Multiple forms of intermittency in PDE dynamo models

Enrico Covas† and Reza Tavakol‡
Astronomy Unit, Mathematical Sciences, Queen Mary and Westfield College, Mile End Road, London E1 4NS, United Kingdom.

We find concrete evidence for the presence of crisis–induced and Pomeau–Manneville Type-I intermittencies in an axisymmetric PDE mean–field dynamo model. These findings are of potential importance for two different reasons. Firstly, as far as we are aware, this is the first time detailed evidence has been produced for the occurrence of these types of intermittency for such deterministic PDE models. And secondly, despite the rather idealised nature of these models, the concrete evidence for the occurrence of more than one type of intermittency in such models makes it in principle possible that different types of intermittency may occur in different solar-type stars or even in the same star over different epochs. In this way a multiple intermittency framework may turn out to be of importance in understanding the mechanisms responsible for grand-minima type behaviour in the Sun and solar-type stars and in particular in the interpretation of the corresponding observational and proxy evidence.

I. INTRODUCTION

Intermittency has been observed in a variety of real settings as well in a vast number of numerical models. A great deal of effort has therefore gone into understanding these modes of behaviour in the context of deterministic dynamical systems theory. These studies have demonstrated the existence of a number of different types of intermittency (such as Pomeau–Manneville [1], Crisis [2], On-off [3] intermittencies), each with their own associated signatures and scalings. Many of these forms of intermittency have in turn been concretely shown to be present in experiments and numerical studies of dynamical systems in a variety of settings (see [1, 2] and references therein).

An important potential domain of applicability of such behaviour arises in understanding the mechanisms underlying the intermediate time scale variability in the Sun [2] - the occurrence of the so called Maunder or grand minima - during which solar activity (as deduced from the sunspot numbers) was greatly diminished [1, 3]. This behaviour is also confirmed by evidence coming from the analysis of proxy data [1]. There is also some evidence for similar types of variability in solar-type stars [10].

The idea that some type of dynamical intermittency may underpin the grand minima type variability in the sunspot record (the intermittency hypothesis [1]) goes back at least to the late 1970’s [11, 12]. This idea has been the subject of intense study over the recent years and has involved the employment of various classes of dynamo models, including ordinary differential equations (ODE) (e.g. [13–15]) as well as partial differential equations (PDE) models (e.g. [16, 18, 24]). In addition to the phenomenological evidence for the presence of intermittent-type behaviours in dynamo models [16, 20], concrete evidence has recently been found for the presence of particular types of intermittency in both ODE dynamo models [21, 22] as well as a recently discovered generalisation of on-off intermittency, referred to as in-out intermittency [23], in PDE models [24].

Here we wish to report concrete evidence for the occurrence of two other types of intermittency, namely the crisis–induced and Pomeau–Manneville Type-I intermittencies, in PDE mean–field dynamo models. The organisation of the paper is as follows. In Sec. II we briefly introduce the model studied here. Sec. III summarises our evidence demonstrating the presence of these types of intermittencies in this model and finally in Sec. IV we draw our conclusions.

II. MODEL

Ideally one would wish to employ the full 3-dimensional dynamo models with a minimum number of approximations and simplifying assumptions. Despite a number of important recent attempts [24, 25], the difficulty of dealing with small scale turbulence makes a detailed and extensive self consistent study of such fully turbulent regimes in stars still computationally impractical (see e.g. [20, 25, 26]).

In view of this an alternative approach in studies of stellar dynamo has been to employ mean–field models [16, 18, 20]. We should mention that there is an ongoing debate regarding the nature and realistic value of such models [31]. Nevertheless, 3-D turbulence simulations do seem to produce magnetic fields whose global properties (such as field parity and time dependence) are similar to those expected from corresponding mean–field dynamo models [32]. In this way mean–field dynamo models seem to reproduce certain features of the more complicated models and allow the study of certain global
where B and u are the mean magnetic field and mean velocity respectively and the turbulent magnetic diffusivity \(\eta \) and the coefficient \(\alpha \) arise from the correlation of small scale turbulent velocities and magnetic fields (\(\alpha \) effect) \[35\]. We consider the usual algebraic form of \(\alpha \)-quenching namely

\[
\alpha = \frac{\alpha_0 \cos \theta}{1 + |\mathbf{B}|^2},
\]

where \(\alpha_0 = \text{constant} \) and \(\theta \) is the co-latitude.

We solve Eq. (1) in an axisymmetric configuration and in the following, as is customary \[2\], we shall discuss the behaviour of the solutions by monitoring the total magnetic energy, \(E = \frac{1}{\mu_0} \int \mathbf{B}^2 dV \), where \(\mu_0 \) the induction constant, and the integral is taken over the dynamo region. We split \(E \) into two parts, \(E = E_A + E_S \), where \(E_A \) and \(E_S \) are respectively the energies of the antisymmetric and symmetric parts of the field with respect to the equator. The overall parity \(P \) is given by \(P = [E_S - E_A]/E \), so \(P = -1 \) denotes an antisymmetric (dipole-like) pure-parity solution and \(P = +1 \) a symmetric (quadrupole-like) pure-parity solution.

For the numerical results reported in the following section, we used a modified version of the axisymmetric dynamo code of Brandenburg et al. (1989) \[2\] employed recently in \[36\]. These models are constructed from a complete sphere of radius \(R \) by removing an inner concentric sphere of radius \(r_0 \) and a conical section of semi-angle \(\theta_0 \) about the rotation axis, from both the north and south polar regions (see \[36\] for details of the model and the relevant parameters). To test the robustness of the code we verified that no qualitative changes were produced by employing a finer grid and different temporal step length (we used a grid size of 41 \(\times \) 81 mesh points and a step length of \(10^{-4} R^2/\eta_0 \) in the results presented in this paper). For the following results we use \(C_\Omega = -10^4 \), which give the magnitude of the differential rotation and \(\theta_0 = 45^\circ \). The magnitude of the \(\alpha \)-effect is given by the dynamo parameter \(C_\alpha \).

In the next section we show in turn concrete evidence for the occurrence of crisis-induced and Pomeau–Manneville Type-I intermittencies.

III. RESULTS

A. Crisis–induced Intermittency

As far as their detailed underlying mechanisms and temporal signatures are concerned, crises come in three varieties \[2\]. Here we shall be concerned with only one of these types, referred to as “attractor merging crisis”, whereby as a system parameter is varied, two or more chaotic attractors merge to form a single attractor. There are both experimental and numerical evidence for this type of intermittency (see for example \[21\] and references therein). In particular, this type of behaviour has been discovered in a 6-dimensional truncation of mean–field dynamo models \[21\].

Fig. 1 shows the plots of the energy and parity for the above model as a function of time, calculated with \(r_0 = 0.2 \) and \(C_\alpha = 25.202 \) which show a bimodal behaviour, switching intermittently between two different chaotic states.

![Example of crisis induced intermittency in a shell dynamo with a cut, with \(r_0 = 0.2 \), \(C_\alpha = 25.202 \), \(C_\Omega = -10^4 \) and \(\theta_0 = 45^\circ \).](image-url)

To determine the nature of this behaviour more precisely, we have plotted in Fig. 2 the return maps for the PDE models (1), showing the attractors before and after the merging. As can be seen the resulting merged attractor is, as expected, larger than the superposition of the two pre-existing attractors.

These results can be taken as indications for the presence of crisis–induced intermittency in this model. To substantiate this further, we recall that another important signature of this type of intermittency is the way \(\tau \), the average time between switches, scales with the system parameter, in this case, \(C_\alpha \). According to Grebogi et al. \[4\], for a large class of dynamical systems this relation takes the form

\[
\tau \sim |C_\alpha - C_\alpha^*|^{-\gamma},
\]

where the real constant \(\gamma \) is the critical exponent characteristic of the system under consideration and \(C_\alpha^* \) is the critical value of \(C_\alpha \) at which the two chaotic attractors merge.
The model under study here is a PDE system which is formally infinite dimensional. Such PDE models are numerically costly to integrate over long enough intervals of time (sometimes in excess of 5000 time units) necessary in order to obtain the scaling of the type (3). Furthermore, the demonstration of such scaling requires a precise determination of the critical value \(C^\alpha \) which is difficult since as one approaches this value \(\tau \) diverges and the integration time becomes prohibitive. Despite these difficulties, we have succeeded to obtain strong evidence for the presence of crisis–induced intermittency for the model (1). The slope is found to be \(\gamma = 1.08 \pm 0.05 \).

There is also evidence for an enlargement of the final attractor after merging, as shown by the larger amplitudes of variation in the parity, in the sense that the parity gets closer to \(-1\) after the merging, as depicted in Fig. 2. This helped us to numerically arrive at a better estimate for the critical value \(C^\alpha \).

These indicators, taken together, amount to strong evidence for the presence of crisis–induced intermittency for this model.

B. Pomeau–Manneville Type-I Intermittency

This type of intermittency, which is brought about through a tangent bifurcation, results in the system switching back and forth between a “ghost” periodic orbit and sudden bursts of chaotic behaviour [1]. There are both experimental and numerical evidence for this type of intermittency (see for example [5,37] and references therein). In particular this type of behaviour has been discovered in a 12-dimensional truncation of mean–field dynamo model [22].

To demonstrate the presence of this type of intermittency in the above PDE dynamo model, we have plotted in Fig. 4 the energy and parity as a function of time for the parameter values \(r_0 = 0.7 \) and \(C_\alpha = 28.0 \), which clearly demonstrates switches between nearly periodic behaviour and sudden bursts. We note that interestingly the energy in this case shows strong modulation which could be of interest in accounting for the occurrence of grand type minima in sunspot activity.
FIG. 4. Example of Type-I intermittency in a shell dynamo with a cut, with \(r_0 = 0.7 \), \(C_\alpha = 28.0 \), \(C_\Omega = -10^4 \) and \(\theta_0 = 45^\circ \).

Another signature of this type of intermittency is provided by the specific characteristics of its corresponding power spectrum. By employing finite dimensional maps \[6\], it has been shown that the corresponding spectra have a broad-band feature whose shape obeys approximately the inverse-power law \(1/f \) for \(f > f_s \), where \(f_s \) is the saturation frequency. Below this frequency there is a flat plateau induced by noise that causes arbitrarily long laminar phases to become finite.

As further evidence for this type of intermittency in the model (1), we have plotted in Fig. 5 the power spectrum at \(C_\alpha = 28.0 \), obtained by averaging over 16 different initial conditions corresponding to different initial parities. As can be seen, the power spectrum shows both the flat plateau and the \(1/f \) power law scaling.

Taken together, these indicators amount to strong evidence for the presence of Pomeau–Manneville Type-I intermittency for this model.

IV. CONCLUSION

We have obtained concrete evidence, in terms of phase space signatures, spectra and scalings to demonstrate the presence of crisis–induced and the Pomeau–Manneville Type-I intermittencies in axisymmetric mean–field PDE dynamo models. Despite the rather idealised nature of these models, this is of potential importance since it shows the occurrence of two more types of intermittency (in addition to in–out intermittency recently discovered \[24\]) in these models which may in turn be taken as an indication that more than one type of intermittency may occur in solar and stellar dynamos. This suggests that any observational programme for identifying the mechanisms underlying grand minima type variability needs to take into account the possibility that multiple intermittency mechanisms may be operative in different stars of the similar type, or even in the same star over different epochs. This would also be of importance in the interpretation of proxy data. In this way a more appropriate hypothesis regarding such variability would be that of \textit{multiple–intermittency hypothesis}.

We would like to thank Axel Brandenburg for providing us with the original code and Andrew Tworkowski for helpful discussions. EC is supported by grant BD/5708/95 – PRAXIS XXI, JNICT. RT benefited from PPARC UK Grant No. L39094.
[1] Y. Pomeau, and P. Manneville, *Commun. Math. Phys.* **74**, 189 (1980).
[2] C. Grebogi, E. Ott, and J. A. Yorke, *Phys. Rev. Lett* **48**, 1507 (1982); C. Grebogi, E. Ott, F. Romeiras, and J. A. Yorke, *Phys. Rev. A.* **36**, 5365 (1987).
[3] N. Platt, E. Spiegel, and C. Tresser, *Phys. Rev. Lett.* **70**, 279 (1993); E. Spiegel, N. Platt, and C. Tresser, *Geophys. Astrophys. Fluid Dyn. Flows* **73**, 146 (1993).
[4] Ch. Karakotsou, and A. N. Anagnostopoulos, *Physica D* **93**, 157 (1986); W. L. Ditto et al., *Phys. Rev. Lett.* **63**, 923 (1989).
[5] M. N. Bussac, and C. Meunier, *J. de Phys.* **43**, 585, (1982); R. Richter, A. Kittel, G. Heinz, G. Flätgen, J. Peinke, and J. Parisi, *Phys. Rev. B* **49**, 8738 (1994).
[6] B. So, and H. Mori, *Prog. Theor. Phys.* **72**, 1258 (1984); B. So, and H. Mori, *Physica D* **21**, 125 (1986); D. L. Feng, J. Zheng, W. Huang, C. X. Yu, and W. X. Ding, *Phys. Rev. E* **54**, 2839 (1996).
[7] J. A. Eddy, *Science* **192**, 1189 (1976); N. O. Weiss, and S. M. Tobias, in Solar and Heliospheric Plasma Physics, ed. G. M. Simnett, C. E. Alissandrakis, and L. Vlahos, Springer, Berlin, (1997).
[8] J. Beer, S. M. Tobias, and N. O. Weiss, *Solar Physics* **181**, 237 (1998).
[9] M. Stuiver, and T. F. Brazenunas, *Nature* **338**, 405 (1989).
[10] Balunus et al., *Ap. J.** 438**, 269 (1995).
[11] R. Tavakol, and E. Covas, 1999, Meeting "Stellar dynamos: Non-linearity and chaotic flows", submitted to Proceedings of Astronomical Society of the Pacific. Preprint available at web address http://www.maths.qmw.ac.uk/~eoc.
[12] R. Tavakol, *Nature* **276**, 802 (1978).
[13] B. Ya. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff, in *Magnetic Fields in Astrophysics*, (Gordon and Breach, New York, 1983); N. O. Weiss, F. Cattaneo, and C. A. Jones, *Geophys. Astrophys. Fluid Dyn.* **30**, 305 (1984).
[14] E. A. Spiegel, in *Chaos in Astrophysics*, edited by J. R. Butter, J. Perdang, and E. A. Spiegel (Reidel, Dor- drecht, 1985); U. Feudel, W. Jansen, and J. Kurths, *Int. J. of Bifurcation and Chaos* **3**, 131 (1993).
[15] S. Schmalz, and M. Stix, *A&A* **245**, 654 (1991).
[16] D. Schmitt, M. Schüssler, and A. Ferriz-Mas, *A&A* **311**, L1 (1996).
[17] A. Tworkowski, R. Tavakol, A. Brandenburg, J. M. Brooke, D. Moss, and I. Tuominen, *MNRAS* **296**, 287 (1998).
[18] S. M. Tobias, *A&A* **307**, L21, (1996).
[19] J. M. Brooke, J. Pelt, R. Tavakol, and A. Tworkowski, *A&A* **332**, 339 (1998).
[20] J. M. Brooke, *Europhysics Letters* **37**, 3 (1997).
[21] E. Covas, and R. Tavakol, *Phys. Rev. E* **55**, 6641 (1997).
[22] E. Covas, P. Ashwin, and R. Tavakol, *Phys. Rev. E* **56**, 6451 (1997).
[23] P. Ashwin, E. Covas, and R. Tavakol, *Nonlinearity* **9**, 563 (1999).
[24] E. Covas, R. Tavakol, P. Ashwin, A. Tworkowski, and J. M. Brooke, submitted to *Phys. Lett. A* (1999). Preprint available at web address http://www.maths.qmw.ac.uk/~eoc.
[25] P. A. Gilman, *ApJ. Suppl.* **53**, 243 (1983).
[26] Å. Nordlund, A. Brandenburg, R. L. Jennings, M. Rieutord, J. Ruokolainen, R. F. Stein, and I. Tuominen, *ApJ* **392**, 647 (1992).
[27] A. Brandenburg, R. L. Jennings, Å. Nordlund, M. Rieutord, R. F. Stein, and I. Tuominen, *JFM* **306**, 325 (1996).
[28] F. Cattaneo, D. W. Hughes, and N. O. Weiss, *MNRAS* **253**, 479 (1991).
[29] D. Moss, D. M. Barker, A. Brandenburg, and I. Tuominen, *A&A* **294**, 155 (1995).
[30] S. I. Vainshtein, F. Cattaneo, *Ap. J.* **393**, 165 (1992); F. Cattaneo, D. W. Hughes, *Phys. Rev. E* **54**, 4532 (1996).
[31] M. Steenbeck, and F. Krause, *Astron. Nachr.* **291**, 49 (1969); P. H. Roberts, and M. Stix, *A&A* **18**, 453 (1972).
[32] A. Brandenburg, I. Tuominen, F. Krause, R. Meinel, and D. Moss, *A&A* **213**, 411 (1989); A. Brandenburg, D. Moss, and I. Tuominen, *Geophys. Astrophys. Fluid Dyn.* **40**, 129 (1989).
[33] A. Brandenburg, 1999, in: *Helicity and Dynamos*, eds. A. A. Pevtsov, American Geophysical Union, Florida.
[34] A. Brandenburg, 1999, in: *Theory of Black Hole Accretion Discs*, eds. M. A. Abramowicz, G. Björnsson, and J. E. Pringle, Cambridge University Press.
[35] F. Krause, and K.-H. Rädler, *Mean-Field Magnetohydrodynamics and Dynamo Theory*, (Pergamon, Oxford, 1980).
[36] E. Covas, R. Tavakol, A. Tworkowski, A. Brandenburg, J. M. Brooke, and D. Moss, 1999, *A&A* **345**, 669 (1999).
[37] J. E. Hirsch, B. A. Huberman, and D. J. Scalapino, *Phys. Rev. A.* **25**, 519 (1982)