Infectious diseases are considered as a pressing challenge to global public health. Accurate and rapid diagnostics tools for early recognition of the pathogen, as well as individualized precision therapy are essential for controlling the spread of infectious diseases. Aptamers, which were screened by systematic evolution of ligands by exponential enrichment (SELEX), can bind to targets with high affinity and specificity so that have exciting potential in both diagnosis and treatment of infectious diseases. In this review, we provide a comprehensive overview of the latest development of SELEX technology and focus on the applications of aptamer-based technologies in infectious diseases, such as targeted drug-delivery, treatments and biosensors for diagnosing. The challenges and the future development in this field of clinical application will also be discussed.

Keywords: aptamer, SELEX, infectious disease, precision medicine, biosensor

INTRODUCTION

Infectious diseases which result from pathogenic microorganisms become one of the most important illnesses in the world (Mosing et al., 2005; Giri et al., 2019). Because of the characteristics of contagion and epidemic, infectious diseases not only endanger public health but also pose serious threats and huge losses to social stability and economic development. Over the past decades, the sudden public health crises including Ebola hemorrhagic fevers, avian influenza, severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS), as well as COVID-19, have swept out the world and caused a significant impact on society inevitably (Del Rio et al., 2014; Liu et al., 2017; Lycett et al., 2020; Wiersinga et al., 2020; Perra, 2021). Existing pathogen detection methods are difficult to achieve a balance between timeliness, accuracy and cost to meet the requirements of large-scale population screening. In addition, the existence of antibiotic-resistant microbes such as multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and methicillin-and aminoglycoside-resistant Staphylococcus aureus (MARSA) brings greater challenges to the prevention and treatment of infectious diseases (Fauci et al., 2005; Tan Z. M. et al., 2020; Nang et al., 2021). Therefore, there is an urgent demand to develop rapid, economic, and sensitive early diagnostic assays for pathogens, and also adequate therapeutics of precision medicine for infectious diseases.
Aptamers, also known as “chemical antibodies”, are a class of single-stranded DNAs or RNAs which can target various ligands through non-covalent bonds. Those aptamers are synthetic screened in vitro by a selection procedure, commonly known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX). DNA aptamers are more stable and widely used, while RNA aptamers are more likely to form complex structures such as stem, loop, hairpin, G-quadruplex and so on (Breaker, 1997; Lin and Patel, 1997; Wu et al., 2017). These folding 3D structures can increase sequence space coverage and improve space representation, which are beneficial for aptamer-target recognition, thus improving the specificity and affinity of the screened aptamers (Kinghorn et al., 2017). Aptamers have attracted considerable attention because of their exceptional merits such as low synthesis cost, easy chemical modification, high chemical stability and binding affinity, low immunogenicity, good repeatability and reusability (Hong and Sooter, 2015; Yu et al., 2021). To date, thousands of aptamers have been identified, which can be used to identify different targets with high affinity and specificity, such as small metal ions, organic molecules, amino acids, proteins, bacteria, viruses, whole cells and even animals (Cowperthwaite and Ellington, 2008; Zhou and Rossi, 2017). Based on the above advantages, nucleic acid aptamers have been explored as the most promising molecular recognition probes to widely applied in the field of infectious agents and the therapeutic of infectious diseases.

In this review, the recent advances of SELEX technologies for aptamer selecting of infectious pathogens will be overviewed. Then we will focus on a variety of aptamer-based biosensors for infection detecting and the state-of-the-art aptamer therapeutics and drug delivery systems in the precision treatment of infectious diseases. The current challenges and future prospects of aptamers will also be discussed to provide a direction for the research and development of aptamers.

DISCOVERY OF SPECIFIC AP TAMERS BY SYSTEMATIC EVOLUTION OF LIGANDS BY EXPONENTIAL ENRICHMENT

SELEX was originally developed by Gold and Szostak in 1990 (Ellington and Szostak, 1990; Tuerk and Gold, 1990). Before selecting, an oligonucleotide library consisting of two constant regions at 5’ and 3’ ends and a random region in the middle should be synthesized. The primary library usually contains up to 10^{12}–10^{15} different nucleic acid molecules, of which the random region is about 20–40 bp, and the constant regions that flanked are about 20 bp, including restriction endonuclease sites, primer binding sites and RNA promoter binding sites (Zimbres et al., 2013; Hong and Sooter, 2015). Currently, both DNA and RNA libraries are widely used for SELEX due to their distinct advantages.

General Systematic Evolution of Ligands by Exponential Enrichment Scheme

In brief, a typical SELEX comprises three critical stages: 1) incubate the target molecule with the combinatorial library of nucleic acids in vitro to form an aptamer-target complex; 2) partition the complex from the unbound nucleotides and separate the oligonucleotide chain that binds to the target molecule; 3) obtain a sub-library by employing PCR (DNA SELEX) or reverse transcription PCR (RNA SELEX) to amplifying the target-bound sequence (Figure 1). It is worth mentioning that the negative target is usually introduced to improve target specificity by recovering and amplifying the unbound oligonucleotide chain. In this way, the oligonucleotide chain obtained by iterative circles of selecting and PCR amplification is the nucleic acid aptamer of the target. After cloning and sequencing, the identification, binding ability and the secondary/tertiary structure of aptamer can be analyzed subsequently.

Novel Approaches for Aptamer Selection

Despite the conventional SELEX technology is well-established, the process is tedious and time-consuming, which typically takes up to 20 rounds. At present, various novel SELEX technologies have been developed to improve the shortcomings of the conventional one, further accelerate the speed and efficiency of high-affinity aptamer screening and shorten the selection period. In this respect, the rapid development of SELEX technology provides substantial potential for rapid response to public health emergencies.

The separation of aptamer-bound sequences from the unbound nucleotides is one of the most critical steps in the process of SELEX. Thus, the screening process can be accelerated by optimizing the binding and separation of the target molecule with libraries. Usually, immobilization is involved in binding the targets to a carrier and then incubated with the nucleic acid library (Van Dyke et al., 2016). Common carriers such as magnetic beads, affinity chromatography columns or microfluidic chips. Among them, considerable attention has been given to magnetic beads, as chemical modification of magnetic beads is easy and the magnetic separation method is convenient, fast and effective (McKeague et al., 2010; Hunnger et al., 2014; Xi et al., 2015; Duan et al., 2016; Ma et al., 2018). To date, a variety of aptamers have been successfully selected by magnetic SELEX (Oh et al., 2009; Lai et al., 2014; Wu J.-H. et al., 2018). For example, Hong et al. first proposed a magnetism-controlled chip for Ebola virus aptamers selection by integrating the magnetic bead-based SELEX (Mag-SELEX) with a microfluidic system and by this method they got an aptamer with low dissociation constants and reducing the selecting round to three (Hong et al., 2019). Another novel approach called Capillary Electrophoresis SELEX (CE-SELEX) is based on the difference of electrophoretic mobility between target bounded sequence with the unbound one (Mendonsa and Bowser, 2004a; Mendonsa and Bowser, 2004b). Mosing Renee K et al. successfully obtained aptamers candidate with high affinity to human immunodeficiency virus (HIV) reverse transcriptase by CE-SELEX only after four cycles (Mosing et al., 2005). Although in vitro SELEX technology for a single target has been quite mature, especially for proteins, the clinical applications of these aptamers are still limited. The reason is that the properties of a recombinant protein are not the same as those of natural proteins, including conformation, advanced structure and biological...
activity. Besides, aptamers screened for artificial recombinant proteins may be much less sensitive in identifying natural targets. To overcome this limitation, cell-SELEX, which employs the whole cell as a target, was first proposed in 2003 (Daniels et al., 2003). Recently, a series of aptamers against various pathogens were generated by cell-SELEX, such as *Salmonella*.
Aptamers have a very wide range of target molecules, which can be designed for early disease markers, creating conditions for the early detection of pathogens. At the same time, aptamers can be rapidly chemically synthesized in batches with a long shelf-life for storage at room temperature. The comparison of main characteristics between antibodies and aptamers is shown in Table 2.

Due to those advantages, abundant research has integrated aptamers into biosensors as molecular recognition elements over the past decades. The biological signals received by aptamers can be transformed into the optical signal or electrical signal by the signal converter, then the output signal will be amplified by the electronic system and further be used for the detection of pathogenic microorganisms qualitatively or quantitatively. According to the pathogenic targets, we category these aptamer-based biosensors into three classes: bacteria, viruses and others.

Detection of Bacteria

The current diagnostic gold standard of bacterial identification is still bacterial culture, subsequent biochemical identification and serological typing (Rauch and Nauen, 2003; Andini et al., 2018; Takeuchi et al., 2018). However, they are time-consuming, usually several days, and have some limitations in the identification of some certain species. In addition, it is less convenient for point-of-care detection. To meet this need, aptamer-based biosensors were widely developed. As an example, an electrochemical sensor for the detection of *Mycobacterium tuberculosis* reference strain H37Rv ATCC 27294 using aptamer technology was introduced by Zhang X. et al. (2019). In this method, H37Rv aptamers layer modified on the bare Au interdigital electrode are recognition probe and oligonucleotides modified with gold nanoparticles (AuNPs-DNA) are signal probe. When H37Rv bacteria was present, it can amplify the aptamer signal. Here, the aptamer layer acts as a signal converter, then the output signal will be amplified by the electronic system and further be used for the detection of bacteria.

TABLE 2 | The characteristics comparison of nucleic acid aptamers and antibodies

Features	Antibodies	Aptamers
Substance	polymer peptide	nucleic acid
Specificity	high	high
Affinity	high	high
Immunogenicity	no humoral immunity	stable
Production cost	low	low
Stability	stable	stable
Potential target	limited to immunogenic molecules	no limitation
Development time	6-18 weeks	2-6 weeks
Modification	limited	convenient
Batch-to-batch variation	low	low

APPLICATION OF APTAMERS BIOSENSOR IN INFECTIOUS DISEASES DIAGNOSIS

Most infectious diseases progress rapidly, and a clear diagnosis is key for effective treatment. Also, efficient pathogen detection methods help control the spread of infectious diseases. Therefore, early, accurate and rapid pathogen diagnosis is of great significance. Currently, the routine diagnostics for infectious pathogen are bacterial culture, polymerase chain reaction (PCR) and immunological detection (Lampel et al., 2000; Byrne et al., 2009; Arvanitis et al., 2014; Rohr et al., 2016; Balmaseda et al., 2017). These approaches are relatively mature, but they inevitably have limitations such as time-consuming, high cost, and tedious operation. Alternatively, although antibody is indispensable in most routine tests, it inevitably meets many limitations, such as laborious and expensive production and identification, batch-to-batch variation, and its biological activity is susceptible to the environment such as pH and temperature (Jayasena, 1999; Nimjee et al., 2005; Rosenbaum et al., 2012; Yu et al., 2021).
Woo et al. designed an aptamer-based fluorescent sensor to detect SARS-CoV-2 RNA in human nasopharyngeal samples (Woo et al., 2020). They intelligently designed a one-pot, ligation-dependent isothermal reaction cascade that consists of a ligation reaction by SplitR ligase and subsequent transcription by T7 RNA polymerase. When target RNA existing, the RNA aptamers of the isothermal reaction products bind to fluorescent dyes and produce a significant fluorescence signal. The detection limit is 0.1 aM. Interestingly, only by redesigning the hybridization regions of the probes, a series of viruses including influenza viruses, MERS and SARS can be detected by this method. Another recent approach was proposed by Liu et al. (2020), which designed a qPCR amplification reaction triggered by two aptamers probes for ultrasensitive detection of serum COVID-19-associated antigens. This method exhibits excellent detection performance and can be conducted within 2 h. In another study by Babamiri et al. (2018), aptamer against HIV-1 was used for the development of an electrochemiluminescence (ECL) sensor. This aptamer-based biosensor showed excellent sensitivity and specificity, with a detection limit as low as 0.3 fM, and can be successfully applied to clinical serum samples analysis.

More importantly, some viruses have multiple subtypes and mutant quickly, which are highly infectious and transmissible pathogens (Shim, 2011; Li et al., 2019; Ma and Ma, 2020). Therefore, the detection of mutation is becoming a top priority in the field of methodological research. At present, molecular methods such as PCR and DNA sequencing are powerful tools to obtain information on mutant status, but these methods could not satisfy the expectation for extensive disease screening because of the need for special equipment and expensive consumables (Escadaful et al., 2014; Ma et al., 2015). Recently, Wang et al. established a highly sensitive platform for detecting SARS-CoV-2 and its mutated variants based on a CRISPR-Cas13 transcription amplification principle (Wang et al., 2021). They employed light-up RNA aptamers as the sensitive output of amplification signals, achieving sensing of as low as 82 copies of SARS-CoV-2. Moreover, this platform was applied to strictly identify the key mutation of the SARS-CoV-2 variant, D614G, which increases viral stability and flexibility and further enhances replication and transmission.

Detection of Other Pathogens
Aptamer-based biosensors are used to detect several other pathogens alternatively. Protozoan parasite infection remains one of the major public health problems in some underdeveloped and developing countries with poor sanitation and economic backwardness. Thus, the application of detections that require expensive equipment or complex laboratory sites is significantly limited in these areas. In this case, a deal of aptamer-based biosensors has been developed for the identification of parasites due to their low cost, simplicity, portability (Lee et al., 2012; Singh et al., 2019a; Singh et al., 2019b; Frezza et al., 2020; Minopoli et al., 2020). Take the diagnosis of malaria as an example, Singh et al. established instrument-based and instrument-free approaches for pan malaria and P. falciparum species based on aptamers specific to Plasmodium lactate dehydrogenase (PLDH) and Plasmodium falciparum glutamate dehydrogenase (PfGDH) respectively (Singh et al., 2019a). They successfully overcame the false-negative limitation of traditional microscopic examination of Giemsa-stained thick blood films and achieved an ultrasensitive detection with a low cost (~0.10 $ per test) (Mikhail et al., 2011; Thongdee et al., 2014; Bin Dajem, 2015; Sumari et al., 2016; Habaryimana and Ramroop, 2020). In addition, Fu developed an indirect blocking enzyme linked aptamer assay (ib-ELAA) for the detection of Mycoplasma gallisepticum (M. gallisepticum), which was the major pathogen of chronic respiratory disease (Fu et al., 2021b; Fu et al., 2021a). In this method, they initially screened out the aptamer Apt-236 which can bind to PvpA protein of M. gallisepticum with high affinity, and further integrated Apt-236 into ib-ELAA and successfully applied in the detection of clinical chicken sera sample. Similarly, a great many of aptamer-based methods for the detection of pathogenic parasites (Homann et al., 2006; Bruno et al., 2014; Osipina-Villa et al., 2018; Osipina, 2020), mycoplasma (Fu et al., 2014; Liu Y. et al., 2019; Wan et al., 2020), several fungal species (McKeague et al., 2010; Barthelmecs et al., 2011; Ma et al., 2014; Wu S. et al., 2018; Liu M. et al., 2019; Han et al., 2021) have also been developed.

The comparison of representative aptasensor performance in the detection of the various pathogen is summarized in Table 3.

APPLICATION OF APTAMERS IN INFECTIOUS DISEASES TREATMENT
At present, the therapeutic of infectious diseases is mainly based on the principle of symptomatic treatment or specific anti-pathogen treatment. However, antimicrobial resistance, high viral genomes mutation variability and escaping the host immune response make most medications and vaccines inefficient (Finlay and McFadden, 2006; Labelle and Merel, 2013; Dunning et al., 2014a; Fall-Malick et al., 2014; Ferrer et al., 2014; Lazarevic, 2014; Marascio et al., 2014; Sahu, 2015; Wandtke et al., 2015). It is worth mentioning that the effect of antiviral therapy is not ideal for all patients and side effects caused by many existing antiviral drugs may lead to other diseases than primary affection. For instance, the most effective therapy for patients with hepatitis C (interferon alfa-2b plus ribavirin) benefits only about 50% of cases (Manns et al., 2001; Sarhan et al., 2020), whereas such therapeutic regimen usually be associated with numerous adverse effects (Fried, 2002; Nishimura et al., 2002; Fisher et al., 2004; Negro, 2010; Pazienza, 2011; Gull et al., 2019). Many studies confirmed that aptamer, as a promising candidate, can target the key molecules in bacterial physiological processes or viral surface proteins, and treat the infection effectively by inhibiting viruses penetrating the cells, disrupting the activity of enzymes related to viral replication or regulating immune response (Bellecave et al., 2008; Gopinath et al., 2012; Hwang et al., 2012; Torabi et al., 2020).

Aptamer-Based Therapeutics
Precision medicine holds great promise to harness the benefits of aptamers that can bound to targets with high specificity and
affinity for targeted treatment of a variety of diseases. Such therapeutic aptamers function mainly in the following two ways: 1) aptamers function as antagonists to disrupt the function of a pathologic target protein and block the interaction of disease-associated targets by specifically binding to target; 2) aptamers function as agonists to increase the ability of the target receptors. For instance, Lee et al. reported an RNA aptamer against the Hepatitis C virus (HCV) nonstructural protein 5B can effectively inhibit HCV replication and suppressed HCV infectious virus particle formation (Lee et al., 2015). HIV integrase is considered necessary for retroviral replication, which is a primary target for the therapy of AIDS (Shoji et al., 2002). Thus, aptamers as potential anti-HIV integrase inhibitors have drawn much attention from researchers. Pang and his colleague designed an anti-HIV lentivirus vector consist of shRNA, ribozyme and RNA decoy (Pang et al., 2018). By screening aptamers against integrase and incorporating these aptamers in shRNA, they successfully observed interference and inhibition to transcription of HIV in cell cultures. Also, many other aptamers against Tat protein, gp120, reverse transcriptase, nucleocapsid protein were developed for further exploit research of antiviral therapy (Mufhandu et al., 2012; Aeksiri et al., 2014; Nguyen et al., 2020; Zhang et al., 2020). COVID-19 has wreaked havoc all over the world, but no specific treatment has been developed yet. Liu and his colleague developed an aptamer that specifically targets the spike protein of the coronavirus SARS-CoV-2, which is the critical role of viral infection (Liu et al., 2021). When the receptor-binding domain (RBD) of the spike protein of the coronavirus SARS-CoV-2 binds to the human angiotensin-converting enzyme 2 (ACE2), an infection cascade is triggered (Schmitz et al., 2021). They proved that this aptamer effectively protects host cells from infection by blocking the interaction between spike protein and ACE2 receptor. This exciting report is fueling hope in the field of COVID-19’s therapy, it also brings up new opportunities for aptamer-based treatment.

Despite aptamer-based therapy shows huge potential, their inherent physicochemical characteristics affect pharmacokinetic properties in some way, which may limit their widespread clinical application. The most critical problems are nuclease degradation and rapid renal filtration. Unmodified nucleic acid aptamers have an average diameter of 5–30 kDa and the average diameter of 5–30 kDa aptamers is less than 5nm, which is smaller than the glomerular filtration threshold (i.e., 30–50 kDa), aptamers are inevitably rapidly excreted through renal filtration (Guo, 2010; Morita et al., 2018). Since the average diameter of 5–30 kDa aptamers is less than 5nm, which is smaller than the glomerular filtration threshold (i.e., 30–50 kDa), aptamers are inevitably rapidly excreted through renal filtration (Guo, 2010; Morita et al., 2018). To overcome this disadvantage, many macromolecular substances such as proteins, cholesterol, liposomes, high molecular mass PEG or nanomaterials are involved to modify aptamers, and there is indeed a significant improvement in some reports (Fisher et al., 1976; Drolet et al., 2000; Rusconi et al., 2004; Burmeister et al., 2005; Chen et al., 2015; Heo et al., 2016). However, chemical modification is a double-edged sword. Serious allergic responses caused by

Type of pathogen	Target	Aptamer	Detection method	Lod	Linear range	Detection time	Specificity	Ref.
Bacteria								
Mycobacterium	H37Rv aptamers	Electrochemical	100 CFU/ml	1×10^2–1×10^3 CFU/ml	2 h	90%	Zhang et al. (2019)	
tuberculosis								
Staphylococcus	S.aureus aptamer	Fluorescent	39 CFU/ml	60–8×10^2 CFU/ml	NR	high	Cai et al. (2019)	
aureus								
L. monocytogenes	LM6-116	Fluorescent	10 CFU/ml	10–1×10^6 CFU/ml	NR	high	Guo et al. (2020)	
Escherichia coli	E1	Fluorescent	3.7×10^7 CFU/ml	6×10^7–3.75×10^8 CFU/ml	135 s	high	Zhang et al. (2019b)	
Viruses								
SARS-CoV-2	D614G variants	Fluorescent	82 copies	100–1,000 copies	20 min	high	Wang et al. (2021)	
HIV-1	HIV aptamer	ECL	0.3 nM	3.3 fM–0.3 nM	NR	high	Babamiri et al. (2018)	
HBV	HBsAg aptamer	Chemiluminescent	0.05 ng/ml	1–225 ng/ml	NR	high	Xi et al. (2018)	
Influenza	Influenza nucleoprotein aptamer	Lateral flow immunoassays	0.26 pg/ml	0.01–10 ng/ml	10 min	high	Kang et al. (2019)	
Norovirus	Aptamer-6-FAM, Bt-Apt-Fc	Microfluidic	100 pM	100 pM - 3.5 nM	35 min	high	Chand and Neethirajan, (2017)	
Other pathogens								
P. falciparum	PLDH/PGDH aptamers	Colorimetric	0.55 pM/1.34 pM	1 pM - 100 nM	35 min	high	Singh et al. (2019a)	
Trypanosoma cruzi	Tp68	PCR	0.33 parasites/ml	NR	NR	high	Dunning et al. (2014b)	
Leishmania	Leishmania aptamer	Fluorescent	~100 ng/2 ml sample	0–1,000 ng	~1 h	NR	Bruno et al. (2014)	

NR, not report.
biomaterial, non-specific immune activation, tissue toxicity caused by drug metabolism and other undesirable side effects have been reported (Geary et al., 2003; Waring, 2010; Wong and Goldberg, 2014; Lincoff et al., 2016; Morita et al., 2016). Thus, it is necessary to cautiously improve and optimize the formulations or administration routines of aptamer therapy.

Aptamers as Intelligent Chemical Drug-Delivery Systems

The other ingenious anti-infective therapeutic strategy is to employ aptamers as intelligent messengers of therapeutic agents, such as small interfering RNA molecules and ribozymes (Dey et al., 2005; Romero-López et al., 2012; Zhu et al., 2012; Wandtke et al., 2015). In the broad area of drug delivery system, aptamers have also been extensively sought after due to the inherited merits: relatively small physical size, versatile structure, quick chemical production, flexible chemical modification, high stability, and lack of immunogenicity. Through chemical modification and bioconjugation, a variety of therapeutic agents increase their stability and bioactivity without change the primary characteristics (Fattal et al., 2018). The targeting of aptamer increases the local drug concentration, thus improving the therapeutic efficacy whilst reducing the systemic toxic and side effects of the drug. Therefore, many cell-specific aptamers are explored to conjugate with chemical entities including chemotherapeutic agents, siRNA, nanoparticles for targeted delivery of drugs.

For the development of aptamers as drug-delivery systems, one example is anti-gp120 aptamer for the treatment of AIDS (Zhou J. et al., 2013). A viral surface protein, gp120, is closely related to viral infection. HIV-1 infects target cells through binding gp120 to cellular receptor CD4 and chemokine receptors such as CCR5 or CXCR4. In this research, Zhou and his colleague employed an anti-gp120 aptamers as siRNA delivery vehicles, effective delivery viral inhibiting siRNA in vivo and potent inhibition of HIV-1 replication. Similarly, Pan et al. designed an ingenious system which employed bispecific circular aptamers (bc-apts) to specifically tether protein cargoes and cellular membrane proteins (Pan et al., 2020). This strategy achieved the specific delivery of functional therapeutic proteins, and the deactivation of functional proteins was also avoided. Furthermore, the bioactivity of the drug in the lesion was specifically increased. Yan et al. reviewed the design and application of aptamers as drug-delivery systems in the photodynamic platform of targeted therapy (Yan et al., 2021). In this review, they focused on the application of aptamers-targeted photodynamic therapies which achieve controlled and accurate delivery of therapeutic drugs to the lesion sites and obtained excellent photodynamic therapy efficiency. Another advantage of an aptamer-based targeted delivery system is that it can delay the evolution of resistance and improve the efficiency of the antimicrobials on already resistant pathogens. Ucak et al. used *Staphylococcus aureus*-specific aptamer to functionalize methicillin, which is an antibiotic for serious infectious caused by Gram-positive bacteria (Ucak et al., 2020). By limiting the amount and dosage during therapy, they proved that the novel delivery system was significantly effective in reducing minimum inhibitory concentration (MIC) values. Therefore, the aptamer-based targeted delivery system is a promising method for the treatment of infections caused by antibiotic-resistant bacteria. In addition to the examples above, multiple types of research have shown the extraordinary ability of aptamer in drug target-delivering (Nimjee et al., 2005; Shiang et al., 2013; Hahn, 2017; Chonco et al., 2018; Fattal et al., 2018; Tan X. et al., 2020).

CONCLUSION AND FUTURE PERSPECTIVES

Taking advantage of low cost, easy chemical modification, high specificity and binding affinity, low immunogenicity, aptamers have been used as an alternative to antibodies in the development of aptamer-based technologies in the past decades. The development of biomedical technology has enabled a comprehensive exploration of the screening technologies and practical applications of aptamers. In this review, we comprehensively discussed the recent progress in the development of SELEX technology and aptamer-based applied research in various types of infectious diseases.

Up to now, aptamers were intensively integrated into the biosensor strategies as molecular recognition elements. Compared with conventional diagnosis methods, aptamers-based biosensors strategies had obvious advancement in sensitivity and reliability which could improve diagnostic performance, thus lead to intervention at an earlier stage and avoid the spread of infectious diseases. Furthermore, as a class of single-stranded nucleic acid, aptamers showed outstanding advantages on cost and manufacturability, so that the development of aptamer-based biosensors could be conducive promote the popularization and improvement of infectious diseases diagnosis techniques in community hospitals. Last but not the least, the portability makes biosensors an alternative to traditional methods in point-of-care diagnostics and even more diverse medical settings such as epidemic areas. Aptamers could be also applied in biotherapy and drug-delivery systems. Due to low immunogenicity and high targeting ability, aptamer-based therapy could increase the drug concentration in local lesions, thus improve the therapeutic effect and reduce the toxic and side effects of drugs. Aptamers were also intelligent in solving problems of antimicrobial resistance and viral genomes mutation variability. Therefore, aptamers are expected to be promising in the therapeutic of infectious diseases.

However, there remain several challenges limiting the clinical application of aptamers. Firstly, aptamers for some complex pathogens are still limited because of the limitations of the current SELEX technology. Nevertheless, those problems can be ameliorated by optimizing the critical factors in the SELEX process in near future, such as the concentration of target molecules, the separation method of aptamers, PCR reaction conditions, the number of screening rounds and so on. Besides, the biostability and toxicity of aptamers, as well as the degradation of unmodified aptamers by nuclease in serum and
rapid removal by renal filtration remain to be explored. The side effects caused by the metabolism of aptamer are also a problem to be reckoned with. Therefore, significant refinements of biochemical modification and rigorous administration routines of aptamer-based therapy are still needed in future research. Fortunately, in spite of all the challenges mentions above, the transition from aptamer-based basic research to clinical application is taking place, although slowly.

Overall, we foresee a promising prospect for aptamer-based technologies in precision medicine of infectious diseases. Shortly, with many research and development activities going on in this field, we envision that practical and commercial biosensors and novel drugs for clinical diagnosis and precise therapy are very close to realization, and consequently, that will significantly reduce the human diseases and economic burdens.

AUTHOR CONTRIBUTIONS

YX and XJ wrote the manuscript. YZ and MM contributed to the literature research. MW and BY revised and approved the manuscript. All authors have read and agreed to the published version of the manuscript.

FUNDING

This work was supported by the National Natural Science Foundation of China (Grant numbers 81672095); National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant numbers 2018ZX10175-003-001).

REFERENCES

Aeksiri, N., Songtawee, N., Gleeson, M. P., Hannonguba, S., and Choowongkom, K. (2014). Insight into HIV-1 Reverse Transcriptase-Aptamer Interaction from Molecular Dynamics Simulations. J. Mol. Model. 20 (8), 2380. doi:10.1007/s00894-014-2380-8

Andini, N., Hu, A., Zhou, L., Cogill, S., Wang, T.-H., Wittwer, C. T., et al. (2018). A ‘Culture’ Shift: Broad Bacterial Detection, Identification, and Antimicrobial Susceptibility Testing Directly from Whole Blood. Clin. Chem. 64 (10), 1453–1462. doi:10.1373/clinchem.2018.290189

Ansari, N., Ghazvini, K., Ramezani, M., Shahdordizadeh, M., Yazdian-Robati, R., Abnous, K., et al. (2017). Selection of DNA Aptamers against Mycobacterium tuberculosis Ag85A, and its Application in a Graphene Oxide-Based Fluorometric Assay. Microchim Acta 185 (1), 21. doi:10.1007/s00604-017-2550-3

Arvanitis, M., Anagnostou, T., Fuchs, B. B., Caliendo, A. M., and Mylonakis, E. (2014). Molecular and Nonmolecular Diagnostic Methods for Invasive Fungal Infections. Clin. Microbiol. Rev. 27 (3), 490–526. doi:10.1128/CMR.00091-13

Asif, M., and Orenstein, Y. (2020). DeepSELEX: Inferring DNA-Binding Preferences from HT-SELEX Data Using Multi-Class CNNs. Bioinformatics 36 (Suppl. 1), 2634–2642. doi:10.1093/bioinformatics/btaa789

Babamiri, B., Salimi, A., and Hallaj, R. (2018). A Molecularly Imprinted Electrochemiluminescence Sensor for Ultrasensitive HIV-1 Gene Detection Using EuS Nanocrystals as Luminophore. Biosens. Bioelectron. 117, 332–339. doi:10.1016/j.bios.2018.06.003

Balmaseda, A., Stettler, K., Medialdea-Carrera, R., Collado, D., Jin, X., Zambrana, J. V., et al. (2017). Antibody-based Assay Discriminates Zika Virus Infection from Other Flaviviruses. Proc. Natl. Acad. Sci. USA 114 (31), 8384–8389. doi:10.1073/pnas.1704984114

Barthelemeb, L., Jonca, J., Hayat, A., Prieto-Simon, B., and Marty, J.-L. (2011). Enzyme-Linked Aptamer Assays (ELAAs), Based on a Competition Format for DNA Ligands by Exponential Enrichment. J. Mol. Model. 17 (8), 2380. doi:10.1007/s00894-011-1773-2

Bin Dajem, S. M. (2015). Molecular Investigation of Mixed Malaria Infections in Southwest Saudi Arabia. Saud Med. J. 36 (2), 248–251. doi:10.15537/smj.2015.2.10874

Bitaraf, F. S., Rasooli, I., and Mousavi Gargari, S. L. (2016). DNA Aptamers for the Detection of Haemophilus Influenzae Type B by Cell SELEX. Eur. J. Clin. Microbiol. Infect. Dis. 35 (3), 503–510. doi:10.1007/s10096-015-2567-7

Boushebaye, A., Groher, F., and Sues, B. (2019a). RNA-based Capture-SELEX for the Selection of Small Molecule-Binding Aptamers. Methods 161, 10–15. doi:10.1016/j.ymeth.2019.04.004

Boushebaye, A., Torka, D., Ollivaud, S., Braun, J., Boìfill-Bosch, C., Dombrowski, M., et al. (2019b). Next-level Riboswitch Development-Implementation of Capture-SELEX Facilitates Identification of a New Synthetic Riboswitch. Nuclic Acids Res. 47 (9), 4883–4895. doi:10.1093/nar/gkjz216

Breaker, R. (1997). DNA Aptamers and DNA Enzymes. Curr. Opin. Chem. Biol. 1 (1), 26–31. doi:10.1016/1367-5931(97)80105-6

Bruno, J. G., Richarte, A. M., Phillips, T., Savage, A. A., Sivils, J. C., Grein, A., et al. (2014). Development of a Fluorescent Enzyme-Linked DNA Aptamer-Magnetic Bead sandwich assay and Portable Fluorometer for Sensitive and Rapid Leishmania Detection in Sandflies. J. Fluoresc. 24 (1), 267–277. doi:10.1007/s10895-013-1315-6

Burmeister, P. E., Lewis, S. D., Silva, R. F., Preiss, J. R., Horwitz, L. R., Pendergast, P. S., et al. (2005). Direct In Vitro Selection of a 2′-O-Methyl Aptamer to VEGF. Chem. Biol. 12 (1), 25–33. doi:10.1016/j.chembiol.2004.10.017

Byrne, B., Stack, E., Gilmarín, N., and O’Kennedy, R. (2009). Antibody-based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins. Sensors 9 (6), 4407–4445. doi:10.3390/s90604407

Cai, R., Yin, F., Zhang, Z., Tian, Y., and Zhou, N. (2019). Functional Chimera Aptamer and Molecular beacon Based Fluorescent Detection of Staphylococcus aureus with Strand Displacement-Target Recycling Amplification. Analytica Chim. Acta 1075, 128–136. doi:10.1016/j.aca.2019.05.014

Cella, L. N., Sanchez, P., Zhong, W., Myung, N. V., Chen, W., and Mulchandani, A. (2010). Nano Aptasensor for Protective Antigen Toxin of Anthrax. Anal. Chem. 82 (5), 2042–2047. doi:10.1021/ac902791q

Chand, R., and Neethirajan, S. (2017). Microfluidic Platform Integrated with Graphene-Gold Nano-Composite Aptasensor for One-step Detection of Norovirus. Biosens. Bioelectron. 98, 47–53. doi:10.1016/j.bios.2017.06.026

Chen, L., He, W., Jiang, H., Wu, L., Xiong, W., Li, B., et al. (2019). In Vivo SELEX of Bone Targeting Aptamer in Prostate Cancer Bone Metastasis Model. Int. J. Nanomedicine 14, 149–159. doi:10.2147/IJNN.S188003

Chen, L., Rashid, F., Shah, A., Awan, H. M., Wu, M., Liu, A., et al. (2015). The Isolation of an RNA Aptamer Targeting to PS3 Protein with Single Amino Acid Mutation. Proc. Natl. Acad. Sci. USA 112 (32), 10002–10007. doi:10.1073/pnas.1521391112

Chonco, L., Fernández, G., Kalhapure, R., Hernández, M. J., García-Oliva, C., Gonzalez, V. M., et al. (2018). Novel DNA Aptamers against CCL21 Protein: Characterization and Biomedical Applications for Targeted Drug Delivery to T Cell-Rich Zones. Nucleic Acid Ther. 28 (4), 242–251. doi:10.1089/nat.2017.0689

Cowperthwaite, M. C., and Ellington, A. D. (2008). Bioinformatic Analysis of the Contribution of Primer Sequences to Aptamer Structures. J. Mol. Evol. 67 (1), 95–102. doi:10.1007/s00239-008-9130-4

Daniels, D. A., Chen, H., Hickey, B. J., Swiderek, K. M., and Gold, L. (2003). A Tenascin-C Aptamer Identified by Tumor Cell SELEX: Systematic Evolution of Ligands by Exponential Enrichment. Proc. Natl. Acad. Sci. 100 (26), 15416–15421. doi:10.1073/pnas.2136683100

Dao, P., Hoinka, J., Takahashi, M., Zhou, J., Ho, M., Wang, Y., et al. (2016). AptamTRACE Elucidates RNA Sequence-Structure Motifs from Selection Trends
Ma, Y., & Ma, J. (2020). Immunotherapy against Prion Disease. Pathogens 9 (3), 216. doi:10.3390/pathogens9030021
Mann, M. P., McHutchison, J. G., Gordon, S. C., Rustgi, V. K., Shiffman, M., Reindollar, R., et al. (2001). Peginterferon Alfa-2b Plus Ribavirin Compared with Interferon Alfa-2b Plus Ribavirin for Initial Treatment of Chronic Hepatitis C: a Randomised Trial. The Lancet 358 (9286), 958–965. doi:10.1016/S0140-6736(01)06102-5
Marascio, N., Torti, C., Liberto, M., and Focà, A. (2014). Update on Different Aspects of HCV Variability: Focus on NSSB Polymerase. BMC Infect. Dis. 14 (Suppl. 5), S1. doi:10.1186/1471-2334-14-S5-S1
McKeague, M., Bradley, C. R., Girolamo, A. D., Visconti, A., Miller, J. D., and Derosa, M. C. (2010). Screening and Initial Binding Assessment of Fumonisin B1 Aptamers. Int. J. Mol. Sci. 11 (12), 4864–4881. doi:10.3390/ijms11124864
Mendonsa, S. D., and Bowser, M. T. (2004a). In Vitro evolution of Functional DNA Using Capillary Electrophoresis. J. Am. Chem. Soc. 126 (1), 20–21. doi:10.1021/ja037832s
Mendonsa, S. D., and Bowser, M. T. (2004b). In Vitro selection of High-Affinity DNA Ligands for Human IgE Using Capillary Electrophoresis. Anal. Chem. 76 (18), 5387–5392. doi:10.1021/ac049857v
Mikhail, A. F., Leslie, T. J., Mayan, M. I., Zekria, R., Mohammad, N., Hasanzai, M. A., et al. (2011). Field Trial of Three Different Plasmodium Vivax–Detecting Rapid Diagnostic Tests with and without Evaporative Cool Box Storage in Afghanistan. Malar. J. 10, 169. doi:10.1186/1747-2585-10-169
Minopoli, A., Della Ventura, B., Lenyk, B., Gentile, F., Tanner, J. A., Offenhäusser, A., et al. (2020). Ultra-sensitive Antibody-Aptamer Plasmonic Biosensor for Malaria Biomarker Detection in Whole Blood. Nat. Commun. 11 (1), 6134. doi:10.1038/s41467-020-19755-0
Morita, Y., Kamal, M., Kang, S.-A., Zhang, R., Lokesh, G. L., Thiyanathan, V., et al. (2016). E-selectin Targeting PEGLyated-Thioaptamer Prevents Breast Cancer Metastases. Mol. Ther. - Nucleic Acids 5 (12), e399. doi:10.1038/mtna.2016.103
Morita, Y., Leslie, M., Kameyama, H., Volk, D., and Tanaka, T. (2018). Aptamer Therapeutics in Cancer: Current and Future. Cancers 10 (3), 80. doi:10.3390/cancers10030080
Mosing, R. K., and Bowser, M. T. (2009). Isolating Aptamers Using Capillary Electrophoresis-SELEX (CE-SELEX). Methods Mol. Biol. 535, 33–43. doi:10.1007/978-1-59755-557-2_3
Mosing, R. K., Mendonsa, S. D., and Bowser, M. T. (2005). Capillary Electrophoresis-SELEX Selection of Aptamers with Affinity for HIV-1 Reverse Transcriptase. Anal. Chem. 77 (19), 6107–6112. doi:10.1021/ac050836q
Muthandu, H. T., Gray, E. S., Madiga, M. C., Tumba, N., Alexandre, K. B., Khoza, T., et al. (2012). UCLA1, a Synthetic Derivative of a Gp120 RNA Aptamer, Inhibits Entry of Human Immunodeficiency Virus Type 1 subtype C. J. Virol. 86 (9), 4989–4998. doi:10.1128/jvi.02893-11
Nagarattan, R., Bist, V., Sun, S., Fortes de Araujo, F., Nakhasi, H. L., and Debrabant, A. (2012). Development of an Aptamer-Based Concentration Method for the Detection of Trypanosoma Cruzi in Blood. Plas. Tom 7 (8), e43533. doi:10.1534/journal.pone.0043533
Nang, S. C., Azad, M. A. K., Velkov, T., Zhou, Q., and Li, J. (2021). Rescuing the Last-Line Polymyxins: Achievements and Challenges. Pharmacol. Rev. 73 (2), 679–728. doi:10.1124/pharmacrev.120.00020
Negro, F. (2010). Adverse Effects of Drugs in the Treatment of Viral Hepatitis. Best Pract. Res. Clin. Gastroenterol. 24 (2), 183–192. doi:10.1016/j.bpgg.2010.01.012
Nguyen, P. D. M., Zheng, J., Gremminger, T. J., Qiu, L., Zhang, D., Tsuke, S., et al. (2020). Binding Interface and Impact on Protease Cleavage for an RNA Aptamer against HIV-1 Reverse Transcriptase. Nucleic Acids Res. 48 (5), 2709–2722. doi:10.1093/nar/gkz224
Nimjee, S. M., Rusconi, C. P., and Sullenger, B. A. (2005). Aptamers: an Emerging Class of Therapeutics. Annu. Rev. Med. 56, 555–583. doi:10.1146/annurev.med.56.060204.144915
Nishimura, S., Miura, H., Yamada, H., Shinoda, T., Kitamura, S., and Miura, Y. (2002). Acute Onset of Nephrotic Syndrome during Interferon-α Treatment for Chronic Active Hepatitis C. J. Gastroenterol. 37 (10), 854–858. doi:10.1007/s005350200141
Nitta, K. R., Vincentelli, R., Jaconi, E., Cimino, A., Ohshuka, Y., Sobral, D., et al. (2019). High-Throughput Protein Production Combined with High-Throughput SELEX Identifies an Extensive Atlas of Ciona Robusta Transcription Factor DNA-
Zhang, L., Fang, X., Liu, X., Ou, H., Zhang, H., Wang, J., et al. (2020). Discovery of sandwich Type COVID-19 Nucleocapsid Protein DNA Aptamers. *Chem. Commun.* 56 (70), 10235–10238. doi:10.1039/d0cc03993d

Zhang, X., Feng, Y., Duan, S., Su, L., Zhang, J., and He, F. (2019a). Mycobacterium Tuberculosis H37Rv Electrochemical Sensor Mediated by Aptamer and AuNPs-DNA. *ACS Sens.* 4 (4), 849–855. doi:10.1021/acssensors.8b01230

Zhang, Y., Zhu, L., He, P., Zi, F., Hu, X., and Wang, Q. (2019b). Sensitive Assay of *Escherichia coli* in Food Samples by Microchip Capillary Electrophoresis Based on Specific Aptamer Binding Strategy. *Talanta* 197, 284–290. doi:10.1016/j.talanta.2019.01.040

Zhou, J., Neff, C. P., Swiderski, P., Li, H., Smith, D. D., Aboellail, T., et al. (2013a). Functional In Vivo Delivery of Multiplexed Anti-HIV-1 siRNAs via a Chemically Synthesized Aptamer with a Sticky Bridge. *Mol. Ther.* 21 (1), 192–200. doi:10.1038/mt.2012.226

Zhou, J., and Rossi, J. (2017). Aptamers as Targeted Therapeutics: Current Potential and Challenges. *Nat. Rev. Drug Discov.* 16 (3), 181–202. doi:10.1038/nrd.2016.199

Zhou, N., Wang, J., Zhang, J., Li, C., Tian, Y., and Wang, J. (2013b). Selection and Identification of Streptomycin-specific Single-Stranded DNA Aptamers and the Application in the Detection of Streptomycin in Honey. *Talanta* 108, 109–116. doi:10.1016/j.talanta.2013.01.064

Zhu, C., Li, L., Yang, G., Fang, S., Liu, M., Ghulam, M., et al. (2019a). Online Reaction Based Single-step Capillary Electrophoresis-Systematic Evolution of Ligands by Exponential Enrichment for ssDNA Aptamers Selection. *Analytica Chim. Acta* 1070, 112–122. doi:10.1016/j.aca.2019.04.034

Zhu, C., Yang, G., Ghulam, M., Li, L., and Qu, F. (2019b). Evolution of Multi-Functional Capillary Electrophoresis for High-Efficiency Selection of Aptamers. *Biotechnol. Adv.* 37 (8), 107432. doi:10.1016/j.biotechadv.2019.107432

Zhu, Q., Shibata, T., Kabashima, T., and Kai, M. (2012). Inhibition of HIV-1 Protease Expression in T Cells Owing to DNA Aptamer-Mediated Specific Delivery of siRNA. *Eur. J. Med. Chem.* 56, 396–399. doi:10.1016/j.ejmech.2012.07.045

Zhou, Z., Yu, Y., Wang, M., Li, J., Zhang, Z., Liu, J., et al. (2017). Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine. *Int. J. Mol. Sci.* 18 (10), 2142. doi:10.3390/ijms18102142

Zimbres, F. M., Tårnok, A., Ulrich, H., and Wrenger, C. (2013). Aptamers: Novel Molecules as Diagnostic Markers in Bacterial and Viral Infections? *Biomed. Res. Int.* 2013, 1–7. doi:10.1155/2013/731516

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Xu, Jiang, Zhou, Ma, Wang and Ying. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.