The commutator and centralizer description of Sylow subgroups of alternating and symmetric groups

Ruslan Skuratovskii

September 10, 2018

Abstract

Given a permutational wreath product sequence of cyclic groups of order we research a commutator width of such groups and some properties of its commutator subgroup. Commutator width of Sylow 2-subgroups of alternating group A_{2^k}, permutation group S_{2^k} and $C_p \wr B$ were founded. The result of research was extended on subgroups $(Syl_{2}A_{2^k})'$, $p > 2$. The paper presents a construction of commutator subgroup of Sylow 2-subgroups of symmetric and alternating groups. Also minimal generic sets of Sylow 2-subgroups of A_{2^k} were founded. Elements presentation of $(Syl_{2}A_{2^k})'$, $(Syl_{2}S_{2^k})'$ was investigated. We prove that the commutator width $[1]$ of an arbitrary element of a discrete wreath product of cyclic groups C_{p_i}, $p_i \in \mathbb{N}$ is 1.

Key words: wreath product of group; commutator width of Sylow p-subgroups; commutator subgroup of alternating group, centralizer subgroup, semidirect product.

1 Introduction

A form of commutators of wreath product $A \wr B$ was briefly considered in [3]. For more deep description of this form we take into account the commutator width $(cw(G))$ which was presented in work of Muranov [1]. This form of commutators of wreath product was used by us for the research of $cw(Syl_2A_{2^k})$, $cw(Syl_2S_{2^k})$ and $cw(C_p \wr B)$. As well known, the first example of a group G with $cw(G) > 1$ was given by Fite [5]. We deduce an estimation for commutator width of wreath product $B \wr C_p$ of groups C_p and an arbitrary group B taking into the consideration a $cw(B)$ of passive group B. In this paper we continue a researches which was stared in [18]. The form of commutator presentation [3] was presented by us in form of wreath recursion and commutator width of it was studied.
A research of commutator-group serves to decision of inclusion problem [6] for elements of Syl_2A_{2k} in its derived subgroup $(Syl_2A_{2k})'$.

2 Preliminaries

Denote by $fun(B, A)$ the direct product of isomorphic copies of A indexed by elements of B. Thus, $fun(B, A)$ is a function $B \rightarrow A$ with the conventional multiplication and finite supports. The extension of $fun(B, A)$ by B is called the discrete wreath product of A, B. Thus, $A \ltimes B := fun(B, A) \rtimes B$ moreover, $bfb^{-1} = f^b$, $b \in B$, $f \in fun(B, A)$. As well known that a wreath product of permutation groups is associative construction.

Let G be a group acting (from the left) by permutations on a set X and let H be an arbitrary group. Then the (permutational) wreath product $H \wr G$, where G acts on the direct power H^X by the respective permutations of the direct factors. The group C_p is equipped with a natural action by left shift on $X = \{1, \ldots, p\}$, $p \in \mathbb{N}$.

The multiplication rule of automorphisms g, h which presented in form of wreath recursion $g = (g(1), g(2), \ldots, g(d)) \sigma_g$, $h = (h(1), h(2), \ldots, h(d)) \sigma_h$, is given by the formula:

$$g \cdot h = (g(1)h(\sigma_g(1)), g(2)h(\sigma_g(2)), \ldots, g(d)h(\sigma_g(d))) \sigma_g \sigma_h.$$

We define σ as $(1, 2, \ldots, p)$ where p is defined by context.

We consider $B \wr (C_p, X)$, where $X = \{1, \ldots, p\}$, and $B' = \{[f, g] \mid f, g \in B\}$, $p \geq 1$. If we fix some indexing $\{x_1, x_2, \ldots, x_m\}$ of set the X, then an element $h \in H^X$ can be written as (h_1, \ldots, h_m) for $h_i \in H$.

The set X^* is naturally a vertex set of a regular rooted tree, i.e. a connected graph without cycles and a designated vertex v_0 called the root, in which two words are connected by an edge if and only if they are of form v and vx, where $v \in X^*$, $x \in X$. The set $X^n \subset X^*$ is called the n-th level of the tree X^* and $X^0 = \{v_0\}$. We denote by $v_{j,i}$ the vertex of X^j, which has the number i. Note that the unique vertex $v_{k,i}$ corresponds to the unique word v in alphabet X. For every automorphism $g \in AutX^*$ and every word $v \in X^*$ define the section (state) $g(v) \in AutX^*$ of g at v by the rule: $g(v)(x) = y$ for $x, y \in X^*$ if and only if $g(vx) = g(v)y$. The subtree of X^* induced by the set of vertices $\cup_{i=0}^k X^i$ is denoted by $X^{[k]}$. The restriction of the action of an automorphism $g \in AutX^*$ to the subtree $X^{[l]}$ is denoted by $g_{(v)}|_{X^{[l]}}$. A restriction $g_{(v)}|_{X^{[l]}}$ is called the vertex permutation (v.p.) of g in a vertex v. We call the endomorphism $\alpha|_{v}$ restriction of g in a vertex v [7]. For example, if $|X| = 2$ then we just have to distinguish active
vertices, i.e., the vertices for which $\alpha|_v$ is non-trivial. As well known if $X = \{0,1\}$ then $\text{Aut} X^{[k-1]} \simeq C_2 \wr \cdots \wr C_2$ \cite{7}.

Let us label every vertex of X^l, $0 \leq l < k$ by sign 0 or 1 in relation to state of v.p. in it. Let us denote state value of α in v_{ki} as $s_{ki}(\alpha)$ we put that $s_{ki}(\alpha) = 1$ if $\alpha|_{v_{ki}}$ is non-trivial, and $s_{ki}(\alpha) = 0$ if $\alpha|_{v_{ki}}$ is trivial. Obtained by such way a vertex-labeled regular tree is an element of $\text{Aut} X^{[k]}$. All undeclared terms are from \cite{8,9}.

Let us make some notations. The commutator of two group elements a and b, denoted $[a, b] = aba^{-1}b^{-1}$, conjugation by an element b as $a^b = bab^{-1}$,

$\sigma = (1, 2, \ldots, p)$. Also $G_k \simeq Syl_2 A_{2k}$, $B_k = \ell_{i=1}^k C_2$. The structure of G_k was investigated in \cite{18}. For this research we can regard G_k and B_k as recursively constructed i.e. $B_1 = C_2$, $B_k = B_{k-1} \wr C_2$ for $k > 1$, $G_1 = \langle e \rangle$, $G_k = \{(g_1, g_2) \pi \in B_k \mid g_1 g_2 \in G_{k-1}\}$ for $k > 1$.

The commutator length of an element g of the derived subgroup of a group G, denoted $cl_G(g)$, is the minimal n such that there exist elements $x_1, \ldots, x_n, y_1, \ldots, y_n$ in G such that $g = [x_1, y_1] \ldots [x_n, y_n]$. The commutator length of the identity element is 0. The commutator width of a group G, denoted $cw(G)$, is the maximum of the commutator lengths of the elements of its derived subgroup $[G, G]$.

3 Main result

We are going to prove that the set of all commutators K of Sylow 2-subgroup $Syl_2 A_{2k}$ of the alternating group A_{2k} is the commutant of $Syl_2 A_{2k}$.

The following Lemma follows from the corollary 4.9 of the Meldrum’s book \cite{3}.

Lemma 1. An element of form $(r_1, \ldots, r_{p-1}, r_p) \in W’ = (B \wr C_p)’$ iff product of all r_i (in any order) belongs to $B’$, where B is an arbitrary group.

Proof. Analogously to the Corollary 4.9 of the Meldrum’s book \cite{3} we can deduce new presentation of commutators in form of wreath recursion

$$w = (r_1, r_2, \ldots, r_{p-1}, r_p),$$

where $r_i \in B$. If we multiply elements from a tuple $(r_1, \ldots, r_{p-1}, r_p)$, where $r_i =$
$$h_i g_{a(i)} h_{ab(i)}^{-1} g_{aba^{-1}(i)}^{-1}, \ h, g \in B \text{ and } a, b \in C_p,$$

then we get a product

$$x = \prod_{i=1}^{p} r_i = \prod_{i=1}^{p} h_i g_{a(i)} h_{ab(i)}^{-1} g_{aba^{-1}(i)}^{-1} \in B',$$ \hspace{1cm} (1)

where x is a product of correspondent commutators. Therefore we can write $r_p = r_p^{-1} \cdots r_1^{-1} x$. We can rewrite element $x \in B'$ as the product $x = \prod_{j=1}^{c w(B)} [f_j, g_j]$.

Note that we impose more weak condition on product of all r_i to belongs to B' then in Definition 4.5. of form $P(L)$ in [3].

In more detail deducing of our representation constructing can be reported in following way. If we multiply elements having form of a tuple $(r_1, \ldots, r_{p-1}, r_p)$, where

$$r_i = h_i g_{a(i)} h_{ab(i)}^{-1} g_{aba^{-1}(i)}^{-1}, \ h, g \in B \text{ and } a, b \in C_p,$$

then in case $c w(B) = 0$ we obtain a product

$$\prod_{i=1}^{p} r_i = \prod_{i=1}^{p} h_i g_{a(i)} h_{ab(i)}^{-1} g_{aba^{-1}(i)}^{-1} \in B'.$$ \hspace{1cm} (2)

Note that if we rearrange elements in (1) as $h_1^{-1} g_1 h_2^{-1} g_2^{-1} \ldots h_p^{-1} g_p^{-1}$ then by reason of such permutations we obtain a product of correspondent commutators. Therefore, following equality holds true

$$\prod_{i=1}^{p} h_i g_{a(i)} h_{ab(i)}^{-1} g_{aba^{-1}(i)}^{-1} = \prod_{i=1}^{p} h_i^{-1} g_i^{-1} x \in B',$$ \hspace{1cm} (3)

where x is a product of correspondent commutators. Therefore,

$$(r_1, \ldots, r_p) \in W' \iff r_p^{-1} \cdots r_1^{-1} x = x \in B'$$ \hspace{1cm} (4)

Thus, one of elements from coordinate of wreath recursion $(r_1, \ldots, r_{p-1}, r_p)$ depends on rest of r_i. This dependence contribute that the product $\prod_{j=1}^{p} r_j$ for arbitrary sequence $\{r_j\}_{j=1}^{p}$ belongs to B'. Thus, r_p can be expressed as:

$$r_p = r_p^{-1} \cdots r_{p-1}^{-1} x.$$

Denote a j-th tuple, which consists of elements of a wreath recursion, by $(r_{j_1}, r_{j_2}, \ldots, r_{j_p})$. Closedness by multiplication of the set of forms $(r_1, \ldots, r_{p-1}, r_p) \in W = (B \wr C_p)'$ follows from
\[
\prod_{j=1}^{k} (r_{j1} \cdots r_{jp-1} r_{jp}) = \prod_{j=1}^{k} \prod_{i=1}^{p} r_{ji} = R_1 R_2 \cdots R_k \in B',
\] \hspace{1cm} (5)

where \(r_{ji} \) is \(i \)-th element from tuple number \(j \), \(R_j = \prod_{i=1}^{p} r_{ji} \), \(1 \leq j \leq k \). As it was shown above \(R_j = \prod_{i=1}^{p-1} r_{ji} \in B' \). Therefore, the product (5) of \(R_j \), \(j \in \{1, \ldots, k\} \) which is similar to the product mentioned in (3), has the property \(R_1 R_2 \cdots R_k \in B' \) too, because of \(B' \) is subgroup. Thus, we get a product of form (2) and the similar reasoning as above are applicable.

Let us prove the sufficiency condition. If the set \(K \) of elements that satisfy the condition of this theorem that all products of all \(r_i \), where every \(i \) occurs in this forms once, belong to \(B' \), then using the elements of form

\[(r_1, e, \ldots, e, r_1^{-1}), \ldots, (e, e, \ldots, e, r_1, e, r_1^{-1}), \ldots, (e, e, \ldots, e, r_{p-1}, r_{p-1}^{-1}), (e, e, \ldots, e, r_1 r_2 \cdots r_{p-1}) \]

we can express any element of form \((r_1, \ldots, r_{p-1}, r_p) \in W = (C_p \wr B)' \). We need to prove that in such way we can express all element from \(W \) and only elements of \(W \). The fact that all elements can be generated by elements of \(K \) follows from randomness of choice every \(r_i \), \(i < p \) and the fact that equality (1) holds so construction of \(r_p \) is determined.

Lemma 2. For any group \(B \) and integer \(p \geq 2 \), \(p \in \mathbb{N} \) if \(w \in (B \wr C_p)' \) then \(w \) can be represented as the following wreath recursion

\[w = (r_1, r_2, \ldots, r_{p-1}, r_1^{-1} \cdots r_{p-1}^{-1} \prod_{j=1}^{k} [f_j, g_j]), \]

where \(r_1, \ldots, r_{p-1}, f_j, g_j \in B \), and \(k \leq cw(B) \).

Proof. According to the Lemma \[\]we have the following wreath recursion

\[w = (r_1, r_2, \ldots, r_{p-1}, r_p), \]

where \(r_i \in B \) and \(r_{p-1}r_{p-2} \cdots r_2 r_1 r_p = x \in B' \). Therefore we can write \(r_p = r_1^{-1} \cdots r_{p-1}^{-1} x \).

We also can rewrite element \(x \in B' \) as product of commutators \(x = \prod_{j=1}^{k} [f_j, g_j] \) where \(k \leq cw(B) \). \[\]
Lemma 3. For any group B and integer $p \geq 2$, $p \in \mathbb{N}$ if $w \in B \wr C_p$ is defined by the following wreath recursion

$$w = (r_1, r_2, \ldots, r_{p-1}, r_1^{-1} \ldots r_{p-1}^{-1} [f, g]),$$

where $r_1, \ldots, r_{p-1}, f, g \in B$ then we can represent w as commutator

$$w = [(a_{1,1}, \ldots, a_{1,p})\sigma, (a_{2,1}, \ldots, a_{2,p})],$$

where

$$a_{1,i} = e \text{ for } 1 \leq i \leq p - 1,$$

$$a_{2,1} = (f^{-1}) r_1^{-1} \ldots r_{p-1}^{-1},$$

$$a_{2,i} = r_{i-1} a_{2,i-1} \text{ for } 2 \leq i \leq p,$$

$$a_{1,p} = g a_{2,p}^{-1}.$$

Proof. Let us to consider the following commutator

$$\kappa = (a_{1,1}, \ldots, a_{1,p})\sigma \cdot (a_{2,1}, \ldots, a_{2,p}) \cdot (a_{1,p}^{-1}, a_{1,1}, \ldots, a_{1,p-1})\sigma^{-1} \cdot (a_{2,1}, \ldots, a_{2,p})^{-1}$$

$$= (a_{3,1}, \ldots, a_{3,p}),$$

where

$$a_{3,i} = a_{1,i} a_{2,1+(i \mod p)} a_{1,i}^{-1} a_{2,i}^{-1}.$$

At first we compute the following

$$a_{3,i} = a_{1,i} a_{2,i+1} a_{1,i}^{-1} a_{2,i}^{-1} = a_{2,i+1} a_{2,i}^{-1} = r_i a_{2,i} a_{2,i}^{-1} = r_i, \text{ for } 1 \leq i \leq p - 1.$$
Then we make some transformation of $a_{3,p}$:

$$a_{3,p} = a_{1,p}a_{2,1}^{-1}a_{1,p}^{-1}a_{2,p}^{-1}$$

$$= (a_{2,1}a_{2,1}^{-1})a_{1,p}a_{2,1}^{-1}a_{2,p}^{-1}$$

$$= a_{2,1}[a_{2,1}^{-1}, a_{1,p}]a_{2,p}^{-1}$$

$$= a_{2,1}a_{2,p}a_{2,2}^{-1}[a_{2,1}^{-1}, a_{1,p}]a_{2,1}^{-1}$$

$$= (a_{2,1}a_{2,1}^{-1})^{-1}[(a_{2,1}^{-1})^{a_{2,1}}, a_{1,p}]^{-1}$$

$$= (a_{2,1}a_{2,1}^{-1})^{-1}[(a_{2,1}^{-1})^{a_{2,1}}, a_{1,p}]^{-1}.$$

We transform commutator κ in such way that it is similar to the form of w. This gives us equations with unknown variables $a_{i,j}$:

\[
\begin{align*}
 a_{i,j}a_{2,i+1}a_{1,j}a_{2,i}^{-1} &= r_j, \quad \text{for } 1 \leq i \leq p - 1, \\
 (a_{2,p}a_{2,1}^{-1})^{-1} &= r_1^{-1} \ldots r_{p-1}^{-1}, \\
 (a_{2,1}a_{2,p}a_{2,1}^{-1}) &= f, \\
 a_{2,p}^{-1}a_{1,p}^{-1} &= g.
\end{align*}
\]

In order to prove required statement it is enough to find at least one solution of equations. We set the following

$$a_{1,i} = e \quad \text{for } 1 \leq i \leq p - 1.$$

Then we have

\[
\begin{align*}
 a_{2,i+1}a_{2,i}^{-1} &= r_i, \quad \text{for } 1 \leq i \leq p - 1, \\
 (a_{2,p}a_{2,1}^{-1})^{-1} &= r_1^{-1} \ldots r_{p-1}^{-1}, \\
 (a_{2,1}a_{2,p}a_{2,1}^{-1}) &= f, \\
 a_{2,p}^{-1}a_{1,p}^{-1} &= g.
\end{align*}
\]

Now we can see that the form of the commutator κ is similar to the form of w.

Let us make the following notation

$$r' = r_{p-1} \ldots r_1.$$

We note that from the definition of $a_{2,i}$ for $2 \leq i \leq p$ it follows that

$$r_i = a_{2,i+1}a_{2,i}^{-1}, \quad \text{for } 1 \leq i \leq p - 1.$$
Therefore
\[r' = (a_{2,p}a_{2,p-1}^{-1})(a_{2,p-1}a_{2,p-2}^{-1}) \ldots (a_{2,3}a_{2,2}^{-1})(a_{2,2}a_{2,1}^{-1}) = a_{2,p}a_{2,1}^{-1}. \]

And then
\[(a_{2,p}a_{2,1}^{-1})^{-1} = (r')^{-1} = r_1^{-1} \ldots r_{p-1}^{-1}. \]

Finally let us to compute the following
\[(a_{2,1}^{-1})a_{2,p}a_{2,1}^{-1} = (((f^{-1})r_1^{-1} \ldots r_{p-1}^{-1})r') = (f(r')^{-1})r' = f, \]
\[a_{1,p}^{a_{2,p}} = (g^{a_{2,p}^{-1}})^{a_{2,p}} = g. \]

And now we conclude that
\[a_{3,p} = r_1^{-1} \ldots r_{p-1}^{-1}[f, g]. \]

Thus, the commutator \(\kappa \) is presented exactly in the similar form as \(w \) has. \(\square \)

For future use we formulate previous lemma for the case \(p = 2 \)

Corollary 4. If \(B \) is any group and \(w \in B \wr C_2 \) is defined by the following wreath recursion
\[w = (r_1, r_1^{-1}[f, g]), \]
where \(r_1, f, g \in B \), then \(w \) can be represent as commutator
\[w = [(e, a_{1,2})\sigma, (a_{2,1}, a_{2,2})], \]
where
\[a_{2,1} = (f^{-1})r_1^{-1}, \]
\[a_{2,2} = r_1a_{2,1}, \]
\[a_{1,2} = g^{a_{2,2}}. \]

Lemma 5. For any group \(B \) and integer \(p \geq 2 \) inequality
\[cw(B \wr C_p) \leq \max(1, cw(B)) \]

8
holds.

Proof. We can represent any $w \in (B \wr C_p)'$ by Lemma 1 with the following wreath recursion

$$w = (r_1, r_2, \ldots, r_{p-1}, r_1^{-1} \ldots, r_{p-1}^{-1} \prod_{j=1}^{k} [f_j, g_j])$$

$$= (r_1, r_2, \ldots, r_{p-1}, r_1^{-1} \ldots, r_{p-1}^{-1} [f_1, g_1]) \cdot \prod_{j=2}^{k} [(e, \ldots, e, f_j), (e, \ldots, e, g_j)],$$

where $r_1, \ldots, r_{p-1}, f_j, g_j \in B$, $k \leq cw(B)$. Now by the Lemma 3 we can see that w can be represented as product of $\max(1, cw(B))$ commutators. \hfill \Box

Corollary 6. If $W = C_{p_k} \ast \ldots \ast C_{p_1}$ then for $k \geq 2$ $cw(W) = 1$.

Proof. If $W = C_{p_k} \ast \ldots \ast C_{p_1}$ then according to Lemma 5 implies that $cw(C_{p_k} \ast C_{p_{k-1}}) = 1$, because $C_{p_k} \ast C_{p_{k-1}}$ is not commutative group so $cw(W) > 0$. If $W = C_{p_k} \ast \ldots \ast C_{p_2}$ then according to the inequality $cw(C_{p_k} \ast C_{p_{k-1}} \ast C_{p_{k-2}}) \leq \max(1, cw(B))$ from Lemma 5 we obtain $cw(W) = 1$. Analogously if $W = C_{p_k} \ast \ldots \ast C_{p_2}$ and supposition of induction for $C_{p_k} \ast \ldots \ast C_{p_2}$ holds then using that permutational wreath product is associative construction we obtain from the inequality of Lemma 5 and $cw(C_{p_k} \ast \ldots \ast C_{p_2}) = 1$ that $cw(W) = 1$. \hfill \Box

Corollary 7. Commutator width $cw(Syl_p(S_p^k)) = 1$ for prime p and $k > 1$ and commutator width $cw(Syl_p(A_p^k)) = 1$ for prime $p > 2$ and $k > 1$.

Proof. Since $Syl_p(S_p^k)$ \simeq $\bigast_{i=1}^{k} C_p$ (see [11],[12], then $cw(Syl_p(S_p^k)) = 1$. As well known in case $p > 2$ $Syl_p(S_p^k)$ \simeq $Syl_p(A_p^k)$ (see [20]), then $cw(Syl_p(A_p^k)) = 1$. \hfill \Box

Definition 1. Let us call the index of automorphism α on X^l a number of active v.p. of α on X^l, denote it by $In_l(\alpha)$.

The following Lemma gives us a criteria when the element from the group $Syl_2 S_2^k$ belong to $(Syl_2 S_2^k)'$.

Lemma 8. An element $g \in B_k$ belongs to commutator subgroup B'_k iff g has even index on X^l for all $0 \leq l < k$.

Proof. Let us prove the ampleness by induction by a number of level l and index of g on X^l. We first show that our statement for base of the induction is true. Actually, if
α, β ∈ B₀ then \((αβα^{-1})β^{-1}\) determine a trivial v.p. on \(X^0\). If α, β ∈ B₁ and β has an odd index on \(X^1\), then \((αβα^{-1})\) and β⁻¹ have the same index on \(X^1\). Consequently, in this case an index of the product \((αβα^{-1})β^{-1}\) can be 0 or 2. Case where α, β ∈ B₁ and has even index on \(X^1\), needs no proof, because the product and the sum of even numbers is an even number.

To finish the proof it suffices to assume that for \(B_{l-1}\) statement holds and prove that it holds for \(B_l\). Let α, β are an arbitrary automorphisms from \(\text{Aut}X^{[k]}\) and β has index \(x\) on \(X^l\), \(l < k\), where \(0 \leq x \leq 2^l\). A conjugation of an automorphism β by arbitrary \(α \in \text{Aut}X^{[k]}\) gives us arbitrary permutations of \(X^l\) where β has active v.p.

Thus following product \((αβα^{-1})β^{-1}\) admits all possible even indexes on \(X^l, l < k\) from 0 to 2x. In addition \([α, β]\) can has arbitrary permitted assignment (arrangement) of v.p. on \(X^1\). Let us present \(B_k\) as \(B_k = B_lB_{k-l}\), so elements α, β can be presented in form of wreath recursion \(α = (h_1, ..., h_{2^l})\pi_1, β = (f_1, ..., f_{2^l})\pi_2\), \(h_i, f_i \in B_{k-l}\), \(0 < i \leq 2^l\) and \(h_i, f_j\) corresponds to sections of automorphism in vertices of \(X^1\) of isomorphic subgroup to \(B_l\) in \(\text{Aut}X^{[k]}\). Actually, the parity of this index are formed independently of the action of \(\text{Aut}X^{[l]}\) on \(X^l\). So this index forms as a result of multiplying of elements of commutator presented as wreath recursion \((αβα^{-1})β^{-1} = (h_1, ..., h_{2^l})\pi_1, (f_1, ..., f_{2^l})\pi_2 = (h_1, ..., h_{2^l})f_{\pi_1(1)}, ..., f_{\pi_1(2^l)}\pi_1\pi_2\), where \(h_i, f_j \in B_{k-l}\), \(l < k\) and besides automorphisms corresponding to \(h_i\) are \(x\) automorphisms which has active v.p. on \(X^1\). Analogous automorphisms \(h_i\) has number of active v.p. equal to \(x\). As a result of multiplication we have automorphism with index \(2i : 0 \leq 2i \leq 2x\). Consequently, commutator \([α, β]\) has arbitrary even indexes on \(X^m\), \(m < l\) and we showed by induction that it has even index on \(X^l\).

Let us prove this Lemma by induction on level \(k\). Let us to suppose that we prove current Lemma (both sufficiency and necessity) for \(k - 1\). Then we rewrite element \(g \in B_k\) with wreath recursion

\[g = (g_1, g_2)\sigma^i, \]

where \(i \in \{0, 1\}\).

Now we consider sufficiency.

Let \(g \in B_k\) and \(g\) has all even indexes on \(X^j\) \(0 \leq j < k\) we need to show that \(g \in B'_{k}\). According to condition of this Lemma \(g_1g_2\) has even indexes. An element \(g\) has form \(g = (g_1, g_2)\), where \(g_1, g_2 \in B_{k-1}\), and products \(g_1g_2 = h \in B'_{k-1}\) because \(h \in B_{k-1}\) and for \(B_{k-1}\) induction assumption holds. Therefore all products of form \(g_1g_2\) indicated in formula² belongs to \(B'_{k-1}\). Hence, from Lemma⁴ follows that \(g = (g_1, g_2) \in B'_{k}\).

An automorphisms group of the subgroup \(C_2^{2k-1-1}\) is based on permutations of copies
of C_2. Orders of $\prod_{i=l}^{k-1} C_2$ and $C_2^{2^{k-1}-1}$ are equals. A homomorphism from $\prod_{i=l}^{k-1} C_2$ into $\text{Aut}(C_2^{2^{k-1}-1})$ is injective because a kernel of action $\prod_{i=l}^{k-1} C_2$ on $C_2^{2^{k-1}-1}$ is trivial, action is effective. The group G_k is a proper subgroup of index 2 in the group $\prod_{i=l}^{k-1} C_2$ [14][18][20]. The following theorem can be used for proving structural property of Sylow subgroups.

Theorem 9. A maximal 2-subgroup of $\text{Aut}X^k$ acting by even permutations on X^k has the structure of the semidirect product $G_k \cong B_{k-1} \rtimes W_{k-1}$ and is isomorphic to Syl_2A_{2k}. Also $G_k < B_k$.

The prove of this theorem is in [18].

An even easier Proposition, that needs no proof, is the following.

Proposition 10. An element $(g_1,g_2)\sigma^i$, $i \in \{0,1\}$ of wreath power $\prod_{i=l}^{k-1} C_2$ belongs to its subgroup G_k, iff $g_1g_2 \in G_{k-1}$.

Proof. This fact follows from the structure of elements of G_k described Theorem [3] in and the construction of wreath recursion. Indeed, due to structure of elements of G_k described in Theorem, we have action on X^k by an even permutations because subgroup W_{k-1}, containing even number of transposition, acts on X^k only by even permutation. The condition $g_1g_2 \in G_{k-1}$ is equivalent to index of g on X^{k-1} is even but this condition equivalent to condition that g acting on X^k by even permutation.

Lemma 11. An element $(g_1,g_2)\sigma^i \in G'_k$ iff $g_1,g_2 \in G_{k-1}$ and $g_1g_2 \in B'_{k-1}$.

Proof. Indeed, if $(g_1,g_2) \in G'_k$ then indexes of g_1 and g_2 on X^{k-1} are even according to Lemma [18] thus, $g_1,g_2 \in G_{k-1}$. A sum of indexes of g_1 and g_2 on X^l, $l < k - 1$ are even according to Lemma [18] too, so index of product g_1g_2 on X^l is even. Thus, $g_1g_2 \in B'_{k-1}$. Hence, necessity is proved.

Let us prove the sufficiency via Lemma [18]. Wise versa, if $g_1,g_2 \in G_{k-1}$ then indexes of these automorphisms on X^{k-2} of subtrees $v_{11}X^{[k-1]}$ and $v_{12}X^{[k-1]}$ are even as elements from G'_k have. The product g_1g_2 belongs to B'_{k-1} by condition of this Lemma so sum of indexes of g_1,g_2 on any level X^l, $0 \leq l < k - 1$ is even. Thus, the characteristic properties of G'_k described in Lemma [18] holds.

Proposition 12. The following inclusion $B'_{k} < G_k$ holds.

Proof. Indeed, $B'_k = \prod_{i=1}^{k-1} C_2 = B_{k-1}$ and as we define $G_k \cong B_{k-1} \rtimes W_{k-1}$ so $B'_k < G_k$.
Proposition 13. The group G_k is normal in wreath product $\prod_{i=1}^k C_2$ i.e. $G_k \triangleleft B_k$.

Proof. The commutator of B_k is $B'_k < B_{k-1}$. In other hand $B_{k-1} < G_k$ because $G_k \simeq B_{k-1} \rtimes W_{k-1}$ consequently $B'_k < G_k$. Thus, $G_k \triangleleft B_k$. □

There exists a normal embedding (normal injective monomorphism) $\varphi : G_k \to B_k$ i.e. $G_k \triangleleft B_k$. Actually, it implies from Proposition 13. Also according to [18] index $|B_k : G_k| = 2$ so G_k is a normal subgroup that is a factor subgroup $B_k/C_2 \simeq G_k$.

Theorem 14. Elements of B'_k have the following form $B'_k = \{[f,l] | f \in B_k, l \in G_k\} = \{[l,f] | f \in B_k, l \in G_k\}$.

Proof. It is enough to show either $B'_k = \{[f,l] | f \in B_k, l \in G_k\}$ or $B'_k = \{[l,f] | f \in B_k, l \in G_k\}$ because if $f = [g,h]$ then $f^{-1} = [h,g]$.

We prove the proposition by induction on k. $B'_1 = \langle e \rangle$.

We already know [2] that every element $w \in B'_k$ we can represent as

$$w = (r_1, r_1^{-1}[f,g])$$

for some $r_1, f \in B_{k-1}$ and $g \in G_{k-1}$ (by induction hypothesis). By the Corollary 4 we can represent w as commutator of

$$(e, a_{1,2}) \sigma \in B_k \text{ and } (a_{2,1}, a_{2,2}) \in B_k,$$

where

$$a_{2,1} = (f^{-1})^{r_1^{-1}},$$
$$a_{2,2} = r_1 a_{2,1},$$
$$a_{1,2} = g^{a_{2,2}^{-1}}.$$

We note that as $g \in G_{k-1}$ then by proposition 10 we have $(e, a_{1,2}) \sigma \in G_k$. □

Directly from this Proposition follows next Corollary, that needs no proof.

Remark 1. Let us to note that Theorem 14 improve Corollary 4 for the case $p = 2$.

Proposition 15. If g is an element of wreath power $\prod_{i=1}^k C_2 \simeq B_k$ then $g^2 \in B'_k$.

Proof. As it was proved in Lemma 3 commutator $[\alpha, \beta]$ from B_k has arbitrary even indexes on $X^m, m < k$. Let us show that elements of B^2_k have the same structure.
Let $\alpha, \beta \in B_k$ an indexes of the automorphisms $\alpha^2, (\alpha\beta)^2$ on X^l, $l < k - 1$ are always even. In more detail the indexes of $\alpha^2, (\alpha\beta)^2$ and α^{-2} on X^l are determined exceptionally by the parity of indexes of α and β on X^l. Actually, the parity of this index are formed independently of the action of $\text{Aut}X^l$ on X^l. So this index forms as a result of multiplying of elements $\alpha \in B_k$ presented as wreath recursion $\alpha^2 = (h_1, ..., h_{2l})\pi_1 \cdot (h_1, ..., h_{2l})\pi_1 = (h_1, ..., h_{2l})(h_{\pi_1(1)}, ..., h_{\pi_1(2l)})\pi_1^2$, where $h_i, h_j \in B_{k-l}, \pi_1 \in B_l, l < k$ and besides automorphisms corresponding to h_i are x automorphisms which has active v.p. on X^l. Analogous automorphisms h_i has number of active v.p. equal to x. As a result of multiplication we have automorphism with index $2i : 0 \leq 2i \leq 2x$.

Since g^2 admits only an even index on X^l of $\text{Aut}X^{[k]}$, $0 < l < k$, then $g^2 \in B'_k$ according to lemma 5 about structure of a commutator subgroup.

Since as well known a group G^2_k contains the subgroup G' then a product G^2G' contains all elements from the commutant. Therefore, we obtain that $G^2_k \simeq G'_k$.

Proposition 16. For arbitrary $g \in G_k$ following inclusion $g^2 \in G'_k$ holds.

Proof. Induction on k: for G^2_1 elements has form $((e,e)\sigma)^2 = e$ where $\sigma = (1,2)$ so statement holds. In general case when $k > 1$ elements of G_k has form

$$g = (g_1, g_2)^i, g_1 \in B_{k-1}, i \in 0.1$$

then we have two possibilities

$$g^2 = (g_1^2, g_2^2) \text{ or } g^2 = (g_1g_2, g_2g_1).$$

We first show that

$$g_1^2 \in B'_{k-1}, g_2^2 \in B'_{k-1}$$

after we will prove

$$g_1g_2 \cdot g_2g_1 \in B'_{k-1},$$

actually, according to Proposition 14 $g_1^2, g_2^2 \in B'_{k-1}$ then $g_1^2g_2^2 \in B'_{k-1}$ and $g_1^2, g_2^2 \in G_{k-1}$ by Proposition 12 also $g_1^2, g_2^2 \in G_{k-1}$ by induction assumption. From Proposition 10 it follows that $g_1g_2 \in G_{k-1}$.

Note that $B'_{k-1} < B_{k-2}$. In other hand $B_{k-2} < G_{k-1}$ because $G_{k-1} \simeq B_{k-2} \times W_{k-2}$ consequently $B'_{k-1} < G_{k-1}$. Besides we have $g_1^2 \in B'_{k-1}$ hence $g_1^2 \in G_{k-1}$.

Thus, we can use Lemma 11 (about G'_k) from which yields $g^2 = (g_1^2, g_2^2) \in G'_k$.

13
Consider second case \(g^2 = (g_1g_2, g_2g_1) \)

\[g_1g_2 \in G_{k-1} \text{ by proposition 10} \]

\[g_2g_1 = g_1g_2g_2^{-1}g_1^{-1}g_2g_1 = g_1g_2[2g_2^{-1}, g_1^{-1}] \in G_{k-1} \text{ by propositions 12 and 10} \]

\[g_1g_2 \cdot g_2g_1 = g_1g_2^2g_1 = g_1^2g_2^2[2g_2^{-2}, g_1^{-1}] \in B'_{k-1} \]

Note that \(g_1^2, g_2^2 \in B'_{k-1} \) according to Proposition 15, this is a reason why \(g_1^2g_2^2[2g_2^{-2}, g_1^{-1}] \in B'_{k-1} \). Thus, \((g_1g_2, g_1g_2) \in G'_k \) by Lemma 15.

Let \(X_1 = \{v_{k-1,1}, v_{k-1,2}, ..., v_{k-1,2^{k-2}}\} \) and \(X_2 = \{v_{k-1,2^{k-2}+1}, ..., v_{k-1,2^{k-1}}\} \).

We will call a distance structure \(\rho_l(\theta) \) of \(\theta \) a tuple of distances between its active vertices from \(X^l \). Let group \(Syl_2A_{2k} \) acts on \(X^{[k]} \).

Lemma 17. An element \(g \) belongs to \(G'_k \simeq Syl_2A_{2k} \) iff \(g \) is arbitrary element from \(G_k \) which has all even indexes on \(X^l \), \(l < k-1 \) of \(X^{[k]} \) and on \(X^{k-2} \) of subtrees \(v_{11}X^{[k-1]} \) and \(v_{12}X^{[k-1]} \).

Proof. Let us prove the amenability by induction on a number of level \(l \) and index of automorphism \(g \) on \(X^l \). Conjugation by automorphism \(\alpha \) from \(Autv_{11}X^{[k-1]} \) of automorphism \(\theta \), that has index \(x : 1 \leq x \leq 2^{k-2} \) on \(X_1 \) does not change \(x \). Also automorphism \(\theta^{-1} \) has the same number \(x \) of v. p. on \(X_{k-1} \) as \(\theta \) has. If \(\alpha \) from \(Autv_{11}X^{[k-1]} \) and \(\alpha \notin AutX^{[k]} \) then conjugation \((\alpha\theta\alpha^{-1}) \) permutes vertices only inside \(X_1 \) (\(X_2 \)).

Thus, \(\alpha\theta\alpha^{-1} \) and \(\theta \) have the same parities of number of active v. p. on \(X_1 \) (\(X_2 \)). Hence, a product \(\alpha\theta\alpha^{-1}\theta^{-1} \) has an even number of active v. p. on \(X_1 \) (\(X_2 \)) in this case. More over a coordinate-wise sum by \(\mod 2 \) of active v. p. from \((\alpha\theta\alpha^{-1}) \) and \(\theta^{-1} \) on \(X_1 \) (\(X_2 \)) is even and equal to \(y : 0 \leq y \leq 2x \).

If conjugation by \(\alpha \) permutes sets \(X_1 \) and \(X_2 \) then there are coordinate-wise sums of no trivial v. p. from \(\alpha\theta\alpha^{-1}\theta^{-1} \) on \(X_1 \) (analogously on \(X_2 \)) have form:

\((s_{k-1,1}(\alpha\theta\alpha^{-1}), ..., s_{k-1,2k-2}(\alpha\theta\alpha^{-1})) \oplus (s_{k-1,1}(\theta^{-1}), ..., s_{k-1,2k-2}(\theta^{-1}))\). This sum has even number of v. p. on \(X_1 \) and \(X_2 \) because \((\alpha\theta\alpha^{-1}) \) and \(\theta^{-1} \) have a same parity of no trivial v. p. on \(X_1 \) (\(X_2 \)). Hence, \((\alpha\theta\alpha^{-1})\theta^{-1} \) has even number of v. p. on \(X_1 \) as well as on \(X_2 \).

An automorphism \(\theta \) from \(G_k \) was arbitrary so number of active v. p. \(x \) on \(X_1 \) is arbitrary \(0 \leq x \leq 2^l \). And \(\alpha \) is arbitrary from \(AutX^{[k-1]} \) so vertices can be permuted in such way that the commutator \([\alpha, \theta] \) has arbitrary even number \(y \) of active v. p. on \(X_1 \), \(0 \leq y \leq 2x \).

A conjugation of an automorphism \(\theta \) having index \(x, 1 \leq x \leq 2^l \) on \(X^l \) by different \(\alpha \in AutX^{[k]} \) gives us all tuples of active v. p. with the same \(\rho_l(\theta) \) that \(\theta \) has on \(X^l \), by
which $\text{Aut}X^{|k|}$ acts on X^l. Let supposition of induction for element g with index $2k - 2$ on X^l holds so $g = (\alpha \theta \alpha^{-1})\theta^{-1}$, where $In_l(\theta) = x$. To make a induction step we complete θ by such active vertex $v_{l,x}$ too it has suitable distance structure for $g = (\alpha \theta \alpha^{-1})\theta^{-1}$, also if g has rather different distance structure $d_l(g)$ from $d_l(\theta)$ then have to change θ. In case when we complete θ by $v_{l,x}$ it has too satisfy a condition $(\alpha \theta \alpha^{-1})(v_{x+1}) = v_{l,y}$, where $v_{l,y}$ is a new active vertex of g on X^l. Note that $v(x + 1)$ always can be chosen such that acts in such way $\alpha(v(x + 1)) = v(2k + 2)$ because action of α is 1-transitive. Second vertex arise when we multiply $(\alpha \theta \alpha^{-1})$ on θ^{-1}. Hence $In_l(\alpha \theta \alpha^{-1}) = 2k + 2$ and coordinates of new vertices v_{2k+1}, v_{2k+2} are arbitrary from 1 to 2^l.

So multiplication $(\alpha \theta \alpha^{-1})\theta$ generates a commutator having index y equal to coordinate-wise sum by $\text{mod}2$ of no trivial v.p. from vectors $(s_{11}(\alpha \theta \alpha^{-1}), s_{12}(\alpha \theta \alpha^{-1}), ..., s_{12}(\alpha \theta \alpha^{-1})) \oplus (s_{11}(\theta), s_{12}(\theta), ..., s_{12}(\theta))$ on X^l. A indexes parities of $\alpha \theta \alpha^{-1}$ and θ^{-1} are same so their sum by $\text{mod}2$ are even. Choosing θ we can choose an arbitrary index $x \in \theta$ also we can choose arbitrary α to make a permutation of active v.p. on X^l. Thus, we obtain an element with arbitrary even index on X^l and arbitrary location of active v.p. on X^l.

Check that property of number parity of v.p. on X_1 and on X_2 is closed with respect to conjugation. We know that numbers of active v. p. on X_1 as well as on X_2 have the same parities. So action by conjugation only can permutes it, hence, we again get the same structure of element. Conjugation by automorphism α from $\text{Aut}v_{11}X^{|k-1|}$ automorphism θ, that has odd number of active v. p. on X_1 does not change its parity. Choosing the θ we can choose arbitrary index $x \in \theta$ on $X^{|k-1|}$ and number of active v.p. on X_1 and X_2 also we can choose arbitrary α to make a permutation active v.p. on X_1 and X_2. Thus, we can generate all possible elements from a commutant. Also this result follows from Lemmas [11] and [8].

Let us check that the set of all commutators K from Syl_2A_2k is closed with respect to multiplication of commutators. Let $\kappa_1, \kappa_2 \in K$ then $\kappa_1 \kappa_2$ has an even index on X^l, $l < k-1$ because coordinate-wise sum $(s_{11}(\kappa_1), ..., s_{k-1,2l}(\kappa_1)) \oplus (s_{l,\kappa_1(1)}(\kappa_2), ..., s_{l,\kappa_1(2l)}(\kappa_2))$. of two 2^l-tuples of v.p. with an even number of no trivial coordinate has even number of such coordinate. Note that conjugation of κ can permute sets X_1 and X_2 so parities of x_1 and X_2 coincide. It is obviously index of $\alpha \kappa \alpha^{-1}$ is even as well as index of κ.

Check that a set K is a set closed with respect to conjugation.

Let $\kappa \in K$, then $\alpha \kappa \alpha^{-1}$ also belongs to K, it is so because conjugation does not change index of an automorphism on a level. Conjugation only permutes vertices on level because elements of $\text{Aut}X^{|l-1|}$ acts on vertices of X^l. But as it was proved above elements of K have all possible indexes on X^l, so as a result of conjugation $\alpha \kappa \alpha^{-1}$ we obtain an element from K.

15
Check that the set of commutators is closed with respect to multiplication of commutators. Let κ_1, κ_2 be an arbitrary commutators of G_k. The parity of the number of vertex permutations on X^l in the product $\kappa_1 \kappa_2$ is determined exceptionally by the parity of the numbers of active v.p. on X^l in κ_1 and κ_2 (independently from the action of v.p. from the higher levels). Thus $\kappa_1 \kappa_2$ has an even index on X^l.

Hence, normal closure of the set K coincides with K.

Lemma 18. An element $g = (g_1, g_2)\sigma^i$ of G_k, $i \in \{0, 1\}$ belongs to G'_k iff g has even index on X^l for all $l < k - 1$ and elements g_1, g_2 have even indexes on X^{k-1}, that is equally matched to $g_1, g_2 \in G_{k-1}$.

Proof. The proof implies from Lemma 18 and Lemma 11.

Using this structural property of $(Syl_2 A_{2k})'$ we deduce a following result.

Theorem 19. Commutator subgroup G'_k coincides with set of all commutators, put it differently $G'_k = \{[f_1, f_2] \mid f_1 \in G_k, f_2 \in G_k\}$.

Proof. For the case $k = 1$ we have $G'_1 = \langle e \rangle$. So, further we consider case $k \geq 2$. In order to prove this Theorem we fix arbitrary element $w \in G'_k$ and then we represent this element as commutator of elements from G_k.

We already know by Lemma 14 that every element $w \in G'_k$ we can represent as follow

$$w = (r_1, r_1^{-1}x),$$

where $r_1 \in G_{k-1}$ and $x \in B'_{k-1}$. By proposition 14 we have $x = [f, g]$ for some $f \in B_{k-1}$ and $g \in G_{k-1}$. Therefore

$$w = (r_1, r_1^{-1}[f, g]).$$

By the Corollary 4 we can represent w as commutator of

$$(e, a_{1,2})\sigma \in B_k \text{ and } (a_{2,1}, a_{2,2}) \in B_k,$$

where

$$a_{2,1} = (f^{-1})r_1^{-1},$$

$$a_{2,2} = r_1 a_{2,1},$$

$$a_{1,2} = g^{a_{2,2}}.$$
It is only left to show that \((e, a_{1,2})\sigma, (a_{2,1}, a_{2,2}) \in G_k\).

In order to use Proposition 10 we note that

\[
a_{1,2} = g^{a_{2,2}} \in G_{k-1} \text{ by Proposition } 13
\]

\[
a_{2,1}a_{2,2} = a_{2,1}r_1a_{2,1} = r_1[a_{2,1}, a_{2,2}]^2 \in G_{k-1} \text{ by Proposition } 12 \text{ and Proposition } 15
\]

So we have \((e, a_{1,2})\sigma \in G_k\) and \((a_{2,1}, a_{2,2}) \in G_k\). \(\square\)

Corollary 20. Commutator width of the group \(Syl_2A_{2^k}\) equal to 1 for \(k \geq 2\).

Theorem 21. The centralizer of \(Syl_2S_{2^k}\) \(\bigotimes [12]\) with \(k_i > 2\), in \(Syl_2S_n\) is isomorphic to \(Syl_2S_{2^k} \otimes Syl_2S_{2^{k_i}} \times Z(Syl_2S_{2^{k_i}})\).

Proof. Actually, the action of active group \(A \simeq \bigotimes_{i=1}^{k_i-1} C_2\) of \(Syl_2S_{2^k}\) on \(X^{k-1}\) is transitive since the orbit of \(A\) on \(X^{k-1}\) is one. Then \(Z(Syl_2S_{2^k}) \simeq C_2\) results by formula from Corollary 4.4 \([9]\).

For any no trivial automorphism \(\alpha\) from \(AutX^{[k_i]} \simeq Syl_2S_{2^k}\), there exists a vertex \(v_{jm}\), where v.p. from \(\alpha\) is active. Thus, there exists graph path \(r\) connecting the root \(v_0\) with a vertex of \(X^{k_i}\) and pathing through the \(v_{jm}\). We can choose vertex \(v_{li}\) on \(r\) such that \(l \neq j\). So there exists \(\beta \in AutX^{[k_i]}\) that has active v.p. in \(v_{li}\). Then we have \(\alpha \beta \neq \beta \alpha\). The center of \(AutX^{[k_i]}\) is isomorphic to \(C_2\). As a result we have \(C_{AutS_n}(Syl_2S_{2^k}) \simeq Syl_2S_{[k_i]} \otimes Syl_2S_{2^{k_i}} \times Z(Syl_2S_{2^{k_i}})\). \(\square\)

Let us present new operation \(\boxtimes\) (similar to that in \([9]\)) as an even subdirect product of \(Syl_2S_{2^k}\), \(n = 2^{k_0} + 2^{k_1} + \ldots + 2^{k_m}\), \(0 \leq k_0 < k_1 < \ldots < k_m\).

Theorem 22. The centralizer of \(Syl_2A_{2^k}\) with \(k_i > 2\), in \(Syl_2A_n\) is isomorphic to \(Syl_2S_{2^k} \boxtimes \ldots \boxtimes Syl_2S_{2^{k_i-1}} \boxtimes Syl_2S_{2^{k_{i+1}}} \boxtimes \ldots \boxtimes Syl_2S_{2^{k_m}} \boxtimes Z(Syl_2S_{2^{k_i}})\).

Proof. We consider \(G_k\) as a normal subgroup of \(\bigotimes_{i=1}^{k_i} C_2\). Actually, the action of subgroup \(A = B_{k_0} \cap \ldots \cap B_{k_i-1}\) of \(G_{k_i} \simeq Syl_2A_{2^k}\) on \(X^{k-1}\) is transitive since the orbit of \(A\) on \(X^{k-1}\) is one.

There exists a vertex \(v_{jm}\) for any no trivial automorphism \(\alpha\) from \(G_{k_i} \simeq Syl_2A_{2^k}\), where v.p. from \(\alpha\) is active. Thus there exists graph path \(r\) connecting the root \(v_0\) with a vertex of \(X^{k_i}\) and pathing through the \(v_{jm}\). We can choose vertex \(v_{li}\) on \(r\) such that \(l \neq j\). So there exists \(\beta \in AutX^{[k_i]}\) that has active v.p. in \(v_{li}\). Then we have \(\alpha \beta \neq \beta \alpha\). Since \(Syl_2A_{2^k} \simeq AutX^{[k]}\), consequently the center of \(Syl_2A_{2^k}\) is isomorphic to \(C_2\). As a result we have \(C_{AutA_n}(Syl_2S_{2^{k_i}}) \simeq Syl_2S_{2^{k_0}} \boxtimes \ldots \boxtimes Syl_2S_{2^{k_{i-1}}} \boxtimes Syl_2S_{2^{k_{i+1}}} \boxtimes \ldots \boxtimes Syl_2S_{2^{k_m}} \boxtimes Z(A_{2^{k_i}})\). \(\square\)
Also we note that derived length of \(Syl_2 A_k^2 \) is not always equal to \(k \) as it was said in Lemma 3 of \cite{20} because in case \(A_{2k} \) if \(k = 2 \) its \(Syl_2 A_4 \simeq K_4 \) but \(K_4 \) is abelian group so its derived length is 1.

4 Conclusion

The commutator width of Sylow 2-subgroups of alternating group \(A_{2k} \), permutation group \(S_{2k} \) and Sylow \(p \)-subgroups of \(Syl_2 A_k^p \) (\(Syl_2 S_k^p \)) is equal to 1. Commutator width of permutational wreath product \(B \wr C_n \), were \(B \) is arbitrary group, was researched.

References

[1] Alexey Muranov, Finitely generated infinite simple groups of infinite commutator width. arXiv:math/0608688v4 [math.GR] 12 Sep 2009.
[2] V. Nekrashevych, Self-similar groups. International University Bremen. American Mathematical Society. 2005. Monographs, Vol. 117, 230 p.
[3] J.D.P. Meldrum, Wreath Products of Groups and Semigroups. Pitman Monographs and Surveys in Pure and Applied Mathematics English. 1st Edition. Jun (1995). 425 p.
[4] Nikolay Nikolov, On the commutator width of perfect groups. Bull. London Math. Soc. 36 (2004) p. 30–36.
[5] W. B. Fite, On metabelian groups, Trans. Amer. Math. Soc, 3 (1902), pp. 331-353.
[6] Roger C. Lyndon Paul E. Schupp, Combinatorial group theory. Springer-Verlag Berlin Heidelberg New York 1977. 447 p.
[7] Nekrashevych V. Self-similar groups. International University Bremen. American Mathematical Society. Monographs. Volume 117. 230 p.
[8] I.V. Bondarenko, I.O. Samoilovich, On finite generation of self-similar groups of finite type. Int. J. Algebra Comput. February (2013), Volume 23, Issue 01, pp. 69-77
[9] R.I. Grigorchuk, Solved and unsolved problems around one group. Infinite Groups: Geometric, Combinatorial and Dynamical Aspects. Basel, (2005). Progress Math., vol 248. pp. 117-218.
10. V. V. Sharko, Smooth topological equivalence of functions of surfaces. Ukrainian Mathematical Journal, May (2003), Volume 55, Issue 5, pp. 832–846.

11. L. Kaloujnine, "La structure des p-groupes de Sylow des groupes symetriques finis", Annales Scientifiques de l’Ecole Normale Superieure. Troisieme Serie 65, (1948) pp. 239–276.

12. B. Pawlik, The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs. Algebra and Discrete Mathematics. (2016), Vol. 21, N. 2, pp. 264-281.

13. R. Skuratovskii, "Corepresentation of a Sylow p-subgroup of a group Sn". Cybernetics and systems analysis, (2009), N. 1, pp. 27-41.

14. R. Skuratovskii. Generators and relations for sylows р-subgroup of group S_n. Naukovi Visti KPI. 4 (2013), pp. 94–105. (in Ukrainian)

15. R. V. Skuratovskii, Y.A. Drozd, Generators and and relations for wreath products of groups. Ukr Math J. (2008), vol. 60. Issue 7, pp. 1168–1171.

16. R. V. Skuratovskii, Minimal generating systems and properties of $Syl_2A_{2^n}$ and Syl_2A_n. X International Algebraic Conference in Odessa dedicated to the 70th anniversary of Yu. A. Drozd. (2015), pp. 104.

17. R. V. Skuratovskii, Minimal generating systems and structure of $Syl_2A_{2^k}$ and Syl_2A_n. International Conference and PhD-Master Summer School on Graphs and Groups, Spectra and Symmetries. (2016), source: http://math.nsc.ru/conference/g2/g2s2/exptext/Skuratovskii-abstract-G2S2+.pdf

18. R. V. Skuratovskii, Structure and minimal generating sets of Sylow 2-subgroups of alternating groups. Source: https://arxiv.org/abs/1702.05784v2

19. R. V. Skuratovskii, Structure of commutant and centralizer, minimal generating sets of Sylow 2-subgroups Syl_2A_n of alternating and symmetric groups. International conference in Ukraine, ATA12. (2017). https://www.imath.kiev.ua/ topology/.../skuratovskiy.pdf

20. U. Dmitruk, V. Suschansky, Structure of 2-sylow subgroup of alternating group and normalizers of symmetric and alternating group. UMJ. (1981), N. 3, pp. 304-312.

21. H. Heineken Normal embeddings of p-groups into p-groups. Proc. Edinburgh Math. Soc. 35 (1992), pp. 309-314.

19