Prevalência de Dislipidemias em Três Regiões na Venezuela: Resultados do Estudo VEMSOLS

Prevalence of Dyslipidemias in Three Regions in Venezuela: The VEMSOLS Study Results

Juan P. González-Rivas,1 Ramfis Nieto-Martínez,2,3 Imperia Brajkovich,4 Eunice Ugel,5 Alejandro Rísquez6

The Andes Clinic of Cardio-Metabolic Studies,1 Geriatric Research, Education and Clinical Center (GRECC) and South Florida Veterans Affairs Foundation for Research & Education, Miami VA Healthcare System, Miami, FL - USA;2 Department of Physiology - School of Medicine - University Centro-Occidental “Lisandro Alvarado” and Cardio-metabolic Unit 7, Barquisimeto, Venezuela;3 Department of Internal Medicine B - School of Medicine “Luís Razetti” - University Hospital of Caracas - Universidad Central de Venezuela;4 Department of Preventive Medicine - School of Medicine - Universidad Centro-Occidental “Lisandro Alvarado”;5 Department of Social and Preventive Medicine - School of Medicine, Universidad Central de Venezuela

Correspondência: Juan P. González-Rivas • Av. Miranda. The Andes Clinic of Cardio-Metabolic Studies. 3112, Timotes, Mérida E-mail: juangonzalezr@hotmail.com, juangonzalezr79@gmail.com

DOI: 10.5935/abc.20170180

Resumo

Fundamento: A prevalência de dislipidemia em várias regiões da Venezuela é desconhecida. A Síndrome Metabólica venezuelana, Obesidade e Estilo de Vida Estudo (VEMSOLS) foram realizados para avaliar os fatores de risco cardiometabólico na Venezuela.

Objetivo: Determinar a prevalência de dislipidemia em cinco populações de três regiões da Venezuela.

Métodos: Durante os anos de 2006 a 2010, 1320 indivíduos com 20 anos ou mais foram selecionados por amostragem aleatória estratificada de vários estágios de todas as famílias em cinco municípios a partir de 3 regiões da Venezuela: Estado Lara (região Oeste), Estado de Mérida (região andina) e Capital Distrito (região Capital). medidas antropométricas e análise bioquímica foram obtidas de cada participante. Dislipidemia foi definida de acordo com as definições NCEP / ATPIII.

Resultados: A idade média foi de 44,8 ± 0,39 anos, e 68,5% eram do sexo feminino. A prevalência de lípidos anormalidades relacionadas à síndrome metabólica (HDL-c baixo [58,6%; IC95% 54,9-62,1] e elevado triglicerídeos [39,7%; 36,1-43,2]) foram as alterações lipídicas mais prevalente, seguida pela dislipidemia aterogênica (25,9%; 22,7-29,1), LDL-C elevado (23,3%; 20,2-26,4), hipercolesterolemia (22,2%; 19,2-25,2), e misturar dislipidemia (8,9%; 6,8-11,0). Dislipidemia foi mais prevalente com o aumento do índice de massa corporal.

Conclusão: As dislipidemias são fatores de risco cardiometabólico prevalentes na Venezuela. Entre elas, uma maior prevalência de baixo HDL é uma condição também consistentemente relatada na América Latina. (Arq Bras Cardiol. 2018; 110(1):30-35)

Palavras-chave: Dislipidemias / epidemiologia; Doenças Cardiovasculares; Fatores de Risco; Acidente Vascular Cerebral / mortalidade; Obesidade; Síndrome Metabólica.

Abstract

Background: The prevalence of dyslipidemia in multiple regions of Venezuela is unknown. The Venezuelan Metabolic Syndrome, Obesity and Lifestyle Study (VEMSOLS) was undertaken to evaluate cardiometabolic risk factors in Venezuela.

Objective: To determine the prevalence of dyslipidemia in five populations from three regions of Venezuela.

Methods: During the years 2006 to 2010, 1320 subjects aged 20 years or older were selected by multistage stratified random sampling from all households in five municipalities from 3 regions of Venezuela: Lara State (Western region), Merida State (Andean region), and Capital District (Capital region). Anthropometric measurements and biochemical analysis were obtained from each participant. Dyslipidemia was defined according to the NCEP/ATPIII definitions.

Results: Mean age was 44.8 ± 0.39 years and 68.5% were females. The prevalence of lipids abnormalities related to the metabolic syndrome (low HDL-c [58.6%; 95% CI 54.9 – 62.1] and elevated triglycerides [39.7%; 36.1 – 43.2]) were the most prevalent lipid alterations, followed by atherogenic dyslipidemia (25.9%; 22.7 – 29.1), elevated LDL-c (23.3%; 20.2 – 26.4), hypercholesterolemia (22.2%; 19.2 – 25.2), and mix dyslipidemia (8.9%; 6.8 – 11.0). Dyslipidemia was more prevalent with increasing body mass index.

Conclusion: Dyslipidemias are prevalent cardiometabolic risk factors in Venezuela. Among these, a higher prevalence of low HDL is a condition also consistently reported in Latin America. (Arq Bras Cardiol. 2018; 110(1):30-35)

Keywords: Dyslipidemias / epidemiology; Cardiovascular Diseases; Risk Factors; Stroke / mortality; Obesity; Metabolic Syndrome.
Introdução

Na Venezuela, a doença cardiovascular (DCV), representada pela doença cardíaca isquêmica (16,3%) e pelo acidente vascular cerebral (7,7%), foi a principal causa de óbito em 2012.1 Ambos estão fortemente relacionados a fatores de risco modificáveis. De acordo com os estudos INTER-HEART2 e INTERSTROKE3, as dislipidemias, avaliadas como níveis elevados de apolipoproteína (razão ApoB/ApoA1), representaram os 49,2% e os 25,9% do risco atribuível ao infarto agudo do miocárdio e ao acidente vascular cerebral, respectivamente. Ensaios clínicos controlados randomizados demonstraram que uma redução no colesterol das lipoproteínas de baixa densidade (LDL-c) com terapia com estatinas diminui a incidência de ataque cardíaco e AVC isquêmico. Para cada 38,6 mg/dL de LDL-C reduzido, a taxa anual de eventos vasculares maiores diminui para um quinto.4

Realizou-se uma compilação de estudos de avaliação da prevalência de dislipidemias na Venezuela.5 No entanto, a maioria apresenta amostras pequenas, sendo que apenas duas representam uma cidade ou estado. Em 1.848 adultos da cidade de Barquisimeto, região ocidental do país, o estudo sobre a Avaliação Múltipla do Fator de Risco Cardiovascular na América Latina (CARMELA)6 (colesterol ≥ 240 mg/dL) apontou a menor prevalência de hipercolesterolemia (colesterol ≥ 240 mg/dL) na América Latina (5,7%). Em 3.108 adultos do estado de Zulia, Florez et al.7 documentaram uma prevalência de dislipidemia aterogênica (altos níveis de triglicerídeos e baixos níveis de lipoproteína de alta densidade de colesterol [HDL-c]) de 24,1%. Esse número foi maior em homens do que mulheres, e aumentou com a idade. Nenhum estudo na Venezuela incluiu mais de uma região, resultando no Estudo da Síndrome Metabólica Venezolana, Obesidade e Estilo de Vida (VEMSOLS). Este artigo apresenta os resultados do VEBSOLS, especificamente a prevalência de dislipidemia em cinco populações de três regiões da Venezuela.

Métodos

Desenho e indivíduos

Realizou-se um estudo de observação transversal para determinar a prevalência de fatores de risco cardiometabólicos em uma amostra sub-nacional da Venezuela. Foram avaliados cinco municípios de três regiões: Palavecino, no estado de Lara (urbano), da região ocidental; Ejido (cidade de Mérida), no estado de Mérida (urbano) e Rangel (área de Páramo), no estado de Mérida (rural), ambos na região dos Andes; Catia La Mar, no estado de Vargas (urbano) e Sucre, no Distrito Capital (urbano), ambos na região da capital. De 2006 a 2010, foram selecionados total de 1.320 indivíduos com idade igual ou maior que 20 anos, vivendo há pelo menos seis meses em suas casas, por uma amostragem aleatória de duas etapas. Avaliaram-se três regiões geográficas diferentes do país: Andes, montanhas ao sul; Occidental, planícies ao centro; e o Distrito Capital, costa ao norte. Cada região foi estratificada por municípios, e um deles foi selecionado aleatoriamente. Foram necessários um mapa e um recenseamento de cada local para delimitar as ruas ou quadrados, e para selecionar as famílias a visitar em cada município. Após determinar a região a ser pesquisada em cada local, as visitas começaram a partir do número 1 em diante, pulando cada duas casas. Gestantes e participantes incapazes de se levantar e/ou se comunicar verbalmente foram excluídos. Todos os participantes assinaram o termo de consentimento para participação.

Calculou-se o tamanho da amostra para detectar a prevalência de 5,7% de hipercolesterolemia (a condição prevalente mais baixa relatada na Venezuela),6 com desvio padrão de 1,55%, resultando em um intervalo de confiança de 95% (IC95%). O número mínimo estimado de indivíduos a serem avaliados foi de 830. No geral, foram avaliados 1.320 indivíduos (89,4% da área urbana e 10,6% da área rural).

Dados clínicos e bioquímicos

Uma equipe de profissionais de saúde avaliou todos os indivíduos em suas casas ou em um centro de saúde próximo, de acordo com o protocolo padronizado. Cada casa foi visitada duas vezes. Na primeira visita, os participantes receberam informações sobre o estudo e assinaram o termo de consentimento. As informações demográficas e clínicas foram obtidas através de um questionário padronizado. O peso foi medido com o menor número possível de roupas, sem calçados, usando uma balança calibrada. A altura foi medida com uma fita métrica na parede. A circunferência da cintura foi medida com uma fita métrica na cintura, no final da expiração. Também foi calculado o índice de massa corporal (IMC: peso [kg]/altura [m]²).

Na segunda visita, extrairam-se amostras de sangue após 12 horas de jejum durante a noite. Posteriormente, elas foram centrifugadas durante 15 minutos a 3.000 rpm, dentro de 30-40 minutos após a coleta, e transportadas com gelo seco ao laboratório central, onde foram devidamente armazenadas a −80°C até a análise. Coletaram-se os dados dos participantes que estavam ausentes durante a primeira visita. O colesterol total, triglicerídeos, LDL-c, e HDL-c foram determinados por métodos colorimétricos enzimáticos padrão.

Categorização de variáveis

A dislipidemia foi definida de acordo com o National Cholesterol Education Program/Adult Treatment Panel III (NCEP/ATPIII)11, sendo categorizada em seis tipos. Destes, quatro foram dislipidemias isoladas: HDL-c baixo (hiperalipoproteinemia): < 40 mg/dL em homens e < 50 mg/dL em mulheres; triglicerídeos elevados: ≥ 150 mg/dL; hipercolesterolemia (≥ 240 mg/dL do colesterol total); LDL-c elevado ≥ 160 mg/dL; e duas foram dislipidemias combinadas: dislipidemia aterogênica (triglicerídeos ≥ 150 mg/dL + HDL-c baixo) e dislipidemia mista (triglicerídeos ≥ 150 mg/dL + colesterol total ≥240 mg/dL). Além disso, os indivíduos foram classificados de acordo com o IMC de peso normal (IMC < 25 kg/m²), sobrepeso (IMC ≥ 25 kg/m² e < 30 kg/m²), ou obesos (IMC ≥ 30 kg/m²).12 Estabeleceu-se a obesidade abdominal pela circunferência da cintura ≥ 94 cm em homens e ≥ 80 cm em mulheres.13

González-Rivas et al
Dislipidemias na Venezuela
Arq Bras Cardiol. 2018; 110(1):30-35
Análise estatística

Todos os cálculos foram realizados usando o software SPSS 20 (IBM corp. lançado em 2011. Armonk, Nova York, EUA). Verificou-se que todas as variáveis tinham distribuição normal usando um teste de anormalidade (Kolmogorov-Smirnov). Todas as variáveis foram contínuas e os dados foram apresentados como médios ± desvio padrão (DP). As diferenças entre os valores médios foram avaliadas com o teste t. Apresentaram-se as proporções de indivíduos com dislipidemia como taxas de prevalência e intervalos de confiança de 95% (IC). Aplicou-se o teste do Qui-quadrado para comparar diferentes frequências por gênero, estado nutricional e obesidade abdominal. O valor de p < 0,05 foi considerado estatisticamente relevante.

Resultados

Características dos indivíduos

Dois terços dos participantes do estudo eram do sexo feminino. Os homens apresentaram triglicerídeos e circunferência da cintura mais elevados, além de menor HDL-c do que as mulheres (Tabela 1). Idade, IMC, colesterol total e LDL-c foram semelhantes.

Prevalência de dislipidemia

O HDL-c baixo foi a mudança de lipídios mais prevalente em quase sete mulheres, e cerca de quatro dos dez homens (p < 0,01), seguido por triglicerídeos elevados presentes em metade dos homens e em um terço das mulheres (p < 0,01). Sua combinação, dislipidemia aterogênica, foi observada em 25,9% dos indivíduos, seguida por níveis elevados de LDL-c e colesterol total (Tabela 2). A dislipidemia mista foi observada em apenas 8,9% dos indivíduos e foi maior entre homens do que mulheres. Encontrou-se uma prevalência crescente de todos os tipos de dislipidemias quando os indivíduos foram classificados de acordo com o IMC e obesidade abdominal (Figura 1 e Figura 2). A prevalência de hipercolesterolemia, LDL-c elevado e dislipidemia mista foi semelhante em indivíduos com sobrepeso e obesidade, mas maior do que a encontrada no grupo de peso normal.

Discussão

Segundo o estudo, a anormalidade lipídica mais prevalente na amostra subnacional de adultos da Venezuela é o HDL-c baixo (58,6%), seguido de triglicerídeos (38,7%), enquanto que a prevalência de hipercolesterolemia (22%) e sua associação com hipertrigliceridemia (8,9%) foram menores. Achados semelhantes foram relatados em estudos anteriores, tanto na Venezuela (estado de Zulia, 65,3% de HDL-c baixo, 32,3% de triglicerídeos elevados), e no México (48,4% de HDL baixo e 42,3% de triglicerídeos elevados). Usando um corte semelhante ao de nosso estudo, observou-se uma prevalência extremamente alta de hipoalfalipoproteinemia na cidade de Valencia (90%) e no município de Junquito (81,1%), na região central da Venezuela. De forma semelhante ao que se observou em homens em nosso estudo (49,5%), os estudos acima mencionados em Valencia e Junquito também relataram alta prevalência de triglicerídeos elevados (51%). A maioria desses resultados é consistente com achados anteriores na região da América Latina. Em uma revisão sistemática da síndrome metabólica na América Latina, a mudança mais frequente foi HDL-c baixo em 62,9% dos indivíduos.

Embora a hipercolesterolemia (22,2%) seja significativamente menor em comparação com as alterações mencionadas acima, ela foi superior ao estudo CARMELA (5,7%) em Barquisimeto, e similar ao observado em Valencia (19,0%). Portanto, a hipercolesterolemia permanece como fator de risco cardiovascular a ser considerado na implementação de medidas de saúde pública na população venezuelana. Outros achados são consistentes com estudos prévios que relatam que a prevalência de dislipidemia aumenta com a adiposidade. Indivíduos com sobrepeso/obesidade e obesidade abdominal apresentam perfis lipídicos mais baixos do que os indivíduos com peso normal. Como em nosso estudo, relatou-se maior número de triglicerídeos elevados em homens, e nenhuma diferença entre indivíduos com sobrepeso e obesidade quando agrupados de acordo com o IMC. Dislipidemias podem ser causadas por fatores genéticos e ambientais (obesidade, tabagismo, baixa atividade física). Em nosso estudo, a prevalência de HDL-c baixo sem outras anormalidades lipídicas foi de 29,2% (15% homens, 35,7% mulheres). Destes, aqueles com baixo HDL-c e peso normal (10,6% total, 5,3% homens e 13,0% mulheres) poderiam

Tabela 1 – Características dos indivíduos

	Homens	Mulheres	Total	Relevância
Participantes (n, %)	412 (31,2)	906 (68,8)	1320 (100)	
Idade (anos)	45,8 ± 14,8	44,4 ± 14,0	44,8 ± 14,3	NS
Índice de massa corporal (kg/m²)	27,7 ± 5,0	27,8 ± 5,3	27,8 ± 5,2	NS
Circunferência da cintura (cm)	96,6 ± 13,2	89,8 ± 12,3	91,9 ± 13,0	< 0,0001
Lipoproteína de alta densidade (HDL-c) (mg/dL)*	43,2 ± 10,4	47,2 ± 10,9	45,9 ± 10,9	NS
Triglicerídeos (mg/dL)	175,3 ± 154,7	140,0 ± 87,3	151,0 ± 114,3	< 0,0001
Colesterol total (mg/dL)	207,7 ± 46,5	206,3 ± 47,6	206,7 ± 47,2	NS
Lipoproteína de baixa densidade (LDL-c) (mg/dL)	131,0 ± 43,4	131,4 ± 43,8	131,3 ± 43,7	NS

Os dados referem-se à média ± DP. Diferenças de gênero de acordo com o teste t.
Figura 1 – Prevalência de dislipidemias por estado nutricional.
Diferença na prevalência de dislipidemia de acordo com o estado nutricional utilizando o Qui-quadrado (p < 0,01). Triglicerídeos elevados: 150 mg/dL; HDL-c baixo: < 40 mg/dL em homens e < 50 mg/dL em mulheres; dislipidemia aterogênica: triglicerídeos ≥ 150 mg/dL + HDL-c baixo; hipercolesterolemia: colesterol total ≥ 240 mg/dL; LDL-c elevado: ≥ 160 mg/dL; dislipidemia mista: triglicerídeos ≥ 150 + colesterol total ≥ 240 mg/dL.

Figura 2 – Prevalência de dislipidemias por obesidade abdominal (circunferência da cintura = 94 cm nos homens e 90 cm nas mulheres).
Diferença significativa da prevalência de dislipidemia entre obesidade abdominal ou circunferência da cintura normal (p < 0,001 † p = 0,002). Triglicerídeos elevados = 150 mg/dL; HDL-c baixo = 40 mg/dL em homens e 50 mg/dL em mulheres; dislipidemia aterogênica: triglicerídeos ≥ 150 mg/dL + HDL-c baixo; hipercolesterolemia: colesterol total = 240 mg/dL; LDL-c elevado: = 160 mg/dL; mistura dislipidemia: triglicerídeos = 150 + colesterol total = 240 mg/dL.

Tabela 2 – Prevalência de dislipidemias por gênero

	Homens	Mulheres	Total	Relevância
	412	908	1320	
HDL-c baixo (< 40 mg/dL em homens e < 50 mg/dL em mulheres)	42,2 (38,6 – 45,8)	66,0 (62,5 – 69,4)	58,6 (54,9 – 62,1)	< 0,0001
Triglicerídeos elevados (≥ 150 mg/dL)	49,5 (45,8 – 53,1)	35,2 (31,7 – 38,7)	39,7 (36,1 – 43,2)	< 0,0001
Hipercolesterolemia (≥ 240 mg/dL)	23,8 (20,7 – 26,8)	21,5 (18,5 – 24,5)	22,2 (19,2 – 25,2)	NS
LDL-c elevado (≥ 160 mg/dL)	22,8 (19,8 – 25,9)	23,5 (20,5 – 26,6)	23,3 (20,2 – 26,4)	NS
Dislipidemia aterogênica (triglicerídeos ≥ 150 mg/dL + HDL-c baixo)	25,2 (22,1 28,0)	26,2 (23,0 – 29,4)	25,9 (22,7 – 29,1)	NS
Dislipidemia mista (triglicerídeos ≥ 150 + colesterol ≥ 240 mg/dL)	12,4 (9,9 – 14,7)	7,4 (5,5 – 9,3)	8,9 (6,8 – 11,0)	0,002

Dados em porcentagem (IC95%). Diferenças de gênero de acordo com o teste Qui-quadrado.
sugerir que a proporção de casos de hipoalfapolipoproteinemia poderia estar associada a fatores genéticos. Além disso, parte da prevalência de HDL-c baixo nesta população pode ser explicada por fatores metabólicos (isto é, resistência à insulina), uma condição que produz modificações em mais de uma sub-fração lipídica. De fato, a prevalência de dislipidemia atorégênica (25,9%) em nosso estudo foi significante e notavelmente similar à relatada por Florez et al.1 na região de Zulia (24,1%). A disfunção isquêmica é o padrão mais frequente em indivíduos com síndrome metabólica e resistência à insulina, e ambas as anormalidades compõem a definição de síndrome metabólica. Além disso, os fatores genéticos ou metabólicos e as condições ambientais adversas também são relevantes na Venezuela. Os fatores que envolvem a transição nutricional promoveram padrões inadequados de alimentação e estilo de vida na Venezuela e em outros países latino-americanos, contribuindo claramente para a incidência de doenças não transmissíveis, especialmente as relacionadas a obesidade e diabetes.19 Uma pesquisa de acompanhamento de consumo e compra de alimentos informou que a ingestão calórica e a seleção de alimentos com qualidade inferior aumentaram na Venezuela.20 Um alto padrão de inatividade física (68%) também foi relatado em dois estudos envolvendo 3.422 adultos.3

As estratégias alimentares para reduzir as dislipidemias e outros componentes da síndrome metabólica devem incluir restrição de energia e perda de peso, manipulação de macronutrientes dietéticos e adesão a padrões alimentares e de estilo de vida, como a dieta mediterrânea e dieta/exercício.21 Após a avaliação do padrão alimentar e de atividade física da população venezuelana, fez-se uma proposta de adaptações culturais para a dieta mediterrânea com alimentos locais e recomendações de atividade física.3,22 Também foram incluídas recomendações específicas para pacientes com dislipidemia nas diretrizes de prática clínica local.23

Ademais, observam-se algumas limitações no presente estudo. A amostra não representou toda a população do país; apenas três das oito regiões da Venezuela foram incluídas. Além disso, no VEMSOLS, o padrão alimentar e a atividade física não foram investigados. O ponto de corte para HDL e triglicerídeos baixos foi estabelecido pela definição da síndrome metabólica, que pode limitar a comparação com outros estudos usando um nível inferior a 3514 ou 4016 mg/dL para definir hipoalfapolipoproteinemia. No entanto, apesar dessas limitações, este estudo é o primeiro relatório de dislipidemias em mais de uma região da Venezuela. Uma pesquisa nacional está em curso no país, com conclusão prevista para 2017 (Estudo Venezuelano de Saúde Cardiomètobólica, estudo EVESCAM).

Conclusões
Este é o primeiro estudo que apresenta a prevalência de dislipidemia em mais de uma região da Venezuela. Os resultados observados são consistentes com outros estudos latino-americanos, relatando HDL-c baixo como a alteração lipídica mais frequente na região. Além disso, observou-se alto nível de hipercolesterolemia. Ambas as condições podem estar relacionadas a DCV, o que configura um grande problema de saúde pública na região. Uma sugestão resultante de nossos achados é monitorar um perfil lipídico completo durante exames médicos, pois em alguns países latino-americanos é comum verificar somente o colesterol total. Os fatores desencadeantes dessas mudanças devem ser determinados em estudos futuros. A implementação de estratégias focadas em nutrição adequada, mais atividade física e que evitem ganho de peso é fundamental.

Contribuição dos autores
Concepção e desenho da pesquisa e Obtenção de dados: González-Rivas JP, Nieto-Martínez R, Brajkovich I, Ríquez A; Análise e interpretação dos dados: González-Rivas JP, Nieto-Martínez R, Ugél E; Análise estatística: González-Rivas JP, Ugél E; Obtenção de financiamento: Nieto-Martínez R; Redação do manuscrito: González-Rivas JP, Nieto-Martínez R; Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: González-Rivas JP, Nieto-Martínez R, Brajkovich I, Ugél E, Ríquez A.

Potencial conflito de interesses
Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento
O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica
Não há vinculação deste estudo a programas de pós-graduação.

Aprovação Ética e consentimento informado
Este artigo não contém estudos com humanos ou animais realizados por nenhum dos autores.

Referências
1. World Health Organization. (WHO). Global Health Observatory Data Repository country views. Venezuela (Bolivarian Republic of) statistics summary (2002 - present) [Internet]. [Accessed in 2015 Aug 6]. Available from: http://apps.who.int/gho/data/node.country.country-VEN?lang=en

2. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937-52. doi: 10.1016/S0140-6736(04)17018-9.

3. O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al; INTERSTROKE investigators. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112-23. doi: 10.1016/S0140-6736(10)60834-3.

4. Bajigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al; Cholesterol Treatment Trials’ (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670-81. doi: 10.1016/S0140-6736(10)61350-5.
González-Rivas et al
Dislipidemias na Venezuela

Artigo Original

5. Nieto-Martínez R, Hamdy O, Marante D, Marulanda MI, Marchetti A, Hegazi RA, et al. Transcultural diabetes nutrition algorithm (tDNA): Venezuelan application. Nutrients. 2014;6(4):1333-61. doi: 10.3390/nu6041333.

6. Schargrodsky H, Hernandez-Hernandez R, Champagne BM, Silva H, Vinueza R, Silva Aycaguer LC, et al; CARMELA Study Investigators. CARMELA: assessment of cardiovascular risk in seven Latin American cities. Am J Med. 2008;121(1):58-65. doi: 10.1016/j.amjmed.2007.08.038.

7. Florez H, Silva E, Fernandez V, Ryder E, Sulbaran T, Campos G, et al. Prevalence and risk factors associated with the metabolic syndrome and dyslipidemia in White, Black, Amerindian and Mixed Hispanics in Zulia State, Venezuela. Diabetes Res Clin Pract. 2005;69(1):63-77. doi: 10.1016/j.diabres.2004.11.018.

8. Roeschlau P, Bernt E, Gruber W. Enzymatic determination of total cholesterol in serum. Z Klin Chem Klin Biochem. 1974;12(5):226. PMID: 4440114.

9. Wahlefeld A, Hu B. Methods of enzymatic analysis. New York: Academic Press Inc; 1974.

10. Sugiuichi H, Uji Y, Okabe H, Irie T, Uekama K, Kayahara N, et al. Direct measurement of high-density lipoprotein cholesterol in serum with polyethylene glycol-modified enzymes and sulfated alpha-cyclodextrin. Clin Chem. 1995;41(5):717-23. PMID: 7729051.

11. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143-421. PMID: 12485966.

12. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report. National Institutes of Health. Obes Res. 1998;6 Suppl 2:515-2095. PMID: 9813653. Erratum in: Obes Res 1998;6(6):464.

13. Aschner P, Buendia R, Brajkovich I, Gonzalez A, Figueredo R, Juarez XE, et al. Determination of the cutoff point for waist circumference that establishes the presence of abdominal obesity in Latin American men and women. Diabetes Res Clin Pract. 2011;93(2):243-7. doi: 10.1016/j.diabres.2011.05.002.

14. Aguilar-Salinas CA, Olaiz G, Valles V, Torres JM, Gómez Pérez FJ, Rull JA, et al. High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey. J Lipid Res. 2001;42(8):1298-307. PMID: 11483632.

15. Ruiz-Fernández N, Espinoza M, Barrios E, Reigosa A. Cardiometabolic factors in a community located at Valencia city, Venezuela. Rev Salud Pública. 2009;11(3):383-94. PMID: 20027511.

16. De Oliveria L, García E, Torres J, Rivas A. Prevalencia de Síndrome Metabólico en el Sector Olivetti: El Junquito. Rev Venez Endocrinol Metab. 2006;4(3):16-42.

17. Barquera S, Flores M, Olaiz-Fernández G, Monterrubio E, Villafuerte S, Gonzalez C, et al. Dyslipidemias and obesity in Mexico. Salud Publica de Mexico. 2007;49(Suppl 3):S338-47. doi://dx.doi.org/10.1590/S0036-36342007000900005.

18. Instituto Nacional de Estadística. (INE). Venezuela (Bolivarian Republic of) Follow up survey of food consumption from 2003 to 2010 [Internet]. [Accessed on 2012 Sep 12]. Available from: http://www.ine.gob.ve/index.php?option=com_content&view=category&id=114&Itemid=1

Este é um artigo de acesso aberto distribuído sob os termos da licença de atribuição pelo Creative Commons