AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling

Dilin Wang1, Meng Li1, Chengyue Gong2, Vikas Chandra1

1 Facebook \hspace{1cm} 2 University of Texas, Austin

Abstract

Neural architecture search (NAS) has shown great promise designing state-of-the-art (SOTA) models that are both accurate and fast. Recently, two-stage NAS, e.g. BigNAS [39], decouples the model training and searching process and achieves good search efficiency. Two-stage NAS requires sampling from the search space during training, which directly impacts the accuracy of the final searched models. While uniform sampling has been widely used for simplicity, it is agnostic of the model performance Pareto front, which are the main focus in the search process, and thus, misses opportunities to further improve the model accuracy. In this work, we propose AttentiveNAS that focuses on sampling the networks to improve the performance Pareto. We also propose algorithms to efficiently and effectively identify the networks on the Pareto during training. Without extra re-training or post-processing, we can simultaneously obtain a large number of networks across a wide range of FLOPs. Our discovered model family, AttentiveNAS models, achieves top-1 accuracy from 77.3\% to 80.7\% on ImageNet, and outperforms SOTA models, including BigNAS, Once-for-All networks and FBNetV3. We also achieve ImageNet accuracy of 80.1\% with only 491 MFLOPs.

1. Introduction

Deep neural networks (DNNs) have achieved remarkable empirical success recently. However, the rapid growth of network size and computation cost imposes a great challenge to bring DNNs to edge devices [15, 17, 34]. Designing networks that are accurate yet efficient becomes an important but challenging problem.

Neural architecture search (NAS) [41] provides a powerful tool for automating efficient DNN design. NAS requires optimizing both model architectures and model parameters, creating a challenging nested optimization problem. Conventional NAS algorithms leverage evolutionary algorithm [9, 10] and reinforcement learning [30] and can be prohibitively expensive as thousands of models are required to train in a single experiment. Recent NAS advancements decouple the parameter training and architecture optimization into two separate stages [2, 7, 14, 39]:

- The first stage optimizes the parameters of all candidate networks in the search space through weight-sharing, such that all networks simultaneously reach superior performance at the end of training.
- The second stage leverages typical search algorithms, such as evolutionary algorithms, to find the best performing models under various resource constraints.

Such NAS paradigm has delivered state-of-the-art empirical results with great search efficiency [2, 33, 39].

The success of the two-stage NAS heavily relies on the candidate network training in the first stage. To achieve superior performance for each candidate, the training proceeds by sampling candidate networks from the search space followed by optimizing each sample via one-step stochastic gradient descent (SGD). The key aspect is to figure out which network to sample at each SGD step.
of the searching stage. More specifically, while the searching stage focuses on the set of networks lying on the Pareto front of accuracy and inference efficiency, the training stage is not tailored towards improving the Pareto front and regards each network candidate with equal importance. This approach misses the opportunity of boosting the accuracy of the networks on the Pareto during the training stage.

In this work, we propose AttentiveNAS to improve the baseline uniform sampling by paying more attention to models that are more likely to produce a better Pareto front. We specifically answer the following two questions:

- Which sets of candidate networks should we sample during the training?
- How should we sample these candidate networks efficiently and effectively without adding too much overhead to the training?

To answer the first question, we explore two different sampling strategies. The first strategy, denoted as BestUp, investigates a Pareto-best front aware sampling strategy following the conventional Pareto-optimal NAS, e.g., [3, 5, 6, 20], to put more training budgets on improving the current Pareto-best front. The second strategy, denoted as WorstUp, focuses on improving candidate networks that yield the worst-case performance trade-offs. We refer to these candidate networks as Pareto-worst set. This sampling strategy is similar to hard example mining [13, 26] by viewing Pareto-worst models as hard training examples. Pushing the limits of the Pareto-worst set of networks could help update the least optimized parameters in the weight-sharing network, allowing all the parameters to be fully trained.

The second question is also non-trivial as determining the networks on both the Pareto-best and Pareto-worst front is not straightforward. We propose two approaches to leverage 1) the training loss and 2) accuracy predicted by a pretrained predictor as the proxy for accuracy comparison. The overall contribution can be summarized as follows:

- We propose a new strategy, AttentiveNAS, to improve existing two-stage NAS with attentive sampling of networks on the Pareto-best or worst front. Different sampling strategies, including BestUp and WorstUp, are explored and compared in detail.
- We propose two approaches to guide the sampling to the Pareto-best or worst front efficiently.
- We achieve state-of-the-art ImageNet accuracy given the FLOPs constraints for the searched AttentiveNAS model family. For example, AttentiveNAS-A0 achieves 2.1% better accuracy compared to MobileNetV3 with fewer FLOPs, while AttentiveNAS-A2 achieves 0.8% better accuracy compared to FBNetV3 with 10% fewer FLOPs. AttentiveNAS-A5 reaches 80.1% accuracy with only 491 MFLOPs.

2. Related Work and Background

NAS is a powerful tool for automating efficient neural architecture design. NAS is often formulated as a constrained optimization problem:

$$\min_{\alpha \in A} \mathcal{L}(W^*_\alpha, D^{val}),$$

s.t. $W^*_\alpha = \arg \min_{W_\alpha} \mathcal{L}(W_\alpha; D^{trn}), \quad FLOPs(\alpha) < \tau.$

Here W_α is the DNN parameters associated with network configuration α. A specifies the search space. D^{trn} and D^{val} represents the training dataset and validation dataset, repetitively. $\mathcal{L}(\cdot)$ is the loss function, e.g., cross entropy loss for image classification. FLOPs(\alpha) measures the computational cost induced by the network α, and τ is a resource threshold. In this work, we consider FLOPs as a proxy for computational cost. Other resource considerations, such as latency and energy, can also be incorporated into Eqn. (1) easily.

Solving the constrained optimization problem in Eqn. (1) is notoriously challenging. Earlier NAS solutions often build on reinforcement learning [30, 40, 41, 42] or evolutionary algorithms [22, 23, 28, 35]. These methods require enumerating an excessively large number of DNN architectures $\{\alpha\}$ and train their corresponding model parameters $\{W_\alpha\}$ from scratch to get accurate performance estimations, and thus are extremely computationally expensive.

More recent NAS practices have made the search more efficient through weight-sharing [3, 20, 21, 27]. They usually train a weight-sharing network and sample the candidate sub-networks by inheriting the weights directly to provide efficient performance estimation. This helps alleviate the heavy computational burden of training all candidate networks from scratch and accelerates the NAS process significantly.

To find the small sub-networks of interest, weight-sharing based NAS often solve the constrained optimization in Eqn. (1) via continuous differentiable relaxation and gradient descent [20, 34]. However, these methods are often sensitive to the hyper-parameter choices, e.g., random seeds or data partitions [12, 37]; the performance rank correlation between different DNNs varies significantly across different trials [36], necessitating multiple rounds of trials-and-errors for good performance. Furthermore, models weights inherited from the weight-sharing network are often sub-optimal. Hence, it is usually required to re-train the discovered DNNs from scratch, introducing additional computational overhead.
2.1. Two-stage NAS

The typical NAS goal Eqn. (1) limits the search scope to only small sub-networks, yielding a challenging optimization problem that cannot leverage the benefits of over-parameterization [1, 4]. In addition, NAS optimization defined in Eqn. (1) is limited to one single resource constraint. Optimizing DNNs under various resource constraints often requires multiple independent searches.

To alleviate the aforementioned drawbacks, recently, a series of NAS advances propose to breakdown the constrained optimization problem (1) into two separate stages: 1) constraint-free pre-training - jointly optimizing all possible candidate DNNs specified in the search space through weight sharing without considering any resource constraints; 2) resource-constrained search - identifying the best performed sub-networks under given resource constraints. Recent work in this direction include BigNAS [39], SPOS [14], FairNAS [7], OFA [2] and HAT [33].

Constrained-free pre-training (stage 1): The goal of the constraint-free pre-training stage is to learn the parameters of the weight-sharing network. This is often framed as solving the following optimization problem:

$$\min_{W} \mathbb{E}_{\alpha \in \mathcal{A}} \left[\mathcal{L}(W_\alpha ; D^{trn}) + \gamma \mathcal{R}(W), \right]$$

where W represents the shared weights in the network. W_α is a sub-network of W specified by architecture α and $\mathcal{R}(W)$ is the regularization term. An example of $\mathcal{R}(W)$, proposed in BigNAS [39], is formulated as follows,

$$\mathcal{R}(W) = \mathcal{L}(w_{\alpha s}; D^{trn}) + \mathcal{L}(w_{\alpha l}; D^{trn}) + \eta \| W \|_2^2,$$

where α_s and α_l represents the smallest and largest candidate sub-networks in the search space \mathcal{A}, respectively. η is the weight decay coefficient. This is also referred to as the sandwich training rule in [39].

In practice, the expectation term in Eqn. (2) is often approximated with n uniformly sampled architectures and solved by SGD (Figure 2). Note that both smaller and larger DNNs are jointly optimized in Eqn. (2). This formulation allows to transfer knowledge from larger networks to smaller networks via weight-sharing and knowledge distillation, hence improving the overall performance [2, 39].

Resource-constrained searching (stage 2): After the pre-training in stage 1, all candidate DNNs are fully optimized. The next step is to search DNNs that yield the best performance and resource trade-off as follows,

$${\alpha_i^*} = \arg \min_{\alpha_i \in \mathcal{A}} \mathcal{L}(W_{\alpha_i}^*; D^{val}), \quad (4)$$

s.t. \text{FLOPs}(\alpha_i) < \tau_i, \ \forall i.$$

Here W^* is the optimal weight-sharing parameters learned in stage 1. The overall search cost of this stage is often low, since there is no need for re-training or fine-tuning. Furthermore, Eqn. (4) naturally supports a wide range of deployment constraints without the need of further modifications, yielding a more flexible NAS framework for machine learning practitioners.

3. NAS via Attentive Sampling

The goal of NAS is to find the network architectures with best accuracy under different computation constraints. Although optimizing the average loss over $\alpha \in \mathcal{A}$ in Eqn. (2) seems to be a natural choice, it is not tailored for improving the trade-off between task performance and DNN resource usage. In practice, one often pays more interest to Pareto-optimal DNNs that form the best trade-offs as illustrated in Figure 3.

Adapting the constraint-free pre-training goal in Eqn. (2) for better solutions in Eqn. (4) is not yet explored for two-stage NAS in the literature. Intuitively, one straightforward idea is to put more training budgets on models that are likely
to form the Pareto-best set, and train those models with more data and iterations. In practice, increasing the training budget has been shown to be an effective technique in improving DNN performance.

However, it may also be important to improve the worst performing models. Pushing the performance limits of the Pareto-worst set (Figure 3) may lead to a better optimized architecture space, such that all trainable components (e.g., channels and layers), reach their maximum potential in contributing to the final performance. In addition, the rationale of improving on Pareto-worst architectures is similar to hard example mining [19, 25, 26, 29], by viewing Pareto-worst sub-networks as difficult data examples. It can lead to more informative gradients and better exploration in the architecture space, thus yielding better performance.

In this work, we study a number of Pareto-aware sampling strategies for improving two-stage NAS. We give a precise definition of the Pareto-best architecture set and Pareto-worst architecture set in section 3.1 and then present our main algorithm in section 3.2.

3.1. Sub-networks of Interest

Pareto-best architecture set: Given an optimization state W (the parameters of our weight-sharing graph), a sub-network $α$ is Pareto-best if there exists no other architecture $α’ ∈ A$ that achieves better performance while consuming lesser or similar computational overhead, i.e., $∀ α’ ∈ A$, if $\text{FLOPs}(α’) ≤ \text{FLOPs}(α)$, then, $\mathcal{L}(W_α; D^{\text{val}}) ≥ \mathcal{L}(W_α; D^{\text{val}})$.

Pareto-worst architecture set: Similarly, we define an architecture $α$ as a Pareto-worst architecture if it is always dominated in accuracy by other architectures with the same or larger FLOPs, i.e., $\mathcal{L}(W_α; D^{\text{val}}) < \mathcal{L}(W_α; D^{\text{val}})$ for any $α’$ satisfies $\text{FLOPs}(α’) ≥ \text{FLOPs}(α)$.

3.2. Pareto-attentive pre-training

In Eqn. (2), all candidate DNNs are optimized with equal probabilities. We reformulate (2) with a Pareto-attentive objective such that the optimization focus on either the Pareto-best or worst set. We first rewrite the expectation in Eqn. (2) as an expected loss over FLOPs as follows,

$$\min_W E_{\pi(\tau)}\mathbb{E}_{\pi(\alpha | \tau)} \left[\mathcal{L}(W_α; D^{\text{trn}}) \right].$$

It is easy to see that Eqn. (5) reduces to Eqn. (2) by setting $\pi(\tau)$ as the prior distribution of FLOPs specified by the search space A and $\pi(\alpha | \tau)$ as a uniform distribution over architectures conditioned on FLOPs τ. Here, we drop the regularization term $\mathcal{R}(W)$ for simplicity.

Pareto-aware sampling can be conducted by setting $\pi(\alpha | \tau)$ to be an attentive sampling distribution that always draws Pareto-best or worst architectures. This optimization goal is formulated as follows:

$$\min_W E_{\pi(\tau)} \sum_{\pi(\alpha | \tau)} \left[\gamma(\alpha) \mathcal{L}(W_α; D^{\text{trn}}) \right].$$

where $\gamma(\alpha)$ is defined to be 1 if and only if α is a Pareto-best sub-network (or a Pareto-worst sub-network), otherwise 0.

To solve this optimization, in practice, we can approximate the expectation over $\pi(\tau)$ with n Monte Carlo samples of FLOPs $\{\tau_o\}$. Then, for each targeted FLOPs τ_o, we can approximate the summation over $\pi(\alpha | \tau_o)$ with k sampled architectures $\{α_1, \cdots, α_k\} ∼ π(\alpha | τ_o)$ such that $\text{FLOPs}(α_i) = τ_o, ∀1 ≤ i ≤ k$ as follows,

$$\min_W \frac{1}{n} \sum_{\tau_o ∼ π(\tau)} \left[\sum_{α_i ∼ π(α | τ_o)} \gamma(α_i) \mathcal{L}(W_α; D^{\text{trn}}) \right].$$

Let $P(α)$ denote the performance estimation of model $α$ with parameters $W_α$. If the goal is to focus on Pareto-best architectures, we assign $\gamma(α_i) = \mathbb{I}(P(α_i) > P(α_j), \forall j ≠ i)$, where $\mathbb{I}(\cdot)$ is an indicator function. If the goal is to focus on Pareto-worst architectures, we set $\gamma(α_i) = \mathbb{I}(P(α_i) < P(α_j), \forall j ≠ i)$.

Algorithm 1 provides an meta-algorithm of our attentive sampling based NAS framework, dubbed as AttentiveNAS. We denote the sampling strategy of always selecting the best performing architecture to train as Bestup and the strategy of always selecting the worst performing architecture to train as WorstUp.

An ideal choice for performance estimator $P(α)$ is to set it as the validation loss, i.e., $P(α) = -\mathcal{L}(W_α; D^{\text{val}})$. However, this is often computationally expensive since the validation set could be large. We experiment with a number of surrogate performance metrics that could be computed efficiently, including predicted accuracy given by pre-trained
4. Experimental Results

In this section, we describe the implementation and comparisons in detail. Section 4.1 gives an overview of the search space of AttentiveNAS. Section 4.2 describes our training settings and evaluation protocols. Section 4.3 introduces our efficient implementation of the performance estimator \(P \) in Algorithm 1. We compare different attentive sampling strategies in Section 4.4 and present new SOTA ImageNet performance in section 4.5.

4.1. Search Space

We closely follow the prior art search space design in FBNetV3 [9] with a number of simplifications. In particular, we use the same meta architecture structure in FBNetV3 but reduce the search range of channel widths, depths, expansion ratios and input resolutions. We also limit the largest possible sub-network in the search space to be less than 2,000 MFLOPs and constrain the smallest sub-network to be larger than 200 MFLOPs. In particular, our smallest and largest model has 203 MFLOPs and 1,939 MFLOPs, respectively. The search space is shown in Appendix D.

Note that our search space leads to better DNN solutions compared to those yield by the BigNAS [39] search space. Compared with the BigNAS search space, our search space contains more deeper and narrower sub-networks, which achieves higher accuracy given the FLOPs constraint. We provide detailed comparisons in Appendix D.

4.2. Training and Evaluation

Sampling FLOPs-constrained architectures: One key step of AttentiveNAS is to draw architecture samples following different FLOPs constraints (see Eqn. (7) or step 6 in Algorithm 1). At each sampling step, one needs to first draw a sample of target FLOPs \(\tau_0 \) according to the prior distribution \(\pi(\tau) \); and then sample \(k \) architectures \(\{a_1, \ldots, a_k\} \) from \(\pi(\alpha \mid \tau_0) \).

In practice, \(\pi(\tau) \) can be estimated offline easily. We first draw a large number of \(m \) sub-networks from the search space randomly (e.g. \(m \geq 10^6 \)). Then, the empirical approximation of \(\pi(\tau) \) can be estimated as

\[
\hat{\pi}(\tau = \tau_0) = \frac{\#(\tau = \tau_0)}{m},
\]

where \(\#(\tau = \tau_0) \) is the total number of architecture samples that yield FLOPs \(\tau_0 \). We also round the real FLOPs following a step \(t \) to discretize the whole FLOPs range. We fix \(t = 25 \) MFLOPs in our experiments.

To draw an architecture sample given a FLOPs constraint, a straightforward strategy is to leverage rejection sampling, i.e., draw samples uniformly from the entire search space and reject samples if the targeted FLOPs constraint is not satisfied. This naive sampling strategy, however, is inefficient especially when the search space is large.

To speedup the FLOPs-constrained sampling process, we propose to approximate \(\pi(\alpha \mid \tau) \) empirically. Assume the network configuration is represented by a vector of discrete variables \(\alpha = [o_1, \ldots, o_d] \in \mathbb{R}^d \), where each element \(o_i \) denotes one dimension in the search space, e.g., channel width, kernel size, expansion ratio, etc. See Table 2 for a detailed description of our search space. Let \(\hat{\pi}(\alpha \mid \tau) \) denote an empirical approximation of \(\pi(\alpha \mid \tau) \), for simplicity, we relax

\[
\hat{\pi}(\alpha \mid \tau = \tau_0) \propto \prod_i \hat{\pi}(o_i \mid \tau = \tau_0).
\]

Let \(\#(o_i = k, \tau = \tau_0) \) be the number of times that the pair \((o_i = k, \tau = \tau_0)\) appears in our architecture-FLOPs sample pool. Then, we can approximate \(\hat{\pi}(o_i \mid \tau = \tau_0) \) as follows,

\[
\hat{\pi}(o_i = k \mid \tau_0) = \frac{\#(o_i = k, \tau = \tau_0)}{\#(\tau = \tau_0)}.
\]

Now, to sample a random architecture under a FLOPs constraint, we directly leverage rejection sampling from \(\hat{\pi}(\alpha \mid \tau) \), which yields much higher sampling efficiency than sampling from whole search space directly. To further reduce the training overhead, we conduct the sampling process in an asynchronous mode on CPUs, which does not slow down the training process on GPUs.

Training details: We closely follow the BigNAS [39] training settings. See Appendix A.

Algorithm 1 AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling

1: Input: Search space \(\mathcal{A} \); performance estimator \(P \)
2: while not converging do
3: Draw a min-batch of data
4: for \(i \leftarrow 1 : n \) do
5: Sample a target FLOPs \(\tau_0 \) according the FLOPs prior distribution specified by the search space \(\mathcal{A} \)
6: Uniformly sample \(k \) subnetworks \(\{a_1, \ldots, a_k\} \) following the FLOPs constraint \(\tau_0 \)
7: (a) if BestUp-k: select the sub-network with the best performance to train according to \(P \)
8: (b) if WorstUp-k: select the sub-network with the worst performance to train according to \(P \)
9: end for
10: Compute additional regularization terms and back-propagate; see Eqn. (7).
11: end while
Evaluation: To ensure a fair comparison between different sampling strategies, we limit the number of architectures to be evaluated to be the same for different algorithms. We use evolutionary search on the ImageNet validation set to search promising sub-networks following [33]. We fix the initial population size to be 512, and set both the mutate and cross over population size to be 128. We run evolutionary search for 20 iterations and the total number of architectures to be evaluated is 5248.

Note that when comparing with prior art NAS baselines, we withheld the original validation set for testing and sub-sampled 200K training examples for evolutionary search. See section 4.5 for more details.

Since the running statistics of batch normalization layers are not accumulated during training, we calibrate the batch normalization statistics before evaluation following [38]. We use 8192 training samples to calibrate the batch normalization statistics.

4.3. Attentive Sampling with Efficient Performance Estimation

The attentive sampling approach requires selecting the best or the worst sub-network from a set of sampled candidates. Exact performance evaluation on a validation set is computationally expensive. In this part, we introduce two efficient algorithms for sub-network performance estimation:

- Minibatch-loss as performance estimator: for each architecture, use the training loss measured on the current mini-batch of training data as the proxy performance metric;

- Accuracy predictor as performance estimator: train an accuracy predictor on a validation set; then for each architecture, use the predicted accuracy given by the accuracy predictor as its performance estimation.

The first approach is intuitive and straightforward. For the second approach, it's widely observed in the literature [7, 36] that the performance rank correlation between different sub-networks learned via weight-sharing varies significantly across different runs, resulting in extremely low Kendall’s \(\tau \) values. If this is still the case for the two-stage NAS, a pre-trained accuracy predictor cannot generalize well across different setups. Hence, it is important to first understand the performance variation of candidate sub-networks in different training stages and settings.

Settings for training accuracy predictors: We proceed as follows: 1) we first split the original training dataset into 90% training and 10% of testing; 2) we conduct the constraint-free pre-training on the sub-sampled training set. We limit the training to be 30 epochs, hence only introducing less than 10% of the full two-stage NAS computation time. Once the training is done, we randomly sample 1024 sub-networks and evaluate their performance on the sub-sampled testing data partition; 3) we split the 1024 pairs of sub-networks and their accuracies into equally sized training and evaluation subsets. We use the random forest regressor with 100 trees as the accuracy predictor and set the maximum depth to be 15 per tree.

Results on the effectiveness of accuracy predictors: For all testing sub-networks, we measure the rank correlation (Kendall’s \(\tau \)) between their predicted accuracies and their actual accuracies measured on the subsampled testing dataset.

As shown in Figure 4(a), on the evaluation subset, the Kendall’s \(\tau \) between the predicted accuracies and the actual accuracies is 0.89, which indicates a very high rank correlation.
Since the weights-sharing parameters are constantly updated at each training step (Eqn. (7)), would the performance rank between different sub-networks remains stable throughout the training stage? To verify, we further extend the step 2 above for 360 epochs and measure the rank correlation between the predicted accuracies and their actual accuracies on the testing sub-networks set. Figure 4 (b) shows that the accuracy predictor trained via early stopping at epoch 30 also provide a good estimation in predicting the actual accuracy measured via using the weight-sharing parameters learned at epoch 360, yielding a high rank correlation of 0.87. Our results also generalize to different random data partitions. As shown in Figure 4 (c), we use the accuracy predictor trained on data partition with random seed 0 to predict the architecture performance on data partition with random seed 1. The Kendall’ τ is 0.88, indicating significant high rank correlation. Our findings provide abundant evidence that justifies the choice of using pre-trained accuracy predictors for sub-network performance estimation in Algorithm 1. It also shows the robustness of the weight-sharing NAS.

4.4. NAS with Efficient Attentive Sampling

Settings: AttentiveNAS requires specifying: 1) the attentive architecture set, either the Pareto-best front (denoted as BestUp) or Pareto-worst architectures (denoted as WorstUp); 2) the number of candidate sub-networks (k) to be evaluated at each sampling step, see Step 6 in Algorithm 1; and 3) the performance estimator, e.g., *minibatch loss* based performance estimation (denoted as *loss*) or *predicted accuracies* based performance estimation (denoted as *acc*). We name our sampling strategies accordingly in the following way,

$$\{\text{BestUp} / \text{WorstUp}\} - \underbrace{k}_{1}) \text{attentive architecture set} - \underbrace{\{\text{loss/acc}\}}_{2}) \text{#candidates} - \underbrace{\text{estimation (denoted as *acc*)}}_{3}) \text{performance estimator}$$

In general, we would like to set k to be a relative large number for better Pareto-best or Pareto-worst front approximation. For our accuracy predictor based implementation, we set $k = 50$ as default, yielding sample strategies BestUp-50 (acc) and WorstUp-50 (acc).

We also study an extreme case, for which we generate an offline Pareto-best architecture set and Pareto-worst architecture set in an offline mode. Specifically, we first sample 1 million random sub-networks and use our pre-trained accuracy predictor to predict the Pareto-best set and the Pareto-worst set in an offline mode. This is equivalent to set k as a large number. We use BestUp-1M (acc) and WorstUp-1M (acc) to denote the algorithms that only sample from the offline Pareto-best set and Pareto-worst set, respectively.

For our minibatch loss based sampling strategies BestUp-k (loss) and WorstUp-k (loss), these methods require to forward the data batch for $k - 1$ more times compared with the Uniform baseline ($k = 1$). We limit $k = 3$ in our experiments to reduce the training overhead.
Results: We summarize the results in Figure 5 and Figure 6. In Figure 5, we group architectures according to their FLOPs and visualize five statistics for each group of sub-networks, including the minimum, the first quantile, the median, the third quantile and the maximum accuracy. In Figure 6, we report the maximum top-1 accuracy achieved by different sampling strategies on various FLOPs regimes. For visualization clarity, we plot the relative top-1 accuracy gain over the Uniform baseline. We have the following observations from the experimental results:

1) As shown in Figure 5(a) and (b), pushing up the worst performed architecture during training leads to a higher low-bound performance Pareto. The minimum and first quartile accuracy achieved by WorstUp-50 (acc) and WorstUp-1M (acc) are significantly higher than those achieved by BestUp-50 (acc), BestUp-1M (acc) and Uniform.

2) WorstUp-1M (acc) consistently outperforms over BestUp-1M (acc) in Figure 5 (a) and (b). Our findings challenge the traditional thinking of NAS by focusing only on the Pareto-best of sub-networks, e.g., in [3, 20].

3) Improving on Pareto-worst models leads to better performed Pareto-best models. For example, as we can see from Figure 5 and 6, WorstUp-50 (acc) outperforms Uniform around 0.3% of top-1 accuracy on the 200±10 MFLOPs regime. WorstUp-1M (acc) also improves on the Uniform baseline.

4) As we can see from Figure 6, Pareto-best models focused sampling strategies are mostly useful at medium FLOPs regimes. BestUp-50 (acc) starts to outperform WorstUp-50 (acc) and Uniform when the model size is greater than 400 MFLOPs.

5) Both WorstUp-3 (loss) and BestUp-3 (loss) improves on Uniform, further validating the advantage of our attentive samplings strategies.

6) As we can see from Figure 6, BestUp-3 (loss) achieves the best performance in general. Compared with BestUp-50 (acc) and BestUp-1M (acc), BestUp-3 (loss) yields better exploration of the search space, while comparing with Uniform, BestUp-3 (loss) enjoys better exploitation of the search space. Our findings suggest that a good sampling strategy needs to balance the exploration and exploitation of the search space.

4.5. Comparison with Prior NAS Approaches

In this section, we pick our winning sampling strategy BestUp-3 (loss) (denoted as AttentiveNAS in Table 1), and compare it with prior art NAS baselines on ImageNet, including FBNetV2 [32], FBNetV3 [9], MobileNetV3 [16], OFA [2], FairNAS [7], EfficientNet [31] and BigNAS [39].

For fair comparison, we withheld the original ImageNet validation set for testing and randomly sample 200k ImageNet training examples as the validation set for searching. Since all models are likely to overfit at the end of training, we use the weight-sharing parameter graph learned at epoch 30 for performance estimation and then evaluate the discovered Pareto-best set of architectures on the withheld original ImageNet validation set. We follow the evolutionary search protocols described in Section 4.2.

We summarize our results in both Table 1 and Figure 1. AttentiveNAS significantly outperforms all baselines evaluated, establishing new SOTA performance vs. FLOPs trade-offs.

Group	Method	MFLOPs	Top-1
200-300 (M)	AttentiveNAS-A0	203	77.3
	MobileNetV3	217	75.2
	FBNetV2	238	76.0
	BestUp-50 (acc)	242	76.5
	BestUp-1M (acc)	279	78.4
300-400 (M)	AttentiveNAS-A1	317	78.8
	FBNetV2	325	77.2
	FBNetV3	343	78.0
	MobileNetV3	356	76.6
	OFA (#75ep)	389	79.1
	EfficientNet-B0	390	77.3
	FairNAS	392	77.5
400-500 (M)	BigNAS	418	78.9
	FBNetV2	422	78.1
	AttentiveNAS-A4	444	79.8
	OFA (#75ep)	482	79.6
	AttentiveNAS-A5	491	80.1
>500 (M)	AttentiveNAS-A6	709	80.7
	FBNetV3	752	80.4
	EfficientNet-B1	1050	80.3

Table 1. Comparison with prior NAS approaches on ImageNet.

5. Conclusion

In this paper, we propose a variety of attentive sampling strategies for training two-stage NAS. We show that attentive sampling can improve the accuracy significantly compared to uniform sampling by taking the performance Pareto into account. Our method outperforms prior-art NAS approaches on the ImageNet dataset, establishing new SOTA accuracy given a variety of FLOPs constraints.
References

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-parameterization. In International Conference on Machine Learning, pages 242–252. PMLR, 2019.

[2] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

[3] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task and hardware. arXiv preprint arXiv:1812.00332, 2018.

[4] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep neural networks. In Advances in Neural Information Processing Systems, pages 10836–10846, 2019.

[5] An-Chieh Cheng, Jin-Dong Dong, Chi-Hung Hsu, Shu-Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep neural networks. In Advances in Neural Information Processing Systems, pages 10836–10846, 2019.

[6] Ting-Wu Chin, Ari S Morcos, and Diana Marculescu. Pareco: Pareto-aware channel optimization for slimmable neural networks. arXiv preprint arXiv:2007.11752, 2020.

[7] Xiaoliang Dai, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness of weight sharing neural architecture search. arXiv preprint arXiv:1907.01845, 2019.

[8] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

[9] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen, Yuanlong Tian, Matthew Yu, Peter Vajda, et al. Pnetv3: Joint architecture-recipe search using neural acquisition function. arXiv preprint arXiv:2006.02049, 2020.

[10] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanhan Wang, Marat Dukhan, Yunqing Hu, Yiming Wu, Yangqiu Jia, et al. Channet: Towards efficient network design through platform-aware model adaptation. In Proceedings of the IEEE Conference on computer vision and pattern recognition, pages 11398–11407, 2019.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[12] Xuanxi Dong and Yi Yang. Nas-bench-102: Extending the scope of reproducible neural architecture search. arXiv preprint arXiv:2001.00326, 2020.

[13] Chengyue Gong, Tongzheng Ren, Mao Ye, and Qiang Liu. Maxup: A simple way to improve generalization of neural network training. arXiv preprint arXiv:2002.09024, 2020.

[14] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot neural architecture search with uniform sampling. In European Conference on Computer Vision, pages 544–560. Springer, 2020.
[28] Masanori Suganuma, Mete Ozay, and Takayuki Okatani. Exploiting the potential of standard convolutional autoencoders for image restoration by evolutionary search. *arXiv preprint arXiv:1803.00370*, 2018. 2

[29] Yumin Suh, Bohyung Han, Wonsik Kim, and Kyoung Mu Lee. Stochastic class-based hard example mining for deep metric learning. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 7251–7259, 2019. 4

[30] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-net: Platform-aware neural architecture search for mobile. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 2820–2828, 2019. 1, 2

[31] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural networks. *arXiv preprint arXiv:1905.11946*, 2019. 1, 8

[32] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for spatial and channel dimensions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12965–12974, 2020. 1, 8

[33] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han. Hat: Hardware-aware transformers for efficient natural language processing. *arXiv preprint arXiv:2005.14187*, 2020. 1, 3, 6

[34] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 10734–10742, 2019. 1, 2

[35] Lingxi Xie and Alan Yuille. Genetic cnn. In *Proceedings of the IEEE international conference on computer vision*, pages 1379–1388, 2017. 2

[36] Antoine Yang, Pedro M Esperança, and Fabio M Carlucci. Nas evaluation is frustratingly hard. *arXiv preprint arXiv:1912.12522*, 2019. 2, 6

[37] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards reproducible neural architecture search. In *International Conference on Machine Learning*, pages 7105–7114, 2019. 2

[38] Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 1803–1811, 2019. 6

[39] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural architecture search with big single-stage models. *arXiv preprint arXiv:2003.11142*, 2020. 1, 3, 5, 8, 11

[40] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural network architecture generation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 2423–2432, 2018. 2

[41] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. *arXiv preprint arXiv:1611.01578*, 2016. 1, 2

[42] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for scalable image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 8697–8710, 2018. 2
A. Training settings

We use the sandwich sampling rule and always train the smallest and biggest sub-networks in the search space as regularization (see Eqn. (3)). We set $n = 2$ in Eqn. (7). This way, at each iteration, a total of 4 sub-networks are evaluated. We use in-place knowledge distillation, i.e., all smaller sub-networks are supervised by the largest sub-network. To handle different input resolutions, we always fetch training patches of a fixed size (e.g., 224x224 on ImageNet) and then rescale them to our target resolution with bicubic interpolation.

We use SGD with a cosine learning rate decay. All the training runs are conducted with 64 GPUs and the mini-batch size is 32 per GPU. The base learning rate is set as 0.1 and is linearly scaled up for every 256 training samples. We use AutoAugment [8] for data augmentation and set label smoothing coefficient to 0.1. Unless specified, we train the models for 360 epochs. We use momentum of 0.9, weight decay of 10^{-5}, dropout of 0.2 after the global average pooling layer, and stochastic layer dropout of 0.2. We don’t use synchronized batch-normalization. Following [39], we only enable weight decay and dropout for training the largest DNN model. All other smaller sub-networks are trained without regularization.

B. Robustness of two-stage NAS

We also study the robustness and stability of stage 1 constrained-free NAS pre-training w.r.t. different data partitions, initializations and training epochs.

We follow the experimental setting in settings 4.3. Specifically, 1) we randomly partitioned the original ImageNet training set into 90% for training and 10% for testing. We then train on the subsampled training set. 2) After training, we randomly sample 1024 sub-networks and evaluate their performance on their corresponding testing data partition.

In Figure 7, we show that our two-stage NAS training is quite robust, achieving reproducible results across a variety of training settings. Specifically, in Figure 7 (a), we terminate early at epoch 30, the Kendall’s tau value is 0.94 between two different runs. We further train for 360 epochs, in Figure 7 (b), we observe a high rank correlation of 0.96 between different trials. Furthermore, in Figure 7 (c), we show the performance measured at epoch 30 also correlates well with the performance measured at the end of training. The rank correlation is 0.88. Our results are in alignment with the findings in FairNAS [7].

C. Sampling efficiency

Our attentive sampling requires to sample architectures under FLOPs constraints. Given a randomly drawn FLOPs constraint, naive uniformly sampling requires an average of 50,878 trials to sample an architecture satisfy the constraint due to the excessively large search space. In section 4.2, we construct a proposal distribution $\hat{\pi}(\alpha \mid \tau)$ in an offline mode to accelerate this sampling process. In Figure 8, we show the average sampling trials for sampling targeted architectures under constraints is about 12 by sampling from $\hat{\pi}$, hence computationally extremely efficient.

D. Comparisons of search space

Our search space is defined in Table 2. Note that our search space is adapted from FBNetV3 [9]. Compared to the search space used in BigNAS [39], our search space contains more deeper and narrower sub-networks.
We compare the uniform sampling strategy performance on both search spaces. Specifically, we follow the evaluation flow described in section 4.2. The search space proposed in [2] is not evaluated here as its training pipeline requires complicated progressive network shrinking and carefully tuned hyper-parameters for each training stage.

Block	Width	Depth	Kernel size	Expansion ratio	SE
Conv	{16, 24}	3		-	-
MBConv-1	{16, 24}	{1,2}	{3, 5}	1	N
MBConv-2	{24, 32}	{3, 4, 5}	{3, 5}	{4, 5, 6}	N
MBConv-3	{32, 40}	{3, 4, 5, 6}	{3, 5}	{4, 5, 6}	Y
MBConv-4	{64, 72}	{3, 4, 5, 6}	{3, 5}	{4, 5, 6}	N
MBConv-5	{112, 128}	{3, 4, 5, 6, 7, 8}	{3, 5}	{4, 5, 6}	Y
MBConv-6	{192, 200, 208, 216}	{3, 4, 5, 6, 7, 8}	{3, 5}	6	Y
MBConv-7	{216, 224}	{1,2}	{3, 5}	6	Y
MBPool	{1792, 1984}	-	-	1	6

Table 2. An illustration of our search space. MBConv refers to inverted residual block [24]. MBPool denotes the efficient last stage [16]. SE represents the squeeze and excite layer [18]. Width represents the channel width per layer. Depth denotes the number of repeated MBConv blocks. Kernel size and expansion ratio is the filter size and expansion ratio for the depth-wise convolution layer used in each MBConv block. We use swish activation.