Abstract. We deal with Bedford-Taylor type capacities on almost complex surfaces.

1. Introduction

Let \((M,J)\) be an almost complex surface (almost complex manifold of the real dimension 4). For \(u,v \in W^{1,2}_{loc}(\Omega)\), where \(\Omega \subset M\) is a domain, we can define a wedge product

\[i\partial \bar{\partial} u \wedge i\partial \bar{\partial} v := -i\partial \bar{\partial} (i\partial u \wedge \bar{\partial} v) + \partial (\partial u \wedge \bar{\partial} v) + \bar{\partial} (\theta \partial u \wedge \bar{\partial} v) - \theta \partial u \wedge \bar{\partial} v \]

as a \((2,2)\) current.

If \(u,v\) are \(C^2\) functions then it is the standard wedge product of continuous forms. If \(u,v \in W^{1,2}_{loc}(\Omega)\) are plurisubharmonic then this is a regular Borel measure, see \([P2, P3]\) and \((i\partial \bar{\partial} u)^2\) is called the Monge-Ampère operator.

The goal of this article is to study plurisubharmonic functions, the Monge-Ampère operator and the relative capacity on almost complex surfaces.

All results proved in the paper, in the case of \(\mathbb{C}^n\), are proved in the classical papers \([B-T1, B-T2]\). The main difference between \(\mathbb{C}^n\) and almost complex manifold (with the not necessary integrable almost complex structure) is the fact that for plurisubharmonic function \(u\), the positive current \(i\partial \bar{\partial} u\) is not necessary closed. Thus the pluripotential theory on almost complex manifold is in some sense similar to pluripotential theory on hermitian manifold where the current \(i\partial \bar{\partial} u + \omega\) is not closed too. However, the theory in the non-integrable case is much

\[\text{The author was partially supported by the NCN grant 2013/08/A/ST1/00312.} \]

\[\text{2010 Mathematics Subject Classification. } 32W20,32Q60,32U05,32U40,35J60. \]

\[\text{Key words and phrases. } \text{Monge-Ampère operator, almost complex manifold, plurisubharmonic function.} \]
more difficult. This is, among others, because in case of hermitian manifolds non-closed part of $i\partial \bar{\partial} u + \omega$ is just the hermitian form ω which is smooth and does not depend on u but in our situation non-closed part of $i\partial \bar{\partial} u$ is only in L^2 (at least for bounded u) and strongly depends on u.

2. Preliminaries

2.1. Almost complex manifolds and plurisubharmonic functions. We say that (M, J) is an almost complex manifold if M is a manifold and J is a C^∞ smooth endomorphism of the tangent bundle TM, such that $J^2 = -\text{id}$. The real dimension of M is even in that case. We will denote by n the complex dimension of M: $n = \dim \mathbb{C} M = \frac{1}{2} \dim \mathbb{R} M$. All definitions below are exactly the same as in the case of complex manifolds.

As on complex manifolds we can define here (p, q)-forms and more generally (p, q)-currents. We have the decomposition of the exterior differential:

$$d = \partial + \bar{\partial} - \theta - \bar{\theta},$$

where operators ∂, $\bar{\partial}$, $-\theta$ and $-\bar{\theta}$ are respectively $(1, 0)$, $(0, 1)$, $(2, -1)$ and $(-1, 2)$ parts of d. On the level of functions we have

$$d = \partial + \bar{\partial}.$$

Let $\Omega \subset M$ be a domain and $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$. In \mathbb{C} we have the standard almost complex structure J_{st}. We say that a function $\lambda: \mathbb{D} \to D$ is J-holomorphic if $d\lambda J_{st} = J d\lambda$. We say that a function $u: \Omega \to [-\infty, +\infty)$ is plurisubharmonic iff

1. $u \neq -\infty$
2. u is upper-semicontinuous and
3. $u \circ \lambda$ is subharmonic for any J-holomorphic function $\lambda: \mathbb{D} \to \Omega$.

If u is plurisubharmonic then it is locally integrable and $i\partial \bar{\partial} u \geq 0$, see [P]. The converse was proved by R. Harvey and B. Lawson in [H-L]. Namely they proved that, if $u \in L^1_{loc}$ and $i\partial \bar{\partial} u \geq 0$ then a function \tilde{u}, given by

$$\tilde{u}(z) = \text{ess lim sup} u(w),$$

is a plurisubharmonic function which is equal a.e. to the function u.

We say that a function u on Ω is strictly plurisubharmonic iff for any $\varphi \in C^\infty_0(\Omega)$ there is $\varepsilon_0 > 0$ such that the function $u + \varepsilon \varphi$ is plurisubharmonic for $\varepsilon > 0$.

We say that a domain $\Omega \Subset M$ is strictly pseudoconvex (of class C^∞), if there is a strictly plurisubharmonic function ρ of class C^∞ in
a neighborhood of Ω, such that $\Omega = \{ \rho < 0 \}$ and $\nabla \rho \neq 0$ on $\partial \Omega$. We say that M is almost Stain if there is exhausting smooth strictly plurisubharmonic function on M.

2.2. **Dirichlet problem for the Monge-Ampère equation.** Let $\Omega \subset M$ be strictly pseudoconvex domain. The following Theorem will be useful for us.

Theorem 1. There is a unique solution u of the Dirichlet problem:

\[
\begin{cases}
 u \in \mathcal{PSH}(\Omega) \cap C^\infty(\bar{\Omega}) \\
 (i\partial \bar{\partial} u)^n = dV \text{ in } \Omega \\
 u = \varphi \text{ on } \partial \Omega
\end{cases},
\]

where $\varphi \in C^\infty(\bar{\Omega})$ and dV is the volume form on a neighbourhood of $\bar{\Omega}$.

The proof of this theorem in [P1] has a gap (in the part about the second order estimate). The mistake is corrected in recent work of J. Chu, V. Tosatti and B. Weinkove [C-T-W].

3. **Estimates**

From here, we will assume that M is an almost complex surface.

The following proposition was proved in [P3].

Proposition 2 (proposition 4.2 in [P3]). Let $u \in \mathcal{PSH} \cap W^{1,2}_{\text{loc}}(\Omega)$ then:

i) If $v \in \mathcal{PSH}(\Omega)$ and $v \geq u$, then $v \in W^{1,2}_{\text{loc}}(\Omega)$;

ii) If a sequence u_j of plurisubharmonic functions decreases to u, then it converges in $W^{1,2}_{\text{loc}}$.

Note here that i) imply that bounded plurisubharmonic functions are in $W^{1,2}$. From the proof of the above in [P1] we also get

Proposition 3. Let $D \subset \Omega$, $u, v \in \mathcal{PSH}(\Omega)$, $u \leq v \leq 0$ and $u \in W^{1,2}(\Omega)$. Then $v \in W^{1,2}(D)$ and $\|v\|_{W^{1,2}(D)} \leq C\|u\|_{W^{1,2}(\Omega)}$, where the constant C depends only on D and Ω.

Note that Błocki in [B2] proved above estimate for subharmonic functions in \mathbb{R}^n.

As a Direct consequence we get the following

Corollary 4. If $K \subset \Omega$ and u bounded plurisubharmonic function then

\[\|u\|_{W^{1,2}(K)} \leq C\|u\|_{\Omega}\]

Proof: By Stokes’ theorem we get

\[
\int_{\Omega} i\partial \bar{\partial} u \wedge i\partial \bar{\partial} v = \int_{\Omega} \theta \bar{\partial} u \wedge \bar{\partial} v - \theta \partial u \wedge \bar{\partial} v,
\]

and thus the statement follows. \square
Theorem 5 (Chern-Levine-Nirenberg inequalities). Let $K \subset \Omega$ and $u, v \in PSH \cap W^{1,2}(\Omega)$, then
\[
\int_K i\partial\bar{\partial}u \wedge i\partial\bar{\partial}v \leq C\|u\|_{W^{1,2}(\Omega)}\|v\|_{W^{1,2}(\Omega)},
\]
and if in addition u, v are bounded then
\[
\int_K i\partial\bar{\partial}u \wedge i\partial\bar{\partial}v \leq C\|u\|_{\Omega}\|v\|_{\Omega}.
\]

Proof: Take a nonnegative test function φ which is equal 1 on K. By definition of the current $i\partial\bar{\partial}u \wedge i\partial\bar{\partial}v$ and the integration by parts we can estimate:
\[
\int_K \varphi i\partial\bar{\partial}u \wedge i\partial\bar{\partial}v
\leq \int_\Omega (i\partial\bar{\partial}\varphi i\partial\bar{\partial}u \wedge \bar{\partial}v - d\varphi(\partial u \wedge \bar{\partial}v + \theta \bar{\partial}u \wedge \bar{\partial}v))
\]
\[
+ \int_\Omega \varphi(\theta \bar{\partial}u \wedge \bar{\partial}v - \theta \bar{\partial}u \wedge \bar{\partial}v)
\leq C\|u\|_{W^{1,2}(\Omega)}\|v\|_{W^{1,2}(\Omega)},
\]
where C depends on φ and J. The second part follows from the first one and Corollary 4. \square

4. Convergence Theorem for Increasing Sequences

As in integrable case we define the relative capacity of the Borel subset E of Ω as
\[
cap(E, \Omega) = \sup\{ \int_E (i\partial\bar{\partial}u)^2 : u \in PSH(\Omega), -1 \leq u \leq 0 \}.
\]
We shall also consider the following set function associated to the hermitian metric ω:
\[
cap_\omega(E, \Omega) = \sup\{ \int_E (i\partial\bar{\partial}u) \wedge \omega : u \in PSH(\Omega), -1 \leq u \leq 0 \}.
\]
When $E \subset \Omega$ then by the Chern-Levine-Nirenberg inequalities we have $\cap(E, \Omega) < +\infty$ and thus if there is a bounded function $h \in PSH(\Omega)$ which satisfies $\omega \leq i\partial\bar{\partial}h$ we also have $\cap_\omega(E, \Omega) < +\infty$. We say that a sequence u_k of plurisubharmonic functions defined on Ω converge with respect to capacity to a function u if for any compact set $K \subset \Omega$ and $t > 0$
\[
\lim_{k \to \infty} \cap(K \cap \{|u - u_k| > t\}, \Omega) = 0.
\]
In the same way we define convergence with respect to \cap_ω.
Proposition 6. Let \(u_k \) be a sequence of plurisubharmonic functions which decreases to a bounded plurisubharmonic function \(u \). Then it converge with respect to \(\text{cap}_\omega \).

Proof. We can assume that all \(u_k \) are equal outside compact set \(E \subset \Omega \). We fix \(v \in \mathcal{P}SH(\Omega) \), \(-1 \leq v \leq 0\). Using integration by parts we can estimate

\[
0 \leq I_k = \int_{\Omega} (u_k - u)i\partial \bar{\partial}v \wedge \omega
= -\int_{\Omega} i\partial(u_k - u) \wedge \bar{\partial}v \wedge \omega + \int_{\Omega} i(u_k - u)\bar{\partial}v \wedge \partial \omega
\leq C\|u_k - u\|_{W^{1,1}(K)}\|v\|_{W^{1,1}(K)}.
\]

By Propositions 2 and 3 we get that \(I_k \to 0 \) as \(k \to \infty \) and (as in [K]) the Proposition follows. \(\square\)

Proposition 7. Let \(u \) be a bounded plurisubharmonic function on \(\Omega \) and \(\varepsilon > 0 \). Then, there exists an open set \(U \subset \Omega \) with \(\text{cap}_\omega(U, \Omega) < \varepsilon \) and such that \(u \) restricted to \(\Omega \setminus U \) is continuous.

Using previous result and regularization result from [P2] (see also [H-L-P]) we can prove it exactly like in the case of domains in \(\mathbb{C}^n \) (see for example proof of theorem 1.13 in [K]).

Again exactly as in \(\mathbb{C}^n \), from above Proposition we get

Corollary 8. Let \(\mathcal{U} \) be a uniformly bounded family of plurisubharmonic functions in \(\Omega \). Suppose that \(u, v \in \mathcal{U} \) and \((v_k) \subset \mathcal{U} \) and

\[i\partial \bar{\partial}v_k \to i\partial \bar{\partial}v.\]

Then

\[ui\partial \bar{\partial}v_k \to ui\partial \bar{\partial}v.\]

Proposition 9. Let \(\mathcal{U} \) be a uniformly bounded family of plurisubharmonic functions in \(\Omega \). Suppose that \((u_k), (v_k) \subset \mathcal{U} \) are increase to \(u \) and \(v \) respectively. Then

\[i\partial u_k \wedge \bar{\partial}v_k \to i\partial u \wedge \bar{\partial}v.\]

Proof. First we will prove that

\[(1) \quad u_k \bar{\partial}v_k \to u \bar{\partial}v.\]

Let \(\varphi \in \mathcal{D}_{(2,1)} \). Using Stokes theorem we can calculate

\[
\int_{\Omega} u_k \bar{\partial}v_k \varphi - \int_{\Omega} u \bar{\partial}v \varphi
\]
\[
\int_\Omega (u_k - u) \bar{\partial} v_k \varphi + \int_\Omega u \bar{\partial}(v_k - v) \varphi \\
= \int_\Omega (u_k - u) \bar{\partial} v_k \varphi + \int_\Omega (v_k - v) \bar{\partial}(u \varphi).
\]

Since \(L^2\) norms of \(\bar{\partial} v_k \varphi\) and \(\bar{\partial}(u \varphi)\) depends only on \(\varphi\) and \(U\), using Helder inequality, we can choose constant \(C\) not depending on \(k\) such that
\[
\int_\Omega u_k \bar{\partial} v_k \varphi - \int_\Omega u \bar{\partial} v \varphi \leq C (\|u_k - u\|_{L^2(\Omega)} + \|v_k - v\|_{L^2(\Omega)}) \to 0.
\]

Thus (1) follows.

The second step is to obtain the following convergence
\[
(2) \quad u_k i \bar{\partial} v_k \to u i \bar{\partial} v.
\]

Let \(\varphi \in D_{(1,1)}\) be positive. By Corollary 8 we get
\[
\limsup_{k \to \infty} \int_\Omega u_k i \bar{\partial} v_k \wedge \varphi \leq \limsup_{k \to \infty} \int_\Omega u i \bar{\partial} v_k \wedge \varphi = \int_\Omega u i \bar{\partial} v \wedge \varphi.
\]

Set \(s \in \mathbb{N}\). Using Stokes' theorem we can estimate
\[
\liminf_{k \to \infty} \int_\Omega u_k i \bar{\partial} v_k \wedge \varphi \geq \liminf_{k \to \infty} \int_\Omega u_i \bar{\partial} v_k \wedge \varphi = \int_\Omega u_i \bar{\partial} v \wedge \varphi
\]
\[
= \int_\Omega v \bar{\partial} u_s \wedge \varphi + \int_\Omega u_s \bar{\partial} v \wedge \varphi + \int_\Omega v \bar{\partial} u \wedge \bar{\partial} \varphi.
\]

From (1) and again Corollary 8 the last line with \(s \to \infty\) converge to
\[
\int_\Omega v \bar{\partial} u \wedge \varphi + \int_\Omega u \bar{\partial} v \wedge \varphi + \int_\Omega v \bar{\partial} u \wedge \bar{\partial} \varphi = \int_\Omega u i \bar{\partial} v \wedge \varphi.
\]

This together with (3) gives us (2).

In the last step we will finish the proof. By (1) and (2) we can conclude
\[
i \partial u_k \wedge \bar{\partial} v_k = i \partial (u_k \bar{\partial} v_k) - u_k i \bar{\partial} v_k \to i \partial (u \bar{\partial} v) - u i \bar{\partial} v = i \partial u \wedge \bar{\partial} v.
\]

\[\square\]

Corollary 10. Suppose that \(u_k\) is a sequence of locally bounded plurisubharmonic functions which increase to plurisubharmonic function \(u\) a. e.. Then \(u_k\) converge to \(u\) in \(W^{1,2}_{\text{loc}}(\Omega)\).

Theorem 11 (Convergence Theorem for increasing sequences). Suppose that \(u_k\) and \(v_k\) are sequences of locally bounded plurisubharmonic functions which increase to plurisubharmonic functions \(u\) and \(v\) respectively a. e. Then
\[
i \partial u_k \wedge i \bar{\partial} v_k \to i \partial u \wedge i \bar{\partial} v.
\]
5. Pluripolarity

Proposition 12. Assume that $E \subset \Omega \subset M$. Then

$$E \text{plp} \Rightarrow cap(E, \Omega) = 0.$$

Proof. We can assume that there is compactly supported nonnegative function φ which is equal 1 on E. Let $U \in \mathcal{PSH}$ is such that $U \neq -\infty$ and $U|_{E} = -\infty$. Set $v \in \mathcal{PSH}$ such that $-1 \leq v \leq 0$. Since $U \in L^1_{loc}$ (see [H-L]) the sequence U/k increase to 0 a.e. on the open set $\Omega^\prime = \{ U < 0 \}$. Thus the sequence $v_k = \max\{U/k, v\}$ increase to 0 a.e. too. From convergence theorem $(i\partial\bar{\partial}v_k)^2 \rightarrow 0$. On the other hand, on the open set $\Omega_k = \{ U < k \}$ we have $v_k = v$. Thus

$$\int_{E} (i\partial\bar{\partial}v)^2 \leq \int_{\Omega^\prime} \varphi (i\partial\bar{\partial}v_k)^2 \rightarrow 0,$$

and we can conclude that $\int_{E} (i\partial\bar{\partial}v)^2 = 0$. Because it is for all v from the definition of the capacity we get that $cap(E) = 0$. □

There is a constant c_0 (which depend on Ω) such that

$$\theta\bar{\partial}\varphi \wedge \bar{\theta}\partial\varphi \leq c_0 i\partial\varphi \wedge \bar{\partial}\varphi \wedge \omega$$

for any smooth function φ defined on Ω. To prove the next result about pluripolarity we need the following Lemma:

Lemma 13. Let $h \in C(\bar{\Omega})$ be such that

$$i\partial\bar{\partial}h \geq 9c_0\omega \text{ on } \Omega \text{ and } \liminf_{z \rightarrow \partial\Omega} h(z) \geq 0.$$

Let $D = \{ h < 0 \}$. For $u \in \mathcal{PSH} \cap L^\infty(D)$ satisfying

$$\inf u = -1, \liminf_{z \rightarrow \partial D} u(z) \geq 0 \text{ and } (i\partial\bar{\partial}u)^2 = 0 \text{ on } D$$

we have $u \geq h$.

Proof. Set $\varepsilon > 0$. Since every connected component of D is almost Stain manifold there exists a sequence u_k of smooth plurisubharmonic functions on D, which decreases to $u + \varepsilon$. Assume that there is $k_1 \in \mathbb{N}$ such that the set $\{ u_k, < \rho \}$ is not empty. By convergence theorem for decreasing sequences there is $k_2 \in \mathbb{N}$ such that for $k \geq k_2$ we have

$$\int_{\{ u < -\varepsilon \}} (i\partial\bar{\partial}u_k)^2 < \frac{1}{9} \int_{\{ u_{k_1} < h \}} (i\partial\bar{\partial}h)^2 \leq \frac{1}{9} \int_{\{ u_k < h \}} (i\partial\bar{\partial}h)^2.$$

Set $k \geq k_2$ and put $v = u_k$, $\bar{v} = (v + 1)^2 - 1$, $E = \{ v < 0 \}$, $\bar{E} = E \cap \{ \frac{k+1}{3} > v \}$, $F = \{ v < h \}$. Since $2v \geq \bar{v}$ on E and $\bar{v} = v$ on ∂E we have

$$F \subset \bar{E} \subset E.$$
For enough small $\delta > 0$ we still have $E_\delta = E \cap \{ \frac{h+\bar{v}}{3} > v - \delta \} \in E$. Let choose δ such that the set ∂E_δ has Lebesgue measure equal 0. Let $\varphi = v - \delta$ and $\psi = \max\{\varphi, \frac{h+\bar{v}}{3}\}$

Using (4), the assumption about $i\partial \bar{\partial} h$ and inequality

$$i\partial \bar{\partial} \bar{v} \geq 2i\partial v \wedge \bar{\partial} v$$

we can estimate

$$\int_E (dd^c \varphi)^2 < \frac{1}{9} \int_E (i\partial \bar{\partial} h)^2 + 2 \int_{E_{\delta}} \bar{\partial} v \wedge \bar{\partial} v + \int_{E \setminus E_{\delta}} (dd^c \psi)^2$$

$$\leq \frac{1}{9} \int_{E_{\delta}} (i\partial \bar{\partial} h)^2 + 2c_0 \int_{E_{\delta}} i\partial v \wedge \bar{\partial} v \wedge \omega + \int_{E \setminus E_{\delta}} (dd^c \psi)^2.$$

$$\leq \frac{1}{9} \int_{E_{\delta}} (i\partial \bar{\partial} h)^2 + \frac{2}{9} \int_{E_{\delta}} i\partial v \wedge \bar{\partial} v \wedge i\partial \bar{\partial} h + \int_{E \setminus E_{\delta}} (dd^c \psi)^2 \leq \int_{E} (dd^c \psi)^2.$$

But this inequality contradicts with Stokes theorem which gives us that F is empty for any choose of $k \in \mathbb{N}$ and $\varepsilon > 0$. We thus get $u \geq h$. \hfill \Box

Lemma 14. Let Ω be strictly pseudoconvex domain. Let $u \in L^\infty \cap \mathcal{PSH}(\Omega)$ is such that $\lim_{z \to \partial \Omega} u(z) = 0$ and $(i\partial \bar{\partial} u)^2 = 0$. Then $u = 0$ in Ω.

Proof. To prove the Lemma by contradiction let us assume that $u \neq 0$. Put $u_1 = \frac{u}{\|u\|_{L^\infty(\Omega)}}$ and $u_{k+1} = 2u_k + 1$ for $k \geq 1$. We can choose the defining function h_1 for Ω such that $i\partial \bar{\partial} h_1 \geq 9c_0 \omega$. Let $h_{k+1} = k_{k+1} + \frac{1}{2} = h_1 + \frac{k}{2}$ and $D_k = \{ z \in \Omega : h_k < 0 \}$. By Lemma 13 and induction we easily get that $h_k \leq u_k$. On the other hand $\inf u_k = -1$ and $\inf h_k \to \infty$. Contradiction! \hfill \Box

For an open set $V \subset M$ and a subset $E \subset V$ we put

$$u_E = u_{E,V} = \sup \{ v \in \mathcal{PSH}(V) : v \leq 0 \text{ and } v|_{E} \leq -1 \}.$$

Lemma 15. A function u_E^* is plurisubharmonic and $\sup (i\partial \bar{\partial} u_E^*)^2 \subset \partial E$.

Proof. By the Choquet theorem there is an increasing sequence of plurisubharmonic functions $u_j \geq -1$ with $(\lim u_j)^* = u_E^*$. Using characterization of plurisubharmonic functions from [H-L] (see Preliminaries) we get that $(\lim u_j)^*$ is plurisubharmonic and the Lebesgue measure of the set $\{ \lim u_j \neq (\lim u_j)^* \}$ is equal 0.

Let $p \in V \setminus E$. There is a domain $D \subset V \setminus E$ which is a smooth strictly pseudoconvex neighborhood of p. For $j \in \mathbb{N}$ let $\varphi^{(j)}_k$ be a sequence of
smooth functions which decrease to \(u_j \) on \(\partial D \). By Theorem 1 we can solve Dirichlet problem:

\[
\begin{align*}
 w_k^{(j)} &\in C^\infty(\bar{D}) \cap \text{PSH}(D), \\
 (i\partial \bar{\partial} w_k^{(j)})^2 &= k^{-1} \omega^2, \\
 w_k^{(j)} |_{\partial D} &= \varphi_k^{(j)}.
\end{align*}
\]

Put

\[
w_j = \begin{cases}
 u_j & \text{on } V \setminus D, \\
 \lim_{k \to \infty} w_k^{(j)} & \text{on } D.
\end{cases}
\]

Then \(w_j \) is a sequence of plurisubharmonic functions increasing a.e. to \(u_E \). Moreover by convergent theorem for decreasing sequences \((i\partial \bar{\partial} w_j)^2 = 0\) on \(D \) and thus by convergent theorem for increasing sequences \((i\partial \bar{\partial} u_E^*)^2 = 0\) on \(D \). But we can choose \(D \) as a neighborhood of any point in \(V \setminus E \) which gives us that \(\text{supp} (i\partial \bar{\partial} u_E^*)^2 \subset \partial E \).

Proposition 16. Let \(\Omega \) be a strictly pseudoconvex domain. Assume that \(E \) is \(F_\sigma \) subsets of \(\Omega \) and \(\text{cap}(E, \Omega) = 0 \). Then \(E \) is pluripolar. Moreover there is a plurisubharmonic function \(u \) on \(\Omega \) such that \(u|_E = -\infty \).

Proof. Let \(E_i \) be increasing sequence of compact subsets such that

\[
\sum E_i = E.
\]

Put \(w_i = u_{E_i}^* \). By Lemma 15 we get that \((i\partial \bar{\partial} w_i)^2 = 0\). Because \(\Omega \) is strictly pseudoconvex \(\lim_{z \to \partial \Omega} w_i(z) = 0 \) and by Lemma 14 \(w_i = 0 \).

Similar as in Lemma 15 by the Choquet lemma, for any \(i \), there is an increasing sequence of plurisubharmonic functions \(v_k^{(i)} \) such that \(\lim_{k \to \infty} v_k^{(i)} = 0 \) a.e. and \(v_k^{(i)} \leq -1 \) on \(E_i \). By the Lebesgue’s Monotone Convergence Theorem we can choose for any \(i \) a number \(k \) such that for \(h_i = v_k^{(i)} \) we have \(\|h_i\|_{L^1(\Omega)} \leq \frac{1}{2^i} \). We can conclude that a function

\[
u = \sum_{i=1}^{\infty} h_i
\]

is plurisubharmonic and \(u|_E = -\infty \).

Corollary 17. For any \(J \)-holomorphic function \(u : \mathbb{D} \to M \), a set \(u(\mathbb{D}) \) is pluripolar.

Proof. Let \(p \in u(\mathbb{D}) \). We can choose a strictly pseudoconvex neighbourhood \(U \) of \(p \). Let \(E = u(\mathbb{D}) \cap U \). The function \(u \) have at most countable many singular points (see for example lemma 2.7 in [M]). Thus using Rosay theorem we get that \(E \) is a sum of countable many compact pluripolar sets. This implies that \(\text{cap}(E, U) = 0 \) and by Proposition 16 \(E \) is pluripolar. Thus Corollary follows.
Proposition 18. Let M be an almost stein manifold and let $E \subset M$ be pluripolar F_σ set. Then there is a plurisubharmonic function u on Ω such that $u|_E = -\infty$.

Proof. Let ρ be an exhaustion smooth strictly plurisubharmonic function on M. By the Sard’s theorem there is a sequence $(a_k) \subset \mathbb{R}$ for which $a_{k+1} \geq a_k + 1$ and all connected components of $\Omega_k = \{ z \in M : \rho(z) < a_k \}$ are strictly pseudoconvex. Like in the proof of Proposition 16 we can choose a function $u_k \in PSH(\Omega_k)$ such that $-1 \leq u_k \leq 0$, $u_k|_{E \cap \Omega_k} = -1$ and $\|u_k\|_{L^1(\Omega_k)} < \frac{1}{2^k}$. Put

$$v_k = \begin{cases} \max\{\rho - a_{k+1}, u_{k+2}\} & \text{on } \Omega_{k+2}, \\ \rho - a_{k+1} & \text{on } M \setminus \Omega_{k+2}, \end{cases}$$

and $u = \sum v_k$. Since $v_k = u_{k+2}$ on Ω_k it is clear that u has required properties. □

REFERENCES

[B-T1] E. Bedford, B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37(1976), 1-44,

[B-T2] E. Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149(1982), 1-41,

[B1] Z. Błocki, The complex Monge-Ampère operator in pluripotential theory, unfinished lecture notes based on graduate course at Jagiellonian University, 1997, (see http://gamma.im.uj.edu.pl/~blocki/publ/ln/wykl.pdf),

[B2] Z. Blocki, On the definition of the Monge-Ampère operator in \mathbb{C}^2, Math. Ann. 328 (2004), 415-423,

[C-T-W] J. Chu, V. Tosatti, B. Weinkove, The Monge-Ampère equation for non-integrable almost complex structures, arXiv:1603.00706 to appear in J. Eur. Math. Soc. (JEMS) 2018.

[E] F. Elkhadra, J-pluripolar subsets and currents on almost complex manifolds, Math. Z. 264 (2010), no. 2, 399-422.

[H-L] F. R. Harvey, H. B. Lawson, Jr., Potential Theory on Almost Complex Manifolds, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 1, 171-210,

[H-L-P] F. R. Harvey, H. B. Lawson, Jr., S. Pliš, Smooth Approximation of Plurisubharmonic Functions on Almost Complex Manifolds, Math. Ann. 366 (2016), no. 3-4, 929-940,

[K] S. Kołodziej, The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc. 178 (2005), no. 840,

[L] M. Lejmi, Strictly nearly Kähler 6-manifolds are not compatible with symplectic forms, C. R. Math. Acad. Sci. Paris 343 (2006), no. 11-12, 759-762,

[M] D. McDuff, The local behaviour of holomorphic curves in almost complex 4-manifolds, J. Differential Geom. 34 (1991), no. 1, 143-164,
[P] N. Pali, *Fonctions plurisousharmoniques et courants positifs de type (1,1) sur une variété presque complexe*, Manuscripta Math. 118 (2005), no. 3, 311-337.

[P1] S. Pliś, *The Monge-Ampère equation on almost complex manifolds*, Math. Z. 276 (2014), no. 3-4, 969-983.

[P2] S. Pliś *On the regularization of J-plurisubharmonic functions*, C. R. Math. Acad. Sci. Paris 353 (2015), no. 1, 17-19.

[P3] S. Pliś, *Monge-Ampère operator on four dimensional almost complex manifolds*, J. Geom. Anal. 26 (2016), no. 4, 2503-2518.

[R] J.-P. Rosay *J-holomorphic submanifolds are pluripolar*, Math. Z. 253 (2006), no. 4, 659-665.

Institute of Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland

E-mail address: splis@pk.edu.pl