Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential

B. B. Brandão

Ankita Poojari
University of the Pacific

Atefeh Rabiee
University of the Pacific, arabiee@pacific.edu

Follow this and additional works at: https://scholarlycommons.pacific.edu/phs-facarticles

Part of the Medicine and Health Sciences Commons

Recommended Citation
Brandão, B. B., Poojari, A., & Rabiee, A. (2021). Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. *International Journal of Molecular Science*, DOI: 10.20944/preprints202105.0008.v1
https://scholarlycommons.pacific.edu/phs-facarticles/440

This Article is brought to you for free and open access by the Thomas J. Long School of Pharmacy at Scholarly Commons. It has been accepted for inclusion in School of Pharmacy Faculty Articles by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.
Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential

Bruna B Brandão 1,†, Ankita Poojari 2,† and Atefeh Rabiee 2,*

1 Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
2 Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA.
† These authors contributed equally to this work.
* Author to whom correspondence should be addressed (arabiee@pacific.edu).

Abstract: The concerning worldwide increase of obesity and chronic metabolic diseases such as T2D, dyslipidemia, and cardiovascular disease motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there is growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Also, we discuss the alterations in brown and beige adipose tissue function during obesity and, explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.

Keywords: Adipose tissue; Development; Molecular circuits; Secretome; Thermogenesis; Metabolism; Obesity; Therapy

1. Introduction

Obesity is the main driver of insulin resistance (IR), type two diabetes (T2D), and metabolic syndrome. Obese subjects, especially the ones with a high percentage of intra-abdominal fat have a greater risk of developing cardiovascular disease (CVD), the leading causes of death in industrial countries (1). The prevalence of obesity is multifactorial and includes socioeconomic, educational status, issues concerning mental health, genetics, sedentarism, and diet (2). It is now appreciated that obesity develops when energy consumption (food intake) overcomes energy expenditure. This induces white adipose tissue (WAT) expansion followed by reduced mass and activity of brown/beige adipocytes (fat cells), thereby contributing to the development of metabolic disorders during obesity (3).

WAT is the principal site for energy storage, while brown and beige adipocytes are the sites for energy expenditure (EE) due to their thermogenic capacity (4). Adipose tissue (AT) is also an important endocrine organ responsible for the secretion of many molecules including lipids (5,6), proteins (7–9), and miRNAs (10). These factors serve as paracrine-endocrine signals, critical for the function of AT itself, as well as non-adipose tissues, regulation of whole-body metabolism, and insulin sensitivity (11). Therefore, interventions that can induce the formation and activation of brown and beige adipocytes such as cold exposure (12), pharmacological activation of the adrenergic pathways (13), or even genetic manipulation of adipocytes (14) are attractive therapies to improve metabolic health in obese humans.

2. Adipose Tissue Development and Origin
Adipocytes are categorized as white or brown depending on their function and morphological characteristics. As an endocrine tissue responsible for hormonal secretion, WAT plays a role in fatty acid (FA) biosynthesis by storing triglyceride (TG), and it is composed of unilocular adipocytes containing a large lipid droplet. By comparison, brown adipose tissue (BAT) plays a role in glucose uptake and FA breakdown, leading to energy dissipation and heat production. Brown adipocytes are multilocular cells with central nuclei and mitochondria rich in the expression of uncoupling protein 1 (Ucp1) (15–17). The primary function of BAT is non-shivering thermogenesis, an energy-intensive process in which chemical fuel is turned into physical heat. In addition to BAT, the process of thermogenesis can also be carried out by a third type of adipocytes known as beige adipocytes. Beige adipocytes share many of their morphological features with brown adipocytes namely the presence of multilocular lipid droplets and abundant mitochondria expressing Ucp1 (15,18). However, unlike brown adipocytes which are committed to the process of thermogenesis, beige adipocytes are a form of thermogenic adipocytes that may be induced within WAT depots sporadically via a white-to-brown transition known as “browning”. The extreme plasticity of beige adipocytes causes the browning process to be reversible and highly dependent on the continuation of energy imbalance caused by external cues. Interestingly, the induced beige adipocytes transition to their original white state soon after the energy balance is restored (19–24).

Even though WAT itself may be categorized broadly into two subtypes of visceral white adipose tissue (vWAT) and subcutaneous white adipose tissue (scWAT), beige adipocytes are mainly known to be induced within scWAT depots (16). vWAT comprises perirenal (prvWAT), perigonadal (pgvWAT), mesenteric (mvWAT), and retroperitoneal (rpvWAT) white adipose tissues. In humans, there are scWAT depots in the cranial, nasal, gastrointestinal, femoral, and gluteal areas. Correspondingly, such scWAT depots are also found in rodents in the anterior subcutaneous white adipose tissues (ascWAT) and the posterior subcutaneous (pscWAT) which include inguinal, dorso-lumbar, and gluteal WAT (15,25). Anatomically, BAT depots are dispersed in the scapulae (interscapular, cervical, and axillary) and thoracic (mediastinal) areas of mice and rats (26). As opposed to the previously held view, that BAT is only present in the neck and shoulder regions of newborn children and infants (27), it has been widely proven by various studies, that active BAT depots with thermogenic capacity are found lying between anterior neck muscles and in the paracervical and supraclavicular regions of adult humans (27–31).

The timeline for the formation of BAT and WAT during embryogenesis also varies with the emergence and development of BAT occurring earlier in all mammalian species compared to WAT. In humans, BAT formation starts at the second gestational trimester where it is observed mainly in the head and neck and it later develops in the trunk, upper, and lower limb regions as well. In rodents, the formation of interscapular BAT occurs between E15-16 (embryonic phase) and increases postnatally between P15-21. Functional BAT formation with the ability to carry out thermogenesis is completed 2 days before birth during the E18-19 (32–35). WAT development also occurs prenatally and the formation of both scWAT and vWAT is completed at the end of gestational weeks 23 and 28, respectively (36). Unlike humans, wherein the formation of WAT is initiated and mostly completed in utero, for rodents, the development of scWAT and vWAT is mostly postnatal. vWAT formation commences after birth and scWAT formation is completed 56 days postpartum (37–39).

Brown and white AT originate and evolve from the mesoderm. vWAT arises from intermediate and lateral plate mesoderm (40–43), while BAT originates from paraxial mesoderm (44). The origin of scWAT is still under dispute, with evidence indicating that the progenitor cells for this AT originate from both mesoderm and neuroectoderm (45–48). Additionally, each type of fat depot consists of distinct and different precursor/progenitor populations that are regulated by various factors affected by age, gender, and environmental conditions. The recent advances in lineage tracing strategies, as well as gene expression studies, showed that white and brown adipocytes originate from different
mesenchymal stem cells (MSCs). In brief, vWAT depots are largely derived from progenitors expressing Wilms tumor 1 (Wt1) (42,49,50) and scWAT depots mainly originate from paired related homeobox 1 (Prx1) expressing progenitors (51–55). Although in the past, it was believed that myogenic factor 5 (Myf5), paired box 3 (Pax3), and paired box 7 (Pax7) expressing progenitors were only responsible for the formation of BAT, it is now understood that scWAT depots of the dorsal–anterior body regions also partly share their origin with the above-listed progenitors (17,47,56–59). Thus, it may be noted that even though adipocytes may develop from a common lineage, they may or may not have similar functions.

Several studies have noted that the existence of various cell surface markers may be used as a strategy to isolate beige and brown progenitors (60). In humans, it was found that Cd34+/Cd31- and Cd34+/Cd146-/Cd45-/Cd56- cells were BAT progenitors in small vessels and fetal muscles, respectively (61). Cd29+/Cd31-/Cd34-/Cd45- progenitor cells lead differentiation to the beige adipocytes within the scWAT depots of humans (62). Moreover, beige adipocytes progenitors in mouse scWAT are marked by Cd81+/Sca1/Lin- and the Cd81+/Pdgfra+/Lin- mark the beige progenitors in human scWAT (63).

One can assume from these studies that Cd34 and Cd81 may be used as markers to identify brown and beige progenitors, respectively. However, isolation of different adipocytes based on such cell surface markers must be done cautiously considering factors such as the location of the depots within which the progenitors have resided and the effect of the surrounding microenvironment (64). It is also known that adipocyte progenitors express platelet-derived growth factor receptors α (Pdgfra) and β (Pdgfrb) (65). In ex vivo studies, the presence of both Pdgfra and Pdgfrb in adipose stromal cells (ASCs) was confirmed (66). However, in adult mice, the progenitors only expressed either Pdgfra or Pdgfrb (67,68). Using Pdgfra Cre recombinase mouse models, the existence of the Pdgfra expressing cells during the normal establishment of WAT was shown. However, the existence of multiple Pdgfra+ populations that some of them are not adipogenic further indicates that Pdgfra expression alone cannot be used to identify adipocyte progenitor populations within WAT (37). Studies in humans and mice have confirmed that commitment towards either beige or white adipogenesis is predetermined by the balance between Pdgfra and Pdgfrb signaling in adipocyte progenitors, and a high level of Pdgfrb expression precedes ASCs differentiation into beige adipocytes. Also, in vitro studies showed that during the initial stages of adipocyte lineage development, Pdgfrb signaling promotes white adipogenesis, whereas Pdgfra signaling is followed by brown adipogenesis (69). As a result of impaired β-adrenergic signaling (a common cue for initiation of browning), a subset of Pdgfra+/Cd34+/Cd29+ progenitors in scWAT expresses myoblast determination protein (MyoD), which supports beige adipogenesis following cold acclimation. However, these MyoD derived beige adipocytes are different from standard beige adipocytes in terms of their developmental origin and their metabolism with these beige adipocytes having enhanced glucose metabolism and therefore, named as glycolytic beige adipocyte. It is now postulated that multiple subtypes of beige thermogenic adipocytes exist and their functions vary based on the nature of external stimuli, such as cold acclimation or diet (70).

3. Molecular Circuits Regulating Brown and Beige Adipose Tissue Development and Function

Adipocyte differentiation happens when multipotent stem cells commit to forming preadipocytes that further undergo terminal differentiation to form mature adipocytes. Despite the differences in developmental origins of brown and beige adipocytes, both cell types share a similar transcriptional cascade involving a distinct chromatin landscape governing a vast gene expression program that controls the process of fat differentiation. The chromatin landscape itself comprises an intricate and complex network of transcriptional regulators (transcription factors and cofactors), epigenetic factors (histone marks
and chromatin methylation), and non-coding RNAs (long non-coding RNAs and microRNAs).

3.1. Transcriptional Regulation of Brown and Beige Adipocytes

Transcription factors (TFs) are DNA binding proteins that activate or repress RNA polymerase II (Pol II)-mediated transcription. These proteins bind to DNA sequences at promoter or other regulatory regions such as enhancers. The core transcriptional machinery coordinated by peroxisome proliferator-activated receptor gamma (Ppary) and members of the C/ebp family of transcription factors (TFs) governing the differentiation process of adipocytes are similar for all types of fat cells and have been extensively discussed elsewhere (16,71–73). Various TFs, cofactors (corepressors and coactivators), and nuclear receptors (NRs) which regulate the process of white versus brown lineage commitment are already known and coordinate functionally in a concerted manner to modulate the principal adipogenic transcriptional machinery. Overall, the process of formation of beige and brown AT by TFs is mainly regulated via a two-fold mechanism i.e., either activation of BAT and beige-selective genes or by suppressing WAT-specific genes. Here, we describe the main brown and beige fat-selective signatures of TFs.

❄ Early β-cell factor 2 (Ebf2) is a marker of committed brown adipocytes that inhibits the expression of MyoD and muscle-specific transcription factor (myogenin) (33,74). The high expression level of Ebf2 in adult human brown preadipocytes suggests its role in brown preadipocyte determination (75). Ebf2 also promotes brown adipocytes differentiation by recruiting Ppary to its BAT-selective binding sites (74). Ebf2 knockdown diminished the brown fat-specific features of BAT (74). Besides, Ebf2 overexpression in WAT induces browning and thermogenesis (76).

❄ Ewing sarcoma (Ews) regulates the expression of bone morphogenic protein 7 (Bmp7) and thereby plays an important role in the commitment of early mesenchymal progenitors to brown adipocytes. Ews is also involved in the differentiation process of BAT as the brown preadipocytes isolated from the newborn Ews null mice did not differentiate ex vivo. In addition, decreased number of multilocular lipid droplets and mitochondria, as well as reduced Ucp1 expression in the BAT of Ews null mice, indicates the critical role of Ews in brown fat phenotype and thermogenic function. Ews also plays role in the browning of WAT as the Ews heterozygous mice showed fewer beige cells formed in the WAT exposed to the browning stimuli such as Ppary agonists and β3-adrenergic stimulation (77). The role of Ews in controlling the thermogenic function of beige and brown AT is proposed to be via stabilizing Pgc1α (78).

❄ Y box binding protein 1 (Ybx1) is a cold shock domain protein that together with Ews regulates the Bmp7 expression through which plays a role in the commitment of precursor cells to BAT. In the same complex with Ews, Ybx1 also regulates the differentiation of brown preadipocytes (77). We recently demonstrated a critical role of Ybx1 in priming and maintaining the thermogenic capacity during adipogenesis (79).

❄ Heat shock factor 1 (Hsf1) deficient mice are more sensitive to low temperatures, reduced Ucp1 expression in scWAT and BAT, and decreased thermogenesis and β-oxidation indicating an overall reduced brown and beige tissue functionality (80,81).

❄ TATA-binding protein-associated factor 7L (Taf7l), the study by Zhou et al. performed in mice as well as in cell lines introduced the Taf7l as a commitment factor that enhances the brown fat lineage as compared to muscle. Taf7l mediates the loop formation in chromatin bringing together the distal enhancer regions and the promoters, and in that way controls the expression of BAT-selective genes (82).

❄ Zinc finger in the cerebellum 1 (Zic1) has been described with a controversial role in beige and BAT formation. Overexpression of Zic1 in C3H10T1/2 mouse MSCs attenuated the expression of BAT-selective genes and increased the expression of myogenic genes (83). In mice, however, the expression of Zic1 mRNA was increased in WAT with cold-induced browning (84).
Zinc finger and BTB domain-containing protein 16 (Zbtb16/Zfp14) is increased in BAT during adaptive thermogenesis in mice (85,86) and also promotes the WAT browning and thermogenic function in vitro in cells.

Zinc finger protein 238 (Zfp238) expression is induced upon β-adrenergic stimulation in scWAT of mice. Zfp238 suppresses the inhibitory role of Foxo1 and increases the expression of thermogenic genes. The adipose-specific Zfp238 KO mice and 3T3-L1 cells significantly decreased Ucp1 expression (87).

PR domain zinc finger 16 (Prdm16) is a TF promoting brown and beige adipocyte differentiation and repressing the myogenic program (56,88). The role of Prdm16 in initiating the brown/beige program versus myogenic is fulfilled by being in the same complex with histone methyltransferase Ehmt1 with its inhibitory role on the myogenic program (89). The role of Prdm16 in inhibiting the WAT gene expression is via interacting with carboxy-terminal binding proteins, Ctbp1 and Ctbp2 co-repressor complexes (90). Lacking Prdm16 in Myf5 positive progenitors does not affect BAT and beige development, due to the potential compensatory role of Prdm3 (91). In the same complex with C/ebpβ and Ppary, Prdm16 functions to promote brown/beige adipogenesis (56,92). In addition to its role in determining brown/beige fat identity and adipogenesis, Prdm16 is also important in maintaining the brown fat identity by binding to the enhancers of brown-selective genes and working together with the mediator complex to establish an enhancer-promoter loop leading to the expression of Ppara and Pgc1α (93). Also, Prdm16 directly interacts with Pgc1α and induces its transcription (88,91,94). Prdm16 also inhibits the signaling of repressor type 1 interferon response genes thereby preventing mitochondrial dysfunction and reduced Ucp1 levels (95). Prdm16 regulates the browning of WAT as its overexpression increases beige adipocytes and thermogenesis in WAT while its deficiency inhibits beige adipocyte formation (96,97).

PR domain zinc finger 3 (Prdm3) has a complementary role to Prdm16 especially during early developmental stages in mice and, interacts with mediator complex subunit 1 (Med1) at chromatin level to regulate the brown-specific program. As a commitment factor, Prdm3 also induces the expression of Ucp1 and Pgc1α in C2C12 myogenic cells (91,93).

Ppary co-activator 1A (Pgc1α) plays a crucial role in cold-induced thermogenesis and thermogenic maintenance in differentiated brown and beige adipocytes. Pgc1α expression is highly induced in response to the cold and upon its further activation after being phosphorylated as a downstream target of the cAMP pathway, Pgc1α interacts with several TRs including Prdm16 and Ppary and activates the thermogenic genes (98,99). Among others, the Pgc1α-Irf4 complex regulates the Ucp1 gene expression (100), the complex formed by thyroid hormone receptor (TR), Pgc1α, Prdm16, and Med1 also activates Ucp1 transcription (94,101). The complex formed by Pgc1α and nuclear respiratory factors, Nrf1 and Nrf2, promotes the activation of several mitochondrial genes (102). Pgc1α overexpression induces the thermogenesis in adipocytes and myocytes (103,104). Brown adipocytes lacking Pgc1α express almost the same level of Ucp1 and other thermogenic genes, however, show a lower level of Ucp1 expression in response to the adrenergic stimuli (105,106). Pgc1α is also required for the browning of WAT (107).

Interferon regulatory factor 4 (Irf4) interacts with Pgc1α upon cold stimuli and regulates the expression of Ucp1 through binding to its regulatory regions on the chromatin (100).

Zinc finger protein 516 (Zfp516) also increases brown adipogenesis as well as thermogenesis upon cold induction by interacting with Prdm16 which activates Ucp1 and Pgc1α gene expression (108).

CAMP-responsive element-binding and activating transcription factor 2 (Creb-Atf2); cold induction increases the adrenergic pathways as well as the intracellular levels of cAMP. This leads to PKA-dependent phosphorylation and activation of Creb and Atf2 which will further result in activation of Ucp1 and Pgc1α gene expression (109).
Forkhead box protein C2 (Foxc2) expression increases beige adipocyte formation by promoting the protein kinase A (PKA) activity that is a main downstream kinase activated by adrenergic pathway upon cold induction (110). The Foxc2 transgenic mice that show increased mitochondrial number and respiration in scWAT do not gain weight on the high-fat diet (HFD) as compared to the control mice. Also, the expression of Foxc2 in 3T3-L1 cells inhibits adipogenesis by blocking the Ppary expression (111).

Krüppel-like factor 11 (Klf11) expression is induced in vitro in human white adipocytes in response to Pparγ agonist, rosiglitazone, and via maintaining the association of Pparγ with super-enhancers of beige-selective genes, Klf11 promotes beige adipocyte-selective gene expression (112).

Krüppel-like factor 9 (Klf9) in vitro and in vivo in mice regulates the cold-induced browning of WAT and thermogenic function of AT through enhancing the Pgc1α expression (113).

GA-binding protein α (Gabpa) is the TF expressed in myoblasts that inhibits myogenesis and promotes adipogenesis and beige fat development. In vitro, in C2C12 myoblasts, Gabpa expression increased beige adipogenesis to the levels comparable to Prdm16. The interaction between Pgc1α and Gabpa is also shown to stimulate mitochondrial biogenesis and the OXPHOS (mitochondrial oxidative phosphorylation) program (114–116). Gabpa expressing beige adipocytes unlike other beige adipocytes have a higher glucose oxidation rate than FA oxidation (70).

Nuclear receptors including the Reverbal (117,118), ERRα (119), ERRγ (119), Rxrα (120), and Nur77 (121) have been described to positively regulate the brown and beige adipose development and function.

Several TFs and activating cofactors are shown to have negative effects on beige/brown fat formation and function including Hes1 (122), Irox3 (123), Irox5 (123), Rip140 (124–126), Tle3 (127), Zfp423 (128,129), Hoxc8 (130), Hoxc10 (131), Twist1 (132), Foxa3 (133,134), Foxo1 (135,136), Foxp1 (137), Rb (138), Sre2 (Tif2), Smad3 (139), Usf1 (140), Mrtaa (141), Lxr (142), and P107 (143–145). Transcriptional repressors such as Ctbp1 and Ctbp2 (90,146) suppress the WAT gene expression and promote the browning of WAT.

3.2. Epigenetic Regulation of Brown and Beige Adipocytes

Epigenetic regulation is a heritable mechanism that includes DNA modifications, mainly DNA methylation, and histone modifications altering gene transcription without changes in DNA sequence. The chromatin landscape governs brown/beige differentiation and commitment, and its activation is regulated by a tight collaboration between TFs and epigenetic modifiers.

Chromatin immunoprecipitation (ChIP) of Ppary, the master regulator of adipogenesis, combined with deep sequencing (ChIP-seq) analysis revealed that up to 55% of Ppary binding sites are similar among the prevalent fat types i.e., BAT, scWAT, and vWAT with only 10% of the Ppary binding sites being specific to BAT. Also, only a 10% difference in the Ppary binding sites was recognized in BAT versus WAT upon rosiglitazone (PPARγ agonist) treatment, further confirming that beige and brown AT characteristics are acquired from small specificity of the chromatin landscape (74,112,147). Using transgenic Nuclear tagging and Translating Ribosome Affinity Purification, NuTRAP mice, and NuTRAP reporters in adipocytes, the transcriptomic and epigenomic profiles of beige, brown, and white adipocytes are defined in vivo. These strategies further confirmed the stability of chromatin landscape in BAT and the plasticity of beige adipocytes upon temperature change (148).

The enrichment of active histone marks such as H3K4me1/2/3 and H3K27ac at DNA regulatory regions (promoter and enhancer) promotes the expression of nearby genes. Contrarily, the recruitment of repressive histone marks such as H3K27ac, H3K27me3, H4K20me3 to DNA regulatory regions suppresses the gene expression. Active histone marks such as H3K4me1/2 and H3K27ac are enriched in BAT and not WAT lineage enhancers (149). Ucp1 promoters in BAT are enriched in active histone mark H3K4me3, and
in WAT are enriched in H3K27me3 repressive mark (150). The expression of repressive histone marks is diminished upon cold induction in brown adipocytes (151). Overall, the recruitment of active histone marks to the regulatory regions of BAT-selective genes seems to play an important role in the expression of these genes.

Several histone methyltransferases and demethylases have been identified to regulate the chromatin landscape in brown fat through alteration of the active and repressive histone marks (152,153). For instance, the ubiquitously transcribed tetratricopeptide repeat on chromosome X (Utx) through coordinated regulation of H3K27me3 demethylation and H3K27 acetylation switches the transcriptionally repressive to the active state at the promoters of Ucp1 and Pgc1α, thereby, positively modulating BAT thermogenesis (150,154). Additionally, demethylation of H3K27me3 by Jmjd3 is also necessary for the expression of BAT-selective genes and for the development of beige adipocytes both in vitro and in vivo (150). In response to acute cAMP stimuli, junomji domain-containing 1A (Jmjd1a) demethylates the repressive H3K27me3 in brown adipocytes and regulates the Ucp1 gene expression (155). Lysine-specific histone demethylase 1 (Lsd1), through interaction with Zfp516 (brown fat-enriched and cold-inducible TF), is recruited to Ucp1 and other BAT-selective genes such as Pgc1α, to work as a coactivator by demethylating H3K9 (156). Mll4/Kmt2d co-localizes with lineage-determining TFs on active enhancers and its deletion significantly reduces the H3K4me1/2 active histone mark and polymerase II levels on enhancers which consequently impairs brown adipogenesis in mice (157). Euchromatic histone-lysine N-methyltransferase 1 (Ehmt1) is a BAT enriched methyltransferase that controls brown adipose cell fate and its loss in brown adipocytes in vivo diminishes brown fat characteristics and induces muscle differentiation through demethylation of histone 3 lysine 9 of the muscle-selective genes (89). Histone deacetylase 3 (Hdac3) activates estrogen-related receptor α (Errα) in BAT, which itself is governed by deacetylation of Pgc1α and is essential for the transcription of Ucp1, Pgc1α, and OXPHOS genes which are engaged and necessary for thermogenic programming (158). Kmt5c methyltransferase regulates the expression of thermogenic genes by increasing the H4K20me3 repressive mark in the vicinity of enhanced transformation-related protein 53 (Trp53) promoters (159).

Brahma homolog related gene 1 (Brg1), a member of the SWI/SNF family plays a central role for thermogenesis on β-adrenergic activation by forming a complex with Jmjd1a and Pparγ; wherein this complex enhances Ucp1 expression by facilitating the enhancer-promoter chromatin looping (155). Additional roles of histone modifiers including histone acetyltransferases (Hats), histone deacetylases (Hdac5), histone methyltransferases (Hmts), and histone demethylases have been comprehensively reviewed by Nanduri (160).

The role of DNA (de)methylation events in beige and brown AT development and function are well discussed by others (161). Several genes including members of the Hox family genes are identified to be differentially methylated between white and brown fat tissue implying the role of methylation in lineage specificity (162). DNA methylation at CG sites on the Ucp1 enhancer regions is decreased with cold-induced browning in WAT. DNA methylation inhibitor, 5-azacytidine, increases the expression of Hox genes (mainly Hoxc10), thereby suppressing the browning of WAT (131,162). In mice, Dnm1l expression leads to the development of brown fat versus muscle by increasing the DNA methylation at the MyoD1 promoter and thereby inhibiting the expression of the muscle-specific gene, MyoD1 (163). DNA demethylase ten-eleven translocation 1 (Tet1) inhibits the thermogenic function of BAT by suppressing the thermogenic gene, Hdac1. The expression of Tet1 is decreased with cold-induced browning of scWAT in mice, and the Tet1-KO in WAT showed enhanced thermogenic function in adipocytes as measured by the expression of the thermogenic genes including Ucp1 and Pgc1α (164).

3.3. Non-Coding RNAs
In addition to TFs and epigenetic regulation, non-coding RNAs including microRNAs (miRNAs) and long-noncoding RNAs (lncRNAs) have been found to play important roles in beige and brown fat commitment, differentiation, and function either by repressing or inducing the expression of genes involved in these processes.

3.3.1. MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are small (21 to 25 nucleotides) non-coding RNAs, fundamental to the regulation of gene expression. They are processed by RNase III enzymes, Drosha and Dicer, in the nucleus and cytoplasm respectively. In the cytoplasm, the mature miRNA is loaded into the RNA-induced silencing complex (RISC), which contains Argonaute 2 (AGO2), the protein responsible for guiding the mature miRNA to its target mRNA. Once the miRNA-RISC complex binds to its target mRNA, translation is inhibited and, in some cases, mRNA is destabilized and degraded (165). The importance of this pathway to adipocyte differentiation and function is evidenced by in vivo studies where deletion of ATDicer or the Drosha’s cofactor, Dgcr8, almost completely ablated the production of mature miRNAs in the targeted cell, and altered WAT and BAT distribution, morphology and function (166). Additionally, studies have also evaluated the contribution of individual miRNAs and described their role in beige and brown fat formation and function (167). For instance, miR-133 represses the adipogenic lineage commitment of satellite cells by decreasing the expression of Prdm16. During cold exposure, miR-133 is downregulated leading to satellite cell-derived brown adipocytes (168). On the other hand, miR-328 and miR-193b induce brown adipogenesis and block muscle progenitor commitment, in part, through downregulation of β-secretase Bace1 (169). Moreover, miR-30 was shown to regulate browning of WAT, and the thermogenic function of beige and brown adipocytes by targeting Rip140, a known thermogenic corepressor (170).

3.3.2. Long Non-Coding RNAs (lncRNAs)

The molecular regulation by RNAs is not limited to small RNAs and increasing evidence has suggested that long non-coding RNAs (lncRNAs) also play a role in beige and brown development and function (171). LncRNAs are RNA molecules with more than 200 nucleotides in length and their mechanism of action includes chromatin remodeling, chromatin interactions, natural antisense transcripts (NATs), as well as interacting with RNA binding proteins in the cytosol (172). Studies evaluating the role of lncRNAs in beige and brown fat formation and thermogenesis have observed the interaction of the lncRNA-Blnc1 with the TF of Ebf2 and the zinc finger protein Zbtb7b. Mechanistically, these factors form a ribonucleoprotein complex with lncRNA-Blnc1 and stimulate a thermogenic gene program in beige and brown adipocytes (173–175). The lncRNA-BATE1 was also shown to positively regulate the beige and BAT formation. In the cytosol, lncRNA-BATE1 binds to the RNA binding protein Celf1, which is known to bind to the Pgc1α mRNA inducing its degeneration and suppressing its translation (176).

4. Thermogenesis Pathways and Players

The browning process involves trans-differentiation of mature white adipocytes or de novo adipogenesis of beige adipocytes. It can be induced by adrenergic stimuli, HFD feeding, and cold exposure (177–180). This de novo adipogenesis process involves proliferation and differentiation of beige adipocytes from its progenitor pool which are present in adipose vasculature mural cells as well as smooth muscle cells that express smooth muscle actin (Sma), Myh-11, or Pdgfra (181). Another contribution to the overall beige fat content is by activation of dormant beige adipocytes which is also considered a trans-differentiation process as no intermediate progenitors are involved (21,67,180,182–185). While current tracing technologies are unable of distinguishing between white to beige adipocyte trans-differentiation and the activation of dormant beige cells, Sebo &
Rodeheffer have extensively discussed existing strategies available for lineage segregation of adipocytes (186).

Initiation of various signaling processes in AT may lead to thermogenic activation of BAT and browning of WAT. Several receptors on AT play a central role in such pathways leading to the increased thermogenic function of adipocytes. The physiological ligands for such receptors on adipocytes are either adipokines secreted by AT itself (187–189) or factors released from the various organs in response to environmental challenges such as cold, fasting, feeding, and exercise (190). Here, we summarize the main signaling pathways described in WAT browning and thermogenic activation.

Adrenergic signaling: ADRβ3 is the main receptor on AT involved in adrenergic pathways related to adaptive thermogenesis in brown or beige adipocytes. Norepinephrine (NE) released from the sympathetic nervous system (SNS) and M2 macrophages (188,191,192) is the primary ligand of ADRβ3 that upon binding activates the protein kinase A (PKA) and subsequently activates the p38 MAPK and thyroxine 5'-deiodinase leading to the induction of thermogenic gene program (137,193,194).

Thyroid hormone (TH) signaling: The main TH receptors in adipocytes are TH receptor α (TRα) that mediates synergistic effects of TH signaling and SNS, TH receptor β (TRβ) that modulates the expression of Ucp1. During the thermogenic adaptation, the thyroxine (T4) released from the hypothalamic-pituitary-thyroid axis after entering the AT will be converted into the triiodothyronine (T3) type II thyroxine 5'-deiodinase (Dio2), an enzyme controlled by NE. Besides, TH affects the hypothalamus and promotes the AMP-kinase induction, and enhances the SNS function of NE production, leading to an increased thermogenic function (195).

Bile acid signaling: the main bile acid receptor on AT is the G-protein-coupled bile acid receptor, Gpbar1 (TGR5). It has been shown that the bile acids released from the liver after a meal and bound to the TGR5 receptors on AT also contribute to the regulation of Dio2 expression by increasing the levels of cAMP(196). TGR5 signaling induces the WAT browning and thermogenesis by increasing lipolysis, free fatty acids (FFAs) production, and β-oxidation. TGR5 signaling also increases the number of mitochondria by inducing the mitochondrial fission (separates one into two) through the Erk/Drp1 pathway, further improving mitochondrial respiration (197).

Angiogensis II signaling: the primary angiotensin II (AngII) receptors in AT are angiotensin type 1 or type 2 receptors (AT1R and AT2R). AT is a major source of AngII and, indicating the autocrine and paracrine role of AngII in regulating adipose functions and self-remodeling. The in vitro study conducted in mouse and human primary adipocytes showed that activation of AT2R increases the WAT browning and brown adipogenesis by increasing the Pparγ expression as well as enhancing the Erk1/2, PI3kinase/Akt, and AMPK signaling pathways. In mice also, AngII contributes to the browning of WAT and enhanced thermogenesis by increasing the adiponectin release and decreasing the levels of TNFα, TGs, and FFAs in blood serum (198).

Fibroblast growth factors (Fgf) signaling: the Fgf receptor (FgfR)/b-Klotho complexes are also located on the adipocytes cell surface in mice and humans. The main Fgfs regulating the BAT activity and WAT browning include Fgf15, Fgf19, and Fgf21 secreted from the liver, and Fgf6& Fgf9 released from the BAT. The main action of Fgf21 is conducted by inducing the expression of Pgc1α, Fgf6, and Fgf9 that involve Fgf receptor-3 (FgfR3), prostaglandin-E2, and interaction between estrogen receptor-related alpha, flightless-1 (FliI), and leucine-rich-repeats (in FliI)-interacting-protein-1 as a regulatory complex for Ucp1 transcription. Fgf15 and Fgf19 increase the blood levels of Cxcl14 which is a batokine regulating the Ucp1 expression and thermogenesis (199–201).

BMP signaling: BMP signaling relies on the binding of BMPs to type I and II BMP receptors on AT. The main BMPs regulating the thermogenic commitment and activity of beige and brown AT include BMP4, BMP7, and BMP-8b. Although BMPs are mainly known as adipokines, the precise source of BMP’s secretion remains elusive. BMP-8b is a batokine induced by nutritional and thermogenic factors in mature BAT which increases
the thermogenic activity of BAT by; I) increasing the p38 MAPK/Creb signaling and sensitizing the BAT to NE, and II) acting on the hypothalamus increasing the AMP-activated protein kinase (AMPK) phosphorylation, leading to an anorexigenic state. BMP4 and BMP7 increase the Ucp1 expression and mitochondrial biogenesis via a p38 MAPK and Pgc1α dependent pathway (202–204).

Natriuretic peptides (NPs) signaling: NPs are mainly released from the heart and bind to the natriuretic peptide receptors (NPRs) on the AT. Activating the cGMP-dependent protein kinase (PKG), the action of NPs is additive to the effects of adrenergic signaling leading to BAT activation and browning of WAT (205–207).

Irisin signaling pathway: in rodents and humans, exercise enhances the release of the irisin from the muscle. Although the irisin receptors in fat are still debated, the irisin-induced thermogenic gene program was shown to be mediated via the integrin αV family of receptors. Irisin expression in muscle is regulated by Pgc1α expression. In AT, irisin induces the WAT browning and enhances the thermogenic activity of BAT (208,209).

5. Brown and Beige Adipose Tissue Function

Due to differences in the makeup and location of the fat itself, both brown and beige fat depots differ from white fat in terms of their physiological function, especially in terms of energy homeostasis and their secretory role. White fat is known to play a major role in FA biosynthesis and store energy in the form of TG whereas brown and beige fat are the important players in the process of heat dissipation/energy expenditure (219–221). These contradictory roles among different types of fat can be partly attributed to the difference in the mitochondrial proteome and lipid composition discussed below.

5.1. Role of Brown and Beige Fat in Thermoregulation

Unless exposed to extreme conditions or fluctuating temperatures, mammals can keep their body temperature within a narrow range which is critical for the survival of these species as the critical biochemical reactions that occur under normal physiological conditions are affected when core body temperature is disrupted (213). Brown and beige fat are important organs involved in thermoregulation. For instance, when humans are exposed to colder temperatures, BAT mass and activity are increased resulting in increased cold tolerance (214–216). On the other hand, removal of BAT and beige AT in mice using genetic approaches leads to fatal hypothermia when these mice are exposed to cold (217).

At the cellular level, brown and beige adipocyte mitochondria are rich in proteins involved in the tricarboxylic acid cycle (TCA), electron transport chain complexes I-IV, and FA oxidation (218). The main characteristic of both brown and beige adipocytes is the presence of Ucp1 at the inner membrane of mitochondria (219). Thermogenesis occurs when Ucp1 uncouples the proton motive force of the respiratory chain. Under normal conditions, the electron transport chain generates a proton gradient in the inner mitochondrial membrane which powers ATP production by ATPase. When Ucp1 is active, it transfers the protons generated from the electron transport chain back across this membrane, dissipating the electrochemical gradient. Oxidative metabolism that is required to maintain the normal function of the cells consumes calories and leads to an increased temperature of the cells (220). Thermogenesis by its nature is an energy-intensive process that upon activation increases the whole-body EE. To sustain this process, activated brown and beige fat depots require a continuous supply of substrates in the form of glucose, FFAs, and intracellular TGs. This directly contributes to reduced blood glucose, improved insulin sensitivity, TG serum clearance, loss of body fat, and consequently a general improved metabolic health (221–223).

Although Ucp1 mediated energy dissipation and its role in metabolism and thermoregulation have been most widely discussed in the literature, it is now understood that several other thermogenic mechanisms also exist. For example, at thermoneutral
temperature, deletion of Ucp1 has no effect on EE or weight gain when mice are submitted to HFD (224–228). When exposed to cold, Ucp1−/− gradually adapt to the temperature and maintain their normal body temperature (108,229–232).

Though these Ucp1 independent mechanisms are predominantly studied in beige AT, they have also been detected in classic brown AT (233). Some Ucp1 independent thermogenic pathways include: I) the endogenous uncoupler peptidase M20 domain containing 1 (Pm20d1) which produces N-acyl amino acid and independent from Ucp1 increases mitochondrial respiration and brown and beige fat thermogenesis (234), II) Slc25a25 which transports ATP-Mg2+/Pi across the mitochondrial inner membrane and produces heat independent from Ucp1 (235), III) the ADP/ATP carrier (AAC) in mitochondrial inner membrane mediates the proton leak from the intermembrane mitochondrial space to the matrix and dissipates the energy in the form of heat (236), IV) the futile creatine cycle also is known to dissipate the energy and produce heat in response to cold or β-adrenergic activation in mice and humans and inactivation of this cycle reduces the thermogenic potential (237–240), V) the futile cycling of lipolysis/re-esterification in which ATP is used to produce the triacylglycerols, diacylglycerols, or monoacylglycerols from acylglycerol is Ucp1-independent and is activated in response to adrenergic stimuli in WAT and BAT (241,242), VI) the ATP-dependent Ca2+ cycling via Sarco/endoplasmic reticulum Ca2+ ATPase2b (Serca2b) and ryanodine receptor 2 (Ryr2) is also an Ucp1-independent thermogenic pathway. The activation of α1/β3-adrenergic receptors or the Serca2b-Ryr2 pathway enhances the Ca2+ cycling thereby, increases the Ucp1 independent thermogenesis (243,244), and VII) the increase of adenine nucleotide translocase 2 (Ant2), an inner mitochondrial membrane, caused by high-fat diet feeding increases the protons leak and promotes diet-induced thermogenesis independent from Ucp1 (245,246).

5.2. Glucose and Lipid Metabolism by Brown and Beige Fat

In addition to endogenous TG breakdown, circulating TG-rich lipoproteins are hydrolyzed by lipoprotein lipase (Lpl) and FFAs are taken up through transporters such as Fapt1 and Cd36 to meet the high supply of fuel demand for thermogenesis (247,248). Moreover, FFAs derived from WAT are also taken up by BAT via insulin-mediated translocation of the above-mentioned FA transporters (249). Paradoxically, mild cold exposure induces de novo lipogenesis (DNL) and this is required for optimum BAT function. This counterintuitive mechanism is believed to be important to restore lipid droplets and may contribute to the synthesis of signaling lipids. Furthermore, enhanced DNL is known to increase the levels of cellular acetyl-CoA and malonyl-CoA, which can be a source of acetyl groups for protein lysine acetylation. This is turn, may regulate epigenetic signals in BAT to sustain thermogenesis (250).

BAT and beige activation also increase insulin-independent glucose uptake, mediated by AMPK pathway and the glucose transporters Glut1 and Glut 4. This leads to the hypothesis that thermogenesis activation may be used as therapy for insulin resistance and diabetes, which will be discussed later. In the cell, glucose will be utilized by the DNL pathway (251,252), stored as glycogen, or oxidized in the TCA cycle to feed the electric transport chain during thermogenesis activation (253).

5.3. Secretory Role of Brown and Beige Adipose Tissue

WAT is well known for its endocrine function due to the secretion of signaling molecules, so-called adipokines. These include leptin and adiponectin, and their impact on metabolism and appetite-control have been well studied. However, this secretory activity is not limited to white fat and intensive research is being carried out to gain information regarding brown and beige secretome (254,255). Brown and beige fat are already known to release hormonal factors such as peptides (adipokines), lipids (oxylipokines), and exosomal miRNAs collectively termed as “batokines” which have autoocrine, paracrine, and endocrine functions and are responsible for various processes within the human body.
such as EE, appetite control, lipid and glucose metabolism, insulin sensitivity, inflammation and tissue repair (256–258). The secretory activity of brown and beige fat is complementary to the process of thermogenesis itself leading to further recruitment and activation of these fats. For most of the paracrine factors released from these thermogenic adipocytes, they act on cells present within the BAT such as preadipocytes, M2 macrophages, and endothelial cells consequently leading to differentiation and formation of mature adipocytes as well as increased vascularity. This intercellular communication is required for an efficient thermogenic process. There is still an ongoing debate as to how the secretory profile of beige AT differs from BAT as well as its implications. Also, some of the factors released by BAT have already been known to be majorly secreted by some other organs, causing an extra layer of complexity assigning an autocrine/paracrine/endocrine function to beige or brown AT.

A complete secretory profile of brown and beige fat might potentially play a role in designing therapeutic interventions for the maintenance of metabolic health. Some of these factors within the categories mentioned above and their known biological functions are disclosed in Table 1.

Type of secretion	Physiological Function	Secreted by	Overall Thermogenic effect	Target organs	References					
		Auto-crine	Paracrine	Endocrine	Humans	Rodents	in vitro	effect	BAT, SM, H	(259–263)
(a) Factors released for substrate utilization (Lipids)										
(1) 12,13-di-hydroxy-9Z-octadecenoic acid (12,13-diHOME)		YES	N/A	YES	Brown	Brown	YES	Positive	BAT, SM, H	(259–263)
(2) 12-hydroxyeycosapentaenoic acid (12-HEPA)		YES	YES	YES	Brown	Brown	YES	Positive	SM, BAT	(259,264)
(3) 14-hydroxydocosahexanoic acid (14-HDHA)		YES	N/A	N/A	Brown	Brown	YES	Positive	BAT	(264)
(4) Prostaglandins (PGs)		YES	N/A	YES	Brown	Brown/	Brown/	Positive	WAT, BAT	(265–268)
(b) Factors released for vascular regulation										
(1) Vascular endothelial growth factor A (VEGF-A)		YES	YES	N/A	N/A	Brown/	N/A	Positive	BAT, WAT	(269–272)
(2) Nitric oxide (NO)		YES	YES	N/A	N/A	Brown/	N/A	Positive	BAT, WAT	(273,274)
(3) Hydrogen peroxide (H2O2)		YES	YES	N/A	N/A	Brown/	N/A	Positive	BAT, WAT	(275)
(4) Neuregulin-4		YES	YES	YES	Beige	Brown/	YES	Positive	L, SNS	(276–279)
(c) Factors released for regulation of thermogenesis and metabolic homeostasis										
(1) Fibroblast growth Factor 21 (FGF21)		YES	YES	YES	Brown/	Brown/	YES	Positive	H, P, SNS, WAT, BAT	(280–287)
(2) Fibroblast growth Factor 6 & 9 (FGF6 & FGF9)		N/A	YES	N/S	Brown/	Brown/	Yes	Positive	BAT, WAT	(201)
(3) Endothelin-1 (ET-1)		YES	YES	N/A	N/A	Brown/	N/A	Negative	BAT, WAT	(288)
(4) Angiopoietin-like 8 (ANGPTL8)		YES	YES	N/A	Brown	Brown	YES	Negative	BAT	(289–291)
(5) Angiopoietin-like 4 (ANGPTL4)		YES	YES	N/A	Brown	Brown	YES	Negative	BAT	(292–294)
(6) Growth and differentiation Factor-8 (GDF-8/myostatin)		YES	YES	YES	N/A	Brown	N/A	Negative	BAT, SM	(295–297)
(7) Triiodothyronine (T3)		N/A	?	Brown	Brown	Brown	YES	Positive	BAT	(298–301)
(8) Adenosine		N/A	N/A	N/A	Brown	YES	Positive	BAT, WAT	(302)	
6. Brown and Beige Adipose Tissue in Obesity, Aging and Metabolic Disease

Obesity is the major contributor to the development of metabolic diseases such as IR, T2D, dyslipidemia, and CVD. These metabolic disorders are also observed during aging (342) raising the hypothesis that unhealthy excess of body fat may accelerate the aging processes. In this regard, diet-induced obese mice are shorter-lived compared to their controls (343). Similarly, in obese humans, the risk of premature death is increased by 1.45 to 2.76 folds (344). The pathophysiology of obesity and aging-associated diseases are complex and share dysregulations at the cellular level (342,345). Consistent with this, robust evidence suggests that changes in AT distribution and metabolic dysfunction are implicated in the development and disease progression during obesity and aging (346–348). Here we discuss how obesity changes AT biology and its implication for the development of the metabolic syndrome. Some factors altering the AT and contributing to obesity and aging are summarized in Figure 1.
Figure 1. The leading causes of obesity and aging are driven by adipose tissue distribution, function, and environment. Contributions of the central nervous system (CNS), sexual dimorphism, diet, life style, and adipose tissue distribution to obesity and aging are well known. In addition, the composition of adipose tissue itself with increased collagen, extra cellular matrix (ECM), reactive oxygen species (ROS), immune cells, macrophages, and senescent cells is another major contributor to obesity and aging. Furthermore, the functionality of mitochondria and endoplasmic reticulum (ER) in adipocytes plays an important role in preventing obesity and aging complications. Figure created with ©BioRender.io.

6.1. Adipose Tissue Distribution

In humans, AT distribution can be influenced by sexual hormones, diet, and aging. In general, females exhibit higher scWAT (gynoid fat deposition) and BAT mass, while vWAT is more preeminent in men (android fat deposition) (349). During obesity, even though AT expansion is observed in all types of fat depots, female subjects very often present lower visceral and larger subcutaneous AT compared with males (350). This sexual dimorphism is also observed in BAT, where BAT mass (30), and Ucp1 mRNA expression are still higher in women (351). Genetics and hormones are the major players in sexual dimorphism (352), however, some evidence suggests that these differences persist even after menopause (30). Interestingly, this dimorphism is associated with a lower risk to develop metabolic diseases in women and may contribute to a longer lifespan compared to men (353).

6.2. Metabolic Function

It is now appreciated that AT function is also regulated in a sex-dependent manner that is widely reviewed elsewhere (349,354,355). Here we will give an overall view of some biological processes that are impaired in the AT of obese mice and humans. These processes are interconnected and mediate the development of obesity-associated diseases.

6.2.1. Sympathetic Nervous System (SNS)

Overactivation of the sympathetic nervous system is often observed in obese subjects which contributes to the development of high blood pressure and cardiovascular diseases (356–360). In AT, hyperactivation of the SNS pathway induces negative feedback, and downregulates the abundance of adrenergic receptors, decreasing the lipolytic (357), and thermogenic capacity (361). This contributes to an increased WAT expansion, whitening
of beige adipocytes (362), and decreased basal EE. Additionally, whitening of beige fat induces macrophage infiltration, brown adipocyte death and increased senescent cells, crown-like structure (CLS) formation, fibrosis, and local inflammation (362).

6.2.2. Endoplasmic Reticulum Stress (ER)

This organelle is composed of a membranous network responsible for the synthesis, maturation, and trafficking of proteins. It is also highly sensitive to nutrient availability. Upon nutrient overload, the increased protein synthesis followed by their misfolding and accumulation in the ER lumen induces ER stress. As a result, proteins from the unfolded protein response (UPR) Atf6, Perk, and Ire1 are recruited to reestablish the ER homeostasis (363). In obesity, this process is hyperactivated in multiples tissues including adipose. This contributes to AT inflammation and insulin resistance (364,365). Mechanistically, Atf6 and Perk acts through activation of NF-kB which translocate to the nucleus and induces the expression of pro-inflammatory cytokines such as IL-1 and TNFa, while Ire1a interacts with the tumor necrosis factor-a (TNFa)-receptor-associated factor 2 (Traf2), activates Jnk and IkB kinase (IKK) and downstream mediators of inflammation (363,366). Adipocyte ER stress also leads to increased basal lipolysis through downregulation of perilipin and insulin receptor, decrease adiponectin assembling and secretion as well as, decrease in leptin release (366,367).

6.2.3. Mitochondrial Dysfunction

As the central contributors to energy metabolism, mitochondria play key roles in the production of ATP, oxidative phosphorylation, production of reactive oxygen species (ROS), and Ca\(^{2+}\) homeostasis. Mitochondria also play an important role in AT homeostasis and remodeling (368,369). The rate-limiting steps of oxidative reaction that regulate the thermogenesis in the beige adipocytes take place in mitochondria. Brown and beige fat depots are packed with mitochondria (the cells’ tiny power plants) with high expression of Ucp1 across t

6.2.4. Inflammation and Endocrine Dysfunction

During obesity, adipocytes increase in size and number to accommodate the excess of nutrients in form of lipids. Excessive expansion of WAT followed by capillary rarefaction triggers a cascade of the biological processes including, ER-stress, mitochondrial dysfunction, hypoxia, changes in extracellular matrix mobility, and adipocyte death which are thought to contribute to inflammation (378). Activation of the inflammatory response leads to the secretion of several pro-inflammatory factors TNFa, II-1b, II-6, and monocyte chemoattractant protein (Mcp-1) from adipocytes (379,380). This is accompanied by
infiltration of immune cells such as M1 macrophages (381), CD8+ T cells (382), B cells (383), and eosinophils (384), thereby enhancing local and systemic inflammation (385). The chronic low-grade inflammatory state observed in obesity is an important contributor to AT insulin resistance (IR). This is important because impaired insulin signaling in adipocytes leads to uncontrolled basal lipolysis, which can induce cell death, and also increase the circulating levels of FFAs. In turn, this leads to lipids accumulation in non-adipose organs inducing systemic IR and increasing the risk to develop cardiovascular disease and T2D (386–388).

7. Activation of Thermogenesis as Therapy for Obesity-Associated Metabolic Diseases

Over the years, the development of drugs to treat obesity was mainly focused on weight loss, primarily due to a reduction in food intake. Many of these molecules failed to meet the desired efficacy and some of them were even withdrawn from the market because of their limited success and harmful side effects (389,390). This, with the observation that adult humans have BAT with the capability to dissipate energy, activation of BAT and thermogenesis began to be envisioned as therapy. Ever since the development of interventions that can stimulate browning of WAT as well as BAT mass increase and activation have gained greater attention and will be discussed here. A summary of the potential therapeutic interventions for obesity and metabolic disorders accompanied by aging is shown in Figure 2.

![Figure 2](https://www.preprints.org/dx.doi/10.20944/preprints202105.0008.v1)

Figure 2. Illustration of the potential therapeutic interventions for the therapy of obesity. Induction of the browning process, the transition from white to brown-like or beige adipocytes, holds a promising therapeutic potential to combat obesity and its complications. Several pharmacological (small molecules, synthetic peptides, hormonal analogs) and non-pharmacological (natural products) interventions are known to induce browning. The role of environmental challenges such as cold exposure on white adipose tissue browning and thermogenesis is also identified. In addition, molecular-based therapies including CRIPR-based genome editing, RNA therapy, and 3D bioprinting are evolving approaches to alter the white adipocytes as a therapeutic target in obesity. Figure created with ©BioRender.io.

7.1. Cold-Induced Thermogenesis

Currently, cold exposure is the most effective intervention to activate BAT in obese humans improving whole-body insulin sensitivity and weight loss (391,392). Some candidates have been strongly suggested to mediate the metabolic effect of BAT activation. One of the most well-investigated molecules is FGF21. This protein is mainly present in the liver, but it is also expressed in skeletal muscle, pancreas, WAT, and BAT. Upon short-term cold exposure, FGF21 expression in adipocytes is significantly increased (393,394). FGF21 induces browning of WAT in an autocrine manner (395) and enhances insulin
signaling in the same cell (396). Moreover, cold exposure also increases the circulating levels of FGF21 (397,398) which activates the SNS enhancing EE and weight loss (398).

Most recently, another member from the FGF family, FGF9 was also demonstrated to be upregulated in the scWAT and BAT of cold-exposed mice. Exerting an autocrine-paracrine regulation, FGF9 binds to FGFR3 receptor in adipocytes to regulate Ucp1 expression (399). In addition to proteins, cold exposure induces the secretion of lipid species from BAT including 12,13-diHOME and 12-HEPE, which enhance BAT fatty acids (6) and glucose uptake (400) respectively. Altogether, cold exposure triggers an intricate metabolic network between the central nervous system (CNS) and AT which redirects the utilization of circulating glucose and FFAs to support heat production ultimately improving WAT and BAT function and whole-body metabolism.

7.2. Natural Thermogenic Compounds

7.2.1. Berberine

Berberine is a plant-based alkaloid compound traditionally used in Chinese medicine to treat diarrhea and some infectious diseases (401). Berberine has been extensively studied due to its potential as a cardioprotective, anti-hyperlipidemic, and anti-diabetic compound (402,403). Most recently, berberine was shown to induce Ucp1 gene expression in brown and white adipocytes through activation of 5’ AMP-activated protein kinase (AMPK) leading to an increased BAT activity, improved EE, and decreased weight gain in db/db mice (404). More importantly, 1 month of berberine supplementation increased BAT volume and activity, reduced body weight, improved body weight, improved insulin sensitivity in patients with non-alcoholic fatty liver (405).

7.2.2. Capsaicin and Capsinoids

Capsaicin and its analog capsinoids are compounds found in red peppers (406). Several studies have shown the anti-obesity, anti-diabetic, and anti-inflammatory effects of these compounds. In rodents, capsinoids supplementation improves glucose metabolism, hepatic lipid content and enhances cold-induced EE and WAT browning (407). In humans, chronic supplementation with capsinoids over 6 weeks decreased body weight and enhanced cold-induced thermogenesis in healthy adult men lacking detectable BAT, suggesting that cold exposure in combination with capsinoid ingestion recruits the activation of brown and beige adipocytes (392). These adaptations occur through activation of the transient receptor potential cation channel subfamily V member 1 TRPV1 receptor (transient receptor potential cation channel subfamily V member 1) in the gut which sends signals to the CNS leading to β2-AR signaling activation in AT (407).

7.2.3. Curcumin

Curcumin is a well-known flavonoid found in turmeric root. It has many therapeutic properties including, antioxidant, anti-inflammatory, anti-diabetic, and anti-obesity (408). This is corroborated by the observation that curcumin supplementation reduces BMI, percentage of body fat, lower circulating leptin, and increased adiponectin levels in obese humans (409). Part of these effects may be explained by the induction of browning in WAT via AMPK activation (410,411) and inhibition of preadipocyte differentiation by downregulating the Ppary and C/ebpα (412). In mice, supplementation with curcumin for 50 days induces higher expression of mitochondrial and thermogenic genes, higher NE levels, increased β3-AR expression in scWAT, improved cold tolerance, and lower body fat (411).

7.2.4. Green Tea

Green tea is made from the leaves of Camellia sinensis and contains several different catechins, especially epigallocatechin gallate (EGCG), which accounts for about 50% to 70% of green tea catechins, and caffeine (413). Green tea extract has several metabolic
properties such as antioxidant, anti-hypertensive, anti-carcinogenic, hypcholesterolemia and has also been shown to induce weight loss (414,415). This evidence is supported by the reduction of body weight, mainly due to loss of vWAT mass, in obese women and men subjects submitted to catechins supplementation (414,416). There are several potential mechanisms proposed to explain the anti-obesity effects of green tea compounds such as inhibition of de novo lipogenesis, increased FA oxidation, browning of WAT, and activation of BAT (415,417). The effect of thermogenesis seems to be dependent on the interaction between catechins, caffeine, and NE. At the cellular level, catechins inhibit catechol-O-methyltransferase, one of several enzymes that degrade catecholamines, and caffeine inhibits phosphodiesterase resulting in higher levels of cyclic AMP (cAMP). This results in higher levels of NE and cAMP leading to fat oxidation and thermogenic activation (418).

7.2.5. Resveratrol

3,5,4′-trihydroxy-trans-stilbene (Resveratrol) is a natural compound that belongs to polyphenols’ group. It is found in more than 70 different plants including grapes and has gained greater attention over the years due to its biological properties including the weight loss effect (419). Consistent with this, resveratrol supplementation was shown to reduce the weight gain in diet-induced obese mice. This effect was mediated by improved oxidative capacity in muscle and AT and increased EE (420). Moreover, resveratrol inhibits adipocyte differentiation and lipid accumulation (421) and induces browning of WAT (422). The molecular effect of resveratrol is not completely understood, but some evidence suggests that interaction between AMPK activation and NAD-dependent protein deacetylase sirtuin-1 (Sirt1) leads to increased expression of Pgc1α, thereby inducing mitochondrial biogenesis (422). In humans, the effect on weight loss and thermogenesis is not clear and differences in dose and duration of resveratrol supplementation across studies have yielded inconsistent results. Despite this limitation, some beneficial effects including improved HOMA-index have been observed 30 days after resveratrol supplementation, suggesting positive effects on insulin sensitivity (423).

7.3. Pharmacological Intervention

7.3.1. Beta 3-Agonist Drugs

In mice, pharmacological activation of BAT using β3-adrenoreceptor agonist drugs increases EE reduces circulating insulin levels and body fat (424–426). However, the translational potential of this approach is debatable since human β3-adrenoceptor have different binding characteristics compared to rodents and drug bioavailability also varies across species which limits the capacity to effectively activate BAT (427,428). Despite these limitations, a new FDA-approved drug, referred to as Mirabegron, developed to treat overactive bladder, has been shown to improve glucose tolerance and FA oxidation. At its maximal concentration (200-mg), a single dose of Mirabegron increased BAT glucose uptake and WAT lipolysis (429). Also, chronic Mirabegron treatment enhances BAT activity, induces WAT loss, increases HDL, and improves insulin sensitivity in lean and obese subjects (13,430). Nevertheless, a recent study performed by Blondin et al. raises some concerns regarding the use of Mirabegron (431). According to the authors, in human adipose tissue, Mirabegron seems to work mainly through b2-adrenoreceptor, since β3-adrenoceptor is quite low expressed. This suggesting that this drug lacks receptor selectivity (431) and may explain some of its effects on heart rate and blood pressure (429).

7.3.2. GLP-1 Receptor Agonist

Glucagon-like peptide 1 is a molecule secreted in response to the absorption of nutrition by the L-cells in the gastrointestinal tract. Innumerous clinical studies have
demonstrated its capacity to reduce food intake, enhance insulin secretion, inhibit gluconeogenesis and improve skeletal muscle IR. Besides, recent evidence suggests that GLP-1 increased browning of WAT and BAT activation via GLP-1 binding to its receptor GLP-1R in the hypothalamus (432–434). Since GLP-1 has a short half-life, GLP-1 analogs have been developed and approved as therapies to treat obesity and T2D (432). In mice, GLP-1 analogs have the potential to induce WAT browning and BAT activation (435). In obese and T2D humans, GLP-1 analogs enhance body weight loss and improve overall metabolism, whether this is dependent on decreased food intake or increased BAT activation yet needs to be addressed.

7.4. Gene Therapy

7.4.1. Ex Vivo Gene Therapy

The revolutionary approach of cellular-based therapy combined with gene editing has been considered an alternative to treat metabolic diseases and a pre-clinical study performed has shown promising results. Wang et al. used the CRISPR-Cas9 system (CRISPR-SAM) to overexpress Ucp1 in human white preadipocytes to generate the human beige/brown-like adipocytes (HUMBLE). These cells exhibit gene signatures and metabolic function similar to human brown adipocytes. Upon transplantation into mice, the HUMBLE cells differentiate into mature and functional adipocytes. Importantly, transplantation of HUMBLE cells into diet-induced obese mice resulted in increased heat production, decreased weight gain, improved insulin sensitivity, and glucose tolerance. Most strikingly, these metabolic effects were induced by the communication between the HUMBLE cells and the endogenous BAT via nitric oxide (14). Looking forward one could envision the generation of personalized HUMBLE cells, where adipocyte progenitor cells would be isolated from the patient’s scWAT, cultivated in vitro, transformed into HUMBLE, and placed back into the patient.

7.4.2. In Vivo Gene Therapy

A more straightforward alternative to modulating the expression of a gene or a protein is the delivery of nucleotides (DNA or RNA species) to the cell of interest. Over the years a variety of viral and non-viral methods have been developed to deliver DNA, RNA, or protein to human cells to treat different types of diseases. Currently, 12 gene therapy-based drugs are available in the market and many others are being tested in clinical trials (436), however, none of them were developed with the intent to treat obesity and its associated disease.

Hopefully, in a near future, with the use of viral vectors, we will be able to target specific tissues and overexpress a protein of interest. In line with this, one could envision the transfection of white and brown AT with the Ucp1 mRNA. A second approach will be to use the same CRISPR-Cas9 system used to generate the HUMBLE cells (14) to induce endogenous Ucp1 overexpression. The advantage of this technique compared to the others discussed earlier relies on the fact that it can be personalized, it may induce more persistent therapeutic outcomes reducing or eliminating the need for medication and avoiding any complication related to the cell transplantation.

7.5. 3D Bioprinting

3D bioprinting technology, allowing the construction of biological tissue in an accurate and reproducible manner is a potential approach for tissue engineering and regenerative medicine. AT bioprinting has particular needs including morphology, composition, and heterogeneity, as well as the microenvironment, and crosstalk with other cells such as immune cells, vascularization, and ECM. 3D bioprinting of brown and beige AT aiming to create an optimal size and function and transplanting it to the patients seems like a potential strategy in the treatment of obesity and metabolic diseases. This could also be
used for testing chemical and pharmaceutical products as well as evaluating the toxicity of the new drugs. Kuss et al. used 3D printed gels to test the effects of stiff vs. soft gels on immortalized human white and brown AT precursor cells and showed that white progenitors prefer soft gels to differentiate as compared to brown progenitors that their differentiation reaches an optimal level interacting with stiffer gels (437). The feasibility of bioprinting the breast structure including the AT and mammary glands has been discussed by Chen et al. and despite several challenges including poor vascularization, it is a promising strategy to count on for the treatment of patients with breast cancer (438). Nonetheless, most of the bioprinted tissue and organs are yet at the level of laboratory uses and there is a long way till they will be clinically applicable.

8. Perspectives

More than just a number on a scale or the body size, obesity is linked to many diseases and complications including diabetes, heart disease, and many types of cancer. It is a complex dilemma and a public health concern worldwide. Activating BAT and induction of WAT browning and thereby increasing the thermogenesis is a promising strategy to improve the whole-body energy metabolism and combat obesity and its complications. In line with this, the majority of studies are performed in animals or in vitro in 2D cell cultures. Hence, the detailed mechanisms underlying the browning of WAT and BAT activation needs to be further investigated in humans. Furthermore, considering the great heterogeneity of AT, in vitro studies shall highly consider the use of 3D culture models of AT in which the native tissue function and its cellular heterogeneity would be resumed. Finally, considering the brown and beige AT as therapeutic targets, one must consider the variations that might be caused by the differences in gender, ethnicity, age, and body composition.

Author Contributions: conceptualization, A.R. and B.B.B.; writing, review and editing, A.R., B.B.B., and A.P.; visualization, A.R.; supervision, A.R.; funding acquisition, A.R. All authors have read and agreed to the published version of the manuscript.

Funding: Dr. Rabiee was partly funded by Nutting Family Foundation.

Acknowledgments: The authors would like to thank Dr. Sean Kodani at Joslin Diabetes Center, Harvard Medical School, for proofreading this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Reaven, G. Insulin resistance, hypertension, and coronary heart disease. J Clin Hypertens (2003) 5:269–274. doi:10.1111/j.1524-6175.2003.01764.x
2. Hruby, A., Hu FB. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics (2015) doi:10.1007/s40273-014-0243-x
3. Seale, P., Lazar MA. Brown fat in humans: Turning up the heat on obesity. Diabetes (2009) 58:1482–1484. doi:10.2337/db09-0622
4. Ikeda K, Maretich P, Kajimura, S. The Common and Distinct Features of Brown and Beige Adipocytes. Trends Endocrinol Metab (2018) 29:191–200. doi:10.1016/j.tem.2018.01.001
5. Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, Patel RT, Lee J, Chen S, Peroni OD, et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell (2014) doi:10.1016/j.cell.2014.09.035
6. Lynes MD, Leiria LO, Lundh M, Bartelt A, Shamsi F, Huang TL, Takahashi H, Hirshman MF, Schlein, C., Lee, A., et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med (2017) doi:10.1038/nm.4297
7. Scherer PE, Williams S, Fogliano M, Baldini, G., Lodish HF. A novel serum protein similar to Clq, produced exclusively in adipocytes. J Biol Chem (1995) doi:10.1074/jbc.270.45.26746
8. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature (1994) doi:10.1038/372425a0
9. Lihn AS, Pedersen SB, Richelsen, B. Adiponectin: Action, regulation and association to insulin sensitivity. Obes Rev (2005) doi:10.1111/j.1467-789X.2005.00159.x
Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature (2017) doi:10.1038/nature21365

Lessing MPA, Hyman NM. Intracranial haemorrhage caused by amphetamine abuse. J R Soc Med (1989) doi:10.1177/0140766789008201223

O’Mara AE, Johnson JW, Linderman JD, Brychta RJ, McGehee S, Fletcher LA, Fink YA, Kapuria D, Cassimatis TM, Kelsey, N., et al. Chronic mildly increased human brown fat, HDL cholesterol, and insulin sensitivity. J Clin Invest (2020) doi:10.1172/JCI131126

Wang CH, Lundh M, Fu A, Kriszt R, Huang TL, Lynes MD, Leiria LO, Shamsi F, Darcy J, Greenwood BP, et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med (2020) doi:10.1126/scitranslmed.aaz8664

Cinti, S. The adipose organ. in Prostaglandins Leukotrienes and Essential Fatty Acids, 9–15. doi:10.1016/j.plefa.2005.04.010

Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell (2014) 156:20–44. doi:10.1016/j.cell.2013.12.012

Peirce V, Carobbi S, Vidal-Puig, A. The different shades of fat. Nature (2014) 510:76–83. doi:10.1038/nature13477

Wu J, Boström P, Sparks LM, Ye L, Choi JH, Khandekar MK, Virtanen KA, Nuu tila, P., Schaar, G., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell (2012) 150:366–376. doi:10.1016/j.cell.2012.05.016

Cousin B, Cinti S, Morrone M, Rainbault S, Ricquier D, Penicaud, L., Castella, L. Occurrence of brown adipocytes in rat white adipose tissue: Molecular and morphological characterization. J Cell Sci (1992) 103:931–942.

Guerra C, Koza RA, Yamashita, H., Walsh, K., KozaK LP. Emergence of brown adipocytes in white fat in mice is under genetic control effects on body weight and adiposity. J Clin Invest (1998) 102:412–420. doi:10.1172/JCI31355

Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti, S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol - Cell Physiol (2000) 279: doi:10.1152/ajpcell.2000.279.3.c670

Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durex C, Rigo D, Fabbiano S, Stevanovic, A., Hagemann, S., et al. Gut Microbiota Orchestrates Thermal Fat Cell Differentiation and Importance of Brown Adipose Tissue in Adult Humans. Nat Med (2015) 21:1497–1501. doi:10.1038/nm.3994

Fabbiano S, Suarez, M. Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling. Cell Metab (2016) 24:434-446. doi:10.1016/j.cmet.2016.07.023

Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: Role in metabolism and disease. Nat Rev Endocrinol (2010) 6:195–213. doi:10.1038/nrendo.2010.20

de Jong JMA, Larsson O, Cannon B, Nedergaard, J. A stringent validation of mouse adipose tissue identity markers. Am J Physiol - Endocrinol Metab (2015) 308:E1085–E1105. doi:10.1152/ajpendo.0023.2015

Enerbäck, S. Brown adipose tissue in humans. Int J Obes (2010) 34:S43–S46. doi:10.1038/ijo.2010.183

Virtanen KA, Lidell ME, Orava J, Heglid M, Westergren R, Niemi T, Taattonen M, Laine J, Savisto N-J, Enerbäck, S., et al. Functional Brown Adipose Tissue in Healthy Adults. N Engl J Med (2009) 360:1518–1525. doi:10.1056/nejmoa0808949

van Marken Lichtenbelt WD, Vanhommegerv WW, Smulders NM, Drossaerts JMAFL, Kemerekig GJ, Bouvy ND, Schrauwen, P., Teule GJJ. Cold-Activated Brown Adipose Tissue in Healthy Men. N Engl J Med (2009) 360:1500–1508. doi:10.1056/nejmoa0808718

Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng, Y.-H., Doria, A., et al. Identification and Importance of Brown Adipose Tissue in Adult Humans. N Engl J Med (2009) 360:1509–1517. doi:10.1056/nejmoa0810780

Richard MA, Pallubinsky, H., Blondin DP. Functional characterization of human brown adipose tissue metabolism. Biochem J (2020) 477:1261–1286. doi:10.1042/BC20190464

Houšťek J, Kopecký J, Rychter, Z., Soukup, T. Uncoupling protein in embryonic brown adipose tissue - existence of nonthermogenic and thermogenic mitochondria. BBA - Bioenerg (1988) 935:19–25. doi:10.1016/0005-2728(88)90103-X

Wang W, Kissig M, Rajakumari S, Huang L, Lim HW, Won KJ, Seale, P. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci U S A (2014) 111:14466–14471. doi:10.1073/pnas.1412685111

GIRALT M, MARTIN I, IGLESIAS R, VINAS O, VILLARROYA F., MAMPFEL T. Ontogeny and perinatal modulation of gene expression in rat brown adipose tissue: Unaltered iodothyronine 3'-deiodinase activity is necessary for the response to environmental temperature at birth. Eur J Biochem (1990) 193:297–302. doi:10.1111/j.1432-1033.1990.tb19336.x

Birsoy K, Berry R, Wang T, Ceyhan O, Tavaozoie S, Friedman JM, Rodheffer MS. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis. J Cell Sci (2011) 124: e1–e1. doi:10.1242/jcs.01436
Poissonnet CM, Burdi AR, Garn SM. The chronology of adipose tissue appearance and distribution in the human fetus. *Early Hum Dev* (1984) 10:1–11. doi:10.1016/0378-3782(84)90106-3

Berry, R., Rodeheffer MS. Characterization of the adipocyte cellular lineage in vivo. *Nat Cell Biol* (2013) 15:302–308. doi:10.1038/nclb2696

Han J, Lee JE, Jin J, Lim JS, Oh N, Kim K, Chang SI, Shibuya, M., Kim, H., Koh GY. The spatiotemporal development of adipose tissue. *Development* (2011) 138:5027–5037. doi:10.1242/dev.067686

Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. *Nat Med* (2013) 19:1338–1344. doi:10.1038/nmm.3324

Asahina K, Zhou B, Pu WT, Tsukamoto, H. Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. *Hepatology* (2011) 53:983–995. doi:10.1002/hep.24119

Cano E, Carmona R, Muñoz-Chápuli, R. Wt1-expressing progenitors contribute to multiple tissues in the developing lung. *Am J Physiol - Lung Cell Mol Physiol* (2013) 305: doi:10.1152/ajplung.00424.2012

Chau YY, Bandiera, R, Serrels A, Martinez-Estrada OM, Qing W, Lee M, Slight J, Thornburn A, Berry R, Mcchaffie S, et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. *Nat Cell Biol* (2014) 16:367–375. doi:10.1038/nclb2922

Rinkevich Y, Mori T, Sahoo D, Xu PX, Berringham JR, Weissman IL. Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. *Nat Cell Biol* (2012) 14:1251–1260. doi:10.1038/nclb2610

Atit R, Sgaier SK, Mohamed OA, Taketo MM, Dufruit D, Joyner AL, Niswander L., Conlon RA. *B-Catenin Activation Is Necessary and Sufficient To Specify the Dorsal Dermal Fate in the Mouse*. *Dev Biol* (2006) 296:164–176. doi:10.1016/j.ydbio.2006.04.449

Billon N, Iannarelli P, Monteiro MC, Glaviuex T, Sanchez J, Hes J, Hung CM, Sparks CA, Tang H., Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. *Hepatology* (2011) 53:983–995. doi:10.1002/hep.24119

Sanchez-Gurmaches J, Guertin DA. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. *Nat Commun* (2014) 5: doi:10.1038/ncomms5099

Le Lievre CS, Le Douarin NM. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. *J Embryol Exp Morphol* (1984) 83:125–154.

Krueger KC, Costa MJ, Du, H., Feldman BJ. Characterization of cre recombinase activity for in vivo targeting of adipocyte precursor cells. *Stem Cell Reports* (2014) 3:1147–1158. doi:10.1016/j.stemcr.2014.10.009

Lee KY, Luong Q, Sharma R, Dreyfuss JM, Ussar, S., Kahn CR. Developmental and functional heterogeneity of white adipocytes within a single fat depot. *EMBO J* (2019) 38: doi:10.15252/embj.201899291

Sanchez-Gurmaches J, Hsiao WY, Guertin DA. Highly selective in vivo labeling of subcutaneous white adipocyte precursors with Prx1-Cre. *Stem Cell Reports* (2015) 4:541–550. doi:10.1016/j.stemcr.2015.02.008

Bergwerff M, Gittenberger-de Groot AC, Wisse LJ, DeRuiter MC, Wessels A, Martin JF, Olson EN, Kern MJ. Loss of function of the Prx1 and Prx2 hemeobox genes alters architecture of the great elastic arteries and ductus arteriosus. *Virchows Arch* (2000) 436:12–19. doi:10.1007/PL0008193

Kuratani S, Martin JF, Wawersik S, Lilly B, Eichele G, Olson EN. The expression pattern of the chick homeobox gene gMHox suggests a role in patterning of the limbs and face and in compartmentalization of somites. *Dev Biol* (1994) 161:357–369. doi:10.1006/dbio.1994.1037

Leussink B, Brouwer A, El Khattabi M, Poellmann RE, Gittenberger-de Groot AC, Meijlink, F. Expression patterns of the paired-related homeobox genes MHOX Prx1 and S8 Prx2 suggest roles in development of the heart and the forebrain. *Mech Dev* (1995) 52:51–64. doi:10.1016/0925-4773(95)00389-1

Erratum to Paired Related Homeobox Protein 1 is a Regulator of Stemness in Adult Neural Stem/Progenitor Cells(Journal of Neuroscience (2013) 56, 3, (4066-4075)). *J Neurosci* (2015) 35:1335. doi:10.1523/JNEUROSCI.4753-14.2015

Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, et al. PRDM16 controls a brown fat/skeletal muscle switch. *Nature* (2008) 454:961–967. doi:10.1038/nature07182

Sanchez-Gurmaches J, Hung CM, Sparks CA, Tang, Y., Li, H., Guertin DA. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. *Cell Metab* (2012) 16:348–362. doi:10.1016/j.cmet.2012.08.003

Shan T, Liang X, Bi P, Zhang, P., Liu, W., Kuang, S. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. *J Lipid Res* (2013) 54:2214–2224. doi:10.1194/jlr.M038711

Sebo ZL, Jeffery E, Holtrup B, Rodeheffer MS. A mesodermal fate map for adipose tissue. *Dev* (2018) 145: doi:10.1242/dev.166801

Steinbring J, Graja A, Jank AM, Schulz TJ. “Flow cytometric isolation and differentiation of adipogenic progenitor cells into..."
brown and brite/beige adipocytes,” in Methods in Molecular Biology, 25–36. doi:10.1007/978-1-4939-6820-6_4

61. Russell AP, Crisan M, Léger B, Corselli M, McAinchn AJ, O’Brien PE, Cameron-Smith D, Péault B, Casteilla, L., Giacobino JP. Brown adipocyte progenitor population is modified in obese and diabetic skeletal muscle. Int J Obes (2012) 36:155–158. doi:10.1038/ijo.2011.85

62. Raajendiran A, Ooi G, Bayliss J, O’Brien PE, Schittenhelm RB, Clark AK, Taylor RA, Rodeheffer MS, Burton PR, Watt MJ. Identification of Metabolically Distinct Adipocyte Progenitor Cells in Human Adipose Tissues. Cell Rep (2019) 27:1528–1540.e7. doi:10.1016/j.celrep.2019.04.010

63. Oguri Y, Shinoda K, Kim H, Alba DL, Bolus WR, Wang Q, Brown Z, Pradhan RN, Tajima, K., Yoneshiro T, et al. CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell (2020) 182:563-577.e20. doi:10.1016/j.cell.2020.06.021

64. Maumus M, Peyrafitte JA, D’Angelo R, Fournier-Wirth C, Bouloumié A, Casteilla L, Sengenes, C., Bourin, P. Native human adipose stromal cells: Localization, morphology and phenotype. Int J Obes (2011) 35:1141–1153. doi:10.1038/ijo.2010.269

65. Turley SJ, Cremaesco, V., Astaria JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol (2015) 15:669–682. doi:10.1038/nri3902

66. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL. A population of multipotent CD34-positive adipocyte stem cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res (2008) 102:77–85. doi:10.1161/CIRCRESAHA.107.159475

67. Lee YH, Petkova AC, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenergoc receptor activation and high-fat feeding. Cell Metab (2012) 15:480–491. doi:10.1016/j.cmet.2012.03.009

68. Daquinac AC, Tseng C, Salameh A, Zhang Y, Amaya-Manzanares F, Dadbin A, Florez F, Xu, Y., Tong, Q., Kolonin MG. Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development. Cell Death Differ (2015) 22:351–363. doi:10.1038/cdd.2014.148

69. Gao Z, Daquinac AC, Su F, Snyder, B., Kolonin MG. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Dev (2018) 145: doi:10.1242/dev.155861

70. Chen Y, Ikeda K, Yoneshiro T, Scaramozza A, Tajima K, Wang Q, Kim K, Shinoda K, Sponton CH, Brown Z, et al. Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature (2019) 565:180–185. doi:10.1038/s41586-018-0801-z

71. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab (2006) 4:263–273. doi:10.1016/j.cmet.2006.07.001

72. Rangwala SM, Lazar MA. Transcriptional control of adipogenesis. Annu Rev Nutr (2000) 20:535–559. doi:10.1146/anurev.nutr.20.1.535

73. Siersbæk, R., Mandrup, S. Transcriptional networks controlling adipocyte differentiation. Cold Spring Harb Symp Quant Biol (2011) 76:247–255. doi:10.1101/sqb.2011.76.010512

74. Rajakumari S, Wu J, Ishibashi J, Lim HW, Giang AH, Won KJ, Reed RR, Seale, P. EBF2 determines and maintains brown adipocyte identity. Cell Metab (2013) 17:562–574. doi:10.1016/j.cmet.2013.01.015

75. Shinoda K, Luijtjen IHN, Hasegawa Y, Hong H, Sonne SB, Kim M, Xue R, Chondronikola M, Cypess AM, Tseng YH, et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med (2015) 21:389–394. doi:10.1038/nm.3819

76. Stine RR, Shapiro SN, Lim HW, Ishibashi J, Harms M, Won KJ, Seale, P. EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol Metab (2016) 5:57–65. doi:10.1016/j.molmet.2015.11.001

77. Park JH, Kang HJ, Kang SI, Lee JE, Hur J, Ge K, Mueller E, Li, H., Lee BC, Lee SB. A Multifunctional protein, EWS, is essential for early brown fat lineage determination. Dev Cell (2013) 26:393–404. doi:10.1016/j.devcel.2013.07.002

78. Park JH, Kang JH, Lee YK, Kang H, Kim J, Chung JH, Chang JS, McPherron AC, Lee SB. Inactivation of EWS reduces PGC-1α protein stability and mitochondrial homeostasis. Proc Natl Acad Sci U S A (2015) 112:6074–6079. doi:10.1073/pnas.1504931112

79. Rabiee A, Plucińska K, Isidor MS, Brown EL, Tozzi M, Sidoli S, Petersen PSS, Agueda-Oyarzabal M, Torsetnes SB, Chehabi GN, et al. White adipose remodeling during browning in mice involves YBX1 to drive thermogenic commitment. Mol Metab (2021) 44: doi:10.1016/j.molmet.2020.101137

80. Ma X, Xu L, Alberobello AT, Gavrilova O, Baqattin A, Skarulis M, Liu J, Finkel T, Mueller, E. Celastrol protects against obesity and metabolic dysfunction through activation of a HSFI-PGC-1α transcripational axis. Cell Metab (2015) 22:695–708. doi:10.1016/j.cmet.2015.08.005

81. Liu J, Lee J, Hernandez MAS, Mazitschek, R., Ozcan, U. Treatment of obesity with celastrol. Cell (2015) 161:999–1011. doi:10.1016/j.cell.2015.05.011

82. Zhou H, Wan B, Grubisic I, Kaplan T, Tjian, R. TAF7L modulates brown adipose tissue formation. Elife (2014) 3: doi:10.7554/eLife.02811

83. Zhang H, Huang Y, Lee HJ, Jin, W. Zic1 negatively regulates brown adipogenesis in C3H10T1/2 cells. Sci Bull (2015) 60:1033–1035. doi:10.1007/s11434-015-0797-9

84. Perugini J, Bordoni L, Venema W, Acciarini S, Cinti S, Gabbianelli R, Giordano, A. Zic1 mRNA is transiently upregulated in subcutaneous fat of acutely cold-exposed mice. J Cell Physiol (2019) 234:2031–2036. doi:10.1002/jcp.27301
Development of insulin resistance in mice lacking PGC-1α.

Uldry M, Yang W, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM. Transcriptional Control of Brown Fat Determination by PRDM16. Cell Metab (2007) 6:38–54. doi:10.1016/j.cmet.2007.06.001

Kajimura S, Siegel PM, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, Chin S, Tempst P, Lazar MA, Spiegelman BM. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev (2008) 22:1397–1409. doi:10.1101/gad.1666108

Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, Uldry M, Tavernier G, Langin D, Spiegelman BM. Transcriptional Control of the PRDM16 Complex. Nature (2013) 504:163–167. doi:10.1038/nature12652

Kajimura S, Seale P, Uldry M, Tavernier G, Langin D, Spiegelman BM. Ablation of PRDM16 promotes cardiac mitochondrial biogenesis. J Clin Invest (2011) 121:96–105. doi:10.1172/JCI44271

Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. J Clin Invest (2014) 135:304–316. doi:10.1172/JCI10268

Iida S, Chen W, Nakadai T, Ohkuma Y, Roeder RG. PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with mediator subunit MED1. Genes Dev (2015) 29:308–321. doi:10.1101/gad.252809.114

Kissig M, Ishibashi J, Harms MJ, Lim H, Stine RR, Uldry M, Seale P. PRDM16 represses the type I interferon response in adipocytes to promote mitochondrial and thermogenic programming. EMBO J (2017) 36:1528–1542. doi:10.15252/embj.201695888

Seale P, Conroe HM, Estall J, Kajimura S, Ishibashi J, Cohen P, Cinti S, Spiegelman BM. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest (2011) 121:96–105. doi:10.1172/JCI44271

Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. J Clin Invest (2014) 135:304–316. doi:10.1172/JCI10268

Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell (1998) 92:829–839. doi:10.1016/S0092-8674(00)81410-5

Tiraby C, Tavernier G, Lefort C, Larrouy D, Brouard E, Brouard E, Brugger A, Offner F, Spiegelman BM. IGF-1 promotes cardiac mitochondrial biogenesis through interaction with PRDM16/CtBP. Mol Cell (2009) 35:253–263. doi:10.1016/j.molcel.2009.04.008

Bromage H, Cooper MP, Ruas JL, Chin S, Tempst P, Lazar MA, Spiegelman BM. Ablation of PRDM16 promotes cardiac mitochondrial biogenesis. J Clin Invest (2011) 121:96–105. doi:10.1172/JCI44271

Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest (2008) 119:401–410. doi:10.1172/JCI341268

Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, et al. Effects of adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell (2004) 114:121–135. doi:10.1016/j.cell.2004.09.013

Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. Complementary action of the PGC-1 co-activators in mitochondrial biogenesis and brown fat differentiation. Cell Metab (2006) 3:333–341. doi:10.1016/j.cmet.2006.04.002

Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR, Estall JL, Bhowmick DC, Shulman GI, Spiegelman BM. Development of insulin resistance in mice lacking PGC-1α in adipose tissues. Proc Natl Acad Sci U S A (2012) 109:9635–9640. doi:10.1073/pnas.1207281109

Demmers MJ, Sambeat A, Gulyaeva O, Paul SM, Hudak CSS, Raposo HF, Kwan HY, Kang C, Wong RH, Sul HS. Cold-inducible Zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Mol Cell
Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev, A.V., Bai X, Floering LM, Spiegelman BM, Collins, S. p38 Mitogen-Activated Protein Kinase Is the Central Regulator of Cyclic AMP-Dependent Transcription of the Brown Fat Uncoupling Protein 1 Gene. Mol Cell Biol (2004) 24:3057–3067. doi:10.1128/mcb.24.7.3057-3067.2004

Cederberg A, Gronning LM, Ahrén B, Taskén K, Carlsson P, Enerbäck, S. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell (2001) 106:563–573. doi:10.1016/S0092-8674(01)00474-3

Davis KE, Moldes, M., Farmer SR. The forkhead transcription factor FOXC2 inhibits white adipocyte differentiation. J Biol Chem (2004) 279:42453–42461. doi:10.1074/jbc.M402197200

Loft A, Forsis I, Siersbak MS, Schmidt MF, Larsen ASB, Madsen JGS, Pisani DF, Nielsen R, Aagaard MM, Mathison, A., et al. Browning of human adipocytes requires KLF11 and reprogramming of PPARy superenhancers. Genes Dev (2015) 29:7–22. doi:10.1101/gad.250829.114

Fan H, Zhang Y, Zhang J, Yao Q, Song Y, Shen Q, Lin J, Gao Y, Wang X, Zhang, L., et al. Cold-inducible Klf9 regulates thermogenesis of brown and beige fat. Diabetes (2020) 69:2603–2618. doi:10.2337/db19-1153

Yang Z-F, Drumea K, Mott S, Wang, J., Rosmarin AG. GABP Transcription Factor (Nuclear Respiratory Factor 2) Is Required for Mitochondrial Biogenesis. Mol Cell Biol (2016) 34:3194–3201. doi:10.1128/mcb.00492-12

Mootha VK, Handschin, C., Arlow, D., Xie, X., St. Pierre J, Sibag S, Yang W, Altschuler D, Puigserver P, Patterson, N., et al. Erza and Gapa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A (2004) 101:6570–6575. doi:10.1073/pnas.0401401101

Gantner ML, Hazen BC, Eury, E., Brown EL, Kralli, A. Complementary roles of estrogen-related receptors in brown adipocyte thermogenic function. Endocrinology (2016) 157:4770–4781. doi:10.1210/en.2016-1767

Gerhart-Hines Z, Feng D, Emmett MJ, Everett LJ, Loro E, Briggs ER, Bugge A, Hou C, Ferrara C, Seale P, et al. The nuclear receptor Rev-erba controls circadian thermogenic plasticity. Nature (2013) 503:410–413. doi:10.1038/nature12642

Nam D, Chatterjee S, Yin H, Liu R, Lee J, Yechoor VK, Ma, K. Novel function of rev-erba in promoting brown adipogenesis. Sci Rep (2015) 5: doi:10.1038/srep11239

Brown EL, Hazen BC, Eury E, Watjes JS, Gantner ML, Albert V, Chau S, Sanchez-Alavez, M., Conti, B., Kralli, A. Estrogen-Related Receptors Mediate the Adaptive Response of Brown Adipose Tissue to Adrenergic Stimulation. iScience (2018) 2:221–237. doi:10.1016/j.isci.2018.03.005

Wang B, Fu X, Liang X, Deavila JM, Wang Z, Zhao L, Tian Q, Zhao J, Gomez NA, Trombetta SC, et al. Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFRα+ adipose progenitors. Cell Discov (2017) 3: doi:10.1038/celldisc.2017.36

Kumar N, Liu D, Wang H, Robidoux, J., Collins, S. Orphan nuclear receptor NOR-1 enhances 3’,5’-cyclic adenosine 5’-monophosphate-dependent uncoupling protein–1 gene transcription. Mol Endocrinol (2008) 22:1057–1064. doi:10.1210/me.2007-0046

Bi P, Shan T, Liu W, Yue F, Yang X, Liang XR, Wang J, Li J, Carlesso N, Liu, X., et al. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med (2014) 20:911–918. doi:10.1038/nm.3615

Claussnitzer M, Danek SN, Kim K-H, Quon G, Meuleman W, Haugen C, Guan K, Souza IS, Beaudry JL, Puvivindran, V., et al. FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. N Engl J Med (2015) 373:895–907. doi:10.1056/nejmoa1502214

Christian M, Kiskinis E, Debevec D, Leonardsson G, White R, Parker MG. RIP140-Targeted Repression of Gene Expression in Adipocytes. Mol Cell (2005) 20:938–939. doi:10.1016/j.mcb.2005.02.001

Powelka AM, Seth, A., Virbasius, J.V., Kiskinis E, Nicoloro SM, Guillerme A, Tang X, Straubhaar J, Cherniack AD, Parker MG, et al. Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J Clin Invest (2006) 117:125–136. doi:10.1172/JCI26040

Leonardsson G, Steel JH, Christian M, Pocock V, Milligan S, Bell J, So PW, Medina-Gomez V, Vidal-Puig A, White, R., et al. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci U S A (2004) 101:8437–8442. doi:10.1073/pnas.040103101

Pearson S, Loft A, Rajbhandari P, Simcox J, Lee S, Tontonoz P, Mandrup S, Villanueva CJ. Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism. Genes Dev (2019) 33:747–762. doi:10.1101/gad.321059.118

Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, Roby YA, Kulaga H, Reed RR, Spiegelman BM. Transcriptional control of preadipocyte determination by Zfp423. Nature (2010) 464:619–623. doi:10.1038/nature08816

Shao M, Ishibashi J, Kusminski CM, Wang QA, Hepler C, Vishvanath L, MacPherson KA, Spurin SB, Sun, K., Holland WL, et al. Zfp423 Maintains White Adipocyte Identity through Suppression of the Beige Cell Thermogenic Gene Program. Cell Metab (2016) 23:1167–1184. doi:10.1016/j.cmet.2016.04.023

Mori M, Nakagami H, Rodriguez-Araujo, G., Nimura, K., Kaneda, Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol (2012) 10: doi:10.1371/journal.pbio.1001314
131. Ng Y, Tan SX, Chia SY, Tan HYA, Gun SY, Sun, L., Hong W, Han, W. HOXC10 suppresses browning of white adipose tissues. Exp Mol Med (2017) 49: doi:10.1038/emm.2016.144

132. Pan D, Fujimoto M, Lopes A, Wang YX. Twist-1 Is a PPARδ-Inducible, Negative-Feedback Regulator of PGC-1α in Brown Fat Metabolism. Cell (2009) 137:73–86. doi:10.1016/j.cell.2009.01.051

133. Xu L, Panel V, Ma X, Du C, Hugendubler L, Gavriloiva O, Liu A, McLaughlin T, Kaestner KH, Mueller, E. The Winged Helix Transcription Factor Foxa3 Regulates Adipocyte Differentiation and Depot-Selective Fat Tissue Expansion. Mol Cell Biol (2013) 33:3392–3399. doi:10.1128/mcb.00244-13

134. Ma X, Xu L, Gavriloiva O, Mueller, E. Role of forkhead box protein A3 in age-associated metabolic decline. Proc Natl Acad Sci U S A (2014) 111:14289–14294. doi:10.1073/pnas.1407640111

135. Cheng Z, Tao Z, Liu L, Zheng, L. FoxO1 regulates beige adipogenesis and adiposity via autophagy. FASEB J (2019) 33: doi:10.1096/fasebj.2019.33.1_supplement.719.5

136. Ioannilli L, Ciccareone F, Cirilo MR. Adipose Tissue and FoxO1: Bridging Physiology and Mechanisms. Cells (2020) 9:849. doi:10.3390/cells9040849

137. Liu P, Huang S, Ling S, Xu S, Wang F, Zhang W, Zhou R, He L, Xia, X, Yao Z, et al. Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating β3-AR desensitization. Nat Commun (2019) 10: doi:10.1038/s41467-019-12988-8

138. Calo E, Quintero-Estades JA, Danielian PS, Nedelcu, S., Berman SD, Lees JA. Rb regulates fate choice and lineage commitment in vivo. Nature (2014) 466:1110–1114. doi:10.1038/nature09264

139. Yadav H, Quijano C, Kamaraju AK, Gavriloova O, Malek R, Chen W, Zerfas P, Zhigang D, Wright EC, Stuelten, C., et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab (2011) 14:67–79. doi:10.1016/j.cmet.2011.04.013

140. Laurila PP, Soronen J, Kooijman S, Forssström S, Boon MR, Surakka I, Kaiharju E, Coomans CP, Van Den Berg SAA, Autio, A. et al. USF1 deficiency activates brown adipose tissue and improves cardiometabolic health. Sci Transl Med (2016) 8: doi:10.1126/scitranslmed.aad0015

141. McDonald ME, Li C, Bian H, Smith BD, Layne MD, Farmer SR. Myocardin-related transcription factor a regulates conversion of progenitors to beige adipocytes. Cell (2015) 160:105–118. doi:10.1016/j.cell.2014.12.005

142. Wang H, Zhang Y, Yeh S, Liu P, Huang S, Ling S, Xu S, Wang F, Zhang W, Zhou R, He L, Xia, X, Yao Z, et al. Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating β3-AR desensitization. Nat Commun (2019) 10: doi:10.1038/s41467-019-12988-8

143. Scimé A, Grenier G, Huh MS, Gillespie MA, Bevilacqua L, Harper ME, Rudnicki MA. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1α. Cell Metab (2005) 2:283–295. doi:10.1016/j.cmet.2005.10.002

144. De Sousa M, Porras DP, Perry CGR, Seale P, Scimé, A. P107 is a crucial regulator for determining the adipocyte lineage fate choices of stem cells. Stem Cells (2014) 32:1323–1336. doi:10.1002/stem.1637

145. Cunarro J, Buque X, Casado S, Lugilde J, Vidal A, Mora A, Sabio G, Nogueiras R, Aspichueta, P., Diéguez C, et al. p107 Deficiency Increases Energy Expenditure by Inducing Brown-Fat Thermogenesis and Browning of White Adipose Tissue. Mol Nutr Food Res (2019) 63: doi:10.1002/mnfr.201801096

146. Vernochet C, Peres SB, Davis KE, McDonald ME, Qiang L, Wang H, Scherer PE, Farmer SR. C/EBPα and the Corepressors CtBP1 and CtBP2 Regulate Repression of Selective Visceral White Adipose Genes during Induction of the Brown Phenotype in White Adipocytes by Peroxisome Proliferator-Activated Receptor γ Agonists. Mol Cell Biol (2009) 29:4714–4728. doi:10.1128/mcb.01899-08

147. Siersbaek MS, Loft A, Aagaard MM, Nielsen R, Schmidt SF, Petrovic N, Nedergaard J, Mandrup, S. Genome-Wide Profiling of Peroxisome Proliferator-Activated Receptor γ in Primary Epididymal, Inguinal, and Brown Adipocytes Reveals Depot-Selective Binding Correlated with Gene Expression. Mol Cell Biol (2012) 32:3452–3463. doi:10.1128/mcb.00526-12

148. Roh HC, Tsai LTY, Shao M, Tenen D, Shen Y, Kumari M, Lyubetskaya A, Jacobs C, Dawes B, Gupta RK, et al. Warming Induces Significant Reprogramming of Beige, but Not Brown, Adipocyte Cellular Identity. Cell Metab (2018) 27:1121-1137.e5. doi:10.1016/j.cmet.2018.03.005

149. Lai B, Lee JE, Jing Y, Lifeng W, Peng W, Ge, K. MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis. Nucleic Acids Res (2017) 45:6388–6403. doi:10.1093/nar/gkx234

150. Pan D, Huang L, Zhu L, Zou T, Ou J, Zhou W, Wang YX. JmjD3-Mediated H3K27me3 Dynamics Orchestrate Brown Fat Development and Regulate White Fat Plasticity. Dev Cell (2015) 35:568–583. doi:10.1016/j.devcel.2015.11.002

151. Li F, Wu R, Cui X, Zha L, Yu L., Shi, H., Xue, B. Histone deacetylase 1 (HDAC1) negatively regulates thermogenic program in brown adipocytes via coordinated regulation of histone H3 lysine 27 (H3K27) deacetylation and methylation. J Biol Chem (2016) 291:4523–4536. doi:10.1074/jbc.M115.677930

152. Nic-Can GI, Rodas-Junco BA, Carrillo-Cocom LM, Zepeda-Pedreguera A, Peñaloza-Cuevas R, Aguilar-Ayala FJ, Rojas-Herrera RA. Epigenetic regulation of adipogenic differentiation by histone lysine demethylation. Int J Mol Sci (2019) 20: doi:10.3390/ijms20163918
153. Tanimura K, Suzuki T, Vargas D, Shibata, H., Inagaki, T. Epigenetic regulation of beige adipocyte fate by histone methylation. *Endocr J* (2019) **66**:115–125. doi:10.1507/endocrj.EJ18-0442

154. Zha L, Li F, Wu R, Artinian L, Rehder V, Yu L, Liang, H., Xue, B., Shi, H. The histone demethylase UTX promotes brown adipocyte thermogenic program via coordinated regulation of H3K27 demethylation and acetylation. *J Biol Chem* (2015) **290**:25151–25163. doi:10.1074/jbc.M115.662650

155. Abe Y, Rozqie R, Matsumura Y, Kawamura T, Nakaki R, Tsurutani Y, Tanimura-Inagaki K, Shiono A, Magoori K, Nakamura K, et al. JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis. *Nat Commun* (2015) **6**: doi:10.1038/ncomms8052

156. Sambeat A, Gulyaeva O, Dempersmier J, Tharp KM, Stahl A, Paul SM, Sul HS. LSD1 Interacts with Zfp516 to Promote UCP1 Transcription and Brown Fat Program. *Cell Rep* (2016) **15**:2536–2549. doi:10.1016/j.celrep.2016.05.019

157. Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W, et al. H3K4 mono- And dimethyltransferase MLL4 is required for enhancer activation during cell differentiation. *Elife* (2013) **2013**: doi:10.7554/eLife.01503

158. Emmett MJ, Lim HW, Jager HJ, Richter HJ, Adlammerini M, Peed LC, Briggs DJ, Steger DJ, Ma, T., Sims CA, et al. Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. *Nature* (2017) **546**:544–548. doi:10.1038/nature22819

159. Nanduri, R. Epigenetic Regulators of White Adipocyte Browning. *Epigenomesc* (2021) 5:3. doi:10.3390/epigenomes5010003

160. Liu T, Mi L, Xiong J, Orchard P, Yu Q, Yu L, Zhao XY, Meng ZX, Parker SCJ, Lin JD, et al. BAFl60a deficiency uncouples chromatin accessibility and cold sensitivity from white fat browning. *Nat Commun* (2020) **11**: doi:10.1038/s41467-020-16148-1

161. Xiao, H., Kang, S. The role of DNA methylation in thermogenic adipose biology. *Epigenetics* (2019) **14**:837–843. doi:10.1080/15592294.2019.1625670

162. Lim YC, Chia SY, Jin S, Han W, Ding C, Sun L. Dynamic DNA methylation landscape defines brown and white cell specificity during adipogenesis. *Mol Metab* (2016) **5**:1033–1041. doi:10.1016/j.molmet.2016.08.006

163. Vinet, L., Zbedanov, A. A “missing” family of classical orthogonal polynomials. *J Phys A Math Theor* (2011) **44**: doi:10.1088/1751-8113/44/8/085201

164. Damal Villivalam S, You D, Kim J, Lim HW, Xiao H, Zushin PJJ, Oguri Y, Amin P, Kang, S. TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis. *Nat Commun* (2020) **11**: doi:10.1038/s41467-020-18054-y

165. Treiber T, Treiber N, Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. *Nat Rev Mol Cell Biol* (2019) doi:10.1038/s41580-018-0099-1

166. Mori MA, Thomou T, Boucher J, Lee KY, Lallukka S, Kim JK, Torriani M, Yki-Järvinen H, Grinspoon SK, Cypess AM, et al. Altered miRNA processing disrupts brown white adipocyte differentiation and associates with lipodystrophy. *J Clin Invest* (2014) doi:10.1172/JCI73468

167. Brandão BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. *Redox Biol* (2017) doi:10.1016/j.redox.2017.01.020

168. Yin H, Pasut A, Soleimani VD, Bentzinger CF, Antoun G, Thorn S, Seale P, Fernando P, Van lijken W, Grosveld F, et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Pdm16. *Cell Metab* (2013) doi:10.1016/j.cmet.2013.01.004

169. Oliverio M, Schmidt E, Mauer J, Baitzel C, Hansmeier N, Khani S, Konieczka S, Pradas M. Gene regulation by long non-coding RNAs. *Nat Cell Biol* (2015) doi:10.1038/ncomms5483

170. Hu F, Wang M, Xiao T, Yin B, He L, Meng W, Dong M, Liu, F. MiR-30 promotes thermogenesis and the development of beige fat by targeting RIP140. *Diabetes* (2015) **64**:2064–2068. doi:10.2337/db14-1117

171. Lai S, Du K, Shi Y, Li C, Wang G, Hu S, Jia X, Wang J, Chen, S. Long non-coding mas in brown adipose tissue. *Diabetes, Metab Syndr Obes Targets Ther* (2020) doi:10.2147/DMSO.S264830

172. Statello L, Guo CJ, Chen LL, Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. *Nat Rev Mol Cell Biol* (2021) doi:10.1038/s41580-020-00315-9

173. Zhao XY, Li S, Wang GX, Yu Q, Lin JD. A Long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. *Mol Cell* (2014) **55**:372–382. doi:10.1016/j.molcel.2014.06.004

174. Li S, Mi L, Yu L, Yu Q, Liu T, Wang GX, Zhao XY, Wu J, Lin JD. Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis. *Proc Natl Acad Sci U S A* (2017) **114**:E7111–E7120. doi:10.1073/pnas.1703949114

175. Mi L, Zhao XY, Li S, Yang, G., Lin JD. Conserved function of the long noncoding RNA Blnc1 in brown adipocyte differentiation. *Mol Metab* (2017) **6**:101–110. doi:10.1016/j.molmet.2016.10.010

176. Bai Z, Chai XR, Yoon MJ, Kim HJ, Lo KA, Zhang ZC, Xu D, Siang DTC, Walet ACE, Xu SH, et al. Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. *PLoS Biol* (2017) **15**: doi:10.1371/journal.pbio.2002176

177. Min SY, Kady J, Nam M, Rojas-Rodriguez R, Berkenwald A, Kim JH, Noh HL, Kim JK, Cooper MP, Fitzgibbons, T., et al.
Human "brite/beige" adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med (2016) 22:312–318. doi:10.1038/nm.4031

178. Tran K Van, Gealekman O, Frontini A, Zingaretti MC, Morroni M, Giordano A, Smorlesi A, Perugini J, De Matteis, R., Sbarbati, A., et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab (2012) 15:222–229. doi:10.1016/j.cmet.2012.01.008

179. Barbatielli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis, R., Cinti, S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol - Endocrinol Metab (2010) 298: doi:10.1152/ajpendo.00600.2009

180. Rosenwald M, Perdikari A, Rülicke, T., Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol (2013) 15:659–667. doi:10.1038/ncb2740

181. Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X, Rao RR, Lou J, Lokurkar, I., Baur, W., et al. A smooth muscle-like origin for beige adipocytes. Cell Metab (2014) 19:810–820. doi:10.1016/j.cmet.2014.03.025

182. Lee YH, Petkova AP, Konkar AA, Granneman JG. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J (2015) 29:286–299. doi:10.1096/fj.14-263038

183. Vishvanath L, Macpherson KA, Hepler C, Wang QA, Shao M, Spurbing SB, Wang MY, Kusminski CM, Morley TS, Gupta RK. Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab (2016) 23:350–359. doi:10.1016/j.cmet.2015.10.018

184. Shao M, Wang QA, Song A, Vishvanath L, Busbuso NC, Scherer PE, Gupta RK. Cellular origins of beige fat cells revisited. Diabetes (2019) 68:1874–1885. doi:10.23736/s0012-1878.19.36862-7

185. Jopling C, Boue S, Belmonte JCI. Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration. Nat Rev Mol Cell Biol (2012) 13:790–799. doi:10.1038/nrm33043

186. Sebo ZL, Rodeheffer MS. Assembling the adipose organ: Adipocyte lineage segregation and adipogenesis in vivo. Dev (2019) 146: doi:10.1242/dev.172098

187. Sakamoto T, Takahashi N, Sawaragi Y, Naknukool S, Yu R, Goto, T., Kawada, T. Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via ERK activation in 10T1/2 adipocytes. Am J Physiol - Cell Physiol (2013) 304: doi:10.1152/ajpcell.00312.2012

188. Hui X, Gu P, Zhang J, Nie T, Pan Y, Wu D, Feng T, Zhong C, Wang Y, Lam KSL, et al. Adiponectin Enhances Cold-Induced Browning of Subcutaneous Adipose Tissue via Promoting M2 Macrophage Proliferation. Cell Metab (2015) 22:279–290. doi:10.1016/j.cmet.2015.06.004

189. Than A, He HL, Chua SH, Xu D, Sun L, Leow MKS, Chen, P. Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem (2015) 290:14679–14691. doi:10.1074/jbc.M115.643817

190. Bartelt, A., Heeren, J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol (2014) 10:24–36. doi:10.1038/nrendo.2013.204

191. Nguyen KD, Qiu Y, Cui X, Goh YPS, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla, A. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature (2011) 480:104–108. doi:10.1038/nature10653

192. Machida K, Okamatsu-Ogura Y, Shin W, Matsuoka S, Tsubota, A., Kimura, K. Role of macrophages in depot-dependent browning of white adipose tissue. Physiol Sci (2018) 68:601–608. doi:10.1007/s12576-017-0567-3

193. Fischer AW, Schlein C, Cannon B, Heeren J, Nedergaard, J. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Dev. Cell Metab (2019) 316:E487–E503. doi:10.1152/ajpcell.00443.2018

194. Luo M, Varela L, Vázquez MJ, Rodríguez-Cuenca S, González CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage, R., et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med (2010) 16:1001–1008. doi:10.1038/nm.2207

195. Watanabe M, Houten SM, MATAKI C, Christoffolette MA, Kim BW, Satoh H, Messaddeq N, Harney JW, Ezaki, O., Kodama, T., et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature (2006) 439:484–489. doi:10.1038/nature04330

196. Velazquez-Villegas LA, Perino A, Lemos V, Zietak M, Nomura M, Pols TWH, Schoonjans, K. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun (2018) 9: doi:10.1038/s41467-017-02668-0

197. Than A, Xu S, Li R, Leow MS, Sun, L., Chen, P. Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis. Signal Transduct Target Ther (2017) 2: doi:10.1038/sigtrans.2017.22

198. Fisher FF, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdegue F, Wu J, KharitonenkoV A, Flier JS, Maratos-Flier E, et al. FGFR21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev (2012) 26:271–281. doi:10.1101/gad.177857.111

199. Morón-Ros S, Uriarte I, Berasain C, Avila MA, Sabater-Masdeu M, Moreno-Navarrete JM, Fernández-Real JM, Giralt M, Villarroya F, Gavaldà-Navarro, A. FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations.
tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. Ouellet V, Labbé SM, Blondin DP, Phoenix S, Sugimoto S, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell (2012) 149:871–885. doi:10.1016/j.cell.2012.02.066

Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto, Y., et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature (2008) 454:1000–1004. doi:10.1038/nature07221

Qian SW, Tang Y, Li X, Liu Y, Zhang YY, Huang HY, Xue RD, Yu HY, Guo, L., Gao H Di, et al. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci U S A (2013) 110: doi:10.1073/pnas.1215236110

Kimura H, Nagoshi T, Yoshii A, Kashiwagi Y, Tanaka Y, Ito K, Yoshino T, Tanaka TD, Yoshimura, M. The thermogenic actions of natriuretic peptide in brown adipose tissue: The direct measurement of the intracellular temperature using a fluoroscent thermoprobe. Sci Rep (2017) 7: doi:10.1038/s41598-017-13563-1

Liu D, Ceddia RP, Collins, S. Cardiac natriuretic peptides promote adipose ‘browning’ through mTOR complex-1. Mol Metab (2018) 9:192–198. doi:10.1016/j.molmet.2017.12.017

Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y, Nagano K, Zhou C, Chou J, Parkman VJA, Novick SJ, et al. Irisin Mediates Effects on Bone and Fat via αv Integrin Receptors. Cell (2018) 175:1756–1768.e17. doi:10.1016/j.cell.2018.10.025

Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, et al. A PGC1α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature (2012) 481:463–468. doi:10.1038/nature10777

Fernández-Verdejo R, Marlatt KL, Ravussin, E., Galgani JE. Contribution of brown adipose tissue to human energy metabolism. Mol Aspects Med (2019) 68:82–89. doi:10.1016/j.mam.2019.07.003

Bhatt PS, Dhillon WS, Salem, V. Human brown adipose tissue function and therapeutic potential in metabolic disease. Curr Opin Pharmacol (2017) 37:1–9. doi:10.1016/j.coph.2017.07.004

Saely CH, Geiger, K., Drexel, H. Brown versus White Adipose Tissue: A Mini-Review. Gerontology (2012) 58:15–23. doi:10.1159/000321319

Davis RW, Davis RW. “Metabolism and Thermoregulation,” in Marine Mammals doi:10.1007/978-3-19-98280-9_4

Yoneshiro T, Matsushita M, Nakae S, Kameya T, Sugie H, Tanaka TD, et al. Irisin—cardiac natriuretic peptide promotes tissue-specific ‘browning’ of white fat and thermogenesis in mice after genetic ablation of brown adipose tissue. Cell Metab (2017) 35:287–296.e17. doi:10.1016/j.cmet.2017.01.013

Lowell BB, S-Susulic V, Hamann A, Lawitts J, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature (1999) 365:740–742. doi:10.1038/365740a0

Klingenspor M, Fromme T, Hughes DA, Manzke L, Polymereopoulos, E., Riemann T, Trzcjonka M, Hirschberg, V., Jastroch, M. An ancient look at UCP1. Biochim Biophys Acta - Bioenerg (2008) 1777:637–641. doi:10.1016/j.bbabio.2008.03.006

Chondronikola M, Volpi E, Borsheim E, Porter C, Saraf MK, Annamalai P, Yianti C, Chao T, Wong, D., Shinoda, K., et al. Brown Adipose Tissue Activation Is Linked to Distinct Systemic Effects on Lipid Metabolism in Humans. Cell Metab (2016) 23:1200–1206. doi:10.1016/j.cmet.2016.04.029

Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller, H., Waurisch, C., et al. Brown adipose tissue activity controls triglyceride clearance. Nat Met (2011) 17:200–206. doi:10.1038/nm.2297

Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B, Haman F, Turcotte EE, Richard, D., Carpenter AC. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest (2012) 122:545–552. doi:10.1172/JCI64033
Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. *Nature* (1997) **387**:90–94. doi:10.1038/38790a0

Maurer SF, Fromme T, Mocskos S, Zimmermann, A., Klingenspor, M. Uncoupling protein 1 and the capacity for nonshivering thermogenesis are components of the glucose homeostatic system. *Am J Physiol - Endocrinol Metab* (2020) **318**:E198–E215. doi:10.1152/ajpendo.00121.2019

Fromme T, Hüttinger K, Maurer S, Li Y, Gantert T, Fiamoncini J, Daniel H, Westphal, S., Klingenspor, M. Bile acid supplementation decreases body mass gain in C57BL/6j but not 129sv/SvEvTac mice without increasing energy expenditure. *Sci Rep* (2019) **9**: doi:10.1038/s41598-018-37464-z

Liu X, Rossmeisl M, McClaine, J., Kozak LP. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. *J Clin Invest* (2003) **111**:399–407. doi:10.1172/JCI200315737

Zietak, M., Kozak LP. Bile acids induce uncoupling protein 1-dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice. *Am J Physiol - Endocrinol Metab* (2016) **310**:E346–E354. doi:10.1152/ajpendo.00485.2015

Ukropec J, Anunciado RP, Ruvussin Y, HuIver MW, Kozak LP. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. *J Biol Chem* (2006) **281**:31894–31908. doi:10.1074/jbc.M606114200

Meyer CW, Willershäuser M, Jastroch M, Rourek BC, Heldmaier, G., Klingenspor, M. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice. *Am J Physiol - Regul Integr Comp Physiol* (2010) **299**: doi:10.1152/ajpregu.00021.2009

Hofmann WE, Liu X, Bearden CM, Harper ME, Kozak LP. Effects of Genetic Background on Thermoregulation and Fatty Acid-induced Uncoupling of Mitochondria in UCP1-deficient Mice. *J Biol Chem* (2001) **276**:12460–12465. doi:10.1074/jbc.M100466200

Keipert S, Kutschke M, Ost M, Schwarzmayer T, van Schothorst EM, Lamp D, Brachthäuser L, Hamp I, Mazibuko SE, Hartwig, S., et al. Long-Term Cold Adaptation Does Not Require FGF21 or UCP1. *Cell Metab* (2017) **26**:437-446.e5. doi:10.1016/j.cmet.2017.06.016

Antonacci MA, McHugh C, Kelley M, McCallister, A., Degan, S., Branca RT. Direct detection of brown adipose tissue thermogenesis in UCP1-/- mice by hyperpolarized 129Xe MR thermometry. *Sci Rep* (2019) **9**: doi:10.1038/s41598-019-51483-4

Long JZ, Svensson Kj, Bateman LA, Lin H, Kamenecka T, Lokurkar IA, Lou J, Rao RR, Chang MRR, Jedyrchowski MP, et al. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria. *Cell* (2016) **166**:424–435. doi:10.1016/j.cell.2016.05.071

Anunciado-Koza RP, Zhang J, Ukropec J, Baipeyi S, Koza RA, Rogers RC, Cefalu WT, Mynatt RL, Kozak LP. Inactivation of the mitochondrial carrier SLc25A2S (ATP-Mg2+/Pi transporter) reduces physical endurance and metabolic efficiency in mice. *J Biol Chem* (2011) **286**:11659–11671. doi:10.1074/jbc.M110.203000

Bertheolet AM, Chouchani ET, Kazak L, Angelin A, Fedorenko A, Long JZ, Vidoni S, Garrity R, Cho J, Terada N, et al. H-transport is an integral function of the mitochondrial ADP/ATP carrier. *Nature* (2019) **571**:515–520. doi:10.1038/s41586-019-1400-3

Kazak L, Chouchani ET, Jedyrchowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Latzko-Bogoslovskii D, Hasenfuss SC, et al. A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat. *Cell* (2015) **163**:643–655. doi:10.1016/j.cell.2015.09.035

Perna MK, Kokenge AN, Miles KN, Udobi KC, Clark JF, Pyne TD, Hasenfuss SC, et al. Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity. *Cell Metab* (2017) **26**:660-671.e3. doi:10.1016/j.cmet.2017.08.009

Kazak L, Rahbani JF, Samborska B, Lu GZ, Jedyrchowski MP, Lajoie M, Zhang S, Ramsay LA, Dou FY, Tenen, D., et al. Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. *Nat Metab* (2019) **1**:360–370. doi:10.1038/s42255-019-0035-x

Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic b3-adrenergic receptor activation. *J Lipid Res* (2014) **55**:2276–2286. doi:10.1194/jlr.M050005

Schweizer S, Oeckl J, Klingenspor, M., Fromme, T. Substrate fluxes in brown adipocytes upon adrenergic stimulation and uncoupling protein 1 ablation. *Life Sci Alliance* (2018) **1**: doi:10.26508/lsa.201800136

Campbell KL, Dicke AA. Sarcolipin makes heat, but is it adaptive thermogenesis? *Front Physiol* (2018) **9**: doi:10.3389/fphys.2018.00714

Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu X, Marettich P, et al. UCP1-independent signaling involving SERCA2-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. *Nat Med* (2017) **23**:1454–1465. doi:10.1038/nm.4429

Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, Cornwall EJ. The basal proton conductance of
mitochondria depends on adenine nucleotide translocase content. Biochem J (2005) 392:353–362. doi:10.1042/Bj020050890

246. Lee YS, Kim JW, Osborne O, Oh DY, Sasik R, Schenk S, Chen A, Chung H, Murphy, A., Watkins SM, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell (2014) 157:1339–1352. doi:10.1016/j.cell.2014.05.012

247. Fischer AW, Jaceckstein MY, Gottschling K, Heine M, Sass F, Mangels N, Schlein C, Worthmann A, Bruns OT, Yuan Y, et al. Lyssonosomal lipoprotein processing in endothelial cells stimulates adipose tissue thermogenic adaptation. Cell Metab (2021) doi:10.1016/j.cmet.2020.12.001

248. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UJ, Weller, H., Waurisch, C., et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med (2011) doi:10.1038/nm.2297

249. Heine M, Fischer AW, Schlein C, Jung C, Straub LG, Gottschling K, Mangels N, Yuan Y, Nilsson SK, Liebscher, G., et al. Lipolysis Triggers a Systemic Insulin Response Essential for Efficient Energy Replenishment of Activated Brown Adipose Tissue in Mice. Cell Metab (2018) 28:644–655.e4. doi:10.1016/j.cmet.2018.06.020

250. Sanchez-Gurmaches J, Tang Y, Jepsersen NZ, Wallace M, Martinez Calejman C, Giju S, Li H, Edwards YJK, Wolfrum, C., Metallo CM, et al. Brown Fat AKT2 Is a Cold-Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis. Cell Metab (2018) 27:195–209.e6. doi:10.1016/j.cmet.2017.10.008

251. Inokuma KI, Ogura-Okamatsu Y, Toda C, Kimura K, Yamashita, H., Saito, M. Uncoupling protein 1 is necessary for norepinephrine-induced glucose utilization in brown adipose tissue. Diabetes (2005) 54:1385–1391. doi:10.2337/diabetes.54.5.1385

252. Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: Is beige the new brown? Genes Dev (2013) doi:10.1101/gad.211649.112

253. Hankir MK, Klingenspor, M. Brown adipocyte glucose metabolism: a heated subject. EMBO Rep (2018) doi:10.15252/embr.201846404

254. Villarroya J, Cereijo R, Giralt M, Villarroya, F. Secretory Proteome of Brown Adipocytes in Response to cAMP-Mediated Thermogenic Activation. Front Physiol (2019) 10:67. doi:10.3389/fphys.2019.00067

255. Ali Khan A, Hansson J, Weber P, Foehr S, Krijgsveld J, Herzig S, et al. Induced Kinase that Stimulates ChREBP-mediated Energy Expenditure and Oxylipin Profiles in Humans. Mol Cell Proteomics (2018) 17:2358–2370. doi:10.1074/mcp.RA118.007004

256. Scheja, L., Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol (2019) 15:507–524. doi:10.1038/s41574-019-0230-6

257. Villarroya F, Gavalda-Navarro A, Peyrou M, Villarroya J, Giralt, M. The Lives and Times of Brown Adipokines. Trends Endocrinol Metabol (2017) 28:855–867. doi:10.1016/j.tem.2017.10.005

258. Sponton CH, Kajimura, S. Multifaceted roles of beige fat in energy homeostasis beyond UCP1. Endocrinology (2018) 159:2545–2553. doi:10.1210/endo.2018-00371

259. Kullerer OC, Niederstaetter L, Her ZT, Haug AR, Bileeck A, Pils D, Kautzky-Willer A, Gerner C, Kiefer FW. The Presence of Active Brown Adipose Tissue Determines Cold-Induced Energy Expenditure and Oxylipin Profiles in Humans. J Clin Endocrinol Metab (2020) 105:2203–2216. doi:10.1210/clinem/dgaa183

260. Lynes MD, Leiria LO, Lundh M, Bartelt A, Shamsi F, Huang TL, Takahashi H, Hirshman MF, Schlein, C., Lee, A., et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med (2017) 23:631–637. doi:10.1038/nm.4297

261. Vasan SK, Noordam R, Gowri MS, Neville MJ, Karpe, F., Christoudoulides, C. The proposed systemic thermogenic metabolites succinate and 12,13-diHOME are inversely associated with adiposity and related metabolic traits: evidence from a large human cross-sectional study. Diabetologia (2019) 62:2079–2087. doi:10.1007/s00125-019-4947-5

262. Stanford KI, Lynes MD, Takahashi H, Baer LA, Arts PJ, May FJ, Lehnig AC, Middelbeek RJW, Richard JJ, So K, et al. 12,13-dHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake. Cell Metab (2018) 27:1111-1120.e3. doi:10.1016/j.cmet.2018.03.020

263. Pinckard KM, Shettigar VK, Wright KR, Abay E, Baer LA, Vidal P, Dewal RS, Das D, Duarte-Sanmiguel S, Hernández-Saa, vedra, D., et al. A Novel Endocrine Role for the BAT- Released Lipokine 12,13-dHOME to Mediate Cardiac Function. Circulation (2021) 143:145–159. doi:10.1161/CIRCULATIONAHA.120.049813

264. Leiria LO, Wang CH, Lynes MD, Yang K, Shamsi F, Sato M, Sugimoto S, Chen YE, Bussberg V, Narain NR, et al. 12-Lipoxygenase Regulates Cold Adaptation and Glucose Metabolism by Producing the Omega-3 Lipid 12-HEPE from Brown Fat. Cell Metab (2019) 30:768-783.e7. doi:10.1016/j.cmet.2019.07.001

265. Veggio-poulos A, Müller-Decker K, Strza Z, Schmitt I, Chichelnitskii E, Ostertag A, Diaz MB, Rozman J, De Angelis H, Nüssing RM, et al. Cytochrome oxidase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science (80-) (2010) 328:1158–1161. doi:10.1126/science.1186034

266. Virtue S, Feldmann H, Christian M, Tan CY, Masoodi M, Dale M, Lelliott C, Burling K, Campbell M, Eguchi, N., et al. A new role for lipocalin prostataglandin D synthase in the regulation of brown adipose tissue substrate utilization. Diabetes (2012) 61:3139–3147. doi:10.2337/db12-0015

267. García-Alonso, V., Clária, J. Prostaglandin E2 signals white-to-brown adipogenic differentiation. Adipocyte (2014) 3:290–296.
Implications for...
signalling pathway inhibits brown and beige adipose tissue. *J Natl Commun* (2016) 7: doi:10.1038/ncomms10895

289. Janssen LGM, Jauhiainen M, Olkkenen VM, Haridas PAN, Nahon KJ, Rensen PCN, Boon MR. Short-Term Cooling Increases Plasma ANGPTL3 and ANGPTL8 in Young Healthy Lean Men but Not in Middle-Aged Men with Overweight and Prediabetes. *J Clin Metab* (2019) 8:1214. doi:10.3390/jcm8081214

290. Fu Z, Yao F, Abou-Samra AB, Zhang, R. Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angio-

291. Martínez-Perez B, Ejarque M, Gutierrez C, Nuñez-Roa C, Roche K, Vila-Bedmar R, Ballesteros M, Redondo-Angulo I, Pla-

292. Singh AK, Aryal B, Chaube B, Rotllan N, Varelta L, Horvath TL, Suárez Y, Fernández-Hernando, C. Brown adipose tissue
derived ANGPTL4 controls glucose and lipid metabolism and regulates thermogenesis. *Mol Metab* (2018) 11:59–69. doi:10.1016/j.molmet.2018.03.011

293. Dijk W, Heine M, Vergnes L, Boon MR, Schaart G, Hesselink MKC, Reue K, van Marken Lichtenbelt WD, Olivecrona, G.,

294. Fournier B, Murray B, Gutzwiller S, Marcaletti S, Marcellin D, Bergling S, Brachat S, Persohn E, Pierrel, E., Bombard, F., et al. Blockade of the Activin Receptor IIB Activates Functional Brown Adipogenesis and Thermogenesis by Inducing Mitochon-

295. Kong X, Yao T, Zhou P, Kazak L, Tenen D, Lyubetskaya A, Dawes BA, Tsai L, Kahn BB, Spiegelman BM, et al. Brown Adipose

296. Virtanen KA, Lidell ME, Orava J, Hegland M, Westergren R, Niemi T, Savisto N-J., Enerbäck, S., et al. Functional Brown Adipose Tissue in Healthy Adults. *N Engl J Med* (2009) 360:1518–1525. doi:10.1056/NEJMoa0808949

297. You WW, Singh BK, Lesmana R, Zhou J, Sinha RA, Wong KA, Wu Y, Bay BH, Sugi S, Sun, L., et al. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. *Autophagy* (2019) 15:131–150. doi:10.1080/15548627.2018.1511263

298. de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim S-W, Harney JW, Larsen PR, Bianco AC. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. *J Clin Invest* (2001) 108:1379–1385. doi:10.1172/jci13803

299. Bianco AC, McAninch EA. The role of thyroid hormone and brown adipose tissue in energy homeoeostasis. *Lancet Diabetes Endocrinol* (2013) 1:250–258. doi:10.1016/s2223-8587(13)70069-x

300. Gnadt T, Scheibler S, Kugelgen I Von, Scheele C, Kilic A, Glode A, Hoffmann LS, Reverte A2A receptors. *Nature* (2014) 516:395–399. doi:10.1038/nature13816

301. Deshmukh AS, Peijs L, Beaudry JL, Jespersen NZ, Nielsen CH, Ma T, Brunner AD, Larsen TJ, Bayarri-Olmos R, Prabhakar

302. Fang D, Shi X, Lu T, Ruan H, Gao, Y. The glycoprotein follistatin-like 1 promotes brown adipose thermogenesis. *Metabolism* (2019) 98:16–26. doi:10.1016/j.metabol.2019.05.008

303. Krott LM, Piscitelli F, Heine M, Borrino S, Scheja L, Silvestri C, Heeren, J., Di Marzo, V. Endocannabinoid regulation in white and brown adipose tissue and recruits beige adipocytes via A2A receptors. *Nature* (2014) 516:395–399. doi:10.1038/nature13816

304. Whittle AJ, Jiang M, Peirce V, Relat J, Virtue S, Ebinuma H, Fukamachi I, Yamaguchi T, Takahashi, M., Murano T, et al. Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. *Nat Commun* (2015) 6: doi:10.1038/ncomms9951

305. Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, Kir S, Shinoda K, Tartaglia JA, Rao RR, et al. A secreted slit2 fragment regulates adipose tissue thermogenesis and metabolic function. *Cell Metab* (2016) 23:454–466.
310. Kang YE, Choung S, Lee JH, Kim HJ, Ku BJ. The role of circulating slit2, one of the newly baktokines, in human diabetes mellitus. Endocrinol Metab (2017) 32:383–388. doi:10.3803/EnM.2017.32.3.383

311. Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ, Morgan D, Cisak Rl, Gallego R, Rodriguez-Cuenca S, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell (2012) 149:871–885. doi:10.1016/j.cell.2012.02.066

312. Pellegrinielli V, Peirce VJ, Howard L, Virtue S, Türei D, Senzacqua M, Frontini A, Dalley JW, Horton AR, Bidault, G., et al. Adipocyte-secreted BMP8B mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nat Commun (2018) 9:1–18. doi:10.1038/s41467-018-07453-x

313. Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback, S., Lecka-Czernik, B. Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology (2013) 154:2687–2701. doi:10.1210/en.2012-2162

314. Xi G, Wai C, DeMambro V, Rosen CJ, Clemmons DR. IGFBP-2 directly stimulates osteoblast differentiation. J Bone Miner Res (2014) 29:2427–2438. doi:10.1002/jbmr.2282

315. Lidell ME, Enerbäck, S. Brown adipose tissue and bone. Int J Obes Suppl (2015) 5:523–S27. doi:10.1038/ijosup.2015.7

316. Bredella MA, Fazeli PK, Lecka-Czernik, B, Rosen CJ, Klibanski, A. IGFBP-2 is a negative predictor of induced brown fat and bone mineral density in young normal-obese women. Bone (2013) 53:336–339. doi:10.1016/j.bone.2012.12.046

317. DeMambro VE, Le PT, Gunther AR, Maridas DE, Canalis E, Nagano K, Baron R, Clemmons DR, et al. Brown adipose tissue activity controls triglyceride clearance. FEBS Lett (2017) 581:83–86. doi:10.1016/S0014-5793(17)30671-6

318. Reilly SM, Ahmadian M, Zamarron BF, Chang L, Uhm M, Poirier B, Peng X, Krause DM, Korytnaya M. IGF-I gene expression in fetal brown adipocytes released from differentiating human beige adipocytes improves browning. Exp Cell Res (2019) 377:47–55. doi:10.1016/j.yexcr.2019.02.015

319. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller, H., Waurisch, C., et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med (2011) 17:200–206. doi:10.1038/nm.2297

320. Hui X, Gu P, Zhang J, Nie T, Pan Y, Wu D, Feng T, Zhong C, Wang Y, Lam KSL, et al. Adiponectin Enhances Cold Tissue Transplantation. J Bone Miner Res (2021) 26:2520–2526. doi:10.1002/jbmr.3642

321. Luo Z, Zhang J, Yu Q, Li Y, Wang B, Wang L, Li X, et al. BMP8B activates Wnt/beta-catenin signaling and promotes brown adipose tissue formation. FEBS Lett (2017) 581:176–182. doi:10.1016/j.febslet.2016.11.026

322. DeMambro VE, Long JZ, White JP, Svensson KJ, Lou J, Lokranz HD, Jridykowski MP, Vu LS, Wrannd CD, Lo JC, et al. Meteorin-like is a hormone that regulates immune-adipose tissue interactions to increase beige fat thermogenesis. Cell (2015) 161:1297–1299. doi:10.1016/j.cell.2015.03.065

323. Campderos L, Moreu R, Cairó M, Gavalá-Navarro A, Quesada-López T, Villarroja J, Morón-Ros S, Sánchez-Infantes D, Peyrou M, Iglesias, R., Mampel T, et al. CXCL14, a Brown Adipokine that Mediates Brown-Fat-to-Macrophage Communication in Thermogenic Adaptation. Cell Metab (2018) 28:750–763.e6. doi:10.1016/j.cmet.2018.07.015

324. Oka M, Kobayashi N, Matsumura K, Nishio M, Nakano K, Okamura T, Okoki H, Minamisawa, T., Shibahara, K., Saeki, K. New Role for Growth/Differentiation Factor 15 in the Survival of Transplanted Brown Adipose Tissues in Cooperation with Interleukin-6. Cells (2020) 9:3990. doi:10.3390/cells09061365

325. Gunawardana SC, Piston DW. Inulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. Am J Physiol - Endocrinol Metab (2015) 308:E1043–E1055. doi:10.1152/ajpendo.00570.2014

326. Duchamp C, Burton KA, Géloën A, Dauncey MJ. Transient upregulation of IGF-I gene expression in brown adipose tissue of cold-exposed rats. Am J Physiol - Endocrinol Metab (1997) 272:E453–E460. doi:10.1152/ajpendo.1997.272.3.e453

327. Chang HR, Kim HJ, Xu X, Ferrante AW. Macrophage and adipocyte IGF1 maintain adipose tissue homeostasis during metabolic stresses. Obesity (2016) 24:172–183. doi:10.1002/oby.21354

328. Lorenzo M, Valverde AM, Teruel, T., Benito, M. IGF-1 is a mitogen involved in differentiation-related gene expression in fetal rat brown adipocytes. J Cell Biol (1993) 123:1567–1575. doi:10.1083/jcb.123.6.1567

329. Hansen IR, Jansson KM, Cannon, B., Nedergaard, J. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and white adipose tissues. Biochim Biophys Acta - Mol Cell Biol Lipids (2014) 1841:1691–
Rourke JL, Muruganandan S, Dranse HJ, McMullen NM, Sinal CJ. Gpr1 is an active chemerin receptor influencing glucose homeostasis in obese mice. *J Endocrinol* (2014) **222**:201–215. doi:10.1530/JEO-14-0069

Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winny JN, Garcia-Martín R, Grinspoon SK, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. *Nature* (2017) **542**:450–455. doi:10.1038/nature21365

Chen Y, Buyel JJ, Hanssen MJW, Siegel F, Pan R, Naumann J, Schell M, Van Der Lans A, Schleien, C, Froehlich, H, et al. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. *Nat Commun* (2016) **7**: doi:10.1038/ncomms11420

Nisoli E, Tonello C, Benarese M, Liberini P, Carruba MO. Expression of nerve growth factor in brown adipose tissue: implications for thermogenesis and obesity. *Endocrinology* **196**(3):349–503. doi:10.1210/endo.196.3.8593794

Plucińska K, Jespersen NZ, Brown EL, Petersen PS, Rupar K, Nielsen S, Scheele, C, Emanuelli, B. Calyst lyn 3β Is Dynamically Regulated by Temperature in Murine Brown Adipose and Marks Human Multilocular Fat. *Front Endocrinol (Lausanne)* (2020) **11**:767. doi:10.3389/fendo.2020.579785

Zeng X, Ye M, Resch JM, Jedrychowski MP, Hu B, Lowell BB, Ginty DD, Spiegelman BM. Innervation of thermogenic adipose tissue via a calyst lyn 3β–S100b axis. *Nature* (2019) **569**:229–235. doi:10.1038/s41586-019-1156-9

Villarroya F, Cereijo R, Villarroya, J, Giralt, M. Brown adipose tissue as a secretory organ. *Nat Publ Gr* (2017) **13**: doi:10.1038/nrendo.2016.136

Rosell M, Hondares E, Iwamoto S, Gonzalez FJ, Wabitsch M, Staels B, Olmos Y, Monsalve M, Giralt M, Iglesias, M. The biology of the metabolic syndrome and aging. *Curr Opin Clin Nutr Metab Care* (2017) **20**(3): doi:10.1097/MCO.000000000000243

Cañadas-Lozano D, Marin-Aguilar F, Castejón-Vega B, Ryffel B, Navarro-Pando JM, Ruiz-Cabello J, Alcocer-Gómez E, Bulón, P., Cordero MD. Blockade of the NLRP3 inflammasome improves metabolic health and lifespan in obese mice. *GeroScience* (2020) doi:10.1007/s11357-019-01051-6

Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, de Gonzalez AB, Cairns BJ, Huxley R, Jackson CL, Joshy G, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. *Lancet* (2016) doi:10.1016/S0140-6736(16)30175-1

Jura, M., Kozak LP. Obesity and related consequences to ageing. *Age (Omaha)* (2016) doi:10.1007/s11357-016-9884-3

Tam BT, Morais JA, Santosa, S. Obesity and ageing: Two sides of the same coin. *Obes Rev* (2020) doi:10.1111/obr.12991

Reis FCG, Branquinho IJO, Brandão BB, Guerra BA, Silva ID, Frontini A, Thomou T, Sartini L, Cinti S, Calhau CN, et al. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice. *Aging (Albany NY)* (2016) doi:10.1007/s40206-1019-0048-5

Caron-Debarle M, Lagathu C, Bocca F, Vigouroux C, Capeau, J. HIV-associated lipodystrophy: from fat injury to premature aging. *Trends Mol Med* (2010) doi:10.1016/j.molmed.2010.03.002

Chang E, Varghese M, Singh, K. Gender and Sex Differences in Adipose Tissue. *Curr Diab Rep* (2018) doi:10.1007/s11892-018-1031-3

Palmer BF, Clegg DJ. The sexual dimorphism of obesity. *Mol Cell Endocrinol* (2015) doi:10.1016/j.mce.2014.11.029

Jespersen N, Andersen M, Jensen V, Stærkær T, Severinsen M, Pejs L, Soares R, Foras I, Andersen E, Hahn C, et al. Thermogenic genes are blunted whereas brown adipose tissue identity is preserved in human obesity. (2020) doi:10.1101/2020.05.07.082057

Link JC, Chen, X., Arnold AP, Reue, K. Metabolic impact of sex chromosomes. *Adipocyte* (2013) doi:10.4161/adip.23230

Lemaître JF, Ronget V, Tidière M, Allainé D, Berger V, Cohnas A, Colchero F, Conde DA, Garratt M, Liker, A., et al. Sex differences in adult lifespan and aging rates of mortality across wild mammals. *Proc Natl Acad Sci U S A* (2020) doi:10.1073/pnas.1911999117

White UA, Tchoukalova YD. Sex dimorphism and depot differences in adipose tissue function. *Biochim Biophys Acta - Mol Basis Dis* (2014) doi:10.1016/j.bbadis.2013.05.006

Bloor ID, Symonds ME. Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. *Horm Behav* (2014) doi:10.1016/j.yhbeh.2014.02.007

Balasubramanian P, Hall D, Subramanian, M. Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. *GeroScience* (2019) doi:10.1007/s11357-018-0048-5

Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB. Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: Role of ATGL, HSL, and AMPK. *Am J Physiol - Cell Physiol* (2010) doi:10.1152/ajpcell.00547.2009
Smith MM, Minson CT. Obesity and adipokines: Effects on sympathetic overactivity. J Physiol (2012) doi:10.1113/jphysiol.2011.221036

Guarino D, Nannipieri M, Iervasi, G, Taddei, S, Bruno RM. The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol (2017) doi:10.3389/fphys.2017.00665

Feldstein, C, Julius, S. The complex interaction between overweight, hypertension, and sympathetic overactivity. J Am Soc Hypertens (2009) doi:10.1016/j.jsh.2009.10.001

Van Baak MA. The peripheral sympathetic nervous system in human obesity. Obes Rev (2001) doi:10.1046/j.1467-789x.2001.00010.x

Kotzbeck P, Giordano A, Mondini E, Murano I, Severi I, Venema W, Cecchini MP, Kershaw EE, Barbatelli, G, Haemmerle, G, et al. Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation. J Lipid Res (2018) 59:784–794. doi:10.1111/jlr.M079665

Hotamisligil GS. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease. Cell (2010) doi:10.1016/j.cell.2010.02.034

Özcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Özüden E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science (80-) (2004) doi:10.1126/science.1103160

Park S, Aintablian A, Coupe, B, Bouret SG. The endoplasmic reticulum stress-autophagy pathway controls hypothalamic development and energy balance regulation in leptin-deficient neonates. Nat Commun (2020) doi:10.1038/s41467-020-15624-y

Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med (2012) doi:10.1016/j.molmed.2011.07.010

Xu L, Spinas GA, Niessen, M. ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport. Horm Metab Res (2010) doi:10.1055/s-0030-1235034

Lee JH, Park A, Oh KJ, Lee SC, Kim WK, Bae KH. The role of adipose tissue mitochondria: Regulation of mitochondrial function for the treatment of metabolic diseases. Int J Mol Sci (2019) doi:10.3390/ijms20194924

Altschuler-Keylin, S, Kajimura, S. Mitochondrial homeostasis in adipose tissue remodeling. Sci Signal (2017) doi:10.1126/scisignal.aas9248

Gao AW, Houtkooper RH. Mitochondrial fission: Firing up mitochondria in brown adipose tissue. EMBO J (2014) doi:10.1002/embo.201487798

Lu X, Altschuler-Keylin S, Wang Q, Chen Y, Sponton CH, Ikeda K, Maretic P, Yoneshiro, T, Kajimura, S. Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCPI-independent mechanism. Sci Signal (2018) doi:10.1126/scisignal.aap8526

Rabiee, A. Beige Fat Maintenance; Toward a Sustained Metabolic Health. Front Endocrinol (Lausanne) (2020) doi:10.3389/fendo.2020.00634

Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab (2012) doi:10.1016/j.tem.2012.06.004

Woo CY, Jang JE, Lee SE, Koh EH, Lee KU. Mitochondrial dysfunction in adipocytes as a primary cause of adipose tissue inflammation. Diabetes Metab J (2019) doi:10.4093/dmj.2018.0221

Ejarque M, Ceperuelo-Mallafre V, Serena C, Maymo-Masip E, Duran X, Díaz-Ramos A, Millan-Scheiding M, Núñez-Álvarez Y, Núñez-Roa C, Gama P, et al. Adipose tissue mitochondrial dysfunction in human obesity is linked to a specific DNA methylation signature in adipose-derived stem cells. Int J Obes (2019) doi:10.1038/s41366-018-0219-6

Perera U, Kennedy BA, Hegele RA. Multiple Symmetric Lipomatosis (Madelung Disease) in a Large Canadian Family With the Mitochondrial MTTK c.8344A>G Variant. J Investig Med High Impact Case Reports (2018) doi:10.1177/2324709618802867

Capel E, Vatier C, Cervera P, Stojkovic T, Disse E, Cottereau AS, Auclair M, Verpont MC, Mosbah, S. The role of the autonomic nervous system in the pathophysiology of obesity. J Physiol (2017) doi:10.1113/jphysiol.2017.596637

Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. J Clin Lipidol (2018) doi:10.1016/j.jcllip.2018.07.009

Blüher, M. Adipose tissue inflammation: A cause or consequence of obesity-related insulin resistance? Clin Sci (2016) doi:10.1042/CS20160005

Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: Direct role in obesity-linked insulin resistance. Science (80-) (1993) doi:10.1126/science.7678183

Lumeng CN, Delproposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity generated by spatiotemporal differences in macrophage subtypes. Diabetes (2008) doi:10.2373/db08-0872

Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki, K, Sugira S, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med (2009) doi:10.1038/nm.1964

Winer DA, Winer S, Shen L, Wadia PP, Yanta J, Pulter G, Tsui H, Wu P, Davidson MG, Alonso MN, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med (2011) doi:10.1038/nm.2353
384. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jovina HA, Bando JK, Chawla, A., Locksley RM. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. *Science* (80-) (2011) doi:10.1126/science.1201475

385. Lumeng CN, Liu J, Geletka L, Delaney C, Delproposto J, Desai A, Oatmen K, Martinez-Santibanez G, Julius A, Garg S, et al. Aging Is involved with an Increase in T Cells and Inflammatory Macrophages in Visceral Adipose Tissue. *J Immunol* (2011) doi:10.4049/jimmunol.1102188

386. Kahn CR, Wang, G., Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. *J Clin Invest* (2019) doi:10.1172/JCI129187

387. Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. *Cell Metab* (2012) doi:10.1016/j.cmet.2012.04.001

388. Feinstein R, Kanety H, Papa MZ, Lunenfeld, B., Karasik, A. Tumor necrosis factor-α suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. *J Biol Chem* (1993) doi:10.1016/s0021-9258(19)74276-8

389. Müller TD, Clemmensen C, Finan B, Dimarchi RD, Tschöp MH. Anti-obesity therapy: From rainbow pills to polyagonists. *Pharmacol Rev* (2018) doi:10.1124/pr.117.014803

390. Coulter AA, Rebello CJ, Greenway FL. Centrally Acting Agents for Obesity: Past, Present, and Future. *Drugs* (2018) doi:10.1007/s40265-018-0946-y

391. Hanssen MJW, Hoeks J, Brans B, Van Der Lans AAJ, Schaart G, Van Den Driessche JJ, Jörgensen JA, Boekschoten, M.V., Hesselink MKC, Havekes, B., et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. *Nat Med* (2015) 21:863–865. doi:10.1038/nm.3891

392. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, Iwanaga T, Saito, M. Recruited brown adipose tissue as an antiobesity agent in humans. *J Clin Invest* (2013) doi:10.1172/JCI67803

393. Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, Villarroya, F. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. *J Biol Chem* (2011) doi:10.1074/jbc.M110.215889

394. Chartoumpakis, D.V., Habeos IG, Ziros PG, Psyrogiannis Al, Kyriazopoulou VE, Papavassiliou AG. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. *Mol Med* (2011) doi:10.2119/molmed.2011.00075

395. Huang Z, Zhong L, Lee JTH, Zhang J, Wu D, Geng L, Wang J, et al. The FGF21-CCL11 Axis Mediates Beiging of White Adipose Tissues by Coupling Sympathetic Nervous System to Type 2 Immunity. *Cell Metab* (2017) doi:10.1016/j.cmet.2017.08.003

396. BonDurant LD, Ameka M, Naber MC, Markan KR, Iglesias R, Giralt M, Tschöp MH. Anti-obesity therapy: From rainbow pills to polyagonists. *Pharmacol Rev* (2018) doi:10.1124/pr.117.014803

397. Hanssen MJW, Broeders E, Samms RJ, Vosselman MJ, Van Der Lans AAJ, Cheng CC, Adams AC, Van Marken Lichtenbelt WD, Schrauwen, P. Serum FGF21 levels are associated with brown adipose tissue activity in humans. *Sci Rep* (2015) doi:10.1038/srep10275

398. Bina HA, Kharritonovk A, Antonellis PJ, Flier JS, Maratos-Flier, E., Fisher f. M, Chui PC, Lin Z, Tian, H., Lam KSSL, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. *Cell Metab* (2008)

399. Shammi F, Xue R, Huang TL, Lundh M, Liu Y, Leiria LO, Lynes MD, Kempf E, Wang CH, Sugimoto S, et al. FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. *Nat Commun* (2020) 11: doi:10.1038/s41467-020-15055-9

400. Leiria LO, Wang CH, Lynes MD, Yang K, Shamsi F, Sato M, Sugimoto S, Chen EY, Busseng V, Narain NR, et al. 12-Lipoxygenase Regulates Cold Adaptation and Glucose Metabolism by Producing the Omega-3 Lipid 12-HEPE from Brown Fat. *Cell Metab* (2019) doi:10.1016/j.cmet.2019.07.001

401. Xu L, Zhao W, Wang D, Ma, X. Chinese medicine in the battle against obesity and metabolic diseases. *Front Physiol* (2018) doi:10.3389/fphys.2018.00850

402. Yin, J., Xing, H., Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. *Metabolism* (2008) doi:10.1016/j.metabol.2008.01.013

403. Xu X, Yi H, Wu J, Kuang T, Zhang J, Li Q, Du H, Xu T, Jiang, G., Fan, G. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence. *Biomed Pharmacother* (2021) doi:10.1016/j.biopha.2020.110984

404. Zhang Z, Zhang H, Li B, Meng X, Wang J, Zhang Y, Yao S, Ma Q, Jin L, Yang J, et al. Berberine activates thermogenesis in white and brown adipose tissue. *Nat Commun* (2014) doi:10.1038/ncomms6493

405. Wu L, Xia M, Duan Y, Zhang L, Jiang H, Hu X, Yan H, Zhang Y, Gu Y, Shi, H., et al. Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans. *Cell Death Dis* (2019) doi:10.1038/s41419-019-1706-y

406. El Hadi H, Di Vincenzo A, Vettor, R., Rossoato, M. Food ingredients involved in white-to-brown adipose tissue conversion and in calorie burning. *Front Physiol* (2019) 10: doi:10.3389/fphys.2018.01954

407. Ohyama K, Mogusa Y, Shinoda K, Suzuki K, Bannai M, Kajimura, S. A synergistic antiobesity effect by a combination of capsinoids and cold temperature through promoting beige adipocyte biogenesis. *Diabetes* (2016) doi:10.2337/db15-0662

408. Helsingos, S., Kalman, D. Curcumin: A Review of Its Effects on Human Health. *Foods* (2017) doi:10.3390/foods6100092

409. Akbari M, Lankarani KB, Tabrizi R, Ghayour-Mobarhan M, Peymani P, Ferns G, Ghaderi A, Asemi, Z. The effects of curcumin...
on weight loss among patients with metabolic disorders: A systematic review and meta-analysis of randomized controlled trials. *Front Pharmacol* (2019) doi:10.3389/fphar.2019.00649

410. Lone J, Choi JH, Kim SW, Yun JW. Curcumin induces brown-fat-like phenotype in 3T3-L1 and primary white adipocytes. *J Nutr Biochem* (2016) doi:10.1016/j.nutbio.2015.09.006

411. Wang S, Wang X, Ye Z, Xu C, Zhang M, Ruan B, Wei M, Jiang Y, Zhang Y, Wang L, et al. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. *Biochem Biophys Res Commun* (2015) doi:10.1016/j.bbrc.2015.09.018

412. Ejaz A, Wu D, Kwan P, Meydani, M. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. *J Nutr* (2009) doi:10.3945/jn.108.100966

413. Okla M, Kim J, Koehler K, Chung, N. Dietary factors promoting brown and beige fat development and thermogenesis. *Adv Nutr* (2017) doi:10.1093/ajcn/nax014

414. Kajimoto O, Kajimoto Y, Yabune M, Nakamura T, Kotani K, Suzuki Y, Nozawa A, Nagata K, Unno T, Yuko MS, et al. Tea catechins with a galloyl moiety reduce body weight and fat. *J Heal Sci* (2005) doi:10.1248/jhs.51.161

415. Wolfram S, Wang Y, Thielecke, F. Anti-obesity effects of green tea: From bedside to bench. *Mal Nutr Food Res* (2006) doi:10.1002/mnfr.200500102

416. Zhang Y, Yu Y, Li X, Meguro S, Hayashi S, Kathashima, Y, Yamashima T, Wang J, Li, K. Effects of catechin-enriched green tea beverage on visceral fat loss in adults with a high proportion of visceral fat: A double-blind, placebo-controlled, randomized trial. *J Funct Foods* (2012) doi:10.1016/j.jff.2011.12.010

417. Neyrinck AM, Bindels LB, Geurts L, Van Hul M, Cani PD, Delzenne NM. A polyphenolic extract from green tea leaves activates fat browning in high-fat-fed-induced obese mice. *J Nutr Biochem* (2017) doi:10.1016/j.nutbio.2017.07.008

418. Dullao AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre, P., Vandermander, J. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. *Am J Clin Nutr* (1999) doi:10.1093/ajcn/70.6.1040

419. Salehi B, Mishra AP, Nigam M, Sener B, Killie M, Sharifi-Rad M, Fokou PVT, Martins, N., Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. *Biomedicines* (2018) doi:10.3390/biomedicines6030091

420. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Liner C, Daussin F, Messadeq N, Milne J, Lambert, P., Elliott, P., et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. *Cell* (2006) doi:10.1016/j.cell.2006.11.013

421. Fischer-Posovszky P, Kukulys V, Tews D, Unterkircher T, Debatin KM, Fulda S, Wabitsch, M. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. *Am J Clin Nutr* (2010) doi:10.3945/ajcn.2009.28435

422. Wang S, Liang X, Yang Q, Fu X, Rogers CJ, Zhu M, Rodgers BD, Jiang Q, Dodson, M.V., Du, M. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. *Int J Obes* (2015) doi:10.1038/ijo.2015.23

423. Timmers S, Konings E, Bilet L, Houtkooper RH, Van De Weijer T, Goossens GH, Hoeks J, Van Der Kriecken S, Ryu, D., Kersten, S., et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. *Cell Metab* (2011) doi:10.1016/j.cmet.2011.10.002

424. Yoshida T, Sakane N, Wakabayashi, Y., Umekawa, T., Kondo, M. Anti-obesity and anti-diabetic effects of CL 316, 243, a highly specific β3-adrenergic receptor agonist, in yellow KK mice. *Life Sci* (1994) doi:10.1016/0024-3205(94)00408-0

425. Xiao C, Goldgof M, Gavrilova, O., Reitman ML. Anti-obesity and metabolic efficacy of the β3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22°C. *Obesity* (2015) doi:10.1002/obr.21124

426. Inokuma KI, Okamatsu-Ogura Y, Omachi A, Matsusuya, Y, Kimura K, Yamashita, H., Saito, M. Indispensable role of mitochondrial UCPT1 for antiobesity effect of β3-adrenergic stimulation. *Am J Physiol - Endocrinol Metab* (2006) doi:10.1152/ajpendo.00105.2005

427. Arch JRS. Challenges in β3-adrenergic agonist drug development. *Ther Adv Endocrinol Metab* (2011) doi:10.1177/2042188310389517

428. Clapham JC, Arch JRS. Thermogenic and metabolic antiobesity drugs: Rationale and opportunities. *Diabetes, Obes Metab* (2007) doi:10.1111/j.1463-2626.2006.00608

429. Baskin AS, Linderman JD, Brychta RJ, McGehee S, Anflick-Chames E, Cero C, Johnson JW, O’Mara AE, Fletcher LA, Leitner BP, et al. Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a β3-adrenergic receptor agonist. *Diabetes* (2018) doi:10.2337/db18-0462

430. Finlin BS, Memetimin H, Zhu B, Confides AL, Vekaria HJ, El Khouri RH, Johnson ZR, Westgate PM, Chen, J., Morris AJ, et al. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. *J Clin Invest* (2020) doi:10.1172/JCI134892

431. Blondin DP, Nielsen S, Kuipers EN, Severinson MC, Jensen VH, Miard S, Jespersen NZ, Kooijman S, Boon MR, Fortin M, et al. Human Brown Adipocyte Thermogenesis Is Driven by β2-AR Stimulation. *Cell Metab* (2020) doi:10.1016/j.cmet.2020.07.005

432. Gonzalez-Garcia I, Milbank E, Díezeguez C, López M, Contreras, C.; Glucagon, GLP-1 and thermogenesis. *Int J Mol Sci* (2019) doi:10.3390/ijms20143445

433. Lockie SH, Heppner KM, Chaudhary N, Chabenne JR, Morgan DA, Veyrat-Durebex C, Ananthakrishnan G, Rohner-
Jeanrenaud F, Drucker DJ, DiMarchi, R., et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. *Diabetes* (2012) doi:10.2337/db11-1556

434. López M, Diéguez C, Nogueiras, R. Hypothalamic GLP-1: The control of BAT thermogenesis and browning of white fat. *Adipocyte* (2015) doi:10.4161/21623945.2014.983752

435. Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M, Fernø J, Salvador, J., Escalada J, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. *Diabetes* (2014) doi:10.2337/db14-0302

436. Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi, V. Gene therapy leaves a vicious cycle. *Front Oncol* (2019) doi:10.3389/fonc.2019.00297

437. Samuelson, I., Vidal-Puig, A. Studying Brown Adipose Tissue in a Human in vitro Context. *Front Endocrinol (Lausanne)* (2020) doi:10.3389/fendo.2020.00629

438. Chen Y, Liu Y, Zhang J, Liu H, Wang J, Liu Q, Zhang, Y. Three-dimensional bioprinting adipose tissue and mammary Organoids feasible for artificial breast structure regeneration. *Mater Des* (2021) doi:10.1016/j.matdes.2021.109467