Background. Influenza and respiratory syncytial virus (RSV) are recognized as important causes of hospital-acquired infection. Increased use of multiplex molecular diagnostic testing is shedding light on the incidence of other hospital-associated respiratory virus infections (HA-RVI). However, the incidence and clinical impact of HA-RVI are not well understood.

Methods. We identified hospitalized patients admitted between July 1, 2017 and June 30, 2018 who were clinically tested to diagnose respiratory virus infections. HA-RVI were defined as respiratory virus positivity beginning more than 48 hours after hospital admission. The clinical outcomes of HA-RVI were compared with respiratory virus infections that were not considered hospital-associated (non-HA-RVI).

Results. Respiratory virus testing was performed on 4,690 individuals during 5,942 inpatient encounters. At least 1 virus was identified in 1,871 (31%) encounters, and 229 (12%) were defined as HA-RVI (median hours from admission to positivity [IQR]: 154 [79, 308]). Among the patients with a respiratory virus infection, 56% were adults, 52% were male, 77% were non-Hispanic white, and the median Charlson score was 2 (IQR: 1, 4); HA-RVI patients were more likely to be male (59% vs. 51%, P = 0.01) and had higher median Charlson scores (3 vs. 2, P = 0.001). All 14 respiratory viruses in the diagnostic panel were positive for at least one HA-RVI (Figure 1), but rhinovirus/enterovirus (99), influenza A (27), human metapneumovirus (22) and respiratory syncytial virus (20) were most common. Compared with non-HA-RVI patients, those with HA-RVI had longer post-infection lengths of stay (median: 9 vs. 4 days, P < 0.001) and were more likely to die during hospitalization (odds ratio [95% confidence interval]: 3.4 [2.6, 5.7]) (Table 1).

Conclusion. A substantial number of HA-RVI were identified during the 2017–2018 respiratory virus season, and they were associated with a striking number of severe outcomes. More in depth analyses are required to determine whether severe outcomes are a direct result of HA-RVI or whether HA-RVI are more common in critically ill patients and serve as a marker for severe morbidity. A broader understanding of HA-RVI transmission and prevention strategies is needed.

Table 1. Demographics Characters and Clinical Outcomes of Patients with Hospital-Associated Respiratory Virus Infections (HA-RVI) and Non-Hospital-Associated Respiratory Virus Infections (Non-HA-RVI)

Character	Non-HA-RVI	HA-RVI	P value
Age category, No.	(1250)	(1229)	0.09
<1 years	847 (68)	862 (70)	0.09
1-17 years	248 (20)	242 (20)	0.89
18-64 years	510 (41)	496 (41)	0.06
≥65 years	282 (23)	297 (25)	0.01
Gender, No.	(811)	(949)	0.09
Female	416 (51)	473 (50)	0.09
Male	395 (49)	476 (49)	0.09
Race/ethnicity, No.	(1024)	(185)	0.76
Black or African American	122 (12)	24 (13)	0.01
Other	902 (88)	161 (87)	0.01
Charlson score, median (IQR)	2 (1-3)	2 (1-3)	0.01

Conclusion. This meta-analysis clearly favors the use of daily chlorhexidine bath in the prevention of ventilator-associated pneumonia.