU-step-dec). However, the MU decision/search problems (MU-dec/search)

\(^3\) some substitutions by \(\text{TRUE} \) (resp.\(\text{FALSE}\)) of some subformula occurrences of positive (resp.negative) polarity
remain open. A few work propose computation of MU for LTL \cite{11,32,31,19}. A recent work also proposed to compute minimal revision of an unsatisfiable LTL specification \cite{17} in order to achieve the satisfiability. Some simple results for unrealizability of LTL formula (2-EXPTIME complete) are also given in \cite{32}. In \cite{5}, the authors investigated the causes in counterexample of LTL specification and have shown that the decision problem is NP complete (by considering as inputs a LTL counter-example, a timestamped variable and a LTL formula). This work is built on the theory of causes introduced in \cite{24}. Also based on the theory of \cite{24}, the authors in \cite{8} analyze some variables as a cause of verifying a model checking test. In \cite{6}, the authors investigated basic algorithms for Minimal Unsatisfiable boolean circuit. Computing the minimal unsatisfiable formulas in SMT is proposed in \cite{10}. Since a Minimal Unsatisfiable LTL formula is a particular case of inherent non vacuity \cite{15,32}, we consider also complexity result for inherent vacuity. Given a LTL Formula f and a fixed subformula occurrence $Occ(g)$, deciding if $Occ(g)$ is a witness of inherent vacuity of f is still an open problem \cite{15}. While $f \in LTL$ is a conjunction, the decision problem of a smallest equivalent subset of the f's conjuncts (irredundance) and of a given size is PSPACE complete \cite{9}. Some works were devoted to the vacuity detection (see, \cite{4,25,3,28,34,15,9}). To summarize, although substantial complexity results have been provided in the propositional case, current corresponding complexity results for LTL appear to be less studied than in the propositional case. Mainly, complexity results for minimality problems in the LTL case assume additional subformula or length parameter in the definition of the problem. In this paper, we show that (1) the Minimal False QBF search-problem (MF-search) and the Minimal Unsatisfiable LTL formula search problem (MU-search) are FPSPACE complete because of the very expressive power of QBF/LTL and (2) we extend the PSPACE-hardness of the MF decision problem to the MU decision problem. As a consequence, we provide a positive answer to the open question of PSPACE hardness of the inherent Vacuity Checking problem. We even show that the Inherent Non Vacuous formula search problem is also FPSPACE-complete.

For uniformity purpose we introduce QLTL ($QBF \subseteq QLTL$ and $LTL \subseteq QLTL$) in Section 2. We also discuss the notions of weakening for QLTL formulas and minimal unsatisfiable LTL formulas. In Section 3, we start by analyzing the complexity of Minimal FALSE QCNF formulas, then, we enhance the translation of QCNF sat to LTL Model Checking to show complexity results for the LTL MU-search problem. Finally, we propose an original proof of PSPACE completeness of the MU-dec problem. We reuse these results in order to provide complexity results for Inherent Vacuity Checking. We conclude in Section 4.

2 Preliminaries

Complexity

We recall the basic definition of computational complexity \cite{30,35}. Let Σ be an alphabet, a total deterministic computable function f from Σ^* to Σ^*, associated with a total (at left) binary relation $R(x, y) \in \Sigma^* \times \Sigma^*$ with input $x \in \Sigma^*$ is an always accepting deterministic Turing Machine with three tapes: a ‘two-ways’ ‘read-only’ input tape (where x lies), a ‘two-ways’ ‘read/write’ computing tape and a ‘one-way’ ‘write-only’ output tape with output $f(x)$ such that $R(x, f(x))$. A FPSPACE search problem with relation R is such that there exists a polynomial P such that $R(x, y) \Rightarrow |y| \leq P(|x|)$ and there exists a function f such that for any x, the total use of space units of the machine (of the output and of the working tapes) is also bounded by $P(|x|)$. A decision problem associated to a language $L \subseteq \Sigma^*$ over a fixed alphabet Σ is PSPACE iff there exists a FPSPACE function f such
that given any input $x \in \Sigma^*$, $f(x) = 'yes' \text{ iff } x \in L$ (thus for instance $f(x) = 'no'$ while $x \notin L$). A logspace function is a function f using $O(\log(|x|))$ space at the working tape but no constraint at the ouput tape.\(^4\) There exists a logspace reduction of a decision problem $L_1 \subseteq \Sigma^*$ to another $L_2 \subseteq \Sigma^*$ if there exists a particular logspace function f such that $x \in L_1$ if and only if $f(x) \in L_2$. There exists a logspace reduction from a relation R_1 to a relation R_2 iff there exists three functions f, g_2, h with function f and h are logspace functions, and g_2 is a R_2 function such that for any x, $R_1(x, (g_2(f(x)), x))$ holds, i.e., given a x one can compute a y with $R_1(x, y)$ by (1) computing $f(x)$, (2) computing $z = g_2(f(x))$ with $R_2(f(x), z)$ and (3) computing $y = h(g_2(f(x)), x)$. A PSPACE decision problem is PSPACE-complete iff any PSPACE-problem is logspace reducible to it. A FPSPACE search problem is FPSPACE complete iff any FPSPACE problem is logspace reducible to it. We quickly recall that a NP decision problem is a decision problem which is solvable by a Non-deterministic Turing Machine, in polytime for the positive answer.\(^5\) D^P is the class of languages of the form $L_1 \cap L_2$ with L_1 a NP problem and L_2 a Co-NP problem (Intuitively one positive call and one negative call to a NP-complete problem). Σ_2^P is the set of decision problems with a non deterministic polytime Turing Machine, but with a NP-complete oracle. We recall that $NP \subseteq D^P \subseteq \Sigma_2^P \subseteq PSPACE$, without knowing whether the inclusions are strict. The reduction from one of the non deterministic problem is usually through a deterministic polytime computable function rather than a logspace function.

QLTL \(^2\)

Let P be a non empty finite set of propositional variables, $p \in P$ and A and B are two QLTL formulas. A temporal logic formula is inductively built by means of the following rules:

$$\text{TRUE} \mid \text{FALSE} \mid p \mid A \land B \mid A \lor B \mid \lnot A \mid x(A) \mid A U B \mid A W B \mid \exists p A \mid \forall p A.$$

Furthermore, $G(A) = A W FALSE$ and $F(A) = TRUE U A$. In this paper, while some definitions hold for QLTL formulas, the focus is on two fragments of QLTL: Quantified Boolean Formula (QBF \(^3\)) and Linear Temporal Logic (LTL \(^16\)). QBF is the fragment of QLTL without modal operators (U, W, X, F, G) and LTL is the fragment without quantifiers (\exists, \forall). Both the satisfiability and Model Checking decision problems of LTL and QBF are PSPACE complete on the contrary to the satisfiability problem of QLTL which is non-elementary\(^6\) and the model checking is however PSPACE complete \(^29\). The set of QBF without quantifier is denoted PROP and is NP-complete \(^12\). A QLTL formula is in Prenex form iff it is of the form $Q\varphi$ with $Q = Q_1 x_1 Q_2 x_2 ... Q_n x_n$, with $Q_i \in \{\forall, \exists\}$, and $\varphi = (x_1, ..., x_n)$ standing for a set of different variables, and φ without quantifier. In the following, we will assume that any QLTL is in Prenex Form. Except for the case of Vacuity checking (see Section 3), we will also restrict any formula to possibly contain \lnot symbol solely applied to propositional variable(s) \(^13\). We call such a formula Negative Normal Form (NNF).

A propositional variable p in a QLTL f is free iff there exists an occurrence of p in f which is not in the scope of a quantifier. A closed QLTL is a QLTL without free variables. A literal l is either a propositional variable $p \in P$, or its negation $\lnot p$. lit(P) denotes the set of literals of P. We define $\sim (1)$ on literals as $\sim p = \lnot p$ and $\sim \lnot p = p$; (2) on quantifiers as $\sim \forall = \exists$ and $\sim \exists = \forall$ and $\sim (Q_i Q)x_1 \varphi = \sim (Q_i x_1) \varphi$. A clause is a disjunction of literal(s). A QLTL-clause is a disjunction of literal(s) and/or modal operator(s) applied to literal(s) (e.g., $(a U b) \lor c V F(d)$).
finally say that $\Phi \in QBF$ is a QCNF if it is of the special prenex form $Q\forall \phi$ with ϕ a conjunction of different clause(s). In this case, if Φ gets no quantifier then it lies in $CNF \subset PROP$. Note that the QCNF-sat decision problem is also PSPACE complete by adapting the proof of [35] to the QCNF case. By analyzing the proof of the PSPACE-hardness of QBF in [35], one can also show that the QBF-sat-search problem is FPSPACE-complete. This is the problem of searching a satisfiable valuation of the free variables of the QBF formula while it is satisfiable. To prove the FPSPACE hardness, let consider the following points. Since the output tape is PSPACE bounded in the definition of a FPSPACE problem, the configurations can also contain output tape variables. This is then sufficient to remove the external existential quantifiers of the configurations in the proof of [35] to prove QBF-sat search is FPSPACE-hard. The inclusion in FPSPACE is trivial.

A linear time structure is an element of \mathcal{M} in $\mathcal{M} \in (2^P)^N \forall \forall \forall M \in (2^P)^N$:

- $(\mathcal{M}, i) \models p$ with $p \in P$ iff $p \in \mathcal{M}(i)$.
- $(\mathcal{M}, i) \models \mathcal{X}(A)$ iff $(\mathcal{M}, i + 1) \models A$.
- $(\mathcal{M}, i) \models AUB$ iff $\exists j \geq i, (\mathcal{M}, j) \models B$ and $\forall k, i \leq k < j, (\mathcal{M}, k) \models A$.
- $(\mathcal{M}, i) \models AWB$ iff $\forall j \geq i, (\mathcal{M}, j) \models A$ or $(\exists j \geq i, (\mathcal{M}, j) \models B$ and $\forall k, i \leq k < j, (\mathcal{M}, k) \models A$.
- The semantics of any propositional combination is defined as usual.
- $(\mathcal{M}, i) \models \exists p (A)$ iff there exists a linear structure \mathcal{M}' such that $(\mathcal{M}', i) \models A$ and where \mathcal{M}' differs from \mathcal{M} solely at the instances of p.
- $(\mathcal{M}, i) \models \forall p (A)$ iff for any linear structure \mathcal{M}' such that \mathcal{M}' differs from \mathcal{M} solely at the instances of p then $(\mathcal{M}', i) \models A$.

A partial instance is a linear structure where solely some variables are instantiated (at any state).

We write down \mathcal{M}_t for the suffix of \mathcal{M} starting at time t.

A Kripke Structure \mathcal{K} is a labeled automaton $\mathcal{K} = (S, S_0, T, I)$ with S the set of states, $S_0 \subset S$ the set of initial states, $T \subset S \times S$ a total binary relation standing for the transitions and I a total function from S to 2^P. A \mathcal{K}-linear structure is any linear structure \mathcal{M} such that there exists a function m in S_0 such that $m(0) \in S_0$ and $\forall i \geq 0 M(i) = I(m(i))$ and $(m(i), m(i + 1)) \in T$. We note $\mathcal{K} \models f$ iff any \mathcal{K}-linear structure \mathcal{M} is such that $(\mathcal{M}, 0) \models f$. In this paper we restrict ourselves to finite Kripke Structure. It may happen that a state s occurs in a formula, without confusion, it stands for the conjunction of its literals $\wedge_{p \in I(s)} p \wedge_{p \in I(s)} \neg p$.

Let f be a QLTL formula, a syntactic tree $T(f)$ is defined by the following rules:

- $T(p \in P)$ is a single node labeled by p.
- $T(\circ q)$ is a tree with a root node which is labeled by \circ ($\circ \in \{\wedge; \forall; \exists\}$) and a child subtree $T(q)$.
- $T(g_1 \circ g_2)$ is a tree with a root node which is labeled by \circ ($\circ \in \{U; W; V; \forall\}$) with a left child subtree $T(g_1)$ and a right child subtree $T(g_2)$.

A subformula h of f is a ‘subword’ of the ‘word’ f such that h is a also a formula, and the set of subformulas is denoted $sf(f)$. We will also write $Cl(sf(f))$ the set of clauses which are in $sf(f)$.

A partial instance is a linear structure where solely some variables are instantiated (at any state).

We write down \mathcal{M}_t for the suffix of \mathcal{M} starting at time t.

A Kripke Structure \mathcal{K} is a labeled automaton $\mathcal{K} = (S, S_0, T, I)$ with S the set of states, $S_0 \subset S$ the set of initial states, $T \subset S \times S$ a total binary relation standing for the transitions and I a total function from S to 2^P. A \mathcal{K}-linear structure is any linear structure \mathcal{M} such that there exists a function m in S_0 such that $m(0) \in S_0$ and $\forall i \geq 0 M(i) = I(m(i))$ and $(m(i), m(i + 1)) \in T$. We note $\mathcal{K} \models f$ iff any \mathcal{K}-linear structure \mathcal{M} is such that $(\mathcal{M}, 0) \models f$. In this paper we restrict ourselves to finite Kripke Structure. It may happen that a state s occurs in a formula, without confusion, it stands for the conjunction of its literals $\wedge_{p \in I(s)} p \wedge_{p \in I(s)} \neg p$.

Let f be a QLTL formula, a syntactic tree $T(f)$ is defined by the following rules:

- $T(p \in P)$ is a single node labeled by p.
- $T(\circ q)$ is a tree with a root node which is labeled by \circ ($\circ \in \{\wedge; \forall; \exists\}$) and a child subtree $T(q)$.
- $T(g_1 \circ g_2)$ is a tree with a root node which is labeled by \circ ($\circ \in \{U; W; V; \forall\}$) with a left child subtree $T(g_1)$ and a right child subtree $T(g_2)$.

A subformula h of f is a ‘subword’ of the ‘word’ f such that h is a also a formula, and the set of subformulas is denoted $sf(f)$. We will also write $Cl(sf(f))$ the set of clauses which are in $sf(f)$.

A partial instance is a linear structure where solely some variables are instantiated (at any state).

We write down \mathcal{M}_t for the suffix of \mathcal{M} starting at time t.
For instance \(sf((a \land b) \cup \neg a) = \{ a; b; a \land b; \neg a; (a \land b) \cup \neg a \} \). The set of subformula occurrences \(\text{Occ}(sf(f)) \) corresponds to the set of nodes of \(T(f) \). For each node \(N \), a natural subformula \(S(f)(N) \) can be associated with the subformula of the \(N \)-root subtree of \(T(f) \). For instance on Figure 1, \(\text{Occ}(sf((a \land b) \cup \neg a)) \) gets two occurrences of the subformula \(a \). Furthermore \(a \land b \) is associated with the labeled node \(\land \). We also define \(Cl(\text{Occ}(sf(f))) \) as before.

Let \(g \) be another QLTL formula, \(f[h ← g] \) is the result of the substitutions in \(f \) of all the occurrences of \(h \) by \(g \). For one specific occurrence of \(h \) denoted \(\text{Occ}(h) \in \text{Occ}(sf(f)) \), \(f[\text{Occ}(h) ← g] \) is the result of the substitution in \(f \) of the only occurrence \(\text{Occ}(h) \) of \(h \) by \(g \).

We divide \(\text{Occ}(sf(f)) \) into two disjoint sets: \(\text{Occ}(sf(f)) = sf^+(f) \cup sf^-(f) \) where \(sf^+(f) \) is the set of the subformula occurrences with positive polarity. We fix \(\text{lit}'(f) = sf^+(f) \cap \text{lit}(P) \) with \(\epsilon \in \{+;−\} \). Finally if \(\text{Occ}(g) \in \text{Occ}(sf(f)) \) then \(\text{Occ}(g') \in \text{Occ}(sf(f)) \) is a superformula occurrence of \(\text{Occ}(g) \) iff \(\text{Occ}(g) \) is a descendant node of \(\text{Occ}(g') \) in \(T(f) \). For instance on Figure 1, \(\neg a \) is a superformula occurrence of the ‘second’ occurrence \(a \) in \(\neg a \). If \(K \) is a Kripke structure and \(s \) a state of \(K \), then for any \(K \)-linear structure \((M, m) \) different from \(S^s s^s \), \(M[s ← \text{erase}] \) is the modified \((M, m) \) where any corresponding occurrence of \(s \) has been erased.

We call weak promise \(wp \) any occurrence of subformula of an QLTL formula \(f \) of the form \((AUB) \) or \((AWB) \) (we recall \(F(B) = (\text{TRUE})U(B) \), with \(B ≠ \text{FALSE} \) which is called a promise operand.

We will say that a timestamped state \((i, m(i)) \) of a \(K \)-linear structure \(M \) triggers a weak promise \(wp \) iff \(f = Z \land G(C ⇒ X^k[((wp \lor H) ∪ D) \land E])) \) with \(o \in \{U;\lor\} \), \(k \in \mathbb{N} \) and such that \((M, i) \models C \land X^k(¬D \land ¬H) \). We will say that a timestamped state \((i, m(i)) \) of a \(K \)-linear structure \(M \) propagates or postpones a weak promise \(wp \) iff (1) there exists \(i' \) with \(0 \leq i' \leq i \) such that \((i', m(i')) \) triggers \(wp \) and (2) either \((M, j) \models A \land ¬B \) where \(k \leq i - i' \), for any \(i' + k \leq j \leq i \), with \(B \) the promise operand of \(wp \), or \(k > i - i' \). We finally say that a weak promise \(wp \) is fulfilled at \((i, m(i)) \) iff there is a \(i' \) with \(i' \leq i \) where \(wp \) is triggered and propagated until \(i \) where \((M, i) \models B \) with \(B \) the promise operand of \(wp \).

Weakening QLTL formulas and Minimal Unsatisfiable QLTL formulas

For (Quantified) propositional logic, a basic weakening is essentially defined as the deletion of a clause in QCNF [22]. It is extended in [7] as the substitution of a particular ‘maximal’ \(\lor \)-subformula (a disjunction) occurrences by \(\text{TRUE} \) while the formula is in QBF \(\land \) NNF. However, for Linear Temporal Logic and related Model Checking, a basic weakening is usually defined for any subformula occurrence [22]. In what follows, we compare these various definitions and describe which occurrences are necessary and sufficient to consider in order to check the minimality of an unsatisfiable formula.

Definition 1. (Basic clausal weakening for QCNF)

Let \(f = Q\pi(C_1 \land \ldots \land C_m) \) an element of QCNF with the clauses \(C_j \). Then a basic clausal weakening of \(f \) is \(f[C_{j_0} ← \text{TRUE}] \) for some \(j_0 \in [1; m] \).

\(^7\) A subformula occurrence with positive polarity is a subformula occurrence which is in the scope of an even number of negation(s). The negative case corresponds to an odd number of negation(s).
For \(f_1, f_2 \) and \(f \) in QCNF the relation of basic clausal weakening \(R_{C_{\text{cl}}}(f_1, f_2) \) is such that \(R_{C_{\text{cl}}}(f_1, f_2) \) iff \(f_1 \) is a basic weakening of \(f_2 \). If \(R_{C_{\text{cl}}}(f_1, f_2) \) is the reflexive, transitive closure of \(R_{C_{\text{cl}}}(f_1, f_2) \), then the set of weakened subformulas of \(f \) is \(W_{C_{\text{cl}}}(f) = \{ g \in QCNF | R_{C_{\text{cl}}}(g, f) \} \).

Definition 2. *(Basic Occurrence Weakening in QLTL)* Let \(f \in \text{QLTL} \), a basic occurrence weakening is a formula \(g \) such that \(g \) is the result of a substitution in \(f \) of either (1) a subformula occurrence in \(sf^+(f) \) by \(\text{TRUE} \), or (2) a subformula occurrence in \(sf^-(f) \) by \(\text{FALSE} \).

For instance if \(f = \mathcal{G}(\neg \mathcal{C} \lor (\alpha \lor ((\neg \mathcal{B}) \mathcal{U} \mathcal{C}))) \) then \(g = \mathcal{G}(\neg \mathcal{C} \lor \text{TRUE}) \) is a basic occurrence weakening of \(f \). Except for case of vacuity checking (see section 3), we will restrict ourselves to occurrences in \(sf^+ \). \(R_{sf^+} \) and \(W_{sf^+} \) are defined similarly as \(R_{C_{\text{cl}}} \) and \(W_{C_{\text{cl}}} \). However, while the occurrence of \(f_1 = x \lor (c \land ((\neg \mathcal{B}) \mathcal{W} \mathcal{C})) \) is substituted by \(\text{TRUE} \) in \(f = \exists x (\neg r \land (r \lor (\mathcal{F}(x \lor (c \land ((\neg \mathcal{B}) \mathcal{W} \mathcal{C})))))) \) then the resulting formula \(f' = \exists x (\neg r \land (r \lor (\mathcal{F}(\text{TRUE})))) \) is trivially equivalent to \(f'' = \exists x (\neg r \land (\mathcal{F}(\text{TRUE}))) \). Consider \(Eq_0 \in (sf^+(f))^2 \), with \(Eq_0(\mathcal{Occ}(f_1), \mathcal{Occ}(f_2)) \) iff \(\mathcal{Occ}(f_2) \) is a superformula occurrence of \(\mathcal{Occ}(f_1) \) and \(f_2 \) gets one of the following forms \(f_1 \lor \mathcal{A} \lor \mathcal{U} / \mathcal{W}(f_1), (f_1 \lor \mathcal{W} \mathcal{F}, \mathcal{F}(\neg \mathcal{C})) \) and \(\mathcal{A}(f_1) \). Then, if \(Eq \) is the symmetric, reflexive, transitive closure of \(Eq_0 \), and if \(Eq(\mathcal{Occ}(f_1), \mathcal{Occ}(f_2)) \), then \(f[\mathcal{Occ}(f_1) \leftarrow \text{TRUE}] \equiv f[\mathcal{Occ}(f_2) \leftarrow \text{TRUE}] \). A class representative of a class \(\mathcal{C} \) from \(Eq \) can be the (right) maximal element of \(\mathcal{C} \) with respect to \(Eq_0 \). For the last example \(\mathcal{C} = \mathcal{C}(\mathcal{Occ}(f_1)) = \mathcal{C}(\mathcal{Occ}(f_2)) \) with \(\mathcal{C}(\mathcal{Occ}(f_2)) = (r \lor (\mathcal{F}(x \lor (c \land ((\neg \mathcal{B}) \mathcal{W} \mathcal{C})))) \) and \(\mathcal{C}(\mathcal{Occ}(f_2)) \) is maximal. It is then sufficient to consider solely a ‘maximal’ representative per class for weakening analysis as for the QBF case \(\mathcal{I} \). But if the maximal class representative or a minimal class representative is a conjunction or of the form \(\mathcal{A} \lor \mathcal{W} / \mathcal{B} \) with \(A \neq \text{TRUE} \) and \(B \neq \text{FALSE} \), then it is not correct to say its substitution by \(\text{TRUE} \) is a basic weakening, since any of its conjunct/\(A \) substitution by \(\text{TRUE} \) weakens \(f \) ‘less’ than the conjunction or \(\mathcal{A} \lor \mathcal{W} / \mathcal{B} \). For instance, if \(f = \exists y ((c \land \neg d) \lor b \lor d) \), then solely the occurrences \{c; \neg d\} are the ‘weakest’ maximal non-conjunctive occurrences. Similarly, if \(f = \exists x (\neg r \land (r \lor (\mathcal{F}(x \lor (c \land ((\neg \mathcal{B}) \mathcal{W} \mathcal{C})))))) \) then \{r; c; \neg b\} are the weakest maximal non-conjunctive occurrences. We then define a weakest basic weakening of maximal non-conjunctive subformula occurrences (Weakest-Max weakening, for short) as follows.

Definition 3. *(Weakest-Max Weakening for QLTL)*

A weakest basic weakening of maximal non-conjunctive subformula occurrences, is a basic Weakening of ‘maximal’ non-conjunctive subformula occurrence \(\mathcal{O} \), where \(\mathcal{O} \) is the maximal representative element w.r.t. \(Eq_0^* \) of \(\mathcal{C}(\mathcal{Occ}), \) and \(\mathcal{C}(\mathcal{Occ}) \) does not contain any Maximal/minimal element which is a conjunction or of the form \(\mathcal{A} \lor \mathcal{W} / \mathcal{B} \) with \(A \neq \text{TRUE} \) and \(B \neq \text{FALSE} \).

\(\text{WeakestMAX}(sf^+(f)), R_{\text{WeakestMAX}}(sf^+(f)) \) and related weakened formulas \(W_{\text{WeakestMAX}}(sf^+(f)) \) are defined as previously.

Definition 4. *(Minimal Unsatisfiable QLTL Formula)* Let \(O \) be the mapping from any formula \(f \in \text{QLTL} \) to a set \(O(f) \subseteq sf^+(f) \). A QLTL formula \(g \) is Minimal Unsatisfiable w.r.t. \(O \) \(g \in MU_O \) iff (1) \(g \) is unsatisfiable, (2) \(g \) gets no unsatisfactory proper weakened subformula w.r.t \(R_O \) (i.e. \(W_O(g) \cap UnsAT = \{ g \} \)). If \(f \) is an unsatisfiable QLTL formula, then \(MU_O(f) = MU_O \cap W_O(f) \).

For instance, if \(f = \alpha \land \neg \alpha \land (\mathcal{F}(\alpha) \land \mathcal{G}(\neg \mathcal{C}) \land \mathcal{G}(\neg \alpha \Rightarrow (\mathcal{F}(p) \land \mathcal{G}(g))) \land (\neg g) \mathcal{W} \mathcal{P} \land \mathcal{F}(i) \land (\neg i) \mathcal{W} \mathcal{P} \land \mathcal{G}(p \Rightarrow \mathcal{G}(\neg i))) \) then \(MU_{sf^+}(f) = \{ \alpha \land \neg \alpha \land \text{TRUE}; \text{TRUE}; \mathcal{F}(i) \land (\neg i) \mathcal{W} \mathcal{P} \land \mathcal{G}(p \Rightarrow \mathcal{G}(\neg i)) \} \). Also note that the set \(MU_O(f) \) is identical (by simplifying any \(\text{TRUE} \lor ..., \land \text{TRUE}, \mathcal{A} \lor \mathcal{W} \text{TRUE} \) or \(\mathcal{G}(\text{TRUE}) \) by \(\text{TRUE} \)) whatever the \(O \) be from our two precedent definitions of weakening.

\(^8\) For subformula occurrence there is only one right maximal element
(O ∈ {sf⁺; WeakestMax(sf⁺)}). Thus, in the following, we will solely write MU instead of MU₀.

If f is closed, then the unsatisfiability becomes Falsity and we call minimal FALSE (MF) instead of MU. In the remaining part of this paper, the MU-dec/search problem is restricted to the elements of LTL, and the MF-dec/search problem is restricted to the elements of QCNF.

3 Complexity results

The MU-dec problem is obviously in \(PSPACE = \text{PSPACE} \). To show the hardness one adapts the proof of hardness for MF-dec \(^2\) to LTL. As a corollary this shows the PSPACE hardness of the Inherent Vacuity decision problem. To show the \(\text{FPSPACE} \)-hardness of MU-search, we start by showing the \(\text{FPSPACE} \)-hardness of MF-search in QCNF, then we enhance a QCNF sat / LTL Model Checking reduction from \(^9\). We conclude that the inherent non vacuous search problem (INV-search) is \(\text{FPSPACE} \)-complete.

Minimal False Formula in QCNF

We need two lemmas to prepare the proof. W.l.g., we fix \(O = \text{Cl}(sf) \). The first one has been proved in \(^2\) but it is recalled to understand its extension later.

Lemma 1. Assume \(\Phi = \forall y \overline{Q}\overline{\pi}\phi \) is in MF. Then either only \(y \in \text{lit}^+(\Phi) \) occurs or only \(\overline{y} \in \text{lit}^+(\Phi) \) occurs in \(\phi \).

(proof) \(\Phi = \forall y \overline{Q}\overline{\pi}\phi \) is FALSE if \(\Phi[y \leftarrow \text{TRUE}] \wedge \Phi[y \leftarrow \text{FALSE}] \) is FALSE if \(\Phi[y \leftarrow \text{TRUE}] \) is FALSE or \(\Phi[y \leftarrow \text{FALSE}] \) is FALSE. For instance if \(\Phi[y \leftarrow \text{TRUE}] \) is FALSE, then if a clause \(C \) containing \(y \in \text{lit}^+(\Phi) \) is in \(\phi \) this clause can be substituted by \(\text{TRUE} \) and \((\Phi[y \leftarrow \text{TRUE}] \wedge C[y \leftarrow \text{FALSE}]) \leftarrow \text{TRUE} \Rightarrow \Phi[C \leftarrow \text{TRUE}] \) remains FALSE. Then \(\Phi[C \leftarrow \text{TRUE}] \) is FALSE. However, it contradicts the assumption \(\Phi \) is in MF. We conclude that there is no occurrence of \(y \in \text{lit}^+(\Phi) \) while \(\Phi[y \leftarrow \text{TRUE}] \) is FALSE. The other case is similar.

Lemma 2. Let \(\Phi = \overline{Q}\overline{\pi}\phi \) be a QBF in Prenex Form. \(\Phi \) is LOGSPACE reducible to an equivalent QCNF denoted QCNF(\(\Phi \)).

Proof Let \(\text{Set} = \{x_\psi\} \) be the starting set with \(x_\psi \) a fresh variable, and \(\text{UCS} = \emptyset \) the starting set of clauses. \(\Phi \) is LOGSPACE reducible to an equivalent QCNF by applying the following rules until reaching a fixpoint:

- If \(x_\psi = x_{\psi_1} \wedge \psi_2 \in \text{Set} \) then \(\forall j \in \{1; 2\} \text{ UCS} := \{x_\psi \Rightarrow x_{\psi_j}\} \cup \text{UCS} \) and \(\forall j \text{ Set} := \text{Set} \cup \{x_{\psi_j}\} \).
- If \(x_\psi = x_{\psi_1} \vee \psi_2 \in \text{Set} \) then \(\text{UCS} := \{x_\psi \Rightarrow (x_{\psi_1} \vee \psi_2)\} \cup \text{UCS} \) and \(\forall j \in \{1; 2\} \text{ Set} := \text{Set} \cup \{x_{\psi_j}\} \).
- If \(x_\psi \in \text{Set} \) is such that \(\psi \in \text{lit}(P) \cup \{\text{TRUE}; \text{FALSE}\} \) then \(\text{UCS} := \{x_\psi \Rightarrow \psi\} \cup \text{UCS} \).

Let \(\overline{\pi} \) be a vector standing for the set \(\text{Set} \) and \(\phi' = x_{\phi} \wedge_{C \in \text{UCS}} C \), then \(\text{QCNF}(\Phi) = \overline{\pi;} ax \phi' = \Phi \).

Theorem 1. (MF-Search) Given \(\Phi \) a closed QCNF, providing a MF of \(\Phi \) if \(\Phi \) is FALSE, and answer ‘no’ if \(\Phi \) is TRUE is a \(\text{FPSPACE} \)-complete problem.

\(^9\) In this case WeakestMax(sf⁺) and Cl(sf) are identical.
Once 10 ~ ity.

Deciding if an unsatisfiable LTL formula is a minimal unsatisfiable formula is PSPACE-complete.

Theorem 2.

Let the starting set Set = \{x_f\} with x_f a fresh variable, and UCS = ∅ the starting set of unwound LTL-clauses. Let us apply the following rules until reaching a fixpoint:

- If \(\varphi = x_{\psi_1} \land x_{\psi_2} \in Set\) then \(\forall j \in \{1; 2\} UCS := \{x_\psi \Rightarrow x_{\psi_j}\} \cup UCS\) and \(\forall j \in \{1; 2\} Set := Set \cup \{x_{\psi_j}\}\)

- If \(\varphi = x_{\psi_1} \lor x_{\psi_2} \in Set\) then \(UCS := \{x_\psi \Rightarrow (x_{\psi_1} \lor x_{\psi_2})\} \cup UCS\) and \(\forall j \in \{1; 2\} Set := Set \cup \{x_{\psi_j}\}\)

- If \(\varphi = x_{X(\psi_1)} \in Set\) then \(UCS := \{x_\psi \Rightarrow X(\psi_1)\} \cup UCS\) and \(Set := Set \cup \{x_{\psi_1}\}\)

- If \(\varphi = x_{\psi_1} \cup_{\psi_2} \in Set\) then \(UCS := \{x_\psi \Rightarrow (x_{\psi_1} \cup_{\psi_2})\} \cup UCS\) and \(Set := Set \cup \{x_{\psi_1}; x_{\psi_2}; x_{X(\psi_1)}\}\). In the case of U, we add UCS := \(\{x_\psi \Rightarrow F(x_{\psi_1})\} \cup UCS\)

- If \(\varphi \in Set\) is such that \(\psi \in \text{lit}(P) \cup \{TRUE; FALSE\}\) then \(UCS := \{x_\psi \Rightarrow \psi\} \cup UCS\)

with \(x_{\psi_1}\) fresh variables at each step. It turns out that \(f' = x_f \land_{f' \in UCS} G(f'')\) is equi-satisfiable to \(f\). Furthermore, \(\land_{f' \in UCS} G(f'')\) is satisfiable with a model \(\cal{M}'\) at FALSE at any time for any propositional variable. This proves the lemma.

Theorem 2. (MU-dec)

Deciding if an unsatisfiable LTL formula is a minimal unsatisfiable formula is PSPACE-complete.

(proof) For any element in Weakest – Max(sf^+(f)), substitute by TRUE and check unsatisfiability. f is a MU iff any substitution leads to a satisfiable formula. There is a linear number of subformulas, and any checking is in PSPACE. Thanks to lemma [7], any LTL formula \(f\) can be LOGSPACE reduced to an equi-satisfiable formula of the form \(f' = x_f \land_{2 \leq i \leq m} f_i\) with any \(f_i\) one of the following forms: \(G(x \lor F(x'))\), \(G(y \lor X(y'))\) or \(G(w \lor w' \lor (\delta \land w''))\). Furthermore, let \(\cal{M}'\) defined as in lemma [8] Let \(\alpha_1, ... , \alpha_m\) some subformulas of \(f\) such that \(\alpha_1 = x_f\) and \(f_i = G(\alpha_i)\) for \(2 \leq i \leq m\). Let \(x_1, ..., x_m\) be fresh boolean variables, and \(\pi_i = x_1 \lor x_{i-1} \lor x_{i+1} \lor ... \lor x_m\). Let \(\lor^n\) be defined as follows:

\(l \equiv l\) for \(l\) a literal, \(\lor^n X(l) = X(\lor^n l)\) and \(\lor^n F(l) = G(\lor^n l)\). Let \(\omega(f')\) the conjunction of the following

[8] Once \(\delta\) is instantiated, the formula is simplified to the equivalent clause
subformulas: $(X(x_1) \lor \alpha_1) \land_{2 \leq i \leq m} G(\alpha_i \lor \pi_1), (\neg x_1 \lor \neg x_f \lor \pi_1) \land_{2 \leq i \leq m} \land_{\lambda \in \alpha_i} G(\lambda \lor \pi_1 \lor \neg x_i) \land_{\lambda \in \alpha_i} G(\lambda \lor \pi_1 \lor \neg x_i)$ where op is an operand of the LTL-clause α_i, $\land_{j \neq i} (\neg x_1 \lor \neg x_j) \land_{2 \leq i \leq m} G(\neg x_i \lor \neg x_j), G(X(\neg x_1)) \lor \pi_1, \forall x_1 \land ... \land x_m$. Assume $\lambda(f') = \omega(f') \setminus \{x_1 \land ... \land x_m\}$. We will show that $\omega(f')$ is a MU iff f' is satisfiable.

A- If $\omega(f')$ is MU then f' is satisfiable.

If $\omega(f')$ is MU then $\lambda(f')$ is satisfiable. If \mathcal{M} is a linear model of $\lambda(f')$, there are two cases: (1) Either any x_i is False at any time point j in $\mathcal{M}(j)$ and $(\mathcal{M}, 0) \models \lambda(f')$ iff $(\mathcal{M}, 0) \models f'$. Thus, f' is satisfiable. (2) Either there exists a time point j and some x_i such that x_i is True in $\mathcal{M}(j)$. In this case we have:

- If π_1 is FALSE at $\mathcal{M}(0)$, then thanks to $G(X(\neg x_1)) \lor \pi_1$, either x_1 is TRUE at $\mathcal{M}(0)$ and it will never hold later (but in this case $(\mathcal{M}, 0) \not\models \lambda(f')$ because $(\mathcal{M}, 0) \not\models (X(x_1) \lor \alpha_1) \land (\neg x_1 \lor \neg x_f \lor \pi_1) \land (G(X(\neg x_1)) \lor \pi_1) \land (\neg x_1 \lor \neg x_f)$), or x_1 will never hold on \mathcal{M}, then $i > 1$ and $j > 0$, but in this case $(\mathcal{M}, 0) \not\models \land_{2 \leq i \leq m} G(\neg x_i) \land (G(\alpha_1 \lor \pi_1) \land (\neg x_1 \lor \neg x_f) \land (\neg x_1 \lor \neg x_f) \land (\neg x_1 \lor \neg x_f \lor \pi_1), \forall x_1 \land ... \land x_m). The \mathcal{M} is satisfiable and according to setting in \mathcal{M} the literals of Lit(op) always to FALSE for any ops of α_i leads to $(\mathcal{M}, 0) \not\models \gamma(f')$.

Thus only the case (1) is possible, i.e., f' is satisfiable.

B- if f' is satisfiable then $\omega(f')$ is MU.

Assume f' is satisfiable. We have to show that $\omega(f')$ is (a) unsatisfiable and (b) minimal. (1) Assume $\omega(f')$ is satisfiable by a model \mathcal{M}, then only one of x_i is TRUE at $\mathcal{M}(0)$ but this is the unsatisfiable case of A-(2), which is a contradiction. Thus $\omega(f')$ is not satisfiable. (2) Let g be a subformula in the conjunction of f'. We will show that $\gamma(f) = \omega(f') \setminus \{g\}$ is satisfiable for any g:

- case $g = X(x_1) \lor \alpha_1 \lor \pi_1, \land_{2 \leq i \leq m} G(\alpha_i \lor \pi_1)$, and fixing the other variables in \mathcal{M}' is sufficient to show $(\mathcal{M}, 0) \models \gamma(f')$.

- case $g = G(\alpha_i \lor \pi_i)$. Let \mathcal{M} be a model with x_1 always TRUE on \mathcal{M} and the other x_is are always FALSE on \mathcal{M}. Then $(\mathcal{M}, 0) \models \gamma(f')$ if $(\mathcal{M}, 0) \models X(x_1) \lor \alpha_1 \lor \pi_1)$, and \mathcal{M} is not sufficient to show $(\mathcal{M}, 0) \models \gamma(f')$.

- case $g = \neg x_1 \lor \neg x_f \lor \pi_1)$. Let \mathcal{M} be a model with x_1 always TRUE on \mathcal{M} and the other x_is are always FALSE on \mathcal{M}. Then $(\mathcal{M}, 0) \models \gamma(f')$ if $(\mathcal{M}, 0) \models \land_{2 \leq i \leq m} G(\alpha_i \lor \pi_1 \lor \neg x_i). The ops does not have the same propositional variables, thus by setting in \mathcal{M} the literals of Lit(op) always to FALSE for any ops of α_i leads to $(\mathcal{M}, 0) \models \gamma(f')$.

- case $g = x_1 \lor ... \lor x_m \lor \neg x_1 \lor \neg x_f \lor \pi_1)$, then if any x_i is FALSE, and since f' is satisfiable and according to $1.(a), (\mathcal{M}, 0) \models \gamma(f')$.

- case $g = (\neg x_1 \lor \neg x_f \lor \pi_1)$. Let \mathcal{M} be a model with x_1 always TRUE on \mathcal{M} and the other x_is are always FALSE on \mathcal{M}. Setting the other variables as in a model of f' is sufficient to show $(\mathcal{M}, 0) \models \gamma(f')$.

Since the satisfiability decision problem of LTL is PSPACE complete [1], and it is LOGSPACE reducible to the MU decision problem, MU-decision is PSPACE hard. Consider now the problem of
Corollary 1. The inherent vacuity decision problem (with single occurrence) is PSPACE-complete.

Canonical reduction of QCNF into LTL Model Checking [14]

Let \(\Phi \) be a closed QCNF. Thus, \(\Phi = Q_x \phi \) with \(\phi \in CNF \) is of the form \(\phi = \land_{1 \leq j \leq m} C_j \), where any \(C_j \) is a clause and \(\lvert \mathcal{F} \rvert = n \). We begin to recall the existence of a Kripke structure \(\mathcal{K} \) and a LTL formula \(\Psi \) such that: \(\mathcal{K} \models \Psi \) iff \(\Phi \) is FALSE [14].

We start by the example \(\Phi = \forall x_1 \forall x_2 \exists x_3 \exists x_4 (x_1 \land x_3) \land (x_1 \land x_4 \land \lnot x_3) \land \lnot(x_2 \land \lnot x_2) \). The Kripke structure \(\mathcal{K} \) is shown Figure 2. For space commodity, \(\mathcal{K} \) is indicated by the arrows with simple arrowheads (do not consider double arrowheads). Intuitively a path at the ‘above’ part of \(\mathcal{K} \) instantiates the variables of \(\phi \) (by choosing to display \(x_0^i \) or \(x_1^i \)), and a path at the ‘right’ part displays any chosen literal per clause \((l_{j,k}) \). Consistency constraints (1) between instances of variables and displayed literal per clause and (2) to express universal quantifier of \(\Phi \) are expressed in the LTL formula \(\Psi \). In the general case \(\mathcal{K} \) and \(\Psi \) are defined as follows:

Let \(P \) be the set of the following fresh propositional variables for LTL formula:

11 some substitutions by FALSE (resp. TRUE) of some subformula occurrences of \(g \) with positive polarity (resp. negative polarity)
- a_0, b_0
- $\forall i \leq i \leq n, x^0_i, x^1_i, a_i, b_i$
- $\forall j \leq j \leq m, d_j, e_j, \forall k, l(j,k)$ with $C_j = \forall 1 \leq k \leq l(l(j,k))$

Moreover, any $l(j,k)$ or x^i_j is a propositional variable standing for a literal written down $\text{lit}(l(j,k))$ as a literal of C_j, $\text{lit}(x^1_j) = x_j$, and $\text{lit}(x^0_j) = x_{\sim j}$, with $x_i \in \mathcal{F}$.

Let a Kripke structure $K = (S, (b_0), T, l)$ where any state is defined by its label. For $s \in S$, if $l(s) = \{p_1, ..., p_q\}$, then $(p_1, ..., p_q)$ denotes s. Furthermore, b_0 is the solely starting state. K is the smallest Kripke structure allowing the following transitions:

- (b_0, a_0)
- (a_i, b_{i+1}) for any $i, 0 \leq i \leq n - 1$
- $(b_i, x^0_i), (b_i, x^1_i), (x^0_i, a_i), (x^1_i, a_i)$ for any $i, 1 \leq i \leq n$
- (a_n, d_1)
- $(d_j, l(j,k)), (l(j,k), e_j)$ for any j, k such that $1 \leq j \leq m, 1 \leq k \leq k_j$
- (e_j, d_{j+1}) for any $j|1 \leq j \leq m - 1$
- (e_m, b_i) for any $i|0 \leq i \leq n$

In case of no confusion, we will write $p_1, ..., p_q$ to denote the canonical conjunction of its literals: $\land_{1 \leq s \leq p_i} \land_{p_i \in \mathcal{P}(\cup_{1 \leq s \leq q_{(p_i)}}) \sim p}$. Let $\Psi_{\text{univ}} = \land_{i|Q_i = \exists} G(a_{i-1} \Rightarrow [((-b_{i-1}) \cup x^0_i) \land X^2(x^1_i)])$ standing for the constraints enforcing a potential K linear model to first visit the state x^1_i for any $Q_i = \exists$ and later visit x^0_i. Furthermore, as long as both states have not been visited, any K linear model cannot go back to the previous x^2_j states for $j < i$. Let $\Psi_{\text{cons}} = \land_{i,j,k,e}|l(x^1_i) = \land_{\text{lit}(l(j,k))} G(x^1_i \Rightarrow (l(j,k) \land b_i))$ which stands for the constraints enforcing the consistency of the instantiated variables x_i of Φ at FALSE (x^0_i) or at TRUE (x^1_i) with their opposite literal occurring in the clauses. Finally, let $\Psi = \neg(\Psi_{\text{univ}} \land \Psi_{\text{cons}})$. Then, the authors of [14] have shown that $K \models \Psi$ if Φ is FALSE.

Searching Minimal Unsatisfiable LTL Formulas

Theorem 3. (MU-Search) Given a LTL f, providing a MU of f if f is unsatisfiable, and answer ‘no’ if f is satisfiable is a FPSPACE complete problem.

(proof) Assume the same notations of the canonical reduction. At this step, encoding K into a LTL formula $\Phi_K = b_0 \land_{x \in S} G(s) \Rightarrow \mathcal{X}(\sim x) \land T(s')$ and study the extraction of a MU of $\Phi_K \land \neg \Psi$ is tempting. However, for instance, it cannot be shown that a MU of $\Phi_K \land \neg \Psi$ gets a corresponding MF because a MU may be without some ‘universal’ subformulas occurrences of the form $sf_i = G(a_{i-1} \Rightarrow [((-b_{i-1}) \cup x^0_i) \land X^2(x^1_i)])$ which may not lead to a QBF (e.g., if $\Phi = \forall a \forall b(a \land b) \land (\neg a \lor b)$, then $g = [\Phi \land \neg \Psi][sf_i \leftarrow \text{TRUE}]$ is still unsatisfiable and a MU of g does not correspond to any MF of Φ). We then have to create a new Kripke structure K' by adding variables and several branches in K (supported by double arrowheads) to enforce most of the subformulas occurrences to be necessary, i.e., to remain in any MU of $\Phi_K \land \neg \Psi$. To do so we also need to weaken $\neg \Psi$ by adding disjuncts which are promises to fulfil $(\mathcal{F}(\beta))$. Unfortunately, we also have to tightly strengthen the just resulting weakened new formula (into $\neg \Psi'$) by adding conjuncts, in order that the new branches do not imply the existence of a K' linear model of $\neg \Psi'$ while Φ is FALSE. Finally, it is still possible to find such K' and Ψ' such that $K' \models \Psi'$ if Φ is FALSE (see point A). Then, the proof reduces the latter Model Checking problem to a variant of an LTL unsatisfiability problem (see Temp(Φ) at point B). Finally, the analysis of the $\text{MU}(\text{Temp}(\Phi))$ (see section C) regarding the $\text{MF}(\Phi)$ enables to show the MF search problem can be reduced to the MU search problem by focusing on mutations.
of the $l_{i,j,k}$ at the state $l_{i,j,k}$.

A- $\mathcal{K}' \models \Psi'$ iff Φ is FALSE

Let P' be P augmented with the following variables: $\beta; \forall r \leq 3, \delta_r, \gamma_r; \forall i \leq n, \mu_i,
\nu_i, \omega_i, \rho_i; \forall 1 \leq j \leq m, \tau_{i,j,k}$ and $\zeta_{i,j,k}$ with $C_j = \forall 1 \leq k \leq X \text{lit}(l_{i,j,k})$. For convenience, we define p_1, \ldots, p_q as a state/conjunction with the corresponding literals over P'. For technical reasons, from now on, we will similarly extend a state p_1, \ldots, p_q of \mathcal{K} to \mathcal{K}' by adding the new (negated) variables to the corresponding conjunction. Let the set $f - \text{promises} = \cup_{0 \leq i \leq n} \{ a_i, b_i; x_i^0 \} \cup \{ \beta \}$. The resulting Kripke structure \mathcal{K}' adds the following transitions to \mathcal{K}:

- $(a_{i-1}, b_0, \gamma_0))$ for any $i |Q_i = \emptyset$
- $(\delta_1, \gamma_1, (\delta_1, \gamma_1))$
- $(\delta_1, \gamma_1, (f.promises \setminus \{ \beta \}, \delta_2, 2))$
- $(\delta_3, (\delta_3, \gamma_3, \beta))$ for any j with $1 \leq j \leq m$
- $(\delta_3, (\delta_1, \gamma_3, \beta), (b_i-1, \rho_i, \omega_i))$ for any i such that $i |Q_i = \emptyset$
- $(\delta_3, (\delta_1, \gamma_3, \beta), (l_{i,j,k}, \zeta_{i,j,k}, \tau_{i,j,k}))$ for any j, k such that $1 \leq j \leq m$ and there is no j', k' such that lit $(l_{i,j,k}) \models \text{lit}(l_{i,j,k})$
- $(\delta_3, (\delta_1, \gamma_3, \beta), (l_{i,j,k}, \zeta_{i,j,k}, \tau_{i,j,k}))$ for any j, k such that lit $(l_{i,j,k})$ is positive, $1 \leq j \leq m$ and $\exists j', k'$ such that lit $(l_{i,j,k}) \models \text{lit}(l_{i,j,k})$
- $(\delta_3, (\delta_1, \gamma_3, \beta), (f.promises \setminus \{ \beta \}, \delta_2, 2))$ for any $i |Q_i = \emptyset$
- $(\delta_3, (\delta_1, \gamma_3, \beta), (l_{i,j,k}, \zeta_{i,j,k}, \tau_{i,j,k}))$ for any j, k such that lit $(l_{i,j,k})$ is positive, $1 \leq j \leq m$ and $\exists j', k'$ such that lit $(l_{i,j,k}) \models \text{lit}(l_{i,j,k})$
- $(\delta_3, (\delta_1, \gamma_3, \beta), (f.promises \setminus \{ \beta \}, \delta_2, 2))$ for any $i |Q_i = \emptyset$

In Figure 2, \mathcal{K}' is supported by all the arrows (with simple or double arrowhead). Let $\Psi' = \neg(\Psi_{\text{univ}} \land \Psi_{\text{cons}}')$ with $\Psi_{\text{univ}}' = \land_{i \in Q_i} \neg \forall j \text{pred}(a_{i-1} \implies \{ [b_{i-1} \lor F(\beta)] \lor x_i^0 \} \lor (X \lor F(\beta))) \land \forall (b_i \land X(x_i^0)) \implies X^2([\neg x_i^0 \lor F(\beta)] \lor X(x_i^0))$, and $\Psi_{\text{cons}}' = \land_{i \in [1, n]} \neg \forall (l_{i,j,k}, \zeta_{i,j,k}, \tau_{i,j,k}) \text{lit}(l_{i,j,k}) \implies \text{lit}(l_{i,j,k}) \implies \forall (l_{i,j,k}, \zeta_{i,j,k}, \tau_{i,j,k}) \text{lit}(l_{i,j,k}) \implies \text{lit}(l_{i,j,k}) \implies \text{lit}(l_{i,j,k}) \implies \text{lit}(l_{i,j,k})$.

In the following, we show that a \mathcal{K}'-linear model of $\neg \Psi'$ is necessarily a \mathcal{K}-linear model of $\neg \Psi'$. This implies $\mathcal{K}' \models \Psi'$ iff Φ is FALSE:

- $(l_{i,j,k}, \zeta_{i,j,k}, \tau_{i,j,k})$ cannot occur in a \mathcal{K}'-linear model of $\neg \Psi'$ because for such a model $\forall i \in [1, n]$, there exists e, such that \forall_i^e is the last occurrence of a \forall_i^e before the first visit of $(l_{i,j,k}, \zeta_{i,j,k}, \tau_{i,j,k})$.

- if there are no j', k' such that $\text{lit}(l_{i,j,k}) \models \text{lit}(l_{i,j,k})$ then there is a $\mathcal{G}(x_i^0) \Rightarrow (g \lor F(\beta)) \lor A_{i-1})$, which is also a \mathcal{K}-linear model of $\neg \Psi'$.}

\footnote{From a \mathcal{K}-linear model of $\neg \Psi$ we can derive a \mathcal{K}-linear model of $\neg \Psi \land \mathcal{G}(\beta_i \land X(x_i^0)) \Rightarrow X^2([\neg x_i^0 \lor F(\beta)] \lor X(x_i^0))$, which is also a \mathcal{K}-linear model of $\neg \Psi'$.
\[(g \lor F(\beta))Wb_i\] is postponed from \(x'_i\) to \((l_{(j,k)}, \zeta_{(j,k)}, \tau_{(j,k)})\), but at this latter state \(F(\beta)\) must hold, which is impossible.

- if there exist \(j', k'\) such that \(lit(l_{(j,k)}) \Rightarrow lit(l_{(j',k')})\) then there exists \(G(x'i' \Rightarrow (g \lor F(\beta))Wb_i)\) occurring in \(\neg \Psi'\) with \(g \in \{l_{(j',k')}, \neg l_{(j,k)}\}\) such that the weak promise \((g \lor F(\beta))Wb_i\) is postponed from \(x'_i\) until the corresponding \((l_{(j',k')}, \zeta_{(j',k')}, \tau_{(j',k')})\) or \((l_{(j,k)}, \zeta_{(j,k)}, \tau_{(j,k)})\), but at this convenient latter state \(F(\beta)\) must hold, which is impossible.

- \((b_{i-1}, \rho_i, \omega_i)\) cannot occur in a \(K'\) linear model of \(\neg \Psi'\). Assume \(\mathcal{M}\) such a model. Let \(b\) be the last time where \(\tilde{a}_{i-1}\) occurs in \(\mathcal{M}\). Then, either:
 - \(\tilde{x}_i^0\) occurs in \(\mathcal{M}_i\), but thanks to \(G(\tilde{b}_i \land X(x_i^0)) \Rightarrow X^2((-x_i^0 \lor F(\beta))Wa_{i-1})\), \((-x_i^0 \lor F(\beta))Wa_{i-1}\) is postponed from \(\tilde{x}_i^0\) to \(x_{i-1}^0, \mu_i, \nu_i\). But at this latter state \(F(\beta)\) must hold, which is impossible.
 - or \(\tilde{x}_i^0\) does not occur in \(\mathcal{M}_i\), but thanks to \(G(\tilde{a}_i \Rightarrow (\neg b_{i-1} \lor F(\beta))Ua_i^0)\), \((\neg b_{i-1} \lor F(\beta))Ua_i^0\) is postponed from \(\tilde{a}_i\) to \(b_{i-1}, \rho_i, \omega_i\). But at this latter state \(F(\beta)\) must hold, which is impossible.

- \((\tilde{\delta}_i, \tilde{\gamma}_i)\) cannot occur in a \(K'\) linear model of \(\neg \Psi'\) because for such a model, \(G(\tilde{a}_i \Rightarrow X^2(x_i^1) \lor F(\beta))\) implies \(F(\beta)\) is propagated from \(\tilde{a}_i\) to \((\tilde{\delta}_i, \tilde{\gamma}_i)\), which is impossible.

Below, we define \(\Psi_{K'}\) which stands for \(K'\). At the next step of the proof, it will enable to reduce the MF search problem to a MU search problem for LTL. To do so, we denote \(Temp(\phi) = \Psi_{K'} \land \neg \Psi'\) with \(\Psi_{K'}\) defined in the following. It is then straightforward that \(Temp(\phi)\) is unsatisfiable iff \(\phi\) is FALSE.

B- \(Temp(\phi) = \Psi_{K'} \land \neg \Psi'\) is unsatisfiable iff \(\phi\) is FALSE

Let \(\Psi_{K'}\) as \(\Phi_{K'}\) except that the occurrences \(G(s \Rightarrow X(...))\) where \(s = \tilde{l}_{j,k}\) are erased. Furthermore one adds the conjuncts \(G(\tilde{d}_j \Rightarrow X^2 c_j)\) for any \(j\) \(1 \leq j \leq m\).

We have \(Temp(\phi) = \Psi_{K'} \land \neg \Psi'\) is unsatisfiable iff \(\phi\) is FALSE.

In the following, we analyze that an element of \(MU(Temp(\phi))\) corresponds to some maximal mutations of propositional variables \(l_{(j,k)}\) at the corresponding states \(l_{(j,k)}\) in \(K'\) but which the resulting mutated Kripke structure still checks \(\Psi_{K'}\). This enables to show that there exists a corresponding element in \(MF(\phi)\).

C- Analysis of a \(MU(Temp(\phi))\)

Let \(MU_0(Temp(\phi)) \subseteq MU(Temp(\phi))\).

1. the universal part \(\Psi_{uni'}\) still occurs in \(MU_0(Temp(\phi))\):
 - Let \(i\) be an integer such that \(Q_i = \forall\) and assume \(\neg b_{i-1} \lor F(\beta)\) has been substituted by \(TRUE\) while weakening from \(Temp(\phi)\) to \(MU(Temp(\phi))\) at the universal part. Let \(\mathcal{M}\) be a \(K'\) linear structure starting with the state \(\tilde{b}_0\), which never visits \(\tilde{x}_i^0\) and reaches \((\tilde{b}_{i-1}, \tilde{\rho}_i, \tilde{\omega}_i)\). From \((\beta, \delta_3, \gamma_3)\), no constraint enables to propagate \(F(\beta)\), and any other triggered and postponed promises are fulfilled at \((f \setminus \text{promises} \{\beta\}, \delta_2, \gamma_2)\). From \((f \setminus \text{promises} \{\beta\}, \delta_2, \gamma_2)\) any constraint from \(MU_0(Temp(\phi))\) is obviously checked. Then \(\mathcal{M}\) is a model of \(MU_0(Temp(\phi))\), which is a contradiction.
Let \(i \) be an integer such that \(Q_i = \forall \) and assume that \(G(a_{i-1} \Rightarrow [X^2(x_i^1) \lor F(\beta)]) \) has been substituted by \(TRUE \). Let \(\mathcal{M} \) be a \(K' \) linear structure starting with the state \(b_0 \), directly reaching \(a_{i-1} \) but by crossing any \(x_i^1 \) with \(1 \leq i' \leq i-1 \) and from \(a_{i-1} \) follows the solely branch where \((\delta_1, \gamma_1) \) occurs. \(\mathcal{M} \) is a linear model for \(MU_0(Temp(\Phi)) \), because at \((\delta_1, \gamma_1) \) any postponed weak promise is solely the remaining subformula \(\mu_{a_{i-1}} \lor F(\beta))Ux_i^0 \) or \((g \lor F(\beta))Wb_i \) and they are fulfilled at the first visit of \(f - promises \setminus \{ \beta \} \). From \((f - promises \setminus \{ \beta \}, \delta_2, \gamma_2) \), any constraint from \(MU_0(Temp(\Phi)) \) is obviously checked. Thus \(MU_0(Temp(\Phi)) \) is satisfiable, but this is a contradiction since it is unsatisfiable. Thus, \(MU_0(Temp(\Phi)) \) does not get any weakening of \(G(a_{i-1} \Rightarrow [X^2(x_i^1) \lor F(\beta)]) \) for any \(i_i Q_i = \forall \).

Let \(i \) be an integer such that \(Q_i = \forall \) and assume that \(G((b_{i-1} \land x_i^0)) \Rightarrow X^2([-x_i^0 \lor F(\beta))W_{a_{i-1}}]) \) has been substituted by \(TRUE \). Let \(\mathcal{M} \) be a \(K' \) linear structure starting with the state \(b_0 \), reaching \(a_{i-1} \), and going straightforward to the solely branch where \((x_i^0, \mu_i, \nu_i) \) occurs. \(\mathcal{M} \) is a linear model for \(MU_0(Temp(\Phi)) \), because from \((\beta, \delta_3, \gamma_3) \), no constraint enables to propagate \(F(\beta) \), and any other remaining precedent propagated promises are fulfilled at \((f - promises \setminus \{ \beta \}, \delta_2, \gamma_2) \). From \((f - promises \setminus \{ \beta \}, \delta_2, \gamma_2) \) any constraint is obviously checked. Then \(\mathcal{M} \) is a model of \(MU_0(Temp(\Phi)) \), which is a contradiction.

2. the consistency part \(\Psi_{cons} \) still occurs in \(MU_0(Temp(\Phi)) \):

Assume that \(G(x_i^1 \Rightarrow (g \lor F(\beta))Wb_i) \) with \(g \in \{ -\zeta_{i,j,k} \lor -\tau_{i,j,k}; -l_{i,j,k} \} \) has been substituted by \(TRUE \) while weakening from \(Temp(\Phi) \) to \(MU_0(Temp(\Phi)) \) at the consistency part. Let \(\mathcal{M} \) be a \(K' \) linear structure starting with the state \(b_0 \), going through \(x_i^1 \) and directly reaching \(e_i \) and from \(e_i \), it follows a branch where \((l_{i,j,k}, \zeta_{i,j,k}, \tau_{i,j,k}) \) occurs. From \((\beta, \delta_3, \gamma_3) \), no constraint enables to propagate \(F(\beta) \). This is because no weak promise of the form \(\neg g \lor F(\beta)Wb \) must hold anymore. As usual, any other remaining propagated promises are fulfilled at \((f - promises \setminus \{ \beta \}, \delta_2, \gamma_2) \). Thus \(MU_0(Temp(\Phi)) \) is satisfiable, but this is a contradiction since it is unsatisfiable.

3. \(MU_0(Temp(\Phi)) \) gets no weakening in \(\Psi_{K'} \setminus (\cup_{1 \leq j \leq m} Weakestmax)_{s_f} G(d_j \Rightarrow X(\vee_{1 \leq k \leq l_{i,j,k}})) \).

Otherwise if there is any weakening in the computation of \(MU_0(Temp(\Phi)) \) from

\[\Psi_{K'} \setminus (\cup_{1 \leq j \leq m} Weakestmax)_{s_f} G(d_j \Rightarrow X(\vee_{1 \leq k \leq l_{i,j,k}})) \]

then \(MU_0(Temp(\Phi)) \) would be satisfiable because of the following points:

- any weakening in a subformula occurrence \(G(s \Rightarrow X^k(\vee_{s',s'} \in T s')) \) of \(Temp(\Phi) \) which is not of the form \(G(d_j \Rightarrow X(\vee_{1 \leq k \leq l_{i,j,k}})) \) leads to at least a weakening of a literal \(l \in lit^+ \) at \(s' \) which may lead at a state which is not in \(K' \). To show this property, consider the \(s \) at the weakened above subformula occurrence and let \(pref \) a prefix linear structure in \(K' \) such that its last state is either (1) the \(s \in K' \) if \(k = 1 \) either (2) any \(l_{i,k} \) while \(s = d_j, k = 2 \). Let \(s_0 \) and \(s_1 \) some states over \(P' \), we define \(|s_0 - s_1| = \{|p|p \in (l(s_0) \cup l(s_1)) \cup l(s_0) \cup l(s_0)| \} \). It is clear that for any \(s_0 \) and \(s_1 \) in \(K', |s_0 - s_1| > 1 \). Let \(s'' \) such that \(s'' \notin l \leftrightarrow l \). It is clear that \(|s'' - s''| = 1 \). It turns out that \(s'' \notin K' \). Let \(\mathcal{M} \) the linear structure \(\mathcal{M} = pref, s'', P'' \). From the state \(s'' \), \(MU_0(Temp(\Phi)) \cap \neg \Psi_{K'} \) is trivially checked since \(s'' \notin K' \) and \(P'' \notin K' \). Furthermore, at the first visit of the state \(P' \) the weak promises postponed and propagated from \(s'' \) are fulfilled, and from \(P'' \) any propagated temporal constraint from \(MU_0(Temp(\Phi)) \) is obviously checked because \(P'' \notin K' \). Thus, \(\mathcal{M} \models MU_0(Temp(\Phi)) \).

\(^{13}\) has been fixed here
For similar argument any weakening in \(s = \tilde{b}_0 \) ensures that a linear model of \(MU_0(\text{Temp}(\Phi)) \) is \((s')^\omega \) with \(s' \notin K' \).

4. Let \(H \subset [1, m] \) and \(S_f = \cup_{j \in H} \{ f_j \} \) the subformula of the form \(f_j = G(\tilde{d}_{j} \Rightarrow X(\vee_{1 \leq k \leq l} l(\tilde{g}_{j,k})) \) for any \(j | 1 < j \leq m \) which have been weakened in \(\text{Temp}(\Phi) \) by \(\text{TRUE} \) at a positive occurrence of the variable \(l_{(j,k)} \) in \(l_{(j,k)} \) for computing \(MU_0(\text{Temp}(\Phi)) \). Then \(\Phi | C_{h} \leftarrow \text{TRUE} | h \in H \) is in \(M F(\Phi) \).

The reasons are summarized below.

- \(\neg \beta \) is not weakened at any \(l_{(j,k)} \) in any \(f_j \)? Let \(s_0 = (l_{(j,k)}, \beta) \). Otherwise, a linear structure of \(\mathcal{K} \cup \{ s_0 \} \) which checks the rules of \(\neg \Psi_{\text{aiv}} \) and sometimes which visit the ‘weakened’ state \(s_0 \) where \(\beta \in l(s_0) \) is a model of \(MU_0(\text{Temp}(\Phi)) \) since \(s_0 \notin K' \) does not propagate any new weak promise. This leads to a contradiction.

- \(\neg \beta \) is not weakened at any \(l_{(j,k)} \) in any \(f_j \)? Let \(s_0 = (l_{(j,k)}, x^0_i) \). Otherwise, let \(\mathcal{M} \) a linear structure of \(\mathcal{K}' \cup \{ s_0 \} \) starting with the state \(\tilde{b}_0 \), which never visit \(x^0_i \), reaching the ‘weakened’ state \(s_0 \) where \(x^0_i \in l(s_0) \), crossing \(\tilde{e}_j \) and going directly to \((b_{i-1}, \rho_i, \omega_i) \). First, \(\neg \beta_i \lor F(\beta_i)) \mathcal{U}x_i^0 \) is fulfilled at \(s_0 \). Second, from \((\beta, \delta_3, \gamma_3) \), no constraint enable to propagate \(F(\beta) \), and any others remaining promises of \(f - \text{promise} \) are fulfilled at \((f - \text{promises} \setminus \{ \beta \}, \delta_2, \gamma_2) \). From \((f - \text{promises} \setminus \{ \beta \}, \delta_2, \gamma_2) \) any constraint is obviously checked. Furthermore, \(s_0 \notin \mathcal{K}' \), thus it does not propagate any new weak promise. Thus, \(\mathcal{M} \) is a model of \(MU_0(\text{Temp}(\Phi)) \). This leads to a contradiction.

- \(\neg a_{i-1} \) is weakened at any \(l_{(j,k)} \) in any \(f_j \)? Let \(s_0 = (l_{(j,k)}, a_{i-1}) \). Otherwise, let \(\mathcal{M} \) a linear structure of \(\mathcal{K}' \cup \{ s_0 \} \) starting with the state \(\tilde{b}_0 \), reaching \(x^0_i \), displays the ‘weakened’ state \(s_0 \) where \(a_{i-1} \in l(s_0) \), crosses \(\tilde{e}_j \) and goes straightforward to the solely branch where \((x^0_i, \mu_i, \nu_i) \) occurs. First, the propagated \(\neg \beta_i \lor F(\beta_i)) \mathcal{W}a_{i-1} \) is fulfilled at \(s_0 \). Second, from \((\beta, \delta_3, \gamma_3) \), no constraint enable to propagate \(F(\beta) \), and any others remaining promises of \(f - \text{promise} \) are fulfilled at \((f - \text{promises} \setminus \{ \beta \}, \delta_2, \gamma_2) \). From \((f - \text{promises} \setminus \{ \beta \}, \delta_2, \gamma_2) \) any constraint is obviously checked. Furthermore, \(s_0 \notin \mathcal{K}' \), thus it does not propagate any new weak promise. Thus, \(\mathcal{M} \) is a model of \(MU_0(\text{Temp}(\Phi)) \). This leads to a contradiction.

- \(\neg b_i \) is weakened at any \(l_{(j,k)} \) in any \(f_j \)? Let \(s_0 = (l_{(j,k)}, b_i) \). Otherwise, let \(\mathcal{M} \) a linear structure of \(\mathcal{K}' \cup \{ s_0 \} \) starting with the state \(\tilde{b}_0 \), which never visit \(x^0_i \) and that reach \((b_{i-1}, \rho_i, \omega_i) \). First, the propagated \(g \lor F(\beta_i)) \mathcal{W}b_i \) is fulfilled at \(s_0 \). Second, from \((\beta, \delta_3, \gamma_3) \), no constraint enable to propagate \(F(\beta) \), and any others remaining propagated promises of \(f - \text{promise} \) are fulfilled at \((f - \text{promises} \setminus \{ \beta \}, \delta_2, \gamma_2) \). From \((f - \text{promises} \setminus \{ \beta \}, \delta_2, \gamma_2) \) any constraint is obviously checked. Furthermore, \(s_0 \notin \mathcal{K}' \), thus it does not propagate any new weak promise. Thus, \(\mathcal{M} \) is a model of \(MU_0(\text{Temp}(\Phi)) \). This leads to a contradiction.

Let \(\mathcal{M} \) a \(\mathcal{K}' \) linear structure and \(j_0 \notin H \). But, if \(\mathcal{M} = (MU_0(\text{Temp}(\Phi)))[\text{Occ}(l_{(j_0,k)})] \leftarrow \text{TRUE} \), then let \(\mathcal{M}_{H,j_0} = \mathcal{M}[l_{(j,k')} \leftarrow \text{erase}, \tilde{e}_j \leftarrow \text{erase}] \mathcal{D}_{j} \leftarrow \text{erase}, [(j,k')]_{j \in H \cup \{j_0\}, l(j,k)<C_j} \). According that neither \(\neg a_{i-1}, \neg b_i \) and \(x^0_i \) are weakened at any state, \(\mathcal{M}_{H,j_0} \) propagates any of the triggered weak promises of types \(\mathcal{W}b_i, \mathcal{U}x^0_i \) or \(\mathcal{W}a_{i-1} \) in \(MU_0(\text{Temp}(\Phi)))[\text{Occ}(l_{(j_0,k)})] \leftarrow \text{TRUE} \) exactly as in \(\neg \Psi' \), thus the states of \(\mathcal{M}_{H,j_0} \) actually lies (if one renames the vari-

14 One formula per \(j \) is sufficient

15 As for point A of the (proof)
ables) in $K_{\mathcal{P}[C_i \rightarrow TRUE]_{i \in H, j \in H}} \subseteq K'_{\mathcal{P}[C_i \rightarrow TRUE]_{i \in H, j \in H}}$. Furthermore, remark that since $\neg \beta$ is not weakened too, then any fulfilling state from \mathcal{M} is still in \mathcal{M}_{H, j_0}. By renaming the remaining index j' in \mathcal{M}_{H, j_0} and projecting over the propositional variables of $Temp(\Phi[C_j \leftarrow TRUE]_{j \in H, j \in H})$, we have $\mathcal{M}_{H, j_0} \models (Temp(\Phi[C_j \leftarrow TRUE]_{j \in H, j \in H}))$ because the weak promises of $Temp(\Phi[C_j \leftarrow TRUE]_{j \in H, j \in H})$ are still eventually fulfilled\(^{16}\) at the remaining states $\bar{b}_{i, j_0}, \bar{a}_{i, j_0}$ or \bar{x}^0_{i, j_0} ($\mathcal{F}(\beta)$ cannot be triggered because it would not be fulfilled in K'_{j_0}). Thus, $(\Phi[C_j \leftarrow TRUE]_{j \in H, j \in H})$ is satisfiable for any j_0, since $MU_0(Temp(\Phi))$ is a MU.

- Assume $(\Phi[C_h \leftarrow TRUE]_{j \in H})$ is satisfiable, then $Temp(\Phi[C_j \leftarrow TRUE]_{j \in H})$ is satisfiable with a model \mathcal{M}_H ranging over $K_{\mathcal{P}[C_i \rightarrow TRUE]_{j \in H}}$. By renaming the index j let $\mathcal{M} = \mathcal{M}_H (\bar{b}_0), \mathcal{M}_H (\bar{b}_1), ..., \mathcal{M}_H (\bar{d}_j), \mathcal{M}_H (\bar{0}), \mathcal{M}_H (\bar{e}_j) ...$ which is \mathcal{M}_H into which some states have been added, some propositional variables have been added, such that the resulting linear structure is almost in K. Precisely, if any $\bar{0}$ is substituted in \mathcal{M} by the corresponding $\bar{t}_{i, j, k}$ (weakened at $MU_0(Temp(\Phi)$, so $j \in H$) the modified linear structure is now a K-linear structure. Since, $\bar{0} \notin K'$, \mathcal{M} does not trigger any new weak promise from $MU_0(Temp(\Phi))$ w.r.t. $Temp(\Phi[C_h \leftarrow TRUE]_{j \in H})$. Furthermore, since any propagated weak promise which is fulfilled of $Temp(\Phi[C_h \leftarrow TRUE]_{j \in H})$, is also fulfilled for $MU_0(Temp(\Phi))$, and since the remaining consistency part of $MU_0(Temp(\Phi))$ never triggers a $\mathcal{F}(\beta)$ because there is no visit at a state where $l_{i, j, k}$ holds for $j \in H$, then $\mathcal{M} \models MU_0(Temp(\Phi))$. But this is a contradiction since $MU_0(Temp(\Phi))$ is unsatisfiable, i.e., $(\Phi[C_h \leftarrow TRUE]_{h \in H})$ can solely be FALSE.

Since the FPSPACE complete MF search problem is Logspace reducible to the MU for LTL search problem, the FPSPACE hardness is shown.

Consider now the Inherent Non Vacuity (INVac) search problem, i.e. searching a limit strengthening g of h such that $h \equiv g$. Let $g = \neg((Temp(\Phi) \land u) \lor (\neg Temp(\Phi) \land \neg u))$. An INVac strengthening h of g is such that u is at TRUE in h if $Temp(\Phi)$ is unsatisfiable. Furthermore in this case, the weakening of $Temp(\Phi)$ at h is minimal, i.e. it is in $MU(Temp(\Phi))$. We deduce, the following corollary.

Corollary 2. (INVacOcc(f)-search) Given a LTL formula f, searching an inherent non vacuous strengthening of f (for single occurrences) is FPSPACE-complete.

4 Conclusion

We have shown that the MF search problem, the (LTL) MU search problem and the (LTL) INVac search problem are FPSPACE Complete. Furthermore, we have shown that the MU-dec and the Inherent Vacuity checking decision problem are PSPACE complete. Although deficiency is the Backbone of lower Complexity Bound in the QBF case \cite{21}, no corresponding bound exists for LTL.

References

1. A.P.Sistla and E.Clarke. The complexity of prop. lin. temp. logics. *J. ACM*1985.

\(^{16}\) If the promise is fulfilled at $MU_0(Temp(\Phi)$
2. A.P. Sistla, M. Vardi, and P. Wolper. The complementation problem for Büchi automata with applications to temporal logic. *Theor. Comput. Sci.*, 1987.

3. Armoni and all. Enhanced vacuity detection in ltl. In *CAV*, 2003.

4. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in temporal model checking. *FMSD*, 2001.

5. Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard J. Trefler. Explaining counterexamples using causality. In *CAV*, pages 94–108, 2009.

6. A. Belov and JP. M. Silva. Minimally unsatisfiable boolean circuits. In *SAT*, 2011.

7. H. Büning and X. Zhao. An extension of deficiency and minimal unsatisfiability of quantified boolean formulas. *JSAT*, 2007.

8. H. Chockler, J. Halpern, and O. Kupferman. What causes a system to satisfy a specification? *ACM Trans. Comput. Log.*, 9(3), 2008.

9. Hana Chockler and Ofer Strichman. Before and after vacuity. *FMSD*, 2009.

10. A. Cimatti, A. Griggio, and R. Sebastiani. A simple and flexible way of computing small unsatisfiable cores in sat modulo theories. In *SAT*, 2007.

11. A. Cimatti, M. Roveri, V. Schuppan, and S. Tonetta. Boolean abstraction for temporal logic satisfiability. In *CAV*, pages 532–546, 2007.

12. Stephen A. Cook. The complexity of theorem-proving procedures. In *STOC*, pages 151–158, 1971.

13. C. Papadimitriou and W. David. The complexity of facets resolved. *JCSS*, 1988.

14. Stéphane Demri and Ph. Schnoebelen. The complexity of propositional linear temporal logics in simple cases (extended abstract). In *STACS*, pages 61–72, 1998.

15. D. Fisman and all. A framework for inherent vacuity. In *HVC2008*.

16. E. Emerson. Temporal and modal logic. *HTCS, Volume B*, 1990.

17. Georgios E. Fainekos. Revising temporal logic specifications for motion planning. In *ICRA*, pages 40–45, 2011.

18. Michael Fisher. A resolution method for temporal logic. In *IJCAI*, 1991.

19. F. Hantry and MS. Hacid. Handling conflicts in depth-first search for ltl tableau to debug compliance based languages. In *FLACOS*, 2011.

20. H. Fleischner, O. Kullmann, and S. Szeider. Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference. *Theor. Comput. Sci.*

21. H.K. Büning and X. Zhao. Computational complexity of quantified boolean formulas with fixed maximal deficiency. *Theor. Comput. Sci.*, 2008.

22. H.K. Büning and X. Zhao. Minimal false quantified boolean formulas. In *SAT*, 2006.

23. I. Lynce and J.M. Silva. On computing minimum unsatisfiable cores. In *SAT2004*.

24. J.Y. Halpern and J. Pearl. Causes and explanations: Part 1: Causes. In *UAI*, 2001.

25. O. Kupferman and M. Vardi. Vacuity detection in temporal model checking. *STTT*.

26. M. Lifshon and K. Sakallah. Generalizing core-guided max-sat. In *SAT*, 2009.

27. A. Nadel. Boosting minimal unsatisfiable core extraction. In *FMCAD*, 2010.

28. Kedar S. Namjoshi. An efficiently checkable, proof-based formulation of vacuity in model checking. In *CAV*, pages 57–69, 2004.

29. G. Pan and M. Vardi. Fixed-parameter hierarchies inside jspac. In *LICS*, 2006.

30. C.H. Papadimitriou. *Computational Complexity*. 1994.

31. Vasumathi Raman and Hadas Kress-Gazit. Analyzing unsynthesizable specifications for high-level robot behavior using ltlom. In *Proceedings of the 23rd international conference on Computer aided verification*, CAV’11, pages 663–668, Berlin, Heidelberg, 2011. Springer-Verlag.

32. V. Schuppan. Towards a notion of unsatisfiable cores for ltl. *Sci. Comp. Pro.*, 2010.

33. JP. M. Silva and I. Lynce. On improving mus extraction algorithms. In *SAT*, 2011.

34. J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik. Exploiting resolution proofs to speed up ltl vacuity detection for bmc. In *FMCAD*, pages 3–12, 2007.

35. Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time: Preliminary report. In *STOC*, pages 1–9, 1973.
36. Yinlei Yu and Sharad Malik. Validating the result of a quantified boolean formula (qbf) solver: theory and practice. In ASP-DAC, pages 1047–1051, 2005.

37. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable boolean formula. In In Prelim of SAT’03, 2003.