Behcet disease (BD) is a chronic inflammatory disorder, characterized by a wide range of clinical manifestations, including recurrent oral and genital ulcers, skin lesions, and uveitis. BD also affects all types and sizes of blood vessels, various joints, the central nervous system, lungs, and gastrointestinal system. Despite of these clinical manifestations, the etiologies of BD remain elusive, and the host genetic factors and environmental features have been attributed to the development of BD.

Angiotensin-converting enzyme (ACE), also known as peptidyl dipeptidase A or kininase II, encoded by the ACE gene (GenBank NM_000789.2), is located on the long arm of chromosome 17. The local renin—angiotensin system (RAS) in the vessel walls plays a crucial role in the endothelial control of vascular tonus and contributes to the inflammatory process via stimulation of cytokine production. ACE plays a key role in RAS as well as in kallikrein–kininogen systems by hydrolyzing inactive angiotensin I to active angiotensin II and inactivate the bradykinin (naturally occurring inflammatory peptides). Angiotensin II also acts as a potent pro-inflammatory modulator.

A common 287 base pair Ins/Del (I/D) polymorphism (ALU repeat sequence) has been reported in intron 16 of ACE gene and known to be associated with serum levels of circulating ACE. Subjects having the extra fragment (Ins allele) is associated with lower circulating ACE and tissue activity, and the absence of this fragment (Del allele) is associated with a comparatively higher ACE activity. However, heterozygous (Ins/Del) subjects display an intermediate level of ACE activity.
Given the functional significance of this genetic variant, it is expected that ACE I/D polymorphism is possibly associated with predisposition to BD. Thus several case–control studies have been conducted to investigate the association between ACE I/D polymorphism and BD in different populations.\(^{6-13}\) But the existing studies have yielded inconsistent or conflicting results. These controversies may be partly ascribed to small sample sizes, various types of genotyping quality, false-positive results, and publication biases. Meta-analysis is a powerful tool for analyzing cumulative data from studies where individual sample sizes are small and have lower statistical power.\(^{14}\) Hence, the quantitative synthesis may provide clearer evidence on the association of such genetic polymorphisms with BD. We therefore performed a meta-analysis of the published studies to clarify this inconsistency and to establish a comprehensive picture of the relationship between ACE I/D polymorphisms and BD.

METHODS

Published reports search strategy and data extraction

We carried out a PubMed (Medline) and EMBASE searches and covered all research papers published with a combination of the following key words: “ACE gene or ACE polymorphisms and Behcet disease” (last updated on February 2013). We evaluated potentially relevant genetic association studies by examining their titles and abstracts, and all published studies matching the eligible criteria were retrieved.

Inclusion and exclusion criteria

To minimize heterogeneity and facilitate the interpretation of our results, studies included in the current meta-analysis had to meet all the following criteria: (a) evaluation of the ACE I/D and BD risk, (b) use of a case–control design, (c) recruitment of confirmed BD patients and BD free controls, (d) have available genotype frequency in case and control, and (e) have publication in English language. Additionally, when the case–control study was included by more than 1 article using the same case series, we selected the study that included the largest number of individuals. The major reasons for excluding studies were as follows: (a) overlapping data, (b) case-only studies, (c) family-based studies, and (d) review articles.

Data extraction and quality assessment

For each publication, the methodological quality assessment and data extraction were independently abstracted in duplicate by 2 independent investigators using a standard protocol and data-collection form according to the inclusion criteria listed above to ensure the accuracy of the data. In the case of disagreement on any item of the data, the problem was fully discussed to reach a consensus. Characteristics abstracted from the studies included the name of the first author, the year of publication, the country of origin, the sources of cases and controls, the number of cases and controls, the types of studies, genotype frequencies, and minor allele frequencies in the controls with Hardy–Weinberg (HWE) \(P\) value.

Statistical analysis

We calculated the combined ORs and corresponding 95% CIs to evaluate the association between the ACE I/D polymorphism and BD risk. Heterogeneity in meta-analysis refers to the variation in study outcomes between different studies. Heterogeneity assumption was checked by the chi-square–based Q-test,\(^{15}\) and a \(P\) value >.10 indicates a lack of heterogeneity among the studies. Besides this, the pooled OR was calculated by the fixed effects model;\(^{16}\) otherwise, the random-effects model was used.\(^{17}\) In addition, \(I^2\) statistics was used to quantify inter-study variability.\(^{18}\) HWE in the control group was assessed via chi-square test and a \(P\) value <.05 was considered significant. Publication bias was assessed by the visual inspection of funnel plots in which the standard error of log (OR) of each study was plotted against its log (OR). An asymmetric plot suggests a possible publication bias. Funnel plot asymmetry was also assessed by Egger linear regression test, a linear regression approach to measure funnel plot asymmetry on the natural logarithm scale of the OR. The significance of the intercept was determined by the \(t\)-test (\(P<.05\) was considered representative of statistically significant publication bias).\(^{19}\) All statistical analysis for meta-analysis was performed by comprehensive meta-analysis (CMA) V2 software (Biostat, USA). CMA V2 has several advantages over other software available for computing meta-analyses \(\text{(http://www.meta-analysis.com/pages/comparisons.html)}\).

RESULTS

Characteristics of published studies

A total 13 articles were achieved by published report searches from PubMed (Medline) and EMBASE. All retrieved articles were examined by reading the titles and abstracts, and the full texts for the potentially relevant publications were further checked for their suitability for this meta-analysis (Figure 1). Besides the database search, the reference lists of the retrieved articles were
screened for other potential articles. Studies either using ACE polymorphism to predict survival or considering ACE variants as indicators for response to therapy were excluded. Studies investigating the levels of ACE mRNA or protein expression or review article were also excluded. We included only case–control or cohort design studies having frequency of all 3 genotypes. After careful screening and following inclusion and exclusion criteria, 5 eligible original published studies were included in this study (Table 1). The distribution of genotypes in the controls did not deviate from HWE (Table 2).

Publication bias

Begg funnel plot and Egger test were performed to assess the publication bias in the studies included for meta-analysis. The shape of funnel plots (figures not shown) and Egger test did not show any evidence of publication bias (Table 3).

Test of heterogeneity

Heterogeneity among studies was assessed by Q test and I2 statistics. Results are shown in Table 3. Heterogeneity was not observed in all the models, thus the fixed effects model was used for calculating OR and 95% CI.

Meta-analysis results

We pooled all the 5 studies that comprised 676 controls and 534 BD cases and used fixed effects model (based on heterogeneity test) to assess the overall association between the ACE I/D polymorphism and the risk of BD. The variant D allele was significantly associated with the risk of developing BD in terms of frequency with when compared with wild allele (D vs I: P=0.002; OR=1.321, 95% CI=1.111–1.570). Similarly homozygous mutant genotype DD significantly altered the risk for the occurrence of BD as compared with the wild-type homozygous II genotype (DD vs II: P=0.004; OR=1.573, 95% CI=1.156–2.141). In addition, the analysis of the dominant genetic model indicated 1.6-fold increased risk of developing BD (DD vs II+ID: P=0.001; OR=1.610, 95% CI=1.242–2.087) (Figure 2). However, Heterozygous genotype ID (ID vs II: P=0.322; OR=1.047, 95% CI=0.772–1.420) and recessive model (TT+CT vs CC: P=0.194; OR=0.853, 95% CI=0.623–1.169) did not demonstrate an increased risk of developing BD compared with the II genotype (Figure 3).

DISCUSSION

It is well known that BD is a multifactorial disease in which multiple genetic factors in combination with environmental factors and infectious agents are probably of importance in determining susceptibility. As a result, the number of candidate genes was investigated to assess the probable association between modulations of BD risk across different populations. The prevalence and incidence of the condition and its constituent manifestations show marked variability among different populations.20 Unbiased epidemiological investigations with large the sample sizes of gene polymorphisms can provide insights into the relationship between candidate genes and diseases. In the present study, we performed a meta-analysis to examine the relationship between the ACE I/D variant in the intron 16 of the ACE gene and the risk of BD. The purpose of this study was to summarize the collected data of 5 studies and explore whether an association exists between the ACE I/D and the occurrence of BD risk.

ACE is a membrane-bound enzyme localized in endothelial cells and it is also present in the smooth muscle cells and the adventitial layers of the blood vessels.21 Endothelial cell injury and/or pathologic activation are characteristic features of BD, and this enzyme plays an

Figure 1. Flow diagram identifying potential studies for meta-analysis.
ACE gene increased risk of Behçet disease

Integral role in the regulatory system responsible for endothelial control. Increased ACE gene expression and its activity in the vessel wall led to an increased conversion of angiotensin I to angiotensin II. Angiotensin II is a growth factor that plays an active role in vascular inflammation. Additionally, early response to inflammation is associated with an upregulation of angiotensinogen levels. A high activity of ACE has been observed in inflammatory sites of monocytes/macrophages. Studies have indicated that ACE inhibition improves endothelial function. The levels of tissue and circulating ACE activities are regulated under tight genetic control. Genetic variation in ACE gene plays a major role in determining ACE levels in human T lymphocytes. Hence, ACE I/D polymorphism could be a genetic factor for inter-individual differences in susceptibility to BD.

In the present study, we combined published results from 5 case–control studies and found an overall increased BD risk for carriers of 1 and 2 variants allele compared with the wild allele (I) and homozygous (II) genotype. When we stratified by dominant and recessive models, we observed a statistically significant association between ACE I/D polymorphism and BD risk.

Table 1. Main characteristics of all five studies included in the meta-analysis.

First authors	Year	Country	Study design	Genotyping method	Controls	Cases	Source of genotyping
Yigit et al	2013	Turkey	HB	PCR	300	266	Blood
Dursun et al	2009	Turkey	HB	PCR	90	73	Blood
Ozturk et al	2004	Turkey	HB	PCR	30	90	Blood
Chang et al	2004	Korea	HB	PCR	106	70	Blood
Turgut et al	2005	Turkey	HB	PCR	150	35	Blood

HB-Hospital-based

Table 2. Distribution of gene polymorphism of studies included in the meta-analysis.

Authors and year	Control	Case							
	Genotype	Minor allele	Genotype	Minor allele	HWE				
	I	D	D	MAF	I	D	D	MAF	P value
Yigit et al 2013	128	95	77	0.41	112	50	104	0.48	<.001
Dursun et al 2009	23	35	32	0.55	12	29	32	0.63	.26
Ozturk et al 2004	5	16	9	0.56	12	56	22	0.55	.63
Chang et al 2004	42	44	20	0.39	25	28	17	0.44	.17
Turgut et al 2005	19	44	87	0.72	2	7	26	0.84	.008

MAF-Minor allele frequency, **HWE**-Hardy Weinberg equilibrium

Table 3. Statistics to test publication bias and heterogeneity in meta-analysis.

Comparisons	Intercept	95% Confidence Interval	P value	95% Confidence Interval	P value	Q value	P heterogeneity	P (%)	Model used for meta-analysis
D vs I	0.19	-3.44 to 3.83	.87	2.88	.57	<0.0001	Fixed		
DD vs II	0.21	-1.72 to 2.14	.75	1.27	.86	<0.0001	Fixed		
ID vs II	2.23	-0.30 to 4.78	.06	6.28	.17	36.30	Fixed		
DD+ID vs II	1.26	-0.09 to 2.63	.05	2.52	.64	<0.0001	Fixed		
DD vs II+ID	-1.59	-5.10 to 1.91	.24	3.96	.41	<0.0001	Fixed		
sive genetic model, the dominant model (DD vs II+ID) had an increased risk of BD (1.6-fold). It has been speculated that ACE I/D polymorphism accounts for approximately one-half of the variance in ACE plasma levels. In earlier studies, Lee et al also reported the overall risk of ACE I/D polymorphism with BD risk.

Chang et al was the first to investigate the association between the incidence of BD and ACE I/D polymorphism. Thereafter, more and more studies were conducted to further assess the association of this polymorphism with BD; however, the results are inconsistent. Our meta-analysis result suggested significant association of ACE I/D polymorphism with the risk of developing BD. However, the etiology of BD is not fully understood and the single genetic variant is usually insufficient to predict the risk of this disease. One important property of this gene polymorphism is that their incidence can vary substantially between different racial or ethnic populations.

Meta-analysis is a highly cost-effective method that combines the findings of independent similar studies and derives a definitive conclusion. In this study we investigated the well-known I/D polymorphism of ACE gene and BD risk and found that this polymorphism is associated with an increased risk of BD. Our study has some advantages; first, it provides an update for this polymorphism and BD risk. Second, our results indicate that this polymorphism is associated with an increased risk of BD. Third, the methodological issues for meta-analysis, such as heterogeneity and publication bias, are well investigated.

Some limitations of our meta-analysis should be acknowledged when interpreting the results. First, since our assessment included published studies in English that were indexed by the selected electronic databases for data analysis, it is possible that some relevant studies in other databases or some unpublished studies were not included, and this may have biased our conclusions. Second, we did not study the possible association with BD severity due to unavailability of data in the included studies.

In conclusion, we found that I/D polymorphism of ACE gene could be a risk factor for BD. However, the sample size was small in our study, future well-designed studies including larger sample sizes with environmental factors are necessary to validate the role of this association in different populations. Such studies might eventually lead to a better and more comprehensive understanding of the association between the ACE gene polymorphism and BD risk.
REFERENCES

1. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3:e297.

2. Mendoza-Pinto C, García-Carrasco M, Jiménez-Hernández M, Jiménez-Hernández C, Riebling-Navarro C, Nava Zavala A, Vera Recabarren M, Espinosa G, Jara Quezada J, Cervera R. Etiopathogenesis of Behcet’s disease. Autoimmun Rev 2010; 9: 241-245.

3. Sakane T, Takeda M, Suzuki N, Inaba G. Behcet’s disease. N Engl J Med 1999; 341: 1284-1291.

4. Mattier MG, Hubert C, Alhenc?Gelas F, Roeckel N, Corvol P, Soubrier F. Angiotensin I converting enzyme gene is on chromosome 17. CytoGenet Cell Genet 1989;51:1041.

5. Henrion D, Benessiano J, Lévy B: In vitro modulation of a resistance artery diameter by the tissue renin-angiotensin system of a large donor artery. Circ Res 1997;80:119-115.

6. Holla L, Vtak? A, Znojil V, Sisková L, Vácha J: Association of 3 gene polymorphisms with atrophic diseases. J Allergy Clin Immunol 1999;103: 702-708.

7. Kranzhofer R, Schmidt J, Pfeiffer CA, Hagi S, Libby P, Kubler W: Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999;19:1623-1629.

8. Kritchevsky SB, Nicklas BJ, Visser M, Simonick EM, Newman AB, Harris TB, Lange EM, Penninx BW, Goodpaster BH, Satterfield S, Colbert LH, Rubin SM, Pahor M. Angiotensin-converting enzyme insertion/deletion genotype, exercise, and physical decline. JAMA 2005;294: 691-698.

9. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism of ACE gene is associated with Behcet disease in a Turkish population. Mol Biol Rep 2012; 40: 365-358.

10. Dursun A, Duralbaba-Dursun HG, Dursun R, Baris S, Akduman L. Angiotensin-converting enzyme gene and endothelial nitric oxide synthase gene polymorphisms in Behcet’s disease with or without ocular involvement. Inflamm Res 2009; 58: 401-405.

11. Oztürk MA, Çalışmaz K, Kiraz S, Ertelii I, Onat AM, Ureten K, Özbalkan Z, Hazedaro?lu IC: Angiotensin-converting enzyme gene polymorphism in Behcet’s disease. Clin Rheumatol 2004; 23: 142-146.

12. Chang HK, Kim JU, Lee SS, Yoo DH. Lack of association between angiotensin converting enzyme gene polymorphism and Korean Behcet’s disease. Ann. Rheum Dis 2004;63:106-107.

13. Turgut S, Turgut G, Atalay EO, Atalay A: Angiotensin-converting enzyme I/D polymorphism in Behcet’s disease. Med Princ Pract 2005; 14: 213-216.

14. Cohn LD, Becker BJ. How Meta-Analysis Increases Statistical Power. Psychological Methods 2003;8: 243-253.

15. Wu R, Li B: A multiplicative-epistatic model for analyzing interspecific differences in outcrossing species. Biometrics 1999; 55:355-365.

16. Mantel N, Haenszel W: Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719-748.

17. DerSimonian R, Laird N: Meta-analysis in clinical trials. Control Clin Trials 1986;7: 177-188.

18. Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560.

19. Egger M, Davey Smith G, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634.

20. Barnes CG, Yazici H: Behcet’s syndrome. Rheumatology 1999;38: 1171-1174.

21. Erdos EG. Angiotensin I converting enzyme and the changes in our concepts through the years. Hypertension 1990;16: 363–370.

22. Ozkaner D, Duzgun H, Gurler A, Tutkak H, Tokgo ZG: Plasma von Willebrand factor, tissue plasminogen activator, plasminogen activator inhibitor, and antithrombin III levels in Behcet’s disease. Scan J Rheumatol 1995; 24: 376-382.

23. Kaufman KM, Kelly J, Gray-McGuire C, Asundi N, Yu H, Reid J, Baird V, Hutchings D, Bruner G, Scofield RH, Moser K, Harley JB: Linkage analysis of angiotensin-converting enzyme (ACE) insertion/deletion polymorphism and systemic lupus erythematosus. Mol Cell Endocrinol 2001;177: 81–85.

24. Muller DN, Bohlen J, Hiligers KF, Dragun D, Costeuropeaux O, Ménard J, Luft FC: Vascular angiotensin-converting enzyme expression regulates local angiotensin II. Hypertension 1997; 29: 98-104.

25. Dzau VJ. Theodore Cooper Lecture: Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension 2001;37: 1047-1052.

26. Brasier AR, Li J: Mechanisms for inducible control of angiotensin gene transcription. Hypertension 1999; 27: 485-497.

27. Dzau VJ, Pratt RE, Barry GJ, Momose N, Gibbons GH, Dzau VJ: Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1996; 94: 2756-2767.

28. Nakamura M, Funakoshi T, Yoshida H, Arakawa N, Suzuki T, Hiramori K: Endothelium-depen- dent vasodilation is augmented by angiotensin converting enzyme inhibitors in healthy volun- teers. J Cardiovasc Pharmacol 1992; 20: 949-954.

29. Cesterosoue O, Allegrini J, Lopez M, Alhenc-Gelas F. Angiotensin I-converting enzyme in human circulating mononuclear cells: genetic polymorphism of expression in T-lymphocytes. Biochem J 1993; 290: 33-40.

30. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343-1348.

31. Lee YH, Choi SJ, Ji JD, Song DG: Associations between the angiotensin-converting enzyme insertion/deletion polymorphism and susceptibility to vasculitis: a meta-analysis. J Renin Angioten- sin Aldosterone Syst 2012; 13: 196-201.

32. Jorde B, Wooding SP: Genetic variation, classification and race. Nat Genet 2004; 36:28-33.

33. Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. BMJ 1997;315: 1533-1537.