Virtual Incision Pattern Planning using Three-Dimensional Images for Optimization of Syndactyly Surgery

Inge A. Hoevenaren, MD*
Rinaldo D. Vreeken, BSc†
Arico C. Verhulst, MSc*†
Dietmar J. O. Ulrich, MD, PhD*
Thomas J. J. Maal, PhD†
Till Wagner, MD*

INTRODUCTION

Three-dimensional (3D) stereophotogrammetry imaging was recently introduced into the hand surgery field.1,2 The advantages of this technique are its lack of radiation, cost-effectiveness, and good patient tolerance. It allows for accurate, immediately available 3D soft-tissue hand images.

To demonstrate its usefulness in clinical practice, we used 3D hand images during the preoperative planning process of a desyndactylization procedure. Syndactyly is a congenital abnormality, in which the fingers are fused. Preoperative evaluation of the soft and bony tissue elements in the syndactylized hand is necessary in every patient and done using conventional radiology images and computed tomography (CT) scan images.3 Hynes et al.4 found that CT angiographically guided release of adjacent webspaces benefits the patient. However, CT imaging has numerous disadvantages, like radiation, costs, and need for anesthesia when used for children.5 Until now, no harmless imaging technique exists that evaluates the soft tissues in a 3D method. The goal of this study was to implement the use of this technique in hand surgery, by designing a virtual planning tool for a desyndactylization procedure based on 3D hand images. A 3D image of a silicon syndactyly model was made on which the incision pattern was virtually designed. A surgical template of this pattern was printed, placed onto the silicon model and delineated. The accuracy of the transfer from the virtual delineation toward the real delineation was calculated, resulting in a mean difference of 0.82 mm. This first step indicates that by using 3D images, a virtual incision pattern can be created and transferred back onto the patient successfully in an easy and accurate way by using a template. Thereafter, 3D hand images of 3 syndactyly patients were made, and individual virtual incision patterns were created. Each pattern was transferred onto the patient by using a 3D printed template. The resulting incision pattern needed minor modifications by the surgeon before the surgery was performed. Further research and validation are necessary to develop the virtual planning of desyndactylization procedures. (Plast Reconstr Surg Glob Open 2018;6:e1694; doi: 10.1097/GOX.0000000000001694; Published online 12 March 2018.)

SUBJECTS AND METHODS

A 3D image of an adult subject was made to simulate syndactyly and scaled down to an average toddler size.
hand. This was used as a reference to create a silicon syndactyly model, and a new 3D image of this model was created. All images were obtained with the 3dMD cranial system (3dMD cranial system, Atlanta, Ga.), which consists of 5 pods with a total of 15 cameras. The obtained 3D image was loaded into 3ds Max 2016 (Autodesk Inc, San Rafael, Calif.). Thereafter, the incision pattern was virtually planned on the dorsal side by an experienced hand surgeon (T.W.) in 3ds Max (Fig. 1). Using a transparent filter setting of the model, the surgeon was able to plan the palmar side using the dorsal side as a reference (Fig. 2). To transfer the virtual planning to the silicon model, a patient-specific surgical template was designed and printed using the Laser-Sinter-System EOS P 396 3D printer (Oceanz, Ede, Netherlands). This template could then be placed exactly onto the silicon syndactyly model (Fig. 3), after which the planning could be marked with a marker pen. To evaluate the transfer of the virtual planning onto the model, another 3D image of this model with the markings was obtained. This image was loaded into Maxilim (Medicim, Leuven, Belgium) and matched with the virtual planning using an Iterative Closest Point algorithm. Thereafter, landmarks were placed at the corners of the virtually planned and real delineation to calculate the accuracy. Next, 3D images of 3 patients (2 male, 1 female, average age, 3.2 years) were obtained, and a virtual incision pattern was planned by the surgeon (T.W.). This planning was transferred onto the patient preoperatively. Postoperatively, the experiences of the surgeon using this template were obtained.

RESULTS
The virtual planning process was simple to perform, because the model could be viewed from any possible an-
The computer program for future delineations. The ex-

normally used. This was corrected preoperatively, and in

somewhat wide opening of the delineation in the tem-

ming, minor modifications were necessary due to the

avoided, leading to less scarring.

Furthermore, when the amount of necessary skin can be

predicted preoperatively, excessive skin grafting will be

avoided, leading to less scarring.

With this first use of 3D images in preoperative plan-

ning, minor modifications were necessary due to the

somewhat wide opening of the delineation in the tem-

plate, resulting in broader markings on the patient than

normally used. This was corrected preoperatively, and in

the computer program for future delineations. The ex-

periences of the hand surgeon proved the usage of the

template to be easy and to simplify the surgical procedure,

which will be helpful for less experienced surgeons or resi-

dents performing desyndactylization procedures.

In this study, we show an easy method for preoperative

hand surgery planning based on 3D images. This first step

proves that by using 3D hand images, a virtual incision pat-

tern can be created and transferred back onto the patient

successfully. The preoperative planning will reduce total

surgery time, as the surgeon can directly copy the incision

pattern from the template. The quality and therewith final

result of the incision pattern will be improved, as different

incisions and their results can be tested virtually, to reach

the optimal, individual incision pattern. With our future

research, we will continue to develop the virtual planning

tool for desyndactylization procedures, therewith expand-

ing the implementation of 3D imaging in hand surgery.

REFERENCES

1. Hoevenaren IA, Maal TJ, Krikken E, et al. Development of a

three-dimensional hand model using 3D stereophotogramme-
	ry: evaluation of landmark reproducibility. J Plast Reconstr Aesthet

Surg. 2015;68:709–716.

2. Hoevenaren IA, Meulstee J, Krikken E, et al. Development of a

three-dimensional hand model using three-dimensional stereo-

photogrammetry: assessment of image reproducibility. PLoS One.

2015;10:e0136710.

3. Hynes SL, Harvey I, Thomas K, et al. CT angiography-guided sin-

gle-stage release of adjacent webspaces in non-Apert syndac-

tyly. J Hand Surg Eur Vol. 2015;40:625–632.

4. Brenner DJ, Hall EJ. Computed tomography—an increasing

source of radiation exposure. N Engl J Med. 2007;357:2277–2284.

5. Lin EC. Radiation risk from medical imaging. Mayo Clinic

Proceedings. 2010;85:1142–1146; quiz 6.

6. Upton J. Congenital anomalies of the hand and forearm. In:

McCarthy JG MJ, Littler JW, eds. Plastic Surgery: The Hand Part 2.

Philadelphia, Pa.: WB Saunders; 1990:5213–5398.

7. van der Biezen JJ, Bloem JJ. Dividing the fingers in congenital

syndactyly release: a review of more than 200 years of surgical

treatment. Ann Plast Surg. 1994;33:225–230.

8. Dao KD, Shin AY, Billings A, et al. Surgical treatment of congeni-

tal syndactyly of the hand. J Am Acad Orthop Surg. 2004;12:39–48.

9. Oda T, Pushman AG, Chung KC. Treatment of common congeni-
tal hand conditions. Plast Reconstr Surg. 2010;126:121e–135e.

10. Maal TJ, van Loon B, Plooj J, et al. Registration of 3-dimen-
sional facial photographs for clinical use. J Oral Maxillofac Surg.

2010;68:2901–2901.

11. Plooj J, Swennen GR, Rangel FA, et al. Evaluation of reproduc-

ibility and reliability of 3D soft tissue analysis using 3D stereopho-
togrammetry. Int J Oral Maxillofac Surg. 2009;38:267–273.

12. Aldridge K, Boyadjiev SA, Capone GT, et al. Precision and error

of three-dimensional phenotypic measures acquired from 3MD

photogrammetric images. Am J Med Genet A. 2005;138A:247–253.

13. Kozin SH, Zlotolow DA. Common pediatric congenital condi-
tions of the hand. Plast Reconstr Surg. 2015;136:241e–257e.

14. Richterman JE, DuPree J, Thoder J, et al. The radiographic anal-
ysis of web height. J Hand Surg. 1998;23:1071–1076.

Fig. 4. Usage of the template preoperatively. Transferring the inci-
sion pattern onto the patient was easy and fast by using the tem-
plate.