Estimation of the time dependence of fires quantity in Russia

A V Kalach¹,², I A Kaybichev³, A M Tararykin³, M Yu Porkhachev³, A N Shcherbin² and A V Oblienko¹

¹Department of Technosphere and Fire Safety, State Technical University, 84 20-letya Oktybrya Street, Voronezh, Russia
²Faculty of Engineering and Technology, Institute of the Federal Penitentiary Service of Russia, 1a Irkutskaya Street, Voronezh, Russia
³Ural Institute of State Firefighting Service of EMERCOM of Russia, 22 Mira Street, Ekaterinburg, Russia

E-mail: AVKalach@gmail.com

Abstract. Using correlation analysis of the statistical data for 2001-2016, the fact of strong dependence between the number of fires in the regions of the Russian Federation and the number per year was established. It has been established that Kabardino-Balkaria republic is an exception to this dependence. A hypothesis test of the relevance of the correlation coefficient found that the correlation coefficient between the number of fires and the number of years was 0.99.

1. Introduction

At present, there is a significant amount of data on fire statistics for the period 2001-2016 [1-4]. Based on this data, several investigations have attempted to predict the number of fires [5-7], for example, using time series theory [5-9]. In this case, it was originally assumed that the factor being investigated was time-dependent. The time factor was considered as a variable of order (number of year). This raises the question of the validity of the theoretical time series application to fire statistics. If there was a dependence of fire statistics on the number of years, the application of time series theory is correct. Otherwise, if there is no such dependence, some other mathematical technique should be applied. The dependences between the number of fires, an extent of material losses, the death toll, number of the injured, amount of the destructed buildings and number of the year previously were found [1-7].

For the rural areas of Russian Federation it was determined the presence of a strong dependence of the fires amount, extent of the material loss, death toll on the number of a year. Therefore, the utilization of the time series theory for prediction of the number of fires, extent of material losses, death toll and the number of the injured accomplished for the Russian Federation proved to substantiate. However, it is yet unclear if there is a dependence of the amount of fires on the number of a year in the regions of Russia. Therefore, validity of the use of time series theory for the prediction of the number of fires in the regions of Russia will be dependent on time that considered by assigning of the number of the year.

2. Results and discussion

In order to determine if the dependence of the fires amount in the regions of Russian Federation on the number of a year really observed let us accomplish correlation analysis.
The presence or absence of a relationship between the statistics was determined by calculating the Pearson linear correlation coefficient [8]:

\[R = \frac{\sum_{i=1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - \bar{X})^2 \sum_{i=1}^{n}(Y_i - \bar{Y})^2}} \] (1)

Where \(Y_i \) - is the amount of fires for the i-th year, \(\bar{Y} \) - is a mean amount of dfires for the period of 2001-2016, \(X_i \) is a number of the year, \(\bar{X} \) - is the mean value.

Due to a small amount of data (n<100) let us recalculate Pearson’s coefficient of linear correlation (1) for a small sample range [8]:

\[R' = R \left[1 + \frac{1-R^2}{2(n-3)} \right] \] (2)

Coefficient \(R' \) will take the values within the range from –1 to 1.

If \(|R'| = 1 \), then the values are related with a linear functional dependence. In case of \(0.95 \leq |R'| < 1 \) the relation between the values is very strong. For \(0.75 \leq |R'| < 0.95 \) a tight relation is present. If \(0.5 \leq |R'| < 0.75 \) then the relation is an average one. For \(0.2 \leq |R'| < 0.5 \) the relation is weak. In case of \(0 \leq |R'| < 0.2 \) the relation is in fact absent.

Sample coefficient in the linear Pearson correlation depends on the amount of sampling. Sampling involves data on the amount of fires. These values are random variables. Therefore, correlation coefficient is also a random variable. Hence, validity test of the sample correlation coefficient is accomplished. So, two hypotheses formulated.

Hypothesis H0 – there is no any relation between the studied variables X and Y (\(R'=0 \)). An alternative hypothesis H1 – the relation exists (\(R' \neq 0 \)). Test for null hypothesis performed with the use of Fisher transform [25]:

\[u = \frac{1}{2} \ln \frac{1+R'}{1-R'} \] (3)

After calculation of the value for \(u \) it compared with the critical one

\[u_{\alpha} (n) = z_{\frac{1}{2}} \frac{1}{\sqrt{n-3}} \] (4)

Where \(z_{\frac{1}{2}} \) - are the normal distribution fractiles, \(z_{\frac{1}{2},\alpha} =1.96 \) for \(\alpha = 0.05 \) and \(z_{\frac{1}{2},\alpha} =2.576 \) for \(\alpha = 0.01 \).

If \(|u| \leq u_{\alpha} (n) \) then hypothesis H0 is adopted. Then there is no linear correlation link between the considered values. In case of \(|u| > u_{\alpha} (n) \) hypothesis, H1 adopted.

In addition to the point estimate of the correlation coefficient (2), one more estimate with the help of a confidence level is considered.

\[R'_H < R' < R'_B \] (5)

The lower \(R'_H \) and upper \(R'_B \) bounds of the confidence level for the linear correlation coefficient calculated by the formulas presented in [8]:

\[R'_H = \frac{\exp(2[u-u_{\alpha}(n)])-1}{\exp(2[u-u_{\alpha}(n)])+1}, \quad R'_B = \frac{\exp(2[u+u_{\alpha}(n)])-1}{\exp(2[u+u_{\alpha}(n)])+1} \] (6)

Results of the calculations demonstrated a very strong dependence of the fires amount on the number of the year in the regions of Russian Federation (table 1).

Region of the Russian Federation	Y	S	R’	u	Hypothesis	R'_H	R'_B
Central Federal District							
Region	Value 1	Value 2	Value 3	Value 4	Value 5	H1	H2
-------------------------------	---------	---------	---------	---------	---------	------	------
Belgorod Region	775	257	-0.878	-1.367	H1	-0.969	-0.574
Bryanskaya Region	1168	273	-0.928	-1.645	H1	-0.982	-0.731
Vladimir Region	1297	433	-0.967	-2.045	H1	-0.992	-0.869
Voronezh Region	1435	314	-0.992	-2.779	H1	-0.998	-0.968
Ivanovskaya Region	1145	439	-0.959	-1.934	H1	-0.990	-0.839
Kaluzhskaya Region	619	146	-0.984	-2.419	H1	-0.996	-0.936
Kostrama Region	553	181	-0.966	-2.030	H1	-0.992	-0.866
Kursk Region	475	259	-0.951	-1.842	H1	-0.988	-0.810
Lipetskaya Region	740	190	-0.951	-1.840	H1	-0.988	-0.810
Moscow	9330	2471	-0.986	-2.490	H1	-0.997	-0.944
Moscow Region	4911	924	-0.940	-1.742	H1	-0.985	-0.773
Oryol Region	411	103	-0.959	-1.932	H1	-0.990	-0.839
Ryazan Region	730	238	-0.953	-1.863	H1	-0.989	-0.817
Smolensk Region	1069	406	-0.962	-1.977	H1	-0.991	-0.852
Tambov Region	558	134	-0.961	-1.957	H1	-0.990	-0.846
Tver Region	934	208	-0.995	-3.003	H1	-0.999	-0.980
Tula Region	1223	430	-0.989	-2.600	H1	-0.997	-0.955
Yaroslav Region	1257	319	-0.949	-1.823	H1	-0.988	-0.804

Northwestern Federal District

Region	Value 1	Value 2	Value 3	Value 4	Value 5	H1	H2
Archangel Region	1402	252	-0.976	-2.197	H1	-0.994	-0.902
Vologda Region	872	258	-0.988	-2.559	H1	-0.997	-0.951
Kaliningrad Region	1256	282	-0.940	-1.737	H1	-0.985	-0.771
Republic of Karelia	997	160	-0.965	-2.009	H1	-0.991	-0.860
Komi Republic	1071	423	-0.985	-2.427	H1	-0.996	-0.937
Leningrad Region	1758	639	-0.977	-2.238	H1	-0.995	-0.909
Murmansk Region	1449	493	-0.974	-2.158	H1	-0.994	-0.894
Nenets Autonomous District	608	88	-0.983	-2.365			

Southern Federal District

Region	Value 1	Value 2	Value 3	Value 4	Value 5	H1	H2
Republic of Adygea	154	51	-0.948	-1.812	H1	-0.987	-0.800
Astrakhan Region	718	92	-0.953	-1.866	H1	-0.989	-0.818
Volgograd Region	2261	395	-0.990	-2.644	H1	-0.998	-0.959
Republic of Kalmykia	104	13	-0.558	-0.630	H1	-0.873	0.084
Krasnodar Territory	2377	388	-0.989	-2.590	H1	-0.997	-0.954
Rostov Region	2485	759	-0.960	-1.948	H1	-0.990	-0.844

North Caucasian Federal District

Region	Value 1	Value 2	Value 3	Value 4	Value 5	H1	H2
Republic of Dagestan	465	121	-0.971	-2.101	H1	-0.993	-0.882
Republic of Ingushetia	107	25	-0.735	-0.940	H1	-0.930	-0.222
Kabardino-Balkar Republic	361	68	-0.336	-0.350	H0	-0.787	0.349
Karachai-Circassian Republic	160	43	-0.893	-1.436		-0.973	0.618
Republic.						H1	
Republic. North Ossetia-Alania	276	68	-0.983	-2.391	H1	-0.996	-0.932
Stavropol Krai	1087	276	-0.932	-1.670	H1	-0.983	-0.742
Chechen Republic.	127	81	0.511	0.564	H1	-0.149	0.856

Volga Federal District

Region	Value 1	Value 2	Value 3	Value 4	Value 5	H1	H2
Republic of Bashkortostan	2235	282	-0.927	-1.639	H1	-0.982	-0.728

3
The number of fires are present only for 2015 and 2016 years. Statistical data for the period of

Region	Fires 2015	Fires 2016	Correlation Coefficient
Kirovskaya Region	1453	219	-0.968
Republic of Mari El	605	142	-0.966
Republic of Mordovia	574	301	-0.973
Nizhny Novgorod Region	2483	547	-0.971
Orenburg Region	1495	404	-0.926
Penza Region	940	257	-0.983
Perm Krai	2233	834	-0.971
Samara Region	2741	550	-0.973
Saratov Region	1717	218	-0.869
Republic. Tatarstan	2292	300	-0.949
Udmurt Republic.	969	462	-0.961
Ulyanska Region	948	233	-0.919
Chuvash Republic.	651	207	-0.977
Ural Federal District			
Kurgan Region	878	229	-0.951
Sverdlovsk Region	4265	1237	-0.965
Tyumen Region	1153	234	-0.917
Khanty-Mansi Autonomous	2224	483	-0.956
District - Ugra			
Chelyabinsk Region	3437	467	-0.969
Yamalo - Nenets Auto	608	88	-0.983
Siberian Federal District			
Republic of Altai	103	21	-0.910
Altai Territory	2107	539	-0.984
Irkutsk Region	3218	990	-0.983
Kemerovo Region	3651	1072	-0.978
Krasnoyarsk Krai	3126	640	-0.943
Novosibirsk Region	2692	601	-0.985
Omskaya Region	2155.75	711	-0.976
Tomskaya Region	761	202	-0.956
Republic of Tyva	360	46	-0.864
Republic of Hakassia	525	142	-0.951
Far Eastern Federal District			
Amurskaya Region	1324	331	-0.986
Republic of Buryatia	923	307	-0.931
Jewish Car Region	372	129	-0.946
Transbaikal Krai	1138	206	-0.992
Kamchatsky Krai	488	152	-0.956
Magadan Region	520	204	-0.986
Primorsky Krai	5271	1389	-0.901
Republic of Saha (Yakutia)	1393	476	-0.994
Sakhalin Region	1072	463	-0.978
Khabarovsk Krai	3478	663	-0.962
Chukot Autonomous District	75	44	-0.965

Republic of Kabardino-Balkaria is an exception from this observation, where R = -0.309. The amount of fires in this republic does not depend on the number of the year. Statistical data for the period of 2001-2016 years utilized. Crimea and the city of Sevastopol were not included in the table since the data on the number of fires are present only for 2015 and 2016 years. This amount of the statistical data is insufficient for the correlation analysis. Moreover, these data for trans-Baikal territory presented only
for the period from 2006 to 2016. It should be noted that the minimum value of R' is equal to -0.996 (Yamal-Nenets Autonomous Area), while the maximum value of 0.638 (at Chechen Republic).

Let us make a test for validity of the sample correlation coefficient. For the significance point of $\alpha = 0.01$ the critical value is $u_\alpha(11) = 0.714$. Therefore, for the majority of the Russian Federation regions with $|u| > u_{0.01}(16)$, hypothesis H1 is true. So it was found with the probability of $P = 0.99$ that the correlation coefficient between the amount of fires and the number of a year differs from zero. It means that there is a relation between the amount of fires and number of the year. Republic of Kabardino-Balkaria is an exception – with a validity level of $\alpha = 0.01$ hypothesis H0 proved to be correct. The amount of fires in this region does not depend on the number of a year.

For trans-Baikal territory $n = 11$, the critical value $u_{0.01}(11) = 0.911$. Condition of $|u| > u_{0.01}(11)$ is satisfied, thus hypothesis H1 is true.

Calculations of the correlation coefficient between the mean amount of fires for the period of 2001-2016 and R' resulted in the value of -0.139. For R' and a standard deviation in the number of fires for the period of 2001-2016 we obtained correlation coefficient equal to $\mu = -0.153$. Therefore, between R' and the mean and standard characteristics of the distribution (mean and standard deviation) for the amount of the fires in the Russian Federation regions there is no any valid relation.

An estimate of the confidence interval for the correlation coefficient of the amount of fires with the number of a year in the regions of Russian Federation was made at the significance level of $\alpha = 0.01$ (table 1). The lower boundary for the coefficient of R' in the Republic of Kabardino-Balkaria was of -0.775. It means that one can anticipate the relation between the amount of the fires and the number of a year. For Kalmykia Republic, the upper boundary is equal to -0.134, for the Republic of Bashkortostan it is of -0.114, while in Republic of Tyva it is of -0.294. In this case, a situation can realized when there is no any relation between the amount of fires and the number of a year.

In order to explain the reasons for the absence of dependence in the amount of fires in the Republic of Kabardino-Balkaria on the number of a year let us compare corresponding indicators in the North Caucasian Federal District. First, it should note that the largest number of the fires occurred in the Stavropol territory [1-4]. Therefore, this region will excluded from the following analysis. Comparison with the situation in the Adyge Republic revealed a sharp peak for the period of 2005-2010 years. Beginning from 2011 the situation with the fires in the Republic of Kabardino-Balkaria demonstrated a downtrend. Note that the line of trend is in fact parallel to the similar trend line for the Republic of Adygei.

Comparison of the situation of the Republic of Kabardino-Balkaria, Ingush Republic, and Republic of North Ossetia-Alania revealed the presence of a strong peak. For the Republic of Kabardino-Balkaria, this peak coincided with the period of 2005-2010 years. In the Republic of North Ossetia-Alania and Ingush Republic, such peak observed in 2006.

Similar peak observed for the Chechen Republic. It occurred in 2006-2010 years.

3. Conclusions
The fact that the amount of the fires in the Republic of Kabardino-Balkaria, Republic of North Ossetia-Alania, Ingush Republic, Chechen Republic show rather similar peaks coinciding for the period of 2006-2010 years, results in a conclusion that the most probable reason of their occurrence is a set of climatic conditions. This peak mostly expressed for the Republic of Kabardino-Balkaria. The latter circumstance resulted in the fact that the dependence of the amount of fires in the Republic of Kabardino-Balkaria on the number of a year not observed.

Finally, because of the performed investigations correlation coefficients between the amount of fires in the regions of Russian Federation and the number of a year calculated according to the data for 2001-2016 years. The presence of a strong correlation between these indicators found (except for the Republic of Kabardino-Balkaria). Hypothesis on the equality of the correlation coefficient between the amount of fires and the number of a year was tested. As a result, it was found that for the significance level of 0.01 (with a probability of 0.99) correlation coefficient proved to be non-zero (except for the Republic of Kabardino-Balkaria). Upper and lower bounds for the correlation coefficient calculated as well.
The approved fact of the presence of a strong dependence between the amount of fires and the number of a year for the regions of Russian Federation makes it reasonable application of techniques utilized in the theory of time series for the mathematical predicting of the number of fires.

References
[1] Brushlinsky N N, Hall J, Sokolov S V and Wagner P 2005 World Fire Statistics Report of Center of Fire Statistics of CTIF 10 198
[2] Brushlinsky N N, Hall J, Sokolov S V and Wagner P 2010 World Fire Report of Center of Fire Statistics of CTIF 15 57
[3] Brushlinsky N N, Ahrens M, Sokolov S V and Wagner P 2015 World Fire Statistics Report of Center of Fire Statistics of CTIF 20 63
[4] Brushlinsky N N, Ahrens M, Sokolov S V and Wagner P 2016 World Fire Statistics Report of Center of Fire Statistics of CTIF 21 60
[5] Brushlinsky N N, Kolomiets Yu I, Korobko V B and Sokolov S V 1994 Fire Technology 30 4 458-67
[6] Brushlinskiy N N and Korolchenko A Ya 2000 Modeling of fires and explosions (Moscow: Pozhnauka) p 492
[7] Yang L, Yang Y and Cui W 2004 The relation hips between socioeconomic factors and fire in China Proceedings of the 6th Asia-Oceania Symposium on Fire Science and Technology pp 831-6
[8] Afifi A A and Azen S P 1972 Statistical Analysis. A Computer Oriented Approach (Academic Press) p 384