Role of galectin-glycan circuits in reproduction: from healthy pregnancy to preterm birth (PTB)

Sandra M. Blois1,2,3, Stefan Verlohren4, Gang Wu5, Gary Clark6, Anne Dell5, Stuart M. Haslam5, Gabriela Barrientos7

Abstract
Growing evidence suggests that galectins, an evolutionarily conserved family of glycan-binding proteins, fulfill key roles in pregnancy including blastocyst implantation, maternal-fetal immune tolerance, placental development, and maternal vascular expansion, thereby establishing a healthy environment for the growing fetus. In this review, we comprehensively present the function of galectins in shaping cellular circuits that characterize a healthy pregnancy. We describe the current understanding of galectins in term and preterm labor and discuss how the galectin-glycan circuits contribute to key immunological pathways sustaining maternal tolerance and preventing microbial infections. A deeper understanding of the glycoimmune pathways regulating early events in preterm birth could offer the broader translational potential for the treatment of this devastating syndrome.

Keywords Galectins · Preterm birth · Microbial infections · Glycans

Introduction
Galectins play a paramount role in pregnancy biology, modulating a wide range of processes from embryo implantation to parturition. Different galectins coexist at the feto-maternal interface where besides coordinating placentation and maternal immune adaptation to the semi-allogenic fetus, they also play a role in maternal vascular expansion [1]. Though most of their biological functions during gestation are exerted through binding endogenous glycan structures, galectins can also recognize exogenous specific glycans on the surface of bacteria, viruses, parasites and therefore function as pattern recognition receptors [2]. As a result, galectins appear to be critical in the microbial glycan-host interactions that promote the engagement of specific immune cell subsets and shape host immunity. Thus, given their unique ability to modulate maternal immunity galectins emerge as important players in preterm birth (PTB) syndrome, which most often is associated with...
microbial infections that disrupt fetomaternal tolerance due to the drastic link between underlying pathogens and their ability to promote inflammatory responses [3, 4].

Host-pathogen interactions fundamentally shape a broad range of biological processes. While products of microbial metabolism can impact a wide variety of host activities, from neurological function to overall metabolism and immune homeostasis (1–3), direct interactions between host and microbes can fundamentally shape microbial flora, impact immune function and often ultimately dictate the likelihood of infectious disease (4). Although host factors can interact with a variety of distinct microbial molecular determinants, cell surface glycans represent the most unique, diverse, and rich molecular features that decorate microbes (5, 6). As microbial carbohydrate determinants often completely envelope microbes, these structures often represent the first and most significant molecular signature encountered by a host. As a result, hosts appear to have evolved a variety of immune factors that possess the ability to recognize the distinct carbohydrate signature of a broad range of microorganisms (6–9). Indeed, many immune populations are defined by the distinct repertoire of glycan-binding proteins (GBPs) they express (6–8), strongly suggesting that microbial glycan-host interactions may result in the engagement of specific immune cells and thus shape host immunity in fundamental ways.

Galectins and the control of pregnancy-associated processes

Galectins are small, soluble glycan-binding proteins characterized by their affinity to β-galactosides and the presence of an evolutionarily conserved sequence, the carbohydrate recognition domain (CRD), which mediates binding to their specific N-acetyllactosamine [Galβ(1–4)GlcNAc]-enriched ligands [5]. In mammals, 15 members of the galectin family have been identified so far, of which 13 are expressed in humans [6]. Based on their molecular structure, they are classified into three main types: prototype, chimera, and tandem-repeat galectins (Fig. 1). While some of these galectins contain one CRD and are biologically active as monomers (i.e., gal-1, gal-13) or as oligomers that aggregate though their non-lectin domain (gal-3); others contain two CRDs connected by a short linker peptide (e.g., gal-9). Galectins are synthesized in the cytoplasm, where they exert intracellular functions modulating various processes including cell growth, differentiation, survival, and migration [7]. In addition, some galectins can translocate to the nucleus and participate in transcriptional regulation and mRNA splicing [7, 8]. However, galectins can also be present on the cell surface or secreted to the extracellular compartment [9], where they engage in protein-glycan interactions with cell surface or ECM molecules and regulate a diverse combination of biological functions such as cell adhesion, apoptosis, lattice formation, and invasion [10–13]. With their various functions, galectins link innate and adaptive immune responses acting as key regulators of acute and chronic inflammation, host-pathogen interactions, and immune tolerance, which all are implicated in a healthy pregnancy [14–18].

Embryo implantation

It is now firmly established that the role played by galectins during the establishment and maintenance of gestation is attributable to the several pathways these endogenous lectins coordinate. Figure 1 illustrates the galectin-associated mechanisms during a healthy gestation. Evidence from in vitro and expression studies suggest galectins are important mediators in the implantation process. Indeed, during embryo implantation the increased expression of gal-1, -3, and -9 in endometrial epithelial cells suggest their role in uterine receptivity [19–22]. In support of this, the ability of galectins to bind laminin and fibronectin [23] may serve as a link between endometrial epithelial cells and the blastocyst. Human embryos express gal-1 at early stages of development (day 3–day 5) in their trophectoderm and secrete gal-1 into the medium in which they are cultured [24], suggesting that this lectin may influence uterine blastocyst attachment during the window of implantation. In this regard, Jeschke’s group has shown that gal-1 binds mucin-1 (MUC1) via the Thomsen-Friedenreich (TF) epitope on glandular epithelial cells and endometrial epithelial apical surface tissue [25], implying that embryonic-derived gal-1 may bind to endometrial MUC1 via the TF epitope during implantation. Interestingly, integrins (e.g., αβ3) have been proposed to have important roles during implantation [26] and the integrin β3, which is highly expressed in the luminal and glandular epithelium, could also serve as a ligand of gal-1 and gal-3 to promote trophectoderm-uterine epithelium interactions [27]. Thus, galectins (especially gal-1, gal-3, and gal-9) participate not only in the uterine epithelial preparation for receptivity but also in blastocyst activation influencing the embryo-derived signals for implantation.

Maternal Tolerance

The establishment and maintenance of pregnancy represent a major immunological challenge requiring a delicate balance of inflammation and immune tolerance at the fetal-maternal interface. During early stages, proper implantation and uterine vascular adaptation are characterized by an inflammatory milieu, which later must be switched to a down-modulation of the immune response allowing tolerance of the semi-allogenic fetus. Later on, a new switch to inflammation is required in the last stage to ensure the activation of labor. This key immune switching mechanism at the fetal–maternal interface relies on a highly orchestrated crosstalk involving the placental trophoblasts and different maternal immune cell subsets, such as
regulatory macrophages, natural killer (NK) cells, and T cells (recently reviewed in [28]). Thus, maternal immune adaptation to pregnancy is a highly regulated process involving several galectins [6, 15, 29–31]. In this regard, pioneering studies by Than NG et al. have shown that placenta-specific galectins (e.g., gal-13, -14 and -16), predominantly expressed by the syncytiotrophoblast cells, induce maternal T lymphocyte apoptosis [32]. In a more recent work, Than’s group showed that gal-13 and gal-14 have a basic pro-apoptotic activity on T cells regardless of their activation status [33]. However, cytotoxic T lymphocytes were more susceptible to gal-13/gal-14 induced apoptosis than T helper cells, probably due to the differential glycosylation pattern on these two T cell populations [34]. In addition, gal-1 is highly expressed in the hemochorial placenta, where it has been shown to modulate human leukocyte antigen G (HLA-G) expression on extravillous trophoblast (EVT) cells, thereby promoting one of the chief mechanisms of immune tolerance operating at the human maternal–fetal interface [24]. The immune regulatory effects of HLA-G include impacts on NK cell killing activity, suppression of cytotoxic T lymphocyte killing activity and viability, inhibition of proliferation and induction of a suppressive phenotype in T helper cells, and alteration of dendritic cell maturation and stimulatory capacity (reviewed in [35]). The expression of gal-9 by human trophoblast has been shown to promote the development of uNK cells with a tolerogenic phenotype via Tim-3 engagement [36], which is supported by data indicating that the Tim-3/gal-9 pathway downregulates Th1 immunity [37]. Additionally, galectins are also expressed by maternal immune cells, which infiltrate the decidua. For example, gal-1, secreted by uterine natural killer (uNK) cells, induces the apoptosis of activated decidual T cells with a glycophenotype compatible with this lectin [38]. uNK cells also selectively express type 2 β-1,6-N-acetylglucosaminyl transferase (C2GNT), the glycosylation enzyme required to initiate the formation of gal-1 specific ligands, implying an autocrine role of this lectin in down-modulating the cytotoxic potential of uNK cells [38]. Gal-9 has an immunosuppressive activity similar to gal-1 at the maternal side [39]. The effect of Lgals9 D5 (the predominant gal-9 splice variant) was tested on uNK cells in mice and it was found to downregulate IFN-γ production through carbohydrate dependent interaction [39]. Thus, gal-9 could participate in the limitation of Th1 and shift to a protective Th2 milieu, which is further supported by the impaired decidual expression of gal-9 in mice and human pregnancy complicated with spontaneous abortion induced by T helper cytokine imbalances [39]. The ability of gal-1 to maintain the balance between pro-inflammatory Th1/Th17 and Th2 cytokines needed for healthy gestation is critical. We have shown that gal-1 promotes the expansion of IL-10 producing regulatory T cells [15]. In line with these findings, LGALS1 null mice display exacerbated Th1/Th17
responses and a higher frequency of immunogenic DC [34, 40] and show increased fetal loss rates in allogeneic pregnancies with susceptibility to stress-induced abortions [15, 41]. In summary, these evidences support a role for galectins in dampening inflammatory responses and promoting tolerogenic cell phenotypes specifically at the fetal–maternal interface. During pregnancy, this serves as a mechanism of promoting maternal tolerance to the fetus through preventing deleterious anti-fetal T cell responses.

Maternal vascular adaptations for placental development

A proper placental development requires a deep maternal vascular adaptation in early gestation. In this regard, different steps of the angiogenic cascades and endothelial cell biology are influenced by galectins (e.g., gal-1, gal-3, gal-8, gal-9) [42]. For instance, several lines of evidence demonstrate proangiogenic functions for gal-1, which result from direct effects on endothelial cell activation via H-Ras signaling [43] as well as from the modulation of endothelial cell adhesion, migration and proliferation by interacting with the neuropilin (NRP)-1/VEGFR2 signaling pathway [44]. Murine studies have demonstrated a critical role of VEGFR2 signaling during the physiological adaptation of the maternal vascular bed to embryo implantation [45], which together with the high local expression of NRP-1 during peri-implantation stages [46] points out to a paramount role played by this lectin in the control of pregnancy angiogenic responses. Indeed, treatment with anginex (an artificial β-peptide targeting gal-1 proangiogenic functions) resulted in decreased adhesion and capillary tube formation in SGHPL-4 EVT-like cells in vitro and impaired spiral artery remodeling and placental function in an in vivo mouse model, causing preeclampsia-like symptoms during late gestation and fetal growth restriction [47].

Another galectin likely to be involved in maternal vascular adaptation is gal-13 (placental protein 13, PP13), though evidence in support of its role per se in the modulation of angiogenic pathways is still elusive. In decidual tissue, gal-13 is found selectively associated with T-cell-, neutrophil-, and macrophage-rich foci of necrosis [48], suggesting that it might act to attract, activate and kill maternal immune cells facilitating trophoblast invasion and spiral artery remodeling. More recently, in vivo studies demonstrated hypotensive effects in pregnant rats infused with gal-13 [49], associated with increased heart rate and decreased peripheral resistance due to general vasodilation. It was later demonstrated that gal-13 infusion both during pregnancy and in the non-pregnant state was associated with vasodilation of veins and resistance arteries beyond the uterine vascular tree [50, 51], suggesting that placenta-derived gal-13 may be involved in generating a systemic endothelial effect in the mother mediated by endothelial nitric oxide synthase (eNOS) and prostaglandin signaling.

Galectins in parturition

Parturition is a coordinated process referred to as the “common pathway” that involves increased myometrial contractility, cervical ripening, activation of the decidua, and fetal membranes with local pro-inflammatory changes. These processes involve different uterine compartments including the decidua, myometrium, fetal membranes, and placenta implying that activation of biological pathways may be different across the various gestational tissues. As galectins are widely expressed, we intend to discuss the galectin signature of gestational tissues at term taking into consideration the origin of the expression. However, due to the intimal interaction between decidua, chorion, and amnion, it may be difficult to infer the galectin expression pattern of these tissues separately. Although data is relatively scarce, evidence suggests that at term, gal-1 is the galectin with the highest expression in the human decidua. In healthy laboring women, gal-1 and gal-3 expression levels within the decidua decreased when compared to non-laboring women [52]. Consistent with this, maternal gal-9 circulating levels are elevated early in healthy pregnancy and remain increased until parturition, returning to non-pregnant levels in the post-partum period [53]. In pregnant mice, gal-3 is mainly expressed in the endometrial cells of the primary decidua basalis, metrial gland, and placenta; and after parturition this lectin expression decreased as the implantations sites resorbed [54], implying that the parturition process at least in humans and mice occurs with a dysregulation of the glycan-binding proteins.

PTB, a complex syndrome associated with multiple causes

PTB is defined as birth before 37 ± 0 gestation weeks (GW). However, the simplicity of the definitions is in sharp contrast to the complexity of the disease, whose etiology is far from being understood. PTB is the leading cause of neonatal morbidity and mortality and the single major cause of death in children up to 5 years of age in the developed world [55]. About 15 million preterm neonates are born each year where genetic variation in human birth timing imposed a high risk for prematurity in the African American population [56]. In the European Union, the PTB rate has risen constantly over the last 10 years, a trend which corresponds to global figures [57, 58]. The prevalence varies from country to country with a median of 7.1% of all births. In Germany, 9% of all children were born before the end of GW 37. In parallel, the rate of extremely preterm deliveries (< 28 GW) has risen by 64%. Neonates that are born preterm are at an increased risk of short-term and long-term complications, with the former being attributed to the immaturity of multiple organ systems and the latter ranging from disabilities originating from these early complications to subtle neurodevelopmental impairment [59] (Fig. 2).
Although preterm labor has a complex, multifactorial etiology [60] microarray data from uterine tissue revealed similar gene regulation patterns between term and preterm women suggesting that acceleration of the gestational clock appears to be involved in the PTB cases. In particular, spontaneous preterm labor is perceived as pathological activation of the above mentioned “common pathway” of parturition. Other key factors for labor, cervical ripening, and decidual/membrane activation, involve specific changes in inflammatory and extracellular matrix proteins. These include increased expression of inflammatory cytokines e.g. tumor necrosis factor-α (TNF-α) and IL-1 and chemokines, increased activity of proteases matrix metalloprotease 8 (MMP-8) and MMP-9, degradation of extracellular matrix components such as fibronectin and an increase in glycosaminoglycans and hyaluronan [61]. In addition, pro-inflammatory pathways including chemokines (interleukin-8 (IL-8)), cytokines (IL-1 and -6), and contraction-associated proteins (oxytocin receptor, connexin 43, prostaglandin receptors) eventually contribute also to myometrial activation [62].

While many studies examined the roles of galectin interactions during gestation, the potential outcome of these interactions in the context of PTB remains elusive. Shankar and co-workers [63] have identified differences in choriodecidual gal-1 expression between spontaneous preterm labor and gestational-matched non-laboring patients, suggesting that decreased levels of gal-1 are associated with the underlying pathology. Early studies demonstrated that galectins are expressed in cervical and vaginal epithelial cells [64], which could uniquely poise to engage microbes and initiate innate immunity. Indeed, the observation that gal-1 is able to down-regulate the pro-inflammatory environment stimulated by LPS (e.g., IL-6 production, an important cytokine related to PTB) in decidual cells derived from elective cesarean patients at term suggests that this lectin may be important in the regulation of local inflammation during the course of chorioamnionitis [65]. Similarly, it has been shown that gal-3 is increased in fetal membranes and in the amniotic epithelium in patients with chorioamnion infection [66], thereby regulating the inflammatory response and/or direct interaction with the pathogens. In the following sections, we discuss several of the multiple pathological processes associated with preterm labor and the relevance of galectin-induced immune-regulatory pathways:

Decline in progesterone and anti-inflammatory mediators

Progesterone is a key player in maintaining uterine quiescence, and a withdrawal of this hormone is observed at parturition onset. An understanding of this phenomenon has led to the successful application of progesterone in threatened preterm labor [67]. Moreover, a recent study has shown that progesterone treatment could serve as an anti-inflammatory strategy to prevent PTB and adverse neonatal outcomes induced by T cell activation [68]. While current data suggest that progesterone regulates endometrial galectin expression including gal-1 and gal-3 [69] and alterations of the progesterone receptor function during gestation associate with reduced levels of gal-1 expression [15, 70], future studies will likely determine whether alterations in galectin expression directly contribute to PTB pathophysiology.

Microbial infection

Microorganism-induced PTB is mediated by an inflammatory process and the most studied mechanism is the activation of toll-like receptors (TLRs). TLRs are membrane-bound proteins that recognize pathogen-associated molecular patterns (PAMPs) and activate the innate immune system to generate...
downstream signals through the release of cytokines (IL-1β, TNF-α), chemokines (IL-8, CCL-2), prostaglandins and proteases [71]. The activation of the innate immune response through TLRs has the aim to control microorganisms that may injure the embryo, however, excessive inflammation could eventually trigger the common pathway of parturition with cervical ripening, rupture of fetal membranes and placental detachment [61, 72]. TLRs can be expressed in the cell surface (TLR-1, -2, -4, and -5) or in intracellular vesicles (TLR-3, -7, -8, and -9). Cell-surface TLRs recognize accessible PAMPs such as bacterial lipoproteins and lipoteichoic acid (TLR-2 as heterodimers with TLR-1 or TLR-6), lipopolysaccharide (LPS) of Gram-negative bacteria (TLR-4) or bacterial flagellin (TLR-5). Cytoplasmic TLRs recognize double-stranded RNA (dsRNA) (TLR-3), single-stranded RNA (ssRNA) (TLR-7 and TLR-8) or CpG enriched double-stranded DNA (TLR-9) [71].

In human pregnancies, TLR-1 to TLR-10 have been found and are mainly expressed by trophoblast cells, but also in the cervix and uterus [73, 74]. However, differential expression of TLRs has been observed according to the gestational age. Particularly, in the third-trimester placenta, the expression of TLR-2 was observed in endothelial cells, macrophages, and syncytiotrophoblast and TLR-4 was prominently expressed in syncytiotrophoblast and endothelial cells [75]. Functional analysis also demonstrated that the term placenta can respond to TLR-3, TLR-5, and TLR-7/8 agonists [76]. In a mouse model, it has been demonstrated that activation of TLR-3 with poly(I:C), an analog of dsRNA, promotes NF-kappa B signaling with the induction of pro-inflammatory cytokines and chemokines (e.g., IL-6, IL-1β, TNF-α, IFN-γ, IL-8, MCP-1), leading to preterm delivery [77]. Moreover, in women with chorioamnionitis TLR-2 and TLR-4 are upregulated in fetal membranes [78]. Administration of peptidoglycan, which is part of the bacterial cell wall, induced TLR-1 and TLR-2-mediated trophoblast cell death in vivo and in vitro. However, apoptosis could be inhibited by the presence of TLR-6, which also activates NF-kappa B signaling in trophoblasts with the secretion of IL-6 and IL-8 promoting an inflammatory response [79]. Both the pro-inflammatory response and trophoblast apoptosis are processes strongly implicated in PTB. As TLR-4 recognizes LPS it is not surprising that TLR4-deficient mice are not susceptible to LPS- or Escherichia coli–induced PTB [80, 81] and neutralizing antibody against TLR-4 can reduce inflammation-induced PTB and fetal death in mice [82]. In rhesus monkeys, pretreatment with a TLR-4 antagonist inhibited LPS-induced uterine contractility and reduced IL-8, TNF-α, and prostaglandins [83]. Treatment with IL-10 prevented LPS-induced PTB with a reduction of TNF-α, IL-6, and IL-1β in mice and rats [84, 85].

From the clinical point of view, associations between microbial induced inflammation and preterm labor have been reported in several studies [86–88], but it is not clear why some women experience PTB and some not, even with the same exposure to pathogens. A striking example is a discrepancy between the rate of lower genital tract and ascending intra-amniotic infections, implicating that the role of the maternal immune system is key to identify those at risk. Nevertheless, in 25% of all PTBs intra-amniotic infection is involved [89]. Ascending infections are the likely cause, as pathogens detected in the amniotic fluid and in the lower genital tract are the same [90]. Recently, the PREMEVA trial investigated the effect of screening and therapy for bacterial vaginosis (imbalance of naturally occurring bacterial flora with an increase of the anaerobic type) in pregnant women with a low or high risk of preterm labor (according to previous PTB history) treated or not with clindamycin, which is one of the two most often-used antibiotics to treat bacterial vaginosis during pregnancy. The authors concluded that bacterial vaginosis treatment in women with low-risk pregnancies did not show a reduction of spontaneous PTB suggesting that the use of antibiotics to prevent preterm delivery should be reconsidered [91]. This finding is in line with other previous randomized controlled trials and meta-analyses that have shown no effect of antibiotics for pregnancy prolongation in asymptomatic pregnant women with bacterial vaginosis [92–94]. In addition, recent studies report that positive diagnosis with Chlamydia trachomatis (the most common aerobic intracellular bacterium responsible for sexually transmitted infections) shows no significant association with spontaneous preterm labor [95]. However, other trials have shown that women with chlamydia infections are 2.28 more likely to deliver pre-term in comparison with those who were not infected [96]. Group B Streptococcus (GBS, a gram-positive bacterium) colonization is recognized as a risk factor for PTB as being the most frequent cause of severe early-onset infection in newborn babies. A recent review showed a consistent increase in the risk of PTB in women with maternal GBS colonization, which is stronger in case-control studies compared to cohort or cross-sectional studies [97]. For Trichomonas vaginalis, a vaginotropic extracellular protozoan parasite, similar results have been retrieved. Women with asymptomatic trichomoniasis were randomly treated with metronidazole or placebo. Preterm delivery occurred in 19% of the metronidazole vs 10.7% in the placebo group. While metronidazole eliminated the organism, it was reported as ineffective in preventing preterm delivery and potentially even increasing it, which has led to early termination of the trial [98].

In the context of microbial recognition, galectins can directly engage microbes by binding specific glycans on their surface and thereby dictate the consequence of microbial exposure [99]. Thus, galectins can function as both pattern recognition receptors (PRRs) and innate immune effectors during microbial infections [100], promoting pathogen clearance through different mechanisms (i.e., phagocytosis, encapsulation,
autophagy) or inhibiting adhesion and/or entry into the host cell. This recognition and effector role can however be ‘subverted’ by certain pathogens, which can take advantage of the host galectin repertoire for successful attachment, invasion, and immune evasion [100, 101]. An example of this strategy relevant for PTB is the Trichomonas vaginalis lipophosphoglycan (LPG) and its immunocompetent ceramide phosphoinositol glycane core (CPI-GC) domain-containing β-galactosides and abundant poly-N-acetyl-lactosamine repeats [102], which provide targets for gal-1 and gal-3 recognition [64]. Recent studies in this area of research have demonstrated that gal-1 mediates the adherence of the parasite to cervical epithelial cells in an LPG-dependent manner [103]. Moreover, CPI-GC collected from multiple clinical isolates showed similar affinity to gal-1, but the affinity to gal-3 differed between isolates from different patients, suggesting that galectin-binding diversity may responsible for the Trichomonas symptom disparity [64]. Another valid example of preterm labor infection is Chlamydia trachomatis, with gal-1 being able to bind to at least six chlamydial glycoproteins (gp28, gp37, gp40, gp42, gp55, and gp105). Thus, gal-1 facilitates C. trachomatis infection by bridging bacterial and host glycosylated receptors (such as PGDFβ and β1/αvβ3 integrins) [104]. As intrauterine ascension of pathogens through the vaginal tract is one of the routes of pathogenic entry that triggers preterm labor, all aspects regarding recognition properties of the female tract (vagina, cervix, and placenta) galectin repertoire and the dynamic of their subcellular compartmentalization/secretion and interactions with microbi- cal carbohydrates warrant further investigations.

Evidence indicates a possible association between galectins and TLRs. A well-studied example in the context of infection-induced PTB is group B streptococci, bacteria that produce membrane vesicles with extracellular matrix-degrading proteases and pore-forming toxins leading to collagen degradation in the chorio-decidual membranes [105]. Interestingly, in vitro stimulation of cord blood samples with an invasive strain of Streptococcus agalactiae (a group B Streptococcus) induces gal-3 expression. Since fetal gal-3 serum levels increase with gestational age, the authors speculated that impaired gal-3 expression may contribute in part to the high susceptibility of preterm infants to infection as opposed to term infants or adults [106]. In addition, RNA interference against TLR-3 was shown to prevent gal-9 expression in human umbilical vein endothelial cells (HUVECs) stimulated with poly(I:C) [107]. In line with this finding, activation of TLR-3 (by poly(I:C)) and TLR-4 (by LPS) on fibroblasts derived from rheumatoid arthritis patients lead to apoptosis protection through induction of gal-9 expression [108]. Moreover, gal-9 was increased upon stimulation with poly(I:C) in hepatitis C virus-infected monocytes [109]. With these evidences, we could hypothesize that activation of TLR-3 (principally by dsRNA produced by the virus) could increase gal-9 exerting a pro-inflammatory effect. It has also been described that gal-3 knockdown human synovial fibroblasts stimulated with an agonist to TLR-2 (Pam3CSK4), TLR-3 (poly(I:C) -, or TLR-4 (LPS) display a reduced response to TLR-mediated IL-6 secretion, suggesting gal-3 functions as a positive regulator of TLR activation [110].

Some evidence indicates a possible association between periodontal infection caused by oral pathogenic bacteria (e.g., Campylobacter rectus (C. rectus) or Porphyromonas gingivalis (P. gingivalis)) and PTB [111]. Enhanced placental TLR-4 expression was observed after oral infection with C. rectus and P. gingivalis [112]. In a mouse model with P. gingivalis infection, TLR-2-induced inflammation in the fetal membrane (activation of NF-kappaB and p38 MAPK pathways) leads to the upregulation of uterine contractility causing preterm delivery [113]. Similarly, P. gingivalis LPS induced IL-6 and IL-8 production via TLR-2 in human chorion-derived cells [114]. Interestingly, increased gal-3 was found in the placenta, amniotic fluid, and serum in a PTB model of P. gingivalis–infected mice. In vitro culture of HTR-8/SVneo trophoblast cells with P. gingivalis LPS, demonstrated increased levels of TNF-α and gal-3, and gal-3 inhibition significantly downregulated P. gingivalis LPS-induced TNF-α production [115]. During the neuroinflammatory response, it was demonstrated that gal-3 associates with TLR-4 through its CRD [116]. Moreover, P. gingivalis LPS increased gal-9 expression in the human periodontal ligament (connective tissue fibers) [117] suggesting a role for gal-9 during infection-induced PTB.

We have demonstrated that stress challenge during early pregnancy can enhance permeability of mucosal membranes to the entry of bacterial products (e.g., LPS) and promote transmucosal migration of commensal bacteria inducing fetal loss in mice [41]. Stress-triggered fetal loss was prevented by blocking of TLR-4 (anti-TLR-4 antibody) or neutralization of LPS (using the bactericidal/permeability-increasing protein (BPI), a protein that specifically binds and neutralizes LPS). In addition, gal-1 deficient female mice were highly prone to stress-triggered complete implantation failure, but treatment with BPI markedly reduced the detrimental effect of stress in pregnancy outcomes. However, there are not data available regarding the susceptibility to ascending infections and PTB in gal-1 deficient mice. The anticipated role of gal-1 as a key factor against pathogen mediated PTB suggests that insufficient gal-1 could be a critical factor that predisposes some women to infection-mediated PTB.

Clinical management

Screening for PTB consists in determining risk factors by taking a detailed history of the pregnant woman. Ideally, potential risk factors such as status post (s/p) previous PTB, short inter-pregnancy interval et al are determined before pregnancy
allowing for preventive strategies. General primary prevention includes cessation of smoking and treatment of bacterial vagino-
sis in pregnancy [118]. However, in women with a history of
PTB, the prophylactic treatment with vaginal progesterone or
even a prophylactic cerclage may be considered [119]. General
screening for PTB such as routine measurement of the uterine
cervix by transvaginal sonography is not recommended.
However, sonographic assessment of the cervical length should
be included in the diagnostic work-up in symptomatic pregnant
women (regular spontaneous preterm contractions) and/or in
women with risk factors for spontaneous PTB [120]. In addition
to transvaginal sonography, biomarkers such as PAMG-1, fetal
fibronectin, and phIGFBP-1 obtained from cervico-vaginal se-
cretions may be used to specify the risk of a PTB within the next
seven days [121]. In women with a sonographic short cervix,
secondary prevention consists of treatment with vaginal progester-
one [122]. Treatment with a cervical pessary has not demon-
strated to decrease the rate of spontaneous early preterm delivery
[123]. Before 24 weeks, cervical cerclage may be the treatment
of choice [124]. It should be noted that these measures have only
proven to be effective in singletons and not in multifetal
gestations.

The main aim of tertiary prevention in the context of threat-
ened PTB before 34 weeks of gestation is to prolong preg-
nancy for at least 48 h in order to allow for the antenatal corticoid
application. There is broad international consensus that
placenta-crossing steroids (betamethasone, dexamethasone)
must be given to women at imminent risk for PTB before
34 weeks in order to accelerate organ maturation of the fetus
[125]. In order to achieve that, tocolysis, emergency cerclage,
progesterone, and vaginal pessary can be used, adapted to the
clinical situation and after counseling, ideally involving a mul-
tidisciplinary team including a neonatologist. Accurate assess-
ment of the remaining pregnancy duration is paramount in
order to find the best timing of steroid application as the ideal
window is seven days before birth. Preterm premature rupture
of membranes (PPROM) requires balancing the risks between
prolongation of pregnancy for maturation and timely delivery
in order to prevent the potentially devastating complications of
ascending intrauterine infections.

In our view, management of threatened PTB is largely
symptom-driven and preventative and the therapeutic strat-
gegies are guided not by causative approaches, but rather by
preventative measures. Research in the field of PTB must be
intensified in order to clarify the underlying etiologies
allowing for targeted strategies in the future. Insights into
the galectin-glycan circuits of tissues such as myometrial
smooth muscle cells, decidua, placenta, amnion as well as
fetal and maternal blood are sparse [62]. Identifying specific
glycoimmune phenotypes, as well as factors capable of mod-
ulating maternal immune responses, can help to better predict
which women might be at risk for preterm labor, permitting
better surveillance and prophylaxis.

Galectin-glycan circuits as modulators of
inflammation and infection: insights from pregnancy

Glycans are essential functional groups that facilitate and in-
fluence the reproduction process. For instance, the embryo
implantation process is driven by glyco-specific interactions
between the uterine epithelium and the outer trophoblast cell
layer of the blastocyst, such that perturbations of the system
generally result in implantation failure or poor pregnancy out-
comes. Glycosylation relies on a delicate balance in the activ-
ity of specific modification enzymes (glycosyltransferases and
glycosidases), and the glycocode expressed in a particular
tissue is highly dependent on the cell type and its develop-
mental, nutritional and pathological state. The specific
glycome expressed at the maternal–fetal interface can play
multiple roles during pregnancy. For example, N-linked gly-
cans (attached to the nitrogen of an asparagine side-chain)
have been shown to modulate trophoblast invasion [126,
127] and maternal–fetal tolerance [128, 129] during placentation.
O-Linked glycans (attached to the hydroxyl oxygen of
serine, threonine, tyrosine, hydroxylsine, or hydroxyproline
side-chains) can influence recognition events during fertila-
zation (e.g., sperm-egg interactions) [130].

Extracellular functions of galectins depend on the cross-
linking of surface N- and O-glycans expressed by maternal
immune cells, trophoblasts, and endothelial cells at the fetal-
maternal interface (Fig. 3). As glycosylation is directly related
to the physiological cellular status, changes in glycan compo-
sition are highly regulated during pregnancy and can have a
fundamental impact on galectin activity [131–133]. For in-
stance, placental expression of N-acetylgalactosaminyl transfe-
rase V (GnTV), which generates the β1-6-N-acetylgalactosamine
branches in complex N-glycans recognized by gal-1, is en-
hanced in the first trimester compared with term pregnancies
[126]. Since gal-1 promotes EVT differentiation and invasion
during early pregnancy [134], it is possible that increased activ-
ity of GnTV may lead to enhanced signaling by this lectin
[127]; particularly by promoting its interaction with cell surface
β1 integrin [127, 135–141]. Furthermore, villous tissues from
early spontaneous miscarriages show a reduced abundance of
such (β-6) branches together with decreased GnTV expression
in comparison with healthy pregnancy villous tissues [142].
Thus, differences in the glycan composition of trophoblast
related-proteins at the same gestational age could be important
disease biomarkers that await further investigation. Indeed, the
placental expression of GnTV was reported to be elevated in
preeclampsia compared to normal pregnancies [143]. Thus,
increased gal-1 expression as we have demonstrated in late-onset
preeclampsia could represent a protective mechanism of the
trophoblast to overcome the severe inflammatory milieu that
characterizes the syndrome [47]. This is an interesting example
of how the metabolic status of trophoblast cells is reflected by
their glycan signature, which is shaped by the intracellular
levels of GnTV expression affecting the quality and branching of complex N-glycans and therefore modulating galectin binding.

Glycosylation in pregnancy, term, and preterm labor

Protein glycosylation is of fundamental importance at all stages of human pregnancy from conception and implantation to delivery. Especially important are antennae sequences of N- and O-glycans which are potential ligands for lectins. Figure 3 displays the repertoire of glycan epitopes which are known to be expressed in the human male and female reproductive tracts. Both human gametes express functionally important glycoproteins. Glycoproteins of the extracellular matrix zona pellucida of the oocyte, present the sialyl-LexisX sequence \([\text{NeuAc}_{\alpha 2-3}\text{Gal}_{\beta 1-4}(\text{Fuc}_{\alpha 1-3})\text{GlcNAc}]\) as their major terminal structures on both N- and O-linked glycans. This terminal sialyl-LexisX sequence was shown to be the ligand that mediated sperm-egg binding [144].

Characterization of human sperm N-glycans identified high mannose, biantennary complex glycans with bisecting GlcNAc and multi-antennary complex N-glycans with LewisX and LewisY \([\text{Fuc}_{\alpha 1-2}\text{Gal}_{\beta 1-4}(\text{Fuc}_{\alpha 1-3})\text{GlcNAc}]\) sequences. Such N-glycan structural features have been associated with inhibition of both the adaptive and innate immune systems [145]. High levels of LewisX and LewisY sequences were also observed on human seminal plasma N-glycans (and O-glycans), but levels of biantennary complex glycans with bisecting GlcNAc were reduced. This altered glycosylation profile would be more implicated with inhibition of the adaptive immune system and less so with inhibition of the innate immune response [146]. The presence of immunosuppressive glycans on sperm and in seminal plasma might function in improving fertilization outcomes [147].

Some of the most studied pregnancy-associated cell types are trophoblast cells, which are required for the formation and maintenance of the placenta and therefore functionally mediate the exchange of gases, transport of nutrients, and hormone production. There are different sub-types of trophoblast cells, EVT, which invade decidua and spiral arteries and are important in maintaining maternal blood supply into the placenta, syncytiotrophoblasts (STB), which are located on the villous surface and therefore are the primary cellular interface between the maternal blood supply and placental villi, and cytotrophoblasts (CTB), which are located just below the STBs. Glycomic characterization of the N-glycans of these cells revealed both common and differential glycan structural features. All three cell types expressed abundant high mannose glycans and dominance of \(\alpha 2-3\) linked sialylated glycans over \(\alpha 2-6\) linked. All cell types also expressed complex biantennary glycans with bisecting GlcNAc, but levels in EVT were lower than in CTB and STB. In contrast, EVT expressed higher levels of multiantennary and poly lactosamine extended complex N-glycans compared to CTB and STB. The \(\alpha 2-3\) linked sialylated termini and the poly lactosamine antennae are both potential ligands for galectins.

A genome-wide association study (GWAS) has found that slit guidance ligand \(\mathcal{g}\)–roundabout guidance receptor 1 (SLIT2-ROBO1) signaling in trophoblasts is associated with PTB and that higher mRNA levels of \(\text{SLIT}2\) and \(\text{ROBO1}\) are detected in the basal plate of placentas from PTB samples [148]. Interestingly, knockdown of \(\text{ROBO1}\) in trophoblast-
derived cells upregulated 6 of 10 pregnancy-specific glycoproteins (PSGs). PSGs are members of the immunoglobulin superfamily and are produced by trophoblast cells and pass into the maternal blood supply during pregnancy. All 10 PSGs have been implicated in immunomodulatory functions [149] and are important for the maintenance of normal pregnancy [150]. PSGs contain multiple potential N-glycosylation sequences and also potential sites for O-glycosylation and evidence of glycosylation have been indicated by lectin binding studies [151]. Recently, we have characterized PSG1 in detail in terms of its glycosylation [152]. We showed that PSG1 contains multi-antennary complex N-glycans with high levels of α2-3 sialic acid capping. Low levels of N-glycans with bisecting GlcNAc were also observed. In addition, we demonstrated that PSG1 specifically interacts with gal-1-1 with an estimated K_D of 0.13uM. Of potential functional importance, the binding of PSG1 by gal-1 protected it from oxidative inactivation.

The best-characterized pregnancy-associated glycoprotein in amniotic fluid is glycolelin A (GdA), which is a member of the lipocalin family of proteins. Lipocalins are a large family of small proteins that share tertiary structures and, except for glycolelin, typically transport or store small biological compounds such as vitamins and steroid hormones. Schiefner et al. [153] have determined the crystal structure of GdA and showed that it forms a dimer that presents its N-glycans in an array format conducive to high-affinity lectin binding. Interestingly the glycolelin gene has only been found in humans and higher primates and Schiefner et al. have pointed out that the occurrence of glycolelin coincides with the evolution of menstruation in higher primates. The detailed structural characterization of GdA N-glycosylation showed that two of the three potential N-glycosylation sites are occupied and that there is site-specific glycosylation. Asn-28 carries high mannose, hybrid, and complex-type structures whereas Asn-63 exclusively carries complex glycans [154]. Subsequent analyses using more sensitive mass spectrometry methodologies revealed the presence of a more complex glycome including tri- and tetra-antennary complex structures carrying the Sda epitope (NeuAcα2–3GalNAcβ1–4Gal) [155]. Interestingly, it has also been demonstrated that GdA from women with gestational diabetes mellitus (GDM) have altered N-glycan structures with reduced levels of α2-6 sialylation and high mannose glycans and an increase in levels of Sda epitopes. These glycosylation changes correlated with reduced immunosuppressive activity in in vitro assays [156]. It has recently been reported that the odds of PTB are 30% higher in women with GDM [157].

T cells are a well-defined target of GdA. GdA has been discovered to inhibit T cell proliferation in response to allogeneic antigens [158] and induce apoptosis of activated T cells [159]. Chronic chorioamnionitis (CCA) is the process of amniotrophic infiltration of maternal T cells, which can break maternal/fetal tolerance and lead to maternal anti-fetal allograft rejection [160]. CCA is one of the major placental lesions of spontaneous preterm birth and is considered as the most common pathology of late preterm birth [161]. Proteomic analysis of amniotic fluid samples has found that GdA is significantly lower in CCA, compared to the samples from acute chorioamnionitis and gestational age-matched controls [162]. These results suggest a pathophysiological link between preterm birth and GdA. The glycans on GdA may be associated with maternal tolerance to fetal antigens and PTB.

Human chorionic gonadotropin (hCG) is another essential pregnancy-associated glycoprotein. Recent glycomic studies have shown that hCG from pregnant women corresponded to mono-, bi-, tri-, and tetra-antennary N-glycans. There was also a substantial amount of bisected N-glycan structures with abundant LewisX capping. Interestingly hCG from women later diagnosed with pre-eclampsia also showed a high abundance of sialylated bi-antennary N-glycans [163].

Dynamic changes in cervical glycosaminoglycans (GAGs) have been found during pregnancy [164]. Six types of GAGs have been identified: hyaluronan (HA), dermatan sulfate (DS), keratan sulfate (KS), chondroitin sulfate (CS), heparin, and heparan sulfate (HS). However, HA exclusively increases from 19% in early pregnancy to 71% at term. In addition, the size of HA decreases in labor, due to higher activity of HA digesting enzyme hyaluronidase. The changes of HA during pregnancy are hypothesized to contribute to cervical ripening for term and PTB.

A potential cause of PTB are infections ascending from the vagina to the intrauterine cavity through the cervical tube [4]. The change of permeability of the cervical tube is related to preterm birth [165]. Mucin glycoproteins are a major constituent of mucus along the cervical tube, which functions as a physical barrier against ascending bacteria. These proteins are extensively O-glycosylated and the O-glycans are heavily clustered in Ser/Thr rich domains, which are separated by short non-glycosylated regions. These O-glycan chains can be terminated by ABO blood groups, Lewis antigens, and sialic acid. As glycans can be used as receptors by many bacterial adhesins during infection, the change of cervical mucus glycans could alter the microbiome in the intrauterine cavity.

Concluding remarks and future perspectives

Current evidences have established that galectins have multiple roles in healthy gestation and regulate the immune response during infections. However, our understating of the role of galectins in parturition is scarce and key
priorities to further reveal their contribution include (1) defining the galectin signature during healthy parturition and preterm labor, (2) delineation of the mechanism (e.g., glycan structures) by which galectins regulate ascending infections and orchestrate the immune response against microbes, and (3) identifying galectins as possible regulators of cervical remodeling and uterine senescence that may predispose to cervical dysfunction and preterm labor in women. Focused studies in animal models and human tissue are likely to reveal the galectin-glycan circuits over the onset of labor and post-partum tissue repair.

Funding information

Open Access funding provided by Projekt DEAL. The writing of this review was supported by the Deutsche Forschungsgemeinschaft (BL1115/2-1, BL1115/4-1, and Heisenberg program BL1115/7-1) to S.M.B. A.D., S.M.H. and G.W. would like to acknowledge funding from The March of Dimes European Preterm Birth Research Centre at Imperial College London.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use is not permitted by statutory regulation or exceeds the permitted

References

1. Blois SM, Dveksler G, Vasta GR, Freitag N, Blanchard V, Barrientos G (2019) Pregnancy galectinology: insights into a complex network of glycan binding proteins. Front Immunol 10:1166. https://doi.org/10.3389/fimmu.2019.01166
2. Vasta GR, Feng C, Gonzalez-Montalban N, Mancini J, Yang L, Abernathy K, Frost G, Palm C (2017) Functions of galectins as ‘self/non-self-recognition and effector factors. Pathogens Dis 75(5). https://doi.org/10.1093/femsdp/fbx046
3. Watts DH, Krohn MA, Hillier SL, Eschenbach DA (1992) The association of occult amniotic fluid infection with gestational age and neonatal outcome among women in preterm labor. Obstet Gynecol 79(3):351–357. https://doi.org/10.1097/00006250-199203000-00005
4. Goldenberg RL, Hauth JC, Andrews WW (2000) Intrauterine infection and preterm delivery. N Engl J Med 342(20):1500–1507
5. Barondes SH, Castronovo V, Cooper DN, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hiraibayashi J, Hughes C, Kasai K et al (1994) Galectins: a family of animal beta-galactoside-binding lectins. Cell 76(4):597–598. https://doi.org/10.1016/0092-8674(94)90498-7
6. Than NG, Romero R, Balogh A, Karpati E, Mastrolia SA, Staretz-Chachom O, Hahn S, Erezy O, Papp Z, Kim CJ (2015) Galectins: double-edged swords in the cross-roads of pregnancy complications and female reproductive tract inflammation and neoplasia. J Pathol Translat Med 49(3):181–208. https://doi.org/10.4132/jptm.2015.02.25
7. Liu FT, Patterson RJ, Wang J (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572(2-3):263–273
8. Hernandez JD, Baum LG (2002) Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology 12(10):127R–136R
9. Nickel W (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic (Copenhagen, Denmark) 6(8):607–614
10. He J, Baum LG (2006) Galectin interactions with extracellular matrix and effects on cellular function. Methods Enzymol 417:247–256. https://doi.org/10.1016/S0076-6879(06)17017-2
11. Ochieng J, Furtak V, Lukyanov P (2002) Extracellular functions of galectin-3. Glycocon J 19(7-9):527–535. https://doi.org/10.1023/B:GLYC.0000014082.99675.2f
12. Fred Brewer C (2002) Binding and cross-linking properties of galectins. Biochim Biophys Acta 1572(2-3):255–262. https://doi.org/10.1016/s0006-6879(02)00312-4
13. Yang KY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17. https://doi.org/10.1017/S1462399408000719
14. Cummings RD, Liu FT, Vasta GR (2015) Galectins. In: RD, Varki A, Cummings RD et al. (eds) Essentials of glycobiology. Cold Spring Harbor (NY), pp 469–480. doi:https://doi.org/10.10110/glycobiology.3e.036
15. Blois SM, Ilarregui JM, Tometten M, Garcia M, Orsal AS, Cordo-Bello D (2009) Galectins and control of cell fate. Glycobiology 12(10):127R–136R
16. Barrientos G (2019) Pregnancy galectinology: insights into a complex network of glycan binding proteins. Front Immunol 10:1166. https://doi.org/10.3389/fimmu.2019.01166
17. Cummings RD, Liu FT, Vasta GR (2015) Galectins. In: RD, Varki A, Cummings RD et al. (eds) Essentials of glycobiology. Cold Spring Harbor (NY), pp 469–480. doi:https://doi.org/10.10110/glycobiology.3e.036
18. Rabinovich GA, Toscano MA (2009) Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9(5):338–352. https://doi.org/10.1038/nri2536
19. Liu FT, Rabinovich GA (2010) Galectins: regulators of acute and chronic inflammation. Ann N Y Acad Sci 1183:158–182. https://doi.org/10.1111/j.1749-6632.2009.05131.x
20. Sato S, St-Pierre C, Bbaumik P, Nieminen J (2009) Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol Rev 230(1):172–187. https://doi.org/10.1111/j.0076-6879.2009.00790.x
21. von Wolff M, Wang X, Gabius HJ, Strowitzki T (2005) Galectin fingerprinting in human endometrium and decidua during the menstrual cycle and in early gestation. Mol Hum Reprod 11(3):189–194
22. Shimizu Y, Kabir-Salmani M, Azadbakht M, Sugihara K, Sakai K, Iwashita M (2008) Expression and localization of galectin-9 in the human uterus and Endocrinol Metab 90(11):6170–6176
23. Popovici RM, Krause MS, Gernsmeier A, Strowitzki T, von Wolff M (2005) Galectin-9: a new endometrial epithelial marker for the mid- and late-secretory and decidual phases in humans. J Clin Endocrinol Metab 90(11):6170–6176
24. Yang H, Lei C, Zhang W (2012) Expression of galectin-3 in mouse endometrium and its effect during embryo implantation. Reprod BioMed Online 24(1):116–122. https://doi.org/10.1016/j.rbmo.2011.09.003
23. Ochieng J, Leite-Browning ML, Warfield P (1998) Regulation of cellular adhesion to extracellular matrix proteins by galectin-3. Biochem Biophys Res Commun 246(3):788–791. https://doi.org/10.1006/bbrc.1998.8708
24. Tirado-Gonzalez I, Freitag N, Barrientos G, Shaikly V, Nagaeva O, Strand M, Kjellberg L, Klapp BF, Mincheva-Nilsson L, Cohen M, Blois SM (2013) Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy. Mol Hum Reprod 19(1):43–53
25. Jeschke U, Karsten U, Wiest I, Schulze S, Kuhn C, Frieke K, Walzel H (2006) Binding of galectin-1 (gal-1) to the Thomsen-Friedenreich (TF) antigen on trophoblast cells and inhibition of proliferation of trophoblast tumor cells in vitro by gal-1 or an anti-TF antibody. Histochem Cell Biol 126(4):437–444. https://doi.org/10.1007/s00418-006-0178-1
26. Aplin JD (1997) Adhesion molecules in implantation. Rev Reprod 2(2):84–93. https://doi.org/10.1530/1476-8926.000084
27. Lei CX, Zhang W, Zhou JP, Liu YK (2009) Interactions between galectin-3 and integrinbeta3 in regulating endometrial cell proliferation and adhesion. Human Reproduct (Oxford, England) 24(11):2879–2889. https://doi.org/10.1093/humrep/dep250
28. Ander SE, Diamond MS, Coyne CB (2019) Immune responses at the maternal-fetal interface in early pregnancy. Cell Mol Immunol 13(1):73–81. https://doi.org/10.1038/cmi.2014.126
29. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Ander SE, Diamond MS, Coyne CB (2019) Immune responses at the maternal-fetal interface in early pregnancy. Cell Mol Immunol 13(1):73–81. https://doi.org/10.1038/cmi.2014.126
30. Zhu C, Anderson AC, Schubar A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252. https://doi.org/10.1038/ni1271
31. Kopcow HD, Rosetti F, Leung Y, Allan DS, Kukot JL, Strominger JL (2008) T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1. Proc Natl Acad Sci U S A 105(47):18472–18477
32. Heusschen R, Freitag N, Tirado-Gonzalez I, Barrientos G, Moschansky P, Munoz-Fernandez R, Leno-Duran E, Klapp BF, Thijssen VL, Blois SM (2013) Profiling Lgals9 splice variant expression at the fetal-maternal interface: implications in normal and pathological human pregnancy. Biol Reprod 88(1):22
33. Ilarregui JM, Croci DO, Bianco GA, Toscano MA, Salatino M, Vemureme ME, Gefnier JR, Rabinovich GA (2009) Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10(9):981–991
34. Friebe A, Douglas AJ, Solano E, Blois SM, Hagen E, Klapp BF, Clark DA, Arch PC (2011) Neutralization of LPS or blockade of TLR4 signaling prevents stress-triggered fetal loss in murine pregnancy. J Mol Med (Berl) 89(7):689–699
35. Blois SM, Conrad ML, Freitag N, Barrientos G (2015) Galectins in angiogenesis: consequences for gestation. J Reprod Immunol 108:33–41
36. Thijssen VL, Barkan B, Shoji H, Aries IM, Mathieu V, Deltour L, Hackem TM, Kiss R, Kloog Y, Poirier F, Griffioen AW (2010) Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res 70(15):6216–6224
37. Hsieh SH, Ying NW, Wu MH, Chiang WF, Hsu CL, Wong TY, Jin YT, Hong TM, Chen YL (2008) Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 27(26):3746–3753
38. Douglas NC, Tang H, Gomez R, Pytowski B, Hicklin DJ, Sauer CM, Kniawjas J, Sauer MV, Zimmermann RC (2009) Vascular endothelial growth factor receptor 2 (VEGFR-2) functions to promote uterine decidua angiogenesis during early pregnancy in the mouse. Endocrinology 150(8):3845–3854
39. Halder JB, Zhao X, Soker S, Parta BC, Klagsbrun M, Das SK, Dey SK (2000) Differential expression of VEGF isoforms and VEGF(164)-specific receptor neuropilin-1 in the mouse uterus suggests a role for VEGF(164) in vascular permeability and angiogenesis during implantation. Genesis 26(3):213–224
40. Freitag N, Tirado-Gonzalez I, Barrientos G, Herse F, Thijssen VL, Huppertz B, Osol G, Mandala M, Stalith AF, Deche R, Blois SM (2013) Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia. Proc Natl Acad Sci U S A 110(28):11451–11456. https://doi.org/10.1073/pnas.1307701110
41. Kliman HJ, Sammar M, Grimpel YI, Lynch SK, Milano KM, Pick E, Bejar J, Arad A, Lee JJ, Meiri H, Gonen R (2012) Placental protein 13 and decidual zones of necrosis: an immunological discovery that may be linked to preeclampsia. Reprod Sci (Thousand Oaks, Calif) 19(1):16–30
42. Giszlar S, Huppeh B, Osoi G, Skarphedinsson JO, Mandala M, Meiri H (2013) Effects of placental protein 13 on the cardiovascular system in gravid and non-gravid rodents. Fetal Diagn Ther 33(4):257–264
43. Drobnjak T, Giszlar S, Gokina NI, Meiri H, Mandala M, Huppeh B, Osoi G (2017) Placental protein 13 (PP13)-induced vasodilation of resistance arteries from pregnant and non-pregnant rats occurs via endothelial-signaling pathways. Hypertens Pregnancy 36(2):186–195. https://doi.org/10.1080/10641955.2017.1295052
44. Giszlar S, Sigurdardottir ER, Meiri H, Huppeh B, Sammar M, Sharabi-Nov A, Mandala M, Osoi G (2016) Placental protein
13 administration to pregnant rats lowers blood pressure and augments fetal growth and venous remodeling. Fetal Diagn Ther 39(1):56–63. https://doi.org/10.1159/000381914

52. El-Azzamy H, Balogh A, Romero R, Xu Y, LaJeunesse C, Plazyo O, Xu Z, Price TG, Dong Z, Tarca AL, Papp Z, Hassan SS, Chaiworapongs A, Kim CJ, Gomez-Lopez N, Than NG (2017) Characteristic changes in decidual gene expression signature in spontaneous term parturition. J Pathol Transl Med 51(3):264–283. https://doi.org/10.4132/jptm.2016.12.20

53. Eenming EA, Harrington SM, Creedon DJ, Ruano R, Markovic SN, Dong H, Dranca RS (2018) Immune checkpoint molecules soluble program death ligand 1 and galectin-9 are increased in pregnancy. Am J Reprod Immunol 79(2). https://doi.org/10.1111/aji.12795

54. Phillips B, Knisely K, Weitlauf KD, Dorsett J, Lee V, Weitlauf H (1996) Differential expression of two beta-galactoside-binding lectins in the reproductive tracts of pregnant mice. Biol Reprod 55(3):548–558

55. Collaborators GBDRF, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, Burnett R, Casey D, Coates MM, Cohen A, Delwiche K, Estep K, Frostad JJ, Astha KC, Khu H, Moradi-Lakeh M, Ng M, Slepak EL, Thomas BA, Wagner J, Aasvam GM, Abbafati C, Abbasoglu Ozgoren A, Abo-Allah F, Abere SF, Aboyans V, Abraham B, Abraham JP, Abubakar I, Abu-Rmeileh NM, Aburto TC, Achele T, Adelekan A, Adeko K, Adou AK, Aduar JC, Afshin A, Agrawal EE, Al Khabouri MJ, Al Amri FH, Alam SS, Alasfoor D, Albittar MI, Allegran MA, Almero ZA, Alfonso-Cristano R, Aliabib S, Ali R, Ali MK, All A, Allebeck P, Allen PJ, Alsharif U, Alvarez E, Alvis-Guzman N, Anawama AA, Amare AT, Ameh EA, Ameli O, Amin H, Ammar W, Amato J, Aparicioez N, Anand J, Anderson BO, Antonio CA, Anvari P, Argueso Cunningham S, Arnlorg J, Arsenijevic V, Artaman A, Assadi R, Asghar RJ, Amare AT, Ameh EA, Ameli O, Amini H, Ammar W, Amato J, Aparicioez N, Anand J, Anderson BO, Antonio CA, Anvari P, Argueso Cunningham S, Arnlorg J, Arsenijevic V, Artaman A, Assadi R, Asghar RJ, Amare AT, Ameh EA, Ameli O, Amini H, Ammar W, Amato J, Aparicioez N, Anand J, Anderson BO, Antonio CA, Anvari P, Argueso Cunningham S, Arnlorg J, Arsenijevic V, Artaman A, Assadi R, Asghar RJ, 2017. Characteristic changes in decidual gene expression signature in spontaneous term parturition. J Pathol Translat Med 51(3):264–283. https://doi.org/10.4132/jptm.2016.12.20
in human placenta: implications in fetal infection. Placenta 28(10):1024–1031

76. Patni S, Wynen LP, Seager AL, Morgan G, White JO, Thornton CA (2009) Expression and activity of Toll-like receptors 1-9 in the human term placenta and changes associated with labor at term. Biol Reprod 80(2):243–248. https://doi.org/10.1095/biolreprod.108.069252

77. Koga K, Cardenas I, Aldo P, Abrahams VM, Peng B, Fill S, Romero R, Mor G (2009) Activation of TLR3 in the trophoblast is associated with preterm delivery. Am J Reprod Immunol 61(3):196–212. https://doi.org/10.1111/j.1600-0897.2008.00682.x

78. Kim YM, Romero R, Chaiworapongsa T, Kim GJ, Kim MR, Kuvianieni H, Tromp G, Espinosa J, Bujold E, Abrahams VM, Mor G (2004) Toll-like receptor-2 and -4 in the chooroamniotic membranes in spontaneous labor at term and in preterm parturition that are associated with chorioamnionitis. Am J Obstet Gynecol 191(4):1346–1355. https://doi.org/10.1016/j.ajog.2004.07.009

79. Abrahams VM, Aldo PB, Murphy SP, Visintin I, Koga K, Wilson G, Romero R, Sharma S, Mor G (2008) TLR6 modulates first trimester trophoblast responses to peptidoglycan. J Immunol 180(9):6035–6043. https://doi.org/10.4049/jimmunol.180.9.6035

80. Elovitz MA, Wang Z, Chien EK, Rychlik DF, Phillippe M (2003) A new model for inflammation-induced preterm birth: the role of platelet-activating factor and Toll-like receptor-4. Am J Pathol 163(5):2103–2111. https://doi.org/10.1016/S0002-9440(10)63567-5

81. Wang H, Hirsch E (2003) Bacterially-induced preterm labor and infection in human term placenta and changes associated with labor at term. J Reprod Immunol 58(3):267–272. https://doi.org/10.1016/S0165-7451(01)00083-7

82. Li L, Kang J, Lei W (2010) Role of Toll-like receptor 4 in inflammation-induced preterm delivery. Mol Hum Reprod 16(4):267–272. https://doi.org/10.1093/molehr/gap106

83. Adams Waldorf KM, Persing D, Novy MJ, Sadowsky MV, Gravett MG (2008) Pretreatment with toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys. Reprod Sci 15(2):121–127. https://doi.org/10.1177/1933719107310992

84. Robertson SA, Skinner RJ, Care AS (2006) Essential role for IL-10 in resistance to lipopolysaccharide-induced preterm labor in mice. J Immunol 177(7):4888–4896. https://doi.org/10.4049/jimmunol.177.7.4888

85. Terrone DA, Rinehart BK, Granger JP, Barrilleaux PS, Martin JN Jr, Bennett WA (2001) Interleukin-10 administration and bacterial endotoxin-induced preterm birth in a rat model. Obstet Gynecol 98(3):476–480. https://doi.org/10.1097/00006255-200109000-00013

86. Cappelletti M, Presicce P, Lawson MJ, Chaturvedi V, Stankiewicz TE, Vaneoni S, Harley IT, McAlees JW, Giles DA, Moreno-Rodriguez CA, Chantrel J, Jousse M, Desseuave D, Plennevaux JL, Delaeter C, Deghilei S, Persson A, Gyozay E, Guinard E, Faure K, Grandbastien B, Ancel PY, Golfinet F, Dessein R (2018) Early clindamycin for bacterial vaginosis in pregnancy (PREVEMBA): a multicentre, double-blind, randomised controlled trial. Lancet (London, England) 392(10160):2171–2179. https://doi.org/10.1016/S0140-6736(18)31617-9

87. Kindinger LM, MacIntyre DA, Lee YS, Marchesi JR, Smith A, Nicholson JK, Teoh TG, Bennett PR (2016) Relationship between vaginal microbial dysbiosis, inflammation, and pregnancy outcomes in cervical cerclage. Scand J Med Sci 8(350):350ra102. https://doi.org/10.1123/scitransmed.aag1026

88. Romero R, Espinoza J, Goncalves LF, KusanoVIC J, Fried L, Hassan S (2007) The role of inflammation and infection in preterm birth. Semin Reprod Med 25(1):21–39. https://doi.org/10.1055/s-2006-956773

89. Menez GL, Saadoun F, Boussif S, Renders M, Vercammen J, De Vos M, Koning C (2003) Bacterial aetiological agents of intra-amniotic infections and preterm birth in pregnant women. Front Cell Infect Microbiol 3:58. https://doi.org/10.3389/fcimb.2013.00058

90. Subtil D, Braissant G, Tilloy E, Devos P, Canis F, Fruchart A, Tessier C, Dumont J, Lacombe N, Raoult D, Dolaire B, Bourriere M, Biard G, Poissonnet J, El Hassani D, Fichou L, Fournier P (2010) Role of Toll-like receptor 4 in inflammation-induced preterm delivery. Mol Hum Reprod 16(4):267–272. https://doi.org/10.1093/molehr/gap106

91. Breechenden D, Rooney G (2000) Interventions for treating genital chlamydia trachomatis infection in pregnancy. Cochrane Database Syst Rev (2):Cd000054. https://doi.org/10.1002/14651858.CD000054

92. Brocklehurst P, Rooney G (2000) Interventions for treating genital chlamydia trachomatis infection in pregnancy. Cochrane Database Syst Rev (2):Cd000054. https://doi.org/10.1002/14651858.CD000054

93. Khahtar B, Emboll AS, Karlsson MA, Svare J, Sneyder K, Hee L, Weile LK, Ziobrowska-Bech A, Ostepaard C, Jensen JS, Helmg RB, Uldberj N (2016) Treatment of bacterial vaginosis in pregnancy in order to reduce the risk of spontaneous preterm delivery - a clinical recommendation. Acta Obstet Gynecol Scand 95(8):850–860. https://doi.org/10.1111/aogs.12933

94. Yudin MH, Money DM (2008) Screening and management of bacterial vaginosis in pregnancy. J Obstet Gynaecol Can 30(8):702–708. https://doi.org/10.1016/j.jogc.2008.05.009

95. Reekie J, Roberts C, Preen D, Hocking JS, Donovan B, Ward J, Mak DB, Liu B (2018) Chlamydia trachomatis and the risk of spontaneous preterm birth, infants who are born small for gestational age, and stillbirth: a population-based cohort study. Lancet Infect Dis 18(4):452–460. https://doi.org/10.1016/s1473-3099(18)30045-8

96. Ahmadi A, Ramazanazadeh R, Sayehmiri K, Sayehmiri F, Amirnazari F (2018) Association of Chlamydia trachomatis infection with preterm delivery: a systematic review and meta-analysis. BMC Pregnancy Childbirth 18(1):240–240. https://doi.org/10.1186/s12884-018-1866-0

97. Bianchi-Jassir F, Seale AC, Kohli-Lynch M, Lawe JE, Baker CJ, Bartlett L, Cutland C, Gravett MG, Heath PT, Ip M, Lo Doare K, Madihi SA, Saha SK, Schrag S, Sobanjo-Ter Meulen A, Vellemans J, Rubens CE (2017) Preterm Birth Associated With Pregnancy, Maternal Colonization Worldwide: Systematic Review and Meta-analyses. Clin Infect Dis 5:1355–1358. https://doi.org/10.1093/cid/cir1008

98. Howe K, Kissing J, Converti B (2017) Single-Dose Compared With Multidose Metronidazole for the Treatment of Trichomoniasis in Women: A Meta-Analysis. Sex Transm Dis 44(1):29–34. https://doi.org/10.1097/OLQ.0000000000000537

99. Vasta GR (2009) Roles of galecins in infection. Nat Rev Microbiol 7(6):424–438. https://doi.org/10.1038/nrmicro2146

100. Vasta GR (2020) Galecins in host-pathogen interactions: structural, functional and evolutionary aspects. Adv Exp Med Biol 1204:169–196. https://doi.org/10.1007/978-1-5334-00004-7

101. Cerlanti JP, Stowell SR, Mascarenhas ID, Arthur CM, Cummings RD, Rabinovich GA (2011) Expanding the universe of cytokines and pattern recognition receptors: galecins and glycans in innate immunity. J Clin Immunol 31(1):10–21. https://doi.org/10.1007/s10875-010-9494-2

102. Singh BN, Hayes GR, Lucas JJ, Sommer U, Viseux N, Mirgorodskaya E, Trifonova RT, Sassi RR, Costello CE, Fichorova RN (2009) Structural details and composition of Trichomonas vaginalis lipophosphoglycan in relevance to the
epithelial immune function. Glycoconjug J 26(1):3–17. https://doi.org/10.1007/s10719-008-9157-1

103. Fichorova RN, Trifonova RT, Gilbert RO, Costello CE, Hayes GR, Lucas JJ, Singh BN (2006) Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells. Infect Immun 74(10):5773–5779. https://doi.org/10.1128/iai.00631-06

104. Lujan AL, Croci DO, Gambarte Tudela JA, Losindo AD, Cagnoni AJ, Marino KV, Damiani MT, Rabinovich GA (2018) Glycosylation-dependent galectin-receptor interactions promote Chlamydia trachomatis infection. Proc Natl Acad Sci U S A 115(26):E6000–e6009. https://doi.org/10.1073/pnas.1802188115

105. Surve MV, Anil A, Karnaeth KG, Bhutta S, Sthananu LK, Pradhan A, Srivastava R, Basu B, Dutta S, Sen S, Modi D, Banerjee A (2016) Membrane vesicles of group B Streptococcus disrupt feto-maternal barrier leading to preterm birth. PLoS Pathog 12(9):e1005816. https://doi.org/10.1371/journal.ppat.1005816

106. Demmert M, Faust K, Bohlmann MK, Troger B, Gopel W, Horting E, Hartel C (2012) Galectin-3 in cord blood of term and preterm infants. Clin Exp Immunol 167(2):246–251. https://doi.org/10.1111/j.1365-2249.2011.04509.x

107. Imazumi T, Yoshida H, Nishi N, Sashimini H, Nakamura T, Hirashima M, Ohyama C, Itoh K, Satoh K (2007) Double-stranded RNA induces galectin-9 in vascular endothelial cells: involvement of TLR3, PI3K, and IRF3 pathway. Glycobiology 17(7):12C–15C. https://doi.org/10.1093/glycob/cwm045

108. Pearson MJ, Bik MA, Ospehi C, Naylor AJ, Wehmeyer C, Jones SW, Buckley CD, Gay S, Filer A, Lord JM (2018) Endogenous galectin-9 suppresses apoptosis in human rheumatoid arthritis synovial fibroblasts. Sci Rep 8(1):12887. https://doi.org/10.1038/s41598-018-31173-3

109. Harwood NM, Golden-Mason L, Cheng L, Rosen HR, Mengshol JA (2016) HCV-infected cells and differentiation increase monocyte immunoregulatory galectin-9 production. J Leukoc Biol 99(3):495–503. https://doi.org/10.1189/jlb.5A1214-582R

110. Arad U, Madar-Balakirski N, Angel-Kornan A, Amir S, Tzadok S, Segal O, Menachem A, Gold A, Elkayam O, Caspi D (2015) Galectin-3 is a sensor- regulator of toll-like receptor pathways in synovial fibroblasts. Cytokine 73(1):30–35. https://doi.org/10.1016/j.cyto.2015.01.016

111. Cobb CM, Kelly PJ, Williams KB, Babbar S, Angolkar M, Martin MJ, Osman AM, Salomonsson E, Amar L, Persson A, Blomgren K, Achour A, Englund E, Leffler H, Venero JL, Joseph B, Deierborg T (2015) Microglia-secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell Rep 10(9):1626–1638. https://doi.org/10.1016/j.celrep.2015.02.012

112. Kasamatsu A, Uzawa K, Shimada K, Shibira M, Otsuka Y, Seki N, Abiko Y, Tannawa H (2005) Elevation of galectin-9 as an inflammatory response in the periodontal ligament cells exposed to Porphyromonas gingivalis lipopolysaccharide in vitro and in vivo. Int J Biochem Cell Biol 37(2):397–408. https://doi.org/10.1016/j.biocel.2004.07.014

113. Moore E, Blatt K, Chen A, Van Hook J, DeFranco EA (2016) Relationship of trimester-specific smoking patterns and risk of preterm birth. Am J Obstet Gynecol 215(1):e101–e109. https://doi.org/10.1016/j.ajog.2016.01.167

114. Crowther CA, Ashwood P, McPhee AJ, Flanvary V, Tran T, Dodd JM, Robinson JS, Group PS (2017) Vaginal progesterone pessaries for pregnant women with a previous preterm birth to prevent neonatal respiratory distress syndrome (the PROGRESS Study): a multicentre, randomised, placebo-controlled trial. PLoS Med 14(9):e1002390. https://doi.org/10.1371/journal.pmed.1002390

115. Berghella V, Palacio M, Ness A, Alfirevic Z, Nicolaides KH, Saccone G (2017) Cervical length screening for prevention of preterm birth in singleton pregnancy with threatened preterm labor: systematic review and meta-analysis of randomized controlled trials using individual patient-level data. Ultrasound Obstet Gynecol 49(3):322–329. https://doi.org/10.1002/uog.17388

116. Melchor JC, Khalil A, Wing D, Schlessener E, Surbek D (2018) Prediction of preterm delivery in symptomatic women using PAMG-1, fetal fibronectin and phlGFBP-1 tests: systematic review and meta-analysis. Ultrasound Obstet Gynecol 52(4):442–451. https://doi.org/10.1002/uog.19119

117. Norman JE, Marlows MM, Messow CM, Shennan A, Bennett PR, Thornton S, Robson SC, McNamachie A, Petrou S, Selbrie NJ, Lavender T, Whyte S, Norrie J, Group OS (2016) Vaginal progesterone prophylaxis for preterm birth (the OPTIMUM study): a multicentre, randomised, double-blind trial. Lancet (London, England) 387(10033):2106–2116. https://doi.org/10.1016/S0140-6736(16)30350-0

118. Nicolaides KH, Syngelaki A, Poon LC, Picciarelli G, Tul N, Zamprakou A, Skyfta E, Parra-Cordero M, Palma-Dias M, Rodriguez Calvo J (2016) A randomized trial of a cervical pessary to prevent preterm singleton birth. N Engl J Med 374(11):1044–1052. https://doi.org/10.1056/NEJMoa1511014

119. Berghella V, Odibo AO, To MS, Rust OA, Althuisius SM (2005) Cerclage for short cervix on ultrasonography: meta-analysis of trials using individual patient-level data. Obstet Gynecol 106(1):181–189. https://doi.org/10.1097/00006843.17200.53

120. Roberts D, Brown J, Medley N, Dalziel SR (2017) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 3:CD004454. https://doi.org/10.1002/14651858.CD004454.pub3

121. Tormie M, Isaka S, Miyoshi E, Taniguchi N, Kimura T, Ogita K, Tsutsui T, Shimoya K, Nakagawa T, Kondo A, Koyama M, Murata Y (2005) Elevated expression of N-acetylglucosaminyltransferase V in first trimester human placenta. Biochem Biophys Res Commun 330(3):999–1004. https://doi.org/10.1016/j.bbrc.2005.02.186

122. Yamamoto E, Iino K, Miyoshi E, Inamori K, Abe A, Sumigama S, Iwase A, Kajiyama H, Shibata K, Nawa A, Kikkawa F (2009) N-acetylglucosaminyltransferase V regulates extravillous trophoblast invasion through glycosylation of alpha5beta1 integrin. Endocrinology 150(2):990–999. https://doi.org/10.1210/en.2008-1005
128. Ji L, Brikj J, Liu M, Fu G, Peng C, Wang YL (2013) Placental trophoblast cell differentiation: physiological regulation and pathological relevance to preeclampsia. Mol Asp Med 34(5):981–1023. https://doi.org/10.1016/j.mam.2012.12.008

129. Jansen BC, Bondt A, Reiding KR, Lonardi E, de Jong CJ, Falck D, Kämmeier GS, Dolhain RJ, Rombouts Y, Wahrer M (2016) Pregnancy-associated serum N-glycome changes studied by high-throughput MALDI-TOF-MS. Sci Rep 6:23296. https://doi.org/10.1038/srep23296

130. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2):97–130. https://doi.org/10.1093/glycob/3.2.97

131. Lau C, Zoldos V (2010) Protein glycosylation—an evolutionary crossroad between genes and environment. Mol BioSyst 6(12): 2373–2379. https://doi.org/10.1039/c0mb00067a

132. Kaszuba K, Grzybek M, Orlowski A, Danne R, Rog T, Simons K, Coskun U, Vattulainen I (2015) N-glycosylation as determinant of epidermal growth factor receptor conformation in membranes. PRC Natl Acad Sci U S A 112(14):4334–4339. https://doi.org/10.1073/pnas.150262112

133. Acheson A, Sunshine JL, Rutishauser U (1991) NCAM polysialic acid can regulate both cell-cell and cell-substrate interactions. J Cell Biol 114(1):143–153

134. Kolundzic N, Bojić-Trbojević Ž, Kovačević T, Stefanoska I, Kadoya T, Vićovac L (2011) Galectin-1 is part of human trophoblast invasion machinery - a functional study in vitro. PLoS One 6(12):e28514

135. Bojić-Trbojević Z, Jovanovic Krivokuca M, Stefanoska I, Kolundzic N, Viliotic A, Kadoya T, Vićovac L (2018) Integrin beta1 is bound to galectin-1 in human trophoblast. J Biochem 163(1):39–50. https://doi.org/10.1093/jb/mvx061

136. Moss L, Prakobphol A, Wiedmann TW, Fisher SJ, Damsky CH (2007) The di-6-sialyl Lewisx terminating N-glycans on human sperm. J Biol Chem 282(50):36593–36602. https://doi.org/10.1074/jbc.M705134200

137. Pang PC, Tissot B, Drobins EZ, Morris HR, Clark GF, Dell A (2009) Analysis of the human seminal plasma glycome reveals the presence of immunomodulatory carbohydrate functional groups. J Proteome Res 8(11):4906–4915. https://doi.org/10.1021/pr9001756

138. Szczepkutowicz J, Kaluza A, Kazmierskowa-Niemczuk M, Ferens-Sieczkowska M (2019) The potential role of seminal plasma in the fertilization outcomes. Biomed Res Int 2019:5397804. https://doi.org/10.1155/2019/5397804

139. Kadoya T, Vić T, Stefanoska I, Radojcic L, Vicovac L (2011) Galectin-1 is part of human trophoblast migration and invasion by regulating matrix metalloproteinase-2 and -9 and integrins alpha5 and beta1. J Reprod Immunol 84–85:43–50. https://doi.org/10.1016/j.jri.2010.01.008

140. Jovanovic M, Stefanoska I, Radojicic L, Vićovac L (2010) Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP)2 and MMP9 and integrins alpha5 and beta1. Reproduction 139(4):789–798. https://doi.org/10.1530/REP-09-0341

141. Li CM, Hou L, Zhang H, Zhang WY (2014) CCL17 induces cell-type specific. Glycobiology 4(5):567–575

142. Liao WC, Liu CH, Chen CH, Hsu WM, Liao YY, Chang HM, Lan CT, Huang MC, Shyu MK (2015) beta-1,4-galactosyltransferase III suppresses extravillous trophoblast invasion through modifying beta1-integrin glycosylation. Placenta 36(4):357–364. https://doi.org/10.1016/j.placenta.2015.01.008

143. Deng Q, Chen Y, Yin N, Shan N, Luo X, Yuan Y, Liu Y, Liu X, Qi H (2017) The role of MGAT5 in human umbilical vein endothelial cells. Reprod Sci 24(2):313–323. https://doi.org/10.1177/1933719116655602

144. Pang PC, Chiu PC, Lee CL, Chang LY, Panico M, Morris HR, Haslam SM, Khoo KH, Clark GF, Yeung WS, Dell A (2011) Human sperm binding is mediated by the sia1-Lewis(x) oligosaccharide on the zona pellucida. Science 333(6050):1761–1764. https://doi.org/10.1126/science.1207438

145. Pang PC, Tissot B, Drobins E, Sutosky P, Morris HR, Clark GF, Dell A (2007) Expression of bisecting type and Lewisx/Lewisy terminated N-glycans on human sperm. J Biol Chem 282(50):36593–36602. https://doi.org/10.1074/jbc.M705134200

146. Lee CL, Chiu PC, Pang PC, Chu IK, Lee CF, Koistinen R, Koistinen H, Seppala M, Morris HR, Tissot B, Panico M, Dell A, Yeung WS (2011) Glycosylation failure extends to glycoproteins in gestational diabetes mellitus: evidence from reduced alpha2-6 sialylation and impaired immunomodulatory activities.
of pregnancy-related glycodein-A. Diabetes 60(3):909–917. https://doi.org/10.2337/db10-1186

157. Billionnet C, Mitanchez D, Weill A, Nizard J, Alla F, Hartemann A, Jacqueminet S (2017) Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia 60(4):636–644. https://doi.org/10.1007/s00125-017-4206-6

158. Bolton AE, Pockley AG, Clough KJ, Mowles EA, Stoker RJ, Westwood OM, Chapman MG (1987) Identification of placental protein 14 as an immunosuppressive factor in human reproduction. Lancet 1(8533):593–595. https://doi.org/10.1016/s0140-6736(87)90235-2

159. Mukhopadhyay D, Sundereshan S, Rao C, Karande AA (2001) Placental protein 14 induces apoptosis in T cells but not in monocytes. J Biol Chem 276(30):28268–28273. https://doi.org/10.1074/jbc.M010487200

160. Cappelletti M, Della Bella S, Ferrazzi E, Mavilio D, Divanovic S (2016) Inflammation and preterm birth. J Leukoc Biol 99(1):67–78. https://doi.org/10.1189/jlb.3MR0615-272RR

161. Lee J, Kim JS, Park JW, Park CW, Park JS, Jun JK, Yoon BH (2013) Chronic chorioamnionitis is the most common placental lesion in late preterm birth. Placenta 34(8):681–689. https://doi.org/10.1016/j.placenta.2013.04.014

162. Ogge G, Romero R, Lee DC, Gotsch F, Than NG, Lee J, Chaiworapongs A, Dong Z, Mittal P, Hassan SS, Kim CJ (2011) Chronic chorioamnionitis displays distinct alterations of the amniotic fluid proteome. J Pathol 223(4):553–565. https://doi.org/10.1002/path.2825

163. Ibeto L, Antonopoulos A, Grassi P, Pang PC, Panico M, Bobdiwala S, Al-Menar M, Davis P, Davis M, Norman Taylor J, Almeida P, Johnson MR, Harvey R, Bourne T, Seekl M, Clark G, Haslam SM, Dell A (2020) Insights into the hyperglycosylation of human chorionic gonadotropin revealed by glycomics analysis. PLoS One 15(2):e0228507. https://doi.org/10.1371/journal.pone.0228507

164. Akgul Y, Holt R, Mummert M, Word A, Mahendroo M (2012) Dynamic changes in cervical glycosaminoglycan composition during normal pregnancy and preterm birth. Endocrinology 153(7):3493–3503. https://doi.org/10.1210/en.2011-1950

165. Critchfield AS, Yao G, Jaishankar A, Friedlander RS, Lieleg O, Doyle PS, McKinley G, House M, Ribbeck K (2013) Cervical mucus properties stratify risk for preterm birth. PLoS One 8(8):e69528. https://doi.org/10.1371/journal.pone.0069528

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.