Ten New Recorded Species of Macrofungi on Ulleung Island, Korea

Myung Soo Park¹, Hae Jin Cho¹, Nam Kyu Kim¹, Jae Young Park¹, Hyun Lee¹, Ki Hyeong Park¹, Min-Ji Kim¹, Jae-Jin Kim², Changmu Kim³ and Young Woon Lim*¹

¹School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
²Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
³Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea

Abstract Ulleung Island is a biodiversity hotspot in South Korea. During a survey of indigenous fungal species from Ulleung Island conducted from 2015 to 2016, we discovered 10 unrecorded macrofungi in Korea. These macrofungi were identified to the species level using morphological features and phylogenetic analysis based on the internal transcribed spacer region: Deconica phyllogena, Mycena zephirus, Phaeomarasmius proximans, Phlebia radiata, Plateus semibulbosus, Postia alni, Resinicium pinicola, Scytinostroma portentosum, Tricholomopsis flammula, and Tyromyces kmetii. We also provide detailed morphological descriptions for these 10 species.

Keywords Indigenous fungal species, Internal transcribed spacer, New record, Ulleung Island

Macrofungi are distinguished by their production of fruiting bodies that are visible without the need of a microscope [1]. Most macrofungi belong to the Basidiomycota, some are within the Ascomycota, and a few belong to the Zygomycota. Macrofungi play essential roles as decomposers, symbionts, and pathogens on the forest ecosystems [2]. In addition to their ecological roles, fruiting bodies are important biomaterials in the pharmaceutical industry and are popular food items for human consumption [3]. Because macrofungi are directly related to ecosystem health, investigating their diversity is a prerequisite to understanding ecosystems in general.

Macrofungal taxonomy has traditionally been based on morphology, often on microscopic features of their fruiting bodies. However, the identification of species based solely on morphology is difficult to apply due to the lack of a clear morphological distinction between closely related species and the extensive morphological variation among genera and sometimes even families [4, 5]. DNA sequence analysis has become a primary component in phylogenetic and taxonomic studies of macrofungi [6-9]. The internal transcribed spacer (ITS) region has been proposed as the primary fungal barcode and is commonly used as a molecular marker for fungal identification [10]. The combination of morphological data and ITS sequence analysis has considerably improved the accuracy, efficiency, and rapidity of species identification across diverse macrofungi [11-13].

Ulleung Island is one of a small group of volcanic islands located off the eastern coast of the Korean peninsula. The island has been recognized as a biodiversity hotspot in Korea. Approximately 600 species of vascular plants inhabit Ulleung Island, 39 of which are endemic to the island [14, 15]. Intensive surveys of macrofungi on Ulleung Island have been carried out since 1989 and 161 species have been reported [16-21]. Recently, 223 macrofungi species were reported based on morphological features and ITS sequence analysis [22, 23]. Interestingly, recent studies [22, 23] showed that only 27 macrofungi species overlapped, and 196 species were newly reported. Therefore, a total of 357 species have been detected on Ulleung Island to date.

During a recent project organized by the National Institute of Biological Resources (NIBR, Incheon, Korea; http://www.nibr.go.kr) to survey and excavate Korean indigenous fungi on Ulleung Island, we discovered 10 unrecorded macrofungi. The specimens were identified to the species level using morphological features and phylogenetic analysis based on the ITS region. In this paper, we provide the macro-
micro-morphological characteristics for these 10 species.

MATERIALS AND METHODS

Samples and morphological observations. Macrofungi were collected from Ulleung Island between 2015 and 2016. Specimens were dried and deposited in the Seoul National University Fungus Collection (SFC). The specimens were initially identified based on fruiting body morphology and microscopic characteristics [24-29] using a model 80i light microscope (Nikon, Tokyo, Japan). Dried tissue was rehydrated in 3% (w/v) KOH and stained with 1% (w/v) phloxine for measurements and drawings. Basidia (30 per sample) and basidiospores (10 per sample) were measured. The quotient (Q) refers to the length/width ratio of basidiospores.

DNA extraction, PCR, sequencing, and phylogenetic analysis. Genomic DNA was extracted using a modified cetyltrimethylammonium bromide extraction protocol [30]. PCR amplification of the ITS of each sample was performed as previously described [5] using the primers ITS1F and ITS4B [31]. DNA sequencing was performed at Macrogen (Seoul, Korea) using an ABI PRISM 3730XL Analyzer (Life Technologies, Gaithersburg, MD, USA) with the same primers used for PCR.

Fig. 1. Neighbor-joining tree of 10 unrecorded species constructed using internal transcribed spacer sequences. Bootstrap scores of > 50 are presented at the nodes. The scale bar indicates the number of nucleotide substitutions per site. The unrecorded species are marked with asterisks. A, *Deconia phyllogena*; B, *Mycena zephyrus*; C, *Phaeomarasmius proximans*; D, *Phlebia radiata*; E, *Pluteus semibulbosus*; F, *Postia abnii*; G, *Resinicium pinicola*; H, *Scytinostroma portentosum*; I, *Tricholomopsis flammula*; and J, *Tyromyces kmetii*.
Fig. 1. Continued.
DNA sequences were assembled, proofread, and edited using MEGA ver. 5.0 [32]. Representative sequences were deposited in GenBank (accession Nos. MF437002-MF437013). Genus-by-genus phylogenetic analyses were carried out. Reference sequences were downloaded from GenBank. Multiple alignments were performed using the default settings of MAFFT v7 [33] and ambiguously aligned positions were adjusted manually. Neighbor-joining trees were constructed with MEGA 5 (Kimura 2-parameter model) with 1,000 bootstrap replicates [34].

RESULTS AND DISCUSSION

During the survey of indigenous fungal species from Ulleung Island in Korea from 2015 to 2016, we discovered ten species that were previously unrecorded in Korea by analyzing the ITS sequences and morphological characteristics. Here, we provide morphological characteristics for these ten species: *Deconica phylogenasa*, *Myccena zephirus*, *Phaeomarasmius proximans*, *Phlebia radiata*, *Pluteus semibulbosus*, *Postia alni*, *Resinicum pinicola*, *Scytinostroma portentosum*, *Tricholomopsis flammula*, and *Tyromyces kmetii*.

Genus Deconica. SFC20160714-66 formed a monophyletic group with *Deconica phylogenasa* with 100% bootstrap support (Fig. 1A). The ITS sequence of SFC20160714-66 was identical to that of *D. phylogenasa* (FJ596920 and FJ596921), but had sequence similarity of 96.2–96.4% with *D. novae-zelandiae* as the sister group. *Deconica* (Basidiomycota, Agaricales, and Strophariaceae) is a genus of agaricoid fungi and includes approximately 42 species (Index Fungorum; http://www.indexfungorum.org). Many *Deconica* species were often considered members of the genus *Psilocybe* s.l. [35] but *Deconica* has been recently separated from *Psilocybe* by phylogenetic analyses using nuclear large ribosomal subunit rRNA, 5.8S rRNA, and *rpb1* markers [36]. Although *Deconica* shares several morphological characteristics with *Psilocybe*, it can be distinguished from *Psilocybe* by multigene-based phylogenies [36].

Genus Myccena. SFC20150903-13 and SFC20160615-06 formed a monophyletic group with *Myccena zephirus* with 68% bootstrap support (Fig. 1B). These specimens showed sequence similarity of 99.3–100% to *M. zephirus* and 98.7–99.7% to *M. algeriensis* as the sister group. *Myccena* (Basidiomycota, Agaricales, and Mycenaceae) is a genus of agaricoid fungi with approximately 1,000 species (Index Fungorum; http://www.indexfungorum.org). Thirty-four species have been reported in Korea [37]. The genus is characterized by the carpophores (mycenoid and omphaloid), presence or absence of bright or dull colored pigment, white to pale cream spore print, and strongly glutinous pileus and stipe [38].

Genus Phaeomarasmius. SFC20150903-34 formed a monophyletic group with *Phaeomarasmius proximans* with 100% bootstrap support and showed sequence similarity of 98.7–99.5% to *Phae. proximans* (Fig. 1C). *Phaeomarasmius* (Basidiomycota, Agaricales, and Inocybaceae) is a genus of agaricoid fungi with approximately 48 species (Index Fungorum; http://www.indexfungorum.org). Although *Flammulaster* is considered synonymous with *Phaeomarasmius* [38], *Phaeomarasmius* can be distinguished from *Flammulaster* by ellipsoid to subamygdaliform spores and the absence of distinctly cystidioid terminal cells in the pileipellis [39].

Genus Phlebia. SFC20151020-13 formed a monophyletic group with *Phlebia radiata* with 86% bootstrap support (Fig. 1D). The specimens showed sequence similarity of 99.7–100% to *Ph. radiata* and 99.2% to *Ph. rufa* as the sister group. *Phlebia* (Basidiomycota, Polyporales, and Merulaceae) is a genus of corticioid fungi with approximately 89 species (Index Fungorum; http://www.indexfungorum.org). Among these, 8 species have been reported in Korea [37]. The genus is characterized by smooth, tuberculate, and thickening hymenia, and a waxy, gelatinous or mucus texture [40].

Genus Pluteus. SFC20150903-15 formed a monophyletic group with *Pluteus semibulbosus* with 100% bootstrap support and showed sequence similarity of 98.0–100% to *Pl. semibulbosus* (Fig. 1E). *Pluteus* (Basidiomycota, Agaricales, and Pluteaceae) is a genus of agaricoid fungi with approximately 89 species. Among these, 32 species have been reported in Korea [37]. The genus is characterized by free lamellae, cystidia metuloids or leptocystidia, inverse hymenophoral trama [38].

Genus Postia. SFC20160927-01 formed a monophyletic group with *Postia alni* with 100% bootstrap support (Fig. 1F). The specimens showed sequence similarity of 99.8–100% to *Pa. alni* and 97.4–97.6% to *Po. caesia* as the sister group. *Postia* (Basidiomycota, Polyporales, and Fomitopsidaceae) is an important genus of brown-rot fungi with approximately 53 species. Among these, 7 recorded species have been reported in Korea [37]. The genus is characterized by an annual growth habit, a monomitic hyphal system with clamp connections, and thin-walled, allantoid to cylindrical or ellipsoid spores [41].

Genus Resinicum. SFC20151020-15 formed a monophyletic group with *Resinicum pinicola* with 100% bootstrap support and showed sequence similarity of 99.6–100% to *R. pinicola* (Fig. 1G). *Resinicum* (Basidiomycota, Hymenochaetales, and Rickenellaceae) is a genus of corticioid fungi with approximately 16 species (Index Fungorum; http://www.indexfungorum.org). Among these, one recorded species has been reported in Korea [37]. The genus is characterized by astrocystidia and halocystidia in hymenium [42]. *R. pinicola* was reported in the list of polyoporid and corticioid fungi without morphological description [43]. For this reason, we suggest *R. pinicola* as an unrecorded species in Korea.
Genus Scytinostroma. SFC20160614-44 formed a monophyletic group with Scytinostroma portentosum with 100% bootstrap support and showed sequence similarity of 99.7% to S. portentosum (Fig. 1H). Scytinostroma (Basidiomycota, Russulales, and Lachnocadiaceae) is a genus of corticioid fungi with approximately 33 species (Index Fungorum; http://www.indexfungorum.org). Among these, S. odoratum has been reported in Korea [37]. The genus is characterized by a tough and leathery texture, a dimitic hyphal system, and dichotomously branched skeletal hyphae [44].

Genus Tricholomopsis. SFC20151020-25 and SFC20160927-37 formed a monophyletic group with Tricholomopsis flammula with 100% bootstrap support and showed sequence similarity of 98.7–100% to Tr. flammula (Fig. 11). Tricholomopsis (Basidiomycota, Agaricales, and Tricholomataceae) is a genus of agaricoid fungi with approximately 41 species (Index Fungorum; http://www.indexfungorum.org). Among these, 16 species have been reported in Korea [37]. The genus is characterized by yellow lamellae, and yellow and smooth to fibrillose pileus [45].

Genus Tyromyces. SFC20150902-43 formed a monophyletic group with Tyromyces kmetii with 100% bootstrap support and showed sequence similarity of 99.7–100% to Ty. kmetii (Fig. 1I). Tyromyces (Basidiomycota, Polyporales, and Polyporaceae) is a genus of polyporoid fungi with approximately 140 species (Index Fungorum; http://www.indexfungorum.org). Among these, 3 species have been reported in Korea [37]. The genus is characterized by white pileate to resupinate basidiocarps, and a monomitic or dimitic hyphal system with clamp connections [46].

Taxonomy.

Deconica phyllogena (Peck) Noordeloos, Österr. Z. Pilzkd. 18: 208 (2009) (Figs. 2A and 3A).

Classification: Basidiomycota, Agaricales, Hymenogastraceae, *Deconica.*

Pileus 6–8 mm wide, thin, firm, umbonate, alutaceous when dry, turns to reddish brown when moist. Stipe 15–20 × 1–2 mm, cylindrical, fibrillose, brownish, covered with white fibrils, annulus absent, turns into a flat disk that adheres to leaf at the base. Lamellae plane, broad, subdistant, brown, and white on the margin. Cheilocystidia 19.1–20.6–21.6 × 6.3–7.2–8.1 μm. Pleurocystidia 13.6–15.9–20.1 × 5.6–6.7–8.1 μm, fusoid, rhick walled towards apex. Caulocystidia not distinctive or absent. Basidium 17.5–19.9–23.8 × 5.6–6.8–7.6 μm, 4-spored, clavate. Basidiospores 6.5–7.0–7.6 × 4.5–5.0–5.5 μm, Q = 1.2–1.4–1.6, pale brown, subglobose or rhomboid, thick walled. Clamp connections present. Gregarious in leaf soil in woods.

Specimen examined: Korea, Gyeongsangbuk-do, Ulleung-gun, Seonginbong, 37°30’09.7” N 130°51’57.8” E, on leaf soil of mixed forest, 14 Jul 2016, J. Y. Park, M. S. Park, SFC20160714-66 (GenBank accession No. MF437002).

Remarks: *Deconica phyllogena* is morphologically similar to *D. novae-zelandiae.* *D. novae-zelandiae* can be distinguished from *D. phyllogena* by larger basidiospores (10–11 × 6–7 μm) [47].

Mcyna zephyris (Fr.) P. Kumm., Führer Pilzkd.: 110 (1871) (Figs. 2B and 3B).

Classification: Basidiomycota, Agaricales, Mycenaceae, *Mcyna.*

Pileus 15–20 mm wide, parabolical to broadly conical, becoming plane in age, white to beige, turn to reddish brown when aged. Stipe 20–25 × 1–2 mm, silverly white-floccose, grey flesh-color, grey lilac, reddish to wine-colored brown. Lamellae up to 4 mm, broad, whitish to pale brown with red-brown spots. Cheilocystidia 47.8–57.4–71.1 × 7.9–12.4–15.7 μm, fusiform, clavate, apically mucronate, with a simple or branched neck. Pleurocystidia present, 77.0–82.5–89.4 × 14.0–16.1–22.3 μm, fusiform, clavate, apically mucronate, with a simple or branched neck. Caulocystidia irregularly clavate, straight to curved, coarsely diverticulate. Pileipellis 2–10 μm long, smooth or with rare excrescences. Basidia 28.7–32.4–36.3 × 7.6–9.0–10.6 μm, clavate, 4-spored, sterigmata up to 7 μm long. Basidiospores 8.5–9.3–10.4 × 5.3–5.9–6.6 μm, Q = 1.4–1.6–1.8, elongate ellipsoid or cylindrical. Clamp connection present. Scattered or gregarious under conifers, but also in mixed woods.

Specimen examined: Korea, Gyeongsangbuk-do, Ulleung-gun, Na-ri basin, on the trunk of dead hardwood, 3 Sep 2015, J. Y. Park, N. K. Kim, H. J. Cho, SFC20150903-13 (GenBank accession No. MF437004); Korea, Gyeongsangbuk-do, Ulleung-gun, Seonginbong, 37°30’09.7” N 130°51’57.8” E, on the trunk of dead hardwood, 15 Jun 2016, N. K. Kim, J. Y. Park, SFC20160615-06 (GenBank accession No. MF437003).

Remarks: *Mycena zephyris* is easily identified with its white pileus with red-brown spots and silvery white-floccose stipe [47]. Pileus color of *M. zephyris* is similar to those of *M. erminiae* and *M. eburneae,* but red-brown spots in *M. zephyris* pileus distinguishes it from the other species. *M. zephyris* is similar to *M. algeriensis* and *M. valida.* Gray-brown color in *M. algeriensis* and stipe color turning reddish brown to upward of *M. valida* are distinguishable characters [48].

Phaeomarasmius proximans (A. H. Sm. & Hesler) Singer, Fieldiana Bot. 21: 115 (1989) (Figs. 2C and 3C).

Classification: Basidiomycota, Agaricales, Inocybaceae, *Phaeomarasmius.*

Pileus 5–15 mm wide, plane to convex, surface dry and fibrillate, context thin, bright yellow brown, yellow, yellowish brown when mature. Stipe 7.0–15.0 × 1.0–1.5 mm, slightly depressed-adnate, broad, and concolorous with pileus when not darkening from base up on aging. Lamellae plane, broad, subdistant, yellow when mature. Stipe 20–25 × 1–2 mm, silverly white-floccose, grey flesh-color, grey lilac, reddish to wine-colored brown. Lamellae up to 4 mm, broad, whitish to pale brown with red-brown spots. Cheilocystidia 47.8–57.4–71.1 × 7.9–12.4–15.7 μm, fusiform, clavate, apically mucronate, with a simple or branched neck. Pleurocystidia present, 77.0–82.5–89.4 × 14.0–16.1–22.3 μm, fusiform, clavate, apically mucronate, with a simple or branched neck. Caulocystidia irregularly clavate, straight to curved, coarsely diverticulate. Pileipellis 2–10 μm long, smooth or with rare excrescences. Basidia 28.7–32.4–36.3 × 7.6–9.0–10.6 μm, clavate, 4-spored, sterigmata up to 7 μm long. Basidiospores 8.5–9.3–10.4 × 5.3–5.9–6.6 μm, Q = 1.4–1.6–1.8, elongate ellipsoid or cylindrical. Clamp connection present. Scattered or gregarious under conifers, but also in mixed woods.

Specimen examined: Korea, Gyeongsangbuk-do, Ulleung-gun, Na-ri basin, on the trunk of dead hardwood, 3 Sep 2015, J. Y. Park, N. K. Kim, H. J. Cho, SFC20150903-13 (GenBank accession No. MF437004); Korea, Gyeongsangbuk-do, Ulleung-gun, Seonginbong, 37°30’09.7” N 130°51’57.8” E, on the trunk of dead hardwood, 15 Jun 2016, N. K. Kim, J. Y. Park, SFC20160615-06 (GenBank accession No. MF437003).

Remarks: *Mycena zephyris* is easily identified with its white pileus with red-brown spots and silvery white-floccose stipe [47]. Pileus color of *M. zephyris* is similar to those of *M. erminiae* and *M. eburneae,* but red-brown spots in *M. zephyris* pileus distinguishes it from the other species. *M. zephyris* is similar to *M. algeriensis* and *M. valida.* Gray-brown color in *M. algeriensis* and stipe color turning reddish brown to upward of *M. valida* are distinguishable characters [48].
mature. Cheilocystidia 19.6–25.3–29.7 × 7.8–9.5–11.1 µm, narrowly clavate to nearly vesiculose, wall slightly thickened irregularly. Pleurocystidia absent. Basidia 20.1–22.7–26.9 × 5.4–6.2–6.9 µm, 4-spored. Basidiospore 7.6–8.5–9.3 × 3.9–4.3–4.7 µm, Q = 1.8–2.0–2.3, elliptic to oblong, wall slightly thickened, minute apical pore, light brown to red brown. Clamp connections present. All hyphae inamyloid. Gregarious

Specimen examined: Korea, Gyeongsangbuk-do, Ulleung-gun, Na-ri basin, 37°31’13.9” N 130°52’01.7” E, on dead hardwood, 3 Sep 2015, J. Y. Park, N. K. Kim, H. J. Cho, SFC20150903-34 (GenBank accession No. MF437005).

Remarks: Phaeomarasmius proximans shares similar cheilocystidia with Pholiota granulosa, but it is different
Fig. 3. Microscopic features of the 10 unrecorded species: A, *Deconica phyllogena*; B, *Mycena zephus*; C, *Phaeomarasmius proximans*; D, *Phlebia radiata*; E, *Pluteus semibulbosus*; F, *Postia alni*; G, *Resinicium pinicola*; H, *Scytinostroma portentosum*; I, *Tricholomopsis flammula*; and J, *Tyromyces kmetii*. s, basidiospore; b, basidia; cc, cheilocystidia; pc, pleurocystidia; c, cystidia; gh, generative hyphae; d, dendrohyphidia.
from *Pho. granulosa* in that the stipe did not darken from the base up. *Phae. curcuma* and *Phae. subechinatus* have similar pileus color to *Phae. proximans*. However, *Phae. curcuma* has a heavy veil in the stipe and *Phae. subechinatus* has much larger cheilocystidia, 26–40(50) × 8–16 µm [49].

Phlebia radiata Fr., Syst. Mycol. (Lundae) 1: 427 (1821) (Figs. 2D and 3D).

Classification: Basidiomycota, Polyoparas, Meruliaceae, *Phlebia*.

Basidiocarps resupinate, adnate, orbiculate-confluent. Hymenial radially and irregularly lamelliform or noduliferous, fimbrillate, surface purplish to whitish orange, margin white to reddish orange. In section subhyaline, membranaceous to cecreous. Hyphal system monomitic; Generative hyphae with clamp connections. Cystidia 60.7–75.2–95.2 × 7.2–8.8–11.5 µm, clavate, smooth, thin-walled. Basidia 26.3–32.8–39.7 × 3.9–4.6–4.9 µm, narrowly clavate, with a basal clamp, 4-sterigmata, smooth, thin-walled. Basidiospores 4.7–5.0–5.4 × 2.1–2.2–2.4 µm, Q = 2.1–2.3–2.4, cylindrical to suballantoid, smooth, thin-walled.

Specimen examined: Korea, Gyeongsangbuk-do, Ulleung-gun, Na-ri basin, 37°30′59.02″ N, 130°52′11.3″ E, on dead hardwood, 27 Sep 2016, M. S. Park, N. K. Kim & Y. W. Lim, SFC20160927-01 (GenBank accession No. MF437008).

Remarks: *Phlebia radiata* is morphologically similar to *Po. caesia*, but can be distinguished from *Po. caesia* by host; *Po. alni* grows on hardwoods, whereas *Po. caesia* occurs on conifers [52].

Resinicium pinicola (J. Erikss.) J. Erikss. & Hjortstam, in Eriksson, Hjortstam & Ryvarden, Cortic. N. Eur. (Oslo) 6: 1271 (1981) (Figs. 2G and 3G).

Classification: Basidiomycota, Hymenochaetales, Rickenellaceae, *Resinicium*.

Basidiocarps up to 1 mm long, resupinate, closely adnate, odontiodi; aculei conical to cylindrical, yellowish in apical; whole fungus cecreous, whitish in the edge. Hyphal system monomitic; thin-walled, hyphae with clamp connections. Cystidia (halocystidia) 33.2–34.7–37.5 × 4.8–5.8–6.6 µm, halo 5.4–5.7–6.3 µm wide, thin-walled, filled with oily or grainy matter. Basidiospores 4.7–5.0–5.4 × 2.1–2.2–2.4 µm, clavate, with a basal clamp, 4-sterigmata, smooth, thin-walled. Basidiospores 4.4–4.8–5.2 × 1.5–2.1–2.5 µm, Q = 2.0–2.4–3.0, cylindrical, thin-walled, smooth, non-amyloid.

Specimen examined: Korea, Gyeongsangbuk-do, Ulleung-gun, Na-ri basin, 37°30′59.02″ N, 130°51′58.5″ E, on dead hardwood, 20 Oct 2016, J. Y. Park, N. K. Kim & Y. W. Lim, SFC20151020-15 (GenBank accession No. MF437009).

Remarks: *Resinicium pinicola* is morphologically similar to *R. chiricahuensis*. The latter species can be distinguished by lack of halocystidia and a grayish-white hymenial surface with very thin subiculum and cylindrical spores [53].

Scytinostroma portentosum (Berk. & M. A. Curtis) Donk, Fungi, Wageningen 26: 20 (1956) (Figs. 2H and 3H).

Classification: Basidiomycota, Russulales, Lachnocladiaceae, *Scytinostroma*.

Basidiocarps annual to perennial, resupinate, adnate, hard when dry; hymenial surface cream colored to luteous, smooth. Context in luteous, corky, brittle when dry, up to
3 mm thick. Hyphal system dimitic; generative hyphae rare, simple-septate, thin-walled, hyaline. Skeletal hyphae thick-walled. Dendrohyphidia in hymenial layers, thick-walled. Cystidia rare 35.9–45.0 × 51.2–4.1–5.4–6.7 µm, more or less fusoid, thin-walled, hyaline. Basidia 30.7–36.8–43.6 × 4.9–5.8–6.7 µm, more or less cylindrical, 4-sterig mata. Basidiospores 5.3–6.0–6.7 × 5.2–6.1–6.8 µm, Q = 1.00–1.02, globose, thin-walled, hyaline, smooth.

Specimen examined: Korea, Gyeongsangbuk-do, Ulleung-gun, Na-ri basin, 37°30′40.8″ N, 130°51′50.5″ E, on dead hardwood, 14 Jul 2016, J. Y. Park, N. K. Kim, Y. W. Lim, SFC20160614–44 (GenBank accession No. MF437010).

Remarks: *Scytinostroma portentosum* is morphologically similar to *S. odoratum*. *S. odoratum* can be distinguished by lacking dendrohyphidia, a grayish white hymenial surface white when fresh, white to cream when dry. Tyromyces *kmetii* is characterized by rare, brown ostiolar tissue, more or less fusoid, thin-walled, hyaline. Basidia 30.7–36.8–43.6 × 4.9–5.8–6.7 µm, fusiform to clavate. Basidiospores 5.3–6.0–6.7 × 5.2–6.1–6.8 µm, clavate. Basidiospores 5.3–6.0–6.7 × 5.2–6.1–6.8 µm, Q = 1.00–1.02, globose, thin-walled, hyaline, smooth.

Specimen examined: Korea, Gyeongsangbuk-do, Ulleung-gun, Na-ri basin, 37°30′43.8″ N, 130°51′54.5″ E, on dead hardwood, 2 Sep 2015, J. Y. Park, N. K. Kim, H. J. Cho & Y. W. Lim, SFC20150902–43 (GenBank accession No. MF437013).

Remarks: *Tyromyces kmetii* is easily distinguished from the other species of *Tyromyces* by apricot color, small size, mild taste, and broadly ellipsoid and small spores [45].

The published literature indicates that approximately 350 species have been detected from Ulleung Island [16–23]. This great diversity of fungi may be due to improved identification based on ITS sequences compared to traditional identification using solely morphological features. Our study found 10 unrecorded species in Korea and many new species candidates. Ulleung Island is a biodiversity hotspot in Korea. Regular surveys of the island’s fungal diversity can provide valuable information that can inform the management and conservation of these ecosystems. Studies of fungal flora and new species on Ulleung Island are currently underway and will be presented in future studies.

ACKNOWLEDGEMENTS

This research was supported by the project on the survey and excavation of Korean indigenous species of the National Institute of Biological Resources (NIBR 201701104) under the Ministry of Environment, Republic of Korea.

REFERENCES

1. Kirk PM, Cannon PF, Minter DW, Stalpers JA. Dictionary of the fungi. 10th ed. Wallingford: CABI; 2008.
2. Dix NJ, Webster J. Fungal ecology. London: Chapman & Hall; 1995.
3. Zotti M, Persiani AM, Ambrosio E, Vizzini A, Venturella G, Donnini D, Angelini P, Di Piazza S, Pavarrino M, Lunghini D, et al. Macrofungi as ecosystem resources: conservation versus exploitation. Plant Biosyst 2013;147:219–25.
4. Grand EA, Hughes KW, Petersen RH. Relationships within *Lentinus* subg. *Lentinus* (Polyporales, Agaricomycetes), with emphasis on sects. *Lentinus* and *Tigrinia*. Mycol Prog 2011;10: 399–413.
5. Park MS, Fong JJ, Lee H, Oh SY, Jung PE, Min YJ, Seok SJ, Lim YW. Delimitation of *Russula* subgenus *Ameosula* in Korea using three molecular markers. Mycobiology 2013;41:191–201.
6. Ortiz-Santana B, Lindner DL, Miettinen O, Justo A, Hibbett DS. A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales). Mycologia 2013;105:1391–411.
7. Park MS, Lee H, Oh SY, Jung PE, Seok SJ, Fong JJ, Lim YW.
Species delimitation of three species within the *Russula* subgenus *Compacta* in Korea: *R. eccentrica*, *R. nigricans*, and *R. subnigricans*. J Microbiol 2014;52:631-8.

8. Wisitrasameewong K, Looney BP, Le HT, De Crop E, Das K, Van de Putte K, Eberhardt U, Jiayu G, Stubbe D, Hyde KD, et al. *Lactarius* subgenus *Russula*ria (Basidiomycota, Russulales): novel Asian species, worldwide phylogeny and evolutionary relationships. Fungal Biol 2016;120:1545-81.

9. Olariaga I, Moreno G, Manjón JL, Salcedo I, Hofstetter V, Rodríguez D, Buyck B. *Cantharellus* (Cantharellales, Basidiomycota) revisited in Europe through a multigene phylogeny. Fungal Divers 2017;83:263-92.

10. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levêque CA, Chen W; Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 2012;109:6241-6.

11. Min YJ, Park MS, Fong JJ, Seok SJ, Han SK, Lim YW. Molecular taxonomical re-classification of the genus *Suillus* Micheli ex S. F. Gray in South Korea. Mycobiology 2014;42:211-8.

12. Park MS, Quan Y, Jung PE, Oh SY, Jang Y, Kim JJ, Lim YW. Re-evaluation of the genus *Anthrodia* (Polyporales, Basidiomycota) in Korea. Mycobiology 2014;42:114-9.

13. Cho HJ, Park MS, Lee H, Oh SY, Jang Y, Fong JJ, Lim, YW. Four new species of *Anamita* in Inje county, Korea. Mycobiology 2015;43:408-14.

14. Lee WT, Yang IS. The flora of Ulleung Is. and Dogdo Island. Seoul: The Korean Association for Conservation of Nature; 1981. p. 61-95.

15. Sun BY, Shin H, Hyun JO, Kim YD, Oh SH. Vascular plants of Dokdo and Ulleungdo islands in Korea. Incheon: National Institute of Biological Resources; 2015.

16. Jung HS. Fungal flora of Ullung Island (I): on some corticioid fungi. Korean J Bot 1991;34:77-90.

17. Jung HS. Fungal flora of Ullung Island (II): on some resupinate fungi. Kor J Mycol 1991;19:1-10.

18. Jung HS. Fungal flora of Ullung Island (III): on some polyporoid fungi. Kor J Mycol 1992;20:1-10.

19. Jung HS. Fungal flora of Ullung Island (IV): on some agaric fungi. Kor J Mycol 1993;21:64-72.

20. Jung HS. Fungal flora of Ullung Island (V): on additional agaric fungi. Kor J Mycol 1994;22:196-208.

21. Jung HS. Fungal flora of Ullung Island (VI): on ascomycetous, auriculariaecious, and gasteromycetous fungi. Kor J Mycol 1995;23:1-9.

22. Kim CS, Jo JW, Kwag YN, Sung GH, Lee SG, Kim SY, Shin CH, Han SK. Mushroom flora of Ulleung-gun and a newly recorded *Bovista* species in the Republic of Korea. Mycobiology 2015;43:239-57.

23. Park KH, Kim C, Kim M, Kim NK, Park JY, Eimes JA, Cho HJ, Han SK, Lim YW. Three new recorded species of the Physalacriaceae on Ulleung Island, Korea. Mycobiology 2017;45:9-14.

24. Gilbertson RL, Ryvarden L. North American polypores. Vol. 1. *Abortiporus-Lindtneria*. North American Polypores. Oslo: Fungiflora A/S; 1986.

25. Park WH, Lee JH. New wild fungi of Korea. Seoul: Kyo-Hak Publishing Co.; 2011.

26. Hongo T, Iwasa M. *Yama-Kei* field book. No. 10. Fungi. Tokyo: Yama-Kei Publishers; 1994.

27. Imai A, Otani Y, Hongo T, Iwasa M, Mizuno N. Fungi of Japan. Tokyo: Yama-Kei Publishers; 1988.

28. Breitenbach J, Kränzlin F. Fungi of Switzerland. Vols. 1-5. Lucerne: Mykologia; 1984-2000.

29. Kränzlin F. Fungi of Switzerland. Vol. 6. Russulaceae: *Lactarius, Russula*. Lucerne: Verlag Mykologia; 2005.

30. Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA, editors. Plant molecular biology manual D1. Dordrecht: Kluwer Academic Press; 1994. p. 183-90.

31. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 1993;2:113-8.

32. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731-9.

33. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772-80.

34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111-20.

35. Guzmán, G. Supplement to the monograph of the genus *Psilocybe*. Bibl Mycol 1995;159:91-141.

36. Ramirez-Cruz V, Guzmán G, Villalobos-Arámbula AR, Rodríguez A, Matheny PB, Sánchez-García M, Guzmán-Dávalos L. Phylogenetic inference and trait evolution of the psychodelic mushroom genus *Psilocybe* sensu lato (Agaricales). Botany 2013;91:573-91.

37. Lee YS, Lim YW, Kim J, Yun HY, Kim C, Park JY. Korean Society of Mycology. National list of species of Korea: Basidiomycota. Incheon: National Institute of Biological Resources; 2015.

38. Singer R. The Agaricales in modern taxonomy. 4th ed. Koenigstein: Koeltz Scientific Books; 1986.

39. Horak E. Synopsis Fungorum 7. Oslo: Fungiflora; 1994-2000.

40. Donk MA. Notes on resupinate Hymenomycetes IV. Fungus 1957;27:1-29.

41. Jülich W. Notes on some basidiomycetes (Aphyllophorales and Heterobasidiomycetes). Persoonia 1982;11:421-8.

42. Nakasone KK. Morphological and molecular studies on *Resinicium* s. str. Can J Bot 2007;85:420-36.

43. Jang Y, Jang S, Lee J, Lee H, Lim YW, Kim C, Kim J. Diversity of wood-inhabiting polyporoid and corticioid fungi in Odaesan National Park, Korea. Mycobiology 2016;44:217-36.

44. Rattan SS. *Scytinostroma* in India with notes on extralimital species. Trans Br Mycol Soc 1974;63:1-12.

45. Saari L, Voït A. Type studies of two *Tricholomopsis* species described by Peck. Mycol Prog 2015;14:46.

46. Ryvarden L, Gilbertson RL. European Polypores. Part 2. *Meripilus-Tyromyces*. Synopsis Fungorum. 7. Oslo: Fungiflora;
47. Guzmán G, Horak E. New species of *Psilocybe* from Papua New Guinea, New Caledonia and New Zealand. *Sydowia* 1979;31:44-54.

48. Robich G. A revised key to the species of *Mycena* section *Fragilipedes* of the Northern Hemisphere. *Persoonia* 2006;19:1-43.

49. Smith AH, Hesler LR. The North American species of *Pholiota*. *Monticello* (NY): Lubrecht & Cramer; 1968.

50. Maekawa N. Taxonomic study of Japanese Corticiaceae (Aphyllophorales) I. *Rep Tottori Mycol Inst* 1993;31:1-149.

51. Orton PD. British Fungus Flora, Part 4. *Pluteaceae: Pluteus* & *Volvariella*. Edinburgh: Royal Botanic Garden; 1986.

52. Piątek M. Notes on Polish polypores. I. *Oligoporus* alni, comb. nov. *Pol Bot J* 2003;48:17-20.

53. Gilbertson RL, Budington AB. New records of Arizona wood-rotting fungi. *J Ariz Acad Sci* 1970;6:91-7.

54. Gilbertson RL, Blackwell M. Notes on the wood-rotting fungi on Junipers in the Gulf Coast region. *Mycotaxon* 1985;24:325-48.

55. Holec J. Valid publication of the name *Tricholomopsis flammula* (Fungi, Basidiomycota, Tricholomataceae), a species clearly separated from *T. rutilans*. *J Natl Mus (Prague) Nat Hist Ser* 2009;178:7-13.