Introduction

When cancer cells undergo necrosis, they release high mobility group box-1 (HMGB-1) which activates dendritic cells [1–3]. Activated dendritic cells (DCs) mature as APC cells and play a critical role in the communication between the innate and adaptive immune responses. Once activated, dendritic cells produce IL-12, which activates effector T cells CD4+ Th1 and CD8+ T [4, 5]. Th1 produces IL-2 which further promotes proliferation of the effector T cells. Both CD4+ Th1 and CD8+ T cells kill cancer cells [6–8]. CD8+ T cells are more effective in killing cancer cells, but the helper function of CD4+ Th1 cells improves the efficacy of tumor-reactive CD8+ T cells [9].
Cancer vaccines serve to enlarge the pool of tumor-specific T cells from the naive repertoire, and also to activate tumor specific T cells which are dormant [10]. GM-CSF can activate dendritic cells, and is commonly used as a cancer vaccine [11–13]. GVAX is a cancer vaccine composed of tumor cells genetically modified to secrete GM-CSF and then irradiated to prevent further cell division.

PD-1 is an immunoinhibitory receptor predominantly expressed on activated T cells [14, 15]. Its ligand PD-L1 is upregulated on the same activated T cells, but it is also expressed by some human cancer cells, such as in melanoma, lung cancer, colon cancer, and leukemia [15–17]. The complex PD-1-PD-L1 is known to inhibit T cell function [14]. Immune checkpoints are regulatory pathways in the immune system that inhibit its active response against specific targets. In the case of cancer, the complex PD-1-PD-L1 forms an immune checkpoint for T cells.

There has been much progress in recent years in developing checkpoint inhibitors, primarily PD-1 antibodies and PD-L1 antibodies [17]. Such drugs have been increasingly explored in single-agent studies for cancer treatment [16, 18]. The FDA recently approved several checkpoint inhibitors. However, because of lack of tumor-infiltrating effector T cells, many patients in clinical trials do not respond to checkpoint inhibitor treatment [18]. On the other hand, cancer vaccines have been shown to induce effector T-cells infiltration into tumors [19], although, to be fully effective, cancer vaccines have to overcome immune evasion [10]. It was recently suggested that the combination of a cancer vaccine and an immune checkpoint inhibitor may function synergistically to induce more effective antitumor immune responses [18, 20]. Clinical trials to test such combination therapies are currently ongoing [18, 20]; mouse experiments are also being conducted [21–27].

In the present paper we develop a mathematical model of treatment of cancer with a cancer vaccine combined with an immune checkpoint inhibitor; specifically, we combine GVAX and PD-1 inhibitor. In order to focus on the combination therapy of the two drugs, we consider in the model only the following variables: cancer cells (C), dendritic cells (DCs), CD4$^+$ and CD8$^+$ T cells, GM-CSF, PD-1, PD-L1, PD-1-PD-L1 complex, and cytokines IL-12 and IL-2. These species interact within the network shown in Fig 1. The mathematical model is based on Fig 1, and it is represented by a system of partial differential equations (PDEs). Simulations of the model are shown to be in qualitative agreement with the mouse experiments reported in [21–23]. The model is then used to explore the efficacy of the combined treatment. We introduce a specific concept of synergy between the vaccine and the PD-1 inhibitor, which is somewhat different from the usual definition of synergy. Roughly speaking, we compare the reduction in tumor size achieved by a combined therapy with amounts γ_G of GVAX and γ_A of PD-1 inhibitor to the reduction obtained by single-agent with either $(1 + \theta_G)\gamma_G$ or $(1 + \theta_A)\gamma_A$ with appropriately chosen $0 < \theta_G \leq 1$ or $0 < \theta_A \leq 1$. The larger the reduction in tumor size achieved by the combination therapy the larger the synergy is said to be. A specific choice of θ_G and θ_A, which takes into account potential negative side-effects of each drug, will be given as an example. We develop a synergy map in the (γ_G, γ_A)-plane. The map shows that, given γ_G, the synergy increases as γ_A increases as long as γ_A remains below a critical value γ_{AG}; thereafter, the synergy decreases as γ_A increases.

A discrete-time mathematical model of the combination of radiotherapy with checkpoint inhibitors was developed in [28]. Mathematical models of immunotherapy with a cancer vaccine by a system of ordinary differential equations were developed earlier in [29, 30]; these models do not consider checkpoint inhibitors. In [29] it is shown that there is a positive correlation between the number of antigen presenting cells and prolonged cancer dormancy, and in [30] it is illustrated how the combined therapy can eliminate the cancer, though neither immunotherapy nor checkpoint inhibitors can do it alone. In this paper, we present for the first time
a mathematical model which combines a cancer vaccine with a checkpoint inhibitor: the vaccine (GVAX) increases the pool of T cells and the checkpoint inhibitor (anti-PD-1) enables the T cells to remain fully active in killing cancer cells.

Mathematical model

The mathematical model is based on the network shown in Fig 1. The list of variables, with units, is given in Table 1.

Table 1. List of variables.

Notation	Description	units
D	density of DCs	g/cm³
T₁	density of activated CD4⁺ T cells	g/cm³
T₂	density of activated CD8⁺ T cells	g/cm³
C	density of cancer cells	g/cm³
N_C	density of necrotic cancer cells	g/cm³
H	HMG-1 concentration	g/cm³
G	GM-CSF concentration	g/cm³
h₁₂	IL-12 concentration	g/cm³
b₂	IL-2 concentration	g/cm³
P	PD-1 concentration	g/cm³
L	PD-L1 concentration	g/cm³
Q	PD-1-PD-L1 concentration	g/cm³
A	anti-PD-1 concentration	g/cm³

https://doi.org/10.1371/journal.pone.0178479.t001
We assume that the total density of cancer cells \((C)\), active dendritic cells \((D)\), CD4\(^+\) T cells \((T_i)\) and CD8\(^+\) T cells \((T_s)\) within the tumor remains constant in space and time:

\[
C + D + T_i + T_s = \text{constant.} \tag{1}
\]

It is tacitly assumed that the debris of dead cells, including cancer cells undergoing necrosis or apoptosis, is quickly cleared from the tumor tissue. It is also tacitly assumed that the densities of immature dendritic cells and naive CD4\(^+\) and CD8\(^+\) T cells are constant throughout the tumor tissue.

Under the assumption Eq (1), cancer cell proliferation, and migration of immune cells into the tumor give rise to internal pressure which results in cell movement, and we assume that all the cells move with the same velocity, \(u\); \(u\) depends on space and time. We also assume that all the cells undergo diffusion, and that all the cytokines and drugs are diffusing within the tumor.

Equation for DCs (\(D\)). When cancer cells undergo necrosis, they release HMGB-1 [1]. We can model the dynamics of the necrotic cells and of HMGB-1 by the following equations:

\[
\frac{\partial N_C}{\partial t} + \nabla \cdot (uN_C) - \delta_{NC} \nabla^2 N_C = \lambda_{NC}C - d_{NC}N_C,
\]

\[
\frac{\partial H}{\partial t} - \delta_{H} \nabla^2 H = \lambda_{HNC} N_C - d_{H}H,
\]

where \(\lambda_{NC}\) is the rate at which cancer cells become necrotic and \(\lambda_{HNC}\) is the rate at which necrotic cells produce HMGB-1. We note that although molecules like HMGB-1, or other proteins, may be affected by the velocity \(u\), their diffusion coefficients are several orders of magnitude larger than the diffusion coefficients of cells; hence their velocity terms may be neglected. The degradation of HMGB-1 is fast \((\sim 0.01/\text{day})\) [31], and we assume that the removal of \(N_C\) is also fast. We can therefore approximate the two dynamical equations by the steady state equations \(\lambda_{NC}C - d_{NC}N_C = 0\) and \(\lambda_{HNC}N_C - d_{H}H = 0\), so that \(H\) is proportional to \(C\), i.e., \(H = \text{constant} \times C\).

Dendritic cells are activated by HMGB-1 [2, 3]. Hence, the activation rate of immature dendritic cell \(D_0\) is proportional to \(D_0 \frac{C}{K_C + C}\), where the Michaelis-Menten law is used to account for the limited rate of receptor recycling time which occurs in the process of DCs activation. In the same way, GM-CSF, produced by the cancer vaccine, activates DCs at rate proportional to \(D_0 \frac{G}{K_G + G}\). Hence, the dynamics of DCs is given by

\[
\frac{\partial D}{\partial t} + \nabla \cdot (uD) - \delta_D \nabla^2 D = \lambda_{DC}D_0 \frac{C}{K_C + C} + \lambda_{DG}D_0 \frac{G}{K_G + G} - d_D D,
\]

where \(\delta_D\) is the diffusion coefficient and \(d_D\) is the death rate of DCs.

Equation for CD4\(^+\) T cells (\(T_i\)). Naive CD4\(^+\) T cells are activated by IL-12, and IL-2 induces proliferation of activated \(T_i\) cells [4, 5]. Both processes are assumed to be inhibited by the complex PD-1-PD-L1 \((Q)\) [14], which reduces the production of \(T_i\) cells by a factor \(\frac{1}{1+Q/K_Q}\).
Hence T_t satisfies the following equation:

$$
\frac{\partial T_t}{\partial t} + \nabla \cdot (u T_t) - \delta T \nabla^2 T_t = \left(\frac{\lambda_{T,t_{12}} T_{t_{12}} I_{12}}{K_{t_{12}} + I_{12}} + \frac{\lambda_{T,t_{12}} T_{t_{12}} I_{2}}{K_{t_{12}} + I_{2}} \right)_{\text{activation by IL-12}}

\times \frac{1}{1 + Q/K_{TQ}} - d_T T_t,_{\text {death}}
$$

where $T_{t_{12}}$ is the density of naive CD4$^+$ T cells.

Equation for activated CD8$^+$ T cells (T_8). IL-12 activates CD8$^+$ T cells and IL-2 induces the proliferation of CD8$^+$ T cells [4, 5]. Hence, similarly to the equation for T_t, T_8 satisfies the equation

$$
\frac{\partial T_8}{\partial t} + \nabla \cdot (u T_8) - \delta T \nabla^2 T_8 = \left(\frac{\lambda_{T,t_{12}} T_{t_{12}} I_{12}}{K_{t_{12}} + I_{12}} + \frac{\lambda_{T,t_{12}} T_{t_{12}} I_{2}}{K_{t_{12}} + I_{2}} \right)_{\text{activation by IL-12}}

\times \frac{1}{1 + Q/K_{TQ}} - d_T T_8,_{\text {death}}
$$

where $T_{t_{12}}$ is the density of naive CD8$^+$ T cells.

Equation for tumor cells (C). Cancer cells are killed by T_t and T_8 [6–8]. We assume a logistic growth with carrying capacity (C_M) in order to account for competition for space among the cancer cells. Hence,

$$
\frac{\partial C}{\partial t} + \nabla \cdot (u C) - \delta C \nabla^2 C = \lambda_C C \left(1 - \frac{C}{C_M} \right)_{\text{proliferation}} - \left(\eta_1 T_t C + \eta_8 T_8 C \right)_{\text{killing by T cells}} - d_C C,_{\text {death}}
$$

where η_1, η_8 are the killing rates of cancer cells by T_t and T_8, and d_C is the natural death rate of cancer cells.

Equation for GM-CSF (G). We assume that GVAX is injected intradermally every 3 days for 30 days (as in mouse experiments [21]) providing a source $\hat{G}(t)$ of GM-CSF, which we represent by

$$
\hat{G}(t) = \begin{cases}
\gamma_G & \text{if } t \leq 30, \\
\gamma_G \times \frac{3(t-30)}{90} & \text{if } 30 < t \leq 33, \\
0 & \text{if } t > 33.
\end{cases}
$$

where γ_G is the effective level of the drug; although the level of the drug varies between injections, for simplicity we take it to be constant. The concentration of GM-CSF in tissue is very small [32], and accordingly, we assume a low rate of constant source λ_G for GM-CSF. Hence G satisfies the following equation:

$$
\frac{\partial G}{\partial t} - \delta_G \nabla^2 G = \lambda_G + \hat{G}(t) - d_G G,_{\text {degradation}}
$$

where d_G is the degradation rate of GM-CSF.
Equation for IL-12 (I_{12}). IL-12 is produced by activated DCs [4, 5], so that

$$\frac{\partial I_{12}}{\partial t} - \delta_{I_{12}} \nabla^2 I_{12} = \frac{\lambda_{I_{12}D}}{\text{production by DCs}} - d_{I_{12}} I_{12}.$$ \hspace{1cm} (7)

Equation for IL-2 (I_2). IL-2 is produced by activated CD4$^+$ T cells (T_1) [4, 5]. Hence,

$$\frac{\partial I_2}{\partial t} - \delta_{I_2} \nabla^2 I_2 = \frac{\lambda_{I_2 T_1}}{\text{production by } T_1} - d_{I_2} I_2.$$ \hspace{1cm} (8)

Equation for PD-1 (P), PD-L1 (L) and PD-1-PD-L1 (Q). PD-1 is expressed on the surface of activated CD4$^+$ T cells and activated CD8$^+$ T cells [14, 15]. We assume that the expression level of PD-1 is the same for activated CD4$^+$ and CD8$^+$ T cells. Hence, P is given by

$$P = \rho_P (T_1 + T_8),$$

where ρ_p is the ratio between the mass of one PD-1 protein to the mass of one T cell. The coefficient ρ_p is constant when no anti-PD-1 drug is injected. In that case, to a change in $T = T_1 + T_8$, given by $\frac{\partial P}{\partial t}$, there corresponds a change of P, given by $\rho_P \frac{\partial P}{\partial t}$. For the same reason, $\nabla \cdot (uP) = \rho_P \nabla \cdot (uT)$ and $\nabla^2 P = \rho_P \nabla^2 T$ when no anti-PD-1 drug is injected. Hence, P satisfies the equation

$$\frac{\partial P}{\partial t} + \nabla \cdot (uP) - \delta_T \nabla^2 P = \rho_P \left[\frac{\partial(T_1 + T_8)}{\partial t} + \nabla \cdot (u(T_1 + T_8)) - \delta_T \nabla^2 (T_1 + T_8) \right].$$

Recalling Eqs (3) and (4) for T_1 and T_8, we get

$$\frac{\partial P}{\partial t} + \nabla \cdot (uP) - \delta_T \nabla^2 P = \rho_P \left[\frac{\lambda_{T_1 T_{10}}}{K_{T_{10}}} + \frac{\lambda_{T_1 T_{30}}}{K_{T_{30}}} \right] \frac{I_{12}}{K_{I_{12}} + I_{12}} + \frac{\lambda_{T_8 T_{10}}}{K_{T_{10}}} \frac{I_{2}}{K_{I_{2}} + I_{2}} \times \frac{1}{1 + Q/K_{TQ}} - \rho_P (d_{T_1} T_1 + d_{T_8} T_8).$$

When anti-PD-1 drug (A) is applied, PD-1 is depleted (or blocked) by A. In this case, the ratio $\frac{\rho_p}{T_1 + T_8}$ may change. In order to include in the model both cases of with and without anti-PD-1, we replace ρ_p in the previous equation by $\frac{\rho_p}{T_1 + T_8}$. Hence,

$$\frac{\partial P}{\partial t} + \nabla \cdot (uP) - \delta_T \nabla^2 P = \frac{P}{T_1 + T_8} \left[\frac{\lambda_{T_1 T_{10}}}{K_{T_{10}}} + \frac{\lambda_{T_1 T_{30}}}{K_{T_{30}}} \right] \frac{I_{12}}{K_{I_{12}} + I_{12}} + \frac{\lambda_{T_8 T_{10}}}{K_{T_{10}}} \frac{I_{2}}{K_{I_{2}} + I_{2}} \times \frac{1}{1 + Q/K_{TQ}} - \rho_p (d_{T_1} T_1 + d_{T_8} T_8) - \frac{\mu_{PA}}{T_1 + T_8} (d_{T_1} T_1 + d_{T_8} T_8)$$

$$\hspace{1cm} = \frac{P}{T_1 + T_8} \left[(\lambda_{T_1 T_{10}} + \lambda_{T_1 T_{30}}) \frac{I_{12}}{K_{I_{12}} + I_{12}} + (\lambda_{T_8 T_{10}} + \lambda_{T_8 T_{30}}) \frac{I_{2}}{K_{I_{2}} + I_{2}} \right] \times \frac{1}{1 + Q/K_{TQ}} - \rho_p (d_{T_1} T_1 + d_{T_8} T_8) - \frac{\mu_{PA}}{T_1 + T_8} (d_{T_1} T_1 + d_{T_8} T_8)$$

$$\hspace{1cm} = \frac{P}{T_1 + T_8} \left[(\lambda_{T_1 T_{10}} + \lambda_{T_1 T_{30}}) \frac{I_{12}}{K_{I_{12}} + I_{12}} + (\lambda_{T_8 T_{10}} + \lambda_{T_8 T_{30}}) \frac{I_{2}}{K_{I_{2}} + I_{2}} \right] \times \frac{1}{1 + Q/K_{TQ}} - \rho_p (d_{T_1} T_1 + d_{T_8} T_8) - \frac{\mu_{PA}}{T_1 + T_8} (d_{T_1} T_1 + d_{T_8} T_8) - \frac{\mu_{PA}}{T_1 + T_8} (d_{T_1} T_1 + d_{T_8} T_8)$$

where μ_{PA} represents the rate at which P is depleted/blacked by A.

PD-L1 is expressed on the surface of activated CD4$^+$ and CD8$^+$ T cells [14, 15] and on cancer cells [15, 16]. Hence, the concentration of PD-L1 (L) is proportional to ($T_1 + T_8$) and C:

$$L = \rho_L (T_1 + T_8 + \epsilon C),$$ \hspace{1cm} (10)

where ϵ depends on the specific type of tumor.
PD-L1 from T cells or cancer cells ligands to PD-1 on the plasma membrane of T cells, thus forming a complex PD-1-PD-L1 (Q) on the T cells [15, 16]. Denoting the association and dissociation rates of Q by α_{PL} and d_Q, respectively, we can write

$$P + L \overset{\alpha_{PL}}{\underset{d_Q}{\rightleftarrows}} Q,$$

so that

$$\frac{\partial Q}{\partial t} + \nabla \cdot (uQ) - \delta_Q \nabla^2 Q = \alpha_{PL}PL - d_QQ.$$

The half-life of Q is less then 1 second (i.e. 1.16×10^{-5} day) [33], and hence d_Q is very large, and we may approximate the dynamical equation by the steady state equation, $\alpha_{PL}PL = d_QQ$, or

$$Q = \sigma PL,$$

where $\sigma = \alpha_{PL}/d_Q$.

Equation for anti-PD-1 (A). We assume that anti-PD-1 is injected intradermally every 3 days for 30 days (as in mouse experiments [21]) providing a source $\hat{A}(t)$ of anti-PD-1:

$$\hat{A}(t) = \begin{cases}
\gamma_A & \text{if } t \leq 30, \\
\gamma_A \times \frac{33-t}{3} & \text{if } 30 < t \leq 33, \\
0 & \text{if } t > 33.
\end{cases}$$

where γ_A is the effective level of the drug; although the level of the drug varies between injections, for simplicity we take it to be constant. The drug A is depleted in the process of blocking PD-1. Hence,

$$\frac{\partial A}{\partial t} - \delta_A \nabla^2 A = \hat{A}(t) - \mu_{PA} \overset{\text{depletion through blocking PD-1}}{\underset{\text{degradation}}{A}},$$

where μ_{PA} is the rate at which A is degraded in the process of blocking PD-1.

Equation for cell velocity (u): We assume that most of the tumor consists of the extracellular matrix, ECM (approximately, 0.6 g/cm^3), and cancer cells (approximately, $C = 0.4 g/cm^3$), and that the densities of D, T_j and T_k are approximately 4×10^{-4}, 2×10^{-3} and $1 \times 10^{-3} g/cm^3$, respectively (as explained in the section on parameter estimation). We further assume that all cells are approximately of the same volume and surface area, so that their diffusion coefficients are the same. For definiteness, we take the constant in Eq (1) to be 0.4034. Adding Eqs (2)–(5), we then get

$$0.4034 \times \nabla \cdot u = \sum_{j=2}^{5} \text{RHS of Eq. (j)}.$$

To simplify the computations, we shall assume that the tumor is spherical and denote its moving boundary (i.e. its radius) by $r = R(t)$. We also assume that all the densities and concentrations are radially symmetric, that is, functions of (r, t), where $0 \leq r \leq R(t)$. In particular, $u = u(r, t)e_r$, where e_r is the unit radial vector, and each of the equations of the form

$$\frac{\partial X}{\partial t} + \nabla \cdot (uX) - \delta_X \nabla^2 X = F,$$
with $X = X(r, t)$, takes the form
\[
\frac{\partial X}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 u X) - \delta X \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial X}{\partial r} \right) = F.
\]

Equation for free boundary (R): We assume that the free boundary $r = R(t)$ moves with the velocity of cells, so that
\[
\frac{dR(t)}{dt} = u(R(t), t).
\] (15)

Boundary conditions We assume that the naive CD4$^+$ T cells and naive CD8$^+$ T cells which migrated from the lymph nodes into the tumor microenvironment have constant densities \hat{T}_1 and \hat{T}_8 at the tumor boundary, and that they are activated by IL-12 upon entering the tumor. We represent this process by the flux conditions at the boundary $r = R(t)$:
\[
\frac{\partial T_1}{\partial r} + \sigma_T(I_{12})(T_1 - \hat{T}_1) = 0, \quad \frac{\partial T_8}{\partial r} + \sigma_T(I_{12})(T_8 - \hat{T}_8) = 0,
\] (16)
where $\sigma_T(I_{12}) = \frac{I_{12}}{I_{12} + K_{I_{12}}}$.

We impose the no-flux boundary conditions for all the remaining variables:
\[
\text{No-flux for } D(r, t), C(r, t), G(r, t), L_2(r, t), I_2(r, t), P(r, t) \text{ and } A(r, t), \quad \text{at } r = R(t).
\] (17)

It is tacitly assumed here that the receptors PD-1 and ligands PD-L1 become active only after the T cells are inside the tumor.

Initial conditions. We take initial values of all the variables to be constant. Later on we shall compare the simulations of the model with mouse experimental results, for 60 days. Accordingly, we take initial values whereby the average density of cancer cells has not yet increased to its steady state, 0.4 g/cm3, and, in view of Eq (1), the total density of the immune cells is initially above its steady state. We take (in unit of g/cm3):
\[
D = 6 \times 10^{-4}, \quad T_1 = 4 \times 10^{-4}, \quad T_8 = 2 \times 10^{-3}, \quad C = 0.3968.
\] (18)
We assume that initially $A = 0$, and
\[
G = 2.61 \times 10^{-10} \text{ g/cm}^3, \quad I_{12} = 1.8 \times 10^{-10} \text{ g/cm}^3, \quad I_2 = 4.74 \times 10^{-11} \text{ g/cm}^3, \quad P = 1.12 \times 10^{-10} \text{ g/cm}^3.
\]
These values are close to the steady state values which are computed in the section on parameter estimation.

Results

The simulations of the model were performed by Matlab based on the moving mesh method for solving partial differential equations with free boundary [34] (see the section on computational method). All the computations are done in dimensionless form, but displayed in dimensional form.

The average density or concentration of a species is defined as its total mass in the tumor divided by the tumor volume. Fig 2 shows the average concentrations of all the species of the model over a period of 60 days in the control case, that is, when no drugs are administered; the parameter values are given in Tables 2 and 3. The radius of the tumor is increasing, from 0.01
cm to 0.0313 cm. The average density of the cancer cells is initially increasing and later it stabilizes while the densities of the immune cells are first decreasing and later stabilize. Correspondingly, the concentrations of the cytokines produced by the immune system also first decrease and later stabilize. Some of the parameters in the model were estimated by assuming the immune cells and cytokines are in steady state. Their steady states in Fig 2 approximately agree with those which we assumed in estimating the parameters, thus establishing the consistency of our assumed steady-state values.

We can also simulate the spatial distribution of each of the variables. Fig 3 shows the distribution of cancer cells and T cells ($T_1 + T_8$) at times $t = 15, 30, 60$ days. We see that the density of T cells increases toward the boundary; this is a result of the influx of T cells from the lymph nodes. Correspondingly, the density of cancer cells decreases toward the boundary. In our model, we tacitly assumed avascular conditions, since we wanted to focus primarily on the difference between control and treatment. Since, however, the tumor radius reaches approximately 313 μm at day 60, hypoxic conditions may actually reduce the cancer cells’ density at the core of the tumor (both in control and treatment).

In Figs 2 and 3, we have taken $\varepsilon = 0.01$. Some cancer cells may express more or less PD-L1 [17, 35–37]. By decreasing or increasing ε, the radius of the tumor will decrease or increase, respectively, but the profiles of the densities/concentrations remain qualitatively the same (not shown here).

We next proceed to explore the effect of treatment with GM-CSF-secreting vaccine (GVAX) and anti-PD-1 drug. We are unable to make a direct connection between the levels of
Table 2. Summary of parameter values.

Notation	Description	Value used	References
δ_D	diffusion coefficient of DCs	8.64×10^{-7} cm2 day$^{-1}$	[59]
δ_{T_i}	diffusion coefficient of CD4$^+$ T cells	8.64×10^{-7} cm2 day$^{-1}$	[59]
δ_{T_e}	diffusion coefficient of CD8$^+$ T cells	8.64×10^{-7} cm2 day$^{-1}$	[59]
δ_C	diffusion coefficient of tumor cells	8.64×10^{-7} cm2 day$^{-1}$	[59]
δ_{GM}	diffusion coefficient of GM-CSF	9.8495×10^{-10} cm2 day$^{-1}$	estimated
δ_{IL-12}	diffusion coefficient of IL-12	6.0472×10^{-8} cm2 day$^{-1}$	estimated
δ_{IL-2}	diffusion coefficient of IL-2	9.9956×10^{-8} cm2 day$^{-1}$	estimated
δ_A	diffusion coefficient of anti-PD-1	7.85×10^{-8} cm2 day$^{-1}$	estimated
σ_0	flux rate of T cells on the boundary	1 cm$^{-1}$	[59]
λ_{DC}	activation rate of DCs by GM-CSF	20.02 day$^{-1}$	[65, 66] & estimated
λ_{DC_t}	activation rate of DCs by tumor cells	0.364 day$^{-1}$	estimated
λ_{T_i,f_2} & activation rate of CD4$^+$ T cells by IL-12	4.66 day$^{-1}$	estimated	
λ_{T_i,f_2} & activation rate of CD4$^+$ T cells by IL-2	0.25 day$^{-1}$	estimated	
λ_{T_e,f_2} & activation rate of CD8$^+$ T cells by IL-12	4.15 day$^{-1}$	estimated	
λ_{T_e,f_2} & activation rate of CD8$^+$ T cells by IL-2	0.25 day$^{-1}$	[59]	
λ_C	growth rate of cancer cells	0.616 day$^{-1}$	[59]
λ_{GM}	non-vaccine source of GM-CSF	2.23×10^{-10} g/cm3 · day	estimated
λ_{IL-12}	production rate of IL-12 by DCs	5.18×10^{-7} day$^{-1}$	estimated
λ_{IL-2}	production rate of IL-2 by CD4$^+$ T cells	2.82×10^{-7} day$^{-1}$	estimated
n_1	killing rate of tumor cells by CD4$^+$ T cells	11.5 day$^{-1}$ · cm$^{-3}$/g	estimated
n_2	killing rate of tumor cells by CD8$^+$ T cells	46 day$^{-1}$ · cm$^{-3}$/g	estimated
μ_{PA} & blocking rate of PD-1 by anti-PD-1	6.87×10^{6} cm3/g · day	estimated	
ρ_P & expression of PD-1 in T cells	2.49×10^{-7}	estimated	
ρ_L & expression of PD-L1 in T cells	5.22×10^{-7}	estimated	
ξ & expression of PD-L1 in tumor cells	$0 - 0.01^*$	estimated	
d_D & death rate of DCs	0.1 day$^{-1}$	[59]	
d_{T_i} & death rate of CD4$^+$ T cells	0.197 day$^{-1}$	[59]	
d_{T_e} & death rate of CD8$^+$ T cells	0.18 day$^{-1}$	[59]	
d_C & death rate of tumor cells	0.17 day$^{-1}$	[59]	
d_{GM} & degradation rate of GM-CSF	1.28 day$^{-1}$	[65]	
d_{IL-12} & degradation rate of IL-12	1.38 day$^{-1}$	[59]	
d_{IL-2} & degradation rate of IL-2	2.376 day$^{-1}$	[59]	
d_A & degradation rate of anti-PD-1	0.0462 day$^{-1}$	[42]	

* In the simulations we took $\varepsilon = 0.01$.

https://doi.org/10.1371/journal.pone.0178479.t002

Drugs administered to the patient, and their ‘effective strengths’ γ_C and γ_A in the model, since these data are not available. Based on the estimate of the concentration of GM-CSF in normal healthy tissue (see Parameter Estimations for Eq (6)), we chose the order of magnitude of GVAX to be 10^{-10} (g/cm3 · day). The order of magnitude for anti-PD-1 drug (γ_A) is chosen so as to get the best agreement with the mouse experiments. In Fig 4(a), the ‘effective strength’ of the vaccine is given by $\gamma_C = 0.87 \times 10^{-10}$ g/cm3 · day and the ‘effective strength’ of the anti-PD-1 is given by $\gamma_A = 2 \times 10^{-10}$ g/cm3 · day. We see that, as a single-agent, anti-PD-1 is more effective than GVAX, and with the combined therapy the tumor radius is still increasing. This is in agreement with the mouse experiments reported in Fig 1-(A) (with melanoma) in [21], and Figs 3-(b) (with colon carcinoma) and 3-(c) (with melanoma) in [22].
Table 3. Summary of parameter values.

Parameter	Value	Source	
K_G	half-saturation of GM-CSF	1.74×10^{-9} g/cm3	[65]
K_C	half-saturation of tumor cells	0.4 g/cm3	[59]
K_{IL-12}	half-saturation of IL-12	1.5×10^{-10} g/cm3	[59]
K_{IL-2}	half-saturation of IL-2	2.37×10^{-11} g/cm3	[59]
K_{CD4+}	half-saturation of CD4$^+$ T cells	2×10^{-3} g/cm3	estimated
K_{CD8+}	half-saturation of CD8$^+$ T cells	1×10^{-3} g/cm3	estimated
K_{PD-L1}	inhibition of function of T cells by PD-1-PD-L1	1.365×10^{-18} g/cm3	estimated
D_0	density of immature DCs	2×10^{-5} g/cm3	[59]
T_{CD4+}	density of naive CD4$^+$ T cells	4×10^{-3} g/cm3	estimated
T_{CD8+}	density of naive CD8$^+$ T cells	2×10^{-3} g/cm3	estimated
C_M	carrying capacity of cancer cells	0.8 g/cm3	[59]
T_{CD4+}	density of CD4$^+$ T cells from lymph node	4×10^{-3} g/cm3	estimated
T_{CD8+}	density of CD8$^+$ T cells from lymph node	2×10^{-3} g/cm3	estimated
Y_G	source of GM-CSF from the vaccine	1×10^{-10} g/cm3 · day*	estimated
Y_A	source of anti-PD-1	1×10^{-10} g/cm3 · day*	estimated

* Values used in sensitivity analysis.

https://doi.org/10.1371/journal.pone.0178479.t003

Fig 3. Spatial distribution of density of cancer cells and $T_1 + T_6$ cells at time $t = 15, 30, 60$ days. All parameter values are the same as in Fig 2.

https://doi.org/10.1371/journal.pone.0178479.g003
In Fig 4(b), we increased γ_A by a factor 3/2. As a result, the tumor radius begins to decrease around day 50, even when administering anti-PD-1 as single-agent. This is in agreement with mouse experiments (with colon carcinoma) reported in Fig 1-(D) of [23].

In Fig 4(a), GM-CSF-secreting vaccine alone did not reduce the tumor radius as much as anti-PD-1 alone. However, if we increase the strength of the vaccine and decrease the anti-PD-1, taking for example, $\gamma_G = 3.84 \times 10^{-10}$ g/cm3·day and $\gamma_A = 1 \times 10^{-10}$ g/cm3·day, we then find that the vaccine decreases the tumor radius more than anti-PD-1 does; this is shown in Fig 5, and it is in agreement with mouse experiments (with melanoma) reported in Fig 1-(B) of [23].
The results of Figs 4 and 5 show that a combination therapy of GVAX and anti-PD-1 in appropriate amounts could significantly slow the growth of a tumor.

There is some uncertainty in the estimates of some of the parameters of the model. With somewhat different choices of these parameters, the simulation results will change quantitatively, and sensitivity analysis indicates the direction and intensity of the change (see the section on sensitivity analysis). In particular, the choice of γ_G and γ_A will affect the relative reduction in the growth of the tumor radius. In Figs 4 and 5 we made specific choices of γ_G and γ_A, in order to get simulations that agree with experimental results.

We next consider combination therapy for any values of GVAX and anti-PD-1. We define the efficacy of the combination therapy with (γ_G, γ_A) by the formula:

$$E(\gamma_G, \gamma_A) = \frac{R_{60}(0, 0) - R_{60}(\gamma_G, \gamma_A)}{R_{60}(0, 0)},$$

where $R_{60} = R_{60}(\gamma_G, \gamma_A)$ represents the tumor radius computed at day 60. If the tumor radius at day 60, $R_{60}(\gamma_G, \gamma_A)$, is smaller than the radius in the control case, $R_{60}(0, 0)$, then the efficacy is a positive number, and its value is between 0 and 1 (or between 0% and 100%); the efficacy increases to 1 (or to 100%) when the tumor radius $R_{60}(\gamma_G, \gamma_A)$ decreases to 0 by day 60. Fig 6 (a) is the efficacy map of the combined therapy with γ_G in the range of $0 - 4.8 \times 10^{-10}$ g/cm3 · day and γ_A in the range of $0 - 2 \times 10^{-10}$ g/cm3 · day. For a given γ_G, the optimal synergy of the combined therapy (γ_G, γ_A) occurs when (γ_G, γ_A) lies on the solid curve.

The results of Figs 4 and 5 show that a combination therapy of GVAX and anti-PD-1 in appropriate amounts could significantly slow the growth of a tumor.

Fig 6. Drug efficacy map and synergy map. (a) Efficacy map: The color column shows the efficacy $E(\gamma_G, \gamma_A)$ when γ_G varies between $0 - 4.8 \times 10^{-10}$ g/cm3 · day and γ_A varies between $0 - 4 \times 10^{-10}$ g/cm3 · day. (b) Synergy map: The color column shows the synergy $\sigma(\gamma_G, \gamma_A)$ when γ_G varies between $0 - 2.4 \times 10^{-10}$ g/cm3 · day and γ_A varies between $0 - 2 \times 10^{-10}$ g/cm3 · day. For a given γ_G, the optimal synergy of the combined therapy (γ_G, γ_A) occurs when (γ_G, γ_A) lies on the solid curve.

https://doi.org/10.1371/journal.pone.0178479.g006

Early stage clinical trials consider the safety of each of the drugs, GVAX and anti-PD-1, separately. In the GVAX treatment of patients with pancreatic cancer, no dose-limiting toxicity or minimal toxicity was observed [38–40]. On the other hand, in treatment with anti-PD-1, mild to moderate toxicity (grades 1 and 2) was observed in melanoma [41, 42]. In non-small-cell lung cancer, 14% of the patients were observed to have more severe toxicity (grades 3 and 4) [43]. Based on these observations we conclude that anti-PD-1 causes more toxicity than...
GVAX. However, clinical trials on the safety and efficacy of the combined drugs are limited [23, 44, 45].

The amount of drug in clinical trials is constrained by the maximum tolerated dose (MTD). In combination therapy this constraint may depend on the proportion between the amounts of the drugs. We note that there is a large literature on the trade-off between efficacy and toxicity [46–49]. Here we consider, as an example, two treatments, of the drugs. We note that there is a large literature on the trade-off between efficacy and toxicity [23, 44, 45]. However, clinical trials on the safety and efficacy of the combined drugs are limited.

In combination therapy this constraint may depend on the proportion between the amounts of the drugs. We note that there is a large literature on the trade-off between efficacy and toxicity [46–49]. Here we consider, as an example, two treatments, of the drugs. We note that there is a large literature on the trade-off between efficacy and toxicity [23, 44, 45]. However, clinical trials on the safety and efficacy of the combined drugs are limited. We compare treatment of combination (γ₆, γ₄) with monotherapy GVAX and monotherapy anti-PD-1. For monotherapy with GVAX, we take (1 + θ₆)γ₆, and for monotherapy with anti-PD-1 we take (1 + θ₄)γ₄, with θ₆ < θ₄, to reflect the higher toxicity associated with anti-PD-1. If E(γ₆, γ₄) is larger than both E((1 + θ₆)γ₆, 0) and E(0, (1 + θ₄)γ₄), then we say that the synergy for the combination (γ₆, γ₄) is positive, and otherwise, we say that the synergy is negative. More generally, we define the synergy σ = σ(γ₆, γ₄) by the formula:

$$\sigma(\gamma_6, \gamma_4) = \frac{E(\gamma_6, \gamma_4)}{\max\{E((1 + \theta_6)\gamma_6, 0), E(0, (1 + \theta_4)\gamma_4)\}} - 1.$$ \hspace{1cm} (19)

Thus σ(γ₆, γ₄) > 0 (positive synergy) if the combination (γ₆, γ₄) reduces tumor growth more than either one of the single agents with (1 + θ₆)γ₆ or (1 + θ₄)γ₄. Negative synergy occurs in the reverse case where instead of a combination therapy with (γ₆, γ₄) we achieve better reduction of the tumor radius Rₜ if we apply only one drug, (1 + θ₆)γ₆ or (1 + θ₄)γ₄. The above concept of synergy is somewhat different from the usual definitions of synergy. For definiteness we take θ₆ = 1 and θ₄ = 0.5, but this choice, which is somewhat arbitrary, could be made more precise as more clinical data become available.

Fig 6(b) is the synergy map for (γ₆, γ₄) in the same range as in Fig 6(a); the color column shows the synergy σ(γ₆, γ₄), with values that vary from -0.38 to 0.28.

We first note that the synergy is negative if γ₆ < 0.2 × 10⁻¹⁰ g/cm³ day. The reason is the following: if γ₆ is small then the numbers of T cells is also small, so instead of introducing a drug γ₄ which blocks the relatively small number of PD-1, it is more effective to increase the number of T cells by increasing γ₆, i.e. E(2γ₆, 0) > E(γ₆, γ₄).

Next, for any fixed γ₆, as seen in Fig 6(b), the synergy first increases with γ₄ and then decreases. In order to explain this occurrence, we note that with γ₆ fixed, the number of T cells that arrive into the tumor microenvironment is limited, and so is the number of their PD-1. Thus, in order to block the PD-1 there is a need for only a limited amount of anti-PD-1 drug; i.e. it is ‘wasteful’ to administer too much of γ₄. We conclude that the maximum synergy is achieved when the amount of γ₄ is appropriately dependent on the amount of γ₆, as indicated by the solid curve shown in Fig 6(b).

Fig 7 shows that as the amounts of γ₆ and γ₄ increase the average density of T cells (T₁ + Tₚ) increases, and correspondingly the average density of cancer cells decreases. We also see that the density of T cells shown in the color column increases approximately by a factor of 6, whereas the density of cancer cells decreases approximately by a factor of 1.075. The proportion of these changes (i.e. 5/0.075) is similar to the proportion of densities of cancer cells to T cells.

Conclusion

The introduction of immune checkpoint inhibitors has been a very promising approach to cancer treatment. Blockage of the programmed death PD-1/PD-L1 is increasingly explored in
single-agent studies [16, 18]. However, because of the lack of tumor-infiltrating effector T cells, many patients do not respond to checkpoint inhibitor treatment as single-agent [18]. On the other hand, cancer vaccines have been shown to induce effector T-cells infiltration into tumors [19], although, to be fully effective, cancer vaccines have to overcome immune evasion [10]. It was recently suggested that the combination of a cancer vaccine and an immune checkpoint inhibitor may function synergistically to induce more effective antitumor immune response [18, 20]. Clinical trials to test such combinations are currently ongoing [18, 20].

In the present paper we developed a mathematical model to study the efficacy of the combination of a GM-CSF-secreting cancer vaccine (GVAX) and an anti-PD-1 drug, and to address the following question: at what proportion should the two drugs be administered in order to achieve the best efficacy when the amount of drugs is limited by MTD. The mathematical model is represented by a system of partial differential equations, based on the interactions among cancer cells, dendritic cells, $CD4^+$ and $CD8^+$ T cells, cytokines IL-12 and IL-2, GM-CSF, PD-1, PD-L1, PD-1-PD-L1 complex and anti-PD-1. Simulations of the model are shown to be in qualitative agreement with mouse experiments [21–23].

The cancer vaccine and the anti-PD-1 work in collaboration: The vaccine increases the number of tumor-infiltrating effector T cells and the anti-PD-1 ensures that these cells remain active. Given a fixed amount γ_G of the vaccine and γ_A of the anti-PD-1, it is important to estimate the level of synergy between these amounts in order to administer them in the most effective proportion. We introduced a specific concept of synergy $\sigma(\gamma_G, \gamma_A)$ and developed accordingly a synergy map in Fig 6(b). The map shows that if γ_G is small, single-agent treatment (with $\gamma_A = 0$) is the best treatment. Fig 6(b) also shows that, for any γ_G, there is a unique value γ_{AG} such that the synergy increases as γ_A increases as long as γ_A remains smaller than γ_{AG}, but the synergy decreases as γ_A increases above γ_{AG}; the points (γ_G, γ_{AG}) form the solid curve shown in Fig 6(b). We suggest that for optimal efficacy under MTD constraint, the level of dosage of anti-PD-1 (γ_A) should be related to the level of dosage of GVAX (γ_G) by setting $\gamma_A = \gamma_{AG}$ as indicated by the solid curve in Fig 6(b).

The mathematical model presented in this paper has several limitations:
1. In order to focus on the combined therapy of a cancer vaccine and an anti-PD-1 drug, we did not include some other important cells and cytokines that are found in the tumor microenvironment, such as T regulatory cells, macrophages, endothelial cells, and IL-10, IL-6 and TGF-β. We also did not include blood vessels and oxygen, thus assuming that the tumor is avascular. We tacitly assumed that the effect of these omissions is not significant in comparing the results of therapy to no therapy.

2. We assumed that the densities of immature, or naive, immune cells remain constant throughout the progression of the cancer and that dead cells are quickly removed from the tumor.

3. In estimating parameters we made a steady state assumption in some of the differential equations.

4. In the definition of synergy, and in the synergy map, we included in a crude way the fact that anti-PD-1 causes more toxicity than GVAX. Our aim was to develop a concept that will take account not only of efficacy but also of toxicity. For this reason we compared the treatment benefits for combination (γ_G, γ_A) with the single agents ($2\gamma_G$, 0) and (0, $1.5\gamma_A$).

5. We did not make any direct connection between drugs administered to the patient, and their ‘effective strengths’ γ_G and γ_A, as they appear in the differential equations, since these data are not available. The order of magnitude of GVAX (10^{-10}) was based on the estimate of the concentration of GM-CSF in normal healthy tissue (see Parameter Estimations for Eq (6)). We simulated the model with different orders of magnitude for anti-PD-1 drug (γ_A) and found the best agreement with the mouse experiments (in Figs 4 and 5) when γ_A is also of order of magnitude 10^{-10}.

6. Although our mathematical model does not presume any geometric form of the tumor, for simplicity, the simulations have been carried out only in the case of a spherical tumor. We note however that spherical cancer models have been used in research as an intermediate between in vitro cancer line cultures and in vivo cancer [50]. Furthermore, spheroids mirror the 3D cellular context and therapeutically relevant pathophysiological gradient of in vivo tumors [51].

Clinical data on efficacy and toxicity are quite limited at this time. Our model should be viewed as setting up a computational framework, to address the question of optimal efficacy in combination therapy with cancer vaccine and checkpoint inhibitor.

Materials and methods

Parameter estimation

Half-saturation. In an expression of the form $Y = \frac{X}{K_X + X}$ where Y is activated by X, the half-saturation parameter K_X is taken to be the approximate steady state concentration of species X.

Diffusion coefficients. By [52], we have the following relation for estimating the diffusion coefficients of a protein p:

$$\delta_p = \frac{M_p^{1/3}}{M_\nu^{1/3}} \delta_\nu,$$

where M_p and δ_ν are respectively the molecular weight and diffusion coefficient of VEGF, M_p is the molecular weight of p, and $M_\nu = 24\text{kDa}$ [53] and $\delta_\nu = 8.64 \times 10^{-2} \text{ cm}^2 \text{ day}^{-1}$ [54]. Since $M_G = 15.5\text{kDa}$, $M_{I_2} = 70\text{kDa}$, $M_I = 16.2\text{kDa}$ [55] and $M_A = 32\text{kDa}$ [56], we get $\delta_G = \ldots$
9.9956 × 10^{-2} \text{cm}^2 \text{day}^{-1}, \delta_{D_1} = 6.0472 \times 10^{-2} \text{cm}^2 \text{day}^{-1}, \delta_G = 9.8495 \times 10^{-2} \text{cm}^2 \text{day}^{-1}, \text{and} \delta_A = 7.85 \times 10^{-2} \text{cm}^2 \text{day}^{-1}.

Eq (2): The number of DCs in various organs (heart, kidney, pancreas and liver) in mouse varies from 1.1 × 10^6 cells/cm^3 to 6.6 × 10^6 cells/cm^3 [57]. Mature DCs are approximately 10 to 15 μm in diameter [58]. Accordingly, we estimate steady states of DCs by $K_D = 4 \times 10^{-4} \text{g/cm}^3$. We assume that the density of immature DCs is smaller than the actived DCs, and take $D_0 = \frac{1}{20} K_D = 2 \times 10^{-5} \text{g/cm}^3$. We also assume that the activation of DCs by GM-CSF-secreting vaccine is more effective than their activation by NCs-secreted HMGB-1, and take $\lambda_{DG} = 10 \times \frac{C_D}{C_G + C_D}$. From the steady state of Eq (2) in the control case (with no drug), we get

$$\lambda_{DC} D_0 \cdot \frac{C}{K_C + C} + \lambda_{DG} D_0 \cdot \frac{G}{K_G + G} - d_D D = 0,$$

where $d_D = 0.1/\text{day}$ [59], $D_0 = 2 \times 10^{-5} \text{g/cm}^3$, $D = K_D = 4 \times 10^{-4} \text{g/cm}^3$, $C = K_C = 0.4 \text{g/cm}^3$, and $G = K_G = 1.74 \times 10^{-10} \text{g/cm}^3$ and $K_G = 1.74 \times 10^{-9} \text{g/cm}^3$ (K_G and K_G are estimated together with other estimates of Eq (6)). Hence $\lambda_{DC} = 0.364/\text{day}$ and $\lambda_{DG} = 20.02/\text{day}$.

Eq (3): The number of lymphocytes is approximately twice the number of DCs [57]. T cells are approximately 14 to 20 μm in diameter. Assuming that the number of Th1 cells is 1/4 of the number of lymphocytes, we estimate the steady state density of Th1 cells by $K_T = 2 \times 10^{-3} \text{g/cm}^3$. We assume the density of naive CD4⁺ T cells to be less than the density of Th1, and take $T_{i0} = \frac{1}{2} K_T = 4 \times 10^{-4} \text{g/cm}^3$. We also assume that in steady state, $Q/K_{TQ} = 2 (K_{TQ} is estimated together with other estimates of Eqs (9)–(12)). From the steady state of Eq (3), we get

$$\left(\lambda_{T_{i1}T_{i2}} T_{i0} \cdot \frac{1}{2} + \lambda_{T_{i1}T_i} T_i \cdot \frac{1}{2} \right) \cdot \frac{1}{3} - d_{T_i} T_i = 0,$$

where $T_{i0} = 4 \times 10^{-4} \text{g/cm}^3$, $T_i = K_{T_i} = 2 \times 10^{-3} \text{g/cm}^3$, and, by [59], $\lambda_{T_{i1}T_{i2}} = 0.25/\text{day}$ and $d_{T_i} = 0.197/\text{day}$. Hence $\lambda_{T_{i1}T_{i2}} = 4.66/\text{day}$.

Eq (4): The CD4/CD8 ratio in the blood is 2:1. We assume a similar ratio in the tissue, and take $T_{s0} = \frac{1}{2} T_{i0} = 2 \times 10^{-4} \text{g/cm}^3$. We also take the steady state of T_s to be half of the steady state of T_i, i.e., $K_{T_s} = \frac{1}{2} K_{T_i} = 1 \times 10^{-3} \text{g/cm}^3$. From the steady state equation of Eq (4), we get

$$\left(\lambda_{T_{s1}T_{s2}} T_{s0} \cdot \frac{1}{2} + \lambda_{T_{s1}T_s} T_s \cdot \frac{1}{2} \right) \cdot \frac{1}{3} - d_{T_s} T_s = 0,$$

where $T_{s0} = 5 \times 10^{-5} \text{g/cm}^3$, $T_s = K_{T_s} = 1 \times 10^{-3} \text{g/cm}^3$, and, by [59], $\lambda_{T_{s1}T_{s2}} = 0.25/\text{day}$ and $d_{T_s} = 0.18/\text{day}$. Hence $\lambda_{T_{s1}T_{s2}} = 4.15/\text{day}$.

Eq (5): We take $d_C = 0.17/\text{day}$ and $C_M = 0.8 \text{g/cm}^3$ [59]. In the absence of immune responses and anti-tumor drugs, the tumor grows according to

$$\frac{dC}{dt} = \lambda_C \left(1 - \frac{C}{C_M}\right) - d_C C,$$

and with immune response, the tumor grows according to

$$\frac{dC}{dt} = \lambda_C \left(1 - \frac{C}{C_M}\right) - (\eta_1 T_1 + \eta_s T_s) C - d_C C.$$
Mouse experiments show that the tumor volume on average doubles within 5-15 days [21–23]. Assuming a linear growth

\[
\frac{dC}{dt} = \lambda_0 C, \quad \text{where } \lambda_0 > 0,
\]
during the volume doubling time, we conclude from Eq (21) that

\[
\lambda_c C \left(1 - \frac{C}{C_M}\right) - (\eta_1 T_1 + \eta_8 T_8) C - d_c C = \lambda_0 C.
\]

(22)

where \(\lambda_0 \in \left(\frac{\mu m}{day}, \frac{mm}{day}\right)\). We assume that with no immune responses

\[
\frac{dC}{dt} = 2\lambda_0 C,
\]
so that, by Eq (20), we get

\[
\lambda_c C \left(1 - \frac{C}{C_M}\right) - d_c C = 2\lambda_0 C.
\]

(23)

We take \(\lambda_0 = 0.069/\text{day}\), and assume that in steady state of Eqs (20) and (21), \(C\) is approximately 0.4 g/cm\(^3\), so that from Eq (23) we get

\[
\frac{1}{2} \lambda_c - d_c = 2\lambda_0,
\]
or \(\lambda_c = 0.616/\text{day}\). From Eqs (23) and (22), we get \(\eta_1 T_1 + \eta_8 T_8 = \lambda_0\). Noting that \(T_8\) cells kill cancer cells more effectively than \(T_1\) cells, we take \(\eta_8 = 4\eta_1\), so that \(\eta_1 = \frac{\eta_8}{\eta_8 + \eta_8} = 11.5 \text{ cm}^3/\text{g} \cdot \text{day}\) and \(\eta_8 = 46 \text{ cm}^3/\text{g} \cdot \text{day}\) (with \(T_1 = K_{T_1} = 2 \times 10^{-3} \text{ g/cm}^3\) and \(T_8 = K_{T_8} = 1 \times 10^{-3} \text{ g/cm}^3\) as in the estimates for Eqs (3) and (4)).

Eq (6): With no drugs, the steady state plasma concentration of GM-CSF is \(G = \hat{K}_G = 1.74 \times 10^{-10} \text{ g/cm}^3\) [60]. The half-life of GM-CSF is 13 hours [61], i.e., 0.54 day, so that \(d_c = \frac{\ln 2}{0.54} = 1.28/\text{day}\). From the steady state of Eq (6) (with no drugs), we get \(\hat{\lambda}_G = d_c G = d_c \hat{K}_G = 2.23 \times 10^{-10} \text{ g/cm}^3 \cdot \text{day}\). But when the GM-CSF-secreting vaccine is administered, the concentration of GM-CSF shoots up, and we assume that at steady states it reaches the level of \(G = K_G = 10\hat{K}_G = 1.74 \times 10^{-9} \text{ g/cm}^3\).

Eq (7): From the steady state of Eq (7), we get \(\lambda_{I_1,D}D - d_{I_1}I_{12} = 0\), where \(d_{I_1} = 1.38/\text{day}\) [59] and \(I_{12} = K_{I_{12}} = 1.5 \times 10^{-10} \text{ g/cm}^3\) [59], and \(D = K_D = 4 \times 10^{-4} \text{ g/cm}^3\). Hence, \(\lambda_{I_1,D} = 5.18 \times 10^{-7}/\text{day}\).

Eq (8): From the steady state of Eq (8), we get \(\lambda_{I_1,T_1}T_1 - d_{I_2}I_2 = 0\), where \(d_{I_2} = 2.376/\text{day}\) [59] and \(I_2 = K_{I_2} = 2.37 \times 10^{-11} \text{ g/cm}^3\) [59], and \(T_1 = K_{T_1} = 2 \times 10^{-3} \text{ g/cm}^3\). Hence, \(\lambda_{I_1,T_1} = 2.82 \times 10^{-9}/\text{day}\).

Eqs (9)–(12): In order to estimate the parameter \(K_{TQ}\) (in Eqs (3) and (4)), we need to determine the steady state concentrations of \(P\) and \(L\) in the control case (no drugs). To do that, we need to estimate \(\rho_P\) and \(\rho_L\). By [62], the mass of one PD-1 protein is \(m_P = 8.3 \times 10^{-8} \text{ pg} = 8.3 \times 10^{-20} \text{ g}\), and by [63] the mass of one PD-L1 is \(m_L = 5.8 \times 10^{-8} \text{ pg} = 5.8 \times 10^{-20} \text{ g}\). We assume that the mass of one T cell is \(m_T = 10^{-7} \text{ g}\). By [14], there are 3000 PD-1 proteins and 9000 PD-L1 proteins on one T cell (\(T_1\) or \(T_2\)). Since \(\rho_P T\) is the density of PD-1 (without anti-PD-1 drug), we get \(\rho_P = 3000 \times \frac{m_P}{m_T} = \frac{3000 \times (8.3 \times 10^{-20})}{10^{-7}} = 2.49 \times 10^{-7}\) and \(\rho_L = 9000 \times \frac{m_L}{m_T} = \frac{9000 \times (5.8 \times 10^{-20})}{10^{-7}} = 5.22 \times 10^{-7}\).
In steady state, \(T_1 = 2 \times 10^{-3} \) g/cm\(^3\) and \(T_8 = 1 \times 10^{-3} \) g/cm\(^3\). Hence, in steady state,
\[
P = \rho_p(T_1 + T_8) = (2.49 \times 10^{-7}) \times (2 \times 10^{-3} + 1 \times 10^{-3}) = 7.47 \times 10^{-10} \text{ g/cm}^3.
\]

The parameter \(e \) in Eq (10) depends on the type of cancer; many cancer cells, but not all, express PD-L1 [17, 35–37]. Accordingly, we assume \(e \) varies in the interval 0–0.01, but in the simulations we take \(e = 0.01 \). Then, from Eq (10), we get
\[
L = \rho_L(T_1 + T_8 + eC) = (5.22 \times 10^{-7}) \times [2 \times 10^{-3} + 1 \times 10^{-3} + 0.01 \times 0.4] = 3.654 \times 10^{-9} \text{ g/cm}^3.
\]

In steady state with \(P = \tilde{P}, L = \tilde{L} \) and \(Q = \tilde{Q} \), we have, by Eq (12), \(\tilde{Q} = \sigma \tilde{P} \tilde{L} \). We take \(K_{TQ} = \frac{1}{2} \tilde{Q} = \frac{1}{2} \sigma \tilde{P} \tilde{L} \). Hence, \(Q/K_{TQ} = PL/(\frac{1}{2} \tilde{P} \tilde{L}) \) and
\[
\frac{1}{1 + Q/K_{TQ}} = \frac{1}{1 + PL/(\frac{1}{2} \tilde{P} \tilde{L})} = \frac{1}{1 + PL/K'_{TQ}},
\]
where \(K'_{TQ} := \frac{1}{2} \tilde{P} \tilde{L} = \frac{1}{2} \times (7.47 \times 10^{-10}) \times (3.654 \times 10^{-9}) = 1.365 \times 10^{-18} \text{ g}^2/\text{cm}^6 \).

Eq (13): By [42], the half-life of anti-PD-1 is 15 days, so that \(d_A = \frac{\ln 2}{15} = 4.62 \times 10^{-2} \text{ day}^{-1} \).
We assume that 10% of A is used in blocking PD-1, while the remaining 90% degrades naturally. Hence, in steady state, \(\mu_{PA} PA/10\% = d_A A/90\% \), so that
\[
\mu_{PA} = \frac{d_A}{9P} = \frac{4.62 \times 10^{-2}}{9 \times (7.47 \times 10^{-10})} = 6.87 \times 10^6 \text{ cm}^3/\text{g} \cdot \text{day}.
\]

If the percentage of A used in blocking PD-1 is changed, the value of \(\mu_{PA} \) will also change, but the results of simulations do not change qualitatively (not shown here).

Sensitivity analysis

We performed sensitivity analysis, with respect to the tumor radius \(R \) at day 60, with respect to some of the production parameters of the System (2)–(13), namely, \(\lambda_{DC}, \lambda_{DG}, \lambda_{T,1}, \lambda_{T,2}, \lambda_{T,3}, \lambda_{T,4}, \lambda_{I,1}, \lambda_{I,2}, \lambda_{I,3}, \lambda_{I,4}, \) and the important parameters \(K_{TQ}, \eta_1 \) and \(\eta_8 \). Following the method in [64], we performed Latin hypercube sampling and generated 1000 samples to calculate the partial rank correlation coefficients (PRCC) and the p-values with respect to the tumor radius at day 60. In sampling all the parameters, we took the range of each from 1/2 to twice its values in Tables 2 and 3. The results are shown in Fig 8.

Not surprisingly all the parameters are negatively correlated with the tumor radius. We note that the highest negatively correlated parameters are the activation rate of dendritic cells by cancer cells (\(\lambda_{DC} \)) and the inhibition of T cells activation by PD-1-PD-L1 complex (\(K_{TQ} \)). However, with different values of \(\gamma_G \) and \(\gamma_A \) the parameter \(\lambda_{DG} \) can exceed \(\lambda_{DC} \).

Computational method

We employ moving mesh method [34] to numerically solve the free boundary problem for the tumor proliferation model. To illustrate this method, we take Eq (2) as example and rewrite it as the following form:
\[
\frac{\partial D(r, t)}{\partial t} = \delta_r \Delta D(r, t) - div(uD) + F,
\]
where \(F \) represents the term in the right hand side of Eq (2). Let \(r^i_t \) and \(D^i_t \) denote numerical approximations of i-th grid point and \(D(r^i_t, n\tau) \), respectively, where \(\tau \) is the size of time-step.
The discretization of Eq (24) is derived by the fully implicit finite difference scheme:

\[
\frac{D^{k+1}_i - D^k_i}{\tau} = \delta_D \left(D_r + \frac{2}{r^k} D_s \right) - \left(\frac{2}{r^{k+1}_i} u^{k+1}_i + u_s \right) D^{k+1}_i - u^{k+1}_s D_s + F^{k+1}_i,
\]

(25)

where \(D_r = \frac{h^2_i r^{k+1}_i - h^2_i r^{k+1}_{i-1} - (h^2_i - h^2_{i-1}) r^{k+1}_i}{h_i (h^2_i - h^2_{i-1})} \), \(D_s = \frac{2 h_{i+1} r^{k+1}_{i+1} - h_i r^{k+1}_{i+1} + h_{i-1} - h_{i-2} r^{k+1}_i}{h_i (h_i - h_{i-1})} \),

\[u_i = \frac{k_j^2 i_{j+1} - k_j^2 i_{j-1} - (h_j^2 - h_{j-1}^2) i_{j+1}}{h_j (h_j^2 - h_{j-1}^2)} \text{ and } h_i = r^{k+1}_i - r^{k+1}_{i-1} \text{ and } h_i = r^{k+1}_i - r^{k+1}_{i-1}. \]

The mesh moves by \(r^{k+1}_i = r^k_i + u^{k+1}_i \tau \), where \(u^{k+1}_i \) is solved by the velocity equation.

Acknowledgments

This work is supported by the Mathematical Biosciences Institute and the National Science Foundation (Grant DMS 0931642), and the Renmin University of China and the International Postdoctoral Exchange Fellowship Program 2016 by the Office of China Postdoctoral Council.

Author Contributions

Conceptualization: AF XL.

Data curation: AF XL.

Formal analysis: AF XL.

Funding acquisition: AF.

Investigation: AF XL.

Methodology: AF XL.

Project administration: AF XL.

Resources: AF XL.
Software: AF XL.
Validation: AF XL.
Visualization: AF XL.
Writing – original draft: AF XL.
Writing – review & editing: AF XL.

References
1. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010; 28:367–388. https://doi.org/10.1146/annurev.immunol.021908.132603
2. Palucka J, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. Mar 2012; 12(4):265–277. https://doi.org/10.1038/nrc3258
3. Saoz R, Futalan D, Leutenez L, Ekhout F, Fecteau JF, Sundelius S, et al. TLR4-dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. J Transl Med. Aug 2014; 12(211):1–11.
4. Janco JMT, Lamichhané P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol. Apr 2015; 194(7):2985–2991. https://doi.org/10.4049/jimmunol.1403134
5. Ma Y, Shurin GV, Peiyuan Z, Shurin MR. Dendritic Cells in the Cancer Microenvironment. J Cancer. 2013; 4(1):36–44. https://doi.org/10.7150/jca.5046
6. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med. Apr 1999; 5(4):405–411. https://doi.org/10.1038/7403
7. Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, et al. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cell. J Cancer. 2000; 97(6):2715–2718.
8. Mailliard RB, Bykovskaya SEQ, Kas SN, Lotze MT, et al. Complementary dendritic cell-activating function of CD8+ and CD4+ T cells: helper role of CD8+ T cells in the development of T helper type 1 responses. J Exp Med. Feb 2002; 195(4):473–483. https://doi.org/10.1084/jem.20011662
9. Haabeth OAW, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO, et al. How Do CD4(+) T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules? Front Immunol. April 2014; 5(174):1–13.
10. van der Burg SH, Arens R, Ossendrop F, van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nature Reviews Cancer. Mar 2016; 16:219–233. https://doi.org/10.1038/nrc.2016.16
11. Kaufman HL, Ruby CE, Hughes T, Stingluff CLJ. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer. May 13, 2014; 2(11):1–13.
12. Gupta R, Emens LA. GM-CSF-secreting vaccines for solid tumors: moving forward. Discov Med. Jul 2010; 10(50):52–60.
13. Simmons AD, Li B, Gonzalez-Edick M, Lin C, Moskalenko M, Du T, et al. GM-CSF-secreting cancer immunotherapies: preclinical analysis of the mechanism of action. Cancer Immunol Immunother. Oct, 2007; 56(10):1653–1665. https://doi.org/10.1007/s00262-007-0315-2
14. Cheng X, Veverka V, Radhakrishnan A, Waters LC, Muskett FW, Morgan SH, et al. Structure and interactions of the human programmed cell death 1 receptor. J Biol Chem. Apr 2013; 288(17):11771–11785. https://doi.org/10.1074/jbc.M112.448126
15. Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol. Sep 2013; 6(74).
16. Muppidi MR, George S. Immune Checkpoint Inhibitors in Renal Cell Carcinoma. Journal of Targeted Therapies in Cancer 2015. 2015; 4:47–52.
17. He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 Pathway in Tumor Immune Microenvironment and Treatment for Non-Small Cell Lung Cancer. Scientific Reports. Aug 2015; 5(13110).
18. Kleponis J, Skelton R, Zheng L. Fueling the engine and releasing the break: combinatorial therapy of cancer vaccines and immune checkpoint inhibitors. Cancer Biol Med. Sep 2015; 12(3):201–208.
19. Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, et al. Therapeutic Cancer Vaccines: Past, Present and Future. Adv Cancer Res. 2013; 119:421–475. https://doi.org/10.1016/B978-0-12-407190-2.00007-1
20. Buratto M, Singh N, Heery CR, Gulley JL, Mada RA. Exploiting synergy: immune-based combinations in the treatment of prostate cancer. Front Oncol. December 12, 2014; 4(351):1–10.
21. Ali OA, Lewis SA, Dranoff G, Mooney DJ. Vaccines combined with immune checkpoint antibodies promote cytotoxic T cell activity and tumor eradication. Cancer Immunology Research, Dec 15, 2015; p.
22. Tian H, Shi G, Wang Q, Li Y, Yang Q, Li C, et al. A novel cancer vaccine with the ability to simultaneously produce anti-PD-1 antibody and GM-CSF in cancer cells and enhance Th1-biased antitumor immunity. Signal Transduction and Targeted Therapy. October 15, 2016; 1(16025).
23. Li B, VanRoey M, Wang C, hui Timothy Chen T, Korman A, Jooss K. Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor-secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin Cancer Res. 2009; 15(5):1623–1634. https://doi.org/10.1158/1078-0432.CCR-08-1825
24. Soares KC, Rucki AA, Wu AA, Olin K, Xiao Q, Chai Y, et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother. Jan 2015; 38 (1):1–11. https://doi.org/10.1097/CJI.0000000000000662
25. Fu J, Malm IJ, Kadavakkara DK, Levitsky H, Pardoll D, Kim YJ. Preclinical evidence that PD1 blockade cooperates with cancer vaccine TEGVAX to elicit regression of established tumors. Cancer Res. Aug 1, 2014; 74(15):4042–4052. https://doi.org/10.1158/0008-5472.CAN-13-2685
26. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, et al. PD-1 blockade by CT-011, an anti PD-1 antibody, enhances ex-vivo T cell responses to autologous dendritic/myeloma fusion vaccine. J Immunother. Jun 2011; 34(5):409–418. https://doi.org/10.1097/CJI.0b013e31821ca6c6
27. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with vaccine tumor effectively restores T-cell rejection function in tumors. Cancer Res. June 15, 2013; 73 (12):3591–3603. https://doi.org/10.1158/0008-5472.CAN-12-4100
28. Serre R, Benzekry S, Padovani L, Meille C, Nicolas Andre JC, et al. Mathematical Modeling of Cancer Immunotherapy and Its Synergy with Radiotherapy. Cancer Res. September 2016; 76(17):4931–40. https://doi.org/10.1158/0008-5472.CAN-15-3567
29. Joshi B, Wang X, Banerjee S, Tian H, Matzavinos A, Chaplain MAJ. On immunotherapies and cancer vaccination protocols: a mathematical modelling approach. J Theor Biol. Agust 2009; 259(4):820–827. https://doi.org/10.1016/j.jtbi.2009.05.001
30. vG de Pillis L, Gu W, Radunsky AE. Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J Theor Biol. February 2006; 238(4):841–862. https://doi.org/10.1016/j.jtbi.2005.06.037
31. Zandarashvili L, Sahu D, Lee K, Lee YS, Singh P, Rajarathnam K, et al. Real-time kinetics of high-mobility group box 1 (HMGB1) oxidation in extracellular fluids studied by in situ protein NMR spectroscopy. J Biol Chem. April 2013; 288(17):11621–11627. https://doi.org/10.1074/jbc.M113.449942
32. van de Laar L, Coffer PJ, Wolfman AM. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood. April 2012; 119(15):3383–3393. https://doi.org/10.1182/blood-2011-11-370130
33. Mautea RL, Gordonia SR, Mayere AT, McCrackena MN, Natarajan A, Ring NG, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci USA. Nov 2015; 112(47):E6506–14. https://doi.org/10.1073/pnas.1519623112
34. D’Acunto B. Computational Methods for PDE in mechanics. Series on Advances in Mathematics for Applied Sciences- Vol.67. Singapore : World Scientific; 2004.
35. Butteja MJ, Pena-Cruz V, Kima MJ, Freemanc GJ, Sharpe AH. Interaction of human PD-L1 and B7-1. Mol Immunol. August 2008; 45(13):3567–3572. https://doi.org/10.1016/j.molimm.2008.05.014
36. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. March 2012; 4(127):127ra37. https://doi.org/10.1126/scitranslmed.3003689
37. Taube JM, Klein A, Brahera JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. October 2014; 20(19):5064–5074. https://doi.org/10.1158/1078-0432.CCR-13-3271
38. Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schapers K, Sauter PR, et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol. 2001; 19:145–156. https://doi.org/10.1200/JCO.2001.19.1.145
39. Laheru D, Lutz E, Burke J, Biedrzycki B, Solt S, Onners B, et al. Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide
for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res. 2008; 14:1455–1463. https://doi.org/10.1158/1078-0432.CCR-07-0371

40. Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin B, Herman J, et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A Phase II trial of safety, efficacy, and immune activation. Ann Surg. 2011; 253:328–335. https://doi.org/10.1097/SLA.0b013e3181f2d271c

41. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013; 369:134–44. https://doi.org/10.1056/NEJMoa1305133

42. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010; 28:3167–3175. https://doi.org/10.1200/JCO.2009.26.7609

43. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012; 366:2443–2454. https://doi.org/10.1056/NEJMoa1200690

44. Swart M, Verbruggen I, Beltman JB. Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy. Front Oncol. 2016; 6(233):1–16.

45. Lee CK, Gebski VJ, Coates AS, Veillard AS, Harvey V, Tattersall MH, et al. Trade-offs in quality of life and survival with chemotherapy for advanced breast cancer: mature results of a randomized trial comparing single-agent mitoxantrone with combination cyclophosphamide, methotrexate, 5-fluorouracil and prednisone. Springerplus. August 2013; 21(391):1–10.

53. Shui YB, Wang X, Hu JS, Wang SP, Garcia CM, et al. Vascular endothelial growth factor expression and signaling in the lens. Invest Ophthalmol Vis Sci. 2003; 44(9):3911–3919. https://doi.org/10.1167/iovs.02-1226
60. Fiehn C, Wermann M, Pezzutto A, Hufner M, Heilig B. Plasma GM-CSF concentrations in rheumatoid arthritis, systemic lupus erythematosus and spondyloarthropathy. Z Rheumatol. 1992; 51(3):121–126. PMID: 1502858

61. Dale DC, Liles WC, Llewellyn C, Price TH. Effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on neutrophil kinetics and function in normal human volunteers. Am J Hematol. 1998; 57 (1):7–15. https://doi.org/10.1002/(SICI)1096-8652(199801)57:1<7::AID-AJH2>3.0.CO;2-0 PMID: 9423810

62. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubat T, Yagita H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996; 8(5):765–772. https://doi.org/10.1093/intimm/8.5.765 PMID: 8671665

63. Human PD-L1/B7-H1/CD274 Protein. Sino Biological Inc, http://www.sinobiological.com/PD-L1-B7-H1-CD274-Protein-g-533.html;

64. Marino S, Hogue I, Ray C, Kirschner D. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol. 2008; 254(1):178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 PMID: 18572196

65. Hao W, Schlesinger LS, Friedman A. Modeling Granulomas in Response to Infection in the Lung. PLoS ONE. March 17, 2016; 11(3):e0148738. https://doi.org/10.1371/journal.pone.0148738 PMID: 26986986

66. Rini B. Future approaches in immunotherapy. Semin Oncol. Oct 2014; 41(5, Suppl 5):S30–S40. https://doi.org/10.1053/j.seminoncol.2014.09.005 PMID: 25438998