The Origin of Magnetic Ordering in a Structurally-Perfect Quantum Kagome Antiferromagnet

T. Arh, M. Gomilšek, P. Prelovšek, M. Pregelj, M. Klanjšek, A. Ozarowski, S. J. Clark, T. Lancaster, W. Sun, J.-X. Mi, and A. Zorko

1Jožef Stefan Institute, Jamova c. 39, SI-1000 Ljubljana, Slovenia
2Centre for Materials Physics, Durham University, South Road, Durham, DH1 3LE, UK
3National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
4Fujian Provincial Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People’s Republic of China
5Faculty of Mathematics and Physics, University of Ljubljana, Jadranska u. 19, SI-1000 Ljubljana, Slovenia

(Dated: December 20, 2019)

The ground state of the simple Heisenberg nearest-neighbor quantum kagome antiferromagnetic model is a magnetically disordered spin liquid, yet various perturbations may lead to fundamentally different states. Here we disclose the origin of magnetic ordering in the structurally-perfect kagome material YCu$_3$(OH)$_6$Cl$_3$, which is free of the widespread impurity problem.

Quantum spin liquids are magnetically disordered, yet highly entangled states, promoted by quantum fluctuations on some geometrically frustrated spin lattices [1]. A paradigm predicting such a state even at zero temperature is the two-dimensional (2D) nearest-neighbor quantum kagome antiferromagnetic model (KAFM) [2–4], represented by Heisenberg, i.e., isotropic J_1 exchange bonds between spins-1/2 sites in Fig. 1. Yet, even small perturbations to this simple model can stabilize fundamentally different ground states, as their influence is strongly amplified by frustration. Various factors, including further-neighbor exchange interactions [5–11], magnetic anisotropy [9–14], defects [14–16], and structural distortions [17] have been the focus of theoretical investigations in recent years. One of the seminal predictions that still calls for a clear experimental validation is a quantum critical point induced by Dzyaloshinskii-Moriya (DM) magnetic anisotropy, separating a spin liquid from a magnetically ordered ground state of KAFM [12]. Here we elucidate the role of the DM interaction in promoting correlations that lead to the condensation of magnetic order in a material that closely realizes the KAFM.

Actual KAFM realizations are as a rule plagued by several perturbations, which makes experimental assessment of the individual roles of these perturbations challenging. A direct consequence of many effects being intertwined is that even the existence of a spin gap in the spin-liquid ground state of the KAFM remains unsettled. In fact, for the hitherto most intensively studied KAFM material herbertsmithite [19], indications of a finite gap [20] have been recently superseded by the conclusion that the gap is absent [21]. However, it remains unknown to what extent particular perturbations present in this material affect its low-energy magnetism. Relevant imperfections include sizable inter-site ion mixing [22–24], large DM anisotropy [25] and subtle structural distortion away from perfect kagome symmetry [26, 27]. On the contrary, in the recently synthesized KAFM ma-

![FIG. 1. Weiss temperature θ_W of YCu$_3$(OH)$_6$Cl$_3$ determined from DFT+U calculations for different values of the effective on-site Hubbard repulsion U_{eff} (points). The dashed line shows the experimental value $\theta_W = -99$ K, while the solid line serves as a guide to the eye. The inset depicts two neighboring kagome layers of Cu$^{2+}$ spin-1/2 ions with inplane Heisenberg exchange interactions J_1 (solid arrows) and interplane inter-

J_1' (dashed arrows). The nearest-neighbor coupling J_1 is by far the dominant one [18].]
terial YCu$_3$(OH)$_6$Cl$_3$ [28] all structure-related perturbations, including the inter-site disorder, are absent [28, 29]. Therefore, the recent discoveries of static internal magnetic fields [29, 30] and magnetic Bragg peaks [31] that develop in this material at low temperatures are rather surprising. Experiments have further established that the average ordered Cu$^{2+}$ magnetic moment of an otherwise regular 120° magnetic structure is strongly reduced [31] and is accompanied by spin fluctuations persisting down to the lowest accessible temperatures [30]. The origin of such exotic magnetism is unknown, but even more fundamentally, the basic question of the magnetic-ordering mechanism present in this material remains unexplained. Since YCu$_3$(OH)$_6$Cl$_3$ is a unique KAFM material with a limited number of possible perturbations, determining the ordering mechanism would be very important for assessing the impact of these perturbations on the spin-liquid ground state of pure KAFM.

Here we show a combination of density functional theory (DFT), finite-temperature Lanczos method (FTLM) and electron spin resonance (ESR) results, which allows us to address the origin of the unexpected magnetic ordering at nonzero temperatures in YCu$_3$(OH)$_6$Cl$_3$. The DFT calculations together with modeling of the magnetic susceptibility show that the nearest-neighbor Heisenberg exchange $J_1 = 82(2)$ K is by far the dominant isotropic interaction. The ESR measurements together with the FTLM modeling of specific heat, on the other hand, reveal an additional sizable out-of-plane DM anisotropy $D_z/J_1 = 0.25(1)$ that places the investigated compound in the magnetically-ordered region of the KAFM phase diagram [12]. Moreover, the FTLM modeling provides a novel insightful view into the role of the DM interaction in KAFM. This interaction leads to a low-temperature peak in specific heat related to enhancement of the spin correlations within the kagome planes, which allows for precise determination of its magnitude.

To understand the magnetism of YCu$_3$(OH)$_6$Cl$_3$, the first task is to determine its dominant isotropic exchange interactions. As in other kagome compounds [32–35], we tackle this problem using total-energy (broken-symmetry) DFT+U calculations [36] (for details see Ref. 18). We assume that each site is coupled with sites up to the third nearest neighbor in the kagome layer and with equivalent sites in the neighboring two kagome layers (Fig. 1). Our calculated exchange constants and the corresponding Weiss temperature $\theta_W = -\sum z_i J_i / 4$, where z_i is the number of neighbors coupled to a particular site with J_i [37], depend on the effective on-site Hubbard repulsion U_{eff} [18]. θ_W is compared with its experimental value of $-99(1)$ K, which is obtained from a Curie-Weiss fit to susceptibility data (inset in Fig. 2). The experiment is well reproduced for $U_{\text{eff}} = 6$ eV (Fig. 1), a value consistent with previous studies on similar materials [32–35]. We find that the exchange interaction between nearest neighbors $J_1 = 84.2(4)$ K by far exceeds all other Heisenberg interactions, as all of them are below 5% of J_1, regardless of the exact value of U_{eff} [18].

Next, we focus on the temperature dependence of the magnetic susceptibility to verify that the calculated exchange constants are consistent with experiment. We first compare the experimental susceptibility [30] to a high temperature series expansion (HTSE) prediction for a simplified J_1-J_2-J_3 model [38] in Fig. 2. The HTSE curve fitted in the temperature range between 100 and 300 K matches the experiment very well and yields the exchange constants $J_1 = 79.5(1)$ K, $J_2 = 2.8(27)$ K, and $J_3 = 4.3(54)$ K. Furthermore, we can compare the experiment to FTLM calculations for a pure nearest-neighbor KAFM on a $N = 42$ spin cluster [39]. A good agreement is obtained for temperatures down to 0.6 T_J / K with $J_1 = 82.2(1)$ K being the only free parameter (Fig. 2).

The fact that all three independent approaches yield very similar predictions, namely a dominant Heisenberg exchange interaction $J_1 = 82(2)$ K, gives strong credibility to these results. As isotropic exchange interactions beyond the nearest neighbors are limited to at most 5% of J_1, YCu$_3$(OH)$_6$Cl$_3$ can be placed alongside herbertsmithite [33] as one of the best realizations of the nearest-neighbor KAFM. In all other well studied examples, like kapellasite [32, 34, 38], haydeeite [32, 34, 41], volborthite [42], and vesignieite [43], further-neighbors interactions...
are much larger. As interactions $|J_2|$, $|J_3|$, $|J_d| \gtrsim 0.2 J_1$ [5–7, 9] or $|J'| \gtrsim 0.15 J_1$ [8] are needed to induce magnetic ordering in KAFM, these are evidently too small in YCu$_3$(OH)$_6$Cl$_3$. The only remaining perturbation that can account for its ordered ground state is magnetic anisotropy between nearest neighbors. Since there are no symmetry restrictions [44], this could either take the form of the antisymmetric DM interaction $D \cdot (S_i \times S_j)$, or the symmetric easy-plane anisotropic exchange (AE) interaction $\Delta (2S^z_i S^z_j / 3 - S^x_i S^x_j / 3 - S^y_i S^y_j / 3)$.

The next task is, therefore, to determine the dominant magnetic anisotropy term in YCu$_3$(OH)$_6$Cl$_3$. First, we note that further-neighbor isotropic exchange interactions are too small to explain the large discrepancy between the experimental magnetic susceptibility and the FTLM prediction already at temperatures as high as $0.6 J_1 \sim 50 K$ (Fig. 2), therefore, magnetic anisotropy should be larger than these interactions. We can quantify the anisotropy using ESR (for details see Ref. 18), as anisotropy directly broadens the ESR spectra [45]. The measured spectra (inset in Fig. 3) are broader than in other Cu-based kagome compounds like herbertsmithite [25], vesignieite [46], and kapellasite [47] by almost an order of magnitude. Above $200 K$ the ESR line width is constant at $\Delta B = 6.8(5) T$ (Fig. 3), which is consistent with a high-temperature paramagnetic regime and allows for the application of the well-established Kubo-Tomita theory [48]. For the powder-averaged full width at half maximum (FWHM) we get [25, 46]

$$\Delta B = \frac{k_B}{g \mu_B} \frac{\alpha A^2}{J_1},$$

where k_B is the Boltzmann constant, μ_B the Bohr magneton and we consider only the dominant nearest-neighbor isotropic interaction. The constant α is $3/4$ for the out-of-plane DM interaction $A = D_z$, $5/(4 \sqrt{3})$ for the in-plane DM interaction $A = D_p$, and $3/(2 \sqrt{3})$ for the AE interaction $A = \Delta$. Taking $g = 2.077$ and $J_1 = 82 K$, we obtain separately the estimates $D_z = 24(2) K = 0.29(3) J_1$, $D_p = 35(3) K = 0.43(4) J_1$, and $\Delta = 27(3) K = 0.33(3) J_1$. We note that the DM anisotropy is generally dominant in Cu$^{2+}$-based magnets, because it is a lower order correction to the isotropic exchange than the AE interaction [44], so that the ratio $\Delta/D \sim \Delta g/g \sim 0.15$ is expected for the Cu$^{2+}$ ions [49]. Furthermore, as the easy-plane AE interaction is not expected to lead to magnetic order of KAFM [13, 50], we attribute the large experimental ESR line width to the DM interaction.

The dominant DM component is determined from the temperature dependence of the magnetic susceptibility (Fig. 2). According to exact-diagonalization (ED) calculations for the kagome lattice [40], the out-of-plane component D_z suppresses the susceptibility when compared to the isotropic model, while the in-plane component D_p enhances it. The experimental suppression of the susceptibility implies D_z is of the order $D_z/J_1 = 0.2–0.3$. Since this agrees well with our estimate $D_z = 0.29(3) J_1$ based on the ESR line width, this is obviously the dominant DM component in YCu$_3$(OH)$_6$Cl$_3$.

An independent check of the above-estimated DM anisotropy is provided by modeling our previously published zero-field specific heat (c) data [30]. FTLM calculations [51, 52] of the magnetic contribution to the specific heat c_m, which were performed on spin clusters with up to $N = 30$ spins for various ratios D_z/J_1 (for details see Ref. 18), reveal two well-resolved peaks in c_m for $D_z/J_1 \gtrsim 0.08$ (Fig. 4a). A broad high-temperature peak around $0.67 J_1$ does not shift with D_z/J_1, while a narrower low-temperature peak shifts almost linearly with D_z and is found at $T_{\text{max}} \simeq 0.91 D$ (inset in Fig. 4a). The high-temperature peak is at a similar position as for a spin-1/2 square lattice [53] and reflects enhancement of nearest-neighbor spin correlations [54, 55]. On the other hand, we find that the low-temperature peak, with its linear dependence on D_z, corresponds to growing 1200 spin correlations on basic triangular units of the kagome lattice, as the out-of-plane DM component linearly shifts the energy of such a chiral spin structure [31].

For $D_z/J_1 = 0.25$, the low-temperature peak exactly coincides with the broad anomaly in the experimental c/T curve (inset in Fig. 4c). Indeed, we can fit the experimental data very well with the sum $c = c_m + c_{\text{ph}}$, which includes a Debye phonon contribution c_{ph} with a Debye temperature $\theta_D = 224(5) K$. The obtained value $D_z/J_1 = 0.25(1)$ is in good agreement with the estimate $D_z/J_1 = 0.29(3)$ based on the ESR line-width analysis, especially when considered that the Kubo-Tomita theory might be overestimating D_z on the kagome lattice, as concluded from ED calculations of the ESR line width on finite spin clusters [56]. The value $D_z/J_1 = 0.25(1)$

![FIG. 3. The ESR FWHM with the horizontal line highlighting its temperature independence above 200 K. The inset shows a selected ESR spectrum of YCu$_3$(OH)$_6$Cl$_3$ (circles) with the corresponding Lorentzian fit (line).](image-url)
also convincingly explains the suppression of the magnetic susceptibility shown in Fig. 2. Although the DM anisotropy in YCu$_3$(OH)$_6$Cl$_3$ is larger than in some other Cu$^{2+}$-based KAFM materials [25, 46], its size is still compatible with the order-of-magnitude estimate [44] $D_2/J_1 \sim \Delta g/g \sim 0.15$ for the Cu$^{2+}$ ions [49]. We note that the comparison of the FTLM curves and the experimental magnetic contribution to the specific heat shown in Fig. 4c demonstrates that c_m is a very sensitive probe of the DM interaction on the kagome lattice.

Having established the size of the main terms in the spin Hamiltonian of YCu$_3$(OH)$_6$Cl$_3$, we are now in position to discuss the origin of its magnetic ordering. It is theoretically well established that the out-of-plane DM interaction leads to a $q = 0$ long-range order of KAFM at zero temperature if its strength exceeds the critical value $D_2 = 0.10(2)J_1$ [9, 10, 12, 14] separating the spin-liquid and the ordered phase. Contrary to the paradigmatic KAFM material herbertsmithite, which appears to be on the verge of criticality [25], we find that YCu$_3$(OH)$_6$Cl$_3$ is well inside the ordered phase. Nevertheless, the average ordered moment should be strongly suppressed due to quantum fluctuations. Indeed, the predicted moment of $0.35 \mu_B$ for $D_2/J_1 = 0.25$ [12] matches reasonably well with the experimental value of $0.42(2) \mu_B$ [31].

We can comment on the compatibility of our results with the celebrated Mermin–Wagner theorem [57], which precludes long-range order in the considered 2D model at nonzero temperatures due to continuous in-plane symmetry. The observed 3D order at a finite temperature T_N [30, 31], therefore, requires interlayer interactions. The transition temperature is determined by the growth of the in-plane correlation length ξ (in units of the nearest-neighbor distance) to the extent that the thermal energy will drop below the energy of interaction of short-range ordered 2D regions on neighboring kagome planes, when $T_N \approx (\xi(T_N))^{2}J/S(S + 1)$ [54, 55]. As ξ should only marginally depend on the inter-layer interaction for $J'/J_1 \ll 1$ and thus should T_N only logarithmically depend on J' [53, 55, 58], T_N is dominantly determined by D_2 in YCu$_3$(OH)$_6$Cl$_3$. The role of the DM interaction is to promote building up of the 120° spin correlations within the kagome layers, which corresponds to effectively shifting a large release of the system’s entropy to temperatures $T \approx D_2$ (Fig. 4b). We note that for $J'/J_1 \ll 1$ the release of the entropy at $T_N < T_{\text{max}}$ becomes very small as most of the entropy is already released around T_{max} due to substantial 2D spin correlations. Consequently, the expected anomaly in specific heat at T_N becomes unobservable [53], which likely explains its absence in YCu$_3$(OH)$_6$Cl$_3$.

In conclusion, YCu$_3$(OH)$_6$Cl$_3$ turns out to be an extremely rare structurally-perfect KAFM material, with the nearest-neighbor isotropic exchange interaction $J_1 = 82(2)\text{K}$ dominating all other isotropic interactions, while the most relevant perturbation is the out-of-plane DM anisotropy $D_2/J_1 = 0.25(1)$. This ratio places the system in the magnetically-ordered part of the theoretically-predicted phase diagram [12]. This provides an unambiguous experimental confirmation of the key role of the DM interaction in inducing the magnetic order on the kagome lattice. Furthermore, now that the role of the
DM interaction is well understood, a sister compound \(\text{Y}_3 \text{Cu}_6 (\text{OH})_2 \text{OCl}_8 \) with a slightly distorted kagome lattice and apparently a spin-liquid ground state [29] provides an ideal opportunity to study the effects of further perturbations. Since in the latter compound very similar exchange interactions and magnetic anisotropy as in \(\text{YC}_3 \text{(OH)}_2 \text{Cl}_3 \) are expected, the reasoning for its lack of magnetic ordering should be searched in deviations from the perfect kagome symmetry.

The authors thank O. Cépas, F. Bert and P. Mendels for fruitful discussions. This work was supported by the Slovenian Research Agency under projects No. BI-US/18-20-064, No. Z1-1852, and program No. P1-0125. MG, TL and SJC are grateful to EPSRC (UK) for financial support through grant No. EP/N024028/1. The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF/DMR-1644779 and the State of Florida.

* andrej.zorko@ijs.si

[1] C. Lacroix, P. Mendels, and F. Mila, eds., *Introduction to Frustrated Magnetism: Materials, Experiments, Theory* (Springer Verlag, Berlin, 2011).
[2] L. Balents, “Spin liquids in frustrated magnets,” *Nature* **464**, 190 (2010).
[3] L. Savary and L. Balents, “Quantum spin liquids: a review,” *Rep. Prog. Phys.* **80**, 016502 (2017).
[4] Y. Zhou, K. Kanoda, and T.-K. Ng, “Quantum Spin Liquid States,” *Rev. Mod. Phys.* **89**, 025003 (2017).
[5] R. Suttner, C. Platt, J. Reuther, and R. Thomale, “Renormalization group analysis of competing quantum phases in the \(J_1-J_2 \) Heisenberg model on the kagome lattice,” *Phys. Rev. B* **89**, 020408(R) (2014).
[6] S.-S. Gong, W. Zhu, L. Balents, and D. N. Sheng, “Global phase diagram of competing ordered and quantum spin-liquid phases on the kagome lattice,” *Phys. Rev. B* **91**, 075112 (2015).
[7] S. Bieri, C. Lhuillier, and L. Messio, “Projective symmetry group classification of chiral spin liquids,” *Phys. Rev. B* **93**, 094437 (2016).
[8] O. Götze and J. Richter, “The route to magnetic order in the spin-1/2 kagome Heisenberg antiferromagnet: The role of interlayer coupling,” *EPL* **114**, 67004 (2016).
[9] M. Hering and J. Reuther, “Functional renormalization group analysis of Dzyaloshinsky-Moriya and Heisenberg spin interactions on the kagome lattice,” *Phys. Rev. B* **95**, 054418 (2017).
[10] W. Zhu, S.-S. Gong, and D. N. Sheng, “Identifying spinon excitations from dynamic structure factor of spin-1/2 Heisenberg antiferromagnet on the Kagome lattice,” *Proc. Natl. Acad. Sci. U.S.A.* **116**, 5437 (2019).
[11] B. Bernu, L. Pierre, K. Essafi, and L. Messio, “Effect of perturbations on the kagome \(S = 1/2 \) antiferromagnet at all temperatures,” arXiv:1909.00993 (2019).
[12] O. Cépas, C. M. Fong, P. W. Leung, and C. Lhuillier, “Quantum phase transition induced by Dzyaloshinskii-Moriya interactions in the kagome antiferromagnet,” *Phys. Rev. B* **78**, 140405(R) (2008).
[13] A. L. Chernyshev and M. E. Zhitomirsky, “Quantum selection of order in an \(xxz \) antiferromagnet on a kagome lattice,” *Phys. Rev. Lett.* **113**, 237202 (2014).
[14] I. Rouschatzakis, S. R. Mannmana, A. M. Läuchli, B. Normand, and F. Mila, “Dzyaloshinskii-Moriya anisotropy and nonmagnetic impurities in the \(S = 1/2 \) kagome system \(\text{ZnCu}_3 \text{(OH)}_2 \text{Cl}_3 \),” *Phys. Rev. B* **79**, 214415 (2009).
[15] R. R. P. Singh, “Valence bond glass phase in dilute kagome antiferromagnets,” *Phys. Rev. Lett.* **104**, 177203 (2010).
[16] H. Kawamura, K. Watanabe, and T. Shimokawa, “Quantum spin-liquid behavior in the spin-\(\frac{1}{2} \) random-bond Heisenberg antiferromagnet on the kagome lattice,” *J. Phys. Soc. Jpn.* **83**, 103704 (2014).
[17] M. R. Norman, N. J. Laurita, and D. Hsieh, “Valence bond phases of herbertsmithite and related copper kagome materials,” arXiv:1910.14196 (2019).
[18] See Supplemental Material for details on DFT and FTLM calculations as well as ESR measurements.
[19] M. R. Norman, “Colloquium: Herbertsmithite and the search for the quantum spin liquid,” *Rev. Mod. Phys.* **88**, 041002 (2016).
[20] M. Fu, T. Imai, T.-H. Han, and Y. S. Lee, “Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet,” *Science* **350**, 655 (2015).
[21] P. Khuntia, M. Velázquez, Q. Barthélemy, F. Bert, E. Kermarrec, A. Legros, B. Bernu, L. Messio, A. Zorko, and P. Mendels, “Gapless ground state in the archetypal quantum kagome antiferromagnet \(\text{ZnCu}_3 \text{(OH)}_2 \text{Cl}_2 \),” arXiv:1911.09552 (2019).
[22] M. A. de Vries, K. V. Kamenev, W. A. Kockelmann, J. Sanchez-Benitez, and A. Harrison, “Magnetic ground state of an experimental \(S = 1/2 \) kagome antiferromagnet,” *Phys. Rev. Lett.* **100**, 157205 (2008).
[23] A. Olariu, P. Mendels, F. Bert, F. Duc, J. C. Trombe, M. A. de Vries, and A. Harrison, “\(^{17} \text{O} \) NMR Study of the Intrinsic Magnetic Susceptibility and Spin Dynamics of the Quantum Kagome Antiferromagnet \(\text{ZnCu}_3 \text{(OH)}_2 \text{Cl}_2 \),” *Phys. Rev. Lett.* **100**, 087202 (2008).
[24] D. E. Freedman, T. H. Han, A. Prodi, P. Müller, Q.-Z. Huang, Y.-S. Chen, S. M. Webb, Y. S. Lee, T. M. McQueen, and D. G. Nocera, “Site specific X-ray anomalous dispersion of the geometrically frustrated kagome magnet, herbertsmithite, \(\text{ZnCu}_3 \text{(OH)}_2 \text{Cl}_2 \),” *JACS* **132**, 16185 (2010).
[25] A. Zorko, S. Nellutla, J. van Tol, L. C. Brunel, F. Bert, F. Duc, J.-C. Trombe, M. A. de Vries, A. Harrison, and P. Mendels, “Dzyaloshinskii-Moriya anisotropy in the spin-1/2 kagome compound \(\text{ZnCu}_3 \text{(OH)}_2 \text{Cl}_2 \),” *Phys. Rev. Lett.* **101**, 026405 (2008).
[26] A. Zorko, M. Herak, M. Gomilšek, J. van Tol, M. Velázquez, P. Khuntia, F. Bert, and P. Mendels, “Symmetry Reduction in the Quantum Kagome Antiferromagnet Herbertsmithite,” *Phys. Rev. Lett.* **118**, 017202 (2017).
[27] N. J. Laurita, A. Ron, J. W. Han, A. Scheie, J. P. Sheekleton, R. W. Smaaha, W. He, J.-J. Wen, J. S. Lee, Y. S. Lee, M. R. Norman, and D. Hsieh, “Evidence for a Parity Broken Monoclinic Ground State in the \(S = 1/2 \) Kagome Antiferromagnet Herbertsmithite,” arXiv:1910.13606 (2019).
[28] W. Sun, Y.-X. Huang, S. Nokhrin, Y. Pan, and J.-X. Mi, “Perfect Kagomé lattices in \(\text{YCu}_3 \text{(OH)}_2 \text{Cl}_3 \): a new
candidate for the quantum spin liquid state,” J. Mater. Chem. C 4, 8772 (2016).

[29] Q. Barthélémy, P. Puphal, K. M. Zoch, C. Krellner, H. Luetkens, C. Baines, D. Sheptyakov, E. Kermarrec, P. Mendels, and F. Bert, “Local study of the insulating quantum kagome antiferromagnets YCu$_3$(OH)$_6$O$_x$Cl$_{3-x}$ ($x = 0, 1/3$),” Phys. Rev. Materials 3, 074401 (2019).

[30] A. Zorko, M. Pregelj, M. Klanjšek, M. Gomišek, Z. Jagličič, J. S. Lord, J. A. T. Vereznhak, T. Shang, W. Sun, and J-X. Mi, “Coexistence of magnetic order and persistent spin dynamics in a quantum kagome antiferromagnet with no intersite mixing,” Phys. Rev. B 99, 214441 (2019).

[31] A. Zorko, M. Pregelj, M. Gomišek, M. Klanjšek, O. Zaharko, W. Sun, and J-X. Mi, “Negative-vector-chirality 120° spin structure in the defect- and distortion-free quantum kagome antiferromagnet YCu$_3$(OH)$_6$Cl$_3$,” Phys. Rev. B 100, 144420 (2019).

[32] O. Janson, J. Richter, and H. Rosner, “Modified kagome physics in the natural spin-1/2 kagome lattice systems: Kapellasite Cu$_3$Mg(OH)$_6$Cl$_2$ and haydeeite Cu$_3$Mg(OH)$_6$Cl$_2$,” Phys. Rev. Lett. 101, 106403 (2008).

[33] H. O. Jeschke, F. Salvat-Pujol, and R. Valentí, “First-principles determination of Heisenberg Hamiltonian parameters for the spin-1/2 kagome antiferromagnet ZnCu$_3$(OH)$_6$Cl$_2$,” Phys. Rev. B 88, 075106 (2013).

[34] Y. Iqbal, H. O. Jeschke, J. Reuther, R. Valentí, I. I. Mazin, M. Greiter, and R. Thomale, “Paramagnetism in the kagome compounds (Zn, Mg, Cd)Cu$_3$(OH)$_6$Cl$_2$,” Phys. Rev. B 92, 220404(R) (2015).

[35] H. O. Jeschke, F. Salvat-Pujol, E. Gati, N. H. Hoang, B. Wolf, M. Lang, J. A. Schlueter, and R. Valentí, “Barlowite as a canted antiferromagnet: Theory and experiment,” Phys. Rev. B 92, 094417 (2015).

[36] K. Riedl, Y. Li, R. Valentí, and S. M. Winter, “Ab initio approaches for low-energy spin Hamiltonians,” Phys. Status Solidi B 256, 1800684 (2019).

[37] J. B. Goodenough, Magnetism and chemical bond, Vol. 1 (Interscience Publishers, New York, 1963).

[38] B. Bernu, C. Lhuillier, E. Kermarrec, F. Bert, P. Mendels, R. H. Colman, and A. S. Wills, “Exchange energies of kapellasite from high-temperature series analysis of the kagome lattice $J_1-J_2-J_3$-Heisenberg model,” Phys. Rev. B 87, 155107 (2013).

[39] J. Schnack, J. Schulenburg, and J. Richter, “Magnetism of the N = 42 kagome lattice antiferromagnet,” Phys. Rev. B 98, 094423 (2018).

[40] M. Rigol and R. R. P. Singh, “Kagome lattice antiferromagnets and Dzyaloshinsky-Moriya interactions,” Phys. Rev. B 76, 184403 (2007).

[41] D. Boldrin, B. Fäk, M. Enderle, S. Bieri, J. Ollivier, S. Rols, P. Manuel, and A. S. Wills, “Haydeeite: A spin-1/2 kagome ferromagnet,” Phys. Rev. B 91, 220408 (2015).

[42] O. Janson, S. Furukawa, T. Momoi, P. Sindzingre, J. Richter, and K. Held, “Magnetic Behavior of Volborthite Cu$_3$V$_2$O$_7$(OH)$_2$: 2H$_2$O Determined by Coupled Trimmers Rather Than Frustrated Chains,” Phys. Rev. Lett. 117, 037206 (2016).

[43] D. Boldrin, B. Fäk, E. Canévet, J. Ollivier, H. C. Walker, P. Manuel, D. D. Khalyavin, and A. S. Wills, “Vesignieite: An $S = 1/2$ kagome antiferromagnet with dominant third-neighbor exchange,” Phys. Rev. Lett. 121, 107203 (2018).

[44] T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Phys. Rev. 120, 91 (1960).

[45] A. Zorko, “Determination of Magnetic Anisotropy by EPR,” in Topics From EPR Research, edited by A. M. Maghraby (IntechOpen, 2019).

[46] A. Zorko, F. Bert, A. Ozarowski, J. van Tol, D. Boldrin, A. S. Wills, and P. Mendels, “Dzyaloshinsky-Moriya interaction in vesignieite: A route to freezing in a quantum kagome antiferromagnet,” Phys. Rev. B 88, 144419 (2013).

[47] E. Kermarrec, A. Zorko, F. Bert, R. H. Colman, B. Koteswararao, F. Bouquet, P. Bonville, A. Hillier, A. Amato, J. van Tol, A. Ozarowski, A. S. Wills, and P. Mendels, “Spin dynamics and disorder effects in the $S = 1/2$ kagome Heisenberg spin-liquid phase of kapellasite,” Phys. Rev. B 90, 205103 (2014).

[48] R. Kubo and K. Tomita, “A general theory of magnetic resonance absorption,” J. Phys. Soc. Jpn. 8, 888 (1954).

[49] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970).

[50] Y.-C. He and Y. Chen, “Distinct spin liquids and their transitions in spin-1/2 XXZ kagome antiferromagnets,” Phys. Rev. Lett. 114, 037201 (2015).

[51] J. Jaklič and P. Prelovšek, “Finite-temperature conductivity in the planar $t-J$ model,” Phys. Rev. B 50, 7129 (1994).

[52] J. Jaklič and P. Prelovšek, “Finite-temperature properties of doped antiferromagnets,” Adv. Phys. 49, 1 (2000).

[53] P. Sengupta, A. W. Sandvik, and R. R. P. Singh, “Specific heat of quasi-two-dimensional antiferromagnetic Heisenberg models with varying interplanar couplings,” Phys. Rev. B 68, 094423 (2003).

[54] S. Chakravarty, B. I. Halperin, and D. R. Nelson, “Low-temperature behavior of two-dimensional quantum antiferromagnets,” Phys. Rev. Lett. 60, 1057 (1988).

[55] S. Chakravarty, B. I. Halperin, and D. R. Nelson, “Two-dimensional quantum Heisenberg antiferromagnet at low temperatures,” Phys. Rev. B 39, 2344 (1989).

[56] S. El Shawish, O. Cépas, and S. Miyashita, “Electron spin resonance in $S = 1/2$ antiferromagnets at high temperature,” Phys. Rev. B 81, 224421 (2010).

[57] D. Merming, N. and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models,” Phys. Rev. Lett. 17, 1133 (1966).

[58] C. Yasuda, S. Todo, K. Hukushima, F. Alet, M. Keller, M. Troyer, and H. Takayama, “Néel temperature of quasi-low-dimensional Heisenberg antiferromagnets,” Phys. Rev. Lett. 94, 217201 (2005).
Supplemental Information: The Origin of Magnetic Ordering in a Structurally-Perfect Quantum Kagome Antiferromagnet

T. Arh,1 M. Gomilšek,1,2 P. Prelovšek,1 M. Pregelj,1 M. Klanjšek,1 A. Ozarowski,3 S. J. Clark,2 T. Lancaster,2 W. Sun,4 J.-X. Mi,4 and A. Zorko1,5,*

1Jožef Stefan Institute, Jamova c. 39, SI-1000 Ljubljana, Slovenia
2Centre for Materials Physics, Durham University, South Road, Durham, DH1 3LE, UK
3National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
4Fujian Provincial Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People’s Republic of China
5Faculty of Mathematics and Physics, University of Ljubljana, Jadranska u. 19, SI-1000 Ljubljana, Slovenia

DFT CALCULATIONS

Ab-initio calculations were performed using the CASTEP DFT code [1] using a local (spin) density approximation (LDA) functional with an additional effective on-site Hubbard repulsion $U_{\text{eff}} = U - J_H = 4$–7 eV, where U is the bare Hubbard repulsion and $J_H \approx 1$ eV is Hund’s coupling, which was kept fixed. An LDA+U functional was chosen over a more sophisticated generalized gradient approximation (GGA) functional, as recent results suggest [2] that it can, in certain cases, perform better than standard GGA+U functionals [3] when describing the magnetism of materials.

For each value of U_{eff} the starting $173(2)$ K experimental crystal structure from Ref. 28 was relaxed with free lattice in internal structural parameters, resulting in unit cells with 93(1)% of the experimental cell volume. Well-converged total DFT energies of 102 random collinear spin configurations in a $2 \times 2 \times 2$ supercell containing 24 Cu$^{2+}$ ions were then calculated and finally fitted in the total-energy (broken-symmetry) DFT framework [5] by a spin model described by 9 Heisenberg exchange interactions depicted in Fig. 1 of the main text plus an energy offset. The results of these fits as well as the derived Weiss temperatures $\theta_W = -\sum_i z_i J_i/4$ are summarized in Table I. We note that even though the true spin ground state of YCu$_3$(OH)$_6$Cl$_3$ is noncollinear [6], the dominant exchange couplings extracted from collinear total-energy DFT calculations are still expected to be reliable, as was also found in other frustrated systems [5, 7–10]. The reason for this is that we are concerned with parametrizing the isotropic part of the system’s spin Hamiltonian, for which knowing the energies of (excited-state) collinear spin configurations is sufficient.

ELECTRON SPIN RESONANCE

Electron spin resonance (ESR) measurements were performed at the National High Magnetic Field Laboratory, Tallahassee, USA on a custom-made transmission-type ESR spectrometer with homodyne detection equipped by a sweepable 15-T superconducting magnet. The measurements were performed in the Faraday configuration at the irradiation frequencies of 212.6 and 256.3 GHz on a 770-mg sample from the same batch as used in our previous investigations [6, 12]. A modulation field of about 2 mT was used to record the so-called derivative spectra. The ESR spectra are a mixture of absorption and dispersion, with the corresponding phase determined from fits with the Lorentzian line shape. In order to show pure absorption spectra, the spectra shown in Fig. 5 are phase corrected. The Lorentzian line shape of the ESR spectra is a sign of exchange narrowing due to strong exchange interactions [13]. When fitting the spectra, we fixed the g factor to $g = 2.077$, as deduced from the Curie-Weiss analysis, because the spectra are too broad for a reliable g-factor determination. At $T \lesssim 150$ K the fits become unreliable, since the spectra disappear in the noise.

U_{eff} (eV)	4	5	6	7	HTSE
J_1 (K)	107.3(5)	94.2(4)	84.2(4)	85.2(4)	79.5(1)
J_2 (K)	5.2(5)	4.1(5)	3.7(4)	3.0(4)	2.8(27)
J_3 (K)	4.2(4)	3.2(3)	2.6(3)	1.8(3)	/
J_4 (K)	4.5(6)	3.8(5)	3.6(4)	2.6(4)	4.3(54)
J'_1 (K)	0.9(5)	0.7(4)	0.7(4)	0.1(4)	/
J'_2 (K)	-0.2(3)	0.1(2)	-0.2(2)	0.0(2)	/
J'_3 (K)	2.0(3)	1.9(3)	1.9(2)	1.7(2)	/
J'_4 (K)	0.3(1)	0.4(1)	0.3(1)	0.3(1)	/
W (K)	125.5(7)	110.5(6)	98.6(5)	96.7(14)	/

*Corresponding author.

Table I. Isotropic exchange coupling constants of YCu$_3$(OH)$_6$Cl$_3$ calculated by DFT+U for various values of the effective on-site Hubbard repulsion U_{eff}. The last column corresponds to HTSE modeling of magnetic susceptibility (see Fig. 2 in the main text). The considered inplane constants J_i and interplane constants J_i' are defined in Fig. 1 in the main text. The Weiss temperature is $\theta_W = -\sum_i z_i J_i/4$, where z_i denotes the number of neighbors coupled to a particular site by J_i. [11].
FIG. 5. The temperature dependence of the ESR spectra of YCu$_3$(OH)$_6$Cl$_3$ measured at 256.3 GHz (circles) with the corresponding Lorentzian fits (solid lines). The spectra are shifted vertically for clarity.

FTLM CALCULATIONS

We consider only the nearest-neighbor exchange spin-$1/2$ Heisenberg model on the kagome lattice, with additional Dzyaloshinskii-Moriya (DM) interaction with only the out-of-plane component $D_z \neq 0$, which applies well to YCu$_3$(OH)$_6$Cl$_3$. The corresponding Hamiltonian is

$$\mathcal{H} = \sum_{\langle ij \rangle} \left[JS_i \cdot S_j + D_{ij} (S_i \times S_j)_z \right],$$

(2)

where $D_{ij} = \pm D_z$, depending on the direction of the bond [14].

Within this model we calculate entropy per site $s(T)$, and consequently the specific heat $c(T) = T dS / dT$, using the finite-temperature Lanczos method (FTLM) [15, 16], previously used in numerous studies of static (and dynamical) properties at $T > 0$ in various models of correlated electrons [17], including thermodynamic quantities of the pure Heisenberg model on the kagome lattice [18]. Since the $D_z \neq 0$ model still retains the conservation of S^z_{tot} as well as the translational symmetry (due to periodic boundary conditions), the memory and CPU time requirement for a given system size N are essentially that of the Lanczos procedure for the ground state, provided that we scan over all (different) symmetry sectors S^z_{tot} and wavevectors q, and in addition perform a modest sampling over initial wavefunctions with $N_s = 30$. In the present study we thus deal with the kagome lattices with up to $N = 30$ sites, where the biggest symmetry sector contains $N_{\text{st}} \sim 16 \times 10^6$ basis states.

While FTLM is quite accurate for a given finite-size system, the main concern is the macroscopic ($N \rightarrow \infty$) validity of obtained results [15, 16]. Typically, the criterion $T > T_{\text{fs}}$ is related to the grandcanonical sum $Z(T) = \text{Tr} \{ \exp \{ - (\mathcal{H} - E_0) / T \} \}$, where E_0 is the ground-state energy and we require $Z > Z(T_{\text{fs}}) \gg 1$. Since $Z(T)$ is closely related to entropy $s(T)$, this requirement in actual systems effectively reduces to $s > (0.07 - 0.1)k_B$. Fortunately, frustrated systems are characterized by large $s(T)$ at low temperatures and consequently $T_{\text{fs}} \ll J$. This is particularly the case for the pure Heisenberg ($D_z = 0$) model on the kagome lattice (Fig. 4b in the main text; see also the finite-size analysis in Ref. 39). To demonstrate that finite-size effects are small in the considered temperature range where $s(T) > 0.07$, we present in Fig. 6 the comparison of FTLM results for $c(T)$ obtained on lattices with $N = 24, 27$, and 30 sites. The finite-size effects are somewhat enhanced only for the $D_z = 0$ model at $T/J_1 < 0.15$.

* andrej.zorko@ijs.si

[1] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, “First principles methods using CASTEP,” Z. Kristall. 220, 567 (2005).

[2] S. Sharma, E. K. U. Gross, A. Sanna, and J. K. Dewhurst, “Source-free exchange-correlation magnetic fields in density functional theory,” J. Chem. Theory Comput.
9

[3] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).

[4] W. Sun, Y.-X. Huang, S. Nokhrin, Y. Pan, and J.-X. Mi, “Perfect Kagomé lattices in YCu$_3$(OH)$_6$Cl$_3$: a new candidate for the quantum spin liquid state,” J. Mater. Chem. C 4, 8772 (2016).

[5] K. Riedl, Y. Li, R. Valentí, and S. M. Winter, “Ab initio approaches for low-energy spin Hamiltonians,” Phys. Status Solidi B 256, 1800684 (2019).

[6] A. Zorko, M. Pregelj, M. Gomilšek, M. Klanjšek, O. Zaharko, W. Sun, and J.-X. Mi, “Negative-vector-chirality 120° spin structure in the defect- and distortion-free quantum kagome antiferromagnet YCu$_3$(OH)$_6$Cl$_3,”$ Phys. Rev. B 100, 144420 (2019).

[7] O. Janson, J. Richter, and H. Rosner, “Modified kagome physics in the natural spin-1/2 kagome lattice systems: Kapellasite Cu$_3$Zn(OH)$_6$Cl$_2$ and haydeeite Cu$_3$Mg(OH)$_6$Cl$_2,”$ Phys. Rev. Lett. 101, 106403 (2008).

[8] H. O. Jeschke, F. Salvat-Pujol, and R. Valentí, “First-principles determination of Heisenberg Hamiltonian parameters for the spin-1/2 kagome antiferromagnet ZnCu$_3$(OH)$_6$Cl$_2,”$ Phys. Rev. B 88, 075106 (2013).

[9] Y. Iqbal, H. O. Jeschke, J. Reuther, R. Valentí, I. I. Mazin, M. Greiter, and R. Thomale, “Paramagnetism in the kagome compounds (Zn, Mg, Cd)Cu$_3$(OH)$_6$Cl$_2,”$ Phys. Rev. B 92, 220404(R) (2015).

[10] H. O. Jeschke, F. Salvat-Pujol, E. Gati, N. H. Hoang, B. Wolf, M. Lang, J. A. Schlueter, and R. Valentí, “Barlowite as a canted antiferromagnet: Theory and experiment,” Phys. Rev. B 92, 094417 (2015).

[11] J. B. Goodenough, Magnetism and chemical bond, Vol. 1 (Interscience Publishers, New York, 1963).

[12] A. Zorko, M. Pregelj, M. Klanjšek, M. Gomilšek, Z. Jagličić, J. S. Lord, J. A. T. Verežak, T. Shang, W. Sun, and J-X. Mi, “Coexistence of magnetic order and persistent spin dynamics in a quantum kagome antiferromagnet with no intersite mixing,” Phys. Rev. B 99, 214441 (2019).

[13] A. Zorko, “Determination of Magnetic Anisotropy by EPR,” in Topics From EPR Research, edited by A. M. Maghraby (IntechOpen, 2019).

[14] O. Čepas, C. M. Fong, P. W. Leung, and C. Lhuillier, “Quantum phase transition induced by Dzyaloshinskii-Moriya interactions in the kagome antiferromagnet,” Phys. Rev. B 78, 140405(R) (2008).

[15] J. Jaklič and P. Prelovšek, “Finite-temperature conductivity in the planar $t-J$ model,” Phys. Rev. B 50, 7129 (1994).

[16] J. Jaklič and P. Prelovšek, “Finite-temperature properties of doped antiferromagnets,” Adv. Phys. 49, 1 (2000).

[17] P. Prelovšek and J. Bonča, “Ground state and finite temperature Lanczos methods,” in Strongly Correlated Systems - Numerical Methods, edited by A. Avella and F. Mancini (Springer, Berlin, 2013).

[18] J. Schnack, J. Schulenburg, and J. Richter, “Magnetism of the $N = 42$ kagome lattice antiferromagnet,” Phys. Rev. B 98, 094423 (2018).