Primordial black holes (PBHs) from the early Universe constitute a viable dark matter (DM) candidate and can span many orders of magnitude in mass. Light PBHs with masses around 10^{15} g contribute to DM and will efficiently evaporate through Hawking radiation at present time, leading to a slew of observable signatures. The emission will deposit energy and heat in the surrounding interstellar medium. We revisit the constraints from dwarf galaxy heating by evaporating non-spinning PBHs and find that conservative constraints from Leo T dwarf galaxy are significantly weaker than previously suggested. Furthermore, we analyse gas heating from spinning evaporating PBHs. The resulting limits on PBH DM abundance are found to be stronger for evaporating spinning PBHs than for non-spinning PBHs.

I. INTRODUCTION

Primordial black holes (PBHs), formed in the early Universe prior to any galaxies and stars, are a viable candidate for DM (e.g., [1–31]). Depending on formation, PBHs surviving until the present can span many orders of magnitude in mass, from $\sim 10^{15} \text{ g}$ to well over 10^{10} M_\odot. They can account for the entirety of the DM in the mass window $\sim 10^{-16} - 10^{-10} \text{ M}_\odot$, where there are no observational constraints [32–38]. While significant attention has been devoted to larger mass PBHs, it has been realized recently that light PBHs can result in a larger variety of observable signatures than previously thought and is thus ripe for further exploration.

Light PBHs with mass $\lesssim 10^{-15} \text{ M}_\odot$ existing at present time will be evaporating and copiously emitting particles through Hawking radiation [39]. Non-rotating PBHs with masses below $2.5 \times 10^{-19} \text{ M}_\odot$ have lifetimes smaller than the age of the Universe and thus do not contribute to DM abundance [40, 41]. Particle emission from currently evaporating PBHs produces a variety of signatures, providing insight into this region of PBH DM parameter space. Leading constraints on light PBHs have been obtained from observations of photon flux [42–45], cosmic microwave background [46–49], electron and positron cosmic rays [50], 511 keV gamma-ray line [35, 51–56], as well as neutrinos [35].

Usually, PBHs are assumed to be non-rotating (Schwarzschild) [57–59]. However, PBHs can be formed with significant spin (Kerr BHS) [22–26, 61, 62]. BH spin will affect the Hawking radiation, generally increasing the emission while favoring particles with larger spin [39, 41, 63, 64]. Furthermore, the mass limit of $\sim 2.5 \times 10^{-19} \text{ M}_\odot$ for PBHs below which their lifetime is smaller than the age of the Universe varies by a factor of ~ 2 for maximally rotating PBHs [63, 65, 66]. Besides mass (and electric charge), angular momentum constitutes a fundamental conserved parameter of a BH. Hence, it is important to explore the implications of spin for observations [35, 44, 65–68].

Recently, observations from dwarf galaxies (in particular, Leo T) have been used to constrain stellar and intermediate-mass PBHs by considering heating of interstellar medium (ISM) gas due to PBH interactions [69]. This represents a new signature not previously considered for PBHs. Subsequently, Ref. [70] considered heating of ISM gas due to light evaporating non-rotating PBHs.

In this work, we revisit and provide an alternative treatment of gas heating due to evaporating PBHs, focusing on the dwarf galaxy Leo T. We find that a more detailed, conservative, and proper treatment of energy deposition from PBH emission results in significantly weaker constraints than reported in the analysis of Ref. [70]. Furthermore, we study gas heating due to evaporating PBHs with significant spin.

This study is organized as follows. In Sec. II, we discuss emission and generate the spectrum for spinning and non-spinning PBHs. In Sec. III, we describe properties of target system Leo T dwarf galaxy. In Sec. IV, we discuss the energy deposition and heating in dwarf galaxies from evaporating PBHs, focusing on Leo T. In Sec. V, we discuss gas cooling and thermal balance with heating. Finally, we summarize in Sec. VI.
II. EVAPORATING BLACK HOLE EMISSION

An uncharged\(^2\) rotating (Kerr) PBH radiates at a temperature given by [40, 41, 63, 73–75]

\[
T_{PBH} = \frac{1}{4\pi GM_{PBH}} \left(\frac{\sqrt{1-a_*^2}}{1 + \sqrt{1-a_*^2}} \right),
\]

where \(G\) is the gravitational constant, \(M_{PBH}\) and \(a_* = J_{PBH}/(GM_{PBH}^2)\) are the PBH mass and reduced spin Kerr parameter, for a PBH with angular momentum \(J_{PBH}\). In the limit \(a_* \to 0\), Eq. (1) reduces to the usual Hawking evaporation temperature of a Schwarzschild BH, \(T_{PBH} \approx 1.1 \text{ MeV (}M_{PBH}/10^{16}\text{ g)}^{-1}\). The temperature is seen to be significantly diminished for a Kerr BH in the limit \(a_* \to 1\).

Evaporating PBHs start to emit significant quantities of a given particle as the BH temperature reaches the particle mass, and at high temperatures the emission spectrum resembles that of blackbody radiation [40]. For spin-1/2 particles, the emission peak occurs at \(E \approx 4.03 T_{PBH}\) [75]. At lower BH masses, secondary emission channels due to quark and gluon QCD jets become relevant.

For primary emission, the number of particles, \(N_i\), emitted per unit energy per unit time is given by [40, 41, 63, 73–75]

\[
\frac{d^2N_i}{dt dE} = \frac{1}{2\pi} \sum_{\text{dof}} \frac{\Gamma_i(E, M_{PBH}, a_*)}{e^{E/T_{PBH}} \pm 1},
\]

where the greybody factor \(\Gamma_i(E, M_{PBH}, a_*)\) encodes the probability that the emitted particle overcomes the gravitational well of the BH, \(E'\) is the total energy of a particle when taking BH rotation into account, the \(\pm\) signs are for fermions and bosons, respectively, and summation is over considered degrees of freedom. Secondary emission of particles from QCD jets can be computed numerically [76].

For our study we generate the PBH emission spectrum for each particle species using BlackHawk code\(^3\) [77].

III. TARGET SYSTEM: LEO T

DM-rich dwarf galaxies represent favorable environments to investigate the effects of PBH heating due to interactions with gas. Throughout this work, we focus on the well-modelled Leo T dwarf galaxy as our target system due to its desirable cooling, gas, and DM properties. We stress, however, that our analysis is general and can be readily extended to other gas systems of interest\(^4\).

To describe Leo T, we follow the model of Refs. [78–80] for the DM density, neutral hydrogen (HI) gas distribution, and ionization fraction. The hydrogen gas in the inner \(r_s < 350\) pc of Leo T system is largely un-ionized [70, 81]. We consider only this central region, employing the average HI gas density of \(n_H = 0.07 \text{ cm}^{-3}\), ionization fraction \(x_e = 0.01\) and DM density of 1.75 GeV cm\(^{-3}\) [78]. Hence, the gas column density can be estimated as \(n_H r_s = 9.72 \times 10^{19} \text{ cm}^{-2}\) and the mass column density as \(m_{HI} n_H r_s = 1.627 \times 10^{-4} \text{ g cm}^{-2}\).

The velocity dispersion of the HI gas in this region \(\sigma_v = 6.9 \text{ km/s} [80, 82, 83]\) suggests a gas temperature of \(T \approx 6000\) K. In contrast to the case of PBH accretion emission analysis [69], the velocity dispersion and distribution of the HI gas and DM are not as relevant here as long as they remain non-relativistic.

\(^2\) BHs with mass below \(\lesssim 10^5 M_{\odot}\) are expected to rapidly lose any accumulated charge due to Schwinger pair production [71, 72].

\(^3\) Results of numerical computation have been verified against semi-analytical formulas [40, 41, 63, 73].

\(^4\) We estimate that heating of Milky Way gas clouds leads to weaker bounds.
FIG. 2. Constraints from Leo T on the fraction of DM PBHs, \(f_{\text{PBH}} \), for a monochromatic PBH mass function. [Left] Results for non-rotating PBHs with spin \(a_* = 0 \) (black solid line), PBHs with spin \(a_* = 0.9 \) (black dashed line) and PBHs approaching Kerr limit with \(a_* = 0.9999 \) (black dotted line) are shown. For non-rotating PBHs, the “elbow” feature seen at higher PBH masses is due to exponential decrease of the electron contributions. [Right] Overlay of our results with existing constraints on non-spinning PBHs from Voyager-I detection of positrons and using propagation model B without background (“V”, shaded red) [50], Planck cosmic microwave background (“CMB”, shaded brown) [46], isotropic gamma-ray background (“IGRB”, shaded green) [36, 42, 43], INTEGRAL 511 keV emission line for the isothermal DM profile with 1.5 kpc positron annihilation region (“I”, shaded blue) [35, 55, 56], Super-Kamiokande neutrinos (“S”, shaded orange) [35], as well as INTEGRAL Galactic Center MeV flux (“MeV”, shaded magenta) [45]. The constraint marked “I” and “MeV” are shown till the lowest PBH masses as displayed in Refs. [56] and [45] respectively.

IV. GAS HEATING BY EVAPORATING PBHS

As proposed in Ref. [69], accretion emission from heavier PBHs will deposit energy and heat the gas in surrounding interstellar medium. It was subsequently suggested that emitted particles from evaporating light PBHs can also deposit energy and heat surrounding gas [70]. Below, we revisit gas heating due to non-rotating evaporating PBHs with an improved treatment. We also extend our study of gas heating to emission from rotating evaporating PBHs.

For our PBH masses of interest, both photon as well as electron/positron emission channels from evaporating PBHs can contribute to heating. In Ref. [70], photon heating contribution has been assumed negligible due to power law scaling of photo-electric cross-section \(\sigma_{\text{PE}} \propto E^{-3.5} \) when photon energies are above keV. However, for photon energies around MeV that are typical to our study, the cumulative photon interaction cross-section levels out, primarily due to Compton scattering contribution (see Fig. 33.19 of Ref. [84]). The average heating rate due to photon emission of PBH of mass \(M_{\text{PBH}} \) and spin \(a_* \) is given by [69]

\[
H_{\gamma}(M_{\text{PBH}}, a_*) = \int_0^\infty f_h(E) \frac{d^2 N_e}{dt dE} \left(1 - e^{-\tau} \right) dE ,
\]

(3)

where \(f_h(E) \sim O(1) \) is the fraction of photon energy loss deposited as heat, and \(\tau = m_H n_H r_s / \lambda \) is the optical depth of gas in terms of the absorption length \(\lambda \). We take the cumulative photon absorption length from Ref. [84]. We assume that the photon deposits heat similarly to electrons of the same energy. Hence, we approximate the fraction of energy deposited as heat to be similar to that of electrons, \(f_h(E) = 0.367 + 0.395/(E-m_e) ^{3.7} \) [70, 85–87], where \(m_e \) is the electron mass. The efficiency of photon heating is rather poor, with the heat deposited within Leo T from characteristic MeV photons with \(\lambda \simeq 10 \text{ g/cm}^2 \) being only \(\sim 10^{-5} \) fraction of the photon energy.

Analogously to the photon case, heating due to PBH electron/positron emission can be stated as

\[
H_e(M_{\text{PBH}}, a_*) = 2 \int_{m_e}^\infty f_h(E) [E-m_e] \frac{d^2 N_e}{dt dE} (1 - e^{-\tau}) dE ,
\]

(4)

where factor of 2 comes from summing contributions of electrons and positrons, \(f_h(E) \) is taken as before and the factor \((1 - e^{-\tau}) \) accounts for the gas system’s optical thickness. When the system is not optically thick, optical depth can be written in terms of stopping power, \(S(E) \), as \(\tau \simeq m_H n_H r_s S(E)/E \). For the electron stopping power on hydrogen gas, we use NIST database [88]. For characteristic MeV electrons with \(S(E) \simeq 2 \text{ MeV cm}^2/\text{g} \), only \(\sim 10^{-4} \) fraction of the electron energy is deposited.
as heat in Leo T\(^5\).

In Ref. \cite{70} it was argued that for Leo T MeV scale
ergies are efficiently thermalized by elastic scattering
within the cooling time scale. However, the suppression
of gas heating in Eq. (4) from positrons and electrons,
\((1 - e^{-\tau})\), due to optical thickness of the gas system was
not accounted for in the study of Ref. \cite{70}, effectively
assuming that the gas is fully optically thick (i.e., \(\tau \gtrsim 1\)).
This lead to significant overestimation of the limits from
evaporating PBH gas heating than we find, as discussed
below. Since the size of the gas system in consideration
is finite and it can be optically thin, this factor should
be present. We note that presence of magnetic fields in
the ISM can also affect emitted positrons. However, the
strength, orientation and distribution of magnetic fields
in Leo T is highly uncertain and very poorly known. Fur-
ther, propagation of positrons can be affected in a non-
trivial way by diffusion, collisions, advection, and other
processes. Even in a relatively well-studied region like
the Milky Way Galactic Center, the positron propagation
distance is highly uncertain \cite{90}. We expect such
uncertainties to be present in Leo T too, especially in
the absence of our understanding of the magnetic field,
turbulence, and other astrophysical properties of that
galaxy. Hence, our resulting bounds from PBH heating
are conservative.

In Fig. 1 (left panel), we display the resulting heating
rates \(H(M_{\text{PBH}},a_*)\) for Leo T, including contributions
of primary photons and electrons/positrons. Secondary
emission of photons and electrons/positrons is negligible
in our range of interest \(M_{\text{PBH}} \gtrsim 2 \times 10^{15} \text{ g}\), and hence is
not shown\(^6\). Electrons/positrons are seen to provide the
dominant contribution to heating rate within a broad
range of parameter space of interest. Photons provide a
sub-dominant contribution to the heating, but could in
fact dominate in the regimes \(T_{\text{PBH}} \ll m_e\) (where electron
emission is heavily suppressed).

We further analyze heating from spinning PBHs, display-
ing results for \(a_* = 0.9\) (Fig. 1, middle panel) and
\(a_* = 0.9999\) (Fig. 1, right panel). The emission for \(a_* = 0\)
and \(a_* = 0.9\) is seen to be similar. As the spin approaches
the extreme Kerr limit, \(a_* \rightarrow 1\), the pattern of PBH
emission and hence heating contributions changes. The emis-
tion tends to be higher for spinning PBHs and for highly
spinning PBHs, photons can become dominant at smaller
PBH masses, as they are produced in greater abundance
than electrons \cite{63}.

\(^5\) We note that inclusion of a small hydrogen ionization fraction
does not significantly affect these considerations \cite{89}.

\(^6\) As discussed in recent work of Ref. \cite{91}, computation of sec-
ondary production by BlackHawk can be improved over some
emission regimes.

V. COOLING AND THERMAL BALANCE

The thermal balance of heating from PBHs and gas
cooling allows us to constrain the PBH abundance with
Leo T \cite{69, 70}. Use of gas heating to constrain particle
DM has been suggested in Ref. \cite{81, 92, 93}. We ignore
the possible additional contributions of natural heating
sources, resulting in more conservative bounds.

Gas temperature exchange is a complex process and a
detailed analysis involving a full chemistry network can be
performed using numerical methods \cite{94}. For the pa-
rameters of interest, we employ the approximate gas cool-
ing rate results obtained in Ref. \cite{81}. The cooling rate
per unit volume of the hydrogen gas is given by

\[
\dot{C} = n_H^2 10^{[\text{Fe/H}]} \Lambda(T),
\]

where \([\text{Fe/H}]\equiv \log_{10}(n_{\text{Fe}}/n_{\text{H}})_{\text{gas}} - \log_{10}(n_{\text{Fe}}/n_{\text{H}})_{\text{Sun}}\) is the metallicity, and \(\Lambda(T)\) is the cooling function. We obtain \(\Lambda(T) = 2.51 \times 10^{-28} T^{0.6}\), valid for \(300 \text{ K} < T < 8000 \text{ K}\) \cite{81}, via a numerical fit to the results of
Ref. \cite{94}. Following the analysis of Refs. \cite{69, 81}, we adopt \(\dot{C} = 2.28 \times 10^{-30} \text{ erg cm}^{-3} \text{ s}^{-1}\) for the cooling
rate in Leo T.

From the PBH DM fraction, \(f_{\text{PBH}}\), and average DM
density in Leo T, \(\rho_{\text{DM}} \simeq 1.75 \text{ GeV cm}^{-3}\), the total num-
ber of PBHs residing in Leo T is

\[
N_{\text{PBH}} = \left(\frac{4\pi r_\odot^3}{3}\right) \frac{f_{\text{PBH}}\rho_{\text{DM}}}{M_{\text{PBH}}}. \tag{6}
\]

We take the average density such that the \(N_{\text{PBH}}\)
is the same as that obtained while integrating over the
DM profile. Requiring the total generated heat, \(N_{\text{PBH}} H(M_{\text{PBH}}, a_*)\), to be less than the total cooling rate
in the central region of Leo T, yields the constraint \cite{69}

\[
f_{\text{PBH}} < f_{\text{bound}} = \frac{M_{\text{PBH}} \dot{C}}{\rho_{\text{DM}} H(M_{\text{PBH}}, a_*)}. \tag{7}
\]

In Fig. 2, we display our resulting constraints from
PBH gas heating along with other existing limits, assum-
ing a monochromatic PBH mass-function. Our results
are not readily extended for other PBH mass-functions.
Spinning PBHs are seen to induce stronger limits than
non-spinning PBHs. Our results are several orders of
magnitude below the results suggested by the analysis
of Ref. \cite{70}, which can be attributed primarily to not
accounting for the optical thickness of gas as described
above. Furthermore, we have extended the constraints
to smaller PBH masses.

A better understanding of the standard astrophysical
heating rate in Leo T can substantially improve this limit.
Similarly, discovery of more DM dominated dwarf galaxy
systems and a good understanding of heating and cooling
rates inside them can even lead to discovery of low-mass
PBHs via this technique.
VI. CONCLUSIONS

Light PBHs, with masses $\lesssim 10^{17}$ g, contributing to DM will significantly emit particles via Hawking radiation depositing energy and heat in the surrounding gas. We have studied gas heating due to spinning and non-spinning PBHs, focusing on the dwarf galaxy Leo T. A detailed, conservative, and proper treatment of heating results in presented limits being significantly weaker than previously claimed. We find that limits from spinning evaporating PBHs are stronger than for the non-spinning case.

ACKNOWLEDGMENTS

We thank Jeremy Auffinger, Hyungjin Kim, Alexander Kusenko, and Anupam Ray for comments and discussions. The work of P.L. and V.T. was supported by the U.S. Department of Energy (DOE) Grant No. DESC0009937. R.L. thanks CERN theory group for support. V.T. was also supported by the World Premier International Research Center Initiative (WPI), MEXT, Japan.

[1] Y. B. Zel’dovich and I. D. Novikov, The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model, Sov. Astron. 10 (1967) 602.
[2] S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. Roy. Astron. Soc. 152 (1971) 75.
[3] B. J. Carr and S. W. Hawking, Black holes in the early Universe, Mon. Not. Roy. Astron. Soc. 168 (1974) 399.
[4] G. F. Chapline, Cosmological effects of primordial black holes, Nature 253 (1975) 251.
[5] P. Meszaros, Primordial black holes and galaxy formation, Astron. Astrophys. 38 (1975) 5.
[6] B. J. Carr, The Primordial black hole mass spectrum, Astrophys. J. 201 (1975) 1.
[7] J. García-Bellido, A. D. Linde and D. Wands, Density perturbations and black hole formation in hybrid inflation, Phys. Rev. D54 (1996) 6040 [astro-ph/9605094].
[8] M. Yu. Khlopov, Primordial Black Holes, Res. Astron. Astrophys. 10 (2010) 945 [0801.0116].
[9] P. H. Frampton, M. Kawasaki, F. Takahashi and T. T. Yanagida, Primordial Black Holes as All Dark Matter, JCAP 1004 (2010) 023 [1001.2308].
[10] S. Bird, I. Choi, J. B. Muñoz, Y. Ali-Haimoud, M. Kamionkowski, E. D. Kovetz, A. Raccanelli and A. G. Riess, Did LIGO detect dark matter?, Phys. Rev. Lett. 116 (2016) 201301 [1603.00464].
[11] M. Kawasaki, A. Kusenko, Y. Tada and T. T. Yanagida, Primordial black holes as dark matter in supergravity inflation models, Phys. Rev. D94 (2016) 083523 [1606.07631].
[12] B. Carr, F. Kuhnel and M. Sandstad, Primordial Black Holes as Dark Matter, Phys. Rev. D94 (2016) 083504 [1607.06077].
[13] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada and T. T. Yanagida, Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments, Phys. Rev. D 95 (2017) 123510 [1611.06130].
[14] S. Pi, Y.-J. Zhang, Q.-G. Huang and M. Sasaki, Scalaron from R^2-gravity as a heavy field, JCAP 1805 (2018) 042 [1712.09896].
[15] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada and T. T. Yanagida, Inflationary Primordial Black Holes as All Dark Matter, Phys. Rev. D 96 (2017) 043504 [1701.02544].
[16] J. García-Bellido, M. Peloso and C. Unal, Gravitational Wave signatures of inflationary models from Primordial Black Hole Dark Matter, JCAP 1709 (2017) 013 [1707.02441].
[17] Y. Inoue and A. Kusenko, New X-ray bound on density of primordial black holes, JCAP 1710 (2017) 034 [1705.00791].
[18] J. Georg and S. Watson, A Preferred Mass Range for Primordial Black Hole Formation and Black Holes as Dark Matter Revisited, JHEP 09 (2017) 138 [1703.04825].
[19] K. Inomata, M. Kawasaki, K. Mukaida and T. T. Yanagida, Double Inflation as a single origin of PBHs for all dark matter and LIGO, 1711.06129.
[20] B. Kocsis, T. Suyama, T. Tanaka and S. Yokoyama, Hidden universality in the merger rate distribution in the primordial black hole scenario, Astrophys. J. 854 (2018) 41 [1709.09007].
[21] K. Ando, K. Inomata, M. Kawasaki, M. Mukaida and T. T. Yanagida, Primordial black holes for the LIGO events in the axionlike curvaton model, Phys. Rev. D 97 (2018) 123512 [1711.08956].
[22] E. Cotner and A. Kusenko, Primordial black hole from supersymmetry in the early universe, Phys. Rev. Lett. 119 (2017) 031103 [1612.02529].
[23] E. Cotner and A. Kusenko, Astrophysical constraints on dark-matter Q-balls in the presence of baryon-violating operators, Phys. Rev. D94 (2016) 123006 [1609.00970].
[24] E. Cotner and A. Kusenko, Primordial black hole from scalar field evolution in the early universe, Phys. Rev. D96 (2017) 103002 [1706.09003].
[25] E. Cotner, A. Kusenko, M. Sasaki and V. Takhistov, Analytic Description of Primordial Black Hole Formation from Scalar Field Fragmentation, JCAP 1910 (2019) 077 [1907.10613].
[26] E. Cotner, A. Kusenko and V. Takhistov, Primordial Black Holes from Inflaton Fragmentation into Oscillons, Phys. Rev. D98 (2018) 083513 [1801.03321].
[27] M. Sasaki, T. Suyama, T. Tanaka and S. Yokoyama, Primordial black holes—perspectives in gravitational wave astronomy, Class. Quant. Grav. 35 (2018) 063001 [1801.05235].
[28] B. Carr and J. Silk, Primordial Black Holes as Generators of Cosmic Structures, Mon. Not. Roy. Astron. Soc. 478 (2018) 3756 [1801.00672].
