Introduction. Resistance to antibiotics and presence of virulence factors play an important role in increased mortality associated with infection due to Staphylococcus aureus. In this study, we determine antibiotic resistance pattern, presence of the icaADBC locus as well as biofilm formation and distribution and diversity the immune evasion cluster (IEC) genes in clinical isolate of S. aureus from Kerman, Iran.

Materials and methods. During 15 months, 100 clinical isolates S. aureus recovered from different patients were admitted to Kerman University affiliated hospitals. Resistance to different antimicrobial agents was determined by disk diffusion method. Phenotypic method was used to the determination of biofilm formation ability and methicillin-resistant S. aureus (MRSA). Polymerase chain reaction technique (PCR) was used to the detection of nuc, mecA, icaA, icaD, icaB, icaC, scn, sea, sak, sep and chp genes.

Results. Forty-four isolates were considered as MRSA and all of isolates were sensitive to vancomycin and linezolid. Our results showed, 77.2% (34/44) of MRSA and 8.9 % (5/56) of MSSA isolates were multidrug resistant. The predominant IEC variant was type B and our results displayed that 77.7% of the MRSA isolates harbor loci icaD and mecA. There was no significant difference in production biofilm between MSSA and MRSA isolates (P ≥ 0.05). There was significant difference in presence IEC types between MSSA and MRSA isolates (P = 0.000).

Conclusions. The presence of icaADBC locus may not be a determining factor for biofilm formation in Staphylococcus and other mechanisms might be involved in this process. The high prevalence IEC types in MSSA isolates can indicate that the presence of these genes can be an advantage for pathogenesis of these isolates in different infections.
ability of human neutrophils to opsonophagocytose of *S. aureus* and neutrophil chemotaxis [13, 14]. The gene encoding SCIN (*scn*) was found to be portion of a so-called immune evasion cluster (IEC). All IEC variants harbor *scn* and a different combination of *sak, chp* and *sea* (or *sep*). So far seven different variants of IEC carried by several different *S. aureus* were identified [14, 15]. These encode the human-specific immune modulators including staphylococcal enterotoxin A (SEA), staphylokinase (SAK) and chemotaxis inhibitory protein of *S. aureus* (CHIPS). SEA is involved in the down-regulation of chemokine receptors of monocytes [16]. SAK is a bacterial plasminogen activator and blocker, the bactericidal effect of antimicrobial peptides, the α-defensins [17]. CHIPS can bind to the formylated peptide receptor and neutrophils so can block neutrophil chemotaxis [18, 19].

To our knowledge, there is no information about prevalence of IEC-carrying *S. aureus* in Iran. Since different studies have shown the decisive role of the ica genes as virulence factors in staphylococcal infections [20, 21] and IECs are bacteriophage encoded, the aim of this study was to determine antibiotic resistance pattern, the biofilm formation ability, the presence of the icaADBC locus and investigate the distribution and diversity the immune evasion cluster (IEC) genes among clinical isolate of *S. aureus* from Kerman, Iran.

Materials and methods

Bacterial isolates

A total of 100 non repetitive clinical isolates of *S. aureus* recovered from different patients, were admitted to Kerman University affiliated hospitals during February 2015 to May 2016. Clinical samples such as urine, blood, discharged abscess, wound, cerebrospinal fluid (CSF), broncoalveolar (BAL), synovial fluid and pus were included in this study. Bacterial isolates were considered as *S. aureus* by conventional biochemical standard methods including Gram-staining, catalase, slide and tube coagulase, DNase and maninitol fermentation on mannitol salt agar medium. All the applied culture media were purchased from Merck, Germany. The final identification of *S. aureus* isolates was done by amplification of *nuc* gene in species level in PCR method [22]. We defined ‘community acquired (CA)’ and ‘healthcare associated infections or hospitalized patients (HA)’ according to the current CDC criteria [23].

Susceptibility of isolates to antibiotics

The disk diffusion method on Müller-Hinton agar medium (MHA) was used to determine susceptibility of isolates to ciprofloxacin (5µg), trimethoprim/sulfamethoxazole (1.25/23.75µg), gentamicin (10µg), amikacin (30µg), erythromycin (15µg), clindamycin (2µg), tetracycline (30µg) and linezolid (30µg) (Mast disks, UK) according to guidelines of Clinical Laboratory Standards Institute (CLSI) [24]. The Brain Heart Infusion (BHI) agar medium with 6 µg/ml vancomycin used for screening of vancomycin resistant *S. aureus* isolates (VRSA). *S. aureus* ATCC 25923 was used as standard strain in susceptibility tests to antibiotics. Multidrug resistance (MDR) was defined as resistance of isolate to three or more unique antimicrobial drug classes in addition to beta-lactams [25].

Screening of methicillin-resistant *S. aureus* isolates (MRSA)

The MRSA isolates were detected by susceptibility of isolates to cefoxitin (FOX: 30 µg) on MHA according to recommendations of the CLSI [24] and then confirmed for the presence of mecA gene by PCR technique as described previously [26]. Patients who have acquired CA-MRSA infections did not have typical MRSA risk factors such as recent history of hospitalization, kidney dialysis, residence in a long-term health care facility or intravenous drug use.

Biofilm formation

S. aureus isolates were cultured on Trypticase Soy Agar (TSA) at 37°C for 24h. Few grown colonies suspended in sterile physiological saline with turbidity equal to 0.5 McFarland. The 96 well polystyrene microtiter plates-sterile (Cell and Tissue Culture plates, flat well bottom, Guangzhou Jet Bio-Filtration Products Co., Ltd. Guangdong, China) were filled with 180µl Trypticase Soy Broth (TSB) supplemented with 1% glucose and 20µl of bacterial suspension added to each well. After incubation for 24h at 37°C, broth was carefully drawn off and the plates were gently washed three times with sterile phosphate-buffered saline (PBS). The plates were inverted and allowed to dry for 1 hour at room temperature. For biofilm quantification, 200µl of 2% saffranin dye solution in water was added to each well and the plates were allowed to stand for 40 min at room temperature. The wells were subsequently washed thrice with sterile PBS to wash off the excess saffranin. Saffranin bound to the biofilm was extracted with 200ml of 95% ethanol, and the absorbance of the extracted saffranin was measured at 490 nm in an ELISA reader (BioTek, USA). Each assay was performed in triplicate. As a negative control, TSB+1%glucose medium was used to determine background optical density (OD). The cut-off ODc for biofilm formation was determined as average OD of negative control +3xstandard deviation (SD) of negative control. OD value was calculated for each microtiter plate separately. OD > 4xODc was considered as high biofilm formation ability; 2xODc < OD ≤ 4xODc categorized into moderate biofilm formation ability. ODc < OD ≤ 2xODc and OD ≤ ODc were taken as weak or none biofilm formation ability respectively [27].

DNA extraction

Deoxiribonucleic acid (DNA) extraction was performed by using appropriate DNA extraction kit (Gene All, Korea) following manufacturer’s instruction. The quality of isolated DNA was measured by determination of absorbency at the wave length A260 nm and 280nm that showed a high quality of the product.
Detection of ICA and IEC cluster genes by PCR

Amplification was conducted in temperature gradient thermal cycler (Biometra-T300, Gottingen, Germany) in a volume of 25µl. Each 25µl PCR mixture consisted of 1µl of bacterial DNA, 0.5 µl (10pM) of each oligodeoxynucleotide primers, 12.5 µl of 2× Master Mix Red (Ampliqon, Denmark) and 11µl DNase and RNase free water. PCR was used for detection nuc, mecA, icaA, icaD, icaB ,icaC ,scn, sea, sak, sep, chb genes. All primers and programs can be found in Table I [14, 18, 26, 28-30].

After amplification, the PCR products were analyzed by electrophoresis on 1.5% agarose gel in 0.5×TBE buffer (5.4 g Tris base, 2.75 g boric acid, 2 ml 0.5 M EDTA, in 1 L). DNA ladder was a ready to use plasmid double digest sized range 100- 3000bp obtained from SMOBIO Technology (Hsinchu, Taiwan). Specificity of the primers was checked by Primer Quest software tool (http://www.ncbi.nlm.nih.gov/GenBank).

Antimicrobial susceptibility testing and PCR results

The resistance profiles of MRSA and MSSA isolates to antimicrobial agents tested were listed in Table II. All of isolates were sensitive to vancomycin and linezolid. It was found that 93.2% (n = 41) and 86.3 % (n = 38) of MRSA isolates were resistant to erythromycin and tetracycline respectively. In addition, the highest resistance MSSA isolates was to trimethoprim/sulfamethoxazole 30.4% (n = 17) and tetracycline 28.6 % (n = 16). The resistance rates of MRSA isolates to amikacin, ciprofloxacin, clindamycin, erythromycin, gentamicin and tetracycline were significantly higher than among MSSA isolates (Table II). Three CA-MRSA isolates had intermediate (borderline) resistance to clindamycin, while 19 MSSA isolates had intermediate (borderline) resistance as follows: 3(5.3%) to ciprofloxacin, 6(10.7%) to clindamycin and 10 (17.9%) to erythromycin. Overall, 77.2% (34/44) of MRSA isolates and 8.9% (5/56) of MSSA were multidrug resistant (MDR). HA–MRSA isolates were more resistant to multiple antibacterial classes than CA-MRSA isolates (73.5% vs. 26.5%). Fifty (50%) isolates contained an IEC-converting (βC-Φs),

Statistical analysis

Statistical analysis was performed with SPSS (v.22.0) statistics software. We used the Chi-Square test for the comparison of our data. A difference was considered statistically significant at a P-value of < 0.05.
as demonstrated by the presence of scn. The predominant IEC variant was type B (sak, chp and scn) present in 20 (40%) of 50 clinical isolates. Variant A (sea, sak, chp and scn), C (chp and scn), D (sea, sak and scn), E (sak and scn), F (sep, sak, chp, scn), and G (sep, sak and scn) were present in 2 (4%), 5 (10%), 3 (6%), 14 (28%), 3 (6%) and 0 (0%) of the fifty clinical isolates, respectively. Three isolates have both scn and sea which were non type able and negative mecA (Tab. III). Concerning the virulence factors in all isolates, chp was present in 36 (36%), sak was in 60 (60%), and the super antigens sea and sep were in 10 (10%) and 3 (3%) respectively. scn was present in 54% of these isolates. There was significant difference in presence of IEC types between MSSA and MRSA isolates (P = 0.000) (Tab. III).

Biofilm formation

The ability to produce biofilm in 9 (9%) isolates was strong, 26 (26%) isolates was moderate, 48 (48%) isolates was weak and 17 (17%) of them had no production biofilm. The prevalence of icaA, icaB, icaC and icaD in all of isolates was 2%, 1%, 2% and 84% respectively. Only in one MSSA isolate, all ica genes were positive and biofilm was strong. There was no significant difference in production biofilm between MSSA and MRSA isolates (P ≥ 0.05). Although 69 of 84 (82.1%) producing biofilm isolates were positive for icaD, no significance difference between the presence of icaD gene and biofilm production was observed (P ≥ 0.05). Thirty four MRSA was icaD gene positive.

Discussion

S. aureus is a powerful pathogen that is able to grow in nearly any part of the human body. This bacterium remains the most frequent cause of hospital and community-acquired infections with the high prevalence and rapid spread of drug-resistant *S. aureus* strains. *S. aureus* generates biofilm and an array of immune evasion factors that protect it from innate immune defense system [31]. According to the results of this study, 44% of isolates recognized as MRSA, were positive for mecA gene. A study conducted by Javan et al. [32] reported 42.6% frequency of MRSA in Tehran. However, the frequency of MRSA isolates in present study is more than the results of some previous reports published from Iran and some other countries [33-36]. The estimated prevalence in our study was lower than that found in the studies of Khosravi et al. [37], Heidari et al. [38], Sepehriseresht et al. [39], Saderi et al. [40] and Gudarsi et al. [25]. A systematic review displayed that prevalence of MRSA in Iran is high and varies between 20.4% and 90% in different parts of the country [41]. Discrepancy in MRSA prevalence may reflect differences in infection control policies, origin of the isolates and the characteristics of the participants and hospital wards [25]. Rapid and correct determination of the different *S. aureus* isolated from patients is a major help in understanding the epidemiology of this bacteria and its infection control.

The full susceptibility of MRSA and MSSA isolates recovered from clinical samples to vancomycin and linezolid observed in this study, is possibly as a consequence of limited usage of these antimicrobial agents and indicates that these antimicrobial agents are effective for the treatment of *S. aureus* infections in our population. Our data are in agreement with susceptibility rates in Iran and other countries [40-43]. Majority of the MRSA were resistant to tetracycline and erythromycin and these resistance patterns have been documented already by another study [43]. In view of the high resistance rates of MRSA to gentamicin, clindamycin, tetracycline, ciprofloxacin and erythromycin antibiotics which are probably due to misuse and overuse of these antibiotics, display that empirical treatment of MRSA infections at our hospitals with these may not be effective. Hence, these antibacterial agents should no longer be considered first-line drugs for the treatment of MRSA infections in our population. Our study revealed that 30.4% of MSSA and 47.7% of MRSA isolates were resistant to trimethoprim/sulfamethoxazole. In contrast of our data, several studies have been reported low rates of resistance to trimethoprim/sulfamethoxazole in *S. aureus* isolates [25, 45]. Our data is not in agreement with study by Wang et al [46] who reported trimethoprim-sulfamethoxazole susceptibility rates of 78.6% and 95.3% for MRSA and MSSA isolates respectively, recovered from patients in 12 cities across China.

Table II. Antimicrobial profiles of MRSA (HA-MRSA and CA-MRSA) and MSSA isolates from 100 patients of Kerman University affiliated hospitals.

Type of isolates	Rate of resistance to antimicrobial agents. n(%)							
	AK	GM	CD	E	CIP	T	SXT	
CA-MRSA	14 (14%)	3 (6.8)	6 (15.6)	9 (13.6)	14 (31.8)	6 (15.6)	11 (25)	6 (15.6)
HA-MRSA	30 (30%)	21 (47.7)	25 (57)	20 (45.5)	27 (61.4)	25 (57)	27 (61.4)	15 (34.1)
MSSA	56 (56%)	1 (1.8)	2 (5.6)	2 (5.6)	11 (19.6)	8 (14.5)	16 (28.6)	17 (30.4)
Total	100 (100%)	25 (25)	33 (33)	31 (31)	52 (52)	39 (39)	54 (54)	38 (38)

AK, Amikacin; GM, Gentamicin; CD, Clindamycin; E, Erythromycin; CIP, Ciprofloxacin; T, Tetracycline; SXT, trimethoprim/sulfamethoxazole.
In this study, 77.2% of MRSA isolates were multidrug resistant, and this is of concern. Our results emphasize the need for persistent monitoring of antimicrobial resistance development in
S. aureus isolates that are involved in hospital-acquired infections. MSSA isolates exhibited intermediate resistance to ciprofloxacin, clindamycin and erythromycin, suggesting that more isolates can become resistant in the near future and the possible antimicrobial therapies for infections associated with such staphylococcal strains are confined. Presence of staphylococci, especially those strains which generate an extracellular slime and constitute a biofilm, making clinical treatment extremely difficult [47]. Our results displayed that 77.7% of the MRSA isolates harbor locus icaD and meca gene. Frebourg et al [48] have demonstrated that a large proportion of clinical isolates carrying the ica locus also harbor the meca gene. Similar results have been reported by Martin-Lopez et al [47] and mirzaae et al [49]. We noted that 7 MRSA and 5 MSSA isolates were ica genes negative and biofilm producers and that 5 MRSA and 10 MSSA isolates were icaA positive and biofilm negative. In this regard our data may support some published data based on that biofilm formation may rely on environmentally regulated, icaADBC-independent mechanism(s) in MRSA [50, 51]. Eftekhar et al. [52, 53] showed that biofilm formation is independent of the icaADBC carriage in clinical and skin isolates of *S. epidermidis*. In contrast, namvar [54] reported that *S. aureus* isolates had no ability to form biofilm, unless they were positive for icaD gene. Relationship between the biofilm formation and the presence of these ica genes has been demonstrated in other studies [55, 56]. From clinical viewpoint, explanation of the main adhesive mechanisms in infections may help in developing preventive and therapeutic criterions, such as antiadhesive coatings or antiadhesin medicines [28].

In the present study, we demonstrated that 50% clinical *S. aureus* isolates contained an IEC-carrying bacteriophage. The predominant IEC variant was type B which has reported as the predominant variant in human infectious isolates [14]. Immune evasion cluster (IEC) is known to play an important role in human colonization [15]. To our knowledge, this study is the first report of prevalence Immune Evasion Cluster (IEC) genes in clinical isolates of *S. aureus* in Iran. One study has shown that 90% of the human clinical *S. aureus* strains from a genetically diverse collection contain an IEC-carrying βC-φs [14]. Some studies have demonstrated that the high incidence of IEC- carrying βC-φs compared to other mobile elements carrying virulence factors such as *eta*, *lukS-PV/lukFPV* which are also carried by bacteriophages in human *S. aureus* strains, is a unique feature [57, 58]. One major reason for this observation is probably due to ability IEC to carry by several different phages so they can cover a huge host range. IEC has spread successfully through the *S. aureus* population and will continue to do so. This enables *S. aureus* with a unique mechanism to adapt to, and counteract, the human host [14]. On the one hand knowledge of the virulence strategies can help choose new ways to combat staphylococcal infections. On the other hand identification virulence genes provides potential targets in the treatment of *S. aureus* infection. For example the potent capacity of CHIPS to inhibit neutrophil chemotaxis, in vitro and in vivo, makes this protein a promising candidate anti-inflammatory drug for those diseases in which C5a-induced damage by neutrophils plays an essential role [18].

In conclusion, this study reports that there was no correlation between antibiotic resistance and biofilm formation in under study clinical isolates of *S. aureus* and the biofilm formation ability of several MRSA and MSSA isolates in the absence of icaABCD genes suggests that further investigation is necessary to better understand ica-independent biofilm formation mechanisms. Different IEC types were detected among the isolates but these types were absent in many MRSA isolates. The high prevalence IEC types in MSSA isolates can indicate that the presence of these genes can be an advantage for pathogenesis of these isolates in different infections.

Acknowledgements

The authors would like to thank the staff of Department of Microbiology and Virology of Kerman University of Medical Sciences, Iran. This work was supported by research council of Kerman University of Medical Sciences, Kerman, Iran (Grant No: 94/677). The authors declare that there are no conflicts of interest associated with this manuscript.

Authors’ contributions

DKN conceived and designed the research; RA and DKN equally contributed to drafting the article and analyzed data. SFLK and YF contributed in collecting and processing samples. All authors read and approved the final article.

References

[1] Holmes A, Garner M, McGuane S, Pitt TL, Cookson BD, Kearns AM. *Staphylococcus aureus* isolates carrying Panton-Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. J Clin Microbiol 2005;43:2384-90.

[2] Lowy FD. *Staphylococcus aureus* infections. N Engl J Med 1998;339:520-32.

[3] van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of mortality in *Staphylococcus aureus* Bacteremia. Clin Microbiol Rev 2012;25:362-86.

[4] Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, et al. *Meticillin-resistant* *Staphylococcus aureus* (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents 2012;39:273-82.

[5] Nimmo GR, Pearson JC, Collignon PJ, Christiansen KJ, Coombs GW, Bell JM, et al. Antimicrobial susceptibility of *Staphylococcus aureus* isolated from hospital inpatients, 2009: report from the Australian Group on Antimicrobial Resistance. Commun Dis Intell Q Rep 2011;35:217-43.
[6] Ray GT, Suaya JA, Baxter R. Trends and characteristics of culture-confirmed Staphylococcus aureus infections in a large U.S. integrated health care organization. Journal of clinical microbiology 2012;50:1950-7.

[7] Cheung AL, Bayer AS, Zhang G, Gresham H, Xiong YQ. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol 2004;40:1-9.

[8] Fey PD, Said-Salim B, Rupp ME, Hinrichs SH, Boxrud DJ, Davis CC, et al. Comparative molecular analysis of community- or hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2003;47:196-203.

[9] Foster TJ. Immune evasion by staphylococci. Nature Rev Microbiol 2005;3:948-58.

[10] Cranton SE, Gercke C, Schnell NF, Nichols WW, Gotz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 1999;67:5427-33.

[11] Cranton SE, Schnell NF, Gotz F, Bruckner R. Identification of a new repetitive element in Staphylococcus aureus. Infect Immun 2000;68:2344-8.

[12] Kim HK, Thamnavongs V, Schneewind O, Missiakas D. Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol 2012;15:92-9.

[13] Rooijakkers SH, van Kessel KP, van Strijp JA. Staphylococcal innate immune evasion. Trends Microbiol 2005;13:596-601.

[14] van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol 2006;188:1310-5.

[15] Verkaik NJ, Benard M, Boelens HA, de Vogel CP, Nouwen JL, Verbrugh HA, et al. Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin Microbiol Infect 2011;17:343-8.

[16] Balaban N, Rasooly A. Staphylococcal enterotoxins. Int J Food Microbiol 2000;61:1-10.

[17] Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA. Anti-opsonic properties of staphylokinase. Microbes Infect 2005;7:476-84.

[18] de Haas CJ, Veldkamp KE, Peschel A, Emaneini M, Jabalameli F, Shahsavan S, Abdolmaleki Z. Identification of a new immunomodulatory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 2004;199:687-95.

[19] Postma B, Kleinpoppen MJ, Boonstra M, van Kessel KP, Van Strijp JA, et al. Residues 10-18 within the Csa receptor N terminus compose a binding domain for chemotaxis inhibitory protein of Staphylococcus aureus. J Biol Chem 2005;280:2020-7.

[20] Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004;2:95-108.

[21] Rohde H, Frankenberger S, Zahringer U, Mack D. Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol 2010;89:103-11.

[22] Brakstad OG, Aasbak K, Maeland JA. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the ica gene. J Clin Microbiol 1992;30:1654-60.

[23] Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. AJIC 2008;36:309-32.

[24] PA W. Performance standards for antimicrobial susceptibility testing. CLSI document M100-S25, 25th informational supplement. Clinical Laboratory Standard Institute. 2015.

[25] Goudarzi M, Goudarzi H, Sa Figueiredo AM, Udo EE, Fazeli M, Asadzadeh M, et al. Molecular Characterization of Methicillin Resistant Staphylococcus aureus Strains Isolated from Intensive Care Units in Iran: ST22-SCCmec IV/790 Emerges as the Major Clone. PloS one 2016;11:e0155529.

[26] Emaneimi M, Bigverdi R, Kalantar D, Soroush S, Jabalameli F, Noorazar Kashghab N, et al. Distribution of genes encoding tetraclavine resistance and aminoglycoside modifying enzymes in Staphylococcus aureus strains isolated from a burn center. Ann Burns Fire Disasters 2013;26:76-80.

[27] Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, et al. Quantiﬁcation of bioﬁlm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007;115:891-9.

[28] Arciola CR, Baldassarri L, Montanaro L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol 2001;39:2151-6.

[29] Caiuso V, Bertuccio T, Santagati M, Campanile F, Amicosante G, Perilli MG, et al. Presence of the ica operon in clinical isolates of Staphylococcus epidermidis and its role in biofilm production. Clin Microbiol Infect 2004;10:1081-8.

[30] Sadeghi J, Mansouri S. Molecular characterization and antibiotic resistance of clinical isolates of methicillin-resistant Staphylococcus aureus obtained from Southeast of Iran (Kerman). APMIS 2014;122:405-11.

[31] Langley R, Patel D, Jackson N, Clow F, Fraser JD. Staphylococcal superantigen super-domains in immune evasion. Crit Rev Immunol 2010;30:149-65.

[32] Pourmajaf A, Ardebili A, Goudarzi L, Khodabandeh M, Narimani T, Abbaszadeh H. PCR-based identification of methicillin-resistant Staphylococcus aureus strains and their antibiotic resistance profiles. Asian Pac J Trop Biomed 2014;4:S293-S7.

[33] Aligholi M, Emaneimi M, Jabalameli F, Shahsavans S, Abdolmaleki Z, Sedaghah H, et al. Antibiotic susceptibility pattern of gram-positive cocci cultured from patients in three university hospitals in Tehran, Iran during 2001-2005. Acta Med Iran 2009;47:329-34.

[34] Udo EE, Al-Sweinit N, Dhar R, Dimitrov TS, Mokaddas EM, Johny M, et al. Surveillance of antibacterial resistance in Staphylococcus aureus isolated in Kuwaiti hospitals. Med Princ Pract 2008;17:71-5.

[35] Ullah A, Qasim M, Rahman H, Khan J, Haroon M, Muhannad N, et al. High frequency of methicillin-resistant Staphylococcus aureus in Peshawar Region of Pakistan. Springer Plus 2016;5:600.

[36] Havaei SA, Vidovic S, Tahmimine M, Mohsen K, Mohsen K, Starnino S, et al. Epidemic methicillin-susceptible Staphylococcus aureus lineages are the main cause of infections at an Iranian university hospital. J Clin Microbiol 2011;49:3990-3.

[37] Khosravi AD, Hoveizavi H, Farshadzadeh Z. The prevalence of genes encoding leucokinid in Staphylococcus aureus strains resistant and sensitive to methicillin isolated from burn patients in Taleghani Hospital, Alhaz, Iran. Burns 2012;38:247-51.

[38] Heidari M, Madani M. Detection of the antibiotic resistance genes in Staphylococcus aureus isolated from human infections and bovine mastitis. Afr J Microbiol Res 2011;5:5132-6.

[39] Sepehriseresht S BM, Pourgholi L, Sotoudeh Anvari M, Habibi E, Sattarzadeh Tabrizi M, et al. Emergence of mupirocin-resistant Methicillin Resistant Staphylococcus Aureus Strains Isolated from Intensive Care Units in Iran: ST22-SCCmec IV/790 Emerges as the Major Clone. PloS one 2016;11:e0155529.
[42] Yoosefian M, Ahmadzadeh S, Aghasi M, Dolatabadi M. Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode: kinetic and isotherm studies of adsorption. J Mol Liq 2017;225:544-53 http://dx.doi.org/10.1016/j.molliq.2016.11.093.

[43] Ohadian Moghadam S, Pourmand MR, Mahmoudi M, Sadighian H. Molecular characterization of methicillin-resistant Staphylococcus aureus: characterization of major clones and emergence of epidemic clones of sequence type (ST) 36 and ST 121 in Tehran, Iran. FEMS Microbiol Lett 2015;362:fvn043.

[44] Tiwari HK, Das AK, Sapkota D, Sivrajian K, Pahwa VK. Methicillin resistant Staphylococcus aureus: prevalence and antibiogram in a tertiary care hospital in western Nepal. J Infect Dev Ctries 2009;3:681-4.

[45] Debnath A CB. Antibiogram and susceptibility pattern of methicillin-resistant Staphylococcus aureus collected from various clinical samples in Bengaluru. Asian J Pharm Clin Res 2015;8:260-4.

[46] Wang H, Liu Y, Sun H, Xu Y, Xie X, Chen M. In vitro activity of ceftobiprole, linezolid, tigecycline, and 23 other antimicrobial agents against Staphylococcus aureus isolates in China. Diagn Microbiol Infect Dis 2008;62:226-9.

[47] Martin-Lopez JV, Perez-Roth E, Claverie-Martin F, Diez Gil O, Batista N, Morales M, et al. Detection of Staphylococcus aureus Clinical Isolates Harboring the ica Gene Cluster Needed for Biofilm Establishment. J Clin Microbiol 2002;40:1569-70.

[48] Frebourg NB, Lefebvre S, Baert S, Lemeland JF. PCR-Based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J Clin Microbiol 2000;38:877-80.

[49] Mirzaee MNPs, Ghasemian AM. Detection of icaABCD Genes and Biofilm Formation in Clinical Isolates of Methicillin Resistant Staphylococcus aureus. Iran Biomed J 2016;20:175-81.

[50] Fitzpatrick F, Humphreys H, O’Gara JP. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol 2005;43:1973-6.

[51] O’Neill E, Pozzi C, Houston P, Smyth D, Humphreys H, Robinson DA, et al. Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol 2007;45:1379-88.

[52] Eftekhar F, Speert DP. Biofilm formation by persistent and non-persistent isolates of Staphylococcus epidermidis from a neonatal intensive care unit. J Hosp Infect 2009;71:112-6.

[53] Eftekhar F MZ. Biofilm formation by clinical and normal skin isolates of Staphylococcus epidermidis. Int J Med Med Sci 2009;10:438-41.

[54] Namvar AE, Asghari B, Ezattifar F, Azizi G, Lari AR. Detection of the intercellular adhesion gene cluster (ica) in clinical Staphylococcus aureus isolates. GMS Hyg Infect Control 2013;8:Doc03.

[55] Ghasemian A, Najar Peerayeh S, Bakhshi B, Mirzaee M. Comparison of Biofilm Formation between Methicillin-Resistant and Methicillin-Susceptible Isolates of Staphylococcus aureus. Iran Biomed J 2016;20:175-81.

[56] Nasr RA AH, Hussein SH. Biofilm formation and presence of icaAD genes in clinical isolates of Staphylococci. EJMHG 2012;13:269-74.

[57] Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, et al. Relationships between Staphylococcus aureus genetic background, virulence factors, age groups (alleles), and human disease. Infect Immun 2002;70:631-41.

[58] Prevost G, Couppie P, Prevost P, Gayet S, Petiau P, Cribier B, et al. Epidemiological data on Staphylococcus aureus strains producing synergohymenotropin toxins. J Med Microbiol 1995;42:237-45.