Comparative growth of spotted fever group

Rickettsia spp. strains in Vero cells

Arannadia Barbosa Silva1,2, Myrian Morato Duarte3, Vinicius Figueiredo Vizzoni2,4, Ana Irís de Lima Duré5, Diego Montenegro López2,3, Rita de Maria Seabra Nogueira6, Carlos Augusto Gomes Soares4, Erik Machado-Ferreira4, Gilberto Salles Gazêta1,2,5/

1Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação em Biodiversidade e Saúde, Rio de Janeiro, RJ, Brasil
2Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Referência Nacional em Vetores das Riquetsioses, Rio de Janeiro, RJ, Brasil
3Fundação Ezequiel Dias, Serviço de Virologia e Riquetsioses, Belo Horizonte, MG, Brasil
4Universidade Federal do Rio de Janeiro, Instituto de Biologia, Laboratório de Genética Molecular de Eucariontes e Simbiontes, Rio de Janeiro, RJ, Brasil
5Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Doenças Parasitárias, Rio de Janeiro, RJ, Brasil
6Universidade Estadual do Maranhão, Curso de Medicina Veterinária, Laboratório de Parasitologia, São Luís, MA, Brasil

In Brazil, the spotted fever group (SFG) _Rickettsia rickettsii_ and _Rickettsia parkeri_ related species are the etiological agents of spotted fever rickettsiosis. However, the SFG, _Rickettsia rhipicephali_, that infects humans, has never been reported. The study of growth dynamics can be useful for understanding the infective and invasive capacity of these pathogens. Here, the growth rates of the Brazilian isolates _R. rickettsii_ str. Táiaçu, _R. parkeri_ str. _At_#24, and _R. rhipicephali_ HJ#5, were evaluated in Vero cells by quantitative polymerase chain reaction. _R. rhipicephali_ showed different kinetic growth compared to _R. rickettsii_ and _R. parkeri_.

Key words: tick-borne disease - rickettsial biology - growth kinetics

In Brazil, the spotted fever group (SFG) _Rickettsia rickettsii_ and _Rickettsia parkeri_ related species are the etiological agents of spotted fever rickettsiosis. _R. rickettsii_ is the causative agent of Rocky Mountain spotted fever (RMSF) and Brazilian spotted fever (BSF), which is considered the most severe of all tick-borne rickettsiosis (Parola et al. 2005). _R. parkeri_ was recently reclassified as a pathogenic bacterium that causes an eschar-associated rash illness, considered less severe than BSF (Paddock et al. 2004). _Rickettsia rhipicephali_ of the SFG that infects humans has never been reported; however, in vitro experiments have shown this bacterium to be moderately pathogenic in guinea pigs (Burgdorfer et al. 1978, Gage & Jerrells 1992).

Until now, very few studies have characterised the growth dynamics of different species or strains of _Rickettsia_ in culture media and provided parameters to advance the knowledge on this pathogen (Eremeeva et al. 2003, Boldis et al. 2009). In this context, comparative analyses of _R. rhipicephali_ and pathogenic SFG _rickettsiae_ could be useful to provide new information about the pathogenic potential of this species. Thus, in the present study, we evaluated and compared the growth rate of the Brazilian isolates _R. rickettsii_ str. Táiaçu (Pinter & Labruna 2006), _R. parkeri_ str. _At_#24 (Silveira et al. 2007), and _R. rhipicephali_ str. HJ#5 (Labruna et al. 2007) after infection of Vero cells.

Experiments were performed in the biosafety level 3 laboratory of Divisão de Epidemiologia e Controle de Doenças (DECD) of Fundação Ezequiel Dias - FUNED, Belo Horizonte, Minas Gerais, Brazil. The _Rickettsia ompA_ and _gltA_ genes were amplified using the primer sets Rr190.70p/Rr190.602 and CS-78/CS323 (Regnery et al. 1991, Labruna et al. 2004) and sequenced to confirm the identity of these _Rickettsia_ strains (Data not shown). In brief, cryogenic tubes containing _Rickettsia_-infected Vero cells were rapidly thawed, and their contents were added to flasks with an uninfected Vero cell monolayer, and incubated at 28°C without CO₂. After two passages, the confluent monolayer was scraped, and the infection rate was measured by quantitative polymerase chain reaction (qPCR) normalising to initial inoculums. At this point, Vero cells with bacteria were partially 10 purified with syringes (Ammerman et al. 2008) and added to bottles containing an equal 11 amount of uninfected Vero cells in a confluent monolayer. The flasks were incubated at 28°C without CO₂ for 1, 2, 24, 48 and 72 h. Cell infection was monitored by Giménez (1964) staining at 24, 48 and 72 h. Genomic DNA extraction from 100 µL of cells in suspension was performed using an Illustra RNAspin Mini RNA Isolation kit (GE Healthcare®) without RNase addition, according to the standard operating procedure (FUNED). Additional DNA samples from Vero cells infected with _R. parkeri, R. rhipicephali_ and _Rickettsia amblyommii_ were obtained using the extraction method described previously, using a QiAamp DNA Blood Mini Kit (Qiagen®) and a High Pure Viral Nucleic Acid Kit (Roche Applied Science®), to test quality by qPCR. DNA samples were quantified using a NanoVue Plus spectrophotometer (GE Healthcare BioSciences AB®), and DNA integrity was analysed by 1% agarose gel electrophoresis (Data not shown).

doi: 10.1590/0074-0276-0160093

Financial support: FAPEMA (Edital N° 030/2012-BD-01849/12).
EM-F and GSG contributed equally to this work.
+ Corresponding author: gsgazeta@ioc.fiocruz.br
Received 8 March 2016
Accepted 21 June 2016
Infection of Rickettsia spp. in Vero cells • Arannadia Barbosa Silva et al.

The experiments presented here were conducted using two or three biological replicates, which were analysed in triplicate. We used the percentage of infected cells as the dependent variable, and time and Rickettsia species as independent variables. Central tendency measures and distribution were calculated and significant differences were assessed (ANOVA) for multiple comparisons; Fisher’s least significant difference (LSD) tests between treatments were developed with Statgraphics Centurion XVI (Statpoint Technologies 2006). For all significant differences, the 95% confidence interval (CI) and homoscedasticity of the variance were tested (Levene’s test).

The qPCR reactions were performed using DNA samples from Rickettsia-infect ed Vero cells and a SYBR® Green PCR Master Mix (Applied Biosystems®) as recommended by the manufacturer. Each qPCR assay contained 30 ng of template DNA and primers for ompA (RR190.588F/RR190.701R) and reference (ACTB-F/ACTB-R) genes at a final concentration of 0.4 mM (Eremeeva et al. 2003, Ahn et al. 2008). PCR conditions were as follows: 95°C for 10 min (hot-start), 40 cycles (95°C for 15 s and 60°C for 1 min). Amplification, data acquisition and data analysis were performed with a 7500 fast real-time PCR System (Applied Biosystems®). Comparative analysis of the Rickettsia spp. load in Vero cells was performed using C_T values for each sample (culture of Vero cells and Rickettsia, 1, 2, 24, 48 and 72 h post-inoculation), using the equation for 2^{-\Delta\Delta C_T}, in which ΔΔC_T = (C_TompA - C_T \beta-actin)_{\text{time _x}} - (C_TompA - C_T \beta-actin)_{\text{time _0}} (Livak & Schmittgen 2001). For the applied ΔΔC_T calculation, primer efficiencies were determined using a standard curve developed from template DNA at concentrations of 5, 10, 30, 50 and 100 ng/µL (Supplementary Figure).

The growth rate of these bacterial strains was initially analysed by optical microscopy. Rickettsia-like structures were observed in Giménez-stained Vero cells (Fig. 1A). Considering viable Vero cells (based on nucleus integrity), the number of infected cells (or those with attached Rickettsia) was counted after 24, 48 and 72 h after bacterial inoculation (Fig. 1). Interestingly, Vero cell infectivity was higher for R. rhipicephali than for the other two species at 24 (higher difference), 48 and 72 h post-inoculation. Moreover, at 72 h post-inoculation, the highest percentage of infected cells, 98.92%, 91.48% and 99.82%, was observed for R. rickettsii, R. parkeri and R. rhipicephali, respectively (Fig. 1B).

Four primer pairs for the rickettsial ompA gene and three primer pairs for eukaryotic genes of \(\beta\)-actin and ribosomal protein L13A and L32 were tested by qPCR amplification (Eremeeva et al. 2003, Ahn et al. 2008). The best primer pairs for Rickettsia (RR190.588F/RR190.701R) and eukaryotic cells (ACTB-F/ACTB-R) were obtained through melt curve analysis (data not shown). For the comparative \(C_T\) method to be valid, the amplification efficiencies of the target rickettsial ompA gene and the reference eukaryotic \(\beta\)-actin gene must be approximately equal (Livak & Schmittgen 2001). To validate this method, we prepared a dilution series of DNA template obtained from uninfected and Rickettsia-infect ed Vero cells. The reaction efficiencies for each DNA sample/primer set were evaluated based on slopes of the regression lines for \(C_T\) versus the relative dilution series (Supplementary Figure). The slopes of the regression lines for Δ\(C_T\) versus DNA template dilution were within the range of -0.1 to +0.1, confirming the validity of the relative quantification method (Supplementary Table).

The relative amount of Rickettsia in eukaryotic cells was determined by ompA/\(\beta\)-actin qPCR analysis over a 72 h time course of infection in Vero cells. It was evident that the amount of Vero cell-infecting Rickettsia increased with time, reaching the highest loads at 72 h post-
inoculation (Fig. 2). Utilising the computed 2^{-ΔΔCT} values, *R. rhipicephali* numbers increased by approximately 8-, 4-, 3.8- and 17-fold during the 72 h time course, as shown in Fig. 2A. Based on comparative analysis, *R. rhipicephali* presented a distinct behaviour, with infectivity approximately 4.7-, 8.5-, 3.1- and 2.8-fold greater than that of pathogenic *R. rickettsii* at 2, 24, 48 and 72 h post-inoculation, respectively (Fig. 2B). Significant differences (F_{1,65} = 492.37; p = 0.000; 95% CI) were identified based on the bacteria/Vero cell proportion when the three species used in this study were compared; these differences were more evident at 72 h of infection (Fig. 2). DNA samples utilised in these analyses were predominantly purified using the RNA isolation kit (GE Healthcare). Comparative C_{t} analysis utilising two additional DNA isolation kits demonstrated no statistically significant difference (F_{2.55} = 492.37; p = 0.000; 95% CI) between the yield and quality of DNA obtained by these kits. Taken together, these data suggest that *R. rhipicephali* exhibited faster growth in cell culture over 72 h, when compared to *R. rickettsii* and *R. parkeri* strains.

The invasion process of SFG *Rickettsia conorii* in Vero cells occurs only a few minutes after *Rickettsia*-host cell adhesion, and proceeds via induced phagocytosis and subsequent intracytoplasmic release through the lysis of phagosomal membranes (Teyssière et al. 1995). In this work, the processes of *Rickettsia*-host cell contact and entry into Vero cells were not assessed; however, the quantitative (relative) data demonstrated that after 2 h, the number of *Rickettsia*-infected Vero cells was 1.3-, 1.6- and 8-fold higher than that 1 h post-inoculation with *R. rickettsii*, *R. parkeri* and *R. rhipicephali*, respectively. Thus, it suggested that the processes of adhesion, entry and escape to the cytoplasm were faster with *R. rhipicephali* inoculation, which would provide additional time for bacterial cell division (Figs 1B, 2A). Interestingly, *Rickettsia rickettsii* str. Sheila Smith was shown to reach its highest level of multiplication at 72 h post-infection in Vero cells (Noriea et al. 2015). Meanwhile, *Rickettsia slovaca* reached its highest level after 96 h post-inoculation (Boldis et al. 2009). To better evaluate the kinetic growth of *R. rhipicephali* compared to that of *R. rickettsii* and *R. parkeri*, additional studies using a time course of 14 days, which covers exponential, stationary and decline growth phases, should be performed.

To be pathogenic in mammals, tick-borne bacteria must be able to survive in the tick vector, be transmitted during tick feeding, avoid or subvert the host immune responses, replicate in host organisms; and spread to new hosts. In this scenario, *R. rhipicephali* has some of these characteristics; this species has been frequently described to infect ticks of different genera including *Rhipicephalus* spp., *Dermacentor* spp., and *Haemaphysalis juxtakochi* (Philip et al. 1981, Labruna et al. 2007, Hsu et al. 2011). Moreover, direct inoculation of *R. rhipicephali* into guinea pigs and voles resulted in a less severe rickettsiosis than that caused by *R. rickettsii* (Burgdorfer et al. 1978, Gage & Jerrells 1992), indicating that *R. rhipicephali* are able to survive inside the host organism, using mechanisms to evade or overcome the host immune system. Nonetheless, to consider *R. rhipicephali* as a new SFG pathogen, additional studies including those using different tick vector species, different vertebrate hosts and more sensitive molecular tools are needed. In contrast, Norment and Burgdorfer (1984) detected no clinical signs in dogs that were exposed to ticks infected with *R. rhipicephali*. It should be noted that *R. rhipicephali* str. HJ#5 was isolated from Vero cell culture in 2005 (Labruna et al. 2007). Thus, the differential growth of *R. rhipicephali* in Vero cells could be more related to its ability to adapt to this host cell line than its pathogenic potential, as was previously observed for *Rickettsia prowazekii* infection of chicken embryo cells (Wisseman & Waddell 1975).

Some members of the SFG have never been associated with human and animal diseases (Parola et al. 2013); however, it should be noted that some current human pathogenic species were first classified as non-pathogenic or of unknown pathogenicity. This fact deserves attention because it denotes the possibility of human infection in the future. Thus, studies on the growth dynamics of *Rickettsia* sp. are useful for understanding the infective and invasive capacity of these pathogens.
ACKNOWLEDGEMENTS

To Prof Marcelo Bahia Labruna, from Laboratório de Doenças Parasitárias da Universidade de São Paulo (USP), for providing the isolates, and especially Felipe Campos de Melo Iani, from Serviço de Virologia e Riquetsioses from Fundação Ezequiel Dias (FUNED), Belo Horizonte, MG, Brazil, and other professionals from this institution for collaboration in this study.

REFERENCES

Ahn K, Huh J, Park S, Kim D, Ha H, Kim Y, et al. Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues. BMC Mol Biol. 2008; 9(78): 1-8.

Akkerman NC, Beier-Sexton M, Azad AF. Laboratory maintenance of Rickettsia rickettsii. Curr Protoc Microbiol. 2008; 3: 1-27.

Boldis V, Strus J, Kocianová E, Tusek-Znidaric M, Stefanidesová K, Schwarzová K, et al. Life cycle of Rickettsia slovaca in L929 cell line studied by quantitative real-time PCR and transmission electron microscopy. FEMS Microbiol Lett. 2009; 293(1): 102-6.

Burgdorfer W, Brinton LP, Krynski WL, Philip RN. Rickettsia rhipicephali, a new spotted fever group rickettsia from the brown dog tick, Rhipicephalus sanguineus. In: Kazar J, Ormsbee RA, Tarasewich IN, orgs. Proceedings of the 2nd International Symposium on rickettsiae and rickettsial diseases. Bratislava: Public House of Slovak Academy of Sciences; 1978. p. 307-16.

Eremeeva ME, Dasch GA, Silverman DJ. Evaluation of a PCR assay for quantitation of Rickettsia rickettsii and closely related spotted fever group rickettsiae. J Clin Microbiol. 2003; 41(12): 5466-72.

Gage KL, Jerrells TR. Demonstration and partial characterization of antigens of Rickettsia rhipicephali that induce cross-reactive cellular and humoral immune responses to Rickettsia rickettsii. Infect Immun. 1992; 60(12): 5099-106.

Giménez DF. Staining rickettsiae in yolk-sac cultures. Stain technol. 1964; 39: 135-40.

Hsu YM, Lin CC, Chomel BB, Tsai KH, Wu WJ, Huang CG, et al. Identification of Rickettsia felis in fleas but not ticks on stray cats and dogs and the evidence of Rickettsia rhipicephali only in adult stage of Rhipicephalus sanguineus and Rhipicephalus haemaphysaloides. Comp Immunol Microbiol Infect Dis. 2011; 34(6): 513-8.

Labruna MB, Pacheco RC, Richtzenhain LJ, Szabo, Matias PJ. Isolation of Rickettsia rhipicephali and Rickettsia bellii from Haemaphysalis juxtakochi ticks in the state of São Paulo, Brazil. Appl Environ Microbiol. 2007; 73(3): 869-73.

Labruna MB, Whitworth T, Horta MC, Bouyer DH, Mechrade JW, Pinter A, et al. Rickettsia species infecting Amblyomma cooperi ticks from an area in the state of São Paulo, Brazil, where Brazilian spotted fever is endemic. J Clin Microbiol. 2004; 42(1): 90-8.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 22DDCT method. Methods. 2001; 25(4): 402-8.

Noriea NF, Clark TR, Hackstadt T. Targeted knockout of the Rickettsia rickettsii OmpA surface antigen does not diminish virulence in a mammalian model system. MBio. 2015; 6(2): e00323-15.

Norment BR, Burgdorfer W. Susceptibility and reservoir potential of the dog to spotted fever-group rickettsiae. Am J Vet Res. 1984; 45(9): 1706-10.

Paddock CD, Comer JA, Zaki SR, Goldsmith CS, Goddard J, et al. Rickettsia parkeri: a newly recognized cause of spotted fever rickettsiosis in the United States. Clin Infect Dis. 2004; 38(6): 805-11.

Parola P, Davoust B, Raoult D. Tick- and flea-borne rickettsial emerging zoonoses. Vet Res. 2005; 36(3): 469-92.

Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernis T, et al. Upadate on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev. 2013; 26(4): 657-702.

Philip RN, Casper EA. Serotypes of spotted fever group rickettsiae isolated from Dermacentor andersoni (Stiles) ticks in western Montana. Am J Trop Med Hyg. 1981; 30(1): 230-8.

Pinter A, Labruna MB. Isolation of Rickettsia rickettsii and Rickettsia bellii in cell culture from the tick Amblyomma aureolatum in Brazil. Ann NY Acad Sci. 2006; 1078: 523-9.

Regnery RL, Spruill CL, Plikaytis BD. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol. 1991; 173(5): 1576-89.

Silveira I, Pacheco RC, Szabó MPJ, Ramos HGC, Labruna MB. First report of Rickettsia parkeri in Brazil. Emerg Infect Dis. 2007; 13(7): 1113-2.

Statpoint Technologies. I. Statgraphics® Centurion XVI [software]. 2006 [cited 2015 Nov 15]. Available from: http://www.statgraphics.com.

Teyssiere N, Boudier JA, Raoult D. Rickettsia conorii entry into Vero cells. Infect Immun. 1995; 63(1): 366-74.

Wiseman CL, Waddell AD. In vitro studies on Rickettsia-host cell interactions: intracellular growth cycle of virulent and attenuated Rickettsia prowazeki in chicken embryo cells in slide chamber cultures. Infect Immun. 1975; 11(6): 1391-404.