Genetic analysis of the *Komagataella phaffii* centromeres by a color-based plasmid stability assay

Luiza Cesca Piva¹, Janice Lisboa De Marco¹, Lidia Maria Pepe de Moraes¹, Viviane Castelo Branco Reis¹, Fernando Araripe Gonçalves Torres¹*

¹Laboratório de Biologia Molecular, Universidade de Brasília, Brasília, DF, Brazil, 70910-900.

*Corresponding author

E-mail: ftorres@unb.br
Abstract

The yeast *Komagataella phaffii* is widely used as a microbial host for heterologous protein production. However, molecular tools for this yeast are basically restricted to a few integrative and replicative plasmids. Four sequences that have recently been proposed as the *K. phaffii* centromeres could be used to develop a new class of mitotically stable vectors. In this work we designed a color-based genetic assay to investigate genetic stability in *K. phaffii*. Plasmids bearing each centromere and the *ADE3* marker were evaluated in terms of mitotic stability in an *ade2/ade3* auxotrophic strain which allows plasmid screening through colony color. Plasmid copy number was verified through qPCR. Our results confirmed that the centromeric plasmids were maintained at low copy number as a result of typical chromosome-like segregation during cell division. These features, combined with high transformation efficiency and *in vivo* assembly possibilities, prompt these plasmids as a new addition to the *K. phaffii* genetic toolbox.

Author summary

The methylotrophic yeast *Komagataella phaffii* is considered as one of the most important platforms for the production of proteins and metabolites. We sought in this study to develop a color-based genetic system widely used in other yeasts to assess mitotically stability of vectors carrying the proposed *K. phaffii* centromeres. First, we constructed a *K. phaffii* strain (LA3) mutant for *ADE2* and *ADE3*; this resulted in a strain that forms white colonies and when transformed with a vector (pPICH-ADE3) carrying *ADE3* turns red. Next, the four *K. phaffii* centromeres were cloned into pPICH-
ADE3 and tested in LA3 for copy number and plasmid stability. Centromeres are responsible for proper chromosome segregation during cell division, hence guaranteeing that both daughter cells receive one copy of the duplicated DNA. Our results show that three *K. phaffii* centromeres behaved as expected conferring extra stability to the replicative plasmids and maintaining them at low copy number. Once characterized, centromeres can be used as parts in the construction of advanced genetic manipulation tools, thus allowing the construction of strains capable of expressing large metabolic pathways for the production of complex biochemicals.

Introduction

Komagataella phaffii is a methylotrophic yeast of great industrial importance which has been used for more than 30 years as a heterologous protein production platform [1]. Its genome was first published in 2009 and has since then been refined and thoroughly studied [2,3]. As a result, in addition to a protein factory, *K. phaffii* has also been widely considered as a platform for the production of chemicals, biopharmaceuticals, vitamins and other molecules. However, the construction and regulation of new pathways demand complex molecular biology tools which are not readily available for this yeast [4].

K. phaffii genetic manipulation traditionally involves the use of shuttle vectors assembled in *Escherichia coli* and subsequently integrated into the yeast’s genome [5]. Recent studies have described the development of a wide range of genetic parts for use in this yeast, as well as new methods of plasmid assembly and transformation [6]. An alternative to integrative strategies is the use of replicative plasmids, which are usually
based on the well-known ARS1 sequence [1]. These plasmids may overcome some drawbacks such as genetic instability in multi-copy strains and non-specific integration [7,8]. In addition, they present higher transformation efficiency when compared to integrative vectors and can be assembled by in vivo recombination, which eliminates the need for bacterial transformation [9,10]. However, replicative plasmids show low mitotic stability when compared to integrative vectors and few vector options are available for use [11]. Stability problems can be circumvented by the creation of centromeric plasmids, which may provide proper segregation during mitosis. A greater mitotic stability as well as low copy number allow stable and constant protein expression [12]. Centromeric plasmids can be constructed in vivo, allowing the assembly and cloning of large sequences including whole metabolic pathways and regulatory regions [13]. Therefore, the construction of such vectors would be of great value for K. phaffii strain development in the context of synthetic biology.

Centromeres are typically surrounded by large heterochromatin sections in most organisms [14]. Their structure ranges from simple “point” centromeres of only ~125 bp in Saccharomyces cerevisiae to epigenetic, sequence-independent centromeres, such as those present in plants and animals. The reason for this phenomenon is that, for most eukaryotes, centromeres are maintained epigenetically and not genetically. Sequence homologies are rare in and between species, hampering the definition of a consensus sequence. In addition, some DNA regions can be centromeric or not depending on its function in previous cell cycles, which highlights the epigenetic nature of the centromere [15].

As for non-conventional yeasts there are wide variations in centromere size and structure. Candida glabrata has centromeres that show some homology to the CDEI and
CDEIII regions of *S. cerevisiae* while *Kuraishia capsulata* centromeres have 200-bp conserved sequences [16,17]. On the other hand, *Candida tropicalis*, *Schizosaccharomyces pombe* and *Candida albicans* have regional centromeres named after their sizes which range from 3 to 110 kb [18–20].

K. phaffii centromeres have recently been identified, bearing no sequence similarities to those of any other yeast. Since centromere function relies strongly on its structure rather than on its sequence, a centromere-specific histone H3 variant (CSE4) was used in the search for centromeric regions in *K. phaffii*. A CSE4 homolog was identified in chromosome 2 and tagged with a fluorescence marker. The corresponding nuclear localization of the histone-DNA complex indicated a centromere pattern typical of budding yeasts. Tridimensional conformation analysis followed the centromere clustering pattern observed in yeasts and narrowed down all four *K. phaffii* centromere locations to 20 kb windows [21].

Considering that a low transcription rate is typical of centromeric regions, RNA-seq analysis allowed to pinpoint the putative centromeric locations for all four *K. phaffii* centromeres [3]. Similarly to *C. tropicalis* and *S. pombe*, *K. phaffii* centromeres are formed by inverted repeats. All four sequences have two inverted repeats of ~2,5 kb, separated by a central segment of 800 to 1300 bp. Chromatin immunoprecipitation sequencing analysis showed that the CSE4 histone binds preferably to the central region, but also along the inverted repeats [22].

K. phaffii centromeric sequences contain early replication peaks with autonomously replicating sequences, characteristics that are also observed in centromeres of other yeasts [23,24]. According to recently published studies, there are
native ARS sequences contained within centromeres 2 and 4. These comprise regions within the inverted repeats, as well as unique adjacent sequences [22,25].

In order to expand the functional analysis of the *K. phaffii* centromeres we sought in this study to develop a genetic system based on an *ade2/ade3* auxotrophic strain and a replicative vector carrying the wild-type *ADE3*. Vectors carrying each individual centromere were used to assess plasmid copy number and mitotic stability.

Results and Discussion

In yeasts, adenine synthesis pathway is used as a tool for auxotrophic selection, gene copy number indicator and for plasmid stability analysis [26]. Many genes from this pathway have been deleted in *S. cerevisiae* in order to create auxotrophic strains, while in *K. phaffii* studies have only focused on *ADE1* and *ADE2* [27,28]. *K. phaffii* LA2, a strain mutant for *ADE2* [29], was used as a starting point for the construction of a strain that would allow plasmid stability verification. Deletion of *ADE2* results in cells auxotrophic for adenine which accumulate a red pigment [26] while deletion of genes located upstream, such as *ADE1* or *ADE3*, should prevent the formation of such pigment [27]. As expected, the deletion of *ADE3* in LA3 strain results in white colonies (Fig 1). Deletion of *ADE3* in *S. cerevisiae* has regulatory effects in the histidine synthesis pathway [30]. Consequently, *ade2 ade3* strains are not only auxotrophic for adenine, but also for histidine. In order to verify if this phenotype is applicable to *K. phaffii*, we plated strains X-33, LA2 and LA3 on MD medium without supplementation, comparing growth and colony color to cells plated on MD medium with adenine and histidine (Fig 1). LA3 strain displayed the expected histidine auxotrophy phenotype,
showing that the adenine-histidine pathways in K. phaffii and S. cerevisiae have
common characteristics.

In order to assess plasmid stability, we first constructed plasmid pPICH-ADE3
bearing the ADE3 gene (Fig 2). When transformed with pPICH-ADE3, LA3 cells
should return to being red and any changes on colony color would allow a simple
screening of plasmid loss [26]. Although adenine auxotrophy has been explored for
other purposes in K. phaffii [28], this particular color-based system has not yet been
used for measuring plasmid stability in this yeast.

pPICH-ADE3 was used for cloning of all four K. phaffii centromeres. Since it
revealed extremely difficult to amplify entire centromeric regions we designed a
strategy to amplify centromeres in halves in order to reduce fragment size and to avoid
primer annealing inside the inverted repeats (Fig 3). Amplified fragments exhibited in
their ends overlapping regions that would allow recombination between each other and
with vector pPICH-ADE3.

LA3 strain was individually transformed with pPICH-ADE3 and all four
constructed centromeric plasmids (pPICH-CEN1-4). Plasmids were verified for
autonomous replication by PCR analysis which confirmed their circular conformation
(data not shown) and by plasmid rescue in E. coli. In this case, only pPICH-CEN3 could
not be recovered, probably because CEN3 was the only centromere that could not be
cloned directly in E. coli.

Plasmid stability was firstly verified through colony color in non-selective
medium (Fig 4). When plated on YPD non-selective medium, colonies transformed with
pPICH-ADE3 lost their color rapidly and presented a red center with large white edges,
a result consistent with plasmid instability. In contrast, strains transformed with all
centromeric plasmids presented a uniform red coloration throughout the colony.

Further stability examination of the centromeric plasmids was performed by
growing cells in liquid YPD medium for 144 hours. After diluting and plating cultures
on non-selective medium, red and white colonies were counted and compared between
each construction (Fig 5). LA3 strain transformed with pPICH-ADE3 did not yield red
colonies in any growth period, indicating that the plasmid was mitotically unstable.
Conversely, centromeric plasmids presented a higher mitotic stability than pPICH-
ADE3. After 96 hours of growth, cells with pPICH-CEN1 started to present white
colonies, while all other centromeric plasmids remained stable. After 144 hours,
pPICH-CEN1 was lost in most colonies while the other centromeric plasmids were lost
in <10% cells. The reason for the instability of pPICH-CEN1 is still unclear but it could
be related to the absence of important regulatory regions.

Yeast centromeric plasmids knowingly have a higher mitotic stability under non-
selective conditions than common replicative vectors since they are equally segregated
between daughter cells and therefore provide a uniform culture of cells containing the
plasmid [26]. A centromeric vector containing *K. phaffii* CEN2 has been constructed
and it presented an enhanced stability when compared to a replicative plasmid [25]. In
addition to *K. phaffii* and *S. cerevisiae*, centromeric plasmids have been developed for
other yeasts such as *S. pombe*, *C. glabrata* and *Sheffersomyces stipitis* and in all cases
enhanced plasmid stability under non-selective conditions was verified [12,17].

Yeast replicative plasmids are normally replicated but are unevenly distributed
between daughter cells, which creates both multi-copy and plasmidless cells [26]. Under
selective conditions, cells lacking the plasmid are unable to survive and the result is a
population of multi-copy plasmid-containing cells. The construction of centromeric
plasmids should provide better plasmid segregation and stability and cells should
maintain a low and stable plasmid copy number during yeast growth [31]. Plasmid copy
number was assessed by qPCR after strains were grown in YPD medium containing
zeocin in order to ensure that all cells assayed were harboring the centromeric plasmids.
Results from qPCR (Fig 6) indicate that the strain transformed with centromeric
plasmids carried 1-2 copies per cell while the replicative plasmid was present at
approximately 25 copies per cell. The difference between plasmid copy number for the
replicative vector and all centromeric vectors was significant according to a t-test
(p<0.05). This result illustrates the expected segregation pattern described above for
growth in selective conditions and, together with the mitotic stability analysis, provides
a clear picture of *K. phaffii* genetic manipulation using centromeric plasmids.

In a previous study, *K. phaffii* transformed with a centromeric plasmid was
analyzed regarding plasmid copy number and compared to both a replicative plasmid
and an integrative strategy [25]. Results exhibited an equal low number of plasmids per
cell in all strategies, which does not correspond to our observation. This can be
explained by the fact that their analysis was performed in non-selective medium, a
condition in which replicative plasmids are readily lost as we have shown in Fig 5A
(pPICH-ADE3).

Overall, our results indicate that centromeric plasmids could be employed as a
new tool for genetic manipulation of *K. phaffii*. Plasmids were maintained for long
periods in non-selective medium, indicating that growth can be performed without the
addition of antibiotics or any form of selective pressure. The centromeric plasmids’ low
copy numbers per cell characterize a stable and homogeneous culture that can provide
reliable expression results. Finally, their structure as a circular molecule allows in vivo plasmid assembly with relatively short homologous sequences when compared to genomic integration techniques where sequences have to be much longer for directed homologous recombination. Simpler assembly may also facilitate the construction of larger and more sophisticated vectors such as yeast artificial chromosomes (YAC) whose stability features may be also analysed by the color-based assay described in this work.

Methods

Strains and Media

DNA cloning was performed using chemically competent Escherichia coli XL-10 Gold (Agilent Technologies) grown in LB medium (5 g L\(^{-1}\) yeast extract, 10 g L\(^{-1}\) peptone and 10 g L\(^{-1}\) NaCl, pH 7.2). When needed, agar was added to a final concentration of 1.5%. When zeocin (25 µg mL\(^{-1}\)) was used for bacterial antibiotic selection, NaCl concentration was reduced to 5 g L\(^{-1}\).

K. phaffii strains were derived from X-33 (Invitrogen). LA2 strain (amd2 ade2) was described in a previous work. Yeast was routinely grown in YPD medium (10 g L\(^{-1}\) yeast extract, 20 g L\(^{-1}\) peptone and 20 g L\(^{-1}\) glucose). Solid medium used 2% agar. Zeocin and geneticin, when used, were added at 100 µg mL\(^{-1}\) and 500 µg mL\(^{-1}\), respectively. Hygromycin B was used to a final concentration of 50 µg mL\(^{-1}\). Minimal medium (MD) used 0.34% Yeast Nitrogen Base, 1% (NH\(_4\))\(_2\)SO\(_4\), 2% glucose, 0.00004% biotin and 0.0002% adenine or 0.004% histidine, when needed.
PCR

DNA was amplified using Invitrogen Platinum Taq DNA Polymerase (High Fidelity), Promega GoTaq Colorless Master Mix or Sigma-Aldrich Accutaq LA DNA Polymerase. All primers used in this work are shown in Table 1.

Table 1. Primers used in this work.

Primer	Sequence	Enzyme
ADE3up-F	GATAAGCTTGATATCGAATTCTCCTGCAGCCGCCGGAGCGTAATGGAATAACTTGCTGAC	SmaI
ADE3up-R	GAAGTTATGGATCCTACGAGGTAATTGAAGGCTCAC	
ADE3lox-F	CTCAATTACCTCGTAGATCCATAACTTCTGATCNTATG	
ADE3lox-R	CAATCTCTCCCTTTGTCATCGGATCCATAACTTCTGATCNTATG	
ADE3dw-F	GAAGTTATGGATCCGATGACAAGGGAGAGATTGAG	SmaI
ADE3dw-R	GGTGGCGGCGCGCTCTAGAAGTGGATCCCCGGGTTGCAATGTACTTCTGAGTAG	
ADE3conF	GGGGACCGGAGGTAAGAAG	
ADE3conR	GTTGGGAATAATTGCATGCTGT	
MUT1(Hpa)	CCATTGACATGGTAACAGGTTGGA	
MUT2(Bam)	GAACACTGGGATCTTGTTGAG	
Cen1-F	GAGTTTAACCGGATCCACGAGCAATGGATAGGACT	BamHI
Cen1-R	CCGCGAATTCGGATCTAGGTGGATCCCCGGGTTGCAATGTACTTCTGAGAG	BamHI
Cen1c-F	CAAGTTAGCGTGATCCAGGT	
Cen1c-R	TACGAAATTGTGCGGGCTCTG	
Cen2-F	GAGTTTAACCGGATCCATCTCGGTTGATACTCCCAAC	BamHI
Cen2-R	CCGCGAATTTCGGATCCCATCGACAGCAGAACAAC	BamHI
Primer	Sequence	Restriction Site
----------------	--	------------------
Cen2c-F	GAATGGAGGTGCTGGTGTTA	
Cen2c-R	TGTAATGCTCAGCTGGGTAGT	
Cen3-F	GAGTTAAACGGATCCAAGTGTTGACCCAGTCA GCG	BamHI
Cen3-R	CGCGAATTTCGGATTTCAGTATGTAATCAGCACTGCAA CTGC	BamHI
Cen3e-F	TCGAGCGAATACCCACACTT	
Cen3e-R	TCAGCCGAGCAGAATGAT	
Cen4-F	GAGTTAAACGGATCCAAACGGGACCCTTTCAGCTTTG TCA	BamHI
Cen4-R	CGCGAATTTCGGATTTCAGTATGTAATGACGAGC AGC	BamHI
Cen4c-F	TCAAGAATCGTACTGGCACC	
Cen4c-R	CAAGCTCGTGAAGTGGGAT	
Cen370-F	CGCTCAGTGGAACGAAAAACTCAGTTAAGGGA TTTGATGATGATCAGATCAGTCTAACTCCAAAGAGA CGAAAGGTTGAATGAGT TTTAAACGGGATCCAGTGGG	BamHI
Cen370-R	GCTGGCCTCCTCTCTCCAGCTCAGCTAATCAGAT CCTAATCAGTCTACTCAACAGTGACCTGGCC CGCGT TAAACGAATCCTCGGATTCGCTATTCACA	BamHI
qZEO-F	CGACGTGACCCCTGTTCATCA	
qZEO-R	TGGGACGCACCTCCGACCA	
qHIS-F	GTGTATTCTTGGCTTGCCATCT	
qHIS-R	GCCAAGTACGGGTGTGACGTT	

Restriction sites are underlined.

DNA manipulation

All basic DNA manipulation and analysis were performed as previously described \(^{32}\). Restriction digestion was performed in accordance to the manufacturer instructions (New England Biolabs), as well as vector dephosphorylation with Shrimp.
Alkaline Phosphatase (Promega) and ligation with T4 DNA ligase (USB). In-Fusion Cloning Kit (Clontech) was used for in-vitro assembly of plasmids. Site-directed mutagenesis was performed using the Transformer Site-Directed Mutagenesis kit (Clontech). PCR and gel purification used Promega Wizard SV Gel and PCR Clean-Up System.

Quantitative PCR (qPCR)

Cells were grown to an O.D. of 1 in 10 mL YPD containing zeocin and then collected by centrifugation at 2000 x g for 5 minutes. Cell pellet was resuspended with 1 mL 0.25% SDS and incubated at 98ºC for 8 minutes according to Nakamura (2018). Finally, cell debris was removed by centrifugation and DNA was diluted 10-fold in water before qPCR reactions.

Quantitative PCR reactions used primers qZEO-F and qZEO-R for plasmid quantification and qHIS-F and qHIS-R as an internal single-copy control. Assays were carried out with iTaq Universal SYBR Green Supermix (Bio-Rad) in a Rotor-Gene Q (Qiagen) thermal cycler. Analysis used the absolute quantification method and standard curves that ranged from 1×10^4 to 1×10^8 copies of the gene of interest. pPIC9 (Invitrogen) and pPICH linearized plasmids were used for construction of the standard curves.

Yeast transformation

K. phaffii was electroporated following two different protocols. For integrative cassettes, we followed the *Pichia* Expression Kit protocol (Invitrogen) and when using replicative plasmids, we proceeded as described previously.

33
Construction of an **ade2 ade3 strain for color-based stability assays**

Strain LA2 was transformed with an **ADE3** deletion cassette and had the marker recycled before moving on with the centromeric plasmid transformations. Construction of the deletion cassette used PCR reactions assembled by an “In-Fusion” cloning reaction. Briefly, primers ADE3up-F and R; ADE3dw-F and R were used for PCR amplification of 491 bp and 582 bp, respectively, from *K. phaffii* genome. These reactions amplified sequences used for directing homologous recombination and substitution of the complete **ADE3** coding sequence. Meanwhile, primers ADE3lox-F and ADE3lox-R amplified the **kanR** geneticin resistance cassette from plasmid pGKL. PCR fragments were assembled and cloned into pBluescript II SK+ linearized with SmaI. A final PCR reaction using primers ADE3up-F and ADE3dw-R amplified the whole deletion cassette which was used for transformation of *K. phaffii* LA2. Cells were selected in YPD containing geneticin.

The resulting **ade2 ade3** strain was later transformed with pYRCre2 and selected in YPD supplied with hygromycin B. This step promoted a Cre-mediated excision of the **kanR** cassette eliminating geneticin resistance. After PCR confirmation of marker recycling using primers ADE3conF and ADE3conR, the resulting strain was plated in non-selective YPD medium, causing loss of the pYRCre2 plasmid. The resulting strain was named LA3.

Construction of centromeric plasmids containing ADE3

Plasmid pPICH, which is derived from pPICHOLI (MoBiTec), was digested with NotI for cloning of the *K. phaffii* native **ADE3**. The complete gene was amplified
from X-33 DNA using primers ADE3up-F and ADE3dw-R following digestion with
*Not*I. After vector dephosphorylation, fragments were ligated and transformed into *E.
coli* XL-10 Gold. One positive clone was then submitted to site-directed mutagenesis
using primers Mut1(Hpa) and Mut2(Bam) for removal of the *BamHI* restriction site
present within the *ADE3* coding sequence. The final plasmid containing ARS1, the *Sh
gle* resistance marker and *ADE3* was named pPICH-ADE3.
pPICH-ADE3 was digested with *BamHI* for cloning of all four *K. phaffii*
centromeres. These were amplified from *K. phaffii* X-33 genomic DNA using two PCR
reactions for each centromeric sequence. Primers Cen1/2/3/4-F and Cen1/2/3/4c-R
amplified the first inverted repeat of each centromere while primers Cen1/2/3/4c-F and
Cen1/2/3/4-R amplified the other half of the sequences. In order to promote *in vitro/in
vivo* assembly amplicons had approximately 80 bp homology between each other and
15 bp with pPICH-ADE3. Firstly, we attempted an “In-Fusion” cloning reaction for
each of the four centromeres using linearized pPICH-ADE3 and the two PCR
fragments. Plasmids were extracted and analyzed by restriction digestion. Centromeres
1, 2 and 4 were successfully assembled and cloned into the plasmid through this
strategy.
Centromere 3 did not yield any *E. coli* clones following the “In-Fusion”
reaction; therefore, we proceeded to an *in vivo* assembly strategy. Primers Cen370-F
and Cen3c-R; Cen3c-F and Cen370-R amplified both inverted repeats adding 70 bp of
homologous sequences between the fragments and pPICH-ADE3. Finally, we
transformed *K. phaffii* LA3 using the linearized vector and both centromeric fragments,
using 85 bp of homology for directing recombination. Clones were selected in YPD
supplied with zeocin.
The resulting plasmids were named pPICH-CEN1, pPICH-CEN2, pPICH-CEN3 and pPICH-CEN4. All plasmids were transformed into *K. phaffii* LA3 for subsequent stability and quantification assays.

Stability analysis

LA3 strain transformed with each of the four centromeric plasmids was grown in 20 mL YPD for 16 hours at 28°C and 200 rpm. This culture was inoculated to 20 mL YPD to an initial optical density of 0.1. After 24 h of growth under the same conditions the culture was used as inoculum for another flask containing 20 mL YPD to an OD₆₀₀ of 0.1. This procedure was repeated every 24 h until a total of 144 hours. At 96 and at 144 hours of growth, a small amount of cells was diluted 10⁶-fold and 100 µL of this dilution were plated on YPD. Plates were incubated at 30 °C for 72 h.

References

1. Cregg, J. M., Barringer, K. J., Hessler, A Y., Madden, K. R. *Pichia pastoris* as a host system for transformations. Mol. Cell. Biol. 1985; 5(12): 3376–85.
2. De Schutter, K., Lin, Y.-C., Tiels, P., Van Hecke, A., Glinka, S., Weber-Lehmann, J., et al. Genome sequence of the recombinant protein production host *Pichia pastoris*. Nat. Biotechnol. 2009;27(6): 561–566.
3. Sturmberger, L., Chappell, T., Geier, M., Krainer, F., Day, K. J., Vide, U., et al. Refined *Pichia pastoris* reference genome sequence. J. Biotechnol. 2016; 235: 121–131.
4. Schwarzhans, J. P., Luttermann, T., Geier, M., Kalinowski, J., Friehs, K. Towards systems metabolic engineering in *Pichia pastoris*. Biotechnol. Adv. 2017;35(6): 681–
5. Cereghino, J. L., Cregg, J. M. Heterologous protein expression in the methylotrophic yeast *Pichia pastoris*. FEMS Microbiol. Rev. 2000; 24(1): 45–66.

6. Obst, U., Lu, T. K., Sieber, V. A modular toolkit for generating *Pichia pastoris* secretion libraries. *ACS Synth. Biol.* 2017; 6 (6): 1016-1025.

7. Camattari, A., Goh, A., Yip, L. Y., Tan, A. H. M., Ng, S. W., Tran, A., et al. Characterization of a panARS-based episomal vector in the methylotrophic yeast *Pichia pastoris* for recombinant protein production and synthetic biology applications. Microb. Cell Fact. 2016;15(139). doi: 10.1186/s12934-016-0540-5

8. Schwarzhans, J.-P., Wibberg, D., Winkler, A., Luttermann, T., Kalinowski, J., Friehs, K. Integration event induced changes in recombinant protein productivity in *Pichia pastoris* discovered by whole genome sequencing and derived vector optimization. Microb. Cell Fact. 2016;15(84). doi: 10.1186/s12934-016-0486-7

9. Yu, X., Wang, R., Zhang, M., Xu, Y., Xiao, R. Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in *Pichia pastoris*. Microb. Cell Fact. 2012;11(102). doi : 10.1186/1475-2859-11-102

10. Lee, C. C., Williams, T. G., Wong, D. W. S., Robertson, G. H. An episomal expression vector for screening mutant gene libraries in *Pichia pastoris*. Plasmid 2005;54: 80–85.

11. Liachko, I., Youngblood, R. A., Tsui, K., Bubb, K. L., Queitsch, C., Raghuraman, M. K., et al. GC-Rich DNA elements enable replication origin activity in the methylotrophic yeast *Pichia pastoris*. PLOS Genet. 2014;10:3. doi: 10.1371/journal.pgen.1004169

12. Cao, M., Gao, M., Lopez-garcia, C. L., Wu, Y., Seetharam, A. S., Severin, A. J., et
360 al. Centromeric DNA facilitates nonconventional yeast genetic engineering. ACS Synth. Biol. 2017; 6(8): 1545-1553.
361
362 13. Kouprina, N., Larionov, V. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 2016; 125(4): 621-632.
363
364 14. Lyn Chan, F., Wong, L. H. Transcription in the maintenance of centromere chromatin identity. Nucleic Acids Res. 2012;40(22): 11178–11188.
365
366 15. Malik, H. S., Henikoff, S. Major evolutionary transitions in centromere complexity. Cell 2009;138(6): 1067–1082.
367
368 16. Morales, L., Noel, B., Porcel, B., Marcet-Houben, M., Hullo, M. F., Sacerdot, C., et al. Complete DNA sequence of *Kuraishia capsulata* illustrates novel genomic features among budding yeasts (Saccharomycotina). Genome Biol. Evol. 2013;5(12): 2524–2539.
369
370 17. Kitada, K., Yamaguchi, E., Arisawa, M. Isolation of a *Candida glabrata* centromere and its use in construction of plasmid vectors. Gene 1996;175(1-2): 105–108.
371
372 18. Ketel, C., Wang, H. S. W., McClellan, M., Bouchonville, K., Selmeci, A., Lahav, T., et al. Neocentromeres form efficiently at multiple possible loci in *Candida albicans*. PLOS Genet. 2009;5(3). doi: 10.1371/journal.pgen.1000400
373
374 19. Chatterjee, G., Sankaranarayanan, S. R., Guin, K., Thattikota, Y., Padmanabhan, S., Siddharthan, R., et al. Repeat-associated fission yeast-like regional centromeres in the ascomycetous budding yeast *Candida tropicalis*. PLOS Genet. 2016;12(2). doi: 10.1371/journal.pgen.1005839
375
376 20. Smirnova, J. B., McFarlane, R. J. The unique centromeric chromatin structure of *Schizosaccharomyces pombe* is maintained during meiosis. J. Biol. Chem. 2002;
277(22); 19817–19822.

21. Varoquaux, N., Liachko, I., Ay, F., Burton, J. N., Shendure, J., Dunham, M. J., et al. Accurate identification of centromere locations in yeast genomes using Hi-C. Nucleic Acids Res. 2015;43(11): 5331–5339.

22. Coughlan, A. Y., Hanson, S. J., Byrne, K. P., Wolfe, K. H. Centromeres of the yeast *Komagataella phaffii (Pichia pastoris)* have a simple inverted-repeat structure. Genome Biol. Evol. 2016;8(8): 2482–2492.

23. McCarroll, R. M., Fangman, W. L. Time of replication of yeast centromeres and telomeres. Cell 1988;54(4): 505–513.

24. Koren, A., Tsai, H., Tirosch, I., Burrack, L. S., Barkai, N., Berman, J. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in s-phase. PLOS Genet. 2010;6(8). doi: 10.1371/journal.pgen.1001068

25. Nakamura, Y., Nishi, T., Noguchi, R., Ito, Y., Watanabe, T., Nishiyama, T., et al. Construction of a new stable, autonomously replicating plasmid vector containing *Pichia pastoris* centromeric DNA. Appl. Environ. Microbiol. 2018;84(15). doi: 10.1128/AEM.02882-17

26. Hieter, P., Mann, C., Snyder, M., Davis, R. W. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 1985;40(2): 381–392.

27. Ugolini, S., Bruschi, C. V. The red/white colony color assay in the yeast *Saccharomyces cerevisiae*: epistatic growth advantage of white ade8-18, ade2 cells over red ade2 cells. Curr. Genet. 1996;30(6): 485–492.

28. Du, M., Battles, M. B., Nett, J. H. A color-based stable multi-copy integrant selection system for *Pichia pastoris* using the attenuated *ADE1* and *ADE2* genes as
auxotrophic markers. Bioeng. Bugs 2012;3(1): 32–37.

29. Piva, L. C., De Marco, J. L., de Moraes, L. M. P., Reis, V. C. B., Torres, F. A. G. Acetamidase as a dominant recyclable marker for Komagataella phaffii strain engineering. Appl. Microbiol. Biotechnol. 2018;102(6): 2753–2761.

30. Rébora, K., Laloo, B., Daignan-Fornier, B. Revisiting purine-histidine cross-pathway regulation in Saccharomyces cerevisiae: a central role for a small molecule. Genetics 2005;170(1): 61–70.

31. Steensels, J., Snoek, T., Meersman, E., Nicolino, M. P., Voordekers, K., Verstappen, K. J. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol. Rev. 2014;38(5): 947–995.

32. Sambrook, J., Fritsch, E., Maniatis, T. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.

33. Wu, S., Letchworth, G. J. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques 2004;36(1): 152–154.

34. Reis, V. C. B., Nicola, A. M., de Souza Oliveira Neto, O., Batista, V. D. F., de Moraes, L. M. P., Torres, F. A. G. Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production. J. Ind. Microbiol. Biotechnol. 2012;39(11): 1673–1683.

35. Betancur, M. O., Reis, V. C. B., Nicola, A. M., De Marco, J. L., de Moraes, L. M. P., Torres, F. A. G. Multicopy plasmid integration in Komagataella phaffii mediated by a defective auxotrophic marker. Microb. Cell Fact. 2017;16(99). doi: 10.1186/s12934-017-0715-8
Fig 1. Strain phenotypic analysis on defined media. *K. phaffii* X-33 (wild-type), LA2 and LA3 cultures were spotted on MD medium with or without supplementation.

Fig 2. Map of vector pPICH-ADE3. The *Not*I site was used for cloning *K. phaffii* ADE3 gene.

Fig 3. Strategy for amplification of *K. phaffii* centromeres. Schematic representation of a typical *K. phaffii* centromere. Inverted repeats are represented by green arrows. Primer annealing regions are shown by small arrows.

Fig 4. Plasmid stability analysis. LA3 strain transformed with pPICH-ADE3 and the four centromeric plasmids was grown on YPD medium for 3 days until color development.

Fig 5. Plasmid stability test. (A) Aliquots of the liquid cultures were collected at after 96 and 144 hours of growth and plated on YPD medium. Red colonies represent cells that maintained the ADE3-containing plasmid, while white colonies have lost it. Red portions of the bars represent red colonies; light pink bars represent white colonies. (B) A plate representing a typical result after 144 h growth.

Fig 6. Plasmid copy number determination. The number of plasmids in each cell was estimated by qPCR. LA3 was used as negative control. Statistical analysis comparing each of the centromeric plasmids with the replicative vector was performed through a t-test using GraphPad Prism 5. (p<0.05). Error bars depict the standard deviation of the mean (n = 3).
