Search for first generation scalar leptoquarks in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

We report a search for first generation scalar leptoquarks using 1.03 fb$^{-1}$ of proton-proton collisions data produced by the Large Hadron Collider at $\sqrt{s} = 7$ TeV and recorded by the ATLAS experiment. Leptoquarks are sought via their decay into an electron or neutrino and a quark, producing events with two oppositely charged electrons and at least two jets, or events with an electron, missing transverse momentum and at least two jets. Control data samples are used to validate background predictions from Monte Carlo simulation. In the signal region, the observed event yields are consistent with the background expectations. We exclude at 95% confidence level the production of first generation scalar leptoquark with masses $m_{LQ} < 660$ (607) GeV when assuming the branching fraction of a leptoquark to a charged lepton is equal to 1.0 (0.5).

1. Introduction

Similarities between leptons and quarks in the Standard Model (SM) suggest that they might be a part of some symmetry at energy scales above the electroweak symmetry breaking scale. In this type of symmetry, transitions between leptons and quarks, mediated by a new type of gauge boson, a leptoquark (LQ), may occur. LQs are putative color-triplet bosons with spin 0 or 1, and fractional electric charge λ. They are predicted in many extensions of the SM, such as Grand Unification models, and possess both quark and lepton quantum numbers. The Yukawa coupling λ_{LQ-t-q} of a leptoquark to a lepton and a quark, and the branching ratio (β) to a charged lepton, are model dependent. In pp collisions, if λ_{LQ-t-q} is of the order of the electroweak coupling strength, leptoquarks are predominantly produced in pairs via the strong interaction. At the LHC, the pair production cross section is dominated by gluon fusion for LQ masses $m_{LQ} \lesssim 1$ TeV, whereas at higher masses it is dominated by quark-antiquark annihilation. Under these assumptions, the production rate for scalar LQs depends only on the known QCD coupling constant and the unknown LQ mass, and has been calculated at up to next-to-leading order. It is usually assumed that leptoquarks only couple to one generation of SM isospin multiplet to accommodate experimental constraints on flavor-changing neutral currents, and lepton and baryon number violation [2]. Consequently, they are classified as first-, second-, or third-generation according to the fermion generation to which they couple [3]. Lower mass limits on the first generation LQs already exist from searches of LQ produced in pairs at the LHC [4, 5]. Tevatron [6] and LEP [7]. Limits on single LQ production come from HERA [8] and other experiments [9].

In this Letter we present updated results on a search for the pair production of first generation scalar leptoquarks in pp collisions at $\sqrt{s} = 7$ TeV. The search is performed with a dataset corresponding to an integrated luminosity of 1.030 ± 0.035 fb$^{-1}$ [10] of data collected by the ATLAS detector at the LHC from March 2011 to July 2011. We search for leptoquarks in two different final states. In the first one both LQs decay into an electron and a quark, while in the second final state one of the LQs decays into an electron and a quark and the other LQ decays into an electron-neutrino and a quark. These result in two different experimental signatures. One such signature is the production of two electrons and two jets and the other one comprises one electron, two jets, and missing transverse momentum (the magnitude of which is denoted as E_T^{miss}). The results from the two final states are combined and presented in the m_{LQ} versus β plane, where β is the branching ratio for a single LQ to decay into a charged lepton and a quark.

2. The ATLAS detector

The ATLAS detector [11] is a general-purpose particle detector with cylindrical geometry [12] which consists of several subdetectors surrounding the interaction point, and providing nearly 4π coverage in solid angle. The location of the interaction point and momenta of charged particles are determined by the multi-layer silicon pixel and strip detectors covering $|\eta| < 2.5$ in pseudorapidity η, and a transition radiation tracker extending to $|\eta| < 2.0$, which are inside a superconducting solenoid producing a field of 2 T. The tracking system is surrounded by a high-granularity liquid-argon (LAr) sampling electromagnetic calorimeter with coverage up to $|\eta| < 3.2$. An

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and z axis coinciding with the axis of the beam pipe. The x axis points from the interaction point to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

Preprint submitted to Physics Letters B

March 22, 2012.
iron-scintillator tile hadronic calorimeter provides coverage in the range $|\eta| < 1.7$. In the end-cap and forward regions LAr calorimeters provide both electromagnetic and hadronic measurements and cover the region $1.5 < |\eta| < 4.9$. The muon spectrometer, consisting of precision tracking detectors and superconducting toroids, is located outside the calorimeters.

We perform the search in the data sample selected by a three-level trigger requiring at least one high transverse energy (E_T) electron. The trigger is fully efficient for electrons with $E_T > 30$ GeV, as measured in an inclusive $Z \rightarrow ee$ control sample [12].

3. Simulated samples

Samples of Monte Carlo (MC) events are used to devise selection criteria and validate background predictions. Background and signal samples are processed through the full ATLAS detector simulation based on GEANT4 [13], followed by the same reconstruction algorithms as used for collision data. The effects from in-time and out-of-time proton-proton collisions are included in the MC simulation. In the simulated samples, an event weight is applied to the average number of additional proton-proton collisions occurring in the same bunch crossing (event pile-up), to ensure that the number of interactions per bunch crossing, amounting to an average of 6, is well modeled.

The dominant backgrounds to the leptoquark signal include W and Z boson production in association with one or more jets, single and pair production of top quarks, QCD multi-jet (MJ) and diboson processes. The ALPGEN [14] generator is used for the simulation of the W/Z boson production in association with n partons. This program is interfaced to HERWIG [15] and JIMMY [16] to model parton showers and multiple parton interactions, respectively. The MLM [14] jet-parton matching scheme is used to form inclusive $W/Z+jets$ MC samples. MC@NLO [17] is used to estimate single and pair production of top quarks. Diboson events are generated using HERWIG, and scaled to next-to-leading (NLO) cross section predictions [17, 18].

Signal LQ samples are produced with PYTHIA [19] and normalized with NLO cross-sections determined from Ref. [20] using CTEQ6.6 [21] parton distribution functions.

4. Object identification

This search is based on selecting events with a high E_T electron, two high p_T jets, and an additional electron or large E_T^{miss}. Electron candidates are reconstructed as energy deposits in the electromagnetic calorimeter. Electrons are required to have a shower profile consistent with that expected for this particle, and to have a track pointing to the energy deposit in the calorimeter. The pattern of the energy deposits on the first layer of the EM calorimeter is used to reject hadrons, while contamination from photon conversions is reduced by requiring a hit in the first layer of the pixel detector [22]. In addition to these criteria, we require electrons to have a transverse energy $E_T > 30$ GeV and fall within a well instrumented region of the detector. Further rejection against hadrons is achieved by requiring the electron candidates to be isolated from additional energy deposits in the calorimeter by requiring that $E_T^{0,2}/E_T < 0.1$, where $E_T^{0,2}$ is the transverse energy in a cone of radius $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.2$ centered on the electron track, excluding the electron contribution, and corrected for the energy from event pile-up and the electron energy leakage inside the cone.

Jets are defined as localized energy deposits in the calorimeter and are reconstructed using the anti-k_t algorithm [23] with a distance parameter of 0.4 and by performing a four-vector sum over calorimeter clusters. Reconstructed jets are corrected for the non-compensating calorimeter response, upstream material and other effects by using p_T- and η- dependent correction factors derived from MC and validated with test-beam and collision data [24]. We further require that jets satisfy $E_T > 30$ GeV, $|\eta| < 2.8$ and are separated from electrons passing the above selection within $\Delta R > 0.4$. Selected jets must also pass quality requirements to reject jets arising from electronic noise bursts, cosmic rays and beam background, originating mainly from beam-gas events and beam-halo events [25].

The presence of neutrinos is inferred from the missing transverse momentum p_T^{miss} (and its magnitude E_T^{miss}) [26]. p_T^{miss} is defined as the negative vector sum of the transverse momenta of reconstructed electrons, muons and jets, as well as calorimeter clusters not associated to reconstructed objects.

Corrections are made to the simulated samples to ensure a good description of the energy resolution and the trigger and reconstruction efficiencies. These are determined in control data samples and applied to both simulated background and signal samples. These corrections change the total expected yields by less than 2%.

5. Event selection

We define event selections to create samples with high signal and background acceptance. Events are selected to be consistent with the LQ $\nu_X \rightarrow eeq\bar{q}/e\nu q\bar{q}$ decays. In the $eejj$ topology we require two electrons and at least two jets as defined in Section 4 and an invariant mass of the electron pair $m_{ee} > 40$ GeV. In the $e\nu jj$ topology, one electron, at least two jets and $E_T^{miss} > 30$ GeV are required, together with a requirement on the transverse mass of the electron and the p_T^{miss}, $m_T = \sqrt{2p_T^{miss}p_T^{-}\cos\Delta\phi} (1 - \cos(\Delta\phi)) > 40$ GeV, where $\Delta \phi$ is the angle between the electron p_T and p_T^{miss}. In addition, we require that $\Delta \phi(p_T^{miss}, p_T^{-}) > 4.5 \times \sqrt{1 - E_T^{miss}/45\text{GeV}}$ in the $e\nu jj$ channel for events with $E_T^{miss} < 45$ GeV to reduce residual contamination from MJ events. Events with additional identified electrons as defined in Section 4 or muons with $p_T > 30$ GeV and $|\eta| < 2.4$ are rejected.

After all the selection criteria are applied the signal acceptance is of 70% for a LQ signal of $m_{LQ} = 600$ GeV for both channels, but the sample is still dominated by background events.
6. Background determination

The MJ background estimate is derived directly from data, whereas MC samples are used to predict the other backgrounds. We verify the shape of the V+jets \((V = W^\pm, Z) \) and top quark background prediction using control regions, which are defined to enhance either the V+jets or the top quark production contribution, while keeping a negligible LQ signal contamination. These control regions are also used to derive the final normalization of the V+jets and top quark backgrounds.

The V+jets and top quark control regions are defined by applying additional selection criteria on \(m_{ee} \) and \(m_T \) to the selected sample. The remaining signal contamination is reduced by applying an upper threshold to the summed transverse momentum in the event, \(S_T \), defined as the scalar sum of the \(p_T \) of the two leading jets and the transverse energy of the two electrons in the eejj channel. In the \(S_T \) definition in the evjj channel, the second electron \(E_T \) is substituted by the \(E_T^{miss} \).

In the eejj topology we define two control regions (i) \(Z \) + jets: formed by events with at least two jets and in which the two electrons are required to have an invariant mass within a Z mass window \(81 < m_{ee} < 101 \) GeV, and (ii) \(t\bar{t} \): events with at least two jets and exactly one electron and one muon \([27]\), defined as in Section 4. In the evjj topology we define three control regions (iii) \(W + 2 \) jets: events with exactly two jets, an electron and \(E_T^{miss} \) such that the transverse mass of the electron and the \(E_T^{miss} \) is in the region of the W Jacobian peak, \(40 < m_T < 120 \) GeV, and a \(S_T < 225 \) GeV requirement to limit the presence of signal events, (iv) \(W + 3 \) jets: as in (iii) but with three or more jets, and (v) \(t\bar{t} \): events with at least 4 jets, where the thresholds on the first and second jets are raised to 50 GeV and 40 GeV, respectively.

To estimate the MJ background, we perform fits to the \(m_{ee} \) distribution in the eejj channel, and to the \(E_T^{miss} \) distribution in the evjj channel. In these fits, the relative fraction of the MJ background is a free parameter. Templates for the MJ background distributions are derived from MJ enhanced samples, while keeping a negligible LQ signal contamination. The remaining signal contamination is reduced by applying an upper threshold to the summed transverse momentum in the event, \(S_T \), defined as the scalar sum of the \(p_T \) of the two leading jets and the transverse energy of the two electrons in the eejj channel. In the \(S_T \) definition in the evjj channel, the second electron \(E_T \) is substituted by the \(E_T^{miss} \).

7. Likelihood analysis

We use a likelihood ratio method to separate signal and SM background. The likelihoods are constructed separately for background \((L_B)\) and signal \((L_S)\) hypotheses from a set of discriminating variables as follows: \(L_B = \prod b_i(x_i), L_S = \prod s_i(x_i) \), where \(b_i, s_i \) are the probabilities of the \(i \)-th input variable from the normalized summed background and signal distributions respectively, and \(x_i \) is the value of that variable for the \(j \)-th event in a given sample. Separate \(L_S \) distributions are created for several signal mass points, allowing mass-dependent optimization. Using the aforementioned quantities, a likelihood ratio is defined as \(LLR = \log(L_S/L_B) \) and is used as the final variable to determine whether or not there is a LQ signal present in our data.

The following discriminating variables, selected to give the best separation between signal and background, are used. For the eejj channel, we use \(m_{ee}, S_T = E_T^{miss} + E_T^{search}, p_T^{jet} \) and the average invariant LQ mass \(m_{LQ} \). For the evjj topology, we use \(m_{ee}, E_T^{miss}, S_T \), the transverse LQ mass \(m_{LQ} (jet, E_T^{miss}) \) and the invariant LQ mass \(m_{LQ} (e, jet) \). To obtain the LQ masses, we calculate the invariant mass of the electron-jet system and the transverse mass of the \(E_T^{miss} \)-jet system. Since the LQs are produced in pairs, there are two possible mass combinations for the electron-jet and \(E_T^{miss} \)-jet pairs, and the combination giving the smallest mass difference is used. In the eejj channel, two possible electron-jet combinations arise from this procedure, and we take their average \(m_{LQ} \) for the analysis. The discriminating variables are shown in Figs. 1 and 2 for the eejj and the evjj channels, respectively.

8. Systematic uncertainties

Systematic uncertainties affect both background normalization and shapes of the input distributions into the LLR. We consider systematic uncertainties from a variety of sources. These are described as follows.

The jet energy scale (JES) and resolution (JER) uncertainties are considered independently, and applied by varying the JES (JER) within its uncertainty of 4% to 6.5% (14%) depending on the jet \(p_T \) and \(\eta \) [23, 29] for all simulated events. These variations are also propagated to the \(E_T^{miss} \) in the evjj channel. The resulting uncertainties for the \(m_{LQ} = 600 \) GeV signal and background are 5% (8%) and 11% for the eejj (evjj) final state.

Systematic uncertainties on the electron energy scale (1.6%) and resolution (0.6%), and on the electron trigger, reconstruction and identification efficiencies are derived by varying the selection criteria defining the Drell-Yan control sample used for the various measurements [12]. In addition, a 1% uncertainty is included to account for the efficiency of the isolation requirement. They lead to total signal and background yield uncertainties of 8% and 5% (3.5%), respectively, for the eejj (evjj) channel and for a signal of mass \(m_{LQ} = 600 \) GeV.

The systematic uncertainty for the production model of V+jets is taken to be the largest difference between the nominal data-driven prediction using ALPGEN and that obtained
Figure 1: Data and SM background comparisons of the input LLR variables for the eejj channel. (a) Invariant mass of the two electrons in the event, (b) Average LQ mass resulting from the best (electron, jet) combinations in each event, and (c) S_T. The stacked distributions show the various background contributions, and data are indicated by the points with error bars. The 600 GeV LQ signal is also shown for $\beta = 1.0$. The solid line (band) in the lower plots shows the Gaussian statistical (statistical + systematic) significance of the difference between data and the prediction.
Figure 2: Data and SM background comparisons of the input LLR variables for the \(e\nu jj\) channel. (a) Transverse mass of the electron and the \(E_{\text{T}}^{\text{miss}}\) in the event, (b) \(S_T\), (c) LQ mass, and (d) LQ transverse masses. The stacked distributions show the various background contributions, and data are indicated by the points with error bars. The 600 GeV LQ signal is also shown for \(\beta = 0.5\). The solid line (band) in the lower plots shows the Gaussian statistical (statistical + systematic) significance of the difference between data and the prediction.
by using SHERPA [30], giving an uncertainty of 1.5% and 3% for the $eejj$ and the $evjj$ channels, respectively.

The systematic uncertainty for the $t\bar{t}$ production model are evaluated by comparing the yields between events generated with MC@NLO and those generated with various alternate samples. These include samples generated with POWHEG [31], a different top mass (170 GeV and 175 GeV instead of the nominal value equal to 172.5 GeV), and a different amount of initial- and final-state- radiation (ISR/FSR). The result is an uncertainty in the $t\bar{t}$ yield of 10% and 15% for the single electron and dielectron analyses, respectively.

Systematic uncertainties are determined for the MJ backgrounds by comparing results from alternative normalizations to those from the methods described earlier. The largest variation is taken, resulting in an uncertainty of 20% and 28% in the MJ normalization for the $evjj$ and the $eejj$ channels, respectively. An uncertainty of 3.7% [10] on the integrated luminosity is applied to both diboson and single top background yields, as well as to expected signal yields.

Finally, further uncertainties on the simulated background contributions originate from finite statistics in the MC samples used. These range from 2%–9%, depending on the LQ mass under consideration. Additional signal uncertainties considered arise from the choice of the PDF, which results in an uncertainty on the signal acceptance of 1%–8% for LQ masses between 300 GeV and 700 GeV, and from ISR/FSR effects, resulting in an uncertainty of 2% for both channels.

9. Results

The LLR distributions for data, backgrounds and a LQ signal assuming $m_{LQ} = 600$ GeV are shown in Fig. 3 for both channels. The observed and predicted event yields requiring $LLR > 0$ for the major background sources, as well as the expected signal, are shown in Table 1. We do not observe any excess of events at high LLR values where signal is expected, indicating no evidence of scalar LQ pair production. Given the

Table 1: The predicted and observed yields in a signal enhanced region defined by requiring $LLR_0 > 0$ for both channels. Background predictions are scaled as described in Section 9. The $eejj$ ($evjj$) channel signal yields are computed assuming $\beta = 1.0 (0.5)$. Statistical and systematic uncertainties added in quadrature are shown.

Source	$eejj$ Channel	$evjj$ Channel		
	400 GeV	600 GeV	400 GeV	600 GeV
W+jets	—	—	1500 ± 670	670 ± 210
Z+jets	98 ± 53	26 ± 14	45 ± 41	18 ± 19
$t\bar{t}$	15 ± 9	4.6 ± 2.2	430 ± 180	150 ± 38
Single t	1.4 ± 0.9	0.7 ± 0.4	53 ± 19	23 ± 4
Dibosons	1.5 ± 0.8	0.7 ± 0.3	25 ± 11	11 ± 2
MJ	9.2 ± 4.5	2.3 ± 1.5	170 ± 35	75 ± 15
Total	120 ± 55	34 ± 14	2200 ± 690	950 ± 220
Data	82	22	2207	900
LQ	120 ± 8	7.5 ± 0.5	69 ± 4	4.5 ± 0.2

Figure 3: LLR distributions for the $eejj$ and for the $evjj$ final states. The data are indicated with the points and the filled histograms show the SM background. The MJ background is estimated from data, while the other background contributions are obtained from simulated samples as described in the text. The LQ signal corresponding to a LQ mass of 600 GeV is indicated by a solid line, and is normalized assuming $\beta = 1.0 (0.5)$ in the $eejj$ ($evjj$) channel. The lowest bin corresponds to background events regions of the phase space for which no signal events are expected. The solid line (band) in the lower plots shows the Gaussian statistical (statistical + systematic) significance of the difference between data and the prediction.
absence of signal we determine 95% CL upper limits on the LQ pair–production cross sections using a modified frequentist CL$_s$ method based on a Poisson log-likelihood ratio statistical test [32, 33]. Systematic and statistical uncertainties are treated as nuisance parameters with a Gaussian probability density function, and the full LLR distribution is considered. The effect of the various systematic uncertainties on the shape of the LLR distribution are included on the calculation by integrating over a Gaussian distribution with standard deviation equal to the fractional change in the yield between the systematically adjusted distribution and the nominal case for each individual uncertainty in each bin. The 95% CL upper bounds on the cross section for LQ pair production as a function of mass are shown in Fig. 4 for both the $eejj$ and the $evjj$ channels for $\beta = 1.0$ and $\beta = 0.5$, respectively. The obtained cross section limits are combined, and reinterpreted as limits in the β vs. m_{LQ} plane as shown in Fig. 5.

10. Conclusions

We report on a search for pair production of first generation scalar leptoquarks at ATLAS using a data sample corresponding to an integrated luminosity of 1.03 fb$^{-1}$. No excess over SM background expectations is observed in the data in the signal enhanced region, and 95% CL upper bounds on the production cross section are thus determined. These are translated into lower observed (expected) limits on leptoquark masses of $m > 660(650)$ GeV and $m > 607(587)$ GeV when assuming its branching fraction to a charged lepton to be equal to 1.0 and 0.5, respectively. These are the most stringent limits to date arising from direct searches for leptoquarks.

11. Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Bennoyozi Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

Figure 4: 95% CL upper limit on the pair production cross section of the first generation leptoquarks for the $eejj$ channel at $\beta =1.0$ (a) and for the $evjj$ channel at $\beta =0.5$ (b). The solid lines indicate the individual observed limits, while the expected limits are indicated by the dashed lines. The theory prediction is indicated by the dotted line, which includes the systematic uncertainties due to the choice of the PDF and due to the renormalization and factorization scales. The dark green (light yellow) solid band contains 68% (95%) of possible outcomes from pseudo-experiments in which the yield is Poisson-fluctuated around the background-only expectation.
The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[1] B. Schrempp and F. Schrempp, Phys. Lett. B153 (1985) 101; H. Georgi and S. Glashow, Phys. Rev. Lett. 32 (1974) 438; J. Pati and A. Salam, Phys. Rev. D10 (1974) 275; G. Senjanovic and A. Sokorac, Z. Phys. C20 (1983) 255; P. Frampton and B.-H. Lee, Phys. Rev. Lett. 64 (1990) 619; P. Frampton and T. Kephart, Phys. Rev. D42 (1990) 3892; E. Witten, Nucl. Phys. B258 (1985) 75; K. Lane, Lectures given at Theoretical Advanced Study Institute (TAS193) in Elem. Part. Physics, 1233 (1993). Nucl. Phys. (1993), arXiv:9401324.

[2] S. Kovalenko and I. Schmidt, Phys. Lett. B562 (2003) 104.

[3] W. Buchmuller, R. Ruckl and D. Wyler, Phys. Lett. B191 (1987) 442 [Erratum ibid. B448 (1999) 320].

[4] CMS Collaboration, Phys. Lett. B703, 246-266 (2011).

[5] ATLAS Collaboration, Phys. Rev. D83, 112006 (2011).

[6] D0 Collaboration, Phys. Rev. D84 RC, 071104 (2011).

[7] OPAL Collaboration, Eur. Phys. J. C31 281-305, (2003).

[8] H1 Collaboration, Submitted to Phys. Lett. B, arXiv:1107.3716.

[9] K. Nakamura et al. (Particle Data Group), J. Phys. G37, 075021 (2010).

[10] ATLAS Collaboration, ATLAS-CONF-2011-116, http://cdsweb.cern.ch/record/1376384.

[11] ATLAS Collaboration, JINST 3, S06003 (2008).

[12] ATLAS Collaboration, arXiv:1110.3174, Submitted to Eur. Phys. J. C.

[13] S. Agostinelli et al. Nucl. Instrum. Meth. A506 250 (2003); G. Aad, Eur.Phys.J. C70 (2010) 823.

[14] M. Mangano et al., JHEP 07 (2003) 001.

[15] G. Corcella et al., JHEP 01 (2001) 010, arXiv:0011363.

[16] J. Butterworth, J. Forshaw and M. Seymour, Z. Phys. C72 (1996) 637.

[17] S. Frixione and B. R. Webber, JHEP 06 (2002) 029; S. Frixione, P. Nason and B. R. Webber, JHEP 08 (2003) 007.

[18] J. M. Campbell and R. K. Ellis, Phys. Rev. D60, 113006 (1999).

[19] T. Sjostrand, S. Mrenna and P. Skands, JHEP 05 (2006) 026.

[20] M. Kramer, T. Plehn, M. Spira and P. M. Zerwas, Phys. Rev. D71, 057503 (2005).

[21] D. Stump et al., JHEP 10 (2003) 046.

[22] ATLAS Collaboration, arXiv:1110.3174.

[23] M. Cacciari, G. P. Salam and G. Soyez, JHEP 0804, 063 (2008); M. Cacciari and G. P. Salam, Phys. Lett. B641 (2006) 57.

[24] ATLAS Collaboration, CERN-PH-EP-2011-191, http://cdsweb.cern.ch/record/1399505.

[25] ATLAS Collaboration, ATLAS-CONF-2010-038, http://cdsweb.cern.ch/record/1277678.

[26] ATLAS Collaboration, arXiv:1108.5602, submitted to EPJC.

[27] ATLAS Collaboration, ATLAS-CONF-2011-063, http://cdsweb.cern.ch/record/1345743.

[28] ATLAS Collaboration, ATLAS-CONF-2011-032, http://cdsweb.cern.ch/record/1337782.

[29] ATLAS Collaboration, ATLAS-CONF-2010-054, http://cdsweb.cern.ch/record/1281311.

[30] T. Gleisberg et al. JHEP 02 (2009) 007; S. Schumann and F. Krauss, JHEP 03 (2008) 038; S. Hoeche, F. Krauss, S. Schumann, and F. Siegert, JHEP 05 (2009) 053.

[31] S. Frixione, P. Nason and C. Oleari, JHEP 11 (2007) 070.

[32] W. Fisher, FERMILAB-TM-2386-E.

[33] T. Junk, Nucl. Instrum. Meth. A434, 435-443, (1999).
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a)Department of Physics, Bogazici University, Istanbul; (b)Division of Physics, Dogus University, Istanbul; (c)Department of Physics Engineering, Gaziantep University, Gaziantep; (d)Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 (a)INFN Sezione di Bologna; (b)Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b)Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d)Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25 (a)National Institute of Physics and Nuclear Engineering, Bucharest; (b)University Politehnica Bucharest, Bucharest; (c)West University in Timisoara, Timisoara, Romania
26 Departamento de Fisica, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a)Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Department of Modern Physics, University of Science and Technology of China, Anhui; (c)Department of Physics, Nanjing University, Jiangsu; (d)School of Physics, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a)INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a)INFN Sezione di Genova; (b)Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a)E.Andronikashvili Institute of Physics, Tbilisi State University, Tbilisi; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier and CNRS/IN2P3 and Institut National Polytechnique de Grenoble, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b)Physikalisches Institut,
Ruprecht-Karls-Universität Heidelberg, Heidelberg, ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

60 Department of Physics, Indiana University, Bloomington IN, United States of America

61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

62 University of Iowa, Iowa City IA, United States of America

63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

66 Graduate School of Science, Kobe University, Kobe, Japan

67 Faculty of Science, Kyoto University, Kyoto, Japan

68 Kyoto University of Education, Kyoto, Japan

69 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

70 Physics Department, Lancaster University, Lancaster, United Kingdom

71 (a) INFN Sezione di Lecce; (b) Dipartimento di Fisica, Università del Salento, Lecce, Italy

72 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

73 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

74 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

75 Department of Physics and Astronomy, Royal Holloway University of London, Surrey, United Kingdom

76 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

77 Fysiska institutionen, Lunds universitet, Lund, Sweden

78 Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain

79 Institut für Physik, Universität Mainz, Mainz, Germany

80 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

81 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

82 Department of Physics, University of Massachusetts, Amherst MA, United States of America

83 Department of Physics, McGill University, Montreal QC, Canada

84 School of Physics, University of Melbourne, Victoria, Australia

85 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

86 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America

87 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy

88 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

89 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

90 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America

91 Group of Particle Physics, University of Montreal, Montreal QC, Canada

92 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

93 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

94 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

97 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

98 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

99 Nagasaki Institute of Applied Science, Nagasaki, Japan

100 (a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy

101 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America

102 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

103 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

104 Department of Physics, Northern Illinois University, Dekalb IL, United States of America

105 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

106 Department of Physics, New York University, New York NY, United States of America

107 Ohio State University, Columbus OH, United States of America

108 Faculty of Science, Okayama University, Okayama, Japan

109 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America

110 Department of Physics, Oklahoma State University, Stillwater OK, United States of America

111 Palacky University, RCPTM, Olomouc, Czech Republic

112 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
Udine, Italy

\begin{itemize}
 \item Department of Physics, University of Illinois, Urbana IL, United States of America
 \item Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
 \item Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CN), University of Valencia and CSIC, Valencia, Spain
 \item Department of Physics, University of British Columbia, Vancouver BC, Canada
 \item Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
 \item Waseda University, Tokyo, Japan
 \item Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
 \item Department of Physics, University of Wisconsin, Madison WI, United States of America
 \item Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
 \item Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
 \item Department of Physics, Yale University, New Haven CT, United States of America
 \item Yerevan Physics Institute, Yerevan, Armenia
 \item Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
 \item Department of Physics, University of British Columbia, Vancouver BC, Canada
 \item Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
 \item Waseda University, Tokyo, Japan
 \item Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
 \item Department of Physics, University of Wisconsin, Madison WI, United States of America
 \item Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
 \item Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
 \item Department of Physics, Yale University, New Haven CT, United States of America
 \item Yerevan Physics Institute, Yerevan, Armenia
 \item Domaine scientifique de la Doua, Centre de Calcul CNRS/IN2P3, Villeurbanne Cedex, France
 \item a Also at Laboratorio de Instrumentacao e Física Experimental de Partículas - LIP, Lisboa, Portugal
 \item b Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
 \item c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
 \item d Also at TRIUMF, Vancouver BC, Canada
 \item e Also at Department of Physics, California State University, Fresno CA, United States of America
 \item f Also at Novosibirsk State University, Novosibirsk, Russia
 \item g Also at Fermilab, Batavia IL, United States of America
 \item h Also at Department of Physics, University of Coimbra, Coimbra, Portugal
 \item i Also at Università di Napoli Parthenope, Napoli, Italy
 \item j Also at Institute of Particle Physics (IPP), Canada
 \item k Also at Department of Physics, Middle East Technical University, Ankara, Turkey
 \item l Also at Louisiana Tech University, Ruston LA, United States of America
 \item m Also at Department of Physics and Astronomy, University College London, London, United Kingdom
 \item n Also at Group of Particle Physics, University of Montreal, Montreal QC, Canada
 \item o Also at Department of Physics, University of Cape Town, Cape Town, South Africa
 \item p Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
 \item q Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
 \item r Also at Manhattan College, New York NY, United States of America
 \item s Also at Schodong University, Shandong, China
 \item t Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
 \item u Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China
 \item v Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
 \item w Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l’Energie Atomique), Gif-sur-Yvette, France
 \item x Also at Section de Physique, Université de Genève, Geneva, Switzerland
 \item y Also at Departamento de Física, Universidade de Minho, Braga, Portugal
 \item z Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
 \item aa Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
 \item ab Also at California Institute of Technology, Pasadena CA, United States of America
 \item ac Also at Institute of Physics, Jagiellonian University, Krakow, Poland
 \item ad Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
 \item ae Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
 \item af Also at Department of Physics, Oxford University, Oxford, United Kingdom
 \item ag Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
 \item ah Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
 \item ai Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
\end{itemize}

* Deceased