A TWO-PIECE PROPERTY FOR FREE BOUNDARY MINIMAL
HYPERSURFACES IN THE \((n + 1)\)-DIMENSIONAL BALL

VANDERSON LIMA AND ANA MENEZES

ABSTRACT. We prove that every hyperplane passing through the origin in \(\mathbb{R}^{n+1}\) divides an embedded compact free boundary minimal hypersurface of the euclidean \((n + 1)\)-ball in exactly two connected hypersurfaces. We also show that if a region in the \((n + 1)\)-ball has mean convex boundary and contains a nullhomologous \((n - 1)\)-dimensional equatorial disk, then this region is a closed halfball. Our first result gives evidence to a conjecture by Fraser and Li in any dimension.

1. INTRODUCTION

Inspired by the work of Ros [26] for closed minimal surfaces in \(S^3\), the authors proved in [25] the two-piece property for free boundary minimal surfaces in the unit ball of \(\mathbb{R}^3\). This result gives evidence to a conjecture by Fraser and Li [10] concerning the first Steklov eigenvalue of free boundary minimal surfaces in \(B^3\). Also, Kusner and McGrath [21] used our result of two-piece property in the free boundary context to prove the uniqueness of the critical catenoid among embedded minimal annuli invariant under the antipodal map. This settles a case of another well-known conjecture of [10] on the uniqueness of the critical catenoid.

In the present paper we prove that the two-piece property holds in any dimension. More precisely, we prove the following.

Theorem A (The two-piece property). Every hyperplane in \(\mathbb{R}^{n+1}\) passing through the origin divides an embedded compact free boundary minimal hypersurface of the unit \((n + 1)\)-ball \(B^{n+1}\) in exactly two connected components.

We also prove the following result which can be seen as a strong version of the analog of the result by Solomon [29] in the free boundary context.

Theorem B. Let \(W \subset B^{n+1}\) be a connected closed region with mean convex boundary such that \(\partial W\) meets \(S^n\) orthogonally along its boundary and \(\partial W\) is smooth. Suppose \(W\) contains a set of the form \(P \cap B^{n+1}\) which is nullhomologous in \(W\) (see Definition 3), where \(P\) is a \((n - 1)\)-dimensional plane in \(\mathbb{R}^{n+1}\) passing through the origin. Then \(W\) is a closed halfball.

Let us remark that exactly as in the case \(n = 2\), Theorem A can be proved by assuming the conjecture by Fraser and Li [10] on the the first Steklov eigenvalue of free boundary minimal hypersurfaces in \(B^{n+1}\); hence, Theorem A gives evidence to this conjecture (see [25, Remark 2]).

The strategy to prove Theorem A and Theorem B is similar to the case \(n = 2\) and uses Geometric Measure Theory to analyze the minimizers of a partially free boundary problem for the area functional. However, in higher dimensions the situation is more delicate since the hypersurfaces obtained as minimizers can have a singular set (see Theorem 1).
Motivated mainly by the celebrated work of Fraser and Schoen [11, 12], the study of free boundary minimal surfaces in B^3 saw a rapid development in the last few years, see for instance [22] and the references therein. However, the case of free boundary minimal hypersurfaces in B^{n+1} is not so well-studied. Concerning examples, some free boundary minimal hypersurfaces with symmetry were constructed in [14], and a variational theory has been developed in [23, 31, 32].

Regarding some properties of free boundary minimal hypersurfaces, we can mention that the asymptotic properties of the index of higher-dimensional free boundary minimal catenoids were studied in [28], and in [1] it was proved that the index of a properly embedded free boundary minimal hypersurface in $B^{n+1}, 3 \leq n + 1 \leq 7$, grows linearly with the dimension of its first relative homology group. In [24] the first author proved the index can be controlled from above by a function of the L^2 norm of the second fundamental form. Also, compactness results for the space of free boundary minimal hypersurfaces were obtained in [2, 10, 17].

2. Preliminary

2.1. Free boundary minimal hypersurfaces. Let $B^{n+1} \subset \mathbb{R}^{n+1}$ be the unit ball of dimension $n + 1$ with boundary $\partial B^{n+1} = S^n$. Throughout this paper we will denote by D^n the n-dimensional equatorial disk which is the intersection of B^{n+1} with a hyperplane passing through the origin. In the following, \mathcal{H}^s denotes the s-dimensional Hausdorff measure, where $s > 0$.

Let $\Sigma \subset \mathbb{R}^{n+1}$. Along this section we will use the following notation/assumptions:

- Σ is compact and it is contained in B^{n+1}.
- Σ is an embedded orientable smooth hypersurface with boundary.
- The singular set S_Σ is the complement of Σ in $\bar{\Sigma}$. We suppose $\mathcal{H}^n(S_\Sigma) = 0$.
- The boundary of Σ satisfies $\partial \Sigma = \Gamma_I \cup \Gamma_S$, where $\text{int}(\Gamma_I) \subset \text{int}(B^{n+1})$ and $\Gamma_S \subset S^n$.

We have that, away from the singular set, $\partial \Sigma$ is an embedded smooth submanifold of dimension $n - 1$.

Definition 1. Let Σ be as above. We say that Σ is a minimal hypersurface with free boundary if the mean curvature vector of Σ vanishes and Σ meets S^n orthogonally along $\partial \Sigma$ (in particular, $\Gamma_I = \emptyset$). We say that Σ is a minimal hypersurface with partially free boundary if the mean curvature vector of Σ vanishes and its boundary $\Gamma_I \cup \Gamma_S$ satisfies that $\Gamma_I \neq \emptyset$ and Σ meets S^n orthogonally along Γ_S.

From now on, given a (partially) free boundary minimal hypersurface $\Sigma \subset B^{n+1}$ with boundary $\partial \Sigma = \Gamma_I \cup \Gamma_S$, we will call Γ_I its fixed boundary and Γ_S its free boundary.

Definition 2. Let Σ be a partially free boundary minimal hypersurface in B^{n+1}. We say that Σ is stable if for any function $f \in C^\infty(\Sigma)$ such that $f|_{\Gamma_I} \equiv 0$ and supp(f) is away from the singular set $\bar{\Sigma} \setminus \Sigma$, we have

$$-\int_\Sigma (f \Delta_\Sigma f + |A_\Sigma|^2 f^2) d\mathcal{H}^n + \int_{\Gamma_S} \left(f \frac{\partial f}{\partial \nu} - f^2 \right) d\mathcal{H}^{n-1} \geq 0,$$

or equivalently

$$\int_\Sigma (|\nabla_\Sigma f|^2 - |A_\Sigma|^2 f^2) d\mathcal{H}^n - \int_{\Gamma_S} f^2 d\mathcal{H}^{n-1} \geq 0,$$

where ν is the outward normal vector field to Γ_S.

Observe that if Σ is stable then, by an approximation argument, the inequality (2.2) holds for any function $f \in H^1(\Sigma)$ such that $f(p) = 0$ for a.e. $p \in \Gamma_I$ and supp(f) is away from the singular set. In particular (2.2) holds for any Lipschitz function satisfying the boundary condition.

Lemma 1. Let Σ be a partially free boundary minimal hypersurface in B^{n+1} of finite area and such that the singular set $S_\Sigma = \Sigma \setminus \Sigma$ satisfies $S_\Sigma = S_0 \cup S_1$, where $S_0 \subset \Gamma_I$ and $\mathcal{H}^{n-2}(S_1) = 0$. If Γ_I is contained in an n-dimensional equatorial disk, then Σ is totally geodesic.

Proof. Let Σ be as in the hypotheses and denote by D^n the equatorial disk that contains Γ_I. Let $v \in S^n$ be a vector orthogonal to the disk D^n and consider the function $f(x) = \langle x, v \rangle$, $x \in \bar{\Sigma}$. By hypothesis, we know that $f|_{\Gamma_I} \equiv 0$. A standard calculation using that Σ is minimal and free boundary yields

$$\Delta_\Sigma f = 0, \quad \frac{\partial f}{\partial \nu} = f.$$

Fix $\epsilon > 0$ and consider a smooth function $\eta_\epsilon : [-1, 1] \to [0, 1]$ so that

- $\eta_\epsilon(s) = 0$ for $|s| < \epsilon$,
- $\eta_\epsilon(s) = 1$ for $|s| > 2\epsilon$,
- $|\eta'_\epsilon| < \frac{C}{\epsilon}$, for some constant $C > 0$.

Define $\phi_{0,\epsilon} : \Sigma \to [0, 1]$ as $\phi_{0,\epsilon}(x) = \eta_\epsilon(f(x))$. In particular, we have $|\nabla_\Sigma \phi_{0,\epsilon}| < C/\epsilon$ in Σ. Observe that the set $S \subset S_1$ where $\phi_{0,\epsilon}$ is not smooth satisfies $\mathcal{H}^{n-2}(S) = 0$.

Since $S_1 \cap \{|f(x)| \geq \frac{\epsilon}{2}\}$ is compact and $\mathcal{H}^{n-2}(S_1) = 0$, for any $\epsilon' > 0$ there exist balls $B_{r_i}(p_i) \subset \mathbb{R}^{n+1}$, $i = 1, \ldots, m$, such that

$$S_1 \cap \{ |f(x)| \geq \frac{\epsilon}{2} \} \subset \bigcup_{i=1}^{m} B_{r_i}(p_i), \quad \bigcup_{i=1}^{m} r_i^{n-2} \leq \epsilon', \ i = 1, \ldots, m.$$

For each $i = 1, \ldots, m$, consider a smooth function $\phi_i : \Sigma \to [0, 1]$ such that

- $\phi_i(s) = 0$ in $B_{r_i}(p_i)$,
- $\phi_i(s) = 1$ in $\mathbb{R}^{n+1} \setminus B_{2r_i}(p_i)$,
- $|\nabla_\Sigma \phi_i| < \frac{2}{r_i}, \ \forall x \in \Sigma$.

Define $\phi_\epsilon, f_\epsilon : \Sigma \to [0, 1]$ by $\phi_\epsilon(x) = \min_{0 \leq i \leq m} \phi_i$, where $\phi_0 = \phi_{0,\epsilon}$, and $f_\epsilon = \phi_\epsilon f$. We have that f_ϵ is Lipschitz and $f_\epsilon|_{\Gamma_I} \equiv 0$, hence (2.2) holds. Moreover

$$|\nabla_\Sigma f_\epsilon|^2 = \phi_\epsilon^2 |\nabla_\Sigma f|^2 + 2f_\epsilon \langle \nabla_\Sigma f, \nabla_\Sigma \phi_\epsilon \rangle + f_\epsilon^2 |\nabla_\Sigma \phi_\epsilon|^2$$

and

$$\int_{\Sigma} \phi_\epsilon^2 |\nabla_\Sigma f_\epsilon|^2 d\mathcal{H}^n = - \int_{\Sigma} f_\epsilon \phi_\epsilon^2 \Delta_\Sigma f d\mathcal{H}^n - \int_{\Sigma} 2f_\epsilon \phi_\epsilon \langle \nabla_\Sigma \phi_\epsilon, \nabla_\Sigma f \rangle d\mathcal{H}^n + \int_{\partial \Sigma} \phi_\epsilon^2 f \frac{\partial f}{\partial \nu} d\mathcal{H}^{n-1}$$

$$= - \int_{\Sigma} 2f_\epsilon \phi_\epsilon \langle \nabla_\Sigma \phi_\epsilon, \nabla_\Sigma f \rangle d\mathcal{H}^n + \int_{\Gamma_S} \phi_\epsilon^2 f^2 d\mathcal{H}^{n-1},$$

since $\Delta_\Sigma f \equiv 0$, $\frac{\partial f}{\partial \nu} = f$ and $f|_{\Gamma_I} \equiv 0$. Hence, applying it to (2.2), we get

$$\int_{\Sigma} (f^2 |\nabla_\Sigma \phi_\epsilon|^2 - |A_\Sigma|^2 \phi_\epsilon^2 f^2) d\mathcal{H}^n \geq 0. \quad (2.3)$$
On the other hand, along Σ we have $f^2 \leq 1$. Since f has support away from the singular set, by the classical monotonicity formula at the interior and at the free boundary, there is $C_{\Sigma, \epsilon} > 0$ such that

$$\mathcal{H}^n(B_{2r_i}(p_i) \cap \Sigma) \leq C_{\Sigma, \epsilon} r_i^n.$$

Thus

$$\int_{\Sigma} f^2 |\nabla_{\Sigma} \phi_\epsilon|^2 d\mathcal{H}^n \leq \sum_{i=0}^m \int_{\Sigma} f^2 |\nabla_{\Sigma} \phi_i|^2 d\mathcal{H}^n$$

$$= \int_{\Sigma} f^2 |\nabla_{\Sigma} \phi_0|^2 d\mathcal{H}^n + \sum_{i=1}^m \int_{(B_{2r_i}(p_i) \setminus B_{r_i}(p_i)) \cap \Sigma} f^2 |\nabla_{\Sigma} \phi_i|^2 d\mathcal{H}^n$$

$$\leq 4C \mathcal{H}^n(\Sigma \cap \{|f|^{-1}(\epsilon, 2\epsilon)\}) + \sum_{i=1}^m 4 \mathcal{H}^n(B_{2r_i}(p_i) \cap \Sigma)$$

$$\leq 4C \mathcal{H}^n(\Sigma \cap \{|f|^{-1}(\epsilon, 2\epsilon)\}) + C_{k, \epsilon} \sum_{i=1}^m r_i^{n-2}$$

$$\leq 4C \mathcal{H}^n(\Sigma \cap \{|f|^{-1}(\epsilon, 2\epsilon)\}) + C_{\epsilon} \epsilon'.$$

If we let $\epsilon' \to 0$ first and then $\epsilon \to 0$ we obtain

$$\int_{\Sigma} |A_\Sigma|^2 f^2 d\mathcal{H}^n = 0.$$

If $|A_\Sigma| \equiv 0$ then Σ is totally geodesic and we are done. If $|A_\Sigma|(x) > 0$ for some $x \in \Sigma$, then we can find a neighborhood U of x in Σ such that $|A_\Sigma|$ is strictly positive. This implies $\langle y, v \rangle = 0$ for any $y \in U$. Therefore, Σ is entirely contained in the disk D^n; in particular, it is totally geodesic. \[\square\]

An equatorial disk D^n divides the ball B^{n+1} into two (open) halfballs. We will denote these two halfballs by B^+ and B^-, and we have $B^{n+1} \setminus D^n = B^+ \cup B^-$.

In the next proposition we will summarize some facts about partially free boundary minimal surfaces in B^{n+1} which we will use in the proof of Theorem 3.

Proposition 1.

(i) Let D^n be an equatorial disk and let Σ be a smooth partially free boundary minimal hypersurface in B^{n+1} contained in one of the closed halfballs determined by D^n, say B^+, and such that $\partial \Sigma \subset \partial B^+$. If Σ is not contained in an equatorial disk, then Σ has necessarily nonempty fixed boundary and nonempty free boundary.

(ii) The only smooth (partially) free boundary minimal hypersurface that contains a $(n-1)$-dimensional piece of the free boundary of a $n-$dimensional equatorial disk is (contained in) this equatorial disk itself.

Proof. (i) If the free boundary were empty, we could apply the (interior) maximum principle with the family of hyperplanes parallel to the disk D^n and conclude that Σ should be contained in the disk D^n. On the other hand, if the fixed boundary were empty, then we would have a minimal hypersurface entirely contained in a halfball without fixed boundary; hence, we could apply the (interior or free boundary version of) maximum principle with the family of equatorial disks that are rotations of D^n around a $(n-1)-$dimensional equatorial disk and conclude that Σ should be an equatorial disk.
(ii) Let D^n be an equatorial disk and suppose that Σ is a (partially) free boundary minimal hypersurface such that $\Sigma \cap D^n$ contains a $(n-1)$-dimensional piece Υ of the free boundary of D^n in S^n. Assume, without loss of generality, $D^n \subset \{x_{n+1} = 0\}$.

Observe that since Σ is free boundary we know that $\frac{\partial x_{n+1}}{\partial \eta}|_{\Upsilon} = x_{n+1}|_{\Upsilon} = 0$, where η is the conormal vector to Υ; and since Σ is a minimal hypersurface in \mathbb{R}^{n+1} we have that x_{n+1} is harmonic.

We will show that $x_{n+1}|_{\Sigma} \equiv 0$.

Consider an extension $\hat{\Sigma}$ of Σ along Υ such that $\Upsilon \subset \text{int}(\hat{\Sigma})$ and define \hat{x}_{n+1} on $\hat{\Sigma}$ as

\[
\begin{cases}
\hat{x}_{n+1} = x_{n+1} & \text{on } \Sigma \\
\hat{x}_{n+1} = 0 & \text{on } \hat{\Sigma} \setminus \Sigma
\end{cases}
\]

Observe that $\hat{x}_{n+1}|_{\Upsilon} = x_{n+1}|_{\Upsilon} \equiv 0$, $\frac{\partial \hat{x}_{n+1}}{\partial \eta}|_{\Upsilon} = 0$ and $\frac{\partial \hat{x}_{n+1}}{\partial \eta}|_{\Upsilon} = \frac{\partial x_{n+1}}{\partial \eta}|_{\Upsilon} = 0$, where $\hat{\eta}$ is the conormal to Υ pointing towards Σ and η is the conormal to Υ pointing towards $\hat{\Sigma} \setminus \Sigma$; hence, \hat{x}_{n+1} is C^1 in a neighborhood of Υ in $\hat{\Sigma}$.

Claim 1. \hat{x}_{n+1} is a weak solution to the Laplacian equation $\Delta u = 0$.

Observe that \hat{x}_{n+1} is a harmonic function on $\hat{\Sigma} \setminus \Upsilon$, so we just need to show the claim in a neighborhood of Υ.

Consider a domain $\Omega = \Omega_1 \cup \Omega_2$ where $\partial \overline{\Omega} = \Gamma_1 \cup (\overline{\Omega} \cap \Upsilon)$ with $\Omega_1 \subset \hat{\Sigma} \setminus \Sigma$ and $\Omega_2 \subset \Sigma$ (see Figure 1), and let $\phi : \hat{\Sigma} \to \mathbb{R}$ be a smooth function with compact support contained in Ω.

\[
\text{Figure 1. } \Omega = \Omega_1 \cup \Omega_2.
\]

Integration by parts gives us

\[
\int_{\Omega} \langle \nabla \phi, \nabla \hat{x}_{n+1} \rangle \, d\sigma = - \int_{\Omega} \hat{x}_{n+1} \Delta \phi \, d\sigma + \int_{\partial \Omega} \hat{x}_{n+1} \langle \nabla \phi, \nu \rangle \, dL
\]

since supp(ϕ) $\subset \subset \Omega$, where ν is the outward conormal to $\partial \Omega$.

Then,

\[
- \int_{\Omega} \hat{x}_{n+1} \Delta \phi \, d\sigma = \int_{\Omega} \langle \nabla \phi, \nabla \hat{x}_{n+1} \rangle \, d\sigma
\]

\[
= \int_{\Omega_1} \langle \nabla \phi, \nabla \hat{x}_{n+1} \rangle \, d\sigma + \int_{\Omega_2} \langle \nabla \phi, \nabla \hat{x}_{n+1} \rangle \, d\sigma.
\]

We have

\[
\int_{\Omega_1} \langle \nabla \phi, \nabla \hat{x}_{n+1} \rangle \, d\sigma = - \int_{\Omega_1} \phi \Delta \hat{x}_{n+1} \, d\sigma + \int_{\partial \Omega_1} \phi \langle \nabla \hat{x}_{n+1}, \nu_1 \rangle \, dL
\]

\[
= \int_{\Upsilon} \phi \langle \nabla \hat{x}_{n+1}, \nu_1 \rangle \, dL
\]

\[
= 0,
\]
where in the first equality we used that $\hat{x}_{n+1}|_{\Omega_1} = 0$ and in the second equality we used the fact that $\frac{\partial \hat{x}_{n+1}}{\partial \nu_1}|_\gamma = 0$, where ν_1 is the outward conormal to Υ with respect to Ω_1.

Analogously, we have
\[
\int_{\Omega_2} \langle \nabla \phi, \nabla \hat{x}_{n+1} \rangle d\sigma = -\int_{\Omega_2} \phi \Delta \hat{x}_{n+1} d\sigma + \int_{\partial \Omega_2} \phi \langle \nabla \hat{x}_{n+1}, \nu_1 \rangle dL = \int_{\Upsilon} \phi \langle \nabla \hat{x}_{n+1}, \nu_2 \rangle dL = 0,
\]
where in the first equality we used that $\hat{x}_{n+1}|_{\Omega_2} = x_{n+1}|_{\Omega_2}$ is harmonic and in the second equality we used the fact that $\frac{\partial \hat{x}_{n+1}}{\partial \nu_2}|_\gamma = 0$, where ν_2 is the outward conormal to Υ with respect to Ω_2.

Therefore, the claim follows and, by the Elliptic theory, \hat{x}_{n+1} has to be a (strong) solution to the Laplacian equation. Moreover, since \hat{x}_{n+1} vanishes on an open set, the unique continuation result implies that $\hat{x}_{n+1} \equiv 0$ on Σ, that is, Σ is (contained in) the equatorial disk D^n.

2.2. **Integer rectifiable varifolds.** A set $M \subset \mathbb{R}^{n+1}$ is called countably k-rectifiable if M is \mathcal{H}^k-measurable and if
\[
M \subset \bigcup_{j=0}^{\infty} M_j,
\]
where $\mathcal{H}^k(M_0) = 0$ and for $j \geq 1$, M_j is an k-dimensional C^1-submanifold of \mathbb{R}^{n+1}. Such M possesses \mathcal{H}^k-a.e. an approximate tangent space T_xM.

Let $G(n+1, k)$ be the Grassmannian of k-hyperplanes in \mathbb{R}^{n+1}. An integer multiplicity rectifiable k-varifold $\mathcal{V} = v(M, \theta)$ is a Radon measure on $U \times G(n+1, k)$, defined by
\[
\mathcal{V}(f) = \int_M f(x, T_xM) \theta(x) d\mathcal{H}^k, \ f \in C_0^\infty(U \times G(n+1, k)),
\]
where $M \subset U$ is countably k-rectifiable and $\theta > 0$ is a locally \mathcal{H}^k-integrable integer valued function. Also, we say $\mathcal{V} = v(M, \theta)$ is stationary if
\[
\int_M (\text{div}_M \zeta) \theta d\mathcal{H}^k = 0, \tag{2.4}
\]
for any C^1-vector field ζ of compact support.

Then we have the following result, see [20].

Lemma 2. Let $\Sigma \subset \mathbb{R}^{n+1}$ be an embedded C^1-hypersurface such that $\mathcal{H}^{n-1}(\Sigma \setminus \Sigma) \cap U = 0$, for every open set $U \subset \mathbb{R}^{n+1}$ with compact closure. Let $\theta > 0$ be a integer valued function which is locally constant. Then, the following conditions are equivalent:

1. $\mathcal{V} = v(\Sigma, \theta)$ is stationary.
2. $\vec{H}_\Sigma = 0$, and there is $C_\Sigma > 0$ such that for any ball $B_r(p) \subset \mathbb{R}^{n+1}$ we have
\[
\mathcal{H}^{n}(B_r(p) \cap \Sigma) \leq C_\Sigma r^n.
\]

2.3. **Minimizing Currents with Partially Free Boundary.** In this section we will use the following notation.

- $U \subset \mathbb{R}^{n+1}$ is an open set;
- $\mathcal{D}^k(U) = \{C^\infty \omega; \ spt \ \omega \subset U\}$;
- $\mathcal{D}_k(U)$ denotes the dual of $\mathcal{D}^k(U)$, and its elements are called k-currents with support in U;
The mass of $T \in \mathcal{D}_k(U)$ in W is defined by
\[M_W(T) := \sup \{ T(\omega); \omega \in \mathcal{D}^k(U), \text{spt} \omega \subset W, |\omega| \leq 1 \} \leq +\infty; \]

The boundary of $T \in \mathcal{D}_k(U)$ is the $(k-1)$-current $\partial T \in \mathcal{D}_{k-1}(U)$ given by
\[\partial T(\omega) := T(d\omega), \]
where d denotes the exterior derivative operator.

Consider a compact domain $W \subset \mathbb{R}^{n+1}$ such that $\partial W = S \cup M$, where S is a compact C^2-hypersurface (not necessarily connected) with boundary, M is a smooth compact mean convex hypersurface with boundary, which intersects S orthogonally along ∂S, and such that $\text{int}(S) \cap \text{int}(M) = \emptyset$.

Let $\Omega \subset W$ be a compact hypersurface with boundary $\Gamma = \partial \Omega$. We assume that $\Gamma \cap \text{int}(W)$ is an embedded C^2-submanifold of dimension $n-1$ away from a singular set S_0 such that $\mathcal{H}^{n-1}(S_0) = 0$.

Define the class \mathcal{C} of admissible currents by
\[\mathcal{C} = \{ T \in \mathcal{D}_n(\mathbb{R}^{n+1}); T \text{ is integer multiplicity rectifiable}, \text{spt} T \subset W \text{ and is compact}, \text{and spt}(\Gamma - \partial T) \subset S \}, \]
where $[\Gamma]$ is the current associated to Γ with multiplicity one. We want to minimize area in \mathcal{C}, that is, we are looking for $T \in \mathcal{C}$ such that
\[M(T) = \inf \{ M(\tilde{T}); \tilde{T} \in \mathcal{C} \}. \tag{2.5} \]

Observe that $\mathcal{C} \neq \emptyset$ since $[\Omega] \in \mathcal{C}$. Hence, it follows from [8, 5.1.6(1)], that the variational problem (2.5) has a solution (see also [15]). If $T \in \mathcal{C}$ is a solution we have
\[M(T) \leq \mathcal{M}(T + X), \tag{2.6} \]
\[\text{spt} T \subset W, \tag{2.7} \]
\[\mu T(S) = 0, \tag{2.8} \]
for any integer multiplicity current $X \in \mathcal{D}_n(\mathbb{R}^{n+1})$ with compact support such that $\text{spt} X \subset W$ and $\text{spt} \partial X \subset S$.

In order to apply the known regularity theory for T we need the following result, whose proof is the same as that of the case $n = 2$ (see Section 3 in [25]).

Proposition 2. If T is a solution of (2.5), then either $\text{spt} T \setminus \Gamma \subset W \setminus M$ or $\text{spt} T \subset M$.

For any given n-dimensional compact set $K \subset W$ we call corners the set of points of ∂K which also belong to S. We then have the following regularity result.

Theorem 1. Let T be a solution of (2.5). Then there is a set $S_1 \subset \text{spt} T$ such that, away from $S_0 \cup S_1 \cup \Gamma$, T is supported in a oriented embedded minimal C^2-hypersurface, which meets S orthogonally along $\text{spt}(\Gamma - \partial T)$. Moreover
\[S_1 = \emptyset, \quad \text{if } n \leq 6, \]
\[S_1 \text{ is discrete}, \quad \text{if } n = 7, \]
\[\mathcal{H}^{n-7+\delta}(S_1) = 0, \quad \forall \delta > 0, \quad \text{if } n > 7. \tag{2.9} \]

Proof. Let us write
\[\text{spt} T \setminus (S_0) = \mathcal{R} \cup S_1, \]
where the union is disjoint and \mathcal{R} consists of the points $x \in \text{spt } T$ such that there is a neighborhood $U \subset \mathbb{R}^{n+1}$ of x where $T \mathcal{L} U$ is given by m-times ($m \in \mathbb{N}$) integration over an embedded C^2-hypersurface with boundary. To complete the proof we will prove the following:

- **Regularity at the interior**: $(\text{spt } T \setminus \text{spt } \partial T) \cap \mathcal{R} \neq \emptyset$ and $(\text{spt } T \setminus \text{spt } \partial T) \cap \mathcal{S}_1$ satisfies (2.9);
- **Regularity at the free-boundary**: $\text{spt}(\mathcal{L} - \partial T) \cap \mathcal{R} \neq \emptyset$ and $\text{spt}(\mathcal{L} - \partial T) \cap \mathcal{S}_1$ satisfies (2.9);

The interior regularity is a classical result, see [8, Section 5.3]. Since by Proposition 2 the free part of the boundary is contained in $\mathcal{S} \setminus \partial \mathcal{S}$, we can use the result by Gruter [16] to conclude the regularity at the free boundary (away from the corners). □

3. The Two-Piece Property and Other Results

Definition 3. Let W be a region in B^{n+1} and let $\Upsilon \subset W$ be a $(n-1)$-dimensional equatorial disk (that is, the intersection of B^{n+1} with an $(n-1)$-dimensional plane passing through the origin). We say that Υ is nullhomologous in W if there exists a compact hypersurface $M \subset W$ such that $\partial M = \Upsilon \cup \Gamma$, where Γ is a $(n-1)$-dimensional compact set contained in S^n (see Figure 2).

Figure 2. In this region W, any $(n-1)$-dimensional equatorial disk $\Upsilon \subset W$ is nullhomologous.

The boundary of the region W can be written as $U \cup V$, where $\text{int}(U) \subset \text{int}(B^{n+1})$ and $V \subset S^n$. In the next theorem we will denote by ∂W the closure of the component U, that is, $\partial W = \overline{U}$.

Theorem 2. Let $W \subset B^{n+1}$ be a connected closed region with (not necessarily strictly) mean convex boundary such that ∂W meets S^n orthogonally along its boundary and ∂W is smooth. If W contains a $(n-1)$-dimensional equatorial disk Υ, and Υ is nullhomologous in W, then W is a closed $(n+1)$-dimensional halfball.

Proof. Up to a rotation of Υ around the origin, we can assume that $\Upsilon \cap \partial W$ is nonempty. Since Υ is nullhomologous in W, there exists a compact hypersurface M contained in W such that $\partial M = \Upsilon \cup \Gamma$, where Γ is a $(n-1)$-dimensional compact set contained in S^n. We consider the class of admissible currents

$$\mathcal{C} = \{ T \in \mathcal{D}_o(\mathbb{R}^{n+1}); T \text{ is integer multiplicity rectifiable, } \text{spt } T \subset W \text{ and is compact, and } \text{spt}(\mathcal{L} - \partial T) \subset S^n \cap W \},$$

where $\mathcal{L} - \partial M$ is the current associated to ∂M with multiplicity one, and we minimize area (mass) in \mathcal{C}. Then, by the results presented in Section 2.3, we get a compact embedded
(orientable) partially free boundary minimal hypersurface $\Sigma \subset W$ which minimizes area among compact hypersurfaces in W with boundary on the class $\Gamma = \Upsilon \cup \tilde{\Gamma}$; in particular, its fixed boundary is exactly Υ. Moreover, by Proposition 2 in Section 2.3, either $\Sigma \subset \partial W$ or $\Sigma \cap \partial W \subset \Upsilon$.

Now the same arguments we used in the proof of Theorem 1 in [25] can be applied. In fact:

Claim 2. Σ is stable.

In the case $\partial W \cap \Sigma \subset \Gamma$, Σ is automatically stable in the sense of Definition 2, since it minimizes area for all local deformations.

Suppose $\Sigma \subset \partial W$. For any $f \in C_c^\infty(\Sigma)$ with $f|_{\Upsilon} \equiv 0$, consider $Q(f, f)$ defined by

$$Q(f, f) = \frac{\int_{\Sigma} (|\nabla_{\Sigma} f|^2 - |A_{\Sigma}|^2 f^2) \, d\mathcal{H}^n - \int_{\Gamma} f^2 \, d\mathcal{H}^{n-1}}{\int_{\Sigma} f^2 \, d\mathcal{H}^n},$$

and let f_1 be a first eigenfunction, i.e., $Q(f_1, f_1) = \inf f Q(f, f)$.

Observe that although differently from the classical stability quotient (we have an extra term that depends on the boundary of Σ) we can still guarantee the existence of a first eigenfunction. In fact, since for any $\delta > 0$ there exists $C_\delta > 0$ such that $||f||_{L^2(\partial\Sigma)} \leq \delta ||\nabla f||_{L^2(\Sigma)} + C_\delta ||f||_{L^2(\Sigma)}$, for any $f \in W^{1,2}(\Sigma)$, we can use this inequality to prove that the infimum is finite. Once this is established the classical arguments to show the existence of a first eigenfunction work.

Since $|\nabla |f_1|| = |\nabla f_1|$ a.e., we have $Q(f_1, f_1) = Q(|f_1|, |f_1|)$, that is, $|f_1|$ is also a first eigenfunction. Since $|f_1| \geq 0$, the maximum principle implies that $|f_1| > 0$ in $\Sigma \setminus \partial\Sigma$, in particular, f_1 does not change sign in $\Sigma \setminus \partial\Sigma$. Then we can assume that $f_1 > 0$ in $\Sigma \setminus \partial\Sigma$ and, by continuity, we get $f_1 \geq 0$ in Γ. Therefore, we can use f_1 as a test function to our variational problem: Let ζ be a smooth vector field such that $\zeta(x) \in T_x S^n$, for all $x \in S^n$, $\zeta(x) \in (T_x \Sigma)^\perp$, for all $x \in \Sigma$, and ζ points towards W along Σ. Let Φ be the flow of ζ. For ε small enough the hypersurfaces $\Sigma_t = \{\Phi(x, tf_1) : x \in \Sigma, 0 < t < \varepsilon\}$ are contained in W. Since Σ has least area among the hypersurfaces Σ_t, we know that

$$0 \leq \left. \frac{d^2 |\Sigma_t|}{dt^2} \right|_{t=0} = \int_{\Sigma} (|\nabla_{\Sigma} f_1|^2 - |A_{\Sigma}|^2 f_1^2) \, d\mathcal{H}^n - \int_{\Gamma} f_1^2 \, d\mathcal{H}^{n-1},$$

which implies that $Q(f_1, f_1) \geq 0$. Since f_1 is a first eigenfunction, we get that $Q(f, f) \geq 0$ for any $f \in C_c^\infty(\Sigma)$ with $f|_{\Upsilon} \equiv 0$. Therefore, we have stability for Σ.

Then, since Υ is contained in an equatorial disk D^n, Lemma 1 implies that Σ is necessarily a half n-dimensional equatorial disk. If $\Sigma \subset \partial W$, then we already conclude that W has to be a $(n + 1)$-dimensional halfball.

Suppose $\Sigma \cap \partial W \subset \Upsilon$. Rotate Σ around Υ until the last time it remains in W (this last time exists once $\Sigma \cap \partial W$ is nonempty), and let us still denote this rotated hypersurface by Σ. In particular, there exists a point p where Σ and ∂W are tangent. We will conclude that W is necessarily a $(n + 1)$-dimensional halfball.

In fact, if $p \in \text{int}(\Upsilon)$, we can write ∂W locally as a graph over Σ around p and apply the classical Hopf Lemma; if $p \in \partial\Upsilon$, we can use the Serrin’s Maximum Principle at a corner (see Appendix A in [25] for the details); and if $p \in \Sigma \setminus \Upsilon$ we can apply (the interior or the free boundary version of) the maximum principle. In any case, we get that W is a $(n + 1)$-dimensional halfball. \qed

Now we prove the two-piece property for free boundary minimal hypersurfaces in B^{n+1}.
Theorem 3. Let M be a compact embedded smooth free boundary minimal hypersurface in B^{n+1}. Then for any equatorial disk D^n, $M \cap B^+$ and $M \cap B^-$ are connected.

Proof. If M is an equatorial disk, then the result is trivial. So let us assume this is not the case.

Suppose that, for some equatorial disk D^n, $M \cap B^+$ is a disjoint union of two nonempty open hypersurfaces M_1 and M_2, M_1 being connected. Notice that by Proposition 1(i) both $\overline{M_1}$ and (all components of) $\overline{M_2}$ have nonempty fixed boundary and nonempty free boundary. Let us denote by $\Gamma_I = \partial \overline{M_1} \cap D^n$ the fixed boundary of $\overline{M_1}$ which might be disconnected. If M_1 and D^n are transverse, then Γ_I is an embedded smooth submanifold of dimension $n-1$. If M_1 and D^n are tangent, then the local description of nodal sets of elliptic PDE’s (see for instance [19]) imply that int(Γ_I) is an embedded smooth submanifold of dimension $n-1$, away from a singular set S_0 such that $\mathcal{H}^{n-1}(S_0) = 0$.

Denote by W and W' the closures of the two components of $B^{n+1} \setminus M$. They are compact domains with mean convex boundary. Hence, we can minimize area for the following partially free boundary problem (see Section 2.3):

We consider the class of admissible currents

$$
\mathcal{C} = \{ T \in D_n(\mathbb{R}^{n+1}) ; \ T \text{ is integer multiplicity rectifiable, } \text{spt}\ T \subset W \text{ and is compact, and } \text{spt}(\| \partial \overline{M_1} \| - \partial T) \subset S^2 \cap W \},
$$

where $\| \partial \overline{M_1} \|$ is the current associated to $\partial \overline{M_1}$ with multiplicity one, and we minimize area (mass) in \mathcal{C}. Then, by the results presented in Section 2.3, we get a compact embedded (orientable) partially free boundary minimal hypersurface $\Sigma \subset W$ which minimizes area among compact hypersurfaces in W with the same fixed boundary as $\overline{M_1}$, which is contained in D^n. Moreover, by Proposition 2 in Section 2.3, either $\Sigma \subset \partial W$ or $\Sigma \cap \partial W \subset \partial \Sigma$.

Arguing as in Claim 2 of Theorem 2, we can prove the stability of Σ. Also, observe that by Theorem 1 the singular set S_1 of $\Sigma \setminus D$ is empty or satisfies $\mathcal{H}^{n-1+\delta}(S_1) = 0$, $\forall \delta > 0$, in particular $\mathcal{H}^{n-2}(S_1) = 0$. So, we can apply Lemma 1 and conclude that each component of Σ is a piece of an equatorial disk.

The case $\Sigma \subset \partial W$ can not happen because this would imply that M is a disk, and we are assuming it is not. Therefore, only the second case can happen, that is, any component of Σ meets ∂W only at points of $\partial \Sigma$. Observe that each component of Σ that is not bounded by a $(n-1)$-dimensional equatorial disk is necessarily contained in D^n. If some component of Σ were bounded by a $(n-1)$-dimensional equatorial disk, then we could apply Theorem 2 and would conclude that M is a n-dimensional equatorial disk, which is not the case. Then Σ is entirely contained in D^n and, since $\Sigma \cap \partial W \subset \partial \Sigma$, $M \subset \partial W$ and $M \cap D^n$ does not contain any $(n-1)$-dimensional piece of ∂D^n (Proposition 1(ii)), we have $\Sigma \cap M = \Gamma_I$.

Doing the same procedure as in the last paragraph for W', we can construct another compact hypersurface Σ' of D^n with fixed boundary $\partial \Sigma' = \Gamma_I$ and such that $\Sigma' \subset W'$ and $\Sigma' \cap M = \Gamma_I$. Notice that $\Sigma \cup \Sigma'$ is a hypersurface without fixed boundary of D^n, therefore $\Sigma \cup \Sigma' = D^n$. In fact, let us denote by T and T' the minimizing currents associated to Σ and Σ' respectively, that is, spt $T = \Sigma$ and spt $T' = \Sigma'$. First observe that spt $\partial(T - T') \subset \partial D^n$ and $\partial\partial(T - T') = 0$; hence, by the Constancy Theorem, we know that $\partial(T - T') = k \partial D^n$, for some integer k. Now, since spt$(T - T' - kD^n) \subset D^n$ and $\partial(T - T' - kD^n) = 0$, the Constancy Theorem implies that $T - T' = kD^n$; but since Γ_I has multiplicity one, this also holds for T and T' and therefore $k = 1$ necessarily. Hence, $\Sigma \cup \Sigma' = \text{spt}(T - T') = D^n$.

In particular, $M \cap D^n = \Gamma_I$, which implies that $M_2 = M \cap B^+ \setminus M_1$ has fixed boundary contained in Γ_I. For $n = 2$, since M is embedded and Γ_I has singularities of n-prong type (if any), we know that the fixed boundaries of M_1 and M_2 are disjoint, in particular, the fixed boundary of $\overline{M_2}$ is necessarily empty and this yields a contradiction by Proposition 1(i). It remains to analyse the case when $n \geq 3$.

Let us assume, without loss of generality, that $D^n = B \cap \{x_{n+1} = 0\}$; hence, we have $M \cap D^n = \Gamma_I = \{q \in M; x_{n+1}(q) = 0\}$ which is the nodal set of the Steklov eigenfunction $x_{n+1}: M \to \mathbb{R}$.

Observe that if $q \in \Gamma_I$ and $\nabla_M x_{n+1}(q) \neq 0$ then, since M is embedded, we know that in a neighborhood of q we have $M \cap D^n = \overline{M_1} \cap D^n$; in particular, q can not be contained in $\partial \overline{M_2}$.

Now let us analyse the singular set $\mathcal{S} = \{x_{n+1} = 0\} \cap \{\nabla_M x_{n+1} = 0\} \subset \Gamma_I$. By Theorem 1.7 in [19], the Hausdorff dimension of \mathcal{S} is less than or equal to $n - 2$; in particular, $\mathcal{H}^{n-1}(\mathcal{S}) = 0$ and therefore by Lemma 2 $\overline{M_2}$ is stationary. By [30] we can conclude that either $\overline{M_2} \cap D^n = 0$ or $D^n \subset \overline{M_2}$ (which we already know is not possible). Therefore, $\overline{M_2}$ has empty fixed boundary which is a contradiction by Proposition 1(i).

Therefore, the theorem is proved. \hfill \Box

References

[1] L. Ambrozio, A. Carlotto and B. Sharp, Index estimates for free boundary minimal hypersurfaces, Math. Ann. 370 (2018), 1063–1078.

[2] L. Ambrozio, A. Carlotto and B. Sharp, Compactness analysis for free boundary minimal hypersurfaces, Calc. Var. Partial Differential Equations 57 (2018), no. 1, Art. 22, 39 pp.

[3] W. K. Allard, On the first variation of a varifold, Ann. of Math. 95 (1972), no. 3, 417–491.

[4] W. K. Allard, On the first variation of a varifold: boundary behavior, Ann. of Math. 101 (1975), no. 3, 418–446.

[5] T. Bourni, Allard-type boundary regularity for $C^{1,\alpha}$ boundaries, Adv. Calc. Var. 9 (2016), no. 2, 143–161.

[6] F. Duzaar and K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math. 546 (2002), 73–138.

[7] N. Edelen, A note on the singular set of area-minimizing hypersurfaces, Calc. Var. Partial Differential Equations 59 (2020), no. 1, Art. 18, 9 pp.

[8] H. Federer, Geometric measure theory, Grundlehren der math. Wiss. 153. Springer, New York 1969.

[9] H. Federer, The singular sets of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970), 767–771.

[10] A. Fraser and M. Li, Compactness of the space of embedded minimal surfaces with free boundary in three-manifolds with nonnegative Ricci curvature and convex boundary, J. Differential Geom. 96 (2014), 183–200.

[11] A. Fraser and R. Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math. 226 (2011), no. 5, 4011–4030.

[12] A. Fraser and R. Schoen, Minimal surfaces and eigenvalue problems, Contemp. Math. 599 (2013), 105–121.

[13] A. Fraser and R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, Invent. Math. 203 (2016), no. 3, 823–890.

[14] B. Freidin, M. Gullian and P. McGrath, Free boundary minimal surfaces in the unit ball with low cohomogeneity, Proc. Amer. Math. Soc. 145 (2017), no. 4, 1671–1683.

[15] M. Grüter, Regularität von minimierenden Strömen bei einer freien Randbedingung, Universitt Düsseldorf, 1985.

[16] M. Grüter, Optimal regularity for codimension one minimal surfaces with a free boundary, Manuscripta Math. 58 (1987), no. 3, 295–343.
[17] Q. Guang, X. Zhou. Compactness and generic finiteness for free boundary minimal hypersurfaces. Pacific J. Math. 310 (2021), no. 1, 85–114.

[18] R. Hardt and L. Simon, Boundary regularity and embedded solutions for the oriented Plateau problem, Ann. of Math. (2) 110 (1979), no. 3, 439–486.

[19] R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations, J. Differential Geom. 30 (1989), 505–522.

[20] T. Ilmanen, A strong maximum principle for singular minimal hypersurfaces, Calc. Var. 4 (1996), 443–467.

[21] R. Kusner and P. McGrath, On free boundary minimal annuli embedded in the unit ball, Preprint at arXiv:2011.06884 (2020).

[22] M. Li, Free boundary minimal surfaces in the unit ball: recent advances and open questions, Preprint at arXiv:arXiv:1907.05053v3 (2020).

[23] M. Li and X. Zhou, Min-max theory for free boundary minimal hypersurfaces I-regularity theory, J. Differential Geom. 118 (2021), no. 3, 487–553.

[24] V. Lima, Bounds for the Morse index of free boundary minimal surfaces, arXiv:1710.10971 to appear on Asian Journal of Mathematics.

[25] V. Lima and A. Menezes, A two-piece property for free boundary minimal surfaces in the ball, Trans. Amer. Math. Soc., 374 (2021), no. 3, 1661–1686.

[26] A. Ros, A two-piece property for compact minimal surfaces in a three-sphere, Indiana Univ. Math. J. 44 (1995), no. 3, 841–849.

[27] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. vii+272 pp.

[28] G. Smith, A. Stern, H. Tran, D. Zhou, On the Morse index of higher-dimensional free boundary minimal catenoids. Calc. Var. Partial Differential Equations 60 (2021), no. 6, Paper No. 208.

[29] B. Solomon, Harmonic maps to spheres, J. Differential Geom. 21 (1985), 151–162.

[30] B. Solomon and B. White, A strong maximum principle for varifolds that are stationary with respect to even parametric elliptic functionals, Indiana Univ. Math. J. 38 (1989), no. 3, 683–691.

[31] A. Sun, Z. Wang and X. Zhou, Multiplicity one for min-max theory in compact manifolds with boundary and its applications. arXiv:2011.04136 [math.DG]

[32] Z. Wang, Existence of infinitely many free boundary minimal hypersurfaces, Preprint at arXiv:2001.04674 (2020).

Instituto de Matemática e Estatística, Universidade Federal do Rio Grande do Sul, Brazil. Email address: vanderson.lima@ufrgs.br

Department of Mathematics, Princeton University, USA. Email address: amenezes@math.princeton.edu