Stroke volume is determined by cardiac preload, contractility, and afterload. Accordingly, the optimal management of cardiac preload is crucial for maintaining proper cardiac output and tissue oxygen delivery. Too little fluid administration can cause hypovolemia or tissue hypoperfusion, whereas too much fluid can induce pulmonary edema or heart failure. Inadequate volume management can cause adverse clinical outcomes after surgery. The increase in cardiac output after fluid administration is determined by the position of preload on the Frank-Starling curve (Fig. 1). When the preload is located in a steeply inclined position on the graph, the cardiac output is likely to have increased in response to fluid administration. If it can be predicted whether cardiac output would be increased by fluid administration, then fluid management can be improved during the perioperative period.

Traditionally, volume status was assessed on the basis of static monitoring parameters such as heart rate, arterial blood pressure, and central venous pressure (CVP), as well as clinical signs such as urine output. However, many previous studies have demonstrated that static parameters cannot predict fluid responsiveness [1]. On the other hand, the ability of dynamic parameters based on the heart-lung interaction has been validated for the prediction of fluid responsiveness [2].

Many researchers have evaluated parameters based on arterial pressure waveforms, such as pulse pressure variation (PPV),
systolic pressure variation (SPV), stroke volume variation (SVV), ΔDown (apneic systolic blood pressure minus minimal systolic blood pressure during expiration), and ΔUp (maximal systolic blood pressure during inspiration minus apneic systolic blood pressure) (Fig. 2). Variables derived from plethysmography, such as the respiratory variation of pulse oximeter plethysmography waveform amplitude (ΔPOP) and the pleth variability index (PVI), have received attention. Additionally, parameters measured using ultrasound, such as the respiratory variation in peak blood flow velocity of the aorta (ΔVpeak) or the carotid artery (ΔVpeak_CA), the variation in the diameter of the inferior vena cava (ΔIVC), and esophageal Doppler indices, have been assessed in relation to fluid responsiveness.

Many reliable parameters proven in adults are unable to predict fluid responsiveness in the pediatric population [1]. The reasons for the discrepancies in the reliability of dynamic parameters for predicting fluid responsiveness between children and adults are complex and multifactorial [3]. This article reviews the potential predictors of fluid responsiveness and some important considerations for the interpretation of data on fluid responsiveness in the pediatric population.

Potential Predictors of Fluid Responsiveness

The potential predictors of fluid responsiveness in the pediatric population are summarized in Table 1.

Parameters derived from blood pressure

Parameters of arterial blood pressure (pulse waveform analysis)

The ability to predict fluid responsiveness based on the respiratory change in the arterial pressure waveform has been
Table 1. Parameters that Can Predict Fluid Responsiveness according to Prospective Pediatric Studies

Parameter	Publication	Population	Age	Responder/Total (n)	Fluid	Responder	Reference	Cutoff	AUC	Sensitivity	Specificity	Comment
PPV_PICCO	Renner et al. 2012 [14]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg, 6% HES	SVI > 15%	TEE	16%	0.79	61%	96%	Arterial pressure wave
PPV_PICCO	Renner et al. 2012 [14]	OR, after correction	14 ± 12* mo	15/26	10 ml/kg, 6% HES	SVI > 15%	TEE	15%	0.86	93%	72%	
PPV_PRAM	Han et al. 2017 [12]	OR, before correction	< 2 yr	27/38	20 ml/kg/h for 15 min, 5% alb, FFP	CI > 15%	PRAM	17.4%	0.89	89%	91%	
PPV_PRAM	Han et al. 2017 [12]	OR, after correction	< 2 yr	26/36	20 ml/kg/h for 15 min, 5% alb, FFP	CI > 15%	PRAM	13.4%	0.79	81%	80%	
PVI	Byon et al. 2013 [15]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 10%	TTE	11%	0.77	73%	87%	Plethysmography
PVI	Renner et al. 2011 [17]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
PVI	Julien et al. 2013 [23]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
ΔVpeak	Lee et al. 2017 [6]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
ΔVpeak	Renner et al. 2011 [17]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
ΔVpeak	Byon et al. 2013 [15]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
ΔVpeak	Choi et al. 2010 [16]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
ΔVpeak	Pereira et al. 2011 [21]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
ΔVpeak	Lee et al. 2014 [32]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
ΔVpeak	Kim et al. 2019 [4]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
ΔVpeak	Morparia et al. 2018 [5]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
ΔVpeak	Lee et al. 2015 [33]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
SVV USCOM	Cheng et al. 2018 [35]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
ΔVpeak_CA	Kim et al. 2019 [4]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
ΔVpeak	Choi et al. 2010 [16]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
Peak velocity	Weber et al. 2015 [8]	OR, before correction	14 ± 12* mo	15/26	10 ml/kg for 10 min, 6% HES	SVI > 15%	TEE	13%	0.78	84%	61%	
Table 1. Continued

Parameter	Publication	Population	Age	Responder/total (n)	Fluid	Responder	Reference	Cutoff	AUC	Sensitivity	Specificity	Comment
FTc	Tibby et al. 2001	PICU, noncardiac	4 day to 16 yr	NA/36	10 ml/kg for 30 min, 5% alb, FFP	SV > 10%	TD	0.394 s	0.76	90%	62%	Esophageal Doppler
	Lee et al. 2017	OR, cardiac surgery	< 5 yr	17/30	10 ml/kg for 20 min, 6% HES	SVI > 15%	TEE	5%	0.78	82%	69%	Abdominal compression
SVI_CAC	Jacquet-Lagreze et al. 2018	PICU	0.3–75 mo	20/39	10 ml/kg for 10 min, crystalloid	SVI > 15%	TTE	11%	0.94	75%	95%	
CI_PLR	Lukito et al. 2012	PICU	1–13 yr	20/40	10 ml/kg, crystalloid	CI > 10%	TTE	10%	0.71	55%	85%	
SVV NICOM	Lee et al. 2014	PICU, cardiac surgery	6 mo to 6 yr	13/26	10 ml/kg for 10 min, 6% HES	SV > 10%	TEE	10%	0.89	85%	77%	NICOM
SVV NICOM	Vergnaud et al. 2015	PICU	0–16 yr	15/30	20 ml/kg for 15–30 min, colloid	SV > 15%	TTE	10%	0.81	80%	74%	
SVI NICOM	Vergnaud et al. 2015	PICU	0–16 yr	15/30	20 ml/kg for 15–30 min, colloid	SV > 15%	TTE	29 ml/m²	0.88	71%	100%	

*Values are presented as mean ± SD. n: number of patients, AUC: area under the curve, PPV: pulse pressure variation, PICCO: pulse index continuous cardiac output, PRAM: pressure recording analytical method, PVI: pleth variability index, ΔVpeak: respiratory variation in aortic blood flow peak velocity, SVV: stroke volume variation, USCOM: ultrasonic cardiac output monitor, ΔVpeak_CA: respiratory variation in internal carotid artery blood flow peak velocity, ΔVIVC: respiratory variation in inferior vena cava diameter, FTc: flow time corrected, DAP_LC: diastolic blood pressure change during liver compression, SV: stroke volume, VTI: velocity time integral, TEE: transesophageal echocardiography, TTE: transthoracic echocardiography, NA: not applicable, US: ultrasound, TCD: transcranial Doppler.
proven in adults [2]. Parameters such as SPV, PPV, ΔDown, and ΔUp have been suggested to predict an increase in the cardiac output in response to volume loading in mechanically ventilated patients. However, these arterial pressure-based variables poorly predict fluid responsiveness in children [1,4–7]. SVV derived from a pulse contour analysis algorithm system (LiDCOrapid system; LiDCO Ltd., UK) is also a poor predictor in the pediatric population [8].

Considering that the predictive ability of PPV is improved by increasing the tidal volume in adults [9,10], there is a possibility that the predictive value of PPV can be improved in children with increased tidal volume. This can be deduced from the finding that the area under the receiver operating characteristic (ROC) curve was increased when the tidal volume was increased from 5 ml/kg to 10 ml/kg and 15 ml/kg in piglets [11]. However, this has not been confirmed in children.

Some studies using the pressure recording analytical method (Vygon; Vytech, Italy) or the PiCCO monitoring system (PiCCO Plusw, version 6.0; Pulsion Medical Systems, Germany) have shown that PPV can predict fluid responsiveness in pediatric cardiac surgery [12–14] (Table 1). However, in a study in children after the surgical repair of a ventricular septal defect or tetralogy of Fallot [12], PPV was measured in an open chest and the amount of fluid administered was 20 ml/kg/h for 15 min, making it difficult to compare the results with those from patients in whom measurements were taken with the chest closed or those who received 10 ml/kg/h fluid for volume expansion. In addition, the reference value for assessing an increase in cardiac index was measured using the same device that measured PPV [12]. Another study had the limitations of having a retrospective design and a small number of patients [13]. Accordingly, there is still little evidence suggesting that PPV is a reliable parameter for predicting fluid responsiveness in children.

Central venous pressure

Most previous studies consistently demonstrated that CVP has no ability to predict fluid responsiveness both in adults and in children [14–19]. Most static parameters such as CVP are poor predictors of fluid responsiveness.

Parameters derived from plethysmography

The plethysmographic waveform is generated by the blood volume change in the vessels of tissues, not by the pressure change. ΔPOP has been suggested as a potential dynamic parameter for predicting fluid responsiveness. ΔPOP can be calculated as follows:

\[
\Delta \text{POP}(\%) = 100 \times \frac{(\text{amplitude max} - \text{amplitude min})}{(\text{amplitude max} + \text{amplitude min}) / 2}.
\]

However, a pulse oximeter plethysmograph is usually displayed after automatic resizing of amplitude in a patient monitor, and calculation of ΔPOP requires specific tools and software. For convenience, PVI (Masimo Corp., USA) has been introduced to obtain the respiratory variations in the plethysmographic waveform. PVI is automatically calculated as \([\text{perfusion index (PI) max} - \text{PI min}] / \text{PI max}\), where PI is the ratio between a pulsatile ‘alternating current’ (AC) component and a non-pulsatile ‘direct current’ (DC) component of the infrared signal of pulse oximeter plethysmograph. Both ΔPOP and PVI are attractive parameters for use in pediatric patients because they are measured noninvasively.

ΔPOP and PVI have been shown to be equally effective for predicting fluid responsiveness in ventilated adults in normal sinus rhythm [20]. Although a study has shown that PVI cannot predict fluid responsiveness [21], a meta-analysis [22] concluded that PVI is a reliable predictor in the pediatric population [15,17,23] (Table 1). The mean threshold for the identification of responders to volume expansion was 14% ± 3%, and the area under the summary ROC curve of PVI was 0.86 [22].

Although a strong relationship between ΔPOP and PPV was found in mechanically ventilated children [24], plethysmography-derived parameters have different characteristics from pressure-associated parameters. This may be one of the reasons why parameters derived from plethysmography have a higher predictive ability than those derived from arterial pressure waveforms in children.

Plethysmographic waveforms are known to be influenced by stroke volume, arterial and venous distensibility, and the venous pressure of the sampling site [25–27]. Accordingly, the reliability of ΔPOP and PVI can be influenced by peripheral perfusion, microcirculation, sampling site, and contact pressure of the probe. Although PVI measured at various sites, including the forehead, ear, and fingers, can predict fluid responsiveness in mechanically ventilated adults, the cutoff values for predicting fluid responsiveness differ with the sampling site (15% for the forehead, 16% for the ear, and 12% for the finger) [28]. These findings can be extrapolated to the pediatric population. The contacting force between the pulse oximeter sensor and the measurement site can affect the plethysmography amplitude and reliability of ΔPOP as a predictor of fluid responsiveness in pediatric patients [29,30]. In addition, use of vasopressors such as norepinephrine may decrease the reliability of ΔPOP and PVI, as demonstrated in a previous study in adult patients [31].

Parameters derived from ultrasound

Respiratory variation of aortic blood flow peak velocity

ΔVpeak is measured at the aortic annulus or the left ventricular outflow tract by using pulsed wave Doppler with transtho-
Fluid responsiveness in children

VOL. 72, NO. 5, October 2019

Radic or transesophageal echocardiography (Fig. 3). It is a promising marker for optimization of perioperative fluid therapy in the pediatric population [5] and is calculated as follows:

\[\Delta V_{\text{peak}} (\%) = 100 \times \frac{V_{\text{peak \ max}} - V_{\text{peak \ min}}}{\left(\frac{V_{\text{peak \ max}} + V_{\text{peak \ min}}}{2}\right)} . \]

\(\Delta V_{\text{peak}} \) is a consistent predictor of fluid responsiveness in pediatric patients under mechanical ventilation [4–6,15–17,21,32,33] (Table 1). One thing that needs to be considered is that the cardiac index and the stroke volume index are obtained from the velocity time integral at the aortic annulus by using the same ultrasound device that measures \(\Delta V_{\text{peak}} \). This measurement coupling might make \(\Delta V_{\text{peak}} \) better correlated with the cardiac index or the stroke volume index than other dynamic parameters.

Respiratory variation of aortic blood flow peak velocity measured at the suprasternal notch

\(\Delta V_{\text{peak}} \) can be measured using transthoracic echocardiography from the suprasternal notch view. This method is useful when access to the chest wall is limited during surgery. A significant relationship between the \(\Delta V_{\text{peak}} \) recorded via the suprasternal notch view and that recorded via the apical 5-chamber view \((r = 0.62, P = 0.003)\) has been previously reported [34].

An ultrasonic cardiac output monitor (USCOM; USCOM Ltd., Australia) is a noninvasive, continuous-wave Doppler monitor that can be used to measure cardiac output via a probe applied to the suprasternal notch. SVV measured with USCOM can be used to predict fluid responsiveness after congenital heart surgery in children [35]. However, the issue of mathematical coupling should be considered because the cardiac output is calculated using the stroke volume obtained from USCOM. Additionally, the accuracy of SVV for predicting fluid responsiveness was reported to be higher among patients with inotropic score > 10 than among those with inotropic score \(\leq 10 \) [35] (Table 1). In addition, in another study, cardiac output measurements using USCOM in children did not reliably represent absolute cardiac output values as compared with measurements using the thermodilution technique with a pulmonary artery catheter [36].

Respiratory variation of carotid artery blood flow peak velocity measured using the transfontanelle approach

\(\Delta V_{\text{peak \ CA}} \) is suggested to be a highly feasible and reliable parameter for predicting fluid responsiveness in mechanically ventilated adult patients undergoing coronary revascularization [37]. In small pediatric patients, the anterior fontanelle remains open, thus providing a ‘window’ for the evaluation of the brain. The blood flow velocity of the internal carotid artery, basilar artery, anterior cerebral artery, pericallosal artery, and middle cerebral artery can be measured using transcranial Doppler. The clinical usefulness of this parameter in pediatric cardiac surgery has been reported [38–40]. \(\Delta V_{\text{peak \ CA}} \) as measured using transfontanelle ultrasound predicts increases in stroke volume in response to fluid, with a similar ability as \(\Delta V_{\text{peak}} \) [4] (Table 1). The transfontanelle approach is a useful method for monitoring because it can provide not only information about fluid responsiveness but also other information such as intracranial abnormality and cerebral blood flow (Fig. 4).

Respiratory variations of inferior vena cava diameter

The \(\Delta IVC \) can be calculated as follows:

\[\Delta IVC (\%) = 100 \times \frac{IVC \text{ diameter \ max} + IVC \text{ diameter \ min}}{2}. \]

Fig. 3. Respiratory variation of aortic blood flow peak velocity. Respiratory variation of aortic blood flow peak velocity is measured using transesophageal echocardiography. Sample volume of pulsed wave Doppler is located at just below the aortic annulus. Respiratory variation of aortic blood flow peak velocity \((\Delta V_{\text{peak}}) \) before (A) and after (B) volume loading in a fluid responder. \(\Delta V_{\text{peak}} \) is calculated as \(100 \times (V_{\text{max}} - V_{\text{min}}) / \left[(V_{\text{max}} + V_{\text{min}}) / 2 \right] \).
/ [(IVC diameter max + IVC diameter min) / 2].

In a previous study, the ΔIVC performed moderately well in predicting fluid responsiveness, with a pooled area under the ROC curve of 0.79 in adults [41]. However, in mechanically ventilated children, the results are controversial. ΔIVC was a good predictor of fluid responsiveness in one study [16] (Table 1) but not in other studies [15,42]. The collapsibility of the IVC has also been shown to be a poor predictor of fluid responsiveness in spontaneously ventilating children with sepsis [43].

Positive pressure ventilation has an influence on ΔIVC. In adults with tidal volume ≥ 8 ml/kg and positive end-expiratory pressure (PEEP) < 5 cmH₂O, ΔIVC is a good indicator of fluid responsiveness, but not in patients with a low tidal volume or a PEEP of > 5 cmH₂O [44]. On the other hand, ΔIVC decreases with the initiation of positive pressure ventilation in children (Fig. 5), and the addition of 10 cmH₂O PEEP has been demonstrated to produce no significant change in ΔIVC [45]. These findings should be considered when this variable is used for fluid management in mechanically ventilated children. In addition, measurement errors can easily occur in an IVC with a small diameter.

Esophageal Doppler indices

An esophageal Doppler system (CardioQ; Deltex Medical, UK) can measure the blood flow velocity in the descending aorta with the probe placed in the esophagus. Esophageal Doppler peak velocity could be used as an indicator of fluid responsiveness, in which reaching a target value of > 135.5 cm/s is a signal to terminate further fluid challenges in patients aged 1 day to 13 years [8] (Table 1). However, the target value may vary according to age, as the esophageal Doppler peak velocity varies with age. Another study showed that the flow time corrected could predict the stroke volume increase caused by fluid administration in ventilated children in a noncardiac pediatric intensive care unit. However, the same study did not demonstrate any significant predictive value in overall children and in those in a cardiac pediatric intensive care unit [19] (Table 1). There has been little evidence about the usefulness of esophageal Doppler

Fig. 4. Measurement of transcranial Doppler via the transfontanelle approach. Respiratory variation carotid blood flow peak velocity is measured using a sector probe via the anterior fontanelle. (A) Probe application on the anterior fontanelle, (B) Coronal view of the brain and the internal carotid artery, (C) Respiratory variation carotid blood flow peak velocity in a fluid nonresponder, (D) Respiratory variation carotid blood flow peak velocity in a fluid responder.

Fig. 5. Changes in the inferior vena cava (IVC) diameter during mechanical ventilation. The M-mode of IVC shows no significant change induced by the respiratory phase during mechanical ventilation in a 5-month-old infant. RA: right atrium.
for the prediction of fluid responsiveness in pediatric patients. In addition, cardiac output values measured with CardioQ in children do not well correlate with the cardiac output values measured using the thermodilution technique [46].

Others

Abdominal compression-induced blood pressure change

Increase in diastolic blood pressure induced by liver compression can be used to predict fluid responsiveness in mechanically ventilated children after cardiac surgery [6] (Table 1). This method uses the redistribution of blood volume into the central part of the body. Liver compression can increase the preload by pushing the blood volume to the heart, possibly increasing the stroke volume (Fig. 6). This finding is consistent with that of a study showing that an increase in the stroke volume index during a calibrated abdominal compression of 22–26 mmHg was able to predict fluid responsiveness regardless of the ventilation status in children aged < 8 years [42] (Table 1).

Passive leg raising

Concomitant measurements in cardiac index changes after the passive leg raising maneuver can be helpful in identifying patients whose cardiac index might increase with subsequent fluid resuscitation [47] (Table 1). The passive leg raising test may be helpful in assessing the volume status in children aged > 5 years, but not in those < 5 years old [48]. The blood volume shift to the central part during passive leg raising may be less in small children owing to the relatively less blood volume in the lower extremity. Accordingly, this method does not seem to be useful for the prediction of fluid responsiveness in small children.

Parameters derived from noninvasive cardiac output monitoring

The stroke volume index and SVV based on bioreactance measured using noninvasive cardiac output monitoring (NICOM; Cheetah Medical Inc., USA) have been found to have ability to predict fluid responsiveness in sedated and mechanically ventilated children after craniosynostosis repair [7] (Table 1). In addition, SVV measured using NICOM has been found to predict fluid responsiveness with optimal cutoff values of 10% during mechanical ventilation of children after ventricular septal defect repair [32] (Table 1). However, another study reported that the SVV measured using NICOM could not predict fluid responsiveness in pediatric patients aged < 5 years during cardiac surgery [33]. In addition, the study found no correlation between the cardiac index obtained using NICOM and that measured using echocardiography [33].

Differences between the Pediatric and Adult Populations

Studies have shown that fluid responsiveness in the pediatric population is different from that in adults. Pressure-based parameters such as PPV and SPV seem to be poor indicators of volume management in children. In addition, the results of studies on plethysmography-derived parameters in children were different from those of studies in adult patients. These differences can be explained by the physiologic and anatomic characteristics of the pediatric population.

First, the characteristics and compliance of blood vessels differ according to age. With increasing age, the arterial vessel wall thickness and collagen fiber quantity change [49], and both peripheral resistance and aortic resistance decrease with different rates [50,51]. Blood vessels become stiff with age because of calcification. Consequently, both peripheral and proximal arterial wall distensibility decrease with increasing age [50], which affects the relationship between SVV and parameters derived from peripheral arterial blood pressure such as PPV and SPV. In addition, there are inherent differences in vascular properties among various pediatric cardiac pathologies [52].

Second, the overall respiratory compliance of children can be larger than that of adults. Therefore, the change in the intrathoracic pressure transmitted to the vascular system may be less when applying the same tidal volume per weight to the pediatric population.

Third, cardiac ventricular compliance is decreased in the neonatal heart after cardiopulmonary bypass and in the pres-

Fig. 6. Abdominal compression-induced blood pressure change. Arterial blood pressure waveforms are displayed in the Frank-Starling curve. The arrow indicates the start of liver compression. Notice the difference of blood pressure change during liver compression between a fluid responder (left bottom of the curve) and a nonresponder (right top of the curve).
Considerations for Research on Fluid Responsiveness in the Pediatric Population

First, the most difficult part of the investigation on fluid responsiveness in the pediatric population is obtaining the cardiac output, the reference value. It is difficult to measure cardiac output in children. Many pediatric studies have used cardiac echocardiography to obtain the cardiac output value. The velocity time integral and the diameter at the level of the aortic annulus or left ventricular outflow tract are used to calculate the stroke volume (Fig. 7). However, inter-observer and intra-observer variability should be considered during echocardiographic measurements [53]. A more accurate method is placement of a perivascular flow probe around the aorta [54]. However, the application of this method is highly limited.

Second, various definitions of fluid responsiveness have been provided by different studies (Table 1). Considering the Frank-Starling curve, the change in the stroke volume index may be a reasonable indicator of fluid responsiveness. However, considering overall perfusion and oxygen delivery, evaluation of cardiac output increase may be more appropriate. The heart rate can change after fluid loading. Fluid responders might change to nonresponders according to which parameter is used to determine fluid responsiveness. Accordingly, the definition of fluid responsiveness should be reconsidered.

Third, a patient’s cardiac condition and use of inotropic and vasoconstrictor agents should be considered [55]. Patients with poor baseline contractility need more fluid to increase stroke volume. The clinical implications are important for patients with reduced contractility, who will require increased volume administra-
Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Author Contributions

Ji-Hyun Lee (Writing–original draft)
Eun-Hee Kim (Writing–review & editing)
Young-Eun Jang (Writing–review & editing)
Hee-Soo Kim (Validation; Visualization)

Jin-Tae Kim (Conceptualization; Supervision; Validation; Writing–original draft)

ORCID

Ji-Hyun Lee, https://orcid.org/0000-0002-8384-8191
Eun-Hee Kim, https://orcid.org/0000-0003-0697-1935
Young-Eun Jang, https://orcid.org/0000-0002-7511-4104
Hee-Soo Kim, https://orcid.org/0000-0002-2661-7944
Jin-Tae Kim, https://orcid.org/0000-0002-3738-0081

References

1. Gan H, Cannesson M, Chandler JR, Ansermino JM. Predicting fluid responsiveness in children: a systematic review. Anesth Analg 2013; 117: 1380-92.
2. Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology 2005; 103: 419-28.
3. Chung E, Cannesson M. Using non invasive dynamic parameters of fluid responsiveness in children: there is still much to learn. J Clin Monit Comput 2012; 26: 153-5.
4. Kim EH, Lee JH, Song IK, Kim HS, Jang YE, Kim JT. Respiratory variation of internal carotid artery blood flow peak velocity measured by transfontanelle ultrasound to predict fluid responsiveness in infants: a prospective observational study. Anesthesiology 2019; 130: 719-27.
5. Morparia KG, Reddy SK, Olivieri LJ, Spaeder MC, Schuette JJ. Respiratory variation in peak aortic velocity accurately predicts fluid responsiveness in children undergoing neurosurgery under general anesthesia. J Clin Monit Comput 2018; 32: 221-6.
6. Lee JH, Song IK, Kim EH, Kim HS, Kim JT. Prediction of fluid responsiveness based on liver compression-induced blood pressure changes in children after cardiac surgery. Minerva Anestesiol 2017; 83: 939-46.
7. Vergnaud E, Vidal C, Verchère J, Miattello J, Meyer P, Carli P, et al. Stroke volume variation and indexed stroke volume measured using bioreactance predict fluid responsiveness in postoperative children. Br J Anaesth 2015; 114: 103-9.
8. Weber T, Wagner T, Neumann K, Deusch E. Low predictability of three different noninvasive methods to determine fluid responsiveness in critically ill children. Pediatr Crit Care Med 2015; 16: e89-94.
9. Min JJ, Gil NS, Lee JH, Ryu DK, Kim CS, Lee SM. Predictor of fluid responsiveness in the 'grey zone': augmented pulse pressure variation through a temporary increase in tidal volume. Br J Anaesth 2017; 119: 50-6.
10. Biais M, Ehrmann S, Mari A, Conte B, Mahjoub Y, Deseube O, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care 2014; 18: 587.
11. Renner J, Cavus E, Meybohm P, Gruenewald M, Steinfath M, Scholz J, et al. Pulse pressure variation and stroke volume variation during different loading conditions in a paediatric animal model. Acta Anaesthesiol Scand 2008; 52: 374-80.
12. Han D, Pan S, Wang X, Jia Q, Luo Y, Li J, et al. Different predictivity of fluid responsiveness by pulse pressure variation in children after surgical repair of ventricular septal defect or tetralogy of Fallot. Paediatr Anaesth 2017; 27: 1056-63.
13. Favia I, Romagnoli S, Di Chiara L, Ricci Z. Predicting fluid responsiveness in children undergoing cardiac surgery after cardiopulmonary bypass. Pediatr Cardiol 2017; 38: 787-93.
14. Renner J, Broch O, Duettschke P, Scheewe J, Höcker J, Moseby M, et al. Prediction of fluid responsiveness in infants and neonates undergoing congenital heart surgery. Br J Anaesth 2012; 108: 108-15.
15. Byon HJ, Lim CW, Lee JH, Park YH, Kim HS, Kim CS, et al. Prediction of fluid responsiveness in mechanically ventilated children undergoing neurosurgery. Br J Anaesth 2013; 110: 586-91.
16. Choi DY, Kwak HJ, Park HY, Kim YB, Choi CH, Lee JY. Respiratory variation in aortic blood flow velocity as a predictor of fluid responsiveness in children after repair of ventricular septal defect. Pediatr Cardiol 2010; 31: 1166-70.
17. Renner J, Broch O, Gruenewald M, Scheewe J, Fransken S, Jung O, et al. Non-invasive prediction of fluid responsiveness in infants using pleth variability index. Anaesthesia 2011; 66: 582-9.
18. Tran H, Froese N, Dumont G, Lim J, Ansermino JM. Variation in blood pressure as a guide to volume loading in children following cardiopulmonary bypass. J Clin Monit Comput 2007; 21: 1-6.
19. Tibby SM, Hatherill M, Durward A, Murdoch IA. Are transoesophageal Doppler parameters a reliable guide to paediatric haemodynamic status and fluid management? Intensive Care Med 2001; 27: 201-5.
20. Sandroni C, Cavallo V, Marano C, Falcone C, De Santis P, Antonelli M. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med 2012; 38: 1429-37.
21. Pereira de Souza Neto E, Grousson S, Duflo F, Ducreux C, Joly H, Convert J, et al. Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography. Br J Anaesth 2011; 106: 856-64.
22. Desgranges FP, Evain JN, Pereira de Souza Neto E, Raphael D, Desebbe O, Chassard D. Does the plethysmographic variability index predict fluid responsiveness in mechanically ventilated children? A meta-analysis. Br J Anaesth 2016; 117: 409-10.
23. Julien F, Hill J, Sallab TB, Skhiri A, Michelet D, Brascher C, et al. Plethysmographic variability index (PVI) accuracy in predicting fluid responsiveness in anesthetized children. Paediatr Anaesth 2013; 23: 536-46.
24. Chandler JR, Cooke E, Petersen C, Karlen W, Froese N, Lim J, et al. Pulse oximeter plethysmograph variation and its relationship to the arterial waveform in mechanically ventilated children. J Clin Monit Comput 2012; 26: 145-51.
25. Nilsson L, Johansson A, Kalman S. Macrocirculation is not the sole determinant of respiratory induced variations in the reflection mode photoplethysmographic signal. Physiol Meas 2003; 24: 925-37.
26. Nilsson L, Johansson A, Kalman S. Respiratory variations in the reflection mode photoplethysmographic signal. Relationships to peripheral venous pressure. Med Biol Eng Comput 2003; 41: 249-54.
27. Dorlas JC, Nijboer JA. Photo-electric plethysmography as a monitoring device in anaesthesia. Application and interpretation. Br J Anaesth 1985; 57: 524-30.
28. Desgranges FP, Desebbe O, Ghazouani A, Gilbert K, Keller G, Chiari P, et al. Influence of the site of measurement on the ability of plethysmographic variability index to predict fluid responsiveness. Br J Anaesth 2011; 107: 329-35.
29. Park J, Yang S, Lee JH, Kim JT, Kim HS, Kim HC. The importance of sensor contacting force for predicting fluid responsiveness in children using respiratory variations in pulse oximetry plethysmographic waveform. J Clin Monit Comput 2019; 33: 393-401.
30. Lee JH, Yang S, Park J, Kim HC, Kim EH, Jang YE, et al. Time to consider the contact force during photoplethysmography measurement during pediatric anesthesia: A prospective, nonrandomized interventional study. Paediatr Anaesth 2018; 28: 660-7.
31. Monnet X, Guérin L, Joziwiak M, Bataille A, Julien F, Richard C, et al. Pletth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth 2013; 110: 207-13.
32. Lee JY, Kim JY, Choi CH, Kim HS, Lee KC, Kwak HI. The ability of stroke volume variation measured by a noninvasive cardiac output monitor to predict fluid responsiveness in mechanically ventilated children. Pediatr Cardiol 2014; 35: 289-94.
33. Lee JH, No HJ, Song IK, Kim HS, Kim CS, Kim JT. Prediction of fluid responsiveness using a non-invasive cardiac output monitor in children undergoing cardiac surgery. Br J Anaesth 2015; 115: 38-44.
34. Devauchelle P, de Queiroz Siqueira M, Lilot M, Chassard D, Desgranges FP. Suprasternal notch echocardiography: a potential alternative for the measurement of respiratory variation in aortic blood flow peak velocity in mechanically ventilated children. J Clin Monit Comput 2018; 32: 589-91.
35. Cheng TW, Xu F, Li J. Identification of volume parameters monitored with a noninvasive ultrasonic cardiac output monitor for predicting fluid responsiveness in children after congenital heart disease surgery. Medicine (Baltimore) 2018; 97: e12289.
36. Knirsch W, Kretschmar O, Tomaske M, Stutz K, Nagdyman N, Balmer C, et al. Cardiac output measurement in children: comparison of the Ultrasound Cardiac Output Monitor with thermodilution cardiac output measurement. Intensive Care Med 2008; 34: 1060-4.
37. Song Y, Kwak YL, Song JW, Kim YJ, Shim JK. Respirophasic carotid artery peak velocity variation as a predictor of fluid responsiveness in mechanically ventilated patients with coronary artery disease. Br J Anaesth 2014; 113: 61-6.
38. Lee JH, Min SH, Song IK, Kim HS, Kim CS, Kim JT. Control of cardiopulmonary bypass flow rate using transfantennellar ultrasonography and cerebral oximetry during selective antegrade cerebral perfusion. J Cardiothorac Vasc Anesth 2016; 30: 186-91.
39. Park YH, Song IK, Lee JH, Kim HS, Kim CS, Kim JT. Intraoperative trans-fantennellar cerebral ultrasonography in infants during cardiac surgery under cardiopulmonary bypass: an observational study. J Clin Monit Comput 2017; 31: 159-65.
40. Kim EH, Lee JH, Song IK, Kim HS, Jang YE, Kim WH, et al. Potential role of transtfontanelle ultrasound for infants undergoing modified blalock-taissus shunt. J Cardiothorac Vasc Anesth 2018; 32: 1648-54.
41. Long E, Oakley E, Duke T, Babl FE. Does respiratory variation in inferior vena cava diameter predict fluid responsiveness: a systematic review and meta-analysis. Shock 2017; 47: 550-9.
42. Jacquet-Lagréze M, Tiberghien N, Evain JN, Hanna N, Courtiol-Teyssedre S, Lilot M, et al. Diagnostic accuracy of a calibrated abdominal compression to predict fluid responsiveness in children. Br J Anaesth 2018; 121: 1323-31.
43. Long E, Duke T, Oakley E, O’Brien A, Sheridan B, Babl FE. Does respiratory variation in inferior vena cava diameter predict fluid responsiveness in mechanically ventilated patients? a systematic review and meta-analysis. Anesth Analg 2018; 127: 1157-64.
44. Si X, Xu H, Liu Z, Wu J, Cao D, Chen J, et al. Does respiratory variation in inferior vena cava diameter predict fluid responsiveness in spontaneously ventilating children with sepsis. Emerg Med Australas 2018; 30: 556-63.
45. Lin EE, Chen AE, Panebianco N, Conlon T, Ju NR, Carlson D, et al. Effect of inhalational anesthetics and positive-pressure ventilation on ultrasound assessment of the great vessels: a prospective study at a children’s hospital. Anesthesiology 2016; 124: 870-7.
46. Working Group on Non-invasive Haemodynamic Monitoring in Paediatrics, Knirsch W, Kretschmar O, Tomaske M, Stutz K, Nagdyman N, et al. Comparison of cardiac output measurement using the CardioQ Oesophageal Doppler with cardiac output measurement using thermodilution technique in children during heart catheterisation. Anaesthesia 2008; 63: 851-5.
48. Lu GP, Yan G, Chen Y, Lu ZJ, Zhang LE, Kissoon N. The passive leg raise test to predict fluid responsiveness in children—preliminary observations. Indian J Pediatr 2015; 82: 5-12.
49. Roach MR, Burton AC. The effect of age on the elasticity of human iliac arteries. Can J Biochem Physiol 1959; 37: 557-70.
50. Senzaki H, Akagi M, Hishi T, Ishizawa A, Yanagisawa M, Masutani S, et al. Age-associated changes in arterial elastic properties in children. Eur J Pediatr 2002; 161: 547-51.
51. Sharp MK, Pantalos GM, Minich L, Tani LY, McGough EC, Hawkins JA. Aortic input impedance in infants and children. J Appl Physiol (1985) 2000; 88: 2227-39.
52. Senzaki H, Chen CH, Masutani S, Taketazu M, Kobayashi J, Kobayashi T, et al. Assessment of cardiovascular dynamics by pressure-area relations in pediatric patients with congenital heart disease. J Thorac Cardiovasc Surg 2001; 122: 535-47.
53. Jozwiak M, Mercado P, Teboul JL, Benmalek A, Gimenez J, Dépre F, et al. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care 2019; 23: 116.
54. Sigurdsson TS, Aronsson A, Lindberg L. Extracorporeal arteriovenous ultrasound measurement of cardiac output in small children. Anesthesiology 2019; 130: 712-8.
55. Saxena R, Durward A, Steele S, Murdoch I, Tibby SM. Predicting fluid responsiveness in 100 critically ill children: the effect of baseline contractility. Intensive Care Med 2015; 41: 2161-9.
56. de la Oliva P, Menéndez-Suso JJ, Iglesias-Bouzas M, Álvarez-Rojas E, González-Gómez JM, RosellóP, et al. Cardiac preload responsiveness in children with cardiovascular dysfunction or dilated cardiomyopathy: a multicenter observational study. Pediatr Crit Care Med 2015; 16: 45-53.