Estimates of Upper Bound for Differentiable Functions Associated with k-Fractional Integrals and Higher Order Strongly s-Convex Functions

Shanhe Wu,1 Muhammad Uzair Awan,2 and Zakria Javed2

1Department of Mathematics, Longyan University, Longyan 364012, China
2Department of Mathematics, Government College University, Faisalabad 38000, Pakistan

Correspondence should be addressed to Shanhe Wu; shanhewu@gmail.com

Received 19 March 2020; Accepted 11 May 2020; Published 3 July 2020

Academic Editor: Xinguang Zhang

Copyright © 2020 Shanhe Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we establish two integral identities associated with differentiable functions and the k-Riemann-Liouville fractional integrals. The results are then used to derive the estimates of upper bound for functions whose first or second derivatives absolute values are higher order strongly s-convex functions.

1. Introduction

Fractional calculus also known as noninteger calculus is a branch of mathematical analysis in which we discuss the integrals and derivatives of arbitrary order. The study of fractional calculus has a very long history, which can be traced back to the end of the 17th century; in 1695, L’Hospital wrote to Leibniz to discuss fractional derivative about a function. For hundreds of years, many mathematicians, such as Euler, Laplace, Fourier, Abel, Liouville, and Riemann, have carried out in-depth research on this subject (see [1]). Especially, in recent decades, the fractional calculus has found numerous applications in various fields such as mechanics, electricity, chemistry, biology, economics, notably control theory, and signal and image processing. Due to the backgrounds in practical applications, the fractional calculus has developed rapidly and has become a hot research topic (see [2–4]).

Among several known forms of fractional integrals, the Riemann-Liouville fractional integral has been investigated extensively, which is defined as follows:

Definition 1 ([3]). Let $f \in L[a, b]$. The Riemann-Liouville integrals $I^a_\alpha f$ and $I^b_\alpha f$ of order $\alpha > 0$ with $a \geq 0$ are defined by

$$I^a_\alpha f(v) = \frac{1}{\Gamma(\alpha)} \int_a^v (v - u)^{\alpha-1} f(u) \, du, \quad v > a,$$

$$I^b_\alpha f(v) = \frac{1}{\Gamma(\alpha)} \int_v^b (u - v)^{\alpha-1} f(u) \, du, \quad v < b,$$

where

$$\Gamma(\alpha) = \int_0^\infty e^{-u} u^{\alpha-1} \, du$$

is the gamma function.

In recent years, several researchers have utilized the concepts of fractional calculus to obtain the fractional analogues of classical inequalities. For example, Sarikaya et al. [5] established a generalized Hermite-Hadamard inequality via the Riemann-Liouville fractional integrals; Set [6] gave some
fractional integral inequalities of the Ostrowski type through s-convex functions; Du et al. [7] deduced some variants of the fractional Hermite-Hadamard’s inequality using the class of generalized (α,m)-preinvex functions; Noor et al. [8] used the class of the s-Godunova-Levin convex functions to obtain refinements of the fractional Hermite-Hadamard inequalities; Peng et al. [9] obtained the Riemann-Liouville fractional Simpson inequalities through generalized (α,h_1,h_2)-preinvex functions; Wu and Awan [10] used the class of h-convex functions to derive the upper bound estimates of function involving fractional integrals; Wu et al. [11] established some fractional integral inequalities using k-th order differentiable strongly h-preinvex functions; Zhang et al. [12] provided some variations of the fractional Hermite-Hadamard’s inequalities. For more results related to this topic, we refer the interested reader to [13–17] and references cited therein.

In [18], Mubeen and Habibullah introduced the k-fractional integral of the Riemann-Liouville type as follows:

Definition 2 ([18]). Let $F \in L[a,b]$. The k-Riemann-Liouville fractional integrals $I_{a^+}^\alpha F$ and $I_{b-}^\alpha F$ of order $\alpha > 0$ with $a \geq 0$, $k > 0$ are defined by

\[
J_{a^+}^\alpha F(v) = \frac{1}{k!} \Gamma_\alpha(a) \int_a^v (v-u)^{a/k-1} F(u) du, \quad v > a,
\]

\[
J_{b-}^\alpha F(v) = \frac{1}{k!} \Gamma_\alpha(a) \int_v^b (u-v)^{a/k-1} F(u) du, \quad v < b,
\]

where

\[
\Gamma_\alpha(\alpha) = \int_0^\infty e^{-u/k} u^{a-1} du
\]

is the k-gamma function.

Note that if $k \to 1$, then the k-Riemann-Liouville fractional integrals reduces to the classical Riemann-Liouville fractional integral.

Sarikaya et al. [19, 20] generalized the k-Riemann-Liouville fractional integrals and discussed their properties. Moreover, for the k-gamma function, they showed that $\Gamma_k(\alpha) = k^{\alpha/k-1} \Gamma(\alpha/k)$ and $\Gamma_k(\alpha + k) = k^k \Gamma_k(\alpha)$. For k-beta function, it is defined by

\[
B_k(x,y) = \frac{1}{k} \int_0^1 u^{a/k-1} (1-u)^{b/k-1} du, \quad x > 0, y > 0, k > 0,
\]

which implies that $B_k(x,y) = (1/k)B((x/k),(y/k))$ and $B_k(x,y) = \Gamma_k(x)\Gamma_k(y)/\Gamma_k(x+y)$.

Motivated by the ideas of [19, 20], in this paper, we first establish two identities for the k-Riemann-Liouville fractional integrals associated with differentiable functions. We then apply the results to derive some estimates of the upper bound for differentiable functions involving k-fractional integrals via higher order strongly s-convex functions.

2. Preliminaries and Lemmas

Let us briefly summarize the concepts on generalized convex functions which are related to the contents of this paper.

As a strengthening property of convexity, Polya and Sax [21] introduced the strongly convex functions, as follows:

Definition 3. Let $I \subseteq \mathbb{R}$ be an interval. A function $f : I \to \mathbb{R}$ is said to be strongly convex function with modulus $\mu > 0$, if

\[
f((1-t)x + ty) \leq (1-t)\frac{f(x) + tf(y)}{1-t} - \mu(1-t)|y-x|^2, \forall x, y \in I, t \in [0,1].
\]

Angulo et al. [22] presented an extension of strongly convex functions which is called strongly s-convex functions, i.e.:

Definition 4. Let $I \subseteq \mathbb{R}$ be an interval, $s \in (0,1]$. A function $f : I \to \mathbb{R}$ is said to be strongly s-convex function with modulus $\mu > 0$, if

\[
f((1-t)x + ty) \leq (1-t)^s \frac{f(x) + tf(y)}{1-t} - \mu(1-t)^s|y-x|^2, \forall x, y \in I, t \in [0,1].
\]

Here we provide a further extension of strongly s-convex functions, as follows:

Definition 5. Let $I \subseteq \mathbb{R}$ be an interval, $s \in (0,1], \mu > 0$. A function $f : I \to \mathbb{R}$ is said to be strongly s-convex functions of order $\sigma > 0$, if

\[
f((1-t)x + ty) \leq (1-t)^s \frac{f(x) + tf(y)}{1-t} - \mu(t^\sigma(1-t) + t(1-t)^\sigma)|y-x|^2, \forall x, y \in I, t \in [0,1].
\]

Remark 6. If $\sigma = 2$, then the class of strongly s-convex functions of order $\sigma > 0$ reduces to the class of strongly s-convex functions. For $\sigma = 2$ and $s = 1$, we have the class of classical strongly convex functions.

In the following, we establish two integral identities associated with differentiable functions and the k-Riemann-Liouville fractional integrals. These integral identities play important role in dealing with subsequent results.

Lemma 7. Let $f : [a,b] \to \mathbb{R}$ be a differentiable function and $f' \in L[a,b]$. Then for any $a > 0$, $k > 0$, and $x \in (a,b)$, we have

\[
\frac{(x-a)[(x+a)f(x) - xf(a)] + (b-x)[(b+x)f(x) - xf(b)]}{(b-a)^2}
\]

\[
- \frac{\Gamma_k(\alpha + k)}{(b-a)^2} \int_0^1 \left[\frac{a}{(x-a)^{a/k-1}} \frac{b}{(b-x)^{b/k-1}} f'(t) (1-t) + tx \right] dt
\]

\[
\left. - \frac{(b-x)^2}{(b-a)^2} \int_0^1 \frac{b}{(b-x)^{a/k-1}} \left[\left(\frac{x-a}{b-a} \right)^{(1-t)a/k+1} - \left(\frac{x-a}{b-a} \right)^{(1-t)a/k} \right] \frac{d}{dt} \left((1-t)x + tb \right) dt \right].
\]
Lemma 8. Let \(f : [a, b] \to \mathbb{R} \) be twice differentiable function and \(f'' \in L[a, b] \). Then for any \(a > 0, k > 0 \) and \(x \in (a, b) \), we have

Proof. Let

\[
I = \left(\frac{x-a}{b-a} \right) \int_{0}^{1} (at^{a+b} + x) f'((1-t)a + tx) \, dt \\
- \left(\frac{b-x}{b-a} \right) \int_{0}^{1} (b(1-t)^{a+b} + x) f' ((1-t)x + tb) \, dt
\]

(10)

\(\cong I_1 - I_2 \).

Integrating by parts gives

\[
I_1 = \left(\frac{x-a}{b-a} \right) \int_{0}^{1} (at^{a+b} + x) f'((1-t)a + tx) \, dt \\
= \frac{1}{(b-a)^2} \left[(x-a)(x + ta)f(x) \right] - \frac{x \alpha x}{k(b-a)^2} \int_{0}^{1} \Gamma_k(\alpha + 1) f^{(\alpha+k-1)}(tx + (1-t)a) \, dt \\
= \frac{1}{(b-a)^2} \left[(x-a)(x + ta)f(x) \right] - \frac{x \alpha x}{k(b-a)^2} \int_{0}^{1} \Gamma_k(\alpha + 1) f^{(\alpha+k-1)}(tx + (1-t)a) \, dt
\]

(11)

Similarly, we have

\[
I_2 = \left(\frac{b-x}{b-a} \right) \int_{0}^{1} (b(1-t)^{a+b} + x) f' ((1-t)x + tb) \, dt \\
= \frac{1}{(b-a)^2} \left[(b-x)(b + x)f(x) \right] - \frac{x \alpha x}{k(b-a)^2} \int_{0}^{1} \Gamma_k(\alpha + 1) f^{(\alpha+k-1)}(tx + (1-t)a) \, dt \\
= \frac{1}{(b-a)^2} \left[(b-x)(b + x)f(x) \right] - \frac{x \alpha x}{k(b-a)^2} \int_{0}^{1} \Gamma_k(\alpha + 1) f^{(\alpha+k-1)}(tx + (1-t)a) \, dt
\]

(12)

Using (11) and (12) in (10) leads to (9). This completes the proof of Lemma 7.
\[L_2 = \frac{ak}{a + ks + k} + \frac{x}{s + 1}. \]

\[L_3 = \frac{ak^2}{(a + ks + k)(a + k\sigma + 2k)} + akB_k(a + 2k, k\sigma + k) \]
\[+ \frac{x}{(\sigma + 1)(\sigma + 2)} + akB_k(2k, k\sigma + k), \]

\[L_4 = \frac{bk}{a + ks + k} + \frac{x}{s + 1}. \]

\[L_5 = bkB_k(ks + k, a + k) + \frac{x}{s + 1}, \]

\[L_6 = bkB_k(k\sigma + k, a + 2k) - bkB_k(k\sigma + 2k, a + k) \]
\[+ bkB_k(2k, a + k\sigma + k) + \frac{x}{(\sigma + 1)(\sigma + 2)} \]
\[+ akB_k(2k, k\sigma + k). \]

(18)

Proof. By Lemma 7 and the property of absolute value, we have

\[\left| \frac{x-a}{(x-a)f(x) - xf(a)} + (b-x)((b+x)f(x) - xf(b)) \right| \]
\[\leq \frac{a}{(x-a)^{a(k-1)}} \int_{0}^{1} \left| f'(1-t)a + tx \right| dt \]
\[+ \frac{b}{(b-x)^{b(k-1)}} \int_{0}^{1} \left| f'(1-t)x + tb \right| dt. \]

(19)

Utilizing the fact that \(|f'|\) is strongly \(s\)-convex functions of the order \(\sigma > 0\), we obtain

\[\frac{(x-a)^2}{(b-a)^2} \int_{0}^{1} \left(ar^{a(k-1)} + x \right) \left| f'((1-t)a + tx) \right| dt \]
\[+ \frac{(b-x)^2}{(b-a)^2} \int_{0}^{1} \left(br^{b(k-1)} + x \right) \left| f'((1-t)x + tb) \right| dt \]
\[\leq \frac{(x-a)^2}{(b-a)^2} \int_{0}^{1} \left(ar^{a(k-1)} + x \right) \left| (1-t)^{a}\left| f'(a) \right| + t^{a} f'(x) \right| \]
\[- \mu \left(r^{a}(1-t) + t(1-t)^{a}\right) \left| x - a \right|^a \right] dt \]
\[+ \frac{(b-x)^2}{(b-a)^2} \int_{0}^{1} \left(br^{b(k-1)} + x \right) \left| (1-t)^{b}\left| f'(b) \right| - \mu \left(r^{b}(1-t) + t(1-t)^{b}\right) \left| x - a \right|^b \right] dt \]
\[
\begin{align*}
&= \frac{(x-a)^2}{(b-a)^2} \left[(akB_k(\alpha + k, sk + k) + \frac{x}{s+1}) |f'(a)| \\
&+ \left(\frac{ak}{\alpha + ks + k} + \frac{x}{s+1} \right) |f'(x)| \right] \\
&- \mu \left(\frac{ak}{\alpha + k}\right)^2 (a + k\sigma + k) (a + k\sigma + 2k) \\
&+ akB_k(\alpha + 2k, k\sigma + k) + \frac{x}{(\sigma + 1)(\sigma + 2)} \\
&+ xkB_k(2k, k\sigma + k) \right] |b - x|^\alpha + \frac{(b - x)^2}{(b-a)^2} \\
&+ \mu \left(\frac{bk}{\alpha + k} + x \right)^{\frac{1}{q+1}} \left[L_4 |f'(x)|^q + L_5 |f'(b)|^q \right] \\
&- \mu L_6 |b - x|^\alpha \right] |b - x|^\alpha ,
\end{align*}
\]

which implies the desired inequality (17). The proof of Theorem 9 is complete. is complete.

Theorem 10. Let \(f : [a, b] \subset (0, \infty) \to \mathbb{R} \) be a differentiable function and \(f' \in L[a, b] \), and let \(p > 1, q > 1, 1/p + 1/q = 1 \). If \(|f'|^q \) is strongly \(s \)-convex functions of the order \(\sigma > 0 \), then for any \(\alpha > 0 \), \(k > 0, \mu > 0, s (0, 1] \), and \(x \in (a, b) \), we have

\[
\begin{align*}
&\left| (x-a)[(x+a)f(x) - xf(a)] + (b-x)[(b+x)f(x) - xf(b)] \right| \\
&\leq \frac{\Gamma_k(\alpha + k)}{(b-a)^2} \left[\frac{a}{(x-a)^{\alpha+k-1}} k a^\alpha f'(a) + \frac{b}{(b-x)^{\alpha+k-1}} k a^\alpha f'(b) \right] \\
&\leq \frac{(x-a)^2}{(b-a)^2} \left[\frac{ak}{\alpha + k} + x \right] \left[L_1 |f'(a)|^q + L_2 |f'(x)|^q \right] \\
&+ \frac{x}{s+1} |f'(a)|^q + \left(\frac{ak}{\alpha + ks + k} + \frac{x}{s+1} \right) |f'(x)|^q \\
&- \mu \left(\frac{ak}{\alpha + k\sigma + k}(a + k\sigma + 2k) + akB_k(\alpha + 2k, k\sigma + k) \right) |x-a|^\alpha \right] \\
&\leq \frac{(x-a)^2}{(b-a)^2} \left[\frac{bk}{\alpha + k} + x \right] \left[L_4 |f'(x)|^q + L_5 |f'(b)|^q \right] \\
&- \mu L_6 |b - x|^\alpha \right] |b - x|^\alpha ,
\end{align*}
\]

where \(L_1, L_2, L_3, L_4, L_5, \) and \(L_6 \) are given by the same expressions as described in Theorem 9.

Proof. Using Lemma 7, Hölder’s inequality, and the fact that \(|f'|^q \) is strongly \(s \)-convex functions of the order \(\sigma > 0 \), it follows that

\[
\begin{align*}
&\left| (x-a)[(x+a)f(x) - xf(a)] + (b-x)[(b+x)f(x) - xf(b)] \right| \\
&\leq \frac{\Gamma_k(\alpha + k)}{(b-a)^2} \left[\frac{a}{(x-a)^{\alpha+k-1}} k a^\alpha f'(a) + \frac{b}{(b-x)^{\alpha+k-1}} k a^\alpha f'(b) \right] \\
&\leq \frac{(x-a)^2}{(b-a)^2} \left[\frac{ak}{\alpha + k} + x \right] \left[L_1 |f'(a)|^q + L_2 |f'(x)|^q \right] \\
&+ \frac{x}{s+1} |f'(a)|^q + \left(\frac{ak}{\alpha + ks + k} + \frac{x}{s+1} \right) |f'(x)|^q \\
&- \mu \left(\frac{ak}{\alpha + k\sigma + k}(a + k\sigma + 2k) + akB_k(\alpha + 2k, k\sigma + k) \right) |x-a|^\alpha \right] \\
&\leq \frac{(x-a)^2}{(b-a)^2} \left[\frac{bk}{\alpha + k} + x \right] \left[L_4 |f'(x)|^q + L_5 |f'(b)|^q \right] \\
&- \mu L_6 |b - x|^\alpha \right] |b - x|^\alpha ,
\end{align*}
\]
- \mu \left(bkB_k(\kappa + k, \alpha + 2k) - bkB_k(\kappa + 2k, \alpha + k) \right) \\
+ bkB_k(2k, \alpha + k \sigma + k) + \frac{x}{(s + 1)(\sigma + 2)} \\
+ xkB_k(2k, \kappa \sigma + k) \right) \left| b - x \right|^\frac{1}{q} = \frac{(x - a)^2}{(b - a)^2} \\
\cdot \left(\frac{ak}{\alpha + k} + x \right)^{\frac{1}{p}} \left(L_1 |f'(a)|^q + L_2 |f'(b)|^q - \mu L_2 |x - a|^\sigma \right) \right)^{\frac{1}{q}} \\
+ \left(\frac{b - x}{\alpha + k} \right)^{\frac{1}{p}} \left(\frac{bk}{\alpha + k} + x \right)^{\frac{1}{p}} \left(L_1 |f'(x)|^q + L_2 |f'(b)|^q \right) \\
- \frac{\mu}{\alpha + k} \left| b - x \right|^\frac{1}{q}.

(22)

This completes the proof of Theorem 10.

3.2. Estimates of the Upper Bound for Functions Whose Second Derivatives Absolute Values Are Higher Order Strongly s-Convex Functions

Theorem 11. Let \(f : [a, b] \subset (0, \infty) \longrightarrow \mathbb{R} \) be a differentiable function and \(f'' \in L[a, b] \). If \(|f''(x)| \) is strongly s-convex functions of the order \(\sigma > 0 \), then for any \(\alpha > 0, k > 0, \mu > 0, s \in (0, 1], \) and \(x \in (a, b) \), we have

\[
\left| \frac{1}{(b - a)^2} \left[\frac{(x(\alpha + k) + ka)f(x) - kaf(a)}{k(a - x)} \right] \right| + \frac{(a + k)x)f(x) - kxf(b)}{k(b - a)^2} \right| \\
+ \frac{(\alpha + k)\Gamma_\alpha(k + k)}{b(b - a)^2} \left[\frac{x}{(x - a)^{\alpha + k} + k} \right] \\
+ \frac{\alpha}{(b - a)^{\alpha + k} + k} \right] \\
\leq \frac{(x - a)}{(b - a)} \left(M_1 |f''(x)| + M_2 |f''(a)| - \mu M_3 |x - a|^\sigma \right) \\
+ \frac{(b - x)}{(b - a)} \left(M_4 |f''(b)| + M_5 |f''(x)| - \mu M_6 |b - x|^\sigma \right),
\]

where

\[
M_1 = \frac{xk}{\alpha + ks + 2k} + \frac{a}{s + 2}, \\
M_2 = xkB_k(\alpha + 2k, ks + k) + akB_k(2k, ks + k), \\
M_3 = \frac{xk^2}{(\alpha + ka + 2k)(\alpha + ka + 3k)} \\
+ xkB_k(\alpha + 3k, ka + k) + \frac{a}{(\sigma + 2)(\sigma + 3)} \\
+ akB_k(3k, ka + k),
\]

\[
M_4 = akB_k(ks + k, \alpha + 2k) + \frac{x}{(s + 1)(\sigma + 2)}, \\
M_5 = \frac{ka}{\alpha + ks + 2k} + \frac{x}{s + 2}, \\
M_6 = kxB_k(\kappa + k, \alpha + 3k) + kB_k(2k, \alpha + k \sigma + 2k) \\
+ xkB_k(\kappa + k, 3k) + xkB_k(2k, k \sigma + 2k).
\]

Proof. By Lemma 8 and the property of absolute value, we have

\[
\left| \frac{1}{(b - a)^2} \left[\frac{(x(\alpha + k) + ka)f(x) - kaf(a)}{k(a - x)} \right] \right| + \frac{(a + k)x)f(x) - kxf(b)}{k(b - a)^2} \right| \\
+ \frac{(b - x)}{(b - a)} \left[\left(\frac{t^{\alpha + k} x + ta}{b} \right)^{\alpha + k} + \frac{a}{(b - x)^{\alpha + k} + k} \right] \\
\cdot \left((1 - t)^{\alpha + k} + (1 - t)x \right) f'' \\
\cdot (tb + (1 - t)x) |dt| \leq \frac{(x - a)}{(b - a)^2} \int_0^1 \left(t^{\alpha + k} x + ta \right) \\
\cdot \left((1 - t)^{\alpha + k} + (1 - t)x \right) f'' |dt| + \frac{(b - x)}{(b - a)^2} \int_0^1 \left((1 - t)^{\alpha + k} + (1 - t)x \right) f'' |dt|.
\]

(25)

Utilizing the fact that \(|f''(x)| \) is strongly s-convex functions of the order \(\sigma > 0 \), we obtain

\[
\frac{(x - a)}{(b - a)^2} \int_0^1 \left(t^{\alpha + k} x + ta \right) f'' |tx + (1 - t)a| |dt| \\
+ \frac{(b - x)}{(b - a)^2} \int_0^1 \left((1 - t)^{\alpha + k} a + (1 - t)x \right) f'' |tb + (1 - t)x| |dt| \\
\leq \frac{(x - a)}{(b - a)^2} \int_0^1 \left(t^{\alpha + k} x + ta \right) \left(\left(t^{\alpha + k} x \right) + (1 - t)x \right) f'' |dt| \\
- \mu (t^{\alpha + k} x + t(1 - t)x) |x - a| |dt| \\
+ \frac{(b - x)}{(b - a)^2} \int_0^1 \left((1 - t)^{\alpha + k} a + (1 - t)x \right) \left(\left(t^{\alpha + k} x \right) + (1 - t)x \right) f'' |dt| \\
+ (1 - t)|f''(x)| - \mu (t^{\alpha + k} x + t(1 - t)x) |b - x| |dt|
\]
\[
\frac{1}{(b-a)^2} \left[\frac{f''(x)}{k(x-b)} \right] + \frac{a(x + k)x}{{(b-a)^2}} \left[\left(\frac{x^k}{a + ks + 2k} + \frac{a}{s + 2} \right) f''(x) \right] + \frac{x}{(s + 1)(s + 2)} f''(b) \leq \frac{x}{(x-a)} \int_0^1 \left(\left(t^{a+1} + x + ta \right) f''(tx + (1-t)a) \right) dt
\]

(26)

which implies the desired inequality (23). This completes the proof of Theorem 11.

Theorem 12. Let \(f : [a, b] \subset (0, \infty) \rightarrow \mathbb{R} \) be twice differentiable function and \(f'' \in L^1[a, b] \), and let \(p > 1, q > 1, 1/p + 1/q = 1 \). If \(|f''|^{\alpha} \) is strongly \(s \)-convex functions of the order \(\sigma > 0 \), then for any \(a > 0, k > 0, \mu > 0, s \in (0, 1], \) and \(x \in (a, b) \), we have

\[
\frac{1}{(b-a)^2} \left[\frac{(x(a + k) + ka)f(x) - kaf(a)}{k(x-b)} \right] + \frac{a(x + k)x}{(b-a)^2} \left[\left(\frac{x^k}{a + ks + 2k} + \frac{a}{s + 2} \right) f''(x) \right] + \frac{x}{(s + 1)(s + 2)} f''(b) \leq \frac{x}{(x-a)} \int_0^1 \left(t^{a+1} \right) f''(tx + (1-t)a) \right) dt
\]

(27)

where \(M_1, M_2, M_3, M_4, M_5, \) and \(M_6 \) are given by the same expressions as described in Theorem 11.

Proof. Using Lemma 8, Hölder’s inequality, and the fact that \(f'' \) is strongly \(s \)-convex functions of the order \(\sigma > 0 \), we obtain
\[\cdot \left| f''(b) \right|^q + \left(\frac{ka}{\alpha + ks + 2k} + \frac{x}{s + 2} \right) \left| f''(x) \right|^q \\
- \mu(kaB_4(k\sigma + k, \alpha + 3k) \\
+ k\alpha B_4(2k, \alpha + k\sigma + 2k) + x\alpha B_4(k\sigma + k, 3k) \\
+ x\alpha B_4(2k, k\sigma + 2k)) |b - \xi|^q \right)^{1/q}. \]
(28)

The proof of Theorem 12 is complete.

4. Conclusion

In this paper, we establish two identities involving differentiable functions and the \(k \)-Riemann-Liouville fractional integrals. Utilizing the identities, we obtain the estimates of the upper bound for functions whose first or second derivatives absolute values are higher order strongly \(s \)-convex functions. It is worth mentioning that our results contain, as a special case \((k, s, \sigma) = (1, 1, 2)\), the estimates of the upper bound of functions for the classical Riemann-Liouville fractional integrals and strongly convex functions.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Authors’ Contributions

All authors contributed equally and significantly in this paper. All authors read and approved the final manuscript.

Acknowledgments

The work of the first author is supported by the National Natural Science Foundation of China (Grant No. 11901550).

References

[1] K. B. Oldham and J. Spanier, *The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order*, Academic Press, New York, 1974.

[2] R. Gorenflo and F. Mainardi, *Fractional Calculus: Integral and Differential Equations of Fractional Order*, Springer Verlag, Wien, 1997.

[3] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, North-Holland Mathematics Studies, 204, Elsevier Sci, B.V, Amsterdam, 2006.

[4] X. J. Yang, *General Fractional Derivatives: Theory, Methods and Applications*, Chapman and Hall/CRC Press, New York, 2019.

[5] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, “Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities,” *Mathematical and Computer Modelling*, vol. 57, no. 9-10, pp. 2403–2407, 2013.

[6] E. Set, “New inequalities of Ostrowski type for mappings whose derivatives are \(s \)-convex in the second sense via fractional integrals,” *Computers & Mathematics with Applications*, vol. 63, no. 7, pp. 1147–1154, 2012.

[7] T. S. Du, J. G. Liao, L. Z. Chen, and M. U. Awan, “Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized \((\alpha, m)\)-preinvex function,” *Journal of Inequalities and Applications*, vol. 2016, no. 1, Article ID 306, 24 pages, 2016.

[8] M. A. Noor, K. I. Noor, M. U. Awan, and S. Khan, “Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions,” *Applied Mathematics & Informatics Sciences*, vol. 8, no. 6, pp. 2865–2872, 2014.

[9] C. Peng, C. Zhou, and T. S. Du, “Riemann-Liouville fractional Simpson’s inequalities through generalized \((m, h_1, h_2)\)-preinvexity,” *Italian Journal of Pure and Applied Mathematics*, vol. 38, pp. 345–367, 2017.

[10] S.-H. Wu and M. U. Awan, “Estimates of upper bound for a function associated with Riemann-Liouville fractional integral via \(h \)-convex functions,” *Journal of Function Spaces*, vol. 2019, Article ID 9861790, 7 pages, 2019.

[11] S. Wu, M. U. Awan, M. V. Mihai, M. A. Noor, and S. Talib, “Estimates of upper bound for a \(k \)-th order differentiable functions involving Riemann-Liouville integrals via higher order strongly \(h \)-preinvex functions,” *Journal of Inequalities and Applications*, vol. 2019, no. 1, Article ID 227, 2019.

[12] Y. Zhang, T. S. Du, and H. Wang, “Some new \(k \)-fractional integral inequalities containing multiple parameters via generalized \((s,m)\)-preinvexity,” *Italian Journal of Pure and Applied Mathematics*, vol. 40, pp. 510–527, 2018.

[13] I. İşcan and S. Wu, “Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals,” *Applied Mathematics and Computation*, vol. 238, pp. 237–244, 2014.

[14] F. Chen and S. Wu, “Several complementary inequalities to inequalities of Hermite-Hadamard type for \(s \)-convex functions,” *Journal of Nonlinear Sciences and Applications*, vol. 9, no. 2, pp. 705–716, 2016.

[15] F. Chen and S. Wu, “Fekete and Hermite-Hadamard type inequalities for harmonically convex functions,” *Journal of Applied Mathematics*, vol. 2014, 386807 pages, 2014.

[16] S. H. Wu and Y. M. Chu, “Schur \(m \)-power convexity of generalized geometric Bonferroni mean involving three parameters,” *Journal of Inequalities and Applications*, vol. 2019, no. 1, Article ID 57, 11 pages, 2019.

[17] J. R. Wang and M. Fečkan, *Fractional Hermite-Hadamard Inequalities*, Vol. 5, Walter de Gruyter GmbH, Berlin, 2018.

[18] S. Mubeen and G. M. Habibullah, “\(k \)-fractional integrals and application,” *International Journal of Contemporary Mathematical Sciences*, vol. 7, no. 2, pp. 89–94, 2012.

[19] M. Z. Sarikaya and A. Karaca, “On the \(k \)-Riemann-Liouville fractional integral and applications,” *International Journal of Mathematics and Statistics*, vol. 1, no. 3, pp. 33–43, 2014.

[20] M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, and F. Ahmad, “\((k,s)\)-Riemann-Liouville fractional integral and applications, Hacet,” *Journal of Mathematics and Statistics*, vol. 45, no. 1, pp. 77–89, 2016.
[21] B. T. Polyak, “Existence theorems and convergence of minimizing sequences in extremum problems with restrictions,” Soviet Mathematics - Doklady, vol. 7, pp. 72–75, 1966.

[22] H. Angulo, J. Giménez, A. Milena Moros, and K. Nikodem, “On strongly h-convex functions,” Ann. Funct. Anal., vol. 2, no. 2, pp. 85–91, 2011.