Application of the Redox-Transmetalation Procedure to Access Divalent Lanthanide and Alkaline-Earth NHC Complexes**

Noah Schwarz, Xiaofei Sun, Ravi Yadav, Ralf Köppe, Thomas Simler,* and Peter W. Roesky*
Content

I. Synthesis and characterisation .. S2
 I.1. General considerations .. S2
 I.2. Synthesis of the silver complexes .. S2
 I.3. Synthesis of 3-8 by redox-transmetallation and characterisation ... S4
II. NMR spectra .. S8
III. IR spectra .. S13
IV. X-ray crystallography .. S16
 IV.1. General methods ... S16
 IV.1. Summary of crystal data .. S18
 IV.2. Crystal structures ... S19
V. DFT calculations ... S22
 V.1. Reaction energies .. S22
 V.2. Cartesian coordinates ... S23
VI. References ... S43
I. Synthesis and characterisation

I.1. General considerations

All air- and moisture-sensitive manipulations were performed under dry N₂ or Ar atmosphere using standard Schlenk techniques or in an argon-filled MBraun glovebox, unless otherwise stated. Prior to use, CH₂Cl₂ was dried by refluxing over P₂O₅ and distilled under a nitrogen atmosphere. Other solvents (THF, Et₂O and n-pentane) were dried using an MBraun solvent purification system (SPS-800) and degassed. THF was additionally distilled under nitrogen from potassium benzophenone ketyl before storage over LiAlH₄ in vacuo. THF-d₈ and C₆D₆ were stored over Na/K alloy, CDCl₃ was dried over 4 Å molecular sieves and all were degassed by freeze-pump-thaw cycles. The imidazolium salt IMe·HI was synthesised by alkylation of N-methylimidazole with MeI,[1] while IMes·HCl was prepared using the procedure of Ritter and co-workers for IPr·HCl.[2] The iodide salt IMes·HI was obtained by halogen exchange with KI in acetone using a slightly modified literature procedure.[3] The synthesis of the NHC silver complexes is described below. All other chemicals were obtained from commercial sources and used without further purification.

Elemental analyses were carried out with an Elementar vario MICRO cube. Infrared (IR) spectra were recorded in the region 4000–400 cm⁻¹ on a Bruker Tensor 37 FTIR spectrometer equipped with a room temperature DLαTGS detector, a diamond attenuated total reflection (ATR) unit and nitrogen-flushed chamber. In terms of their intensity, the signals were classified into different categories (vs = very strong, s = strong, m = medium, w = weak, and sh = shoulder).

NMR spectra were recorded on Bruker spectrometers (Avance III 300 MHz, Avance 400 MHz or Avance III 400 MHz). Chemical shifts are referenced internally using signals of the residual protio solvent (¹H) or the solvent (¹³C{¹H}) and are reported relative to tetramethylsilane. All NMR spectra were measured at 298 K, unless otherwise specified. The multiplicity of the signals is indicated as s = singlet, m = multiplet and br = broad. Assignments were determined on the basis of unambiguous chemical shifts, coupling patterns and ¹³C-DEPT experiments or 2D correlations (¹H−¹H COSY, ¹H−¹³C HSQC, ¹H−¹³C HMBC).

I.2. Synthesis of the silver complexes

The air-stable but slightly light-sensitive silver complexes 1 and 2 were prepared by reaction of the corresponding imidazolium iodides with Ag₂O in dichloromethane, according to slightly modified literature procedures.[4]
I.2.1. Synthesis of 1

To a solution of IMe·HI (2.00 g, 8.93 mmol) in CH₂Cl₂ (40 mL) was added Ag₂O (1.14 g, 4.91 mmol) and the reaction mixture was stirred overnight at room temperature under protection against light. The resulting grey suspension was evaporated to dryness under reduced pressure, extracted with hot DMF and filtered while hot over Celite. After letting the filtrate cool down to room temperature, the addition of Et₂O (200 mL) led to the precipitation of a microcrystalline white solid which was further washed with Et₂O and dried under vacuum. Yield: 2.41 g (7.28 mmol), 82%. The silver complex 1 was found insoluble in common organic solvents (THF, CH₂Cl₂, CHCl₃), which supports the formation of an ion pair. Elemental analysis data were more consistent with the general formula [Ag(IMe)₂]₂(AgI₂) formulation obtained after recrystallisation from hot DMSO.[4a]

¹H NMR (400.30 MHz, DMSO-d₆): δ [ppm]: 7.42 (s, 2H, CH₃imid.), 3.82 (s, 6H, CH₃). The ¹H NMR data are consistent with those reported in the literature.[4a] Anal. Calcd for [Ag(IMe)₂]₂(AgI₂) i.e. C₁₀H₁₆Ag₂I₂N₄ (661.81): C, 18.15; H, 2.44; N, 8.47. Found: C, 17.54%; H, 2.31%; N, 8.20.

In the following, the dimeric formula corresponding to [Ag(IMe)₂]₂(AgI₂) is considered for 1.

I.2.2. Synthesis of 2

In air, to a solution of IMes·HI (1.50 g, 3.47 mmol) in CH₂Cl₂ (40 mL) was added Ag₂O (442 mg, 1.91 mmol) and the reaction mixture was stirred overnight at room temperature under protection against light. The resulting solution was filtered over Celite and the solvent was removed under reduced pressure. The resulting off-white solid was washed with Et₂O and dried under vacuum.

Yield: 1.65 g (3.06 mmol), 88%.

The ¹H NMR spectrum of 2 in CDCl₃ revealed the presence of two compounds with similar chemical shifts, in a ratio of ca. 1:0.57, assigned to the neutral monocarbene complex [Ag(IMes)] (A) and the biscarbene ion pair [Ag(IMes)₂]⁺[AgI₂]⁻ (B), respectively.

¹H NMR (400.30 MHz, CDCl₃): δ [ppm]: 7.13 (s, 2H, CH₃imid.⁴), 7.12 (s, 1H, CH₃imid.⁸), 6.99 (s, 4H, CH₃arom.⁴⁺), 6.91 (s, 2H, CH₃arom.⁸), 2.43 (s, 3H, p-CH₃⁴), 2.34 (s, 6H, p-CH₃⁸), 2.08 (s, 12H, o-CH₃⁴⁺), 1.72 (s, 6.8H, o-CH₃⁸). The ¹H NMR data of compound B are consistent with those reported for the biscarbene complex [Ag(IMes)₂]⁺[AgI₂].[4b]

In the following, the monomeric formula corresponding to “Ag(IMes)” is considered for 2.
I.3. Synthesis of 3-8 by redox-transmetallation and characterisation

Synthesis of [EuI$_2$(IMe)$_4$] (3)

In a glovebox, a Schlenk flask was charged with 1 (200 mg, 0.302 mmol, 1.00 eq.) and freshly filed europium metal (50.5 mg, 0.332 mmol, 1.10 eq.). Outside of the glovebox, THF (10 mL) was added and the resulting suspension was stirred at room temperature for 36 hours. Decantation and careful filtration of the suspension led to an orange-red solution. Slow evaporation of the solvent in a double ampoule afforded [EuI$_2$(IMe)$_4$] (3) as highly air-sensitive dark red-purple crystals suitable for X-ray diffraction studies. The crystals were carefully washed with a small amount of THF until the washing solution remained colourless and dried under vacuum. Yield of the crystals: 55 mg (0.070 mmol), 46% (based on the IMe ligand). Anal. Calcd for C$_{20}$H$_{32}$EuI$_2$N$_8$ (790.30): C, 30.40; H, 4.08; N, 14.18. Found: C, 30.95; H, 4.36; N, 13.95. Due to the paramagnetism of 3 and its very low solubility in common organic solvents including THF-d_8, no NMR spectrum could be obtained.

IR (ATR): $\tilde{\nu}$ (cm$^{-1}$) = 3265 (w), 3146 (w), 3068 (vs), 2943 (s), 2849 (m), 2792 (m), 1664 (m), 1575 (vs), 1534 (w), 1447 (s), 1395 (m), 1355 (m), 1311 (m), 1247 (m), 1208 (m), 1171 (vs), 1127 (m), 1090 (m), 1068 (w), 997 (m), 937 (w), 923 (w), 809 (m), 736 (w), 713 (s), 614 (vs), 568 (w), 441 (m).

Synthesis of [SmI$_2$(IMe)$_4$] (4)

In a glovebox, a Schlenk flask was charged with 1 (210 mg, 0.317 mmol, 1.00 eq.) and freshly filed samarium metal (52.5 mg, 0.349 mmol, 1.10 eq.). Outside of the glovebox, THF (10 mL) was added and the suspension was stirred at room temperature for 36 hours. Decantation and careful filtration of the suspension led to a dark green solution. Slow evaporation of the solvent in a double ampoule afforded [SmI$_2$(IMe)$_4$] (4) as highly air-sensitive dark red-purple crystals suitable for X-ray diffraction studies. The crystals were carefully washed with a small amount of THF until the washing solution remained colourless and dried under vacuum. Yield of the crystals: 52 mg (0.066 mmol), 42% (based on the IMe ligand). Anal. Calcd for C$_{20}$H$_{32}$I$_2$N$_8$Sm (788.70): C, 30.46; H, 4.09; N, 14.21. Found: C, 32.27; H, 4.23; N, 14.78. No better elemental analysis data could be obtained despite repeated attempts. Due to the paramagnetism of 4 and its very low solubility in common organic solvents including THF-d_8, no NMR spectra could be obtained.

IR (ATR): $\tilde{\nu}$ (cm$^{-1}$) = 3239 (w), 3146 (w), 3105 (m), 3077 (vs), 2989 (w), 2946 (s), 2851 (w), 2797 (w), 1651 (vs), 1617 (w), 1574 (vs), 1536 (w), 1515 (s), 1444 (s), 1395 (w), 1354 (m), 1327 (s), 1287 (w), 1250 (s), 1221 (m), 1171 (vs), 1138 (m), 1105 (w), 1087 (w), 1004 (m), 912 (w), 882 (w), 825 (w), 797 (m), 768 (w), 746 (w), 713 (w), 653 (w), 614 (s), 586 (w), 505 (w).
Synthesis of [Ybl₂(IMe)₃(THF)₂] (5)

In a glovebox, a Schlenk flask was charged with 1 (210 mg, 0.317 mmol, 1.00 eq.) and freshly filed ytterbium metal (60.4 mg, 0.349 mmol, 1.10 eq.). Outside of the glovebox, THF (10 mL) was added and the suspension was stirred at room temperature for 4 days. Decantation and careful filtration of the suspension led to a dark red solution. Slow evaporation of the solvent in a double ampoule afforded [Ybl₂(IMe)₃(THF)₂] (5) as highly air-sensitive red crystals suitable for X-ray diffraction studies. The crystals were carefully washed with a small amount of THF and dried under vacuum. Yield of the crystals: 110 mg (0.144 mmol), 45% (based on the IMe ligand).

Anal. Calcd for C₁₉H₂₁₂N₄Yb·(1.7 C₄H₈O) (741.71): C, 27.21; H, 4.02; N, 7.55. Found: C, 27.15; H, 4.14; N, 7.36. These values correspond to the partial decoordination of 0.3 molecule of THF from 5.

¹H NMR (400 MHz, THF-d₆, 25 °C) δ (ppm): 6.96 (br s, Δν1/2≈ 45 Hz, 4H, CH₃imidazol), 3.90 (s, 12H, CH₃), 3.66 – 3.59 (m, ca. 8H, OCH₂THF), 1.82 – 1.74 (m, ca. 8H, CH₂THF).

¹³C{¹H} NMR (101 MHz, THF-d₆, 25 °C) δ (ppm): C₉N₇ not detected, 121.8 (CH₃imidazol), 68.0 (OCH₂THF), 38.6 (NCH₃), 26.2 (CH₂THF).

IR (ATR): ʋ (cm⁻¹) = 3145 (w), 3067 (vs), 2975 (w), 2942 (w), 2920 (w), 2851 (w), 2790 (w), 1732 (w), 1652 (w), 1616 (w), 1573 (s), 1454 (m), 1430 (w), 1372 (w), 1337 (w), 1310 (w), 1284 (w), 1237 (w), 1170 (s), 1086 (w), 1022 (m), 983 (w), 917 (w), 874 (w), 808 (m), 746 (m), 711 (w), 613 (m).

Synthesis of [Ca₁₂(IMe)₁₂(THF)₆] (6)

In a glovebox, a Schlenk flask was charged with 1 (200 mg, 0.302 mmol, 1.00 eq.) and freshly filed calcium metal (24.2 mg, 0.604 mmol, 2.00 eq.). Outside of the glovebox, THF (10 mL) was added and the suspension was stirred at room temperature for 4 days. Decantation and careful filtration of the suspension led to a clear colourless solution. Slow evaporation of the solvent in a double ampoule afforded [Ca₁₂(IMe)₁₂(THF)₆] (6) as air-sensitive colourless crystals suitable for X-ray diffraction studies. The crystals were carefully washed with a small amount of THF and dried under vacuum. Yield of the crystals: 135 mg (0.214 mmol), 71% (based on the IMe ligand).

Anal. Calcd for C₁₉H₂₁₂Ca₁₂N₁₂O₁₂ (630.37): C, 34.30; H, 5.12; N, 8.89. Found: C, 33.09; H, 4.69; N, 8.75. No better elemental analysis data could be obtained despite repeated attempts. The purity of 6 can be assessed from its NMR spectra (see Fig. S3-S4).

¹H NMR (400 MHz, THF-d₆, 25 °C) δ (ppm): 6.93 (s, 4H, CH₃imidazol), 3.83 (s, 12H, CH₃), 3.65 – 3.59 (m, 8H, OCH₂THF), 1.80 – 1.74 (m, 8H, CH₂THF).

¹³C{¹H} NMR (101 MHz, THF-d₆, 25 °C) δ (ppm): C₉N₇ not detected, 121.5 (CH₃imidazol), 68.0 (OCH₂THF), 38.7 (NCH₃), 26.2 (CH₂THF).
\(\text{IR (ATR): } \tilde{\nu} (\text{cm}^{-1}) = 3647 \text{ (w)}, 3572 \text{ (w)}, 3145 \text{ (m)}, 3067 \text{ (vs)}, 2979 \text{ (w)}, 2943 \text{ (w)}, 2888 \text{ (w)}, 2853 \text{ (w)}, 1730 \text{ (w)}, 1618 \text{ (w)}, 1574 \text{ (vs)}, 1450 \text{ (m)}, 1431 \text{ (w)}, 1401 \text{ (w)}, 1337 \text{ (w)}, 1284 \text{ (w)}, 1226 \text{ (w)}, 1170 \text{ (vs)}, 1085 \text{ (w)}, 1031 \text{ (s)}, 918 \text{ (w)}, 874 \text{ (m)}, 809 \text{ (s)}, 746 \text{ (s)}, 711 \text{ (w)}, 671 \text{ (w)}, 613 \text{ (s)}.\)

Synthesis of \([\text{SrI}_2(\text{IMe})_2(\text{THF})_2]\) (7)

In a glovebox, a Schlenk flask was charged with 1 (310 mg, 0.468 mmol, 1.00 eq.) and freshly filed strontium metal (45.1 mg, 0.515 mmol, 1.10 eq.). Outside of the glovebox, THF (10 mL) was added and the suspension was stirred at room temperature for 4 days. Decantation and careful filtration of the suspension led to a clear colourless solution. Slow evaporation of the solvent in a double ampoule afforded \([\text{SrI}_2(\text{IMe})_2(\text{THF})_2]\) (7) as air-sensitive colourless crystals suitable for X-ray diffraction studies. The crystals were carefully washed with a small amount of THF and dried under vacuum. Yield of the crystals: 151 mg (0.223 mmol), 48% (based on the IMe ligand).

Anal. Calcd for \(\text{C}_{18}\text{H}_{32}\text{I}_2\text{N}_4\text{O}_2\text{Sr} (677.91): \) C, 31.89; H, 4.76; N, 8.26. Found: C, 29.48; H, 4.24; N, 7.72.

No better elemental analysis data could be obtained despite repeated attempts. The purity of 7 can be assessed from its NMR spectra (see Fig. S5-S6).

\(^1\text{H NMR}\) (400 MHz, THF-\(d_8\), 25 °C) \(\delta\) (ppm): 6.91 (s, 4H, C\text{imidazole}), 3.78 (s, 12H, CH\(_3\)), 3.64 – 3.59 (m, ca. 2H, OCH\(_2\) residual coordinated THF), 1.80 – 1.75 (m, ca. 2H, CH\(_2\) residual coordinated THF).

\(^{13}\text{C}(^1\text{H})\text{ NMR}\) (101 MHz, THF-\(d_8\), 25 °C) \(\delta\) (ppm): \(\text{C}_{\text{NCN}}\) not detected, 121.1 (CH\(_{\text{imidazole}}\)), 68.0 (OCH\(_2\) THF), 38.4 (NCH\(_3\)), 26.2 (CH\(_2\) THF).

IR (ATR): \(\tilde{\nu} (\text{cm}^{-1}) = 3145 \text{ (w)}, 3068 \text{ (vs)}, 2978 \text{ (w)}, 2942 \text{ (m)}, 2892 \text{ (w)}, 2853 \text{ (w)}, 1650 \text{ (w)}, 1618 \text{ (w)}, 1572 \text{ (vs)}, 1454 \text{ (m)}, 1397 \text{ (s)}, 1339 \text{ (w)}, 1306 \text{ (w)}, 1284 \text{ (w)}, 1220 \text{ (s)}, 1170 \text{ (vs)}, 1098 \text{ (w)}, 1085 \text{ (w)}, 1031 \text{ (m)}, 915 \text{ (w)}, 873 \text{ (m)}, 809 \text{ (m)}, 727 \text{ (s)}, 615 \text{ (s)}, 445 \text{ (m)}.\)

Synthesis of \([\text{SrI}_2(\text{IMes})(\text{THF})_3]\) (8)

In a glovebox, a Schlenk flask was charged with 2 (342 mg, 0.633 mmol, 1.00 eq.) and freshly filed strontium metal (55.5 mg, 0.633 mmol, 1.00 eq.). Outside of the glovebox, THF (10 mL) was added and the suspension was stirred at room temperature for 2 days. Decantation and careful filtration of the suspension led to a clear colourless solution. Slow evaporation of the solvent in a double ampoule afforded \([\text{SrI}_2(\text{IMes})(\text{THF})_3]\) (8-THF) as air-sensitive colourless crystals suitable for X-ray diffraction studies. The crystals were carefully washed with a small amount of THF and dried under vacuum. Yield of the crystals: 136 mg (0.146 mmol), 23% (based on the IMes ligand).

Anal. Calcd for \(\text{C}_{33}\text{H}_{66}\text{I}_2\text{N}_4\text{O}_2\text{Sr} (934.29): \) C, 47.57; H, 6.04; N, 3.00. Found: C, 48.05; H, 5.41; N, 3.46.
NMR in C$_6$D$_6$ solution:

1H NMR (400 MHz, C$_6$D$_6$, 25 °C) δ (ppm): 6.80 (s, 4H, CH$_{Ar}$), 6.50 (br s, $\Delta v_{1/2} = 25$ Hz, 2H, CH$_\text{imidazo}$), 3.68 – 3.52 (m, ca. 10H, THF), 2.18 (s, 12H, O-CH$_3$), 2.16 (s, 6H, p-C 1.48 – 1.34 (m, ca. 10H, THF).

13C(1H) NMR (101 MHz, C$_6$D$_6$, 25 °C) δ (ppm): C$_\text{NCN}$ not detected, 139.0 (C$_{Ar}$), 137.4 (C$_{Ar}$), 135.5 (C$_{Ar}$), 129.2 (CH$_{Ar}$), 120.8 (CH$_\text{imidazo}$), 68.1 (OCH$_2$ THF), 25.8 (CH$_2$ THF), 21.1 (p-CH$_3$), 18.2 (o-CH$_3$).

NMR in THF-d_8 solution:

1H NMR (400 MHz, THF-d_8, 25 °C) δ (ppm): 7.10 (s, 2H, CH$_\text{imidazo}$), 6.96 (s, 4H, CH$_{Ar}$), 3.65 – 3.60 (m, ca. 7H, OCH$_2$ THF), 2.31 (s, 6H, p-CH$_3$), 2.10 (s, 12H, o-CH$_3$), 1.80 – 1.74 (m, ca. 7H, CH$_2$ THF).

13C(1H) NMR (101 MHz, THF-d_8, 25 °C) δ (ppm): C$_\text{NCN}$ not detected, 139.0 (C$_{Ar}$), 137.8 (C$_{Ar}$), 135.8 (C$_{Ar}$), 129.2 (CH$_{Ar}$), 121.5 (CH$_\text{imidazo}$), 68.0 (OCH$_2$ THF), 26.2 (CH$_2$ THF), 20.9 (p-CH$_3$), 18.1 (o-CH$_3$).

IR (ATR): $\tilde{\nu}$ (cm$^{-1}$) = 3145 (m), 3119 (w), 3065 (w), 2969 (w), 2933 (vs), 2877 (w), 2770 (w), 1636 (w), 1607 (m), 1537 (vs), 1483 (s), 1456 (w), 1380 (s), 1320 (w), 1294 (w), 1256 (w), 1228 (vs), 1163 (w), 1035 (vs), 965 (w), 929 (w), 903 (w), 859 (s), 767 (s), 736 (m), 680 (m), 570 (m).
II. NMR spectra

II.1. Complex 5

Figure S1. 1H NMR spectrum of 5 in THF-d_8 (residual protio solvent at δ3.58 and 1.72 (*)).

Figure S2. 13C(1H) NMR spectrum of 5 in THF-d_8 (solvent signals at δ67.21 and 25.31). Traces of C$_6$D$_6$ can be seen at δ128.3 (*).
II.2. Complex 6

Figure S3. 1H NMR spectrum of 6 in THF-d_8 (residual protio solvent at δ 3.58 and 1.73 (*)).

Figure S4. 13C(1H) NMR spectrum of 6 in THF-d_8 (solvent signals at δ 67.21 and 25.31).
II.3. Complex 7

Figure S5. 1H NMR spectrum of 7 in THF-d_8 (residual protio solvent at δ3.58 and 1.73 (*)).

Figure S6. 13C(1H) NMR spectrum of 7 in THF-d_8 (solvent signals at δ67.21 and 25.31).
II.4. Complex 8

Figure S7. 1H NMR spectrum of 8 in C$_6$D$_6$ (residual protio solvent at δ7.16 (*)).

Figure S8. 13C(1H) NMR spectrum of 8 in C$_6$D$_6$ (solvent signal at δ128.06).
Figure S9. 1H NMR spectrum of 8 in THF-d_8 (residual protio solvent at δ 3.58 and 1.72 (*)).

Figure S10. 13C(1H) NMR spectrum of 8 in THF-d_8 (solvent signal at δ 67.21 and 25.31).
III. IR spectra

III.1. Complex 3

Figure S11. IR spectrum of complex 3.

III.2. Complex 4

Figure S12. IR spectrum of complex 4.
III.3. Complex 5

Figure S13. IR spectrum of complex 5.

III.4. Complex 6

Figure S14. IR spectrum of complex 6.
III.5. Complex 7

Figure S15. IR spectrum of complex 7.

III.6. Complex 8

Figure S16. IR spectrum of complex 8.
IV. X-ray crystallography

IV.1. General methods

Suitable crystals for the X-ray analysis of all compounds were obtained as described above. A suitable crystal was covered in mineral oil (Aldrich) and mounted on a glass fibre. The crystal was transferred directly to the cold stream of a STOE IPDS II (150 K) or a STOE StadiVari (100 or 150 K) diffractometer. All structures were solved by using the program SHELXS/\cite{5} and Olex2.\cite{6} The remaining non-hydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out by using full-matrix least-squares techniques on F^2 by using the program SHELXL.\cite{5} The H-atoms were introduced into the geometrically calculated positions (SHELXL procedures) unless otherwise stated and refined riding on the corresponding parent atoms. In each case, the locations of the largest peaks in the final difference Fourier map calculations, as well as the magnitude of the residual electron densities, were of no chemical significance. Specific comments for each data set are given below. Summary of the crystal data, data collection and refinement for compounds are given in Table S1.

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication no. CCDC 2086921-2086926. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: +(44)1223-336-033; email: deposit@ccdc.cam.ac.uk).

The following special comments apply to the models of the structures:

- In the structure of 3, the asymmetric unit contains three independent molecules of the complex. It was a refined as a two-component inversion twin (TWIN -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0) with a BASF value of 0.109(12).

- In the structure of 4, the asymmetric unit contains three independent molecules of the complex. It was a refined as a two-component inversion twin (TWIN -1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0) with a BASF value of 0.33(4). A DFIX restrain was added on one N-CH$_3$ bond distance (C60-N24) to avoid the occurrence of an A alert in the checkCIF report. Rigid body (RIGU) restraints with standard uncertainties were added to six different NHC rings. One B alert (PLAT342 - Low Bond Precision on C-C Bonds) appears in the checkCIF report and is due to weak diffraction of the crystal at high angles.
- In the structure of 5, rigid body (RIGU) restraints with standard uncertainties have been added on both NHC rings. One B alert (PLAT342 - Low Bond Precision on C-C Bonds) appears in the checkCIF report and is due to weak diffraction of the crystal at high angles.

- In the structure of 7, one coordinated THF ligand (O2, C15, C16, C17, C18) is disordered over two positions with an occupancy ratio freely refined to 0.58/0.42. Similarity restraints on the respective bond distances (SADI) and displacement parameters (SIMU 0.01 0.02) were used. Additionally, one similarity restraint on displacement parameters (SIMU 0.01 0.02) has been added to the second coordinated THF ligand (O1, C11, C12, C13, C14). One B alert (PLAT342 - Low Bond Precision on C-C Bonds) appears in the checkCIF report and is due to weak diffraction of the crystal at high angles.

- In the structure of 8, the non-coordinating THF molecule (O4, C34, C35, C36, C37) is disordered over two positions with an occupancy ratio freely refined to 0.62/0.38. Similarity restraints on the respective bond distances (SADI) and displacement parameters (SIMU, RIGU) were used. Additionally, one rigid body (RIGU 0.002 0.002) restrain has been added to one coordinated THF ligand (O3, C30, C31, C32, C33).
IV.1. Summary of crystal data

Table S1. Crystal data, data collection and refinement for complexes 3-8.

Compounds	3	4	5	6	7	8·THF
Chemical formula	C_{20}H_{2}EuI_{2}N_{8}	C_{20}H_{32}I_{2}Sm	C_{18}H_{32}I_{2}O_{2}Yb	C_{18}H_{32}CaI_{2}N_{8}O_{2}	C_{18}H_{32}I_{2}O_{2}Sr	C_{18}H_{32}I_{2}O_{2}Sr
CCDC Number	2086921	2086922	2086923	2086924	2086925	2086926
Formula Mass	790.29	788.68	763.31	630.35	677.89	934.25
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Orthorhombic
a/Å	23.828(5)	23.7920(7)	9.5164(15)	9.547(2)	9.735(3)	18.6377(6)
b/Å	45.506(9)	45.429(2)	16.087(2)	16.185(4)	16.330(3)	19.3653(5)
c/Å	15.611(3)	15.5221(5)	16.455(2)	16.553(5)	16.577(5)	22.6375(10)
α°	94.340(12)	94.67(2)	93.77(2)			
β°	94.340(12)	94.67(2)	93.77(2)			
γ°	94.340(12)	94.67(2)	93.77(2)			
Unit cell volume/Å³	16927(6)	16777.1(11)	2511.8(6)	2549.4(11)	2629.5(11)	8170.4(5)
Temperature/K	100	100	100	150	150	150
Space group	Iba2	Iba2	P2₁/n	P2₁/n	P2₁/n	Pbca
No. of formula units per unit cell, Z	24	24	4	4	4	8
Absorption coefficient, μ/mm⁻¹	4.433	4.330	6.200	2.686	4.416	2.868
No. of reflections measured	127473	126545	11477	14285	10716	31788
No. of independent reflections	21654	18507	5456	6117	4955	11284
R_{int}	0.0386	0.0791	0.0713	0.0606	0.0903	0.0520
Final R₁ values (I > 2σ(I))	0.0353	0.0738	0.0682	0.0670	0.0726	0.0429
Final wR(F²) values (I > 2σ(I))	0.0833	0.1766	0.1341	0.1477	0.1339	0.0913
Final R₁ values (all data)	0.0433	0.1131	0.1384	0.1174	0.1885	0.0776
Final wR(F²) values (all data)	0.0883	0.2159	0.1673	0.1816	0.1722	0.1089
Goodness of fit on F²	1.028	1.053	1.012	1.105	1.014	1.028
Flack parameter	0.109(12)	0.33(4)	-	-	-	-

S18
IV.2. Crystal structures

IV.2.1. The molecular structure of 3 in the solid state

Figure S17. Molecular structure of 3 in the solid state with thermal ellipsoids at the 40% probability level. H atoms have been omitted for clarity. Selected bond distances (Å) and angles [°]: Eu1-I1 3.3228(8), Eu1-I2 3.3072(8), Eu1-C1 2.811(8), Eu1-C6 2.799(9), Eu1-C11 2.815(8), Eu1-C16 2.811(8); I1-Eu1-I2 174.91(2), C1-Eu1-I1 89.6(2), C1-Eu1-I2 92.5(2), C1-Eu1-C6 85.4(3), C1-Eu1-C11 170.6(3), C1-Eu1-C16 85.7(2), C6-Eu1-I1 88.2(2), C6-Eu1-I2 87.3(2). The asymmetric unit of 3 contains three independent molecules with very similar metrical data, only one molecule is displayed here.

IV.2.2. The molecular structure of 4 in the solid state

Figure S18. Molecular structure of 4 in the solid state with thermal ellipsoids at the 40% probability level. H atoms have been omitted for clarity. Selected bond distances (Å) and angles [°]: Sm1-I1 3.236(2), Sm1-I2 3.254(2), Sm1-C1 2.74(3), Sm1-C6 2.85(2), Sm1-C11 2.79(3), Sm1-C16 2.83(3); I1-Sm1-I2 177.69(7), C1-Sm1-I1 98.6(7), C1-Sm1-I2 81.5(7), C1-Sm1-C6 94.6(8), C1-Sm1-C11 168.2(9), C1-Sm1-C16 86.8(9), C6-Sm1-I1 97.3(5), C6-Sm1-I2 84.9(5). The asymmetric unit of 4 contains three independent molecules with very similar metrical data, only one molecule is displayed here.
IV.2.3. The molecular structure of 5 in the solid state

![Molecular structure of 5](image)

Figure S19. Molecular structure of 5 in the solid state with thermal ellipsoids at the 40% probability level. H atoms have been omitted for clarity. Selected bond distances (Å) and angles [°]: Yb-I1 3.1358(13), Yb-I2 3.1380(13), Yb-O1 2.442(10), Yb-O2 2.430(10), Yb-C1 2.626(14), Yb-C6 2.603(14); I1-Yb-I2 176.67(4), O1-Yb-I1 86.6(3), O1-Yb-I2 90.0(3), O1-Yb-C1 88.8(4), O1-Yb-C6 163.1(4), O2-Yb-I1 89.0(3), O2-Yb-I2 90.4(3), O2-Yb-O1 78.3(4), O2-Yb-C1 167.1(4), O2-Yb-C6 84.8(4), C1-Yb-I1 90.6(3), C1-Yb-I2 89.2(3), C6-Yb-I1 93.5(3), C6-Yb-I2 89.7(3), C1-Yb-C6 108.1(4).

IV.2.4. The molecular structure of 6 in the solid state

![Molecular structure of 6](image)

Figure S20. Molecular structure of 6 in the solid state with thermal ellipsoids at the 40% probability level. H atoms have been omitted for clarity. Selected bond distances (Å) and angles [°]: I1-Ca 3.157(2), I2-Ca 3.161(2), Ca-O1 2.382(6), Ca-O2 2.403(6), Ca-C1 2.597(8), Ca-C6 2.632(8); I1-Ca-I2 176.98(6), O1-Ca-I1 90.0(2), O1-Ca-I2 90.0(2), O1-Ca-O2 80.0(2), O1-Ca-C1 169.4(2), O1-Ca-C6 85.2(3), O2-Ca-I1 89.5(2), O2-Ca-I2 87.5(2), O2-Ca-C1 89.4(2), O2-Ca-C6 165.2(3), C1-Ca-I1 90.3(2), C1-Ca-I2 89.1(2), C1-Ca-C6 105.4(3), C6-Ca-I1 89.7(2), C6-Ca-I2 93.3(2).
IV.2.5. The molecular structure of 7 in the solid state

Figure S21. Molecular structure of 7 in the solid state with thermal ellipsoids at the 40% probability level. Only one disordered position for one of the coordinated THF ligands is depicted and H atoms have been omitted for clarity. Selected bond distances (Å) and angles [°]: I1-Sr 3.270(2), I2-Sr 3.262(2), Sr-O1 2.528(10), Sr-C1 2.762(13), Sr-C6 2.745(12), Sr-O2A 2.49(4); I1-Sr-I2 177.60(5), O1-Sr-I1 90.7(3), O1-Sr-I2 90.1(3), O1-Sr-C1 167.7(3), O1-Sr-C6 85.4(4), C1-Sr-I1 88.9(3), C1-Sr-I2 89.9(3), C6-Sr-I1 92.4(3), C6-Sr-I2 90.0(3), C6-Sr-C1 106.9(4), O2A-Sr-I1 87(2), O2A-Sr-I2 91(2), O2A-Sr-O1 79(3), O2A-Sr-C1 89(3), O2A-Sr-C6 164(3).

IV.2.6. The molecular structure of 8 in the solid state

Figure S22. Molecular structure of 8-THF in the solid state with thermal ellipsoids at the 40% probability level. H atoms and non-coordinating solvent molecules have been omitted for clarity. Selected bond distances (Å) and angles [°]: Sr-I1 3.2284(5), Sr-I2 3.2458(4), Sr-O1 2.549(3), Sr-O2 2.541(3), Sr-O3 2.564(3), Sr-C1 2.779(4); I1-Sr-I2 177.258(15), O1-Sr-I2 91.97(7), O1-Sr-I1 85.90(7), O1-Sr-O3 76.05(11), O1-Sr-C1 103.79(10), O3-Sr-I2 88.09(7), O3-Sr-I1 89.73(7), O3-Sr-C1 177.12(11), O2-Sr-I2 94.46(7), O2-Sr-I1 86.76(7), O2-Sr-C1 101.01(11), C1-Sr-I2 89.04(8), C1-Sr-I1 93.14(8).
V. DFT calculations

V.1. Reaction energies

To investigate the bonding properties in the [MI₂(IMe)₄] and [MI₂(IMe)₂THF₂] molecules, quantum chemical RI-DFT calculations were performed using the BP-86 functional (see Table S2). The basis sets were of def2-SV(P) quality for all atoms as given in the program package TURBOMOLE. For iodine, samarium and strontium effective core potentials (ecp) of 46, 52 and 28 core electrons were used. Under the given symmetry constraints (D₄ or C₂ for the tetra- and the bis-NHC adducts, resp.) small values of imaginary frequencies remain. As they are in no way related to the metal atom – ligand vibrations under discussion, we ignored them.

Table S2. Results of the quantum chemical DFT calculations: energies, bond distances and vibrational frequencies of interest, Ahlrichs-Heinzmann population analyses (6 modified atomic orbitals were chosen for Sm and Sr, resp.).

Cmpd.	4 (Sm)	4* (Sr)	7 (Sr)	7* (Sm)
General formula	[MI₂(IMe)₄]	[MI₂(IMe)₂THF₂]		
Eₜₒᵣ/a.u.*	−1270.539575	−1272.402178	−1127.768752	−1125.906671
r(M–C)/Å	2.840	2.784	2.741	2.786
r(M–I)/Å	3.331	3.290	3.238	3.281
r(M–O)/Å	-	-	2.582	2.654
v (Sm–C)/cm⁻¹	320/317/317	322/319/319	320/320	318/320
Q(M)	0.81	0.63	0.90	0.98
Q(I)	−0.89	−0.88	−0.73	−0.73
Q(IMe)	0.24	0.28	−0.10	−0.10
Q(C)	−0.32	−0.31	−0.49	−0.51
Q(THF)	-	-	0.37	0.34
Q(O)	-	-	−0.24	−0.24
SEN(M–C)	0.35	0.36	0.05	0.05
SEN(M–O)	-	-	0.12	0.11
SEN(Sm–I)**	0.00	0.02	0.36	0.35

* Eₜₒᵣ: THF: −232.2792442, IMe: −304.5852812, SrI₂: −53.83509089, SmI₂: −51.97452612 a.u.
** SEN: SmI₂: 0.60, SrI₂: 0.61; Q: Sm: 0.93, Sr:0.88.
V.2. Cartesian coordinates

Complex 4' [SmI₂(IME₂)₂(THF)₂]

Cartesian Coordinates (a.u.)
-2.18713383976614
-1.33849793727846
1.43189012840919
-1.45009900583378
-2.73748811771067
1.20796377676969
2.27573578238536
2.66269658360677
-0.7769543720896
-3.95620054845673
-3.90735758036934
0.62833649860056
2.92462846081125
-0.00000000000000
-0.53707329901954
1.03783245807107
-2.06284185440047
0.53533062634135
3.08739593605271
-1.44579080627099
-4.01282125132836
1.593402031191988
4.88454817009081
3.30212956834594
2.61805926966703
-2.4621906060065
-5.59231351868228
-3.21995458030292
-4.73782150581967
2.18713383976614
1.33849793727846
-1.43189012840919
1.45009900583378
2.73748811771067
-1.20796377676969
-2.27573578238536
-2.66269658360677
0.77869543720896
3.95620054845673
3.90973578036934
-0.62833649860056
-2.92462846081125
0.5370329901954
-1.03783245807107
2.06284185440047
-0.53533062643135
#	symmetry	wave number	IR intensity	selection rules					
1	b	-18.21	0.00000	YES YES					
2	b	-2.44	0.00000	YES YES					
3	-	0.00	0.00000	- -					
4	-	0.00	0.00000	- -					
5	-	0.00	0.00000	- -					
6	-	0.00	0.00000	- -					
7	-	0.00	0.00000	- -					
8	-	0.00	0.00000	- -					
9	a	19.74	2.79043	YES YES					
10	b	23.33	2.89340	YES YES					
11	a	25.43	0.02659	YES YES					
12	b	28.70	1.35120	YES YES					
13	a	32.56	0.00293	YES YES					
14	a	40.12	0.15608	YES YES					
15	b	46.02	2.61411	YES YES					
16	a	48.10	2.38852	YES YES					
17	a	57.86	0.83938	YES YES					
18	b	61.27	1.30621	YES YES					
19	a	63.33	5.97882	YES YES					
20	b	64.26	6.03905	YES YES					
21	a	74.59	0.36959	YES YES					
22	b	77.94	0.66730	YES YES					
23	a	79.36	0.01383	YES YES					
24	a	92.32	0.27261	YES YES					
25	b	92.99	5.85614	YES YES					
26	a	100.54	0.89980	YES YES					
27	a	108.61	0.03550	YES YES					
28	b	109.94	5.78003	YES YES					
29	b	112.26	0.26901	YES YES					
30	a	119.33	0.86169	YES YES					
31	b	119.42	0.44309	YES YES					
32	b	130.12	11.68374	YES YES					
33	a	130.89	0.71826	YES YES					
---	---	---	---	---					
34	a	137.18	0.77970	YES	YES				
35	b	140.38	8.25372	YES	YES				
36	a	146.51	0.53989	YES	YES				
37	b	146.82	1.84351	YES	YES				
38	b	153.57	10.51475	YES	YES				
39	a	159.53	12.59832	YES	YES				
40	a	201.50	12.50426	YES	YES				
41	b	205.23	23.28662	YES	YES				
42	a	274.19	0.13100	YES	YES				
43	b	275.32	0.19216	YES	YES				
44	a	317.81	4.05065	YES	YES				
45	b	318.62	7.88654	YES	YES				
46	b	320.42	24.73885	YES	YES				
47	a	321.99	4.26064	YES	YES				
48	a	451.44	2.84321	YES	YES				
49	b	451.62	6.55551	YES	YES				
50	b	606.18	2.42772	YES	YES				
51	a	606.61	8.43751	YES	YES				
52	a	609.91	3.21292	YES	YES				
53	b	610.62	1.57756	YES	YES				
54	a	612.78	0.22671	YES	YES				
55	b	612.89	0.60999	YES	YES				
56	b	637.59	0.16535	YES	YES				
57	a	638.49	0.00585	YES	YES				
58	b	664.26	13.09402	YES	YES				
59	a	689.37	51.12863	YES	YES				
60	b	689.55	29.88388	YES	YES				
61	a	736.71	6.58253	YES	YES				
62	a	737.27	14.20018	YES	YES				
63	b	777.63	0.12190	YES	YES				
64	b	777.68	0.04964	YES	YES				
65	a	786.44	0.20891	YES	YES				
66	b	790.56	15.21701	YES	YES				
67	a	857.09	2.03505	YES	YES				
68	a	857.81	12.22338	YES	YES				
69	b	898.08	4.03762	YES	YES				
70	b	898.89	0.88049	YES	YES				
71	a	903.63	42.25867	YES	YES				
72	b	908.70	140.18668	YES	YES				
73	a	927.64	6.85747	YES	YES				
74	b	929.05	0.61023	YES	YES				
75	a	951.68	3.48008	YES	YES				
76	b	953.04	1.73533	YES	YES				
77	a	996.69	0.16622	YES	YES				
78	b	996.97	1.76145	YES	YES				
79	a	1009.97	0.15303	YES	YES				
80	b	1010.08	0.09181	YES	YES				
81	a	1031.62	18.13955	YES	YES				
82	b	1032.42	10.08054	YES	YES				
83	a	1039.22	0.04152	YES	YES				
84	a	1039.22	0.04152	YES	YES				
---	---	-------------------	-------------------	---	---				
85	b	1041.51	109.59416	YES	YES				
86	b	1056.29	6.29870	YES	YES				
87	a	1056.35	6.30051	YES	YES				
88	b	1072.38	2.88974	YES	YES				
89	a	1073.21	0.01171	YES	YES				
90	b	1087.83	9.59143	YES	YES				
91	a	1088.02	6.90894	YES	YES				
92	b	1114.58	8.13148	YES	YES				
93	a	1114.69	3.47535	YES	YES				
94	b	1114.82	3.50120	YES	YES				
95	a	1114.99	0.30107	YES	YES				
96	b	1120.09	4.77668	YES	YES				
97	a	1120.23	0.56270	YES	YES				
98	b	1181.75	5.31588	YES	YES				
99	a	1182.56	1.23142	YES	YES				
100	b	1198.56	25.99160	YES	YES				
101	a	1198.66	12.40946	YES	YES				
102	b	1202.25	3.17979	YES	YES				
103	a	1202.53	5.80571	YES	YES				
104	a	1214.06	1.95113	YES	YES				
105	b	1214.97	2.83496	YES	YES				
106	b	1253.47	2.70919	YES	YES				
107	a	1254.14	0.45185	YES	YES				
108	b	1271.85	3.38522	YES	YES				
109	a	1275.06	1.46110	YES	YES				
110	b	1288.27	2.57925	YES	YES				
111	a	1288.64	0.17685	YES	YES				
112	a	1323.09	0.11698	YES	YES				
113	b	1323.10	3.50076	YES	YES				
114	b	1329.54	2.11209	YES	YES				
115	a	1331.43	2.51937	YES	YES				
116	a	1344.01	4.92826	YES	YES				
117	b	1344.26	6.85320	YES	YES				
118	a	1356.98	0.99944	YES	YES				
119	b	1357.06	1.09749	YES	YES				
120	b	1357.90	0.14579	YES	YES				
121	a	1359.37	11.69482	YES	YES				
122	b	1392.91	27.30830	YES	YES				
123	a	1393.70	8.69105	YES	YES				
124	b	1416.76	3.55828	YES	YES				
125	a	1417.09	4.35988	YES	YES				
126	a	1421.30	0.54789	YES	YES				
127	b	1424.15	6.22433	YES	YES				
128	b	1431.06	10.91232	YES	YES				
129	a	1435.21	0.23417	YES	YES				
130	b	1435.42	9.80883	YES	YES				
131	a	1435.71	1.19189	YES	YES				
132	b	1438.44	0.69681	YES	YES				
133	b	1440.09	6.43222	YES	YES				
134	a	1443.76	31.83585	YES	YES				
135	b	1447.14	4.32918	YES	YES				
---	---	---	---	---	---	---	---	---	---
136	a	1447.82	46.20022	YES	YES				
137	a	1448.01	0.63062	YES	YES				
138	b	1449.41	35.19710	YES	YES				
139	a	1449.66	2.31857	YES	YES				
140	b	1450.20	5.21907	YES	YES				
141	a	1450.50	3.41199	YES	YES				
142	b	1450.66	0.63062	YES	YES				
143	a	1451.20	35.19710	YES	YES				
144	b	1451.41	2.31857	YES	YES				
145	a	1451.66	5.21907	YES	YES				
146	b	1452.20	35.19710	YES	YES				
147	a	1452.41	2.31857	YES	YES				
148	b	1452.66	5.21907	YES	YES				
149	a	1453.26	32.54501	YES	YES				
150	a	1454.01	0.63062	YES	YES				
151	b	1454.20	35.19710	YES	YES				
152	b	1454.41	2.31857	YES	YES				
153	a	1454.66	5.21907	YES	YES				
154	a	1455.20	32.54501	YES	YES				
155	b	1455.41	2.31857	YES	YES				
156	a	1456.01	5.21907	YES	YES				
157	b	1456.20	32.54501	YES	YES				
158	a	1456.41	2.31857	YES	YES				
159	b	1456.66	5.21907	YES	YES				
160	b	1457.20	32.54501	YES	YES				
161	a	1457.41	2.31857	YES	YES				
162	a	1458.01	5.21907	YES	YES				
163	b	1458.20	32.54501	YES	YES				
164	a	1459.20	2.31857	YES	YES				
165	b	1459.41	5.21907	YES	YES				
166	b	1459.66	32.54501	YES	YES				
167	a	1460.20	2.31857	YES	YES				
168	b	1460.41	5.21907	YES	YES				
169	a	1460.66	32.54501	YES	YES				
170	a	1461.20	2.31857	YES	YES				
171	b	1461.41	5.21907	YES	YES				
172	a	1461.66	32.54501	YES	YES				
173	b	1462.20	2.31857	YES	YES				
174	b	1462.41	5.21907	YES	YES				
175	a	1462.66	32.54501	YES	YES				
176	b	1463.20	2.31857	YES	YES				
177	a	1463.41	5.21907	YES	YES				
178	a	1463.66	32.54501	YES	YES				
179	b	1464.20	2.31857	YES	YES				
180	a	1464.41	5.21907	YES	YES				
181	b	1464.66	32.54501	YES	YES				

Complex 4 [SmI₂(IMe)₄]

Cartesian coordinates (a.u.)

3.79432198153452 -3.79432198153452 0.00000000000000 c
6.05829736860230 -7.37785698566997 -0.90152430814280 c
7.37785698566997 -6.05829736860230 0.90152430814280 c
3.90391765192269 -5.96147882292272 -1.41702205975946 n

S27
Vibrational Spectrum

#	mode	symmetry	wave number	IR intensity	selection rules	
	cm⁻¹	km/mol	IR	RAMAN		
1	e	-15.35	0.00000	YES	YES	
2	e	-15.35	0.00000	YES	YES	
3	b1	-12.04	0.00000	NO	YES	
4		-0.00	0.00000			
5		0.00	0.00000			
6		0.00	0.00000			
7		0.00	0.00000			
8		0.00	0.00000			
9		0.00	0.00000			
10	b2	7.86	3.10959	YES	YES	
11	e	17.62	0.52654	YES	YES	
12	e	17.63	0.52687	YES	YES	
13	b1	28.74	0.00000	NO	YES	
14	e	31.52	3.37426	YES	YES	
15	e	31.52	3.37467	YES	YES	
16	b2	43.49	0.00000	YES	YES	
17	b1	63.26	0.00000	NO	YES	
18	e	71.56	2.00295	YES	YES	
19	e	71.56	2.00280	YES	YES	
20	b2	72.92	0.05982	YES	YES	
21	b1	77.07	0.00000	NO	YES	
22	b2	80.22	2.41772	YES	YES	
23	e	80.33	6.56000	YES	YES	
24	e	80.33	6.56071	YES	YES	
25	b1	81.56	0.00000	NO	YES	
26	e	85.00	0.70453	YES	YES	
27	e	85.00	0.70558	YES	YES	
28	b2	86.10	0.00000	YES	YES	
29	b2	101.63	15.83937	YES	YES	
30	b1	102.14	0.00000	NO	YES	
31	e	108.47	0.65678	YES	YES	
32	e	108.48	0.65688	YES	YES	
33	b2	110.20	0.00000	YES	YES	
34	b1	110.82	0.00000	NO	YES	
35	b1	113.35	0.00000	NO	YES	
36	e	116.85	1.25155	YES	YES	
37	e	116.85	1.25152	YES	YES	
38	b2	121.56	10.86236	YES	YES	
39	b1	127.75	0.00000	NO	YES	
---	---	---	---	---	---	
40	e	143.71	12.74284	YES	YES	
41	e	143.71	12.74305	YES	YES	
42	b2	196.77	44.03568	YES	YES	
43	e	199.17	15.31672	YES	YES	
44	e	199.17	15.31667	YES	YES	
45	b1	203.95	0.00000	NO	YES	
46	b2	271.28	0.00000	NO	YES	
47	e	273.84	0.57462	YES	YES	
48	e	273.84	0.57466	YES	YES	
49	a1	276.51	0.00000	NO	YES	
50	e	317.25	17.43886	YES	YES	
51	e	317.25	17.43903	YES	YES	
52	b2	317.87	0.00000	NO	YES	
53	a1	320.11	0.00000	NO	YES	
54	a2	450.92	4.99570	YES	NO	
55	e	452.09	6.54508	YES	YES	
56	e	452.09	6.54511	YES	YES	
57	b1	453.29	0.00000	NO	YES	
58	a1	604.37	0.00000	NO	YES	
59	e	605.04	2.20144	YES	YES	
60	e	605.04	2.20138	YES	YES	
61	b2	605.58	0.00000	NO	YES	
62	a1	616.99	0.00000	NO	YES	
63	e	617.13	1.26177	YES	YES	
64	e	617.13	1.26183	YES	YES	
65	b2	617.30	0.00000	NO	YES	
66	a2	632.18	0.74862	YES	NO	
67	e	632.61	0.14709	YES	YES	
68	e	632.61	0.14709	YES	YES	
69	b1	633.53	0.00000	NO	YES	
70	a2	686.33	67.01562	YES	NO	
71	e	686.80	45.82218	YES	YES	
72	e	686.80	45.82211	YES	YES	
73	b1	687.13	0.00000	NO	YES	
74	b1	736.31	0.00000	NO	YES	
75	e	736.47	9.76669	YES	YES	
76	e	736.47	9.76669	YES	YES	
77	a2	737.00	24.43786	YES	NO	
78	b2	773.31	0.00000	NO	YES	
79	e	773.40	0.26298	YES	YES	
80	e	773.40	0.26298	YES	YES	
81	a1	773.51	0.00000	NO	YES	
82	b2	993.07	4.48894	YES	YES	
83	e	993.83	1.50341	YES	YES	
84	e	993.83	1.50339	YES	YES	
85	b1	994.82	0.00000	NO	YES	
86	b2	1005.31	0.00000	YES	YES	
87	e	1005.46	0.09931	YES	YES	
88	e	1005.46	0.09929	YES	YES	
89	b1	1005.85	0.00000	NO	YES	
90	e	1052.67	8.55314	YES	YES	
---	-----	---------	-----------	------	-----	---
91	e	1052.67	8.55314	YES	YES	
92	b2	1052.69	0.00000	NO	YES	
93	a1	1052.89	0.00000	NO	YES	
94	b1	1065.49	0.00000	NO	YES	
95	e	1065.93	1.67947	YES	YES	
96	e	1065.93	1.67959	YES	YES	
97	a2	1066.84	5.85042	YES	NO	
98	a1	1083.04	0.00000	NO	YES	
99	e	1083.14	19.91320	YES	YES	
100	e	1083.14	19.91330	YES	YES	
101	b2	1083.38	0.00000	NO	YES	
102	b2	1115.02	0.00000	YES	YES	
103	e	1115.15	1.17246	YES	YES	
104	e	1115.15	1.17395	YES	YES	
105	b1	1115.52	0.00000	NO	YES	
106	b2	1116.49	9.29360	YES	YES	
107	e	1116.74	15.31371	YES	YES	
108	e	1116.74	15.31513	YES	YES	
109	b1	1117.12	0.00000	NO	YES	
110	a2	1195.51	34.87694	YES	NO	
111	e	1195.74	18.23373	YES	YES	
112	e	1195.74	18.23377	YES	YES	
113	b1	1196.24	0.00000	NO	YES	
114	a2	1313.00	5.39320	YES	NO	
115	e	1313.85	4.40062	YES	YES	
116	e	1313.85	4.40063	YES	YES	
117	b1	1314.69	0.00000	NO	YES	
118	b2	1335.83	0.00000	NO	YES	
119	e	1336.29	2.25274	YES	YES	
120	e	1336.29	2.25275	YES	YES	
121	a1	1337.88	0.00000	NO	YES	
122	b2	1355.97	0.00000	NO	YES	
123	e	1356.05	2.25547	YES	YES	
124	e	1356.05	2.25542	YES	YES	
125	a1	1356.25	0.00000	NO	YES	
126	a2	1388.17	48.44517	YES	NO	
127	e	1390.21	24.81133	YES	YES	
128	e	1390.21	24.81131	YES	YES	
129	b1	1394.14	0.00000	NO	YES	
130	b2	1412.71	0.00000	YES	YES	
131	e	1416.21	2.47910	YES	YES	
132	e	1416.21	2.47858	YES	YES	
133	b1	1419.35	0.00000	NO	YES	
134	e	1431.11	0.19867	YES	YES	
135	e	1431.11	0.19853	YES	YES	
136	b2	1431.53	0.00000	YES	YES	
137	b2	1432.07	35.90473	YES	YES	
138	e	1434.90	18.25552	YES	YES	
139	e	1434.90	18.25608	YES	YES	
140	b1	1435.28	0.00000	NO	YES	
141	b1	1436.33	0.00000	NO	YES	
---	---	---	---	---	---	
142	b2	1438.91	4.04445	YES	YES	
143	e	1439.84	12.72150	YES	YES	
144	e	1439.84	12.71737	YES	YES	
145	b1	1440.65	0.00000	NO	YES	
146	e	1443.09	15.88549	YES	YES	
147	e	1443.09	15.88210	YES	YES	
148	b2	1443.82	0.00000	NO	YES	
149	b2	1445.01	29.83187	YES	YES	
150	b1	1445.61	0.00000	NO	YES	
151	e	1448.54	16.14795	YES	YES	
152	e	1448.54	16.14834	YES	YES	
153	b1	1450.28	0.00000	NO	YES	
154	e	1563.69	0.08263	YES	YES	
155	e	1563.69	0.08263	YES	YES	
156	a1	1563.74	0.00000	NO	YES	
157	b2	1563.93	0.00000	NO	YES	
158	b1	2943.76	0.00000	NO	YES	
159	e	2943.91	98.61729	YES	YES	
160	e	2943.91	98.45692	YES	YES	
161	e	2944.15	144.17951	YES	YES	
162	e	2944.15	144.02006	YES	YES	
163	b2	2944.25	0.00000	YES	YES	
164	b2	2945.24	2.86605	YES	YES	
165	b1	2945.48	0.00000	NO	YES	
166	b1	3034.34	0.00000	NO	YES	
167	e	3034.40	15.11581	YES	YES	
168	e	3034.40	15.11303	YES	YES	
169	b1	3035.32	0.00000	NO	YES	
170	e	3035.80	70.22851	YES	YES	
171	e	3035.80	70.22545	YES	YES	
172	b2	3035.92	0.00000	YES	YES	
173	b2	3036.34	0.33902	YES	YES	
174	e	3054.38	0.08302	YES	YES	
175	e	3054.39	0.08322	YES	YES	
176	b2	3054.58	0.00000	YES	YES	
177	b1	3054.85	0.00000	NO	YES	
178	e	3055.36	26.08431	YES	YES	
179	e	3055.36	26.08512	YES	YES	
180	b2	3056.25	123.07812	YES	YES	
181	b1	3056.98	0.00000	NO	YES	
182	a2	3172.87	0.81702	YES	NO	
183	e	3172.87	0.57608	YES	YES	
184	e	3172.87	0.57608	YES	YES	
185	b1	3172.87	0.00000	NO	YES	
186	b2	3193.11	0.00000	NO	YES	
187	e	3193.11	1.46876	YES	YES	
188	e	3193.11	1.46876	YES	YES	
189	a1	3193.13	0.00000	NO	YES	
Complex 7 [Srl₂(IMe)₂(THF)₂]

Cartesian Coordinates (a.u.)

X	Y	Z			
-2.6470530627665	-4.92048951960288	8.80759345087798 h			
-1.35083731452290	-3.49459065349433	7.56915248977705 c			
1.39905540536908	-4.25512811281484	6.86321400102224 c			
-1.40372711183054	-1.66240715222572	8.58741939202274 h			
-2.72197301412441	-3.32703479049768	4.98513578366990 c			
1.16904188314912	-5.06135333176225	4.08934079349660 c			
2.17597357348423	-5.77438069427468	8.08266801171073 h			
2.69099500192078	-2.60403797076009	6.9873410852813 h			
-0.74891289498982	-3.39789039308871	3.10007564606983 c			
-0.400498269140231	-4.97209344399914	4.67911448939465 h			
-3.82533232373409	-1.57633544186408	4.65635809375690 h			
0.51310787705504	-7.06249502631838	3.90485656875185 h			
2.90482565348853	-4.77506618457968	2.94680554107892 h			
0.00000000000000	0.00000000000000	-0.31932770977704 sr			
-0.51207030037787	-3.67346967163144	-3.93364731037198 c			
1.00811204346624	-4.11722688132853	-5.98223715787188 n			
-2.01683538358488	-5.78065629390621	-3.83881960368172 n			
0.49447129929345	-6.43127699522731	-7.1130369492075 c			
3.02206261140842	-2.40495500837033	-6.77474160276619 h			
-1.43818424132098	-7.49458624717076	-5.74457113106785 h			
-3.91595933294368	-6.19363694994741	-1.87908964523830 c			
1.51183911445461	-7.11593779454468	-8.78265271309844 h			
4.48435623926159	-2.96278327335258	-5.90217341877421 h			
3.17705407803228	-2.41690739905490	-8.86751081509336 h			
2.55964529078232	-0.47092747338492	-6.10900349280122 h			
-2.44620889189593	-9.28840662775504	-5.98612030505304 c			
-5.48048663658590	-7.35809302525451	-2.64902675180969 c			
-3.06482147170747	-7.16465539154018	-0.22304014235536 c			
-4.67895080494396	-4.33600849594734	-1.26505415226951 h			
2.26470530627665	4.92048951960288	8.80759345087798 h			
1.35083731452290	3.49459065349433	7.56915248977705 c			
-1.39905540536908	4.25512811281484	6.86321400102224 c			
1.40372711183054	1.66240715222572	8.58741939202274 h			
2.72197301412414	3.32703479049768	4.98513578366990 c			
-1.16904188314912	5.06135333176225	4.08934079349660 c			
-2.17597357348423	5.77438069427468	8.08266801171073 h			
-2.69099500192078	2.60403797076009	6.9873410852813 h			
0.74891289498982	3.39789039308871	3.10007564606983 o			
4.00498269140231	4.97209344399914	4.67911448939465 h			
3.82533232373409	1.57633544186408	4.65635809375690 h			
-0.51310787705504	7.06249502631838	3.90485656875185 h			
2.90482565348853	4.77506618457968	2.94680554107892 h			
0.51207030037787	3.67346967163144	-3.93364731037198 c			
-1.00811204346624	4.11722688132853	-5.98223715787188 n			
2.01683538358384	5.78065629390621	-3.83881960368172 n			
-0.49447129929345	6.43127699522731	-7.1130369492075 c			
-3.02206261140842	2.40495500837033	-6.77474160276619 c			
1.43818424132098	7.49458624717076	-5.74457113106785 c			
#	symmetry	wave number	IR intensity	selection rules	
-----	----------	-------------	--------------	-----------------	
1	b	-11.72	0.00000	YES	
2	b	-0.00	0.00000	-	
3	b	-0.00	0.00000	-	
4	b	-0.00	0.00000	-	
5	b	-0.00	0.00000	-	
6	b	-0.00	0.00000	-	
7	b	-0.00	0.00000	-	
8	b	14.84	1.33050	YES	
9	a	22.38	2.89285	YES	
10	a	27.89	0.02041	YES	
11	b	27.95	3.00216	YES	
12	a	33.79	0.03300	YES	
13	b	40.59	3.16539	YES	
14	a	52.84	0.61458	YES	
15	a	57.86	0.04058	YES	
16	b	61.33	0.96905	YES	
17	a	64.97	0.79858	YES	
18	b	69.34	0.71435	YES	
19	a	70.66	5.82390	YES	
20	b	74.50	5.46527	YES	
21	a	76.66	1.97890	YES	
22	a	80.14	0.08539	YES	
23	b	84.53	1.36960	YES	
24	a	97.05	0.11641	YES	
25	b	103.04	3.53203	YES	
26	a	107.77	0.78735	YES	
27	b	116.77	0.04675	YES	
28	b	121.36	2.88268	YES	
29	a	125.54	0.11139	YES	
30	b	127.30	2.28851	YES	
31	a	134.53	0.32624	YES	
32	b	142.56	0.75645	YES	
33	a	144.90	1.45436	YES	
34	a	146.95	1.45746	YES	
35	b	147.79	6.86691	YES	
---	---	---	---	---	
36	a	155.96	0.78385	YES	YES
37	b	162.10	20.36396	YES	YES
38	b	185.63	17.15857	YES	YES
39	a	186.89	13.20445	YES	YES
40	a	204.32	19.09576	YES	YES
41	b	207.48	31.52863	YES	YES
42	a	274.68	0.15130	YES	YES
43	b	275.05	0.22052	YES	YES
44	a	319.63	1.80622	YES	YES
45	b	319.99	4.64339	YES	YES
46	b	322.63	7.19623	YES	YES
47	b	322.71	8.87544	YES	YES
48	b	612.80	0.27547	YES	YES
49	b	612.88	0.56446	YES	YES
50	b	639.41	0.18111	YES	YES
51	a	640.27	0.00749	YES	YES
52	a	665.98	0.92821	YES	YES
53	a	667.02	14.42668	YES	YES
54	b	688.78	53.38155	YES	YES
55	a	688.94	27.71098	YES	YES
56	a	737.71	7.13992	YES	YES
57	b	738.07	14.12029	YES	YES
58	b	776.89	0.11101	YES	YES
59	a	776.95	0.04929	YES	YES
60	b	795.55	0.10909	YES	YES
61	a	798.99	16.70025	YES	YES
62	a	861.50	2.25483	YES	YES
63	b	862.39	12.78882	YES	YES
64	b	898.88	7.20291	YES	YES
65	b	899.94	0.03605	YES	YES
66	b	905.99	41.95356	YES	YES
67	a	911.40	136.44360	YES	YES
68	b	927.88	7.93188	YES	YES
69	a	928.72	0.63907	YES	YES
70	a	952.80	2.66150	YES	YES
71	b	953.33	2.09471	YES	YES
72	a	996.74	0.20153	YES	YES
73	b	996.95	1.81320	YES	YES
74	a	1011.77	0.18273	YES	YES
75	b	1011.92	0.13289	YES	YES
76	a	1032.71	20.76451	YES	YES
77	b	1032.99	6.45907	YES	YES
78	a	1039.50	0.03264	YES	YES
79	b	1041.60	115.33058	YES	YES
80	b	1056.51	6.96454	YES	YES
---	---	---	---	---	
87	a	1056.77	7.01915	YES	
88	b	1071.84	2.83077	YES	
89	a	1072.90	0.12498	YES	
90	b	1089.25	9.63899	YES	
91	a	1089.59	6.72508	YES	
92	b	1114.42	11.57888	YES	
93	a	1114.73	4.33364	YES	
94	a	1117.37	0.00606	YES	
95	b	1117.56	0.81692	YES	
96	b	1119.11	3.73433	YES	
97	a	1119.35	0.27181	YES	
98	b	1182.03	4.66843	YES	
99	a	1182.60	1.68448	YES	
100	b	1199.22	24.57870	YES	
101	a	1199.35	13.05042	YES	
102	b	1201.87	2.49250	YES	
103	a	1202.05	6.37555	YES	
104	a	1214.32	1.51734	YES	
105	b	1216.49	3.28818	YES	
106	b	1254.45	3.06124	YES	
107	a	1255.36	0.24510	YES	
108	b	1272.73	3.77983	YES	
109	a	1274.83	1.34487	YES	
110	b	1288.72	1.87242	YES	
111	a	1289.35	0.18891	YES	
112	a	1321.35	0.13807	YES	
113	b	1321.39	3.80816	YES	
114	b	1330.36	2.44646	YES	
115	a	1331.13	1.84853	YES	
116	a	1344.66	4.50750	YES	
117	b	1344.83	6.13646	YES	
118	b	1357.07	0.65263	YES	
119	a	1357.22	0.64590	YES	
120	b	1357.71	0.48745	YES	
121	a	1358.96	8.53817	YES	
122	b	1392.49	25.82079	YES	
123	a	1393.76	9.69585	YES	
124	b	1416.30	4.99931	YES	
125	a	1417.14	5.33532	YES	
126	b	1430.74	10.40377	YES	
127	b	1431.32	6.92497	YES	
128	a	1431.99	0.52838	YES	
129	a	1435.83	0.10605	YES	
130	b	1435.91	8.44083	YES	
131	a	1436.18	1.05183	YES	
132	b	1439.26	7.73376	YES	
133	a	1444.03	38.29524	YES	
134	b	1444.33	4.76213	YES	
135	a	1447.33	0.25199	YES	
136	b	1447.72	2.75466	YES	
137	a	1448.53	33.88084	YES	
---	---	---	---	---	
138	b	1449.25	30.61009	YES	YES
139	a	1449.86	0.48308	YES	YES
140	b	1453.82	6.86136	YES	YES
141	a	1455.11	11.94360	YES	YES
142	b	1468.40	5.87706	YES	YES
143	a	1475.72	5.70860	YES	YES
144	b	1563.64	0.52706	YES	YES
145	a	1563.73	0.11193	YES	YES
146	b	2899.02	128.86055	YES	YES
147	a	2899.30	0.08676	YES	YES
148	b	2925.96	79.18510	YES	YES
149	a	2926.22	0.15763	YES	YES
150	b	2946.47	107.69638	YES	YES
151	a	2946.47	5.60441	YES	YES
152	b	2954.09	19.52717	YES	YES
153	a	2954.93	34.43150	YES	YES
154	b	2976.87	28.27422	YES	YES
155	a	2976.94	0.83111	YES	YES
156	a	2983.32	55.11853	YES	YES
157	b	2984.46	0.57706	YES	YES
158	a	3024.49	8.34197	YES	YES
159	b	3024.84	3.44683	YES	YES
160	a	3026.55	13.72653	YES	YES
161	b	3027.02	11.93415	YES	YES
162	a	3037.27	22.59865	YES	YES
163	b	3037.63	2.12634	YES	YES
164	a	3038.28	29.90744	YES	YES
165	b	3038.32	22.97109	YES	YES
166	b	3043.54	56.41870	YES	YES
167	a	3044.27	0.12893	YES	YES
168	b	3048.90	0.25865	YES	YES
169	a	3049.38	6.64868	YES	YES
170	a	3055.69	0.75514	YES	YES
171	b	3055.79	23.66335	YES	YES
172	a	3061.29	10.61504	YES	YES
173	b	3061.71	6.27207	YES	YES
174	b	3176.46	0.98419	YES	YES
175	a	3176.47	0.48718	YES	YES
176	b	3196.48	0.45316	YES	YES
177	a	3196.49	0.20020	YES	YES

Complex 7' [Sr₂IMe₄]

Cartesian Coordinates (a.u.)

3.71980389154317	-3.71980389154317	0.00000000000000	c				
5.97984510846662	-7.31169521301540	-0.89184622738920	c				
7.31169521301540	-5.97984510846662	0.89184622738920	c				
3.82125789402472	-5.89951405469525	-1.40201886975880	n				
5.89951405469525	-3.82125789402472	1.40201886975880	n				
6.38502604399808	-9.11844247563602	-1.82158722788010	h				
#	mode	symmetry	wave number	IR intensity	selection rules		
---	------	----------	-------------	--------------	-----------------		
1	e	-12.61	0.00000	YES	YES		
2	e	-12.61	0.00000	YES	YES		
3	b1	-11.95	0.00000	NO	YES		
4		-0.00	0.00000				
5		0.00	0.00000				
6		0.00	0.00000				
7		0.00	0.00000				
8		0.00	0.00000				
9		0.00	0.00000				
10	b2	9.25	3.26505	YES	YES		
11	e	22.91	0.43719	YES	YES		
12	e	22.91	0.43726	YES	YES		
13	b1	29.62	0.00000	NO	YES		
14	e	37.23	3.34067	YES	YES		
15	e	37.23	3.34096	YES	YES		
16	b2	48.44	0.00000	YES	YES		
17	b1	64.43	0.00000	NO	YES		
18	e	76.85	1.71747	YES	YES		
19	e	76.85	1.71750	YES	YES		
20	b2	79.87	0.35124	YES	YES		
21	b1	84.88	0.00000	NO	YES		
22	b1	86.15	0.00000	NO	YES		
23	e	86.68	7.08385	YES	YES		
24	e	86.68	7.08480	YES	YES		
25	b2	88.54	0.42708	YES	YES		
26	b2	90.82	0.00000	YES	YES		
27	e	91.11	0.63951	YES	YES		
28	e	91.11	0.64062	YES	YES		
29	b2	106.18	9.18417	YES	YES		
30	b2	109.01	0.00000	YES	YES		
31	b1	109.97	0.00000	NO	YES		
32	b1	111.78	0.00000	NO	YES		
33	e	113.88	0.06969	YES	YES		
34	e	113.88	0.06971	YES	YES		
35	b1	121.07	0.00000	NO	YES		
36	e	123.13	2.80977	YES	YES		
37	e	123.13	2.80975	YES	YES		
38	b1	132.53	0.00000	NO	YES		
39	b2	139.32	22.49970	YES	YES		
40	e	174.34	14.53356	YES	YES		
41	e	174.34	14.53366	YES	YES		
	Symbol	X	Y	Result	Decision		
---	--------	------	--------	--------	----------		
42	a2	204.46	52.73457	YES	NO		
43	e	206.88	19.74130	YES	YES		
44	e	206.88	19.74143	YES	YES		
45	b1	211.58	0.00000	NO	YES		
46	b2	271.68	0.00000	NO	YES		
47	e	274.78	0.81569	YES	YES		
48	e	274.78	0.81575	YES	YES		
49	a1	278.00	0.00000	NO	YES		
50	b2	318.65	0.00000	NO	YES		
51	e	318.95	17.54129	YES	YES		
52	e	318.95	17.54142	YES	YES		
53	a1	321.55	0.00000	NO	YES		
54	a2	451.72	4.97482	YES	NO		
55	e	452.89	6.97165	YES	YES		
56	e	452.89	6.97171	YES	YES		
57	b1	454.06	0.00000	NO	YES		
58	a1	604.32	0.00000	NO	YES		
59	e	605.07	2.23413	YES	YES		
60	e	605.07	2.23405	YES	YES		
61	b2	605.48	0.00000	NO	YES		
62	a1	616.82	0.00000	NO	YES		
63	e	616.98	1.10396	YES	YES		
64	e	616.98	1.10403	YES	YES		
65	b2	617.09	0.00000	NO	YES		
66	a2	634.96	0.86984	YES	NO		
67	e	635.67	0.10184	YES	YES		
68	e	635.67	0.10184	YES	YES		
69	b1	636.74	0.00000	NO	YES		
70	a2	686.88	68.12864	YES	NO		
71	e	687.37	44.72587	YES	YES		
72	e	687.37	44.72582	YES	YES		
73	b1	687.71	0.00000	NO	YES		
74	b1	737.12	0.00000	NO	YES		
75	e	737.30	10.51175	YES	YES		
76	e	737.30	10.51175	YES	YES		
77	a2	737.80	10.51175	YES	YES		
78	b2	773.73	0.00000	NO	YES		
79	e	773.83	0.26464	YES	YES		
80	e	773.83	0.26465	YES	YES		
81	a1	773.95	0.00000	NO	YES		
82	b2	993.23	4.25758	YES	YES		
83	e	994.02	1.30808	YES	YES		
84	e	994.02	1.30805	YES	YES		
85	b1	995.04	0.00000	NO	YES		
86	b2	1007.21	0.00000	YES	YES		
87	e	1007.63	0.05775	YES	YES		
88	e	1007.63	0.05773	YES	YES		
89	b1	1007.94	0.00000	NO	YES		
90	e	1053.25	9.23589	YES	YES		
91	e	1053.25	9.23589	YES	YES		
92	b2	1053.26	0.00000	NO	YES		
----	----	-----	-----	-----	-----		
		1053.52	0.00000	NO	YES		
94	b1	1062.88	0.00000	NO	YES		
95	e	1063.46	1.38125	YES	YES		
96	e	1063.46	1.38136	YES	YES		
97	a2	1064.46	5.21212	YES	NO		
98	a1	1083.85	0.00000	NO	YES		
99	b2	1084.39	0.00000	NO	YES		
100	e	1084.49	19.02423	YES	YES		
101	e	1084.49	19.02418	YES	YES		
102	b2	1115.70	0.00000	YES	YES		
103	e	1115.81	1.38125	YES	YES		
104	e	1115.81	1.38136	YES	YES		
105	b1	1116.40	0.00000	NO	YES		
106	b2	1117.25	0.00000	NO	YES		
107	e	1117.77	16.97016	YES	YES		
108	e	1117.77	16.97108	YES	YES		
109	b1	1118.19	0.00000	NO	YES		
110	a2	1195.20	0.00000	NO	YES		
111	e	1195.44	18.97547	YES	YES		
112	e	1195.44	18.97552	YES	YES		
113	b1	1195.98	0.00000	NO	YES		
114	a2	1235.72	0.00000	NO	YES		
115	e	1312.96	4.98408	YES	YES		
116	e	1312.96	4.98408	YES	YES		
117	b1	1313.72	0.00000	NO	YES		
118	b2	1335.29	0.00000	NO	YES		
119	e	1335.90	1.51351	YES	YES		
120	e	1335.90	1.51349	YES	YES		
121	a1	1337.46	0.00000	NO	YES		
122	b2	1355.66	0.00000	NO	YES		
123	e	1355.75	2.06812	YES	YES		
124	e	1355.75	2.06812	YES	YES		
125	a1	1355.91	0.00000	NO	YES		
126	a2	1387.93	52.11094	YES	NO		
127	e	1389.90	23.87481	YES	YES		
128	e	1389.90	23.87479	YES	YES		
129	b1	1393.96	0.00000	NO	YES		
130	b2	1412.76	0.00000	YES	YES		
131	e	1416.44	2.13281	YES	YES		
132	e	1416.44	2.13235	YES	YES		
133	b1	1420.12	0.00000	NO	YES		
134	e	1430.83	0.77514	YES	YES		
135	e	1430.83	0.77492	YES	YES		
136	b2	1431.20	0.00000	YES	YES		
137	b2	1432.09	19.90005	YES	YES		
138	e	1433.86	19.90027	YES	YES		
139	e	1433.86	19.90027	YES	YES		
140	b1	1434.48	0.00000	NO	YES		
141	b1	1436.01	0.00000	NO	YES		
142	b2	1438.42	1.32310	YES	YES		
143	e	1439.34	14.58727	YES	YES		
---	---	---	---	---	---	---	---
144	e	1439.34	14.58390	YES	YES		
145	b1	1439.91	0.00000	NO	YES		
146	e	1443.21	17.02467	YES	YES		
147	e	1443.21	17.02179	YES	YES		
148	b2	1443.53	0.00000	YES	YES		
149	a2	1444.97	27.94135	YES	NO		
150	b1	1446.97	0.00000	NO	YES		
151	e	1449.94	18.02009	YES	YES		
152	e	1449.94	18.02041	YES	YES		
153	b1	1451.87	0.00000	NO	YES		
154	a1	1565.21	0.00000	NO	YES		
155	e	1565.21	0.19988	YES	YES		
156	e	1565.21	0.19988	YES	YES		
157	b2	1565.42	0.00000	NO	YES		
158	b1	2945.56	0.00000	NO	YES		
159	e	2945.63	132.49318	YES	YES		
160	e	2945.63	132.40175	YES	YES		
161	e	2945.96	114.90942	YES	YES		
162	e	2945.96	114.81870	YES	YES		
163	b2	2946.01	0.00000	YES	YES		
164	b2	2946.97	3.16299	YES	YES		
165	b1	2947.20	0.00000	NO	YES		
166	b1	3036.45	0.00000	NO	YES		
167	e	3036.46	17.09725	YES	YES		
168	e	3036.46	17.09616	YES	YES		
169	b1	3037.16	0.00000	NO	YES		
170	e	3038.05	58.80697	YES	YES		
171	e	3038.05	58.80572	YES	YES		
172	b2	3038.17	0.00000	YES	YES		
173	b2	3038.34	0.50627	YES	YES		
174	e	3055.65	0.00026	YES	YES		
175	e	3055.65	0.00024	YES	YES		
176	b2	3055.87	0.00000	YES	YES		
177	b1	3056.17	0.00000	NO	YES		
178	e	3056.73	40.20873	YES	YES		
179	e	3056.73	40.20923	YES	YES		
180	b2	3058.01	127.11637	YES	YES		
181	b1	3058.79	0.00000	NO	YES		
182	a2	3173.17	0.82248	YES	NO		
183	e	3173.17	0.59332	YES	YES		
184	e	3173.17	0.59331	YES	YES		
185	b1	3173.17	0.00000	NO	YES		
186	b2	3193.50	0.00000	NO	YES		
187	e	3193.50	1.27037	YES	YES		
188	e	3193.50	1.27037	YES	YES		
189	a1	3193.52	0.00000	NO	YES		
VI. References

[1] S. Gardner, T. Kawamoto, D. P. Curran, J. Org. Chem. 2015, 80, 9794-9797.

[2] a) L. Hintermann, Beilstein J. Org. Chem. 2007, 3, No. 22; b) P. Tang, W. Wang, T. Ritter, J. Am. Chem. Soc. 2011, 133, 11482-11484.

[3] W. Desens, C. Kohrt, A. Spannenberg, T. Werner, Org. Chem. Front. 2016, 3, 156-164.

[4] a) W. Chen, F. Liu, J. Organomet. Chem. 2003, 673, 5-12; b) P. de Frémont, N. M. Scott, E. D. Stevens, T. Ramnial, O. C. Lightbody, C. L. B. Macdonald, J. A. C. Clyburne, C. D. Abernethy, S. P. Nolan, Organometallics 2005, 24, 6301-6309.

[5] a) G. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv. 2008, 64, 112-122; b) G. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.

[6] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.

[7] a) J. P. Perdew, Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 8822-8824; b) A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098-3100.

[8] TURBOMOLE Version 7.4, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH since 2007.