Rate of Variations Between Field Bean Cultivars Due to Sowing Dates and Foliar Spraying Treatments

W.A.E. Abido and S.E. Seadh
Department of Agronomy, Faculty of Agriculture, Mansoura University, Egypt

ABSTRACT
Background: Shedding phenomena of field bean plant usually took place in serious values especially for buds, flowers and immature pods leading to a great reduction in seed yield. Thus, the main objective of this study was to study the performance of some field bean cultivars under sowing dates and foliar treatments. Methods: Field experiments were carried out during 2011-2012 and 2012-2013 seasons to find out the performance of cultivars (Sakha 1, Sakha 2 and Giza 3 improved) under sowing dates (15th October, 1st November and 15th November) and foliar treatments (without, spraying with water, yeast extract, GA, and mixture of yeast extract+GA). Each sowing date was performed in a separate experiment. Every experiment was carried out in strip-plot design with four replications. The vertical plots were assigned to cultivars and the horizontal plots were occupied with foliar treatments. Results: Sowing on 1st November gave highest growth parameters, seed yield and its components and protein%. However, sowing on 15th October produced highest shedding% and lowest values of other characters. Sakha 1 cultivar significantly superior Sakha 2 and Giza 3 improved and recorded highest values of all studied characters. Sakha 2 cultivar recorded highest percentages of shedding. Foliar spraying with mixture of yeast extract and GA, surpassed other foliar treatments and resulted in highest values of all studied characters, excluding shedding percentage. Conclusion: Sowing Sakha 1 cultivar on 1st November and spraying with mixture of yeast extract+GA reducing shedding percentage and maximizing field bean seed productivity.

Key words: Field bean, cultivars, sowing dates, yeast extract, GA, shedding percentage, protein content

INTRODUCTION
Field bean (Vicia faba L.) is one of essential winter crops in Egypt due to its high nutritive value and high protein contents i.e., 25-40%. Moreover, it is a good source of nutritive minerals, such as phosphorus, potassium, calcium, sulphur and iron. Its seed produced a cheap source of protein and food of high nutritive value especially in the diet of low-income people. Its protein is a good alternative compared with expensive meat and fish protein. Field bean fixed nitrogen in agricultural systems through the unique process of biological fixation of atmospheric nitrogen by symbiosis with Rhizobium nitrogen fixation bacteria in the root system of the field bean lead to more soil nitrogen available to the next crop. This substantially reduces the need for nitrogen fertilizers and reduction pollution. Thus, this research have been conducted on various agronomic aspects such as sowing dates, promising cultivars and foliar spraying treatments as major factors determining shedding, yield, its components and seed quality of field bean.

Sowing dates refer to the effect of all environmental conditions on large scale on growth and yield of field bean crop which differ widely from region to another as reported by many researchers. Moreover, sowing dates is an important factor which significantly affects the timing and duration of vegetative and reproductive stages consequently yield its components and seed quality. Since, environmental factors i.e., temperature and light differ due to sowing dates. Whereas, early date of sowing (late October and early November) significantly increased vegetative growth, seed yield and its quality. However, each delay in sowing date beyond mid November resulted steadily reduction in growth and yield. Attia et al. reported that sowing field bean in the intermediate date (10th November) produced highest values of seed yield and its components and high seed quality traits ranked by early (20th October) then late planting dates (1st December). El-Metwally et al. showed that sowing date at 25th October recorded the highest values of growth characters and pigment content (total chlorophyll). While, the greatest values of yield and its components were resulted from the sowing date 25th November.

Corresponding Author: W.A.E. Abido, Department of Agronomy, Faculty of Agriculture, Mansoura University, Egypt
No doubt that chosen the high yielding cultivars is very important to raise crop productivity and quality. Field bean cultivars markedly differed in their growth characteristics and potential yield. In this connection, Bakheit et al.13 compared field bean cultivars i.e., Giza 402, Giza 2, Giza 429 and Giza 674 and concluded that these cultivars differed significantly in plant height, seed yield fedG and 100-seed weight. Giza 429 and Giza 674 cultivars gave the highest seed yield fedG and 100-seed weight. Abou-Taleb14 reported that Giza 429 cultivar surpassed Cairo 375 cultivar in number of branches plantG. However, Cairo 375 cultivar surpassed Giza 429 cultivar in plant height. Mekky et al.15 stated that Giza 429 cultivar recorded the highest values of plant height, number of branches plantG, pods weight plantG, number of seeds plantG and seed yield fedG. Mohamed and El-Abbas16 concluded that Sakha 1 cultivar surpassed Giza 3 and Giza 2 cultivars in seed weight plantG, 100-seed weight and seed yield (ardab/fed). Salama and Awaad17 reported that Sakha 1 cultivar had the tallest plants compared with eight genotypes i.e. Sakha 1, Sakha 2, N ubaria 1, Giza 461, Giza 714, Giza 716, Giza blanka and Giza 3. Giza 714 cultivar was the best cultivar for seed yield and its components (number of branches plantG, number of pods plantG and seed yield plantG). Attia et al.18 revealed that Sakha 1 cultivar ranked first, whereas Giza 843 and Masr 1 were ranked second and third, respectively in seed yield and its components (number of pods plantG, number of seeds plantG, seed weight plantG and 100-seed weight). Bakry et al.19 indicated that field bean cultivars significantly varied in all studied characters. N ubaria 1 and Cairo 25 cultivars produced highest seed and protein yields fedG as compared with other varieties. Kandil et al.19 found that Giza 716 cultivar significantly exceeded other studied cultivars (Sakha 1 and Giza 3) in plant height, number of branches plantG, number of pods plantG, number of seeds podG, number of seeds plantG, seed yield plantG, 100-seed weight and seed yield haG. While, Sakha 1 cultivar produced the lowest number of shedding flower and shedding percentage and other studied characters. Mulualem et al.20 revealed that significant differences were observed among ten field bean improved varieties in plant height, number of pods plantG, 100-seed weight and seed yield haG. Therefore, this study is aiming to evaluate the field bean cultivars for focusing light on the most promising cultivars that can be used on a large scale at studying area.

Yeast is natural source of cytokinins and has stimulatory effects on field bean plants21. Furthermore, yeast extract was recommended to participate in a beneficial role during plant growth stages through improving flower formation and their set in some plants due to its high auxin and cytokinins content and enhancement carbohydrates accumulation22. Also, yeast extract had stimulatory effects on cell division and enlargement, protein and nucleic acid synthesis and chlorophyll formation23. Furthermore, foliar spraying with yeast extract represents the more quick and efficient treatments in many cases lead to vigorous vegetative growth and plenty of chemical constituents24. Mady25 revealed that foliar application with yeast extract at 50 mL L-1 significantly increased photosynthetic pigments and total leaf area as compared with the control treatments. Also, yeast extract treatment not only increased number of formed flowers and setted pods plantG but also showed contradictory effect upon shedding percentage of both flowers and immature pods plantG, consequently that was reversed upon increment of pod weight plantG and final seed yield. Nassar et al.26 stated that yeast extract has stimulatory effects on growth and yield of bean plants by inducing significant promotive effects on plant height, number of branches plantG, total leaf area plantG, number of pods plantG, number of seeds plantG, seed yield plantG and crude protein percentage in seeds. Abou El-Yazied and Mady27 found that yeast extract treatments not only increased australins and cytokinins but also decreased abscisic acid at 75 days after sowing. Yeast extract increased number of formed flowers, setted pods plantG, seed yields and satisfactory effect upon shedding percentage.

Gibberellic Acid (GA\textsubscript{3}) which is readily extracted from fungal cultures and is most common commercially available form and widely used as growth promotion28. One of the important functions of gibberellins is synthesis of - amylase enzyme in the aleurone layer surrounding the endosperm of cereal grains during germination. This enzyme hydrolysis starch to form simple sugars which translocated to growing embryo to provide energy source29. On the other hand, GA\textsubscript{3} application enhances the catabolism of abscisic acid “ABA”30. Ibrahim et al.31 and Al-Whaibi et al.32 indicated that GA\textsubscript{3} application increased plant height, stem diameter, leaf area plantG, number of branches plantG, number of pods plantG, number of seeds podG, seed yield plantG, 100-seed weight and protein percentage and decreased the percent of aborted flowers and pods. Khan et al.33 and Iqbal et al.34 stated that gibberellins alter the source-sink metabolism through their effect on photosynthesis and sink formation. GA\textsubscript{3} promoted fructose 1,6- diphosphatase and sucrose phosphate synthase and stimulated phloem loading. Khafaga et al.35 indicated that seed soaking with growth regulators lead to highest values of leaf area, number of pods plantG, number of seed podG, 100-seed weight and seed yield than the foliar
application. Whereas, Unamba et al.36 found that foliar spraying with GA\textsubscript{3} have a significant effect on the plant growth as compared with seeds soaking application technique. Khan et al.37 and Ghalandari et al.38 found that spraying field bean plants with GA\textsubscript{3} at the rate of 50 ppm before flowering gave maximum plant height and total leaf area plantG. Kandil et al.39 reported that spraying field bean plants with 100 ppm GA\textsubscript{3} produced the highest values of growth, seed yield and its components as well as lowest values of shedding flowers and shedding percentage compared with control treatment.

The present investigation was conducted to determine the effect of sowing dates and foliar spraying treatments on growth, shedding\%, productivity and seed quality of some field bean cultivars under the environmental conditions of Kafr El-Sheikh Governorate, Egypt.

MATERIALS AND METHODS

Study site and objective: A field experiment was carried out at El-Garayda Village, Bialla district, Kafr El-Sheikh Governorate (31°7' latitude and 30° 93' longitude) during the two growing winter seasons of 2011/2012 and 2012/2013. The main objective of this study was to study the influence of sowing dates and foliar spraying treatments on some field bean cultivars as well as their interactions on growth, flowers and pods shedding, seed yield and it attributes as well as seed quality.

Experimental design and treatments: Each sowing date (15th October, 1st November and 15th November) was performed in a separate experiment. Every experiment of sowing date was carried out in a strip-plot design with four replications. The vertical plots were assigned to the three field bean cultivars, i.e., Sakha 1, Sakha 2 and Giza 3 improved. Studied cultivars were obtained from Food Legumes Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt. The horizontal plots were occupied with the following five foliar spraying treatments, i.e., without foliar spraying (control treatment), spraying with water, spraying with yeast extract at the rate of 50 mL LG, spraying with Gibberellic Acid (GA\textsubscript{3}) at the rate of 100 ppm and spraying with yeast extract at the rate of 50 mL LG plus gibberellic Acid (GA\textsubscript{3}) at the rate of 100 ppm. Foliar spraying treatments were carried out twice at the aforementioned rates after 45 and 60 Days From Sowing (DFS).

Active dry yeast were dissolved in water at the rate of 1 g LG followed by adding sugar at ratio 1:1 and kept overnight for activation and reproduction of yeast. Yeast extract was prepared by using a technique allowed yeast cells (pure dry yeast) to be grown and multiplied efficiently during conducive aerobic and nutritional conditions that allowed to produce denovo beneficial bioconstituent, (carbohydrates, sugars, proteins, amino acids, fatty acids, hormones and etc.), then these constituents could release out of yeast cells in readily form by two cycles of freezing and thawing for disruption of yeast cells and releasing their content according to Spencer et al.29.

The commercial natural plant growth regulator Gibberellic acid 10% was obtained from Kanza Group Company for the development of projects and services.

The soil of experimental site was characterized as a clayey soil with an Electrical Conductivity (EC) of 1.67 dS m-1 and a pH of 7.85. Each experimental basic unit included five ridges, each of 60 cm width and 3.5 m long, resulted an area of 10.5 m2 (1/400 fed, 1 fed = 4200 m2). The preceding summer crop was rice (Oryza sativa L.) in both seasons.

Agricultural practices: Calcium superphosphate (15.5% P\textsubscript{2}O\textsubscript{5}) was applied during soil preparation at the rate of 100 kg fedG. Planting time was carried out at three dates as mentioned before on both sides of ridges at 25 cm between hills and 60 cm between ridges which expressed 112000 plants fedG. After full germination plant densities were adjusted by replanting the missing hills or thinning the over plants at 21 days from planting.

Hand hoeing was achieved twice every 21 days to control weeds (before time of irrigation). Nitrogen fertilizer was added before the first irrigation in the form of ammonium nitrate (33.0% N) at the rate of 15 kg N fedG as starter dose. Potassium sulphate (48% K\textsubscript{2}O) at the rate of 50 kg fedG was applied to soil in two equal portions, before the first and second irrigations. The recommended agricultural practices for growing field bean were followed except the factors under study.

Studied characters: During the growing period (after 85 days from sowing), randomized samples of five plants from the outer ridges of each plot were obtained to estimate the following characters:

- C **Total chlorophyll (SPAD):** Leaf chlorophyll content was assessed by SPAD-502 (M inolta Co. Ltd., O saka, Japan)
- C **Total leaf area plantG (cm2)** was determined using Field Portable Leaf Area Meter AM -300 (Bio-Scientific, Ltd., Great Am well, Herefordshire, England)
C Plant height (cm)
C Stem diameter (cm)
C No. of branches plant

At harvest time, five guarded plants were taken from the outer ridges of each plot to estimate the following characters.

C Shedding percentage (%). It was calculated using the following equation:

\[\text{No. of setted pods plant}^{-1} = \frac{\text{No. of total flowers per plant}}{\text{No. of total flowers plant}} \]

C No. of pods plant
C Pod length (cm)
C No. of seeds pod
C Seed yield plant (g)
C Seed yield (ardab fed). Whole plants in the three inner ridges of each plot were harvested and left for air drying, then they were threshed and the seeds (12% moisture) were weighted (kg), then converted to ardab per feddan (one ardab = 155 kg)
C Protein percentage (%). Crude protein percentage in the dry seeds was estimated according to the improved Kjeldahl method of 40.

Statistical analysis: All data were statistically analyzed according to the technique of analysis of variance (ANOVA) for the strip-plot design to each experiment (planting date), then the combined analysis was achieved between planting dates as outlined by Gomes and Gomes41 using MSTAT statistical package (MSTAT-C with MGRAPH version 2.10, Crop and Soil Sciences Department, Michigan State University, USA). Least Significant Difference (LSD) method was used to test the differences between treatment means at 5% level of probability as described by Snedecor and Cochran 42.

RESULTS AND DISCUSSION
Sowing dates effect: Sowing dates caused significant effects on field bean growth, shedding percentage, seed yield and its components as well as protein percentage in both seasons (Table 1-3). Intermediate sowing date (1st November) markedly resulted highest total chlorophyll, total leaf area plant, plant height, stem diameter and number of branches plant, (Table 1), number of pods plant, pod length and number of seeds pod, (Table 2), 100-seed weight, seed yield plant, seed yield fed and protein percentage (Table 3) compared with other studied sowing dates in both seasons. In this regard, Mohamed 7 concluded sowing field bean on early November resulted significant increase in vegetative

Characters	Total chlorophyll (SPAD)	Total leaf area plant (cm²)	Plant height (cm)	Stem diameter (cm)	N.o. of branches plant					
	2011-2012	2012-2013	2011-2012	2012-2013	2011-2012	2012-2013	2011-2012	2012-2013	2011-2012	2012-2013
Sowing dates										
15th October	32.11	30.39	1297.0	1271.8	91.80	90.04	0.798	0.758	2.85	2.59
1st November	35.02	33.44	1397.0	1359.1	101.40	99.88	0.927	0.903	3.32	3.14
15th November	34.08	30.93	1355.4	1327.6	96.95	94.64	0.893	0.876	3.15	2.87
LSD at 5%	0.42	0.40	23.7	20.5	1.98	2.09	0.012	0.012	0.11	0.09
Cultivars										
Sakha 1	35.59	32.96	1377.4	1350.4	100.10	98.68	0.907	0.884	3.41	3.12
Sakha 2	32.20	29.99	1323.3	1286.0	93.04	91.17	0.839	0.811	2.80	2.65
Giza 3 improved	33.40	31.81	1348.7	1322.2	97.04	94.71	0.872	0.841	3.12	2.82
LSD at 5%	0.37	0.37	14.0	13.9	1.27	1.57	0.007	0.009	0.06	0.09
Foliar spraying treatments										
Without (control)	31.46	29.58	1270.1	1235.9	92.25	90.81	0.824	0.794	2.65	2.33
Spraying with water	33.01	30.78	1288.3	1265.5	93.55	92.22	0.851	0.823	2.84	2.72
Spraying with yeast extract	34.03	31.31	1374.2	1348.8	99.11	96.96	0.871	0.843	3.06	2.88
Spraying with GA	34.65	32.42	1386.2	1348.1	96.81	94.66	0.897	0.871	3.39	3.09
Spraying with yeast extract+GA	35.51	33.85	1430.1	1399.2	102.00	99.63	0.920	0.897	3.60	3.29
LSD at 5%	0.25	0.26	16.4	17.31	0.61	0.63	0.006	0.007	0.05	0.06
Interactions										
A×B	ns	*	ns	*	ns	ns	*	*	*	*
A×C	ns	*	ns	*	ns	ns	*	*	*	*
B×C	ns	*	ns	*	ns	ns	*	*	ns	*
A×B×C	ns	ns	ns	*	ns	ns	*	*	ns	*

*Significant at 0.05 level of probability and ns: Not significant at 0.05 level of probability
Table 2: Mean of shedding percentage, No. of pods plant⁻¹, pod length and number of seeds pod⁻¹ as affected by sowing dates, field bean cultivars and foliar spraying treatments as well as their interactions during 2011-2012 and 2012-2013 seasons

Characters	Shedding (%)	No. of pods plant⁻¹	Pod length (cm)	No. of seeds pod⁻¹				
	2011-2012	2012-2013	2011-2012	2012-2013	2011-2012	2012-2013	2011-2012	2012-2013
Sowing dates								
15th October	85.55	85.37	13.31	13.18	7.10	6.94	3.33	3.25
1st November	83.16	82.73	13.77	13.60	8.52	8.29	3.70	3.62
15th November	84.87	83.66	13.53	13.33	7.58	7.52	3.48	3.41
LSD at 5%	0.29	0.30	0.13	0.12	0.41	0.53	0.53	0.12
Cultivars								
Sakha 1	84.16	83.21	13.77	13.60	8.21	8.02	3.69	3.60
Sakha 2	84.78	84.44	13.30	13.18	7.26	7.13	3.33	3.25
Giza 3 improved	84.64	84.11	13.54	13.33	7.72	7.60	3.48	3.43
LSD at 5%	0.24	0.24	0.07	0.07	0.17	0.16	0.16	0.09
Foliar spraying treatments								
Without (control)	84.92	84.22	12.28	12.15	7.19	6.68	3.12	3.03
Spraying with water	84.67	84.19	12.64	12.49	7.19	7.11	3.22	3.18
Spraying with yeast extract	84.52	83.95	14.13	13.88	7.73	7.53	3.62	3.57
Spraying with GA₃	84.47	83.87	14.11	13.94	8.07	8.02	3.67	3.58
Spraying with yeast extract+GA₃	84.04	83.38	14.52	14.39	8.81	8.58	3.88	3.77
LSD at 5%	0.14	0.16	0.06	0.05	0.11	0.11	0.04	0.03
Interactions								
A X B	*	*	*	*	*	ns	*	*
A X C	*	*	*	*	*	*	*	*
B X C	*	*	*	*	*	*	*	*
A X B X C	ns	ns	ns	ns	ns	ns	ns	ns
*Significant at 0.05 level of probability and ns: N on-significant at 0.05 level of probability

Table 3: Mean of 100-seed weight, seed yield plant⁻¹, seed yield ardab fed⁻¹ and protein percentage as affected by sowing dates, field bean cultivars and foliar spraying treatments as well as their interactions during 2011-2012 and 2012-2013 seasons

Characters	100-seed weight (g)	Seed yield (g plant⁻¹)	Seed yield (ardab fed⁻¹)	Protein (%)				
	2011-2012	2012-2013	2011-2012	2012-2013	2011-2012	2012-2013	2011-2012	2012-2013
Sowing dates								
15th October	84.74	83.70	51.95	48.78	9.36	9.29	24.37	24.36
1st November	93.35	92.04	58.55	56.46	9.82	9.76	24.66	24.59
15th November	87.92	87.11	54.34	52.39	9.69	9.64	24.54	24.47
LSD at 5%	0.53	0.49	0.89	0.52	0.09	0.08	0.03	0.08
Cultivars								
Sakha 1	90.80	89.98	57.29	54.90	9.93	9.87	24.63	24.57
Sakha 2	86.55	85.26	52.57	50.29	9.36	9.29	24.40	24.34
Giza 3 improved	88.67	87.60	54.99	52.44	9.58	9.52	24.54	24.51
LSD at 5%	0.46	0.58	0.34	0.04	0.04	0.04	0.03	0.10
Foliar spraying treatments								
Without (control)	84.98	84.23	46.41	44.76	9.22	9.16	23.98	23.92
Spraying with water	86.94	86.05	50.05	46.46	9.30	9.25	24.04	24.00
Spraying with yeast extract	88.96	87.52	58.07	56.21	9.83	9.77	24.84	24.80
Spraying with GA₃	90.42	89.04	57.91	55.11	9.74	9.67	24.76	24.72
Spraying with yeast extract+GA₃	92.05	91.24	62.31	60.18	10.03	9.95	25.00	24.92
LSD at 5%	0.47	0.38	0.35	0.31	0.04	0.05	0.02	0.05
Interactions								
A X B	ns	*	ns	*	*	*	*	*
A X C	*	*	*	*	*	*	*	*
B X C	*	*	ns	*	*	*	*	*
A X B X C	*	*	*	*	*	*	*	ns
*Significant at 0.05 level of probability and ns: N on-significant at 0.05 level of probability

growth and production more pods per plant, consequently increased yield and quality of seed. Early sowing date (15th October) resulted in the highest values of shedding percentage and the lowest values of...
other studied characters in both seasons. Late sowing date (15th November) was ranked secondly after intermediate sowing date (1st November) in both seasons. It could benoticed that sowing field bean on 15th October induced an increase in shedding percentage about 2.94 and 1.40% as compared with sowing on 1st November and 15th November over both seasons, respectively. Thus, Sowing on 1st November caused an increase in seed yield fedG, by 1.28 and 4.75% as compared with sowing on 15th November and 15th October over both seasons, respectively. The increases in field bean growth, seed yield and its component characters due to sowing on 1st November might be attributed to the seasonable environmental conditions during this period such as temperature, day length and light intensity which allow rapid germination, establishment, vegetative growth, development and ripening, consequently increasing dry matter accumulation, yield components as well as seed yield per unit area. These results are in agreement with those reported by6,11,12. Whereas, M ohamed6 and Grenz et al.10 suggested that delaying sowing of field bean over mid November resulted in progressively reduction in growth and seed yield.

Cultivars performance: Data presented in Table 1-3 show significant differences among the three tested cultivars of field bean for total chlorophyll, total leaf area plantG, plant height, stem diameter and number of branches plantG, (Table 1), shedding percentage, number of pods plantG, pod length and number of seeds podG, (Table 2), 100-seed weight, seed yield plantG, seed yield fedG and protein percentage (Table 3) in both seasons. From obtained results of this study it could be observed that Sakha 1 cultivar significantly surpassed other studied cultivars (Sakha 2 and Giza 3 improved) and recorded the highest values of all studied characters in both seasons. Whereas, Giza 3 improved cultivar came in the second rank after Sakha 1 cultivar and followed by Sakha 2 cultivar with respect of all studied traits in the two growing seasons. Concerning shedding percentage, the highest values were resulted from Sakha 2 cultivar followed by Giza 3 improved cultivar then Sakha 1 cultivar in both seasons. These findings might be attributed to the differences in their genetical constitution and genetic factors makeup. Similar results were stated by21,16,17,18,19. The performance of Sakha 1 cultivar out yielded the other two cultivars and might be recommended.

Foliar spraying treatments effect: From obtained results foliar spraying treatments (without, spraying with water, yeast extract, GA3 and yeast extract+GA3) showed significant effect on total chlorophyll, total leaf area plantG, plant height, stem diameter and number of branches plantG, shedding percentage, number of pods plantG, pod length and number of seeds podG, 100-seed weight, seed yield plantG, seed yield fedG and protein percentage in both growing seasons (Tables 1, 2 and 3). It can be noticed that foliar spraying field bean plants twice after 45 and 60 days from sowing with the mixture of yeast extract and GA3 surpassed other studied foliar spraying treatments and resulted in the highest values of all studied characters, excluding shedding percentage which highest means were resulted from control treatment (without foliar spraying) in both seasons. However, foliar spraying with yeast extract ranked after application the mixture of yeast extract and GA3 concerning number of pods plantG (in the first season), total leaf area plantG (in the second season), plant height, seed yield plantG, seed yield fedG and protein percentage in both seasons. These results may be ascribed to the beneficial role of yeast extract during plant growth stages through improving flower formation and their set due to its high auxin and cytokinins content, enhancement carbohydrates accumulation22, cell division and enlargement, protein and nucleic acid synthesis, chlorophyll formation23, consequently lead to vigorous vegetative growth and increasing seed yield and chemical constituents24. Whereas, spraying field bean plants with GA3 solution came in the second rank after using the mixture of yeast extract and GA3 regarding total leaf area plantG (in the first season), number of pods plantG (in the second season), total chlorophyll, stem diameter, number of branches plantG, pod length, number of seeds podG and 100-seed weight in both seasons. The stimulatory effect of gibberellins (GA3) on field bean growth and yield attributes may be due to the role of GA3 in enhances the catabolism of ABA which reduces shedding20 as well as alter the source-sink metabolism through their effect on photosynthesis and sink formation therefore stimulated plant growth20. Noteworthy, the increases in seed yield per plant and feddan due to foliar spraying with water, yeast extract, GA3 and the mixture of yeast extract+GA3 were (5.86 and 0.92%), (25.35 and 6.64%), (23.97 and 5.90%) and (34.35 and 8.71%) as compared with control treatment over both seasons. The increase in field bean growth and seed yield due to foliar spraying with the mixture of yeast extract and GA3 can be easily ascribed to combining beneficial effect for each yeast extract and GA3 in improvement early growth, reduced shedding percentage, more dry matter accumulation and stimulation the building of metabolic products, hence
increasing seeds yield per plant and unit area. These results are in compatible with those found by 25,26,27,37,38.

Interactions effect: Regarding the effect of interactions, there are many significant effects of the interactions among studied factors on studied characters as shown in Tables 1, 2 and 3. Therefore, the significant triple interactions only among studied factors were focused herein. As shown from data graphically illustrated in Fig. 1-8, the highest

Fig. 1: Mean of total leaf area plant as affected by the interaction among sowing dates, field bean cultivars and foliar spraying treatments during 2012-2013 season

Fig. 2: Mean No. of branches plant as affected by the interaction among sowing dates, field bean cultivars and foliar spraying treatments during 2011-2012 season

Fig. 3: Continue
values of total leaf area plant (Fig. 1), number of branches plant (Fig. 2), number of pods plant (Fig. 3), number of seeds pod (Fig. 4), 100-seed weight (Fig. 5), seed yield plant (Fig. 6), seed yield fed (Fig. 7) in the first (a) and second (b) seasons and protein percentage in the first season (Fig. 8) were obtained from sowing Sakha 1 cultivar on 1st November and foliar spraying with the mixture of yeast extract and GA. On the other hand, lowest values of these traits
Fig. 5: Mean of 100-seed weight as affected by the interaction among sowing dates, field bean cultivars and foliar spraying treatments during (a) 2011-2012 and (b) 2012-2013 seasons.

Fig. 6: Mean of seed yield plant$^{-1}$G as affected by the interaction among sowing dates, field bean cultivars and foliar spraying treatments during (a) 2011-2012 and (b) 2012-2013 seasons.
Fig. 7: Mean of seed yield fedG as affected by the interaction among sowing dates, field bean cultivars and foliar spraying treatments during (a) 2011/2012 and (b) 2012-2013 seasons.

Fig. 8: Mean of protein percentage as affected by the interaction among sowing dates, field bean cultivars and foliar spraying treatments during 2011-2012 season were produced from sowing Sakha 2 cultivar on 15th October without foliar spraying.

CONCLUSION

According to the obtained results from this study it can be concluded that sowing Sakha 1 cultivar on 1st November and foliar spraying with the mixture of yeast extract and GA₃ could be recommend to reduce shedding percentage and maximizing field bean growth and productivity under the environmental conditions of Kafr El-Sheikh Governorate.
REFERENCES

1. Matthews, P. and H. Marcellos, 2003. Faba bean. Agfact P4.2.7, Second Edition 2003, Division of Plant Industries, New South Wales Agriculture Australia, pp: 1-12. http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0004/157729/faba-bean-pt1.pdf

2. Chavan, J.K., L.S. Kute and S.S. Kadam, 1989. Broad Bean. In: Handbook of World Food Legumes: N utritional Chemistry Processing Technology and Utilization, Salankhe, D.K. and S.S. Kaddam (Eds.)., Vol. 1, CRC Press, Boca Raton, pp: 223-245.

3. Jensen, E.S. and M.B. Peoples and H. Hauaggaard-Nielsen, 2010. Faba bean in cropping systems. Field Crops Res., 115: 203-216.

4. Refay, Y.A., 2001. Effect of planting dates and plant distributions. J. Agric. Sci. Mansoura Univ., 27: 1989-2003.

5. Turk, M.A. and A.R.M. Tawaha, 2002. Effect of dates planting and plant densities on two faba bean lines grown under the central region conditions of Saudi Arabia. Arab. U niv. J. Agric. Sci., 9: 79-93.

6. Hussein, A.H.A., M.A. EL-Deeb and K.H. EL-Yamani, 2002. Response of new faba bean genotypes to different sowing dates and plant densities in the newly reclaimed land in upper Egypt. Proceedings of the National Annual Coordinating Meeting, September 22-23, 2002, ICARDA/EC, Cairo, pp: 70-74.

7. Mohamed, M.M.R. and E. El-Abbas, 2005. Response of faba bean to climatological effects under different sowing dates and population densities. Assiut J. Agric. Sci., 29: 1407-1422.

8. G.O. Mahmoud, 2002. Phenological response of faba bean varieties by growth regulators foliar application. J. Appl. Sci. Res., 7: 1883-1889.

9. Amer, S.S.A., 2004. Growth, green pods yield and seeds yield of common bean (Phaseolus vulgaris L.) as affected by active dry yeast, salicylic acid and their interaction. J. Agric. Sci. Mansoura Univ., 29: 1407-1422.

10. Barnett, J.A., R.W. Payne and D. Yarrow, 1990. Yeasts characteristics and identification. Cambridge University Press, UK., ISBN: 13-9780521350563, pp: 999.

11. Attila, A.N., S.E. Seadh, M.I. EL-Emery and R.M.H. El-Khairy, 2009. Effect of planting dates and seed size on productivity and quality of some faba bean cultivars. J. Agri. Sci. Mansoura Univ., 34: 11311-11324.

12. El-Metwally, I.M., T.A. El-Shahawy and M.A. Ahmed, 2013. Effect of sowing dates and some broomrape control treatments on faba bean growth and yield. J. Applied Sci. Res., 9: 197-204.

13. Bakheit, B.R., A.Y. Allam and A.H. Galal, 2001. Response of some faba bean cultivars to planting dates and population densities. Assiut J. Agric. Sci., 32: 85-101.

14. Abou-Taleb, S.M., 2002. Morphological variation and dry matter distribution in some Faba bean cultivars under different sowing dates. Proceedings of the Recent Technologies in Agriculture, Volume 4, October 28-30, 2002, Egypt, pp: 846-874.

15. Mekky, M.S., Z.R. Yehia and A.N.M. Nassar, 2003. Effect of sowing dates, varieties and glyphosphate application on broomrape (Orobanche crenata, Forsk.) and yield of faba bean (Vicia faba L.). Bull. Fac. Agric. Cairo Univ., 54: 55-76.

16. Mohamed, M.R. and E. El-Abbas, 2005. Response of three faba bean cultivars (Vicia faba L.) to different nitrogen sources under P-biofertilizer and micronutrients addition. J. Agric. Sci. Mansoura Univ., 30: 8277-8292.

17. Salama, S.M. and S.S. Awaad, 2005. Performance and phenotypic stability of some faba bean (Vicia faba L.) genotypes under two sowing dates. J. Agric. Sci., 30: 2945-2950.

18. Bakry, B.A., T.A. Elewa, M.F. El karamany, M.S. Zeidan and M.M. Tawfik, 2011. Effect of row spacing on yield and its components of some faba bean varieties under newly reclaimed sandy soil condition. World J. Agric. Sci., 7: 68-72.

19. Kandil, A.A., A.E. Sharief and A.S.A. Mahmoud, 2011. Reduction of flower dropping in some faba bean cultivars by growth regulators foliar application. J. Appl. Sci. Res., 7: 1883-1889.

20. Mulualem, T., T. Dessalegn and Y. Dessalegn, 2012. Participatory varietal selection of Faba bean (Vicia faba L.) for yield and yield components in Dabat district, Ethiopia. Wudpecker J. Agric. Res., 7: 270-274.

21. Amer, S.S.A., 2004. Growth, green pods yield and seeds yield of common bean (Phaseolus vulgaris L.) as affected by active dry yeast, salicylic acid and their interaction. J. Agric. Sci. Mansoura Univ., 29: 1407-1422.

22. Barnett, J.A., R.W. Payne and D. Yarrow, 1990. Yeasts characteristics and identification. Cambridge University Press, UK., ISBN: 13-9780521350563, pp: 999.

23. Wanas, A.L., 2002. Response of faba bean (Vicia faba L.) plants to seed soaking application with natural yeast and carrot extracts. Annals. Agric. Sci. Mansoura, 40: 259-278.

24. El-Sherbeny, S.E., M.Y. Khalil and M.S. Hussein, 2007. Growth and productivity of Rue (Ruta graveolens) under different foliar fertilizers application. J. Appl. Sci. Res., 3: 399-407.
25. Mady, M.A., 2009. Effect of foliar application with yeast extract and zinc on fruit setting and yield of Faba bean (Vicia faba L.). J. Biol. Chem. Environ. Sci., 4: 109-127.

26. Nassar, R.M.A., Y.M. Ahmed and D.M.A. Nassar, 2011. Effect of foliar spray with active yeast extract on morphological, anatomical and yield characteristics of kidney bean (Phaseolus vulgaris L.). Australian J. Basic Applied Sci., 5: 1071-1079.

27. Abou El-Yazied, A. and M.A. Mady, 2012. Effect of boron and yeast extract foliar application on growth, pod setting and both green pod and seed yield of broad bean (Vicia faba L.). J. Applied Sci. Res., 8: 1240-1251.

28. Jain, V.K., 2008. Fundamentals of Plant Physiology. S. Chand and Company LTD., Ramnagar, New Delhi.

29. Siddiqui, M.H., M.N. Khan, F. Mohammed and M.M.A. Khan, 2008. Role of nitrogen and gibberellin (GA) in the regulation of enzyme activities and in osmoprotectant accumulation in Brassica juncea L. under salt stress. J. Agron. Crop Sci., 194: 214-224.

30. Gonai, T., S. Kawahara, M. Tougou, S. Satoh and T. Hashiba et al., 2004. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. J. Exp. Botany, 55: 111-118.

31. Ibrahim, M.E., M.A. Bekheta, A.D. El-Moursi and N.A. Gaafar, 2007. Improvement of growth and seed yield quality of (Vicia faba L.) plants as affected by application of some bioregulators. Aust. J. Basic Appl. Sci., 1: 657-666.

32. Al-Whabi, M.H., M.H. Siddiqui, A. Al Amri and M.O. Basalah, 2010. Performance of faba bean under calcium and gibberellic acid application. Int. J. Plant Dev. Biol., 4: 60-63.

33. Khan, N.A., S. Singh, R. Nazar and P.M. Lone, 2007. The source-sink relationship in mustard. Asian Aust. J. Plant Sci. Biotechnol., 1: 10-18.

34. Iqbal, N., R. Nazar, M.I.R. Khan, A. Masood and N.A. Khan, 2011. Role of gibberellins in regulation of source-sink relations under optimal and limiting environmental conditions. Cur. Sci., 100: 998-1007.

35. Khafaga, H.S., A.H. Raefa, M.M. Hala and S.A. Alaa, 2009. Response of two faba bean cultivars to application of certain growth regulators under salinity stress condition at Siwa Oasis: 1- Growth traits, yield and yield components. Proceedings of the 4th Conference on Recent Technologies in Agriculture, November 3-4, 2009, Cairo, Giza, Egypt, pp: 236-249.

36. Unamba, C.I.N., I.O. Ezeibekwe and F.N. Mbagwu, 2009. Comparative effect of the foliar spray and seed soaking application method of gibberellic acid on the growth of Abelmoschus esculentus (Okra Dwarf). J. American Sci., 5: 133-140.

37. Khan, M.N., M.H. Siddiqui, F. Mohammed, M. Naeem and M.M.A. Khan, 2010. Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol. Plant, 32: 121-132.

38. Ghahandari, S., T.S. Najad and S. Lack, 2011. Effect of different doses of the hormone gibberellics acid on the process of protein changes in bean plants. J. Am. Sci., 7: 45-49.

39. Spencer, T.F.T., S.M. Dorothy and A.R.W. Smith, 1983. Yeast Genetics Fundamental and Applied Aspects. Springer Verlag, New York, USA., ISBN 387-390973-9, pp: 16-18.

40. AOAC, 1990. Official Methods of Analysis. 15th Edn., Association of Official Analytical Chemists, Virginia, U.S.A., pp: 770-771.

41. Gomez, K.A and A.A. Gomez, 1984. Statistical Procedures for Agricultural Research. 2nd Edn., Jhon Wiley and Sons Inc., New York, pp: 95-109.

42. Snedecor, G.W. and W.G. Cochran, 1980. Statistical Methods for Agricultural Research. 2nd Edn., Jhon Wiley and Sons Inc., New York, pp: 95-109.