Stable Simplex Spline Bases for C^3 Quintics on the Powell–Sabin 12-Split

Tom Lyche1 · Georg Muntingh2

Received: 12 May 2015 / Revised: 28 January 2016 / Accepted: 18 February 2016 / Published online: 8 April 2016 © Springer Science+Business Media New York 2016

Abstract For the space of C^3 quintics on the Powell–Sabin 12-split of a triangle, we determine explicitly the six symmetric simplex spline bases that reduce to a B-spline basis on each edge and have a positive partition of unity, a Marsden identity that splits into real linear factors, and an intuitive domain mesh. The bases are stable in the L_∞ norm with a condition number independent of the geometry and have a well-conditioned Lagrange interpolant at the domain points and a quasi-interpolant with local approximation order 6. We show an h^2 bound for the distance between the control points and the values of a spline at the corresponding domain points. For one of these bases, we derive C^0, C^1, C^2, and C^3 conditions on the control points of two splines on adjacent macrotriangles.

Keywords Stable basis · Powell–Sabin 12-Split · Simplex splines · Marsden identity · Quasi-interpolation

Mathematics Subject Classification 41A15 · 65D07 · 65D17

Communicated by Larry L. Schumaker.

Georg Muntingh
georg.muntingh@sintef.no

Tom Lyche
tom@math.uio.no

1 Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway
2 Department of Applied Mathematics, SINTEF ICT, P.O. Box 124, Blindern, 0314 Oslo, Norway
1 Introduction

Piecewise polynomials or splines defined over triangulations form an indispensable tool in the sciences, with applications ranging from scattered data fitting to finding numerical solutions to partial differential equations. See [3,14] for comprehensive monographs.

In applications like geometric modelling [4] and solving PDEs by isogeometric methods [6], one often desires a low-degree spline with C^1, C^2, or C^3 smoothness. For a general triangulation, it was shown in Theorem 1.(ii) of [30] that the minimal degree of a triangular C^r element is $4r + 1$, e.g., degrees 5, 9, 13 for the classes C^1, C^2, C^3. To obtain smooth splines of lower degree, one can split each triangle in the triangulation into several subtriangles.

One such split is the Powell–Sabin 6-split Δ of a triangle \triangle, which has been used for the construction of B-spline-like bases over arbitrary triangulations [8,26,28]. These bases form a nonnegative partition of unity, admit a Marsden identity, and yield stable quasi-interpolants [15,29]. Moreover, by imposing local C^3 smoothness across the interior edges of Δ, the quintic spline space can be reduced while maintaining the approximation order [1,27].

In this paper, we instead focus on the Powell–Sabin 12-split Δ; see Fig. 2. This split is suitable for the construction of simplex splines, as it is the complete graph of the vertices and midpoints of a triangle. Similar to the 6-split, global C^1 smoothness can be obtained with degree only 2 [20], and C^2 smoothness with degree only 5 [13,16,24] on any (planar) triangulation.

Once a space is chosen, one determines its dimension. The space S^1_2 and S^3_3 of C^1 quadratics and C^3 quintics on the 12-split of a single triangle have dimension 12 and 39, respectively. For a general triangulation T of a polygonal domain, we can replace each triangle in T by its 12-split, obtaining a refined triangulation T_{12}. The dimensions of the corresponding C^1 quadratic and C^2 quintic spaces (the latter with C^3 supersmoothness at the vertices of T and interior edges of the 12-split of each triangle in T) are $3|V| + |E|$ and $10|V| + 3|E|$, where $|V|$ and $|E|$ are the number of vertices and edges in T. Moreover, in addition to providing C^1 and C^2 spaces on any triangulation, these spaces are suitable for multiresolution analysis [7,9,16,19].

For a general smoothness, degree, and triangulation, it is a hard problem to find a basis of the corresponding spline space with all the usual properties of the univariate B-spline basis. One reason is that it is difficult to find a single recipe for the various valences and topologies of the triangulations. In [5], a basis, called the (quadratic) S-basis, was constructed for the C^1 quadratics on the Powell–Sabin 12-split on one triangle. The S-basis consists of simplex splines [17,21] and has all the usual properties of univariate B-splines, including a recurrence relation down to piecewise linear polynomials and a Marsden identity. Moreover, analogously to the Bernstein–Bézier case, C^0 and C^1 smoothness conditions were given, tying the S-bases on neighboring triangles together to give C^1 smoothness on the refined triangulation T_{12}.

In the next section, we recall some background on splines and the 12-split. Section 3 introduces dimension formulas for spline spaces on the 12-split. In Sect. 4, some basic properties of simplex splines are recalled, after which an exhaustive list is derived of
the C^3 quintic simplex splines on the 12-split that reduce to a B-spline on the boundary. Section 5 introduces a barycentric form of the Marsden identity and describes how the dual basis in [16] can be applied to find the simplex spline bases of S^3_5 satisfying a Marsden identity. Making use of the computer algebra system Sage [22], these techniques are applied in Sect. 6 to discover six symmetric simplex spline bases that reduce to a B-spline basis on each boundary edge and have a positive partition of unity, a Marsden identity, and domain points with an intuitive control mesh and unisolvent for S^3_5. The concise and coordinate independent form of the barycentric Marsden identity makes it possible to state these results in Table 3. Analogously to the Bernstein–Bézier case, we find C^0, C^1, C^2, and even C^3 conditions for one of these bases, tying its splines together on a general triangulation. One of the latter smoothness conditions involves just the control points in a single triangle and the geometry of the neighboring triangles, showing that C^3 smoothness using S^3_5 cannot be achieved on a general refined triangulation T_{12}. Finally, a conversion to the Hermite nodal basis from [16] is provided.

2 Background

2.1 Notation

On a triangulation T of a polygonal domain $\Omega \subset \mathbb{R}^2$, we define the spline spaces

$$S^r_d(T) := \{ f \in C^r(\Omega) : f|_\Delta \in \Pi_d \ \forall \Delta \in T \}, \quad r, d \in \mathbb{Z}, \ r \geq -1, \ d \geq 0,$$

where Π_d is the space of bivariate polynomials of total degree at most d. With the convention $\Pi_d := \emptyset$ and $\dim \Pi_d := 0$ if $d < 0$, one has

$$\dim \Pi_d = \frac{1}{2} (d + 2)(d + 1)_+, \quad d \in \mathbb{Z},$$

where $z_+ := \max\{0, z\}$ for any real number z.

Any point x in a nondegenerate triangle $[v_1, v_2, v_3]$ can be represented by its barycentric coordinates $(\beta_1, \beta_2, \beta_3)$, which are uniquely defined by $x = \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3$ and $\beta_1 + \beta_2 + \beta_3 = 1$. Similarly, each vector u is uniquely described by its directional coordinates, i.e., the triple $(\beta_1' - \beta_1, \beta_2' - \beta_2, \beta_3' - \beta_3)$ with $(\beta_1, \beta_2, \beta_3)$ and $(\beta_1', \beta_2', \beta_3')$ the barycentric coordinates of two points x and x' such that $u = x - x'$. Sometimes we write x as a linear combination of more than three vertices, in which case these coordinates are no longer unique.

A bivariate polynomial p of total degree d defined on a triangle $\Delta \subset \mathbb{R}^2$ is conveniently represented by its Bézier form

$$p(x) = \sum_{i+j+k=d \atop i,j,k \geq 0} c_{ijk} B_{ijk}^d(x), \quad B_{ijk}^d(x) := \frac{d!}{i!j!k!} \beta_1^i \beta_2^j \beta_3^k,$$
with \((\beta_1, \beta_2, \beta_3)\) the barycentric coordinates of \(x\) with respect to \(\triangle\). Here the \(B^d_{ijk}\) are the Bernstein basis polynomials of degree \(d\), and the coefficients \(c_{ijk}\) are the Bézier ordinates of \(p\). We associate each Bézier ordinate \(c_{ijk}\) ∈ \(\mathbb{R}\) to the domain point \(\xi_{ijk} := i \delta v_1 + j \delta v_2 + k \delta v_3 \in \mathbb{R}^2\) and combine them into the control point \((\xi_{ijk}, c_{ijk})\) ∈ \(\mathbb{R}^3\). By connecting any two domain points \(\xi_{i_1j_1k_1}\) and \(\xi_{i_2j_2k_2}\) by a line segment whenever \(|i_1 - i_2| + |j_1 - j_2| + |k_1 - k_2| = 1\), one arrives at the domain mesh of \(p\); see Fig. 1a. The control mesh is defined similarly by connecting control points.

We consider finite multisets \(K = \{v_1^{m_1} \cdots v_n^{m_n}\} \subset \mathbb{R}^2\), in which the distinct elements \(v_1, \ldots, v_n\) are counted with corresponding multiplicities \(m_1, \ldots, m_n \geq 0\). We write \(|K| := m_1 + \cdots + m_n\) for the total number of elements in \(K\). For any two integers \(i, j\), the Kronecker delta is the symbol

\[
\delta_{ij} := \begin{cases}
1 & \text{if } i = j, \\
0 & \text{otherwise}.
\end{cases}
\]

For any set \(A \subset \mathbb{R}^2\), define the indicator function

\[
1_A : \mathbb{R}^2 \rightarrow \{0, 1\}, \quad 1_A(x) := \begin{cases}
1 & \text{if } x \in A, \\
0 & \text{if } x \notin A.
\end{cases}
\]

2.2 The Powell–Sabin 12-Split

Given a triangle \(\triangle = [v_1, v_2, v_3]\) with vertices \(v_1, v_2, v_3\), we write \(e_1 := [v_2, v_3]\), \(e_2 := [v_3, v_1]\), and \(e_3 := [v_1, v_2]\) for its (nonoriented) edges. Connecting vertices and the edge midpoints \(v_4 := (v_1 + v_2)/2, v_5 := (v_2 + v_3)/2\) and \(v_6 := (v_1 + v_3)/2\), we arrive at the Powell–Sabin 12-split \(\Delta\) of \(\triangle\); see Fig. 2a for the labelling of the vertices \(v_1, \ldots, v_{10}\) and faces \(\triangle_1, \ldots, \triangle_{12}\).

To decide to which face of the 12-split points on the interior edges belong, we follow the convention in [25] shown in Fig. 2b, which can be quickly computed by Algorithm 1.1 in [5]. If \(K\) is a multiset satisfying \(K \subset \{v_1, \ldots, v_{10}\}\) as sets, its convex hull \([K]\) is a union of some of the faces of the 12-split, and we define the half-open convex hull \([K]\) as the union of the corresponding half-open faces depicted in Fig. 2b.

Fig. 1 Domain mesh for the quintic Bézier basis (left), the S-basis from [5] (middle) and the basis \(B_c\) in this paper (right)
2.3 A Basis for the Dual Space of a Space of C^3 Quintics

Let Δ be the 12-split of a triangle \triangle with vertices $V = \{v_1, v_2, v_3\}$ and edges $E = \{[v_1, v_2], [v_2, v_3], [v_3, v_1]\}$. For any edge $e = [v_i, v_j] \in E$ with opposing vertex v_k, let

$$q_{1,e} := \frac{3v_i + v_j}{4}, \quad m_e := \frac{v_i + v_j}{2}, \quad q_{2,e} := \frac{v_i + 3v_j}{4}$$

be its midpoint and quarterpoints. With ε_v the point evaluation at v and D_u the directional derivative in the direction u, let

$$\Lambda := \bigcup_{v \in V} \bigcup_{i,j \geq 0} \{\varepsilon_v D^i_x D^j_y\} \cup \bigcup_{e \in E} \{\varepsilon_{q_{1,e}} D^2_{u_e}, \varepsilon_{m_e} D_{u_e}, \varepsilon_{q_{2,e}} D^2_{u_e}\};$$

see Fig. 3. Here, for every vertex v and edge e, the symbols x_v, y_v are any linearly independent vectors and u_e is any vector not tangent to e, for example, the outside unit normal as shown in Fig. 3. It was shown in [16, Theorem 4] that Λ is a basis for the dual space to $S^3_2(\Delta)$, which therefore has dimension 39.

3 Dimension Formulas

Consider a polygonal domain $\Omega \subset \mathbb{R}^2$ with a triangulation T with sets of vertices V, edges E, faces F, and 12-split refinement T_{12}. Let

$$S^{2,3}_3(T_{12}) := \{s \in S^3_3(T_{12}) : s \in C^3(\triangle), \triangle \in F \text{ and } s \in C^3(v), v \in V\}.$$

Here $s \in C^3(v)$ means that all polynomials $s|_\triangle$ such that \triangle is a triangle with vertex at v have common derivatives up to order three at the point v. Note that if T consists of a single triangle, then $S^{2,3}_3(T_{12}) = S^3_3(T_{12})$.
Fig. 3 A basis for the dual space of $S_3^{2,3}$ on a single triangle.
A bullet represents a point evaluation, three circles represent all derivatives up to order three, and a single and double arrow represent a first- and second-order directional derivative. These derivatives are evaluated at the rear end of the arrows, which are located at the midpoints and quarterpoints.

Since Λ from (1) specifies the value and partial derivatives up to order three at each vertex of T and the value, first- and second-order cross-boundary derivatives at each edge of T, the following theorem is an immediate consequence of [16, Theorem 4].

Theorem 1 For any triangulation T with $|V|$ vertices and $|E|$ edges, the set Λ is a basis for the dual space of $S_3^{2,3}(T_{12})$. In particular,

$$\dim S_3^{2,3}(T_{12}) = 10|V| + 3|E|.$$

Next, let \triangle denote the 12-split triangulation of a single triangle \triangle. For future reference, we state the following formula for the dimension of the space of C^r splines of degree d on \triangle, which is a special case of Theorem 3.1 in [2] (also compare [23]).

Theorem 2 For any integers d, r with $d \geq 0$ and $d \geq r \geq -1,$

$$\dim S_d^r(\triangle) = \frac{1}{2}(r + 1)(r + 2) + \frac{9}{2}(d - r)(d - r + 1)$$
$$+ \frac{3}{2}(d - 2r - 1)(d - 2r) + \sum_{j=1}^{d-r} (r - 2j + 1). \quad (2)$$

To quickly look up $\dim S_d^r(\triangle)$ for small values of r and d, we have listed these first dimensions in Table 1.

4 Simplex Splines

In this section, we first recall the definition and some basic properties of the simplex spline and then proceed to determine the C^3 quintic simplex splines on the 12-split that reduce to a B-spline on the boundary. For a comprehensive account of the theory of simplex splines, see [17,21].
Table 1 Dimensions of \(S_d^r(\triangle) \), with \((r, d) = (3, 5)\) italicised

\(d\)	\(C^{-1}\)	\(C^0\)	\(C^1\)	\(C^2\)	\(C^3\)	\(C^4\)	\(C^5\)	\(C^6\)	\(C^7\)	\(C^8\)	\(C^9\)
\(d = 0\)	12	1									
\(d = 1\)	36	10	3								
\(d = 2\)	72	31	12	6							
\(d = 3\)	120	64	30	16	10						
\(d = 4\)	180	109	60	34	21	15					
\(d = 5\)	252	166	102	61	39	27	21				
\(d = 6\)	336	235	156	100	66	46	34	28			
\(d = 7\)	432	316	222	151	102	73	54	42	36		
\(d = 8\)	540	409	300	214	150	109	81	63	51	45	
\(d = 9\)	660	514	390	289	210	154	117	91	73	61	55

4.1 Definition and Properties

The following definition of the simplex spline is convenient for our purposes.

Definition 1 For any finite multiset \(K = \{v_1^{m_1}, \ldots, v_{10}^{m_{10}}\} \subseteq \mathbb{R}^2 \) composed of vertices of \(\triangle \), the (area normalized) simplex spline \(Q[K] : \mathbb{R}^2 \rightarrow \mathbb{R} \) is recursively defined by

\[
Q[K](x) := \begin{cases}
0 & \text{if area}(K) = 0, \\
1_{|K|}(x) \frac{\text{area}(\triangle)}{\text{area}(K)} & \text{if area}(K) \neq 0 \text{ and } |K| = 3, \\
\sum_{j=1}^{10} \beta_j Q[K\setminus v_j](x) & \text{if area}(K) \neq 0 \text{ and } |K| > 3,
\end{cases}
\]

with \(x = \beta_1 v_1 + \cdots + \beta_{10} v_{10}, \beta_1 + \cdots + \beta_{10} = 1, \) and \(\beta_i = 0 \) whenever \(m_i = 0. \)

By Theorem 4 in [17], this definition is independent of the choice of the \(\beta_j \). It is well known that \(Q[K] \) is a piecewise polynomial with support \([K] \subset \triangle \) and of total degree at most \(|K| - 3 \). One shows by induction on \(|K| \) that \(\int_{\mathbb{R}^2} Q[K](x) \, dx = \text{area}(\triangle) \cdot (|K|^{-1})^{-1}. \) Although \(M[K] := \text{area}(\triangle)^{-1}(|K|^{-1})^{-1} Q[K] \) has unit integral and is used more frequently, our discussion is simpler in terms of \(Q[K] \).

Whenever \(m_7 = m_8 = m_9 = m_{10} = 0, \) we use the graphical notation

\[
\begin{array}{c}
\includegraphics{example1}
\end{array}
\]

\(:= Q[v_1^i v_2^j v_3^k v_4^l v_5^m v_6^n]. \)

Example 1 The linear S-spline basis in [5] only uses the vertices \(v_1, \ldots, v_6, v_{10}, \) while the quadratic S-spline basis only uses \(v_1, \ldots, v_6. \) It is given by

\[
S_{j,2} = \frac{\text{area}([K_{j,2}])}{6} M[K_{j,2}] = \frac{\text{area}([K_{j,2}])}{\text{area}(\triangle)} Q[K_{j,2}], \quad j = 1, \ldots, 12, \quad (3)
\]
Example 2 If \(K = \{ v_1^{\mu_i+1} v_j^{\mu_j+1} v_k^{\mu_k+1} \} \) has three distinct elements with area\((|K|) > 0\), then, with \((\beta_i, \beta_j, \beta_k)\) the barycentric coordinates of \(x \) with respect to \([v_i, v_j, v_k]\), it follows by induction that

\[
Q[K](x) = 1_{[K]}(x) \frac{\text{area}(\Delta)}{\text{area}([K])} \frac{(\mu_i + \mu_j + \mu_k)!}{\mu_i!\mu_j!\mu_k!} \beta_{\mu_i}^i \beta_{\mu_j}^j \beta_{\mu_k}^k,
\]

which is, up to a scalar, a Bernstein polynomial on \([K]\).

Continuity For any edge \(e \) of \(\Delta \), if \(K \) has at most \(m \) knots (counting multiplicities) along the affine hull of \(e \), then \(Q[K] \) is \(|K| - m - 2\) times continuously differentiable over \(e \). For instance, every \(C^3 \) quintic simplex spline on \(\Delta \) has at most three knots along the affine hull of any interior edge \(e \).

Differentiation Let \(K = \{ v_1^{m_1} \cdots v_{10}^{m_{10}} \} \) be a finite multiset. If \(u = \alpha_1 v_1 + \cdots + \alpha_{10} v_{10} \) is such that \(\alpha_1 + \cdots + \alpha_{10} = 0 \) and \(\alpha_j = 0 \) whenever \(m_j = 0 \), then one has a differentiation formula

\[
D_u Q[K] = (|K| - 3) \sum_{j=1}^{10} \alpha_j Q[K\setminus v_j].
\]

Knot insertion If \(y = \beta_1 v_1 + \cdots + \beta_{10} v_{10} \) is such that \(\beta_1 + \cdots + \beta_{10} = 1 \) and \(\beta_j = 0 \) whenever \(m_j = 0 \), then one has a knot insertion formula

\[
Q[K] = \sum_{j=1}^{10} \beta_j Q[(K \sqcup y) \setminus v_j].
\]

For instance, if \(v_1, v_2 \in K \), then, since \(v_4 = \frac{1}{2} v_1 + \frac{1}{2} v_2 \),

\[
Q[K] = \frac{1}{2} Q[(K \sqcup v_4) \setminus v_1] + \frac{1}{2} Q[(K \sqcup v_4) \setminus v_2],
\]

and, for example,

\[
\begin{align*}
\begin{array}{c}
\text{8. Constr Approx (2017) 45:1–32}
\end{array}
\end{align*}
\]
Restriction to an edge

Let \(e = [v_i, v_k] \) be an edge of \(\triangle \) with midpoint \(v_j \), and let \(\varphi_{ik}(t) := (1 - t)v_i + tv_k \). By induction on \(|K| \),

\[
Q[K] \circ \varphi_{ik}(t) = \begin{cases}
0 & \text{if } m_i + m_j + m_k < |K| - 1, \\
\frac{\text{area}(\triangle)}{\text{area}(K)} B(t) & \text{if } m_i + m_j + m_k = |K| - 1,
\end{cases}
\]

where \(B \) is the univariate B-spline with knot multiset \(\{0^{m_i} 0.5^{m_j} 1^{m_k}\} \).

We say that \(Q[K] \) reduces to a B-spline on the boundary when \(B \) is one of the consecutive univariate quintic B-splines \(B_1^5, \ldots, B_8^5 \) on the open knot multiset \(\{0^6 0.5^2 1^6\} \); see Table 5. Similarly, a basis \(\mathcal{B} = \{S_1, \ldots, S_{39}\} \) of \(S_3^3(\triangle) \) reduces to a B-spline basis on the boundary when

\[
\{S_1 \circ \varphi_{ik}, \ldots, S_{39} \circ \varphi_{ik}\} = \{(B_1^5)^1 \cdots (B_8^5)^1 0^{31}\}, \quad 1 \leq i < k \leq 3,
\]

as multisets. This scaling of \(\mathcal{B} \) ensures simple \(C^0 \) conditions for connecting two adjacent patches expressed in terms of \(\mathcal{B} \).

Symmetries
The dihedral group \(S_3 \) of the equilateral triangle consists of the identity, two rotations, and three reflections, i.e.,

\[
\begin{align*}
3 & \rightarrow 2 \rightarrow 1 \rightarrow 3, \\
2 & \rightarrow 3 \rightarrow 1 \rightarrow 2, \\
1 & \rightarrow 1 \rightarrow 1 \rightarrow 1.
\end{align*}
\]

The affine bijection sending \(v_k \) to \((\cos(2\pi k/3), \sin(2\pi k/3)) \), for \(k = 1, 2, 3 \), maps \(\triangle \) to the 12-split of an equilateral triangle. Through this correspondence, the dihedral group permutes the vertices \(v_1, \ldots, v_{10} \) of \(\triangle \). Every such permutation \(\sigma \) induces a bijection \(Q[v_1^{m_1} \cdots v_{10}^{m_{10}}] \mapsto Q[\sigma(v_1)^{m_1} \cdots \sigma(v_{10})^{m_{10}}] \) on the set of all simplex splines on \(\triangle \). For any set \(\mathcal{B} \) of simplex splines, we write

\[
[\mathcal{B}]_{S_3} := \{Q[\sigma(K)] : Q[K] \in \mathcal{B}, \ \sigma \in S_3\}
\]

for the \(S_3 \) equivalence class of \(\mathcal{B} \), i.e., the set of simplex splines related to \(\mathcal{B} \) by a symmetry in \(S_3 \). For example,

\[
\begin{align*}
\begin{bmatrix}
\begin{array}{c}
\text{1} \\
\text{2} \\
\text{3}
\end{array}
\end{bmatrix}
\end{bmatrix}_{S_3} &= \left\{ \begin{array}{c}
\begin{bmatrix}
\text{1} \\
\text{2} \\
\text{3}
\end{bmatrix}, \\
\begin{bmatrix}
\text{2} \\
\text{3} \\
\text{1}
\end{bmatrix}, \\
\begin{bmatrix}
\text{3} \\
\text{1} \\
\text{2}
\end{bmatrix}
\end{array} \right\}, \\
\begin{bmatrix}
\begin{array}{c}
\text{1} \\
\text{2} \\
\text{3}
\end{array}
\end{bmatrix}
\end{bmatrix}_{S_3} &= \left\{ \begin{array}{c}
\begin{bmatrix}
\text{1} \\
\text{2} \\
\text{3}
\end{bmatrix}, \\
\begin{bmatrix}
\text{2} \\
\text{3} \\
\text{1}
\end{bmatrix}, \\
\begin{bmatrix}
\text{3} \\
\text{1} \\
\text{2}
\end{bmatrix}, \\
\begin{bmatrix}
\text{1} \\
\text{3} \\
\text{2}
\end{bmatrix}, \\
\begin{bmatrix}
\text{2} \\
\text{1} \\
\text{3}
\end{bmatrix}, \\
\begin{bmatrix}
\text{3} \\
\text{2} \\
\text{1}
\end{bmatrix}
\end{array} \right\},
\end{align*}
\]

and (4) takes the compact form

\[
\begin{bmatrix}
\begin{array}{c}
\text{1} \\
\text{2} \\
\text{3}
\end{array}
\end{bmatrix}
\end{bmatrix}_{S_3}.
\]
We say that B is S_3-invariant whenever $[B]_{S_3} = B$.

4.2 C^3 Quintic Simplex Splines on the 12-Split

Any simplex spline $Q[K]$ of degree $d = 5$ on \mathbb{A} is specified by a multiset $K = \{v_1^{m_1} \cdots v_{10}^{m_{10}}\}$ satisfying

$$m_1 + m_2 + \cdots + m_{10} = d + 3 = 8. \quad (8)$$

Lemma 1 Suppose a quintic simplex spline $Q[K]$ on \mathbb{A} is of class C^3. Then

$$m_7 = m_8 = m_9 = m_{10} = 0, \quad (9)$$

and

$$m_1 + m_5, \ m_3 + m_4, \ m_2 + m_6, \ m_4 + m_6, \ m_4 + m_5, \ m_5 + m_6 \leq 3, \quad (10)$$

whenever both multiplicities are nonzero.

Proof In the 12-split, certain knot lines do not appear, leading to the conditions

$$m_1m_8 = m_1m_9 = m_8m_9 = 0, \quad m_2m_7 = m_2m_9 = m_7m_9 = 0, \quad m_3m_7 = m_3m_8 = m_7m_8 = 0. \quad (11)$$

To achieve C^3 smoothness over the remaining knot lines, the sum of the multiplicities along each line in the 12-split has to be at most three,

$$m_1 + m_5 + m_7 + m_{10} \leq 3, \quad m_4 + m_6 + m_7 \leq 3, \quad m_2 + m_6 + m_8 + m_{10} \leq 3, \quad m_4 + m_5 + m_8 \leq 3, \quad m_3 + m_4 + m_9 + m_{10} \leq 3, \quad m_5 + m_6 + m_9 \leq 3, \quad (12)$$

whenever the line contains at least two knots with positive multiplicities.

Suppose $m_7 \geq 1$. Then (11) implies $m_2 = m_3 = m_8 = m_9 = 0$, and by (8) and (12), $8 = (m_1 + m_5 + m_7 + m_{10}) + (m_4 + m_6) \leq 3 + 2$, which is a contradiction. It follows that m_7 (and similarly m_8 and m_9) must be equal to zero. Moreover, by (8) and (12), $8 = (m_1 + m_5 + m_7 + m_{10}) + (m_2 + m_6 + m_8 + m_{10}) + (m_3 + m_4 + m_9 + m_{10}) - 2m_{10} \leq 9 - 2m_{10}$. Therefore $m_{10} = 0$ and (9) holds, and (10) follows immediately from (12).

In addition, we demand that $Q[K]$ reduces to a B-spline on the boundary. By (7), if $m_i + m_j + m_k < 7$, then $Q[K]|_e = 0$, and this condition is satisfied. The remaining case $m_i + m_j + m_k = 7$ yields the conditions

\[\text{ Springer} \]
Table 2 The C^3 quintic simplex splines on Δ, one representative for each S_3 equivalence class, that reduce to a B-spline on the boundary

Q^a	Q^b	Q^c	Q^d	Q^e	Q^f	Q^g	Q^h	Q^i	Q^j
![Diagram](image1)	![Diagram](image2)	![Diagram](image3)	![Diagram](image4)	![Diagram](image5)	![Diagram](image6)	![Diagram](image7)	![Diagram](image8)	![Diagram](image9)	![Diagram](image10)
Q^k	Q^l	Q^m	Q^n	Q^o	Q^p	Q^q	Q^r	Q^s	Q^t
![Diagram](image11)	![Diagram](image12)	![Diagram](image13)	![Diagram](image14)	![Diagram](image15)	![Diagram](image16)	![Diagram](image17)	![Diagram](image18)	![Diagram](image19)	![Diagram](image20)

not($m_1 + m_4 + m_2 = 7$ and $m_4 \geq 3$),
not($m_1 + m_4 + m_2 = 7$ and $m_1 \geq 1$ and $m_2 \geq 1$ and $m_4 \neq 2$),
not($m_2 + m_5 + m_3 = 7$ and $m_5 \geq 3$),
not($m_2 + m_5 + m_3 = 7$ and $m_2 \geq 1$ and $m_3 \geq 1$ and $m_5 \neq 2$),
not($m_1 + m_6 + m_3 = 7$ and $m_6 \geq 3$),
not($m_1 + m_6 + m_3 = 7$ and $m_1 \geq 1$ and $m_3 \geq 1$ and $m_6 \neq 2$).

Adding the entries in the second column of (12) and using (9) gives $2m_4 + 2m_5 + 2m_6 \leq 9$, implying, by (8),

$$m_1 + m_2 + m_3 \geq 4, \quad m_4 + m_5 + m_6 \leq 4. \quad (14)$$

Theorem 3 With one representative for each S_3 equivalence class, Table 2 is an exhaustive list of the C^3 quintic simplex splines on Δ that reduce to a B-spline on the boundary.

Proof Recall from (9) that $m_7 = m_8 = m_9 = m_{10} = 0$. We distinguish cases according to the support $[K]$ of $Q[K]$, up to a symmetry in S_3.

Case 0, no corner included, $[K] = [v_4, v_5, v_6]$: By (8), $m_4 + m_5 + m_6 = 8$, so that the sum of two of these multiplicities will be at least 5, contradicting (10). Therefore this case does not occur.

Case 1a, 1 corner included, $[K] = [v_1, v_4, v_6]$: For a positive support $m_1, m_4, m_6 \geq 1$, and since $m_4 + m_6 \leq 3$ by (10), we obtain

$$[Q^a]_{S_3} = \left[\begin{array}{c} 2 \end{array} \right]_{S_3}, \quad [Q^b]_{S_3} = \left[\begin{array}{c} 1 \end{array} \right]_{S_3}.$$

Case 1b, 1 corner included, $[K] = [v_1, v_4, v_5, v_6]$: By (8) and (14), one has $m_1 = 8 - m_4 - m_5 - m_6 \geq 4$, contradicting $m_1 + m_5 \leq 3$ from (10). Therefore this case does not occur.

Case 2a, 2 corners included, $[K] = [v_1, v_2, v_6]$: If $m_4 \in \{0, 1\}$, then $m_6 \geq 2$ by the second line in (13), and since $m_6 \leq 3 - m_2$ by (10), it follows that $m_2 = 1$ and
\(m_6 = 2 \). We obtain
\[
[Q^c]_{s_3} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}_{s_3}, \quad [Q^d]_{s_3} = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}_{s_3}.
\]

If \(m_4 \geq 2 \), then, since \(m_4 + m_6 \leq 3 \) by (10), one has \(m_4 = 2 \) and \(m_6 = 1 \). Since \(m_2 \leq 3 - m_6 = 2 \) by (10), we obtain
\[
[Q^e]_{s_3} = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}_{s_3}, \quad [Q^f]_{s_3} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}_{s_3}.
\]

Case 2b, 2 corners included, \([K] = [v_1, v_2, v_5, v_6] \): Since \(m_5 + m_6 \leq 3 \) by (10), one has \(1 \leq m_5, m_6 \leq 2 \). Suppose \(m_6 = 2 \). Then \(m_2 = m_5 = 1 \) and \(m_4 \leq 1 \) by (10), and \(m_1 + m_5 = 8 - m_2 - m_4 - m_6 \geq 4 \), contradicting (10). We conclude that \(m_6 = 1 \) and similarly that \(m_5 = 1 \). Then \(m_1 + m_2 + m_4 = 8 - m_5 - m_6 = 6 \), and since (10) implies \(m_1, m_2, m_4 \leq 2 \), one obtains
\[
[Q^g]_{s_3} = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}_{s_3}.
\]

Case 3, 3 corners included, \([K] = [v_1, v_2, v_3] \): We distinguish cases for \((m_4, m_5, m_6)\), with \(m_4 \geq m_5 \geq m_6 \), first by \(m_4 \), and then by \(m_4 + m_5 + m_6 \), which is at most 4 by (14).

(0,0,0) One has \(m_1, m_2, m_3 \geq 2 \) by (13), and we obtain
\[
[Q^h]_{s_3} = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}_{s_3}, \quad [Q^i]_{s_3} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}_{s_3}.
\]

(1,0,0) One has \(2 \leq m_3 \leq 3 - m_4 \) by (13) and (10), yielding
\[
[Q^j]_{s_3} = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}_{s_3}, \quad [Q^k]_{s_3} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}_{s_3}.
\]

(1,1,0) One has \(m_1, m_3 \leq 2 \) by (10), yielding
\[
[Q^l]_{s_3} = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}_{s_3}, \quad [Q^m]_{s_3} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}_{s_3}, \quad [Q^n]_{s_3} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}_{s_3}.
\]

(1,1,1) One has \(m_1, m_2, m_3 \leq 2 \) by (10), and we obtain
\[
[Q^o]_{s_3} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}_{s_3}.
\]
(2,0,0) One has $m_3 = 1$ by (10), yielding

\[
[Q^p]_{S_3} = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}_{S_3}, \quad [Q^q]_{S_3} = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}_{S_3}.
\]

(2,1,0) One has $m_3 = 1$ and $m_1 \leq 2$ by (10), yielding

\[
[Q^r]_{S_3} = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}_{S_3}, \quad [Q^s]_{S_3} = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}_{S_3}.
\]

(2,1,1) One has $m_3 = 1$ and $m_1, m_2 \leq 2$ by (10), yielding

\[
[Q^t]_{S_3} = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}_{S_3}.
\]

\[\square\]

5 Simplex Spline Bases for S^3_5

Let Λ as in (1) be a basis of the dual space of $S^3_5(\Delta)$. In this section, we describe a recipe for determining the S_3-invariant simplex spline bases that reduce to a B-spline basis on the boundary, having a positive partition of unity and a Marsden identity with only real linear factors.

5.1 Potential Bases

Of the C^3 quintic simplex splines in Table 2, only

\[Q^a, Q^b, Q^c, Q^e, Q^f, Q^p, Q^q, \]

are nonzero on $[v_1, v_2]$. Any S_3-invariant basis reducing to a B-spline basis on the boundary should therefore contain the S_3 equivalence class of one of the eight possible combinations in the Cartesian product

\[
\left\{ \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \right\} \times \left\{ \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \right\} \times \left\{ \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \right\} \times \left\{ \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \right\}.
\]

This determines $3 + 6 + 6 + 6 = 21$ of the 39 basis elements.

Of the 13 remaining S_3 equivalence classes in Table 2 of simplex splines that are zero on $[v_1, v_2]$, there are 6 of size 3,
For each of the above 8 choices of 21 simplex splines that are nontrivial on the boundary of \(\Delta \), we complete the basis by adding \(S_3 \) equivalence classes with together 18 elements, resulting in

\[
8 \left(\binom{7}{3} + \binom{7}{2} \binom{6}{2} + \binom{7}{1} \binom{6}{4} + \binom{6}{6} \right) = 3648
\]

potential \(S_3 \)-invariant simplex spline bases \(B \) of \(S_3^5 \) that reduce to a B-spline basis on the boundary. One selects the linearly independent sets \(B \) by checking that the collocation-like matrix \(\{ \lambda(Q) \}_{Q \in B, \lambda \in \Lambda} \) has full rank.

5.2 Positive Partition of Unity

Let \(B = \{ Q_1, \ldots, Q_{39} \} \) be an ordered simplex spline basis of \(S_3^5(\Delta) \) that reduces to a B-spline basis on the boundary. We desire that \(B \) has a positive partition of unity, i.e., that there exist weights \(w_1, \ldots, w_{39} > 0 \) for which

\[
\sum_{i=1}^{39} w_i Q_i(x) = 1
\]

holds identically. Applying the functionals in \(\Lambda = \{ \lambda_1, \ldots, \lambda_{39} \} \) yields

\[
\sum_{i=1}^{39} w_i \lambda_j(Q_i) = \lambda_j(1), \quad j = 1, \ldots, 39,
\]

which has a unique solution \((w_1, \ldots, w_{39}) \in \mathbb{R}^{39}\) by the linear independence of \(B \) and \(\Lambda \). One then checks whether the weights \(w_i \) are all positive.
5.3 Marsden Identity

More generally, we would like B to satisfy a Marsden identity

$$(1 + x^T y)^5 = \sum_{i=1}^{39} w_i Q_i(x) \psi_i(y), \quad x \in \Delta, \ y \in \mathbb{R}^2,$$ \hspace{1cm} (16)

for certain dual polynomials ψ_i and dual points $p_{i,r}^*$ of the form

$$\psi_i(y) := \prod_{r=1}^{5} (1 + p_{i,r}^T y), \quad p_{i,r}^* \in \mathbb{R}^2, \ r = 1, \ldots, 5, \ i = 1, \ldots, 39.$$

In particular, one recovers the partition of unity by setting $y = 0$. Similarly, one can generate all other polynomials of degree at most 5. For instance, differentiating (16) with respect to y and evaluating at $y = 0$ yields

$$x = \sum_{i=1}^{39} \xi_i w_i Q_i(x), \quad \xi_i := \frac{1}{5} \nabla \psi_i \bigg|_{y=0} = \frac{p_{i,1}^* + \cdots + p_{i,5}^*}{5},$$ \hspace{1cm} (17)

where ξ_i is the domain point associated with Q_i.

While the Marsden identity (16) is the form commonly encountered in the literature [10, 11], we instead present a barycentric form that is independent of the vertices of the macrotriangle.

Theorem 4 (Barycentric Marsden identity) Let $\beta_j = \beta_j(x), \ j = 1, 2, 3$, be the barycentric coordinates of $x \in \mathbb{R}^2$ with respect to $\Delta = [v_1, v_2, v_3]$. Then (16) is equivalent to

$$(\beta_1 c_1 + \beta_2 c_2 + \beta_3 c_3)^5 = \sum_{i=1}^{39} w_i Q_i(\beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3) \Psi_i(c_1, c_2, c_3),$$ \hspace{1cm} (18)

where $x \in \Delta$, $c_1, c_2, c_3 \in \mathbb{R}$, and, for $i = 1, \ldots, 39$,

$$\Psi_i(c_1, c_2, c_3) := \prod_{r=1}^{5} (\beta_1(p_{i,r}^*)c_1 + \beta_2(p_{i,r}^*)c_2 + \beta_3(p_{i,r}^*)c_3).$$

Proof Let $X_j := (1, v_j)^T \in \mathbb{R}^3$, $j = 1, 2, 3$. Since $\{X_1, X_2, X_3\}$ is linearly independent, there are $Y_i \in \mathbb{R}^3, i = 1, 2, 3$, such that $X_j^T Y_i = \delta_{ij}$. Given $x \in \Delta$ and $c_1, c_2, c_3 \in \mathbb{R}$, we define $X, Y \in \mathbb{R}^3$ by $X := (1, x)^T$ and $Y := (y, y)^T := c_1 Y_1 + c_2 Y_2 + c_3 Y_3$. Since $X = \beta_1(x)X_1 + \beta_2(x)X_2 + \beta_3(x)X_3$,

$$1 + x^T y = X^T Y = \beta_1(x)c_1 + \beta_2(x)c_2 + \beta_3(x)c_3,$$
and in particular with $x = p_{t,r}^*$ and $P_{i,r}^* := (1, p_{i,r}^*)^T$,

$$1 + p_{t,r}^T y = P_{i,r}^T Y = \beta_1(p_{t,r}^*)c_1 + \beta_2(p_{t,r}^*)c_2 + \beta_3(p_{t,r}^*)c_3.$$

It follows that (18) is equivalent to (16). □

For a compact representation of the dual polynomials, we introduce the shorthands (compare Fig. 2a)

$$c_4 := \frac{c_1 + c_2}{2}, \quad c_5 := \frac{c_2 + c_3}{2}, \quad c_6 := \frac{c_1 + c_3}{2},$$

$$c_7 := \frac{c_4 + c_6}{2}, \quad c_8 := \frac{c_4 + c_5}{2}, \quad c_9 := \frac{c_5 + c_6}{2}, \quad c_{10} := \frac{c_1 + c_2 + c_3}{3}. \quad (19)$$

Example 3 The barycentric Marsden identity for the quadratic S-basis in [5, Theorem 3.1] (cf. Example 1) is

$$(c_1, \beta_1 + c_2 \beta_2 + c_3 \beta_3)^2 = \left(c_1 \begin{array}{c} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{array} + c_2 \begin{array}{c} \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{array} + c_3 \begin{array}{c} \alpha_7 \\ \alpha_8 \\ \alpha_9 \end{array} \right)^2$$

$$= \begin{array}{c} \frac{1}{4} c_1^2 \begin{array}{c} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{array} + \frac{3}{4} c_4 c_{10} \begin{array}{c} \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{array} + \frac{1}{2} c_1 c_4 \begin{array}{c} \alpha_7 \\ \alpha_8 \\ \alpha_9 \end{array} + \frac{1}{2} c_2 c_4 \begin{array}{c} \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{array} \\
\frac{1}{4} c_2^2 \begin{array}{c} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{array} + \frac{3}{4} c_5 c_{10} \begin{array}{c} \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{array} + \frac{1}{2} c_2 c_5 \begin{array}{c} \alpha_7 \\ \alpha_8 \\ \alpha_9 \end{array} + \frac{1}{2} c_3 c_5 \begin{array}{c} \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{array} \\
\frac{1}{4} c_3^2 \begin{array}{c} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{array} + \frac{3}{4} c_6 c_{10} \begin{array}{c} \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{array} + \frac{1}{2} c_3 c_6 \begin{array}{c} \alpha_7 \\ \alpha_8 \\ \alpha_9 \end{array} + \frac{1}{2} c_1 c_6 \begin{array}{c} \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{array} \end{array},$$

where the weights follow from (3).

For every basis $B = \{ Q_1, \ldots, Q_{39} \}$ with a positive partition of unity (15), we apply the functionals in Λ to (16) with respect to x, which gives

$$\begin{pmatrix} \lambda_1(Q_1) & \cdots & \lambda_1(Q_{39}) \\ \vdots & \ddots & \vdots \\ \lambda_{39}(Q_1) & \cdots & \lambda_{39}(Q_{39}) \end{pmatrix} \begin{pmatrix} w_1\psi_1(y) \\ \vdots \\ w_{39}\psi_{39}(y) \end{pmatrix} = \begin{pmatrix} \lambda_1((1 + x^T y)^5) \\ \vdots \\ \lambda_{39}((1 + x^T y)^5) \end{pmatrix}.$$

This system has a unique solution in the module $\mathbb{R}[y]^{39}$, with each component $w_i \psi_i(y)$ a polynomial of degree at most 5 by Cramer’s rule. The basis B has a Marsden identity (16) if and only if these polynomials split into real linear factors.

6 Main Results

Some of the remaining computations are too large to carry out by hand. We have therefore implemented the above computations in Sage [22]. From the website [18] of the second author, the resulting worksheet can be downloaded and tried out online in SageMathCloud.
6.1 Six Bases for S^3_5

Checking linear independence for each of the 3648 potential bases, we discover that there are 1024 S_3-invariant simplex spline bases that reduce to a B-spline basis on the boundary. There are 243 such bases with a nonnegative partition of unity, of which there are 47 bases with a positive partition of unity. Of these, there are 9 with all domain points inside the macrotriangle, of which there are 7 with precisely 8 domain points on each boundary edge. Of these, there are 6 bases $B_a, B_b, B_c, B_d, B_e, B_f$ for which each dual polynomial only has real linear factors. These bases, together with their weights w_\star, dual polynomials Ψ_\star, and domain points ξ_\star, are listed in Table 3. For instance, the highlighted rows in the table yield the set

$$\{B_c\} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} S_3.$$

We summarize these results in the following theorem.

Theorem 5 The sets $B = B_a, B_b, B_c, B_d, B_e, B_f$ are the only sets satisfying:

1. B is a basis of $S^3_5(\Delta)$ consisting of simplex splines.
2. B is S_3-invariant.
3. B reduces to a B-spline basis on the boundary.
4. B has a positive partition of unity and a Marsden identity (18), for which the dual polynomials have only real linear factors; see Table 3.
5. B has all its domain points inside the macrotriangle Δ, with precisely 8 domain points on each edge of Δ.

Remark 6 Table 3 shows that, for the simplex splines

$$[Q^g, Q^s, Q^l]_{S_3} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} S_3,$$

the weights and dual polynomials depend on the entire basis, and they cannot be determined directly from the corresponding knot multiset.

Dual points and domain points One immediately reads off the dual points from the dual polynomials in Table 3, simply by replacing ‘c’ by ‘v’. For instance, in each basis the simplex spline

$$Q^l = \begin{bmatrix} 1 \end{bmatrix}$$

has dual polynomial $\Psi^l = c_3 c_4 c_5$, and therefore dual points $\{v_3, v_4, v_5\}$. By (17), the corresponding domain point is $(3v_2 + v_4 + v_5)/5 = \frac{1}{10} v_1 + \frac{4}{5} v_2 + \frac{1}{10} v_3$. Thus one obtains for each basis all domain points, which are listed in Table 3 and shown in Fig. 4. The domain points of the basis B_c are connected to form the domain mesh in Fig. 1c. To preserve the symmetry of Δ, the domain points are forced to form a hybrid mesh with triangles, quadrilaterals, and a hexagon in the center.
Table 3 For the six bases B_a, \ldots, B_f and for each contained representative Q^* in Table 2, the table lists the weight w_* times the dual polynomial Ψ_*, using the shorthands in (19), and the barycentric coordinates of the domain point ξ_*.

B_a	w_*	Ψ_*	Q^a	Q^b	Q^c	Q^d	Q^e	Q^f
ξ_*	$(1,0,0)$	$\frac{1}{4} c_1^2 c_2 c_3$	$\frac{1}{4} \frac{1}{10}$	$\frac{1}{4} \frac{1}{10}$	$\frac{1}{4} \frac{1}{10}$	$\frac{1}{4} \frac{1}{10}$	$\frac{3}{4} \frac{3}{10}$	$\frac{3}{4} \frac{3}{10}$

Polynomial reproduction Following [12], we define for any nonnegative integers i_1, i_2, i_3 the “coefficient of” operator

$$\left[c_1^{i_1} c_2^{i_2} c_3^{i_3}\right] f := \frac{1}{i_1!i_2!i_3!} \frac{\partial^5 f}{\partial c_1^{i_1} \partial c_2^{i_2} \partial c_3^{i_3}} (0, 0, 0)$$

for any formal power series $f (c_1, c_2, c_3)$. Substituting the dual polynomials from Table 3 and the shorthands from (19) into (18) and applying \(\left[c_1^{i_1} c_2^{i_2} c_3^{i_3}\right]\), with $i_1 + i_2 + i_3 = 5$, we recover the Bernstein polynomials.

\[\text{Springer}\]
Fig. 4 For the six bases in Table 3, the figure shows the domain points \circ and, for each S_3 equivalence class, the label of a representative in Table 2.

\[
\frac{5!}{i_1!i_2!i_3!} \beta_1^{i_1} \beta_2^{i_2} \beta_3^{i_3} = \sum_{i=1}^{39} w_i Q_i (\beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3) \left[c_1^{i_1} c_2^{i_2} c_3^{i_3} \right] \Psi_i.
\]

Thus one sees immediately from the monomials in the dual polynomials which simplex splines appear in the above linear combination. For example, the Bernstein polynomial β_1^5 corresponds to the lattice vector $(i_1, i_2, i_3) = (5, 0, 0)$, and

\[
= \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{4}.
\]

Quasi-interpolation For each basis $B = \{S_1, \ldots, S_{39}\}$ with dual points $p_{i,r}^*$, consider the map $Q : C^0(\Delta) \rightarrow S_3^{27}(\Delta)$ defined by $Q(f) = \sum_{i=1}^{39} L_i(f) S_i$ and

\[
L_i(f) = \sum_{k=1}^{5} \frac{k^5}{5!} (-1)^{5-k} \sum_{1 \leq r_1 < \cdots < r_k \leq 5} f \left(\frac{p_{i,r_1}^* + \cdots + p_{i,r_k}^*}{k} \right).
\]

Note that this is an affine combination of function values of f, i.e.,

\[
\sum_{k=1}^{5} \frac{k^5}{5!} (-1)^{5-k} \binom{5}{k} = 1.
\]
implying that Q reproduces constants. Moreover, using the Marsden identity, it is easily checked [18] that Q reproduces polynomials up to degree 5, i.e., $Q(B_{ijk}^5) = B_{ijk}^5$, whenever $i + j + k = 5$. Furthermore, Q is bounded independently of the geometry of \triangle, since, using that B forms a partition of unity,

$$\|Q(f)\|_{L_\infty(\triangle)} \leq \max_i |L_i(f)| \leq \frac{275}{3} \|f\|_{L_\infty(\triangle)}.$$

Therefore, by a standard argument, Q is a quasi-interpolant that approximates locally with order 6 smooth functions whose first six derivatives are in $L_\infty(\triangle)$. Note that Q does not reproduce all splines in $S_3^5(\triangle)$.

Numerical approximations of the constants

K_a	K_b	K_c	K_d	K_e	K_f
922.8254	471.0175	72.7901	105,844.1657	2461.1688	359.0043

L_∞ stability and distance to the control points The next theorem shows that each basis is stable in the L_∞ norm with a condition number bounded independent of the geometry of \triangle.

Theorem 7 Let $B_\star = \{S_1, \ldots, S_{39}\}$ be one of the bases B_1, \ldots, B_f, and $f = S^T c \in S_3^3(\triangle)$ with $S^T = (S_1, \ldots, S_{39})$ and $c = (c_1, \ldots, c_{39})^T$. Then there is a constant $K_\star > 0$ independent of the geometry of \triangle such that

$$K_\star^{-1}\|c\|_\infty \leq \|f\|_{L_\infty(\triangle)} \leq \|c\|_\infty.$$

Proof Let ξ_1, \ldots, ξ_{39} be the domain points of B_\star. A calculation shows that the collocation matrix $M_\star = (m_{ij})_{i,j=1}^{39}$, with $m_{ij} = S_j(\xi_i)$, is nonsingular, and its elements are rational numbers independent of the geometry of \triangle.

Using the Lagrange interpolant, the coefficients take the form $c = M_\star^{-1} f$, where $f = (f(\xi_1), \ldots, f(\xi_{39}))^T$. Hence, since S forms a partition of unity, (20) holds with $K_\star = \|M_\star^{-1}\|_\infty$.

Note that K_\star is an upper bound for the condition number of the basis B_\star, and is in fact the infinity norm condition number of the matrix M_\star, because $\|M_\star\|_\infty = 1$.

Numerical approximations of the constants $\|M_\star^{-1}\|_\infty$ are listed in Table 4, the smallest of which is obtained for B_c, in which case

$$K_c = \|M_c^{-1}\|_\infty = \frac{60866923187443943219194678615331}{836197581250152380489105335680} \approx 72.7901.$$

Hence, there is a well-conditioned Lagrange interpolant at the domain points of the basis B_c.

We can now bound the distance between the Bézier ordinates and the values of a spline at the corresponding domain points.

Corollary 1 Let h be the length of the longest edge \triangle, and let $f = S^T c$ with Hessian matrix H and values $f = (f(\xi_1), \ldots, f(\xi_{39}))^T$. Then

$$\|c\|_\infty \leq \|f\|_{L_\infty(\triangle)} \leq \|c\|_\infty.$$

\(\text{Springer}\)
\[\|c - f\|_\infty \leq 2K_\star h^2 \max_{x \in \Delta} \|H(x)\|_\infty. \]

Proof Consider the first-order Taylor expansion of \(f \) at \(x_0 \),

\[f(x) - f(x_0) = (x - x_0) \nabla f(x_0) + g(x). \]

As the error term \(g \in S_3^3(\Delta) \), it takes the form \(g = \sum_{i=1}^{39} b_i S_i \), with

\[c_i - f(x_0) = (\xi_i - x_0) \nabla f(x_0) + b_i. \]

In particular, for \(x_0 = \xi_i \), we obtain

\[|c_i - f(\xi_i)| = |b_i| \leq K_\star \max_{x \in \Delta} |g(x)| \]

\[\leq \frac{1}{2} K_\star \max_{x, y \in \Delta} \left| (x - \xi_i)^T H(y)(x - \xi_i) \right|, \]

from which the Corollary follows. \(\square \)

6.2 The Basis \(B_c \)

While the remainder of the paper can be carried out for all six bases, we now restrict our discussion to the basis \(B_c = \{ w_i Q_i \}_{i=1}^{39} \) for several reasons. First of all, the condition number \(K_c \) is smallest. Secondly, this basis has the most localized support, because it contains the splines

\[
\begin{bmatrix}
1 \\
\frac{1}{2} \\
3 \\
4 \\
\end{bmatrix},
\]

as opposed to splines with full support. Finally, for \(k = 0, 1, 2 \) and any direction \(u \) not parallel to the edge \(e \) of \(\Delta \), the number of additional splines \(Q_i \) for which \(D_k^u Q_i|_e \) is nonzero corresponds to the dimension of the space of univariate splines of degree \(5 - k \) on the knot multiset \(\{0^{d+1-k} 0.5^2 1^{d+1-k}\} \). This allows for relatively pretty smoothness conditions analogously to the Bernstein–Bézier case.

Derivatives on the boundary For \(d = 5, 4, 3, 2 \) and \(i = 1, \ldots, d + 3 \), let \(B_i^d \) be the univariate B-spline in Table 5. Let \((\alpha_1, \alpha_2, \alpha_3) \) be directional coordinates of a vector \(u \) with respect to the triangle \([v_1, v_2, v_3]\). Denote by \(|e|_e \) the substitution of \(x \) by \((1 - t)v_1 + tv_2 \).

In Fig. 5 and Tables 6, 7, we order the simplex splines in \(B_c \) by the number of knots outside of \(e = [v_1, v_2] \). Applying (5), (6), and (7), we can express, for any simplex spline \(Q_i \), the restricted derivative \(D_j^u Q_i|_e \) of order \(k = 0, 1, 2, 3 \) as a linear combination of \(B_j^{5-k}, j = 1, \ldots, 8 - k \). These linear combinations are listed in Tables 6, 7 for \(Q_1, \ldots, Q_{25} \) and, by (5), are zero for the remaining simplex splines \(Q_{26}, \ldots, Q_{39} \).
Table 5 Shorthands for univariate B-splines of degree d on the open knot multiset $\{0^{d+1} 0.5^2 1^{d+1}\}$, for $d = 5, 4, 3, 2$

$B^5_1 := B[0^6 0.5^1]$	$B^4_1 := B[0^5 0.5^1]$	$B^3_1 := B[0^4 0.5^1]$	$B^2_1 := B[0^3 0.5^1]$
$B^5_2 := B[0^5 0.5^2]$	$B^4_2 := B[0^4 0.5^2]$	$B^3_2 := B[0^3 0.5^2]$	$B^2_2 := B[0^2 0.5^2]$
$B^5_3 := B[0^4 0.5^2 1^1]$	$B^4_3 := B[0^3 0.5^2 1^1]$	$B^3_3 := B[0^2 0.5^2 1^1]$	$B^2_3 := B[0^1 0.5^2 1^1]$
$B^5_4 := B[0^3 0.5^2 1^2]$	$B^4_4 := B[0^2 0.5^2 1^2]$	$B^3_4 := B[0^1 0.5^2 1^2]$	$B^2_4 := B[0.5^2 1^2]$
$B^5_5 := B[0^2 0.5^2 1^3]$	$B^4_5 := B[0^1 0.5^2 1^3]$	$B^3_5 := B[0.5^2 1^3]$	$B^2_5 := B[0.5^1 1^3]$
$B^5_6 := B[0^1 0.5^2 1^4]$	$B^4_6 := B[0.5^2 1^4]$	$B^3_6 := B[0.5^1 1^4]$	$B^2_6 := B[0.5^1 1^5]$
$B^5_7 := B[0.5^2 1^5]$	$B^4_7 := B[0.5^1 1^5]$	$B^3_7 := B[0.5^1 1^6]$	$B^2_7 := B[0.5^1 1^6]$

Example 4 We derive the first two entries in the third row in Table 6. By (7),

$$\frac{\text{area}(\triangle)}{\text{area}([v_1, v_2, v_6])} B^5_3 = 2 B^5_3.$$

Since $u = 2\alpha_1 v_1 + 2\alpha_2 v_4 + 2\alpha_2 v_6$, differentiation and knot insertion yields

$$\frac{1}{5} D_u |_e = 2\alpha_1 |_e + 2\alpha_2 (|_e + |_e) + 2\alpha_3 \cdot 0 = 2\alpha_1 |_e + \alpha_2 \left(\begin{array}{c} |_e \\ + \end{array}\right) + \alpha_2 \left(\begin{array}{c} |_e \\ - \end{array}\right) = (2\alpha_1 + \alpha_2) |_e + \alpha_2 \left(\begin{array}{c} |_e \\ - \end{array}\right) = 2(2\alpha_1 + \alpha_2) B^4_3 + 4\alpha_2 B^4_2.$$
Table 6 Restriction of the splines Q_1, \ldots, Q_{25}, and their directional derivatives, to the boundary edge $e = [v_1, v_2]$

| i | Q_i | $Q_i|e$ | $\frac{1}{4}D_{(\alpha_1, \alpha_2, \alpha_3)}Q_i|e$ | $\frac{1}{4}D_{(\alpha_1, \alpha_2, \alpha_3)}^2Q_i|e$ |
|------|---------|--------------|--|---|
| 1 | $4B_1^5$| $8\alpha_1B_1^4$ | $16\alpha_1^2B_1^3$ | |
| 2 | $4B_2^5$| $8\left(\alpha_2B_2^4 + \alpha_1B_2^4\right)$ | $32\alpha_1\alpha_2B_1^3 + 16\alpha_1^2B_2^3$ | |
| 3 | $2B_3^5$| $4\alpha_2B_2^3 + 2(2\alpha_1 + \alpha_2)B_3^4$ | $8\alpha_2^2B_1^3 + 4\alpha_2(4\alpha_1 + \alpha_2)B_3^3$ | $+ 2(2\alpha_1 + \alpha_2)^2B_3^3$ |
| 4 | $2B_4^5$| $2\alpha_2B_3^3 + 2(2\alpha_1 + \alpha_2)B_4^4$ | $4\alpha_2^2B_2^3 + 4\alpha_2(2\alpha_1 + \alpha_2)B_3^3$ | $+ 2(2\alpha_1 + \alpha_2)^2B_4^3$ |
| 5 | $2B_5^5$| $2(\alpha_1 + 2\alpha_2)B_4^3 + 2\alpha_1B_5^4$ | $2(\alpha_1 + 2\alpha_2)^2B_3^3 + 4\alpha_1(\alpha_1$ | $+ 2\alpha_2)B_3^3 + 4\alpha_2^2B_3^3$ |
| 6 | $2B_6^5$| $2(\alpha_1 + 2\alpha_2)B_5^3 + 4\alpha_1B_6^4$ | $2(\alpha_1 + 2\alpha_2)^2B_4^3 + 4\alpha_1(\alpha_1$ | $+ 4\alpha_2)B_5^3 + 8\alpha_1^2B_6^3$ |
| 7 | $4B_7^5$| $8\left(\alpha_2B_6^4 + \alpha_1B_7^4\right)$ | $16\alpha_2^2B_5^3 + 32\alpha_1\alpha_2B_6^3$ | |
| 8 | $4B_8^5$| $8\alpha_2B_7^4$ | $16\alpha_2^2B_6^3$ | |
| 9 | 0 | $8\alpha_3B_1^4$ | $32\alpha_1\alpha_3B_1^3$ | |
| 10 | 0 | $\alpha_3\left(2B_2^4 + B_3^4\right)$ | $8\alpha_2\alpha_3B_1^3 + \alpha_3(3\alpha_1 + \alpha_2))$ | $\left(2B_2^3 + B_3^3\right)$ |
| 11 | 0 | $2\alpha_3B_3^4$ | $8\alpha_2\alpha_3B_2^3 + 2\alpha_3(3\alpha_1 + \alpha_2)B_3^3$ | |
| 12 | 0 | $4\alpha_3B_4^4$ | $4\alpha_3(\alpha_1 + 3\alpha_2)B_3^3$ | $+ 4\alpha_3(3\alpha_1 + \alpha_2)B_4^3$ |
| 13 | 0 | $2\alpha_3B_5^4$ | $2\alpha_3(\alpha_1 + 3\alpha_2)B_4^3 + 8\alpha_1\alpha_3B_5^3$ | |
| 14 | 0 | $\alpha_3\left(B_3^4 + 2B_6^4\right)$ | $\alpha_3(\alpha_1 + 3\alpha_2)\left(B_4^3 + 2B_5^3\right)$ | $+ 8\alpha_1\alpha_3B_6^3$ |
| 15 | 0 | $8\alpha_3B_7^4$ | $32\alpha_2\alpha_3B_6^3$ | |
| i | Q_i | $Q_i|e$ | $\frac{1}{2} D_{(a_1,a_2,a_3)} Q_i|e$ | $\frac{1}{4\alpha} D_{(a_1,a_2,a_3)}^2 Q_i|e$ |
|-----|------|-------|-----------------------------------|-----------------------------------|
| 16 | ![Image](image1.png) | 0 | 0 | $8a_3^2 B_1^3$ |
| 17 | ![Image](image2.png) | 0 | 0 | $2a_3^2 (2B_2^3 + B_3^3)$ |
| 18 | ![Image](image3.png) | 0 | 0 | $4a_3^2 B_3^2$ |
| 19 | ![Image](image4.png) | 0 | 0 | $4a_3^2 B_4^3$ |
| 20 | ![Image](image5.png) | 0 | 0 | $2a_3^2 (B_4^3 + 2B_5^3)$ |
| 21 | ![Image](image6.png) | 0 | 0 | $8a_3^2 B_6^3$ |
| 22 | ![Image](image7.png) | 0 | 0 | 0 |
| 23 | ![Image](image8.png) | 0 | 0 | 0 |
| 24 | ![Image](image9.png) | 0 | 0 | 0 |
| 25 | ![Image](image10.png) | 0 | 0 | 0 |

In the next section, we apply Tables 6 and 7 to derive smoothness conditions for splines on adjacent 12-splits expressed in the basis B_c; see Fig. 5. Analogously, these tables are useful for deriving smoothness conditions with tensor-product, Bézier, and more exotic patches.

Smoothness conditions Let $\triangle := [v_1, v_2, v_3]$ and $\tilde{\triangle} := [v_1, v_2, \tilde{v}_3]$ be triangles sharing the edge $e := [v_1, v_2]$. Figure 5 shows the domain points of the bases $B_c = \{w_i Q_i\}_i$ and $\tilde{B}_c = \{w_i \tilde{Q}_i\}_i$ of $S_3^3(\triangle)$ and $S_3^3(\tilde{\triangle})$. Let

$$f(v) := \sum_{i=1}^{39} c_i w_i Q_i(v), \ v \in \triangle, \quad \tilde{f}(v) := \sum_{i=1}^{39} \tilde{c}_i w_i \tilde{Q}_i(v), \ v \in \tilde{\triangle},$$

be splines defined on these triangles. Imposing a smooth join of f and \tilde{f} along e translates into linear relations among the Bézier ordinates c_i and \tilde{c}_i.

Theorem 8 Let $(\beta_1, \beta_2, \beta_3)$ be the barycentric coordinates of \tilde{v}_3 with respect to the triangle \triangle. Then f and \tilde{f} meet with
Table 7 Restriction of the third-order directional derivatives of the splines Q_1, \ldots, Q_{25} to the boundary edge $e = [v_1, v_2]$

| i | Q_i | $\frac{1}{345} D^3_{(\alpha_1, \alpha_2, \alpha_3)} Q_i | e$ |
|-----|-------|---------------------------------|
| 1 | | $32\alpha_1^3 B_1^2$ |
| 2 | | $96\alpha_1^2 \alpha_2 B_1^2 + 32\alpha_1^3 B_2^2$ |
| 3 | | $8\alpha_2^2 (6\alpha_1 + \alpha_2)B_1^2 + 4\alpha_1 \left(12\alpha_1^2 + 6\alpha_1 \alpha_2 + \alpha_2^2\right)B_2^2$ $+ 2 (2\alpha_1 + \alpha_2)^3 B_3^2$ |
| 4 | | $8\alpha_2^3 B_1^2 + 8\alpha_2^2 (3\alpha_1 + \alpha_2) B_2^2 + 6\alpha_2 (2\alpha_1 + \alpha_2)^2 B_3^2$ $+ 4 (2\alpha_1 + \alpha_2)^3 B_4^2$ |
| 5 | | $4 (\alpha_1 + 2\alpha_2)^3 B_2^2 + 6\alpha_1 (\alpha_1 + 2\alpha_2)^2 B_3^2 + 8\alpha_1^2 (\alpha_1 + 3\alpha_2) B_4^2$ $+ 8\alpha_1^3 B_5^2$ |
| 6 | | $2 (\alpha_1 + 2\alpha_2)^3 B_3^2 + 4\alpha_1 \left(\alpha_1^2 + 6\alpha_1 \alpha_2 + 12\alpha_2^2\right) B_4^2$ $+ 8\alpha_1^2 (\alpha_1 + 6\alpha_2) B_5^2$ |
| 7 | | $32\alpha_1^3 B_2^2 + 96\alpha_1^2 \alpha_2 B_2^2$ |
| 8 | | $32\alpha_1^3 B_5^2$ |
| 9 | | $96\alpha_1^2 \alpha_3 B_1^2$ |
| 10 | | $36\alpha_1 \alpha_2 \alpha_3 B_1^2 + \alpha_3 \left(7\alpha_1^2 + 5\alpha_1 \alpha_2 + \alpha_2^2\right) \left(2B_2^3 + B_3^2\right)$ |
| 11 | | $24\alpha_2^2 \alpha_3 B_1^2 + 36\alpha_1 \alpha_2 \alpha_3 B_2^2 + 2\alpha_3 \left(7\alpha_1^2 + 5\alpha_1 \alpha_2 + \alpha_2^2\right) B_3^2$ |
| 12 | | $8\alpha_3 \left(\alpha_1^2 + 5\alpha_1 \alpha_2 + 7\alpha_2^2\right) B_2^2 + 8\alpha_3 \left(2\alpha_1^2 + 7\alpha_1 \alpha_2 + 2\alpha_2^2\right) B_3^2$ $+ 8\alpha_3 \left(7\alpha_1^2 + 5\alpha_1 \alpha_2 + \alpha_2^2\right) B_4^2$ |
| 13 | | $2\alpha_3 \left(\alpha_1^2 + 5\alpha_1 \alpha_2 + 7\alpha_2^2\right) B_3^2 + 36\alpha_1 \alpha_2 \alpha_3 B_4^2 + 24\alpha_1^2 \alpha_3 B_5^2$ |
| 14 | | $\alpha_3 \left(\alpha_1^2 + 5\alpha_1 \alpha_2 + 7\alpha_2^2\right) \left(B_3^2 + 2B_4^2\right) + 36\alpha_1 \alpha_2 \alpha_3 B_5^2$ |
| 15 | | $96\alpha_2^2 \alpha_3 B_5^2$ |
| 16 | | $8\alpha_3^2 (5\alpha_1 - \alpha_2) B_1^2$ |
| i | Q_i | $\frac{1}{3+45} B_{(\alpha_1,\alpha_2,\alpha_3)}^3 Q_i| e$ |
|-----|------|---------------------------------|
| 17 | ![Diagram](image1) | $24\alpha_2\alpha_3^2 B_1^2 + 2\alpha_3^2 (5\alpha_1 + 2\alpha_2)\left(2B_2^2 + B_3^2\right)$ |
| 18 | ![Diagram](image2) | $8\alpha_3^2 (4\alpha_2 - 1) B_2^2 + 4\alpha_2^2 (1 + \alpha_2) B_3^2$ |
| 19 | ![Diagram](image3) | $4\alpha_3^2 (1 + \alpha_2) B_2^2 + 8\alpha_2^2 (1 + \alpha_2) B_3^2$ |
| 20 | ![Diagram](image4) | $2\alpha_3^2 (5\alpha_2 + 2\alpha_1)\left(B_2^2 + 2B_3^2\right) + 24\alpha_1\alpha_3^2 B_3^2$ |
| 21 | ![Diagram](image5) | $8\alpha_3^2 (5\alpha_2 - \alpha_1) B_3^2$ |
| 22 | ![Diagram](image6) | $8\alpha_3^2 B_1^2$ |
| 23 | ![Diagram](image7) | $4\alpha_3^2 \left(2B_2^2 + B_3^2\right)$ |
| 24 | ![Diagram](image8) | $4\alpha_3^2 \left(B_3^2 + 2B_4^2\right)$ |
| 25 | ![Diagram](image9) | $8\alpha_3^2 B_5^2$ |

C^0 smoothness if and only if $\tilde{c}_i = c_i$, for $i = 1, \ldots, 8$;
C^1 smoothness if and only if in addition

\[
\begin{align*}
\tilde{c}_9 &= \beta_1 c_1 + \beta_2 c_2 + \beta_3 c_9, \\
\tilde{c}_{10} &= \beta_1 c_2 + \beta_2 c_3 + \beta_3 c_{10}, \\
\tilde{c}_{11} &= \beta_1 (2c_3 - c_2) + \beta_2 c_4 + \beta_3 c_{11}, \\
\tilde{c}_{12} &= \beta_1 \frac{2c_4 + c_5}{3} + \beta_2 \frac{c_4 + 2c_5}{3} + \beta_3 c_{12}; \\
\end{align*}
\]

C^2 smoothness if and only if in addition

\[
\begin{align*}
\tilde{c}_{16} &= \beta_1^2 c_1 + 2\beta_1 \beta_2 c_2 + \beta_2^2 c_3 + 2\beta_1 \beta_3 c_9 + 2\beta_2 \beta_3 c_{10} + \beta_3^2 c_{16}, \\
\tilde{c}_{17} &= \beta_1^2 c_2 + \beta_2^2 c_4 + \beta_3^2 c_{17} + 2\beta_1 \beta_2 \frac{3c_3 - c_2}{2} + 2\beta_1 \beta_3 \frac{3c_{10} - c_2}{2} \\
&\quad + 2\beta_2 \beta_3 \frac{c_{10} + 2c_{11} - c_3}{2}, \\
\tilde{c}_{18} &= \beta_1^2 \frac{2c_3 + 2c_4 - c_2}{3} + \beta_2^2 \frac{c_4 + 2c_5}{3} + \beta_3^2 c_{18} + 2\beta_1 \beta_2 \frac{c_2 - 2c_3 + 6c_4 + c_5}{6}.
\end{align*}
\]
\(\tilde{c}_{19} = \beta_1^2 \frac{2c_4 + c_5}{3} + \beta_2^2 \frac{2c_5 + 2c_6 - c_7}{3} + \beta_3^2 c_{19} + 2\beta_1\beta_2 \frac{c_4 + 6c_5 - 2c_6 + c_7}{6} + 2\beta_2\beta_3 \frac{c_7 - 2c_6 + 2c_5 - 4c_3 + 3c_{13} + 3c_{12}}{6} + 2\beta_1\beta_3 \frac{9c_{12} - 2c_4 - c_{13}}{6},\)

\(\tilde{c}_{20} = \beta_1^2 c_5 + \beta_2^2 c_7 + \beta_3^2 c_{20} + 2\beta_1\beta_2 \frac{3c_6 - c_7}{2} + 2\beta_2\beta_3 \frac{c_{14} + 2c_{13} - c_6}{2} + 2\beta_2\beta_3 \frac{3c_{14} - c_7}{2},\)

\(\tilde{c}_{21} = \beta_1^2 c_6 + 2\beta_1\beta_2 c_7 + \beta_2^2 c_8 + 2\beta_1\beta_3 c_{14} + 2\beta_2\beta_3 c_{15} + \beta_3^2 c_{21};\)

\(C^3\) smoothness if and only if in addition

\[\tilde{c}_{22} = \beta_1^2 c_1 + 3\beta_1^2 \beta_2 \frac{4c_2 - c_1}{3} + 3\beta_1\beta_2^2 \frac{5c_3 - 2c_2}{3} + \beta_2^3 c_4 + 3\beta_2^2 \beta_3 \frac{c_{10} - c_3 + 3c_{11}}{3} + 3\beta_2\beta_3^2 \frac{c_{10} - c_4 + 3c_{17}}{3} + \beta_3^3 c_{22} + 3\beta_3^2 \beta_1 \frac{5c_{16} - 2c_9}{3} + 3\beta_3\beta_1^2 \frac{4c_9 - c_1}{3} + 6\beta_1\beta_2\beta_3 \frac{5c_{10} - c_2 - c_9}{3},\]

\[\tilde{c}_{23} = \beta_1^2 c_3 + 2c_3 + 3\beta_1\beta_2 \frac{-2c_2 + 8c_3 + 3c_4}{9} + 3\beta_1\beta_2^2 \frac{c_2 - c_3 + 8c_4 + c_5}{9} + \beta_2^3 c_4 + 2c_5 + 3\beta_2\beta_3 \frac{c_{10} + 15c_{12} - c_3 - 2c_4 - 4c_5}{9} + 3\beta_2\beta_3^2 \frac{-6c_{12} + 2c_{17} + 12c_{18} - c_4 + 2c_5}{9} + 3\beta_1\beta_3^2 \frac{c_{10} + 3c_{11} - 3c_{12} + 5c_{17} + 3c_{18} + c_2 - 2c_3 + c_5}{9} + 3\beta_1\beta_3 8c_{10} + 3c_{11} - 2c_2 + 6\beta_1\beta_2\beta_3 \frac{3c_{10} + 6c_{11} + 3c_{12} + c_2 - 4c_3 + c_4 - c_5}{9} + \beta_3^3 c_{23},\]

\[\tilde{c}_{24} = \beta_1^2 \frac{2c_4 + c_5}{3} + 3\beta_1\beta_2 \frac{c_4 + 8c_5 - c_6 + c_7}{9} + 3\beta_1\beta_2^2 \frac{3c_5 + 8c_6 - 2c_7}{9} + \beta_2^3 \frac{2c_6 + c_7}{3} + 3\beta_2\beta_3 \frac{3c_{13} + 8c_{14} - 2c_7}{9} + 3\beta_2\beta_3^2 \frac{-3c_{12} + 3c_{13} + c_{14} + 3c_{19} + 5c_{20} + c_4 - 2c_6 + c_7}{9} + 3\beta_1\beta_3^2 \frac{-6c_{12} + 12c_{19} + 2c_{20} + 2c_4 - c_5}{9} + 3\beta_1\beta_3 \frac{15c_{12} + c_{14} - 4c_4 - 2c_5 - c_6}{9} + 6\beta_1\beta_2\beta_3 \frac{3c_{12} + 6c_{13} + 3c_{14} - c_4 + c_5 - 4c_6 + c_7}{9} + \beta_3^3 c_{24},\]

\[\tilde{c}_{25} = \beta_1^3 c_5 + 3\beta_1\beta_2 \frac{5c_6 - 2c_7}{3} + 3\beta_1\beta_2^2 \frac{4c_7 - c_8}{3} + \beta_2^3 c_8 + 3\beta_2^2 \beta_3 \frac{4c_{15} - c_8}{3} + 3\beta_2\beta_3 \frac{c_{21} - 2c_{15}}{3} + 3\beta_3^2 \beta_1 \frac{c_{14} + 3c_{20} - c_{21}}{3} + 3\beta_3\beta_1^2 \frac{3c_{13} + c_{14} - c_6}{3} + 6\beta_1\beta_2\beta_3 \frac{5c_{14} - c_7 - c_{15}}{3} + \beta_3^3 c_{25},\]

\[0 = (3\beta_1^2 \beta_2 - 3\beta_1\beta_2^2) \frac{c_2 - 2c_3 + 2c_4 - 2c_5 + 2c_6 - c_7}{3} + 3\beta_2^2 \beta_3 \frac{c_{11} - 3c_{12} + c_{13} + c_7 - 2c_3 + 2c_4}{3} + 3\beta_2^2 \beta_3 \frac{c_{11} - 3c_{12} + c_{13} + c_7 - 2c_6 + 2c_5}{3}.\]
Proof By the barycentric nature of the statement, we can change coordinates by the linear affine map that sends $v_1 \mapsto (0, 0)$, $v_2 \mapsto (1, 0)$, and $v_3 \mapsto (0, 1)$. In these coordinates,
\[
\tilde{v}_3 = \beta_1(0, 0) + \beta_2(1, 0) + \beta_3(0, 1) = (\beta_2, \beta_3).
\]

Let $u := \tilde{v}_3 - v_1 = (\beta_2, \beta_3)$. For $r = 0, 1, 2, 3$, the splines f and \tilde{f} meet with C^r smoothness along e if and only if $D_k^u f(\cdot, 0) = D_k^u \tilde{f}(\cdot, 0)$ for $k = 0, \ldots, r$.

Substituting (21), this is equivalent to
\[
\sum_{i=1}^{39} c_i w_i D_k^u Q_i(\cdot, 0) = \sum_{i=1}^{39} \tilde{c}_i w_i D_k^u \tilde{Q}_i(\cdot, 0), \quad k = 0, \ldots, r,
\]

which, using Tables 6 and 7, reduces to a sparse system
\[
\sum_{j=1}^{8-k} r_{kj} B_j^{s-k} = 0, \quad k = 0, \ldots, r,
\]

where r_{kj} is a linear combination of c_i and \tilde{c}_i with $i = 1, \ldots, n_{k+1}$, where $n_1 = 8$, $n_2 = 15$, $n_3 = 21$, and $n_4 = 25$. This system holds identically if and only if $r_{kj} = 0$ for $j = 1, \ldots, 8 - k$, and $k = 0, \ldots, r$. Let $n_0 = 0$. For $k = 0, 1, 2, 3$, one solves for $\tilde{c}_{n_k+1}, \ldots, \tilde{c}_{n_{k+1}}$, each time eliminating the Bézier ordinates \tilde{c}_i that were previously obtained, resulting in the smoothness relations of the theorem; see the worksheet for details [18].

As for the Bézier basis and the S-basis from [5], each smoothness relation also holds when replacing each Bézier ordinate by the corresponding domain point. The smoothness relations therefore also hold between the corresponding control points.

The final C^3 smoothness condition only involves the Bézier ordinates in a single triangle and the barycentric coordinates of the opposing vertex in a neighboring triangle. It follows that C^3 smoothness using S^3_5 cannot be achieved on a general refined triangulation T_{12}. However, if T is a regular tessellation consisting of equilateral triangles (as in Example 5 below), then $(\beta_1, \beta_2, \beta_3) = (1, 1, -1)$, and this condition vanishes.

Conversion to Hermite nodal basis Let A be as in (1) with $x_v := v_i - v$ and $y_v := v_j - v$ for any vertex $v \in V$ with opposing edge $[v_i, v_j] \in \mathcal{E}$, and $u_e = v_k - m_e$ for any edge e with opposing vertex v_k. In addition to the basis $B_e = \{w_i Q_i\}_{i=1}^{39}$, the spline space $S^3_5(\mathcal{A})$ has the (Hermite) nodal basis $A^\circ = \{\lambda_i^\circ\}_{i=1}^{39}$ dual to $A = \{\lambda_i\}_{i=1}^{39}$; i.e.,
\(\lambda_j(\lambda_i^*) = \delta_{ij} \). In this section, we express \(\Lambda^* \) in terms of \(B_c \). For details, we refer to the worksheet [18].

We write \(Q_i = a_{i,1}\lambda_1^* + \cdots + a_{i,39}\lambda_{39}^* \) for \(i = 1, \ldots, 39 \), so that \(\lambda_j(Q_i) = a_{ij} \).

Multiplying by the inverse of the matrix \((a_{ij})_{i,j}\), we can express the nodal basis functions \(\lambda_1^*, \ldots, \lambda_{39}^* \) in terms of \(Q_1, \ldots, Q_{39} \).

Theorem 9 With \(v = v_1 \), \(x = v_2 - v_1 \), \(y = v_3 - v_1 \), and \(u = v_3 - v_4 \),

\[
\varepsilon_v^* = \frac{1}{4} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{1}{4} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{1}{2} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{1}{2} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{9}{16} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{3}{8} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{3}{16} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
\right)
\]

\[
(\varepsilon_v D_x)^* = \frac{1}{40} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{1}{10} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{1}{5} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{1}{10} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{3}{20} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{13}{80} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{1}{20} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{19}{80} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{1}{10} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
- \frac{1}{40} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
- \frac{1}{40} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
- \frac{1}{20} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
\right)
\]

\[
(\varepsilon_v D_x^2)^* = \frac{1}{160} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{1}{32} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{1}{80} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{17}{640} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{121}{3840} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{71}{3840} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
- \frac{1}{48} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{1}{480} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
\right)
\]

\[
(\varepsilon_v D_x D_y)^* = \frac{1}{80} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{3}{160} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
- \frac{1}{160} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{17}{960} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
- \frac{7}{480} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
\right)
\]

\[
(\varepsilon_v D_x^2)^* = \frac{1}{480} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{7}{3840} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{5}{3072} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{7}{5120} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
\right)
\]

\[
(\varepsilon_v D_x^2 D_y)^* = \frac{1}{480} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
- \frac{1}{1920} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
- \frac{1}{768} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
+ \frac{11}{3840} \left(\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}\right)
\right)
\]
Fig. 6 The nodal function $\epsilon_{v_0}^* (left)$ and its control mesh (right) on the triangulation from Example 5

$$
(\epsilon_{q_1,c} D_u^2)^* = \frac{7}{240} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{240} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

$$
(\epsilon_{m,c} D_u)^* = \frac{1}{10} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{1}{5} \left(\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right).
$$

Note that the coefficients in these linear combinations are independent of the geometry of the triangle. The remaining nodal functions in Λ^* are obtained by applying a symmetry in S_3 to the above equations. For instance,

$$
(\epsilon_{q_2,c} D_u^2)^* = \frac{7}{240} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{240} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

Example 5 Let $v_i := (\cos(2\pi i / 6), \sin(2\pi i / 6))$, with $i = 1, 2, \ldots, 6$, be the vertices of a regular hexagon centered at the origin $v_0 := (0, 0)$. Consider the triangulation T with triangles $[v_0, v_6, v_1], [v_0, v_1, v_2], \ldots, [v_0, v_5, v_6]$. The nodal functions $\epsilon_{v_0}^*$ on these triangles patch together to a spline in $S_5^3(T_{12})$, which is rendered in Fig. 6 together with its control mesh.

7 Final Remarks

Remark 10 The C^1 quadratics from [20] and the space from [16] can be viewed as the cases $n = 1, 2$ of a sequence of locally C^{2n-1}, globally C^n spaces of degree $3n - 1$. There is a natural generalization to general n of a set of nodal functionals that on a single triangle has size equal to the dimension $\frac{15}{2} n^2 + \frac{9}{2} n$ of this space. As remarked
in [16], these do not form a basis for \(n > 2 \). However, it is plausible that one can instead construct simplex spline bases for higher degree and smoothness.

Remark 11 A case-by-case analysis, and a computation in the worksheet, show that the \(C^1 \) quadratic simplex splines on the 12-split are

\[
\begin{bmatrix}
\text{Type 1} & \text{Type 2} & \text{Type 3} & \text{Type 4} & \text{Type 5} & \text{Type 6} & \text{Type 7} & \text{Type 8} & \text{Type 9} & \text{Type 10} & \text{Type 11} & \text{Type 12}
\end{bmatrix}
\]

The quadratic S-basis of \(S^1_3 \) comprises the first three types and was shown to have local linear independence. Taking any other combination will overload some of the triangles in the 12-split, and the S-basis is therefore the unique simplex spline basis with local linear independence. Moreover, it reduces to a B-spline basis on the boundary.

For the quintic splines, a case-by-case analysis shows that each of the outer faces \(\Delta_1, \Delta_2, \ldots, \Delta_6 \) will be covered by at least 9 of the 21 simplex splines that are nonzero on the boundary, and by at least 14 of the 18 remaining simplex splines. Thus each outer face is covered by at least 23 \(> (5 + 1)(5 + 2)/2 \) simplex splines, showing that \(S^3_5 \) admits no locally linearly independent \(S^3 \)-invariant simplex spline basis that reduces to a B-spline basis on the boundary.

Acknowledgements The second author was supported by a FRINATEK grant, Project Number 222335, from the Research Council of Norway. We thank the referees for their valuable comments.

References

1. Alfeld, P., Schumaker, L.L.: Smooth macro-elements based on Powell–Sabin triangle splits. Adv. Comput. Math. **16**(1), 29–46 (2002)
2. Chui, C.K., Wang, R.H.: Multivariate spline spaces. J. Math. Anal. Appl. **94**(1), 197–221 (1983)
3. Ciarlet, P.G.: The finite element method for elliptic problems. In: Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. North-Holland, Amsterdam (Reprint of the 1978 original)
4. Cohen, E., Riesenfeld, R.F., Elber, G.: Geometric Modeling with Splines. A K Peters Ltd, Natick (2001). (An introduction; with a foreword by Tom Lyche)
5. Cohen, E., Lyche, T., Riesenfeld, R.F.: A B-spline-like basis for the Powell–Sabin 12-split based on simplex splines. Math. Comput. **82**(283), 1667–1707 (2013)
6. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley Publishing, New York (2009)
7. Davydov, O., Yeo, W.P.: Refinable \(C^2 \) piecewise quintic polynomials on Powell–Sabin-12 triangulations. J. Comput. Appl. Math. **240**, 62–73 (2013)
8. Dierckx, P.: On calculating normalized Powell–Sabin B-splines. Comput. Aided Geom. Des. **15**(1), 61–78 (1997)
9. Dyn, N., Lyche, T.: A Hermite subdivision scheme for the evaluation of the Powell–Sabin 12-split element. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory IX, Vol. 2 (Nashville, TN, 1998), pp. 33–38. Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN (1998)
10. Goodman, T.N.T., Lee, S.L.: Spline approximation operators of Bernstein–Schoenberg type in one and two variables. J. Approx. Theory **33**(3), 248–263 (1981)
11. Höllig, K.: Multivariate splines. SIAM J. Numer. Anal. **19**(5), 1013–1031 (1982)
12. Knuth, D.: Bracket notation for the “coefficient of” operator. In: Roscoe, A.W. (ed.) A Classical Mind: Essays in Honour of C. A. R. Hoare. Prentice Hall International (UK) Ltd., Hertfordshire (1994). arXiv:math/9402216
13. Lai, M.-J., Schumaker, L.L.: Macro-elements and stable local bases for splines on Powell–Sabin triangulations. Math. Comp. 72(241), 335–354 (2003)
14. Lai, M.-J., Schumaker, L.L.: Spline Functions on Triangulations, Encyclopedia of Mathematics and Its Applications, vol. 110. Cambridge University Press, Cambridge (2007)
15. Lamnii, M., Mraoui, H., Tijini, A.: Construction of quintic Powell–Sabin spline quasi-interpolants based on blossoming. J. Comput. Appl. Math. 250, 190–209 (2013)
16. Lyche, T., Muntingh, G.: A Hermite interpolatory subdivision scheme for C^2-quintics on the Powell–Sabin 12-split. Comput. Aided Geom. Des. 31(7–8), 464–474 (2014)
17. Micchelli, C.A.: On a numerically efficient method for computing multivariate B-splines. In: Schempp, W., Zeller, K. (eds.) Multivariate Approximation Theory (Proc. Conf., Math. Res. Inst., Oberwolfach, 1979), Internat. Ser. Numer. Math., vol. 51, pp. 211–248. Birkhäuser, Basel-Boston (1979)
18. Muntingh, G.: Personal Website. https://sites.google.com/site/georgmuntingh/academics/software
19. Oswald, P.: Hierarchical conforming finite element methods for the biharmonic equation. SIAM J. Numer. Anal. 29(6), 1610–1625 (1992)
20. Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximations on triangles. ACM Trans. Math. Softw. 3(4), 316–325 (1977)
21. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Mathematics and Visualization. Springer, Berlin (2002)
22. Stein, W.A.: Sage Mathematics Software (Version 6.5). Sage Development Team, Beverly Hills (2015)
23. Schenck, H., Stillman, M.: A family of ideals of minimal regularity and the Hilbert series of $C^r(\Delta)$. Adv. Appl. Math. 19(2), 169–182 (1997)
24. Schumaker, L.L., Sorokina, T.: Smooth macro-elements on Powell–Sabin-12 splits. Math. Comput. 75(254), 711–726 (2006). (electronic)
25. Seidel, H.-P.: Polar forms and triangular B-spline surfaces. In: Computing in Euclidean geometry. Lecture Notes Ser. Comput., vol. 1, pp. 235–286. World Sci. Publ., River Edge (1992)
26. Speleers, H.: A normalized basis for quintic Powell–Sabin splines. Comput. Aided Geom. Des. 27(6), 438–457 (2010)
27. Speleers, H.: Interpolation with quintic Powell–Sabin splines. Appl. Numer. Math. 62(5), 620–635 (2012)
28. Speleers, H.: Construction of normalized B-splines for a family of smooth spline spaces over Powell–Sabin triangulations. Constr. Approx. 37(1), 41–72 (2013)
29. Speleers, H.: A family of smooth quasi-interpolants defined over Powell–Sabin triangulations. Constr. Approx. 41(2), 297–324 (2015)
30. Ženíšek, A.: A general theorem on triangular finite $C^{(m)}$-elements. Rev. Française Autom. Inform. Rech. Opérationnelle Sér. Rouge 8(R-2), 119–127 (1974). (English, with Loose French summary)