New Approach for the Synthesis of Aryloxy 1,3-Oxazines

Ghufran T Sadeek1, Mohammad S Al-Ajely2* and Neim H Saleem3

1,2Chemistry Dept. College of Education of pure science, Mosul university-Iraq
3Chemistry Dept. College of Education for Girls, Mosul university-Iraq

ABSTRACT

Oxazine compounds have drawn the attention of many researchers to find different approaches to the synthesis of this type of compounds according to the success of their use in a wide range of pharmaceutical application during the last decades. It is also for the difference reactivity of these analogues is exhaustively depicted and illustrates the rich versatility of this class of starting material. They proved to have most of actions of a combination of other drugs. We are herein investigate the synthesis of ethyl arloxy acetate(S1-6) from the reaction of the corresponding ethyl bromo acetate with aryl phenols. These intermediates were cyclized with anthranilic acid affording the titled compounds.

*Corresponding author
Mohammad S Al-Ajely, Chemistry Dept. College of Education for Girls, Mosul university-Iraq; E-mail: mohammadajelelee@yahoo.com

Received: November 18, 2020; Accepted: November 27, 2020; Published: November 30, 2020

Keywords: New, Approach, Aroyloxy, Oxazines

Introduction

The chemistry of Oxazine becomes an important branch of heterocyclic compounds not just as synthetic intermediates but also due to the wide spectrum application of this type of compounds in medicine. There are many routes for their preparation were employed some of them from malonyl chloride, Ethyl salicylate other methods of synthesis such as the work of N.R Taati et al., from the condensation of 3-amino propanol with carboxylic acids under solvent free condition. Nadeem Siddiquia and his co-workers have reviewed the synthesis of some 1,3-oxazines from the condensation of different types of phenols such as hydroquinone, sulfone scaffold, Chavicol, Eugino l, Cardanol as well as salicylic acid with different amines in presence of formaldehyde and studied the biological activity of the synthesized compounds. Ahmed El-Mekabaty in 2013 have reviewed versatile methods for oxazine synthesis from anthranilic acid and its derivatives. Sayaji and Pravina B. Piste have reported the preparation of some 1,3-oxazine compounds from phenols and aromatic aldehydes in methanolic ammonia and have studied their anti-microbial activity against two gram positive and two gram negative bacteria. Antifungal activity was screened against Candida albicans, Aspergillus niger. Some other researchers have cyclized chalcones into 1,3-oxazines using fly-ash and other catalysts. They also studied their antimicrobial activities. Against gram negative bacteria. Chaitra G and Rohini RM have also synthesized 1,3-oxazine compounds from pyridyl chalcones and studied their Anti-Oxidant and Anti-Inflammatory activity [1-10]. Among the other medical application of the oxazine compounds is the work of Vashundhra Sharma and his coworkers in synthesis and anticancer study of 2-oxo-benzo oxazines [1,4,11]. JC Wouter, de Bruijn a and his coworkers have studied the drug designing of 1,4-oxazines and found that their possible multitarget mechanism of the studied compounds as anti-inflammatory drug through quantitative structure-activity relationships (QSAR) [12]. Dadmohammad and his coworker have reported a green and efficient method for the synthesis of 1,3 oxazine compounds from aryl chloride and hydroxyl naphthaquinone in presence of ammonium thiocyanate at ambient temperature, In 1919-2020 researchers studied the synthesis of 1,3-oxazines and their human DNA topoisomerase I inhibitory potentials [13,14]. Recently Seyed Gholamhossein Mansouri et-al have synthesized naptho[1,2-e] [1,3]oxazines and studied their anticancer and antifungal activity [15]. According to the above utility and applications of this type of heterocyclic compounds and in continuing of our current drug discovery program we have synthesize new 1,3- oxazine derivatives using new route of condensation protocol [16-18].

Experimental

All melting points were uncorrected using thermal SMP30 UK melting point apparatus. IR spectra were recorded using Alpha (ATR) instrument. 1H NMR spectra were recorded using Varian Agilent 499.53MHZ instrument, DMSO as internal solvent. All chemical were supplied by sigma –Aldrich, BHD and Fluka companies.

Synthesis of Ethyl Substituted Aryloxy Acetate(S1-6)

Using an elsewhere similar procedure of preparation of 1, 3, 4-oxadiazole Derivatives, A mixture of any indicated phenols (1mmol), ethyl bromoacetate (0.122g, 1mmol) and anhydrous potassium carbonate (0.55g,4mmol) in 30 ml of dry acetone was refluxed for 20 h. the reaction mixture was evaporated under reduced pressure, The residue was dissolved in water. The final solution was extracted with ether, The ether extract was then dried over sodium sulphate anhydrous and filtered off [19]. Evaporation of the solution afforded the crude product which was crystallized from ethanol. Table(1) below shows the physical properties of the titled compounds.
Table 1: The Physical Properties of Compounds (S₁₋₆)

Comp. No.	X = Phenol	Molecular Formula	M.Wt (gm/mol)	M.P. (°C)	Yield (%)	Colour
S₁	![Phenol](image)	C₁₄H₁₀O₃	230	64-65	75	white
S₂	![Phenol](image)	C₁₅H₁₃NO₃	231	50-52	60	orange
S₃	![Phenol](image)	C₁₁H₉O₃	210	Colorless oil	56	Brown
S₄	![Phenol](image)	C₁₄H₁₀O₃	230	Colorless oil	52	yellow
S₅	![Phenol](image)	C₁₀H₇NO₃	225	Colorless oil	56	brown
S₆	![Phenol](image)	C₁₅H₁₀NO₃	225	Colorless oil	60	brown

Synthesis of 2-Aryloxy Methyl-3,1-Benzoxazine-4-One (S₇₋₁₂)

Similar published procedure was used for the synthesis of the above compounds [20]. So a quimolar amounts of anthranilic acid (0.13g,1mmol) and (S₁₋₆),(1mmol) were heated at (110 °C) on sand bath for 5 hs. The reaction mixture was then treated by addition of 20 ml. ethanol. The crude precipitated product was filtered off and was then crystallized from petroleum ether (60-80) Table(2) below shows the physical properties of the synthesized compounds.

Table 2: Physical Properties of Compounds (S₇₋₁₂)

Comp. No.	PHENOLS	Molecular Formula	M.Wt (gm/mol)	M.P. (°C)	Yield (%)	Colour
S₇	![Phenol](image)	C₁₆H₁₃NO₄	283	127-128	61	Brown
S₈	![Phenol](image)	C₁₈H₁₂N₂O₃	304	68-69	56	yellow
S₉	![Phenol](image)	C₁₉H₁₃NO₃	303	127	66	brown
S₁₀	![Phenol](image)	C₁₉H₁₃NO₃	303	84-86	56	brown
S₁₁	![Phenol](image)	C₁₅H₁₀N₂O₃	298	123-124	61	purple
S₁₂	![Phenol](image)	C₁₅H₁₀N₂O₃	298	110-111	57	brown
Results and Discussion
Ethyl Substituted Aryloxy Acetate (S_{1-6})

These compounds (Scheme 1) were synthesized using similar reported procedure \(^{102}\), and were characterized by the following main absorption bands (ν_{max} cm$^{-1}$) at (3003-3198) for C-H aromatic, (2835-2971) for C-H aliphatic, (1628-1687) for C=O, (1048-1166) for C-O-C. The other absorption bands were shown in Table (3).

Table 3: IR Spectral Data for Compounds (S_{1-6})

Comp. No.	X = Phenol	C-H Ar	C-H aliph.	C=O	C-O-C	others
S1	![Phenol 1]	3198	2952,2867	1678	1050,1144
S2	![Phenol 2]	3013	2957,2871	1687	1077,1166	C=N 1603
S3	![Phenol 3]	3100	2954,2849	1628	1056,1154
S4	![Phenol 4]	3064	2953,2835	1655	1048,1150
S5	![Phenol 5]	3003	2971,2837	1672	1103,1158	N-O Sym 1259 Asym 1410
S6	![Phenol 6]	3064	2922,2849	1638	1084,1105	N-O Sym 1233 Asym 1387
\(^1\)HNMR for (s\(_2\)) compound as a representative of this series of intermediates showed triplet signal at (2.46 ppm) for CH\(_3\), q. signal at (3.34 ppm) for CH\(_2\) near Oxygen atom, doublet signal (with and opposite side of ring plane) resonated at (6.72-6.74 ppm) for CH\(_2\) between carbonyl group and Oxygen atom while quinolone ring protons appeared at (7.05, 7.13, 8.22, 8.91 ppm)

2-Aryloxy Methyl-3,1-Benzoxazine-4-One (S\(_{7-12}\))

These compounds (Scheme 1) were synthesized using similar reported procedure as it was mentioned in the experimental part. They are characterized by the following main absorption bands (\(\nu_{\text{max}} \text{ cm}^{-1}\)) at (1045-1145) for C-O-C, (1452-1650) for C=C aromatic, (1650-1684) for C=N, (1684-1711) for C=O Table 4 showed the details of all compounds spectral data below:

Comp. No.	X = Phenols compounds	IR \(\nu \text{ cm}^{-1}\)		
	C-O	C-N	C=C Ar.	C=O
S\(_7\)	1045,1144	1670	1455,1606	1684
S\(_8\)	1045,1145	1684	1455,1558	1697
S\(_9\)	1078,1118	1663	1465,1599	1705
S\(_{10}\)	1040,1146	1679	1468,1586	1696
S\(_{11}\)	1071,1145	1650	1451,1650	1711
	1050,1127	1687	1453,1590	1684

Some selected compounds (S\(_8\)) as representative of this series were studied and revealed the following NMR results. Their proton assignment were referred to the carbon number of the aromatic rings as shown below:

\(^1\)HNMR for Individual Compounds were As Follow:

Como.no.	Structure compounds	\(^1\)HNMR (PPM) DMSO-d6
S\(_8\)	![Structure](image)	5.18 (s,2H)CH\(_2\)-O ;(7.04-7.05) (d,2H,C\(_{12},C\(_{13}\)-H) ; (7.34-7.53)(t,2H,C\(_{14}-C\(_{15}\)-H) ; (7.60-7.78) (m,2H,C\(_{17},C\(_{18}\)-H) ; (7.87-7.89) (m,1H,C\(_{14}-H) ; (8.04-8.05) (m,1H,C\(_{11}-H) ; 8.65 (m,1H,C\(_{21}-H)
S\(_{10}\)	![Structure](image)	5.23 (s,2H) CH\(_2\)-O ;(7.0 -7.02) (d,2H,C\(_{12},C\(_{13}\)-H) ; (7.31-7.53) (m,1H,C\(_{13}-C\(_{14}\)-H) ; (7.64-7.68)(m,3H,C\(_{13},C\(_{14},C\(_{15}\)-H) ; (7.73-7.69) (m,2H,C\(_{17},C\(_{18}\)-H) ; (7.74-7.75) (m, 1H,C\(_{16}-H)
Acknowledgments
The authors would like to appreciate the Ministry of higher Education and research for offering Ghufran T. Sadeek a scholarship and providing the facility to this work which apart of her PhD. Thesis.

References
1. Al-Ajely MS, Ali JM, Al-Rawi, Elvidge JA (1982) Heterocyclic syntheses with malonyl dichloride. Part 13. 6-Chloro-4-hydroxy-2-oxopyran-3-carboxanilides from N-sulphynylanilines and further reactions of malonyl dichloride with thioacetanates. Journal of the Chemical Society Perkin Transact 1: 1575.
2. Al-Ajelyand MS, Bashier HA (2007) Synthesis of Some Substituted Pyrano 1, 3-oxazin. Iraqi National Journal of Chemistry 28: 695-703.
3. Al-Ajely MS (2013) Synthesis and Antiplatelet of 2-(ethyl amino acid esters), Amino pyridyl 1,3-oxazine8). J of advance in Chemistry 2: 91.
4. Taati MR, M Mamaghani, Mahmoodi NO, A Oghmani-far (2009) A Simple Access to the Synthesis of 5,6-Dihydro-4H-1,3-Oxazines Under Solvent-Free Conditions and Microwave Irradiation, Transactions C. Chemistry and Chemical Engineering 16: 17-21.
5. Nadeem Siddiquia, Ruhi Alia, M Shamsher Alama, Waqar Ahsana (2010) Pharmacological Profile of Benzoaxazines. J Chem Pharm Res 2: 309-316.
6. A El-Mekabaty (2013) Chemistry of 4H-3,1-Benzoxazines. J Modern Organic Chemistry 2: 81-121.
7. S Sayaji, Didwagh, B Pravina, Piste (2013) Novel one - pot Synthesis and Antimicrobial Activity of 6-chloro-2,4-diphenyl 3,4-dihydro-2H-1,3-benzoaxine derivatives. International Journal of Chem Tech Research 5: 2199-2203.
8. G Thirunarayanan, R Sundararajan, R Arulkumaran (2013) Aryl Chalcones as Efficient Precursors for DerivingOxazine: Solvent-free Synthesis and Antimicrobial Activities of some Oxazine-2-arnines. International Letters of Chemistry, Physics and Astronomy 23: 82-97.
9. S Sayaji, Didwagh, B Pravina, Piste (2013) green synthesis of thiazine and oxazine derivatives - a short review. International Journal of Pharmaceutical Sciences and Research 4: 2045-2061.
10. Chaitra G and Rohini RM (2018) Synthesis of 1, 3-Oxazine derivative from Chalcone and Screening for their Anti-Oxi-
dant and Anti-Inflammatory activity. International Research Journal of Pharmaceutical and Biosciences 4: 19-27.
11. V Sharma, K Pradeep, Jaiswal, Mukesraran, Dhemendra Kumar Yadav, et al. (2018) Discovery of C-3 Tethered 2-oxo-
benzo[1,4]oxazines as Potent Antioxidants ;Bio inspired Based Design, Synthesis, Biological evaluation, Cytotoxic and in Silico molecular docking studies. Frontiures in chemistry 6: 56.
12. Wouter JC, Bruijna DE, Jos A Hagemanb, Carla Araya-Clout-
iera, Harry Gruppena, et al. (2018) QSAR of 1, 4-benzoax-
zine-3-one antimicrobials and their drug design perspectives. Bioorganic & Medicinal Chemistry 26: 6105-6114.
13. Dadmohammad Balouchzehi, Alireza Hassanabadi (2019) Synthesis of 2-Aryl-4-Thiioxo-4H-Naphtho [2,3-e] [1,3]Ox-
azine-5,10-Dione under Solvent-Free Conditions at Ambient Temperature. The Journal of the International Society for Polycyclic Aromatic Compounds.
14. Egemen Foto, Çigdem Özen, Fatma Zilifd, Betül, Tekiner-
Gülbaşİlkay Yıldı, et al. (2020) Benzoxazines as new human topoisomerase I inhibitors and potential poisons. DARU Journal of Pharmaceutical Sciences 28: 65-73.
15. Seyed Gholamhossein Mansouri, Hassan Zali-Boeini, Kamiar Zomorodian, Bahman Khalvati, Razie Helali Pargali, et al. (2020) Arabian Journal of Chemistry 13: 1271-1282.
16. Shaban IM, Mohammad S Al-Jelly (2019) Synthesis of Some Heterocyclic Compounds Derivedfrom Furfural Using Ultrasonic Waves. Bio medical J of scientific and Technical research 22: 16300-16305.
17. Sadeek GT, AlAjely MS, Saleem NH (2020) Synthesis of some oxazine compounds derived from phenols & 8-hydroxy quinolone. Solid State Technology 63: 3179-3192.
18. Al-Ajely MS, Noori AM (2020) An Efficient and Solvent Free Synthesis of N-Aryl2,3-Dihydro-4H naphtho-[2,1-c] 1,3-oxazines. Bio medical J of scientific and Technical research 29: 22510-22516.
19. P Panneerselvam, Ganesh GG (2011), Synthesis and Anti-
Microbial Screening of Some Novel 2, 5-Disubstituted 1,3-
Oxazin-3-one antimicrobials and their drug design perspectives. DARU Journal of Pharmaceutical Sciences 28: 65-73.
20. Mohamed SF, M Youssef, Abd El-Galil E Amr, Kotb ER (2008) Antimicrobial Activities of Some Synthesized Pyri-
dines, Oxazines and Thiazoles from 3-Aryl-1-(2-naphthyl-
prop-2-en-1-one). Scientia Pharmaceutica 76: 279-303.