Results. A total of 2,170 adult encounters for the treatment of SSTIs were included; 1,588 with cellulitis, 413 with local infection and 169 with cutaneous abscess. The overall compliance rate for appropriate therapy, including drug selection and duration, was 64.9% (see Figure 1). Unnecessarily long duration of therapy resulted in an extra 1,657 days of antibiotic therapy. Compliance with drug selection occurred more frequently with physicians (40.3%) compared with residents (33.9%) and Advanced Practice Providers (APP) (25.1%).

Conclusion. Compliance with an institutional SSTI guideline for antibiotic selection and duration of therapy is suboptimal in outpatient clinics. Stewardship interventions for SSTIs should target both drug selection and duration, and APPs as an important provider group in outpatient settings.

Methods. Outpatient FQ prescribing data from July 2015 to June 2016 (pre-intervention) and December 2016 to December 2017 (post-intervention) was reviewed retrospectively to evaluate indications, durations and alternatives for FQ prescriptions. Education and targeted feedback specific to the clinical area on current FQ usage was given by peer-comparison or aggregate data with recommendations for improved prescribing patterns. The number of ciprofloxacin prescriptions in the pre-intervention arm was evaluated in two outpatient clinics and number of ciprofloxacin prescriptions/1,000 patient discharges was evaluated in the emergency department pre and post intervention. FQ use in the two time periods was compared using the unpaired T-test.

Results. Ciprofloxacin use in the primary care group (PCG) (12.9%), student care (SC) (7.1%), and emergency department (ED) (8.6%) accounted for 28.6% of overall Ciprofloxacin use in the pre-intervention time period. A significant decrease in ciprofloxacin prescribing was seen in the PCG, 8.78Rx/1,000 patient visits (PRE) vs. 5.24Rx/1,000 patient visits (POST), P < 0.001; in SC, 16.25Rx/1,000 patient visits (PRE) vs. 6.76Rx/1,000 patient visits (POST), P < 0.001; and the ED, 13.37Rx/1,000 patient discharges (PRE) vs. 9.84Rx/1,000 patient discharges (POST) (P = 0.035). Prescribe comparison data were well received by PCG faculty. Decreases have been sustained in each clinical area 4 (ED) to 12 months (PCG and student care) following the intervention.

Conclusion. Feedback on both aggregate clinic and individual use of ciprofloxacin resulted in decrease use in three outpatient clinical areas at UCM and was well received by PCG faculty. This was a retrospective chart review of patients 24 years old who received a FQ upon discharge from the inpatient setting, emergency department or outpatient clinics at a large academic medical center. The intervention consisted of an automatic electronic alert that would appear upon prescribing of a FQ, suggesting use of an alternative antibiotic and requiring a diagnosis to be entered. The pre and post intervention periods spanned from November 16, 2016 to April 16, 2017 and from November 16, 2017 to April 16, 2018, respectively. The primary endpoint was the number of FQ prescriptions over the total number of visits in the pre- and post-intervention time periods. A secondary endpoint was number of days of therapy [FQ treatment duration (DOT)].

Results. 1,668 patients received FQs upon discharge in the pre-intervention arm and 1,494 in the post-intervention arm. Compared with the pre-intervention group, fewer FQs were prescribed in the post intervention group (P = 0.002). Fewer patients were discharged on an FQ from the inpatient setting than the post-intervention arm compared with the pre-intervention arm (31 vs. 39%). However, this did not hold true when evaluating the number of FQ prescriptions written from the inpatient setting (52% in the post and 42% in the pre-intervention). DOT was lower in the post-intervention arm (10.751.5) compared with the pre-intervention period (11.981).

Conclusion. Implementation of a mandatory electronic alert tool in CPOE showed a statistically significant reduction in the overall number of FQ prescriptions between the pre and post intervention groups in the outpatient setting.

Methods. Outpatient FQ prescribing data from July 2015 to June 2016 (pre-intervention) and December 2016 to December 2017 (post-intervention) was reviewed retrospectively to evaluate indications, durations and alternatives for FQ prescriptions. Education and targeted feedback specific to the clinical area on current FQ usage was given by peer-comparison or aggregate data with recommendations for improved prescribing patterns. The number of ciprofloxacin prescriptions in the pre-intervention arm was evaluated in two outpatient clinics and number of ciprofloxacin prescriptions/1,000 patient discharges was evaluated in the emergency department pre and post intervention. FQ use in the two time periods was compared using the unpaired T-test.

Results. Ciprofloxacin use in the primary care group (PCG) (12.9%), student care (SC) (7.1%), and emergency department (ED) (8.6%) accounted for 28.6% of overall Ciprofloxacin use in the pre-intervention time period. A significant decrease in ciprofloxacin prescribing was seen in the PCG, 8.78Rx/1,000 patient visits (PRE) vs. 5.24Rx/1,000 patient visits (POST), P < 0.001; in SC, 16.25Rx/1,000 patient visits (PRE) vs. 6.76Rx/1,000 patient visits (POST), P < 0.001; and the ED, 13.37Rx/1,000 patient discharges (PRE) vs. 9.84Rx/1,000 patient discharges (POST) (P = 0.035). Prescribe comparison data were well received by PCG faculty. Decreases have been sustained in each clinical area 4 (ED) to 12 months (PCG and student care) following the intervention.

Conclusion. Feedback on both aggregate clinic and individual use of ciprofloxacin resulted in decrease use in three outpatient clinical areas at UCM and was well received by PCG faculty. This was a retrospective chart review of patients 24 years old who received a FQ upon discharge from the inpatient setting, emergency department or outpatient clinics at a large academic medical center. The intervention consisted of an automatic electronic alert that would appear upon prescribing of a FQ, suggesting use of an alternative antibiotic and requiring a diagnosis to be entered. The pre and post intervention periods spanned from November 16, 2016 to April 16, 2017 and from November 16, 2017 to April 16, 2018, respectively. The primary endpoint was the number of FQ prescriptions over the total number of visits in the pre- and post-intervention time periods. A secondary endpoint was number of days of therapy [FQ treatment duration (DOT)].

Results. 1,668 patients received FQs upon discharge in the pre-intervention arm and 1,494 in the post-intervention arm. Compared with the pre-intervention group, fewer FQs were prescribed in the post intervention group (P = 0.002). Fewer patients were discharged on an FQ from the inpatient setting than the post-intervention arm compared with the pre-intervention arm (31 vs. 39%). However, this did not hold true when evaluating the number of FQ prescriptions written from the inpatient setting (52% in the post and 42% in the pre-intervention). DOT was lower in the post-intervention arm (10.751.5) compared with the pre-intervention period (11.981).

Conclusion. Implementation of a mandatory electronic alert tool in CPOE showed a statistically significant reduction in the overall number of FQ prescriptions between the pre and post intervention groups in the outpatient setting.