Cellular Senescence in the Treatment of Ovarian Cancer

Zehua Wang, MD,*† Haiou Liu, PhD,*† and Congjian Xu, PhD*‡‡

Objective: This review aimed to update the research and development of cellular senescence in the treatment of ovarian cancer. We discussed the current mechanisms of senescence and the major biomarkers of senescence, especially the methods of cellular senescence in the treatment of ovarian cancer.

Materials and Methods: We collected all relevant studies in PubMed from 1995 to 2017. The search terms included senescence and cancer, senescence and ovarian cancer, senescence-associated secretory phenotype, ovarian cancer and chemotherapy, radiotherapy, or biotherapy. PubMed search with the key words senescence and ovarian cancer lists approximately 85 publications. After excluding the duplicated articles, we selected 68 articles most relevant to senescence and ovarian cancer in this review.

Results: Cellular senescence plays a key role in various biological processes of ovarian cancer, which is closely related with the occurrence, development, and treatment of ovarian cancer. Cellular senescence on the one hand can reduce the dose of chemotherapy in ovarian cancer; on the other hand, it also can solve the problem of tumor resistance to apoptosis. Therefore, cellular senescence has been shown to be the third intracellular mechanism of ovarian cancer prevention followed by cellular DNA repair and apoptosis.

Conclusions: In the near future, cellular senescence therapy could be a powerful tool for ovarian cancer treatment.

Key Words: Senescence, Ovarian cancer, Chemotherapy, Radiotherapy

Received May 2, 2017, and in revised form December 24, 2017. Accepted for publication January 25, 2018.

(Int J Gynecol Cancer 2018;28: 895–902)

Ovarian cancer is the most lethal gynecologic malignancy at present. Despite the recent new diagnostic possibilities and medical advances, the 5-year survival rate of patients with advanced ovarian cancer is only 25% to 35%.1 Prognosis is usually very poor because of the late diagnosis. More than 70% of patients diagnosed with this cancer have reached late stage (stage III–IV), when cancer has already spread beyond the ovaries.2 Thus, there is an urgent need to develop effective therapies for ovarian cancer.

Cellular senescence is a process characterized by normal human cells losing their proliferative capacity and departing from the cell cycle into a relatively stable state, also named replicative senescence. In recent years, some studies have found that the phenotype of cellular senescence induced by factors such as DNA damage, oxidative stress, and oncogene stress is basically the same with replicative senescence, but differs in the specific mechanism. This form of cellular...
senescence is unrelated with the shortening of telomeres and the
generations of proliferation; therefore, it is called premature
senescence.3 Premature senescence has been shown to be the
third intracellular mechanism of cancer prevention followed by
cellular DNA repair and apoptosis, which is closely related with
the occurrence, development, and treatment of tumors.4
Therefore, cellular senescence has been suggested as a novel
therapy for ovarian cancer. In this article, we focus on the
current research and development of cellular senescence in
the treatment of ovarian cancer.

Cellular Senescence

The Mechanism of Cellular Senescence

Normal human cells have limited life under the condi-
tions of in vitro culture. This phenomenon was first observed in
 fibroblasts cultured in vitro human cells. According to
Haiflick and Moorhead’s5 findings in 1961, the continuous
culture of human diploid fibroblast cells would enter a state of
senescence on 50 to 70 generations of in vitro proliferations.
Under such circumstances, cells had lost the ability of contin-
uous proliferation but were still alive. Even if the most suitable
culture conditions were provided, the cells could not escape
the fate of limited proliferation. This proliferative limit of cells is
sometimes referred to as the Haiflick limit. The phenomenon
that the normal human cells have limited potential of in vitro
division is known by Haiflick as cellular senescence, or more
precisely, replicative senescence. The hypothesis of telomere
shortening is commonly recognized among the hypothesis of
the replicative senescence mechanism. Muller6 proposed telo-
mere in 1938 for the first time and found that it was easily
connected between the ends of injured and ruptured chromo-
somes in Drosophila, thereby forming the various types of
chromosome aberrations, such as the dissolved end and the
formation of annularity or dicentric chromosomes. But the natural
end of chromosomes seems neither connected to the ends of
ruptured chromosomes nor combined with the natural end of
chromosomes, just like a hat to maintain the stability of the end
of the chromosome. Therefore, the fragment located at both
ends of the chromosome was named telomere by Muller.6 The
hypothesis of telomere shortening refers to the correlation be-
tween the division ability and the telomere length of the fi-
broblast and more division times of cells with longer telomeres
than those with shorter telomeres. Studies have shown that the
presence of telomere shortening is seen in a variety of primary
human cells during culture. These results suggest that telomere
shortening plays a direct role in the number of division times
that may be experienced by primary cells and may serve as a
marker of cellular senescence. Therefore, telomere shortening
or telomere structural destruction is considered as the main
mechanism of senescence.7

With the deepening of this study, the researchers found
that telomere shortening was not the only factor to induce the
senescence phenotype (irreversible growth arrest, apoptosis,
and changes in cell functions). Some of the stimuli that were
unrelated with telomere, including DNA damage and the ex-
pression of some oncogenes, could also induce normal cell
growth arrest and exhibit a senescence phenotype. The inducers
other than telomeres had one thing in common that they had the
potential to cause or promote tumorigenesis. Cellular senescence
seems to be a safe mechanism to prevent tumorigenesis through
inhibition of cell proliferation. Cellular senescence involves the
signal regulation factor of cell cycle and complex approach.8
When cellular DNA encounters damage attacks, it can activate
proteins such as p16, p21, p53, and retinoblastoma (RB) protein
related to G1/S arrest, and proliferation arrest can occur to
cells.9,10 Among them, the signaling pathways of p53-p21-
pRB and p16-pRB are the most important. The tumor sup-
pressor gene p53 in induction of cell cycle arrest is realized by
induction of high expression of p21. And high-expression p21
can inhibit the binding of cyclin-dependent kinase (CDK) 2
and type E cell cycle protein, thereby inhibiting the phos-
phorylation of the RB. The RB that is in the form of nonphosphorylation or low phosphorylation can be combined
with several transcription factors to inhibit their transcription
activation functions and further inhibit the expression of
downstream genes needed from S phase into G1 phase, which
causes growth arrest so as to control the cell cycle progression and
differentiation. The expression of p16 gene plays an important role
in the maintenance of cellular senescence. Overexpression of p16
can inhibit the binding of CDK4/6 and type D cell cycle protein
to block the phosphorylation of CDK4/6 on RB and prevent
cells from entering the S phase for induction of cellular se-
nescence (Fig. 1). Whether p16-pRB or p53-p21-pRB pathway
activation is involved in the induction of senescence seems to
de on the cell type and origin of the species.11

Detection Biomarkers of Cellular Senescence

At present, there are many ways to detect cellular senescence. In addition to the morphological changes of senescent
cells observed by using an optical microscope, senescence-
associated β-galactosidase (SA-β-gal) staining is a common
way to show the senescence cells. In 1995, Dimri et al12 found
that when the pH value of culture medium was 6, the positive
rate of β-galactosidase staining for the diploid fibroblasts
cultured in vitro was gradually increased with the increase of
the age. This neutral β-galactosidase was defined by them as
SA-β-gal, namely the SA-β-gal. The β-galactosidase produced
by senescent cells or tissues can catalyze the substrate X-Gal
to form a dark blue product, which is easily observed under
an optical microscope. The SA-β-gal can also be found to be
increased with the increase of the age in the stratum corneum
cells of human epidermis. In addition, SA-β-gal can differentiate
during DNA cells and quiescent cells, which are independent of
the replication process. The SA-β-gal is a kind of biological
marker that can be used in vivo and in vitro. Because the method
of detecting SA-β-gal is simple and easy to use, it has been
widely applied in the detection of senescent cells. At present,
more than 2300 articles have applied this method. But as we
know, there is no single biomarker that can robustly identify
senescent cells. Recently, multiple studies proved that
several classes of biomarkers can be identified as potential
senescence indicators, which are summarized in Table 1.13–25

Cellular Senescence in the Treatment of
Ovarian Cancer

In the recent researches, it has been confirmed that
inducing tumor cellular senescence to prevent the unlimited
proliferation of tumor cells can be an important treatment. Normal cells accumulate the alterations from DNA damage, oxidative stress, and oncogene stress that trigger an initial phase of aberrant cell proliferation. This aberrant proliferation can give rise to preneoplastic lesions; to parallel this aberrant situation, ovarian cancer cell intrinsic fail-safe mechanisms such as senescence and apoptosis are activated. During ovarian cancer progression, the accumulation of damage is acquired to override these protective mechanisms, giving rise to ovarian cancer. Experimental researches have confirmed that conventional treatments such as chemotherapy and radiotherapy can induce cellular senescence; at the same time, research about the treatment of target biological treatment on ovarian cancer has also made certain progress. Chemotherapy-, radiotherapy- and biotherapy-induced cellular senescence permanently arrests growth. In cancer cells, chemotherapy-induced senescence is an important alternative cell fate to apoptosis. The study reported an apoptosis-independent function to p53 in cancer and showed that murine lymphomas overexpressing Bcl-2 respond to chemotherapy by engaging a senescence program controlled by p53 and p16INK4a rather than apoptosis. Conversely, upregulating the expression of DNA methyltransferase (DNMT) DNMT3a in colorectal cancer cells subject to DNA damage induced by doxorubicin switches senescence to apoptosis. When senescent cells were challenged with p53-dependent apoptotic stimuli, they underwent necrosis in response to the treatments. Muñozespín et al proposed that cellular senescence, followed by macrophage-dependent clearance of

![FIGURE 1. Overview of replicative senescence and premature senescence. A, Telomere shortening–induced replicative senescence. B, Accumulation stress–induced premature senescence.]

Biomarker Category	Senescence Biomarker	Reference
Secretion and surface	SA-β-Gal	[13],2010; [14],2014
	SASP	[15],2016
DNA damage and repair	γH2AX	[16],2010
	Lamin B1	[17],2012
	SAHF	[18],2015
Cell cycle related	p16INK4a	[19],2012; [20],2015; [21],2016
	p21WAF1	[22],2013; [23],2014; [24],2015
	p15INK4B	[25],2014
	p14ARF	[21],2016

γH2AX indicates gammaH2AX; and SAHF, senescence-associated heterochromatic foci.
senescent cells or by the overgrowth of nearby cells, alters cellularity, resulting in tissue remodeling. Interestingly, the activation of senescence in ovarian cancer cells was associated with a strong senescence-associated secretory phenotype (SASP), which can attract and activate immune system cells to alter the ovarian cancer microenvironment. On immune dysfunction, the SASP's proinflammatory nature can recruit immune cells, which can kill and clear senescent cells or other surviving cancer cells. All in all, chemotherapy-, radiotherapy- and biotherapy-induced cellular senescence can be explored as alternative or complement treatments to ovarian cancer (Fig. 2).

Cellular Senescence and Ovarian Cancer Chemotherapy

Therapies such as surgical adjuvant chemotherapy are the most commonly used methods in treatment of ovarian cancer, which are difficult to significantly prolong the 5-year survival rate (approximately 20%). In particular, the chemotherapy resistance and strong ability of invasion and metastasis of ovarian cancer result in severe reduction of the long-term curative effect and survival rate for ovarian cancer patients. The chemotherapy of ovarian cancer is intended to induce the apoptosis of ovarian cancer cells. However, the tumor cells have a barrier in apoptosis generally, as a consequence of which apoptosis resistance is seen as a difficult problem in the treatment of ovarian cancer. As we know, the tumor cells have the ability of proliferation without restriction, and it was once thought that the tumor cells had lost the ability to enter the senescent state. However, with the deepening of research, Studies have confirmed that chemotherapy drugs can induce cellular senescence in tumor cells. Senescent cells are in permanent growth arrest and, after repairing DNA damage, still undergo cell cycle arrest. Chemotherapy can induce cell cycle arrest and senescence, but cell cycle arrest is not a synonym of senescence. One type of quiescence is simple quiescence, a reversible arrest. Cells are arrested because of lack of growth factors, and addition of growth factors causes proliferation. Another type of quiescence is locked quiescence, an irreversible arrest. Differentiated cells are put on the brakes, and excessive stimulation induces senescence. Studies have found that low doses of chemotherapy drugs can cause tumor cellular senescence and further proved that induction of tumor cellular senescence is a feasible strategy to reverse drug resistance. Senescence-inducing chemotherapy, on the one hand, can reduce the dose of chemotherapy; on the other hand, it also can solve the problem of tumor resistance to apoptosis. Studies have shown that low doses of chemotherapy drugs can induce A2780 ovarian carcinoma cellular senescence, which resulted in prolonged cell cycle arrest predominately in the G1 phase of the cell cycle. In addition, according to Schmitt's findings in the study of chemotherapy in mice, chemotherapy drugs can cause senescence changes in tumor cells, and cellular senescence pathway directly affects the effect of chemotherapy, which confirms that the expression rate of senescent cells is closely related to prognosis. At present, it is believed that the cycle arrest of cell proliferation induced by chemotherapeutic agents is related to DNA damage. If the DNA damage caused by low-dose chemotherapy cannot be repaired, ovarian cancer cells tend to undergo senescence rather than apoptosis. Therefore, senescence plays an important role in the in vivo response to chemotherapy.

FIGURE 2. Overview of cellular senescence in the treatment of ovarian cancer.
Cellular Senescence and Ovarian Cancer Radiotherapy

The property of photon radiation (x-ray, γ-ray) and special ray (α, neutron, proton, and electron) that can lead to ionization effect is made full use of by radiotherapy to destroy the genetic material structure of tumor cells and kill tumor cells. Compared with surgical treatment, radiotherapy can avoid the traumatic injury of organ tissue, ensure the integrity of organ structure, and significantly prolong the survival time for cancer patients.

In ovarian cancer, debulking surgery and adjuvant chemotherapy are still fundamental treatments. Compared with debulking surgery and chemotherapy, the application of radiotherapy is relatively less in the treatment of ovarian cancer, but it still has a certain position. Ovarian cancer is a radiosensitive tumor; although radiotherapy is not the main treatment for ovarian cancer, it can be used as an adjuvant therapy after surgery and palliative therapy of advanced and recurrent lesions. In 2010, International Federation of Gynecology and Obstetrics implemented a phase I clinical trial, which confirmed the clinical feasibility of intensity-modulated whole abdominal radiotherapy for patients with advanced ovarian carcinoma after surgery and adjuvant chemotherapy. Phase 2 clinical trial was conducted in 2011, further suggesting that intensity-modulated whole abdominal radiotherapy can be used as an effective consolidation treatment for the advanced ovarian carcinoma patients after adjuvant chemotherapy. Until now many researches have confirmed that radiotherapy has a therapeutic effect on ovarian cancer. In epithelial ovarian cancer, radiotherapy can be used to relieve the symptoms of pain, bleeding, or oppression caused by advanced ovarian cancer. Yahara et al selected 27 patients with limited recurrence after complete remission and assessed the efficacy and toxicity of definitive radiotherapy for the recurrence of epithelial ovarian cancer. They found that radiotherapy for limited recurrence of epithelial ovarian cancer could achieve a better local control rate without severe toxicity.

As we know, the key to successful radiotherapy is to improve the sensitivity of tumor cells to radiotherapy. Some data demonstrate that large-scale radiation (x-ray) can induce tumor cellular senescence and further alter x-ray sensitivity in tumor cells. Penha et al reported that different dose and time of radiation exposure dictated different impacts on tumor cells. In particular, low-dose ionizing radiation-induced senescence might be a promising therapeutic target to induce growth inhibitory response in both early and late steps of carcinogenesis and might offer an opportunity to reduce the toxicity of radiotherapy. As senescence plays a more and more important role in anti-cancer strategies, senescence-inducing radiotherapy has been used widely in thyroid cancer, lung cancer, breast cancer, head and neck cancer, etc. Although senescence-inducing radiotherapy is quickly developed, this new therapy has not yet been used widely in ovarian cancer in the hope that this new therapy can provide a useful tool in treatment of ovarian cancer.

Cellular Senescence and Ovarian Cancer Biotherapy

The traditional tumor therapies such as radiotherapy and chemotherapy mainly achieve the treatment goals through causing tumor cell death. Owing to the advantage of good short-term therapeutic effect, the tumor mass shrinks rapidly. However, occurrence of the adverse conditions such as metastasis and recurrence results in less satisfactory therapeutic effect of the traditional tumor treatment mode. Biotherapy can significantly prolong patients’ survival time without great adverse reactions, unlike traditional chemotherapy and radiotherapy. Therefore, it is a promising new therapeutic target to restore the senescence pathway and induce senescence of tumor cells. There are some researches that provide evidence for senescence features not only in ovarian cancer cell lines, but also specimens. The SA-β-gal and p16 have been identified as cellular senescence markers; in Konecny et al’s study, they found that the overexpression of p16 in primary clinical ovarian cancer specimens could drive senescence. Mikulapietraski et al showed that the expression of SA-β-Gal was significantly increased in ovarian cancer metastases specimens which had been induced senescence. In recent years, the researchers have made useful attempts in this direction, which are summarized in Table 2.

In the aspect of gene therapy, Bitler et al were the first to show that Wnt5a activation induced senescence of human epithelial ovarian cancer cells by promoting the histone cell cycle regulator/promyelocytic leukemia senescence pathway. It is worth noting that the different Wnt5a expression correlates with different tumor stage and overall survival in epithelial ovarian cancer patients. These data were consistent with the idea that Wnt5a signaling to drive senescence of human epithelial ovarian cancer cells was a potentially novel strategy for developing ovarian cancer therapeutics. Pan et al confirmed that Daxx deletion could accelerate mouse ovarian surface epithelium cells senescence in a p53/p21-dependent manner and induced the high expressions of DNA damage-related proteins (p-H2AX and p-CHK2) and cell cycle–related gene (p21 and p27). These results suggest that DAXX may play a role in epithelial ovarian carcinoma tumorigenesis and may be an anticancer target.

Aird et al found that ribonucleotide reductase M2 (RRM2) expression was significantly higher in epithelial ovarian cancer cell lines and specimens than normal controls, and knockdown of RRM2 expression inhibited the growth of human epithelial ovarian cancer cells through a cellular senescence mechanism. These data suggest that inhibition of RRM2 to induce senescence is a novel therapeutic strategy for epithelial ovarian cancer patients. Özeş et al...
Category	Target Gene/miRNA	Cell Line	Specimens (n)	Reference
Gene therapy	Wnt5a	OVCAR5 (EOC)	EOC (130)	[60],2011
	DAXX	mOSE (EOC)	EOC (130)	[61],2013
	RRM2	OVCAR5 (EOC), PEO1 (EOC), SKOV3 (EOC)	EOC (105)	[62],2014
	HOTAIR	A2780 (EOC), SKOV3 (EOC), HEY2 (EOC), OV90 (EOC), IOSE (EOC), IGROV (EOC), OVMUNA (EOC)	EOC (105)	[63],2016
RNA interference	EZH2	SKOV3/DDP(EOC)	SOC (92)	[64],2016
miRNA	miRNA-506	HeyA8 (EOC), SKOV3 (EOC), OVCA432 (EOC), HeLa (CC)	SOC (92)	[65],2014
	miRNA-433	A2780 (HGSOC), PEO1 (HGSOC), PEO4 (HGSOC)	SOC (92)	[66],2015

TABLE 2. Senescence-inducing factors as targets of ovarian cancer biotherapy

Category	Target Gene/miRNA	Cell Line	Specimens (n)	Reference
Gene therapy	Wnt5a	OVCAR5 (EOC)	EOC (130)	[60],2011
	DAXX	mOSE (EOC)	EOC (130)	[61],2013
	RRM2	OVCAR5 (EOC), PEO1 (EOC), SKOV3 (EOC)	EOC (105)	[62],2014
	HOTAIR	A2780 (EOC), SKOV3 (EOC), HEY2 (EOC), OV90 (EOC), IOSE (EOC), IGROV (EOC), OVMUNA (EOC)	EOC (105)	[63],2016
RNA interference	EZH2	SKOV3/DDP(EOC)	SOC (92)	[64],2016
miRNA	miRNA-506	HeyA8 (EOC), SKOV3 (EOC), OVCA432 (EOC), HeLa (CC)	SOC (92)	[65],2014
	miRNA-433	A2780 (HGSOC), PEO1 (HGSOC), PEO4 (HGSOC)	SOC (92)	[66],2015

REFERENCES

1. Scholz HS, Tasdemir H, Hunlich T, et al. Multivisceral cytoreductive surgery in FIGO stages IIIC and IV epithelial ovarian cancer: results and 5-year follow-up. *Gynecol Oncol*. 2007;106:591–595.
2. Creasman WT, Odicino F, Maisonneuve P, et al. Carcinoma of the corpus uteri. FIGO 26th annual report on the results of treatment in gynecological cancer. *Int J Gynaecol Obstet*. 2006;95(suppl 1):S161–S192.
3. Lin AW, Barradas M, Stone JC, et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. *Genes Dev*. 1998;12: 3008–3019.
4. Hornsby PJ. Senescence as an anticancer mechanism. *J Clin Oncol*. 2007;25:1852–1857.
5. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. *Exp Cell Res*. 1961;25:585–621.
6. Muller HJ. The remaking of chromosomes. *The Collecting Net-Woods Hole*. 1938;13:181–198.
7. Hayflick L. Mortality and immortality at the cellular level. A review. *Biochemistry (Mosc)*. 1997;62:1180–1190.

demonstrated the key role that HOTAIR in DNA damage contributes to cellular senescence. They reported that the overexpression of HOTAIR could alter the tumor microenvironment and induced the tumor growth slow. They suggested that HOTAIR may represent a target for a novel therapeutic strategy of drug resistance in ovarian cancer.

In the aspect of RNA interference inhibitor, Sun et al found that increased enhancer of zeste homolog 2 (EZH2) expression could induce SKOV3/DDP cell cycle arrest in the G0/G1 phase; at the same time, some expressions of the senescence signaling proteins (p14ARF, p16INK4a, p53, and p21) were significantly increased, and other proteins (CDK1, CDK2, and H3K27me3) were lower expressed. These findings suggest that interfering with EZH2 expression can be a new candidate that could possibly reverse the cisplatin resistance of ovarian cancer.

In the aspect of miRNA: Liu et al demonstrated that overexpression of miR-506 could inhibit the CDK4/CDK6-FOXM1 signaling pathway, consequently decrease proliferation, and promote senescence in ovarian cancer cells and specimens. This newly recognized miR-506-CDK4/6-FOXM1 axis provides further insight into the pathogenesis of ovarian cancer, and miR-506 could be a potential therapy for ovarian cancer. Weinergorzel et al showed that the aberrant expression of miR-433 in ovarian cancer cells could result in the induction of cellular senescence and affect intracellular signaling to mediate chemoresistance. They guessed that the high miR-433 expression might act as a protective mechanism to affect the progression of the cancer and patient survival.

CONCLUSIONS AND PERSPECTIVES

In conclusion, cellular senescence can effectively prevent the uncontrolled cell growth and carcinogenesis caused by cytokine DNA damage or oncogene; therefore it is an important tumor suppression mechanism. The research of cellular senescence in ovarian cancer treatment is mainly related to chemotherapy, radiotherapy, and biotherapy, etc. Chemotherapy/radiotherapy–induced cellular senescence is not intended to kill the ovarian cancer cells; the required medication/radiation dose and their toxic reactions are likely to be less than traditional chemotherapy and radiotherapy. What’s more, chemotherapy/radiation–induced cellular senescence is not dependent on telomere length and telomerase activity; the related study will possibly promote the advances in tumor treatment. Biotherapy mainly includes gene therapy, RNA interference, and medication miRNA treatment, etc, which can further clarify the molecular mechanism of ovarian cancer cellular senescence. At present, the research of cellular senescence in ovarian cancer treatment is still in progress; the mechanism of cellular senescence is unclear, and many senescence-related genes have not been studied. As a promising ovarian cancer therapy, induction of ovarian cancer cellular senescence is facing great opportunities and challenges.
8. Childs BG, Durik M, Baker DJ, et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy. *Nat Med.* 2015;21:1424–1435.

9. Soto Martínez JL, Cabrera Morales CM, Serrano Ortega SS, et al. Mutation and homozygous deletion analyses of genes that control the G1/S transition of the cell cycle in skin melanoma: p53, p21, p16 and p15. *Clin Transl Oncol.* 2005;7:156–164.

10. Hong SY, Chen X, Yang VW. Krüppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. *J Biol Chem.* 2003;278:2101–2105.

11. Surova O, Zhivotovsky B. Various modes of cell death induced by DNA damage. *Oncogene.* 2012;32:3789–3797.

12. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. *Proc Natl Acad Sci U S A.* 1995;92:9363–9367.

13. Geng YQ, Guan JT, Xu XH, et al. Senescence-associated β-galactosidase activity expression in aging hippocampal neurons. *Biochem Biophys Res Commun.* 2010;396:866–869.

14. Sosinska P, MikulášPetríšak J, Ryžek M, et al. Specificity of cytochemical and fluorescence methods of senescence-associated β-galactosidase detection for ageing driven by replication and time. *Biogerontology.* 2014;15:407–413.

15. Matjsuatis M, Chin G, Sarnoski EA, et al. Biomarkers to identify and isolate senescent cells. *Ageing Res Rev.* 2016;29:1–12.

16. Mah LJ, El-Osta A, Karagiannis TC. GammaH2AX as a molecular marker of aging and disease. *Epigenetics.* 2010;5:129–136.

17. Freund A, Laberge RM, Demaria M, et al. Lamin B1 loss is a senescence-associated biomarker. *Mol Biol Cell.* 2012;23:2066–2075.

18. Webster MR, Xu M, Kinzler KA, et al. Wnt5A promotes an adaptive, senescent-like stress response, while continuing to drive invasion in melanoma cells. *Pigment Cell Melanoma Res.* 2015;28:184–195.

19. Marcoux S, Le ON, Langlois-Pelletier C, et al. Expression of the senescence marker p16INK4a in skin biopsies of acute lymphoblastic leukemia survivors: a pilot study. *Radiat Oncol.* 2012;8:2261–2262.

20. Pustavotaila A, Barodka V, Sharpless NE, et al. Role of senescence marker p16(INK4a) measured in peripheral blood T-lymphocytes in predicting length of hospital stay after coronary artery bypass surgery in older adults. *Exp Gerontol.* 2015;74:29–36.

21. Pare R, Shin JS, Lee SC. Increased expression of senescence markers p14(ARF) and p16 (INK) (4a) in breast cancer is associated with increased risk of disease recurrence and poor survival outcome. *Histopathology.* 2016;69:479–491.

22. Aravinthan A, Pietrogi G, Hoare M, et al. Hepatocyte expression of the senescence marker p21 is linked to fibrosis and an adverse liver-related outcome in alcholic liver disease. *Plos One.* 2013;8:e72904.

23. Aravinthan A, Mellis G, Allison M, et al. Gene polymorphisms of cellular senescence marker p21 and disease progression in non-alcohol-related fatty liver disease. *Cell Cycle.* 2014;13:1489–1494.

24. Calió A, Zamò A, Ponzoni M, et al. Cellular senescence markers p16INK4a and p21CIP1/WAF are predictors of Hodgkin lymphoma outcome. *Clin Cancer Res.* 2015;21:5164–5172.

25. Zhang Y, Guo L, Xing P, et al. Increased expression of oncogene-induced senescence markers during cervical squamous cell cancer development. *Int J Clin Exp Pathol.* 2014;7:8911–8916.

26. Acosta JC, Gil J. Senescence: a new weapon for cancer therapy. *Trends Cell Biol.* 2012;22:211–219.

27. Childs BG, Baker DJ, Kirkland JL, et al. Senescence and apoptosis: dualing or complementary cell fates? *EMBO Rep.* 2015;15:1139–1153.

28. Schmitt CA, Fridman JS, Yang M, et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. *Cell.* 2002;109:335–346.

29. Zhang Y, Gao Y, Zhang G, et al. DNMT3a plays a role in switches between doxorubicin-induced senescence and apoptosis of colorectal cancer cells. *Int J Cancer.* 2011;128:551–561.

30. Seluanov A, Gorbunova V, Falcovitz A, et al. Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53. *Mol Cell Biol.* 2001;21:1552–1564.

31. Muñozespín D, Cañamero M, Maraver A, et al. Programmed cell senescence during mammalian embryonic development. *Cell.* 2013;155:1104–1118.

32. Gonzalez LC, Ghadouaia S, Martinez A, et al. Premature aging/senescent in cancer cells facing therapy: good or bad? *Biogerontology.* 2016;17:71–87.

33. Ataseven B, Chiva LM, Harter P, et al. FIGO stage IV epithelial ovarian, fallopian tube and peritoneal cancer revisited. *Gynecol Oncol.* 2016;142:597–607.

34. Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. *Nat Rev Cancer.* 2010;10:51–57.

35. Blagosklonny MV. Cell cycle arrest is not senescence. *Aging.* 2011;3:94–101.

36. Taschner-Mandl S, Schwarz M, Blaha J, et al. Metronomic therapy of peripheral blood T-lymphocytes in predicting length of hospital stay after coronary artery bypass surgery in older adults. *Exp Gerontol.* 2015;74:29–36.

37. Yan Q, Wajapeyee N. Exploiting cellular senescence to treat cancer and circumvent drug resistance. *Cancer Biol Ther.* 2010;9:166–175.

38. Salminen A, Ojala J, Kaarmiranta K. Apoptosis and aging: increased resistance to apoptosis enhances the aging process. *Cell Mol Life Sci.* 2011;68:1021–1031.

39. de Poel RH, Okorokov AL, Jardine L, et al. DNA damage is induced senescence and apoptosis: dueling or complementary cell fates? *EMBO Rep.* 2015;15:1139–1153.

40. Tinger A, Waldron T, Peluso N, et al. Effective palliative radiation therapy in advanced and recurrent ovarian carcinoma. *Int J Radiat Oncol Biol Phys.* 2015;87:1263–1268.

41. Rochet N, Sterzing F, Jensen AD, et al. Intensity-modulated whole abdominal radiotherapy after surgery and carboplatin/taxane chemotherapy for advanced ovarian cancer: phase I study. *Int J Radiat Oncol Biol Phys.* 2010;76:1382–1389.

42. Fields EC, Mcguire WP, Lin L, et al. Radiation treatment in women with ovarian cancer: past, present, and future. *Front Oncol.* 2017;7:177.

43. Rochet N, Kieser M, Sterzing F, et al. Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT) in patients with advanced ovarian cancer stage FIGO III—The OVAR-IMRT-02 Study. *BMC Cancer.* 2011;11:41.

44. E C, Quon M, Gallant V, et al. Effective palliative radiotherapy for symptomatic recurrent or residual ovarian cancer. *Gynecol Oncol.* 2006;102:204–209.
45. Yahara K, Ohguri T, Imada H, et al. Epithelial ovarian cancer: definitive radiotherapy for limited recurrence after complete remission had been achieved with aggressive front-line therapy. *J Radiat Res*. 2013;54:322–329.

46. Wei P, Zhang ZH, Li L, et al. Clinical observational study of conformal radiotherapy combined with topotecan chemotherapy in patients with platinum-resistant recurrent ovarian cancer. *Genet Mol Res*. 2015;14:3833–3842.

47. Albuquerque K, Patel M, Liotta M, et al. Long-term benefit of tumor volume-directed involved field radiation therapy in the management of recurrent ovarian cancer. *Int J Gynecol Cancer*. 2016;26:655–660.

48. Hoskins PJ, Le N, Gilks B, et al. Low-stage ovarian clear cell carcinoma: population-based outcomes in British Columbia, Canada, with evidence for a survival benefit as a result of irradiation. *J Clin Oncol*. 2012;30:1656–1662.

49. Macrie BD, Strauss JB, Helenowski IB, et al. Patterns of recurrence and role of pelvic radiotherapy in ovarian clear cell adenocarcinoma. *Int J Gynecol Cancer*. 2014;24:1597–1602.

50. Mendonca MS, Chinsinex H, Dhæmers R, et al. Differential mechanisms of X-Ray-induced cell death in human endothelial progenitor cells isolated from cord blood and adults. *Radiat Res*. 2011;176:208–216.

51. Tsai KK, Stuart J, Chuang YY, et al. Low-dose radiation-induced senescent stromal fibroblasts render nearby breast cancer cells radioresistant. *Radiat Res*. 2015;172:306–313.

52. Podcheko A, Namba H, Saenko V, et al. Radiation-induced senescence-like terminal growth arrest in thyroid cells. *Thyroid*. 2005;15:306–313.

53. Rambaldi GZ, Monari F, Fiorentino M, et al. Complete pathological response after chemo-radiation in anaplastic thyroid cancer: a report of two cases. *Acta Oncol*. 2016;55:530–532.

54. Luo H, Wang L, Schulte BA, et al. Resveratrol enhances ionizing radiation-induced premature senescence in lung cancer cells. *Int J Onkol*. 2013;43:1999–2006.

55. Yu YC, Yang PM, Chuah QY, et al. Radiation-induced senescence in securin-deficient cancer cells promotes cell invasion involving the IL-6/STAT3 and PDGF-BB/PDGFR pathways. *Sci Rep*. 2013;3:1675.

56. Marmar Y, Adar R, Gaska S, et al. Radiation-induced loss of salivary gland function is driven by cellular senescence and prevented by IL6 modulation. *Cancer Res*. 2016;76:1170–1180.

57. Mikula-Pietrask J, Uruski P, Matuszkiewicz K, et al. Ovarian cancer-derived ascitic fluids induce a senescence-dependent pro-cancerogenic phenotype in normal peritoneal mesothelial cells. *Cell Oncol (Dordr).* 2016;39:473–481.

58. Koneczy GE, Winterhoff B, Kolarova T, et al. Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. *Clin Cancer Res*. 2011;17:1591–1602.

59. Mikula-Pietrask J, Uruski P, Pakula M, et al. Oxidative stress contributes to hepatocyte growth factor-dependent pro-senescent activity of ovarian cancer cells. *Free Radic Biol Med*. 2017;110:270–279.

60. Bitter BG, Nicodemus JP, Li H, et al. Wnt5a suppresses epithelial ovarian cancer by promoting cellular senescence. *Cancer Res*. 2011;71:6184–6194.

61. Pan WW, Yi FP, Cao LX, et al. DAXX silencing suppresses mouse ovarian surface epithelial cell growth by inducing senescence and DNA damage. *Gene*. 2013;526:287–294.

62. Aird KM, Li H, Xin F, et al. Identification of ribonucleotide reductase M2 as a potential target for pro-senescent therapy in epithelial ovarian cancer. *Cell Cycle*. 2014;13:199–207.

63. Özəş AR, Miller DF, Özəş ON, et al. NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. *Oncogene*. 2016;35:5350–5361.

64. Sun Y, Jin L, Liu JH, et al. Interfering EZH2 expression reverses the cisplatin resistance in human ovarian cancer by inhibiting autophagy. *Cancer Biother Radiopharm*. 2016;31:246–252.

65. Liu G, Sun Y, Ji P, et al. MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6-FOXM1 axis in ovarian cancer. *J Pathol*. 2014;233:308–318.

66. Weinergorzel K, Dempsey E, Milewska M, et al. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. *Cancer Med*. 2015;4:745–758.