The complete chloroplast genome sequence of *Quercus sessilifolia* Blume (Fagaceae)

Shuifei Chen, Wenwen Zhang, Yao Li, Xiaomin Ge, Xu Zhou, Yaping Hu and Hui Ding

Research Center for Biodiversity Conservation and Biosafety/State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Wuyi Mountains/Biodiversity Comprehensive Observation Station for Wuyi Mountains/State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China

ABSTRACT

Quercus sessilifolia Blume is one of the dominant tree species in East Asian evergreen broadleaved forests. In this study, we assembled and characterized the plastome of *Q. sessilifolia* using Illumina paired-end data. The circular genome is 160,813 bp in size, consisting of two copies of inverted repeat (IR) regions of 25,862 bp, one large single-copy (LSC) region of 90,218 bp, and one small single-copy (SSC) region of 18,871 bp. It encodes a total of 113 unique genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic analysis based on 28 chloroplast genome sequences indicated that *Q. sessilifolia* was most closely related to *Q. myrsinifolia* with 90% bootstrap support.

ARTICLE HISTORY

Received 8 August 2021
Accepted 8 December 2021

KEYWORDS

Chloroplast genome; Fagaceae; phylogeny; *Quercus sessilifolia*
2018) was utilized to recognize locally collinear blocks among cp genomes and excavate phylogeny informative regions. Five locally collinear blocks were identified and a matrix of 99,249 bp was generated. Node support was assessed by using 1,000 fast bootstrap replicates. Our results indicated that *Q. sessilifolia* was among the members of *Quercus* section *Cyclobalanopsis*, and was most closely related to *Q. myrsinifolia* with 90% bootstrap support (Figure 1).

Disclosure statement

No potential conflict of interest was reported by the authors.

Author contributions

H.D. conceived the research; S.C. collected samples; S.C., W.Z., Y.L., X.G., X.Z., and Y.H. analyzed and interpreted data; S.C. wrote the manuscript; H.D., W.Z., and Y.L. revised the manuscript. All authors approved the final version of the article and agreed to be accountable for all aspects of the work.

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/ under the accession no. MZ382817. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA739391, SRR14866431, and SAMN19782876, respectively.

Funding

The work was supported by the Basic Scientific Research Funds Programs in the National Public Welfare Research Institutes of China [GYZX200203, 210503], the Biodiversity Investigation, Observation and Assessment Program [2019-2023] of Ministry of Ecology and Environment of China, the China Postdoctoral Science Foundation [2020M681629], the Jiangsu Postdoctoral Research Funding Program [2021K038A], and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

ORCID

Yao Li
http://orcid.org/0000-0001-8081-3703

References

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prijibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.

Bi G, Mao Y, Xing Q, Cao M. 2018. HomBlocks: a multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching. Genomics. 110(1):18–22.

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. 2011. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 27(4):578–579.

Deng M, Jiang XL, Hipp AL, Manos PS, Hahn M. 2018. Phylogeny and biogeography of East Asian evergreen oaks (*Quercus* section *Cyclobalanopsis*; Fagaceae): insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol Phylogenet Evol. 119:170–181.

Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus. 12(13):39–40.

Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 11:119.

Johnson LS, Eddy SR, Portugal E. 2010. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics. 11:43.
Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32(1): 11–16.

Nadalin F, Vezzi F, Policriti A. 2012. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinf. 13(S14):S8.

Silvestro D, Michalak I. 2012. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. 12(4):335–337.

Tamaki I, Okada M. 2014. Genetic admixing of two evergreen oaks, Quercus acuta and Q. sessilifolia (subgenus Cyclobalanopsis), is the result of interspecific introgressive hybridization. Tree Genet Genomes. 10(4):989–999.