SUPPORTING INFORMATION

Ru-Catalyzed C–H Arylation of Fluoroarenes with Aryl Halides

Marco Simonetti,†‡ Gregory J. P. Perry,† Xacobe C. Cambeiro,† Francisco Juliá-Hernández,‡ Jude N. Arokianathar,‡ and Igor Larrosa*†

† School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
‡ School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, U.K.

* Corresponding author: igor.larrosa@manchester.ac.uk
General Information..5

General Procedure 1: C–H Arylation of (hetero)aromatic arenes with aryl halides.6

Procedure 2: D/H scrambling of d1-1a/1a via Ru1a by reversible C–D / C–H activation.....7

 Table S1. D/H scrambling of d1-1a/1a via Ru1a by reversible C–D / C–H activation..............7
 Figure S1...8

General Procedure 3: C–H activation of fluoroarenes with complex C29

 Table S2. Optimization of the C–H activation of fluoroarenes with complex C2..............10
 Figure S2...11

Characterization data of Ru1a, Ru1b and Ru1c..11

General Procedure 4: C–H arylation of fluoroarenes 1a and d1-1a with complex C2 for the
 KIE experiment..13

 Table S3. KIE experiment for the C–H activation of 1a and d1-1a with complex C213
 Graph S1...14

General Procedure 5: C–H arylation of 1a with catalysts C2-C4 ..14

 Table S4. Optimization of the Ru-catalyzed C–H arylation of 1a with catalysts C2-C415

General Procedure 6: screening of benzoic acids with catalyst C216

 Table S5. Screening of benzoic acids with catalyst C2, fluoroarene 1a and 4-bromoanisole 2a.17

General Procedure 7: C–H arylation of 1a with catalysts C5 ...18

Procedure 8: C–H arylation of 1a with catalyst C5 (glove box) ...18

Procedure 9: C–H arylation of 1a with catalyst C5 (under air) ..18

 Table S6. Optimization of the Ru-catalyzed C–H arylation of 1a with catalyst C519

General Procedure 10: time-dependent C–H arylation of 1a with catalyst C220

 Table S7. Kinetic profile for the arylation of 1a with 2a employing catalyst C220

General Procedure 11: time-dependent C–H arylation of 1a with catalyst C521

 Table S8. Kinetic profile for the arylation of 1a with 2a employing catalyst C521
 Figure S3...22

General Procedure 12: arylation of Ru2c with bromoarene 2c ...23

 Table S9. Arylation of Ru2c with bromoarene 2c. ..23
 Figure S4...23

General Procedure 13: arylation of fluoroarene 1d with catalyst Ru2c or Ru1c with bromoarene 2c ..24
Table S10. Arylation of fluoroarene 1d with catalyst Ru2c or Ru1c with bromoarene 2c. 24
Figure S5 ... 25

Procedure 14: D/H – H/D scrambling experiment with fluoroarenes d1-1a and 1b under arylation conditions with bromobenzene 2b .. 25
Scheme S1. D/H – H/D scrambling experiment with fluoroarenes d1-1a and 1b under arylation conditions with bromobenzene 2b. .. 26
Figure S6 ... 26

Procedure 15: KIE experiment of fluoroarenes d1-1a and 1y with bromobenzene 2b 26
Scheme S2. KIE experiment with fluoroarenes d1-1a and 1y with bromobenzene 2b 27
Figure S7 ... 27

General Procedure 16: KIE experiment of fluoroarenes d1-1a and 1a with bromobenzene 2b in Separate Flasks ... 28
Table S11. KIE experiment for fluoroarenes d1-1a and 1a with bromobenzene 2b in separate flasks. 28
Graph S2. ... 29

General Procedure 17: preparation of Ru(OCOR)2(η^6-arene) C2, C3 and C4 29
Characterization data of C2-C4 .. 30

Procedure 18: Synthesis of hexakis(pivalonitrile-κN)ruthenium(II) bis(tetrafluoroborate) C5 ... 31

General Procedure 19 for the preparation of Ru2a and Ru2c ... 32
Characterization data of Ru2a and Ru2c ... 32

General procedure 20 for the preparation of tetramethylammonium salts 33
Characterization data of tetramethylammonium salts .. 33

General procedure 21 for the preparation of 1a, 1o, and 1h ... 34
Characterization data of 1a, 1o and 1h ... 34

Procedure 22: preparation of 3-butoxy-1,2,4,5-tetrafluorobenzene-6-d (d1-1a) 35
Procedure 23: preparation of N-(2,3,5,6-tetrafluorophenyl)pivalamide 1f 35
Procedure 24: preparation of tert-butyl 2,3,5,6-tetrafluorobenzoate 1i 36
Characterization data of biaryl compounds .. 37

Experimental results for direct arylation of 1r with Ru, Pd^8 and Cu catalysts 72
Table S12. Arylation of 1r with Ru, Pd or Cu displaying different regioselectivity. 72
Figure S8. Characterization of biaryls 3rc’ and 3rc”... 73

Characterization of biaryls 3rc’ and 3rc”... 73

Evidence for the formation of a pivalate-containing Ru(II) species...................................... 76

Figure S9. .. 76

Figure S10. .. 77

Computational methods .. 78

Barriers for C–H activation of pentafluorobenzene with Ru complexes 78

Figure S11. ... 78

Figure S12. ... 79

Table S13. Energies in kcal/mol (relative to starting materials) of TS and products for the different Ru model complexes. * Not fully optimized structure. .. 80

Barriers for C–H activation of 3,4-difluorobenzotri fluoride with Ru and Pd complexes 81

Figure S13. ... 81

Table S14. Energies in kcal/mol (relative to starting materials) of TS for the different catalyst models. ΔG‡(disp): Activation Gibbs free energy with dispersion corrections. ΔG‡(disp+solv): Activation Gibbs free energy with dispersion and solvation corrections. ... 81

1H NMR, 19F NMR and 13C NMR spectra.. 82

Crystallographic section ... 252

Crystallographic data of C5 ... 252

Crystallographic data of C5’ ... 257

Crystallographic data of Ru1c .. 261

Crystallographic data of Ru2c .. 268

Coordinates and energies of optimized structures... 276

References ... 332
General Information

Unless otherwise indicated, all reactions were carried out in Schlenk vials using reagents obtained from commercial sources and used without further purification. All solid reagents were kept under vacuum in a desiccator for 24 h prior to use and stored under vacuum in a desiccator, unless otherwise stated. All other starting materials and solvents were purchased from Acros, Aldrich, Alfa Aesar, Fluorochem, Apollo Scientific and Manchester Organics, and used without further purification unless, otherwise stated. 2,3,5,6-tetrafluoro-N,N-dimethylaniline (1g), 1-bromo-2-phenoxybenzene (2a'), 1-(benzyl oxy)-2-bromobenzene (2e'), 2-phenoxy pyridine (10), 1-benzyl-5-phenyl-1H-tetrazole (12), and 1-(pyrimidin-2-yl)-1H-indole (8) were prepared according to reported methods. Column chromatography was carried out on silica gel, particle size 40-63 μm, using flash techniques. Melting points were obtained using a Stuart SMP11 apparatus and are uncorrected. IR spectra were recorded using a Thermo Scientific Nicolet iS5 FTIR machine, relevant bands are quoted in cm⁻¹. High resolution mass spectra were performed at the EPSRC National Mass Spectrometry Service Centre (Swansea) or by the School of Chemistry Mass Spectrometry Service (University of Manchester) employing a Thermo Finnigan MAT95XP spectrometer. Mass spectra for the characterization of ruthenium complexes were performed by the School of Chemistry Mass Spectrometry Service (University of Manchester) employing a Waters SQD2 spectrometer. Elemental analyses were performed by the School of Chemistry Microanalysis Laboratory (University of Manchester) using a Flash 2000 elemental analyzer machine. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded at 400 or 500 MHz on Bruker machines. ¹H NMR are referenced to the residual solvent peak at 7.26 ppm (CDCl₃), 2.05 ppm ((CD₃)₂CO), 5.32 ppm (CD₂Cl₂), 4.79 ppm (D₂O) and quoted in ppm to 2 decimal places with coupling constants (J) to the nearest 0.1 Hz. ¹³C NMR spectra, recorded at 100 MHz or 126 MHz, are referenced to the solvent peak at 77.16 ppm (CDCl₃), 29.84 ppm ((CD₃)₂CO) or 53.84 ppm (CD₂Cl₂) and quoted in ppm to 1 decimal place with coupling constants (J) to the nearest 0.1 Hz. ¹⁹F NMR spectra were recorded at 376 or 471 MHz in CDCl₃, (CD₃)₂CO, CD₂Cl₂ or D₂O, and quoted in ppm to 2 decimal places and with coupling constants (J) to the nearest 0.1 Hz.
General Procedure 1: C–H Arylation of (hetero)aromatic arenes with aryl halides.

[Ru('BuCN)₆](BF₄)₂ (C₅) (15.5 mg, 0.020 mmol), aryl bromide (if solid, 0.50 mmol), arene (if solid, 1.50 mmol), (NMe₄)OC(CF₃)₃ (386.5 mg, 1.250 mmol), (NMe₄)4-fluorobenzoate (37.3 mg, 0.175 mmol) and (NMe₄)OPiv (35.1 mg, 0.20 mmol) were weighed in the open air and placed in a crimp-cap Schlenk microwave vial (10 mL) with a magnetic stirrer bar, unless otherwise stated. The reaction vessel was capped, evacuated and backfilled with N₂ three times, then left under vacuum for 30 min. The vial was then backfilled with N₂ and aryl bromide (if liquid, 0.50 mmol), arene (if liquid, 1.50 mmol) and pivalonitrile (166.3 μL, 1.50 mmol) were added via syringe unless otherwise stated. The vial was resealed with a new cap under a stream of N₂ and the mixture was stirred for 16 h at 115 °C. On completion of the reaction, the mixture was diluted with Et₂O and filtered through a cotton plug. Evaporation of the solvent and purification by silica gel column chromatography afforded the corresponding biaryls.
Procedure 2: D/H scrambling of d$_1$-1a/1a via Ru1a by reversible C–D / C–H activation

PivOH (0.3 equiv, 0.15 mmol), K$_2$CO$_3$ (2.0 equiv, 1.00 mmol) and [RuCl$_2$(p-cymene)]$_2$ (none or 5 mol %, 0.05 mmol) were weighed in a Schlenk microwave vial (10 mL) with a magnetic stirrer bar. The reaction vessel was capped, evacuated and backfilled with N$_2$ three times, then left under vacuum for 30 min. The vial was then backfilled with N$_2$ and 1.0 mL of a 0.5 M solution of a 98:2 mixture of d$_1$-1a : 1a (1.0 equiv, 0.50 mmol) in 1,4-dioxane was then added via syringe. The vial was resealed with a new cap under a stream of N$_2$ and the mixture was heated to 90 °C for 16 h. Upon completion, the reaction mixture was cooled to room temperature diluted with 3 mL of Et$_2$O, filtered through a cotton plug and evaporated in vacuo to give a residue, to which 1,3,5-trimethoxybenzene (0.33 equiv, 0.167 mmol) was added as internal standard in CDCl$_3$.

![Chemical Reaction Diagram]

entry	[Ru] (mol %)	d$_1$-1a:1a (initial ratio)	d$_1$-1a:1a (final ratio)	Ru1a (%)
1	none	98:2	98:2	none
2	[Ru(Cl$_2$(p-cymene)]$_2$ (5)	98:2	89:11	1

Table S1. D/H scrambling of d$_1$-1a/1a via Ru1a by reversible C–D / C–H activation.
1) 1H-NMR expansion of p-cymene and O-CH$_2$C$_3$H$_7$ region for independently isolated Ru$_1$a. 1#) 19F-NMR expansion for independently isolated Ru$_1$a. 2) 1H-NMR expansion of the reaction described in Table S1 entry 2, showing: p-cymene and O-CH$_2$C$_3$H$_7$-regions for Ru$_1$a, and aromatic singlet for internal standard 1,3,5-trimethoxybenzene; relative integration of signals corresponding to Ru$_1$a with respect to the standard gives the yield of Ru$_1$a. 2#) 19F-NMR expansion of reaction described in Table S1 entry 2, showing Ru$_1$a. 3) 1H-NMR expansion of reaction described in Table S1 entry 2, showing the aromatic proton for 1a and O-CH$_2$C$_3$H$_7$-protons for d$_1$-1a and 1a; relative integration of the aromatic proton of 1a with respect to O-CH$_2$C$_3$H$_7$-protons gives the ratio between for d$_1$-1a and for 1a. 3#) 19F-NMR expansion of the reaction described in Table S1 entry 2, showing d$_1$-1a and 1a. 4) 1H-NMR expansion of reaction described in Table S1 entry 2, showing the aromatic proton of 1a and O-CH$_2$C$_3$H$_7$-protons for d$_1$-1a and 1a; relative integration of the aromatic proton of 1a with respect to O-CH$_2$C$_3$H$_7$-protons gives the ratio between d$_1$-1a and 1a.
General Procedure 3: C–H activation of fluoroarenes with complex C2

Ru(OPiv)$_2$(p-cymene) (C2) (1.0 equiv) and the appropriate base (if any, see Table S2) were weighed in the open air and placed in a crimp-cap Schlenk microwave vial (10 mL) with a magnetic stirrer bar. The reaction vessel was capped, evacuated and backfilled with Ar three times, then left under vacuum for 30 min. The vial was then backfilled with Ar and the appropriate perfluoroarene and 1,4-dioxane (see Table S2) were added via syringe. The vial was resealed with a new cap under a stream of Ar and the reaction was heated at the stated temperature (see Table S2) for 16 h. Upon completion, the reaction mixture was cooled to room temperature and a given amount of 1,3,5-trimethoxybenzene was added as internal standard in CDCl$_3$. The crude mixture was then filtered through a cotton plug directly to an NMR tube. If purification was needed after NMR analysis, the crude was evaporated, dissolved in hexane and loaded on a silica column. The column was flushed with a 0-15% Et$_2$O-hexane gradient using N$_2$ in replacement of compressed air. The yellow band observed was eluted and evaporated *in vacuo* to give the desired aryl ruthenium complex as a yellow/orange solid. The final complexes are stable under air for a few days, but decompose if exposed to oxygen for longer. Storage in a desiccator under vacuum or in a glove box is needed. Suitable crystals of Ru1c for X-ray crystallography (see crystallographic section) were grown by slow evaporation from a concentrated solution of the complex in CDCl$_3$.

S9
Table S2. Optimization of the C–H activation of fluoroarenes with complex C2.
Figure S2.

1H-NMR expansion of p-cymene ruthenium complexes region of reactions described in Table S2: 1) entry 4; 2) entry 5; 3) entry 6; 4) entry 7.

Characterization data of Ru1a, Ru1b and Ru1c

The General Procedure 3 was applied with Ru(OPiv)$_2$(p-cymene) (C2) (1.0 equiv, 87.5 mg, 0.20 mmol), 3-butoxy-1,2,4,5-tetrafluorobenzene (1a) (888.8 mg, 4.00 mmol), Na$_2$CO$_3$ (42.4 mg, 0.4 mmol), 1,4-dioxane (0.4 mL, 0.5 M), 120 °C, 16 h. Column chromatography afforded the title product as a dark yellow/orange solid (66.9 mg, 60%).

1H NMR (400 MHz, CDCl$_3$): δ 5.55 (d, $J = 5.9$ Hz, 2H), 5.22 (d, $J = 5.9$ Hz, 2H), 4.10 (t, $J = 6.8$ Hz, 2H), 2.85 (septet, $J = 6.9$ Hz, 1H), 2.10 (s, 3H), 1.72 (app quintet, $J = 7.0$ Hz, 2H), 1.49 (app sextet, $J = 7.4$ Hz, 2H), 1.34 (d, $J = 6.8$ Hz, 6H), 0.95 (t, $J = 7.4$ Hz, 3H), 0.76 (s, 9H); 13C NMR (100 MHz, CDCl$_3$): δ 196.0, 148.0 (dm, $J = 224.9$ Hz), 140.3 (dm, $J = 249.3$ Hz), 133.3 - 133.0 (m), 130.6 - 129.5 (m), 106.3, 93.3, 80.6, 78.1, 74.8 (t, $J = 2.6$ Hz), 40.1, 32.1, 27.8, 26.1, 22.6, 19.1, 19.0, 13.9; 19F NMR (376 MHz, CDCl$_3$) δ -119.2 - -119.3 (m, 2F), -158.7 - -158.8 (m, 2F);
IR (ATR) 2962, 1489, 1439; m.p. 77 - 80 °C. Anal. Calcd. for C\textsubscript{25}H\textsubscript{32}F\textsubscript{4}O\textsubscript{3}Ru: C, 53.85; H, 5.78. Found: C, 53.76; H, 5.84. HRMS (APCI) m/z calcd. C\textsubscript{25}H\textsubscript{32}F\textsubscript{4}O\textsubscript{3}Ru [M]+ 558.1331; found [M]+ 558.1316.

The General Procedure 3 was applied with Ru(OPiv)\textsubscript{2}(p-cymene) (C\textsubscript{2}) (1.0 equiv, 87.5 mg, 0.20 mmol), pentafluorobenzene (1b) (444.0 µL, 4.00 mmol), Na\textsubscript{2}CO\textsubscript{3} (42.4 mg, 0.4 mmol), 1,4-dioxane (0.4 mL, 0.5 M), 120 °C, 16 h. Column chromatography afforded the title product as a yellow solid (75.5 mg, 75%).

1H NMR (400 MHz, CDCl\textsubscript{3}): δ 5.56 (d, J = 5.8 Hz, 2H), 5.22 (d, J = 5.8 Hz, 2H), 2.84 (septet, J = 6.9 Hz, 1H), 2.09 (s, 3H), 1.34 (d, J = 6.9 Hz, 6H), 0.77 (s, 9H); 13C NMR (126 MHz, CDCl\textsubscript{3}): δ 196.3, 147.5 (dm, J = 225.3 Hz), 137.3 (dm, J = 240.3 Hz), 136.1 (dm, J = 251.8 Hz), 131.0 - 130.0 (m), 106.6, 93.5, 80.8, 78.1, 40.1, 32.1, 26.1, 22.6, 19.1; 19F NMR (376 MHz, CDCl\textsubscript{3}) δ -117.1 - -117.3 (m, 2F), 160.9 (t, J = 19.8 Hz, 1F), -164.0 - -164.2 (m, 2F); IR (ATR) 2966, 1489, 1438, 1443, 729; m.p. 139 -142 °C. Anal. Calcd for C\textsubscript{21}H\textsubscript{23}F\textsubscript{5}O\textsubscript{2}Ru: C, 50.10; H, 4.60. Found: C, 50.21; H, 4.60. HRMS (APCI) m/z calcd. C\textsubscript{21}H\textsubscript{23}F\textsubscript{5}O\textsubscript{2}Ru [M]+ 504.0662; found [M]+ 504.0656.

The General Procedure 3 was applied with Ru(OPiv)\textsubscript{2}(p-cymene) (C\textsubscript{2}) (1.0 equiv, 87.5 mg, 0.20 mmol), 1,2,4,5-tetrafluorobenzene (1c) (446.6 µL, 4.00 mmol), Na\textsubscript{2}CO\textsubscript{3} (42.4 mg, 0.4 mmol), 1,4-dioxane (0.4 mL, 0.5 M), 120 °C, 16 h. Column chromatography afforded the title product as a yellow/orange solid (74.9 mg, 77%).

1H NMR (400 MHz, CDCl\textsubscript{3}): δ 6.64 (tt, J = 9.5, 6.9 Hz, 1H), 5.56 (d, J = 6.0 Hz, 2H), 5.22 (d, J = 6.0 Hz, 2H), 2.85 (septet, J = 6.9 Hz, 1H), 2.10 (s, 3H), 1.34 (d, J = 6.9 Hz, 6H), 0.76 (s, 9H); 13C NMR (100 MHz, CDCl\textsubscript{3}): δ 196.1, 148.0 (dm, J = 225.2 Hz), 144.9 (dm, J = 248.7 Hz), 141.2 - 140.1 (m), 106.5, 101.4 (t, J = 23.5 Hz), 93.4, 80.8, 78.1, 40.1, 32.0, 26.1, 22.6, 19.1; 19F NMR (376 MHz, CDCl\textsubscript{3}) δ -119.3 - -119.4 (m, 2F), -142.3 - -142.4 (m, 2F); IR (ATR) 2966, 1489, 1443, 729; m.p. 139 -142 °C. Anal. Calcd for C\textsubscript{21}H\textsubscript{24}F\textsubscript{4}O\textsubscript{2}Ru: C, 51.95; H, 4.98. Found: C, 51.86; H, 5.03. HRMS (APCI) m/z calcd. C\textsubscript{21}H\textsubscript{24}F\textsubscript{4}O\textsubscript{2}Ru [M]+ 486.0756; found [M]+ 486.0745.
General Procedure 4: C−H activation of fluoroarenes 1a and d1-1a with complex C2 for the KIE experiment

Ru(OPiv)2(p-cymene) (C2) (43.8 mg, 0.10 mmol), Na2CO3 (21.2 mg, 0.20 mmol) were weighed in a crimp-cap Schlenk microwave vial (10 mL) with a magnetic stirrer bar. The reaction vessel was capped, evacuated and backfilled with Ar three times, then left under vacuum for 30 min. The vial was backfilled with Ar then 1a or d1-1a (111.1 or 111.6 mg, 0.50 mmol) and 1,4-dioxane (1.0 mL, 0.1 M with respect to C2) were added via syringe. The vial was resealed with a new cap under a stream of Ar and the mixture was stirred for 5 min at room temperature. The vial was then heated at 120 °C for the appropriate time (see Table S3). Upon completion, the vial was quickly cooled in a dry ice/acetone bath and a given amount of 1,3,5-trimethoxybenzene was added as internal standard in CDCl3. The crude was then filtered through a cotton plug directly into an NMR tube for analysis.

entry	fluoroarene (1a or d1-1a)	time (min)	Ru1a (%)
1	1a	5	3.3
2	1a	10	4.9
3	1a	15	6.4
4	1a	20	8.9
5	d1-1a	5	0.9
6	d1-1a	10	2.0
7	d1-1a	15	2.6
8	d1-1a	20	3.2

Reaction conditions: C2 (1.0 equiv, 0.1 mmol), 1a (5.0 equiv, 0.5 mmol), Na2CO3 (2.0 equiv, 0.2 mmol), 1,4-dioxane (1.0 mL, 0.1 M) were stirred under Ar in a closed vessel at 120 °C for the appropriate time; yield is evaluated by 1H-NMR using 1,3,5-trimethoxybenzene as internal standard.

Table S3. KIE experiment for the C−H activation of 1a and d1-1a with complex C2.
Graph S1.

Rate of formation of Ru1a for C−H activation of 1a and d1-1a with complex C2 (%/min).

\[
\text{KIE} = \frac{k_H}{k_D} = \frac{0.366}{0.150} = 2.4
\]

General Procedure 5: C−H arylation of 1a with catalysts C2-C4
The appropriate ruthenium catalyst (C2-C4) (10 mol), base and additive(s) (if any, see Table S4) were weighed in a crimp-cap Schlenk microwave vial (10 mL) with a magnetic stirrer bar. The reaction vessel was capped, evacuated and backfilled with N₂ three times, then left under vacuum for 30 min. The vial was backfilled with N₂ then 1a (111.1 mg, 0.5 mmol, 5.0 equiv), 2a or 2b (0.1 mmol, 1.0 equiv, 12.6 μL or 10.5 μL) and the appropriate solvent (see Table S4, concentration or equivalents with respect to the limiting reagent 2a or 2b) were added via syringe. The vial was resealed with a new cap under a stream of N₂ and the reaction was heated at 120 °C for 16 h. Upon completion, the reaction mixture was cooled to room temperature and a given amount of 1,3-dinitrobenzene was added as internal standard in CDCl₃. The crude was then filtered through a cotton plug directly into an NMR tube.
Table S4. Optimization of the Ru-catalyzed C–H arylation of 1a with catalysts C2–C4.
General Procedure 6: screening of benzoic acids with catalyst C2

The General Procedure 5 was followed, with the reaction conditions stated in Table S5.
entry	CA-1-30	3aa (%)	entry	CA-31-59	3aa (%)
1	CA-1	0	31	CA-31	18
2	CA-2	0	32	CA-32	21
3	CA-3	0	33	CA-33	25
4	CA-4	0	34	CA-34	26
5	CA-5	0	35	CA-35	29
6	CA-6	0	36	CA-36	29
7	CA-7	0	37	CA-37	31
8	CA-8	0	38	CA-38	33.5
9	CA-9	<1	39	CA-39	46
10	CA-10	<2	40	CA-40	49
11	CA-11	<3	41	CA-41	49
12	CA-12	3.5	42	CA-42	49
13	CA-13	3.5	43	CA-43	49
14	CA-14	3.5	44	CA-44	50
15	CA-15	4	45	CA-45	50
16	CA-16	4	46	CA-46	51
17	CA-17	4	47	CA-47	51
18	CA-18	5.5	48	CA-48	54
19	CA-19	5.5	49	CA-49	54.5
20	CA-20	6	50	CA-50	55
21	CA-21	6.5	51	CA-51	58
22	CA-22	8.5	52	CA-52	59
23	CA-23	8.5	53	CA-53	60
24	CA-24	9.5	54	CA-54	63
25	CA-25	11.5	55	CA-55	63.5
26	CA-26	12	56	CA-56	67
27	CA-27	13	57	CA-57	67
28	CA-28	16	58	CA-58	68
29	CA-29	18	59	CA-59	68.5
30	CA-30	18			

* Reaction conditions: 2a (0.1 mmol, 1.0 equiv), 1a (5.0 equiv), C2 (10 mol %), CA-1-30 (20 mol %), (NMe₂)OC(CF₃)₃ (2.2 equiv), tBuCN (8.0 equiv) were stirred under N₂ in a closed vessel at 120 °C for 16 h; yield is evaluated by ¹H-NMR using 1,3-dinitrobenzene as internal standard.

Table S5. Screening of benzoic acids with catalyst C2, fluoroarene 1a and 4-bromoanisole 2a.
General Procedure 7: C–H arylation of 1a with catalysts C5
C5, base and additive(s) (see Table S6) were weighed in a crimp-cap Schlenk microwave vial (10 mL) with a magnetic stirrer bar. The reaction vessel was capped, evacuated and backfilled with N2 three times, then left under vacuum for 30 min. The vial was backfilled with N2 then 1a (5.0 or 3.0 equiv), 2a or 2b (1.0 equiv, 0.1 mmol or 0.5 mmol) and pivalonitrile (3.0 or 5.0 equiv) were added via syringe. The vial was resealed with a new cap under a stream of N2 and the reaction was stirred at the specified temperature (see Table S6) for 16 h. Upon completion, the reaction mixture was cooled to room temperature and a given amount of 1,3-dinitrobenzene was added as internal standard in CDCl3. The crude was then filtered through a cotton plug directly into an NMR tube. If purification was needed after NMR analysis, the crude was evaporated, dissolved in hexane and loaded on a silica column for flash chromatography to afford the corresponding biaryls.

Procedure 8: C–H arylation of 1a with catalyst C5 (glove box)
All solid reagents, except C5, were dried at 70 °C in a vacuum oven over night. All liquid reagents were dried over 4 Å molecular sieves and degassed with 3 freeze-pump-thaw cycles. In a glove box, C5 (0.02 mmol, 15.5 mg), (NMe4)4-fluorobenzoate (0.175 mmol, 37.3 mg), (NMe4)OPiv (0.2 mmol, 35.1 mg), (NMe4)OC(CF3)3 (1.25 mmol, 386.5 mg), bromobenzene (0.5 mmol, 53.5 μL), 1a (1.50 mmol, 333.3 mg) and pivalonitrile (1.50 mmol, 166.3 μL) were loaded in a crimp-cap microwave vial with a stirrer bar. The vial was sealed and the mixture was stirred at 115 °C for 16 h. On completion, a given amount of 1,3-dinitrobenzene was added as internal standard in CDCl3. The crude was then filtered through a cotton plug directly into an NMR tube for analysis (see Table S6).

Procedure 9: C–H arylation of 1a with catalyst C5 (under air)
C5 (0.02 mmol, 15.5 mg), (NMe4)4-fluorobenzoate (0.175 mmol, 37.3 mg), (NMe4)OPiv (0.2 mmol, 35.1 mg), (NMe4)OC(CF3)3 (1.25 mmol, 386.5 mg), bromobenzene (0.5 mmol, 53.5 μL), 1a (333.3 mg, 1.50 mmol) and pivalonitrile (166.3 μL, 1.50 mmol) were loaded in a crimp-cap microwave vial with a stirrer bar. The vial was capped and the mixture was stirred at 115 °C for 16 h. On completion, a given amount of 1,3-dinitrobenzene was added as internal standard in CDCl3. The crude mixture was then filtered through a cotton plug directly into an NMR tube for analysis (See Table S6).
\[
\begin{align*}
\text{1a} + \text{2a-2b} \rightarrow [\text{Ru(BuCN)}_2\text{(BF}_3)_2 \text{(C5)}] & \quad \text{base, additive(s)} \\
\text{solvent, T, 16 h, N}_2 & \rightarrow \text{3aa-3ab}
\end{align*}
\]

\[R = \text{OMe (2a), H (2b)}\]

entry	C5 (mol%)	base (equiv)	additive(s) (equiv)	1a (equiv)	2a, 2b (1 equiv)	T (°C)	BuCN (equiv)	3aa, 3ab (%)
1	10	(NMe_2)(C_F_3)_2 (2)	(NMe_2)4-fluorobenzoate (0.2)	5	2b	120	8	59
2	10	(NMe_2)(C_F_3)_2 (2)	(NMe_2)4-fluorobenzoate (0.2)	5	2a	120	8	61
3	10	(NMe_2)(C_F_3)_2 (2)	(NMe_2)4-fluorobenzoate (0.2)	5	2b	120	8	72
4	10	(NMe_2)(C_F_3)_2 (2)	(NMe_2)4-fluorobenzoate (0.2)	5	2a	120	8	71
5a	10	(NMe_2)(C_F_3)_2 (2)	(NMe_2)4-fluorobenzoate (0.2)	5	2b	120	8	71
6b	2.5	(NMe_2)(C_F_3)_2 (2.2)	(NMe_2)4-fluorobenzoate (0.6)	3	2b	120	8	68
7c	2.5	(NMe_2)(C_F_3)_2 (2.2)	(NMe_2)4-fluorobenzoate (0.6)	3	2b	120	3	72
8d	4	(NMe_2)(C_F_3)_2 (2.2)	(NMe_2)4-fluorobenzoate (0.6)	3	2b	120	3	80
9e	4	(NMe_2)(C_F_3)_2 (2.5)	(NMe_2)3-fluorobenzoate (0.35)	3	2b	115	3	82 (76)
10f	4	KO_Me (2.5)	(NMe_2)3-fluorobenzoate (0.35)	3	2b	115	3	0
11g	4	KO_Bu (2.5)	(NMe_2)3-fluorobenzoate (0.35)	3	2b	115	3	13
12h	4	(NMe_2)(C_F_3)_2 (2.5)	(NMe_2)3-fluorobenzoate (0.35)	3	2b	115	3	81
13i	4	(NMe_2)(C_F_3)_2 (2.5)	(NMe_2)OPiv (0.4)	3	2b	115	3	0
14j	4	(NMe_2)(C_F_3)_2 (2.5)	(NMe_2)3-fluorobenzoate (0.35)	3	2b	115	3	0
15k	4	(NMe_2)(C_F_3)_2 (2.5)	(NMe_2)3-fluorobenzoate (0.35)	3	2b	115	3	<1
16l	4	(NMe_2)(C_F_3)_2 (2.5)	(NMe_2)3-fluorobenzoate (0.35)	3	2a	115	3	83 (82)

\(^a\) Reaction conditions: 2a or 2b (0.10 mmol, 1.0 equiv), 1a (see above), C5 (see above), base and additive(s) were stirred under N\(_2\) in a closed vessel in \(^1\)BuCN at the specified temperature for 16 h (see above); yield is estimated by \(^1\)H-NMR using 1,3-dinitrobenzene as internal standard. \(^b\) 2a or 2b (0.50 mmol, 1.0 equiv), 1a (see above). \(^c\) Reaction carried out in glove box. \(^d\) Reaction under air. \(^e\) TEMPO (1.0 equiv). Yield in parenthesis refers to isolated material.

Table S6. Optimization of the Ru-catalyzed C–H arylation of 1a with catalyst C5.
General Procedure 10: time-dependent C–H arylation of 1a with catalyst C2

C2 (0.01 mmol, 4.4 mg), 3-acetylbenzoic acid (0.03 mmol, 4.9 mg), (NMe₄)OC(CF₃)₃ (0.23 mmol, 71.1 mg) were weighed in the open air and placed in a crimp-cap Schlenk microwave vial (10 mL) with a magnetic stirrer bar. The reaction vessel was capped, evacuated and backfilled with N₂ three times, then left under vacuum for 30 min. The vial was backfilled with N₂ then 1a (111.1 mg, 0.5 mmol), 2a (12.5 μL, 0.1 mmol) and pivalonitrile (88.4 μL, 0.8 mmol) were added via syringe. The vial was resealed with a new cap under a stream of N₂ and the reaction was heated at 120 °C for the appropriate time. Upon completion, the vial was quickly cooled in a dry ice/acetone bath and a given amount of 1,3,5-trimethoxybenzene was added as internal standard in CDCl₃. The crude was then filtered through a cotton plug directly to an NMR tube for analysis (see Table S7).

![Reaction Scheme]

entry	time (min)	free p-cymene (%)	3aa (%)
1	2	0.8	0.2
2	5	3.8	1.5
3	8	6.0	3.9
4	10	7.0	6.8
5	15	8.4	16.7
6	30	9.9	34.3
7	16 h	9.9	66.2

* Reaction conditions: 2a (1.0 equiv, 0.1 mmol), 1a (5.0 equiv), C2 (10 mol %), 3-acetylbenzoic acid (0.3 equiv), (NMe₄)OC(CF₃)₃ (2.3 equiv), tBuCN (8.0 equiv) were stirred under N₂ in a closed vessel at 120 °C for the appropriate time; yield is evaluated by ¹H-NMR using 1,3,5-trimethoxybenzene as internal standard; % of free (η⁶-arene) is based on the loading of C2.

Table S7. Kinetic profile for the arylation of 1a with 2a employing catalyst C2.
General Procedure 11: time-dependent C–H arylation of 1a with catalyst C5

C5 (0.01 mmol, 7.7 mg), 3-acetylbenzoic acid (0.03 mmol, 4.9 mg), (NMe₄)OPiv (0.02 mmol, 3.5 mg), (NMe₄)OC(CF₃)₃ (0.23 mmol, 71.1 mg) were weighed in the open air and placed in a crimp-cap Schlenk microwave vial (10 mL) with a magnetic stirrer bar. The reaction vessel was capped, evacuated and backfilled with N₂ three times, then left under vacuum for 30 min. The vial was backfilled with N₂ then 1a (111.1 mg, 0.5 mmol), 2a (12.5 μL, 0.1 mmol) and pivalonitrile (88.4 μL, 0.8 mmol) were added via syringe. The vial was resealed with a new cap under a stream of N₂ and the reaction was heated at 120 °C for the appropriate time. Upon completion, the vial was quickly cooled in a dry ice/acetone bath and a given amount of 1,3,5-trimethoxybenzene (and C₆F₆, if needed, 0.5 equiv, 0.05 mmol, 5.8 μL) was added as internal standard in CDCl₃. The crude was then filtered through a cotton plug directly to an NMR tube for analysis (see Table S8).

entry	time (min)	3aa (%)	Ru2a (%)
1	2	0.8	NA
2	5	8.4	NA
3	8	13.4	NA
4	10	16.7	NA
5	15	23.9	NA
6	30	38.1 (38.5)	(5.0)
7	16 h	72.4	NA

* Reaction conditions: 2a (1.0 equiv, 0.1 mmol), 1a (5.0 equiv), C5 (10 mol %), 3-acetylbenzoic acid (0.3 equiv), (NMe₄)OPiv (0.2 equiv), (NMe₄)OC(CF₃)₃ (2.3 equiv), tBuCN (8.0 equiv) were stirred under N₂ in a closed vessel at 120 °C for the appropriate time; yield is evaluated by ¹H-NMR using 1,3,5-trimethoxybenzene as internal standard and also by quantitative ¹⁹F-NMR using hexafluorobenzene as internal standard for entry 6 (numbers in parenthesis are ¹⁹F-NMR yields).

Table S8. Kinetic profile for the arylation of 1a with 2a employing catalyst C5.
Figure S3.

19F-NMR expansion of the reactions illustrated in Table S8 entry 6 displaying 1a, 3aa and Ru2a with relative integrations with respect to the internal standard C$_6$F$_6$.
General Procedure 12: arylation of Ru2c with bromoarene 2c

All solid reagents, except Ru2c, were dried at 70 °C in a vacuum oven over night. All liquid reagents were dried over 4 Å molecular sieves and degassed with 3 freeze-pump-thaw cycles. In a glove box, Ru2c (0.03 mmol, 22.6 mg), additive (if any, see Table S9), 2c (12.2 μL, 0.09 mmol) and pivalonitrile (100 μL, 0.3 M) were loaded in a crimp-cap microwave vial with a stirrer bar. The vial was sealed and the mixture was stirred at 115 °C for 16 h. On completion, the mixture was filtered through a plug of silica with Et2O, the solvent was evaporated and octafluorotoluene (8.5 μL, 0.06 mmol, 2.0 equiv) was added as internal standard in CDCl3 for quantitative 19F-NMR analysis.

Table S9. Arylation of Ru2c with bromoarene 2c.

entry	additive (2.5 equiv)	3cc (%)	3cc’ (%)
1	none	-	-
2	(NMe₄)O(CCF₃)₃	-	-
3	(NMe₄)OPiv	-	-
4	(NMe₄)4-fluorobenzoate	35.0	13.5

Figure S4.

19F-NMR expansion of the reaction described in entry 4 of Table S9, displaying 3cc and 3cc’ with relative integration with respect to the internal standard octafluorotoluene.
General Procedure 13: arylation of fluoroarene 1d with catalyst Ru2c or Ru1c with bromoarene 2c

All solid reagents, except for Ru2c and Ru1c, were dried at 70 °C in a vacuum oven over night. All liquid reagents were dried over 4Å molecular sieves and degassed with 3 freeze-pump-thaw cycles. In glove box, Ru2c or Ru1c (0.05 mmol, 10 mol %), (NMe4)4-fluorobenzoate (0.175 mmol, 37.3 mg), (NMe4)OPiv (0.4 or 0.3 equiv: 0.20 mmol, 35.1 mg or 0.15 mmol 26.3 mg), (NMe4)OC(CF3)3 (1.25 mmol, 386.5 mg), 2c (0.50 mmol, 67.9 μL), 1d (182.7 μL, 1.50 mmol) and pivalonitrile (166.3 μL, 1.50 mmol) were loaded in a crimp-cap microwave vial with a stirrer bar. The vial was sealed, taken outside the box and the mixture was stirred at 115 °C for 16 h. On completion, the mixture was filtered through a plug of silica with Et2O, the solvent evaporated and hexafluorobenzene (28.9 μL, 0.25 mmol, 0.5 equiv) was added as internal standard in CDCl3 for quantitative 19F-NMR analysis (see Table S10).

Table S10. Arylation of fluoroarene 1d with catalyst Ru2c or Ru1c with bromoarene 2c.

entry	[Ru]	3dc (%)	3cc (%)	3cc' (%)
1	Ru2c	78.0	4.0	4.0
2b	Ru1c	70.5	2.5	1.5

* Reaction conditions: Ru2c or Ru1c (10 mol %), 1d (3.0 equiv, 1.50 mmol), 2c (1.0 equiv, 0.50 mmol), (NMe4)OPiv (0.4 equiv), (NMe4)4-fluorobenzoate (0.35 equiv), (NMe4)OC(CF3)3 (2.5 equiv) and pivalonitrile (3.0 equiv) were stirred under N2 in a closed vessel at 120 °C for 16 h; yield is evaluated by quantitative 19F-NMR using C6F6 (0.5 equiv, 0.25 mmol) as internal standard. b (NMe4)OPiv (26.3 mg, 0.15 mol, 0.3 equiv).
Procedure 14: D/H – H/D scrambling experiment with fluoroarenes d1-1a and 1b under arylation conditions with bromobenzene 2b

All solid reagents, except C5, were dried at 70 °C in a vacuum oven over night. All liquid reagents were dried over 4Å molecular sieves and degassed with 3 freeze-pump-thaw cycles. In a glove box, C5 (7.8 mg, 0.025 mmol), (NMe₄)₄-fluorobenzoate (0.0875 mmol, 18.7 mg), (NMe₄)OPiv (17.6 mg, 0.100 mmol), (NMe₄)OC(CF₃)₃ (193.3 mg, 0.625 mmol), 2b (26.3 μL, 0.250 mmol), d1-1a (83.7 mg, 0.375 mmol), 1b (41.6 μL, 0.375 mmol) and pivalonitrile (58.2 μL, 0.750 mmol) were loaded in a crimp-cap microwave vial with a stirrer bar. The vial was sealed, taken outside the box and the mixture was stirred at 115 °C for 10 min. On completion, the vial was quickly cooled in a dry ice/acetone bath and octafluorotoluene (17.7 μL, 0.125 mmol, 0.5 equiv) was added as internal standard in CDCl₃. The crude mixture was then filtered through a cotton plug directly into an NMR tube for quantitative ¹⁹F-NMR analysis.
Scheme S1. D/H – H/D scrambling experiment with fluoroarenes d$_1$-1a and 1b under arylation conditions with bromobenzene 2b.

Figure S6. 19F-NMR expansion of the reaction illustrated in Scheme S1, displaying 1a, d$_1$-1a, 1b, d$_1$-1b, 3aa, 3ba with relative integrations with respect to the internal standard octafluorotoluene.

Procedure 15: KIE experiment of fluoroarenes d$_1$-1a and 1y with bromobenzene 2b

All solid reagents, except C5, were dried at 70 °C in a vacuum oven over night. All liquid reagents were dried over 4Å molecular sieves and degassed with 3 freeze-pump-thaw cycles. In a glove box, C5 (7.8 mg, 0.0250 mmol), (NMe$_4$)$_4$-fluorobenzoate (0.0875 mmol, 18.7 mg), (NMe$_4$)OPiv (17.6 mg, 0.100 mmol), (NMe$_4$)OC(CF$_3$)$_3$ (193.3 mg, 0.625 mmol), 2b (26.3 μL, 0.250 mmol), d$_1$-1a (83.7 mg, 0.375 mmol), 1y (52.2 μL, 0.375 mol) and pivalonitrile (58.2 μL, 0.75 mmol) were loaded in a crimp-cap microwave vial with a stirrer bar. The vial was sealed, taken outside the box and the mixture was stirred at 115 °C for 8 min. Upon completion, the vial was quickly cooled in a dry ice/acetone bath and hexafluorobenzene (14.4 μL, 0.125 mmol, 0.5 equiv.) was added as internal standard in CDCl$_3$. The crude was then filtered through a cotton plug directly into an NMR tube for quantitative 19F-NMR analysis.

S26
Scheme S2. KIE experiment with fluoroarenes d$_{1}$-1a and 1y with bromobenzene 2b.

Figure S7.

19F-NMR expansion of the reaction illustrated in Scheme S2, displaying 1a, d$_{1}$-1a, 1y, d$_{1}$-1y, 3aa, 3ya with relative integrations with respect to the internal standard C$_6$F$_6$.

\[\text{KIE} = \frac{0.065}{0.03} = 2.2 \]
General Procedure 16: KIE experiment of fluoroarenes d₁-1a and 1a with bromobenzene 2b in Separate Flasks

All solid reagents, except C₅, were dried at 70 °C in a vacuum oven over night. All liquid reagents were dried over 4Å molecular sieves and degassed with 3 freeze-pump-thaw cycles. In a glove box, C₅ (7.8 mg, 0.025 mmol), (NMe₄)₄-fluorobenzoate (0.0875 mmol, 18.7 mg), (NMe₄)OPiv (17.6 mg, 0.100 mmol), (NMe₄)OC(CF₃)₃ (193.3 mg, 0.625 mmol), 2a (26.3 μL, 0.250 mmol), 1a or d₁-1a (166.6 mg or 167.4 mg, 0.750 mmol) and pivalonitrile (58.2 μL, 0.750 mmol) were loaded in a crimp-cap microwave vial with a stirrer bar. The vial was sealed, taken outside the box and the mixture was stirred at 115 °C for the appropriate time. Upon completion, the vial was quickly cooled in a dry ice/acetone bath and a given amount of hexafluorobenzene was added as internal standard in CDCl₃. The crude mixture was then filtered through a cotton plug directly into an NMR tube for quantitative ¹⁹F-NMR analysis.

![Chemical reaction diagram]

Table S11. KIE experiment for fluoroarenes d₁-1a and 1a with bromobenzene 2b in separate flasks.
Graph S2.
Rate of formation of \(3ab\) for C–H arylation of \(1a\) and \(d_{1}\)-\(1a\) with \(2b\) (%/min).

\[
\text{KIE} = \frac{kH}{kD} = \frac{1.405}{0.590} = 2.4
\]

General Procedure 17: preparation of \(\text{Ru(OCOR)}_{2}(\eta^{6}-\text{arene})\) C2, C3 and C4

\([\text{RuCl}_{2}(\eta^{6}-\text{arene})]_2\) (1.0 equiv, 0.5 mmol) and \(\text{KOCOR}\) (20.0 equiv, 10 mmol) were weighed in a Schlenk flask with a magnetic stirrer bar. The reaction vessel was evacuated and backfilled with \(N_2\) three times, then left under vacuum for 30 min. The vial was backfilled with \(N_2\) then dry toluene (20.0 mL, 0.025 M), which was degassed with 3 freeze-pump-thaw cycles, was added \textit{via} syringe. The reaction was then heated at 70 °C for 12 h. Note: if the reaction is left longer than 12 h, partial decomposition and lower yields were observed. Upon completion, the reaction mixture was cooled to room temperature, and evaporated to dryness under reduced pressure. 50 mL of \(\text{CH}_2\text{Cl}_2\) were added to the crude, then the resulting mixture was filtered through a plug of Celite® and the remaining yellow/orange solution evaporated under reduced pressure affording the final complex as a yellow/orange solid. If needed, crystallization from \(\text{CH}_2\text{Cl}_2/\text{hexane}\) or cold Et\(_2\)O was effectuated.
Characterization data of C2-C4

The General Procedure 17 was applied with [RuCl₂(p-cymene)]₂ (306.2 mg, 0.5 mmol) and KOPiv (1.40 g, 10.0 mmol). Crystallization from CH₂Cl₂/hexane afforded Ru(OPiv)₂(p-cymene) (C2) as a yellow solid (371.9 mg, 85%). Spectroscopic data matched those previously reported.⁹

¹H NMR (500 MHz; CDCl₃): δ 5.71 (d, J = 5.5 Hz, 2H), 5.49 (d, J = 5.5 Hz, 2H), 2.88 (septet, J = 6.9 Hz, 1H), 2.24 (s, 3H), 1.32 (d, J = 6.9 Hz, 6H), 1.06 (s, 18H); ¹³C NMR: (126 MHz; CDCl₃): δ 192.0, 98.7, 94.3, 78.3, 76.9, 40.0, 31.6, 27.7, 22.6, 18.6.

The General Procedure 17 was applied with [RuCl₂(p-cymene)]₂ (306.2 mg, 0.5 mmol) and KOBz (1.60 g, 10.0 mmol). Crystallization from cold Et₂O afforded Ru(OBz)₂(p-cymene) (C3) as an orange solid (277.0 mg, 58%).

¹H NMR (400 MHz, CDCl₃): δ 7.86 - 7.83 (m, 4H), 7.37 (tt, J = 7.4, 1.5 Hz, 2H), 7.28 - 7.24 (m, 4H), 5.99 (d, J = 6.1 Hz, 2H), 5.78 (d, J = 6.1 Hz, 2H), 2.97 (septet, J = 6.9 Hz, 1H), 2.36 (s, 3H), 1.41 (d, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃): δ 178.9, 134.3, 131.7, 129.2, 128.2, 98.5, 93.5, 79.5, 78.1, 32.0, 22.7, 18.9. IR (ATR) 3082, 2964, 1633, 829; m.p. 105-110 °C. Anal. Calcd for C₂₄H₂₄O₄Ru: C, 60.37; H, 5.07. Found: C, 60.41; H, 5.11. MS (ES⁺, MeCN) m/z 477.1 (10%) [M – (H)]⁺, MS (ES⁺, MeCN) m/z 398.1 (100%) [M – (C₇H₅O₂+MeCN)]⁺.

The General Procedure 17 was applied with [RuCl₂(C₆Me₆)]₂ (334.2 mg, 0.5 mmol) and KOPiv (1.40 g, 10.0 mmol) affording Ru(OPiv)₂(C₆Me₆) (C4) as a dark orange solid (419.0 mg, 90%).

¹H NMR (500 MHz, CDCl₃): δ 2.08 (s, 18H), 1.07 (s, 18H); ¹³C NMR (126 MHz, CDCl₃): δ 190.0, 88.4, 40.0, 28.1, 15.4. IR (ATR) 2953, 2923, 1557, 866; m.p. 95-100 °C. Anal. Calcd for C₂₂H₃₆O₄Ru: C, 56.75; H, 7.79. Found: C, 56.80; H, 7.84. MS (ES⁺, MeCN) m/z 365.2 (100%) [M – (C₃H₅O₂)]⁺, m/z 447.2 (50%) [M – (C₅H₉O₂ + 2MeCN)]⁺.
Procedure 18: Synthesis of hexakis(pivalonitrile-κN)ruthenium(II) bis(tetrafluoroborate) C5

Neither Schlenk nor anhydrous conditions are needed for the synthesis of C5. 1.0 g RuCl$_3$•xH$_2$O (Reagent Grade purity ≥ 95%, 4.6 mmol based on anhydrous molecular weight), 1.0 g of Zn dust (<10 μm, 15.3 mmol) and 70.0 mL of pivalonitrile were loaded in a 100 mL Ace pressure tube and heated for 1 h at 115 °C. Note: 1) a change in colour from dark green to blue and finally to deep yellow/brown is observed; 2) if the mixture is left longer than 1 h, lower yields were observed. Then, the reaction mixture was cooled to room temperature, filtered through a plug of Celite® and the resulting solution was loaded again into an Ace pressure tube with 1.5 g of NaBF$_4$ (13.7 mmol). After heating the mixture for 16 h at 115 °C, the reaction was cooled to room temperature, filtered through a plug of Celite® and evaporated to dryness. Note: the solvent pivalonitrile can be easily distilled, recovered and reused at this stage. The crude was dissolved in CH$_2$Cl$_2$, filtered through a plug of Celite® and the pale green solution was reduced in vacuo. Crystallization of the crude with CH$_2$Cl$_2$ /Et$_2$O gave a white/grey solid, which was filtered and washed with Et$_2$O. Repetition of the crystallization procedure a further 3 times provided 1.6 g of a white solid. This compound is a mixture of the desired complex C5 and of C5’ [hexakis(pivalonitrile-κN)ruthenium(II)]di-μ-chlorobis[chlororuthenium(II)]. The molecular structure of C5’ ([Ru(tBuCN)$_6$][Ru$_2$Cl$_6$]) was determined by X-ray (see crystallographic section, suitable crystals were grown by slow crystallization from CH$_2$Cl$_2$ /Et$_2$O). Subsequently, the mixture of C5 and C5’ (1.6 g) was mixed with AgBF$_4$ (9.5 mmol, 1.85 g), and pivalonitrile (50 mL) in an Ace pressure tube and heated for 4 h at 100 °C. After this time, the reaction was cooled to room temperature, filtered through a plug of Celite® and evaporated to dryness. Note: the solvent pivalonitrile can be distilled and recovered again at this stage. The crude was dissolved in CH$_2$Cl$_2$, filtered through a plug of Celite® and the pale yellow solution was reduced in vacuo. Crystallization of the crude with CH$_2$Cl$_2$ /Et$_2$O gave an off-white solid, which was filtered and washed with Et$_2$O. Repetition of the crystallization procedure an additional 2 times provided title complex C5 as a bench stable white solid (1.55 g, 2.0 mmol, 43.5%). Suitable crystals of C5 for X-ray crystallography were grown by slow crystallization from CH$_2$Cl$_2$ /Et$_2$O (see crystallographic section).

1H NMR (400 MHz, (CD$_3$)$_2$CO): δ 1.56 (s, 54H); 13C NMR (126 MHz, (CD$_3$)$_2$CO): δ 134.7, 31.3, 28.1; 19F NMR (376 MHz, (CD$_3$)$_2$CO) δ –151.2 (s), –151.2 (s); IR (ATR) 1097, 1055; m.p. > 230 °C decomposition. Anal. Calcd for C$_{30}$H$_{54}$B$_2$F$_8$N$_6$Ru: C, 46.59; H, 7.04; N, 10.87. Found: C, 46.50; H, 7.14; N, 10.81. MS (ES$^+$, CH$_2$Cl$_2$) m/z 687.5 (100%) [M – (BF$_4$)]$^+$.
General Procedure 19 for the preparation of Ru2a and Ru2c

Ru1a or Ru1c (1.0 equiv, 0.25 mmol) and NaBF4 (82.4 mg, 0.75 mmol) were weighed in a crimp-cap Schlenk microwave vial (20 mL) with a magnetic stirrer bar. Note: the use of an oversized stirrer bar is advised. The reaction vessel was capped, evacuated and backfilled with N2 three times, then left under vacuum for 30 min. The vial was backfilled with N2 then pivalonitrile (5.0 mL, 0.05 M), which was dried over 4Å molecular sieves and degassed with 3 freeze-pump-thaw cycles, was added via syringe. The vial was resealed with a new cap under a stream of N2 and the reaction was heated at 120 °C for 75 min with vigorous stirring. Upon completion, the reaction mixture was cooled to room temperature, diluted with 3 mL of pivalonitrile, filtered through a plug of Celite® and the remaining pale yellow/greenish solution evaporated under reduced pressure. The crude was then purified by crystallization from 'BuCN/Et2O affording the final products as white solids, which were washed with Et2O. The final complexes are stable under air for a few hours, but decompose if exposed to oxygen for longer. Storage of Ru2a and Ru2c in a desiccator under vacuum or in glove box is needed. Suitable crystals of Ru2c for X-ray crystallography were grown by slow crystallization from CH2Cl2/Et2O (see crystallographic section).

Characterization data of Ru2a and Ru2c

The General Procedure 19 was applied with Ru1a (139.4 mg, 0.25 mmol) affording Ru2a (105.1 mg, 51%).

1H NMR (400 MHz, CDCl3): δ 4.14 (t, J = 6.5 Hz, 2H), 1.78 (app quintet, J = 7.0 Hz, 2H), 1.57 (s, 9H), 1.52 (app t, J = 7.5 Hz, 2H), 1.42 (s, 36H), 0.98 (t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3): δ 153.4 (dm, J = 226.2 Hz), 140.2 (dm, J = 246.3 Hz), 131.8 - 131.8 (m), 131.3, 129.2, 124.3 - 123.5 (m), 74.9, 32.2, 30.3, 29.8, 28.6, 28.5, 19.1, 14.0; 19F NMR (471 MHz, CDCl3) δ −121.8 (dd, J = 26.9, 9.5 Hz, 2F), −154.0 (s), −154.1 (s), −160.9 (dd, J = 26.6, 9.3 Hz, 2F); IR (ATR) 2954, 2252, 1424, 999; m.p. 160 °C decomposition; Anal. Calcd for C35H54BF8N5ORu: C, 50.97; H, 6.60; N, 8.49. Found: C, 51.04; H, 6.67; N, 8.43. MS (ES+, CH2Cl2) m/z 655.4 (35%) [M − (BF4 + 'BuCN)]+. The General Procedure 19 was applied with Ru1c (121.4 mg, 0.25 mmol) affording Ru2c (127.9 mg, 68%).

1H NMR (400 MHz, CD2Cl2): δ 6.67 - 6.58 (m, 1H), 1.53 (s, 9H), 1.39 (s, 36H); 13C NMR (101 MHz, CD2Cl2): δ 153.7 (dddd, J = 226.3, 19.3, 9.8, 2.5 Hz), 144.8 (dddd, J = 246.0,
22.7, 9.4, 2.2 Hz), 136.0 (tt, J = 44.1, 3.7 Hz), 131.5, 129.1, 99.7 (t, J = 23.6 Hz), 30.4, 29.9, 28.6, 28.4; \(^{19}\)F NMR (376 MHz, CD\(_2\)Cl\(_2\)) \(\delta -121.4 - 121.6\) (m), \(-144.9 - 145.0\) (m), \(-153.7\) (s), \(-153.2\) (s); IR (ATR) 2929, 2272, 1436, 1052; m.p. 170 °C decomposition; Anal. Calcd for C\(_{31}\)H\(_{46}\)BF\(_{8}\)N\(_{5}\)Ru: C, 49.47; H, 6.16; N, 9.31. Found: C, 49.52; H, 6.20; N, 9.25. MS (ES\(^+\), CH\(_2\)Cl\(_2\)) \(m/z\) 583.4 (50%) [M − (BF\(_4\) + \(^1\)BuCN)]\(^+\).

General procedure 20 for the preparation of tetramethylammonium salts

A round bottom flask equipped with a magnetic stirrer bar was loaded with 50.0 mL (50.0 mmol) of (NMe\(_4\))OH • 5H\(_2\)O solution (1.0 M in EtOH) and placed in an ice bath. Subsequently, a solution of the acid, or (CF\(_3\))\(_3\)COH in EtOH (50 mL, 50 mmol, 1.0 M) was added at 0 °C. Then the ice bath was removed and the solution allowed to stir at room temperature of 1 h. The solvent was removed under reduced pressure affording the salts as white solid in quantitative yield.

Characterization data of tetramethylammonium salts

The General Procedure 20 was applied with perfluoro-tert-butyl alcohol affording tetramethylammonium perfluoro-tert-butyl alkoxide (15.44 g, 100%).

\(^1\)H NMR (400 MHz, D\(_2\)O): \(\delta 3.14\) (s, 12H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta 122.6\) (q, \(J = 294.3\) Hz), 82.1 - 81.0 (m), 55.1 - 55.1 (m); \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta -75.4\) (s); IR (ATR) 1249, 1194, 949, 721; m.p. 170 – 175 °C.

The General Procedure 20 was applied with pivalic acid affording tetramethylammonium pivalate (8.75 g, 100%).

\(^1\)H NMR (400 MHz, D\(_2\)O): \(\delta 3.14\) (s, 12H), 1.06 (s, 9H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta 188.7, 55.2 - 55.1\) (m), 39.7, 27.4; IR (ATR) 1609, 1356, 920, 780; m.p. 235 – 240 °C.

The General Procedure 20 was applied with 4-fluorobenzoic acid affording tetramethylammonium 4-fluorobenzoate (10.6 g, 100%).

\(^1\)H NMR (400 MHz, D\(_2\)O): \(\delta 7.84\) (dd, \(J = 8.9, 5.6\) Hz, 2H), 7.12 (app t, \(J = 8.9\) Hz, 2H), 3.14 (s, 12H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta 174.5, 164.3\) (d, \(J = 248.0\) Hz), 132.4 (d, \(J = 2.7\) Hz), 131.2 (d, \(J = 9.1\) Hz), 114.9 (d, \(J = 21.8\) Hz), 55.1 - 55.1 (m); \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta -110.4 - 110.4\) (m, 1F); IR (ATR) 2944, 1565, 1348, 951; m.p. 225 – 230 °C.
General procedure 21 for the preparation of 1a, 1o, and 1h

1-bromobutane (23.5 mmol) was added to a stirred suspension of perfluoro(thio)phenol (25.0 mmol) and K$_2$CO$_3$ (30.0 mmol) in MeCN (40.0 mL) under reflux conditions and stirred for a further 5 h. Upon completion, the reaction mixture was allowed to cool to ambient temperature; then H$_2$O (100 mL) and pentane (200 mL) were added. After phase separation, the organic layer was washed with 1 M NaOH (100 mL), H$_2$O (2 × 100 mL) and brine (100 mL), dried over MgSO$_4$ and evaporated to dryness affording a pale yellow oil. Purification via a silica plug eluted with pentane gave the title product as a colorless oil. For the synthesis of 1a and 1o the reaction can be carried out under air. Schlenk conditions and lower temperatures are required for the synthesis of 1h (50 °C for 3 h after addition of the electrophile).

Characterization data of 1a, 1o and 1h

The General Procedure 21 was applied with 2,3,5,6-tetrafluorophenol (4.15 g 25.0 mmol) affording 3-butoxy-1,2,4,5-tetrafluorobenzene (1a) (4.39 g, 84%). Spectroscopic data matched those previously reported. 10

1H NMR (500 MHz, CDCl$_3$): δ 6.74 (tt, $J = 10.0, 7.0$ 1H), 4.22 (t, $J = 6.7$ Hz, 2H), 1.76 (app quintet, $J = 7.0$ Hz, 2H), 1.51 (app sextet, $J = 7.5$ Hz, 2H), 0.97 (t, $J = 7.5$ Hz, 3H); 13C NMR (126 MHz, CDCl$_3$): δ 146.5 (dtd, $J = 246.5, 12.6, 4.0$ Hz), 141.4 (ddt, $J = 246.7, 14.6, 3.9$ Hz), 138.5 (tt, $J = 12.1, 3.6$ Hz), 99.3 (t, $J = 23.1$ Hz), 75.2 (t, $J = 3.2$ Hz), 32.1, 18.9, 13.7; 19F NMR (471 MHz, CDCl$_3$) δ –140.5 –140.6 (m, 2F), –157.4 –157.4 (m, 2F); IR (ATR) 2964, 1488, 1171, 1087, 713; HRMS (APCI) m/z calcd. C$_{10}$H$_{10}$F$_4$O: 222.0668; found [M+H]$^+$ 223.0737.

The General Procedure 21 was applied with 2,4,5-trifluorophenol (3.70 g 25.0 mmol) affording 1-butoxy-2,4,5-trifluorobenzene (1o) (3.89 g, 81%).

1H NMR (500 MHz, CDCl$_3$): δ 6.97 - 6.91 (m, 1H), 6.79 (app dt, $J = 11.5, 7.7$ Hz, 1H), 3.96 (t, $J = 6.5$ Hz, 2H), 1.78 (app quintet, $J = 7.1$ Hz, 2H), 1.49 (app sextet, $J = 7.5$ Hz, 2H), 0.97 (t, $J = 7.4$ Hz, 3H); 13C NMR (126 MHz, CDCl$_3$): δ 147.9 (ddd, $J = 245.1, 9.0, 3.3$ Hz), 146.2 (ddd, $J = 243.8, 13.2, 3.8$ Hz), 143.6 - 143.5 (m), 143.3 (ddd, $J = 242.9, 14.1, 10.5$ Hz), 105.9 (app t, $J = 23.0$ Hz), 104.1 (d, $J = 22.1$ Hz), 70.1, 31.2, 19.2, 13.8; 19F NMR (471 MHz, CDCl$_3$) δ –136.3 –136.4 (m, 1F), –141.3 –141.5 (m, 1F), –145.4 (app dt $J = 21.3, 8.9$ Hz, 1F); IR (ATR) 2962, 1485, 1173, 912, 712. HRMS (APCI) m/z calcd. C$_{10}$H$_{10}$F$_4$O: 204.0757; found [M]$^+$ 204.0749.
The General Procedure 21 was applied with 2,3,5,6-tetrafluorobenzenethiol (4.55 g, 25.0 mmol) affording butyl(2,3,5,6-tetrafluorophenyl)sulfane (1h) (4.37 g, 78%).

\[\text{1H NMR (500 MHz, CDCl}_3\text{): } \delta 7.05 - 6.98 (m, 1H), 2.93 (t, J = 7.4 Hz, 2H), 1.54 (app quintet, J = 7.4 Hz, 2H), 1.42 (app sextet, J = 7.4 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H); \]

\[\text{13C NMR (126 MHz, CDCl}_3\text{): } \delta 147.0 (app ddt, J = 244.8, 13.6, 3.3 Hz), 146.0 (dm, J = 249.6 Hz), 115.8 (t, J = 20.2 Hz), 105.7 (t, J = 22.9 Hz), 34.4, 32.0, 21.6, 13.6; \]

\[\text{19F NMR (471 MHz, CDCl}_3\text{)} \delta -134.0 - -134.1 (m, 2F), -138.4 - -138.6 (m, 2F); \]

\[\text{IR (ATR) 2962, 1524, 1217, 1167, 855. HRMS (EI) m/z calcd. C}_{10}\text{H}_{10}\text{F}_4\text{S: [M] }^+ 238.0434; \text{ found: [M] }^+ 238.0438. \]

Procedure 22: preparation of 3-butoxy-1,2,4,5-tetrafluorobenzene-6-d (d\textsubscript{1}-1a)

Compound 1a (5.00 g, 22.5 mmol) was dissolved in anhydrous THF (70 mL, 0.33 M) in a flame-dried Schlenk flask under a N\textsubscript{2} atmosphere. The stirred solution was left to cool to −78 °C then a solution of \textsuperscript{\textit{t}}BuLi in pentane (15.5 mL, 24.8 mmol, 1.6 M) was added dropwise. The mixture was allowed to stir at −78 °C for an additional 15 min before being quenched with D\textsubscript{2}O [10 M in anhydrous THF] (22.5 mL, 225 mmol). The reaction mixture was then allowed to warm to ambient temperature and stirred for a further 30 min. After this time, the solution was diluted with TBME (150 mL), pentane (50 mL) and H\textsubscript{2}O (150 mL). The organic phase was separated, washed with H\textsubscript{2}O (3×100 mL) and brine (100 mL), dried over MgSO\textsubscript{4} and evaporated under reduced pressure affording a pale yellow oil. Purification \textit{via} a silica plug eluted with pentane gave the title product as a colourless oil (4.25 g, 84%, > 99 atom % D).

\[\text{1H NMR (500 MHz, CDCl}_3\text{): } \delta 4.22 (t, J = 6.5 Hz, 2H), 1.76 (app quintet, J = 7.0 Hz, 2H), 1.50 (app sextet, J = 7.5 Hz, 2H), 1.97 (t, J = 7.4 Hz, 3H); \]

\[\text{13C NMR (126 MHz, CDCl}_3\text{): } \delta 146.5 (dtd, J = 246.7, 12.6, 3.9 Hz), 141.4 (app ddt, J = 246.3, 14.5, 3.7 Hz), 138.5 (tt, J = 12.1, 3.6 Hz), 99.5 - 99.7 (m), 71.16 (t, J = 3.1 Hz), 32.0, 18.9, 13.8; \]

\[\text{19F NMR (471 MHz, CDCl}_3\text{)} \delta -140.7 (dd, J = 21.3, 9.1 Hz, 2F), -157.3 (dd, J = 21.0, 9.1 Hz, 2H); \]

\[\text{IR (ATR) 2966, 1491, 1167, 1094, 708;HRMS (APCI) m/z calcd. C}_{10}\text{H}_{9}\text{DF}_4\text{O: 223.0731; found [M+H]}^+ 224.0801. \]

Procedure 23: preparation of N-(2,3,5,6-tetrafluorophenyl)pivalamide 1f

NE\textsubscript{3} (1.4 mL, 10.0 mmol) and trimethylacetyl chloride (553.6 µL, 4.5 mmol) were added \textit{via} syringe to a solution containing 2,3,5,6-tetrafluoroaniline (825.5 mg, 5.0 mmol) in toluene (15.0 mL, 0.33 M), and the mixture was heated to reflux for 16 h. After this time, the reaction mixture
was allowed to cool to ambient temperature and concentrated under reduced pressure to dryness. CH$_2$Cl$_2$ (100 mL) and H$_2$O (100 mL) were added to the crude, the organic phase phase was separated, washed with 1 M NaOH (100 mL), H$_2$O (100 mL) and brine (100 mL), dried over MgSO$_4$ and evaporated under reduced pressure. Purification by flash chromatography with a 0-30% CH$_2$Cl$_2$-hexane gradient afforded the product as a white solid (997.0 mg, 89%).

Procedure 24: preparation of tert-butyl 2,3,5,6-tetrafluorobenzoate 1i

Tosyl chloride (1.91 g, 10.0 mmol) was added to an ice-cold solution of 2,3,5,6-tetrafluorobenzoic acid (970.0 mg, 5.0 mmol) in pyridine (10.0 mL, 0.5 M). After 10 min, tert-butanol (741.2 mg, 10.0 mmol) was added and the solution was stirred for a further 1 h at 0 °C. Then, the reaction mixture was allowed to warm to room temperature and stirred for an additional 16 h. The solvent was evaporated to dryness and the residue was partitioned between EtOAc (100 mL) and saturated NaHCO$_3$ (100 mL). The organic layer was separated, washed with saturated NaHCO$_3$ (2×100 mL) and brine (100 mL) and dried over MgSO$_4$ giving a pale yellow oil. Purification via silica plug with 5% of CH$_2$Cl$_2$ in hexane afforded the title compound as colourless oil (1.20 g, 96%).
Characterization data of biaryl compounds

4-butoxy-2,3,5,6-tetrafluoro-4'-methoxy-1,1'-biphenyl (3aa).

The General Procedure 1 was applied with 4-bromoanisole (62.6 μL, 0.50 mmol) and 3-butoxy-1,2,4,5-tetrafluorobenzene (333.3 mg, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (134.6 mg, 82%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 7.38 (d, \(J = 8.9\) Hz, 2H), 7.00 (d, \(J = 8.9\) Hz, 2H), 4.25 (t, \(J = 6.5\) Hz, 2H), 3.86 (s, 3H), 1.79 (app quintet, \(J = 7.0\) Hz, 2H), 1.52 (app sextet, \(J = 7.5\) Hz, 2H), 1.99 (t, \(J = 7.4\) Hz, 3H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): δ 160.0, 144.4 (dm, \(J = 245.1\) Hz), 141.7 (app ddt, \(J = 246.5, 15.7, 4.3\) Hz), 136.6 - 136.4 (m), 131.6, 119.6, 114.2 - 114.0 (m, 2C), 75.2 (t, \(J = 3.0\) Hz), 55.5, 32.1, 19.0, 13.9; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) δ –145.7 (dd, \(J = 22.4, 8.8\) Hz, 2F), 157.7 (dd, \(J = 22.4, 8.8\) Hz, 2F); IR (ATR) 2934, 1476, 1080, 974, 826. m.p. 49 - 51 °C; HRMS (EI) \(m/z\) calcd. C\(_{17}\)H\(_{16}\)F\(_4\)O\(_2\) [M]+ 328.1081 found: [M]+ 328.1077.

4-butoxy-2,3,5,6-tetrafluoro-1,1'-biphenyl (3ab).

The General Procedure 1 was applied with bromobenzene (52.7 μL, 0.50 mmol) and 3-butoxy-1,2,4,5-tetrafluorobenzene (333.3 mg, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (113.4 mg, 76%).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): δ 7.51 - 7.40 (m, 5H), 4.29 (t, \(J = 6.5\) Hz, 2H), 1.85 - 1.79 (m, 2H), 1.59 - 1.52 (m, 2H), 1.02 (t, \(J = 7.4\) Hz, 3H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): δ 144.4 (dm, \(J = 245.7\) Hz), 141.6 (ddt, \(J = 246.6, 15.6, 4.4\) Hz), 137.0 (tt, \(J = 12.3, 3.5\) Hz), 130.3, 128.9, 128.7, 127.5, 114.3 (t, \(J = 17.2\) Hz), 75.2, 32.1, 19.0, 13.8; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) δ –145.7 (dd, \(J = 21.9, 8.9\) Hz, 2F), –157.6 (dd, \(J = 22.2, 8.7\) Hz, 2F); IR (ATR) 2934, 1476, 1080, 974, 826. m.p. 35 - 29 °C; HRMS (EI) \(m/z\) calcd. C\(_{16}\)H\(_{14}\)F\(_4\)O: [M]+ 298.0975 found: [M]+ 298.0986.

2,3,4,5,6-pentafluorobiphenyl (3bb)

The General Procedure 1 was applied with bromobenzene (52.7 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (116.0 mg, 95%).

Spectroscopic data matched those previously reported.\(^{11}\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 7.52 - 7.45 (m, 3 H), 7.45 - 7.41 (m, 2 H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): δ 144.3 (dm, \(J = 247.5\) Hz), 140.5 (dm, \(J = 252.7\) Hz), 138.0 (dm, \(J = 250.6\) Hz), 130.3,
129.4, 128.9, 126.5, 116.1 (app td, $J = 17.4$, 4.0 Hz), 19F NMR (376 MHz, CDCl$_3$): δ –143.2 (dd, $J = 22.9$, 8.2 Hz, 2F), –155.6 (t, $J = 21.1$ Hz, 1F), –162.2 – –162.3 (m, 2F).

3',5'-dimethyl-2,3,4,5,6-pentafluorobiphenyl (3bc)

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (126.6 mg, 93%).

Spectroscopic data matched those previously reported.12

1H NMR (400 MHz, CDCl$_3$): δ 7.10 (s, 1H), 7.02 (s, 2H), 2.38 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 144.3 (dm, $J = 247.1$ Hz), 140.4 (dm, $J = 253.3$ Hz), 138.5, 137.9 (dm, $J = 250.3$ Hz), 131.1, 127.9, 126.3, 116.4, (app td, $J = 17.6$, 3.9 Hz), 21.4; 19F NMR (376 MHz, CDCl$_3$) δ –143.0 (dd, $J = 23.2$, 8.2 Hz, 2F), –156.1 (t, $J = 21.0$ Hz, 1F), –162.5 (app td, $J = 22.1$, 7.6 Hz, 2F).

2,3,4,5,6-pentafluoro-4'-methylbiphenyl (3bd)

The General Procedure 1 was applied with 4-bromotoluene (61.5 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (108.4 mg, 84%).

Spectroscopic data matched those previously reported.12

1H NMR (400 MHz, CDCl$_3$): δ 7.31 (app s, 4H), 2.42 (s, 3H); 13C NMR (126 MHz, CDCl$_3$): δ 144.3 (dm, $J = 247.5$ Hz), 140.4 (dm, $J = 253.0$ Hz), 139.6, 138.0 (dm, $J = 251.6$ Hz), 130.1, 129.6, 123.5, 116.1 (app td, $J = 17.3$, 3.7 Hz), 21.5; 19F NMR (376 MHz, CDCl$_3$) δ –143.4 (dd, $J = 23.1$, 8.2 Hz, 2F), –156.1 (t, $J = 21.0$ Hz, 1F), –162.4 (app td, $J = 22.1$, 8.0 Hz, 2F).

2,3,4,5,6-pentafluoro-2'-methylbiphenyl (3be)

The General Procedure 1 was applied with 2-bromotoluene (60.1 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colorless oil (56.8 mg, 44%).

Spectroscopic data matched those previously reported.11
1H NMR (400 MHz, CDCl$_3$): δ 7.41 - 7.34 (m, 2H), 7.30 (app td, $J = 7.3$, 1.4 Hz, 1H), 7.19 (d, $J = 7.5$ Hz, 1H), 2.19 (s, 3H); 13C NMR (126 MHz, CDCl$_3$): δ 144.2 (dm, $J = 246.4$ Hz), 140.7 (dm, $J = 253.9$ Hz), 137.8 (dm, $J = 250.8$ Hz), 137.5, 130.7, 130.6, 129.8, 126.1, 126.0, 115.6 (app td, $J = 19.9$, 4.2 Hz), 19.8; 19F NMR (376 MHz, CDCl$_3$) δ -140.5 (dd, $J = 23.3$, 8.3 Hz, 2F), -155.3 (t, $J = 20.9$ Hz, 1F), -162.2 (app td, $J = 22.1$, 7.7 Hz, 2F).

2,3,4,5,6-pentafluoro-4'-methoxybiphenyl (3ba)

The General Procedure 1 was applied with 4-bromoanisole (62.6 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (117.9 mg, 86%).

Spectroscopic data matched those previously reported.11

1H NMR (400 MHz, CDCl$_3$): δ 7.36 (d, $J = 8.9$ Hz, 2 H), 7.02 (d, $J = 8.9$ Hz, 2 H), 3.87 (s, 3H); 13C NMR (126 MHz, CDCl$_3$): δ 160.4, 144.3 (dm, $J = 246.7$ Hz), 140.2 (dm, $J = 252.5$ Hz), 138.0 (dm, $J = 250.6$ Hz), 131.6, 118.5, 115.8 (app td, $J = 17.1$, 3.9 Hz), 114.3, 55.4; 19F NMR (376 MHz, CDCl$_3$): δ -143.6 (dd, $J = 23.2$, 8.2 Hz, 2F), -156.5 (t, $J = 21.0$ Hz, 1F), -162.5 (app dt, $J = 22.3$, 7.6 Hz, 2F).

3'-methoxy-2,3,4,5,6-pentafluorobiphenyl (3bf)

The General Procedure 1 was applied with 3-bromoanisole (63.3 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (109.7 mg, 80%).

Spectroscopic data matched those previously reported.11

1H NMR (400 MHz, CDCl$_3$): δ 7.41 (app t, $J = 8.0$ Hz, 1H), 7.02 - 6.98 (m, 2H), 6.95 - 6.94 (m, 1H), 3.85 (s, 3H); 13C NMR (126 MHz, CDCl$_3$): δ 159.8, 144.3 (dm, $J = 247.7$ Hz), 140.6 (dm, $J = 253.6$ Hz), 138.0 (dm, $J = 249.5$ Hz), 129.9, 127.6, 122.6, 116.2 - 115.8 (m, 2C), 115.0, 55.5; 19F NMR (376 MHz, CDCl$_3$) δ -142.8 (dd, $J = 23.0$, 8.1 Hz, 2F), -155.5 (t, $J = 20.9$ Hz, 1F), -162.2 (app td, $J = 22.1$, 7.4 Hz, 2F).
The General Procedure 1 was applied with 2-bromoanisole (62.3 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colourless oil (91.8 mg, 67%).

Spectroscopic data matched those previously reported.13

1H NMR (400 MHz, CDCl$_3$): δ 7.46 (ddd, $J = 8.3$, 7.5, 1.7 Hz, 1 H), 7.23 (dd, $J = 7.5$, 1.4 Hz, 1 H), 7.08 - 7.02 (m, 2H), 3.81 (s, 3H); 13C NMR (126 MHz, CDCl$_3$): δ 157.3, 144.6 (dm, $J = 247.1$ Hz), 140.7 (dm, $J = 252.5$ Hz), 137.7 (dm, $J = 249.8$ Hz), 131.9, 131.3, 120.7, 115.4, 112.9 (app td, $J = 19.2$, 4.0 Hz), 111.4, 55.7; 19F NMR (376 MHz, CDCl$_3$) δ –140.2 (dd, $J = 23.0$, 7.9 Hz, 2F), –156.2 (t, $J = 20.9$ Hz, 1F), –163.1 - –163.3 (m, 2F).

The General Procedure 1 was applied with 1-bromo-4-fluorobenzene (54.9 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (106.2 mg, 81%).

Spectroscopic data matched those previously reported.11

1H NMR (400 MHz, CDCl$_3$): δ 7.44 - 7.40 (m, 2H), 7.19 (app t, $J = 8.7$ Hz, 2H); 13C NMR (126 MHz, CDCl$_3$): δ 163.3 (d, $J = 250.0$ Hz), 144.3 (dm, $J = 247.6$ Hz), 140.6 (dm, $J = 254.2$ Hz), 138.0 (dm, $J = 251.1$ Hz), 132.2 (d, $J = 8.4$ Hz), 122.4, 116.1 (d, $J = 21.9$ Hz), 115.1, (app td, $J = 17.1$, 3.9 Hz); 19F NMR (376 MHz, CDCl$_3$) δ –111.2 - –111.3 (m, 1F), –143.3 (dd, $J = 22.9$, 8.2 Hz, 2F), –155.1 (t, $J = 21.0$ Hz, 1F), –161.9 (app td, $J = 21.9$, 7.7 Hz, 2F).

The General Procedure 1 was applied with 1-bromo-2-fluorobenzene (54.7 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (82.6 mg, 63%).

Spectroscopic data matched those previously reported.14

1H NMR (400 MHz, CDCl$_3$): δ 7.51 - 7.47 (m, 1H), 7.35 (app t, $J = 7.1$ Hz, 1H), 7.28 (app t, $J = 8.2$ Hz, 1H), 7.23 (app t, $J = 9.1$ Hz, 1H); 13C NMR (126 MHz, CDCl$_3$): δ 160.0 (d, $J = 250.7$ Hz),
144.5 (dm, $J = 249.2$ Hz), 141.2 (dm, $J = 254.4$ Hz), 137.9 (dm, $J = 251.1$ Hz), 132.1, 131.9 (d, $J = 8.3$ Hz), 124.5 (d, $J = 3.6$ Hz), 116.3 (d, $J = 21.6$ Hz), 114.3 (d, $J = 15.9$ Hz), 110.3 (app td, $J = 18.6, 3.9$ Hz); 19F NMR (376 MHz, CDCl$_3$) δ -112.71 - -112.82 (m, 1F), -140.3 (app dt, $J = 23.0, 9.1$ Hz, 2F), -154.0 (t, $J = 21.0$ Hz, 1F), -162.0 (app td, $J = 21.7, 7.4$ Hz, 2F).

2,3,4,5,6-pentafluoro-3'-trifluoromethyl)biphenyl (3bj)

The General Procedure 1 was applied with 3-bromobenzotrifluoride (69.7 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colourless oil (98.3 mg, 63%).

Spectroscopic data matched those previously reported.13

1H NMR (400 MHz, CDCl$_3$): δ 7.75 - 7.71 (m, 2H), 7.66 - 7.62 (m, 2H); 13C NMR (126 MHz, CDCl$_3$): δ 144.3 (dm, $J = 248.7$ Hz), 141.1 (dm, $J = 253.4$ Hz), 138.1 (dm, $J = 251.3$ Hz), 133.6, 131.5 (q, $J = 32.9$ Hz), 129.5, 127.4, 127.2, 126.3 (q, $J = 3.6$ Hz), 123.8 (q, $J = 272.5$ Hz), 114.6 (td, $J = 16.7, 4.4$ Hz); 19F NMR (376 MHz, CDCl$_3$) δ -62.8 (s, 3F), -143.0 (dd, $J = 22.7, 8.2$ Hz, 2F), -153.8 (t, $J = 21.0$ Hz, 1F), -161.4 (app td, $J = 21.9, 7.9$ Hz, 2F).

2,3,4,5,6-pentafluoro-4'-trifluoromethylbiphenyl (3bk)

The General Procedure 1 was applied with 4-bromobenzotrifluoride (70.0 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (96.8 mg, 62%).

Spectroscopic data matched those previously reported.11

1H NMR (400 MHz, CDCl$_3$): δ 7.77 (d, $J = 8.1, 2$H), 7.57 (d, $J = 8.1, 2$H); 13C NMR (126 MHz, CDCl$_3$): δ 144.3 (dm, $J = 249.1$ Hz), 141.1 (dm, $J = 255.2$ Hz), 138.1 (dm, $J = 251.9$ Hz), 131.6 (q, $J = 32.9$ Hz), 130.8, 130.3, 125.9 (q, $J = 3.6$ Hz), 123.9 (q, $J = 272.4$ Hz), 114.7 (app td, $J = 16.8, 4.1$ Hz), 19F NMR (376 MHz, CDCl$_3$) δ -62.9 (s, 3F), -142.9 (dd, $J = 22.7, 8.2$ Hz, 2F), -153.7 (t, $J = 21.0$ Hz, 1F), -161.3 (app td, $J = 21.7, 7.6$ Hz, 2F).
methyl(2',3',4',5',6'-pentafluoro-[biphenyl]-4-yl)sulfane (3bl)

The General Procedure 1 was applied with 4-bromothioanisole (101.6 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane/EtOAc 99:1) afforded the title product as a white solid (104.4 mg, 72%).

Spectroscopic data matched those previously reported.15

1H NMR (400 MHz, CDCl\textsubscript{3}): δ 7.34 (app s, 4H), 2.53 (s, 3H); 13C NMR (126 MHz, CDCl\textsubscript{3}): δ 144.3 (dm, J = 247.9 Hz), 140.8, 140.4 (dm, J = 253.5 Hz), 138.0 (dm, J = 250.4 Hz), 130.5, 126.1, 122.7, 115.6 (app td, J = 17.0, 3.8 Hz), 15.3; 19F NMR (376 MHz, CDCl\textsubscript{3}) δ –143.3 (dd, J = 23.0, 8.1 Hz, 2F), –155.7 (t, J = 21.0 Hz, 1F), –162.1 (app td, J = 22.1, 7.6 Hz, 2F).

4'-dimethylamino-2,3,4,5,6-pentafluorobiphenyl (3bm)

The General Procedure 1 was applied with 4-bromo-N,N-dimethylaniline (100.0 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane/EtOAc 98:2) afforded the title product as a white solid (114.9 mg, 80%).

Spectroscopic data matched those previously reported.12

1H NMR (400 MHz, CDCl\textsubscript{3}): δ 7.31 (d, J = 8.9 Hz, 2H), 6.79 (d, J = 8.9 Hz, 2H), 3.02 (s, 6H); 13C NMR (126 MHz, CDCl\textsubscript{3}): δ 150.9, 144.3 (dm, J = 245.9 Hz), 139.6 (dm, J = 252.2 Hz), 138.0 (dm, J = 249.8 Hz), 131.1, 116.5 (app td, J = 17.0, 3.8 Hz), 113.4, 112.0, 40.3; 19F NMR (376 MHz, CDCl\textsubscript{3}) δ –144.1 (dd, J = 23.5, 8.1 Hz, 2F), –157.9 (t, J = 21.1 Hz, 1F), –163.0 (app td, J = 22.3, 7.6 Hz, 2F).

1-(2',3',4',5',6'-pentafluoro-biphenyl-4-yl)ethanone (3bn)

The General Procedure 1 applied with 4-bromoacetophenone (99.5 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane/EtOAc 98:2) afforded the title product as a white solid (83.0 mg, 58%).

Spectroscopic data matched those previously reported.13

1H NMR (400 MHz, CDCl\textsubscript{3}): δ 8.08 (d, J = 8.5 Hz, 2 H), 7.55 (d, J = 8.5 Hz, 2 H), 2.66 (s, 3H); 13C NMR (126 MHz, CDCl\textsubscript{3}): δ 197.4, 144.2 (dm, J = 248.9 Hz), 141.0 (dm, J = 255.1 Hz), 138.3 (dm, J = 251.4 Hz), 137.6, 131.2, 130.6, 128.7, 115.0 (app td, J = 16.9, 3.9 Hz), 26.8; 19F NMR (376 MHz, CDCl\textsubscript{3}) δ –144.1 (dd, J = 23.5, 8.1 Hz, 2F), –157.9 (t, J = 21.1 Hz, 1F), –163.0 (app td, J = 22.3, 7.6 Hz, 2F).
MHz, CDCl$_3$) δ –142.8 (dd, $J = 22.6$, 8.1 Hz, 2F), –153.9 (t, $J = 21.0$ Hz, 1F), –162.5 (app dt, $J = 21.9$, 7.8 Hz, 2F).

methyl 2',3',4',5',6'-pentafluorobiphenyl-4-carboxylate (3bo)

The General Procedure 1 was applied with methyl-4-bromobenzoate (107.5 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane/EtOAc 98:2) afforded the title product as a white solid (89.1 mg, 59%).

Spectroscopic data matched those previously reported.13

1H NMR (400 MHz, CDCl$_3$): δ 8.16 (d, $J = 8.4$ Hz, 2H), 7.51 (d, $J = 8.4$ Hz, 2H), 3.95, (s, 3H); 13C NMR (126 MHz, CDCl$_3$): δ (1 carbon missing)13 166.5, 144.2 (dm, $J = 248.7$ Hz), 140.9 (dm, $J = 255.1$ Hz), 138.0 (dm, $J = 251.0$ Hz), 131.0, 130.4, 130.0, 115.1 (app td, $J = 17.0$, 3.9 Hz), 52.5; 19F NMR (376 MHz, CDCl$_3$) δ –142.8 (dd, $J = 22.7$, 8.0 Hz, 2F), –153.9 (t, $J = 21.0$ Hz, 1F), –162.5 (app td, $J = 21.9$, 7.8 Hz, 2F).

2-(2',3',4',5',6'-pentafluoro-[1,1'-biphenyl]-4-yl)-1,3-dioxolane (3bp)

The General Procedure 1 was applied with 1-bromo-4-(1,3-dioxolan-2-yl)benzene (114.5 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane/EtOAc 97:3) afforded the title product as a white solid (112.3 mg, 71%).

1H NMR (400 MHz, CDCl$_3$): δ 7.62 (d, $J = 8.2$ Hz, 2H), 7.45 (d, $J = 8.2$, 2H), 5.88 (s, 1H), 4.20 - 4.04 (m, 4H); 13C NMR (126 MHz, CDCl$_3$): δ 144.3 (dm, $J = 248.0$ Hz), 140.6 (dm, $J = 254.2$ Hz), 139.3, 138.0 (dm, $J = 250.8$ Hz), 130.4, 127.3, 126.9, 115.7 (app td, $J = 17.2$, 4.0 Hz), 103.3, 65.6; 19F NMR (376 MHz, CDCl$_3$) δ –143.0 (dd, $J = 22.9$, 8.1 Hz, 2F), –155.2 (t, $J = 21.0$ Hz, 1F), –162.1 (app td, $J = 22.0$, 7.7 Hz, 2F); IR (ATR) 2886, 1491, 1093, 982, 834; m.p. 125-127 °C; HRMS (EI) m/z calcd. C$_{15}$H$_9$F$_5$O$_2$: [M+H]$^+$ 317.0601; found: [M+H]$^+$ 317.0608.

2,3,4,5,6-pentafluoro-4'-iodo-3',5'-dimethyl-1,1'-biphenyl (3bq)

The General Procedure 1 was applied with 5-bromo-2-iodo-m-xylene (155.5 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane/EtOAc 95:5) afforded the title product as a white solid (165.2 mg, 83%).
1H NMR (400 MHz, CDCl$_3$): δ 7.09 (s, 2H), 2.53 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 144.1 (dm, $J = 247.6$ Hz), 143.0, 140.5 (dm, $J = 254.5$ Hz), 138.0 (dm, $J = 249.9$ Hz), 128.3, 125.8, 115.3 (app td, $J = 17.5$, 3.7 Hz), 110.0, 29.9; 19F NMR (376 MHz, CDCl$_3$) δ −142.8 (dd, $J = 22.9, 8.1$ Hz, 2F), −115.2 (t, $J = 21.0$ Hz, 1F), −162.0 (app dt, $J = 22.1$, 7.7 Hz, 2F); IR (ATR) 2953, 1521, 1496, 1026, 991; m.p. 68 - 70 °C; HRMS (EI) m/z calcd. C$_{14}$H$_8$F$_5$I: [M]$^+$ 397.9585; found: [M]$^+$ 397.9592.

2,3,4,5,6-pentafluoro-4'-vinylbiphenyl (3br)

The General Procedure 1 was applied with 4-bromostyrene (65.4 μL, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (54.0 mg, 40%). Spectroscopic data matched those previously reported.16

1H NMR (400 MHz, CDCl$_3$): δ 7.53 (d, $J = 8.2$ Hz, 2H), 7.40 (d, $J = 8.2$ Hz, 2H), 6.77 (dd, $J = 17.6$, 10.9 Hz, 1H), 5.85 (dd, $J = 17.6$, 0.6 Hz, 1H), 5.36 (dd, $J = 10.9$, 0.6 Hz, 1H); 13C NMR (126 MHz, CDCl$_3$): δ 144.3 (dm, $J = 247.6$ Hz), 140.5 (dm, $J = 259.0$ Hz), 138.7, 138.0 (dm, $J = 250.4$ Hz), 136.1, 130.5, 126.6, 125.7, 115.8 (app td, $J = 17.2$, 3.7 Hz), 115.6; 19F NMR (376 MHz, CDCl$_3$) δ −143.2 (dd, $J = 23.0$, 8.1 Hz, 2F), −155.5 (t, $J = 21.0$ Hz, 1F), −162.2 (app td, $J = 22.1$, 7.7 Hz, 2F).

(E)-2,3,4,5,6-pentafluoro-4'-styryl-1,1'-biphenyl (3bs)

The General Procedure 1 was applied with 4-bromostilbene (129.6 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane/EtOAc 95:5) afforded the title product as a white solid (117.7 mg, 68%).

1H NMR (400 MHz, CDCl$_3$): δ 7.64 (d, $J = 8.3$ Hz, 2H), 7.55 (d, $J = 7.3$ Hz, 2H), 7.43 (d, $J = 8.3$ Hz, 2H), 7.39 (app t, $J = 7.4$ Hz, 2H), 7.30 (tt, $J = 7.4$, 1.5 Hz, 1H), 7.21 (d, $J = 16.3$ Hz, 1H), 7.14 (d, $J = 16.3$ Hz, 1H); 13C NMR (126 MHz, CD$_2$Cl$_2$CO): δ 144.1 (dm, $J = 247.0$ Hz), 140.1 (dm, $J = 250.6$ Hz), 138.6, 137.7 (dm, $J = 243.6$ Hz), 137.1, 130.4, 130.1, 128.6, 127.8, 127.4, 126.7, 126.6, 125.1, 115.9 - 115.6, (m); 19F NMR (376 MHz, CDCl$_3$) δ −143.2 (dd, $J = 23.1$, 8.1 Hz, 2F), −155.5 (t, $J = 21.0$ Hz, 1F), −162.1 (app td, $J = 22.0$, 7.7 Hz, 2F); IR (ATR) 2924, 1528, 1489, 982; m.p. 175 - 178 °C; HRMS (EI) m/z calcd. C$_{20}$H$_{11}$F$_5$: [M]$^+$ 346.0775; found: [M]$^+$ 346.0775.
2-(perfluorophenyl)naphthalene (3bt)

The General Procedure 1 was applied with 2-bromonapthalene (103.5 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (61.8 mg, 42%).

Spectroscopic data matched those previously reported.11

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.97 - 7.89\) (m, 4H), \(7.60 - 7.49\) (m, 3H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta 144.5\) (dm, \(J = 248.3\) Hz), \(140.6\) (dm, \(J = 252.3\) Hz), \(138.1\) (dm, \(J = 250.6\) Hz), 133.4, 133.2, 130.3, 128.6, 128.5, 127.9, 127.3, 127.2, 126.9, 123.9, 116.3 - 116.0 (m); \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta -143.0\) (dd, \(J = 23.0, 8.2\) Hz, 2F), –155.4 (t, \(J = 21.0\) Hz, 1F), –162.1 (app td, \(J = 22.0, 7.6\) Hz, 2F).

1-methyl-5-(perfluorophenyl)-1\textit{H}-indole (3bu)

The General Procedure 1 was applied with 5-bromo-1-methylindole (105.0 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol). Column chromatography (hexane/EtOAc 98:2) afforded the title product as a white solid (87.7 mg, 59%).

Spectroscopic data matched those previously reported.13

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.70\) (s, 1H), \(7.44\) (d, \(J = 8.6\) Hz, 1H), \(7.27 - 7.24\) (m, 1H), \(7.14\) (d, \(J = 3.1\) Hz, 1H), \(6.57\) (d, \(J = 3.1\) Hz, 1H), \(3.84\) (s, 3H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta 144.5\) (dm, \(J = 246.4\) Hz), \(140.0\) (dm, \(J = 254.9\) Hz), \(138.0\) (dm, \(J = 250.1\) Hz), \(136.9, 130.0, 128.7, 123.4, 123.2, 117.4\) (app td, \(J = 17.7, 3.7\) Hz), \(117.1, 109.6, 101.7, 33.0\); \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta -143.4\) (dd, \(J = 23.5, 8.1\) Hz, 2F), –157.2 (t, \(J = 21.1\) Hz, 1F), –162.9 (app td, \(J = 22.2, 7.3\) Hz, 2F).

2',3',4',5',6'-pentafluoro-biphenyl-4-carbonitrile (3bv).

The General Procedure 1 was applied with [Ru(\(t\)BuCN)_6](BF\(_4\))\(_2\) (31.0 mg, 0.040 mmol), 4-bromobenzonitrile (91.0 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol) for 1 h. Column chromatography (hexane/CH\(_2\)Cl\(_2\) 95:5) afforded the title product as a white solid (33.6 mg, 25%).

Spectroscopic data matched those previously reported.16

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.80\) (d, \(J = 8.2\) Hz, 2H), \(7.57\) (d, \(J = 8.2\) Hz, 2H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta 144.2\) (dm, \(J = 249.4\) Hz), \(141.3\) (dm, \(J = 257.9\) Hz), \(138.1\) (dm, \(J = 251.9\) Hz),
132.6, 131.3, 131.1, 118.3, 114.2 (app td, $J = 16.6, 4.0$ Hz), 113.5; 19F NMR (376 MHz, CDCl$_3$) δ – 142.7 - -142.8 (m, 2F), –152.8 (t, $J = 21.0$ Hz, 1F), –160.8 - -161.0 (m, 2F).

Analysis of the crude 1H NMR showed 13% recovery of 4-bromobenzonitrile. Decomposition and/or polymerization likely account for the remaining mass recovery of 4-bromobenzonitrile.

Following the General Procedure 1 in the absence of [Ru(tBuCN)$_6$](BF$_4$)$_2$ (C5), arene, (NMe$_4$)$_4$-fluorobenzoate and (NMe$_4$)OPiv- i.e. only 4-bromobenzonitrile (91.0 mg, 0.50 mmol), (NMe$_4$)OC(CF$_3$)$_3$ (386.5 mg, 1.250 mmol) and pivalonitrile (166.3 μL, 1.50 mmol) were added-gave quantitative recovery of 4-bromobenzonitrile by 1H NMR.

2,3,4,5,6-pentafluoro-4'-nitrobiphenyl (3bw)

The General Procedure 1 was applied with 1-bromo-4-nitrobenzene (101.0 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol) for 16 h. Analysis of the crude by 1H NMR showed <5% yield of the desired product 3bw15 and 75% recovery of 1-bromo-4-nitrobenzene. Decomposition and/or polymerization likely account for the remaining mass recovery of 1-bromo-4-nitrobenzene.

Following the General Procedure 1 in the absence of [Ru(tBuCN)$_6$](BF$_4$)$_2$, (C5), arene, (NMe$_4$)$_4$-fluorobenzoate and (NMe$_4$)OPiv- i.e. only 1-bromo-4-nitrobenzene (101.0 mg, 0.50 mmol), (NMe$_4$)OC(CF$_3$)$_3$ (386.5 mg, 1.250 mmol) and pivalonitrile (166.3 μL, 1.50 mmol) were added-gave quantitative recovery of 1-bromo-4-nitrobenzene by 1H NMR.

2',3',4',5',6'-pentafluoro-[biphenyl]-4-carbaldehyde (3bx).

The General Procedure 1 was applied with 4-bromobenzaldehyde (92.5 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol) for 16 h. Analysis of the crude by 1H NMR showed 0% yield of the desired product and 25% recovery of 4-bromobenzaldehyde. Decomposition and/or polymerization likely account for the remaining mass recovery of 4-bromobenzaldehyde.

Following the General Procedure 1 in the absence of [Ru(tBuCN)$_6$](BF$_4$)$_2$, (C5), arene, (NMe$_4$)$_4$-fluorobenzoate and (NMe$_4$)OPiv- i.e. only 4-bromobenzaldehyde (92.5 mg, 0.50 mmol), (NMe$_4$)OC(CF$_3$)$_3$ (386.5 mg, 1.250 mmol) and pivalonitrile (166.3 μL, 1.50 mmol) were added-gave 75% recovery of 4-bromobenzaldehyde. No other products were observed by 1H NMR, thus decomposition and/or polymerisation likely account for the remaining mass recovery of 4-bromobenzaldehyde by 1H NMR.
2',3',4',5',6'-pentafluoro-[biphenyl]-4-ol (3by).

The General Procedure 1 was applied with 4-bromophenol (86.5 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol) for 16 h.
Analysis of the crude by 1H NMR showed 0% yield of the desired product 3by and 0% recovery of 4-bromophenol. Products 3by', 3by'', 3by''' are proposed to form in approximately 10%, 9% and 8% yield respectively from analysis of the crude 1H NMR and GC-MS. Decomposition and/or polymerization likely account for the remaining mass recovery of 4-bromophenol.

Following the General Procedure 1 in the absence of $[\text{Ru('BuCN)}_6](\text{BF})_2$, (C5), arene, (NMe$_4$)4-fluorobenzoate and (NMe$_4$)OPiv- i.e. only 4-bromophenol (86.5 mg, 0.50 mmol), (NMe$_4$)OC(CF$_3$)$_3$ (386.5 mg, 1.250 mmol) and pivalonitrile (166.3 μL, 1.50 mmol) were added- gave quantitative recovery of 4-bromophenol by 1H NMR.

4'-ethynyl-2,3,4,5,6-pentafluorobiphenyl (3bz)

The General Procedure 1 was applied with 1-bromo-4-ethynylbenzene (90.5 mg, 0.50 mmol) and pentafluorobenzene (166.5 μL, 1.50 mmol) for 16 h. Analysis of the crude by 1H NMR showed 0% yield of the desired product 3bz and 0% recovery of 1-bromo-4-ethynylbenzene. Decomposition and/or polymerization likely account for the remaining mass recovery of 1-bromo-4-ethynylbenzene.

Following the General Procedure 1 in the absence of $[\text{Ru('BuCN)}_6](\text{BF})_2$, (C5), arene, (NMe$_4$)4-fluorobenzoate and (NMe$_4$)OPiv- i.e. only 1-bromo-4-ethynylbenzene (90.5 mg, 0.50 mmol), (NMe$_4$)OC(CF$_3$)$_3$ (386.5 mg, 1.250 mmol) and pivalonitrile (166.3 μL, 1.50 mmol) were added- gave quantitative recovery of 1-bromo-4-ethynylbenzene by 1H NMR.
2,3,4,5,6-pentafluoro-2'-phenoxy-1,1'-biphenyl (3ba')

The General Procedure 1 was applied with 1-bromo-2-phenoxybenzene (2a')\(^2\) (124.6 mg, 0.50 mmol) and pentafluorobenzene (166.5 \(\mu\)L, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colorless oil (132.8 mg, 79%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.43 - 7.40 (m, 1H), 7.37 - 7.32 (m, 3H), 7.21 (t, \(J = 7.6\) Hz, 1H), 7.13 (t, \(J = 7.5\) Hz, 1H) 7.01 - 6.97 (m, 3H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta\) 156.4, 155.8, 144.6 (dm, \(J = 247.5\) Hz), 140.8 (dm, \(J = 253.6\) Hz), 137.7 (dm, \(J = 250.3\) Hz), 132.3, 131.3, 130.0, 124.1, 123.2, 119.5, 118.2, 117.6, 112.4 (app td, \(J = 19.0, 3.8\) Hz); \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) –140.1 (dd, \(J = 23.4, 8.1\) Hz, 2F), –155.3 (t, \(J = 21.0\) Hz, 1F), –162.6 - –162.7 (m, 2F); IR (ATR) 2924, 1488, 1237, 1061, 987, 749; HRMS (EI) \(m/z\) calcd. C\(_{18}\)H\(_9\)F\(_5\)O: [M]\(^+\) 336.0568 found: [M]\(^+\) 336.0566.

2'-benzyl-2,3,4,5,6-pentafluoro-1,1'-biphenyl (3bb')

The General Procedure 1 was applied with 1-benzyl-2-bromobenzene (2b') (123.6 mg, 0.50 mmol) and pentafluorobenzene (166.5 \(\mu\)L, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colourless oil (70.2 mg, 42%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.43 (t, \(J = 7.4\) Hz, 1H), 7.36 - 7.31 (m, 2H), 7.20 - 7.13 (m, 4H), 6.91 (d, \(J = 7.2\) Hz, 2H), 3.85 (s, 2H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta\) 144.1 (dm, \(J = 247.3\) Hz), 140.8 (dm, \(J = 254.2\) Hz), 140.7, 139.8, 137.6 (dm, \(J = 251.9\) Hz), 131.1, 130.8, 130.0, 128.7, 128.4, 126.9, 126.4, 126.2, 115.6 - 115.3 (m), 39.9; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) –140.1 (dd, \(J = 23.4, 8.1\) Hz, 2F), –155.3 (t, \(J = 21.0\) Hz, 1F), –162.6 - –162.5 (m, 2F); IR (ATR) 2924, 1488, 1237, 1061, 987, 749; HRMS (EI) \(m/z\) calcd. C\(_{19}\)H\(_{11}\)F\(_5\): [M]\(^+\) 334.0775 found: [M]\(^+\) 334.0760.

2'-(benzyloxy)-2,3,4,5,6-pentafluoro-1,1'-biphenyl (3bc')

The General Procedure 1 was applied with 1-(benzyloxy)-2-bromobenzene (3c')\(^3\) (131.6 mg, 0.50 mmol) and pentafluorobenzene (166.5 \(\mu\)L, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colorless oil (117.3 mg, 67%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.46 (td, \(J = 7.9, 1.6\) Hz, 1H), 7.41 - 7.31 (m, 6H), 7.12 (t, \(J = 7.7\) Hz, 2H), 5.14 (s, 2H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta\) 156.4, 144.6 (dm, \(J = 247.1\) Hz), 140.6 (dm,
$J = 253.0$ Hz), 137.7 (dm, $J = 249.9$ Hz), 136.7. 132.0, 128.7, 128.1, 127.1, 121.1, 115.9, 113.2 - 112.8 (m, 2C), 70.6; 19F NMR (376 MHz, CDCl$_3$) δ –139.9 (dd, $J = 23.1, 7.9$ Hz, 2F), –156.0 (t, $J = 21.0$ Hz, 1F), –163.1 - –163.3 (m, 2F); IR (ATR) 2924, 1490, 1449, 1061, 986, 865, 751; HRMS (EI) m/z calcd. C$_{19}$H$_{11}$F$_5$O [M]$^+$ 350.0725 found: [M]$^+$ 350.0738.

2,3,5,6-tetrafluoro-3',5'-dimethylbiphenyl (3cc) and 2',3',5',6'-tetrafluoro-3,3'',5,5''-tetramethyl-1,1':4',1''-terphenyl (3cc')

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 1,2,4,5-tetrafluorobenzene (167.5 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded both 2,3,5,6-tetrafluoro-3',5'-dimethylbiphenyl (94.1 mg, 74%) and 2',3',5',6'-tetrafluoro-3,3'',5,5''-tetramethyl-1,1':4',1''-terphenyl (17.8 mg, 10%) as white solids.

2,3,5,6-tetrafluoro-3',5'-dimethylbiphenyl (3cc)

1H NMR (400 MHz, CDCl$_3$): δ 7.11 (s, 1H), 7.09 - 7.01 (m, 3H), 2.39 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 146.3 (dm, $J = 247.7$ Hz), 143.9 (dm, $J = 246.2$ Hz), 138.3, 131.0, 127.9 (t, $J = 1.7$ Hz), 127.4 (t, $J = 2.3$ Hz), 122.0 (t, $J = 16.9$ Hz), 104.7 (t, $J = 22.7$ Hz), 21.4; 19F NMR (376 MHz, CDCl$_3$) δ –139.4 (ddd, $J = 22.5, 12.8, 9.7$ Hz, 2F), –143.6 (ddd, $J = 21.9, 13.4, 7.9$ Hz, 2F); IR (ATR) 2292, 1494, 1172, 929, 848, 705; m.p. 42-44 °C; HRMS (EI) m/z calcd. C$_{14}$H$_{10}$F$_4$: [M]$^+$ 254.0707; found: 254.0713.

2',3',5',6'-tetrafluoro-3,3'',5,5''-tetramethyl-1,1':4',1''-terphenyl (3cc')

1H NMR (400 MHz, CDCl$_3$): δ 7.12 - 7.11 (m, 6H), 2.40 (s, 12H); 13C NMR (126 MHz, CDCl$_3$): δ 144.2 (dm, $J = 250.3$ Hz), 138.3, 130.9, 128.0, 127.5, 119.9 – 119.7 (m); 19F NMR (376 MHz, CDCl$_3$) δ – 144.3 (s, 4F). IR (ATR) 2922, 1420, 984, 846; m.p. 214-215 °C; HRMS (EI) m/z calcd. C$_{22}$H$_{18}$F$_4$: [M]$^+$ 358.1339; found: [M]$^+$ 358.1335.
The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 2,3,5,6-tetrafluorotoluene (182.7 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colourless oil (106.0 mg, 79%).

Spectroscopic data matched those previously reported.12

\[^1H \text{NMR} \ (400 \text{ MHz, } \text{CDCl}_3): \delta \ 7.07 - 7.05 \text{ (m, 3H), 2.37 - 2.31 \text{ (m, 9H)}; }{ ^13}C \text{NMR} \ (126 \text{ MHz, } \text{CDCl}_3): \delta \ 145.4 \text{ (dm, } J = 243.7 \text{ Hz), 143.8 \text{ (dm, } J = 245.2 \text{ Hz), 138.2, 130.7, 128.0, 127.6, 118.4 \text{ (t, } J = 17.0 \text{ Hz), 114.9 \text{ (t, } J = 19.2 \text{ Hz), 21.4, 7.60; } { ^19}F \text{NMR} \ (376 \text{ MHz, } \text{CDCl}_3) \delta -144.4 \text{ (dd, } J = 22.6, 12.6 \text{ Hz, 2F), } -145.4 \text{ (dd, } J = 22.3, 12.8 \text{ Hz, 2F). IR (ATR) 2923, 1482, 922, 851; HRMS (EI) } m/z \text{ calcd. C}_{15}H_{12}F_4: [M]^{+} 268.0870; \text{ found: [M]}^{+} 268.0867. \]

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 2,3,5,6-tetrafluorotoluene (204.3 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (106.3 mg, 66%).

\[^1H \text{NMR} \ (400 \text{ MHz, } \text{CDCl}_3): \delta \ 7.14 \text{ (s, 1H), 7.06 \text{ (s, 2H), 2.39 \text{ (s, 6H); } }{ ^13}C \text{NMR} \ (126 \text{ MHz, } \text{CDCl}_3): \delta \ 145.6 - 143.2 \text{ (m, } 2C), 138.7, 131.8, 127.7, 126.0, 125.5 \text{ (t, } J = 16.8 \text{ Hz), 121.1 (q, } J = 274.3 \text{ Hz), 108.8 -107.9 \text{ (m), 21.4; } { ^19}F \text{NMR} \ (376 \text{ MHz, } \text{CDCl}_3) \delta -144.4 \text{ (dd, } J = 22.6, 12.6 \text{ Hz, 2F), } -145.4 \text{ (dd, } J = 22.3, 12.8 \text{ Hz, 2F). IR (ATR) 2923, 1495, 1484, 1139, 990; m.p. 68-71 \degree C; HRMS (EI) } m/z \text{ calcd. C}_{15}H_{9}F_7: [M]^{+} 322.0587; \text{ found: [M]}^{+} 322.0582. \]

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and \(N \)-(2,3,5,6-tetrafluoro-3',5'-dimethyl-biphenyl-4-yl)pivalamide (3fc)

\[^1H \text{NMR} \ (400 \text{ MHz, } \text{CDCl}_3): \delta \ 7.26 \text{ (s, 1H) 7.08 \text{ (s, 1H), 7.03 \text{ (s, 2H), 2.37 \text{ (s, 6H), 1.36 \text{ (s, 9H); } }{ ^13}C \text{NMR} \ (126 \text{ MHz, } \text{CDCl}_3): \delta \ 177.2, 144.0 \text{ (dm, } J = 245.4 \text{ Hz), 142.7 \text{ (app dt, } J = 249.0 15.8, 3.9 \text{ Hz), 138.3, 131.0, 127.9, 126.9, 119.1 \text{ (t, } J = 17.3 \text{ Hz), 115.3 (tt, } J = 14.7, 2.4 \text{ Hz), 39.7, 27.6, 21.4; } { ^19}F \text{NMR} \ (376 \text{ MHz, } \text{CDCl}_3) \delta -144.1 \text{ (dd, } J = 22.3, 9.8 \text{ Hz, 2F), } -146.6 - -146.7 \text{ (m, 2F); IR S50} \]
(ATR) 3294, 2972, 1674, 1479, 1190, 988; m.p. 184 - 188 °C; HRMS (EI) m/z calcd. C\textsubscript{16}H\textsubscript{15}NF\textsubscript{4}: [M]+ 353.1403; found: [M+K]+ 392.1034.

2,3,5,6-tetrafluoro-N,N,3',5'-tetramethyl-biphenyl-4-amine (3gc)

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 2,3,5,6-tetrafluoro-N,N-dimethylaniline (1g)1 (289.7 mg, 1.50 mmol). Column chromatography with a 0-20% CH\textsubscript{2}Cl\textsubscript{2}-hexane gradient afforded the title product as a white solid (98.1 mg, 66%).

1H NMR (400 MHz, CDCl\textsubscript{3}): δ 7.06 (app s, 3H), 3.00 (s, 6H), 2.38 (s, 6H); 13C NMR (126 MHz, CDCl\textsubscript{3}): δ 144.6 (dm, J = 244.5 Hz), 142.6 (dm, J = 244.5 Hz), 138.2, 130.4 - 130.1 (m, 2C), 128.0, 127.7, 113.2 (t, J = 17.7 Hz), 43.5 (t, J = 3.8 Hz), 21.4; 19F NMR (376 MHz, CDCl\textsubscript{3}) δ -146.0 (dd, J = 21.2, 9.0 Hz, 2F), -151.9 - -152.0 (m, 2F); IR (ATR) 2923, 1650, 1488, 1450, 1437, 1077, 982; m.p. 83 - 84 °C; HRMS (EI) m/z calcd. C\textsubscript{16}H\textsubscript{15}NF\textsubscript{4}: [M]+ 297.1135; found: [M]+ 297.1126.

butyl(2,3,5,6-tetrafluoro-3',5'-dimethyl-[1,1'-biphenyl]-4-yl)sulfane (3hc)

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and butyl(2,3,5,6-tetrafluorobenzoate (357.4 mg, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colorless oil (111.3 mg, 65%).

1H NMR (400 MHz, CDCl\textsubscript{3}): δ 7.11 (s, 1H), 7.09 (s, 2H), 2.98 (t, J = 7.4 Hz, 2H), 2.40 (s, 6H), 1.61 (app quintet, J = 7.4 Hz, 2H), 1.48 (app sextet, J = 7.4 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl\textsubscript{3}): δ 147.4 (app ddt, J = 244.6, 14.8, 4.0 Hz), 142.4 (app ddt, J = 247.9, 15.5, 5.0 Hz), 138.3, 131.0, 127.9, 127.1, 120.9 (t, J = 17.2 Hz), 113.2 (t, J = 20.6 Hz), 34.6 (t, J = 2.5 Hz), 32.0, 21.7, 21.4, 13.7; 19F NMR (376 MHz, CDCl\textsubscript{3}) δ -134.7 (dd, J = 24.3, 11.9 Hz, 2F), -143.3 (dd, J = 24.0, 11.6 Hz, 2F); IR (ATR) 2960, 2929, 1650, 1488, 1450, 1437, 1077, 982; m.p. 83-84 °C; HRMS (EI) m/z calcd. C\textsubscript{18}H\textsubscript{18}F\textsubscript{4}S\textsubscript{1}: [M]+ 342.1060 found: [M]+ 342.1075.

tert-butyl 2,3,5,6-tetrafluoro-3',5'-dimethyl-biphenyl-4-carboxylate (3ic)

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and tert-butyl 2,3,5,6-tetrafluorobenzoate (375.3 mg, 1.50 mmol) for 2 h. Column chromatography (hexane 100%) afforded the title product as a colorless oil (136.4 mg, 77%).
1H NMR (400 MHz, CDCl$_3$): δ 7.11 (s, 1H), 7.05 (s, 2H), 2.38 (s, 6H), 1.62 (s, 9H); 13C NMR (126 MHz, CDCl$_3$): δ 158.9, 144.6 (app ddt, J = 254.0, 15.9, 4.9 Hz), 143.9 (app ddt, 247.9, 14.0, 4.6 Hz), 138.5, 131.4, 127.8, 126.7, 123.3 (t, J = 16.9 Hz), 113.3 (t, J = 16.9 Hz), 84.7, 28.3, 21.4; 19F NMR (376 MHz, CDCl$_3$) δ −141.4 - −141.5 (m, 2F), −142.6 - −142.8 (m, 2F); IR (ATR) 2982, 1732, 1478, 1328, 1288, 1142, 989; HRMS (EI) m/z calcd. C$_{19}$H$_{18}$O$_2$F$_4$: [M$^+$] 354.1237; found: [M$^+$] 354.1231.

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 1,2,3,5-tetrafluorobenzene (161.6 μL, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colorless oil (94.0 mg, 74%).

1H NMR (400 MHz, CDCl$_3$): δ 7.07 (s, 1H), 7.02 (s, 2H), 6.88 - 6.81 (m, 1H), 2.37 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 154.4 (dm, J = 246.3 Hz), 149.8 (dm, J = 250.6 Hz), 149.1 (dm, J = 249.8 Hz), 138.3, 137.6 (dm, J = 248.0 Hz), 130.7, 128.0, 127.4, 116.7 - 116.4 (m), 100.9 (ddd, J = 29.2, 21.3, 3.9 Hz), 21.4; 19F NMR (376 MHz, CDCl$_3$) δ −117.9 (app t, J = 10.0 Hz, 1F), −133.9 (ddd, J = 21.6, 9.8, 5.0, 1F), −135.2 (d, J = 20.0, 1F), −165.0 (app tdd, J = 21.6, 11.0, 6.1 Hz, 1F); IR (ATR) 2921, 1515, 1049, 787; HRMS (EI) m/z calcd. C$_{14}$H$_{10}$F$_4$: [M$^+$] 254.0713; found: [M$^+$] 254.0720.

2,3,4,6-tetrafluoro-3',5'-dimethylbiphenyl (3jc)

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 1,2,3,4-tetrafluorobenzene (160.8 μL, 5.00 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (90.3 mg, 71%).

1H NMR (400 MHz, CDCl$_3$): δ 7.08 - 7.00 (m, 4H), 2.38 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 147.1 (dm, J = 246.6 Hz), 145.0 (dm, J = 248.5 Hz), 141.3 (dm, J = 252.6 Hz), 139.7 (dm, J = 253.1 Hz), 138.6, 133.1, 130.5, 126.7 (d, J = 2.7 Hz), 126.0 - 125.8 (m), 111.5 (app dt, J = 19.6, 3.1 Hz), 21.4; 19F NMR (376 MHz, CDCl$_3$) δ −139.8 - −140.0 (m, 1F), −143.5 - −143.6 (m, 1F), −155.4 (app t, J = 20.3 Hz, 1F), −157.5 - −157.6 (m, 1F); IR (ATR) 2926, 1526, 1487, 845; m.p. 86 - 87 °C; HRMS (EI) m/z calcd. C$_{14}$H$_{10}$F$_4$: [M$^+$] 254.0713; found: [M$^+$] 254.0708.

2,3,4,5-tetrafluoro-3',5'-dimethylbiphenyl (3kc)

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 1,2,3,4-tetrafluorobenzene (160.8 μL, 5.00 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (90.3 mg, 71%).
2,4,6-trifluoro-3',5'-dimethylbiphenyl (3lc)

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 1,3,5-trifluorobenzene (517.1 μL, 5.00 mmol). Column chromatography (hexane 100%) afforded the title product as a colourless oil (56.7 mg, 48%).

1H NMR (400 MHz, CDCl$_3$): δ 7.05 (s, 1H), 7.03 (s, 2H), 6.74 (dd, $J = 8.6$, 8.0 Hz, 2H), 2.37 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 161.7 (dt, $J = 248.7$, 15.7 Hz), 160.4 (ddd, $J = 249.1$, 14.7, 9.9 Hz), 138.0, 130.2, 128.2, 128.1, 115.4 (td, $J = 19.7$, 4.8 Hz), 100.7 - 100.2 (m), 21.4; 19F NMR (376 MHz, CDCl$_3$) δ –109.6 (tt, $J = 8.7$, 5.9 Hz, 1F), –111.1 (app t, $J = 6.6$ Hz, 2F); IR (ATR) 2920, 1636, 1597, 1120, 1030, 839; HRMS (EI) m/z calcd. C$_{14}$H$_{11}$F$_3$: [M]$^+$ 236.0807; found: [M]$^+$ 226.0808.

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 1,2,4-trifluorobenzene (522.5 μL, 5.00 mmol). Column chromatography (hexane, 100%) afforded a 1.00 : 0.95 : 0.13 mixture of 2,3,6-trifluoro-3',5'-dimethylbiphenyl, 2,3,5-trifluoro-3',5'-dimethylbiphenyl and 2,4,5-trifluoro-3',5'-dimethylbiphenyl respectively as a colorless oil (83.9 mg, 71%) and 2',3',5'-trifluoro-3,3'',5,5''-tetramethylterphenyl as a white solid (6.1 mg, 5%). Milligrams (5 - 10 mg) of 2,3,6-trifluoro-3',5'-dimethylbiphenyl and 2,4,5-trifluoro-3',5'-dimethylbiphenyl were isolated as colorless oils by column chromatography (hexane, 100%) for analysis.

2,3,6-trifluoro-3',5'-dimethylbiphenyl (3mc), 2,3,5-trifluoro-3',5'-dimethylbiphenyl (3mc'), 2,4,5-trifluoro-3',5'-dimethylbiphenyl (3mc''), and 2',3',5'-trifluoro-3,3'',5,5''-tetramethylterphenyl (3mc''')

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 1,2,4-trifluorobenzene (522.5 μL, 5.00 mmol). Column chromatography (hexane, 100%) afforded a 1.00 : 0.95 : 0.13 mixture of 2,3,6-trifluoro-3',5'-dimethylbiphenyl, 2,3,5-trifluoro-3',5'-dimethylbiphenyl and 2,4,5-trifluoro-3',5'-dimethylbiphenyl respectively as a colorless oil (83.9 mg, 71%) and 2',3',5'-trifluoro-3,3'',5,5''-tetramethylterphenyl as a white solid (6.1 mg, 5%). Milligrams (5 - 10 mg) of 2,3,6-trifluoro-3',5'-dimethylbiphenyl and 2,4,5-trifluoro-3',5'-dimethylbiphenyl were isolated as colorless oils by column chromatography (hexane, 100%) for analysis.

2,3,6-trifluoro-3',5'-dimethylbiphenyl (3mc)

1H NMR (400 MHz, CD$_2$Cl$_2$): δ 7.18 - 7.10 (m, 2H), 7.06 (s, 2H), 6.94 (app tdd, $J = 9.1$, 3.9, 2.2 Hz, 1H), 2.37 (d, $J = 0.8$ Hz, 6H); 1H {19F} (500 MHz, CD$_2$Cl$_2$): δ 7.14 (d, $J = 9.2$ Hz, 1H), 7.10 (s, 1H), 7.06 (s, 2H), 6.94 (d, $J = 9.1$ Hz, 1H), 2.38 (s, 6H); 13C NMR (126 MHz, CD$_2$Cl$_2$): δ 155.8 (ddd, $J = 243.8$, 5.0, 2.7 Hz), 148.2 (ddd, $J = 248.4$, 14.2, 7.5 Hz), 147.8 (ddd, $J = 243.7$, 13.8, 3.6 Hz), 138.5, 130.8, 128.4 (d, $J = 2.1$ Hz).
Hz), 128.1 (t, J = 1.8 Hz), 120.9 (dd, J = 21.3, 15.7 Hz), 115.9 (ddd, J = 19.5, 9.9, 1.5 Hz), 111.2 (ddd, J = 25.7, 6.9, 4.1 Hz), 214; 19F NMR (376 MHz, CD$_2$Cl$_2$) δ -120.1 - -120.2 (m, 1F), -138.6 (dd, J = 21.7, 8.6 Hz, 1F), -143.1 - -143.2 (m, 1F); 19F 1H NMR (376 MHz, CD$_2$Cl$_2$) δ -120.2 (dd, J = 15.1, 3.6 Hz, 1F) -138.6 (dd, J = 21.7, 3.7 Hz, 1F), -143.2 (dd, J = 21.4, 15.1 Hz, 1F); IR (ATR) 2924, 1491, 1243, 786; HRMS (EI) m/z calcd. C$_{14}$H$_{11}$F$_3$: [M]$^+$ 236.0807; found: [M]$^+$ 236.0800.

2,3,5-trifluoro-3',5'-dimethylbiphenyl (3mc') and 2,4,5-trifluoro-3',5'-dimethylbiphenyl (3mc'')

1H NMR (400 MHz, CD$_2$Cl$_2$): δ 7.26 (minor, ddd, J = 11.0, 8.9, 7.1 Hz, 1H) 7.14 (major, s, 2H), 7.10 (minor, s, 2H), 7.09 (major, s, 1H), 7.07 - 7.00 (minor, m, 1H) 7.05 (minor, s, 1H), 6.98 - 6.89 (major, m, 2H), 2.38 (major, d, J = 0.7 Hz, 6H), 2.37 (minor, d J = 0.7 Hz, 6H); 1H 19F (500 MHz, CD$_2$Cl$_2$): δ 7.26 (minor, s, 1H), 7.14 (major, s, 2H), 7.10 (minor, s, 2H), 7.09 (major, s, 1H), 7.06 (minor, s, 1H), 7.03 (minor, s, 1H), 6.96 (major, d, J = 3.3 Hz, 1H), 6.93 (major, d, J = 3.3 Hz, 1H), 2.38 (major, s, 6H), 2.37 (minor, s, 6H); 13C NMR (126 MHz, CD$_2$Cl$_2$): δ 158.0 (major, ddd, J = 244.2, 11.3, 3.3 Hz), 155.1 (minor, ddd, J = 246.1, 9.2, 2.4 Hz), 151.2 (major, ddd, J = 249.3, 15.5, 13.4 Hz), 149.6 (minor, ddd, J = 250.4, 14.5, 12.3 Hz), 147.2 (minor, ddd, J = 243.5, 12.4, 3.7 Hz), 145.0 (major, ddd, J = 244.3, 13.1, 4.1 Hz), 138.8 (major), 138.7 (minor), 134.2 (minor), 134.0 - 133.9 (major + minor, m), 132.6 (major, dd, J = 12.3, 9.5 Hz),
130.7 (major), 130.2 (minor), 127.0 - 126.9 (major + minor, m), 118.6 (minor, dd, J = 19.7, 5.3 Hz), 112.1 (major, dm, J = 23.9 Hz), 106.3 (minor, dd, J = 29.2, 20.8 Hz), 104.3 (major, dd, J = 27.5, 21.4 Hz), 21.4 (major + minor); 19F NMR (376 MHz, CD$_2$Cl$_2$) δ −116.4 - −116.5 (major, m), 118.6 (minor, m, 1F), −134.3 (major, ddd, J = 20.0, 10.4, 2.9 Hz, 1F), −136.4 - −136.5 (minor, m, 1F), −143.8 - −144.0 (minor, m, 1F), −148.9 - −149.1 (major, m, 1F); 19F 1H NMR (376 MHz, CD$_2$Cl$_2$) δ −116.4 (major, dd, J = 14.9, 3.3 Hz, 1F), −119.7 (minor, dd, J = 15.1, 3.8 Hz, 1F), −134.3 (major, dd, J = 20.7, 3.3 Hz, 1F), −136.5 (minor, dd, J = 21.7, 3.8 Hz, 1F), −143.9 (minor, dd, J = 21.7 15.1 Hz, 1F), −149.0 (major, dd, J = 20.7, 14.6, Hz, 1F); IR (ATR) 2924, 1600, 1496, 1113, 850, 786; HRMS (EI) m/z calcd. C$_{14}$H$_{11}$F$_3$: [M]$^+$ 236.0807; found: [M]$^+$ 236.0799.

13C NMR (101 MHz, CD$_2$Cl$_2$): δ 155.3 (ddd, J = 244.1, 6.9, 3.6 Hz), 148.8 (ddd, J = 248.5, 16.2, 9.1 Hz), 145.4 (ddd, J = 246.4, 15.2, 3.7 Hz), 138.8, 138.5, 133.9,
130.7, 130.6, 130.3 (dd, J = 12.0, 2.2 Hz), 128.4, 128.1, 126.9 (d, J = 2.9 Hz), 119.2 (dd, J = 21.3, 16.1 Hz), 111.7 (dt, J = 25.8, 3.4), 21.4, 21.4; 19F NMR (376 MHz, CD2Cl2) δ −120.9 - −120.9 (m, 1F), 138.6 (d, J = 20.8 Hz, 1F), −148.1 (ddd, J =20.5, 14.5, 5.6 Hz, 1F); 19F {1H} NMR (471 MHz, CD2Cl2) δ −120.9 (dd, J = 14.8, 3.5 Hz), −138.6, (dd, J = 21.0, 4.0 Hz), −148.1 (dd, J = 21.2, 14.7 Hz); IR (ATR) 2972, 1501, 1218, 1133, 835; m.p. 200 - 203 °C; HRMS (EI) m/z calcd. C22H19F3: [M]+ 340.1439; found: [M]+ 340.1445.

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 1,2,3-trifluorobenzene (515.9 μL, 5.00 mmol). Column chromatography (hexane, 100%) afforded a 1.0:0.3 mixture of 2,3,4-trifluoro-3',5'-dimethylbiphenyl (3nc) and 3,4,5-trifluoro-3',5'-dimethylbiphenyl (3nc').

Milligrams (5 - 10 mg) of each regioisomer were isolated by column chromatography (hexane, 100%): 30nc as a colorless oil and 3nc' as a white solid.
2,3,4-trifluoro-3',5'-dimethylbiphenyl (3nc)

1H NMR (500 MHz, CDCl$_3$): δ 7.15 - 7.10 (m, 3H), 7.05 (s, 1H), 7.00 (app dtd, $J = 9.2$, 7.1, 2.0 Hz, 1H), 2.38 (s, 6H); 1H $\{^{19}$F$\}$ NMR (500 MHz, CDCl$_3$): δ 7.12 (d, $J = 8.8$ Hz, 1H), 7.10 (s, 2H), 7.05 (s, 1H), 7.01 (d, $J = 8.8$ Hz, 1H), 2.38 (s, 6H) 13C NMR (126 MHz, CDCl$_3$): δ 150.9 (ddd, $J = 157.8$, 10.1, 3.1 Hz), 148.4 (ddd $J = 159.2$, 10.3, 3.2 Hz), 140.4, (dt, $J = 250.7$, 15.6 Hz), 138.4, 134.1, 130.0, 127.1 (dd, $J = 11.0$, 3.9 Hz), 126.8 (d, $J = 2.9$ Hz), 124.0 (dt, $J = 7.8$, 4.0 Hz), 112.1 (dd, $J = 17.1$, 4.0 Hz), 21.5; 19F NMR (471 MHz, CDCl$_3$) δ -135.7 - -136.4 (m, 1F), -138.6 (app dt, $J = 20.2$, 6.9 Hz, 1F), -160.3 (app td, $J = 20.7$, 7.5 Hz, 1F); 19F $\{^1$H$\}$ NMR (471 MHz, CDCl$_3$) δ -136.2 (dd, $J = 20.2$, 6.8 Hz, 1F), -138.6 (dd, $J = 20.7$, 6.9 Hz, 1F), -160.3, (app t, $J = 20.6$ Hz, 1F); IR (ATR) 2924, 1511, 1039, 807, 706; HRMS (EI) m/z calcd: C$_{14}$H$_{11}$F$_3$: [M]+ 236.0807 found: [M]+ 236.0801.

3,4,5-trifluoro-3',5'-dimethylbiphenyl (3nc')

1H NMR (500 MHz, CD$_2$Cl$_2$): δ 7.22 (app dd, $J = 9.3$, 6.5 Hz, 2H), 7.13 (s, 2H), 7.05 (s, 1H), 2.37 (s, 6H); 1H $\{^{19}$F$\}$ NMR (500 MHz, CD$_2$Cl$_2$): δ 7.22 (s, 2H), 7.13 (s, 2H), 7.04 (s, 1H), 2.36 (s, 6H) 13C NMR (126 MHz, CD$_2$Cl$_2$): δ 151.7 (ddd, $J = 248.1$, 10.0, 4.3 Hz), 139.4 (dt, $J = 249.8$, 15.4 Hz), 139.2, 138.3 - 138.3 (m), 138.1 (td, $J = 7.7$ Hz), 130.4, 125.0, 111.3 (dd, $J = 16.6$, 4.9 Hz), 21.4; 19F NMR
(471 MHz, CD₂Cl₂) δ −135.5 - −135.6 (m, 2F), −164.3 (tt, J = 20.6, 6.2 Hz, 1F); ¹⁹F {¹H} NMR (471 MHz, CD₂Cl₂) δ −135.5 (d, J = 19.9 Hz, 2F), −164.3 (t, J = 19.9 Hz, 1F); m.p. 35 - 37 °C; IR (ATR) 2930, 1487, 1039, 826, 751, 706; HRMS (EI) m/z calcd. C₁₄H₁₁F₃: [M]+ 236.0807 found: [M]+ 236.0799.

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 1-butoxy-2,4,5-trifluorobenzene (510.5 mg, 2.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colorless oil (63.2 mg, 41%).

¹H NMR (500 MHz, CDCl₃): δ 7.08 (app s, 3H), 6.81 (app dt, J = 11.5, 7.7 Hz, 1H), 4.02 (t, J = 6.5 Hz, 2H), 2.39 (s, 6H), 1.82 (app quintet, J = 7.0 Hz, 2H), 1.52 (app sextet, J = 7.5, 2H), 1.00 (t, J = 7.4, 3H); ¹H {¹⁹F} NMR (500 MHz, CDCl₃): δ 7.08 (app s, 3H), 6.80 (s, 1H), 4.01 (t, J = 6.5 Hz, 2H), 2.38 (s, 6H), 1.81 (app quintet, J = 7.0 Hz, 2H), 1.52 (app sextet, J = 7.5, 2H), 1.00 (t, J = 7.4, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 146.5 (ddd, J = 243.6, 14.4, 4.0 Hz), 145.5 (app dt, J = 244.3, 3.8 Hz), 143.6 - 143.4 (m), 141.4 (ddd, J = 241.7, 14.1, 5.4 Hz), 138.0, 130.5, 128.4 (d, J = 1.8 Hz), 128.0, 120.9 (app t, J = 17.3 Hz), 102.4 (dd, J = 22.2, 2.1 Hz), 70.1, 31.3, 21.4, 19.2, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ −140.7, (dd J = 12.8, 7.7 Hz, 1F), −141.5 - −141.6 (m, 1F), −149.6 (dd,
$J = 23.0, 7.6 \text{ Hz, } 1F); \ ^{19}F \ {^1H} \text{ NMR (471 MHz, CDCl}_3 \delta -140.6, (d, J = 13.0 \text{ Hz, } 1F), -141.5 \text{ (dd, } J = 22.9, 13.0 \text{ Hz, } 1F), -149.6 \text{ (d, } J = 22.9 \text{ Hz, } 1F); \text{ IR (ATR) 2961, 1494, 1238, 1150, 929, 850; HRMS (EI) } m/z \text{ calcd. } C_{18}H_{19}F_3O: [M]^+ 308.1381 \text{ found: } [M]^+ 308.1380.

2,3,6-trifluoro-3',5'-dimethyl-4-(trifluoromethyl)-biphenyl (3pc)

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 2,3,5-trifluorobenzotrifluoride (300.0 mg, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colorless oil (141.5 mg, 93%).

$^1H \text{ NMR (400 MHz, CDCl}_3 \delta 7.23 \text{ (ddd, } J = 8.7, 5.4, 2.3 \text{ Hz, } 1H), 7.14 \text{ (s, } 1H), 7.10 \text{ (s, } 2H), 2.42 \text{ (s, } 6H); \ ^{1}H \ {^{19}F} \text{ NMR (400 MHz, CDCl}_3 \delta 7.24 \text{ (s, } 1H), 7.15 \text{ (s, } 1H), 7.10 \text{ (s, } 2H), 2.42 \text{ (s, } 6H); \ ^{13}C \text{ NMR (100 MHz, CDCl}_3 \delta 154.7 \text{ (dd, } J = 247.4, 5.2, 3.3 \text{ Hz), 148.7 \text{ (dd, } J = 252.1, 13.2, 7.3 \text{ Hz), 145.4 \text{ (dm, } J = 256.4 \text{ Hz), 138.5, 131.3, 127.8, 126.9, 124.8 \text{ (dd, } J = 20.5, 15.6 \text{ Hz), 121.7 \text{ (app \text{ qt, } J = 272.6, 2.8 \text{ Hz), 119.2 - 117.9 \text{ (m), 108.9 \text{ (app \text{ dquintet = 28.7, 4.4 \text{ Hz), 21.4; } ^{19}F \text{ NMR (376 MHz, CDCl}_3 \delta -61.3 \text{ (d, } J = 12.7 \text{ Hz, } 3F), -116.7 - -116.8 \text{ (m, } 1F), -134.3 \text{ (dd, } J = 20.9, 2.3 \text{ Hz, } 1F), -143.0 - -143.2 \text{ (m, } 1F); \ ^{1}H \ {^{19}F} \text{ NMR (471 MHz, CDCl}_3 \delta -61.3 \text{ (d, } J = 13.1 \text{ Hz, } 3F), -116.7 \text{ (dd, } J = 15.4, 4.9 \text{ Hz, } 1F), -134.3 \text{ (dd, } J = 20.9, 4.5 \text{ Hz, } 1F), -143.1 - -143.2 \text{ (m, } 1F) \text{ IR
The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 2,3,4-trifluorobenzotrifluoride (500.0 mg, 2.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (88.2 mg, 58%).

1H NMR (400 MHz, CDCl$_3$): δ 7.44 (app t, $J = 7.3$ Hz, 1H), 7.09 (app s, 3H), 2.39 (s, 6H); 1H {19F} NMR (500 MHz, CDCl$_3$): δ 7.44 (s, 1H), 7.09 (app s, 3H), 2.39 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 151.0 (dm, $J = 256.1$ Hz), 148.2 (dm, $J = 260.4$ Hz), 140.8 (ddd, $J = 253.9, 16.1, 14.4$ Hz), 138.7, 132.7, 130.8, 127.3 (dd, $J = 11.8, 4.2$ Hz), 126.7 (d, $J = 2.4$), 122.0 (q, $J = 272.9$ Hz), 121.8 - 121.7 (m), 115.7 (ddd, $J = 34.3, 9.3, 4.3$ Hz), 21.5; 19F NMR (376 MHz, CDCl$_3$) δ −60.7 (d, $J = 12.6$ Hz, 3F), −130.9 - −131.0 (m, 1F), −136.4 - −136.6 (m, 1F), −156.5 (app t, $J = 20.3$ Hz, 1F); 19F {1H} NMR (471 MHz, CDCl$_3$) δ −60.7 (d, $J = 12.6$ Hz, 3F), −131.0 (dd, $J = 20.6$, 11.0 Hz, 1F) −136.4 - −136.6 (m, 1F), −156.6 (app t, $J = 20.5$ Hz, 1F); IR (ATR) 2924, 1488, 1371, 1211, 1136, 851, 646; m.p. 35 - 38 °C; HRMS (EI) m/z calcd. C$_{15}$H$_{10}$F$_6$ [M]+ 304.0687; found: [M]+ 304.0700.
The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 3,4-difluorobenzotrifluoride (455.2 mg, 2.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colorless oil (78.7 mg, 55%).

1H NMR (500 MHz, CDCl$_3$): δ 7.50 (app d, $J = 5.6$ Hz, 1H), 7.44 - 7.40 (m, 1H), 7.16 (s, 2H), 7.10 (s, 1H), 2.41 (s, 6H); 1H {19F} (500 MHz, CDCl$_3$): δ 7.48 (d, $J = 2.4$ Hz, 1H), 7.48 (d, $J = 2.4$ Hz, 1H), 7.14 (s, 2H), 7.09 (s, 1H), 2.39 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 151.0 (dd, $J = 251.0$, 14.3 Hz) 150.0 (dd, $J = 255.7$, 12.9 Hz), 138.6, 133.3, 132.7 (d, $J = 11.6$ Hz), 130.7, 127.3 - 126.4 (m, 2C), 123.2 (qd $J = 272.2$, 2.4 Hz), 123.0 - 122.9 (m), 113.5 (dq, $J = 20.2$, 3.3 Hz), 21.5; 19F NMR (376 MHz, CDCl$_3$) δ −62.2 (s, 3F), −134.7 (dd, $J = 20.7$, 9.6 Hz, 1F), −136.9 - −137.0 (dm, $J = 20.7$ Hz, 1F); 19F {1H} NMR (471 MHz, CDCl$_3$) δ −62.3 (s, 3F), −134.7 (d, $J = 20.7$ Hz, 1F), −137.0 (d, $J = 20.7$ Hz, 1F); IR (ATR) 2923, 1371, 1294, 1129, 652; HRMS (El) m/z calcd. 13C$_{15}$H$_{11}$F$_5$: [M]$^+$ 286.0775; found: [M]$^+$ 286.0774.

2,3-difluoro-3',5'-dimethyl-6-(trifluoromethyl)-biphenyl (3rc)
The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 2,3-difluorobenzotrifluoride (455.2 mg, 2.50 mmol). Column chromatography (hexane 100%) afforded a 1.00 : 0.03 mixture of 2,3-difluoro-3',5'-dimethyl-4-(trifluoromethyl)-biphenyl and 3,4-difluoro-3',5'-dimethyl-5-(trifluoromethyl)-biphenyl (3sc') as a colorless oil (82.1 mg, 54%).

1H NMR (400 MHz, CDCl3): δ (minor isomer not observed) 7.44 - 7.39 (m, 1H), 7.32 - 7.27 (m, 1H), 7.17 (s, 2H), 7.12 (s, 1H), 2.41 (s, 6H); 1H {19F} NMR (500 MHz, CDCl3): δ (minor isomer not observed) 7.40 (d, J = 8.3 Hz, 1H), 7.28 (d, 8.3 Hz, 1H), 7.15 (s, 2H), 7.09 (s, 1H), 2.39 (s, 6H); 13C NMR (100 MHz, CDCl3): δ (minor isomer not observed) 148.9 (dm, J = 258.7 Hz), 148.4 (dd, J = 251.5, 12.0 Hz), 138.6, 135.7 (d, J = 10.7 Hz), 133.4, 130.8, 126.8 (d, J = 2.8 Hz), 125.1 (dd, J = 3.8, 2.6 Hz), 122.3 (qd, J = 272.3, 3.2 Hz), 121.2 (app quintet J = 4.5 Hz), 118.7 (qd, J = 33.6, 9.7 Hz), 21.4; 19F NMR (376 MHz, CDCl3) δ −61.0 (major, d, J = 12.5 Hz, 3F), −61.0 (minor, d, J = 12.7 Hz, 3F), −135.3 (minor, dd, J = 20.8, 10.7, 1F), −138.8 - −139.0 (major, m, 1F), −140.8 (major,
dd, $J = 20.1, 6.2$ Hz, 1F) $-142.0 - -142.2$ (minor, m, 1F); 19F \{\text{H}\} NMR (376 MHz, CDCl$_3$) δ -61.0 (major d, $J = 12.7$ Hz, 3F), -61.0 (minor, d, $J = 12.7$ Hz, 3F), -135.3 (minor, d, $J = 20.7$ Hz, 1F), -138.8 (major, dq, $J = 20.0, 12.3$ Hz, 1F), -140.8 (major, d, $J = 20.5, 1F)$, -142.1 (minor, dq, $J = 20.7, 12.8$ Hz, 1F); IR (ATR) 2923, 1477, 1328, 1137, 1118, 823; HRMS (EI) m/z calcd. C$_{13}$H$_{11}$F$_5$ [M]$^+$ 286.0775 found: [M]$^+$ 286.0774.

![NMR Spectra](image)

2,6-difluoro-3',5'-dimethyl-4-(trifluoromethyl)-biphenyl (3tc)

The general procedure was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 3,5-difluorobenzotrifluoride (455.2 mg, 2.50 mmol). Column chromatography (hexane 100%) afforded the title product as a colorless oil (78.7 mg, 55%).

1H NMR (400 MHz, CDCl$_3$): δ 7.28 (d, $J = 6.7$ Hz, 2H), 7.11 (s, 1H), 7.09 (s, 2H), 2.40 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 160.1 (dd, $J = 250.9, 7.5$ Hz), 138.2, 131.2 (qt, $J = 34.5 10.1$ Hz), 130.9, 127.9, 127.6, 123.0 (qt, $J = 272.3, 3.2$ Hz), 122.7 (t, $J = 18.9$ Hz), 109.6 – 109.2 (m), 21.4; 19F NMR (376 MHz, CDCl$_3$) δ -63.0 (s, 3F), -110.5 (d, $J = 6.4$ Hz, 2F); IR (ATR) 2921, 1477, 1069, 918, 660; HRMS (EI) m/z calcd. C$_{13}$H$_{11}$F$_5$ [M]$^+$ 286.0775 found: [M]$^+$ 286.0764.
2,5-difluoro-3',5'-dimethyl-biphenyl (3uc)

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 µL, 0.50 mmol) and 1,4-difluorobenzene (513.9 µL, 5.00 mmol). Column chromatography (hexane 100%) afforded the title product as a colorless oil (19.6 mg, 18%).

1H NMR (400 MHz, CDCl$_3$): δ 7.15 - 7.05 (m, 5H) 7.00 - 6.95 (m, 1H), 2.39 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 158.8 (dd, $J = 242.0, 2.2$ Hz) 155.9 (dd, $J = 243.3, 2.4$ Hz) 138.3, 134.8, 130.8 (dd, $J = 16.0, 7.8$ Hz), 130.0, 126.8, (d, $J = 2.9$ Hz), 117.3 - 117.0 (m, 2C), 115.0 (dd, $J = 24.0, 8.6$ Hz), 21.5; 19F NMR (376 MHz, CDCl$_3$) δ –119.3 - –119.4 (m, 1F), –123.8 - –123.9 (m, 1F); IR (ATR) 2922, 1499. 1172, 851, 756; HRMS (EI) m/z calcd. C$_{14}$H$_{12}$F$_2$: [M]$^+$ 218.0902; found: [M]$^+$ 218.0900.

2,6-difluoro-3',5'-dimethyl-1,1'-biphenyl (3vc), 3,5-difluoro-3',5'-dimethylbiphenyl (3vca) and 2,4-difluoro-3',5'-dimethyl-1,1'-biphenyl (3vc$^{\text{**}}$)

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 µL, 0.50 mmol) and 1,3-difluorobenzene (490.5 µL, 5.0 mmol). Column chromatography (hexane, 100%) afforded a 1.00 : 0.63 : 0.06 mixture of 2,6-difluoro-3',5'-dimethyl-1,1'-biphenyl, 3,5-difluoro-3',5'-dimethylbiphenyl and 2,4-difluoro-3',5'-dimethyl-1,1'-biphenyl respectively as a colourless oil (13.1 mg, 12%). Milligrams (<3 mg) of 2,6-difluoro-3',5'-dimethyl-1,1'-biphenyl, 3,5-difluoro-3',5'-dimethylbiphenyl and 2,4-difluoro-3',5'-dimethyl-1,1'-biphenyl were isolated for analysis by column chromatography (hexane 100%).

1H NMR (500 MHz, (CD$_2$Cl)$_2$): δ 7.30 (tt, $J = 8.4, 6.3$ Hz, 1H), 7.07 (s, 1H), 7.06 (s, 2H), 7.02 - 6.96 (m, 2H), 2.37 (s, 6H); 1H 19F NMR (500 MHz, (CD$_2$Cl)$_2$): δ 7.30 (t, $J = 8.4, 6.3$ Hz, 1H), 7.07 (s, 1H), 7.06 (s, 2H), 6.99 (d, $J = 8.4, 2H$), 2.37 (s, 6H); 13C NMR (126 MHz, CD$_2$Cl$_2$): δ 160.5 (dd, $J = 247.1, 7.3$ Hz), 138.3, 130.3, 129.2 (d, $J = 10.0$ Hz), 129.1, 128.3, 119.1 (t, $J = 19.3$ Hz), 112.9 - 110.9 (m), 21.4; 19F NMR (471 MHz, CD$_2$Cl$_2$) δ –115.0 (t, $J = 6.8$ Hz, 2F); 19F 1H NMR (471 MHz, CD$_2$Cl$_2$) δ –115.0 (s, 2F); IR (ATR) 2921, 1468, 1230, 1013, 784; HRMS (EI) m/z calcd. C$_{14}$H$_{12}$F$_2$: [M]$^+$ 218.0902 found: [M]$^+$ 218.0907.
3,5-difluoro-3',5'-dimethylbiphenyl (3vc')

1H NMR (500 MHz, CD$_2$Cl$_2$): δ 7.18 (s, 2H), 7.15 - 7.11 (m, 2H), 7.05 (s, 1H), 6.70 (tt, $J = 9.0$, 2.3 Hz, 1H), 2.37 (s, 6H); 1H $\{^{19}$F$\}$ NMR (500 MHz, CD$_2$Cl$_2$): δ 7.18 (s, 2H), 7.13 (d, $J = 2.3$ Hz, 2H), 7.05 (s, 1H), 6.79 (t, $J = 2.3$ Hz, 1H), 2.37 (s, 6H); 13C NMR (126 MHz, CD$_2$Cl$_2$): δ 163.6 (dd, $J = 247.0$, 13.2 Hz), 145.3 (t, $J = 9.5$ Hz), 139.1, 139.0 (t, $J = 2.5$ Hz), 130.5, 125.1, 110.6 - 109.7 (m), 102.5 (t, $J = 25.6$ Hz), 21.5; 19F NMR (471 MHz, CD$_2$Cl$_2$) δ –110.8 (app t, $J = 8.6$ Hz, 2F). 19F $\{^1$H$\}$ NMR (471 MHz, CD$_2$Cl$_2$) δ –110.8 (s, 2F). IR (ATR) 3025, 1599, 1589, 1117, 987, 843; HRMS (EI) m/z calcd. C$_{14}$H$_{12}$F$_2$: [M]$^+$ 218.0902 found: [M]$^+$ 218.0901.
2,4-difluoro-3',5'-dimethyl-1,1'-biphenyl (3vc"")

1H NMR (500 MHz, CD$_2$Cl$_2$): δ 7.40 (td, $J = 8.7$, 6.5 Hz, 1H), 7.10 (s, 2H), 7.03 (s, 1H), 6.98 - 6.89 (m, 2H), 2.36 (s, 6H); 1H \{19F\} NMR (500 MHz, CD$_2$Cl$_2$): δ 7.40 (d, $J = 8.5$ Hz, 1H), 7.10 (s, 2H), 7.03 (s, 1H), 6.96 (dd, $J = 8.5$, 2.9 Hz, 1H), 6.92 (d, $J = 2.9$ Hz, 1H), 2.36 (s, 6H) 13C NMR (126 MHz, CD$_2$Cl$_2$): δ 162.5 (dd, $J = 247.8$, 11.9 Hz), 160.1 (dd, $J = 249.4$, 11.9 Hz), 138.5, 135.1, 132.0 (dd, $J = 9.5$, 5.1 Hz), 129.7, 127.0 (d, $J = 2.6$ Hz), 126.0 (dd, $J = 13.9$, 3.9 Hz), 111.8 (dd, $J = 21.0$, 3.9 Hz), 104.5 (dd, $J = 27.0$, 25.3, Hz), 21.4; 19F NMR (471 MHz, CD$_2$Cl$_2$) δ -112.7 - -112.8 (m, 1F), -114.0 - -114.1 (m, 1F); 19F \{1H\} NMR (471 MHz, CD$_2$Cl$_2$) δ -112.8 (d, $J = 7.4$ Hz, 1F), -114.1 (d, $J = 7.4$ Hz, 1F). IR (ATR) 2960, 1613, 1149, 990, 813; HRMS (EI) m/z calcd. C$_{14}$H$_{12}$F$_2$: [M]$^+$ 218.0902 found: [M]$^+$ 218.0908.
2-phenylbenzo[b]thiophene (4b)

The General Procedure 1 was applied with bromobenzene (52.7 μL, 0.50 mmol) and benzo[b]thiophene (201.3 mg, 1.50 mmol). Column chromatography (hexane 100%) afforded the title product as a white solid (29.4 mg, 28%).

Spectroscopic data matched those previously reported.18

\[
\begin{align*}
\text{1H NMR} & (400 \text{ MHz, CDCl}_3): \delta 7.84 (d, J = 7.8 \text{ Hz, 1H}), 7.78 (d, J = 7.6 \text{ Hz, 1H}), 7.73 (d, J = 7.8 \text{ Hz, 2H}), 7.55 (s, 1H), 7.43 (t, J = 7.6 \text{ Hz, 2H}), 7.37 - 7.30 (m, 3H); \\
\text{13C NMR} & (126 \text{ MHz, CDCl}_3): \delta 144.4, 140.8, 139.6, 134.4, 129.1, 128.4, 126.6, 124.6, 124.5, 123.7, 122.4, 119.6.
\end{align*}
\]

8-(3,5-dimethylphenyl)-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione (5c)

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol), caffeine (291.3 mg, 1.50 mmol) and pivalonitrile (554.3 μL, 5.00 mmol). Column chromatography (hexane/CH\textsubscript{2}Cl\textsubscript{2} 100:0 – 40:60) afforded the title product as a white solid (88.6 mg, 59%).

Spectroscopic data matched those previously reported.19
1H NMR (400 MHz, CDCl₃): δ 7.27 (s, 2H), 7.15 (s, 1H), 4.03 (s, 3H), 3.63 (s, 3H), 3.43 (s, 3H), 2.40 (s, 6H); 13C NMR (126 MHz, CDCl₃): δ 155.7, 152.7, 151.9, 148.4, 138.8, 132.2, 128.3, 127.0, 108.6, 34.0, 29.9, 28.1, 21.5.

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and benzo[h]quinoline (89.6 mg, 0.50 mmol). Column chromatography (Et₂O 100%) afforded the title product as a viscous yellow oil (137.4 mg, 97%).

Spectroscopic data matched those previously reported.²⁰

1H NMR (400 MHz, CDCl₃): δ 8.47 (dd, J = 4.2, 1.9 Hz, 1H), 8.09 (dd, J = 8.0, 1.8 Hz, 1H), 7.90 (dd, J = 7.9, 2.7 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.70 - 7.65 (m, 2H), 7.56 (dd, J = 7.3, 1.4 Hz, 1H), 7.33 (dd, J = 8.0, 4.3 Hz, 1H), 7.00 (app s, 3H), 2.36 (s, 6H); 13C NMR (126 MHz, CDCl₃): δ 147.0, 147.0, 146.3, 142.1, 136.7, 135.3, 135.2, 131.7, 129.2, 128.5, 127.9, 127.5, 127.3, 127.1, 126.7, 126.0, 121.2, 21.6.

2-(3',5'-dimethyl-[biphenyl]-2-yl)pyridine (7c) and 2-(3,3",5,5"-tetramethyl-[1,1':3',1"-terphenyl]-2'-yl)pyridine (7c')

The General Procedure 1 was applied with 1-bromo-3,5-dimethylbenzene (67.9 μL, 0.50 mmol) and 2-phenylpyridine (71.5 μL, 0.5 mmol). Column chromatography (hexane/CH₂Cl₂/AcOH 80:17:3) afforded 2-(3',5'-dimethyl-[biphenyl]-2-yl)pyridine as a clear oil (41.4 mg, 32%) and 2-(3,3",5,5"-tetramethyl-[1,1':3',1"-terphenyl]-2'-yl)pyridine as a white solid (54.5 mg, 30%).

2-(3',5'-dimethyl-[biphenyl]-2-yl)pyridine (7c)

1H NMR (400 MHz, CDCl₃): δ 8.64 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H), 7.71 - 7.67 (m, 1H), 7.46 - 7.37 (m, 4H), 7.10 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 6.91 (dt, J = 7.9, 1.0 Hz, 1H), 6.86 (s, 1H), 6.77 (s, 2H), 2.20 (s, 6H); 13C NMR (126 MHz, CDCl₃): δ 159.5, 149.4, 141.3, 140.9, 139.5, 137.5, 135.2, 130.5, 130.5, 128.5, 128.4, 127.7, 127.5, 125.5, 121.3, 21.3; IR (ATR) 2918, 1584, 1461, 746; HRMS (EI) m/z calcd. C₁₉H₁₇N: [M]+ 259.1356; found: [M]+ 259.1350.
2-(3,3″,5,5″-tetramethyl-[1,1′:3′,1″-terphenyl]-2′-yl) pyridine (7c′)

1H NMR (400 MHz, CDCl$_3$): δ 8.34 (ddd, $J = 4.9, 1.7, 1.0$ Hz, 1H), 7.50 - 7.41 (m, 3H), 7.33 (td, $J = 7.7, 1.8$ Hz, 1H), 6.93 - 6.88 (m, 2H), 6.77 (s, 2H), 6.72 (s, 4H), 2.15 (s, 12H); 13C NMR (126 MHz, CDCl$_3$): δ 159.5, 148.3, 142.0, 141.6, 138.6, 137.0, 134.8, 129.3, 128.1, 127.9, 127.7, 126.9, 120.8, 21.3; IR (ATR) 2916, 1587, 1454, 808, 707; m.p. 130 - 132 °C; HRMS (EI) m/z calcd. C$_{27}$H$_{25}$N: [M]$^+$ 363.1982; found: [M]$^+$ 363.1964.

2-(4-methoxyphenyl)-1-(pyrimidin-2-yl)-1H-indole (8a)

The General Procedure 1 was applied with 4-bromoanisole (62.6 µL, 0.50 mmol) and 1-(pyrimidin-2-yl)-1H-indole (8) 6 (97.6 mg, 0.5 mmol). Column chromatography (hexane/AcOH 90:10 – 30:70) afforded 2-(4-methoxyphenyl)-1-(pyrimidin-2-yl)-1H-indole (48.2 mg, 32%) as a colourless solid. Spectroscopic data matched those previously reported. 6

1H NMR (500 MHz, CDCl$_3$): δ 8.66 (d, $J = 4.8$ Hz, 2H), 8.08 (d, $J = 8.0$ Hz, 1H), 7.61 (d, $J = 7.5$ Hz, 1H), 7.26 - 7.19 (m, 4H), 7.08 (t, $J = 4.8$ Hz, 1H), 6.82 (d, $J = 8.4$ Hz, 2H), 6.72 (s, 1H), 3.79 (s, 3H); 13C NMR (126 MHz, CDCl$_3$): δ 159.0, 158.4, 158.3, 140.4, 138.1, 129.5, 129.5, 126.6, 123.3, 122.2, 120.6, 117.7, 113.8, 112.8, 107.4, 55.4.

1-(4′-methoxy-[biphenyl]-2-yl)-1H-pyrazole (9a) and 1-(4,4″-dimethoxy-[terphenyl]-2′-yl)-1H-pyrazole (9a′)

The General Procedure 1 was applied with 4-bromoanisole (62.6 µL, 0.50 mmol) and 1-phenylpyrazole (66.1 µL, 0.5 mmol). Column chromatography (hexane/AcOH 90:10 – 40:60) afforded 1-(4′-methoxy-[biphenyl]-2-yl)-1H-pyrazole as a clear oil (38.8 mg, 31%) and 2-(4,4″-dimethoxy-[terphenyl]-2′-yl)-1H-pyrazole as a white solid (60.6 mg, 34%).

1-(4′-methoxy-[biphenyl]-2-yl)-1H-pyrazole (9a)

Spectroscopic data matched those previously reported. 21

1H NMR (500 MHz, CDCl$_3$): δ 7.54 (s, 1H), 7.49 - 7.48 (m, 1H), 7.35 - 7.33
(m, 3H), 7.00 (s, 1H), 6.92 (d, J = 7.9 Hz, 2H), 6.71 (d, J = 7.9 Hz, 2H), 6.10 (s, 1H), 3.68 (s, 3H); 1C NMR (126 MHz, CDCl$_3$): δ 159.1, 140.2, 138.6, 136.5, 131.4, 131.0, 130.9, 129.7, 128.3, 128.0, 126.7, 114.0, 106.4, 55.2.

1-(4,4''-dimethoxy-[terphenyl]-2'-yl)-1H-pyrazole (9a')

Spectroscopic data matched those previously reported.22

1H NMR (500 MHz, CDCl$_3$): δ 7.47 (t, J = 7.6 Hz, 1H), 7.40 (s, 1H), 7.38 (d, J = 4.4 Hz, 2H), 7.05 (s, 1H), 6.98 (d, J = 7.5 Hz, 4H), 6.72 (d, J = 7.5 Hz, 4H), 6.04 (app d, J = 1.5 Hz, 1H), 3.73 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 158.9, 140.2, 139.5, 136.4, 132.5, 131.3, 129.8, 129.5, 129.2, 113.0, 106.2, 55.2.

The General Procedure 1 was applied with 4-bromoanisole (62.6 μL, 0.50 mmol) and 2-phenoxypyridine (10) (85.6 mg, 0.5 mmol). Column chromatography (hexane/AcOH 90:10 – 40:60) afforded 2-((4'-methoxy-[biphenyl]-2'-yl)oxy)pyridine (59.6 mg, 43%) and 2-((4,4''-dimethoxy-[terphenyl]-2'-yl)oxy)pyridine (40.3 mg, 21%) both as white solids.

Spectroscopic data matched those previously reported.23

2-((4'-methoxy-[biphenyl]-2'-yl)oxy)pyridine (10a)

1H NMR (500 MHz, CDCl$_3$): δ 8.14 (d, J = 4.6 Hz, 1H), 7.56 (t, J = 7.7 Hz, 1H), 7.45 (t, J = 9.1 Hz, 3H), 7.36, (t, J = 7.5 Hz, 1H), 7.29, (t, J = 7.4 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 6.90 - 6.85 (m, 3H), 6.76 (d, J = 8.2 Hz, 1H), 3.78 (s, 3H); 13C NMR (126 MHz, CDCl$_3$): δ 163.9, 158.9, 151.0, 134.5, 131.2, 130.3 (2C), 128.3, 125.5, 122.8, 118.1, 113.6, 111.3, 111.3, 55.3.

2-((4,4''-dimethoxy-[terphenyl]-2'-yl)oxy)pyridine (10a')

1H NMR (500 MHz, CDCl$_3$): δ 7.92 (d, J = 3.9 Hz, 1H), 7.42 - 7.32 (m, 8H), 6.81 (d, J = 8.0 Hz, 4H), 6.66 (t, J = 5.8 Hz, 1H), 6.49 (d, J = 8.0 Hz, 1H), 3.76 (s, 6H); 13C NMR (126 MHz, CDCl$_3$): δ 163.4, 158.8, 147.9, 147.3, 138.7, 135.9, 130.8, 130.4, 130.1, 125.9, 117.3, 113.5, 110.8.
2-([1,1'-biphenyl]-2-yl)-4,5-dihydrooxazole (11b) and 2-([1,1':3',1"-terphenyl]-2'-yl)-4,5-dihydrooxazole (11b')

The General Procedure 1 was applied with bromobenzene (52.5 μL, 0.50 mmol) and 2-phenyl-2-oxazoline (65.8 μL, 0.5 mmol). 10% yield of 2-([1,1'-biphenyl]-2-yl)-4,5-dihydrooxazole evaluated by 1H-NMR. Column chromatography (hexane/AcOH 90:20 – 35:65) afforded 2-([1,1':3',1"-terphenyl]-2'-yl)-4,5-dihydrooxazole as a white solid (54.9 mg, 36%).

Spectroscopic data matched those previously reported.24

2-([1,1':3',1"-terphenyl]-2'-yl)-4,5-dihydrooxazole (11b')

1H NMR (500 MHz, CDCl₃): δ 7.53 (t, J = 7.6 Hz, 1H), 7.48 (d, J = 7.7 Hz, 4H), 7.40 (app t, J = 7.8 Hz, 6H), 7.35 (app t, J = 7.2 Hz, 2H), 3.90 (t, J = 9.4 Hz, 2H), 3.60 (t, J = 9.4 Hz, 2H); 13C NMR (126 MHz, CDCl₃): δ 164.1, 142.4, 141.0, 129.7, 128.9, 128.7, 127.6, 127.3, 67.4, 55.2.

5-([biphenyl]-2-yl)-IH-tetrazol-1-yl)(phenyl)methanone (12b) and 5-([terphenyl]-2'-yl)-IH-tetrazol-1-yl)(phenyl)methanone (12b')

The General Procedure 1 was applied with bromobenzene (52.5 μL, 0.50 mmol) and 1-benzyl-5-phenyl-IH-tetrazole (12)5 (118.1 mg, 0.5 mmol). Column chromatography (hexane/AcOH 90:20 – 40:60) afforded 5-([biphenyl]-2-yl)-1H-tetrazol-1-yl)(phenyl)methanone (96.8 mg, 62%) and 5-([terphenyl]-2'-yl)-1H-tetrazol-1-yl)(phenyl)methanone (5.8 mg, 3%) both as white solids.

Spectroscopic data matched those previously reported.25

5-([biphenyl]-2-yl)-IH-tetrazol-1-yl)(phenyl)methanone (12b)

1H NMR (500 MHz, CDCl₃): δ 7.62 (t, J = 7.5 Hz, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.29 - 7.26 (m, 3H), 7.19 - 7.11 (m, 5H), 6.74 (d, J = 7.6 Hz, 2H), 4.76 (s, 2H); 13C NMR (126 MHz, CDCl₃): δ 154.7, 141.6, 138.8, 133.1, 131.6, 131.2, 130.3, 129.0, 128.7, 128.6, 128.6, 128.1, 128.1, 127.8 122.7, 50.8.
(5-[terphenyl]-2'-yl)-1H-tetrazol-1-yl)(phenyl)methanone (12b')

\[\text{H NMR (500 MHz, CDCl}_3\text{): } \delta 7.70 (t, J = 7.7 Hz, 1H), 7.50 (d, J = 7.7 Hz, 2H), 7.24 - 7.13 (m, 9H), 6.97 (d, J = 7.5 Hz, 4H), 6.69 (d, J = 7.5 Hz, 2H), 4.70 (s, 2H); \]
\[\text{C NMR (126 MHz, CDCl}_3\text{): } \delta 153.1, 143.7, 139.1, 132.8, 131.3, 129.7, 129.1, 128.9, 128.4, 127.9, 121.5, 50.8. \]

Experimental results for direct arylation of 1r with Ru, Pd and Cu catalysts

entry	[metal]	3rc (%)	3rc' (%)	3rc'' (%)	ratio (3rc : 3rc' : 3rc'')
1\(^a\)	[Ru]	55	-	-	1 : 0 : 0
2\(^b\)	[Pd]	39	13	17	1 : 0.33 : 0.44
3\(^c\)	[Cu]	10	5	1	1 : 0.5 : 0.1
4\(^d\)	[Cu]	<1	2	-	<0.5 : 1 : 0

\(^a\) Reaction conditions: C5 (15.5 mg, 0.020 mmol, 4 mol %), 1r (325.2 μL, 2.50 mmol), 2c (67.9 μL, 0.50 mmol), (NMe\(_4\))OPiv (35.1 mg, 0.20 mmol), (NMe\(_4\))4-fluorobenzoate (37.3 mg, 0.175 mmol), (NMe\(_4\))OC(CF\(_3\))\(_3\) (386.5 mg, 1.250 mmol) and pivalonitrile (166.3 μL, 1.50 mmol) were stirred under N\(_2\) in a closed vessel at 115 °C for 16 h; yield refers to isolated material (see General Procedure 1).

\(^b\) Reaction conditions: Pd(OAc)\(_2\) (2.2 mg, 0.01 mmol, 5 mol %), P\(_t\)BuMe•HBF\(_4\) (5.0 mg, 0.02 mmol), 1r (78.0 μL, 0.60 mmol), 2c (27.2 μL, 0.20 mmol), K\(_2\)CO\(_3\) (30.4 mg, 0.22 mmol) and DMA (78.0 μL) were stirred under N\(_2\) in a closed vessel at 120 °C for 12 h; yield are evaluated by quantitative \(^{19}\)F-NMR using C\(_6\)F\(_6\) (11.5 μL, 0.10 mmol, 0.5 equiv) as internal standard (see ref 8).

\(^c\) Reaction conditions: CuI (3.8 mg, 0.02 mmol, 10 mol %), 1,10-phenanthroline (3.6 mg, 0.02 mmol), 1r (78.0 μL, 0.60 mmol), 5-iodo-m-xylene (28.9 μL, 0.20 mmol), LiO'Bu (32.0 mg, 0.40 mmol) and DMF (200.0 μL) were stirred under N\(_2\) in a closed vessel at 130 °C for 24 h; yield are evaluated by quantitative \(^{19}\)F-NMR using C\(_6\)F\(_6\) (11.5 μL, 0.10 mmol, 0.5 equiv) as internal standard (see ref 26).

\(^d\) Reaction conditions: CuI (3.8 mg, 0.02 mmol, 10 mol %), 1,10-phenanthroline (3.6 mg, 0.02 mmol), 1r (78.0 μL, 0.60 mmol), 5-iodo-m-xylene (28.9 μL, 0.20 mmol), K\(_3\)PO\(_4\) (106.1 mg, 0.50 mmol) and DMF (120.0 μL) were stirred under N\(_2\) in a closed vessel at 130 °C for 24 h; yield are evaluated by quantitative \(^{19}\)F-NMR using C\(_6\)F\(_6\) (11.5 μL, 0.10 mmol, 0.5 equiv) as internal standard (see ref 26).

Table S12. Arylation of 1r with Ru, Pd or Cu displaying different regioselectivity.
19F-NMR expansion of the reaction illustrated in Table S12 in: 1) entry 2 [Pd]19; 1#) entry 2 [Pd]19, 19F {1H} NMR; 2) entry 3 [Cu]3; 3) entry 4 [Cu]3 displaying 3rc, 3rc', 3rc'' with relative integrations with respect to the internal standard C6F6.

Characterization of biaryls 3rc' and 3rc''

2,3-difluoro-3',5'-dimethyl-6-(trifluoromethyl)-1,1'-biphenyl (3rc')

Milligrams were isolated for characterization by column chromatography (hexane 100%).

1H NMR (500 MHz, CD2Cl2): δ 7.54 (ddd, J = 9.2, 4.8, 1.9, 1H), 7.30 (app. q, J = 8.4 Hz, 1H) 7.11 (s, 1H), 6.91 (s, 2H), 2.36 (s, 6H); 1H {19F} NMR (500 MHz, CD2Cl2): 7.54 (d, J = 8.9 Hz, 1H), 7.30 (d, J = 8.9 Hz, 1H), 7.11 (s, 1H), 6.91 (s, 2H), 2.36 (s, 6H); 13C NMR (126 MHz, CDCl3): δ 152.6 (dd, J = 255.8, 13.7 Hz), 148.6 (dd, J = 247.0, 12.7 Hz), 137.6, 132.3 (d, J = 16.8 Hz), 130.6, 130.6, 127.4, 126.5 - 125.8 (m), 124.3 (only 1 peak of quartet observed for -CF3), 122.3 - 122.1 (m), 116.0 (d, J = 17.8 Hz), 21.4; 19F NMR (471 MHz, CDCl3) δ −57.0 (s, 3F), −131.2 (dm, J = 24.7 Hz, 1F); −135.6 (dd, J = 22.5, 7.3 Hz, 1F); 19F NMR (471 MHz, CD2Cl2) δ −57.3 (s, 3F), −132.1 (dm, J = 22.0 Hz, 1F), 136.7 (dd, J = 22.3, 7.3 Hz, 1F); 19F {1H} NMR (471 MHz, CD2Cl2) δ −57.3 (s, 3F), −132.1 (d, J = 22.0 Hz, 1F), 136.7 (dd, J = 22.0 Hz, 1F); IR (ATR) 2920, 1322, 1166, 1135; HRMS (EI) m/z calcd. C15H11F5: [M]+ 286.0775; found: [M]+ 286.0782.
2',3'-difluoro-3",5","5"-tetramethyl-5'-((trifluoromethyl)-1,1':4',1"-terphenyl (3rc"'))

Milligrams were isolated for characterization by column chromatography (hexane 100%).

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.61 (d, \(J = 6.3\) Hz, 1H), 7.20 (s, 2H), 7.10 (app s, 2H), 6.95 (s, 2H), 2.42 (s, 6H), 2.38 (s, 6H); \(^1\)H \{\(^{19}\)F\}

NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.60 (s, 1H), 7.20 (s, 2H), 7.12 - 7.07 (m, 2H), 6.95 (s, 2H), 2.41 (s, 6H), 2.38 (s, 6H)

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)): \(\delta\) 149.8 (dd, \(J = 256.2, 14.5\) Hz), 144.0 (dd, \(J = 246.8, 13.5\) Hz), 138.6, 137.6, 133.5, 130.8, 130.6 (d, \(J = 11.3\) Hz), 130.3, 130.2 (d, \(J = 11.5\) Hz), 127.5, 126.8, 126.8, 125.9 - 125.1 (m), 123.3 (qd, \(J = 274.0, 3.2\) Hz), 122.9 - 122.8 (m), 21.5, 21.5; \(^{19}\)F NMR (471 MHz, CDCl\(_3\)) \(\delta\) −56.9 (s, 3F), −135.1 (d, \(J = 22.0\) Hz, 1F), −136.1 (dd, \(J = 22.0, 6.0\) Hz, 1F); \(^{19}\)F \{\(^1\)H\} NMR (471 MHz, CDCl\(_3\)) \(\delta\) −56.9 (s, 3F), −135.2 (d, \(J = 22.0\) Hz, 1F), −136.3 (d, \(J = 22.0\) Hz, 1F); IR(ATR) 2920, 1364, 1294, 1132, 848; m.p. 185 - 187 °C; HRMS (EI) m/z calcd. C\(_{23}\)H\(_{19}\)F\(_5\): [M]\(^+\) 390.1393 found: [M]\(^+\) 390.1394.
Evidence for the formation of a pivalate-containing Ru(II) species

Figure S9.

1) 1H-NMR of (NMe)$_4$OPiv in acetonene-d$_6$; 2) 1H-NMR of tBuCN in acetonene-d$_6$; 3) 1H-NMR of Ru(tBuCN)$_6$][BF$_4$)$_2$ C5 in acetonene-d$_6$; 4) 1H-NMR of 10.0 mg of Ru(tBuCN)$_6$][BF$_4$)$_2$ C5 in 0.5 mL of acetonene-d$_6$ after 30 min at 50 °C; 5) 1H-NMR of 10.0 mg of Ru(tBuCN)$_6$][BF$_4$)$_2$ C5 (0.013 mmol, 1.0 equiv) and 11.3 mg of (NMe)$_4$OPiv (0.052 mmol, 4.0 equiv) in 0.5 mL of acetonene-d$_6$ after 30 min at 50 °C. All the samples were prepared in glove box using Young’s type NMR tubes.
Figure S10.

1) 1H-NMR of (NMe)$_4$OPiv in CD$_2$Cl$_2$; 2) 1H-NMR of tBuCN in CD$_2$Cl$_2$; 3) 1H-NMR of Ru(tBuCN)$_6$][BF$_4$)$_2$ C5 in CD$_2$Cl$_2$; 4) 1H-NMR of 10.0 mg of Ru(tBuCN)$_6$][BF$_4$)$_2$ C5 in 0.5 mL of CD$_2$Cl$_2$ after 30 min at 50 °C; 5) 1H-NMR of 10.0 mg of Ru(tBuCN)$_6$][BF$_4$)$_2$ C5 (0.013 mmol, 1.0 equiv) and 11.3 mg of (NMe)$_4$OPiv (0.052 mmol, 4.0 equiv) in 0.5 mL of CD$_2$Cl$_2$ after 30 min at 50 °C. All the samples were prepared in glove box using Young’s type NMR tubes.
Computational methods

All the calculations were performed at the DFT level with Gaussian 09, revision B.0127 using the Becke three-parameter hybrid functional28 with Lee, Yang and Parr correlation term.29 Stuttgart/Dresden base and ECPs for transition metals30 (Pd or Ru) and 6-31G basis set with polarization functions for all other atoms31 (C, H, O, N, F and P). Stationary points were characterized as minima or saddle points by frequencies analysis, representative transition states were confirmed to correspond to the desired C–H activation step by optimization through the internal reaction coordinate to starting materials and products.32 Dispersion corrections where calculated from single point calculations at the optimized geometries. Distortion-interaction analysis was performed by single point calculations on fragments of the corresponding optimized transition states. Distortion of the starting complex ($\Delta E_{\text{dist(M)}}$) corresponds to the difference between the energy of the fragment containing the original metal complex in the TS geometry and that of its optimized (minimum) geometry. Distortion of the fluoroarene ($\Delta E_{\text{dist(ArH)}}$) is the difference between the energy of the arene fragment in the TS geometry and that of the optimized arene. $\Delta E_{\text{dist(ArH)}}$ could be further deconvoluted in C–H elongation energy ($\Delta E_{\text{elon(ArH)}}$) and bending energy ($\Delta E_{\text{bend(ArH)}}$), which correspond, respectively, to the energy cost of elongating the C–H bond to the distance it displays in the TS and the remaining cost of distortion, of which the main contribution is bending the C–H bond out of plane. Finally, interaction energy is the difference between the TS energy and the metal and arene individual fragments in the TS geometry.

Barriers for C–H activation of pentafluorobenzene with Ru complexes

![General scheme of the Ru-mediated CMD C–H activation](image)

Figure S11.

General scheme of the Ru-mediated CMD C–H activation. M: starting material, TS: transition state, P: product.
Figure S12.
Optimized geometries of calculated CMD-type transition states.
M	TS geometry	TS	P		
Ru(η⁶-C₆H₆)(OAc)₂ (M1)	CMD	18.2	29.5	7.2	7.2
	external base	32.7	44.6		
[Ru(κ²-OAc)(MeCN)₄]⁺ (M2)	CMD	15.8	28.8	-1.8	12.1
	external base*	38.3	-		
Ru(κ²-OAc)₂(MeCN)₂ (M4)	cis-mer	9.8	21.1	-3.7	8.6
	trans-mer	11.2	23.0		
	cis-fac	12.2	23.9	-1.0	10.9
Ru(κ²-OAc)(κ¹-OAc)(MeCN)₃ (M5)	fac-cis	13.8	24.4	1.3	13.4
	mer-cis	13.2	23.4		
	mer-trans	11.9	22.2	-0.5	10.0
Ru(κ²-OAc)(OC(CF₃))₃(MeCN)₃ (M6)	fac-cis	14.4	25.0	2.0	12.8
	mer-cis	13.8	24.0		
	mer-trans	12.6	23.2	-3.4	7.2

Table S13. Energies in kcal/mol (relative to starting materials) of TS and products for the different Ru model complexes. * Not fully optimized structure.
Barriers for C–H activation of 3,4-difluorobenzotrifluoride with Ru and Pd complexes

Figure S13.
Optimized geometries of calculated structures.

\(M \)	Regioisomer	\(\Delta E^\dagger \)	\(\Delta G^\dagger \)	\(\Delta G^\dagger \) (disp)	\(\Delta G^\dagger \) (disp+solv)
\([\text{Ru}(\kappa_2^2\text{-OAc})(\text{MeCN})_4]^+\) (M2-Ru)	\(a \)	26.9	41.9	22.0	
	\(b \)	29.9	44.8	25.5	
	\(c \)	25.0	38.7	21.2	
\([\text{Pd}(\kappa_2^2\text{-CO}_3\text{H})(\text{Ph})(\text{PMe}_3)]\) (M2-Pd)	\(a \)	19.7	31.4	12.7	
	\(b \)	24.6	35.7	16.8	
	\(c \)	23.4	33.8	18.5	
\([\text{Ru}(\kappa_2^2\text{-OPiv})(\text{tBuCN})_4]^+\) (M3-Ru)	\(a \)	24.8	41.5	16.5	19.2
	\(b \)	28.2	44.2	20.4	21.9
	\(c \)	22.3	38.0	-	18.3
\([\text{Pd}(\kappa_2^2\text{-CO}_3\text{H})(\text{Ph})(\text{PMeBu}_2)]\) (M3-Pd)	\(a \)	21.0	32.8	12.0	16.0
	\(b \)	26.3	37.9	17.6	22.2
	\(c \)	24.7	34.9	17.2	21.4

Table S14. Energies in kcal/mol (relative to starting materials) of TS for the different catalyst models. \(\Delta G^\dagger \) (disp): Activation Gibbs free energy with dispersion corrections. \(\Delta G^\dagger \) (disp+solv): Activation Gibbs free energy with dispersion and solvation corrections.
1H NMR, 19F NMR and 13C NMR spectra

Ru1a

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
Ru1b

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
\(^{19}\text{F NMR (CDCl}_3\)}\)
Ru1c

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
Ru(OPiv)$_2$(p-cymene) (C2)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
Ru(OBz)$_2$(p-cymene) (C3)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
Ru(0Piv)$_2$(C$_6$Me$_6$) (C4)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
[Ru(15BuCN)\textsubscript{6}]BF\textsubscript{4})_2 (C5)

1H NMR ((CD\textsubscript{3})\textsubscript{2}CO)

13C NMR ((CD\textsubscript{3})\textsubscript{2}CO)
19F NMR ((CD$_3$)$_2$CO)
Ru2a

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
Ru2c

1H NMR (CD$_2$Cl$_2$)

13C NMR (CD$_2$Cl$_2$)
19F NMR (CD$_2$Cl$_2$)
tetramethylammonium perfluoro-tert-butyl alkoxide

1H NMR (D$_{2}$O)

13C NMR (D$_{2}$O)
19F NMR (D$_2$O)
tetramethylammonium pivalate

1H NMR (D$_2$O)

13C NMR (D$_2$O)
tetramethylammonium 4-fluorobenzoate

^{1}H NMR (D$_2$O)

^{13}C NMR (D$_2$O)
19F NMR (D$_2$O)
3-butoxy-1,2,4,5-tetrafluorobenzene (1a)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
1-butoxy-2,4,5-trifluorobenzene (1o)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl_3)
butyl(2,3,5,6-tetrafluorophenyl)sulfane (1h)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
3-butoxy-$1,2,4,5$-tetrafluorobenzene-6-d (d_1-$1a$)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
$^{19}\text{F NMR (CDCl}_3\text{)}$
N-(2,3,5,6-tetrafluorophenyl)pivalamide (1f)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
$^{19}\text{F NMR (CDCl}_3\text{)}$
tert-butyl 2,3,5,6-tetrafluorobenzoate (1i)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
4-butoxy-2,3,5,6-tetrafluoro-4'-methoxy-1,1'-biphenyl (3aa).

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
4-butoxy-2,3,5,6-tetrafluoro-1,1'-biphenyl (3ab)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,3,4,5,6-pentafluorobiphenyl (3bb)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
3',5’-dimethyl-2,3,4,5,6-pentafluorobiphenyl (3bc)

^{1}H NMR (CDCl$_3$)

![NMR spectrum for 3bc](image)

^{13}C NMR (CDCl$_3$)

![NMR spectrum for 3bc](image)

S120
19F NMR (CDCl$_3$)
2,3,4,5,6-Pentafluoro-4'-methylbiphenyl (3bd)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
$^{19}\text{F NMR (CDCl}_3\text{)}$
2,3,4,5,6-pentafluoro-2'-methylbiphenyl (3be)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
2,3,4,5,6-pentafluoro-4’-methoxybiphenyl (3ba)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
3'-Methoxy-2,3,4,5,6-pentafluorobiphenyl (3bf)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
$^{19}\text{F NMR (CDCl}_3\text{)}$
2,3,4,5,6-Pentafluoro-2'-methoxybiphenyl (3bg)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,3,4,4',5,6-Hexafluorobiphenyl (3bh)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,2',3,4,5,6-hexafluorobiphenyl (3bi)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,3,4,5,6-Pentafluoro-3'-(trifluoromethyl)biphenyl (3bj)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,3,4,5,6-Pentafluoro-4'-trifluoromethylbiphenyl (3bk)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
Methyl(2',3',4',5',6'-pentafluoro-[biphenyl]-4-yl)sulfane (3bl)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
4'-dimethylamino-2,3,4,5,6-pentafluorobiphenyl (3bm)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
$^{19}\text{F NMR (CDCl}_3\text{)}$
$1-(2',3',4',5',6'$-pentafluoro-biphenyl-4-yl)ethanone (3bn)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
Methyl 2',3',4',5',6'-pentafluorobiphenyl-4-carboxylate (3bo)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2-(2',3',4',5',6'-pentafluoro-[1,1'-biphenyl]-4-yl)-1,3-dioxolane (3bp)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,3,4,5,6-pentafluoro-4'-iodo-3',5'-dimethyl-1,1'-biphenyl (3bq)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,3,4,5,6-pentafluoro-4'-vinylbiphenyl (3br)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,3,4,5,6-pentafluoro-4'-styrylbiphenyl (3bs)

1H NMR (CDCl$_3$)

13C NMR ((CD$_3$)$_2$CO)
^{19}F NMR (CDCl$_3$)
2-Pentafluorophenylnaphthalene (3bt)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
1-Methyl-5-(perfluorophenyl)-1H-indole (3bu)

1H NMR (CDCl$_3$)

![1H NMR spectrum](image)

13C NMR (CDCl$_3$)

![13C NMR spectrum](image)
19F NMR (CDCl$_3$)
2',3',4',5',6'-pentafluoro-biphenyl-4-carbonitrile (3bv)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,3,4,5,6-pentafluoro-2'-phenoxy-1,1'-biphenyl (3ba')

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2'-benzyl-2,3,4,5,6-pentafluoro-1,1'-biphenyl (3bb')

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
$^{19}\text{F NMR (CDCl}_3\text{)}$
2'- (benzyloxy) - 2, 3, 4, 5, 6-pentafluoro-1, 1'- biphenyl (3bc')

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,3,5,6-tetrafluoro-3',5'-dimethylbiphenyl (3cc)

\(^1\)H NMR (CDCl\(_3\))

\(^{13}\)C NMR (CDCl\(_3\))
19F NMR (CDCl$_3$)
$2',3',5',6'$-tetrafluoro-$3'',5,5''$-tetramethyl-$1',4',1''$-terphenyl ($3cc'$)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
$^{19}\text{F NMR (CDCl}_3\text{)}$
2,3,5,6-tetrafluoro-3',4,5'-trimethylbiphenyl (3dc)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,3,5,6-tetrafluoro-3',5'-dimethyl-4-(trifluoromethyl)biphenyl (3ec)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
N-(2,3,5,6-tetrafluoro-3',5'-dimethyl-biphenyl-4-yl)pivalamide (3fc)

1H NMR (CDCl$_3$)

1C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
$2,3,5,6$-tetrafluoro-$N,N,3',5'$-tetramethyl--biphenyl-4-amine (3gc)

$^1\text{H NMR (CDCl}_3)$

$^1\text{C NMR (CDCl}_3)$
19F NMR (CDCl$_3$)
butyl(2,3,5,6-tetrafluoro-3',5'-dimethyl-[1,1'-biphenyl]-4-yl)sulfane (3hc)

1H NMR (CDCl$_3$)

![NMR spectrum of 3hc](image)

13C NMR (CDCl$_3$)

![NMR spectrum of 3hc](image)
$^{19}\text{F NMR (CDCl}_3\text{)}$
tert-butyl 2,3,5,6-tetrafluoro-3',5'-dimethyl-biphenyl-4-carboxylate (3ic)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,3,4,6-tetrafluoro-3',5'-dimethylbiphenyl (3jc)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
2,3,4,5-tetrafluoro-3',5'-dimethylbiphenyl (3kc)

\(^1\)H NMR (CDCl\(_3\))

\(^{13}\)C NMR (CDCl\(_3\))
19F NMR (CDCl$_3$)
2,4,6-trifluoro-3',5'-dimethylbiphenyl (3ic)

\(^1\)H NMR (CDCl\(_3\))

\(^{13}\)C NMR (CDCl\(_3\))
19F NMR (CDCl$_3$)
2,3,6-trifluoro-3',5'-dimethylbiphenyl (3mc)

1H NMR (CD$_2$Cl$_2$)

1H {^{19}F} NMR (CD$_2$Cl$_2$)
13C NMR (CD$_2$Cl$_2$)

19F NMR (CD$_2$Cl$_2$)
$^{19}\text{F} \{^1\text{H}\} \text{ NMR (CD}_2\text{Cl}_2\}$
$2,3,5$-trifluoro-$3',5'$-dimethylbiphenyl \((3mc')\) and $2',3',5'$-trifluoro-$3''',5'''$-tetramethylterphenyl \((3mc'')\)

^1H NMR (CD$_2$Cl$_2$)

$^1\text{H} \{^{19}\text{F}\}$ NMR (CD$_2$Cl$_2$)
13C NMR (CD$_2$Cl$_2$)

19F NMR (CD$_2$Cl$_2$)
$^{19}\text{F} \{^1\text{H}\} \text{ NMR (CD}_2\text{Cl}_2\)$
2',3',5'-trifluoro-3'',5,5''-tetramethylterphenyl (3mc''')

1H NMR (CD$_2$Cl$_2$)

1H 19F NMR (CD$_2$Cl$_2$)
13C NMR (CD$_2$Cl$_2$)

19F NMR (CD$_2$Cl$_2$)
\(^{19}\text{F} \{^{1}\text{H}\} \text{ NMR (CD}_2\text{Cl}_2\)
2,3,4-trifluoro-3',5'-dimethylbiphenyl (3nc)

1H NMR (CDCl$_3$)

1H $\{^{19}F\}$ NMR (CDCl$_3$)
13C NMR (CDCl$_3$)

19F NMR (CDCl$_3$)
19F NMR 1H (CDCl$_3$)
3,4,5-trifluoro-3',5'-dimethylbiphenyl (3nc')

1H NMR (CD$_2$Cl$_2$)

1H 19F NMR (CD$_2$Cl$_2$)
$^{13}\text{C NMR (CD}_2\text{Cl}_2)$

$^{19}\text{F NMR (CD}_2\text{Cl}_2)$
$^{19}\text{F} \{^{1}\text{H}\} \text{ NMR (CD}_2\text{Cl}_2\text{)}$
3-butoxy-2,5,6-trifluoro-3',5'-dimethyl-1,1'-biphenyl (3oc)

^1H NMR (CDCl$_3$)

$^1\text{H} \{^{19}\text{F}\}$ NMR (CDCl$_3$)
13C NMR (CDCl$_3$)

19F NMR (CDCl$_3$)
19F 1H NMR (CDCl$_3$)
2,3,6-trifluoro-3',5'-dimethyl-4-(trifluoromethyl)-biphenyl (3pc)

1H NMR (CDCl$_3$)

1H 19F NMR (CDCl$_3$)

S208
\(^{13}\)C NMR (CDCl\(_3\))

\(^{19}\)F NMR (CDCl\(_3\))
19F NMR $\{^1H\}$ (CDCl$_3$)
2,3,4-trifluoro-3',5'-dimethyl-5-(trifluoromethyl)-biphenyl (3qc)

1H NMR (CDCl$_3$)

1H {${^{19}}$F} NMR (CDCl$_3$)
13C NMR (CDCl$_3$)

19F NMR (CDCl$_3$)
19F \{¹H\} NMR (CDCl₃)
2,3-difluoro-3',5'-dimethyl-6-(trifluoromethyl)-biphenyl (3rc)

1H NMR (CDCl$_3$)

1H 19F NMR (CDCl$_3$)

1H 19F NMR (CDCl$_3$)
13C NMR (CDCl$_3$)

19F NMR (CDCl$_3$)
$^{19}\text{F} \ { }^{1}\text{H} \ \text{NMR (CDCl}_3\text{)}$
2,3-difluoro-3’,5’-dimethyl-4-(trifluoromethyl)-biphenyl (3sc) and 3,4-difluoro-3’,5’-dimethyl-5-(trifluoromethyl)-biphenyl (3sc’)

1H NMR (CDCl$_3$)

1H 19F NMR (CDCl$_3$)

1H 19F NMR (CDCl$_3$)
13C NMR (CDCl$_3$)

19F NMR (CDCl$_3$)
19F {1H} NMR (CDCl$_3$)
2,6-difluoro-3',5'-dimethyl-4-(trifluoromethyl)-1,1'-biphenyl (3tc)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,5-difluoro-3',5'-dimethyl-biphenyl (3uc)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
19F NMR (CDCl$_3$)
2,6-difluoro-3',5'-dimethyl-1,1'-biphenyl (3vc)

1H NMR (CD$_2$Cl$_2$)

1H NMR 1F (CD$_2$Cl$_2$)
13C NMR (CD$_2$Cl$_2$)

19F NMR (CD$_2$Cl$_2$)
19F 1H NMR (CD$_2$Cl$_2$)
3,5-difluoro-3',5'-dimethyl-1,1'-biphenyl (3vc')

1H NMR (CD$_2$Cl$_2$)

1H {19F} NMR (CD$_2$Cl$_2$)
13C NMR (CD$_2$Cl$_2$)

19F NMR (CD$_2$Cl$_2$)
$^{19}\text{F} \{^1\text{H}\} \text{ NMR (CD}_2\text{Cl}_2\}$
2,4-difluoro-3',5'-dimethyl-1,1'-biphenyl (3vc'')

1H NMR (CD$_2$Cl$_2$)

1H NMR 19F (CD$_2$Cl$_2$)
13C NMR (CD$_2$Cl$_2$)

19F NMR (CD$_2$Cl$_2$)
19F NMR $\{^1H\}$ (CD$_2$Cl$_2$)
2-phenylbenzo[b]thiophene (4b)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
8-(3,5-dimethylphenyl)-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione (5c)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
10-(3,5-Dimethylphenyl)benzo[h]quinolone (6c)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
2-(3',5'-dimethyl-[biphenyl]-2-yl)pyridine (7c)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
2-(3",5",5"-tetramethyl-[1,1':3',1''-terphenyl]-2'-yl)pyridine (7c')

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)

S237
2-(4-methoxyphenyl)-1-(pyrimidin-2-yl)-1H-indole (8a)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
1-(4′-methoxy-[biphenyl]-2-yl)-1H-pyrazole (9a)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
1-(4,4''-dimethoxy-[terphenyl]-2'-yl)-1H-pyrazole (9a')

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
2-((4'-methoxy-[biphenyl]-2-yl)oxy)pyridine (10a)

1H NMR (CDCl$_3$)
2-((4,4''-dimethoxy-[terphenyl]-2'-yl)oxy)pyridine (10a')

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
2-[[1,1':3',1''-terphenyl]-2'-yl]-4,5-dihydrooxazole (11b')

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
(5-([biphenyl]-2-yl)-1\textit{H}-tetrazol-1-yl)(phenyl)methanone (12b)

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
(5-([(terphenyl]-2'-yl)-1H-tetrazol-1-yl)(phenyl)methanone (12b')

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
2,3-difluoro-3',5'-dimethyl-6-(trifluoromethyl)-1,1'-biphenyl (3rc')

1H NMR (CD$_2$Cl$_2$)

1H 19F NMR (CD$_2$Cl$_2$)

1H 19F NMR (CD$_2$Cl$_2$)
13C NMR (CDCl$_3$)

19F NMR (CDCl$_3$)
19F NMR (CD$_2$Cl$_2$)

19F NMR {1H} (CD$_2$Cl$_2$)
$2',3'-\text{difluoro-3''},5,5''-\text{tetramethyl-5'}-(\text{trifluoromethyl})-1,1'4',1''-\text{terphenyl (3rc''\text{)}}$

$^1\text{H NMR (CDCl}_3\text{)}$

$^1\text{H NMR \{^{19}\text{F}\}} (\text{CDCl}_3)$
13C NMR (CDCl$_3$)

19F NMR (CDCl$_3$)
$^{19}\text{F} \{^1\text{H}\} \text{ NMR (CDCl}_3\text{)}$
Crystallographic section

Crystallographic data of C5

The crystal structure was deposited at the Cambridge Crystallographic Data Centre.

CCDC: 1420657

![Crystal structure diagram]

Table 1 Crystal data and structure refinement for C5

Property	Value
Empirical formula	C_{30}H_{54}B_{2}F_{8}N_{6}Ru
Formula weight	773.48
Temperature/K	150.03(10)
Crystal system	orthorhombic
Space group	Pban
a/Å	10.8977(3)
b/Å	34.0657(11)
c/Å	11.0451(4)
α/°	90
β/°	90
γ/°	90
Volume/Å³	4100.4(2)
Z	4
ρ_{calc}/g/cm³	1.253
μ/mm⁻¹	0.445
F(000)	1608.0
Crystal size/mm³	0.27 × 0.25 × 0.15
Radiation	MoKα (λ = 0.71073)
2θ range for data collection/° 7.054 to 58.492

Index ranges -12 ≤ h ≤ 13, -26 ≤ k ≤ 45, -8 ≤ l ≤ 14

Reflections collected 16335

Independent reflections 4871 [Rint = 0.0735, Rsigma = 0.0954]

Data/restraints/parameters 4871/73/253

Goodness-of-fit on F² 1.043

Final R indexes [I>2σ (I)]
R1 = 0.0573, wR2 = 0.1217

Final R indexes [all data]
R1 = 0.1126, wR2 = 0.1505

Largest diff. peak/hole / e Å⁻³ 1.32/-1.07

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for C5. Ueq is defined as 1/3 of the trace of the orthogonalised Uij tensor.

Atom	x	y	z	U(eq)
Ru1	2500	3958.5(2)	5000	17.77(14)
C2	169(4)	4797.7(12)	2636(4)	24(1)
N3	1525(3)	3555.1(10)	4081(3)	22.9(8)
N4	1530(3)	4363.2(10)	4058(3)	22.0(8)
C5	91(4)	3110.6(14)	2766(4)	31.5(11)
N6	1229(3)	3912.9(10)	6318(3)	24.0(8)
C7	562(4)	3787.2(12)	7008(4)	23.3(9)
C8	-618(4)	3390.2(13)	1931(4)	33.1(11)
C9	-619(4)	4519.0(14)	1873(4)	35.7(12)
C10	-639(4)	5069.9(13)	3415(4)	35.4(12)
C11	942(4)	4556.7(12)	3457(4)	21.9(9)
C12	910(4)	3357.1(13)	3526(4)	27.8(10)
C13	-236(4)	3562.5(13)	7867(4)	29.2(10)
C15	-798(5)	2889.8(15)	3596(5)	48.1(15)
C16	1018(4)	5040.2(14)	1824(4)	35.6(12)
C17	-1048(5)	3847.3(15)	8579(5)	43.3(13)
C18	613(4)	3330.2(15)	8700(5)	43.5(13)
C19	-1016(4)	3287.5(14)	7096(5)	38.5(12)
C21	886(5)	2828.8(16)	2009(6)	58.7(18)
F20	1897(5)	3947.1(16)	10830(5)	50.1(16)
F24	1660(5)	4408.4(17)	9423(5)	52.5(16)
B25	2500	4175(2)	10000	35(3)
B4	-2500	2500	0	52(3)
F5	-2620(20)	2897.4(11)	-160(19)	78(5)
F2	-2707(17)	2449(5)	1212(3)	61(4)
F7	-1281(4)	2430(6)	-204(17)	75(5)
B2	-2500	4097.1(12)	5000	34.9(17)
F1	-1638(3)	3868.4(11)	4440(3)	78.4(12)

S253
Table 3 Anisotropic Displacement Parameters (Å² × 10³) for C5

The Anisotropic displacement factor exponent takes the form: -2π²[h⁵a*²U₁₁+2hka*b*U₁₂+…]

Atom	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Ru1	20.7(2)	14.5(2)	18.1(2)	0	-1.6(2)	0
C2	26(2)	22(2)	25(2)	-2(2)	-4.2(19)	3.3(17)
N3	28.0(19)	16.8(18)	23.8(19)	-1.4(16)	-2.8(17)	2.3(15)
N4	23.7(18)	18.5(18)	23.8(19)	-1.4(16)	-2.4(17)	0.1(15)
C5	33(2)	24(2)	37(3)	-7(2)	-12(2)	-1.4(19)
N6	27.8(19)	16.8(18)	27.5(19)	-2.8(17)	2.5(17)	-1.0(15)
C7	27(2)	17(2)	26(2)	-1(2)	-5(2)	2.7(17)
C8	41(3)	27(2)	31(3)	-2(2)	-6(2)	-2(2)
C9	36(3)	34(3)	37(3)	-3(2)	-9(2)	4(2)
C10	39(3)	29(3)	38(3)	-3(2)	-8(2)	14(2)
C11	21(2)	21(2)	24(2)	-5.9(19)	0.4(19)	-2.8(17)
C12	31(3)	21(2)	31(3)	-1(2)	-1(2)	5.6(18)
C13	33(3)	24(2)	30(2)	1(2)	6(2)	-1.0(19)
C15	65(4)	32(3)	47(3)	12(3)	-23(3)	-20(3)
C16	43(3)	28(3)	35(3)	14(2)	-4(2)	0(2)
C17	47(3)	40(3)	42(3)	2(3)	15(3)	4(2)
C18	49(3)	43(3)	39(3)	12(3)	1(3)	1(2)
C19	45(3)	34(3)	36(3)	4(2)	4(3)	-14(2)
C21	54(3)	41(3)	82(5)	-37(3)	-18(3)	17(3)
F20	43(3)	52(4)	55(4)	12(3)	13(3)	-4(3)
F24	49(4)	56(4)	53(4)	0(4)	-13(3)	8(3)
B25	23(7)	41(9)	40(9)	0	2(9)	0
B4	51(5)	68(6)	37(5)	0	0	0
F5	91(11)	86(6)	58(11)	16(5)	-44(8)	11(6)
F2	86(12)	46(10)	50(5)	-5(5)	5(5)	-39(7)
F7	62(5)	83(13)	80(13)	-27(8)	7(5)	0(5)
B2	45(4)	26(4)	34(4)	0	6(5)	0
F1	81(3)	78(3)	76(3)	-25(2)	15(2)	22(2)
F3	82(2)	85(3)	68(3)	-39(2)	-16(2)	-7(2)
F4	77(9)	109(11)	71(9)	-32(8)	-27(7)	-7(7)

Table 4 Bond Lengths for C5

Atom	Atom	Length/Å
Ru1	N3	2.012(3)
C7	C13	1.498(6)

S254
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N3	Ru1	N3	93.84(19)	C7	N6	Ru1	162.3(3)
N3	Ru1	N4	179.36(14)	N6	C7	C13	171.3(4)
N3	Ru1	N4	179.36(14)	N4	C11	C2	177.9(5)
N3	Ru1	N4	86.00(13)	N3	C12	C5	177.7(5)
N3	Ru1	N6	87.06(14)	C7	C13	C17	109.7(4)
N3	Ru1	N6	87.06(14)	C7	C13	C19	106.5(4)
N3	Ru1	N6	86.90(14)	C18	C13	C17	111.7(4)
N3	Ru1	N6	86.90(14)	C19	C13	C17	110.8(4)
N4	Ru1	N4	94.17(19)	C19	C13	C18	110.9(4)
N6	Ru1	N4	92.31(13)	F20	B25	F20	110.8(7)
N6	Ru1	N4	93.71(14)	F24	B25	F20	108.6(4)
N6	Ru1	N4	92.31(13)	F24	B25	F20	108.6(4)
N6	Ru1	N4	93.71(14)	F24	B25	F20	109.8(4)
N6	Ru1	N6	171.16(19)	F24	B25	F20	109.8(4)
C9	C2	C10	111.1(3)	F24	B25	F24	109.1(7)
C11	C2	C9	108.1(4)	F2	B4	F5	103.6(8)
C11	C2	C10	108.5(4)	F7	B4	F5	104.2(8)
C11	C2	C16	108.2(3)	F7	B4	F2	107.4(8)
C16	C2	C9	110.5(4)	F4	B4	F5	110.6(8)
C16	C2	C10	110.3(4)	F4	B4	F2	114.9(7)

1/2-X, +Y, 1-Z; 2/2-X, +Y, 2-Z; 1/2-X, +Y, 1-Z

Table 5 Bond Angles for C5
Table 6 H-Atom Coordinates (Å×10^4) and Isotropic Displacement Parameters (Å^2×10^3) for C5

Atom	x	y	z	U(eq)
H8A	-1160	3241	1423	50
H8B	-1088	3570	2412	50
H8C	-50	3534	1436	50
H9A	-1128	4669	1335	54
H9B	-96	4350	1409	54
H9C	-1128	4364	2397	54
H10A	-1145	5228	2897	53
H10B	-1149	4914	3936	53
H10C	-125	5237	3896	53
H15A	-1333	2729	3115	72
H15B	-341	2727	4143	72
H15C	-1276	3075	4049	72
H16A	534	5198	1286	53
H16B	1523	5207	2317	53
H16C	1531	4867	1360	53
H17A	-1559	3702	9128	65
H17B	-540	4026	9028	65
H17C	-1555	3993	8027	65
H18A	131	3182	9266	65
H18B	1106	3155	8226	65
H18C	1136	3508	9133	65
H19A	-1546	3136	7610	58
H19B	-1502	3439	6542	58
H19C	-490	3114	6649	58
H21A	366	2668	1514	88
H21B	1429	2978	1502	88
H21C	1359	2665	2540	88

^1/2-X,+Y,1-Z; ^21/2-X,+Y,2-Z; ^31/2-X,+Y,1-Z
Crystallographic data of C5’

The crystal structure was deposit at the Cambridge Crystallographic Data Centre.

CCDC: 1420658

Table 7 Atomic Occupancy for C5

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
F20	0.5	F24	0.5	B25	0.5
F5	0.25	F2	0.25	F7	0.25
F4	0.25				

Table 1 Crystal data and structure refinement for C5’

Empirical formula	C_{32}H_{58}Cl_{10}N_{6}Ru_{3}
Formula weight	1184.55
Temperature/K	100.(2)
Crystal system	monoclinic
Space group	C2/m
a/Å	21.221(7)
b/Å	13.810(4)
c/Å	9.163(3)
α/°	90
β/°	103.056(7)

S257
γ^0 90
Volume/Å3 2615.9(14)
Z 2
ρ_{calc}/g/cm3 1.504
μ/mm$^{-1}$ 1.393
F(000) 1188.0
Crystal size/mm3 0.200 \times 0.130 \times 0.100
Radiation MoKα ($\lambda = 0.71073$)
2θ range for data collection/° 3.54 to 57.52
Index ranges $-28 \leq h \leq 27$, $-18 \leq k \leq 17$, $-12 \leq l \leq 12$
Reflections collected 13063
Independent reflections 3453 [R$_{\text{int}} = 0.0554$, R$_{\text{sigma}} = 0.0542$]
Data/restraints/parameters 3453/0/139
Goodness-of-fit on F2 1.092
Final R indexes [$I > 2\sigma(I)$] $R_1 = 0.0656$, wR$2 = 0.2019$
Final R indexes [all data] $R_1 = 0.0867$, wR$2 = 0.2187$
Largest diff. peak/hole / e Å$^{-3}$ 3.59/3.02

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å$^2 \times 10^3$) for C5$'$

Atom	x	y	z	U(eq)
C1	5805	5000	7496	9.3
C2	6261	5000	6486	9.4
C3	6677	5910	6828	17.5
C4	5873	5000	4859	27
C5	4092	3272	8635	10.8
C6	3685	2394	8227	12
C7	3106	2498	8987	20.3
C8	4093	1504	8823	16.2
C9	3451	2358	6517	20.1
C10	3186	0	2554	21
C11	2815	0	604	26.3
C12	2586	0	3623	34.8
C13	4343	0	5770	14.6
C14	5562	2030	6905	25.0
N1	5484	5000	8333	7.8
N2	4396	3930	9004	8.3
Element	Zeta	Theta	Eta	Delta
---------	------	-------	-----	-------
Ru1	5000	5000	10000	4.0(2)
Ru2	5000	1178.8(7)	5000	31.3(3)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for C5'

Atom	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
C1	5(3)	13(4)	10(3)	0	1(3)	0
C2	4(3)	17(4)	8(3)	0	3(3)	0
C3	18(3)	15(3)	25(3)	-2(2)	14(2)	3(2)
C4	12(5)	60(8)	10(4)	0	3(3)	0
C5	13(3)	10(3)	11(2)	2(2)	8(2)	-1(2)
C6	11(3)	10(3)	16(3)	-6(2)	5(2)	-4(2)
C7	15(3)	17(3)	33(4)	-7(2)	14(3)	-7(3)
C8	19(3)	10(3)	19(3)	-2(2)	5(2)	-3(2)
C9	22(3)	21(3)	16(3)	-6(3)	1(2)	-5(2)
C10	21(5)	24(5)	19(4)	0	5(4)	0
Cl1	34.4(14)	24.4(12)	19.2(11)	0	4.2(10)	0
Cl2	30.6(14)	47.1(17)	32.9(14)	0	19.9(11)	0
Cl3	15.9(10)	13.6(9)	17.3(9)	0	9.8(8)	0
Cl4	34.2(9)	23.6(8)	19.3(7)	-14.1(7)	10.5(7)	-8.2(6)
N1	10(3)	7(3)	7(3)	0	4(2)	0
N2	9(2)	7(2)	11(2)	0.2(17)	7.0(17)	0.4(17)
Ru1	4.4(4)	1.9(4)	7.5(4)	0	4.8(3)	0
Ru2	35.8(6)	28.9(5)	30.9(5)	0	11.2(4)	0

Table 4 Bond Lengths for C5'

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	N1	1.135(11)	Cl3	Ru2	2.3528(17)
C1	C2	1.481(11)	Cl3	Ru2²	2.3528(17)
C2	C3	1.527(8)	Cl4	Ru2	2.2167(17)
C2	C3¹	1.527(8)	N1	Ru1	2.025(7)
C2	C4	1.531(12)	N2	Ru1	2.032(5)
C5	N2	1.122(8)	Ru1	N1³	2.025(7)
C5	C6	1.487(8)	Ru1	N2³	2.032(5)
C6	C8	1.531(9)	Ru1	N2¹	2.032(5)
C6	C9	1.533(9)	Ru1	N2⁴	2.032(5)
C6	C7	1.551(8)	Ru2	Cl4	2.2167(17)
C10	Cl2	1.773(10)	Ru2	Cl3²	2.3528(17)
C10	Cl1	1.782(10)			
Table 5 Bond Angles for C5'

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	C1	C2	176.3(8)	N1	Ru1	N2	92.14(18)
C1	C2	C3	107.5(4)	N1	Ru1	N2	92.14(18)
C1	C2	C31	107.5(4)	N1	Ru1	N2	87.86(18)
C3	C2	C31	110.8(7)	N2	Ru1	N2	180.0
C1	C2	C4	109.0(7)	N1	Ru1	N2	87.86(18)
C3	C2	C4	111.0(5)	N1	Ru1	N2	92.14(18)
C31	C2	C4	111.0(5)	N2	Ru1	N2	93.3(3)
N2	C5	C6	177.0(6)	N2	Ru1	N2	86.7(3)
C5	C6	C8	108.4(5)	N1	Ru1	N2	87.86(18)
C5	C6	C9	108.6(5)	N1	Ru1	N2	86.7(3)
C8	C6	C9	111.4(5)	N2	Ru1	N2	93.3(3)
C5	C6	C7	106.6(5)	N2	Ru1	N2	180.0
C8	C6	C7	110.8(5)	N2	Ru1	N2	180.0
C9	C6	C7	110.7(5)	Cl4	Ru2	Cl4	115.89(11)
Cl2	C10	Cl1	110.1(5)	Cl4	Ru2	Cl3	110.70(7)
Ru2	Cl3	Ru21	87.56(8)	Cl4	Ru2	Cl3	112.39(7)
C1	N1	Ru1	173.9(7)	Cl4	Ru2	Cl3	110.70(7)
C5	N2	Ru1	170.4(5)	Cl41	Ru2	Cl3	92.44(8)
N11	Ru1	N1	180.0	Cl32	Ru2	Cl3	92.44(8)
N11	Ru1	N2	87.86(18)				

Table 6 H-Atom Coordinates (Å×10^4) and Isotropic Displacement Parameters (Å^2×10^3) for C5'

Atom	x	y	z	U(eq)
H3A	6405	6484	6546	26
H3B	7015	5896	6255	26
H3C	6877	5934	7901	26
H4A	5680(50)	4480(70)	4760(110)	41
H4B	6190(80)	5000	4480(170)	41
H4C	5680(50)	5520(70)	4760(110)	41
H7A	3263	2478	10077	30
H7B	2801	1965	8668	30
H7C	2887	3116	8695	30
H8A	4474	1479	8386	24
H8B	3834	916	8549	24
H8C	4233	1546	9916	24
H9A	3165	2910	6179	30
Crystallographic data of Ru1c

The crystal structure was deposited at the Cambridge Crystallographic Data Centre.

CCDC: 1420695

Table 1 Crystal data and structure refinement for Ru1c

Empirical formula	C₂₂H₂₅Cl₃F₄O₂Ru
Formula weight	604.84
Temperature/K	100.2
Crystal system	triclinic
Space group	P-1

Table 7 Atomic Occupancy for C5’

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H4A	0.5	H4C	0.5	H10A	0.5
H10B	0.5				
Table 2 Fract. Atom. Coord. (×10^4) and Equiv. Isotropic Displacement Parameters (Å^2×10^3) for Ru1c

Atom	x	y	z	U(eq)
C1	2471.2(13)	3133.3(13)	2885.9(11)	12.4(2)
C2	940.1(14)	3210.2(15)	2736.2(11)	15.5(3)
C3	240.1(16)	1709.3(17)	2122.8(16)	29.5(4)
C4	502.2(17)	3744(2)	3816.1(14)	34.8(4)
C5	569.9(16)	4143.3(19)	2059.4(15)	27.4(3)
C6	3740.6(13)	518.6(13)	2435.2(11)	11.9(2)
C7	3330.9(14)	-136.0(14)	3133.7(11)	14.8(3)
C8	2513.7(15)	-1419.1(15)	2789.7(12)	17.4(3)
C9	2063.6(15)	-2141.7(15)	1713.4(12)	18.5(3)
C10	2471.8(14)	-1520.6(15)	1001.1(11)	16.5(3)
C11	3278.7(14)	-235.2(14)	1355.6(11)	13.6(2)
Table 3 Anisotropic Displacement Parameters (Å²×10³) for Ru1c

The Anisotropic displacement factor exponent takes the form: -2π²[h²a*²U₁₁+2hka*b*U₁₂+...].

Atom	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
C1	11.5(6)	9.2(6)	14.5(6)	0.9(5)	2.8(5)	1.0(5)
C2	9.1(6)	17.3(6)	17.4(6)	2.1(5)	2.9(5)	1.6(5)
C3	13.2(7)	20.3(8)	48.6(11)	-1.5(6)	2.3(7)	4.5(7)
C4	15.2(7)	64.0(13)	20.8(8)	12.2(8)	7.5(6)	3.4(8)
C5	16.3(7)	31.9(9)	39.5(9)	10.0(6)	4.7(6)	18.0(7)
C6	9.6(6)	11.2(6)	15.1(6)	2.3(5)	2.1(5)	4.2(5)
C7	15.1(6)	14.7(6)	14.0(6)	1.4(5)	1.5(5)	4.5(5)
C8	17.3(7)	15.9(7)	22.5(7)	1.6(5)	5.0(5)	10.7(6)
C9	16.2(7)	11.8(6)	24.9(7)	-0.6(5)	1.5(5)	4.0(5)
C10	16.0(6)	14.4(6)	14.7(6)	2.8(5)	-0.3(5)	-0.3(5)
C11	13.6(6)	14.0(6)	14.1(6)	3.7(5)	4.0(5)	4.6(5)
C12	8.2(5)	11.4(6)	14.6(6)	-0.1(4)	2.4(4)	4.0(5)
C13	9.8(6)	11.6(6)	13.2(6)	0.7(5)	1.5(5)	1.8(5)
C14	9.4(6)	14.8(6)	12.3(6)	0.7(5)	0.7(5)	4.3(5)
Table 4 Bond Lengths for Ru1c

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	O1	1.2699(17)	C12	C19	1.5126(18)
C1	O2	1.2744(16)	C12	Ru1	2.2576(13)
C1	C2	1.5181(18)	C13	C14	1.4330(18)
C1	Ru1	2.5125(13)	C13	Ru1	2.2291(13)
C2	C4	1.523(2)	C14	C15	1.4127(18)
C2	C5	1.527(2)	C14	Ru1	2.1701(13)
C2	C3	1.537(2)	C15	C16	1.4284(19)
C6	C7	1.3887(18)	C15	C18	1.5037(19)
C6	C11	1.3894(18)	C15	Ru1	2.1907(13)
C6	Ru1	2.0846(13)	C16	C17	1.4107(19)
C7	F1	1.3572(16)	C16	Ru1	2.1549(13)
C7	C8	1.3826(19)	C17	Ru1	2.1484(12)
C8	F2	1.3576(16)	C19	C21	1.527(2)
C8	C9	1.378(2)	C19	C20	1.534(2)
C9	C10	1.382(2)	C22	C11	1.7557(16)
C10	F3	1.3563(16)	C22	C12	1.7635(16)
C10	C11	1.3792(19)	C22	C13	1.7651(16)
Table 5 Bond Angles for Ru1c

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O1	C1	O2	116.92(12)	C12	C19	C20	108.68(11)
O1	C1	C2	122.38(12)	C21	C19	C20	110.78(12)
O2	C1	C2	120.48(12)	C11	C22	C12	110.39(9)
O1	C1	Ru1	59.10(7)	C11	C22	C13	110.53(8)
O2	C1	Ru1	58.25(7)	C12	C22	C13	110.45(8)
C2	C1	Ru1	168.97(9)	C1	O1	Ru1	90.54(8)
C1	C2	C4	110.90(12)	C1	O2	Ru1	91.28(8)
C1	C2	C5	110.10(12)	C6	Ru1	O2	83.64(4)
C4	C2	C5	110.49(14)	C6	Ru1	C17	122.54(5)
C1	C2	C3	105.32(11)	O2	Ru1	C17	99.98(4)
C4	C2	C3	110.56(14)	C6	Ru1	C16	94.19(5)
C5	C2	C3	109.34(13)	O2	Ru1	C16	125.51(4)
C7	C6	C11	114.34(12)	C17	Ru1	C16	38.27(5)
C7	C6	Ru1	122.56(10)	C6	Ru1	O1	83.59(4)
C11	C6	Ru1	123.02(10)	O2	Ru1	O1	60.67(4)
F1	C7	C8	117.11(12)	C17	Ru1	O1	147.31(4)
F1	C7	C6	119.77(12)	C16	Ru1	O1	173.26(4)
C8	C7	C6	123.11(13)	C6	Ru1	C14	115.97(5)
F2	C8	C9	119.23(13)	O2	Ru1	C14	156.57(5)
F2	C8	C7	119.41(13)	C17	Ru1	C14	80.72(5)
C9	C8	C7	121.35(13)	C16	Ru1	C14	68.53(5)
C8	C9	C10	116.67(13)	O1	Ru1	C14	106.69(4)
F3	C10	C11	119.51(13)	C6	Ru1	C15	91.35(5)
F3	C10	C9	119.13(13)	O2	Ru1	C15	162.91(4)
C11	C10	C9	121.36(13)	C17	Ru1	C15	69.02(5)
F4	C11	C10	117.13(12)	C16	Ru1	C15	38.37(5)
F4	C11	C6	119.72(12)	O1	Ru1	C15	135.13(4)
C10	C11	C6	123.15(13)	C14	Ru1	C15	37.80(5)
C13	C12	C17	117.36(12)	C6	Ru1	C13	153.49(5)
C13	C12	C19	122.31(12)	O2	Ru1	C13	120.60(4)
C17	C12	C19	120.29(11)	C17	Ru1	C13	67.28(5)
C13	C12	Ru1	70.66(7)	C16	Ru1	C13	80.54(5)
C17 C12 Ru1 66.91(7) O1 Ru1 C13 98.61(4)
C19 C12 Ru1 132.02(9) C14 Ru1 C13 37.99(5)
C12 C13 C14 120.73(12) C15 Ru1 C13 68.37(5)
C12 C13 Ru1 72.87(7) C6 Ru1 C12 160.47(5)
C14 C13 Ru1 68.77(7) O2 Ru1 C12 98.40(4)
C15 C14 C13 121.54(12) C17 Ru1 C12 37.93(5)
C15 C14 Ru1 71.89(8) C16 Ru1 C12 68.72(5)
C13 C14 Ru1 72.87(7) O2 Ru1 C12 114.45(4)
C14 C15 C16 117.99(12) C14 Ru1 C12 36.47(5)
C14 C15 C18 129.60(9) C17 Ru1 C12 30.47(4)
C16 C15 C18 121.05(12) C14 Ru1 C12 127.35(5)
C16 C15 Ru1 70.31(7) C6 Ru1 C1 80.31(5)
C16 C15 Ru1 69.46(7) O2 Ru1 C1 30.47(4)
C18 C15 Ru1 129.60(9) C17 Ru1 C1 127.35(5)
C17 C16 C15 119.99(12) C16 Ru1 C1 155.47(5)
C17 C16 Ru1 70.62(7) O1 Ru1 C1 30.36(4)
C15 C16 Ru1 72.17(7) O1 Ru1 C1 135.30(5)
C16 C17 C12 122.18(12) C15 Ru1 C1 163.59(5)
C16 C17 Ru1 71.11(7) C13 Ru1 C1 114.52(4)
C12 C17 Ru1 75.16(7) C12 Ru1 C1 111.14(4)
C12 C19 C21 113.56(11)

Table 6 Hydrogen Bonds for Ru1c

D	H	A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C22	H22	O2⁻	1.00	2.07	3.0583(18)	170.7

Table 7 Torsion Angles for Ru1c

A	B	C	D	Angle/°	A	B	C	D	Angle/°
O1	C1	C2	C4	21.11(19)	C19	C12	C13	Ru1	128.13(12)
O2	C1	C2	C4	-164.48(14)	C12	C13	C14	C15	2.30(19)
Ru1	C1	C2	C4	115.4(5)	Ru1	C13	C14	C15	55.54(11)
O1	C1	C2	C5	143.71(14)	C12	C13	C14	Ru1	-53.24(11)
O2	C1	C2	C5	-41.88(18)	C13	C14	C15	C16	-3.92(19)
Ru1	C1	C2	C5	-122.0(5)	Ru1	C14	C15	C16	52.24(11)
O1	C1	C2	C3	-98.52(15)	C13	C14	C15	C18	178.76(12)
O2	C1	C2	C3	75.89(16)	Ru1	C14	C15	C18	-125.08(12)
Ru1	C1	C2	C3	-4.2(6)	C13	C14	C15	Ru1	-56.16(11)
Table 8 H-Atom Coordinates (Å×10^4) and Isotropic Displacement Parameters (Å^2×10^3) for Ru1c

Atom	x	y	z	U(eq)
H3A	540	1379	1434	44
H3B	-759	1687	1994	44
H3C	494	1105	2549	44
H4A	730	3125	4234	52
H4B	-491	3765	3700	52
H4C	986	4687	4208	52
H5A	1042	5094	2438	41
H5B	-426	4150	1938	41
H5C	856	3785	1368	41
H9	1501	-3023	1473	22
H13	6455	4976	4676	15
H14	6690	2796	4923	15
Crystallographic data of Ru2c

The crystal structure was deposit at the Cambridge Crystallographic Data Centre.

CCDC: 1420659
Table 1 Crystal data and structure refinement for Ru2c

Parameter	Value
Empirical formula	C31H46BF8N5Ru
Formula weight	752.61
Temperature/K	100.2
Crystal system	triclinic
Space group	P1
a/Å	9.1210(14)
b/Å	10.6390(16)
c/Å	11.3056(18)
α/°	67.036(4)
β/°	73.952(4)
γ/°	85.831(4)
Volume/Å³	970.0(3)
Z	1
\(\rho_{\text{calc}} \)/cm³	1.288
μ/mm⁻¹	0.468
F(000)	388.0
Crystal size/mm³	0.200 × 0.100 × 0.050
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	4.06 to 56.7
Index ranges	-12 ≤ h ≤ 12, -14 ≤ k ≤ 14, -15 ≤ l ≤ 15
Reflections collected	17723
Independent reflections	8574 [R(int) = 0.0265, R(sigma) = 0.0396]
Data/restraints/parameters	8574/3/431
Goodness-of-fit on F²	1.020
Final R indexes [I>=2σ(I)]	R₁ = 0.0293, wR₂ = 0.0679
Final R indexes [all data]	R₁ = 0.0302, wR₂ = 0.0684
Largest diff. peak/hole / e Å³	0.98/-0.45
Flack parameter	0.16(3)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for Ru2c. \(U_{eq} \) is defined as 1/3 of of the trace of the orthogonalised \(U_{ij} \) tensor.

Atom	x	y	z	\(U(eq) \)
B1	4619(6)	3390(5)	7079(5)	29.6(10)
C1	6094(7)	9510(7)	7642(6)	17.7(13)
---	---	---	---	
C2	5118(7)	9385(7)	6836(7)	21.4(15)
C3	5181(8)	7915(8)	6928(7)	31.3(17)
C4	3471(7)	9723(8)	7405(7)	31.1(16)
C5	5754(8)	10383(8)	5400(7)	32.7(16)
C6	10124(7)	11960(6)	6283(6)	14.4(12)
C7	5181(8)	7915(8)	6928(7)	31.3(17)
C8	3471(7)	9723(8)	7405(7)	31.1(16)
C9	5754(8)	10383(8)	5400(7)	32.7(16)
C10	10124(7)	11960(6)	6283(6)	14.4(12)
C11	5181(8)	7915(8)	6928(7)	31.3(17)
C12	3471(7)	9723(8)	7405(7)	31.1(16)
C13	5754(8)	10383(8)	5400(7)	32.7(16)
C14	10124(7)	11960(6)	6283(6)	14.4(12)
C15	5181(8)	7915(8)	6928(7)	31.3(17)
C16	3471(7)	9723(8)	7405(7)	31.1(16)
C17	5754(8)	10383(8)	5400(7)	32.7(16)
C18	10124(7)	11960(6)	6283(6)	14.4(12)
C19	5181(8)	7915(8)	6928(7)	31.3(17)
C20	3471(7)	9723(8)	7405(7)	31.1(16)
C21	5754(8)	10383(8)	5400(7)	32.7(16)
C22	10124(7)	11960(6)	6283(6)	14.4(12)
C23	5181(8)	7915(8)	6928(7)	31.3(17)
C24	3471(7)	9723(8)	7405(7)	31.1(16)
C25	5754(8)	10383(8)	5400(7)	32.7(16)
C26	10124(7)	11960(6)	6283(6)	14.4(12)
C27	5181(8)	7915(8)	6928(7)	31.3(17)
C28	3471(7)	9723(8)	7405(7)	31.1(16)
C29	5754(8)	10383(8)	5400(7)	32.7(16)
C30	10124(7)	11960(6)	6283(6)	14.4(12)
C31	5181(8)	7915(8)	6928(7)	31.3(17)
F1	9506(2)	8967(2)	6442(2)	23.3(5)
F2	3671(5)	3334(4)	6363(4)	84.0(14)
F3	6087(5)	3123(4)	6438(4)	71.9(12)
F4	11152(3)	7026(3)	5922(3)	36.2(6)
F5	11152(3)	7026(3)	5922(3)	36.2(6)
F6	11152(3)	7026(3)	5922(3)	36.2(6)
F7	11152(3)	7026(3)	5922(3)	36.2(6)
F8	11152(3)	7026(3)	5922(3)	36.2(6)
N1	6905(6)	9557(5)	8223(5)	16.0(11)
N2	9634(5)	11128(6)	7320(5)	16.6(12)
Table 3 Anisotropic Displacement Parameters (Å²×10³) for Ru2c. The Anisotropic displacement factor exponent takes the form: \(-2\pi^2[U_{11}a^2+2hka*b*U_{12}+\ldots]\).

Atom	\(U_{11}\)	\(U_{12}\)	\(U_{13}\)	\(U_{22}\)	\(U_{23}\)	\(U_{33}\)
B1	49(3)	20(3)	21(2)	-1(2)	-12(2)	-6.4(19)
C1	14(3)	20(3)	19(3)	-2(2)	-5(2)	-7(3)
C2	23(3)	22(4)	20(3)	-2(3)	-8(2)	-6(3)
C3	31(4)	37(5)	37(4)	-1(3)	-13(3)	-22(4)
C4	16(2)	36(4)	44(4)	0(2)	-7(2)	-19(3)
C5	27(3)	47(4)	25(3)	0(2)	-12(2)	-11(3)
C6	17(2)	9(2)	18(3)	-2.3(18)	-7.3(19)	-4(2)
C7	17(2)	16(3)	16(2)	-0.5(18)	-1.1(17)	-1(2)
C8	23(3)	29(3)	20(3)	-1(2)	-4(2)	-9(2)
C9	25(3)	42(4)	18(3)	-4(2)	-13(2)	-5(3)
C10	37(3)	13(3)	30(3)	-2(2)	-8(2)	-3(2)
C11	13.5(15)	23(2)	23.2(18)	-1.3(14)	-2.6(13)	-11.2(17)
C12	19.0(17)	21(2)	34(2)	0.2(14)	-5.0(15)	-16.4(18)
C13	24(2)	34(3)	59(3)	5(2)	-6(2)	-30(3)
C14	30(2)	20(2)	45(3)	-2.0(17)	-11.8(19)	-8(2)
C15	33(2)	37(3)	42(2)	-0.1(19)	-11.8(19)	-25(2)
C16	19(3)	13(3)	11(3)	1(2)	0(2)	-3(2)
C17	15(3)	33(4)	18(3)	-3(2)	-8(2)	-11(3)
C18	22(3)	30(4)	20(2)	3(2)	-14(2)	-4(2)
C19	29(3)	46(4)	14(3)	-10(2)	-4(2)	-2(3)
C20	40(4)	27(4)	37(4)	-2(3)	-16(3)	-18(3)
C21	17(2)	24(3)	21(3)	6(2)	-4(2)	-10(3)
C22	21(2)	19(3)	14(2)	-1.1(19)	-4.5(18)	-3(2)
C23	26(3)	49(4)	22(3)	10(3)	2(2)	0(3)
C24	25(3)	42(5)	25(3)	-2(3)	-5(2)	1(3)
C25	70(5)	29(4)	25(3)	-7(3)	-3(3)	-7(3)
C26	9(2)	15(3)	15(2)	-1.4(17)	-2.6(18)	-5(2)
C27	15.5(15)	17(2)	28.0(19)	-4.1(13)	-2.2(14)	-11.1(16)
C28	19.4(16)	22(2)	31(2)	-4.6(14)	5.0(15)	-15.6(18)
C29	21.0(19)	20(2)	44(3)	-0.4(17)	1.3(17)	-14(2)
C30	18.3(16)	13(2)	37(2)	2.1(14)	-4.5(15)	-3.8(17)
Atom	Atom	Length/Å	Atom	Atom	Length/Å	
------	------	----------	------	------	----------	
B1	F5	1.356(6)	C17	C20	1.544(10)	
B1	F7	1.359(6)	C21	N5	1.128(8)	
B1	F8	1.383(6)	C21	C22	1.488(9)	
B1	F6	1.403(6)	C22	C23	1.511(9)	
C1	N1	1.131(8)	C22	C24	1.526(9)	
C1	C2	1.483(9)	C22	C25	1.537(10)	
C2	C3	1.524(10)	C26	C27	1.382(7)	
C2	C5	1.525(10)	C26	C31	1.400(7)	
C2	C4	1.538(9)	C26	Ru1	2.075(6)	
C6	N2	1.147(8)	C27	F1	1.368(4)	
C6	C7	1.478(9)	C27	C28	1.391(5)	
C7	C10	1.532(9)	C28	F2	1.358(5)	
C7	C9	1.539(8)	C28	C29	1.370(6)	
C7	C8	1.552(8)	C29	C30	1.382(6)	
C11	N3	1.142(7)	C30	F3	1.355(5)	
C11	C12	1.482(5)	C30	C31	1.385(5)	
C12	C15	1.533(5)	C31	F4	1.361(4)	
C12	C14	1.534(6)	N1	Ru1	2.009(5)	
C12	C13	1.535(6)	N2	Ru1	2.020(5)	
C16	N4	1.142(8)	N3	Ru1	2.105(6)	

Table 4 Bond Lengths for Ru2c
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
F5	B1	F7	114.1(4)	C23	C22	C25	111.7(6)
F5	B1	F8	108.6(4)	C24	C22	C25	108.6(6)
F7	B1	F8	111.4(4)	C27	C26	C31	112.4(5)
F5	B1	F6	107.2(4)	C27	C26	Ru1	124.4(4)
F7	B1	F6	107.7(4)	C31	C26	Ru1	123.2(4)
F8	B1	F6	107.6(4)	F1	C27	C26	120.5(4)
N1	C1	C2	175.6(7)	F1	C27	C28	114.9(3)
C1	C2	C3	107.3(5)	C26	C27	C28	124.6(4)
C1	C2	C5	108.2(6)	F2	C28	C29	119.7(4)
C3	C2	C5	111.0(6)	F2	C28	C27	118.9(4)
C1	C2	C4	109.3(5)	C29	C28	C27	121.5(4)
C3	C2	C4	110.5(6)	C29	C28	C30	116.0(4)
C5	C2	C4	110.4(6)	F3	C30	C29	119.3(4)
N2	C6	C7	175.3(6)	F3	C30	C31	119.0(4)
C6	C7	C10	108.0(5)	C29	C30	C31	121.6(4)
C6	C7	C9	107.5(5)	F4	C31	C30	115.2(3)
C10	C7	C9	111.7(6)	F4	C31	C26	120.9(4)
C6	C7	C8	108.5(5)	C30	C31	C26	123.9(4)
C10	C7	C8	110.5(5)	C1	N1	Ru1	174.9(6)
C9	C7	C8	110.5(5)	C6	N2	Ru1	171.7(5)
N3	C11	C12	173.4(4)	C11	N3	Ru1	165.7(5)
C11	C12	C15	106.9(3)	C16	N4	Ru1	174.7(5)
C11	C12	C14	107.5(3)	C21	N5	Ru1	174.7(6)
C15	C12	C14	110.2(3)	N1	Ru1	N5	91.0(2)
C11	C12	C13	109.8(3)	N1	Ru1	N2	88.5(2)
C15	C12	C13	111.8(3)	N5	Ru1	N2	178.0(3)
C14	C12	C13	110.5(4)	N1	Ru1	N4	178.9(3)
N4	C16	C17	176.5(7)	N5	Ru1	N4	88.5(2)
C16	C17	C18	108.5(5)	N2	Ru1	N4	92.0(2)
C16	C17	C19	106.4(5)	N1	Ru1	C26	90.5(2)
C18	C17	C19	111.9(6)	N5	Ru1	C26	90.5(2)
C16	C17	C20	108.0(5)	N2	Ru1	C26	91.4(2)
Table 6 Hydrogen Bonds for Ru2c

D	H	A	D-H/Å	D-H-A/°		
C29	H29	F81	0.95	2.42	3.254(5)	145.8

Table 7 Torsion Angles for Ru2c

A	B	C	D	Angle/°	A	B	C	D	Angle/°
C31	C26	C27	F1	180.0(3)	C28	C29	C30	F3	179.1(4)
Ru1	C26	C27	F1	-3.0(6)	C28	C29	C30	C31	-0.1(6)
C31	C26	C27	C28	-1.5(7)	F3	C30	C31	F4	1.0(5)
Ru1	C26	C27	C28	175.5(3)	C29	C30	C31	F4	-179.7(3)
F1	C27	C28	F2	-1.5(5)	F3	C30	C31	C26	179.9(4)
C26	C27	C28	F2	180.0(4)	C29	C30	C31	C26	-0.8(6)
F1	C27	C28	C29	179.3(3)	C27	C26	C31	F4	-179.6(4)
C26	C27	C28	C29	0.7(6)	Ru1	C26	C31	C30	1.5(7)
F2	C28	C29	C30	-179.1(3)	C27	C26	C31	C30	-175.5(3)

Table 8 H-Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for Ru2c

Atom	x	y	z	U(eq)
H3A	6244	7701	6606	47
H3B	4576	7805	6379	47
H3C	4765	7294	7859	47
H4A	3094	9100	8340	47
H4B	2818	9617	6889	47
H4C	3451	10667	7348	47
H5A	5659	11321	5360	49
H5B	5180	10258	4835	49
H5C	6832	10211	5080	49
H8A	12987	12683	4744	37
H8B	12618	13270	3326	37
---	------	------	------	------
H8C	12237	11696	4288	37
H9A	9560	12055	4064	43
H9B	9796	13672	3251	43
H9C	8488	13069	4627	43
H10A	9686	14607	5409	43
H10B	11089	15092	4093	43
H10C	11400	14371	5531	43
H13A	4708	13973	9659	54
H13B	5190	14916	10310	54
H13C	4899	13305	11142	54
H14A	8654	14656	7901	49
H14B	7644	15776	8338	49
H14C	6962	14902	7724	49
H15A	7551	13079	11494	50
H15B	7889	14688	10685	50
H15C	9009	13632	10231	50
H18A	13267	8715	10997	36
H18B	13977	9673	11510	36
H18C	13798	10261	10023	36
H19A	9991	9553	13200	49
H19B	11615	9056	13456	49
H19C	10730	8263	12897	49
H20A	12268	12199	10391	47
H20B	12418	11674	11884	47
H20C	10767	11885	11616	47
H23A	4616	7947	13941	59
H23B	4140	6375	14853	59
H23C	3783	7063	13431	59
H24A	8178	6273	13632	53
H24B	6822	5900	14977	53
H24C	7337	7464	14061	53
H25A	5228	5272	12676	66
H25B	5568	4534	14100	66
H25C	6950	5003	12769	66
H29	12104	5344	7885	36
Coordinates and energies of optimized structures

\[\text{[Ru(OAc)\(_2\)(\eta^6\text{-benzene})]} \] (M1)

No Imaginary frequencies

\[E = -784.206282 \text{ Hartree} \]
\[G = -784.044713 \text{ Hartree} \]

C
-1.26410200
-1.81553100
-0.70714500

C
-1.26662500
-1.80508800
0.72656500

C
-1.87047600
-0.73350600
1.41977600

H
-0.69032000
-2.57525100
-1.21985900

H
-0.69521100
-2.55721100
1.25288900

H
-1.78707800
-0.67290700
2.49937500

C
-1.86449900
-0.75486700
-1.41912300

C
-2.49624800
0.32458700
-0.71410000

C
-2.50128400
0.33454600
0.69720300

H
-1.77743400
-0.71060600
-2.49916700

H
-2.88473800
1.17407400
-1.26435000

H
-2.89412400
1.19102300
1.23323800

Ru
-0.41071000
0.10460300
-0.00169800

O
0.40380500
1.76904800
1.09090000

C
0.77319600
2.32193700
0.00267300

O
0.39619300
1.77789300
-1.08731200

C
1.64667400
3.54234300
0.00471400

H
1.47185000
4.13396900
0.90522700

H
2.69344900
3.22043800
0.00070900

H
1.46691000
4.14054600
-0.89047100

O
1.57500100
-0.40278900
-0.01163300

C
2.06670900
-1.61755400
0.00029500

C
3.59160500
-1.62007200
-0.00808000

H
3.96059900
-1.09530400
-0.89445500

H
3.96963700
-1.08362900
0.86749100

H
3.96323600
-2.64530900
-0.00285800

O
1.42309500
-2.66705000
0.01682700
C₆HF₅

No Imaginary frequencies

E = -728.3743723 Hartree
G = -728.348383 Hartree

[Ru(OAc)₂(η⁶-benzene)] + C₆HF₅

No Imaginary frequencies

E = -1512.591917 Hartree
G = -1512.386142 Hartree
{
[Ru(OAc)$_2$(η6-benzene)]·C$_6$HF$_5$}‡ (TS-M1)

One imaginary frequency: i718.94

E = -1512.551581 Hartree
G = -1512.346057 Hartree

C -0.98795300 0.85139400 -2.43292700
C 0.12509100 -0.01347200 -2.39660900
\{[\text{Ru(OAc)}_2(\eta^6\text{benzene})]\cdot\text{C}_6\text{HF}_5\}^{\ddagger} (\text{TS-M1}_{\text{external}})

One imaginary frequency: \text{i67.48}

E = -1512.578595 Hartree

G = -1512.372052 Hartree

\begin{align*}
\text{C} & \quad -1.76956600 \quad -1.72818000 \quad 1.82189000 \\
\text{C} & \quad -2.41573500 \quad -0.69544900 \quad 1.10546600 \\
\text{C} & \quad -2.71997900 \quad -0.83895000 \quad -0.28485300 \\
\text{H} & \quad -1.46359900 \quad -1.57303400 \quad 2.84990400 \\
\text{H} & \quad -2.56816900 \quad 0.28315100 \quad 1.55053700 \\
\text{H} & \quad -3.08011500 \quad 0.04121200 \quad -0.83659400 \\
\text{C} & \quad -1.40923100 \quad -2.93547400 \quad 1.14041200 \\
\text{C} & \quad -1.72172600 \quad -3.10537800 \quad -0.23353100 \\
\text{C} & \quad -2.36355700 \quad -2.03809200 \quad -0.94343000 \\
\text{H} & \quad -0.82525100 \quad -3.69067300 \quad 1.65603400 \\
\text{H} & \quad -1.38663800 \quad -3.99040100 \quad -0.76251600 \\
\text{H} & \quad -2.48831800 \quad -2.11401000 \quad -2.01867600 \\
\text{Ru} & \quad -0.55069000 \quad -1.26273700 \quad 0.02292400 \\
\text{C} & \quad 0.10913900 \quad 1.02359700 \quad 0.16517700 \\
\text{C} & \quad 0.88342800 \quad 1.26804000 \quad -0.98594500 \\
\text{C} & \quad 0.80581000 \quad 1.05656900 \quad 1.39080900 \\
\text{C} & \quad 2.26012800 \quad 1.43616900 \quad -0.93770500 \\
\text{C} & \quad 2.17669300 \quad 1.24288200 \quad 1.48294900 \\
\text{C} & \quad 2.90062300 \quad 1.42626900 \quad 0.30447400 \\
\text{F} & \quad 0.29276000 \quad 1.31061100 \quad -2.18049400 \\
\text{F} & \quad 2.99369800 \quad 1.57705500 \quad -2.05156400 \\
\text{F} & \quad 0.13006000 \quad 0.89632900 \quad 2.53859400 \\
\text{F} & \quad 2.81351800 \quad 1.22833700 \quad 2.65850100 \\
\text{F} & \quad 4.22213000 \quad 1.57340200 \quad 0.35945100 \\
\text{H} & \quad -1.00985500 \quad 1.44768700 \quad 0.19959900 \\
\text{C} & \quad 1.76314800 \quad -1.80495500 \quad -0.84511200 \\
\text{O} & \quad 1.51410300 \quad -1.77452300 \quad 0.40721500 \\
\text{O} & \quad 0.78079700 \quad -1.58380800 \quad -1.62916900 \\
\text{C} & \quad 3.14253700 \quad -2.05411200 \quad -1.37903100 \\
\text{H} & \quad 3.10056000 \quad -2.80717700 \quad -2.17028900
\end{align*}
{[Ru(OAc)(η₆-benzene)(C₆F₅)]·(AcOH)}

No Imaginary frequencies

E = -1512.589868 Hartree
G = -1512.382497 Hartree
[Ru(OAc)(C₆F₅)(η⁶-benzene)]

No Imaginary frequencies

E = -1283.481719 Hartree
G = -1283.328834 Hartree

C -1.58302200 -2.07241800 -0.90492500
C -1.59358200 -2.19801100 0.52225500
C -2.52200500 -1.44538100 1.27936000
H -0.81572300 -2.56510100 -1.48984400
H -0.83507800 -2.78625300 1.02430300
H -2.46736100 -1.45880300 2.36206800
C -2.49996000 -1.19872600 -1.53530500
C -3.51515900 -0.52707900 -0.76785500
C -3.52840000 -0.65147200 0.62597000
H -2.42860500 -1.02398300 -2.60287000
H -4.20123800 0.15111900 -1.26301100
H -4.22550100 -0.07199100 1.22096500
AcOH

No Imaginary frequencies

E = -229.0874096 Hartree
G = -229.052774 Hartree
[Ru(OAc)(MeCN)$_4$]$^+$ (M2)

No Imaginary frequencies

\[
E = -854.3873136 \text{ Hartree} \\
G = -854.207582 \text{ Hartree}
\]

\[
\begin{align*}
\text{Ru} & \quad -0.00065500 & \quad 0.07938600 & \quad 0.00001000 \\
\text{N} & \quad -2.02657600 & \quad 0.17044900 & \quad 0.00066200 \\
\text{C} & \quad -3.17632600 & \quad 0.29541600 & \quad 0.00085900 \\
\text{N} & \quad -0.02200000 & \quad -1.33775400 & \quad -1.44707800 \\
\text{C} & \quad -0.03420300 & \quad -2.08531500 & \quad -2.33128700 \\
\text{N} & \quad -0.02081800 & \quad -1.33768100 & \quad 1.44718400 \\
\text{C} & \quad -0.03200000 & \quad -2.08513700 & \quad 2.33149500 \\
\text{N} & \quad 2.02721500 & \quad 0.11191400 & \quad -0.00072600 \\
\text{C} & \quad 3.18051200 & \quad 0.19898800 & \quad -0.00104500 \\
\text{C} & \quad -4.62363600 & \quad 0.46386000 & \quad 0.00110500 \\
\text{H} & \quad -4.93921600 & \quad 0.97269000 & \quad 0.91642700 \\
\text{H} & \quad -4.92851600 & \quad 1.06359200 & \quad -0.86127700 \\
\text{H} & \quad -5.11697500 & \quad -0.51070800 & \quad -0.05183800 \\
\text{C} & \quad -0.04591500 & \quad -3.00766800 & \quad 3.46006800 \\
\text{H} & \quad -0.96460700 & \quad -3.60104200 & \quad 3.45038200 \\
\text{H} & \quad 0.81149400 & \quad -3.68440100 & \quad 3.40471700 \\
\text{H} & \quad 0.00430700 & \quad -2.44856400 & \quad 4.39902900 \\
\text{C} & \quad 4.63268900 & \quad 0.31879300 & \quad -0.00149100 \\
\text{H} & \quad 5.09295200 & \quad -0.67324400 & \quad 0.00154300 \\
\text{H} & \quad 4.96150800 & \quad 0.86006800 & \quad -0.89325200 \\
\text{H} & \quad 4.96158500 & \quad 0.86550500 & \quad 0.88692100 \\
\text{C} & \quad -0.04962300 & \quad -3.00805300 & \quad -3.45967400 \\
\text{H} & \quad -0.87624200 & \quad -3.71674300 & \quad -3.35663100 \\
\text{H} & \quad -0.17365200 & \quad -2.45236600 & \quad -4.39380300 \\
\text{H} & \quad 0.89001400 & \quad -3.56612300 & \quad -3.50248600 \\
\text{O} & \quad 0.02297300 & \quad 1.90228500 & \quad 1.09053400 \\
\text{C} & \quad 0.03502500 & \quad 2.57169900 & \quad -0.00001200 \\
\text{C} & \quad 0.09185800 & \quad 4.06944100 & \quad -0.00003800 \\
\text{H} & \quad -0.38460900 & \quad 4.46602300 & \quad -0.89818900
\end{align*}
\]
{{[Ru(OAc)(MeCN)₄]^(+)(C₆H₅F₅)}}

No imaginary frequencies

E = -1582.741487 Hartree
G = -1582.509953 Hartree

Ru -0.82683700 -0.00760400 0.38358700
O -1.96681500 1.27451100 -0.76891800
C -2.24485300 1.09322700 -2.03339000
O -1.79949500 0.18364200 -2.74618700
C -3.17753200 2.15150900 -2.59955000
H -2.65295200 3.11170900 -2.63991900
H -3.49139300 1.87369800 -3.60587500
H -4.04911600 2.28406500 -1.95318400
C 0.88016400 -0.15070000 -1.57045400
C 1.58601900 -1.30261300 -1.19596200
C 1.51552100 1.08344600 -1.37185100
C 2.82581600 -1.23399400 -0.57298700
C 2.75507100 1.18016900 -0.74735700
C 3.41092900 0.01469000 -0.35250500
F 1.05238000 -2.51107700 -1.39906900
F 3.44260900 -2.34278000 -0.14154200
F 0.91998600 2.21257500 -1.75489600
F 3.30172900 2.37576200 -0.49243200
F 4.58006200 0.09255300 0.27320700
H -0.04395500 -0.20059400 -2.16992100
N -1.71625100 -1.62102700 -0.46985100
C -2.23541700 -2.46106200 -1.06835500
N -2.28413300 0.11256200 1.71395400
C -3.17854200 0.23083900 2.43665800
N 0.30390700 -1.21089300 1.60557100
\begin{verbatim}
C	0.96288600 -1.92047500 2.24123000
N	0.01880500 1.68246000 1.14563900
C	0.47515000 2.69069600 1.48058200
C	-2.88155500 -3.46961100 -1.89418500
H	-3.11456800 -3.02670400 -2.86744100
H	-2.21388000 -4.32340100 -2.03901600
H	-3.80632800 -3.81439000 -1.42376700
C	-4.31207900 0.38683700 3.33893700
H	-5.01749200 1.11235700 2.92362900
H	-4.82346200 -0.57111900 3.46906200
H	-3.97055400 0.74189400 4.31534500
C	1.83500400 -2.81818400 2.98808500
H	2.18935200 -2.33202000 3.90128000
H	1.29709000 -3.73159600 3.25691100
H	2.69446900 -3.08005400 2.36343900
C	1.09014600 3.95837700 1.84902600
H	1.30160000 3.98421400 2.92145100
H	2.02595100 4.07258400 1.29378300
H	0.42036400 4.78466200 1.59481500
\end{verbatim}

\begin{equation}
\{[\text{Ru(OAc)}(C_6HF_5)(MeCN)]_4\}^+ (\text{TS-M2})
\end{equation}

One imaginary frequency: \text{i492.18}

\[E = -1582.736474 \text{ Hartree} \]
\[G = -1582.510069 \text{ Hartree} \]

\begin{verbatim}
Ru	-1.04769800 0.02030400 0.21402400
O	-1.83252900 1.16042000 -1.35038200
C	-1.36600300 1.03600800 -2.53814000
O	-0.38540900 0.29920900 -2.83537700
C	-2.02566400 1.85538400 -3.62235200
H	-1.43254500 2.76220600 -3.78259600
H	-2.03447600 1.29697300 -4.56015200
H	-3.03682600 2.14532400 -3.33517000
\end{verbatim}
C 1.10659900 -0.05199500 -0.69269500
C 1.81655600 -1.24369700 -0.47093700
C 1.87850100 1.12102100 -0.62377400
C 3.16441000 -1.27745900 -0.13633800
C 3.22802900 1.13516700 -0.29614200
C 3.87327800 -0.07783500 -0.04995300
F 1.18791700 -2.43026200 -0.55029100
F 3.78790000 -2.43584600 0.10354900
F 1.30736100 2.30563800 -0.90062600
F 3.91179600 2.28090100 -0.22374100
F 5.16310200 -0.09173700 0.26603600
H 0.28439800 0.00111600 -1.63885700
N -1.57159000 -1.66844600 -0.78979200
C -1.85398500 -2.59571100 -1.41874700
N -2.90026100 0.11340000 1.02732900
C -3.97812800 0.20512900 1.43613700
N -0.35088600 -1.06353100 1.79341100
C 0.04909100 -1.69564000 2.67687600
N -0.58767500 1.76636400 1.14758100
C -0.35534900 2.80107700 1.60700700
C -2.17565000 -3.75867100 -2.23409700
H -2.34277900 -3.44776200 -3.26939900
H -1.34404400 -4.46874700 -2.20820700
H -3.07729900 -4.25034500 -1.85879200
C -5.34087800 0.32681800 1.93871300
H -5.92891700 0.95753400 1.26583600
H -5.80890600 -0.65976200 1.99921900
H -5.33648100 0.77819700 2.93484000
C 0.56635500 -2.49900200 3.77795000
H 0.90416300 -1.85084100 4.59154300
H -0.21374400 -3.16529100 4.15697900
H 1.41055200 -3.10329900 3.43314500
C -0.03597800 4.11598200 2.14603200
H 0.27947300 4.03424000 3.18982100
H 0.77507000 4.56021300 1.56140500
H -0.91233300 4.76760800 2.08811100
H 0.42036400 4.78466200 1.59481500
\[\{[\text{Ru(OAc)}(\text{C}_6\text{HF}_5)(\text{MeCN})_4]\}^\dagger \] (TS-M2_{\text{external}})

One imaginary frequency: \(i65.92 \)

\(E = -1715.591343 \) Hartree

Ru	-1.31255000	-0.90940800	-0.02837500
N	-0.32019100	-1.73597800	1.55162700
C	0.39097500	-1.93582500	2.44150700
N	-0.09820100	-1.87980900	-1.35447800
C	0.70916500	-2.21828200	-2.10984300
N	-2.72865800	-2.27395500	-0.09861900
C	-3.56018600	-3.07687000	-0.13951200
N	-2.01707000	0.20809800	-1.57662800
C	-2.14474000	1.01515200	-2.39434500
N	-2.33002000	0.25908200	1.29008500
C	-2.74168200	1.05031300	2.02497700
C	1.50445100	1.13265000	-0.09837300
C	2.05223100	0.87050200	1.14485600
C	2.25604800	0.68583700	-1.16953900
C	3.29882400	0.27634600	1.33375300
C	3.50755700	0.08763000	-1.05384300
C	4.03777800	-0.11881300	0.21960400
F	1.34805400	1.12798000	2.28498500
F	1.75099200	0.75547000	-2.44072600
F	3.76937600	0.00399000	2.57339200
F	5.22473200	-0.71660800	0.37079900
F	4.17767200	-0.36639600	-2.13799000
C	1.76330000	-2.58752700	-3.04254300
H	2.53301400	-1.80894800	-3.02714700
H	2.20679600	-3.54381400	-2.75200200
H	1.35604000	-2.67334600	-4.05371300
C	-2.22280100	2.07444100	-3.38646500
H	-2.00070200	1.68030100	-4.38173900
H	-3.21947300	2.52389600	-3.38993100
H	-1.47598800	2.82737000	-3.11106100
No imaginary frequencies

E = -1582.758632 Hartree
G = -1582.526633 Hartree
[Ru(C₆F₅)(MeCN)₅]⁺ (P-M2)

No imaginary frequencies
E = -1486.43275 Hartree
G = -1486.217041 Hartree
C 0.82256200 -3.29499000 -3.26278200
H 1.71656500 -3.92467400 -3.27482000
H -0.04758300 -3.91620600 -3.03071700
H 0.68723100 -2.85310600 -4.25394500
C 0.82850100 -3.29657000 3.25952700
H 0.69366700 -2.85550600 4.25112100
H -0.04121300 -3.91855800 3.02791300
H 1.72320500 -3.92528600 3.27022700
C 5.81479200 0.00014800 -0.00327700
H 6.19130400 0.90395200 -0.48392600
H 6.18813300 -0.02897900 1.03080500
H 6.19175500 -0.87431000 -0.53451000

MeCN

No imaginary frequencies
E = -132.7556374 Hartree
G = -132.73318 Hartree
C 0.00000000 0.00000000 -1.18067200
H 0.00000000 1.02604600 -1.55948300
H -0.88858100 -0.51302300 -1.55948300
H 0.88858100 -0.51302300 -1.55948300
C 0.00000000 0.00000000 0.28008700
N 0.00000000 0.00000000 1.44027900

C_{6}H_{3}F_{2}CF_{3} (1r)

No imaginary frequencies
E = -132.7556374 Hartree
G = -132.73318 Hartree
C 1.31406900 -1.61690500 -0.00716900
C 2.15033600 -0.50941400 0.00489400
C -0.06812600 -1.43047700 -0.02840600
C 1.61769500 0.78095800 -0.00651200
C -0.59803500 -0.13881100 -0.03892100
One imaginary frequency: \(\text{i}929.76 \)

\[E = -1622.093791 \text{ Hartree} \]

\[G = -1621.837613 \text{ Hartree} \]
{[Ru(OAc)(1r)(MeCN)]+}‡ (TS-M3-Ru(b))

One imaginary frequency: i1003.02

E = -1622.089229 Hartree
G = -1621.833131 Hartree
S295
{[Ru(OAc)(1r)(MeCN)₄]⁺⁺ (TS-M3-Ru(c))

One imaginary frequency: i880.00
E = -1622.0969 Hartree
G = -1621.842883 Hartree
Element	x	y	z
C	-3.93251800	-1.54989100	-1.32258500
N	-0.98726700	0.90820700	-1.81717800
C	-0.83345700	1.58690400	-2.74193100
N	-0.18401000	-1.76034600	-1.02213700
C	0.46213900	-2.60878700	-1.46930000
C	-3.59478600	3.09784000	2.02832400
H	-3.73172000	2.80108100	3.07210200
H	-3.00077700	4.01584300	1.99705000
H	-4.57372700	3.29007000	1.58071200
C	-5.15786700	-2.18614100	-1.78974800
H	-5.46245600	-2.96501900	-1.08482200
H	-5.95954400	-1.44652600	-1.86894800
H	-4.99623200	-2.63988700	-2.77158900
C	-0.62837800	2.45437700	-3.89541000
H	-0.05659000	1.92853700	-4.66527300
H	-1.59159400	2.75779500	-4.31524500
H	-0.07601300	3.34908800	-3.59360100
C	1.33904500	-3.64817000	-1.99198600
H	1.27250700	-3.69048300	-3.08257800
H	2.36877600	-3.41889400	-1.70143000
H	1.05776000	-4.62119300	-1.57964400
H	1.70408900	-1.32806000	0.86740300
H	4.34836500	1.83855500	-0.35567600
C	4.27027300	-0.85127200	0.22323600
F	3.83845800	-2.08811700	-0.15382800
F	4.83757500	-0.99452000	1.43443200
F	5.23720400	-0.48399800	-0.63919400

[\text{Pd(O}_2\text{COH})(\text{Ph})(\text{PMe}_3)]]

No imaginary frequencies

E = -1085.153536 Hartree

G = -1084.967793 Hartree

Element	x	y	z
Pd	-0.60014800	-0.19581700	-0.00123600
C	3.35131900	-1.32807800	1.20670200
C	2.03135300	-0.86312100	1.20749800

S297
[Pd(O₂COH)(Ph)(1r)(PMe₃)]⁺ (TS-M3-Pd(a))

One imaginary frequency: i1051.79
E = -1852.871704 Hartree
G = -1852.614754 Hartree

Pd 0.79580200 -0.03654100 -0.20066200
C -0.61357000 3.97887600 -0.72638900
C -0.06605300 2.70704200 -0.92919900
C 0.02553600 1.78829100 0.12863300
C -0.43844300 2.17564400 1.39503200
C -0.98267700 3.44984100 1.59516200
C -1.07005300 4.35674600 0.53772800
H 0.27450400 2.42905500 -1.92324400
H -1.34117200 3.72915600 2.58322500
H -1.49264000 5.34511000 0.69558100
H -0.68300400 4.67222100 -1.56122000
H -0.39376700 1.47973300 2.22734300
P 2.90536500 0.78126200 0.18837300
C 3.16549600 2.51832800 0.72837400
C 3.99440400 0.59613900 -1.28536600
C 3.74506400 -0.22722400 1.47975000
H 4.23121400 2.72035200 0.87424500
H 2.75860500 3.20045900 -0.02127600
H 2.62657900 2.69232500 1.66229300
H 5.03176800 0.85314400 -1.04707100
H 3.94003200 -0.44115000 -1.62359400
H 3.63802600 1.24495900 -2.08964400
H 4.79607600 0.06064500 1.58618200
H 3.23354800 -0.09312100 2.43636000
H 3.67432600 -1.27893600 1.19352000
O 1.82062000 -1.93619400 -0.62562100
C 1.17353700 -2.84513200 -1.19445500
O -0.07466600 -2.83123700 -1.47186500
C -2.04849900 -1.08285800 0.77255400
C -1.33954700 -0.80564700 -0.42411100
C -2.05895800 -0.13009700 -1.40534100
C -3.38001400 0.28331100 -1.23395700
C -4.04064500 0.01114600 -0.04671200
C -3.36936400 -0.68232100 0.96502700
F -1.47071000 0.15635500 -2.58609900
H -0.56999700 -1.81944100 -0.96282800
F -4.00363200 0.94190000 -2.22439600
H -5.06865200 0.33608500 0.07188200
H -3.88335400 -0.91390400 1.89045100
$\text{[Pd(O}_2\text{COH})(\text{Ph})(\text{1r})(\text{PMe}_3)]^{\ddagger}$ (TS-M3-Pd(b))

One imaginary frequency: i1054.85

E = -1852.863873 Hartree
G = -1852.607803 Hartree
[Pd(O$_2$COH)(Ph)(1r)(PMe$_3$)]$^+$ (TS-M3-Pd(c))

One imaginary frequency: i1011.22

E = -1852.865807 Hartree
G = -1852.610869 Hartree

Pd -1.18562700 -0.27097000 -0.00398400
C -0.39464200 3.78481400 1.16838400
C -0.81871000 2.45107400 1.14753400
Atom	X	Y	Z
C	-0.5925	1.6455	0.02072
C	0.0637	2.2082	-1.0846
C	0.4850	3.5427	-1.0618
C	0.2560	4.3364	0.0633
H	-1.3122	2.0386	0.0207
H	0.9974	3.9574	0.0207
H	0.5849	5.3716	0.0207
H	-0.5719	4.3895	0.0207
P	-3.2757	0.3758	-0.7428
C	-3.7815	-0.5812	0.0207
C	-3.6144	2.1251	0.0207
C	-4.5852	-0.0260	0.0207
H	-4.8229	-0.3762	0.0207
H	-3.1344	-0.3167	0.0207
H	-3.6558	-1.6448	0.0207
H	-4.6540	2.2470	0.0207
H	-3.4129	2.7690	0.0207
H	-2.9443	2.4292	0.0207
H	-5.5831	0.1854	0.0207
H	-4.5108	-1.0856	0.0207
H	-4.4273	0.5628	0.0207
O	-1.9937	-2.3232	0.0207
C	-1.3860	-3.2248	0.5516
O	-0.2479	-3.1139	1.1305
C	1.8146	-0.9587	0.4351
C	0.8972	-0.8241	0.6301
C	1.3750	-0.1781	1.7706
C	2.6678	0.3345	1.8627
C	3.5435	0.2081	0.7966
C	3.1094	-0.4456	0.3635
F	0.5670	-0.0196	2.8383
H	0.1789	-1.9994	0.9069
F	3.0592	0.9583	2.9876
H	1.5034	-1.4701	1.3411
H	4.5428	0.6201	0.8767
C	4.0673	-0.6476	1.5041
cis-Ru(κ²-OAc)₂(MeCN)₂ (cis-M4)

No imaginary frequencies
E = -817.5128659 Hartree
G = -817.364393 Hartree
trans-Ru(κ²-OAc)₂(MeCN)₂ (trans-M4)

No imaginary frequencies

E = -817.5128646 Hartree
G = -817.368594 Hartree
\{[\text{Ru}(\kappa^2-OAc)_2(\text{MeCN})_2]_C_6\text{HF}_5\}^\dagger \text{ (TS-M4 cis-fac)}

One imaginary frequency: i863.11

E = -1545.867826 Hartree
G = -1545.678837 Hartree

Ru

	-1.08042200	-0.24291400	-0.04149300
O | -1.88899000 | 0.64517900 | 1.68698700 |
C | -1.36993800 | 1.71453000 | 2.13619500 |
O | -0.35756600 | 2.28438800 | 1.62341300 |
C | -1.98128500 | 2.32410100 | 3.37825000 |
H | -2.03921600 | 3.40998300 | 3.27208800 |
H | -2.96906800 | 1.90456700 | 3.57146600 |
H | -1.32922900 | 2.11045000 | 4.23168600 |
C | 1.04274200 | 0.56574200 | 0.22761700 |
C | 1.72158400 | 0.94873100 | -0.93615700 |
C | 1.83050100 | -0.05994800 | 1.20592300 |
C | 3.06738400 | 0.67691300 | -1.15554300 |
C | 3.17843900 | -0.35042100 | 1.02919200 |
C | 3.79657900 | 0.02312100 | -0.16369500 |
F | 1.07094600 | 1.59591500 | -1.92147800 |
F | 3.67470800 | 1.03677400 | -2.29684900 |
F | 1.27906500 | -0.39441900 | 2.38257200 |
F | 3.89367400 | -0.96527100 | 1.98300000 |
F | 5.09319800 | -0.23980500 | -0.35358100 |
H | 0.20341400 | 1.39048000 | 0.78288600 |
N | -1.68831900 | 1.33031200 | -1.08859900 |
C | -2.01434700 | 2.24172400 | -1.72691500 |
N | -2.83088200 | -1.16479500 | -0.28818800 |
C | -3.83060400 | -1.74120300 | -0.39083100 |
C | -2.36046100 | 3.39173700 | -2.55163100 |
H | -2.83113300 | 4.17152400 | -1.94546200 |
H | -1.45481800 | 3.80226600 | -3.00892500 |
H | -3.05225500 | 3.09894900 | -3.34711500 |
\[
\text{\{[Ru(κ²-OAc)₃(MeCN)₂]C₆HF₅\}^+ (TS-M4 cis-mer)\}
\]

One imaginary frequency: i789.00

\[E = -1545.871638 \text{ Hartree}\]
\[G = -1545.68335 \text{ Hartree}\]
	Ru	O	C	O	C	H	H	H
	1.12045800	0.28390100	-0.12532500					
	1.66551300	1.05357600	1.75128400					
	1.12867700	0.55240300	2.79062000					
	0.22785300	-0.33939800	2.75793200					
	1.58215500	1.07307000	4.13648000					
	0.77129600	1.65778600	4.58278800					
	1.78716000	0.23513800	4.80778400					
	2.46728300	1.70111800	4.03235700					
	-0.97680400	-0.35839900	0.40501700					

```
{[Ru(k^2-OAc)_2(MeCN)_2]_C_8HF_5}^{\ddagger} (TS-M4 trans-mer)

One imaginary frequency: i881.87
E = -1545.869318 Hartree
G = -1545.680318 Hartree
```
fac-[Ru(κ²-OAc)(C₆F₅)(MeCN)₃] (fac-P-M4)

No imaginary frequencies

E = -1449.557092 Hartree
G = -1449.380049 Hartree
Ru 1.08747100 -0.00006500 -0.03180900
N 3.18948000 -0.00004500 -0.20161700
C 4.33457400 0.00014800 -0.38162500
N 1.12165400 -1.41429700 1.36223100
C 1.08389400 -2.29463500 2.11625400
N 1.12164400 1.41396700 1.36242100
C 1.08385000 2.29418200 2.11658700
C 0.99539900 0.00003400 -0.01568300
C 1.75617600 1.17151800 -0.04331900
C 1.75622700 -1.17141700 -0.04346200
C 3.14951100 1.19814900 -0.09065200
C 3.14956300 -1.19799600 -0.09080200
C 3.85601800 0.00009300 -0.11255700
F 1.15051400 2.38822000 -0.02999100
F 1.15061100 -2.38814500 -0.03028000
F 3.81953600 2.36651500 -0.11078300
F 5.19988700 0.00013000 -0.15227500
F 3.81963300 -2.36646700 -0.11107900
H 5.77249000 0.00046300 -0.62377500
H 6.05307500 0.87161700 -1.22310600
H 6.31875700 0.03540400 0.32332800
H 6.06377400 -0.90521400 -1.16388500
C 0.97009700 -3.44113800 3.00825100
H 0.10536100 -4.04523100 2.71552900
H 1.86780800 -4.06426800 2.95196600
H 0.83529900 -3.11459600 4.04372100
C 0.97002300 3.44053400 3.00877200
H 1.86710600 4.06447700 2.95149100
H 0.10442200 4.04386500 2.71703800
H 0.83669100 3.11383900 4.04438400
O 1.00945500 1.09437800 -1.88459000
C 0.96055500 0.00003500 -2.53753100
O 1.00943600 -1.09436000 -1.88469100
C 0.80812600 0.00016600 -4.03517900
H 1.25402200 -0.89979200 -4.46323100
mer-[Ru(κ²-OAc)(C₆F₅)(MeCN)]₃ (mer-P-M4)

No imaginary frequencies
E = -1449.561357 Hartree
G = -1449.383707 Hartree

Ru 1.13133900 -0.13395500 0.10910400
N 1.01261900 -1.84379200 -0.93177500
C 0.94487700 -2.80814100 -1.56853300
N 0.86123200 -1.08346100 1.83443800
C 0.73562900 -1.64912600 2.83949000
N 1.30580700 1.61443100 1.07798600
C 1.41427300 2.64672500 1.59057200
C -0.91668000 0.12450600 -0.08352300
C -1.46881600 1.33489900 -0.51884200
C -1.86764000 -0.87490700 0.14418900
C -2.83278300 1.54778200 -0.71478700
C -3.24006000 -0.71201900 -0.03841400
C -3.73159500 0.51428700 -0.47173600
F -0.66953900 2.39823700 -0.78653500
F -1.48302000 -2.11267200 0.56656200
F -3.29200400 2.74236500 -1.13288900
F -5.05112400 0.69761600 -0.65140000
F -4.09448700 -1.72625900 0.20148100
C 0.83414900 -4.01903300 -2.37081600
H -0.05751600 -4.58147300 -2.07816600
H 0.75344100 -3.76069400 -3.43083600
H 1.71450400 -4.65300200 -2.22978600
C 0.55892400 -2.38019400 4.08766300
H -0.33854400 -3.00426700 4.03301600
H 1.42289600 -3.02323400 4.28262000
H 0.44767600 -1.68421900 4.92459100
fac-Ru(κ2-OAc)(κ1-OAc)(MeCN)\textsubscript{3} (fac-M5)

No imaginary frequencies
E = -950.2817677 Hartree
G = -950.095497 Hartree

Ru -0.35095000 0.04598100 -0.00000100
N -1.99123200 -1.10870900 0.00000100
C -2.97199300 -1.72963200 -0.00000400
N 0.57041700 -1.02585900 1.40378200
C 1.21893500 -1.54583800 2.20937100
N 0.57042100 -1.02588000 -1.40376800
C 1.21895100 -1.54587600 -2.20933500
C -4.21162900 -2.49683000 -0.00000200
H -4.80581500 -2.25778700 -0.88740300
H -3.99752300 -3.56988300 -0.00233500
H -4.80371100 -2.26122400 0.88972200
C 2.12807000 -2.13286500 3.18322800
H 1.91743000 -1.74965300 4.18612700
H 2.03458200 -3.22266800 3.19655900
H 3.15401000 -1.86730200 2.90894400
C 2.12810900 -2.13292200 -3.18316000
H 1.91727600 -1.74999600 -4.18612700
H 3.15402000 -1.86707900 -2.90904400
mer-Ru(κ²-OAc)(κ¹-OAc)(MeCN)_₃ (mer-M5)

No imaginary frequencies

E = -950.27944 Hartree

G = -950.094136 Hartree
One imaginary frequency: i939.57

E = -1678.634087 Hartree
G = -1678.405054 Hartree
C	-1.91248400	-0.01980000	-1.31390900
C	-3.26799500	0.46942200	1.04616200
C	-3.20075300	-0.52041900	-1.15476100
C	-3.87771500	-0.27578800	0.03834400
F	-1.45156600	1.68306300	1.84697500
F	-3.93143300	0.70844000	2.19095100
F	-1.33179200	-0.21177700	-2.50389200
F	-3.80752000	-1.21153300	-2.13118500
F	-5.11896800	-0.74162300	0.21218300
H	-0.49571700	1.62917300	-0.86922300
N	1.35162100	1.89527600	1.04965400
C	1.54175600	2.89748400	1.59998600
N	2.87512000	-0.48430300	0.33613200
C	3.88840700	-1.03228600	0.42476300
N	0.42977000	-0.81636700	1.71309500
C	0.14423900	-1.52509800	2.58117300
C	1.73737000	4.16981600	2.28281500
H	2.54377800	4.09214300	3.01798900
H	1.99480300	4.95012400	1.56031300
H	0.81750200	4.46127100	2.79885000
C	5.09131600	-1.84708400	0.50711100
H	5.75916400	-1.63093400	-0.33177000
H	5.62629400	-1.66143700	1.44264400
H	4.78921700	-2.89854600	0.46675600
C	-0.18766400	-2.50800500	3.60230800
H	0.12384600	-3.49538900	3.24710400
H	0.33083500	-2.28458100	4.53904500
H	-1.26518200	-2.51812300	3.79024800
O	0.63168000	-1.54212200	-1.05411900
C	1.00337900	-2.75405700	-0.76156500
O	1.61385500	-3.13192600	0.24601000
C	0.61011300	-3.75392400	-1.85204600
H	0.81122200	-4.77459900	-1.52170000
H	-0.44724300	-3.64289900	-2.10893700
H	1.18360300	-3.54751500	-2.76198500
\{[\text{Ru}(\kappa^2\text{-OAc})(\kappa^1\text{-OAc})(\text{MeCN})_2]\text{C}_6\text{HF}_5}\}^\dagger \text{(TS-M5 mer-cis)}$

One imaginary frequency: i959.45

$E = -1678.635181$ Hartree

$G = -1678.406554$ Hartree

Ru
-1.00964100 0.09706300 0.12538400

O
-1.64078500 1.08672800 1.91069800

C
-0.98498700 2.09108900 2.31797600

O
0.08100900 2.52147700 1.76986300

C
-1.48372900 2.81756400 3.54846200

H
-0.80363300 2.61279100 4.38174900

H
-1.47000700 3.89655400 3.37443800

H
-2.48866000 2.48772900 3.81347600

C
1.23651400 0.68671400 0.30736100

C
1.87246400 1.02190800 -0.89513100

C
2.02474700 -0.04448800 1.20537600

C
3.15497400 0.59716900 -1.22566500

C
3.30877500 -0.49217600 0.92027400

C
3.87419400 -0.16937000 -0.31180500

F
1.25300900 1.79181700 -1.80667700

F
3.71328900 0.92178300 -2.40234800

F
1.54258000 -0.33801300 2.43114700

F
4.01281000 -1.21264500 1.80971100

F
5.11121700 -0.58058600 -0.60836700

H
0.51110600 1.59400600 0.93609100

N
-1.43462700 1.73775200 -0.95894100

C
-1.66110000 2.66586900 -1.61108600

N
-2.87555100 -0.56202500 -0.13380400

C
-3.91182100 -1.03852100 -0.32137000

N
-0.64079600 -1.59319900 1.15611700

C
-0.48190000 -2.61474900 1.67098700

C
-1.88294700 3.83950300 -2.44431800

H
-0.93087500 4.16735300 -2.87253900

H
-2.57246700 3.60345300 -3.25994100

H
-2.30308600 4.65674500 -1.85087500
$\{[\text{Ru}(\kappa^2-O\text{Ac})(\kappa^1-O\text{Ac})(\text{MeCN})_3] \cdot \text{C}_6\text{HF}_5\}^{\dagger}$ (TS-M5 mer-trans)

One imaginary frequency: i919.56

E = -1678.637241 Hartree
G = -1678.408426 Hartree
Atom	X	Y	Z
F	-1.04459400	-2.26126400	1.22232900
F	-3.51209800	-2.94327000	0.42587300
F	-1.97372200	2.27569000	0.15642800
F	-4.43802900	1.56877100	-0.65733900
F	-5.22662400	-1.04141600	-0.51836200
H	-0.61784100	0.50503600	1.62091900
N	1.59577800	-1.05803600	1.25807200
C	2.11269800	-1.82426000	1.95029600
N	0.54970400	-1.18661000	-1.38733800
C	0.51274600	-2.06563100	-2.13828100
N	0.32917500	1.68782100	-1.39378300
C	0.12337400	2.54286500	-2.14451800
C	2.80235500	-2.80780300	2.77140200
H	3.19572600	-2.33929900	3.67803200
H	2.11741100	-3.61084400	3.05840200
H	3.63307600	-3.23266300	2.19983300
C	0.58987100	-3.19032400	-3.05943700
H	0.26215300	-2.89489600	-4.06023600
H	1.62967600	-3.52887500	-3.10876800
H	-0.03890200	-4.01558700	-2.71293500
C	-0.14784300	3.63954200	-3.06390900
H	-0.22365600	3.26813800	-4.08991400
H	-1.08839200	4.12927300	-2.79461000
H	0.66038600	4.37507500	-3.01535200
O	2.77233100	0.58134100	-0.82578100
C	3.62325100	-0.36414000	-1.10928400
O	3.45083700	-1.58261700	-1.01637600
C	4.96009300	0.20232000	-1.59793100
H	5.63868000	-0.61046700	-1.86221400
H	4.80296200	0.85071100	-2.46550700
H	5.41117100	0.81880800	-0.81399200
cis-[Ru(κ^1-OAc)(C_6F_5)(MeCN)₄] (cis-P-M5)

No imaginary frequencies
E = -1582.322308 Hartree
G = -1582.102974 Hartree

Ru 0.82707800 -0.12486900 0.46131400
N 1.03447700 -1.53822000 -0.95984000
C 1.24138100 -2.20915900 -1.87678900
N 2.95050200 -0.22663300 0.75976700
C 4.06131600 -0.17298900 0.44098000
N 0.40423100 -1.45748700 1.89524100
C 0.13714800 -2.25026700 2.69861300
N 0.67043500 1.40325600 1.76237200
C 0.56420000 2.33769500 2.43614200
C -1.20276300 0.03545100 -0.01400300
C -1.87038900 1.25278600 -0.19213200
C -2.02255400 -1.08154200 -0.20433700
C -3.21687900 1.36194500 -0.54124400
C -3.37083200 -1.02434400 -0.55434100
C -3.97823100 0.21371100 -0.72812500
F -1.23107300 2.43501800 -0.01757500
F -1.52509100 -2.34111800 -0.04592900
F -3.79266400 2.57038700 -0.69239400
F -5.27784000 0.29980500 -1.06222000
F -4.09058300 -2.15195400 -0.72133000
C 1.55315500 -2.95830800 -3.08445500
H 0.64205400 -3.16361200 -3.65373900
H 2.23212500 -2.35536900 -3.69562600
H 2.03713600 -3.90797100 -2.83938900
C -0.23661400 -3.26468700 3.67608100
H -1.03528400 -3.89410500 3.27117900
H 0.62052400 -3.89957300 3.92047200
H -0.59610100 -2.79500500 4.59664300
C 0.38080800 3.54682200 3.22719100
H 1.31522400 4.11285300 3.28294700
trans-[Ru(κ₁-OAc)(C₆F₅)(MeCN)₄] (trans-P-M5)

No imaginary frequencies

E = -1582.325198 Hartree
G = -1582.108401 Hartree

Ru -0.77158200 -0.00001400 0.24737800
N -0.62452200 1.42207800 1.66077400
C -0.58000700 2.25288000 2.46474800
N -0.62447300 -1.42221300 1.66067500
C -0.57984500 -2.25311500 2.46453700
N -1.05840300 -1.39627800 -1.17718500
C -1.37832600 -2.12036300 -2.01793900
N -1.05830800 1.39632900 -1.17711400
C -1.37807800 2.12047900 -2.01787000
C 1.31099000 0.00000100 -0.05409000
C 2.07027000 1.16777800 -0.16792600
C 2.07028500 -1.16775800 -0.16801900
C 3.44896700 1.19686500 -0.37330700
C 3.44898100 -1.19681000 -0.37340000
C 4.14992800 0.00003600 -0.47751600
F 1.47322500 2.38927100 -0.07888500
Chemical Structure

```
fac-Ru(κ²-OAc)(OC(CF₃)₃)(MeCN), (fac-M6)
```

No imaginary frequencies

E = -1848.002454 Hartree

G = -1847.820988 Hartree

Molecular Coordinates

Atom	X	Y	Z
Ru	1.44143700	0.08927300	-0.11080900
N	3.42097500	-0.09822500	-0.00686900

S320
Atom	X	Y	Z
C	4.57851600	-0.14992600	0.05498500
N	1.22647300	-1.32063500	-1.51285000
C	0.93168000	-2.03422800	-2.37605000
N	1.20968200	-1.22953100	1.36476600
C	1.04747300	-1.92551200	2.27634800
C	6.03364800	-0.19940300	-0.12708000
H	6.38451700	0.27104100	1.05071200
H	6.38271100	-1.23624000	0.10814800
H	6.47160800	0.33199700	-0.72334400
C	0.46454200	-2.89456700	-3.45427700
H	-0.62481100	-2.97400000	-3.38831600
H	0.73022600	-2.46705400	-4.42557900
H	0.90229600	-3.89365600	-3.37449300
C	0.74393400	-2.75647200	3.43318700
H	1.39139000	-2.49532900	4.27544900
H	-0.29804000	-2.59167800	3.72413400
H	0.88232000	-3.81539500	3.19639200
O	1.56690400	1.94179400	0.93031800
C	1.61113700	2.56803100	-0.18258900
O	1.68729700	1.88094400	-1.25447800
C	1.53305600	4.06779900	0.22645200
H	2.05905800	4.45171200	-1.10282400
H	0.47914500	4.35596800	-0.30347200
H	1.94168400	4.49865900	0.68971700
O	-0.56871400	0.56737100	-0.41479200
C	-1.79353900	0.18979900	-0.02384200
C	-2.05301500	0.39167800	1.51916600
C	-2.13910600	-1.29802300	-0.38681500
C	-2.79790600	1.12386300	-0.79732300
F	-1.56804900	-0.65006100	2.24684800
F	-1.44373400	1.49677000	1.95801800
F	-3.36434000	0.48943500	1.82734800
F	-1.20160500	-2.15446000	0.07027700
F	-3.32326500	-1.70715800	0.11469500
F	-2.18979500	-1.46586200	-1.72958600
F	-2.48436200	1.18501400	-2.09863000
F	-4.08379300	0.71492000	-0.71320700
mer-Ru(\kappa^2-OAc)(OC(CF_3)_3)(MeCN)_3 (mer-M6)

No imaginary frequencies
E = -1848.000765 Hartree
G = -1847.82105 Hartree
One imaginary frequency: i993.92

E = -2576.35387 Hartree
G = -2576.129488 Hartree

[[Ru(OAc)(OC(CF_3)_3)(MeCN)_3]·C_6F_5]^+ (TS-M6 fac-cis)
{[Ru(OAc)(OC(CF₃)₃)(MeCN)₃]·C₆F₅}⁺ (TS-M6 mer-cis)

One imaginary frequency: i960.28
E = -2576.354908 Hartree
G = -2576.131142 Hartree

Ru 0.34161100 -1.36264300 -0.05860200
O 1.67244700 -2.96587400 -0.44747600
C 2.81401800 -2.97587600 0.10540000
O 3.26229500 -2.03503500 0.83477000
C 3.70817400 -4.17225700 -0.13193800
H 4.55576900 -3.86485600 -0.75279800
H 4.11330300 -4.52542200 0.81993000
H 3.16273500 -4.97269200 -0.63235000
C 2.01067200 0.20647100 0.36662400
C 1.78495800 1.09814000 1.42512800
C 2.68944100 0.75910600 -0.72830800
C 2.13302600 2.44371000 1.37979500
C 3.04868500 2.09688100 -0.82352000
C 2.76022900 2.94602900 0.24284200
F 1.22230800 0.67574700 2.56922200
F 1.87754000 3.26143200 2.41080400
F 3.05752800 -0.03585400 -1.75757900
F 3.67918900 2.57668900 -1.90860100
F 3.10193400 4.23568700 0.18008400
H 2.48878600 -0.99166300 0.65470800
N 0.24063100 -1.86720000 1.89642000
C 0.13324200 -2.09047900 3.02496400
N -1.14788200 -2.64693200 -0.41725000
C -2.02968700 -3.37312000 -0.59888600
N 0.39566700 -0.87151800 -2.00482700
C 0.41822100 -0.57364600 -3.12094200
C 0.01812200 -2.30077400 4.46101100
H 0.49658900 -1.46890700 4.98651700
H -1.03519900 -2.34110700 4.75256000
H 0.50611300 -3.23452100 4.75430000
\[
\text{\{[Ru(OAc)(OC(F\textsubscript{3})\textsubscript{3})(MeCN)\textsubscript{3}]C\textsubscript{6}F\textsubscript{5}\}^+ (TS-M6 mer-trans)}
\]

One imaginary frequency: \(i740.42\)

\[
\begin{align*}
E &= -2576.356679 \text{ Hartree} \\
G &= -2576.132428 \text{ Hartree}
\end{align*}
\]

\[
\begin{align*}
\text{Ru} & \quad -0.28874700 \quad 0.23218700 \quad 0.16235000 \\
\text{O} & \quad 0.02632800 \quad 1.78657600 \quad 1.53586700 \\
\text{C} & \quad -0.73002400 \quad 1.88065000 \quad 2.55360100 \\
\text{O} & \quad -1.73073800 \quad 1.13041200 \quad 2.76935700 \\
\text{C} & \quad -0.42249500 \quad 2.97654400 \quad 3.55083000 \\
\text{H} & \quad -1.17461700 \quad 3.76639700 \quad 3.45277800 \\
\text{H} & \quad -0.49211700 \quad 2.58341100 \quad 4.56811200
\end{align*}
\]
Atom	X	Y	Z
H	0.56734800	3.39639900	3.37068100
C	-2.58418000	0.05916000	0.52020700
C	-3.12623900	-1.23373800	0.51158200
C	-3.41261200	1.04944000	-0.02908700
C	-4.35028900	-1.54585200	-0.06985500
C	-3.62096300	3.58769100	-3.00454600
F	-4.80801800	-2.80747600	-0.08797700
F	-3.02883200	2.33915100	0.01283100
F	-5.38589300	1.76541700	-1.15262800
F	-6.29391400	-0.80827400	-1.19771100
H	-1.98551300	0.47720000	1.57083500
N	0.11729400	-1.07507200	1.63241200
C	0.37147300	-1.77210000	2.51776200
N	-0.44591000	-1.21993900	-1.21597900
C	-0.40838700	-2.04281800	-2.02902200
N	-0.58865500	1.64530600	-1.26007500
C	-0.60887800	2.49613900	-2.04073000
C	0.74059200	-2.63447300	3.62991700
H	0.26579300	-2.28463500	4.55111300
H	0.42178300	-3.66259300	3.43643400
H	1.82691800	-2.61503900	3.75809700
C	-0.26668800	-3.08341400	-3.03821700
H	-0.71814300	-2.76788800	-3.98308900
H	0.79892200	-3.27329800	-3.19833900
H	-0.75005900	-4.00697600	-2.70704000
C	-0.62096300	3.58769100	-3.00454600
H	-0.71342400	3.19655800	-4.02163700
H	-1.46197000	4.25751500	-2.80355500
H	0.31173800	4.15395400	-2.92841300
O	1.68045600	0.54703300	-0.50015700
C	2.90522100	0.01623300	-0.36019700
C	3.00216400	-1.49799900	-0.76396500
C	3.82505400	0.83621400	-1.34321200
C	3.50219400	0.17787700	1.09070400
F	3.24458300	0.95078200	-2.54925700
cis-Ru(C₆F₅)(OC(CF₃)₃)(MeCN)₄ (cis-P-M6)

No imaginary frequencies

E = -2480.041832 Hartree
G = -2479.829319 Hartree
trans-Ru(C₆F₅)(OC(CF₃)₃)(MeCN)$_4$ (trans-P-M6)

No imaginary frequencies
E = -2480.050539 Hartree
G = -2479.838312 Hartree

Ru 0.43676000 -0.10417600 0.14263800
N 0.36941400 1.34754300 1.53634900
C 0.19658200 2.17821300 2.32127600
N 0.54513600 -1.48537200 1.61355900
C 0.53114400 -2.28371500 2.44883100
N 0.29429100 -1.56323100 -1.24047400
C 0.04327100 -2.38675500 -2.01166800
N 0.29813000 1.27335300 -1.31428400
C 0.21601500 2.07820800 -2.13951500
C 2.51811100 -0.00886800 0.00496900
C 3.24047700 1.18769900 -0.03492600
C 3.32695900 -1.14852800 -0.04828300
C 4.62984400 1.26660700 -0.11959700
C 4.71823300 -1.12501500 -0.13253200
C 5.38109300 0.09727700 -0.16886500
F 2.59537400 2.38629700 0.01057700
F 2.76967800 -2.39018200 -0.01689900
F 5.25263800 2.46026000 -0.15300400
F 6.72152500 0.14799900 -0.25010000
F 5.42685100 -2.26922100 -0.17858300
C 0.50858500 -3.30267800 3.48958100
H 1.21479600 -4.10236900 3.24787500
H 0.78772900 -2.86686300 4.45316400
H -0.49582600 -3.72775100 3.57323500
C -0.35055400 -3.40989000 -2.96986700
H -0.07424600 -4.40198200 -2.60173300
H -1.43542500 -3.36735300 -3.10528200
H 0.13929900 -3.24293900 -3.93332500
C 0.07081600 3.10560100 -3.16061900
H -0.95450400 3.48757900 -3.15558100
References

1. Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2009, 131, 17052.
2. Kumar, A.; Bhakuni, B. S.; Prasad, C. D.; Kumar, S.; Kumar, S. Tetrahedron 2013, 69, 5383.
3. Julich-Gruner, K. K.; Kataeva, O.; Schmidt, A. W.; Knolker, H. J. Chem. Eur. J. 2014, 20, 8536.
4. Maiti, D.; Buchwald, S. L. J. Org. Chem. 2010, 75, 1791.
5. Masahiko, S. 2012, US Patent 2012/232283 A1
6. Ackermann, L.; Lygin, A. V. Org. Lett. 2011, 13, 3332.
7. Molina de la Torre, J. A.; Espinet, P.; Albeniz, A. C. Organometallics 2013, 32, 5428.
8. Kumar, A.; Bhakuni, B. S.; Prasad, C. D.; Kumar, S.; Kumar, S. Tetrahedron 2013, 69, 5383.
9. Julich-Gruner, K. K.; Kataeva, O.; Schmidt, A. W.; Knolker, H. J. Chem. Eur. J. 2014, 20, 8536.
10. Maiti, D.; Buchwald, S. L. J. Org. Chem. 2010, 75, 1791.
11. Ackermann, L.; Lygin, A. V. Org. Lett. 2011, 13, 3332.
12. Molina de la Torre, J. A.; Espinet, P.; Albeniz, A. C. Organometallics 2013, 32, 5428.
13. Kumar, A.; Bhakuni, B. S.; Prasad, C. D.; Kumar, S.; Kumar, S. Tetrahedron 2013, 69, 5383.
31 a) Hariharan, P. C.; Pople, J. A. *Mol. Phys.* **1974**, *27*, 209; b) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; DeFrees, D. J.; Pople, J. A.; Gordon, M. S. *J. Chem. Phys.* **1982**, *77*, 3654; c) Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A., *J. Comp. Chem.* **2001**, *22*, 976.

32 a) Fukui, K., *Acc. Chem. Res.* **1981**, *14*, 363; b) Hratchian, H. P.; Schlegel, H. B., *J. Chem. Theor. Comput.* **2005**, *1*, 61.